Méthode de Gaus pour les systèmes linéaires

Définition: _ une équation linéaire en les inconnues $x_1, e_2,, e_m$ est une équation de la forme: $a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_mx_m = b$ où
$a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_mx_m = b$
· b est le second membre
· a, az,, an (ER) sont les coefficients de inconnues ex, oz, ex · une solution est un n-aplet de réels pour lequel l'égalité est vraise
Exemples: -> 3 ne + 2 y - 5 z = 3 . inconnue: 2,4,3 . 3, 2 et -5 coeffs
. 3 record membre
$(1, 1, \frac{2}{5})$ une solution $(1, 0, 0)$ ansi
(0,0), (1,-2) dent solutions

Remarques:		e: 22-3 Ty + 5 e3-3 par l'ino'aire
		: Ry - 293 = 1 par lindaire
	$\Rightarrow cas n=1 \qquad age = 1$ $bi a \neq 0 : a$	une seule solution b
		0 n = b
		si b to: par de solution
		si b=0: tout re GIR el solution
	-> m71 ar + bg = c	Di $(a,b) \neq (0,0)$ ∞ de solution Di $(a,b) = (0,0)$
		$bi (a,b) = (o,o)$ $bi c \neq o pai de sol$ $bi c = o trut (e_{in})$ $a \vdash Aulertian$

Définition: en système linéaire de méquations à n'inconnues re,, re est un ensemble de méquations linéaires de la forme: (a) 20, + 9, 20, + 1, 20,
ensemble de mégnations linéaires de la forme.
$\begin{cases} a & 2 + 4 & 2 + 4 & 2 + 4 & 2 + 4 & 2 + 4 & 2 + 4 & 2 + 4 & 2 & 2 + 4 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 &$
11 12 2 1m m
$\begin{cases} a_{21} \alpha_1 + a_{22} \alpha_2 + \cdots + a_{2n} \alpha_m = b_2 \\ \vdots & \vdots & \vdots \end{cases}$
$a_1 x_1 + a_2 x_2 + \cdots + a_m a_m = b_m$
-> (b, b) & Rm est le m-uplet second membre
harman islam islam sont les coefficients
⇒ (5,, 5 m) ∈ R ^m est le m-uplet second membre ⇒ (a;j) ∈ IR ^{m×n} :=1m, j=1m sont les coefficients ⇒ une s-lution est un m-uplet pour lequel toutes les égalités sont vouies
second membe
Example: 13re - 2y = 1 (1,1) est une solution
Example:

Remarques: - met n pas forament égaux 3 2 +5g= 2 5 2 -2 g= 5 -64 -10g= -4 1 ex -5 +33 = 6 { v+g-3=3 -o par forement existence et solution:

3 2 - 2 3 = 1

-6 2 + 4 3 = 0 m'a pas de solution -> pas forament unicité: (cf systèmes précédents) - touter le éjalités doivent être saisfaites: 2 = 3 (a) (1,1,1) satisfant (a) el (b) mais pas (c) (1,1,1) (2,1,1) (3,1,1) (4,1,1) (5,1,1) (6,1,1)- lès que m z 3, la substitution vue on lycée est complexe, pas automatisable et (porfois) tromperse Cas particulien: les systèmes échelonnes sont résolus disectement $\frac{x+3-2}{3-2}=\frac{2}$

$$\begin{cases} x + 3 = 2 \\ y - 2y = -3 \end{cases} \rightleftharpoons$$

$$\begin{cases} 2 & + 6 = 2 \\ y & -2x0 = -3 \end{cases} = 0 \qquad \begin{cases} 2 & -3 & 0 \\ 3 & -0 \end{cases} \qquad \begin{cases} 2 & -3 & 0 \\ 3 & -3 & 0 \end{cases} \qquad \begin{cases} 2 & -3 & 0 \\$$

Mèthode: mettre en œuvre un algorithme qui transforme un cystème en un arte système échelonne équivalent (dont les solutions sont les mêmes)

