数字逻辑

第五章 数字硬件实现

北京理工大学 计算机学院 黄永刚

- □数字电路用集成电路构建而成
- □ 集成电路: Integrated Circuit, IC
- □ IC是一种硅半导体晶体,俗称芯片,包含实现逻辑门和存储单元的电子元件

Virtex-4 订购信息

图 1 所示 Virtex-4 订购信息适用于所有封装,包括无铅封装。

- 阶段识别版号可选,若不需要特定器件的分步订货则无须指定。有关分步订购代码的详细信息,请查阅《Virtex-4数据手册》(DS302)。
- 2) 工业用级别不包括 -12 级器件。

- □ 芯片采用陶瓷或塑料封装,由内部电路引出与外部电路相连的接线(引脚)
- □引脚构成了芯片的接口

一. CMOS电路工艺

- 1. CMOS
- □ 2. 开关模型
- □ 3. 开关电路
- □ 4. 完全互补的CMOS门结构
- □ 5. 工艺参数

1. CMOS

- □ 集成电路可根据工艺划分, CMOS占据统治地位
- □ CMOS: 基于硅的互补氧化物半导体工艺
 - > 特点: 高密度、高性能、低功耗
 - > 基础是MOS晶体管
 - > MOS: 金属氧化物半导体
 - > 包含两种类型的晶体管
 - n沟道MOS
 - P沟道MOS

1. CMOS

- □ n 沟道MOS晶体管原理:可以模型化成开关
 - > 通常漏极电压高于源级
 - ➤ ON: 当栅极比源级电压高出阈值
 - > OFF: 当栅极比源级电压差低于阈值

2. 开关模型

□ n沟道: 栅极 (G)、源极 (S)、漏级 (D) 常开

□ p沟道: 源级和漏级互换, 行为和n沟道相反 常闭

3. 开关电路

□ 串行: XY, X̄ Ṭ

□ 并行: X+Y

□ 如何用n沟道p沟道MOS构成逻辑门电路?

□对偶结构

- > n 沟道 vs. p沟道
- ▶ 串联 vs. 并联
- □ p沟道传输1能力强: 原函数
- □ n沟道传输0能力强: 反函数
- □设计时
 - > 先设计n沟道: 不带反变量
 - ➤ 再通过对偶原则p沟道

□ CMOS门结构设计

- ightharpoonup 0. 目标函数 $F = \overline{X}Z + \overline{Y}Z = (\overline{X} + \overline{Y})Z$
- ▶ 1. 得到反函数 F=XY+Z
- ▶ 2. 用n沟道常开开关实现

- □ CMOS门结构设计
 - > 3. 通过对偶原则得到p沟道常闭开关实现

其函数为 F = (X + Y) Z

□ CMOS门结构设计

- > 4. 综合
- > 5. 替换

- □ CMOS电路一般是取反的形式
 - > 因其结构简单
- □ 复合门: 比与非门、或非门、非门复杂的电路

CMOS NAND Gate

Α	В	T ₁	T ₂	T ₃	T ₄	F
0	0	on	on	off	off	1
0	1	on	off	off	on	1
1	0	off	on	on	off	1
1	1	off	off	on	on	0

А ______ F

真值表

与非门符号

CMOS NOR Gate

Α	В	<i>T</i> ₁	T ₂	<i>T</i> ₃	T ₄	F	
0	0	on	on	off	off	1	
0	1	on	off	off	on	0	
1	0	off	on	on	off	0	
1	1	off	off	on	on	0	

真值表

或非门符号

CMOS NOT Gate

CMOS AND Gate

CMOS OR Gate

5. 工艺参数

- □ 工艺参数:表征实现工艺的参数
- □ 扇入: 一个门可能的输入数
 - ▶ 通常不超过4~5个
 - ▶ 大扇入门使用低扇入门连接而成
- □ 扇出: 一个门输出驱动的标准负载数
- □ 成本: 晶体管大小、数目等因素

7输入与非门

- □ 传统的实现是固定的
 - > 一次性成本高
 - 适用于大规模生产
 - 不适用于小规模生产
- □可编程逻辑器件 (PLD)
 - > 包含: 实现逻辑功能的结构
 - > 可编程:以实现功能,是硬件过程

