

REPRESENTATION THEORY OF SUPERCONFORMAL ALGEBRAS AND THE KAC-ROAN-WAKIMOTO CONJECTURE

TOMOYUKI ARAKAWA

ABSTRACT. We study the representation theory of the superconformal algebra $\mathcal{W}_k(\mathfrak{g}, f_\theta)$ associated with a minimal gradation of \mathfrak{g} . Here, \mathfrak{g} is a simple finite-dimensional Lie superalgebra with a non-degenerate, even supersymmetric invariant bilinear form. Thus, $\mathcal{W}_k(\mathfrak{g}, f_\theta)$ can be one of the well-known superconformal algebras including the Virasoro algebra, the Bershadsky-Polyakov algebra, the Neveu-Schwarz algebra, the Bershadsky-Knizhnik algebras, the $N = 2$ superconformal algebra, the $N = 4$ superconformal algebra, the $N = 3$ superconformal algebra and the big $N = 4$ superconformal algebra. We prove the conjecture of V. G. Kac, S.-S. Roan and M. Wakimoto for $\mathcal{W}_k(\mathfrak{g}, f_\theta)$. In fact, we show that any irreducible highest weight character of $\mathcal{W}_k(\mathfrak{g}, f_\theta)$ at any level $k \in \mathbb{C}$ is determined by the corresponding irreducible highest weight character of the Kac-Moody affinization of \mathfrak{g} .

1. INTRODUCTION

Suppose that the following are given: (i) a simple finite-dimensional Lie superalgebra \mathfrak{g} with non-degenerate, even supersymmetric invariant bilinear form, (ii) a nilpotent element f in the even part of \mathfrak{g} and (iii) a level $k \in \mathbb{C}$ of the Kac-Moody affinization $\widehat{\mathfrak{g}}$ of \mathfrak{g} . Then, the corresponding \mathcal{W} -algebra $\mathcal{W}_k(\mathfrak{g}, f)$ can be constructed using the method of quantum BRST reduction. This method was first introduced by B. L. Feigin and E. V. Frenkel [10, 11] in the case that \mathfrak{g} is a Lie algebra and f is its principal nilpotent element, and it was recently extended to the general case by V. G. Kac, S.-S. Roan and M. Wakimoto [17].

In this paper we study the representation theory of those \mathcal{W} -algebras for which the nilpotent element f is equal to the root vector f_θ corresponding to the lowest root $-\theta$ of \mathfrak{g} . V. G. Kac, S.-S. Roan and M. Wakimoto [17] showed that these \mathcal{W} -algebras $\mathcal{W}_k(\mathfrak{g}, f_\theta)$ are quite different from the standard \mathcal{W} -algebras [29, 8, 24, 7, 25, 10, 11] associated with principal nilpotent elements and noteworthy because they include almost all the superconformal algebras so far constructed to this time by physicists such as the Virasoro algebra, the Bershadsky-Polyakov algebra [5], the Neveu-Schwarz algebra, the Bershadsky-Knizhnik algebras [4], the $N = 2$ superconformal algebra, the $N = 4$ superconformal algebra, the $N = 3$ superconformal algebra and the big $N = 4$ superconformal algebra.

Let \mathcal{O}_k be the Bernstein-Gel'fand-Gel'fand category of $\widehat{\mathfrak{g}}$ at level $k \in \mathbb{C}$. Let $M(\lambda)$ be the Verma module of $\widehat{\mathfrak{g}}$ with highest weight λ and $L(\lambda)$ be the unique irreducible quotient of $M(\lambda)$. The method of quantum BRST reduction gives a family of functors $V \rightsquigarrow H^i(V)$, depending on $i \in \mathbb{Z}$, from \mathcal{O}_k to the category of $\mathcal{W}_k(\mathfrak{g}, f)$ -modules. Here, $H^\bullet(V)$ is the BRST cohomology of the corresponding

2000 *Mathematics Subject Classification.* Primary 17B68, 17B67.

quantum reduction. In the case that \mathfrak{g} is a Lie algebra and f is its principal nilpotent element, E. V. Frenkel, V. G. Kac and M. Wakimoto [13] used this functor in their construction of the “minimal” series presentations of $\mathcal{W}_k(\mathfrak{g}, f)$, and they conjectured that $H^\bullet(L(\lambda))$ is irreducible (or zero) for an admissible weight λ . This conjecture was extended by V. G. Kac, S.-S. Roan and M. Wakimoto [17] to the general case, in which they conjectured that, for an admissible weight λ , the irreducibility of $H^\bullet(L(\lambda))$ holds for a general pair (\mathfrak{g}, f) consisting of a Lie superalgebra \mathfrak{g} and a nilpotent element f (see Conjecture 3.1B of Ref. [17]).

As a continuation of the present author’s previous work [1, 2], in which the conjecture of E. V. Frenkel, V. G. Kac and M. Wakimoto was proved (completely for the “–” case and partially for the “+” case), we prove the conjecture of V. G. Kac, S.-S. Roan and M. Wakimoto for $\mathcal{W}_k(\mathfrak{g}, f_\theta)$; Actually we prove even stronger results, showing that the representation theory of $\mathcal{W}_k(\mathfrak{g}, f_\theta)$ is controlled by $\widehat{\mathfrak{g}}$ in the following sense:

Main Theorem. *For arbitrary level $k \in \mathbb{C}$, we have the following:*

- (1) (Theorem 6.7.1) We have $H^i(V) = \{0\}$ with $i \neq 0$ for any $V \in Obj\mathcal{O}_k$.
- (2) (Theorem 6.7.4) Let $L(\lambda) \in Obj\mathcal{O}_k$ be the irreducible $\widehat{\mathfrak{g}}$ -module with highest weight λ . Then, $\langle \lambda, \alpha_0^\vee \rangle \in \{0, 1, 2, \dots\}$ implies $H^0(L(\lambda)) = \{0\}$. Otherwise, $H^0(L(\lambda))$ is isomorphic to the irreducible $\mathcal{W}_k(\mathfrak{g}, f_\theta)$ -module with the corresponding highest weight.

Main Theorem (1) implies, in particular, that the correspondence $V \rightsquigarrow H^0(V)$ defines an exact functor from \mathcal{O}_k to the category of $\mathcal{W}_k(\mathfrak{g}, f_\theta)$ -modules, defining a map between characters. On the other hand, every irreducible highest weight representation of $\mathcal{W}_k(\mathfrak{g}, f_\theta)$ is isomorphic to $H^0(L(\lambda))$ for some λ (see Section 6). It is also known that $H^0(M(\lambda))$ is a Verma module over $\mathcal{W}_k(\mathfrak{g}, f_\theta)$ [19]. Hence, from the above results, it follows that the character of any irreducible highest weight representation of $\mathcal{W}_k(\mathfrak{g}, f_\theta)$ is determined by the character of the corresponding irreducible $\widehat{\mathfrak{g}}$ -module $L(\lambda)$. We remark that Main Theorem (2) is consistent with the computation of V. G. Kac, S.-S. Roan and M. Wakimoto [17] of the Euler-Poincaré character of $H^\bullet(L(\lambda))$.

This paper is organized as follows. In Section 2 we collect the necessary information regarding the affine Lie superalgebra $\widehat{\mathfrak{g}}$. In this setting, a slight modification is need for the $A(1, 1)$ case, which is summarized in Appendix. In Section 3 we recall the definition of the BRST complex constructed by V. G. Kac, S.-S. Roan, and M. Wakimoto [17]. As explained in Ref. [17], their main idea in generalizing the construction of B. L. Feigin and E. V. Frenkel [10, 11] was to add the “neutral free superfermions” whose definition is given at the beginning of that section. Although the \mathcal{W} -algebra $\mathcal{W}_k(\mathfrak{g}, f)$ can be defined for an arbitrary nilpotent element f , the assumption $f = f_\theta$ simplifies the theory in many ways. This is also the case that the above-mentioned well-known superconformal algebras appear, as explained in Ref. [17]. In Section 4 we derive some basic but important facts concerning the BRST cohomology under the assumption $f = f_\theta$. In Section 5 we recall the definition of the \mathcal{W} -algebra $\mathcal{W}_k(\mathfrak{g}, f)$ and collect necessary information about its structure. In Section 6 we present the parameterization of irreducible highest weight representations of $\mathcal{W}_k(\mathfrak{g}, f_\theta)$ and state our main results (Theorems 6.7.1 and 6.7.4). The most important part of the proof is the computation of the BRST cohomology $H^\bullet(M(\lambda)^*)$

associated with the dual $M(\lambda)^*$ of the Verma module $M(\lambda)$. This is carried out in Section 7 by introducing a particular spectral sequence. The argument used here is a modified version of that given in Ref. [1], where we proved the vanishing of the cohomology associated to the original quantum reduction formulated by B. L. Feigin and E. V. Frenkel [10, 11, 13].

The method used in this paper can also be applied to general \mathcal{W} -algebras, with some modifications. Our results for that case will appear in forthcoming papers.

Acknowledgments. This work was started during my visit to M.I.T., from February to March 2004. I would like to thank the people of M.I.T. for their hospitality, and in particular Professor Victor G. Kac. Also, I would like to thank the anonymous referees for their very helpful suggestions.

2. PRELIMINARIES

2.1. Let \mathfrak{g} be a complex, simple finite-dimensional Lie superalgebra with a non-degenerate, even supersymmetric invariant bilinear form $(\cdot|\cdot)$. Let (e, x, f) be a \mathfrak{sl}_2 -triple in the even part of \mathfrak{g} normalized as

$$(1) \quad [e, f] = x, \quad [x, e] = e, \quad [x, f] = -f.$$

Further, let

$$(2) \quad \mathfrak{g} = \bigoplus_{j \in \frac{1}{2}\mathbb{Z}} \mathfrak{g}_j, \quad \mathfrak{g}_j = \{u \in \mathfrak{g} \mid [x, u] = ja\}$$

be the eigenspace decomposition of \mathfrak{g} with respect to $\text{ad } x$.

2.2. Define \mathfrak{g}^f as the centralizer of f in \mathfrak{g} , so that $\mathfrak{g}^f = \{u \in \mathfrak{g} \mid [f, u] = 0\}$. Then, we have $\mathfrak{g}^f = \sum_{j \leq 0} \mathfrak{g}_j^f$, where $\mathfrak{g}_j^f = \mathfrak{g}^f \cap \mathfrak{g}_j$. Similarly, we define $\mathfrak{g}^e = \{u \in \mathfrak{g} \mid [e, u] = 0\} = \sum_{j \geq 0} \mathfrak{g}_j^e$.

2.3. Define the following:

$$\mathfrak{g}_{\geq 1} \stackrel{\text{def}}{=} \bigoplus_{j \geq 1} \mathfrak{g}_j, \quad \mathfrak{g}_{> 0} \stackrel{\text{def}}{=} \bigoplus_{j > 0} \mathfrak{g}_j.$$

Then, $\mathfrak{g}_{> 0} = \mathfrak{g}_{\geq 1} \oplus \mathfrak{g}_{\frac{1}{2}}$, and $\mathfrak{g}_{\geq 1}$ and $\mathfrak{g}_{> 0}$ are both nilpotent subalgebras of \mathfrak{g} . Similarly define $\mathfrak{g}_{\geq 0}$, $\mathfrak{g}_{\leq 0}$, $\mathfrak{g}_{< 0}$ and $\mathfrak{g}_{\leq -1}$.

2.4. Define the character $\bar{\chi}$ of $\mathfrak{g}_{\geq 1}$ by

$$(3) \quad \bar{\chi}(u) = (f|u), \quad \text{where } u \in \mathfrak{g}_{\geq 1}.$$

Then, $\bar{\chi}$ defines a skew-supersymmetric even bilinear form $\langle \cdot | \cdot \rangle_{\text{ne}}$ on $\mathfrak{g}_{\frac{1}{2}}$ through the formula

$$(4) \quad \langle u | v \rangle_{\text{ne}} = \bar{\chi}([u, v]).$$

Note that $\langle \cdot | \cdot \rangle_{\text{ne}}$ is non-degenerate, as guaranteed by the \mathfrak{sl}_2 -representation theory. Also, we have the property

$$(5) \quad \langle u | [a, v] \rangle_{\text{ne}} = \langle [u, a] | v \rangle_{\text{ne}} \quad \text{for } a \in \mathfrak{g}_0^f, u, v \in \mathfrak{g}_{\frac{1}{2}}.$$

2.5. Let $\mathfrak{h} \subset \mathfrak{g}_0$ be a Cartan subalgebra of \mathfrak{g} containing x , and let $\Delta \subset \mathfrak{h}^*$ be the set of roots. It is known that the root space \mathfrak{g}^α , with $\alpha \in \Delta$, is one-dimensional except for $A(1,1)$ (see [16]). For this reason, in the case of $A(1,1)$, a slight modification is needed in the following argument, which is summarized in Appendix. Now, let $\Delta_j = \{\alpha \in \Delta \mid \langle \alpha, x \rangle = j\}$ with $j \in \frac{1}{2}\mathbb{Z}$. Then, $\Delta = \bigsqcup_{j \in \frac{1}{2}\mathbb{Z}} \Delta_j$, and Δ_0 is the set of roots of \mathfrak{g}_0 . Let Δ_{0+} be a set of positive roots of Δ_0 . Then, $\Delta_+ = \Delta_{0+} \sqcup \Delta_{>0}$ is a set of positive roots of \mathfrak{g} , where $\Delta_{>0} = \bigsqcup_{j > 0} \Delta_j$. This gives the triangular decompositions

$$(6) \quad \mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+, \quad \mathfrak{g}_0 = \mathfrak{n}_{0-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{0+}.$$

Here, $\mathfrak{n}_+ = \sum_{\alpha \in \Delta_+} \mathfrak{g}_\alpha$, $\mathfrak{n}_{0+} = \sum_{\alpha \in \Delta_{0+}} \mathfrak{g}_\alpha$ and analogously for \mathfrak{n}_- and \mathfrak{n}_{0-} .

2.6. Let $u \mapsto u^t$ be an anti-automorphism of \mathfrak{g} such that $e^t = f$, $f^t = e$, $x^t = x$, $\mathfrak{g}_\alpha^t = \mathfrak{g}_{-\alpha}$ for $\alpha \in \Delta$ and $(u^t|v^t) = (v|u)$ for $u, v \in \mathfrak{g}$. We fix the root vectors $u_\alpha \in \mathfrak{g}_\alpha$, where $\alpha \in \Delta$, such that $(u_\alpha, u_{-\alpha}) = 1$ and $u_\alpha^t = u_{-\alpha}$ with $\alpha \in \Delta_+$.

2.7. Let $p(\alpha)$ be the parity of $\alpha \in \Delta$ and $p(v)$ be the parity of $v \in \mathfrak{g}$.

2.8. Let $\widehat{\mathfrak{g}}$ be the *Kac-Moody affinization* of \mathfrak{g} . This is the Lie superalgebra given by

$$(7) \quad \widehat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}K \oplus \mathbb{C}\mathbf{D}$$

with the commutation relations

$$(8) \quad [u(m), v(n)] = [u, v](m+n) + m\delta_{m+n,0}(u|v)K,$$

$$(9) \quad [\mathbf{D}, u(m)] = mu(m), \quad [K, \widehat{\mathfrak{g}}] = 0$$

for $u, v \in \mathfrak{g}$, $m, n \in \mathbb{Z}$. Here, $u(m) = u \otimes t^m$ for $u \in \mathfrak{g}$ and $m \in \mathbb{Z}$.

The invariant bilinear form $(\cdot|\cdot)$ is extended from \mathfrak{g} to $\widehat{\mathfrak{g}}$ by stipulating $(u(m)|v(n)) = (u|v)\delta_{m+n,0}$ with $u, v \in \mathfrak{g}$, $m, n \in \mathbb{Z}$, $(\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}], \mathbb{C}K \oplus \mathbb{C}\mathbf{D}) = 0$, $(K, K) = (\mathbf{D}, \mathbf{D}) = 0$ and $(K, \mathbf{D}) = (\mathbf{D}, K) = 1$.

2.9. Define the subalgebras

$$(10) \quad L\mathfrak{g}_{\geq 1} = \mathfrak{g}_{\geq 1} \otimes \mathbb{C}[t, t^{-1}], \quad L\mathfrak{g}_{>0} = \mathfrak{g}_{>0} \otimes \mathbb{C}[t, t^{-1}] \subset \widehat{\mathfrak{g}}.$$

Similarly, define $L\mathfrak{g}_{\geq 0}$, $L\mathfrak{g}_{\leq 0}$, $L\mathfrak{g}_{<0}$ and $L\mathfrak{g}_{\leq -1}$.

2.10. Fix the triangular decomposition $\widehat{\mathfrak{g}} = \widehat{\mathfrak{n}}_- \oplus \widehat{\mathfrak{h}} \oplus \widehat{\mathfrak{n}}_+$ in the standard way. Then, we have

$$\begin{aligned} \widehat{\mathfrak{h}} &= \mathfrak{h} \oplus \mathbb{C}K \oplus \mathbb{C}\mathbf{D}, \\ \widehat{\mathfrak{n}}_- &= \mathfrak{n}_- \otimes \mathbb{C}[t^{-1}] \oplus \mathfrak{h} \otimes \mathbb{C}[t^{-1}]t^{-1} \oplus \mathfrak{n}_+ \otimes \mathbb{C}[t^{-1}]t^{-1}, \\ \widehat{\mathfrak{n}}_+ &= \mathfrak{n}_+ \otimes \mathbb{C}[t]t \oplus \mathfrak{h} \otimes \mathbb{C}[t]t \oplus \mathfrak{n}_+ \otimes \mathbb{C}[t]. \end{aligned}$$

Let $\widehat{\mathfrak{h}}^* = \mathfrak{h}^* \oplus \mathbb{C}\Lambda_0 \oplus \mathbb{C}\delta$ be the dual of $\widehat{\mathfrak{h}}$, where, Λ_0 and δ are dual elements of K and \mathbf{D} , respectively. Next, let $\widehat{\Delta}$ be the set of roots of $\widehat{\mathfrak{g}}$, $\widehat{\Delta}_+$ the set of positive roots, and $\widehat{\Delta}_-$ the set of negative roots. Then, we have $\widehat{\Delta}_- = -\widehat{\Delta}_+$. Further, let \widehat{Q} be the root lattice and $\widehat{Q}_+ = \sum_{\alpha \in \widehat{\Delta}_+} \mathbb{Z}_{\geq 0} \alpha \subset \widehat{Q}$. We define a partial ordering $\mu \leq \lambda$ on $\widehat{\mathfrak{h}}^*$ by $\lambda - \mu \in \widehat{Q}_+$.

2.11. For an $\widehat{\mathfrak{h}}$ -module V , let V^λ be the weight space of weight λ , that is, $V^\lambda \stackrel{\text{def}}{=} \{v \in V \mid hv = \lambda(h)v \text{ for all } h \in \widehat{\mathfrak{h}}\}$. If all the weight spaces V^λ are finite-dimensional, we define the graded dual V^* of V by

$$(11) \quad V^* \stackrel{\text{def}}{=} \bigoplus_{\lambda \in \widehat{\mathfrak{h}}^*} \text{Hom}_{\mathbb{C}}(V^\lambda, \mathbb{C}) \subset \text{Hom}_{\mathbb{C}}(V, \mathbb{C}).$$

2.12. Throughout this paper, k represents a complex number. Let $\widehat{\mathfrak{h}}_k^*$ denote the set of weights of $\widehat{\mathfrak{g}}$ of level k :

$$(12) \quad \widehat{\mathfrak{h}}_k^* \stackrel{\text{def}}{=} \{\lambda \in \widehat{\mathfrak{h}}^* \mid \langle \lambda, K \rangle = k\}.$$

Also, let \mathcal{O}_k be the full subcategory of the category of left $\widehat{\mathfrak{g}}$ -modules consisting of objects V such that the following hold:

- (1) $V = \bigoplus_{\lambda \in \widehat{\mathfrak{h}}_k^*} V^\lambda$ and $\dim_{\mathbb{C}} V^\lambda < \infty$ for all $\lambda \in \widehat{\mathfrak{h}}_k^*$;
- (2) there exists a finite set $\{\mu_1, \dots, \mu_r\} \subset \widehat{\mathfrak{h}}_k^*$ such that $\lambda \in \bigcup_i (\mu_i - \widehat{Q}_+)$ for any weight λ with $V^\lambda \neq \{0\}$.

