# Zusammenfassung Stochastik I + II

# Stephan Kuschel Vorlesung von Dr. Nagel

Stochastik I: WS 2007/08 Stochastik II: SS 2008 zuletzt aktualisiert: 7. Juli 2009

Da diese Zusammenfassung den Menschen, die sie lesen helfen soll bitte ich darum, Fehler und andere Verbesserungsideen an mich weiterzuleiten: Vorname.Nachname@uni-jena.de (entsprechend Deckblatt ersetzen)

# Inhaltsverzeichnis

| I | Stochastik I                                                | 1  |
|---|-------------------------------------------------------------|----|
| 1 | Wahrscheinlichkeitsraum                                     | 1  |
| 2 | Zufällige Variablen, Zufallsgrößen, zufällige Vektoren      | 3  |
| 3 | Verteilungsgesetze von transformierten Zufallsgrößen        | 4  |
| 4 | Erwartungswert, Varianz, Kovarianz                          | 4  |
| 5 | Ungleichungen & Grenzwertsätze                              | 5  |
|   |                                                             |    |
| П | Stochastik II: mathematische Statistik                      | 7  |
| 1 | Stichproben und der statistische Raum                       | 8  |
| 2 | Punktschätzungen                                            | 9  |
| 3 | Verteilungen                                                | 10 |
| 4 | Konfidenzintervalle                                         | 11 |
| 5 | Tests                                                       | 11 |
| 6 | Stat. Methoden für 2-dim Stichproben (Multivariatstatistik) | 14 |

# Teil I Stochastik I

# Inhaltsverzeichnis

| 1 | Wahrscheinlichkeitsraum                                |                                                             |   |  |  |
|---|--------------------------------------------------------|-------------------------------------------------------------|---|--|--|
|   | 1.1                                                    | Wahrscheinlichkeitsraum                                     | 1 |  |  |
|   | 1.2                                                    | Beschreibungsmöglichkeiten für Wahrscheinlichkeitsmaße      | 2 |  |  |
|   | 1.3                                                    | Spezielle Wahrscheinlichkeitsräume                          | 2 |  |  |
|   | 1.4                                                    | Bedingte Wahrscheinlichkeiten                               | 2 |  |  |
|   | 1.5                                                    | stochastische Unabhängigkeit                                | 2 |  |  |
| 2 | Zufällige Variablen, Zufallsgrößen, zufällige Vektoren |                                                             |   |  |  |
|   | 2.1                                                    | Zufällige Variablen                                         | 3 |  |  |
|   | 2.2                                                    | Zufallsgrößen                                               | 3 |  |  |
|   | 2.3                                                    | Unabhängigkeit von Zufallsgrößen                            | 3 |  |  |
|   |                                                        | 2.3.1 diskrete Zufallsgrößen                                | 3 |  |  |
|   |                                                        | 2.3.2 stetige Zufallsgrößen                                 | 3 |  |  |
| 3 | Verteilungsgesetze von transformierten Zufallsgrößen   |                                                             |   |  |  |
|   | 3.1                                                    | Transformationen von 1dim. Zufallsgrößen                    | 4 |  |  |
|   | 3.2                                                    | Summe zweier Zufallsgrößen                                  | 4 |  |  |
|   | 3.3                                                    | Produkt & Quotient zweier Zufallsgrößen                     | 4 |  |  |
|   | 3.4                                                    | Injektive diffbare Transformationen von zufälligen Vektoren | 4 |  |  |
| 4 | Erwartungswert, Varianz, Kovarianz                     |                                                             |   |  |  |
|   | 4.1                                                    | Erwartungswert                                              | 4 |  |  |
|   | 4.2                                                    | Varianz                                                     | 5 |  |  |
|   | 4.3                                                    | Kovarianz                                                   | 5 |  |  |
|   | 4.4                                                    | Die Kovarianzmatrix                                         | 5 |  |  |
| 5 | Ungleichungen & Grenzwertsätze                         |                                                             |   |  |  |
|   | 5.1                                                    | Markov-Ungleichung                                          | 5 |  |  |
|   | 5.2                                                    | Tschebyscheff Ungleichung                                   | 5 |  |  |
|   | 5.3                                                    | Gesetz der großen Zahlen                                    | 5 |  |  |
|   | 5.4                                                    | Der zentrale Grenzwertsatz                                  | 6 |  |  |

# Wahrscheinlichkeitsraum

# Wahrscheinlichkeitsraum

Wahrscheinlichkeitsraum  $[\Omega, \mathfrak{A}, P]$ , Ereignis  $A \in \mathfrak{A}$ , dann gilt:

•  $\Omega \in \mathfrak{A}$ 

$$\bullet \ \ A \in \mathfrak{A} \Rightarrow A^{\complement} \in \mathfrak{A} \qquad \forall A \subseteq \Omega$$

 $\mathfrak{A} \subseteq p(\Omega)$  ist  $\sigma$ -Algebra.

