Ex7.1 Surjective Mophism between Invertible Sheaves is Isomorphic.

X:: locally ringed space, \mathcal{L} , \mathcal{M} :: invertible sheaves on X, $f:\mathcal{L} \to \mathcal{M}$:: surjective mophism, とする.

■Proof 1. 任意の点 $x \in X$ をとり, $A = \mathcal{O}_{X,x}$ とおく. $f_x : \mathcal{L}_x \to \mathcal{M}_x$ は同型写像を合成することで $\phi : A \to A$:: surjective A-morphism と同一視出来る. ϕ :: surjective より, $\phi(\alpha) = 1 \in A$ となる $\alpha \in A$ がとれる.また ϕ は A-module morphism だから, $\alpha\phi(1) = 1$.そこで $\psi : A \to A$ を $a \mapsto \alpha a$ と 定義すれば,これが ϕ の逆写像になる.よって ϕ , f_x は同型.Prop1.1 から,f :: iso.

■Proof 2. Matsumura, Thm2.4 から分かる. これは NAK (or Nakayama's Lemma) からの帰結である.

注意 Ex7.1.1

k(x) :: residue field と $f_x: \mathcal{L}_x \to \mathcal{M}_x$ をテンソルすると, $f_x \otimes \operatorname{id}_{k(x)}$:: surjective k(x)-module morphism が得られる.よって $\ker(f_x \otimes \operatorname{id}_{k(x)}) = 0$. しかし,ここから NAK をつかって $\ker f_x = 0$ を 導くことは出来ない.k(x) が flat $\mathcal{O}_{X,x}$ -module でなく,したがって $\ker(f_x \otimes \operatorname{id}_{k(x)})$ と $(\ker f_x) \otimes k(x)$ の間に同型があることが言えないからである.このことは flat \implies torsion-free に気をつければすぐ に分かる.同様の議論が f_x :: injective(と $\operatorname{coker} f_x$)の場合に出来ることにも気づくが,このときは $\mathbb{Z}_2 \to \mathbb{Z}_2; 1 \mapsto 3$ という反例がある.

Ex7.2 Two Sets of Global Generators and Corresponding Morphisms.

k:: field, X:: scheme /k, \mathcal{L} :: invertible sheaf on X, $S = \{s_0, \ldots, s_m\}$, $T = \{t_0, \ldots, t_n\}$:: global generators of \mathcal{L} . とする.ここで S, T は同じ線形(部分)空間 $V \subseteq \Gamma(X, \mathcal{L})$ を張るとする.また $n \leq m, d = \dim_k V$ とする.

S,T からそれぞれ Thm7.1 のように定まる morphism を ϕ_S,ϕ_T とする. ϕ_S が次のように分解できることを示す.

$$X \xrightarrow{\phi_T} \operatorname{im} \phi_T \xrightarrow{} \mathbb{P}^m - L \xrightarrow{\pi} \mathbb{P}^n \xrightarrow{\alpha} \mathbb{P}^n$$

 $zz = \pi, \alpha$ はそれぞれ linear projection z = z automorphism である.

 $X \to \mathbb{P}^n$ の morphism を考えることは, $k[y_0,\ldots,y_n]$ の元 y_0,\ldots,n の変換を考えることと同じである.これは Thm7.1 の証明を観察すれば分かる.二つの k-linear map は ϕ_S^*,ϕ_T^* はそれぞれ, $y_i \mapsto s_i (i=0,\ldots,n), \ y_i \mapsto t_i (i=0,\ldots,m)$ で定まっている.したがって問題は, t_0,\ldots,t_m を s_0,\ldots,s_n へ変換する projection と automorphism をつくる問題,と言い換えられる.

今,次のような(m+1)×(n+1)行列Qが存在する.

$$\begin{bmatrix} s_0 \\ \vdots \\ s_n \end{bmatrix} = Q \begin{bmatrix} t_0 \\ \vdots \\ t_m \end{bmatrix}.$$

S,T が V の生成系であることから $\mathrm{rank}\,Q=\dim V=:d$. Q は基本行列をいくつもかける(あるいは基本変形を繰り返し行う)ことにより、次の形に分解できる.

$$Q = LP_dR$$
 where $L \in PGL(m, k), R \in PGL(n, k)$

ただし行列 P_r $(r=1,\ldots,n+1)$ は $r\times r$ -identity matrix I_r をもちいて $P_r=\begin{bmatrix}I_r&0\\0&0\end{bmatrix}$ と定義される行列である.(TODO: P_d を P_{n+1} に交換しても問題ない?) L,P_{n+1},R が誘導する morphism をそれぞれ $\beta,\tilde{\pi},\alpha$ とすれば, α,β は automorphism であり, $\tilde{\pi}$ は projection である.

$$\mathbb{P}^m \xrightarrow{\beta} \mathbb{P}^m \xrightarrow{i} \mathbb{P}^m - L \xrightarrow{\tilde{\pi}} \mathbb{P}^n \xrightarrow{\alpha} \mathbb{P}^n$$

求める射はこの α と, $\pi=\beta\circ i\circ \tilde{\pi}$ である.また, $L=\mathcal{Z}_p(y_0,\ldots,y_n)\subseteq \mathbb{P}^m$ の次元は m-(n+1) である.

Ex7.3 Morphism of $\mathbb{P}^n \to \mathbb{P}^m$ can be Decomposed into Common Ones.

 $\phi: \mathbb{P}^n_k \to \mathbb{P}^m_k$ を考える. $\mathcal{O}_{\mathbb{P}^m}(1), \mathcal{O}_{\mathbb{P}^n}(1)$:: invertible sheaves \mathcal{O} global generator をそれぞれ $\{x_0,\ldots,x_m\},\{y_0,\ldots,y_n\}$ とする.

(a) $\operatorname{im} \phi = pt$ or $m \geq n$ and $\operatorname{dim} \operatorname{im} \phi = n$.

 $s_i = \phi^*(x_i) \ (i = 0, ..., m)$ とおくと、 $s_0, ..., s_m$ は $\mathcal{L} := \phi^*(\mathcal{O}_{\mathbb{P}^m}(1))$ の global generator である。 \mathcal{L} は \mathbb{P}^n 上の invertible sheaf だから、Cor6.17 より、 $\mathcal{L} \cong \mathcal{O}_{\mathbb{P}^n}(d)$ となる $d \in \mathbb{Z}$ が存在する。Example 7.8.3 同様、 $\mathcal{O}_{\mathbb{P}^n}(d)$ は |d| 次斉次単項式で生成される。

- $\blacksquare m < n \implies \dim \operatorname{im} \phi = 0.$
- $\blacksquare m \ge n \implies \dim \operatorname{im} \phi = n.$

Ex7.4 If X Admits an Ample Invertible Sheaf, then X is Separated.

(a) Assumption of Thm7.6 $\implies X ::$ separated.

A:: noetherian ring, X:: scheme of finite type /A とする. $\mathcal L$:: ample invertible sheaf on X が存在したとする. Thm7.6 から, immersion $i:X\to\mathbb P^n_A$ (n>0) が存在する. これは X から $\mathbb P^n_A$ $\mathcal O$ locally closed subscheme $\mathcal O$ isomorphism である. これに projection $\mathrm{pr}:\mathbb P^n_A=\mathbb P^n_\mathbb Z\times_\mathbb Z$ $\mathrm{Spec}\,A\to\mathrm{Spec}\,A$ を合成したものは、quasi-projective.

$$X \stackrel{\sim}{-\!\!\!-\!\!\!-} U \stackrel{\frown}{-\!\!\!\!-\!\!\!\!-} Z \stackrel{\frown}{-\!\!\!\!-\!\!\!\!-} \mathbb{P}^n_A \stackrel{\operatorname{pr}}{-\!\!\!\!-\!\!\!\!-} \operatorname{Spec} A$$

Z は \mathbb{P}^n_A の closed subscheme, U は Z の open subscheme である. A,X についての仮定から $\operatorname{Spec} A,X$:: noetherian scheme がわかる $^{\dagger 1}$ から、 $\operatorname{Thm} 4.9$ より、この射 $X \to \operatorname{Spec} A$ は separated.

