Universal Approximation theorem

Let

- $I_p = [0,1]^p$.
- $ightharpoonup C(I_p)$ be the space of continuous functions on I_p

Universal Approximation theorem

Let

- $I_p = [0,1]^p$.
- $ightharpoonup C(I_p)$ be the space of continuous functions on I_p

Then, $\forall f \in C(I_p), \ \forall \varepsilon > 0$,

Universal Approximation theorem

Let

- $I_p = [0,1]^p$.
- $ightharpoonup C(I_p)$ be the space of continuous functions on I_p

Then, $\forall f \in C(I_p)$, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, $\alpha_i \in \mathbb{R}^{p+1}, \beta_i \in \mathbb{R} \ (i \in [1, N])$,

such that the function
$$F(x) = \sum_{i=1}^{N} \beta_i \varphi\left(\alpha_i^T x\right)$$

is an approximate realization of the function $f: \forall x \in I_p, \ |F(x) - f(x)| < \varepsilon.$

The NN theorem! Universal Approximation theorem

Wait...what?

Universal Approximation theorem

Let's say that again:

[Under reasonable assumptions and definitions]

$$F(x) = \sum_{i=1}^{N} \beta_i \varphi\left(\alpha_i^T x\right)$$

$$\forall x \in I_p, |F(x) - f(x)| < \varepsilon$$

Universal Approximation theorem

Let's say that again:

[Under reasonable assumptions and definitions]

$$F(x) = \sum_{i=1}^{N} \beta_i \varphi\left(\alpha_i^T x\right)$$

$$\forall x \in I_p, |F(x) - f(x)| < \varepsilon$$

In other words, functions of the form F(x) are dense in $C(I_p)$.

The NN theorem! Universal Approximation theorem

Duh...?

Universal Approximation theorem

$$F(x) = \sum_{i=1}^{N} \beta_i \varphi\left(\alpha_i^T x\right)$$

Given a big enough budget on N, one can approximate any function f to any arbitrary precision ε using functions of the form F(x)!

Universal Approximation theorem

$$F(x) = \sum_{i=1}^{N} \beta_i \varphi \left(\alpha_i^T x \right)$$

Given a big enough budget on N, one can approximate any function f to any arbitrary precision ε using functions of the form F(x)!

Consequence:

With enough neurons, a single layer, feed-forward ANN can approximate any function to any precision. It is a Universal Approximator.

Universal Approximation theorem

$$F(x) = \sum_{i=1}^{N} \beta_i \varphi \left(\alpha_i^T x \right)$$

Given a big enough budget on N, one can approximate any function f to any arbitrary precision ε using functions of the form F(x)!

Consequence:

With enough neurons, a single layer, feed-forward ANN can approximate any function to any precision. It is a Universal Approximator.

Warning:

"with enough neurons" $\to N$ might be so large, the network might not be learnable in practice!