Topology Qualifying Exam Notes

D. Zack Garza

Tuesday 9th June, 2020

Contents

1	Defi	nitions	2		
	1.1	Algebraic			
		1.1.2 Homology	5		
2	The 2.1	orems Point-Set	6		
3	Exai	mples	8		
	3.1 3.2	Common Spaces and Operations			
4	AT Summary				
	4.1 4.2 4.3 4.4 4.5 4.6	Conventions	12 14 14 15		
5	Fall	2014	17		
	5.1	1. Let $X = \mathbb{R}^3 - \Delta^{(1)}$, the complement of the skeleton of regular tetrahedron, and compute $\pi_1(X)$ and $H_*(X)$	17		
	5.2	2. Let $X = S^1 \times B^2 - L$ where L is two linked solid torii inside a larger solid torus. Compute $H_*(X)$	17		
	5.3	3. Let L be a 3-manifold with homology $[\mathbb{Z}, \mathbb{Z}_3, 0, \mathbb{Z}, \ldots]$ and let $X = L \times \Sigma L$. Compute $H_*(X), H^*(X), \ldots, \ldots, \ldots$	17		
	5.4	4. Let M be a closed, connected, oriented 4-manifold such that $H_2(M; \mathbb{Z})$ has rank 1. Show that there is not a free \mathbb{Z}_2 action on M	18		
	5.5	5. Let X be T^2 with a 2-cell attached to the interior along a longitude. Compute $\pi_2(X)$	18		
6	Extr	ra Problems	18		

1 Definitions

- Topology: Closed under arbitrary unions and finite intersections.
- Basis: A subset $\{B_i\}$ is a basis iff

 - $\begin{array}{ll} -x \in X \implies x \in B_i \text{ for some } i. \\ -x \in B_i \bigcap B_j \implies x \in B_k \subset B_i \bigcap B_k. \\ -\text{ Topology generated by this basis: } x \in N_x \implies x \in B_i \subset N_x \text{ for some } i. \end{array}$
- Dense: A subset $Q \subset X$ is dense iff $y \in N_y \subset X \implies N_y \cap Q \neq \emptyset$ iff $\overline{Q} = X$.
- Neighborhood: A neighborhood of a point x is any open set containing x.
- Hausdorff
- Second Countable: admits a countable basis.
- Closed (several characterizations)
- Closure in a subspace: $Y \subset X \implies \operatorname{cl}_Y(A) := \operatorname{cl}_X(A) \cap Y$.
- Bounded
- Compact: A topological space (X, τ) is **compact** if every open cover has a *finite* subcover.

That is, if $\{U_j \mid j \in J\} \subset \tau$ is a collection of open sets such that $X \subseteq \bigcup_{j \in J} U_j$, then there exists

- a finite subset $J' \subset J$ such that $X \subseteq \bigcup_{j \in J'} U_j$.
- Locally compact For every $x \in X$, there exists a $K_x \ni x$ such that K_x is compact.
- Connected: There does not exist a disconnecting set $X = A \coprod B$ such that $\emptyset \neq A, B \subsetneq$, i.e. Xis the union of two proper disjoint nonempty sets.

Equivalently, X contains no proper nonempty clopen sets.

- Additional condition for a subspace $Y \subset X$: $\operatorname{cl}_Y(A) \cap V = A \cap \operatorname{cl}_Y(B) = \emptyset$.
- Locally connected: A space is locally connected at a point x iff $\forall N_x \ni x$, there exists a $U \subset N_x$ containing x that is connected.
- Retract: A subspace $A \subset X$ is a retract of X iff there exists a continuous map $f: X \longrightarrow A$ such that $f \Big|_{A} = \mathrm{id}_{A}$. Equivalently it is a *left* inverse to the inclusion.
- Uniform Continuity: For $f:(X,d_x)\longrightarrow (Y,d_Y)$ metric spaces,

$$\forall \varepsilon > 0, \ \exists \delta > 0 \text{ such that } d_X(x_1, x_2) < \delta \implies d_Y(f(x_1), f(x_2)) < \varepsilon.$$

• Lebesgue number: For (X, d) a compact metric space and $\{U_{\alpha}\} \rightrightarrows X$, there exist $\delta_L > 0$ such that

$$A \subset X$$
, diam $(A) < \delta_L \implies A \subseteq U_\alpha$ for some α .

Paracompact

- Components: Set $x \sim y$ iff there exists a connected set $U \ni x, y$ and take equivalence classes.
- Path Components: Set $x \sim y$ iff there exists a path-connected set $U \ni x, y$ and take equivalence classes.
- Separable: Contains a countable dense subset.
- Limit Point: For $A \subset X$, x is a limit point of A if every punctured neighborhood P_x of x satisfies $P_x \cap A \neq \emptyset$, i.e. every neighborhood of x intersects A in some point other than x itself.

Equivalently, x is a limit point of A iff $x \in \operatorname{cl}_X(A \setminus \{x\})$.

1.1 Algebraic

1.1.1 Homotopy

Todo: Merge the two van Kampen theorems.

Theorem 1.1 (Van Kampen).

