시계열분석 2022.06.04 김은영

Deep Learning (MLP, CNN, RNN)

Source: Rowel Atienza, Advanced Deep Learning with TensorFlow 2 and Keras(2nd eds), Packt Publishing Ltd., 2020.

0. MNIST 데이터셋

- MNIST (Modified National Institute of Standards and Technology)
- 0에서 9까지의 범위를 갖는 필기 숫자 모음
- 60,000개의 이미지 training data, 10,000개의 이미지 test data
- 각 이미지는 28×28 픽셀

 3×3 회색조 이미지가 MLP, CNN, RNN 입력 레이어에 대해 어떻게 변형되는지 보여준다.

1. MLP (MultiLayer Perceptron)

MNIST 숫자 분류를 위해 사용된 MLP 모델

MLP 모델: 완전 연결 네트워크(Fully Connected Network)

relu	relu(x) = max(0, x)	1.3.1
softplus	$softplus(x) = log(1 + e^x)$	1.3.2
elu	$elu(x,a) = \begin{cases} x & \text{if } x \ge 0 \\ a(e^x - 1) & \text{otherwise} \end{cases}$ where $a \ge 0$ and is a tunable hyperparameter	1.3.3
selu	$selu(x) = k \times elu(x, a)$ where $k = 1.0507009873554804934193349852946$ and $a = 1.6732632423543772848170429916717$	1.3.4
sigmoid	$sigmoid(x) = \frac{1}{1 + e^{-x}}$	1.3.5
tanh	$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	1.3.6

일반적인 비선형 활성화 함수들의 정의

Loss Function	Equation
mean_squared_error	$\frac{1}{categories} \sum_{i=1}^{categories} (y_i^{label} - y_i^{prediction})^2$
mean_absolute_error	$\frac{1}{categories} \sum_{i=1}^{categories} \left y_i^{label} - y_i^{prediction} \right $

categorical_crossentropy	$-\sum_{i=1}^{categories} y_i^{label} \log y_i^{prediction}$
binary_crossentropy	$-y_1^{label} \log y_1^{prediction} - (1 - y_1^{label}) \log(1 - y_1^{prediction})$

일반적인 손실함수

- 표시된 손실함수는 하나의 출력에만 해당한다.
- 평균 손실 값은 전체 배치의 평균이다.
- 손실함수의 선택
- 범주 분류의 경우 softmax 활성화 이후에 categorical_crossentropy 또는 mean_squared_error
- binary_crossentropy 손실함수는 일반적으로 sigmoid 활성화 레이어 이후에 사용
- mean_squared_error 손실함수는 tanh 출력에 대한 옵션

* 최적화(optimization)

■ 손실함수를 최소화하는 것

: 손실이 허용가능한 수준으로 줄어든다면, 모델은 입력을 출력으로 매핑하는 함수를 간 접적으로 학습했음을 뜻한다.

- 가장 일반적으로 사용되는 최적화 방법
- 확률적 경사 하강법(Stochastic Gradient Descent; SGD)
- 적응적 모멘트(ADAptive Moments; Adam)
- 제곱 평균 제곱근 전파(Root Mean Squared <u>Prop</u>agation; RMSprop)
- \rightarrow 각 최적화 방법은 학습률(learning rate), 모멘텀(momentum), 감쇠(decay)와 같은 조정 가능한 파라미터들을 특징으로 갖는다.

Layers	Regularizer	Optimizer	ReLU	Train Accuracy (%)	Test Accuracy (%)
256-256-256	None	SGD	None	93.65	92.5
256-256-256	L2(0.001)	SGD	Yes	99.35	98.0
256-256-256	L2(0.01)	SGD	Yes	96.90	96.7
256-256-256	None	SGD	Yes	99.93	98.0
256-256-256	Dropout(0.4)	SGD	Yes	98.23	98.1
256-256-256	Dropout(0.45)	SGD	Yes	98.07	98.1
256-256-256	Dropout(0.5)	SGD	Yes	97.68	98.1
256-256-256	Dropout(0.6)	SGD	Yes	97.11	97.9
256-512-256	Dropout(0.45)	SGD	Yes	98.21	98.2
512-512-512	Dropout(0.2)	SGD	Yes	99.45	98.3
512-512-512	Dropout(0.4)	SGD	Yes	98.95	98.3
512-1024-512	Dropout(0.45)	SGD	Yes	98.90	98.2
1024-1024- 1024	Dropout(0.4)	SGD	Yes	99.37	98.3
256-256-256	Dropout(0.6)	Adam	Yes	98.64	98.2
256-256-256	Dropout(0.55)	Adam	Yes	99.02	98.3
256-256-256	Dropout(0.45)	Adam	Yes	99.39	98.5
256-256-256	Dropout(0.45)	RMSprop	Yes	98.75	98.1
128-128-128	Dropout(0.45)	Adam	Yes	98.70	97.7
			-1		

