```
In [352]: import pandas as pd import numpy as np
```

In [353]: df=pd.read_csv(r"C:\Users\SASIDHAR ROYAL\Downloads\Advertising.csv")
 df

Out[353]:

TV	Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12.0
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9
38.2	3.7	13.8	7.6
94.2	4.9	8.1	14.0
177.0	9.3	6.4	14.8
283.6	42.0	66.2	25.5
232.1	8.6	8.7	18.4
	230.1 44.5 17.2 151.5 180.8 38.2 94.2 177.0 283.6	230.1 37.8 44.5 39.3 17.2 45.9 151.5 41.3 180.8 10.8 38.2 3.7 94.2 4.9 177.0 9.3 283.6 42.0	44.5 39.3 45.1 17.2 45.9 69.3 151.5 41.3 58.5 180.8 10.8 58.4 38.2 3.7 13.8 94.2 4.9 8.1 177.0 9.3 6.4 283.6 42.0 66.2

200 rows × 4 columns

In [354]: df.head()

Out[354]:

_		TV	Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1
	1	44.5	39.3	45.1	10.4
	2	17.2	45.9	69.3	12.0
	3	151.5	41.3	58.5	16.5
	4	180.8	10.8	58.4	17.9

In [355]: df.tail()

Out[355]:

	TV	Radio	Newspaper	Sales
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

```
In [356]: df.describe()
Out[356]:
                         TV
                                 Radio Newspaper
                                                       Sales
            count 200.000000
                             200.000000
                                       200.000000 200.000000
                  147.042500
                              23.264000
                                        30.554000
            mean
                                                   15.130500
                   85.854236
                              14.846809
                                        21.778621
                                                    5.283892
              std
                    0.700000
                               0.000000
                                         0.300000
                                                    1.600000
             min
             25%
                   74.375000
                               9.975000
                                        12.750000
                                                   11.000000
                  149.750000
                              22.900000
                                        25.750000
                                                   16.000000
             75% 218.825000
                              36.525000
                                        45.100000
                                                   19.050000
             max 296.400000
                              49.600000 114.000000
                                                   27.000000
In [357]: df.columns
Out[357]: Index(['TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')
In [358]: df.shape
Out[358]: (200, 4)
In [359]: import seaborn as sns
           import matplotlib.pyplot as plt
In [360]:
          from sklearn import preprocessing,svm
           from sklearn.model selection import train test split
           from sklearn.linear model import LinearRegression
           from sklearn.preprocessing import StandardScaler
```

In [361]: df=df[['TV', 'Radio', 'Newspaper', 'Sales']]

```
In [362]: df.columns=['TV','Radio','Newspaper','Sales']
```

In [363]: df.head(10)

Out[363]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
5	8.7	48.9	75.0	7.2
6	57.5	32.8	23.5	11.8
7	120.2	19.6	11.6	13.2
8	8.6	2.1	1.0	4.8
9	199.8	2.6	21.2	15.6

```
In [364]: sns.pairplot(df)
```

Out[364]: <seaborn.axisgrid.PairGrid at 0x1785153e010>

Newspaper

Sales

Radio

ΤV

```
In [365]: sns.displot(df['TV'])
```

Out[365]: <seaborn.axisgrid.FacetGrid at 0x17850aca450>


```
In [366]: sns.displot(df['Newspaper'])
```

Out[366]: <seaborn.axisgrid.FacetGrid at 0x17852dd4590>


```
In [367]: sns.displot(df['Radio'])
```

Out[367]: <seaborn.axisgrid.FacetGrid at 0x17852de5e10>


```
In [368]: sns.displot(df['Sales'])
```

Out[368]: <seaborn.axisgrid.FacetGrid at 0x17852eb4ad0>


```
In [369]: sns.lmplot(x="TV",y="Radio",data=df,order=2,ci=None)
```

Out[369]: <seaborn.axisgrid.FacetGrid at 0x178529bc090>


```
In [370]: sns.lmplot(x="TV",y="Newspaper",data=df,order=2)
```

Out[370]: <seaborn.axisgrid.FacetGrid at 0x17852e141d0>


```
In [371]: sns.lmplot(x="TV",y="Sales",data=df,order=2)
```

Out[371]: <seaborn.axisgrid.FacetGrid at 0x1785295af50>

In [372]: df.fillna(method='ffill',inplace=True)

```
In [373]: x=np.array(df['TV']).reshape(-1,1)
          y=np.array(df['Radio']).reshape(-1,1)
In [374]: df.dropna(inplace=True)
          X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
           regr.fit(X train,y train)
           regr.fit(X train,y train)
Out[374]:
           ▼ LinearRegression
           LinearRegression()
In [375]: | sns.pairplot(df,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',height=7,aspect=0.7,kind='reg')
           Sales
Sales
                            100
                                                   300
                                                              10
                                                                     20
                                                                                          50
                                                                                                                            100
                      50
                                  150
                                       200
                                             250
                                  TV
                                                                                                             Newspaper
In [376]: hk=df[['TV','Radio','Newspaper','Sales']]
```

```
In [377]: sns.heatmap(hk.corr())
```

