SEQUENCE LISTING Darrow, <110> Qi, Jenson Andrade-Grodon, Patricia <120> Zymogen Activation System <130> ORT-1552 <140> 10/015,989 <141> 2001-12-10 <150> 09/303,162 <151> 1999-04-30 <160> 60 <170> PatentIn version 3.2 <210> 1 <211> 361 <212> DNA Artificial <213> <220> <223> Fusion Gene Vectors <400> gaattcacca ccatggacag caaaggttcg tcgcagaaat cccgcctgct cctgctgctg 60 gtggtgtcaa atctactctt gtgccagggt gtggtctccg actacaagga cgacgacgac 120 180 gtggacgcgg ccgctcttgc tgcccccttt gatgatgatg acaagatcgt tgggggctat gctctagata gcggccgctt ccctttagtg agggttaatg cttcgagcag acatgataag 240 300 atacattgat gagtttggac aaaccacaac tagaatgcag tgaaaaaaat gctttatttg 360 tgaaatttgt gatgctattg ctttatttgt aaccattata agctgcaata aacaagttga C 361 <210> 301 <211> <212> DNA Artificial Sequence <213> <220> <223> Fusion Gene Vectors <400> gaattcacca tgaatccact cctgatcctt acctttgtgg cggccgctct tgctgccccc 60 tttgatgatg atgacaagat cgttgggggc tattgtctag atacccctac gatgtgcccg 120 180 attacgccta gcggccgctt ccctttagtg agggttaatg cttcgagcag acatgataag atacattgat gagtttggac aaaccacaac tagaatgcag tgaaaaaaat gctttatttg 240 tgaaatttgt gatgctattg ctttatttgt aaccattata agctgcaata aacaagttga 300 301 C

Page 1

<210> 3 <211> 484 <212> DNA <213> Artificial Sequence	
<220> <223> Fusion Gene Vector	
<400> 3 gaattcacca ccatggacag caaaggttcg tcgcagaaat cccgcctgct cctgctgctg	60
	120
gtggtgtcaa atctactctt gtgccagggt gtggtctccg actacaagga cgacgacgac	180
gtggacgcgg ccgctcttgc tgcccccttt atcgaggggc gcattgtgga gggctcggat	240
ctagataccc ctacgatgtg cccgattacg ccgctagata cccctacgat gtgcccgatt	
acgccgctag ataccactac gatgtgcccg attacgccgc tagatacccc tacgatgtgc	300
ccgattacgc ctagcggccg cttcccttta gtgagggtta atgcttcgag cagacatgat	360
aagatacatt gatgagtttg gacaaaccac aactagaatg cagtgaaaaa aatgctttat	420
ttgtgaaatt tgtgatgcta ttgctttatt tgtaaccatt ataagctgca ataaacaagt	480
tgac	484
<210> 4 <211> 382 <212> DNA <213> Artificial Sequence	
<220> <223> Fusion Gene Vectors	
<400> 4 gaattcacca ccatggacag caaaggttcg tcgcagaaat cccgcctgct cctgctgctg	60
gtggtgtcaa atctactctt gtgccagggt gtggtctccg actacaagga cgacgacgac	120
gtggacgcgg ccgctcttgc tgcccccttt gatgatgatg acaagatcgt tgggggctac	180
aactgtctag acatcaccat caccatcact agcggccgct tccctttagt gagggttaat	240
gcttcgagca gacatgataa gatacattga tgagtttgga caaaccacaa ctagaatgca	300
gtgaaaaaaa tgctttattt gtgaaatttg tgatgctatt gctttatttg taaccattat	360
aagctgcaat aaacaagttg ac	382
<210> 5 <211> 352 <212> DNA <213> Artificial Sequence	
<220> <223> Fusion Gene Vectors	
<400> 5	60
gaattcacca ccatggcttt cctctggctc ctctcctgct gggccctcct gggtaccacc Page 2	60

