Mandarin-English Code-switching Speech Recognition with Self-supervised Speech Representation Models

Outline

Introduction

- What is code-switching(CS)
- Difficulties in CS ASR
- The advantage of using SSS representation

Methods

- Extracting speech representation from SSL model
- CTC module for CS ASR
- LID module for CS language identity
- CTC-LID Jointly framework

Experiments

Introduction

What is Code-switching (CS)?

Alternating between two or more languages in speech.

我目前正在做 Self-supervised learning 相關的 research.

*Orange: Mandarin

*Blue: English

We mainly focus on Mandarin-English code-switching, which is quite common in East Asia or South-East Asia

Difficulties of Code-switching(CS) ASR

Self-supervised Speech Representations...?

Methods

Extract Self-supervised Speech(SSS) Representations

We use wav2vec 2.0
Not only because it is powerful...

Model	Layers	Data (hr)	Languages
Base	12	960	1 (EN)
Large	24	60k	1 (EN)
XLSR	24	56k	53

But also because it provides Multi-lingual / Mono-lingual models pre-trained with similar amount of data

CTC module for Code-switching(CS) ASR

This is a simple CTC framework but with SSS representations as input.

Verifying language identity(LID) in CS speech

Besides of CS ASR, verifying language Identity(**LID**) is also considered as a common technique to help tackling CS problems.

⇒ We want to investigate the effectiveness of SSS representations on LID task.

*Frame-level LID!

Three classes:

Mandarin English

Silence

LID module for Code-switching(CS) Language Identity

Calculate Cross Entropy loss on frame-level LID predictions

Use Fully Connected network(FC) to see how easy LID task is with the SSS representations

The framework is very Similar with the CTC module

The CTC module and the LID module

Directly multiply LID probs to CTC probs (Li et al. 2019)

Add LID logits to CTC logits and jointly train (proposed)

Experiments

Data

- SEAME corpus : A Mandarin-English Code-switching Dataset
- Language distribution:

Testing sets

	train	val	dev-man	dev-sge
Duration (hours)	93.0	4.7	7.5	4.0
Mandarin	23.4%	23.7%	23.5%	9.8%
English	21.4%	21.1%	11.2%	48.7%
Code-switching	55.1%	55.2%	65.3%	41.5%
				1
			Mandarin Dominant	English Dominant

Data - How to Form LID labels

Use word segments to label LID in frame-level, then save the LID labels.

CS ASR with only CTC module but different inputs

Token Error Rate(TER):

Similar to WER but compute on

Tokens(Mandarin characters and

English words, in our scenario). TER(%) on SEAME testing sets

•	Method	dev-man	dev-sge
Traditional •	(a) fbank	29.4	40.8
SSS representation from different wav2vec 2.0 models	(c) Base (e) Large (h) XLSR	20.8 19.8 19.4	30.8 29.7 28.8

Outperformed fbank by over 30% relative TER.

Multi-lingual pre-trained model gives the best performance.

CS LID with different models and inputs

Accuracy (%) of LID on SEAME testing sets

	Method	dev-man	dev-sge
•	(a) fbank + FC	59.4	37.7
	(b) fbank + BLSTM	84.7	82.3
*FC: Fully Connected	(c) Base + FC	75.0	68.5
Tully Conflected	(d) Base + BLSTM	91.9	89.5
*BLSTM:	(e) Large + FC	77.9	71.8
Bidirectional LSTM	(f) Large + BLSTM	92.3	89.9
	(g) XLSR + FC	76.4	69.7
	(h) XLSR + BLSTM	92.7	90.0

Even the simple FC prediction head can score high accuracy

Highest accuracy when using the representation from the multi-lingual pretrained model

Jointly Training - Results

Only CTC module

Directly decode by multiplying LID probs to CTC probs (Li et al. 2019)

TER(70) On SEPRIVIE testing sets				
Method	dev-man	dev-sge		
(I) CTC only				
(a) Large	19.8	29.7		
(b) XLSR	19.4	28.8		
(III) CTC-LID (directly decode)				
(c) Large	20.9	31.3		
(d) XLSR	20.2	29.9		
(III) CTC-LID (jointly finetune)				
(e) Large	19.9	29.8		

18.8

28.5

(f) XLSR

TER(%) on SEAME testing sets

Add LID logits to CTC logits then jointly finetune (proposed)

The Mandarin word "不" is wrong but it still cannot be brought down by directly multiplying LID probabilities to it.

LID -----
$$\phi$$

LID ----- Eng tokens

The probability of the Mandarin word "要" is compressed by the misalignment between the CTC and the LID outputs.

LID
$$<$$
Man $>$ ——— Man tokens ———— ϕ LID $<$ Eng $>$ ——— Eng tokens

Conclusion

- Self-supervised Speech Representations performs well on code-switching tasks
- Multi-lingual pre-trained model gives better performance on our codeswitching tasks
- Proposed a method to boost CS-ASR performance by jointly training with LID module

More details can be found in our paper Thanks for Listening!

Paper:

Contact:

