CS251 homework 1

name:
Due: 10/8/19
1. Define variables, and write the following sentences as logical statements.
• If it's not cloudy, then it's not raining.
• If we won the big game, then either we scored more points, or the other team didn't show up
• This is a sentence.
• If you don't study for tests, then you won't pass the class.
Tryou don't study for tests, then you won't pass the class.
• A graph is planer if it contains neither a minor of $K_{3,3}$ nor K_5 .

2.	Draw	truth	tables	for	the	foll	lowing	formu	las.
----	------	-------	--------	-----	-----	------	--------	-------	------

			_
α			h
(1,	\Box	\neg	"

a	b	$a \oplus b$

 $\neg(\neg a)$

a	$\neg(\neg a)$

 $\neg b \to \neg a$

a	b	$\neg a \rightarrow \neg b$

 $\neg a \wedge \neg b$

a	b	$\neg a \wedge \neg b$

 $a \leftrightarrow (b \leftrightarrow c)$

a	b	c	$a \leftrightarrow (b \leftrightarrow c)$

 $(a \vee c) \wedge (b \vee c)$

a	b	c	$(a \lor c) \land (b \lor c)$

- 3. Reduce the following to the shortest form. Determine if it's satisfiable, a tautology, or neither.
 - $(a \land \neg b) \lor \neg (\neg a \lor b)$:

• $a \wedge b \equiv \neg(\neg a \wedge \neg b)$:

• $a \wedge b \equiv \neg(\neg a \vee \neg b)$:

• $a \wedge (b \vee c) \rightarrow a \wedge (b \wedge c)$:

4. Draw ASTs for the following boolean expressions

$$\bullet \ A \wedge B \to B \wedge C$$

$$\bullet \ A \to B \land B \to C$$

$$\bullet \ \neg A \land B \lor C \to D$$

$$\bullet \ \neg \neg A \vee \neg \neg B$$

$$\bullet \ (A \to B) \lor (B \to A)$$

- 5. Get the code for representing boolean expresions here: https://github.com/slibby05/prop.git. You'll notice that it doesn't work because the eval method isn't defined. You need to fix that.
- 6. In the file hw1.py make the expressions from problem 4.

Turn in hw1.py and AST.py to D2L.