Then, \mathcal{O}_k is an abelian category. Let $M(\lambda) \in \text{Obj } \mathcal{O}_k$, with $\lambda \in \widehat{\mathfrak{h}}_k^*$, be the Verma module with highest weight λ . That is, $M(\lambda) = U(\widehat{\mathfrak{g}}) \otimes_{U(\widehat{\mathfrak{h}} \oplus \widehat{\mathfrak{n}}_+)} \mathbb{C}_\lambda$, where \mathbb{C}_λ is the one-dimensional $\widehat{\mathfrak{h}} \oplus \widehat{\mathfrak{n}}_+$ -module on which $\widehat{\mathfrak{n}}_+$ acts trivially and $h \in \widehat{\mathfrak{h}}$ acts as $\langle \lambda, h \rangle \text{id}$. Let v_λ be the highest weight vector of $M(\lambda)$. Next, let $L(\lambda) \in \text{Obj } \mathcal{O}_k$ be the unique simple quotient of $M(\lambda)$.

2.13. The correspondence $V \rightsquigarrow V^*$ defines the duality functor in \mathcal{O}_k . Here, $\widehat{\mathfrak{g}}$ acts on V^* as $(af)(v) = f(a^t v)$, where $a \mapsto a^t$ is the antiautomorphism of $\widehat{\mathfrak{g}}$ defined by $u(m)^t = (u^t)(-m)$ (with $u \in \mathfrak{g}$, $m \in \mathbb{Z}$), $K^t = K$ and $\mathbf{D}^t = \mathbf{D}$. We have $L(\lambda)^* = L(\lambda)$ for $\lambda \in \widehat{\mathfrak{h}}_k^*$.

2.14. Let \mathcal{O}_k^Δ be the full subcategory of \mathcal{O}_k consisting of objects V that admit a Verma flag, that is, a finite filtration $V = V_0 \supset V_1 \supset \dots \supset V_r = \{0\}$ such that each successive subquotient V_i/V_{i+1} is isomorphic to some Verma module $M(\lambda_i)$ with $\lambda_i \in \widehat{\mathfrak{h}}^*$. The category \mathcal{O}_k^Δ is stable under the operation of taking a direct summand. Dually, let \mathcal{O}_k^∇ be the full subcategory of \mathcal{O}_k consisting of objects V such that $V^* \in \text{Obj } \mathcal{O}_k^\Delta$.

2.15. For $\lambda \in \widehat{\mathfrak{h}}_k^*$, let $\mathcal{O}_k^{\leq \lambda}$ be the full subcategory of \mathcal{O}_k consisting of objects V such that $V = \bigoplus_{\mu \leq \lambda} V^\mu$. Then, $\mathcal{O}_k^{\leq \lambda}$ is an abelian category and stable under the

operation of taking (graded) dual. Also, every simple object $L(\mu) \in \text{Obj } \mathcal{O}_k^{\leq \lambda}$, with $\mu \leq \lambda$, admits a projective cover $P_{\leq \lambda}(\mu)$ in $\mathcal{O}_k^{\leq \lambda}$, and hence, every finitely generated object in $\mathcal{O}_k^{\leq \lambda}$ is an image of a projective object of the form $\bigoplus_{i=1}^r P_{\leq \lambda}(\mu_i)$ for some $\mu_i \in \widehat{\mathfrak{h}}^*$. Indeed, as in the Lie algebra case (see, e.g., Ref. [27]), $P_{\leq \lambda}(\mu)$ can be defined as an indecomposable direct summand of

$$U(\widehat{\mathfrak{g}}) \otimes_{U(\widehat{\mathfrak{h}} \oplus \widehat{\mathfrak{n}}_+)} \tau_{\leq \lambda} \left(U(\widehat{\mathfrak{h}} \oplus \widehat{\mathfrak{n}}_+) \otimes_{U(\widehat{\mathfrak{h}})} \mathbb{C}_\mu \right)$$

that has $L(\mu)$ as a quotient. Here, $\tau_{\leq \lambda}(V) = V / \bigoplus_{\substack{\nu \in \widehat{\mathfrak{h}}^* \\ \nu \not\leq \lambda}} V^\nu$, and \mathbb{C}_μ is a one-dimensional $\widehat{\mathfrak{h}}$ -module on which $h \in \widehat{\mathfrak{h}}$ acts as $\mu(h) \text{id}$. Note that $P_{\leq \lambda}(\mu) \in \text{Obj } \mathcal{O}_k^\Delta$.

Moreover, the Bernstein-Gel'fand-Gel'fand reciprocity holds:

$$[P_{\leq \lambda}(\mu) : M(\mu')] = [M(\mu') : L(\mu)] \quad (\text{with } \mu, \mu' \leq \lambda).$$

Here, $[P_{\leq \lambda}(\mu) : M(\mu')]$ is the multiplicity of $M(\mu')$ in the Verma flag of $P_{\leq \lambda}(\mu)$, and $[M(\mu') : L(\mu)]$ is the multiplicity of $L(\mu)$ in the local composition factor (see Ref. [15]) of $M(\mu')$. Dually, $I_{\leq \lambda}(\mu) = P_{\leq \lambda}(\mu)^*$ is the injective envelope of $L(\mu)$ in $\mathcal{O}_k^{\leq \lambda}$. In particular, $V \in \text{Obj } \mathcal{O}_k^{\leq \lambda}$ is a submodule of an injective object of the form $\bigoplus_{i=1}^r I_{\leq \lambda}(\mu_i)$ for some $\mu_i \in \widehat{\mathfrak{h}}^*$ if its dual V^* is finitely generated.

3. THE KAC-ROAN-WAKIMOTO CONSTRUCTION I: THE BRST COMPLEX

3.1. Define a character χ of $L\mathfrak{g}_{\geq 1}$ by

$$(13) \quad \chi(u(m)) \underset{\text{def}}{=} (f(1)|u(m)) = \bar{\chi}(u)\delta_{m,-1} \quad \text{for } u \in \mathfrak{g}_{\geq 1}, m \in \mathbb{Z}.$$

Let $\ker \chi \subset U(L\mathfrak{g}_{\geq 1})$ be the kernel of the algebra homomorphism $\chi : U(L\mathfrak{g}_{\geq 1}) \rightarrow \mathbb{C}$. Define $I_{\chi} = \underset{\text{def}}{U(L\mathfrak{g}_{>0}) \ker \chi}$. Then, I_{χ} is a two-sided ideal of $U(L\mathfrak{g}_{>0})$. Next, define

$$(14) \quad N(\chi) = \underset{\text{def}}{U(L\mathfrak{g}_{>0})/I_{\chi}}.$$

Now, let $\Phi_u(n)$, with $u \in \mathfrak{g}_{>0}$ and $n \in \mathbb{Z}$, denote the image of $u(n) \in L\mathfrak{g}_{>0}$ in the algebra $N(\chi)$. With a slight abuse of notation, we write $\Phi_{u_{\alpha}}(n)$ as $\Phi_{\alpha}(n)$ for $\alpha \in \Delta_{\frac{1}{2}}$ and $n \in \mathbb{Z}$. Then, the superalgebra $N(\chi)$ is generated by $\Phi_{\alpha}(n)$, where $\alpha \in \Delta_{\frac{1}{2}}$ and $n \in \mathbb{Z}$, with the relations

$$(15) \quad [\Phi_{\alpha}(m), \Phi_{\beta}(n)] = \langle u_{\alpha} | u_{\beta} \rangle_{\text{ne}} \delta_{m+n, -1} \quad \text{for } \alpha, \beta \in \Delta_{\frac{1}{2}}, m, n \in \mathbb{Z}.$$

The elements $\{\Phi_{\alpha}(n)\}$ are called the *neutral free superfermions* (see Example 1.2 of Ref. [17]).

Let $\{u^{\alpha}\}_{\alpha \in \Delta_{\frac{1}{2}}}$ be the basis of $\mathfrak{g}_{\frac{1}{2}}$ dual to $\{u_{\alpha}\}_{\alpha \in \Delta_{\frac{1}{2}}}$ with respect to $\langle \cdot | \cdot \rangle_{\text{ne}}$, that is, $\langle u_{\alpha} | u^{\beta} \rangle_{\text{ne}} = \delta_{\alpha, \beta}$. We set $\Phi^{\alpha}(n) = \Phi_{u^{\alpha}}(n)$ for $\alpha \in \Delta_{\frac{1}{2}}$ and $n \in \mathbb{Z}$, and thus,

$$(16) \quad [\Phi_{\alpha}(m), \Phi^{\beta}(n)] = \delta_{\alpha, \beta} \delta_{m+n, -1} \quad \text{with } \alpha, \beta \in \Delta_{\frac{1}{2}}, m, n \in \mathbb{Z}.$$

3.2. Let $\mathcal{F}^{\text{ne}}(\chi)$ be the irreducible representations of $N(\chi)$ generated by the vector $\mathbf{1}_{\chi}$ with the property

$$(17) \quad \Phi_{\alpha}(n)\mathbf{1}_{\chi} = 0 \quad \text{for } \alpha \in \Delta_{\frac{1}{2}} \text{ and } n \geq 0.$$

Note that $\mathcal{F}^{\text{ne}}(\chi)$ is naturally a $L\mathfrak{g}_{>0}$ -module through the algebra homomorphism $L\mathfrak{g}_{>0} \ni u(m) \mapsto \Phi_u(m) \in N(\chi)$.

There is a unique semisimple action of $\widehat{\mathfrak{h}}$ on $\mathcal{F}^{\text{ne}}(\chi)$ such that the following hold:

$$h\mathbf{1}_{\chi} = 0 \quad \text{for } h \in \widehat{\mathfrak{h}},$$

$$\Phi_{\alpha}(n)\mathcal{F}^{\text{ne}}(\chi)^{\lambda} \subset \mathcal{F}^{\text{ne}}(\chi)^{\lambda+\alpha+n\delta} \quad \text{for } \alpha \in \Delta_{\frac{1}{2}}, n \leq -1 \text{ and } \lambda \in \widehat{\mathfrak{h}}^*.$$

Lemma 3.2.1. *We have $\Phi_{\alpha}(n)\mathcal{F}^{\text{ne}}(\chi)^{\lambda} \subset \sum_{\substack{\beta \in \Delta_{\frac{1}{2}} \\ \bar{\chi}([u_{\beta}, u_{\alpha}]) \neq 0}} \mathcal{F}^{\text{ne}}(\chi)^{\lambda-\beta+(n+1)\delta}$ for $\alpha \in \Delta_{\frac{1}{2}}$, $n \geq 0$ and $\lambda \in \widehat{\mathfrak{h}}^*$.*

Proof. By definition we have

$$(18) \quad \Phi^\alpha(n)\mathcal{F}^{\text{ne}}(\chi)^\lambda \subset \mathcal{F}^{\text{ne}}(\chi)^{\lambda-\alpha+(n+1)\delta} \text{ for } n \geq 0$$

(see (16)). But $\Phi_\alpha(n) = \sum_{\beta \in \Delta_{\frac{1}{2}}} \bar{\chi}([u_\beta, u_\alpha]) \Phi^\beta(n)$ for $\alpha \in \Delta_{\frac{1}{2}}$. \square

3.3. Let $\mathcal{Cl}(L\mathfrak{g}_{>0})$ be the *Clifford superalgebra* (or the *charged free superfermions*) associated with $L\mathfrak{g}_{>0} \oplus (L\mathfrak{g}_{>0})^*$ and its natural bilinear from. The superalgebra $\mathcal{Cl}(L\mathfrak{g}_{>0})$ is generated by $\psi_\alpha(n)$ and $\psi^\alpha(n)$, where $\alpha \in \Delta_{>0}$ and $n \in \mathbb{Z}$, with the relations

$$\begin{aligned} [\psi_\alpha(m), \psi^\beta(n)] &= \delta_{\alpha, \beta} \delta_{m+n, 0}, \\ [\psi_\alpha(m), \psi_\beta(m)] &= [\psi^\alpha(m), \psi^\beta(n)] = 0, \end{aligned}$$

where the parity of $\psi_\alpha(n)$ and $\psi^\alpha(n)$ is reverse to u_α .

3.4. Let $\mathcal{F}(L\mathfrak{g}_{>0})$ be the irreducible representation of $\mathcal{Cl}(L\mathfrak{g}_{>0})$ generated by the vector $\mathbf{1}$ that satisfies the relations

$$\begin{aligned} \psi_\alpha(n)\mathbf{1} &= 0 \quad \text{for } \alpha \in \Delta_{>0} \text{ and } n \geq 0, \\ \text{and } \psi^\alpha(n)\mathbf{1} &= 0 \quad \text{for } \alpha \in \Delta_{>0} \text{ and } n > 0. \end{aligned}$$

The space $\mathcal{F}(L\mathfrak{g}_{>0})$ is graded; that is, $\mathcal{F}(L\mathfrak{g}_{>0}) = \bigoplus_{i \in \mathbb{Z}} \mathcal{F}^i(L\mathfrak{g}_{>0})$, where the degree is determined from the assignments $\deg \mathbf{1} = 0$, $\deg \psi_\alpha(n) = -1$ and $\deg \psi^\alpha(n) = 1$, with $\alpha \in \Delta_{>0}$ and $n \in \mathbb{Z}$.

There is a natural semisimple action of $\widehat{\mathfrak{h}}$ on $\mathcal{F}(L\mathfrak{g}_{>0})$, namely, $\mathcal{F}(L\mathfrak{g}_{>0}) = \bigoplus_{\lambda \in \widehat{\mathfrak{h}}^*} \mathcal{F}(L\mathfrak{g}_{>0})^\lambda$. This is defined by the relations $h\mathbf{1} = 0$ ($h \in \widehat{\mathfrak{h}}$), $\psi_\alpha(n)\mathcal{F}(L\mathfrak{g}_{>0})^\lambda \subset \mathcal{F}(L\mathfrak{g}_{>0})^{\lambda+\alpha+n\delta}$, $\psi^\alpha(n)\mathcal{F}(L\mathfrak{g}_{>0})^\lambda \subset \mathcal{F}(L\mathfrak{g}_{>0})^{\lambda-\alpha+n\delta}$, where $\alpha \in \Delta_{>0}$ and $n \in \mathbb{Z}$.

3.5. For $V \in \text{Obj } \mathcal{O}_k$, define

$$(19) \quad C(V) \underset{\text{def}}{=} V \otimes \mathcal{F}^{\text{ne}}(\chi) \otimes \mathcal{F}(L\mathfrak{g}_{>0}) = \sum_{i \in \mathbb{Z}} C^i(V),$$

where $C^i(V) \underset{\text{def}}{=} V \otimes \mathcal{F}^{\text{ne}}(\chi) \otimes \mathcal{F}^i(L\mathfrak{g}_{>0})$.

Let $\widehat{\mathfrak{h}}$ act on $C(V)$ by the tensor product action. Then, we have $C(V) = \bigoplus_{\lambda \in \widehat{\mathfrak{h}}^*} C(V)^\lambda$, where $C(V)^\lambda = \sum_{\mu_1 + \mu_2 + \mu_3 = \lambda} V^{\mu_1} \otimes \mathcal{F}^{\text{ne}}(\chi)^{\mu_2} \otimes \mathcal{F}(L\mathfrak{g}_{>0})^{\mu_3}$. Note that we also have

$$(20) \quad C(V) = \bigoplus_{\mu \leq \lambda} C(V)^\mu \text{ and } \dim_{\mathbb{C}} C(V)^\mu < \infty \text{ for all } \mu \in \widehat{\mathfrak{h}}^*$$

with an object V of $\mathcal{O}_k^{\leq \lambda}$.

3.6. Define the odd operator d on $C(V)$ by

$$\begin{aligned} (21) \quad d &\underset{\text{def}}{=} \sum_{\substack{\alpha \in \Delta_{>0} \\ n \in \mathbb{Z}}} (-1)^{p(\alpha)} (u_\alpha(-n) + \Phi_{u_\alpha}(-n)) \psi^\alpha(n) \\ &\quad - \frac{1}{2} \sum_{\substack{\alpha, \beta, \gamma \in \Delta_{>0} \\ k+l+m=0}} (-1)^{p(\alpha)p(\gamma)} ([u_\alpha, u_\beta] u_{-\gamma}) \psi^\alpha(k) \psi^\beta(l) \psi_\gamma(m). \end{aligned}$$

Then, we have

$$(22) \quad d^2 = 0, \quad dC^i(V) \subset C^{i+1}(V).$$

Thus, $(C(V), d)$ is a cohomology complex. Define

$$(23) \quad H^i(V) = \underset{\text{def}}{H^i}(C(V), d) \text{ with } i \in \mathbb{Z}.$$

Remark 3.6.1. By definition, we have

$$H^\bullet(V) = H^{\frac{\infty}{2}+\bullet}(L\mathfrak{g}_{>0}, V \otimes \mathcal{F}^{\text{ne}}(\chi)),$$

where $H^{\frac{\infty}{2}+\bullet}(L\mathfrak{g}_{>0}, V)$ is the semi-infinite cohomology [9] of the Lie superalgebra $L\mathfrak{g}_{>0}$ with coefficients in V .

3.7. Decompose d as $d = d^\chi + d^{\text{st}}$, where

$$(24) \quad d^\chi \underset{\text{def}}{=} \sum_{\substack{\alpha \in \Delta_1 \\ n \geq 0}} (-1)^{p(\alpha)} \Phi_\alpha(n) \psi^\alpha(-n) + \sum_{\alpha \in \Delta_1} (-1)^{p(\alpha)} \chi(u_\alpha(-1)) \psi^\alpha(1)$$

and $d^{\text{st}} \underset{\text{def}}{=} d - d^\chi$. Then, by Lemma 3.2.1, we have

$$(25) \quad d^\chi C(V)^\lambda \subset \sum_{\substack{\alpha \in \Delta_1 \\ \bar{\chi}(u_\alpha) \neq 0}} C(V)^{\lambda-\alpha+\delta}, \quad d^{\text{st}} C(V)^\lambda \subset C(V)^\lambda$$

for all λ . Therefore, by (22), it follows that

$$(26) \quad (d^\chi)^2 = (d^{\text{st}})^2 = \{d^\chi, d^{\text{st}}\} = 0.$$

Remark 3.7.1. We have

$$(27) \quad H^\bullet(C(V), d^{\text{st}}) = H^{\frac{\infty}{2}+\bullet}(L\mathfrak{g}_{>0}, V \otimes \mathcal{F}^{\text{ne}}(\chi_0)),$$

where $\mathcal{F}^{\text{ne}}(\chi_0)$ is the $L\mathfrak{g}_{>0}$ -module associated with the trivial character χ_0 of $L\mathfrak{g}_{\geq 1}$ defined similarly to $\mathcal{F}^{\text{ne}}(\chi)$.

3.8. Define

$$(28) \quad \mathbf{D}^{\mathcal{W}} \underset{\text{def}}{=} x + \mathbf{D} \in \widehat{\mathfrak{h}},$$

Here, x is the semisimple element in the \mathfrak{sl}_2 -triple, as in Subsection 2.1. Set

$$(29) \quad \widehat{\mathfrak{t}} \underset{\text{def}}{=} \mathfrak{h}^f \oplus \mathbb{C}\mathbf{D}^{\mathcal{W}} \subset \widehat{\mathfrak{h}}.$$

Let $\widehat{\mathfrak{t}}^*$ be the dual of $\widehat{\mathfrak{t}}$. For $\lambda \in \widehat{\mathfrak{h}}^*$, let $\xi_\lambda \in \widehat{\mathfrak{t}}^*$ denote its restriction to $\widehat{\mathfrak{t}}$.

3.9. Let $V \in \text{Obj } \mathcal{O}_k$ and let

$$(30) \quad C(V) = \bigoplus_{\xi \in \widehat{\mathfrak{t}}^*} C(V)_\xi, \quad C(V)_\xi = \sum_{\substack{\lambda \in \widehat{\mathfrak{h}}^* \\ \xi_\lambda = \xi}} C(V)^\lambda$$

be the weight space decomposition with respect to the action of $\widehat{\mathfrak{t}} \subset \widehat{\mathfrak{h}}$. Here and throughout, we set

$$M_\xi \underset{\text{def}}{=} \{m \in M \mid tm = \langle \xi, t \rangle m \ (\forall t \in \widehat{\mathfrak{t}})\}$$

for a \mathfrak{t} -module M . By (25), we see that

$$dC(V)_\xi \subset C(V)_\xi \text{ for any } \xi \in \widehat{\mathfrak{t}}^*.$$

Hence, the cohomology space $H^\bullet(V)$ decomposes as

$$(31) \quad H^\bullet(V) = \bigoplus_{\xi \in \widehat{\mathfrak{t}}^*} H^\bullet(V)_\xi, \quad H^\bullet(V)_\xi = H^\bullet(C(V)_\xi, d).$$

Note that the weight space $C(V)_\xi$, with $\xi \in \widehat{\mathfrak{t}}^*$, is not finite dimensional in general because $[\widehat{\mathfrak{t}}, e(-1)] = 0$.

Remark 3.9.1. As discussed in Remark 5.3.1, the operator \mathbf{D}^W is essentially $-L(0)$, where $L(0)$ is the zero-mode of the Virasoro field, provided that $k \neq -h^\vee$.

4. THE ASSUMPTION $f = f_\theta$

4.1. The gradation (2) is called *minimal* if

$$(32) \quad \mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{-\frac{1}{2}} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_{\frac{1}{2}} \oplus \mathfrak{g}_1, \quad \mathfrak{g}_{-1} = \mathbb{C}f \text{ and } \mathfrak{g}_1 = \mathbb{C}e.$$

As shown in Section 5 of Ref. [19], in this case, one can choose a root system of \mathfrak{g} so that $e = e_\theta$ and $f = f_\theta$, which are the roots vectors attached to θ and $-\theta$, where θ is the corresponding highest root.

The condition (32) simplifies the theory in many ways. *In this section we assume that $f = f_\theta$ and the condition (32) is satisfied.* Also, we normalize $(\cdot | \cdot)$ as $(\theta | \theta) = 2$.

4.2. From the \mathfrak{sl}_2 -representation theory, we have

$$(33) \quad \mathfrak{g}^f = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{-\frac{1}{2}} \oplus \mathfrak{g}_0^f,$$

$$(34) \quad \mathfrak{g}_0^f = \mathfrak{n}_{0,-} \oplus \mathfrak{h}^f \oplus \mathfrak{n}_{0,+}.$$

In particular,

$$(35) \quad \mathfrak{h} = \mathfrak{h}^f \oplus \mathbb{C}x, \quad \mathfrak{n}_- \subset \mathfrak{g}^f,$$

and we have the exact sequence

$$(36) \quad \begin{array}{ccccccc} 0 & \rightarrow & \mathbb{C}\alpha_0 \oplus \mathbb{C}\Lambda_0 & \hookrightarrow & \widehat{\mathfrak{h}}^* & \rightarrow & \widehat{\mathfrak{t}}^* & \rightarrow & 0 \\ & & \lambda & \mapsto & \xi_\lambda & & & & \end{array}$$

Here, $\alpha_0 = \delta - \theta$. Therefore, for $\lambda, \mu \in \widehat{\mathfrak{h}}_k^*$,

$$(37) \quad \xi_\lambda = \xi_\mu \text{ if and only if } \lambda \equiv \mu \pmod{\alpha_0}.$$

Let $\widehat{Q}_+^t \subset \widehat{\mathfrak{t}}^*$ be the image of $\widehat{Q}_+ \subset \widehat{\mathfrak{h}}^*$ in $\widehat{\mathfrak{t}}^*$. Then, by (36) we have

$$(38) \quad \langle \eta, \mathbf{D}^W \rangle \geq 0 \quad \text{for all } \eta \in \widehat{Q}_+^t.$$

Define a partial ordering on $\widehat{\mathfrak{t}}^*$ by $\xi \leq \xi' \iff \xi' - \xi \in \widehat{Q}_+^t$. Then, for $\lambda, \mu \in \widehat{\mathfrak{h}}^*$, we have the property

$$(39) \quad \xi_\lambda \leq \xi_\mu \text{ if } \lambda \leq \mu.$$

In particular,

$$(40) \quad V = \bigoplus_{\xi \leq \xi_\lambda} V_\xi \quad \text{for an object } V \text{ of } \mathcal{O}_k^{\leq \lambda}.$$

4.3. Let $\widehat{\mathfrak{g}} = \bigoplus_{\eta \in \widehat{\mathfrak{t}}^*} (\widehat{\mathfrak{g}})_\eta$ be the weight space decomposition with respect to the adjoint action of $\widehat{\mathfrak{t}}$. Then, we have

$$(41) \quad (\widehat{\mathfrak{g}})_0 = \widehat{\mathfrak{h}} \oplus \mathbb{C}e(-1) \oplus \mathbb{C}f(1)$$

(recall that $e = e_\theta$ and $f = f_\theta$).

Let $V \in \mathcal{O}_k$. Then, each weight space V_ξ , where $\xi \in \widehat{\mathfrak{t}}^*$, is a module over $(\widehat{\mathfrak{g}})_0$. Also, we have

$$(42) \quad V_{\xi_\lambda} = \sum_{\substack{\mu \in \widehat{\mathfrak{h}}_k^* \\ \mu \equiv \lambda \pmod{\alpha_0}}} V^\mu \text{ for } \lambda \in \widehat{\mathfrak{h}}_k^*.$$

Let $(\mathfrak{sl}_2)_0 \cong \mathfrak{sl}_2$ denote the subalgebra of $(\widehat{\mathfrak{g}})_0$ generated by $e(-1)$ and $f(1)$.

4.4. Let $\mathcal{O}(\mathfrak{sl}_2)$ be the Bernstein-Gel'fand-Gel'fand category [3] of the Lie algebra $\mathfrak{sl}_2 = \langle e, x, f \rangle$ (defined by the commutation relations (1)). That is, $\mathcal{O}(\mathfrak{sl}_2)$ is the full subcategory of the category of left \mathfrak{sl}_2 -modules consisting of modules V such that (1) V is finitely generated over \mathfrak{sl}_2 , (2) e is locally nilpotent on V , (3) x acts semisimply on V .

Let $\dot{\mathcal{O}}_k$ be the full subcategory of \mathcal{O}_k consisting of objects V such that each V_ξ , with $\xi \in \widehat{\mathfrak{t}}^*$, belongs to $\mathcal{O}(\mathfrak{sl}_2)$ (viewed as a module over $(\mathfrak{sl}_2)_0 \cong \mathfrak{sl}_2$). It is clear that $\dot{\mathcal{O}}_k$ is abelian.

Lemma 4.4.1.

- (1) Any Verma module $M(\lambda)$, with $\lambda \in \widehat{\mathfrak{h}}_k^*$, belongs to $\dot{\mathcal{O}}_k$.
- (2) Any simple module $L(\lambda)$, with $\lambda \in \widehat{\mathfrak{h}}_k^*$, belongs to $\dot{\mathcal{O}}_k$.
- (3) Any object of \mathcal{O}_k^Δ belongs to $\dot{\mathcal{O}}_k$.
- (4) Any object of \mathcal{O}_k^∇ belongs to $\dot{\mathcal{O}}_k$.

Proof. (1) Certainly, on $M(\lambda)$, $f(1)$ is locally nilpotent and $h_0 = [f(1), e(-1)]$ acts semisimply. We have to show that each $M(\lambda)_\xi$, with $\xi \in \widehat{\mathfrak{t}}^*$, is finitely generated over $(\mathfrak{sl}_2)_0$. Clearly, this follows from (37), (39) and the PBW theorem. (2), (3) These assertions follow from the first assertion. (4) The category $\mathcal{O}(\mathfrak{sl}_2)$ is closed under the operation of taking (graded) dual. Hence, $\dot{\mathcal{O}}_k$ is closed under the operation of taking (graded) dual. Therefore (4) follows from the third assertion. \square

Let $\dot{\mathcal{O}}_k^{\leq \lambda}$ be the full subcategory of \mathcal{O}_k consisting of objects that belong to both $\dot{\mathcal{O}}_k$ and $\mathcal{O}_k^{\leq \lambda}$. Then, by Lemma 4.4.1, $P_{\leq \lambda}(\mu)$ and $I_{\leq \lambda}(\mu)$ ($\mu \leq \lambda$) belong to $\dot{\mathcal{O}}_k^{\leq \lambda}$.

The following proposition asserts that every object of \mathcal{O}_k can be obtained as an injective limit of objects of $\dot{\mathcal{O}}_k$.

Proposition 4.4.2. *Let V be an object of \mathcal{O}_k . Then, there exists a sequence $V_1 \subset V_2 \subset V_3 \dots$ of objects of $\dot{\mathcal{O}}_k$ such that $V = \bigcup_i V_i$.*

Proof. Note that, because each projective module $P_{\leq \lambda}(\mu)$ belongs to $\dot{\mathcal{O}}_k$, so too do finitely generated objects. Let $\{0\} = V_0 \subset V_1 \subset V_2 \subset V_3 \dots$ be a highest weight filtration of V , so that $V = \bigcup_i V_i$, and each successive subquotient V_i/V_{i-1} is a highest weight module. In particular, each V_i is finitely generated, and hence belongs to $\dot{\mathcal{O}}_k$. \square

Lemma 4.4.3. *Let $\xi \in \widehat{\mathfrak{t}}^*$. Then, for any object V of $\dot{\mathcal{O}}_k^{\leq \lambda}$, with $\lambda \in \widehat{\mathfrak{h}}_k^*$, there exists a finitely generated submodule V' of V such that $(V/V')_{\xi'} = \{0\}$ if $\xi' \geq \xi$, where $\xi' \in \widehat{\mathfrak{t}}^*$.*

Proof. Let $\mathcal{P} = \{v_1, v_2, \dots\}$ be a set of generators of V such that (1) each v_i belongs to V^{μ_i} for some $\mu_i \in \widehat{\mathfrak{h}}^*$, and (2) if we set $V_i = \sum_{r=1}^i U(\widehat{\mathfrak{g}})v_r$ (and $V_0 = \{0\}$), then each successive subquotient V_i/V_{i-1} is a (nonzero) highest weight module with highest weight μ_i . (Therefore, $V_1 \subset V_2 \subset \dots$ is a highest weight filtration of V .) Then, by definition, we have $\#\{j \geq 1 \mid \mu_j = \mu\} \leq [V : L(\mu)]$ for $\mu \in \widehat{\mathfrak{h}}^*$. Next, let $\mathcal{P}_{\geq \xi} = \{v_j \in \mathcal{P} \mid \xi_{\mu_j} \geq \xi\} \subset \mathcal{P}$. Then, by the definition of \mathcal{O}_k , $\mathcal{P}_{\geq \xi}$ is a finite subset of \mathcal{P} . The assertion follows, because $V' = \sum_{v \in \mathcal{P}_{\geq \xi}} U(\widehat{\mathfrak{g}})v \subset V$ satisfies the desired properties. \square

4.5. Observe that we have the following:

$$(43) \quad \mathcal{F}^{\text{ne}}(\chi) = \bigoplus_{\xi \leq 0} \mathcal{F}^{\text{ne}}(\chi)_\xi, \quad \dim_{\mathbb{C}} \mathcal{F}^{\text{ne}}(\chi)_\xi < \infty \ (\forall \xi), \quad \mathcal{F}^{\text{ne}}(\chi)_0 = \mathbb{C}\mathbf{1}_\chi,$$

$$(44) \quad \mathcal{F}(L\mathfrak{g}_{>0}) = \bigoplus_{\xi \leq 0} \mathcal{F}(L\mathfrak{g}_{>0})_\xi, \quad \mathcal{F}(L(\mathfrak{g}_{>0}))_0 = \mathbb{C}\mathbf{1} \oplus \mathbb{C}\psi_\theta(-1)\mathbf{1}$$

Thus, if $V = \bigoplus_{\xi' \leq \xi} V_{\xi'}$ for some $\xi' \in \widehat{\mathfrak{t}}^*$, then $C(V) = \bigoplus_{\xi' \leq \xi} C(V)_{\xi'}$. Hence we have the following assertion.

Lemma 4.5.1. *Let V be an object of \mathcal{O}_k . Suppose that $V = \bigoplus_{\xi' \in \widehat{\mathfrak{t}}^*} V_{\xi'}$ for some $\xi \in \widehat{\mathfrak{t}}^*$. Then, $H^\bullet(V) = \bigoplus_{\xi' \leq \xi} H^\bullet(V)_{\xi'}$. In particular, $H^\bullet(V) = \bigoplus_{\xi \leq \xi_\lambda} H^\bullet(V)_\xi$ for $V \in \text{Obj } \mathcal{O}_k^{\leq \lambda}$.*

Lemma 4.5.2. *Let $\xi \in \widehat{\mathfrak{t}}^*$. Then, for any object V of $\mathcal{O}_k^{\leq \lambda}$, where $\lambda \in \widehat{\mathfrak{h}}_k^*$, there exists a finitely generated submodule V' of V such that $H^\bullet(V)_\xi = H^\bullet(V')_\xi$.*

Proof. Let V' be as in Lemma 4.4.3. Then, from the exact sequence $0 \rightarrow V' \rightarrow V \rightarrow V/V' \rightarrow 0$, we obtain the long exact sequence

$$(45) \quad \dots \rightarrow H^{i-1}(V/V') \rightarrow H^i(V') \rightarrow H^i(V) \rightarrow H^i(V/V') \rightarrow \dots$$

Clearly, the restriction of (45) to the weight space ξ remains exact. The desired result then follows from Lemma 4.4.3 and Lemma 4.5.1. \square

4.6. Here and throughout, we identify $\mathcal{F}(L(\mathfrak{g}_{>0}))_0$ with the exterior power module $\Lambda(\mathbb{C}e(-1))$ by identifying $\psi_\theta(-1)$ with $e(-1)$ (see (44)). Let \mathbb{C}_χ be the one-dimensional module over the commutative Lie algebra $\mathbb{C}e(-1)$ defined by the character $\chi|_{\mathbb{C}e(-1)}$, that is, the one-dimensional $\mathbb{C}e(-1)$ -module on which $e(-1)$ acts as the identity operator. Also, let V be an object of \mathcal{O}_k . Then, $V_\xi \otimes \mathbb{C}_\chi$, where $\xi \in \widehat{\mathfrak{t}}^*$, is a module over $\mathbb{C}e(-1)$ by the tensor product action.

Lemma 4.6.1. *Let $V \in \text{Obj } \mathcal{O}_k^{\leq \lambda}$, with $\lambda \in \widehat{\mathfrak{h}}_k^*$. Then, we have*

$$H^i(V)_{\xi_\lambda} = \begin{cases} H_{-i}(\mathbb{C}e(-1), V_{\xi_\lambda} \otimes \mathbb{C}_\chi) & (i = 0, -1), \\ \{0\} & (\text{otherwise}). \end{cases}$$

Proof. Because V is an object of $\mathcal{O}_k^{\leq \lambda}$, we have

$$C(V)_{\xi_\lambda} = V_{\xi_\lambda} \otimes \mathcal{F}(L(\mathfrak{g}_{>0}))_0 (= V_{\xi_\lambda} \otimes \Lambda(\mathbb{C}e(-1))).$$

Next, observe that

$$d|_{C(V)_{\xi_\lambda}} = \bar{d} = e(-1)\psi^\theta(1) + \psi^\theta(1).$$

From this, it follows that, for $V \in Obj\mathcal{O}_k^{\leq \lambda}$, the subcomplex $(C(V)_{\xi_\lambda}, d)$ is identically the Chevalley complex for calculating the (usual) Lie algebra homology $H_\bullet(\mathbb{C}e(-1), V_{\xi_\lambda} \otimes \mathbb{C}_\chi)$ (with the opposite grading). \square

4.7. Recall $\mathfrak{sl}_2 = \langle e, x, f \rangle$. Let $\bar{M}_{\mathfrak{sl}_2}(a) \in Obj\mathcal{O}(\mathfrak{sl}_2)$ be the Verma module of \mathfrak{sl}_2 with highest weight $a \in \mathbb{C}$ and $\bar{L}_{\mathfrak{sl}_2}(a)$ be its unique simple quotient. Here, the highest weight is the largest eigenvalue of $2x$ (see (1)).

Let $\mathbb{C}_{\bar{\chi}_-}$ be the one-dimensional $\mathbb{C}f$ -module on which f acts as the identity operator.

Proposition 4.7.1.

- (1) For $a \in \mathbb{C}$, $H_i(\mathbb{C}f, \bar{M}_{\mathfrak{sl}_2}(a) \otimes \mathbb{C}_{\bar{\chi}_-}) = \begin{cases} \mathbb{C} & (i = 0), \\ \{0\} & (i = 1). \end{cases}$
- (2) For $a \in \mathbb{C}$, $H_i(\mathbb{C}f, \bar{L}_{\mathfrak{sl}_2}(a) \otimes \mathbb{C}_{\bar{\chi}_-}) = \begin{cases} \mathbb{C} & (i = 0 \text{ and } a \notin \{0, 1, 2, \dots\}), \\ \{0\} & (\text{otherwise}). \end{cases}$
- (3) For $a \in \mathbb{C}$, $H_i(\mathbb{C}f, \bar{M}_{\mathfrak{sl}_2}(a)^* \otimes \mathbb{C}_{\bar{\chi}_-}) = \begin{cases} \mathbb{C} & (i = 0), \\ \{0\} & (i = 1). \end{cases}$
- (4) For any object V of $\mathcal{O}(\mathfrak{sl}_2)$, we have $H_1(\mathbb{C}f, V \otimes \mathbb{C}_{\bar{\chi}_-}) = \{0\}$.
- (5) For any object V of $\mathcal{O}(\mathfrak{sl}_2)$, we have $\dim_{\mathbb{C}} H_0(\mathbb{C}f, V \otimes \mathbb{C}_{\bar{\chi}_-}) < \infty$.

Proof. (1) Since $\bar{M}_{\mathfrak{sl}_2}(a)$ is free over $\mathbb{C}f$, so is $\bar{M}_{\mathfrak{sl}_2}(a) \otimes \mathbb{C}_{\bar{\chi}_-}$. (2) The case in which $a \notin \{0, 1, 2, \dots\}$ follows from the first assertion. Otherwise, $\bar{L}_{\mathfrak{sl}_2}(a)$ is finite dimensional. Hence, f is nilpotent on $\bar{L}_{\mathfrak{sl}_2}(a)$. But this implies that the corresponding Chevalley complex is acyclic, by the argument of Theorem 2.3 of Ref. [13]. (3) The case in which $a \notin \{0, 1, 2, \dots\}$ follows from the first assertion. Otherwise, we have the following exact sequence in $\mathcal{O}(\mathfrak{sl}_2)$:

$$0 \rightarrow \bar{L}_{\mathfrak{sl}_2}(a) \rightarrow \bar{M}_{\mathfrak{sl}_2}(a)^* \rightarrow \bar{M}_{\mathfrak{sl}_2}(-a-2) \rightarrow 0.$$

This induces the exact sequence

$$0 \rightarrow \bar{L}_{\mathfrak{sl}_2}(a) \otimes \mathbb{C}_{\bar{\chi}_-} \rightarrow \bar{M}_{\mathfrak{sl}_2}(a)^* \otimes \mathbb{C}_{\bar{\chi}_-} \rightarrow \bar{M}_{\mathfrak{sl}_2}(-a-2) \otimes \mathbb{C}_{\bar{\chi}_-} \rightarrow 0.$$

Hence, the assertion is obtained from the first and the second assertions by considering the corresponding long exact sequence of the Lie algebra homology. (4) Recall that $\mathcal{O}(\mathfrak{sl}_2)$ has enough injectives, and each injective object I admits a finite filtration such that each successive quotient is isomorphic to $\bar{M}_{\mathfrak{sl}_2}(a)^*$ for some $a \in \mathbb{C}$. Therefore, the third assertion implies that $H_1(\mathbb{C}f, I \otimes \mathbb{C}_{\bar{\chi}_-}) = \{0\}$ for any injective object I in $\mathcal{O}(\mathfrak{sl}_2)$ (cf. Theorem 8.2 of [1]). For a given $V \in Obj\mathcal{O}(\mathfrak{sl}_2)$, let $0 \rightarrow V \rightarrow I \rightarrow V/I \rightarrow 0$ be an exact sequence in $\mathcal{O}(\mathfrak{sl}_2)$ such that I is injective. Then, from the associated long exact sequence, it is proved that $H_1(\mathbb{C}f, V \otimes \mathbb{C}_{\bar{\chi}_-}) = \{0\}$. (4) By the third assertion the correspondence $V \mapsto H_0(\mathbb{C}f, V \otimes \mathbb{C}_{\bar{\chi}_-})$ defines an exact functor from $\mathcal{O}(\mathfrak{sl}_2)$ to the category of \mathbb{C} -vector spaces. Because the assertion follows from the first assertion for Verma modules, it also holds for any projective object P of $\mathcal{O}(\mathfrak{sl}_2)$, since P has a (finite) Verma flag. This completes the proof, as $\mathcal{O}(\mathfrak{sl}_2)$ has enough projectives. \square

4.8. For $\lambda \in \widehat{\mathfrak{h}}^*$, let

$$|\lambda\rangle = v_\lambda \otimes \mathbf{1} \in C(M(\lambda)).$$

Then, $d|\lambda\rangle = 0$, and thus $|\lambda\rangle$ defines an element of $H^0(M(\lambda))$. Again with a slight abuse of notation, we denote the image of $|\lambda\rangle$ under the natural map $C(M(\lambda)) \rightarrow C(L(\lambda))$ by $|\lambda\rangle$. Also, let

$$(46) \quad |\lambda\rangle^* = v_\lambda^* \otimes \mathbf{1} \in H^0(M(\lambda)^*),$$

where v_λ^* is the vector of $M(\lambda)^*$ dual to v_λ .

Proposition 4.8.1. *For any $\lambda \in \widehat{\mathfrak{h}}^*$, we have the following:*

- (1) $H^i(M(\lambda))_{\xi_\lambda} = \begin{cases} \mathbb{C}|\lambda\rangle & (\text{if } i = 0), \\ \{0\} & (\text{otherwise}). \end{cases}$
- (2) $H^i(L(\lambda))_{\xi_\lambda} = \begin{cases} \mathbb{C}|\lambda\rangle & (\text{if } i = 0 \text{ and } \langle \lambda, \alpha_0^\vee \rangle \notin \{0, 1, 2, \dots\}), \\ \{0\} & (\text{otherwise}). \end{cases}$
- (3) $H^i(M(\lambda)^*)_{\xi_\lambda} = \begin{cases} \mathbb{C}|\lambda\rangle^* & (\text{if } i = 0), \\ \{0\} & (\text{otherwise}). \end{cases}$

Proof. Observe that $M(\lambda)_{\xi_\lambda}$ is isomorphic to $\bar{M}_{\mathfrak{sl}_2}(\langle \lambda, \alpha_0^\vee \rangle)$ as a module over $(\mathfrak{sl}_2)_0$. Similarly, $L(\lambda)_{\xi_\lambda}$ and $M(\lambda)^*_{\xi_\lambda}$ are isomorphic to $\bar{L}_{\mathfrak{sl}_2}(\langle \lambda, \alpha_0^\vee \rangle)$ and $\bar{M}_{\mathfrak{sl}_2}(\langle \lambda, \alpha_0^\vee \rangle)^*$, respectively. Hence, the assertion follows from Lemma 4.6.1 and Proposition 4.7.1. \square

4.9. Let V be an object of $\dot{\mathcal{O}}_k$. For a given $\xi \in \widehat{\mathfrak{t}}^*$, consider the (usual) Lie algebra homology $H_\bullet(\mathbb{C}e(-1), V_\xi \otimes \mathbb{C}_\chi)$. It is calculated using the Chevalley complex $(V_\xi \otimes \Lambda(\mathbb{C}e(-1)), \bar{d})$, (see Section 4.6). The action of $\widehat{\mathfrak{t}}$ on V_ξ commutes with \bar{d} . Thus, there is a natural action of $\widehat{\mathfrak{t}}$ on $H_\bullet(\mathbb{C}e(-1), V \otimes \mathbb{C}_\chi)$;

$$H_\bullet(\mathbb{C}e(-1), V \otimes \mathbb{C}_\chi) = \bigoplus_{\xi \in \widehat{\mathfrak{t}}^*} H_\bullet(\mathbb{C}e(-1), V_\xi \otimes \mathbb{C}_\chi)_\xi.$$

By definition, we have

$$(47) \quad H_\bullet(\mathbb{C}e(-1), V \otimes \mathbb{C}_\chi)_\xi = H_\bullet(\mathbb{C}e(-1), V_\xi \otimes \mathbb{C}_\chi) \quad \text{for } \xi \in \widehat{\mathfrak{t}}^*.$$

Hence, from (40) and Proposition 4.7.1, we obtain the following assertion.

Proposition 4.9.1. *Let V be an object of $\dot{\mathcal{O}}_k$. Then, we have the following:*

- (1) $H_1(\mathbb{C}e(-1), V \otimes \mathbb{C}_\chi) = \{0\}$.
- (2) $H_0(\mathbb{C}e(-1), V \otimes \mathbb{C}_\chi) = \bigoplus_{\xi \leq \xi_\lambda} H_0(\mathbb{C}e(-1), V_\xi \otimes \mathbb{C}_\chi)_\xi$ if $V \in Obj \dot{\mathcal{O}}_k^{\leq \lambda}$ with $\lambda \in \widehat{\mathfrak{h}}^*$.
- (3) *Each weight space $H_0(\mathbb{C}e(-1), V \otimes \mathbb{C}_\chi)_\xi$, $\xi \in \widehat{\mathfrak{t}}^*$, is finite dimensional.*

4.10. We end this section with the following important proposition.

Proposition 4.10.1. *For any object V of $\dot{\mathcal{O}}_k$, each weight space $H^\bullet(V)_\xi$, where $\xi \in \widehat{\mathfrak{t}}^*$, is finite dimensional. Moreover, if $V \in Obj \dot{\mathcal{O}}_k^{\leq \lambda}$, with $\lambda \in \widehat{\mathfrak{h}}^*$, then $H^i(V)_\xi = \{0\}$ if $\frac{1}{2}|i| > \langle \xi_\lambda - \xi, \mathbf{D}^W \rangle$ for $i \in \mathbb{Z}$.*

Proof. We may assume that $V \in Obj \dot{\mathcal{O}}_k^{\leq \lambda}$ for some $\lambda \in \widehat{\mathfrak{h}}_k^*$. Decompose $\mathcal{F}(L\mathfrak{g}_{>0})$ as $\mathcal{F}(L\mathfrak{g}_{>0}) = \mathcal{F}(L\mathfrak{g}_{>0}/\mathbb{C}e(-1)) \otimes \Lambda(\mathbb{C}e(-1))$, where $\mathcal{F}(L(\mathfrak{g}_{>0})/\mathbb{C}e(-1))$ is the subspace of $\mathcal{F}(L(\mathfrak{g}_{>0}))$ spanned by the vectors

$$\psi_{\alpha_1}(m_1) \dots \psi_{\alpha_r}(m_r) \psi^{\beta_1}(n_1) \dots \psi^{\beta_s}(n_s) \mathbf{1},$$

with $\alpha_i, \beta_i \in \Delta_{>0}$, $m_i \leq \begin{cases} -2 & (\text{if } \alpha_i = \theta), \\ -1 & (\text{otherwise}), \end{cases}$ $n_i \leq 0$. Then, we have

$$\mathcal{F}^n(L\mathfrak{g}_{>0}) = \sum_{i-j=n} \mathcal{F}^i(L\mathfrak{g}_{>0}/\mathbb{C}e(-1)) \otimes \Lambda^j(\mathbb{C}e(-1)),$$

where $\mathcal{F}^i(L\mathfrak{g}_{>0}/\mathbb{C}e(-1)) = \mathcal{F}(L\mathfrak{g}_{>0}/\mathbb{C}e(-1)) \cap \mathcal{F}^i(L\mathfrak{g}_{>0})$.

Now, define

$$(48) \quad G^p C^n(V) \underset{\text{def}}{=} V \otimes \mathcal{F}^{\text{ne}}(\chi) \otimes \sum_{\substack{i-j=n \\ i \geq p}} \mathcal{F}^i(L\mathfrak{g}_{>0}/\mathbb{C}e(-1)) \otimes \Lambda^j(\mathbb{C}e(-1)) \subset C^n(V).$$

Then, we have

$$\begin{aligned} C^n(V) &= G^n C^n(V) \supset G^{n+1} C^n(V) \supset G^{n+2} C^n(V) = \{0\}, \\ dG^p C^n(V) &\subset G^{p+1} C^{n+1}(V). \end{aligned}$$

The corresponding the spectral sequence, $E_r \Rightarrow H^\bullet(V)$, is the *Hochschild-Serre spectral sequence* (more precisely, the semi-infinite, Lie superalgebra analogue of this spectral sequence) for the ideal $\mathbb{C}e(-1) \subset L\mathfrak{g}_{>0}$. By definition, we have the isomorphism

$$E_1^{p,q} = H_{-q}(\mathbb{C}e(-1), V \otimes \mathcal{F}^{\text{ne}}(\chi)) \otimes \mathcal{F}^p(L\mathfrak{g}_{>0}/\mathbb{C}e(-1)),$$

because the complex $(\sum_p G^p C(V)/G^{p+1} C(V), d)$ is identical to the corresponding Chevalley complex. By Proposition 4.9.1 (1), we have

$$(49) \quad E_1^{p,q} \cong \begin{cases} H_0(\mathbb{C}e(-1), V \otimes \mathbb{C}_\chi) \otimes \mathcal{F}^{\text{ne}}(\chi) \otimes \mathcal{F}^p(L\mathfrak{g}_{>0}/\mathbb{C}e(-1)) & (q = 0) \\ \{0\} & (q \neq 0) \end{cases}$$

as $\widehat{\mathfrak{t}}$ -modules for any p .

Next, observe that

$$\begin{aligned} \mathcal{F}^p(L\mathfrak{g}_{>0}/\mathbb{C}e(-1)) &= \bigoplus_{\xi \leq 0} \mathcal{F}^p(L\mathfrak{g}_{>0}/\mathbb{C}e(-1))_\xi, \\ \dim_{\mathbb{C}} \mathcal{F}^p(L\mathfrak{g}_{>0}/\mathbb{C}e(-1))_\xi &< \infty \text{ for any } \xi, \\ \mathcal{F}^p(L\mathfrak{g}_{>0}/\mathbb{C}e(-1))_\xi &= \{0\} \text{ unless } \langle \xi, \mathbf{D}^{\mathcal{W}} \rangle \leq -\frac{1}{2}|p|. \end{aligned}$$

Hence, from (43), Proposition 4.9.1 and (49), it follows that

$$(50) \quad E_1^{p,0} = \bigoplus_{\substack{\xi \leq \xi_\lambda \\ \frac{1}{2}|p| \leq \langle \xi_\lambda - \xi, \mathbf{D}^{\mathcal{W}} \rangle}} (E_1^{p,0})_\xi, \quad \dim_{\mathbb{C}} (E_1^{p,0})_\xi < \infty \text{ for any } \xi.$$

The assertion is thus proved, as our filtration is compatible with the action of $\widehat{\mathfrak{t}}$. \square

5. THE KAC-ROAN-WAKIMOTO CONSTRUCTION II: THE \mathcal{W} -ALGEBRA CONSTRUCTION OF SUPERCONFORMAL ALGEBRAS

In this section we recall the definition of the \mathcal{W} -algebra $\mathcal{W}_k(\mathfrak{g}, f)$ and collect necessary information about its structure.

5.1. Let $V_k(\mathfrak{g}) = U(\widehat{\mathfrak{g}}) \otimes_{U(\mathfrak{g} \otimes \mathbb{C}[t] \oplus \mathbb{C}K \oplus \mathbb{C}\mathbf{D})} \mathbb{C}_k \in Obj\mathcal{O}_k$ be the universal affine vertex algebra associated with \mathfrak{g} at a given level $k \in \mathbb{C}$. Here, \mathbb{C}_k is the one-dimensional representation of $\mathfrak{g} \otimes \mathbb{C}[t] \oplus \mathbb{C}K \oplus \mathbb{C}\mathbf{D}$ on which $\mathfrak{g} \otimes \mathbb{C}[t] \oplus \mathbb{C}\mathbf{D}$ acts trivially and K acts as k id. Hence, $V_k(\mathfrak{g})$ is a quotient of $M(k\Lambda_0)$ as a $\widehat{\mathfrak{g}}$ -module. It is known that the space $V_k(\mathfrak{g})$ has a natural vertex (super)algebra structure, and the space

$$(51) \quad C(V_k(\mathfrak{g})) = V_k(\mathfrak{g}) \otimes \mathcal{F}^{ne}(\chi) \otimes \mathcal{F}(L_{\mathfrak{g},>0})$$

also has a natural vertex (super)algebra structure (see Ref. [17] for details). Let $|0\rangle = (1 \otimes 1) \otimes \mathbf{1}_\chi \otimes \mathbf{1}$ be the canonical vector. Also, let $Y(v, z) \in \text{End } C(V_k(\mathfrak{g}))[[z, z^{-1}]]$ be the field corresponding to $v \in C(V_k(\mathfrak{g}))$. Then, by the definition,

$$\begin{aligned} Y(v(-1)|0\rangle, z) &= v(z) = \sum_{n \in \mathbb{Z}} v(n)z^{-n-1} \quad \text{for } v \in \mathfrak{g}, \\ Y(\Phi_\alpha(-1)|0\rangle, z) &= \Phi_\alpha(z) = \sum_{n \in \mathbb{Z}} \Phi_\alpha(n)z^{-n-1} \quad \text{for } \alpha \in \Delta_{\frac{1}{2}}, \\ Y(\psi_\alpha(-1)|0\rangle, z) &= \psi_\alpha(z) = \sum_{n \in \mathbb{Z}} \psi_\alpha(n)z^{-n-1} \quad \text{for } \alpha \in \Delta_{>0}, \\ Y(\psi_{-\alpha}(0)|0\rangle, z) &= \psi_{-\alpha}(z) = \sum_{n \in \mathbb{Z}} \psi_{-\alpha}(n)z^{-n} \quad \text{for } \alpha \in \Delta_{>0}. \end{aligned}$$

5.2. Define

$$(52) \quad \mathcal{W}_k(\mathfrak{g}, f) \underset{\text{def}}{=} H^0(V_k(\mathfrak{g})).$$

Then, Y descends to the map

$$(53) \quad Y : \mathcal{W}_k(\mathfrak{g}, f) \rightarrow \text{End } \mathcal{W}_k(\mathfrak{g}, f)[[z, z^{-1}]],$$

because, as shown in Ref. [17], the following relation holds:

$$(54) \quad [d, Y(v, z)] = Y(dv, z) \quad \text{for all } v \in C(V_k(\mathfrak{g})).$$

Therefore, $\mathcal{W}_k(\mathfrak{g}, f)$ has a vertex algebra structure. The vertex algebra $\mathcal{W}_k(\mathfrak{g}, f)$ is called the *\mathcal{W} -(super)algebra associated with the pair (\mathfrak{g}, f) at level k* . By definition, the vertex algebra $\mathcal{W}_k(\mathfrak{g}, f)$ acts naturally on $H^i(V)$, where $V \in \mathcal{O}_k$, $i \in \mathbb{Z}$. Thus, we obtain a family of functors $V \rightsquigarrow H^i(V)$, depending on $i \in \mathbb{Z}$, from \mathcal{O}_k to the category of $\mathcal{W}_k(\mathfrak{g}, f)$ -modules.

Remark 5.2.1.

- (1) If \mathfrak{g} is a Lie algebra and f is a regular nilpotent element of \mathfrak{g} , then $\mathcal{W}_k(\mathfrak{g}, f)$ is identical to $\mathcal{W}_k(\mathfrak{g})$, the \mathcal{W} -algebra defined by B. L. Feigin and E. V. Frenkel [10].
- (2) V. G. Kac, S.-S. Roan and M. Wakimoto gave a more general definition of \mathcal{W} -algebras (see Ref. [17] for details).

5.3. As shown in Ref. [17], the vertex algebra $\mathcal{W}_k(\mathfrak{g}, f)$ has a superconformal algebra structure provided that the level k is non-critical, i.e., that $k + h^\vee \neq 0$. Here, h^\vee is the dual Coxeter number of \mathfrak{g} . Let $L(z) = \sum_{n \in \mathbb{Z}} L(n)z^{-n-2}$ be the corresponding Virasoro field. The explicit form of $L(z)$ is given in Ref. [17]. If $f = f_\theta$, its central charge is given by

$$(55) \quad c(k) = \frac{k \text{sdim } \mathfrak{g}}{k + h^\vee} - 6k + h^\vee - 4.$$

Let

$$(56) \quad S(z) = \sum_{n \in \mathbb{Z}} S(n) z^{-n-2} \stackrel{\text{def}}{=} 2(k + h^\vee) L(z).$$

Then, $S(z)$ is well-defined for any level k .

Remark 5.3.1. Let $\widehat{\Omega}$ be the universal Casimir operator [15] of $\widehat{\mathfrak{g}}$ acting on $V \in \mathcal{O}_k$. Then, we have

$$S(0) + 2(k + h^\vee) \mathbf{D}^{\mathcal{W}} = \widehat{\Omega}$$

on $H^\bullet(V)$.

5.4. Let

$$J^{(v)}(z) = \sum_{n \in \mathbb{Z}} J^{(v)}(n) z^{-n-1} = v(z) + \sum_{\beta, \gamma \in \Delta_{>0}} (-1)^{p(\gamma)} ([v, u_\beta] | u_{-\gamma}) : \psi_\gamma(z) \psi^\beta(z) :,$$

for $v \in \mathfrak{g}_{\leq 0}$.

Also, let $C_k(\mathfrak{g})$ be the subspace of $C(V_k(\mathfrak{g}))$ spanned by the vectors

$$J^{(u_1)}(m_1) \dots J^{(u_p)}(m_p) \Phi_{\alpha_1}(n_1) \dots \Phi_{\alpha_q}(n_q) \psi^{\beta_1}(s_1) \dots \psi^{\beta_r}(s_r) |0\rangle$$

with $u_i \in \mathfrak{g}_{\leq 0}$, $\alpha_i \in \Delta_{\frac{1}{2}}$, $\beta_i \in \Delta_{>0}$, $m_i, n_i, s_i \in \mathbb{Z}$. As shown in Ref. [19], $C_k(\mathfrak{g})$ is a vertex subalgebra and a subcomplex of $C(V_k(\mathfrak{g}))$. Moreover, it was proved that

$$(57) \quad \mathcal{W}_k(\mathfrak{g}, f) = H^0(C_k(\mathfrak{g}), d)$$

as vertex algebras. This follows from the tensor product decomposition of the complex $C(V_k(\mathfrak{g}))$ (see Ref. [19] for details).

