Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Τοπικοί Μετασχηματισμοί

- □ Δεδομένου γραφήματος G(V, E):
 - Διαγραφή / προσθήκη ακμής e: G-e και G+e
 - Διαγραφή κορυφής v: G-v
 - Αφαιρούμε ν και όλες τις ακμές που προσπίπτουν στη ν.
 - Υποδιαίρεση ακμής {u, v}: νέα κορυφή w «παρεμβάλλεται» στην {u, v} και έχουμε {u, w}, {w, v} αντί της {u, v}.
 - Απλοποίηση σειράς (κορυφής w βαθμού 2): ακμές {u, w}, {w, v} αντικαθίστανται από {u, v}.
 - k-οστή δύναμη του G: G^k
 - Ιδιο σύνολο κορυφών V.
 - Κορυφές u και v ενώνονται με ακμή στο G^k
 ανν συνδέονται με μονοπάτι μήκους ≤ k στο G.

Σύμπτυξη Ακμής

- **Σ**ὑμπτυξη (contraction) ακμής {u, v}:
 - Αντικατάσταση u, v από μία νέα κορυφή uv.
 - Κάθε ακμή {x, u} / {x, v} αντικαθίσταται από ακμή {x, uv}.
 - Ακμή {u, v} και πιθανές παράλληλες ακμές παραλείπονται (εκτός αν θεωρούμε πολυγραφήματα).

Σύνδεση Γραφημάτων

- Σύνδεση (join) G*Η δύο γραφημάτων G και Η:
 - Διατηρούμε τα γραφήματα G και Η ως έχουν.
 - Συνδέουμε όλες τις κορυφές του G με όλες τις κορυφές του Η.

 $G*H = (V(G) \cup V(H), E(G) \cup E(H) \cup \{\{u, v\} : u \in V(G), v \in V(H)\})$

Γινόμενο Γραφημάτων

- □ (Καρτεσιανό) γινόμενο (product) G × Η γραφημάτων G και Η:
 - Γράφημα με V(G) × V(H) κορυφές που περιέχει ένα αντίγραφο του Η για κάθε κορυφή του G και ένα αντίγραφο του G για κάθε κορυφή του H.

$$V(G \times H) = \{(u, v) : u \in V(G), v \in V(H)\}$$

$$E(G \times H) = \{\{(u, x), (v, x)\} : \{u, v\} \in E(G), x \in V(H)\} \cup \{\{(y, u), (y, v)\} : y \in V(G), \{u, v\} \in E(H)\}$$

- lacksquare ... με πίνακα γειτνίασης: $A[i,j] = egin{cases} 1 & (v_i,v_j) \in E \\ 0 & (v_i,v_j)
 otin E \end{cases}$
 - lacksquare Αν έχουμε βάρη, $A[i,j]=w(v_i,v_j)$
 - (Απλό) μη κατευθυνόμενο: συμμετρικός, διαγώνιος 0.
 - Άθροισμα στοιχείων γραμμής (στήλης): βαθμός κορυφής.

	1	2	3	4	5	6	
1	0	1	1	0	0	0	
2	1	0	1	0	0	0	
3	1	1	0	1	1	0	
4	0	0	1	0	0	1	
5	0	0	1	0	0	0	
6	0	0	0	1	0	0	

- lacksquare ... με πίνακα γειτνίασης: $A[i,j] = egin{cases} 1 & (v_i,v_j) \in E \\ 0 & (v_i,v_j)
 otin E \end{cases}$
 - lacksquare Αν έχουμε βάρη, $A[i,j]=w(v_i,v_j)$
 - Άθροισμα στοιχείων γραμμής / στήλης σε κατευθυνόμενο:
 ἑξω-βαθμός / ἐσω-βαθμός κορυφής.

	1	2	3	4	5	6	
1	0	0	1	0	0	0	
2	1	0	0	1	0	0	
3	0	1	0	1	1	0	
4	0	1	0	0	0	1	
5	0	0	0	0	0	1	
6	0	0	1	0	0	0	

Πίνακας Γειτνίασης

- \square $A^k[u_i, u_i] = \#διαδρομών <math>u_i u_i$ μήκους k (απλά γραφήματα).
 - Απόδειξη με επαγωγή και πολλαπλασιασμό πινάκων.
 - Διαγώνιος τετραγώνου (μη κατευθυνόμενα): $A^2[u_i, u_i] = βαθμός(u_i)$.
 - $A^3[u_i, u_i] = 2 \times \#$ τριγώνων που συμμετέχει u_i .
 - \blacksquare Πλήθος τριγώνων = $\sum_{i=1}^{\infty} A^3[u_i, u_i]/6$
- □ $Y[u_i, u_j] = \# διαδρομών u_i u_j μήκους ≤ n 1.$ $Y = \sum_{i=1}^n A^k$
 - Μονοπάτια έχουν μήκος \leq n 1, και διαδρομή ανν μονοπάτι.
 - Γράφημα συνεκτικό ανν όλα τα στοιχεία του Υ θετικά (> 0).
- □ Μἡκος ελάχιστου (#ακμών) u_i u_i μονοπατιού:
 - Ελάχιστη τιμή k ώστε A^k[u_i, u_j] > 0.

