Thesis Review Comments Resolution

Yogesh H. Kulkarni

Thanks to both the reviewers for very detailed and constructive comments. Thanks to my both the advisors for guiding me throughout the process of research and thesis writing. Below are the review comments and their addressal along with my comments.

Reviewer 1: Dr B Ravi, IIT Bombay

Review comments and their addressal

Page	Reviewer's Comment	Changes done	Student's comments
19	'red colour' – Fig. is printed in B & W	Changed to 'dotted line'.	Removing references to colour to allow B&W printing
34	'full features were used for selecting features for removal thereby giving wrong results' – some explanation will help	None.	Explanation is done before, at 2.3.4.4 on page 18. More details in 4.5 as well
41	Detailed approach and methodology <u>is</u> presented should be ' <u>are</u> presented'	Changed.	-
61	typicall - typical	Changed	-
63	red colour; in green?	Removed references to colour	Colour references are not a must as annotations were there.
67	This chapter presents approach – <u>an</u> approach	Added 'an'	Also, added for starting line of chapter 7
70	Fig. 5.3(1) show a – shows a	Changed	-
91	mid <u>usfr</u> ace - midsurface	Changed	-
122	Ideally avoid 1-2 (orphan) at the end of a Fig. page	Changed size of Table 6.6	-
187	Incorrect format or journal name missing for [63], [65], [86], [102]	Added missing info	-

Questions (to be discussed at the time of Defense)

- 1. What was the computational performance of the proposed approach time taken (indicate CPU and RAM specs), and what is the improvement over the other approaches (include the time for manual interventions)
 - There are certain inherent advantages of the proposed approach compared to the traditional Brep based approach widely used commercially.
 - The proposed approach uses feature based model, thus avoiding complex face pairing (automated or manual). Defeaturing simplifies the input feature model, thus reducing the number of features to deal with. ABLE reduces the types of features to deal with further. Thus, actual midsurface computation works on highly simplified model and thus must be performance wise efficient.
 - MidAS, the prototype system, has been built as an external application, which needs
 to call externally exposed VB APIs, whereas commercial applications are built in
 intrinsic manner with compiled C++ code. Thus, performance timing comparisons
 between MidAS and other systems does not look on the level playing field. Thus, not

- done. Still to get the sense of times needed in MidAS, values for a test case are presented below.
- The proposed Midsurface computation approach is a set of sequential steps with one manual step (cellular decomposition) in between. So, cannot compute the overall total timing, but the individual times as presented here for the Enclosure part (ref Chapter 8, test case 1, with 30 features) on Windows 7 machine with Intel i3 processor, 3GHz with 4GB RAM
 - o Detecting Sheet Metal Taxonomy based and dormant features: **1.969112** sec
 - Detecting Remnant Method based features: 5.167295 sec
 - o Converting to ABLE features: **30.151724** sec
 - o Cellular Decomposition: Manual
 - o Midsurface generation (includes midcurves, patches, joining): **60.308449** sec
- 2. What would be results of the proposed approach on a tall cylinder and torus? Has it been tested on injection moulded and die cast parts?
 - Tall solid cylinder is not supposed to create midsurface but skeleton (for beam element). Input expected for this work is a thin-walled CAD model. If cylinder or torus a thin-walled/hollow, like a tube, then the proposed system, MidAS computes the midsurface appropriately.
 - The present work is scoped to sheet metal parts. But just for experiment, variable thickness/draft features found in injection moulded/plastic parts were tried as modelled with generic CAD features and they worked fine.
- 3. Is CAD model simplification useful for Design for Manufacturability? If so, how?
 - Both, defeaturing and midsurface are useful for Design for Manufacturability
 - Defeaturing results in gross shape which can be used to decide material needed (raw stock), initial/rough/crude machining operations, datum plane selection for fixturing, etc. Typically, the suppressed features are smaller and decorative in nature and can be done with refined manufacturing processes.
 - Midsurface of sheet metal parts can give idea of quantity/dimensions of the raw sheet to be procured, costing. It can also help in more efficient shape search to find parts already present in catalogues.

Concluding remarks by the reviewer (quoted as is)

"In summary, the research work reported in the thesis tackles a very important problem in CAD domain, and presents a comprehensive and elegant solution approach, as well as its implementation and successful testing on industrial parts. The thesis is written in a clear and systematic manner, largely free of errors. The quality and quality (quantity) of research contribution are of the highest quality comparable to the best in the world. I recommend that the thesis be accepted for Ph.D. degree of Savitribai Phule Pune University."