The pushout is the northwest colimit of the following diagram

$$A \coprod_{Z} B \longleftarrow A$$

$$\uparrow \qquad \qquad \iota_{A} \uparrow$$

$$B \longleftarrow_{\iota_{B}} Z$$

For groups, the pushout is given by the amalgamated free product: if $A = \langle G_A \mid R_A \rangle$, $B = \langle G_B \mid R_B \rangle$, then

$$A *_{Z} B = \langle G_A, G_B \mid R_A, R_B, T \rangle$$

where T is a set of relations given by

$$T = \left\{ \iota_A(z)\iota_B(z)^{-1} \mid z \in Z \right\}.$$

Suppose $X = U_1 \bigcup U_2$ such that $U_1 \cap U_2 \neq \emptyset$ is **path connected** (necessary condition). Then taking $x_0 \in U := U_1 \cap U_2$ yields a pushout of fundamental groups

$$\pi_1(X; x_0) = \pi_1(U_1; x_0) *_{\pi_1(U; x_0)} \pi_1(U_2; x_0).$$

Theorem 1.2 (Van Kampen).

If $X = U \bigcup V$ where $U, V, U \cap V$ are all path-connected then

$$\pi_1(X) = \pi_1 U *_{\pi_1(U \cap V)} \pi_1 V,$$

where the amalgamated product can be computed as follows: If we have presentations

$$\pi_1(U, w) = \left\langle u_1, \dots, u_k \mid \alpha_1, \dots, \alpha_l \right\rangle$$

$$\pi_1(V, w) = \left\langle v_1, \dots, v_m \mid \beta_1, \dots, \beta_n \right\rangle$$

$$\pi_1(U \cap V, w) = \left\langle w_1, \dots, w_p \mid \gamma_1, \dots, \gamma_q \right\rangle$$

then

$$\pi_{1}(X, w) = \langle u_{1}, \dots, u_{k}, v_{1}, \dots, v_{m} \rangle$$

$$\mod \langle \alpha_{1}, \dots, \alpha_{l}, \beta_{1}, \dots, \beta_{n}, I(w_{1}) J(w_{1})^{-1}, \dots, I(w_{p}) J(w_{p})^{-1} \rangle$$

$$= \frac{\pi_{1}(U) * \pi_{1}(B)}{\langle \{I(w_{i})J(w_{i})^{-1} \mid 1 \leq i \leq p\} \rangle}$$

where

$$I: \pi_1(U \cap V, w) \to \pi_1(U, w)$$
$$J: \pi_1(U \cap V, w) \to \pi_1(V, w).$$

Theorem 1.3 (Seifert-van Kampen Theorem).

Suppose $X = U_1 \bigcup U_2$ where $U := U_1 \bigcap U_2 \neq \emptyset$ is path-connected, and let $\{pt\} \in U$. Then the maps $i_1 : U_1 \longrightarrow X$ and $i_2 : U_2 \longrightarrow X$ induce the following group homomorphisms:

$$i_1^*: \pi_1(U_1, \{\text{pt}\}) \longrightarrow \pi_1(X, \{\text{pt}\})$$

 $i_2^*: \pi_1(U_2, \{\text{pt}\}) \longrightarrow \pi_1(X, \{\text{pt}\})$

and letting $P = \pi_1(U)$, {pt}, there is a natural isomorphism

$$\pi_1(X, \{ \text{pt} \}) \cong \pi_1(U_1, \{ \text{pt} \}) *_P \pi_1(U_2, \{ \text{pt} \})$$

where $*_P$ is the amalgamated free product over P.

(Todo: formulate in terms of pushouts)

Examples

Example 1.1.

 $A = \mathbb{Z}/4\mathbb{Z} = \langle x \mid x^4 \rangle, B = \mathbb{Z}/6\mathbb{Z} = \langle y \mid x^6 \rangle, Z = \mathbb{Z}/2\mathbb{Z} = \langle z \mid z^2 \rangle.$ Then we can identify Z as a subgroup of A, B using $\iota_A(z) = x^2$ and $\iota_B(z) = y^3$. So

$$A *_{Z} B = \langle x, y \mid x^{4}, y^{6}, x^{2}y^{-3} \rangle$$

- Computing $\pi_1(S^1 \vee S^1)$ Computing $\pi_1(S^1 \times S^1)$
- Counterexample when $U \cap V$ isn't path-connected: S^1 with U, V neighborhoods of the poles.

1.1.2 Homology

Useful fact: since \mathbb{Z} is free, any exact sequence of the form $0 \longrightarrow \mathbb{Z}^n \longrightarrow A \longrightarrow \mathbb{Z}^m \longrightarrow 0$ splits and $A \cong \mathbb{Z}^n \times \mathbb{Z}^m.$

Useful fact: $\tilde{H}_*(A \vee B) \cong H_*(A) \times H_*(B)$.

Theorem 1.4 (Mayer Vietoris).

Let $X = A^{\circ} \bigcup B^{\circ}$; then there is a SES of chain complexes

$$0 \longrightarrow C_n(A \cap B) \xrightarrow{x \mapsto (x,-x)} C_n(A) \oplus C_n(B) \xrightarrow{(x,y) \mapsto x+y} C_n(A+B) \longrightarrow 0$$

where $C_n(A+B)$ denotes the chains that are sums of chains in A and chains in B. This yields a LES in homology:

$$\cdots \longrightarrow H_n(A \cap B) \xrightarrow{x \mapsto (x,-x)} H_n(A) \oplus H_n(B) \xrightarrow{(x,y) \mapsto x+y} H_n(X) \longrightarrow \cdots$$

2 Theorems

2.1 Point-Set

Theorem 2.1.

 $U \subset X$ a Hausdorff spaces is closed \iff it is compact.

Theorem 2.2 (Cantor's Intersection Theorem).

A bounded collection of nested closed sets $C_1 \supset C_2 \supset \cdots$ in a metric space X is nonempty $\iff X$ is complete.

- Tube lemma
- Properties pushed forward through continuous maps:
 - Compactness?
 - Connectedness (when surjective)
 - Separability
 - Density **only when** f is surjective
 - Not openness
 - Not closedness
- A retract of a Hausdorff/connected/compact space is closed/connected/compact respectively.

Proposition 2.3.

A continuous function on a compact set is uniformly continuous.

Proof.

Take $\left\{B_{\frac{\varepsilon}{2}}(y) \mid y \in Y\right\} \rightrightarrows Y$, pull back to an open cover of X, has Lebesgue number $\delta_L > 0$, then $x' \in B_{\delta_L}(x) \implies f(x), f(x') \in B_{\frac{\varepsilon}{2}}(y)$ for some y.

Corollary 2.4.

Lipschitz continuity implies uniform continuity (take $\delta = \varepsilon/C$)

Counterexample to converse: $f(x) = \sqrt{x}$ on [0, 1] has unbounded derivative.

Theorem 2.5 (Extreme Value Theorem).

For $f: X \longrightarrow Y$ continuous with X compact and Y ordered in the order topology, there exist points $c, d \in X$ such that $f(x) \in [f(c), f(d)]$ for every x.

Theorem 2.6.

Points are closed in T_1 spaces.

Theorem 2.7.

A metric space X is sequentially compact iff it is complete and totally bounded.

Theorem 2.8.

A metric space is totally bounded iff every sequence has a Cauchy subsequence.

Theorem 2.9.

A metric space is compact iff it is complete and totally bounded.

Theorem 2.10(Baire).

If X is a complete metric space, then the intersection of countably many dense open sets is dense in X.

Theorem 2.11.

A continuous bijective open map is a homeomorphism.

Theorem 2.12.

A closed subset A of a compact set B is compact.

Proof.

- Let $\{A_i\} \rightrightarrows A$ be a covering of A by sets open in A.
- Each $A_i = B_i \cap A$ for some B_i open in B (definition of subspace topology)
- Define $V = \{B_i\}$, then $V \rightrightarrows A$ is an open cover.
- Since A is closed, $W := B \setminus A$ is open
- Then $V \mid M$ is an open cover of B, and has a finite subcover $\{V_i\}$
- Then $\{V_i \cap A\}$ is a finite open cover of A.

Theorem 2.13.

The continuous image of a compact set is compact.

Theorem 2.14.

A closed subset of a Hausdorff space is compact.

Theorem 2.15.

A continuous bijection $f: X \longrightarrow Y$ where X is compact and Y is Hausdorff is an open map and hence a homeomorphism.

3 Examples

3.1 Common Spaces and Operations

Point-Set:

- Finite discrete sets with the discrete topology
- Subspaces of \mathbb{R} : $(a,b),(a,b],(a,\infty)$, etc.

$$- \{0\} \bigcup \left\{ \frac{1}{n} \mid n \in \mathbb{Z}^{\geq 1} \right\}$$

- 0
- The topologist's sine curve
- One-point compactifications
- $\bullet \mathbb{R}^{\omega}$
- Hawaiian earring
- Cantor set

Non-Hausdorff spaces:

- The cofinite topology on any infinite set.
- \mathbb{R}/\mathbb{Q}
- The line with two origins.

General Spaces:

$$S^n, \mathbb{D}^n, T^n, \mathbb{RP}^n, \mathbb{CP}^n, \mathbb{M}, \mathbb{K}, \Sigma_q, \mathbb{RP}^{\infty}, \mathbb{CP}^{\infty}.$$

"Constructed" Spaces

- Knot complements in S^3
- Covering spaces (hyperbolic geometry)
- Lens spaces
- Matrix groups
- Prism spaces
- Pair of pants
- Seifert surfaces
- Surgery
- Simplicial Complexes

- Nice minimal example:

Exotic/Pathological Spaces

• \mathbb{HP}^n

- Dunce Cap
- Horned sphere

Operations

- Cartesian product $A \times B$
- Wedge product $A \vee B$
- Connect Sum A # B
- Quotienting A/B
- Puncturing $A \setminus \{a_i\}$
- Smash product
- Join
- Cones
- Suspension
- Loop space
- Identifying a finite number of points

3.2 Alternative Topologies

- Discrete
- Cofinite
- Discrete and Indiscrete
- Uniform

The cofinite topology:

- Non-Hausdorff
- Compact

The discrete topology:

- Discrete iff points are open
- Always Hausdorff
- Compact iff finite
- Totally disconnected
- If the domain, every map is continuous

The indiscrete topology:

- Only open sets are \emptyset, X
- Non-Hausdorff
- If the codomain, every map is continuous
- Compact

4 AT Summary

4.1 Conventions

• $\pi_0(X)$ is the set of path components of X, and I write $\pi_0(X) = \mathbb{Z}$ if X is path-connected (although it is not a group). Similarly, $H_0(X)$ is a free abelian group on the set of path components of X.

