Programtervező informatikus BSc, B szakirány Valószínűségszámítás és statisztika gyakorlat, feladatok megoldása

1. (1-2 hét) Valószínűségek kiszámítása; feltételes valószínűség és Bayes-tétel

1.1. Feladat. Hányféleképpen lehet 8 bástyát letenni egy sakktáblára, hogy ne üssék egymást?

Megoldás

Az első bástya 64 helyre kerülhet. Ekkor a lefedett mező sorába és oszlopába már nem kerülhet újabb bástya, így a következőt már csak 7 sor és 7 oszlop valamelyikébe tehetjük le, ami 49 lehetőség. Minden újabb bástya letételével még egy újabb sor és oszlop kerül lefedésre. Tehát ezután sorra 36, 25, 16, 9, 4, és 1 lehetőség van a következő bástyák letételére. Tehát összesen $64 \cdot 49 \cdot 36 \cdot 25 \cdot 16 \cdot 9 \cdot 4 \cdot 1 = (8!)^2$ féleképp tehetjük le a bástyákat. Viszont a bástyák letevésének sorrendjét így figyelembe vettük. Amennyiben ezt a sorrendet nem vesszük figyelembe úgy le kell osztanunk a lerakott bástyák permutációinak számával, azaz 8!-sal. Ekkor 8! féleképp tehetjük le a bástyákat. A végeredményt közvetlenül is megkaphatjuk, ha oszloponként (ill. soronként) nézzük a bástyák helyét.

1.2. Feladat. Mi a valószínűsége, hogy egy véletlenszerűen kiválasztott 6 jegyű szám jegyei mind különbözőek?

Megoldás

Az első számjegyet az $1, 2, \ldots, 9$ számjegyek közül, a többi számjegyet a $0, 1, 2, \ldots, 9$ számjegyek közül választhatjuk. Így az összes esetek száma $9 \cdot 10^5$. Kedvező esetek száma: $9 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5$, mert itt visszatevés nélkül választunk, a sorrend számít, illetve arra figyelünk, hogy az első számjegy ne lehessen 0. Tehát a keresett valószínűség $\frac{9 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5}{9 \cdot 10^5} = \frac{136080}{900000} = 0,1512$.

- **1.3. Feladat.** Ha egy magyarkártya-csomagból (32 lap: piros, zöld, makk, tök) visszatevéssel húzunk három lapot, akkor mi annak a valószínűsége, hogy
 - a) pontosan egy piros színű lapot húztunk?
 - b) legalább egy piros színű lapot húztunk?

Megoldás

a) Az összes lehetőségek száma 32^3 . A 3 kihúzott lap közül $\binom{3}{1}=3$ -féleképp dönthetjük el, hogy melyik legyen a piros színű. 8-féle piros és 24 nem piros lap közül választhatunk.

Tehát a keresett valószínűség: $\frac{3\cdot 8\cdot 24^2}{32^3}=\frac{27}{64}=0,\!4219.$

- b) Kényelmesebb most a komplementer esemény valószínűségét kivonni 1-ből. A komplementer esemény: nincsen piros a húzott lapok között. Ennek valószínűsége $\frac{24^3}{32^3}=\frac{27}{64}$. Tehát a keresett valószínűség $1-\frac{27}{64}=\frac{37}{64}=0.5781$.
- 1.4. Feladat. Egy zsákban 10 pár cipő van. 4 db-ot kiválasztva, mi a valószínűsége, hogy van közöttük pár, ha
 - a) egyformák a párok?
 - b) különbözőek a párok?