Reviewer 2: Dr Trevor Robinson, Queen's Belfast

Review comments and their addressal

Location	Reviewer's Comment	Changes done	Student's comments
-	One of the difficulties when	Fig. 4.13 red colour	Removed/Replaced
	assessing this thesis is that many of	reference removed	references to colours.
	the descriptions refer to colours in	as it was not a must.	
	the images, but the thesis was	Text around Fig. 6.11	
	supplied to me without colour for	was changed to	

	This works to	(altforont closelt and	
	many images. This made it	'different shadings'.	
	impossible to assess the	Removed from	
	appropriateness/relevance of the	Appendix	
0 15	images.	Defeaturing.	01 10 1
Sec. 1/2	At the beginning of the thesis (end	Added statement in	Clarified expectation
	of Sec. 1 or the start of Sec. 2) I	Sec. 2.1 "The	about the midsurface
	would like a clear statement	present research	earlier in the thesis.
	describing what type of mid-surface	works aims at	
	this work is aiming to create and	producing	
	why. This would help the reader	midsurface with	
	understand why the author is	\$G_0\$ continuity."	
	referring to certain aspects of	Added "The	
	existing research as problematic.	midsurface is	
	For example it should be stated	expected to be"	
	early one which of the options in Fig	line in Section 1.3	
	2.2 this work trying to create.		
Fig. 2.3	Fig. 2.3 needs more information.	Enlarged the figure.	Standard heatmap
	There should be a statement that	Types of elements	scale is used for
	clearly says what contours are show	mentioned in the	depicting high stress
	(e.g. stress or displacement), what	text around.	zones. Red high-
	element types were used, and the	Corrected the	Green neutral – Blue
	key text should be made large	citation.	low
	enough to read. Both pictures		
	should have the same key values.		
Fig 2.9	The description around Fig. 2.9	Changed to 'dotted	Removing references
	refers to red lines, but there is no	line'.	to colour to allow
	colour shown in the image.		B&W printing
Sec. 2.4	In Sec. 2.4, there are quite a few	Changed 'erroneous'	Modified similar
	mentions of the erroneous faces on	to 'undesired	reference in
	the MAT. I think it should be	branches with	Midcuves Sec. 6.4.6.2
	highlighted that these are not an	respect to	
	error (i.e. they should be in the	midsurface expected	
	IVIAT). The issue	(Fig. 2.2)'	
	is they do not provide the	,	
	representation that is being sought		
	in this work.		
Sec. 2.5	In Sec. 2.5, it would be good to see	Access to Inventor	Access to NX was not
	some reference to what Siemens NX	and Hypermesh was	available. BTW,
	(and perhaps other commercial	available.	Yoonhwan Woo's
	tools) are able to do. NX has some		paper does not
	very good mid-surface identification		consider NX
	capabilities which are not referred		midsurface to be
	to.		good.
Fig 3.1	The description of Fig 3.1 states the	It does not say	Feature tree picture
1.8 3.1	Fig. shows the feature trees, which	"shows" but	would clutter here.
	it does not, This would be a useful	"represented by".	Elaborate pictures
	addition.	represented by .	are added in Testing.
Sec. 3.5	Sec. 3.5 refers to some "missing	It states the scope,	Reasoning for scope
300.3.3	functionality", but it is not clear	boundaries of the	is given, which comes
	what this is. This should be clearly	work. It is limited to	from limitations of
	•	work. It is illilited to	
	stated.		APIs.

