Brief Introduction to Bond Math

Pre-requisite: Wall St. Prep course

Suggested Reference: Fixed Income Mathematics, Fabozzi 4th Edition

Coordinator: Aileen Daniels

Instructor: Vinay Karle

Bond Math – Session 2, Chapter 5

Yield (Internal Rate of Return)

Goals of This Unit

- Yield
 - Intuitive understanding
 - Calculation
 - Annualizing
- Price of Bond
 - Meaning
 - Calculation
 - Relationships with other factors (yield, coupon, time)
 - Accrued interest, daycounts, clean/dirty price

Time Value of Money Review - I

Future Value

$$FV = PV(1+i)^N$$

- We are <u>compounding</u>
- i is the interest rate to get us from PV to FV
- Solve for FV knowing PV, i, N

Time Value of Money Review - II

Future Value

$$PV = FV \left[\frac{1}{(1+i)^N} \right]$$

- We are <u>discounting</u>
- i is the <u>discount rate</u> to get us from FV to PV
- Solve for PV knowing FV, i, N

Concept of Yield

■ What if we knew PV, FV, and N – but had to solve for i?

- i is the <u>discount rate</u> to get us from FV to PV
- i is the <u>discount rate</u> that will make the present value of the cashflow equal to the price of the bond
- i is the **yield** of the bond
 - ▶ The return that would make the cashflow FV at time N worth price PV

Calculating Yield - I

Now let's look at a bond with multiple cashflows

$$PV = \frac{CF_1}{(1+y)^1} + \frac{CF_2}{(1+y)^2} + \frac{CF_3}{(1+y)^3} + \dots + \frac{CF_N}{(1+y)^N}$$

.

$$PV = \sum_{t=1}^{N} \frac{CF_t}{(1+y)^t}$$
 Know this formula!

- CF, PV, N are known
- We are solving for y
 - Iterative solution (Fabozzi p. 54)
 - Select a y
 - If resulting PV > price, pick a higher y
 - If resulting PV < price, pick a lower y</p>

Calculating Yield - II

- Discounting every CF at the same y
- Solve for y so that sum of all discounting cashflows is PV . . . the price
- **Yield** is the single interest rate which equates the price of a security to the sum of the present values of its cash flows.
- What is the yield when p = \$100?

Yield Names and Limitations

Names

- Yield to Maturity (YTM)
- Internal Rate of Return
- The Price
 - Yield is as much a quote as price

Limitations

- Compounding this way assumes reinvesting each CF at same interest rate
- So reverse discounting this way assumes discounting each CF at same discount factor
 - Should you discount a cashflow 6 months from now at same rate as a cashflow 60 months from now?
- Assumes holding bond to maturity

Yield Calculation Example - I

• From p. 56

■ \$1000 face **semi-annual** bond maturing in 5 years

Coupon rate is 10%

Priced at \$1243.88

Yield Calculation Example - II

$$PV = \frac{\$50}{(1+y)^1} + \frac{\$50}{(1+y)^2} + \frac{\$50}{(1+y)^3} + \dots + \frac{\$50}{(1+y)^{10}} + \frac{\$1000}{(1+y)^{10}}$$

- Coupon is 10% why are CFs \$50?
- Maturity is 5 years why is n=10?
- Anyway, iteratively solving for y leads to 2.225%
- Would we quote this bond as yielding 2.225%???

Annualizing Yields - I

- No, we would not quote it as yielding 2.225%
 - That is the periodic yield
- Bond is semi-annual
 - Just as we converted CFs from \$100 to \$50 by dividing by 2
 - Just as we converted N from 5 to 10 by multiplying by 2
 - ▶ We annualize the 2.225% periodic yield by multiplying by 2
 - ▶ The annualized semi-annual periodic yield is 4.45%
 - ▶ The <u>semi-annual bond-equivalent yield (BEY)</u>

Annualizing Yields - II

- Multiplying by 2 is not exactly correct
 - If you look at how interest compounding affects things (see p.60)
- Calculating it correctly gives you the <u>effective annual yield (EAY)</u>
 - See handout

$$(1+r_{f1})^{f1} = (1+r_{f2})^{f2}$$

- By convention
 - We divide/multiply by 2 to get from/to annual to semi-annual periodic
 - We usually quote semi-annual yield, not effective annual yield
 - ▶ Use handout formula when starting/going to frequencies 4,12, etc.
 - Must "pass through" the semi-annual periodic along the way

