

N-Channel 60-V (D-S) MOSFET

PRODUCT SUMMARY								
Part Number	V _{(BR)DSS} Min (V)	$r_{DS(on)}$ Max (Ω)	$Max\left(\Omega\right) \qquad V_{GS(th)}\left(V\right) \qquad I_{D}$					
2N7000		5 @ V _{GS} = 10 V	0.8 to 3	0.2				
2N7002		7.5 @ V _{GS} = 10 V	1 to 2.5	0.115				
VQ1000J	60	5.5 @ V _{GS} = 10 V	0.8 to 2.5	0.225				
VQ1000P		5.5 @ V _{GS} = 10 V	0.8 to 2.5	0.225				
BS170		5 @ V _{GS} = 10 V	0.8 to 3	0.5				

FEATURES

Low On-Resistance: 2.5 Ω
Low Threshold: 2.1 V

Low Input Capacitance: 22 pFFast Switching Speed: 7 ns

Low Input and Output Leakage

BENEFITS

- Low Offset Voltage
- Low-Voltage Operation
- Easily Driven Without Buffer
- High-Speed Circuits
- Low Error Voltage

APPLICATIONS

- Direct Logic-Level Interface: TTL/CMOS
- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors, etc.
- Battery Operated Systems
- Solid-State Relays

Top View

Plastic: VQ1000J
Sidebraze: VQ1000P

Marking Code: 72wll

72 = Part Number Code for 2N7002 w = Week Code l = Lot Traceability

TO-92-18RM (TO-18 Lead Form)

BS170

2N7000/2N7002, VQ1000J/P, BS170

Vishay Siliconix

			_	T	S OTHERWISE NOT Single		Total Quad	BS170	T
Parameter		Symbol	2N7000	2N7002	VQ1000J	VQ1000P	VQ1000J/P		Unit
Drain-Source Voltage		V_{DS}	60	60	60	60		60	
Gate-Source Voltage—Non-Repetitive		V_{GSM}	±40	±40	±30			±25	٧
Gate-Source Voltage—Continuous		V_{GS}	±20	±20	±20	±20		±20	1
Continuous Drain Current (T _J = 150°C)	T _A = 25°C	I _D	0.2	0.115	0.225	0.225		0.5	
	T _A = 100°C		0.13	0.073	0.14	0.14		0.175	Α
Pulsed Drain Current ^a		I _{DM}	0.5	0.8	1	1			1
D 01 1 11	T _A = 25°C		0.4	0.2	1.3	1.3	2	0.83	
Power Dissipation	T _A = 100°C	P _D	0.16	0.08	0.52	0.52	0.8		W
Thermal Resistance, Junction-to-Ambient		R _{thJA}	312.5	625	96	96	62.5	156	°C/W
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150						°C

					Lin	nits			
				2N7000		2N7002		1	
Parameter	Symbol	Test Conditions	Typ ^a	Min	Max	Min	Max	Unit	
Static			•						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 10 \mu A$	70	60		60			
	.,	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	2.1	0.8	3			V	
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 0.25 \text{ mA}$	2.0			1	2.5	1	
Gate-Body Leakage		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 15 \text{ V}$			±10				
	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$					±100	nA	
Zero Gate Voltage Drain Current		$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$			1				
	I _{DSS}	T _C = 125°C	;		1000			1 .	
		V _{DS} = 60 V, V _{GS} = 0 V					1	μΑ	
		T _C = 125°C	;				500	1	
0.00.00.00.00	I _{D(on)}	V _{DS} = 10 V, V _{GS} = 4.5 V	0.35	0.075					
On-State Drain Current ^b		$V_{DS} = 7.5 \text{ V}, V_{GS} = 10 \text{ V}$	1			0.5		A	
		$V_{GS} = 4.5 \text{ V}, I_D = 0.075 \text{ A}$	4.5		5.3				
		$V_{GS} = 5 \text{ V}, I_D = 0.05 \text{ A}$	3.2				7.5	1	
Drain-Source On-Resistance ^b	r _{DS(on)}	T _C = 125°C	5.8				13.5	Ω	
		$V_{GS} = 10 \text{ V}, I_D = 0.5 \text{ A}$	2.4		5		7.5	1	
		T _J = 125°C	4.4		9		13.5	1	
Forward Transconductance ^b	9 _{fs}	$V_{DS} = 10 \text{ V}, I_D = 0.2 \text{ A}$		100		80			
Common Source Output Conductance ^b	9 _{os}	$V_{DS} = 5 \text{ V}, I_D = 0.05 \text{ A}$	0.5					mS	
Dynamic			•						
Input Capacitance	C _{iss}		22		60		50		
Output Capacitance	Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz	11		25		25	pF	
Reverse Transfer Capacitance	C _{rss}	1 - 1 1911 12	2		5		5	1	