• Lists start at entry 1, since all spaces are connected here and thus $\pi_0 = H_0 = \mathbb{Z}$. That is,

$$-\pi_*(X) = [\pi_1(X), \pi_2(X), \pi_3(X), \cdots] -H_*(X) = [H_1(X), H_2(X), H_3(X), \cdots]$$

• For a finite index set I, $\prod_{I} G = \bigoplus_{I} G$ in \mathbf{Grp} , i.e. the finite direct product and finite direct sum coincide

Otherwise, if I is infinite, the direct sum requires cofinitely many zero entries (i.e. finitely many nonzero entries), so here we always use \prod .

In other words, there is an injective map

$$\bigoplus_I G \hookrightarrow \prod_I G$$

which is an isomorphism when $|I| < \infty$

• The free abelian group of rank n:

$$\mathbb{Z}^n := \prod_{i=1}^n \mathbb{Z} = \mathbb{Z} \times \mathbb{Z} \times \dots \mathbb{Z}.$$

- $-x \in \mathbb{Z}^n = \langle a_1, \cdots, a_n \rangle \implies x = \sum_n c_i a_i \text{ for some } c_i \in \mathbb{Z} \text{ , i.e. } a_i \text{ form a basis.}$
- Example: $x = 2a_1 + 4a_2 + a_1 a_2 = 3a_1 + 3a_2$.
- The **free product** of n free abelian groups:

$$\mathbb{Z}^{*n} \coloneqq \underset{i=1}{\overset{n}{*}} \mathbb{Z} = \mathbb{Z} * \mathbb{Z} * \dots \mathbb{Z}$$

This is a free nonabelian group on n generators.

- $-x \in \mathbb{Z}^{*n} = \langle a_1, \dots, a_n \rangle$ implies that x is a finite word in the noncommuting symbols a_i^k for $k \in \mathbb{Z}$.
- Example: $x = a_1^2 a_2^4 a_1 a_2^{-2}$
- K(G, n) is an Eilenberg-MacLane space, the homotopy-unique space satisfying

$$\pi_k(K(G,n)) = \begin{cases} G & k = n, \\ 0 & k \neq n. \end{cases}$$

$$-K(\mathbb{Z},1) = S^1$$

- $K(\mathbb{Z},2) = \mathbb{CP}^{\infty}$

$$-K(\mathbb{Z}/2\mathbb{Z},1) = \mathbb{RP}^{\infty}$$

• M(G, n) is a Moore space, the homotopy-unique space satisfying

$$H_k(M(G,n);G) = \begin{cases} G & k = n, \\ 0 & k \neq n. \end{cases}$$

$$-M(\mathbb{Z},n) = S^n$$

$$-M(\mathbb{Z}/2\mathbb{Z},1) = \mathbb{RP}^2$$

Figure 1: Low-Dimensional Spheres/Discs/Balls

 $-M(\mathbb{Z}/p\mathbb{Z},n)$ is made by attaching e^{n+1} to S^n via a degree p map.

•
$$B^n = \left\{ \mathbf{v} \in \mathbb{R}^n \mid ||\mathbf{v}|| \le 1 \right\} \subset \mathbb{R}^n$$

•
$$S^{n-1} = \partial B^n = \left\{ \mathbf{v} \in \mathbb{R}^n \mid ||\mathbf{v}|| = 1 \right\} \subset \mathbb{R}^n$$

•
$$\mathbb{RP}^n = S^n/S^0 = S^n/\mathbb{Z}/2\mathbb{Z}$$

$$\bullet \ \mathbb{CP}^n = S^{2n+1}/S^1$$

•
$$T^n = \prod_n S^1$$
 is the *n*-torus

• D(k, X) is the space X with $k \in \mathbb{N}$ distinct points deleted, i.e. the punctured space $X - \{x_1, x_2, \dots x_k\}$ where each $x_i \in X$.

4.2 Table of Homotopy and Homology Structures

X	$\pi_*(X)$	$H_*(X)$	CW Structure	$H^*(X)$
\mathbb{R}^1	0	0	$\mathbb{Z} \cdot 1 + \mathbb{Z} \cdot x$	0