Examples

- Solve the YTM iteratively
- Use IRR function in Excel
- Use Bloomberg

Bond Math – Session 2, Chapter 6

The Price of a Bond

Quoting a Bond Price - I

XYZ needs to borrow US\$500MM

XYZ 5 1/4 12/14/2026

Issue Size: US\$500MM

- Sold in lots of US\$1MM <u>face value</u> or <u>par</u> (usually a minimum size or round lots)
- Quoted as follows:

Quoted Price	Real Dollar Cost	Term	Meaning
\$100	100% of \$1m = \$1m	Par	Bond is priced to market – coupon matches comparable current market yield
\$102	102% of \$1m = \$1.02m	Premium	Bond is priced above market – coupon is higher than comparable market yields
\$98	98% of \$1m = \$980,000	Discount	Bond priced below market – coupon is lower than comparable market yields

Quoting a Bond Price - II

Quoting conventions by instrument:

Instrument	Sample Quote	Dollar Amount	Rule
		(\$1000 face)	
Corporate Bond	98.2564	\$982.564	Priced to 4 decimal places
US TSY Notes, Bonds	100:02	\$1,000.625	Left of ":" is percentage, right is in 32 nd s.
		(100 + 2/32)	
US TSY Bills	4.73%	\$952.70	Percent discount from par
		(100-4.73)	μ
Mortgage-backed	98-24+	\$987.6563	Same as TSY Bonds. The + is a 64 th . A 3 rd
Securities	98-242	\$987.5781	digit would be a 256 th .

Dates

- Trade Date is the day the transaction occurs
- Dated Date is the day the bonds begin accruing interest
- Settlement Date is the day the money changes hands (T+1 or T+3)

Meaning of Price - I

- IBM issues a new semi-annual bond, maturing in 10 years
- Investor 1 buys US\$1MM face at par from IBM
 - Really buys from underwriter, simplified here
- Investor 1 owns the bond for 3 years and receives 6 coupon payments

Meaning of Price - II

Meaning of Price - III

Meaning of Price - IV

Meaning of Price - V

- Investor 2 paid Investor 1 for the right to receive
 - ▶ Cashflows 7, 8, 9, . . . 20
 - The principal payment (par, face, loan amount, etc.)

What should that price have been?

Meaning of Price - VI

Meaning of Price - VII

- "Price" is our valuation of the bond, not the market's
- "Rich / cheap" analysis
 - Is your calculated price higher / lower than the market price?
 - ▶ Higher?
 - Buy the bond
 - Lower?
 - Sell the bond
 - Wait and see whether you were right
- Why price calculation may differ?
 - Different ideas of what yield to use
 - Different ideas of what cashflows to use (?)

Calculation - I

- The price of a bond is the present value of all future cashflows (coupons, principal payment), discounted at some market/expected yield
- The "heart" of bond math
- We can use either of the formulas we've learned

$$PV = \sum_{t=1}^{N} \frac{CF_t}{(1+y)^t} + \frac{P}{(1+y)^N}$$

$$PV = c \left[\frac{1 - \left[\frac{1}{(1+y)^N} \right]}{y} \right] + \frac{P}{(1+y)^N}$$

$$PV \text{ of Coupons} \quad PV \text{ of Principal}$$

$$PV \text{ of Coupons} \quad PV \text{ of Principal}$$

Know these formulas!

Calculation - II

- Which yield to use?
 - ▶ The yield "on comparable bonds in the market . . . option-free bonds of the same credit quality and the same maturity." (Fabozzi, p.66)
 - Is using the same yield for each cashflow always appropriate?
- Yield is quoted as annual interest rate
 - Must alter depending on compounding before plugging into PV equation
 - Must alter period numbers the same way
- Which cashflows to use?
 - What if we don't know the cashflows ahead of time?
 - MBS, callables, derivatives, etc.
 - Build a team of highly skilled individuls (researchers/quants/developers etc)

