緣由

在影像辨識中我們期望可以做到輸入為一張圖片,經過一個 function 之後輸出 為那張圖片中物品名稱,由於該 function 過於複雜人力無法處理,因此誕生了 ML 的相關技術。

機器學習的步驟

設計機械學習的流程大致可分簡略分作下列步驟。

一、決定問題的種類

首先需要根據想要解決的問題決定要用何種 ML 的方法進行運用,意即我們所需要的 function 是什麼樣子,其大致可分作三類。

1. Regression

透過給機器多筆 training data,透過通過 regression 找到的 function 期望他輸出一個 scalar (例如預測結果)。

2. Classification

透過 training data 讓機器學會如何分類輸入的類別,又可分作兩小項。

(1) Binary Classification

讓機器輸出的結果是 yes or no。(例如判斷輸入的郵件是不是垃圾郵件)

(2) Multi-class classification

在該項問題中,機器要做的是選擇題,使他給出每一個選項符合輸入類別的機 率(例如影像辨識)

3. Structured Learning

在 structured Learning 裡,我們要機器輸出的是一個有結構性的東西。舉例來說,在人臉辨識的情境中,希望機器能標出不同的人的名稱。

二、決定 Leaning 的方法

再者我們要考慮要怎麼告訴機器我們需要找什麼樣的 function, 意即訓練機器的方法。(基於手上的 data 或是想要達成的目的作決定)

1. Supervised Learning

用含有大量正確答案的資料告訴機器怎樣的判斷才是正確的。以影像辨識的問題來說,其 training data 可能有大量貓狗的圖片,並標註其為貓或狗,藉此讓機器知道「貓」與「狗」的不同。

2. Semi-supervised Learning

在 training set 內有少量的 labeled data,又有大量的 unlabeled data。在 Semi-supervised Learning 的技術裡面,這些沒有 labeled 的 data,對機器學習也是有幫助的。

3. Unsupervised Learning

希望機器學到無師自通,在完全沒有任何 label 的情況下,機器到底能學到什麼樣的知識。例如給機器大量動物的圖片希望他能學會「貓」與「狗」的概念。

4. Transfer Learning

同樣只有少量的有 labeled 的 data;但是我們現在有大量的不相干的 data(不是貓和狗的圖片,而是一些其他不相干的圖片),在這些大量的 data 裡面,它可能有 label 也可能沒有 label。

該技術要解決的問題是,這一堆不相干的 data 可以對結果帶來什麼樣的幫助。

5. Reinforcement Learning

在該技術中我們沒有告訴機器正確的答案是什麼,機器最終得到的只有一個分數,就是它做的好還是不好,但他不知道自己到底哪裡做的不好。其特點是 learning from critics。

三、限定 Model 的範圍

在讓機器怎麼找出想要的 function 之前我們需要限定 model 的搜尋範圍,讓機器在限定的 model 內找出最好的一個。

1. Linear Model

最簡單的 model $(y_i = w_{ni}x_i^n + w_{(n-1)i}x_i^{n-1} + \dots + b)$ 。

優:結構簡單,可以很快地找出 best function, 運算速度快。 容易設計。

缺:在處理複雜的問題上表現較差。 需要 feature transform。

2. Non-linear Model

最常用的 model,其常見類別有下列各項。

- (1) SVM
- (2) Decision Tree
- (3) K-NN

(4) Generative Model

用於 classification 的問題,由於在該問題中單純透過機器分類對或錯定義出來的 loss function 無法微分(不能用 gradient descent),因此採用機率的觀點來看待。意即計算 input 屬於各個 class 的機率($P(C_i|x_i)$)。

在計算 $P(C_i|x_i)$ 時,我們須知 $P(x_i|C_i)$ 的機率故再將 training data 的 distribution 假設為下列方法其一。

a. Naive Bayes Classifier

假設每一個 dimension 的分佈函數都是一維的 Gaussian distribution,使其 covariance matrix 變成 diagonal。

