EXCEL COLLEGE OF ENGINEERING(AUTONOMOUS)

NH-544, Salem Main Road, Sankari West, Pallakkapalayam, Pin:637 303. Komarapalayam Namakkal Dt. Tamilnadu.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING.

WEB PHISHING DETECTION (ASSIGNMENT 2)

DATE : 06-11-2022

PROBLEM: PERFORM TASKS ACCORDINGLY

NAME : Bishal Bhandhari

OUTPUT:

SCREENSHOTS:

1.Download the Dataset

2.Load the dataset

```
In [1]: import numpy as np
  import pandas as pd
  import seaborn as sns
  import matplotlib.pyplot as plt
  import sklearn

Matplotlib is building the font cache; this may take a moment.

In [2]: data = pd.read_csv(r"C:\Users\hariharan\Downloads\(IBM-Assignment-2)\Churn_Modelling.csv")
```

3. Perform below visualizations

Univariate analysis

In [3]: sns.distplot(data['Age'])

D:\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be re moved in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[3]: <AxesSubplot:xlabel='Age', ylabel='Density'>

In [4]: sns.histplot(data['Age'])

Out[4]: <AxesSubplot:xlabel='Age', ylabel='Count'>

In [5]: sns.boxplot(data['Age'])

D:\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will r esult in an error or misinterpretation.
warnings.warn(

Out[5]: <AxesSubplot:xlabel='Age'>

Bi-Variate Analysis

In [6]: sns.lineplot(data['Age'],data['Tenure'])

D:\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. Fr om version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword wil 1 result in an error or misinterpretation.

warnings.warn(

Out[6]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

In [7]: sns.barplot(data['Age'],data['Tenure'])

D:\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. Fr om version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword wil 1 result in an error or misinterpretation.

warnings.warn(

Out[7]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

In [8]: sns.scatterplot(data['Age'],data['Tenure'])

D:\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. Fr om version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword wil 1 result in an error or misinterpretation.

warnings.warn(

Out[8]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

Multi-Variate Analysis

In [9]: sns.scatterplot(data['Age'],data['Tenure'], hue=data['IsActiveMember'])

D:\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. Fr om version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword wil 1 result in an error or misinterpretation.

warnings.warn(

Out[9]: <AxesSubplot:xlabel='Age', ylabel='Tenure'>

4.Perform the descriptive statistics on the dataset

In [11]: data.mean() C:\Users\hariharan\AppData\Local\Temp\ipykernel_4496\531903386.py:1: FutureWarning: Dropping of nuisance columns in DataFrame r eductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns b efore calling the reduction. data.mean() Out[11]: RowNumber 5.000500e+03 CustomerId 1.569094e+07 CreditScore 6.505288e+02 Age 3.892180e+01 Tenure 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01 dtype: float64 In [12]: data.median() C:\Users\hariharan\AppData\Local\Temp\ipykernel_4496\4184645713.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.median() Out[12]: RowNumber 5.000500e+03 CustomerId 1.569074e+07 CreditScore 6.520000e+02 3.700000e+01 Tenure 5.000000e+00 9.719854e+04 Balance NumOfProducts 1.000000e+00 HasCrCard 1.000000e+00 IsActiveMember 1.000000e+00 EstimatedSalary 1.001939e+05 Exited 0.0000000+00 dtype: float64

	RowNumber	Customerid	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Sala
0	1	15565701	Smith	850.0	France	Male	37.0	2.0	0.0	1.0	1.0	1.0	24924.9
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
3	4	15565779	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
4	5	15565796	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
***	122	100	122	***	528	(444)	100		(4.0)	(4.0)	100	1504	
9995	9996	15815628	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9996	9997	15815645	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9997	9998	15815656	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9998	9999	15815660	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
9999	10000	15815690	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na

5. Handle the missing values

```
In [14]: data.isnull().any()
Out[14]: RowNumber
          CustomerId
                               False
          Surname
CreditScore
                               False
                               False
          Geography
                               False
          Gender
                               False
          Tenure
Balance
NumOfProducts
                               False
                               False
                               False
          IsActiveMember
                               False
          EstimatedSalary
Exited
                               False
                               False
          dtype: bool
In [15]: data.isnull().sum()
Out[15]: RowNumber
          CustomerId
          Surname
CreditScore
                               0 0
          Geography
Gender
          Age
          Tenure
                               0
          Balance
           NumOfProducts
          HasCrCard
IsActiveMember
          EstimatedSalary
          Exited
          dtype: int64
```

