Elastische Streuung

Ableitung des Wirkungsquerschnitts mittels Fermi's goldener Regel

$$\frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2 (\hbar c)^2}{4E^2 \sin^4 \frac{\Theta}{2}} \cdot |F(\vec{q})|^2$$

(ohne Rückstoß, ohne Spin)

 $F(\vec{q})$ = Formfaktor = Fourier-Transformierte der Ladungsverteilung

$$F(ec{q}) = \int e^{(iec{q}ec{r})/\hbar} \cdot f(ec{r}) d^3r$$

Ladungsverteilung $f(r)$		Formfaktor $F(q^2)$	
Punkt	$\delta(r)/4\pi$	1	konstant
exponentiell	$(a^3/8\pi)\cdot \exp{(-ar)}$	$\left(1+q^2/a^2\hbar^2 ight)^{-2}$	Dipol
Gauß	$(a^2/2\pi)^{3/2} \cdot \exp\left(-a^2r^2/2\right)$	$\exp\left(-q^2/2a^2\hbar^2\right)$	Gauß
homogene Kugel	$\left\{ \begin{array}{ll} 3/4\pi R^3 \text{ für } r \leq R \\ 0 & \text{für } r > R \end{array} \right.$	$3 \alpha^{-3} (\sin \alpha - \alpha \cos \alpha)$ mit $\alpha = \mathbf{q} R/\hbar$	oszillierend

Elastische Streuung

Bisher:

Rutherfordstreuung, ausgedehnte Ladungsverteilung ⇔ kein Spin (und kein Rückstoß)

$$\frac{\mathbf{d\sigma}}{\mathbf{d\Omega}} = \frac{\mathbf{Z}^2 \mathbf{\alpha}^2 (\hbar \mathbf{c})^2}{4\mathbf{E}^2 \sin^4 \frac{\mathbf{\theta}}{2}} \cdot |\mathbf{F}(\mathbf{\vec{q}})|^2$$

Nächste Schritte:

- Berücksichtigung des Elektronenspins
- Berücksichtigen des Target-Spins bzw. magnetischem Moments

Elektronen: Spin ½ -Teilchen

→ Mott-Wirkungsquerschnitt:

$$\frac{\left. \frac{\mathbf{d} \sigma}{\mathbf{d} \Omega} \right|_{Mott}^{*} = \frac{\mathbf{d} \sigma}{\mathbf{d} \Omega} \Big|_{Rutherford} \cdot \left(1 - \beta^{2} \sin^{2} \frac{\theta}{2} \right) \qquad \text{R\"{u}ckstoß auf das Target vernachlässigt (*)}$$

Rückstoß auf das Targetberücksichtigt:

$$\frac{\left. \frac{\mathbf{d} \sigma}{\mathbf{d} \Omega} \right|_{Mott} = \frac{\left. \frac{\mathbf{d} \sigma}{\mathbf{d} \Omega} \right|_{Mott}^{*} \cdot \frac{\mathbf{E'}}{\mathbf{E}} = \frac{\left. \frac{\mathbf{d} \sigma}{\mathbf{d} \Omega} \right|_{Ruther ford} \cdot \frac{\mathbf{E'}}{\mathbf{E}} \cdot \left(1 - \beta^{2} \sin^{2} \frac{\theta}{2} \right)$$

Änderung der Phasenraumdichte bedingt Faktor E'/E

Veranschaulichung → ...

187

Berücksichtigung des Elektronenspins

Elektronen: Spin ½ -Teilchen

- Spinprojektion: $s_z=\pm 1/2$

Helizität h:

Projektion des Spins auf die Bewegungungsrichtung

$$\mathbf{h} = \frac{\vec{\mathbf{s}} \cdot \vec{\mathbf{p}}}{\left| \vec{\mathbf{s}} \right\| \vec{\mathbf{p}} \right|}$$

Helizitätserhaltung:

Im Grenzfall relativistischer Geschwindigkeiten (v≈c) ist die Helizität erhalten (Streuprozesse)

