CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 4 · Solutions

Posted Wednesday 17 September 2014. Due 5pm Wednesday 24 September 2014.

Please write your name and **residential college** on your homework.

1. [30 points - 5 points each]

For each part, if the set is not a vector space, please show what properties of a vector space are violated. Otherwise, show that all properties of a vector space are satisfied.

- (a) Demonstrate whether or not the set $S_1 = \{ \mathbf{x} \in \mathbb{R}^2 : x_2 = x_1^3 \}$ is a subspace of \mathbb{R}^2 .
- (b) Demonstrate whether or not the set $S_2 = \{ \mathbf{x} \in \mathbb{R}^3 : 3x_1 + 2x_2 + x_3 = 0 \}$ is a subspace of \mathbb{R}^3 .
- (c) Demonstrate whether or not the set $S_3 = \{ f \in C[0,1] : f(x) \ge 0 \text{ for all } x \in [0,1] \}$ is a subspace of C[0,1].
- (d) Demonstrate whether or not the set $S_4 = \left\{ f \in C[0,1] : \max_{x \in [0,1]} f(x) \le 1 \right\}$ is a subspace of C[0,1].
- (e) Demonstrate whether or not the set $S_5 = \{ f \in C^2[0,1] : f(1) = 1 \}$ is a subspace of $C^2[0,1]$.
- (f) Demonstrate whether or not the set $S_6 = \{ f \in C^2[0,1] : f(1) = 0 \}$ is a subspace of $C^2[0,1]$.

Solution.

(a) The set S_1 is not a subspace of \mathbb{R}^2 . The vector $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is in the set S_1 , yet $2\mathbf{x} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ is not, since $2 \neq 2^3 = 8$. Consequently, the set S_1 is not a subspace of \mathbb{R}^2

(b) The set S_2 is a subspace of \mathbb{R}^3 .

The set S_2 is a subset of \mathbb{R}^3 and $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ is a member of the set S_2 . Now, suppose \mathbf{x} and \mathbf{y} are members of the set S_2 . Then $3x_1 + 2x_2 + x_3 = 0$ and $3y_1 + 2y_2 + y_3 = 0$. Adding these two equations gives

$$3(x_1 + y_1) + 2(x_2 + y_2) + (x_3 + y_3) = 0,$$

and hence $\mathbf{x} + \mathbf{y}$ is also in the set S_2 . Multiplying $3x_1 + 2x_2 + x_3 = 0$ by an arbitrary constant $\alpha \in \mathbb{R}$ gives

$$3(\alpha x_1) + 2(\alpha x_2) + \alpha x_3 = 0,$$

and hence $\alpha \mathbf{x}$ is also in the set S_2 . Consequently, the set S_2 is a subspace of \mathbb{R}^3 .

(c) The set S_3 is not a subspace of C[0,1].

Let f(x) = 1 for $x \in [0,1]$. Then f is in the set S_3 , but a scalar multiple, $-1 \cdot f(x) = -1$ for $x \in [0,1]$, takes negative values and thus violates the requirement for membership in the set S_3 . Consequently, the set S_3 is not a subspace of C[0,1].

- (d) The set S_4 is not a subspace of C[0,1]. Let f(x) = 1 for $x \in [0,1]$. Then f is in the set S_4 , but a scalar multiple, $2 \cdot f(x) = 2$ for $x \in [0,1]$, takes values greater than one and thus violates the requirement for membership in the set S_4 . Consequently, the set S_4 is not a subspace of C[0,1].
- (e) The set S_5 is not a subspace of $C^2[0,1]$. The function z defined by z(x) = 0 for $x \in [0,1]$ is not in the set S_5 since z(1) = 0 and thus violates the requirement for membership in the set S_5 . Consequently, the set S_5 is not a subspace of $C^2[0,1]$.
- (f) The set S_6 subspace of $C^2[0,1]$. The set S_6 is a subset of $C^2[0,1]$ and the function z defined by z(x) = 0 for $x \in [0,1]$ is in the set S_6 . If f and g are in the set S_6 , then f(1) = g(1) = 0, so

$$(f+g)(1) = f(1) + g(1) = 0 + 0 = 0$$

and hence f + g is in the set S_6 . Also, if f is in the set S_6 and $\alpha \in \mathbb{R}$, then

$$(\alpha f)(1) = \alpha f(1) = \alpha \cdot 0 = 0$$

and hence αf is in the set S_6 . Consequently, the set S_6 is a subspace of $C^2[0,1]$.

