Лекция 9: Теореми за рекурсия

3.6 Теореми за рекурсия

Най-общо, теоремите за рекурсия са твърдения за съществуване на изчислими функции, удовлетворяващи някакви рекурсивни условия. Тези условия могат да бъдат изказани както в термините на самите функции, така и чрез програмите, които ги пресмятат. Как точно става това ще обсъдим в следващите примери.

3.6.1 Няколко примера

В първия пример са три рекурсивни дефиниции, които вече сме обсъждали по други поводи.

<u>Пример 3.1.</u> 1) Най-напред "букварният" пример за дефиниция по рекурсия:

$$f(x)\simeq egin{cases} 1, & ext{ako } x=0 \ x.f(x-1), & ext{иначе.} \end{cases}$$

Тук с обикновена индукция по xсе вижда, че единствената функция, удовлетворяваща това рекурсивно условие, е функцията f(x) = x!.

2) Следващият също тъй популярен пример е за рекурсивната дефиниция на функцията на Фибоначи:

$$f(x)\simeq egin{cases} 1, & ext{ako } x\leq 1 \ f(x-1)+f(x-2), & ext{иначе}. \end{cases}$$

И тук с лека (но вече пълна) индукция се показва, че има единствена функция, за която е в сила горното условие. В $3a\partial a va~1.10$ видяхме, че тази функция е примитивно рекурсивна.

3) Последният пример е за рекурсивната дефиниция на функцията на Акерман, която можем да препишем и по този начин:

$$f(x,y)\simeq egin{cases} y+1, & ext{ako } x=0 \ f(x-1,1), & ext{ako } x>0 \ \& \ y=0 \ f(x-1,f(x,y-1)), & ext{в останалите случаи.} \end{cases}$$

В решението на Задача 1.21 видяхме, че съществува единствена функция, за която горните условия са изпълнени и тази функция е тотална.

Това, че функцията на Акерман е изчислима (което ще рече, рекурсивна) ще докажем по-нататък в $3a\partial a va$ 3.24. Сега само да отбележим, че и трите рекурсивни дефиниции са от вида

$$f(\bar{x}) \simeq \underbrace{\dots f, \bar{x} \dots}_{\Gamma(f)(\bar{x})}$$

За да можем да атакуваме общата задача за такъв тип дефиниция по рекурсия, ще трябва да изучим основните свойства на операторите Γ , чрез които се задава рекурсивно една функция f. Това ще направим обстойно в раздел 3.8.

А сега да видим какво става, ако f се задава рекурсивно не само чрез своите стойности, но и чрез алгоритъма, който я пресмята, в нашия случай — чрез МНР програмата ѝ. Тъй като спокойно можем да отъждествяваме програмите с естествените числа, тук вече нямаме нужда от предварителната подготовка на предишния подход.

Освен това сега вече можем да пишем далеч по-общи рекурсивни дефиниции, в които участват и самите определяеми *програми*.

Пример 3.2. 1) Да наречем програмата P_a самовъзпроизвежсдаща се, ако за всеки вход x тя връща собствения си код, т.е. за всяко естествено x е изпълнено

$$P_a(x) = a$$
.

(Тук пишем $P_a(x)=y$ вместо $P_a(x)\downarrow y$, за да изглежда повече като уравнение условието за P_a $\ddot{\smile}$.)

Разбира се, това условие можем да препишем и като условие за φ_a :

$$\varphi_a(x) = a.$$

За разлика от горните примери, тук вече не е толкова ясно, че съществува такава програма P_a (или все едно, такава изчислима функция φ_a). Това ще получим като следствие от една от теоремите за рекурсия.

2) Едно обобщение на горния пример е да поискаме изходът $P_a(x)$ да зависи и от входа x — например, нека за всяко x да имаме

$$P_a(x) = a + x.$$

3) Можем да си зададем въпроса дали съществува програма P_a , която за всеки вход x дава някаква информация, свързана с изчисленията си при този вход — например, $P_a(x)$ да връща кода на конфигурацията на стъпка x (тук подразбираме, че тази конфигурация е финалната, до която достига $P_a(x)$, ако е спряла за по-малко от x стъпки). Малко поточно:

$$P_a(x) = egin{cases}$$
кода на конфигурацията на стъпка x , ако $P_a(x)$ не спира за $\leq x$ стъпки кода на финалната конфигурация, иначе.

Отговори — при това, позитивни — на тези и други въпроси дава теоремата за определимост по рекурсия.

3.6.2 Теорема за определимост по рекурсия

Съществуването на програми с всяко от свойствата, изброени в *Пример* 3.2, ще е елементарно следствие от следващата теорема за рекурсия, принадлежаща на Клини.

Теорема 3.6. (**Теорема за определимост по рекурсия**) Нека $n \geq 1$. За всяка изчислима функция $f(a, x_1, \ldots, x_n)$ съществува естествено число a, такова че

$$\varphi_a^{(n)}(\bar{x}) \simeq f(a, \bar{x})$$

за всяко $\bar{x} \in \mathbb{N}^n$.

Доказателство. Да разгледаме функцията

$$g(a,\bar{x}) \stackrel{\text{деф}}{\simeq} f(S_n^1(a,a),\bar{x}).$$

Тя е изчислима и следователно има индекс. Да фиксираме един такъв индекс e. Тогава за всяко a и \bar{x} ще е вярно, че

$$\varphi_e^{(n+1)}(a,\bar{x}) \simeq g(a,\bar{x}).$$

Да приложим S_n^m -теоремата към функцията $\varphi_e^{(n+1)}(a,\bar{x})$ с параметри e и a. Ще получим, че за всяко a и \bar{x}

$$\varphi_{S_n^1(e,a)}^{(n)}(\bar{x}) \simeq \varphi_e^{(n+1)}(a,\bar{x}).$$

Комбинираме с равенството по-горе и получаваме, че

$$\varphi^{(n)}_{S^1_n(e,a)}(\bar{x}) \simeq g(a,\bar{x}) \stackrel{\text{\pie}\Phi}{\simeq} f(S^1_n(a,a),\bar{x})$$

за всяко a и \bar{x} . В частност, при a=e достигаме до

$$\varphi_{\underline{S_n^1(e,e)}}^{(n)}(\bar{x}) \simeq f(\underbrace{S_n^1(e,e)}_{a_0},\bar{x}).$$

Да означим $a_0\stackrel{\text{деф}}{=} S^1_n(e,e).$ Заместваме в горното равенство и получаваме, че за всяко $\bar{x}\in\mathbb{N}^n$

$$\varphi_{a_0}^{(n)}(\bar{x}) \simeq f(a_0, \bar{x}),$$

което означава, че a_0 удовлетворява условието на теоремата.

Да приложим тази теорема към всяка от задачите от Пример 3.2.

1) Търсим a, такова че за всяко x

$$\varphi_a(x) = \underbrace{a}_{f(a,x)}.$$

Затова прилагаме горната теорема към функцията $f(a,x) \stackrel{\text{деф}}{=} a$. Тя очевидно е изчислима и следователно за поне едно a ще бъде вярно, че за всяко x

$$\varphi_a(x) = f(a, x),$$
 или все едно $\varphi_a(x) = a.$

Последното равенство, преписано чрез P_a , ни дава

$$P_a(x) = a$$
 за всяко x .

Така показахме, че самовъзпроизвеждащи се програми съществуват.

2) В този пример за програмата P_a искаме при всеки вход x да е изпълнено

$$P_a(x) = \underbrace{a+x}_{f(a,x)}$$
, което ще рече $\varphi_a(x) = \underbrace{a+x}_{f(a,x)}$.

Това, че такова a съществува се осигурява отново от горната теорема, приложена този път за f(a,x) = a + x.

3) Условието към функцията φ_a тук е:

$$\varphi_a(x) = \begin{cases} \text{кода на конфигурацията на стъпка } x, & \text{ако } P_a(x) \text{ не спира} \\ & \text{за } \leq x \text{ стъпки} \\ \text{кода на финалната конфигурация,} & \text{иначе.} \end{cases}$$

При доказателството на теоремата за универсалната функция показахме, че е примитивно рекурсивна функцията

 $Q_n(a,\bar{x},t)\stackrel{\text{деф}}{=}$ кода на конфигурацията, която се получава след t такта от работата на P_a върху \bar{x} .

Значи такава ще бъде и следната функция f:

$$f(a,x) = Q_1(a,x,x) \stackrel{\text{деф}}{=}$$
 кода на конфигурацията след x такта от работата на P_a върху x .

Да си спомним, че по определение, ако $P_a(x)$ спре за t_0 такта, то за всяко $t>t_0$ по дефиниция $Q_1(a,x,t)=Q_1(a,x,t_0)$. Но това означава, че φ_a удовлетворява точно равенството

$$\varphi_a(x) = f(a, x)$$

за всяко x. Сега просто прилагаме теоремата за определимост по рекурсия към функцията f и получаваме, че съществува a с горното свойство.

Задача 3.18. Докажете, че съществува a, за което

$$W_a = \{a\}.$$

(Или изказано в термините на програми: докажете, че съществува програма P_a , която спира само върху собствения си код.)

Решение. Трябва да приложим теоремата за определимост по рекурсия към подходяща изчислима функция f(a, x). Ясно е, че за нея трябва да е изпълнено условието:

ако
$$a$$
 е такова, че $\varphi_a(x) \simeq f(a,x)$, то $W_a = \{a\}$.

Тогава за всяко a и x ще имаме

$$!f(a,x) \iff !\varphi_a(x) \iff x \in W_a \iff x = a.$$

Една изчислима функция f, за която горното условие е вярно, е например

$$f(a,x) \simeq \begin{cases} 0, & \text{ако } a = x \\ \neg!, & \text{иначе.} \end{cases}$$

Ясно е, че тази f ще ни свърши работа, но да се убедим формално, тръгвайки по обратен ред. Наистина, от теоремата за определимост по рекурсия ще съществува a, за което $\varphi_a(x) \simeq f(a,x)$. Оттук в частност, $!\varphi_a(x) \iff !f(a,x)$, което означава, че за това a ще е изпълнено

$$x \in W_a \iff !f(a,x) \iff x = a.$$

Разбира се, горната еквивалентност е за всяко x, което ни дава точно $W_a = \{a\}.$

Задача 3.19. Докажете, че съществува рекурсивна функция g, такава че за всяко n, g(n) е индекс на $\lambda x.ng(x)$.

Решение. Функцията g ще търсим във вида φ_a . Искаме за всяко n $\varphi_a(n)$ да е индекс на $\lambda x. n \varphi_a(x)$, което означава, че за всяко n и x:

$$\varphi_{\varphi_a(n)}(x) \simeq \underbrace{n.\varphi_a(x)}_{f(a,n,x)}.$$

Тук $f(a,n,x) \simeq n.\varphi_a(x) \simeq n.\Phi_1(a,x)$ е изчислима, съгласно теоремата за универсалната функция. Сега прилагаме към $f S_n^m$ -теоремата и получаваме, че за някоя примитивно рекурсивна функция h(a,n):

$$\varphi_{h(a,n)}(x) \simeq f(a,n,x)$$

за всяко a,n,x. Ние търсим a със свойството $\varphi_{\varphi_a(n)}(x)\simeq f(a,n,x),$ следователно за това a трябва да е вярно, че

$$\varphi_{\varphi_a(n)} = \varphi_{h(a,n)}$$

за всяко n. За да получим, че такова a съществува, е достатъчно да приложим теоремата за определимост по рекурсия към функцията h.

3.6.3 Втора теорема за рекурсия

От теоремата за определимост по рекурсия лесно се извежда следващото твърдение, известно като *втора теорема за рекурсия*:

Теорема 3.7. (Втора теорема за рекурсия) Нека $n \ge 1$, а h е едноместна рекурсивна функция. Тогава съществува индекс a, такъв че

$$\varphi_{h(a)}^{(n)} = \varphi_a^{(n)}.$$

Доказателство. Да разгледаме функцията

$$f(a,\bar{x}) \stackrel{\text{деф}}{\simeq} \varphi_{h(a)}^{(n)}(\bar{x}).$$

Тя е изчислима, защото можем да я препишем като $f(a, \bar{x}) \simeq \Phi_n(h(a), \bar{x})$ и да вземем пред вид, че Φ_n е изчислима. Тогава към f можем да приложим теоремата за определимост по рекурсия. Така получаваме, че за поне едно a:

$$arphi_a^{(n)}(ar x)\simeq f(a,ar x),$$
 или все едно, $arphi_a^{(n)}(ar x)\simeq arphi_{h(a)}^{(n)}(ar x).$

Последното равенство е изпълнено за всяко $\bar{x}\in\mathbb{N}^n$ и значи $\varphi_a^{(n)}=\varphi_{h(a)}^{(n)}$.

От горното доказателство се вижда как "на една стъпка" от теоремата за определимост по рекурсия получихме втората теорема за рекурсия, като приложихме теоремата за универсалната функция. Да видим, че е вярно и обратното (като тук ще използваме другата важна теорема — S_n^m -теоремата). Поради това понякога и двете теореми 3.6 и 3.7 се наричат общо smopa теорема за рекурсия.

Задача 3.20. Докажете, че от втората теорема за рекурсия следва теоремата за определимост по рекурсия.

