Distributed Systems

ECE428

Lecture 4

Adopted from Spring 2021

Something to think while we wait...

- What are the practical use-cases of clocks and timestamps?
- Do we necessarily need synchronization to reason about ordering of events across processes?

Quick Recap: Clock Synchronization

- Synchronization in synchronous systems:
 - Synchronization bound = (max min)/2
- Synchronization in asynchronous systems:
 - Cristian Algorithm: Synchronization between a client and a server.
 - Synchronization bound = $(T_{round} / 2) min \le T_{round} / 2$
 - Berkeley Algorithm: internal synchronization between clocks.
 - A central server picks the average time and disseminates offsets.
 - Network Time Protocol: Hierarchical time synchronization over the Internet.
 - Symmetric mode synchronization between lower strata servers for greater accuracy.

NTP Symmetric Mode

- t and t': actual transmission times $T_{Rr} = T_{As} + t + o$ for m and m'(unknown)
- o: true offset of clock at B
- o_i: <u>estimate</u> of actual offset between the two clocks
- d_i: estimate of <u>accuracy</u> of o_i; $d_i=t+t'$
- skew estimate = d_i/2

for m and m'(unknown)

true offset of clock at B

relative to clock at A (unknown)
$$o = ((T_{Br} - T_{As}) - (T_{Ar} - T_{Bs}) + (t' - t))/2$$

estimate of actual offset
between the two clocks

o = $o_i = ((T_{Br} - T_{As}) - (T_{Ar} - T_{Bs}))/2$

o = $o_i = ((T_{Br} - T_{As}) - (T_{Ar} - T_{Bs}))/2$

$$d_i = t + t' = (T_{Br} - T_{As}) + (T_{Ar} - T_{Bs})$$

 $(o_i - d_i / 2) \le o \le (o_i + d_i / 2)$ given $t, t' \ge 0$

Today's agenda

- Logical Clocks and Timestamps
 - Chapter 14.4
- Global State
 - Chapter 14.5

Today's agenda

- Logical Clocks and Timestamps
 - Chapter 14.4
- Global State
 - Chapter 14.5

Event Ordering

- A use-case of synchronized clocks:
 - Reasoning about order of events.
- Can we reason about order of events without synchronized clocks?

Process, state, events

- Consider a system with n processes:
 - $\{p_1, p_2, p_3,, p_n\}$
- Each process p_i is described by its state s_i that gets transformed over time.
 - State includes values of all local variables, affected files, etc.
- s_i gets transformed when an event occurs.
- Three types of events:
 - Local computation.
 - Sending a message.
 - Receiving a message.

Event Ordering

- Easy to order events within a single process p_i, based on their time of occurrence.
- How do we reason about events across processes?
 - A message must be sent before it gets received at another process.
- These two notions help define happened-before (HB) relationship denoted by →.
 - e → e' means e happened before e'.

Happened-Before Relationship

- Happened-before (HB) relationship denoted by →.
 - e → e' means e happened before e'.
 - e →_i e' means e happened before e', as observed by p_i.
- HB rules:
 - If $\exists p_i$, $e \rightarrow_i e'$ then $e \rightarrow e'$.
 - For any message m, send(m) → receive(m)
 - If $e \rightarrow e'$ and $e' \rightarrow e''$ then $e \rightarrow e''$
- Also called "causal" or "potentially causal" ordering.

Event Ordering: Example

Which event happened first? $a \rightarrow b$ and $b \rightarrow c$ and $c \rightarrow d$ and $d \rightarrow f$ $a \rightarrow b$ and $a \rightarrow c$ and $a \rightarrow d$ and $a \rightarrow f$

Event Ordering: Example

What can we say about e? e → f a → e and e → a a || e a and e are *concurrent*.

Event Ordering: Example

What can we say about e and d?
e | d

Logical Timestamps: Example

Lamport's Logical Clock

- Logical timestamp for each event that captures the happened-before relationship.
- Algorithm: Each process p_i
 - 1. initializes local clock $L_i = 0$.
 - 2. increments L_i before timestamping each event.
 - 3. piggybacks L_i when sending a message.
 - 4. upon receiving a message with clock value t
 - sets $L_i = max(t, L_i)$
 - increments L_i before timestamping the receive event (as per step 2).

