Unit 7 Predictive Parsing

Nguyen Thi Thu Huong Hanoi University of Technology

Predictive Parsers

- Parser can "predict" which production to use
 - □ By looking at the next few tokens
 - □ No backtracking
- Predictive parsers accept LL(k) grammars
 - □ L means "left-to-right" scan of input
 - □ L means "leftmost derivation"
 - □ k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

м

■ accomplished using a *predictive parsing table* M and a stack.

A stringent condition

The grammar must not be left recursive and no two right sides of a production have a common prefix.

Left Recursion

A grammar is *left recursive* if it has a non-terminal A such that there is a derivation.

 $A \Rightarrow A\alpha$ for some string α

Top-down parsing techniques **cannot** handle left-recursive grammars.

So, we have to convert our left-recursive grammar into an equivalent grammar which is not left-recursive.

The left-recursion may appear in a single step of the derivation (*immediate left-recursion*), or may appear in more than one step of the derivation.

Ŋ.

Immediate Left-Recursion

$$A \rightarrow A \alpha \mid \beta$$
 where β does not start with A

eliminate immediate left recursion

$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha A' \mid \epsilon$$
 an equivalent grammar

In general,

$$A \rightarrow A \ \alpha_1 \ | \ ... \ | \ A \ \alpha_m \ | \ \beta_1 \ | \ ... \ | \ \beta_n \qquad \text{where} \ \beta_1 \ ... \ \beta_n \ \text{do not start with} \ A$$

$$A \rightarrow \beta_1 A' \mid ... \mid \beta_n A'$$

$$A' \rightarrow \alpha_1 A' \mid ... \mid \alpha_m A' \mid \epsilon$$
 an equivalent grammar

Left-Recursion -- Problem

- A grammar cannot be immediately left-recursive, but it still can be left-recursive.
- By just eliminating the immediate left-recursion, we may not get a grammar which is not left-recursive.

```
S 	oup Aa \mid b
A 	oup Sc \mid d This grammar is not immediately left-recursive, but it is still left-recursive.
\underline{S} \Rightarrow Aa \Rightarrow \underline{S}ca \qquad \text{or}
\underline{A} \Rightarrow Sc \Rightarrow \underline{A}ac \qquad \text{causes to a left-recursion}
```

• So, we have to eliminate all left-recursions from our grammar

Eliminate Left-Recursion -- Algorithm

```
    Arrange non-terminals in some order: A<sub>1</sub> ... A<sub>n</sub>

- for i from 1 to n do {
       - for j from 1 to i-1 do {
            replace each production
                        A_i \rightarrow A_i \gamma
                             by
                         A_i \rightarrow \alpha_1 \gamma \mid ... \mid \alpha_k \gamma
                        where A_i \rightarrow \alpha_1 \mid ... \mid \alpha_k
      - eliminate immediate left-recursions among A<sub>i</sub> productions
```

Immediate Left-Recursion -- Example

$$E \rightarrow E+T \mid T$$

 $T \rightarrow T^*F \mid F$
 $F \rightarrow id \mid (E)$

eliminate immediate left recursion

$$E \rightarrow T E'$$

$$E' \rightarrow +T E' \mid \epsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow *F T' \mid \epsilon$$

$$F \rightarrow id \mid (E)$$

Predictive Parsing and Left Factoring

In the grammar

```
E \rightarrow T + E \mid T
T \rightarrow int | int * T | (E)
```

- Hard to predict because
 - □ For T two productions start with int
 - ☐ For E it is not clear how to predict
- A grammar must be <u>left-factored</u> before use for predictive parsing

Left Factoring

 A predictive parser (a top-down parser without backtracking) insists that the grammar must be *left-factored*.

grammar → a new equivalent grammar suitable for predictive parsing

```
If\_stmt \rightarrow \text{if expr then stmt else stmt} if expr then stmt
```

■ when we see if, we cannot now which production rule to choose to re-write *stmt* in the derivation.

Left Factoring (con'd)

In general,

 $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$ where α is non-empty and the first symbols of β_1 and β_2 (if they have one)are different.

when processing α we cannot know whether expand

A to
$$\alpha\beta_1$$
 or

A to
$$\alpha\beta_2$$

But, if we re-write the grammar as follows

$$A \rightarrow \alpha A'$$

 $A' \rightarrow \beta_1 \mid \beta_2$ so, we can immediately expand A to $\alpha A'$

Left factoring algorithm

 For each non-terminal A with two or more alternatives (production rules) with a common non-empty prefix, let say

$$A \rightarrow \alpha \beta_1 | \dots | \alpha \beta_n | \gamma_1 | \dots | \gamma_m$$

convert it into

$$A \rightarrow \alpha A' \mid \gamma_1 \mid \dots \mid \gamma_m$$
$$A' \rightarrow \beta_1 \mid \dots \mid \beta_n$$

r,e

Left Factoring example

```
S --> if E then S | if E then S else S
can be rewritten as
  S --> if E then S S'
  S' --> else S | \epsilon
In KPL
IfSt ::= KW IF Condition KW THEN
  Statement ElseSt
ElseSt ::= KW ELSE Statement
ElseSt ::= \epsilon
```


(Non recursive) Predictive parser

Parsing table M

- lacksquare M[X, token] indicates which production to use if the top of the stack is a nonterminal X and the current token is equal to token;
- in that case we pop X from the stack and we push all the rhs symbols of the production M[X, token] in reverse order.
- We use a special symbol \$ to denote the end of file. Let *S* be the start symbol

Non recursive Predictive Parser

- The input contains the string to be parsed, followed by \$ (EOF)
- The stack contains a sequence of grammar symbols, preceded by #, the bottom-of-stack marker.
- Initially the stack contains the start symbol of the grammar preceded by \$.
- The parsing table is a two dimensional array M[A,a], where A is a nonterminal, and a is a terminal or the symbol \$.

