

Application for United States Letters Patent

for

**METHOD AND APPARATUS FOR REDUCING FALSE HOOK
DETECTION**

by

Jin Li

EXPRESS MAIL MAILING LABEL

NUMBER EL 522 496 086 US

DATE OF DEPOSIT 01/11/01

I hereby certify that this paper or fee is being deposited with the United States Postal Service "EXPRESS MAIL POST OFFICE TO ADDRESSEE" service under 37 C.F.R. 1.10 on the date indicated above and is addressed to: Assistant Commissioner for Patents, Washington D.C. 20231.

Signature

METHOD AND APPARATUS FOR REDUCING FALSE HOOK DETECTION

BACKGROUND OF THE INVENTION

5 1. FIELD OF THE INVENTION

This invention relates generally to telecommunications, and, more particularly, to a method and apparatus for reducing false hook detection in a line card.

2. DESCRIPTION OF THE RELATED ART

10 In communications systems, particularly telephony, it is a common practice to transmit signals between a subscriber station and a central switching office via a two-wire bi-directional communication channel. A line card generally connects the subscriber station to the central switching office through a subscriber line. At the subscriber end, a telephonic device may be employed to establish communication with a remote user using the subscriber line. The combination of the telephonic device and the subscriber line is commonly referred to as a subscriber loop.

15 A line card generally includes at least one subscriber line interface circuit (SLIC) as well as a subscriber line audio-processing circuit (SLAC). The SLIC interfaces with the subscriber loop, and the SLAC interfaces with the SLIC. The SLIC and the SLAC carry out the well-known BORSCHT (Battery feed, Overvoltage protection, Ringing, Supervision, Coding, Hybrid, and Test) functions.

The SLIC of the line card may operate in a variety of states, such as a standby state, active state, and ringing state. Each state may have its own current resolution mode. For example, the standby state may be a high-resolution current mode, while the ringing state may be a low-resolution mode. Switching between the three states may give rise to undesirable 5 transients, partly because of the varying level of currents in the different modes. As a result, the undesirable transients may adversely affect the operation of the SLIC, resulting in false hook detection, for example.

The present invention is directed to overcoming, or at least reducing the effects of, one or more of the problems set forth above.

SUMMARY OF THE INVENTION

In one aspect of the present invention, a method is provided for reducing false switch hook detection in a line card coupled to a subscriber loop. The method comprises operating in a first state of the line card, receiving a control signal, and disabling switch hook detection in the line card. The method further comprises determining an initial condition of a second state of the line card, operating in the second state of the line card in response to receiving the control signal, wherein the second state begins to operate from the determined initial condition. The switch hook detection in the line card is activated.

20

In another aspect of the present invention, an apparatus is provided to reduce false switch hook detection. The apparatus, which is capable of operating in at least a first and a second state, comprises switch hook detection logic. The apparatus further comprises logic adapted to receive

a control signal and determine an initial condition of the second operating state. The logic is further adapted to operate in the second state of the line card in response to receiving the control signal, wherein the second state begins to operate from the determined initial condition. The logic is adapted to activate the switch hook detection logic.

5

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which:

10
Figure 1 illustrates a communications system in accordance with the present invention;

15
Figure 2 depicts a block diagram of an embodiment of a line card in accordance with the present invention that can be implemented in the communications system of Figure 1;

Figure 3 depicts an exemplary DC feed curve that may be employed by the line card of Figure 2;

20
Figure 4 illustrates a state diagram of the line card of Figure 2 in accordance with the

present invention;

Figure 5 illustrates an embodiment of a method in accordance with the present invention that may be implemented by the line card of Figure 2;

Figure 6 depicts an exemplary timing diagram of the line card entering a ringing state of the line card of Figure 2;

5 Figure 7 illustrates an embodiment of a method in accordance with the present invention that may be implemented by the line card of Figure 2;

Figure 8 depicts an exemplary timing diagram of the line card exiting the ringing state of the line card of Figure 2 to the active or standby state of the line card;

10 Figure 9 illustrates another embodiment of a method in accordance with the present invention that may be implemented by the line card of Figure 2; and

15 Figure 10 depicts an exemplary timing diagram of the line card exiting the ringing state of the line card of Figure 2 in response to a ring trip detection.

