

Lahore University of Management Sciences CS / EE 320 – Computer Organization and Assembly Language

Spring 2024 - 25

Instructor	Dr. Shahid Masud
Room No.	9-223A, Level 2, SBASSE
Office Hours	To be announced
Email	smasud@lums.edu.pk
Telephone	8199
Secretary/TA	
TA Office Hours	
Course URL	on LMS
Support	LUMS offers a range of academic and other services to support students. These are mentioned
Services	below, and you are encouraged to use these in addition to in-class assistance from course staff. For
	a complete list of campus support services available for you click here
	(https://advising.lums.edu.pk/#supportservices)

Course Teaching Methodology (Please mention following details in plain text)

• On-campus lectures and computer-based labs

Course Basics					
Credit Hours	4 (3 Theory + 1 Programming Lab)				
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	75 minutes	
Recitation/Lab (per	Nbr of Lec(s) Per Week	1	Duration	75 – 100 minutes	
week)					
Tutorial (per week)	Nbr of Lec(s) Per Week	As required	Duration	As required	

Course Distribution			
Core	CS → Can be used as Core in CS undergraduate curriculum		
	(in lieu of Fundamentals of Computer Systems CS 225*)		
Elective	Computer Science / Electrical Engineering / Computer Systems / and related majors		
Open for Student	Sophomore / Junior / Senior		
Category			
Close for Student	Freshman		
Category			

COURSE DESCRIPTION

The first course in the Computer Systems series helps students understand the basic design and operation of computing hardware, how to evaluate its performance, and how the hardware interfaces to software. When designing or selecting a computer system, it is important to understand the tradeoff among various components and functional blocks. This course will cover the basic concepts of Computer Organization including the design of single-cycle and multi-cycle CPU control and data-path, memory systems including hierarchy, caches and virtual memory, and input/output subsystems. Instruction set architecture of a RISC processor is studied in detail. Some aspects of pipelining and parallel processing are also covered. Performance estimation is used to appreciate different operations and choices.

The Labs will have focus on learning and experimenting with (i) MIPS Assembly Level Programming, and (ii) Architecture Exploration through Pipelining.

OURSE PREREQUISITE(S) Introduction to Computer Programming (SSE Core) CS 100

COURSE OBJECTIVES		
To understand basic building blocks and appreciate design choices in a modern computer system		
including hardware, microprocessor, software and the interface between hardware and software.		
Learn to program in Assembly Language		

Course Learning Outcomes					
	The students will be able to:				
CLO 1	Demonstrate understanding of basic building blocks and performance measurement in a computer system				
CLO 2	Demonstrate knowledge of methods and techniques to build datapath of a modern microprocessor				
CLO 3	Write Assembly Language programs	to carry out basic ar	ithmetic and data-hai	ndling operations	
Relation t	o CS / EE Program Outcomes				
CLOs	Related PLOs	Levels of Learning	Teaching Methods	CLO Attainment checked in	
CLO 1	PLO 1 (Engg. Knowledge)	Cog 3	Lectures	Quizzes, Exams	
CLO 2	PLO 3 (Development of Solutions)	Cog 3	Lectures	Quizzes, Exams	
CLO 3	PLO 5 (Modern Tool Usage)	Cog 3, PsyMo 2	Programming	Lab Tasks and Assignments	

Grading	hreakun:	Component	Details and	d weightages
Uraume	DICANUD.	COILIDOHELL	Details and	ı weigiilages

Assignment(s): 5% (2 to 3)

Home Work: 0%

Quiz(s): 15% (5 to 6, one quiz will be dropped)

Labs: 20% (Attendance 4%, Task Completion 12%, Lab Quiz/s 4%)

Class Participation: 0% Midterm Examination: 25%

Project:

Final Examination: 35%

Examination Detail		
	Yes/No: Yes	
Midterm Exam	Combine Separate: Combine	
	Duration: 75 minutes	
	Preferred Date: Lecture 15 or 16	
	Exam Specifications: Closed Book / Closed Notes / Calculator Allowed	

