Anomaly Detection

5/21

Outline

- What is Anomaly Detection
- Classic Method
 - With Classifier
 - GMM (Gaussian Mixture Model)
 - Auto-Encoder
 - o PCA
 - Isolation Forest
 - Summary
- Anomaly Detection on image
 - AnoGAN
 - EGBAD
 - GANomaly
 - Summary
- Anomaly Detection on Audio
 - GMGAN

What is Anomaly Detection

What is Anomaly

Training Data

Anomaly

Classic Method

With Classifier

Anomaly Detection:

$$f(x) = \begin{cases} normal, & c(x) > \lambda \\ anomaly, & c(x) \le \lambda \end{cases}$$

With Classifier

1-dim Gaussian Mixtures

2-dim Gaussian

N-dim Gaussian Mixtures

N-dim Ganysiam Mixtures

$$f_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

Input: vector x, output: probability of sampling x θ which determines the shape of the function are **mean** μ and **covariance matrix** Σ

$$f_{\mu^*,\Sigma^*}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^*|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu^*)^T \Sigma^{*-1} (x - \mu^*) \right\}$$

$$\mu^* = \begin{bmatrix} 0.29 \\ 0.73 \end{bmatrix} \quad \Sigma^* = \begin{bmatrix} 0.04 & 0 \\ 0 & 0.03 \end{bmatrix}$$

$$f(x) = \begin{cases} normal, & f_{\mu^*,\Sigma^*}(x) > \lambda \\ anomaly, & f_{\mu^*,\Sigma^*}(x) \le \lambda \end{cases} \quad \lambda \text{ is a contour line}$$
The colors represents the value of $f_{\mu^*,\Sigma^*}(x)$ 经 0.6 0.08 0.08 0.09 $0.$

```
from keras.datasets import mnist
     import cv2
     import numpy as np
    (x train, y train), (x test, y test) = mnist.load data()
    x ok = x train[y train == 1] # 6742 筆
    x test = x test[(y test == 7) | (y test == 1)] # 1135 筆 "1", 1028 筆 "7"
    y test = y test[(y test == 7) | (y test == 1)]
 9
     def reshape x(x):
         new x = np.empty((len(x), 56, 56))
        for i, e in enumerate(x):
             new x[i] = cv2.resize(e, (56, 56))
        new x = np.expand dims(new x, axis=-1)
         new_x = np.repeat(new_x, 3, axis=-1)
         return new x
    x 	ext{ ok} = reshape x(x 	ext{ ok})
20 x_test = reshape_x(x_test)
```

https://towardsdatascience.com/a-simple-way-to-detect-anomaly-3d5a48c0dae0

```
features = model.predict(x ok)
gmm.fit(features)
OKscore = gmm.score samples(features)
thred = OKscore.mean() - 3 * OKscore.std()
test features = model.predict(x test)
score = gmm.score samples(test_features)
print('normal accuracy: %.2f' % (len(score[(y test == 1) & (score > thred)]) / 1135))
print('abnormal accuracy: %.2f' % (len(score[(y test == 7) & (score < thred)]) / 1028))</pre>
                          normal accuracy: 0.98
                          abnormal accuracy: 0.96
```


Auto-Encoder

Auto-Encoder

Examples:

https://www.kaggle.com/tikedameu/anomaly-detection-with-autoencoder-pytorch

https://towardsdatascience.com/anomaly-detection-with-autoencoder-b4cdce4866a6

 $z_1 = w^1 \cdot x$

and obtain a set of z_1

We want the variance of z_1 as large as possible

$$Var(z_1) = \sum_{z_1} (z_1 - \overline{z_1})^2 \quad ||w^1||_2 = 1$$

PCA

$$z = Wx$$

Reduce to 1-D:

$$z_1 = w^1 \cdot x$$

$$z_2 = w^2 \cdot x$$

$$W = \begin{bmatrix} (w^1)^T \\ (w^2)^T \\ \vdots \end{bmatrix}$$

Orthogonal matrix

Project all the data points x onto w^1 , and obtain a set of z_1

We want the variance of z_1 as large as possible

$$Var(z_1) = \sum_{z_1} (z_1 - \overline{z_1})^2 \quad ||w^1||_2 = 1$$

We want the variance of z_2 as large as possible

$$Var(z_2) = \sum_{z_2} (z_2 - \overline{z_2})^2 \quad ||w^2||_2 = 1$$

 $w^1 \cdot w^2 = 0$

```
# 30 principal components
from sklearn.decomposition import PCA
n components = 30
whiten = False
random state = 2018
pca = PCA(n components=n components, whiten=whiten, \
            random state=random state)
X train PCA = pca.fit transform(X train)
X train PCA = pd.DataFrame(data=X train PCA, index=X train.index)
X train PCA inverse = pca.inverse transform(X train PCA)
X train PCA inverse = pd.DataFrame(data=X train PCA inverse, \
                                         index=X train.index)
scatterPlot(X train PCA, y train, "PCA")
```