While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific 20 embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

Referring first to Figure 1, a simplified block diagram of a communications system 5 in accordance with the present invention is provided. The communications system 5 includes a line card 10 that interfaces with a telephonic device 12 over a subscriber line 20. In an actual implementation, the line card 10 interfaces with a plurality of subscriber lines 20, but for clarity and ease of illustration, only one is shown. In accordance with the present invention, the line card 10 is capable of providing a reliable method of ring-trip detection and AC fault detection based on a received ringing signal and fault-detection signal, respectively. Additionally, the line card 10 may perform other functions reliably, particularly functions that rely on power calculation.

20

A subscriber line interface circuit (SLIC) 30 is coupled to the subscriber line 20. Hereinafter, signals received by the line card 10 over the subscriber line 20 are referred to as upstream signals, and signals transmitted by the line card 10 on the subscriber line 20 are

referred to as downstream signals. The SLIC 30 supplies an analog upstream signal to a coder/decoder (CODEC) 40. The CODEC 40 receives the analog upstream signal from the SLIC 30 and generates a digital upstream signal that is subsequently passed to a digital signal processor 50. The DSP 50 also provides a digital signal for eventual transmission on the 5 subscriber line 20. The CODEC 40 receives the digital signal, converts it to an analog signal, and provides the analog signal to the SLIC 30, which sends the analog signal over the subscriber line 20.

10 In the illustrated embodiment, the line card 10, in addition to supporting plain old telephone service (POTS), is adapted to implement an asynchronous digital subscriber line (ADSL) modem for high bandwidth data transfer. The ADSL protocol is described in ANSI T1.413 Issue 2, entitled, "Interface Between Networks and Customer Installation - Asymmetric Digital Subscriber Line (ADSL) Metallic Interface." The SLIC 30 of the line card 10 is capable 15 of performing a variety of functions, such as battery feed, overload protection, polarity reversal, on-hook transmission, and current limiting. Only relevant portions of the SLIC 30, CODEC 40, and DSP 50 are described herein, although those of ordinary skill in the art will appreciate that 20 these devices may perform other functions that are not described in this disclosure.

25 The telephonic device 12 may comprise a telephone or any other device capable of providing a communication link between at least two users. In one embodiment, the telephonic device 12 may be one of a variety of available conventional telephones, such as wired telephones and similar devices. In an alternative embodiment, the telephonic device 12 may be any device capable of performing a substantially equivalent function of a conventional telephone, which

may include, but is not limited to, transmitting and/or receiving voice and data signals. Examples of the telephonic device 12 include a data processing system (DPS) utilizing a modem to perform telephony, a television phone, a DPS working in conjunction with a telephone, Internet Protocol (IP) telephony, and the like. IP telephony is a general term for the technologies 5 that use the Internet Protocol's packet-switched connections to exchange voice, fax, and other forms of information that have traditionally been carried over the dedicated circuit-switched connections of the public switched telephone network (PSTN). One example of IP telephony is an Internet Phone, a software program that runs on a DPS and simulates a conventional phone, allowing an end user to speak through a microphone and hear through DPS speakers. The calls 10 travel over the Internet as packets of data on shared lines, avoiding the tolls of the PSTN.

10
15
20

Figure 2 illustrates one embodiment of the line card 10 in accordance with the present invention. Specifically, the line card 10 includes the SLIC 30, which, in the illustrated embodiment, is a voltage-feed SLIC. The line card 10 also includes the CODEC/DSP 40, 50, which in the illustrated embodiment are shown as a subscriber line audio-process circuit (SLAC) 215 that integrates the functions of both the CODEC and DSP 40, 50. The line card 10 may be located at a central office or a remote location somewhere between the central office and the telephonic device 12 (see Figure 1). The line card 10 interfaces with the telephonic device 12 through tip and ring terminals 237, 239 at the SLIC 30. The combination of the telephone device 12 and the 20 subscriber line 20 is generally referred to as a subscriber loop.

The impedance of the subscriber line 20 is herein denoted as Z_{LOOP} , and impedance seen by an incoming signal from the subscriber line 20 is hereinafter referred to as Z_{IN} . The value of

Z_{LOOP} , which is determined by individual telephone authorities in various countries, may be in the range of 600-900 ohms for the POTS band and in the range of 100-135 ohms for the xDSL band. The SLIC 30 is adapted to be coupled to first and second resistors 217, 219, which are utilized to define the input impedance.

