Lògica en la Informàtica Definició de Lògica de Primer Ordre (LPO)

José Miguel Rivero

Dept. Ciències de la Computació Universitat Politècnica de Catalunya (UPC)

Primavera 2025

Crèdits

El material utilitzat en aquesta presentació ha estat extret del elaborat pel professor Robert Nieuwenhuis (Dept. CS, UPC) per l'assignatura *Lògica en la Informàtica* de la FIB.

En particular, del llibre *Lógica para informáticos* - Farré, R. [et al.], Marcombo, 2011. ISBN: 9788426716941.

Lògica en la Informàtica

Temari

- 1. Introducció i motivació
- 2. Definició de Lògica Proposicional (LProp)
- 3. Deducció en Lògica Proposicional
- 4. Pefinició de Lògica de Primer Ordre (LPO)
- 5. Deducció en Lògica de Primer Ordre
- 6. Programació Lògica (Prolog)

Sumari

- 1 Recordatori: definició d'una Lògica
- Recordatori: definicions en qualsevol Lògica
- 3 Lògica de Primer Ordre vs. Lògica Proposicional
- 4 Sintaxi i Semàntica en LPO
 - Definició de la sintaxi. Exemple
 - Definició de la semàntica. Exemple
- Noció d'avaluació d'una F en una I
- 6 Exercici 5

[is I model of F?]

Exercici 6

[reflexivitat, simetria, transitivitat]

Recordatori: definició d'una Lògica

Recordem:

```
Què és una lògica?
```

- sintaxi: què és una fórmula F?
- semàntica: -a què és una interpretació /?
 - -b quan una I SATISFÀ una F? $I \models F$?

Intuïtivament:

"Interpretació" \equiv "situació de la vida real a modelar" Una F "representa" aquelles I on se satisfà, es compleix.

Recordatori: definicions en qualsevol Lògica

Recordem:

Usem I per a denotar interpretacions i F, G per a fórmules. En qualsevol lògica:

- I és model de F si I satisfà a F (es denota $I \models F$)
- F és satisfactible si F té algun model
- F és **insatisfactible** si F no té models
- F és tautologia si tota I és model de F
- G és conseqüència lògica de F si tot model de F satisfà G
 (es denota F ⊨ G)
- F i G són lògicament equivalents si F i G tenen el mateixos models (es denota F ≡ G)

Nota: Per definició tenim que $F \equiv G$ ssi $F \models G$ i $G \models F$.

Lògica de Primer Ordre vs. Lògica Proposicional

- Col·lecció d'apunts bàsics de lògica: p4.pdf
- LPO: molt més poder expressiu que la LProp. podem modelar moltes més coses de la vida real: matemàtiques, verificació de programari, protocols, . . .
- LPO: deducció més costosa (en complexitat, decidibilitat) que la LProp

Definició de la Lògica de Primer Ordre

Col·lecció d'apunts bàsics de lògica: p4.pdf

LPO: Sintaxi:

símbols de variable: \mathcal{X} notació: x,y,z (1)

(1) possiblement amb superíndexs o subíndexs

Definició de la Lògica de Primer Ordre

Col·lecció d'apunts bàsics de lògica: p4.pdf

LPO: Sintaxi:

```
símbols de variable: \mathcal{X} símbols de funció: \mathcal{F} termes atoms símbols de predicat: \mathcal{P}
```

Fórmules: àtoms combinats amb connectives ∧ ∨ ¬ i amb quantificadors ∀ ∃

(compte amb la notació "text" que també es fa servir

aquí: "per a tot" és A, "existeix" és E, etc.)

