Københavns Universitet LinAlgDat - Project B

Victor Vangkilde Jørgensen - kft410 kft410@alumni.ku.dk Hold 13 Mach

17. maj 2025

Indhold

1	\mathbf{Opg}	av	\mathbf{e}																										
	1.a																												
	1.b																												
	1.c																												
	1.d																												
	1.e																												
2	Opgave																												
	2.a																												
	2.b																												
	2.c																												
	2.d																												
	2.e																												
3																													
	3.a																												
	3.b																												
	3.c																												
	3.d																												
4	Opg	av	e																										

1 Opgave

1.a

Vi forkaster x_1, x_2, x_3 , og bruger deres konstanter til at aflæse M_a til:

$$\left[
\begin{array}{ccc}
 a & -1 & -1 \\
 0 & a-1 & -1 \\
 0 & 2 & a+2
\end{array}
\right]$$

 x_1, x_2, x_3 droppes, da disse kun indgår, når vi ganger M_a med $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

1.b

Vi ser først på, om T_a er injektiv. En transformation er injektiv, hvis kernen af transformationen kun er $\{0\}$. Det vil sige, at kun nulvektoren transformeret giver nulvektoren.

$$\begin{bmatrix} a & -1 & -1 & | & 0 \\ 0 & a - 1 & -1 & | & 0 \\ 0 & 2 & a + 2 & | & 0 \end{bmatrix} \cdot \frac{1}{a - 1} \rightsquigarrow \begin{bmatrix} a & -1 & -1 & | & 0 \\ 0 & 1 & -\frac{1}{a - 1} & | & 0 \\ 0 & 2 & a + 2 & | & 0 \end{bmatrix} \longrightarrow \frac{1}{a - 1} \longrightarrow \frac{1}{a - 1} \begin{bmatrix} a & -1 & -1 & | & 0 \\ 0 & 1 & -\frac{1}{a - 1} & | & 0 \\ 0 & 1 & -\frac{1}{a - 1} & | & 0 \\ 0 & 0 & \frac{a^2 + a}{a - 1} & | & 0 \end{bmatrix} \xrightarrow{\cdot \frac{a - 1}{a^2 + a}} \sim \begin{bmatrix} a & -1 & -1 & | & 0 \\ 0 & 1 & -\frac{1}{a - 1} & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix} \xrightarrow{+r_3} \xrightarrow{+r_3} \xrightarrow{+r_3} \xrightarrow{+r_3} \xrightarrow{+r_3} \xrightarrow{+r_3} \xrightarrow{+r_3} \xrightarrow{-r_3} \longrightarrow \begin{bmatrix} a & -1 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix} \xrightarrow{\cdot \frac{1}{a}} \xrightarrow{\sim} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}$$

Da ker $T_a = \{0\}$, er T_a injektiv.

 T_a er surjektiv, hvis dimensionen af det udspændte rum er det samme som dimensionen af transformationsmatricen.

$$dim(ran(T_a)) = rank(T_a) = 3$$

da vi har 3 pivotelementer.

Da søjlerne i T_a udspænder hele \mathbb{R}^3 , er T_a surjektiv. T_a er dermed bijektiv, da den både er injektiv og surjektiv.

Vi bestemmer nu T_a^{-1} , ved at sætte enhedsmatricen på til højre, og reducere med Gauss-Jordan:

$$\begin{bmatrix} a & -1 & -1 & 1 & 0 & 0 \\ 0 & a - 1 & -1 & 0 & 1 & 0 \\ 0 & 2 & a + 2 & 0 & 0 & 1 \end{bmatrix} \cdot \frac{1}{a - 1} \rightsquigarrow \begin{bmatrix} a & -1 & -1 & 1 & 0 & 0 \\ 0 & 1 & -\frac{1}{a - 1} & 0 & 0 & 1 \\ 0 & 2 & a + 2 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-2r_2} \rightsquigarrow$$

