Convolutional Neural Networks V

CS7150, Spring 2025

Prof. Huaizu Jiang

Northeastern University

Recap

Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

Normalize
$$\begin{array}{c}
x : N \times D \\
\mu, \sigma : 1 \times D \\
\gamma, \beta : 1 \times D \\
y = \frac{(x - \mu)}{\sigma} \gamma + \beta
\end{array}$$

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

$$x: N \times C \times H \times N$$

$$\mu, \sigma$$

$$: 1 \times C \times 1 \times 1$$

$$\gamma, \beta$$

$$: 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Batch Normalization

- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Free at test-time: can be fused with conv!

AlexNet

How to choose this? Trial and error =(

	Input size		Layer				Outp	ut size			
Layer	С	H / W	filters	kernel	stride	pad	C	H / W	memory (KB)	params (k)	flop (M)
conv1		3 227	64	11	4	2	64	56	784	23	73
pool1	6	4 56	ō	3	2	2 0	64	27	182	C	0
conv2	6	4 27	⁷ 192	5	1	. 2	192	27	547	307	224
pool2	19	2 27	7	3	2	2 0	192	13	127	C	0
conv3	19	2 13	384	3	1	. 1	384	13	254	664	112
conv4	38	4 13	256	3	1	. 1	256	13	169	885	145
conv5	25	6 13	256	3	1	. 1	256	13	169	590	100
pool5	25	6 13	3	3	2	0	256	6	36	C	0
flatten	25	6 6	5				9216		36	C	0
fc6	921	6	4096				4096		16	37,749	38
fc7	409	6	4096				4096		16	16,777	17
fc8	409	6	1000				1000		4	4,096	5 4

AlexNet

Interesting trends here!

		Input	t size	Layer				0	utp	ut size			
Layer	C		H / W	filters	kernel	stride	pad	С		H/W	memory (KB)	params (k)	flop (M)
conv1		3	227	64	11	4	. 2	2	64	56	784	23	73
pool1		64	56		3	2	. ()	64	27	182	0	0
conv2		64	27	192	5	1	. 2	2 :	192	27	547	307	224
pool2		192	27		3	2	. () :	192	13	127	0	0
conv3		192	13	384	3	1		1 3	384	13	254	664	112
conv4		384	13	256	3	1		1 2	256	13	169	885	145
conv5		256	13	256	3	1		1 2	256	13	169	590	100
pool5		256	13		3	2	. () :	256	6	36	0	0
flatten		256	6					92	216		36	0	0
fc6		9216		4096				40	096		16	37,749	38
fc7		4096		4096				40	096		16	16,777	17
fc8		4096		1000				10	000		4	4,096	4

AlexNet

Most of the **memory usage** is in the early convolution layers

Memory (KB)

Nearly all **parameters** are in the fully-connected layers

Most **floating-point ops** occur in the convolution layers

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Conv layers at each spatial resolution take the same amount of computation!

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96

AlexNet

FC 4096

Input: C x 2H x 2W

Layer: Conv(3x3, C->C)

Memory: 4HWC

Params: 9C²

FLOPs: 36HWC²

Memory: 2HWC

Input: 2C x H x W

Conv(3x3, 2C -> 2C)

Params: 36C²

FLOPs: 36HWC²

VGG16

VGG19

AlexNet vs VGG-16: Much Bigger!

AlexNet total: 1.9 MB

VGG-16 total: 48.6 MB (25x)

AlexNet total: 61M

VGG-16 total: 138M (2.3x)

AlexNet total: 0.7 GFLOP

VGG-16 total: 13.6 GFLOP (19.4x)

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

In fact the deep model seems to be underfitting since it also performs worse than the shallow model on the training set! It is actually underfitting

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Solution: Change the network so learning identity functions with extra layers is easy!

Residual Block

Solution: Change the network so learning identity functions with extra layers is easy!

