

What is claimed is:

1 1: A method for transferring digital data comprising:
2 removing a first mass storage device from an information handling system;
3 reading at least a portion of digital data from said first mass storage device while
4 said first mass storage device is operated with said information handling system while
5 said first mass storage device is unmounted; and
6 storing said digital data read from said first mass storage device to a second mass
7 storage device mounted with said information handling system.

1 2: The method of claim 1, which further comprises, prior to removing a first mass
2 storage device from an information handling system, storing said digital data to said first
3 mass storage device while said first mass storage device is substantially mounted with
4 said information handling system.

1 3: The method of claim 1, wherein said first mass storage device includes:
2 a first data port, said first data port having a configuration so as to be utilized
3 when said first mass storage device is operated while mounted with said information
4 system, and
5 a second data port, said second data port having a configuration so as to be
6 utilized when said first mass storage device is operated with said information system
7 while said first mass storage device is unmounted.

1 4: The method of claim 1, wherein reading at least a portion of digital data from said first
2 mass storage device includes determining the at least a portion of said digital data to read
3 from said first mass storage device.

1 5: The method of claim 4, wherein determining the at least a portion of said digital data
2 to read from said first mass storage device comprises marking the at least a portion of
3 said digital data before said first mass storage device is removed from said information
4 system.

1 6: The method of claim 5, wherein said marking of the at least a portion of said digital
2 data comprises utilizing an indexing system.

1 7: The method of claim 1, wherein reading at least a portion of digital data from said first
2 mass storage device comprises placing said first mass storage device in a cradle after
3 removing said first mass storage device from said information handling system.

1 8: The method of claim 7, wherein said reading at least a portion of said digital data from
2 said first mass storage device comprises transmitting the at least a portion said digital
3 data from said first mass storage device to said information handling system in a serial
4 fashion.

1 9: The method of claim 8, wherein said method further comprises storing digital data in
2 said first mass storage device in a parallel fashion, before removing said first mass
3 storage device from said information handling system.

1 10: The method of claim 1, wherein said method further comprises mounting said second
2 mass storage device with said information platform after said first mass storage device
3 has been removed.

1 11: An apparatus comprising:
2 a mass storage device having a configuration so as to be used in conjunction with

3 a system which includes the capability to at least in part store digital data;

4 said mass storage device including:

5 a first data port, and

6 a second data port.

1 12: The apparatus of claim 11, wherein said mass storage device is further arranged to

2 principally utilize, during operation, said first data port when said mass storage

3 device is operated while mounted with said system and arranged to

4 principally utilize, during operation, said second data port when said mass storage

5 device is operated with said system while said mass storage device is unmounted.

1 13: The apparatus of claim 11, wherein said second data port of said mass storage device

2 is arranged to be coupled, during operation, to another mass storage device, which is

3 substantially mounted with said system.

1 14: The apparatus of claim 13, wherein said second data port further has the capability to

2 both transmit and receive digital data from said system.

1 15: The apparatus of claim 11, wherein said mass storage, when operated with said

2 system while said mass storage device is unmounted, transmits digital data from said

3 mass storage device utilizing said second data port.

1 16: The apparatus of claim 11, wherein said first data port is configured to, during

2 operation, communicate with said system via a substantially parallel protocol.

1 17: The apparatus of claim 16, wherein said substantially parallel protocol comprises one
2 of the protocols selected from a group consisting essentially of the Enhanced Integrated
3 Device Electronics (EIDE) protocol, and the Small Computer System Interface (SCSI).

1 18: The apparatus of claim 16, wherein said second data port is configured to, during
2 operation, communicate with said system via a substantially serial protocol.

1 19: The apparatus of claim 18, wherein said substantially serial protocol comprises one
2 of the protocols selected from a group consisting essentially of the Universal Serial Bus
3 (USB) protocol, a protocol substantially complaint with the IEEE 1394 specification
4 (a.k.a. Firewire), and a short-range wireless communications protocol.

1 20: The apparatus of claim 18, wherein said mass storage device is capable, during
2 operating, of receiving operating power via said second data port.

1 21: The apparatus of claim 16, wherein said second data port is configured to, during
2 operation, communicate with said system via a substantially parallel protocol.

1 22: The apparatus of claim 11, wherein said mass storage device comprises a hard disk
2 drive.

1 23: The apparatus of claim 11, wherein said second data port comprises a cradle which is
2 capable, during operation, of re-formatting digital data from said first data port before
3 transmitting said digital data to said system.

