IP ADDRESSING

Prepared by Dr. Raheem Abdul Sahib UOT/Computer Sc. Dept

IP Addresses: Classful Addressing

Objectives

Understand IPv4 addresses and classes

- Identify the class of an IP address
- Find the network address given an IP address
- Understand masks and how to use them

INTRODUCTION

Introduction

- ❖ IP Address is Internet Protocol which is used to identified the HOST, NETWORK
- ❖IP Address is 32 Bit Logical Address
- ❖ IP Address is divided in four octet which is separated by DOT (.)
- An octet is a set of 8 bits . Eg 192.128.56.43

- IP Addressing is Logical Addressing
- It works on Network Layer (Layer 3)
- Two Version of Addressing Scheme
 - IP version 4 32 bit addressing
 - IP version 6 128 bit addressing

IP address is a 32-bit binary number that is unique for each device

IP address is converted to a decimal format to make them readable for the humans Within the network, the IP address is interpreted in a binary format consisting of 0 and 1

What is IP address?

- IP address An Internet Protocol address (IP address) is a numerical label assigned to each device connected to a computer network that uses the Internet Protocol for communication. An IP address serves two main functions: host or network interface identification and location addressing.
- An IP address is written in "dotted decimal" notation, which is 4 sets of numbers separated by period each set representing 8-bit number ranging from (0-255). An example of IPv4 address is 216.3.128.12
- An IP address is a unique identifier for every machine using the internet. Known as your "internet protocol address," this identifier is written as a string of numbers separated by periods.

IP Address →32 bits, Unique

Types OF IP Address

- IPv4 is a 32-Bit (4 bytes) IP Address.
- IPv6 is 128 Bit (16 Bytes) IP Address.

Addressing method.

- IPv4 is a numeric address, and its binary bits are separated by a dot (.)
- IPv6 is an alphanumeric address whose binary bits are separated by a colon (:)

IP version	IPv4	IPv6
Deployed	1981	1999
Address Size	32-bit number	128-bit number
Address Format	Dotted Decimal Notation: 192.0.2.76	Hexadecimal Notation: 2001:0DB8:0234:AB00: 0123:4567:8901:ABCD
Number of Addresses	232 = 4,294,967,296	2 ¹²⁸ = 340,282,366,920,938,463,463,374,607,431,768,211,456
Examples of Prefix Notation	192.0.2.0/24 10/8 (a "/8" block = 1/256 th of total IPv4 address space = 2 ²⁶ = 16,777,216 addresses)	2001:0DB8:0234::/48 2600:0000::/12

What is BIT?

Bit is a value that will represent 0's or 1's (i.e. Binary)

01010101000001011011111100000001

 32 bits are divided into 4 Octets known as Dotted Decimal Notation

First Octet Second Octet Third Octet Forth Octet 01010101. 00000101. 10111111. 00000001

IPv6 Address Format

 128-bit address is divided along 16-bit boundaries, and each 16-bit block is converted to a 4-digit hexadecimal number and separated by colons (:) (Colon-Hex Notation)

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210

How To Compute Byte Values -→IPv4

Taking Example for First Octet: Total 8 bits, Value will be 0's and 1's i.e. $2^8 = 256$ combination 2⁷ 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 2⁰ 0 0 0 0 $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 = 1$ **Total IP Address Range** 0 0 0 0 0 1 0 = 20.0.0.0 $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 = 3$ 0 0 1 0 to 255.255.255.255

TYPES OF CLASSES (ClassFull)

Total IP Addressing Scheme is divided into 5 Classes

- To identify the range of each class we will be using Priority Bit Concept
- Priority Bit is the left most bits in the First Octet
- CLASS A priority bit is
- CLASS B priority bit is 10
- CLASS C priority bit is 110
- CLASS D priority bit is 1110
- CLASS E priority bit is 1111

For Class A range reserved first bit in first octet, the value of that bit should not change.

Oxxxxxxx. xxxxxxxxx xxxxxxxxx xxxxxxxx

```
2<sup>7</sup> 2<sup>6</sup> 2<sup>5</sup> 2<sup>4</sup> 2<sup>3</sup> 2<sup>2</sup> 2<sup>1</sup> 2<sup>0</sup>
                    0
                                               Class A Range
   0 0
                0 0 0
                                            0.0.0.0
                0 0 1
   0 0
                                          127.255.255.255
            0 0 0 1
   0 0
                    1
                                                 Exception
                        0
                                          0.X.X.X and 127.X.X.X
                                           network are reserved
```


For Class B range reserved first two bit in first octet, the value of that bit should not change.