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

A residual network is a stack of many residual blocks

Regular design, like VGG: each residual block has two 3x3 conv

Network is divided into stages: the first block of each stage halves the resolution (with stride-2 conv) and doubles the number of channels

relu F(x) + x3x3 conv F(x)relu Residual block relu F(x) + x3x3 conv F(x)relu 3x3 conv Residual block

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Tiny Networks for Mobile Devices

[Howard et al., MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017]

Group-based Convolution

Input: C_{in} x H x W

Hyperparameters:

- **Kernel size**: $K_H \times K_W$

- Number filters: C_{out}

- Padding: P

- **Stride**: S

- **Groups:** G

Weight matrix: $C_{out} / G \times C_{in} / G \times K_H \times K_W \times G$

Bias vector: C_{out}/G

FLOPS: C_{out} /G x C_{in} /G x K_H x K_W x G x H x W

ShuffleNet

[Zhang et al., ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. CVPR 2018]

ShuffleNet Units

[Zhang et al., ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. CVPR 2018]

Today's Class

- Lightweight convolutional neural networks
- Tips of training deep convolutional neural networks
- PyTorch tutorial

MobileNet

Computation reduction: $9C^2HW/(9CHW + C^2HW) = 9C/(9+C)$

[Howard et al., MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017]

- 1. Download big datasets
- 2. Design CNN architecture
- 3. Initialize Weights
- 4. For t = 1 to T:
 - 1. Form minibatch
 - 2. Compute loss + gradient
 - 3. Update Weights
- 5. Apply trained model to task

- 1. Download big datasets
- 2. Design CNN architecture
- 3. Initialize Weights
- 4. For t = 1 to T:
 - 1. Form minibatch
 - 2. Compute loss + gradient
 - 3. Update Weights
- 5. Apply trained model to task

- 1. Download big datasets
- 2. Design CNN architecture
- 3. Initialize Weights
- 4. For t = 1 to T:
 - 1. Form minibatch
 - 2. Compute loss + gradient

If the model

is big, won't

we overfit?

- 3. Update Weights
- 5. Apply trained model to task

Regularizing CNNs: Weight Decay

$$L_{reg} = \frac{1}{2} \sum_{\ell} ||W_{\ell}||^2 \qquad \frac{\partial L_{reg}}{\partial W_{\ell}} = W_{\ell}$$

Add L2 regularization term L_{reg} to the loss penalizing large weight matrices

Usually don't regularize bias terms, or BatchNorm scale / shift params

Regularizing CNNs: Data Augmentation

Regularizing CNNs: Data Augmentation

Apply random transformations to input images during training Artificially "inflate" the size of your dataset

- 1. Download big datasets
- 2. Design CNN architecture
- 3. Initialize Weights
- 4. For t = 1 to T:
 - 1. Form minibatch
 - 2. Compute loss + gradient

If the model

is big, won't

we overfit?

- 3. Update Weights
- 5. Apply trained model to task

- 1. Download big datasets
- 2. Design CNN architecture find one?
- 3. Initialize Weights
- 4. For t = 1 to T:
 - 1. Form minibatch
 - 2. Compute loss + gradient
 - 3. Update Weights
- 5. Apply trained model to task

What if we can't find one?

Transfer Learning: Feature Extraction

1. Train on ImageNet

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014

Transfer Learning: Feature Extraction

1. Train on ImageNet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

2. CNN as feature extractor

Use your small dataset to train a linear classifier on top of pretrained CNN features

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014

Transfer Learning: Fine-Tuning

1. Train on ImageNet

2. CNN as feature extractor

3. Bigger dataset:

Fine-Tuning

FC

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

Reinitialize last layer and continue training whole network on your dataset

and who

Transfer Learning: Fine-Tuning

1. Train on ImageNet

2. CNN as feature extractor

3. Bigger dataset:

Fine-Tuning

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

- Train with feature extraction first before fine-tuning
- Lower the learning rate: use ~1/10 of LR used in original training
- Sometimes freeze lower layers to save computation

Recap: Convolutional Networks

Fully-Connected Layers

$$y = Wx + b$$

Activation Function

$$y = \max(0, x)$$

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Recap: CNN Architectures

Recap: Training CNNs

- 1. Download big datasets Transfer Learning
- 2. Design CNN architecture
- 3. Initialize Weights Xavier / MSRA Init
- 4. For t = 1 to T:
 - 1. Form minibatch
 - 2. Compute loss + gradient
 - 3. Update Weights
- 5. Apply trained model to task

Regularization

+ Data

Augmentation

Next Class

More about Convolutional Neural Networks