⇒ Streuung an einem Spin 0 Target:

Unterdrückungsterm:

$$\left(1 - \beta^2 \sin^2 \frac{\theta}{2}\right) \xrightarrow{\beta \to 1} \cos^2 \frac{\theta}{2}$$

Rutherfordstreuung

vernachlässigt: Spin des Elektrons, Energieübertrag auf Rückstoßkern

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} = \frac{Z^2 \alpha^2 (\hbar c)^2}{4E^2 \sin^4 \left(\frac{\theta}{2}\right)}$$

Berücksichtigung des Elektronenspins:

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Mott}^{*} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \cdot \cos^{2}\left(\frac{\theta}{2}\right) \qquad (\beta \to 1)$$

(* Rückstoßenergie vernachlässigt)

Berücksichtigung der Rückstoßenergie:

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott}^{*} \cdot \frac{E'}{E} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott}^{*} \cdot \frac{1}{1 + \frac{2E}{M_{A}c^{2}}\sin^{2}\left(\frac{\theta}{2}\right)}$$

Zusammenfassung: Elektronenstreuung an Kernen

Berücksichtigung der endlichen Ausdehnung des Streuzentrums:

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Mort} \cdot \left|F\left(q^2\right)\right|^2$$

Endformel:

differentieller Wirkungsquerschnitt für die Streuung von Elektronen an einem Atomkern mit Kernladungszahl Z (magn. Moment vernachlässigt)

$$\left(\frac{d\sigma}{d\Omega}\right) = \frac{Z^2 \alpha^2 (\hbar c)^2 \cos^2 \left(\frac{\theta}{2}\right)}{4E^2 \sin^4 \left(\frac{\theta}{2}\right) \left[1 + \frac{2E}{M_A c^2} \sin^2 \left(\frac{\theta}{2}\right)\right]} \cdot \left|F(q^2)\right|^2 \qquad (\beta \to 1)$$

189

Wechselwirkung des Elektrons mit magnetischem Moment des Nukleons Strom der e⁻ erzeugt B-Feld

• punktförmiges Spin 1/2 – Teilchen (Dirac-Teilchen) hat magnetisches Moment

$$\vec{\mu} = g \frac{e}{2\,M} \cdot \vec{s} \qquad \begin{tabular}{ll} \it{M: Masse des Nukleons} \\ \it{(Folgt aus Dirac-Gleichung)} \\ \it{\mu} = g \frac{e}{2\,M} \cdot \frac{\hbar}{2} & \begin{tabular}{ll} \it{mit g=2 (geladenes Diracteilchen),} \\ \it{\mu} = 0 & \begin{tabular}{ll} \it{meutrales Diracteilchen)} \\ \it{met g=2 (geladenes Diracteilchen)} \\ \it{\mu} = 0 & \begin{tabular}{ll} \it{meutrales Diracteilchen)} \\ \it{\mu} = 0 & \begin{tabular}{ll} \it{meutrales Diracteilchen)} \\ \it{met g=2 (geladenes Diracteilchen)} \\ \it{\mu} = 0 & \begin{tabular}{ll} \it{meutrales Diracteilchen)} \\ \it{met g=2 (geladenes Diracteilchen)} \\ \it{met g=2 (gel$$

erfüllt für Elektronen und Myonen bis auf QED-Korrektor

- magnetische Wechselwirkung: flippen des Protonspins
 - \Leftrightarrow 0°-Streuung: Verletzung der Drehimpulserhaltung => Unterdrückung der magnetischen Wechselwirkung unter 0°

Unterdrückungsterm für Vorwärtsstreuung: $\sin^2 \frac{\theta}{2} = \cos^2 \frac{\theta}{2} \tan^2 \frac{\theta}{2}$ $\beta \rightarrow 1$