ttcggctgcg	gggtccccga	ctacaaggac	gacgacgacg	cggccgctct	tgctgccccc	120
tttgatgatg	atgacaagat	cgttgggggc	tatgctctag	acatcaccat	caccatcact	180
agcggccgct	tccctttagt	gagggttaat	gcttcgagca	gacatgataa	gatacattga	240
tgagtttgga	caaaccacaa	ctagaatgca	gtgaaaaaaa	tgctttattt	gtgaaatttg	300
tgatgctatt	gctttatttg	taaccattat	aagctgcaat	aaacaagttg	ac	352
<210> 6 <211> 385 <212> DNA <213> Art	ificial Sequ	uence				
<220> <223> Fus	ion Gene Vec	itors	•		×	
<400> 6 gaattcacca	ccatggcttt	cctctggctc	ctctcctgct	gggccctcct	gggtaccacc	60
ttcggctgcg	gggtccccga	ctacaaggac	gacgacgacg	cggccgctct	tgctgccccc	120
tttgatgatg	atgacaagat	cgttgggggc	tatgctctag	atacccctac	gatgtgcccg	180
attacgccgc	tagacatcac	catcaccatc	actagcggcc	gcttcccttt	agtgagggtt	240
aatgcttcga	gcagacatga	taagatacat	tgatgagttt	ggacaaacca	caactagaat	300
gcagtgaaaa	aaatgcttta	tttgtgaaat	ttgtgatgct	attgctttat	ttgtaaccat	360
tataagctgc	aataaacaag	ttgac				385
<210> 7 <211> 116 <212> DNA <213> Art	9 ificial Sequ	uence				
<220> <223> Fus	ion Gene Wit	th Homo Sap	ien Serine I	Protease Cat	talytic Domain	
<400> 7 gaattcacca	ccatggacag	caaaggttcg	tcgcagaaat	cccgcctgct	cctgctgctg	60
gtggtgtcaa	atctactctt	gtgccagggt	gtggtctccg	actacaagga	cgacgacgac	120
gtggacgcgg	ccgctcttgc	tgccccttt	gatgatgatg	acaagatcgt	tgggggctat	180
gctctagagg	ccggtcagtg	gccctggcag	gtcagcatca	cctatgaagg	cgtccatgtg	240
tgtggtggct	ctctcgtgtc	tgagcagtgg	gtgctgtcag	ctgctcactg	cttccccagc	300
gagcaccaca	aggaagccta	tgaggtcaag	ctgggggccc	accagctaga	ctcctactcc	360
gaggacgcca	aggtcagcac	cctgaaggac	atcatccccc	accccagcta	cctccaggag	420
ggctcccagg	gcgacattgc	actcctccaa	ctcagcagac	ccatcacctt	ctcccgctac	480
atccggccca	tctgcctccc	tgcagccaac	gcctccttcc	ccaacggcct	ccactgcact	540
gtcactggct	ggggtcatgt	ggccccctca	gtgagcctcc Page		gccactgcag	600

caactcgagg tgcctctgat cagtcgtgag acgtgtaact gcctgtacaa catcgacgcc	660
aagcctgagg agccgcactt tgtccaagag gacatggtgt gtgctggcta tgtggagggg	720
ggcaaggacg cctgccaggg tgactctggg ggcccactct cctgccctgt ggagggtctc	780
tggtacctga cgggcattgt gagctgggga gatgcctgtg gggcccgcaa caggcctggt	840
gtgtacactc tggcctccag ctatgcctcc tggatccaaa gcaaggtgac agaactccag	900
cctcgtgtgg tgccccaaac ccaggagtcc cagcccgaca gcaacctctg tggcagccac	960
ctggccttca gctctagaca tcaccatcac catcactagc ggccgcttcc ctttagtgag	1020
ggttaatgct tcgagcagac atgataagat acattgatga gtttggacaa accacaacta	1080
gaatgcagtg aaaaaaatgc tttatttgtg aaatttgtga tgctattgct ttatttgtaa	1140
ccattataag ctgcaataaa caagttgac	1169
<210> 8 <211> 1142 <212> DNA <213> Artificial Sequence	
<220> <223> Fusion Gene With Homo Sapien Serine Protease Catalytic Doma	in
<400> 8 gaattcacca ccatggcttt cctctggctc ctctcctgct gggccctcct gggtaccacc	60
ttcggctgcg gggtccccga ctacaaggac gacgacgacg cggccgctct tgctgccccc	120
tttgatgatg atgacaagat cgttgggggc tatgctctag aggccggtca gtggccctgg	180
caggtcagca tcacctatga aggcgtccat gtgtgtggtg gctctctcgt gtctgagcag	240
tgggtgctgt cagctgctca ctgcttcccc agcgagcacc acaaggaagc ctatgaggtc	300
aagctggggg cccaccagct agactcctac tccgaggacg ccaaggtcag caccctgaag	360
gacatcatcc cccaccccag ctacctccag gagggctccc agggcgacat tgcactcctc	420
caactcagca gacccatcac cttctcccgc tacatccggc ccatctgcct ccctgcagcc	480
aacgcctcct tccccaacgg cctccactgc actgtcactg gctggggtca tgtggccccc	540
tcagtgagcc tcctgacgcc caagccactg cagcaactcg aggtgcctct gatcagtcgt	600
gagacgtgta actgcctgta caacatcgac gccaagcctg aggagccgca ctttgtccaa	660
gaggacatgg tgtgtgctgg ctatgtggag gggggcaagg acgcctgcca gggtgactct	720
gggggcccac tctcctgccc tgtggagggt ctctggtacc tgacgggcat tgtgagctgg	780
ggagatgcct gtggggcccg caacaggcct ggtgtgtaca ctctggcctc cagctatgcc	840
tcctggatcc aaagcaaggt gacagaactc cagcctcgtg tggtgcccca aacccaggag	900
tcccagcccg acagcaacct ctgtggcagc cacctggcct tcagctctag acatcaccat	960
caccatcact agcggccgct tccctttagt gagggttaat gcttcgagca gacatgataa Page 4	1020

