

Regression

Train Data

What is Regression Analysis

It is a statistical technique used to relate a variable of interest(dependent variable) to one or more independent or predictor variables.

The objective is to build a statistical model to:

Simple linear regression is a linear regression model with a single predictor variable.

We try to establish a linear relationship between dependent and independent variables.

How to Chose the Best Line?

Which line to choose out of so many lines passing through the points?

Ordinary Least Square Regression

Assume any line $\beta_0 + \beta_1 x = Y$ passing through the points.

Here, β_0 is y intercept and β_1 is slope of the line

Find the appropriate values of β_0 and β_1 to get to the best fit line.

Slope - A little indepth

Slope Formula

Slope – A little indepth

Ordinary Least Square Regression

The idea is to find a line for which predicted y and observed y are close for all the points.

Predicted $y = \beta_0 + \beta_1 xi$, find a line and β_0 and β_1 for which $\sum (\text{predicted y} - \text{observed y})^2$ is minimum.

Find β_0 and β_1 for which $\sum_{i=1}^n ((\beta_0 + \beta_1 xi) - y_i)^2$ is minimum.

Loss and Cost of Linear Regression

1. Loss Function (for a single training example):

$$L(y_i,\hat{y}_i)=rac{1}{2}(y_i-\hat{y}_i)^2$$

Substituting $\hat{y}_i = \beta_0 + \beta_1 x_i$:

$$L(y_i, \hat{y}_i) = rac{1}{2} (y_i - (eta_0 + eta_1 x_i))^2$$

2. Cost Function (for the entire dataset):

$$J(eta_0,eta_1) = rac{1}{2m} \sum_{i=1}^m (y_i - \hat{y}_i)^2$$

Substituting $\hat{y}_i = \beta_0 + \beta_1 x_i$:

$$J(eta_0,eta_1) = rac{1}{2m} \sum_{i=1}^m (y_i - (eta_0 + eta_1 x_i))^2.$$

Ultimate Task: Find values of coefficients(parameters or weights & Bias) which makes J minimum = Model Training = Fitting a model

Let's do some calculations in excel

- 1. Initialize β_0 and β_1 with some values (e.g., 0).
- 2. Set learning rate α .
- 3. Repeat until convergence:
 - Compute predictions:

$$\hat{y}_i = \beta_0 + \beta_1 x_i$$

Compute the gradients (partial derivatives):

$$rac{\partial J}{\partial eta_0} = rac{1}{m} \sum_{i=1}^m (\hat{y}_i - y_i)$$

$$rac{\partial J}{\partial eta_1} = rac{1}{m} \sum_{i=1}^m (\hat{y}_i - y_i) x_i$$

• Update parameters:

$$eta_0 := eta_0 - lpha rac{\partial J}{\partial eta_0}$$

$$eta_1 := eta_1 - lpha rac{\partial J}{\partial eta_1}$$

4. Repeat until convergence (i.e., when the updates become very small).

Let's play

https://uclaacm.github.io/gradient-descent-visualiser/?utm_source=chatgpt.com

Learning rate = Step size

Gradient Descent

How Good is Regression?

$$(y_i - \bar{y}) = (y_i - \hat{y}_i) + (\hat{y}_i - \bar{y})$$

Total deviation = Unexplained deviation + Explained deviation

$$\Sigma(y_i - \bar{y})^2 = \Sigma(y_i - \hat{y}_i)^2 + \Sigma(\hat{y}_i - \bar{y})^2$$

SST SSE SSR
(Total sum (sum of (sum of of squared) Squares of error) of regression)

How Good is Regression?

Once the linear relationship is determined, let's analyze how strong is the relationship.

Coefficient of determination = R squared

It is the proportion of the variation in y that is explained by the regression.

It is given by
$$r^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Multiple Linear Regression

Simple Linear Regression	Multiple Linear Regression (2 Independent Variables (x1, x2))		
y X	y X_1 X_2		

$$\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Adjusted R²

Adjusted (or corrected) R² is the coefficient of determination corrected for degree of freedom.

