Dynamic Programming

KNAPSACK

"Given the weights and profits of 'N' items, we are asked to put these items in a knapsack that has a capacity 'C'. The goal is to get the maximum profit from the items in the knapsack"

0-1 KNAPSACK PROBLEM

- A variation of a bin packing problem
 - You have a set of items
 - Each item has a weight and a value
 - You have a knapsack with a weight limit
 - Goal: Maximize the <u>value</u> of the items you put in the knapsack without exceeding the weight limit.

• In the 0-1 knapsack problem, we can't *exceed* the weight limit, but the optimal solution may be *less* than the weight limit

Example

```
Items: { Apple, Orange, Banana, Melon }
Weights: { 2, 3, 1, 4 }
Profits: { 4, 5, 3, 7 }
Knapsack capacity: 5
```

Different combinations of fruits in the knapsack, such that their total weight is not more than 5:

```
Apple + Orange (total weight 5) => 9 profit
Apple + Banana (total weight 3) => 7 profit
Orange + Banana (total weight 4) => 8 profit
Banana + Melon (total weight 5) => 10 profit
```

Banana + Melon is the best combination, as it gives us the maximum profit and the total weight does not exceed the capacity

4/24

Example

Problem 2 kg 4 kg 2 kg \$2 138 3 kg \$2 15 kg 3 kg \$3 4 kg \$8 3 kg \$4

Solution

Example

- A thief breaks into a house, carrying a knapsack...
 - He can carry up to 25 pounds of loot
 - He has to choose which of N items to steal
 - Each item has some weight and some value
 - "0-1" because each item is stolen (1) or not stolen (0)
 - He has to select the items to steal in order to maximize the value of his loot, but cannot exceed 25 pounds

Problem:

- Given two integer arrays to represent weights and values of 'n' items, we need to find a subset of these items which will give us maximum profit such that their cumulative weight is not more than a given number 'C'
 - Input
 - Capacity 'C'
 - n items with weights w_i and values v_i
 - Output: a set of items S such that
 - the sum of weights of items in S is at most C
 and the sum of values of items in S is maximized

Solution

The straight forward way:

Example:

$$n = 3$$

 $(p_1, p_2, p_3) = (1, 2, 5)$
 $(w_1, w_2, w_3) = (2, 3, 4)$
 $M = 6$

X_1	X_2	<i>X</i> ₃	$\sum w_i x_i$	$\sum p_i x_i$
О	O	0	0	0
О	O	1	4	5
0	1	0	3	2
О	1	1	_	-
1	O	0	2	1
1	0	1	6	$\underline{6} \leftarrow solution$
1	1	0	5	3
1	1	1	_	-

The complexity is $O(2^n)$

The Dynamic Programming way:

- Sub-problems:
 - Knapsack with a smaller knapsack.

Recursive relationship

$$f_0(X) = 0$$

$$f_i(X) = \max |f_{i-1}(X), p_i + f_{i-1}(X - W_i)|$$

The Dynamic Programming way:

 $f_i(X)$ = max profit generated from X_1, X_2, \dots, X_i subject to the capacity X

$$\begin{cases} f_0(X)=0 \\ f_i(X)=\max\{f_{i-1}(X), p_i+f_{i-1}(X-W_i)\} \end{cases}$$

Example:

$$(p_1 \quad p_2 \quad p_3 \quad p_4 \quad p_5 \quad p_6) = (w_1 \quad w_2 \quad w_3 \quad w_4 \quad w_5 \quad w_6)$$

= $(100 \quad 50 \quad 20 \quad 10 \quad 7 \quad 3)$

$$M = 165$$

Question: to find
$$f_6(165)$$

Use backward approach:

$$f_6(165) = \max \left| f_5(165), f_5(162) + 3 \right| = \dots$$

 $f_5(165) = \max \left| f_4(165), f_4(158) + 7 \right| = \dots$

• • •

The result:

$$(x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6) = (1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1)$$

$$f_5 \qquad f_5 \qquad f_5$$

$$f_4 \qquad f_4 f_4 \qquad f_4$$

Example: M = 6

	Object 1	Object 2	Object 3	Object 4
p _i	3	4	8	5
W _i	2	1	4	3

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	3	3	3	3	3
2	Q	4	4	7	7	7	7
3	0	4	4	<u>+5</u>	8	1	1
						2	* [†] 2
4	0	4	4	7	9	1 2	12

Max profit is 12

	← M+1 →								
		0	1		j - w_i		j		M
	0	0	0	0	0	0	0	0	0
	1								
∣ n+1									
	i-1				$f_{i-1}(j-w_i)$		$f_{i-1}(j)$		
					+p _i				
	i						$f_i(j)$		
	n								

Floyd-Warshall algorithm

- Single-sourceshortest path in weighted graphs.
 - Bellman-Fordalgorithm
 - Dijkstra's algorithm!
- Floyd-Warshall algorithm
 - An "all-pairs" shortest path algorithm
 - Another example of dynamic programming

Floyd's Algorithm: All pairs shortest path

- All pairs shortest path
 - The problem: find the shortest path between every pair of vertices of a graph.
 - The graph: may contain negative edges but no negative cycles.

