

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

BT 2.1 + EDR HEADSET WITH VIDEO CAMERA

MODEL NUMBER: LX1

FCC ID: YJ8-LX1 IC: 9087A-LX1

REPORT NUMBER: 10U13339-1, Revision A

ISSUE DATE: AUGUST 25, 2010

Prepared for LOOXCIE, INC.
1196 BORREGAS AVE, SUITE 200 SUNNYVALE, CA 94089, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	08/12/10	Initial Issue	F. Ibrahim
A	08/25/10	Revised FCC ID per clients request	A. Zaffar

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	5
2.	TES	T METHODOLOGY	6
3.	FAC	ILITIES AND ACCREDITATION	6
4.	CAL	IBRATION AND UNCERTAINTY	6
4	1.1.	MEASURING INSTRUMENT CALIBRATION	6
4	1.2.	SAMPLE CALCULATION	6
4	1.3.	MEASUREMENT UNCERTAINTY	6
5.	EQL		7
	5.1.	DESCRIPTION OF EUT	
5	5.2.	MAXIMUM OUTPUT POWER	7
5	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5	5.4.	SOFTWARE AND FIRMWARE	7
5	5.5.	WORST-CASE CONFIGURATION AND MODE	
5	5.6.	DESCRIPTION OF TEST SETUP	
6.	TES	T AND MEASUREMENT EQUIPMENT	12
7.	ANT	ENNA PORT TEST RESULTS	13
7	7.1.	AVERAGE TIME OF OCCUPANCY	13
-	7.1. 7.2.		
-		BASIC DATA RATE GFSK MODULATION	26 26
-	7.2. 7.2. 7.2.2	BASIC DATA RATE GFSK MODULATION	26 26
-	7.2. 7.2. 7.2.2 7.2.3	BASIC DATA RATE GFSK MODULATION	26 26 31
-	7.2. 7.2. 7.2.2 7.2.3 7.2.4	BASIC DATA RATE GFSK MODULATION	26 31 33
-	7.2. 7.2. 7.2.2 7.2.3	BASIC DATA RATE GFSK MODULATION	26 31 33 38
7	7.2. 7.2.2 7.2.2 7.2.2 7.2.2 7.2.5	BASIC DATA RATE GFSK MODULATION 1. 20 dB AND 99% BANDWIDTH 2. HOPPING FREQUENCY SEPARATION 3. NUMBER OF HOPPING CHANNELS 4. OUTPUT POWER 5. AVERAGE POWER 6. CONDUCTED SPURIOUS EMISSIONS	26 31 33 38 42
7	7.2. 7.2.2 7.2.2 7.2.3 7.2.4 7.2.5	BASIC DATA RATE GFSK MODULATION 1. 20 dB AND 99% BANDWIDTH 2. HOPPING FREQUENCY SEPARATION 3. NUMBER OF HOPPING CHANNELS 4. OUTPUT POWER 5. AVERAGE POWER 6. CONDUCTED SPURIOUS EMISSIONS ENHANCED DATA RATE 8PSK MODULATION 20 dB AND 99% BANDWIDTH	26 31 33 42 43 52
7	7.2. 7.2.2 7.2.2 7.2.4 7.2.9 7.3. 7.3.2	BASIC DATA RATE GFSK MODULATION 1. 20 dB AND 99% BANDWIDTH 2. HOPPING FREQUENCY SEPARATION 3. NUMBER OF HOPPING CHANNELS 4. OUTPUT POWER 5. AVERAGE POWER 6. CONDUCTED SPURIOUS EMISSIONS ENHANCED DATA RATE 8PSK MODULATION 1. 20 dB AND 99% BANDWIDTH 2. HOPPING FREQUENCY SEPARATION	26 31 33 42 43 52 52
7	7.2. 7.2.2 7.2.2 7.2.4 7.2.6 7.3. 7.3.2 7.3.2	BASIC DATA RATE GFSK MODULATION. 1. 20 dB AND 99% BANDWIDTH. 2. HOPPING FREQUENCY SEPARATION. 3. NUMBER OF HOPPING CHANNELS. 4. OUTPUT POWER. 5. AVERAGE POWER. 6. CONDUCTED SPURIOUS EMISSIONS. ENHANCED DATA RATE 8PSK MODULATION. 1. 20 dB AND 99% BANDWIDTH. 2. HOPPING FREQUENCY SEPARATION. 3. NUMBER OF HOPPING CHANNELS.	26 31 33 38 42 52 52
