线性代数方程组

浙江大学控制学院

降落小组

三个降落伞构成的降落小组通过无重力的绳子 连接以5m/s的速度自由降落。计算每段绳子 的张力和这个小组的加速度。参数如下

降落伞	质量(kg)	阻力系数(kg/s)
1	70	10
2	60	14
3	40	17

3

$$\begin{bmatrix} 70 & 1 & 0 \\ 60 & -1 & 1 \\ 40 & 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ T \\ R \end{bmatrix} = \begin{bmatrix} 636 \\ 518 \\ 307 \end{bmatrix}$$

线性代数方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

● 矩阵形式: AX=b

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = (a_{ij})_{n \times n}$$

$$\mathbf{X} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T, \mathbf{b} = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}^T$$

•增广矩阵

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \cdots & \cdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \end{bmatrix}$$

线性方程组系数矩阵的类型

- 低阶稠密矩阵
- 大型稀疏矩阵(矩阵中0元素较多)
- 三对角矩阵(非0元素集中于主对角线及相邻两对角线上)

线性方程组的数值解法

直接法:

- 经过有限步算术运算,可求得方程组的精确解的方法。(若在 计算过程中没有舍入误差)
- 可预先估算使用机器时间,计算量小,但要占用较多内存,程 序复杂。一般说来,适用于方程组的系数矩阵阶数不太高的问 题。

• 迭代法:

- 用某种极限过程去逐步逼近线性方程组精确解的方法
- 迭代法具有占存储单元少,程序设计简单,原始系数矩阵在迭代过程中不变等优点,但计算工作量有时较大。适宜计算系数矩阵为稀疏矩阵的问题。
- 存在收敛性及收敛速度等问题,对方程组的系数矩阵有一定的要求,才能保证迭代过程的收敛

本章内容

- 高斯消去法
- LU分解、特殊矩阵和矩阵求逆
- 误差分析、条件数
- 迭代方法

小规模线性方程组

- 图解法
- 克莱姆法则(Cramer's Rule)

非计算机方法

- 消去法
- 计算机方法

图解法

● 两个方程组成的方程组

$$a_{11}x_1 + a_{12}x_2 = b_1$$
$$a_{21}x_1 + a_{22}x_2 = b_2$$

• 对两个方程同时解x2:

$$x_2 = -\left(\frac{a_{11}}{a_{12}}\right)x_1 + \frac{b_1}{a_{12}} \implies x_2 = (\text{slope})x_1 + \text{intercept}$$

$$x_2 = -\left(\frac{a_{21}}{a_{22}}\right)x_1 + \frac{b_2}{a_{22}}$$

图解法

- 在二维坐标系中画 出两条直线,交点 即为联立方程组的 解
- 三个方程组成的联立方程组:
 - 每个方程是三维 空间中的一个平 面
 - 三个平面的交点 表示方程组的根

图解法

行列式的计算

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$D_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{22} & a_{23} \end{vmatrix} = a_{22} a_{33} - a_{32} a_{23}$$

$$D_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{21} & a_{23} \end{vmatrix} = a_{21} a_{33} - a_{31} a_{23}$$

$$D_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = a_{21} a_{32} - a_{31} a_{22}$$

例: 计算第9和10页图中表示的方程组的系数矩阵A的行列式的值。

•
$$\mathbb{A}$$
: P9—— $D = \begin{vmatrix} 3 & 2 \\ -1 & 2 \end{vmatrix} = 8$

• P10(a)—
$$D = \begin{vmatrix} -1/2 & 1 \\ -1/2 & 1 \end{vmatrix} = 0$$

• P10(b)
$$D = \begin{vmatrix} -1/2 & 1 \\ -1 & 2 \end{vmatrix} = 0$$

• P10(c)
$$D = \begin{vmatrix} -1/2 & 1 \\ -2.3/5 & 1 \end{vmatrix} = -0.04$$

奇异方程组的行列式为0

接近奇异(病态)方程组的行列式接近0

• 克莱姆法则

- 每个未知数通过一个分式来计算
- 分式的分母是线性代数方程组的行列式
- 分子是另外一个行列式,该行列式与方程组系数行列式D只有未知数对应的一列不同,不同的列为常数 b_1 , b_2 ,…, b_n
- 例: 计算x₁为

$$x_1 = \frac{\begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}}{D}$$

n=100, 10³³次/秒 的计算机要算10¹²⁰年!

