Online Bayes Alg.

The Online Bayes algorithm

Yoav Freund

January 15, 2018

Outline

Classical Bayesian Statistics

Combining experts in the log loss framework

Review: The online Bayes Algorithm Comparison to $\mathbf{Hedge}(\eta)$

Review: The performance bound Comparison to $Hedge(\eta)$

The Bayesian Generative Process

- Let Θ be a set of distributions over a space X. Example: a d dimensional Gaussian distribution over R^d . $\theta = (\vec{\mu}, \Sigma)$
- Let D be the prior distribution over ⊖
- ▶ **Selecting Model:** $\theta \in \Theta$ is chosen according to the prior **D**
- ▶ **Generating Data:** $x_1, x_2, ..., x_n$ are generated IID according to θ

The Bayes optimal prediction

► The **Posterior distribution**: the conditional probability of the model θ given the data x_1, x_2, \dots, x_n .

$$P(\theta|x_1,x_2,\ldots,x_n) = \frac{1}{Z}D(\theta)\prod_{i=1}^n P(x_i|\theta)$$

Posterior average: predict the distribution of a new example x_{n+1} with the conditional probability:

$$P(x_{n+1}|x_1,x_2,...,x_n) = \sum_{\theta \in \Theta} P(x_{n+1}|\theta)P(\theta|x_1,x_2,...,x_n)$$

In what sense is the posterior average optimal?

- It is the optimal perdiction if the data is generated according to the Bayesian generative process.
- What if the data is not generated by any of the models?
- Classical analysis cannot be used.
- We will show a tight bound on the regret!.

The log-loss framework

- Algorithm A predicts a sequence $c^1, c^2, ..., c^T$ over alphabet $\Sigma = \{1, 2, ..., k\}$
- ► The prediction for the c^t th is a distribution over Σ: $\mathbf{p}_A^t = \langle \mathbf{p}_A^t(1), \mathbf{p}_A^t(2), \dots, \mathbf{p}_A^t(k) \rangle$
- ▶ When c^t is revealed, the loss we suffer is $-\log p_A^t(c^t)$
- ► The cumulative log loss, which we wish to minimize, is $L_A^T = -\sum_{t=1}^T \log p_A^t(c^t)$
- ► $\lceil L_A^T \rceil$ is the code length if *A* is combined with arithmetic coding.

The game

- Prediction algorithm A has access to N experts.
- ▶ The following is repeated for t = 1, ..., T
 - **Experts generate predictive distributions:** $\mathbf{p}_1^t, \dots, \mathbf{p}_N^t$
 - Algorithm generates its own prediction p^t_A
 - c^t is revealed.
- Goal: minimize regret:

$$-\sum_{t=1}^{T} \log p_{\mathcal{A}}^{t}(c^{t}) + \min_{i=1,\dots,N} \left(-\sum_{t=1}^{T} \log p_{i}^{t}(c^{t}) \right)$$

The online Bayes Algorithm

► Total loss of expert i

$$L_i^t = -\sum_{i=1}^t \log p_i^s(c^s); \quad L_i^0 = 0$$

► Weight of expert i

$$w_i^t = w_i^1 e^{-L_i^{t-1}} = w_i^1 \prod_{i=1}^{t-1} p_i^s(c^s)$$

Freedom to choose initial weights.

$$w_t^1 > 0$$
, $\sum_{i=1}^n w_i^1 = 1$

► Prediction of algorithm A

$$\mathbf{p}_{A}^{t} = \frac{\sum_{i=1}^{N} w_{i}^{t} \mathbf{p}_{i}^{t}}{\sum_{i=1}^{N} w_{i}^{t}}$$

Comparison to $Hedge(\eta)$

The **Hedge**(η)Algorithm

Consider action *i* at time *t*

▶ Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$w_i^t = w_i^1 e^{-\eta L_i^t}$$

Note freedom to choose initial weight $(w_i^1) \sum_{i=1}^n w_i^1 = 1$.

- ▶ $\eta > 0$ is the learning rate parameter. Halving: $\eta \to \infty$
- Probability:

$$\rho_i^t = \frac{w_i^t}{\sum_{j=1}^N w_i^t}, \quad \mathbf{p}^t = \frac{\mathbf{w}^t}{\sum_{j=1}^N w_i^t}$$

Cumulative loss vs. Final total weight

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$
$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

$$-\log W^{T+1} = -\log \frac{W^{T+1}}{W^1} = -\sum_{t=1}^{T} \log p_A^t(c^t) = L_A^T$$

EQUALITY not bound!

Simple Bound

- ▶ Use uniform initial weights $w_i^1 = 1/N$
- Total Weight is at least the weight of the best expert.

$$L_{A}^{T} = -\log W^{T+1} = -\log \sum_{i=1}^{N} w_{i}^{T+1}$$

$$= -\log \sum_{i=1}^{N} \frac{1}{N} e^{-L_{i}^{T}} = \log N - \log \sum_{i=1}^{N} e^{-L_{i}^{T}}$$

$$\leq \log N - \log \max_{i} e^{-L_{i}^{T}} = \log N + \min_{i} L_{i}^{T}$$

▶ Dividing by T we get $\frac{L_{T}^{T}}{T} = \min_{i} \frac{L_{T}^{T}}{T} + \frac{\log N}{T}$

Regret bound for **Hedge**(η)

- ▶ Tuning η as a function of T (uniform prior).
- ▶ trivially $\min_i L_i \leq T$, yielding

$$L_{\mathsf{Hedge}(\eta)} \leq \min_{i} L_{i} + \sqrt{2T \ln N} + \ln N$$

per iteration we get:

$$\frac{L_{\mathsf{Hedge}(\eta)}}{T} \leq \min_{i} \frac{L_{i}}{T} + \sqrt{\frac{2 \ln N}{T}} + \frac{\ln N}{T}$$

Compare to regret bund for Bayes Algorithm:

$$\frac{L_A^T}{T} = \min_i \frac{L_i^T}{T} + \frac{\log N}{T}$$