Megoldás

- a) 10 balos és 10 jobbos cipő van. Mi a valószínűsége, hogy a 4 kihúzott között van balos és jobbos is? Célszerű most is a komplementer esemény valószínűségét kivonni 1-ből. A komplementer esemény: vagy 4 balosat húztunk, vagy 4 jobbosat. Ennek valószínűsége: 2 · 10·9·8·7/20·19·18·17 = 28/323 vagy (10/2) / (20/4) + (10/2) / (20/4) = 28/323. Tehát a keresett valószínűség 1 28/323 = 0,9133.
- b) Most is érdemes a komplementer esemény valószínűségét kiszámítani. Komplementer esemény: nincs pár a 4 cipő között. Ha így akarom a cipőket kiválasztani, akkor az elsőt 20-féleképp választhatom ki, a másodikat 18-féleképp (az első és párja kiesik), a harmadikat 16-féleképp és a negyediket 14-féleképp. Összes eset: $20 \cdot 19 \cdot 18 \cdot 17$. Tehát a komplementer esemény valószínűsége $\frac{20\cdot18\cdot16\cdot14}{20\cdot19\cdot18\cdot17} = \frac{224}{323}$ vagy kiválasztunk 10 párból a 4 párat először, majd ezek balosát ill. jobbosát $\frac{\binom{10}{4}\binom{2}{1}\binom{2}{1}\binom{2}{1}\binom{2}{1}\binom{2}{1}}{\binom{20}{1}} = \frac{224}{323}$. Tehát a keresett valószínűség $1 \frac{224}{323} = 0,3065$.
- **1.5. Feladat.** $\star n$ dobozba véletlenszerűen helyezünk el n golyót úgy, hogy bármennyi golyó kerülhet az egyes dobozokba.
 - a) Mi a valószínűsége, hogy minden dobozba kerül golyó?
 - b) Annak mi a valószínűsége, hogy pontosan egy doboz marad üresen?

Megoldás

Vegyük észre hogy a probléma kitűzése nem határozza meg teljesen egyértelműen hogy milyen valószínűségi modellt kell használni, ugyanis nem írja elő hogy milyen módon helyezzük a golyókat a dobozokba, s azt sem rögzíti hogy megkülönböztetett vagy azonos golyókról van szó. Mindenesetre feltesszük hogy a dobozok meg vannak különböztetve (habár a feladat kitűzése ezt sem rögzíti).

- a) 1. Értelmezés: A golyókat megkülönböztetjük (ez nem feltétlenül jelenti, hogy a golyók fizikailag különbözőek, már az is megkülönböztetés, hogy ha egymás után rakjuk őket a dobozokba, s így első, második stb., golyóról lehet beszélni). Ilyenkor, hacsak a feladat explicite nem ír elő mást, a "véletlenszerűen" szó értelmezése az, hogy minden golyót egymástól függetlenül, azonos (1/n) valószínűséggel helyezünk a dobozokba.
 - Tekintsük az n=2 esetet, egyszerűség kedvéért. A valószínűségi tér természetes módon egy szorzattér, $\Omega=\{1,2\}\times\{1,2\}$, ahol a Descartes szorzat első komponense azt kódolja el, hogy az első golyó az 1-es vagy a 2-es dobozba kerül, a második komponens ugyanezt teszi a második golyóval. Például $\omega=(2,1)$ azt jelenti, hogy az első golyó a 2-es, a második golyó az 1-es dobozba került. Összesen $2\cdot 2=4$ kimeneti lehetőség van, és a függetlenségi feltevés miatt mindegyik $1/2\cdot 1/2=1/4$ valószínűségű.

Általánosan: n megkülönböztetett golyót n dobozba n^n féleképpen tudjuk betenni (ismétléses variáció). A kedvező esetek száma n!, azaz a lehetséges permutációk száma. Így a keresett valószínűség

$$\mathbb{P}(\text{minden dobozban van egy goly\'o}) = \frac{n!}{n^n}.$$

- <u>2. Értelmezés:</u> Ha a golyók nincsenek megkülönböztetve, és a berakási folyamat sem utal rá, akkor úgy is okoskodhatunk, hogy csupán a végeredményt látjuk és a valószínűségi terünket az összes lehetséges kimenet halmazaként definiáljuk. Vegyük észre, hogy az 1. Értelmezéssel ellentétben most n = 2-nél mindössze 3 lehetőségünk van:
- (a) az első dobozban két golyó, a másodikban semmi;
- (b) mindkét dobozban egy golyó;
- (c) első dobozban semmi, a másodikban kettő.

