Simulations of Heat Load and Induced Stress in Target of ILC Positron Source

A. Ushakov¹, O. S. Adeyemi¹, G. Moortgat-Pick¹, F. Staufenbiel², S. Riemann²

¹ University of Hamburg/DESY, Hamburg
² DESY, Zeuthen

ILC Positron Collaboration Meeting

27 August 2011, IHEP, Beijing, China

Outline

- Introduction to Heat Load Problem
- Simulation Results
 - Stress after 1st train (ANSYS, Andriy)
 - Temperature and stress evolution in time (ANSYS, Friedrich)
- Outlook
- Shortly about Other Topics

Introduction to Problem

High energy deposited in target and resulting pressure/stress could destroy the target

- Thermal stress has been calculated by Werner Stein (Daresbury talk, 2005).
 LLNL codes Topaz-3d (thermal conduction code) coupled to Dyna-3d (dynamic structural response code) have been used.
- Tom Piggot has used COMSOL to estimate the stress in target (Argone talk, 2007).
- FlexPDE model has been developed by Alexander Mikhailichenko (Argone talk, 2007). "... negative pressure cracks the target more likely right after the first shot".
- Olufemi continues Stefan Hesselbach work on FlexPDE model (Olufemi talk, POSIPOL, 30 August)
- ANSYS calculations have been started

Import Data into ANSYS

Structure of Project in ANSYS Workbench

Description of Data Structure

Deposited Energy and Temperature Distributions

Temperature Map of Target Backside

$$\begin{split} \delta T[{\rm K}] &= E[{\rm GeV/(ph\cdot cm^3)}] \cdot 1.6 \cdot 10^{-10} [{\rm J/GeV}] \cdot 2 \cdot 10^{10} [{\rm e-/bunch}] \cdot 1.94 [{\rm ph/(e-\ m)}] \cdot 70 [{\rm m}]/\\ & / 4.49 [{\rm g/cm^3}] / 0.523 [{\rm J/(g\ K)}] \cdot 100 [{\rm bunch}] \end{split}$$

Material Properties

"Meshing" of Target

Details of "Mesh"			
Ξ	Defaults		
	Physics Preference	Mechanical	
	Relevance	0	
	Sizing		
	Use Advanced Si	Off	
	Relevance Center	Fine	
	Element Size	2,e-004 m	
	Initial Size Seed	Active Assembly	
	Smoothing	High	
	Transition	Fast	
	Span Angle Center	Fine	
	Minimum Edge Le	6,2832e-002 m	
+	Inflation		
+	Advanced		
+	Defeaturing		
	Statistics		
	Nodes	476511	
	Elements	312449	
	Mesh Metric	None	

Deformation

Maximal Deformation $\approx 8 \mu m$

Equivalent Stress

Maximal Stress \approx 100 MPa

Different Approach to Define Heat Load

- + Time evolution can be evaluated
- Homogenious distribution in volume

Temperature

Deformation

Thermal Stress

Summary and Outlook

- First ANSYS simulations of stress induced in target have been performed
- Peak stress for SB2009 parameter set is not too high (about 100 MPa)
- Next steps:
 - Learn how to import heat load data from FLUKA/Geant4
 - Add cooling
 - Simulate rim target (icluding rotation)

Other Topics

PPS-Sim:

- Added more realistic field of QWT (some results will be in Valentyn talk)
- Added one model of photon collimator
- Improved/extended storing of data and user interface

BMAD:

- Transfer data from PPS-Sim to BMAD
- First look at spin tracking up to DR (RDR lattice)

Spin Transport in PCAP

Emittance Change in PCAP

