EWMA para Controle Estatístico de Qualidade

Arquimedes Macedo

Contents

Introdução										 									 		1	
${\bf EWMA}$										 									 		1	
Referências										 									 		9)

Introdução

Durante o curso de CEQ, vimos, predominantemente, cartas de controle de Shewhart. Este, no entanto, usa estatísticas apenas da última amostra e ignoram a informação de amostras anteriores, o que a torna pouco sensível para detectar mudanças pequenas, $\leq 1.5\sigma$, no processo.

Para contornar essa limitação, existem duas alternativas principais: CUSUM e EWMA. Neste texto, vamos abordar a segunda.

EWMA

EWMA é a sigla para Exponential Weighted Moving Average, ou Média Móvel Exponencialmente Ponderada. A ideia é simples: ao invés de usar apenas a última amostra, vamos usar uma média ponderada de todas as amostras anteriores. A ponderação é exponencial, o que significa que amostras mais antigas têm menos peso que amostras mais recentes.

Matematicamente, a média EWMA é dada por:

$$z_i = \lambda x_i + (1 - \lambda) z_{i-1}$$

onde z_t é a média EWMA no instante t, x_t é a amostra no instante t e $\lambda \in (0,1]$ é o fator de suavização aplicado a partir da amostra i=1, sendo $z_0=\mu_0$.

Desta forma temos que, para o λ , quanto mais próximo de 1, mais peso é dado à amostra mais recente. Por outro lado, quanto mais próximo de 0, mais peso é dado às amostras antigas.

Uma vez que o EWMA é uma média ponderada de todas as amostras anteriores, ele é pouco sensível à suposição de normalidade dos dados. Isso o torna ideal para monitorar observações individuais.

Limites de controle

Se as observações x_i são variáveis aleatórias independentes, com variância σ^2 , então a variância da média EWMA é dada por:

$$\sigma_{z_i}^2 = \sigma^2 \left(\frac{\lambda}{2-\lambda}\right) \left[1 - (1-\lambda)^{2i}\right]$$

Desta forma, os limites de controle para o EWMA são dados por:

$$LC = \mu_0 \pm L\sigma \sqrt{\frac{\lambda}{2-\lambda} \left[1-\left(1-\lambda\right)^{2i}\right]}$$

onde L é o fator de multiplicação dos limites de controle, μ_0 é a média inicial, σ é o desvio padrão, λ é o fator de suavização e i é o número da amostra.

Exemplo

Vamos simular um processo com média $\mu=100$ e desvio padrão $\sigma=5$. Vamos monitorar o processo com um fator de suavização $\lambda=0.2$.

observacao	medida	ewma	LCS	LCI	$for a_de_controle$
1	9.45	9.945	10.270	9.730	FALSE
2	7.99	9.749	10.363	9.637	FALSE
3	9.29	9.704	10.424	9.576	FALSE
4	11.66	9.899	10.467	9.533	FALSE
5	12.16	10.125	10.500	9.500	FALSE
6	10.18	10.131	10.525	9.475	FALSE
7	8.04	9.922	10.544	9.456	FALSE
8	11.46	10.076	10.559	9.441	FALSE
9	9.20	9.988	10.571	9.429	FALSE
10	10.34	10.023	10.581	9.419	FALSE
11	9.03	9.924	10.588	9.412	FALSE
12	11.47	10.078	10.594	9.406	FALSE
13	10.51	10.122	10.599	9.401	FALSE
14	9.40	10.049	10.603	9.397	FALSE
15	10.08	10.053	10.606	9.394	FALSE
16	9.37	9.984	10.609	9.391	FALSE
17	10.62	10.048	10.611	9.389	FALSE
18	10.31	10.074	10.612	9.388	FALSE
19	8.52	9.919	10.614	9.386	FALSE
20	10.84	10.011	10.615	9.385	FALSE
21	10.90	10.100	10.616	9.384	FALSE
22	9.33	10.023	10.616	9.384	FALSE
23	12.29	10.249	10.617	9.383	FALSE
24	11.50	10.375	10.617	9.383	FALSE
25	10.60	10.397	10.618	9.382	FALSE
26	11.08	10.465	10.618	9.382	FALSE
27	10.38	10.457	10.618	9.382	FALSE
28	11.62	10.573	10.619	9.381	FALSE
29	11.31	10.647	10.619	9.381	TRUE
30	10.52	10.634	10.619	9.381	TRUE

Sobre o λ

O λ é um parâmetro importante no EWMA. Ele controla a sensibilidade do gráfico. Quanto mais próximo de 1, mais sensível o gráfico será a mudanças no processo. Por outro lado, quanto mais próximo de 0, menos sensível o gráfico será. Além disso, quando $\lambda=1$, teremos a carta de controle de Shewhart, pois a média EWMA será igual à média das amostras.

Para Montgomery, em geral, valores de λ entre 0.05 e 0.25 são recomendados. Valores menores que 0.05 são muito insensíveis a mudanças no processo, enquanto valores maiores que 0.25 são muito sensíveis a variações normais do processo.

Para atributos

O EWMA também pode ser usado para monitorar proporções. Neste caso, a estatística EWMA permanece a mesma:

$$z_i = \lambda x_i + (1 - \lambda) z_{i-1}$$

onde, agora, $x_i \sim Poi(l)$ é a contagem na amostra i, com $z_0 = \mu_0$ a taxa em controle. Já o limite de controle é dado por:

$$\begin{split} \text{LCS} &= \mu_0 + A_S \sqrt{\frac{\lambda \mu_0}{2 - \lambda} \left[1 - (1 - \lambda)^{2i} \right]} \\ \text{LCI} &= \mu_0 - A_I \sqrt{\frac{\lambda \mu_0}{2 - \lambda} \left[1 - (1 - \lambda)^{2i} \right]} \end{split}$$

onde A_S e A_I são os fatores de multiplicação para o limite superior e inferior, respectivamente. Muitas vezes, $A_S = A_I = A$.

Como preditor

Além de monitorar processos, o EWMA também pode ser usado para prever valores futuros. Desta forma, pode ser usada como base de um processo de controle dinâmico.

Ou seja, a média EWMA pode ser usada como preditor para o próximo valor do processo, sinalizando quando o processo irá sair de controle. Além disso, a diferença entre o valor observado e o valor objetivo pode ser usada para determinar o quanto deve ser ajustado.

Assim, o valor predito é dado por:

$$\hat{z}_i = z_{i-1} + \lambda_1 e_i + \lambda_2 \sum_{j=1}^i e_j + \lambda_3 \nabla e_i$$

onde, $e_i = x_i - z_{i-1}$ é o erro na previsão, $\nabla e_i = e_i - e_{i-1}$ é a primeira diferença entre os erros e λ_1 , λ_2 e λ_3 são os fatores de ponderação escolhidos tais que resultam na melhor performance do preditor.

EWMA vs CUSUM

De uma forma geral, o CUSUM possui mais poder que o EWMA para detectar mudanças pequenas no processo. No entanto, o EWMA é mais simples de implementar e interpretar.

No gráfico a seguir é mostrado o resultado da otimização por Monte Carlo dos parâmetros CUSUM e EWMA. Nota-se que o CUSUM é mais sensível às mudanças no processo.

Apesar disso, o ewma possui uma variabilidade menor que o CUSUM.

Fração de pontos fora de controle

Referências

• Montgomery, D. C. Introduction to Statistical Quality Control. 2013. John Wiley & Sons.