Fourier Transform

	非周期	周期
CTFT	$X(V) = \int_{-\infty}^{+\infty} x(t) \cdot e^{-j(2\pi V)t} dt$	CTFS $c_k = \frac{1}{T} \int_0^T x(t) \cdot e^{-j(2\pi v_0)kt} \ dt \ [傅里叶系数 $ $v_0 = \frac{1}{T} \ [基频率]$ $x(t) = \sum_{k=-\infty}^{+\infty} c_k \cdot e^{j(2\pi v_0)kt}$
DTFT	$X_p(V) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j2\pi nV}$	DTFS $c_k = \sum_{n=0}^{N-1} x[n] \cdot e^{-j2\pi \binom{k}{N}}$
	$x[n] = \int_{-1/2}^{+1/2} X_p(V) e^{j2\pi nV}$	$k = 0,1,2N - 1$ $x[n] = \sum_{k=0}^{N-1} c_k \cdot e^{j(2\pi \frac{1}{N}) \cdot n}$

DFT
$$X_{DFT}[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi nk/N}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{DFT}[k]e^{j2\pi nk/N}$$

$$x[n] = \sum_{k=0}^{N-1} X_{DFS}[k]e^{j2\pi nk/N}$$

Table 9.1 Some Useful Fourier Transform Pairs			
Entry	x(t)	X(f)	$X(\omega)$
1	$\delta(t)$	1	1
2	rect(t)	$\operatorname{sinc}(f)$	$\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$
3	$\operatorname{tri}(t)$	$\operatorname{sinc}^2(f)$	$\operatorname{sinc}^2\left(\frac{\omega}{2\pi}\right)$
4	sinc(t)	rect(f)	$\operatorname{rect}\left(\frac{\omega}{2\pi}\right)$
5	$\cos(2\pi\alpha t)$	$0.5[\delta(f+\alpha)+\delta(f-\alpha)]$	$\pi[\delta(\omega + 2\pi\alpha) + \delta(\omega - 2\pi\alpha)]$
6	$\sin(2\pi\alpha t)$	$j0.5[\delta(f+\alpha) - \delta(f-\alpha)]$	$j\pi[\delta(\omega+2\pi\alpha)-\delta(\omega-2\pi\alpha)]$
7	$e^{-\alpha t}u(t)$	$\frac{1}{\alpha + j2\pi f}$	$\frac{1}{\alpha + j\omega}$
8	$te^{-\alpha t}u(t)$	$\frac{1}{(\alpha + j2\pi f)^2}$	$\frac{1}{(\alpha+j\omega)^2}$
9	$e^{-\alpha t }$	$\frac{2\alpha}{\alpha^2 + 4\pi^2 f^2}$	$\frac{2\alpha}{\alpha^2 + \omega^2}$
10	$e^{-\pi t^2}$	$e^{-\pi f^2}$	$e^{-\omega^2/4\pi}$
11	sgn(t)	$\frac{1}{j\pi f}$	$\frac{2}{j\omega}$
12	u(t)	$0.5\delta(f) + \frac{1}{j2\pi f}$	$\pi\delta(\omega) + \frac{1}{j\omega}$
13	$e^{-\alpha t}\cos(2\pi\beta t)u(t)$	$\frac{\alpha + j2\pi f}{(\alpha + j2\pi f)^2 + (2\pi\beta)^2}$	$\frac{\alpha + j\omega}{(\alpha + j\omega)^2 + (2\pi\beta)^2}$
14	$e^{-\alpha t}\sin(2\pi\beta t)u(t)$	$\frac{2\pi\beta}{(\alpha+j2\pi f)^2+(2\pi\beta)^2}$	$\frac{2\pi\beta}{(\alpha+j\omega)^2+(2\pi\beta)^2}$
15	$\sum_{n=-\infty}^{\infty} \delta(t - nT)$ $x_p(t) = \sum_{k=-\infty}^{\infty} X[k]e^{j2\pi k f_0 t}$	$\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left(f - \frac{k}{T} \right)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$ $\sum_{k=-\infty}^{\infty} 2\pi X[k]\delta(\omega - k\omega_0)$
16	$x_p(t) = \sum_{k=-\infty}^{\infty} X[k]e^{j2\pi k f_0 t}$	$\sum_{k=-\infty}^{\infty} X[k]\delta(f-kf_0)$	$\sum_{k=-\infty}^{\infty} 2\pi X[k]\delta(\omega - k\omega_0)$

DTFT 公式

 ${\bf Table~15.1~Some~Useful~DTFT~Pairs}$

Note: In all cases, we assume $ \alpha < 1$.			
Entry	Signal $x[n]$	The F -Form: $X_p(F)$	The Ω -Form: $X_p(\Omega)$
1	$\delta[n]$	1	1
2	$\alpha^n u[n], \alpha < 1 $	$\frac{1}{1 - \alpha e^{-j2\pi F}}$	$\frac{1}{1 - \alpha e^{-j\Omega}}$
3	$n\alpha^n u[n], \ \alpha < 1 $	$\frac{\alpha e^{-j2\pi F}}{(1 - \alpha e^{-j2\pi F})^2}$	$\frac{\alpha e^{-j\Omega}}{(1 - \alpha e^{-j\Omega})^2}$
4	$(n+1)\alpha^n u[n], \ \alpha < 1 $	$\frac{1}{(1 - \alpha e^{-j2\pi F})^2}$	$\frac{1}{(1 - \alpha e^{-j\Omega})^2}$
5	$\alpha^{ n }, \ \alpha < 1$	$\frac{1 - \alpha^2}{1 - 2\alpha \cos(2\pi F) + \alpha^2}$	$\frac{1 - \alpha^2}{1 - 2\alpha\cos\Omega + \alpha^2}$
6	1	$\delta(F)$	$2\pi\delta(\Omega)$
7	$\cos(2n\pi F_0) = \cos(n\Omega_0)$	$0.5[\delta(F+F_0)+\delta(F-F_0)]$	$\pi[\delta(\Omega + \Omega_0) + \delta(\Omega - \Omega_0)]$
8	$\sin(2n\pi F_0) = \sin(n\Omega_0)$	$j0.5[\delta(F+F_0)-\delta(F-F_0)]$	$j\pi[\delta(\Omega+\Omega_0)-\delta(\Omega-\Omega_0)]$
9	$2F_C \operatorname{sinc}(2nF_C) = \frac{\sin(n\Omega_C)}{n\pi}$	$\operatorname{rect}\Bigl(\frac{F}{2F_C}\Bigr)$	$\operatorname{rect}\left(\frac{\Omega}{2\Omega_C}\right)$
10	u[n]	$0.5\delta(F) + \frac{1}{1 - e^{-j2\pi F}}$	$\pi\delta(\Omega) + \frac{1}{1 - e^{-j\Omega}}$

CTFT 性质

Table 9.2 Operational Properties of the Fourier Transform

Table 9.2 Operational Properties of the Fourier Transform			
Property	x(t)	X(f)	$X(\omega)$
Similarity	X(t)	x(-f)	$2\pi x(-\omega)$
Time Scaling	$x(\alpha t)$	$\frac{1}{ \alpha }X\left(\frac{f}{\alpha}\right)$	$\frac{1}{ \alpha }X\left(\frac{\omega}{\alpha}\right)$
Folding	x(-t)	X(-f)	$X(-\omega)$
Time Shift	$x(t-\alpha)$	$e^{-j2\pi f\alpha}X(f)$	$e^{-j\omega\alpha}X(\omega)$
Frequency Shift	$e^{j2\pi\alpha t}x(t)$	$X(f-\alpha)$	$X(\omega - 2\pi\alpha)$
Convolution	$x(t) \star h(t)$	X(f)H(f)	$X(\omega)H(\omega)$
Multiplication	x(t)h(t)	$X(f) \star H(f)$	$\frac{1}{2\pi}X(\omega)\star H(\omega)$
Modulation	$x(t)\cos(2\pi\alpha t)$	$0.5[X(f+\alpha) + X(f-\alpha)]$	$0.5[X(\omega + 2\pi\alpha) + X(\omega - 2\pi\alpha)]$
Derivative	x'(t)	$j2\pi fX(f)$	$j\omega X(\omega)$
$\mathrm{Times}\text{-}t$	$-j2\pi tx(t)$	X'(f)	$2\pi X'(\omega)$
Integration	$\int_{-\infty}^{t} x(t) dt$	$\frac{1}{j2\pi f}X(f) + 0.5X(0)\delta(f)$	$\frac{1}{j\omega}X(\omega) + \pi X(0)\delta(\omega)$
Conjugation	$x^*(t)$	$X^*(-f)$	$X^*(-\omega)$
Correlation	$x(t)\star\star y(t)$ $X(f)Y^*(f)$		$X(\omega)Y^*(\omega)$
Autocorrelation	$x(t)\star\star x(t)$	$X(f)X^*(f) = X(f) ^2$	$X(\omega)X^*(\omega) = X(\omega) ^2$
Fourier Transform Theorems			
Central ordinates $x(0) = \int_{-\infty}^{\infty} X(f) df = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) d\omega \qquad X(0) = \int_{-\infty}^{\infty} x(t) dt$			
Parseval's theorem	$E = \int x^{2}(t) dt = \int X(t) ^{2} dt = -\int X(\omega) ^{2} d\omega$		
Plancherel's theorem	$\int x(t)y^*(t) dt = \int X(f)Y^*(f) df = \frac{1}{2} \int X(\omega)Y^*(\omega) d\omega$		

