Interpretation of salamboR models

Andrey Ziyatdinov & Agnès Morera Bayó Unit of Genetics of Complex Diseases (UGCD), Sant Pau, Barcelona @ 23 May 2014

About this presentation

A number of things happened since February 2014:

- · Updated the code in salamboR.
- · Re-computed the models for 2 studies (on-going publications).
- Initiated the data repositories on github.com/ugcd/

In this presentation we would like to share with you:

- · the achieved results
- · our rules on computing' and interpreting'em all
- · focus on details when interpreting the models

Table of content

- · Results (to be published)
 - Platelets traits
 - TEG traits
- · Decision making
 - Modeling background
 - Changes in code
 - Rules
- · Summary

Results

Models for thrombosis

DISEASE	N	H2R	H2R.SE	H2R.P	AGE	AGE.SE	AGE.P
AT	1113	0.234	0.194	1.409e-01	-0.0352	0.0051	9.8881e-18
VT	1113	0.669	0.165	1.600e-06	-0.0234	0.0038	6.2843e-12
Throm	1113	0.456	0.134	9.430e-05	-0.0329	0.0036	5.4151e-27

Comments

 \cdot the heretability of **AT** is not significant.

Work 1: Platelets traits

TRAIT1	TRAIT 2	RHOG	RHOG.SE	RHOG.P	RHOE	RHOE.SE	RHOE.P
ВА	VT	-0.104	0.158	0.511	0.367	0.238	0.169
EO	VT	-0.237	0.151	0.133	-0.436	0.225	0.045
LE	VT	0.030	0.194	0.876	0.225	0.268	0.361
LI	VT	0.117	0.160	0.472	0.073	0.277	0.786
MOt	VT	0.178	0.185	0.365	0.236	0.209	0.285
NE	VT						

Comments

- · None of the genetic correlations are significant.
- · Correlation between NT and VT is not computable.

Work 2: TEG traits

TRAIT1	TRAIT 2	RHOG	RHOG.SE	RHOG.P	RHOE	RHOE.SE	RHOE.P
VT	TGTlagtime	0.125	0.140	3.784e-01	0.186	0.235	4.515e-01
VT	TGTPeak	0.356	0.136	1.079e-02	0.257	0.234	2.907e-01
VT	TGTETP	0.314	0.121	2.079e-02	0.323	0.211	1.406e-01

Comments

• Two genetic correlations with TGTPeak and TGTETP, which of them does make more sense?

Work 2: TEG traits

TRAIT1	TRAIT2	RHOG	RHOG.SE	RHOG.P
VT	TGTETP	-0.25	0.32	
VT	TGTPeak	0.42	0.044	
TGTPeak	TGTETP	0.729	0.062	

Idea

• The genes affecting all traits VT, TGTPeak and TGTETP are considered simultaneously.

Decision making

Questions we had at the beginning

- What is **N** of the GAIT2 study?
- · What disease to model in correlation with a trait: VT, AT or Throm?
- How to use covariates like antiAgreg?
- · If ρ_p is not significant, should I panic?
- · If ρ_g is estimated as 0.9 ± 0.001 with p-value 1.2×10^{-8} , should I make the boss happy by reporting this?

Modeling background

Model and its parameters

Think of a statistical model in terms of its parameters.

Univariate Model:

FIXED EFFECTS PARAMETERS	RANDOM EFFECTS PARAMETERS
$\mu, \beta_{AGE}, \beta_{SEX}$	$\sigma_{\rm g}^2,\sigma_{\rm e}^2$

A fixed effect controlling the mean of height

Idea: http://users.du.se/~lrn/DUweb/

A random effect controlling the variance of height

Image source: http://ludwig.design.ru/

Tests of model parameters

FIXED EFFECTS PARAMETERS	RANDOM EFFECTS PARAMETERS
$\mu, \beta_{AGE}, \beta_{SEX}$	$\sigma_{\rm g}^2,\sigma_{\rm e}^2$
Heritability: $h^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma_e^2}$.	

