필기노트 - 컴퓨터 그래픽스 2장 수학기초

	III A
Matrix and Vectors 행렬과 백터	● m7H인 행(7)로줄이 몇 7H인지) n7H인 열(세로줄이 몇 7H인지)이 있는 행렬이 mXn 행렬
	● m == n 인 경우에 정사각행렬(Square matrix) ● A행렬(I X m)과 B행렬(m X n)이 있을 때 두 행렬인 곱 AB는 I X n 행렬
	● 2D를 표현하는 벡터 (x,y), 3D를 표현하는 벡터(x, y, z) 이 들은 row vector(행 벡터)
	- column(열 벡터) 벡터로 바꾸면 $\begin{pmatrix} x \\ y \end{pmatrix}$. $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ 로 표현할 수 있음
	● 행렬 X 벡터(열 벡터) == 전치벡터(행 백터) X 전치행렬 임
	● OpenGI은 column vector를 사용하고 Direct3D의 경우 row vector를 사용함₩
ldentity matrix 단위 행렬	100
	010
	● 대각원소가 1이고 나머지 원소가 0인 행렬
	● 크기가 같은 어떠한 행렬과 곱해도 곱하기 전과 같음 ■ IB TAI
	● 역행렬 = A와B의 곱이 단위행렬일 때 B를 A의 역행렬이라 함 A ⁻¹
	- A를 단위행렬로 만드는 행렬 $(AB)^{-1}=B^{-1}A^{-1}$ $(AB)^T=B^TA^T$
Normalization 점규화	● 벡터를 자기 자신의 길이(크기)로 나누는 것
	● 단위벡터 : 정규화 된 벡터.
	- 크기가 항상 1
	- 방향만 남아있음
Orthonormal 점규직교	● Orthonormal = Orthogonal(직교) + Normalized(정규화 된)
	- 서로 수직인 단위벡터 두 개
	● 정규직교벡터 두 개를 통해 모든 벡터를 선형 조합으로 표현할 수 있음
Dot Product (Inner Product) 내적	● (a,b,c) · (d,e,f) = ad + be + cf
	ㄴ 내적값 공식
	● IIali IIbli cos0 => 크기값 곱하기 cos0
	ㄴ 기하적으로 구하는 내적값 공식
	● 서로 수직인 벡터의 LH적은 O
	● 두 벡터 M이의 각 8가 예각인 경우 양수. 둔각인 경우 음수
	● 3차원에서도 성립
	● 정규직교 벡터끼리 내적하는 경우 O => 둘이 수직이기 때문
Cross Product 외적	
	● 결과값이 벡터로 나옴 -> 오른손의 법칙 a->b 방향 손의 엄지 손가락 방향
	● IIall IIbll sin0 => 외적의 길이
	- 외적의 길이는 a벡터와 b벡터 사이의 평행사변형 크기와 같음
	- a와b가 같은 벡터인 경우 길이가 O인 벡터가 만들어짐
	<u>↓ 계속</u>

	● 3차원 외적인 경우
	- x좌표 계산때는 y.z 좌표들끼리 계산
	- y좌표 계산때는 x.z 좌표들끼리 계산
	- z좌표 계산때는 x.y 좌표들끼리 계산
	a X b = (yz - zy, zx - xz, xy - yx)
Line	● p1과 p0를 잇는 벡터는 p1 - p0로 구할 수 있음
선	그런데 pO에서 p1방향으로 가는 무한한 벡터 p(t) 는 어떻게 구할 것인가?
Ray	ㄴ p(t) = p0 + t(p1 - p0) t는 매개변수
레이	시작점 + 매개변수 * 벡터
Interpolation	위 식에서 t가 O ~ 무한대 인 경우 Ray
선형보간	t가 정해져 있는 경우 Interpolation