R² doesn't always increase as new variables are introduced in the regression model.

R² increases only when a new variable entered the model is adding any additional value.

It is given by; Adjusted R² = 1- $\frac{SSE/[n-(k+1)]}{SST/(n-1)}$ n = sample size k = no of predictors

Evaluation Metrics for Linear Regression

Evaluation metrics are measures of how good a model performs and how well it defines the relationships.

Other than R² and Adjusted R², other evaluation metrics include:

Metric	Formula
MSE : Mean Squared Error	$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$
MAE : Mean Absolute Error	$MAE = \frac{1}{n} \sum_{i=1}^{n} \hat{y}_i - y_i ^n$
RMSE: Root Mean Squared Error	$MSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$

A lower value of these metrics indicates a better model.

Working with Categorical Variables

Some potential predictors are categorical and qualitative.

To accommodate these variables in the Regression model, they should be transformed into Dummy variables.

Original Data					
Price	LivingArea	Region			
16858	1629	East			
26049	1344	West			
26130	822	East			
31113	1540	East			
40932	1320	West			
44674	1214	North			
44873	882	South			
45004	960	North			
49564	1363	West			

Original Data							
Price	LivingArea	East	West	North			
16858	1629	1	0	0			
26049	1344	0	1	0			
26130	822	1	0	0			
31113	1540	1	0	0			
40932	1320	0	1	0			
44674	1214	0	0	1			
44873	882	0	0	0			
45004	960	0	0	1			
49564	1363	0	1	0			

Validation

Creating a Validation Framework

To test the performance of the model on new scenarios, validation frameworks need to be created. Popular validation frameworks include:

Hold-out based Validation

K-fold cross Validation

Creating a Validation Framework

Hold-out based Validation

Randomly splits the dataset into train and test.

K-fold cross Validation

All Data

Training data

Test data

Hold-out based Validation

Validation Framework: K-fold Cross-Validation

Hold-out based Validation

K-fold cross Validation

The original dataset is equally partitioned into k subparts or folds.

Out of the k-folds, for each iteration, one group is selected as validation data, and the remaining (k-1) groups are selected as training data.

Stratified K-fold cross Validation

Appendix

Assumptions of Regression

Linear Relationship

Independence of Error

Normality of Error Terms

Equality of Variance

Linear Relationship

Independence of Error

Normality of Error Terms

Equality of Variance

The relationship between the independent and dependent variables should be linear.

Linear Relationship

Independence of Error

Normality of Error Terms

Equality of Variance

The residuals are independent.

There should be no correlation between consecutive residuals in time series data.

This is assumption is important, when there is longitudinal i.e., time-series dataset, for instance, stock price data.

Linear Relationship

Independence of Error

Normality of Error Terms

Equality of Variance

The error terms (residuals) are normally distributed.

Histogram and Quantile-Quantile plots are used to check this.

Linear Relationship

The error terms (residuals) have constant variance at every level of X. It is called Homoscedasticity.

Independence of Error

Normality of Error Terms

Heteroscedasticity Increasing error variance

Heteroscedasticity Decreasing error variance

Homoscedasticity Constant error variance

Equality of Variance

Multicollinearity

Multicollinearity in Regression

If the independent variables in the Regression model are correlated with one another, it is termed as Multicollinearity.

This problem is detected using:

Scatter diagram between independent variables through visual inspection.

Multicollinearity in Regression

Few steps to Remedy:

Evaluate sample scheme and make changes if required

Drop colinear variables

Create new variables using Colinear Variables and form new combination of X variables with are uncorrelated

Non-Linear Regression

Non-linear Relationship and Transformation

Transformation is used to achieve linearity where there is a non-linear relationship between the variables.

Non-linear relationship $Y = \alpha e^{\beta X}$

After taking log on both the sides $\log Y = \log \alpha + \beta X$

Transformation steps

$$Y' = log Y$$

Linear form

$$Y' = \log \alpha + \beta X$$