5.5. Let

$$\widehat{\mathfrak{g}}^f \stackrel{\text{def}}{=} \mathfrak{g}^f \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}1$$

be the affine Lie superalgebra of \mathfrak{g}^f with respect to the 2-cocycle $(\ , \)^\natural$, defined by

$$(58) \quad (u \otimes t^m, v \otimes t^n)^\natural = \begin{cases} m\delta_{m,n} ((k + h^\vee)(u|v) - \frac{1}{2} \text{str}_{\mathfrak{g}_0}(\text{ad } u)(\text{ad } v)) & (\text{if } u, v \in \mathfrak{g}_0), \\ 0 & (\text{otherwise}). \end{cases}$$

Also, let $V_k^\natural(\mathfrak{g}^f)$ be the corresponding universal vertex affine algebra:

$$(59) \quad V_k^\natural(\mathfrak{g}^f) \stackrel{\text{def}}{=} U(\widehat{\mathfrak{g}}^f) \otimes_{U(\mathfrak{g}^f) \otimes \mathbb{C}[t] \oplus \mathbb{C}1} \mathbb{C}.$$

Then, the correspondence

$$v \otimes t^n \rightarrow J^{(v)}(n) \quad \text{for } v \otimes t^n \in \widehat{\mathfrak{g}}^f$$

defines a $V_k^\natural(\mathfrak{g}^f)$ -module structure on $C(V)$, $V \in \mathcal{O}_k$. In particular, we have the following embedding of vertex algebras:

$$(60) \quad V_k^\natural(\mathfrak{g}^f) \hookrightarrow C_k(\mathfrak{g}) \subset C(V_k(\mathfrak{g})).$$

Theorem 5.5.1 (V. G. Kac and M. Wakimoto: Theorem 4.1 of Ref. [19]). *There exists a filtration*

$$\{0\} = F_{-1} \mathcal{W}_k(\mathfrak{g}, f) \subset F_0 \mathcal{W}_k(\mathfrak{g}, f) \subset F_1 \mathcal{W}_k(\mathfrak{g}, f) \subset \dots$$

of $\mathcal{W}_k(\mathfrak{g}, f) = H^0(C_k(\mathfrak{g}), d)$ such that

$$(61) \quad \begin{aligned} \mathcal{W}_k(\mathfrak{g}, f) &= \bigcup_p F_p \mathcal{W}_k(\mathfrak{g}, f), \\ \widehat{\mathfrak{t}} \cdot F_p \mathcal{W}_k(\mathfrak{g}, f) &\subset F_p \mathcal{W}_k(\mathfrak{g}, f) \quad \text{for all } p, \\ F_p \mathcal{W}_k(\mathfrak{g}, f) \cdot F_q \mathcal{W}_k(\mathfrak{g}, f) &\subset F_{p+q} \mathcal{W}_k(\mathfrak{g}, f) \quad \text{for all } p, q, \end{aligned}$$

where the left-hand-side of (61) denotes the span of the vectors,

$$Y_n(v)w \quad (v \in F_p \mathcal{W}_k(\mathfrak{g}, f), w \in F_q \mathcal{W}_k(\mathfrak{g}, f), n \in \mathbb{Z}),$$

and such that the map (60) induces the isomorphism

$$V_k^{\natural}(\mathfrak{g}^f) \cong \text{gr}_F \mathcal{W}_k(\mathfrak{g}, f) = \bigoplus F_p \mathcal{W}_k(\mathfrak{g}, f) / F_{p-1} \mathcal{W}_k(\mathfrak{g}, f)$$

as vertex algebras and $\widehat{\mathfrak{t}}$ -modules.

Remark 5.5.2. Actually, stronger results were proved by V. G. Kac and M. Wakimoto [19]. Specifically, it was shown that $H^i(V_k(\mathfrak{g})) = H^i(C_k(\mathfrak{g}), d) = \{0\}$ ($i \neq 0$). Their proof is based on the argument given in Ref. [12]. Further, the explicit form of $\mathcal{W}_k(\mathfrak{g}, f)$ was obtained for the case $f = f_\theta$.

For $v \in \mathfrak{g}^f$, let $W^{(v)} \in \mathcal{W}_k(\mathfrak{g}, f)$ be the cocycle in $C_k(\mathfrak{g})$ corresponding to $v(-1)|0\rangle \in V_k^{\natural}(\mathfrak{g}^f)$. Let us write

$$(62) \quad Y(W^{(v)}, z) = \sum_{n \in \mathbb{Z}} W^{(v)}(n) z^{-n-1}.$$

Then, by Theorem 5.5.1, the following map defines an isomorphism of $\widehat{\mathfrak{t}}$ -modules:

$$\begin{aligned} U(\mathfrak{g}^f \otimes \mathbb{C}[t^{-1}]t^{-1}) &\rightarrow \mathcal{W}_k(\mathfrak{g}, f), \\ u_1(n_1) \dots u_r(n_r) &\mapsto W^{(u_1)}(n_1) \dots W^{(u_r)}(n_r)|0\rangle. \end{aligned}$$

We remark that the filtration $\{F_p \mathcal{W}_k(\mathfrak{g}, f)\}$ in Theorem 5.5.1 is now described by

$$(63) \quad \begin{aligned} F_p \mathcal{W}_k(\mathfrak{g}, f) \\ = \text{span}\{W^{(u_1)}(n_1) \dots W^{(u_r)}(n_r)|0\rangle \mid r \geq 0, n_i \in \mathbb{Z}, u_i \in \mathfrak{g}_{-s_i}^f, \sum_{i=1}^r s_i \leq p\}. \end{aligned}$$

Remark 5.5.3.

(1) Let $V \in \mathcal{O}_k$. Then, we have

$$W^{(v)}(n) H^\bullet(V)_\xi \subset H^\bullet(V)_{\xi+\eta} \quad (\text{if } v(n) \in (\widehat{\mathfrak{g}}^f)_\eta).$$

Thus, in particular,

$$[\mathbf{D}^{\mathcal{W}}, W^{(v)}(n)] = (n-j)W^{(v)}(n) \quad \text{if } v \in \mathfrak{g}_{-j}^f$$

in $\text{End}(H^\bullet(V))$.

(2) $W^{(f)}(n)$ coincides with $S(n-1)$ up to a nonzero multiplicative factor.

6. IRREDUCIBLE HIGHEST WEIGHT REPRESENTATIONS AND THEIR CHARACTERS

We assume that $f = f_\theta$ and the condition (32) is satisfied for the remainder of the paper.

6.1. Decompose $\widehat{\mathfrak{g}}^f$ as

$$(64) \quad \widehat{\mathfrak{g}}^f = (\widehat{\mathfrak{g}}^f)_- \oplus \widehat{\mathfrak{h}}_{\mathcal{W}} \oplus (\widehat{\mathfrak{g}}^f)_+,$$

where

$$\begin{aligned} (\widehat{\mathfrak{g}}^f)_+ &\stackrel{\text{def}}{=} \mathbb{C}f \otimes \mathbb{C}[t]t^2 \oplus (\mathfrak{g}_{-\frac{1}{2}} \oplus \mathfrak{n}_{0,-} \oplus \mathfrak{h}^f) \otimes \mathbb{C}[t]t \oplus \mathfrak{n}_{0,+} \otimes \mathbb{C}[t], \\ \widehat{\mathfrak{h}}_{\mathcal{W}} &\stackrel{\text{def}}{=} \mathfrak{h}^f \oplus \mathbb{C}1 \oplus \mathbb{C}f \otimes \mathbb{C}t, \\ (\widehat{\mathfrak{g}}^f)_- &\stackrel{\text{def}}{=} (\mathbb{C}f \oplus \mathfrak{g}_{-\frac{1}{2}} \oplus \mathfrak{n}_{0,-}) \otimes \mathbb{C}[t^{-1}] \oplus (\mathfrak{h}^f \oplus \mathfrak{n}_{0,+}) \otimes \mathbb{C}[t^{-1}]t^{-1}. \end{aligned}$$

By definition, $\widehat{\mathfrak{h}}_{\mathcal{W}}$ is commutative. Let V be a $\mathcal{W}_k(\mathfrak{g}, f)$ -module. Then, the correspondence

$$(65) \quad h \mapsto W^{(h)}(0) \quad (h \in \mathfrak{h}^f), \quad f \otimes t^1 \mapsto S(0)$$

defines the action of $\widehat{\mathfrak{h}}_{\mathcal{W}}$ on V (see Ref. [17]). Below we shall regard a $\mathcal{W}_k(\mathfrak{g}, f)$ -module as a module over $\widehat{\mathfrak{h}}_{\mathcal{W}}$ via the correspondence (65). Note that, for $k \neq -h^\vee$, the $\widehat{\mathfrak{h}}_{\mathcal{W}}$ -action on $H^\bullet(V)$, with $V \in \text{Obj} \mathcal{O}_k$, is essentially the same as the $\widehat{\mathfrak{t}}$ -action on it.

The following lemma is obvious (see Remark 5.5.3).

Lemma 6.1.1. *The operator $W^{(u)}(n)$, with $u(n) \in (\widehat{\mathfrak{g}}^f)_+$, is locally nilpotent on $H^\bullet(V)$, for $V \in \text{Obj} \mathcal{O}_k$.*

6.2. A $\mathcal{W}_k(\mathfrak{g}, f)$ -module V is called $\widehat{Q}_+^{\mathfrak{t}}$ -gradable if it admits a decomposition $V = \bigoplus_{\xi \in \widehat{Q}_+^{\mathfrak{t}}} V[-\xi]$ such that $W^{(v)}(n)V[-\xi] \subset V[-\xi + \eta]$ for $v(n) \in (\widehat{\mathfrak{g}}^f)_\eta$, $\xi \in \widehat{Q}_+^{\mathfrak{t}}$ and $\forall \eta \in \widehat{Q}^{\mathfrak{t}}$. A $\widehat{Q}_+^{\mathfrak{t}}$ -gradable $\mathcal{W}_k(\mathfrak{g}, f)$ -module V is called a *highest weight module* with *highest weight* $\phi \in \widehat{\mathfrak{h}}_{\mathcal{W}}^*$ if there exists a non-zero vector v_ϕ (called a *highest weight vector*) such that

$$\begin{aligned} V &\text{ is generated by } v_\phi \text{ over } \mathcal{W}_k(\mathfrak{g}, f), \\ W^{(u)}(n)v_\phi &= 0 \quad (\text{if } u \otimes t^n \in (\widehat{\mathfrak{g}}^f)_+), \\ W^{(h)}(0)v_\phi &= \phi(h)v_\phi \quad (\text{if } h \in \mathfrak{h}^f), \\ S(0)v_\phi &= \phi(f \otimes t)v_\phi. \end{aligned}$$

Let $B = \{b_j \mid j \in J\}$ be a PBW basis of $U((\widehat{\mathfrak{g}}^f)_-)$ of the form

$$b_j = (u_{j_1} \otimes t^{n_{j_1}}) \dots (u_{j_r} \otimes t^{n_{j_r}}).$$

Then, a highest weight module is spanned by the vectors

$$W^{(b_j)} = W^{(u_{j_1})}(n_{j_1}) \dots W^{(u_{j_r})}(n_{j_r})v_\phi.$$

A highest weight module V with highest weight vector v_ϕ is called a *Verma module* if the above vectors $W^{(b)}$, with $b \in B$, forms a basis of V (see Ref. [19]). Let $\mathbf{M}(\phi)$ denote the Verma module with highest weight $\phi \in \widehat{\mathfrak{h}}_{\mathcal{W}}^*$.

Remark 6.2.1. Let

$$F_p \mathbf{M}(\phi)$$

$$= \text{span}\{W^{(u_1)}(n_1) \dots W^{(u_r)}(n_r)v_\phi \mid r \geq 0, n_i \in \mathbb{Z}, u_i \in \mathfrak{g}_{-s_i}^f, \sum_{i=1}^r s_i \leq p\}.$$

Then, $\{F_p \mathbf{M}(\phi)\}$ defines an increasing filtration of $\mathbf{M}(\phi)$ such that the corresponding graded space $\text{gr}_F \mathbf{M}(\phi)$ is naturally a module over $\text{gr}_F \mathcal{W}_k(\mathfrak{g}, f)$ and isomorphic to $U(\widehat{\mathfrak{g}}^f) \otimes_{U(\widehat{\mathfrak{h}}_{\mathcal{W}} \oplus (\widehat{\mathfrak{g}}^f)_+)} \mathbb{C}_\phi$, where \mathbb{C}_ϕ is a $\widehat{\mathfrak{h}}_{\mathcal{W}} \oplus (\widehat{\mathfrak{g}}^f)_+$ -module on which $(\widehat{\mathfrak{g}}^f)_+$ acts trivially and $\widehat{\mathfrak{h}}_{\mathcal{W}}$ acts through the character ϕ .

6.3. For $\lambda \in \widehat{\mathfrak{h}}_k^*$, define $\phi_\lambda \in \widehat{\mathfrak{h}}_{\mathcal{W}}^*$ by

$$(66) \quad \begin{aligned} \phi_\lambda(h) &= \lambda(h) \text{ for } h \in \mathfrak{h}^f, \\ \phi_\lambda(f \otimes t) &= |\lambda + \rho|^2 - |\rho|^2 - 2(k + h^\vee) \langle \lambda, \mathbf{D}^{\mathcal{W}} \rangle \end{aligned}$$

(cf. Remark 5.3.1). Here, $\rho = \bar{\rho} + h^\vee \Lambda_0$, and $\bar{\rho}$ is equal to the half of the difference of the sum of positive even roots and the sum of positive odd roots of \mathfrak{g} . Then, the correspondence $\widehat{\mathfrak{h}}_k^* \ni \lambda \mapsto \phi_\lambda \in \widehat{\mathfrak{h}}_{\mathcal{W}}^*$ is surjective.

By Proposition 4.8.1 (1), there is a natural homomorphism of $\mathcal{W}_k(\mathfrak{g}, f)$ -modules of the form

$$(67) \quad \begin{aligned} \mathbf{M}(\phi_\lambda) &\rightarrow H^0(M(\lambda)) \\ v_{\phi_\lambda} &\mapsto |\lambda\rangle. \end{aligned}$$

Theorem 6.3.1 (V. G. Kac and M. Wakimoto: Theorem 6.3 of Ref. [19]). *For each $\lambda \in \widehat{\mathfrak{h}}_k^*$, with $k \in \mathbb{C}$, we have $H^i(M(\lambda)) = \{0\}$ for $i \neq 0$, and the map (67) is an isomorphism of $\mathcal{W}_k(\mathfrak{g}, f)$ -modules: $H^0(M(\lambda)) \cong \mathbf{M}(\phi_\lambda)$.*

6.4. Let $\phi \in \widehat{\mathfrak{h}}_{\mathcal{W}}^*$. Choose $\lambda \in \widehat{\mathfrak{h}}_k^*$ such that $\phi_\lambda = \phi$. Let $\mathbf{N}(\phi)$ be the the sum of all $\mathbf{D}^{\mathcal{W}}$ -stable proper $\mathcal{W}_k(\mathfrak{g}, f)$ -submodules of $H^0(M(\lambda)) = \mathbf{M}(\phi_\lambda)$ (Theorem 6.3.1). Then, $\mathbf{N}(\phi) \subset \mathbf{M}(\phi)$ is independent of the choice of λ , as long as $\phi = \phi_\lambda$ holds. We define

$$(68) \quad \mathbf{L}(\phi) \underset{\text{def}}{=} \mathbf{M}(\phi)/\mathbf{N}(\phi) \quad \text{with } \phi \in \widehat{\mathfrak{h}}_{\mathcal{W}}^*.$$

It is clear that in the case that $k \neq -h^\vee$, $\mathbf{L}(\phi)$ is the unique irreducible quotient of $\mathbf{M}(\phi)$. In the case that $k = -h^\vee$, the following assertion is proved together with Theorem 6.7.4.

Theorem 6.4.1. *The $\mathcal{W}_k(\mathfrak{g}, f)$ -module $\mathbf{L}(\phi)$, with $\phi \in \widehat{\mathfrak{h}}_{\mathcal{W}}^*$, is irreducible.*

It is clear that the set $\{\mathbf{L}(\phi) \mid \phi \in \widehat{\mathfrak{h}}_{\mathcal{W}}^*\}$ represents the complete set of the isomorphism classes of irreducible highest weight modules over $\mathcal{W}_k(\mathfrak{g}, f)$.

6.5.

Theorem 6.5.1. *For any object V in $\text{Obj} \mathcal{O}_k^\Delta$, we have $H^i(V) = \{0\}$ ($i \neq 0$). In particular, we have $H^i(P_{\leq \lambda}(\mu)) = \{0\}$ ($i \neq 0$) for any $\lambda, \mu \in \widehat{\mathfrak{h}}_k^*$ such that $\mu \leq \lambda$.*

Proof. By Theorem 6.3.1, the assertion can be shown by induction applied to the length of a Verma flag of $V \in \text{Obj} \mathcal{O}_k^\Delta$ (cf. Theorem 8.1 of Ref. [1]). \square

Theorem 6.5.2. *For any object V of \mathcal{O}_k we have $H^i(V) = \{0\}$ for all $i > 0$.*

Proof. We may assume that $V \in \text{Obj} \mathcal{O}_k^{\leq \lambda}$ for some $\lambda \in \widehat{\mathfrak{h}}_k^*$. Also, by Proposition 4.4.2, we may assume that $V \in \text{Obj} \mathcal{O}_k^{\leq \lambda}$, since the cohomology functor commutes with injective limits. Clearly, it is sufficient to show that $H_i(V)_\xi = \{0\}$ ($i > 0$) for each $\xi \in \widehat{\mathfrak{t}}^*$. By Lemma 4.5.2, for a given ξ , there exists a finitely generated submodule V' of V such that

$$(69) \quad H^i(V)_\xi = H^i(V')_\xi \quad \text{for all } i \in \mathbb{Z}.$$

Because V' is finitely generated, there exists a projective module P of the form $\bigoplus_{i=1}^r P_{\leq \lambda}(\mu_i)$ and an exact sequence $0 \rightarrow N \rightarrow P \rightarrow V \rightarrow 0$ in $\dot{\mathcal{O}}_k^{\leq \lambda}$. Considering the corresponding long exact sequence, we obtain

$$(70) \quad \cdots \rightarrow H^i(P) \rightarrow H^i(V) \rightarrow H^{i+1}(N) \rightarrow H^{i+1}(P) \rightarrow \dots$$

Hence, it follows that $H^i(V') \cong H^{i+1}(N)$ for all $i > 0$, by Proposition 6.5.1. Therefore, we find

$$(71) \quad H^i(V)_\xi \cong H^{i+1}(N)_\xi \quad \text{for all } i > 0,$$

by (69). Then, because $N \in Obj \dot{\mathcal{O}}_k^{\leq \lambda}$, we can repeat this argument to find, for each $k > 0$, some object N_k of $\dot{\mathcal{O}}_k^{\leq \lambda}$ such that

$$(72) \quad H^i(V)_\xi \cong H^{i+k}(N_k)_\xi \quad \text{for all } i > 0.$$

But by Proposition 4.10.1, this implies that $H^i(V)_\xi = \{0\}$ for $i > 0$. \square

6.6.

Theorem 6.6.1. *For any $\lambda \in \widehat{\mathfrak{h}}_k^*$, we have $H^i(M(\lambda)^*) = \{0\}$ for $i \neq 0$.*

Theorem 6.6.1 is proved in Subsection 7.17.

Theorem 6.6.2. *Suppose that $\langle \lambda, \alpha_0^\vee \rangle \notin \{0, 1, 2, \dots\}$. Then, any nonzero $\mathcal{W}_k(\mathfrak{g}, f)$ -submodule of $H^0(M(\lambda)^*)$ contains the canonical vector $|\lambda\rangle^*$ of $H^0(M(\lambda)^*)$.*

Theorem 6.6.2 is proved together with Theorem 7.16.1.

Remark 6.6.3. Theorem 6.6.2 holds without any restriction on λ . Indeed, it can be seen from Corollary 6.7.3 and (the proof of) Theorem 6.7.4 that if $\langle \lambda, \alpha_0^\vee \rangle \in \{0, 1, 2, \dots\}$, then $H^0(M(\lambda)^*) \cong H^0(M(r_0 \circ \lambda)^*)$, where r_0 is the reflection corresponding to α_0 .