Struktúrájában ez a valószínűségi tér nagyon más mint az előző, nemcsak az elemek száma különbözik, de nincs Descartes szorzat struktúrája sem. A "véletlenszerűen" szó elvileg értelmezhető úgy is, hogy a három lehetséges kimenet egyenlő valószínűségű. Így például 1/3 annak a valószínűsége hogy mindkét dobozba egy-egy golyó került, míg az első értelmezés szerint ugyanez a valószínűség 1/2.

Általánosan: n nem megkülönböztetett n dobozba $\binom{2n-1}{n}$ féleképpen tudjuk betenni (ismétléses kombináció). [Rendezzük az n dobozt sorba, ekkor n-1 válaszfal keletkezik közöttük. Az összes esetek száma az n golyó és az n-1 válaszfal sorrendjeinek száma, ami egy ismétléses permutáció: $\frac{\binom{n+(n-1)}{!}}{n!\cdot(n-1)!}=\binom{2n-1}{n}$.] A kedvező esetek száma 1, azaz minden dobozba egy golyó kerül. Így a keresett valószínűség

$$\mathbb{P}(\text{minden dobozban van egy golyó}) = \frac{1}{\binom{2n-1}{n}}.$$

A két értelmezés közötti döntés nem matematikai hanem modellezési probléma; sokszor azonban a matematikusnak kell rámutatni a felhasználónál arra, ha esetleg a probléma nincs kellő pontossággal megfogalmazva. Esetünkben az első megközelítés jól jól írja le a gázmolekulák viselkedését, a második pedig a fotonokét. A félév folyamán – ha külön nem jellezzük – az első megközelítést alkalmazzuk a feladatoknál.

b) Ha a golyókat megkülönbözőztetjük, akkor - mint előbb - az n golyót n dobozba n^n féleképpen tudjuk letenni (ismétléses variáció). A kedvező esetek számát a következőképpen kaphatjuk: az üres dobozt n féleképpen, a dobozt melyben 2 golyó lesz pedig n-1 féleképpen választhatjuk ki. Az n golyót n! féleképpen tehetjük le, viszont kétféleképpen is eljuthatunk ugyanahhoz az elrendezéshez, hiszen a 2 golyós dobozban bármelyik jöhetett a most üres dobozból. Így a keresett valószínűség

$$\mathbb{P}(\text{pontosan egy doboz marad "uresen}) = \frac{n(n-1)\frac{n!}{2}}{n^n} = \frac{\binom{n}{2}n!}{n^n}.$$

Ha a golyókat nem különbözőztetjük meg, akkor az n golyót n dobozba $\binom{2n-1}{n}$ féleképpen tudjuk betenni (ismétléses kombináció). A kedvező esetek számát a következőképpen kaphatjuk: az üres dobozt n féleképpen, a dobozt melyben 2 golyó lesz pedig n-1 féleképpen választhatjuk ki. Így a keresett valószínűség

$$\mathbb{P}(\text{pontosan egy doboz marad "uresen}) = \frac{n(n-1)}{\binom{2n-1}{n}}.$$

1.6. Feladat. Egy boltban 10 látszólag egyforma számítógép közül 3 felújított, a többi új. Mi a valószínűsége, hogy ha veszünk 5 gépet a laborba, akkor pontosan 2 felújított lesz közöttük?

2

Megoldás

A 10 gépből 3 felújított, 7 új. Tehát a 3 felújított gép közül kell 2-t kiválasztani, illetve a 7 új gép közül kell a maradék 3-mat kiválasztani. A kiválasztás sorrendje nem számít, ez visszatevés nélküli mintavétel. A kedvező esetek száma: $\binom{3}{2} \cdot \binom{7}{3} = 3 \cdot 35 = 105$. Összes esetek száma: $\binom{10}{5} = 252$. Tehát a keresett valószínűség $\frac{105}{252} = 0,4167$. (ez megfelel a későbbiekben definiált hipergeometriai eloszlásnak N = 10, M = 3, n = 5 paraméterekkel.)

1.7. Feladat. Ha a 6 karakteres jelszavunkat véletlenszerűen választjuk a 10 számjegy és a 26 karakter közül, akkor mi a valószínűsége, hogy pontosan 3 szám lesz benne?