5

The line card 10, which may be capable of supporting a plurality of subscribers lines 20, performs, among other things, two fundamental functions: DC loop supervision and DC feed. The purpose of DC feed is to supply enough power to the telephone device 12 at the customer end. The purpose of DC loop supervision is to detect changes in DC load, such as on-hook events, off-hook events and rotary dialing, or any other event that causes the DC load to change. In the interest of clarity and to avoid obscuring the invention, only that portion of the line card 10 that is helpful to an understanding of the invention is illustrated.

10
15
20

The voltage-feed SLIC 30 is a high voltage bipolar SLIC that drives voltages to the subscriber line 20 and senses current flow in the subscriber line 20. The SLIC 30 includes first and second differential line drivers 230, 235 that interface with the subscriber line 20 via tip and ring terminals 237, 239. The tip terminal 237 is coupled to a first terminal of a first sensing resistor (R_{ab}) 240 and to an inverting terminal of the first line driver 230. A second terminal of the first sensing resistor 240 is coupled to an output terminal of the first line driver 230. The ring terminal 239 is coupled to a first terminal of a second sensing resistor (R_{bd}) 242 and to an inverting terminal of the second line driver 235. A second terminal of the second sensing resistor 242 is coupled to an output terminal of the second line driver 235.

The line card 10 is adapted to provide external ringing. Figure 2 illustrates a first switch 244 and second switch 245 for toggling between internal ringing and external ringing. During external ringing, the first and second switches 244, 245 are in position 2, and during normal operation or internal ringing, the switches 244, 245 are in position 1. When in position 2, the 5 first switch 244 is coupled to a first terminal of a resistor 246, which has a second terminal coupled to a ground node 247. The second switch in position 2 is coupled to a first terminal of a resistor 248, which has a second terminal coupled to a first terminal of an external ringing generator 249. A second terminal of the external ringing generator 249 is coupled to the ground node 247. For internal ringing, the switches 244, 245 are in position 1, and the line card 10 10 internally generates a ringing signal and provides it to the subscriber loop 20.

The SLIC 30 includes a sum block 250 and a current-sensing circuit 260. The sum block 250 includes a first output terminal coupled to a non-inverting terminal of the first line driver 230, and a second (inverted) output terminal coupled to a non-inverting terminal of the second line driver 235. The sum block 250 is capable of receiving a DC feed signal (as well as ringing signals) from a DCIN terminal 265, a voice signal, a metering signal, and a data signal and is capable of adding one or more of the received signals and providing it to the first and second line drivers 230, 235. The signals into the SUM block 250 may be subjected to different levels of gain for optimal performance. The signal from the DCIN terminal 265 is low-pass filtered.

20

The current-sensing circuit 260 produces a current proportional to the current through the current sensing resistors 240, 242, subtracts a current proportional to a current from a cancellation terminal (CANC) 270, and provides the resulting (metallic) current to an IMT terminal 275

of the SLIC 30. Although not so limited, in the instant embodiment, the constant of proportionality for the current from the cancellation terminal (CANC) 270 is unity, and the constant of proportionality for the metallic line current is 0.001. Those skilled in the art will appreciate that only those portions of the SLIC 30 deemed relevant to the invention are disclosed
5 herein. The SLIC 30 may employ other circuitry that is not illustrated in Figure 2.

The SLIC 30 includes a longitudinal sensing circuit 276 that provides a current proportional to the current through the current sensing resistors 240, 242. Specifically, the longitudinal sensing circuit 276 adds the current flowing through the current sensing resistors 240, 242, 10 divides the sum by two, and provides the resulting longitudinal current to an ILG terminal 277 of the SLIC 30. Although not so limited, in the instant embodiment, the constant of proportionality for the longitudinal line current is 0.001.

The SLIC 30 includes a first impedance matching loop 278 that adjusts a nominal value of the input impedance (Z_{IN}) to substantially match the impedance of the subscriber line 20. The first impedance matching loop 278 includes a nominal Z block 279 that receives the output signal of the current sensing circuit and provides a selected amount of “fixed” gain and delay to adjust a nominal value of the input impedance, Z_{IN} . In the illustrated embodiment, the nominal Z block 279 sets the nominal value of the input impedance to a fixed value of 900 ohms, which 20 includes the resistance provided by resistors 217, 219, 240 and 242.

