Kolmogorov Complexity

imagine you are told at a bar (during a conference):

Chaitin defined a string to be random if it is its own shortest description

Isn't that neat?

imagine you are told at a bar (during a conference):

Chaitin defined a string to be random if it is its own shortest description

Isn't that neat?

getting history right:

- Chaitin had rediscovered Kolmogorov Complexity
- which had previously been described by Solomonov

imagine you are told at a bar (during a conference):

Chaitin defined a string to be random if it is its own shortest description

Isn't that neat?

getting history right:

- Chaitin had rediscovered Kolmogorov Complexity
- which had previously been described by Solomonov

how would you have defined 'description'?

Hint: this is I2TC

examples:

$$x = 0^{30}$$
 or $x = 0$ (30 times)

compression is (intuitively) possible

• x = 01010101010101010101010101010101

$$x = (01)^{16}$$

examples:

$$x = 0^{30}$$
 or $x = 0$ (30 times)

• x = 01010101010101010101010101010101

$$x = (01)^{16}$$

compression is (intuitively) possible

information content/complexity K(x) of x, idea:

• K(x) is the length of the shortest description of x.

examples:

$$x = 0^{30}$$
 or $x = 0$ (30 times)

(intuitively) possible

compression is

• x = 01010101010101010101010101010101

$$x = (01)^{16}$$

information content/complexity K(x) of x, idea:

• K(x) is the length of the shortest description of x.

• Let Y be the lexicographically smallest $y \in \mathbb{B}^*$ which cannot be described in 3 lines $(K(y) \ge 4 \text{ lines})$.

examples:

$$x = 0^{30}$$
 or $x = 0$ (30 times)

compression is (intuitively) possible

• x = 01010101010101010101010101010101

$$x = (01)^{16}$$

information content/complexity K(x) of x, idea:

• K(x) is the length of the shortest description of x.

- Let Y be the lexicographically smallest $y \in \mathbb{B}^*$ which cannot be described in 3 lines $(K(y) \ge 4 \text{ lines})$.
- we just described Y in 2 lines

examples:

$$x = 0^{30}$$
 or $x = 0$ (30 times)

compression is (intuitively) possible

• x = 01010101010101010101010101010101

$$x = (01)^{16}$$

information content/complexity K(x) of x, idea:

• K(x) is the length of the shortest description of x.

- Let Y be the lexicographically smallest $y \in \mathbb{B}^*$ which cannot be described in 3 lines $(K(y) \ge 4 \text{ lines})$.
- we just described Y in 2 lines
- what is a description??

examples:

$$x = 0^{30}$$
 or $x = 0$ (30 times)

• x = 01010101010101010101010101010101

$$x = (01)^{16}$$

information content/complexity K(x) of x, idea:

• K(x) is the length of the shortest description of x.

- Let Y be the lexicographically smallest $y \in \mathbb{B}^*$ which cannot be described in 3 lines $(K(y) \ge 4 \text{ lines})$.
- we just described *Y* in 2 lines
- what is a description??

def: K(x) **almost:**

• a description of x is a string u#v such that M_u started with v prints x and halts.

 $K(x) = \min\{|u \# v| : M_u \text{ started with } v \text{ outputs } x \text{ and halts}\}$

examples:

$$x = 0^{30}$$
 or $x = 0$ (30 times)

• x = 01010101010101010101010101010101

$$x = (01)^{16}$$

information content/complexity K(x) of x, idea:

• K(x) is the length of the shortest description of x.

- Let Y be the lexicographically smallest $y \in \mathbb{B}^*$ which cannot be described in 3 lines $(K(y) \ge 4 \text{ lines})$.
- we just described *Y* in 2 lines
- what is a description??

def: K(x) **almost:**

• a description of x is a string u#v such that M_u started with v prints x and halts.

$$K(x) = \min\{|u \# v| : M_u \text{ started with } v \text{ outputs } x \text{ and halts}\}$$

• unit: not bits, as $\# \notin \mathbb{B}$. Position of # contains information.

