Přednáška 7, 3. dubna 2015

Jako cvičení zdůvodněte tyto vlastnosti otevřených množin v \mathbb{R}^m : (i) množiny \emptyset a \mathbb{R}^m jsou otevřené, (ii) sjednocení $\bigcup_{i\in I} A_i$ libovolného systému $\{A_i \mid i \in I\}$ otevřených množin A_i je otevřená množina a (iii) průnik dvou (a tedy i konečně mnoha) otevřených množin je otevřená množina. Průnik nekonečně mnoha otevřených množin už ale nemusí být otevřená množina. $Okoli \ bodu \ a \in \mathbb{R}^m$ je libovolná otevřená množina v \mathbb{R}^m obsahující a.

Budeme pracovat s funkcemi $f: M \to \mathbb{R}, f = f(x_1, x_2, \dots, x_m)$, definovanými na podmnožinách $M \subset \mathbb{R}^m$ (které budou většinou otevřené), nebo i obecněji se zobrazeními

$$f: M \to \mathbb{R}^n, M \subset \mathbb{R}^m, f = (f_1, f_2, \dots, f_n),$$

kde $f_i = f_i(x_1, x_2, ..., x_m)$ jsou souřadnicové funkce. Naším cílem bude jednak zobecnit derivaci jako lineární aproximaci z funkcí jedné proměnné na funkce několika proměnných, a pak stejně zobecnit kritéria existence extrému.

Než se pustíme do derivací, zobecníme spojitost: je-li $U \subset \mathbb{R}^m$ okolí bodu a, funkci $f:U\to\mathbb{R}$ nazveme spojitou v bodě a, když

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \|x - a\| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon.$$

Stejně se definuje spojitost pro zobrazení $f:U\to\mathbb{R}^n$, pouze absolutní hodnotu |f(x)-f(a)| (což je norma v \mathbb{R}^1) nahradíme normou ||f(x)-f(a)|| v \mathbb{R}^n .

Směrová derivace, parciální derivace, diferenciál. Nechť $U \subset \mathbb{R}^m$ je okolí bodu a a $f: U \to \mathbb{R}$ je funkce. Její směrovou derivací v bodu a ve směru vektoru $v \in \mathbb{R}^m \setminus \{\overline{0}\}$ rozumíme limitu

$$D_v f(a) := \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t} ,$$

existuje-li. Představme si U jako oblast v třírozměrném euklidovském prostoru, kde funkce f měří teplotu a kterou prolétává nějaká částice. Směrová derivace $D_v f(a)$ udává okamžitou změnu teploty částice ve chvíli, kdy se nalézá v bodu a a má vektor rychlosti v.

Parciální derivace funkce f v bodě a podle proměnné x_i je směrová derivace $D_{e_i}f(a)$, kde e_i je i-tý vektor kanonické báze, tj. e_i =

 $(0,0,\ldots,0,1,0,0,\ldots,0)$ má na i-tém místě 1 a jinde nuly. Značíme ji $\frac{\partial f}{\partial x_i}(a)$. Explicitně,

$$\frac{\partial f}{\partial x_i}(a) = \lim_{h \to 0} \frac{f(a_1, \dots, a_{i-1}, a_i + h, a_{i+1}, \dots, a_m) - f(a_1, a_2, \dots, a_m)}{h}.$$

Vektor hodnot všech parciálních derivací funkce f v bodě a je gradient funkce f v a,

$$\nabla f(a) := \left(\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_2}(a), \dots, \frac{\partial f}{\partial x_m}(a)\right).$$