Yes/No: Yes

Combine Separate: Combine Final Exam

Duration: 3 hours

Exam Specifications: Closed Book / Closed Notes / Calculators Allowed

Week/	Tonics	Readings	Related CLOs
Lecture	Topics	Reduiligs	& Remarks
Weeks 1, 2	Introduction to Computer Organization, Building blocks, performance issues	Chap 1	CLO 1
1	Course Introduction, Basic blocks of a Computer System	Chap 1	CLO 1
2	Emerging trends in computer systems, Microprocessor Technology, software processing on hardware	Chap 1	CLO 1
3	Computer throughput and response time, Performance of a computer system, Power Wall	Chap 1	CLO 1
4	Performance of Uniprocessor and Multiprocessor, MIPS, Quantitative Performance Benchmarks	Chap 1	CLO 1
Weeks 3, 4	Operation of Computer Hardware, Instructions, logical and arithmetic operations, addressing modes	Chap 2	CLO 3
5	Operations of Computer Hardware, Representing Instructions in Computers	Chap 2	CLO 3
6	Instruction fields, Logical and Decision Instructions,	Chap 2	CLO 3
7	Procedures and Sub-Routines, Stack operations	Chap 2	CLO 3
8	Addressing Modes, Instruction Execution	Chap 2	CLO 3
Weeks 5, 6	Computer Arithmetic, addition, subtraction, multiplication, floating point, parallelism in SIMD, vector instructions	Chap 3	CLO 2
9	Computer Arithmetic, Addition, Multiplication, Signed numbers	Chap 3	CLO 2
10	Division, Introduction to Floating Point numbers	Chap 3	CLO 2
11	IEEE 754 standard, Floating Point Addition and Subtraction	Chap 3	CLO 2
12	Floating Point Multiplication, Rounding, Truncation, Guard Bits, MIPS example, Parallelism and Computer Arithmetic	Chap 3	CLO 2
Week 7, 8, 9	Processor design, building a datapath, multicycle implementation, pipelined datapath and control, data and control hazards	Chap 4	CLO 2
13	Basic MIPS Processor, Major Functional Units	Chap 4	CLO 2
14	Building a Datapath, R-format Instructions, Register file, ALU Control	Chap 4	CLO 2
15	Midterm week		
16	Load / Store Instructions, BEQ Instructions, Single Cycle vs Multicycle Implementation	Chap 4	CLO 2
17	Introduction to Pipelining, Data Hazards	Chap 4	CLO 2
18	Forwarding, Stalling, Control Hazards, Impact of Pipelining on Branch Instructions, Branch Prediction	Chap 4	CLO 2
Midterm week 8 or 9	Midterm examination		
19	Exception Handling, Parallelism via Instructions, Concept of Speculation, Multiple-Issue Processor	Chap 4	CLO 2
Weeks 10, 11, 12	Memory technologies, memory hierarchy, caches, virtual memory	Chap 5	CLO 1
20	Memory Technology, RAM, ROM, Flash	Chap 5	CLO 1

21	Memory Technology DISK, DVD, RAID Array (Stallings)	Stallings	CLO 1
22	Introduction to Caches, Tag Field, Cache Access Direct, Associative, Set-	Chap 5 /	CLO 1
22	Associative	Stallings	
23	Cache Misses, Cache Performance, Multi-Level Caches	Chap 5	CLO 1
24	Virtual Memory, Page Faults, Fast Address Translation using TLB	Chap 5	CLO 1
25	Virtual Machines, Integrating VM, TLB and Caches, Cache Coherence	Chap 5	CLO 1
Week 13, 14	Parallel processing, multithreading, multicore processors	Chap 6	CLO 2
26	Challenges in creating parallel processing programs, SISD, MIMD, SIMD,	Chap 6	CLO 2
20	SPMD, Vector Processing		
27	Hardware Multithreading, Multicore and Shared-Memory Multiprocessors	Chap 6	CLO 2
28	GPU, Domain Specific Architecture (DSA)	Chap 6	CLO 2