• for $w \in \{0, 1, \#\}^*$ obtain (as usual)

$$h(0) = 00$$
, $h(1) = 11$, $h(\#) = 10$
 $h(w[1:n]) = h(w_1) \dots h(w_n)$

• for $u \in \mathbb{B}^*$ define

$$u' = h(bin(|u|)\#)u$$

example u = 01

$$bin(|u|) = 10$$

 $h(bin(|u|)) = 1100$
 $u' = 11001001$

• for $w \in \{0, 1, \#\}^*$ obtain (as usual)

$$h(0) = 00$$
, $h(1) = 11$, $h(\#) = 10$
 $h(w[1:n]) = h(w_1) \dots h(w_n)$

• for $u \in \mathbb{B}^*$ define

$$u' = h(bin(|u|)\#)u$$

example u = 01

$$bin(|u|) = 10$$

 $h(bin(|u|)) = 1100$
 $u' = 11001001$

Lemma 1.

$$|u'| = |u| + O(\log(|u|))$$

Proof.

$$|u'| = 2\lceil \log(|u|)\rceil + 2 + |u|$$

• for $w \in \{0, 1, \#\}^*$ obtain (as usual)

$$h(0) = 00$$
, $h(1) = 11$, $h(\#) = 10$

$$h(w[1:n]) = h(w_1) \dots h(w_n)$$

• for $u \in \mathbb{B}^*$ define

$$u' = h(bin(|u|)\#)u$$

example u = 01

$$bin(|u|) = 10$$

 $h(bin(|u|)) = 1100$
 $u' = 11001001$

Lemma 1.

$$|u'| = |u| + O(\log(|u|))$$

Proof.

$$|u'| = 2\lceil \log(|u|)\rceil + 2 + |u|$$

exercise: can you define binary comma, such that

$$|u'| = |u| + \log(|u|) + O(\log\log(|u|))$$

• for $w \in \{0, 1, \#\}^*$ obtain (as usual)

$$h(0) = 00$$
, $h(1) = 11$, $h(\#) = 10$

$$h(w[1:n]) = h(w_1) \dots h(w_n)$$

• for $u \in \mathbb{B}^*$ define

$$u' = h(bin(|u|)\#)u$$

example u = 01

$$bin(|u|) = 10$$

 $h(bin(|u|)) = 1100$
 $u' = 11001001$

Lemma 1.

$$|u'| = |u| + O(\log(|u|))$$

Proof.

$$|u'| = 2\lceil \log(|u|) \rceil + 2 + |u|$$

exercise: can you define binary comma, such that

$$|u'| = |u| + \log(|u|) + O(\log\log(|u|))$$

def: Kolmogorov complexity K(x)

 $K(x) = \min\{|u'v| : M_u \text{ started with } v \text{ outputs } x \text{ and halts}\}$

• for $w \in \{0, 1, \#\}^*$ obtain (as usual)

$$h(0) = 00$$
, $h(1) = 11$, $h(\#) = 10$

$$h(w[1:n]) = h(w_1) \dots h(w_n)$$

• for $u \in \mathbb{B}^*$ define

$$u' = h(bin(|u|)\#)u$$

example u = 01

$$bin(|u|) = 10$$

 $h(bin(|u|)) = 1100$
 $u' = 11001001$

Lemma 1.

$$|u'| = |u| + O(\log(|u|))$$

Proof.

$$|u'| = 2\lceil \log(|u|) \rceil + 2 + |u|$$

exercise: can you define binary comma, such that

$$|u'| = |u| + \log(|u|) + O(\log\log(|u|))$$

def: Kolmogorov complexity K(x)

 $K(x) = \min\{|u'v| : M_u \text{ started with } v \text{ outputs } x \text{ and halts}\}$

Lemma 2. For all $x \in \mathbb{B}^*$:

$$K(x) \le |x| + O(1)$$

Proof. idea: you can always specify a string by just writing it down (+ saying: this is it)

