Practice Final Answer Key

Practice Final a

Proof. Fix $x, y \in \mathbb{R}$ and put k = |x - y|.

2. False.

Proof. Put x=1 and y=2. Let z>0 and observe that $x-y=-1\leq z$.

3. False.

Proof. Let z=0 and $w\in\mathbb{C}$. We have $zw=0\neq 1$.

4. True.

Proof. Suppose that $a, a' \in A$ satisfy $(g \circ f)(a) = (g \circ f)(a')$. As g is injective, and as g(f(a)) = g(f(a')), we deduce that f(a) = f(a'). As f is injective, we conclude that a = a'.

5. True.

Proof. Fix $a, b, c \in A$.

Since $f(a) \sim f(a)$, it follows that aRa and we deduce that R is reflexive.

Now suppose that aRb. Thus, $f(a) \sim f(b)$, from which follows $f(b) \sim f(a)$, and hence bRa. Consequently, R is symmetric.

If aRb and bRc, then $f(a) \sim f(b)$ and $f(b) \sim f(c)$, whence $f(a) \sim f(c)$, and thus aRc. Therefore, R is transitive.

6. True.

Proof. Let $k, \ell \in \mathbb{Z}$ and observe that

$$\phi(k+\ell) = 2(k+\ell)$$
$$= 2k + 2\ell$$
$$= \phi(k) + \phi(\ell)$$

and

$$\phi(-k) = 2(-k) = -2k = -\phi(k).$$

7. True.

Proof. Fix $\varepsilon > 0$, choose $\delta > 0$ so that $d_Y(f(x), f(y)) < \varepsilon$ whenever $d_X(x, y) < \delta$, and choose $N \in \mathbb{N}$ so that $d_X(x_i, x) < \delta$ whenever n > N. It follows that $d_Y(f(x_i), f(x)) < \varepsilon$ for all n > N.

8. False.

Proof. Suppose to the contrary that S is the set of all sets. From $\mathcal{P}(S) \subseteq S$ it follows that $|\mathcal{P}(S)| \leq |S|$, while Cantor's theorem asserts $|S| < |\mathcal{P}(S)|$. This provides the desired contradiction.

Practice Final b

1. True.

Proof. Fix $x \in \mathbb{R}$. Let $y = \lfloor x \rfloor$ be the greatest integer less than or equal to x. We have $|x - y| = x - y \le 1$.

2. False.

Proof. Let $k \in \mathbb{Z}$ and put $\ell = k + 1$. It follows that $(k - \ell)^2 = 1 \neq 0$.

3. False.

Proof. Put z=1 and r=2. Let $k \in \mathbb{N}$. We have $|z|^k=1 \le r$.

4. False.

Proof. Consider the bijection

$$f: \mathbb{Z} \to \mathbb{Z}$$
$$k \mapsto k+1$$

and put a = 0. Let $k \ge 1$ and observe that $f^k(0) = k \ne 0$.

5. False.

Proof. Consider the power set $\mathcal{P}(\{0,1\})$. Observe that neither $\{0\} \subseteq \{1\}$ nor $\{1\} \subseteq \{0\}$.

6. True.

Proof. First observe that $1_G \in \ker \phi$ ensures $\ker \phi \neq \emptyset$.

Let $g, h \in \ker \phi$ and observe that

$$\phi(g^{-1}) = \phi(g)^{-1} = 1_H$$

and

$$\phi(gh) = \phi(g)\phi(h) = 1_H.$$

7. False.

Proof. Let $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 1 & \text{if } x = -1 \\ 0 & \text{otherwise.} \end{cases}$$

It follows that $(f \circ f)(x) = 0$. In particular $f \circ f$ is continuous.

8. True.

Proof. Suppose to the contrary that there is a set A and a bijection $f: A \to \mathcal{P}(A)$. Define the set

$$B = \{ a \in A \mid a \notin f(a) \}.$$

Choose $b \in A$ with f(b) = B. If $b \notin f(b)$, then it follows by the construction of B that $b \in B = f(b)$. However, if $b \in f(b)$, then $b \notin B = f(b)$. This yields the desired contradiction.

Practice Final c

1. False.

Proof. Let x=1 and y=0. Let $z\in\mathbb{R}$ and observe that $z\leq x$ or $z\geq y$.

2. True.

Proof. Let k=0 and choose $x,y\in\mathbb{R}$. It follows that xyk=k.

3. False.

Proof. Put z=1 and w=0. We have $z-w\in\mathbb{R}$ and $z\neq \bar{w}$.

4. False.

Proof. Let $f:\{0\}\to\mathbb{R}$ and $g:\mathbb{R}\to\{0\}$ be given by

$$f(0) = 0$$

and

$$g(x) = 0.$$

Observe that f and g are each nonbijective, while $g \circ f : \{0\} \to \{0\}$ is bijective.

5. False.

Proof. Let $A = \{a, a'\}$ and $B = \{b\}$, equip B with the partial order given by $b \leq b$, and let $f : A \to B$ be given by f(a) = f(a') = b. From $b \leq b$, it follows that aRa', and we conclude that R is not antisymmetric.

6. True.

Proof. Let $r, s \in S \cap S'$. From $r, s \in S$ we have

$$-r, r+s, rs, 1_R \in S$$
.

Similarly, from $r, s \in S'$ we obtain

$$-r, r+s, rs, 1_R \in S'$$
.

We conclude that

$$-r, r+s, rs, 1_R \in S \cap S'.$$

7. True.

Proof. Suppose not. It follows that d(x,y)>0. Choose $N\in\mathbb{N}$ so that $d(x_n,x)<\frac{1}{3}d(x,y)$ and $d(x_n,y)<\frac{1}{3}d(x,y)$ for all $n\geq N$. It follows that

$$d(x,y) \le d(x,x_n) + d(x_n,y) < \frac{1}{3}d(x,y) + \frac{1}{3}d(x,y) < d(x,y).$$

This yields the desired contradiction.

8. True.

Proof. First observe that from $1 = 1^2$ it follows that the claim is true when n = 1.

Now fix $n \ge 1$ and suppose that

$$1+3+5+(2n-1)=n^2$$
.

Adding 2n + 1 to each side yields

$$1+3+5+(2n-1)+(2n+1)=n^2+2n+1=(n+1)^2$$

which establishes the claim for n+1.