Integrated Supertagging and Parsing

Michael Auli University of Edinburgh

Parsing

CCG Parsing

Combinatory Categorial Grammar (CCG; Steedman 2000)

CCG Parsing

oroved, (S\NP)/NP, completeness>

CCG Parsing

oved, (S\NP)/NP, completeness>

Why CCG Parsing?

- MT: Can analyse nearly any span in a sentence
 (Auli '09; Mehay '10; Zhang & Clark 2011; Weese et. al. '12)
 e.g. "conjectured and proved completeness" ⊢S\NP
- Composition of regular and context-free languages -- mirrors situation in syntactic MT (Auli & Lopez, ACL 2011)
- Transparent interface to semantics (Bos et al. 2004) e.g. proved \vdash (S\NP)/NP : $\lambda x. \lambda y. proved' xy$

CCG Parsing is hard!

Over 22 tags per word! (Clark & Curran 2004)

Supertagging

Marcel	proved	completeness	
\overline{NP}	$(S \setminus NP)/NP$	\overline{NP}	
	$S \setminus NP$		
	S		<

Supertagging

time	flies	like	an	arrow
NP	$S \setminus NP$	$(S \setminus NP)/NP$	NP/NP	NP

The Problem

- Supertagger has no sense of overall grammaticality.
- But parser restricted by its decisions.
- Supertagger probabilities not used in parser.

This talk

- Analysis of state-of-the-art approach
 Trade-off between efficiency and accuracy (ACL 2011a)
- Integrated supertagging and parsing
 with Loopy Belief Propagation and Dual Decomposition (ACL 2011b)
- Training the integrated model
 with Softmax-Margin towards task-specific metrics (EMNLP 2011)

Methods achieve most accurate CCG parsing results.

Adaptive Supertagging

time	flies	like	an	arrow
NP	$S \backslash NP$	$(S \backslash NP)/NP$	NP/NP	NP
NP/NP	NP	••••	•••	•••
•••	•••	$((S \setminus NP) \setminus (S \setminus NP))/NP$		
		••••		

Adaptive Supertagging

Clark & Curran (2004)

- Algorithm:
 - Run supertagger.
 - Return tags with posterior higher than some alpha.
 - Parse by combining tags (CKY).
 - If parsing succeeds, stop.
 - If parsing fails, lower alpha and repeat.
- Q: are parses returned in early rounds suboptimal?

Answer...

Parsing

Parsing

Oracle Parsing

What's happening here?

- Supertagger keeps parser from making serious errors.
- But it also occasionally prunes away useful parses.
- Why not combine supertagger and parser into one?

Overview

- Analysis of state-of-the-art approach
 Trade-off between efficiency and accuracy (ACL 2011a)
- Integrated supertagging and parsing
 with Loopy Belief Propagation and Dual Decomposition (ACL 2011b)
- Training the integrated model
 with Softmax-Margin towards task-specific metrics (EMNLP 2011)

Integrated Model

- Supertagger & parser are log-linear models.
- **Idea**: combine their features into one model.
- Problem: Exact computation of marginal or maximum quantities becomes very expensive because parsing and tagging submodels must agree on the tag sequence.

original parsing problem: B C
$$\rightarrow$$
 A $O(Gn^3)$
new parsing problem: ${}_{\mathbf{q}}\mathbf{B_s} \, {}_{\mathbf{s}}\mathbf{C_r} \rightarrow {}_{\mathbf{q}}\mathbf{A_r} \quad O(G^3n^3)$

Intersection of a regular and context-free language (Bar-Hillel et al. 1964)

Approximate Algorithms

- Loopy belief propagation: approximate calculation of marginals. (Pearl 1988; Smith & Eisner 2008)
- Dual decomposition: exact (sometimes) calculation of maximum. (Dantzig & Wolfe 1960; Komodakis et al. 2007; Koo et al. 2010)

emission message: $e_{i,j}$

forward message: $f_{i,j} = \sum_{j'} f_{i-1,j'} e_{i-1,j'} t_{j',j}$

backward message: $b_{i,j} = \sum_{j'} b_{i+1,j'} e_{i+1,j'} t_{j,j'}$

belief (probability) that tag j is at position i: $p_{i,j} = \frac{1}{Z} f_{i,j} e_{i,j} b_{i,j}$

Forward-backward is belief propagation (Smyth et al. 1997)

Notational convenience: one factor describes whole distribution over supertag sequence...

We can also do the same for the distribution over parse trees

Marcel proved completeness

Inside-outside is belief propagation (Sato 2007)

Graph is not a tree!

Loopy Belief Propagation

Graph is not a tree!

Loopy Belief Propagation

- Computes *approximate* marginals, no guarantees.
- Complexity is additive: $O(Gn^3 + Gn)$
- Used to compute minimum-risk parse (Goodman 1996).

$$\operatorname{arg} \max_{y,z} f(y) + g(z)$$
 s.t. $y(i,t) = z(i,t)$ for all i,t

$$L(u) = \max_{y} f(y) + \sum_{i,t} u(i,t) \cdot y(i,t)$$
 relaxed modified original subproblem problem
$$+ \sum_{z} u(i,t) \cdot y(i,t) - \sum_{i,t} u(i,t) \cdot z(i,t)$$

Dual objective: find assignment of u(i,t) that minimises L(u)

$$u(i,t) = u(i,t) + \alpha \cdot [y(i,t) - z(i,t)]$$
 (Rush et al. 2010)

Solution provably solves original problem.

- Computes *exact* maximum, *if* it converges.
 - Otherwise: return best parse seen (approximation).
- Complexity is additive: $O(Gn^3 + Gn)$
- Use to compute Viterbi solutions.

Experiments

- Standard parsing task:
 - C&C Parser and supertagger (Clark & Curran 2007).
 - CCGBank standard train/dev/test splits.
 - Piecewise optimisation (Sutton and McCallum 2005)
 - Approximate algorithms used to decode test set.

Experiments: Accuracy over time

Experiments: Accuracy over time

Experiments: Convergence

Dual decomposition exact in 99.7% of cases What about belief propagation?

Experiments: BP Exactness

Instantly, 91% match final DD solutions!

Takes DD 15 iterations to reach same level.

Experiments: Accuracy

Note: BP accuracy after 1 iteration; DD accuracy after 25 iterations

Oracle Results Again

Summary so far

- Supertagging efficiency comes at the cost of accuracy.
- Interaction between parser and supertagger can be exploited in an integrated model.
- Practical inference for complex integrated model.
- First empirical comparison between dual decomposition and belief propagation on NLP task.
- Loopy belief propagation is fast, accurate and exact.

Overview

- Analysis of state-of-the-art approach
 Trade-off between efficiency and accuracy (ACL 2011a)
- Integrated supertagging and parsing
 with Loopy Belief Propagation and Dual Decomposition (ACL 2011b)
- Training the integrated model
 with Softmax-Margin towards task-specific metrics (EMNLP 2011)

Training the Integrated Model

- So far optimised Conditional Log-Likelihood (CLL).
- Optimise towards task-specific metric e.g. F_1 such as in SMT (Och, 2003).
- Past work used approximations to Precision (Taskar et al. 2004).
- Contribution: Do it exactly and verify approximations.

Parsing Metrics

CCG: Labelled, directed dependency recovery (Clark & Hockenmaier, 2002)

Not this!

Evaluate this

Parsing Metrics

y = dependencies in ground truth y' = dependencies in proposed output

$$|y \cap y'| = n$$
 correct dependencies returned $|y'| = d$ all dependencies returned

Precision
$$P(y, y') = \frac{|y \cap y'|}{|y'|} = \frac{n}{d}$$

Recall
$$R(y, y') = \frac{|y \cap y'|}{|y|} = \frac{n}{|y|}$$

F-measure
$$F_1(y, y') = \frac{2PR}{P+R} = \frac{2|y \cap y'|}{|y|+|y'|} = \frac{2n}{d+|y|}$$

Softmax-Margin Training

(Sha & Saul, 2006; Povey & Woodland, 2008; Gimpel & Smith, 2010)

- Discriminative.
- Probabilistic.
- Convex objective.
- Minimises bound on expected risk for a given loss function.
- Requires little change to existing CLL implementation.

Softmax-Margin Training

training weights features input true output possible proposed output examples
$$\min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$$

SMM:
$$\min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y) + \ell(y^{(i)}, y) \} \right]$$

- Penalise high-loss outputs.
- Re-weight outcomes by loss function.
- Loss function an unweighted feature -- if decomposable.

Decomposability

- CKY assumes weights factor over substructures (node + children = substructure).
- A *decomposable* loss function must factor identically.

Decomposability

Correct dependency counts

$$|y \cap y'| = n$$
 correct dependencies returned $|y'| = d$ all dependencies returned

Decomposability

F-measure

$$|y \cap y'| = n$$
 correct dependencies returned $|y'| = d$ all dependencies returned

Approximate Loss Functions

for each substructure:

- n₊ correct dependencies
- d₊ all dependencies
- c₊ gold dependencies

$$DecP(y) = \sum_{t \in T(y)} d_{+}(t) - n_{+}(t)$$

$$DecR(y) = \sum_{t \in T(y)} c_{+}(t) - n_{+}(t)$$

$$DecF1(y) = DecP(y) + DecR(y)$$

Approximate Losses with CKY

Approximate Losses with CKY

Approximate Losses with CKY

Decomposability Revisited

F-measure

$$|y \cap y'| = n$$
 correct dependencies returned $|y'| = d$ all dependencies returned

$$F_1(y, y') = \frac{2n}{d + |y|}$$

Exact Loss Functions

- Treat sentence-level F_1 as non-local feature dependent on n, d.
- Result: new dynamic program over items A_{i,j,n,d}

Exact Losses with State-Split CKY

Exact Losses with State-Split CKY

Experiments

- Standard parsing task:
 - C&C Parser and supertagger (Clark & Curran 2007).
 - CCGBank standard train/dev/test splits.
 - Piecewise optimisation (Sutton and McCallum 2005)

Exact versus Approximate

Approximate loss functions work, and much faster!

Softmax-Margin beats CLL

Test set results

Softmax-Margin beats CLL

Does task-specific optimisation degrade accuracy on other metrics?

Integrated Model + SMM

Results: Integrated Model

- F-measure loss for parsing sub-model (+DecF₁).
- Hamming loss for supertagging sub-model (+Tagger).
- Belief propagation for inference.

Results: Automatic POS

- \bullet F-measure loss for parsing sub-model (+DecF₁).
- Hamming loss for supertagging sub-model (+Tagger).
- Belief propagation for inference.

Results: Efficiency vs. Accuracy

Results: Efficiency vs. Accuracy

Results: Efficiency vs. Accuracy

Summary

- Softmax-Margin training is easy and improves our model.
- Approximate loss functions are fast, accurate and easy to use.
- Best ever CCG parsing results (87.7 \rightarrow 89.3).