•  $\forall A_i \in \mathfrak{A} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}$ 

Axiomensystem von Kolmogorov:  $P:\mathfrak{A}\to [0,1]$ 

• 
$$P(\Omega) = 1$$

 $(\sigma$ -Additivität von P)

Folgerungen:

• 
$$P(\emptyset) = 0$$
  $P(\Omega) = 1$ 

• 
$$P(A^{\mathbb{C}}) = 1 - P(A)$$

• 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• 
$$A \subseteq B \Rightarrow P(A) \le P(B)$$
  
 $\Rightarrow P(B \setminus A) = P(B) - P(A)$ 

• 
$$A_1 \subseteq A_2 \subseteq ... \Rightarrow P(\bigcup_i A_i) = \lim_{i \to \infty} P(A_i)$$

• 
$$A_1 \supseteq A_2 \supseteq ... \Rightarrow P(\bigcap_i A_i) = \lim_{i \to \infty} P(A_i)$$

#### 1.2 Beschreibungsmöglichkeiten für Wahrscheinlichkeitsmaße

$$P(A) = \sum_{\omega \in A} P(\{\omega\})$$

## Spezielle Wahrscheinlichkeitsräume

siehe Verteilungen

#### 1.4 Bedingte Wahrscheinlichkeiten

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$





•  $A_1, A_2$  disjunkt  $\Leftrightarrow P(A_1 \cup A_2|B) = P(A_1|B) + P(A_2|B)$ 

• 
$$P(A \cap B) = P(A|B) \cdot P(B)$$
  
=  $P(B|A) \cdot P(A)$ 

$$\Rightarrow P(B|A) = P(A|B) \cdot \frac{P(B)}{P(A)}$$

• Entnahme ohne Zurücklegen:

$$P(A_1 \cap ... \cap A_n) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_2 \cap A_1) \cdot ...$$

#### 1.5 stochastische Unabhängigkeit

A, B stochastisch unabhängig  $\Leftrightarrow P(A \cap B) = P(A) \cdot P(B)$ 

 $A_i$  stochastisch vollständig unabhängig  $\Leftrightarrow P\left(\bigcap_i A_i\right) = \prod_i P(A_i)$ 

- paarweise stochastische Unabhängigkeit ist etwas anderes!
- (A, B) unabhängig  $\Rightarrow (A, B^{\complement}), (A^{\complement}, B), (A^{\complement}, B^{\complement})$  unabhängig

#### 2 Zufällige Variablen, Zufallsgrößen, zufällige Vektoren

## Zufällige Variablen

$$\begin{split} g: \Omega &\to \Omega' \\ g^{-1}: p(\Omega') &\to p(\Omega) \\ g^{-1}(A'): \{\omega \in \Omega: g(\omega) \in A'\} \text{ mit } A' \subseteq \Omega' \end{split}$$

#### 2.2 Zufallsgrößen

$$X: \Omega \to \mathbb{R}$$
  
 $P_X(B) = P(X^{-1}(B))$   $B \in \mathbb{R}$ 

Verteilungsfunktion:  $F_X(x) = P(X \le x)$  $x \in \mathbb{R}$ 

- $P(a < X < b) = F_X(b) F_X(a)$
- $P(X = a) = F_X(a) F_X(a 0)$
- $F_X(-\infty) = 0$
- $F_X(\infty) = 1$

#### 2.3 Unabhängigkeit von Zufallsgrößen

X, Y sollen unabh. heißen, wenn all Paare von Ereignissen, die Mithilfe von X, Y formuliert werden können unabhängig sind.

- $P(X \in B_1, Y \in B_2) = P(X \in B_1) \cdot P(Y \in B_2) \iff X, Y \text{unabh.}$
- $P(X_1 \in B_1, X_2 \in B_2, \dots X_n \in B_n) = P(X_1 \in B_1) \cdot \dots \cdot P(X_n \in B_n)$  $\Longrightarrow X_1, \ldots, X_n$  vollständig unabhängig  $\Longrightarrow X_1,\ldots,X_n$  i.i.d., falls  $X_1,\ldots,X_n$  Zufallsgrößen über demselben W.-Raum

### 2.3.1 diskrete Zufallsgrößen

$$X,Y$$
 unabhängig  $\iff P(X=x,Y=y) = P(X=x) \cdot P(Y=y)$   $X \sim$  geometrisch verteilt: ("Gedächtnislosigkeit")  $P(X=k+l|X \geq k) = P(X=l)$ 

## 2.3.2 stetige Zufallsgrößen

$$X = (X_1, \ldots, X_n)$$

- Randverteilungsfunktion:  $F_{X_i}(x) = P(X_1 \in \mathbb{R}, \dots, x_i \le x, \dots, X_n \in \mathbb{R})$
- gemeinsame Verteilungsfunktion:  $F_X(x_1, \ldots, x_n) = P(X_1 \le x_1, \ldots, X_n \le x_n)$

$$X_1, \ldots, X_n$$
 unabhängig  $\iff F_X(x_1, \ldots, x_n) = F_{X_1}(x_1) \cdot \ldots \cdot F_{X_n}(x_n)$ 

Dichtefunktion 
$$F_X(x_1,\ldots,x_n)=\int_{-\infty}^{x_n}\ldots\int_{-\infty}^{x_1}f_X(t_1,\ldots,t_n)dt_1\ldots dt_n$$
  
mit  $\int_{\mathbb{R}^n}f_X(t)dt=1 \iff$  f heißt Dichtefunktion

Randdichte 
$$f_{x_i} = \int_{\mathbb{R} \setminus \text{span}(x_i)} f_X(t)$$

#### 3 Verteilungsgesetze von transformierten Zufallsgrößen

## Transformationen von 1dim. Zufallsgrößen

$$\begin{split} F_{g(x)}(x) &= P(g(X) \leq x) = P(X \in g^{-1}((-\infty,x])) \\ \text{oder Darstellung } F_{g(x)}(x) &= \int_{-\infty}^x k(t)dt \Rightarrow g(x) \text{ hat VD } k \end{split}$$