• for $w \in \{0, 1, \#\}^*$ obtain (as usual)

$$h(0) = 00$$
, $h(1) = 11$, $h(\#) = 10$

$$h(w[1:n]) = h(w_1) \dots h(w_n)$$

• for $u \in \mathbb{B}^*$ define

$$u' = h(bin(|u|)\#)u$$

example u = 01

$$bin(|u|) = 10$$

 $h(bin(|u|)) = 1100$
 $u' = 11001001$

Lemma 1.

$$|u'| = |u| + O(\log(|u|))$$

Proof.

$$|u'| = 2\lceil \log(|u|) \rceil + 2 + |u|$$

exercise: can you define binary comma, such that

$$|u'| = |u| + \log(|u|) + O(\log\log(|u|))$$

def: Kolmogorov complexity K(x)

 $K(x) = \min\{|u'v| : M_u \text{ started with } v \text{ outputs } x \text{ and halts}\}$

Lemma 2. For all $x \in \mathbb{B}^*$:

$$K(x) \le |x| + O(1)$$

Proof. idea: you can always specify a string by just writing it down (+ saying: this is it)

- M_u : ignores input and halts.
- u'x describes x

$$|u'x| = |x| + O(\log(|u|)) = |x| + O(1)$$

+ $O(|u|)$

• for $w \in \{0, 1, \#\}^*$ obtain (as usual)

$$h(0) = 00$$
, $h(1) = 11$, $h(\#) = 10$

$$h(w[1:n]) = h(w_1) \dots h(w_n)$$

• for $u \in \mathbb{B}^*$ define

$$u' = h(bin(|u|)\#)u$$

example u = 01

$$bin(|u|) = 10$$

 $h(bin(|u|)) = 1100$
 $u' = 11001001$

Lemma 1.

$$|u'| = |u| + O(\log(|u|))$$

Proof.

$$|u'| = 2\lceil \log(|u|) \rceil + 2 + |u|$$

exercise: can you define binary comma, such that

$$|u'| = |u| + \log(|u|) + O(\log\log(|u|))$$

def: Kolmogorov complexity K(x)

 $K(x) = \min\{|u'v| : M_u \text{ started with } v \text{ outputs } x \text{ and halts}\}$

Lemma 2. For all $x \in \mathbb{B}^*$:

$$K(x) \le |x| + O(1)$$

Proof. idea: you can always specify a string by just writing it down (+ saying: this is it)

- M_u : ignores input and halts.
- u'x describes x

$$|u'x| = |x| + O(\log(|u|)) = |x| + O(1)$$

+ $O(|u|)$

Lemma 3.

$$K(1^n) = \log(n) + O(1)$$

- M_u started with bin(n) prints 1^n and halts
- u'bin(n) describes 1^n

$$|u'bin(n)| = \log(n) + O(1)$$

idea: a string x is random, if it is its own shortest description.

def: random strings

$$x \in \mathbb{B}^*$$
 random $\leftrightarrow K(x) \ge |x|$

idea: a string x is random, if it is its own shortest description.

def: random strings

$$x \in \mathbb{B}^*$$
 random $\leftrightarrow K(x) \ge |x|$

Lemma 4. For all n there are random strings $x \in \mathbb{B}^n$

idea: a string x is random, if it is its own shortest description.

def: random strings

$$x \in \mathbb{B}^*$$
 random $\leftrightarrow K(x) \ge |x|$

Lemma 4. For all n there are random strings $x \in \mathbb{B}^n$

• assume for all $x \in \mathbb{B}^n$

$$K(x) \le n-1$$

• the number N of descriptions with length i < n is at most

$$N = |\{u'v : |u'v| \le n-1\}|$$

$$\le \sum_{i=0}^{n-1} |\mathbb{B}^i|$$

$$= 2^n - 1$$

$$< |\mathbb{B}^n|$$

not enough short descriptions

exercise: for how many bit strings x of length n must hold $K(x) \ge n-c$?

idea: a string x is random, if it is its own shortest description.

def: random strings

$$x \in \mathbb{B}^*$$
 random $\leftrightarrow K(x) \ge |x|$

Lemma 4. For all n there are random strings $x \in \mathbb{B}^n$

• assume for all $x \in \mathbb{B}^n$

$$K(x) \le n-1$$

• the number N of descriptions with length i < n is at most

$$N = |\{u'v : |u'v| \le n-1\}|$$

$$\le \sum_{i=0}^{n-1} |\mathbb{B}^i|$$

$$= 2^n - 1$$

$$< |\mathbb{B}^n|$$

not enough short descriptions

exercise: for how many bit strings x of length n must hold $K(x) \ge n-c$?

