

Mathematical Foundations

Natural Language Processing: Jordan Boyd-Graber University of Colorado Boulder AUGUST 27. 2014

Slides adapted from Dave Blei and Lauren Hannah

By the end of today ...

- You'll be able to apply the concepts of distributions, independence, and conditional probabilities
- You'll be able to derive joint, marginal, and conditional probabilites from each other
- You'll be able to compute expectations and entropies

Outline

- 1 Probability
- Working with probability distributions
- 3 Combining Probability Distributions
- 4 Continuous Distributions
- Expectation and Entropy
- 6 Exercises

Preface: Why make us do this?

- Probabilities are the language we use to describe data
- A reasonable (but geeky) definition of nlp is how to get probabilities we care about from text
- Later classes will be about how to do this for different probability models
 of text
- But first, we need key definitions of probability (and it makes more sense to do it all at once)

Preface: Why make us do this?

- Probabilities are the language we use to describe data
- A reasonable (but geeky) definition of nlp is how to get probabilities we care about from text
- Later classes will be about how to do this for different probability models
 of text
- But first, we need key definitions of probability (and it makes more sense to do it all at once)
- So pay attention!

The Statistical Revolution in NLP

- Speech recognition
- Machine translation
- Part of speech tagging
- Parsing

Solution?

They share the same solution: probabilistic models.

The Statistical Revolution in NLP

- Speech recognition
- Machine translation
- Part of speech tagging
- Parsing

Solution?

They share the same solution: probabilistic models.

BS

Eugene Charniak refers to the time before statistics in nlp as "BS"; and nothing actually worked.

Random variable

- Probability is about random variables.
- A random variable is any "probabilistic" outcome.
- For example,
 - The flip of a coin
 - The height of someone chosen randomly from a population
- We'll see that it's sometimes useful to think of quantities that are not strictly probabilistic as random variables.
 - The temperature on 11/12/2013
 - The temperature on 03/04/1905
 - The number of times "streetlight" appears in a document

Random variable

- Random variables take on values in a sample space.
- They can be discrete or continuous:
 - ∘ Coin flip: {*H*, *T*}
 - Height: positive real values $(0, \infty)$
 - Temperature: real values $(-\infty, \infty)$
 - Number of words in a document: Positive integers {1,2,...}
- We call the outcomes events.
- Denote the random variable with a capital letter; denote a realization of the random variable with a lower case letter.
- E.g., X is a coin flip, x is the value (H or T) of that coin flip.

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is an (unfair) coin, then

$$P(X = H) = 0.7$$

 $P(X = T) = 0.3$

- And probabilities have to be greater than 0
- Probabilities of disjunctions are sums over part of the space. E.g., the probability that a die is bigger than 3:

$$P(D > 3) = P(D = 4) + P(D = 5) + P(D = 6)$$

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is an (unfair) coin, then

$$P(X = H) = 0.7$$

 $P(X = T) = 0.3$

- And probabilities have to be greater than 0
- Probabilities of disjunctions are sums over part of the space. E.g., the probability that a die is bigger than 3:

$$P(D > 3) = P(D = 4) + P(D = 5) + P(D = 6)$$

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is an (unfair) coin, then

$$P(X=H) = 0.7$$

$$P(X=T) = 0.3$$

- And probabilities have to be greater than 0
- Probabilities of disjunctions are sums over part of the space. E.g., the probability that a die is bigger than 3:

$$P(D>3) = P(D=4) + P(D=5) + P(D=6)$$

$$\sum P(X=x)=1$$

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is an (unfair) coin, then

$$P(X=H) = 0.7$$

$$P(X=T) = 0.3$$

- And probabilities have to be greater than 0
- Probabilities of disjunctions are sums over part of the space. E.g., the probability that a die is bigger than 3:

$$P(D>3) = P(D=4) + P(D=5) + P(D=6)$$

$$\sum_{X} P(X=x) = 1$$

Outline

- Probability
- Working with probability distributions
- 3 Combining Probability Distributions
- 4 Continuous Distributions
- Expectation and Entropy
- 6 Exercises

