BASIC NUMBER THEORY: LECTURE 11

WENHAN DAI

1. Ramification theory

Let L/K be a finite Galois extension of number fields. For a prime $\mathfrak{p} \subseteq \mathcal{O}_K$, let $\mathfrak{q} \subseteq \mathcal{O}_L$ be the prime lying above \mathfrak{p} . Recall that we have defined the decomposition group $D(\mathfrak{q} \mid \mathfrak{p})$ and the inertia group $I(\mathfrak{q} \mid \mathfrak{p})$. We obtain

$$|\operatorname{Gal}(L/K)| = [L:K] = efg, \quad |D(\mathfrak{q} \mid \mathfrak{p})| = ef, \quad |I(\mathfrak{q} \mid \mathfrak{p})| = e.$$

Let K' be a subextension of L/K and \mathfrak{p}' be a prime of K' above \mathfrak{p} . Then

$$D(\mathfrak{q} \mid \mathfrak{p}') = D(\mathfrak{q} \mid \mathfrak{p}) \cap \operatorname{Gal}(L/K'), \quad I(\mathfrak{q} \mid \mathfrak{p}') = I(\mathfrak{q} \mid \mathfrak{p}) \cap \operatorname{Gal}(L/K').$$

Definition 1. Fix a finite Galois extension L/K.

- (1) The decomposition field, denoted by L_D , is the intermediate field fixed by $D(\mathfrak{q} \mid \mathfrak{p})$.
- (2) The inertia field, denoted by L_I , is the intermediate field fixed by $I(\mathfrak{q} \mid \mathfrak{p})$.

$$egin{array}{c} L & & L \ L_I & \Big(\Big| e \Big) \ & L_I \ f \Big| \ & L_D \ g \Big| \ & K \ \end{array}$$

Proposition 2. Keep the same setups as above.

- (1) $K' \subseteq L_D$ if and only if $e(\mathfrak{p}' \mid \mathfrak{p}) = f(\mathfrak{p}' \mid \mathfrak{p}) = 1$, namely \mathfrak{p} splits completely in K'; $K' \supseteq L_D$ if and only if \mathfrak{q} is the only prime above \mathfrak{p}' .
- (2) $K' \subseteq L_I$ if and only if $e(\mathfrak{p}' \mid \mathfrak{p}) = 1$, namely \mathfrak{p} unramifies in K'; $K' \supseteq L_I$ if and only if \mathfrak{q} is totally ramified over \mathfrak{p}' .

Theorem 3. Let L/K and M/K be finite extensions of number fields. Let \mathfrak{p} be a prime in \mathcal{O}_K . Then \mathfrak{p} unramifies (resp. splits completely) in L and M if and only if \mathfrak{p} unramifies (resp. splits completely) in LM.

Proof. The (\Leftarrow) direction is easy by Proposition 2. As for (\Rightarrow), let N be the Galois closure over LM/K. Choose an arbitrary prime $\mathfrak{q} \subseteq \mathcal{O}_N$ above \mathfrak{p} . If \mathfrak{p} is unramified in both L and M, then $L, M \subseteq N_I$ by Proposition 2, and hence $LM \subseteq N_I$. So that \mathfrak{p} is unramified in LM. Similarly, suppose $L, M \subseteq N_D$, then $LM \subseteq N_D$. Thus \mathfrak{p} splits completely in LM.

Date: November 10, 2020.

Proof of Proposition 2. We work on (1) only, and the proof of (2) follows by similar argument. We obtain

$$e(\mathfrak{p}' \mid \mathfrak{p}) = f(\mathfrak{p}' \mid \mathfrak{p}) = 1,$$

$$\iff D(\mathfrak{p}' \mid \mathfrak{p}) = I(\mathfrak{p}' \mid \mathfrak{p}) = \{e\},$$

$$\iff e(\mathfrak{q} \mid \mathfrak{p}) = e, \ f(\mathfrak{q} \mid \mathfrak{p}) = f,$$

$$\iff D(\mathfrak{q} \mid \mathfrak{p}') = D(\mathfrak{q} \mid \mathfrak{p}), \ I(\mathfrak{q} \mid \mathfrak{p}') = I(\mathfrak{q} \mid \mathfrak{p}),$$

$$\iff D(\mathfrak{q} \mid \mathfrak{p}) \subseteq \operatorname{Gal}(L/K'),$$

$$\iff K' \subseteq L_D.$$

2. Genus field (continued)

Let K be an imaginary quadratic field and L be the Hilbert class field of K.

