

09/04/2018 date

page 1 of 10

SERIES: PD030-D **DESCRIPTION: DC-DC CONVERTER**

FEATURES

- up to 30 W isolated output
- industry standard 1" x 1" package
- 4:1 input range
- single/dual regulated output
- over voltage, input under voltage lockout, and short circuit protections
- 1,500 Vdc isolation voltage
- five-sided shielded case
- remote on/off control
- output trim
- -40 to 105°C temperature range
- efficiency up to 90%

1. At full load, nominal input, 20 MHz bandwidth oscilloscope, with 10 μ F tantalum and 1 μ F ceramic capacitors on the output. 2. All specifications are measured at Ta=25°C, nominal input voltage, and rated output load unless otherwise specified. Notes:

PART NUMBER KEY

INPUT

parameter	conditions/description		typ	max	units
operating input voltage	24 Vdc input models 48 Vdc input models	9 18	24 48	36 75	Vdc Vdc
surge voltage	for maximum of 100 ms 24 Vdc input models 48 Vdc input models			50 100	Vdc Vdc
current	24 Vdc input models 48 Vdc input models			3.9 1.95	A A
under voltage shutdown	der voltage shutdown 24 Vdc input models, power up 24 Vdc input models, power down 48 Vdc input models, power up 48 Vdc input models, power down				Vdc Vdc Vdc Vdc
remote on/off¹	turn on (3.5~75 Vdc or open circuit) turn off (<1.2 Vdc)				
filter	pi filter				
input reverse polarity protection	no				
input fuse	6 A time delay fuse for 24 Vdc input models (recommended) 3 A time delay fuse for 48 Vdc input models (recommended)				

OUTPUT

parameter	conditions/description	min	typ	max	units
	3.3 Vdc output models			7,500	μF
	5 Vdc output models			6,000	μF
mayimum canacitive load	12 Vdc output models			2,500	μF
maximum capacitive load	15 Vdc output models			2,000	μF
	±12 Vdc output models			1,250	μF
	±15 Vdc output models			1,000	μF
voltage accuracy				±1.5	%
	from high line to low line				
line regulation	single output models			±0.2	%
	dual output models			±0.5	%
	from full load to minimum load				
load regulation	single output models			±0.2	%
	dual output models			±1.0	%
voltage balance	dual output models			±1.5	%
cross regulation	load cross variation 10%/100% (dual output models)			±5	%
turn-on delay time, from input	from Vin, min to 10% Vo		10		ms
turn-on delay time, from on/off control	from Von/off to 10% Vo		10		ms
rise time	from 10% Vo to 90% Vo		10		ms
adjustability²	see application notes		±10		%
cuitching fraguency	3.3, 5 Vdc output models		270		kHz
switching frequency	all other models		330		kHz
	75%-100% step load change				
dynamic load response	error band (Vout)		5		%
-	recovery time		250		μs
temperature coefficient			±0.03		%/°C

Note: 2. For sing

2. For single output models only.

CUI Inc | SERIES: PDQ30-D | DESCRIPTION: DC-DC CONVERTER

date 09/04/2018 | page 3 of 10

PROTECTIONS

parameter	conditions/description	min	typ	max	units
	zener or TVS clamp				
over voltage protection	3.3 Vdc output models		3.9		Vdc
	5 Vdc output models	6.2			Vdc
	12 Vdc output models (single and dual) 15			Vdc	
	15 Vdc output models (single and dual)		18		Vdc
over current protection	hiccup mode	110	140	170	%
short circuit protection	continuous, automatic recovery				
over temperature protection	output shutdown, automatic recovery	110			°C

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units
isolation voltage	input to output for 1 minute	1,500		Vdc	
isolation resistance	input to output	1,000			ΜΩ
isolation capacitance	input to output	1,500			pF
conducted emissions	EN 55022 Class A (external circuit required, see Figure 3)				
RoHS	2011/65/EU				

ENVIRONMENTAL

parameter conditions/description		min	typ	max	units
operating temperature	see derating curves	-40		105	°C
storage temperature		-55		125	°C
operating humidity	non-condensing			95	%

SOLDERABILITY

parameter	conditions/description	min	typ	max	units
wave soldering	see wave soldering profile			260	°C