10xxxxxx. xxxxxxxxx xxxxxxxxx xxxxxxxxx

```
2<sup>7</sup> 2<sup>6</sup> 2<sup>5</sup> 2<sup>4</sup> 2<sup>3</sup> 2<sup>2</sup> 2<sup>1</sup> 2<sup>0</sup>
                   0 0
                                  0 = 128
         0 0 0 0 0
                                  1 =
                                           129
              0 0 0 1
1 0
                                  0 = 130
         0
              0 \quad 0 \quad 0 \quad 1 \quad 1 = 131
         0
                   0
                            0
         0
                                  0 = 132
```

Class B Range
128. 0 . 0 . 0
to
191.255.255.255

For Class C range reserved first three bit in first octet, the value of that bit should not change.

110xxxxx. xxxxxxxxx xxxxxxxx xxxxxxxxx

```
2<sup>7</sup> 2<sup>6</sup> 2<sup>5</sup> 2<sup>4</sup> 2<sup>3</sup> 2<sup>2</sup> 2<sup>1</sup> 2<sup>0</sup>
                  0 0 0
                                0 = 192
                  0 0 0
                                1 =
        0
             0
                                        193
                  0 0 1
        0
             0
                                0 = 194
                  0 \ 0 \ 1 \ 1 = 195
        0
             0
                           0
        0
                  0
                      1
                                0 = 196
```

Class C Range
192. 0 . 0 . 0
to
223.255.255.255

For Class D range reserved first four bit in first octet, the value of that bit should not change.

1110xxxx. xxxxxxxxx xxxxxxxx xxxxxxxxx

```
2<sup>7</sup> 2<sup>6</sup> 2<sup>5</sup> 2<sup>4</sup> 2<sup>3</sup> 2<sup>2</sup> 2<sup>1</sup> 2<sup>0</sup>
                     0
                           0 0
                                       0 = 224
                     0 \quad 0 \quad 0 \quad 1 = 225
                0
                     0 0 1
                                       0 = 226
                0
                     0 \quad 0 \quad 1 \quad 1 = 227
                0
                      0
                           1
                                       0 = 228
                                                 239
```

Class D Range
224. 0 . 0 . 0
to
239.255.255.255

For Class E range reserved first four bit in first octet, the value of that bit should not change.


```
2<sup>7</sup> 2<sup>6</sup> 2<sup>5</sup> 2<sup>4</sup> 2<sup>3</sup> 2<sup>2</sup> 2<sup>1</sup> 2<sup>0</sup>
                       0 0 0
                                         0 = 240
                       0 \ 0 \ 0 \ 1 = 241
                       0 0 1
                                         0 = 242
                       0 \quad 0 \quad 1 \quad 1 \quad = \quad 243
           1
                             1
                       0
                                         0 = 244
```

Class E Range
240. 0 . 0 . 0
to
255.255.255.255

CLASS OF IP ADDRESS

Classes, Range, Default Subnet Mask

Subnet Mask

- A subnet mask is another group of dotted decimal numbers, representing a binary number that distinguishes which part of the IP address re
- The default subnet mask for Class A IP address is 255.0. 0.0 which implies that Class A addressing can have 126 networks (2⁷-2) and 16777214 hosts (2²⁴-2)

SUBNET MASK IN IP ADDRESSING Class A Netwok Host Host Host Subnet Mask 255 0 0 0 Class B Netwok Network Host Host Subnet Mask 255 0 255 0 Class C Netwok Network Network Host 255 0 255 255

Ranges and Default Subnet Mask

Address Class	RANGE	Default Subnet Mask	
Α	1.0.0.0 to 126.255.255.255	255.0.0.0	
В	128.0.0.0 to 191.255.255.255	255.255.0.0	
С	192.0.0.0 to 223.255.255.255	255.255.255.0	
D	224.0.0.0 to 239.255.255.255	Reserved for Multicasting	
E	240.0.0.0 to 254.255.255.255	Experimental	

Note: Class A addresses 127.0.0.0 to 127.255.255.255 cannot be used and is reserved for loopback testing.