7	7.2. 7.2.2 7.2.2 7.2.2 7.2.2 7.2.6 7.3. 7.3.2 7.3.2 7.3.2	BASIC DATA RATE GFSK MODULATION. 1. 20 dB AND 99% BANDWIDTH. 2. HOPPING FREQUENCY SEPARATION. 3. NUMBER OF HOPPING CHANNELS. 4. OUTPUT POWER. 5. AVERAGE POWER. 6. CONDUCTED SPURIOUS EMISSIONS. ENHANCED DATA RATE 8PSK MODULATION. 1. 20 dB AND 99% BANDWIDTH. 2. HOPPING FREQUENCY SEPARATION. 3. NUMBER OF HOPPING CHANNELS. 4. OUTPUT POWER.	26 31 33 38 42 52 57 59
7	7.2. 7.2.2 7.2.2 7.2.4 7.2.6 7.3. 7.3.2 7.3.2	BASIC DATA RATE GFSK MODULATION. 1. 20 dB AND 99% BANDWIDTH. 2. HOPPING FREQUENCY SEPARATION. 3. NUMBER OF HOPPING CHANNELS. 4. OUTPUT POWER. 5. AVERAGE POWER. 6. CONDUCTED SPURIOUS EMISSIONS. ENHANCED DATA RATE 8PSK MODULATION. 1. 20 dB AND 99% BANDWIDTH. 2. HOPPING FREQUENCY SEPARATION. 3. NUMBER OF HOPPING CHANNELS. 4. OUTPUT POWER. 5. AVERAGE POWER.	26 31 33 42 43 52 57 59
7	7.2. 7.2.2 7.2.2 7.2.4 7.2.9 7.3. 7.3.2 7.3.2 7.3.2 7.3.3	BASIC DATA RATE GFSK MODULATION. 1. 20 dB AND 99% BANDWIDTH. 2. HOPPING FREQUENCY SEPARATION. 3. NUMBER OF HOPPING CHANNELS. 4. OUTPUT POWER. 5. AVERAGE POWER. 6. CONDUCTED SPURIOUS EMISSIONS. ENHANCED DATA RATE 8PSK MODULATION. 1. 20 dB AND 99% BANDWIDTH. 2. HOPPING FREQUENCY SEPARATION. 3. NUMBER OF HOPPING CHANNELS. 4. OUTPUT POWER. 5. AVERAGE POWER.	26 31 33 42 43 52 57 59 64 68
7	7.2. 7.2.2 7.2.2 7.2.4 7.2.9 7.3. 7.3.2 7.3.2 7.3.2 7.3.3	BASIC DATA RATE GFSK MODULATION. 1. 20 dB AND 99% BANDWIDTH. 2. HOPPING FREQUENCY SEPARATION. 3. NUMBER OF HOPPING CHANNELS. 4. OUTPUT POWER. 5. AVERAGE POWER. 6. CONDUCTED SPURIOUS EMISSIONS. ENHANCED DATA RATE 8PSK MODULATION. 1. 20 dB AND 99% BANDWIDTH. 2. HOPPING FREQUENCY SEPARATION. 3. NUMBER OF HOPPING CHANNELS. 4. OUTPUT POWER. 5. AVERAGE POWER. 6. CONDUCTED SPURIOUS EMISSIONS.	26 31 33 42 43 52 57 59 64 68
7 7 8.	7.2. 7.2.2 7.2.2 7.2.2 7.2.2 7.2.2 7.2.2 7.2.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 RAE	BASIC DATA RATE GFSK MODULATION. 20 dB AND 99% BANDWIDTH. 31 HOPPING FREQUENCY SEPARATION. 32 NUMBER OF HOPPING CHANNELS. 33 AVERAGE POWER. 34 CONDUCTED SPURIOUS EMISSIONS. 35 ENHANCED DATA RATE 8PSK MODULATION. 36 20 dB AND 99% BANDWIDTH. 37 HOPPING FREQUENCY SEPARATION. 38 NUMBER OF HOPPING CHANNELS. 39 AVERAGE POWER. 30 CONDUCTED SPURIOUS EMISSIONS. 30 AVERAGE POWER. 31 CONDUCTED SPURIOUS EMISSIONS. 31 DIATED TEST RESULTS. 32 LIMITS AND PROCEDURE. 33 TRANSMITTER ABOVE 1 GHz.	26 31 33 42 43 52 57 59 64 69 78
7 7 8.	7.2. 7.2.2 7.2.2 7.2.2 7.2.2 7.2.2 7.2.2 7.3. 7.3.	BASIC DATA RATE GFSK MODULATION. 20 dB AND 99% BANDWIDTH. HOPPING FREQUENCY SEPARATION. NUMBER OF HOPPING CHANNELS. OUTPUT POWER. CONDUCTED SPURIOUS EMISSIONS. ENHANCED DATA RATE 8PSK MODULATION. 20 dB AND 99% BANDWIDTH. HOPPING FREQUENCY SEPARATION. NUMBER OF HOPPING CHANNELS. OUTPUT POWER. AVERAGE POWER. CONDUCTED SPURIOUS EMISSIONS. NAMBER OF HOPPING CHANNELS. LOUTPUT POWER. CONDUCTED SPURIOUS EMISSIONS. NAMED TEST RESULTS. LIMITS AND PROCEDURE. TRANSMITTER ABOVE 1 GHZ. BASIC DATA RATE GFSK MODULATION.	26 31 33 38 42 52 57 59 64 69 78

