Regra de Rapoport: Análises em diferentes escalas geográficas nos oceanos Atlântico Oeste e Pacífico Leste

Vanessa dos Santos Schwan

Dissertação apresentada ao Centro de

Ciências Biológicas e da Saúde da

Universidade Federal do Estado do Rio

de Janeiro para obtenção do grau de

Biodiversidade Mestrado em

Neotropical.

Orientador: Lázaro Luiz Mattos Laut

Co-orientador: Rafael da Rocha Fortes

RIO DE JANEIRO 2016

UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE INSTITUTO DE BIOCIÊNCIAS

Regra de Rapoport: Análises em diferentes escalas geográficas nos oceanos Atlântico Oeste e Pacífico Leste

	A	provada em	/	/	
BANCA E	XAMINADO	ORA			
Prof ^o Láza	ro Luiz Matte	os Laut (DCN	/IBIC	D/CC	CBS/UNIRIO)
Prof ^a Wand	derson Ferna	ndes de Carva	ılho (DER	RM/IBIO/CCBS/UNIRIO)
Prof ^a Maria	a Lucia Lorir	ni (DCN/IBIO	/CCE	BS/U	JNIRIO)

RIO DE JANEIRO 2016

FICHA CATALOGRÁFICA

Schwan, Vanessa dos Santos

Regra de Rapoport: Análises em diferentes escalas geográficas nos oceanos Atlântico Oeste e Pacífico Leste

Rio de Janeiro, 2016

IX + 27 pp.

Orientador(a): Lázaro Luiz Mattos Laut Co-orientador(a): Rafael da Rocha Fortes

Dissertação — Universidade Federal do Estado do Rio de Janeiro, Centro de Ciências Biológicas e da Saúde, Mestrado em Biodiversidade Neotropical, 2016.

- 1. Amplitude de Distribuição Geográfica
- 2. Padrões Biogeográficos
- 3. Província Biogeográfica Marinha

- I. Schwan, Vanessa dos Santos
- II. Universidade Federal do Estado do Rio de Janeiro, Instituto de Biociências

AGRADECIMENTOS

Ao meu orientador, Lázaro Laut, e meu co-orientador, Rafael da Rocha Fortes, por terem dedicado seu tempo a minha formação.

A Universidade Federal do Estado do Rio de Janeiro e aos professores desta instituição pelo auxílio que recebi durante toda minha formação.

A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e ao Programa de Pós-Graduação da Unirio (PPGBIO) por ter concedido a mim uma bolsa de mestrado, que me ajudou muito durante o curso de pós-graduação.

A minha mãe Genilda Schwan que, com muito sacrifício, deu todo apoio à minha educação.

Aos meus amigos por fazer meus dias mais felizes e me ajudarem nos momentos de crise.

Ao meu namorado, Thiago Damasceno, por me dar todo suporte e força para continuar seguindo em frente.

Ao universo pela energia curativa, sempre melhorando as circunstâncias e o ambiente ao meu redor.

SUMÁRIO

BANCA EXAMINADORA	II
FICHA CATALOGRÁFICA	III
AGRADECIMENTOS	IV
SUMÁRIO	V
LISTA DE TABELAS	VI
LISTA DE FIGURAS	VII
RESUMO	VIII
ABSTRACT	IX
INTRODUÇÃO	1
OBJETIVOS	4
MATERIAL E MÉTODOS	4
RESULTADOS	7
DISCUSSÃO	17
CONCLUSÃO	20
REFERÊNCIAS BIBLIOGRÁFICAS	2.1

LISTA DE TABELAS

Tabela 1. Lista taxonômica de espécies de Elasmobranchii utilizadas nas análises
intraprovincial e interprovincial realizadas para a Regra de Rapoport das províncias
biogeográficas marinhas dos Oceanos Pacífico Leste e Atlântico Oeste7
Tabela 2. Riqueza, amplitude da distribuição geográfica provincial, parâmetros estatísticos
das análises intraprovinciais realizadas para a Regra de Rapoport dos Elasmobranchii e
variáveis oceanográficas das províncias biogeográficas marinhas dos Oceanos Pacífico Leste
e Atlântico Oeste

LISTA DE FIGURAS

Figura 1. Mapa das províncias biogeográficas marinhas (adaptado de Spalding et al. 2007).
5
Figura 2: Regressão linear de Pearson para a Regra de Rapoport considerando todos os
Elasmobranchii analisados pelo presente estudo
Figura 3: Regressão linear de Pearson para a Regra de Rapoport considerando todos os
Elasmobranchii que ocorrem no hemisfério norte e no hemisfério sul
Figura 4: Regressão linear de Pearson para a Regra de Rapoport considerando todos os
Elasmobranchii que ocorrem nos oceanos Pacífico Leste e no Atlântico Oeste15
Figura 5: Regressão linear de Pearson para a Regra de Rapoport considerando todos os
Elasmobranchii que ocorrem nos hemisférios sul e norte do Pacífico Leste
Figura 6: Regressão linear de Pearson para a Regra de Rapoport considerando todos os
Elasmobranchii que ocorrem nos hemisférios sul e norte do Atlântico Oeste16

RESUMO

O gradiente de riqueza de espécies associado à latitude é um dos padrões ecológicos mais estudados. Muitos autores propuseram explicações para este padrão, como por exemplo, a relação com a distribuição geográfica mais restrita, característica das espécies tropicais. Este padrão biogeográfico foi denominado de Regra de Rapoport (RR). Diversos estudos não corroboraram a RR, provavelmente em função da escala em que a análise foi realizada. A detecção desse padrão pode ser diferente se as análises considerarem uma única província biogeográfica (intraprovincial) ou áreas pertencentes a diferentes províncias (interprovincial). O objetivo deste trabalho foi avaliar a aplicabilidade da RR para os Elasmobranchii do Atlântico Oeste e do Pacífico Leste, abordando escalas geográficas diferentes. A listagem de espécies e suas respectivas distribuições geográficas foram compiladas do Fishbase. A RR foi avaliada segundo a metodologia definida por Stevens (1989). Na análise intraprovincial, a RR foi testada em um gradiente de latitude delimitado pelos limites de cada província biogeográfica, e na abordagem interprovincial, considerando três escalas geográficas. Foram contabilizadas 300 espécies de Elasmobranchii. A análise América corroborou a RR, sendo o mesmo observado na análise Hemisfério na sua porção norte e para o Pacífico Leste. A análise Hemisfério para a sua porção sul e para o Atlântico não apresentaram significância estatística. No entanto, a análise da porção sul do Atlântico apresentou uma relação inversa. Nas análises intraprovinciais, algumas corroboraram a RR e outras a invalidaram. Os resultados apresentados demonstraram a importância da adequação da escala geográfica na investigação dos padrões ecogeográficos. Quando o padrão foi investigado pela análise América, a tendência prevista pela RR é observada. No entanto, quando reduzimos a escala geográfica, além da observação do padrão, observamos desde a não detecção de qualquer relação, bem como a observação do padrão inverso. A redução na escala da análise reduz a influência das variáveis ambientais na determinação da amplitude de distribuição geográfica das espécies. Desta forma, a redução na escala de observação ampliaria o papel de outras variáveis ambientais, filogenéticas e da história de vida dos organismos. No Atlântico Sul, a detecção do padrão inverso pode estar associada ao fato da província WTSA ser considerada um ecótono. Um aspecto importante considerado nas análises realizadas foi a dimensão da região tropical. A observação de padrões opostos nas províncias CNTP e CTNA pode ser um artefato estatístico relacionado à menor riqueza encontrada nas altas latitudes. Este estudo corroborou a hipótese de que a observação de padrões biogeográficos está associada à escala adotada na análise, e reforça a melhor adequação de uma escala global neste tipo de análise.

Palavras-chave: Amplitude de Distribuição Geográfica, Padrões Biogeográficos, Província Biogeográfica Marinha.

ABSTRACT

The species richness latitudinal gradient is one of the most studied ecological patterns. Many authors proposed explanations for this pattern, for example, the relationship with narrow geographical distribution, characteristic of tropical species. This biogeographic pattern is named Rapoport Rule (RR). Several studies do not support the RR, probably due to the scale on which analysis are performed. The detection of this pattern could be different if the analyses consider a single biogeographic province (intraprovincial) or areas belonging to different provinces (interprovincial). The aim of this study was to evaluate the applicability of RR for Elasmobranchii from the West Atlantic and East Pacific Oceans, considering different geographical scales. The list of species and their geographical distributions were compiled from the world fish database (Fishbase). The RR was evaluated according to the methodology defined by Stevens (1989). On intraprovincial analysis, the RR was tested at a latitudinal gradient defined by the boundaries of each biogeographic province, and in the interprovincial approach, considering three geographic scales. The database provided a richness of 300 species of Elasmobranquii. America analysis supports the RR, the same being observed in the northern hemisphere analysis and in the eastern Pacific. The Southern Hemisphere analysis and the Atlantic analysis were not statistically significant. However, the South Atlantic analysis showed an inverse relationship. In the interprovincial analysis, some support the RR and other invalidated it. The results showed the importance of an appropriate geographic scale in biogeographical patterns investigation. When the pattern is investigated by America analysis, the trend predicted by RR was observed. However, when we reduced the geographic scale of analysis, beyond the standard observation, we observed both, any detection of the relationship, as well as the observation of opposite pattern. The reduction in the scale of analysis decreases the influence of environmental variables associated with the gradient on determination of geographical range of species. Thus, the reduction in observation scale, expand the role of other environmental variables, and phylogenetic history of life of organisms. In the South Atlantic, the detection of the reverse pattern can be associated with the fact of WTSA province is considered an ecotone. An important aspect to consider in analyzes was the size of the tropical region. The observation of opposite patterns in the provinces CTNP e CTNA may be a statistical artifact related to the lower richness found in the high latitudes. This study confirmed the hypothesis that the observations of biogeographic patterns are associated with the scale adopted for its analysis, and reinforces the greater suitability of a global scale for this type of analysis.

Keywords: Geographical Range, Biogeographical patterns, Biogeographical Marine Province.

INTRODUÇÃO

O gradiente de riqueza de espécies associado com a latitude é um dos padrões ecológicos mais estudados, apesar de antigo ainda permanece como o objeto de diversos estudos (Condamine *et al*, 2012; Yasuhara *et al*, 2012; Bailly *et al*, 2014; Angielczyk *et al*, 2015). Apesar de existirem exceções a este padrão, este é, com certeza, um dos padrões mais aceitos e difundidos na ecologia (Fortes & Absalão 2011). Ao longo dos anos, muitos autores vêm discutindo possíveis explicações para a existência de uma maior riqueza de espécies em ambientes tropicais (Stevens, 1989; Wieters, 2001; Sanders, 2002; Yasuhara *et al*, 2012). Stevens (1989) propôs que a maior riqueza de espécies encontrada nos trópicos seria explicada pelo fato das espécies que habitam as regiões tropicais apresentarem distribuições geográficas mais restritas, do que as espécies que habitam as regiões temperadas e polares. Este padrão biogeográfico foi denominado de Regra de Rapoport (RR).

Em seu primeiro trabalho sobre a RR, Stevens (1989) explicou o aparecimento deste padrão com base na tolerância diferenciada às variações climáticas que as espécies do ambiente temperado e tropical possuiriam. Para sobreviver nas altas latitudes, os organismos precisam ser capazes de resistir a uma maior variabilidade das condições climáticas do que aqueles que habitam as baixas latitudes, os quais estariam submetidos a uma menor variação climática. Em função disto, espécies com baixa tolerância climática apresentariam distribuição geográfica mais restrita. Por outro lado, os táxons habitantes das maiores latitudes estariam adaptados a suportarem uma variação climática mais pronunciada, o que se refletiria em uma distribuição geográfica mais ampla. Esta justificativa para o aparecimento do padrão foi comprovada por alguns estudos (Kendall & Haedrich, 2006; Guerrero & Sarmiento, 2010; Guerrero, *et al.* 2011; Kwon *et al.*, 2014; Jacquemin & Doll, 2015; Gutiérrez-Pesquera, *et al.* 2016), incluindo um ensaio de microcosmo (Kolasa *et al.* 1998), e refutados por outros (Rohde, 1996; Ruggiero & Lawton, 1998; Siqueira & Rocha 2013).

A associação entre o padrão previsto pela Regra de Rapoport e o gradiente de diversidade associado à latitude é resultado do efeito de resgate promovido pela entrada de espécies provenientes de áreas próximas às áreas avaliadas. A Regra de Rapoport estabelece que as assembleias tropicais são compostas por espécies com distribuição geográfica mais restrita. No ambiente tropical haveria uma maior quantidade de assembleias, com composição de espécies distintas, quando comparadas a uma região com a mesma dimensão no ambiente temperado e polar. Desta forma, a maior quantidade de assembleias existentes nos ambientes tropicais promoveria um maior efeito de resgate (diversidade beta) entre elas, conseqüentemente, incrementando a diversidade de espécies encontrada em cada um destes diferentes locais (diversidade alfa).

Ampliando o escopo inicial da RR, Stevens (1992) estendeu o conceito apresentado na RR ao gradiente de altitude e verificou que organismos que habitam regiões mais baixas

possuem amplitude de distribuição geográfica menor quando comparados àqueles das maiores altitudes. O autor propôs que a hipótese para explicar este padrão seria análoga à RR relacionado ao gradiente de latitude, na qual os organismos que habitam as baixas altitudes possuiriam uma menor tolerância à variação da temperatura e isto impediria estes organismos de ampliarem sua distribuição geográfica em direção às maiores altitudes.

Posteriormente, de forma análoga ao que propôs para a altitude em ambientes terrestres, Stevens (1996) avaliou a aplicação da RR para o gradiente de profundidade em ambientes marinhos, o que resultou em uma proposta de generalizar a regra para qualquer gradiente existente na natureza. Neste padrão relacionado ao gradiente de profundidade, a distribuição batimétrica dos organismos apresentou uma relação positiva com este gradiente (Kendall & Haedrich, 2006; Fortes & Absalão, 2010;, Rosa et al, 2012). Além disso, o estudo de Stevens (1996) indicou uma relação positiva entre latitude e a amplitude de distribuição batimétrica. De acordo com esse padrão, organismos que habitam águas rasas nos trópicos estão sujeitos a menor variação de temperatura e, portanto, suas amplitudes de distribuição batimétrica tendem a ser mais restritas. Por outro lado, organismos que habitam águas rasas em latitudes mais altas, toleram uma maior variabilidade da temperatura. Portanto, suas adaptações fisiológicas permitem que estes organismos ampliem a sua distribuição geográfica para águas mais profundas, já que as baixas temperaturas nessas profundidades estão incluídas nas condições de temperatura encontradas em águas rasas nas maiores latitudes. Esta associação suportou a hipótese de tolerância à variabilidade climática como a melhor hipótese para explicar a RR, sendo postulado que esta hipótese da variabilidade climática poderia ser aplicada às distribuições de espécies na maioria dos gradientes ambientais (Stevens, 1992; Rohde, 1992; Roy et al., 1998).

