

Student	Study Hours	Passed (Yes=1 / No=0)
Α	2	0
В	4	0
С	5	1
D	7	1
Е	1	0
F	8	1
G	3	0
Н	6	1
1 2	9 1 1	1
J	2	0

- Python Function:
 - train_test_split(...)
- What are these 4 variables?

Variable	Meaning
X_train	The study hours used for training
X_test	The study hours used for testing
y_train	The pass/fail labels for training
y_test	The pass/fail labels for testing

- Test_size That means 20% of your data is used for testing.
- Random_state This is like locking the shuffle.

Without it, the computer would randomly choose different training/testing sets every time you run the code.

- X = [2, 4, 5, 7, 1, 8, 3, 6, 9, 2] # Study Hours
- y = [0, 0, 1, 1, 0, 1, 0, 1, 1, 0] # Passed or not
- X_train = X[:8] # First 8 students → training
- X_test = X[8:] # Last 2 students → testing

- y_train = y[:8] # Training labels
- y_test = y[8:] # Testing labels

Final Summary

- You split your data to teach your robot and test it properly.
- •train_test_split() is the function that helps with that.
- •test_size=0.2 means 20% for testing, 80% for learning.
- •random_state=42 keeps the split the same every time.
- •X_train, y_train = learning materials
- •X_test, y_test = exam paper

Different random_state values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

Model	R ² Sco	re (CV)	MAE (Test	t) MSE (Test)	
Linear Regression		1	3.23	21.45	
Ridge Regression		1	3.22	21.40	
Lasso Regression		7	3.52	24.17	
Decision Tree		9	2.67	14.32	
Random Forest		6	2.15	10.89	
Gradient Boosting		7	2.10	10.02	

Different random_state values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Model	R ² Score (CV)	MAE (Test)	MSE (Test)		
Linear Regression	0.72	3.11	20.34		
Ridge Regression	0.72	3.11	20.34		
Lasso Regression	0.68	3.39	23.01		
Decision Tree	0.82	2.45	12.67		
Random Forest	0.88	2.01	9.85		
Gradient Boosting	0.89	1.98	9.12		

Different random_state values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=100)

Model	R ² Score (CV	/) MAE (Test)	MSE (Test)
Linear Regression	0.73	3.05	19.87
Ridge Regression	0.73	3.05	19.87
Lasso Regression	0.69	3.31	22.45
Decision Tree	0.81	2.52	13.01
Random Forest	0.87	2.08	10.21
Gradient Boosting	0.88	2.03	9.45