Notes:

- Soldering materials: Sn/Cu/Ni
 Ramp up rate during preheat: 1.4°C/s (from 50°C to 100°C)
 Soaking temperature: 0.5°C/s (from 100°C to 130°C), 60±20 seconds
- 4. Peak temperature: 260°C, above 250°C for 3~6 seconds
 5. Ramp down rate during cooling: -10°C/s (from 260°C to 150°C)

MECHANICAL

parameter	conditions/description	min	typ	max	units
dimensions	1.00 x 1.00 x 0.4 [25.4 x 25.4 x 10.2 mm]				inches
case material	black coated copper with non-conductive base				
weight			18		g

MECHANICAL DRAWING

units: inches [mm] tolerance: X.XX ±0.02 [±0.5]

tolerance: X.XX ± 0.02 [± 0.5] X.XXX ± 0.010 [± 0.25] pin diameter tolerance: ± 0.004 [± 0.1]

PIN CONNECT	IONS	
PIN		
Single	Dual	
+Vin	+Vin	
-Vin	-Vin	
+Vout	+Vout	
Trim	Common	
-Vout	-Vout	
Remote	Remote	
	Fund Single +Vin -Vin +Vout Trim -Vout	

Recommended PCB Layout Top View

DERATING CURVE

EFFICIENCY CURVES

EFFICIENCY CURVES (CONTINUED)

EFFICIENCY CURVES (CONTINUED)

TEST CONFIGURATIONS

Input Ripple Current & Output Noise

Figure 1 Measuring Input Ripple Current

Table 1

L1	12 μΗ
C1	220 μF ESR $< 0.1 \Omega$ at 100 kHz
Cin	33 μF ESR $< 0.7 \Omega$ at 100 kHz

Figure 2 Measuring Output Ripple And Noise

Table 2

C1	10 μF tantalum capacitor
C2	1 μF ceramic capacitor

EMC RECOMMENDED CIRCUIT

Test Condition

Input Voltage: Nominal Output Load: Full Load

Figure 3 Conducted Emissions Test Circuit

Table 3

EN55022 Class A Recommended External Circuit Components				
Input Voltage C1 L1 (Vdc)				
24	100 μF / 50 V	0.47 μH		
48 4.7 μF / 100 V 2.2 μH				

APPLICATION NOTES

Output Voltage Trimming

The output voltage can be adjusted (single outputs only) by using the trim pin and the use of either an external trim pot or the use of a single fixed resistor (see Figures below). If the trim function is not needed, leave the trim pin open.

Figure 4 Trim Adjustments Using A Trimpot

Figure 5 Trim Adjustments To Increase **Output Voltage Using A Fixed Resistor**

Figure 6 Trim Adjustments To Decrease **Output Voltage Using A Fixed Resistor**

$$R_{trim-up} = \left(\frac{Vr \times R1 \times (R2 + R3)}{(Vo - V_{o,nom}) \times R2}\right) - Rt \quad (k\Omega)$$

$$R_{trim-down} = R1 \times (\frac{Vr \times R1}{(V_{o,nom} - Vo) \times R2} - 1) - Rt \quad (k\Omega)$$

Table 4

Output Voltage (Vdc)	R1 (kΩ)	R2 (kΩ)	R3 (kΩ)	Rt (kΩ)	Vr (V)
3.3	2.74	1.8	0.27	9.1	1.24
5	2.32	2.32	0	8.2	2.5
12	6.8	2.4	2.32	22	2.5
15	8.06	2.4	3.9	27	2.5

Note: $R_{\text{trim-up}}$ is the external resistor in $k\Omega$ $R_{\text{trim-down}}$ is the external resistor in $k\Omega$ $V_{\text{O, nom}}$ is the nominal output voltage V_{O} is the desired output voltage

R1, R2, R3, Rt, and Vr are internal (see Table 4)

Additional Resources: Product Page | 3D Model | PCB Footprint

CUI Inc | SERIES: PDQ30-D | DESCRIPTION: DC-DC CONVERTER date 09/04/2018 | page 10 of 10

REVISION HISTORY

rev.	description	date
1.0	initial release	07/12/2016
1.01	added 5 Vdc output efficiency curves	09/04/2018

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.