Handling Null Values

Initial Strategy:

To address missing values in the dataset, I first computed the **mean**, **median**, and **mode** for all relevant columns. For categorical variables, I filled missing values using the **mode**, while for numerical features, I experimented with both mean and median imputation strategies.

Refined Strategy:

- For columns like Fedu and Medu, I observed a **high correlation** through a heatmap. Thus, missing values in one were imputed using the values from the other.
- For other features, the earlier strategy (mean/median/mode imputation) was retained.

Understanding Hidden Features

Feature_1:

• Initial Hypothesis: Suspected this to be age based on .describe() — mean ≈ 17, min = 15, max = 22 — which matches the high school age range.

Validation:

- Plotted box plots of Feature_1 against absences, health, traveltime, and freetime.
- Notable insight: Students aged 20–21 tend to have higher absences, possibly due to work/family responsibilities, supporting the assumption that Feature_1 represents age.

Feature_2:

Exploration:

- describe() showed that it takes only 4 discrete values (1–4).
- Countplots and bar charts with failures, G1, G2, and G3 revealed:
 - A negative correlation with failures
 - A positive correlation with academic performance

Interpretation: Feature_2 likely captures study hour levels rather than IQ, as its
distribution is skewed toward lower values — not consistent with expected IQ
distribution.

Feature_3:

- Exploration:
 - Showed strong positive correlation with Dalc (weekday alcohol use) and goout (socializing).
- **Conclusion:** Feature_3 likely represents **extroversion level** students scoring higher are more social and drink more frequently.

Exploratory Questions Raised

- 1. How does **parental education** influence academic performance?
- 2. Are there significant differences in **urban vs. rural** student profiles?
- 3. What is the impact of **parental separation** on students?
- 4. How does being in a **romantic relationship** affect grades?
- 5. Do **alcohol consumption patterns** vary between students in relationships and those not?

Romantic Relationship Prediction Modeling

Problem Statement: Predict whether a student is in a romantic relationship (binary classification).

Modeling Strategy

- **Initial Consideration:** Linear Regression was discarded due to the categorical nature of the target variable.
- Chosen Models:

- Gaussian Naive Bayes
- Logistic Regression
- o Random Forest Classifier

Naive Bayes Classifier

Pipeline:

1. Preprocessing:

- Converted target column (romantic) to binary values.
- One-hot encoding for categorical features.
- Created **combined features** from correlated columns to reduce redundancy.

2. Feature Selection:

- Retained only features with correlation > ±0.08 with the target.
- Visualized top correlations using heatmaps.

3. Feature Scaling and Transformation:

• Applied polynomial transformation (degree 2) and standardization.

4. Model Training and Evaluation:

- Used Stratified K-Fold Cross-Validation (k=5).
- Evaluated using accuracy, precision, and confusion matrix.

Results:

- Accuracy: ~70%
- Precision: 71% (No), 67% (Yes)
- **Note:** Despite good performance, this model was not interpretable enough, so I explored tree-based and linear models for SHAP analysis.

Logistic Regression & Random Forest

Pipeline Strategy:

- 1. **Train-Test Split:** 80% training, 20% testing using stratified sampling.
- 2. **Hyperparameter Tuning:** Performed using GridSearchCV.
- 3. **Standardization:** Applied before model fitting to normalize features.
- 4. **Evaluation:** Accuracy, classification report, confusion matrix (visualized via heatmap).
- 5. **Model Comparison:** Both models achieved ~62% accuracy. Logistic Regression had slightly better interpretability and confusion matrix performance.

Model Reasoning & Interpretation

To visually understand how features impact the model:

Decision Boundary Plot:

- Constructed between Feature_1 (age) and absences.
- Followed standard steps: select features → create mesh grid → model prediction → plot with contour.

SHAP for Model Explainability

Global Interpretation Strategy:

- 1. Extract preprocessing components (scaler + model) from the pipeline.
- 2. Scale and reformat data for SHAP.
- 3. Use:
 - TreeExplainer for Random Forest
 - LinearExplainer for Logistic Regression
- 4. Generate **summary plots** to visualize global feature importance.

Local Interpretation Strategy:

- 1. Scale test samples.
- 2. Use trained model to make predictions.
- 3. Run SHAP on test samples.
- 4. Select two cases (predicted as Yes & No).
- 5. Use **waterfall plots** to see how each feature influenced the individual prediction.

Final Conclusion

The key drivers for romantic relationship prediction (as observed in SHAP analysis) were:

- Feature_1 (Age)
- Absences
- Grades (G1, G2, G3)
- Guardian type (especially "other")