191

Magnetisches Moment des Nukleons

Wirkungsquerschnitt für die Streuung von 2 punktförmigen Dirac-Teilchen mit Spin ½:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\substack{\text{Pkt.}\\\text{Spin }1/2}}^{\text{Pkt.}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \cdot \left(1 + 2\tau \tan^2\left(\frac{\theta}{2}\right)\right) \quad \text{mit} \quad \tau = \frac{Q^2}{4M^2c^2}$$

$$\begin{array}{l} \textbf{Begründung: WW} \sim \mu B \\ \\ M_{if} \sim \mu \sim \frac{l}{M} \\ \\ M_{if} \sim B \sim \textbf{Ablenkung des e}^{-} \sim \textbf{Impulsübertrag Q} \end{array} \right\} \begin{array}{l} M_{if} \sim \frac{Q}{M} \\ \\ \sigma \sim M_{if}^{2} \sim \frac{Q^{2}}{M^{2}} \end{array}$$

durch magnetische WW fällt σ nicht so stark ab wie bei elektrischer WW alleine

Exp.:
$$\mu_{\mathbf{p}} = \frac{\mathbf{g}_{\mathbf{p}}}{2} \mu_{\mathbf{N}} = +2,79 \ \mu_{\mathbf{N}}$$

$$\mu_{\mathbf{n}} = \frac{\mathbf{g}_{\mathbf{n}}}{2} \mu_{\mathbf{N}} = -1,91 \ \mu_{\mathbf{N}}$$

$$\mu_{\mathbf{N}} = \frac{e\hbar}{2\mathbf{M}_{\mathbf{P}}} = 3,15 \cdot 10^{-14} \, \text{MeV T}^{-1}$$
Kernmagneton

=> Nukleon <u>nicht punktförmig</u> $\Leftrightarrow \mu_n \neq \mu_N, \ \mu_n \neq 0 \cdot \mu_N$

192

<u>endliche Ausdehnung</u> des Nukleons wie bei Kernen beschrieben durch Formfaktoren:

 $G_E(Q^2)$, $G_M(Q^2)$: elektrischer und magnetischer Formfaktor

=> Räumliche Verteilung von Ladung und magnetischem Moment

Grenzwerte von G für verschwindende Q²

$$G_{E}^{p}(Q^{2} = 0) = 1$$
 $G_{E}^{n}(Q^{2} = 0) = 0$
 $G_{M}^{p}(Q^{2} = 0) = 2,79$ $G_{M}^{n}(Q^{2} = 0) = -1,91$

Rosenbluth-Formel: Streuung eines e- am (ausgedehntem) Nukleon

$$\left(\frac{\mathbf{d}\boldsymbol{\sigma}}{\mathbf{d}\boldsymbol{\Omega}}\right) = \left(\frac{\mathbf{d}\boldsymbol{\sigma}}{\mathbf{d}\boldsymbol{\Omega}}\right)_{\mathbf{Mott}} \cdot \left\{\frac{\mathbf{G}_{\mathbf{E}}^{2}(\mathbf{Q}^{2}) + \tau\mathbf{G}_{\mathbf{M}}^{2}(\mathbf{Q}^{2})}{1 + \tau} + 2\tau\mathbf{G}_{\mathbf{M}}^{2}(\mathbf{Q}^{2}) \tan^{2}(\theta/2)\right\} \quad \tau = \frac{\mathbf{Q}^{2}}{4\mathbf{M}^{2}\mathbf{c}^{2}}$$

zur Bestimmung von $G_E(Q^2)$ und $G_M(Q^2)$: σ messen bei festem Q^2 für verschiedene Streuwinkel und Einschußenergien: Rosenbluth-Separation

193

Rosenbluth Separation

Rosenbluth-Separation:

Für verschiedene feste Q² Wirkungsquerschnitt für verschiedene Streuwinkel messen

195

data from \sim 1960, 1970's (SLAC, Stanford)

Rosenbluth Separation

$$\frac{\mathbf{d\sigma}}{\mathbf{d\Omega}} / \frac{\mathbf{d\sigma}}{\mathbf{d\Omega}}_{Mott} = \frac{\mathbf{G}_{E}^{2}(\mathbf{Q}^{2}) + \mathbf{\tau}\mathbf{G}_{M}^{2}(\mathbf{Q}^{2})}{1 + \mathbf{\tau}} + 2\mathbf{\tau}\mathbf{G}_{M}^{2}(\mathbf{Q}^{2}) \tan^{2}\frac{\mathbf{\theta}}{2}$$

