Literaturverzeichnis

- (Balarin et al., 1997) F. Balarin et al: Hardware-Software Co-Design of Embedded Systems – The POLIS Approach. Kluwer Academic Publishers, 1997.
- (Balzert, 1998) Helmut Balzert: Lehrbuch der Software-Technik. Band 2, Spektrum Akademischer Verlag, 1998.
- (Balzert, 2001) Heide Balzert: UML kompakt mit Checklisten. Spektrum Akademischer Verlag, Heidelberg, Berlin, 2001.
- (Bender, 2003) Klaus Bender: Mikroelektronische Steuergeräte. ITM der Technischen Universität München, 2003.
- (Bergerand, 1986) J-L. Bergerand: LUSTRE: un langage déclaratif pour le temps réel. Dissertation, Institut National Polytechnique de Grenoble, Grenoble, Frankreich, 1986.
- (Berry, 1998) Gérard Berry: The Foundations of Esterel. In: G. Plotikin, C. Stirling und M. Tofte (Editoren): Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT Press, 1998.
- (Berthold, 1996) J. Berthold: Unix und Echtzeit? Sonderdruck aus Elektronik-Industrie, Ausgabe 6/1996, Seiten 106–110, Hüthig GmbH Heidelberg, 1996.
- (Betzler, 2001) Klaus Betzler: Elektronische Messdatenverarbeitung. Universität Osnabrück, Juni 2001.
- (Boehm, 1982) Berry Boehm: Software Engineering Economics. Prentice Hall, Seite 40, 1982.
- (Broy et al., 1998) Manfred Broy, Michael von der Beeck, Ingolf Krüger: SOFTBED: Problemanalyse für ein Großverbundprojekt Systemtechnik Automobil Software für eingebettete Systeme. Problemanalyse im Auftrag des BMBF, März 1998.
- (Broy und Pree, 2003) Manfred Broy, Wolfgang Pree: Ein Wegweiser für Forschung und Lehre im Software Engineering eingebetteter Systeme. Informatik Spektrum, Springer-Verlag, Seiten 3–7, Februar 2003.
- (Broy und Scholz, 1998) Manfred Broy, Peter Scholz: Anforderungsspezifikation und Entwurf eingebetteter Softwaresysteme für Anwendungen im Kfz. In: Mobil mit Mikroelektronik und Mikrosystemtechnik, 1998.
- (Boehm und Abts, 2000) Berry Boehm, C. Abts: Software Cost Estimation with Cocomo II. Prentice Hall International, 2000.

- (Bryant, 1986) R.E. Bryant: Graph Based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers, Band 8, Seiten 677–691, 1986.
- (Buchenrieder, 1995) Klaus Buchenrieder: Hardware/Software Codesign An Annotated Bibliography. IT Press, 1995.
- (Bundschuh u. Fabry, 2000) M. Bundschuh, A. Fabry: Aufwandsschätzung von IT-Projekten. MITP-Verlag, 2000.
- (Butenhof, 1997) D. R. Butenhof: Programming with POSIX Threads. Addison-Wesley, 1997.
- (Chodura, 2004) Hartmut Chodura, Peter-Michael Hofmann, Bernhard Kalusche, Jürgen Knoblach, Jochem Spohr und Thomas Weber: Standardisierung im Automotive-Umfeld. Elektronik Automotive, 4/2004.
- (Clarke u. Emerson, 1981) E.M. Clarke und E.A. Emersion: Characterizing Properties of Parallel Programs as Fixpoints. Nummer 85 der Lecture Notes in Computer Science (LNCS), Seiten 169–181, Springer-Verlag, 1981.
- (Clarke u. Schlinglo, 2001) Clarke, Schlinglo: Model Checking. In: Handbook of Automated Reasoning, Band II, Seiten 1637–1790, 2001.
- (David, 1997) R. David: Modeling of Hybrid Systems Using Continuous and Hybrid Petri Nets, Proceedings of the Conference on Petri Nets and Performances Evaluation, Seiten 47–58, Saint Malo, Frankreich, Juni 1997.
- (De Micheli, 1996) Giovanni De Micheli and Mariagiovanna Sami (Editoren): Hardware/Software Co-Design. NATO ASI, Series E: Applied Sciences, Band 310, Kluwer Academic Publishers, 1996.
- (Devooght, 2003) D. Devooght: Betriebssysteme für mobile Systeme. Universität Koblenz-Landau, 2003.
- (Di Febbraro, 2001) A. Di Febbraro, A. Giua, G. Menga: Special Issue on Hybrid Petri Nets. Discrete Event Dynamic Systems, Band 11, Nummer 1 und 2, Januar–April, 2001.
- (Douglas, 1999) B. P. Douglas, G. Booch: Doing Hard Time: Developing Real-Time Systems with UML – Objects, Frameworks and Patterns. Addison-Wesley, 1999.
- (Douglas, 1999a) Bruce Powel Douglas: ROPES: Rapid Object-oriented Process for Embedded Systems. I-Logix Inc., Israel, 1999.
- (Dumke, 1992) Reiner Dumke: Softwareentwicklung nach Maß. Vieweg-Verlag, 1992.
- (Dumke, 1995) Reiner Dumke: Modernes Software Engineering, Vieweg-Verlag, 1995.
- (Emerson u. Halpen, 1986) E.A. Emerson und J.Y. Halpen: Sometimes and Not Never Revisited: On Branching versus Linear Time Temporal Logic. Journal of the ACM, Nummer 33(1), Seiten 151–178, 1986.
- (Emerson, 1990) E.A. Emerson: Handbook of Theoretical Computer Science. Band B, Kapitel 16: Temporal and Modal Logic, Seiten 995–1072. The MIT Press, 1990.
- (Endres, 1977) A. Endres: Analyse und Verifikation von Programmen. Oldenbourg-Verlag, 1977.

