

THERMODYNAMIQUE – Evaluation de fin de semestre durée : 3 heures

Tout document est interdit. Les calculatrices sont autorisées Les réponses doivent être justifiées.

Les résultats seront donnés avec le nombre de chiffres significatifs appropriés

Données pour l'ensemble des exercices :

On considèrera les gaz comme parfaits - Constante des gaz parfaits R = 8,31 J.mol⁻¹.K⁻¹ Composition molaire de l'air : 20 % O_2 , 80 % N_2

Chaleur latente de fusion de l'eau sous la pression atmosphérique : $\Delta_{fus}H = 334 \text{ J.g}^{-1}$

Exercice I : Thermochimie (≈ 8 pts/40)

Données de l'exercice I :

	O ₂ (g)	SO ₂ (g)	SO₃ (g)	N ₂ (g)	H ₂ O (I)	H ₂ O (s)
$\Delta_f H^0_{298K}$ (kJ.mol ⁻¹)		- 297	- 396			
C_p (J.K ⁻¹ .mol ⁻¹)	29,4	39,9	50,7	29,1	75,3	33,6

On considère la réaction d'oxydation du dioxyde de soufre gazeux $SO_2(g)$ en trioxyde de soufre gazeux $SO_3(g)$ par le <u>dioxygène de l'air</u>, $O_2(g)$.

- **1.a)** Ecrire l'équation de la réaction.
- **1.b)** Calculer à T = 298 K, l'enthalpie standard $\Delta_r H^0_{298K}$ de la réaction et préciser explicitement son unité.
- **1.c)** La réaction est-elle exothermique ou endothermique ? Justifier.
- **2.a)** Calculer à T = 700 K, l'enthalpie standard $\Delta_r H^0_{700K}$ de la réaction définie à la question **1)**.
- **2.b)** Comparer $\Delta_r H^0_{298K}$ et $\Delta_r H^0_{700K}$ quelle remarque peut-on faire ?
- **3)** Dans une enceinte adiabatique, dont la pression est constante (1 bar), on introduit, $\frac{\grave{a}}{10}$ 700 K, 10 moles de SO₂(g) et 50 moles d'air.
- **3.a)** Après avoir établi un tableau d'avancement détaillé, donner la composition du mélange après réaction, en nombre de moles.
- **3.b)** Déterminer la température finale du système, dans cette enceinte adiabatique.

Département FIMI - Formation Initiale aux Métiers d'Ingénieur

Exercice II: Transformations d'un gaz parfait monoatomique (≈16 pts/40)

Données de l'exercice II :

Pour un gaz parfait monoatomique : $\overline{C_V}$ =12,5 J.K⁻¹.mol⁻¹, $\overline{C_P}$ =20,8 J.K⁻¹.mol⁻¹, γ = $\frac{5}{3}$

On rappelle que $\overline{C_V} = \frac{R}{\gamma - 1}$ et $\overline{C_P} = \frac{R\gamma}{\gamma - 1}$

Un **système** σ est constitué de n=0.5 mole de **gaz parfait monoatomique** placé dans un cylindre fermé par un piston. Le cylindre est plongé dans un bain (mélange d'eau liquide et de glace à l'équilibre thermique à 273 K). Le cylindre est constitué d'un matériau bon conducteur de la chaleur. Le piston (glissement sans frottement) est lui parfaitement isolant. L'ensemble (cylindre + bain) est isolé thermiquement et peut être considéré comme un système évoluant de manière adiabatique.

1) Etat initial

Le piston est positionné tel que le volume du système σ est $V_A = 10 L$ à $T_A = 273$ K (Etat A). Exprimer P_A en fonction de n, R, V_A et T_A . Calculer en pascals la pression P_A du gaz.

2) Transformation de l'état A à l'état B

Par une détente **isotherme réversible** on déplace le piston pour augmenter le volume du gaz de V_A à $V_B=2V_A$ (Etat B).