(b) There is No Ample Invertible Sheaf on \longrightarrow / a field k.

k :: field, X :: affine with doubled origin /k とする。より詳細に,X は $X_1 = \operatorname{Spec} k[x_1], X_2 = \operatorname{Spec} k[x_2]$ を $U_1 = X_1 - \{O_1\}, U_2 = X_2 - \{O_2\}$ で貼りあわせたものとする。ただし $O_1 \in X_1, O_2 \in X_2$ は原点である。 X_i, U_i, O_i (i=1,2) はすべて X の部分集合とみなす。また $U = X_1 \cap X_2 = X - \{O_1, O_2\}$ とする。明らかに $U = U_1 = U_2 \cong \mathbb{A}^1 - \{0\} = \operatorname{Spec} k[x_1, x_1^{-1}]$ 。また $x_1|_U = x_2|_U$.

 $^{^{\}dagger 1}$ $f: X \to \operatorname{Spec} A$ $^{\sharp i}$ finite type ならば $f^{-1}\operatorname{Spec} A = X$ は finite affine open cover をもち、各 affine open cover は finitely generated A-algebra $^{\sharp i}$ Spec である。finitely generated A-algebra は A から noetherian を受け継ぐから、X:: noetherian.

■Plot. まず、X 上の invertible sheaf 全体 $\operatorname{Pic} X$ がどのようなものか調べる. これは $\operatorname{Pic} X \cong \mathbb{Z}$ となる. $n \in \mathbb{Z}$ に対応する $\operatorname{Pic} X$ の元を \mathcal{L}_n とする. 次に、generated by global section であるような invertible sheaf を考える. これは $\mathcal{L}_0(=\mathcal{O}_X)$ しかない、すると任意の $m>0, n\neq 0$ について

$$\mathcal{L}_0 \otimes (\mathcal{L}_n)^{\otimes m} = \mathcal{L}_{mn} \neq \mathcal{L}_0.$$

$$\mathcal{L}_n \otimes (\mathcal{L}_0)^{\otimes m} = \mathcal{L}_n \quad \neq \mathcal{L}_0.$$

なので、どの invertible sheaf も ample でない.

- ■X:: noetherian integral scheme. $X_1, X_2 \cong \mathbb{A}^1 = \operatorname{Spec} k[x_1]$ と reduced が local な性質であること から X:: noetherian reduced scheme. X:: irreducible も明らかだから、X:: noetherian integral scheme.
- ■Pic $X \ni \mathcal{L} = \mathcal{L}(D)$. $\mathcal{L} \in \text{Pic } X$ を任意にとる. X:: integral $\mathcal{L} = \text{Prop6.15}$ より、 $\mathcal{L} = \mathcal{L}(D)$ となる $D \in \text{CaCl } X$ が存在する. Prop6.13 の証明から D がどのような形のものか考えよう. Example 6.3.1, Cor 6.16 より、Pic X_1 、Pic X_2 . なので $\mathcal{L}|_{X_1} \cong \mathcal{O}_{X_1}$ 、 $\mathcal{L}|_{X_2} \cong \mathcal{O}_{X_1}$ となる. Prop6.13 の証明から、D は次のような形をしている.

$$D = \{\langle X_1, f_1 \rangle, \langle X_2, f_2 \rangle\} \text{ where } f_1 \in \Gamma(X_1, \mathcal{K}_{X_1}^*) = (k(x_1))^*, f_2 \in \Gamma(X_2, \mathcal{K}_{X_2}^*) = (k(x_2))^*.$$

■ $D \sim \{\langle X_1, x_1^n \rangle, \langle X_2, 1 \rangle\}$. Cartier divisor の定義から, $U = X_1 \cap X_2$ において $f_1/f_2 \in \Gamma(U, \mathcal{O}_U^*)$ となっている. $U \subseteq X_1 = \operatorname{Spec} k[x_1]$ と考えると, $U = \operatorname{Spec} k[x_1]_{x_1} = \operatorname{Spec} k[x_1, x_1^{-1}]$. ($U \subseteq X_1$ と見れば $U = \operatorname{Spec} k[x_2, x_2^{-1}]$ であるが,どちらでも同じである.)そして

$$\Gamma(U, \mathcal{O}_U^*) = (k[x_1, x_1^{-1}])^* = \{\alpha x_1^n \mid \alpha \in k^*, n \in \mathbb{Z}\}.$$

であるから、 $f_1/f_2 = \alpha x_1^n (\iff f_2/f_1 = (\alpha x_2^n)^{-1})$ と書ける. よって

$$D = \{\langle X_1, \alpha x_1^n f_2 \rangle, \langle X_2, f_2 \rangle\} \text{ where } f_2 \in \Gamma(X_2, \mathcal{K}_{X_2}^*) = (k(x_2))^*.$$

再び X :: integral から、 \mathcal{K}_X は constant sheaf であり、したがって $f_2 \in K = \Gamma(X,\mathcal{K}_X^*)$ となる。なので $\{\langle X_1,f_2\rangle,\langle X_2,f_2\rangle\}$ は principal。加えて $\{\langle X_1,\alpha\rangle,\langle X_2,1\rangle\}\in\Gamma(X,\mathcal{O}_X^*)$ なので $^{\dagger 2}$ 、結局 $D\sim\{\langle X_1,X_1^n\rangle,\langle X_2,1\rangle\}$.

■ $\operatorname{Pic} X \cong \mathbb{Z}$. $n \in \mathbb{Z}$ に対し、次のように定める.

$$D_n = \{\langle X_1, x_1^n \rangle, \langle X_2, 1 \rangle\}, \quad \mathcal{L}_n = \mathcal{L}(D_n).$$

これは次の写像を定める.

$$\mathbb{Z} \to \operatorname{CaCl} X$$
 $n \mapsto D_n$

明らかに $D_m+D_n=D_{m+n}$, $\mathcal{L}_m\otimes\mathcal{L}_n=\mathcal{L}_{m+n}$ だから,これは加法群としての全射準同型.最後に,単射であることを見よう. $D_n=D_0$ ならば, D_0 同様 D_n も principal である.したがって次を満たす $f\in\Gamma(X,\mathcal{K}_X^*)$ が存在する.

$$f|_{X_1}/x_1^n \in \Gamma(X_1, \mathcal{O}_{X_1}^*) = k^*, \quad f|_{X_2}/1 \in \Gamma(X_2, \mathcal{O}_{X_2}^*) = k^*$$

$$\mathcal{L}(\{\langle X_1, \alpha \rangle, \langle X_2, 1 \rangle\}) = \mathcal{O}_X = \mathcal{L}(\{\langle X_1, 1 \rangle, \langle X_2, 1 \rangle\})$$

故に $\{\langle X_1, \alpha \rangle, \langle X_2, 1 \rangle\} = \{\langle X_1, 1 \rangle, \langle X_2, 1 \rangle\}$, と理解しても良い.

^{†2} ここの部分は Prop6.13c を用いて

ここから $f|_{X_1} \in k^*$ が得られる. よって $(f|_{X_1})/x_1^n \in k^*$ と合わせて n=0 を得る. このことは次の段落でも使うので、別に主張として述べておく.

主張 Ex7.4.1

 $f \in \Gamma(X, \mathcal{K}_X^*)$ とする. $f|_{X_2} \in k^*$ ならば, $f|_{X_1} \in k^*$.