Доказателство. Нека $f(a, \bar{x})$ е произволна изчислима функция. Към нея прилагаме S_n^m -теоремата и получаваме, че съществува рекурсивна функция h, такава че за всяко a и $\bar{x} \in \mathbb{N}^n$:

$$\varphi_{h(a)}^{(n)}(\bar{x}) \simeq f(a, \bar{x}).$$

Сега от втората теорема за рекурсия ще имаме, че за тази функция h съществува индекс a, такъв че

$$\varphi_{h(a)}^{(n)}(\bar{x}) \simeq \varphi_a^{(n)}(\bar{x})$$

за всяко \bar{x} . Тогава за това a и за всяко $\bar{x} \in \mathbb{N}^n$ ще е изпълнено

$$\varphi_a^{(n)}(\bar{x}) \simeq f(a, \bar{x}).$$

Нека h е едноместна рекурсивна функция. Ако за индекса a е изпълнено

$$\varphi_{h(a)}^{(n)} = \varphi_a^{(n)},$$

то *а* ще наричаме <u>псевдонеподвижна точка</u> на *h*. Тогава втората теорема за рекурсия може да бъде изказана и така: всяка едноместна рекурсивна функция има поне една псевдонеподвижна точка.

Защо a се нарича nceedoнеподвижна точка ще разберем по-нататък в лекцията, когато се запознаем с понятието "неподвижна точка на оператор". Сега да докажем, че псевдонеподвижните точки на всяка функция всъщност са безброй много.

Твърдение 3.9. Всяка едноместна рекурсивна функция h има безброй много псевдонеподвижни точки.

Доказателство. Трябва да покажем, че каквото и k да си вземем, ще съществува псевдонеподвижна точка a, която е по-голяма от k. За целта ще конструираме друга рекурсивна функция g, която е почти същата като h, и която няма "малки" неподвижни точки. Нека

$$g(a) = \begin{cases} h(a), & \text{ako } a > k \\ c, & \text{ako } a \le k, \end{cases}$$

където c е такова, че $\varphi_c^{(n)} \notin \{\varphi_0^{(n)}, \dots, \varphi_k^{(n)}\}$. Функцията g също е рекурсивна, следователно съществува a, такова че $\varphi_{g(a)}^{(n)} = \varphi_a^{(n)}$. От избора на c е ясно, че не може $a \leq k$. Значи остава a > k. Но тогава g(a) = h(a) и оттук

$$\varphi_{h(a)}^{(n)} = \varphi_{g(a)}^{(n)} = \varphi_a^{(n)}.$$

Така конструирахме псевдонеподвижна точка на h, която е по-голяма от k. Понеже k беше произволно, можем да твърдим, че h има произволно големи псевдонеподвижни точки.

Забележка. Разбира се, от това твърдение веднага следва, че са безброй много и индексите a от теоремата за определимост по рекурсия, т.е. индексите, за които $\forall \bar{x} \ \varphi_a^{(n)}(\bar{x}) \simeq f(a,\bar{x})$. За целта разсъждаваме както в доказателството на $3a\partial a ua \ 3.20$: към дадената изчислима функция $f(a,\bar{x})$ прилагаме S_n^m -теоремата и получаваме рекурсивна h, такава че $\varphi_{h(a)}^{(n)}(\bar{x}) \simeq f(a,\bar{x})$. Ясно е, че за всички (безброй много) псевдонеподвижни точки на h ще е изпълнено $\varphi_a^{(n)}(\bar{x}) \simeq f(a,\bar{x})$.

Задача 3.21. Докажете, че съществуват безброй много a, за които са равни "съседните" функции φ_a и φ_{a+1} от редицата $\varphi_0, \varphi_1, \ldots$

Решение. Искаме $\varphi_a = \varphi_{a+1}$, което означава, че търсим псевдонеподвижни точки на рекурсивната функция h(a) = a + 1. Е, вече видяхме, че те съществуват, и освен това са безброй много.

В Задача 3.12 показахме, че съществува примитивно рекурсивна функция s, такава че $W_{s(a)}=\{a\}$ за всяко a. Като приложим втората теорема за рекурсия към функцията s(a), получаваме, че за поне един индекс a ще имаме $\varphi_{s(a)}=\varphi_a$. Тогава, в частност, ще е изпълнено и $W_{s(a)}=W_a$, което заедно с $W_{s(a)}=\{a\}$ ни дава

$$W_a = \{a\}.$$

Така получихме по-кратко решение на $3a\partial a ua$ 3.18.

Задача 3.22. Докажете, че съществуват безброй много a, такива че

- 1) $\varphi_a = \varphi_a \circ \varphi_a$;
- 2) $\varphi_a = \varphi_{a+1} \circ \varphi_{a+2}$.

Решение. 1) Единият начин е да тръгнем от функцията

$$f(a,x) \simeq \varphi_a(\varphi_a(x)),$$

която е изчислима, защото можем да си я мислим като $\Phi_1(a, \Phi_1(a, x))$. Значи към f е приложима теоремата за определимост по рекурсия, според която съществуват естествени числа a, такива че

$$\varphi_a(x) \simeq f(a,x)$$

за всяко x. Според забележката след края на Tespdenue 3.9, тези a са безброй много. От избора на f се вижда, че всички те удовлетворяват условието, защото

$$\varphi_a(x) \simeq f(a,x) \simeq \varphi_a(\varphi_a(x))$$

за всяко x. Оттук, разбира се, и $\varphi_a = \varphi_a \circ \varphi_a$ за безброй много a.

Вторият начин да решим задачата е да се възползваме от ефективността на оператора Γ_{comp} : $\mathcal{F}_1 \times \mathcal{F}_1 \longrightarrow \mathcal{F}_1$, който се дефинира с равенството

$$\Gamma_{comp}(f,g) = f \circ g.$$

От 3a da ча 3.15 знаем, че съществува рекурсивна функция comp, такава че за всяко a и b:

$$\Gamma_{comp}(\varphi_a, \varphi_b) = \varphi_{comp(a,b)},$$
 или все едно, $\varphi_a \circ \varphi_b = \varphi_{comp(a,b)}.$

Нека $h(a) \stackrel{\text{деф}}{=} comp(a,a)$. Тогава $\varphi_{h(a)} = \varphi_a \circ \varphi_a$ и значи за всяка псевдонеподвижна точка a на h ще имаме $\varphi_a = \varphi_{h(a)} = \varphi_a \circ \varphi_a$.

За подусловие 2) разсъждавайте по аналогия с първия начин за решаване на 1). Съобразете защо вторият начин тук е неприложим.

Ето и едно любопитно приложение на втората теорема за рекурсия.

Задача 3.23. Докажете, че за всеки компютърен вирус съществуват безброй много програми, чието действие той не може да промени.

Решение. Ако си представяме (идеализирано) вируса като програма, която променя кодовете на програмите, то той всъщност е рекурсивна функция — да кажем, v(a), такава че $P_{v(a)}$ е резултатът от действието на вируса върху P_a . Да фиксираме $n \ge 1$. Знаем, че има безброй много a, за които $\varphi_{v(a)}^{(n)} = \varphi_a^{(n)}$. Това означава, че програмите P_a и $P_{v(a)}$ са еквивалентни, т.е. пресмятат една и съща n-местна функция. Значи всяка такава P_a остава семантично непроменена от вируса.

Задача за ЕК. Докажете, че съществува рекурсивна функция g, такава че за всяко n числото g(n) е индекс на функцията g^n .

Задача за ЕК. Докажете, че съществува *инективна* и рекурсивна функция g, такава че за всяко n числото g(n) е индекс на g.

Забележка. Искаме g да изброява paзлични свои индекси. Без изискването за инективност, едно очевидно решение е $g = \varphi_a$, където a е код на самовъзпроизвеждаща се програма от $\Pi pumep\ 3.2\ 1$). Тогава ще имаме, че за всяко n

$$g(n) = \varphi_a(n) = a.$$

Задача за ЕК. Измислете някакво автореферентно свойство на програма за МНР и докажете, че има безброй много програми с това свойство.

3.7 Неподвижни точки на оператори

3.7.1 Неподвижни и най-малки неподвижни точки

Нека $\Gamma: \mathcal{F}_n \longrightarrow \mathcal{F}_k$ е произволен оператор. Функцията f наричаме неподвижна точка на оператора Γ , ако

$$\Gamma(f) = f$$
.

Ясно е, че за да говорим за неподвижни точки на Γ , трябва броят на аргументите на f и на резултата $\Gamma(f)$ да е един и същ, т.е. трябва Γ да е оператор от тип $(k \to k)$.

Определение 3.2. Казваме, че f е най-малка неподвижна точка (n.м.н.т.) на оператора Γ , ако:

- 1) f е неподвижна точка на Γ ;
- 2) за всяка неподвижна точка g на Γ е вярно, че $f \subseteq g$.

Ако съществува, най-малката неподвижна точка на Γ е единствена: наистина, ако Γ има две най-малки неподвижни точки f и g, то от второто условие на дефиницията ще имаме, че $f \subseteq g$ и $g \subseteq f$ и следователно f = g. Тази единствена най-малка неподвижна точка на Γ ще означаваме с f_{Γ} . Друго често срещано означение е $lfp(\Gamma)$ (от $least\ fixed\ point$).

Една основна мотивация за интереса към неподвижните точки на операторите са рекурсивните програми. Да разгледаме няколко примера.

Пример 3.3. Нека R е следната рекурсивна програма:

$$R: \quad f(x) \ = \ \underbrace{\text{if} \quad x \ = \ 0 \quad \text{then} \ 1 \quad \text{else} \ x.f(x-1)}_{\Gamma(f)(x)}$$

На тялото на R можем да съпоставим оператора $\Gamma\colon \mathcal{F}_1\longrightarrow \mathcal{F}_1$, дефиниран като:

$$\Gamma(f)(x)\simeq egin{cases} 1, & ext{ako } x=0 \ x.f(x-1), & ext{иначе}. \end{cases}$$

Ясно e, че функцията f, която R пресмята, удовлетворява условието

$$f(x) \simeq egin{cases} 1, & ext{ako } x = 0 \ x.f(x-1), & ext{иначе.} \end{cases}$$

С други думи

$$f(x) \simeq \Gamma(f)(x)$$
 за всяко $x \in \mathbb{N}$,

или все едно, $f = \Gamma(f)$, т.е. f е неподвижна точка на оператора Γ .

Този този оператор има единствена неподвижна точка — функцията ϕ ак-*териел.* Наистина, нека f е произволна неподвижна точка на Γ , т.е. за f е изпълнено

$$f(x)\simeq egin{cases} 1, & ext{ako }x=0 \ x.f(x-1), & ext{иначе.} \end{cases}$$

С индукция относно $x \in \mathbb{N}$ ще покажем, че $\forall x \ f(x) = x!$.

При x=0 имаме $f(0)=1\stackrel{\text{деф}}{=}0!$, а ако допуснем, че f(x)=x! за някое $x\geq 0$, то за x+1 получаваме последователно:

$$f(x+1) \simeq (x+1).f(x) = (x+1).x! = (x+1)!.$$

Да изследваме и неподвижните точки на операторите, идващи от две съвсем прости програми:

Пример 3.4. 1) R: f(x) = g(x), където g е фиксирана функция. R формално не е рекурсивна, но не пречи да изследваме оператора, който тя определя — константният оператор, при който за всяка $f \in \mathcal{F}_1$ имаме

$$\Gamma(f) \stackrel{\text{деф}}{=} g.$$

Този оператор има единствена неподвижна точка и това е g (която, разбира се, е и функцията, която R ще пресметне).

$$2) \quad R: \quad f(x) = f(x)$$

Тази програма пресмята никъде недефинираната функция $\emptyset^{(1)}$. Операторът, който тя определя, е операторът идентитет

$$\Gamma(f) \stackrel{\text{деф}}{=} f,$$

на който очевидно всяка функция е неподвижна точка, а най-малката неподвижна точка ще е точно $\emptyset^{(1)}$.

Горният оператор е пример за оператор с *континуум много* неподвижни точки. Ето и два последни примера на рекурсивни програми, които определят оператори с изброимо много неподвижни точки.

Пример 3.5. Нека R е програмата

$$R: f(x) = if x = 0 then 0 else f(x+1)$$

Да означим с Γ оператора, който R задава:

$$\Gamma(f)(x) \simeq \begin{cases} 0, & \text{ако } x = 0 \\ f(x+1), & \text{иначе.} \end{cases}$$

Ако f е н.т. на Γ , то за нея е вярно, че

$$f(x)\simeq egin{cases} 0, & ext{ako }x=0 \ f(x+1), & ext{иначе}. \end{cases}$$

Следователно f(0)=0, а при всяко x>0 би трябвало $f(x)\simeq f(x+1),$ което означава, че

$$f(1) \simeq f(2) \simeq f(3) \simeq \dots$$

Следователно f или трябва да има една и съща стойност при x>0, или въобще да няма стойност. С други думи, f или е някоя от функциите f_c , където f_c (за $c\in\mathbb{N}$) има вида

$$f_c(x) \simeq egin{cases} 0, & ext{ako } x = 0 \ c, & ext{ako } x > 0, \end{cases}$$

или f е $f_{\neg !}$, където

$$f_{\neg !}(x) \simeq \begin{cases} 0, & \text{ako } x = 0 \\ \neg !, & \text{ako } x > 0, \end{cases}$$

Ясно е, че най-малката н.т. на Γ ще е горната функция $f_{\neg!}$.

