语法分析

魏恒峰

hfwei@nju.edu.cn

2020年11月26日

输入: 词法单元流 & 语言的语法规则

输出: 语法分析树 (Parse Tree)

语法分析举例

```
(Stmt)
if (
                (Expr)
                                                                 (Stmt)
      (Expr)
                (Optr) (Expr)
        (Id)
                (Optr)
          x
                         (Expr)
                   >
                         (Num)
                            9
                                                                 (Stmt)
                                                               (StmtList)
                                           (StmtList)
                                                                           (Stmt)
                                             (Stmt)
                                            = (Expr);
                                        \langle Id \rangle
                                                (Expr)
                                                (Num)
                                                                           (Stmt)
                                                            \langle Id \rangle =
                                                                              (Expr)
                                                                              (Expr)
                                                                    (Expr)
                                                                              (Optr) (Expr)
                                                                      \langle Id \rangle
                                                                              (Optr) (Expr)
                                                                                       (Expr)
                                                                                       (Num)
if (
          х
                   >
                                                                       y
```


语法分析阶段的主题之一: 上下文无关文法

```
\langle \text{Stmt} \rangle \rightarrow \langle \text{Id} \rangle = \langle \text{Expr} \rangle;
            \langle Stmt \rangle \rightarrow \{ \langle StmtList \rangle \}
           \langle Stmt \rangle \rightarrow if (\langle Expr \rangle) \langle Stmt \rangle
\langle StmtList \rangle \rightarrow \langle Stmt \rangle
\langle StmtList \rangle \rightarrow \langle StmtList \rangle \langle Stmt \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Id} \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Num} \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Expr} \rangle \langle \text{Optr} \rangle \langle \text{Expr} \rangle
                    \langle \mathrm{Id} \rangle \to \mathbf{x}
                    \langle \mathrm{Id} \rangle \to \mathbf{v}
            \langle \text{Num} \rangle \rightarrow 0
            \langle \text{Num} \rangle \rightarrow 1
            \langle \text{Num} \rangle \rightarrow 9
            \langle \text{Optr} \rangle \rightarrow >
            \langle \text{Optr} \rangle \rightarrow +
```

语法分析阶段的主题之二: 构建语法分析树

语法分析阶段的主题之三: 错误恢复

报错、恢复、继续分析

上下文无关文法

7/95

Definition (Context-Free Grammar (CFG); 上下文无关文法)

上下文无关文法 G 是一个四元组 G = (T, N, P, S):

- ▶ T 是<mark>终结符号</mark> (Terminal) 集合, 对应于词法分析器产生的词法单元;
- ▶ N 是<mark>非终结符号</mark> (Non-terminal) 集合;
- ▶ P 是产生式 (Production) 集合;

$$A\in N \longrightarrow \alpha \in (T\cup N)^*$$

头部/左部 (Head) A: 单个非终结符

体部/右部 (Body) α : 终结符与非终结符构成的串, 也可以是空串 ϵ

▶ S 为开始 (Start) 符号。要求 $S \in N$ 且唯一。

$$G=(\{a,b\},\{S\},P,S)$$

$$S \to aSb$$
$$S \to \epsilon$$

$$S \to \epsilon$$

$$G = (\{(,)\}, \{S\}, P, S)$$

$$S \to SS$$

$$S \to (S)$$

$$S \rightarrow ()$$

$$S \to \epsilon$$

stmt → if expr then stmt

| if expr then stmt else stmt
| other

条件语句文法

悬空 (Dangling)-else 文法

$$S \rightarrow \text{if } E \text{ then } S \text{ else } S$$

 $S \rightarrow \text{begin } S L$
 $S \rightarrow \text{print } E$

$$L \to \text{end}$$

$$L \to ; S L$$

$$E \rightarrow \text{num} = \text{num}$$

约定: 如果没有明确指定, 第一个产生式的头部就是开始符号

关于**终结符号**的约定

- 1) 下述符号是终结符号:
- ① 在字母表里排在前面的小写字母, 比如 $a \, , b \, , c$ 。
- ② 运算符号,比如+、*等。
- ③ 标点符号,比如括号、逗号等。
- ④ 数字 0、1、…、9。
- ⑤ 黑体字符串,比如 id 或 if。每个这样的字符串表示一个终结符号。

关于**非终结符号**的约定

- 2) 下述符号是非终结符号:
- ① 在字母表中排在前面的大写字母,比如 $A \setminus B \setminus C$ 。
- ② 字母 S。它出现时通常表示开始符号。
- ③ 小写、斜体的名字, 比如 expr 或 stmt。

Syntax

Semantics

语义: 上下文无关文法 G 定义了一个语言 L(G)

语言是串的集合

串从何来?