$$\begin{bmatrix} a & -1 & -1 & 1 & 0 & 0 \\ 0 & 1 & -\frac{1}{a-1} & 0 & \frac{1}{a-1} & 0 \\ 0 & 0 & \frac{a^2+a}{a-1} & 0 & -\frac{2}{a-1} & 1 \\ 0 & 1 & 0 & \frac{1}{a-1} & 0 & \frac{1}{a-1} & 0 & \frac{1}{a-1} & 0 \\ 0 & 0 & 1 & 0 & 0 & \frac{1}{a-1} & 0 & \frac{1}{a-1} & 0 \\ 0 & 0 & 1 & 0 & -\frac{2}{a^2+a} & \frac{a-1}{a^2+a} \\ 0 & 1 & 0 & 0 & \frac{a+2}{a^2+a} & \frac{1}{a^2+a} \\ 0 & 0 & 1 & 0 & -\frac{2}{a^2+a} & \frac{a-1}{a^2+a} \\ 0 & 1 & 0 & 0 & \frac{1}{a} & \frac{1}{a^2+a} & \frac{1}{a^2+a} \\ 0 & 1 & 0 & 0 & \frac{1}{a} & \frac{1}{a^2+a} & \frac{1}{a^2+a} \\ 0 & 1 & 0 & 0 & \frac{a+2}{a^2+a} & \frac{1}{a^2+a} \\ 0 & 1 & 0 & 0 & \frac{a+2}{a^2+a} & \frac{1}{a^2+a} \\ 0 & 0 & 1 & 0 & -\frac{2}{a^2+a} & \frac{a-1}{a^2+a} \\ 0 & 0 & 1 & 0 & -\frac{2}{a^2+a} & \frac{a-1}{a^2+a} \end{bmatrix} \xrightarrow{\cdot a - 1} \xrightarrow{s - 1}$$

$$T_a^{-1} = \begin{bmatrix} \frac{1}{a} & \frac{1}{a^2 + a} & \frac{1}{a^2 + a} \\ 0 & \frac{a+2}{a^2 + a} & \frac{1}{a^2 + a} \\ 0 & -\frac{2}{a^2 + a} & \frac{a-1}{a^2 + a} \end{bmatrix}$$

1.c

Vi opstill igen T_a , hvor a = -1:

$$\begin{bmatrix} -1 & -1 & -1 & | & 0 \\ 0 & -1 - 1 & -1 & | & 0 \\ 0 & 2 & -1 + 2 & | & 0 \end{bmatrix} reducer \rightsquigarrow \begin{bmatrix} -1 & -1 & -1 & | & 0 \\ 0 & -2 & -1 & | & 0 \\ 0 & 2 & 1 & | & 0 \end{bmatrix} + r_2 \rightsquigarrow \begin{bmatrix} -1 & -1 & -1 & | & 0 \\ 0 & 2 & 1 & | & 0 \end{bmatrix} + r_2 \\ \begin{bmatrix} -1 & -1 & -1 & | & 0 \\ 0 & -2 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \cdot (-1) \rightsquigarrow \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 2 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \cdot \frac{1}{2} \rightsquigarrow \\ \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 1 & \frac{1}{2} & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & \frac{1}{2} & | & 0 \\ 0 & 1 & \frac{1}{2} & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Vi aflæser løsningerne til:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{bmatrix}$$

Kigger vi nu på baserne for spannet af T_{-1} , ser vi, at vi kun skal benytte x_1 og x_2 , da x_3 er en fri variable.

$$span(T_{-1}) = \left\{ \begin{bmatrix} -1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\-2\\2 \end{bmatrix} \right\} \Rightarrow dim(ran(T_{-1})) = 2$$

hvilket igen giver mening, da vi har 2 pivotelementer.