#### 3.2 Summe zweier Zufallsgrößen

Seien 
$$X_1, X_2$$
 unabhängig 
$$P(X_1 + X_2 = s) = \sum_{x_1} P(X_1 = x_1, X_2 = s - x_2) = \sum_{x_1} P(X_1 = x_1) \cdot P(X_2 = s - x_1)$$
  $\Rightarrow X_1 \sim \Pi_{\lambda_1}, \quad X_2 \sim \Pi_{\lambda_2}, \quad X_1 + X_2 \sim \Pi_{\lambda_1 + \lambda_2}$  
$$f_{X_1 + X_2} = \int_{-\infty}^{\infty} f_{X_1}(t) f_{X_2}(s - t) dt$$
  $\Rightarrow X_1 \sim N_{\mu_1, \sigma_1^2}, \quad X_2 \sim N_{\mu_2, \sigma_2^2}, \quad X_1 + X_2 \sim N_{\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2}$  
$$f_{X_1 - X_2} = \int_{-\infty}^{\infty} f_{X_1}(t) f_{X_2}(t - s) dt$$

#### 3.3 Produkt & Quotient zweier Zufallsgrößen

$$f_{X_1 \cdot X_2}(s) = \int_{-\infty}^{\infty} \frac{1}{|t|} f_{X_1}\left(\frac{s}{t}\right) f_{X_2}(t) dt$$
$$f_{\frac{X_1}{X_2}}(s) = \int_{-\infty}^{\infty} |t| f_{X_1}(st) f_{X_2}(t) dt$$

# Injektive diffbare Transformationen von zufälligen Vektoren

$$f_Y(u) = \frac{f_X(T^{-1}(u))}{|\det T'(T^{-1}(u))|}$$

# Erwartungswert, Varianz, Kovarianz

- Erwartungswert  $\hat{=}$  Mittelwert
- Varianz \(\hat{\pi}\) mittlere quadratische Abweichung

#### 4.1 **Erwartungswert**

$$\mathbb{E}X = \int_{-\infty}^{\infty} x f_X(x) dx, \qquad \mathbb{E}g(X) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$
  
Existenz: 
$$\int_{-\infty}^{\infty} |x| f_X(x) dx < \infty$$

- $\mathbb{E}(aX_1 + b) = a\mathbb{E}X + b$
- $\mathbb{E}(X_1 + X_2) = \mathbb{E}X_1 + \mathbb{E}X_2$  (gilt immer)
- $\mathbb{E}(X_1 \cdot X_2) = \mathbb{E}X_1 \cdot \mathbb{E}X_2$  (Zgr. unabhängig!)

#### 4.2 **Varianz**

$$var X = \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2$$

- $\operatorname{var}(aX + b) = a^2 \operatorname{var} X$
- $\operatorname{var}(X_1 \pm X_2) = \operatorname{var} X_1 + \operatorname{var} X_2$ ,  $X_1, X_2$  unabhängig

## 4.3 Kovarianz

- $\operatorname{cov}(X_1, X_2) = \mathbb{E}(X_1 \cdot X_2) (\mathbb{E}X_1) \cdot (\mathbb{E}X_2)$
- $\operatorname{var}(X_1 + X_2) = \operatorname{var}X_1 + \operatorname{var}X_2 + 2\operatorname{cov}(X_1 X_2)$
- $cov(X_1, X_2) = 0 \Leftrightarrow X_1, X_2$  unkorreliert
- cov(X, aX + b) = avarX
- cov(X, X) = var X
- $X_i \sim N_{\mu_i \sigma_i^2}$ :  $\operatorname{cov}(X_1, X_2) = \rho \sigma_1 \sigma_2$   $\rho_{X_1, X_2} = \frac{\operatorname{cov}(X_1, X_2)}{\sqrt{\operatorname{var} X_1 \cdot \operatorname{var} X_2}}$

#### 4.4 Die Kovarianzmatrix

$$X = (X_1, ..., X_n)$$
 zufälliger Vektor  
 $\Sigma_X = \mathbb{E}(X - \mathbb{E}X)^T (X - \mathbb{E}X) = (\text{cov}(X_i, X_j))_{ij}$   
n-dim Normalverteilung:

$$N_{\mu,\Sigma}, n=2: \quad \Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

### 5 Ungleichungen & Grenzwertsätze

# Markov-Ungleichung

$$P(|X| \ge c) \le \frac{\mathbb{E}(g(|X|))}{g(c)}$$
 g monoton, nicht fallend

## **Tschebyscheff Ungleichung**

$$P(|X - \mathbb{E}X| \ge c) \le \frac{\text{var}X}{c^2}$$

• 
$$X \sim N_{\mu,\sigma^2}$$
:  $P(|X - \mu| \ge k\sigma) \le \frac{\sigma^2}{k^2\sigma^2} = \frac{1}{k^2}$ 

## Gesetz der großen Zahlen

$$(X_i)_i$$
 i.i.d.
$$\lim_{n \to \infty} P\left(\frac{1}{n} \sum_{i=1}^n |X_i - \mathbb{E}X_1| > \epsilon\right) = 0$$

## Der zentrale Grenzwertsatz

 $(X_i)_i$  i.i.d. mit  $\mathbb{E}X_i^2 < \infty$ ,  $\operatorname{var}X_i = \sigma^2 > 0$ ,  $\mathbb{E}X_i = m$ 

$$\lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma} \le x\right) = \Phi(x)$$

mit  $\Phi(x)$  VF von  $N_{0,1}$ 

 $\bullet\,$  Summen von i.i.d.Zgr. sind asymptotisch normalverteilt.

