13. APPENDICES

All supporting documents including technical specifications, tables, charts, and detailed data Appendix A: Technical Specifications

Component	Specification	
IR Sensors	Digital reflectance sensors, 3–5V, 20–30 cm range	
Ultrasonic Sensor	HC-SR04, 2–400 cm range, 5V operating voltage	
Color Sensor	TCS3200, RGB color detection, 3–5V input	
Motor Driver	SBC Motor Driver 2, dual channel, 5–30V DC	
Power Source	12V LiPo Battery, 2200 mAh	
Microcontroller	Arduino Uno R4 WiFI (ATmega328P)	
Chassis Material	Acrylic frame with 3D-printed sensor holders	
Wheels and Motors	DC geared motors, 100 RPM, plastic wheels	

[2], [4].

Appendix B: PID Control Parameters

Parameter Value

P (Proportional) 10

I (Integral) 0

D (Derivative) 10

Appendix C: System Block Diagram

Appendix D: Test Results Summary

Test Scenario	Outcome	Notes
Lane following on white background	Successful	Minor tuning required for sharp turns
Obstacle avoidance at 25 cm	Successful	Smooth detour and return to lane
Colour detection under indoor light	Reliable (Colour A & B detected)	Requires recalibration under sunlight
Battery endurance test	2.5 hours of operation	Under typical use with full charge

Appendix E: Source Code Snapshots


```
if (rightspeed > 0) {
    digitalMrite(in3, HIGH); digitalMrite(in4, LON);
    plais if (rightspeed < 0) {
    digitalMrite(in3, LON); digitalMrite(in4, HIGH);
    } else {
    digitalMrite(in4, LON); digitalMrite(in4, HIGH);
}</pre>
 | Code | Blame | 452 lines (373 loc) - 11 KB
                                                                                         422
            void setMotorSpeed(int leftSpeed, int rightSpeed) {
                                                                                         424 v int readFrequency(bool s2, bool s3) {
                                                                                         425
                                                                                                       digitalWrite(S2, s2);
                                                                                        426
                                                                                                       digitalWrite(S3, s3);
                                                                                         427
                                                                                                        delay(50);
                                                                                        428
                                                                                                        return pulseIn(sensorOut, LOW);
              delayMicrossconds(10);
digitalNeite(trigPin, LOH);
long duration = pulsain(chePin, MIGH, 10080);
if (duration == 0) return -1;
int cm = duration = 0.034 / 2;
if (cm < 2 || cm > 400) return -1;
cattern = 0.034 / 2;
                                                                                        429
                                                                                         430
                                                                                         431 V bool searchForLineDuringWindow(unsigned long maxDuration) {
                                                                                         432
                                                                                                         unsigned long startTime = millis();
                                                                                         433
                                                                                                          setMotorSpeed(MOTOR_SPEED / 1.8, MOTOR_SPEED / 1.8);
                                                                                         434
                                                                                         435
                                                                                                        while (millis() - startTime < maxDuration) {</pre>
                                                                                         436
                                                                                                            int leftIR = digitalRead(irLeft);
                                                                                         437
                                                                                                           int rightIR = digitalRead(irRight);
                                                                                         438
                                                                                         439
                                                                                                           if (leftIR == HIGH || rightIR == HIGH) {
                                                                                         441
                                                                                         442
                                                                                                               if (leftIR == HIGH && rightIR == LOW) lastSeenLine = LEFT;
                                                                                                              else if (rightIR == HIGH && leftIR == LOW) lastSeenLine = RIGHT;
              Serial.println("----");
Serial.print("Re"); Serial.print(reng. 1);
Serial.print("Re"); Serial.print(reng. 1);
Serial.print("Re"); Serial.print(reng. 1);
Serial.print(" Re"); Serial.print(retwog. 1);
Serial.print(" Retion("); Serial.print(retion(), 3);
Serial.print(" Netion("); Serial.print(retion(), 3);
                                                                                         444
                                                                                         445
                                                                                                               currentState = FORWARD;
                                                                                         446
                                                                                         447
                                                                                                           }
                                                                                         448
                                                                                         449
             a: quitra c quitra |
Serial.println("Detected Color: A");
return 'A';
} else {
Serial.println("Detected Color: B");
return 'B';
                                                                                                          stopMotors();
                                                                                         451
                                                                                                          return false;
                                                                                         452
```

Appendix F: 3D-Printed Part Designs

(a) IR Sensor holder

(b) Motor Holder

(c) Ultrasonic Sensor Holder [2].

(d) IR Sensor Clip

(d) Battery and Breadboard holder