https://www.oreilly.com/library/view/hands-on-unsupervised-learning/9781492035633/ch04.html

https://www.oreilly.com/library/view/nangs-on-unsupervised-learning/9/81492035633/cnu4.ntml

```
def anomalyScores(originalDF, reducedDF):
    loss = np.sum((np.array(originalDF)-np.array(reducedDF))**2, axis=1)
    loss = pd.Series(data=loss,index=originalDF.index)
    loss = (loss-np.min(loss))/(np.max(loss)-np.min(loss))
    return loss
```

```
anomalyScoresPCA = anomalyScores(X_train, X_train_PCA_inverse)
preds = plotResults(y_train, anomalyScoresPCA, True)
```


https://www.oreilly.com/library/view/hands-on-unsupervised-learning/9781492035633/ch04.html


```
# importing libaries ----
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pylab import savefig
from sklearn.ensemble import IsolationForest
# Generating data ----
rng = np.random.RandomState (42)
# Generating training data
X train = 0.2 * rng.randn(1000, 2)
X train = np.r [X train + 3, X train]
X train = pd.DataFrame(X train, columns = ['x1', 'x2'])
# Generating new, 'normal' observation
X \text{ test} = 0.2 * \text{rng.randn}(200, 2)
X test = np.r [X test + 3, X test]
X test = pd.DataFrame(X test, columns = ['x1', 'x2'])
# Generating outliers
X outliers = rnq.uniform(low=-1, high=5, size=(50, 2))
X outliers = pd.DataFrame(X outliers, columns = ['x1', 'x2'])
```



```
# Isolation Forest ----
# training the model
clf = IsolationForest(max samples=100, random state=rng)
clf.fit(X train)
# predictions
y pred train = clf.predict(X train)
y pred test = clf.predict(X test)
y pred outliers = clf.predict(X outliers)
```


Summary of classic method

- With Classifier
- GMM (Gaussian Mixture Model)
- Auto-Encoder
- PCA
- Isolation Forest

Anomaly detection on image

Typical GANs

Three Categories of GAN

2. Conditional GAN

3. Unsupervised Conditional GAN

Typical GANs

Figure 1. The structure of BiGAN proposed in (Donahue et al., 2016).

Example

(a) Normal Data (X-ray Scans)

(b) Normal + Abnormal Data (X-ray Scans

AnoGAN

Train a standard GAN only on positive samples

AnoGAN

Anomaly Score

$$A(\mathbf{x}) = \mathcal{L}(\mathbf{z}_{\Gamma})$$

• for $\gamma = 1, 2, ... \Gamma$ find proper z

$$\mathcal{L}_{R}(\mathbf{z}_{\gamma}) = ||\mathbf{x} - G(\mathbf{z}_{\gamma})||_{1}$$

$$\mathcal{L}_{D}(\mathbf{z}_{\gamma}) = ||\mathbf{f}(\mathbf{x}) - \mathbf{f}(G(\mathbf{z}_{\gamma}))||_{1}$$

$$\mathcal{L}(\mathbf{z}_{\gamma}) = (1 - \lambda) \cdot \mathcal{L}_{R}(\mathbf{z}_{\gamma}) + \gamma \cdot \mathcal{L}_{D}(\mathbf{z}_{\gamma})$$

AnoGAN

Pros

- Showed that GANs can be used for anomaly detection
- Introduced a new mapping scheme from latent space to input data space.
- Used the same mapping scheme to define an anomaly score.

Cons

- Requires Γ optimization steps for every new input: bad test-time performance
- The GAN objective has not been modified to take into account the need for the inverse mapping learning.
- The anomaly score is difficult to interpret, not being in the probability range.

EGBAD (Efficient GAN-Based Anomaly Detection)

Train a Bi-GAN only on positive samples

$$\begin{split} \min_{G,E} \max_{D} V(D,G,E) &= \\ \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})} [\mathbb{E}_{\mathbf{z} \sim p_{E(\mathbf{z}|\mathbf{x})}} [\log D(\mathbf{x},\mathbf{z})]] + \\ \mathbb{E}_{\mathbf{z} \sim p_{z}(\mathbf{z})} [\mathbb{E}_{\mathbf{x} \sim p_{G}(\mathbf{x}|\mathbf{z})} [\log (1 - D(\mathbf{x},\mathbf{z})))]]. \end{split}$$

EGBAD (Efficient GAN-Based Anomaly Detection)

Pros

- The Encoder E can learns how to encode image while adversarial training.
- Therefore, it can bypass Γ optimization steps of AnoGAN while calculating anomaly score.

