## UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autores:

Fernanda Villafán Flores Fernando Alvarado Palacios Adrián Aguilera Moreno



Gráficas y Juegos

QED

## Reposioción

1. [Ejercicio 3 de la Tarea 02] Sea G una gráfica conexa. Demuestre que si G no es completa, entonces contiente a  $P_3$  como subgráfica inducida.

**Demostración:** Para este ejercicio necesitamos que  $|V_G| \ge 3$ , para las gráficas que no cumplan esto se tendrá la demostración por vacuidad. Nótese que el hecho de que G no sea completa implica que para al menos  $x, y \in V_G$  se tiene que  $xy \notin E_G$ .

Previo a la demostración, provemos que en una gráfica conexa siempre podemos construir una trayectoria con exactamente 3 vértices:

Sea  $x \in V_G$ , por definición de conexidad y como  $|V_G| \ge 3$ , tenemos ha  $x, y \in V_G$  tales que  $xy \in E_G$ , luego x es vecino a algún vértice distinto a y (o y es vecino de algún vértice distinto de x), pues en caso contrario xy sería una componente conexa contenida en G y  $xy \ne G!!$  lo que contradice la hipótesis de que G es conexa. Supongamos, sin pérdida de generalidad, que z es vecino de x y  $z \ne y$ , luego zxy es una trayectoria de orden exactamente 3.

Para este ejercicio basta analizar 2 posibles casos<sup>1</sup>:

Caso 1: Si G + e es completa, donde e = xy-arista para  $x, y \in V_G$ . Por **Prop. 1.64** y por hipótesis sabemos que existe un xy-camino en G, luego por **Prop. 1.62** sabemos que hay, en particular, una xy-trayectoria en G, luego hay alguna xy-trayectoria de orden 3 (esto lo sabemos gracias al resultado mostrado previamente) y supongamos, sin pérdida de generalidad, que ésta es T = (x, z, y), para  $z \in V_G$ , notemos que T tiene tamaño igual a 2, pues existen las aristas zx, zy pero no xy (por como definimos este caso), luego T es  $P_3$  y concluimos que  $P_3$  es subgráfica inducida de G.

Caso 2: Si G es un árbol, esto nos indica que G es 1—conexa, y es por eso que se considera este caso como el mínimo para el que se cumplirá la condición a demostrar. Sabemos por el teorema de caracterización de árboles que cada arista en G será un puente, y por el resultado previamente mostrado sabemos que existe una trayectoria T en G de orden exactamente 3, así T es claramente  $P_3$  y concluimos  $P_3$  es subgáfica inducida de G.

De los casos anteriores concluimos que el enunciado es verdadero.

2. [Ejercicio 1 extra de la Tarea 02] Sea G una gráfica. Demuestre que G es k-partita completa si y sólo si no contiene a  $K_{k+1}$  ni a  $\overline{P_3}$  como subgráficas inducidas.

3.

4.

5.

6.

7.

\_

9.

10.

<sup>&</sup>lt;sup>1</sup>Se analizan los casos "extremos", pues los casos intermedios son combinaciones de estos.