推导 (Derivation)

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

推导即是将某个产生式的左边替换成它的右边

每一步推导需要选择替换哪个非终结符号, 以及使用哪个产生式

推导 (Derivation)

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id}+E) \implies -(\mathbf{id}+\mathbf{id})$$

 $E \implies -E$: 经过一步推导得出

 $E \xrightarrow{+} -(\mathbf{id} + E) : 经过一步或多步推导得出$

 $E \stackrel{*}{\Rightarrow} -(\mathbf{id} + E)$: 经过零步或多步推导得出

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(E+id) \implies -(id+id)$$

Definition (Sentential Form; 句型)

如果 $S \stackrel{*}{\Rightarrow} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个句型。

$$E \to E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id} + \mathbf{E}) \implies -(\mathbf{id} + \mathbf{id})$$

Definition (Sentence; 句子)

如果 $S \stackrel{*}{\Rightarrow} w$, 且 $w \in T^*$, 则称 w 是文法 G 的一个句子。

Definition (文法 G 生成的语言 L(G))

文法 G 的语言 L(G) 是它能推导出的所有句子构成的集合。

$$w \in L(G) \iff S \stackrel{*}{\Rightarrow} w$$

关于文法 G 的两个基本问题:

- ▶ Membership 问题: 给定字符串 $x \in T^*$, $x \in L(G)$?
- ▶ L(G) 究竟是什么?

给定字符串 $x \in T^*$, $x \in L(G)$?

(即, 检查 x 是否符合文法 G)

这就是语法分析器的任务:

为输入的词法单元流寻找推导、构建语法分析树,或者报错

根节点是文法 G 的起始符号

叶子节点是输入的词法单元流

常用的语法分析器以自顶向下或自底向上的方式构建中间部分

L(G) 是什么?

这是程序设计语言设计者需要考虑的问题

$$S o SS$$
 $S o (S)$
 $S o ()$
 $S o \epsilon$

$$L(G) = \{$$
良匹配括号串 $\}$

$$S o aSb$$
 $S o \epsilon$

$$L(G) = \{a^n b^n \mid n \ge 0\}$$

字母表 $\Sigma = \{a, b\}$ 上的所有回文串 (Palindrome) 构成的语言

$$S o aSa$$
 $S o bSb$ $S o a$ $S o b$

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$$

$$\{b^n a^m b^{2n} \mid n \ge 0, m \ge 0\}$$

$$S \to bSbb \mid A$$
$$A \to aA \mid \epsilon$$

 $\{x \in \{a,b\}^* \mid x + a,b \land \text{min}\}$

$$V \rightarrow aVbV \mid bVaV \mid \epsilon$$

$$S \rightarrow T \mid U$$

$$T \rightarrow VaT \mid VaV$$

$$U \rightarrow VbU \mid VbV$$

$$V \rightarrow aVbV \mid bVaV \mid \epsilon$$

练习(非作业):证明之

$$S \rightarrow \text{if } E \text{ then } S \text{ else } S$$

 $S \rightarrow \text{begin } S L$
 $S \rightarrow \text{print } E$

$$L \rightarrow \text{end}$$

 $L \rightarrow ; S L$

$$E \rightarrow \text{num} = \text{num}$$

顺序语句、条件语句、打印语句

L-System

(注: 这不是上下文无关文法, 但精神上高度一致, 并且更有趣)

variables : A B

constants: + -

start: A

rules : $(A \rightarrow B-A-B)$, $(B \rightarrow A+B+A)$

angle: 60°

A, B: 向右移动并画线

+: 左转

-: 右转

每一步都并行地应用所有规则

$$B - A - B$$

$$A + B + A - B - A - B - A + B + A$$

Sierpinski arrowhead curve (n = 2, 4, 6, 8)

variables: X Y

constants: F + -

start : FX

 $\textbf{rules}: (X \to X \text{+} Y F \text{+}), \, (Y \to \text{-} F X \text{-} Y)$

angle: 90°

F: 向上移动并画线

+: 右转

-: 左转

X: 仅用于展开, 在作画时被忽略

每一步都并行地应用所有规则

Dragon Curve (n = 10)

