machine learning lab homework 5

February 8, 2024

- 1 Machine Learning Lab HW 5
- 2 Connor O'Keefe
- $3 \quad 02/08/2024$
- 4 0.) Import the Credit Card Fraud Data From CCLE

```
[4]: import pandas as pd
     import matplotlib.pyplot as plt
     import numpy as np
[5]: df = pd.read_csv("fraudTest.csv")
[6]: df.head()
[6]:
        Unnamed: 0 trans_date_trans_time
                                                     cc_num \
     0
                     2020-06-21 12:14:25
                                           2291163933867244
                     2020-06-21 12:14:33
                                           3573030041201292
     1
                     2020-06-21 12:14:53 3598215285024754
     2
     3
                 3
                     2020-06-21 12:15:15
                                           3591919803438423
                     2020-06-21 12:15:17 3526826139003047
                                     merchant
                                                                        first \
                                                     category
                                                                  amt
                       fraud Kirlin and Sons
                                                                         Jeff
     0
                                                personal care
                                                                 2.86
     1
                        fraud_Sporer-Keebler
                                                personal_care
                                                                29.84
                                                                       Joanne
       fraud_Swaniawski, Nitzsche and Welch
     2
                                               health_fitness
                                                                41.28
                                                                       Ashley
     3
                           fraud_Haley Group
                                                     misc_pos
                                                                60.05
                                                                        Brian
     4
                       fraud_Johnston-Casper
                                                       travel
                                                                 3.19
                                                                       Nathan
            last gender
                                               street ...
                                                               lat
                                                                        long \
         Elliott
                                    351 Darlene Green ...
                                                          33.9659
                                                                    -80.9355
     0
                      F
     1
        Williams
                                     3638 Marsh Union ...
                                                          40.3207 -110.4360
     2
           Lopez
                                 9333 Valentine Point ... 40.6729
                                                                    -73.5365
       Williams
     3
                      М
                         32941 Krystal Mill Apt. 552 ...
                                                          28.5697
                                                                    -80.8191
          Massey
                            5783 Evan Roads Apt. 465 ...
                                                          44.2529
                                                                    -85.0170
                      М
```

```
0
          333497
                     Mechanical engineer
                                          1968-03-19
     1
             302 Sales professional, IT
                                          1990-01-17
     2
           34496
                      Librarian, public 1970-10-21
     3
          54767
                            Set designer 1987-07-25
           1126
                      Furniture designer 1955-07-06
                               trans_num unix_time merch_lat merch_long \
     0 2da90c7d74bd46a0caf3777415b3ebd3 1371816865 33.986391 -81.200714
     1 324cc204407e99f51b0d6ca0055005e7
                                          1371816873 39.450498 -109.960431
     2 c81755dbbbea9d5c77f094348a7579be 1371816893 40.495810 -74.196111
     3 2159175b9efe66dc301f149d3d5abf8c 1371816915 28.812398 -80.883061
     4 57ff021bd3f328f8738bb535c302a31b 1371816917 44.959148 -85.884734
        is fraud
     0
               0
               0
     1
     2
               0
     3
               0
     [5 rows x 23 columns]
[7]: df_select = df[["trans_date_trans_time", "category", "amt", "city_pop", []

y"is fraud"]]

     df select["trans date trans time"] = pd.

sto_datetime(df_select["trans_date_trans_time"])
     df_select["time_var"] = [i.second for i in df_select["trans_date_trans_time"]]
     X = pd.get_dummies(df_select, ["category"]).drop(["trans_date_trans_time", __

y"is_fraud"], axis = 1)
     y = df["is_fraud"]
    C:\Users\12282\AppData\Local\Temp\ipykernel_22492\2282180580.py:3:
    SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/pandas-
    docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
      df select["trans date trans time"] =
    pd.to_datetime(df_select["trans_date_trans_time"])
    C:\Users\12282\AppData\Local\Temp\ipykernel 22492\2282180580.py:4:
    SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
```

dob \

job

city_pop

```
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

df_select["time_var"] = [i.second for i in df_select["trans_date_trans_time"]]
```