8.3.	RECEIVER ABOVE 1 GHz	97
8.4.	WORST-CASE BELOW 1 GHz	98
9. A	C POWER LINE CONDUCTED EMISSIONS	101
10.	MAXIMUM PERMISSIBLE EXPOSURE	105
11	SETUP PHOTOS	109

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Looxcie, Inc.

1196 Borregas Ave, suite 200 Sunnyvale, CA 94089, U.S.A.

EUT DESCRIPTION: BT 2.1 + EDR Headset with video camera

MODEL: LX1

SERIAL NUMBER: Radiated EUT: 02124, Conducted EUT: 02127

DATE TESTED: August 4-6, 2010

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

INDUSTRY CANADA RSS-210 Issue 7 Annex 8 Pass

INDUSTRY CANADA RSS-GEN Issue 2 Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

Tested By:

FRANK IBRAHIM EMC SUPERVISOR

COMPLIANCE CERTIFICATION SERVICES

TOM CHEN EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth v2.1 + EDR headset with a video camera.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	5.59	3.62
2402 - 2480	Enhanced QPSK	4.53	2.84
2402 - 2480	Enhanced 8PSK	4.52	2.83

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Multi-chip antenna, with a maximum gain of 1.5 dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was rev.E V2.

The test utility software used during testing was CSR Bleu Test3.exe.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

Radiated Emissions 30-1000 MHz was performed with the EUT set to the channel with the highest output power.

The EUT is a portable device that has three orientations; therefore X, Y and Z orientations have been investigated. The worst case was found to be Z orientation.

All testing was performed for both basic GFSK and 8PSK modulations as they cover the highest output power with lowest data rate for GFSK, and lowest output power with highest data rate for 8PSK.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number			
Laptop	Dell	PP01X	CN07J187-12961-24J			
AC Adapter	Dell	ADP-90FB	TH06G356-17971-32K-29CZ			
AC Adapter	ECOPAC	3A-181WP09	NA			
DEV PCB	CSR	EXPB8870	NA			

I/O CABLES

	I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks	
1	AC	2	US115V	Unshielded	1.8m		
2	DC	1	DC	Unshielded	1m	A ferrite at laptop end	
3	USB	1	USB	shielded	1.5m		
4	Ю	5	Ю	Wire	0.15m		
5	DC	1	DC	Unshielded	1.2m	A ferrite at Adapter end	
6	USB	1	mini USB	Unshielded	0.25m		

SETUP DIAGRAM FOR CONDUCTED TEST

SETUP DIAGRAM FOR RADIATED TEST

SETUP DIAGRAM FOR AC LINE CONDUCTION TEST

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Due	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01159	05/08/11	
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	08/31/10	
Antenna, Horn, 18 GHz	EMCO	3115	C00783	07/29/11	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	08/04/11	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01016	07/14/11	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	07/06/11	
Peak Power Meter	Agilent / HP	E4416A	C00963	12/04/11	
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/04/11	
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/06/10	

7. ANTENNA PORT TEST RESULTS

AVERAGE TIME OF OCCUPANCY 7.1.