最左 (leftmost) 推导与最右 (rightmost) 推导

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(\mathbf{id} + E) \Longrightarrow -(\mathbf{id} + \mathbf{id})$$

$$E \Longrightarrow -E$$
: 经过一步最左推导得出

$$E \stackrel{+}{\Longrightarrow} -(\mathbf{id} + E)$$
: 经过一步或多步最左推导得出

$$E \stackrel{*}{\Longrightarrow} -(\mathbf{id} + E)$$
: 经过零步或多步最左推导得出

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(E+i\mathbf{d}) \Longrightarrow -(i\mathbf{d}+i\mathbf{d})$$

Definition (Left-sentential Form; 最左句型)

如果 $S \stackrel{*}{\Longrightarrow} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个最左句型。

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(\mathbf{id}+E) \Longrightarrow -(\mathbf{id}+\mathbf{id})$$

Definition (Right-sentential Form; 最右句型)

如果 $S \xrightarrow{*} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个最右句型。

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(E+i\mathbf{d}) \Longrightarrow -(i\mathbf{d}+i\mathbf{d})$$

语法分析树

语法分析树是静态的, 它不关心动态的推导顺序

一棵语法分析树对应多个推导

但是,一棵语法分析树与最左(最右)推导一一对应

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid \mathbf{id} \mid \mathbf{num}$$

1 - 2 - 3 的语法树?

Definition (二**义性**(Ambiguous) 文法)

如果 L(G) 中的某个句子有一个以上语法树/最左推导/最右推导,则文法 G 是二义性的。

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid \mathbf{id} \mid \mathbf{num}$$

$$1 + 2 * 3$$
 的语法树?

 $stmt \rightarrow if expr then stmt$ if expr then stmt else stmt

other

"悬空-else" 文法

if E_1 then if E_2 then S_1 else S_2

if E_1 then (if E_2 then S_1 else S_2)

if E_1 then (if E_2 then S_1) else S_2

二义性文法

不同的语法分析树产生不同的语义

所有语法分析器都要求文法是无二义性的

二义性文法

Q: 如何<mark>识别</mark>二义性文法?

这是不可判定的问题

Q: 如何消除文法的二义性?

LEARN BY EXAMPLES

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid id \mid num$$

四则运算均是左结合的

优先级: 括号最先, 先乘除后加减

二义性表达式文法以**相同的方式**处理所有的算术运算符 要消除二义性, 需要**区别对待**不同的运算符

将运算的"先后"顺序信息编码到语法树的"层次"结构中

$$E \rightarrow E + E \mid \mathbf{id}$$

$$E \rightarrow E + T$$

 $T \rightarrow id$

左结合文法

$$E \rightarrow T + E$$

 $T \rightarrow id$

右结合文法

使用左(右)递归实现左(右)结合

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E
ightarrow E + T \mid T$$
 $T
ightarrow T * F \mid F$ $F
ightarrow (E) \mid \mathbf{id}$

括号最先, 先乘后加文法

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid \mathbf{id} \mid \mathbf{num}$$

$$E
ightarrow E + T \mid E - T \mid T$$
 $T
ightarrow T * F \mid T/F \mid F$ $F
ightarrow (E) \mid \mathbf{id} \mid \mathbf{num}$

无二义性的表达式文法

E: 表达式(expression); T: 项(term) F: 因子(factor)

将运算的"先后"顺序信息编码到语法树的"层次"结构中

if E_1 then if E_2 then S_1 else S_2

"每个else与最近的尚未匹配的then匹配"

```
stmt → if expr then stmt

if expr then stmt else stmt

other
```

```
stmt \rightarrow matched\_stmt
| open\_stmt |
matched\_stmt \rightarrow if \ expr \ then \ matched\_stmt \ else \ matched\_stmt
| other
open\_stmt \rightarrow if \ expr \ then \ stmt
| if \ expr \ then \ matched\_stmt \ else \ open\_stmt
```

基本思想: then 与 else 之间的语句必须是"已匹配的"

我也看不懂啊

"我不想去上课啊妈妈"

"清醒一点!你是老师啊!"