	1	Charal Martal	T
		Sheet Metal	
		features.	
Tab.4.1	Tab.4.1 should be bigger as it is not	Tittle of the column	Pictures just gives
	possible to see the missing surfaces.	changed to "Errors	overall sense of
	The text refers to a problems	in Midsurface"	defeaturing and not
	column, which is titled differently.		detailed error
			analysis.
Sec. 4.4.2	Sec. 4.4.2 should explain what size	Face-size (sum of	More explanation in
	is used when idealising a feature. Is	areas of faces) Refer	4.5.1
	it the parameter size in the feature,	Algorithm 1	
	or is it a measure of the feature?		
Tab.4.2	In Tab.4.2 it is unclear why	It is a blind hole	Extrudes can be
	FaceGroupl is an extrude as it looks	created using	negative as well
	like a hole.	Extrude	
Fig. 4.9	In Fig. 4.9 it is unclear where the	Added annotation	-
	hole features are. A bigger image	for Holes and Fillets	
	would help.		
Sec. 4.7	In Sec. 4.7 it is not clear what the	Measure of	More number of
	measure of effectiveness is used	effectiveness is	faces more complex
	for. Can its proposed application be	clearly stated by Eq.	the part is. So,
	clarified? Surely the amount of	4.1. Its application	simplification is
	reduction possible is limited by the	(as mentioned) is to	operation to reduce
	shape of the part, and is not always	compute Gross	their numbers
	to do with the technique?	Shape.	
Tab.5.1	In Tab.5.1 it is not clear why seeping	Removed the 'arc'	-
	an arc along a line results in a	mentioned as 'circle'	
	cylinder? Surely this	is already present.	
	is only the case where the arc is a	, ,	
	closed circle?		
Fig 5.23	Please clarify the point of Fig 5.23.	Added 'to get	Standard primitives
J	What are the shown primitives the	primitives such as	are manifestation of
	primitives of?	box, cylinder, etc.'	Extrude, Loft.
Tab.5.2	In Tab.5.2 the classification of the	Zoomed section of	Additional sketch and
	Flange and Blend features is not	the bend for more	profile column would
	clear. The addition of some more	clarify	clutter the table. So
	details about how they are provided	,	not added. ABLE
	would be helpful. Perhaps for each		formulae appear
	an additional column showing the		adequate
	shape of the curve and profile		explanation.
	sketch would help.		
Fig. 5.25	Fig. 5.25 not clear enough. It needs	Algorithm 5 explains	Preference is given to
	to include better images with more	Extrude	Extrude compared to
	information. It seems that all of the	representation of	sweep as midsurface
	different features shown in these	Contour Flange	patch creation is
	examples could be represented as	shown in Fig. 5.25.	easier
	extrudes as well as sweeps. It	Sweep	
	should be made clear why one	representation is	
	feature type was preferred to	also possible.	
	another?	Depends on which	
		sketch is used.	
		SKELUTTS USEU.	l

Tab.5.4	For Tab.5.4, it would be nice to see	Idea was to show	Same example with
140.5.4	which faces/regions in the model	equivalence of the	coloured features is
	were represented by	parts even after	shown in Fig. 8.11
	which features. Can extrudes and	transformation to	
C	sweeps be coloured differently?	ABLE	Alexander Phase Inc.
Sec. 6	Sec. 6 refers to deficiencies of	Did not have	Also, from literature
	existing midsurfacing tools. Some	benchmarking	survey it was clear
	commercial tools do	access to other CAD	that best output was
	have good capabilities which should	packages.	by Hypermesh and
	be commented on.		was considered.
Sec. 6.2.2	Sec. 6.2.2 refers to some common	Paragraph starting	Earlier, in chapter 2,
	problems which occur in some mid-	with "Detecting	Fig. 2.20 gives good
	surfacing tools. Please clarify where	when to" gives the	sense of tool and
	these problems have been observed	explanation of	errors occurring in
	(e.g. which tools, under which	"Why"	them.
	circumstances,' why do they occur).		
Fig 6.5 and	Fig 6.5 and 6.10 need better	Intersection cell is	At quite a few places
6.10	descriptions. It is not clear where	labelled properly	intersection/interface
	the "intersection" region	and explained in	cells have been
	comes from.	details in Sec. 6.3.5	shown and defined.
Sec. 6.3.3	In Sec. 6.3.3 and Fig 6.12 there are	These are "O"	Same example of "L"
and Fig	some entity labels in the description	notation clearly	has been carried with
6.12	with 'or " notation. These should be	explained as	more explanation at
	linked back to the Fig	"Overlap" faces.	each stage
Sec. 6.3.5	In Sec. 6.3.5, line 5, it should state	Corrected.	-
	"nl, n3" (not nl, n2).		
Sec. 6.4.4	In Sec. 6.4.4, in my opinion (c) is	Added just for	Thick cells are
	redundant. If there is only one	completeness of	ignored.
	reflex then it will be the	possibilities.	
	closest.		
Sec. 6.4.5	In Sec. 6.4.5, pt 4 some more	Extension in this	-
	information on the extension	case is to get range	
	operation is needed. In	vertices. Done by	
	particular, how is it computed? This	simply interesting	
	is especially interesting where the	two lines (not	
	midlines are not	segment)	
	perpendicular.		
Sec. 6.6	In Sec. 6.6 more detail should be	Split Face can be	_
	added to summarise the reinsertion	used to pierce a	
	of the negative	surface with a solid	
	features. What CAD operations are	tool body. API	
	used to achieve the removal of	support is not there	
	these features?	but Interactively it	
	these reatures:	can be done.	
Tab.7.3	Tab.7.3. It is not clear why the hole,	Hole can be 3D, 2D.	_
105.7.5	which is listed as being 3D in	Corrected 3D to 2D	
	dimension, does not have	for the picture	
		shown.	
Tab 7 4 and	any face associated with it. I think Tab.7.4 and 7.5 have become		
Tab.7.4 and		Corrected the wrong	-
7.5	confused. There does not seem to	table numbering	
	be a Tab.7.5, but		