3 Independence of machine model

• Definition of K(x) depends on coding of 1-Tape Turing machines M_u . So we really defined

$$K(x) = K_{1-tape-TM}(x)$$

- What if we use (binary coded) C-programs instead do define $K_C(x)$?
- what if we compare $K_M(x)$, $K_{M'}(x)$ for arbitratry machine models M and M', each capable to compute the computable functions.

idea: a string x is random, if it is its own shortest description.

def: random strings

$$x \in \mathbb{B}^*$$
 random $\leftrightarrow K(x) \ge |x|$

Lemma 4. For all n there are random strings $x \in \mathbb{B}^n$

• assume for all $x \in \mathbb{B}^n$

$$K(x) \le n - 1$$

• the number N of descriptions with length i < n is at most

$$N = |\{u'v : |u'v| \le n-1\}|$$

$$\le \sum_{i=0}^{n-1} |\mathbb{B}^i|$$

$$= 2^n - 1$$

$$< |\mathbb{B}^n|$$

not enough short descriptions

exercise: for how many bit strings x of length n must hold $K(x) \ge n-c$?

3 Independence of machine model

• Definition of K(x) depends on coding of 1-Tape Turing machines M_u . So we really defined

$$K(x) = K_{1-tape-TM}(x)$$

- What if we use (binary coded) C-programs instead do define $K_C(x)$?
- what if we compare $K_M(x)$, $K_{M'}(x)$ for arbitratry machine models M and M', each capable to compute the computable functions.

Lemma 5. Kolmogorov complexity of strings x differs for different models of computation only by an additive constent

$$K_{\mathbf{M}}(x) \le K_{\mathbf{M}'}(x) + O(1)$$

idea: a string x is random, if it is its own shortest description.

def: random strings

$$x \in \mathbb{B}^*$$
 random $\leftrightarrow K(x) \ge |x|$

Lemma 4. For all n there are random strings $x \in \mathbb{B}^n$

• assume for all $x \in \mathbb{B}^n$

$$K(x) \le n-1$$

• the number N of descriptions with length i < n is at most

$$N = |\{u'v : |u'v| \le n-1\}|$$

$$\le \sum_{i=0}^{n-1} |\mathbb{B}^i|$$

$$= 2^n - 1$$

$$< |\mathbb{B}^n|$$

not enough short descriptions

exercise: for how many bit strings x of length n must hold $K(x) \ge n-c$?

3 Independence of machine model

• Definition of K(x) depends on coding of 1-Tape Turing machines M_u . So we really defined

$$K(x) = K_{1-tape-TM}(x)$$

- What if we use (binary coded) C-programs instead do define $K_C(x)$?
- what if we compare $K_M(x)$, $K_{M'}(x)$ for arbitratry machine models M and M', each capable to compute the computable functions.

Lemma 5. Kolmogorov complexity of strings x differs for different models of computation only by an additive constent

$$K_{\mathbf{M}}(x) \le K_{\mathbf{M}'}(x) + O(1)$$

- Let u'v be a shortest description of x in model M.
- let J be an interpreter of programs for M written in M', i.e. J started with a'b simulates program a on input b. (Church's thesis)
- then J'u'v is a description of x in model M'

$$K_{M'}(x) = |J'u'v| = O(1) + |u'v| = O(1) + K_M(x)$$

4 Kolmogorov complexity is not computable

Lemma 6. K(x) is not computable

4 Kolmogorov complexity is not computable

Lemma 6. K(x) is not computable

assume otherwise.