Megoldás

- $\binom{6}{3}=20$ -féleképp lehet a 6 karakterből a 3 szám helyét kiválasztani. Ezután feltehető, hogy az első 3 karakter szám, az utolsó 3 karakter betű. Számjegy választásának valószínűsége $\frac{10}{36}$, betűé $\frac{26}{36}$. A keresett valószínűség tehát $\binom{6}{3}\cdot(\frac{10}{36})^3\cdot(\frac{26}{36})^3=0,1615$. Itt feltettük, hogy a választások függetlenek. (ez megfelel a későbbiekben definiált binomiális eloszlásnak $n=60, p=\frac{10}{36}$ paraméterekkel.)
- **1.8. Feladat.** Az ötöslottónál adjuk meg annak a valószínűségét, hogy egy szelvénnyel játszva öttalálatosunk lesz, illetve hogy legalább négyesünk lesz. Mi a valószínűsége, hogy minden kihúzott szám páros? (Hogy viszonylik ez a visszatevéses esethez?)

Megoldás

Annak a valószínűsége, hogy ötösünk lesz: $\frac{\binom{5}{5}}{\binom{90}{5}} = \frac{1}{\binom{90}{5}}$.

Annak a valószínűsége, hogy legalább négyesünk lesz: $\frac{\binom{5}{5}}{\binom{90}{5}} + \frac{\binom{5}{4}\binom{85}{1}}{\binom{90}{5}}$.

Annak a valószínűsége, hogy minden kihúzott szám páros: $\frac{\binom{45}{5}}{\binom{90}{5}} \approx 0,028$.

A visszatevéses esetben (tehát, mikor egy számot többször is kihúzhatunk) annak a valószínűsége, hogy párosakat húzunk: $\left(\frac{45}{90}\right)^5 = \left(\frac{1}{2}\right)^5 \approx 0,031$. Bár a két érték közel van egymáshoz, a visszatevés nélküli esetben kisebb a valószínűség, mert ott fogynak a páros számok a választás során.

1.9. Feladat. Mennyi a valószínűsége, hogy két kockadobásnál mind a két dobás 6-os, feltéve, hogy tudjuk, hogy legalább az egyik dobás 6-os?

Megoldás

Legyen A esemény az, hogy mindkét dobás hatos, B pedig, hogy legalább az egyik hatos. Ekkor

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{\frac{1}{36}}{\frac{11}{36}} = \frac{1}{11}$$

1.10. Feladat. 41 millió ötöslottó-szelvényt töltenek ki egymástól függetlenül. Mennyi a valószínűsége, hogy lesz legalább egy 5-ös találat?

Megoldás

 $P(\text{legalább egy ötös találat lesz a 41M-ból}) = 1 - P(\text{nem lesz ötös találat a 41M-ból}) \stackrel{\text{függetlenség}}{=}$

$$=1-P(\text{egy embernek nem lesz ötös találata})^{41\cdot 10^6}=1-\left(1-\frac{\binom{5}{5}}{\binom{90}{5}}\right)^{41\cdot 10^6}pprox 0,6066.$$

1.11. Feladat. 100 érme közül az egyik hamis (ennek mindkét oldalán fej található). Egy érmét véletlenszerűen kiválasztva és azzal 10-szer dobva, 10 fejet kaptunk. Ezen feltétellel mi a valószínűsége, hogy a hamis érmével dobtunk?

Megoldás

Jelölje A azt az eseményt, hogy 10 dobásból 10 fej, B_1 azt, hogy jó érmével dobtunk, illetve B_2 azt, hogy hamis érmével dobtunk. Ekkor:

$$P(B_1) = \frac{99}{100};$$
 $P(A|B_1) = {10 \choose 10} \left(\frac{1}{2}\right)^{10} \left(\frac{1}{2}\right)^0 = \frac{1}{2^{10}}$
 $P(B_2) = \frac{1}{100};$ $P(A|B_2) = 1$

Alkalmazva a Bayes-tételt:

$$P(B_2|A) = \frac{P(A|B_2)P(B_2)}{P(A|B_1)P(B_1) + P(A|B_2)P(B_2)} = \frac{1 \cdot \frac{1}{100}}{\frac{1}{1024} \cdot \frac{90}{100} + 1 \cdot \frac{1}{100}} \approx 0.9118.$$

1.12. Feladat. Egy diák a vizsgán p valószínűséggel tudja a helyes választ. Amennyiben nem tudja, akkor tippel (az esélye, hogy eltalálja a helyes választ, ekkor $\frac{1}{3}$). Ha helyesen válaszolt, mennyi a valószínűsége, hogy tudta a helyes választ?