Parsing table for grammar S→ aSb|c

	а	b	С	\$	
S	$S \rightarrow aSb$	Error	$S \rightarrow c$	Error	
а	Push	Error	Error	Error	
b	Error	Push	Error	Error	
С	Error	Error	Push Error		
#	Error	Error	Error	Accept	

LL(1) Parsing Tables. Errors

- Yellow entries indicate error situations
 - □ Consider the [S,b] entry
 - "There is no way to derive a string starting with b from non-terminal S

Using Parsing Tables

- Method similar to recursive descent, except
 - □ For each non-terminal S
 - □ We look at the next token a
 - □ And chose the production shown at [S,a]
- We use a stack to keep track of pending nonterminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

LL(1) Parsing Example for aacbb

<u>Stack</u>	Input	Action	
S#	aacbb\$	$S \rightarrow aSb$	
aSb#	aacbb\$	push	
Sb#	acbb\$	$S \rightarrow aSb$	
aSbb#	acbb\$	push	
Sbb#	cbb\$	$S \rightarrow c$	
cbb#	cbb\$	push	
bb#	bb\$	push	
b#	b\$	push	
#	\$	ACCEPT	

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined
- We want to generate parsing tables from CFG

Constructing Parsing Tables (Cont.)

- If A $\rightarrow \alpha$, where in the line of A we place α ?
- In the column of t (t is a terminal) where t can start a string derived from α
 - $\square \alpha \rightarrow^* t \beta$
 - \square We say that $t \in First(\alpha)$
- In the column of t if α is ε and t can follow an A
 - \square S $\rightarrow^* \beta$ A t δ
 - \square We say $t \in Follow(A)$

20

Computing First Sets

Definition: First(X) = { t | $X \rightarrow^* t\alpha$ } \cup { $\varepsilon \mid X \rightarrow^* \varepsilon$ }

Algorithm sketch:

- 1. for all terminals t do First(X) ← { t } //if X is terminal t
- 2. for each production $X \to \varepsilon$ do First(X) $\leftarrow \{ \varepsilon \}$
- 3. if $X \to A_1 \dots A_n \alpha$ and $\epsilon \in First(A_i)$, $1 \le i \le n$ do
 - add First(α) to First(X)
- 4. for each $X \to A_1 \dots A_n$ s.t. $\varepsilon \in First(A_i)$, $1 \le i \le n$ do
 - add ε to First(X)
- 5. repeat steps 4 & 5 until no First set can be grown

re.

First Sets. Example

Recall the grammar

```
E \rightarrow T E'

E' \rightarrow + E \mid \varepsilon

F \rightarrow (E) \mid int
```

$$T \rightarrow FT'$$
 $T' \rightarrow *F \mid \varepsilon$

First sets

```
First( ( ) = { ( }
First( ) ) = { ) }
First( int) = { int }
First( + ) = { + }
First( * ) = { * }
```

```
First( T ) = First (F) = {int, ( }

First( E ) = {int, ( }

First( E' ) = {+, ε }

First( T') = {*, ε }
```


Computing Follow Sets

Definition:

Follow(X) = { t | S
$$\rightarrow$$
* β X t δ }

- Intuition
 - □ If S is the start symbol then \$ ∈ Follow(S)
 - □ If X → A B then First(B) ⊆ Follow(A) and Follow(X) ⊆ Follow(B)
 - \square Also if B $\rightarrow^* \varepsilon$ then Follow(X) \subseteq Follow(A)

Computing Follow Sets (Cont.)

Algorithm sketch:

- 1. Follow(S) \leftarrow {\$}
- 2. For each production $A \rightarrow \alpha X \beta$
 - add First(β) { ϵ } to Follow(X)
- 3. For each $A \rightarrow \alpha X \beta$ where $\epsilon \in First(\beta)$
 - add Follow(A) to Follow(X)
- repeat step(s) 2, 3 until no Follow set grows

Follow Sets. Example

Recall the grammar

```
E \rightarrow T E' T \rightarrow FT'

E' \rightarrow + E \mid \varepsilon T' \rightarrow *F \mid \varepsilon

F \rightarrow (E) \mid int
```

Follow sets

```
Follow( + ) = { int, ( } Follow( * ) = { int, ( } Follow( ( ) = { int, ( } Follow( E ) = { ), $ } Follow( E' ) = { $, ) } Follow( T ) = { +, ), $ } Follow( int) = { *, +, ), $ }
```

M

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - \square For each terminal $t \in First(\alpha)$ do
 - $T[A, t] = \alpha$
 - □ If $\varepsilon \in First(\alpha)$, for each $t \in Follow(A)$ do
 - $T[A, t] = \varepsilon$
 - □ If ε ∈ First(α) and \$ ∈ Follow(A) do
 - $T[A, \$] = \varepsilon$

Grammar G:

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' | \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' | \epsilon$
 $F \rightarrow (E) | int$

It's possible to implement a predictive parser for G

Parsing table

	+	*	()	int	\$
E			E→TE'		E→TE'	
E'	E'→+TE'			E'→ε		E'→ε
T			T→FT'		T→FT'	
T'	$T' { ightarrow} \epsilon$	T'→ * FT'		T'→ε		T'→ε
F			F→ (E)		F→int	
+	Push		•			
*		Push				
(Push			
\mid \rangle				Pushy		
int					Push	
#						Accept

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - ☐ If G is ambiguous
 - ☐ If G is left recursive
 - □ If G is not left-factored
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables