

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Метод построения поисковых индексов в реляционной базе данных на основе глубоких нейронных сетей

Студент: Маслова Марина Дмитриевна ИУ7-83Б

Руководитель: Оленев Антон Александрович

Индексы

Индекс — это некоторая структура, обеспечивающая быстрый поиск записей в базе данных за счет определения соответствия ключа конкретной записи положению этой записи.

Цель и задачи

Цель: разработка метода построения поисковых индексов в реляционной базе данных на основе глубоких нейронных сетей и его программная реализация.

Задачи:

- проанализировать методы построения индексов;
- разработать метод построения индексов в реляционной базе данных на основе глубоких нейронных сетей;
- разработать программное обеспечение, реализующее данный метод;
- исследовать операции поиска и вставки с использованием индекса, построенного разработанным методом.

Построение индексов и машинное обучение

Классические структуры индексов: В-деревья, хеш-таблицы, битовые карты, — могут быть заменены моделями машинного обучения.

Сравнение методов построения индексов

Критерий сравнения		Классические индексы			Обученные
		В-дерево	Хеш-таблица	Фильтр Блума	индексы
Временная сложность	поиска	O(log N)	O(1) / O(N)	O(k)	O(1) / O(N)
	вставки	O(log N)	O(1) / O(N)	O(k)	(*)
Память		Высокая	Средняя	Низкая	Средняя
Поиск в диапазоне		+	-	-	+
Поиск единичного ключа		+	+	-	+
Проверка существования		+	+	+	+

^(*) — вставка в обученный индекс требует переобучения, сложность которого зависит от архитектуры используемой модели машинного обучения.

5

Метод построения поисковых индексов

Предварительная обработка данных

Нормализация ключей диапазон [0,1] по формуле:

$$x_{\text{норм}} = \frac{x - x_{\text{мин}}}{x_{\text{макс}} - x_{\text{мин}}},$$

производится

где $x_{\text{норм}}$ — нормализованное значение ключа; x — натуральное значение ключа; $x_{\text{мин}}$, $x_{\text{макс}}$ — минимальное и максимальное значение ключа в наборе соответственно.

Вычисление значений функции распределения

Значение функции $\mathfrak{L}_{0.5}$ распределения определяется по позиции ключа по формуле:

$$F(K) = \frac{p}{N},$$

где F(K) — функция распределения; K — нормализованный ключ; p — позиция ключа; N — количество ключей.

Архитектура нейронной сети

1 вход: нормализованный ключ K. 1 выход: значение функции распределения F(K). 2-3 скрытых слоя по 32 нейрона. Функция активации: ReLU.

Применение метода: поиск

Применение метода: вставка

Структура программного обеспечения

Зависимость времени построения и размера индекса от количества ключей

Зависимость времени поиска и средней абсолютной ошибки от количества ключей

Зависимость времени этапов поиска от количества ключей и распределение средней абсолютной ошибки

Зависимость времени поиска и вставки от количества ключей в сравнении с классическим индексом

Заключение

Разработан и реализован метод построения поисковых индексов в реляционной базе данных на основе глубоких нейронных сетей для чего:

- проанализированы методы построения индексов;
- разработан метод построения индексов в реляционной базе данных на основе глубоких нейронных сетей;
- разработано программное обеспечение, реализующее данный метод;
- проведено исследование операций поиска и вставки с использованием индекса, построенного разработанным методом.

Дальнейшее развитие

- 1. Оптимизация алгоритма вставки с учетом распределения ключей.
- 2. Добавление возможности построения индекса по ключам других типов данных.
- 3. Построение многомерных обученных индексов.