EN79-31170

D. SUPKIS

STATUS OF CANDIDATE MATERIALS FOR FULL-SCALE TESTS IN THE 737 FUSELAGE

OBJECTIVES

- o INCREASED PASSENGER EVACUATION TIME TO A MINIMUM OF 5 MINUTES FROM COMMERCIAL AIRCRAFT IN CASE OF A FIRE
- o PREVENT AN EXTERNAL FIRE FROM ENTERING CLOSED CABINS FOR 5 MINUTES BY USING FIRE BARRIER MATERIALS IN THE EXTERIOR WALL
- o DEMONSTRATE THAT A CLOSED CABIN WILL NOT REACH 400°F NOR CONTAIN SMOKE OR TOXIC GASES UP TO 400°F
- PROVE THAT A FIRE NEAR A CABIN OPENING WILL NOT PROPAGATE THROUGH THE CABIN FOR A MINIMUM OF 5 MINUTES

MATERIALS STATUS

o SEAT CUSHIONS

- o FIRE BARRIER CONFIGURATION USING PRESENT FOAM (AMES-DAC)
- o PRESENT POLYIMIDE FOAM MEETS MAJORITY OF SEAT REQUIREMENTS (JSC-SOLAR)
- o INITIAL EVALUATION OF POLYIMIDE FOAM BY FAIRCHILD-BURNS INDICATED THE FOAM IS FUNCTIONAL IN SEATS
- o POLYIMIDE FOAM SAMPLES PROVIDED WEBER AIRCRAFT CO. FOR ADDITIONAL EVALUATION
- UPHOLSTERY AND ASSOCIATED SEAT MATERIALS
 - o WOOL OR WOOL-LEAVIL BLENDS UPHOLSTERY FABRICS CURRENTLY USED ARE SATISFACTORY
 - o DISPOSABLE HEAD REST TOWELS ARE FURE-RETARDANT AND AVAILABLE
 - o FIRE-RETARDANT COTTON TICKING FOR CUSHIONS MEETS AIRCRAFT REQUIREMENTS AND IS AVAILABLE
 - o FIRE-RETARDANT LEATHER ARM REST AND TRIM MEETS JSC FLAMMABILITY REQUIREMENTS
- o WALL AND CEILING PANELS
 - o PHENOLIC/FIBERGLASS LAMINATES AVAILABLE FROM AMES RESEARCH AND LOCKHEED DEVELOPMENT PROGRAMS
 - o EVALUATION OF INITIAL PRODUCTION RUNS OF FLUOREL GLASS WILL RESULT IN AN ADDITIONAL PANEL

MATERIALS STATUS (CONTINUED)

o FLOOR PANELS

- POLYIMIDE FOAM FILLED HONEYCOMB CORE WITH PHENOLIC/GLASS FACE SHEETS MEETS ALL BOEING FLOOR SPECIFICATIONS
- o SAME CONFIGURATION WITHSTOOD BORING OIL BURNER 15 MINUTES
- IMPROVED FIRE RETARDANT ADHESIVE NEEDED
- o CARPET AND CARPET UNDERLAY
 - o NO DEVELOPMENT PROGRAMS ANTICIPATED
 - O CURRENT STATE-OF-THE-ART WOOL AND WOOL BLENDS MATERIALS ADEQUATE
 - POLYIMIDE FOAM APPEARS ADEQUATE FOR UNDERLAY

a WINDOWS

- o AMES DEVELOPED WINDOWS CHAR, ELIMINATE RADIANT HEAT AND RESIST BURNTHROUGH FOR 4-5 MINUTES
- o CARGO BAY LINERS
 - o POLYIMIDE/GLASS AND PHENOLIC/GLASS LAMINATES CURRENTLY A NON-FUNDED DEVELOPMENT EFFORT BY NORDAM AND CIBA-GEIGY
 - o SOLAR CAPABLE OF DEVELOPING TECHNOLOGY FOR 50K
- INSULATION BAGGING
 - o CERAMIC FIBER SCRIM COMBINED WITH PRESENT ALUMINIZED TEDLAR BAGS TO RETAIN THERMAL-ACOUSTICAL INSULATION
 - CONFIGURATIONS TO BE TESTED IN SEMI-FULL SCALE TESTING IN FUSELAGE CROSS-SECTIONS

