PA₁

김우진 2017314712

1. INTRODUCTION

In this week, we will improve TpmC by changing the codes of my.cnf

2. METHODS

Activate TpmC with new my.cnf and modified one and compare.

3. Performance Evaluation

3.1 Experimental Setup

Туре	Specification
OS	Ubuntu 18.04.65 LTS
CPU	Intel(R) Core(TM) i5- 10400F CPU @ 2.90GHz
Memory	3994720 kB
Kernel	Linux ubuntu 5.4.0- 144-genericcat /proc

3.2 Experimental Results

My1.cnf

innodb buffer pool instances=4

```
<Raw Results>
[0] sc:758 lt:239764 rt:0 fl:0 avg_rt: 31.2 (5)
[1] sc:82543 lt:157979 rt:0 fl:0 avg_rt: 7.5 (5)
[2] sc:13254 lt:10797 rt:0 fl:0 avg_rt: 5.9 (5)
[3] sc:16574 lt:7478 rt:0 fl:0 avg_rt: 74.0 (80)
[4] sc:0 lt:24052 rt:0 fl:0 avg_rt: 135.6 (20)
in 1800 sec.

<p
```

innodb buffer pool instances=16

```
<Raw Results>
[0] sc:571 lt:223503 rt:0 fl:0 avg_rt: 33.5 (5)
[1] sc:68472 lt:155596 rt:0 fl:0 avg_rt: 8.0 (5)
[2] sc:11259 lt:11148 rt:0 fl:0 avg_rt: 8.0 (5)
[3] sc:13938 lt:8468 rt:0 fl:0 avg_rt: 80.6 (80)
[4] sc:0 lt:22406 rt:0 fl:0 avg_rt: 144.1 (20)
in 1800 sec.

<p
```

Innodb_log_buffer_size = 16MB

Innodb log buffer size = 64MB

innodb_log_files_in_group=8

```
Raw Results>
  [0] sc:577 lt:226851 rt:0 fl:0 avg_rt: 32.8 (5)
  [1] sc:70290 lt:157132 rt:0 fl:0 avg_rt: 7.9 (5)
  [2] sc:10843 lt:11900 rt:0 fl:0 avg_rt: 6.5 (5)
  [3] sc:13948 lt:8794 rt:0 fl:0 avg_rt: 80.8 (80)
  [4] sc:1 lt:22741 rt:0 fl:0 avg_rt: 142.0 (20)
  in 1800 sec.
```

innodb flush log at trx commit=1

innodb_flush_log_at_trx_commit=2

My2.cnf

```
<Raw Results>
  [0] sc:1051 lt:267342 rt:0 fl:0 avg_rt: 28.9 (5)
  [1] sc:105437 lt:162951 rt:0 fl:0 avg_rt: 6.6 (5)
  [2] sc:15917 lt:10923 rt:0 fl:0 avg_rt: 5.3 (5)
  [3] sc:23959 lt:2880 rt:0 fl:0 avg_rt: 61.7 (80)
  [4] sc:2 lt:26836 rt:0 fl:0 avg_rt: 116.7 (20)
  in 1800 sec.

<
```

4. Conclusion

인스턴스를 늘릴수록 TPMC 값이 줄어드는 것을 볼 수있다.

innodb_buffer_pool_instance 를 늘리는 것은 InnoDB 버퍼 풀 인스턴스의 수를 늘리는 것이며, 각 인스턴스는 자체적으로 캐시 데이터를 유지한다. 이를 통해 다중 코어 시스템에서 InnoDB 버퍼 풀 처리량이 향상됩니다.

그러나 innodb_buffer_pool_instances 값을 증가시켜도 TpmC 값이 감소하는 이유는 다양할수 있습니다. 예를 들어, 버퍼 풀 인스턴스를 늘리면 각 인스턴스가 더 적은 메모리를 사용하게 되므로, 전체적인 버퍼 풀 크기가 감소할 수 있습니다. 또는 인스턴스 간의 메모리 공유 및 경쟁으로 인해 오히려 성능이 저하될 수도 있습니다.

