Tehnici de Optimizare

Facultatea de Matematica si Informatica
Universitatea Bucuresti

Department Informatica-2021

Evaluare

- 4 teme laborator = 40%;
- 2 saptamani pentru fiecare

Cel putin 1 pct bonus pt activitate seminar!

- Proiect (2-3 in echipa) = 60%
- Predare dupa vacanta

Notatii

In cadrul cursului vom utiliza urmatoarele notatii:

Vectori (considerati intotdeauna vector coloana) cu litere mici,

i.e.
$$x \in \mathbb{R}^n$$
, $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$

- Produs scalar in spatiul Euclidian: $\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$
- Norma Euclidiana standard $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + \dots + x_n^2}$
- Multimi cu litere mari: $S, Q, U \subseteq \mathbb{R}^n$ (\mathbb{R}^n_+ orthantul nenegativ, S^n_+ multimea matricelor pozitiv semidefinite)
- Matrice cu litere mari: $A, B, C, H \in \mathbb{R}^{n \times m}$
- Norma spectrala a unei matrici $||A|| = \sqrt{\lambda_{max}(A^TA)}$
- Matrice pozitiv definita: $A \succ 0$, si pozitiv semidefinita $A \succeq 0$

Multimi afine

 $S \subseteq \mathbb{R}^n$ este afina daca $\forall x_1, x_2 \in S$ si $\forall \alpha \in \mathbb{R}$ avem

$$\alpha x_1 + (1 - \alpha)x_2 \in S$$

Exemplu multime afina:

- ▶ Multimea solutiilor unui sistem de ecuatii liniare $\{x: Ax = b\}$ Interpretare:
 - ▶ Orice punct pe dreapta definita de x_1 si x_2 se afla in multime.

• Multimea hiperplan:

$$H = \{x \in R^n \colon a^T x = b\}$$

$$a^{T}(\alpha x + (1 - \alpha)y) = \alpha a^{T}x + (1 - \alpha)a^{T}y = \alpha b + (1 - \alpha)b = b$$

Multimea solutiilor unui sistem liniar:

$$S = \{x \in R^n \colon Ax = b\}$$

Multimi convexe

 $S \subseteq \mathbb{R}^n$ este convexa daca $\forall x_1, x_2 \in S$ si $\forall \alpha \in [0, 1]$ avem

$$\alpha x_1 + (1 - \alpha)x_2 \in S$$

Interpretare:

▶ Orice punct pe segmentul de dreapta definit de x_1 si x_2 se afla in multime

Exemplu de multime convexa si neconvexa:

▶ Orice multime afina este multime convexa (orice combinatie convexa intre x_1 si x_2 se afla in multime)

- Hiperplan si semiplan: multimi convexe definite astfel
 - ▶ hiperplan: $\{x \in \mathbb{R}^n : a^T x = b\}, a \neq 0, a \in \mathbb{R}^n, b \in \mathbb{R}$
 - ▶ semiplan: $\{x \in \mathbb{R}^n : a^T x \ge b\}$ sau $\{x \in \mathbb{R}^n : a^T x \le b\}$, $a \ne 0, a \in \mathbb{R}^n, b \in \mathbb{R}$
- Exemplu de hiperplan si semiplanele aferente:

$$\{x \in \mathbb{R}^2 : x_1 + 2x_2 = 1\} \Rightarrow a = \begin{bmatrix} 1 & 2 \end{bmatrix}^T \& b = 1$$

• Poliedru = multime determinata de mai multe hiperplane/semiplane

$$\left\{x \in \mathbb{R}^n : a_i^T x = b_i \ \forall i = 1, \dots, p, \ c_j^T x \leq d_j \ \forall j = 1, \dots, m\right\}$$
 sau mai compact $\left\{x : Ax = b, \ Cx \leq d\right\}$

• poate fi reprezentat si prin varfuri v_i si raze afine r_i :

$$\left\{ \sum_{i=1}^{n_1} \alpha_i v_i + \sum_{j=1}^{n_2} \beta_j r_j : \sum_{i=1}^{n_1} \alpha_i = 1, \ \alpha_i \ge 0, \beta_j \ge 0 \ \forall i, j \right\}$$

• exemplu de poliedru nemarginit: $\mathbb{R}^2_+ = \{x \in \mathbb{R}^2 : x_1, x_2 \geq 0\}$

Bila:

multime convexa definita de o norma $\|\cdot\|$, un centru x_c si o raza r:

$$B(x_c, r) = \{x \in \mathbb{R}^n : ||x - x_c|| \le r\}$$

Exemplu, bila Euclidiana de centru zero si raza 1 in \mathbb{R}^2 :

$$B_2(0,1) = \left\{ x \in \mathbb{R}^2 : \sqrt{x_1^2 + x_2^2} \le 1 \right\}$$

Elipsoid:

multimea convexa definita de un centru x_c si o matrice $Q \succ 0$ $\{x \in \mathbb{R}^n : (x - x_c)^T Q^{-1} (x - x_c) \leq 1\}$

Multimi

• Multime compacta = o multime se numeste compacta daca este inchisa si marginita

• Exemple:

```
[1,2], [a,b] \Delta_n = \{x \in R^n : \sum_i x_i = 1, x_i \ge 0\}
C = \{x \in R^n : a_i \le x_i \le b_i\}
B = \{x \in R^n : ||x - c|| \le r\}
```

Functii convexe

O functie $f: \mathbb{R}^n \to (-\infty, \infty]$ se numeste **convexa** daca:

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2)$$

pentru orice x,y si $\alpha \in [0,1]$.

- Functia definita de orice norma este convexa, i.e. f(x) = ||x|| este convexa pe \mathbb{R}^n (folositi definitia).
- ▶ Functia $f(x) = -\log(x)$ este convexa pe \mathbb{R}_{++} .
- ▶ Functia $f(x) = \max\{x_1, \dots, x_n\}$ este convexa pe \mathbb{R}^n .

Functii convexe

Conditii de convexitate pentru functii continuu diferentiabile.

Conditii de ordinul I: daca $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ este continuu diferentiabila si domf este o multime convexa. Atunci, f este convexa daca si numai daca:

$$f(x_2) \ge f(x_1) + \nabla f(x_1)^T (x_2 - x_1) \quad \forall x_1, x_2 \in \text{dom} f.$$

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

Functii convexe

Conditii de convexitate pentru functii continuu diferentiabile.

Conditii de ordinul II: daca $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ este de doua ori continuu diferentiabila si domf este multime convexa. Atunci f este convexa daca si numai daca pentru orice $x \in \text{dom} f$ matricea Hessiana este pozitiv semidefinita, adica:

$$\nabla^2 f(x) \succeq 0 \quad \forall x \in \text{dom} f.$$

$$\nabla^2 f(x) \succeq 0.$$

