----BIG DATA ANALYTICS ASSIGNMENT-----

Kriti Rastogi- AIML B1- 20119051623

Q. Write a program to implement stock market prediction using python. Also explore the steps used in this application.

IMPORTING MODULES AND READING THE DATASET

```
import numpy as np
import pandas as pd
df=pd.read_csv('ADANIPORTS.csv',na_values=['null'],index_col='Date',pa
rse dates=True,infer datetime format=True)
df.head()
C:\Users\Kriti Rastogi\AppData\Local\Temp\
ipykernel 28044\1324389878.py:4: FutureWarning: The argument
'infer_datetime_format' is deprecated and will be removed in a future
version. A strict version of it is now the default, see
https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-
parsing.html. You can safely remove this argument.
df=pd.read csv('ADANIPORTS.csv',na values=['null'],index col='Date',pa
rse dates=True,infer datetime format=True)
                Symbol Series Prev Close
                                             0pen
                                                      High
                                                              Low
Last \
Date
2007-11-27 MUNDRAPORT
                           E0
                                   440.00 770.00
                                                  1050.00 770.0
959.0
2007-11-28 MUNDRAPORT
                           E0
                                   962.90
                                           984.00
                                                    990.00 874.0
885.0
2007-11-29 MUNDRAPORT
                           EQ
                                   893.90
                                           909.00
                                                    914.75 841.0
887.0
2007-11-30 MUNDRAPORT
                           E0
                                   884.20
                                           890.00
                                                    958.00
                                                            890.0
929.0
                           E0
2007-12-03 MUNDRAPORT
                                   921.55
                                           939.75
                                                    995.00 922.0
980.0
             Close
                              Volume
                                                    Trades
                      VWAP
                                          Turnover
Date
2007 - 11 - 27
           962.90 984.72
                            27294366 2.687719e+15
                                                       NaN
2007-11-28
           893.90 941.38
                             4581338
                                     4.312765e+14
                                                       NaN
2007-11-29
           884.20
                   888.09
                             5124121 4.550658e+14
                                                       NaN
2007 - 11 - 30
            921.55
                    929.17
                             4609762 4.283257e+14
                                                       NaN
2007 - 12 - 03
           969.30 965.65
                             2977470 2.875200e+14
                                                       NaN
            Deliverable Volume %Deliverble
Date
```

|--|

DRAWING THE PLOT

```
df['VWAP'].plot()
<Axes: xlabel='Date'>
```


CREATING A DATAFRAME

```
output_var=pd.DataFrame(df['VWAP'])
features=['Open','High','Low','Volume']
```

NORMALISING THE DATASET'S FEATURE VALUES INTO A SPECIFIC RANGE

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
feature_transform=scaler.fit_transform(df[features])
```

```
feature transform=pd.DataFrame(columns=features,data=feature transform
,index=df.index)
feature transform.head()
                                          Volume
               0pen
                         High
                                   Low
Date
2007-11-27
           0.550634 0.774216 0.570576 0.279227
2007-11-28 0.728634 0.724774 0.659896 0.046763
2007-11-29 0.666251 0.662766 0.631554 0.052318
2007-11-30 0.650447 0.698406 0.673638 0.047054
2007-12-03 0.691828 0.728895 0.701121 0.030347
feature transform.shape
(3322, 4)
```

PERFORMING TIME SERIES CROSS VALIDATION

```
from sklearn.model_selection import TimeSeriesSplit
timesplit=TimeSeriesSplit(n_splits=10)
for train_index,test_index in timesplit.split(feature_transform):

X_train,X_test=feature_transform[:len(train_index)],feature_transform[
len(train_index):(len(train_index)+len(test_index))]

y_train,y_test=output_var[:len(train_index)].values.ravel(),output_var
[len(train_index):(len(train_index)+len(test_index))].values.ravel()

print(X_train.shape)
print(X_test.shape)

(3020, 4)
(3020, 4)
```

PREPARING DATA FOR SEQUENCE BASED DL MODELS (LSTM HERE)

```
trainX=np.array(X_train)
testX=np.array(X_test)
X_train=trainX.reshape(X_train.shape[0],1,X_train.shape[1])
X_test=testX.reshape(X_test.shape[0],1,X_test.shape[1])
print(X_train.shape)
print(X_test.shape)