(証明). $f|_{X_2} \in k^*$ から $f|_U \in k^*$ が得られる. $f|_U = \alpha$ としよう. $U = \operatorname{Spec} k[x_1]_{x_1} \subset X_1$ をみなして考えると, $k[x_1]_{x_1}$ の元として $(f|_{X_1})|_U = \alpha$ となっている.なので整数 $r \geq 0$ が存在し, $k[x_1]$ の元として $x_1^r(f|_{X_1} - \alpha) = 0$. しかし $k[x_1]$ は整域なので,結局 $f|_{X_1} = \alpha \in k^*$.

(証明). $k^* \subseteq \mathcal{O}_{X,O_1}^* \cap \mathcal{O}_{X,O_2}^*$ だから, $f_{O_2} \in k^*$ より $f_{O_1} \in k^*$. 他の点における f の germ が k^* に含まれることは $f|_{X_2} \in k^*$ より明らか.よって $f \in \Gamma(X,\mathcal{O}_X^*) = k^*$.

この主張は X が non-separated であることを暗示している.

■Globally Generated Invertible Sheaf on X. $n \in \mathbb{Z}$ を任意にとり、 $\{g_i\}_i \subseteq \Gamma(X, \mathcal{L}_n)$ が \mathcal{L}_n の global generators であるとしよう。 $\mathcal{L}_n = \mathcal{L}(D_n)$ だから, $\mathcal{L}_n|_{X_1}$ は x_1^n で generate され, $\mathcal{L}_n|_{X_2}$ は 1 で generate されている。 特に後者から, $\mathcal{L}_n|_U$ は 1 で generate されている。 したがって stalk で見れば,次のようになっている。

$$\forall P \in X_2, \quad \langle \{(g_i)_P\}_i \rangle = (\mathcal{L}_n)_P = \mathcal{O}_{X,P}$$
 as $\mathcal{O}_{X,P}$ -module.
 $\langle \{(g_i)_{O_1}\}_i \rangle_i = (\mathcal{L}_n)_{O_1} = (x_1^n)_{O_1} \mathcal{O}_{X,O_1}$ as \mathcal{O}_{X,O_1} -module.

これらを可換環に翻訳し、 g_i を $g_i|_{X_2}, g_i|_U, g_i|_{X_1}$ の順に求めていく。 $X_2 = \operatorname{Spec} k[x_2]$ だから、P に対応する素イデアル $\mathfrak{p} \subset k[x_2]$ がとれる。また、 $g_i|_{X_2} \in \Gamma(X_2, \mathcal{O}_X) = k[x_2]$. $\mathcal{O}_{X,P} = \mathcal{O}_{X_2,P} = k[x_2]_{\mathfrak{p}}$ であり、したがって $k[x_2]_{\mathfrak{p}}$ -module として $\langle (g_i|_{X_1})_{\mathfrak{p}} \rangle = k[x_2]_{\mathfrak{p}}$.なので、次が成り立つ。

$$\forall \mathfrak{p} \in \operatorname{Spec} k[x_2], \ \forall i, \ (g_i|_{X_2})_{\mathfrak{p}} \in (k[x_2]_{\mathfrak{p}})^* = k[x_2] \setminus \mathfrak{p}.$$

よって $g_i|_{X_2}\in (k[x_2])^*=k^*$ がわかる。前段落に書いた主張から $g_i|_{X_1}\in k^*$. $\langle (g_i)_{O_1}\rangle_i=(x_1^n)_{O_1}\mathcal{O}_{X,O_1}$ と合わせて $(g_i|_{X_1})/x_1^n\in k^*$ が得られ,n=0 となる。以上より, \mathcal{L}_0 のみが generated by global sections である。

■Another Proof: Globally Generated Invertible Sheaf on X. $n \in \mathbb{Z}$ をとり, $\{g_i\}_i \in \Gamma(X, \mathcal{L}_n)$ を \mathcal{L}_n の global generator とする. $\mathcal{L}_n|_{X_1}$ は x_1^n で, $\mathcal{L}_n|_{X_2}$ は 1 で生成されており, X_1, X_2 共に affine scheme である. そのため, 次のようになる.

$$\begin{split} \langle \{g_i|_{X_2}\}_i \rangle &= \Gamma(X_2, \mathcal{L}_n|_{X_2}) = k[x_2] \\ \langle \{g_i|_{X_1}\}_i \rangle &= \Gamma(X_1, \mathcal{L}_n|_{X_1}) = x_1^n k[x_1] \end{split} \quad \text{as } k[x_2]\text{-module}. \end{split}$$

一行目から, $\{g_i|_{X_2}\}\subseteq (k[x_2])^*=k^*$. なので前々段落の主張から, $\{g_i|_{X_1}\}\subseteq k^*$. よって $x_1^n\in (k[x_1])^*=k^*$ が得られる.

■資料. 詰まったところでは次のページを参考にした: https://math.stackexchange.com/questions/70042.

Ex7.5 Ample and Very Ample are Inherted by Tensor Products.

X:: noetherian scheme, \mathcal{L} , \mathcal{M} :: invertible sheaves on X とする. "generated by global sections"は gbgs と略す. (d), (e) では更に X:: finite type over a noetherian ring A, と仮定する. (これは Thm7.6 の仮定である.)

補題 Ex7.5.1

If $\mathcal{M}, \mathcal{M}'$:: gbgs invertible sheaves on X, then $\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{M}'$:: gbgs.

(証明). $\{m_i\}\subseteq \Gamma(X,\mathcal{M}), \{m_j'\}\subseteq \Gamma(X,\mathcal{M}')$ をそれぞれ \mathcal{M},\mathcal{M}' の global generator とする.定義より,このことは次と同値である:任意の点 $x\in X$ について $\mathcal{M}_x,\mathcal{M}_x'$ はそれぞれ $\{(m_i)_x\}_i, \{(m_i')_x\}_j$ で $\mathcal{O}_{X,x}$ -module として生成される.さて,tensor product は left adjoint であることから colimit と交換する.なので $(\mathcal{M}\otimes_{\mathcal{O}_X}\mathcal{M}')_x$ は $\mathcal{M}_x\otimes_{\mathcal{O}_{X,x}}\mathcal{M}_x'$ と同型である.明らかにこれは $\{(m_i)_x\otimes (m_i')_x\}_{i,j}$ で 生成される(Ati-Mac $\S 2.7$)から, $\mathcal{M}\otimes_{\mathcal{O}_X}\mathcal{M}'$:: gbgs.global generator は $\{m_i\otimes m_i'\}_{i,j}$ である.

(a) If \mathcal{L} :: ample and \mathcal{M} :: gbgs then $\mathcal{L} \otimes \mathcal{M}$:: ample.

 \mathcal{F} :: coherent sheaf on X とする. \mathcal{L} :: ample なので、十分大きな n>0 について $\mathcal{F}\otimes\mathcal{L}^{\otimes n}$:: gbgs. これに $\otimes\mathcal{M}^{\otimes n}$ を合わせて整理すると、補題から $\mathcal{F}\otimes(\mathcal{L}\otimes\mathcal{M})^{\otimes n}$:: gbgs. よって $\mathcal{L}\otimes\mathcal{M}$:: ample.

(b) If \mathcal{L} :: ample and \mathcal{M} :: arbitrary then $\mathcal{M} \otimes \mathcal{L}^{\otimes n}$:: ample for some n > 0.

 \mathcal{M} :: coherent なので、十分大きな n>0 について $\mathcal{M}\otimes\mathcal{L}^{\otimes n}$:: gbgs. 任意の \mathcal{F} :: coherent sheaf に対して十分大きい r>0 をとると、 $\mathcal{F}\otimes\mathcal{L}^{\otimes rn}$:: gbgs. 補題より次も gbgs:

$$(\mathcal{F} \otimes \mathcal{L}^{\otimes rn}) \otimes (\mathcal{M} \otimes \mathcal{L}^{\otimes n})^{\otimes r}.$$

整理して $\mathcal{F} \otimes (\mathcal{M} \otimes \mathcal{L}^{\otimes 2n})^{\otimes r}$:: gbgs. よって $\mathcal{M} \otimes \mathcal{L}^{\otimes 2n}$:: ample.