The SLIC 30 is connected to the SLAC 215 as well as to an external resistor 280, as well as a capacitor 281. In the illustrated embodiment, the resistor 280 is 100,000 ohms. A first

terminal of the resistor 280 is coupled to the IMT terminal 275 of the SLIC 30, as well as to the VIN terminal 285 of the SLAC 215. A second terminal of the resistor 280 is coupled to a reference voltage node 282, as well as to a terminal of the capacitor 281. In one embodiment, the reference voltage 282 is in the range of about 1.4 volts. The external resistor 280 and the 5 capacitor 281 form a single-pole low pass filter 283 that is capable of filtering at least a portion, if not all, of the signals above the voice band, such as data signals and metering signal. The external resistor 280 and the capacitor 281 convert the current flowing from the IMT terminal 275 to a proportional voltage signal for the SLAC 215. Although not necessary, the resistor 280 is external in the illustrated embodiment because in some embodiments it may be useful for the drive value of the resistor to be relatively precise and because each line card 10 may require different values.

10
15
20

The ILG terminal 277 of the SLIC 30 is connected to a VLG terminal 284 of the SLAC 215 as well as to a filter 286. The impedance of the filter 286 converts the current flowing from the ILG terminal 277 to a proportional voltage signal for the SLAC 215. The filter 286 removes undesirable frequencies such as those above the voice band.

A discrete network 288 couples the SLIC 30 to the SLAC 215 via the CANC terminals 270, 290. The discrete network 288 includes a first and second resistor 292, 294 and a capacitor 296. A first terminal of the first resistor 292 is coupled to the CANC terminal 270 of the SLIC 30 and a second terminal of the first resistor 292 is coupled to a first terminal of the second resistor 294. The second terminal of the second resistor 294 is coupled to the CANC terminal 290 of the SLAC 215. The capacitor 296 is coupled between the second terminal of the first

resistor 292 and the reference voltage node 296. The discrete network 288 acts as a low pass filter and converts the voltage output signal from the SLAC 215 to a current and provides it to the SLIC 30.

5 The SLAC 215 interfaces with the telephonic device 12 through the SLIC 30 and over the subscriber line 20. The SLAC 215 includes two feedback loops: a DC cancellation loop 298 and a DC feed loop 300. In the illustrated embodiment, the two loops 298, 300 are implemented within a digital signal processor (DSP). Only those portions of the SLAC 215 deemed relevant to the instant invention are described herein, albeit the SLAC 215 may perform a variety of other functions that are not illustrated in Figure 2.

10 The DC cancellation loop 298 includes an analog-to-digital converter 305, DC cancellation logic 315, a current limiter 317, and a digital-to-analog converter 318, and a switch 319. The switch 319, during a non-ringing mode, allows an output signal of the digital-to-analog converter 318 to pass to the CANC 215 terminal 290 of the SLAC. In contrast, during a ringing mode, and as is described in more detail below, the switch 319 couples the VIN and CANC terminals 285, 290 of the SLAC 215, thereby disengaging the DC cancellation loop 298 from the CANC terminal 290.

20 In the illustrated embodiment, to reduce hardware complexity, the voice and DC components of the input signal from the VIN terminal 285 share the same analog-to-digital converter 305. The analog-to-digital converter 305 and digital-to-analog converter 318 include a decimator and interpolator, respectively. The analog-to-digital converter 305 in the illustrated

embodiment is capable of providing two output signals, the first output signal is sampled at a 4 KHz frequency and provided as a digital signal to the DC cancellation logic 315, as well as to a switch hook detection logic 320. The second output signal of the analog-to-digital converter 305, comprising of voice and/or data (residual) components, is sampled at 32 KHz and provided 5 to a CODEC (not shown). A residual data component may exist at the output of the analog-to-digital converter 305 since the single-pole low pass filter 283 may not remove the entire data signal.

10 During the non-ringing mode, the DC cancellation logic 315 receives the digital signal from the analog-to-digital converter 305, filters high frequencies, and provides substantially a DC signal. The DC signal is provided as an input to the DC feed logic 321, as well as to the current limiter 317. The output of the current limiter 317 is converted to an analog signal and then provided back to the SLIC 30 via the CANC terminal 270. The output of the current limiter 317 is also provided to the switch hook detection logic 320 for switch hook detection. The current provided to the CANC terminal 270 of the SLIC 30 is used to cancel the DC component 15 of the signal from the current sense circuit 260. Thus, during a “stable” state (*i.e.*, no transients present), the signal at the VIN terminal 285 of the SLAC 215 is essentially DC free.

