LATTICE-BASED MODELS

- Denning's axioms and lattices
- Bell-LaPadula model (BLP)
- BIBA
- Integrity and information flow

INFORMATION FLOW

$$<$$
 SC, \rightarrow , \oplus $>$

SC

 \rightarrow \subseteq SC X SC

⊕: **SC X SC** -> **SC**

set of security classes

flow relation (i.e., can-flow)

class-combining operator

LATTICE STRUCTURES

LATTICE STRUCTURES

Hierarchical Classes with Compartments

product of 2 lattices is a lattice

LATTICE STRUCTURES

Hierarchical Classes with Compartments

BELL LAPADULA (BLP) MODEL

SIMPLE-SECURITY RULE (no read up)

Subject S can read object O only if

- label(S) dominates label(O) i.e. λ(S) ≥ λ(O)
- information can flow from label(O) to label(S)

STAR-PROPERTY

Subject S can write object O only if (no write down)

- label(O) dominates label(S) i.e. λ(S) ≤ λ(O)
- information can flow from label(S) to label(O)

BELL LAPADULA (BLP) MODEL

STAR-PROPERTY

Subject S can write object O only if (no write down)

- label(O) dominates label(S) i.e. λ(S) ≤ λ(O)
- information can flow from label(S) to label(O)
- The *-property allows secret data be destroyed or damaged by unclassified subjects. To prevent this the *-property is sometimes used in the form

S is allowed to write O only if $\lambda(S) = \lambda(O)$

BLP MODEL

BIBA MODEL

SIMPLE-INTEGRITY RULE

Subject S can read object O only if

- label(O) dominates label(S) i.e. ω(S) ≤ ω(O)
- information can flow from label(O) to label(S)

STAR-PROPERTY

Subject S can write object O only if

- label(S) dominates label(O) i.e. ω(S) ≥ ω(O)
- information can flow from label(S) to label(O)

BIBA MODEL

EQUIVALENCE OF BLP AND BIBA

EQUIVALENCE OF BLP AND BIBA

Case 1

Case 2

Case 2

COMBINATION BLP&BIBA

Case 3

Biba

COMBINATION OF DISTINCT LATTICES

Case 3

BLP

Biba

L \leq A1 A1 \leq H L \leq A2 A2 \leq H A1, A2 incomparable

BLP AND BIBA

- BLP and Biba are fundamentally equivalent and interchangeable
- Lattice-based access control is a mechanism for enforcing one-way information flow, which can be applied to confidentiality or integrity goals
- We will use the BLP formulation with high confidentiality at the top of the lattice, and high integrity at the bottom