또한 TpmC 값은 데이터베이스 시스템의 전체 성능을 나타내는 지표이므로, InnoDB 버퍼 풀 인스턴스 수 이외의 다른 요소들도 영향을 미칠수 있습니다. 예를 들어, 사용되는 하드웨어의 성능, 데이터베이스 서버의 구성, 트랜잭션의 유형 및 크기, 사용자 수 등이 영향을 미칠 수 있습니다.

따라서 innodb_buffer_pool_instances 값을 조정할 때는 TpmC 값 외에도 다른 지표를 함께 고려하여 전체적인 성능을 평가해야 합니다. 또한 성능을 최적화하는 데 필요한 구성을 찾기 위해 벤치마크 테스트를 수행하고, 다양한 값을 실험적으로 조정하는 것이 좋습니다.

TPC-C와 같은 TpmC 벤치마크에서는 많은 수의 작은 트랜잭션이 실행되기 때문에 InnoDB 로그 버퍼의 크기는 TpmC 의 성능에 영향을 미칩니다. 로그 버퍼가 작으면 자주 디스크에 쓰여지고 디스크의 I/O 작업이 늘어나므로 TpmC 성능이 저하될 수 있습니다. 따라서 TpmC 를 향상시키기 위해서는 InnoDB 로그 버퍼의 크기를 늘리는 것이 좋습니다.

하지만 로그 버퍼를 지나치게 크게 설정하면, 메모리 사용량이 증가하여 다른 캐시에 영향을 줄 수 있으므로 주의해야 합니다. 또한 로그 버퍼가 너무 크면 로그 기록 작업이 디스크에 쓰여지기 전에 너무 많은 메모리를 사용하므로 시스템에 장애가 발생할 수도 있습니다.

따라서 innodb_log_buffer_size 값은 TpmC 성능을 최적화하기 위해 적절한 크기로 설정해야 합니다. 이를 위해 여러 가지 크기로 실험해보고 TpmC 와 다른 성능 지표를 비교하여 최적의 값으로 조정하는 것이 좋습니다.

TPC-C 와 같은 TpmC 벤치마크에서는 많은 수의 작은 트랜잭션이 실행되기 때문에 InnoDB 로그파일의 수는 TpmC 의 성능에 영향을 미칩니다. 로그파일이 적으면 매번 디스크에 쓰여질 때마다로그 파일 전체를 순환해야 하므로 I/O 성능이 저하될 수 있습니다. 따라서 TpmC를 향상시키기위해서는 InnoDB 로그 파일의 수를 늘리는 것이좋습니다.

하지만 로그 파일의 수를 지나치게 늘리면, InnoDB 가 로그 파일을 순환하고 검색하는 데 드는 시간이 늘어나므로 성능에 악영향을 미칠 수 있습니다. 또한 각 로그 파일의 크기도 중요한 역할을 합니다. 로그 파일이 너무 작으면 자주 디스크에 쓰여지고 디스크의 I/O 작업이 늘어나므로 TpmC 성능이 저하될 수 있습니다.

따라서 innodb_log_files_in_group 값은 TpmC 성능을 최적화하기 위해 적절한 수로 설정해야합니다. 이를 위해 여러 가지 값을 실험해보고 TpmC 와 다른 성능 지표를 비교하여 최적의 값으로 조정하는 것이 좋습니다. 또한 로그 파일크기도 고려하여 적절한 값으로 설정하는 것이중요합니다.

innodb_flush_log_at_trx_commit 의 값이 1 이면, InnoDB 는 각 트랜잭션의 커밋(commit) 직후에 트랜잭션 로그를 디스크에 즉시 기록합니다. 이 설정 값은 데이터 손실을 최소화하기 위해 최선의 방법이지만, 매번 디스크에 로그를 기록하므로 성능이 저하될 수 있습니다.

반면에 innodb_flush_log_at_trx_commit 의 값이 2 인 경우, InnoDB는 각 트랜잭션의 커밋 직후에 트랜잭션 로그를 메모리에만 기록하고, 주기적으로 디스크에 기록합니다. 이 설정 값은 성능을 향상시키지만, 트랜잭션 로그가 메모리에만 있기 때문에 시스템이 다운되는 경우일부 데이터가 손실될 수 있습니다.

하나하나 실행했을때는 TPMC 에 향상이 없었지만 다같이 적용을 했을때는 20%정도 향상되는 결과를 보여주었다.