The SPARQL query language for RDF

Gilles Falquet

Main idea: Querying by pattern matching

Results

?x

:Vesuvius

:Mount_Etna

— Graph

Main idea: Querying by pattern matching

Pattern

Results

?x	?y
:Vesuvius	:Volcano

Graph

Main idea: Querying by pattern matching

Pattern

Results

?p	?v
:in	:Italy
:population	967068

Graph

SPARQL - based on graph patterns

```
Triple pattern a triple from

(RDF-Term ∪ Var) × (IRI ∪ Var) x (RDF-Term ∪ Var)

• RDF-Term : IRI or literal or blank

• Var : variable
```

Graph pattern

a set of triple patterns

```
Same syntax as Turtle + Variables
{?x rdf:type :Volcano}
{?x :near :Naples. ?x rdf:tye ?y}
{ :Naples ?p ?v}
{ ?x ex:address _:adr . _:adr ex:city ex:Madrid }
```

SPARQL Basic Graph Pattern Query

```
prefix definitions
select output variables
[from graph]
where { basic graph pattern }

PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/1999/02/22-rdf-syntax-ns#</a>
PREFIX: <a href="http://cui.unige.ch/geo/">http://cui.unige.ch/geo/</a>
SELECT ?x ?y
WHERE {?x :near :Naples. ?x rdf:tye ?y}
```

Definition: Basic Graph Pattern Matching

Let BGP be a basic graph pattern and let G be an RDF graph.

μ is a **solution** for BGP from G when

- there is a pattern instance mapping P such that P(BGP) is a subgraph of G
 - P maps variables and blank nodes to RDF-terms
- and μ is the restriction of P to the query variables in BGP.

Example

solutions for { ?x ?y :b }

?x	?y
:а	:р
_:w	:q

solutions for { ?x :p ?y . ?y :q ?z }

?x	?y	?z
:а	:b	_:w
:a	_:w	:b

solutions for { ?x :p _:h . _:h :q ?z }

?x	?z
:а	_:w
:а	:b

Simple Graph Patterns are not Enough

Need to express

- disjunctions (match this or that)
- optional parts in patterns (match if possible)
- negations (match this but not that)
- conditions on variable values (<, >, =, ...)
- multiple paths (path expressions) in patterns

Need to process the results

- combine the solution variables (+, -, ...)
- aggregation functions (sum, average, ...)
- ordering
- grouping

Optional parts

```
{pattern<sub>1</sub> OPTIONAL { pattern<sub>2</sub> }}
```

Find solutions for { pattern₁ pattern₂ } and for { pattern₁ }

In the solutions for $pattern_1$ only, the variables that appear in $pattern_2$ only are unbound.

Example

On the graph

```
:a :p :b. :aa :p :bb. :b :q :c.
```

The solutions of

{ ?x :p ?y OPTIONAL {?y :q ?z} }

11

are

?x	?y	?z
:a	:b	:c
:aa	:bb	UNBOUND

Union

To represent disjunctions

a solution to

pattern1 UNION pattern2

is a solution to *pattern1* or to *pattern2* (or both)

Example

"Find people who own a cat or a dog"

```
{?p a :Person. ?p :owns ?a. ?a a :Cat }
UNION
{?p a :Person. ?p :owns ?a. ?a a :Dog }
```

can be simplified by using group graph patterns

```
{?p a :Person. ?p :owns ?a. {{?a a :Cat} UNION {?a a :Dog}}}
```

Filtering with a boolean exprression

```
{pattern FILTER( expression ) }
```

retain only the solutions to *pattern* for which *expression* evaluates to true

Example

```
{ ?x a :Car. ?x :price ?p. ?x :category ?c 
FILTER(?p < 10000 && ?c != :sport) }
```

Testing For the Absence of a Pattern

```
Data:
:alice rdf:type foaf:Person . :alice foaf:name "Alice" .
:bob rdf:type foaf:Person .
Query:
SELECT ?person
WHERE { ?person rdf:type foaf:Person .
          FILTER NOT EXISTS { ?person foaf:name ?name } }
Query Result:
:bob
```

Testing For the Presence of a Pattern

Query:

```
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person
WHERE { ?person rdf:type foaf:Person .
    FILTER EXISTS { ?person foaf:name ?name } }
```

Query Result:

```
<http://example/alice>
```

Removing Possible Solutions

MINUS evaluates both its arguments, then calculates solutions in the left-hand side that are not compatible with the solutions on the right-hand side.

```
:alice foaf:givenName "Alice"; foaf:familyName "Smith".
:bob foaf:givenName "Bob" ; foaf:familyName "Jones" .
:carol foaf:givenName "Carol"; foaf:familyName "Smith".
SELECT DISTINCT?s
WHERE { ?s ?p ?o . MINUS { ?s foaf:givenName "Bob" . } }
Results:
:carol
:alice
```

