Introduction to Computer Science

Sample Solution 04

Constructor University, Bremen, Germany

March 15, 2024

Question 1

For arbitrary sets A, B and C, recall that $A \subseteq (B \cup C)$ is equivalent to $\forall x. \ x \in A \implies x \in B \lor x \in C$. Present the following statement in logical form:

$$(A \cap B) \subset (A \setminus C)$$

Answer 1

 $\forall x. \ x \in (A \cap B) \implies x \in (A \setminus C)$ by definition of subset $\forall x. \ (x \in A \lor x \in B) \implies x \in (A \setminus C)$ by definition of set union $\forall x. \ (x \in A \lor x \in B) \implies (x \in A \land x \notin C)$ by definition of set difference [1 mark]

Question 2

Let A, B and C be arbitrary sets. Prove the following:

$$A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$$

Answer 2

Proof. Let x be an arbitrary element in the set $A \cup (B \cap C)$, we need to show that x is also an element of the set $(A \cup B) \cap (A \cup C)$. That $x \in A \cup (B \cap C)$ means that $x \in A$ or x $B \cap C$ by definition of set union. We proceed by case analysis:

Case I Let $x \in A$. It follows, from set union, that $x \in (A \cup B)$. Similarly, we have that $x \in (A \cup C)$ from set union. Thus, $x \in (A \cup B)$ and $x \in (A \cup C)$. Then, $x \in (A \cup B) \cap (A \cup C)$ follows from the definition of intersection.

Case II Let $x B \cap C$. Then, from set intersection, $x \in B$ and $x \in C$. Since $x \in B$ then $x \in A \cup B$ by definition of set union. Since also $x \in C$ then $x \in A \cup C$ by definition of set union. Thus, $x \in A \cup B$ and $x \in A \cup C$. That is, by definition of set intersection, $x \in (A \cup B) \cap (A \cup C)$

We have shown that $x \in (A \cup B) \cap (A \cup C)$ independently of whether $x \in A$ or $x \in B \cap C$. That is, $\forall x. \ x \in A \cup (B \cap C) \implies x \in (A \cup B) \cap (A \cup C)$, which is the same as $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ from definition of subset. [1 mark]

Question 3

Explain the meaning of the following statement:

$$\{n^2 \mid n \in \mathbb{N}\} \cap \{n^3 \mid n \in \mathbb{N}\} \neq \emptyset$$

Answer 3

The inequality expresses that the sets of squares and cubes of natural numbers are not disjoint (i.e., their intersection is not empty). The concrete meaning is:

There exist numbers that simultaneously are a square and a cube of some natural numbers.

By the way, this statement is *true*. As a case, consider 64 which is the square of $8 \in \mathbb{N}$ and the cube of $4 \in \mathbb{N}$, i.e., $64 \in \{n^2 \mid n \in \mathbb{N}\} \cap \{n^3 \mid n \in \mathbb{N}\}$ [1 mark]

Question 4

For each of the following relations, specify if the relation is:

- Reflexive, irreflexive or neither.
- Symmetric, antisymmetric or neither.
- Transitive or not.
- 1. $I_{\mathbb{N}} = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x = y\}.$
- 2. $L_{\mathbb{R}} = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x < y\}.$

Answer 4

1. $I_{\mathbb{N}}$ is the *identity* relation on the set of naturals.

This relation is *reflexive* since for all natural number $n \in \mathbb{N}$, we have that n is equal (identical) to itself (n = n) implying that $(n, n) \in I_{\mathbb{N}}$. $I_{\mathbb{N}}$ is *symmetric* since for all $(n, m) \in I_{\mathbb{N}}$ we have that n = m and then m = n (by commutativity) implying that $(m, n) \in I_{\mathbb{N}}$.

 $I_{\mathbb{N}}$ is transitive since for all $n,m,p\in\mathbb{N}$ with $(n,m)\in I_{\mathbb{N}}$ and $(m,p)\in I_{\mathbb{N}}$, we have that n=m and m=p. Then n=p because equal numbers to the same number are equal to one another. This means that $(n,p)\in I_{\mathbb{N}}$.

Observe that $I_{\mathbb{N}}$ is an *equivalence* relation because it is reflexive, symmetric and transitive.

[1 mark]

2. $L_{\mathbb{R}}$ is the *less than* relation on the set of real numbers.

 $L_{\mathbb{R}}$ is *irreflexive* since no real number is less that itself. That is, there is no $x \in \mathbb{R}$ with x < x.

