ELG5255[EG]: Applied Machine Learning

Assignment 4

Decision Tree and Ensemble Methods

Group: 25

The report will go as follows: #) for steps to perform the intended tasks including screenshots of the code we used to tackle this question along with any description needed or relevant figures.

Part #1

Numerical Questions

Q1)

We calculate the Gini for each feature to choose the best split. Hence we calculate first the gini of leaves for each feature then the total gini.

In 1st iteration →

G total F1 = 0.416

 $G_{total_F2} = 0.444$

G total F3 = 0.475

G total F4 = **0.416**

As F1 and F4 have same gini coefficients, we choose F4 for simple split.

Iteration 1:

We can find there're more impurities in both leaves so both leaves need further split and hence we try gini with the remaining 3 features in both leaves.

Iteration 2:

In 2^{nd} iteration \rightarrow

Wind (F4)	Weak	Strong
G_total_F1	0.25	0.167
G_total_F2	0.333	0.333
G_total_F3	0.333	0.4167

Here we can observe that for weak wind the best subsequent split will be by the weather (F1) and same goes for the strong wind as they have the least total gini.

However, there still few impurities after this split so we need one more iteration for splitting.

Iteration 3:

Wind (F4) & Weather (F1)	Weak & cloudy	Strong & Sunny
G_total_F2	0.5	0
G_total_F3	0	0

For the weak wind and cloudy weather, we can see that F3 (Humidity) yields no impurities.

Also, for the strong wind and sunny weather, we can observe that both features yield no impurities.

We choose F3 for both splits and this is the final tree that we get.


```
5/10 /09 (5/0) -
                                 5/10/20 (5/1)
 H(T/ Weather) = 3/40(-3/3 log (3/3) - 1/4 log (3/5))
    3/10 (-3/3 /0 ) - 1/3 /09 (3/3)
    40 (- 3/4 log (3/4) - 3/4 log (3/4)) ~ 0.275+0.275+0.325
  H(T | Temp) = 4/10(-3/4 log (3/4) - 3/4 log (3/4)
     5/10 (-3/2 log (3/2) - 3/2 log (3/2))+
     /10 (-1/16g2 (1) - 9/ 10g2 (0)) = 0.4+0.485+
  H(T/Hum) = 7 (-3 /08 (3/) - 4/69 (4/))
            3 (-23 log (33) - 1/3 log (43)) =0.690
H(T/wind) = 4/6 (-3/69 (34) - 1/4/69 (34)
              5/10 (- 3/ log (3/6) - 4/6 log (4/6)
              ~ 0.325 + 0.551 ~ 0.876
IG(T) weather) = 1-0.875 = 0.125 7 n highest IG
IG(TITEMP) = 1-0.885 = 0.115
IG(T | Hum) = 1-0.965 = 0.035
IG(T/wind)=1-0-876=0.124
```

> cloudy

Temperature	Hamidity	wind	Hixing
Hot	High	weak	No
Hot	Normal	weak	Ye8
Mild	High	strong	Yes

 $H(T) = -\frac{3}{3} \log_2(\frac{3}{3}) - \frac{1}{3} \log_2(\frac{1}{3}) \approx 0.918$ $H(T|Temp) = \frac{3}{3} \left(-\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{2})\right) \approx 0.667$ $H(T|Hum) = \frac{3}{3} \left(-\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{2})\right) \approx 0.667$ $H(T|wind) = \frac{3}{3} \left(-\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{2})\right) \approx 0.667$ $IG(T|Temp) = IG(T|Hum) = IG(T|wind) = IG(T|wind) = \frac{3}{2} \left(-\frac{1}{2} \log_2(\frac{1}{2}) - \frac{1}{2} \log_2(\frac{1}{2})\right) \approx 0.667$

since all information gain are equal Then I will choose The first presictor (Temperature)

(3)

-> sunny

Terfestore	Hamssity	wind	Hiking	-
HOT	High	weak	Yes	
HOT	High	STrong	No	
Mild	Normal	s Trong	Ye8	

H(T) = -3/2 /03/2 (2/3) - 3/2 /2 /2 (3/3) = 0-918

H(THerp) = 3 (-1/2 log (1/2) - 1/2 log (1/2)) = 0-667

H(T/ Hurs) = 3/ - 1/2 log (1/2) - 1/2 log (1/2)) = 0.667

H(T/Wind)= 43 (-1/2 leg (1/2) - 1/2 leg (1/2)) =0.667

IG(T | Temp) - H(t | Hum) = H(T | wind) ~ 0.918-0.667~0.281

since all IG ove equal Then I'll choose The sixsT predictor (Terrerature) > Rainy