Ao longo dos anos diversos estudos refutaram a aplicação da RR (Rohde *et al.*, 1993; Rohde, 1996, Gaston *et al.*, 1998; Gaston, 2003), por vezes restringindo a sua observação as regiões temperadas e polares (Gaston *et al.*, 1998; Gaston, 2003). Contudo, em alguns destes casos, a não observação do padrão pode estar relacionada à escala em que as análises foram realizadas (Ruggiero & Werenkraut, 2007; Orme *et al.*, 2006). Desta forma, parte da inconsistência relacionada à detecção deste padrão está relacionada a uma crítica contundente aos trabalhos macroecológicos e biogeográficos, a dimensão da escala geográfica em que estes estudos são realizados. Em muitos destes trabalhos, a escala geográfica idealizada para este campo da ecologia não foi adequadamente atendida resultando na não observação do padrão macroecológico ou biogeográfico esperado (Taylor & Gotelli, 1994; Gaston & Blackburn, 1999; Brehm & Fiedler, 2004).

Fortes & Absalão (2004, 2010) mostraram que alguns padrões biogeográficos não seriam detectados em algumas regiões do planeta, incluindo a RR. O fato do padrão não ser observado, ou ser observado o padrão inverso, poderia estar relacionado à uniformidade das

condições ambientais dentro das províncias biogeográficas ou relacionadas à história do grupo taxonômico analisado. Esta uniformidade climática característica dos ambientes internos a uma província biogeográfica ou de uma ecorregião, não possibilitariam a detecção de padrões biogeográficos associados ao gradiente de latitude. Por conseguinte, pode se inferir que a detecção desses padrões pode diferir se as análises considerarem áreas inclusas em uma única província biogeográfica (intraprovincial) ou áreas pertencentes a diferentes províncias (interprovincial) (Rosenzweig, 1992).

Segundo Spalding *et al.* (2007), províncias biogeográficas marinhas são classificadas como grandes áreas definidas pela presença de biotas distintas e que possuem pelo menos alguma coesão evolutiva, observando-se algum nível de endemismo. Embora o isolamento desempenhe algum papel, parte da biota destas províncias se diferenciou como resultado das características abióticas distintas encontradas nos limites de cada uma delas, como por exemplo, características geomorfológicas, oceanográficas ou geoquímicas. Desta forma, quando considerada um escala geográfica e/ou taxonômica que englobe mais de uma província biogeográfica, as condições oceanográficas distintas que as caracterizam ofereceriam as condições ideais para uma análise biogeográfica.

De acordo com uma pesquisa na base bibliográfica realizada por *Scopus* (http://scopus.com), utilizando-se a expressão "Regra de Rapoport" como palavra de busca por artigos publicados entre 1992 e 2015, verifica-se que o padrão foi testado em 51 artigos, em sua maioria testado para o gradiente de latitude (88,23%), sendo que somente 13 estudos (28,89%) foram realizados no ambiente marinho com moluscos, algas marinhas, teleósteos marinhos, peixes ósseos marinhos, tartarugas, bivalves, gastrópodes, poliquetas e crustáceos. Surpreendentemente, apesar dos Elasmobranchii serem considerados um grupo de grande importância para os ecossistemas nos quais vivem, sendo parte importante da biomassa de predadores de topo dos ecossistemas marinhos (Stevens & Last, 1995), nenhum trabalho avaliou a aplicabilidade da Regra de Rapoport a este grupo.

Os elasmobrânquios são vertebrados pertencentes à Classe Chondrichthyes, que exibem um conjunto de características únicas dentre os vertebrados, compondo um grupo monofilético dividido em duas subclasses distintas: Elasmobranchii e Holocephali (Compagno, 1999). Elasmobranchii é um grupo taxonômico composto por espécies de tubarões e raias que possuí cerca de 960 espécies atuais (Stevens & Last, 1995). As distribuições geográficas de tubarões e raias são relacionadas a gradientes ambientais, como a profundidade, temperatura, salinidade, oxigênio dissolvido, pH, topografia e tipo de fundo (Colonello *et al.*, 2014). O grupo apresenta ampla distribuição pelos oceanos do planeta e possuem diferentes estratégias de vida, o que o torna ideal para análises biogeográficas. Um aspecto que reforça a adequação deste grupo a estudos biogeográficos é o fato de que o mapeamento da distribuição dos peixes cartilaginosos avançou muito nos últimos anos em

comparação com outros grupos de peixes marinhos. Desta forma, os dados de Elasmobranchii apresentam qualidade e confiabilidade, principalmente em regiões costeiras (Sabino & Prado, 2003).

Os oceanos são ecossistemas aquáticos com processos químicos, físicos e biológicos que interagem entre si e regulam toda a vida do ambiente marinho, sendo os parâmetros abióticos mais importantes a luz, temperatura, salinidade, correntes e nutrientes, que influenciam toda a estrutura oceânica (Montes, 2003). Os Oceanos Atlântico Oeste e Pacífico Leste têm algumas características biogeográficas e ecológicas particulares/peculiares, que os tornam ambientes altamente diversos.

No Atlântico Oeste, a descarga de água doce do rio Amazonas atua como uma barreira biogeográfica separando o Brasil do Caribe (Joyuex et al. 2001; Pinheiro et al. 2011), o que resulta em numerosos exemplos de endemismo regional (Pinheiro et al. 2011). A plataforma continental brasileira é caracterizada por possuir, ao longo de toda sua extensão, numerosos recifes de corais e bancos de rodolitos espalhados por mais de 3.000 km de extensão (Kerr et al. 2016). E o Atlântico Oeste é conhecido por possuir um sistema de afloramento costeiro sazonal de ressurgência rico em nutrientes, desencadeada pelos ventos dominantes durante o verão, se tornando um habitat principal para uma grande variedade de indivíduos (Ferreira et al. 2004; Kerr et al. 2016).

O Pacífico Leste possui como característica principal a influência da corrente de Humboldt, que é uma corrente de superfície de grande escala que deriva da ação dos ventos ocidentais e flui para o norte ao longo da costa do Pacífico leste (Gutiérrez et al. 2016). É um sistema altamente produtivo que exibe ressurgência intermitente ao longo do ano, estando sujeito a mudanças interanuais nos regimes de temperatura devido ao resfriamento da superfície das águas no período da primavera-verão (La Ninã) e ao aquecimento das águas no outono-inverno (El Niño) pela exposição à Oscilação Sul do El Niño, que é a maior fonte de variabilidade climática interanual na Terra (Escribano et al. 2014, Collins et al. 2010).

OBJETIVOS

Avaliar a aplicabilidade da Regra de Rapoport para Elasmobranchii das províncias biogeográficas marinhas do Atlântico Oeste e do Pacífico Leste em diferentes escala geográficas.

MATERIAL E MÉTODOS:

A listagem das espécies de tubarões e raias marinhas que ocorreram nessas províncias foi compilada a partir da base de dados de peixes do mundo, o Fishbase (Froese & Pauly, 2015). Para cada uma das espécies, foi compilada a sua distribuição geográfica, assumida como sendo a diferença entre a latitude máxima e mínima de sua ocorrência.

A área de estudo incorpora as seguintes Províncias Biogeográficas do Atlântico Oeste e Pacífico Leste (Spalding *et al.*, 2007): Noroeste do Atlântico Temperado Frio (Cold Temperate Northwest Atlantic - CTNA), Noroeste do Atlântico Temperado Quente (Warm Temperate Northwest Atlantic - WTNA), Nordeste do Pacífico Temperado Frio (Cold Temperate Northeast Pacific - CTNP), Nordeste do Pacífico Temperado Quente (Warm Temperate Northeast Pacific - WTNP), Noroeste do Atlântico Tropical (Tropical Northwestern Atlantic - TNA), Plataforma do Norte do Brasil (North Brazil Shelf - NBS), Sudoeste do Atlântico Tropical (Tropical Southwestern Atlantic - TSA), Leste do Pacífico Tropical (Tropical East Pacific - TEP), Sudeste do Pacífico Temperado Quente (Warm Temperate Southeastern Pacific - WTSP), Sudoeste do Atlântico Temperado Quente (Warm Temperate Southwestern Atlantic - WTSA) e Magelânica (Magellanic - M) (Figura 1).

Em função da distribuição geográfica das espécies por vezes estar definida de forma imprecisa, procedimentos adicionais foram realizados para aprimorá-las. Inicialmente, os limites definidos da distribuição geográfica eram conferidos com as informações de ocorrência da espécie e/ou com o mapa definido na ferramenta Aquamap disponível no Fishbase (Froese & Pauly, 2015). Adicionalmente, quando disponível a distribuição geográfica da espécie era comparada com os mapas disponibilizados na base de dados da IUCN (IUCN, 2015) e da base de dados GBIF (Global Biodiversity Information Facility) (www.gbif.org, acessado em Outubro a Dezembro/2015). Caso, as ocorrências e/ou os mapas provenientes das três bases utilizadas possuíssem informações conflitantes, a distribuição geográfica a ser considerada era aquela que mais se aproximava da descrição fornecida pelo Fishbase. Quando as coordenadas dos pontos extremos da distribuição geográfica das espécies não estavam disponíveis estas coordenadas foram obtidas com auxílio do Google Earth (Google, 2015).

Figura 1. Mapa das províncias biogeográficas marinhas (adaptado de Spalding *et al.* 2007). Em destaque as treze províncias do Pacífico Leste e Atlântico Oeste analisadas neste estudo. Noroeste do Atlântico Temperado Frio (Cold Temperate Northwest Atlantic - CTNA), Noroeste do Atlântico Temperado Quente (Warm Temperate Northwest Atlantic - WTNA), Nordeste do Pacífico Temperado Frio (Cold Temperate Northeast Pacific - CTNP), Noroeste do Pacífico Temperado Quente (Warm Temperate Northeast Pacific - WTNP), Noroeste do Atlântico Tropical (Tropical Northwestern Atlantic - TNA), Plataforma do Norte do Brasil (North Brazil Shelf - NBS), Sudoeste do Atlântico Tropical (Tropical Southwestern Atlantic - TSA), Leste do Pacífico Tropical (Tropical East Pacific - TEP), Sudeste do Pacífico Temperado Quente (Warm Temperate Southeastern Pacific - WTSP). Sudoeste do Atlântico Temperado Quente (Warm Temperate Southwestern Atlantic - WTSA) e Magelânica (Magellanic - M).

A Regra de Rapoport foi avaliada considerando a metodologia adotada por Stevens (1989), plotando no eixo X o gradiente de latitude dividido em bandas de 1° e no eixo Y, a média da amplitude da distribuição geográfica relativa a todas as espécies encontradas dentro de cada banda de latitude. Essas relações estabelecidas pela RR foram testadas através da Regressão Linear, considerando um nível de significância de 0,05, utilizando o software PAST 3.06.

A análise da Regra de Rapoport foi realizada em 20 recortes geográficos sendo onze intraprovinciais e nove interprovinciais. Na análise intraprovincial a RR foi testada em um gradiente de latitude delimitado pelos limites de cada província biogeográfica. As províncias que possuem uma parte no hemisfério Norte e outra parte no hemisfério Sul, tiveram estas diferentes porções analisadas em um único gradiente de latitude, adotando a média da amplitude de distribuição geográfica das espécies que compõem as assembleias de ambos os hemisférios. Nestas análises, as bandas de latitudes terão as suas direções ignoradas, e assumindo as latitudes como sendo unidades de distância em relação ao equador.

Na abordagem denominada interprovincial, o presente trabalho analisarou a Regra de Rapoport considerando três escalas geográficas diferentes. A análise com maior dimensão geográfica abordou todo o continente americano, aqui denominada Análise América. Ademais, outras análises foram realizadas considerando dimensões geográficas menores que a análise anterior, porém com dimensões maiores que as encontradas para as províncias biogeográficas analisadas, a saber: Hemisfério Norte, Hemisfério Sul, Atlântico Oeste e Pacífico Leste. Em função da natureza bidirecional do gradiente de latitude, usualmente pode optar-se por avaliar os padrões ecogeográficos considerando os hemisférios separadamente (Fortes & Absalão, 2004, 2010). Nestes casos, em cada um dos agrupamentos acima citados, para cada banda de latitude será calculada uma nova média de distribuição geográfica, considerando todas as assembleias que habitam regiões com a mesma distância da linha do equador.

A ausência de uma correlação forte entre o gradiente de latitude e as variáveis oceanográficas, devido a circulação das massas d'águas promovida pelas correntes marítimas, pode influenciar negativamente no teste da RR. Desta forma, para caracterizar climaticamente as Províncias Biogeográficas, os dados de temperatura média anual, temperatura média do inverno e do verão, além da amplitude de temperatura anual (temperatura média do inverno menos a temperatura média do verão) foram obtidos da base de dados secundários World Ocean Atlas - WOA (NASA, 2015).

RESULTADOS

A base de dados contabilizou uma riqueza de 300 espécies de Elasmobranchii (Tabela 1), considerando a totalidade das províncias biogeográficas estudadas, sendo a maior riqueza observada para a província biogeográfica TNA (155) e a menor riqueza observada para a província biogeográfica M, com 26 espécies na sua porção do Pacífico Leste e 23 no Atlântico Oeste (Tabela 2).

Tabela 1. Lista taxonômica de espécies de Elasmobranchii utilizadas nas análises intraprovincial e interprovincial realizadas para a RR das províncias biogeográficas marinhas analisadas.

