

实验名称 薄透镜焦距的测定

一. 实验预习

请分别绘制以下薄透镜焦距测量方法的光路图

- 1. 用位移法(两次成像法、共轭法)测凸透镜的焦距;
- 2. 用物距一像距法测凹透镜的焦距。

二. 实验现象及原始数据记录

表 2-1 自准法测凸透镜焦距数据记录

次数	物屏位置读数 x_P (mm)	凸透镜位置读数 $oldsymbol{x_L}$ $(oldsymbol{mm})$		$\frac{-}{x_L}$	$f= x_L-x_p $
		左→右	右→左	\mathcal{N}_L	y total top;
第1次	428	238	242	240	188
第2次	415	224	230	922	189
第 3 次	445	257	825	257.5	187.5
第 4 次	43 5	248	246	247	188
第 5 次	420	233	234	233.5	186:5

表 2-2 位移法测凸透镜焦距数据记录

次数	物屏位置	像屏位置	放大像	缩小像	$L = A_1 $	$C = 1_1 $	L^2-C^2
	$A_1 (mm)$	A ₂ (mm)	凸透镜的位置	凸透镜的位置	$-A_2$	-1_{2}	$f = \frac{L^2 - C^2}{4L}$
			1 ₁ (mm)	l ₂ (mm)			
1	447	-500	180	-245	945	425	188,5
2	430	-250	173	-254	950	427	1895
3	420	-550	160	-295	770	455	189-1
4	435	-560	183	-308	995	491	188.2
5	425	-570	170	-319	995	489	<i>k</i> 3∂.7

表 2-3 物距一像距法测凹透镜焦距数据记录

次数	凸透镜单独成	凹透镜的位置	加入凹透镜	$u = - x_{P2} - x_{L2} $	$\mathbf{v} = \mid \mathbf{x}_{\text{P2'}} - \mathbf{x}_{\text{L2}} \mid$	f = uv
	像时像屏位置	x _{L2} (mm)	成清晰像时			$\int -\frac{1}{u+v}$
	x _{P2} (mm)		像屏位置			
			x _{P2'} (mm)			
1	-420	-390	-592	-70	212	-104,5
2	-400	-339	-502	-61	163	-97.5
3	-420	-355	-559	-65	204	-95.4
4	-480	-419	-38Z	-61	163	-97.5
5	-500	-442	-588	-58	146	-96.2

教师	姓名
签字	lins
	2

三. 数据处理

1. 面道话

$$f = \frac{1}{5}(188 + 189 + 187.5 + 188 + 186.5) = 187.8$$
 num

$$U_{4} = \sqrt{\frac{1}{20}[(188 - 187.8)^{2} + (189 - 187.8)^{2} + (188 - 187.8)^{2}}{+ (186 - 5 - 187.8)^{2}]}}$$

$$= D.41 \quad mm$$

$$U_{6} = U_{4}/\overline{3} = 0.24 \text{ mm}$$
 , $U = \sqrt{U_{4} + U_{8}^{2}} = 0.48 \text{ mm}$
 $E = \frac{U}{\overline{f}} \times 100\% = 0.26\%$, 置信概率 $P = 0.683$
 $f = (187.8 \pm 0.48) \text{ mm}$, $E = 0.26\%$

2. 企移法

$$f = \frac{1}{2}(188.5 + 189.5 + 189.1 + 188.2 + 188.7) = 188.8$$

$$U_{A} = \sqrt{\frac{1}{20} \left[(188.5 - 188.8)^{2} + (189.5 - 188.8)^{2} + (189.1 - 188.8)^{2} + (188.2 - 188.8)^{2} \right]}$$

$$+ (188.7 - 188.8)^{2}$$

$$= 0.23 \text{ mm}$$

$$U_B = U_A/\overline{3} = 0.13 \, \text{mm}$$
 , $U = \overline{U_A} + U_B = 0.27 \, \text{mm}$ $E = \frac{U}{T} \times 100\% = 0.14\%$, 置信概率 $P = 0.683$ $f = (188.8 \pm 0.27) \, \text{mm}$, $E = 0.14\%$

3.物证一像证法

$$\bar{f} = \frac{1}{5}(-104.5 - 97.5 - 95.4 - 97.5 - 96.2) = -98.2$$

$$U_A = \sqrt{\frac{1}{105}[(-104.5 + 98.2)^2 + (-97.5 + 98.2)^2 + (-95.4 + 98.2)^2 + (-97.5 + 98.2)^2 + (-96.2 + 98.2)^2}$$

$$= 1.62 mm$$

$$U_{13} = U_{14}/I_{3} = 0.95 mm$$
, $U = \overline{U_{14} + U_{15}} = 1.89 mm$
 $E = \frac{U}{|F|} = 1.92\%$, 置尾概率 Pz 0.683
 $f = (-98.2 \pm 1.89) mm$, $E = 1.92\%$

四. 实验结论及现象分析

(讨论焦距测量方法中误差的来源,如何提高焦距的测量精度?)

误差未源:人服对所成农清 晰 程度的判别, 可以通过 定路屏移动透镜、用光纤作为光源等方式来报高精度。

五. 讨论题

- 1. 用位移法(两次成像)测薄凸透镜焦距,为什么必须使物屏与像屏距离大于4倍透镜焦距长度?
- 从自准法测凸透镜的光路图可知物距、像距和焦距三者是相等的,但这三个量显然不满足透镜成像公式,请解释原因。
- 1. $\dot{f} = \dot{u} + \dot{v}$, $f = \frac{\partial v}{\partial v}$, $u + v \ge \partial \overline{u} v$, $z f \le \overline{t} u v$. 即有 $l = u + v \ge v f$