Predicting Driver At Fault In A Vehicle Collision

Julia Chen and Yuan Yin

Dataset

https://catalog.data.gov/dataset/crash-reporting-drivers-data

- Traffic Collisions within Montgomery County in Maryland
- Collected by Automated Crash Reporting System (ACRS) of the Maryland State Police
- 39 attributes and 184,897 instances of vehicle crashes

Goal

- Predict the Driver at Fault class
- Settle disagreements in a vehicle collision

Class Distribution:

- 52% Yes
- 45% No

Initial Problems

- Issues opening in Weka
 - Apostrophes
 - New line in values
 - Double quotes

Preprocessing

- Remove Instances Missing the Class value
 - 184,897 instances \rightarrow 180,211 instances
- Remove Attributes Missing > 70% of Their Values
- Remove Derived Attributes
 - Location vs Longitude/Latitude
- Remove Unnecessary Attributes
 - Driverless Vehicle, Person ID, Vehicle ID
 - Dataset now has 29 attributes

Preprocessing

- Stratified Random Sampling
 - 180,211 instances $\rightarrow 10,012$ instances
- Unify Values
 - "CLEAR" vs. "Clear" and "Montgomery" vs. "Montgomery Police Department"
- Fill in Missing Values
 - Mean & Mode

Train-Validation-Test Split

80%

Train

8,008 instances

10%

Validation

1,002 instances

10%

Test

1,002 instances

Attribute Selection

- CorrelationAttributeEval (11 attributes)
 - Evaluates the correlation between an attribute and the class variable
- CfsSubsetEval (3 attributes)
 - Selects attributes that have a high predictive ability and low intercorrelation

Attribute Selection

- OneRAttibuteEval (13 attributes)
 - Evaluates attributes using OneR classifier
- InfoGainAttributeEval (9 attributes)
 - Selects attributes based on how much information is gained from that attribute with respect to the class
- Intuition (18 attributes)

Classifiers

- NaïveBayes
 - Assume attributes are independent
 - Makes predictions by combining the likelihood of individual attributes
- KStar
 - Memorizing training instances
 - Comparing testing instance to previously existing training instances

Classifiers

- DecisionTable
 - Build and use a simple decision table using majority combinations
- OneR
 - Creates a ruleset based on one attribute

CorrelationAttributeEval

	Accuracy	True Positive	False Positive	ROC Area
NaïveBayes	76.3473	0.700	0.163	0.876
KStar	80.8383	0.828	0.215	0.883
DecisionTable	80.4391	0.834	0.230	0.886
OneR	69.5609	0.879	0.515	0.682

CfsSubsetEval

	Accuracy	True Positive	False Positive	ROC Area
NaïveBayes	74.1517	0.616	0.114	0.823
KStar	74.1517	0.601	0.097	0.824
DecisionTable	74.5509	0.612	0.101	0.829
OneR	45.01	0.000	0.032	0.484

OneRAttributeEval

	Accuracy	True Positive	False Positive	ROC Area
NaïveBayes	78.6427	0.881	0.322	0.881
KStar	69.5609	0.879	0.515	0.682
DecisionTable	80.1397	0.802	0.200	0.882
OneR	69.5609	0.879	0.515	0.682

InfoGainAttributeEval

	Accuracy	True Positive	False Positive	ROC Area
NaïveBayes	73.5529	0.759	0.292	0.836
KStar	74.3513	0.769	0.285	0.797
DecisionTable	79.5409	0.866	0.285	0.881
OneR	45.01	0.000	0.032	0.484

Intuition

	Accuracy	True Positive	False Positive	ROC Area
NaïveBayes	77.5449	0.817	0.273	0.867
KStar	75.1497	0.748	0.245	0.824
DecisionTable	80.1397	0.802	0.200	0.886
OneR	69.5609	0.879	0.515	0.682

Best Model

DecisionTable classifier with CorrelationAttributeEval

Accuracy	True Positive	False Positive	ROC Area
80.4391	0.834	0.230	0.886

- Second Highest Accuracy
- One of the highest True Positive Rates
- Highest ROC Area

Potential Improvements

 DecisionTable classifier with CorrelationAttributeEval could be improved by optimizing the cutoff value for correlation analysis

Thank you!

