GROUP – D (Answer any one)

- 8. (a) A small particle has a charge $-5\mu C$ and mass $2.00 \times 10^{-4} kg$. It moves from point A, where the electric potential is $V_A = +200 V$ to point B, where the electric potential is $V_B = +800 V$. The electric force is the only force acting on the particle. The particle has speed 5.00 m/s at point A. What is its speed at point B?. Is it moving faster or slower at B than at A? Explain.
 - (b) The combination of two capacitors of capacitance $4\mu F$ & $6\mu F$ are connected in series is connected to a battery. If the voltage across the 4- μF capacitance is 3V, find the terminal voltage across the battery.
- 9. (a) A circular coil 0.05 *m* in radius, with 30 *turns* of wire, lies in a horizontal plane. It carries a counterclockwise current of 5 *A*. The coil is in a uniform 1.2 *T* magnetic field directed toward the right. Find the magnitude of the magnetic moment and the torque on the coil.
 - (b) A 20-μF capacitor is charged by a 150-V power supply, then disconnected from the power and connected in series with a 0.28-mH inductor. Calculate
 - (i) the oscillation frequency of the circuit,
 - (ii) the energy stored in the capacitor at the moment of connection with the inductor i.e t = 1.3 s

End of Questions

Page 4of 4 ` page 1 of 4

5

5

End-Semester Examination, July-2015 UPEM

Full Marks: 60 Time: 3 Hours

Questions in Group-A are compulsory. Answer two questions from Group-B, two questions from group-C and one question from Group-D. Answer all parts of a question at one place only. The figures in the right hand margin indicate marks.

GROUP - A (Answer All) 1x10

- 1. (a) What is the magnitude of electric field E at a point 2.0 m from a point charge q = 4.0 nC?
 - (b) What is the magnitude and direction of dipole moment of an electric dipole?
 - (c) A wire of 20Ω resistance is stretched to twice its original length. What will be its new resistance?
 - (d) What is the difference between electron volt and volt?
 - (e) What is the significance of 'time constant' of R-C circuit?
 - f) A particle with charge 'q' is moving inside an uniform magnetic field B with a velocity 'v' perpendicular to the direction of magnetic field. What will be the trajectory of the particle? Justify your answer.
 - (g) Write down the Maxwell's equation which explains non-existence of magnetic monopole.
 - (h) Calculate the work done in taking charge particle $(q = 3.2 \times 10^{-12} \text{ C})$ through a distance x = 2.0 cm on a equipotential surface of 10V.
 - (i) When two capacitors of equal capacitance are connected in series and parallel. Find out the value of equivalent capacitance in above connection.
 - (j) If a varying current is passed through a coil, then what will be the magnitude of the self inductance of the coil?

GROUP - B (Answer any two)

- 2. (a) Derive an expression for the torque on an electric dipole placed in a uniform electric field. Hence define electric dipole moment.
 - (b) Two point charges +q and +4q are separated by a distance of 6 cm. Find the point on the line joining the two charges where the resultant electric field is zero.
- 3. (a) Using Gauss's law, calculate the electric field due to uniformly charged long straight conductor of linear charge density λ Cm^{-1} at a distance r from its axis.
 - (b) An electric dipole of dipole moment 2.5×10^5 Cm is enclosed by a closed surface. What is the net flux coming out of the surface?
- 4. (a) Find an expression for the energy stored in a parallel plate capacitor of capacitance C when it is charged to the final charge $Q_{\rm f}$ & hence find energy density in between the plates.
 - (b) The pates of a parallel-plate capacitor in vacuum are 5.00 mm apart and in 2.00 m² area. A10.0-kV potential difference is applied across the capacitor. Compute (a) the capacitance; (b) the charge on each plate; and (c) the magnitude of the electric field between the plates.

GROUP - C (Answer any two)

5. (a) What is drift velocity of electron inside a conductor?

Derive the expression for the drift velocity of electron and conduction current in a conductor when electric field

is applied across the conductor.

- (b) A beam of electrons moves at 3 x 10⁵ m/s through a uniform 2.0 T magnetic field directed along the positive z- axis. The velocity of each electron lies in the xz-plane and is directed at 30⁰ to the +z axis. Find the force on an electron.
- 6. (a) Derive expression for instantaneous charge and current in a R-C circuit when the capacitor is being charged and discuss graphically the growth of charge and decay of current in the process.
 - (b) A long, straight conductor carries a 1.0-A current. At what distance from the axis of the conductor does the resulting magnetic field have magnitude $B = 0.5 \times 10^{-4}$ T?

7

- 7. (a) What is displacement current? How the concept of the displacement current used by Maxwell to modify the Ampere's circuital law.
 - (b) Two straight, parallel, superconducting wires 4.5 mm apart carry equal currents of 15,000A in opposite directions. What force, per unit length, does each wire exert on the other?

Page 2 of 4 page 3 of 4