EE230-02 RFIC II Fall 2018

Lecture 7: LNA2

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

LNA Topologies

Common–Source Stage with	Common–Gate Stage with	Broadband Topologies
■ Inductive Load	■ Inductive Load	■ Noise–Cancelling LNAs
Resistive Feedback	■ Feedback	■ Reactance–Cancelling LNAs
■ Cascode,	■ Feedforward	
Inductive Load, Inductive Degeneration	Cascode and Inductive Load	

Resistor Input Matching

For $R_P \approx R_S$, the NF exceeds 3 dB—perhaps substantially.

Common Source with Inductive Load

- Can operate with very low supply voltages
- L₁ resonates with the total capacitance at the output node, affording a much higher operation frequency than does the resistivelyloaded counterpart

How about the input matching?

Common Source with Inductive Load

$$Z_{in}(s) = \frac{V_X}{I_X} = \frac{L_1(C_1 + C_F)s^2 + R_S(C_1 + C_F)s + 1}{[L_1C_1s^2 + (R_SC_1 + g_mL_1)s + 1 + g_mR_S]C_Fs}$$

While providing the possibility of $Re\{Z_{in}\} = 50 \Omega$ at the frequency of interest, the feedback capacitance C_F gives rise to a negative input resistance at other frequencies, potentially causing instability.

Common Source with Resistive Feedback

$$NF \approx 1 + \frac{4R_S}{R_F} + \gamma + \gamma g_{m2}R_S$$

For $\gamma \approx 1$, the NF exceeds 3 dB even if $4R_S/R_F + \gamma g_{m2}R_S \ll 1$.

Common Gate LNA

$$R_{in} = 1/g_m$$
$$g_m = 1/R_S = (50 \,\Omega)^{-1}$$

$$\frac{V_{out}}{V_X} = g_m R_1 = \frac{R_1}{R_S}$$

$$V_{out}/V_{in} = R_1/(2R_S)$$

Common Gate Noise Figure

$$\overline{V_{DD}}$$

$$\overline{V_{n,out}^2}$$

$$\overline{V_{n,out}^2}|_{M1} = \frac{4kT\gamma}{g_m} \left(\frac{R_1}{R_S + \frac{1}{g_m}}\right)^2 = kT\gamma \frac{R_1^2}{R_S}$$

$$NF = \frac{Total\ Output\ Noise}{Output\ Noise\ due\ to\ Source} = 1 + \frac{Noise\ due\ to\ Circuit}{Noise\ due\ to\ Source}$$

$$=1+\frac{kT\gamma\frac{R_1^2}{R_S}+4kTR_1}{4kTR_S(\frac{1}{2}g_mR_1)^2} =1+\frac{kT\gamma\frac{R_1^2}{R_S}+4kTR_1}{kTR_S(\frac{R_1}{R_S})^2} =1+\gamma+\frac{4R_S}{R_1}$$

Even if $\frac{4R_S}{R_1} << 1 + \gamma$, the NF still reaches 3dB with $\gamma \approx 1$

Common Gate Bias

$$V_{DS2} \geq V_{GS2} - V_{TH2}$$

$$\overline{I_{n,M2}^2} = 4kT\gamma g_{m2}$$

$$= 4kT\gamma \frac{2I_D}{V_{GS2} - V_{TH2}}$$

$$= 4kT\frac{I_D}{V_{RB}}$$

$$\overline{I_{n,RB}^2} = \frac{4kT}{R_B}$$
$$= 4kT \frac{I_D}{V_{RB}}$$

Since $V_{GS2} - V_{TH2} \leq V_{RB}$, the noise contribution of M_2 is about twice that of R_B (for $\gamma \approx 1$). Additionally, M_2 may introduce significant capacitance at the input node.

Common Gate Input Impedance

$$V_X = r_O(I_X - g_m V_X) + I_X R_1$$

$$\frac{V_X}{I_X} = \frac{R_1 + r_O}{1 + g_m r_O}$$

$$\approx 1/g_m + R_1/(g_m r_O)$$

For input matching,

$$R_S = \frac{R_1 + r_O}{1 + g_m r_O}$$

Common Gate Input Impedance

How about voltage gain?

$$\frac{V_{out}}{V_{in}} = \frac{g_m r_O + 1}{r_O + g_m r_O R_S + R_S + R_1} R_1$$

$$R_S = \frac{R_1 + r_O}{1 + g_m r_O}$$

$$\frac{V_{out}}{V_{in}} = \frac{g_m r_O + 1}{2\left(1 + \frac{r_O}{R_1}\right)}$$

This is a disturbing result! If r_O and R_1 are comparable, then the voltage gain is on the order of $g_m r_O/4$, a very low value.

Common Gate Voltage Gain

Cascode Common Gate Stage

The addition of the cascode device entails two issues: the noise contribution of M_2 and the voltage headroom limitation due to stacking two transistors.

Noise From M₂

