Forward kinematics & inverse kinematics

Pythagoras theorem:

$$h^2 = a^2 + b^2$$
 $h^2 = 15^2 + 15^2$
 $h = \sqrt{15^2 + 15^2}$
 $h = 21.21$

L1 and L3 are equal 21.21

$$sin \ heta = rac{Opposite}{Hypotenuse}$$
 $sin \ heta = rac{15}{21.21}$
 $heta = arcsin rac{15}{21.21}$
 $heta = 45.01^\circ$
 $heta$ 1 and $heta$ 2 are equal 45.01

$$egin{aligned} heta 4 &= 180 - (45.01 + 90) \ heta 4 &= 44.99^{\circ} \end{aligned}$$

$$\theta 5 = 44.99 + 90$$

 $\theta 5 = 134.99^{\circ}$

$$\theta 2 = 180 - 134.99$$

 $\theta 2$ and $\theta 3$ are equal

Forward kinematics:

Given information

- L2= 15
- L3= 18
- $\theta 1 = 45^{\circ}$
- $\theta 2 = 45^{\circ}$
- $\theta 3 = 32^{\circ}$

The solution

$$X = (12 \cos 45) + 15 + (18 \cos 32)$$

X = 38.75

 $Y = (12 \sin 45 + 18 \sin 32)$

Y= 18.02

(x,y)=(38.75, 18.02)

