Time Series HW 2

Allison Theobold, Andrea Mack (Answers checked with Meryl Storb & Katie Fogg)

September 9, 2016

```
## Allison's code
rawbozemandata <- read.csv("https://dl.dropboxusercontent.com/u/77307195/rawbozemandata.csv",
                            header = T)
library(dplyr, quietly = T)
library(zoo, quietly = T)
rawd <- tbl_df(rawbozemandata) %>%
  mutate(DATE = as.yearmon(as.character(DATE), "%Y%m"))
rawd2 <- mutate(rawd, YEAR = as.numeric(format(DATE, "%Y"))) %>%
  mutate(MONTH = as.factor(format(DATE, "%m")))
rawd2 <- mutate(rawd2, YEARFRAC = YEAR + (as.numeric(MONTH) - 1)/12)</pre>
## Andrea's code
setwd("C:/Users/Andrea Mack/Desktop/mack_hub/course_work/Time Series/Homework/HW2")
rawbozemandata <- read.csv("rawbozemandata.csv", stringsAsFactors = FALSE)
rawd <- NULL
rawd <- data.frame(rawbozemandata)</pre>
rawd$year <- as.numeric(substring(rawd$DATE, 1,4))</pre>
rawd$month <- as.numeric(substring(rawd$DATE, 5,6))</pre>
rawd$month.dec <- rawd$month/12</pre>
rawd$date.new <- rawd$year + rawd$month.dec</pre>
rawd$month <- month.abb[((rawd$month))]</pre>
rawd$temp <- rawd$MMXT
```

1.

The model using the linear time trend for year and month is:

```
\widehat{temp_i} = -69.2902 + 0.0517 \; \text{Year}_i + 3.7058 \; \text{I(February)} + 11.198 \; \text{I(March)} + 21.9902 \; \text{I(April)} + \\ 31.2412 \; \text{I(May)} + 39.7299 \; \text{I(June)} + 49.5908 \; \text{I(July)} + 48.496 \; \text{I(August)} + 37.6638 \; \text{I(September)} + \\ 25.8609 \; \text{I(October)} + 10.3582 \; \text{I(November)} + 1.7802 \; \text{I(December)}
```

2.

The model for January is as follows:

$$\widehat{temp_i} = -69.2902 + 0.0517 \text{ Year}_i$$

The model for July is as follows:

$$\widehat{temp_i} = -19.6994 + 0.0517 \text{ Year}_i$$

3.

It appears that December and November average temperatures have not changed much from 1900 to 2015, while January and March appear to have the most substantial increases over the 115 year period. It appears that average monthly temperature increased about 5 $^{\circ}$ F over the 115 years, which is quite similar to the average rate of increase we discussed in the Oregon State temperature data in class.

4.

Below is the ANOVA table for testing if the the effect of time differs by month, using Type II sums of squares. We see in the table that there is strong evidence that the relationship between time and the mean temperature differs by month (F-stat = 2.1295 on an F(11, 1350) distribution, p-value = 0.016).

Table 1: Anova Table (Type II tests)

	$\operatorname{Sum}\operatorname{Sq}$	Df	F value	$\Pr(>F)$
YEAR	4108	1	196.1	1.034e-41
MONTH	408393	11	1773	0
YEAR:MONTH	490.6	11	2.129	0.01603
Residuals	28276	1350	NA	NA

5.

```
01 02 03 04 05 06 07 08 09 10 11 12 "a" "b" "c" "d" "f" "h" "i" "i" "g" "e" "c" "ab"
```

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = MMXT ~ YEAR + MONTH, data = rawd2)

Quantile = 3.2712 95% family-wise confidence level

Linear Hypotheses:

					Estimate	lwr	upr
02	-	01	==	0	3.70575	1.72673	5.68477
03	-	01	==	0	11.19799	9.21897	13.17701
04	-	01	==	0	21.99024	20.01122	23.96925
05	-	01	==	0	31.24123	29.25793	33.22453
06	-	01	==	0	39.72992	37.74662	41.71322
07	-	01	==	0	49.59080	47.59871	51.58289
80	-	01	==	0	48.49598	46.50831	50.48365
09	-	01	==	0	37.66381	35.67177	39.65586
10	-	01	==	0	25.86088	23.87325	27.84852
11	-	01	==	0	10.35817	8.37049	12.34585
12	-	01	==	0	1.78021	-0.21184	3.77227
03	-	02	==	0	7.49224	5.51752	9.46696
04	-	02	==	0	18.28448	16.30976	20.25920
05	-	02	==	0	27.53548	25.55647	29.51449
06	-	02	==	0	36.02417	34.04516	38.00318
07	-	02	==	0	45.88505	43.89725	47.87285
80	-	02	==	0	44.79023	42.80685	46.77360
09	-	02	==	0	33.95806	31.97028	35.94585
10	-	02	==	0	22.15513	20.17176	24.13850
11	-	02	==	0	6.65242	4.66904	8.63579
12	-	02	==	0	-1.92554	-3.91332	0.06225
04	-	03	==	0	10.79224	8.81752	12.76696
05	-	03	==	0	20.04323	18.06422	22.02224
06	-	03	==	0	28.53193	26.55292	30.51094
07	-	03	==	0	38.39281	36.40501	40.38061
80	-	03	==	0	37.29798	35.31461	39.28136
09	-	03	==	0	26.46582	24.47803	28.45361
10	-	03	==	0	14.66289	12.67952	16.64625
11	-	03	==	0	-0.83982	-2.82320	1.14355
12	-	03	==	0	-9.41778	-11.40556	-7.42999
05	-	04	==	0	9.25099	7.27198	11.23000
06	-	04	==	0	17.73969	15.76068	19.71870
07	-	04	==	0	27.60056	25.61277	29.58836
80	-	04	==	0	26.50574	24.52237	28.48912
09	-	04	==	0	15.67358	13.68579	17.66137

```
10 - 04 == 0
               3.87065
                         1.88728
                                    5.85401
11 - 04 == 0 -11.63206 -13.61544
                                  -9.64869
12 - 04 == 0 -20.21002 -22.19781 -18.22224
06 - 05 == 0
                         6.50541
               8.48870
                                   10.47198
07 - 05 == 0
              18.34957
                        16.35752
                                   20.34163
08 - 05 == 0
              17.25475
                        15.26711
                                   19.24239
09 - 05 == 0
               6.42259
                         4.43054
                                    8.41463
10 - 05 == 0
             -5.38035
                        -7.36798
                                  -3.39271
11 - 05 == 0 -20.88306 -22.87070 -18.89541
12 - 05 == 0 - 29.46101 - 31.45306 - 27.46897
07 - 06 == 0
               9.86088
                         7.86882
                                  11.85293
08 - 06 == 0
               8.76605
                         6.77841
                                   10.75370
09 - 06 == 0 -2.06611
                        -4.05816
                                  -0.07406
10 - 06 == 0 -13.86904 -15.85668 -11.88140
11 - 06 == 0 -29.37175 -31.35940 -27.38411
12 - 06 == 0 -37.94971 -39.94175 -35.95766
08 - 07 == 0 -1.09482 -3.09119
                                    0.90155
09 - 07 == 0 -11.92699 -13.92777
10 - 07 == 0 -23.72992 -25.72632 -21.73352
11 - 07 == 0 -39.23263 -41.22900 -37.23626
12 - 07 == 0 -47.81059 -49.81136 -45.80981
09 - 08 == 0 -10.83216 -12.82855
10 - 08 == 0 -22.63510 -24.62709 -20.64311
11 - 08 == 0 -38.13781 -40.12978 -36.14584
12 - 08 == 0 - 46.71576 - 48.71214 - 44.71939
10 - 09 == 0 -11.80293 -13.79930 -9.80656
11 - 09 == 0 -27.30564 -29.30204 -25.30925
12 - 09 == 0 -35.88360 -37.88437 -33.88284
11 - 10 == 0 - 15.50271 - 17.49470 - 13.51072
12 - 10 == 0 - 24.08067 - 26.07704 - 22.08429
12 - 11 == 0 -8.57796 -10.57434 -6.58158
```

Using the above compact letter display, we see that the following months are not detectably different from each other, after accounting for the linear relationship between average temperatures and year.

- January and December
- February and December
- November and March

Overall, there is strong evidence that August and July were the warmest months on average and after accounting for yearly temperature changes. There was strong evidence that June was the next warmest, followed by September, then May, then October, then April, then March, and then November on average and after accounting for yearly temperature changes. There is strong evidence that December and February were the coolest months on average and after accounting for yearly temperature changes with no evidence of a difference between January and December under similar model conditions.

6.

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-316	477	-0.663	0.507
MONTH02	3.71	0.605	6.13	1.18e-09

	Estimate	Std. Error	t value	Pr(> t)
MONTH03	11.2	0.605	18.5	2.24e-68
MONTH04	22	0.605	36.3	1.24e-202
${\bf MONTH05}$	31.2	0.606	51.5	6.32e-322
MONTH06	39.7	0.606	65.5	0
MONTH07	49.6	0.609	81.4	0
MONTH08	48.5	0.608	79.8	0
MONTH09	37.7	0.609	61.8	0
MONTH10	25.9	0.608	42.6	3.03e-252
MONTH11	10.4	0.608	17	3.5e-59
MONTH12	1.78	0.609	2.92	0.00354
\mathbf{YEAR}	0.304	0.487	0.624	0.533
I(YEAR^2)	-6.45e-05	0.000125	-0.518	0.604

Testing for evidence of a quadratic relationship between average temperatures and year, after accounting for monthly variation and a linear year trend, we have the following hypothesis:

$$H_0:\beta_{year^2}=0\ H_A:\beta_{year^2}\neq 0$$

Using the above model output, there is no evidence of a quadratic relationship between average temperatures and year, after accounting for monthly variation and a linear year trend (t-stat = -0.518 $\sim t_{1360}$, p-value = 0.604).

7.

The monthly discreteness is apparent in the clumps in the residuals vs. fitted plot. It does appear that there is less spread in the larger fitted values than the smaller. Hence, the fitted values for the summer months show less variability than the fitted values for the cooler months. We also note the scale of the residuals, with residuals near -20 occurring in the cooler months. Observation 441, a January measurement in 1937 with a MMXT of 10.3, differs from all other January measurements by nearly 10 units.

8.

```
## Allison's R Version
getRversion()
```

[1] '3.3.1'