2. [25 points - 5 points each]

Demonstrate whether or not each of the following is a linear operator.

- (a) $f: \mathbb{R}^n \to \mathbb{R}^m$ defined by $f(\mathbf{u}) = \mathbf{A}\mathbf{u} + \mathbf{b}$ for a fixed matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and fixed nonzero vector $\mathbf{b} \in \mathbb{R}^m$.
- (b) $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$.
- (c) $f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ defined by $f(\mathbf{X}) = \mathbf{A}\mathbf{X} + \mathbf{X}\mathbf{B}$ for fixed matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$.
- (d) $L: C^1[0,1] \to C[0,1]$ defined by (Lu)(x) = u(x)u'(x).
- (e) $L: C^2[0,1] \to C[0,1]$ defined by $(Lu)(x) = u''(x) \sin(x)u'(x) + \cos(x)u(x)$.

Solution.

(a) Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then

$$f(\mathbf{u} + \mathbf{v}) = \mathbf{A}(\mathbf{u} + \mathbf{v}) + \mathbf{b} = \mathbf{A}\mathbf{u} + \mathbf{A}\mathbf{v} + \mathbf{b}$$

but

$$f(\mathbf{u}) + f(\mathbf{v}) = \mathbf{A}\mathbf{u} + \mathbf{b} + \mathbf{A}\mathbf{v} + \mathbf{b} = \mathbf{A}\mathbf{u} + \mathbf{A}\mathbf{v} + 2\mathbf{b}$$

and so $f(\mathbf{u} + \mathbf{v})$ does not equal $f(\mathbf{u}) + f(\mathbf{v})$ when $\mathbf{b} \neq \mathbf{0}$. Hence, f is not a linear operator.

(b) Suppose $\mathbf{x} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$. Then

$$f(\alpha \mathbf{x}) = (\alpha \mathbf{x})^T (\alpha \mathbf{x}) = \alpha^2 \mathbf{x}^T \mathbf{x}$$

and

$$\alpha f(\mathbf{x}) = \alpha \mathbf{x}^T \mathbf{x}.$$

However, if $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\alpha = 2$ then $\mathbf{x}^T \mathbf{x} = 1$ and so

$$f(\alpha \mathbf{x}) = 2^2 = 4$$

but

$$\alpha f(\mathbf{x}) = 2.$$

Hence, f is not a linear operator.

(c) Suppose $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n \times n}$. Then

$$f(X+Y) = A(X+Y) + (X+Y)B = AX + XB + AY + YB = f(X) + f(Y),$$

and if $\alpha \in \mathbb{R}$, then

$$f(\alpha \mathbf{X}) = \mathbf{A}(\alpha \mathbf{X}) + (\alpha \mathbf{X})\mathbf{B} = \alpha(\mathbf{A}\mathbf{X} + \mathbf{X}\mathbf{B}) = \alpha f(\mathbf{X}).$$

Hence, f is a linear operator.

(d) Suppose that $u \in C^1[0,1]$ and $\alpha \in \mathbb{R}$. Then

$$\alpha(Lu)(x) = \alpha u(x)u'(x)$$

and

$$(L(\alpha u))(x) = (\alpha u)(x)(\alpha u)'(x) = \alpha^2 u(x)u'(x).$$

However, if u(x) = x and $\alpha = 2$ then

$$\alpha(Lu)(x) = 2x$$

but

$$(L(\alpha u))(x) = 2^2 x = 4x.$$

Hence, L is not a linear operator.

