Chapitre 3 Suites (1) généralités

Table 3.1 – Objectifs. À fin de ce chapitre 3...

	Po	ur m'entraîı	ner <u></u>
Je dois connaître/savoir faire	6	•	Ö
Définir et calculer les termes d'une suite			
suites définies explicitement	1, 2	8, 9, 10	14, 15, 16
suites définies par récurrence	3,	11	12
représenter une suite		4, 5, 6	
résolution approchée d'équations par itération		37	
notion de limite $\lim_{n\to\infty} u_n$	7		
Justifier un sens de variation	·		
variation par différence de termes consécutifs	13, 17	18, 20	
variation par ratio de termes consécutifs	19	21	
Sommes de termes consécutifs			
la notation \sum	22		
notion de sommes télescopiques	23	25	26
connaitre $1 + 2 + + n = \frac{n(n+1)}{2}$		27	29
connaitre $1 + 2 + + n = \frac{n(n+1)}{2}$ connaitre $1 + x + + x^n = \frac{1 - x^{n+1}}{1 - x}$		28	20
Algorithmique avec Python	30	31, 32	
Modélisation à l'aide de suites			
justifier une expression	33, 34	35	36

3.1 Définitions

- Exemple 3.1 La suite des nombres entiers 0;1;2;3...
- La suite des nombres pairs $0; 2; 4; 6; \dots$
- La suite de Golomb (ou Silverman) : 1; 2; 2; 3; 3; 3; 4; 4; 4; 4; 5; 5; 5; 5; 5; . . .
- La suite *look-and-say* de Conway 1; 11; 21; 1211; 111221; 312211 . . .

Définition 3.1 Une suite numérique $(u_n)_{n\in\mathbb{N}}$ ou simplement (u_n) , est une fonction définie sur \mathbb{N} . Les antécédents n sont appelés les **rangs** (ou les indices) des termes.

Les images u(n) sont les **termes** de la suite et se notent aussi u_n (on lit « u indice n »).

On peut représenter une suite (u_n) par un nuage de points de coordonnées $(n; u_n)$, où $n \in \mathbb{N}$.

En général les suites (u_n) rencontrées au lycée sont définies :

— de manière explicite $u_n = f(n)$ par une expression en fonction de n:

3.2 Sens de variation d'une suite

Définition 3.2 Soit la suite $u = (u_n)_{n \in \mathbb{N}}$

u est **croissante** (à partir du rang N) si pour tout $n \ge N$ $u_{n+1} \ge u_n$.

u est **décroissante** (à partir du rang N) si : pour tout $n \ge N$ $u_{n+1} \le u_n$

Méthode n° 1 Si pour $n \ge N$ on a $u_{n+1} - u_n \ge 0$, la suite (u_n) est croissante! ¹

Méthode n° 2 valable uniquement pour une suite (u_n) a termes **strictement positifs**. Si pour tout $n \ge N$, le ratio $\frac{u_{n+1}}{u_n} \ge 1$, la suite u est croissante.

■ Exemple 3.2 Les méthodes sont montrés dans les exemples 3.8 et 3.9 avec $u_n = \frac{1}{3n+2}$

^{1.} La suite $v = (v_n)_{n \in \mathbb{N}}$ définie par $v_n = u_{n+1} - u_n$ est la suite dérivée de la suite (u_n) .

3.3 Notion intuitive de limite

Une suite u **converge vers** l si ses termes, à partir d'un certain rang, se rapprochent de l. On écrit $\lim_{n\to\infty}u_n=l$.

Une suite u diverge vers $+\infty$ si pour tout réel A, les termes dépassent A à partir d'un certain rang. On écrit $\lim_{n\to\infty}u_n=+\infty$.

Figure 3.2 – Exemples de suites avec de gauche à droite : $\lim_{n\to\infty}u_n=1$, une suite sans limites, et une suite divergente vers $+\infty$: $\lim_{n\to\infty}u_n=+\infty$

3.4 Sommes de termes consécutifs

■ Exemple 3.3 — Dans somme télescopique. les termes s'annulent de proche en proche :

$$\sum_{k=0}^{n-1} (a_{k+1} - a_k) = \sum_{k=1}^{n} (a_k - a_{k-1}) = (\cancel{g}(-a_0) + (\cancel{g}(-g_1)) + (a_3 - g_2) \dots + (a_n - g_{n-1}) = a_n - a_0$$

Proposition 3.1 — sommes particulières.

$$\sum_{i=1}^{n} 1 = 1 + 1 + \dots + 1 = n$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
Démonstration.
$$\sum_{i=1}^{n} [2i+1] = \sum_{i=1}^{n} [(i+1)^2 - i^2] = (2^2 - 1^2) + (3^2 - 2^2) + \dots + ((n+1)^2 - n^2)$$

Démonstration.
$$\sum_{i=1}^{n} [2i+1] = \sum_{i=1}^{n} [(i+1)^2 - i^2] = (2^2 - 1^2) + (3^2 - 2^2) + \dots + ((n+1)^2 - n^2)$$

$$2 \sum_{i=1}^{n} i + \sum_{i=1}^{n} 1 = (n+1)^2 - 1^2 = n^2 + 2n + 1 - 1 = n^2 + 2n$$

$$2 \sum_{i=1}^{n} i + n = n^2 + 2n$$

Proposition 3.2 Pour tout
$$n \neq 1$$
: $\sum_{i=0}^{n} x^{i} = 1 + x + x^{2} + x^{3} + \ldots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$

Démonstration. $(1 - x) \sum_{i=0}^{n} x^{i} = (1 - x) \left(1 + x + x^{2} + x^{3} + \ldots + x^{n} \right)$

$$= (1 - x) + (x - x^{2}) + (x^{2} - x^{3}) + \ldots + (x^{n} - x^{n+1}) = 1 - x^{n+1}$$

3.5 Exercices

3.5.1 Définitions de suites

- Exemple 3.4 Calculer les 4 premiers termes et le terme d'indice 100 des suites :
- (u_n) définie pour $n \ge 1$ par $u_n = n^2 1$.
- (v_n) définie pour $n \ge 0$ par $v_n = 2n 1$.

solution.			
terme d'indice n	domaine	les premiers 4 termes	terme d'indice 100
$u_n = n^2 - 1$	$n \geqslant 1$	$u_1 = (1)^2 - 1 = 0, u_2 = (2)^2 - 1 = 3,$ $u_3 = 7, u_4 = 15$	$u_{100} = 9999$
$v_n = 2n - 1$	$n \geqslant 0$	$v_0 = 2(0) - 1 = -1, v_1 = 2(1) - 1 = 1,$ $v_2 = 3, v_3 = 5$	$v_{100} = 199$

Exercice 1 Calculer les 4 premiers termes ainsi que le terme d'indice 100 des suites suivantes :

- 1. (a_n) définie pour $n \ge 1$ par $a_n = n 3$.
- 2. (b_n) définie pour $n \ge 0$ par $b_n = \frac{1}{2n+1}$.
- 3. (c_n) définie pour $n \ge 0$ par $c_n = 5^n$.
- 4. (d_n) définie pour $n \geqslant 1$ par $d_n = \frac{(-1)^n}{n^2}$.
- 5. (e_n) définie pour $n \ge 0$ par $d_n = 1 + (-1)^n$.
- 6. (f_n) définie pour $n \ge 0$ par $f_n = \frac{(-1)^{n+1}n}{n+1}$.
- Exemple 3.5 expression explicite à partir des premières valeurs.

1.
$$u_1 = \frac{1}{2}$$
, $u_2 = \frac{3}{4}$, $u_3 = \frac{5}{6}$, $v_4 = \frac{7}{8}$, ..., $u_n = ?$

2.
$$v_1 = -2$$
, $v_2 = 4$, $v_3 = -8$, $v_4 = 16$, $v_5 = -32, \ldots, v_n = ?$

solution. 1. Les termes de la suite sont des fractions. Les numérateurs sont des nombres impairs de la forme 2n+1 ou 2n-1. Les dénominateurs sont des nombres pairs de la forme 2n. On vérifie que la forme explicite pour $n \geqslant 1$: $u_n = \frac{2n-1}{2n}$ correspond.

