

Fig. 1.7 - Montaggio che realizza le condizioni di stabilità esposte in fig. 11.6 e che si rende necessario per condizioni di carico e di velocità rilevanti. Gli anelli interni sono bloccati assialmente mediante appositi spallamenti e l'impiego di ghiere filettate.

Fig. 1.8 - Quando le condizioni di carico e di velocità non sono particolarmente rilevanti e la distanza tra cuscinetti è modesta, gli anelli interni possono essere bloccati assialmente da una sola ghiera filettata interponendo tra i cuscinetti un distanziale.

Fig. 1.9 - Questo montaggio semplificato può esser adottato in assenza di carichi assiali oppure se il carico assiale è diretto in un solo senso (in questo caso verso destra). Si noti l'assenza del bloccaggio assiale degli anelli interni dei cuscinetti.

Fig. 1.10 - Esempio di montaggio in cui la dilatazione dell'albero è consentita dall'impiego di un cuscinetto radiale a rulli cilindrici con orletti sull'anello esterno.

Nozioni di montaggio - Spallamenti e raccordi

(seguito) non il bloco

Fig. 1.11 - Esempio di montaggio adatto a condizioni di carico assiale limitato e per velocità elevate.

Fig. 1.12 - Quando il carico assiale risulta inammissibile per cuscinetti a rulli, questo viene sopportato da un cuscinetto rigido ad una corona di sfere, il cui anello esterno è accoppiato con gioco radiale alla sede; tale gioco non dovrà superare me-diamente il valore di 0,2 mm. Questa soluzione si adotta in sostituzione di un cuscinetto assiale quando la velocità di rotazione è prossima al massimo ammissibile, onde evitare il danno provocato dalla forza centrifuga sulle sfere. d. cuscinetto

Fig. 1.13 - Montaggio di guscio a rullini assieme ad un cu-scinetto radiale rigido ad una corona di stere che assicura il posizionamento assiale.

Fig. 1.14 - Montaggio di un cuscinetto a rullini senza anello interno e di un cuscinetto radiale rigido a sfere che assicura il posizionamento assiale.

Fig. 1.15 - Dimensioni dei raccordi secondo la noma ISO 582.

37

Fig. 1.16 - Disposizione dei rulli nel caso di uno spallamento obliquo, cioè con a ± 90°. In questo modo i corpi volventi vengono sollecitati in modo anormale.

Fig. 1.16 - Il passaggio dalla sede cilindrica allo spallamento può avvenire: a) mediante raccordo; b) mediante gola di scarico.

Fig. 1.17 - Raccordi eccessivi impediscono l'appoggio del cuscinetto agli spallamenti.

Fig. 1.18 - Quotatura delle gole di scarico: a) nell'alloggiamento; b) sull'albero (da pubblicazione RIV-SKF).

Raccordo del cuscinetto r ed r ₁	Gola di scarico			
	ba	h _a	r _c	
1,5	2	0,2	1,3	
2	2,4	0,3	1,5	
2,5	3,2	0,4	2	
3	4	0,5	2,5	
3,5	, 4	0,5	2,5	
4	4,7	0,5	3	
5	5,9	0,5	4	
6	7,4	0,6	5	
8	8,6	0,6	6	
10	10	0.6	7	

Fig. 1.19 - Quando il raccordo sull'albero è maggiore di quello del cuscinetto bisogna usare un anello distanziatore convenientemente smussato per non interferire col raccordo stesso.

Fig. 1.20 - Se l'alsezza dello spallamento non è sufficiente si riporta un anello ausiliario & Spigoli vivi.

Fig. 1.21 - Sono rappresentati smussi ed intagli per limitare l'altezza di spallamento e per consentire l'uso di estrattori.

Fig. 1.22 - Fissaggio dell'anello interno del cuscinetto mediante ghiera filettuta e rosetta di sicurezza.

Fig. 1.23 - Fissaggio dell'anello interno mediante disco di fermo, viti e rosette elastiche.

Fig. 1.24 - Fissaggio assiale dei due anelli del cuscinetto. L'anello esterno è fissato tramite coperchio d'estremità mentre l'anello interno è fissato con l'intermediario di un distanziale.

(segue)

Fig. 1.25 - Il fissaggio dell'anello esterno del cuscinetto è ottenuto con un anello filettato, del quale si impedisce la rotazione tramite una rosetta di sicurezza con nasello ripiegato in una tacca dell'anello stesso.

Fig. 1.26 - Impiego di anelli elastici di sicurezza per il fissaggio assiale degli anelli di un cuscinetto. con in= posizione di anel:

Fig. 1.27 - Un cuscinetto con scanalatura ed anello elastico permette una soluzione semplice del fissaggio assiale dell'anello esterno.

Fig. 1.28 - Esempio di montaggio di cuscinetti a rullini adatto a condizione di solo carico radiale. La guida assiale è assicurata da ralle piane temperate.

Fig. 1.29 - Esempio di montaggio di cuscinetti a rullini in presenza di carico assiale.