20 The DC feed loop 300, in addition to the analog-to-digital converter 305 and DC cancellation logic 315, includes DC feed logic 321, a switch 322, and a digital-to-analog converter 325. In the illustrated embodiment, the digital-to-analog converter 325 may also interpolate. During the non-ringing state, the switch 322 provides an output signal from the DC feed logic 321 to the digital-to-analog converter 325. However, as will be described in more detail below, during the

ringing state, the switch 322 disengages the output of the DC feed logic 321, and, instead, provides a ringing signal generated by a ring generator 323 to the digital-to-analog converter 325. The output from the digital-to-analog converter 325 is provided to a DCIN terminal 265 of the SLIC 30 via VHL terminal 326 of the SLAC 215. The DC feed logic 321 is capable of 5 providing high DC voltage to the subscriber loop so that sufficient current (20-60 mA) can be driven through a resistance as high as 2K ohms.

When the DC conditions on the subscriber loop change suddenly, the DC feed logic 321 adapts to the change, thereby allowing normal transmission to continue. Examples of sudden 10 changes in DC conditions include on-hook, off-hook, rotary dialing, and tone signaling. When the telephonic device 12 goes off-hook, the loop impedance drops almost instantly to a value below 2K ohms. In short subscriber loops, the loop impedance may be less than 200 ohms. For the line card 10 to function and transmit information properly, the DC conditions on the subscriber loop should be stabilized quickly, and in some cases, within milliseconds.

Figure 3 illustrates an exemplary DC feed curve that may be adapted for use by the DC feed logic 321. A dashed line 328 provides the upper limits for the electrical power, and a dashed line 329 provides the lower limits for the electrical power provided to the subscriber loop. A Y-axis 330 represents voltage, and an X-axis 335 represents current. As can be seen in Figure 20 3, although not so limited, the DC feed curve includes an anti-saturation region, a resistance feed region, and a current limit region.

Referring again to Figure 2, when the line card 10 is in a “stable” state (*i.e.*, no transients), the signal at the VIN terminal 285 of the SLAC 215 comprises primarily a voice signal, although it may include residual metering and data signals that are not removed by the single-pole low pass filter 283. This single-pole low pass filter 283 provides an adequate 5 performance by attenuating the data and metering signals to acceptable levels. Aside from being more cost effective than higher order low-pass filters, the single-pole low pass filter 283 also provides an added advantage in that it does not make the line card 10 unstable.

40
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

The SLIC 30 of the line card 10 operates in at least three operating states, a standby state 410, an active state 420, and a ringing state 430, as shown in Figure 4. The standby state 410 is a low power mode that monitors the loop current during which voice transmission is disabled and the upstream data path is turned off. The SLIC 30 switches from the standby state 410 to the active state 420, for example, when the telephonic device 12 goes off-hook. During the active state 420, the line card 10 may perform dial pulse detection. The SLIC reverts to the standby state 410 in response to the telephonic device 12 going on-hook.

The SLIC 30 may switch from the standby state 410 to the ringing state 430 in response 20 to a ringing signal from a digital interface 350 (see Figure 2). The digital interface 350, which includes a processor (not shown), controls the operation mode of the line card. For example, when a remote user places a call to the telephonic device 12, the central office instructs the digital interface 350 to ring the telephonic device 12. Accordingly, in response to the request from the central office, the digital interface provides a ring control signal to switches 319, 322 and the ring generator 323 through logic 352. The SLIC 30 may enter the ringing mode from

either the standby state 410 or active state 420. Conversely, the SLIC 30 may exit the ringing state 430 and enter either the standby state 410 or the active state 420.

During the ringing mode, the switch 319 couples the VIN and CANC terminals 285, 290 of the SLAC 215, and the switch 322 couples the ring generator 323 to the digital-to-analog converter 325, which then converts the ringing signal into a digital signal before it is provided to the subscriber loop 30. In contrast, during the active state 420, when no ringing control signal is provided, the switches 319, 322 connect the respective DC cancellation and DC feed loops 298, 300 to the respective CANC and VHL terminals 290, 326 of the SLAC 215.