Megoldás

Jelölje A azt az eseményt, hogy helyesen válaszolt, B_1 azt, hogy tudta a választ, illetve B_2 , hogy nem tudta a választ. Ekkor:

$$P(B_1) = p;$$
 $P(A|B_1) = 1$
 $P(B_2) = 1 - p;$ $P(A|B_2) = \frac{1}{3}$

Alkalmazva a Bayes-tételt:

$$P(B_1|A) = \frac{P(A|B_1)P(B_1)}{P(A|B_1)P(B_1) + P(A|B_2)P(B_2)} = \frac{1 \cdot p}{1 \cdot p + \frac{1}{3} \cdot (1-p)} = \frac{3p}{2p+1}$$

1.13. Feladat. Egy számítógépes program két független részből áll. Az egyikben 0, 2, a másikban 0, 3 a hiba valószínűsége. Ha a program hibát jelez, akkor mi a valószínűsége, hogy mindkét rész hibás?

Megoldás

Vezessük be a következő jelöléseket:

- A a program hibát jelez;
- B_1 egyik rész sem hibás;
- B₂ pontosan az egyik rész hibás;
- B_3 mindkét rész hibás.

Ekkor

$$P(B_1) = P(\text{sem az első}, \text{ sem a második}) = (1-0,2)(1-0,3) = 0,56$$
 $P(A|B_1) = 0$ $P(B_2) = P(\text{pontosan az egyik}) = 0,2(1-0,3)+0,3(1-0,2)=0,14+0,24=0,38;$ $P(A|B_2) = 1$ $P(B_3) = 0,06;$ $P(A|B_3) = 1$

Alkalmazva a Bayes-tételt:

$$P(B_3|A) = \frac{P(A|B_3)P(B_3)}{P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3)} = \frac{1 \cdot 0.06}{0 \cdot 0.56 + 1 \cdot 0.38 + 1 \cdot 0.06} = \frac{0.06}{0.44} \approx 0.1364.$$

1.14. Feladat. Egy számítógép processzorát 3 üzemben készítik. 20% eséllyel az elsőben, 30% eséllyel a másodikban és 50% eséllyel a harmadikban. A garanciális hibák valószínűsége az egyes üzemekben rendre 10%, 4%, illetve 1%. Ha a gépünk processzora elromlott, akkor mi a valószínűsége, hogy az első üzemben készült?

Megoldás

Vezessük be a következő jelöléseket:

- A a processzorunk elromlott;
- B_1 a processzorunk az első üzemben készült;
- B_2 a processzorunk a második üzemben készült;
- B_3 a processzorunk a harmadik üzemben készült.

Ekkor

$$P(B_1) = 0, 2;$$
 $P(A|B_1) = 0, 10$
 $P(B_2) = 0, 3;$ $P(A|B_2) = 0, 04$
 $P(B_3) = 0, 5;$ $P(A|B_3) = 0, 01$

Alkalmazva a Bayes-tételt:

$$P(B_1|A) = \frac{P(A|B_1)P(B_1)}{P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3)} = \frac{0.1 \cdot 0.2}{0.1 \cdot 0.2 + 0.04 \cdot 0.3 + 0.01 \cdot 0.5} \approx 0.5405$$

2. (3-4 hét) Valószínűségi változó, diszkrét eloszlások

Feladatok

2.1. Feladat. Adjuk meg annak a valószínűségi változónak az eloszlását, ami egy hatgyermekes családban a fiúk számát adja meg. (Tegyük fel, hogy mindig $\frac{1}{2}$ - $\frac{1}{2}$ a fiúk, ill. a lányok születési valószínűsége.)

