FISAC-4 Data Structures and Algorithms Date of submission: 22/4/2024

Note: For late submission mark will be deducted

Imagine a scenario where you are an urban planner tasked with optimizing the construction of roads to connect several neighbourhoods in a growing city. Each neighbourhood represents a vertex in a graph, and the roads between them have different associated costs.

Let's consider a city with 7 neighborhoods (A, B, C, D, E, F, G) and their associated road construction costs:

Source	Destination	Costs(\$)
A	В	4
A	С	7
A	Е	3
A	F	6
В	С	8
В	D	9
C	D	10
C C	Е	5
D	Е	6
D	F	11
Е	F	12
Е	G	5
F	G	10

Using Dijkstra's and Bellman Ford algorithm, how would you determine the shortest path for a delivery truck to reach its destination from the company's warehouse located at A, considering the city's road network as a weighted graph?

2.5*2=5marks