• 
$$P(X_i = 1) = p = 1 - P(X_i = 0)$$
  

$$\lim_{n \to \infty} P\left(\frac{\sum_{i=1}^n X_i - np}{\sqrt{np(1-p)}} \le x\right) = \Phi(x)$$
mit Korrekturformel:  $P(\sum_i X_i \le k) = P(\sum_i X_i < k) = \Phi\left(\frac{k + \frac{1}{2} - np}{\sqrt{np(1-p)}}\right)$ 

Approx der Binomialverteilung:

• Poissonverteilung:  $\lambda = np$ , n groß, p klein

• Normalverteilung:  $\mu = np, \ \sigma^2 = np(1-p)$ 

# Teil II Stochastik II: mathematische Statistik

# Inhaltsverzeichnis

| 1 | 1 Stichproben und der statistische Raum |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                              |  |  |
|---|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
|   | 1.1                                     | Liste wichtiger Statistiken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                              |  |  |
| 2 | Punktschätzungen                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |  |  |
|   | 2.1                                     | Punktschätzungen für Erwartungswert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                              |  |  |
|   | 2.2                                     | Punktschätzung für die Varianz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                              |  |  |
|   | 2.3                                     | Gütekriterien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                              |  |  |
|   | 2.4                                     | Die Maximum-Likelihood-Methode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                             |  |  |
| 3 | Ver                                     | teilungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                             |  |  |
|   | 3.1                                     | $\chi^2$ -Verteilung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                             |  |  |
|   | 3.2                                     | t-Verteilung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                             |  |  |
|   | 3.3                                     | F-Verteilung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                             |  |  |
| 4 | 4 Konfidenzintervalle                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |  |  |
|   | 4.1                                     | Konfidenzintervall für Erwartungswert bei bekannter Varianz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                             |  |  |
|   | 4.2                                     | Konfidenzintervall für Erwartungswert bei unbekannter Varianz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                             |  |  |
|   | 4.3                                     | Konfidenzintervall für Varianz bei unbekanntem Erwartungswert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                             |  |  |
| 5 | Tes                                     | its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                             |  |  |
| 3 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |  |  |
| 3 | 5.1                                     | Grundbegriffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                             |  |  |
| J | 5.1<br>5.2                              | Grundbegriffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |  |  |
| J | -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                                                             |  |  |
| 3 | -                                       | Tests für Normalverteilte Grundgesamtheit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>12                                                       |  |  |
| J | -                                       | Tests für Normalverteilte Grundgesamtheit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>12<br>12                                                 |  |  |
| 3 | -                                       | Tests für Normalverteilte Grundgesamtheit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>12<br>12<br>12                                           |  |  |
| 3 | 5.2                                     | Tests für Normalverteilte Grundgesamtheit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>12<br>12<br>12<br>12<br>13                               |  |  |
| 3 | 5.2                                     | Tests für Normalverteilte Grundgesamtheit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>12<br>12<br>12<br>12<br>13<br>13                         |  |  |
| 3 | 5.2                                     | Tests für Normalverteilte Grundgesamtheit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>12<br>12<br>12<br>13<br>13                               |  |  |
| 3 | 5.2                                     | Tests für Normalverteilte Grundgesamtheit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>12<br>12<br>12<br>13<br>13<br>13<br>13                   |  |  |
| 6 | 5.2<br>5.3<br>5.4<br>5.5                | Tests für Normalverteilte Grundgesamtheit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>12<br>12<br>12<br>13<br>13<br>13<br>13                   |  |  |
|   | 5.2<br>5.3<br>5.4<br>5.5                | Tests für Normalverteilte Grundgesamtheit $5.2.1$ Gausstest: Prüfung des Erwartungswertes bei bekannter Varianz $5.2.2$ t-Test: Prüfung des Erwartungswertes bei unbekannter Varianz $5.2.3$ $\chi^2$ -Test: Prüfung der Varianz bei unbekanntem Erwartungswert  Zwei Testprobleme für disjunkte Verteilungen $5.3.1$ Likelihood-Quotienten Methode $5.3.2$ Testen von Hypothesen über Parameter der hypergeometrischen Verteilung  Anpassungstests (Kolmogorov-Smirnov)  Zwei-Stichproben Test                                                                                                                                       | 11<br>12<br>12<br>12<br>13<br>13<br>13<br>13<br>14<br>14       |  |  |
|   | 5.2<br>5.3<br>5.4<br>5.5<br><b>Sta</b>  | Tests für Normalverteilte Grundgesamtheit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>12<br>12<br>12<br>13<br>13<br>13<br>14<br>14<br>14       |  |  |
|   | 5.2<br>5.3<br>5.4<br>5.5<br><b>Sta</b>  | Tests für Normalverteilte Grundgesamtheit $5.2.1$ Gausstest: Prüfung des Erwartungswertes bei bekannter Varianz $5.2.2$ t-Test: Prüfung des Erwartungswertes bei unbekannter Varianz $5.2.3$ $\chi^2$ -Test: Prüfung der Varianz bei unbekanntem Erwartungswert  Zwei Testprobleme für disjunkte Verteilungen $5.3.1$ Likelihood-Quotienten Methode $5.3.2$ Testen von Hypothesen über Parameter der hypergeometrischen Verteilung Anpassungstests (Kolmogorov-Smirnov)  Zwei-Stichproben Test  t. Methoden für 2-dim Stichproben (Multivariatstatistik)  Test auf Unabhängigkeit von Beobachtungsparametern                          | 11<br>12<br>12<br>12<br>13<br>13<br>13<br>13<br>14<br>14<br>14 |  |  |
|   | 5.2<br>5.3<br>5.4<br>5.5<br><b>Sta</b>  | Tests für Normalverteilte Grundgesamtheit $5.2.1$ Gausstest: Prüfung des Erwartungswertes bei bekannter Varianz $5.2.2$ t-Test: Prüfung des Erwartungswertes bei unbekannter Varianz $5.2.3$ $\chi^2$ -Test: Prüfung der Varianz bei unbekanntem Erwartungswert  Zwei Testprobleme für disjunkte Verteilungen $5.3.1$ Likelihood-Quotienten Methode $5.3.2$ Testen von Hypothesen über Parameter der hypergeometrischen Verteilung Anpassungstests (Kolmogorov-Smirnov)  Zwei-Stichproben Test  t. Methoden für 2-dim Stichproben (Multivariatstatistik)  Test auf Unabhängigkeit von Beobachtungsparametern $6.1.1$ Randverteilungen | 11<br>12<br>12<br>12<br>13<br>13<br>13<br>14<br>14<br>14<br>14 |  |  |