KEEP CALM

AND

PROVE IT

我们要证明两件事情

$$L(G) = L(G')$$

G' 是无二义性的

```
stmt → if expr then stmt

| if expr then stmt else stmt
| other
```

```
stmt \rightarrow matched\_stmt
| open\_stmt |
matched\_stmt \rightarrow if \ expr \ then \ matched\_stmt \ | other
open\_stmt \rightarrow if \ expr \ then \ stmt
| if \ expr \ then \ matched\_stmt \ | else \ open\_stmt
```

$$L(G') \subseteq L(G)$$

$$L(G) \subseteq L(G')$$

对推导步数作数学归纳

G' 是无二义性的

每个句子对应的语法分析树是唯一的

只需证明:每个非终结符的"展开"方式是唯一的

$$L(matched_stmt) \cap L(open_stmt) = \emptyset$$

$$L(matched_stmt_1) \cap L(matched_stmt_2) = \emptyset$$

$$L(open_stmt_1) \cap L(open_stmt_2) = \emptyset$$

为什么不使用优雅、强大的正则表达式描述程序设计语言的语法?

正则表达式的表达能力严格弱于上下文无关文法

每个正则表达式 r 对应的语言 L(r) 都可以使用上下文无关文法来描述

此外, 若 $\delta(A_i, \epsilon) = A_i$, 则添加 $A_i \rightarrow A_i$

$$S \to aSb$$
$$S \to \epsilon$$

$$L = \{a^n b^n \mid n \ge 0\}$$

该语言无法使用正则表达式来描述

Theorem

 $L = \{a^n b^n \mid n \ge 0\}$ 无法使用正则表达式描述。

反证法

假设存在正则表达式 r: L(r) = L

则存在**有限**状态自动机 D(r): L(D(r)) = L; 设其状态数为 k

考虑输入 $a^m(m>k)$

D(r) 也能接受 $a^{i+j}b^i$; 矛盾!

$$L = \{a^n b^n \mid n \ge 0\}$$

Pumping Lemma for Regular Languages

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

Pumping Lemma for Context-free Languages

只考虑无二义性的文法

这意味着,每个句子对应唯一的一棵语法分析树

今日份主题: LL(1) 语法分析器

自顶向下的、

递归下降的、

预测分析的、

适用于LL(1) 文法的、

LL(1) 语法分析器

自顶向下构建语法分析树

根节点是文法的起始符号 S

每个中间节点表示对某个非终结符应用某个产生式进行推导

(Q:选择哪个非终结符,以及选择哪个产生式)

叶节点是词法单元流 w\$

仅包含终结符号与特殊的文件结束符 \$

递归下降的实现框架

```
void A()
            先不考虑这里是如何选择产生式的
                A 产生式, A \to X_1 X_2 \cdots X_k;
^{2)}
             i = 1 \text{ to } k
3)
              else if (X_i 等于当前的输入符号a)
 匹配当前词法单元
6)
                    读入下一个输入符号;
              else /* 发生了一个错误 */;
                 出现了不期望出现的词法单元
```

为每个非终结符写一个递归函数

内部按需调用其它非终结符对应的递归函数

$$S \to F$$

$$S \to (S+F)$$

$$F \to a$$

$$w = ((a+a)+a)$$

演示递归下降过程

$$S \to F$$

$$S \to (S+F)$$

$$F \to a$$

每次都选择语法分析树最左边的非终结符进行展开

同样是展开非终结符S,

为什么前两次选择了 $S \to (S+F)$, 而第三次选择了 $S \to F$?

因为它们面对的当前词法单元不同

使用预测分析表确定产生式

$$S \to F$$

$$S \to (S+F)$$

$$F \to a$$

	()	a	+	\$
S	2		1		
\overline{F}			3		

指明了每个**非终结符**在面对不同的**词法单元或文件结束符**时, 该选择哪个产生式(按编号进行索引)或者报错

Definition (LL(1) 文法)

如果文法 G 的预测分析表是无冲突的, 则 G 是 LL(1) 文法。

无冲突:每个单元格里只有一个生成式(编号)

$$S \to F$$

$$S \to (S+F)$$

$$F \to a$$

	()	a	+	\$
S	2		1		
F			3		

对于当前选择的非终结符,

仅根据输入中当前的词法单元即可确定需要使用哪条产生式

递归下降的、预测分析实现方法

$$S \to F$$

$$S \to (S+F)$$

$$F \to a$$

	()	a	+	\$
S	2		1		
F			3		

```
1: procedure S()
       if token = ('then )
          MATCH('('))
3:
          S()
4:
          MATCH('+')
5:
          F()
6:
7:
          MATCH(')'
       else if token = 'a' then
8:
          F()
9:
       else
10:
          ERROR(token, \{(', 'a'\})
11:
```

```
1: procedure MATCH(t)
```

if token = t then 2:

3: $token \leftarrow NEXT-TOKEN()$

4:

else

1: procedure F()

if token = 'a' then 2:

如何计算给定文法 G 的预测分析表?

