BENV0091 Lecture 6: Unsupervised Learning

Patrick de Mars

Lecture Overview

- Principal components analysis and clustering smart meter data
- Model selection techniques
- Kaggle winners!

Unsupervised Learning

Unsupervised Learning

- We have covered supervised learning, which deals with finding a mapping between a set of features $X_1, X_2, ..., X_N$ and a response variable Y
- Unsupervised learning is concerned with problems where we only have the features $X_1, X_2, ..., X_N$
- It is often used as a part of exploratory data analysis
- Examples include:
 - Clustering
 - Principal components analysis

Principal Components Analysis (PCA)

- PCA can be used to find a lowdimensional representation of higher-dimensional data
- It is useful for:
 - Clustering (which can be challenging/computationally expensive in high dimensional space)
 - Feature engineering
 - Visualising high-dimensional data

Figure: The Elements of Statistical Learning, Hastie et al.

Clustering Smart Meter Data

- We will use K-means clustering to cluster smart meter profiles
- We will look at Winter only (Q3 and Q4), and look to create archetypal weekly customer profiles (at hourly resolution)
- Each observation will have 7*24 = 168 features: a lot of dimensions!
- Hence, we'll use **PCA** to reduce the number of dimensions and cluster the data in lower-dimensional space

Average weekly profiles

Customer ID	Monday 00:00	Monday 01:00	•••	Sunday 23:00
0001	0.10 kWh	0.05 kWh		0.15 kWh
0002	0.12 kWh	0.07 kWh		0.11 kWh

Initial Data Preparation

- First, some initial preparation:
 - Read the data with `read_csv2()`
 - Name the first column `timestamp`
 - Ensure the timestamp column is a datetime (lubridate!)
 - Create `wday` and `hour` columns
 - Convert all character columns to numeric
 - Filter the data to just Q3 and Q4
- Task: confirm that there are no missing values
- Task: confirm that no columns have 0 variance (i.e. no activity)

`read_csv2()` reads CSV files where columns are separated with semi-colons and commas are used for decimal points

`mutate_if(condition, function)` can be used to applied a function to columns meeting a condition (such as `is.character`)

Transforming the Data

- In order to cluster the data, we must have the same dimensionality for all customers
- There are several options for how to cluster the data:
 - Raw data (c. 17,000 features)
 - Average day (24 features)
 - Average week (7*24 features)
 - Average weekday, average weekend day (2*24 features)
- We want to transform the data such that:
 - Each row is a customer
 - Each column is a 1 hour period (weekday/hour)
 - Each entry is mean power (kW)
- Task: transform the data:
 - Pivot the data <u>longer</u>, excluding timestamp, wday and hour
 - Group by customer, wday and hour and calculate the mean power (kW)
 - Pivot the data wider by wday and hour (see output right)

Desired output

	customer	`1_0`	`1_1`	`1_2`	`1_3`	`1_4`	`1_5`
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<db1></db1>	<db1></db1>	<dbl></dbl>
1	MT_001	4.26	4.32	4.29	4.29	4.32	4.27
2	MT_002	20.6	18.7	16.9	16.7	16.7	17.4
3	MT_003	1.44	1.17	1.00	1.36	1.36	1.43
4	MT_004	93.1	82.9	70.6	66.6	62.3	59.0
5	MT_005	43.2	39.3	34.4	31.9	31.1	30.6
6	MT_006	133.	119.	103.	96.6	91.3	88.2
7	MT_007	6.51	6.08	5.74	5.64	5.62	5.55

Normalising the Data

- For smart meter data, normalising each observation can be useful if we are predominantly interested in patterns, rather than absolute consumption
- Task: normalise each row of your data

Normalising between 0 and 1

$$\hat{x} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

No normalisation

Normalisation of raw data

hour

Normalisation of weekly average

Normalising the Data

- The plot on the right shows clustered profiles (k=3) when the data is not normalised
- The clusters are mainly split by consumption volume rather than pattern
- This may be useful for some purposes, but doesn't show the customer archetypes

Normalising between 0 and 1

$$\hat{x} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Calculating the Principal Components

- PCA is sensitive to the magnitude of each column and data should be standardised (mean 0, standard deviation 1) to prevent variables with large magnitude from dominating the principal components
- Task: calculate the principal components:
 - Drop any non-numeric columns (e.g. customer ID)
 - Standardise each column with `scale()`
 - Calculate the principal components with `prcomp()`
 - Use `tidy()` to tidy the output of your PCA in a data frame called `tidy_pcs`

Use `scale(x)` to standardise each column of a data frame or matrix

Use `prcomp(x)` to perform PCA on numeric data x (matrix or data frame)

Plotting Principal Components

- Running `plot(pcs)` plots the variance of each of the principal components (AKA scree plot)
- Task: create the scree plot
- Plotting the two principal components against one another can be useful to identify the spread of the data
 - Right plot: we can see that there is one dominant cluster of customers
- Task: plot the first two principal components in a scatter plot

Clustering

- Task: cluster the data with k=3 based on the first two principal components
- Task: reproduce the plot on the right (cluster IDs may vary)
- Task: count how many customers belong to each cluster
- Task: experiment with producing the right-hand plot with different settings of k

Choosing k?