Ето как изглеждат графично тези функции.

Пример 3.6. Нека R е програмата

$$\overline{R: f(x,y)} = if x = 0 then 0 else f(x-1,f(x,y))$$

Операторът, който R задава, е следният:

$$\Gamma(f)(x,y)\simeq egin{cases} 0, & ext{ako } x=0 \ f(x-1,f(x,y)), & ext{иначе}. \end{cases}$$

Нека $f = \Gamma(f)$, или все едно

$$f(x,y)\simeq egin{cases} 0, & ext{ako } x=0 \ f(x-1,f(x,y)), & ext{иначе}. \end{cases}$$

Лесно се вижда, че най-малката функция, която удовлетворява това условие, е

$$f(x,y) \simeq \begin{cases} 0, & \text{ako } x = 0 \\ \neg !, & \text{ako } x > 0. \end{cases}$$

Същевременно и всяка от функциите f_c , c > 0, където

$$f_c(x,y) \simeq \begin{cases} 0, & \text{ako } x \leq c \\ \neg !, & \text{ako } x > c, \end{cases}$$

също е неподвижна точка на Г. Най-голямата неподвижна точка е

$$f_{\infty}(x,y) \stackrel{\text{деф}}{=} 0$$
 за всяко x,y .

Видяхме, че разнообразието при неподвижните точки на операторите е голямо. Те могат да имат една, няколко или безброй много неподвижни точки. Обаче едно нещо се набиваше на очи — че всички те имат наймалка неподвижна точка.

Дали това винаги е така? Не. Ще завършим тази встъпителна част с още два примера — за оператор, който няма *най-малка* неподвижна точка (но има неподвижни точки) и за оператор, който въобще няма неподвижни точки. Особеното и при двата оператора е, че те, за разлика от вече разгледаните примери, "не идват" от рекурсивни програми.

Пример 3.7. Нека f_0 и f_1 са две различни тотални функции (бихме могли да си мислим за константните функции $\lambda x.0$ и $\lambda x.1.$) Да определим операторите Γ и Δ както следва:

$$\Gamma(f) = \begin{cases} f_0, & \text{ako } f = f_0 \\ f_1, & \text{ako } f \neq f_0, \end{cases}$$

$$\Delta(f) = egin{cases} f_1, & ext{ako } f = f_0 \ f_0, & ext{ako } f
eq f_0. \end{cases}$$

За да определим неподвижните точки на Γ , да приемем, че $\Gamma(f)=f$. Като разгледаме двете възможности за f — да е равна или да е различна от f_0 , стигаме до извода, че $f=f_0$ или $f=f_1$. Следователно Γ има две неподвижни точки — f_0 и f_1 , но няма най-малка неподвижна точка.

С подобни разсъждения се показва, че операторът Δ няма никакви неподвижни точки.

3.7.2 Неподвижни точки на ефективни оператори

Нека $\Gamma: \mathcal{F}_n \longrightarrow \mathcal{F}_k$ е ефективен оператор. Това, съгласно *Определение* 3.1 означава, че съществува рекурсивна функция h (индексната функция на Γ), такава че за всяко a:

$$\Gamma(\varphi_a^{(n)}) = \varphi_{h(a)}^{(k)}.$$

Оказва се, че всеки ефективен оператор от подходящия тип $(n \to n)$ има поне една изчислима неподвижна точка.

Твърдение 3.10. Нека $\Gamma: \mathcal{F}_n \longrightarrow \mathcal{F}_n$ е ефективен оператор. Тогава съществува изчислима функция f, такава че $\Gamma(f) = f$.

Доказателство. Нека рекурсивната функция h е индексна за оператора, т.е. за всяко a е изпълнено

$$\Gamma(\varphi_a^{(n)}) = \varphi_{h(a)}^{(n)}.$$

Съгласно втората теорема за рекурсия, съществува индекс a, такъв че $\varphi_{h(a)}^{(n)}=\varphi_a^{(n)}$. Следователно

$$\Gamma(\varphi_a^{(n)}) \stackrel{\mathrm{Деф}}{=} \varphi_{h(a)}^{(n)} = \varphi_a^{(n)},$$

с други думи, функцията $\varphi_a^{(n)}$ е неподвижна точка на Γ .

Забележка. От T върдение 3.9 знаем, че всяка рекурсивна функция h има безброй много псевдонеподвижни точки, т.е има безброй много индекси a, за които $\varphi_{h(a)}^{(k)} = \varphi_a^{(k)}$. Разбира се, това съвсем не означава, че и операторът Γ с индексна функция h ще има безброй много неподвижни точки. Може просто всички псевдонеподвижни точки на h да са индекси на една и съща функция. Такъв е случаят с оператора, свързан с функцията на Акерман от следващата задача:

Задача 3.24. Докажете, че функцията на Акерман, която се дефинира с условията

$$| f(0,y) \simeq y + 1 f(x+1,0) \simeq f(x,1) f(x+1,y+1) \simeq f(x,f(x+1,y)).$$

е рекурсивна.

Решение. От решението на $3a\partial a \cdot a$ 1.21 знаем, че съществува единствена функция f, удовлетворяваща горните равенства. Да препишем дефиницията на f в следния по-удобен за нашите цели вид:

$$f(x,y) = \begin{cases} y+1, & \text{ako } x = 0\\ f(x,1), & \text{ako } x > 0 \& y = 0\\ f(x,f(x+1,y)), & \text{ako } x > 0 \& y > 0. \end{cases}$$
(3.10)

Да означим с $\Gamma: \mathcal{F}_2 \longrightarrow \mathcal{F}_2$ оператора, определен от дясната част на горното равенство:

$$\Gamma(f)(x,y) \overset{\text{деф}}{\simeq} \begin{cases} y+1, & \text{ако } x=0 \\ f(x,1), & \text{ако } x>0 \ \& \ y=0 \\ f(x,f(x+1,y)), & \text{ако } x>0 \ \& \ y>0. \end{cases}$$

Да се убедим най-напред, че този оператор е ефективен. Ще използваме критерия от *Твърдение* 3.8. За тази цел разглеждаме функцията

$$F(a,x,y) \stackrel{\text{деф}}{\simeq} \Gamma(\varphi_a^{(2)})(x,y) \simeq \begin{cases} y+1, & \text{ако } x=0 \\ \varphi_a^{(2)}(x,1), & \text{ако } x>0 \ \& \ y=0 \\ \varphi_a^{(2)}(x,\varphi_a^{(2)}(x+1,y)), & \text{ако } x>0 \ \& \ y>0. \end{cases}$$

Преписваме F чрез универсалната функция Φ_2 :

$$F(a,x,y) \simeq \begin{cases} y+1, & \text{ако } x=0 \\ \Phi_2(a,x,1), & \text{ако } x>0 \ \& \ y=0 \\ \Phi_2(a,x,\Phi_2(a,x+1,y)), & \text{ако } x>0 \ \& \ y>0. \end{cases}$$

Сега вече никой не се съмнява, че F е изчислима и значи операторът Γ е ефективен. Тогава според Teopdenue~3.10 той ще има поне една изчислима неподвижна точка $\varphi_a^{(2)}$.

Откъде, обаче, да сме сигурни, че това ще е точно функцията на Акерман? Ами всяка неподвижна точка на Γ удовлетворява условията (3.10), а знаем, че има само една функция която може да удовлетворява тези условия и това е функцията F на Акерман. Следователно $F=\varphi_a^{(2)}$, с други думи, F е изчислима. Но тя е и тотална, и значи общо е рекурсивна.

Да обърнем внимание, че за безброй много a, $\Gamma(\varphi_a^{(2)})=\varphi_a^{(2)},$ но неподвижната точка на този оператор е само една.

Друг начин да решим задачата е като използваме директно теоремата за определимост по рекурсия. За целта разсъждаваме така: ако функцията на Акерман е рекурсивна, тя би трябвало да е от вида $\varphi_a^{(2)}$ за някое a. Значи е достатъчно да съобразим, че функция от вида $\varphi_a^{(2)}$ удовлетворява условието (3.10):

$$\varphi_a^{(2)}(x,y) \simeq \underbrace{\begin{cases} y+1, & \text{ako } x=0 \\ \varphi_a^{(2)}(x,1), & \text{ako } x>0 \ \& \ y=0 \\ \varphi_a^{(2)}(x,\varphi_a^{(2)}(x+1,y)), & \text{ako } x>0 \ \& \ y>0. \end{cases}}_{F(a,x,y)}$$

Да означим дясната част на това равенство с F(a,x,y). Тази функция е изчислима, както вече отбелязахме по-горе. Следователно съществува естествено число a, такова че

$$\varphi_a^{(2)}(x,y) \simeq F(a,x,y).$$

Ясно е, че $\varphi_a^{(2)}$ ще е точно функцията на Акерман, защото тя единствена удовлетворява (3.10).

Накрая да обясним защо индексите а, такива че

$$\varphi_{h(a)} = \varphi_a,$$

се наричат псевдонеподвижни точки на h.

Кое може да е изображението, на което φ_a да е неподвижна точка? Звучи логично това да е операторът Γ , който върху изчислимите функции се задава с равенството

$$\Gamma(\varphi_a) \stackrel{\text{деф}}{=} \varphi_{h(a)}.$$

Това определение, обаче, изобщо казано е некоректно. Ако такъв оператор съществуваше, то за него би трябвало да е изпълнено условието

$$\varphi_a = \varphi_b \implies \Gamma(\varphi_a) = \Gamma(\varphi_b),$$

което преписано чрез h изглежда така:

$$\varphi_a = \varphi_b \implies \varphi_{h(a)} = \varphi_{h(b)}.$$

Далеч не всяка рекурсивна функция има това много специално свойство (вече споменахме, че функциите, които го имат, се наричат екстензионални.)

Ако, обаче, разглеждаме оператор, който преработва nporpamu в nporpamu, вече ще имаме коректна дефиниция. Да си спомним за множеството от всички програми

$$\mathbb{P} = \{P \mid P \text{ е програма за MHP}\},$$

и нека изображението $\Delta\colon \mathbb{P} \longrightarrow \mathbb{P}$ се дефинира така: за всяко a

$$\Delta(P_a) = P_{h(a)}.$$

Тук вече нямаме проблем с коректността, защото с всяка програма свързваме *единствено* число — нейния код.

Ако програмите P_a и P_b са еквивалентни (т.е. ако $\varphi_a = \varphi_b$), нека този факт отбелязваме така: $P_a \approx P_b$. Тогава е ясно, че ако $\varphi_a = \varphi_{h(a)}$, то $P_a \approx \Delta(P_a)$. Тъкмо заради факта, че имаме $P_a \approx \Delta(P_a)$, а не $P_a = \Delta(P_a)$, говорим за nceedoнеподвижни (а не неподвижни) точки на h.

Материалът оттук до края на лекцията е само за студенти, които се питат: след като има втора теорема за рекурсията, тогава коя е първата? :)

3.8 Първа теорема за рекурсия

Формулировката и доказателството на първата теорема за рекурсия изискват известна предварителна подготовка, с която ще се заемем за начало.

3.8.1 Компактни оператори

За начало ще дефинираме два типа оператори — монотонни и компактни и ще покажем връзката между тях.

Определение 3.3. Казваме, че операторът $\Gamma: \mathcal{F}_k \longrightarrow \mathcal{F}_m$ е монотонен, ако за всяка двойка функции $f, g \in \mathcal{F}_k$ е изпълнено условието:

$$f \subseteq g \implies \Gamma(f) \subseteq \Gamma(g).$$

За дефиницията на втория тип оператори — компактните, ще ни трябва понятието крайна функция. Да напомним, че една функция е крайна, ако е дефинирана само в краен брой точки. Всяка крайна функция носи само крайна информация — информация за стойностите си в точките от дефиниционното си множество. За сравнение: една тотална едноместна функция f се характеризира с безкрайната редица от стойностите си $f(0), f(1), \ldots$.

По-надолу с θ ще означаваме само крайни функции.

Определение 3.4. Операторът $\Gamma: \mathcal{F}_k \longrightarrow \mathcal{F}_m$ наричаме компактен, ако за всяка функция $f \in \mathcal{F}_k$, всяко $\bar{x} \in \mathbb{N}^k$ и всяко $y \in \mathbb{N}$ е в сила еквивалентността:

(3.11)

Интуитивно, за един компактен оператор Γ е вярно, че $a\kappa o$ $\Gamma(f)(\bar{x})$ има стойност, то тази стойност се получава като се използва само крайна информация от аргумента f — това е точно крайната функция θ от горното определение. Разбира се, точките, в които тази крайна θ е дефинирана, могат да зависят както от f, така и от \bar{x} .

Например, при оператора за диагонализация Γ_d имаме, че ако

$$\Gamma_d(f)(x) \stackrel{\text{деф}}{\simeq} f(x,x) \simeq y,$$

то резултатът y зависи от стойността на f само в една точка — точката (x,x). Следователно най-малката функция $\theta \subseteq f$, от която се определя резултатът $\Gamma_d(f)(x)$ е с дефиниционна област $\{(x,x)\}$.

За оператора

$$\Gamma_{sum}(f)(x) \simeq f(0) + \dots + f(x)$$

имаме, че ако $\Gamma_{sum}(f)(x) \simeq y$, то y се определя от стойностите на f в точките $0,1,\ldots,x$, и следователно $Dom(\theta)$ трябва да включва точките $0,1,\ldots,x$, а най-малката θ с това свойство е тази, за която $Dom(\theta)=\{0,1,\ldots,x\}$.

