

Inteligencia Artificial

Enero-Junio 2021

Martes - Jueves

12:00 - 13:30

- ¿Que es la Optimización?
- Tipos de Problemas de Optimización
- Taxonomía de Modelos de Optimización
- Conceptos básicos Metaheurísticas
- Técnicas Metaheurísticas

- Los problemas de optimización se encuentran en diversos dominios como: ciencias, ingeniería, administración, negocios, etc.
- Un problema de optimización puede ser definido por la dupla (S, f), donde S representa el conjunto de soluciones factibles, y $f: S \to \mathbb{R}$ es la función objetivo a optimizar. La función f permite definir una relación de orden total entre cualquier par de soluciones en el espacio de búsqueda.

• Optimo Global: Una solución $s^* \in S$ es un optimo global si tiene un mejor valor de acuerdo a la función objetivo que todas las soluciones del espacio de búsqueda, esto es, $\forall s \in S, f(s^*) \leq f(s)$

- Los tipos de optimización se puede clasificar de acuerdo a la naturaleza de las variables de decisión:
 - Optimización continua
 - Optimización discreta
 - Binaria
 - Combinatoria
 - Optimización Mixta

Taxonomía de modelos de optimización

- Métodos Exactos
 - Rama y X
 - Programación de restricciones
 - Programación dinámica
 - A*, IDA*
- Métodos de Aproximación
 - Algoritmos de aproximación
 - Algoritmos Heurísticos
 - Heurísticas específicas al problema
 - Metaheurísticas
 - Basadas en una sola solución
 - Basadas en una población

Taxonomía de modelos de optimización

- Metaheurísticas:
 - Evolutivos
 - Bioinspirados
 - Basados en fenómenos físicos

- Representación, una solución debe de poseer:
 - Completitud
 - Conexión
 - Eficiencia

7 6 6 4 3 8 4 2

- Location problem

- Assignment problem

Técnicas Metaheurísticas: Algoritmo Genético

- Es un algoritmo evolutivo, propuesto por John Holland en 1975.
- Es una simulación de la selección natural que puede resolver problemas de optimización.
- Características que simula un AG acerca de la selección natural:
 - Un sistema biológico consta de una población de individuos, muchos de los cuales tienen la habilidad de reproducirse.
 - Los individuos tienen una vida útil finita
 - Hay variación en la población
 - La habilidad para sobrevivir está correlacionada positivamente con la habilidad de reproducirse.

Características:

- Representación: cadenas de bits (1s y 0s)
- Selección: Ruleta (Proporcional)
- Variaciones: Cruza.

Algoritmo Genético: Pseudocódigo

Inicio

- -t = 0
- Inicializar P(t)
- **Evaluar** estructuras en P(t)
- Mientras no se llegue a la condición de paro, hacer
 - t = t + 1
 - Seleccionar R(t) de P(t-1)
 - Cruzar R(t) para obtener C(t)
 - Mutar C(t) para obtener C'(t)
 - Evaluar estructuras en C'(t)
 - Reemplazar $P(t) \operatorname{con} C'(t) \operatorname{y} P(t-1)$

Algoritmo Genético: Ejemplo

• Optimizar Función One Max $(X \in \mathfrak{B}^d)$

$$-\max f(x) = \sum_{i=1}^d x_i$$

$$-\min f(x) = -\sum_{i=1}^{d} x_i$$

- d = 4, pop_size = 10
 - Inicializar y evaluar P(t)

P(t)

x_1	x_2	x_3	x_4	f(X)
0	1	1	0	2
1	0	1	1	3
1	1	0	1	3
1	0	1	0	2
0	0	0	0	0
0	1	0	1	2
1	0	1	1	3
0	1	0	0	1
0	0	0	1	1
1	1	1	0	3

- Seleccionar (Ruleta) R(t) de P(t-1)

P(t)

#	x_1	x_2	x_3	x_4	f(X)	$f_{norm}(X)$
1	0	1	1	0	2	0.1
2	1	0	1	1	3	0.15
3	1	1	0	1	3	0.15
4	1	0	1	0	2	0.1
5	0	0	0	0	0	0
6	0	1	0	1	2	0.1
7	1	0	1	1	3	0.15
8	0	1	0	0	1	0.05
9	0	0	0	1	1	0.05
10	1	1	1	0	3	0.15
					20	1