 $L_{\mathbb{R}}$ is antisymmetric since for all $x,y \in \mathbb{R}$ either x < y or y < x but not both. This means that $(x,y) \in L_{\mathbb{R}}$ and $(y,x) \in L_{\mathbb{R}}$ is always false, which makes the implication $((x,y) \in L_{\mathbb{R}} \land (y,x) \in L_{\mathbb{R}}) \implies x = y$ always true.

 $L_{\mathbb{R}}$ is *transitive* since for all $x,y,z \in \mathbb{R}$ with $(x,y) \in I_{\mathbb{R}}$ and $(y,z) \in L_{\mathbb{R}}$, we have that x < y and y < z. It follows that x < z and then $(y,z) \in L_{\mathbb{R}}$.

Observe that $L_{\mathbb{R}}$ is asymmetric because is antysymmetric and irreflexive. In other words, for all $(x,y) \in L_{\mathbb{R}}$ we have that x < y, so it cannot be the case that y < x and, hence, $(y,x) \notin L_{\mathbb{R}}$

[1 mark]

Question 5

Consider the set \mathcal{P} of all persons of a certain family and the set $\mathcal{F} \subseteq \mathcal{P}$ of all female persons in this family. Suppose you are given also the relations,

- $-\mathcal{S} \subseteq \mathcal{P} \times \mathcal{P}$ where $(x,y) \in \mathcal{S}$ iff x is a son of y,
- $-\mathcal{D}\subseteq\mathcal{P}\times\mathcal{P}$ where $(x,y)\in\mathcal{D}$ iff x is a daughter of y and
- $-\mathcal{I}_{\mathcal{F}}\subseteq \mathcal{F}\times \mathcal{F}$ is the identity relation over females, i.e., for all $x,y\in \mathcal{F}$ we have $(x,y)\in \mathcal{I}_{\mathcal{F}}$ if x=y. For instance, if teresa and lulu are females, and martin is male then $(lulu,lulu)\in \mathcal{I}_{\mathcal{F}}$, but $(teresa,lulu)\not\in \mathcal{I}_{\mathcal{F}}$ and $(martin,martin)\not\in \mathcal{I}_{\mathcal{F}}$.

From these relations, new relations can be defined by means of the operations of intersection \cap , union \cup , difference \setminus , composition \circ and converse $(\cdot)^T$. Recall that the converse of a given relation $\mathcal{R} \subseteq \mathcal{X} \times \mathcal{Y}$ is the relation $\mathcal{R}^T \subseteq \mathcal{Y} \times \mathcal{X}$ resulting from switching the order of the elements. For instance, if $(teresa, lulu) \in \mathcal{D}$ then $(lulu, teresa) \in \mathcal{D}^T$.

- 1. Explain in words what the following relation stands for: $(S \cup D)^\mathsf{T} \circ \mathcal{I}_\mathcal{F}$
- Define (construct) the relation:
 Z ⊂ P × P where (x, y) ∈ Z iff x is a sister of y.

Answer 5

1. The relation is mother.

This relation starts from all females, i.e., $\mathcal{I}_{\mathcal{F}}$ composed with (followed by) their correspondent children. Note that the children of a person are obtained from the converse of the relation son or (union) daughter.

[1 mark]

2.
$$\mathcal{Z} = ((S \cup D)^T \circ D) \setminus \mathcal{I}_{\mathcal{F}}$$

We start from the relation daughter to reach the parents of a daughter. This is composed with (followed by) the children of the parent. Finally, we remove the identity over females since a person cannot be a sister of herself. For example, if $(teresa, lulu) \in \mathcal{D}$ and $(luis, lulu) \in \mathcal{S}$ then $(teresa, luis) \in (S \cup D)^T \circ D$ and $(teresa, teresa) \in (S \cup D)^T \circ D$. Moreover, $(teresa, luis) \in ((S \cup D)^T \circ D) \setminus \mathcal{I}_{\mathcal{F}}$ but $(teresa, teresa) \notin ((S \cup D)^T \circ D) \setminus \mathcal{I}_{\mathcal{F}}$. In other words, $(teresa, luis) \in \mathcal{Z}$ but $(teresa, teresa) \notin \mathcal{Z}$.

[1 mark]

Question 6

Inspired by set intersection, define a Haskell function intersect that given two lists, returns a list with the elements common to both lists without repetition. Define the function with the most general possible type.

For example:

intersect [2,4,8,16] [1,2,3,4,5,6]
$$\Rightarrow$$
 [2,4]

```
intersect [42,27,32] [1,2,3,4,5,6] \Longrightarrow [] intersect "Hello" Haskell" \Longrightarrow "Hel" intersect [True, True, True] [False, True, False, True] \Longrightarrow [True]
```

Answer 6

A recursive solution:

[3 marks]