При оператора за композиция, който се дефинира с условието $\Gamma_{comp}(f)(x) \simeq f(f(x))$ е ясно, че ако $\Gamma_{comp}(f)(x) \simeq y$, то $Dom(\theta)$ трябва да включва точките x и f(x), като втората точка вече зависи и от f.

Въобще, всички оператори, които сме давали дотук като примери, са компактни.

За нашите цели се оказва удобна следната еквивалентна формулировка на дефиницията за компактност:

Твърдение 3.11. Операторът $\Gamma: \mathcal{F}_k \longrightarrow \mathcal{F}_m$ е компактен тогава и само тогава, когато са изпълнени условията:

- 1) Γ е монотонен;
- 2) За всички $f \in \mathcal{F}_k$, $\bar{x} \in \mathbb{N}^k$ и $y \in \mathbb{N}$ е в сила импликацията:

$$\Gamma(f)(\bar{x}) \simeq y \implies \exists \theta (\theta \subseteq f \& \theta \text{ е крайна } \& \Gamma(\theta)(\bar{x}) \simeq y).$$

Доказателство. Нека Γ е компактен. Имаме да проверим само монотонността на Γ . За целта да вземем две функции f и g, такива че $f \subseteq g$. За да покажем, че $\Gamma(f) \subseteq \Gamma(g)$, да приемем, че за някои \bar{x}, y

$$\Gamma(f)(\bar{x}) \simeq y.$$

Тогава от правата посока на (3.11) ще съществува крайна функция $\theta \subseteq f$, за която $\Gamma(\theta)(\bar{x}) \simeq y$. Имаме $\theta \subseteq f$ и $f \subseteq g$, и значи $\theta \subseteq g$, защото \subseteq е транзитивна. Сега отново от условието за компактност на Γ , но прочетено наобратно, достигаме до $\Gamma(g)(\bar{x}) \simeq y$. Получихме общо, че

$$\Gamma(f)(\bar{x}) \simeq y \implies \Gamma(g)(\bar{x}) \simeq y,$$

и понеже \bar{x} и y бяха произволни, то наистина $\Gamma(f) \subseteq \Gamma(g)$.

Нека сега са в сила условията 1) и 2). Трябва да проверим само обратната посока на условието за компактност (3.11). Ако се вгледаме в него, виждаме, че то е някаква специална монотонност на Γ , отнасяща се само за случаите, когато по-малката функция е крайна.

Наистина, нека дясната част на (3.11) е в сила, т.е. за някоя крайна $\theta \subseteq f$ е вярно, че

$$\Gamma(\theta)(\bar{x}) \simeq y$$
.

Но операторът Γ е монотонен, и щом $\theta \subseteq f$, то и $\Gamma(\theta) \subseteq \Gamma(f)$. Оттук, имайки предвид, че $\Gamma(\theta)(\bar{x}) \simeq y$, веднага получаваме, че и $\Gamma(f)(\bar{x}) \simeq y$, което и трябваше да покажем.

Следствие 3.2. Всеки компактен оператор е монотонен.

Както не е трудно да се предположи, обратната посока на горното следствие не е вярна. Ето един контрапример:

Пример 3.8. Следващият оператор Γ е монотонен, но не е компактен:

$$\Gamma(f) = \begin{cases} \emptyset^{(1)}, & \text{ако } f \text{ е крайна} \\ f, & \text{иначе.} \end{cases}$$

Доказателство. Монотонността на Γ се проверява непосредствено като се разгледат трите възможности за $f \subseteq g$:

- -f и q крайни;
- -f крайна, g безкрайна;
- -f и g безкрайни.

За да се убедим, че Γ не е компактен, е достатъчно да вземем коя да е тотална функция f. За произволно естествено x имаме $\Gamma(f)(x) \stackrel{\text{деф}}{=} f(x)$ и следователно $\Gamma(f)(x)$ има стойност. От друга страна, за всяка крайна θ , $\Gamma(\theta) \stackrel{\text{деф}}{=} \emptyset^{(1)}$ и следователно $\Gamma(\theta)(x)$ няма стойност, т.е. условието за компактност (3.11) не може да е в сила.

Да обърнем внимание, че горният оператор е доста неестествен от изчислителна гледна точка в следния смисъл: Да предположим, че разполагаме с програма за f. За да пресметнем $\Gamma(f)(x)$, трябва да проверим дали f е крайна функция — нещо, което интуитивно е ясно, че няма как да стане алгоритмично за краен брой стъпки.

Всички оператори, които разглеждахме досега (с изключение на контрапримерите от *Примери* 3.7 и 3.8) са компактни. В следващата задача ще проверим компакността на някои от тях. В решенията се оказва удобно следното означение:

Нека f е n-местна функция, а A е подмножество на \mathbb{N}^n . Pecmpukuus на f до множеството A ще наричаме функцията $g \in \mathcal{F}_n$, за която:

$$Dom(g) = Dom(f) \cap A$$
 & $g(\bar{x}) \simeq f(\bar{x})$ за всяко $\bar{x} \in Dom(g)$.

Рестрикцията на f до множеството A ще означаваме с $f \upharpoonright A$.

Задача 3.25. Докажете, че следващите оператори са компактни:

- а) операторът за диагонализация $\Gamma_d: \mathcal{F}_2 \longrightarrow \mathcal{F}_1$, който се дефинира с $\Gamma_d(f)(x) \simeq f(x,x)$ за всяко $x \in \mathbb{N}$;
- **б**) операторът Γ_{sq} : $\mathcal{F}_1 \longrightarrow \mathcal{F}_1$ със следната дефиниция: $\Gamma_{sq}(f) = f \circ f$;
- в) операторът за сумиране $\Gamma_{sum}:\ \mathcal{F}_1\longrightarrow\ \mathcal{F}_1,$ който за всяко $x\in\mathbb{N}$:

$$\Gamma_{sum}(f)(x) \simeq \sum_{z=0}^{x} f(z);$$

г) операторът Г, свързан с функцията на Акерман:

$$\Gamma(f)(x,y) \simeq \begin{cases} y+1, & \text{ako } x=0 \\ f(x-1,0), & \text{ako } x>0 \ \& \ y=0 \\ f(x-1,f(x,y-1)), & \text{ako } x>0 \ \& \ y>0. \end{cases}$$

Решение. Ще се възползваме от НДУ, което формулирахме в *Тебр- дение* 3.11, т.е. за всеки от операторите ще покажем, че е монотонен и че за него е в сила правата посока на условието за компактност (3.11).

а) Монотонност: да вземем две функции f и g от \mathcal{F}_2 , такива че $f \subseteq g$. За да видим, че и $\Gamma_d(f) \subseteq \Gamma_d(g)$, следваме определението на релацията \subseteq :

$$\Gamma_d(f) \subseteq \Gamma_d(g) \stackrel{\text{ped}}{\iff} \forall x \forall y \ (\Gamma_d(f)(x) \simeq y \implies \Gamma_d(g)(x) \simeq y).$$

Наистина, да вземем произволни естествени x и y и да приемем, че $\Gamma_d(f)(x)\simeq y$. Трябва да покажем, че и $\Gamma_d(g)(x)\simeq y$.

Условието $\Gamma_d(f)(x) \simeq y$ означава $f(x,x) \simeq y$. Но $f \subseteq g$, следователно и $g(x,x) \simeq y$, или все едно $\Gamma_d(g)(x) \simeq y$. Понеже x и y бяха произволни, можем да заключим, че $\Gamma_d(f) \subseteq \Gamma_d(g)$.

Да проверим, че за Γ_d е в сила импликацията

$$\forall f_{\in \mathcal{F}_2} \forall x \forall y \ (\Gamma_d(f)(x) \simeq y \implies \exists \theta (\theta \subseteq f \& \theta \text{ в крайна } \& \Gamma_d(\theta)(x) \simeq y)).$$

За целта фиксираме функция $f \in \mathcal{F}_1$ и естествени числа x и y и приемаме, че $\Gamma_d(f)(x) \simeq y$, което ще рече $-f(x,x) \simeq y$. Очевидно резултатът y зависи само от стойността на f в точката (x,x). Тогава е ясно коя крайна функция $\theta \subseteq f$ да изберем, така че да си осигурим $\Gamma_d(\theta)(x) \simeq y$ полагаме θ да е pecmpukuusma на f до множеството $\{(x,x)\}$:

$$\theta := f \upharpoonright \{(x, x)\}.$$

От избора на θ автоматично следва, че тя е подфункция на f, дефинирана в най-много една точка — точката (x, x). Но ние имаме, че $(x, x) \in$ Dom(f), откъдето

$$\theta(x, x) = f(x, x) \ (= y).$$

Оттук веднага $\Gamma_d(\theta)(x) \stackrel{\text{деф}}{\simeq} \theta(x,x) \simeq y.$

б) По дефиниция

$$\Gamma_{sq}(f)(x) \stackrel{\text{деф}}{\simeq} (f \circ f)(x) \simeq f(f(x)).$$

За да се убедим, че и този оператор е монотонен, вземаме отново произволни функции f,g от \mathcal{F}_1 , такива че $f\subseteq g$. Да приемем, че $\Gamma_{sq}(f)(x)\simeq y$ за някой $x,y\in\mathbb{N}$. Това означава, че $f(f(x))\simeq y$. В такъв случай, съгласно нашата дефиниция за суперпозиция, със сигурност f(x) ще е дефинирано, т.е. $f(x) \simeq z$ за някое z. Понеже x и z са от Dom(f), а $f \subseteq g$, то веднага f(x) = g(x) и f(z) = g(z). Но тогава

$$\Gamma_{sq}(g)(x) \simeq g(g(x)) \simeq g(\underbrace{f(x)}_{z}) \simeq f(\underbrace{f(x)}_{z}) \simeq y,$$

което и трябваше да покажем.

Насочваме се към проверка на импликацията

$$\forall f_{\in \mathcal{F}_1} \forall x \forall y \ (\Gamma_{sq}(f)(x) \simeq y \implies \exists \theta (\theta \subseteq f \& \theta \text{ в крайна } \& \Gamma_{sq}(\theta)(x) \simeq y)).$$

Избираме произволни $f \in \mathcal{F}_1$, x и y и приемаме, че $\Gamma_{sq}(f)(x) \simeq y$, т.е. $f(f(x)) \simeq y$. Вече видяхме, че оттук следва, в частност, че f(x) е дефинирана. Можем да вземем

$$\theta := f \upharpoonright \{x, f(x)\}.$$

Да отбележим, че това всъщност е единственият възможен избор за θ , ако искаме тя да е подфункция на f, защото само за точките x и f(x)знаем със сигурност, че принадлежат на дефиниционната област на f.

Ясно е, че
$$\theta(x) = f(x)$$
 и $\theta(f(x)) = f(f(x))$. Тогава

$$\Gamma_{sq}(\theta)(x) \stackrel{\text{qe}}{\simeq} \theta(\underbrace{\theta(x)}_{=f(x)}) \simeq \theta(f(x)) \simeq f(f(x)) \simeq y.$$

в) Оставяме проверката за монотонността на Γ_{sum} за упражнение и се насочваме директно към второто условие от Твърдение 3.11.

За целта, нека $\Gamma_{sum}(f)(x) \simeq y$, т.е. $f(0) + \cdots + f(x) \simeq y$ за някои f, x и y. В частност, $!f(0), \ldots, !f(x)$. Резултатът y се определя от стойностите на f в точките $0, 1, \ldots, x$, и следователно $Dom(\theta)$ трябва да включва тези точки (и само тях, ако искаме θ да е подфункция на f). Наистина, нека

$$\theta := f \upharpoonright \{0, \dots, x\}.$$

Така ще имаме

$$\Gamma_{sum}(\theta)(x) \stackrel{\text{деф}}{\simeq} \theta(0) + \dots + \theta(x) \simeq f(0) + \dots + f(x) \simeq y.$$

г) Тъй като операторът

$$\Gamma(f)(x,y) \simeq \begin{cases} y+1, & \text{ako } x=0 \\ f(x-1,0), & \text{ako } x>0 \ \& \ y=0 \\ f(x-1,f(x,y-1)), & \text{ako } x>0 \ \& \ y>0. \end{cases}$$

се дефинира с разглеждане на случаи, ще се наложи и ние да разгледаме тези случаи, когато доказваме неговата компактност.

За да видим, че Γ е монотонен, вземаме произволни двуместни функции f и g, такива че $f\subseteq g$ и приемаме, че $\Gamma(f)(x,y)\simeq z$ за някои x,y и z. Искаме да покажем, че $\Gamma(g)(x,y)\simeq z$. Разглеждаме поотделно трите случая от дефиницията на Γ .

1 сл. x=0. Тук очевидно $\Gamma(f)(x,y) \overset{\mathrm{деф}}{\simeq} 0 \simeq \Gamma(g)(x,y)$.

2 сл. x > 0 & y = 0. В този случай $\Gamma(f)(x,y) \stackrel{\text{деф}}{\simeq} f(x-1,0) \simeq z$. Но $f \subseteq g$, значи и $g(x-1,0) \simeq z$, откъдето $\Gamma(g)(x,y) \stackrel{\text{деф}}{\simeq} g(x-1,0) \simeq z$.

