Travaux pratiques de physique PeiP 1 : les consignes pour l'examen

- L'examen se déroulera le **vendredi 10 juin en salle C3** (pas de manipulation)
- L'examen est individuel et dure 1h30
- Ne pas oublier les outils nécessaires : règle graduée, gomme, crayon, stylo, <u>calculette</u> <u>collège</u>.
- Les papiers millimétrés, log-log seront fournis

Savoirs faires examinés :

- Tracé de courbes: graduer régulièrement les axes, mettre les titres des axes ainsi que les <u>unités</u>, tracer une courbe moyenne qui passe au « milieu » des points de mesure; dans le cas de points ayant une incertitude, tracer <u>correctement</u> les rectangles d'erreur et tracer une droite de pente minimale et une droite de pente maximale qui passent par tous les rectangles d'incertitude.
- **Calcul de pente** : préciser l'<u>unité</u>, si les points ont un rectangle d'erreur, calculer la pente min et la pente max, en déduire la pente moyenne et son incertitude.
- Toujours commenter les résultats obtenus, si vous trouvez qu'ils sont aberrants, ou non concordant, avec ce à quoi vous vous attendez, il faut le dire.
- Revoyez les consignes pour faire les arrondis
- Revoyez comment s'estime une incertitude de lecture
- Revoyez le CALCUL d'incertitude :
 - Si on a une fonction de plusieurs variables : T = f(x,y,z)
 - Alors, l'incertitude ABSOLUE est : $\Delta T = \left| \frac{\partial T}{\partial x} \right| \Delta x + \left| \frac{\partial T}{\partial y} \right| \Delta y + \left| \frac{\partial T}{\partial z} \right| \Delta z$
 - On peut ensuite, calculer l'incertitude RELATIVE : $\frac{\Delta T}{T}$ à partir de l'expression de ΔT et de celle de T.

En pratique, l'examen s'articule de la façon suivante :

- 1 Tracé sur papier log-log: on vous donne des mesures, vous devez faire un tracé, calculer la pente, comparer avec la théorie, déduire du graphe « l'ordonnée à l'origine » (c'est-à-dire la valeur pour x=1 si elle est disponible même genre que TP1 et TP5).
- 2 Tracé sur papier millimétré: on vous donne des mesures, vous devez faire un tracé avec les carrés d'incertitude, calculer les pentes min et max, exploiter les résultats (même genre que TP2, TP4, TP5)
- 3 Calcul d'incertitude: on vous donne une formule, deux mesures avec leur incertitude, vous devez trouver l'inconnue avec son incertitude et commenter le résultat (même genre que TP9, TP6, TP8)

Exemple: pour trouver le volume d'un cube on mesure son arête : $(2,00 \pm 0,02)$ cm. Déterminez le volume du cube et son incertitude.

Il	faut	aussi	savoir	calculer	l'incertitude	d'une	série	de	mesures	(voir	la	présentation	des	TP
de	phy	sique	s faite a	au début	de l'année)									

4 – Questions :	vous devrez répondre à 6 questions au choix sur 11, ces questions concernent
les TP que vous	aurez faits.
Exemple	de questions:

TP $n^{\circ}1$: lors d'un choc de deux mobiles, laquelle de ses assertions est correcte : \square Les vitesses des composantes parallèles⁽¹⁾ avant et après le choc sont égales \square Les vitesses des composantes orthogonales⁽¹⁾ avant et après le choc sont égales ☐ Les vecteurs vitesses avant et après le choc sont égaux

TP n°5 : le module d'Young est donné par la relation suivante : $E = \frac{F.L^3}{4.f.a.b^3}$ Avec a, b, L, f, des longueurs et F une force. Quelle est la dimension de E? □ N.m □ N.m⁻²

□ N/m

Il faut donc savoir faire l'analyse dimensionnelle.

⁽¹⁾ parallèles et orthogonales au segment joignant les points anguleux des trajectoires