X	$\pi_*(X)$	$H_*(X)$	CW Structure	$H^*(X)$
\mathbb{R}^n	0	0	$(\mathbb{Z} \cdot 1 + \mathbb{Z} \cdot x)^n$	0
$D(k,\mathbb{R}^n)$	$\pi_* \bigvee^{\kappa} S^1$	$\bigoplus H_*M(\mathbb{Z},1)$	1 + kx	?
B^n	$\pi_*(\mathbb{R}^n)$	$\overset{k}{H_*}(\mathbb{R}^n)$	$1 + x^n + x^{n+1}$	0
S^n	$[0\ldots,\mathbb{Z},?\ldots]$	$H_*M(\mathbb{Z},n)$	$1+x^n$ or $\sum_{i=0}^n 2x^i$	$\mathbb{Z}[nx]/(x^2)$
$D(k, S^n)$	$\pi_* \bigvee^{k-1} S^1$	$\bigoplus H_*M(\mathbb{Z},1)$	$1 + (k-1)x^1$?
T^2	$\pi_*S^1 \times \pi_*S^1$	$(H_*M(\mathbb{Z},1))^2 \times H_*M(\mathbb{Z},2)$	$1 + 2x + x^2$	$\Lambda(_1x_1,{_1x_2})$
T^n	$\prod^n \pi_* S^1$	$\prod^{n} (H_*M(\mathbb{Z},i))^{\binom{n}{i}}$	$(1+x)^n$	$\Lambda(_1x_1,_1x_2,\ldots_1x_n)$
$D(k, T^n)$ $S^1 \vee S^1$	$[0,0,0,0,\ldots]?$ $\pi_*S^1 * \pi_*S^1$	$[0,0,0,0,\dots]$? $(H_*M(\mathbb{Z},1))^2$	$1+x \\ 1+2x$? ?
$\bigvee^n S^1$	$*^n\pi_*S^1$	$\prod H_*M(\mathbb{Z},1)$	1+x	?
\mathbb{RP}^1 \mathbb{RP}^2	π_*S^1	$H_*M(\mathbb{Z},1)$	$ 1+x 1+x+x^2 $	$_{0}\mathbb{Z}\times_{1}\mathbb{Z}$
\mathbb{RP}^3	$\pi_* K(\mathbb{Z}/2\mathbb{Z}, 1) + \pi_* S^2$ $\pi_* K(\mathbb{Z}/2\mathbb{Z}, 1) + \pi_* S^3$	$H_*M(\mathbb{Z}/2\mathbb{Z},1)$ $H_*M(\mathbb{Z}/2\mathbb{Z},1) + H_*M(\mathbb{Z},3)$	$1 + x + x^2 + x^3$	$ \begin{array}{c} 0\mathbb{Z} \times_2 \mathbb{Z}/2\mathbb{Z} \\ 0\mathbb{Z} \times_2 \mathbb{Z}/2\mathbb{Z} \times_3 \mathbb{Z} \end{array} $
\mathbb{RP}^4	$\pi_*K(\mathbb{Z}/2\mathbb{Z},1) + \pi_*S^4$	$H_*M(\mathbb{Z}/2\mathbb{Z},1) + H_*M(\mathbb{Z}/2\mathbb{Z},3)$		$_0\mathbb{Z} imes (_2\mathbb{Z}/2\mathbb{Z})^2$ $_{n/2}$
$\mathbb{RP}^n, n \geq 4$ even	$\pi_*K(\mathbb{Z}/2\mathbb{Z},1) + \pi_*S^n$	$\prod_{\text{odd } i < n} H_* M(\mathbb{Z}/2\mathbb{Z}, i)$	$\sum_{i=1} x^i$	$_0\mathbb{Z} imes\prod_{i=1}{}_2\mathbb{Z}/2\mathbb{Z}$
$\mathbb{RP}^n, n \geq 4$ odd	$\pi_* K(\mathbb{Z}/2\mathbb{Z}, 1) + \pi_* S^n$	$\prod_{\text{odd } i \leq n-2} H_*M(\mathbb{Z}/2\mathbb{Z},i) \times \\$	$\sum_{i=1}^{i=1} x^i$	$H^*(\mathbb{RP}^{n-1}) \times {}_n\mathbb{Z}$
$\begin{array}{c} \mathbb{CP}^1 \\ \mathbb{CP}^2 \end{array}$	$\pi_* K(\mathbb{Z}, 2) + \pi_* S^3$ $\pi_* K(\mathbb{Z}, 2) + \pi_* S^5$	H_*S^n H_*S^2 $H_*S^2 \times H_*S^4$	$x^{0} + x^{2}$ $x^{0} + x^{2} + x^{4}$	$\mathbb{Z}_{[2x]/(2x^2)}$ $\mathbb{Z}_{[2x]/(2x^3)}$
$\mathbb{CP}^n, n \geq 2$	$\pi_*K(\mathbb{Z},2) + \pi_*S^{2n+1}$	$\prod^n H_*S^{2i}$	$\sum_{i=1}^{n} x^{2i}$	$\mathbb{Z}[2x]/(2x^{n+1})$
Mobius Band	π_*S^1	$\stackrel{i=1}{H_*}S^1$	$ \begin{array}{c} i=1\\1+x \end{array} $?
Klein Bottle	$K(\mathbb{Z}\rtimes_{-1}\mathbb{Z},1)$	$H_*S^1 \times H_*\mathbb{RP}^\infty$	$1 + 2x + x^2$?

Facts used to compute the above table:

- \mathbb{R}^n is a contractible space, and so $[S^m, \mathbb{R}^n] = 0$ for all n, m which makes its homotopy groups all zero.
- $D(k, \mathbb{R}^n) = \mathbb{R}^n \{x_1 \dots x_k\} \simeq \bigvee_{i=1}^k S^i$ by a deformation retract.
- $S^n \cong B^n/\partial B^n$ and employs an attaching map

$$\varphi: (D^n, \partial D^n) \longrightarrow S^n$$

 $(D^n, \partial D^n) \mapsto (e^n, e^0).$

- $B^n \simeq \mathbb{R}^n$ by normalizing vectors.
- Use the inclusion $S^n \hookrightarrow B^{n+1}$ as the attaching map.
- $\mathbb{CP}^1 \cong S^2$.

