HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 2018 Harjoitus 5 – Ratkaisuehdotukset

Tehtävä 1. Olkoon $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x_1, x_2) = 2x_1^2 + 3x_2^2$$

Olkoon $C \in \mathbb{R}$. Määritä tasa-arvojoukko

$$Sf(C) = \{(x_1, x_2) \in \mathbb{R}^2 | f(x_1, x_2) = C\}.$$

Piirrä tasa-arvokäyriä eri vakion C arvoilla. Mikä on funktion f maksimaalisen kasvunopeuden suunta pisteessä $x_0 = (1,1) \in Sf(5)$. Osoita, että se on kohtisuorassa tasa-arvokäyrän tangenttia vastaan pisteessä (1,1).

Kuva 1: Funktion f tasa-arvokäyriä

Ratkaisu. Suurin kasvunopeus on gradientin suuntaan

$$\nabla f(x_0) = \begin{pmatrix} 4x_{0,1} \\ 6x_{0,2} \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$$

Tarkastellaan sitten seuraavaa polkua:

$$\gamma(t) = \begin{pmatrix} \sqrt{\frac{5}{2}}\cos(t) \\ \sqrt{\frac{5}{3}}\sin(t) \end{pmatrix}$$

Nyt

$$(f \circ \gamma)(t) = 2 \cdot \frac{5}{2} \cos^2(t) + 3 \cdot \frac{5}{3} \sin^2(t)$$

= 5(\cos^2(t) + \sin^2(t))
= 5

siis $\gamma(t) \in Sf(5)$ kaikilla t, joten $\gamma'(t)$ on käyrän Sf(5) tangentti pisteessä $\gamma(t)$. Olkoon sitten $t_0 \in \mathbb{R}$ siten, että $\gamma(t_0) = x_0 = (1, 1)$. Siis

$$\begin{pmatrix} \sqrt{\frac{5}{2}}\cos(t_0) \\ \sqrt{\frac{5}{3}}\sin(t_0) \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\Leftrightarrow \begin{pmatrix} \cos(t_0) \\ \sin(t_0) \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{2}{5}} \\ \sqrt{\frac{3}{5}} \end{pmatrix}$$

Nyt saadaan käyrälle Sf(5) tangentti pisteeseen x_0 :

$$\gamma'(t_0) = \begin{pmatrix} -\sqrt{\frac{5}{2}}\sin(t_0) \\ \sqrt{\frac{5}{3}}\cos(t_0) \end{pmatrix}$$
$$= \begin{pmatrix} -\sqrt{\frac{5}{2}}\sqrt{\frac{3}{5}} \\ \sqrt{\frac{5}{3}}\sqrt{\frac{2}{5}} \end{pmatrix}$$
$$= \begin{pmatrix} -\sqrt{\frac{3}{2}} \\ \sqrt{\frac{2}{3}} \end{pmatrix}$$

Tarkastellaan sitten gradientin ja tangentin sisätuloa:

$$\langle \nabla f(x_0), \gamma'(t_0) \rangle = 4 \left(-\sqrt{\frac{3}{2}} \right) + 6\sqrt{\frac{2}{3}}$$
$$= 4 \left(-\sqrt{\frac{3}{2}} + \frac{3}{2}\sqrt{\frac{2}{3}} \right)$$
$$= 4\sqrt{\frac{3}{2}} \left(-1 + \sqrt{\frac{3}{2}}\sqrt{\frac{2}{3}} \right)$$
$$= 0$$

Gradientti on siis kohtisuorassa tasa-arvokäyrän tangenttia vastaan. Samaan tulokseen voi päätyä huomaamalla, että yllä oleva sisätulo on vakiofunktion $f \circ \gamma$ derivaatta pisteessä t_0 .

Tehtävä 2. Määritä funktion $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = 3x^3 + y^2 - 9x + 4y$$

ääriarvopisteet ja niiden laatu.

