

9.4 多元线性回归

- 多元回归 (Multivariate Regression) : 回归分析中包括两个或两个以上的自变量
- 多元线性回归 (Multivariate Linear Regression) : 因变量和自变量之间是线性关系

$$y = wx + b$$

$$y = w_1 x_1 + w_2 x_2 + b$$

$$y = w_1 x_1 + ... + w_m x_m + b$$

超平面 (Hyperplane):

直线在高维空间中的推广

回归问题

9.4 多元线性回归

模型:
$$\hat{y} = w_1 x^1 + ... + w_m x^m + b$$

$$\$b=w_0, x^0=1$$

x¹, x²,..., x^m 样本属性

 $W_1, W_2, ..., W_m$ 权值

 x^1 : 面积, x^2 : 房间数, x^3 : 楼层数

 $w_1 = 0.6$, $w_2 = 0.3$, $w_3 = 0.1$

向量形式: $\hat{y} = w_0 x^0 + w_1 x^1 + ... + w_m x^m = W^T X$

n 个样本 (X_i, y_i) (i=1, 2, ..., n)

$$\hat{y}_i = W^T X_i$$

损失函数: $Loss = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - W^T X_i)^2$

$$X = (x^0, x^1, ..., x^m)^T$$

9.4 多元线性回归

损失函数:
$$Loss = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - W^T X_i)^2$$

$$Loss = (Y - XW)^{T}(Y - XW)$$

$$X = (X_1, X_2, ..., X_n)^T$$

 $Y = (y_1, y_2, ..., y_n)^T$

$$X_i = (x_i^0, x_i^1, ..., x_i^m)$$

极值问题:参数向量W取何值时,Loss函数达到最小?

函数f(x)最小化时自变量x的取值 $\underset{x}{\arg\min} f(x)$

函数f(x)最大化时自变量x的取值 arg $\max_{x} f(x)$

$$\underset{w}{\operatorname{argmin}}(Y - XW)^{T}(Y - XW)$$

求解模型参数

$$Loss = (Y - XW)^T (Y - XW)$$

$$\frac{\partial Loss}{\partial W} = \frac{\partial ((Y - XW)^{T} (Y - XW))}{\partial W}$$
$$= 2X^{T} (XW - Y)$$
$$= 2X^{T} XW - 2X^{T} Y = 0$$

$$X^T X W = X^T Y$$

$$W = (X^T X)^{-1} X^T Y$$
 $(X^T X 为满秩矩阵)$

线性方程组

$$w_0 + w_1 x_1^1 + \dots + w_j x_1^j + \dots + w_m x_1^m = \hat{y}_1$$

$$w_0 + w_1 x_2^1 + \dots + w_j x_2^j + \dots + w_m x_2^m = \hat{y}_2$$

•••

$$w_0 + w_1 x_i^1 + \dots + w_j x_i^j + \dots + w_m x_i^m = \hat{y}_i$$

...

$$w_0 + w_1 x_n^1 + ... + w_j x_n^j + ... + w_m x_n^m = \hat{y}_n$$

m 个属性

$$\begin{bmatrix} 1 & x_1^1 & \dots & x_1^m \\ 1 & x_2^1 & \dots & x_2^m \\ \dots & \dots & \dots & \dots \\ 1 & x_n^1 & \dots & x_n^m \end{bmatrix} \cdot \begin{bmatrix} w_0 \\ w_1 \\ \dots \\ w_m \end{bmatrix} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \dots \\ \hat{y}_n \end{bmatrix}$$

矩阵形式: $XW = \hat{Y}$

损失函数:

$$Loss = (Y - \hat{Y})^2 = (Y - XW)^2$$

$$\frac{\partial Loss}{\partial W} = 2X^{T}(XW - Y) = 0$$

$$W = (X^T X)^{-1} X^T Y$$

24

n维向量:向量中的元素个数为n

(1,2,3)7: 3维向量

(1,2,3,4,5)7: 5维向量

(1,2,...,n)^T: n维向量

 $X = (x^0, x^1, ..., x^m)^T$: m+1维向量

m×n矩阵:由m×n个数排成的m行n列的数表

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ a_{31} & a_{32} & \cdots & a_{3n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$\begin{bmatrix} 1 & x_1^1 & \dots & x_1^m \\ 1 & x_2^1 & \dots & x_2^m \\ \dots & \dots & \dots & \dots \\ 1 & x_n^1 & \dots & x_n^m \end{bmatrix}$$

$$n \times (m+1)$$

多维数组 (TensorFlow/NumPy...)

9 回归问题