Relationship and differences between NOT EXISTS and MINUS

NOT EXISTS and **MINUS** represent two ways of thinking about negation

- one based on testing whether a pattern exists in the data, given the bindings already determined by the query pattern,
- one based on removing matches based on the evaluation of two patterns. In some cases they can produce different answers.

```
@prefix : <http://example/> .
:a :b :c .

SELECT * { ?s ?p ?o FILTER NOT EXISTS { ?x ?y ?z } }

No solutions because { ?x ?y ?z } matches given any ?s ?p ?o

SELECT * { ?s ?p ?o MINUS { ?x ?y ?z } }
```

There is no shared variable between the first part (?s ?p ?o) and the second (?x ?y ?z) so no bindings are eliminated.

Results:

:a :b :c

Property path

iri	
^elt	inverse path
elt / elt	sequence
elt elt	alternative
elt*	repetition (0n)
elt+	repetition (1n)
elt?	option
!iri or !(iri ₁ iri _n)	negation
!^iri or !(^iri ₁ ^iri _n)	negation of the inverse
$!(iri_1 \dots iri_j ^iri_{j+1} \dots ^iri_n)$	

Using property path to access lists

```
Recall that a list structure, written as
:france :flagColors (:blue :white :red) .
is an abbreviation for:
:france :flagColors [
    rdf:type rdf:List;
    rdf:first:blue;
    rdf:rest [
             rdf:type rdf:List;
             rdf:first:white;
             rdf:rest [
                      rdf:type rdf:List;
                      rdf:first :red ;
                      rdf:rest rdf:nil ]]]
```

Some queries over such structures can only be solved by using property path expressions.

```
Find all the colors in the french flag
select ?c
where {:france :flagColors/rdf:rest*/rdf:first ?c }

Find the last color of the french flag
select ?c
where {:france :flagColors/rest* ?last.
```

?last rdf:rest rdf:nil. ?last rdf:first ?c }

Accessing Trees

Example: a part is decomposed into subparts, sub-subparts, etc. linked through a :partOf property.

```
Display all the parts that belong to :b
  select ?p where {?p :partOf* :b. }
If part :a belongs to part :b, display its part number
  select ?pn where {:a :partOf* :b. :a :partNo ?pn }
What are the subparts of :b that have more than 10
subparts (at any level)
  select ?p where {?p :partOf* :b.
  filter count(select ?q where {?q partOf* ?p}) > 10 }
```


RDF Datasets

- Many RDF data stores hold multiple RDF graphs
- A SPARQL query is executed against an RDF Dataset
- An RDF Dataset comprises
 - the default graph, which does not have a name
 - zero or more named graphs identified by IRIs.
- A SPARQL query can match different parts of the query pattern against different graphs
 - The graph that is used for matching a basic graph pattern is the active graph.
 - The GRAPH keyword is used to make the active graph one of all of the named graphs in the dataset for part of the query.

In SPARQL

```
PREFIX ...

SELECT ...

FROM <...> # add this graph to the default graph of the query dataset

FROM NAMED <...> # add this graph as a named graph of the query dataset

WHERE { ... }
```


nbTriples 4562

nbTriples 7066

```
select (count(*) as ?nbTriples)
from named <http://exemple.com/gwenael>
where { # query over the default graph
    {?s ?p ?o .}
Results
nbTriples
```

```
select (count(*) as ?nbTriples)
from named <http://exemple.com/gwenael>
where {
    graph <http://exemple.com/gwenael> {?s ?p ?o .}
}
```

nbTriples

4562

```
select (count(*) as ?nbTriples)
from named <http://exemple.com/gwenael>
from <http://example.com/maria>
where {
    graph <http://exemple.com/gwenael> {?s ?p ?o .}
}
```

nbTriples

4562

31

The default default graph is the merge of the graphs

```
select (count(*) as ?nbTriples)
where {
    ?s ?p ?o .
}

Results
nbTriples
```

18595

Blank nodes in graphs and results

```
ex:MITPress
ex:published ex:bk1;
ex:published _:2 .
```

- Blank nodes are local
- They have no URI
- They cannot be "exported" to the answer
- The answer mapping must "invent" blank nodes

```
select ?pub where {ex:MITPress ex:published ?pub}
```

Infinitely many possible answers?

Scoping Graph - to avoid infinite answers

- Since SPARQL treats blank node identifiers in a results format document as scoped to the document, they cannot be understood as identifying nodes in the active graph of the dataset.
- If DS is the dataset of a query, pattern solutions are therefore understood to be not from the active graph of DS itself, but from an RDF graph, called the *scoping graph*, which is graph-equivalent to the active graph of DS but shares no blank nodes with DS or with BGP.
- The same scoping graph is used for all solutions to a single query.