二. 可编程实现技术

- □ 1. 编程技术
- □ 2. 可编程器件
- □ 3. 只读存储器 (ROM)
- □ 4. 可编程阵列逻辑 (PAL)
- □ 5. 可编程逻辑阵列 (PLA)
- □ 6. 现场可编程门阵列 (FPGA)

1. 编程技术

□可编程实现技术

- > 固化编程
 - 熔丝
 - 反熔丝
 - 掩膜编程
- > 可重复编程
 - 编程点的存储单元: 易失性
 - 晶体管开关: 不易失性

1. 编程技术

□ 晶体管开关

- 光可擦除: 采用紫外线照射进行擦除
- > 电可擦除: 采用高于正常值电压擦除
- 闪存技术: 电可擦除技术, 支持多擦除选项
 - 单个浮动栅极
 - 所有浮动栅极
 - 浮动栅极特定子集

2. 可编程器件

□ 在组合电路中,经过卡诺图优化后,一般可以将 输出表达成积之和,如:

$$W = A + BT_1$$

$$X = \overline{B}T_1 + B\overline{T}_1$$

$$Y = CD + \overline{T}_1$$

$$Z = \overline{D}$$

- □ 因此,要实现组合电路,需要:
 - > 与门阵列
 - > 或门阵列

2. 可编程器件

□ 常规符号

□阵列逻辑符号

2. 可编程器件

□ 只读存储器 (ROM)

3. 只读存储器 (ROM)

- □由译码器提供最小项
- □可编程或阵列
- □ 无需电路优化: 电路成本最高
- □ 两个角度理解

$$k$$
输入 \longrightarrow $2^k \times n$ ROM \longrightarrow n个k变量组合函数

地址
$$\longrightarrow$$
 $2^k \times n$ ROM \longrightarrow 数据

3. 只读存储器 (ROM)

□ 角度1: 2⁵×8 ROM

> 译码器的输出: 最小项

> 每个或门是一个组合函数: 最小项之和

3. 只读存储器 (ROM)

- □ 角度2: 2⁵×8 ROM
 - ➤ 输入提供地址: I₀~I₄
 - ▶ 输出提供存储字: 地址选定 (命名)

4. 可编程阵列逻辑 (PAL)

□可编程与阵列

- ➤ vs. 可编程或阵列 (ROM)
- > 单输出两级优化
 - 共享积之和
 - 多级电路

4. 可编程阵列逻辑 (PAL)

$$W = \sum m(2,12,13)$$

$$X = \sum m(7,8,9,10,11,12,13,14,15)$$

$$Y = \sum m(0,2,3,4,5,6,7,8,10,11,15)$$

$$Z = \sum m(1,2,8,12,13)$$

$$W = AB\bar{C} + \bar{A}\bar{B}C\bar{D}$$

$$X = A + BCD$$

$$Y = \bar{A}B + CD + \bar{B}\bar{C}$$

Z = W + ACD + ABCD

5. 可编程逻辑阵列 (PLA)

- □ 可编程与阵列
- □ 可编程或阵列
- □ 多输出两级优化
 - > 每个函数用最少乘积项
 - > 函数间共享乘积项
 - > 可反相输出

5. 可编程逻辑阵列 (PLA)

ROM

- > 无需优化
- > 电路成本最高

PAL

- > 单输出二级优化
- > 共享积之和
- > 可实现多级电路

PLA

- > 多输出二级优化
- > 共享乘积项
- > 可反相输出

- □可编程逻辑块组成
 - ▶ 查找表 (LUT)
 - > D触发器
 - > 加法逻辑
 - > 多路复用器
 - ➤ SRAM配置位
 - 静态随机访问存储器

□ 查找表

- Look-Up Table, LUT
- > 实现组合逻辑函数
- $\geq 2^k \times 1$ 存储器: 函数真值表

□ 用查找表实现布尔函数

$$F(A, B, C) = \sum m(3, 5, 6, 7)$$

V 25 JL 7-	输	入	T 44 *	输出Z
当前状态	输入 1	输入2	下一状态	
状态 0	0	0	状态 1	0
状态 0	0	1	状态 0	0
状态 0	1	0	状态 0	0
状态 0	1	1	状态1	0
状态 1	0	0	状态 0	1
状态 1	0	1	状态 0	1
状态 1	1	0	状态 1	1
状态 1	1	. 1	状态 1	1