## (80200) תורת הקבוצות – 10 מטלה פתרון מטלה

2024 ביולי 24



## שאלה 1

 $.\alpha \leq \omega_{\alpha}$ מתקיים מחדר שלכל נוכיח נוכיח

 $n\in\mathbb{N}$ לכל  $n\leq\omega_n$ ולכן ולכן ה<br/>  $n\in\mathbb{N}=\omega\in\omega_n$ כי מהגדרה מהגדרה הטבעיים, נתחיל בבדיקת הוכחה.

עבור שהמונה  $\omega_{lpha}$  גדול מהם על־פּי הגדרה. באופן דומה לחסום כל סודר באופן באופן נוכל כמובן. נוכל כמובן באופן  $\omega^+ \leq \omega_{lpha}$  נקבל שהמונה  $\omega^+ \leq \omega_{lpha}$ 

## שאלה 2

 $.\beta = \omega_\beta$ ער כך היים מודר  $\beta \geq \alpha$  קיים קיים מודר שלכל נוכיח נוכיח

 $.\delta=\{lpha,\omega_lpha,\omega_{\omega_lpha},\dots\}$  נגדיר מחלקת פונקציה eta ולכן ממשפט הרקורסיה עבור lpha נקבל כי קיימת הקבוצה  $\delta=\{lpha,\omega_lpha,\omega_{\omega_lpha},\dots\}$  מההגדרה של סודר גבולי נקבל ש $\delta=\bigcup_{eta\in\delta}eta=\emptyset$ 

## שאלה 3

נוכיח שמחלקת המונים היא מחלקה נאותה.

הוכחה.