The following theorem is a consequence of Theorem 6.6.1 which can be proved in the same manner as Theorem 8.1 of Ref. [1].

Theorem 6.6.4. *For a given $\lambda \in \widehat{\mathfrak{h}}_k^*$, $H^i(I_{\leq \lambda}(\mu)) = \{0\}$ ($i \neq 0$) for any $\lambda, \mu \in \widehat{\mathfrak{h}}_k^*$ such that $\mu \leq \lambda$.*

Using Theorem 6.6.4, the following assertion can be proved in the same manner as Theorem 6.5.1.

Theorem 6.6.5. *For any object V of \mathcal{O}_k we have $H^i(V) = \{0\}$ for all $i < 0$.*

6.7. **Main results.** From Theorems 6.5.2 and 6.6.5, we obtain the following results.

Theorem 6.7.1. *Let k be an arbitrary complex number. We have $H^i(V) = \{0\}$ ($i \neq 0$) for any object V in \mathcal{O}_k .*

Remark 6.7.2. By Theorem 6.7.1, we have, in particular, $H^i(L(\lambda)) = \{0\}$ ($i \neq 0$) for each $\lambda \in \widehat{\mathfrak{h}}^*$. This was conjectured by V. G. Kac, S.-S. Roan and M. Wakimoto [17] in the case that λ is admissible.

Corollary 6.7.3. *For any $k \in \mathbb{C}$, the correspondence $V \rightsquigarrow H^0(V)$ defines an exact functor from \mathcal{O}_k to the category of $\mathcal{W}_k(\mathfrak{g}, f)$ -modules.*

Theorem 6.7.4. *Let k be an arbitrary complex number and let $\lambda \in \widehat{\mathfrak{h}}_k^*$. If $\langle \lambda, \alpha_0^\vee \rangle \in \{0, 1, 2, \dots\}$, then $H^0(L(\lambda)) = \{0\}$. Otherwise $H^0(L(\lambda))$ is an irreducible $\mathcal{W}_k(\mathfrak{g}, f)$ -module that is isomorphic to $\mathbf{L}(\phi_\lambda)$.*

Proof. Let $N(\lambda)$ be the unique maximal proper submodule of $M(\lambda)$. Then, we have an exact sequence $0 \rightarrow N(\lambda) \rightarrow M(\lambda) \rightarrow L(\lambda) \rightarrow 0$ in \mathcal{O}_k . With this, using Corollary 6.7.3, we obtain an exact sequence

$$(73) \quad 0 \rightarrow H^0(N(\lambda)) \rightarrow H^0(M(\lambda)) \xrightarrow{\pi} H^0(L(\lambda)) \rightarrow 0.$$

By Theorem 6.3.1, we have $H^0(M(\lambda)) \cong \mathbf{M}(\phi_\lambda)$. Therefore (73) shows that $H^0(L(\lambda))$ is generated over $\mathcal{W}_k(\mathfrak{g}, f)$ by the image $\pi(|\lambda\rangle)$ of the highest weight vector $|\lambda\rangle \in H^0(M(\lambda))$. Thus it follows that $H^0(L(\lambda)) = \{0\}$ if and only if $\pi(|\lambda\rangle) \neq \{0\}$. But $\pi(|\lambda\rangle) \neq \{0\}$ if and only if $H^0(L(\lambda))_{\xi_\lambda} \neq \{0\}$, because $\dim_{\mathbb{C}} H^0(M(\lambda))_{\xi_\lambda} = 1$, by Proposition 4.8.1 (1). Hence, by Proposition 4.8.1 (2), it follows that $H^0(L(\lambda))$ is nonzero if and only if $\langle \lambda, \alpha_0^\vee \rangle \notin \{0, 1, 2, \dots\}$.

Next, suppose that $\langle \lambda, \alpha_0^\vee \rangle \notin \{0, 1, 2, \dots\}$, so that $H^0(L(\lambda)) \neq \{0\}$. Also, let N be a nonzero submodule of $H^0(L(\lambda))$. As $L(\lambda)$ is a submodule of $M(\lambda)^*$, $H^0(L(\lambda))$ is also a submodule of $H^0(M(\lambda)^*)$, by the exactness of the functor $H^0(\cdot)$ (Corollary 6.7.3). Hence, N is a submodule of $H^0(M(\lambda)^*)$. But then, by Theorem 6.6.2, it follows that $\pi(|\lambda\rangle) \in N$. Therefore N must coincide with the entire space $H^0(L(\lambda))$. We have thus shown that $H^0(L(\lambda))$ is irreducible. Finally, we have to show (in the case $k = -h^\vee$) that $\mathbf{N}(\phi_\lambda) = H^0(N(\lambda))$ ($\mathbf{N}(\phi)$ is defined in Section 6.4.) Clearly, $H^0(N(\lambda))$ is stable under the action of $\mathbf{D}^{\mathcal{W}}$. Thus, $\mathbf{N}(\phi_\lambda) \supset H^0(N(\lambda))$. In addition, $\mathbf{N}(\phi_\lambda) \subset H^0(N(\lambda))$, by the irreducibility of $H^0(L(\lambda)) = H^0(M(\lambda))/H^0(N(\lambda))$, which we have just proved. This completes the proof. \square

Remark 6.7.5. Theorem 6.7.4 was conjectured by V. G. Kac, S.-S. Roan, M. Wakimoto [17] in the case of an admissible weight λ .

6.8. The characters. For an object V of \mathcal{O}_k , define the formal characters

$$\begin{aligned} \text{ch } V &\stackrel{\text{def}}{=} \sum_{\lambda \in \widehat{\mathfrak{h}}^*} e^\lambda \dim_{\mathbb{C}} V^\lambda, \\ \text{ch } H^0(V) &\stackrel{\text{def}}{=} \sum_{\xi \in \widehat{\mathfrak{t}}^*} e^\xi \dim_{\mathbb{C}} H^0(V)_\xi. \end{aligned}$$

In addition, for $\lambda, \mu \in \widehat{\mathfrak{h}}^*$ define an integer $[L(\lambda) : M(\mu)]$ by

$$\text{ch } L(\lambda) = \sum_{\mu \in \widehat{\mathfrak{h}}^*} [L(\lambda) : M(\mu)] \text{ch } M(\mu).$$

Then, by the exactness of the functor $H^0(\cdot)$ (see Corollary 6.7.3), we have

$$(74) \quad \text{ch } H^0(L(\lambda)) = \sum_{\mu \in \widehat{\mathfrak{h}}^*} [L(\lambda) : M(\mu)] \text{ch } H^0(M(\mu)).$$

Because the correspondence $\widehat{\mathfrak{h}}_k^* \ni \lambda \mapsto \phi_\lambda \in \widehat{\mathfrak{h}}_{\mathcal{W}}^*$ (see (66)) is surjective, it follows from (74), Theorem 6.3.1 and Theorem 6.7.4 that the character of *any* irreducible highest weight representation $\mathbf{L}(\phi)$ of $\mathcal{W}_k(\mathfrak{g}, f_\theta)$ at *any* level $k \in \mathbb{C}$ is determined by the character of the corresponding $\widehat{\mathfrak{g}}$ -module $L(\lambda)$.

Remark 6.8.1.

- (1) For an admissible weight λ , the character formula (74) was conjectured by V. G. Kac, S.-S. Roan, M. Wakimoto [17].

- (2) By Theorem 6.7.1, it follows that (74) can be obtained by calculating the Euler-Poincaré character of $H^0(L(\lambda))$ (see Ref. [17] for details).
- (3) In the case that \mathfrak{g} is a Lie algebra and $k \neq -h^\vee$, the number $[L(\lambda) : M(\mu)]$ is known. (It can be expressed in terms of the Kazhdan-Lusztig polynomials. The most general formula is given in Ref. [21]).
- (4) In the case that $\mathfrak{g} = \mathfrak{spo}(2|1)$, $\mathcal{W}_k(\mathfrak{g}, f_\theta)$ is the Neveu-Schwarz algebra. All minimal series representations of the Neveu-Schwarz algebra (see, e.g., Ref. [18]) can be obtained from the admissible $\mathfrak{spo}(2|1)$ -modules [18], as explained by V. G. Kac, S.-S. Roan and M. Wakimoto [17].
- (5) In the case that $\mathfrak{g} = \mathfrak{sl}(2|1)$, $\mathcal{W}_k(\mathfrak{g}, f_\theta)$ is the $N = 2$ superconformal algebra. The minimal series representations of the $N = 2$ superconformal algebra (cf. Refs. [6, 23, 26]) can be obtained from the admissible $\mathfrak{sl}(2|1)$ -modules [18], as explained by V. G. Kac, S.-S. Roan and M. Wakimoto [17].
- (6) For further examples and references, see Refs. [17, 19, 20].

7. THE COMPUTATION OF $H^\bullet(M(\lambda)^*)$

In this section, we prove Theorems 6.6.1 and 6.6.2. Specifically, we compute $H^\bullet(M(\lambda)^*)$, with $\lambda \in \widehat{\mathfrak{h}}_k^*$. This is done by using a spectral sequence which we define in Subsection 7.11. It is a version of the Hochschild-Serre spectral sequence for the subalgebra $\mathbb{C}e(-1) \oplus \mathfrak{g}_{>0} \otimes \mathbb{C}[t] \subset L\mathfrak{g}_{>0}$.

7.1. As in (14), let

$$(75) \quad N(\chi_-) \underset{\text{def}}{=} U(L\mathfrak{g}_{<0})/U(L\mathfrak{g}_{<0}) \ker \chi_-.$$

Here, $\ker \chi_- \subset U(L\mathfrak{g}_{\leq -1})$ is the kernel of the character χ_- of $L\mathfrak{g}_{\leq -1}$, defined by

$$(76) \quad \chi_-(u(m)) \underset{\text{def}}{=} (e(-1)|u(m)), \text{ where } u \in \mathfrak{g}_{\leq -1} \text{ and } m \in \mathbb{Z}.$$

Let $\Phi_u(n)$, with $u \in \mathfrak{g}_{<0}$ and $n \in \mathbb{Z}$, denote the image of $u(n) \in L\mathfrak{g}_{<0}$ in $N(\chi_-)$. As above, we set $\Phi_{-\alpha}(n) = \Phi_{u_{-\alpha}}(n)$ with $\alpha \in \Delta_{\frac{1}{2}}$ and $n \in \mathbb{Z}$. Then, the correspondence $\Phi_\alpha(n) \mapsto \Phi_{-\alpha}(-n)$, with $\alpha \in \Delta_{\frac{1}{2}}$ and $n \in \mathbb{Z}$, defines the anti-algebra isomorphism

$$N(\chi) \cong N(\chi_-).$$

7.2. Let $\mathcal{F}^{\text{ne}}(\chi_-)$ be the irreducible representation of $N(\chi_-)$ generated by a vector $\mathbf{1}_{\chi_-}$ such that $\Phi_{-\alpha}(n)\mathbf{1}_{\chi_-} = 0$ for $\alpha \in \Delta_{\frac{1}{2}}$ and $n \geq 1$. As in the case considered above, we define a semisimple action of $\widehat{\mathfrak{h}}$ on $\mathcal{F}^{\text{ne}}(\chi_-)$ by $h\mathbf{1}_{\chi_-} = 0$, $\Phi_{-\alpha}(n)\mathcal{F}^{\text{ne}}(\chi_-)^\lambda \subset \mathcal{F}^{\text{ne}}(\chi_-)^{\lambda-\alpha+n\delta}$, with $h \in \mathfrak{h}$, $\alpha \in \Delta_{\frac{1}{2}}$, $n \leq 0$, and $\lambda \in \widehat{\mathfrak{h}}^*$. Then, $\mathcal{F}^{\text{ne}}(\chi_-) = \bigoplus_{\xi \in \widehat{\mathfrak{t}}^*} \mathcal{F}^{\text{ne}}(\chi_-)_\xi$ and $\dim \mathcal{F}^{\text{ne}}(\chi_-)_\xi < \infty$ for all ξ .

7.3. There exists a unique bilinear form

$$(77) \quad \langle \cdot | \cdot \rangle^{\text{ne}} : \mathcal{F}^{\text{ne}}(\chi) \times \mathcal{F}^{\text{ne}}(\chi_-) \rightarrow \mathbb{C}$$

such that $\langle \mathbf{1}_\chi | \mathbf{1}_{\chi_-} \rangle^{\text{ne}} = 1$ and $\langle \Phi_\alpha(m)v | v' \rangle^{\text{ne}} = \langle v | \Phi_{-\alpha}(-m)v' \rangle^{\text{ne}}$, where $v \in \mathcal{F}^{\text{ne}}(\chi)$, $v' \in \mathcal{F}^{\text{ne}}(\chi_-)$, $\alpha \in \Delta_{\frac{1}{2}}$ and $m \in \mathbb{Z}$. It is easy to see that this form is non-degenerate. Indeed, its restriction on $\mathcal{F}^{\text{ne}}(\chi)_\xi \times \mathcal{F}^{\text{ne}}(\chi_-)_\xi$, with $\xi \in \widehat{\mathfrak{t}}^*$, is non-degenerate. Hence, we have

$$(78) \quad \mathcal{F}^{\text{ne}}(\chi) = \mathcal{F}^{\text{ne}}(\chi_-)^*,$$

since each space $\mathcal{F}^{\text{ne}}(\chi_-)_\xi$, with $\xi \in \widehat{\mathfrak{t}}^*$, decomposes into a finite sum of finite-dimensional weight spaces $\mathcal{F}^{\text{ne}}(\chi_-)^\lambda$.

7.4. Let $\mathcal{Cl}(L\mathfrak{g}_{<0})$ be the Clifford superalgebra associated with $L\mathfrak{g}_{<0} \oplus (L\mathfrak{g}_{<0})^*$ and its natural bilinear form. It is generated by the elements $\psi_{-\alpha}(n)$ and $\psi^{-\alpha}(n)$ with $\alpha \in \Delta_{<0}$ and $n \in \mathbb{Z}$ which satisfy the relations $[\psi_{-\alpha}(m), \psi^{-\beta}(n)] = \delta_{\alpha, \beta} \delta_{m+n, 0}$. Here the parity of $\psi_{-\alpha}(n)$ and $\psi^{-\alpha}(n)$ is reverse to $u_{-\alpha}$. We have an anti-algebra isomorphism $\mathcal{Cl}(L\mathfrak{g}_{>0}) \cong \mathcal{Cl}(L\mathfrak{g}_{<0})$ defined by $\psi_\alpha(m) \mapsto (-1)^{p(\alpha)} \psi_{-\alpha}(-m)$ and $\psi^\alpha(m) \mapsto \psi^{-\alpha}(-m)$, where $\alpha \in \Delta_{>0}$ and $m \in \mathbb{Z}$.

7.5. Let $\mathcal{F}(L\mathfrak{g}_{<0})$ be the irreducible representation of $\mathcal{Cl}(L\mathfrak{g}_{<0})$ generated by the vector $\mathbf{1}_-$ with the properties $\psi_{-\alpha}(n)\mathbf{1}_- = 0$, where $\alpha \in \Delta_{>0}$, $n \geq 1$, and $\psi^{-\alpha}(n)\mathbf{1}_- = 0$, where $\alpha \in \Delta_{>0}$, $n \geq 0$. As above, we have a natural action of $\widehat{\mathfrak{h}}$ on $\mathcal{F}(L\mathfrak{g}_{<0})$.

There exists a unique bilinear form

$$(79) \quad \langle \cdot | \cdot \rangle^{\text{ch}} : \mathcal{F}(L\mathfrak{g}_{>0}) \times \mathcal{F}(L\mathfrak{g}_{<0}) \rightarrow \mathbb{C},$$

which is non-degenerate on $\mathcal{F}(L\mathfrak{g}_{>0})^\lambda \times \mathcal{F}(L\mathfrak{g}_{<0})^\lambda$, with $\lambda \in \widehat{\mathfrak{h}}^*$, such that $\langle \mathbf{1} | \mathbf{1}_- \rangle^{\text{ch}} = 1$, $\langle \psi_\alpha(n)v | v' \rangle^{\text{ch}} = (-1)^{p(\alpha)} \langle v | \psi_{-\alpha}(-n)v' \rangle^{\text{ch}}$ and $\langle \psi^\alpha(n)v | v' \rangle^{\text{ch}} = \langle v | \psi^{-\alpha}(-n)v' \rangle^{\text{ch}}$, where $v \in \mathcal{F}(L\mathfrak{g}_{>0})$, $v' \in \mathcal{F}(L\mathfrak{g}_{<0})$, $\alpha \in \Delta_{>0}$ and $n \in \mathbb{Z}$. Hence, we have

$$(80) \quad \mathcal{F}(L\mathfrak{g}_{>0}) = \mathcal{F}(L\mathfrak{g}_{<0})^*.$$

7.6. Let

$$C_-(V) = V \otimes \mathcal{F}^{\text{ne}}(\chi_-) \otimes \mathcal{F}(L\mathfrak{g}_{<0}) \quad \text{with } V \in \text{Obj } \mathcal{O}_k.$$

Then, $C_-(V) = \bigoplus_{\lambda \in \widehat{\mathfrak{h}}^*} C_-(V)^\lambda$ with respect to the diagonal action of $\widehat{\mathfrak{h}}$. By (78) and (79), we have

$$(81) \quad C(V^*) = C_-(V)^* \quad \text{for } V \in \text{Obj } \mathcal{O}_k$$

as \mathbb{C} -vector spaces. Here again, $*$ is defined by (11). Under the identification (81), we have

$$(82) \quad (dg)(v) = g(d_- v) \quad (g \in C(V^*), v \in C(V)),$$

where

$$\begin{aligned} d_- = & \sum_{\substack{\alpha \in \Delta_{>0} \\ n \in \mathbb{Z}}} (-1)^{p(\alpha)} (u_{-\alpha}(-n) + \Phi_{u_{-\alpha}}(-n)) \psi^{-\alpha}(n) \\ & - \frac{1}{2} \sum_{\substack{\alpha, \beta, \gamma \in \Delta_{>0} \\ k+l+m=0}} (-1)^{p(\alpha)p(\gamma)} (u_\gamma | [u_{-\alpha}, u_{-\beta}]) \psi^{-\alpha}(k) \psi^{-\beta}(l) \psi_{-\gamma}(m). \end{aligned}$$

Clearly, we have $d_-^2 = 0$. Also, d_- decomposes as

$$(83) \quad \begin{aligned} d_- &= d_-^\chi + d_-^{\text{st}}, \\ (d_-^\chi)^2 &= (d_-^{\text{st}})^2 = \{d_-^\chi, d_-^{\text{st}}\} = 0, \end{aligned}$$

where

$$(84) \quad d_-^\chi = \sum_{\substack{\alpha \in \Delta_{\frac{1}{2}} \\ n \geq 1}} (-1)^{p(\alpha)} \Phi_{u_{-\alpha}}(n) \psi^{-\alpha}(-n) + \sum_{\alpha \in \Delta_1} (-1)^{p(\alpha)} \chi_-(u_{-\alpha}(1)) \psi^{-\alpha}(-1)$$

and $d_-^{\text{st}} = d_- - d_-^\chi$.

Remark 7.6.1. By Theorem 2.3 of [13], the complex $(C_-(V), d_-)$ is acyclic for any $V \in Obj\mathcal{O}_k$, since $f(1)$ is locally nilpotent on V (see Remark 7.12.2).