Nome científico	Nome popular	Nível taxonômico	Amplitude de ocorrência
Aetobatus narinari	Spotted Eagle Ray	Espécie	69,95
Alopias pelagicus	Thresher Shark	Espécie	71,25
Alopias superciliosus	Bigeye Thresher Shark	Espécie	95,75
Alopias vulpinus	Common Thresher Shark	Espécie	95,75
Amblyraja badia	Broad Skate	Espécie	47,53
Amblyraja doellojuradoi	Southern Thorny Skate	Espécie	23,25
Amblyraja frerichsi	Thickbody Skate	Espécie	18,5
Amblyraja hyperborea	Arctic Skate	Espécie	130,5
Amblyraja jenseni	Jensen's Skate	Espécie	25,44
Amblyraja radiata	Thorny Skate	Espécie	114
Anacanthobatis americanus	American Legskate	Espécie	14,77
Anacanthobatis folirostris	Leafnose Legskate	Espécie	12,07
Anacanthobatis longirostris	Longnose Legskate	Espécie	18,36
Apristurus brunneus	Brown Catshark	Espécie	22,14
Apristurus canutus	Hoary Catshark	Espécie	12,8
Apristurus kampae	Longnose Catshark	Espécie	26,7
Apristurus laurussonii	Icelandic Catshark	Espécie	56
Apristurus manis	Ghost Catshark	Espécie	14,18
Apristurus melanoasper	Fleshynose Catshark	Espécie	22,37
Apristurus nasutus	Largenose Catshark	Espécie	42,41
Apristurus parvipinnis	Smallfin Catshark	Espécie	26,42
Apristurus profundorum	Deepwater Catshark	Espécie	50,5
Apristurus riveri	Broadgill Catshark	Espécie	21,96
Apristurus stenseni	Panama Ghost Catshark	Espécie	1,81
Benthobatis kreffti	Brazilian Blind Electric Ray	Espécie	3,35
Benthobatis marcida	Deepsea Blind Ray	Espécie	13,97
Bythaelurus canescens	Dusky Catshark	Espécie	19,94

Bythaelurus giddingsi	Galápagos catshark	Espécie	2,08
Carcharhinus acronotus	Blacknose Shark	Espécie Espécie	60,09
Carcharhinus albimarginatus	Silvertip Shark	Espécie	77,3
Carcharhinus altimus	Bignose Shark	Espécie Espécie	75,8
Carcharhinus brachyurus	Copper Shark	Espécie	111,4
Carcharhinus brevipinna	Spinner Shark	Espécie Espécie	78,8
Carcharhinus cerdale	Pacific smalltail shark	Espécie Espécie	45,59
Carcharhinus falciformis	Silky Shark	Espécie Espécie	79,5
Carcharhinus galapagensis	Galapagos Shark	Espécie	75,02
Carcharhinus isodon	Fintooth Shark	Espécie Espécie	75,5
Carcharhinus leucas	Bull Shark	Espécie Espécie	81,25
Carcharhinus limbatus	Blacktip Shark	Espécie Espécie	102,8
Carcharhinus longimanus	Oceanic Whitetip Shark	Espécie	91,8
Carcharhinus obscurus	Dusky Shark	Espécie Espécie	100,53
Carcharhinus perezi	Caribbean Reef Shark	Espécie Espécie	40,37
Carcharhinus plumbeus	Sandbar Shark	Espécie Espécie	83,3
Carcharhinus signatus	Night Shark	Espécie Espécie	84,24
Carcharias taurus	Sand Tiger Shark	Espécie Espécie	89,94
Carcharodon carcharias	Great White Shark	Espécie Espécie	122,5
Centrophorus granulosus	Gulper shark	Espécie Espécie	101,81
Centrophorus uyato	Little Gulper Shark	Espécie Espécie	88,48
Cephaloscyllium ventriosum	Swell Shark	Espécie Espécie	16,28
Cephalurus cephalus	Lollipop Catshark	Espécie Espécie	
Cetorhinus maximus	Basking Shark	Espécie Espécie	10,98 127,2
Chlamydoselachus anguineus	Frilled Shark	Espécie Espécie	· ·
Cirrhigaleus asper	Roughskin Dogfish	Espécie Espécie	114,16 73,55
Cruriraja atlantis	Atlantic Legskate	Espécie	9,72
Cruriraja adandis Cruriraja cadenati	Broadfoot Legskate	Espécie Espécie	10,02
Cruriraja poeyi	Cuban Legskate	Espécie Espécie	10,32
Cruriraja poeyr Cruriraja rugosa	Rough Legskate	Espécie Espécie	20,16
Dactylobatus armatus	Skilletskate	Espécie	66,43
Dactylobatus clarkii	Hookskate	Espécie	61,42
Dalatias licha	Kitefin Shark	Espécie	128,1
Dasyatis americana	Southern Stingray	Espécie	62,1
Dasyatis brevis	Diamond stingray	Espécie	43,85
Dasyatis centroura	Roughtail Stingray	Espécie	88,55
Dasyatis colarensis	Colares Stingray	Espécie	0,55
Dasyatis dipterura	Diamond Stingray	Espécie	39,73
Dasyatis geijskesi	Sharpsnout Stingray	Espécie	46,12
Dasyatis guttata	Longnose Stingray	Espécie	51,89
Dasyatis hastata	Roughtail Stingray	Espécie	43,2
Dasyatis hypostigma	Groovebelly Stingray	Espécie	27,11
Dasyatis lata	Brown Stingray	Espécie	5
Dasyatis longa	Longtail Stingray	Espécie	30,9
Dasyatis marianae	Brazilian Large-eyed Stingray	Espécie	16,57
Dasyatis sabina	Atlantic Stingray	Espécie	34,57
Dasyatis say	Bluntnose Stingray	Espécie	61,69
Deania profundorum	Arrowhead Dogfish	Espécie	77,5
Diplobatis colombiensis	Colombian Electric Ray	Espécie	0,05
Diplobatis guamachensis	Brownband Numbfish	Espécie	3
Diplobatis ommata	Bullseye Electric Ray	Espécie	28,06
Diplobatis pictus	Variegated Electric Ray	Espécie	11,22
Dipturus argentinensis	Argentine skate	Espécie	18,11
Dipturus bullisi	Bullis' Skate	Espécie	26,71
2 -prorus cumsi	I Damo Shate		1 20,71

Ì	Dipturus campbelli	Blackspot Skate	Espécie	22,06
	Dipturus diehli	South Brazilian Skate	Espécie	8,41
	Dipturus ecuadoriensis	Ecuador Skate	Espécie	4,83
	Dipturus flavirostris	Kite Ray	Espécie	48,67
	Dipturus garricki	San Blas Skate	Espécie	15,2
	Dipturus leptocauda	Thintail skate	Espécie	9,44
	Dipturus mennii	South Brazilian Skate	Espécie	10,31
	Dipturus olseni	Spreadfin Skate	Espécie	10,6
	Dipturus oregoni	Hooktail Skate	Espécie	7,52
	Dipturus teevani	Caribbean Skate	Espécie	27,25
	Dipturus trachyderma	Roughskin Skate	Espécie	25,38
	Discopyge castelloi	Castello Ray	Espécie	18,17
	Discopyge tschudii	Apron Ray	Espécie	40,94
	Eridacnis barbouri	Cuban Ribbontail Catshark	Espécie	7,1
	Euprotomicroides zantedeschia	Taillight Shark	Espécie	1,34
	Euprotomicrus bispinatus	Pygmy Shark	Espécie	87,69
	Fenestraja atripinna	Blackfin Pygmy Skate	Espécie	10,48
	Fenestraja cubensis	Cuban Pygmy Skate	Espécie	4,3
	Fenestraja ishiyamai	Ishiyama's Windowskate	Espécie	16,28
	Fenestraja plutonia	Pluto Skate	Espécie	26,97
	Fenestraja sinusmexicanus	Gulf of Mexico Pygmy Skate	Espécie	17,22
	Galeocerdo cuvier	Tiger Shark	Espécie	91
	Galeorhinus galeus	Oil Shark	Espécie	130
	Galeus antillensis	Antilles Catshark	Espécie	6,58
	Galeus arae	Roughtail Catshark	Espécie	19,07
	Galeus cadenati	Longfin Sawtail Catshark	Espécie	0,6
	Galeus mincaronei	Southern Sawtail Catshark	Espécie	2,67
	Galeus piperatus	Peppered Catshark	Espécie	1,18
	Galeus springeri	Springer's sawtail cat shark	Espécie	6,42
	Ginglymostoma cirratum	Nurse Shark	Espécie	70
	Gurgesiella atlantica	Atlantic Pygmy Skate	Espécie	25,28
	Gurgesiella dorsalifera	Onefin Skate	Espécie	6,32
	Gurgesiella furvescens	Dusky Finless Skate	Espécie	33,48
	Gymnura afuerae	Manta ray	Espécie	15,17
	Gymnura altavela	Spiny Butterfly Ray	Espécie	88,28
	Gymnura crebripunctata	Longsnout butterfly ray	Espécie	9,91
	Gymnura hirundo	Madeira butterfly ray	Espécie	69
	Gymnura marmorata	California Butterfly Ray	Espécie	24
	Gymnura micrura	Smooth Butterfly Ray	Espécie	62,25
	Heptranchias perlo	Sharpnose Sevengill Shark	Espécie	95
	Heterodontus francisci	Horn Shark	Espécie	56,31
	Heterodontus mexicanus	Mexican Hornshark	Espécie	54,75
J	Heterodontus quoyi	Galapagos Bullhead Shark	Espécie	19,35
	Hexanchus griseus	Bluntnose Sixgill Shark	Espécie	122
	Hexanchus nakamurai	Bigeyed Sixgill Shark	Espécie	80,8
	Himantura schmardae	Chupare Stingray	Espécie	20,15
	Isistius brasiliensis	Luminous Shark	Espécie	79,8
	Isistius plutodus	Largetooth Cookiecutter Shark	Espécie	78,8
	Isogomphodon oxyrhynchus	Daggernose Shark	Espécie	45,21
ļ	Isurus oxyrinchus	Shortfin Mako	Espécie	117,58
	Isurus paucus	Longfin Mako	Espécie	84,5
	Lamna ditropis	Salmon Shark	Espécie	55,15
	Lamna nasus Leucoraja caribbaea	Porbeagle Maya skate	Espécie Espécie	140,5 7,16

		l =	1 17.00
Leucoraja erinacea	Little Skate	Espécie	15,92
Leucoraja lentiginosa	Speckled Skate	Espécie	11,29
Leucoraja ocellata	Winter Skate	Espécie	13,12
Leucoraja virginica	Virginia skate	Espécie	17,26
Leucoraja yucatanensis	Yucatan Skate	Espécie	10,8
Malacoraja obscura	Brazilian Soft Skate	Espécie	1,23
Malacoraja senta	Smooth Skate	Espécie	22,83
Malacoraja spinacidermis	Roughskin Skate	Espécie	101,25
Manta birostris	Giant Manta Ray	Espécie	78,38
Megachasma pelagios	Megamouth Shark	Espécie	68,81
Mitsukurina owstoni	Goblin Shark	Espécie	92,64
Mobula hypostoma	Atlantic Devilray	Espécie	79,03
Mobula japanica	Spinetail Devil Ray	Espécie	82
Mobula munkiana	Manta De Monk	Espécie	33,25
Mobula tarapacana	Chilean Devil Ray	Espécie	71,23
Mobula thurstoni	Bentfin Devil Ray	Espécie	64,45
Mollisquama parini	Pocket Shark	Espécie	16,11
Mustelus albipinnis	White-margin Fin Hound Shark	Espécie	9,97
Mustelus californicus	Gray Smooth-hound	Espécie	13,93
Mustelus canis	Dusky Smoothhound	Espécie	88,1
Mustelus dorsalis	Sharptooth Smoothhound	Espécie	26,57
Mustelus fasciatus	Striped Dogfish	Espécie	19,21
Mustelus henlei	Brown Smoothhound	Espécie	55,75
Mustelus higmani	Smalleye Smoothhound	Espécie	65,78
Mustelus lunulatus	Sicklefin Smoothhound	Espécie	28,07
Mustelus mento	Speckled Smoothhound	Espécie	53,5
Mustelus minicanis	Dwarf Smoothhound	Espécie	2,96
Mustelus norrisi	Narrowfin Smooth Hound	Espécie	66,47
Mustelus palumbes	Whitespot Smoothhound	Espécie	14,75
Mustelus schmitti	Narrownose Smoothhound	Espécie	15,92
Mustelus sinusmexicanus	Gulf Of Mexico Smoothhound	Espécie	10,46
Mustelus whitneyi	Humpback Smoothhound	Espécie	42,93
Myliobatis californica	Bat eagle ray	Espécie	40,19
Myliobatis chilensis	Chilean Eagle Ray	Espécie	32,24
Myliobatis freminvillii	Bullnose Ray	Espécie	79,56
Myliobatis goodei	Southern Eagle Ray	Espécie	79,98
Myliobatis longirostris	Longnose Eagle Ray	Espécie	36,75
Myliobatis peruvianus	Peruvian Eagle Ray	Espécie	31,9
Narcine bancroftii	Caribbean Electric Ray	Espécie	53,08
Narcine brasiliensis	Brazilian electric ray	Espécie	72,9
Narcine entemedor	Giant Electric Ray	Espécie	25
Narcine leoparda	Leopard electric ray	Espécie	1,65
Narcine vermiculatus	Vermiculate Electric Ray	Espécie	19,2
Nasolamia velox	Whitenose Shark	Espécie	49,25
Negaprion brevirostris	Lemon Shark	Espécie	80,75
Neoraja carolinensis	Carolina Pygmy Skate	Espécie	4,25
Notorynchus cepedianus	Broadnose Sevengill Shark	Espécie	113,5
Odontaspis ferox	Smalltooth Sand Tiger	Espécie	91
Odontaspis noronhai	Bigeye Sand Tiger	Espécie	63,9
Parmaturus campechiensis	Campeche Catshark	Espécie	0,05
Parmaturus xaniurus	Filetail Catshark	Espécie	17
Platyrhinoidis triseriata	Thornback Ray	Espécie	15,04
Plesiobatis daviesi	Giant Stingaree	Espécie	61,51
Prionace glauca	Blue Shark	Espécie	125,35