5 1.) Use scikit learn preprocessing to split the data into 70/30 in out of sample

6 2.) Make three sets of training data (Oversample, Undersample and SMOTE)

```
[12]: from imblearn.over_sampling import RandomOverSampler
    from imblearn.under_sampling import RandomUnderSampler
    from imblearn.over_sampling import SMOTE

[13]: ros = RandomOverSampler()
    over_X, over_y = ros.fit_resample(X_train, y_train)

    rus = RandomUnderSampler()
    under_X, under_y = rus.fit_resample(X_train, y_train)

    smote = SMOTE()
    smote_X, smote_y = smote.fit_resample(X_train, y_train)
```

7 3.) Train three logistic regression models

```
[14]: from sklearn.linear_model import LogisticRegression

[15]: over_log = LogisticRegression().fit(over_X, over_y)

under_log = LogisticRegression().fit(under_X, under_y)
```

```
smote_log = LogisticRegression().fit(smote_X, smote_y)
```

8 4.) Test the three models

```
[16]: over_log.score(X_test, y_test)
[16]: 0.9271815542599391
[17]: under_log.score(X_test, y_test)
[17]: 0.91931188368243
[18]: smote_log.score(X_test, y_test)
[18]: 0.9233426905635932
[]: # We see SMOTE performing with higher accuracy but is ACCURACY really the best_u omeasure?
```

9 5.) Which performed best in Out of Sample metrics?

```
[19]: # Sensitivity here in credit fraud is more important as seen from last class
[20]: from sklearn.metrics import confusion_matrix
[69]: y_true = y_test
[70]: y_pred = over_log.predict(X_test)
      cm = confusion_matrix(y_true, y_pred)
      cm
[70]: array([[77065, 5991],
                     223]], dtype=int64)
                79,
[71]: print("Over Sample Sensitivity: ", cm[1,1] /(cm[1,0] + cm[1,1]))
     Over Sample Sensitivity: 0.7384105960264901
[72]: y_pred = under_log.predict(X_test)
      cm = confusion_matrix(y_true, y_pred)
[72]: array([[76409, 6647],
                79,
                      223]], dtype=int64)
[73]: print("Under Sample Sensitivity: ", cm[1,1] /(cm[1,0] + cm[1,1]))
```

Under Sample Sensitivity: 0.7384105960264901

```
[74]: y_pred = smote_log.predict(X_test)
cm = confusion_matrix(y_true, y_pred)
cm
```

```
[75]: print("SMOTE Sample Sensitivity: ", cm[1,1] /(cm[1,0] + cm[1,1]))
```

SMOTE Sample Sensitivity: 0.7384105960264901

All three models performed equally well.

10 6.) Pick two features and plot the two classes before and after SMOTE.

```
[40]: X_train = pd.DataFrame(X_train)
y_train = pd.DataFrame(y_train)
raw_temp = pd.concat([X_train, y_train], axis = 1)
raw_temp
```