gatacattga tgagtttgga caaaccacaa ctagaatgca gtgaaaaaaa tgctttattt 1080
gtgaaatttg tgatgctatt gctttatttg taaccattat aagctgcaat aaacaagttg 1140
ac 1142
<210> 9 <211> 1049 <212> DNA <213> Artificial Sequence
<220> <223> Fusion Gene With Homo Sapien Serine Protease Catalytic Domain
<400> 9
gaattcacca ccatggacag caaaggttcg tcgcagaaat cccgcctgct cctgctgctg 60
gtggtgtcaa atctactctt gtgccagggt gtggtctccg actacaagga cgacgacgac 120
gtggacgcgg ccgctcttgc tgcccccttt gatgatgatg acaagatcgt tgggggctac 180
aactgtctag aaccccattc gcagccttgg caggcggcct tgttccaggg ccagcaacta 240
ctctgtggcg gtgtccttgt aggtggcaac tgggtcctta cagctgccca ctgtaaaaaa 300
ccgaaataca cagtacgcct gggagaccac agcctacaga ataaagatgg cccagagcaa 360
gaaatacctg tggttcagtc catcccacac ccctgctaca acagcagcga tgtggaggac 420
cacaaccatg atctgatgct tcttcaactg cgtgaccagg catccctggg gtccaaagtg 480
aagcccatca gcctggcaga tcattgcacc cagcctggcc agaagtgcac cgtctcaggc 540
tggggcactg tcaccagtcc ccgagagaat tttcctgaca ctctcaactg tgcagaagta 600
aaaatctttc cccagaagaa gtgtgaggat gcttacccgg ggcagatcac agatggcatg 660
gtctgtgcag gcagcagcaa aggggctgac acgtgccagg gcgattctgg aggccccctg 720
gtgtgtgatg gtgcactcca gggcatcaca tcctggggct cagacccctg tgggaggtcc 780
gacaaacctg gcgtctatac caacatctgc cgctacctgg actggatcaa gaagatcata 840
ggcagcaagg gctctagaca tcaccatcac catcactagc ggccgcttcc ctttagtgag 900
ggttaatgct tcgagcagac atgataagat acattgatga gtttggacaa accacaacta 960
gaatgcagtg aaaaaaatgc tttatttgtg aaatttgtga tgctattgct ttatttgtaa 1020
ccattataag ctgcaataaa caagttgac 1049
<210> 10 <211> 1052 <212> DNA <213> Artificial Sequence
<220> <223> Fusion Gene With Homo Sapien Serine Protease Catalytic Domain
<pre><400> 10 gaattcacca ccatggacag caaaggttcg tcgcagaaat cccgcctgct cctgctgctg 60</pre>

gtggtgtcaa atctactctt gtgccagggt gtggtctccg actacaagga cgacgacgac 120 gtggacgcgg ccgctcttgc tgcccccttt gatgatgatg acaagatcgt tgggggctac 180 aactgtctag aaaagcactc ccagccctgg caggcagccc tgttcgagaa gacgcggcta 240 ctctgtgggg cgacgctcat cgcccccaga tggctcctga cagcagccca ctgcctcaag 300 360 ccccgctaca tagttcacct ggggcagcac aacctccaga aggaggaggg ctgtgagcaq 420 accoggacag ccactgagto ottoccocac cooggettoa acaacagoot coccaacaaa 480 gaccaccgca atgacatcat gctggtgaag atggcatcgc cagtctccat cacctgggct gtgcgacccc tcaccctctc ctcacgctgt gtcactgctg gcaccagctg cctcatttcc 540 600 ggctggggca gcacgtccag cccccagtta cgcctgcctc acaccttgcg atgcgccaac 660 atcaccatca ttgagcacca gaagtgtgag aacgcctacc ccggcaacat cacagacacc atggtgtgtg ccagcgtgca ggaagggggc aaggactcct gccagggtga ctccgggggc 720 780 cctctggtct gtaaccagtc tcttcaaggc attatctcct ggggccagga tccgtgtgcq atcacccgaa agcctggtgt ctacacgaaa gtctgcaaat atgtggactg gatccaggag 840 900 acgatgaaga acaattctag acatcaccat caccatcact agcggccgct tccctttagt gagggttaat gcttcgagca gacatgataa gatacattga tgagtttgga caaaccacaa 960 1020 ctagaatgca gtgaaaaaaa tgctttattt gtgaaatttg tgatgctatt gctttatttg 1052 taaccattat aagctgcaat aaacaagttg ac

<220>

<223> Fusion Gene With Homo Sapien Serine Protease Catalytic Domain

<400> 11

Met Asp Ser Lys Gly Ser Ser Gln Lys Ser Arg Leu Leu Leu Leu 1 5 10 15

Val Val Ser Asn Leu Leu Cys Gln Gly Val Val Ser Asp Tyr Lys 20 25 30

Asp Asp Asp Val Asp Ala Ala Ala Leu Ala Ala Pro Phe Asp Asp 35 40 45

Asp Asp Lys Ile Val Gly Gly Tyr Ala Leu Glu Ala Gly Gln Trp Pro 50 60

Trp Gln Val Ser Ile Thr Tyr Glu Gly Val His Val Cys Gly Gly Ser 65 70 75 80 Page 6