#### 1 Stichproben und der statistische Raum

Stichproben

• math. Stichprobe:  $X_1, \ldots, X_n$ 

• konkrete Stichprobe:  $x_1, \ldots, x_n$ 

Der statistische Raum:  $[\mathbb{R}^n, \mathcal{R}_n, \{P_{\theta}^{\otimes n}, \theta \in \Theta\}]$  $\Theta \subseteq \mathbb{R}^l$ ,  $l \ge 1$ ,  $P_{\theta}$  ist Wahrscheinlichkeitsmaß auf  $[\mathbb{R}, \mathcal{R}] \ \forall \theta$ 

#### Liste wichtiger Statistiken 1.1

1. Stichprobenmittel / empirischer Erwartungswert

$$T(x_1, \dots, x_n) = \frac{1}{n} \sum_{i=1}^n x_i = \bar{x}$$

2. r-tes Stichprobenmoment / empirisches r-tes Moment

$$T(x_1, \dots, x_n) = \frac{1}{n} \sum_{i=1}^n x_i^r$$

3. Stichprobenstreuung / empirische Varianz

$$T(x_1,...,x_n) = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = \bar{\sigma}^2$$

4. korrigierte Stichprobenstreuung / korrigierte empirische Varianz

$$T(x_1, \dots, x_n) = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = \hat{\sigma}^2 = \frac{n}{n-1} \bar{\sigma}^2$$

5. konkrete geordnete Stichprobe / Variationsreihe

$$T(x_1, \dots, x_n) = (x_1^*, \dots, x_n^*)$$
 (sortieren)  
 $\text{mit } x_1^* \le \dots \le x_n^*$ 

6. i-te geordnete Statistik / i-te Rangstatistik

$$T(x_1, \ldots, x_n) = x_i^*$$
 (nach Sortieren, i-tes Element)

7. Spannweite einer Stichprobe

$$T(x_1,\ldots,x_n) = x_n^* - x_1^*$$

8. Stichprobenmedian / empirischer Zentralwert

$$T(x_1, \dots, x_n) = \tilde{x}_{\frac{1}{2}} = \begin{cases} x_{\frac{n+1}{2}}^* & \text{falls } n \text{ ungerade} \\ \frac{1}{2} \left( x_{\frac{n}{2}}^* + x_{\frac{n}{2}+1}^* \right) & \text{falls } n \text{ gerade} \end{cases}$$

9. Stichproben- $\alpha$ -Quantil / empirisches  $\alpha$ -Quantil,  $\alpha \in (0,1)$ 

$$T(x_1, \dots, x_n) = \tilde{x}_{\alpha} = \begin{cases} x_{\lfloor n\alpha \rfloor + 1}^* & \text{falls } n\alpha \text{ nicht ganzzahlig} \\ \frac{1}{2} \left( x_{n\alpha}^* + x_{n\alpha + 1}^* \right) & \text{falls } n\alpha \text{ ganzzahlig} \end{cases}$$

10. empirische Verteilungsfunktion

$$T(x_1, \dots, x_n) = \hat{F}(s) = \frac{1}{n} \sum_{i=1}^n 1_{[x_i, \alpha)}(s)$$
  
=  $\frac{1}{n} |\{i \in 1, \dots, n : x_i \le s\}|$ 

11. Histogramm oder rel. Häufigkeiten zu einer Vorgegebenen Klasseneinteilung  $\Delta_1, \ldots, \Delta_k$ 

$$T(x_1, \dots, x_n) = \left(\frac{1}{n} \sum_{i=1}^n 1_{\Delta_1}(x_i), \dots, \frac{1}{n} \sum_{i=1}^n 1_{\Delta_k}(x_i)\right)$$

- $\Delta_1, \ldots \Delta_k$  paarweise Disjunkt, äquidistant
- Faustregel von STURGES:  $k = 1 + 3.32 \log_{10} n$
- 12. Box-Plot

$$T(x_1,\ldots,x_n)=(\tilde{x}_{0.1},\tilde{x}_{0.25},\tilde{x}_{0.5},\tilde{x}_{0.75},\tilde{x}_{0.9})$$

# 2 Punktschätzungen

## 2.1 Punktschätzungen für Erwartungswert

$$\hat{\mu}(x_1, \dots, x_n) = \bar{x}$$

$$\operatorname{var}_{\theta} \hat{\mu}(X_1, \dots, X_n) = \frac{1}{n} \operatorname{var}_{\theta} X_1 \qquad \text{falls } X_1, \dots, X_n \text{ i.i.d.}$$

## 2.2 Punktschätzung für die Varianz

$$\hat{\sigma}^2(x_1,\dots,x_n) = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

### 2.3 Gütekriterien

- T erwartungstreue Punktschätzung für  $\gamma$  $\Leftrightarrow \mathbb{E}_{\theta}T(X_1,\ldots,X_n) = \gamma(\theta) \quad \forall \theta \in \Theta$
- $T_1$  effizienter als  $T_2$  $\Leftrightarrow \operatorname{var}_{\theta} T_1(X_1, \dots, X_n) < \operatorname{var}_{\theta} T_2(X_1, \dots, X_n) < \infty$
- $T^*$  bester erwartungstreuer Schätzer (BUE best unbiased estimator)  $\Leftrightarrow \operatorname{var}_{\theta} T^*(X_1, \dots, X_n) \leq \operatorname{var}_{\theta} T_i(X_1, \dots, X_n) \ \forall \theta \in \Theta \ \text{und} \ T_i \ \text{erwartungstreu} \ \forall i$

Mögliche andere Kriterien

- $\mathbb{E}_{\theta}(T(X_1,\ldots,X_n)-\theta)^2$
- Asymptot. Verhalten für  $n \to \infty$

**Anmerkung:**  $\hat{\mu} = \bar{x}$  ist bester erwartungstreuer Schätzer, falls Grundgesamtheit normalverteilt, poissonverteilt, binomialverteilt, aber <u>nicht</u> bei Gleichverteilung auf (a,b), a,b unbekannt.