Is the heritability significant? Likelihood Ratio Test (LRT):

HYPOTHESIS	FREE PARAMETERS	RESTRICTED PARAMETERS
No polygenic effect	$\mu, \beta_{AGE}, \beta_{SEX}, \sigma_e^2$	$\sigma_g^2 = 0$

Is **AGE** covariate significant? Likelihood Ratio Test (LRT):

HYPOTHESIS	FREE PARAMETERS	RESTRICTED PARAMETERS
No effect of AGE	$\mu, \beta_{SEX}, \sigma_g^2, \sigma_e^2$	$\beta_{AGE} = 0$

Bivariate Model for correlations

Univariate Model

FIXED EFFECTS PARAMETERS	RANDOM EFFECTS PARAMETERS
$\mu, \beta_{AGE}, \beta_{SEX}$	$\sigma_{\rm g}^2,\sigma_{\rm e}^2$

Bivariate Model

FIXED EFFECTS PARAMETERS	RANDOM EFFECTS PARAMETERS
$\mu_1, \mu_2, (\beta_1, \beta_2)_{AGE}, (\beta_2)_{SEX}$	$(\sigma_1^2, \sigma_2^2, \rho)_g, (\sigma_1^2, \sigma_2^2, \rho)_e$

Is the genetic correlation significant? Likelihood Ratio Test (LRT):

HYPOTHESIS	FREE PARAMETERS	RESTRICTED PARAMETERS
No genetic correlation	, $(\sigma_1^2, \sigma_2^2)_g$, $(\sigma_1^2, \sigma_2^2, \rho)_e$	$\rho_{\rm g}=0$
No pleiotropy	, $(\sigma_1^2, \sigma_2^2)_g$, $(\sigma_1^2, \sigma_2^2, \rho)_e$	$\rho_{\rm g}=1$

Fixes

1) Trait-specific covariates in bivariate models

Example: bivariate model of VT and TGTETP

· Independent univariate models

TRAIT	COVARIATES
VT	AGE
TGTETP	AGE, AGE2, contraception, sedentaryD

· A bivariate model before February 2014

TRAIT	COVARIATES
VT	AGE, AGE2, contraception, sedentaryD
TGTETP	AGE, AGE2, contraception, sedentaryD

Fixes

2) P-values of all test covariates vs. final covariates (in reports)

Example: univariate model of VT.

· Testing model with 6 covariates

AGE	AGE.P	SEX.P	CONTRA.P	AINES.P	ANTIAGREG.P	SMOKE.P
-0.02	5.15e-10	1.36e-01	1.68e-01	7.85e-01	9.26e-01	8.92e-01

· Final model with 1 covariates

AGE	AGE.P
-0.02	6.2843e-12

New options

- 1. Compute hard options (see solarPolyg function).
- 2. Computing the phenotypic correlation can be skipped.
- 3. Trivariate models are available.

Rules

Rule: think twice when adding a covariate

Example: antiAgreg covariate in a model for AT

Rule: Filter out suspicious results

Problem:

- · If the optimization algorithm does not converge, then the returned model is not OK.
- · Consequently, SOLAR warnings and extreme estimations like $\rho_{\rm g}\,=\,1.$
- · See optim R function and an example with Rosenbrock Banana function.
 - z = f(x, y) has the global minimum at (1, 1) point, where the function is equal to 0.

Rule: Filter out suspicious results

Example: bivariate correlation **NE** and **VT** (not OK)

TRAIT1	TRAIT 2	RHOG	RHOG.SE	RHOG.P	RHOE	RHOE.SE	RHOE.P
NE	VT	0.6748	NA	7.9140e-04	1.0000e+00	0.8246	NA

What is wrong?

- · Estimation of standard errors are NA.
- Estimation of ρ_e is 1.

