HOMEWORK 1

ALGEBRAIC GEOMETRY 2021

(1) A homogeneous polynomial in variables X_1, \ldots, X_n is one whose every (non-zero) term has the same total degree. For example, $X_1^2 + X_2X_3$ is homogeneous (of degree 2), whereas $X_1 + X_2X_3$ is not homogeneous. Every polynomial p can be written uniquely as $p = p_0 + p_1 + \cdots + p_d$, where p_i is homogeneous of degree i. The p_i 's are called the homogeneous components of p.

Let k be a field and let $I \subset k[X_1, \dots, X_n]$ be an ideal. Prove that the following are equivalent:

- (a) I is generated by homogeneous polynomials.
- (b) For every p in I, all the homogeneous components of p are also in I.

Definition: An ideal satisfying the above conditions is called a homogeneous ideal.

- (2) Let k be an infinite field. Let $X \subset \mathbb{A}^n_k$ be a Zariski closed subset. Prove that the following are equivalent:
 - (a) I(X) is a homogeneous ideal.
 - (b) For every x in X and λ in k, the scalar multiple $\lambda \cdot x$ is also in X.
- (3) Let k be an algebraically closed field and let $X \subset \mathbb{A}^2_k$ be the subset defined by the (infinite) system of equations

$$x + y = 0$$
$$x^{2} + y^{2} = 0$$
$$x^{3} + y^{3} = 0$$

Find out a finite system of polynomial equations that defines X, or prove that such a system does not exist.

Caution: The answer may depend on the characteristic of k.

(4) Let P_n denote the set of monic polynomials in one variable T with coefficients in \mathbb{C} . Identify the set P_n with the affine space $\mathbb{A}^n_{\mathbb{C}}$ by the rule

$$T^{n} + a_{n-1}T^{n-1} + \dots + a_{1}T + a_{0} \leftrightarrow (a_{0}, \dots, a_{n-1}).$$

1

Prove that the set of polynomials with n distinct roots is a Zariski open subset of $\mathbb{A}^n_{\mathbb{C}}$. Describe the equations that define its complement when n=2.

Hint: Remember 'the discriminant' from Algebra 2.

- (5) Describe all maximal ideals of the following rings
 - (a) $\mathbb{C}[x,y,z]/(xy,yz,xz)$
 - (b) $\mathbb{R}[x,y]$