Chapter 2

Introduction to Quantum Mechanics

1 Linear Algebra

We consider vectors $|\psi\rangle \in V = \mathbb{C}^n$.

1.1 Bases and linear independence

• A spanning set for V is a set of vectors $\{|v_1\rangle, \dots, |v_n\rangle\}$ such that $|v\rangle = \sum_i a_i |v_i\rangle$ for any $|v\rangle \in V$.

V may have many different spanning sets. E.g., for \mathbb{C}^2

$$|v_1\rangle \equiv \begin{pmatrix} 1\\0 \end{pmatrix}, |v_2\rangle \equiv \begin{pmatrix} 0\\1 \end{pmatrix}$$

and

$$|v_1\rangle \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \quad \frac{1}{\sqrt{2}} |v_2\rangle \equiv \begin{pmatrix} 1\\-1 \end{pmatrix}$$

are both spanning sets.

• A set of non-zero vectors $\{|v_1\rangle, \ldots, |v_n\rangle\}$ are linearly independent if

$$\sum_{i} a_i |v_i\rangle = 0 \implies a_i = 0 \ \forall i$$

- \bullet A basis for V is a linearly independent spanning set.
- A basis always exists and any two bases for V have the same number of elements. The number of elements in any basis for V is called the dimension of V. We will primarily be interested in finite-dimensional vector spaces.

1.2 Linear operators and matrices

• A linear operator is defined by

$$A: V \to W$$
$$A(\sum_{i} a_{i} | v_{i} \rangle) = \sum_{i} a_{i} A | v_{i} \rangle$$

It is clear that once the action of A on a basis is specified, the action of A is completely determined on all vectors.

• If $A: V \to W$ and $B: W \to X$, then the *composition* of B with A is defined by

$$BA: V \to X$$
$$(BA)|v\rangle = B(A|v\rangle)$$

• We can view a linear operator as a matrix $A: V \to W$ by choosing a basis for both V and W. This is called the *matrix representation* of V. Let $|v_i\rangle$ be a basis for V and $|w_i\rangle$ be a basis for W. Then the matrix elements A_{ij} are given by

$$A|v_j\rangle = \sum_i A_{ij}|w_i\rangle$$

1.3 The Pauli matrices

$$\sigma_0 \equiv I \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1 \equiv \sigma_x \equiv X \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$
$$\sigma_2 \equiv \sigma_y \equiv Y \equiv \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 \equiv \sigma_z \equiv Z \equiv \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

1.4 Inner products

• An inner product is a map

$$(\cdot, \cdot): V \times V \to \mathbb{C}$$

 $(|v\rangle, |w\rangle) \to \langle v|w\rangle$

such that

(1) (\cdot, \cdot) is linear in the second argument,

$$(|v\rangle, \sum_{i} \lambda_{i} |w_{i}\rangle) = \sum_{i} \lambda_{i} \langle v | w_{i}\rangle$$

- (2) $\langle v|w\rangle = \langle w|v\rangle^*$,
- (3) $\langle v|v\rangle \geq 0$ with equality iff $|v\rangle = 0$.

Ex: \mathbb{C}^n has an inner product defined by

$$(y,z) = \sum_{i} y_i^* z_i$$

• A vector space equipped with an inner product is called an *inner product space*.