Prof. Eloy Alvarado Narváez

[15] Una empresa investigadora de mercado realizó un estudio del número de anuncios mostrados por TV en horario de la tarde, a lo largo de 10 día. Los resultados obtenidos para determinado canal fueron los siguientes:

Número anuncios	Espectadores (M)
49	359,6
42	296,1
30	271,6
26	251,1
31	229,3
20	186,9
21	186,3
24	172,7
15	166
19	162,1

uv_logo_alta_rgba.png

$$\sum \text{N\'umero de anuncios} = 277$$

$$\sum \text{Espectadores} = 2281,7$$

$$\sum \text{N\'umero de anuncios}^2 = 8705$$

$$\sum \text{Espectadores}^2 = 559680,63$$

$$\sum \text{Nro. anuncios} \cdot \text{Espectadores} = 69206,5$$

- (a) (3 puntos) Identifique, clasifique y grafique las variables en estudio.
- (b) (5 puntos) ¿Cuál de las dos variables es más homogénea?
- (c) (7 puntos) Mediante una medida adecuada, indique el nivel y tipo de asociación entre las variables.

Solución: X: {Número de anuncios}; variable cuantitativa discreta Y: {Número de espectadores}; variable cuantitativa discreta

$$\overline{X} = 27.7$$
 $\overline{Y} = 228.17$

Utilizando los datos dados y la fórmula, para x e y, respectivamente:

$$S_X^2 = \frac{1}{n-1} \left[\sum_{i=1}^n X_i^2 - n\overline{X}^2 \right]$$

Obtenemos:

$$S_X^2 = 114,6778$$
 $S_Y^2 = 4340,571$

Luego, obtenemos los coeficientes de variación respectivos:

$$CV_X = \frac{\sqrt{114,6778}}{27,7} = 0.386593$$
 $CV_Y = \frac{\sqrt{4340,571}}{228,17} = 0.2887453$

Finalemente, una medida adecuada de asociación es el coeficiente de correlación de Pearson:

$$r_{X,Y} = \frac{COV(X,Y)}{S_X S_Y} = \frac{\frac{1}{n-1} \left[\sum X_i Y_i - n \overline{xy} \right]}{S_X S_Y} = 0,9454583$$

Por lo que existe un relación lineal fuerte entre el número de anuncios y el número de espectadores.