(e) Suppose that $u, v \in C^2[0, 1]$. Then

$$(L(u+v))(x) = (u+v)''(x) - \sin(x)(u+v)'(x) + \cos(x)(u+v)(x)$$

= $u''(x) - \sin(x)u'(x) + \cos(x)u(x) + v''(x) - \sin(x)v'(x) + \cos(x)v(x)$
= $(Lu)(x) + (Lv)(x)$,

and for all $\alpha \in \mathbb{R}$,

$$(L(\alpha u))(x) = (\alpha u)''(x) - \sin(x)(\alpha u)'(x) + \cos(x)(\alpha u)(x)$$

= $\alpha (u''(x) - \sin(x)u'(x) + \cos(x)u(x))$
= $\alpha (Lu)(x)$.

Hence, L is a linear operator.

3. [21 points - 7 points each]

In this problem we'll consider a linear operator mapping to and from a very specific vector space, and use it to explore what an operator inverse can look like.

Consider the V defined as

$$V = \left\{ u(x) = \sum_{j=1}^{N} c_j \sin(j\pi x), \quad c_j \in \mathbb{R} \right\}.$$

In other words, V is the set of all functions that are linear combinations of a finite number of different sine functions. This means that, for each $u \in V$, there is a set of coefficients c_1, \ldots, c_N that is also associated with u.

(a) Show that V is a subspace of the vector space C_D^2 , where

$$C_D^2 = \{u(x) \in C^2[0,1], u(0) = u(1) = 0\}.$$

(b) Let the operator L be defined as

$$Lu = -\frac{\partial^2 u}{\partial x^2}$$

Show that, for $u \in V$, $Lu \in V$. This shows that L can be viewed as

$$L: V \to V$$

a map from V to V.

(c) We can define the operator $\tilde{L}: V \to V$ as

$$\tilde{L}u = \sum_{j=1}^{N} \frac{c_j}{(j\pi)^2} \sin(j\pi x).$$

Show that both $L\tilde{L}u = u$ and $\tilde{L}Lu = u$ for any $u \in V$.

Since both $L\tilde{L}u = u$ and $\tilde{L}Lu = u$ for any $u \in V$, we can refer to \tilde{L} as the inverse L^{-1} of $L: V \to V$.

Solution.

Let V be defined as

$$V = \left\{ u \in C_D^2[0,1] : u(x) = \sum_{j=1}^N c_j \sin(j\pi x), \quad c_j \in \mathbb{R} \right\}.$$

(a) Suppose $u(x) \in V$. Then,

$$u(0) = \sum_{j=1}^{N} c_j \sin(0), \qquad u(1) = \sum_{j=1}^{N} c_j \sin(j\pi)$$

Since $\sin(0) = 0$, u(0) = 0. Similarly, since j is an integer in the above expression, $\sin(j\pi 1) = \sin(j\pi) = 0$, since sine evaluated at any multiple of π is zero, and u(1) = 0 as well. Since the sum of sines is a continuous function, any $u(x) \in V$ is also contained in $C_D^2[0,1]$, and V is contained in $C_D^2[0,1]$.

Next, we just need to show that V itself is a vector space. If u(x) and v(x) are in the set of V, then we have the representations

$$u(x) = \sum_{j=1}^{N} d_j \sin(j\pi x), \qquad v(x) = \sum_{j=1}^{N} e_j \sin(j\pi x)$$

for $d_j, e_j \in \mathbb{R}$. We wish to show that, for any $\alpha, \beta \in \mathbb{R}$, the sum $w(x) = \alpha u(x) + \beta v(x)$ is contained in V as well.

$$w(x) = \alpha u(x) + \beta v(x) = \alpha \sum_{j=1}^{N} d_j \sin(j\pi x) + \beta \sum_{j=1}^{N} e_j \sin(j\pi x)$$

$$= \sum_{j=1}^{N} \underbrace{\alpha d_j \sin(j\pi x)}_{\tilde{d}_j} + \sum_{j=1}^{N} \underbrace{\beta e_j \sin(j\pi x)}_{\tilde{e}_j}$$

$$= \sum_{j=1}^{N} \underbrace{(\tilde{d}_j + \tilde{e}_j)}_{c_j} \sin(j\pi x)$$

$$= \sum_{j=1}^{N} c_j \sin(j\pi x)$$

Therefore $w \in V$, and since V is contained in $C_D^2[0,1]$ as well, V is a subspace of $C_D^2[0,1]$.