SPARQL Algebra

- to define the semantics of SPARQL
- to implement SPARQL query engines

Operations on solutions produced by Basic graph pattern matching

SPARQL Algebra

Graph Pattern	Solution Modifier	Property Path
Join	ToList	PredicatePath
LeftJoin	OrderBy	InversePath
Filter	Project	SequencePath
Union	Distinct	AlernativePath
Graph	Reduced Slice	ZeroOrMorePath
Extend	ToMultiSet	OneOrMorePath
Minus		ZeroOrOnePath
Group		NegatedPropertySet
Aggregation		
AggregateJoin		

Operations on multisets of solutions

```
 \{\{x \rightarrow 3, y \rightarrow : aaa\} * 2, \{x \rightarrow 7, y \rightarrow bbb, \ z \rightarrow ccc\} * 3\}   Join(\Omega 1, \Omega 2) = \{ merge(\mu 1, \mu 2) \mid \mu 1 \text{ in } \Omega 1 \text{ and } \mu 2 \text{ in } \Omega 2, \text{ and } \mu 1 \text{ and } \mu 2 \text{ are compatible } \}   \mu_1 \text{ and } \mu_2 \text{ are compatible if, for every variable } v \text{ in } dom(\mu_1) \text{ and in } dom(\mu_2), \ \mu_1(v) = \mu_2(v).   Card(\mu \text{ in } Join(\Omega 1, \Omega 2)) = \text{the number of ways to get } \mu \text{ from elements of } \Omega 1 \text{ and } \Omega 2
```

LeftJoin(Ω 1, Ω 2, expr) = Filter(expr, Join(Ω 1, Ω 2)) \cup Diff(Ω 1, Ω 2, expr))

From SPARQL to SPARQL Algebra

- 1. Extend syntactic forms for IRIs, literals and triple patterns
- 2. Translate property path expressions
- 3. Convert some property path patterns into triples
- 4. Gather the group FILTERs
- 5. Translate the basic graph patterns
- 6. Translate the remaining graph patterns in the group
- 7. Add the filters
- 8. Simplify the algebraic expression

Translate Property Path Expressions

SPARQL Syntax	Algebra
iri	link(iri)
^path	inv(path)
!(iri ₁ iri _n) !(^iri ₁ ^iri _n) !(iri ₁ iri _i ^iri _{i+1} ^iri _n) path1 / path2 path1 path2 path* path+	$\begin{split} & NPS(\{iri_1 \ldots iri_n\}) \; (Negated \ Property \ Set) \\ & inv(NPS(\{iri_1 \ldots iri_n\})) \\ & alt(NPS(\{iri_1 \ldots iri_i\}), \; inv(NPS(\{iri_{i+1} \ldots iri_n\})) \\ & seq(path1, \; path2) \\ & alt(path1, \; path2) \\ & ZeroOrMorePath(path) \\ & OneOrMorePath(path) \end{split}$
path ?	ZeroOrOnePath(path)

Convert some property path patterns into triples

subject, property path expression, object

- ⇒ triple patterns
- \Rightarrow or general algebra operation for path evaluation.

Algebra	SPARQL
X link(iri) Y	X iri Y
X inv(iri) Y	Y iri X
X seq(P, Q) Y	X P ?V _{new} . ?V _{new} Q Y
XPY	Path(X, P, Y)

?s :p/:q ?o

?s :p? v . ?v :q ?o

?s :p* ?o

Path(?s, ZeroOrMorePath(link(:p)), ?o)

:list rdf :rest*/rdf :first ?member

Path(:list, ZeroOrMorePath(link(rdf:rest)), ?v) . ?v rdf:first?member

 After translating property paths, any adjacent triple patterns are collected together to form a basic graph pattern
 BGP(triples).

Translating General Graph Patterns (simplified)

```
basic graph pattern:
```

$$Tr(P) = BGP(Tr(P))$$

union:

Tr(P1 UNION P2) = Union(t(P1), t(P2))

option:

 $Tr(P1 OPTIONAL\{P2\}) = LeftJoin(Tr(P1), Tr(P2), true)$ $Tr(P1 OPTIONAL\{P2 FILTER (F)\}) = LeftJoin(Tr(P1), Tr(P2), F)$

filter:

 $Tr({P1 FILTER}(E)) = Filter(E, Tr(P1))$

others:

 $Tr({P1 P2}) = Join(Tr(P1), Tr(P2))$

Examples

```
{?s ?p ?o }
                                   BGP(?s?p?o)
{?s:p1?v1;:p2?v2}
                            BGP(?s:p1?v1.?s:p2?v2)
{?s :p1 ?v1 OPTIONAL {?s :p2 ?v2 } OPTIONAL {?s :p3 ?v3 } }
         LeftJoin(
           LeftJoin(BGP(?s:p1?v1), BGP(?s:p2?v2), true),
           BGP(?s:p3?v3),
           true)
```