Álgebra Linear I

Professora Kelly Karina

Definição:

Seja V um espaço vetorial e sejam S_1 e S_2 subespaços vetoriais de V. A soma de S_1 e S_2 (que denotaremos por $S=S_1+S_2$) é o conjunto de todos os vetores de V que são a soma de um vetor de S_1 e um vetor de S_2 . Em símbolos:

$$S = S_1 + S_2 = \{v \in V; v = v_1 + v_2 \text{ onde } v_1 \in S_1 \text{ e } v_2 \in S_2\}$$

Teorema:

A soma de dois subespaços vetoriais S_1 e S_2 de V é um subespaço vetorial de V.

Ideia da dem:

$$u, v \in S = S_1 + S_2 \rightarrow \begin{cases} u = u_1 + u_2; \ u_1 \in S_1, u_2 \in S_2 \\ v = v_1 + v_2; \ v_1 \in S_1, v_2 \in S_2 \end{cases}$$

$$\rightarrow u + v = u_1 + u_2 + v_1 + v_2$$

$$= (u_1 + v_1) + (u_2 + v_2)$$

$$Como \begin{cases} u_1 + u_2 \in S_1 \\ v_1 + v_2 \in S_2 \end{cases}$$
Segue que $u + v \in S_1 + S_2 = S$

$$u \in S = S_1 + S_2, k \in \mathbb{R}$$
 \rightarrow $u = u_1 + u_2; u_1 \in S_1, u_2 \in S_2$ $ku = k(u_1 + u_2) = ku_1 + ku_2$ $como$ $ku_1 \in S_1$ $kv_1 \in S_2$

Segue que $ku \in S_1 + S_2 = S$

Consideremos os mesmos espaços com seus respectivos subespaços vetoriais do exemplo anterior e verifiquemos qual será o subespaço $S = S_1 + S_2$.

• O espaço vetorial $V=\mathbb{R}^3$ com as operações usuais e os subespaços vetoriais:

$$S_1 = \{(x, y, 0); x, y \in \mathbb{R}\}\$$

 $S_2 = \{(x, 0, z); x, z \in \mathbb{R}\}\$

Temos então que $S_1 + S_2 = \{(x, y, z); x, y, z \in \mathbb{R}\}$.

• Seja $V = M_2(\mathbb{R})$ com as operações usuais e os seguintes subespaços vetoriais:

$$S_1 = \left\{ \left(egin{array}{cc} a & b \ 0 & 0 \end{array}
ight); a,b \in \mathbb{R}
ight\}$$

$$S_2 = \left\{ \left(egin{array}{cc} a & 0 \\ 0 & d \end{array}
ight); a, d \in \mathbb{R}
ight\}$$

Temos então que $S_1+S_2=\left\{\left(egin{array}{cc}a&b\\0&d\end{array}
ight)$; $a\in\mathbb{R}
ight\}$.

Soma Direta de dois subespaços vetoriais

Definição:

Seja V um espaço vetorial e sejam S_1 e S_2 subespaços vetoriais de V. Dizemos que V é a soma direta de S_1 e S_2 (e representamos por $V=S_1\oplus S_2$ se:

- $V = S_1 + S_2;$
- **2** $S_1 \cap S_2 = \{0\}.$

• Consideremos o espaço vetorial $V=\mathbb{R}^3$ com as operações usuais e os subespaços vetoriais:

$$S_1 = \{(x, y, 0); x, y \in \mathbb{R}\}\$$

 $S_2 = \{(x, 0, z); x, z \in \mathbb{R}\}\$

Já sabemos que
$$S_1+S_2=\{(x,y,z);x,y,z\in\mathbb{R}\}=\mathbb{R}^3=V;$$

Se $(x, y, z) \in S_1 \cap S_2$ então z = 0 e y = 0, ou seja, ele é do tipo (x, 0, 0). Neste caso não podemos dizer que V é soma direta de S_1 e S_2 .

• Consideremos, mais uma vez, o espaço vetorial $V=\mathbb{R}^3$ com as operações usuais mas agora consideremos os seguintes subespaços vetoriais:

$$S_1 = \{(x, y, 0); x, y \in \mathbb{R}\}\$$

$$S_2 = \{(0, 0, z); x, z \in \mathbb{R}\}\$$

Temos que $S_1+S_2=\{(x,y,z);x,y,z\in\mathbb{R}\}=\mathbb{R}^3=V.$ Se $(x,y,z)\in S_1\cap S_2$ então z=0 e x=y=0, ou seja, ele é necessariamente o elemento (0,0,0). Neste caso $V=S_1\oplus S_2.$

Teorema:

Se V é a soma direta de S_1 e S_2 então todo vetor $v \in V$ se escreve, de modo único, na forma $u = u_1 + u_2$ onde $u_1 \in S_1$ e $u_2 \in S_2$.

Demonstração:

Suponha que $u = u_1 + u_2$ e que $u = v_1 + v_2$ onde $u_1, v_1 \in S_1$ e $u_2, v_2 \in S_2$. Então temos:

$$u_1 + u_2 = v_1 + v_2$$

 $u_1 - v_1 = v_2 - u_2$

Note que $u_1-v_1\in S_1$ e $v_2-u_2\in S_2$, além disso, estas expressões são iguais, então ambas estão em $S_1\cap S_2$. Como $S_1\cap S_2=\{0\}$ (pois a soma é direta) então

$$u_1 - v_1 = v_2 - u_2 = 0$$

Ou seja, $u_1 = v_1$ e $u_2 = v_2$.

No exemplo anterior vimos que $V = \mathbb{R}^3$ é a soma direta de:

$$S_1 = \{(x, y, 0); x, y \in \mathbb{R}\} \text{ e}$$

 $S_2 = \{(0, 0, z); x, z \in \mathbb{R}\}$

Pelo Teorema sabemos que se $(x, y, z) \in \mathbb{R}^3$ então se escreve como soma de um elemento de S_1 e um de S_2 de maneiro única. De fato, (x, y, z) = (x, y, 0) + (0, 0, z).