Theorem 4. Denote μ the number of primes dividing d_K . Let p_1, \ldots, p_r be all odd primes dividing d_K . Then

- (1) The genus field of K is the maximal unramified extension of K which is an abelian extension of \mathbb{Q} .
- (2) The genus field $M = K(\sqrt{p_1^*}, \dots, \sqrt{p_r^*}).$
- (3) The number of genera of discriminant d_K equals

$$2^{\mu-1} = |C(\mathcal{O}_K)/C(\mathcal{O}_K)^2| = |\operatorname{Gal}(M/K)|.$$

(4) The principal genus consists of square classes, i.e. the image of elements in $C(d_K)^2$.

Lemma 5. Let L, M be two abelian extensions of a number field K. Fix $\mathfrak{p} \subseteq \mathcal{O}_K$ an odd prime. Then

- (1) \mathfrak{p} is unramified in LM if and only if \mathfrak{p} is unramified in both L and M respectively.
- (2) If \mathfrak{p} is unramified in LM, then the natural group homomorphism

$$\operatorname{Gal}(LM/K) \longrightarrow \operatorname{Gal}(L/K) \times \operatorname{Gal}(M/K)$$
$$\left(\frac{LM/K}{\mathfrak{p}}\right) \longmapsto \left(\left(\frac{L/K}{\mathfrak{p}}\right), \left(\frac{M/K}{\mathfrak{p}}\right)\right)$$

is injective.

Lemma 6. Fix $a \in \mathbb{Z}$. The field extension $K(\sqrt{a})$ is unramified over K if and only if a can be chosen such that $a \equiv 1 \mod 4$ and $a \mid d_K$.

Proof. Suppose $a \equiv 1 \mod 4$ and $a \mid d_K$. Then write $d_K = ab$ with (a,b) = 1. Note that $\sqrt{d_K} \in K$, so that $K(\sqrt{a}) = K(\sqrt{b})$. If $\mathfrak{p} \nmid 2$ then $\mathfrak{p} \nmid 2a$ or $\mathfrak{p} \nmid 2b$. By Lemma 3 in Lecture 10 \mathfrak{p} is unramified. On the other hand, 2 unramifies in $\mathbb{Q}(\sqrt{a})$ and 2 is either unramified or totally ramified in K. Consequently, if $\mathfrak{p} \mid 2$, then \mathfrak{p} is unramified. This shows that $K(\sqrt{a})$ is unramified over K. The converse direction is left as an exercise.

Last time we have proved Theorem 4(1).

Proof of Theorem 4(2). As $\operatorname{Gal}(M/K) \simeq C(\mathcal{O}_K)/C(\mathcal{O}_K)^2$, we see M is a compositum of quadratic extensions of K. Also, $\operatorname{Gal}(M/\mathbb{Q})$ is generated by $\operatorname{Gal}(M/K)$ and τ , where τ is the complex conjugation. Hence

$$Gal(M/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^m$$

for some m. It follows that

$$M = \mathbb{Q}(\sqrt{a_1}, \dots, \sqrt{a_m}) = K(\sqrt{a_1}, \dots, \sqrt{a_m})$$

$$\subseteq K(\sqrt{p_1^*}, \dots, \sqrt{p_r^*})$$

$$= \mathbb{Q}(\sqrt{d_K}, \sqrt{p_1^*}, \dots, \sqrt{p_r^*}) =: M^*$$

where $a_1, \ldots, a_m \in \mathbb{Z}$ and $a_i \equiv 1 \mod 4$, $a_i \mid d_K$ (so that each a_i is a product of some p_j^* 's). Note that M^* is an abelian extension of \mathbb{Q} . In particular, M^* is abelian an unramified over K. As M is the genus field, by Theorem 4(1) it is maximal among the unramified abelian extensions of \mathbb{Q} , we have $M^* \subseteq M$, and hence $M^* = M$.