2. On reconnait des puissances de 2, avec changement de signe.

On vérifie que la forme explicite pour $n \ge 1$: $v_n = (-1)^n 2^n$ correspond.

Exercice 2 Proposer une forme explicite générale du terme d'indice $n \ge 1$ d'une suite qui vérifie les premières valeurs données.

1.
$$a_1 = 2$$
, $a_2 = 4$, $a_3 = 6$, $a_4 = 8$, ..., $a_n = ?$

2.
$$b_1 = 1$$
, $b_2 = 3$, $b_3 = 5$, $b_4 = 7, \ldots, b_n = ?$

3.
$$c_1 = 2$$
, $c_2 = 4$, $c_3 = 8$, $c_4 = 16, \ldots, c_n = ?$

4.
$$d_1 = 1$$
, $d_2 = \frac{3}{4}$, $d_3 = \frac{5}{9}$, $d_4 = \frac{7}{16}$, $d_5 = \frac{9}{25}$, ..., $d_n = ?$

5.
$$e_1 = 5$$
, $e_2 = -25$, $e_3 = 125$, $e_4 = -625$, ..., $e_n = ?$

6.
$$f_1 = 3$$
, $f_2 = \frac{3}{10}$, $f_3 = \frac{3}{100}$, $f_4 = \frac{3}{1000}$, ..., $f_n = ?$

5

■ Exemple 3.6 Calculer les 5 premiers termes de (a_n) définie par $\begin{cases} a_1 = 1 \\ \text{pour tout } n \geqslant 2 \quad a_n = 3(a_{n-1} + 2) \end{cases}$

Démonstration.
$$a_1 = 1$$
 $a_2 = 3(1 + 2) = 9$
 $a_3 = 3(9 + 2) = 33$
 $a_4 = 3(33 + 2) = 105$
 $a_5 = 3(105 + 2) = 321$

Exercice 3 — suites définies par récurrence. Calculer les 4 premiers termes des suites suivantes :

1.
$$\begin{cases} a_{1} = -24 \\ \text{pour tout } n \geqslant 1 \ a_{n} = \frac{a_{n-1}}{6} \end{cases}$$
2.
$$\begin{cases} b_{1} = 1 \\ \text{pour tout } n \geqslant 1 \ b_{n} = \frac{1}{1 + b_{n-1}} \end{cases}$$
4.
$$\begin{cases} c_{1} = 1 \\ \text{pour tout } n \geqslant 2 \ c_{n} = 2c_{n-1} + 1 \\ d_{1} = 1 \quad d_{2} = 2 \\ \text{pour tout } n \geqslant 3 \ d_{n} = d_{n-1} + d_{n-2} \end{cases}$$

Exercice 4 — point calculatrice. pour calculer les 10 premiers termes et représenter chaque suite.

Dans l'exercice 4, quelles suites sont croissantes? décroissantes? non monotones?

Les **diagrammes colimaçons** ou **en escalier** sont aussi utilisés pour représenter les suites définies par une relation de récurrence du type $u_{n+1} = f(u_n)$. On commence par tracer la courbe \mathscr{C}_f : y = f(x) et la droite D: y = x.

■ Exemple 3.7 Représenter les 5 premiers termes des suites suivantes :

1. $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = -\frac{2}{3}u_n + 5$. 2. $u_0 = 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2}u_n + 2$.

Exercice 5 Représenter les 5 premiers termes des suites suivantes et conjecturez le sens de variation et l'existence d'une limite $\lim_{n\to\infty} u_n$.

1. $u_0 = 5$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = -\frac{4}{5}u_n + 6$. 3. $u_0 = 6$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{3}u_n + 2$.

5. $u_0 = 6$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{2}{3}u_n + 1$.

6. $u_0 = 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{5}{4}u_n + 1$.

Exercice 6 — point calculatrice. Tracer les diagrammes type colimaçon des suites et compléter :

1.
$$u_0 = 1$$
 et $u_{n+1} = 0.5u_n + 3$.

La suite (u_n) semble (A) croissante (B) décroissante (C) non monotone.

Lors n est très grand u_n semble se rapprocher de On dit que $\lim_{n\to\infty}u_n=\ldots$

2.
$$u_0 = \frac{1}{9}$$
 et $u_{n+1} = \frac{1}{2} \left(u_n + \frac{1}{u_n} \right)$

La suite (u_n) semble (A) croissante (B) décroissante (C) non monotone.

Lors n est très grand u_n semble se rapprocher de On dit que $\lim_{n\to\infty}u_n=\dots$

Exercice 7

À l'aide de la calculatrice, conjecturez la limite des suites (u_n) :

- 1. pour tout $n \ge 0$: $u_n = -3n + 5$
- **2.** pour tout $n \ge 0$: $u_n = \left(-\frac{2}{3}\right)^n + 5$
- 3. pour tout $n \ge 0$: $u_n = 1.5^n 100$
- 4. pour tout $n \ge 0$: $u_n = \frac{5n-2}{3n+1}$

- 5. pour tout $n \ge 0$: $u_{n+1} = 2u_n 6$, et $u_0 = 2$
- 6. pour tout $n \ge 0$: $u_{n+1} = 0.6u_n + 2$, et $u_0 = 1$
- 7. pour tout $n \ge 0$: $u_{n+1} = \frac{1}{u_n}$, et $u_0 = 5$ 8. pour tout $n \ge 0$: $u_{n+1} = \frac{-1}{3}u_n$, et $u_0 = 1$

Exercice 8

Soit la suite (u_n) définie pour $n \geqslant 1$ par $u_n = n^2 - n + 1$

- 1. Déterminer le rang n du terme tel que $u_n=133$.
- 2. La suite admet-elle un terme égal à 400? Justifier.

Exercice 9

Soit la suite (a_n) définie pour $n \geqslant 1$ par $a_n = \frac{1}{n(n+1)}$. Détermienr n tel que $a_n = \frac{1}{30}$.

Soit la suite (a_n) définie pour $n \geqslant 1$ par $a_n = \frac{3n-2}{3n+1}$

- 1. Determiner a_{10} .
- 2. Existe-t-il un terme tel que $a_n = \frac{98}{101}$? Justifier.
- 3. Montrer que pour tout $n \ge 0$: $0 < a_n < 1$
- 4. Déterminer les rangs n pour lesquels $\frac{1}{3} < a_n < \frac{2}{3}$

Exercice 11

Soit (u_n) tel que pour tout $n \ge 1$, $u_n = 2u_{n-1} - 5$ et $u_1 = 21$. Déterminer u_2 et u_0 .

Exercice 12

Soit (u_n) tel que pour tout $n \ge 0$, $u_{n+1} = -3u_n + k$ et $u_0 = k$. Exprimer u_1 et u_2 en fonction de k.

3.5.2 Exercices : sens de variation

Exercice 13

Dans chaque cas, pour $n \ge 1$, exprimer u_{n+1} et u_{n-1} en fonction de n:

1.
$$u_n = n + 3$$

2.
$$u_n = \frac{n+1}{n+4}$$

2.
$$u_n = \frac{n+1}{n+4}$$
 3. $u_n = 2^n - 5n$ 4. $u_n = n^2 + 1$

4.
$$u_n = n^2 + 1$$

Exercice 14

 (u_n) est définie pour $n \ge 0$ par $u_n = -2 - 7n$. Montrer que pour tout $n \ge 1$: $u_{n+1} = u_n - 7$.

Exercice 15

 (v_n) est définie pour $n \geqslant 0$ par $v_n = 3^{n+1} + 1$. Montrer que pour tout $n \geqslant 1$: $v_{n+1} = 3v_n - 2$.

Exercice 16

 (w_n) est définie pour $n \ge 1$ par $w_n = 2^n - 3^n$. Montrer que pour $n \ge 1$, $w_{n+2} = 5w_{n+1} - 6w_n$.

Exercice 17

Dans chaque cas, pour $n \ge 1$, exprimer u_{n+2} en fonction de n et/ou de u_n .