Da vi valgte at løse efter nulrummet for T_{-1} , har vi nu de løsninger, som udspænder netop dette:

$$ker(T_{-1}) = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{bmatrix} \Rightarrow dim(ker(T_{-1})) = 1$$

Så dimensionen af $ran(T_{-1}) = 2$, og dimensionen af $ker(T_{-1}) = 1$

Vi gør det samme for a = 0:

$$\begin{bmatrix} 0 & -1 & -1 & 0 \\ 0 & (0-1) & -1 & 0 \\ 0 & 2 & (0+2) & 0 \end{bmatrix} reducer \rightsquigarrow \begin{bmatrix} 0 & -1 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 2 & 2 & 0 \end{bmatrix} -r_1 \rightsquigarrow \begin{bmatrix} 0 & -1 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 2 & 2 & 0 \end{bmatrix} -r_1 \rightsquigarrow \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Her kan løsningerne aflæses til:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

Vi har 1 pivotelement, som vi finder i 2. søjle.

$$\begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} = ran(T_0) \Rightarrow dim(ran(T_0)) = 1$$

og for kernen:

$$\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \right\} = ker(T_0) \Rightarrow dim(ker(T_0)) = 2$$

1.d

Ganger vi M_{-1} med sig selv, får vi:

$$M_{-1}^2 = M_{-1} \cdot M_{-1} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & -2 & -1 \\ 0 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & -1 & -1 \\ 0 & -2 & -1 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & -2 & -1 \end{bmatrix}$$

og gør vi det endnu en gang, får vi:

$$M_{-1}^{3} = M_{-1}^{2} \cdot M_{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & -2 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & -1 & -1 \\ 0 & -2 & -1 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & -2 & -1 \\ 0 & 2 & 1 \end{bmatrix}$$

hvilket bringer os tilbage hvor vi startede.

Hvis vi gentog denne process, ville vi blot skifte fortegn hver gang vi ganger M_{-1} på. Vi kan dermed sige:

$$M_{-1}^{n} = \begin{cases} M_{-1} & hvis \ n \ er \ lige \\ M_{-1}^{2} & hvis \ n \ er \ ulige \end{cases} \ \forall n \in \mathbb{N}$$

Ganger vi M_0 med sig selv, får vi:

$$M_0^2 = M_0 \cdot M_0 = \begin{bmatrix} 0 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{bmatrix}$$

Vi ser, at hvis vi ganger denne matrice med sig selv, får vi blot den samme matrice igen. Da matricen er uændret, kan vi beskrive dette som:

$$M_0^n = M_0 \ \forall n \in \mathbb{N}$$

1.e

 $T_a(\mathcal{L}) \subseteq \mathcal{L}$: Anvend T_a på \mathcal{L} :

$$T_a(\mathcal{L}) = \begin{bmatrix} at & -t & -(-2t) \\ 0 & (a-1)t & -(-2t) \\ 0 & 2t + (a+2)(-2t) \end{bmatrix} = \begin{bmatrix} (a+1)t \\ (a+1)t \\ -2(a+1)t \end{bmatrix} = (a+1)t(1,1,-2).$$

Da (a+1) t $(1,1,-2) \in L$ for alle t, følger

$$T_a(L) \subseteq L$$
.

- **2.** Bevis for $T_a(P) \subseteq P$.
 - a) Lad $\mathbf{x} = (x_1, x_2, x_3) \in P$. Så er

$$x_2 + x_3 = 0.$$

b) Skriv $\mathbf{y} = T_a(\mathbf{x}) = (y_1, y_2, y_3)$. Ifølge definitionen:

$$y_2 = (a-1)x_2 - x_3,$$

 $y_3 = 2x_2 + (a+2)x_3.$

c) Beregn

$$y_2 + y_3 = ((a-1)x_2 - x_3) + (2x_2 + (a+2)x_3) = (a+1)x_2 + (a+1)x_3 = (a+1)(x_2 + x_3).$$

d) Da $x_2 + x_3 = 0$, får vi $y_2 + y_3 = 0$. Dermed $\mathbf{y} \in P$ og

$$T_a(P) \subseteq P$$
.