Events

An *event* is a set of outcomes to which a probability is assigned

- drawing a black card from a deck of cards
- drawing a King of Hearts

Intersections and unions:

Intersection: drawing a red and a King

$$P(A \cap B) \tag{1}$$

Union: drawing a spade or a King

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \quad (2)$$

Events

An *event* is a set of outcomes to which a probability is assigned

- drawing a black card from a deck of cards
- drawing a King of Hearts

Intersections and unions:

Intersection: drawing a red and a King

$$P(A \cap B) \tag{1}$$

Union: drawing a spade or a King

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \quad (2)$$

Events

An *event* is a set of outcomes to which a probability is assigned

- drawing a black card from a deck of cards
- drawing a King of Hearts

Intersections and unions:

Intersection: drawing a red and a King

$$P(A \cap B) \tag{1}$$

Union: drawing a spade or a King

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \quad (2)$$

Joint distribution

- Typically, we consider collections of random variables.
- The joint distribution is a distribution over the configuration of all the random variables in the ensemble.
- For example, imagine flipping 4 coins. The joint distribution is over the space of all possible outcomes of the four coins.

$$P(HHHH) = 0.0625$$

 $P(HHHT) = 0.0625$
 $P(HHTH) = 0.0625$
...

• You can think of it as a single random variable with 16 values.

Visualizing a joint distribution

Marginalization

If we are given a joint distribution, what if we are only interested in the distribution of one of the variables?

We can compute the distribution of P(X) from P(X, Y, Z) through *marginalization*:

$$\sum_{y} \sum_{z} P(X, Y = y, Z = z) = \sum_{y} \sum_{z} P(X) P(Y = y, Z = z | X)$$

$$= P(X) \sum_{y} \sum_{z} P(Y = y, Z = z | X)$$

$$= P(X)$$

Joint distribution

temperature (T) and weather (W)

	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

- $P(X,Y) = \sum_{z} P(X,Y,Z=z)$
- Corresponds to summing out a table dimension
- New table still sums to 1

- Marginalize out weather
- Marginalize out temperature

Joint distribution

temperature (T) and weather (W)

	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalize out weather
T=Hot T=Mild T=Cold

Joint distribution

temperature (T) and weather (W)

	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalize out weather
T=Hot T=Mild T=Cold

Joint distribution

temperature (T) and weather (W)

	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

- $P(X,Y) = \sum_{z} P(X,Y,Z=z)$
- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalize out weather

T=Hot	T=Mild	T=Cold
.15		

Joint distribution

temperature (T) and weather (W)

	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalize out weather

T=Hot	T=Mild	T=Cold
.15	.55	.30

Joint distribution

temperature (T) and weather (W)

•	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalize out weather

T=Hot	T=Mild	T=Cold
.15	.55	.30

W=Sunny	
W=Cloudy	

Joint distribution

temperature (T) and weather (W)

	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalize out weather

T=Hot	T=Mild	T=Cold
.15	.55	.30

W=Sunny	
W=Cloudy	

Joint distribution

temperature (T) and weather (W)

	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalize out weather

T=Hot	T=Mild	T=Cold
.15	.55	.30

Marginalize out temperature

W=Sunny .40

vv=Sunny	.40
W=Cloudy	

Joint distribution

temperature (T) and weather (W)

-	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

•
$$P(X,Y) = \sum_{z} P(X,Y,Z=z)$$

- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalize out weather

	T=Hot	T=Mild	T=Cold
ĺ	.15	.55	.30

Marginalize out temperature

W=Sunny .40

vv=Sunny	.40
W=Cloudy	.60

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Example

What is the probability that the sum of two dice is six given that the first is greater than three?

Example

- $A \equiv \text{First die}$
- B ≡ Second die

	B=1	B=2	B=3	B=4	B=5	B=6
A=1	2	3	4	5	6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

Example

- $A \equiv \text{First die}$
- B ≡ Second die

	B=1	B=2	B=3	B=4	B=5	B=6
A=1	2	3	4	5	6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

Example

- A ≡ First die
- B ≡ Second die

	B=1	B=2	B=3	B=4	B=5	B=6
A=1	2	3	4	5	6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

$$P(A > 3 \cap B + A = 6) =$$

 $P(A > 3) =$
 $P(A > 3 | B + A = 6) =$

Example

- A ≡ First die
- B ≡ Second die

	B=1	B=2	B=3	B=4	B=5	B=6
A=1	2	3	4	5	6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

$$P(A > 3 \cap B + A = 6) = \frac{2}{36}$$

 $P(A > 3) =$
 $P(A > 3 | B + A = 6) =$

Example

- A ≡ First die
- B ≡ Second die

	B=1	B=2	B=3	B=4	B=5	B=6
	2	3	4	5	6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

$$P(A > 3 \cap B + A = 6) = \frac{2}{36}$$
$$P(A > 3) = \frac{3}{6}$$
$$P(A > 3 | B + A = 6) =$$

Example

- $A \equiv \text{First die}$
- $B \equiv Second die$

$$P(A > 3 \cap B + A = 6) = \frac{2}{36}$$

	B=1	B=2	B=3	B=4	B=5	B=6	D
A=1	2	3	4	5	6	7	- ,
A=2	3	4	5	6	7	8	P(A>3 B+
A=3	4	5	6	7	8	9	P(A>3 B+
A=4	5	6	7	8	9	10	
A=5	6	7	8	9	10	11	
A=6	7	8	9	10	11	12	

$$P(A > 3 \cap B + A = 6) = \frac{2}{36}$$

$$P(A > 3) = \frac{3}{6}$$

$$P(A > 3 \mid B + A = 6) = \frac{\frac{2}{36}}{\frac{3}{6}} = \frac{2}{36} \frac{6}{3}$$

Example

- $A \equiv \text{First die}$
- $B \equiv Second die$

	B=1	B=2	B=3	B=4	B=5	B=6
	2	3	4	5	6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

$$P(A > 3 \cap B + A = 6) = \frac{2}{36}$$

$$(A > 3 \cap B + A = 6) = \frac{1}{36}$$

$$P(A > 3 \cap B + A = 6) = \frac{2}{36}$$

$$P(A > 3) = \frac{3}{6}$$

$$P(A > 3 \mid B + A = 6) = \frac{\frac{2}{36}}{\frac{3}{6}} = \frac{2}{36} \frac{6}{3}$$

$$\frac{3}{\frac{3}{6}} - \frac{3}{36} = \frac{3}{3}$$

$$=\frac{1}{9}$$

Outline

- Probability
- Working with probability distributions
- 3 Combining Probability Distributions
- 4 Continuous Distributions
- Expectation and Entropy
- 6 Exercises

The chain rule

• The definition of conditional probability lets us derive the *chain rule*, which let's us define the joint distribution as a product of conditionals:

$$P(X,Y) = P(X,Y)\frac{P(Y)}{P(Y)}$$

The chain rule

• The definition of conditional probability lets us derive the chain rule, which let's us define the joint distribution as a product of conditionals:

$$P(X,Y) = P(X,Y)\frac{P(Y)}{P(Y)}$$

= $P(X|Y)P(Y)$

Boulder

The chain rule

• The definition of conditional probability lets us derive the *chain rule*, which let's us define the joint distribution as a product of conditionals:

$$P(X,Y) = P(X,Y)\frac{P(Y)}{P(Y)}$$

= $P(X|Y)P(Y)$

- For example, let Y be a disease and X be a symptom. We may know
 P(X|Y) and P(Y) from data. Use the chain rule to obtain the probability
 of having the disease and the symptom.
- In general, for any set of N variables

$$P(X_1,...,X_N) = \prod_{n=1}^N P(X_n|X_1,...,X_{n-1})$$

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- ② Change outcome space from B to Ω

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- ① Start with P(A|B)
- $oldsymbol{2}$ Change outcome space from B to Ω
- $oldsymbol{3}$ Change outcome space again from Ω to A

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- ① Start with P(A|B)
- ② Change outcome space from B to Ω : P(A|B)P(B)
- **3** Change outcome space again from Ω to A

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- ① Start with P(A|B)
- ② Change outcome space from B to Ω : P(A|B)P(B)
- **3** Change outcome space again from Ω to A: $\frac{P(A|B)P(B)}{P(A)}$

Random variables X and Y are independent if and only if P(X = x, Y = y) = P(X = x)P(Y = y).