Πίνακας Πρόσπτωσης

$$A[i,j] = egin{cases} 1 & ext{an } v_i \in e_j \ 0 & ext{διαφορετιχά} \end{cases}$$

	1,2	1,5	1,6	2,3	2,7	3,4	3,8	4,5	4,9	5, 10	6,8	6,9	7,9	7, 10	8, 10
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0
3	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0
4	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0
5	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0
6	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0
7	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0
8	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0
10	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1

- Στον υπολογιστή: με λίστα γειτνίασης: γειτονικές κορυφές σε λίστα.
 - Βάρη αποθηκεύονται στους κόμβους της λίστας.

- Στον υπολογιστή: με λίστα γειτνίασης: γειτονικές κορυφές σε λίστα.
 - Βάρη αποθηκεύονται στους κόμβους της λίστας.
 - Αλγόριθμοι συνήθως λειτουργούν κατά γειτονιές.
 - Οικονομία χώρου.

- Γραφήματα $G(V_G, E_G)$ και $H(V_H, E_H)$ είναι **ισομορφικά** ανν υπάρχει 1-1 και επί συνάρτηση $f: V_G \to V_H$ (ισομορφισμός) ώστε για κάθε u, $v \in V_G$, $\{u, v\} \in E_G$ avv $\{f(u), f(v)\} \in E_H$
 - Υπάρχει αντιστοιχία κορυφών που διατηρεί τη γειτονικότητα.
 - Ισομορφισμός αποτελεί σχέση ισοδυναμίας.
- Αναλλοίωτη ιδιότητα: ισομορφικά γραφήματα «συμφωνούν».
 - Όλες οι σημαντικές ιδιότητες: #κορυφών, #ακμών, βαθμοί, συνεκτικότητα, κύκλος Euler και Hamilton, χρωματικός αριθμός, ...
- Πως αποδεικνύουμε ότι δύο γραφήματα ισομορφικά:
 - Βρίσκουμε ισομορφισμό και ελέγχουμε ότι διατηρεί γειτονικότητα.
 - Αποδεικνύουμε ότι τα συμπληρωματικά τους είναι ισομορφικά.

- Πως αποδεικνύω ότι δύο γραφήματα δεν είναι ισομορφικά:
 - Βρίσκω μια αναλλοίωτη ιδιότητα στην οποία «διαφωνούν».
 - Να βρούμε όλα τα μη ισομορφικά συνεκτικά γραφήματα με 6 κορυφές, 4 κορ. βαθμού 3 και 2 κορ. βαθμού 4.
- Αυτοσυμπληρωματικό γράφημα: γράφημα ισομορφικό με το συμπληρωματικό του.
 - Αυτοσυμπληρωματικό γράφημα έχει n(n-1)/4 ακμές.
 - Αυτοσυμπληρωματικά γραφήματα υπάρχουν μόνο αν η ή n-1 είναι πολλαπλάσιο του 4.
 - Νδο κάθε αυτοσυμπληρωματικό γράφημα είναι συνεκτικό.

Αυτοσυμπληρωματικά Γραφήματα

- Αυτοσυμπληρωματικό γράφημα: γράφημα ισομορφικό με το συμπληρωματικό του.
 - Αυτοσυμπληρωματικό γράφημα έχει n(n-1)/4 ακμές.
 - Υπάρχουν αυτοσυμπληρωματικά γραφήματα για:
 - n = 1: μεμονωμένη κορυφή.
 - n = 4: μονοπάτι μήκους 3
 - n = 5, 8, 9, ...:

Αυτομορφισμός

- Ισομορφισμός ενός γραφήματος στον εαυτό του.
 - Εκφράζει «συμμετρία» γραφήματος: αντιστοιχία κορυφών με βάση τους «ρόλους» τους - διατηρεί δομή γραφήματος.
 - Ταυτοτικός αυτομορφισμός (υπάρχει τετριμμένα). Αν δεν υπάρχουν άλλοι αυτομορφισμοί, γράφημα είναι μη συμμετρικό.
 - Αυτομορφισμοί μονοπατιού, κύκλου, τροχού, Petersen.

Αυτομορφισμός

- Ισομορφισμός ενός γραφήματος στον εαυτό του.
 - Εκφράζει «συμμετρία» γραφήματος: αντιστοιχία κορυφών με βάση τους «ρόλους» τους – διατηρεί δομή γραφήματος.
 - Όλα τα συνεκτικά γραφήματα με 2, 3, 4, και 5 κορυφές είναι συμμετρικά.
 - Παραδείγματα μη συμμετρικών γραφημάτων:

