

ABioM: A Management Framework for Supporting Adaptive and Iterative VVUQ Efforts in Biomedical Modeling

06/27/2019

Paulina Rodriguez

paulina.rodriguez@fda.hhs.gov

Ahmad Dibaji, Bruce Murray, Matthew Myers, Pras Pathmanathan, Tina Morrison Center of Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics

Disclaimer:

This work is strictly for research and is not a guidance or regulatory document.

Outline

- ➤ Background
- **≻** Concepts
- **≻** Architecture
- **≻** Demo
- **≻** Application
- **>** Summary

Motivation

Developing an Electronic Drug Delivery System (*EDDS*) Computational Model:

- Credibility Plan and Assessment using the ASME V&V40 Standard
- Integrates Credibility building into the modeling project lifecycle
- Inline with FDA Guidelines
- Follows the actual process for a translational model

Agile for BioMedical Modeling (ABioM)

Applicability

Adaptability

Credibility

Knowledge

ASME V&V 40 Standard

ABioM reinforces

- Risk-Informed
 - Decision making
 - Credibility assessment
- Relevant evidence collection
- Appropriate Computational Model Use
- Clear Communication
 - Credibility plan
 - Credibility activities

	Activities	Credibility Factors					
Verification	Code	Software Quality Assurance Numerical Code Verification					
	Calculation	Discretization Error Numerical Solver Error Use Error					
Validation	Computational Model	Model Form Model Inputs					
	Comparator	Test Samples Test Conditions					
	Assessment	Equivalency of Input Parameters Output Comparison					
Applicability		Relevance of the QOI's Relevance of the Violation Activities to the COU					

Applicability

Verification & Validation (V&V)

ABioM does **not**

 Explain how to conduct V&V efforts

ABioM does

- Allow for integration of relevant V&V activities
- Ensure Verification and Validation efforts are conducted or addressed
- Compare the V&V efforts completed with the specified Credibility Goals

Risk

Applicability

Agile for Software Development

ABioM is derived from:

- Adaptive Software Development (ASD)
 - Modeling Project Lifecycle
- Scrum
 - Team management
 - Collaboration

Simplicity – the art of maximizing the amount of work not done - is essential.

12 Principles Early and continuous delivery of valuable scientific discoveries Even in late development welcome changing requirements Knowledge is **delivered frequently** (weeks rather Close, daily cooperation between researchers Projects are built around motivated individuals. who should be trusted The best form of communication is face-to-face conversation (co-location) The primary measure of progress is scientific discoveries Sustainable research, able to maintain a constant pace Continuous attention to technical excellence and good design Simplicity -the art of maximizing the amount of work not done -is essential Best architectures, requirements, and designs emerge from self-organizing teams 12. Regularly, the team reflects on how to become more effective, and adjusts accordingly

Agile Manifesto

While there is value in the items on the right, we value the items on the left more.

Risk

Applicability

Knowledge

Project

10

ABioM integrates

- Applicability Analysis
 - Planning
 - Final Analysis
- Define Domains
 - Context of Use (COU)
 - Validation
- Captures
 - Domain Differences
 - Limitations of the Computational Model

Pathmanathan et al. 2017: "Applicability Analysis of Validation Evidence for Biomedical Computational Model" (*Open Access*)

Knowledge Project

ABioM integrates

- Applicability Analysis
 - Planning
 - Final Analysis
- Define Domains
 - Context of Use (COU)
 - Validation
- Captures
 - Domain Differences
 - Limitations of the Computational Model

Pathmanathan et al. 2017: "Applicability Analysis of Validation Evidence for Biomedical Computational Model" (*Open Access*)

Knowledge Project

ABioM integrates

- Applicability Analysis
 - Planning
 - Final Analysis
- Define Domains
 - Context of Use (COU)
 - Validation
- Captures
 - Domain Differences
 - Limitations of the Computational Model

Pathmanathan et al. 2017: "Applicability Analysis of Validation Evidence for Biomedical Computational Model" (*Open Access*)

www.fda.gov Risk Credibility Adaptability Applicability Knowledge Project

12

ABioM integrates

- Applicability Analysis
 - Planning
 - Final Analysis
- Define Domains
 - Context of Use (COU)
 - Validation
- Captures
 - Domain Differences
 - Limitations of the Computational Model