Elektrischer FF G_E Magnetischer FF G_M

Q²-Abhängigkeit der FF:

Messungen zeigen, dass Q²-Abhängigkeit aller vier FF in etwa identisch ist:

$$\mathbf{G}_{\mathbf{E}}^{\mathbf{p}}(\mathbf{Q}^{2}) = 1 \cdot \mathbf{G}^{\mathbf{Dipol}}(\mathbf{Q}^{2})$$

 $\mathbf{G}_{\mathbf{E}}^{\mathbf{n}}(\mathbf{Q}^{2}) = 0 \cdot \mathbf{G}^{\mathbf{Dipol}}(\mathbf{Q}^{2})$

$$\mathbf{G}_{\mathbf{M}}^{\mathbf{p}}(\mathbf{Q}^{2}) = 2.79 \cdot \mathbf{G}^{\mathbf{Dipol}}(\mathbf{Q}^{2})$$
$$\mathbf{G}_{\mathbf{M}}^{\mathbf{n}}(\mathbf{Q}^{2}) = -1.91 \cdot \mathbf{G}^{\mathbf{Dipol}}(\mathbf{Q}^{2})$$

197

198

Dipol-Fit:

$$\mathbf{G}^{\text{Dipol}}(\mathbf{Q}^2) = \left(1 + \frac{\mathbf{Q}^2}{0.71(GeV/c)^2}\right)^{-2}$$

Formfaktoren der Nukleonen

Dipolformfaktor

Protonen haben eine exponentiell abfallende Ladungsverteilung!

$$\rho(\mathbf{r}) = \rho(0) e^{-a\mathbf{r}}$$
 $a = 4.27 \,\text{fm}^{-1}$

Nukleonen sind weder punktförmig noch homogen geladene Kugeln sondern diffuse Objekte

mittlerer quadratischer Radius $\rightarrow \sqrt{\langle r^2 \rangle_{Dipol}} = 0.81 \, \text{fm}$ aus Dipolfit, direkt aus Daten: 0.862 fm

Aktuell: Diskrepanz in verschiedenen Bestimmungsmethoden, noch unverstanden

... man dachte, man kennt den Wert aus neueren Experimenten auf \sim 1%: R_E =0.879 (3) fm

und dann das Proton Radius Puzzle

199

Proton Radius

Figure 2: Compilation of data on the proton radius puzzle, sorted by time. Electron-proton scattering and spectroscopy (red/green), muon-proton spectroscopy (orange) and summary data (purple) is shown with the value of this proposed measurement (blue) arbitrarily placed at 0.86 fm, with the projected uncertainties. There are several reanalyses of different subsets of the electron scattering data. We refer to [18] for an overview and to [19] for a critical discussion. Error bars represent statistical and systematic uncertainties added in quadrature.

- neue Messungen:

Unterschiedliche Messungen mit unterschiedlichen Systematiken:

- Spektrometer-basiert (muss bewegt werden)
- Kalorimeter basierte Methode $(2.1 \cdot 10^{-4} < Q^2 < 6 \cdot 10^{-2})$

in Vorbereitung:

AMBER/COMPASS @ CERN: μp -Streuung \leftrightarrow high energy, small Q² $(10^{-3} < Q^2 < 4 \cdot 10^{-2} \text{ (TPC)})$

201

Elektrischer FF und Ladungsverteilung des Neutrons

aus Messung der Reaktion $d(\vec{e}, e'\vec{n})p$

Neutron hat einen positiven "Kern" $n = p + \pi^{-}$

Elektronenstreuung an Kernen

bisher: elastische Streuung

 \Rightarrow Ladungsverteilung ho(r) der Kerne

z.B. Proton: Dipol-Formfaktor \rightarrow exponentielle Ladungsverteilung

..... inelastische/tief-inelastische Streuung später in der Vorlesung (Quarks im Proton)