Ratkaisu. Funktio f on polynomina sileä (eli C^{∞}) ja määritelty koko tasossa, joten riittää tarkastella gradientin nollakohdat mahdollisten ääriarvopisteiden löytämiseksi.

$$\nabla f(x,y) = \begin{pmatrix} 9x^2 - 9 \\ 2y + 4 \end{pmatrix} = 0$$
$$\Rightarrow \begin{pmatrix} x^2 \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

Gradientin nollakohdat ovat siis (1, -2) ja (-1, -2). Selvitetään näiden pisteiden laatu tarkastelemalla toisen kertaluvun osittaisderivaattoja. Hessen matriisi funktiolle f määritellään seuraavasti:

$$D^{2}f(x,y) := \begin{bmatrix} \partial_{xx}f(x,y) & \partial_{xy}f(x,y) \\ \partial_{yx}f(x,y) & \partial_{yy}f(x,y) \end{bmatrix} = \begin{bmatrix} 18x & 0 \\ 0 & 2 \end{bmatrix}$$

Huomataan, että $\det[D^2f(x,y)] = \partial_{xx}f(x,y)\partial_{yy}f(x,y) - (\partial_{xy}f(x,y))^2 = 36x$. Tämä luentomuistiinpanojen lauseessa 4.4.15. esiintyvä lauseke on siis Hessen

matriisin determinantti, ja se on selvästi positiivinen pisteessä (1, -2) ja negatiivinen pisteessä (-1, -2). Piste (-1, -2) on siis satulapiste. Pisteessä (1, -2) lisäksi pätee $\partial_{xx} f(x, y) = 36 > 0$, joten kyseessä on lokaali minimi. Funktio f ei ole alhaalta rajoitettu, joten minimi ei ole globaali.

Kuva 2: Funktion f graafi

Tehtävä 3. Määritä origon minimietäistyys funktion $f(x,y) = \sqrt{x^2y + 4}$ graafista. Ohje: määritä etäyisyysfunktion minimi ehdolla, että piste (x,y,z) on funktion f graafilla.

Ratkaisu. Funktio f on määritelty joukossa $\Omega=\{(x,y)\in\mathbb{R}^2\,|x^2y+4\geq 0\},$ jonka reuna on joukko $\partial\Omega=\{(x,y)|x^2y+4=0\}=\{(x,-\frac{4}{x^2})|x\in\mathbb{R}\}.$

Etäisyysfunktio graafiin $g:\Omega\to\mathbb{R}$ saadaan kolmiulotteisena normina, jossa kolmannen koordinaatin paikalle on sijoitettu funktion f arvo seuraa-

vasti:

$$g(x,y) = \sqrt{x^2 + y^2 + (\sqrt{x^2y + 4})^2} = \sqrt{x^2(1+y) + y^2 + 4}$$

Kuva 3: Oikealla funktion f graafi, vasemmalla etäisyysfunktion g graafi kriittisten pisteiden lähellä

Funktio g on sileä joukon Ω sisäpisteissä, joten jos etäisyydellä on minimi, löytyy se joko funktion g gradientin nollakohdista tai määrittelyjoukon reunalta $\partial\Omega$. Tarkastellaan ensin gradientin nollakohtia:

$$\nabla g(x,y) = \frac{1}{\sqrt{x^2(1+y) + y^2 + 4}} \begin{pmatrix} x(1+y) \\ y + \frac{x^2}{2} \end{pmatrix}$$

$$= \frac{1}{g(x,y)} \begin{pmatrix} x(1+y) \\ y + \frac{x^2}{2} \end{pmatrix} = 0$$

$$\Rightarrow \begin{pmatrix} x(1+y) \\ y + \frac{x^2}{2} \end{pmatrix} = 0$$

$$\Rightarrow x = 0 \quad \text{tai} \quad y = -1$$

$$\Rightarrow y = 0 \quad x = \pm \sqrt{2}$$

Kriittiset pisteet ovat siis (0,0), $(\sqrt{2},-1)$ ja $(-\sqrt{2},-1)$. Huomaa, että funktion g lauseke $\sqrt{x^2(1+y)+y^2+4}$ on määritelty Ω :a suuremmassa joukossa. On siis oleellista kiinniittää huomiota siihen, että kolme löydettyä kriittistä pistettä kuuluu joukkoon Ω .