1 24: An apparatus comprising:
2 a cradle having a configuration to hold a mass storage device;

3 said cradle being further configured so that said cradle has the capability to
4 reformat digital data received from said mass storage device and transmit said
5 reformatted digital data to an information handling system.

1 25: The apparatus of claim 24, wherein said cradle is further configured so that said
2 cradle has the capability to reformat digital data received from said information handling
3 system and transmit said reformatted digital data to said mass storage device.

1 26: The apparatus of claim 24, wherein said cradle is further configured so that said mass
2 storage device may be fixed mounted to said cradle.

1 27: The apparatus of claim 24, wherein said cradle comprises a data port which is
2 configured to, during operation, transmit said reformatted digital data to said information
3 handling system via a substantially serial protocol.

4 28: The apparatus of claim 27, said substantially serial protocol comprises one of the
5 protocols selected from a group consisting essentially of the Universal Serial Bus (USB)
6 protocol, a protocol substantially complaint with the IEEE 1394 specification (a.k.a.
7 Firewire), and a short-range wireless communications protocol.

1 29: The apparatus of claim 27, wherein said cradle comprises a data port which is
2 adapted to receive, during operation, digital data from said mass storage device via a
3 substantially parallel protocol.

1 30: The apparatus of claim 29, wherein said substantially parallel protocol comprises one
2 of the protocols selected from a group consisting essentially of the Enhanced Integrated
3 Device Electronics (EIDE) protocol, and the Small Computer System Interface (SCSI).

1 31: The apparatus of claim 24, wherein said cradle is capable of, during operation,
2 providing operating power to said mass storage device.

1 32: A system comprising:
2 an information handling platform, which has the capability to at least in part store
3 digital data; and
4 a mass storage device including
5 a first data port, and
6 a second data port;
7 wherein said mass storage device is coupled to said information handling
8 platform.

1 33: The system of claim 32, wherein said mass storage device is further arranged to
2 principally utilize, during operation, said first data port when said mass storage
3 device is operated while mounted with said platform and arranged to
4 principally utilize said second data port when said mass storage device is operated
5 with said information handling platform while said mass storage device is unmounted.

1 34: The system of claim 32, wherein said mass storage device, when operated said
2 information handling platform while said mass storage device is unmounted, transmits
3 digital data from said mass storage device utilizing said second data port.

1 35: The system of claim 32, wherein the said first data port of said mass storage device is
2 configured to, during operation, communicate with said information handling platform
3 via a substantially parallel protocol.

1 36: The system of claim 35, wherein said substantially parallel protocol comprises one of
2 the protocols selected from a group consisting essentially of the Enhanced Integrated
3 Device Electronics (EIDE) protocol, and the Small Computer System Interface (SCSI).

1 37: The system of claim 35, wherein said second data port of said mass storage device is
2 configured to, during operation, communicate with said information handling platform
3 via a substantially serial protocol.

1 38: The system of claim 37, wherein said substantially serial protocol comprises one of
2 the protocols selected from a group consisting essentially of the Universal Serial Bus
3 (USB) protocol, a protocol substantially complaint with the IEEE 1394 specification
4 (a.k.a. Firewire), and a short-range wireless communications protocol.

1 39: The system of claim 32, wherein said mass storage device comprises a hard disk
2 drive and said information handling platform comprises a computer.

1 40: A system comprising:
2 an information handling platform, which includes the capability to at least in part
3 store digital data;
4 a mass storage device; and
5 a cradle having a configuration so as to hold said mass storage device;
6 said cradle further having a configuration so that said cradle has the capability to
7 reformat digital data received from said mass storage device and transmit said
8 reformatted digital data to said information handling platform.

1 41: The system of claim 40, wherein said cradle comprises a data port which is
2 configured to, during operation, transmit said reformatted digital data to said information
3 handling system via a substantially serial protocol.

1 42: The system of claim 41, said substantially serial protocol comprises one of the
2 protocols selected from a group consisting essentially of the Universal Serial Bus (USB)
3 protocol, a protocol substantially complaint with the IEEE 1394 specification (a.k.a.
4 Firewire), and a short-range wireless communications protocol.

1 43: The system of claim 41, wherein said cradle comprises a data port which is adapted
2 to receive, during operation, digital data from said mass storage device via a substantially
3 parallel protocol.

1 44: The system of claim 43, wherein said substantially parallel protocol one of the
2 protocols selected from a group consisting essentially of the Enhanced Integrated Device
3 Electronics (EIDE) protocol, and the Small Computer System Interface (SCSI).

1 45: The system of claim 40, wherein said mass storage device comprises a hard drive
2 and said information handling platform comprises a computer.