IP address is divided into Network & Host Portion

CLASS A is written as N.H.H.H

CLASS B is written as N.N.H.H

CLASS C is written as
 N.N.N.H

How Determine Net_ID and Host_TD

An example of a practical application

Class	Leading bits	Size of network number bit field	Size of rest bit field	Number of networks	Addresses per network	Total addresses in class	Start address	End addres
Class A	0	8	24	128 (2 ⁷)	16,777,216 (2 ²⁴)	2,147,483,648 (2 ³¹)	0.0.0.0	127.255.25
Class B	10	16	16	16,384 (2 ¹⁴)	65,536 (2 ¹⁶)	1,073,741,824 (2 ³⁰)	128.0.0.0	191.255.25
Class C	110	24	8	2,097,152 (2 ²¹)	256 (2 ⁸)	536,870,912 (2 ²⁹)	192.0.0.0	223.255.25
Class D (multicast)	1110	not defined	not defined	not defined	not defined	268,435,456 (2 ²⁸)	224.0.0.0	239.255.25
Class E (reserved)	1111	not defined	not defined	not defined	not defined	268,435,456 (2 ²⁸)	240.0.0.0	255.255.25

More details of Classes

Address Class	1st octet range (decimal)	1st octet bits (green bits don't change)	Network (N) and Host (H) parts of address	Default subnet mask (decimal and binary)	Numbers of possible networks and hosts per network	Notes and host address range**
A	1 - 127*	00000000 - 01111111	N.H.H.H	255.0.0.0 111111111.000000 00.000000000.0000 0000	128 nets (2^7) 16,777,214 hosts per net (2^24-2)	Commercial 1.0.0.1 - 126.255.255.254
В	128 - 191	10000000 - 10111111	N.N.H.H	255.255.0.0 111111111.111111 11.00000000.0000 0000	16,384 nets (2^14) 65,534 hosts per net (2^16-2)	Commercial 128.0.0.1 - 191.255.255.254
С	192 - 223	11000000 - 11011111	N.N.N.H	255.255.255.0 111111111111111 11.111111111.0000 0000	2,097,152 nets (2^21) 254 hosts per net (2^8-2)	Commercial 192.0.0.1 - 223.255.255.254
D	224- 239	11100000 - 11101111	Not for commerical use as a host			Multicast (reserved) 224.0.0.1 - 239.255.255.254
E	240 - 255	11110000 - 11111111	Not for commerical use as a host			Experimental (reserved) 240.0.0.1 - 255.255.255.255

Subnetting

Lecture No. 8

UOT / Computer Sci. Dept. (Iraq)
For

Branches: Security -3rd class and AI- 4th Class

Prepared by:

Asst. Prof.

Dr. Raheem Abdul Sahib Olga 110137@uotechnology.edu.iq Reference

Data Communications and Networking, 5th Edition

by Behrouz A. Forouzan (Author),2018

ISBN-13: 978-0073376226

ISBN-10: 0073376221

CONTENTS

- •REVIEW
- ·SUBNETTING
- SUPERNETTING
- CLASSLESS ADDRSSING

Review the Previous LectureNo. 7

IP Addressing, Class Full, Ranges

مراجعة المحاضرة السابقة رقم 7

Address Class	RANGE	Default Subnet Mask
Α	1.0.0.0 to 126.255.255.255	255.0.0.0
В	128.0.0.0 to 191.255.255.255	255.255.0.0
С	192.0.0.0 to 223.255.255.255	255.255.255.0
D	224.0.0.0 to 239.255.255.255	Reserved for Multicasting
E	240.0.0.0 to 254.255.255.255	Experimental

Note: Class A addresses 127.0.0.0 to 127.255.255.255 cannot be used and is reserved for loopback testing.

SUBNETTING عنونة الشبكات الفرعية

What is Subnetting?

As a basic definition, Subnetting is dividing the network into smaller network groups and by doing this, using the IP Address Block more efficient. For Subnetting, Subnet Masks are used. Subnets masks are 32 bit addresses like IP Addresses. Subnet Masks are used with IP Addresses

What is IP Subnetting?

IP Subnetting is a process of dividing a large IP network in smaller IP networks. In Subnetting we create multiple small manageable networks from a single large IP network.

Subnet

A subnet is a single small network created from a large network. In Subnetting we break a single large network in multiple small networks. These networks are known as subnets.

Subnet mask? Is it different from default mask? Yes

Subnet mask is a mask used to determine what subnet an IP address belongs to. An IP address has two components, the network address and the host address.

IP addresses are designed with two levels of hierarchy.

A network with two levels of hierarchy (not subnetted)

Addresses in a network with and without subnetting

IP addresses are designed with two level of hierarchy.

> Two levels of hierarchy is not enough

Solution: Subnetting

- ✓ A network is divided into several smaller networks
- ✓ Each smaller network is called a subnetwork or a subnet

Three Levels of Hierarchy

- > Three level
 - > Site, subnet, and host
- ➤ The routing of an IP datagram now involves three step
 - > Delivery to the site
 - > Delivery to the subnetwork
 - > Delivery to the host

Subnetting Levels

A network with three levels of hierarchy (subnetted)

Hierarchy concept in a telephone number

Default mask and subnet mask

Finding the Subnet Address

- Siven an IP address, we can find the *subnet address* in the same way as we found the *network address*.
- Apply the mask to the address:
- > Two ways: straight or short-cut

Straight Method

In the straight method, we use binary notation for both the address and the mask and then apply the AND operation to find the subnet address.

