RESEARCH ON MODEL-BASED (CYBER-PHYSICAL) PRODUCT DEVELOPMENT @ Machine Design

Johan Ölvander
Division of Machine Design
Department of Management and Engineering

Agenda

- > Who we are
- ➤ What we do
- > Example of some recent PhD-projects
- ➤ Ongoing research

The Division of Machine Design

- 2 full professor
- ➤ 3 Associate professors
- > 5 Senior Lecturers
- > 7 Lecturers
- > 4 Post docs
- > 10 PhD students
- > 2 Industrial PhD student
- > 1 Technicians
- > 1 administrator

In total >35 persons, 25 FTE + ind. PhD students

Budget: Education 26 MSEK

Research 9 MSEK

Integrated Product and Production Development

Product development

Human Robot Collaboration Computer Aided Engineering

Modelling & Simulation Optimization

Design automation

Machine Design

Industrial Design Engineering

Industrial Design

Sustainable development

What we do!

- ➤ Our aim is to make the product development process more efficient by using modelling, simulation and optimization.
- We consider physical products (cyber-physical systems) like aeroplanes, industrial robots, vehicles etc.
- ➤ We consider geometrical- as well as functional models of the product and the production system.
- We consider real-world problems meaning that they are vaguely formulated and include uncertainties
- > We focus on computational efficiency using for example surrogate models.
- Most problem are addressed by multi-disciplinary and/or multi-objective optimization algorithms.
- No adays we look into AI and machine learning for product development

Information flow and digital models in the product

Recent PhD-projects

Multi-disciplinary optimization of UAV

Design automation for Additive Manufacturing

Design automation for industrial robot grippers

Design Optimization of UAV:s – A. Papageorgiou

Multi-disciplinary optimization framework

Agent-based mission simulation

Design Automation for Additive Manufacturing – A. Wiberg

Design automation of robotic fingers: M. Honarpardaz

On-going research projects

AutoPack - Automatic packaging of pipes and hoses based on optimization and machine learning

House installation and simulation framework

Optimal routing framework

E-Factory – Enterprise wide optimization

Spiral staircase configurator

"Enterprise wide" optimization framework, from sales to production

Information flow and digital models in the product

Johan Ölvander Division of Machine design Department of Management and Engineering

www.liu.se

