Theoretical Methods in Chemistry

Problem Class 2: Autumn 2004

Tutors Sheet

nicholas.harrison@imperial.ac.uk

- Knowledge of the derivatives of a well behaved function at a point is enough to define the function over all space !! through a polynomial expansion.
- The Maclaurin expansion about x=0 is;

$$f(x) = f(0) + \frac{df}{dx}\bigg|_{x=0} x + \frac{1}{2!} \frac{d^2 f}{dx^2}\bigg|_{x=0} x^2 + \frac{1}{3!} \frac{d^3 f}{dx^3}\bigg|_{x=0} x^3 + \dots$$

• The Taylor expansion about x=a is;

$$f(x) = f(a) + \frac{df}{dx}\Big|_{x=a} (x-a) + \frac{1}{2!} \frac{d^2 f}{dx^2}\Big|_{x=a} (x-a)^2 + \frac{1}{3!} \frac{d^3 f}{dx^3}\Big|_{x=a} (x-a)^3 + \dots$$

1. Make a Maclaurin expansion of e^x .

Note:

The exponential function is *defined* such that $\frac{de^x}{dx} = e^x$.

How many terms are required to compute e^2 to 3 decimal places, 4 d.p. and 5 d.p. ? Sketch e^x and these polynomial approximations to it.

Make a Taylor expansion about x=1, using this expansion how many terms are required to compute e^2 to 5 d.p. ?

Tutors Note:

Straightforward ©

2. The potential energy of interaction between the H-atoms in the hydrogen molecule can be approximated by the Morse form;

$$E(r) = D_e \{1 - e^{-\alpha(r-a)}\}^2$$

with, D_e =4.79eV, a = 0.074 nm and α =19.3 nm⁻¹

Sketch this potential energy surface – mark D_{e} on your sketch, what role do a and α play ?

Calculate $\frac{dE}{dr}$ and find the equilibrium bond length of H₂.

What value does E(r) approach far from equilibrium? what do you deduce from this about the binding energy of H_2 ?

Tutor Note:

$$\frac{dE}{dr} = 2\alpha D_e \left(1 - e^{-\alpha(r-a)} \right)$$

At equilibrium;

$$2\alpha D_e \left(1 - e^{-\alpha(r-a)}\right) = 0$$
$$\left(1 - e^{-\alpha(r-a)}\right) = 0$$
$$e^{-\alpha(r-a)} = 1$$
$$\alpha(r-a) = 0$$
$$r = a$$

So a is the equilibrium bond length, $1/\alpha$ is a measure of the length scale on which the potential decays to 0 with distance (prove it?). D_e is the binding energy if one ignores zero point vibration.

The sketch should look like; (E(r) eV: r (nm))

3. Compute $\frac{d^2E}{dr^2}$ make a Taylor expansion of E(r) about r=a and thus show that near equilibrium (r \approx a) the Morse potential is harmonic with force constant k = $m\omega^2 = 2D_e\alpha^2$. Add this harmonic approximation to your sketch.

Tutor Note:

$$\frac{d^2E}{dr^2} = \frac{d}{dr} \left(2\alpha D_e \left(1 - e^{-\alpha(r-a)} \right) \right) = 2\alpha^2 D_e e^{-\alpha(r-a)}$$

Taylor expansion about r=a,

Note:

$$E(r)|_{r=a} = D_e \{1 - e^{-\alpha(r-a)}\}^2 \Big|_{r=a} = D_e \{1 - 1\}^2 = 0$$

$$\frac{dE}{dr}\bigg|_{r=a} = 2\alpha D_e \Big(1 - e^{-\alpha(r-a)}\Big)\bigg|_{r=a} = 2\alpha D_e \Big(1 - e^{-\alpha(r-a)}\Big) = 2\alpha D_e (1-1) = 0$$

as expected for the minimum, and,

$$\left. \frac{d^2 E}{dr^2} \right|_{r=a} = 2\alpha^2 D_e e^{-\alpha(r-a)} \Big|_{r=a} = 2\alpha^2 D_e$$

Thus the Taylor expansion to second order is;

$$E(r) = E(a) + \frac{dE}{dr} \Big|_{r=a} (r-a) + \frac{1}{2} \frac{d^2 E}{dr^2} \Big|_{r=a} (r-a)^2$$

$$= 0 + 0 + \alpha^2 D_e (r-a)^2$$

$$= \alpha^2 D_e (r-a)^2$$

Comparing this to the harmonic oscillator of form $E=1/2 k(r-a)^2$ it is an harmonic potential with spring constant $2D_e\alpha^2$ as required (this harmonic potential is indicated on the plot above).

4. The energy of the lowest vibrational mode of H_2 is approximately $\frac{1}{2}\hbar\omega$ Find the energy of the lowest vibrational mode and use it to estimate the dissociation energy of H₂.

Note:

The mass of a proton = 1.672×10^{-27} kg The electronic charge is: 1.602×10^{-19} C h-bar (h/2pi) is: 6.6×10^{-16} eVs

Tutor Note:

As stated in the question $k = m\omega^2 = 2D_e\alpha^2$. The mass used should be the reduced mass of H₂ ie: $m_p m_p / (m_p + m_p) = m_p / 2$ where;

$$\omega = \sqrt{\frac{k}{(m_p/2)}}$$

so – using SU units as much as is bearable,

$$w^{2} = (2 \times 2 \times 4.79 \times 1.602 \times 10^{-19} \times (19.3)^{2} \times 10^{18}) / 1.672 \times 10^{-27} \text{ Jm}^{-2} \text{kg}^{-1}$$

$$= 6838 \times 10^{26}$$

$$w = 82.69 \times 10^{13} \text{ s}^{-1}$$

$$E_{\text{vib}} = \frac{1}{2}\hbar\omega = \frac{1}{2} \times 6.6 \times 10^{-16} \times 82.69 \times 10^{13} = 0.273 \text{ eV}$$

So the ground state vibrational energy is 0.273 eV.

From the potential energy curve and part i) it is clear that the potential energy of dissociation of H_2 is D_e = 4.79eV, but the zero point vibrational energy is 0.273eV so measured dissociation energy will be 4.79-0.273 = 4.517eV.

Filename: PC2_tutor.doc

Directory:

\\Tcfs2\mag\nh\Teaching\Theoretical Methods 04\Prob

lem Classes

Template: C:\Documents and Settings\nmh\Application

Data\Microsoft\Templates\Normal.dot

Title: Theoretical Methods in Chemistry

Subject:

Author: Prof. Nicholas M Harrison

Keywords: Comments:

Creation Date: 31/10/2004 20:02:00

Change Number: 9

Last Saved On: 03/11/2004 12:21:00 Last Saved By: Chemistry Departmet

Total Editing Time: 17 Minutes

Last Printed On: 03/11/2004 12:21:00

As of Last Complete Printing Number of Pages: 5

> Number of Words: 516 (approx.) Number of Characters: 2,947 (approx.)