Calculation - III

Par \$1000

9% Coupon

20 years to maturity

Yields are at 12%

- Sum is \$774.30
- Priced at a <u>discount</u>

PV of coupons

$$PV = (\frac{0.09*1000}{2}) \left[\frac{1 - \left[\frac{1}{\left(1 + (\frac{0.12}{2})\right)^{20*2}} \right]}{(\frac{0.12}{2})} \right]$$

PV of Principal

$$PV = \frac{1000}{\left(1 + \left(\frac{0.12}{2}\right)\right)^{20^{*}2}}$$

Calculation - IV

Par \$1000

9% Coupon

20 years to maturity

Yields are at 7%

- Sum is \$1213.55
- Priced at a <u>premium</u>

PV of coupons

$$PV = (\frac{0.09 * 1000}{2}) \boxed{\frac{1 - \left[\frac{1}{\left(1 + (\frac{0.07}{2})\right)^{20*2}}\right]}{(\frac{0.07}{2})}}$$

PV of Principal

$$PV = \frac{1000}{\left(1 + \left(\frac{0.07}{2}\right)\right)^{20^{*}2}}$$

Pricing with a Curve

Maturities

Price Relationships - I

- Price / Yield relationship is "convex"
 - Bowed
 - Upward slope steeper
- Remember: "Price Up, Yield Down".... "Price Down, Yield Up". Why?

$$PV = \sum_{t=1}^{N} \frac{CF_t}{(1+y)^t} + \frac{P}{(1+y)^N}$$

Price Relationships - II

- Bonds with coupons at current market levels trade at par.
- Bonds with coupons that are higher than prevailing market levels, trade at a *Premium*. (above par)
- Bonds with coupons that are lower than prevailing market levels trade at a Discount. (below par)

$$PV = \sum_{t=1}^{N} \frac{CF_t}{(1+y)^t} + \frac{P}{(1+y)^N}$$

Price Relationships - III

- As time to maturity decreases
 - Premium priced bond gets cheaper
 - Discount bond gets more expensive
 - "Pull to par"

$$PV = \frac{\$CF}{(1+y)^1} + \frac{\$CF}{(1+y)^2} + \frac{\$CF}{(1+y)^3} + \dots + \frac{\$CF}{(1+y)^{10}} + \frac{\$P}{(1+y)^{10}}$$

Accrued Interest - I

- Investor 1 sells to Investor 2 only 15 days before coupon paid
- Investor 2 gets the entire coupon
- Does Investor 1 lose the 5.5 months of "work" towards the coupon?
- No, Investor 2 must pay to Investor 1 the <u>accrued interest</u>
- The 5.5 months worth of interest that Investor 1 earned

Accrued Interest - II

$$AI = C \left[\frac{days_{pc \to settle}}{days_{inPeriod}} \right]$$
5.5 months
6 months

- Multiplying coupon by fractional portion of period elapsed before sale
 - Include only one of the two bracketing dates
 - If this is the first coupon, use the dated date instead of previous coupon date
- Different bonds use different conventions to count days

Daycounts

Instrument	Daycount
US TSY Bills	Actual/360
US TSY Notes, Bonds, Strips	Actual/Actual
Agencies, Corporates, Munis	30/360

- Try the Bloomberg "DCX" Screen
- Handbook of Global Fixed Income Calculations, Dragomir Krgin (2002)

Clean Price and Dirty Price - I

 The full purchase price of a bond includes accrued interest – the dirty price or street price

Price not counting accrued interest is clean price or flat price

Traders usually quote clean price

Dirty Price = Clean Price + Accrued Interest $\sum_{t=1}^{N} \frac{CF_{t}}{(1+y)^{t}} + \frac{P}{(1+y)^{N}} \qquad CF_{1} \left[\frac{days_{pc \to settle}}{days_{inPeriod}} \right]$

Clean Price and Dirty Price - II

$$w = \left[\frac{days_{settle \to nc}}{days_{inPeriod}} \right]$$
15 days
6 months

- Calculate dirty price directly by adjusting all periods by "w" offset
- Discounting over a shortened first coupon period
- Includes the portion of the first coupon that really belongs to the seller

$$PV = \frac{\$CF}{(1+y)^w} + \frac{\$CF}{(1+y)^{1+w}} + \frac{\$CF}{(1+y)^{2+w}} + \dots + \frac{\$CF}{(1+y)^{n-1+w}} + \frac{\$P}{(1+y)^{n-1+w}}$$