DTFT 性质

 $\textbf{Table 15.2} \ \textbf{Properties of the DTFT}$

Property	DT Signal	Result (F-Form)	Result (Ω-Form)
Folding	x[-n]	$X_p(-F) = X_p^*(F)$	$X_p(-\Omega) = X_p^*(\Omega)$
Time shift	x[n-m]	$e^{-j2\pi mF}X_p(F)$	$e^{-j\Omega m}X_p(\Omega)$
Frequency shift	$e^{j2\pi nF_0}x[n]$	$X_p(F-F_0)$	$X_p(\Omega - \Omega_0)$
Half-period shift	$(-1)^n x[n]$	$X_p(F-0.5)$	$X_p(\Omega - \pi)$
Modulation	$\cos(2\pi nF_0)x[n]$	$0.5[X_p(F+F_0) + X_p(F-F_0)]$	$0.5[(\Omega + \Omega_0) + X_p(\Omega - \Omega_0)]$
Convolution	$x[n] \star y[n]$	$X_p(F)Y_p(F)$	$X_p(\Omega)Y_p(\Omega)$
Product	x[n]y[n]	$X_p(F) \oplus Y_p(F)$	$\frac{1}{2\pi}[X_p(\Omega) \otimes Y_p(\Omega)]$
Times-n	nx[n]	$\frac{j}{2\pi} \frac{dX_p(F)}{dF}$	$j\frac{dX_p(\Omega)}{d\Omega}$
Parseval's relation $\sum_{k=-\infty}^{\infty} x^2[k] = \int_1 X_p(F) ^2 dF = \frac{1}{2\pi} \int_{2\pi} X_p(\Omega) ^2 d\Omega$?
Central ordinates	$x[0] = \int_1 X_p(F) dF = \frac{1}{2\pi} \int_{2\pi} X_p(\Omega) d\Omega \qquad X_p(0) = \sum_{n=-\infty}^{\infty} x[n]$		
	$\left X_p(F)\right _{F=0.5} = X_p(\Omega)\Big _{\Omega=\pi} = \sum_{n=-\infty}^{\infty} (-1)^n x[n]$		

DFT 性质

Table 16.1 Properties of the $N\text{-}\mathsf{Sample}$ DFT

Property	Signal	DFT	Remarks
Shift	$x[n-n_0]$	$X_{\mathrm{DFT}}[k]e^{-j2\pi kn_0/N}$	No change in magnitude
Shift	x[n - 0.5N]	$(-1)^k X_{\text{DFT}}[k]$	Half-period shift for even N
Modulation	$x[n]e^{j2\pi nk_0/N}$	$X_{\text{DFT}}[k-k_0]$	
Modulation	$(-1)^n x[n]$	$X_{\mathrm{DFT}}[k-0.5N]$	Half-period shift for even N
Folding	x[-n]	$X_{DFT}[-k]$	This is circular folding.
Product	x[n]y[n]	$\frac{1}{N}X_{\mathrm{DFT}}[k] \circledast Y_{\mathrm{DFT}}[k]$	The convolution is periodic.
Convolution	$x[n] \circledast y[n]$	$X_{\mathrm{DFT}}[k]Y_{\mathrm{DFT}}[k]$	The convolution is periodic.
Correlation	x[n] * * y[n]	$X_{\mathrm{DFT}}[k]Y_{\mathrm{DFT}}^{*}[k]$	The correlation is periodic.
Central ordinates	$x[0] = \frac{1}{N} \sum_{k=0}^{N-1} X_{\text{DFT}}[k]$ $X_{\text{DFT}}[0] = \sum_{n=0}^{N-1} x[n]$		
Central ordinates	$x[\frac{N}{2}] = \frac{1}{N} \sum_{k=0}^{N-1} (-1)^k X_{\text{DFT}}[k] \ (N \text{ even}) \qquad X_{\text{DFT}}[\frac{N}{2}] = \sum_{n=0}^{N-1} (-1)^n x[n] \ (N \text{ even})$		
Parseval's relation	1 N-1 N-1		