

Ot Given a number 1, find how many factors does 1 have.
Approach 1: $C=0$ for (inti=1; $i \le n$; $i + 1$) if $(n\% i = = 0)$ 2
if (n%i==0) { C++
Iterations: [n = 10]
Total instructions: 50 Processor = 10 instruction Persecond
5×10 = 5.8ec
$\# U = 10_{18}$
Total instruction = 5×10^{18} Time taken = 5×10^{18} = 5×10^9 seconds
7 158 years

Approach 2

|--|

	i		n/i	í	^/¿	
-	1		24	1	001	
	2		12	2	50	
	3		8	4	25	
	4		6	5	20	
	6	>	4	10	10	
	8	7	3	20	> 5	
	12	7	2	25	> 4	
	24	7	1	50	2	
	•			100 7	7 1	

$$i \leq \frac{0}{i} \neq i \leq n \neq i \leq \sqrt{n}$$

$$C = 0$$
 in $1 \le 13e = 8901 (n)$

$$\int_{0}^{\infty} \left(\inf_{i=1}^{\infty} \frac{1}{i} \leq \operatorname{Sigc}_{i}; i + 1 \right) \mathcal{L}$$

$$\iint_{0}^{\infty} \left(\inf_{i=1}^{\infty} \frac{1}{i} \leq \operatorname{Sigc}_{i}; i + 1 \right) \mathcal{L}$$

$$\iint_{0}^{\infty} \left(\inf_{i=1}^{\infty} \frac{1}{i} \leq \operatorname{Sigc}_{i}; i + 1 \right) \mathcal{L}$$

$$\iint_{0}^{\infty} \left(\inf_{i=1}^{\infty} \frac{1}{i} \leq \operatorname{Sigc}_{i}; i + 1 \right) \mathcal{L}$$

$$0 = 10^{18} = 5 \times 10^{9} = 5 \times 10^{9}$$

Problem	given to	Harshit & Mayon2
Everythi	ing is some in	Harshit & Mayand both pooblem.
	Harshit	MayanD
	Alg. 4	Algo 2
Timetaken	20 sec	15sec
	20 sec [Windows XP]	[Marbook poo m2 chip
Timetakan	12 sec	15.sec
	12 sec [C++_]	[Py thon]
Timetakan	12 sc	10 sec
	12 scc [Volcano]	[Osec [Antartica]
lime	taken can	never be a metaic
to	compase algos	3_
What	can be the cox-	rect metorc: No of
		iderations
		Instruction.

$$\# \left[a, b \right] = b - a + 1$$

$$\frac{0}{2} \quad \text{for (ind i= 1 ; i \le N; i++)} \\
S = S + i$$

$$[1,N] = N-1+1 = \boxed{N}$$

$$\int_{2}^{\infty} \int_{2}^{\infty} \int_{2$$

On
$$(i-1; i*i \le N; i++)$$
 \downarrow

Sqot (N)
 \downarrow
 \uparrow
 \uparrow

$$\begin{array}{ccc}
05 & i = N \\
& \text{while } (i > 1) \\
& i = i/2; \\
3
\end{array}$$

$$\frac{N}{2^{k}} \neq 1$$

$$O(\log N) + \log N = |2|$$

log_N is the number we need to divide
N by 2 so that it reaches 1.

$$i = 1, 2, 4, 8 - - - N$$

$$\frac{N}{2^1}$$
, $\frac{N}{2^2}$, $\frac{N}{2^3}$, $\frac{N}{2^k}$ $\frac{1}{2^k}$

log_N is the number of time we need to multiply I by 2 so that it reaches N.

For (int i = 1;
$$i \le 10$$
; $i + 1$) of $i = 1$; $j \le n$; $j + 1$?

$$\frac{3}{3}$$

$$\frac{1}{1}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \left(\inf_{j=1}^{\infty} \frac{1}{j} \leq n_{j} + 1 \right) dx$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \left(\inf_{j=1}^{\infty} \frac{1}{j} \leq n_{j} + 1 \right) dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \left(\inf_{j=1}^{\infty} \frac{1}{j} \leq n_{j} + 1 \right) dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \left(\inf_{j=1}^{\infty} \frac{1}{j} \leq n_{j} + 1 \right) dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \left(\inf_{j=1}^{\infty} \frac{1}{j} \leq n_{j} + 1 \right) dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \left(\inf_{j=1}^{\infty} \frac{1}{j} \leq n_{j} + 1 \right) dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \left(\inf_{j=1}^{\infty} \frac{1}{j} \leq n_{j} + 1 \right) dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \left(\inf_{j=1}^{\infty} \frac{1}{j} \leq n_{j} + 1 \right) dx$$

$$\begin{bmatrix}
 a,b \end{bmatrix} = b - a + 1 \\
 \begin{bmatrix}
 3,10 \end{bmatrix} = 10 - 3 + 1 \\
 \begin{bmatrix}
 3,4,5,6,7,8,9,10
 \end{bmatrix}$$

Ravi A Rshat 100 log N 10 # n < 3500 No is better # n > 3500 100 log N is better max 25 million. IPL - P hotstor 2.500gc. Hopelar Youtube videos - 1 Billion for larger numbers Ravi's algo is better. Azymtotic Analysis Analysis of an algorithm for Omega Theta large values of n/inpot.

Big O
9
How to calculate Bigo
D Calculate number of interaction
2) Ignore lower order teams
\sim
3) Ignore Constants.
$9 : iterations = 4n^2 + 3n + 2$
T
Ignore lower order 7 4n2
I gnose Constants To
$\left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right \left \begin{array}{c} \\ \\ \\ \\ \end{array} \right $
A 11 · 2 · 0 · 0
iderations = n + nlogn + 3n
$\neq \circ (n^2)$

I Why we are ignoring lower order teams.

Ex iderations = n2 + 100n

	_			
	n	iterations	Conditibution of lower oods	
•	D	100 + 1000	90%	
	100	10000 10000	50%	
	15 10	1010 + 107	$10^{-3} - 0.1\%$	
	, 9			

I Why ignore Constants

A kehat 10³n Ravi

$$N = 1000 \qquad \text{ARshar} = 10^6$$

$$\text{Ravi} = 10^6$$

N > 1000, Aksharis algo would be better

How to avoid TLES. [Time limit Exceeded]
Every Online Judge = 109 instruction per
Cose 1: Per ideration ~ 10 instruction
Maximum ideration 7 108
Case?: Per interation ~ 100 instruction
· 7
Maximum iderations = 10
$= \sum_{10^7, 10^8} $
Constrain-19
$\leq_{r_1} 1 \leq 10^6$ (i) $0(n^2) \approx 10^{12}$
(ii) $O(n\sqrt{n}) \simeq 10^9$
(iii) $O(n \log n) \simeq 10^6 \times 20$
$\frac{2\times10^7}{(i\times1) \circ (n)} \approx 10^6$
$(in) \circ (n) \simeq 10^6$

$$\frac{E_{X2}}{n} = 10^{3}$$
 (i) $O(n^{3}) \approx 10^{9}$

(ii)
$$\delta(n^2) \simeq 10^6$$

$$\leq n = 15$$
 (i) $O(2^n) \leq 10^8$

I void func (intn) of

int x;

long p;

int are (n);

SC \Rightarrow O(n)

void fonc (infast [n], infn) & int x = 4;log P = 1;Total Space = 12 byjes + (4n + While computing the space complexity, we will always ignox the input space. This course is Language Agnostic