(c) If \mathcal{L}, \mathcal{M} :: ample then $\mathcal{L} \otimes \mathcal{M}$:: ample.

 \mathcal{F} :: cohenrent sheaf on X とする. 十分大きな l>0 について, $\mathcal{F}\otimes\mathcal{L}^{\otimes l}$:: gbgs. この sheaf も coherent なので, 十分大きな m>0 について $\mathcal{F}\otimes\mathcal{L}^{\otimes l}\otimes\mathcal{M}^{\otimes m}$:: gbgs. $n=\max(l,m)$ とすれば $\mathcal{F}\otimes\mathcal{L}^{\otimes n}\otimes\mathcal{M}^{\otimes n}$:: gbgs. 整理すれば $\mathcal{L}\otimes\mathcal{M}$:: ample が得られる.

(d) If \mathcal{L} :: very ample and \mathcal{M} :: gbgs then $\mathcal{L} \otimes \mathcal{M}$:: very ample.

 \mathcal{L},\mathcal{M} に対応する morphism を,それぞれ $i:X\to\mathbb{P}^m_A,j:X\to\mathbb{P}^n_A$ とする.Thm7.1b より, $\mathcal{L}\cong i^*\mathcal{O}(1),\mathcal{M}\cong j^*\mathcal{O}(1)$.この時,次の (1) のような 2 重の fiber product を考える.ここでの \mathbb{P}^N は $\mathbb{P}^m,\mathbb{P}^n$ の Cartesian product(Ex5.11) であり,N=mn+m+n である.

(1) の図式に closed immersion :: ψ を加えたのが (2) である。 (2) の図式で $\omega = \psi \circ \phi$ とする。 $\omega^* \mathcal{O}_{\mathbb{P}^N}(1)$ を計算すると、次のようになる。 $\omega^* = \phi^* \psi^*$ に注意せよ^{†3}。

$$\omega^* \mathcal{O}_{\mathbb{P}^N}(1)$$

$$\cong \phi^* \mathcal{O}_{\mathbb{P}^m \times \mathbb{P}^n}(1)$$

$$\cong \phi^* (p_1^* \mathcal{O}_{\mathbb{P}^m}(1) \otimes_A p_2^* \mathcal{O}_{\mathbb{P}^m}(1))$$

$$\cong \phi^* p_1^* \mathcal{O}_{\mathbb{P}^m}(1) \otimes_A \phi^* p_2^* \mathcal{O}_{\mathbb{P}^m}(1)$$

$$\cong (p_1 \circ \phi)^* \mathcal{O}_{\mathbb{P}^m}(1) \otimes_A (p_2 \circ \phi)^* \mathcal{O}_{\mathbb{P}^m}(1)$$

$$\cong i^* \mathcal{O}_{\mathbb{P}^m}(1) \otimes_A j^* \mathcal{O}_{\mathbb{P}^m}(1)$$

$$\cong \mathcal{L} \otimes_A \mathcal{M}$$

上から順に、Ex5.11、Ex5.1 の解答にある補題、図式の可換性を用いている. 最後に ω が immersion であることを示そう.

主張 Ex7.5.2

 $i:X \to \mathbb{P}^m_A$ を immersion とする. 次の可換図式において, $\psi \circ \phi:X \to \mathbb{P}^N_A$ は immersion である.

(証明). 次の3つが示せる.

- (i) closed immersion: immersion.
- (ii) composition of two immersion:: immersion.
- (iii) immersion :: stable under base cahnge.

すると Ex4.8 の結果が immersion について使える. まず、図式において、 p_1 は projective over A かつ A :: noetherian ring. したがって Ex4.9 から separated である. なので Ex4.8e より ϕ :: immersion. ψ :: immersion とあわせて $\psi \circ \phi$:: immersion.

上の項目において、(ii) は一般には成立しない.しかし X :: noetherian scheme なので、immersion は closed \circ open にも open \circ closed にも分解でき、このことを用いて (ii) が示せる.https://stacks.math.columbia.edu/tag/01QV を参照するとよい.

(e) If \mathcal{L} :: ample then $\mathcal{L}^{\otimes n}$:: very ample for sufficiently large all n > 0.

Thm7.6 より,ある正整数 l>0 について $\mathcal{L}^{\otimes l}$:: very ample. また, \mathcal{L} :: ample より,正整数 $m_0>0$ が存在し,任意の整数 $m\geq m_0$ について $\mathcal{O}_X\otimes\mathcal{L}^{\otimes m}$:: gbgs. したがって, $N=n+m_0$ とおけば,(d) より

$$(\mathcal{O}_X \otimes \mathcal{L}^{\otimes m}) \otimes \mathcal{L}^{\otimes l} = \mathcal{L}^{\otimes n} \quad (m \ge m_0, n \ge N)$$

は very ample である.

^{†3} もう少し詳しく述べておこう。 $X \xrightarrow{f} Y \xrightarrow{g} Z$ を考える。 f^*g^* は $g_*f_* = (g \circ f)_*$ と adjoint。そして $(g \circ f)_*$ は $(g \circ f)^*$ と adjoint。これと adjoint の一意性から $f^*g^* \cong (g \circ f)^*$ が得られる。

Ex7.6 The Riemann-Roch Problem.

k:: algebraically closed field, X:: nonsingular projective variety over k, D:: divisor on X とする. (したがって |D|:: linear system が考えられる.) この時, n の関数 $\dim_k |nD|$ を考える. \mathcal{L} を D に対応する invertible sheaf とすると、Prop7.7 より、これは $\dim_k \Gamma(X, \mathcal{L}^n) - 1$ とも書ける.

Ex2.14 と Cor5.16 を合わせると、 $X=\operatorname{Proj} k[x_0,\ldots,x_d]/I$ なる I:: homogeneous ideal が存在することが分かる。そこで $S=k[x_0,\ldots,x_d],T=S/I$ としておく。また $\phi:S\to T=S/I$ を標準的全射としておく。

(a) $D :: \text{ very ample } \Longrightarrow {}^\forall n \gg 0, \quad \dim_k |nD| = P_X(n) - 1.$

今, \mathcal{L} :: very ample だから, $i^*\mathcal{O}_{\mathbb{P}^d}(1)\cong\mathcal{L}$ となる closed immersion $i:X\to\mathbb{P}^d_k$ が存在する. (closed であることは Remark5.16.1 と同様.) Ex6.8a (i^* と \otimes が分配的であること) と Prop5.12 (の証明) から次が分かる.

$$\mathcal{L}^{\otimes n} = (i^* \mathcal{O}_{\mathbb{P}^d}(1))^{\otimes n} \cong i^* ((\mathcal{O}_{\mathbb{P}^d}(1))^{\otimes n}) \cong i^* (S(n)^{\tilde{}}) \cong (S(n) \otimes T)^{\tilde{}}.$$

 ϕ が次数を保つこと (したがって $\phi(S(n))=T(n)$) から、 $S(n)\otimes T\cong T(n)$. Ex5.9b より、十分大きい全ての n について $T_n\cong \Gamma(X,(T(n))\tilde{})$ となる.よって, P_X を X の Hilbert polynomial とすると,十分大きい全ての n について $P_X(n)=\dim_k \Gamma(X,\mathcal{L}^{\otimes n})$.