Rule: Filter out suspicious results

Example: bivariate correlation E0 and VT executed with compute hard options (not OK)

TRAIT1	TRAIT 2	RHOG	RHOG.SE	RHOG.P	RHOE	RHOE.SE	RHOE.P
EO	VT	-0.7623	0.0977	1.3693e-11	-0.9000	0.0723	7.6188e-18

What is wrong?

- Estimation of ρ_e is -0.9 (it is on the boundary).
 - Estimations of standard errors are suspiciously small.
 - P-values are suspiciously small.

Rule: Throm is preferred to VT

Problem

· Small $N \rightarrow$ instability, low statistical power

Solution

- Try correlation with VT
- · Change the order of traits to test the consistence of the results
- Confirm results by comparing with correlation with Throm

Rule: Throm is preferred to VT

Example: trivariate correlation VT, TGTPeak and TGTETP

· Order VT, TGTlagtime, TGTETP

Not computable.

· Order VT, TGTPeak, TGTETP (not OK)

TRAIT1	TRAIT2	RHOG	RHOG.SE
VT	TGTETP	0.008	0.005
VT	TGTPeak	0.506	0.004
TGTPeak	TGTETP	0.796	NA

Rule: Throm is preferred to VT

Example: trivariate correlation VT, TGTPeak and TGTETP

· Order VT, TGTETP, TGTPeak (OK)

TRAIT1	TRAIT2	RHOG	RHOG.SE
VT	TGTETP	-0.25	0.32
VT	TGTPeak	0.42	0.044
TGTPeak	TGTETP	0.729	0.062

Model with Throm, order Throm, TGTPeak, TGTETP (OK?)

TRAIT1	TRAIT2	RHOG	RHOG.SE
Throm	TGTETP	-0.117	0.007
Throm	TGTPeak	0.438	0.006
TGTPeak	TGTETP	0.755	0.007

Rule: only ρ_g matters

Explanation:

- · The genetic correlation ρ_g has a co-variance matrix **structured** (kinship), while the residual environmental ρ_e has the identity matrix (i.i.d.)
- · Indeed, the environmental correlation ρ_e is a part of not explained residual (error).
- Phenotipic correlation ρ_{p}
 - is not a model parameter
 - it has a large error
 - it computationally complicated to test (remember its formula)

Rule: only ρ_g matters

Why ρ_e and ρ_p are out?

· Have you ever tried to response to such a Reviewer's comment of a submitted manuscript?

Page 9, lines 36-38. It is stated that there is no environmental correlation between BMI and thrombosis risk. This is in contrary to conventional perception about these two phenotypes. For example, diet is a risk factor for both obesity and thrombosis, especially arterial thrombosis. Other risk factors, such as physical inactivity, could also influence both phenotypes.

Rule: only ρ_g matters

Example: bivariate correlation between **E0** and **VT**

TRAIT1	TRAIT 2	RHOG	RHOG.SE	RHOG.P	RHOE	RHOE.SE	RHOE.P
EO	VT	-0.237	0.151	0.133	-0.436	0.225	0.045

Comments:

- · The environmental correlation ρ_e is significant, but the genetic correlation ρ_g is not.
 - That means the model must be recomputed with restriction ρ_g = 0 , that will give the correct estimation of ρ_e .

Alessandra's Rule: p-value 1e-22

Example: bivariate correlation between **E0** and **VT**

· The current results

TRAIT1	TRAIT 2	RHOG	RHOG.P	RHOE	RHOE.P
EO	VT	-0.237	0.133	-0.436	0.045

· Computed before Feb 2014

TRAIT1	TRAIT 2	RHOG	RHOG.P	RHOE	RHOE.P
EO	VT	-0.81	6.2e-12	-0.9	3.6e-22

What was wrong?

- · All the issues commented above
 - bmi as covariate
 - covariates not trait-specific
- · Bad luck Lack of our rules for interpretation the results

Summary

Our experience (our feeling)

All models are wrong, but some are useful.

Most of correlations are insignificant, but some are ... incomputable.

Our proposal

Work hard / Keep learning / Share all at https://github.com/ugcd/