 $FIRST(\alpha)$ 是可从 α 推导得到的句型的**首终结符号**的集合

Definition (FIRST(α) 集合)

对于任意的 (产生式的右部) $\alpha \in (N \cup T)^*$:

$$FIRST(\alpha) = \left\{ t \in T \cup \{\epsilon\} \mid \alpha \stackrel{*}{\Rightarrow} t\beta \lor \alpha \stackrel{*}{\Rightarrow} \epsilon \right\}.$$

考虑非终结符 A 的所有产生式 $A \to \alpha_1, A \to \alpha_2, \dots, A \to \alpha_m,$ 如果它们对应的 FIRST(α_i) 集合互不相交,

则只需查看当前输入词法单元,即可确定选择哪个产生式(或报错)

如何计算给定文法 G 的预测分析表?

FOLLOW(A) 是可能在某些句型中**紧跟在** A 右边的终结符的集合 Definition (FOLLOW(A) 集合)

对于任意的 (产生式的左部) 非终结符 $A \in N$:

$$Follow(A) = \Big\{ t \in T \cup \{\$\} \mid \exists s. \ S \xrightarrow{*} s \triangleq \beta A t \gamma \Big\}.$$

考虑产生式 $A \rightarrow \alpha$,

如果从 α 可能推导出空串 ($\alpha \stackrel{*}{\Rightarrow} \epsilon$),

则只有当当前词法单元 $t \in Follow(A)$, 才可以选择该产生式

先计算每个符号 X 的 FIRST(X) 集合

```
1: procedure FIRST(X)
       if X \in T then
                                                       ▶ 规则 1: X 是终结符
2:
           FIRST(X) = X
 3:
       for X \to Y_1 Y_2 \dots Y_k do
                                                     ▶ 规则 2: X 是非终结符
 4:
           First(X) \leftarrow First(X) \cup First(Y_1)
 5:
           for i \leftarrow 2 to k do
 6:
               if \epsilon \in L(Y_1 \dots Y_{i-1}) then
 7:
                   FIRST(X) \leftarrow FIRST(X) \cup FIRST(Y_i)
 8:
                                                 ▶ 规则 3: X 可推导出空串
           if \epsilon \in L(Y_1 \dots Y_k) then
9:
               First(X) \leftarrow First(X) \cup \{\epsilon\}
10:
```

不断应用上面的规则, 直到每个 FIRST(X) 都不再变化 (**闭包!!!**)

再计算每个符号串 α 的 $FIRST(\alpha)$ 集合

$$\alpha = X\beta$$

$$\operatorname{First}(\alpha) = \begin{cases} \operatorname{First}(X) & \epsilon \notin L(X) \\ \operatorname{First}(X) \cup \operatorname{First}(\beta) & \epsilon \in L(X) \end{cases}$$

$$(1) X \rightarrow Y$$

(2)
$$X \rightarrow a$$

(3)
$$Y \to \epsilon$$

(4)
$$Y \rightarrow c$$

(5)
$$Z \to d$$

(6)
$$Z \rightarrow XYZ$$

$$\begin{aligned} \operatorname{First}(X) &= \{a, c, \epsilon\} \\ \operatorname{First}(Y) &= \{c, \epsilon\} \\ \operatorname{First}(Z) &= \{a, c, d\} \end{aligned}$$
$$\operatorname{First}(XYZ) &= \operatorname{First}(X) = \{a, c\}$$