(b) If D is torsion element of order r, then $\dim_k |nD| = 0$ if $r \setminus n \& = -1$ otherwise order の定義から, $nD = 0 \iff n \bmod r = 0$ であることに注意する.次を示す.

$$\dim_k |nD| = \begin{cases} 0 & n \bmod r = 0 \\ -1 & n \bmod r \neq 0 \end{cases}$$

- ■ $n \mod r = 0 \implies \dim_k |nD| = 0$. $n \mod r = 0$ の時, nD = 0, $\mathcal{L}^{\otimes n} = \mathcal{O}_X$. 今, X :: integral & proper & finite type scheme over algebraically closed subset. なので Ex4.5d より, $\Gamma(X, \mathcal{O}_X) = k$. よって $\dim_k |nD| = \dim_k \Gamma(X, \mathcal{O}_X) 1 = 0$.
- $\blacksquare n \bmod r \neq 0 \implies |nD| = \emptyset \implies \dim_k |nD| = -1.$ $n \bmod r \neq 0$ の時, $|nD| = \emptyset$ を示す. $E = \{\langle U_i, f_i \rangle\}_i \in |nD|$ がとれるとして矛盾を導くことにする. $E :: \text{ effective } n \to E \sim nD \not = 0$ なので, $f_i \in \Gamma(U_i, \mathcal{O}_{U_i})$ は単元でない.したがって f_i^r も単元でない^{†4}.いずれの i についても同様なので,rE は principal でない $(rE \not = 0)$.一方, $E \sim nD, rD = 0$ だから $rE \sim rnD \sim 0$.

Ex7.7 Some Rational Surfaces.

Ex7.8 Sections of $\pi: X \to \mathbb{P}(\mathcal{E}) \leftrightarrow \text{Quotient Invertible Sheaves of } \mathcal{E}$.

X :: noetherian scheme, $\mathcal E$:: coherent locally free sheaf on X とする. Prop7.12 において $Y=X,g=\operatorname{id}_X$ とすると、以下の図式を成立させる $\sigma:X\to\mathbb P(\mathcal E)$ と quotient invertible sheaf of $\mathcal E$::

 $^{^{\}dagger 4}$ f_i は単元でないから, $\Gamma(U_i,\mathcal{O}_{U_i})$ の真のイデアルに属す.そして f_i^r もこのイデアルに属し,したがって f_i^r は単元でない.

 $\mathcal{E} \to \mathcal{L} \to 0$ が^{†5} 対応することがわかる.

明らかに σ は π の section である.

注意 Ex7.8.1

 \mathcal{L} :: invertible sheaf on X とする. 一般に次が成り立つ.

$$\operatorname{Hom}(\mathcal{L}, \mathcal{O}_X) = \Gamma(X, \mathcal{H}om(\mathcal{L}, \mathcal{O}_X)) = \Gamma(X, \mathcal{L}^{-1}).$$

 $X = \operatorname{Proj} A[x_0, \dots, x_n], \mathcal{L} = \mathcal{O}(n) \ (n > 0)$ の時は、 $\operatorname{Prop} 5.13$ と合わせて $\operatorname{Hom}(\mathcal{L}, \mathcal{O}_X) = 0$ が得られる、X が $\operatorname{Ex} 5.14$ の条件を満たすときについても同じことが言える。

Ex7.9 $\operatorname{Pic} \mathbb{P}(\mathcal{E}) \cong \operatorname{Pic} X \oplus \mathbb{Z}$.

X :: **connected** regular noetherian scheme, \mathcal{E} :: locally free coherent sheaf of rank ≥ 2 on X と する. $r = \operatorname{rank} \mathcal{E}(>2)$ とおく、また $P = \mathbb{P}(\mathcal{E})$ としておく、

(a) $\operatorname{Pic} \mathbb{P}(\mathcal{E}) \cong \operatorname{Pic} X \oplus \mathbb{Z}$.

これは $\operatorname{Ex} 6.1$ ($\operatorname{Pic} \mathbb{P}^n_X \cong \operatorname{Pic} X \oplus \mathbb{Z}$) の relatively version である.

(i) 方針.

次の写像が同型写像であることを示す.

$$\phi: \operatorname{Pic} X \oplus \mathbb{Z} \to \operatorname{Pic} \mathbb{P}(\mathcal{E})$$

$$\mathcal{L} \oplus n \mapsto \pi^* \mathcal{L} \otimes \mathcal{O}_P(n)$$

 π^* が準同型である (Ex6.8a) から、 ϕ が準同型であることは明らか。 ϕ :: surj が難しい部分である。これは 3 つの部分に分けられる。U :: irreducible affine open subset in $X, V = \pi^{-1}(U) (\cong \mathbb{P}_A^{r-1})$ とする。

- (a) Ex6.1 の結果を Pic V の場合に翻訳する.
- (b) $\mathcal{L}|_{V}$ が $\mathcal{O}_{V}(n_{U})$ と書けるとき n_{U} は U に依存しないことを示す.
- (c) $\mathcal{L}|_{V}$ が $\pi^*\mathcal{M}_{U}$ ($\mathcal{M}_{U} \in \operatorname{Pic} U$) と書けるとき \mathcal{L} は $\pi^*\mathcal{M}$ と書けることを示す.

(ii) ϕ :: inj.

 $\phi(\mathcal{L} \oplus n) = \pi^* \mathcal{L} \otimes \mathcal{O}_P(n) \cong \mathcal{O}_P$ となる $\mathcal{L} \oplus n \in \operatorname{Pic} X \oplus \mathbb{Z}$ が存在したとする. 両辺に π_* を作用させて Ex5.1d (Projective formula), Prop7.11a を用いると次のよう.

$$\mathcal{L} \otimes \operatorname{Sym}^n(\mathcal{E}) \cong \mathcal{O}_X$$
.

両辺の rank を計算すると $\binom{r+n-1}{r-1}=1$ (Ex5.18a). よって r-1=0 or r+n-1 となり, $r\geq 2$ より n=0 が得られる. さらに n=0 から $\mathcal{L}\otimes \operatorname{Sym}^n(\mathcal{E})\cong \mathcal{L}\cong \mathcal{O}_X$. まとめて, $\phi::$ inj.

 $^{^{\}dagger 5}$ $\mathcal{E} \to \mathcal{L} \to 0$ だけで \mathcal{L} と全射 :: $\mathcal{E} \to \mathcal{L}$ の組を意味する. $g^*\mathcal{E} = \mathcal{E}$ に注意.

(iii) ϕ :: surj.

 $\mathbb{P}(\mathcal{E})$ 上の任意の invertible sheaf が $\pi^*\mathcal{L}\otimes\mathcal{O}_P(n)$ の様に書けることを示さなくてはならない. まず, local にはそれが出来ることを示す.

U:: irreducible affine open subset in X, $V=\pi^{-1}(U)(\cong \mathbb{P}_A^{r-1})$ とする. X:: regular noetherian scheme だから、Prop4.1 と合わせて U:: (*) (p.130). また Cor6.16 が成り立つ.

主張 Ex7.9.1

X を, $\operatorname{Cor6.16}$ が成立するものとする (特に X :: integral). $Y = \mathbb{P}^n_X (= \mathbb{P}^n_Z \times X)$ とし、また $\pi: Y \to X$ を projection of fiber product とする。Z :: prime divisor in X をとる。 $\operatorname{Cor6.16}$ の同型写像 $\operatorname{Cl} X \stackrel{\cong}{\to} \operatorname{Pic} X$ によって、 $\mathcal{L} \in \operatorname{Pic} X$ が Z に対応するならば、 $\pi^*\mathcal{L} \in \operatorname{Pic} Y$ は $\pi^*Z = \pi^{-1}(Z)$ (cf. $\operatorname{Prop6.6}$) に対応する。

(証明). U.Görts, T.Wedhorn "Algebraic Geometry I" p.312 にある "(11.16) Inverse image of divisors."を参照した.

