

单元2.6 推理形式

第3章 命题逻辑的推理理论 3.1 推理的形式结构

推理形式

- 前面介绍了命题的"形式"。
- ■本节介绍推理的"形式"。
- 推理是逻辑的研究对象: 从前提出发推出 结论的思维过程。

内容提要

- 推理形式
- 有效推理形式
- 推理形式是有效的充要条件
- 推理定律

什么是推理形式?

- 一组前提,一个结论
- 前提、结论都是命题。
- 若前提为 α_1 , α_2 , ..., α_n , 结论为 β , 则将这样的推理形式称为

由前提 α_1 , α_2 , ..., α_n 推出结论 β 。

什么是正确的推理形式?

- 直观上,正确的推理应该保证:如果前提正确,则结论也应该正确。
- 设 α_1 , α_2 , ..., α_n , β 都是命题公式,如果对 α_1 , α_2 , ..., α_n , β 中出现的命题变元的任一赋值, 若 $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n$ 为假,或若 $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n$ 为真时 β 亦真,则称推理" α_1 , α_2 , ..., α_n 推出 β "是有效的
- 否则,称" α_1 , α_2 ,…, α_n 推出 β "是无效的或不合理的.

注记

- 推理形式是否有效与前提中命题形式的排列次序无关。即:
- 若 " α_1 , α_2 , …, α_n 推出β"是有效的,则对1, 2, …, n的任一个排列 i_1 , i_2 , …, i_n , " α_{i_1} , α_{i_2} , …, α_{i_n} 推出β"也是有效的。
- 所以<mark>前提是一个集合</mark> Γ ={ α_1 , α_2 , ..., α_n }, 而不是一个序列。

例

- $\alpha \rightarrow \beta$ 、 α 推出β是有效的。
- α ∨ β、 ¬ α推出β是有效的

注记

- 对任意一组赋值, 前提和结论的取值情况:
- 1) $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n \rightarrow 0$, $\beta \rightarrow 0$
- 2) $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n$ 为0, β 为1
- 3) $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n$ 为1, β为0
- 4) $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n$ 为1, β为1
- 判断推理是否正确,就是判断是否会出现"前提为真结论为假"的情况。
- 前提不正确,无论结论正确与否,都说推理正确。

下列推理形式是否有效?

(1) $p \lor q$ 、 $\neg q$ 、(p → q) → r推出r是无效的

Р	q	p v q	¬ q	$(p \rightarrow q) \rightarrow r$	r	1
0	0	0	1	0	0	1
0	0	0	1	1	1	
0	1	1	0	0	0	1
1	0	1	1	1	0	1
0	1	1	0	1	1	
1	0	1	1	1	1	1
1	1	1	0	0	0	l
1	1	1	0	1	1	

下列推理形式是否有效?

- (3) p1→(p2→p3), p2推出p1 →p3 解:
- •使 $p_1 \rightarrow p_3$ 为假的赋值有(1,*,0),
 - 其中使 p_2 为真的赋值只有(1,1,0),

而(1, 1, 0)使 $p_1 \rightarrow (p_2 \rightarrow p_3)$ 为假。

故没有使前提为真而结论为假的赋值,从而此推理有效。

(2) $(\neg p_1) \lor p_2$, $p_1 \rightarrow (p_3 \land p_4)$, $p_4 \rightarrow p_2$, $p_3 \rightarrow p_4$ 推 出 $p_2 \lor p_4$ 。

解:目的是看能否找到使前提为真、且结论为假的赋值。

- 使 $\mathbf{p}_2 \vee \mathbf{p}_4$ 为假的赋值有(*, 0, *, 0), 其中使($\neg \mathbf{p}_1$) $\vee \mathbf{p}_2$ 为真的赋值有(0, 0, *, 0), 其中使 $\mathbf{p}_3 \rightarrow \mathbf{p}_4$ 为真的赋值有(0, 0, 0, 0),
- 而 (0, 0, 0, 0) 使 $\mathbf{p}_1 \rightarrow (\mathbf{p}_3 \wedge \mathbf{p}_4)$ 和 $\mathbf{p}_4 \rightarrow \mathbf{p}_2$ 都为真

从而这个推理是无效的。

充要条件

• 推理形式 " α_1 , α_2 , ..., α_n 推出 β " 有效 充要条件是命题形式($\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_n$) $\rightarrow \beta$ 是重言式,或 ($\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_n$) $\wedge \neg \beta$ 为矛盾式。

意义:

• 推理形式的有效性与命题公式的永真性可以互相化约。

逻辑蕴含⇒

- 前提: $\alpha_1, \alpha_2, \dots, \alpha_n$ 结论: β 推理正确记为 $\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n \Rightarrow \beta$
- →与⇒的不同:
- ▶→是蕴含联结词,A→B的结果仍然是一个 命题公式
- ▶⇒表示两个命题公式之间的一种逻辑蕴含 关系,A⇒B表示"前提A推出结论B"是有 效的,A⇒B的结果不是命题公式。
- ➤计算机无法判断A ⇒ B, 但是计算机可以计算A→B是否为永真式。

证明推理公式 $A \Rightarrow B$ 的方法

- 真值表法
- 解释法: 以 $(P \to Q) \land (Q \to R) \Rightarrow P \to R$ 为例 若 $(P \to Q) \land (Q \to R)$ 为真,则 $(P \to Q)$ 为真,且 $(Q \to R)$ 为真。