• 问题: 使用克莱姆法则求解

$$\begin{cases} 0.3x_1 + 0.52x_2 + x_3 = -0.01 \\ 0.5x_1 + x_2 + 1.9x_3 = 0.67 \\ 0.1x_1 + 0.3x_2 + 0.5x_3 = -0.44 \end{cases}$$

● 解:

$$D = \begin{vmatrix} 0.3 & 0.52 & 1 \\ 0.5 & 1 & 1.9 \\ 0.1 & 0.3 & 0.5 \end{vmatrix} = -0.0022$$

$$x_{2} = \frac{\begin{vmatrix} 0.3 & -0.01 & 1 \\ 0.5 & 0.67 & 1.9 \\ 0.1 & -0.44 & 0.5 \end{vmatrix}}{D} = \frac{0.0649}{-0.0022} = -29.5$$

$$x_{1} = \frac{\begin{vmatrix} -0.01 & 0.52 & 1 \\ 0.67 & 1 & 1.9 \\ -0.44 & 0.3 & 0.5 \end{vmatrix}}{D} = \frac{0.03278}{-0.0022} = -14.9$$

$$\begin{vmatrix} 0.3 & 0.52 & -0.01 \\ 0.5 & 1 & 0.67 \\ 0.1 & 0.3 & -0.44 \end{vmatrix} = \frac{-0.04326}{-0.0022} = 19.8$$

未知数消去法

两个方程分别乘以常数,使得当两个方程合并时一个未知数可以消去,结果为一个单独的方程,可以求解剩下的未知数,将求解出的未知数代入到原来的方程中,求出另外一个未知数的值。

$$\begin{array}{c} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \\ \\ \hline \\ x_1 = \frac{a_{22}b_1 - a_{12}b_2}{a_{22}a_{11} - a_{12}a_{21}} \end{array} \qquad \begin{array}{c} \mathbf{x} \mathbf{y} a_{21} \\ \mathbf{x}_1 = \frac{a_{22}b_1 - a_{12}b_2}{a_{22}a_{11} - a_{12}a_{21}} \end{array}$$

 $a_{22}a_{11} - a_{12}a_{21}$

2022/3/6 数值计算方法 数值计算方法 15

原始高斯消去法(高斯顺序消去法)

- 未知数的消去,得 到一个只有一个未 知数的方程
- 回代,求解剩下的 未知数

主元 (pivotal element)

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

 $a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a'_{22}x_2 + \dots + a'_{2n}x_n = b'_2$

 $a'_{n2}x_2 + \dots + a'_{nn}x_n = b'_n$

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a'_{22}x_2 + a'_{23}x_3 + \dots + a'_{2n}x_n = b'_2$$

$$a''_{33}x_3 + \dots + a''_{3n}x_n = b''_3$$

乘以
$$a_{21}/a_{11}$$
 $a_{21}x_1 + \frac{a_{21}}{a_{11}}a_{12}x_2 + \dots + \frac{a_{21}}{a_{11}}a_{1n}x_n = \frac{a_{21}}{a_{11}}b_1$

」 方程2减去上式

$$\left(a_{22} - \frac{a_{21}}{a_{11}}a_{12}\right)x_2 + \dots + \left(a_{2n} - \frac{a_{21}}{a_{11}}a_{1n}\right)x_n = \left(b_2 - \frac{a_{21}}{a_{11}}b_1\right)$$

$$a'_{22}x_2 + \dots + a'_{2n}x_n = b'_2$$

 $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$ $a'_{22}x_2 + a'_{23}x_3 + \dots + a'_{2n}x_n = b'_2$ $a_{33}''x_3 + \dots + a_{2n}''x_n = b_3''$

 $a_{n3}''x_3 + \dots + a_{nn}''x_n = b_n''$

$$a_{nn}^{(n-1)}x_n = b_n^{(n-1)}$$
 it prices

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

● 每一步消元过程相当于对A作一次初等变换。即左乘一

个初等下三角矩阵 L_i^{-1}

$$L_{1}^{-1} = \begin{bmatrix} 1 \\ -l_{21} & 1 \\ -l_{31} & 0 & 1 \\ \vdots & \vdots & \ddots \\ -l_{n1} & 0 & \cdots & 0 & 1 \end{bmatrix}$$

$$l_{i1} = a_{i1}/a_{11}$$

最后得到
$$L_{n-1}^{-1}L_{n-2}^{-1}\cdots L_{2}^{-1}L_{1}^{-1}A=U$$

$$l_{ik} = a_{ik}^{(k-1)}/a_{kk}^{(k-1)}$$

18

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \dots + a_{1n}x_n = b_1$$

$$a'_{22}x_2 + a'_{23}x_3 \dots + a'_{2n}x_n = b'_2$$

$$a''_{33}x_3 + \dots + a''_{3n}x_n = b''_3$$

$$\dots$$

$$a_{n-1}$$

$$a_{n-1}$$

$$a_{n-1}$$

$$x_{i} = \frac{b_{i}^{(i-1)} - \sum_{j=i+1}^{n} a_{ij}^{(i-1)} x_{j}}{a_{ii}^{(i-1)}}$$

$$i = n-1, n-2, \dots, 1$$

%消去过程 for k=1:n-1 for i=k+1:n factor=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-factor*a(k,j); end b(i)=b(i)-factor*b(k); end end

%回代过程 x(n)=b(n)/a(n,n); for i=n-1:-1:1 sum=b(i); for j=i+1:n sum=sum-a(i,j)*x(j); end x(i)=sum/a(i,i);

消去过程的浮点操作个数

$$\frac{2n^3}{3} + O(n^2)$$

回代过程的浮点操作个数

$$n^2 + O(n)$$

● 原始高斯消去法总的浮点操作个数:

$$\frac{2n^3}{3} + O(n^2) + n^2 + O(n) \xrightarrow{\qquad \qquad } \frac{2n^3}{3} + O(n^2)$$

