(Shifted) (Inverse) Power Method

- Mathe 3 (CES)
- WS20
- Lambert Theisen (theisen@acom.rwth-aachen.de)

```
using LinearAlgebra, PlutoUI, Plots, PrintfPlots.PlotlyBackend()plotly()
```

Define some Matrices

```
A = 3 \times 3 \text{ Array} \{ \text{Int64,2} \}:
      25 -89 68
      -26 148 -52
           77 -29
      -10
 • A = [
        25 -89 68
        -26 148 -52
        -10 77 -29
B = 3 \times 3 \text{ Array} \{ \text{Int64,2} \}:
      -139 -85 -125
            -64 -178
       182
      -117 -105
 • B = [
        -139 -85 -125
        182 -64 -178
        -117 -105 79
   1
```

Define the Rayleigh Quotient

$$ho_A(x) := rac{x^T A x}{x^T x}$$

```
ρ (generic function with 1 method)
• function ρ(A, x) # Rayleigh quotient
• return x' * A * x / (x' * x)
• end
```

Construct Error History Object

This is used to store all the errors for later plotting.

```
struct Errorhistoryerrors :: Array{Float64}end
```

Define the Power Method Algorithm

```
1. Given A\in\mathbb{R}^n 2. Choose start vector x_0\in\mathbb{R}\setminus\{0\} 3. While k< k_{\max}\wedge \operatorname{error}>\operatorname{tol}\operatorname{do} 1. x_{k+1}=\frac{Ax_k}{||Ax_k||_2} 2. \lambda_{k+1}=\rho_A(x_{k+1})
```

4. Return estimated eigenpair (λ_k, x_k)

PM (generic function with 1 method)

```
function PM(A, x0; maxit = 100, tol = 1E-10) # Power Method

x = x0
k = 0
residual = Inf

λ = nothing
eh = Errorhistory([])
while k <= maxit && norm(residual) > tol

x = A * x
x = x / norm(x)
λ = ρ(A, x)
residual = A * x - λ * x # if λ exact => residual = zeros(n)
push!(eh.errors, norm(residual))
```

Execute PM

end

Will converge to largest eigenpair.

return (λ, x, eh)

Residual Error

The normed error of the residual $e=||x_k-x^*||_2$ is in $\mathcal{O}(q^k)$ with the eigenvalue ratio $q=\lambda_1/\lambda_2$ of the considered matrix.


```
• plot([pm[3].errors, [1 * abs(eigvals(A)[end-1] / eigvals(A)[end])^i for i = 1 :
    size(pm[3].errors)[1]]], yaxis=:log, title="PM: Norm of Residual", label=["norm(res,
2)" "O(q^i)=O($(@sprintf("%.2f", abs(eigvals(A)[end-1] / eigvals(A)[end])))^i)"])
```

Comparison of Matrices with Different Fundamental Ratios

- Matrix B has ratio q = 0.9718253158075516

Therefore, much faster converge for A.

Oscillations probably due to $|\lambda_3| = |\lambda_2|$ $\center{9}$.


```
plot(map(X -> PM(X, ones(3), maxit=500)[3].errors, [A, B]), yaxis=:log, label=["A"
"B"], title="Residual errors A vs B")
```

Define the (Shifted) Inverse Power Method Algorithm

```
1. Given A \in \mathbb{R}^n and eigenvalue shift \mu
2. Choose start vector x_0 \in \mathbb{R} \setminus \{0\}
3. While k < k_{\max} \wedge \operatorname{error} > \operatorname{tol} \operatorname{do}
1. Solve: (A - \mu I)x_{k+1} = x_k (this is like x_{k+1} = (A - \mu I)^{-1}x_k)
2. Normalize: x_{k+1} \mapsto x_{k+1}/||x_{k+1}||_2
3. Update eigenvalue estimate (with initial matrix A, not A^{-1}): \lambda_{k+1} = \rho_A(x_{k+1})
4. Return estimated eigenpair (\lambda_k, x_k)
```

IPM (generic function with 1 method)

```
function IPM(A, x0; shift = 0, maxit = 100, tol = 1E-10) # Inverse Power Method

x = x0
i = 0
residual = Inf
λ = nothing
eh = Errorhistory([])
while i <= maxit && norm(residual) > tol
x = (A - shift * I(size(A)[2])) \ x
x = x / norm(x)
λ = ρ(A, x)
residual = A * x - λ * x
push!(eh.errors, norm(residual))
i += 1
end
```

```
return (λ, x, eh)end
```

Execute IPM to find the Smallest Eigenpair

```
ipm =
  (-9.0, Float64[-0.894427, 1.01683e-12, 0.447214], Errorhistory(Float64[8.21361, 30.0
    ipm = IPM(A, ones(3))
```

Check the Error

```
6.139266872651206e-11

• abs(ipm[1] - eigvals(A)[1])
```

Check the Convergence Behavior for Different Shifts

Notice that better shifts significantly improve the performance of the algorithm. Shift eight and ten are the same because they have the same absolute distance to the real eigenvalue.

```
shifts = 0:-2:-10

• # Compare zeros shift with good estimation
• shifts = 0:-2:-10 # real lowest eval is -9
```


• plot(map(X -> IPM(A, ones(3), tol=1E-5, shift=X)[3].errors, shifts), yaxis=:log,
label=reshape(map(x -> string("shift=", x), shifts), 1, :), title="Residual Errors A
with different shifts")