TonPorture Humilita

Temperature	Humility	wind	Hiking
Mild	High	STrong	No
mild	High	weak	Yes
cool	Norral	strong	No

H(T)=-1/3 log(1/3) - 2/3 log(2/3) ~ 0.918

H(T/top)= 3/3 (-1/2 log2 (1/2) - 1/2 log2 (1/2)) ~0.667

H(T/Hum) = 3/3 (-1/2 log2(2)-1/2 log2(1/2)) ~ 0.667

H(T)wind)= 3 (0- 2/ log(2))+ 1/3 (-1/ log(1)-0) = 0

IG (T/Temp) = IG(T/Hum) =0.251

IG(T/wind) = 0.918-0 = 0.918 >> WyhesT IG

Q3) [1]

	Gini Index	Information Gain
Advantages	Easy to implement	Helpful in exploratory
		analysis
	Computational non-	Sometimes
	extensive	Outperforms gini in
		data imbalance
		Better in exponential
		data distributions
Disasdvantage	Doesn't perform well	Computational
	at some conditions	extensive (Log)
		prefer splits that
		result in large
		number of partitions,
		each being small but
		pure.

Part #2

Programming Questions

Q4.1)

Train Data:

Test Data:

Decision Boundary:

The Accuracy = 0.6060606060606061

Q4.2) Code:

```
7 num estimator = [2,5,15,20]
8 + bsX = random.choices(trX, k = len(trX))
9 # bsY = random.choices(trY, k = len(trY))
10 # bsX, bsY = resample(trX, trY, random state=rs)
11 # print(bsX)
12 h = .02
13 x_min, x_max = teX[:, 0].min() - .5, teX[:, 0].max() + .5
14 y min, y max = teX[:, 1].min() - .5, teX[:, 1].max() + .5
15 xx, yy = np.meshgrid(np.arange(x min, x max, h), np.arange(y min, y max, h))
16 for i in num estimator:
       df prediction = pd.DataFrame()
17
18
       Z=pd.DataFrame()
19
       for n in range(i):
20
           idx = random.choices(range(len(trX)), k = len(trX))
21
           bsX=trX[idx]
           bsY=trY[idx]
22
           est = DecisionTreeClassifier(random state=rs)
23
           clf = est.fit(list(bsX), list(bsY))
24
25
           predY = clf.predict(teX)
           Z[str(n)] = clf.predict proba(np.c [xx.ravel(), yy.ravel()])[:, 1]
26
27
           df prediction['M'+str(n)] = predY
       df prediction['FinalPredict'] = df prediction.mode(axis=1)[0]
28
29
       Z['vote']=Z.mean(axis=1)
30
       dtAccuracy = accuracy score(teY, df prediction['FinalPredict'])
31
       print("The Accuracy = ",dtAccuracy)
32
33
       plotEstimator(trX, trY, teX, teY, est, 'Bagging'+str(i),np.array(Z['vote']))
```

2 Bags
The Accuracy = 0.6969696969697

The Accuracy = 0.71717171717171

<u>15 Bags</u> The Accuracy = 0.7070707070707071

20 BagsThe Accuracy = 0.74747474747475

Q5)

A single tree highly overfits the data. Using 't' trees ensures that each tree uses different sets of data and variables, where each tree yields to low bias and high variance. Hence, taking the average over all trees (ensembling: Bagging) or taking the most frequent prediction among the trees, each fitted to a subset of the original data set, we arrive to one bagged predictor, where the mean/most frequent prediction will be more stable and less overfit. [2]

The strength of bagging lies in the fact that it ensures that all trees are **different**. Since, joining several "weak learners" to provide a "strong learning" results in a smoother, and less wild variance in the model. [3]

Thus, the variance of the Random Forest (Bagging) is smaller compared to the variance of a single Decision Tree. [4]

So, in brief bagging overcomes overfitting by creating random subsets of the features and building smaller trees using those subsets.

References:

- [1] machine learning When should I use Gini Impurity as opposed to Information Gain (Entropy)? Data Science Stack Exchange
- [2] (8) How does bagging avoid overfitting in Random Forest classification? Quora
- [3] Why does "bagging" in machine learning decrease variance? (techopedia.com)
- [4] <u>Understanding the Effect of Bagging on Variance and Bias visually | by Dr. Robert Kübler | Towards Data Science</u>