<210> 11

<211> 328

<212> PRT

<213> Artificial Sequence

Leu Val Ser Glu Gln Trp Val Leu Ser Ala Ala His Cys Phe Pro Ser 85 90 95 Glu His His Lys Glu Ala Tyr Glu Val Lys Leu Gly Ala His Gln Leu 100 105 110 Asp Ser Tyr Ser Glu Asp Ala Lys Val Ser Thr Leu Lys Asp Ile Ile 115 120 125 Pro His Pro Ser Tyr Leu Gln Glu Gly Ser Gln Gly Asp Ile Ala Leu 130 140 Leu Gln Leu Ser Arg Pro Ile Thr Phe Ser Arg Tyr Ile Arg Pro Ile 145 150 155 160 Cys Leu Pro Ala Ala Asn Ala Ser Phe Pro Asn Gly Leu His Cys Thr 165 170 175 Val Thr Gly Trp Gly His Val Ala Pro Ser Val Ser Leu Leu Thr Pro 180 185 190 Lys Pro Leu Gln Gln Leu Glu Val Pro Leu Ile Ser Arg Glu Thr Cys 195 200 205 Asn Cys Leu Tyr Asn Ile Asp Ala Lys Pro Glu Glu Pro His Phe Val 210 215 220 Gln Glu Asp Met Val Cys Ala Gly Tyr Val Glu Gly Gly Lys Asp Ala 225 230 235 240 Cys Gln Gly Asp Ser Gly Gly Pro Leu Ser Cys Pro Val Glu Gly Leu 245 250 255 Trp Tyr Leu Thr Gly Ile Val Ser Trp Gly Asp Ala Cys Gly Ala Arg 260 265 270 Asn Arg Pro Gly Val Tyr Thr Leu Ala Ser Ser Tyr Ala Ser Trp Ile 275 280 285 Gln Ser Lys Val Thr Glu Leu Gln Pro Arg Val Val Pro Gln Thr Gln 290 295 300 Glu Ser Gln Pro Asp Ser Asn Leu Cys Gly Ser His Leu Ala Phe Ser 305 310 315 320 Ser Arg His His His His His 325

```
12
319
<210>
<211>
<212>
       Artificial Sequence
<213>
<220>
<223>
       Fusion Gene With Homo Sapien Serine Protease Catalytic Domain
<400>
       12
Met Ala Phe Leu Trp Leu Leu Ser Cys Trp Ala Leu Leu Gly Thr Thr 1 5 10 15
Phe Gly Cys Gly Val Pro Asp Tyr Lys Asp Asp Asp Asp Ala Ala Ala 20 25 30
Leu Ala Ala Pro Phe Asp Asp Asp Lys Ile Val Gly Gly Tyr Ala
35 40 45
Leu Glu Ala Gly Gln Trp Pro Trp Gln Val Ser Ile Thr Tyr Glu Gly 50 60
Val His Val Cys Gly Gly Ser Leu Val Ser Glu Gln Trp Val Leu Ser 65 70 75 80
Ala Ala His Cys Phe Pro Ser Glu His His Lys Glu Ala Tyr Glu Val
85 90 95
Lys Leu Gly Ala His Gln Leu Asp Ser Tyr Ser Glu Asp Ala Lys Val
Ser Thr Leu Lys Asp Ile Ile Pro His Pro Ser Tyr Leu Gln Glu Gly
Ser Gln Gly Asp Ile Ala Leu Leu Gln Leu Ser Arg Pro Ile Thr Phe
130 135 140
Ser Arg Tyr Ile Arg Pro Ile Cys Leu Pro Ala Ala Asn Ala Ser Phe
145 150 155 160
Pro Asn Gly Leu His Cys Thr Val Thr Gly Trp Gly His Val Ala Pro
165 170 175
Ser Val Ser Leu Leu Thr Pro Lys Pro Leu Gln Gln Leu Glu Val Pro
Leu Ile Ser Arg Glu Thr Cys Asn Cys Leu Tyr Asn Ile Asp Ala Lys
195 200 205
```

Pro Glu Glu Pro His Phe Val Gln Glu Asp Met Val Cys Ala Gly Tyr 210 215 220

Val Glu Gly Gly Lys Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu 225 230 235 240

Ser Cys Pro Val Glu Gly Leu Trp Tyr Leu Thr Gly Ile Val Ser Trp 245 250 255

Gly Asp Ala Cys Gly Ala Arg Asn Arg Pro Gly Val Tyr Thr Leu Ala 260 265 270

Ser Ser Tyr Ala Ser Trp Ile Gln Ser Lys Val Thr Glu Leu Gln Pro 275 280 285

Arg Val Val Pro Gln Thr Gln Glu Ser Gln Pro Asp Ser Asn Leu Cys 290 295 300

Gly Ser His Leu Ala Phe Ser Ser Arg His His His His His 305 310 315

<210> 13

<211> 288

<400>

<212> PRT

<213> Artificial Sequence

<220> <223> Fusion Gene With Homo Sapien Serine Protease Catalytic Domain

Met Asp Ser Lys Gly Ser Ser Gln Lys Ser Arg Leu Leu Leu Leu 1 10 15

Val Val Ser Asn Leu Leu Cys Gln Gly Val Val Ser Asp Tyr Lys 20 25 30

Asp Asp Asp Val Asp Ala Ala Ala Leu Ala Ala Pro Phe Asp Asp 35 40 45

Asp Asp Lys Ile Val Gly Gly Tyr Asn Cys Leu Glu Pro His Ser Gln 50 60

Pro Trp Gln Ala Ala Leu Phe Gln Gly Gln Gln Leu Leu Cys Gly Gly 65 70 75 80

Val Leu Val Gly Gly Asn Trp Val Leu Thr Ala Ala His Cys Lys Lys 85 90 95

Pro Lys Tyr Thr Val Arg Leu Gly Asp His Ser Leu Gln Asn Lys Asp
100 105 110
Page 9