- $\mathbb{RP}^1 \cong S^1$.
- Use $[\pi_1, \prod] = 0$ and the universal cover $\mathbb{R}^1 \to S^1$ to yield the cover $\mathbb{R}^n \to T^n$.
- Take the universal double cover $S^n \to^{\times 2} \mathbb{RP}^n$ to get equality in $\pi_{i\geq 2}$.
- Use $\mathbb{CP}^n = S^{2n+1}/S^1$
- Alternatively, the fundamental group is $\mathbb{Z} * \mathbb{Z}/bab^{-1}a$. Use the fact the $\tilde{K} = \mathbb{R}^2$.
- $M \simeq S^1$ by deformation-retracting onto the center circle.
- $D(1, S^n) \cong \mathbb{R}^n$ and thus $D(k, S^n) \cong D(k-1, \mathbb{R}^n) \cong \bigvee^{k-1} S^1$

4.3 Euler Characteristics

- Only surfaces with positive χ :
 - $-\chi S^2 = 2$
 - $-\chi \mathbb{RP}^2 = 1$
 - $-\chi B^2 = 1$
- Manifolds with zero χ
 - $-T^2, K, M, S^1 \times I$
- Manifolds with negative χ
- $\Sigma_{q>2}$ by $\chi(X) = 2 2g$.

4.4 Useful Facts and Techniques

- Homotopy Groups
 - Hurewicz map
- Homology
 - Mayer-Vietoris

*
$$(X = A \bigcup B) \mapsto (\bigcap, \oplus, \bigcup)$$
 in homology

- LES of a pair

$$* (A \hookrightarrow X) \mapsto (A, X, X/A)$$

- Excision
- $\pi_{i>2}(X)$ is always abelian.
- The ranks of π_0 and H_0 are the number of path components, and $\pi_0(X) = \mathbb{Z}$ iff X is simply connected.
 - X simply connected $\implies \pi_k(X) \cong H_k(X)$ up to and including the first nonvanishing H_k
 - $-H_1(X) = Ab(\pi_1 X)$, the abelianization.
- General mantra: homotopy plays nicely with products, homology with wedge products.¹

¹More generally, in **Top**, we can look at $A \leftarrow \{pt\}$ → B – then $A \times B$ is the pullback and $A \vee B$ is the pushout. In this case, homology $h : \mathbf{Top} \longrightarrow \mathbf{Grp}$ takes pushouts to pullbacks but doesn't behave well with pullbacks. Similarly, while π takes pullbacks to pullbacks, it doesn't behave nicely with pushouts.

In general, homotopy groups behave nicely under homotopy pull-backs (e.g., fibrations and products), but not homotopy push-outs (e.g., cofibrations and wedges). Homology is the opposite.

- $\pi_k \prod X = \prod \pi_k X$ by LES.²
- $H_k \prod X \neq \prod H_k X$ due to torsion.
 - Nice case: $H_k(A \times B) = \prod_{i+j=k} H_i A \otimes H_j B$ by Kunneth when all groups are torsion-free.³
- $H_k \bigvee X = \prod H_k X$ by Mayer-Vietoris.⁴
- $\pi_k \bigvee X \neq \prod \pi_k X$ (counterexample: $S^1 \vee S^2$)
 - Nice case: $\pi_1 \bigvee X = *\pi_1 X$ by Van Kampen.
- $\pi_i(\widehat{X}) \cong \pi_i(X)$ for $i \geq 2$ whenever $\widehat{X} \twoheadrightarrow X$ is a universal cover.
- Groups and Group Actions
 - $-\pi_0(G) = G$ for G a discrete topological group.
 - $-\pi_k(G/H) = \pi_k(G) \text{ if } \pi_k(H) = \pi_{k-1}(H) = 0.$
 - $-\pi_1(X/G) = \pi_0(G)$ when G acts freely/transitively on X.
- Manifolds
 - $-H^n(M^n)=\mathbb{Z}$ if M^n is orientable and zero if M^n is nonorientable.
 - Poincaré Duality: $H_iM^n = \cong H^{n-i}M^n$ iff M^n is closed and orientable.

4.5 Other Interesting Things To Consider

- \bullet The "generalized uniform bouquet"? $\mathcal{B}^n(m) = \bigvee_{i=1}^n S^m$
- Lie Groups
 - The real general linear group, $GL_n(\mathbb{R})$
 - * The real special linear group $SL_n(\mathbb{R})$
 - * The real orthogonal group, $O_n(\mathbb{R})$
 - · The real special orthogonal group, $SO_n(\mathbb{R})$
 - * The real unitary group, $U_n(\mathbb{R})$
 - · The real special unitary group, $SU_n(\mathbb{R})$

$$H_n\left(\prod_{i=1}^k X_i\right) = \bigoplus_{\mathbf{x} \in \mathcal{D}(n,k)} \bigotimes_{i=1}^k H_{x_i}(X_i).$$

²This follows because $X \times Y \twoheadrightarrow X$ is a fiber bundle, so use LES in homotopy and the fact that $\pi_{i \geq 2} \in \mathbf{Ab}$.

³The generalization of Kunneth is as follows: write $\mathcal{P}(n,k)$ be the set of partitions of n into k parts, i.e. $\mathbf{x} \in \mathcal{P}(n,k) \implies \mathbf{x} = (x_1, x_2, \dots, x_k)$ where $\sum x_i = n$. Then

 $^{^4\}bigvee$ is the coproduct in the category \mathbf{Top}_0 of pointed topological spaces, and alternatively, $X\vee Y$ is the pushout in \mathbf{Top} of $X\leftarrow \{\mathrm{pt}\}\longrightarrow Y$