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

Time Of Occupancy = 10 * xx pulses * yy msec = zz msec

GFSK Mode

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of (sec)	Limit (sec)	Margin (sec)
DH1	0.3952	32	0.126	0.4	0.274
DH3	1.65	16	0.264	0.4	0.136
DH5	2.9	11	0.319	0.4	0.081

8PSK Mode

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupan cy (sec)	Limit (sec)	Margin (sec)
DH1	0.4003	32	0.128	0.4	0.272
DH3	1.654	16	0.265	0.4	0.135
DH5	2.9	11	0.319	0.4	0.081

DATE: AUGUST 25, 2010

IC: 9087A-LX1

GFSK

DH1 PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

DH3 PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

DH5 PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

8PSK

DH1 PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

DH3 PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

DH5 PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

7.2. BASIC DATA RATE GFSK MODULATION

7.2.1. 20 dB AND 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	867.924	852.2999
Middle	2441	927.433	833.8830
High	2480	904.018	829.6742

20 dB BANDWIDTH

99% BANDWIDTH

7.2.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

7.2.3. NUMBER OF HOPPING CHANNELS

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

79 Channels observed.

NUMBER OF HOPPING CHANNELS

7.2.4. OUTPUT POWER

LIMIT

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	4.66	30	-25.34
Middle	2441	5.59	30	-24.41
High	2480	4.51	30	-25.49

OUTPUT POWER

7.2.5. AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	4.20
Middle	2441	5.48
High	2480	4.50

7.2.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

7.3. ENHANCED DATA RATE 8PSK MODULATION

7.3.1. 20 dB AND 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	1349	1204.9
Middle	2441	1254	1216.7
High	2480	1275	1197.1

20 dB BANDWIDTH

99% BANDWIDTH

7.3.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

7.3.3. NUMBER OF HOPPING CHANNELS

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

79 Channels observed.

NUMBER OF HOPPING CHANNELS

7.3.4. OUTPUT POWER

LIMIT

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	3.89	30	-26.11
Middle	2441	4.52	30	-25.48
High	2480	2.97	30	-27.03

OUTPUT POWER

7.3.5. AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	2.90
Middle	2441	3.24
High	2480	1.65

7.3.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

IC: 9087A-LX1

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATE: AUGUST 25, 2010

IC: 9087A-LX1

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen
Date: 08/04/10
Project #: 10U13339
Company: Looxcie

EUT Description: BT 2.1 + EDR Headset with video camera

EUT M/N: EUT only
Test Target: FCC Class B
Mode Oper: TX mode

Duty Cycle Correction Factor = 20log (100/(0.98 / 100)) = -20.1dB (Max = 20dB allowable)

 f
 Measurement Frequency Amp
 Preamp Gain
 Average Field Strength Limit

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter

f GHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Corr. dBuV/m	Limit dBuV/m		Ant Pol V/H	Det. P/A/QP	Notes
2402MHz	7												
4.804	3.0	69.3	33.0	5.8	-36.5	0.0	0.0	71.6	74.0	-2.4	Н	P	
4.804	3.0	49.2	33.0	5.8	-36.5	0.0	0.0	51.5	54.0	-2.5	Н	A	
7.206	3.0	37.4	35.1	7.2	-36.2	0.0	0.0	43.5	74.0	-30.5	Н	P	
7.206	3.0	25.1	35.1	7.2	-36.2	0.0	0.0	31.2	54.0	-22.8	Н	A	
2402MHz													
4.804	3.0	69.2	33.0	5.8	-36.5	0.0	0.0	71.6	74.0	-2.4	V	P	
4.804	3.0	49.1	33.0	5.8	-36.5	0.0	0.0	51.4	54.0	- 2. 6	v	A	
7.206	3.0	37.0	35.1	7.2	-36.2	0.0	0.0	43.1	74.0	-30.9	v	P	
7.206	3.0	25.1	35.1	7.2	-36.2	0.0	0.0	31.2	54.0	-22.8	V	A	
2441MHz									••••••				
4.882	3.0	68.7	33.1	5.8	-36.5	0.0	0.0	71.2	74.0	-2.8	Н	P	
4.882	3.0	39.2	33.1	5.8	-36.5	0.0	0.0	41.6	54.0	-12.4	H	A	
7.323	3.0	37.7	35.3	7.3	-36.2	0.0	0.0	44.0	74.0	-30.0	H	P	
7.323	3.0	26.4	35.3	7.3	-36.2	0.0	0.0	32.7	54.0	-21.3	H	A	
2441MHz													
4.882	3.0	66.1	33.1	5.8	-36.5	0.0	0.0	68.5	74.0	-5.5	v	P	
4.882	3.0	37.0	33.1	5.8	-36.5	0.0	0.0	39.5	54.0	-14.5	v	A	
7.323	3.0	36.8	35.3	7.3	-36.2	0.0	0.0	43.2	74.0	-30.8	v	P	
7.323	3.0	24.8	35.3	7.3	-36.2	0.0	0.0	31.2	54.0	-22.8	v	A	
2480 MHz													
4.960	3.0	64.5	33.2	5.9	-36.5	0.0	0.0	67.2	74.0	-6.8	v	P	
4.960	3.0	44.3	33.2	5.9	-36.5	0.0	0.0	46.9	54.0	-7.1	v	A	
7.440	3.0	39.2	35.5	7.3	-36.2	0.0	0.0	45.8	74.0	-28.2	v	P	
7.440	3.0	26.5	35.5	7.3	-36.2	0.0	0.0	33.1	54.0	-20.9	V	A	
4.960	3.0	65.3	33.2	5.9	-36.5	0.0	0.0	67.9	74.0	-7.7	H	P	
4.960	3.0	45.0	33.2	5.9	-36.5	0.0	0.0	47.6	54.0	-6.4	H	A	
7.440	3.0	39.0	35.5	7.3	-36.2	0.0	0.0	45.6	74.0	-28.4	Н	P	
7.440	3.0	26.8	35.5	7.3	-36.2	0.0	0.0	33.4	54.0	-20.6	Н	A	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