(3020, 1, 4)
(302, 1, 4)
```

IMPLEMENTING AN LSTM REGRESSION MODEL

```
import tensorflow as tf
```

```
lstm=tf.keras.Sequential()
lstm.add(tf.keras.layers.LSTM(32,input shape=(1,trainX.shape[1]),activ
ation='relu', return_sequences=False))
lstm.add(tf.keras.layers.Dense(1))
lstm.compile(loss='mean squared error',optimizer='adam')
tf.keras.utils.plot model(lstm,show shapes=True,show layer names=True)
You must install graphviz (see instructions at
https://graphviz.gitlab.io/download/) for `plot model` to work.
C:\Users\Kriti Rastogi\AppData\Roaming\Python\Python312\site-packages\
keras\src\layers\rnn\rnn.py:199: UserWarning: Do not pass an
`input_shape`/`input_dim` argument to a layer. When using Sequential
models, prefer using an `Input(shape)` object as the first layer in
the model instead.
  super(). init (**kwargs)
history=lstm.fit(X train,y train,epochs=100,batch size=8,verbose=1,shu
ffle=False)
Epoch 1/100
378/378 -
                           - 4s 3ms/step - loss: 151030.6875
Epoch 2/100
                           - 1s 3ms/step - loss: 145412.7031
378/378 —
Epoch 3/100
                            - 1s 4ms/step - loss: 135326.4375
378/378 -
Epoch 4/100
                            - 1s 3ms/step - loss: 121324.6406
378/378 -
Epoch 5/100
378/378 -
                            - 1s 3ms/step - loss: 105430.6016
Epoch 6/100
378/378 -
                            - 1s 3ms/step - loss: 89206.4297
Epoch 7/100
                            - 1s 2ms/step - loss: 73719.7109
378/378 -
Epoch 8/100
                            - 1s 3ms/step - loss: 59689.9180
378/378 -
Epoch 9/100
                            - 1s 3ms/step - loss: 47561.0703
378/378 -
Epoch 10/100
378/378 -
                            - 1s 2ms/step - loss: 37539.5898
Epoch 11/100
378/378 —
                            - 1s 3ms/step - loss: 29623.6719
Epoch 12/100
378/378 -
                            - 1s 4ms/step - loss: 23638.1699
Epoch 13/100
378/378
                            - 1s 4ms/step - loss: 19279.6934
Epoch 14/100
                            - 1s 4ms/step - loss: 16172.3506
378/378 -
Epoch 15/100
                            - 1s 4ms/step - loss: 13928.4648
378/378 -
```

Epoch 16/100 378/378 ————————————————————————————————————	1ς	4ms/sten	_	1055	12204 7988
Epoch 17/100					
378/378 ————————————————————————————————————		-			
378/378 ————————————————————————————————————	2s	4ms/step	-	loss:	9368.3818
378/378 ————————————————————————————————————	2s	4ms/step	-	loss:	8012.3247
378/378	2s	4ms/step	-	loss:	6669.9429
	1s	3ms/step	-	loss:	5384.9736
Epoch 22/100 378/378 ————————————————————————————————————	1s	3ms/step	-	loss:	4213.4468
Epoch 23/100 378/378 ————————————————————————————————————		-			
Epoch 24/100 378/378 —————		_			
Fnoch 25/100		_			
378/378 ————————————————————————————————————					
378/378 ————————————————————————————————————	1s	3ms/step	-	loss:	1255.8876
378/378 ————	1s	3ms/step	-	loss:	925.0824
Epoch 28/100 378/378 ————————————————————————————————————	1s	3ms/step	-	loss:	699.2754
Epoch 29/100 378/378 ————————————————————————————————————	1s	3ms/step	-	loss:	544.7745
Epoch 30/100 378/378 ————————————————————————————————————		3ms/step			
Epoch 31/100 378/378 —————		·			
Epoch 32/100		3ms/step			
378/378 ————————————————————————————————————	1s	3ms/step	-	loss:	295.4507
	1s	3ms/step	-	loss:	247.9344
378/378 ————	1s	3ms/step	-	loss:	210.3154
	1s	3ms/step	-	loss:	180.4693
Epoch 36/100 378/378 ————————————————————————————————————	1s	3ms/step	_	loss:	156.8597
Epoch 37/100		3ms/step			
Epoch 38/100		·			
378/378 ————————————————————————————————————		3ms/step			
378/378 ————————————————————————————————————	1s	3ms/step	-	loss:	112.2974

	1s	3ms/step	-	loss:	103.4742
Epoch 41/100 378/378	1s	3ms/step	-	loss:	96.7057
Epoch 42/100 378/378 ————————————————————————————————————	1s	4ms/step	-	loss:	91.5917
Epoch 43/100		3ms/step			
Epoch 44/100		4ms/step			
Epoch 45/100 378/378		3ms/step			
Epoch 46/100		•			
378/378 ————————————————————————————————————		-			
378/378 ————————————————————————————————————	1s	3ms/step	-	loss:	80.9480
	1s	3ms/step	-	loss:	80.3831
378/378 ————	1s	3ms/step	-	loss:	80.0221
	1s	3ms/step	-	loss:	79.7846
	1s	3ms/step	-	loss:	79.6124
Epoch 52/100 378/378 ————————————————————————————————————	1s	3ms/step	_	loss:	79.4639
Epoch 53/100 378/378 ————————————————————————————————————		3ms/step			
Epoch 54/100 378/378		-			
Fnoch 55/100		4ms/step			
378/378 ————————————————————————————————————	1s	3ms/step	-	loss:	78.9161
378/378 ————————————————————————————————————	1s	4ms/step	-	loss:	78.6561
378/378 ————————————————————————————————————	1s	3ms/step	-	loss:	78.3467
378/378 ————	1s	3ms/step	-	loss:	77.9856
	1s	3ms/step	-	loss:	77.5712
Epoch 60/100 378/378 ————————————————————————————————————	1s	3ms/step	-	loss:	77.1028
Epoch 61/100 378/378 ————————————————————————————————————	1s	3ms/step	_	loss:	76.5797
Epoch 62/100		3ms/step			
Epoch 63/100		-			
Epoch 64/100		3ms/step			
378/378 ————	1s	4ms/step	-	loss:	74.6776

Epoch 65/100					
378/378 ————	1s	3ms/step	-	loss:	73.9305
Epoch 66/100					
	1s	3ms/step	-	loss:	73.1258
Epoch 67/100					
	1s	3ms/step	-	loss:	72.2628
Epoch 68/100					
	1s	3ms/step	-	loss:	71.3407
Epoch 69/100					
	1s	3ms/step	-	loss:	70.3597
Epoch 70/100					
	1s	3ms/step	-	loss:	69.3196
Epoch 71/100					
378/378 ————	1s	3ms/step	-	loss:	68.2212
Epoch 72/100					
378/378	1s	3ms/step	-	loss:	67.0653
Epoch 73/100					
378/378 ————	1s	3ms/step	-	loss:	65.8535
Epoch 74/100					
378/378	1s	4ms/step	-	loss:	64.5882
Epoch 75/100					
378/378 ————	1s	3ms/step	-	loss:	63.2725
Epoch 76/100					
378/378 ————	1s	3ms/step	-	loss:	61.9099
Epoch 77/100					
378/378 ————	1s	3ms/step	-	loss:	60.5047
Epoch 78/100					
378/378 ————	3s	3ms/step	-	loss:	59.0621
Epoch 79/100				_	
378/378 —	1s	3ms/step	-	loss:	57.5875
Epoch 80/100	_	_		_	
	1s	3ms/step	-	loss:	56.0871
Epoch 81/100				_	
378/378	1s	3ms/step	-	loss:	54.5673
Epoch 82/100				_	
	1s	3ms/step	-	loss:	53.0353
Epoch 83/100	_	.		_	
	1s	3ms/step	-	loss:	51.49/8
Epoch 84/100	_	.			40.0004
	1s	3ms/step	-	loss:	49.9624
Epoch 85/100	_			_	
	1s	4ms/step	-	loss:	48.4360
Epoch 86/100	_	_		_	
	1s	3ms/step	-	loss:	46.9257
Epoch 87/100	_			_	
	1s	3ms/step	-	loss:	45.4385
Epoch 88/100	_			_	
	ls	4ms/step	-	loss:	43.9810
Epoch 89/100					