Megoldás

Jelölje az X valószínűségi változó a fiúk számát. Feltesszük, hogy a gyermekek neme független egymástól (ez a valóságban nem teljesen igaz). Ekkor a feladat visszatevéses mintavételként kezelhető, mely paramétereire $p=\frac{1}{2}$ és n=6 teljesülnek $(X B(6,\frac{1}{2}))$. Amiből a kívánt eloszlás:

$$P(X=k) = \binom{6}{k} \cdot \left(\frac{1}{2}\right)^k \cdot \left(\frac{1}{2}\right)^{6-k} = \binom{6}{k} \cdot \left(\frac{1}{2}\right)^6.$$

2.2. Feladat. Tegyük fel, hogy az új internet-előfizetők véletlenszerűen választott 20%-a speciális kedvezményt kap. Mi a valószínűsége, hogy 10 ismerősünk közül, akik most fizettek elő, legalább négyen részesülnek a kedvezményben?

Megoldás

Legyen X az a valószínűségi változó, mely megadja a speciális kedvezményt kapó ismerőseink számát. Ekkor ez egy olyan visszatevéses mintavételként kezelhető feladat, mely paramétereire $p=\frac{1}{5}$ és n=10, azaz X $B(10,\frac{1}{5})$. Így pedig

$$\begin{split} P(X \geq 4) &= 1 - P(X < 4) = \\ &= 1 - \left[\binom{10}{0} \left(\frac{1}{5}\right)^0 \left(\frac{4}{5}\right)^{10} + \binom{10}{1} \left(\frac{1}{5}\right)^1 \left(\frac{4}{5}\right)^9 + \binom{10}{2} \left(\frac{1}{5}\right)^2 \left(\frac{4}{5}\right)^8 + \binom{10}{3} \left(\frac{1}{5}\right)^3 \left(\frac{4}{5}\right)^7 \right] \\ &= 1 - \left[\binom{10}{0} 4^{10} + \binom{10}{1} 4^9 + \binom{10}{2} 4^8 + \binom{10}{3} 4^7 \right] \left(\frac{1}{5}\right)^{10} \approx 0,1209. \end{split}$$

2.3. Feladat. Egy tétel áru 1% selejtet tartalmaz. Hány darabot kell találomra kivennünk és megvizsgálnunk, hogy a megvizsgált darabok között legalább 0,95 valószínűséggel selejtes is legyen, ha az egyes kiválasztott darabokat vizsgálatuk után visszatesszük?

Megoldás

Legyen X = a selejtes áruk száma a vizsgált darabok közt. Ekkor mivel X binomiális eloszlású n és p=0,01 paraméterekkel $P(X\geq 1)=1-P(X=0)=1-\binom{n}{0}\cdot 0,01^0\cdot 0,99^n>0,95\Rightarrow 0,05>0,99^n\Rightarrow n>\frac{\ln 0,05}{\ln 0,99}\approx 298,07\Rightarrow n\geq 299.$

2.4. Feladat. Dobjunk egy kockával annyiszor, ahány fejet dobtunk két szabályos érmével. Jelölje X a kapott számok összegét. Adjuk meg X eloszlását!

Megoldás

Esetszétbontással érdemes próbálkozni. Annak a valószínűsége, hogy 0,1,2 fejet dobunk rendre 1/4, 1/2, 1/4. Az összegek 0 és 12 közé eshetnek, attól függően, hogy hány fejet dobtunk.

$$\begin{split} P(X=0) &= \frac{1}{4} \cdot 1 \\ P(X=1) &= \frac{1}{2} \cdot \frac{1}{6} \\ P(X=2) &= \frac{1}{2} \cdot \frac{1}{6} + \frac{1}{4} \cdot \frac{1}{36} \\ \vdots \\ P(X=6) &= \frac{1}{2} \cdot \frac{1}{6} + \frac{1}{4} \cdot \frac{5}{36} \\ P(X=7) &= \frac{1}{4} \cdot \frac{6}{36} \\ \vdots \\ P(X=12) &= \frac{1}{4} \cdot \frac{1}{36} \end{split}$$

2.5. Feladat. Jelölje X az ötöslottón kihúzott lottószámok legkisebbikét. Adjuk meg X eloszlását!

Megoldás

Jelentse X=k azt, hogy a legkisebb kihúzott szám k. Ez 1-86-ig bármelyik szám lehet. Ezek alapján, ha tudjuk, hogy k a legkisebb:

$$P(X=k) = \frac{\binom{90-k}{4}}{\binom{90}{5}},$$

mert a maradék kihúzott szám k+1 és 90 közé eshet.

