(a) Use mathematical induction to prove that $5^k > 15k$ for any positive integer $k \geqslant 3$.

[8 marks]

(b) Solve the system of simultaneous inequalities

$$x^2 - 2x \geqslant 0$$

$$x^2 - x - 6 < 0$$

and represent the solution as a union of intervals.

[8 marks]

- (c) Let \sim be a relation on the set $A=\{1,2,3,4,5,6,7\}$ defined as $a\sim b$ if and only if a+b is even.
 - (i) Prove that \sim is an equivalence relation;
 - (ii) depict this relation on the diagram as a subset of $A \times A$;
 - (iii) list the elements of the corresponding equivalence class [3] of the element 3.

[9 marks]

(a) Use mathematical induction to prove that $2^{2n+1} + 1$ is divisible by 3 for any positive integer n.

[8 marks]

- (b) Determine the truth tables for the following statements and indicate which of them (if any) are tautologies or contradictions:
 - (i) $(P \lor Q) \Rightarrow (P \land \neg Q);$
 - (ii) $(\neg Q \Rightarrow P) \lor (\neg P \lor Q)$.

[8 marks]

- (c) (i) State the definition of a limit of a function $\lim_{x\to +\infty} f(x) = L$ as $x\to +\infty$.
 - (ii) Prove from first principles, by verifying the definition that $\lim_{x\to +\infty} \frac{1}{\ln x} = 0.$

[9 marks]

(a) Let a_n be a sequence defined recursively as $a_1=1$, $a_2=5$, and $a_i=3a_{i-1}+4a_{i-2}+2$ for $i\geqslant 3$.

Use mathematical induction to prove that $a_n = \frac{4^n - 1}{3}$ for all positive integers n.

[*Hint*: first check the cases n = 1 and n = 2.]

[8 marks]

[8 marks]

- (b) For each of the following mappings, determine whether it is (1) injective, (2) surjective, giving reasons for your answers:
 - (i) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, where f((a,b)) = (a+b, a-b);
 - (ii) $g: \mathbb{R} \to (0,1]$, where $g(x) = \frac{1}{x^2 + 1}$;
 - (iii) $h: \mathscr{P}(\mathbb{N}) \to \mathscr{P}(\mathbb{Z})$, where $h(X) = \{-a \mid a \in X\}$. (Recall that $\mathscr{P}(A)$ denotes the set of all subsets of a set A.)
- (c) Prove by contradiction that $\log_{10} 7$ is an irrational number. [9 marks]

(a) Use the properties of operations on sets to show that

 $\overline{A \cap (\overline{A} \cup B)} = \overline{A} \cup \overline{B}.$

[8 marks]

- (b) Let $\mathscr{U}=\mathbb{R}.$ Determine which of these statements are true giving reasons to your answers:
 - (1) $\forall x \forall y ((x < y) \Rightarrow (x^2 < y^2));$
 - (2) $\exists x \, \forall y \, ((x < y) \Rightarrow (x^2 < y^2));$
 - (3) $\exists x \, \exists y \, ((x > y) \wedge (x^2 < y^2)).$

[8 marks]

(c) State and prove the theorem about the limit of the sum of two sequences (a_n) and (b_n) each of which has a finite limit as $n \to \infty$.

[9 marks]