	raw_ter	raw_temp								
[40]:		0	1	2	3	4	5	6	\	
	0	-0.141414	-0.289937	1.070757	-0.278376	-0.275988	-0.336219	-0.19051		
	1	-0.389317	-0.276441	0.897274	-0.278376	-0.275988	-0.336219	-0.19051		
	2	0.039317	-0.039814	1.244240	-0.278376	-0.275988	-0.336219	-0.19051		
	3	-0.060003	-0.293272	1.417723	-0.278376	-0.275988	2.974253	-0.19051		
	4	0.120301	-0.180632	0.608135	3.592267	-0.275988	-0.336219	-0.19051		
	•••	•••	•••		•••	•••				
	501540	NaN	NaN	NaN	NaN	NaN	NaN	NaN		
	440489	NaN	NaN	NaN	NaN	NaN	NaN	NaN		
	534484	NaN	NaN	NaN	NaN	NaN	NaN	NaN		
	481131	NaN	NaN	NaN	NaN	NaN	NaN	NaN		
	438877	NaN	NaN	NaN	NaN	NaN	NaN	NaN		
		7	0	•	4.0		40	4.0		
	^	7	8	9	10	11	12	13	\	
	0		-0.266147			-0.226946				
	1	-0.322955				-0.226946				
	2		-0.266147							
	3		-0.266147							
	4	-0.322955	-0.266147	-0.323111	-0.310211	-0.226946	-0.257458	-0.275308		
		••• N - N	••• NI - NI	 N - N	 N - N	••• NI - NI	••• NI – NI	NT - NT		
	501540	NaN	NaN	NaN	NaN	NaN	NaN	NaN		
	440489	NaN	NaN	NaN	NaN	NaN	NaN	NaN		
	534484	NaN	NaN	NaN	NaN	NaN	NaN	NaN		
	481131	NaN	NaN	NaN	NaN	NaN	NaN	NaN		
	438877	NaN	NaN	NaN	NaN	NaN	NaN	NaN		

```
14
                            15
                                       16 is_fraud
        -0.284894 -0.314464 -0.17929
                                                  0.0
0
        -0.284894 -0.314464 -0.17929
1
                                                  NaN
2
        -0.284894 -0.314464 -0.17929
                                                  0.0
3
        -0.284894 -0.314464 -0.17929
                                                  NaN
        -0.284894 -0.314464 -0.17929
4
                                                  0.0
                                                  0.0
501540
               {\tt NaN}
                           {\tt NaN}
                                      NaN
440489
               {\tt NaN}
                           {\tt NaN}
                                      {\tt NaN}
                                                  0.0
                           NaN
                                      NaN
                                                  0.0
534484
               NaN
481131
               NaN
                           {\tt NaN}
                                      {\tt NaN}
                                                  0.0
438877
               NaN
                           {\tt NaN}
                                      NaN
                                                  0.0
```