- M_u with input bin(n)
 - 1. enumerates in lex. order $x \in \mathbb{B}^n$ and computes K(x)
 - 2. once it finds an x with $K(x) \ge n$ it outputs x and halts. This will happen by lemma 4.

4 Kolmogorov complexity is not computable

Lemma 6. K(x) is not computable

assume otherwise.

- M_u with input bin(n)
 - 1. enumerates in lex. order $x \in \mathbb{B}^n$ and computes K(x)
 - 2. once it finds an x with $K(x) \ge n$ it outputs x and halts. This will happen by lemma 4.
- u'bin(n) describes a random string in $x \in \mathbb{B}^n$. Thus

$$n \le K(x)$$

 $\le |u'bin(n)|$
 $\le O(1) + \log(n)$

question: How much does a given string y help to describe x?

question: How much does a given string y help to describe x?

def: K(x|y) For $x, y \in \mathbb{B}^*$ we define $K(x|y) = \min\{u'v : M_u \text{ started with } v \# y \text{ outputs } x \text{ and halts}\}$

Here we can afford to indicate, what is given with $\# \notin \mathbb{B}$.

question: How much does a given string y help to describe x?

def: K(x|y) For $x, y \in \mathbb{B}^*$ we define

$$K(x|y) = \min\{u'v : M_u \text{ started with } v \# y \text{ outputs } x \text{ and halts}\}$$

Here we can afford to indicate, what is given with $\# \notin \mathbb{B}$.

example:

Lemma 7. $K(x|\bar{x}) = O(1)$

- M_u started with y flips all bits of y and halts.
- $u'\#\overline{x}$ describes x
- |u'| = O(1)

question: How much does a given string y help to describe x?

def: K(x|y) For $x, y \in \mathbb{B}^*$ we define $K(x|y) = \min\{u'v : M_u \text{ started with } v \# y \text{ outputs } x \text{ and halts}\}$

Here we can afford to indicate, what is given with $\# \notin \mathbb{B}$.

example:

Lemma 7.
$$K(x|\bar{x}) = O(1)$$

- M_u started with y flips all bits of y and halts.
- $u' \# \overline{x}$ describes x
- |u'| = O(1)

6 Substrings of random strings

Lemma 8. Substrings of random strings are almost random, even if the remainder of the string is given. Let

$$x = x^1 x^2 x^3 \in \mathbb{B}^n$$
 be random

Then

$$K(x^2|x^1x^3) \ge |x^2| - O(\log(n))$$

question: How much does a given string y help to describe x?

def: K(x|y) For $x, y \in \mathbb{B}^*$ we define $K(x|y) = \min\{u'v : M_u \text{ started with } v \# y \text{ outputs } x \text{ and halts}\}$

Here we can afford to indicate, what is given with $\# \notin \mathbb{B}$.

example:

Lemma 7. $K(x|\bar{x}) = O(1)$

- M_u started with y flips all bits of y and halts.
- $u' \# \overline{x}$ describes x
- |u'| = O(1)

6 Substrings of random strings

Lemma 8. Substrings of random strings are almost random, even if the remainder of the string is given. Let

$$x = x^1 x^2 x^3 \in \mathbb{B}^n$$
 be random

Then

$$K(x^2|x^1x^3) \ge |x^2| - O(\log(n))$$

• let u'z be a shortest description of x^2 given x^1x^3 . i.e. M_u started with $z\#x^1x^3$ prints x^2 and halts

$$K(x^2|x^1x^3) = |u'z|$$

question: How much does a given string y help to describe x?

def: K(x|y) For $x, y \in \mathbb{B}^*$ we define $K(x|y) = \min\{u'v : M_u \text{ started with } v \# y \text{ outputs } x \text{ and halts} \}$

Here we can afford to indicate, what is given with $\# \notin \mathbb{B}$.

example:

Lemma 7. $K(x|\bar{x}) = O(1)$

- M_u started with y flips all bits of y and halts.
- $u' \# \overline{x}$ describes x
- |u'| = O(1)

