White dwarf stars

Simon Blouin - 2024-09-25

WDs and equations of state

Saha ionization/dissociation

Pressure ionization

Onset of convection

Degeneracy

Crystallization

Characteristic distances for plasma EOS

$$\lambda_d = \left(\frac{3}{4\pi n}\right)^{1/3}$$

$$\lambda_t \simeq \frac{h}{(mkT)^{1/2}}$$

$$\lambda_a \simeq \frac{Z^2 e^2}{kT}$$

$$\Gamma \equiv \frac{\lambda_a}{\lambda_d} = \frac{Z^2 e^2}{kT} \left(\frac{4\pi n}{3}\right)^{1/3}$$

Mass-radius relation

$$\frac{dP}{dr} = -\frac{Gm\rho}{r^2} \qquad \frac{dm}{dr} = 4\pi r^2 \rho$$

$$\frac{dP}{dr} \approx \frac{P_c}{R} \qquad \rho g \approx \frac{M}{R^3} \frac{GM}{R^2}$$

$$P_c \approx \frac{GM^2}{R^4} \propto \rho^{\gamma} \propto \left(\frac{M}{R^3}\right)^{\gamma} \Rightarrow M^{\gamma-2} \propto R^{3\gamma-4}$$

DOS $\propto \sqrt{E}$

$$P = \frac{\left(3\pi^2\right)^{2/3}}{5} \frac{\hbar^2}{m_e} n_e^{5/3} \implies R \propto M^{-1/3}$$

$$P = \frac{\left(3\pi^2\right)^{1/3}}{4}\hbar c n_e^{4/3}$$

The Mestel (1952) cooling model

We start from HSE and photon diffusion equation

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{Gm\rho}{r^2}, \quad \frac{\mathrm{d}T}{\mathrm{d}r} = -\frac{3}{4ac} \frac{\kappa\rho}{T^3} \frac{L_r}{4\pi r^2},$$

We divide these two equations and approximate $\kappa = \kappa_0 \rho \ T^{-3.5}$

$$\frac{\mathrm{d}P}{\mathrm{d}T} = \frac{16\pi ac}{3\kappa_0} \frac{GMT^{6.5}}{\rho L}$$

We can now integrate assuming an ideal gas EOS $P = \frac{\Re}{\mu} \rho T$ with $\mu^{-1} = \sum_{i} (1 + Z_i) \frac{X_i}{A_i}$

$$P dP = \frac{16\pi ac}{3\kappa_0} \frac{\Re GM}{L\mu} T^{7.5} dT$$

The Mestel (1952) cooling model (cont'd)

$$P dP = \frac{16\pi ac}{3\kappa_0} \frac{\Re GM}{L\mu} T^{7.5} dT$$

Integrating from the surface (P=0, T=0) to the transition layer, we get the relation

$$\rho_{\rm tr} = \left(\frac{32\pi ac}{8.53\kappa_0} \frac{\mu}{\Re} \frac{GM}{L}\right)^{1/2} T_{\rm tr}^{3.25}$$

But this is also where T=Tc and $P = \frac{\left(3\pi^2\right)^{2/3}}{5} \frac{\hbar^2}{m_e} n_e^{5/3} = \frac{\Re}{\mu_e} \rho_{tr} T_{tr}$

$$L = 5.7 \times 10^5 \frac{\mu}{\mu_c^2} \frac{1}{Z(1+X)} \frac{M}{M_{\odot}} T_c^{3.5} \text{ erg/s}$$

The Mestel (1952) cooling model (cont'd)

$$L = 5.7 \times 10^5 \frac{\mu}{\mu_o^2} \frac{1}{Z(1+X)} \frac{M}{M_\odot} T_c^{3.5} \text{ erg/s}$$
 $L = -\frac{dE}{dt} = -\frac{d}{dt} (E_{\text{ion}} + E_{\text{elec}} + E_{\text{grav}}).$

Gravitational contraction and the heat capacity of the electrons are small. We can also neglect the contribution of the envelope

$$CMT_c^{3.5} = -\langle C_V^{\text{ion}} \rangle M \frac{dT_c}{dt}$$

Assuming that the heat capacity is 1.5 kB per ion $C_V^{
m ion}=3\Re/2A$

$$t_{\rm cool} \approx \frac{10^8}{A} \left(\frac{M/M_{\odot}}{L/L_{\odot}}\right)^{5/7}$$
 years

In partial ionization zones, the opacity *increases* during compression. This drives pulsations.

$$ar{\kappa} \propto
ho T^{-7/2}$$

Radiation is trapped, further heating the layer. It eventually expands and cools down. The cycle repeats -> pulsations.