若P为真,则Q及R必为真,因而 $P \to R$ 必为真。若P为假,则右端必为假。

假言三段论推理式得证。

- 证明 $A \rightarrow B$ 为永真式,或 $A \land \neg B$ 为矛盾式 - 主析取/合取范式法,等值演算法
- 若 $\neg B \Rightarrow \neg A$,则必有 $A \Rightarrow B$

逻辑蕴含⇒

- 若 $A \Rightarrow B$,A为重言式,则B也是重言式。
- 若 $A \Rightarrow B, B \Rightarrow A$ 同时成立,必有 $A \Leftrightarrow B$ 。

- $\sharp A \Rightarrow C, B \Rightarrow C, \ \mathbb{M}A \vee B \Rightarrow C$.

下列推理形式是否有效?

例 判断下面推理是否正确:

(1) 若今天是**1**号,则明天是**5**号.今天是**1**号.所以,明天是**5**号.

解 设 p: 今天是1号, q: 明天是5号

证明 用等值演算法

 $(p \rightarrow q) \land p \rightarrow q$

 $\Leftrightarrow \neg((\neg p \lor q) \land p) \lor q$

 $\Leftrightarrow ((p \land \neg q) \lor \neg p) \lor q$

 $\Leftrightarrow \neg p \lor \neg q \lor q \Leftrightarrow 1$

得证推理正确

下列推理形式是否有效?

例 判断下面推理是否正确:

(2) 若今天是1号,则明天是5号.明天是5号.所以,今天 是1号.

解 设p: 今天是1号, q: 明天是5号.

证明 用主析取范式法

 $(p \rightarrow q) \land q \rightarrow p$

 $\Leftrightarrow (\neg p \lor q) \land q \to p$

 $\Leftrightarrow \neg ((\neg p \lor q) \land q) \lor p$

 $\Leftrightarrow \neg q \lor p$

 $\Leftrightarrow (\neg p \land \neg q) \lor (p \land \neg q) \lor (p \land \neg q) \lor (p \land q)$

 $\Leftrightarrow m_0 \lor m_2 \lor m_3$

01是成假赋值, 所以推理不正确.

Open Question Points: 10

判断下列推理式是否有效

1. $(P \to (Q \to R)) \Rightarrow (P \to Q) \to (P \to R)$

2. $(P \lor Q) \rightarrow (P \lor \neg Q) \Rightarrow \neg P \lor Q$

3. $((P \land Q) \rightarrow R) \land (P \lor Q) \rightarrow \neg R) \Rightarrow P \land Q \land R$

Open Question is only supported on Version 2.0 or newer. Answer 18

重要的推理定律

① 附加律 A ⇒ (A∨B)

② 化简律 (A∧B) ⇒ A, (A∧B) ⇒ B

③ 假言推理 (A→B)∧A ⇒ B

④ 拒取式 (A→B)∧¬B ⇒ ¬A

⑤ 析取三段论 (A∨B)∧¬A ⇒ B

 $(A \lor B) \land \neg B \Rightarrow A$

重要的推理定律

⑥ 假言三段论 (A→B)∧(B→C) ⇒ (A→C)

⑦ 等价三段论 (A↔B)∧(B↔C) ⇒ (A↔C)

⑧ 构造性两难 (A→B)∧(C→D)∧(A∨C) ⇒ (B∨D)

构造性两难(特殊形式) $(A \rightarrow B) \land (\neg A \rightarrow B) \Rightarrow B$

⑨破坏性二难 (A→B)∧(C→D)∧(¬B∨¬D)

$$\Rightarrow$$
 (\neg A \lor \neg C)

二难推理举例

- 父亲对他那喜欢到处游说的儿子说,"你不要到处游说。如果你说真话,那么富人恨你;如果你说假话,那么穷人恨你。既然游说只会招致大家恨你,你又何苦为之呢?"
- 父亲劝儿子就使用了一个二难推理: 如果你说真话,那么富人恨你; 如果你说假话,那么穷人恨你; 或者你说真话,或者你说假话; 总之,有人恨你。

举例

- 某女子在某日晚归家途中被杀害,据多方调查确证,凶手必为王某或陈某,但后又查证,作案之晚王某在工厂值夜班,没有外出。
- 根据上述案情可得前提:
- 1) 凶手为王某或陈某 $P \lor Q$
- 2) 如果王某是凶手,则他在作案当晚必外出 $P \to R$
- 3) 王某当晚没有外出 ¬R
- 结论: 陈某为凶手 Q
- 推理过程描述为: $(P \rightarrow R) \land \neg R \Rightarrow \neg P$ $(P \lor Q) \land \neg P \Rightarrow Q$

拒取式 析取三段论

设论 23

重要的推理定律

$$\neg (A \rightarrow B) \Rightarrow A, \neg (A \rightarrow B) \Rightarrow \neg B$$

$$(B \rightarrow C) \Rightarrow (A \rightarrow B) \rightarrow (A \rightarrow C)$$

$$(B \rightarrow C) \Rightarrow (A \lor B) \rightarrow (A \lor C)$$

小结

- 推理形式
- 有效推理形式
- 推理形式是有效的充要条件
- 推理定律