準備として、 $y \in Y$ について $\pi_{\pi(y)}^{\#}: \mathcal{O}_{X,\pi(y)} \to \mathcal{O}_{Y,y}$ を調べよう。 $\pi(y) \in V = \operatorname{Spec} A, y \in U = \operatorname{Spec} A[x_0, \dots, x_n]_{(f)}(\subset \pi^{-1}(V))$ とする。ただし $f \in A[x_0, \dots, x_n]$ は正次数をもつ斉次元である。今、projection :: $\pi|_U$ は包含写像 $A \hookrightarrow A[x_0, \dots, x_n]_{(f)}$ から誘導されている^{†6}。なので $y, \pi(y)$ に対応する素イデアルをそれぞれ $\mathfrak{p},\mathfrak{q}$ とすると $\mathfrak{q} = \mathfrak{p} \cap A$ が成り立つ。また $\pi_{\pi(y)}^{\#} = (\pi|_U)_{\pi(y)}^{\#}$ だから, $\pi_{\pi(y)}^{\#}$ も包含写像である。

ここで、 $l \ge 0$ について $\mathfrak{q}^l = \mathfrak{p}^l \cap A$ が成り立つことに注意する. このことから、 $a \in A$ について

$$\pi_{\pi(u)}^{\#}(a) = a \in \mathfrak{p}^l \iff a \in \mathfrak{q}^l.$$

一般に、DVR :: (R, \mathfrak{m}) の valuation :: v_R は $r \in R$ について次を満たす.

$$v_R(r) = \sup \{l \ge 0 \mid r \in \mathfrak{m}^l \}.$$

したがって $\mathcal{O}_{X,\pi(y)},\mathcal{O}_{Y,y}$ が共に DVR である時, $\pi_{\pi(y)}^{\#}$ は valuation を保つ.

$$v_y\left(\pi_{\pi(y)}^{\#}(*)\right) = \sup\left\{l \ge 0 \,\middle|\, \pi_{\pi(y)}^{\#}(*) \in (\mathfrak{m}_{Y,y})^l\right\} = \sup\left\{l \ge 0 \,\middle|\, * \in (\mathfrak{m}_{X,\pi(y)})^l\right\} = v_{\pi(y)}(*)$$

いよいよ invertible sheaf と divisor の関係を調べていく. Z の generic point を ζ とし、Z に対応する Cartier divisor を $D = \{\langle U_i, f_i \rangle\}_i \in \operatorname{CaCl} X$ とする. $x \in X$ を codimension one の点だとすると、 $\operatorname{Prop6.11}$ の証明にある D の構成方法から、次が成り立つ.

$$v_x((f_i)_x) = \begin{cases} 1 & x = \zeta \\ 0 & x \neq \zeta. \end{cases}$$

 v_x は DVR :: $\mathcal{O}_{X,x}$ の valuation である. (X について仮定から (*) が成立していることに注意.) i は $x \in U_i$ であるものならばどれでも良い. また,Z :: effective から,D :: effective (Remark 6.17.1). すなわち,各 i について $f_i \in \Gamma(U_i, \mathcal{O}_{U_i})$.

 $\pi^*\mathcal{L}$ の $y \in Y$ での stalk を見る. $\pi(y) \in U_i \subset X$ なる i を一つとって固定すると、次が成り立つ.

$$(\pi^*\mathcal{L})_y \cong \mathcal{L}_{\pi(y)} \otimes_{\mathcal{O}_{X,\pi(y)}} \mathcal{O}_{Y,y} = \left[(f_i^{-1})_{\pi(y)} \otimes 1_{\mathcal{O}_{Y,y}} \right] \mathcal{O}_{X,\pi(y)} \otimes_{\mathcal{O}_{X,\pi(y)}} \mathcal{O}_{Y,y}.$$

^{‡6} より正確には $A \to A \otimes \mathbb{Z}[x_0,\dots,x_n]_{(f)}; \ a \mapsto a \otimes 1$ から誘導されている。しかし $A \otimes \mathbb{Z}[x_0,\dots,x_n]_{(f)} \cong A[x_0,\dots,x_n]_{(f)}; \ a \otimes b \mapsto ab$ を通せばこれは単なる包含写像である。

最左の \cong は left adjoint preserves colimits (LAPC) を用いて示すことが出来る。今, $\pi_{\pi(y)}^{\times}: \mathcal{O}_{X,\pi(y)} \to \mathcal{O}_{Y,y}$ を用いて $\mathcal{O}_{Y,y}$ を用いて $\mathcal{O}_{Y,y}$ をの $\mathcal{O}_{X,\pi(y)}$ -module (submodule of $\mathcal{K}_{Y,y}$) とみなしている。したがって更に計算が出来て次が得られる。

$$(\pi^*\mathcal{L})_y \cong [\pi^{\#}_{\pi(y)}((f_i)_{\pi(y)})]^{-1}\mathcal{O}_{Y,y}.$$

こうして, $\pi^*\mathcal{L}$ に対応する Cartier divisor の germ が分かった.

点 $y \in Y, \pi(y) \in X$ を共に codimension one の点だとする. i を $\pi(y) \in U_i$ なるものとしてとる. この時,X については仮定から,Y については Ex6.1 から (*) が成立する. したがって $v_y(\pi^\#_{\pi(y)}((f_i)_{\pi(y)}))$ の値が考えられる. 上述した $v_y \circ \pi^\#_{\pi(y)} = v_{\pi(y)}$ より,これは次の通り.

$$v_y\left(\pi_{\pi(y)}^{\#}((f_i)_{\pi(y)})\right) = v_{\pi(y)}((f_i)_{\pi(y)}) = \begin{cases} 1 & \pi(y) = \zeta \\ 0 & \pi(y) \neq \zeta. \end{cases}$$

よって、点 $\eta \in Y$ を $\pi(\eta) = \zeta$ を満たす codimension one の点だとすれば、 $\pi^*\mathcal{L}$ は $\operatorname{cl}_Y(\{\eta\})$ に対応する. 計算すると、 $\operatorname{cl}_Y(\{\eta\}) = \pi^{-1}(Z) = \pi^*Z$.

系 Ex7.9.2

D:: Weil divisor U をとり、 $\mathcal{L} \in \operatorname{Pic} U$ が D に対応する invertible sheaf だとする. $\pi^*D(\operatorname{Prop6.6})$ に対応する invertible sheaf は $\pi^*\mathcal{L}$ である.

irreducible & affine open subset of X :: U であって、かつ $\mathcal{E}|_{U} \cong \mathcal{O}_{U}^{\oplus r}$ となるようなものからなる open cover を $\mathfrak U$ とする、X :: noetherian scheme から $\mathfrak U$:: finite cover.

 $U \in \mathfrak{U}$ をとり, $V = \pi^{-1}(U) (\cong \mathbb{P}_{\mathbb{Z}}^{r-1} \times U)$ とする. $\operatorname{Cor6.16}$ から $\operatorname{Cl} U \cong \operatorname{Pic} U$. $\operatorname{Ex6.1}$ と上の主張を合わせて, $\mathbb{P}(\mathcal{E})$ 上の任意の invertible sheaf は, local には (すなわち, V に制限すれば) $(\pi|_V)^*\mathcal{L}_U \otimes \mathcal{O}_V(n_U)$ と書ける. $\operatorname{Cor6.16}$ の証明にあるとおり,hyperplane (prime divisor) は twisted sheaf に対応することに注意.