OF POOR QUALITY

MATERIALS STATUS

- o THERMAL ACOUSTICAL INSULATION
 - o LITAFLEX ASBESTOS FOAM MEETS WEIGHT, TEMPERATURE DIFFERENTIAL, AND FIRE BARRIER PROPERTIES BUT LOW IN ACOUSTICAL ATTENUATION
 - o POLYIMIDE' FOAM MEETS WEIGHT REQUIREMENTS ONLY
 - PREVIOUS POLYIMIDE SAMPLES, TOO LOW IN DENSITY, FAILED TO MEET ACOUSTIC AND FIRE BARRIER REQUIREMENTS
 - o RECENT SAMPLES OF HIGHER DENSITY SHOW IMPROVEMENT IN FIRE BARRIER PROPERTIES
 - O CERAMIC AND CERAMIC-ASBESTOS FOAM UNDER DEVELOPMENT, BY RAYBESTOS-MANHATTAN

TEST CONF! GURATION

TEMPERATURES DURING TEST OF TYPICAL STANDARD BODY FUSELAGE CROSS SECTION

TEMPERATURES DURING TEST OF NARROW BODY FUSELAGE CROSS SECTION (WITH DECO .040/DECORATIVE FILM INNER SKIN)

TEMPERATURES DURING YEST OF NATIROW ECDY MUSICAGE USOSS SECTION. (WITH .005 GRAFOIL/3" POLYMIDE THERMO/ACOUSTICAL FCAM/.005 GRAFOIL/.040 DECO DECORATIVE FILM INNER SKID

TEMPERATURES DURING TEST OF NAFRON BODY FUSELAGE CROSS SECTION (WITH (1) 1.5" THICK K-25 LITOFLEX FOAM(040 DECORATIVE FILM & ALUMINUM INNER SKIN)

SUMMARY

o SEAT CUSHIONS

- o FINAL CONFIGURATION CONTINGENT ON TEST RESULTS FROM SWRI AND DAC
- o POLYIMIDE FOAM A PROMISING CANDIDATE
- UPHOLSTERY AND ASSOCIATED SEAT MATERIALS
 - TEXTILE DEVELOPMENT FOR UPHOLSTERY AND ASSOCIATED SEAT MATERIALS PROHIBITIVE IN COST AND TIME
 - o THE BEST STATE-OF-THE-ART MATERIALS AVAILABLE AT THE SCHEDULED TIME WILL BE PROCURED

o WALL AND CEILING PANELS

- o LOCKHEED DEVELOPED PANELS OFFER WEIGHT SAVINGS OVER ALUMINUM
- o FORTY LOCKHEED PHENOLIC/GLASS PANELS BEING SUPPLIED UNDER PRESENT CONTRACT
- o FLUOREL/GLASS PANELS HAVE SUPERIOR ACOUSTICAL AND FIRE BARRIER PROPERTIES

o FLOOR PANELS

- MOST PROMISING IS RIGID POLYIMIDE FOAM FILLED HONEYCOMB CORE WITH PHENOLIC/GLASS FACE SHEETS
- o CARPET AND CARPET UNDERLAY
 - O COMMERCIALLY AVAILABLE WOOL AND WOOL BLENDS ARE ADEQUATE
 - o CARPETS AND UNDERLAY NOT SIGNIFICANTLY INVOLVED IN AIRCRAFT FIRES DURING EVACUATION
 - o POLYIMIDE FOAM UNDERLAY PROVIDES COOD FIRE BARRIER

SUMMARY / INTINUED)

o WINDOWS

a AMES-INDUSTRY DEVELOPMENT ONLY IMPROVEMENT AVAILABLE

c CARGO BAY LINERS

- o POLYIMIDE/GLASS AND PHENOLIC/GLASS DEVELOPMENTS APPEAR PROMISING
- ADVANCED LINERS NOT ESSENTIAL FOR FULL-SCALE TESTS IF FUSELAGE FIRE BARRIER PROVES ADEQUATE: NEW FLOOR PANEL PROVIDES EXCELLENT BARRIER TO FIRES BENEATH THE CABIN

S o INSULATION BAGGING

o CERAMIC FIBER SHOWS PROMISE TO HOLD THERMAL-ACOUSTICAL INSULATION IN PLACE WHEN TEDLAR BURNS OFF

o THERMAL-ACOUSTICAL INSULATION

- POLYIMIDE FOAM PROMISING CANDIDATE IF ACOUSTICAL AND FIRE BARRIER PROPERTIES CAN BE UPGRADED
- CERAMIC FOAM MAY BE CANDIDATE IF DEVELOPMENT CAN KEEP PACE WITH FULL-SCALE TEST SCHEDULE
- o LITAFLEX AND CERAMIC-ASBESTOS MAY BE INCLUDED IF OSHA REQUIREMENTS CAN BE MET
- o GRAPHOIL PROVIDES ADDITIONAL FIRE BARRIER PROTECTION FOR THERMAL-ACOUSTICAL INSULATION BUT IS EXPENSIVE