2 Opgave

2.a

Vi opstiller et ligningssystem i form af en totalmatrix, hvor vi sætter u_1, u_2, u_3 lig hhv. v_1, v_2, v_3 , og finder løsningerne til disse, ved brug af Gauss-Jordan elimination.

$$u_1 + u_2 + u_3 = v_1 \Leftrightarrow$$

$$\begin{bmatrix} 2 & 0 & 1 & 7 \\ 1 & 1 & -1 & -2 \\ -1 & -1 & 2 & 3 \\ 1 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{\cdot 2} \sim \begin{bmatrix} 2 & 0 & 1 & 7 \\ 2 & 2 & -2 & -4 \\ 2 & 2 & -4 & -6 \\ 2 & 2 & 4 & 2 \end{bmatrix} \xrightarrow{-r_1} \sim \begin{bmatrix} 2 & 0 & 1 & 7 \\ 0 & 2 & -3 & -11 \\ 0 & 2 & -5 & -13 \\ 0 & 2 & 3 & -5 \end{bmatrix} \xrightarrow{-r_2} \begin{bmatrix} 2 & 0 & 1 & 7 \\ 0 & 2 & -3 & -11 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 6 & 6 \end{bmatrix} \xrightarrow{+3r_3} \xrightarrow{+3r_3} \begin{bmatrix} 2 & 0 & 1 & 7 \\ 0 & 2 & -3 & -11 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\cdot \frac{1}{2}} \sim \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 2 & 0 & 8 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\cdot \frac{1}{2}} \sim \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Vores første kolonne i $P_{B\leftarrow C}$ er dermed: $\begin{bmatrix} 3 \\ -4 \\ 1 \\ 0 \end{bmatrix}$

$$u_1 + u_2 + u_3 = v_2 \Leftrightarrow$$

$$\begin{bmatrix} 2 & 0 & 1 & | & -1 \\ 1 & 1 & -1 & | & 0 \\ -1 & -1 & 2 & | & -1 \\ 1 & 1 & 2 & | & -3 \end{bmatrix} \stackrel{\cdot}{\cdot 2} \sim \begin{bmatrix} 2 & 0 & 1 & | & -1 \\ 2 & 2 & -2 & | & 0 \\ 2 & 2 & -4 & | & 2 \\ 2 & 2 & 4 & | & -6 \end{bmatrix} \stackrel{\cdot}{-r_1} \sim \begin{bmatrix} 2 & 0 & 1 & | & -1 \\ 0 & 2 & -3 & | & 1 \\ 0 & 2 & -3 & | & 1 \\ 0 & 2 & -5 & | & 3 \\ 0 & 2 & 3 & | & -5 \end{bmatrix} \stackrel{\cdot}{-r_2} \sim \begin{bmatrix} 2 & 0 & 1 & | & -1 \\ 0 & 2 & -3 & | & 1 \\ 0 & 0 & -2 & | & 2 \\ 0 & 0 & 6 & | & -6 \end{bmatrix} \stackrel{\cdot}{+3r_3} \stackrel{\cdot}{+3r_3} = \begin{bmatrix} 2 & 0 & 1 & | & -1 \\ 0 & 2 & -3 & | & 1 \\ 0 & 0 & -2 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \stackrel{\cdot}{\cdot 12} \sim \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Vores anden kolonne i $P_{B \leftarrow C}$ er dermed: $\begin{bmatrix} 0 \\ -1 \\ -1 \\ 0 \end{bmatrix}$