## 2.4 Die Maximum-Likelihood-Methode

 $\theta \in \Theta$  suchen für das diese Stichprobe den Maximalwert der Wahrscheinlichkeitsdichte liefert.

• Likelihood-Funktion:

$$L: \theta \times \mathbb{R}^n \to [0, \infty)$$

$$L(\theta, x_1, \dots, x_n) = \prod_{i=1}^n f_{\theta}(x_i)$$
 (stetig)
$$= \prod_{i=1}^n P_{\theta}(X_i = x_i)$$
 (diskret)

- Maximum-Likelihood Schätzwert  $\hat{\theta}^*$  $L(\hat{\theta}^*, x_1, \dots, x_n) \ge L(\theta, x_1, \dots, x_n) \quad \forall \theta \in \Theta$
- $\bullet$  Zur Berechnung häufig  $\ln L$  betrachten.

# 3 Verteilungen

$$X_i \sim N_{0,1}$$
  $Z_i \sim N_{\mu,\sigma^2}$ 

# 3.1 $\chi^2$ -Verteilung

$$f_Y(x) = \begin{cases} 0 & x < 0\\ \frac{1}{2^{\frac{r}{2}}\Gamma(\frac{r}{2})} x^{\frac{r}{2} - 1} e^{-\frac{x^2}{2}} & x \ge 0 \end{cases}$$

$$\bullet \ \sum_{i=1}^r X_i^2 \sim \chi_r^2$$

• 
$$\frac{1}{\sigma^2} \sum_{i=1} n(Z_i - \mu)^2 \sim \chi_n^2$$

• 
$$\frac{1}{\sigma^2} \sum_{i=1} n(Z_i - \bar{Z})^2 \sim \chi_{n-1}^2$$

• 
$$Y_1 \sim \chi_{r_1}^2$$
  $Y_2 \sim \chi_{r_2}^2$   $Y_1 + Y_2 \sim \chi_{r_1 + r_2}^2$ 

$$\bullet \ \chi_2^2 = \varepsilon_{\frac{1}{2}}$$

## 3.2 t-Verteilung

$$f_Y(x) = \left\{ \frac{\Gamma\left(\frac{r+1}{2}\right)}{\Gamma\left(\frac{r}{2}\right)\sqrt{\pi r}} \left(1 + \frac{x^2}{r}\right)^{-\frac{r+1}{2}} \quad x \in \mathbb{R} \right\}$$

- $f_Y(-x) = f_Y(x)$
- r = 1: Cauchy-Verteilung
- $r \to \infty$ : Normal verteilung mit  $\mu = 0, \sigma^2 = 1$

$$\bullet \ \frac{X_0}{\sqrt{\frac{1}{r}\sum_{i=1}^r X_i^2}} \sim t_r$$

• 
$$\sqrt{n} \frac{\bar{Z} - \mu}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}} \sim t_{n-1}$$

# 3.3 F-Verteilung

$$f_Y(x) = \begin{cases} 0 & x < 0\\ \left(\frac{s}{r}\right)^{\frac{s}{2}} x^{\frac{s}{2}-1} \left(1 + \frac{s}{r}x\right)^{-\frac{s+r}{2}} & x \ge 0 \end{cases}$$

$$\bullet \ \frac{\frac{1}{s} \sum_{i=r+1}^{r+s} X_i^2}{\frac{1}{r} \sum_{i=1}^{r} X_i^2} \sim F_{s,r}$$

# 4 Konfidenzintervalle

$$(1-\alpha)$$
-Konfidenzintervall  $P_{\theta}^{\otimes n}(C(X_1,\ldots,X_n)\ni\gamma(\theta))\geq 1-\alpha\quad\forall\theta\in\Theta$  Häufig  $(1-\alpha)\in\{0.9;0.95;0.99\}$ 

## 4.1 Konfidenzintervall für Erwartungswert bei bekannter Varianz

$$C(x_1, ..., x_n) = \left[ \bar{x} - \frac{\sigma}{\sqrt{n}} \Phi^{-1} (1 - \frac{\alpha}{2}), \ \bar{x} + \frac{\sigma}{\sqrt{n}} \Phi^{-1} (1 - \frac{\alpha}{2}) \right]$$

ist  $(1 - \alpha)$ -KI

## 4.2 Konfidenzintervall für Erwartungswert bei unbekannter Varianz

$$C(x_1, \dots, x_n) = \left[ \bar{x} - \frac{\sqrt{\hat{\sigma}^2}}{\sqrt{n}} t_{n-1, 1-\frac{\alpha}{2}}, \ \bar{x} + \frac{\sqrt{\hat{\sigma}^2}}{\sqrt{n}} t_{n-1, 1-\frac{\alpha}{2}} \right]$$

ist  $(1 - \alpha)$ -KI

## 4.3 Konfidenzintervall für Varianz bei unbekanntem Erwartungswert

$$C(x_1, \dots, x_n) = \left[ \frac{(n-1)\hat{\sigma}^2}{\chi_{n-1, 1-\frac{\alpha}{2}}^2}, \frac{(n-1)\hat{\sigma}^2}{\chi_{n-1, \frac{\alpha}{2}}^2} \right]$$

weil 
$$\frac{(n-1)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-1}^2$$

# 5 Tests

# 5.1 Grundbegriffe

 $\Theta$  partitionieren in  $\Theta_0, \Theta_1$ 

 $H_0: \theta \in \Theta_0$  Nullhypothese

 $H_1: \theta \in \Theta_1$  Alternativhypothese

|                | $H_0$ wahr    | $H_1$ wahr    |
|----------------|---------------|---------------|
| $H_0$ wählen   | ✓             | Fehler 2. Art |
| $H_0$ ablehnen | Fehler 1. Art | $\checkmark$  |

