Automatic Generation Control of a Two Area Power System Using Deep Reinforcement Learning

Shane Reynolds

Charles Darwin University

Background

A generator's angular acceleration is governed by:

$$\Delta T = T_{mech} - T_{elec} = I lpha$$

- If $\Delta T > 0$, then $\alpha \uparrow$ and $f(Hz) \uparrow$
- If $\Delta T < 0$, then $\alpha \downarrow$ and $f(Hz) \downarrow$

The Australian power network operates at 50 Hz.

Reinforcement Learning

Reinforcement learning is a branch of machine learning concerned with an agent's sequential decision making to maximise cumulative expected reward.

The agent exists in some environment and at each time step observes state $s_t \in S$; and takes an action $a_t \in A$. Following this, the agent then receives a reward $r_t \in R: S \times A \times S \to [R_{min}, R_{max}]$.

The Environment

Two power areas connected via a transmission line. Each power area consists of: a governor controlled generator; and stochastic load demand.

The control objective is to maintain inter-area power transfer, whilst regulating the frequency of each area.

Experiments

Results