- 结论:
 - 当方程组规模变大时,计算时间增加很快。浮点操作个数增加接近维数增加量的三次方
 - 大多数计算时间消耗在消去步骤中

高斯消去法——求行列式

- 依据
 - 上三角矩阵的行列式为对角线元素的乘积

$$D = a_{11}a_{22}'a_{33}'' \cdots a_{nn}^{(n-1)}$$

• 前向消去的过程中行列式的值不变

问题: 使用原始高斯消去法求解, 要求保持6位有效数 字的精度

$$\begin{cases} 3x_1 - 0.1x_2 - 0.2x_3 = 7.85 & (1) \\ 0.1x_1 + 7x_2 - 0.3x_3 = -19.3 & (2) \\ 0.3x_1 - 0.2x_2 + 10x_3 = 71.4 & (3) \end{cases} \begin{cases} 3x_1 - 0.1x_2 - 0.2x_3 = 7.85 & (1) \\ 7.00333x_2 - 0.2933333x_3 = -19.5617 & (2') \\ -0.190000x_2 + 10.0200x_3 = 70.6150 & (3') \end{cases}$$

 $x_1 = 3.00000$

$$3x_1 - 0.1x_2 - 0.2x_3 = 7.85$$
 (1)
 $7.00333x_2 - 0.293333x_3 = -19.5617$ (2')

$$10.0120x_3 = 70.0843 \tag{3"}$$

$$\frac{\sqrt{70.0843}}{20.0843} = 7.000$$

 $\langle x_2 = -2.50000 \langle x_2 = -2.50000 \rangle$

原始高斯消去法的缺陷

- 被0除
 - 消去和回代中都存在这个问题
- 舍入误差
 - 大规模问题中、每一个计算结果都依赖于前面的结果
- 病态方程组
- 奇异方程组
 - ,两个方程组完全相等时,n个未知数而只有n-1个方程
 - 对大规模方程组,不容易发现这种奇异性
 - 利用奇异方程组的行列式为0进行判断

病态方程组

问题:
$$x_1 + 2x_2 = 10$$

 $1.1x_1 + 2x_2 = 10.4$

$$8+2\times1=10=10$$

 $1.1\times8+2\times1=10.8 \cong 10.4$

误差检查的结果!

解显著变化!

病态方程组的判别

- 行列式的值?
 - 标量因子会对行列式产生影响,但对解没有影响

• 良态方程组
$$3x_1 + 2x_2 = 18$$
$$-x_1 + 2x_2 = 2$$
$$D = \begin{vmatrix} 3 & 2 \\ -1 & 2 \end{vmatrix} = 8$$

• 病态方程组
$$x_1 + 2x_2 = 10$$
 $D = -0.2$ $1.1x_1 + 2x_2 = 10.4$

• 病态方程组×10
$$10x_1 + 20x_2 = 100$$
 $D = -20$ $D = -20$

对方程组进行缩放使得任何一行中的最大系数等于1,然后计算 行列式的值

$$x_1 + 0.667 x_2 = 6$$

 $-0.5x_1 + x_2 = 1$
 $D = 1.333$
 $D = 1.333$
 $D = -0.05$

2022/3/6

病态方程组的判别——其他方法

- 矩阵求逆和矩阵标准化
- 稍微改变系数然后求解,如果得到彻底不同的解,则方程组很可能是病态的。

解求精技术

- 使用扩展精度
- 选主元
 - 列主元消去法(Partial pivoting)——实用方法
 - 全主元消去法(Complete pivoting)
- 缩放
 - 缩放之后的系数用来确定是否需要交换主元,但实际消去和回代中仍使用原系数值

列主元消去法

• 从第一列中选出绝对值最大的元素

- 顺序消元
- 第k步

$$|a_{i_k k}^{(k)}| = \max_{k \le i \le n} |a_{i k}^{(k)}| \quad \exists l = i_k$$

若 $l\neq k$,则交换第k行与l行的所有对应 元素,再进行顺序消元。

全主元消去法

• 从 $a_{ij}(i, j = 1, 2, ..., n)$ 中选择绝对值最大者作为主元,进行消 元

$$\widetilde{A}_{n-k} = \begin{bmatrix} a_{kk}^{(k-1)} & a_{k,k+1}^{(k-1)} & \cdots & a_{k,n}^{(k-1)} \\ a_{k+1,k}^{(k-1)} & a_{k+1,k+1}^{(k-1)} & \cdots & a_{k+1,n}^{(k-1)} \\ \cdots & \cdots & \cdots \\ a_{nk}^{(k-1)} & a_{n,k+1}^{(k-1)} & \cdots & a_{n,n}^{(k-1)} \end{bmatrix}$$

• 第
$$k$$
步,选主元 $|a_{i_k,j_k}^{(k-1)}| = \max_{k \leq i,j \leq n} |a_{i,j}^{(k-1)}|$

• 执行消元过程

在进行列交换时,所求未知数的顺序同时要交换。

工作量大!

列主元消去法——

问题: 使用高斯消去法求解(准确解为(1/3,2/3))

$$0.0003x_1 + 3.0000x_2 = 2.0001$$
$$1.0000x_1 + 1.0000x_2 = 1.0000$$

高斯顺序消去:

$$x_1 + 10000x_2 = 6667$$
$$-9999x_2 = -6666$$

$$x_2$$

$$x_2 = \frac{2}{3}$$

$$x_1 = \frac{2.0001 - 3(2/3)}{0.0003}$$

有效位数	x_2	x_1	x ₁ 的百分比相对误差的绝对值
3	0.667	-3.33	1099
4	0.6667	0.0000	100
5	0.66667	0.30000	10
6	0.666667	0.330000	1
7	0.6666667	0.3330000	0.1

列主元消去法——例1(续)

选主元

$$1.0000x_1 + 1.0000x_2 = 1.0000$$
$$0.0003x_1 + 3.0000x_2 = 2.0001$$

高斯消去:

$$1.0000x_1 + 1.0000x_2 = 1.0000$$
$$2.9997x_2 = 1.9998$$

$$x_2 = \frac{2}{3}$$
$$x_1 = \frac{1 - (2/3)}{1}$$

有效位数	x_2	x_1	x ₁ 的百分比相对误差的绝对值
3	0.667	0.333	0.1
4	0.6667	0.3333	0.01
5	0.66667	0.33333	0.001
6	0.666667	0.333333	0.0001
7	0.6666667	0.3333333	0.00001

列主元消去法——例2

问题:5位有效数字,舍去

$$10x_1 - 7x_2 = 7$$

$$-3x_1 + 2.099x_2 + 6x_3 = 3.901$$

$$5x_1 - x_2 + 5x_3 = 6$$

$$\begin{bmatrix} 10 & -7 & 0 \\ -3 & 2.099 & 6 \\ 5 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 3.901 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 10 & -7 & 0 \\ -3 & 2.099 & 6 \\ 5 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 3.901 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 10 & -7 & 0 & 7 \\ 0 & -0.001 & 6 & 6.001 \\ 0 & 0 & 15005 & 15004 \end{bmatrix}$$

$$\begin{bmatrix} X \end{bmatrix}_{exact} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

$$x_3 = \frac{15004}{15005} = 0.99993$$

$$2 = \frac{6.001 - 6x_3}{-0.001} = -1.5$$

$$x_1 = \frac{7 + 7x_2 - 0x_3}{10} = -0.3500$$

差巨大!

列主元消去法——例2(续)

$$\begin{bmatrix} 10 & 7 & 0 \\ -3 & 2.099 & 6 \\ 5 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 3.901 \\ 6 \end{bmatrix}$$

 $\begin{bmatrix} 10 & -7 & 0 \\ 0 & -0.001 & 6 \\ 0 & 2.5 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 6.001 \\ 2.5 \end{bmatrix}$

行交换

与真实解一 致!

$$\begin{bmatrix} X \end{bmatrix}_{exact} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & -0.001 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 2.5 \\ 6.001 \end{bmatrix}$$

$$x_3 = \frac{6.002}{6.002} = 1$$

$$x_2 = \frac{2.5 - 5x_3}{2.5} = -1$$

$$x_1 = \frac{7 + 7x_2 - 0x_3}{10} = 0$$

$$\begin{bmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & 0 & 6.002 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 2.5 \\ 6.002 \end{bmatrix}$$

缩放——例子

 问题:采用3位有效位精度求解方程组 真实解(1.00002, 0.99998)

$$2x_1 + 100,000x_2 = 100,000$$

 $x_1 + x_2 = 2$

$$2x_1 + 100,000x_2 = 100,000$$
 \Rightarrow $x_2 = 1$ $x_1 = 0$

 x_2 是正确的,但是因为舍 入误差, x_1 误差100%

$$0.00002x_1 + x_2 = 1 \Rightarrow x_1 + x_2 = 2 \Rightarrow x_1 + x_2 = 2 \Rightarrow x_1 + x_2 = 1 \Rightarrow x_2 = 1.00$$

$$x_1 = x_2 = 1$$

$$x_1 + x_2 = 2$$
$$2x_1 + 100,000x_2 = 100,000$$

$$\Rightarrow \begin{vmatrix} x_1 + x_2 = 2 \\ 100,000x_2 = 100,000 \end{vmatrix} \Rightarrow \begin{vmatrix} x_1 = x_2 = 1 \\ x_1 = x_2 = 1 \end{vmatrix}$$

● 通过缩放确定是否交换主元,但方程不需要缩放就可以 ▲ 求得正确解

高斯消去法——例

已知火箭在三个不同时刻的速度如下 表所示,且速度在5<t<12时可用多项 式 $v(t) = a_1 t^2 + a_2 t + a_3$ 近似,求t=6,7.5, 9和11时刻的速度。

• 解:
$$\begin{bmatrix} t_1^2 & t_1 & 1 \\ t_2^2 & t_2 & 1 \\ t_3^2 & t_3 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

		L				ᆫ				
25	5	1	$\lceil a_1 \rceil$		106.8		$\lceil a_1 \rceil$		0.2900	
0	-4.8	-1.56	$ a_2 $	=	-96.21	ш	a_2	=	19.70	
0	0	0.7	$ a_3 $		0.735		a_3		1.050	

t(s)	v(m/s)
5	106.8
8	177.2
12	279.2

线性代数方程组——例

- 试应用基尔霍夫电流 电压定律确定电阻电 路中不同位置的电流 和电压。
 - 电流定律:流过节点 的所有电流代数和为0

$$\sum i = 0$$

电压定律:任何回路 的所有支路的电压代 数和为0

$$\sum v = 0$$

线性代数方程组——例

- 考虑图中的电路
 - 为每个电流假设一个方向
 - 对每个节点应用基尔霍夫 电流定律
 - 对两个回路应用基尔霍夫 电压定律

$$i_{12} + i_{52} + i_{32} = 0$$

$$i_{65} - i_{52} - i_{54} = 0$$

$$i_{43} - i_{32} = 0$$

$$i_{54} - i_{43} = 0$$

$$-i_{54}R_{54} - i_{43}R_{43} - i_{32}R_{32} + i_{52}R_{52} = 0$$
$$-i_{65}R_{65} - i_{52}R_{52} + i_{12}R_{12} - 200 = 0$$

线性代数方程组——例

• 求解包含6个电流未知数的方程组

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 10 & -10 & 0 & -15 & -5 \\ 5 & -10 & 0 & -20 & 0 & 0 \end{bmatrix} \begin{bmatrix} i_{12} \\ i_{52} \\ i_{52} \\ i_{65} \\ i_{54} \\ i_{43} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} i_{12} \\ i_{52} \\ i_{52} \\ i_{65} \\ i_{54} \\ i_{43} \end{bmatrix} = \begin{bmatrix} 6.1538 \\ -4.6154 \\ -1.5385 \\ -6.1538 \\ -6.1538 \\ -1.5385 \end{bmatrix}$$

高斯-约当法

- 高斯消去法的变形
- 将所有方程中的未知数都消去
- 除以主元进行标准化
- 消去的结果为一个单位阵
- 只需要消去,不需要回代
- 针对高斯消去法的改进可用于高斯约当法
- 乘/除法浮点操作个数为

$$\frac{n^3}{2} + n^2 - \frac{n}{2} \xrightarrow{\qquad \qquad } \frac{1}{2} + O(n^2)$$

高斯-约当法——例

202

• 采用高斯-约当法求解方程组

70.0843

10.0120

$$\begin{cases} 3x_1 - 0.1x_2 - 0.2x_3 = 7.85 \\ 0.1x_1 + 7x_2 - 0.3x_3 = -19.3 \\ 0.3x_1 - 0.2x_2 + 10x_3 = 71.4 \end{cases}$$

数值计算方法

40

高斯消去法的总结

掌握

- 消去
- 回代
- 缺陷
- 改进
- 选主元
 - Gauss顺序消去法条件苛刻,且数值不稳定
 - Gauss全主元消去法工作量偏大,需要比较的元素及行列交 换工作较多,算法复杂
 - Gauss-Jordan消去法形式上比其他消元法简单,且无回代 求解,但计算量大
 - 从算法优化的角度考虑, Gauss列主元消去法比较好

本章内容

- 高斯消去法
- LU分解、特殊矩阵和矩阵求逆
- 误差分析、条件数
- 迭代方法

三角分解 (LU分解)

$$A = LU$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} 1 \\ l_{21} & 1 \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{nn} \end{bmatrix}$$

单位下三角矩阵

上三角矩阵

—Doolittle分解

 $L(UX) = B \Rightarrow \begin{cases} LY = B \\ UX = Y \end{cases}$

- 分解步骤
- 代入步骤
 - 前向
 - 后向

Crout分解:

L为下三角矩阵 U为单位上三角矩阵

Doolittle分解

以n=3为例

	<i>l</i> ₁₁	a_{12}	a_{13}^{-}		1		u_{11}	u_{12}	u_{13}
C	<i>l</i> ₂₁	a_{22}	a_{23}	=	l_{21}	1		u_{22}	u_{23}
		a_{32}							u_{33}

$$a_{1j} = u_{1j}$$
 $j = 1,2,3$ \longrightarrow $u_{1j} = a_{1j}$ $j = 1,2,3$

$$a_{21} = u_{11}l_{21}$$
 \longrightarrow $l_{21} = \frac{a_{21}}{u_{11}}$ $a_{31} = u_{11}l_{31}$ \longrightarrow $l_{31} = \frac{a_{31}}{u_{11}}$

$$a_{22} = l_{21}u_{12} + u_{22} \Longrightarrow u_{22} = a_{22} - l_{21}u_{12}$$

$$a_{23} = l_{21}u_{13} + u_{23} \Longrightarrow u_{23} = a_{23} - l_{21}u_{13}$$

$$a_{32} = l_{31}u_{12} + l_{32}u_{23} \longrightarrow l_{32} = \frac{a_{32} - l_{31}u_{12}}{u_{22}}$$

$$u_{33} = a_{33} - (l_{31}u_{13} + l_{32}u_{23})$$

直接三角分解法

三角分解与高斯消去

• 前向消去将A约简为

$$U = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & 0 & a'_{33} \end{bmatrix}$$

SUB Decompose (a, n)DOFOR k = 1, n - 1DOFOR i = k + 1, n $factor = a_{i,k}/a_{k,k}$ $a_{i,k} = factor$ DOFOR j = k + 1, n $a_{i,j} = a_{i,j} - factor * a_{k,j}$ END DO END DO END DO END DO END DO END DO END DO

- *U*是前向消去的结果
- L也是前向消去的产物

高斯消去法如下表示:

$$L_{n-1}^{-1}L_{n-2}^{-1}\cdots L_{2}^{-1}L_{1}^{-1}A = U$$

因此,L为:

$$L = L_1 L_2 \cdots L_{n-2} L_{n-1}$$

$$l_{21} = \frac{a_{21}}{u_{11}} = \frac{a_{21}}{a_{11}}$$

$$l_{31} = \frac{a_{31}}{u_{11}} = \frac{a_{31}}{a_{11}}$$

$$l_{32} = \frac{a_{32} - l_{31}u_{12}}{u_{22}} = \frac{a'_{32}}{a'_{22}}$$

高斯消去中为了消去第二(三)行第一列元素, 与第一行相乘的因子

高斯消去中为了消去三 行第二列元素,与第二 行相乘的因子

上述LU分解算法,L的下三角部分存储在U的下三角部分,可以节省存储。

三角分解——例

• 方程组的系数矩阵高斯消去的LU分解

$$\begin{cases} 3x_1 - 0.1x_2 - 0.2x_3 = 7.85 \\ 0.1x_1 + 7x_2 - 0.3x_3 = -19.3 \\ 0.3x_1 - 0.2x_2 + 10x_3 = 71.4 \end{cases}$$

$$A = \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.1 & 7 & -0.3 \\ 0.3 & -0.2 & 10 \end{bmatrix}$$

$$U = \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0 & 7.00333 & -0.293333 \\ 0 & 0 & 10.0120 \end{bmatrix}$$

消去a'32的因子为

$$f_{32} = \frac{a'_{32}}{a'_{22}} = \frac{-0.19}{7.00333} = -0.0271300$$

消去 a_{21} 和 a_{31} 的因子为

$$f_{21} = \frac{a_{21}}{a_{11}} = \frac{0.1}{3} = 0.03333333$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 0.03333333 & 1 & 0 \\ 0.100000 & -0.0271300 & 1 \end{bmatrix}$$

$$LU = \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.0999999 & 7 & -0.3 \\ 0.3 & -0.2 & 9.99996 \end{bmatrix}$$

舍入误差引 起了细微的 差异。

46

 $f_{31} = \frac{a_{31}}{a_{11}} = \frac{0.3}{3} = 0.1000000$

Doolittle分解

• 定理: 当A的各阶顺序主子式均不为零时,Doolittle分解可以实现并且唯一。 A

$$A_{k} = \begin{vmatrix} a_{11} & \dots & a_{1k} \\ \dots & \dots & \dots \\ a_{k1} & \dots & a_{kk} \end{vmatrix} \neq 0 \quad (k = 1, 2, \dots n)$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} 1 \\ l_{21} & 1 \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{nn} \end{bmatrix}$$

Doolittle分解

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} 1 \\ l_{21} & 1 \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{nn} \end{bmatrix}$$

• 计算顺序

- 1 求U的第一行元素和L的第一列元素 当k=1时,由 $l_{11}=1$ 得 $u_{1i}=a_{1i}$ i=1,2,...,n当i=1时,可得 $l_{k1}=a_{k1}/u_{11}$ k=2,...,n
- 2 求*U*的第二行元素和*L*的第二列元素
- •
- 求出U的前k-1行与L的前k-1列后,第k步中计算U的第k行、L的第k列元素的公式为:

$$\begin{cases} u_{ki} = a_{ki} - \sum_{j=1}^{k-1} l_{kj} u_{ji} & i = k, \dots, n \\ l_{ik} = \left(a_{ik} - \sum_{j=1}^{k-1} l_{ij} u_{jk}\right) / u_{kk} & i = k+1, \dots, n; \ k \neq n \end{cases}$$

如果出现 $u_{ii}=0$ 或绝对值很小的情况,需要进行行交换。同时对右端向量b进行相应的交换。

三角分解(LU分解)——代入

● 向前代入求解LY=B

$$y_1 = b_1$$

 $y_k = b_k - \sum_{j=1}^{k-1} l_{kj} y_j \quad k = 2, \dots, n$

● 向后代入求解UX=Y

$$x_n = y_n / u_{nn}$$

$$x_k = (y_k - \sum_{j=k+1}^n u_{kj} x_j) / u_{kk}$$

$$k = n - 1, \dots, 1$$

LU分解方法——

求解方程组

$$\begin{cases} 3x_1 - 0.1x_2 - 0.2x_3 = 7.85 \\ 0.1x_1 + 7x_2 - 0.3x_3 = -19.3 \\ 0.3x_1 - 0.2x_2 + 10x_3 = 71.4 \end{cases}$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 0.0333333 & 1 & 0 \\ 0.100000 & -0.0271300 & 1 \end{bmatrix} \qquad U = \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0 & 7.00333 & -0.293333 \\ 0 & 0 & 10.0120 \end{bmatrix}$$

$$U = \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0 & 7.00333 & -0.293333 \\ 0 & 0 & 10.0120 \end{bmatrix}$$

$$LY = \begin{bmatrix} 1 & 0 & 0 \\ 0.03333333 & 1 & 0 \\ 0.1000000 & -0.0271300 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 7.85 \\ -19.3 \\ 71.4 \end{bmatrix} \longrightarrow Y = \begin{bmatrix} 7.85 \\ -19.5617 \\ 70.0843 \end{bmatrix}$$