8.2.2. ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen
Date: 08/04/10
Project #: 10U13339
Company: Looxcie

EUT Description: BT 2.1 + EDR Headset with video camera

EUT M/N: EUT only
Test Target: FCC Class B
Mode Oper: TX mode

Duty Cycle Correction Factor = 20log (100/(0.98 / 100)) = -20.1dB (Max = 20dB allowable)

Average Field Strength Limit Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Average Field Strength @ 3 m Margin vs. Average Limit Avg AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CLCable Loss HPF High Pass Filter

D Corr Dist Read AF CL Limit Margin Ant. Pol. Det. Notes Amp Fltr Corr. **GHz** dBuV dB/m đВ dB dBuV/m dBuV/m P/A/QP (m) 2402 MHz 8PSK 4.804 3.0 69.7 33.0 5.8 -36.50.0 0.0 72.0 74.0 -2.04.804 3.0 49.5 33.0 5.8 -36.5 0.00.051.8 54.0 v 7.206 3.0 37.3 35.1 7.2 0.0 74.0 -30.6 -36.20.0 43.4 7.206 v 3.0 25.8 35.1 7.2 -36.20.0 0.0 31.9 54.0 -22.1 A 4.804 3.0 69.3 33.0 -36.5 0.0 0.0 71.7 74.0 Н P 4.804 3.0 33.0 5.8 0.0 51.5 54.0 H 49.2 -36.50.0 A 7.2063.0 37.7 35.1 7.2 -36.20.0 0.0 43.8 74.0 -30.2 н Р 7.2063.0 27.5 35.1 -36.20.00.033.6 54.0 20.4 Н A 7.2 2441 MHz 8PSK 4.882 3.0 67.8 33.1 5.8 -36.50.0 0.0 70.3 74.0 -3.7 н р 4.882 3.0 47.6 33.1 5.8 -36.5 0.0 0.0 50.1 54.0 -3.9 Н A 7.323 7.3 74.0 3.0 38.0 35.3 -36.2 0.0 0.044.3 -29.7 н Р 7.323 3.0 27.9 35.3 7.3 -36.2 0.0 0.0 34.3 54.0 19.7 Н A 4.882 3.0 0.074.0 67.2 33.1 5.8 -36.50.0 69.7-4.3 v 4.882 3.0 47.0 33.1 5.8 -36.5N.N 0.0 49.5 54.0 -4.5 A 7.323 3.0 37.7 35.3 -36.20.0 44.1 74.0 29.9 V P V 7.323 3.0 0.0 54.0 26.035.3 7.3 -36.20.0 32.4 -21.6 A 2480 MHz 8PSK 4.960 33.2 5.9 -36.5 0.0 74.0 v P 4.960 5.9 0.0 v 3.0 33.2 -36.50.0 45.3 54.0 42.7 -8.7 A 7.4403.0 37.6 35.5 7.3 -36.2 0.0 0.044.2 74.0 29.8 v P V 7.440 3.0 24.9 35.5 7.3 -36.20.00.031.5 54.0 A Н P 4.960 3.0 0.0 74.0 63.7 33.2 5.9 -36.5 0.0 66.3 -7.7 4.960 3.0 33.2 5.9 -36.50.0 0.0 46.1 54.0 Н A 7.440 3.0 37.4 35.5 7.3 -36.2 0.0 44.0 74.0 -30.0 Н 0.0 3.0 H 7.44025.2 35.5 7.3 -36.2 0.00.0 31.8 54.0 -22.2 A