GANomaly

- Generator is composed of encoder G_F, decoder G_D, and encoder E
- Trained on only normal data.

Anomaly score

$$\mathcal{A}(\mathbf{x}) = ||G_E(\mathbf{x}) - E(G(\mathbf{x}))||_2$$

GANomaly

Pros

- An encoder is learned during the training process, so it can bypass the Γ optimization.
- Using an autoencoder like architecture (no use of noise prior) makes the entire learning process faster.
- The contextual loss can be used to localize the anomaly.

Cons

- Defines a new anomaly score.
- It allows to detect anomalies both in the image space and in the latent space, but the results couldn't match:
 - a higher anomaly score, that's computed only in the latent space, can be associated with a generated sample with a low contextual loss value and thus very similar to the input and vice versa.

Evaluation Metric

• TPR (True Positive Rate)

IP

TP + FN

• FPR (False Positive Rate)

FΡ

TN + FP

Comparison

BiGAN/EGBAD and GANomaly performance comparison on MNIST and Fashion-MNIST datasets

Summary of GANs

AnoGAN EGBAD GANomaly

Reference

https://arxiv.org/pdf/1711.09325.pdf

https://arxiv.org/pdf/1809.10816.pdf

https://arxiv.org/pdf/1812.02288.pdf

https://arxiv.org/pdf/1901.08954.pdf

https://arxiv.org/pdf/1905.13147.pdf

Anomaly detection on Audio

Adversarial loss

$$\mathcal{L}_{adv} = \min_{G} \max_{D} (E_{\boldsymbol{x} \sim p_{\mathbf{x}}} [\log(D(\mathbf{x}))] + E_{\boldsymbol{x} \sim p_{\mathbf{x}}} [\log(1 - D(G(\mathbf{x})))].$$

Image reconstruction loss

$$\mathcal{L}_{irec} = \mathbb{E}_{x \sim p_{\mathbf{x}}} \|x - G(x)\|_{1}$$

Latent representation loss

$$\mathcal{L}_{zrec} = \mathbb{E}_{x \sim p_{\mathbf{X}}} \|G_e(x) - G_{e'}(x')\|_2$$

- Estimation loss
- $\hat{\gamma} = \operatorname{softmax}(MLN(\mathbf{z}; \theta_m))$
- $\hat{\gamma}$ is a K-dimensional vector and. $\hat{\gamma}_k$ denotes the input belongs to the kth distribution.
- Calculate the component of kth mixture.

$$\hat{\alpha}_{k} = \frac{1}{n} \sum_{i=1}^{n} \hat{\gamma}_{ik}; \hat{u}_{k} = \frac{\sum_{i=1}^{n} \hat{\gamma}_{ik} z_{i}}{\sum_{i=1}^{n} \hat{\gamma}_{ik}},$$

$$\hat{\Sigma}_{k} = \frac{\sum_{i=1}^{n} \hat{\gamma}_{ik} (z_{i} - \hat{u}_{k}) (z_{i} - \hat{u}_{k})^{T}}{\sum_{i=1}^{n} \hat{\gamma}_{ik}},$$

Estimation loss

Fig. 2. Spectrogram of one second sequence containing office background audio and glass break audio.

Scene	CAE 9	WaveNet [19]	Proposed method
beach	0.69	0.72	0.80
bus	0.79	0.83	0.89
cafe/restaurant	0.69	0.76	0.76
car	0.79	0.82	0.93
city center	0.75	0.82	0.83
forest path	0.65	0.72	0.77
grocery store	0.71	0.77	0.83
home	0.69	0.69	0.69
library	0.59	0.67	0.85
metro station	0.74	0.79	0.81
office	0.78	0.78	0.80
park	0.70	0.80	0.89
residential area	0.73	0.78	0.78
train	0.82	0.84	0.92
tram	0.80	0.87	0.94

Outline

- What is Anomaly Detection
- Classic Method
 - With Classifier
 - GMM (Gaussian Mixture Model)
 - Auto-Encoder
 - > PCA
 - Isolation Forest
 - Summary
- Anomaly Detection with GAN
 - AnoGAN
 - EGBAD
 - GANomaly
 - Summary
- Anomaly Detection on Audio
 - GMGAN

More Reference

Anomaly detection on self-driving

http://taoxie.cs.illinois.edu/publications/tii17-safedrive.pdf

https://arxiv.org/pdf/2004.09496.pdf

https://arxiv.org/pdf/2004.12581.pdf