TEORIA STEROWANIA 2

Sprawozdanie z laboratorium nr 5

Kryterium koła i twierdzenie Popova

Roman Nowak, WEAIiIB, Automatyka i Robotyka 25 maja 2024

Spis treści

1.	Cel ćwiczenia			
	1.1.	. Kryterium koła		
	1.2.	. Twierdzenie Popowa		
2.	Przebieg ćwiczenia			
	2.1.	. Przykład 1		
		2.1.1. Kryterium koła		
		2.1.2. Twierdzenie Popowa		
	2.2.	. Przykład 2		
		2.2.1. Kryterium koła		
		2.2.2. Twierdzenie Popowa		
2	XX 7:	aioeki		

1. Cel ćwiczenia

Celem ćwiczenia jest poznanie i nauka stosowania dwóch twierdzeń. Są to:

- Tak zwane "kryterium koła";
- Twierdzenie Popowa.

Oba te twierdzenia do stosuje się do badania stabilności systemów nieliniowych, w skład których wchodzi liniowy układ dynamiczny z jednym wejściem i jednym wyjściem (SISO) objęty sprzężeniem zwrotnym:

$$u(t) = f(t, y(t)) \tag{1}$$

Liniowy układ dynamiczny opisany jest równaniami:

$$\begin{cases} \dot{x}(t) = Ax(t) + bu(t) \\ y(t) = c^{T}x(t) \end{cases}$$
 (2)

Równaniom (2) odpowiada transmitancja:

$$G(s) = c^{T}(sI - A)^{-1}b$$
(3)

1.1. Kryterium koła

Jeśli dla systemu (2), zamkniętego sprzężeniem zwrotnym (1), istnieją takie parametry m_1 i m_2 , które:

- są ustalonymi liczbami rzeczywistymi;
- $m_1 \le m_2$

Oraz istnieje $m_0 \in [m_1, m_2]$, takie że $A + bm_0c^T$ jest macierzą wykładniczo stabilną, czyli:

$$Re\lambda(A + bm_0c^T) < 0 \tag{4}$$

Oraz spełnione są nierówności:

$$m_1 y^2 \le y f(t, y) \le m_2 y^2 \tag{5}$$

$$Re([1 - m_1G(j\omega)][1 - m_2G(j\omega)]^*) > 0$$
 (6)

To układ zamknięty jest stabilny w sektorze dopuszczalnym, określonym przez m_1 i m_2 .

1.2. Twierdzenie Popowa

Jeśli system otwarty (2) jest wykładniczo stabilny (co dla systemu liniowego, stacjonarnego i skończenie stanowego jest równoznaczne stabilności asymptotycznej)

Oraz jeśli dla tego systemu, zamkniętego sprzężeniem zwrotnym ze skalarną funkcją f klasy C^1 (1), istnieje rzeczywiste m, takie że:

$$0 \le y f(y) \le m y^2 \tag{7}$$

Oraz istnieje rzeczywiste q, takie że dla każdego $\omega \in R$:

$$ReG(j\omega) - q\omega ImG(j\omega) < \frac{1}{m}$$
 (8)

To układ zamknięty jest stabilny w sektorze dopuszczalnym, określonym przez m.

Należy podkreślić, że oba twierdzenia, formułują warunki dostateczne, ale nie konieczne. Można na ich podstawie wnioskować o stabilności układu, ale nie spełnienie ich warunków nie implikuje niestabilności.

Zadanie polega na wyznaczenie sektorów dopuszczalnych kryterium koła oraz Popowa dla dwóch podanych układów, zamkniętych ujemnym sprzężeniem zwrotnym.

2. Przebieg ćwiczenia

2.1. Przykład 1

Dany otwarty układ liniowy jest opisany transmitancją:

$$G_o(s) = \frac{4(1-5s)}{(1+3s)(1+2s)} \tag{9}$$

Do dalszych obliczeń należy ją jeszcze pomnożyć przez -1, ponieważ mamy do czynienia z ujemnym sprzężeniem zwrotnym.

Należy sprawdzić warunki kryterium koła i twierdzenia Popowa i określić największe sektory dopuszczalne.

2.1.1. Kryterium koła

Aby wyznaczyć sektor dopuszczalny kryterium koła, należy skorzystać z interpretacji geometrycznej nierówności (6). (patrz. [1]). Zgodnie z tą interpretacją, sektor dopuszczalny będzie najszerszy, dla odpowiednio dobranych m_1 i m_2 , jeśli $m_1 < 0$ i $m_2 > 0$.

W takim przypadku warunek (6) można przekształcić do równania okręgu (po zastąpieniu znaku nierówności) o środku w $(0, \frac{\frac{1}{m_2} - \frac{1}{m_1}}{2})$ i punktach przecięcia z osią x w $\frac{1}{m_1}$ oraz w $\frac{1}{m_2}$. Aby warunek (6) był spełniony, okrąg musi zawierać w swoim wnętrzu cały wykres charakterystyki Nyquista. Żeby zmaksymalizować $|m_1|$ i $|m_2|$, minimalizujemy promień okręgu. Ten krok został zrealizowany eksperymentalnie, za pomocą wyrysowywania wykresów w Matlabie dla różnych wartości m_1 i m_2 .

Rys. 1 - Charakterystyka Nyquista (pomarańczowa) i obejmujący ją okrąg. Krzywe na wykresie nie mają wspólnych punktów.