- **2.a)** Exprimer P_B en fonction de V_{B_1} V_A et P_A . Calculer la pression P_B en pascals.
- **2.b)** Exprimer W_{AB} en fonction de n, R, V_{A} , T_{A} et V_{B} Calculer en joules le travail W_{AB} échangé par le gaz.
- **2.c)** Calculer en joules la chaleur échangée Q_{AB} par le gaz.
- **2.d)** Calculer la variation d'entropie ΔS_{AB}^{σ} et d'enthalpie ΔH_{AB}^{σ} du gaz. Calculer la variation d'entropie du bain ΔS_{AB}^{bain} . Calculer la variation d'entropie de l'univers $\Delta S_{AB}'$.
- **2.e)** En utilisant l'enthalpie de fusion massique de l'eau, calculer en grammes m_{AB} la masse de glace formée ou fondue à la fin de la transformation de l'état A vers l'état B.

3) Transformation de l'état B à l'état C

Par une compression **adiabatique irréversible** en exerçant une pression extérieure P_{ext} =cte, on déplace le piston jusqu'à l'état C où le gaz occupe à nouveau le volume V_A sous la pression $P_C = P_{ext}$ avec une température Tc.

- **3.a)** Calculer en joules la chaleur échangée Q_{BC} par le gaz au cours de la transformation de l'état B à l'état C.
- **3.b)** A l'aide de deux expressions du travail, démontrer que $T_C = 3T_B$.
- **3.c)** Calculer Tc et P_C .
- **3.d)** Calculer en joules le travail W_{BC} échangé par le gaz au cours de la transformation de l'état B à l'état C.
- **3.e)** Calculer la variation d'entropie ΔS_{BC}^{σ} et d'enthalpie ΔH_{BC}^{σ} du gaz. Calculer la variation d'entropie du bain ΔS_{BC}^{bain} . Calculer la variation d'entropie de l'univers $\Delta S_{BC}'$.

Département FIMI - Formation Initiale aux Métiers d'Ingénieur

4) Transformation de l'état C à l'état A

On laisse le gaz reprendre la température d'équilibre à $T_A = 273$ K en maintenant son **volume constant** à V_A (Etat A).

- **4.a)** Calculer en joules le travail W_{CA} échangé par le gaz au cours de la transformation de l'état C à l'état A.
- **4.b)** Calculer en joules la chaleur échangée Q_{CA} par le gaz au cours de la transformation de l'état C à l'état A.
- **4.c)** En utilisant l'enthalpie de fusion massique de l'eau, calculer en grammes m_{CA} la masse de glace formée ou fondue à la fin de la transformation de l'état C vers l'état A.
- **4.d)** Calculer la variation d'entropie ΔS^{σ}_{CA} et d'enthalpie ΔH^{σ}_{CA} du gaz. Calculer la variation d'entropie du bain ΔS^{bain}_{CA} . Calculer la variation d'entropie de l'univers $\Delta S'_{CA}$.

5) Etude du cycle

- **5.a)** Déterminer en joules le travail échangé W_{cycle} par le gaz au cours du cycle ABCA.
- **5.b)** Déterminer en joules la chaleur échangée Q_{cycle} par le gaz au cours du cycle ABCA.
- **5.c)** Déterminer la variation d'entropie $\Delta S_{cycle}^{\sigma}$ et d'enthalpie $\Delta H_{cycle}^{\sigma}$ du gaz au cours du cycle ABCA.
- **5.d)** Exprimer la variation d'entropie de l'univers $\Delta S'_{cycle}$ en fonction de m_{AB_r} m_{CA_r} , $\Delta_{fus}H$ et T_A au cours du cycle ABCA. Calculer $\Delta S'_{cycle}$.

Exercice III: Etude du corps pur (≈ 8 pts/40)

A – Etude des équilibres liquide-gaz et solide-gaz du naphtalène au voisinage du point triple

<u>Données pour le naphtalène</u> : formule C₁₀H₈, masse molaire 128 g.mol⁻¹.

Les masses volumiques du naphtalène solide et du naphtalène liquide seront supposées constantes et respectivement égales à ρ_{sol} = 1,061 g.cm⁻³ et ρ_{liq} = 0,977 g.cm⁻³.