Pristis pectinata Pristis pectinata Pristis percinata Pristis pristis Pseudocarcharias kamoharai Pseudotriakis microdon Pteromylaeus asperrimus Petroplatytrygon violacea Petromylaeus asperrimus Roughskin Bullray Pelagic Stingray Pelagic Stingray Pelagic Stingray Ocellate Skate Raja ackleyi Raja achleyi Raja achleyi Raja cortezensis Raja equatorialis Raja equatorialis Raja equatorialis Raja inornata Raja inornata California Skate Raja inornata Raja texana Raja texana Raja texana Raja telezi Rajale laiginea Rajella fyllae Rajella fyllae Rajella fyllae Rajella fyllae Rajella lintea Rajella lintea Rajella nigerrima Rajella nigerrima Balackish Skate Rajella nigerrima Balackish Skate Rajella sadowskii Rajella sadowskii Rajella nosteprima Rahinobatos pencellens Rhinobatos lentiginosus Rhinobatos prabli Rhinobatos porductus Rhinobatos productus Rhinobatos pro	Duistianhama ashua dani	A C ll-	Englain	2 47
Pristis perotteti Pristis pristis Pristis pristis Pseudocarcharias kamoharai Pseudotriakis microdon Pteromylaeus asperrimus Pteroplatytrygon violacea Raja ackleyi Raja bahamensis Raja bahamensis Raja cortezensis Raja cortezensis Raja cortezensis Raja eglanteria Raja equatorialis Raja inornata Raja inornata Raja texana Raja texana Raja texana Raja evelezi Rajella fuliginea Rajella fuliginea Rajella fulidiena Rajella fulidiena Rajella ninera Rajella ninera Rajella ninera Rajella ninera Rajella ninera Rajella ninera Rajella ninostos prahli Rhinobatos percellens Rhinobatos percellens Rhinobatos prahli Rhinobatos productus Rhinoptera bonasus Rhinoptera brasiliensis Rhinoptera brasiliensis Rhinoptera brasiliensis Rhinoptera brasiliensis Rhinoptera brasiliensis Rhizoprionodon longurio Rajero des des des despecie Rajeco (20,04) Rajero (20,04) Rajeco (20,04)	Pristiophorus schroederi	American Sawshark	Espécie	3,47
Pristis pristis Pseudocarcharias kamoharai Pseudotcarcharias kamoharai Pseudotcarcharias kamoharai Pseudotrakis microdon Pteromylaeus asperrimus Pteroplatytrygon violacea Raja bahamensis Raja bahamensis Raja binoculata Raja cervigoni Raja cortezensis Raja cortezensis Raja cepatorialis Raja equatorialis Raja equatorialis Raja inornata Raja rhina Raja texana Raja texana Raja texana Raja telezi Raja telezi Rajala ella fyllae Rajella fuliginea Rajella fuliginea Rajella nigerrima Rajella nigerrima Rajella nigerrima Rajella nigerrima Rajella sudowskii Rajella sudowskii Rhinobatos planiceps Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinopatos prahli Rhinoptera bonasus Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon prosus Rhizoprionodon terraenovae Schroederichthys bivius Rarocella skate capcic Rapecic Roughskin Bullray Espécie 10,47 Espécie 5,3 Rapecie 5,3 Rajela Espécie 8,39 Venezucla Skate Espécie 8,39 Celarose Skate Espécie 17,22 Espécie 10,47 Espécie 17,22 Espécie 10,47 Calose Espécie 10,47 Espécie 10,48 Espécie 10,48 Espécie 10,49 Espécie 10,4	-		-	•
Pseudocarcharias kamoharai Pseudotriakis microdon Pteromylaeus asperrimus Pteroplatytrygon violacea Raja ackleyi Raja bahamensis Raja binoculata Raja cortezensis Raja cortezensis Raja cortezensis Raja cortezensis Raja equatorialis Raja equatorialis Raja inornata Raja raja exana Raja raja exana Raja equatorialis Raja inornata Raja inornata Raja raja inornata Raja raja texana Raja texana Raja texana Raja texana Rajella fuliginea Rajella fuliginea Rajella lintea Rajella purpuriventralis Rajella foblacos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinoptera bonasus Rhinoptera bonasus Rhinoptera bonasus Rhinoptera bonasus Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon prosus Rhizoprionodon terraenovae Schroederichthys bivius Pales Catshark Espécie 100,48 Espécie 117,22 Espécie 125,94 Espécie 126,01 Espécie 132,16 Espécie 14,52 Espécie 14,53 Southera Guitarfish Espécie 14,53 Espécie 14,52 Espécie 14,53 Espécie 14,54 Espécie 16 Espécie 16 Espécie 17,28 Espécie 16 Espécie 17,28 Espécie 16 Espécie 16 Espécie 17,28 Espécie 17,28 Espécie 17,28 Espécie 14,52 Espécie 14,52 Espécie 14,52 Espécie 14,52 Espécie 14,53 Espécie 14,54 Espéci	_	_	_	
Pseudotriakis microdon Pteromylaeus asperrimus Pteroplatytrygon violacea Raja ackleyi Raja bahamensis Raja bahamensis Raja binoculata Raja cervigoni Raja cervigoni Raja cervigoni Raja cervigoni Raja cervigoni Raja eglanteria Raja eglanteria Raja eglanteria Raja equatorialis Raja inornata Raja rhina Raja thina Raja texana Raja texana Raja teveizi Rajalela fuliginea Rajella fuliginea Rajella fuliginea Rajella fungerrima Rajella purpuriventralis Rajella purpuriventralis Rajella purpuriventralis Rajella purpuriventralis Rajella purpuriventralis Rajiella purpuriventralis Rhinobatos plancostigma Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinoptera brasiliensis Rhinoptera brasiliensis Rhinoptera brasiliensis Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon prorous Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon prorous Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon prorous Rhizoprionodon longurio Rhizoprionodon prorous Rhizoprionodon prorous Rhizoprionodon lerzenevae Schroederichthys bivius Rayela sextene Roughskin Bullray Espécie Spécie Spé	-	_	-	•
Pteromylaeus asperrimus Pteroplatytrygon violaeca Raja ackleyi Raja bahamensis Raja bahamensis Raja binoculata Raja cervigoni Raja cortezensis Raja cortezensis Raja cortezensis Raja equatorialis Raja equatorialis Raja rhina Raja rhina Raja texana Raja texana Raja elezi Raja elezi Raja elezi Raja texana Raja elezi Raja lesenhardti Rajella fullginea Rajella fullginea Rajella fullginea Rajella fullginea Rajella fullginea Rajella lintea Rajella linteri Rajella purpuriventralis Rajella purpuriventralis Rajella purpuriventralis Rajella sadowskii Rajella soortey linte Rajian Skate Rajella fullginosus Rhinobatos percellens Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos pralousus Rhinobatos pralousus Rhinobatos pralousus Rhinobatos pralousus Rhinobatos pralousus Rhinoptera bonasus Rhizoprionodon longurio Rhizoprionodon porosus Rh			_	· ·
Peteroplatytrygon violacea Raja ackleyi Raja bahamensis Raja bahamensis Bahama Skate Big Skate Espécie 3,92 Raja cortezensis Raja cortezensis Raja cortezensis Raja cortezensis Raja equatorialis Raja equatorialis Raja inornata Raja inornata Raja inornata Raja inornata Raja texana Raja etxana Raja velezi Raja ella fyllae Rajella fyllae Rajella fukujevi Rajella nitea Rajella nitea Rajella nitea Rajella nitea Rajella nimobatos porbelli Rahinobatos leucorhynchus Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos productus Rhinoptera brasiliensis Rhizoprionodon longurio Rhizoprionodon terzaenovae Rhizoprionodon terzaenovae Rhizoprionodon terzaenovae Schroederichthys bivius Rourezensis Rajeskate Espécie Spécie Spé			-	
Raja bahamensis Raja bahamensis Raja binoculata Raja cervigoni Raja cervigoni Raja cortezensis Espécie 10,47 Raja velezi Raja cortezense Sapécie Raja cortezense Spécie Ata, 4 Raja cortezense Spécie Ata, 4 Raja cortezense Spécie Ata, 4 Raja cortezense Spécie Ata, 5 Raja velezi Raja cortezense Spécie Ata, 5 Raja velezi Raja velezi Raja tentoria Sate Espécie Raja velezi Raja tentoria Sate Espécie Raja velezi Raja		9	-	· ·
Raja bahamensis Raja binoculata Big Skate Big Skate Espécie 32 Raja cervigoni Raja cortezensis Raja cortezensis Raja cortezensis Raja eglanteria Clearnose Skate Espécie 17,22 Raja equatorialis Raja equatorialis Raja i nornata Raja rhina Raja texana Roundel Skate Raja velezi Rajella fulliginea Rajella fulliginea Rajella fulley Rajella nitgerrima Rajella nitgerrima Rajella nitgerrima Rajella purpuriventralis Rajella sadowskii Rhinobatos lentiginosus Rhinobatos lentiginosus Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos productus Rhinobatos spinosus Rhinoptera brasiliensis Rhizoprionodon lalandii Rhizoprionodon lalandii Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon lerraenovae Schroederichthys bivius Rourd Skate Espécie Raje Espécie Respécie Raje Respécie Respécie Raje Respécie			-	
Raja binoculata Raja cortezensis Raja cortezense Raja cortezensis Raja cortezense R			-	
Raja cortezensis Espécie 25,94 Raja inornata Raja cortezensis Raja cartezensis California Skate Espécie 10,47 Raja velezi Rojuda Raja chianda Raja kate Espécie 25,94 Raja inornata Raja cortezensis Raja cartezensis Capście 25,94 Raja raja cortezensis Rajela Espécie 25,94 Raja raja cortezensis Rajela Espécie 25,94 Raja raja cortezensis Rajela purpurinata Raja chianda California Skate Espécie 26,01 Rajella purpurinata Raja chia, 25 Rajella purpurinata Raja chianda California Skate Espécie 26,01 Rajella purpurinata Rajella purpurinata Rajella purpurinata Rajella fuliginea Rajella fuliginea Rajella fuliginea Rajella fuliginea Raja chala Espécie 26,01 Rajella fuliginea Rajella fu			-	·
Raja cortezensis Raja eglanteria Clearnose Skate Espécie 17.22 Raja equatorialis Equatorial Skate Espécie 25.94 Raja inornata California Skate Espécie 25.94 Raja rhina Longnose Skate Espécie 32.16 Raja texana Roundel Skate Espécie 10.47 Raja velezi Velez Ray Espécie 10.47 Raja velezi Velez Ray Espécie 17.35 Rajella eisenhardti Galapagos Gray Skate Espécie Rajella fyllae Round Skate Espécie 32.16 Rajella fyllae Roundel Skate Espécie 17.35 Rajella fyllae Rajella fyllae Round Skate Espécie 39.35 Rajella lintea Rajella lintea Sailray Espécie 3,81 Rajella nigerrima Blackish Skate Espécie 17 Rajella purpuriventralis Rajella purpuriventralis Rajella sadowskii Brazilian Skate Espécie 14,28 Rhinobatos glaucostigma Rhinobatos horkelii Rhinobatos leucorhynchus Rhinobatos leucorhynchus Rhinobatos precellens Rhinobatos productus Rhinobatos productus Rhinobatos productus Rhinobatos productus Rhinoptera brasiliensis Rhinoptera brasiliensis Rhinoptera brasiliensis Rhinoptera brasiliensis Rhinoptera brasiliensis Rhinoptera brasiliensis Rhinoptera steindachneri Rhizoprionodon lalandii Rhizoprionodon porosus Rhizoprionodon porosus Rhizoprionodon porosus Rhizoprionodon terraenovae Schroederichthys bivius Raromanal Skate Espécie 17,28 Espécie 18,2 Espécie 14,22 Espécie 17,28 Espécie 14,22 Espécie 17,28 Espécie 14,52 Espécie 16 Espécie 17,28 Espécie 14,52 Espécie 16 Espécie 17,28 Espécie 18,2 Espécie 19,24 Espécie 10,85 Espécie	· · · · · · · · · · · · · · · · · · ·	=	-	
Raja eglanteria Raja equatorialis Raja incornata Raja incornata California Skate Espécie Califor			_	
Raja equatorialis Raja inornata Raja rhina Raja rhina Raja texana Raja texana Raja texana Rajella eisenhardti Rajella fuliginea Rajella fuliginea Rajella fuliginea Rajella nitera Rajella nitera Rajella ninobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos productus Rhinobatos productus Rhinobatos productus Rhinobatos productus Rhinoptera broansus Rhinoptera broansus Rhinoptera broansus Rhinoptera tesindachneri Rhizoprionodon lanandii Rhizoprionodon longurio Rajela ryinia Rajella normata Round Skate Espécie Respécie Respécie Round Skate Espécie Respécie R	_	-	_	
Raja inornata Raja rhina Raja rhina Raja texana Roundel Skate Raja texana Roundel Skate Rajella eisenhardti Rajella fuliginea Rajella fuliginea Rajella fuliginea Rajella kukujevi Rajella intea Rajella intea Rajella purpuriventralis Rajella sadowskii Rhinobatos percellens Rhinobatos percellens Rhinobatos praductus Rhinobatos productus Rhinobatos productus Rhinoptera brasiliensis Rhinoptera brasiliensis Rhinoptera steindachneri Rhizoprionodon lanandii Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon lorgurio Rajella nerramovae Rajella sadowskii Rajella sadowskii Round Skate Espécie Respécie Round Skate Espécie Respécie Respécie Respécie Respécie Respécie Respécie Round Skate Espécie Respécie R			-	
Raja rhina Raja texana Raja texana Raja velezi Raja velezi Raja velezi Rajella eisenhardti Rajella fuliginea Rajella fyllae Rajella fyllae Rajella lintea Rajella nigerrima Rajella purpuriventralis Rhinobatos glaucostigma Rhinobatos lentiginosus Rhinobatos percellens Rhinobatos praductus Rhinobatos productus Rhinobatos productus Rhinobatos productus Rhinobatos spinosus Rhinobatos spinosus Rhinoptera brasiliensis Rhinoptera brasiliensis Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon terraenovae Rhajella skate Round Skate Rspécie Espécie 10,47 Espécie 226,01 Espécie 246,01 Espécie 256,01 Espécie 26,01 Espécie 26,01 Espécie 26,01 Espécie 26,01 Espécie 27,02 Espécie 29,04 Espécie 24,08 Espécie 24,08 Espécie 31,38 Espécie 31,38 Espécie 31,38 Espécie 31,38 Espécie 16 Espécie 31,38 Espécie 16 Espécie 32,53 Espécie	1	÷	_	
Raja texana Raja velezi Raja velezi Raja velezi Rajella eisenhardti Rajella fuliginea Rajella fyllae Rajella fyllae Rajella lintea Rajella lintea Rajella nigerrima Rajella purpuriventralis Rajella sadowskii Rajella sadowskii Rhinobatos percellens Rhinobatos percellens Rhinobatos prahli Rhinobatos spinosus Rhinobatos productus Rhinobatos productus Rhinobatos spinosus Rhinoptera brasiliensis Rhinoptera steindachneri Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon terraenovae Rooty Skate Respécie South Skate Rooty Skate Respécie Sepécie S	_		-	· ·
Raja velezi Rajella eisenhardti Rajella fuliginea Rajella fyllae Rajella fyllae Rajella lintea Rajella lintea Rajella lintea Rajella nurpuriventralis Rajella purpuriventralis Rajella sadowskii Rhinobatos glaucostigma Rhinobatos leucorhynchus Rhinobatos prahli Rhinobatos prahli Rhinobatos productus Rhinobatos productus Rhinobatos productus Rhinobatos productus Rhinoptera bonasus Rhinoptera bonasus Rhinoptera teindachneri Rhizoprionodon lalandii Rhizoprionodon longurio Rajella eisenhardti Galapagos Gray Skate Espécie 14,53 Espécie 26,01 Espécie 39,35 Espécie 39,35 Round Skate Espécie 17 Respécie 17 Rajella lintea Ruddatlantic Skate Espécie 29,04 Espécie 29,04 Espécie 24,08 Espécie 24,08 Espécie 18,2 Espécie 18,2 Espécie 17,28 Espécie 17,28 Espécie 17,28 Freckled Guitarfish Espécie 16 Espécie 16 Espécie 32,53 Espécie 32,53 Espécie 32,53 Espécie 32,53 Espécie 32,53 Espécie 14,52 Espécie 14,52 Espécie 14,52 Rhinoptera bonasus Cownose Ray Espécie 11,92 Rhinoptera brasiliensis Brazilian Cownose Ray Espécie 10,85 Rhizoprionodon lalandii Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon terraenovae Rhizoprionodon terraenovae Schroederichthys bivius Narrowmouth Catshark Espécie 37,32 Espécie 37,32 Espécie 36,75 Espécie 36,75 Espécie 37,32 Espécie 36,75 Espécie 36,47 Espécie 37,32 Espécie 36,75 Espécie 37,32		S	-	
Rajella eisenhardti Rajella fuliginea Rajella fyllae Rajella fyllae Rajella lintea Rajella lintea Rajella nigerrima Rajella purpuriventralis Rajella sadowskii Rajella sadowskii Rhinobatos glaucostigma Rhinobatos leucorhynchus Rhinobatos prahli Rhinobatos prahli Rhinobatos productus Rhinobatos productus Rhinobatos productus Rhinoptera bonasus Rhinoptera brasiliensis Rhinoptera brasiliensis Rhinoptera steindachneri Rhizoprionodon longurio Rhizoprionodon porosus Rhizoprionodon terraenovae South Rajella salous Skate Round Skate Espécie Sepécie 39,35 Espécie 17 Rajella lintea Round Skate Espécie Sepécie 39,04 Espécie 29,04 Espécie 24,08 Espécie 24,08 Espécie 24,08 Espécie 31,38 Espécie 31,38 Espécie 16 Espécie 17,28 Espécie 16 Espécie 17,28 Espécie 16 Espécie 14,14 Espécie 14,52 Rhinoptera bonasus Cownose Ray Rhinoptera brasiliensis Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon porosus Rhizoprionodon terraenovae Schroederichthys bivius Railan Skate Espécie 18,2 Espécie 11,28 Espécie 12,23 Espécie 14,14 Espécie 11,92 Espécie 11,92 Espécie 11,92 Espécie 11,92 Espécie 10,85 Es	9		-	· ·
Rajella fuliginea Rajella fyllae Rajella fyllae Rajella kukujevi Rajella lintea Rajella lintea Rajella nigerrima Rajella purpuriventralis Rajella purpuriventralis Rajella sadowskii Rhinobatos glaucostigma Rhinobatos lentiginosus Rhinobatos leucorhynchus Rhinobatos percellens Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos productus Rhinobatos productus Rhinobatos productus Rhinoptera bonasus Rhinoptera brasiliensis Rhinoptera steindachneri Rhizoprionodon longurio Rhizoprionodon terraenovae Schroederichthys bivius Rould Skate Round Skate Round Skate Round Skate Round Skate Rspécie Specie Specie Specie Rspécie 17 Respécie 24,08 Respécie 24,08 Respécie 24,08 Respécie 24,08 Respécie 18,2 Respécie 17,28 Respécie 17,28 Respécie 17,28 Respécie 16 Respécie 16 Respécie 32,53 Respécie 32,53 Respécie 32,53 Respécie 44,14 Respécie 28,8 Respécie 14,52 Respécie 14,52 Respécie 14,52 Respécie 14,52 Respécie 11,92 Respécie 37,32 Respécie		-	-	
Rajella fyllae Rajella kukujevi Rajella lintea Rajella lintea Rajella lintea Rajella nigerrima Rajella purpuriventralis Rajella purpuriventralis Rajella sadowskii Rhinobatos glaucostigma Rhinobatos lentiginosus Rhinobatos leucorhynchus Rhinobatos percellens Rhinobatos prahli Rhinobatos productus Rhinobatos prahli Rhinoptera bonasus Rhinoptera bonasus Cownose Ray Rhinoptera brasiliensis Rhinoptera brasiliensis Rhinoptera brasiliensis Rhizoprionodon lalandii Rhizoprionodon longurio Rhizoprionodon longurio Rhizoprionodon terraenovae Rhizoprionodon terraenovae Rhizoprionodon terraenovae Rhizoprionodon terraenovae Rhizoprionodon terraenovae Schroederichthys bivius Rajella zilan Skate Espécie Specie Spec	_		_	
Rajella kukujevi Rajella lintea Sailray Blackish Skate Rajella purpuriventralis Rajella sadowskii Rhinobatos glaucostigma Rhinobatos leucorhynchus Rhinobatos percellens Rhinobatos prahli Rhinobatos prahli Rhinobatos productus Rhinobatos spinosus Rhinobatos spinosus Rhinoptera bonasus Rhinoptera bonasus Rhinoptera steindachneri Rhizoprionodon lalandii Rhizoprionodon terraenovae Schroederichthys bivius Rajella lintea Sailray Bayecie Sailray Bayecie Sailray Bayecie 17 Espécie 29,04 Espécie 24,08 Espécie 24,08 Espécie 24,08 Espécie 18,2 Espécie 11,28 Espécie 17,28 Espécie 16 Espécie 17,28 Espécie 16 Espécie 17,28 Espécie 16 Espécie 16 Espécie 17,28 Espécie 16 Espécie 16 Espécie 17,28 Espécie 14,14 Espécie 14,52 Espécie 14,52 Espécie 14,52 Espécie 11,92 Espécie 10,85 Es			_	
Rajella lintea Rajella nigerrima Rajella nigerrima Rajella purpuriventralis Rajella purpuriventralis Rajella sadowskii Rajella sadowskii Rajella sadowskii Brazilian Skate Rhinobatos glaucostigma Rhinobatos horkelii Rhinobatos lentiginosus Rhinobatos lentiginosus Rhinobatos leucorhynchus Rhinobatos percellens Rhinobatos prahli Rhinobatos prahli Rhinobatos productus Rhinoptera bonasus Rhinoptera bonasus Rhinoptera brasiliensis Rhinoptera steindachneri Rhizoprionodon longurio Rhizoprionodon terraenovae Schroederichthys bivius Rosaliray Balackish Skate Espécie 29,04 Espécie 24,08 Espécie 18,2 Espécie 17,28 Espécie 17,28 Espécie 16 Espécie 22,23 Espécie 14,52 Espécie 14,52 Espécie 11,92 Espécie 11,92 Espécie 11,92 Espécie 11,92 Espécie 10,85 Espécie 10,85 Espécie 36,75 Espécie 44,69 Espécie 50,47 Espécie 50,47 Espécie 50,47 Espécie 50,47 Espécie 50,47 Espécie 33,25	, ,		-	
Rajella nigerrima Rajella purpuriventralis Rajella sadowskii Rajella sadowskii Rajella sadowskii Rajella sadowskii Rajella sadowskii Rhinobatos glaucostigma Rhinobatos horkelii Rhinobatos lentiginosus Rhinobatos lentiginosus Rhinobatos percellens Rhinobatos prahli Rhinobatos prahli Rhinobatos productus Rhinoptera bonasus Rhinoptera bonasus Rhinoptera bonasus Rhinoptera bonasus Rhinoptera steindachneri Rhizoprionodon lalandii Rhizoprionodon longurio Rhizoprionodon terraenovae Rhizoprionodon terraenovae Schroederichthys bivius Rhazilian Chartos Skark Rhizopronodon terraenovae Rhizoprionodon terraenovae Schroederichthys bivius Rhazilian Skate Espécie Espécie 18,2 Espécie 17,28 Espécie 16 Espécie 16 Espécie 32,53 Espécie 44,14 Espécie 28,8 Routerfish Espécie 14,52 Espécie 14,52 Espécie 14,52 Espécie 11,92 Espécie 11,92 Espécie 11,92 Espécie 10,85 Espécie 36,75 Espécie 36,75 Espécie 44,69 Rhizoprionodon terraenovae Atlantic Sharpnose Shark Espécie 50,47 Espécie 50,4			-	3,81
Rajella purpuriventralis Rajella sadowskiiPurplebelly SkateEspécie24,08Rajella sadowskiiBrazilian SkateEspécie18,2Rhinobatos glaucostigma Rhinobatos horkeliiSpeckled guitarfish Brazilian GuitarfishEspécie31,38Rhinobatos lentiginosusFreckled GuitarfishEspécie16Rhinobatos leucorhynchus Rhinobatos percellens Rhinobatos planicepsFiddlefishEspécie32,53Rhinobatos planiceps Rhinobatos prahli Rhinobatos productusFlathead Guitarfish Gorgona GuitarfishEspécie28,8Rhinobatos productus Rhinoptera bonasusShovelnose Guitarfish Spiny guitarfishEspécie20,22Rhinoptera bonasus Rhinoptera brasiliensisCownose Ray Brazilian Cownose RayEspécie37,32Rhinoptera steindachneri Rhizoprionodon lalandiiBrazilian Cownose RayEspécie36,75Rhizoprionodon longurio Rhizoprionodon porosusPacific Sharpnose Shark Caribbean Sharpnose Shark Atlantic Sharpnose Shark EspécieEspécie50,47Rhizoprionodon terraenovae Schroederichthys biviusAtlantic Sharpnose Shark Narrowmouth CatsharkEspécie79,81Schroederichthys biviusNarrowmouth CatsharkEspécie33,25	1	Sailray	-	17
Rajella sadowskii Rhinobatos glaucostigma Rhinobatos horkelii Rhinobatos lentiginosus Rhinobatos leucorhynchus Rhinobatos percellens Rhinobatos percellens Rhinobatos prahli Rhinobatos prahli Rhinobatos productus Rhinobatos productus Rhinobatos productus Rhinobatos productus Rhinobatos spinosus Rhinoptera bonasus Rhinoptera steindachneri Rhizoprionodon longurio Rhizoprionodon terraenovae Schroederichthys bivius Rhinoptera bivasiliensis Rhizoprionodon terraenovae Schroederichthys bivius Rhinoptera bivasiliensis Rhizoprionodon lalandii Rhizoprionodon lalandii Rhizoprionodon terraenovae Speckled guitarfish Espécie 11,28 Espécie 16 Espécie 16 Espécie 16 Espécie 28,8 Espécie 28,8 Espécie 14,52 Shovelnose Guitarfish Espécie 14,52 Espécie 11,92 Espécie 11,92 Espécie 10,85 Espécie 36,75 Espécie 36,75 Espécie 44,69 Espécie 50,47 Espécie 50,		Blackish Skate	Espécie	29,04
Rhinobatos glaucostigma Rhinobatos horkelii Brazilian Guitarfish Brazilian Brazilian Guitarfish Brazilian Brazilian Guitarfish Brazilian Brazili		Purplebelly Skate	Espécie	24,08
Rhinobatos horkelii Brazilian Guitarfish Espécie 17,28 Rhinobatos lentiginosus Freckled Guitarfish Espécie 16 Rhinobatos leucorhynchus Fiddlefish Espécie 32,53 Rhinobatos percellens Southern Guitarfish Espécie 44,14 Rhinobatos planiceps Flathead Guitarfish Espécie 28,8 Rhinobatos prahli Gorgona Guitarfish Espécie 14,52 Rhinobatos productus Shovelnose Guitarfish Espécie 20,22 Rhinobatos spinosus Spiny guitarfish Espécie 11,92 Rhinoptera bonasus Cownose Ray Espécie 37,32 Rhinoptera brasiliensis Brazilian Cownose Ray Espécie 10,85 Rhinoptera steindachneri Golden Cownose Ray Espécie 36,75 Rhizoprionodon lalandii Brazilian Sharpnose Shark Espécie 50,47 Rhizoprionodon porosus Caribbean Sharpnose Shark Espécie 64,97 Rhizoprionodon terraenovae Schroederichthys bivius Narrowmouth Catshark Espécie 33,25	Rajella sadowskii	Brazilian Skate	Espécie	18,2
Rhinobatos leucorhynchus Rhinobatos leucorhynchus Rhinobatos percellens Rhinobatos percellens Rhinobatos procellens Rhinobatos productus Rhinobatos productus Rhinobatos productus Rhinobatos productus Rhinobatos spinosus Rhinobatos spinosus Rhinobatos spinosus Rhinobatos spinosus Rhinobatos spinosus Rhinoptera bonasus Rhinoptera brasiliensis Rhinoptera steindachneri Rhizoprionodon lalandii Rhizoprionodon longurio Rhizoprionodon porosus Rhizoprionodon terraenovae		ž – –	Espécie	31,38
Rhinobatos leucorhynchus Rhinobatos percellens Rhinobatos percellens Rhinobatos planiceps Rhinobatos prahli Rhinobatos prahli Rhinobatos productus Rhinobatos productus Rhinobatos spinosus Rhinobatos spinosus Rhinoptera bonasus Rhinoptera brasiliensis Rhinoptera steindachneri Rhizoprionodon longurio Rhizoprionodon porosus Rhizoprionodon terraenovae Schroederichthys bivius Rhinobatos prahli Gorgona Guitarfish Espécie 28,8 Espécie 14,52 Espécie 20,22 Espécie 11,92 Espécie 37,32 Espécie 10,85 Espécie 36,75 Espécie 44,69 Espécie 50,47			_	
Rhinobatos percellens Rhinobatos planiceps Rhinobatos prahli Rhinobatos prahli Rhinobatos prahli Rhinobatos productus Rhinobatos productus Rhinobatos spinosus Rhinobatos spinosus Rhinoptera bonasus Rhinoptera brasiliensis Rhinoptera steindachneri Rhizoprionodon lalandii Rhizoprionodon porosus Rhizoprionodon terraenovae Schroederichthys bivius Rhinoptera bout attain a Espécie Rhizoprionodon Balandii Rhizoprionodon terraenovae Schroederichthys bivius Southern Guitarfish Espécie 28,8 Espécie 14,52 Espécie 11,92 Espécie 37,32 Espécie 10,85 Espécie 36,75 Espécie 44,69 Espécie 50,47 Espécie 64,97 Espécie 50,47 Espé	_	Freckled Guitarfish	_	16
Rhinobatos planiceps Rhinobatos prahli Rhinobatos prahli Rhinobatos productus Rhinobatos productus Rhinobatos spinosus Rhinoptera bonasus Rhinoptera brasiliensis Rhinoptera steindachneri Rhizoprionodon lalandii Rhizoprionodon porosus Rhizoprionodon terraenovae Rhizoprionodon terraenovae Schroederichthys bivius Flathead Guitarfish Espécie 28,8 Espécie 14,52 Espécie 20,22 Rhovelnose Guitarfish Espécie 11,92 Espécie 37,32 Espécie 10,85 Espécie 36,75 Espécie 44,69 Espécie 50,47	•		Espécie	32,53
Rhinobatos prahli Gorgona Guitarfish Espécie 14,52 Rhinobatos productus Shovelnose Guitarfish Espécie 20,22 Rhinobatos spinosus Spiny guitarfish Espécie 11,92 Rhinoptera bonasus Cownose Ray Espécie 37,32 Rhinoptera brasiliensis Brazilian Cownose Ray Espécie 10,85 Rhinoptera steindachneri Golden Cownose Ray Espécie 36,75 Rhizoprionodon lalandii Brazilian Sharpnose Shark Espécie 44,69 Rhizoprionodon longurio Pacific Sharpnose Shark Espécie 50,47 Rhizoprionodon porosus Caribbean Sharpnose Shark Espécie 64,97 Rhizoprionodon terraenovae Schroederichthys bivius Narrowmouth Catshark Espécie 33,25	-		Espécie	44,14
Rhinobatos productus Rhinobatos spinosus Spiny guitarfish Rhinoptera bonasus Rhinoptera brasiliensis Rhinoptera steindachneri Rhizoprionodon lalandii Rhizoprionodon porosus Rhizoprionodon terraenovae Schroederichthys bivius Shovelnose Guitarfish Espécie 11,92 Espécie 37,32 Espécie 10,85 Espécie 36,75 Espécie 44,69 Espécie 50,47 Espécie 64,97 Espécie 50,47 Espécie 64,97 Espécie 50,47 Espécie 64,97 Espécie 50,47 Espécie 50,47 Espécie 50,47 Espécie 50,47 Espécie 50,47 Espécie 33,25			-	28,8
Rhinobatos spinosus Rhinoptera bonasus Cownose Ray Rhinoptera brasiliensis Rhinoptera steindachneri Rhizoprionodon lalandii Rhizoprionodon longurio Rhizoprionodon porosus Rhizoprionodon terraenovae Schroederichthys bivius Spiny guitarfish Espécie 11,92 Espécie 37,32 Espécie 10,85 Espécie 36,75 Espécie 44,69 Espécie 50,47 Espécie 64,97 Espécie 64,97 Espécie 79,81 Espécie 33,25	Rhinobatos prahli	Gorgona Guitarfish	Espécie	14,52
Rhinoptera bonasus Rhinoptera brasiliensis Rhinoptera steindachneri Rhizoprionodon lalandii Rhizoprionodon longurio Rhizoprionodon porosus Rhizoprionodon terraenovae Schroederichthys bivius Rhinoptera steindachneri Golden Cownose Ray Espécie 10,85 Espécie 36,75 Espécie 44,69 Espécie 50,47 Espécie 64,97 Espécie 64,97 Espécie 79,81 Espécie 33,25	Rhinobatos productus	Shovelnose Guitarfish	Espécie	20,22
Rhinoptera brasiliensis Rhinoptera steindachneri Rhizoprionodon lalandii Rhizoprionodon longurio Rhizoprionodon porosus Rhizoprionodon terraenovae Schroederichthys bivius Brazilian Cownose Ray Brazilian Sharpnose Ray Brazilian Sharpnose Shark Brazilian Cownose Ray Brazilian Sharpnose Shark Brazilian Sharpnose	Rhinobatos spinosus	Spiny guitarfish	Espécie	11,92
Rhizoprionodon lalandii Brazilian Sharpnose Shark Espécie 44,69 Rhizoprionodon longurio Pacific Sharpnose Shark Espécie 50,47 Rhizoprionodon porosus Caribbean Sharpnose Shark Espécie 64,97 Rhizoprionodon terraenovae Atlantic Sharpnose Shark Espécie 79,81 Schroederichthys bivius Narrowmouth Catshark Espécie 33,25	Rhinoptera bonasus	Cownose Ray	Espécie	37,32
Rhizoprionodon lalandii Brazilian Sharpnose Shark Espécie 44,69 Rhizoprionodon longurio Pacific Sharpnose Shark Espécie 50,47 Rhizoprionodon porosus Caribbean Sharpnose Shark Espécie 64,97 Rhizoprionodon terraenovae Atlantic Sharpnose Shark Espécie 79,81 Schroederichthys bivius Narrowmouth Catshark Espécie 33,25	Rhinoptera brasiliensis	Brazilian Cownose Ray	Espécie	10,85
Rhizoprionodon longurio Pacific Sharpnose Shark Espécie 50,47 Rhizoprionodon porosus Caribbean Sharpnose Shark Espécie 64,97 Rhizoprionodon terraenovae Atlantic Sharpnose Shark Espécie 79,81 Schroederichthys bivius Narrowmouth Catshark Espécie 33,25	Rhinoptera steindachneri	Golden Cownose Ray	Espécie	36,75
Rhizoprionodon porosus Caribbean Sharpnose Shark Espécie 64,97 Rhizoprionodon terraenovae Schroederichthys bivius Narrowmouth Catshark Espécie 33,25	_	=	Espécie	44,69
Rhizoprionodon terraenovae Shark Espécie 79,81 Schroederichthys bivius Narrowmouth Catshark Espécie 33,25	Rhizoprionodon longurio	Pacific Sharpnose Shark	Espécie	50,47
Schroederichthys bivius Narrowmouth Catshark Espécie 33,25	Rhizoprionodon porosus	Caribbean Sharpnose Shark	Espécie	64,97
	Rhizoprionodon terraenovae		Espécie	79,81
Schroederichthys chilensis Chilean Catshark Espécie 39	Schroederichthys bivius	Narrowmouth Catshark	Espécie	33,25
	Schroederichthys chilensis	Chilean Catshark	Espécie	39
Schroederichthys maculatus Narrowtail Catshark Espécie 9,15	Schroederichthys maculatus	Narrowtail Catshark	Espécie	9,15
Schroederichthys saurisqualus Lizard Catshark Espécie 8,4	Schroederichthys saurisqualus	Lizard Catshark	Espécie	8,4
Schroederichthys tenuis Slender Catshark Espécie 10,35	Schroederichthys tenuis		Espécie	10,35
Scyliorhinus besnardi Polkadot Catshark Espécie 8,7	Scyliorhinus besnardi	Polkadot Catshark	Espécie	8,7
Scyliorhinus boa Boa Catshark Espécie 18	Scyliorhinus boa	Boa Catshark	Espécie	18
Scyliorhinus haeckelii Freckled Catshark Espécie 49,5	Scyliorhinus haeckelii	Freckled Catshark	Espécie	49,5
Scyliorhinus hesperius Whitesaddled Catshark Espécie 9,1	Scyliorhinus hesperius	Whitesaddled Catshark	Espécie	9,1
Scyliorhinus meadi Blotched Catshark Espécie 16,08	Scyliorhinus meadi	Blotched Catshark	Espécie	16,08
Scyliorhinus retifer Chain Catshark Espécie 28,2	Scyliorhinus retifer	Chain Catshark	Espécie	28,2

Carliantina tamai	Descript Contains also	Engária	0.82
Scyliorhinus torrei	Dwarf Catshark	Espécie	9,82
Sphyrna corona	Crown Shark Carolina hammerhead	Espécie	50,1
Sphyrna gilberti Sphyrna lewini	Scalloped Hammerhead	Espécie Espécie	1,85 83
Sphyrna media	Scanoped Hammerhead Scoophead Shark	Espécie	66,1
2 2	Great Hammerhead	_	· ·
Sphyrna mokarran	Bonnethead Shark	Espécie	77,35
Sphyrna tiburo		Espécie	78,5
Sphyrna tudes	Curry Shark	Espécie	50,5
Sphyrna zygaena	Smooth Hammerhead	Espécie	109,1
Squaliolus laticaudus	Big-eye Dwarf Shark	Espécie	83,12
Squalus acanthias	Spiny Dogfish	Espécie	130
Squalus cubensis	Cuban Dogfish	Espécie	82,7
Squalus suckleyi	North Pacific Spiny Dogfish	Espécie	36
Squatina argentina	Argentine Angel Shark	Espécie	21,92
Squatina armata	Chilean Angel Shark	Espécie	54,82
Squatina californica	Pacific Angel Shark	Espécie	102,59
Squatina dumeril	Atlantic Angel Shark	Espécie	33,33
Squatina guggenheim	Hidden Angelshark	Espécie	17,96
Squatina heteroptera	Disparate angel shark	Espécie	12,14
Squatina mexicana	Mexican angel shark	Espécie	12,14
Squatina occulta	Angular Angelshark	Espécie	29,21
Squatina punctata	Angular Angelshark	Espécie	12,87
Taeniura meyeni	Blotched Fantail Ray	Espécie	72,59
Tarsistes philippii	luster ray	Espécie	37,64
Torpedo andersoni	Florida Torpedo	Espécie	5,83
Torpedo californica	Pacific Torpedo	Espécie	29,55
Torpedo microdiscus	Smalldisk Torpedo	Espécie	0,15
Torpedo nobiliana	Great Torpedo Ray	Espécie	95
Torpedo peruana	Peruvian torpedo	Espécie	16,56
Torpedo puelcha	Argentine Torpedo	Espécie	11,01
Torpedo semipelagica	Semipelagic torpedo	Espécie	29,19
Torpedo tremens	Chilean Torpedo	Espécie	50,37
Triaenodon obesus	Whitetip Reef Shark	Espécie	62,25
Triakis acutipinna	Sharpfin Houndshark	Espécie	7,56
Triakis maculata	Spotted Houndshark	Espécie	32,13
Triakis semifasciata	Leopard Shark	Espécie	24,12
Urobatis concentricus	Bullseye Round Stingray	Espécie	16
Urobatis jamaicensis	Yellow Stingray	Espécie	26,85
Urobatis maculatus	Cortez Round Stingray	Espécie	10,75
Urobatis marmoratus	Chilean Round Stingray	Espécie	1
Urobatis tumbesensis	Tumbes Round Stingray	Espécie	2,6
Urolophus halleri	Round Stingray	Espécie	31,75
Urotrygon aspidura	Spiny-tail Round Ray	Espécie	37,77
Urotrygon chilensis	Thorny Round Stingray	Espécie	68,98
Urotrygon cimar	Denticled roudray	Espécie	6,15
Urotrygon microphthalmum	Smalleyed Round Stingray	Espécie	18,04
Urotrygon munda	Munda Round Ray	Espécie	16,1
Urotrygon nana	Dwarf Round Stingray	Espécie	15,75
Urotrygon reticulata	Reticulate Round Stingray	Espécie	1,5
Urotrygon rogersi	Roger's Round Ray	Espécie	35,1
Urotrygon serrula	Stingray	Espécie	2,85
Urotrygon simulatrix	Fake Round Ray	Espécie	1,5
Urotrygon venezuelae	Venezuela Round Stingray	Espécie	1,82
Zapteryx brevirostris	Shortnose Guitarfish	Espécie	15,07

Zapteryx exasperata	Banded Guitarfish	Espécie	35,32	
Zapteryx xyster	Southern Banded Guitarfish	Espécie	36,86	
Zearaja chilensis	Kite Ray	Espécie	15,45	
Tubarões	spécies			
Raias	149 espécies			
Total	300 espécies			

Tabela 2. Riqueza, amplitude da distribuição geográfica provincial, parâmetros estatísticos das análises intraprovinciais realizadas para a Regra de Rapoport dos Elasmobranchii e variáveis oceanográficas das províncias biogeográficas marinhas dos Oceanos Pacífico Leste e Atlântico Oeste. S: riqueza; DG: média da amplitude de distribuição geográfica das espécies que habitam cada província biogeográfica; RR Intra: Regra de Rapoport intraprovicinal (β: inclinação da reta, R²: índice de explicabilidade, p: significância estatística); A: temperatura média anual; V: temperatura média do verão; I: temperatura média do inverno; VAT: variação de temperatura média entre o verão e o inverno.

Occaro	Prov	íncia	S	DG	I	RR Intra Variáve			veis Oc	veis Oceanográficas		
Oceano	Biogeo	gráfica [*]	2	שם	β	\mathbb{R}^2	p	A	V	I	VAT	
te	CTNP	43,0°N	52	51,02	0,81	0,70	< 0,01	10,18	12,56	7,92	4,64	
Les	WTNP	27,5° N	101	41,00	0,54	0,73	< 0,01	20,46	23,29	17,78	5,52	
Pacífico Leste	TEP	8,0°N	126	36,55	-0,18	0,30	< 0,01	25,92	26,49	25,29	2,54	
acífi	WTSP	24,5°S	79	46,53	0,14	0,29	< 0,01	16,61	18,66	14,91	3,76	
P_{ϵ}	M	50,0°S	23	59,29	0,66	0,18	> 0,05	9,80	11,36	8,00	3,37	
	CTNA	50,0°N	78	59,65	-0,50	0,47	< 0,01	10,31	16,84	4,98	11,86	
ste	WTNA	30,0°N	125	48,50	1,83	0,94	< 0,01	24,38	28,26	20,37	7,88	
Oe	TNA	22,0°N	155	43,07	0,08	0,02	> 0,05	25,96	28,30	23,46	4,84	
Atlântico Oeste	NBS	7,5°N	114	53,99	-1,22	0,95	< 0,01	27,52	27,66	27,21	0,84	
lânt	TSA	10,5°S	111	54,69	-0,09	0,09	> 0,05	26,56	27,52	25,53	1,99	
Atl	WTSA	32,5°S	104	55,50	0,20	0,22	< 0,05	18,52	22,41	14,90	7,51	
	M	50,0°S	26	76,99	2,00	0,44	< 0,01	8,82	11,30	6,49	4,80	

^{*} Abreviação adotada para cada uma das províncias biogeográficas e o ponto médio da sua localização.

