Análisis espectral y filtrado de batidos

Integrantes:

Andreu, Gonzalo Malpartida, Bryan Pugliese, Facundo

Introducción:

Si f(t) es una función periódica con periodo τ :

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \alpha_n \cos\left(\frac{n\pi t}{\tau} + \phi_n\right)$$

Donde:

$$a_n = \int_{-\tau}^{\tau} f(t) \cos\left(\frac{n\pi t}{\tau}\right) dt$$
 $\alpha_n = \sqrt{a_n^2 + b_n^2}$

$$f(t) = \frac{a_0}{2} + \sum_{n=0}^{\infty} \alpha_n \cos\left(\frac{n\pi t}{\tau} + \phi_n\right) \qquad b_n = \int_{-\tau}^{\tau} f(t) \sin\left(\frac{n\pi t}{\tau}\right) dt \qquad \phi_n = -\arctan\left(\frac{b_n}{a_n}\right)$$

Señal cuadrada:

$$C(t) = \begin{cases} -V_0 & t \in [-\tau, 0) \\ V_0 & t \in [0, \tau) \end{cases}$$

$$\alpha_n = \frac{2V_0(1 - (-1)^n)}{n\pi}$$

Señal parabólica:

$$P(t) = V_0 \left(\frac{t}{\tau}\right)^2 \quad t \in [-\tau, \tau]$$

$$\alpha_n = \frac{4V_0(-1)^n}{(n\pi)^2}$$

Circuito RLC

Anti-resonante

$$\Delta f = \frac{1}{2 \, \pi (R + R_L)C}$$

 $f_0 = \frac{1}{2\pi\sqrt{LC}}$

$$\Delta f = \frac{R + R_L}{2 \, \pi L}$$

Transmisión

$$T(\omega) = \frac{R}{|z|}$$

Batidos

$$V(t) = A.\sin(\omega_1 t) + A.\sin(\omega_2 t) = 2A\cos(\Delta \omega t).\sin(\overline{\omega} t)$$

$$\Delta\omega = \frac{\omega_2 - \omega_1}{2}$$

$$\bar{\omega} = \frac{\omega_2 + \omega_1}{2}$$

Circuito RLC resonante

Parámetros del RLC resonante:

- $R=(750\pm7)\Omega$
- L=(1003 ±5)mH
 - R_L =(243 ±2) Ω
- $f_S = (500,00 \pm 0,05)$ Hz
- $\Delta f = (158 \pm 3) \text{Hz}$
- T_{max} =(0,75±0,01)

Armónico	Capacitancia (nF)	Frecuencia de Res.(HZ)
1	101±4	500±11
2	25,0±1,3	1005±29
3	10,7±0,7	1536±54
4	6,00±0,03	2046±56
5	4,02±0,19	2506±65
6	2,98±0,14	2911±76
7	1,99±14	3562±107

Tabla de capacitancias usadas para filtrar cada armónico de f_s

Circuito sumador

- $r_1 = r_2 = (10.5 \pm 0.4)$
- R=(200±3)
- f_1 =(10844±1)Hz

Circuito RLC anti-resonante

Parámetros:

- R=(7500±70)
- L=(10,0±0,3)mH
 - $R_L = (5.8 \pm 0.1)$
- C=(101,2±0,8)nF
- $f_0 = (5003 \pm 95)$ Hz
- $\Delta f = (210 \pm 4) \text{Hz}$

Todos los extremos para los distintos f_0 , de la señal cuadrada, se encontraron en $f_s = (500,00 \pm 0,05)$

Ejemplo de transmisión vs f; 1º armónico de la señal cuadrada

Armónico	f de máxima transmision (HZ)	
1	500,00 ± 0,05	
2	500,00 ± 0,05	
3	480,00 ± 0,05	
4	480,00 ± 0,05	
5	500,00 ± 0,05	
6	480,00 ± 0,05	

Frecuencia de máxima transmisión para los armónicos en la señal parabólica

A=(0,91 ± 0,09)
$$T_{max} \frac{4}{\pi} = (0,962 \pm 0,004)$$

Respuesta del circuito sumador para una señal triangular

V de entrada y salida vs t, del RLC antiresonane, de dos señales sinusoidales con frecuencias f_1 =(10844 ±1)Hz y f_2 =(5600,5 ± 0,5)Hz

En este caso f_2 =(5005,0 ± 0,1)Hz

Análisis FFT utilizando el osciloscopio, manteniendo fija f_1 y variando la frecuencia baja f_2

Conclusiones:

- Las transmisiones en la señal parabólica no tuvieron el valor esperado. Esto puede deberse a que el ancho de banda del RLC resonante $\Delta f = (158 \pm 3) Hz$ era comparable con $f_s = (500,00 \pm 0,05) Hz$
- El sumador resultó efectivo a la hora de generar batidos, dado que no producía un atenuamiento mayor al 3%. Tampoco variaba la frecuencia o generaba un desfasaje.
- A pesar de que se logró atenuar la señal con $f_{baja}=(5005,5\pm0,5)Hz$ con el circuito RLC anti-resonante, no se logró eliminar completamente esta señal que es lo que se esperaba.