3 сл. x>0 & y>0. По определение $\Gamma(f)(x,y)\simeq f(x-1,f(x,y-1)).$ От допускането $\Gamma(f)(x,y)\simeq z$ ще имаме $f(x-1,f(x,y-1))\simeq z$. От дефиницията за суперпозиция следва, че и f(x,y-1) ще е дефинирана. Понеже $f\subseteq g$, ще имаме, че

$$f(x,y-1) = g(x,y-1) \quad \text{if} \quad f(x-1,f(x,y-1)) = f(x-1,g(x,y-1)).$$

Оттук

$$\Gamma(g)(x,y) \overset{\text{ge}\varphi}{\simeq} g(x-1,g(x,y-1)) \simeq g(x-1,f(x,y-1)) \simeq f(x-1,f(x,y-1)) \simeq y.$$

Сега се насочваме към проверката на импликацията

$$\forall f \in \mathcal{F}_2 \forall x \forall y \ \forall z (\Gamma(f)(x,y) \simeq z \implies \exists \theta (\theta \subseteq f \& \theta \text{ е крайна } \& \Gamma(\theta)(x,y) \simeq z)).$$

Да приемем, че $\Gamma(f)(x,y)\simeq z$ за някои f,x и y. Отново се налага да следваме случаите от дефиницията на Γ .

1 сл. x=0. В този случай $\Gamma(f)$ не зависи от f и значи ако вземем

$$\theta := \emptyset^{(2)}$$

ще имаме със сигурност, че $\theta \subseteq f$ и $\Gamma(\theta)(x,y) \simeq z$. Да отбележим, че това е единственият възможен избор на θ , защото допускането $\Gamma(f)(x,y) \simeq z$ не ни дава никаква информация за Dom(f), в частност, напълно възможно е и f да е $\emptyset^{(2)}$.

 ${\bf 2}$ сл. x>0 & y=0. Условието $\Gamma(f)(x,y)\simeq z$ тук означава $f(x-1,0)\simeq z.$ Тогава за

$$\theta:=f\upharpoonright\{(x-1,y)\}$$

очевидно ще е изпълнено $\Gamma(\theta)(x,y) \simeq z$.

3 сл. x>0 & y>0. В този случай имаме, че $f(x-1,f(x,y-1))\simeq z$. Съобразете, че за функцията

$$\theta := f \upharpoonright \{(x, y - 1), (x - 1, f(x, y - 1))\}$$

ще е в сила $\Gamma(\theta)(x,y) \simeq z$.

3.8.2 Точни горни граници на редици

Нека $f_0, f_1, \ldots, f_n, \ldots$ (или само $\{f_n\}_n$) е редица от k-местни функции.

Определение 3.5. Ще казваме, че функцията g е горна граница (мажоранта) на редицата $\{f_n\}_n$, ако за всяко n е вярно, че

$$f_n \subseteq g$$
.

g е точна горна граница (т.г.г.) на редицата $\{f_n\}_n$, ако:

- 1) g е горна граница на $\{f_n\}_n$;
- 2) за всяка горна граница h на тази редица е в сила $g \subseteq h$.

Ако съществува, точната горна граница на $\{f_n\}_n$ е единствена. Наистина, ако допуснем, че редицата $\{f_n\}_n$ има две т.г.гр. g и h, то от условие 2) на дефиницията ще имаме, че $g\subseteq h$ и $h\subseteq g$ и следователно g=h. Точната горна граница на редицата $\{f_n\}_n$ ще означаваме с

$$\bigcup_{n} f_n$$

или само с $\bigcup f_n$.

Оказва се, че ако една редица е *монотонно растяща*, то тя има точна горна граница, която при това се получава по съвсем естествен начин. Да се убедим:

Твърдение 3.12. Всяка монотонно растяща редица $f_0 \subseteq f_1 \subseteq \ldots$ от функции в \mathcal{F}_k притежава точна горна граница f, която се дефинира с условието: за всички естествени x_1, \ldots, x_k, y :

$$f(x_1, \dots, x_k) \simeq y \iff \exists n \ f_n(x_1, \dots, x_k) \simeq y.$$
 (3.12)

Доказателство. Най-напред да се убедим, че тази еквивалентност дефинира еднозначна функция. Наистина, нека за някои \bar{x}, y и z е изпълнено

$$f(\bar{x}) \simeq y$$
 и $f(\bar{x}) \simeq z$.

Тогава ще съществуват индекси l и m, за които

$$f_l(\bar{x}) \simeq y$$
 и $f_m(\bar{x}) \simeq z$.

Без ограничение на общността можем да считаме, че $l \leq m$. Тогава $f_l \subseteq f_m$ и щом $f_l(\bar{x}) \simeq y$, то и $f_m(\bar{x}) \simeq y$. Но ние имаме $f_m(\bar{x}) \simeq z$, и значи наистина y = z.

Нека сега f_n е произволна функция от редицата f_0, f_1, \ldots От определението на f се вижда, че $G_{f_n} \subseteq G_f$, което означава, че $f_n \subseteq f$. Понеже това е вярно за *всяко* n, то f е горна граница на редицата $\{f_n\}_n$.

За да видим, че тя е най-малката сред горните ѝ граници, да вземем друга горна граница — да кажем, h. Трябва да покажем, че $f \subseteq h$. За целта, нека за произволни \bar{x} и y: $f(\bar{x}) \simeq y$. От определението на f имаме, че тогава за някое n трябва да е изпълнено $f_n(\bar{x}) \simeq y$. Но h е мажоранта на редицата $\{f_n\}_n$, а f_n е член на тази редица, следователно $f_n \subseteq h$, откъдето в частност $h(\bar{x}) \simeq y$. Получихме, че за произволните \bar{x}, y е в сила импликацията:

$$f(\bar{x}) \simeq y \implies h(\bar{x}) \simeq y,$$

което по дефиниция означава, че $f \subseteq h$. Следователно f е точната горна граница на редицата f_0, f_1, \ldots

Забележка. От определението на f се вижда, че нейната графика е *обе-* dunenue на графиките на функциите от редицата $\{f_n\}_n$, което обяснява и означението \bigcup за точна горна граница.

Ще докажем и една спомагателна лема, която ще използваме веднага след това при доказателството на важната теорема на Кнастер-Тарски.

Лема 3.1. Нека $f_0 \subseteq f_1 \subseteq \dots$ е монотонно растяща редица от функции в \mathcal{F}_k и нека за крайната функция θ е изпълнено:

$$\theta \subseteq \bigcup_n f_n$$
.

Тогава $\theta \subseteq f_n$ за някое n.

Доказателство. Нека $Dom(\theta) = \{\bar{x}^1, \dots \bar{x}^l\}$. Можем да предполагаме, че $l \geq 1$, защото ако l = 0, т.е. $\theta = \emptyset^{(k)}$, то със сигурност $\theta \subseteq f_0$. Да фиксираме $1 \leq i \leq l$ и нека

$$\theta(\bar{x}^i) \simeq y_i.$$

Понеже $\theta \subseteq \bigcup f_n$, значи и $(\bigcup f_n)(\bar{x}^i) \simeq y_i$. От последното, като използваме дефиницията за т.г.г. (3.12), получаваме, че съществува n_i , за което

$$f_{n_i}(\bar{x}^i) \simeq y_i.$$

Нека $n = max\{n_1, \ldots, n_l\}$. Тогава очевидно $n_i \le n$ и следователно $f_{n_i} \subseteq f_n$. Сега от $f_{n_i}(\bar{x}^i) \simeq y_i$ ще имаме, че и $f_n(\bar{x}^i) \simeq y_i$. Финално, за всяко $\bar{x}^i \in Dom(\theta)$ е изпълнено $\theta(\bar{x}^i) \simeq y_i \simeq f_n(\bar{x}^i)$, и следователно $\theta \subseteq f_n$. \square

3.8.3 Теорема на Кнастер-Тарски

Теоремата на Кнастер-Тарски е един общ резултат за съществуване на най-малка неподвижна точка на компактен оператор. Тя е известна още като Teopema на Khacmep-Tapcku-Knuhu, защото Kлини посочва начина, по който се kohcmpyupa най-малката неподвижна точка f_{Γ} — като точна горна граница на подходяща монотонно растяща редицата от функции, които се явяват последователни приближения на f_{Γ} .

Нека Γ е оператор от тип $(k \to k)$, а f е произволна k-местна функция. За всяко естествено число n, с $\Gamma^n(f)$ ще означаваме функцията, която се получава след n-кратно прилагане на оператора Γ към f:

$$\Gamma^n(f) = \underbrace{\Gamma(\dots \Gamma(f)\dots)}_{n \text{ Here}}.$$

Тогава очевидно

$$\Gamma^{0}(f) = f$$

$$\Gamma^{n+1}(f) = \Gamma(\Gamma^{n}(f)).$$

Теорема 3.8. (**Теорема на Кнастер-Тарски**) Нека $\Gamma: \mathcal{F}_k \longrightarrow \mathcal{F}_k$ е компактен оператор. Тогава Γ има най-малка неподвижна точка f_{Γ} , която се получава по следния начин:

$$f_{\Gamma} = \bigcup_{n} \Gamma^{n}(\emptyset^{(k)}).$$

Доказателство. Да означим с f_n функцията $\Gamma^n(\emptyset^{(k)})$. Тогава

$$\Gamma^0(\emptyset^{(k)}) = \emptyset^{(k)} \quad \text{и} \quad \Gamma^{n+1}(\emptyset^{(k)}) = \Gamma(\Gamma^n(\emptyset^{(k)})) = \Gamma(f_n)$$

Следователно редицата $\{f_n\}_n$ удовлетворява рекурентната връзка

$$f_0 = \emptyset^{(k)}$$

$$f_{n+1} = \Gamma(f_n).$$

Най-напред да се убедим, че тази редица е монотонно растяща. С индукция по n ще покажем, че за всяко естествено n

$$f_n \subseteq f_{n+1}$$
.

База n=0: по определение $f_0=\emptyset^{(k)}$ и тогава очевидно $f_0\subseteq f_1$. Сега да приемем, че за някое n

$$f_n \subseteq f_{n+1}$$
.

Операторът Γ е компактен, и в частност — монотонен, съгласно Cnedc-meue~3.2. Тогава от горното включване ще имаме

$$\Gamma(f_n) \subseteq \Gamma(f_{n+1}),$$

или все едно $f_{n+1} \subseteq f_{n+2}$, с което индуктивната стъпка е приключена. Щом редицата f_0, f_1, \ldots е монотонно растяща, съгласно T върдение 3.12 тя притежава точна горна граница — да я означим с g:

$$g = \bigcup_n f_n.$$

Нашата цел е да покажем, че g е най-малката неподвижна точка на Γ , с други думи, $g=f_{\Gamma}$.

Да видим първо, че тя е неподвижна точка на Γ , т.е. $\Gamma(g)=g$. Това означава да проверим двете включвания:

$$g \subseteq \Gamma(g)$$
 и $\Gamma(g) \subseteq g$.

За първото е достатъчно да съобразим, че $\Gamma(g)$ е горна граница за дефинираната по-горе редица $\{f_n\}_n$, т.е. $f_n\subseteq \Gamma(g)$ за всяко n. Наистина, при n=0 това е очевидно, а ако n>0, от определението на g имаме, че $f_{n-1}\subseteq g$, откъдето по монотонността на Γ получаваме

$$\underbrace{\Gamma(f_{n-1})}_{f_n} \subseteq \Gamma(g)$$
, r.e. $f_n \subseteq \Gamma(g)$.

Следователно $\Gamma(g)$ е горна граница на редицата $\{f_n\}_n$. Но g е точната горна граница на тази редица, и значи $g \subseteq \Gamma(g)$.

За да видим обратното включване $\Gamma(g) \subseteq g$, да приемем, че $\Gamma(g)(\bar{x}) \simeq y$. От дефиницията за компактност (3.11) следва, че тогава за някоя крайна функция $\theta \subseteq g$ ще е изпълнено

$$\Gamma(\theta)(\bar{x}) \simeq y.$$

От $\theta \subseteq g \stackrel{\text{деф}}{=} \bigcup_n f_n$ по \mathcal{I} ема 3.1 ще имаме, че съществува n, такова че $\theta \subseteq f_n$. Но тогава и $\Gamma(\theta) \subseteq \Gamma(f_n)$, и значи

$$\Gamma(f_n)(\bar{x}) \simeq y$$
, r.e. $f_{n+1}(\bar{x}) \simeq y$.

Но $f_{n+1} \subseteq g$, следователно и $g(\bar{x}) \simeq y$. Така получихме, че за произволни \bar{x}, y :

$$\Gamma(g)(\bar{x}) \simeq y \implies g(\bar{x}) \simeq y,$$

което означава, че $\Gamma(g) \subseteq g$.

Нека сега h е друга неподвижна точка на Γ . Тъй като g е точна горна граница на $\{f_n\}_n$, за да покажем, че $g \subseteq h$, е достатъчно да видим, че h е горна граница на тази редица, с други думи, че $f_n \subseteq h$ за всяко $n \ge 0$. Това ще проверим с индукция относно n. За n = 0 имаме по определение

$$f_0 \stackrel{\text{деф}}{=} \emptyset^{(k)} \subseteq h.$$

Да предположим, че за някое n

$$f_n \subseteq h$$
.

