Therefore the assumptions of C-III, Thm. 3.8 are satisfied and formula C-III, (3.13) implies

(2.10) $\rho(A) = \rho(A) + i\alpha \mathbb{Z}$ and $||R(\lambda,A)|| = ||R(\lambda+i\alpha k,A)||$

for $\lambda \in \rho(A)$, $k \in \mathbb{Z}$.

Since 0 was supposed to be a pole of the resolvent we can decompose $\sigma \left(A\right) \ =\ \sigma _{1}\ \cup\ \sigma _{2} \quad \text{,}$

where $\sigma_1=i\alpha {\bf Z}$, 0 < $\alpha\in\mathbb{R}$, and $\sup\{\mathrm{Re}\lambda:\lambda\in\sigma_2\}$ < 0. Moreover, for small $\epsilon>0$, $\|\mathrm{R}(-\epsilon+i\lambda,A)\|$ is uniformly bounded for $\lambda\in\mathbb{R}$. Next, we construct a spectral decomposition of E and T corresponding to σ_1 and σ_2 (compare A-III,Sec.3).

Since 0 is an eigenvalue of A it follows that T has a quasi-interior fixed point h \in E₊ (use C-III,Prop.3.5(a)). Hence, $\{T(t)f:t\geq 0\}$ is contained in the weakly compact (see C-I,Sec.5) order interval [-h,h] whenever $|f|\leq h$. Since h is a quasi-interior point and T is bounded it follows that T is relatively compact for the weak operator topology on L(E). Therefore the Jacobs-DeLeeuw-Glicksberg Splitting Theorem (see Krengel (1985), Chap.2,Thm.4.4 and 4.5) can be applied to (the weak closure of) T and we obtain a projection $Q \in L(E)$ onto the closed subspace E_1 generated by the eigenvectors h_k of A corresponding to the eigenvalues $i\alpha k$, $k \in \mathbb{Z}$. Clearly, Q splits the semigroup T into the restricted semigroups T_1 on $E_1 := QE$ and T_2 on $E_2 := \ker Q$. We first describe T_1 in more detail.

The projection Q is positive as an element of the weak closure of T and even strictly positive by the irreducibility of T . Its range E_1 is a closed sublattice of E (use Schaefer (1974),Prop.III.11.5) on which the semigroup T_1 is periodic, irreducible and positive. In fact, $T(2\pi/\alpha)f = f$ for every $f = h_k$, $k \in \mathbb{Z}$, and hence for every $f \in E_1$, while irreducibility and positivity are inherited from T . It now follows from A-III,Lemma 5.2 that the generator $A_1 = {}^A|E_1$ of T_1 has spectrum $\sigma(A_1) = i\alpha\mathbb{Z}$. Moreover in view of A-II,Prop.5.2 and Cor.5.3(ii) we have $\sigma(A_2) = \sigma(A) \setminus i\alpha\mathbb{Z}$. Therefore the decomposition $E = E_1 \oplus E_2$ is a spectral decomposition corresponding to σ_1 and σ_2 . This proves the first part of the following lemma.

- <u>Lemma</u> 2.12. Under the above assumptions there exists a positive projection Q with range $E_1 := QE$ and kernel $E_2 := Q^{-1}(0)$ such that the following holds:
- (a) $E=E_1\oplus E_2$, $T=T_1\oplus T_2$ and $A=A_1\oplus A_2$ is a spectral decomposition corresponding to the decomposition $\sigma(A)=\sigma_1\cup\sigma_2$ where $\sigma_1=\sigma(A_1)=i\alpha Z$ and $\sigma_2=\sigma(A_2)=\sigma(A)\setminus i\alpha Z$.