A representation: a weight matrix where W(i,j)=0 if i=j.
 W(i,j)=¬l if there is no edge between i and j. W(i,j)="weight of edge"

_

Example:

Step 1. Create a matrix dimension N*N and Each cell A[i][j] is filled with the distance from the ith vertex to the jth vertex.

$$A^{0} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 3 & \infty & 5 \end{bmatrix}$$

$$2 & 2 & 0 & \infty & 4 \\ \infty & 1 & 0 & \infty$$

$$4 & \infty & \infty & 2 & 0$$

Step:2: Create a matrix A¹ using matrix A⁰.

Let k be the intermediate vertex

In this step, k is vertex 1. We calculate the distance from source vertex to destination vertex through this vertex k.

A direct distance from the source to the destination is greater than the path through the vertex k, if (A[i][j] > A[i][k] + A[k][j])

Step:3: Create a matrix A² using matrix A¹

k is the second vertex (i.e. vertex 2)

In this step, k is vertex 2. We calculate the distance from source vertex to destination vertex through this vertex k.

$$A^{3} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & \infty & 0 \\ & 0 & 9 \\ & \infty & 1 & 0 & 8 \\ & 4 & & 2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 9 & 5 \\ 2 & 0 & 9 & 4 \\ 3 & 1 & 0 & 5 \\ & 4 & 5 & 3 & 2 & 0 \end{bmatrix}$$

Step:4: Create a matrix A³ using matrix A²

k is the second vertex (i.e. vertex 3) In this step, k is vertex .

Step:5: Create a matrix A⁴ using matrix A³

k is the second vertex (i.e. vertex 4)
In this step, k is vertex .

$$A^{4} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & & 5 \\ & 2 & 0 & 4 \\ & 3 & & 0 & 5 \\ & 4 & 5 & 3 & 2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 3 & 7 & 5 \\ 2 & 0 & 6 & 4 \\ & 3 & 1 & 0 & 5 \\ & 5 & 3 & 2 & 0 \end{bmatrix}$$

A4 gives the shortest path between each pair of vertices.

Floyd's Algorithm:

Floyd-Warshall algorithm is an algorithm for finding shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles

Pseudocode for this basic version follows:

```
1 let dist be a |V| \times |V| array of minimum distances
initialized to ∞ (infinity)
2 for each edge (u,v)
     dist[u][v] \leftarrow w(u,v) // the weight of the edge (u,v)
3
4 for each vertex v
     dist[v][v] \leftarrow 0
6 for k from 1 to |V|
     for i from 1 to |V|
        for j from 1 to |V|
9
            if dist[i][j] > dist[i][k] + dist[k][j]
                dist[i][j] \leftarrow dist[i][k] + dist[k][j]
10
            end if
11
```

Subproblems?

How can we define the shortest distance $d_{i,j}$ in terms of "smaller" problems?

Elements of dynamic programming

- Big problems break up into little problems.
 - eg, Shortest path with at most k edges
- The optimal solution of a problem can be expressed in terms of optimal solutions of smallersubproblems.

```
eg, d^{(k)}[b] \leftarrow \min\{d^{(k-1)}[b], \min_{a} \{d^{(k-1)}[a] + weight(a,b)\}\}
```

The sub-problems overlap a lot.

Lots of different entries of d^(k) ask for d^(k-1)[a].
 "We can save time by solving a sub-problem just once and storing the answer"

Floyd-Warshall Algorithm

```
\begin{split} n &= \text{no of vertices} \\ A &= \text{matrix of dimension n*n} \\ \text{for } k &= 1 \text{ to n} \\ \text{for } i &= 1 \text{ to n} \\ \text{for } j &= 1 \text{ to n} \\ A^k[i,j] &= \min\left(A^{k-1}[i,j],A^{k-1}[i,k] + A^{k-1}[k,j]\right) \\ \text{return A} \end{split}
```

- Time Complexity
 - There are three loops. Each loop has constant complexities. So, the time complexity of the Floyd-Warshall algorithm is O(n3).
- Space Complexity
 - The space complexity of the Floyd-Warshall algorithm is O(n2)

Floyd Warshall Algorithm Applications

- To find the shortest path is a directed graph
- To find the transitive closure of directed graphs
- To find the Inversion of real matrices
- For testing whether an undirected graph is bipartite