10
15

In response to receiving the ringing control signal, the ring generator 323 of the line card 10 provides an internal ringing signal to the subscriber loop 20. Thus, the first and second switches 244, 245 are set to position 1. In response to the ringing control signal from the digital interface 350, the switch 319 couples the VIN terminal 285 to the CANC terminal 290 of the SLAC 215, thereby shielding the DC cancellation loop 298 from high voltages and currents commonly associated with ringing signals. Typically, for voice and data operation, the voltage at the VIN terminal 285 may reach a maximum of 50 volts DC when no current is flowing, which is a voltage level that may be handled by the DC cancellation loop 298. In contrast, a ringing signal, which commonly comprises a 20 Hz signal along with a DC offset, may be a peak 20 (AC) 100 volts plus 20-30 volts DC signal, a voltage level that is too high for the DC cancellation loop 298. Accordingly, connecting the VIN and CANC terminals 285, 290 of the SLAC 215 aids in lowering the current level to the DC cancellation loop 298.

The impedance provided by the discrete network 288 at the CANC terminal 290 of the SLAC 215 is relatively low, approximately 16 to 17 K ohms. So, when the VIN and CANC terminals 285, 290 are shorted, the relatively low impedance of the discrete network 288 lowers the impedance seen at the VIN terminal 285, which is set primarily by the 100,000-ohm resistor 5 280. This is because adding a high and low impedance in parallel has a net effect of lowering the impedance. As a result of lower impedance, the voltage level present at the VIN terminal 285 during the ringing mode is generally at a lower level. Furthermore, the current sensing circuit 260 of the SLIC 30 aids in further reducing the voltage level at the VIN terminal 285, perhaps by half. This is because the current flowing from the VIN terminal 285 to the CANC terminal 290 is subtracted from the sensed line current in the SLIC 30 by the current sensing circuit 260. By lowering the impedance during the ringing mode, the line card 10 is able to handle currents of higher level, typically up to 130 mA.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
935

level of DC current to the subscriber loop 20, therefore high resolution of current is needed. The SLIC applies a 50 volt tip-ring voltage on the subscriber line in open loop. Assuming that the loop load is at least 10 Kohms, then approximately 3.3mA ($50\text{ V} / (10\text{ KOhms} + 5\text{ Kohms of internal SLIC 30 resistance})$) current flows from the subscriber loop 20 in the standby state 410.

5 The 3.3mA in the standby state 410 is equivalent to the 1/3 of the full value of the voltage at the VIN terminal 285 in the standby state 410.

10 However, when the SLIC 30 changes states, from the standby state 410 to the ringing state 430, for example, the 1/3 of the voltage at the VIN terminal 285 corresponds to a 43mA (as opposed to 3.3mA in the standby state 410) of residual current in the ringing state 430. Thus, when the SLIC 30 switches states, the initial condition of the new SLIC state is generally incorrect, thereby causing transient behavior in the line card 10. Such transient behavior may affect with the normal operation of the line card 10, such as cause false switch hook detection. Transients may also occur during a transition from the active state 420 to the ringing state 430.

15 Additionally, transients may also occur when the SLIC 30 transitions from the ringing state 430 to either the standby or active states 410, 420.

20 Referring now to Figure 5, a method in accordance with the present invention is illustrated to reduce the undesirable effects of the transients when entering the ringing state 430. The method of Figure 5 begins at block 510, where the logic 352 receives the ring control signal from the digital interface 350. At block 520, the logic 352 determines and stores the voltage between the tip and ring terminals 237, 239 in response to receiving the ring control signal. In another embodiment, additional parameters, such as adaptive echo cancellation parameters or

filter coefficients, may also be stored and later retrieved. At block 520, the logic 352 disables the switch hook detection logic 320 to avoid false switch-hook detection due to transient response. At block 540, the logic 352 switches to the ringing state (*i.e.* high-current mode), where switch 319 couples the VIN terminal 285 to the CANC terminal 290 of the SLAC 215.

5

At block 550, the logic 352 adjusts the voltage at the VIN terminal 285 to account for the different current scale in the ringing state 430, as compared to the current scale in the standby and active states 410, 420. If the line card 10, for example, switches from the standby state 410 to the ringing state 430, then the logic 352 adjusts the voltage at the VIN terminal 285 by a ratio of approximately 10/131, since the full current value during the standby state 410 is approximately 10 mA and the full current value during the ringing state 430 is 131 mA. Thus, by adjusting the voltage at the VIN terminal 285, the logic 352 is able to expeditiously achieve the proper voltage at the VIN terminal 285 for the ringing state 430. If the line card 10, for example, transitions from the active state 420 to the ringing state 430, the ratio for adjusting the voltage at the VIN terminal 285 is less relevant since the voltage VIN terminal 285 is zero during the active state 420. In an alternative embodiment, instead of adjusting the voltage at the VIN terminal 285, the logic 352 may wait a predetermined amount of time (*e.g.*, 20 ms) to allow the transients to pass.