Time (seconds)

Frequency (mHz)

Phase diagram of C-O (in an electron degenerate plasma)

Change in composition profile due to C-O fractionation

$$\frac{n_{Z+1}n_e}{n_Z} = \frac{z_{Z+1}2}{z_Z} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\chi_Z/kT}$$

$$\frac{n_k}{n} = \frac{g_k e^{-(\epsilon_k - \epsilon_1)/kT}}{z} \quad z \equiv \sum_i g_i e^{-(\epsilon_i - \epsilon_1)/kT} \quad \begin{array}{c} \text{Input parameters: $T_{\rm eff}$, $\log g$, n_i} \\ \hline \\ \text{Initial guess on the structure: $P(r)$, $T(r)$} \\ \hline \\ \text{Equation of state} \\ \hline \\ \text{Continuum opacities, atomic line lists, molecular lines} \\ \hline \\ F_{\rm rad} + F_{\rm conv} - \sigma_S T_{\rm eff}^4 \\ \hline \\ \sigma_S T_{\rm eff}^4 \\ \hline \end{array} \approx 0 \quad \begin{array}{c} z \equiv \sum_i g_i e^{-(\epsilon_i - \epsilon_1)/kT} \\ \hline \\ \text{Equation of state} \\ \hline \\ \text{Continuum opacities, atomic line lists, molecular lines} \\ \hline \\ \hline \\ F_{\rm total} \\ \hline \\ \hline \\ \hline \\ F_{\rm total} \\ \hline \\ \hline \\ \hline \\ F_{\rm total} \\ \hline \\ F_{\rm$$

$$dI_{\nu} = -\underbrace{\kappa_{\nu}I_{\nu}\rho dx}_{\text{absorption}} + \underbrace{j_{\nu}\rho dx}_{\text{émission}}.$$

$$d\tau_{\nu} \equiv \kappa_{\nu}\rho dx \qquad S_{\nu} \equiv \frac{j_{\nu}}{\kappa_{\nu}}$$

$$d\tau_{\nu} \equiv \kappa_{\nu} \rho dx$$

 $I_{\nu}(\tau_{\nu}) = \int_{0}^{\tau_{\nu}} S_{\nu}(t_{\nu}) e^{-(\tau_{\nu} - t_{\nu})} dt_{\nu} + I_{\nu}(0) e^{-\tau_{\nu}}$

$$\langle dx \rangle$$

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}$$

$$dI_{\nu} = -\kappa_{\nu} I_{\nu} \rho dx$$

$$\rho dx \qquad \qquad \overline{d\tau_{\nu}} = -I_{\nu} + S$$

$$dI_{\nu} = j_{\nu} \rho dx$$

Bound-bound transitions

$$\kappa_{\nu}(n',n) = \frac{N(n')}{\rho} \frac{\pi e^2}{mc} f(n',n) \varphi_{\nu}(n',n)$$

$$\int_0^\infty \varphi_{\nu}(n',n)d\nu = 1.$$

"Natural" broadening (uncertainty principle)

- Doppler broadening
- Collisional broadening

NIST Atomic Spectra Database Lines Data

Fe I: 10031 Lines of Data Found

Observed Wavelength Air (nm)	Unc. (nm)	Ritz Wavelength Air (nm)	Unc. (nm)	Rel. Int. (7)	A _{ki} (s ⁻¹)	f _{ik}	Acc.	E _i (cm ⁻¹)	<i>E_k</i> (cm ⁻¹)	Lower Level Conf., Term, J		
400.0252	0.0003	400.025248	0.000023	457bl	2.2e+06	5.2e-03	E	26 339.696	- 51 331.052	3d ⁶ (⁵ D)4s4p(³ P°)	z ⁵ D°	2
400.04570	0.00005	400.045722	0.000023	1480	1.01e+06	2.43e-03	C+	24 118.819	- 49 108.896	3d ⁶ 4s ²	b ³ G	4
400.16615	0.00005	400.166094	0.000023	4470	7.47e+05	1.79e-03	C+	17 550.181	- 42 532.741	3 <i>d</i> ⁷ (⁴ P)4 <i>s</i>	a ⁵ P	3

$$\varphi_{\nu}(n',n) = \frac{\gamma(n',n)/(2\pi)}{(\Delta\nu)^2 + (\gamma(n',n)/2)^2}$$