- Cruzar (Cruza en un Punto) R(t) para obtener C(t)

R(t)

Pareja	x_1	x_2	x_3	x_4
1	1	0	1	1
1	1	1	0	1
2	0	1	0	1
2	1	1	0	1
3	0	1	0	0
3	0	1	1	0
4	1	0	1	0
4	1	1	1	0
5	1	1	1	0
5	1	0	1	1

C(t)

Pareja	Punto	x_1	x_2	x_3	x_4
1	2	1	0	0	1
1	2	1	1	1	1
2	3	0	1	0	1
2	3	1	1	0	1
3	3	0	1	0	0
3	3	0	1	1	0
4	1	1	1	1	0
4	1	1	0	1	0
5	3	1	1	1	1
5	3	1	0	1	0

- Mutar (Mutación de 1 bit) C(t) para obtener C'(t)

C(t)

x_1	x_2	x_3	x_4
1	0	0	1
1	1	1	1
0	1	0	1
1	1	0	1
0	1	0	0
0	1	1	0
1	1	1	0
1	0	1	0
1	1	1	1
1	0	1	0

C'(t)

x_1	x_2	x_3	x_4
1	1	0	1
1	1	0	1
0	1	0	0
1	1	1	1
0	0	0	0
1	1	1	0
1	0	1	0
1	0	1	1
0	1	1	1
1	1	1	0

- **Evaluar** estructuras en C'(t)

C'(t)

x_1	x_2	x_3	x_4	f(X)
1	1	0	1	3
1	1	0	1	3
0	1	0	0	1
1	1	1	1	4
0	0	0	0	0
1	1	1	0	3
1	0	1	0	2
1	0	1	1	3
0	1	1	1	3
1	1	1	0	3

- Reemplazar $P(t) \operatorname{con} C'(t)$

P(t)

x_1	x_2	x_3	<i>x</i> ₄	f(X)
1	1	0	1	3
1	1	0	1	3
0	1	0	0	1
1	1	1	1	4
0	0	0	0	0
1	1	1	0	3
1	0	1	0	2
1	0	1	1	3
0	1	1	1	3
1	1	1	0	3

Algoritmo Genético: Selección / Reemplazo

- El principal objetivo de la selección es procurar las mejores soluciones en una población.
- Se utiliza en:
 - Reproducción Elección de buenas soluciones para crear (idealmente) mejores soluciones.
 - Reemplazo Copias de una o mas buenas soluciones son colocadas en la población siguiente.
- Operadores:
 - Selección Aleatoria
 - Selección Proporcionada (Ruleta)
 - Selección Torneo n-ario
- ¿Presión de selección?
- ¿Brecha generacional?

- Es un mecanismo el cual intercambia subcadenas entre las cadenas de símbolos de los individuos.
- Operadores:
 - Cruza en Un Punto
 - Cruza en n Putos (n=2, sugerido)

Cruza en 2 Puntos

R(t)

Pareja	x_1	x_2	x_3	x_4	
1	1	0	1	1	
1	1	1	0	1	
2	0	1	0	1	
2	1	1	0	1	
3	0	1	0	0	
3	0	1	1	0	
4	1	0	1	0	
4	1	1	1	0	
5	1	1	1	0	
5	1	0	1	1	

C(t)

Pareja	Punto1	Punto2	x_1	x_2	x_3	$ x_4 $
1	1	3	1	1	0	1
1	1	3	1	0	1	1
2	2	3	0	1	0	1
2	2	3	1	1	0	1
3	2	3	0	1	1	0
3	2	3	0	1	0	0
4	1	3	1	1	1	0
4	1	3	1	0	1	0
5	2	3	1	1	1	1
5	2	3	1	0	1	1

- Es un mecanismo para proveer diversidad a las soluciones generadas en la cruza
- Operadores:
 - Muta Negador de 1 bit
 - Muta Negador de N bits
 - Muta con base a una Probabilidad