2.6. Feladat. Egy érmével dobva (tfh. p a fej valószínűsége), jelölje X az első azonosakból álló sorozat hosszát. (Azaz pl., ha a sorozat FFI..., akkor X=2.) Adjuk meg X eloszlását!

Megoldás

Tegyük fel, hogy k-szor dobtunk egymás után fejet. Ez akkor lesz pontosan k hosszú sorozat, ha a k fej után közvetlenül írást dobtunk. Ugyanez fordítva is kell, hogy teljesüljön, azaz k írás után 1 fej kell. Ezek alapján az eloszlás:

$$P(X = k) = p^{k}(1 - p) + (1 - p)^{k}p$$

2.7. Feladat. Legyenek az X diszkrét valószínűségi változó értékei -2, 1, 3, a következő valószínűségekkel:

$$P(-2) = 1/2$$
, $P(1) = 1/3$, $P(3) = 1/6$.

Rajzolja fel az F(x) eloszlásfüggvényt!

Megoldás

$$F(x) = P(X < x) = \begin{cases} 0, & \text{ha } x \le -2\\ \frac{1}{2}, & \text{ha } -2 < x \le 1\\ \frac{1}{2} + \frac{1}{3} = \frac{5}{6}, & \text{ha } 1 < x \le 3\\ 1, & \text{ha } x > 3 \end{cases}$$

2.8. Feladat. Tegyük fel, hogy a 3 valószínűségszámítás gyakorlatra rendre 15, 20, illetve 25 diák jár. Várhatóan mekkora egy véletlenszerűen kiválasztott diák csoportja?

Megoldás

Legyen X a valószínűségszámítás gyakorlatra járó diákok száma. Ekkor

$$P(X = 15) = 15/60 = 1/4$$

$$P(X = 20) = 20/60 = 1/3$$

$$P(X = 25) = 25/60 = 5/12$$

Így a várható érték $EX = 15 \cdot 1/4 + 20 \cdot 1/3 + 25 \cdot 5/12 = (45 + 80 + 125)/12 = 250/12 = 20,83$. Itt azt feltételeztük, hogy minden diákot ugyanakkora $\frac{1}{60}$ valószínűséggel választunk ki. Természetesen lehetnek más választási módok is.

2.9. Feladat. Két kockával dobunk. Egy ilyen dobást sikeresnek nevezünk, ha van 6-os a kapott számok között. Várhatóan hány sikeres dobásunk lesz n próbálkozásból?

Megoldás

Legyen X a sikeres dobások száma az n dobásból. Ekkor X egy p paraméterű binomiális eloszlást követ, melyre $p=\frac{11}{36}$ a sikeres dobás valószínűsége. Így X várható értéke EX=np, azaz várhatóan $\frac{11}{36}n$ sikeres dobásunk lesz.

2.10. Feladat. Tegyük fel, hogy egy dobozban van 2N kártyalap, melyek közül kettőn 1-es, kettőn 2-es szám van és így tovább. Válasszunk ki véletlenszerűen m lapot. Várhatóan hány pár marad a dobozban?