Tarkastellaan sitten toisen kertaluvun derivaattoja pisteiden laatujen selvittämiseksi. Hessen matriisille saadaan seuraava lauseke:

$$D^{2}g(x,y) = \frac{1}{g(x,y)} \begin{bmatrix} 1+y & x \\ x & 1 \end{bmatrix} - \frac{1}{g(x,y)^{3}} \begin{bmatrix} x^{2}(1+y)^{2} & x(1+y)(y+\frac{x^{2}}{2}) \\ x(1+y)(y+\frac{x^{2}}{2}) & (y+\frac{x^{2}}{2})^{2} \end{bmatrix}$$

$$D^{2}g(0,0) = \frac{1}{g(0,0)} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$D^{2}g(\pm\sqrt{2},-1) = \frac{1}{g(\pm\sqrt{2},-1)} \begin{bmatrix} 0 & \pm\sqrt{2} \\ \pm\sqrt{2} & 1 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 0 & \pm\sqrt{2} \\ \pm\sqrt{2} & 1 \end{bmatrix}$$

Nyt sadaan seuraavat tulokset:

$$\det[D^2 g(\pm \sqrt{2}, -1)] = -(\pm \sqrt{2})^2 < 0,$$

joten $(\sqrt{2}, -1)$ ja $(-\sqrt{2}, -1)$ ovat satulapisteitä.

$$\det[D^2g(0,0)] = \frac{1}{4} > 0 \text{ ja } \partial_{xx}g(0,0) = \frac{1}{2} > 0,$$

joten origo on etäisyysfunktion g lokaali minimi. Jotta voidaan määrittää onko kyseessä globaali minimi, tulee meidän vielä tutkia reuna $\partial\Omega$.

Voidaan ensin huomata, että funktio f on identtisesti nolla reunalla, joten tämä osa graafista on kokonaan xy-tasossa. Kun lisäksi hyödynnetään reunapisteiden parametrisaatiota $(x,y)=(x,-\frac{4}{x^2})$, saadaan etäsyysfunktiolle $h: \mathbb{R}\setminus\{0\} \to \mathbb{R}$ seuraava lauseke:

$$h(x) = \sqrt{x^2 + \left(-\frac{4}{x^2}\right)^2} = \sqrt{x^2 + \frac{16}{x^4}}$$

Kuva 4: Vasemmalla osa reunasta xy-tasossa, oikealla etäisyysfunktion h graafi

Funktio h on sileä koko määrittelyjoukossaan, joten minimien löytämiseksi riittää tarkastella derivaatan nollakohdat:

$$h'(x) = \frac{x - \frac{32}{x^5}}{\sqrt{x^2 + \frac{16}{x^4}}} = 0$$
$$\Rightarrow x - \frac{32}{x^5} = 0$$
$$\Rightarrow x = \pm \sqrt[6]{32}$$

Havaitaan, että $\sqrt[6]{32}$ on funktion h ainoa kriittinen piste välillä $(0,\infty)$ ja että $h(x) \to \infty$ molemmissa päätepisteissä. Voidaan siis päätellä, että kyseessä on globaali minimi joukossa $(0,\infty)$. Funktio h on parillinen, joten vastaava päättely pätee pisteelle $-\sqrt[6]{32}$ joukossa $(-\infty,0)$.

Verrataan sitten reunan minimiä sisäpisteiden minimiin: g(0,0)=2 ja $h(\pm\sqrt[6]{32})=\sqrt[6]{32}\sqrt{\frac{3}{2}}>2$. Funktiolle g saadaan vielä seuraava arvio: $g(x,y)\geq \|(x,y)\|$, joten $g(x,y)\to\infty$, kun $\|(x,y)\|\to\infty$. Kokoamalla nämä havainnot voidaan päätellä, että funktion f graafin piste (0,0,f(0,0)) on antaa globaalin minimin etäisyydelle origosta (0,0,0).

Tehtävä 4. Ratkaise edellinen tehtävä käyttäen Lagrangen kertoimien menetelmää.

