DIOFANTSKE JEDNADŽBE

- 1. zadaća
- 6. 12. 2006.
- 1. Neka je m proizvoljan prirodan broj. Dokažite da postoji beskonačno mnogo rješenja Pellove jednadžbe $x^2 dy^2 = 1$ koja zadovoljavaju dodatni uvjet da je $y \equiv 0 \pmod{m}$.
- 2. Neka je (x_n, y_n) (rastući) niz rješenja Pellove jednadžbe $x^2 dy^2 = 1$ u prirodnim brojevima. Dokažite da za sve prirodne brojeve m, n vrijedi:

$$\begin{aligned}
 x_{m+n} &= x_m x_n + dy_m y_n, \\
 y_{m+n} &= x_m y_n + x_n y_m, \\
 \frac{x_{2m}}{y_{2m}} &= \frac{1}{2} \left(\frac{x_m}{y_m} + \frac{dy_m}{x_m} \right).
 \end{aligned}$$

- 3. Dokažite da postoji beskonačno mnogo prirodnih brojeva n sa svojstvom da je suma prvih n prirodnih brojeva jednaka kvadratu nekog prirodnog broja. Nađite najmanjih šest prirodnih brojeva s tim svojstvom.
- 4. Dokažite da kongruencija $x^2-34y^2\equiv -1\pmod p$ ima rješenja za svaki prost broj p. Nađite barem jedan prirodan broj d ($d\neq 34$ i d nije potpun kvadrat) sa svojstvom da kongruencija $x^2-dy^2\equiv -1\pmod p$ ima rješenja za svaki prost broj p, ali da jednadžba $x^2-dy^2\equiv -1$ nema rješenja u cijelim brojevima.
- 5. Dokažite da rješenja (x_n,y_n) jednadžbe $x^2-dy^2=4$ zadovoljavaju rekurzije:

$$x_{n+2} = x_1 x_{n+1} - x_n,$$

 $y_{n+2} = x_1 y_{n+1} - y_n.$

6. Neka su x,y neparni prirodni brojevi za koje vrijedi $x^2 - dy^2 = -4$. Dokažite: ako je $d \equiv 5 \pmod{16}$, onda je $x \equiv \pm y \pmod{8}$, a ako je $d \equiv 13 \pmod{16}$, onda je $x \equiv \pm 3y \pmod{8}$.

Rok za predaju zadaće je 20.12.2006.

Andrej Dujella