Dominant-Scale Analysis for Hodgkin-Huxley Type Equations

Robert Clewley

rclewley@bu.edu

Center for Biodynamics, Boston University

Overview

- Motivation
- Hodgkin-Huxley type equations
- A model from neuroscience
- Quantifying dominance
- Dominant-scales and reduced models
- Attractor estimation
- Application to other systems

Supported by NSF grant #DMS-0211505

Motivation

- Systems of ODEs with intrinsic multiple time-scales ubiquitous in natural science
 - e.g. Van der Pol relaxation oscillator
- State-dependent coupling can introduce other time-scales
 - ... not explicit in equations
 - e.g. impulses
- Complexity of high-dimensional systems limits intuition

Motivation

- Near orbits of interest, we'd like to know
 - which variables dominate its structure at what times?
 - what are its effective local degrees of freedom?
 - how large is its "attractor" basin?
 - what bifurcations are nearby?
- Analytical method for non-intuitive dynamics
 - partition orbits into successive 'events'
 - low-dimensional approximate models
 - automated analysis tool (MATLAB code)

Form of H-H equations

Hodgkin-Huxley in class of conductance-based equations:

(everything is scalar)

$$C\dot{V} = \sum I_{\text{ionic}}(V, t) + \sum I_{\text{external}}(V, t)$$

$$\tau_g(V)\dot{g} = g_{\infty}(V) - g$$

$$\vdots \qquad \vdots$$

- Membrane potential $V(t) \in [-100, 50] \text{ mV}$
- Gating variables $g(t) \in [0, 1]$, etc.
- Ionic currents and some external currents $\bar{g}g(t) (V_{rev} V)$
- External currents can also be directly additive I(t)

Example from neuroscience

- Two-layer network of cells in hippocampus
- Coherent network rhythm important [1]
- E cells synch. long-distance (due to modulation by I)
- Why? I cells fire twice per E cycle (doublet) [2]

- [1] Traub, R., Whittington, M., et al, Nature (London) 328, 1996
- [2] Ermentrout, G. B., Kopell, N. J., Proc. Nat. Acad. Sci. USA, 95, 1259–1264, 1998

Effective low-dimensionality

- How does this 30-D system possess additional structure?
- Slaving, modulation, and independence between variables important
 - Threshold spike dynamics = almost unsuppressable fast cascade
 - Post-synaptic response slaved to pre-synaptic spiking V
 - ▶ Network topology ⇒ variables not directly dependent on others
 - ...etc.

Spike Time Maps

- Ermentrout & Kopell [2] and others:
 - study successive "spiking times" (near limit cycle)
- Relationships through Spike Time Maps (e.g. 1D)
- STMs a good predictor of network synchronization properties
- Requires intuition and careful observation to understand dominance
- Maps have no guaranteed domain of existence, accuracy, or rigorous justification

Focus on a simpler system

To understand concepts of 'events', 'epochs' & 'dominance' focus on a sub-system with uni-directional forcing I → E

Variables' inter-relations

Equations for H-H system

Equations for excitatory cell:

Membrane potential
$$\dot{V} = g_{tot}(t) (V_{\infty}(t) - V)$$

 $= \bar{g}_m m^3 h(V_m - V) + \bar{g}_n n^4 (V_n - V)$
 $+ \bar{g}_L(V_L - V) + \bar{g}_s s(V_s - V) + I$
Sodium activation $\dot{m} = \frac{1}{\tau_m(V)} (m_{\infty}(V) - m)$
Sodium inactivation $\dot{h} = \frac{1}{\tau_h(V)} (h_{\infty}(V) - h)$
Potassium activation $\dot{n} = \frac{1}{\tau_n(V)} (n_{\infty}(V) - n)$
Inhibitory synapse $\dot{s} = \frac{1}{\tau_s(V_{inhib})} (s_{\infty}(V_{inhib}) - s)$
 $= \alpha \Theta(V_{inhib}) (1 - s) - \beta s$

Notation

... defining the 'target voltage' (quasi-static fixed point)

$$V_{\infty}(t) = \frac{\sum_{i} \bar{g}_{i} g_{i}(t) V_{i} + I}{\sum_{i} \bar{g}_{i} g_{i}(t)}$$

and the total conductance

$$g_{tot}(t) = \sum_{i} \bar{g}_{i}g_{i}(t)$$

where $1/g_{tot}$ measures the timescale of V attraction to V_{∞}

• Note that $V_{\infty}(t)$ solves dV/dt=0

Quantifying dominance

- Dominant influence of input terms over V(t) underlies the structure of an orbit
 - Conductance inputs $\bar{g}_i g_i(t)$ affect both $V_\infty(t)$ and the relaxation timescale $1/g_{tot}(t)$
 - Direct current inputs affect only V_{∞}
- Unified way to compare influence of all inputs?
 - Relative size of terms in RHS is one way
 - We use a similar way that's helpful later . . .

