

YEAR 12 MATHEMATICS SPECIALIST SEMESTER TWO 2016

TEST 3: Derivatives and Integrals

Name:				

Monday 15th August Time: 45 minutes Mark /40 Section 1 – Calculator free 20 marks

1. [4 marks]

A curve is defined by the equation $ye^x + xy^2 = 1$

Use implicit differentiation to determine the equation of the normal drawn at the point $\left(0,1\right)$

2. [3 marks]

Determine the area enclosed by the curves y = x + 1 and $y = x^2 + 1$, as shown.

3. [13 marks – 4, 1, 4 and 4]

Determine each of the integrals given

(a) $\int_{0}^{2} \beta \pi x^{2} (x^{3} - 1) dx$ by using a suitable substitution

$$\int \sin 3x \cos^2 3x \, dx$$
 (b)

(c)
$$\int \sin^4 x \, dx$$

(d)
$$\int \frac{dx}{x^2 - 1}$$
 in the form $\ln A + c$

Section 2 – Calculator assumed 20 marks

4. [3 marks]

Determine the volume generated when the region enclosed by the curves y = x + 1 and

 $y = x^2 + 1$, as shown, is rotated around the *x*-axis.

5.
$$[5 \text{ marks} - 2, 2 \text{ and } 1]$$

$$F = kr^{\frac{3}{2}}$$

Fluid flow through a narrow pipe has been modelled by the equation is the flow, k a constant and r the radius.

where F

(a) How will the rate of flow change if the radius is increased by 44%?

(b) Use the incremental technique to estimate the change of radius that produces a 10% decrease in flow.

(c) Is the incremental technique appropriate in (a)? Explain.

6. [7 marks – 4 and 3]

A baseball diamond consists of a 25 metre square.

A batter goes from the home plate and runs directly towards first base at 8 metres per second.

(a) How fast is his distance from second base changing when he is half-way to first base?

(b) How is angle θ changing at the same instant?

7. [5 marks]

Calculate the exact volume generated when the region contained between y=2 and

$$y = \frac{-10}{x^2 - 9}$$
 for $-3 < x < 3$ is rotated about the *y*-axis.