- A common method for choosing the number of clusters is the elbow method
- The right-hand plot shows the amount of variance that is captured with each setting of k
- The elbow is the point where the curve flattens (point of diminishing returns)
- Task: use a for loop to calculate `tot.withinss` for each setting of k = 2—20
- Task: create the plot on the right hand side
- The elbow method is only one way to determine k and it is ambiguous. Often domain knowledge of visualisation are just as helpful! In our anaylsis, we will stick to k=3

Plotting Time Series By Cluster

- Finally, we will return back to the time series space and investigate the distribution of profiles in each cluster
- Task: plot the mean consumption profile for each cluster (see right)
- Task: add the inter-quartile range for each cluster
- How would you classify each customer type?

Note: $1 \rightarrow$ Sunday, $2 \rightarrow$ Monday etc.

Limitations of k-means Clustering

- Clustering can be a very appealing and intuitive way to gain insight about data
- It is also very general and makes no assumptions about the data
- However, this generality comes with drawbacks:
 - Some data do not have clusters!
 - It assumes spherical clusters

How to understand the drawbacks of k-means

This data has non-spherical clusters!

K-means assignment

• 1 • 2

Other Clustering Algorithms

- Clustering algorithms trade-off computation time and number of parameters
- Alternatives to k-means include:
 - Gaussian mixtures: can incorporate information about covariance structure of the data (see right)
 - Hierarchical clustering: progressively combines similar clusters in a dendrogram; doesn't require number of clusters to be specified
- Further reading:
 - An Introduction to Statistical Learning (Chapter 12), James et al.
 - Scikit-learn: Clustering

Supervised Learning: Model Selection

Model Selection

- There are <u>infinitely many models</u> that can be trained for a given supervised learning task, but not all will be equally strong predictors
- We want to choose a model that gives the best performance on held-out data and has appropriate characteristics for the task
- Model selection can broadly be split into 3 components:
 - 1. Choosing a learning algorithm
 - 2. Hyperparameter tuning
 - 3. Model fitting
- Model fitting is always done computationally using methods such as gradient descent while the other choices might be made manually based on knowledge of the problem or model requirements

- Linear regression
- Decision tree
- Neural network

- Network architecture
- Learning rate

- Coefficients (linear regression)
- Decision rules (decision tree)

Choosing a learning algorithm Hyperparameter tuning Model fitting

Fitting is the process of adjusting model parameters to achieve the best performance - usually minimising a **loss function**

Choosing a Learning Algorithm

- Choosing the learning algorithm automatically can be very computationally expensive, so is often done semi-manually based on:
 - The model's predictive power
 - Interpretability
 - Computational expense
 - Prior experience!
- Feature selection is also an important part of choosing a learning algorithm

Hyperparameter Tuning

- Each learning method has its own hyperparameters which can significantly impact predictive power and convergence time
- Fitting and evaluating (e.g. with a validation set) multiple models with different hyperparameters often yields significant performance improvements
- One way to choose hyperparameters is to use grid search:
 - Manually choose a set of values for the parameters to tune
 - Fit and evaluate models for all combinations of the parameters
- Other methods include random search and Bayesian optimisation

Example hyperparameters

Decision tree

- Min. bucket size
- Max. depth

Random forest

- # trees
- Max. depth

Neural network

- Learning rate
- # hidden layers

Train, Validate, Test

- Models which don't fit the training data well enough have been underfitted
- Models which fit the training data <u>too well</u> have been **overfitted**
- Overfitting is often more of a problem than underfitting
- In order to prevent overfitting, data is often split into training and validation sets
- The testing data should only be used once to evaluate the final model
- The validation data can be used to evaluate different models while controlling for overfitting during model selection

Common approach to splitting data for supervised learning

Cross-Validation

- The vanilla fit/validate split approach has two disadvantages:
 - The validation error can be very sensitive to how the data is split
 - As a large proportion of the data must be held-back for validation, we cannot use all the data for training and the validation error can over-estimate the test error
- Cross-validation methods fit multiple models with different fit/validate splits:
- The most widely used method is k-fold cross validation
 - Data is split into k 'folds'
 - Then we fit k models, each time leaving out 1 fold for validation, and calculate the average error

Cross-Validation: Example

- We will fit logistic regression models with different predictors using 10-fold CV, to predict the use of the washer dryer
- Task: read the training data and create a new column (as a factor) `washer_dryer` which is:
 - 1 if `appliances` contains 'washer_dryer'
 - 0 otherwise
- Task: drop NAs
- Task: run the code on the right-hand side
 - The code uses `cv.glm()` from the `boot` package to implement k-fold CV for generalised linear models
- Task: determine the strongest model based on the CV errors

Raw appliances column

Use `str_detect(string, pattern)` to determine pattern is found in string

`if_else(condition, true_val, false_val)`
can be used with `mutate()` to create a
new column with an if/else statement

k-fold CV for Logistic Regression

Tools for Cross-Validation and Model Selection

- CV can require quite a lot of code (and iteration) to implement
- Several packages include functions to facilitate k-fold CV and other resampling techniques such as bootstrapping
- In particular: modelr and rsample (part of the tidymodels family)

Kaggle Competition – The Winners!