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

8.3. RECEIVER ABOVE 1 GHz

8.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

HORIZONTAL AND VERTICAL DATA

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

 Test Engr:
 Tom Chen

 Date:
 08/04/10

 Project #:
 10U13339

 Company:
 Looxcie

EUT Description: BT 2.1 + EDR Headset with video camera

EUT M/N: EUT only
Test Target: FCC Class B
Mode Oper: TX mode, Worst Case

f Measurement Frequency Amp Preamp Gain

Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Filter Filter Insert Loss
AF Antenna Factor Corr. Calculated Field Strength
Limit Field Strength Limit

f	Dist	Read	AF	CL	Amp	D Corr	Filter	Corr.	Limit	Margin	Ant Pol	Det	Notes
MHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
Horizontal													
99.363	3.0	41.3	9.8	0.9	28.3	0.0	0.0	23.7	43.5	-19.8	H	P	
127.444	3.0	38.0	13.6	1.1	28.3	0.0	0.0	24.3	43.5	-19.2	H	P	
135.844	3.0	40.1	13.4	1.1	28.3	0.0	0.0	26.3	43.5	-17.2	H	P	
351.013	3.0	43.8	14.2	1.7	28.1	0.0	0.0	31.6	46.0	-14.4	Н	P	
378.014	3.0	43.7	14.6	1.7	28.1	0.0	0.0	31.9	46.0	-14.1	H	P	
567.022	3.0	45.2	17.9	2.2	27.6	0.0	0.0	37.6	46.0	-8.4	н	P	
Vertical													
48.241	3.0	50.2	9.2	0.6	28.4	0.0	0.0	31.7	40.0	-8.3	V	P	
130.684	3.0	38.8	13.5	1.1	28.3	0.0	0.0	25.1	43.5	-18.4	V	P	
351.013	3.0	40.2	14.2	1.7	28.1	0.0	0.0	28.0	46.0	-18.0	v	P	
432.017	3.0	39.9	15.5	1.9	28.0	0.0	0.0	29.2	46.0	-16.8	V	P	
540.021	3.0	41.0	17.4	2.1	27.7	0.0	0.0	32.8	46.0	-13.2	V	P	
567.022	3.0	42.3	17.9	2.2	27.6	0.0	0.0	34.7	46.0	-11.3	v	P	

Margin Margin vs. Limit

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)											
Freq.	Reading			Closs	Limit	EN_B	Margin		Remark			
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2			
0.40	38.71		23.51	0.00	57.81	47.81	-19.10	-24.30	L1			
0.64	36.49		15.24	0.00	56.00	46.00	-19.51	-30.76	L1			
24.01	50.15		36.08	0.00	60.00	50.00	-9.85	-13.92	L1			
0.40	36.57		25.46	0.00	57.81	47.81	-21.24	-22.35	L2			
0.57	30.97		15.73	0.00	56.00	46.00	-25.03	-30.27	L2			
24.01	46.01		32.44	0.00	60.00	50.00	-13.99	-17.56	L2			
6 Worst l	Data											

LINE 1 RESULTS

LINE 2 RESULTS

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f2) 1.0 f/300	6 6 6 6
,	for General Populati	on/Uncontrolled Ex	posure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300–1500 1500–100,000			f/1500 1.0	30 30

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-

pational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

S = Power density in W/m^2

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

Total EIRP =
$$(P1 * G1) + (P2 * G2) + ... + (Pn * Pn)$$

where

Px = Power of transmitter x

Gx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

(MPE distance equals 20 cm)

	Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
			Distance	Power	Gain	Density	Density
ш			/m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
			(m)	(ubili)	(ubi)	(VV/III2)	(IIIVV/CIII-2)