여러 가지 MLP 네트워크 설정 및 성능 측정

MLP MNIST 숫자 분류기의 그래픽 설명

2. CNN (Convolution Neural Network)

MNIST 숫자 분류기를 위한 CNN 모델

- 입력 텐서는 회색조 MNIST 이미지에 대해 (image_size, image_size, 1)=(28, 28, 1)을 갖는다.
- training과 test 이미지들의 크기를 조정하려면 입력 모양 요구사항을 준수해야 한다.

3 imes3 커널은 MNIST 숫자 이미지와 합성곱된다. 합성곱은 스텝 t_n 과 커널이 스트라이드(stride)에 의해 오른쪽으로 1 픽셀 이동한 t_{n+1} 로 표시된다.

P ₁₁	p ₁₂	p ₁₃	P ₁₄	p ₁₅						f ₁₁	f ₁₂	f ₁₃	
p ₂₁	p ₂₂	p ₂₃	P ₂₄	P ₂₅		a ₁₁	a ₁₂	a ₁₃		f ₂₁	f ₂₂	f ₂₃	
F 21	F 22	F 23	1 24	F 25		-11	-12	-13		f	f	f	1
P ₃₁	P ₃₂	P ₃₃	p ₃₄	р ₃₅	\otimes	a ₂₁	a ₂₂	a ₂₃	=	'31	32	33]
P ₄₁	P ₄₂	P ₄₃	P ₄₄	P ₄₅		a ₃₁	a ₃₂	a ₃₃	f ₁	1 = p ₁₁ a ₁ + p ₂₁ a ₂	+ p ₁ + p ₂	a ₁₂ +	p ₁₃ a ₁₃ p ₂₃ a ₂₃
p ₅₁	P ₅₂	p ₅₃	p ₅₄	p ₅₅						+ p ₃₁ a ₃	+ p ₃₂	a ₃₂ +	p ₃₃ a ₃₃

합성곱 연산은 특정 지도(feature map)의 하나의 요소가 계산되는 방법을 보여준다.

MaxPooling2D 연산

간단히 하기 위해, 입력 특징 지도(feature map)는 4×4 이고 결과는 2×2 특징 지도이다.

■ Pooling 연산의 종류: Max Pooling, Average Pooling 등

Layers	Optimizer	Regularizer	Train Accuracy (%)	Test Accuracy (%)
64-64-64	SGD	Dropout(0.2)	97.76	98.50
64-64-64	RMSprop	Dropout(0.2)	99.11	99.00
64-64-64	Adam	Dropout(0.2)	99.75	99.40
64-64-64	Adam	Dropout(0.4)	99.64	99.30

여러 가지 CNN 네트워크 설정 및 CNN MNIST 숫자 분류기의 성능 측정

CNN MNIST 숫자 분류기의 도식화 설명

3. RNN (Recurrent Neural Network, 순환 신경망)

■ MNIST 데이터 샘플이 기본적으로 순차적이진 않지만, 모든 이미지를 픽셀의 행 또는 열의 순서로 볼 수 있다고 생각하는 것은 어렵지 않다. 게다가, RNN 기반 모델은 각 MNIST 이미지를 28개의 타임 스탭(timestep)을 갖는 28개의 요소로 된 입력 벡터들의 순서로 처리할 수 있다.

MNIST 숫자 분류기를 위한 RNN 모델

SimpleRNN의 출력

 $h_t = \tanh(b + Wh_{t-1} + Ux_t)$

여기서, b: bias, W: 반복커널(이전 출력의 가중치), U: 커널(현재 입력의 가중치)

Layers	Optimizer	Regularizer	Train Accuracy (%)	Test Accuracy (%)
256	SGD	Dropout(0.2)	97.26	98.00
256	RMSprop	Dropout(0.2)	96.72	97.60
256	Adam	Dropout(0.2)	96.79	97.40
512	SGD	Dropout(0.2)	97.88	98.30

여러 가지 SimpleRNN 네트워크 설정 및 성능 측정

SimpleRNN MNIST 숫자 분류기의 도식화 설명