NOM:

INTERRO DE COURS – SEMAINE 10

Exercice 1 – Déterminer le domaine de définition des fonctions suivantes :

1. $a(x) = x^3 - 5x^2 - 2$

Solution : a est une fonction polynomiale donc elle est définie sur \mathbb{R} .

2. $b(x) = 4x - 1 + \sqrt{x}$

Solution : *b* est la somme de deux fonctions :

- $b_1: x \mapsto 4x 1$, polynomiale donc définie sur \mathbb{R} ,
- $b_2: x \mapsto \sqrt{x}$, fonction racine carrée donc définie sur \mathbb{R}_+ .

Ainsi *b* est définie sur l'intersection $\mathbb{R} \cap \mathbb{R}_+ = \mathbb{R}_+$.

3. $c(x) = \frac{x^2 - 3x + 2}{x^2 + 2x - 3}$

Solution : c est une fraction rationnelle dont je cherche les valeurs interdites. Je résous $x^2 + 2x - 3 = 0$. Le discriminant vaut $\Delta = 2^2 - 4 \times 1 \times (-3) = 4 + 12 = 16 = 4^2 > 0$. Il y a donc deux racines :

$$x_1 = \frac{-2-4}{2} = -3$$
 et $x_2 = \frac{-2+4}{2} = 1$.

Ainsi c est définie sur $\mathbb{R} \setminus \{-3, 1\}$.

4. $d(x) = \sqrt{-x^2 - 3x + 4}$

Solution : d est de la forme \sqrt{u} avec $u(x) = -x^2 - 3x + 4$. Il me faut résoudre $u(x) \ge 0$. J'étudie le signe de $-x^2 - 3x + 4$. Le discriminant vaut $\Delta = (-3)^2 - 4 \times (-1) \times 4 = 9 + 16 = 25 = 5^2 > 0$. Il y a donc deux racines :

$$x_1 = \frac{-(-3)-5}{2 \times (-1)} = \frac{3-5}{-2} = 1$$
 et $x_2 = \frac{3+5}{-2} = -4$.

J'en déduis le tableau de signe suivant :

x	$-\infty$		-4		1		+∞
$-x^2 - 3x + 4$		_	0	+	0	_	

Ainsi d est définie sur [-4, 1].

5. $e(x) = \sqrt{-2x-3}$

Solution : e est de la forme \sqrt{u} avec u(x) = -2x - 3. Il me faut donc résoudre $u(x) \ge 0$.

$$-2x-3 \geqslant 0 \iff -2x \geqslant 3 \iff x \leqslant -\frac{3}{2}$$

Ainsi e est définie sur $\left[-\infty, -\frac{3}{2}\right]$.

6. $f(x) = \sqrt{-2x+4} + \sqrt{x^2 - \frac{1}{12}x - \frac{1}{12}}$

Solution : f est la somme de deux fonctions :

• $f_1: x \mapsto \sqrt{-2x+4}$, définie lorsque $-2x+4 \geqslant 0$,

• $f_2: x \mapsto \sqrt{x^2 - \frac{1}{12}x - \frac{1}{12}}$, définie lorsque $x^2 - \frac{1}{12}x - \frac{1}{12} \geqslant 0$,

(i) Je résous d'abord $-2x + 4 \ge 0$:

$$-2x+4 \geqslant 0 \iff -2x \geqslant -4 \iff x \leqslant \frac{-4}{-2} = 2.$$

Donc f_1 est définie sur] $-\infty$, 2].

(ii) Je résous désormais $x^2 - \frac{1}{12}x - \frac{1}{12} \ge 0$. Le discriminant vaut $\Delta = \left(-\frac{1}{12}\right)^2 - 4 \times 1 \times \left(-\frac{1}{12}\right) = \frac{1}{144} + \frac{4}{12} = \frac{1}{144} + \frac{48}{144} = \frac{49}{144} = \left(\frac{7}{12}\right)^2 > 0.$ Il va done doux racines :

$$x_1 = \frac{\frac{1}{12} - \frac{7}{12}}{2} = \frac{-\frac{6}{12}}{2} = -\frac{1}{2} \times \frac{1}{2} = -\frac{1}{4}$$
 et $x_2 = \frac{\frac{1}{12} + \frac{7}{12}}{2} = \frac{\frac{8}{12}}{2} = \frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$.

J'en déduis le tableau de signe suivant :

x	$-\infty$		$-\frac{1}{4}$		$\frac{1}{3}$		+∞
$x^2 - \frac{1}{12}x - \frac{1}{12}$		+	0	_	0	+	

Donc f_2 est définie sur $\left]-\infty, -\frac{1}{4}\right] \cup \left[\frac{1}{3}, +\infty\right[$.

Finalement f est définie sur l'intersection $(]-\infty,2]$ \cap $(]-\infty,-\frac{1}{4}] \cup [\frac{1}{3},+\infty[])$, i.e. sur

$$\left|-\infty,-\frac{1}{4}\right| \cup \left[\frac{1}{3},2\right[.$$