Le problème du relèvement pour des fonctions à valeurs dans une variété, ou comment décrire un point du cercle par un angle

Antoine DETAILLE

Le 13 février 2023

- Pourquoi des applications à valeurs dans une variété?
- Le problème du relèvement
- Avec quelles applications travaille-t-on?
- Quelques résultats et idées

- Pourquoi des applications à valeurs dans une variété?
- 2 Le problème du relèvement
- 3 Avec quelles applications travaille-t-on?
- 4 Quelques résultats et idées

Des applications en physique

FIGURE - Cristaux liquides nématiques

Comment décrire un champ de cristaux liquides dans $\Omega \subset \mathbb{R}^3$?

$$u\colon \Omega \to \mathbb{R}^3$$

$$u: \Omega \to \mathbb{R}^3$$
 ? $u: \Omega \to \mathbb{S}^2$? $u: \Omega \to \mathbb{RP}^2$?

Des applications en physique

FIGURE - Cristaux liquides nématiques

Comment décrire un champ de cristaux liquides dans $\Omega \subset \mathbb{R}^3$?

$$u \colon \Omega \to \mathbb{R}^3$$

$$u \colon \Omega \to \mathbb{S}^3$$

$$u: \Omega \to \mathbb{R}^3$$
 ? $u: \Omega \to \mathbb{S}^2$? $u: \Omega \to \mathbb{RP}^2$?

Des applications en physique

FIGURE - Cristaux liquides nématiques

Comment décrire un champ de cristaux liquides dans $\Omega \subset \mathbb{R}^3$?

$$u \colon \Omega \to \mathbb{R}^3$$

$$u: \Omega \to \mathbb{S}^2$$

$$u: \Omega \to \mathbb{R}^3$$
 ? $u: \Omega \to \mathbb{S}^2$? $u: \Omega \to \mathbb{RP}^2$?

Des applications en méthodes numériques

Voir le projet *Hextreme* : www.hextreme.eu.

- Pourquoi des applications à valeurs dans une variété?
- Le problème du relèvement
- 3 Avec quelles applications travaille-t-on?
- Quelques résultats et idées

Le théorème du relèvement pour les applications continues

Théorème

Soit $\Omega \subset \mathbb{R}^m$ un domaine simplement connexe. Pour toute $u \colon \Omega \to \mathbb{S}^1$ continue, il existe $\theta \colon \Omega \to \mathbb{R}$ continue telle que $u = e^{i\theta}$.

- 1 Pourquoi des applications à valeurs dans une variété?
- Le problème du relèvement
- Avec quelles applications travaille-t-on?
- Quelques résultats et idées

Espaces de Sobolev

$$\int_{\Omega} u \partial_{x_i} \varphi = -\int_{\Omega} v \varphi \quad \text{pour tout } \varphi \in C_{\rm c}^{\infty}(\Omega).$$

$$\int_{\Omega} |u|^p < +\infty \quad \text{et} \quad \int_{\Omega} |\partial_{x_i} u|^p < +\infty \quad \text{pour tout } i \in \{1, \dots, m\}.$$

Espaces de Sobolev

Définition

Soient u intégrable et $i \in \{1, ..., m\}$. On dit que v est la i-ième dérivée partielle faible de u, et on note $v = \partial_{x_i} u$, lorsque

$$\int_{\Omega} u \partial_{x_i} \varphi = -\int_{\Omega} v \varphi \quad \text{pour tout } \varphi \in C_{\rm c}^{\infty}(\Omega).$$

Définition

On dit que $u \in W^{1,p}(\Omega)$ lorsque u admet des dérivées partielles faibles avec

$$\int_{\Omega} |u|^p < +\infty \quad \text{et} \quad \int_{\Omega} |\partial_{x_i} u|^p < +\infty \quad \text{pour tout } i \in \{1, \dots, m\}.$$

Espaces de Sobolev

Définition

Soient u intégrable et $i \in \{1, ..., m\}$. On dit que v est la i-ième dérivée partielle faible de u, et on note $v = \partial_{x_i} u$, lorsque

$$\int_{\Omega} u \partial_{x_i} \varphi = -\int_{\Omega} v \varphi \quad \text{pour tout } \varphi \in C_{\rm c}^{\infty}(\Omega).$$

Définition

On dit que $u \in W^{1,p}(\Omega)$ lorsque u admet des dérivées partielles faibles avec

$$\int_{\Omega} |u|^p < +\infty \quad \text{et} \quad \int_{\Omega} |\partial_{x_i} u|^p < +\infty \quad \text{pour tout } i \in \{1, \dots, m\}.$$

L'injection de Morrey-Sobolev

Théorème (Morrey-Sobolev)

Si p > m ou p = 1 = m, on a $W^{1,p}(\Omega) \subset C^0(\overline{\Omega})$. Autrement dit, toute $u \in W^{1,p}(\Omega)$ est continue sur $\overline{\Omega}$.

Espaces de Sobolev à valeurs dans une variété

Définition

L'espace $W^{1,p}(\Omega; \mathbb{S}^1)$ est l'ensemble des $u: \Omega \to \mathbb{S}^1$ telles que $u \in W^{1,p}(\Omega; \mathbb{R}^2)$.

- Pourquoi des applications à valeurs dans une variété?
- 2 Le problème du relèvement
- 3 Avec quelles applications travaille-t-on?
- Quelques résultats et idées

Le problème du relèvement pour les applications de Sobolev

Problème

Soit $u \in W^{1,p}(\Omega; \mathbb{S}^1)$. Existe-t-il $\theta \in W^{1,p}(\Omega; \mathbb{R})$ telle que $u = e^{i\theta}$?

Obstruction topologique

Soit $1 \le p < 2$. L'application $u \in W^{1,p}(\mathbb{B}^2; \mathbb{S}^1)$ définie par

$$u(x) = \frac{x}{|x|}$$

ne se relève pas en une application $\theta \in W^{1,p}(\mathbb{B}^2;\mathbb{R})$.

Un résultat positif

Théorème (Bethuel-Zheng)

Si Ω est simplement connexe et $2 \le p < +\infty$, alors pour toute $u \in W^{1,p}(\Omega; \mathbb{S}^1)$, il existe $\theta \in W^{1,p}(\Omega; \mathbb{R})$ telle que $u = e^{i\theta}$.

Merci de votre écoute!