Conditional probabilities equal unconditional probabilities with independence:

- P(X = x | Y) = P(X = x)
- Knowing Y tells us nothing about X

Random variables X and Y are independent if and only if P(X = x, Y = y) = P(X = x)P(Y = y).

Conditional probabilities equal unconditional probabilities with independence:

- P(X = x | Y) = P(X = x)
- Knowing Y tells us nothing about X

Mathematical examples:

 If I draw two socks from my (multicolored) laundry, is the color of the first sock independent from the color of the second sock?

Random variables X and Y are independent if and only if P(X = x, Y = y) = P(X = x)P(Y = y).

Conditional probabilities equal unconditional probabilities with independence:

- P(X = x | Y) = P(X = x)
- Knowing Y tells us nothing about X

Mathematical examples:

 If I draw two socks from my (multicolored) laundry, is the color of the first sock independent from the color of the second sock?

 If I flip a coin twice, is the first outcome independent from the second outcome?

Intuitive Examples:

- Independent:
 - you use a Mac / the Hop bus is on schedule
 - o snowfall in the Himalayas / your favorite color is blue

Intuitive Examples:

- Independent:
 - o you use a Mac / the Hop bus is on schedule
 - snowfall in the Himalayas / your favorite color is blue
- Not independent:
 - you vote for Mitt Romney / you are a Republican
 - there is a traffic jam on 25 / the Broncos are playing

Sometimes we make convenient assumptions.

- the values of two dice
- the value of the first die and the sum of the values
- whether it is raining and the number of taxi cabs
- whether it is raining and the amount of time it takes me to hail a cab
- the first two words in a sentence

Outline

- Probability
- Working with probability distributions
- 3 Combining Probability Distributions
- **4** Continuous Distributions
- Expectation and Entropy
- 6 Exercises

Continuous random variables

- We've only used discrete random variables so far (e.g., dice)
- Random variables can be continuous.
- We need a *density* p(x), which *integrates* to one.

E.g., if $x \in \mathbb{R}$ then

$$\int_{-\infty}^{\infty} p(x) dx = 1$$

Probabilities are integrals over smaller intervals. E.g.,

$$P(X \in (-2.4, 6.5)) = \int_{-2.4}^{6.5} p(x) dx$$

• Notice when we use P, p, X, and x.

The Gaussian distribution

The Gaussian (or Normal) is a continuous distribution.

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

- The density of a point x is proportional to the negative exponentiated half distance to μ scaled by σ^2 .
- μ is called the *mean*; σ^2 is called the *variance*.

Outline

- Probability
- Working with probability distributions
- 3 Combining Probability Distributions
- 4 Continuous Distributions
- 5 Expectation and Entropy
- 6 Exercises

Expectation

An expectation of a random variable is a weighted average:

$$E[f(X)] = \sum_{x=1}^{\infty} f(x) p(x)$$
 (discrete)
=
$$\int_{-\infty}^{\infty} f(x) p(x) dx$$
 (continuous)

Expectation

Expectations of constants or known values:

- E[a] = a
- E[Y|Y=y]=y

Expectation Intuition

- Average or outcome (might not be an event: 2.4 children)
- Center of mass

• "Fair Price" of a wager

What is the expectation of the roll of die?

What is the expectation of the roll of die?

One die

$$1 \cdot \tfrac{1}{6} + 2 \cdot \tfrac{1}{6} + 3 \cdot \tfrac{1}{6} + 4 \cdot \tfrac{1}{6} + 5 \cdot \tfrac{1}{6} + 6 \cdot \tfrac{1}{6} =$$

What is the expectation of the roll of die?

One die

$$1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

What is the expectation of the roll of die?

One die

$$1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

What is the expectation of the sum of two dice?

What is the expectation of the roll of die?

One die

$$1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

What is the expectation of the sum of two dice?