Прилагаме Г към двете страни на неравенството и получаваме

$$\Gamma(f_n) \subseteq \Gamma(h) = h,$$

т.е. $f_{n+1} \subseteq h$. Сега вече можем да твърдим, че $f_n \subseteq h$ за всяко $n \geq 0$, с други думи, че h е мажоранта на редицата $\{f_n\}_n$ и значи h мажорира и точната ѝ горна граница g, т.е. $g \subseteq h$.

Забележка. Функциите f_n от горното доказателство имат смисъл на последователни *приближения* (апроксимации) на f_{Γ} .

Преди да сме преминали към задачите, които илюстрират тази теорема, да съобразим следния факт, който се оказва полезен за някои от тях:

Задача 3.26. Нека $\Gamma\colon \mathcal{F}_k \longrightarrow \mathcal{F}_k$ е компактен оператор. За редицата f_0, f_1, f_2, \ldots от последователните приближения на f_Γ да се докаже, че ако за някое n е вярно, че $f_n = f_{n+1}$, то тогава

$$f_n = f_{n+1} = f_{n+2} = \dots$$

Забележка. Разбира се, в такъв случай ще имаме, че границата на редицата $\{f_n\}_n$ ще бъде тази функция f_n , с други думи $f_\Gamma=f_n$.

Решение. Нека за някое n е изпълнено $f_n = f_{n+1}$. С индукция относно $m \ge n$ ще покажем, че

$$f_n = f_m$$
 за всяко $m \ge n$.

Случаят m = n е ясен, а приемайки, че

$$f_n = f_m$$

за някое $m \geq n$, след почленно прилагане на Γ ще имаме

$$\Gamma(f_n) = \Gamma(f_m),$$

или все едно, $f_{n+1} = f_{m+1}$. Но ние имаме $f_n = f_{n+1}$, откъдето веднага $f_n = f_{m+1}$, с което индуктивната стъпка е проведена.

Ако n е първото естествено число със свойството $f_n = f_{n+1}$, редицата $\{f_n\}_n$ ще изглежда така:

$$f_0 \stackrel{\text{dep}}{=} \emptyset^{(k)} \subset f_1 \cdots \subset f_n = f_{n+1} = f_{n+2} \cdots$$

В този случай се казва, че рекурсията "се затваря" на стъпка n. Разбира се, тогава $\bigcup_n f_n$ ще е тази функция f_n .

Нашият първи пример ще бъде за рекурсия, която се затваря още на стъпка n=1. Операторът е този от $\Pi pumep\ 3.6$.

Задача 3.27. Като използвате теоремата на Кнастер-Тарски намерете най-малката неподвижна точка на следния оператор Γ :

$$\Gamma(f)(x,y)\simeq egin{cases} 0, & ext{ako } x=0 \ f(x-1,f(x,y)), & ext{иначе.} \end{cases}$$

Решение. Означаваме с f_n функцията $\Gamma^n(\emptyset^{(2)})$. Искаме да намерим *явния вид* на всяка f_n , а оттам — и на самата f_{Γ} .

Ще използваме, че редицата $\{f_n\}_n$ удовлетворява рекурентната схема

$$f_0 = \emptyset^{(2)}$$

$$f_{n+1} = \Gamma(f_n).$$

Така за първата апроксимация f_1 на f_{Γ} ще имаме:

$$f_1(x,y) \simeq \Gamma(\emptyset^{(2)})(x,y) \stackrel{\text{def}}{\simeq} \Gamma \begin{cases} 0, & \text{ako } x = 0 \\ \emptyset^{(2)}(x-1,\emptyset^{(2)}(x,y)), & \text{ako } x > 0 \end{cases} \simeq \begin{cases} 0, & \text{ako } x = 0 \\ \neg!, & \text{ako } x > 0. \end{cases}$$

За следващата апроксимация f_2 получаваме:

$$f_2(x,y) \simeq \Gamma(f_1)(x,y) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} 0, & \text{ako } x = 0 \\ f_1(x-1, \underbrace{f_1(x,y)}_{\neg !}), & \text{ako } x > 0 \end{cases} \stackrel{\text{деф}}{\simeq} \begin{cases} 0, & \text{ako } x = 0 \\ \neg !, & \text{ako } x > 0. \end{cases}$$

Оказа се, че двете апроксимации f_1 и f_2 съвпадат. Но тогава, съгласно $3a\partial aua$ 3.26, всички следващи апроксимации ще са равни на f_1 , т.е. редицата от последователните приближения на f_{Γ} изглежда така:

$$f_0 \stackrel{\text{деф}}{=} \emptyset^{(2)} \subset f_1 = f_2 = f_3 \dots$$

Ясно е, че границата на тази редица е f_1 , и значи $f_{\Gamma} = f_1$.

Да приложим теоремата на Кнастер-Тарски за оператора от Пример 3.3. Вече знаем, че неговата единствена неподвижна точка е функцията x!, но да видим как ще я получим с конструкцията от теоремата.

Задача 3.28. Като използвате теоремата на Кнастер-Тарски, намерете най-малката неподвижна точка на оператора

$$\Gamma(f)(x) \simeq \begin{cases} 1, & \text{ако } x = 0 \\ x.f(x-1), & \text{иначе.} \end{cases}$$

Решение. Означаваме, както по-горе, с f_n функцията $\Gamma^n(\emptyset^{(1)})$. Да напомним, че редицата $\{f_n\}_n$ удовлетворява рекурентната връзка

$$f_0 = \emptyset^{(1)}$$

$$f_{n+1} = \Gamma(f_n).$$

Нашата цел ще бъде да намерим *явния вид* на всяка от тези функции. Започваме с първата апроксимация f_1 на f_{Γ} :

$$f_1(x) \simeq \Gamma(\emptyset^{(1)})(x) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} 1, & \text{ако } x = 0 \\ x.\emptyset^{(1)}(x-1), & \text{ако } x > 0 \end{cases} \simeq \begin{cases} 1, & \text{ако } x = 0 \\ \neg!, & \text{ако } x > 0. \end{cases}$$

За следващата апроксимация f_2 ще имаме:

$$f_2(x) \simeq \Gamma(f_1)(x) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} 1, & \text{ако } x = 0 \\ x.f_1(x-1), & \text{иначе} \end{cases} \stackrel{\text{деф}}{\simeq} f_1 \begin{cases} 1, & \text{ако } x = 0 \\ 1.1, & \text{ако } x = 1 \\ \neg!, & \text{ако } x > 1. \end{cases}$$

Функцията f_2 можем да препишем още по следния начин:

$$f_2(x) \simeq \begin{cases} x!, & \text{ако } x < 2 \\ \neg !, & \text{иначе}, \end{cases}$$

което ни дава идея какъв би могъл да е общият вид на f_n :

$$f_n(x) \simeq \begin{cases} x!, & \text{ако } x < n \\ \neg !, & \text{иначе.} \end{cases}$$

Ще използваме индукция относно $n \in \mathbb{N}$, за да се убедим, че това е така.

На практика вече проверихме случаите n=0,1 и 2. Да предположим сега, че f_n има горния вид. Тогава за f_{n+1} ще имаме последователно:

$$f_{n+1}(x) \simeq \Gamma(f_n)(x) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} 1, & \text{ако } x = 0 \\ x.f_n(x-1), & \text{ако } x > 0 \end{cases}$$
 $x.f_n(x-1), \quad \text{ако } x > 0$ $x.f_n(x-1), \quad \text{ако } x > 0 \end{cases}$ $x.f_n(x-1), \quad \text{ако } x > 0 \end{cases}$

и значи индукционната хипотеза се потвърждава и за n+1.

Сега остава да намерим границата $\bigcup_n f_n$ на редицата $f_0, f_1, \ldots, f_n \ldots$. Интуитивно е ясно, че тази редица трябва да клони към x!, защото f_n е рестрикцията на x! върху множеството $\{0,1,\ldots,n-1\}$, но да го докажем все пак.

Наистина, да означим с f точната горна граница на редицата $\{f_n\}_n$. По определение

$$f(x) \simeq y \iff \exists n \ f_n(x) \simeq y.$$

Да фиксираме произволно x и да изберем n=x+1. Понеже $Dom(f_n)=\{0,\ldots,n-1\}$, то $x\in Dom(f_n)$. Но там, където е дефинирана, f_n се държи като x!; в частност, за нашето x ще имаме, че $f_n(x)=x!$. Тогава и f(x) ще е x!. Но x беше произволно, следователно за всяко x, f(x)=x!, или все едно, $f_{\Gamma}(x)=x!$.

Следващата задача се решава по много подобен начин на Задача 3.28.

Задача 3.29. Приложете теоремата на Кнастер-Тарски, за да намерите най-малката неподвижна точка на оператора

$$\Gamma(f)(x)\simeq egin{cases} 1, & ext{ako } x=0 \ 2.f(x-1), & ext{иначе}. \end{cases}$$

Решение. Отново търсим явния вид на последователните приближения на f_{Γ} . По определение $f_0 = \emptyset^{(1)}$. За функцията f_1 ще имаме:

$$f_1(x) \simeq \Gamma(\emptyset^{(1)})(x) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} 1, & \text{ako } x = 0 \\ 2.\emptyset^{(1)}(x-1), & \text{ako } x > 0 \end{cases} \simeq \begin{cases} 1, & \text{ako } x = 0 \\ \neg!, & \text{ako } x > 0. \end{cases}$$

За следващата апроксимация f_2 получаваме:

$$f_2(x) \simeq \Gamma(f_1)(x) \overset{\text{деф}}{\simeq} \Gamma \begin{cases} 1, & \text{ако } x = 0 \text{ деф } f_1 \\ 2.f_1(x-1), & \text{ако } x > 0 \end{cases} \overset{\text{деф}}{\simeq} \begin{cases} 1, & \text{ако } x = 0 \\ 2.1, & \text{ако } x = 1 \\ \neg!, & \text{ако } x > 1. \end{cases}$$

 f_2 можем да препишем и така:

$$f_2(x) \simeq \begin{cases} 2^x, & \text{ako } x < 2 \\ \neg!, & \text{ako } x \ge 2, \end{cases}$$

което ни подсказва, че f_n може би ще е ето тази функция:

$$f_n(x) \simeq \begin{cases} 2^x, & \text{ако } x < n \\ \neg!, & \text{ако } x \ge n. \end{cases}$$

Ще използваме индукция относно n, за докажем, че това е така. Базовият случай n=0 е ясен. Да предположим, че f_n има горния вид. Тогава за f_{n+1} ще имаме последователно:

$$f_{n+1}(x) \simeq \Gamma(f_n)(x) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} 1, & \text{ако } x = 0 \\ 2.f_n(x-1), & \text{ако } x > 0 \end{cases}$$
 $\stackrel{\text{и.х. } f_n}{\simeq} \begin{cases} 1, & \text{ако } x = 0 \\ 2.2^{x-1}, & \text{ако } x > 0 \& x - 1 < n \simeq \begin{cases} 2^x, & \text{ако } x < n + 1 \\ \neg !, & \text{ако } x - 1 \ge n \end{cases}$

което потвърждава нашата хипотеза за f_{n+1} .

Остана да съобразим, че границата на редицата $\{f_n\}_n$ е функцията 2^x , което се вижда както в предишната задача.

И в двата примера по-горе наблюдавахме, че n-тата апроксимация на f_{Γ} е с дефиниционна област множеството $\{0,\ldots,n-1\}$. Това е така, защото рекурсията при тях е примитивна, т.е. $\Gamma(f)(x)$ се определя чрез f(x-1). В следващата задача, обаче, $Dom(f_n)$ е по-широко множество.

Задача 3.30. С помощта на теоремата на Кнастер-Тарски определете най-малката неподвижна точка на оператора

$$\Gamma(f)(x) \simeq \begin{cases} 1, & \text{ако } x \leq 1 \\ x.f(x-2), & \text{иначе}; \end{cases}$$

Решение. Отново търсим явния вид на всяка от апроксимациите f_0, f_1, \ldots на f_{Γ} . Целта ни е да покажем, че $f_{\Gamma} = \lambda x.x!!$, където

$$x!! \stackrel{\text{деф}}{=} \begin{cases} 1, & \text{ако } x = 0 \\ 1.3 \dots x, & \text{ако } x \text{ е нечетно} \\ 2.4 \dots x, & \text{ако } x > 0 \text{ е четно.} \end{cases}$$

Започваме с първата апроксимация f_1 :

$$f_1(x) \simeq \Gamma(\emptyset^{(1)})(x) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} 1, & \text{ако } x \leq 1 \\ x.\emptyset^{(1)}(x-2), & \text{ако } x > 1 \end{cases} \simeq \begin{cases} x!!, & \text{ако } x < 2 \\ \neg!, & \text{ако } x \geq 2. \end{cases}$$

За следващата апроксимация f_2 ще имаме:

$$f_2(x) \simeq \Gamma(f_1)(x) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} 1, & \text{ако } x \leq 1 \\ x. \underbrace{f_1(x-2),}_{(x-2)!! \text{ за } x-2 < 2} \end{cases}$$
 ако $x > 1$ ако $x \leq 1$ $x!!, \quad \text{ако } x \leq 1$ $x \cdot (x-2)!!, \quad \text{ако } x > 1 \text{ & } x \cdot x < 2 \leq 2 \end{cases}$ $x!!, \quad \text{ако } x \leq 1$ $x \cdot (x-2)!!, \quad \text{ако } x > 2 \leq 2 \leq \begin{cases} x!!, & \text{ако } x < 4 \\ \neg !, & \text{ако } x \geq 4. \end{cases}$

Хипотеза за общия вид на f_n :

$$f_n(x) \simeq \begin{cases} x!!, & \text{ако } x < 2n \\ \neg !, & \text{ако } x \ge 2n. \end{cases}$$

Ще използваме индукция относно $n \in \mathbb{N}$, за да се убедим, че това е така. На практика вече проверихме случаите n = 0, 1 и 2. Да предположим сега, че f_n има горния вид. Тогава за f_{n+1} можем да запишем:

$$f_{n+1}(x) \simeq \Gamma(f_n)(x) \overset{\text{def}}{\simeq} \Gamma \begin{cases} 1, & \text{ako } x \leq 1 \\ x. \underbrace{f_n(x-2),}_{(x-2)!! \text{ ako } x > 2} \\ \text{ako } x > 1 \end{cases}$$

$$\overset{\text{H.x. } f_n}{\simeq} \begin{cases} x!!, & \text{ako } x \leq 1 \\ x.(x-2)!!, & \text{ako } x \leq 1 \\ x.(x-2)!!, & \text{ako } x > 1 \ \& \ x - 2 < 2n \\ \text{-!}, & \text{ako } x \geq 2(n+1). \end{cases}$$

Индукционната хипотеза се потвърди и за n+1. Остана да съобразим, че границата на редицата $\{f_n\}_n$ е функцията x!!, което следва съвсем директно от дефиницията за точна горна граница (3.12).