Dominance defined

Our definition of dominance strength of a variable over V is

How much can a change in an input variable move V_{∞} ?

e.g. for conductance-based input:

$$\Psi_k(t) := g_k(t) \left| \frac{\partial V_{\infty}}{\partial g_k}(t) \right|$$

$$= \frac{\bar{g}_k g_k(t)}{g_{tot}(t)} |V_k - V_{\infty}(t)|$$

due to conditional linearity of conductance-based ODEs

There is a corresponding formula for direct current inputs to V.

Computing dominant variables

- At each t, $\Psi_k(t)$ values compared in size, ranked
- Disregard weakest
 - when ratio to largest Ψ is smaller than a scale threshold σ
- Remaining dominant variables are called actives
- Candidate active variables are the inputs to the V(t) equation
 - m, n, s, I (drive current), L (leak current)
 - treat h as part of \bar{g}_m here

Partitioning orbit into epochs

- An event is a change in {actives}
- An epoch is the time interval between consecutive events
- Detect events using a MATLAB code
 - calculates $\Psi_k(t)$ values along a numerically computed orbit
 - uses term structure of the differential equations
- Partitions orbit into epochs accordingly . . .

Example epochs ($\sigma = 2.1$)

Example epochs ($\sigma = 2.1$)

Suppose for $t \in [208, 210)$ the m variable is the only active

What information does this give?

Asymptotic intuition

Use a helpful property of the *signed* dominance strengths Ψ^* to interpret the consequence:

$$\sum_{k} \Psi_{k}^{*} = 0$$

$$\Psi_{m}^{*} + \sum_{k \neq m} \Psi_{k}^{*} = 0$$

$$\Psi_{m}^{*} + \mathcal{O}(\varepsilon) = 0 \quad \text{(defining } \varepsilon := 1/\sigma\text{)}$$

$$\frac{\bar{g}_{m}hm^{3}}{g_{tot}} (V_{m} - V_{\infty}) + \mathcal{O}(\varepsilon) = 0$$

$$V_{\infty}(t) - V_{m} = \mathcal{O}(\varepsilon) \quad \text{provided } \bar{g}_{m}hm^{3} \text{ is } \mathcal{O}(1)$$

Local models

Therefore, over this epoch, $\mathcal{O}(\varepsilon)$ -accurate local model is

$$\dot{V} = \bar{g}_m h m^3 (V_m - V)$$

$$\dot{m} = \frac{1}{\tau_m(V)} (m_\infty(V) - m)$$

- Analysis reduced dimension to 3 (V, m, h) cf. original 5
- $m{\omega}$ ε (not necessarily small) controls largest error
- Strong dissipation → no error accumulation
- Different to a center manifold reduction . . .
 - approximate model is valid only locally in time
 - may include transient decaying strong variables

Estimating attraction

Now consider epoch with $\{s,I\}$ active, for $t \in [t_i,t_{i+1})$

- Solve reduced V equation using Variation of Constants
- Flow map $\phi_i\left(t_i;V_0\right)= ilde{V}(t)$ is affine linear in V_0
- Define Φ_i to map a neighbourhood N_i of V_0 at t_i to that at t_{i+1} using ϕ_i

Map concatenation

- Epoch's linear flow map Φ_i : initial interval $N_i \to \text{final interval } N_{i+1}$
- $m \Phi_i$ a contraction due to dissipative voltage eqn, but not necessary
- Contraction rate is Floquet-like multiplier
- $(\Phi_P \circ \cdots \circ \Phi_1)(N_1)$ approximates Poincaré map (with known domain)

Estimating attractor basin around V(t)

- Goal interval N_P at end of P^{th} epoch
- Maximize initial intervals such that $\Phi_i(N_i) \subset N_{i+1}$
 - ... use inverse mapped interval $\Phi^{-1}(N_{i+1})$
- Self-consistency conditions:
 - ullet intervals must exclude V values that violate epoch's { actives }
 - use relative timescales of variables here
- Attractor basin estimate is $\{N_i\}_{i=1,...,P}$
- Caveats:
 - accept some controllable error in Φ_i maps
 - do not expect to find all states that converge to the attractor