D. SUPKIS

DEVELOPMENT OF PROCESSES AND TECHNIQUES FOR MOLDING FIRE PESISTANT POLYMERIC MATERIALS

CONTRACT NAS 9-15405 LOCKHEED-CALIFORNIA COMPANY BURBANK, CALIFORNIA

OBJECTIVES

- SELECT FIRE-RETARDANT MATERIALS FOR MOLDING AIRCRAFT PARTS
- EVALUATE MATERIALS FOR FLAMMABILITY AND THERMAL STABILITY .. 45: 455
- DEVELOP PROCESSES AND TECHNIQUES FOR FORMING THESE MATERIALS BY COMPRESSION, INJECTION AND THERMOFORM MOLDING

COMPRESSION MOLDING DATA

				- 4	/bg		
Property	Lac.22-1339 Phenolic Glass	CIBA/GEIGY FIBER DUX 917 Phenolic/Glass	NARMCO 8250 Phenolic Glass	Solar Intl Polyimide Glass	3M Fluorel	Requirement	
Density_GM/CC	1.90	1.90	1.90	1.50	≈ 1.75	1.30	(Max)
Heat Deflection, °C @ 264/PSI	200	175	175	204	≈ 180	121	(Min)
Flammability Test FAR 25.853 60 Sec. Vertical					•	,	· .*
Flame Time, sec. Burn length, in. Burntime-C ippings,uec.	3 1. 32 0	2.44 0	3 1.52 0	0 1.20 0	0 1.08	15 6 3	(Max) (Max) (Max)
Smoke Obscuration Ds(6Min)Flaming	8.0	8.8	8 ,	3	10	75	(Max)
Limiting Oxygen Index	40	30	40	60	⁷ 60	35	(Min)
Thermogravimetric Analysis,°C	390	390	390	_°590 <i>∘</i>	476	205	(Hin)
Material Cost,\$/LB	2.25	6.75	5.60	11.25	8.00	pres	increase over ent in prod. tities (Max)
Handling Properties	Adequat e	Adequate	Adequate	Currently limited to simple part	Adequate s		as present
Availability	Production Quantities	Production Quantities	Production Quantities	Limitea Projuction	Limited Production		uction (

DISCUSSION OF RESULTS

CUMPRESSION FIGLETING

1

· FRENCLIC MOLDINGS MEET FLANDABILITY, SHOKE, AND THERMAL REQUIREMENTS

The state of the s

- . TEDLAR DECORATIVE FILM INCREASES SHOKE AND BURN LENGTH
- SOLAR POLYIMIDE MOLDABLE BUT REQUIRES PROCESSING INSTRUCTION TO CONVERTERS
- SELECTION OF FLUCREL/SLASS FABRIC OR FLUCREL/GLASS MAY CONTINGENT ON EVALUATION OF PRODUCTION RUNS

INJECTION MOLDING DATA

Polycarbonate Lexan 940	Arom. Polyest. E200-37	Polyphenylsulfone Radel 5010N	Polyether- sulfone PES KK-1		
1.21	1,19	1.29	1.37	1.30	(Max)
132	170	204	190	121	(Minj C
5	· · · · · · · · · · · · · · · · · · ·	45 et	med N	,√6 	(Mex)
3.00	2.48	2.8	3.40	6	(Max)
2	7	0	0	3	(Nex)
110	90	3.2	20	75	(Max)
35	33	38	36	35	(Min)
440	329	. 570	299	205	(Min)
2.50	8.00	15.00	8.00	Sver	Increase present prod. Quar
Prod.Quant.	Dev. Quant.	Limited Pilot	Limited Prod	•	.Quant.
10	3 .,	.12	1.6	* 3.0	(Min)
8500	12,000	10,400	12,000	6000	(Min)
90	60	60	10	20	(Min)
	1.21 1.21 1.32 5 3.00 2 110 35 440 2.50 Prod.Quant. 10 8500	Lexan 940 E200-3Z 1.21 1.19 132 170 5 2 3.00 2.48 2 7 110 90 35 33 440 329 2.50 8.00 Prod.Quant. Dev. Quant. 10 3 8500 12.000	Lexan 940 E200-3Z Rade1 5010N 1.21 1.19 1.29 132 170 204 5 2 1 3.00 2.48 2.8 2 7 0 110 90 3.2 35 33 38 440 329 570 2.50 8.00 15.00 Prod.Quant. Dev. Quant. 1.imited P11ot blank quant. 10 3 12 8500 12.000 10,400	Polycarbonate Lexan 940 Arom. Polyest. E200-37 Polyphenylsulfone Redel 5010M sulfone PES KN-1 1.21 1.19 1.29 1.37 132 170 204 190 5 2 1 1 3.00 2.48 2.8 3.40 2 7 0 0 110 90 3.2 20 35 33 38 36 440 229 570 299 2.50 8.00 15.00 8.00 Prod.Quant. Dav. Quant. 1.imited Pilot blank quant. Limited Prod. 10 3 12 1.6 8500 12.000 10,400 12,000	Polycarbonate Lexan 940 Acon. Polyest. E200-37 Polyphenylsulfone Radel 5010N Polyphenylsulfone Sulfone PES KM-1 Requirer 1.21 1.19 1.29 1.37 1.30 132 170 204 190 121 5 2 1 1 15 3.00 2.48 2.8 3.40 6 2 7 0 0 3 110 90 3.2 20 75 35 33 38 36 35 440 329 570 299 205 2.50 8.00 15.00 8.00 20% Over in p Prod.Quant. Dev. Quant. 1.imited Pilot blank quant. Limited Prod. 10 3 12 1.6 3.0 8500 12.000 10,400 12,000 6000