[505381 rows x 18 columns]

```
[42]: # not sure if this is right
plt.scatter(df[df["is_fraud"] == 0]["amt"], df[df["is_fraud"] == 0]["city_pop"])
plt.scatter(df[df["is_fraud"] == 1]["amt"], df[df["is_fraud"] == 1]["city_pop"])
plt.legend(["Fraud", "Not Fraud"])
plt.xlabel("Amount")
plt.ylabel("Population")
plt.show()
```



```
[45]: smote_X = pd.DataFrame(smote_X)
      smote_y = pd.DataFrame(smote_y)
      raw_temp = pd.concat([smote_X, smote_y], axis = 1)
      raw_temp
[45]:
                     0
                                         2
                                                    3
                                                                                     \
                               1
                                                              4
                                                                        5
                                                                                   6
             -0.141414 -0.289937
                                 1.070757 -0.278376 -0.275988 -0.336219 -0.190510
      0
      1
             -0.389317 -0.276441
                                  0.897274 -0.278376 -0.275988 -0.336219 -0.190510
                                  1.244240 -0.278376 -0.275988 -0.336219 -0.190510
              0.039317 -0.039814
      3
             -0.060003 -0.293272
                                  1.417723 -0.278376 -0.275988 2.974253 -0.190510
              0.120301 -0.180632
                                  0.608135
                                            3.592267 -0.275988 -0.336219 -0.190510
      775013 2.928237 -0.289327 -0.192000 3.592267 -0.275988 -0.336219 -0.190510
      775014 -0.370246 -0.289225 -0.112553 -0.278376 -0.275988 -0.336219 5.249074
      775015 6.363394 0.002887 0.524250 -0.278376 -0.275988 -0.336219 -0.190510
      775016
              5.009204 -0.074031 -0.873593 -0.278376 -0.275988 -0.336219 -0.190510
              1.474739 -0.288638 -1.300180 -0.278376 -0.275988 -0.336219 -0.190510
      775017
                                                   10
                                                             11
      0
             -0.322955 \ -0.266147 \ \ 3.094914 \ -0.310211 \ -0.226946 \ -0.257458 \ -0.275308
```

```
1
       -0.322955 3.757324 -0.323111 -0.310211 -0.226946 -0.257458 -0.275308
2
        3.096403 -0.266147 -0.323111 -0.310211 -0.226946 -0.257458 -0.275308
3
       -0.322955 -0.266147 -0.323111 -0.310211 -0.226946 -0.257458 -0.275308
       -0.322955 \ -0.266147 \ -0.323111 \ -0.310211 \ -0.226946 \ -0.257458 \ -0.275308
775013 -0.322955 -0.266147 -0.323111 -0.310211 -0.226946 -0.257458 -0.275308
775014 -0.322955 -0.266147 -0.323111 -0.310211 -0.226946 -0.257458 -0.275308
775015 -0.322955 -0.266147 -0.323111 -0.310211 -0.226946 -0.257458 -0.275308
775016 -0.322955 -0.266147 -0.323111 -0.310211 -0.226946 -0.257458 -0.275308
775017 3.096403 -0.266147 -0.323111 -0.310211 -0.226946 -0.257458 -0.275308
                                 16 is_fraud
                        15
0
       -0.284894 -0.314464 -0.17929
1
       -0.284894 -0.314464 -0.17929
                                            0
2
       -0.284894 -0.314464 -0.17929
                                            0
3
       -0.284894 -0.314464 -0.17929
                                            0
4
       -0.284894 -0.314464 -0.17929
                                            0
775013 -0.284894 -0.314464 -0.17929
                                             1
775014 -0.284894 -0.314464 -0.17929
                                             1
775015 3.510079 -0.314464 -0.17929
                                             1
775016 -0.284894 3.180010 -0.17929
                                             1
775017 -0.284894 -0.314464 -0.17929
                                             1
```

[775018 rows x 18 columns]

```
[47]: # not sure if this is right
plt.scatter(df[df["is_fraud"] == 0]["amt"], df[df["is_fraud"] == 0]["city_pop"])
plt.scatter(df[df["is_fraud"] == 1]["amt"], df[df["is_fraud"] == 1]["city_pop"])
plt.legend([ "Not Fraud", "Fraud"])
plt.xlabel("Amount")
plt.ylabel("Population")
plt.show()
```