- (Ernst et al., 1993) R. Ernst, J. Henkel, T. Benner: Hardware-Software Cosynthesis for Microcontrollers. IEEE Design&Test of Computers, Dezember 1993.(Flynn et al., 2001) Michael J. Flynn, S.F. Oberman: Advanced Computer Arithmetic Design. John Wiley & Sons, 2001.
- (Fränzle, 2002) Martin Fränzle: Eingebettete Systeme I. Fachbereich Informatik der Carl von Ossietzky Universität Oldenburg, 2002.
- (Gajski et al., 1998) D.D. Gajski, F. Fahid, S. Narayan, J. Gong: SpecSyn: An Environment Supporting the Specify-Explore-Refine Paradigm for Hardware/Software System Design. IEEE Transactions on VLSI, März 1998.
- (Grässle et al., 2003) Patrick Grässle, Henriette Baumann, Philippe Baumann: UML projektorientiert Ausblick auf den neuen Standard 2.0. Galileo Press, 2003.
- (Grosu, Stauner, 2002) Radu Grosu und Thomas Stauner: Modular and Visual Specification of Hybrid Systems: An Introduction to HyCharts. Formal Methods in System Design, 21(1): 5–38, 2002.
- (Gunzert, 2003) Michael Gunzert: Komponentenbasierte Softwareentwicklung für sicherheitskritische eingebettete Systeme. Dissertation, Institut für Automatisierungs- und Softwaretechnik (IAS), Universität Stuttgart, Shaker Verlag, 2003.
- (Gupta, DeMicheli, 1993) R.K. Gupta, G. De Micheli: Hardware-Software Cosynthesis for Digital Systems. IEEE Design&Test of Computers, September 1993(Halbwachs, 1991) Nicolas Halbwachs, P. Caspi, P. Raymond und D. Pilaud: The synchronous dataflow programming language Lustre. Proceedings of the IEEE, Band 79, Nummer 9, September 1991.
- (Halbwachs, 1993) Nicolas Halbwachs: Synchronous Programming of Reactive Systems. Kluwer Academic Publishers, 1993.
- (Harel und Pnueli, 1985) David Harel, Amir Pnueli: On the Development of Reactive Systems. In: Logics and Model of Concurrent Systems, Band 13 der NATO ASI Series F: Computer and System Sciences, Seiten 477–498, Springer-Verlag, 1985.
- (Harel, und Politi 1998) David Harel, M. Politi: Modeling Reactive Systems with Statecharts. McGraw-Hill Inc., 1998.
- (Harel, 1987) David Harel: Statecharts: A visual formalism for complex systems. Science of Computer Programming, Nr. 8, 1987.
- (Henzinger, 1996) Thomas A. Henzinger: The Theory of Hybrid Automata. Proceedings of the 11th IEEE Symposium on Logic in Computer Science, 1996.
- (Henzinger et al., 2001) Thomas A. Henzinger, Benjamin Horowitz, und Christoph M. Kirsch: Giotto: A time-triggered language for embedded programming. Proceedings of the First International Workshop on Embedded Software (EMSOFT), Seiten 166–184, Lecture Notes in Computer Science (LNCS) 2211, Springer-Verlag, 2001.
- (Henzinger et al., 2003) Thomas A. Henzinger, Christoph M. Kirsch, Marco A.A. Sanvido und Wolfgang Pree: From Control Models to Real-time Code using Giotto. IEEE Control Systems Magazine, Februar 2003.

