# Solution to computer exam in Bayesian learning

Per Sidén

2019-06-04

First load all the data into memory by running the R-file given at the exam

```
rm(list=ls())
source("ExamData.R")
set.seed(1)
```

#### Problem 1

1a

```
nSamples = 10000 # 100000 #
beta = 20
postSamples1 = rbeta(nSamples,sqrt(4),beta)
postSamples2 = rbeta(nSamples,sqrt(16),beta)
par(mfrow=c(1,2))
hist(postSamples1,30,freq=F, main="Posterior based on\n samples for c=4",xlab="theta")
hist(postSamples2,30,freq=F, main="Posterior based on\n samples for c=16",xlab="theta")
```

# Posterior based on samples for c=4

# Posterior based on samples for c=16





1b

```
print(c(mean(postSamples1>.1),mean(postSamples2>.1)))
```

## [1] 0.3572 0.8110

Answer: The probabilities are roughly 0.36 and 0.81.

1c

Find the value of c that gives the maximum expected utility

```
cgrid = seq(4,20,.5)
utility <- function(theta,c){
  return(100+20*log(theta)-c)
}
expectedUtility <- function(c){
  postSamples = rbeta(nSamples,sqrt(c),beta)
   return(mean(sapply(postSamples,utility,c=c)))
}
EU = sapply(cgrid,expectedUtility)
cOpt = cgrid[which.max(EU)]</pre>
```

```
par(mfrow=c(1,1))
plot(cgrid,EU,type="l",ylab="Expected utility",xlab="c")
points(x=cOpt, y = max(EU), col = "red")
```



```
print(cOpt)
```

#### ## [1] 11.5

Answer: The optimal value is roughly at c = 10.5 (but can be between 9 and 11.5 due to randomness).

```
# # Incorrect solution: evaluate the utility at the mean, gives c=8.5
# thetaMean <- function(c){
# return(sqrt(c)/(sqrt(c)+beta))
# }
#
# meanU = mapply(utility, thetaMean(cgrid), cgrid)
# cOptMean = cgrid[which.max(meanU)]
# plot(cgrid, meanU, type="l")
# points(x=cOptMean, y = max(meanU), col = "red")
# print(cOptMean)</pre>
```

#### Problem 2

2a

```
# Reading data
load(file = 'ebay.RData')
gridn = 1000
thetaGrid <- seq(0,1,length = gridn)</pre>
logPost <- function(theta,x){</pre>
  # evaluating the log-likelihood
  logLik <- sum(dbinom(x,size=50,prob=theta,log=T))</pre>
  # logLik \leftarrow sum(x*log(theta) + (50-x)*log(1-theta))
  # evaluating the prior
  logPrior <- 2*log(1-theta)</pre>
  # add the log prior and log-likelihood together to get log posterior
  logPost <- logLik + logPrior</pre>
  # if (abs(logPost) == Inf || is.na(logPost)) logPost = -20000;
  return(logPost)
logPostUnnorm <- vector(length=length(thetaGrid))</pre>
for(i in 1:length(thetaGrid)) logPostUnnorm[i] <- logPost(thetaGrid[i],ebay)</pre>
\# logPostUnnorm = logPostUnnorm - max(logPostUnnorm) \# For numerical stability
gridWidth = thetaGrid[2] - thetaGrid[1]
postGrid <- (1/gridWidth)*exp(logPostUnnorm)/sum(exp(logPostUnnorm))</pre>
plot(thetaGrid, postGrid, type = "l", lwd = 2, main="Posterior",
     ylab = "Density", xlab = expression(theta))
```

### **Posterior**



```
thetaMode = thetaGrid[which.max(postGrid)]
print(thetaMode)
```

## [1] 0.1031031

Answer: The mode is at  $\theta = 0.103$ .

#### 2b

We now use the Gibbs MixPois function in the ExamData.R code to simulate with K=2 (Hide iteration count output using message=FALSE)

Plot trajectories and cumulative means



A burn-in of 50 iterations is sufficient for the chain to reach its stationary distribution, which can be seen in the trajectory plots.