Pathmanathan et al. 2017: "Applicability Analysis of Validation Evidence for Biomedical Computational Model" (*Open Access*)

Knowledge Project

Credibility

Applicability

Knowledge Management

ABioM needs to main the state of knowledge and adapt as necessary:

- Ranking of Confidence and Knowledge of Interactions (ROCKIT)
 - Modified PIRT
- Difference between ROCKIT and PIRT
 - Ability to simulate system
 - Regarding All Phenomena
 - Experiments
 - Computational Model
 - Validation Systems
 - COU environments

Phenomenological Identification and Ranking Table (PIRT)

Phenomena	Importance	Confidence/Knowledge				

Ranking of Confidence and Knowledge of Interactions (ROCKIT)

	ROCKIT Importance Scale: 1(most) to 3(low)									
Type of Phenomena	Phenomena	Knowledge we have about what we're simulating	Our ability/knowledge to actually simulate it	importance	Confidence in Importance	Confidence in Knowledge	How to Improve Confidence in Knowledge	VAL Domain	COU Domain	Notes

Risk

Credibility

Adaptability

Applicability

Knowledge

Project

Project Management

ABioM needs organization for all the moving parts:

- Project
 - Experiments
 - Computational Model
 - V&V Activities
- Team Members
- Resources
- Deadlines
- Decisions

Trello: https://trello.com/

ABioM Architecture

- Fundamental agile ideologies
- Adaptive decision making
- Iterative credibility building

- Speculate
 - Initial Requirements
 - Initial

Knowledge

- Backlog
- Collaborate
- Learn

- Speculate
- Collaborate
 - Develop
 - Current Iteration
 - Develop
 - In Progress
 - Quality Assurance

Learn

- Speculate
- Collaborate
- Learn
 - Review
 - Completed Work
 - Decision Making

Planning

- Project Goals
 - Question of Interest
 - Context of Use
 - Risk Assessment
- Meeting Plan
- State of Knowledge
- Applicability Analysis Plan
- Iteration Plan

Model Development

- Computational Model
 - Re-use Computational Model
 - Limitations
 - Assumptions
 - Previous Context of Use
 - Previous Validation Efforts
 - New Computational Model
 - Complexity
 - Systems
- Experiments: Exploratory experiments
- Other: Investigate Applicability Assessment

- Computational Model: Conduct additional simulations for supplementary evidence
- Experiments: Conduct additional experiments for supplementary evidence
- Other: Complete investigating Applicability Assessment Concerns
- Analysis
 - Assess final Applicability Analysis
 - Assess all available evidence and justification
 - Determine if good enough to apply to the Context of Use
- Applicability Assessment

Apply Model to COU

Computational Model

- Modify for COU
- Uncertainty Quantification (UQ)
 - Propagate new input parameters
 - Identify new uncertainties
- Make final predictions

• Experiments:

- Calibration experiments
- Additional support

Analysis

- Address question of interest
- Uncertainty Quantification Analysis for COU
- Assess final predictions

ABioM Demo

Requirements

- Investigate & Establish
 - Project Initiation
 - Project Knowledge
 - Project Backlog
- For all 7 fundamental Iterations
- Different from other iterations

Develop

- Current Iteration
 - Choose Iteration
 - Determine tasks
- In Progress
- Quality Assurance (QA)

Develop

Current Iteration

- Choose Iteration
- Determine tasks
- In Progress
 - Team members self assign tasks
- Quality Assurance (QA)

Quality Assurance (QA)

Current Iteration

- Choose Iteration
- Determine tasks

In Progress

Team members self assign tasks

QA

- Team members self assign tasks
- Conduct additional work and analysis

Review

- Review efforts
 - Presentations
 - Reports
 - Data
 - Results
- Address additional concerns

Review

- Review efforts
 - Presentations
 - Reports
 - Data
 - Results
- Address additional concerns
- Assign to complete

Update Requirements

- Project Goals
- Meeting Plan
- Credibility Goals
- ROCKIT
- Applicability
 Analysis Plan
- Iteration Plan

EDDS Project Initiation

Question of Interest

What are the bioeffects arising from deposition of potential chemicals generated by EDDS onto the oral mucosa?