Megoldás

Legyen X_i annak az indikátora, hogy mindkét i feliratú lap bent marad az m lap kivétele után, azaz

$$X_i = \begin{cases} 1, & \text{ha mindk\'et } i \text{ felirat\'u lap bent marad} \\ 0, & \text{k\"ul\"onben}. \end{cases}$$

Ekkor

$$p = P(X_i = 1) = \frac{\binom{2N-2}{m}}{\binom{2N}{2}}. \qquad \left(\text{Legyen} \binom{n}{k} := 0, \text{ ha } n < k. \right)$$

Legyen X a dobozban maradt párok száma az m lap kivétele után. Ekkor $X = X_1 + X_2 + \cdots + X_N$, melynek várható értéke

$$EX = EX_1 + EX_2 + \dots + EX_N = Np = N \frac{\binom{2N-2}{m}}{\binom{2N}{m}} = \frac{(2N-m)(2N-1-m)}{2(2N-1)}.$$

- 2.11. Feladat. Mennyi az ötöslottón kihúzott
 - a) számok összegének várható értéke?
 - b) páros számok számának várható értéke?

Megoldás

- a) Egy húzásnál a várható érték $1 \cdot \frac{1}{90} + 2 \cdot \frac{1}{90} + \cdots + 90 \cdot \frac{1}{90} = \frac{1+2+\ldots+90}{90} = 45, 5$. Öt szám kihúzása esetén pedig az összeg várható értéke a várható értékek összege: $5 \cdot 45, 5 = 227, 5$.
- b) A lottón kihúzott (páros és páratlan) számok számának várható értéke 5, azaz E(párosak száma) + E(páratlanok száma) = 5. Mivel ugyanannyi páros és páratlan szám közül választhatunk, így E(párosak száma) = E(páratlanok száma). Ez viszont csak akkor teljesülhet, ha a E(párosak száma) = 2, 5.

Más megoldás: Jelölje X a kihúzott páros számok darabszámát. Ekkor X hipergeometrikus eloszlást követ N=90, K=45 és m=5 paraméterekkel, így $EX=m\frac{K}{N}=5\frac{45}{90}=2.5$.

- **2.12. Feladat.** Egy bükkösben a bükkmagoncok négyzetméterenkénti száma Poisson-eloszlású, $\lambda=2,5$ db / m^2 paraméterrel. Mi a valószínűsége annak, hogy egy 1 m^2 -es mintában
 - a) legfeljebb egy, ill.
 - b) több, mint három magoncot találunk?
 - c) Adja meg a magoncok számanak várható értékét és szórását!

Megoldás

Legyen X a bükkmagoncok négyzetméterenkénti száma. Ekkor $X \sim Poisson(\lambda)$, ahol $\lambda = 2, 5$.

a)
$$P(X \le 1) = P(X = 0) + P(X = 1) = 1 \cdot e^{-2.5} + 2.5 \cdot e^{-2.5} = (1 + 2.5)e^{-2.5} \approx 0.287.$$

b)
$$P(X>3)=1-P(X\leq 3)=1-(P(X=0)+P(X=1)+P(X=2)+P(X=3))=1-(1\cdot e^{-2.5}+2.5\cdot e^{-2.5}+\frac{2.5^2}{2}\cdot e^{-2.5}+\frac{2.5^3}{6}\cdot e^{-2.5})=1-\left(1+2.5+\frac{2.5^2}{2}+\frac{2.5^3}{6}\right)e^{-2.5}\approx 0,242.$$

c)
$$EX = \lambda = 2.5, DX = \sqrt{\lambda} = \sqrt{2.5} \approx 1.58.$$

2.13. Feladat. Egy adott területről származó talajmintákban a spórák száma Poisson-eloszlású. A minták harmadában egyáltalán nincs spóra. Mi a valószínűsége annak, hogy egy mintában a spórák száma egynél több? Mekkora a spórák számának várható értéke és szórása?

Megoldás

Legyen X a spórák száma a vizsgált mintában. Ekkor $X \sim Poisson(\lambda)$.

$$\begin{split} &P(X=0)=e^{-\lambda}=\tfrac{1}{3}, \text{fgy } \lambda=-\ln\frac{1}{3}=\ln 3\approx 1,099.\\ &P(X>1)=1-P(X\leq 1)=1-(P(X=0)+P(X=1))=1-(1\cdot e^{-\ln 3}+\ln 3\cdot e^{-\ln 3})\approx 0,3.\\ &EX=\lambda=\ln 3 \text{ és } DX=\sqrt{\ln 3}\approx 1,048. \end{split}$$