- (Huizing und Gerth, 1991) C. Huizing, R. Gerth: Semantics of Reactive Systems in Abstract Time. In: J.W. de Bakker, C. Huizing, W.P. de Roever und G. Rozenberg (Editoren): Real-Time – Theory in Practice, Band 600 der Lecture Notes in Computer Science (LNCS), Seiten 291–314, Niederlande, Juni 1991.
- (Hürten, 1999) R. Hürten: Function Point Analysis. Expert-Verlag, 1999.
- (Kelch, 2003) Rainer Kelch: Rechnergrundlagen von der Binärlogik zum Schaltwerk. Fachbuchverlag Leipzig im Carl Hanser-Verlag, 2003.
- (Kelch, 2003a) Rainer Kelch: Rechnergrundlagen vom Rechenwerk zum Universalrechner. Fachbuchverlag Leipzig im Carl Hanser-Verlag, 2003.
- (Kesten, Pnueli, 1992) Yonit Kesten, Amir Pnuelir: Timed and Hybrid Statecharts and Their Textual Representation. Lecture Notes In Computer Science (LNCS), Band 571, Seiten 591–620, Springer-Verlag, 1992.
- (Klein et al., 1993) M.H. Klein, T. Ralya, B. Pollak, R. Obenza, M. Harbour: A Practitioner's Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems. Kluwer Academic Publishers, 1993.
- (Knöll und Busse, 1991) H.-D. Knöll, J.Busse: Aufwandsschätzung von Software-Projekten in der Praxis. BI-Wissenschafts-Verlag, 1991.
- (Kopetz, 1997) Hermann Kopetz: Real-Time Systems: Design Principles for Distributed Embedded Applications. Kluwer Academic Publishers, 1997.
- (Kopetz et al., 2002) Hermann Kopetz, Günther Bauer: The Time-Triggered Architecture. Proceedings of the IEEE Special Issue on Modeling and Design of Embedded Software, Oktober 2002.
- (Krengel, 1991) Ulrich Krengel: Einführung in die Wahrscheinlichkeitstheorie und Statistik. 3. Auflage, Vieweg-Verlag, 1991
- (Kumar, 1996) S. Kumar, J. Aylor, B.W. Johnson, Wm. A. Wulf: The Codesign of Embedded Systems. Kluwer Academic Publishers, 1996.
- (Lemieux, 2001) Joseph Lemieux: Programming in the OSEK/VDX Environment. GMP Books, 2001.
- (Liggesmeyer, 2002) Peter Liggesmeyer: Software-Qualität Testen, Analysieren und Verifizieren von Software. Spektrum Akademischer Verlag, 2002.
- (Lilge, Gralla, 1992) T. Lilge, Ch. Gralla: Drei Echtzeitbetriebssysteme für die digitale Regelung im Vergleich. Echtzeit '92 Kongressvorträge, Seiten 253–262, 1992.
- (Manna et al. 1992) Z. Manna, A. Pnueli: The Temporal Logic of Reactive and Concurrent Systems. Band 1, Springer-Verlag, 1992.
- (Märtin, 2003) Christian Märtin: Einführung in die Rechnerarchitektur Prozessoren und Systeme. Fachbuchverlag Leipzig im Carl Hanser-Verlag, 2003.
- (McMillan, 1993) Kenneth L. McMillan: Symbolic Model Checking. Dissertation, Carnegie Mellon Universität, USA, 1993.
- (Möller und Paulish, 1993) K.H. Möller, D.J. Paulish: Software-Metriken in der Praxis. Oldenbourg-Verlag, 1993.

