JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, December - 2018 **MATHEMATICS – IV**

(Mechanical Enginering(Mechatronics))

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit.

	Each question carries 10 marks and may have a, b, c as sub questions.	
	PART- A	(25 Marks)
1.a)	If $w = f(z) = z^2$, $\forall z$, find the values of w which correspond to $z = 2 + i$	[2]
b)	Prove that $f(z) = z^2$ is differentiable anywhere and find its derivative.	[3]
c)	State Cauchy's theorem.	[2]
d)	Evaluate $\int_C e^z dz$ where C is $ z - i = 2$	[3]
e)	Define Bilinear transformation.	[2]
f)	Find bilinear transformations whose fixed points are $i, -i$	[3]
g)	Write the dirichet conditions of Fourier Series.	[2]
h)	If $F[f(x)] = F(s)$ then prove that $F[f(ax)] = \frac{1}{ a } F\left(\frac{s}{a}\right)$	[3]
i)	Write one dimensional heat equation.	[2]
j)	Classify the partial differential equation $4 \frac{\delta^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$.	[3]
	PART-B	(50Marks)
2.a)	Given that $f(z) = \frac{x^3 - y^3}{x^3 + y^3}$ and $f(0) = 0$, Show that $f(z)$ is discontinuous at z	
b)	Show that an analytic function with constant modulus is constant. OR	[5+5]
3.a)	Show that $f(z) = sinz$ is analytic everywhere in the complex plane and find	f'(z)
b)	Find analytical function whose real part is $\frac{x}{x^2+y^2}$.	[5+5]
4.a)	State and prove Cauchy Integral formula.	0/

- State and prove Cauchy Integral formula.
- Evaluate $\int_C^{\infty} \frac{z^2 2z 2}{(z^2 + 1)^2 z} dz$, where C is $|z i| = \frac{1}{2}$, Using Cauchy Integral formula. [5+5] b)

- Obtain Taylor's series expansion of $f(z) = \frac{e^z}{z(z+1)}$ about z = 2. 5.a)
 - Find poles and residue of $\frac{3z+1}{(z+1)(2z-1)}$. b) [5+5]

Show that $\int_0^\pi \frac{d\theta}{a+b \cos\theta} = \frac{\pi}{\sqrt{a^2-b^2}}$, a > b > 0. [10]

Under the transformation $w = \frac{z-i}{1-iz}$, find the image of the circle in the w plane. a) |w| = 1 b) |Z| = 1.

a)
$$|w| = 1$$
 b) $|Z| = 1$. [5+5]

Find a cosine series expansion
$$f(x) = x \sin x$$
, $0 < x < \pi$, Hence find $1 + \frac{2}{1.3} - \frac{2}{3.5} + \frac{2}{5.7} - - - -$ [10]

OR

- Find the Fourier cosine transformation of $f(x) = \begin{cases} 1 x^2 & 0 < x < 1 \\ 0 & otherwise \end{cases}$. 9.a)
 - Find Fourier Sine transformation of $e^{-|x|}$ and hence evaluate $\int_0^\infty \frac{x \sin \frac{x}{2} dx}{1+x^2} dx$. b) [5+5]
- Solve $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial t^2}$ subject to the conditions: 10.

a)
$$u$$
 is not finite for $t \to \infty$
b) $u = 0$ for $x=0$ and $x = \pi$ for all t
c) $u = \pi x - x^2$ for $t = 0$ in $(0,\pi)$. [10]

A tightly stretched stiring with fixed ends at x = 0 and x = l is initially in a position 11. given by $y(x, 0) = u_0 \sin^3(\frac{\pi x}{l})$. If it is released from rest form this position. Find displacement y at any distance x from one end and any time 't'. h.

---00000---