2c

```
par(mfrow=c(1,1))
dataDistr = bidsCounts/sum(bidsCounts)
# thetaMode = .1 # If 2a not solved
binoDistr = dbinom(xGrid, size = 50, prob = thetaMode)
plot(xGrid, as.vector(dataDistr), type = "o", lwd = 3, col = "black", pch = 'o', cex = 0.6,
    ylim = c(0,0.2), main = "Fitted models")
lines(xGrid, binoDistr, type = "o", lwd = 3, col = "red", pch = 'o', cex = 0.6)
lines(xGrid, GibbsResults2$mixDensMean, type = "o", lwd = 3, col = "purple", pch = 'o', cex = 0.6)
legend(x = 8, y = 0.2, legend = c("Data", "Binomial", "Poisson mixture"),
    col = c("black", "red", "purple"), lty = c(1,1), lwd = c(3,3), cex = 0.8)
```

# **Fitted models**



The binomial model fits the data quite badly, which can mainly be seen in that the number of zero-observations is much higher in the dataset, than what the density suggests. The Poisson mixture gives a better fit.

#### Problem 3

See solution on paper.

### Problem 4

```
# Load cellphone lifetime data
load(file = 'cellphones.RData')
x = cellphones
```

4a

```
# hist(x)
n = length(x)
alpha1 = 2
beta1 = 1
alpha2 = 10
```

```
beta2 = 10
thetaGrid = seq(0,4,.01)
plot(thetaGrid,dgamma(thetaGrid,alpha1,beta1),type="1",ylab="",xlab="theta",main="Gamma prior densities
lines(thetaGrid,dgamma(thetaGrid,alpha2,beta2),col="red")
legend(x=3,y=.3,c("M1","M2"),col = c("black","red"), lty = c(1,1))
```

## Gamma prior densities



The  $M_1$  prior has mean  $\frac{2}{1} = 2$  and variance  $\frac{2}{1 \cdot 1} = 2$ . The  $M_2$  prior has mean  $\frac{10}{10} = 1$  and variance  $\frac{10}{10 \cdot 10} = 0.1$ . Comparing the variances tells us that the  $M_2$  prior is more informative and this can also be seen by plotting the densities. This is because the  $M_2$  prior is more concentrated and has thinner tails.

4b

```
logprior <- function(theta,alpha,beta){
   return(dgamma(theta,shape=alpha,rate=beta,log=T))
}
loglik <- function(x,theta){
   return(sum(dexp(x,theta,log=T)))
}
logposterior <- function(theta,alpha,beta,x){
   return(dgamma(theta,shape=alpha+length(x),rate=beta+sum(x),log=T))
}
logmarglik <- function(theta,alpha,beta,x){
   return(loglik(x,theta) + logprior(theta,alpha,beta) - logposterior(theta,alpha,beta,x))
}</pre>
```

```
lms = c(logmarglik(1,alpha1,beta1,x),logmarglik(1,alpha2,beta2,x))
unnormProbs = .5*exp(lms)
probs = unnormProbs/sum(unnormProbs)
print(probs)
```

#### ## [1] 0.616943 0.383057

The posterior probability of  $M_1$  is 0.617 so this is more probable, however the data does not strongly suggest that any of the models is better than the other.

#### 4c

The interval can be computed in several ways, but using simulation is simple

```
ndraws = 100000
xTildeDraws = rep(0,ndraws)
for(i in 1:ndraws){
    M = rbinom(1,1,probs[2]) + 1 # Simulate which model to use
    if(M==1){
        theta = rgamma(1,shape=alpha1+length(x),rate=beta1+sum(x))
    } else {
        theta = rgamma(1,shape=alpha2+length(x),rate=beta2+sum(x))
    }
    xTildeDraws[i] = rexp(1,theta)
}
print(quantile(xTildeDraws,probs = c(.05,.95)))
```

```
## 5% 95%
## 0.1201326 7.4266830
```

The interval is roughly (0.12,7.5).