- (Möller, 1996) K.H. Möller: Ausgangsdaten für Qualitätsmetriken Eine Fundgrube für Analysen. In: C. Ebert und R. Dumke (Editoren): Softwaremetriken in der Praxis. Seiten 105–116, Springer-Verlag, 1996.
- (Neugebauer, 2004) Stefan Neugebauer: Entwicklung eines graphischen Mikrocontroller- und Basissoftwareemulators nach AUTOSAR-Spezifikation. Diplomarbeit, Fachbereich für Informatik, Fachhochschule Landshut, November 2004.
- (Oestereich, 1997) Bernd Oestereich: Objektorientierte Softwareentwicklung mit UML. 3. Auflage, Oldenbourg-Verlag, 1997.
- (Oestereich, 2004) Bernd Oestereich: Die UML 2.0 Kurzreferenz für die Praxis. 3. Auflage, Oldenbourg-Verlag, München, 2004.
- (Peyton Jones, 1989) S. Peyton Jones: Parallel Implementations of Functional Pogramming Languages. The Computer Journal, 32(2): Seiten 175–186, 1989.
- (Plauger, 1999) P.J. Plauger: Embedded C++. Seminar anlässlich der Embedded Systems Konferenz, Chicago, Illinois, USA, März 1999.
- (Pree et al., 2003) Wolfgang Pree, Sebastian Fischmeister, Guido Menkhaus, Gerald Stieglbauer: Middleware für eingebettete Systeme. Seiten 11–13, NOEO-Wissenschaftsmagazin Salzburger Bildungsund Forschungseinrichtungen, Ausgabe 3/2003, 2003.
- (Rozenbeg, 1998) G. Rozenberg, F. Vaandrager (Editoren): Lectures on Embedded Systems. Band 1494 der Lecture Notes in Computer Science (LNCS). Springer-Verlag, 1998.
- (Rozenblit, 1995) Jerzy Rozenblit and Klaus Buchenrieder: Codesign: Computer Aided Software/Hardware Engineering. IEEE Press, 1995.
- (Rosenstiel, 2003) Wolfgang Rosenstiel: Abschlussbericht DFG-Schwerpunktprogramm 1040: Entwurf und Entwurfsmethodik eingebetteter Systeme. Universität Tübingen, 1997–2003.
- (Schiefer, 2004) Gunther Schiefer, Rebecca Bulander, Tamara Högler: Vergleich der Betriebssysteme mobiler Systeme. Institut AIFB, Universität Karlsruhe (TH), Untersuchung im Rahmen des Projektes MoMa/Mobiles Marketing zum Programm MobilMedia des Bundesministeriums für Wirtschaft und Arbeit (BMWA), 2004.
- (Scholz, 1998) Peter Scholz: Design of Reactive Systems and their Distributed Implementation. Dissertation, Technischer Bericht TUM-I9821 der Fakultät für Informatik der Technischen Universität München, August 1998.
- (Scholz, 2001) Peter Scholz: Incremental Design of Statechart Specifications. Science of Computer Programming 40 (2001), Seiten 119–145, Elsevier Science B.V., 2001.
- (Schürmann, 2001) Bernd Schürmann: Eingebettete Systeme. AG Entwurfsmethodik eingebetteter Systeme der Universität Kaiserslautern, 2001.
- (Selic, 1994) Bran Selic, Paul T. Ward, Garth Gullekson: Real Time Object Oriented Modeling. John Wiley & Sons, Februar 1994.
- (Siemens, 1994) Siemens AG: Software eine Schlüsseltechnologie mit großer Breitenwirkung. Dialog intern, Juli 1994, Siemens AG,