Inelastisch (aus Povh, Rith, Scholz, Zetsche):

203

Kernmodelle

bisher: Tröpfchenmodell => Semi-empirische Massenformel
- gute Beschreibung der Massen der stabilen Kerne

aber: viele Kern-Eigenschaften nicht erklärt, z.B.:

- Spin und Paritäten (Grundzustand, angeregte Zustände)
- Magische Zahlen
- Magnetische Momente
- Werte der Koeffizienten in der semi-empirischen Massenformel (mit Ausnahme von Coulomb)

- a) Fermi-Gasmodell
- b) Schalenmodell

Basis:

- Überlagerung der WW aller Nukleonen kann als mittleres Kernpotential zusammengefaßt werden
 - Restwechselwirkung zwischen Paaren von Nukleonen vernachlässigt
- Protonen und Neutronen als unabhängige Systeme von Spin ½ Teilchen (Pauli – Prinzip)
- · Nukleonen bewegen sich im Potential ohne zu wechselwirken

Erklärt z.B.:

- Impulsverteilung gebundener Nukleonen im Kern
- Wichtige Charakteristika der Massenformel

205

Fermi-Gas-Modell

Annahme: Nukleonen im Potentialtopf

• Anzahl der möglichen Zustände in einem Volumen V und in einen Impulsintervall [p+dp]:

$$dn = rac{4\pi p^2 dp}{(2\pi\hbar)^3} \cdot V$$

- Im Grundzustand:
 - die am niedrigsten gelegenen Zustände sind gefüllt bis zu einem maximalen Impuls p_F = Fermi-Impuls

$$n=\int_0^{p_F}dn=rac{Vp_F^3}{6\pi^2\hbar^3}$$

jeder Zustand ist von 2 identischen Fermionen mit Spin: ↑ ↓ besetzt
 ⇒ 2n:

$$N = rac{V(p_F^n)^3}{3\pi^2\hbar^3}, ~~ Z = rac{V(p_F^p)^3}{3\pi^2\hbar^3}$$

Volumen der Kerne: $V = 4/3\pi R^3 = 4/3\pi R_0^3 \cdot A$ $(R_0 = 1, 21fm)$

$$N = rac{V(p_F^n)^3}{3\pi^2\hbar^3}, ~~ Z = rac{V(p_F^p)^3}{3\pi^2\hbar^3}$$

Volumen der Kerne: $V = 4/3\pi R^3 = 4/3\pi R_0^3 \cdot A$ $(R_0 = 1, 21fm)$

für Kerne mit Z=N=A/2

$$p_F=p_F^n=p_F^p=rac{\hbar}{R_0}\left(rac{9\pi}{8}
ight)^{1/3}pprox 250 MeV/c$$

Nukleon kann sich im Kern frei bewegen mit relativ großem Impuls

= abgesehen von leichten Kernen in guter Übereinstimmung mit den Ergebnissen der quasi-elastischen e^- -Streuung am Kern

$$^6Li:\ p_F^{exp}=169 MeV/c;\ \ ^{40}Ca=249 MeV/c$$

Fermi-Gas: keine gute Näherung

Energie des höchsten besetzten Zustands: Fermi-Energie E_F

$$E_F = rac{p_F^2}{2M} = 33 MeV$$
 (kinetische Energie, M:Nukleonenmasse)

 $\Rightarrow p_F, E_F$ hängen für nicht zu leichte Kerne im wesentlichen nicht von A ab

207

Fermi-Gas-Modell

Unterschied zwischen E_F (Fermi-Kante) und der Kante des Potentialwalls pprox const pprox mittlere Bindungsenergie pro Nukleon B'=B/A=7-8MeV

- \leftrightarrow Potentialwall $V_0=E_F+B'pprox {
 m const}pprox 40 MeV$
- ⇒ kinetische Energie in der gleichen Größenordung wie Potentialwall
- ⇒ Kerne sind relativ schwach gebundene Systeme