Two die

$$2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + 4 \cdot \frac{3}{36} + 5 \cdot \frac{4}{36} + 6 \cdot \frac{5}{36} + 7 \cdot \frac{6}{36} + 8 \cdot \frac{5}{36} + 9 \cdot \frac{4}{36} + 10 \cdot \frac{3}{36} + 11 \cdot \frac{2}{36} + 12 \cdot \frac{1}{36} =$$

What is the expectation of the roll of die?

One die

$$1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

What is the expectation of the sum of two dice?

Two die

$$2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + 4 \cdot \frac{3}{36} + 5 \cdot \frac{4}{36} + 6 \cdot \frac{5}{36} + 7 \cdot \frac{6}{36} + 8 \cdot \frac{5}{36} + 9 \cdot \frac{4}{36} + 10 \cdot \frac{3}{36} + 11 \cdot \frac{2}{36} + 12 \cdot \frac{1}{36} = 7$$

Entropy

- Measure of disorder in a system
- In the real world, entroy in a system tends to increase
- Can also be applied to probabilities:
 - Is one (or a few) outcomes certain (low entropy)
 - Are things equiprobable (high entropy)
- In data science
 - We look for features that allow us to reduce entropy (decision trees)
 - All else being equal, we seek models that have maximum entropy (Occam's razor)

Aside: Logarithms

•
$$\lg(x) = b \Leftrightarrow 2^b = x$$

- Makes big numbers small
- Way to think about them: cutting a carrot

Aside: Logarithms

•
$$\lg(x) = b \Leftrightarrow 2^b = x$$

- · Makes big numbers small
- Way to think about them: cutting a carrot
- Negative numbers?

Aside: Logarithms

•
$$\lg(x) = b \Leftrightarrow 2^b = x$$

- Makes big numbers small
- Way to think about them: cutting a carrot
- Negative numbers?
- Non-integers?

Entropy

Entropy is a measure of uncertainty that is associated with the distribution of a random variable:

$$H(X) = -E[\lg(p(X))]$$

$$= -\sum_{x} p(x) \lg(p(x))$$
 (discrete)
$$= -\int_{-\infty}^{\infty} p(x) \lg(p(x)) dx$$
 (continuous)

Entropy

Entropy is a measure of uncertainty that is associated with the distribution of a random variable:

$$H(X) = -E[\lg(p(X))]$$

$$= -\sum_{x} p(x) \lg(p(x))$$
 (discrete)
$$= -\int_{-\infty}^{\infty} p(x) \lg(p(x)) dx$$
 (continuous)

Does not account for the values of the random variable, only the spread of the distribution.

- $H(X) \ge 0$
- uniform distribution = highest entropy, point mass = lowest
- suppose P(X = 1) = p, P(X = 0) = 1 p and P(Y = 100) = p, P(Y = 0) = 1 p: X and Y have the same entropy

Outline

- Probability
- Working with probability distributions
- Combining Probability Distributions
- 4 Continuous Distributions
- Expectation and Entropy
- **6** Exercises

Independence

Example: two coins, C_1 , C_2 with

$$P(H|C_1) = 0.5, P(H|C_2) = 0.3$$

Suppose that I randomly choose a number $Y \in \{1,2\}$ and take coin C_Z . I flip it twice, with results (X_1, X_2)

- are X₁ and X₂ independent?
- what about if I know Y?

Exercises

Independence

Bayes Rule

There's a test for Boogie Woogie Fever (BWF). The probability of geting a positive test result given that you have BWF is 0.8, and the probability of getting a positive result given that you do not have BWF is 0.01. The overall incidence of BWF is 0.01.

- What is the marginal probability of getting a positive test result?
- What is the probability of having BWF given that you got a positive test result?

Bayes Rule

Conditional Probabilities

One coin in a collection of 65 has two heads. The rest are fair. If a coin, chosen at random from the lot and then tossed, turns up heads 6 times in a row, what is the probability that it is the two-headed coin?

Conditional Probabilities

Entropy

What's the entropy of

- One die?
- The sum of two dice?

Boulder

41 of 43

Exercises

Entropy

Wrap up

- Probabilities are the language of modern nlp
- You'll need to manipulate probabilities and understand conditioning and independence
- But not next week: deterministic algorithms for morphology