☐ Use binary notation for both the address and the mask

☐ Then apply the AND operation to find the subnet address

What is the subnetwork address if the destination address is 200.45.34.56 and the subnet mask is 255.255.240.0?

Solution

By using AND operation between them The subnetwork address is **200.45.32.0**.

Short-Cut Method

- ** If the byte in the mask is 255, copy the byte in the address.
- ** If the byte in the mask is 0, replace the byte in the address with 0.
- ** If the byte in the mask is neither 255 nor 0, we write the mask and the address in binary and apply the AND operation.

- ☐ If the byte in the mask is 255, copy the byte in the address
- \Box If the byte in the mask is 0, replace the byte in the address with 0
- ☐ If the byte in the mask is neither 255 nor 0, we write the mask and the address in binary and apply the AND operation

What is the subnetwork address if the destination address is 19.30.80.5 and the mask is 255.255.192.0?

Solution

See Next Figure

Example 2 Cont.

IP Address

Subnet Address

Comparison of a default mask and a subnet mask

Note

The number of subnets must be a power of 2.

```
انتباه
```

```
      2h
      (Ranges) الرنج (Ranges)

      256-X
      (increment)
      (Block)

      2n
      كيف تحسب عدد عنوانين السبكات

      3
      2h

      2b
      كيف تحسب عدد عنوانين المستخدمة الإجهزة داخل كل شبكة 2- 2h

      4
```

h: هي عدد البتات المخصصة لجزء الهوست عادة تكون قيمتها اصفار n: هي عدد البتات المستعارة من جزء عنوان الشبكة عادة تكون قيمتها واحدات X: هي قيمة البتات المستعارة مثلا تم استعارة ثلاث بتات _ كم قمتها؟

224=32+64+128

اذا ماهي قيمة البلوك في هذه الحالة: 224-256=32

An organization has purchased the Class C Address 195.5.20.0 and would to create networks of 50 hosts each.

```
IP: 195.5.20.0
Subnet Mask: 255.255.255.0
Hosts number = 50
First: Convert the number of networks to binary.
50 = 00110010
                     6 bits
Second: Reserve bits in subnet mask and find your increment.
11111111.1111111111.11111111.11000000
                                               2 bits
No. of the networks = 2^{\text{number of 1's}} = \frac{2^{2}}{4} Networks
No. of the hosts= 2^{\text{number of 0's}} - 2 \left[ \frac{2^{6} = 64 - (2)}{64 - (2)} \right] Hosts number
                                                                  6 bits
The increment value = 64
Bit Values in a Octet: 128 64 32 16 8 4
```

Lowest incrementing value

Cont...

Third: Use increment to find the network ranges

No	Subnet	First valid address	Last valid address	Broadcast Address
1	195.5.20.0	195.5.20.1	195.5.20.62	195.5.20.63
2	195.5.20.64	195.5.20.65	195.5.20.126	195.5.20.127
3	195.5.20.128	195.5.20.129	195.5.20.190	195.5.20.191
4	195.5.20.192	195.5.20.193	195.5.20.254	195.5.20.255

A company is granted the site address 201.70.64.0 (class C). The company needs six subnets. Design the subnets.

Solution

The number of 1s in the default mask is 24 (class C).

Solution (Continued)

The company needs six subnets. This number 6 is not a power of 2. The next number that is a power of 2 is 8 (2^3) . We need 3 more 1s in the subnet mask. The total number of 1s in the subnet mask is 27(24 + 3).

The total number of 0s is 5 (32 - 27). The mask is

Solution (Continued)

1111111 1111111 1111111 11100000 or

255.255.255.224

The number of subnets is 8.

The number of addresses in each subnet is 2⁵ (5 is the number of 0s) or 32.

See Next Figure

A company is granted the site address 181.56.0.0 (class B). The company needs 1000 subnets. Design the subnets.

Solution

The number of 1s in the default mask is 16 (class B).

Solution (Continued)

The company needs 1000 subnets. This number is not a power of 2. The next number that is a power of 2 is 1024 (2¹⁰). We need 10 more 1s in the subnet mask.

The total number of 1s in the subnet mask is 26(16 + 10).

The total number of 0s is 6(32-26).

Solution (Continued)

The mask is

<u>11111111 11111111 11111111 11000000</u>

or

255.255.255.192.

The number of subnets is 1024.

The number of addresses in each subnet is 2⁶ (6 is the number of 0s) or 64.

See Figure 5.9