Notes a. Pulse width limited by maximum junction temperature. b. $t_p \leq 50~\mu s.$

2N7000/2N7002, VQ1000J/P, BS170

Vishay Siliconix

SPECIFICATIONS—2N7000 AND 2N7002 (T _A = 25°C UNLESS OTHERWISE NOTED)											
				Limits							
				2N7000 2N7002							
Parameter	Symbol	Test Conditions	Typa	Min	Max	Min	Max	Unit			
Switching ^d											
Turn-On Time	t _{ON}	$V_{DD} = 15 \text{ V}, R_{L} = 25 \Omega$	7		10						
Turn-Off Time	t _{OFF}	$I_D \approx 0.5 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 25 \Omega$	7		10			ns			
Turn-On Time	t _{ON}	$V_{DD} = 30 \text{ V}, R_{L} = 150 \Omega$	7				20	115			
Turn-Off Time	t _{OFF}	$I_D \cong 0.2 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 25 \Omega$	11				20				

					Lin	nits			
				VQ1000J/P		BS170		1	
Parameter	Symbol	Test Conditions	Typa	Min	Max	Min	Max	Unit	
Static	•		•	•		•			
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 100 \mu\text{A}$	70	60		60		Ι.,	
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 1$ mA	2.1	8.0	2.5	0.8	3	V	
		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 10 \text{ V}$			±100				
Gate-Body Leakage	I _{GSS}	T _J = 125°C			±500			nA	
•	T	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 15 \text{ V}$					±10	1	
Zero Gate Voltage Drain Current		V _{DS} = 25 V, V _{GS} = 0 V					0.5	μА	
	I _{DSS}	V _{DS} = 48 V, V _{GS} = 0 V, T _J = 125°C			500				
		V _{DS} = 60 V, V _{GS} = 0 V			10				
On-State Drain Current ^b	I _{D(on)}	$V_{DS} = 10 \ V, V_{GS} = 10 \ V$	1	0.5				Α	
Drain-Source On-Resistance ^b	r _{DS(on)}	$V_{GS} = 5 \text{ V}, I_D = 0.2 \text{ A}$	4		7.5				
		$V_{GS} = 10 \text{ V}, I_D = 0.2 \text{ A}$	2.3				5	1	
		$V_{GS} = 10 \text{ V}, I_D = 0.3 \text{ A}$	2.3		5.5			Ω	
		T _J = 125°C	4.2		7.6			1	
Forward Transconductance ^b	9fs -	$V_{DS} = 10 \text{ V}, I_D = 0.2 \text{ A}$				100			
Forward Transconductance		$V_{DS} = 10 \ V, I_{D} = 0.5 \ A$		100				mS	
Common Source Output Conductance ^b	9 _{os}	$V_{DS} = 5 \text{ V}, I_D = 0.05 \text{ A}$	0.5					1	
Dynamic				-					
Input Capacitance	C _{iss}		22		60		60		
Output Capacitance	C _{oss}	V _{DS} =25 V, V _{GS} = 0 V f = 1 MHz	11		25			pF	
Reverse Transfer Capacitance	C _{rss}	1 - 1 1911 12			5				
Switching ^d	•		•	•		•			
Turn-On Time	t _{ON}	$V_{DD} = 15 \text{ V, R}_{I} = 23 \Omega$	7		10				
Turn-Off Time	t _{OFF}	$I_D \approx 0.6 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 25 \Omega$	7		10			1	
Turn-On Time	t _{ON}	$V_{DD} = 25 \text{ V}, R_{L} = 125 \Omega$	7				10	ns	
Turn-Off Time	toff	$I_D \cong 0.2 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 25 \Omega$					10	1	

VNBF06

Notes a. For DESIGN AID ONLY, not subject to production testing. b. Pulse test: PW $\leq 80~\mu s$ duty cycle $\leq 1\%$. c. This parameter not registered with JEDEC. d. Switching time is essentially independent of operating temperature.

Vishay Siliconix

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

V_{DS} - Drain-to-Source Voltage (V)

I_D - Drain Current (A)

V_{GS} - Gate-to-Source Voltage (V)

Vishay Siliconix

TYPICAL CHARACTERISTICS (T_A = 25°C UNLESS OTHERWISE NOTED)

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

<u>VQ1000P</u> <u>VQ1000J</u> <u>2N7002K-T1</u> <u>2N7002\E9</u> <u>2N7002</u> <u>2N7000</u> <u>BS170</u> <u>BS250</u> <u>VQ1000P-E3</u> <u>2N7002-T1</u> <u>2N7002-E3</u> <u>2N7002E-T1-E3</u> <u>BS107</u> <u>BSS92</u> <u>2N7002E</u> <u>2N7000KL-TR1-E3</u> <u>2N7002K-T1-E3</u> <u>2N7002-T1-E3</u> <u>2N7000KL-TR1</u>