- El problema SAT es el problema de saber si, dada una expresión booleana con variables y sin cuantificadores, hay alguna asignación de valores para sus variables que hace la expresión verdadera.
- Por ejemplo, dadas x_1, x_2, x_3, x_4 , determine los valores para que la siguiente expresión sea verdadera:
- $(x_1 \lor x_3) \land (\neg x_2 \lor x_3 \lor \neg x_4)$

• La representación canónica de los algoritmos genéticos consiste de vectores binarios de longitud fija ℓ ; es decir, el espacio de búsqueda es $I = \{0,1\}^{\ell}$ y los individuos $a = (a_1, ..., a_{\ell}) \in \{0,1\}^{\ell}$. Esta representación es adecuada para problemas de optimización de la forma $f: \{0,1\}^{\ell} \to \mathbb{R}$.

• Los algoritmos genéticos también pueden ser usados en problemas de optimización de la forma $f:S \to \mathbb{R}$, donde S difiere de un vector binario del espacio $\{0,1\}^\ell$. Un ejemplo de esto, es la aplicación del algoritmo genético para problemas de optimización con parámetros continuos $f:\mathbb{R}^n \to \mathbb{R}$.

- Los mecanismos de codificación y decodificación entre dos espacios diferentes $\{0,1\}^{\ell}$ y \mathbb{R}^n requieren restringir el espacio continuo a intervalos finitos $[u_i, v_i]$ para cada variable $x \in \mathbb{R}$.
- El vector binario se divide en n segmentos de (en la mayoría de los casos) longitud igual a ℓ_x , tal que $\ell=n\ell_x$.
- El subsegmento $\left(a_{(i-1)\ell_{\chi}+1},\ldots,a_{i\ell_{\chi}}\right)$ $(i=1,\ldots,n)$ es la codificación binaria de la variable x_i .

• La decodificación $\Gamma^i \colon \{0,1\}^\ell \to [u_i,v_i]$, se realiza de la siguiente manera

$$\Gamma^{i}(a_{1},...,a_{\ell}) = u_{i} + \frac{v_{i} - u_{i}}{2^{\ell_{x}} - 1} \left(\sum_{j=0}^{\ell_{x}-1} a_{i\ell_{x}-j} 2^{j} \right)$$

 La ecuación anterior puede ser adaptada a usar la codificación Gray, la cual asegura que los valores enteros adyacentes son representados por vectores binarios con distancia de Hamming igual a 1.

• Considere la función esfera (n = 2):

$$f(x) = \sum_{i=1}^{2} (x_i)^2; x \in \mathbb{R}^n$$

- Cada componente x_i será acotada al intervalo $u_i = -5.21$ y $v_i = 5.21$.
- Cada componente x_i será codificada por un subsegmento binario $\ell_x = 3$; por lo tanto, la longitud total del vector binario será $\ell = n\ell_x = 6$.

a_1	a_2	a_3	a_4	a_5	a_6
1	1	1	1	0	1
x_1			x_2		

Representación: Ejemplo (Decodificación)

a_1	a_2	a_3	a_4	a_5	a_6
1	1	1	1	0	1
x_1				x_2	

• Decodificación de x_1

$$\Gamma^{1} = x_{1} = -5.21 + \frac{5.21 - (-5.21)}{2^{3} - 1} \left(\sum_{j=0}^{3-1} a_{1(3)-j} 2^{j} \right)$$

$$\Gamma^1 = x_1 = -5.21 + \frac{10.42}{7}(1 + 2 + 4) = 5.21$$

• Decodificación de x_2

$$\Gamma^2 = x_2 = -5.21 + \frac{5.21 - (-5.21)}{2^3 - 1} \left(\sum_{j=0}^{3-1} a_{2(3)-j} 2^j \right)$$

$$\Gamma^2 = x_2 = -5.21 + \frac{10.42}{7}(1+0+4) = 2.23$$

Representación: Ejemplo (Evaluación)

• El vector decodificador x = [5.21,2.23], es evaluado en la función objetivo $f(x) = 5.21^2 + 2.23^2 = 32.117$