• Test:  $D: \mathbb{R}^n \to \{H_0, H_1\}$ 

• Testgröße:  $T: \mathbb{R}^n \to \mathbb{R}$ 

2. Art: irrtümliche Annahme von  $H_1$  1. Art: irrtümliche Ablehnung von  $H_0$ 

- Gütefunktion des Tests D  $\beta_D: \theta \to [0,1]$  mit  $\beta(\theta) = P_{\theta}^{\otimes n}(D(X_1, \dots, X_n) = H_1)$
- Signifikanzniveau zum Niveau  $\alpha$   $\beta_D(\theta) \leq \alpha \quad \forall \theta \in \Theta$   $\beta_D(\theta) \geq \sup_{\theta' \in \Theta_0} \beta_D(\theta') \quad \forall \theta \in \Theta_1 \quad \text{(Unverfälschtheit)}$

# 5.2 Tests für Normalverteilte Grundgesamtheit

## 5.2.1 Gausstest: Prüfung des Erwartungswertes bei bekannter Varianz

(a) 
$$H_0: \mu = \mu_0$$
  $H_1: \mu \neq \mu_0$ 

$$T(X_1, \dots, X_n) = \sqrt{n} \frac{\bar{X} - \mu_0}{\sigma_0} \underset{\text{falls } \mu = \mu_0 \text{ (!)}}{\uparrow} N_{0,1}$$
$$K = \left(-\infty, \Phi^{-1}\left(\frac{\alpha}{2}\right)\right) \cup \left(\Phi^{-1}\left(1 - \frac{\alpha}{2}\right), \infty\right)$$

(b) 
$$H_0: \mu \ge \mu_0$$
  $H_1: \mu < \mu_0$   
Testgröße wie bei Punkt a

$$K = \left(-\infty, -\Phi^{-1}(1-\alpha)\right)$$

## 5.2.2 t-Test: Prüfung des Erwartungswertes bei unbekannter Varianz

(a) 
$$H_0: \mu = \mu_0$$
  $H_1: \mu \neq \mu_0$ 

$$T(X_1, \dots, X_n) = \frac{\sqrt{n}}{\sqrt{\hat{\sigma}^2}} (\bar{X} - \mu_0) \underset{\text{falls } \mu = \mu_0 \text{ (!)}}{\sim} t_{n-1}$$

$$K = (-\infty, -t_{n-1, 1-\frac{\alpha}{2}}) \cup (t_{n-1, 1-\frac{\alpha}{2}}, \infty)$$

K ist ein wenig kleiner als beim entsprechenden Gauss-Test

- $\alpha$  kann auch als Überschreitungswahrscheinlichkeit gelesen werden, sodass  $P_{\ddot{U}}(X_1,\ldots,X_n)<\alpha$
- (b)  $H_0: \mu \ge \mu_0$   $H_1: \mu < \mu_0$ Testgröße wie bei Punkt a

$$K = (-\infty, -t_{n-1,1-\alpha})$$

# 5.2.3 $\chi^2$ -Test: Prüfung der Varianz bei unbekanntem Erwartungswert und normalverteilter Grundgesamtheit

(a) 
$$H_0: \sigma^2 = \sigma_0^2$$
  $H_1: \sigma^2 \neq \sigma_0^2$ 

$$T(X_1, \dots, X_n) = \frac{\hat{\sigma}^2(n-1)}{\sigma_0^2}$$

$$= \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \bar{X})^2 \underset{\text{falls } \sigma^2 = \sigma_0^2}{\sim} (!) \chi_{n-1}^2$$

$$K = [0, \chi_{n-1, \frac{\alpha}{2}}^2) \cup (\chi_{n-1, 1-\frac{\alpha}{2}}^2, \infty)$$

(b) 
$$H_0: \sigma^2 \geq \sigma_0^2$$
  $H_1: \sigma < \sigma_0^2$   
Testgröße wie bei Punkt a

$$T(X_1, \dots, X_n) \notin K \iff \frac{\alpha}{2} \le p_{\ddot{u}} \le 1 - \frac{\alpha}{2}$$

$$K = (0, \chi_{n-1,\alpha}^2)$$

# 5.3 Zwei Testprobleme für disjunkte Verteilungen

## 5.3.1 Likelihood-Quotienten Methode

Allgemeines Prinzip zur Konstruktion von Tests bzw von Testgrößen. Betrachten  $[\mathbb{R}^n, \mathcal{R}_n\{P_{\theta_0}, P_{\theta_1}\}]$  d.h.  $\theta = \{P_{\theta_0}, P_{\theta_1}\}$ 

$$H_0: \theta = \theta_0 \qquad H_1: \theta = \theta_1$$

$$\frac{L(\theta_1, x_1, \dots, x_n)}{L(\theta_0, x_1, \dots, x_n)} > c \quad \text{dann } H_0 \text{ ablehnen}$$

cso wählen, dass Wahrscheinlichkeit für Fehler 1. Ar<br/>t $\beta(\theta_0) \leq \alpha_0$ 

Man kann zeigen, dass dieser Test, falls  $\beta(\theta_0) = \alpha$  bester  $\alpha$ -Signifikanztest ist, in dem Sinne, dass  $\beta(\theta_1) \geq \beta_D(\theta_1) \quad \forall \alpha$ -Signifikanztests D.

