Chapitre 3 : Méthodes d'analyse d'un système chimique – Activité gaz parfait

A l'échelle microscopique, un gaz est modélisé par un ensemble d'entités (atomes ou molécules) en mouvement désordonné. Un gaz est dit « parfait » si la taille des entités en jeu est négligeable devant la distance qui les sépare et qu'on néglige les interactions entre ces entités.

A basse pression, on peut considérer que les gaz sont assimilés à des gaz parfaits, auquel on peut appliquer l'équation des gaz parfaits :

Avec R la constante des gaz parfaits, R = 8,314 Pa.m³.mol⁻¹.K⁻¹

Ainsi, des mesures de pression et de température d'un certain volume de gaz permet de remonter à une quantité de matière de gaz !

- de pression :
- $1 \text{ bar} = 10^5 \text{ Pa} = 10^3 \text{ hPa}$
- · de volume :
- $1 \text{ m}^3 = 10^3 \text{ dm}^3 = 10^3 \text{ L}$
- $1 \text{ m}^3 = 10^6 \text{ cm}^3 = 10^6 \text{ mL}$
- · de température :
- $T(K) = \theta(^{\circ}C) + 273$

Un gaz qui fait des bulles

l Effectuer un calcul; confronter des résultats à des hypothèses.

Une machine à gazéifier permet d'obtenir de l'eau pétillante à partir de l'eau du robinet. La recharge en gaz CO, (g) de la machine donne les informations suivantes :

Pression: P = 250 bar Volume de la recharge: 600 mL

425 g de CO 2

- 1. Calculer la quantité de matière de dioxyde de carbone contenue dans la recharge pleine.
- 2. En supposant que le dioxyde de carbone contenu dans la recharge est un gaz parfait, calculer la quantité de gaz que contiendrait la recharge pleine à la température ambiante $\theta = 20$ °C.
- 3. Formuler une hypothèse pour expliquer la différence entre les deux valeurs obtenues.

Dannées

 θ 1 bar = 10° Pa. θ 7(K) = θ(°C) + 273. θ M(CO₃) = 44,0 g·mol⁻¹. θ Constante des gaz parfaits : R = 8.314 Pa·m³·mol⁻¹·K⁻¹.