- * The real symplectic group Sp(n)
- "Geometric" Stuff
 - Affine n-space over a field $\mathbb{A}^n(k) = k^n \rtimes GL_n(k)$
 - The projective space $\mathbb{P}^n(k)$
 - * The projective linear group over a ring R, $PGL_n(R)$
 - * The projective special linear group over a ring R, $PSL_n(R)$
 - * The modular groups $PSL_n(\mathbb{Z})$
 - · Specifically $PSL_2(\mathbb{Z})$
- The real Grassmannian, $Gr(n, k, \mathbb{R})$, i.e. the set of k dimensional subspaces of \mathbb{R}^n
- The Stiefel manifold $V_n(k)$
- Possible modifications to a space X:
 - Remove k points by taking D(k, X)
 - Remove a line segment
 - Remove an entire line/axis
 - Remove a hole
 - Quotient by a group action (e.g. antipodal map, or rotation)
 - Remove a knot
 - Take complement in ambient space
- Assorted info about other Lie Groups:
- \bullet $O_n, U_n, SO_n, SU_n, Sp_n$
- $\pi_k(U_n) = \mathbb{Z} \cdot \mathbb{1} [k \text{ odd}]$

$$-\pi_1(U_n)=1$$

• $\pi_k(SU_n) = \mathbb{Z} \cdot \mathbb{1} [k \text{ odd}]$

$$-\pi_1(SU_n) = 0$$

- $\pi_k(U_n) = \mathbb{Z}/2\mathbb{Z} \cdot \mathbb{1} [k = 0, 1 \mod 8] + \mathbb{Z} \cdot \mathbb{1} [k = 3, 7 \mod 8]$
- $\pi_k(SP_n) = \mathbb{Z}/2\mathbb{Z} \cdot \mathbb{1} [k = 4, 5 \mod 8] + \mathbb{Z} \cdot \mathbb{1} [k = 3, 7 \mod 8]$

4.6 Spheres

- $\pi_i(S^n) = 0$ for i < n, $\pi_n(S^n) = \mathbb{Z}$
 - Not necessarily true that $\pi_i(S^n) = 0$ when i > n!!!
 - * E.g. $\pi_3(S^2) = \mathbb{Z}$ by Hopf fibration
- $H_i(S^n) = 1 [i \in \{0, n\}]$
- $H_n(\bigvee_i X_i) \cong \prod_i H_n(X_i)$ for "good pairs"
 - Corollary: $H_n(\bigvee_k S^n) = \mathbb{Z}^k$
- $S^n/S^k \simeq S^n \vee \Sigma S^k$

$$-\Sigma S^n = S^{n+1}$$

• S^n has the CW complex structure of 2 k-cells for each $0 \le k \le n$.

5 Fall 2014

5.1 1. Let $X = \mathbb{R}^3 - \Delta^{(1)}$, the complement of the skeleton of regular tetrahedron, and compute $\pi_1(X)$ and $H_*(X)$.

Lay the graph out flat in the plane, then take a maximal tree - these leaves 3 edges, and so $\pi_1(X) = \mathbb{Z}^{*3}$.

Moreover $X \simeq S^1 \vee S^1 \vee S^1$ which has only a 1-skeleton, thus $H_*(X) = [\mathbb{Z}, \mathbb{Z}^3, 0 \to]$.

5.2 2. Let $X = S^1 \times B^2 - L$ where L is two linked solid torii inside a larger solid torus. Compute $H_*(X)$.

?

5.3 3. Let L be a 3-manifold with homology $[\mathbb{Z}, \mathbb{Z}_3, 0, \mathbb{Z}, \ldots]$ and let $X = L \times \Sigma L$. Compute $H_*(X), H^*(X)$.

Useful facts:

- $H_k(X \times Y) \cong \bigoplus_{i+j=k} H_i(X) \otimes H_j(Y) \bigoplus_{i+j=k-1} \operatorname{Tor}(H_i(X), H_j(Y))$ $\tilde{H}_i(\Sigma X) = \tilde{H}_{i-1}(X)$

We will use the fact that $H_*(\Sigma L) = [\mathbb{Z}, \mathbb{Z}, \mathbb{Z}_3, 0, \mathbb{Z}].$

Represent $H_*(L)$ by $p(x,y) = 1 + yx + x^3$ and $H_*(\Sigma L)$ by $q(x,y) = 1 + x + yx^2 + x^4$, we can extract the free part of $H_*(X)$ by multiplying

$$p(x,y)q(x,y) = 1 + (1+y)x + 2yx^{2} + (y^{2}+1)x^{3} + 2x^{4} + 2yx^{5} + x^{7}$$

where multiplication corresponds to the tensor product, addition to the direct sum/product.

So the free portion is

$$H_*(X) = [\mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}_3, \mathbb{Z}_3 \otimes \mathbb{Z}_3, \mathbb{Z} \oplus \mathbb{Z}_3 \otimes \mathbb{Z}_3, \mathbb{Z}^2, \mathbb{Z}_3^2, 0, \mathbb{Z}]$$
$$= [\mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z} \oplus \mathbb{Z}_3, \mathbb{Z}^2, \mathbb{Z}_3^2, 0, \mathbb{Z}]$$

We can add in the correction from torsion by noting that only terms of the form $Tor(\mathbb{Z}_3, \mathbb{Z}_3) = \mathbb{Z}_3$ survive. These come from the terms i=1, j=2, so $i+j=k-1 \implies k=1+2+1=4$ and there is thus an additional torsion term appearing in dimension 4. So we have

$$H_*(X) = [\mathbb{Z}, \mathbb{Z} \times \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z} \times \mathbb{Z}_3, \mathbb{Z}^2 \times \mathbb{Z}_3, \mathbb{Z}_3^2, 0, \mathbb{Z}]$$