(b) The operator L be defined as

$$Lu = -\frac{\partial^2 u}{\partial x^2}.$$

We are going to show that for all $u \in V$, $Lu \in V$ as well. Let

$$u = \sum_{j=1}^{N} c_j \sin(j\pi x) \in V$$

for $c_j \in \mathbb{R}$. Then

$$Lu = -\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2}{\partial x^2} \left(\sum_{j=1}^N c_j \sin(j\pi x) \right)$$

$$= -\frac{\partial}{\partial x} \left[\sum_{j=1}^N c_j \frac{\partial(\sin(j\pi x))}{\partial x} \right]$$

$$= -\frac{\partial}{\partial x} \left[\sum_{j=1}^N c_j (j\pi) \cos(j\pi x) \right]$$

$$= -\sum_{j=1}^N c_j (j\pi) \frac{\partial(\cos(j\pi x))}{\partial x}$$

$$= \sum_{j=1}^N c_j (j\pi)^2 \sin(j\pi x).$$

If we define $\tilde{c}_j = c_j(j\pi)^2 \in \mathbb{R}$ then

$$Lu = \sum_{j=1}^{N} \tilde{c}_j \sin(j\pi x)$$

which is also in V for all $\tilde{c}_j \in \mathbb{R}$. This shows that L can be viewed as

$$L:V \to V$$
,

a map from V to V.

(c) We define the operator $\tilde{L}: V \to V$ as

$$\tilde{L}u = \sum_{j=1}^{N} \frac{c_j}{(j\pi)^2} \sin(j\pi x).$$

We will show that $L\tilde{L}u=u$ and $\tilde{L}Lu=u$ for any $u\in V$. First, let us show $L\tilde{L}u=u$. From part (b) we can deduce that if $u=\sum_{j=1}^N c_j\sin(j\pi x)$

$$Lu = L\left(\sum_{j=1}^{N} c_{j} \sin(j\pi x)\right) = \sum_{j=1}^{N} c_{j} (j\pi)^{2} \sin(j\pi x)$$

Then

$$L\tilde{L}u = L(\tilde{L}u) = L\left(\sum_{j=1}^{N} \frac{c_j}{(j\pi)^2} \sin(j\pi x)\right)$$
$$= \sum_{j=1}^{N} \frac{c_j(j\pi)^2}{(j\pi)^2} \sin(j\pi x)$$
$$= \sum_{j=1}^{N} c_j \sin(j\pi x)$$
$$= u$$

Now, let us show $\tilde{L}Lu = u$ as well. Remember that from problem if $u = \sum_{j=1}^{N} c_j \sin(j\pi x)$ then $\tilde{L}u$ is given as follows

$$\tilde{L}u = \tilde{L}\left(\sum_{j=1}^{N} c_j \sin(j\pi x)\right) = \sum_{j=1}^{N} \frac{c_j}{(j\pi)^2} \sin(j\pi x)$$

Then, similarly

$$\tilde{L}Lu = \tilde{L}(Lu) = \tilde{L}\left(\sum_{j=1}^{N} c_j (j\pi)^2 \sin(j\pi x)\right)$$

$$= \sum_{j=1}^{N} \frac{c_j (j\pi)^2}{(j\pi)^2} \sin(j\pi x)$$

$$= \sum_{j=1}^{N} c_j \sin(j\pi x)$$

$$= u$$

Since both $L\tilde{L}u=u$ and $\tilde{L}Lu=u$ for any $u\in V$, we can refer to \tilde{L} as the inverse L^{-1} of $L:V\to V$.