	the citation to be seem to refer to		
	Tab.7.4.		
Tab.7.6	Tab.7.6, I think the model on the	For 4 th case, per Eq	-
	4th row has a genus of 1, and	7.14/15, h _m =1, s _m =1	
	therefore a Euler characteristic	and $r_m = 2r_i = 2$ thus	
	of 0.	$X_m = 2 \text{ not } 0$	
Tab.8.2	In Tab.8.2 it would be good to see	Some prominent	Feature subtrees do
	how these feature trees correspond	features are already	not represent regions
	to the different regions	named.	as such. Features can
	of the model.		span entire model
Sec. 8.3.8	In Sec. 8.3.8 more should be said	Fig. 8.33 does not	-
	about the analysis. For example,	show model but the	
	this Sec. only shows the model	midsurface being	
	could be meshed and analysed. It	meshed and	
	would be interesting to see how the	analysed. Caption	
	analysis of the midsurface model	mentions the same.	
	compares to it.		

Some suggestions for improvements to the thesis are:

1. All the work is described very positively. It would be interesting to include a more critical analysis about what the proposed approach is not good at, or to add some suggestions about where it could be improved.

Following are known limitations of the proposed approach (could be treated as caveats):

- Input: As the proposed approach wanted to leverage the feature information, other CAD data types such as Brep, mesh could not get considered. As it scoped the input features to only generic and sheet metal features, other domains are not considered.
- API: MidAS had to be built as an external application using limited functionality exposed by the CAD APIs. If it has made requisites geometric functions available, including cellular decomposition, MidAS could have been fully automated.
- Due to improper modelling practices used in the input parts can generate improper parametric constraint propagation. Use of inappropriate threshold values can lead generate invalid output.
- 2. There is no mention of time to carry out this process. It would be interesting to know how long it takes to process each model.

Added timings for the sub processes for Case 1 in Chapter 8 (Sections 8.2.2, 8.2.3, 8.2.5). The timings were measured on Windows 7 machine with i3 processor 3 GHz with 4GB RAM. Values are presented in Reviewer 1 comments, question 1.

3. The work in chapter 7, to do with validating the mid-surface created, does not seem to be used for the case studies. This was very interesting work and should be applied more prominently.

As mentioned in Sec 3.2 (last point) the topological validation is presented as theoretical contribution only. For non-trivial parts it needs a software implementation as manual classification and counting is difficult. Implementation would need low level Brep APIs which are not provided. Thus, topological validation was not used in the test cases.

4. If one of the main applications of this process is for CAE analysis, it should be shown more how the resulting models are more suitable for this than existing analysis processes. The one analysis that is shown does not compare the analysis, or its results, with an unreduced model.

Comparison of CAE analysis with solid elements and of shell elements on the corresponding midsurface is covered in Sec 1.3 and Sec 2.1. It has established advantages of midsurface. The present research thus focuses on computation of a well-connected midsurface to be given to CAE and not the CAE analysis itself. It aims at providing better/well-connected midsurface only. In chapter 8, comparisons between commercial midsurface output and that by MidAS is shown, demonstrating that MidAS gives less errors and better midsurface.

5. There are many suggested minor amendments at the end of the report (shown in Table above).

Incorporated.

Concluding remarks by the reviewer (quoted as is)

"In conclusion, I recommend that the thesis be accepted for award of Ph.D. degree of Savitribai Phule Pune University, subject to incorporation of the amendments listed in this report which should be provided during the oral examination."