Funkce f má v bodě a (totální) diferenciál, jinými slovy f je v a diferencovatelná, když existuje takové lineární zobrazení $L: \mathbb{R}^m \to \mathbb{R}$, že

$$\lim_{\|h\| \to 0} \frac{f(a+h) - f(a) - L(h)}{\|h\|} = 0.$$

Toto lineární zobrazení L nazýváme diferenciálem a značíme $\mathrm{D}f(a)$, jeho hodnota L(h) na vektoru h pak je $\mathrm{D}f(a)(h)$. Obecněji, pokud $f:U\to\mathbb{R}^n$ je zobrazení, řekneme, že je v a diferencovatelné, když existuje takové lineární zobrazení $L:\mathbb{R}^m\to\mathbb{R}^n$, že

$$\lim_{\|h\| \to 0} \frac{\|f(a+h) - f(a) - L(h)\|}{\|h\|} = 0$$

(norma ve jmenovateli se bere v \mathbb{R}^m a norma v čitateli v \mathbb{R}^n). L opět nazýváme diferenciálem a značíme Df(a). Podstatný rozdíl ve srovnání se směrovou a parciální derivací je ten, že ty jsou pouhá čísla, kdežto diferenciál je složitější věc, lineární zobrazení.

Směrová derivace, parciální derivace a diferenciál funkce f v bodu a dávají lokální aproximace f poblíž a lineární funkcí:

$$f(a+tv) = f(a) + D_v f(a) \cdot t + o(t), \ t \to 0,$$

$$f(a+te_i) = f(a) + \frac{\partial f}{\partial x_i}(a) \cdot t + o(t), \ t \to 0,$$

$$f(a+h) = f(a) + Df(a)(h) + o(||h||), \ ||h|| \to 0.$$

V prvních dvou vztazích je t reálné číslo jdoucí k nule a aproximace platí pouze pro argumenty funkce na přímce jdoucí bodem a ve směru v, resp. ve směru i-té souřadnicové osy. Ve třetím vztahu h probíhá body \mathbb{R}^m a aproximace platí pro všechny argumenty funkce v okolí bodu a. Diferencovatelnost je silnější vlastnost f než existence směrových nebo parciálních derivací, z nichž neplyne ani spojitost funkce v daném bodě. Například funkce

 $f = f(x,y): \mathbb{R}^2 \to \mathbb{R}$ definovaná jako f(x,y) = 1 pokud xy = 0 a f(x,y) = 0 jinde (tj. f je 1 na souřadnicových osách a jinak 0) má v počátku obě parciální derivace a jejich hodnota je 0, ale není v počátku spojitá. Jako cvičení vymyslete funkci z \mathbb{R}^2 do \mathbb{R} , která má v počátku všechny směrové derivace, ale přesto tam není spojitá.

Počítat parciální derivace už umíme, při výpočtu $\frac{\partial f}{\partial x_i}$ se proměnné různé od x_i berou jako konstanty a f tak derivujeme jako funkci jediné proměnné x_i . Například pro funkci $f = f(x, y, z) = x^3 y \sin(yz) + x \log z$ máme

$$\frac{\partial f}{\partial y} = x^3(\sin(yz) + zy\cos(yz)) .$$

Jednoduchý důkaz následujícího tvrzení ponecháváme jako cvičení.

Tvrzení (vlastnosti diferenciálu). Nechť $f = (f_1, f_2, ..., f_n) : U \to \mathbb{R}^n$ je zobrazení, kde $U \subset \mathbb{R}^m$ je okolí bodu a.

- 1. Diferenciál zobrazení f v a je určený jednoznačně (když existuje).
- 2. Zobrazení f je diferencovatelné v a, právě když je jeho každá souřadnicová funkce f_i diferencovatelná v a.
- 3. Když je zobrazení f diferencovatelné v bodu a, potom je v bodu a spojité.

Tvrzení (diferenciál $\Rightarrow \partial$). Když je funkce $f: U \to \mathbb{R}$, $U \subset \mathbb{R}^m$ je okolí bodu a, diferencovatelná v a, pak má v a všechny parciální derivace a jejich hodnoty diferenciál určují:

$$Df(a)(h) = \frac{\partial f}{\partial x_1}(a) \cdot h_1 + \frac{\partial f}{\partial x_2}(a) \cdot h_2 + \dots + \frac{\partial f}{\partial x_m}(a) \cdot h_m$$
$$= \langle \nabla f(a), h \rangle$$

(tj. hodnota diferenciálu v h se dostane jako obvyklý skalární součin h a gradientu f v a). Funkce f pak má také v a všechny směrové derivace a platí $D_v f(a) = Df(a)(v)$.