 $u_1 + u_2 + u_3 = v_3 \Leftrightarrow$

$$\begin{bmatrix} 2 & 0 & 1 & 3 \\ 1 & 1 & -1 & -1 \\ -1 & -1 & 2 & 2 \\ 1 & 1 & 2 & 2 \end{bmatrix} \stackrel{\cdot 2}{\overset{\cdot 2}{\overset{\cdot (-2)}{\cdot (-2)}}} \sim \begin{bmatrix} 2 & 0 & 1 & 3 \\ 2 & 2 & -2 & -2 \\ 2 & 2 & -4 & -4 \\ 2 & 2 & 4 & 4 \end{bmatrix} \stackrel{-r_1}{\overset{-r_1}{\overset{-r_1}{\overset{-r_1}{\cdot (-r_1)}}}} \sim \begin{bmatrix} 2 & 0 & 1 & 3 \\ 0 & 2 & -3 & -5 \\ 0 & 2 & -5 & -7 \\ 0 & 2 & 3 & 1 \end{bmatrix} \stackrel{-r_2}{\overset{-r_2}{\overset{-r_2}{\overset{-r_2}{\cdot (-2)}}}} \begin{bmatrix} 2 & 0 & 1 & 3 \\ 0 & 2 & -3 & -5 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 6 & 6 \end{bmatrix} \stackrel{+3r_3}{\overset{+3r_3}{\overset{-r_2}{\overset{-r_2}{\overset{-r_2}{\overset{-r_2}{\cdot (-1)}}}}} \sim \begin{bmatrix} 2 & 0 & 1 & 3 \\ 0 & 2 & -3 & -5 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{\cdot 1}{\overset{\cdot 1}{\overset{-r_2}{\overset{$$

Vores sidste kolonne i $P_{B \leftarrow C}$ er dermed: $\begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix}$

Sammensætter vi nu vores tre kolonner til en matrix, får vi:

$$P_{B \leftarrow C} = \left[\begin{array}{ccc} 3 & 0 & 1 \\ -4 & -1 & -1 \\ 1 & -1 & 1 \end{array} \right]$$

2.b

$$x = \begin{bmatrix} 7 \\ -2 \\ 3 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \\ -1 \\ -1 \end{bmatrix} + \begin{bmatrix} 3 \\ -1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 9 \\ -3 \\ 4 \\ 0 \end{bmatrix}$$

Da konstanterne foran v i hvert led er 1, og $v_1, v_2, v_3 \in \mathcal{C}$, er koordinaterne for x med henhold til \mathcal{C} :

$$[x]_{\mathcal{C}} = \left[\begin{array}{c} 1\\1\\1 \end{array} \right]$$

Vi benytter vores basisskriftmatrice til at transformere vores koordinater til basen $\mathcal B$ fra

 \mathcal{C} :

$$[x]_{\mathcal{B}} = \begin{bmatrix} 3 & 0 & 1 \\ -4 & -1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -6 \\ 1 \end{bmatrix}$$

2.c

Vi ganger kolonne 2 i vores basisskriftmatrice på u_1 og u_2 :

$$-1 \cdot u_1 + (-1) \cdot u_2 = -1 \cdot \begin{bmatrix} 0 \\ 1 \\ -1 \\ 1 \end{bmatrix} + (-1) \cdot \begin{bmatrix} 1 \\ -1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ -1 \\ -3 \end{bmatrix}$$

Vi får v_2 , så v_2 må dermed række spannet af u_2 , u_3 .

Mangler at lave resten af opgaven

- **2.**d
- **2.e**
- 3
- 3.a

Vi får givet, at koordinatforskydningen svarer til:

$$\begin{bmatrix} s_1 - c_1 \\ s_2 - c_2 \\ s_1 - c_1 \\ s_2 - c_2 \end{bmatrix}$$

Tilføjer vi forskydningen til vores nuværende koordinater, kan vi beskrive spillerens nye position som:

$$\begin{bmatrix} c_1^F \\ c_2^F \\ s_1^F \\ s_2^F \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} s_1 - c_1 \\ s_2 - c_2 \\ s_1 - c_1 \\ s_2 - c_2 \end{bmatrix} = \begin{bmatrix} s_1 \\ s_2 \\ 2s_1 - c_1 \\ 2s_2 - c_2 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{bmatrix}$$