7.7. It is clear that $C_-(V_k(\mathfrak{g}))$ possesses a natural vertex algebra structure. The correspondences $v(n) \mapsto v^t(-n)$, $\psi_\alpha(n) \mapsto (-1)^{p(\alpha)}\psi_{-\alpha}(-n)$, $\psi^\alpha(n) \mapsto \psi^{-\alpha}(-n)$, $\Phi_\alpha(n) \mapsto \Phi_{-\alpha}(-n)$ extend to the anti-algebra homomorphism

$$(85) \quad {}^t : \mathcal{U}(C(V_k(\mathfrak{g}))) \rightarrow \mathcal{U}(C_-(V_k(\mathfrak{g}))),$$

where $\mathcal{U}(C(V_k(\mathfrak{g})))$ and $\mathcal{U}(C_-(V_k(\mathfrak{g})))$ are universal enveloping algebras of $C(V_k(\mathfrak{g}))$ and $C_-(V_k(\mathfrak{g}))$ respectively in the sense of Ref. [14]. Note that we have the relations $d_- = d^t$, $d_-^t = (d^s)^t$ and $d_-^\chi = (d^\chi)^t$.

7.8. For $v \in \mathfrak{g}$, define

$$\begin{aligned} J_-^{(v)}(z) &= \sum_{n \in \mathbb{Z}} J_-^{(v)}(n) z^{-n-1} \\ &\stackrel{\text{def}}{=} v(z) + \sum_{\alpha, \beta \in \Delta_{>0}} (-1)^{p(\gamma)} (u_\gamma | [v, u_{-\beta}]) : \psi_{-\gamma}(z) \psi^{-\beta}(z) :, \end{aligned}$$

where $\psi_{-\alpha}(z) = \sum_{n \in \mathbb{Z}} \psi_{-\alpha}(n) z^{-n}$ and $\psi^{-\alpha}(z) = \sum_{n \in \mathbb{Z}} \psi^{-\alpha}(n) z^{-n-1}$ with $\alpha \in \Delta_{>0}$. Then, we have

$$(86) \quad J^{(v)}(n)^t = J_-^{(v^t)}(-n) \quad \text{for } v \in \mathfrak{g}^f, n \in \mathbb{Z}.$$

7.9. Let $\lambda \in \widehat{\mathfrak{h}}_k^*$ and let $C_-(\lambda)$ be the subspace of $C_-(M(\lambda))$ spanned by the vectors

$$J_-^{(u_1)}(m_1) \dots J_-^{(u_p)}(m_p) \Phi_{-\alpha_1}(n_1) \dots \Phi_{-\alpha_q}(n_q) \psi^{-\beta_1}(s_1) \dots \dots \psi^{-\beta_r}(s_r) |\lambda\rangle_-,$$

with $u_i \in \mathfrak{g}_{\geq 0}$, $\alpha_i \in \Delta_{\frac{1}{2}}$, $\beta_i \in \Delta_{>0}$ and $m_i, n_i, s_i \in \mathbb{Z}$, where $|\lambda\rangle_-$ is the canonical vector $v_\lambda \otimes \mathbf{1}_{\chi_-} \otimes \mathbf{1}_-$. Then, $d_- C_-(\lambda) \subset C_-(\lambda)$, i.e., $C_-(\lambda)$ is a subcomplex of $C_-(M(\lambda))$.

The inclusion $C_-(\lambda) \hookrightarrow C_-(M(\lambda))$ induces the surjection

$$(87) \quad C_-(M(\lambda))^* \twoheadrightarrow C_-(\lambda)^*.$$

Let the differential d act on $C_-(\lambda)^*$ as $(dg)(v) = g(d_- v)$ with $g \in C_-(\lambda)^*$, $v \in C_-(\lambda)$. Then, the space $H^i(C_-(\lambda)^*, d)$, where $i \in \mathbb{Z}$, is naturally a module over $\mathcal{W}_k(\mathfrak{g}, f) = H^0(C_k(\mathfrak{g}))$, and (87) induces the homomorphism

$$(88) \quad H^\bullet(M(\lambda)^*) \rightarrow H^\bullet(C_-(\lambda)^*, d)$$

of $\mathcal{W}_k(\mathfrak{g}, f)$ -modules. The action of $\mathcal{W}_k(\mathfrak{g}, f)$ on $H^i(C_-(\lambda)^*, d)$ is described by

$$(89) \quad (W^{(v)}(n)g)(v) = g(W^{(v^t)}(-n)v),$$

where $W^{(v^t)}(-n)$ is the image of $W^{(v)}(n) \in H^0(\mathcal{U}(C_k(\mathfrak{g})), \text{ad } d)$ under the map (85).

The following proposition can be shown in the same manner as Proposition 6.3 of [1].

Proposition 7.9.1. *For any $\lambda \in \widehat{\mathfrak{h}}_k^*$, the map (88) is an isomorphism of $\mathcal{W}_k(\mathfrak{g}, f)$ -modules and $\widehat{\mathfrak{t}}$ -modules:*

$$H^\bullet(M(\lambda)^*) \cong H^\bullet(C_-(\lambda)^*, d).$$

Below we compute the cohomology $H^\bullet(C_-(\lambda)^*) = H^\bullet(C_-(\lambda)^*, d)$.

7.10. Here we employ the notation of the previous subsections. First, note that

$$C_-(\lambda) = \bigoplus_{\xi \leq \xi_\lambda} C_-(\lambda)_\xi.$$

Also, observe that the subcomplex $C_-(\lambda)_{\xi_\lambda} \subset C_-(\lambda)$ is spanned by the vectors

$$J_-^{(e_\theta)}(-1)^n |\lambda\rangle_-, \quad J_-^{(e_\theta)}(-1)^n \psi^{-\theta}(-1) |\lambda\rangle_-$$

with $n \in \mathbb{Z}_{\geq 0}$. (Hence, $C_-(\lambda)_{\xi_\lambda}$ is infinite dimensional.) Let

$$(90) \quad G_p C_-(\lambda)_{\xi_\lambda} = \sum_{\substack{\mu \in \hat{\mathfrak{h}}^* \\ -\langle \mu - \lambda, x \rangle \leq p}} C_-(\lambda)_{\xi_\lambda}^\mu \subset C_-(\lambda)_{\xi_\lambda} \quad \text{for } p \leq 0.$$

Thus, $G_p C_-(\lambda)_{\xi_\lambda}$ is a subspace of $C_-(\lambda)_{\xi_\lambda}$ spanned by the vectors

$$J_-^{(e_\theta)}(-1)^n |\lambda\rangle_-, \quad J_-^{(e_\theta)}(-1)^{n-1} \psi^{-\theta}(-1) |\lambda\rangle_-, \quad \text{with } n \geq -p.$$

Now, the following assertion is clear.

Lemma 7.10.1. *The space $C_-(\lambda)_{\xi_\lambda} / G_p C_-(\lambda)_{\xi_\lambda}$ is finite dimensional for each $p \leq 0$.*

Define $G_p C_-(\lambda)$, with $p \leq 0$, as the subspace of $C_-(\lambda)$ spanned by the vectors

$$J_-^{(u_1)}(m_1) \dots J_-^{(u_p)}(m_p) \Phi_{-\alpha_1}(n_1) \dots \Phi_{-\alpha_q}(n_q) \psi^{-\beta_1}(s_1) \dots \psi^{-\beta_r}(s_r) v,$$

with $u_i \in \mathfrak{g}_{\geq 0}$, $\alpha_i \in \Delta_{\frac{1}{2}}$, $\beta_i \in \Delta_{>0}$, $m_i, n_i, s_i \in \mathbb{Z}$ and $v \in G_p C_-(\lambda)_{\xi_\lambda}$. Then, we have

$$(91) \quad \begin{aligned} \dots &\subset G_p C_-(\lambda) \subset G_{p+1} C_-(\lambda) \subset \dots \subset G_0 C_-(\lambda) = C_-(\lambda), \\ \bigcap_p G_p C_-(\lambda) &= \{0\}, \\ d_- G_p C_-(\lambda) &\subset G_p C_-(\lambda). \end{aligned}$$

The following Lemma is easily proven.

Lemma 7.10.2.

- (1) *The subspace $G_p C_-(\lambda)$, with $p \leq 0$, is preserved under the action of the operators $J_-^{(u)}(n)$ with $u \in \mathfrak{g}_{\geq 0}$, $n \in \mathbb{Z}$, $\Phi_{-\alpha}(n)$ with $\alpha \in \Delta_{\frac{1}{2}}$, $n \in \mathbb{Z}$ and $\psi^{-\alpha}(n)$ with $\alpha \in \Delta_{>0}$, $n \in \mathbb{Z}$.*
- (2) *For each $p \leq 0$, $C_-(\lambda) / G_p C_-(\lambda)$ is a direct sum of finite dimensional weight spaces $(C_-(\lambda) / G_p C_-(\lambda))_\xi$, with $\xi \in \hat{\mathfrak{t}}^*$.*

7.11. For a semisimple $\hat{\mathfrak{t}}$ -module X , we define

$$(92) \quad D(X) \underset{\text{def}}{=} \bigoplus_{\xi} \text{Hom}_{\mathbb{C}}(X_\xi, \mathbb{C}).$$

Next, let

$$(93) \quad G^p C_-(\lambda)^* \underset{\text{def}}{=} (C_-(\lambda) / G_p C_-(\lambda))^* \subset C_-(\lambda)^* \quad \text{for } p \leq 0,$$

where $*$ is defined by (11). Then, by Lemma 7.10.2, we have

$$G^p C_-(\lambda)^* = D(C_-(\lambda) / G_p C_-(\lambda)),$$

and $G^p C_-(\lambda)^*$ is a $C_k(\mathfrak{g})$ -submodule of $C_-(\lambda)^*$. Also, by (91), we have

$$(94) \quad \begin{aligned} \cdots &\supset G^p C_-(\lambda)^* \supset G^{p+1} C_-(\lambda)^* \supset \cdots \supset G^0 C_-(\lambda)^* = \{0\}, \\ C_-(\lambda)^* &= \bigcup_p G^p C_-(\lambda)^*, \\ dG^p C_-(\lambda)^* &\subset G^p C_-(\lambda)^*. \end{aligned}$$

Therefore we obtain the corresponding spectral sequence $E_r \Rightarrow H^\bullet(C_-(\lambda)^*) = H^\bullet(M(\lambda)^*)$. By definition,

$$(95) \quad E_1^{\bullet, q} = H^q(\text{gr}^G C_-(\lambda)^*, d),$$

where $\text{gr}^G C_-(\lambda)^* = \sum_p G^p C_-(\lambda)^*/G^{p+1} C_-(\lambda)^*$. Moreover, because our filtration is compatible with the action of $\widehat{\mathfrak{t}}$, each E_r is a direct sum of \mathfrak{t} -weight spaces:

$$E_r = \bigoplus_{\xi \in \widehat{\mathfrak{t}}^*} (E_r)_\xi.$$

In particular, we have

$$(96) \quad (E_r)_\xi \Rightarrow H^\bullet(C_-(\lambda)^*)_\xi = H^\bullet(M(\lambda)^*)_\xi \quad \text{for each } \xi \in \widehat{\mathfrak{t}}^*.$$

Below we compute this spectral sequence.

7.12. Consider the exact sequence

$$0 \rightarrow G_{p+1} C_-(\lambda)/G_p C_-(\lambda) \rightarrow C_-(\lambda)/G_p C_-(\lambda) \rightarrow C_-(\lambda)/G_{p+1} C_-(\lambda) \rightarrow 0,$$

where $p \geq -1$. This induces the exact sequence

$$0 \rightarrow G^{p+1} C_-(\lambda)^* \rightarrow G^p C_-(\lambda)^* \rightarrow (G_{p+1} C_-(\lambda)/G_p C_-(\lambda))^* \rightarrow 0$$

Therefore

$$(97) \quad \begin{aligned} G^p C_-(\lambda)^*/G^{p+1} C_-(\lambda)^* &= (G_{p+1} C_-(\lambda)/G_p C_-(\lambda))^* \\ &= D(G_{p+1} C_-(\lambda)/G_p C_-(\lambda)). \end{aligned}$$

Here, the last equality follows from Lemma 7.10.2 (2). Again by Lemma 7.10.2 (2), we have the following proposition.

Proposition 7.12.1. *We have*

$$H^i(G^p C_-(\lambda)^*/G^{p+1} C_-(\lambda)^*) = D(H^{-i}(G_{p+1} C_-(\lambda)/G_p C_-(\lambda)))$$

for each i and p .

Remark 7.12.2. It is not the case that $H^i(C_-(\lambda)^*) = D(H^{-i}(C_-(\lambda)))$.

7.13. Consider the subcomplex

$$\text{gr}^G C_-(\lambda)_{\xi_\lambda} \subset \text{gr}^G C_-(\lambda) \underset{\text{def}}{=} \sum_p G_p C_-(\lambda)/G_{p-1} C_-(\lambda).$$

By definition, we have

$$\text{gr}^G C_-(\lambda)_{\xi_\lambda} = \bigoplus_p G_p C_-(\lambda)_{\xi_\lambda}/G_{p-1} C_-(\lambda)_{\xi_\lambda},$$

and d_-^χ acts trivially on $\text{gr}^G C_-(\lambda)_{\xi_\lambda}$ (see (90)). Thus,

$$(98) \quad (\text{gr}^G C_-(\lambda)_{\xi_\lambda}, d_-) = (C_-(\lambda)_{\xi_\lambda}, d_-^{\text{st}})$$

as complexes. In particular,

$$(99) \quad (E_1^{\bullet, q})_{\xi_\lambda} = H^q(\text{gr}^G C_-(\lambda)_{\xi_\lambda}^*, d) = H^q(C_-(\lambda)_{\xi_\lambda}^*, d^{\text{st}}),$$

because the complex $(C_-(\lambda)_{\xi_\lambda}, d_-^{\text{st}})$ is a direct sum of finite-dimensional subcomplexes $(C_-(\lambda)_{\xi_\lambda}^\mu, d_-^{\text{st}})$, with $\mu \in \widehat{\mathfrak{h}}^*$.

7.14. Consider the complex

$$G_0 C_-(\lambda) / G_{-1} C_-(\lambda) = C_-(\lambda) / G_{-1} C_-(\lambda).$$

Let $|\overline{\lambda}\rangle$ be the image of $|\lambda\rangle_-$ in $C_-(\lambda) / G_{-1} C_-(\lambda)$. Then, the following hold:

$$(100) \quad \begin{aligned} (C_-(\lambda) / G_{-1} C_-(\lambda))_{\xi_\lambda} &= \mathbb{C} |\overline{\lambda}\rangle, \\ J_-^{(v)}(n) |\overline{\lambda}\rangle &= 0 \quad \text{for } v(n) \in L\mathfrak{g}_{\geq 0} \cap \widehat{\mathfrak{g}}_+, \\ \psi^{-\alpha}(n) |\overline{\lambda}\rangle &= 0 \quad \text{for } \alpha \in \Delta_{>0}, n \geq 0, \\ \Phi_{-\alpha}(n) |\overline{\lambda}\rangle &= 0 \quad \text{for } \alpha \in \Delta_{\frac{1}{2}}, n \geq 1, \\ J_-^{(e)}(-1) |\overline{\lambda}\rangle &= \psi^{-\theta}(-1) |\overline{\lambda}\rangle = 0, \\ J_-^{(h)}(0) |\overline{\lambda}\rangle &= \langle \lambda, h \rangle |\overline{\lambda}\rangle \quad \text{for } h \in \mathfrak{h}. \end{aligned}$$

Lemma 7.14.1. *We have*

$$\text{gr}^G C_-(\lambda) = \bigoplus_{\mu \in \widehat{\mathfrak{h}}^*} (C_-(\mu) / G_{-1} C_-(\mu)) \otimes C_-(\lambda)_{\xi_\lambda}^\mu$$

as complexes, where $C_-(\lambda)_{\xi_\lambda}^\mu = (C_-(\lambda)_{\xi_\lambda}^\mu, d_-^{\text{st}})$.

Proof. Define a linear map $\bigoplus_{\mu \in \widehat{\mathfrak{h}}^*} (C_-(\mu) / G_{-1} C_-(\mu)) \otimes \text{gr}^G C_-(\lambda)_{\xi_\lambda}^\mu \rightarrow \text{gr}^G C_-(\lambda)$ by

$$\begin{aligned} &J_-^{(u_1)}(m_1) \dots J_-^{(u_p)}(m_p) \Phi_{-\alpha_1}(n_1) \dots \Phi_{-\alpha_q}(n_q) \psi^{-\beta_1}(s_1) \dots \psi^{-\beta_r}(s_r) |\overline{\mu}\rangle \otimes v \\ &\mapsto J_-^{(u_1)}(m_1) \dots J_-^{(u_p)}(m_p) \Phi_{-\alpha_1}(n_1) \dots \Phi_{-\alpha_q}(n_q) \psi^{-\beta_1}(s_1) \dots \psi^{-\beta_r}(s_r) v, \end{aligned}$$

where $u_i \in \mathfrak{g}_{\geq 0}$, $\alpha_i \in \Delta_{\frac{1}{2}}$, $\beta_i \in \Delta_{>0}$, $m_i, n_i, s_i \in \mathbb{Z}$ and $v \in \text{gr}^G C_-(\lambda)_{\xi_\lambda}^\mu$. Then, it can be verified this is an isomorphism of complexes (cf. Proposition 6.12 of Ref. [1]). \square

7.15. Let

$$(\widehat{\mathfrak{g}}^e)_- \underset{\text{def}}{=} \mathfrak{n}_{0,-} \otimes \mathbb{C}[t^{-1}] \oplus (\mathfrak{h}^e \oplus \mathfrak{n}_{0,+} \oplus \mathfrak{g}_{\frac{1}{2}}) \otimes \mathbb{C}[t^{-1}]^{-1} \oplus \mathfrak{g}_1 \otimes \mathbb{C}[t^{-1}]t^{-2}.$$

The proof of the following assertion is the same as that of Theorem 4.1 of Ref. [19].

Proposition 7.15.1. *For any $\lambda \in \widehat{\mathfrak{h}}^*$, we have $H^i(C_-(\lambda) / G_{-1} C_-(\lambda)) = \{0\}$ for $i \neq 0$ and the following map defines an isomorphism of \mathbb{C} -vector spaces:*

$$\begin{aligned} U((\widehat{\mathfrak{g}}^e)_-) &\rightarrow H^0(C_-(\lambda) / G_{-1} C_-(\lambda)), \\ u_1(n_1) \dots u_r(n_r) &\mapsto W_-^{(u_1)}(n_1) \dots W_-^{(u_r)}(n_r) |\overline{\lambda}\rangle. \end{aligned}$$

Now recall that $G^{-1}C_-(\lambda)^* = D(C_-(\lambda)/G_{-1}C_-(\lambda)) \subset C_-(\lambda)^*$ (see (97)). Because $G^{-1}C_-(\lambda)^*$ is a $C_k(\mathfrak{g})$ -submodule of $C_-(\lambda)^*$, it follows that $H^\bullet(G^{-1}C_-(\lambda)^*)$ is a module over $\mathcal{W}_k(\mathfrak{g}, f)$. It is clear that

$$(101) \quad H^\bullet(G^{-1}C_-(\lambda)^*) = \bigoplus_{\xi \leq \xi_\lambda} H^\bullet(G^{-1}C_-(\lambda)^*)_\xi \text{ and } H^\bullet(G^{-1}C_-(\lambda)^*)_{\xi_\lambda} = \mathbb{C}|\lambda\rangle^*.$$

Here with a slight abuse of notation we have denoted the vector in $H^\bullet(G^{-1}C_-(\lambda)^*)_{\xi_\lambda}$ dual to $\overline{|\lambda\rangle}$ by $|\lambda\rangle^*$.

Proposition 7.15.2.

- (1) $H^i(G^{-1}C_-(\lambda)^*) = \{0\}$ for $i \neq 0$.
- (2) Any nonzero $\mathcal{W}_k(\mathfrak{g}, f)$ -submodule of $H^0(G^{-1}C_-(\lambda)^*)$ contains the canonical vector $|\lambda\rangle^* \in H^0(G^{-1}C_-(\lambda)^*)_{\xi_\lambda}$.

Proof. (1) It is straightforward to demonstrate using Propositions 7.12.1 and 7.15.1.

