Package 'VectorCodeR'

October 15, 2023

```
Type Package
```

Title Easily Analyze Your Gait Patterns Using Vector Coding Technique

Version 0.2.0

Maintainer zhexuan gu <22054513g@connect.polyu.hk>

Description Facilitate the analysis of inter-limb and intra-limb coordination in human movement.

It provides functions for calculating the phase angle between two segments, enabling researchers and practitioners to quantify the coordination patterns within and between limbs during various motor tasks.

Needham, R., Naemi, R., & Chockalingam, N. (2014) <doi:10.1016/j.jbiomech.2013.12.032>. Needham, R., Naemi, R., & Chockalingam, N. (2015) <doi:10.1016/j.jbiomech.2015.07.023>. Tepavac, D., & Field-Fote, E. C. (2001) <doi:10.1123/jab.17.3.259>. Park, J.H., Lee, H., Cho, Js. et al. (2021) <doi:10.1038/s41598-020-80237-w>.

License GPL-3

Depends R (>= 3.5.0), readxl, tidyverse, grDevices, graphics, stats, ggplot2, tidyr, dplyr

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author pwh kwong [aut], ananda sidarta [ctb], zhexuan gu [cre]

Repository CRAN

Date/Publication 2023-10-15 21:50:15 UTC

2 ang_ang_plot

R topics documented:

ang_ang_plot																					
area																					3
$CAV\ .\ .\ .\ .\ .$																					3
perimeter																					4
phase_angle .																					5
phase_ratio .																					5
sample																					6
																					-

ang_ang_plot

ang_ang_plot

Description

Index

angle-angle plot

Usage

```
ang_ang_plot(ang1, ang2)
```

Arguments

ang1 Hip angle vector.
ang2 Knee angle vector.

Value

A angle_angle figure.

Examples

```
v1 <- sample$hip
v2 <- sample$knee
v3 <- sample$ankle
ang_ang_plot(v1, v2)</pre>
```

area 3

area

Area of cyclogram

Description

The cyclogram area is representative of the conjoint range of joint movements

Usage

```
area(ang1, ang2, len)
```

Arguments

ang1 Any body segment joint angle vector.

Another body segment joint angle vector.

len Length of the input vector

Details

area of cyclogram

Value

A numeric value of the area of cyclogram.

Examples

```
data(sample)
v1 <- sample$hip
v2 <- sample$knee
len <- length(v1)
area(v1, v2, len)</pre>
```

CAV

CAV

Description

CAV plot

Usage

CAV(df)

Arguments

df

hip, ankle, knee dataframe

4 perimeter

Value

A variability plot

Examples

```
data(sample)
v1 <- sample$hip
v2 <- sample$knee
v3 <- sample$ankle
df <- sample
CAV(df)
ts.plot(CAV(df))</pre>
```

perimeter

perimeter of the cyclogram

Description

The cyclogram perimeter provides information on the average joint velocity

Usage

```
perimeter(ang1, ang2, len)
```

Arguments

ang1 Any body segment joint angle vector.

ang2 Another body segment joint angle vector.

len Length of the input vector

Details

perimeter of the cyclogram

Value

A numeric value of the perimeter of cyclogram.

Examples

```
data(sample)
v1 <- sample$hip
v2 <- sample$knee
len <- length(v1)
perimeter(v1, v2, len)</pre>
```

phase_angle 5

phase_angle

phase_angle

Description

waited to read the paper

Usage

```
phase_angle(ang1, ang2)
```

Arguments

ang1 Any body segment joint angle vector.ang2 Another body segment joint angle vector.

Details

coupling angle plot

Value

A phase_angle figure.

Examples

```
data(sample)
v1 <- sample$hip
v2 <- sample$knee
v3 <- sample$ankle
phase_angle(v1, v2)</pre>
```

phase_ratio

phase_ratio

Description

phase-ratio statistics

Usage

```
phase_ratio(pa)
```

Arguments

ра

phase-angle vector.

6 sample

Value

A phase-ratio dataframe.

Examples

```
data(sample)
v1 <- sample$hip
v2 <- sample$knee
v3 <- sample$ankle
pa <- phase_angle(v1, v2)
phase_ratio(pa)</pre>
```

sample

sample dataset

Description

sample dataset

Usage

```
data(sample)
```

Format

An object of class "data.frame"

knee time series data recoding knee joint angleship time series data recoding hip joint anglesankle time series data recoding ankle joint angles

Examples

```
data(sample)
head(sample)
```

Index

```
* datasets
sample, 6
ang_ang_plot, 2
area, 3
CAV, 3
perimeter, 4
phase_angle, 5
phase_ratio, 5
sample, 6
```