Апроксимациите на операторите от следващите задачи вече са с поразнообразни дефиниционни области.

Задача 3.31. С помощта на теоремата на Кнастер-Тарски да се намери най-малката неподвижна точка на оператора

$$\Gamma(f)(x,y) \simeq \begin{cases} 0, & \text{ако } x = y \\ f(x,y+1) + 1, & \text{иначе.} \end{cases}$$

Решение. Тръгвайки от $f_0 = \emptyset^{(2)}$, за f_1 ще имаме:

$$f_1(x,y) \stackrel{\text{деф}}{\simeq} \begin{cases} 0, & \text{ако } x = y \\ f_0(x,y+1) + 1, & \text{иначе} \end{cases} \simeq \begin{cases} 0, & \text{ако } x = y \\ \neg!, & \text{иначе}. \end{cases}$$

Сега за апроксимацията f_2 получаваме:

$$f_2(x,y)\simeq \Gamma(f_1)(x,y)\stackrel{ ext{ iny ded}}{\simeq} \Gamma egin{cases} 0, & ext{ako } x=y \ f_1(x,y+1)+1, & ext{ iny uhave} \end{cases}$$

$$\stackrel{\text{деф}}{\simeq}^{f_1} egin{cases} 0, & \text{ако } x = y \\ 0+1, & \text{ако } x+1 = y \\ \neg !, & \text{в останалите случаи} \end{cases} \simeq egin{cases} x-y, & \text{ако } 0 \leq x-y < 2 \\ \neg !, & \text{в останалите случаи}. \end{cases}$$

Да приемем, че за произволно $n,\,f_n$ изглежда по подобен начин:

$$f_n(x,y) \simeq egin{cases} x-y, & ext{ako } 0 \leq x-y < n \ \neg !, & ext{в останалите случаи.} \end{cases}$$

Базата на индукцията я имаме, така че пристъпваме директно към проверката за f_{n+1} :

$$f_{n+1}(x,y)\simeq \Gamma(f_n)(x,y)\stackrel{\mathrm{деф}}{\simeq} \Gamma egin{cases} 0, & ext{ако } x=y \ f_n(x,y+1)+1, & ext{иначе} \end{cases}$$

$$\overset{\text{и.х. } f_n}{\simeq} \begin{cases} 0, & \text{ако } x = y \\ x - (y+1) + 1, & \text{ако } x \neq y \ \& \ 0 \leq x - (y+1) < n \\ \neg !, & \text{в останалите случаи} \end{cases}$$

$$\simeq \begin{cases} x-y, & \text{ако } 0 \leq x-y < n+1 \\ \neg !, & \text{в останалите случаи,} \end{cases}$$

което потвърждава индуктивното ни предположение. Накрая съобразете, че f_{Γ} има вида:

$$f_{\Gamma}(x,y)\simeq egin{cases} x-y, & ext{ako } x\geq y \ \neg!, & ext{иначе}. \end{cases}$$

Задача 3.32. С теоремата на Кнастер-Тарски да се намери най-малката неподвижна точка на оператора

$$\Gamma(f)(x)\simeq egin{cases} 1, & \text{ако } x=0 \ (f(rac{x}{2}))^2, & \text{ако } x>0 \ \text{е четно} \ 2(f(rac{x-1}{2}))^2, & \text{ако } x \ \end{cases}$$

150

Решение. Ще действаме по схемата от предишната задача: най-напред ще намерим явния вид на всяка от апроксимациите f_0, f_1, \ldots , а после ще намерим границата на тази редица, която е точно f_{Γ} .

По дефиниция $f_0 = \emptyset^{(1)}$, а за f_1 получаваме последователно:

$$f_1(x) \simeq \Gamma(f_0)(x) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} 1, & \text{ако } x = 0 \\ f_0^2(\frac{x}{2}), & \text{ако } x > 0 \text{ е четно} \\ 2f_0^2(\frac{x-1}{2}), & \text{ако } x \text{ е нечетно} \end{cases} \simeq \begin{cases} 1, & \text{ако } x = 0 \\ \neg!, & \text{ако } x > 0. \end{cases}$$

Като имаме предвид явния вид на f_1 , за f_2 получаваме:

$$f_2(x) \simeq \Gamma(f_1)(x) \stackrel{\text{деф}}{\simeq} \Gamma egin{cases} 1, & \text{ако } x = 0 \\ f_1^2(\frac{x}{2}), & \text{ако } x > 0 \text{ е четно} \stackrel{\text{деф}}{\simeq} f_1 \\ 2f_1^2(\frac{x-1}{2}), & \text{ако } x \text{ е нечетно} \end{cases} egin{cases} 1, & \text{ако } x = 0 \\ 2.1^2, & \text{ако } x = 1 \\ \neg!, & \text{ако } x > 1. \end{cases}$$

Тази функция можем да препишем във вида

$$f_2(x) \simeq \begin{cases} 2^x, & \text{ако } x < 2 \\ \neg!, & \text{иначе}, \end{cases}$$

и тя е съвсем същата като функцията f_2 от $3a\partial a a = 3.29$. Да не се подвеждаме, обаче; следваща апроксимация f_3 вече изглежда по-различно:

$$f_3(x) \simeq \Gamma(f_2)(x) \stackrel{\text{деф}}{\simeq} \Gamma egin{cases} 1, & \text{ако } x = 0 \ f_2^2(rac{x}{2}), & \text{ако } x > 0 \text{ е четно} \end{cases} \stackrel{\text{деф}}{\simeq} f_2 egin{cases} 2^x, & \text{ако } \mathbf{x} < \mathbf{4} \ -!, & \text{иначе}, \end{cases}$$

Хипотезата ни за $f_n, n \ge 1$, е такава:

$$f_n(x) \simeq \begin{cases} 2^x, & \text{ако } x < 2^{n-1} \\ \neg !, & \text{иначе.} \end{cases}$$

Вече наблюдавахме, че при $n=1,2,3,\,f_n$ имаше този вид. Приемаме, че и за произволно n това е така и пресмятаме внимателно f_{n+1} :

$$f_{n+1}(x)\simeq \Gamma(f_n)(x)\stackrel{\mathrm{деф}}{\simeq}^{\Gamma}egin{cases} 1, & ext{ако }x=0 \ f_n^2(rac{x}{2}), & ext{ако }x>0 \ \mathrm{e} \ \mathrm{четно} \ 2f_n^2(rac{x-1}{2}), & ext{ако }x \ \mathrm{e} \ \mathrm{hevetho} \end{cases}$$

$$\overset{\text{и.х. }f_n}{\simeq} \begin{cases} 1, & \text{ако } x = 0 \\ (2^{\frac{x}{2}})^2, & \text{ако } x > 0 \text{ е четно } \& \frac{x}{2} < 2^{n-1} \\ 2(2^{\frac{x-1}{2}})^2, & \text{ако } x \text{ е нечетно } \& \frac{x-1}{2} < 2^{n-1} \end{cases}$$

$$\simeq \begin{cases} 1, & \text{ако } x = 0 \\ 2^x, & \text{ако } x > 0 \text{ е четно } \& \ x < 2^n \\ 2^x, & \text{ако } x \text{ е нечетно } \& \ x - 1 < 2^n \end{cases} \simeq \begin{cases} 2^x, & \text{ако } x < 2^n \\ \neg !, & \text{иначе.} \end{cases}$$

3а последната еквивалентност използвахме, че при нечетно x имаме:

$$x-1 < 2^n \implies x < 2^n \implies x < 2^n$$
.

Сега с разсъждения, съвсем подобни на тези от 3adaua?? а) показваме, че и тази редица $\{f_n\}_n$ има граница 2^x .

Забележете експоненциалната скорост, с която расте броят на елементите на $Dom(f_n)$. Това, разбира се, е в тясна връзка с логаритмичната сложност на бързия алгоритъм за степенуване, тъй като $Dom(f_n)$ на практика дава тези входове, за които рекурсивната програма, определена от оператора, спира за $\leq n$ рекурсивни обръщения.

Задача 3.33. С теоремата на Кнастер-Тарски да се намери най-малката неподвижна точка на оператора

$$\Gamma(f)(x,y) \simeq \begin{cases} 0, & \text{ako } x < y \\ f(x-y,y) + 1, & \text{ako } x \ge y. \end{cases}$$

Решение. Отново искаме да опишем общия вид на n-тата апроксимация f_n . Имайки предвид, че $f_0 = \emptyset^{(2)}$, за f_1 ще имаме:

$$f_1(x,y) \simeq \Gamma(f_0)(x,y) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} 0, & \text{ako } x < y \\ f_0(x-y,y)+1, & \text{ako } x \ge y \end{cases} \simeq \begin{cases} 0, & \text{ako } x < y \\ \neg!, & \text{ako } x \ge y. \end{cases}$$

Както беше и в примерите по-горе, f_1 е дефинирана в точките, които са базови за оператора (в случая това са тези (x,y): x < y). Това все още не може да ни ориентира за общия вид на f_n , затова продължаваме с експериментите:

$$f_2(x,y) \simeq \Gamma(f_1)(x,y) \stackrel{\mathrm{деф}}{\simeq} \Gamma egin{cases} 0, & \mathrm{ako}\ x < y \ f_1(x-y,y) + 1, & \mathrm{ako}\ x \geq y \end{cases}$$

$$\stackrel{\text{деф}}{\simeq} f_1 \begin{cases} 0, & \text{ако } x < y \\ 0+1, & \text{ако } x \geq y \& x-y < y \simeq \begin{cases} \lfloor \frac{x}{y} \rfloor, & \text{ако } y \neq 0 \& \lfloor \frac{x}{y} \rfloor < 2 \\ \neg !, & \text{в останалите случаи.} \end{cases}$$

За последната еквивалентност използвахме, че

$$y \le x < 2y \iff 1 \le \frac{x}{y} < 2 \iff \lfloor \frac{x}{y} \rfloor = 1.$$

Освен това условията x < y и x - y < y ни гарантират, че $y \neq 0$ и следователно частното $\frac{x}{y}$ е дефинирано.

Звучи правдоподобно да предположим, че f_n има следния вид:

$$f_n(x,y) \simeq \begin{cases} \lfloor \frac{x}{y} \rfloor, & \text{ако } y \neq 0 \& \lfloor \frac{x}{y} \rfloor < n \\ \neg !, & \text{в останалите случаи.} \end{cases}$$

Наистина, да приемем, че това е така, и да видим какво можем да кажем за f_{n+1} :

$$f_{n+1}(x,y) \simeq \Gamma(f_n)(x,y) \stackrel{\text{деф}}{\simeq} \Gamma \begin{cases} 0, & \text{ако } x < y \\ f_n(x-y,y) + 1, & \text{ако } x \ge y \end{cases}$$

$$\overset{\text{и.х. } f_n}{\simeq} \begin{cases} 0, & \text{ако } x < y \\ \lfloor \frac{x-y}{y} \rfloor + 1, & \text{ако } x \geq y \ \& \ y \neq 0 \ \& \ \lfloor \frac{x-y}{y} \rfloor < n \\ \neg !, & \text{в останалите случаи} \end{cases}$$

$$\simeq \begin{cases} \lfloor \frac{x}{y} \rfloor, & \text{ако } y \neq 0 \& \lfloor \frac{x}{y} \rfloor = 0 \\ \lfloor \frac{x}{y} \rfloor, & \text{ако } y \neq 0 \& 1 \leq \lfloor \frac{x}{y} \rfloor < n+1 \\ \neg !, & \text{в останалите случаи} \end{cases}$$

$$\simeq \begin{cases} \lfloor \frac{x}{y} \rfloor, & \text{ако } y \neq 0 \& \lfloor \frac{x}{y} \rfloor < n+1 \\ \neg !, & \text{в останалите случаи,} \end{cases}$$

с което индуктивната ни хипотеза се потвърди. В преобразованията погоре използвахме наблюдението, че при $x \ge y > 0$:

$$\lfloor \frac{x-y}{y} \rfloor = \lfloor \frac{x}{y} - 1 \rfloor = \lfloor \frac{x}{y} \rfloor - 1.$$

Остана да намерим границата на редицата f_0, f_1, \ldots Нека отново

$$f = \bigcup_{n} f_n$$
.