6 Substrings of random strings

Lemma 8. Substrings of random strings are almost random, even if the remainder of the string is given. Let

$$x = x^1 x^2 x^3 \in \mathbb{B}^n$$
 be random

Then

$$K(x^2|x^1x^3) \ge |x^2| - O(\log(n))$$

• let u'z be a shortest description of x^2 given x^1x^3 . i.e. M_u started with $z\#x^1x^3$ prints x^2 and halts

$$K(x^2|x^1x^3) = |u'z|$$

- M_v started with $u'z'bin(|x^1|)'x^1x^3$
 - 1. generates $z\#x^1x^3$
 - 2. simulates M_u with input $z\#x^1x^3$
 - 3. outputs x^2
 - 4. inserts it behind x^1 to obtain $x^1x^2x^3$

question: How much does a given string y help to describe x?

def: K(x|y) For $x, y \in \mathbb{B}^*$ we define

 $K(x|y) = \min\{u'v : M_u \text{ started with } v \# y \text{ outputs } x \text{ and halts}\}$

Here we can afford to indicate, what is given with $\# \notin \mathbb{B}$.

example:

Lemma 7. $K(x|\bar{x}) = O(1)$

- M_u started with y flips all bits of y and halts.
- $u' \# \overline{x}$ describes x
- |u'| = O(1)

6 Substrings of random strings

Lemma 8. Substrings of random strings are almost random, even if the remainder of the string is given. Let

$$x = x^1 x^2 x^3 \in \mathbb{B}^n$$
 be random

Then

$$K(x^2|x^1x^3) \ge |x^2| - O(\log(n))$$

• let u'z be a shortest description of x^2 given x^1x^3 . i.e. M_u started with $z\#x^1x^3$ prints x^2 and halts

$$K(x^2|x^1x^3) = |u'z|$$

- M_v started with $u'z'bin(|x^1|)'x^1x^3$
 - 1. generates $z\#x^1x^3$
 - 2. simulates M_u with input $z\#x^1x^3$
 - 3. outputs x^2
 - 4. inserts it behind x^1 to obtain $x^1x^2x^3$

•

$$\begin{array}{rcl} n & \leq K(x^1x^2x^3) \\ & \leq & |v'u'z'bin(|x^1|)'x^1x^3| \\ & = & O(1) + K(x^2|x^1x^3) + O(\log n) + |x^1x^3| \\ |x^2| - O(\log(n)) & \leq & K(x^2|x^1x^3) \end{array}$$

- exploiting communication bottleneck of 1-tape Turing machines
- can transport information across a cell boundary only in the state $z \in Z$

$$M = (Z, \Sigma, \delta, z_0, Z_A)$$

and w.l.o.g assume that computations of M end with head on left end of tape inscription.

def: crossing sequence For $w \in A^*$ and numbers i of tape cells the crossing sequence CS(w,i) is the sequence of states of M started with w before its head crosses the border between tape cells i and i+1

$$M = (Z, \Sigma, \delta, z_0, Z_A)$$

and w.l.o.g assume that computations of M end with head on left end of tape inscription.

def: crossing sequence For $w \in A^*$ and numbers i of tape cells the crossing sequence CS(w,i) is the sequence of states of M started with w before its head crosses the border between tape cells i and i+1

Lemma 9. Let $u, v, x, y \in A^*$ and assume that uv and wx produce the same crossing sequences between them.

$$CS(uv, |u|) = CS(wx, |w|)$$

Then

$$ux \in L(M) \leftrightarrow uv \in L(M)$$

$$M = (Z, \Sigma, \delta, z_0, Z_A)$$

and w.l.o.g assume that computations of M end with head on left end of tape inscription.

def: crossing sequence For $w \in A^*$ and numbers i of tape cells the crossing sequence CS(w,i) is the sequence of states of M started with w before its head crosses the border between tape cells i and i+1

Lemma 9. Let $u, v, x, y \in A^*$ and assume that uv and wx produce the same crossing sequences between them.

$$CS(uv, |u|) = CS(wx, |w|)$$

Then

$$ux \in L(M) \leftrightarrow uv \in L(M)$$

• consider head movements accepting computations of M with inputs uv and ux as shown in figures 1 and 2

Figure 1: head movement and states of the computation with input *uv*. Time axis is pointing downward.