三角分解与高斯消去法的比较

- 三角分解的计算量为
 - 分解: $\frac{n^3-n}{3}$ 代入: n^2
 - 随着*n*的增加,两种方法的计算量相当
- 直接三角分解法是从矩阵A的元素直接由关系式A=LU确定 L和 U的元素,不必像Gauss消去法那样计算那些中间结果
- 高斯消去法求解方程组时,右端项必须提前知道,三角分解则不需要 (采用列主元三角分解时, *PA=LU*)
- 在实现A = LU分解后,解具有相同系数矩阵的方程组 $AX = B_j$ 相当方便,每解一个方程组只需求解两个三角形 文程组,用 n^2 次乘除法运算即可完成求解。

矩阵求逆

逆矩阵A⁻¹

$$AA^{-1} = A^{-1}A = I$$

- 以n=3为例

$$AX = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$AX = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\lambda n=3$$
为例
$$A^{-1}$$
各列分别通过 $AX = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad AX = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad AX = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ 计算

- LU分解方法的优势在于多个右边常数向量的求解
- LU分解计算逆矩阵的计算量为 $\frac{n^3-n}{3}+n\times n^2=\frac{4n^3-n}{3}$

$$\frac{n^3 - n}{3} + n \times n^2 = \frac{4n^3 - n}{3}$$

高斯消去计算逆矩阵的计算量(只考虑乘除操作)为

$$n\left(\frac{n^3}{3} + \frac{n^2}{2}\right) = \frac{n^4}{3} + \frac{n^3}{2}$$

• 对称阵: $A^T = A$

• 正定阵: $x^T A x > 0, \forall x \in \mathbb{R}^n, x \neq 0$

• 各阶顺序主子式均大于零

$$A_{k} = \begin{vmatrix} a_{11} & \dots & a_{1k} \\ \dots & \dots & \dots \\ a_{k1} & \dots & a_{kk} \end{vmatrix} > 0 \quad (k = 1, 2, \dots n)$$

● 由Doolittle分解,A有唯一分解

$$A = LU$$

- LDR分解: A分解为A=LDR, L、R分别为单位下、上三角阵,D为一个对角阵。
- 对称正定矩阵A有三角分解 $A=LDL^T$

• 假设A是n阶实对称正定矩阵,则必存非奇异下三角矩阵L,使 $A=LL^T$,并且当L的主对角元均为正时,这种分解是唯一的。称 $A=LL^T$ 为矩阵A的Cholesky分解。

$$A = \begin{bmatrix} l_{11} & & & \\ l_{21} & l_{22} & & \\ \vdots & \vdots & \ddots & \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & \cdots & l_{n1} \\ & l_{22} & \cdots & l_{n2} \\ & & \ddots & \vdots \\ & & & l_{nn} \end{bmatrix} = LL^{T}$$

$$\begin{cases} a_{ii} = \sum_{k=1}^{i} l_{ik} l_{ik} \\ a_{ij} = \sum_{k=1}^{j} l_{ik} l_{jk} & i > j \end{cases}$$

$$\begin{cases} a_{ii} = \sum_{k=1}^{i} l_{ik} l_{ik} \\ a_{ij} = \sum_{k=1}^{j} l_{ik} l_{jk} \quad i > j \end{cases} \begin{cases} l_{jj} = (a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2)^{\frac{1}{2}} \\ l_{ij} = (a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}) / l_{jj} \end{cases} \qquad i = j+1, ..., n, j = 1, 2, ..., n$$

$$y_k = (b_k - \sum_{j=1}^{k-1} l_{kj} y_j) / l_{kk}$$
 $k = 1, \dots, n$ $x_k = (y_k - \sum_{j=k+1}^{n} l_{jk} x_j) / l_{kk}$ $k = n, \dots, 1$

2022/3/6 数值计算方法 55

- 优点
 - 数值稳定
 - 存储量小,可用一维数组存储
 - 计算量小,约需n³/6次乘除法,大约是高斯消 去法或Doolittle分解法的一半
- 缺点
 - 存在开方运算,可能会出现根号下负数

改进的Cholesky分解

改进的cholesky分解A=LDLT

$$L = \begin{bmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ l_{31} & l_{32} & 1 & & \\ \vdots & \vdots & \ddots & \vdots & \\ l_{n1} & l_{n2} & \dots & l_{nn-1} & 1 \end{bmatrix} \quad D = \begin{bmatrix} d_1 & & & & \\ & d_2 & & & \\ & & \ddots & & \\ & & & \ddots & \\ & & & d_n \end{bmatrix}$$