Gly Pro Glu Gln Glu Ile Pro Val Val Gln Ser Ile Pro His Pro Cys Tyr Asn Ser Ser Asp Val Glu Asp His Asn His Asp Leu Met Leu Leu 130 135 140 Gln Leu Arg Asp Gln Ala Ser Leu Gly Ser Lys Val Lys Pro Ile Ser 145 150 155 160 Leu Ala Asp His Cys Thr Gln Pro Gly Gln Lys Cys Thr Val Ser Gly 165 170 175 Trp Gly Thr Val Thr Ser Pro Arg Glu Asn Phe Pro Asp Thr Leu Asn 180 185 190 Cys Ala Glu Val Lys Ile Phe Pro Gln Lys Lys Cys Glu Asp Ala Tyr 195 200 205 Pro Gly Gln Ile Thr Asp Gly Met Val Cys Ala Gly Ser Ser Lys Gly 210 215 220 Ala Asp Thr Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Asp Gly 225 235 240 Ala Leu Gln Gly Ile Thr Ser Trp Gly Ser Asp Pro Cys Gly Arg Ser 245 250 255 Asp Lys Pro Gly Val Tyr Thr Asn Ile Cys Arg Tyr Leu Asp Trp Ile = 260 265 270 Lys Lys Ile Ile Gly Ser Lys Gly Ser Arg His His His His His 275 280 285 <210> 14 <211> 289 Artificial Sequence <220> <223> Fusion Gene With Homo Sapien Serine Protease Catalytic Domain <400> Met Asp Ser Lys Gly Ser Ser Gln Lys Ser Arg Leu Leu Leu Leu 1 10 15 Val Val Ser Asn Leu Leu Cys Gln Gly Val Val Ser Asp Tyr Lys 20 25 30

Asp Asp Asp Val Asp Ala Ala Leu Ala Ala Pro Phe Asp Asp 35 40 45 Asp Asp Lys Ile Val Gly Gly Tyr Asn Cys Leu Glu Lys His Ser Gln 50 60 Pro Trp Gln Ala Ala Leu Phe Glu Lys Thr Arg Leu Leu Cys Gly Ala 65 70 75 80 Thr Leu Ile Ala Pro Arg Trp Leu Leu Thr Ala Ala His Cys Leu Lys
85 90 95 Pro Arg Tyr Ile Val His Leu Gly Gln His Asn Leu Gln Lys Glu Glu 100 105 110Gly Cys Glu Gln Thr Arg Thr Ala Thr Glu Ser Phe Pro His Pro Gly 115 120 125 Phe Asn Asn Ser Leu Pro Asn Lys Asp His Arg Asn Asp Ile Met Leu 130 140 Val Lys Met Ala Ser Pro Val Ser Ile Thr Trp Ala Val Arg Pro Leu 145 150 155 160 Thr Leu Ser Ser Arg Cys Val Thr Ala Gly Thr Ser Cys Leu Ile Ser 165 170 175 Gly Trp Gly Ser Thr Ser Ser Pro Gln Leu Arg Leu Pro His Thr Leu 180 185 190 Arg Cys Ala Asn Ile Thr Ile Ile Glu His Gln Lys Cys Glu Asn Ala 195 200 205 Tyr Pro Gly Asn Ile Thr Asp Thr Met Val Cys Ala Ser Val Gln Glu 210 220 Gly Gly Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys 225 230 235 Asn Gln Ser Leu Gln Gly Ile Ile Ser Trp Gly Gln Asp Pro Cys Ala 245 250 255 Ile Thr Arg Lys Pro Gly Val Tyr Thr Lys Val Cys Lys Tyr Val Asp 260 265 270 Trp Ile Gln Glu Thr Met Lys Asn Asn Ser Arg His His His His 275 280 285

```
<210>
       15
<211>
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligonucleotide
<400> 15
                                                                          9
ctagatagc
<210>
       16
<211>
       9
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligonucleotide
<400> 16
ggccgctat
                                                                          9
<210>
       17
<211>
       36
<212>
       DNA
      Artificial Sequence
<213>
<220>
<223>
      Oligonucleotide
<400> 17
ctagataccc ctacgatgtg cccgattacg cctagc
                                                                         36
<210>
       18
<211>
       36
<212>
       DNA
       Artificial Sequence
<213>
<220>
<223>
      Oligonucleotide
<400> 18
ggccgctagg cgtaatcggg cacatcgtag gggtat
                                                                         36
<210>
       19
<211>
       33
<212>
       DNA
<213>
      Artificial Sequence
<220>
      Oligonucleotide
<223>
<400> 19
ctagataccc ctacgatgtg cccgattacg ccg
                                                                         33
```