- (Simon, 1999) D. Simon: An embedded software primer. Addison-Wesley, 1999.
- (Spiegel, 2003) Spiegel Online: Flugsicherheit: Autopilot soll Terrorakte vereiteln. Spiegelnet AG, 2003.
- (Spillner und Linz, 2003) Andreas Spillner, Tilo Linz: Basiswissen Softwaretest. dpunkt.verlag, Heidelberg, 2003.
- (Stallings, 2000) William Stallings: Computer Organization and Architecture: Designing for Performance. 5. Ausgabe, Prentice-Hall, Upper Saddle River, New Jersey, 2000.
- (Stankovic, 1998) J.A. Stankovic, K. Ramamritham: Hard Real-Time Systems. IEEE Computer Society Press, 1988.
- (Stauner, 2001) Thomas Stauner: Systematic Development of Hybrid Systems. Dissertation, Technische Universität München, 2001.
- (Stelter und Ulrich, 2003) Philipp Stelter und Helle D. Ulrich: Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature, Band 425, Seiten 188–191, 11. September 2003.
- (Stieglbauer, 2003) Gerald Stieglbauer: Embedded Software Engineering: Model-Based Development of Embedded Control Systems with Giotto and Simulink. Diplomarbeit, Universität Salzburg, BMW Group München, 2003.
- (Storey, 1996) N. Storey: Safety-Critical Computer Systems. Prentice-Hall, 1996.
- (Tanenbaum, 2001) Andrew S. Tanenbaum: Computerarchitektur Strukturen, Konzepte, Grundlagen. Pearson Education Deutschland, 2001.
- (Timmermann, 1997) Martin Timmermann und Jean-Christophe Monfret: Windows NT Real-Time Extensions: an Overview. Real-Time Magazine, 2/1997.
- (Windriver, 1993) WindRiver: VxWorks Product Information. WindRiver Systems Inc., 1993.
- (Wolf, 2001) W. Wolf: Computers as Components: Principles of Embedded Computing System Design. Morgan Kaufmann Publishers, 2001.
- (Zargham, 1996) Mehdi R. Zargham: Computer Architecture Single and Parallel Systems. Prentice Hall, 1996.

Sachverzeichnis

\mathbf{A}	C
A/D-Wandler18	C/C++77
ABRO-Spezifikation 111	C0-Text
Airbag7	C1-Test
Airbus 173	Caching 60
AJACS 94	CDC 88
Aktoren21	CLDC 89
Aktuatoren21	Codegenerierung116
Aktuelle Trends 2	COSYMA158
Anweisungsüberdeckung 193	Crossentwicklung 64
Anwendungsgebiete6	CTL 198
Äquivalenzklassenbildung 192	CTL* 198
Architekturen für	
Betriebssysteme44	D
Argos	D
Ariane 5 174	D/A-Wandler17
ASIC14	Datenfluss
ASIP 13	Deadlock31
ASQF200	Debugging
Ausfall180	Determinismus
Ausfallrate 180	DIN 44 300
Ausnahmebehandlungen 80	DM-Wandler 18
Automobilbau7	DSP
AUTOSAR 215	dynamische Redundanz182, 183
Avionik7	aynamisono noumamismos, res
_	${f E}$
В	
Pagia Clask 110	EC++
Basic Clock	Echtzeit39
Bedingungsüberdeckung 194 Benutzerschnittstelle 21	Echtzeitanwendungen , Java 84
	Echtzeitbetrieb
Betriebssystem	Echtzeitbetriebssystem,
Betriebssystem, Aufgaben 43	Anforderungen 47
Betriebssystem, Komponenten . 44 Black-Box Test 192	Echtzeitbetriebssysteme,
	Unterschiede
Booch	Echtzeitsystem
Broadcasting106	EDF 58

Embedded C++78	HIS217
Embedded Java86	HW/SW-Codesign156
Embedded Linux72	Hybride Statecharts167
Entwurf eingebetteter Systeme.23	Hybride Systeme164
ereignisgesteuertes System41	Hybriden Automaten167
Error175	Hybriden Petri-Netzen167
Esterel99	hybrides System9
Beispiel111	HyCharts167
Deklarationen106	
Determinismus104	I
Instruktionen109	1
Probleme112	IMP90
Semantik111	Implementierung23
Esterel Studio117	Inspektion195
externe Sensoren20	interaktives System3, 4
Extreme Programming201	interne Sensoren20
	interrupt53
F	intuitive Testfallermittlung192
•	ISO/IEC 781690
Failure175	ISO/IEC 9126174
Fault175	
FCFS56	J
Firmware42	_
FMEA187	J2ME87
Formale Methoden141	JamaicaVM97
Foundation Profile88	Java83
FPGA14	Java, Echtzeiterweiterungen93
Freqzenzteiler51	JavaCard91
Funktionstest192	JavaCard Applets92
Funktionsüberdeckung192	JNI94
G	K
Gefahr186	Kausalitätszyklen113
Gefahrenanalyse186	Kernel 53
Giotto125	Klassifikation eingebetteter
Beispiel127	Systeme4
Driver131	Klassifikationsbaum194
Modes131	KobrA162
Ports130	Kohärenz113
Scheduling134	Konstruktive Semantik115
Tasks130	Kontrolleinheit12
Timing134	Korrektheit23, 176
Grenzrisiko181	Kripke-Struktur198
Grenzwertanalyse192	KVM89
Grobarchitektur11	
TT	\mathbf{L}
Н	Linux-RT49
harte Echtzeitbedingung40	Liveness-Eigenschaft197
Herausforderungen25	logische Korrektheit 115