Да фиксираме произволни x,y, като $y\neq 0$. Тогава $\lfloor \frac{x}{y} \rfloor$ е определено. Да изберем n така, че $\lfloor \frac{x}{y} \rfloor < n$ (бихме могли направо да вземем $n:=\lfloor \frac{x}{y} \rfloor+1$). Тогава точката (x,y) принадлежи на $Dom(f_n)$ и $f_n(x,y)=\lfloor \frac{x}{y} \rfloor$. Сега от дефиницията на точна горна граница (3.12) ще имаме, че и $f(x,y)=\lfloor \frac{x}{y} \rfloor$. Ако y=0, то каквото и да е x, от общия вид на f_n виждаме, че $f_n(x,0)$ не е дефинирано, като това е за всяко n. Тогава е ясно, че и граничната функция f няма да е дефинирана в (x,0): ако допуснем, че съществува z,

такова че $f(x,0)\simeq z$, това би означавало, съгласно (3.12), че непременно за някое n и $f_n(x,0)\simeq z$ — противоречие.

Финално, за $f_{\Gamma} = \bigcup_n f_n$ получаваме:

$$f_{\Gamma}(x,y) \simeq \begin{cases} \lfloor \frac{x}{y} \rfloor, & \text{ako } y > 0 \\ \neg !, & \text{ako } y = 0. \end{cases}$$

Задачи за ЕК:

Задача 1. Дадени са компактните оператори

$$\Gamma: \mathcal{F}_k \times \mathcal{F}_m \longrightarrow \mathcal{F}_k \quad \text{if} \quad \Delta: \mathcal{F}_m \longrightarrow \mathcal{F}_m.$$

Докажете, че най-малкото решение на системата

$$\begin{vmatrix} f &=& \Gamma(f, g) \\ g &=& \Delta(g). \end{vmatrix}$$

е двойката (f^*, g^*) , където g^* е най-малката неподвижна точка на Δ , а f^* е най-малката неподвижна точка на оператора $\lambda f.\Gamma(f, g^*)$.

Задача 2. Нека h е фиксирана двуместна функция. Намерете най-малките неподвижни точки на операторите:

 \mathbf{a}

$$\Gamma(f)(x,y) \simeq egin{cases} 0, & \text{ако } h(x,y) \simeq 0 \\ f(x,y+1)+1, & \text{ако } h(x,y) > 0 \\ \neg !, & \text{ако } \neg !h(x,y) \end{cases}$$

б)

$$\Gamma(f)(x,y) \simeq \begin{cases} y, & \text{ako } h(x,y) \simeq 0 \\ f(x,y+1)1, & \text{ako } h(x,y) > 0 \\ \neg !, & \text{ako } \neg !h(x,y). \end{cases}$$

Вярно ли е, че тези оператори имат и други неподвижни точки? Обосновете се.

Задача 3. Опишете всички неподвижни точки на оператора Γ , дефиниран по следния начин:

$$\Gamma(f)(x,y)\simeq egin{cases} x+y, & ext{ako } x=0 ext{ или } y=0 \ f(x-1,f(x,y-1)), & ext{иначе}. \end{cases}$$

Задача 4. Докажете, че е тотална функция най-малката неподвижна точка на оператора

$$\Gamma(f)(x)\simeq egin{cases} rac{x}{2}, & ext{ако } x ext{ е четно} \ f(f(3x+1)), & ext{иначе}. \end{cases}$$

3.8.4 Рекурсивни оператори. Първа теорема за рекурсия

Определение 3.6. Операторът $\Gamma \colon \mathcal{F}_k \longrightarrow \mathcal{F}_m$ наричаме *рекурсивен*, ако той е компактен и ефективен.

Теорема 3.9. (Първа теорема за рекурсия) Нека $\Gamma: \mathcal{F}_k \longrightarrow \mathcal{F}_k$ е рекурсивен оператор. Тогава Γ притежава *изчислима* най-малка неподвижна точка f_{Γ} , която се дефинира по следния начин:

$$f_{\Gamma} = \bigcup_{n} \Gamma^{n}(\emptyset^{(k)}).$$

Доказателство. Операторът Γ е рекурсивен и в частност — компактен. От теоремата на Кнастер-Тарски следва, че най-малката му неподвижна точка f_{Γ} съществува и има горното представяне. Това, което ни дава условието за ефективност на оператора, е изчислимостта на f_{Γ} . Дая съобразим.

За целта нека отново $f_n \stackrel{\text{деф}}{=} \Gamma^n(\emptyset^{(k)})$. Най-напред да се убедим, че съществува рекурсивна функция g, която "държи" индексите на функциите от редицата $\{f_n\}_n$, т.е. g е такава, че за всяко n

$$f_n = \varphi_{q(n)}^{(k)}$$
.

Наистина, да фиксираме h — някаква рекурсивна индексна функция на Γ и a_0 — произволен индекс на $\emptyset^{(k)}$. Дефинираме функцията g с примитивна рекурсия както следва:

$$g(0) = a_0$$

$$g(n+1) = h(g(n)).$$

Непосредствена индукция по n ни убеждава, че $f_n=\varphi_{g(n)}^{(k)}$ за всяко естествено n. Наистина, при n=0 имаме, съгласно избора на a_0 :

$$f_0 \stackrel{\text{деф}}{=} \emptyset^{(k)} = \varphi_{a_0}^{(k)} \stackrel{\text{деф}}{=} {}^g \varphi_{a(0)}^{(k)}.$$

Сега ако приемем, че за някое $n,\,f_n=arphi_{g(n)}^{(k)},\,$ то за n+1 ще имаме:

$$f_{n+1} \stackrel{\text{\tiny $\rm de$}}{=} \Gamma(f_n) \stackrel{\text{\tiny $\rm H.X.$}}{=} \Gamma(\varphi_{g(n)}^{(k)}) = \varphi_{h(g(n))}^{(k)} \stackrel{\text{\tiny $\rm de$}}{=} {}^g \varphi_{g(n+1)}^{(k)}.$$

Сега вече можем да твърдим, че

$$f_{\Gamma} = \bigcup_{n} \varphi_{g(n)}^{(k)}.$$

Тогава според $T \ensuremath{\mathfrak{sopdenue}}$ 3.12 ще имаме, че за всяко \bar{x} и y е в сила еквивалентността

$$f_{\Gamma}(\bar{x}) \simeq y \iff \exists n \ \varphi_{g(n)}^{(k)}(\bar{x}) \simeq y.$$
 (3.13)

Да си спомним, че съгласно теоремата за нормален вид на Клини, всяка функция $\varphi_a^{(k)}$ има следния вид:

$$\varphi_a^{(k)}(\bar{x}) \simeq L(\mu z[T_k(a,\bar{x},z)=0]),$$

където T_k е предикатът на Клини (за който видяхме, че е примитивно рекурсивен).

За нашите цели ще е по-удобно да модифицираме леко този предикат, така че той вече да притежава свойството: за всяко a и $\bar{x} \in \mathbb{N}^k$:

$$\exists z \ T_k(a,\bar{x},z) = 0 \implies \exists ! z \ T_k(a,\bar{x},z) = 0.$$

Това става, като вместо T_k разглеждаме предиката T_k^* , дефиниран като

$$T_k^*(a, \bar{x}, z) = egin{cases} T_k(a, \bar{x}, z), & \text{ако } t < z \ T_k(a, \bar{x}, z) > 0 \\ 1, & \text{в останалите случаи.} \end{cases}$$

Тогава очевидно $\mu z[T_k(a,\bar{x},z)=0] \simeq \mu z[T_k^*(a,\bar{x},z)=0]$ и значи

$$\varphi_a^{(k)}(\bar{x}) \simeq L(\mu z [T_k^*(a, \bar{x}, z) = 0]).$$

Оттук, като използваме представянето (3.13) на f_{Γ} , получаваме, че

$$f_{\Gamma}(\bar{x}) \simeq y \iff \exists n \ L(\mu z [T_k^*(g(n), \bar{x}, z) = 0]) \simeq y.$$
 (3.14)

Като имаме предвид избора на T_k^* , условието вдясно можем да запишем и без минимизация. По-точно, твърдим, че

$$f_{\Gamma}(\bar{x}) \simeq y \iff \exists n \exists z \ T_k^*(g(n), \bar{x}, z) = 0 \& L(z) = y.$$
 (3.15)

Наистина, ако $f_{\Gamma}(\bar{x})\simeq y$, то за някое n, $L(\mu z[T_k^*(g(n),\bar{x},z)=0])\simeq y$ и значи $\exists n\exists z\ T_k^*(g(n),\bar{x},z)=0$ & L(z)=y.

Обратно, да приемем, че за някои n и z: $T_k^*(g(n), \bar{x}, z) = 0$ & L(z) = y. Понеже числото z с това свойство е единствено, то

$$\mu v[T_k^*(g(n), \bar{x}, v) = 0] = z.$$

Тогава, разбира се и $L(\mu v[T_k^*(g(n), \bar{x}, v) = 0]) = L(z).$ Но L(z) = y и следователно

$$L(\mu v[T_{\nu}^{*}(q(n), \bar{x}, v) = 0]) = y.$$

Оттук, използвайки еквивалентността (3.14), можем да твърдим, че $f_{\Gamma}(\bar{x}) \simeq y$, с което приключва проверката на (3.15).

Сега вече можем да пристъпим към доказателството на изчислимостта на f_{Γ} . Ще покажем, че за нея имаме следното представяне:

$$f_{\Gamma}(\bar{x}) \simeq \underbrace{L(R(\mu t[T_k^*(g(L(t)), \bar{x}, R(t)) = 0]))}_{F(\bar{x})},$$

откъдето, разбира се, ще следва, че f_{Γ} е изчислима.

Да означим функцията вдясно с F, както е показано по-горе. Задачата ни е да покажем, че $F=f_{\Gamma}$. Да видим най-напред, че $F\subseteq f$. За целта да приемем, че $F(\bar{x})\simeq y$ за някои \bar{x} и y. Трябва да покажем, че и $f_{\Gamma}(\bar{x})\simeq y$. От $F(\bar{x})\simeq y$ следва, че за най-малкото t, такова че $T_k^*(g(L(t)),\bar{x},R(t))=0$ ще имаме L(R(t))=y. Нека n:=L(t),z:=R(t). Тогава за тези n и z имаме, че $T_k^*(g(n),\bar{x},z)=0$ и $L(z)\stackrel{\text{деф}}{=}L(R(t))=y$. Сега еквивалентността (3.15) ни дава $f_{\Gamma}(\bar{x})\simeq y$.

За обратното включване $f_{\Gamma} \subseteq F$ ще се възползваме от 3adaчa 1.1, според която е достатъчно да покажем по-слабото условие $Dom(f_{\Gamma}) \subseteq Dom(F)$. Наистина, нека да вземем произволно $\bar{x} \in Dom(f_{\Gamma})$. Отново прилагаме еквивалентността (3.15), само че в обратна посока: щом $!f_{\Gamma}(\bar{x})$, то за някои n и z ще е вярно, че $T_k^*(g(n), \bar{x}, z) = 0$. Сега вземаме $t := \Pi(n, z)$. Ясно е, че за това t ще имаме $T_k^*(g(L(t)), \bar{x}, R(t)) = 0$ и следователно $F(\bar{x})$ е дефинирана.

Задача 3.34. Като използвате първата теорема за рекурсия докажете, че функцията на Акерман е рекурсивна.

Решение. В доказателството на $3a\partial a a = 3.24$ видяхме, че е ефективен операторът Γ , свързан с функцията на Акерман

$$\Gamma(f)(x,y) \simeq \begin{cases} y+1, & \text{ako } x=0 \\ f(x-1,0), & \text{ako } x>0 \ \& \ y=0 \\ f(x-1,f(x,y-1)), & \text{ako } x>0 \ \& \ y>0. \end{cases}$$

От $3adaчa\ 3.25$ г) знаем, че този оператор е компактен. Значи общо той е рекурсивен. Знаем още, че Γ има единствена неподвижна точка — функцията на Акерман. Следователно най-малката неподвижна точка f_{Γ} е функцията на Акерман и тогава съгласно първата теорема за рекурсия тази функция е изчислима, което в случая значи и рекурсивна.

Предимството на първата теорема за рекурсия е, че ни казва коя точно е изчислимата функция, която е неподвижна точка на рекурсивния оператор, като при това ни дава начин да я конструираме. За разлика от нея, Твърдение 3.10 (което е следствие от втората теорема за рекурсия) само твърди, че всеки ефективен оператор има поне една изчислима неподвижна точка. От друга страна, предимството на втората теорема за

рекурсия (и на свързаната с нея теорема за определимост по рекурсия) е в това, че тя може да се прилага в рекурсивни дефиниции, в които участва и *програмата* на функцията, която се определя по рекурсия (като например самовъзпроизвеждащата се програма от *Пример* 3.2).