<210> <211> <212> <213>	20 33 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> ctagcg	20 gcgt aatcgggcac atcgtagggg tat	33
<210> <211> <212> <213>	21 27 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> ctagac	21 atca ccatcaccat cactagc	27
<210> <211> <212> <213>	22 27 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> ggccgc	22 tagt gatggtgatg gtgatgt	27
<210> <211> <212> <213>	23 34 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> tgaatt	23 cacc accatggaca gcaaaggttc gtcg	34
<210> <211> <212> <213>	24 30 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> cagaaa	24 gggt cccgcctgct cctgctgctg	30
<210><211><211><212><213>		

```
<220>
      Oligonucleotide
<223>
<400>
gtggtgtcaa atctactctt gtgccagggt
                                                                         30
<210>
       26
       30
<211>
<212>
       DNA
       Artificial Sequence
<213>
<220>
<223>
      Oligonucleotide
<400> 26
gtggtctccg actacaagga cgacgacgac
                                                                         30
<210>
       27
<211>
       21
<212> DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligonucleotide
<400> 27
                                                                         21
gtggacgcgg ccgcattatt a
<210>
<211>
       35
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligonucleotide
<400> 28
                                                                         35
taataatgcg gccgcgtcca cgtcgtcgtc gtcct
       29
21
<210>
<211>
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
      Oligonucleotide
<400>
                                                                         21
tgtagtcgga gaccacaccc t
<210>
<211>
       30
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligonucleotide
```

<400> ggcaca	30 agag tagatttgac accaccagca	30
<210> <211> <212> <213>		
<220> <223>	Oligonucleotide	
<400> gcagga	31 gcag gcgggaccct ttctgcgacg	30
<210> <211> <212> <213>	32 29 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> aacctt	32 tgct gtccatggtg gtgaattca	29
<210> <211> <212> <213>	33 40 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> aattca	33 ccat gaatccactc ctgatcctta cctttgtggc	40
<210> <211> <212> <213>	34 40 DNA Artificial Sequence	
<220> <223>	Oligonucleotide ·	
<400> ggccgc	34 caca aaggtaagga tcaggagtgg attcatggtg	40
<210> <211> <212> <213>	35 55 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400>	35 ccac catggettte etetggetee teteetgetg ggeeeteetg ggtae	55

<210> <211> <212> <213>	36 47 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> ccagga	36 gggc ccagcaggag aggagccaga ggaaagccat ggtggtg	47
<210> <211> <212> <213>	37 45 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> cacctt	37 cggc tgcggggtcc ccgactacaa ggacgacgac gacgc	45
<210> <211> <212> <213>	38 53 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> ggccgc	38 gtcg tcgtcgtcct tgtagtcggg gaccccgcag ccgaaggtgg tac	53
<210> <211> <212> <213>	39 29 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> gtggcg	39 gccg ctcttgctgc cccctttga	29
<210> <211> <212> <213>	40 28 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> ttctct	40 agac agttgtagcc cccaacga	28
<210><211><212>	41 55 DNA Artificial Sequence	

```
<220>
<223>
      Oligonucleotide
<400>
                                                                         55
ggccgctctt gctgccccct ttgatgatga tgacaagatc gttgggggct atgct
<210>
       42
       55
<211>
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligonucleotide
<400>
                                                                         55
ctagagcata gcccccaacg atcttgtcat catcatcaaa gggggcagca agagc
<210>
<211>
       43
55
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligonucleotide
ggccgctctt gctgcccct ttgatgatga tgacaagatc gttgggggct attgt
                                                                         55
<210>
       44
       55
<211>
<212>
       DNA
       Artificial Sequence
<213>
<220>
<223>
       Oligonucleotide
<400>
                                                                         55
ctagacaata gcccccaacg atcttgtcat catcatcaaa gggggcagca agagc
<210>
       45
       52
<211>
<212>
       DNA
       Artificial Sequence
<213>
<220>
<223>
       Oligonucleotide
<400>
                                                                         52
ggccgctctt gctgcccct ttatcgaggg gcgcattgtg gagggctcgg at
<210>
       46
<211>
       52
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223> Oligonucleotide
```