To prove (3), we have

$$[M^*:\mathbb{Q}] = 2^r = 2^{\mu}, \quad |C(\mathcal{O}_K)/C(\mathcal{O}_K)^2| = 2^{\mu-1}.$$

If $d_K \equiv 1 \mod 4$ then $M^* = M = \mathbb{Q}(\sqrt{p_1^*}, \dots, \sqrt{p_r^*})$. If $d_K = -4n$ for n > 0, then

$$M = M^* = \begin{cases} \mathbb{Q}(\sqrt{-1}, \sqrt{p_1^*}, \dots, \sqrt{p_r^*} & n \equiv 1 \bmod 4, \\ \mathbb{Q}(\sqrt{-2}, \sqrt{p_1^*}, \dots, \sqrt{p_r^*} & n \equiv 2 \bmod 8, \\ \mathbb{Q}(\sqrt{2}, \sqrt{p_1^*}, \dots, \sqrt{p_r^*} & n \equiv 6 \bmod 8. \end{cases}$$

To describe the image of Galois groups under the map with genera classes as the target, the Artin map is in need. Denote $K_i = K(\sqrt{p_i^*})$. The Artin reciprocity map has a post-composition

$$\left(\frac{M/K}{\cdot}\right): I_K \to \operatorname{Gal}(M/K) \to \prod_{i=1}^r \operatorname{Gal}(K_i/K) \simeq \{\pm 1\}^r$$

where M is the genus field of K. It induces

$$\Phi_K: I_K \longrightarrow \{\pm 1\}^r.$$

Claim: for each fractional ideal $\mathfrak{a} \subseteq \mathcal{O}_K$,

$$\Phi_K(\mathfrak{a}) = \left(\left(\frac{N(\mathfrak{a})}{p_1} \right), \dots, \left(\frac{N(\mathfrak{a})}{p_r} \right) \right).$$

For this, it suffices to show for each $\mathfrak{p} \subseteq \mathcal{O}_K$ prime that

$$\left(\frac{K_i/K}{\mathfrak{p}}\right)(\sqrt{p_i^*}) = \left(\frac{N(\mathfrak{p})}{\mathfrak{p}}\right)\sqrt{p_i^*}$$

for i = 1, ..., r. Suppose $\mathfrak{p} \nmid 2$ and $\mathfrak{q} \mid \mathfrak{p}$. Then

$$\left(\frac{K_i/K}{\mathfrak{p}}\right)(\sqrt{p_i^*}) \equiv (\sqrt{p_i^*})^{N(\mathfrak{p})} = (p_i^*)^{\frac{N(\mathfrak{p})-1}{2}} \sqrt{p_i^*} \bmod \mathfrak{q}.$$

If $N(\mathfrak{p}) = p$, then

$$(p_i^*)^{\frac{N(\mathfrak{p})-1}{2}} \equiv \left(\frac{p_i^*}{p}\right) = \left(\frac{p}{p_i^*}\right)$$

by quadratic reciprocity as $p_i^* \equiv 1 \bmod 4$. Otherwise $N(\mathfrak{p}) = p^2$, and then

$$(p_i^*)^{\frac{N(\mathfrak{p})-1}{2}} \equiv \left(\frac{p^2}{p_i^*}\right) = \left(\frac{p}{p_i^*}\right)^2 = 1.$$

This almost finishes the proof of (3). The remaining details are omitted.

School of Mathematical Sciences, Peking University, 100871, Beijing, China $\it Email\ address$: daiwenhan@pku.edu.cn