優:減少需要的參數量

缺:若 feature 之間不是相互獨立的,其 bias 就會很大。

b. Gaussian Distribution

將 training data 的 distribution 用 μ(mean)與 Σ(covariance)表示。

c. Bernoulli Distribution

優:由於假設了 distribution 的形式,因此可以補足 data 的不足。 受有問題的 data 影響較小。

priors probabilities 和 class-dependent probabilities 可從不同的來源獲得。

→減少 data 的收集量→把 prior 預測地更精確。

缺:表現較 Discriminative Model 差。

(5) Discriminative Model (Logistic Regression)

同樣用於 classification 的問題。進一步假設 Gaussian Distribution 中的所有 class 都共用一個 covariance,使其變成 linear 的形式,同樣由 w(weight)與 b(bias)控制,最後再經過 sigmoid function 處理。

優:一般表現較 Generative Model 好。

缺:很依靠 training data,因此受有問題的 data 影響較大。
對 feature 分佈不好劃分的情況需使用 Feature Transformation,
或將多個 Logistic Regression 串接起來讓機器自己產生 Transformation
→Deep Learning

(6) Neural Network (Deep Learning)

可想成將多個單一的 function 連接起來,前一個輸出為後者的輸入,通常分作 input layer、hidden layer 與 output layer。

優:適合處理人類較為直覺的任務,意即無法很明確 extract feature 的問題。 →影像辨識、語音辨識。

Modularization

→將每個 classifier 的任務細分使需要的 training data 變少。

End-to-end Learning

→只給 model input 和 output,而不告訴它中間每一個 function 要怎麼分工,讓機器自己去學。使人力變少。

處理 input 特徵相似但 output 類別差很多或者相反的情況,其表現較好。 缺:結構複雜,不容易設計,且運算時間較長,通常會用 GPU 加速。

四、從範圍內找出好的 function

訓練時機器會從決定好的 model 類型中透過定義 loss function,找出最適合的 function (or network)。依據問題的種類其長相不同,該課程目前為止以下列兩項最常見。

1. Square Error

$$L(f) = \sum_n (\hat{y}^n - f(x_i^n))^2$$

適合用於 regression 的問題,意即該輸出僅有 scalar,基於 training data 所作的數值預測。

優:容易微分使用 gradient descent 找 optimal point。

缺:距離目標遠的時候,微分也是非常小的,移動的速度非常慢,容易卡住。

2. Cross Entropy

$$L(f) = \sum\nolimits_n l(f(x_i^n), \hat{y}^n)$$

$$l(f(x^n), \hat{y}^n) = -[\hat{y}^n \ln f(x^n) + (1 - \hat{y}^n) \ln (1 - f(x^n))]$$

適合用於 classification 的問題,分析各選項的機率。

優:距離目標越遠,微分值就越大,參數 update 的時候變化量就越大。

五、找出最小的 Loss Function

透過不斷更新參數找出使 loss function 最小的一組參數。最常見有下列幾種方法。

1. Gradient Descent

隨機選取一組起始的參數,透過計算參數的 gradient 乘上 learning rate 的值更新參數。

$$\theta^{i} = \theta^{i-1} - \eta \nabla L(\theta^{i-1})$$

缺:learning rate 過大過小都會影響其表現。
無法針對每個參數分配一個 learning rate。
gradient 越大,離最低點越遠在有多個參數的情況下不一定成立。
可能不是停在 global minimum→不適用於非 convex。

2. Adagrad

將 learning rate 除以 root mean square,使不同參數的 learning rate 分開考慮。

$$w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$$

優:針對參數客製化。

在不增加任何額外運算的前提下,想辦法去估測二次微分的值。

缺:速度慢。

3. Stochastic Gradient Descent

隨機看到一個樣本點就 update 一次,其 loss function 不是所有樣本點的 error 平方和,而是這個隨機樣本點的 error 平方。

優:速度較快。