Em relação às análises interprovinciais, seis das nove análises realizadas apresentaram relação significativa entre amplitude de distribuição e latitude, sendo que em cinco detectou-se o padrão da RR e em uma o padrão inverso. A análise da Regra de Rapoport quando avaliada pela análise América, apresentou significância estatística e corroborou o padrão (Figura 2), apesar de não apresentar uma relação muito forte (β = 0,24; R^2 = 0,57, p < 0,01); O mesmo comportamento foi observado na análise Hemisfério na sua porção norte (β = 0,40; R^2 = 0,56, p < 0,01) (Figura 3). A análise Hemisfério para a RR referente à sua porção sul (Figura 3) não apresentou significância estatística (β = -0,03; R^2 = 0,03, p > 0,05). Para a análise Oceano da porção leste do Pacífico (Figura 4), a RR foi corroborada tanto para a sua análise considerando os dois hemisférios (β = 0,39; R^2 = 0,87, p

< 0,01), quanto para as análises dos hemisférios norte (β = 0,57; R^2 = 0,73, p < 0,01) e sul (β = 0,14; R^2 = 0,29, p < 0,01) (Figura 5).

Figura 2: Regressão linear de Pearson para a RR considerando todos os Elasmobranchii analisados pelo presente estudo. Eixo X: bandas de latitude (1º de latitude); eixo Y: média da amplitude de distribuição geográfica das espécies.

Figura 3: Regressão linear de Pearson para a RR considerando todos os Elasmobranchii analisados pelo presente estudo que ocorrem no hemisfério norte (A) e no hemisfério sul (B). Eixo X: bandas de latitude (1º de latitude); eixo Y: média da amplitude de distribuição geográfica das espécies.

Figura 4: Regressão linear de Pearson para a RR considerando todos os Elasmobranchii analisados pelo presente estudo que ocorrem nos oceanos Pacífico Leste (A) e no Atlântico Oeste (B). Eixo X: bandas de latitude (1º de latitude); eixo Y: média da amplitude de distribuição geográfica das espécies.

Figura 5: Regressão linear de Pearson para a RR considerando todos os Elasmobranchii analisados pelo presente estudo que ocorrem nos hemisférios sul (A) e norte (B) do Pacífico Leste. Eixo X: bandas de latitude (1º de latitude); eixo Y: média da amplitude de distribuição geográfica das espécies.

A análise da RR realizada para o Atlântico não apresentou significância estatística, tanto na sua análise Oceano ($\beta=0.03$; R² = 0.03, p > 0.05) (Figura 4), quanto na análise do hemisfério norte ($\beta=0.05$; R² = 0.01, p > 0.05) (Figura 6). No entanto, a análise do hemisfério sul do oceano Atlântico apresentou uma fraca relação significativa e inversamente proporcional ($\beta=-0.09$; R² = 0.10, p < 0.01) (Figura 6).

Considerando as análises intraprovinciais para a Regra de Rapoport, verifica-se que a maior parte apresentou significância estatística para a relação amplitude de distribuição geográfica pelo gradiente latitudinal, exceto as províncias biogeográficas M no lado do Pacífico, TNA e TSA. Apesar de nove das 11 análises intraprovinciais realizadas possuírem significância, não se pode observar a mesma tendência prevista pela Regra de Rapoport em todas estas análises. Em seis províncias (CTNP, WTNP, WTSP, WTNA, WTSA, M porção do Atlântico Oeste) a RR foi corroborada, enquanto em três províncias (TEP, CTNA, NBS) observa-se a tendência inversa ao padrão (Tabela 2). Mais da metade das relações mostraram índices de explicabilidade baixos e medianos (< 0,50), sendo observados valores expressivos para este parâmetro estatístico em quatro das províncias biogeográficas (> 0,50).

Figura 6: Regressão linear de Pearson para a Regra de Rapoport considerando todos os Elasmobranchii que ocorrem nos hemisférios sul (A) e norte (B) do Atlântico Oeste. Eixo X: bandas de latitude (1º de latitude); eixo Y: média da amplitude de distribuição geográfica de todas as espécies de Elasmobranchii que ocorrem em cada um dos hemisférios do oceano analisado.

DISCUSSÃO

Os resultados apresentados pelo presente trabalho demonstram a importância que a escala geográfica adotada têm para a investigação dos padrões ecogeográficos (Ruggiero & Werenkraut, 2007; Orme *et al.* 2006), como por exemplo, a Regra de Rapoport. Quando o padrão é investigado considerando uma grande escala geográfica, aqui demonstrada pela análise denominada América, a tendência do aumento da amplitude de distribuição geográfica das espécies é observada (Figura 2), apesar de apresentar uma explicabilidade moderada (Fortes & Absalão, 2010). O valor moderado observado para o índice de explicabilidade (R² = 0,57) nos permite estabelecer que o gradiente de latitude em si não explica totalmente a variação observada na amplitude de distribuição geográfica das espécies. Desta forma, é salutar pensar que outros fatores, além daqueles que variam ao longo do gradiente de latitude (produtividade e heterogeneidade ambiental), poderiam estar agindo na determinação nesta característica dos Elasmobranchii.

Quando reduzimos a escala geográfica das análises, além da observação do padrão esperado pela Regra de Rapoport, observamos desde a não detecção de qualquer relação, como na análise para o Atlântico (Figura 4) e nas análises intraprovinciais M, TNA, TSA; bem como a observação do padrão inverso na análise para a porção sul do Atlântico (Figura 6) e para as análises intraprovinciais TEP, CTNA, NBS. Esta mesma inconsistência na observação da tendência prevista para a Regra de Rapoport nos resultados, já foi prevista em outros estudos realizados no ambiente marinho (Fortes & Absalão, 2004, 2010; Jacquemin & Doll, 2015).

Apesar de a análise América corroborar a Regra de Rapoport, a redução da escala de análise para os Hemisférios Norte e Sul, mostrou padrões contrastantes. A análise Hemisfério em sua porção sul, não apresentou qualquer tendência para o padrão (Figura 3), em função das tendências opostas apresentadas pelos oceanos Pacífico (Figura 5) e Atlântico (Figura 6), conforme evidenciado pelas em suas análises realizadas nas porções sul.

No Atlântico Sul, a detecção do padrão inverso pode estar associada ao fato das assembleias de Elasmobranchii que habitam esta região, nas suas latitudes subtropicais e temperadas, possuírem uma média da amplitude de distribuição geográfica menor do que as observadas nas latitudes tropicais (Figura 6). Estas latitudes encontram-se nos limites da província WTSA, onde se observou um elevado endemismo de Elasmobranchii (17,31%), com espécies possuindo uma amplitude de distribuição geográfica de 10,13° de latitude. A província WTSA, pode ser considerada uma região de transição entre as águas quentes característica da província TSA (Ekau & Knoppers, 2003) e as águas frias da província M (Bakun 1993; Vasconcellos & Gasalla, 2001), o que a poderia conferir a esta região o status de ecótono entre duas grandes províncias biogeográficas (Fortes & Absalão, 2004). Desta forma, estes aspectos oceanográficos característicos desta região do Atlântico conferem certa

distinção em relação às demais províncias, o que poderia restringir parte das espécies que a habitam dentro dos seus limites.

Neste mesmo hemisfério, na costa do Pacífico, o padrão encontrado está de acordo com o previsto pela Regra de Rapoport (Figura 5), no entanto apresenta uma relação fraca (β = 0,14; R² = 0,29), que provavelmente reflete a influência da corrente de Humboldt, que transporta águas mais frias para latitudes tropicais e acaba por tornar esta parte do Pacífico uma grande Província Biogeográfica (WTSP), com uma extensão de 37° de latitude. Para exemplificar a influência que esta corrente tem no estabelecimento das condições oceanográficas nas latitudes tropicais, basta compararmos uma dada latitude tropical (5,5°) nas costas do Pacífico e do Atlântico, onde se observa uma diferença de 8,3°C na temperatura superficial média anual. Nesta mesma latitude, no lado do Atlântico a temperatura seria de 27,3°C, enquanto no lado do Pacífico seria de uma temperatura de 19,0°C. A influência de águas temperadas nas latitudes tropicais do pacífico possibilitaria estes organismos ampliarem a sua amplitude de distribuição geográfica, uma vez que estão submetidos a uma variação de temperatura típica das maiores latitudes da província Magelânica (Tabela 2). Desta forma, a relação fraca encontrada nesta análise da Regra de Rapoport, seria resultado da maior amplitude de distribuição geográfica encontrada nas latitudes tropicais da província WTSP.

Um aspecto importante a ser considerado nas análises realizadas pelo presente estudo, e extensíveis a outros que avaliam outras regras ecogeográficas, seria a dimensão da região tropical. A área tropical, por se apresentar de forma contínua nos dois hemisférios, pode ser dimensionada como tendo um tamanho de aproximadamente 61° de latitude no Atlântico Oeste e 31° no Pacífico Leste (Figura 1). Desta forma, os peixes tropicais que possuem o seu centro de distribuição geográfica próximo das latitudes menores teriam como sua amplitude média de distribuição geográfica potencial, a totalidade da extensão da região tropical (Colwell & Hurtt, 1994; Roy *et al*, 1998; Luo *et al.*, 2011).

A influência da extensão da região tropical pode ser verificada ao compararmos os resultados das análises para os oceanos Atlântico e Pacífico. De acordo com a hipótese proposta para explicar a Regra de Rapoport, as espécies que habitam a região tropical estão adaptadas a condições ambientais mais restritas, e desta forma não estariam adaptadas às condições oceanográficas existentes nas regiões temperadas, o que restringiria as suas distribuições geográficas a estas latitudes. No entanto, a extensão da região tropical acaba por influenciar na determinação da amplitude de distribuição geográficas das espécies que a habitam. A influência do tamanho da região tropical fica evidente quando comparamos esta parte nos dois oceanos avaliados. Na região tropical do Pacífico Leste, uma única província biogeográfica (TEP) compõe esta região e pode ser dimensionada como tendo 31º de latitude (Figura 1). No Atlântico Oeste, esta mesma região é composta por três províncias biogeográficas (TSA, TNA, NBS) e possui uma dimensão de 61º de latitude (Figura 1). A

maior dimensão da região tropical no Atlântico Oeste, acaba por influenciar na amplitude de distribuição geográfica das espécies que o habitam, variando (média) de 55,9° a 69,2° de latitude. O ambiente tropical mais restrito do Pacífico Leste, influencia na determinação da amplitude de distribuição geográfica das espécies que o habitam, dimensionando-a entre 47,77° a 54,91° de latitude.

O tamanho da região tropical está diretamente relacionado à movimentação das massas de água. No Atlântico Oeste a corrente do golfo estende a influência das águas quentes do Caribe até aproximadamente 35°N o que aumenta região tropical na porção norte deste oceano. De forma contrária, a corrente de Humboldt restringe as águas quentes do Pacífico Leste a no máximo 7°S e diminui a extensão da região tropical neste oceano. Desta forma, a maior extensão da região tropical no Atlântico, e sua conseqüente influência no tamanho da amplitude da distribuição geográfica das espécies que o habitam, complementam os aspectos descritos acima, auxiliando a entender a não detecção do padrão nas análises do Hemisfério sul (Figura 3) e Atlântico Oeste (Figura 4), além da observação do padrão inverso na porção sul do Atlântico Oeste (Figura 6).

Além das análises realizadas em uma escala maior, das três análises intraprovinciais que não apresentaram significância estatística, duas delas inseridas na região tropical do Atlântico Oeste (TSA, TNA) não apresentaram qualquer tendência referente à Regra de Rapoport, provavelmente em função da maior dimensão característica da região tropical deste oceano (Tabela 2).

As demais províncias biogeográficas inseridas na região tropical (TEP, NBS) mostraram uma relação significativa da amplitude de distribuição geográfica com o gradiente de latitude, no entanto, estas apresentaram o padrão inverso, sendo observadas grandes amplitudes de distribuição geográfica nas baixas latitudes em ambas as províncias (Tabela 2). Nestas províncias, nas latitudes próximas ao equador, foram observados os maiores valores para a amplitude de distribuição geográfica (Figuras 5 e 6). Possivelmente, por estarem próximas ao centro da região tropical, caso existam espécies com o ponto médio de distribuição nas latitudes próximas a 0º de latitude, estas poderiam estender a sua distribuição geográfica ao longo de toda a região tropical (Roy *et al.*, 1998). Desta forma, a média da amplitude de distribuição geográfica das assembleias de Elasmobranchii nas menores bandas do gradiente de latitude seria maior do que aquelas que habitam as bandas de latitudes mais próximas dos limites das províncias biogeográficas tropicais.

A província Magelânica (M), na sua parte inserida no Atlântico Oeste apresentou uma relação significativa e corroborou a Regra de Rapoport, no entanto a sua parcela inserida no Pacífico Oeste não apresentou uma relação com significância estatística (Tabela 2). A princípio, nenhuma característica oceanográfica da região parece ter influenciado no estabelecimento destas diferenças. O que foi observado pode ser um simples artefato

relacionado ao reduzido número de espécies que habitam as maiores bandas de latitudes, onde em ambos os lados da província encontra-se uma riqueza inferior a dez espécies. A média estabelecida pela amplitude de distribuição geográfica das espécies endêmicas de águas frias e as espécies amplamente distribuídas, em uma situação de baixa riqueza, pode levar a interpretações opostas.

Nesta província, na banda de latitude 56°-57°S em ambos oceanos, as espécies com amplitude de distribuição geográfica superiores a 120° de latitude são espécies com ampla distribuição pelos oceanos, a saber: tubarão-branco (*Carcharodon carcharias*), tubarão-sardo (*Lamna nasus*), tubarão-elefante (*Cetorhinus maximus*) e galhudo-malhado (*Squalus acanthias*).