1.
$$u_{n+1} = 5u_n$$

$$| \mathbf{2.} \ u_{n+1} = 5u_n + 3 |$$

3.
$$u_{n+1} = nu_n$$

2.
$$u_{n+1} = 5u_n + 3$$
 3. $u_{n+1} = nu_n$ 4. $u_{n+1} = u_n + n + 1$

■ Exemple 3.8 — étude des variation. (u_n) et (v_n) définies pour $n \ge 0$ par $u_n = \frac{1}{3n+1}$ et $v_n = 0.3^n$.

Démonstration.
$$u_{n+1} - u_n = \frac{1}{3(n+1)+2} - \frac{1}{3n+1} = \frac{1}{3n+5} - \frac{1}{3n+1}$$
; $v_{n+1} - v_n = 0.3^{n+1} - 0.3^n$

$$= \frac{(3n+1)}{(3n+5)(3n+1)} - \frac{(3n+5)}{(3n+5)(3n+1)} = 0.3^n(0.3-1)$$

$$= \frac{-4}{(3n+5)(3n+1)}$$

Pour $n \ge 0$, $u_{n+1} - u_n < 0$ et $v_{n+1} - v_n < 0$. (u_n) et (v_n) sont décroissantes sur $n \ge 0$.

Etudier le signe de $u_{n+1}-u_n$ et déduire les variations des suites $(u_n)_{n\in\mathbb{N}}$ définies par :

1.
$$u_n = n^2 + 2n$$

$$\int 2. u_n = \frac{4}{n+1}$$

3.
$$u_n = -5^n$$

$$\left| \mathbf{2.} \ u_n = \frac{4}{n+1} \right| \left| \mathbf{3.} \ u_n = -5^n \right| \left| \mathbf{4.} \ u_n = 2^n - 3 \right|$$

■ Exemple 3.9 — étude du sens de variation d'une suite positive. (u_n) définie pour $n \geqslant 0$ par $u_n = \frac{1}{3n+1}$.

solution. On vérifie que pour tout n $u_n > 0$.

Solution. On Verifie que pour tout
$$n$$
 $u_n > 0$.
$$u_{n+1} = \frac{1}{3(n+1)+1} = \frac{1}{3n+4} \text{ on résout l'inéquation}: \qquad \frac{(3n+1)}{(3n+4)} > 1$$
 comparaison à 0
$$\frac{u_{n+1}}{u_n} = \frac{1}{3n+4} \div \frac{1}{3n+1}$$

$$= \frac{(3n+1)}{(3n+4)} - 1 > 0$$

$$= \frac{(3n+1)}{(3n+4)} > 0$$
 même dénominateur
$$\frac{-3}{(3n+4)} > 0$$
 Pas de solution $n \ge 0$. Donc pour $n \ge 0$, $\frac{u_{n+1}}{u_n} < 1$ et (u_n) est décroissante.

Exercice 19

Comparer $\frac{u_{n+1}}{u_n}$ avec 1 et déduire les variations des suites $(u_n)_{n\in\mathbb{N}}$. 1. $u_n=7\times0,5^n$ | 2. $u_n=4\times9^n$ | 3. $u_n=\frac{2}{3^n}$ | 4. $u_n=5\times\frac{2^n}{3^{n+1}}$

1.
$$u_n = 7 \times 0.5^n$$

2.
$$u_n = 4 \times 9^n$$

3.
$$u_n = \frac{2}{3^n}$$

4.
$$u_n = 5 \times \frac{2^n}{3^{n+1}}$$

Exercice 20

La suite (u_n) est définie pour tout $n \ge 0$ par $u_n = n^3 - 3n^2 - 24n$

- 1. Montrer que pour tout $n \ge 1$: $u_{n+1} u_n = 3n^2 3n 26$.
- 2. Déterminer les solutions dans \mathbb{N} de l'inéquation $3n^2-3n-26>0$.
- 3. En déduire que la suite est croissante à partir du rang N, ou N est un entier à préciser.

Exercice 21

La suite (u_n) est définie pour tout $n \ge 1$ par $u_n = \frac{1.01^n}{n}$

- 1. Montrer que pour tout $n \geqslant 1$: $\frac{u_{n+1}}{u_n} = \frac{1.01n}{n+1}$.
- 2. Déterminer les solutions dans \mathbb{N} de l'inéquation $\frac{1.01n}{n+1} > 1$.
- 3. En déduire que la suite est croissante à partir du rang N, ou N est un entier à préciser.

3.5.3 Exercices : sommes de termes consécutifs

Définition 3.3 — notation. Pour une suite (a_n) on écrit : $a_1 + a_2 + a_3 + \ldots + a_n = \sum_{i=1}^n a_i$

■ Exemple 3.10

1.
$$\sum_{k=1}^{5} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$

2.
$$\sum_{j=3}^{5} \frac{1}{j} = \frac{1}{3} + \frac{1}{4} + \frac{1}{5} = \frac{47}{60}$$

3.
$$\sum_{k=5}^{8} k = 5 + 6 + 7 + 8 = 26$$

4.
$$\sum_{i=1}^{6} 3 = 3 + 3 + 3 + 3 + 3 + 3 + 3 = 18$$

Écrire sans signe \sum les sommes suivantes et évaluer les.

1.
$$\sum_{k=3}^{6} (2k+3)$$
 | 3. $\sum_{i=1}^{8} (3i+1)$ | 5. $\sum_{i=1}^{5} [1+(-1)^{i}]$ | 7. $\sum_{j=1}^{3} j2^{j}$ | 8. $\sum_{k=1}^{4} (-1)^{k} x^{k-1}$

Définition 3.4 — Dans une somme télescopique. les termes s'annulent de proche en proche :

$$\sum_{k=0}^{n-1} (a_{k+1} - a_k) = \sum_{k=1}^{n} (a_k - a_{k-1}) = (g_1 - a_0) + (g_2 - g_1) + (a_3 - g_2) \dots + (a_n - g_{n-1}) = a_n - a_0$$

■ Exemple 3.11 Soit la suite (a_n) définie pour $n \ge 1$ par $a_n = \frac{1}{n} - \frac{1}{n+1}$.

$$a_{1} + a_{2} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) = 1 - \frac{1}{3}$$

$$a_{1} + a_{2} + a_{3} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) = 1 - \frac{1}{4}$$

$$\sum_{i=1}^{n} a_{i} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}$$

Exercice 23

Écrire les 3 premiers termes de la suite s_n puis déduire une forme simplifiée de s_n .

1. Pour
$$n \ge 1$$
, $a_n = \frac{1}{n+1} - \frac{1}{n+2}$ et $s_n = \sum_{i=1}^n a_i$ 3. Pour $n \ge 0$, $a_n = (-1)^n$ et $s_n = \sum_{i=0}^{2n} a_i$ 2. Pour $n \ge 0$, $a_n = \sqrt{n} - \sqrt{n+1}$ et $s_n = \sum_{i=1}^n a_i$ 4. Pour $n \ge 1$, $a_n = \frac{1}{2n-1} - \frac{1}{2n-1}$ et $s_n = \sum_{i=0}^n a_i$

2. Pour
$$n \ge 0$$
, $a_n = \sqrt{n} - \sqrt{n+1}$ et $s_n = \sum_{i=0}^{n+1} a_i$ 4. Pour $n \ge 1$, $a_n = \frac{1}{2n-1} - \frac{1}{2n+1}$ et $s_n = \sum_{i=1}^n a_i$

Exercice 24

Soit (u_n) la suite définie pour $n \geqslant 1$ par $u_n = \frac{1}{\sqrt{n+1} + \sqrt{n}}$

- 1. Montrer que pour tout $n \ge 1$, $\frac{1}{\sqrt{n+1}+\sqrt{n}} = \sqrt{n+1} \sqrt{n}$.
- 2. En déduire $\sum_{n=1}^{\infty} u_n$.

Exercice 25

Soit la suite (a_n) définie pour $n \ge 0$ par $a_n = 2n + 1$.

- 1. Montrer que pour tout n, $a_i = (i+1)^2 i^2$.
- **2.** En déduire que $\sum_{i=1}^{n} (2i+1) = n^2$.
- 3. Sans utiliser la calculatrice, déterminer $1+3+5+7+\ldots+99$.

3.5 Exercices 11

Exercice 26

Soit la suite (s_n) définie pour $n \geqslant 0$ par $s_n = 2n^3 - 3n^2 + n$.

1. Montrer que pour tout n, $s_{i+1} - s_i = 6i^2$.

2. En déduire que
$$\sum_{i=0}^{n-1} i^2 = \frac{n(n-1)(2n-1)}{6}$$
.

Exercice 27 — Nombres triangulaires.

 t_n désigne le nombre de boules à l'étape n du motif suivant :

- 1. Calculer les 5 premiers nombres triangulaires.
- 2. Donner une relation de récurrence vérifiée par la suite (t_n) .
- 3. Compléter pour $n\geqslant 1$ et simplifier l'expression de $t_n=\sum_{i=1}i$:

$$t_n = 1 + 2 + 3 + \dots + (n-1) + n$$
 $t_n = n + n - 1 + n - 2 + \dots + 2 + 1$
 $t_n + t_n = n + 1 + \dots + \dots + \dots + \dots + \dots$
 $2t_n = (n+1) \times \dots$
 $t_n = n + 1 + \dots + \dots + \dots$

4. Déterminer le rang n tel que $t_n = 90\ 100$.

Exercice 28

Compléter pour obtenir les sommes demandées.

$$(2-1)\sum_{i=0}^{10} 2^{i} = (2-1)\left(1+2+2^{2}+2^{3}+\ldots+2^{10}\right)$$

$$\sum_{i=0}^{10} 2^{i} = (2-1)+(2^{\cdots}-\ldots)+(2^{\cdots}-\ldots)+\ldots+(2^{\cdots}-\ldots)=2^{\cdots}-\ldots$$

$$(1-\frac{1}{3})\sum_{i=0}^{8} \frac{1}{3^{i}} = (1-\frac{1}{3})\left(1+\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots+\frac{1}{3^{8}}\right)$$

$$\frac{\ldots}{3}\sum_{i=0}^{8} \frac{1}{3^{i}} = \left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\ldots\right)+\left(\frac{1}{3^{\cdots}}-\ldots\right)+\ldots+\left(\frac{1}{3^{\cdots}}-\ldots\right)$$

$$\frac{\ldots}{3}\sum_{i=0}^{8} \frac{1}{3^{i}} = 1-\ldots$$

$$\sum_{i=0}^{8} \frac{1}{3^{i}} = \ldots$$

■ Exemple 3.12 Simplifier les sommes $A = \sum_{i=0}^{n} [5^i + 3i]$ et $B = \sum_{i=3}^{n+1} [0.1^i]$.

solution.
$$A = \sum_{i=0}^{n} [5^{i} + 3i] = \sum_{i=0}^{n} 5^{i} + 3\sum_{i=0}^{n} i \qquad B = \sum_{i=3}^{n+1} [0.1^{i}] = \sum_{i=0}^{n} [0.1^{i}] - \sum_{i=0}^{2} [0.1^{i}]$$

$$= 1 + 5 + 5^{2} + \dots 5^{n} + 3(0 + 1 + 2 + \dots + n) = (1 + 0.1 + 0.1^{2} + \dots + 0.1^{n+1}) - (1 + 0.1 + 0.1^{2})$$

$$= \frac{1 - 5^{n+1}}{1 - 5} + 3\frac{n(n+1)}{2} \qquad = \frac{1 - 0.1^{n+2}}{1 - 0.1} - 1.11$$

$$= \frac{1}{4}5^{n+1} - \frac{1}{4} + \frac{3}{2}n(n+1) \qquad = \frac{10}{9}(1 - 0.1^{n+2}) - 1.11$$

Exercice 29

Simplifier les sommes :

1.
$$i \ge 0$$
: $A = \sum_{i=0}^{n} [0.2^{i}]$
2. $i \ge 0$: $B = \sum_{i=0}^{n+1} [3^{i}]$
3. $i \ge 0$: $C = \sum_{i=0}^{n} [2^{i} - 1]$
4. $i \ge 0$: $D = \sum_{i=0}^{n+1} [4^{i} + 3i]$
5. $i \ge 5$: $E = \sum_{i=5}^{n} [8^{i}]$
6. $i \ge 1$: $F = \sum_{i=1}^{n} [3^{i} - 2i]$

3.5.4 Exercices : algorithmique

Exercice 30 — Rappels Python.

```
def u(n) :
                                              def factoriel(n):
     nbr = 0
                                                    nbr = 1
     for i in range(n) :
                                                   for i in range(1,n) :
       nbr = nbr + i
                                                         nbr = i*nbr
     return nbr
                                                     return nbr
1 def v(n):
                                              1 \operatorname{def} w(n) :
    nbr = 0
                                                   nbr = .....
     for i in range (1,n+1):
                                                  for i in ....:
       nbr = 2**i + nbr
                                                      nbr = \dots
     return nbr
                                                   return nbr
```

- 1. L'appel u(6) retourne 0 + ... +
- 2. L'appel factoriel (5) retourne $1 \times ... \times ...$
- 3. L'appel v(10) retourne : 0+.....
- 4. Complétez le script afin que l'appel w(100) retourne $\sum_{i=1}^{100} 4^n$.

Exercice 31

Le grand carré est d'aire 1. On note (u_n) la suites des aires des carrés grisés.

3.5 Exercices 13

```
1 def calcul():
2    nbr , u = ... , ...
3    for i in range(.....):
4        nbr = nbr + ...
5        u = ...
6    return nbr
```


- 1. Donner les 4 premiers termes de la suite (u_n) .
- 2. Donner une relation de récurrence vérifiée par la suite (u_n) .
- 3. Complétez le script Python pour que l'appel calcul() retourne $\sum_{i=1}^{10} u_i = u_1 + u_2 + \ldots + u_{10}$
- 4. Pour $n \ge 1$, simplifier $\sum_{i=1}^{n} \frac{1}{4^i}$.
- 5. Donner une valeur approchée de $\sum_{i=1}^{100} u_i$ et interprétez le résultat sur la figure.

Exercice 32

Le grand rectangle est d'aire 1. On note u_n les aires de la suite des rectangles grisés.

```
1 def calcul(n):
2    nbr , u = ... , ...
3    for i in range(.....):
4     nbr = nbr + ...
5     u = ...
6    return nbr
```


- 1. Donner les 4 premiers terme de la suite (u_n) .
- 2. Donner une relation de récurrence vérifiée par la suite (u_n) .
- 3. Complétez le script Python pour que l'appel calcul(n) retourne $\sum_{i=1}^n u_i = u_1 + u_2 + \ldots + u_n$
- 4. Pour $n \ge 1$, simplifier $\sum_{i=1}^{n} \frac{1}{3^i}$.
- 5. Donner une valeur approchée de $\sum_{i=1}^{100} u_i$ et interprétez le résultat sur la figure.

3.5.5 Exercices : modéliser à l'aide de suites

Exercice 33

Une ville compte 35 000 habitant en 2023. On prévoit que la population croit de 2% par an. On note P_n la population à l'année 2023 + n.

- 1. Justifier $P_0 = 35\,000$ et que pour tout $n \ge 0$, $P_{n+1} = 1{,}02P_n$
- 2. Utiliser la calculatrice pour déterminer la population prévue à l'année 2034.

Un élevage compte 5 000 poisson. La population s'accroit de 8% par mois, et à la fin d'un mois on prelève 300 poissons. On note P_n la population de poissons après n mois.

- 1. Justifier $P_0 = 5\,000$ et que pour tout $n \ge 0$, $P_{n+1} = 1{,}08P_n 300$
- 2. Utiliser la calculatrice pour déterminer la population de poissons après 1 an.

Exercice 35

Angélique emprunte $10000 \in$, et rembourse par mensualités de $200 \in$. Chaque mois, 0,5% d'intêrets s'ajoute au restant emprunté. Soit S_n la somme à rembourser au mois n.

- 1. Justifier $S_0 = 10000 \in \text{ et que pour tout } n \ge 0, A_{n+1} = 1,005A_n 200$
- 2. Utiliser la calculatrice pour déterminer le montant dû après 6 mois.

Exercice 36 — Problème de Josèphe.

En 67 apr. J-C, 41 soldats (dont Flavius Josèphe), cernés par des soldats romains, décident de se suicider au lieu de se rendre. Ils se mettent en **cercle**. Un premier soldat, choisi au hasard, exécute le soldat à sa gauche, puis passe l'épée au suivant, qui exécute à son tour le soldat à sa gauche... Où se placer pour être le seul survivant?

Soit n soldats en cercle, numérotés de 0 à n-1. Le soldat 0 exécute le soldat 1, donne l'épée à 2 qui exécute 3...La position du soldat survivant est u_n . On cherche u_{41} .

1. Complétez (à l'aide de figures) le tableau des premières valeurs de la suite (u_n) .

	•	•		0	-			_						(/		
n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
u_n	0	0	2													

- 2. On suppose que le nombre de soldats est 2n. n soldats sont éliminés au 1^{er} tour.
 - a) Si p est la position d'un soldat au second tour, quelle était sa position au premier?
 - b) Quelle est la position au second tour, du premier soldat exécuté?
 - c) En déduire une relation entre u_{2n} et u_n , et calculer u_{20} .
- 3. On suppose que le nombre de soldat est 2n + 1. Il reste n + 1 soldats au 2nd tour.
 - a) Montrer graphiquement que le rang du survivant est $1 + u_n$.
 - b) En déduire une relation entre u_{2n+1} et u_n , et calculer u_{41} .

3.5 Exercices 15

3.5.6 Exercices : résolution approchée d'équations cubiques par itération

Pour résoudre une équation par itération, nous allons écrire l'équation sous la forme x = f(x). On définit alors une suite (x_n) vérifiant la relation de récurrence $x_{n+1} = f(x_n)$. Avec un choix de valeur initiale x_0 adapté, on peut espérer que la suite se rapproche d'une solution de x = f(x).

Exemple 3.13 Résoudre par **itération** l'équation $x^3 - 10x = 30$, inconnue x

solution. Si
$$x^*$$
 vérifie $x^3 - 10x = 30$ Si x^* vérifie $x^3 = 10x + 30$
$$x^3 = 10x + 30$$

$$x^2 = 10 + \frac{30}{x}$$

$$x = \sqrt{10 + \frac{30}{x}}$$

Nous allons construire une suite de nombres (x_n) qui se rapproche de x^* :

$$x_{n+1} = \sqrt[3]{10x_n + 30} x_{n+1} = \sqrt{10 + \frac{30}{x_n}}$$

x_0	4	x_0	5	x_0	4	x_0	5
x_1	4.1212853	x_1	4.3088694	x_1	4.1833001	x_1	4.0
x_2	4.1449516	x_2	4.1810311	x_2	4.1438354	x_2	4.1833001
x_3		x_3		x_3		x_3	
x_4		x_4		x_4		x_4	
x_5		x_5		x_5		x_5	
x_6		x_6		x_6		x_6	
x_7		x_7		x_7		x_7	
x_8		x_8		x_8		x_8	
x_9		x_9		x_9		x_9	
x_{10}		x_{10}		x_{10}		x_{10}	

Il semble que pour n suffisamment grand x_n se stabilise dans les 4 cas $x_n \approx \dots$

On dit que la limite de la suite $(x_n)_{n\in\mathbb{N}}$ quand n tend vers $+\infty$ est $\lim_{n\to\infty} x_n = \dots$ $x^* \approx 4.150639$. On vérifie que $(4.150639)^3 - 10(4.150639) \approx \dots$

L'exercice 37 montre, selon l'équation à résoudre, différents comportements des itération choisies : convergence plus ou moins rapide, non convergence, effet de la valeur initiale

Exercice 37 Résoudre les équations suivantes par itération.

1.
$$x^3 + 2x = 40 \text{ sur } [3; 4]$$

Si
$$x^*$$
 vérifie $x^3 + 2x = 40$ Si x^* vérifie $x^3 = -2x + 40$
$$x^3 = -2x + 40$$

$$x = \sqrt[3]{-2x + 40}$$

$$x = \sqrt[3]{-2x + 40}$$

$$x = \sqrt{-2 + \frac{40}{x}}$$

$$x = \sqrt{-2 + \frac{40}{x}}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4 \text{ initiation}$$

$$x_0 = 3 \text{ ou } 4$$

2.
$$x^3 + 10x = 51 \text{ sur } [2; 3]$$

Si
$$x^*$$
 vérifie :

Si x^* vérifie :

$\int x_{n+}$	₁ =	relation	de récurrence	 ($x_{n+1} = \dots$	relat	ion de récurrence
$\int x_0 =$	$x_0 = 2$ ou 3 initiation		$\int x_0 = 2 \text{ ou } 3$		initiation		
x_0	2	x_0	3	x_0	2	x_0	3
x_1	3.141	x_1	2.758	x_1	3.937	x_1	2.645
x_7		x_6		x_5		x_{18}	
x_{11}		x_{10}		x_6		x_{19}	
x_{17}		x_{17}					

3.5 Exercices 17

3. $x^3 + 2x = 1 \text{ sur } [0; 1]$

Si x^* vérifie :

Si x^* vérifie :

$\int x_{n+}$	₁ =	relatio	n de récurrence	\int :	$x_{n+1} = \dots$	rela	ation de récurrence
$\int x_0 =$	$x_0 = 0$ ou 1 initiation		ion		$\int x_0 = 0 \text{ ou } 1$		tiation
x_0	0	x_0	1	x_0	0	x_0	1
x_1	1		-1	x_1	erreur!	x_1	
x_2		x_2				x_2	
x_{15}		x_{14}					
x_{16}		x_{15}					

4. $x^3 + 4x = 10 \text{ sur } [1; 2]$

Si x^* vérifie :

Si x^* vérifie :

$\int a$	$c_{n+1} = \dots$	$_{1} = \dots $ relation de récurrence				rela	ation de récurrence
	$x_0 = 1$ ou 2 initiation			$x_0 = 1$ ou 2	ini	tiation	
x	$_{0}$ 1	x_0	2	x_0	1	x_0	2
x	1.81712	x_1	1.2599	x_1	2.4494	x_1	1
x	12	x_{12}		x_2		x_2	
x	19	x_{20}		x_3			
x	24	x_{25}		x_4		x_5	

5.
$$x^3 + 10x = 25 \text{ sur } [1; 2]$$

Si x^* vérifie :

Si x^* vérifie :

$\int x_{n+}$	$x_{n+1} = \dots$ relation de récurrence		$\int S$	$\int x_{n+1} = \dots$		relation de récurrence		
$\int x_0 =$	$x_0 = 1$ ou 2 initiation		$\begin{cases} x_0 = 1 \text{ ou } 2 \end{cases}$		initiation		_	
x_0	1	x_0	2	x_0	1	x_0	2	
x_1	2.4662121	$ x_1 $	1.7099	x_1	3.8728	x_1	1.58113	
x_2		x_{100}		x_2		x_2		
x_{21}		x_{200}		x_3		x_4		
x_{22}		x_{350}		x_4		x_5		

6.
$$x^3 - 4x = 10 \text{ sur } [2; 3]$$

Si x^* vérifie :

Si x^* vérifie :

$\int x_{n+}$	₁ =	relatio	n de récurrence	$\int x_1$	$n+1 = \dots$	rela	tion de récurrence	
$\int x_0 =$	$x_0 = 2$ ou 3 initiation				$_{0} = 2 \text{ ou } 3$	initiation		
x_0	2	x_0	3	x_0	2	x_0	3	
x_1	2.627	x_1	2.802	x_1	3	x_1	2.708	
x_2		x_2		x_5		x_5		
x_5		x_5		x_{10}		x_{10}		
x_{10}		x_{10}		x_{12}		x_{12}		

3.6 Exercices : solutions et éléments de réponse

solution de l'exercice 1 . 1. $a_1 = -2$, $a_2 = -1$, $a_1 = \frac{2n+1}{n^2}$

$$a_3 = 0$$
, $a_4 = 1$,

2.
$$b_0 = 1$$
, $b_1 = \frac{1}{3}$, $b_2 = \frac{1}{5}$, $b_3 = \frac{1}{7}$,

3.
$$c_0 = 1$$
, $c_1 = 5$, $c_2 = 25$, $c_3 = 125$,

4.
$$d_1 = -1$$
, $d_2 = \frac{1}{4}$, $d_3 = -\frac{1}{9}$, $d_4 = \frac{1}{16}$,

5.
$$e_0 = 2$$
, $e_1 = 0$, $e_2 = 2$, $e_3 = 0$,

6.
$$f_0 = 0$$
, $f_1 = -\frac{1}{2}$, $f_2 = \frac{2}{3}$, $f_3 = -\frac{3}{4}$,

solution de l'exercice 2 . 1. $a_n = 2^n$

2.
$$b_n = 2n + 1$$

3.
$$c_n = 2n$$

5.
$$e_n = (-1)^{n+1} (5)^n$$

5.
$$e_n = (-1)^{n+1} (5)^n$$

6. $f_n = \frac{3}{10^{n-1}}$

solution de l'exercice 3 . 1. $a_1 = -24$, $a_2 = -4$,

$$a_3 = -\frac{2}{3}, \ a_4 = -\frac{1}{9},$$

2.
$$b_1 = 1$$
, $b_2 = \frac{1}{2}$, $b_3 = \frac{2}{3}$, $b_4 = \frac{3}{5}$

3.
$$c_1 = 1$$
, $c_2 = 3$, $c_3 = 7$, $c_4 = 15$,

4.
$$d_1 = 1$$
, $d_2 = 2$, $d_3 = 3$, $d_4 = 5$,

solution de l'exercice 4.

3. pour $n \ge 0$: $c_n = 4 - 2(-1)^n$

5. $e_1 = 2$, pour $n \ge 1$, $e_{n+1} = \frac{1}{e_n}$

2. pour $n \ge 1$: $b_n = \frac{12}{n}$

4. pour $n \ge 0$: $d_n = (-1)^n n^2 + n$

6. $n \ge 3$: $f_n = f_{n-1} - f_{n-2}$, et

solution de l'exemple 3.7. Représenter les 5 premiers termes des suites suivantes :

1) $u_0=1$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=-\frac{2}{3}u_n+5$. | 2) $u_0=0$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=\frac{1}{2}u_n+2$.

solution de l'exercice 5.

non monotone, $\lim_{n\to\infty} u_n =$

2) $u_0 = \frac{10}{3}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = -\frac{4}{5}u_n + 6$. 4) $u_0 = 3$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{3}u_n + 6$.

5) $u_0 = 6$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{2}{3}u_n + 1$. 6) $u_0 = 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{5}{4}u_n + 1$. strictement décroissante et $\lim_{n\to\infty} u_n = 3$

1) $u_0 = 5$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = -\frac{4}{5}u_n + 6$. 3) $u_0 = 6$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{3}u_n + 2$.

strictement décroissante et $\lim_{n\to\infty} u_n = 3$

strictement croissante et $\lim_{n\to\infty} u_n = +\infty$

21

solution de l'exercice 6.

1)
$$u_0 = 1$$
 et $u_{n+1} = 0.5u_n + 3$ croissante et $\lim_{n \to \infty} u_n = 6$

2)
$$u_0 = \frac{1}{9}$$
 et $u_{n+1} = \frac{1}{2} \left(u_n + \frac{1}{u_n} \right)$ décroissante $\lim_{n \to \infty} u_n = 1$

solution de l'exercice 7 . 1. $\lim_{n\to\infty} u_n = -\infty$.

$$2. \lim_{n\to\infty} u_n = 5$$

3.
$$\lim_{n\to\infty}u_n=\infty$$

$$4. \lim_{n\to\infty} u_n = -\frac{5}{3}$$

5.
$$\lim_{n\to\infty}u_n=-\infty$$

6.
$$\lim_{n \to \infty} u_n = 5$$

7. pas de limite, la suite alterne entre 5 et 0.2

$$8. \lim_{n\to\infty} u_n = 0$$

solution de l'exercice 8. 1. On cherche $n \in \mathbb{N}$ tel que $n^2 - n + 1 = 133$. Deux solutions possibles $n \in \{-11, 12\}$ La solution valable est n = 12.

2. On cherche $n \in \mathbb{N}$ tel que $n^2 - n + 1 = 133$. Deux solutions possibles $n \in \left\{\frac{1}{2} - \frac{\sqrt{1597}}{2}, \frac{1}{2} + \frac{\sqrt{1597}}{2}\right\}$ Aucune n'est un entier naturel.

solution de l'exercice 9.

solution de l'exercice 10 .

solution de l'exercice 11 . $u_0 = [13], u_1 = 21$ et $u_2 = 69$

solution de l'exercice 12 . $u_0 = k, u_1 = -2k$ et $u_2 = 7k$

solution de l'exercice 13 . 1. $u_n = n + 3$, $u_{n-1} = n + 2$ et $u_{n+1} = n + 4$

2.
$$u_n = \frac{n+1}{n+4}$$
, $u_{n-1} = \frac{n}{n+3}$ et $u_{n+1} = \frac{n+2}{n+5}$

3.
$$u_n = 2^n - 5n$$
, $u_{n-1} = 2^{n-1} - 5(n-1) = 2^{n-1} - 5n + 5$ et $u_{n+1} = 2^{n+1} - 5(n+1) = 2 \times 2^n - 5n - 5$

4.
$$u_n = n^2 + 1$$
, $u_{n-1} = (n-1)^2 + 1 = n^2 - 2n + 2$ et $u_{n+1} = n^2 + 2n + 2$

solution de l'exercice 14 .
$$u_n + 1 = -2 - 7(n+1) = -2 - 7n - 7 = u_n - 7$$

solution de l'exercice 15 .
$$v_{n+1} = 3^{n+2} + 1 = 3 \times 3^{n+1} + 1 = 3(v_n - 1) + 1 = 3v_n - 2$$

 $w_n = 2^n - 3^n$

solution de l'exercice 16.

$$w_{n+1} = 2^{n+1} - 3^{n+1} = 2 \times 2^n - 3 \times 3^n$$

$$w_{n+2} = 2^{n+2} - 3^{n+2} = 4 \times 2^n - 9 \times 3^n$$

$$5w_{n+1} - 6w_n = 5(2 \times 2^n - 3 \times 3^n) - 6(2^n - 3^n)$$

$$= (5 \times 2 - 6)2^n - (5 \times 3 - 6)3^n$$

$$= 4 \times 2^n - 9 \times 3^n = w_{n+2}$$

solution de l'exercice 17 . 1. $u_{n+1} = 5u_n$, $u_{n+2} = 5u_{n+1} = 5 \times 5u_n = 25u_n$

2.
$$u_{n+1} = 5u_n + 3$$
, $u_{n+2} = 5u_{n+1} + 3 = 5(5u_n + 3) + 3 = 25u_n + 18$

3.
$$u_{n+1} = nu_n$$
, $u_{n+2} = (n+1)u_{n+1} = (n+1)nu_n$

4.
$$u_{n+1} = u_n + n + 1$$
, $u_{n+2} = u_{n+1} + n + 2 = u_n + n + 1 + n + 2 = u_n + 2n + 3$

solution de l'exercice 18 . 1. $u_{n+1} - u_n = 2n + 3 > 0$, croissante.

2.
$$u_{n+1} - u_n = \frac{4}{n+2} - \frac{4}{n+1} = \frac{-4}{(n+1)(n+2)} < 0$$
, décroissante.

3.
$$u_{n+1} - u_n = -5^{n+1} + 5^n = 5^n(-5+1) = -4 \times 5^n < 0$$
, décroissante

4.
$$u_{n+1} - u_n = 2^{n+1} - 2^n = (2-1)2^n = 2^n > 0$$
, croissante.

solution de l'exercice 19 . 1. $\frac{u_{n+1}}{u_n}=\frac{7\times0.5^{n+1}}{7\times0.5^n}=0.5<1$, décroissante

2.
$$\frac{u_{n+1}}{u_n} = \frac{4 \times 9^{n+1}}{4 \times 9^n} = 9 > 1$$
, croissante.

3.
$$\frac{u_{n+1}}{u_n} = \frac{\frac{2}{3^{n+1}}}{\frac{2}{3^n}} = \frac{1}{3} < 1$$
, décroissante.

4.
$$\frac{u_{n+1}}{u_n} = \frac{5 \times \frac{2^{n+1}}{3^{n+2}}}{5 \times \frac{2^n}{3^{n+1}}} = \frac{2}{3} < 1$$
, décroissante

solution de l'exercice 20.1.

- **2.** Il faut $n < \frac{1}{2} \frac{\sqrt{321}}{6}$ ou $n > \frac{1}{2} + \frac{\sqrt{321}}{6}$. Comme $n \in \mathbb{N}$, il faut $n \ge 4$.
- 3. La suite est croissante pour $n \ge 4$.

solution de l'exercice 21.1.

2. $\frac{1.01n}{n+1} > 1$, on dresse un tableau de signe, et on trouve n < -1 ou n > 100.

$$\frac{1.01n}{n+1} - 1 > 0$$

$$\frac{0.01n - 1}{n + 1} > 0$$

3. La suite est croissante à partir du rang N=101.

solution de l'exercice 22.

1.
$$\sum_{k=3}^{6} (2k+3) = 48$$

$$2. \sum_{k=3}^{6} (10) = 40$$

3.
$$\sum_{i=1}^{8} (3i+1) = 80$$

4.
$$\sum_{i=1}^{8} (-1)^i = 0$$

5.
$$\sum_{i=1}^{5} [1 + (-1)^{i}] = 4$$

$$6. \sum_{i=0}^{4} \left(\frac{1}{2}\right)^i = \frac{31}{16}$$

7.
$$\sum_{j=1}^{3} j2^j = 34$$

8.
$$\sum_{k=1}^{4} (-1)^k x^{j-1} = x^3 - x^2 + x - 1$$

solution de l'exercice 23.

solution de l'exercice 25. 25

solution de l'exercice 28.

solution de l'exercice 29.

1.
$$\sum_{i=0}^{n} (0.2)^i = \frac{5}{4} - \frac{5^{-n}}{4}$$

2.
$$\sum_{i=0}^{n+1} [3^i] = \frac{9 \cdot 3^n}{2} - \frac{1}{2}$$

3.
$$\sum_{i=0}^{n} [2^{i} - 1] = 2^{n+1} - n - 2$$

4.
$$\sum_{i=0}^{n+1} [4^i + 3i] = \frac{16 \cdot 2^{2n}}{3} + \frac{3n^2}{2} + \frac{9n}{2} + \frac{8}{3}$$

5.
$$\sum_{i=5}^{n} [8^{i}] = \frac{8 \cdot 8^{n}}{7} - \frac{32768}{7}$$

6.
$$\sum_{i=1}^{n} [3^{i} - 2i] = \frac{3^{n+1}}{2} - n^{2} - n - \frac{3}{2}$$

solution de l'exercice 30.

solution de l'exercice 31.

1. les 4 premiers terme de la suite (u):

$$u_1 = \frac{1}{4} \dots u_2 = \frac{1}{8} \dots u_3 = \frac{1}{16} \dots u_4 = \frac{1}{32} \dots$$

- 2. relation de récurrence : $u_{n+1} = \frac{1}{4}u_n$
- 3. Complétez le script Python pour calculer

$$u_1 + u_2 + u_3 + \ldots + u_{10} =$$

1 def calcul():
2 nbr , u = 0 , 0.25
3 for i in range(11):
4 nbr = nbr + u
5 u = u/4
6 return nbr

- 4. $\sum_{i=1}^{n} \frac{1}{4^{i}} = \sum_{i=0}^{n} \frac{1}{4^{i}} 1 = \frac{1 \frac{1}{4^{n+1}}}{1 \frac{1}{4}} 1 = \frac{4}{3} \left(1 \frac{1}{4^{n+1}}\right) 1 = \frac{1}{3} \frac{1}{3} \frac{1}{4^{n}}$
- 5. $u_1 + u_2 + u_3 + \ldots + u_{100} \approx \frac{1}{3}$, la partie colorée de la figure est

bien le tiers du grand carré.

solution de l'exercice 32.

1. les 4 premiers terme de la suite (u):

$$u_1 = \frac{1}{3} \dots u_2 = \frac{1}{9} \dots u_3 = \frac{1}{27} \dots u_4 = \frac{1}{81} \dots$$

2. relation de récurrence : $u_{n+1} = \frac{1}{3}u_n$

3. Complétez le script Python pour calculer $u_1 + u_2 + \ldots + u_n$

```
1 def calcul(n):
2    nbr , u = 0 , 1/3
3    for i in range( n ):
4         nbr = nbr + u
5         u = u/3
6    return nbr
```


4. $\sum_{i=1}^{n} \frac{1}{3^{i}} = \sum_{i=0}^{n} \frac{1}{3^{i}} - 1 = \frac{1 - \frac{1}{3^{n+1}}}{1 - \frac{1}{3}} - 1 = \frac{3}{2} (1 - \frac{1}{3^{n+1}}) - 1 = \frac{1}{2} - \frac{1}{2} \frac{1}{3^{n}}$

5. $u_1 + u_2 + u_3 + \ldots + u_{100} \approx \frac{1}{2}$, la partie colorée correspond à la moitié du grand rectangle!

solution de l'exercice 33.30

solution de l'exercice 34.

solution de l'exercice 35.

solution de l'exercice 36 .

solution de l'exemple 3.13.

Si
$$x^*$$
 vérifie $x^3 - 10x = 30$

$$x^3 = 10x + 30$$

$$x = \sqrt[3]{10x + 30}$$

Si
$$x^*$$
 vérifie $x^3 = 10x + 30$

$$x^2 = 10 + \frac{30}{r}$$

$$x = \sqrt{10 + \frac{30}{x}}$$

Nous allons construire une suite de nombres (x_n) qui se rapproche de x^* :

$$x_{n+1} = \sqrt[3]{10x_n + 30} x_{n+1} = \sqrt{10 + \frac{30}{x_n}}$$

x_0	4	x_0	5	x_0	4	x_0	5
x_1	4.1212853	x_1	4.3088694	x_1	4.1833001	x_1	4.0
x_2	4.1449516	x_2	4.1810311	x_2	4.1438354	x_2	4.1833001
x_3	4.1495382	x_3	4.156511	x_3	4.1520681	x_3	4.1438354
x_4	4.1504259	x_4	4.1517747	x_4	4.1503391	x_4	4.1520681
x_5	4.1505977	x_5	4.1508586	x_5	4.1507017	x_5	4.1503391
x_6	4.1506309	x_6	4.1506814	x_6	4.1506257	x_6	4.1507017
x_7	4.1506373	x_7	4.1506471	x_7	4.1506416	x_7	4.1506257
x_8	4.1506386	x_8	4.1506405	x_8	4.1506383	x_8	4.1506416
x_9	4.1506388	x_9	4.1506392	x_9	4.150639	x_9	4.1506383
x_{10}	4.1506389	x_{10}	4.1506389	x_{10}	4.1506388	x_{10}	4.150639

Il semble que pour n suffisamment grand x_n se stabilise dans les 4 cas $x_n \approx 4.1506389$ On dit que la limite de la suite $(x_n)_{n\in\mathbb{N}}$ quand n tend vers $+\infty$ est $\lim_{n\to+\infty}x_n=4.1506389$

 $x^* \approx 4.1506389$. On peut vérifier que pour $(4.150639)^3 - 10(4.150639) \approx 30.00000562$,

solution de l'exercice 37.

