CSC373 Winter 2015 Problem Set # 9

Name: Weidong An Student Number: 1000385095 UTOR email: weidong.an@mail.utoronto.ca March 23, 2015

First, define the decision problem and the search problem of SubsetSum.

SubsetSum decision problem:

Input: A set $S \subseteq \mathbf{Z}^+$ and $t \in \mathbf{Z}^+$

Output: Is there some subset of S whose sum is exactly t?

SUBSETSUM search problem:

Input: A set $S \subseteq \mathbf{Z}^+$ and $t \in \mathbf{Z}^+$

Output: A subset of S whose sum is exactly t, or NIL if there is no such subset.

We show that SubsetSum problem is self-reducible by showing

SUBSETSUMSEARCH \xrightarrow{p} SUBSETSUMDECISION.

Proof: Suppose algorithm SSD(S,t) solves SUBSETSUMDECISION in polynomial time T(n) where n = |S|.

Consider the following algorithm Sss(S,t) that solves SubsetSumSearch in polynomial time.

Sss(S,t)

```
1 if not SSD(S,t)

2 return FALSE

3 for each x \in S

4 if SSD(S - \{x\}, t)

5 S = S - \{x\}

6 return S
```

Runtime analysis

In the worst case, the for-loop iterates n times. It takes O(n) time to form a subset of S in each iteration. It takes O(T(n)) time to call SSD in each iteration. Hence, the algorithm runs in $nO(n+T(n)) = O(n^2 + nT(n))$. If SSD runs in polynomial time, then SSS runs in polynomial time.

Justification of correctness

Let S_i denote the value of S after each iteration. In particular, S_0 is equal to the initial set S. Claim: $C \subseteq S_i$ is a loop invariant for some $C \subseteq S$ and $\Sigma_{x \in C} x = t$.

Base case: $S_0 \subseteq S$ is correct clearly since $S_0 = S$.

Induction step: Assume the claim is true for the i^{th} iteration. Then Consider the $(i+1)^{th}$ iteration. If $SSD(S_i - \{x\}, t)$ is TRUE, then $x \notin C$ so $C \subseteq S_{i+1} = S_i - \{x\}$. If $SSD(S_i - \{x\}, t)$ is FALSE,

$$C \subseteq S_{i+1} = S_i$$
.

Hence, the claim is true.

Finally, since the loop iterates over all the elements in S, all the elements that cannot form a sum t are removed from S. Therefore, SSS is correct.

By the above argument, SubsetSum is polytime self-reducible. \blacksquare