```
378/378 —
                           - 1s 3ms/step - loss: 42.5591
Epoch 90/100
378/378 —
                           - 1s 3ms/step - loss: 41.1786
Epoch 91/100
378/378 –
                            - 1s 3ms/step - loss: 39.8444
Epoch 92/100
378/378 -
                             1s 3ms/step - loss: 38.5611
Epoch 93/100
                             1s 3ms/step - loss: 37.3325
378/378 –
Epoch 94/100
378/378 -
                            - 1s 3ms/step - loss: 36.1618
Epoch 95/100
378/378 -
                            - 1s 3ms/step - loss: 35.0515
Epoch 96/100
378/378 -
                            - 1s 3ms/step - loss: 34.0036
Epoch 97/100
378/378 -
                            - 1s 3ms/step - loss: 33.0191
Epoch 98/100
378/378 —
                            - 1s 3ms/step - loss: 32.0989
Epoch 99/100
                            - 1s 3ms/step - loss: 31.2427
378/378 -
Epoch 100/100
378/378 —
                       ____ 1s 3ms/step - loss: 30.4503
y pred=lstm.predict(X test)
10/10 -
                          - 0s 25ms/step
```

PREPARING THE FINAL PLOT

```
import matplotlib.pyplot as plt
plt.plot(y_test,label='True Value')
plt.plot(y_pred,label='True Value')
plt.title("LSTM Prediction for ADANIPORTS")
plt.xlabel('Time Scale')
plt.ylabel('Scaled USD')
plt.legend()
plt.show()
```

LSTM Prediction for ADANIPORTS

----END OF CODE-----