<400> ctagat	46 ccga gccctccaca atgcgcccct cgataaaggg ggcagcaaga gc	52
<210> <211> <212> <213>	47 32 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> agcagt	47 ctag aggccggtca gtggccctgg ca	32
<210> <211> <212> <213>	48 28 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> gctggt	48 ctag agctgaaggc caggtggc	28
<210> <211> <212> <213>	49 29 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> ggtatc	49 taga gcccttgctg cctatgatc	29
<210> <211> <212> <213>	50 30 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> actgtc	50 taga accccattcg cagccttggc	30
<210> <211> <212> <213>	51 32 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400> tcgatc	51 taga aaagcactcc cagccctggc ag	32

```
<210>
       32
<211>
<212>
       DNA
       Artificial Sequence
<213>
<220>
       Oligonucleotide
<223>
<400>
       52
gtcctctaga attgttcttc atcgtctcct gg
<210>
        306
<211>
<212>
       PRT
<213>
       Artificial Sequence
<220>
        Fusion Gene Of Human Protease F In CFEK2 Zymogen Vector
<223>
<400>
       53
Met Ala Phe Leu Trp Leu Leu Ser Cys Trp Ala Leu Leu Gly Thr Thr
Phe Gly Cys Gly Val Pro Asp Tyr Lys Asp Asp Asp Asp Ala Ala Ala 20 25 30
Leu Ala Ala Pro Phe Asp Asp Asp Lys Ile Val Gly Gly Tyr Ala 35 40 45
Leu Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg Leu Trp Asp 50 60
Ser His Val Cys Gly Val Ser Leu Leu Ser His Arg Trp Ala Leu Thr 65 70 75 80
Ala Ala His Cys Phe Glu Thr Tyr Ser Asp Leu Ser Asp Pro Ser Gly 85 90 95
Trp Met Val Gln Phe Gly Gln Leu Thr Ser Met Pro Ser Phe Trp Ser
Leu Gln Ala Tyr Tyr Asn Arg Tyr Phe Val Ser Asn Ile Tyr Leu Ser
115 120 125
Pro Arg Tyr Leu Gly Asn Ser Pro Tyr Asp Ile Ala Leu Val Lys Leu 130 135 140
Ser Ala Pro Val Thr Tyr Thr Lys His Ile Gln Pro Ile Cys Leu Gln
145 150
Ala Ser Thr Phe Glu Phe Glu Asn Arg Thr Asp Cys Trp Val Thr Gly
                 165
                                          Page 19
```

32

Trp Gly Tyr Ile Lys Glu Asp Glu Ala Leu Pro Ser Pro His Thr Leu Gln Glu Val Gln Val Ala Ile Ile Asn Asn Ser Met Cys Asn His Leu 195 200 205 Phe Leu Lys Tyr Ser Phe Arg Lys Asp Ile Phe Gly Asp Met Val Cys 210 220 Ala Gly Asn Ala Gln Gly Gly Lys Asp Ala Cys Phe Gly Asp Ser Gly 225 235 240 Gly Pro Leu Ala Cys Asn Lys Asn Gly Leu Trp Tyr Gln Ile Gly Val 245 250 255 Val Ser Trp Gly Val Gly Cys Gly Arg Pro Asn Arg Pro Gly Val Tyr 260 265 270 Thr Asn Ile Ser His His Phe Glu Trp Ile Gln Lys Leu Met Ala Gln 275 280 285 Ser Gly Met Ser Gln Pro Asp Pro Ser Trp Ser Arg His His His 290 295 300 His His 305 54 284 <210> <211> <212> Artificial Sequence <220> <223> Human MH2 Protease In PFEK Zymogen Vector <400> 54 Met Asp Ser Lys Gly Ser Ser Gln Lys Ser Arg Leu Leu Leu Leu 10 15Val Val Ser Asn Leu Leu Cys Gln Gly Val Val Ser Asp Tyr Lys
20 25 30 Asp Asp Asp Val Asp Ala Ala Ala Leu Ala Ala Pro Phe Asp Asp 35 40 45

Asp Asp Lys Ile Val Gly Gly Tyr Asn Cys Leu Glu Pro His Ser Gln 50 60

Pro Trp Gln Ala Ala Leu Val Met Glu Asn Glu Leu Phe Cys Ser Gly 65 70 75 80 Val Leu Val His Pro Gln Trp Val Leu Ser Ala Ala His Cys Phe Gln 85 90 95 Asn Ser Tyr Thr Ile Gly Leu Gly Leu His Ser Leu Glu Ala Asp Gln
100 105 110 Glu Pro Gly Ser Gln Met Val Glu Ala Ser Leu Ser Val Arg His Pro 115 120 125 Glu Tyr Asn Arg Pro Leu Leu Ala Asn Asp Leu Met Leu Ile Lys Leu 130 140 Asp Glu Ser Val Ser Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala 145 150 155 160 Ser Gln Cys Pro Thr Ala Gly Asn Ser Cys Leu Val Ser Gly Trp Gly 165 170 175 Leu Leu Ala Asn Gly Arg Met Pro Thr Val Leu Gln Cys Val Asn Val 180 185 190 Ser Val Val Ser Glu Glu Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr 195 200 205 His Pro Ser Met Phe Cys Ala Gly Gly Gly His Asp Gln Lys Asp Ser 210 220 Cys Asn Gly Asp Ser Gly Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln 225 235 240 Gly Leu Val Ser Phe Gly Lys Ala Pro Cys Gly Gln Val Gly Val Pro 245 250 255 Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr 260 265 270 Val Gln Ala Ser Ser Arg His His His His His 275 280 <210> <211> 30 <212> DNA <213> Artificial Sequence <220>