Exemple:

```
.F és:
                                        \mathcal{P} és:
    f d'aritat 2
                                           p d'aritat 2
                    g^1
                                           q d'aritat 1
    g d'aritat 1
                    h^1
    h d'aritat 1
                                           r d'aritat 0
                    a^0
    a d'aritat 0
                     b^0
    b d'aritat 0
Exemples de termes: a b g(a) f(x,a)
                        f(f(a,b),x) f(g(a),g(g(f(a,x)))) ...
   de fet, si només tinc un símbol unari ja puc fabricar infinits termes:
                        x h(x) h(h(x)) h(h(h(x))) \dots
Exemples d'àtoms: r = q(a) = q(f(a,b)) = q(h(h(x))) = p(a,h(x))
Exemples de fórmules: F = \forall x \exists y (p(x, h(y)) \lor q(f(x, y)))
                          F' = \forall x p(g(x), a) \lor \exists y g(f(y, y))
```

Definició de la Lògica de Primer Ordre

LPO: Semàntica:

Una / consta de tres parts:

- D_I : "el domini" de I (un conjunt no buit)
- f_i : per cada símbol de funció f d'aritat n,

una funció $f_l: D_l \times \cdots \times D_l \rightarrow D_l$ "la interpretació de f en l"

 p_I : per cada símbol de predicat p d'aritat n, una funció $p_I: \overbrace{D_I \times \cdots \times D_I}^{n \text{ args}} \to \{0,1\}$ "la interpretació de p en I"

Intuïtivament, és com si hi hagués dos TIPUS: els Booleans i "els altres" (els elements de D_I).

F: prenen arguments de D_I i retornen D_I .

P: prenen arguments de D_I i retornen un Booleà.

PER AIXÒ NO TÉ SENTIT NIAR SÍMBOLS DE PREDICAT.

Exemple (cont.):

Exemple d'I:

$$D_{I} = \{ \circ, \$ \}$$

$$f_{I}: D_{I} \times D_{I} \rightarrow D_{I}$$

$$\text{defineixo aquesta funció donant tots els casos:}$$

$$f_{I}(\$,\$) = \$$$

$$f_{I}(\$,\circ) = \circ$$

$$f_{I}(\circ,\$) = \$$$

$$f_{I}(\circ,\circ) = \$$$

$$g_{I}: D_{I} \rightarrow D_{I}$$

$$g_{I}(\$) = \circ$$

$$g_{I}(\circ) = \$$$

$$h_{I}: D_{I} \rightarrow D_{I}$$

$$h_{I}(\$) = \$$$

$$h_{I}(\$) = \$$$

$$a_I = \circ$$

$$b_{I} = \$$$


```
Exemple d'I (cont.):
 D_{I} = \{\circ, \$\}
 p_I: D_I \times D_I \rightarrow \{0,1\}
        defineixo aquesta funció donant tots els casos:
        p_I(\$,\$) = 1
        p_{I}(\$,\circ)=0
        p_I(\circ,\$) = 0
        p_I(\circ,\circ)=1
 q_I: D_I \rightarrow \{0,1\}
        defineixo aquesta funció donant tots els casos:
        q_{I}(\$) = 1
        q_I(\circ)=0
 r_l = 1
```

```
Tenim I \models F?

\forall x \exists y (p(x, h(y)) \lor q(f(x, y)))
p_{I}(\$, \$) = 1
p_{I}(\$, \circ) = 0
p_{I}(\circ, \$) = 0
p_{I}(\circ, \circ) = 1
h_{I}(\$) = \$
h_{I}(\circ) = \circ
```

com p_I s'interpreta com a igualtat, i la h_I és la funció identitat (que "no fa res"), tenim que $\forall x \exists y \ p(x, h(y))$ es compleix: per a tota x del domini hi ha una y que és igual:

```
si x = $ triem que la y sigui també $ si x = 0 triem que la y sigui també 0 ni tan sols cal mirar la part q(f(x,y)).
```


(no necessitem la primera meitat de l'or)

```
Un altre exemple d'interpretació:
 D_I = \mathbb{N} (els nombres naturals)
 f_I d'aritat 2 la suma de naturals: f_I(n, m) = n + m
 g_I d'aritat 1 la funció "successor": g_I(n) = n + 1
                                   h_I(n) = 2n
 h_i d'aritat 1 la funció "doble":
 aı d'aritat 0 7
 bi d'aritat 0 23
 p<sub>1</sub> d'aritat 2 l'ordre estricte de naturals:
                                              p_I(n,m)=(n>m)
                                               q_I(n) = (n \bmod 2 = 0)
 q_l d'aritat 1 ens diu si és parell:
 r_i d'aritat 0 0
Ara tenim I \models F?
    \forall x \exists y (p(x, h(y)) \lor q(f(x, y)))
per a tota x existeix una y tal que x > 2y o x + y és parell?
Això és cert, perquè per a tota x podem triar la y que sigui la
mateixa x i llavors x + y = x + x que és parell.
```