Figure 2: head movement and states of the computation with input wx

$$M = (Z, \Sigma, \delta, z_0, Z_A)$$

and w.l.o.g assume that computations of M end with head on left end of tape inscription.

def: crossing sequence For $w \in A^*$ and numbers i of tape cells the crossing sequence CS(w,i) is the sequence of states of M started with w before its head crosses the border between tape cells i and i+1

Lemma 9. Let $u, v, x, y \in A^*$ and assume that uv and wx produce the same crossing sequences between them.

$$CS(uv, |u|) = CS(wx, |w|)$$

Then

$$ux \in L(M) \leftrightarrow uv \in L(M)$$

- consider head movements accepting computations of M with inputs uv and ux as shown in figures 1 and 2
- 'cut' at border and glue together as shown in figure 3 gives an computation of ux. The decision whether to accept is done on the left side and is the same as for uv

Figure 3: head movement and states of the computation with input ux

$$L = \{ u \#^m u : u \in \mathbb{B}^m , m \in \mathbb{N}_0 \}$$

Let M be a t(n)- time bounded 1-tape TM and $t(n)=o(n^2)$. Then M does not accept L

$$L(M) \neq L$$

$$L = \{ u \#^m u : u \in \mathbb{B}^m , m \in \mathbb{N}_0 \}$$

Let M be a t(n)- time bounded 1-tape TM and $t(n) = o(n^2)$. Then M does not accept L

$$L(M) \neq L$$

Assume L = L(M)

• For $u \#^m u \in L$ and $u' \#^m u' \in L$ with $u \neq u'$ and $i \in [m:2m]$ crossing sequences at border i must differ

$$CS(u\#^m u, i) \neq CS(u'\#^m u', i)$$

otherwise by lemma 9

$$u\#^m u' \in L(M)$$

$$L = \{ u \#^m u : u \in \mathbb{B}^m , m \in \mathbb{N}_0 \}$$

Let M be a t(n)- time bounded 1-tape TM and $t(n) = o(n^2)$. Then M does not accept L

$$L(M) \neq L$$

Assume L = L(M)

• For $u \#^m u \in L$ and $u' \#^m u' \in L$ with $u \neq u'$ and $i \in [m:2m]$ crossing sequences at border i must differ

$$CS(u\#^m u, i) \neq CS(u'\#^m u', i)$$

otherwise by lemma 9

$$u\#^m u' \in L(M)$$

1979 proof:

• code crossing sequences CS in binary in

$$\tilde{CS'} \in \mathbb{B}^*$$
, $|\tilde{CS}| = \rho \cdot |CS|$, $\rho = \lceil \log |Z| \rceil$

$$L = \{ u \#^m u : u \in \mathbb{B}^m , m \in \mathbb{N}_0 \}$$

Let M be a t(n)- time bounded 1-tape TM and $t(n) = o(n^2)$. Then M does not accept L

$$L(M) \neq L$$

Assume L = L(M)

• For $u \#^m u \in L$ and $u' \#^m u' \in L$ with $u \neq u'$ and $i \in [m:2m]$ crossing sequences at border i must differ

$$CS(u\#^m u, i) \neq CS(u'\#^m u', i)$$

otherwise by lemma 9

$$u\#^m u' \in L(M)$$

1979 proof:

• code crossing sequences CS in binary in

$$\tilde{CS'} \in \mathbb{B}^*$$
, $|\tilde{CS}| = \rho \cdot |CS|$, $\rho = \lceil \log |Z| \rceil$

- decription of $u \in \mathbb{B}^m$ by crossing sequence: $TM M_v$ started with $bin(m)'bin(i)'\tilde{CS}$
 - 1. enumerates all $u \in \mathbb{B}^m$
 - 2. runs machine M with input $u\#^m u$ and observes if \tilde{CS} appears as code of CS at position i
- then M_v started with $bin(m)'bin(i)'\tilde{CS}(u\#^m u,i)$ detects this crossing sequence for u and only for u. It outputs u and halts.