<223>

PCR Primer

<400> aggatct	55 taga gccgcactcg cagccctggc	30
<210> <211> <212> <213>	56 30 DNA Artificial Sequence	
<220> <223>	PCR Primer	
<400> cccatc1	56 taga actggcctgg acggttttct	30
<210> <211> <212> <213>	57 32 DNA Artificial Sequence	
<220> <223>	PCR Primer	
<400> aggatc1	57 taga actcgggcgt tggccgtggc ag	32
<210> <211> <212> <213>	58 30 DNA Artificial Sequence	
<220> <223>	PCR Primer	
<400> agagtc	58 taga ccaggagggg tctggctggg	. 30
<210> <211> <212> <213>	59 1103 DNA Artificial Sequence	
<220> <223>	Nucleic Acid Sequence Of Human Protease F In CFEK2 Zymogen V	ector
	59 cacca ccatggcttt cctctggctc ctctcctgct gggccctcct gggtaccacc	60
ttcggc	tgcg gggtccccga ctacaaggac gacgacgacg cggccgctct tgctgccccc	120
tttgat	gatg atgacaagat cgttgggggc tatgctctag aactcgggcg ttggccgtgg	180
cagggg	pagcc tgcgcctgtg ggattcccac gtatgcggag tgagcctgct cagccaccgc	240
tgggca	ctca cggcggcgca ctgctttgaa acctatagtg accttagtga tccctccggg	300
tggatg	gtcc agtttggcca gctgacttcc atgccatcct tctggagcct gcaggcctac	360
tacaac	ccgtt acttcgtatc gaatatctat ctgagccctc gctacctggg gaattcaccc	420
tatgac	attg ccttggtgaa gctgtctgca cctgtcacct acactaaaca catccagccc Page 22	480

atctgtctcc	aggcctccac	atttgagttt	gagaaccgga	cagactgctg	ggtgactggc	540
tgggggtaca	tcaaagagga	tgaggcactg	ccatctcccc	acaccctcca	ggaagttcag	600
gtcgccatca	taaacaactc	tatgtgcaac	cacctcttcc	tcaagtacag	tttccgcaag	660
gacatctttg	gagacatggt	ttgtgctggc	aatgcccaag	gcgggaagga	tgcctgcttc	720
ggtgactcag	gtggaccctt	ggcctgtaac	aagaatggac	tgtggtatca	gattggagtc	780
gtgagctggg	gagtgggctg	tggtcggccc	aatcggcccg	gtgtctacac	caatatcagc	840
caccactttg	agtggatcca	gaagctgatg	gcccagagtg	gcatgtccca	gccagacccc	900
tcctggtcta	gacatcacca	tcaccatcac	tagcggccgc	ttccctttag	tgagggttaa	960
tgcttcgagc	agacatgata	agatacattg	atgagtttgg	acaaaccaca	actagaatgc	1020
agtgaaaaaa	atgctttatt	tgtgaaattt	gtgatgctat	tgctttattt	gtaaccatta	1080
taagctgcaa	taaacaagtt	gac				1103

<210> 60 <211> 1037 <212> DNA

<213> Artificial Sequence

<220>

Nucleic Acid Sequence Of Human MH2 Protease In PFEK Zymogen Vector

<400> gaattcacca ccatggacag caaaggttcg tcgcagaaat cccgcctgct cctgctgctg 60 120 gtggtgtcaa atctactctt gtgccagggt gtggtctccg actacaagga cgacgacgac 180 gtggacgcgg ccgctcttgc tgcccccttt gatgatgatg acaagatcgt tgggggctac 240 aactgtctag agccgcactc gcagccctgg caggcggcac tggtcatgga aaacgaattg 300 ttctgctcgg gcgtcctggt gcatccgcag tgggtgctgt cagccgcaca ctgtttccag 360 aactcctaca ccatcgggct gggcctgcac agtcttgagg ccgaccaaga gccagggagc 420 cagatggtgg aggccagcct ctccgtacgg cacccagagt acaacagacc cttgctcgct aacgacctca tgctcatcaa gttggacgaa tccgtgtccg agtctgacac catccggagc 480 atcagcattg cttcgcagtg ccctaccgcg gggaactctt gcctcgtttc tggctggggt 540 600 ctgctggcga acggcagaat gcctaccgtg ctgcagtgcg tgaacgtgtc ggtggtgtct gaggaggtct gcagtaagct ctatgacccg ctgtaccacc ccagcatgtt ctgcgccggc 660 ggagggcacg accagaagga ctcctgcaac ggtgactctg gggggcccct gatctgcaac 720 780 gggtacttgc agggccttgt gtctttcgga aaagccccgt gtggccaagt tggcgtgcca 840 ggtgtctaca ccaacctctg caaattcact gagtggatag agaaaaccgt ccaggccagt tctagacatc accatcacca tcactagcgg ccgcttccct ttagtgaggg ttaatgcttc 900

gagcagacat	gataagatac	attgatgagt	ttggacaaac	cacaactaga	atgcagtgaa	960
aaaaatgctt	tatttgtgaa	atttgtgatg	ctattgcttt	atttgtaacc	attataagct	1020
gcaataaaca	agttgac		-			1037