CSC3001 Practice Exercise 3

Direct proof

4

Denote the product by \prod . Any five consecutive integers $n+1,\ldots,n+5$ must contain one that's divisible by 5. Since, by division algorithm n+5=5q+r with $0\leq r<5$. If r=0 we are done. Otherwise 5q+r-k=5q with 0< k<5; n+r=5q with $1\leq r\leq 4$. Similarly one must be divisible by 4, one by 3, one by 2. Therefore $3,5|\prod$. Since (3,5)=1 it follows that their product $15|\prod$. Also note that if 4|a, then 2|a, then 2|a-2,a+2. So two distinctive integers are divisible by 2 and by 4 respectively. Hence $8|\prod$. But (8,15)=1. Therefore $120|\prod$. \square

5

If $n=2k+1, n^2-1=4k(k+1)$. Note that either k or k+1 is even. Hence $8|(n^2-1)$.

Proof by contrapositive

5

Suppose n is composite. Then n=ab with both a,b>1. Then $2^n-1=(2^a)^b-1=(a-1)\sum_{i=0}^{b-1}2^{ai}$. Hence 2^n-1 is composite. \square

Proof by contradiction

6

Suppose $a^2-4b-3=0$. Then $2|4|(a^2+1)$. Then $2|(a^2-1)=(a+1)(a-1)$. Therefore a is odd. Let a=2k+1. From above $4|(a^2+1)=(4k^2+4k+2)$, which implies 4|2. Contradiction. \Box

Proof by cases

2

$$\max\{x,y\} + \min\{x,y\} = \left\{egin{array}{ll} x+y & ext{if } x \geq y \ y+x & ext{if } x < y \end{array}
ight. \ \square$$