第5章 原子结构和元素周期系

第 5 章习题: 2, 3, 4, 5, 6, 7, 8, 9

2.

解: ① 不存在,因为 l=n。

- ②、④ 存在。
- ③ 不存在。因为 m > l

3.

解: ① $n \ge 3$; ② l = 1; ③ $m_s = +\frac{1}{2}$ 或 $-\frac{1}{2}$; ④ m = 0。

4.

解: ①₁₈Ar

 $1s^2 2s^2 2p^6 3s^2 3p^6$

第三周期 ⅦA 族

② ₂₆Fe

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$

第四周期 ⅧB族

③ 29Cu

 $1s^22s^22p^63s^23p^63d^{10}4s^1$

第四周期 IB族

 $4)_{35}Br$

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^5$

第四周期 VIIA族

5. 解:

	原子序	电子分布式	外层电	周期	族	X
	数		子构型			
	28	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$	$3d^84s^2$	四	VIIIB	d⊠
	9	$1s^22s^22p^5$	$2s^22p^5$	1 1	VIIA	p⊠
	42	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4$	$4d^55s^1$	五.	VIB	d⊠
		$p^64d^55s^1$				
ſ	80	$1s^22s^22p^63s^23p^63d^{10}4s^24$	$5d^{10}6s^2$	6	IIB	ds ⊠
		$p^64d^{10}4f^{14}5s^25p^65d^{10}6s^2$				

6.

解:

外电子层结构	X	周期	族	最高正氧化值	
	S	三	II A	+2	
② $2s^22p^4$ O	p	=	VIA	+6	
$3d^34s^2$ V	d	四	VB	+5	
$4d^{10}5s^2$ Cd	ds	五.	II B	+2	

7.

解:该元素的原子失去 3 个电子为 M^{3+} ,则外电子层结构为 $3d^54s^0$ 。

该元素为 M,则外电子层结构为 $3d^64s^2$,其电子结构为 $1s^22s^22p^63s^23p^63d^64s^2$ 该元素为 $2e^6$ Ee。

8.

解:① 此最外层电子为 4s,符合上述条件的元素有 3 个。

② $_{19}$ K $1s^22s^22p^63s^23p^64s^1$ 处于 s 区,第四周期 I A 族; $_{24}$ Cr $1s^22s^22p^63s^23p^63d^54s^1$ 处于 d 区,第四周期 VIB 族; $_{29}$ Cu $1s^22s^22p^63s^23p^63d^{10}4s^1$ 处于 ds 区,第四周期 I B 族。

9.

离子		外层电子构型	外层电子构型	
1	Mn ²⁺	$3s^23p^63d^5$	9~17e	
2	Ti^{4+}	$3s^23p^6$	8e	
3	Fe^{3+}	$3s^23p^63d^5$	9~17e	
4	Cd^{2+}	$4s^24p^64d^{10}$	18e	