Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Multiserver and Priority scheduling

Università degli studi di Roma Tor Vergata Department of Civil Engineering and Computer Science Engineering

> Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

Analytical models priority scheduling

Assumptions:

- Arrival rate 1 j/s random
- Average demand Z=4x10⁵ oxat, expo, do not know size (astratto) Z = quanto job chiede, op/job

Possible configurations:

- 1 server of capacity C=106 oxat/s capacità server, non è v.a.
- Dual-core of C/2 each one

dual core equivalente, ciascun proc

ha capacità dimezzata.

QoS requirements:

- Average waiting $T_O < 0.15$ s
- For at least 35% of arrivals average response time $T_S < 0.5 \text{ s}$ la percentuale viene fornita dal testo

Def.

E(S) = Z/C = 0.4 s operazioni richiesta/operazioni server nell'unità di tempo

Z e C sono indipendenti, poichè C è una caratteristica fisica dell'hardware, costante; Z è una variabile, è quanto chiede un singolo job (varia da job a job), e mediamente è Z.

prof. Vittoria de Nitto Personè

1

QoS requirements:

• Average waiting $T_O < 0.15$ s

$$\lambda = 1 \text{ j/s}, E(S) = 0.4 \text{ s}$$
 $\rho = 0.4$

• 1 server of capacity C=10⁶ oxerat/s

$$E[T_q] = \underbrace{P \cdot E[s]}_{1-p} E(T_Q) = 0.26 \text{ s} \qquad E(T_Q)^{\text{Abstract-P}} = 0.2243 \text{ s}$$

• Dual-core of C/2 each one

$$E(S_i) = \frac{Z}{\frac{C}{2}} = 2\frac{Z}{C} = 2E(S) = 0.8 \text{ s}$$

$$E(T_Q)_{Erlang} = \frac{P_Q E(S)}{1 - \rho} = 0.15238 \text{ s}$$

$$E(T_Q)_{Erlang} = \frac{P_Q E(S)}{1 - \rho} = 0.15238 \text{ s}$$

PARTE SINGLE CORE

prof. Vittoria de Nitto Personè

[Spiegato bene sul quaderno degli esercizi] Tento con abstract priority Preemptive (l'unica che porta miglioramenti generali e non solo locali).

Setto la probabilità p1 = 0.35 (perchè lo chiede il secondo requisito, che può essere rispettato se rispetto almeno il primo):

$$E[Tq1] = \frac{P_1 \cdot \cancel{P} \cdot E[Ts]}{1 - P_1 \cdot P_1} = 0.065, E[Tq2] = \underbrace{P \cdot E[Ts]}_{(1-P_1) \cdot (1-P)} = 0.31, \text{ pesandole con le rispettive percentuali trovo}$$

E[Tq] = 0.35 * E[Tq1] + 0.65 * E[Tq2] = 0.2243 s, che non rispetta. Se cambiassi percentuali? Trovando la probabilità p1 tale che E[Tq1] = 0.15 trovo p1 = 0.68, ma applicandolo a E[Tq1] ed E[Tq2] non rispetto il QoS.

PARTE DUAL CORE

Essendo in Erlang C, bisogna calcolare p(0) = probabilità che sistema sia vuoto, poi Pq = probabilità che sistema sia pieno, e poi applicare E[Tq_erlang] in figura. Si usa rho = 0.4 e E[S] = 0.4, perchè l'utilizzazione rho è ENTRATA MAX/USCITA MAX = lambda/2*u_ridotto (u_ridotto è il mu del server dimezzato), cioè al massimo lavorano entrambi i server, e in questo caso il tempo che si libera uno dei due server è E[S].

Analytical models

priority scheduling

3

Multiserver with priority classes

$$E(T_Q) = p_1 \frac{\rho_1 E(S)}{(1 - \rho_1)} + p_2 \frac{\rho E(S)}{(1 - \rho)(1 - \rho_1)}$$

$$E(T_Q) = p_1 \frac{P_{Q_1} E(S)}{(1 - \rho_1)} + p_2 \frac{P_Q E(S)}{(1 - \rho)(1 - \rho_1)}$$

Devo calcolare p(0), sostituendo a TUTTI i rho il valore rho_1;

ottenuto p(0) in funzione di rho_1

7

lo metto in Pq_1, anche qui calcolandolo con TUTTI rho_1 In questo "Pezzo" NON USO MAI IL RHO NORMALE.

$$P_{Q_1} = Erlang(\rho_1) = 0.03438$$

$$(mP_1)$$
. ρ (o)

8

non devo ricalcolare nulla,

uso i "vecchi pezzi"

La prima classe (la componente E[Tq_1] in E[Tq]) vede solo se stessa, in quanto c'è prelazione.

Multiserver with priority classes

$$P_{Q_1} = Erlang(\rho_1) = 0.03438$$
 $P_Q = 0.22857$

$$E(T_Q) = p_1 \frac{P_{Q1}E(S)}{(1-\rho_1)} + p_2 \frac{P_{Q}E(S)}{(1-\rho)(1-\rho_1)} = 0.12077$$

QoS requirements:

• Average waiting $T_Q < 0.15$ s !!

globalmente bound rispettato, sia per classe 1 che classe 2.

QoS requirements:

• For at least 35% of arrivals average response time $T_{\rm S}$ < 0.5 s

Analytical models priority scheduling

 $\lambda = 1 \text{ j/s}, E(S) = 0.4 \text{ s}$ $\rho = 0.4$

• 1 server of capacity C=10⁶ oxerat/s

$$E(T_Q) = 0.26 \text{ s}$$

Dual-core of C/2 each one

$$E(S_i) = \frac{Z}{C} = 2\frac{Z}{C} = 2E(S) = 0.8$$

Il secondo approccio non potrà mai funzionare, in quanto già solo E[Si] è superiore al bound, e mi manca ancora considerare E[Tq]

prof. Vittoria de Nitto Personè

10

9

Ad $E[Tq_1]$ ho sommato E[S] = 0.4 e NON $E[S_i] =$ 2*0.4 = 0.8, perchè essendoci prelazione non viene mai interrotto un job di classe 1. Discorso diverso per job di classe 2, che vengono sostituiti (dovrei calcolare E[S_virt_2]).

Non vuol dire che multiserver multicoda sia un silver bullet, possono esistere casi in cui tale tecnica risulta svantaggiosa.