 $\mathcal{M} \in \operatorname{Pic} P$ をとる。上での議論から,上のような各 U,V について $\mathcal{M}|_{V} \cong (\pi|_{V})^{*}\mathcal{L}_{U} \otimes \mathcal{O}_{V}(n_{U})$.任意の $U \in \mathfrak{U}$ で n_{U} が等しいことを示そう。適当な $U \in \mathfrak{U}$ について, $n_{U} < 0$ ならば \mathcal{M} の代わりに \mathcal{M}^{-1} を考える。こうすれば,少なくともひとつの U について $n_{U} \geq 0$ となる。projective formula を用いて以下の計算を行う。

$$(\pi_* \mathcal{M})|_U$$

$$\cong (\pi|_V)_* (\mathcal{M}|_V)$$

$$\cong \mathcal{L}_U \otimes (\pi|_V)_* \mathcal{O}_V(n_U)$$

$$\cong \mathcal{L}_U \otimes \operatorname{Sym}^{n_U}(\mathcal{E})|_U$$

最後に Prop7.11a を用いた. $n_U \ge 0$ だから、この X 上の locally free sheaf の rank は、 $\binom{n_U+r-1}{r-1}$. X :: connected より、 $\pi_*\mathcal{M}$ の rank は $U \in \mathfrak{U}$ に依らない。すなわち、任意の $U,U' \in \mathfrak{U}$ について

$$\binom{n_U+r-1}{r-1} = \binom{n_{U'}+r-1}{r-1}$$

となる. ここから直ちに $n_U = n_{U'}$ が得られる. この値を $n(=n_U)$ としておこう.

 $\mathcal{L} = \pi_*(\mathcal{M} \otimes \mathcal{O}_P(-n))$ とおく. すると $\mathcal{L}|_U = \mathcal{L}_U$ が得られる.

$$\mathcal{L}|_{U}$$

$$\cong (\pi|_{V})_{*}(\mathcal{M} \otimes \mathcal{O}_{P}(-n))|_{V}$$

$$\cong (\pi|_{V})_{*}(\mathcal{M}|_{V} \otimes \mathcal{O}_{V}(-n))$$

$$\cong (\pi|_{V})_{*}(\pi|_{V})^{*}\mathcal{L}_{U}$$

$$\cong \mathcal{L}_{U}$$

最後に projective formula を用いた. こうして各 $U \in \mathfrak{U}, V = \pi^{-1}(U)$ について $\mathcal{M}|_{V} \cong (\pi^{*}\mathcal{L} \otimes \mathcal{O}_{P}(n))|_{V}$ となる.

あとは $\mathcal{M} \cong \pi^* \mathcal{L} \otimes \mathcal{O}_P(n)$ を示せば良い. これは次のように示せる. $\mathrm{id}_{\mathcal{L}}: \mathcal{L} \to \pi_*(\mathcal{M} \otimes \mathcal{O}_P(-n))$ を考える. これを adjoint pair :: $\pi^* \dashv \pi_*$ を使って写す.

$$\pi^*\mathcal{L} \to \mathcal{M} \otimes \mathcal{O}_P(-n).$$

additive category における adjoint functor についての一般論から、これは再び同型写像である. tensor product は全射性を保つから、 $\pi^*\mathcal{L}\otimes\mathcal{O}_P(n)\to\mathcal{M}$ は全射. Ex7.1 より、これは同型である.

注意 Ex7.9.3

X の connected component が丁度 g 個ある場合には $\mathrm{Pic}\mathbb{P}(\mathcal{E})\cong\mathrm{Pic}\,X\oplus\mathbb{Z}^{\oplus g}$ となる. 具体的に、各 connected component を C_1,\ldots,C_g とすると、 $\mathrm{Pic}\mathbb{P}(\mathcal{E})$ の connected component は $\pi^{-1}(C_1),\ldots,\pi^{-1}(C_g)$. そこで $\iota_i:\pi^{-1}(C_i)\hookrightarrow\mathbb{P}(\mathcal{E})$ を包含射とすると同型写像は次のように成る.

$$\operatorname{Pic} X \oplus \mathbb{Z}^{\oplus g} \to \operatorname{Pic} \mathbb{P}(\mathcal{E})$$

$$(\mathcal{L}, n_1, \dots, n_g) \mapsto \pi^* \mathcal{L} \otimes \left(\bigoplus_i (\iota_i)_* (\iota_i)^* \mathcal{O}_P(n_i) \right)$$

証明はXの各 connected component ごとに上で示したことを用いれば良い.

(b)
$$\mathbb{P}(\mathcal{E}) \cong \mathbb{P}(\mathcal{E}') \iff {}^{\exists}\mathcal{L} \in \operatorname{Pic} X, \ \mathcal{E}' = \mathcal{E} \otimes \mathcal{L}.$$

 \mathcal{E}' :: locally free coherent sheaf on X とする。名前を次のように付ける: $P = \mathbb{P}(\mathcal{E}), \pi: P \to X, P' = \mathbb{P}(\mathcal{E}'), \pi': P' \to X$.

$$\blacksquare \Longrightarrow . \quad \phi: P' \xrightarrow{\cong} P \ \& \ \& \ \& \ .$$

 $\mathcal{O}_{P'}(1) \in \operatorname{Pic} P \cong \operatorname{Pic} X \oplus \mathbb{Z}$ なので,

$$\phi^* \mathcal{O}_{P'}(1) \cong \mathcal{O}_P(1) \otimes \pi^* \mathcal{L} \quad (\mathcal{L} \in \operatorname{Pic} X).$$

左辺は $\operatorname{Pic} P'$ の,右辺は $\operatorname{Pic} P$ の生成元である.(なので $\mathcal{O}_P(1)$ が右辺に現れる.)両辺に π_* を作用させて $\operatorname{Ex5.1d}$ (Projective formula), Prop7.11a を用いると次のよう.

$$\pi_*\phi^*\mathcal{O}_{P'}(1)\cong\mathcal{E}\otimes\mathcal{L}.$$

あとは $\pi_*\phi^*\cong\pi'_*$ を示せば、Prop7.11a から主張が得られる。 ϕ が同型写像であることに注意して計算する。

$$\begin{aligned} & \operatorname{Hom}(-, \pi_* \phi^* -) \\ & \cong \operatorname{Hom}(\pi^* -, \phi^* -) \\ & \cong \operatorname{Hom}((\phi^{-1})^* \pi^* -, (\phi^{-1})^* \phi^* -) \\ & \cong \operatorname{Hom}(\pi'^* -, -) \\ & \cong \operatorname{Hom}(-, \pi'_* -) \end{aligned}$$

よって Yoneda principal から $\pi_*\phi^* \cong \pi'_*$.

■ ← . 次を示すと、Lemma7.9 から $\mathbb{P}(\mathcal{E}) \cong \mathbb{P}(\mathcal{E}')$ が得られる.

$$\operatorname{Sym}^d(\mathcal{E} \otimes \mathcal{L}) \cong \operatorname{Sym}^d(\mathcal{E}) \otimes \mathcal{L}^{\otimes d}.$$

両辺が presheaf として同型であること,すなわち次が成り立つことを示す.U を X の任意の開集合とし, $A=\Gamma(U,\mathcal{O}_X), E=\Gamma(U,\mathcal{E})\cong A^{\oplus r}, L=\Gamma(U,\mathcal{L})$ とする.

$$\operatorname{Sym}^d(E \otimes L) \cong \operatorname{Sym}^d(E) \otimes L^{\otimes d}.$$

 $\operatorname{Sym}^d(E\otimes L)$ の元をとる. これは E の元 e_1,\ldots,e_d と L の元 l_1,\ldots,l_d を用いて次のように表せる.

$$(e_1 \otimes l_1) \otimes \cdots \otimes (e_d \otimes l_d).$$

また $\operatorname{Sym}^d(E) \otimes L^{\otimes d}$ の元は次のよう.

$$(e_1 \otimes \cdots \otimes e_d) \otimes (l_1 \otimes \cdots \otimes l_d).$$

これらが互いに書き換えられることは明らか. よって所望の同型が得られる.

