# **Analyse der Codes**

## **Der gedruckte Code**

Die Codes bestehend aus einer Matrix aus kleinen Punkten, in dem Informationen in Form von gezielten Abweichungen von dem zugrunde liegenden Raster gespeichert werden.



#### **Der gerasterte Code**

Nach Einfärbung des Rasters wird die Struktur ersichtlich. Die roten Punkte bilden das gleichförmige Raster, welches zur Justierung dient. Sie umschließen jeweils neun Informationspunkte, welche hier als hellblau-weiß-Pärchen mit diagonalem Versatz dargestellt sind. Auf der linken Seite der Raster-Box gibt es in der Mitte eine Anomalie mit vertikalem Versatz, welche zur Identifizierung der Ausrichtung erforderlich ist.



Das Raster ist hier farblich in roten und blauen Punkten dargestellt. Die blauen Punkte dienen nur der Orientierung, wo eigentlich das Raster sein würde. Die weißen Punkte sind die eigentlichen Informationspunkte.

## **Die Struktur**

Damit ergibt sich in der Grundstruktur ein sich wiederholendes 4x4-Muster, welches folgenden Aufbau hat.

RP steht hierbei für einen Rasterpunkt und RA für die Raster-Ausrichtung (Raster-Anomalie). WP stehen für Werte-Punkte, die Information beinhalten.

| RP | RP              | RP              | RP              |  |  |
|----|-----------------|-----------------|-----------------|--|--|
| RP | WP <sub>P</sub> | WP <sub>7</sub> | WP <sub>6</sub> |  |  |
| RA | WP <sub>5</sub> | WP <sub>4</sub> | WP <sub>3</sub> |  |  |
| RP | WP <sub>2</sub> | WP <sub>1</sub> | WP <sub>0</sub> |  |  |

## **Die Punkte**

Jeder der im vorherigen Kapitel genannten Punkte (RP, RA, WP) besteht aus einem 16x16 Pixel-Matrix, die hier erläutert wird.

#### Der Rasterpunkt (RP)

Der Rasterpunkt sitzt zentrale in der Mitte der 16x16-Pixel-Matrix.



#### **Die Raster-Ausrichtung (RA)**

Dieser Punkt weicht als einziger von der Rastermitte vertikal ab und ist somit leicht zu identifizieren. Die Rastermitte ist weiterhin zum besseren Verständnis als Gitter eingezeichnet. Zu beachten ist, dass der Abstand genau eine halbe Blockgröße beträgt, was ebenfalls für diesen Punkt einzigartig ist.



#### **Der Wertepunkt**

Die Wertepunkte weihen vom Raster diagonal ab und können somit vier verschiedene Zustände einnehmen (rechts-unten, links-unten, links-oben, rechts-oben). In der angegeben Reihenfolge entspricht diese Kodierung den Werten 0, 1, 2 und 3.



## Noch ungeklärtes

Bei der Analyse der Codes zeigt sich die Wertigkeit der WPs in der Reihenfolge von linksoben nach rechts-unten (höchswertigen zum niedrigstwertigem).



Die sich daraus ergebende Folge von 2.0.2.2.2.3.0.3.3 liest sich binär als 10.00.10.10.10.11.11.

Mit dieser Vorgehensweise lassen sich alle Code-Beispiele erklären, allerdings erzeugt die Bitfolge regelmäßig eine Zahl, die um genau 4106 geringer ist, als der angegebene Code.

|       |   | E<br>2 |   |   |   |   |   |   |   | Bitfolge            | Code in Binärform<br>abzgl. Offset |
|-------|---|--------|---|---|---|---|---|---|---|---------------------|------------------------------------|
| 15065 | 2 | 0      | 2 | 2 | 2 | 3 | 0 | 3 | 3 | 0010.1010.1100.1111 | 0010.1010.1100.1111                |
| 15066 | 0 | 0      | 2 | 2 | 2 | 3 | 1 | 0 | 0 | 0010.1010.1101.0000 | 0010.1010.1101.0000                |
| 15067 | 1 | 0      | 2 | 2 | 2 | 3 | 1 | 0 | 1 | 0010.1010.1101.0001 | 0010.1010.1101.0001                |
| 15068 | 0 | 0      | 2 | 2 | 2 | 3 | 1 | 0 | 2 | 0010.1010.1101.0010 | 0010.1010.1101.0010                |
| 15069 | 1 | 0      | 2 | 2 | 2 | 3 | 1 | 0 | 3 | 0010.1010.1101.0011 | 0010.1010.1101.0011                |
| 15070 | 2 | 0      | 2 | 2 | 2 | 3 | 1 | 1 | 0 | 0010.1010.1101.0100 | 0010.1010.1101.0100                |
| 15071 | 3 | 0      | 2 | 2 | 2 | 3 | 1 | 1 | 1 | 0010.1010.1101.0101 | 0010.1010.1101.0101                |
| 15072 | 2 | 0      | 2 | 2 | 2 | 3 | 1 | 1 | 2 | 0010.1010.1101.0110 | 0010.1010.1101.0110                |

Des weiteren ist noch ungeklärt, wie sich die Parität (erste Spalte B2) berechnet. Einfache XOR und ADD Ansätze sind es jedenfalls nicht.