## 5.3.2 Testen von Hypothesen über Parameter der hypergeometrischen Verteilung

N - Gesamtzahl der Produkte in einer Lieferung

 $\theta$  - Anzahl der fehlerhaften Produkte (unbekannt),  $\theta \in \{0, 1, 2, \dots, N\} = \Theta$ 

m - Anzahl geprüfter Produkte

Zufallsgröße:  $\kappa$  - Anzahl der fehlerhaften Produkte unter den geprüften Produkten.  $\kappa$  besitzt eine hypergeometrische Verteilung mit Parametern  $N, \theta, m = \mathscr{H}_{N,\theta,m}$ 

$$P_{\theta}(\kappa = k) = \frac{\binom{\theta}{k} \binom{N - \theta}{m - k}}{\binom{N}{m}}$$

$$H_0: \theta \le \theta_0 \qquad H_1: \theta \ge \theta_1$$

Kritischen Bereich aus Quantilen wählen.

• 
$$N>>m \Rightarrow \mathscr{H}_{N,\theta,m} \approx B_{m,\frac{\theta}{N}}$$

• Diese Binomialverteilung gegebenenfalls mithilfe des zentralen Grenzwertsatzes durch Normalverteilung oder durch Poissonverteilung mit  $\lambda = \frac{m \cdot \theta}{N}$  nähern.

## Anpassungstests (Kolmogorov-Smirnov)

$$H_0: F = F_0$$
  $H_1: F \neq F_0$  
$$T(x_1, \dots, x_n) = \sqrt{n} \sup_{t \in \mathbb{R}} \left| \hat{F}(t) - F_0(t) \right|$$

#### 5.5 Zwei-Stichproben Test

$$H_0: \mu_1 \leq \mu_2 \qquad H_1: \mu_1 > \mu_2$$
 
$$T(X_1, \dots, X_n, Y_1, \dots, Y_n) = \sqrt{\frac{n \cdot m}{n + m}} \frac{\bar{X} - \bar{Y}}{\sqrt{\hat{\sigma}^2}} \underset{\text{falls } \mu_1 = \mu_2 \text{ und } \text{var} X_1 = \text{var} X_2 = \sigma^2}{\uparrow} t_{n+m-2}$$
 
$$\hat{\sigma}^2 = \frac{1}{n + m - 2} \left( (n - 1)\hat{\sigma}_X^2 + (m - 1)\hat{\sigma}_Y^2 \right)$$
 
$$K = (t_{m+n-2, 1-\alpha}, \infty)$$

- Vergleich der Varianzen: F-Test
- $\sigma_1^2 \neq \sigma_2^2$ : Welch Test

#### 6 Stat. Methoden für 2-dim Stichproben (Multivariatstatistik)

#### Test auf Unabhängigkeit von Beobachtungsparametern 6.1

#### 6.1.1 Randverteilungen

$$F_{(X,Y)}(x,y)=F_X(x)\cdot F_Y(y)\iff$$
 Unabhängigkeit von  $X$  und  $Y$  mit  $F_{(X,Y)}(x,y)=P(X\leq x,Y\leq y)$ 

### 6.1.2 Korrelationskoeffizient

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}X \cdot \text{var}Y}} \quad \frac{\text{nur falls } X,Y \text{ normalverteilt} \Rightarrow}{\Leftarrow \text{gilt immer}} \quad X,Y \text{ unabhängig}$$

# **6.1.3** $\chi^2$ Unabhängigkeitstest

Es seien  $a_1, \ldots, a_r \in \mathbb{R}$  und  $b_1, \ldots, b_s \in \mathbb{R}$ 

$$p_{ij} = P(X_1 = a_i, Y_1 = b_j)$$
 mit  $\sum_{i,j} p_{ij} = 1$ 

Bezeichnung:

$$p_{i.} = \sum_{j=1}^{s} p_{ij} = P(X_1 = a_i)$$
  $p_{.j} = \sum_{i=1}^{r} p_{ij} = P(Y_1 = b_j)$ 

 $H_0: p_{ij} = p_{i\cdot} \cdot p_{\cdot j} \quad \forall_{i,j}$  $H_1: p_{ij} \neq p_{i\cdot} \cdot p_{\cdot j}$  für wenigstens ein Paar (i, j) Zufallsgröße:  $H_{ij}$  - Anzahl  $\{l: X_l = a_i, Y_l = b_j\}$   $\hat{=}$  Absolute Häufigkeit des Auftretens des Paares  $(a_i, b_i)$  in der Stichprobe.

$$H_{i\cdot} = \sum_{j=1}^{s} H_{ij} \qquad H_{\cdot j} = \sum_{i=1}^{r} H_{ij}$$

Testgröße:

$$T = n \cdot \sum_{j=1}^{s} \sum_{i=1}^{r} \frac{\left(H_{ij} - \frac{H_{i} \cdot H_{.j}}{n}\right)^{2}}{H_{i} \cdot H_{.j}} \underset{\text{asymptot. } n \to \infty}{\sim} \chi^{2}_{(r-1)(s-1)}$$

Kritischer Bereich:

$$K = \left[\chi^2_{(r-1)(s-1),1-\alpha}, \infty\right)$$

- ullet Falls  $X_1$  und  $Y_1$  nicht diskret mithilfe von Klasseneinteilung diskretisieren
- $\bullet$  ACHTUNG: Falls  $H_0$ abgelehnt wird, dann Annahme dass notwendige Bedingung für die Unabhängigkeit verletzt ist! Falls  $H_0$  angenommen wird, dann also keine Aussage über die Unabhängigkeitshypothese möglich

#### 6.2 Regressionsanalyse

MKQ is BLUE Gauss Markov Theorem Zufällige Prozesse