There are no missing values

6. Find the outliers and replace the outliers

	RowNumber	Customerid	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary	Exited
1.6			10000010-1		3000	200 - 3	1000	245-51	7.10°0	202 Maria 1	-
0.1	1000.9	15591167.1	521.0	27.0	1.0	0.0	1.0	0.0	0.0	20273.58	0.0
data	.quantile(0.1,0.5])									
data		20 OC 00 AND	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary	Exited
data 0.1		20 OC 00 AND	CreditScore 521.0	- 5	Tenure	Balance 0.00		HasCrCard	IsActiveMember	Estimated Salary	Exited 0.0

7. Check for Categorical columns and perform encoding

In [19]:	from sklearn import preprocessing
In [20]:	<pre>le = preprocessing.LabelEncoder()</pre>
In [21]:	oneh = preprocessing.OneHotEncoder()
In [22]:	data['Age'] = le.fit_transform(data['Age'])
In [23]:	data.head()

Out[23]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary
	0	1	15634602	Hargrave	619	France	Female	24	2	0.00	1	1	1	101348.88
	1	2	15647311	Hill	608	Spain	Female	23	1	83807.86	1	0	1	112542.58
	2	3	15619304	Onio	502	France	Female	24	8	159660.80	3	1	0	113931.57
	3	4	15701354	Boni	699	France	Female	21	1	0.00	2	0	0	93826.63
	4	5	15737888	Mitchell	850	Spain	Female	25	2	125510.82	1	1	1	79084.10
	4													

8. Split the data into dependent and independent variables (X and Y)

<pre>In [24]: x = data.iloc[:,0:12]</pre>		
In [25]: x		

Out[25]:		RowNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember
	0	1	15634602	Hargrave	619	France	Female	24	2	0.00	1	1	1
	1	2	15647311	Hill	608	Spain	Female	23	1	83807.86	1	0	1
	2	3	15619304	Onio	502	France	Female	24	8	159660.80	3	1	0
	3	4	15701354	Boni	699	France	Female	21	1	0.00	2	0	0
	4	5	15737888	Mitchell	850	Spain	Female	25	2	125510.82	1	1	1
	245	No.	1.2	103	10.00	4.	1.11	225	325	223	123	822	822
	9995	9996	15606229	Obijiaku	771	France	Male	21	5	0.00	2	1	0
	9996	9997	15569892	Johnstone	516	France	Male	17	10	57369.61	1	1	9
	9997	9998	15584532	Liu	709	France	Female	18	7	0.00	1	0	1
	9998	9999	15682355	Sabbatini	772	Germany	Male	24	3	75075.31	2	1	0
	9999	10000	15628319	Walker	792	France	Female	10	4	130142.79	1	1	0

In [26]: y = data['Balance']
In [27]: y

5 ES

10000 rows x 12 columns

```
Out[27]: 0
                     0.00
                 83807.86
                159660.80
         2
         4
                125510.82
                  0.00
         9995
                 57369.61
         9996
         9998
                 75075.31
         9999
               130142.79
         Name: Balance, Length: 10000, dtype: float64
```

9. Scale the independent variables

10. Split the data into train and test

```
In [10]: from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0)
 In [11]: x_train
 Out[11]: array([[ 0.92889885],
                   [ 1.39655257],
[-0.4532777 ],
                    [-0.60119484],
                   [ 1.67853045],
[-0.78548505]])
In [12]: x_train.shape
Out[12]: (7000, 1)
In [13]: y_train
Out[13]: 7681
                  146193.60
           9031
                         0.00
           3691
                   160979.68
           202
                          0.00
           5625
                   143262.04
           9225
                   120074.97
           4859
                   114449.24
                   161274.05
           3264
           9845
                         0.00
                   108076.33
           2732
           Name: Balance, Length: 7000, dtype: float64
```