Separable Extensions and Primitive Element Theorem

Jiang-Hua Lu

The University of Hong Kong

MATH4302, Algebra II

Outline

In this file:

- 1 §3.2.7: Separable polynomials and perfect fields;
- 2 §3.2.8: Separable extensions and the Primitive Element Theorem.

§2.2.7: Separable polynomials and perfect fields

<u>Definition.</u> For a field K, a polynomial $f(x) \in K[x]$ is said to be separable over K if it has no repeated roots in its splitting field over K.

Example. $f(x) = x^3 - 2 \in \mathbb{Q}[x]$ is separable over \mathbb{Q} , but not when regarded as a polynomial over \mathbb{F}_3 :

$$f(x) = (x-2)^3 \in \mathbb{F}_3[x].$$

Example. $K = \mathbb{F}_2(t)$ and $K(x) = x^2 - t \in K[x]$. The splitting field $K(x) = K(\sqrt{t})$ of $K(x) = K(\sqrt{t})$ of $K(x) = K(\sqrt{t})$ but

$$f(x) = x^2 - t = (x - \sqrt{t})^2 \in L[x],$$

so f is not separable.

§3.2.7: Separable polynomials and perfect fields

<u>Lemma.</u> Let K be any field and let $f \in K[x]$ with positive degree. Then the following are equivalent:

- \bullet f is separable over K;
- 2 f and f' are relatively prime as elements in K[x];
- \bullet f has no repeated roots in any field extension L of K.

Proof. Let $f = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$, $p_i \in K[x]$ irreducible, pairwise non-associates. Let L_f be the splitting field of f over K.

- **1** 1) \Rightarrow 2): For each j, f and p_j share at least one root $a_j \in L_f$. Then $f'(a_j) \neq 0$ implies that $p_j \nmid f'$. Thus f and f' have no common irreducible factors in K[x], i.e., they are relatively prime in K[x].
- 2 2) \Rightarrow 3): f and f' are relatively prime in K[x]. Thus there exist $a(x), b(x) \in K[x]$ such that

$$a(x)f(x) + b(x)f'(x) = 1$$

It follows that f has no repeated root in any extension L of K.

 $(3) \Rightarrow 1)$: trivial.

§3.2.8: Separable extensions and the Primitive Element Theorem

<u>Definition.</u> An algebraic extension $K \subset L$ is said to be separable if the minimal polynomial of every $a \in L$ over K is separable over K.

The Primitive Element Theorem. A finite separable extension is simple.

Proof: See Lecture Notes.

<u>Corollary.</u> If K has characteristic 0 or is a finite field, then very finite extension of K is simple.

Remark: A field K is said to be Perfect if either $\operatorname{Char}(K) = 0$, or $\operatorname{char}(K) = p$ and Frobenius morphism $\sigma: K \to K$ is surjective. A finite extension of perfect field is separable. See lecture notes for the proof.