Na costa do oceano Pacífico, nesta banda de latitude são encontradas nove espécies de Elasmobranchii, sendo que quatro delas possuem uma distribuição geográfica inferior a 35° de latitude, o que resulta em uma média da amplitude de distribuição geográfica de 57,58°. Em contrapartida, na parte do Atlântico, das sete espécies encontradas, somente duas possuem um distribuição geográfica restrita (< 35°), resultando em uma média de 79,35°. Desta forma, fica exemplificado, que as diferenças observadas nos dois lados da província são um artefato do reduzido número de espécies encontrado na região e, a princípio, pode não apresentar relação com qualquer aspecto oceanográfico associado à biologia (Rigby & Simpfendorfer, 2015) ou à história do grupo (Chamberlain et al., 2012). Da mesma forma que relatado para as províncias mais austrais do hemisfério sul, o mesmo raciocínio pode ser aplicado às províncias mais setentrionais do hemisfério norte (CNTP, CTNA). A observação de padrões opostos nestas duas províncias (Tabela 2) pode ser um artefato estatístico relacionado à baixa riqueza de espécies de Elasmobranchii encontrado nas maiores latitudes. Na banda de latitude de 51°-52°, em ambas as províncias observou-se o mesmo número de espécies, embora a média da amplitude de distribuição geográfica sejam bem distinta (CNTP 71,74° e CTNA 56,31°).

CONCLUSÃO

O presente estudo corroborou a hipótese de que a observação de padrões biogeográficos está associada à escala adotada para a sua análise. Neste estudo, para a Regra de Rapoport, a diminuição na dimensão geográfica da análise, aumenta a incerteza em relação à capacidade de detecção deste padrão (não significância estatística), bem como o aparecimento da sua forma inversa. Desta forma, fica reforçado o corolário de que padrões biogeográficos podem ter a sua detecção associada à dimensão geográfica empregada na sua análise. No caso de padrões biogeográficos associados ao gradiente de latitude, como o caso da Regra de Rapoport, a escala da análise deve possuir dimensão suficiente para englobar as variações climáticas que justificam o aparecimento destes padrões.

REFERÊNCIAS

Angielczyk, K. D., Burroughs, R. W., Feldman, C. R. 2015. Do turtles follow the rules? Latitudinal gradients in species richness, body size, and geographic range area of the world's turtles. Journal of Experimental. Zoology (Mol. Dev. Evol.) 324B: 270–294 pp.

Bailly, D., Cassemiro, F. A. S., Agostinho, C. S., Marques, E. E., Agostinho, A. A. 2014. The metabolic theory of ecology convincingly explains the latitudinal diversity gradient of Neotropical freshwater fish. Ecology, 95(2): 553–562 pp.

Bakun, A. 1993. The California Current, Benguela Current, and Southwestern Atlantic Shelf Ecosystems: A comparative approach to identifying factors regulating biomass yields, p 199-221 in: Sherman, K., Alexander L.M. and Gold, B.D. (eds), Large Marine Ecosystems: Stress, Mitigation and Sustainability. AAAS, Washington D.C, U.S.

Brehm, G. and Fiedler, C., 2004. Bergmann's rule does not apply to geometrid moths along an elevational gradient in an Andean montane rain forest. Global Ecology and Biogeography, 13: 7-14 pp.

Chamberlain, S. A., Hovick, S. M., Dibble, C. J., Rasmussen, N. L., Van Allen, B. G., Maitner, B. S., Ahern, J. R., Bell-Dereske, L. P., Roy, C. L., Meza-Lopez, M., Carrillo, J., Siemann, E., Lajeunesse, M. J., Whitney, K. D. 2012. Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecology Letters, 15 (6): 627–636 pp.

Colonello, J. H., Cortés. F., Massa. A. M. 2014. Species richness and reproductive modes of chondrichthyans in relation to temperature and fishing effort in the Southwestern Atlantic Shelf (34–54°S). Fisheries Research, 160: 8–17 pp.

Collins, M., An, S., Cai, W. 2010. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience, 3: 391–397pp.

Colwell, R. K, Hurtt, G. C. 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. American Naturalist 144: 570–595.

Compagno, L. J. V. 1999. Checklist of living elasmobranches. In: Hamlett, W. C. (editor). Sharks, Skates and Rays. The biology of Elasmobranchs Fishes. John Hopkins University Press, Maryland, 471-498 pp.

Condamine, F. L., Sperling, F. A. H., Wahlberg, S. N., Rasplus, J., Kergoat, G. J. 2012. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail Biodiversity. Ecology Letters, 15: 267–277 pp.

Ekau, W., Knoppers, B. 2003. A review and redefinition of the Large Marine Ecosystems of Brazil, p 355-372 in: Sherman, K. andHempel, G. (eds), Large Marine Ecosystemsofthe World – Trends in Exploitation, ProtectionandResearch. Elsevier Science. Amsterdam, The Netherlands.

Escribano, R; Hidalgo, P; Valdes, V; Frederick, L. 2014. Temperature effects on development and reproduction of copepods in the Humboldt Current: the advantage of rapid growth. Journal of Plankton Research, 36(1): 104–116pp.

Ferreira, C. E. L; Floeter, S. R; Gasparini, J. L; Ferreira, B. P; Joyeux, J. C. 2004. Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. Journal of Biogeography, 31: 1093–1106pp.

Fortes, R.R., and Absalão R.S., 2004. The applicability of Rapoport's Rule to the American marine mollusks. Journal of Biogeography, 31: 1909-1916 pp.

Fortes, R.R., and Absalão, R.S., 2010. The latitudinal and bathymetric ranges of marine fishes: a global analysis to test the application of Rapoport's Rule. Marine Ecology, 31: 483-493 pp.

Fortes, R.R., and Absalão, R.S., 2011. Biogeography an connectivity between western south American and Antartic marine molluscs. Oecologia Australis, 15(1): 111-123 pp.

Froese, R. and Pauly, D. Editors. 2015. FishBase. World Wide Web electronic publication. www.fishbase.org, version (10/2015). Acesso em novembro de 2015.

Gaston, K. J., Blackburn, T. M. & Spicer, J. I. 1998. Rapoport's rule: time for an epitaph? Trends in Ecology & Evolution 13: 70-74 pp.

Gaston, K. J. and Blackburn, T. M., 1999.A critique for macroecology. Oikos, 84 (3): 353-368 pp.

Gaston K. 2003. The structure and dynamics of geographic ranges. Oxford: Oxford University Press. 266 pp.

GBIF - Global Biodiversity Information Facility. Disponível em: <www.gbif.org>. Acesso em: Outubro a Dezembro 2015.

Google Earth. Disponível em: <www.earth.google.com>, version (2015). Acesso em: novembro 2015.

Guerrero, R. J., Sarmiento, C. E. 2010. Distribución Altitudinal de Hormigas (Hymeoptera, Fomicidae) en la vertiente Noroccidental de la sierra Nevada de Santa Marta (Colombia). Acta Zoológica Mexicana, 26 (2): 279-302 pp.

Guerrero, P.C., Durán, A.P., Walter, H.E. 2011. Latitudinal and altitudinal patterns of the endemic cacti from the Atacama desert to Mediterranean Chile. Journal of Arid Environments, 75: 991-997 pp.

Gutiérrez-Pesquera, L. M., Tejedo, M., Olalla-Tárraga, M. Á., Duarte, H., Nicieza, A., Solé, M. 2016. Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. Journal of Biogeography, doi:10.1111/jbi.12700.

Gutiérrez, D; Akester, M; Naranjo, L. 2016. Productivity and Sustainable Management of the Humboldt Current Large Marine Ecosystem under climate change. Environmental Development, 17: 126–144pp.

IUCN. 2015. The IUCN Red List of Threatened Species. Version 2015.1. Disponível em: http://www.iucnredlist.org. Acesso em: Agosto a Dezembro de 2015.

Jacquemin, S. J., Doll, J. C. 2015. Macroecology of North American suckers (Catostomidae): tests of Bergmann's and Rapoport's rules. Ecology and Evolution, 5(18): 3895–3904 pp.

Joyeux, J. C; Floeter, S. R; Ferreira, C. E. L; Gasparini, J. L. 2001. Biogeography of tropical reef fishes: the South Atlantic puzzle. Journal of Biogeography, 28: 831-841pp.

Kendall, V.J., and Haedrich, R.L., 2006. Species richness in Atlantic deep-sea fishes assessed in terms of the mid-domain effect and Rapoport's rule. Deep-Sea Research Part I, 53: 506-515 pp.

Kerr, R; Cunha, L. C; Kikuchi, R. K. P; Horta, P. A; Ito, R; Müller, M. N; Orselli, I. B. M; Lencina-Avila, J. M; Orte, M. R; Sordo, L; Pinheiro, B. R; Bonou, F. K; Schubert, N; Bergstrom, E; Copertino, M. S. 2016. The Western South Atlantic Ocean in a High-CO2 World: Current Measurement Capabilities and Perspectives. Environmental Management, 57:740–752pp.

Kolasa, J., Hewitt, C.L., and Drake, J.A. 1998. Rapoport's rule an explanation or a by product of the latitudinal gradient in species richness. Biodiversity and Conservation, 7: 1447-1455pp.

Kwon, T., Kim, S., Chun, J. H. 2014. Pattern of ant diversity in Korea: An empirical test of Rapoport's altitudinal rule. Journal of Asia-Pacific Entomology, 17: 161–167 pp.

Luo, Z., Tang, S., Li, C., Chen, J., Fang, H., Jiang, Z. 2011. Do Rapoport's Rule, Mid Domain Effect or Environmental Factors Predict Latitudinal Range Size Patterns of Terrestrial Mammals in China? PLoS ONE, 6 (1): 1-9.

Montes, M. J. F. Fatores que influenciam na produtividade dos oceanos: A importância do fluxo de difusão dos nutrientes para a biomassa do fitoplâncton na região oceânica do nordeste brasileiro. 2003. 179 pp. Tese (Doutorado em Oceanografia) – Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife.

National Aeronautics and Space Administration – NASA, 2015. National Centers for Environmental Information. Disponível em: www.nodc.noaa.gov. Acessado em novembro 2015.

Orme, C. D. L., Davies, R. G., Olson, V. A., Thomas, G. H., Ding, T. S. 2006. Global patterns of geographic range size in birds. PLoS Biology, 4: 1276–1283 pp.

Pinheiro, H. T; Ferreira, C. E. L; Joyeux, J. C; Santos, R. G; Horta, P. A. 2011. Reef fish structure and distribution in a south-western Atlantic Ocean tropical island. Journal of Fish Biology, 79: 1984–2006pp.

Rigby, C., Simpfendorfer, C. A. 2015. Patterns in life history traits of deep-water chondrichthyans. Deep-Sea Research II, 115: 30–40 pp.

Rohde, K., 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65: 514-527 pp.

Rohde, K., Heap, M., Heap, D. 1993. Rapoport's rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. American Naturalist, 1-16 pp.

Rohde, K. 1996. Rapoport's Rule is a local phenomenon and cannot explain latitudinal gradients in species diversity. Biodiversity Letters, 3: 10–13 pp.

Rosa, R., Boavida-Portugal, J., Trübenbach, K., Baptista, M., Araújo, R., Calado, R. 2012. Descending into the abyss: Bathymetric patterns of diversity in decapod crustaceans shift with taxonomic level and life strategies. Deep-Sea Research I, 64: 9–21 pp.

Rosenzweig, M., 1992. Species diversity gradients: We know more and less than we thought. Journal of Mammalogy, 73 (4): 715-730 pp.

Roy, K., Jablonski, D., Valentine, J. W. and Rosenberg, G., 1998. Marine latitudinal diversity gradients: Test of causal hypotheses. Proceedings of the Natural Academy of Science, 95: 3699-3702 pp.

Ruggiero, A. & Lawton, J. H. 1998. Are there latitudinal and altitudinal Rapoport effects in the geographic ranges of Andean passerine birds? Biological Journal of the Linnean Society 63: 283-304 pp.

Ruggiero, A., Werenkraut, V. 2007. One-dimensional analyses of Rapoport's rule reviewed through meta-analysis. Global Ecology Biogeography, 16: 401–414 pp.

Sabino, J., Prado, P. I., 2003. Avaliação do Estado do Conhecimento da Diversidade Biológica do Brasil: Vertebrados. Campo Grande, Mato Grosso do Sul, Brasil.

Sanders, N.J., 2002. Elevational gradients in ant species richness: area, geometry, and Rapoport's rule. Ecography 25, 25–32 pp.

Siqueira, C. C., Rocha, C. F. D. 2013. Gradientes altitudinais: Conceitos e implicações sobre a Biologia, a distribuição e a conservação dos anfíbios anuros. Oecologia Australis, 17(2): 283-302 pp.

Spalding, M.D., Fox, H.E., Allen, G.R., Davidson, N., Ferdaña, Z.A., Finlayson, M., Halpern, B.S., Jorge, M.A., Lombana, A., Lourie S.A., Martin, K.D., Mcmanus, E., Molnar, J., Recchia, C.A. and Robertson, J., 2007. Marine ecoregions of the World: A bioregionalization of coastal and shelf areas. BioScience, 57 (7): 573-583 pp.

Stevens, J., Last, P.R., 1995. Sharks, Rays and Chimaeras. Encyclopedia of Fishes: A Comprehensive Guide by International Experts. Academic Press, San Diego, California. 240: 60-69 pp.

Stevens, G.C., 1989. The latitudinal gradient in latitudinal range: how so many species coexist in the tropics. The American Naturalist, 133: 240-256 pp.

Stevens, G. C. 1992. The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. The American Naturalist 140: 893-911 pp.

Stevens, G.C., 1996. Extending Rapoport's rule to Pacific marine fishes. Journal of Biogeography, 23: 149-154 pp.

Taylor, M. T. and Gotelli, N. J., 1994. The Macroecology of Cyprinella: correlates of phylogeny, body size and geographical range. The American Naturalist, 144 (4): 549-569.

Vasconcellos, M., Gasalla, M.A. 2001. Fisheries catches and the carrying capacity of marine ecosystems in southern Brazil. Fisheries Research, 50: 279-295 pp.

Wieters, E., 2001. Marine macroecology. Trends in Ecology and Evolution, 16 (2): 67-69 pp.

Yusuhara, M., Hunt, G., Downsett, H. J., Robinson, M. M., Stoll, D. K. 2012. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecology Letters, 15: 1174–1179 pp.