Opérations élémentaines de lynes: On me change par les volations d'un système en
$\Rightarrow multiplient une equation par un moment \alpha \neq 0: \Rightarrow \alpha_1 \alpha_1 \alpha_2 + \cdots + \alpha_n \alpha_n = b \Rightarrow \alpha_1 \alpha_1 + \cdots + \alpha_n \alpha_n = ab$
$\Rightarrow \text{multiplient une squetien par un mombre } \alpha \neq 0 :$ $\Rightarrow \alpha \left[a_1 x_1 + \cdots + a_m x_m = 5 \right] \Rightarrow \alpha \left[a_1 x_1 + \cdots + a_m x_m \right] = \alpha b$ $\Rightarrow (\alpha a_1) x_1 + \cdots + \alpha a_m x_m = (\alpha b_1) x_1 + \cdots + \alpha a$
- sehangeunt 2 équations entre elles pet q => q et p
sayontant à une équation (i) une autre équation (j) préalablement multipliée par un récl & (mê ou pas).
$(i) = \{ a_{i}, q_{i} + \cdots + a_{i}, n_{m} = b_{i}, (i) \} \{ a_{i}, q_{i} + \cdots + a_{i}, n_{m} = b_{i}, \dots \}$
$(i) = \begin{cases} a_{i1} \alpha_{i} + \cdots + a_{in} \alpha_{m} = b; \\ \vdots \\ a_{i1} \alpha_{i} + \cdots + a_{in} \alpha_{m} = b; \end{cases} (i) \begin{cases} a_{i1} - \alpha a_{i1} + \cdots + a_{in} \alpha_{m} = b; \\ a_{i1} - \alpha a_{i1} + \cdots + a_{in} \alpha_{m} = b; \end{cases}$

L'algoritme de Grans est une succession d'opérations élémentains de lignes

1 de dupe: élimina l'inconver re de 12 et 13 en faisant | 12 et 12 - 31, 1 ha m hz - 2h, 2 in étape: éliminer l'inconvre y de L3 en faixant L3 a L3-L2 · c'est en système déclorné s'quivalent · une unique solution (2,-3,0) 3 = 2 3 - 23 = 3 3 = 0

Algorithme de Guns

 $L_{i} = \begin{pmatrix} a_{i1} - a_{i1} & a_{i1} \end{pmatrix} + \dots = b_{i} - \frac{a_{i1}}{a_{i1}} b_{1} \qquad \text{at every lique } L_{i}$

On fait la même chose pour les hijnes 1, ai Lm et a, ost élimine de ces hijnes

Methe en Le une lijne telle que an 20

Deur i = 2 à m, foine

S'Il reste des inconner, rayer Let all

recommence ave le système restant Mise en cenvre: - moin de mitérations remarques - moin de n itérations Is première instruction peut être vide (an est souvent mon nul)

Il système en sorte est forcement dehelonsé

le système en sorte m'el pas unique (il y a des choix à faire)

a en option, on peut diviser chaque ligre par son pirot (-> coeff 1) Lecture des résultats:

-> Il existe une ligne où le pivot (1º coeff non nul de la ligne) est aus se cond membre => Pas de solution

Exemple: [3n + 2g - 3 = 2]

$$y + 3z = 3$$

$$0 = -1$$

$$0 = -1$$

$$mest furmais vrain$$

- Autant de lignes non-melle que d'inconnues => une enique solution

Exemple.

$$\frac{3}{10}x + 2y - 3 = 2$$

$$\frac{1}{10}y + 3z = 3$$

	Pus d'incom	nes que d	e pivoti -> 1	me infinite de	solution		
Exemple:	13~	-20 + 6.	3 + 2 t = 1	2- Pive	9 ()		
pu.			2 F = 0	4 in co	of => 0	o de so	
	-	1319 + 3	3 - F = 0				
			0 = 0				
			0 = 0				
			0 = 0				
	1		1.1	1 / .		0 .	O I
	Les	inunnues	· qui n'est pas a	le pivot Lia:	(3 et) Low	An Conhues	- Kibra
			· qui ont un	pivot (iai:	rety) sort	in connud	lives
Durs Plexemple	: L	pent s'in	~ o.t=c	tow	Per FEIRA	ent solutions:	tal libre
	1_1	N	()2 + Oct = 0)'	ZEIR	10 11	7 4 1
(m	xui\ bo	\(\(\)	3 = -38	t per	ur en const	(2,+) donne	, a est unique
1	1	Ja. 11 11	$\frac{3}{x} = -33$ $x = \frac{1}{3}(1 + 2)$	· 62-2+)	11	(3)	estening
C	u meme		3 + 2	16			

Description des solutions: écrine les inconnues lières en fondion des inconnues libres.

Exemple:
$$\begin{cases} ne = \frac{1}{3}(1 + 2q - 4z - 2t) \\ y = \frac{3}{3}z + t \end{cases}$$
 $\begin{cases} y = \frac{1}{3}z + \frac{10}{3}z \\ y = -3z + t \end{cases}$

Ensemble des solutions
$$S = \left(\frac{1}{3} - \frac{10}{3}, \frac{3}{3}, \frac{3}{3}, \frac{1}{3}, \frac{1}{3$$

Lecture des résultats.