Textbook(s)/Supplementary Readings

<u>Text Book:</u> Computer Organization and Design (MIPS Edition) The Hardware / Software Interface by David Patterson and John Hennessy, 6th Edition

<u>Supplementary Reading:</u> Computer Organization and Architecture Designing for Performance by William Stallings, 10th Edition

Lab Topics	
Lab 1	Introduction to Assembly Language Programming, QtSpim (MARS) environment, MIPS Reference Card
Lab 2	Writing simple Assembly language programs in QtSpim, MIPS Registers and Memory map
Lab 3	Write programs to add, subtract, logical operations using different addressing modes
Lab 4	Write program to multiply and divide using different registers and addressing modes
Lab 5	Write program to use array operations in different addressing modes
Lab 6	Control Instructions and Procedure calls in Assembly Language
Lab 7	Exceptions, Interrupts and I/O in Assembly Language
Lab 8	Special instructions in RISC assembly language (eg. floating point)
Lab 9	Lab Assignment 1
Lab 10	Lab Assignment 2
Lab 11	Introduction to Computer Architecture Simulators, study pipeline behavior
Lab Exam	Lab Exam

Complex Engineering	Problem/Activity:
	Included: No
Complex	
Engineering	Nature and details of Complex Engineering Problem:
Problem Details	
	Assessment in
	Included: No
Complex	
Engineering Activity	Nature and details of Complex Engineering Activity:
Details	
	Assessment in:

Rubric Based	l Assessment of	CLO:NIL
--------------	-----------------	---------

Assessment based on written quizzes, assignments, exams and laboratory tasks.

Lab tasks involve writing, debugging and executing Assembly Language Code for MIPS processor.

Rights and Code of Conduct for Online Teaching

The misuse of online modes of communication is unacceptable. TAs and Faculty will seek consent before the recording of live online lectures or tutorials. Please inform if you do not wish to be recorded during a session to inform the faculty member. Please also ensure that you prioritize formal means of communication (email, lms) over informal means to communicate with course staff.

Campus supports & Key university policies

Campus Supports

Students are strongly encouraged to meet course instructors and TA's during office hours for assistance in course-content, understand the course's expectations from enrolled students, etc. Beyond the course, students are also encouraged to use a variety of other resources. (Instructors are also encouraged to refer students to these resources when needed.) These resources include Counseling and Psychological Services/CAPS (for mental health), LUMS Medical Center/LMC (for physical health), Office of Accessibility & Inclusion/ OAI (for long-term disabilities), advising staff dedicated to supporting and guiding students in each school, online resources (https://advising.lums.edu.pk/advising-resources), etc. To view all support services, their specific role as well as contact information click here (https://advising.lums.edu.pk/#supportservices).

Academic Honesty/Plagiarism

LUMS has zero tolerance for academic dishonesty. Students are responsible for upholding academic integrity. If unsure, refer to the student handbook and consult with instructors/teaching assistants. To check for plagiarism before essay submission, use similarity@lums.edu.pk. Consult the following resources: 1) Academic and Intellectual Integrity (http://surl.li/gpvwb), and 2) Understanding and Avoiding Plagiarism (http://surl.li/gpvwb).

LUMS Academic Accommodations/ Petitions policy

Long-term medical conditions are accommodated through the Office of Accessibility & Inclusion (OAI). Short-term emergencies that impact studies are either handled by the course instructor or Student Support Services (SSS). For more information, please see Missed Instrument or 'Petition' FAQs for students and faculty (https://rb.gy/8sj1h)

LUMS Sexual Harassment Policy

LUMS and this class are a harassment-free zone. No behavior that makes someone uncomfortable or negatively impacts the class or individual's potential will be tolerated.

To report sexual harassment experienced or observed in class, please contact me. For further support or to file a complaint, contact OAI at oai@lums.edu.pk or harassment@lums.edu.pk. You may choose to file an informal or formal complaint to put an end to the offending behavior. You can also call their Anti-Harassment helpline at 042-35608877 for advice or concerns. For more information: Harassment, Bullying & Other Interpersonal Misconduct: Presentation (http://surl.li/gpvwt)