3.b

Rotation mod venstre er bestemt som:

$$\begin{bmatrix} s_1^L \\ s_2^L \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix} \begin{bmatrix} s_1 - c_1 \\ s_2 - c_2 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} (s_1 - c_1)cos(\theta) - (s_2 - c_2)sin(\theta) \\ (s_1 - c_1)sin(\theta) + (s_2 - c_2)cos(\theta) \end{bmatrix} = \begin{bmatrix} c_1 + (s_1 - c_1)cos(\theta) - (s_2 - c_2)sin(\theta) \\ c_2 + (s_1 - c_1)sin(\theta) + (s_2 - c_2)cos(\theta) \end{bmatrix} = \begin{bmatrix} c_1 - c_1 \cdot cos(\theta) + c_2 \cdot sin(\theta) + s_1 \cdot cos(\theta) - s_2 \cdot sin(\theta) \\ -c_1 \cdot sin(\theta) + c_2 - c_2 \cdot cos(\theta) + s_1 \cdot sin(\theta) + s_2 \cdot cos(\theta) \end{bmatrix} \Rightarrow \begin{bmatrix} 1 - cos(\theta) & sin(\theta) & cos(\theta) & -sin(\theta) \\ -sin(\theta) & 1 - cos(\theta) & sin(\theta) & cos(\theta) \end{bmatrix}$$

Og som der fremkommer i opgaven, er:

$$\begin{bmatrix} c_1^L \\ c_2^L \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Den endelige matrix for rotation mod venstre er dermed bestemt ved følgende variable:

$$L_{\theta} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 - \cos(\theta) & \sin(\theta) & \cos(\theta) & -\sin(\theta) \\ -\sin(\theta) & 1 - \cos(\theta) & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Vi mindes, at $cos(\theta) = cos(-\theta)$ og $sin(-\theta) = -sin(\theta)$ Rotation mod højre er dermed bestemt som:

$$R_{\theta} = L_{-\theta} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 - \cos(-\theta) & \sin(-\theta) & \cos(-\theta) & -\sin(-\theta) \\ -\sin(-\theta) & 1 - \cos(-\theta) & \sin(-\theta) & \cos(-\theta) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 - \cos(\theta) & -\sin(\theta) & \cos(\theta) & \sin(\theta) \\ \sin(\theta) & 1 - \cos(\theta) & -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

3.c

Ved brug af matrixoperationerne fra python i *project A*, får vi følgende matricer efter vi ganger hhv. 'fremad', 'rotation til venstre' og 'rotation til højre' matricerne på til venstre:

Efter alle 9 multiplikationer fra venste ender vi med postionen af spilleren og sidsen svarende til matricen:

$$\begin{bmatrix} 0.57728 \\ 0.07421 \\ -0.33566 \\ 0.48229 \end{bmatrix}$$

3.d

At gange vores 'rotation mod højre' matrice på sig selv svarer til at gange det antal gange med vinkeln θ , da:

$$R_{\theta 1} \cdot R_{\theta 2} = R_{\theta 1 + \theta 2}$$

og

$$(R_{\theta})^n = \prod_{i=1}^n R_{\theta i} = R_{\theta 1 + \theta 2 + \dots + \theta n}$$

Vi kan dermed beregne $(R_{20})^{18}$ til:

$$(R_{20})^{18} = \prod_{i=1}^{18} R_{20} = R_{20\cdot 18} = R_{360}$$

Med vores nye vinkel beregnet, kan vi nu indsætte 360 på θ -s plads i R_{θ} :

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1-\cos(360) & -\sin(360) & \cos(360) & \sin(360) \\ \sin(360) & 1-\cos(360) & -\sin(360) & \cos(360) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1-1 & 0 & 1 & 0 \\ 0 & 1-1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Således ender vi med enhedsmatricen I_4 .

4 Opgave

Se vedhæftede python-fil.