Ratkaisu. Tarkastelu tulee jälleen erotella reunaan ja sisäpisteisiin. Sisäpisteissä

etsitään kolmiulotteisen normin minimiä ehdolla, että piste on graafilla.

$$\begin{cases} \nabla \|(x,y,z)\| = \lambda \nabla (f(x,y) - z) \\ f(x,y) - z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{x}{\|(x,y,z)\|} = \frac{\lambda xy}{f(x,y)} \\ \frac{y}{\|(x,y,z)\|} = \frac{\lambda x^2}{2f(x,y)} \\ \frac{z}{\|(x,y,z)\|} = -\lambda \end{cases}$$

$$\Rightarrow \begin{cases} \frac{x}{\|(x,y,z)\|} = -\frac{xyz}{\|(x,y,z)\|z} \\ \frac{y}{\|(x,y,z)\|} = -\frac{x^2z}{2\|(x,y,z)\|z} \end{cases}$$

$$\Rightarrow \begin{cases} x = -xy \\ 2y = -x^2 \end{cases}$$

$$\Rightarrow x = 0 \quad \text{tai} \quad y = -1 \\ \Rightarrow y = 0 \quad x = \pm \sqrt{2} \end{cases}$$

Päädyttiin siis samoihin pisteisiin kuin edellisessä tehtävässä. Käytetään myös laadun selvittämiseen toista tekniikkaa. Vertaillaan ensin etäisyysfunktion arvoja näissä pisteissä: $g(\pm\sqrt{2},-1)=\sqrt{5}>2=g(0,0)$. Jos jokin näistä näistä pisteistä on minimi, täytyy sen siis olla (0,0). Kuten edellisen tehtävän lopulla todettiin, g kasvaa rajatta, kun $\|(x,y)\|\to\infty$. Jos tiedetään lisäksi että g(x,y)>2, kun $(x,y)\in\partial\Omega$, voidaan päätellä pisteen (0,0) olevan mi-

nimi. Etsitään siis etäisyyden minimi reunalla:

$$\begin{cases} \nabla \|(x,y)\| = \lambda \nabla (x^2y + 4) \\ x^2y + 4 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{x}{\|(x,y)\|} = 2\lambda xy \\ \frac{y}{\|(x,y)\|} = \lambda x^2 \\ x^2y + 4 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \frac{x^2}{\|(x,y)\|} = 2\lambda x^2y \\ \frac{2y^2}{\|(x,y)\|} = 2\lambda x^2y \end{cases}$$

$$\Rightarrow x^2 = 2y^2$$

$$\Rightarrow 2y^3 = -4$$

$$\Rightarrow y = -\sqrt[3]{2}$$

$$\Rightarrow x = \pm \sqrt{\frac{4}{\sqrt[3]{2}}} = \pm \frac{2}{\sqrt[6]{2}} = \pm \sqrt[6]{32}$$

Kuten edellisessä tehtävässä todettiin, pisteiden $(\pm \sqrt[6]{32}, -\sqrt[3]{2})$ etäisyys origosta on suurempi kuin 2, joten graafin piste (0,0,f(0,0)) minimoi etäisyyden origosta.

Tehtävä 5. Määritä funktion $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x) = ||x||$$

- (a) ensimmäisen kertaluvun Taylorin polynomi pisteessä (3,4) ja arvioi sillä funktion f arvoa pisteessä (3.1,3.9).
- (b) toisen kertaluvun Taylorin polynomi pisteessä (3,4) ja arvioi sillä funktion f arvoa pisteessä (3.1,3.9).

Ratkaisu. Merkitään $x_0 = (x_{01}, x_{02}) = (3, 4)$ ja $h = (h_1, h_2) = (3.1, 3.9) - (3, 4) = \frac{1}{10}(1, -1)$. Saadaan seuraavat tulokset:

$$f(x_0) = ||(3,4)|| = 5$$

$$df(x_0)(h) = \langle \nabla f(x_0), h \rangle$$

$$= \left\langle \frac{x_0}{\|x_0\|}, h \right\rangle$$

$$= \frac{3h_1 - 4h_2}{5}$$

Nämä kokoamalla saadaan ensimmäisen kertaluvun taylorin kehitelmä:

$$(T_{x_0}^1 f)(h) = f(x_0) + df(x_0)(h)$$

$$= 5 + \frac{3h_1 - 4h_2}{5}$$

$$= 5 - \frac{1}{50}$$

$$= 4.98$$

Toisen kertaluvun differentiaali voidaan määrittää Hessen matriisin avulla seuraavasti:

$$d^{2}f(x_{0})(h) = \partial_{xx}f(x_{0})h_{1}^{2} + 2\partial_{xy}f(x_{0})h_{1}h_{2} + \partial_{yy}f(x_{0})h_{2}^{2}$$

$$= \begin{bmatrix} h_{1} & h_{2} \end{bmatrix} \begin{bmatrix} \partial_{xx}f(x_{0}) & \partial_{xy}f(x_{0}) \\ \partial_{xy}f(x_{0}) & \partial_{yy}f(x_{0}) \end{bmatrix} \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix}$$

$$= h^{T}D^{2}f(x_{0})h$$

Hessen matriisille saadaan seuraava arvo:

$$D^{2}f(x_{0}) = \frac{1}{\|x_{0}\|} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \frac{1}{\|x_{0}\|^{3}} \begin{bmatrix} x_{01}^{2} & x_{01}x_{02} \\ x_{01}x_{02} & x_{02}^{2} \end{bmatrix}$$
$$= \frac{1}{5} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \frac{1}{125} \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}$$

Nyt

$$d^2 f(x_0)(h) = \frac{h_1^2 + h_2^2}{5} - \frac{9h_1^2 + 24h_1h_2 + 16h_2^2}{125}$$

Toisen kertaluvun Tayloring polynomille saadaan nyt laskettua seuraavasti:

$$(T_{x_0}^2 f)(h) = (T_{x_0}^1 f)(h) + \frac{1}{2} d^2 f(x_0)(h)$$

$$= 5 + \frac{3h_1 - 4h_2}{5} + \frac{h_1^2 + h_2^2}{10} - \frac{9h_1^2 + 24h_1h_2 + 16h_2^2}{250}$$

$$= 5 - \frac{1}{50} + \frac{1}{500} - \frac{1}{25000}$$

$$= 4.98196$$

Vertailua varten f(3.1, 3.9) = 4.981967482...

Tehtävä 6. Etsi funktion

$$f(x,y) = xy + \frac{2}{x} + \frac{4}{y}$$

kriittiset pisteet ja selvitä ovatko ne lokaaleja ääriarvopisteitä vai satulapisteitä.

Ratkaisu. Funktio f on sileä koko määrittelyjoukossaan, joka on avoin. Funktion f kriittiset pisteet ovat siis sen gradientin nollakohdat.

$$\nabla f(x,y) = \begin{pmatrix} y - \frac{2}{x^2} \\ x - \frac{4}{y^2} \end{pmatrix} = 0$$

$$\Rightarrow \begin{cases} x^2 y = 2 \\ y^2 x = 4 \end{cases}$$

$$\Rightarrow \begin{cases} x^2 y^2 = 2y \\ y^2 x^2 = 4x \end{cases}$$

$$\Rightarrow y = 2x$$

$$\Rightarrow 2y^3 = 2$$

$$\Rightarrow (x,y) = (1,2)$$

Tarkastellaan sitten toisen kertaluvun derivaattoja laadun määrittämiseksi.

$$D^2 f(x,y) = \begin{bmatrix} \frac{4}{x^3} & 1\\ 1 & \frac{8}{y^3} \end{bmatrix}$$

Nyt

$$D^2 f(1,2) = \begin{bmatrix} 4 & 1 \\ 1 & 1 \end{bmatrix}$$

ja

$$\det[D^2 f(1,2)] = 4 - 1 > 0 \text{ ja } \partial_{xx} f(1,2) = 4 > 0$$

Piste (1,2) on siis funktion f ainoa kriittinen piste ja lokaali minimi. Minimi ei ole globaali, sillä f ei ole alhaalta rajoitettu.

Kuva 5: Oikealla funktion fgraafi, vasemmalla minimi lähempää