20 At block 560, the logic 352 allows (for internal ringing) the ring generator 323 to provide the ringing signal to the subscriber loop 20. For external ringing, the ring generator 249 applies the ringing signal to the subscriber loop 20. In one embodiment, the logic 352 allows the ringing signal to reach the subscriber loop 20 when the ringing signal reaches the stored ring-tip voltage

at the block 420. The ringing signal is applied to the subscriber loop 20 when it crosses the stored ring-trip voltage to reduce any sudden voltage jumps at the tip-ring terminals 237, 239. At block 570, the logic 352 activates the switch hook detection logic.

5 Referring now to Figures 6, an exemplary timing diagram of a transition from standby or active states 410, 420 to the ringing state 430 in the line card 10 is illustrated. Figure 6 illustrates that, at time 612, the line card 10 is in either standby or active state 410, 420. Accordingly, at the time 612, the switch hook detection logic 320 is operational, as shown by line 620. A line 630 illustrates that, at the time 612, the full scale current loop value is approximately 10 mA in the standby state 410, and approximately 62 mA during the active state 420.

10 15 20

At time 632, the ring control signal from the digital interface 350 is received. Accordingly, transitioning from the standby/active states 410, 420 to the ringing state 430 results in a transient, as shown on the line 630. In one embodiment, the logic 352 waits a predetermined amount of time (e.g., 20 ms) to allow the transient to pass. Alternatively, the logic 352 adjusts the voltage at the VIN terminal 285 to account for the different current scales during different operational states 410, 420, 430. A line 635 illustrates the output of the CANC terminal 290 of the SLAC 215. The ringing signal is turned on, and the ringing signal is applied to the subscriber loop 20 at time 640, where the ringing signal crosses the voltage at the tip and ring terminals 237, 239. At the time 640, the line 635 illustrates the output signal of the CANC terminal 290. A line 645 illustrates that at the time 640, the ring trip detection of the line card 10 is enabled.

Referring now to Figure 7, a method in accordance with the present invention is illustrated to reduce the undesirable effects of the transients when exiting the ringing state 430 and entering the active state 420, assuming no ring trip detection occurs while the line card 10 was in the ringing state 430. The method of Figure 7 begins at block 710, where the logic 352 receives the control signal from the digital interface 350 to stop ringing. At block 720, the logic 352 disables the switch hook detection to prevent false switch hook detection during the transition. At block 730, the logic 352 stops the ringing signal when the ringing signal reaches the voltage at the tip and ring terminals 237, 239 in response to receiving the control signal to stop ringing. At block 740, the logic 352 switches from the ringing state 430, where switch 319 no longer shorts the VIN terminal 285 to the CANC terminal 290 of the SLAC 215.

10
15
20

At block 750, the logic 352 restores the voice transmission parameters, and at block 760 the logic 352 restores the voltage between the ring and trip terminals 237, 239. These voice transmission parameters and the tip-ring voltage are the same as those stored in block 520 of Figure 5, as previously described. If the line card switches back to active stage, then the voltage at the VIN terminal 285 will be zero, and the voltage at the CANC terminal 290 determines the loop current. If the line card switches back to the standby state, then the voltage at the CANC terminal 290 will be set to zero, and the voltage at the VIN terminal 285 determines the loop current. During the ringing state, the CANC terminal 290 is connected to the VIN terminal 285, which is equal to the ringing signal. When the line card switches back to its original state, which is in either the standby or active state, the initial voltage at the CANC terminal 290 and the VIN terminal 285 may not be correct for the new line state.

Therefore, if the line card goes back to the active stage, at block 770, the logic 352 sets a predetermined value at the CANC terminal 290 of the SLAC 215, to force the loop current to be smaller than the switch-hook threshold. Based on the current line card design, the full scale value at the CANC terminal 290 (1.02V) will output a 61.8 mA of loop current. The switch hook threshold in the active stage is 8.2 mA. Thus, the voltage at the CANC terminal 290 should be set to be less than $8.2/61.8 * 1.02 = 135\text{mV}$ to avoid a false switch-hook detection.