4 D > 4 P > 4 B > 4 B >

Noció d'avaluació d'una F en una I

r veure p4.pdf

- Sintàxi
- Interpretació
- Satisfacció
 - Assignació
 - Avaluació de termes
 - Avaluació de fórmules
 - Noció de satisfacció
- Fórmules tancades
 - Aparicions lliures i lligades de variables
 - Fórmules tancades
 - Avaluació de fórmules tancades
 - Satisfacció de fórmules tancades

5. (dificultat 1) Sigui F la fórmula

$$\exists x \,\exists y \,\exists z \,(p(x,y) \wedge p(z,y) \wedge p(x,z) \wedge \neg p(z,x)).$$

Quines de les següents interpretacions són models de F?

- a) $D_I = \mathbb{N}$ i $p_I(m, n) = 1$ si i només si $m \le n$.
- b) $D_I = \mathbb{N}$ i $p_I(m, n) = 1$ si i només si n = m + 1.
- c) $D_I = \mathcal{P}(\mathbb{N})$ (això denota parts de \mathbb{N} , és a dir, el conjunt de tots els subconjunts de \mathbb{N}),
 - i $p_I(A,B) = 1$ si i només si $A \subseteq B$

En format "text":

Ex Ey Ez (
$$p(x, y) & p(z, y) & p(x, z) & -p(z, x)$$
)

5. (dificultat 1) Sigui F la fórmula

$$\exists x \exists y \exists z (p(x,y) \land p(z,y) \land p(x,z) \land \neg p(z,x)).$$

a) $D_I = \mathbb{N}$ i $p_I(m, n) = 1$ si i només si $m \le n$.

$$\exists x \,\exists y \,\exists z \, (p(x,y) \land p(z,y) \land p(x,z) \land \neg p(z,x)) \quad \text{s'avalua com}$$

$$x \leq y \quad z \leq y \quad x \leq z \quad z > x$$

$$1 \quad 3 \quad 2 \quad 3 \quad 1 \quad 2 \quad 2 \quad 1$$

Sí,
$$I \models F$$
.

5. (dificultat 1) Sigui F la fórmula

$$\exists x\,\exists y\,\exists z\;(p(x,y)\wedge p(z,y)\wedge p(x,z)\wedge \neg p(z,x)).$$

b) $D_I = \mathbb{N}$ i $p_I(m, n) = 1$ si i només si n = m + 1.

$$\exists x \,\exists y \,\exists z \, (p(x,y) \land p(z,y) \land p(x,z) \land \neg p(z,x)) \quad \text{s'avalua com} \\ \underbrace{y = x + 1 \quad y = z + 1}_{X = z} \quad z = x + 1 \quad x \neq z + 1 \\ \underbrace{x = z \quad z = x + 1}_{NO}$$

NO, I no és model de F.

5. (dificultat 1) Sigui F la fórmula

$$\exists x \,\exists y \,\exists z \, (p(x,y) \land p(z,y) \land p(x,z) \land \neg p(z,x)).$$

c)
$$D_I = \mathcal{P}(\mathbb{N})$$
 i $p_I(A, B) = 1$ si i només si $A \subseteq B$.

$$\exists x \, \exists y \, \exists z \, (p(x,y) \, \land \, p(z,y) \, \land \, p(x,z) \, \land \, \neg \, p(z,x))$$
 s'avalua $x \subseteq y$ $z \subseteq y$ $x \subseteq z$ $z \not\subseteq x$ {1} {1,2,3} {1,2} {1,2,3} {1} {1,2} {1,2} {1}

Sí,
$$I \models F$$
.

