Special Session on Robust and Resilient Critical Infrastructure Systems

Overview, Problem Description, and Challenges

Jagdish Chandra
The Institute for Reliability and Risk Analysis
The George Washington University
October 30, 2003

Some Basic Definitions

- Infrastructures: Linked system of facilities and activities that provide the range of essential services
- Critical Infrastructures: So vital that their incapacitation or destruction would have a debilitating impact on defense or national security (Clinton, 1997)
- Robustness: Failure- resistant through design and /or construction
- Resilience: Ability to recover quickly

INTERDEPENDENCIES

- Physical Interdependency
- Cyber Interdependency
- Geographic Interdependency
- Logical Interdependency
- Modeling and Simulation of Interdependent Infrastructures is a complex, multifaceted, and multidisciplinary problem

Factors: Analyses of Interdependencies

- Time Scales
- Geographic/Spatial Scales
- Higher Order Effects/ Cascading
- Human/Social/Psychological
- Operational Procedures
- Business Policies/Government Regulations
- Restoration/Recovery Procedures
- Stakeholders Concern

INFRASTRUCTURE VULNERABILITIES

- Natural Hazards
- Degradation of Material and Components
- Complexity/ Interconnections
- Malevolent Acts
- Characterize Vulnerabilities, Role of Dependencies, and Propagation of Failures

THREAT ANALYSIS

- Analyze data, patterns of threat scenarios and intrusion (some data-centric tools combining data-mining and adaptive case-based reasoning have been developed at FSU)
- Information fusion and management (Bayesian techniques for both cooperative and adversarial/compromised sensors/sources-GWU)
- A stochastic framework for intrusion detection (optimal filtering techniques for IDS- UW)

Fault Tolerance and Recovery in Mobile Wireless Networks

- Hybrid totally wireless networks
- Standby (backup) mobile routers are used to provide recovery and enhance reliability
- Developed distributed recovery protocols: the backup routers are scattered among the primary mobile routers (UCF)
- Using a flock-like dynamics, studying the arrangement of backups to maximize reliability (GWU)

RESILIENT INFRASTRUCTURES

- Reliable communication in a dynamic battlefield (developed fault-tolerant and distributed recovery protocols for hybrid totally mobile wireless networks-UCF)
- Robustness and Resiliency (analysis and design of strategies for optimal deployment of back-up mobile routers-GWU)

Risk Assessment and Management

- What can go wrong? What is the likelihood that it will? And, what are the consequences
- What can be done and what options we have?
 What are the trade-offs in terms of costs,
 benefits, and risks? And, how these decisions impact the future?
- Characterize optimal defensive strategies for sabotage risks (e.g., game theory as a paradigm for critical infrastructure protection-UW)
- Risk management strategies for high consequence/low probability events

Information Assurance of NIS

- Human introduced errors
- System probing (malicious, non-malicious)
- System penetration
- Subversion of networks
- Devise security and control mechanisms
- Misuse of policy, authority, power
- ➤ The interface between technology and human behavior; human factor is the Achilles heel of information security

Networked Systems Simulation

- Modeling and simulation for resiliency designs (developed distributed modular intrusion detection system for ad hoc and hybrid totally-mobile wireless networks-UCF)
- Complex systems simulation (optimizing performance in networked systems- UW)