 $D\mathring{u}kaz$. Z linearity diferenciálu L = Df(a) máme

$$L(h) = L(h_1e_1 + h_2e_2 + \dots + h_me_m) = L(e_1)h_1 + \dots + L(e_m)h_m ,$$

kde e_i je i-tý vektor kanonické báze. Ovšem $(f(a + te_i) = f(a) + L(te_i) +$ $o(||te_i||)$ pro $t \to 0$ vzhledem k diferencovatelnosti $f \vee a$)

$$\frac{\partial f}{\partial x_i}(a) = \lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t} = \lim_{t \to 0} \frac{L(te_i) + o(||te_i||)}{t}$$
$$= \lim_{t \to 0} \frac{tL(e_i) + o(|t|)}{t} = L(e_i) + \lim_{t \to 0} \frac{o(|t|)}{t}$$
$$= L(e_i),$$

a tak $L(e_i)=\frac{\partial f}{\partial x_i}(a)$. Nechť $v\in\mathbb{R}^m$ je nenulový vektor. Protože $v=v_1e_1+\cdots+v_me_m$, kde e_i jsou vektory kanonické báze \mathbb{R}^m , a f má v a všechny parciální derivace, z definice směrové derivace plyne, že

$$D_v f(a) = v_1 \cdot (\partial f/\partial x_1)(a) + v_2 \cdot (\partial f/\partial x_2)(a) + \dots + v_m \cdot (\partial f/\partial x_m)(a) ,$$

což je právě hodnota diferenciálu Df(a) ve v.

Obecné zobrazení $f: U \to \mathbb{R}^n$ má diferenciál $L = Df(a): \mathbb{R}^m \to \mathbb{R}^n$ popsaný maticí typu $n \times m$ a L se na vektor h aplikuje maticovým násobením:

$$L(h) = \begin{pmatrix} L(h)_1 \\ L(h)_2 \\ \vdots \\ L(h)_n \end{pmatrix} = \begin{pmatrix} l_{1,1} & l_{1,2} & \dots & l_{1,m} \\ l_{2,1} & l_{2,2} & \dots & l_{2,m} \\ \vdots & \vdots & \dots & \vdots \\ l_{n,1} & l_{n,2} & \dots & l_{n,m} \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \\ \vdots \\ h_m \end{pmatrix}.$$

Podle předešlých tvrzení má tato matice v *i*-tém řádku gradient souřadnicové funkce f_i v bodě a:

$$l_{i,j} = \frac{\partial f_i}{\partial x_j}(a) .$$

Důsledek (Jacobiho matice). Diferenciál zobrazení $f: U \to \mathbb{R}^n \ v \ bodě$ $a, kde \ U \subset \mathbb{R}^m \ je \ okolí \ a \ f \ má \ souřadnicové funkce \ f = (f_1, f_2, \dots, f_n), je$ dán tzv. Jacobiho maticí zobrazení f v bodě a:

$$\left(\frac{\partial f_i}{\partial x_j}(a)\right)_{i,j=1}^{n,m} = \begin{pmatrix}
\frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \dots & \frac{\partial f_1}{\partial x_m}(a) \\
\frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \dots & \frac{\partial f_2}{\partial x_m}(a) \\
\vdots & \vdots & \dots & \vdots \\
\frac{\partial f_n}{\partial x_1}(a) & \frac{\partial f_n}{\partial x_2}(a) & \dots & \frac{\partial f_n}{\partial x_m}(a)
\end{pmatrix}.$$

Je-li Jacobiho matice čtvercová, její determinant se nazývá $jacobi\acute{a}n.$

Věta ($\partial \Rightarrow$ **diferenciál).** Nechť $U \subset \mathbb{R}^m$ je okolí bodu $a \in \mathbb{R}^m$. Má-li funkce $f: U \to \mathbb{R}$ na U všechny parciální derivace a ty jsou v bodě a spojité, pak je f v bodě a diferencovatelná.

Důkaz si řekneme příště.