DISCUSSION OF RESULTS

INJECTION MOLDING

- POLYETHERSULFONE (PES) AND POLYPHENYLSULFONE (PPS) HAVE BETTER
 FLAMMABILITY PROPERTIES THAN LEXAN 940
- PES AND PPS MATERIALS AND PROCESSING COSTS MUCH HIGHER THAN LEXAN 940
- MONSANTO'S POLYESTER FAILS FLAMMABILITY TESTS
- LEXAN 940 MELTS AND DRIPS BURNING PARTICLES

THERMOFORM DATA

Property	Polycarbonate Lexan F-6000	Polycarbonate Lexan EF-6000	Polyethersulfone PES KM-1	Requirements	
Density, Gm/CC	1.21	1.21	1.37	1.40	(Max)
Heat Deflection °C @ 264 psi	132	122	190	121	(Min)
Flammability Test FAR 25.853		<i>\</i>			
Flame time, seconds	4	97	0	15	(Max)
Burn length, inches	3.0	7.4	3.4	6	(Mex)
Burntime-drippings, sec.	1.0	1.0	8	3	(Mex)
Smoke Obscuration D _s (6 Min) Flaming	110	120	20	75	(Max)
S Limiting Oxygen Index	33.5	33	36	35	(Min)
Thermogravimetric Analysis *C	440	\$40	550	205	(Min)
Material Cost \$LB	3.00	3.00	8.00	20%, Max, over present materia	
Availability	Production Quantities	Limited Production	Limited Production	Production Quantities	
IZOD Impact, Notched FT-LBS/INCH	10	12	1.3	,: 3.0	(Min)
Tensile Strength psi minimum	9,800	9,600	12,000	6,000	(Min)
Elongation %	75	76	3	20	(Min)
180° Peel/LB/INCH	10	10	7	8	(Mia)
Cleaner and Solvent Resist.	. Fair	Fuir	Good	Good	

SUMMARY OF RESULTS

THERMOFORM

- POLYCARBONATE EF 6000 CLEANABILITY AND FLANABILITY PROPERTIES DO NOT MEET REQUIREMENTS
- POLYCARBONATE FECOOD BETTER OUT NELTS AND DRIPS DURNING PARTICLES
- POLYETHERSULFONE SATISFACTORY BUT SPECIAL EXPENSIVE DIES ARE REQUIRED FOR THERMOFORMING.

CONCLUSIONS

COMPRESSION MOLDING

- PHENOLICS MEET ALL REQUIREMENTS
- PHENOLIC FORMULATIONS COMMERCIALLY AVAILABLE FOR FY 80 TESTS
- SELECTION OF ONE OF TWO FLUCREL/GLASS CONFIGURATIONS TO BE MADE AFTER EVALUATION OF PRODUCTION RURS
- FLUOREL/GLASS MATERIALS OFFER ADVANTAGES IN WEIGHT SAVINGS, ACOUSTICS, AND FIRE BARRIER PROPERTIES

INJECTION MOLDING

• PES KM-1, POLYETHERSULFONE MAY SHOW PROMISE FOR REPLACING POLYCAREONATE IF DEVELOPMENT CONTINUES

THERMOFORMING

c NO THERMOFORMABLE MATERIALS HAS BEEN IDENTIFIED THAT MEETS USC REQUIREMENTS