# **IoT Security and Privacy**

**IoT Application: Smart Home** 



# Learning Outcomes

#### Upon completion of this unit:

- 1. Understand the concept of smart home
- 2. Identify vulnerabilities in home networks.
- 3. Identify the impact of the vulnerabilities.
- 4. Risk analyze smart home systems.



## Outline

- Smart home security
- Hack a home
- Dangers of insecure home automation deployment



# Disney Film: "Smart House" in 1999

- Pat, the smart house, controls everything
  - door locks, laundry, cleaning and meals.
- She goes crazy



#### Benefits of Smart Home

- Smart home devices connected to the internet
  - Through WiFi, Bluetooth, WiMAX, Z-Wave, etc.
- Monitor energy and water supply consumption
  - Find out how to save cost and resources
- Monitor security systems remotely
  - Surveillance cameras
- Remotely operate appliances
  - For convenience,
  - Avoid accidents
  - save energy
- Rich features by running programs available on the internet
- Challenge: security and privacy issues



# Risks Management

#### Risk assessment

• "Risk is a function of the **likelihood** of a given **threat-source**'s exercising a particular potential **vulnerability**, and the resulting **impact** of that adverse event on the organization." [3]

#### Risk mitigation

 "prioritizing, evaluating, and implementing the appropriate risk-reducing controls recommended from the risk assessment process."

#### Evaluation and assessment

Risk management evolves as the organization evolves



# Risk Assessment Methodology Flowchart [4]





# Risk Assessment Methodology Flowchart (Cont'd)





# Risk Assessment Methodology Flowchart (Cont'd)

 Likelihood of threat exploitation

Magnitude of impact

 Adequacy of planned or current controls





#### Risks of Smart Homes

#### Vulnerabilities

- No password
- Default password and account
- No encryption

#### Threats

- Hacks of lightings, television, smart meters, hot tub water heater, garage door, video surveillance systems, doors and windows,
- Intercepted private videos
- Flushing toilets



# Differences: PC Systems and Home Security Systems

- No upgrading functionality for deployed smart home devices
  - Security features
  - Bug fixes
- Need of specialists providing security solutions
  - May use OS like <u>VxWorks</u>, <u>INTEGRITY</u>
- Software from only the manufacturer
  - No third party security enhancement



# Home Owner's Difficulties and OEMs

- Lack of computer knowledge
  - Installation of software and patches
- Lack of computer security knowledge and management expertise by home owners
- Device security on OEMs (Original Equipment Manufacturer)
  - Often no incentive because of no profits from computer security
- All connected devices to be secured



# Resources in Security Devices

- Very limited resources is available for the device
- Devices are cost sensitive

- Can only run a specialized embedded operating system
- Devices are built with minimum memory and cheap CPUs to save production costs



#### How to Protect Smart Devices?

- Security features built into the device
  - A security system with multiple layers
- The security solution
  - Need of minimum resources
  - Sensitive to Internet attacks
- NO universal solution
  - Specific purpose devices for particular home security network
  - No solution that fits all requirements



#### What to Consider?

- Risk assessment
  - Chances of being attacked
  - Vulnerable network sectors
  - Implementation costs
  - Security failure costs economical and environmental costs



# Possible Security Features

- Secure bootstrapping (signed code)
  - Code in the device cryptographically signed by the manufacturer for integrity
  - Use of the hardware to authenticate the code root of trust
- Secure code updates



# Possible Security Features (Cont'd)

- Data Security
  - Encrypted data in the device
  - Encrypted communication
  - Authentication and authorization before accessing a device
- Authentication
  - Strong passwords
  - Appropriate authentication protocol
- Secure communication
  - Encrypted communication using SSH or SSL
  - Secure encryption algorithm (long keys)



# Possible Security Features (Cont'd)

- Intrusion prevention
  - Use of firewalls to permit trusted hosts and block known bad sites and hackers
- Intrusion detection and monitoring on devices
  - Detect and report attacks and suspicious activities
- Security management
  - Update security policies
  - Monitor emerging threats



# Requirements of Securing IoT

- Build front line security features
- Design customizable security features for the need of the device
- Consider security in early design and development
- Consider and acquire necessary hardware for security features such as secure boot



## Outline

- Smart home security
- Hack a home
- Dangers of insecure home automation deployment



### **Network Devices**

- Printers
- External Storage Devices
- Gaming systems:
  - XBox
  - PlayStation
- Smart TV
- Home Security System
- Cable/Satellite Box
- Internet service provider (ISP) Router



# Project Division

- Identify what devices to hack
- Set criteria for a successful hack
- Web interface
- Hardware
- Software



#### Discoveries

- Device analysis
  - Firmware updates
  - Hardware capabilities
- Device Vulnerability
- Web interface vulnerabilities



## Device Analysis

- Automatic updates or manual updates?
- Is product obsolete or supported anymore?
- Capabilities:
  - Operating system?
  - Built in security measures, e.g. encryption?