Les pressions de vapeur saturante en présence du liquide ou du solide, exprimées en Pa, obéissent aux relations suivantes :

$$C_{10}H_{8,liq} \leftrightharpoons C_{10}H_{8,gaz}$$
 $ln(p_{vap}) = -5566,2/T + 22,66$
 $C_{10}H_{8,sol} \leftrightharpoons C_{10}H_{8,gaz}$ $ln(p_{sub}) = -7718,8/T + 28,75$

- 1) Déterminer les coordonnées du point triple.
- **2)** Déterminer, après avoir rappelé les hypothèses faites pour intégrer l'équation de Clapeyron conduisant aux expressions ci-dessus, les enthalpies molaires $\Delta_{vap}\overline{H}$ et $\Delta_{sub}\overline{H}$ (en J.mol⁻¹), au voisinage du point triple.
- **3)** En déduire l'enthalpie molaire de fusion du naphtalène au point triple (en J.mol⁻¹).
- **4)** Calculer la pente de la courbe de fusion au point triple (en Pa.K⁻¹ puis en atm.K⁻¹). Qu'en concluez-vous sur l'évolution de la température de fusion en fonction de la pression ?

B-Questions de cours

Etablir, pour un système de composition constante, la relation dG = VdP - SdT. En déduire l'expression donnant la variation de l'enthalpie libre d'un gaz parfait avec la pression à T constante.

Application numérique : Calculer la variation de l'enthalpie libre lors de la compression d'une mole d'un gaz parfait de 1 à 5 bar à T = 298 K.

Département FIMI - Formation Initiale aux Métiers d'Ingénieur

Exercice IV : Etude d'un congélateur (≈ 8 pts/40)

Un congélateur fonctionne avec un compresseur d'une puissance mécanique P_C = 150 Watts. Il se trouve dans une pièce (σ_{C1}) à la température T_{C1} = 293 K. Une régulation permet de régler la température du compartiment le plus froid (σ_{C2}) à la valeur T_{C2} = 255 K lorsque le congélateur est en régime permanent, à l'équilibre thermodynamique.

Pour l'eau, utiliser les données thermodynamiques de l'exercice I.

- 1) On considère d'abord que le congélateur fonctionne réversiblement et échange de l'énergie avec les deux systèmes extérieurs, pièce (σ_{C1}) et compartiment froid (σ_{C2}), considérés comme des thermostats aux températures T_{C1} et T_{C2} . Les énergies mises en jeu seront notées : W_{C} , Q_{C1} , Q_{C2} .
- **1.a)** Etablir le schéma thermodynamique du congélateur, en faisant apparaître clairement les grandeurs de travail et de chaleur échangées entre les différents systèmes (préciser leur signe et le sens des échanges).
- **1.b)** En explicitant très précisément la démarche mise en œuvre, montrer que le coefficient de performance du congélateur s'exprime selon : $CoP_{C-rév} = \frac{T_{C2}}{T_{C1}-T_{C2}}$ en condition de fonctionnement réversible. Calculer sa valeur numérique.
- **2)** On admettra dans la suite de cet exercice que le congélateur fonctionne irréversiblement. On place dans le congélateur 1 kg d'eau initialement à 293 K.
- 2.a) Calculer la quantité de chaleur mis en jeu pour faire passer l'eau de 293 K à 255 K.
- **2.b)** Sachant que l'eau met 20 minutes pour atteindre 255 K, calculer W_C et en déduire la valeur du coefficient de performance réel du congélateur $CoP_{C\text{-réel}}$.
- **2.c)** En déduire le rendement thermodynamique du congélateur $r_C = CoP_{C-réel} / CoP_{C-réel}$
- **3)** Le congélateur est maintenant combiné à un réfrigérateur dont le moteur a une puissance électrique $P_F = 250$ W avec un rendement thermodynamique $r_F = CoP_{F-r\acute{e}el} / CoP_{F-r\acute{e}el} = 0,35$. L'ensemble est placé dans la pièce à 293 K (T_{F1}), la source chaude du congélateur étant maintenant l'intérieur du réfrigérateur réglé à 277K ($T_{F2} = T'_{C1}$).
- **3.a)** Représenter le nouveau schéma thermodynamique de l'installation « combiné réfrigérateur congélateur ». On notera les énergies mises en jeu Q_{F1} , Q_{F2} et W_F pour le réfrigérateur et Q'_{C1} , Q'_{C2} et W'_C pour le congélateur.
- **3.b)** Calculer les nouveaux coefficients de performance réversible $CoP'_{C\text{-rev}}$ et réel $CoP'_{C\text{-réel}}$ du congélateur sachant que le rendement thermodynamique r_C du congélateur reste inchangé (r_C = 0,37). Commenter le résultat.