= $[\mathbb{Z}, \mathbb{Z}, 0, \mathbb{Z}, \mathbb{Z}^2, 0, 0, \mathbb{Z}] \times [0, \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z}_3^2, 0, 0]$

and

$$H^{*}(X) = [\mathbb{Z}, \mathbb{Z}, 0, \mathbb{Z}, \mathbb{Z}^{2}, 0, 0, \mathbb{Z}] \times [0, 0, \mathbb{Z}_{3}, \mathbb{Z}_{3}, \mathbb{Z}_{3}, \mathbb{Z}_{3}, \mathbb{Z}_{3}, \mathbb{Z}_{3}, 0]$$
$$= [\mathbb{Z}, \mathbb{Z}, \mathbb{Z}_{3}, \mathbb{Z} \times \mathbb{Z}_{3}, \mathbb{Z}^{2} \times \mathbb{Z}_{3}, \mathbb{Z}_{3}, \mathbb{Z}_{3}, \mathbb{Z}_{3}, \mathbb{Z}].$$

5.4 4. Let M be a closed, connected, oriented 4-manifold such that $H_2(M; \mathbb{Z})$ has rank 1. Show that there is not a free \mathbb{Z}_2 action on M.

Useful facts:

- $X \rightarrow_{\times p} Y$ induces $\chi(X) = p\chi(Y)$
- Moral: always try a simple Euler characteristic argument first!

We know that $H_*(M) = [\mathbb{Z}, A, \mathbb{Z} \times G, A, \mathbb{Z}]$ for some group A and some torsion group G. Letting $n = \operatorname{rank}(A)$ and taking the Euler characteristic, we have $\chi(M) = (1)1 + (-1)n + (1)1 + (-1)n + (1)1 =$ 3-2n. Note that this is odd for any n.

However, a free action of $\mathbb{Z}_2 \curvearrowright M$ would produce a double covering $M \twoheadrightarrow_{\times 2} M/\mathbb{Z}_2$, and multiplicativity of Euler characteristics would force $\chi(M) = 2\chi(M/\mathbb{Z}_2)$ and thus 3 - 2n = 2k for some integer k. This would require 3-2n to be even, so we have a contradiction.

5.5 5. Let X be T^2 with a 2-cell attached to the interior along a longitude. Compute $\pi_2(X)$.

Useful facts:

- $T^2 = e^0 + e_1^1 + e_2^1 + e^2$ as a CW complex. $S^2/(x_0 \sim x_1) \simeq S^2 \wedge S^1$ when x_0, x_1 are two distinct points. (Picture: sphere with a string handle connecting north/south poles.)
- $\pi_{\geq 2}(\tilde{X}) \cong \pi_{\geq 2}(X)$ for $\tilde{X} \to X$ the universal cover.

Write $T^2 = e^0 + e_1^1 + e_2^1 + e^2$, where the first and second 1-cells denote the longitude and meridian respectively. By symmetry, we could have equivalently attached a disk to the meridian instead of the longitude, filling the center hole in the torus. Contract this disk to a point, then pull it vertically in both directions to obtain S^2 with two points identified, which is homotopy-equivalent to $S^2 \vee S_1$.

Take the universal cover, which is $\mathbb{R}^1 \bigcup S^2$ and has the same π_2 . This is homotopy-equivalent

to $\bigvee_{X} S^2$ and so $\pi_2(X) = \prod_{X} \mathbb{Z}$ generated by each distinct copy of S^2 . (Alternatively written as $\mathbb{Z}[t, t^{-1}]$).

6 Extra Problems

- 1. Compute $\pi_1(X)$ where $X := S^2 / \sim$, where $x \sim -x$ only for x on the equator $S^1 \hookrightarrow S^2$.
- Hint: try cellular homology. Should yield $[\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}, 0, \cdots]$.
- 3. Show that a local homeomorphism between compact Hausdorff spaces is a covering space.

- 4. Describe all connected covering spaces of $\mathbb{RP}^2 \vee \mathbb{RP}^2$.
- 5. Compute the homology of the Klein bottle using the Mayer-Vietoris sequence and a decomposition $K=M\coprod_f M$
- 6. Show that if $X = S^2 \coprod_{id} S^2$ is a pushout along the equators, then $H_n(X) = [\mathbb{Z}, 0, \mathbb{Z}^3, 0, \cdots]$.
- 7. Use the Kunneth formula to compute $H^*(S^2 \times S^2; \mathbb{Z})$.
- Known to be $[\mathbb{Z}, 0, \mathbb{Z}^2, 0, \mathbb{Z}, 0, 0, \cdots]$.
- 9. Compute $H^*(S^2 \vee S^2 \vee S^4)$
- Known to be $[\mathbb{Z}, 0, \mathbb{Z}^2, 0, \mathbb{Z}, 0, 0, \cdots]$.
- 10. Show that $\chi(\Sigma_q + \Sigma_h) = \chi(\Sigma_q) + \chi(\Sigma_h) 2$.

Suggested by Ernest

- 1. Let X be a compact space and let A be a closed subspace. Show that A is compact.
- 2. Let $f: X \to Y$ be a continuous function, with X compact. Show that f(X) is compact.
- 3. Let A be a compact subspace of a Hausdorff space X. Show that A is closed.
- 4. Show that a continuous bijection from a compact space to a Hausdorff space is a homeomorphism.