# Device Analysis (Cont'd)

- Obsolete software or no more updates.
  - Average support period less than a year.
- Many had Linux based OS.
  - Easy for hackers
  - GNU C compiler installed
  - Interpreters installed (e.g., Perl, Python)



# Vulnerability

- Access to configuration file and password hashes
- External Storage Device (ESD)
  - Could be compromised and turned into a backdoor
- No intrusion detection systems
- System commands as root user
- Full access to file system



#### Web Interface Vulnerabilities

- URL manipulation
  - Access to hidden tools and functions
- External Storage Device
  - Remote command execution with full permissions
  - OS level
- ISP Router
  - Tunnels to other devices
  - Remote admin interfaces



## Outline

- Smart home security
- Hack a home
- Dangers of insecure home automation deployment



# Objectives and Outcomes

- Analysis of control automation protocols of St. Regis ShenZhen, a gorgeous luxury hotel
  - Control with by using an iPad.
- Analysis of a home automation system
  - Anatomy of the attack that allows remote control of any IoT device connected to this system
  - Deployment flaws
  - How to create an iPad Trojan to send commands outside the hotel
  - Countermeasure guideline



#### Home Automation

- Automation of electronic components
  - Heating, ventilation and air conditioning (HVAC), lighting, music,
    TV
- IoT connects users with electronic components.
- Home automation makes our life more comfortable, help the environment, and in a long run help saving energy consumption.
- Security in Home Automation



# Typical Home Automation

- A panel or phone communicates with the devices through routers
- Security often relies on the WiFi security
  - No other security measures



## Benefits of Hotel Room Automation

- Centralized hotel room automation
- Save cost
- Guest comfort and satisfaction
  - No need of looking physical controls everywhere
- Increase utilization of amenities



#### KNX

- OSI-based network communication protocol for building automation.
- Widely deployed bus communication standard
  - Can be encapsulated inside IP.





#### **KNX**

- Simple sequential handshake,
  - CONNECTION\_REQUEST,
     CONNECTIONSTATE\_REQUEST,
     TUNNELING\_REQUEST,
     DISCONNECT\_REQUEST.
- Sending messages to the KNX backbone
  - Through TUNNELLING REQUEST





# KNX in the St. Regis ShenZhen

- iPad, loaded with an app controlling all electronic devices.
- KNX
  - A wireless communication channel,
  - KNX backbone



### Wireless Communication Channel

- WiFi with a WiFi key and captive web portal
- The captive portal white lists device MAC address
- Easy to intercept



#### The Control iPad

- No physical security.
  - Can be connected to a computer
  - Modify Configuration settings.
- Control app using two types of UDP packets
  - Track iPad's IP address and room location.
  - Communicate with end devices using KNX/IP protocol.



#### KNX Network

- Manipulate of "mocing parts" of the protocol
  - IP address inside the cEMI frame
  - KNX destination address
  - Action code
  - Payload
- IP address of each room access two KNX subnets
  - First subnet has all KNX elements in the room.
  - Second subnet accesses every KNX/IP router in a floor



#### The Attack

- Collect information by using a sniffing tool such as Wireshark
  - the KNX/IP router and KNX address of the room
  - the KNX address of the appliance and a dictionary of actions,
- With this knowledge the attack becomes trivial
  - Use open source KNX tool eidb
  - Launch eidb with the target IP
  - Send any arbitrary action to any room, e.g. raise all the blinds at the same time
- Trojanize the iPad to control every room.



#### **Solutions**

- Use secure KNX protocol with authentication
- Design a secure tunnel between the iPad and the KNX/IP router.
  - Adding a certificate and a tunnel code in the iPad,
  - Secure tunnel with SSL.
- Revoke old certificate at check-out
  - Grant a new certificate at check-in.



#### References

- [1] Grau, Alan., "Smart home security: Protecting wirelessly connected endpoints from cyber-attacks", 2015
- [2] D. Jacoby. (2014, August 21). IoT: How I hacked my home [online]. Available: <a href="https://securelist.com/analysis/publications/66207/iot-how-i-hacked-my-home/">https://securelist.com/analysis/publications/66207/iot-how-i-hacked-my-home/</a>
- [3] Jesus Molina, Learn how to control every room at a luxury hotel remotely: the dangers of insecure home automation deployment, Blackhat USA 2014
- [4] Gary Stoneburner, Alice Goguen, and Alexis Feringa, Risk Management Guide for Information Technology Systems, Recommendations of the National Institute of Standards and Technology, July 2002

