# Lojik Tasarım

Ders 6

Kaynak:

M.M. Mano, M.D. Ciletti, "Digital Design with An Introduction to Verilog HDL"

## Beş Değişkenli Karnough Diyagramı

Beş değişkenli çözümlemede 2<sup>5</sup>=32 durum bulunmaktadır.



| d, e                |    |    |    |    |
|---------------------|----|----|----|----|
| <i>b</i> , <i>c</i> | 00 | 01 | 11 | 10 |
| 00                  | 16 | 17 | 19 | 18 |
| 01                  | 20 | 21 | 23 | 22 |
| 11                  | 28 | 29 | 31 | 30 |
| 10                  | 24 | 25 | 27 | 26 |

a=1

## Beş Değişkenli Karnough Diyagramı

 $f(a,b,c,d,e) = \sum (0,2,4,6,9,13,21,23,25,29,31)$  lojik ifadesini Karnough haritası yöntemi ile sadeleştiriniz.

| d, e | a=0 |    |    |    |  |
|------|-----|----|----|----|--|
| b, c | 00  | 01 | 11 | 10 |  |
| 00   | 0   | 1  | 3  | 2  |  |
| 01   | 4   | 5  | 7  | 6  |  |
| 11   | 12  | 13 | 15 | 14 |  |
| 10   | 8   | 9  | 11 | 10 |  |

| d, e | a=1 |    |    |    |
|------|-----|----|----|----|
| b, c | 00  | 01 | 11 | 10 |
| 00   | 16  | 17 | 19 | 18 |
| 01   | 20  | 21 | 23 | 22 |
| 11   | 28  | 29 | 31 | 30 |
| 10   | 24  | 25 | 27 | 26 |

$$f = a'b'e' + ace + bd'e$$

# Fazla değişkenli lojik fonksiyonlar

- 6 değişkenli bir fonksiyonda 2<sup>6</sup>=64 değişik durum bulunmaktadır
- 6 ve daha fazla değişkene sahip lojik fonksiyonların basitleştirilmesinde
   Karnough haritası yöntemini kullanmak zor ve karmaşık olabilir.
- Bu nedenle bu tür fonksiyonların sadeleştirilmesinde farklı yöntemler tercih edilir.
- İlerleyen derslerde farklı yöntemlere değinilecektir.

## Farketmez (etkisiz) Koşullar (Don't Care)

Aşağıda verilen doğruluk tablosu verilen lojik fonksiyonu sadeleştiriniz

| a | b | C | d | f |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 |



$$f = bd' + b'd + cd$$

# Farketmez (etkisiz) Koşullar (Don't Care)

Verilen her iki lojik ifade aynıdır

$$f(w, x, y, z) = \sum (1,3,7,11,15)$$
$$d(w, x, y, z) = \sum (0,2,5)$$

$$f(w, x, y, z) = \sum_{m} (1,3,7,11,15) + \sum_{d} (0,2,5)$$



$$f = yz + w'x'$$

### Örnek:

- En anlamlı biti a en az anlamlı biti d olan ve girişleri abcd olarak isimlendirilmiş bir lojik sisteme BCD sayılar uygulanmaktadır. Sisteme Uygulanan sayı 4'den küçükse 0, diğer durumlarda ise 1 üretmektedir. İlgili lojik sistemin
  - a) Doğruluk tablosunu oluşturunuz
  - b) Karnough haritası yöntemi ile sadeleştiriniz
  - c) Sadeleştirilmiş ifadenin lojik devresini çiziniz

| a | b | c | d | f |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 |   |
| 0 | 0 | 0 | 1 |   |
| 0 | 0 | 1 | 0 |   |
| 0 | 0 | 1 | 1 |   |
| 0 | 1 | 0 | 0 |   |
| 0 | 1 | 0 | 1 |   |
| 0 | 1 | 1 | 0 |   |
| 0 | 1 | 1 | 1 |   |
| 1 | 0 | 0 | 0 |   |

| c, d<br>a, b | 00 | 01 | 11 | 10 |
|--------------|----|----|----|----|
| 00           |    |    |    |    |
| 01           |    |    |    |    |
| 11           |    |    |    |    |
| 10           |    |    |    |    |

## Faktorizasyon

- Bir lojik ifadede bir değişkenin, değişken grubunun ve bir grubun kısmi parantez dışına alınarak lojik ifadenin tamamının ya da bir kısmının çarpanlarına ayrılması işlemidir.
- Faktorizasyon genellikle minimumlaştırmadan sonra uygulanır.
- Bazı fonksiyonlar miimumlaştırılamaz haldeyken bile faktorizasyon uygulanabilir.