- 11 7.) We want to compare oversampling, undersampling and SMOTE across our 3 models (Logistic Regression, Logistic Regression Lasso and Decision Trees).
- 12 Make a dataframe that has a dual index and 9 Rows.
- 13 Calculate: Sensitivity, Specificity, Precision, Recall and F1 score for out of sample data.
- 14 Notice any patterns across perfomance for this model. Does one totally out perform the others i.e. over/under/smote or does a model perform better DT, Lasso, LR?
- 15 Choose what you think is the best model and why.

```
[50]: from sklearn.tree import DecisionTreeClassifier
      from sklearn.metrics import confusion_matrix, precision_score, recall_score,

¬f1_score
      import pandas as pd
[64]: resampling_methods = {
          'over': RandomOverSampler(),
          'under': RandomUnderSampler(),
          'smote': SMOTE()
      }
      model_configs = {
          'LOG': LogisticRegression(),
          'LASSO': LogisticRegression(penalty = '11', C = 2, solver = 'liblinear'),
          'DTREE': DecisionTreeClassifier()
[65]: # want to calculate a performance metric function
      def calc_perf_metric(y_true, y_pred):
          tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
```

```
def calc_perf_metric(y_true, y_pred):
    tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()

sensitivity = tp/(tp+fn)
    specificity = tn/(tn+fp)
    precision = precision_score(y_true, y_pred)
    recall = recall_score(y_true, y_pred)
    f1 = f1_score(y_true, y_pred)

return(sensitivity, specificity, precision, recall, f1)
```

```
[66]: trained_models = {}
      results = []
[67]: for resample_key, resampler in resampling_methods.items():
          resample_X, resample_y = resampler.fit_resample(X_train, y_train)
          for model key, model in model configs.items():
              combined_key = f'{resample_key}_{model_key}'
              m = model.fit(resample_X, resample_y)
              trained_models[combined_key] = m
              y_pred = m.predict(X_test)
              sensitivity, specificity, precision, recall, f1 = __

¬calc_perf_metric(y_test, y_pred)
              results.append({'Model': combined_key,
                              'Sensitivity': sensitivity,
                             'Specificity': specificity,
                             'Precision': precision,
                             'Recall': recall,
                             'F1': f1})
              #####
              #results.append(calc_perf_metric(y_test, y_pred))
     C:\Users\12282\anaconda3\Lib\site-packages\sklearn\utils\validation.py:1229:
     DataConversionWarning: A column-vector y was passed when a 1d array was
     expected. Please change the shape of y to (n_samples, ), for example using
     ravel().
       y = column_or_1d(y, warn=True)
     C:\Users\12282\anaconda3\Lib\site-packages\sklearn\utils\validation.py:1229:
     DataConversionWarning: A column-vector y was passed when a 1d array was
     expected. Please change the shape of y to (n_samples, ), for example using
     ravel().
       y = column_or_1d(y, warn=True)
     C:\Users\12282\anaconda3\Lib\site-packages\sklearn\utils\validation.py:1229:
     DataConversionWarning: A column-vector y was passed when a 1d array was
     expected. Please change the shape of y to (n samples, ), for example using
     ravel().
       y = column_or_1d(y, warn=True)
     C:\Users\12282\anaconda3\Lib\site-packages\sklearn\utils\validation.py:1229:
     DataConversionWarning: A column-vector y was passed when a 1d array was
     expected. Please change the shape of y to (n_samples, ), for example using
     ravel().
       y = column_or_1d(y, warn=True)
     C:\Users\12282\anaconda3\Lib\site-packages\sklearn\utils\validation.py:1229:
```

DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Users\12282\anaconda3\Lib\site-packages\sklearn\utils\validation.py:1229: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

[68]:	Model	Sensitivity	Specificity	Precision	Recall	F1
0	over_LOG	0.738411	0.927856	0.035881	0.738411	0.068436
1	over_LASSO	0.738411	0.927928	0.035916	0.738411	0.068499
2	over_DTREE	0.569536	0.998736	0.620939	0.569536	0.594128
3	under_LOG	0.738411	0.924713	0.034435	0.738411	0.065801
4	under_LASSO	0.738411	0.924172	0.034197	0.738411	0.065367
5	under_DTREE	0.953642	0.946048	0.060390	0.953642	0.113587
6	${\tt smote_LOG}$	0.738411	0.925014	0.034568	0.738411	0.066045
7	${\tt smote_LASSO}$	0.738411	0.925014	0.034568	0.738411	0.066045
8	smote DTREE	0.692053	0.993402	0.276090	0.692053	0.394712

In the machine learning lecture, we were told that F1 is usually the best measure of the validity of a model, particularly when it comes to imbalanced datasets. With this in mind, it is important to note than the over_DTREE model has the best F1 score, and by a large margin. However, smote_DTREE has higher sensitivity and recall values. Because we are predicting whether or not a crdit card transaction is fraudulent or not, it is important to minimize the number of false negatives.

$$Recall = \frac{TP}{TP + FN}$$

With this in mind, I believe the best model is the one that maximizes recall, therefore minimizing the number of unreported fraudulent purchase (under_DTREE).