6. (dificultat 2) Expressa amb tres fórmules les propietats de reflexivitat, simetria i transitivitat d'un predicat binari *p* i demostra que cap de les tres fórmules és conseqüència lògica de (la conjunció de) les altres dues.

Una interpretació p_I d'un predicat binari p, és una funció $p_I:D_I\times D_I\to\{0,1\}$. Ens adonem que en realitat p_I és el mateix que una relació binària sobre D_I :

 p_I ens diu quines parelles d'elements de D_I donen 1 (estan en la relació).

6. (dificultat 2) Expressa amb tres fórmules les propietats de reflexivitat, simetria i transitivitat d'un predicat binari *p* i demostra que cap de les tres fórmules és conseqüència lògica de (la conjunció de) les altres dues.

Recordem:

```
p \text{ \'es reflexiu} \qquad \qquad p(e,e) \qquad \text{per a tot } e \text{ de } S.
FR: \ \forall x \ p(x,x)
p \text{ \'es simètric} \qquad \text{si } p(e,e') \qquad \text{implica } p(e',e) \qquad \text{per a tot } e,e' \text{ de } S.
FS: \ \forall x \ \forall y \ (p(x,y) \rightarrow p(y,x))
p \text{ \'es transitiu} \qquad \text{si } p(e,e') \text{ i } p(e',e'') \qquad \text{implica } p(e,e'') \qquad \text{per a tot } e,e',e'' \text{ de } S.
FT: \ \forall x \ \forall y \ \forall z \ (p(x,y) \land p(y,z) \rightarrow p(x,z))
```


1r cas: FR no és conseqüència lògica de $FS \wedge FT$.

Sigui *I* la interpretació on $D_I = \{*\}$ i $p_I(*,*) = 0$.

Llavors tenim que I no és model de FR.

Però *I* sí que és model de *FS*:

 $\forall x \, \forall y \, (p(x,y) \to p(y,x)) \equiv \forall x \, \forall y \, (\neg p(x,y) \lor p(y,x))$

i / també és model de FT:

 $\forall x \, \forall y \, \forall z \, (p(x,y) \land p(y,z) \rightarrow p(x,z)) \ \equiv \ \forall x \, \forall y \, \forall z \, (\neg p(x,y) \lor \neg p(y,z) \lor p(x,z))$

Per tant, tenim que FR no és conseqüència lògica de $FS \wedge FT$.

2n cas: FS no és conseqüència lògica de $FR \wedge FT$.

```
Sigui I la interpretació on D_I = \{a, b\} p_I(a, a) = 1 (per reflexivitat) p_I(a, b) = 1 per a incomplir la simetria, juntament amb la línia següent p_I(b, a) = 0 per a incomplir la simetria, juntament amb la línia anterior p_I(b, b) = 1 (per reflexivitat).
```

Tenim que I no és model de FS, però sí de FR i de FT.

Per tant, tenim que FS no és conseqüència lògica de $FR \wedge FT$.

3r cas: FT no és conseqüència lògica de $FR \wedge FS$.

Sigui I la interpretació on $D_I = \{a, b, c\}$

Imposem, per aquest ordre:

FR: per reflexivitat

 $\neg FT$: per a incomplir la transitivitat

FS: per simetria

3r cas: FT no és conseqüència lògica de $FR \wedge FS$.

Sigui I la interpretació on $D_I = \{a, b, c\}$

$$FR \neg FT FS$$
 $p_{I}(a, a) = 1$
 $p_{I}(a, b) = 1$
 $p_{I}(a, c) = 0$
 $p_{I}(b, a) = 1$
 $p_{I}(b, c) = 1$
 $p_{I}(c, a) = 0$
 $p_{I}(c, c) = 1$

Tenim que I no és model de FT, però sí de FR i de FS.

Per tant, tenim que FT no és conseqüència lògica de $FR \wedge FS$.

Definició de la Lògica de Primer Ordre

Exercicis del capítol p4.pdf per al proper dia:

7, 8, 9, 10, 11, 12, 16, 21 en endavant.