Fig. 1.30 - Quotatura dei raccordi e delle gole di scarico per cuscinetti a rullini (da catalogo DUERKOPP).

Raccordo del cuscinetto	Raggio di raccordo	G	Gole di scarico		
r	r _{i max}	t	r ₂	b	
0,5	0,3	_	_	_	
0,8	0,5	-	 		
1	0,6	-	_	_	
1,5	1 [0,2	1,3	2	
2	1,3	0,3	2	3	
2,5	1,6	0,4	. 2	3,2	
3	2	0,5	2,5	4	
3,5	2,5	0,5	3	4,7	

da DUERKOPP)

Diametro inviluppo interno gabbia d sopra fino a		d _a	D,	
8	25	D-0,3	d+0,4	
25		D-0,5	d+0,5	

Fig. 1.31 - Quotatura dei diametri delle superfici di guida per gusci a rullini (da catalogo RIV-SKF).

- (da RIV-SKF)

Fig. 1.33

Fig. 1.34

Nozioni di montaggio per cuscinetti assiali (o "reggispinta")

1.13

cuscinetti assiati devono essere sem si rende necessario un precarico, puo esse-re realizzato con molle

bero

Fig. 1.47 - Poiché la guida in rotazione è assicurata da un cuscinetto radiale, la ralla fissa di un cuscinetto assiale dev'essere montata con leggero gioco radiale allo scopo di evitare contatti anormali tra le sfere e le piste di rotolamento. L'anel-lo rettificato nel foro va invece centrato sull'albero. Le quote indicano le dimensioni (min. sull'albero e max. sul-

l'alloggiamento) degli appoggi delle ralle. Esse si ricavano dai cataloghi dei costruttori.

A DOPPIO EFFETTO CUSCINETTI ASSIALI registrazione del gioco mediante ghiera e contro: ahiera to: va centra ta sulf albe

Fig. 1.48 - Quando si devono sopportare carichi assiali nei due sensi si impiegano cuscinetti assiali a doppio effetto. La registrazione del gioco può avvenire: a) mediante givera e controgbiera; b) mediante spessori calibrati-

Fig. 1.49 - Montaggio di un cuscinetto assiale a doppio efjetto su cubero orizzontale. L'impiego delle molle precarica elesticamente le rule impedencio l'alloritanamento dei corpi volvenu adle piste di votalamento.

Fig. 1.50 - Montaggio di un cuscinetto assiale a doppio effetto con ralle e piastra d'appoggio a sede sferica.

dal cuscinetto il calore che vi si genera per attrito, 3) si hanno supporti difficilmenti accessibili e nei quali si desidera controllare la presenza del lubrificante.

ccorre eliminare le fughe dat supporto. poter controllare il livello di lubrificante.

Fig. 1.59 · Lubrificazione a bagno d'olio: il livello dell'olio è situato leggermente al disotto del centro del corpo volvente

TAVOLA

Fig. 1.60 - L'oliatore è sistemato in modo da poter controllare il livello d'olio nel sopporto.

Posto nella parte più bassa. Occorre evitare:

l'eccessivo sbattimento, l'emulsio =
namento, l'aumento della tempe=
ratura d'esercizio e l'invecchiamen:
to dofio. Perciò: sostituzione frequente
del l'ubrificante_

Fig. 1.61 - Adduzione dell'olio al cuscinetto mediante ascesa lungo la bussola internamente conica e attraverso i fori A ed il gioco S.

Fig. 1.62 - Circolazione dell'olio ottenuta mediante l'effetto pompante dell'inserto a foro conico rotante ad elevata velocità.

Fig. 1.63 - Circolazione d'olio a bassa viscosità mediante il gioco conico S tra l'estremità dell'albero e l'apposito foro conico del serbatoio. L'olio viene spinto fino al cuscinetto superiore e attraverso apposita labazione di risorno provvede a lubrificare il cuscinetto inferiore.

1

Fig. 2.23 - Applicazione di anello di tenuta Angus per impieghi motoristici (da catalogo ANGST + PFISTER).

Fig. 2.25 - Esempio di applicazione di anello di tenuta con rosetta d'appoggio, che consente di sopportare pressioni di $7 \div 10$ bar (da catalogo GALLITAL).

Fig. 2.24 - Applicazione di due anelli di tenuta con l'interposizione di un distanziatore, con foro e ingrassatore per la lubrificazione; in tal modo si può impedire la fuoriuscita del lubrificante, e l'entrata di polvere dalla parte opposta (da catalogo GALLITAL).

Fig. 2.26 - Applicazione di anello di tenuta per cuscinetti a rullini (da catalogo DUERKOPP).

Fig. 2.27 - Applicazioni di anelli di tenuta: a) tipo D, di impiego corrente; b) tipo CS, con scatola metallica che conferisce all'anello maggiore rigidità; c) tipo C, nel quale la forma del labbro garantisce elevatissima durata ed efficienza (da catalogo GALLITAL), a condizione che tale parte dell'anello sia sempre lubrificato.