南方冶金学院考试试题

 考试科目_____
 考试日期_____

 班级
 学号
 姓名
 成绩

- 一、解答题(每小题6分,共计60分)
 - 1、 图示电路中, D为硅二极管, 求流过它的电流。

2、图示电路中,设Ui=15sinwt(v), D_{Z1} 的稳定电压是5.5V, D_{Z2} 的稳定电压是7V。 $D_{Z1}D_{Z2}$ 的正向压降为0.7V,试画出 U_0 的大致波形。

3、如果减小负载电阻R_L,则固定偏置单级放大器直流负载线的斜率____,交流负载线的斜率____,电压放大倍数____,放大器的输入电阻_____,输出电阻____。

4、有一射极输出器如图所示,若已知晶体管的 β = 50, $r_{be} = 1.2k Ω$,

试求:

- (1)静态工作点,
- (2) 电压放大倍数 (计算值)

5、找出图示电路中的交流反馈元件,判定反馈类型。

6、指出下图LC振荡电路有何错误,并加以改正。

- 8、图示稳压电路用差动放大器来进行比较放大。
- (1) 用文字符号和箭标叙述当电 网电压降低时的稳压过程。
 - (2) 指出 R_1 、 R_2 、 D_Z 的作用。

- 9、利用最少与非门实现函数F=A+B+AB+BC+C。
- 10、设TTL与非门的关门电平V_{off}=0.9伏,将它的一个输入端电阻经R接地,其余的输入悬空,若要保持输出高电平,R的阻值应为多少?

二、(10分)图示运算电路试求(1) U_{01} =? (2) U_0 =?

- 三、(10分)图示放大电路,设 β_1 = β_2 =100, I_{E1} =1mA, I_{E2} =10mA,
- $(1)r_{be1}=? r_{be2}=?$
- (2)画微变等效电路

- 四、(8分)(1)试将D触发器转换为T触发器(2)试将JK触发器转换为D触发器。
- 五、(12分)(1)D触发器组成的逻辑电路如图所示, θ_3 θ_2 θ_1 的初态为|1|,试写出电路的状态转换真值表。

(2)将上图触发器输出接出如下图所示译码显示电路,设以CP数为显示数字,则下图A、B各显示哪个数码?

答 案 6'

6′

1.2' +1.2' +1.2' +1.2' +1.2'

4、解:

8. (1) $|v_i| \downarrow \rightarrow |V_0| \downarrow \rightarrow |V_{B2}| \downarrow \rightarrow |V_{C2}| \downarrow = |V_{B3}| \uparrow \rightarrow |V_0| \uparrow \rightarrow |V_0| \downarrow \rightarrow |V_{C2}| \downarrow = |V_{B3}| \uparrow \rightarrow |V_0| \uparrow \rightarrow |V_0| \uparrow \rightarrow |V_0| \downarrow \rightarrow |V$ 3 ′ 1′

(2) R₁: T₂集电极电阻, T₃的偏流电阻 1′ R2: Dz的限流电阻 1 ′ Dz: 为比较放大器提供基准电压。

9,
$$F = \overline{\overline{A} + B + AB + BC + \overline{C}}$$

 $= \overline{\overline{A} + B(1 + A + C) + \overline{C}}$
 $= \overline{\overline{A} + B + \overline{C}} = \overline{\overline{A}} \cdot \overline{B} \cdot \overline{\overline{C}} = A \cdot \overline{B} \cdot C = \overline{A \cdot \overline{B} \cdot C}$
6'

10、 T_2 截止时,通过 R_1 的电流全部流经R,在R上所产生的电压降应小于TTL的关门电平

$$\frac{\mathbf{U}_{\text{CC}} - \mathbf{U}_{\text{BEI}}}{\mathbf{R}_{1} + \mathbf{R}} \times \mathbf{R} \leq \mathbf{U}_{\text{off}}$$

$$\frac{5 - 0.7}{3 + \mathbf{R}} \times \mathbf{R} \leq 0.9$$

$$\mathbf{R} \leq 0.79 \, \mathbf{k} \, \Omega$$

$$1'$$

二、(10分)解:

$$\begin{aligned} \mathbf{U}_{01} &= -\frac{\mathbf{R}_{1}}{\mathbf{R}_{2}} \mathbf{U}_{i} + (\frac{\mathbf{R}_{2}}{\mathbf{R}_{1} + \mathbf{R}_{2}}) \mathbf{U}_{0} \cdot \frac{\mathbf{R}_{1} + \mathbf{R}_{2}}{\mathbf{R}_{2}} = \mathbf{U}_{0} - \frac{\mathbf{R}_{1}}{\mathbf{R}_{2}} \mathbf{U}_{i} \\ &\qquad \qquad \frac{d\mathbf{U}_{C}}{dt} + \mathbf{U}_{C} = \mathbf{R}C \frac{d\mathbf{U}_{0}}{dt} + \mathbf{U}_{0} \end{aligned} \qquad \qquad \mathbf{3}'$$

 $U_{01}=iR+U_C=RC$

$$\begin{split} & \frac{R_1}{R_2} U_i = U_0 + RC \frac{dU_0}{dt} \\ & U_{0^-} = \frac{R_1}{R_2 RC} \int U_i dt \end{split}$$

三、(10分)解:

 $ri1 = R_B / / rbe1 = 500 / / 2.9 = 2.88k$

 1.5^{\prime}

四、

CP D

五、(1)

CD	0	0	0	1
CP	Q_3	Q_2	Q_1	
0	1	0	1	
1	0	1	0	
2	0	0	1	8
3	0	0	0	
4	1	0	0	
5	0	1	0	