

planetmath.org

Math for the people, by the people.

properties of bijections

Canonical name PropertiesOfBijections
Date of creation 2013-03-22 18:50:41
Last modified on 2013-03-22 18:50:41

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771) Entry type Derivation Classification msc 03-00 Let A, B, C, D be sets. We write $A \sim B$ when there is a bijection from A to B. Below are some properties of bijections.

- 1. $A \sim A$. The identity function is the bijection from A to A.
- 2. If $A \sim B$, then $B \sim A$. If $f: A \to B$ is a bijection, then its inverse function $f^{-1}: B \to A$ is also a bijection.
- 3. If $A \sim B$, $B \sim C$, then $A \sim C$. If $f: A \to B$ and $g: B \to C$ are bijections, so is the composition $g \circ f: A \to C$.
- 4. If $A \sim B$, $C \sim D$, and $A \cap C = B \cap D = \emptyset$, then $A \cup B \sim C \cup D$.

Proof. If $f: A \to B$ and $g: C \to D$ are bijections, so is $h: A \cup C \to B \cup D$, defined by

$$h(x) = \begin{cases} f(x) & \text{if } x \in A, \\ g(x) & \text{if } x \in C. \end{cases}$$

Since $A \cap C = \emptyset$, h is a well-defined function. h is onto since both f and g are. Since f, g are one-to-one, and $B \cap D = \emptyset$, h is also one-to-one.

- 5. If $A \sim B$, $C \sim D$, then $A \times C \sim B \times D$. If $f: A \to B$ and $g: C \to D$ are bijections, so is $h: A \times C \to B \times D$, given by h(x, y) = (f(x), g(y)).
- 6. $A \times B \sim B \times A$. The function $f: A \times B \rightarrow B \times A$ given by f(x,y) = (y,x) is a bijection.
- 7. If $A \sim B$ and $C \sim D$, then $A^C \sim B^D$.

Proof. Suppose $\phi:A\to B$ and $\sigma:C\to D$ are bijections. Define $F:A^C\to B^D$ as follows: for any function $f:A\to C$, let $F(f)=\sigma\circ f\circ\phi^{-1}:B\to D$. F is a well-defined function. It is one-to-one because σ and ϕ are bijections (hence are cancellable). For any $g:B\to D$, it is easy to see that $F(\sigma^{-1}\circ g\circ\phi)=g$, so that F is onto. Therefore F is a bijection from A^C to B^D .

8. Continuing from property 8, using the bijection F, we have $\operatorname{Mono}(A, B) \sim \operatorname{Mono}(C, D)$, $\operatorname{Epi}(A, B) \sim \operatorname{Epi}(C, D)$, and $\operatorname{Iso}(A, B) \sim \operatorname{Iso}(C, D)$, where $\operatorname{Mono}(A, B)$, $\operatorname{Epi}(A, B)$, and $\operatorname{Iso}(A, B)$ are the sets of injections, surjections, and bijections from A to B.

9. $P(A) \sim 2^A$, where P(A) is the powerset of A, and 2^A is the set of all functions from A to $2 = \{0, 1\}$.

Proof. For every $B \subseteq A$, define $\varphi_B : A \to 2$ by

$$\varphi_B(x) = \begin{cases} 1 & \text{if } x \in B, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\varphi: P(A) \to 2^A$, defined by $\varphi(B) = \varphi_B$ is a well-defined function. It is one-to-one: if $\varphi_B = \varphi_C$ for $B, C \subseteq A$, then $x \in B$ iff $x \in C$, so B = C. It is onto: suppose $f: A \to 2$, then by setting $B = \{x \in A \mid f(x) = 1\}$, we see that $\varphi_B = f$. As a result, φ is a bijection. \square

Remark. As a result of property 9, we sometimes denote 2^A the powerset of A.