(2) For a $\mathcal{W}_k(\mathfrak{g}, f)$ -module M , let $S(M)$ be the space of singular vectors:

$$S(M) \underset{\text{def}}{=} \{m \in M \mid W^{(u)}(n)m = 0 \text{ for all } v(n) \in (\widehat{\mathfrak{g}}^f)_+\} \subset M.$$

Then, by (101), we have $S(M) \neq \{0\}$ for any nonzero $\mathcal{W}_k(\mathfrak{g}, f)$ -submodule M of $H^0(G^{-1}C_-(\lambda)^*)$. Hence, it is sufficient to show that

$$(102) \quad S(H^0(G^{-1}C_-(\lambda)^*)) = \mathbb{C}|\lambda\rangle^*.$$

Note that, by (101), it is obvious that $S(H^0(G^{-1}C_-(\lambda)^*)) \supset \mathbb{C}|\lambda\rangle^*$. Therefore, we have only to show

$$(103) \quad S(H^0(G^{-1}C_-(\lambda)^*)) \subset \mathbb{C}|\lambda\rangle^*.$$

To demonstrate (103), we make use of the filtration $\{F_p \mathcal{W}_k(\mathfrak{g}, f)\}$ of $\mathcal{W}_k(\mathfrak{g}, f)$ given in Theorem 5.5.1, described by (63). First, set $F_{-1}H^0(C_-(\lambda)/G_{-1}C_-(\lambda)) = \{0\}$ and

$$\begin{aligned} F_p H^0(C_-(\lambda)/G_{-1}C_-(\lambda)) \\ = \underset{\text{def}}{\text{span}}\{W_-^{(u_1)}(n_1) \dots W_-^{(u_r)}(n_r) \overline{|\lambda\rangle} \mid u_i \in \mathfrak{g}_{s_i}^e, \sum s_i \leq p\} \quad \text{for } p \geq 0. \end{aligned}$$

Next, define

$$\begin{aligned} F_p H^0(G^{-1}C_-(\lambda)^*) \\ = D(H^0(C_-(\lambda)/G_{-1}C_-(\lambda))/F_{-p}H^0(C_-(\lambda)/G_{-1}C_-(\lambda))) \quad \text{for } p \leq 1. \end{aligned}$$

(Recall that $H^0(G^{-1}C_-(\lambda)^*) = D(H^0(C_-(\lambda)/G_{-1}C_-(\lambda)))$). Then, we have

$$\begin{aligned} (104) \quad & \dots \subset F_p H^0(G^{-1}C_-(\lambda)^*) \subset F_{p+1} H^0(G^{-1}C_-(\lambda)^*) \subset \dots \\ & \dots \subset F_0 H^0(G^{-1}C_-(\lambda)^*) \subset F_1 H^0(G^{-1}C_-(\lambda)^*) = H^0(G^{-1}C_-(\lambda)^*), \end{aligned}$$

$$(105) \quad \bigcap F_p H^0(G^{-1}C_-(\lambda)^*) = \{0\},$$

$$(106) \quad F_p \mathcal{W}_k(\mathfrak{g}, f) \cdot F_q H^0(G^{-1}C_-(\lambda)^*) \subset F_{p+q} H^0(G^{-1}C_-(\lambda)^*),$$

where $F_p \mathcal{W}_k(\mathfrak{g}, f) \cdot F_q H^0(G^{-1}C_-(\lambda)^*)$ denotes the span of the vectors $Y_n(v)w$ with $v \in F_p \mathcal{W}_k(\mathfrak{g}, f)$, $w \in F_q H^0(G^{-1}C_-(\lambda)^*)$ and $n \in \mathbb{Z}$.

By (106), the corresponding graded space $\text{gr}_F H^0(G^{-1}C_-(\lambda)^*)$, is a module over $\text{gr}_F \mathcal{W}_k(\mathfrak{g}, f) = V_k^\natural(\mathfrak{g}^f)$. In particular, $\text{gr}_F H^0(G^{-1}C_-(\lambda)^*)$ is a module over the Lie

algebra $(\widehat{\mathfrak{g}}^f)_+$. (Observe $(\widehat{\mathfrak{g}}^f)_+$ is generated by the image of $W^{(u)}(n)$, $u(n) \in (\widehat{\mathfrak{g}}^f)_+$.) Moreover, from (the proof of) Proposition 7.15.1, it follows that

$$(107) \quad \text{gr}_F H^0(G^{-1}C_-(\lambda)^*) \cong D(U(\widehat{\mathfrak{g}}^e)_-) \quad \text{as } (\widehat{\mathfrak{g}}^f)_+ \text{-modules,}$$

where $(\widehat{\mathfrak{g}}^f)_+$ acts on $D(U(\widehat{\mathfrak{g}}^e)_-)$ by $(u(n)g)(v) = g(u^t(-n)v)$, where $u \in \mathfrak{g}^f$, $v \in U(\widehat{\mathfrak{g}}^e)$, $g \in D(U(\widehat{\mathfrak{g}}^e))$. Hence, it follows that

$$H^0((\widehat{\mathfrak{g}}^f)_+, \text{gr}_F H^0(G^{-1}C_-(\lambda)^*)) = \mathbb{C}(\text{the image of } |\lambda\rangle^*).$$

But this implies that $S(H^0(G^{-1}C_-(\lambda)^*)) \subset \mathbb{C}|\lambda\rangle^*$. This completes the proof. \square

7.16.

Theorem 7.16.1. *Suppose that $\langle \lambda, \alpha_0^\vee \rangle \notin \{0, 1, 2, \dots\}$. Then, $H^i(M(\lambda)^*) = \{0\}$ for $i \neq 0$ and $H^0(M(\lambda)^*) = H^0(G^{-1}C_-(\lambda)^*)$ as $\mathcal{W}_k(\mathfrak{g}, f)$ -modules. In particular, any nonzero $\mathcal{W}_k(\mathfrak{g}, f)$ -submodule of $H^0(M(\lambda)^*)$ contains the canonical vector $|\lambda\rangle^*$.*

Proof. We have $\bar{M}_{\mathfrak{sl}_2}(\langle \lambda, \alpha_0^\vee \rangle)^* = \bar{M}_{\mathfrak{sl}_2}(\langle \lambda, \alpha_0^\vee \rangle)$ by assumption. Also, we have $H^i(C_-(\lambda)_{\xi_\lambda}, d_-^{\text{st}}) \cong H^i(\mathbb{C}e, \bar{M}_{\mathfrak{sl}_2}(\langle \lambda, \alpha_0^\vee \rangle))$. This can be demonstrated in the same manner as Lemma 4.6.1. Hence, it follows that

$$H^i(C_-(\lambda)_{\xi_\lambda}^\mu, d_-^{\text{st}}) = \begin{cases} \mathbb{C} & (i = 0 \text{ and } \mu = \lambda), \\ \{0\} & (\text{otherwise}). \end{cases}$$

Therefore, by Lemma 7.14.1 and Proposition 7.15.1, we have

$$H^i(\text{gr}^G C_-(\lambda)) = \begin{cases} H^0(C_-(\lambda)/G_{-1}C_-(\lambda)) & (i = 0), \\ \{0\} & (i \neq 0). \end{cases}$$

Hence, by Proposition 7.12.1, we have

$$H^i(\text{gr}^G C_-(\lambda)^*) = \begin{cases} H^0(G^{-1}C_-(\lambda)^*) & (i = 0) \\ \{0\} & (i \neq 0). \end{cases}$$

This implies that our spectral sequence collapses at $E_1 = E_\infty$, and therefore

$$H^i(M(\lambda)^*) = \begin{cases} H^0(G^{-1}C_-(\lambda)^*) & (i = 0) \\ \{0\} & (i \neq 0) \end{cases}$$

as vector spaces. But the isomorphism $H^0(G^{-1}C_-(\lambda)^*) \cong H^0(M(\lambda)^*)$ is induced by the $C_k(\mathfrak{g})$ -module homomorphism $G^{-1}C_-(\lambda)^* \hookrightarrow C_-(\lambda)^*$, and hence it is a $\mathcal{W}_k(\mathfrak{g}, f)$ -homomorphism. \square

7.17. We finally consider the case in which λ is a general element of $\widehat{\mathfrak{h}}_k^*$. By Proposition 7.15.1, we have

$$(108) \quad H^0(G^{-1}C_-(\mu)^*) \cong H^0(G^{-1}C_-(\mu')^*)$$

as \mathbb{C} -vector spaces for any $\mu, \mu' \in \widehat{\mathfrak{h}}_k^*$. With (108), it follows from (95), Proposition 7.12.1 and Lemma 7.14.1 that we have the isomorphism

$$(109) \quad \begin{aligned} E_1^{\bullet, q} &\cong H^0(G^{-1}C_-(\lambda)^*) \otimes H^q(C_-(\lambda)_{\xi_\lambda}^*, d_-^{\text{st}}) \\ &= H^0(G^{-1}C_-(\lambda)^*) \otimes (E_1^{\bullet, q})_{\xi_\lambda} \end{aligned}$$

of complexes, where the differential d_1 acts on the first factor $H^0(G^{-1}C_-(\lambda)^*)$ trivially. This induces the isomorphisms

$$(110) \quad (E_r, d_r) \cong (H^0(G^{-1}C_-(\lambda)^*) \otimes (E_r)_{\xi_\lambda}, 1 \otimes d_r)$$

inductively for all $r \geq 1$. Therefore, we obtain

$$(111) \quad E_\infty \cong H^0(G^{-1}C_-(\lambda)^*) \otimes (E_\infty)_{\xi_\lambda}.$$

On the other hand, by (96), we have

$$(E_\infty)_{\xi_\lambda} = H^\bullet(M(\lambda)^*)_{\xi_\lambda}.$$

Hence, by (111) and Proposition 4.8.1 (3), we have proved Theorem 6.6.1, as desired. \blacksquare

APPENDIX A. THE SETTING FOR $A(1, 1)$

In this appendix we summarize the change of the setting for the $A(1, 1)$ case.

A.1. The setting for \mathfrak{g} . Let $\mathfrak{g} = \mathfrak{sl}(2|2)/\mathbb{C}I$ and let \mathfrak{h}' be the Cartan subalgebra of \mathfrak{g} containing x . Let $\mathfrak{a} \stackrel{\text{def}}{=} \mathfrak{gl}(2|2)/\mathbb{C}I$. Then, $\mathfrak{g} = [\mathfrak{a}, \mathfrak{a}] \subset \mathfrak{a}$. Let \mathfrak{h} be the Cartan subalgebra of \mathfrak{a} containing \mathfrak{h}' . (So $\dim \mathfrak{h} = 3$.) Then, $[\mathfrak{h}, \mathfrak{g}] = \mathfrak{g}$ and we have $\mathfrak{g} = \bigoplus_{\alpha \in \mathfrak{h}^*} \mathfrak{g}^\alpha$, where $\mathfrak{g}^\alpha = \{u \in \mathfrak{g} \mid [h, u] = \langle \alpha, h \rangle u \text{ for all } h \in \mathfrak{h}\}$. Define the set Δ as the subset of \mathfrak{h}^* consisting of elements α such that $\mathfrak{g}^\alpha \neq \{0\}$. Then, $\dim \mathfrak{g}^\alpha = 1$ for all $\alpha \in \Delta$. The remaining setting is the same as in the other cases.

A.2. The setting for $\widehat{\mathfrak{g}}$. Let $\widehat{\mathfrak{g}}$ be the affine Lie algebra associated with $\mathfrak{g} = \mathfrak{sl}(2|2)/\mathbb{C}I$ defined by (7). Let $\widehat{\mathfrak{g}} = \widehat{\mathfrak{n}}_- \oplus \widehat{\mathfrak{h}}' \oplus \widehat{\mathfrak{n}}_+$ be the standard triangular decomposition, where $\widehat{\mathfrak{h}}' = \mathfrak{h}' \oplus \mathbb{C}K \oplus \mathbb{C}\mathbf{D}$ is the standard Cartan subalgebra of $\widehat{\mathfrak{g}}$. Next, define the commutative Lie algebra $\widehat{\mathfrak{h}}$ by $\widehat{\mathfrak{h}} \stackrel{\text{def}}{=} \mathfrak{h} \oplus \mathbb{C}K \oplus \mathbb{C}\mathbf{D}$, where \mathfrak{h} is as above.

Then, the action of \mathfrak{h} on \mathfrak{g} naturally extends to the action of $\widehat{\mathfrak{h}}$ on $\widehat{\mathfrak{g}}$. This gives the space

$$(112) \quad \widetilde{\mathfrak{g}} \stackrel{\text{def}}{=} \widehat{\mathfrak{n}}_- \oplus \widehat{\mathfrak{h}} \oplus \widehat{\mathfrak{n}}_+$$

a Lie superalgebra structure such that $\widetilde{\mathfrak{g}} = [\widetilde{\mathfrak{g}}, \widetilde{\mathfrak{g}}]$, and $\widehat{\mathfrak{h}}$ is a Cartan subalgebra of $\widetilde{\mathfrak{g}}$. Now define $\widehat{\Delta} \subset \widehat{\mathfrak{h}}^*$ as the set of roots of $\widetilde{\mathfrak{g}}$ and $\widehat{\Delta}_+ \subset \widehat{\Delta}$ as the set of positive roots of $\widetilde{\mathfrak{g}}$ (according to the triangular decomposition (112)). Also, we define $\widehat{Q} = \sum_{\alpha \in \Delta} \mathbb{Z}\alpha \subset \widehat{\mathfrak{h}}^*$, $\widehat{Q}_+ = \sum_{\alpha \in \widehat{\Delta}_+} \mathbb{Z}\alpha \subset \widehat{Q}$ and a partial ordering $\mu \leq \lambda$ on $\widehat{\mathfrak{h}}^*$ by $\lambda - \mu \in \widehat{Q}_+$.

Next, we replace $\widehat{\mathfrak{g}}$ -modules by $\widetilde{\mathfrak{g}}$ -modules. In particular, we define the category \mathcal{O}_k as the full subcategory of the category of $\widetilde{\mathfrak{g}}$ -modules satisfying the conditions of Subsection 2.12. Note that the simple $\widetilde{\mathfrak{g}}$ -module $L(\lambda)$, with $\lambda \in \widehat{\mathfrak{h}}^*$, is already irreducible as a $\widehat{\mathfrak{g}}$ -module. This fact can be seen using the argument of the proof of Theorem 6.7.4. The remaining setting is the same as in the other cases.

REFERENCES

- [1] Arakawa, T.: *Vanishing of Cohomology Associated to Quantized Drinfeld-Sokolov Reduction*, Int. Math. Res. Notices, 2004, No. 15, 729–767.
- [2] Arakawa, T.: *Quantized Reductions and Irreducible Representations of \mathcal{W} -Algebras*, preprint, math.QA/0403477.
- [3] Bernstein, I. N., Gel'fand, I. M., Gel'fand, S. I. : *A certain category of \mathfrak{g} -modules*. Functional. Anal. Appl. 10 (1976), 87–92.

- [4] Bershadsky, M.: *Phys. Lett.* 174B (1986) 285; Knizhnik, V.G.: *Theor. Math. Phys.*, 66 (1986) 68.
- [5] Bershadsky, M.: *Conformal field theory via Hamiltonian reduction*, *Comm. Math. Phys.* 139 (1991) 71-82.
- [6] Dobrev, V. K.: *Characters of the unitarizable highest weight modules over the $N = 2$ superconformal algebras*, *Phys. Lett. B* 186 (1987), no. 1, 43-51.
- [7] Fateev, V. A., Lukyanov, S. L.: *The models of two-dimensional conformal quantum field theory with Z_n symmetry*. *Internat. J. Modern Phys. A* 3 (1988), no. 2, 507-520.
- [8] Fateev, V. A., Zamolodchikov, A. B.: *Conformal quantum field theory models in two dimensions having Z_3 symmetry*. *Nuclear Phys. B* 280 (1987), no. 4, 644-660.
- [9] Feigin, B. L.: Semi-infinite homology of Lie, Kac-Moody and Virasoro algebras. *Uspekhi Mat. Nauk* 39 (1984), no. 2(236), 195-196.
- [10] Feigin, B. L., Frenkel, E. V.: *Quantization of Drinfeld-Sokolov Reduction*, *Phys. Lett. B* 246, 75-81 (1990).
- [11] Feigin, B. L., Frenkel, E. V.: *Affine Kac-Moody algebras at the critical level and Gel'fand-Dikii algebras*, *Int. Jour. Mod. Phys. A7*, Supplement 1A (1992) 197-215.
- [12] Frenkel, E. V., Ben-Zvi, D.: *Vertex algebras and algebraic curves*, Mathematical Surveys and Monographs, 88.
- [13] Frenkel, E. V., Kac, V. G., Wakimoto, M.: *Characters and fusion rules for W -algebras via quantized Drinfeld-Sokolov reduction*, *Comm. Math. Phys.* 147 (1992), no. 2, 295-328.
- [14] Frenkel, I. B., Zhu, Y.: *Vertex operator algebras associated to representations of affine and Virasoro algebras*. *Duke Math. J.* 66 (1992), no. 1, 123-168.
- [15] Kac, Victor G.: *Infinite-dimensional Lie algebras*, Cambridge University Press, 1990.
- [16] Kac, Victor G.: *Representations of classical Lie superalgebras*. Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), 597-626, Lecture Notes in Math., 676, Springer, Berlin, 1978.
- [17] Kac, V. G., Roan, S.-S., Wakimoto, M.: *Quantum Reduction for Affine Superalgebras*, *Commun. Math. Phys.* 241 (2003), 307-342.
- [18] Kac, V. G., Wakimoto, M.: *Modular invariant representations of infinite-dimensional Lie algebras and superalgebras*. *Proc. Nat. Acad. Sci. U.S.A.* 85 (1988), no. 14, 4956-4960.
- [19] Kac, V. G., Wakimoto, M.: *Quantum Reduction and Representation Theory of Superconformal Algebras*, *Adv. in Math.* 185 (2004) 400-458.
- [20] Kac, V. G., Wakimoto, M.: *Quantum reduction and characters of superconformal algebras*, to appear.
- [21] Kashiwara, M., Tanisaki, T.: *Characters of irreducible modules with non-critical highest weights over affine Lie algebras*. *Representations and quantizations* (Shanghai, 1998), 275-296, China High. Educ. Press, Beijing, 2000.
- [22] Khovanova, T.: *Super KdV equation related to the Neveu-Schwarz-2 Lie superalgebra of string theory*. *Theor. Mat. Phys.* 72, 306-312 (1987).
- [23] Kiritsis, Elias B: *Character formulae and the structure of the representations of the $N = 1$, $N = 2$ superconformal algebras*. *Internat. J. Modern Phys. A* 3 (1988), no 8, 1871-1906.
- [24] Lukyanov, S. L.: *Quantization of the Gel'fand-Dikii bracket*, *Funktional. Anal. i Prilozhen.* 22 (1988), no. 4, 1-10, 96; translation in *Funct. Anal. Appl.* 22 (1988), no. 4, 255-262 (1989).
- [25] Lukyanov, S. L., Fateev, V. A.: *Conformally invariant models of two-dimensional quantum field theory with Z_n -symmetry*, *Soviet Phys. JETP* 67 (1988), no. 3, 447-454.
- [26] Matsuo, Y.: *Character formula of $c < 1$ unitary representation of $N = 2$ superconformal algebra*. *Progr. Theoret. Phys.* 77 (1987), no. 4, 793-797.
- [27] Moody, R. V., Pianzola, A. *Lie algebras with triangular decompositions*, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995.
- [28] Ravanini, F. and Yang, S.-K.: *Modular invariance in $N = 2$ superconformal field theories*. *Phys. Lett. B* 195 (1987), no. 2, 202-208.
- [29] Zamolodchikov, A: *Infinite additional symmetries in two-dimensional conformal field theory*, *Theor. Math. Phys.* 65 (1985), 1205-1213

GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY, CHIKUSA-KU, NAGOYA, 464-8602,
JAPAN

E-mail address: `tarakawa@math.nagoya-u.ac.jp`