Out[377]: <Axes: >


```
In [378]: df.drop(columns=['Radio','Newspaper'],inplace=True)
    sns.pairplot(df)
    df.Sales=np.log(df.Sales)
```



```
In [379]: features=df.columns[0:2]
          target=df.columns[-1]
          X=df[features].values
          y=df[target].values
          X train, X test, y train, y test=train test split(X, y, test size=0.3, random state=17)
          print("The dimension of X train is {}".format(X train.shape))
          print("The dimension of X test is {}".format(X test.shape))
          scaler=StandardScaler()
          X train=scaler.fit transform(X train)
          X test=scaler.transform(X test)
          The dimension of X train is (140, 2)
          The dimension of X test is (60, 2)
In [380]: from sklearn.linear model import Lasso,Ridge
         '''from sklearn.linear model import RidgeCV
In [381]:
          ridge cv=RidgeCV(alphas=[0.0001,0.001,0.01,0.1,1,10]).fit(x train,y train)
          print("The train score for ridge model is{}".format(ridge cv.score(x train,y train)))
          print("The test score for ridge model is{}".format(ridge cv.score(x test, y test)))'''
Out[381]: 'from sklearn.linear model import RidgeCV\nridge cv=RidgeCV(alphas=[0.0001,0.001,0.01,0.1,1,10]).fit(x train,y trai
          n)\nprint("The train score for ridge model is{}".format(ridge cv.score(x train,y train)))\nprint("The test score for
          ridge model is{}".format(ridge cv.score(x test,v test)))'
```

```
In [382]: lr=LinearRegression()
          lr.fit(X_train,y_train)
          actual=y test
          train score lr=lr.score(X train,y train)
          test score lr=lr.score(X test, v test)
          print("\nLinear Regression Model:\n" )
          print("The train score for lr model is {}".format(train score lr))
          print("The train score lr model is {}".format(test score lr))
          Linear Regression Model:
          The train score for lr model is 1.0
          The train score lr model is 1.0
In [383]: ridgeReg=Ridge(alpha=10)
          ridgeReg.fit(X train,y train)
          train score ridge=ridgeReg.score(X train,y train)
          test score ridge=ridgeReg.score(X test,y test)
          print("\nRidge model\:\n")
          print("The train score for ridge model is {}".format(train_score_ridge))
          print("The train score for ridge model is {}".format(test score ridge))
          Ridge model\:
          The train score for ridge model is 0.990287139194161
          The train score for ridge model is 0.9844266285141221
```

```
In [384]: plt.figure(figsize=(10,10))
    plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,color='red',label=r'Ridge;$\alpha=
    plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label='Linear Regression')
    plt.xticks(rotation=90)
    plt.legend()
    plt.show()
```



```
In [385]: lassoReg=Lasso(alpha=10)
    lassoReg.fit(X_train,y_train)
        train_score_lasso=lassoReg.score(X_train,y_train)
        test_score_lasso=lassoReg.score(X_test,y_test)
        print("\nRidge model\:\n")
        print("The train score for lasso model is {}".format(train_score_ridge))
        print("The train score for lasso model is {}".format(test_score_ridge))
```

Ridge model\:

The train score for lasso model is 0.990287139194161
The train score for lasso model is 0.9844266285141221

```
In [386]: pd.Series(lassoReg.coef_,features).sort_values(ascending=True).plot(kind="bar")
```

Out[386]: <Axes: >


```
In [387]: from sklearn.linear_model import LassoCV
lasso_CV=LassoCV(alphas=[0.0001,0.001,0.01,1,10]).fit(X_train,y_train)
print("The train score for lasso model is{}".format(lasso_CV.score(X_train,y_train)))
print("The test score for lasso model is{}".format(lasso_CV.score(X_test,y_test)))
```

The train score for lasso model is0.9999999343798134
The test score for lasso model is0.9999999152638072

```
In [388]: plt.figure(figsize=(10,10))
  plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,color='red',label=r'Ridge;$\alpha=plt.plot(features,lasso_CV.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',label=r'lasso,$\alpha=plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label='LinearRegression')
  plt.xticks(rotation=90)
  plt.legend()
  plt.title("comparision plot of Ridge,Lasso and LinearRegression model")
  plt.show()
```

comparision plot of Ridge,Lasso and LinearRegression model


```
In [ ]:
```