AUTOMATIC DETECTION
AND CORRECTION OF
EARTHQUAKES AND SLOW
SLIP EVENTS IN GNSS TIME
SERIES

CONTENTS

- I. Introduction
- II. Smoothing the data
 - I. Removing outliers
 - II. Removing noise
- III. Detecting the jumps
 - I. Principles
 - II. Difficulties encountered
- IV. Results

REMOVING OUTLIERS

Complex backwards loops

REMOVING OUTLIERS

Testing different methods

REMOVING NOISE

The importance of spatial splining

REMOVING NOISE

The PositioNZ network

REMOVING NOISE

DETECTING THE JUMPS

Simple jump

DETECTING THE JUMPS

DIFFICULTIES ENCOUNTERED

An unadapted statistical tool

Dealing with overlapping events

- Required assumptions on data for an F-Test:
- Normal distribution law

The problem of noise

Independent observations

RESULTS

THANK YOU FOR YOUR ATTENTION

GISB

BTHL

 $F=((ssrR-ssrU)\times dof U)/(3\times ssrU)$ where:

- ssrR and ssrU are the sums of the least square residuals for the restricted and the unrestricted model, respectively;
- dofU is the number of degrees of freedom for the fitting of the unrestrained model;
- the 3 comes from the difference of degrees of freedom between the unrestrained and the restrained model, as we are fitting all dimensions (east, north, and up) at once.