$$L = \{ u \#^m u : u \in \mathbb{B}^m , m \in \mathbb{N}_0 \}$$

Let M be a t(n)- time bounded 1-tape TM and $t(n) = o(n^2)$. Then M does not accept L

$$L(M) \neq L$$

Assume L = L(M)

• For $u \#^m u \in L$ and $u' \#^m u' \in L$ with $u \neq u'$ and $i \in [m:2m]$ crossing sequences at border i must differ

$$CS(u\#^m u, i) \neq CS(u'\#^m u', i)$$

otherwise by lemma 9

$$u\#^m u' \in L(M)$$

1979 proof:

• code crossing sequences CS in binary in

$$\tilde{CS'} \in \mathbb{B}^*$$
, $|\tilde{CS}| = \rho \cdot |CS|$, $\rho = \lceil \log |Z| \rceil$

- decription of $u \in \mathbb{B}^m$ by crossing sequence: $TM M_v$ started with $bin(m)'bin(i)'\tilde{CS}$
 - 1. enumerates all $u \in \mathbb{B}^m$
 - 2. runs machine M with input $u\#^m u$ and observes if \tilde{CS} appears as code of CS at position i
- then M_v started with $bin(m)'bin(i)'\tilde{CS}(u\#^m u,i)$ detects this crossing sequence for u and only for u. It outputs u and halts.

• $v'bin(m)'bin(i)'\tilde{CS}(u\#^m u,i)$ describes u. If u is random, we have

$$\frac{m \leq K(u)}{\leq O(1) + O(\log m) + \rho \cdot |CS(u\#^m u, i)|}$$

$$|CS(u\#^m u, i)| \geq \frac{m - O(\log m)}{\rho}$$

$$= \frac{m}{2\rho} \quad \text{for } m \geq m_0$$

$$L = \{ u \#^m u : u \in \mathbb{B}^m , m \in \mathbb{N}_0 \}$$

Let M be a t(n)- time bounded 1-tape TM and $t(n) = o(n^2)$. Then M does not accept L

$$L(M) \neq L$$

Assume L = L(M)

• For $u^{\#m}u \in L$ and $u'^{\#m}u' \in L$ with $u \neq u'$ and $i \in [m:2m]$ crossing sequences at border i must differ

$$CS(u\#^m u, i) \neq CS(u'\#^m u', i)$$

otherwise by lemma 9

$$u\#^m u' \in L(M)$$

1979 proof:

• code crossing sequences CS in binary in

$$\tilde{CS'} \in \mathbb{B}^*$$
, $|\tilde{CS}| = \rho \cdot |CS|$, $\rho = \lceil \log |Z| \rceil$

- decription of $u \in \mathbb{B}^m$ by crossing sequence: $TM M_v$ started with $bin(m)'bin(i)'\tilde{CS}$
 - 1. enumerates all $u \in \mathbb{B}^m$
 - 2. runs machine M with input $u\#^m u$ and observes if \tilde{CS} appears as code of CS at position i
- then M_v started with $bin(m)'bin(i)'\tilde{CS}(u\#^m u,i)$ detects this crossing sequence for u and only for u. It outputs u and halts.

• $v'bin(m)'bin(i)'\tilde{C}S(u\#^m u,i)$ describes u. If u is random, we have

$$\frac{m \leq K(u)}{\leq O(1) + O(\log m) + \rho \cdot |CS(u^{\#m}u, i)|$$

$$|CS(u^{\#m}u, i)| \geq \frac{m - O(\log m)}{\rho}$$

$$= \frac{m}{2\rho} \quad \text{for } m \geq m_0$$

• run time is at least sum of lengths of crossing sequences. Let n = 3m. Then run time T_n with random $u \in \mathbb{B}^m$ is

$$T_n \geq \sum_{i=m}^{2m} |CS(u\#^m u, i)|$$

$$\geq m \cdot m/(2\rho)$$

$$= n^2/(18\rho)$$