

计分项目	报告分数	课堂表现	总分
分值	70	30	100
得分			

姓名: 应逸雯 陈薇羽 学号: 12210159 12210460 实验日期: 5.29

555 时基电路

1. 实验目的

- ▶ 掌握 555 时基电路的结构和工作原理、学会对此芯片的正确使用;
- ▶ 学会分析和测试用 555 时基电路构成的多谐振荡器、单稳态触发器、R-S 触发器等三种典型电路。

2. 实验器材

序号	名 称	型号与规格	数 量	备 注
1	直流稳压电源	DP1308A	1	
2	数字示波器	TDS2012C	1	
3	函数信号发生器	DG1022	1	
4	模电数电综合实验箱	TPE-ADII	1	
5	元器件	NE556 双时基电路 1片, 二极管 1N4148 2只, 电位器 20K、1K 2只	5	

3. 实验内容

3.1 555 时基电路功能测试

本实验所用的 555 时基电路芯片为 NE556,同一芯片上集成了两个各自独立的 555 时基电路,各管脚的功能描述如下:

THRES 高电平触发端: 当 THRES 端电平大于 2/3Vcc, 输出端 OUT 呈低电平, DISCH 端导通。

TRIG 低电平触发端: 当 TRIG 端电平小于 1/3Vcc, OUT 呈高电平, DISCH 端

关断。

RESET 复位端: 低电平时输出端 OUT 输出低电平, DISCH 端导通。

CONT 控制电压端:接不同的电压值可以改变 THRES 和 TRIG 的触发电平值。

DISCH 放电端: 其导通或关断为 RC 回路提供了放电或充电的通路。

OUT: 输出端。

FUNCTION TABLE (each timer)

RESET	TRIGGER VOLTAGET	THRESHOLD VOLTAGET	OUTPUT	DISCHARGE SWITCH
Low	Irrelevant	Irrelevant	Low	On
High	< 1/3 V _{DD}	Irrelevant	High	Off
High	> 1/3 V _{DD}	> 2/3 V _{DD}	Low	On
High	> 1/3 V _{DD}	< 2/3 V _{DD}	As previously established	

[†] Voltage levels shown are nominal.

按如下图示接线

按照功能表逐项测试基本功能。

无论原来输出的情况, S1 复位,输出为 0V。

S1 置位, 电路正常工作: R2 小于 1/3VCC, 输出为 5V。保持 R3 小于 2/3VCC, 增大 R2 至 大于 1/3VCC, 输出仍为 5V。保持 R2 大于 1/3VCC, 当 R3 大于 2/3VCC 时, 输出为 0V。减小 R3 至小于 2/3VCC, 输出仍为 0V。

验证 LM556CM 功能符合其功能表。

3.2 555 时基电路构成的多谐振荡器

1) 按如图示接线,图中元件参数如下: $R_1 = 15K\Omega$, $R_2 = 5K\Omega$,

 $C_1 = 0.22 \mu F(224)$, $C_2 = 0.1 \mu F$,用示波器观察并测量OUT端波形的频率,并计算频率的理论值以及相对误差。

理论值: f= 257.624Hz; 实测值: f=258.398Hz; 相对误差: 0.3%

2) 若将电阻值改为 $R_1 = 15K\Omega$, $R_2 = 10K\Omega$,电容不变,记录测试的波形频率,同时计算理论值及相对误差。

理论值: f= 184.017Hz; 实测值: f=182.050Hz; 相对误差: 1.06%

3) 根据上述电路的原理,充电回路的支路是 $R_1R_2C_1$,放电回路的支路是 R_2C_1 ,将电路略作修改,增加一个电位器 R_p 和两个引导二极管,构成 如下图所示的占空比可调的多谐振荡器。其占空比为 $q=\frac{R_1}{R_1+R_2}$,改变 电位器的位置,可调节 q 值。合理选择元件参数(电位器选用20 $K\Omega$),使电路的占空比 q=0.2,正脉冲宽度为0.2ms,调试电路。并记录所用 元件的数值: $R_1=25053.9\Omega$ _________; $R_2=142415.6\Omega$ ________; $C_1=10$ nF______。

仿真的方法来实现,下面附上仿真电路及示波器输出波形图;

X pos.(Div): 0

Y/T Add B/A A/B

Y pos.(Div): 0

AC 0 DC

Level:

٧

Single Normal Auto None

Y pos.(Div): 0

AC 0 DC

3.3 555构成的单稳态触发器

- 1) 按图接线,V1是频率约为2KHz,占空比为80%左右的方波时,用示波器 观察0UT端相对于V1的波形,并测出输出脉冲的宽度 $T_w = _112.36$ us_
- 2)调节V1的频率,记录观察到的输入、输出端波形的频率和脉冲宽度 T_w ,得出相关结论。

输入信号	输入信号	输入信号	输出信号
频率	周期时间	脉冲宽度	脉冲宽度
1kHz	1ms	0.8ms	224.719 us
2kHz	0.5ms	0.4ms	112.36 us
5kHz	0.2ms	0.16ms	112.36 us
6kHz	0.166ms	0.133ms	112.36 us
8kHz	0.125ms	0.1ms	112.36 us
15kHz	0.066ms	0.053ms	112.36 us
20kHz	0.05ms	0.04ms	218.477 us

通过以上结果你得到了什么结论?

a)在一定范围内, 无论输入信号的频率如何变化, 输出信号的脉冲宽

度始终保持在110μs左右。这是因为在单稳态模式下,555定时器的输出脉冲宽度仅由电阻R和电容C决定,与输入信号的频率无关。

- b)输入信号频率过大时(如20kHz),输入信号的低电平时间明显小于输出信号的脉冲宽度,输出脉冲可能会出现重叠问题,输出脉冲的频率不能稳定对应输入信号频率。
- c)如果输入信号的低电平时间远远超过输出脉冲的宽度(如1kHz),当输入信号仍然保持低电平且此时输出脉冲结束,555定时器可能会被再次触发,产生另一个输出脉冲,导致测试得到的输出脉冲宽度变长。
- 3) 若要想使 $T_w = 10 \mu s$,怎样调整电路?测出此时的各有关参数值。

如图所示, $R1=910\Omega$,C1=10nF,输入信号f=20kHz(或其他合理范围的数值)。