1.
$$x^3 + 2x = 40 \text{ sur } [3; 4]$$

Si
$$x^*$$
 vérifie $x^3 + 2x = 40$

$$x^{3} = -2x + 40$$
$$x = \sqrt[3]{-2x + 40}$$

$$\begin{cases} x_{n+1} = \sqrt[3]{-2x_n + 40} & \text{relation de récurrence} \\ x_0 = 3 \text{ ou } 4 & \text{initiation} \end{cases}$$

Si
$$x^*$$
 vérifie $x^3 = -2x + 40$

$$x^{2} = -2 + \frac{40}{x}$$
$$x = \sqrt{-2 + \frac{40}{x}}$$

$$x = \sqrt{-2 + \frac{40}{x}}$$

$$\begin{cases} x_{n+1} = \sqrt{-2 + \frac{40}{x_n}} & \text{relation de récurrence} \\ x_0 = 3 \text{ ou } 4 & \text{initiation} \end{cases}$$

x_0	3	x_0	4	x_0	3	x_0	4
x_1	3.2396118	x_1	3.1748021	x_1	3.3665016	x_1	2.8284271
x_6	3.2252404	x_5	3.2252396	x_5	3.2427897	x_5	3.1725196
x_7	3.2252405	x_6	3.2252405	x_{10}	3.2239226	x_{10}	3.2292407
x_8	3.2252405	x_7	3.2252405	x_{15}	3.2253397	x_{15}	3.2249395

Le itérations $x_{n+1} = \sqrt[3]{-2x_n + 40}$ se rapprochent plus rapidement vers $x^* \approx 3.2252405$.

On vérifie que $(x^*)^3 + 2(x^*) \approx 40.0$.

2.
$$x^3 + 10x = 51 \text{ sur } [2; 3]$$

$$\begin{cases} x_{n+1} = \sqrt[3]{-10x_n + 51} & \text{relation de récurrence} \\ x_0 = 2 \text{ ou } 3 & \text{initiation} \end{cases} \qquad \begin{cases} x_{n+1} = \sqrt{-10 + \frac{51}{x}} & \text{relation de récurrence} \\ x_0 = 2 \text{ ou } 3 & \text{initiation} \end{cases}$$

$$\begin{vmatrix} x_0 & 2 & x_0 & 3 \\ x_1 & 3.141 & 3.1413807 & x_1 & 2.7589242 & x_1 & 3.366 & 3.9370039 & x_1 & 2.6457513 \\ x_7 & 2.8326853 & x_6 & 2.8319134 & x_5 & 5.6271826 & x_{18} & 5.2581959 \\ x_{11} & 2.8310726 & x_{10} & 2.8310495 & x_6 & \text{erreur} & x_{19} & \text{erreur} \\ x_{17} & 2.8310231 & x_{17} & 2.8310228 & & & & & & & \end{cases}$$

Les itérations $x_{n+1} = \sqrt{-10 + \frac{51}{x}}$ ne sont plus définies à partir d'un certain rang. Les itérations $x_{n+1} = \sqrt[3]{-10x_n + 51}$ semblent se rapprocher de $x^* \approx 2.8310228$.

On vérifie que $(x^*)^3 + 10(x^*) \approx 50.9999994$.

3.
$$x^3 + 2x = 1 \text{ sur } [0;1]$$

$$\begin{cases} x_{n+1} = \sqrt[3]{-2x_n + 1} & \text{relation de récurrence} \\ x_0 = 0 \text{ ou } 1 & \text{initiation} \end{cases} \qquad \begin{cases} x_{n+1} = \sqrt{-2 + \frac{1}{x}} & \text{relation de récurrence} \\ x_0 = 0 \text{ ou } 1 & \text{initiation} \end{cases}$$

$$\begin{vmatrix} x_0 & 0 & x_0 & 1 \\ x_1 & 1 & x_1 & -1 \\ x_2 & -1 & x_2 & 1.4422496 \\ x_{15} & 1.5240382 & x_{14} & 1.5240382 \\ x_{16} & -1.2699366 & x_{15} & -1.2699366 \end{vmatrix} \qquad \begin{cases} x_{n+1} = \sqrt{-2 + \frac{1}{x}} & \text{relation de récurrence} \\ x_0 = 0 \text{ ou } 1 & \text{initiation} \end{cases}$$

L'itération $x_{n+1} = \sqrt{-2 + \frac{1}{x}}$ n'aboutit ps. L'itération $x_{n+1} = \sqrt[3]{-2x_n + 1}$ fini par alterner entre deux valeurs 1.5240382 et -1.2699366. Aucune n'est solution : $(1.5240382)^3 + 2(1.5240382) \approx 6.5879484$ et $(-1.2699366)^3 + 2(-1.2699366) \approx -4.5879493$.

4. $x^3 + 4x = 10 \text{ sur } [1; 2]$

$\int x_{n+}$	$=\sqrt[3]{-4x_n+10}$ relation de récurrence				$x_{n+1} = \sqrt{-4 + \frac{10}{x}}$	rela	tion de récurrence
$\int x_0 =$	$x_0 = 1$ ou 2 initiation			$x_0 = 1$ ou 2	initi	ation	
x_0	1	x_0	2	x_0	1	x_0	2
x_1	1.8171206	$ x_1 $	1.259921	x_1	2.4494897	x_1	1.0
x_{12}	1.5563826	$ x_{12} $	1.5571653	x_2	0.2871985	x_2	2.4494897
x_{19}	1.5567792	$ x_{20} $	1.5567766	x_3	erreur	x_4	erreur
x_{24}	1.5567729	x_{25}	1.5567731	x_4	erreur	$ x_5 $	erreur

L'itération $x_{n+1}=\sqrt{-4+\frac{10}{x}}$ n'aboutit pas. L'itération $x_{n+1}=\sqrt[3]{-4x_n+10}$ se rapproche lentement de $x^*=1.5567732$. C'est une valeur approchée de la solution : $(1.5567732)^3+4(1.5567732)\approx 9.9999993$.

5. $x^3 + 10x = 25 \text{ sur } [1; 2]$

$$\begin{cases} x_{n+1} = \sqrt[3]{-10x_n + 25} & \text{relation de récurrence} \\ x_0 = 1 \text{ ou } 2 & \text{initiation} \end{cases} \begin{cases} x_{n+1} = \sqrt{-10 + \frac{25}{x}} & \text{relation de récurrence} \\ x_0 = 1 \text{ ou } 2 & \text{initiation} \end{cases}$$

x_0	1	x_0	2	x_0	1	x_0	2
x_1	2.4662121	x_1	1.7099759	x_1	3.8729833	x_1	1.5811388
x_2	0.6964988	x_{100}	1.8628514	x_2	erreur	x_2	2.4106822
x_{21}	3.618034	x_{200}	1.8584223	x_3		x_4	5.574185
x_{22}	-2.236068	x_{350}	1.85829	x_4		x_5	erreur

L'itération $x_{n+1} = \sqrt{-10 + \frac{25}{x}}$ n'aboutit pas. L'itération $x_{n+1} = \sqrt[3]{-10x_n + 25}$ alterne entre deux valeurs dans le cas $x_0 = 2$. Mais pour $x_0 = 3$ se rapproche très lentement de $x^* = 1.85829$. C'est une valeur approchée de la solution : $(1.85829)^3 + 10(1.85829) \approx 25.000025$.

6. $x^3 - 4x = 10 \text{ sur } [2; 3]$

$$\begin{cases} x_{n+1} = \sqrt[3]{4x_n + 10} & \text{relation de récurrence} \\ x_0 = 2 \text{ ou } 3 & \text{initiation} \end{cases} \begin{cases} x_{n+1} = \sqrt{4 + \frac{10}{x}} & \text{relation de récurrence} \\ x_0 = 2 \text{ ou } 3 & \text{initiation} \end{cases}$$

x_0	2	x_0	3	x_0	2	x_0	3
x_1	2.6207414	x_1	2.8020393	x_1	3.0	x_1	2.7080128
x_2	2.7360936	x_2	2.7680099	x_5	2.7615361	x_5	2.7606472
x_5	2.7606852	x_5	2.7608563	x_{10}	2.7608173	x_{10}	2.760818
x_{10}	2.7608178	x_{10}	2.7608177	x_{12}	2.7608178	x_{12}	2.7608178

Les itérations $x_{n+1} = \sqrt{4 + \frac{10}{x}} x_{n+1} = \sqrt[3]{4x_n + 10}$ se rapprochent de $x^* = 2.7608178$. C'est une valeur approchée de la solution : $(2.7608178)^3 - 4(2.7608178) \approx 9.99999994$.