$$f = ab'c' + a'bc' + a'b'c + abc$$

$$f = a(b'c' + bc) + a'(bc' + b'c)$$

$$f = a(b \oplus c)' + a'(b \oplus c)$$

$$ax' + a'x = a \oplus x$$

$$f = a \oplus (b \oplus c)$$

Toplamların çarpımı ve Çarpımların toplamları biçimindeki ifadelerin sadeleştirilmesi

f = b'd' + b'c' + a'c'd lojik ifadesini doğruluk tablosunu oluşturunuz

| а | b | c | d | $\int f$ |
|---|---|---|---|----------|
| 0 | 0 | 0 | 0 |          |
| 0 | 0 | 0 | 1 |          |
| 0 | 0 | 1 | 0 |          |
| 0 | 0 | 1 | 1 |          |
| 0 | 1 | 0 | 0 |          |
| 0 | 1 | 0 | 1 |          |
| 0 | 1 | 1 | 0 |          |
| 0 | 1 | 1 | 1 |          |
| 1 | 0 | 0 | 0 |          |
| 1 | 0 | 0 | 1 |          |
| 1 | 0 | 1 | 0 |          |
| 1 | 0 | 1 | 1 |          |
| 1 | 1 | 0 | 0 |          |
| 1 | 1 | 0 | 1 |          |
| 1 | 1 | 1 | 0 |          |
| 1 | 1 | 1 | 1 |          |

### Toplamların çarpımı ve Çarpımların toplamları biçimindeki ifadelerin sadeleştirilmesi

f = b'd' + b'c' + a'c'd

İfadenin değili yada tümleyeni (f') doğruluk tablosundaki 0 konumları değerlendirilerek bulunabilir

| а | b | с | d | f |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |



$$f' = ab + cd + bd'$$

# Çarpımların toplamları biçimindeki ifadelerin sadeleştirilmesi

$$f' = ab + cd + bd'$$

Lojik ifadesinin tümleyenini hesaplarsak fonksiyonun kendisi elde edilir

DeMorgan kuralı uygulanırsa;

$$f = (a' + b')(c' + d')(b' + d)$$
  
şeklinde elde edilir



Toplamların çarpımı ve Çarpımların toplamları biçimindeki ifadelerin sadeleştirilmesi





### Toplamların çarpımı ve Çarpımların toplamları biçimindeki ifadelerin sadeleştirilmesi

$$F(x, y, z) = \Sigma(1, 3, 4, 6)$$

$$F(x, y, z) = \Pi(0, 2, 5, 7)$$

Table 3.1 Truth Table of Function F

| X | У | Z | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |



$$F = x'z + xz'$$

$$F' = xz + x'z'$$



$$F = (x' + z')(x + z)$$

## Lojik Devrelerin NAND ve NOR Kapıları ile Gerçeklenmesi (NAND – NOR Lojik Teknikleri)

- Sayısal devreler VE ve VEYA kapılarından çok VEDEĞİL (NAND) ve VEYADEĞİL (NOR) kapıları ile gerçeklenir.
- NAND ve NOR kapılarının elektronik elemanlarla üretilmesi daha kolay ve ucuzdur.
- NAND ve NOR kapılarının üstünlüğünden dolayı sayısal devre tasarımında AND, OR ve NOT cinsinden verilen Boole fonksiyonlarının eşdeğer NAND ve NOR lojik fonksiyonlarına çevirmek için teknikler geliştirilmiştir.

# NAND Lojik Tekniği - Eşdeğer Devreler



#### **FIGURE 3.16**

Logic operations with NAND gates



#### **FIGURE 3.17**

Two graphic symbols for a three-input NAND gate

## NAND Lojik Tekniği





Çarpımların toplamı şeklindeki ifadenin iki kez tümleyenini alırsak ifadenin kendisini elde edebiliriz

$$f = AB + CD$$

$$f = \overline{AB + CD}$$

$$f = \overline{\overline{(AB)} . \overline{(CD)}}$$

# NOR Lojik Tekniği - Eşdeğer Devreler



# NOR Lojik Tekniği

Toplamların çarpımı şeklindeki ifadenin iki kez tümleyenini alırsak ifadenin kendisini elde edebiliriz

$$f = (A + B) \cdot (C + D)$$

$$f = \overline{(A+B).(C+D)}$$

$$f = \overline{\overline{(A+B)} + \overline{(C+D)}}$$