为每个非终结符 X 计算 Follow(X) 集合

```
1: procedure FOLLOW(X)
      for X 是开始符号 do
                                               ▶ 规则 1: X 是开始符号
2:
         Follow(X) \leftarrow Follow(X) \cup \{\$\}
3:
      for A \to \alpha X\beta do ▷ 规则 2: X 是某产生式右部中间的一个符号
4:
         Follow(X) \leftarrow Follow(X) \cup (First(\beta) \setminus \{\epsilon\})
5:
         if \epsilon \in \text{First}(\beta) then
6:
             Follow(X) \leftarrow Follow(X) \cup Follow(A)
7:
      for A \to \alpha X do ▷ 规则 3: X 是某产生式右部的最后一个符号
8:
         Follow(X) \leftarrow Follow(X) \cup Follow(A)
9:
```

不断应用上面的规则, 直到每个 Follow(X) 都不再变化 (**闭包!!!**)

$$(1) X \rightarrow Y$$

(2)
$$X \to a$$

(3)
$$Y \to \epsilon$$

(4)
$$Y \rightarrow c$$

(5)
$$Z \to d$$

(6)
$$Z \rightarrow XYZ$$

$$\begin{aligned} & \text{Follow}(X) = \{c,\$\} \\ & \text{Follow}(Y) = \{a,c,d,\$\} \\ & \text{Follow}(Z) = \emptyset \end{aligned}$$

如何根据First 与 Follow 集合计算给定文法 G 的预测分析表?

按照以下规则, 在表格 [A,t] 中填入生成式 $A \to \alpha$ (编号):

$$t \in \text{First}(\alpha)$$
 (1)

$$\alpha \stackrel{*}{\Rightarrow} \epsilon \wedge t \in \text{Follow}(A) \tag{2}$$

Definition (LL(1) 文法)

如果文法 G 的预测分析表是无冲突的, 则 G 是 LL(1) 文法。

$$(1) X \rightarrow Y$$

(2)
$$X \to a$$

(3)
$$Y \to \epsilon$$

(4)
$$Y \rightarrow c$$

(5)
$$Z \to d$$

(6)
$$Z \to XYZ$$

$$FIRST(Y) = \{c, \epsilon\}$$
$$FIRST(Z) = \{a, c, d\}$$

 $FIRST(XYZ) = FIRST(X) = \{a, c\}$

 $FIRST(X) = \{a, c, \epsilon\}$

Follow(X) =
$$\{c,\$\}$$

Follow(Y) = $\{a,c,d,\$\}$
Follow(Z) = \emptyset

	a	c	d	\$
X	1, 2	1	1	1
Y	3	3, 4	3	3
Z	5, 6	5, 6	5	

LL(1) 语法分析器

L: 从左向右 (left-to-right) 扫描输入

L: 构建最左 (leftmost) 推导

1: 只需向前看一个输入符号便可确定使用哪条产生式

非递归的预测分析算法

非递归的预测分析算法

```
设置 in 使它指向 w的第一个符号, 其中 in 是输入指针;
令 X = 栈顶符号;
while ( X ≠ $ ) { /* 栈非空 */
     if (X 等于 ip 所指向的符号 a) 执行栈的弹出操作,将ip 向前移动一个位置;
     else if (X是一个终结符号) error();
     else if (M[X,a]是一个报错条目) error();
     else if (M[X,a] = X \rightarrow Y_1Y_2 \cdots Y_k) {
          输出产生式X \to Y_1 Y_2 \cdots Y_k;
          弹出栈顶符号;
          将 Y_k, Y_{k-1}, \dots, Y_1 压入栈中,其中 Y_1 位于栈顶。
```

不是 LL(1) 文法怎么办?

改造它

消除左递归 提取左公因子

E 在**不消耗任何词法单元**的情况下, 直接递归调用 E, 造成**死循环**

$$E
ightarrow E + T \mid E - T \mid T$$
 $T
ightarrow T * F \mid T/F \mid F$ $F
ightarrow (E) \mid \mathbf{id} \mid \mathbf{num}$

$$\operatorname{First}(E+T) \cap \operatorname{First}(T) \neq \emptyset$$
 不是 $LL(1)$ 文法

消除左递归

$$E \to E + T \mid T$$

$$E \to TE'$$
 $E' \to + TE' \mid \epsilon$

将左递归转为右递归

(注: 右递归对应右结合; 需要在后续阶段进行额外处理)

$$A \to A\alpha_1 \mid A\alpha_2 \mid \dots A\alpha_m \mid \beta_1 \mid \beta_2 \mid \dots \beta_n$$