LTL 198	POSIX 63,	70
Lurette 124	Priorität	58
Lustre118	Prioritätssteuerung	56
Lustre, Operatoren 120	Process Controll Block	
LynxOS 49	Prozess 44,	53
•	Prozesse	53
M	Prozesspriorität	
M	Prozesszustände	
MARMOT 161	Prüftechniken1	
Mechatronik9		
mechatronischen System 9	0	
Mehrfachvererbung	Q	
MIDP	QNX 50,	70
Mobile Betriebssysteme 66	QNX, Dateisystem-Manager	
Mobile Systeme 66	QNX, Geräte-Manager	
Model Checking 196, 197	QNX, Photon microGUI	
Multitasking54	QNX, Power-Manager	
kooperativ55	QNX, Programmieren	
verdrängend55	QNX, Prozess-Manager	
Multithreading 29	(,gg	
	n	
™ T	R	
\mathbf{N}	Rate	59
Namensräume	reaktives System	
Nebenläufigkeit 27, 142	Reaktives System	
Nebenläufigkeit, Modelle 32	Real-Time-Core Erweiterung	
Nicht-Determinismus5	redundante Hardware	
NIST	redundante Software	
11151	Redundanz	
	Regelstrecke	
O	Review	
OMT145	Risiko	
OOSE	RMS	
OSEK 213	ROOM	
OSER213	ROOM Chart	
_	ROOM, Echtzeit	
P	Round Robin	
D	RTSJ	
Paging	RTTI	
Palm OS	Rückwärtszähler	
parallele Kopplung 185	RUP	
Parallelkomposition	-	
Partitionierung	C	
PCM-Wandler	\mathbf{S}	
perfekte Sychronie	Safety-Eigenschaft	107
perfekte Synchronie	Scheduler	
Perfekte Synchronie	Scheduling	
Peripherie	Strategie	
Personal Basis Profile 88	Sensor	
Personal Java	Sensorik	
Personal Profile	Sensortypen	
POLIS 158	sensortypen	∠∪

serielle Kopplung184	\mathbf{U}
sicherheitskritisch5	_
Signale, Esterel108	UML145, 201
Signalfluss165	UML 2.0146
Signalverarbeitungskette17	Unfall187
Smart Cards90	Unified Modeling Language145
Softwarequalität174	Unterbrechung53, 57
Spezifikation23	
Statecharts99, 142	${f V}$
Statecharts, Dekommposition.144	•
Statecharts, Komposition143	Validierung176
Statecharts, Semantik143	Verfügbarkeit179
statische Redundanz 182, 183	Verifikation141, 176, 196
Steuergerät1, 9	Verklemmung31
STL82	Verklemmungsbedingungen32
Strukturbestandteile10	Verteilte Systeme34
Strukturtest193	verteiltes System9
Swapping60	V-Modell201, 202
Symbian OS67	V-Modell XT205
symbolisches Model-Checking	VULCAN158
199	VxWorks49, 61
synchrone Sprachen98	ŕ
Synchrone Sprachen98	\mathbf{W}
Synchronisation31	VV
System8	Walkthrough195
	Wasserfall-Modell201
T	weiche Echtzeitbedingung40
_	White-Box Test193
Target Test194	Wind Microkernel63
Task53	Windows CE69
Task Control Block53	Windows CE, Multitasking69
TAV200	Windows CE, Programmierung 69
Templates81	Windows CE,
Temporale Logik198	Speichermanagement69
Testdaten191	Wirkungskette11
Testen190	Wirkungsprinzipien von Sensoren
Testfall191	19
Testobjekt190	
Testprozess191	Z
Testszenario191	
Theorembeweiser199	
	Zeitgeber50
Timing-Diagramme	Zeitgeber50 zeitgesteuertes System35, 41
transformationelles System1, 3	
transformationelles System1, 3 TTA35	zeitgesteuertes System35, 41
transformationelles System1, 3	zeitgesteuertes System35, 41 Zeitschranken40