Uzyskane wartości:

$$m_1 = -0.245$$
; $m_2 = 0.205$

Na ich podstawie możemy wyrysować uzyskany sektor dopuszczalny.

Rys. 2 - Sektor dopuszczalny kryterium koła dla nieliniowego regulatora układu 9. Tworzą go proste $f(t,y) = m_1 \cdot y$ oraz $f(t,y) = m_2 \cdot y$.

2.1.2. Twierdzenie Popowa

Aby skorzystać z twierdzenia Popowa, należy obliczyć tak zwaną transmitancję zmodyfikowaną układu, czyli transmitancję widmową układu otwartego z częścią urojoną pomnożoną przez ω . Robi się tak, aby warunek 8, sprowadzić do równania prostej. Następnie wyrysowujemy charakterystykę Nyquista i szukamy prostej Popowa, czyli takiej prostej, która na płaszczyźnie zespolonej znajduje się na lewo od wykresu charakterystyki, i nie ma z nią wspólnych punktów. Prosta Popowa przecina oś x w $\frac{1}{m}$ oraz jest nachylona do niej pod kątem arctan $\frac{1}{q}$. W celu znalezienia jak największego sektora Popowa, szukamy jak największej wartości m, czyli staramy się umieścić prostą, jak najbliżej wykresu charakterystyki.

Rys. 3 - Charakterystyka Nyquista układu o zmodyfikowanej transmitancji (pomarańczowa) i prosta Popowa. Linie na wykresie nie mają wspólnych punktów (mimo, że są bardzo blisko siebie).

Uzyskane wartości:

$$m = 0.249; \ q = 0.6$$

Na ich podstawie możemy wyrysować uzyskany sektor dopuszczalny.

Rys. 4 - Sektor Popowa. Tworzą go prosta $f(t,y) = m \cdot y$ oraz oś x.

2.2. Przykład 2

Dany otwarty układ liniowy jest opisany równaniami (2), gdzie:

$$A = \begin{bmatrix} -2 & 1 & 0 \\ -1 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}, b = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, c^{T} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

Objętego sprzężeniem zwrotnym (1), gdzie

$$u(t) = M \arctan y(t), M > 0$$

Należy znaleźć największą wartość *M*, dla którego spełnione są warunki obu twierdzeń. W pierwszej kolejności należy znaleźć transmitancję tego układu:

$$G_o(s) = \frac{s^2}{s^3 + 2s^2 + s + 1} \tag{10}$$

Do dalszych obliczeń należy ją jeszcze pomnożyć przez -1. Podjęte kroki są analogiczne do tych z przykładu pierwszego.

2.2.1. Kryterium koła

Rys. 5 - Charakterystyka Nyquista (pomarańczowa) i obejmujący ją okrąg. Krzywe na wykresie nie mają wspólnych punktów.

Uzyskane wartości:

$$m_1 = -0.52$$
; $m_2 = 0.85$

Na ich podstawie możemy wyrysować uzyskany sektor dopuszczalny.

Rys. 6 - Sektor dopuszczalny kryterium koła dla nieliniowego regulatora układu 10. Tworzą go proste $f(t,y) = m_1 \cdot y$ oraz $f(t,y) = m_2 \cdot y$.

2.2.2. Twierdzenie Popowa

Rys. 7 - Charakterystyka Nyquista układu o zmodyfikowanej transmitancji (pomarańczowa) i prosta Popowa. Linie na wykresie nie mają wspólnych punktów (mimo, że są bardzo blisko siebie).

Uzyskane wartości:

$$m = 2.93; q = -0.34$$

Na ich podstawie możemy wyrysować uzyskany sektor dopuszczalny.

Rys. 8 - Sektor Popowa. Tworzą go prosta $f(t,y) = m \cdot y$ oraz oś x.

3. Wnioski

- Za pomocą badanych twierdzeń kryterium koła i twierdzenia Popowa, możemy wyznaczyć sektor dopuszczalny dla nieliniowej funkcji f(t,y). W praktyce oznacza to możliwość dobrania odpowiedniego regulatora nieliniowego, dla którego układ zamknięty będzie stabilny.
- Kryterium koła pozwala na znalezienie zakresu, opisanego przez dwa parametry, dzięki
 czemu, możemy rozszerzyć sektor dopuszczalny na wszystkie cztery ćwiartki płaszczyzny.
- Twierdzenie Popowa, dzięki parametrowi q, pozwala na zwiększenie parametru m, a przez to na poszerzenie sektora dopuszczalnego w 1 i 3 ćwiartce płaszczyzny.
- Dzięki znajomości sektora dopuszczalnego dla układu, możemy w precyzyjny sposób dobrać parametry, na przykład, regulatora trójpołożeniowego, zachowując gwarancję stabilności układu.
- Korzystając z analizowanych twierdzeń, należy pamiętać, że formułują one warunki dostateczne stabilności, a nie konieczne. Oznacza to, że znalezione sektory dopuszczalne, obejmują przedział dla którego układ zamknięty będzie na pewno stabilny, ale rzeczywisty przedział stabilności może być szerszy.

Literatura

[1] Jerzy Baranowski, Krystyn Hajduk, Adam Korytowski, Wojciech Mitkowski, Andrzej Tutaj, *Teoria sterowania. Materiały pomocnicze do ćwiczeń laboratoryjnych*, 2015, wyd. 2 poprawione.