Logical Timestamps: Example

Logical Timestamps: Example

Lamport's Logical Clock

- Logical timestamp for each event that captures the happened-before relationship.
- If e → e' then L(e) < L(e')
- What if L(e) < L(e')?
 - We cannot say that e → e'
 - We can say: e' → e
 - Either e → e' or e || e'

Logical Timestamps: Example

$$L(e) < L(f), e \rightarrow f$$

- Each event associated with a vector timestamp.
- Each process p_i maintains vector of clocks V_i
- The size of this vector is the same as the no. of processes.
 - V_i[j] is the clock for process p_i as maintained by p_i
- Algorithm: each process p_i:
 - 1. initializes local clock $L_i = 0$.
 - 2. increments L_i before timestamping each event.
 - 3. piggybacks L_i when sending a message.
 - 4. upon receiving a message with clock value t
 - sets $L_i = max(t, L_i)$
 - increments L_i before timestamping the receive event (as per step 2).

- Each event associated with a vector timestamp.
- Each process p_i maintains vector of clocks V_i
- The size of this vector is the same as the no. of processes.
 - V_i[j] is the clock for process p_i as maintained by p_i
- Algorithm: each process p_i:
 - 1. initializes local clock $V_i[j] = 0$
 - 2. increments L_i before timestamping each event.
 - 3. piggybacks L_i when sending a message.
 - 4. upon receiving a message with clock value t
 - sets $L_i = max(t, L_i)$
 - increments L_i before timestamping the receive event (as per step 2).

- Each event associated with a vector timestamp.
- Each process p_i maintains vector of clocks V_i
- The size of this vector is the same as the no. of processes.
 - V_i[j] is the clock for process p_i as maintained by p_i
- Algorithm: each process p_i:
 - 1. initializes local clock $V_i[j] = 0$
 - 2. increments V_i[i] before timestamping each event.
 - 3. piggybacks L_i when sending a message.
 - 4. upon receiving a message with clock value t
 - sets $L_i = max(t, L_i)$
 - increments L_i before timestamping the receive event (as per step 2).

- Each event associated with a vector timestamp.
- Each process p_i maintains vector of clocks V_i
- The size of this vector is the same as the no. of processes.
 - V_i[j] is the clock for process p_i as maintained by p_i
- Algorithm: each process p_i:
 - 1. initializes local clock $V_i[j] = 0$
 - 2. increments V_i[i] before timestamping each event.
 - 3. piggybacks V_i when sending a message.
 - 4. upon receiving a message with clock value t
 - sets $L_i = max(t, L_i)$
 - increments L_i before timestamping the receive event (as per step 2).

- Each event associated with a vector timestamp.
- Each process p_i maintains vector of clocks V_i
- The size of this vector is the same as the no. of processes.
 - V_i[j] is the clock for process p_i as maintained by p_i
- Algorithm: each process p_i:
 - 1. initializes local clock $V_i[j] = 0$
 - 2. increments V_i[i] before timestamping each event.
 - 3. piggybacks V_i when sending a message.
 - 4. upon receiving a message with vector clock value v
 - sets $V_i[j] = max(V_i[j], v[j])$ for all j=1...n.
 - increments V_i[i] before timestamping receive event (as per step 2).

Comparing Vector Timestamps

Let V(e) = V and V(e') = V'

```
V= V', iff V[i] = V'[i], for all i = 1, ..., n
V ≤ V', iff V[i] ≤ V'[i], for all i = 1, ..., n
V < V', iff V ≤ V' & V ≠ V'</li>
iff V ≤ V' & ∃ i such that (V[i] < V'[i])</li>
```

- $e \rightarrow e' \text{ iff } V < V'$
 - (V < V' implies e → e') and (e → e' implies V < V')
- e | e' iff (V ≮ V' and V' ≮ V)

What can we say about e & f based on their vector timestamps?

What can we say about e & d based on their vector timestamps?

V(e) < V(d) and V(d) < V(e), e || d

Timestamps Summary

- Comparing timestamps across events is useful.
 - Reconciling updates made to an object in a distributed datastore.
 - Rollback recovery during failures:
 - 1. Checkpoint state of the system; 2. Log events (with timestamps); 3. Rollback to checkpoint and replay events in order if system crashes.
- How to compare timestamps across different processes?
 - Physical timestamp: requires clock synchronization.
 - Google's Spanner Distributed Database uses "TrueTime".
 - Lamport's timestamps: cannot fully differentiate between causal and concurrent ordering of events.
 - Oracle uses "System Change Numbers" based on Lamport's clock.
 - Vector timestamps: larger message sizes.
 - Amazon's DynamoDB uses vector clocks.