Set Theory

The set is represented by listing all the elements comprising it. The elements are enclosed within braces and separated by commas.

Example 1 – Set of vowels in English alphabet, $B=\{a,e,i,o,u\}$

Example 2 – Set of odd numbers less than 20, $A = \{1,3,5,7,9,11,13,15,17,19\}$

Set Builder Notation

The set is defined by specifying a property that elements of the set have in common. The set is described as $P = \{x: a(x)\}$

Example 1 – The set $\{a, e, i, o, u\}$

is written as -

 $P = \{y : y \text{ is a vowel in English alphabet}\}\$

Example 2 – The set {1,3,5,7,9,11,13,15,17,19}

is written as -

 $A = \{y : 1 \le y < 20 \text{ and } (y\%2) \ne 0\}$

If an element y is a member of any set A, it is denoted by $y \in A$

and if an element x is not a member of set A, it is denoted by $x \notin A$.

Cardinality of a Set

Cardinality of a set A, denoted by |A|, is the number of elements of the set.

The number is also referred as the cardinal number. If a set has an infinite number of elements, its cardinality is ∞

Example
$$- |\{1,2,3,4\}| = 4, |\{1,2,3,4,...\}| = \infty.$$

Types of Sets

Sets can be classified into many types. Some of which are finite, infinite, subset, universal, proper set, etc.

Finite Set

A set which contains a definite number of elements is called a finite set.

Example – A =
$$\{y | y \in N \text{ and } 50 > y > 40\}$$
.

Infinite Set

A set which contains infinite number of elements is called an infinite set.

Example –
$$A = \{y \mid y \in N \text{ and } y>20\}$$

Subset

A set B is a subset of set C (Written as $B\subseteq C$) if every element of B is an element of set C.

Example 1 – Let,
$$C = \{1,2,3,4,5,6\}$$

and
$$B = \{1,2\}.$$

Here set B is a subset of set C as all the elements of set B are in set C.

Proper Subset

The term "proper subset" can be defined as "subset of but not equal to". A Set B is a proper subset of set C (Written as $B \subset C$) if every element of B is an element of set C and |B| < |C|.

Universal Set

It is a collection of all elements in a particular context or application. All the sets in that context or application are essentially subsets of this universal set. Universal sets are represented as U.

Example – We may define U as the set of all sport events. In this case, set of all format of cricket is a subset of U

, set of all lawn tennis is a subset of U

, and so on.

Empty Set or Null Set

An empty set contains no elements. It is denoted by \emptyset .

As the number of elements in an empty set is finite, empty set is a finite set. The cardinality of empty set or null set is zero.

Example – $S=\{x \mid x \in N\}$

And $7 < x < 8 \} = \emptyset$.

Venn Diagrams

In the late 1800's, an English logician named John Venn developed a method to represent relationship between sets. He represented these relationships using diagrams, which are now known as Venn diagrams. A Venn diagram represents a set as the interior of a circle. Often two or more circles are enclosed in a rectangle where the rectangle represents the universal set.

Venn Diagram in case of two elements

Where;

x = number of elements that belong to set A only

y = number of elements that belong to set B only

z = number of elements that belong to set A and B both (A\cap B)

w = number of elements that belong to none of the sets A or B is

From the above figure, it is clear that

$$n(A) = x + z;$$

$$n(B) = y + z;$$

$$n(A \cap B) = z;$$

$$n (A \cup B) = x + y + z.$$

Total number of elements = x + y + z + w.

Set Operations

Set Operations include Set Union, Set Intersection, Set Difference, Complement of Set, and Cartesian Product.

Set Union

The union of sets A and B (denoted by AUB) is the set of elements which are in A, in B, or in both A and B. Hence, $A \cup B = \{x | x \in A \text{ OR } x \in B\}$.

Example – If
$$A = \{10,11,12,13\}$$

and
$$B = \{13,14,15\}$$

, then
$$A \cup B = \{10,11,12,13,14,15\}$$

Set Intersection

The intersection of sets A and B (denoted by $A \cap B$) is the set of elements which are in both A and B. Hence, $A \cap B = \{x | x \in A \text{ AND } x \in B\}$.

Set Difference/ Relative Complement

The set difference of sets A and B (denoted by A–B) is the set of elements which are only in A but not in B. Hence, $A-B=\{x|x\in A \text{ AND } x\notin B\}$

Example – If A=
$$\{10,11,12,13\}$$

and B= $\{13,14,15\}$,
then (A-B) = $\{10,11,12\}$
and (B-A) = $\{14,15\}$.
Here, we can see (A-B) \neq (B-A)

Cartesian Product / Cross Product

The Cartesian product of n number of sets A1, A2,...An

denoted as $A1 \times A2 \cdots \times An$

can be defined as all possible ordered pairs $(x_1,x_2,...x_n)$

where $x1 \in A1$, $x2 \in A2$,... $xn \in An$

Example – If we take two sets $A=\{a,b\}$

and $B = \{1, 2\}$

The Cartesian product of A and B is written as $-A \times B = \{(a,1),(a,2),(b,1),(b,2)\}$

The Cartesian product of B and A is written as $-B \times A = \{(1,a),(1,b),(2,a),(2,b)\}$