If the line card goes back to the standby stage, the logic 352 sets a predetermined voltage at the VIN terminal 285 to force the loop current to be less than the switch hook threshold. In the current line card, the full scale value at the VIN terminal 285 (1.02V) will output a 10mA of loop current in the standby stage. The switch hook threshold in the standby stage is 4.2mA. Thus, the voltage at VIN terminal should be set to less than $4.2/10 * 1.02 = 0.43\text{V}$ to avoid the false switch-hook detection.

In an alternative embodiment, the logic 352 waits a predetermined amount of time (20 ms, for example) to allow the transient to pass. At block 780, the logic 352 activates the switch hook detection logic 320.

Figure 8 illustrates an exemplary timing diagram of the line card 10 transitioning from the ringing state 430 to the standby or active states 410, 420, in the absence of a ring trip detection. At time 810, the line card 10 is in the ringing state 430. Accordingly, the switch hook detection is disabled, as shown on line 820, and ring trip detection logic line 825 is active at the time 810. During the ringing state, at the time 810, the output of the VIN terminal 285 is

illustrated on line 830, and the loop current is illustrated on line 840. In the ringing state 430, the loop current at the time 810 is approximately 131 mA.

At time 850, the line card 10 transitions to either the standby or active state 410, 420. 5 Accordingly, the ring trip detection logic on the line 825 is off. At time 860, when the ringing signal on the line 830 reaches the voltage at the tip and ring terminals 237, 239, the ringing signal is turned off. At the time 860, the switch hook detection is activated, as shown on the line 820.

10 Referring again to Figure 2, the SLAC 215 includes AC fault detection logic 355, ring-trip detection logic 360, and computation logic 365. The AC fault detection logic 355, ring-trip detection logic 360, and computation logic 365 are shown as functional blocks in Figure 2 for illustrative purposes only. It should be appreciated that in actual implementation these blocks are implemented in software within the digital signal processor 50 (see Figure 1).

15
40
45
50
55
60
65
70
75
80
85
90
95

20 The computation logic 365 receives a digital version of the signal from the VLG terminal of the SLAC, as well as the digital version of the signal from the VIN terminal 285. As is described in more detail below, the computation logic 365 computes a value based on the signal from the VIN terminal 285 that is later utilized by the ring-trip detection logic 360 for ring trip detection. Likewise, the computation logic 365 computes a value based on the digital signal received from the VLG terminal 284 that is utilized by the AC fault detection logic 355 for AC fault detection.

Turning now to Figure 9, a process is shown in accordance with another embodiment of the present invention. At block 910, if ring trip detection occurs while the line card 10 is in the ringing state, then the line card will only transfer to the active stage. At block 920, the logic 352 restores the voice transmission parameters, and at block 930 the logic 352 restores the voltage 5 between the ring and trip terminals 237, 239. These voice transmission parameters and the tip-ring voltage are the same as those stored in block 520 of Figure 5, as previously described. If the line card switches back to the active stage, then the voltage at the VIN terminal 285 will be zero, and the voltage at the CANC terminal 290 determines the loop current. The logic 352 sets the value of the CANC terminal 290 to a preselected value so that the loop current is larger than the switch hook threshold. At block 940, an off-hook condition is forced by the predetermined value at the CANC terminal 290. In one embodiment, the CANC terminal 290 voltage should be set to larger than 135 mA, as previously described. Alternatively, the logic 352 may wait a preselected amount of time, thereby allowing the transients to pass before activating the switch hook detection logic 320. An exemplary preselected time interval may be 20 ms. At block 950, the switch hook detection is then activated.

10
15

Figure 10 illustrates an exemplary timing diagram of the line card 10 transitioning from the ringing state 430 to the active state 420, assuming a ring trip occurs during the ringing state. At time 1010, a ring control signal is received. Line 1020 illustrates that the switch hook 20 detection is off during the time 1010, and line 1030 illustrates the status of the ring trip detection logic during the time 1010. Lines 1040 and 1050 illustrate the output of the VIN and CANC terminals 285, 290, respectively during the time 1010. Line 1060 illustrates the loop current during the ringing state at the time 1010.

At time 1065, a ring trip occurs, during which time a transient is present, as shown by the line 1060. At the time 1065, the logic 352 sets a loop current larger than the switch hook threshold, as indicated on the line 1050. The voltage at the VIN terminal 285 after the time 1065 5 becomes substantially zero. The switch hook detection is activated after the time 1065, as shown on the line 1020.

The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.