Context of Use

The computational fluid dynamics model will characterize the velocity field and temperature distribution of the flow in a representative mouth cavity of an EDDS user.

Model Risk

Model Risk: There is a *modest* possibility that the use of the computational model leads to a decision that results in patient harm and/or other undesirable impacts.

- Credibility Goals
- Based On:
 - Question of Interest
 - Context of Use
 - Model Risk

- Credibility Goals
- Based On:
 - Question of Interest
 - Context of Use
 - Model Risk

- Applicability Analysis
 Plan
- Define Domains:
 - Context of Use
 - Validation
- Sources of Evidence
- Quantities of Interest
- Assumptions & Limitations

Pathmanathan et al. 2017: "Applicability Analysis of Validation Evidence for Biomedical Computational Model" (*Open Access*)

AA Step 8 Question: Can simulating only 3 airflow speeds, when in actuality the device can operate at any airflow speed, produce results that are not accurately representative of use therefore negatively impacting the study?

- Ranking of
 Confidence and
 Knowledge of
 Interactions
 Table (ROCKIT)
- VAL: Validation
 Domain
- COU: Context of Use Domain

ROCKIT							Importance Scale: 1(most) to 3(least) System: EDDS & mouthcavity			
Type of Phenomena	Phenomena	Knowledge we have about what we're simulating	Our ability/knowledge to actually simulate it	Importance	Confidence in Importance	Confidence in Knowledge	How to Improve Confidence in Knowledge	VAL Domain	COU Domain	Notes
Input	Conservation of: * Mass *Momentum * Energy	Laws of Physics	Commercial software integrates laws	1	High	High	N/A	YES	YES	Commercial Software: ANSYS CFD- CFX
Output	Heated air temp. at the mouthpiece (Open Air)	Vapor temperature profile at the mouthpiece	Commercial software integrates physics laws Enter device geometry	1	High	High	N/A	YES	NO	Experiments: thermocouple measurements at the mouthplece.
Output	Heated air temp. entering the mouth cavity	Vapor temperature profile at the mouthpiece Temp. in the mouth cavity (human temperature) Mouth cavity configuration	integrates physics laws • Enter device geometry • Set mouth cavity	1	High	High	N/A	NO	YES	O tput is a prediction in the COU domain Experiments: Not necessary
Input	Coil Temperature	Heating Coil Temperature/Heat Source	Commercial software integrates physics laws Enter coil geometry as heat source	1	High	High	N/A	YES	YES	Eperiments: hermocouple measurements trach thermocouples to the coil using coment
Input	Ambient Temperature	Measurable	We can set the ambient temperature or consider a temperature difference	3	High	High	N/A	YES	YES	AL: We can consider a fixed laboratory f mp. OU: This can be variable depending on age
Output	Temperature through the EDDS	Large temperature variation	Simulate using commercial software	2	Medium	Low	Simulation & Experiments	YES	YES	E) periments: Thermocouple
				1						,

In Progress

- Current Iteration
 - Validation Iteration
 - Airflow only computational model (AFM 5.0)

In Progress

- Current Iteration
 - Validation Iteration
 - Airflow only computational model (AFM 5.0)
- Next Iteration
 - Model DevelopmentIteration
 - Airflow only computational model (AFM 6.0)
- Revisit Previous Iterations

ABioM Summary

- Iterative Development
 - Credibility Building
 - V&V40 based QA
 - Applicability Analysis
 - Planning Iteration
 - Applicability Iteration
 - ROCKIT
- Interactive Collaboration
 - Communication
 - Assumptions
 - Limitations
 - Transparency
 - Informed decision making

ABioM Tools

- Manuscript in Progress
 - ABioM: An Agile Framework for Developing Credible Biomedical Models
 - Journal: Simulation Modelling Practice and Theory
 - Templates
 - Trello
 - ROCKIT
 - Applicability Analysis Plan
 - Iteration Plan
- Applicability Analysis Resources
 - Pathmanathan et al. 2017: "Applicability Analysis of Validation Evidence for Biomedical Computational Model" (*Open Access*)
 - Presentation by Dr. Morrison
 - Session: 10-2 VVUQ for Biomedical Engineering (*Thursday*)

Thank You. Any Questions?

Paulina Rodriguez – Research Scientist US FDA Paulina.Rodriguez@fda.hhs.gov