其中, β_i 都不以 A 开头

$$A \to \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_n A'$$

$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \epsilon$$

$$E \to E + T \mid T$$
$$T \to T * F \mid F$$

$$F \rightarrow (E) \mid id$$

$$E o TE'$$
 $E' o + TE' \mid \epsilon$
 $T o FT'$
 $T' o * FT' \mid \epsilon$
 $F o (E) \mid \mathbf{id} \mid \mathbf{num}$

非直接左递归

$$S \to Aa \mid b$$

$$A \to Ac \mid Sb \mid \epsilon$$

$$S \implies Aa \implies Sda$$

图 4-11 消除文法中的左递归的算法

$$A_k \to A_l \alpha \implies l > k$$

$$S \to Aa \mid b$$

$$A \to Ac \mid Sb \mid \epsilon$$

$$A \to Ac \mid Aad \mid bd \mid \epsilon$$

$$S \to Aa \mid b$$

$$A \to bdA' \mid A'$$

$$A' \to cA' \mid adA' \mid \epsilon$$

$$A_k \to A_l \alpha \implies l > k$$

$$E o TE'$$

\$\text{ \$\frac{\partial \text{\$\frac{\partial \text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\tarticle \text{\$\frac{\tarticle \text{\$\frac{\text{\$\frac{\text{\$\frac{\tarticle \text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\tarticle \text{\$\frac{\tarticle \text{\$\frac{\tarticle \t

$$\begin{aligned} & \operatorname{First}(F) = \{(, \operatorname{id}\} \\ & \operatorname{First}(T) = \{(, \operatorname{id}\} \\ & \operatorname{Follow}(E) = \operatorname{Follow}(E') = \{), \$ \} \\ & \operatorname{First}(E) = \{(, \operatorname{id}\} \\ & \operatorname{Follow}(T) = \operatorname{Follow}(T') = \{+,), \$ \} \\ & \operatorname{First}(E') = \{+, \epsilon\} \\ & \operatorname{Follow}(F) = \{+, *,), \$ \} \end{aligned}$$

 $F \rightarrow (E) \mid \mathbf{id} \mid \mathbf{num} \mid$

已匹配	栈	输入	动作	
句型	E\$	id + id * id\$		
7.1	TE'\$	id + id * id\$	输出 7	$\Xi o TE'$
	FT'E'\$	id + id * id\$	输出 2	$T \to FT'$
	id $T'E'$ \$	id + id * id\$	输出]	$F o \mathrm{id}$
id	T'E'\$	+ id * id\$	匹配 id	i
id	E'\$	+ id * id\$	输出 7	$\Gamma' o \epsilon$
id	+ TE'\$	+ id * id\$	输出 1	$E' \rightarrow + TE'$
id +	TE'\$	id*id\$	匹配 +	
id +	FT'E'\$	id * id \$	输出 2	T o FT'
id +	id $T'E'$ \$	id * id\$	输出 1	$7 \rightarrow id$
id + id	T'E'\$	* id $$$	匹配 ic	i
id + id	*FT'E'\$	* id\$	输出 7	T' o *FT'
id + id *	FT'E'\$	id\$	匹配 *	
id + id *	id T'E'\$	id\$	输出 1	$\mathbb{F} o \mathrm{id}$
'id + id * id	T'E'\$	\$	匹配 ic	1
id + id * id	E'\$. \$	输出 2	$\Gamma' o \epsilon$
id + id * id	\$	\$	输出 1	$\Xi' o \epsilon$

图 4-21 对输入 id + id * id 进行预测分析时执行的步骤

$$S \rightarrow i E t S + i E t S e S + a$$

 $E \rightarrow b$

提取左公因子

$$S \rightarrow i \ E \ t \ S \ S' + a$$

$$S' \rightarrow e \ S + \epsilon$$

$$E \rightarrow b$$

$S \rightarrow i E t S + i E t S e S + a$ $E \rightarrow b$

非终结符号	输入符号					
	a	<i>b</i>	\overline{e}	i	t	\$
S	$S \rightarrow a$			$S \rightarrow iEtSS'$		
S'			$S' \to \epsilon$ $S' \to eS$	_		$S' o \epsilon$
Ē		$E \rightarrow b$				

解决二义性: 选择 $S' \rightarrow eS$, 将 else 与前面最近的 then 关联起来

语法分析阶段的主题之三: 错误恢复

报错、恢复、继续分析

Thank You!

Office 926 hfwei@nju.edu.cn