- Ex7.10 \mathbb{P}^n -Bundles Over a Scheme.
- Ex7.11 Different Sheaves of Ideals can Give Rise to Isomorphic Blow Up Schemes.
- Ex7.12
- Ex7.13 * A Complete Nonprojective Variety.
- Ex7.14 Very ample invertible sheaf on Proj.

定理 Ex7.14.1

Let S be a scheme, and let X be a scheme over S. If \mathcal{L} is an invertible sheaf on X, and if $s_0, \ldots, s_n \in \Gamma(X, \mathcal{L})$ are global sections which generate \mathcal{L} , then there exists a unique S-morphisn $\phi: X \to \mathbb{P}^n_A$ such that $\mathcal{L} \cong \phi^*(\mathcal{O}_X(1))$ and $s_i = \phi^*(x_i)$ under this isomorphism.

(証明). この定理は Thm7.1b の拡張である。前提より, $f: X \to S$ がある。まず $V = \operatorname{Spec} A \subseteq S$ を とり, $U = f^{-1}(V)$ としよう。すると $f|_U: U \to \operatorname{Spec} A$ なる射が出来る。そして Thm7.1 の証明と同じことを U と $\operatorname{Spec} A$ に行う。ただし, X_i の代わりに使うのは $U \cap X_i$ である。V を動かしていけば, $U \cap X_i$ で X を覆うことができる。そして出来上がる大量の射: $U \cap X_i \to \operatorname{Spec} A[x_0,\dots,x_n]_{(x_0)}$ を貼り合わせられることは明らか.

定理 Ex7.14.2

Let X be a quasi-compact and finite type scheme over a scheme S, and let \mathcal{L} be an invertible sheaf on X. Then \mathcal{L} is ample if and only if $\mathcal{L}^{\otimes m}$ is very ample over S for some m > 0.

注意 Ex7.14.3

この定理は Thm7.6 の拡張である. 他にこの定理の拡張は様々に述べられているが、最も拡張して述べているのはこれであろう: X is locally of finite type over $S^{\dagger 7}$. ただし、脚注で示したページに

^{†7} https://stacks.math.columbia.edu/tag/01VS

ある証明では、EGA での immersion の定義を用いている。また証明には "we can find finitely many such elements" という文があるが、この文が成り立つためには X :: quasi-compact が必要である。X :: quasi-compact を加えると、EGA での immersion の定義と教科書での immersion の定義が一致する。また "X is locally of finite type over S"は "X is of finite type over S"になる。なのでこの命題の仮定は、弱めてもこの命題のように成る。

i,j を適当にとり、 $U=U_i\subseteq S, V=\bigcup_j X_{ij}=f^{-1}(U)\subseteq X$ とする.そこで次の図式を考える.

$$V \xrightarrow{\phi|_{V}} \mathbb{P}^{N}_{U}$$

$$f|_{V} \bigvee_{U} \pi'|_{\mathbb{P}^{N}_{U}}$$

Thm7.6 の証明と同様に $\phi|_V$:: immersion. immersion は local な性質だから, ϕ :: immersion.

(a) Example: $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ is not very ample relative to X.

k :: field, $X = \mathbb{P}^1_k, r-1 > 0, \mathcal{E} = (\mathcal{O}_X(-1))^{\oplus r}$ とする. また $P = \mathbb{P}(\mathcal{E})$ としておく.

もし $\mathcal{O}_P(1)$ が very ample ならば、上の Thm から、これは ample でもある。したがって十分大きい全ての n>0 について $\mathcal{O}_P(n) (=\mathcal{O}_P(1)^{\otimes n})$:: generated by global sections (以降は gbgs と略す) $^{\dagger 8}$. しかし次が成り立つ。

主張 Ex7.14.4

$$\forall n > 0, \quad \Gamma(P, \mathcal{O}_P(n)) = 0.$$

一方, $\mathcal{O}_P(n)$ は invertible sheaf だから $\mathcal{O}_P(n) \neq 0$. したがって $\mathcal{O}_P(n)$ は gbgs でなく, $\mathcal{O}_P(1)$ は very ample でない.

(証明). n > 0 を任意にとる. rank $\mathcal{E} = r \geq 2$ であるから、Prop7.11a より次のように成る.

$$\Gamma(P, \mathcal{O}_P(n)) = \Gamma(X, \pi_* \mathcal{O}_P(n)) = \Gamma(X, \operatorname{Sym}^n(\mathcal{E})).$$

 $^{^{\}dagger 8}$ ample sheaf の定義において, $\mathcal{F}=\mathcal{O}_P$ とすると $\mathcal{F}\otimes (\mathcal{O}_P(1))^{\otimes n}=\mathcal{O}_P(n)$:: gbgs.

 $\operatorname{Sym}^n(\mathcal{E})$ の代わりに $T^n(\mathcal{E}) = \mathcal{E}^{\otimes n}$ を考える.

$$\Gamma(X, \mathcal{E}^{\otimes n}) = \Gamma(X, \lceil (\mathcal{O}_X(-1))^{\oplus r} \rceil^{\otimes n}) = \Gamma(X, (\mathcal{O}_X(-n))^{\oplus r}).$$

 $\operatorname{Ex} 1.9$ にある direct sum の定義から,これは $\Gamma(X,\mathcal{O}_X(-n))^{\oplus r}$ に等しい.そして Prop5.13 から,これは $\Gamma(X,\mathcal{O}_X(-n))^{\oplus r}=0$.

 $\Gamma(X,\mathrm{Sym}^n(\mathcal{E}))$ の定義の仕方から, $\Gamma(X,T^n(\mathcal{E}))=0$ は $\Gamma(X,\mathrm{Sym}^n(\mathcal{E}))=0$ を意味する.よって $\Gamma(P,\mathcal{O}_P(n))=0$.

注意 Ex7.14.5

very ample の定義から $\mathcal{O}_X(1)$:: very ample on X relative to Spec k. Thm から $\mathcal{O}_X(1)$:: ample. これらと Prop7.10 から,十分大きい全ての $n \gg 0$ について, $\mathcal{O}_P(1) \otimes \pi^* \mathcal{O}_X(n)$:: very ample. Prop7.11a から $\pi_*(\mathcal{O}_P(1) \otimes \pi^* \mathcal{O}_X(n)) = \mathcal{E}(n)$ であることも留意せよ.

(b) $\forall n \gg 0$, $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1) \otimes \pi^* \mathcal{L}^n :: \text{ very ample.}$

以下のように設定する.

- X :: noetherian scheme †9,
- Y :: scheme,
- \mathcal{L} :: ample invertible sheaf on X,
- \mathcal{J} :: sheaf of graded \mathcal{O}_X -algebra satisfying (†),
- $f: X \to Y ::$ morphism of finite type.

また $P = \mathbf{Proj} \mathcal{J}$ とし、 $\pi: P \to X$ を projection とする.

$$P \xrightarrow{\pi} X \xrightarrow{f} Y$$

"very ample invertible sheaf on P relative to Y"を [P/Y] と書くことにする.

 \mathcal{L} :: ample on X が存在するので、Prop7.10 より、 $\mathcal{O}_P(1)\otimes \pi^*\mathcal{L}^{\otimes m}$:: [P/X]. また Thm より十分大きい n>0 について $\mathcal{L}^{\otimes n}$:: [X/Y]. このことと Ex5.12b より以下は [P/Y].

$$(\mathcal{O}_P(1) \otimes \pi^* \mathcal{L}^{\otimes m}) \otimes \pi^* (\mathcal{L}^{\otimes n}) = \mathcal{O}_P(1) \otimes \pi^* \mathcal{L}^{\otimes m+n}$$

 $^{^{\}dagger 9}$ 教科書では明記されていないが (†) の一部である.