可以避免开方运算

$$\begin{cases} d_{i} = a_{ii} - \sum_{k=1}^{i-1} l_{ik}^{2} d_{k} \\ l_{ij} = \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} d_{k} l_{jk} \right) / d_{j} \\ i = 1, 2, ..., n; \quad j = 1, 2, ..., i-1 \end{cases}$$

计算中,为了避免重复计算, 减少计算量,可令 $c_{ii} = l_{ii}d_i$

$$\begin{cases} d_{i} = a_{ii} - \sum_{k=1}^{i-1} c_{ik} l_{ik} \\ c_{ij} = a_{ij} - \sum_{k=1}^{j-1} c_{ik} l_{jk} \\ l_{ij} = c_{ij} / d_{j} \end{cases}$$

$$i = 1, 2, ..., n;$$
 $j = 1, 2, ..., i - 1$

带状方程组

- 带状矩阵:
 - 除了主对角线为中心的一个带状范围内的元素不为 零,其他元素都为零
 - 带宽BW, 半带宽HBW
 - 如果|i-j|>HBW, $a_{ij}=0$
- 高斯消去或LU分解求解带状 方程组效率低

三对角方程组的追赶法 (Thomas算法)

● 系数矩阵A的元素满足优对角条件

$$\begin{bmatrix} b_{1} & c_{1} & & & \\ a_{2} & b_{2} & c_{2} & & \\ & \ddots & \ddots & \ddots & \\ & & a_{n-1} & b_{n-1} & c_{n-1} \\ & & & a_{n} & b_{n} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{bmatrix} = \begin{bmatrix} f_{1} \\ f_{2} \\ \vdots \\ f_{n-1} \\ f_{n} \end{bmatrix} \begin{cases} |b_{1}| > |c_{1}| \\ |b_{i}| \ge |a_{i}| + |c_{i}|, (a_{i}c_{i} \ne 0, i = 2, \dots, n-1) \\ |b_{n}| > |a_{n}| \end{cases}$$

● 可以证明, A非奇异, 且各阶顺序主子式都不为0

三对角方程组的追赶法 (Thomas算法)

$$A = \begin{bmatrix} b_{1} & c_{1} & & & & \\ a_{2} & b_{2} & c_{2} & & & \\ & \ddots & \ddots & \ddots & & \\ & & a_{n-1} & b_{n-1} & c_{n-1} \\ & & & a_{n} & b_{n} \end{bmatrix} = LU$$

$$= \begin{bmatrix} \alpha_{1} & & & & \\ \gamma_{2} & \alpha_{2} & & & \\ & \ddots & \ddots & & \\ & & \gamma_{n-1} & \alpha_{n-1} & \\ & & & \gamma_{n} & \alpha_{n} \end{bmatrix} \begin{bmatrix} 1 & \beta_{1} & & & \\ & 1 & \beta_{2} & & \\ & & \ddots & \ddots & \\ & & & 1 & \beta_{n-1} \\ & & & & 1 \end{bmatrix}$$

根据矩阵乘法,可计算待定 系数:

(1)
$$b_1 = \alpha_1, c_1 = \alpha_1 \beta_1, \beta_1 = c_1/b_1;$$

(2)
$$a_i = \gamma_i$$
, $b_i = \alpha_i + \gamma_i \beta_{i-1} = \alpha_i + a_i \beta_{i-1}$;
($i=2,...,n$)

(3)
$$c_i = \alpha_i \beta_i$$
; $(i=2,...,n-1)$

因此:

$$\beta_{n-1}$$

$$1$$

$$\alpha_{1}=b_{1}, \beta_{1}=c_{1}/b_{1};$$

$$\alpha_{i}=b_{i}-a_{i}\beta_{i-1};$$

$$\beta_{i}=c_{i}/\alpha_{i}; (i=2,...,n-1)$$

$$\gamma_{i}=a_{i}$$

三对角方程组的追赶法

(Thomas算法)

$$A = \begin{bmatrix} \alpha_1 & & & & \\ \gamma_2 & \alpha_2 & & & \\ & \ddots & \ddots & & \\ & & \gamma_{n-1} & \alpha_{n-1} & \\ & & & \gamma_n & \alpha_n \end{bmatrix} \begin{bmatrix} 1 & \beta_1 & & & \\ & 1 & \beta_2 & & \\ & & \ddots & \ddots & \\ & & & 1 & \beta_{n-1} \\ & & & & 1 \end{bmatrix} = LU$$

对于舍入误差是 稳定的。

仅需5n-4次乘除 法运算。

- 根据矩阵乘法,可以得到追赶法的计算公式:
- (1)分解计算公式: A=LU

$$\beta_1 = c_1/b_1$$

 $\beta_i = c_i/(b_i - a_i\beta_{i-1})$ $i=2,...,n-1$

(2)求解方程组Ly=f的递推算式

$$y_1 = f_1/b_1$$

 $y_i = (f_i - a_i y_{i-1})/(b_i - a_i \beta_{i-1})$ $i = 2,...,n$

(3)求解方程组Ux=y的递推算式

$$x_n = y_n$$

$$x_i = y_i - \beta_i x_{i+1}$$

$$i = n-1, ..., 1$$

赶的过程

追的过程