V attractor basin

V attractor basin (close-up of spike)

Benefits of this method

- Avoids expensive shooting method to determine the actual nearby orbits that meet epoch conditions
- MATLAB algorithm
 - needs few sample points (fast and efficient)
 - tunable accuracy
- Explictly indicates role of dominant variables
- Indicates degree of robustness of dynamics w.r.t. perturbation in V or its inputs
- Identification of bifurcation scenarios? (then use Αυτο)

Potentially active inputs

- $\Psi_k(t)$ can also be used to find input variables that would be actives if their value changed
- These are called potentials
 - (can be solved for explicitly in H-H equations)
- A lack of potentials at time t indicates robustness of local model of V dynamics during that epoch
- {potentials} indicates directions of instability for the orbit
 - i.e. to perturbations of inputs (rather than of V)
- Potentials help guide determination of analysis regimes

Dominant-scale analysis

- Partition a known high-D trajectory into epochs
- Epochs: low-D approximate model & linear

 flow map
- measures local contraction of vector field
- ullet Self-consistency conditions and Φ
 - estimate local attractor basin
- Epochs and {potentials} → reduced model regimes
- Overall contraction → diminishing approximation error

Summary

- Computational method to study dynamical structure of a high-dimensional coupled H-H system near known orbits
 - no a priori reduction of system needed
 - helps computational neuroscientists simplify detailed models
 - guides further experiments to focus on active components
- Method implemented in MATLAB 'DSSRT' code
 - available at my CBD website
- Applications to other nonlinear coupled systems

Example nonlinear system

FitzHugh-Nagumo oscillator:

$$x' = ax (1 - bx^2) - y + I + gs(t) (x_r - x)$$

$$y' = (\tanh(5x) - y) / \tau$$

Model of FHN (pseudo-linearize *u* equation):

$$u' = au - bw^{2}u - v + I + gs(t) (u_{r} - u)$$

$$v' = (\tanh(5u) - v) / \tau$$

$$w' = (u - w) / \tau_{w}$$

or ... $w = u(t - \tau_w)$, where τ_w is small.

FHN example continued

- FHN equations not 'conditionally linear'
- For small τ_w , model tracks FHN system closely
- $\ \ \, \ \ \, \ \, \ \,$ Sacrifice a dimension for conditional linearity of u equation
- Quasi-static fixed point is an attractor and repeller, in different epochs
- Bounds on dynamical variables not explicit

Flow map Φ derivation

Suppose for some epoch $t \in [t_i, t_{i+1})$, approximate model for V is

$$\dot{V} = \sum_{k} \bar{g}_{k} g_{k}(t) (V_{k} - V) + I, \quad V(t_{i}) = V_{0}$$

$$= A(t)V + B(t) \qquad A(t), B(t) \text{ known}$$

$$\therefore V(t) = \exp\left(\int_{t_{i}}^{t} A(r) dr\right) V_{0}$$

$$+ \int_{t_{i}}^{t} [A(u) + B(u)] \exp\left(\int_{r}^{t} A(r) dr\right) du$$

$$= P(t)V_{0} + Q(t)$$

$$= \phi_{i}(t; V_{0}) \qquad \text{affine linear in } V_{0}$$

Define $\Phi_i : \mathbb{R} \to \mathbb{R}, \ \Phi_i = v \mapsto \phi_i(t_{i+1}; v) + \Delta_{i+1}$

More on asymptotics

$$\sum_{k} \frac{\Psi_{k}^{*}}{p_{k}} = \frac{\bar{g}_{m}m^{3}h}{g_{tot}} (V_{m} - V_{\infty}) + \frac{\bar{g}_{n}n^{4}}{g_{tot}} (V_{n} - V_{\infty})$$

$$+ \frac{\bar{g}_{s}s}{g_{tot}} (V_{s} - V_{\infty}) + \frac{I}{g_{tot}} + \frac{\bar{g}_{L}}{g_{tot}} (V_{L} - V_{\infty})$$

$$= \frac{\bar{g}_{m}m^{3}hV_{m} + g_{n}n^{4}V_{n} + \bar{g}_{s}sV_{s} + V_{L} + I}{g_{tot}}$$

$$- \frac{\bar{g}_{m}m^{3}h + \bar{g}_{n}n^{4} + \bar{g}_{s}s + g_{L}}{g_{tot}}V_{\infty}$$

$$= V_{\infty} - \frac{g_{tot}}{g_{tot}}V_{\infty}$$

$$= 0$$

using the definitions of g_{tot} and V_{∞}