Übersicht Laufzeiten Algorithmen

	Sicht Laufzeiten Algoritimen	
Allgemein	Tiefensuche (DFS) & Breitensuche (BFS)	O(V + E)
	Kruskal	$O(E \cdot log(E)$
	Prim & Boruvka	$O((E + V) \cdot log(V))$
	Artikulationsknoten finden	O(E)
	Brücken finden	O(E)
Kreise	Eulertour	O (E)
	Hamiltonkreis	$O(V ^2 \cdot 2^{ V })$
	Hamiltonkreis mit $\forall x \in V: deg(v) \ge \frac{ V }{2}$	$O(V ^2)$
	Travelling Salesman Problem 2-Approxiamtion	$O(V ^2)$
	Travelling Salesman Problem 3/2-Approxiamtion	$O(V ^3)$
	Greedy-Matching	$O(E)$ mit $ M_{Greedy} \ge \frac{1}{2} M_{Max} $
	Augmentierenden Pfad finden	O(V + E)
hing	Augmenting_Path (nur für bipartite Graphen)	$O((V + E)\cdot E)$
Matching	Hopcroft und Karp Algorithmus (nur für bipartite Graphen)	$O\left((V + E)\cdot\sqrt{ V }\right)$
	Blossoms's Algortihmus	$O(E \cdot V ^2)$
	Perfektes Matching in 2 ^k -regulären bipartiten Graphen	O(E)
Bun	Greedy-Färbung <i>C(G)</i> auf beliebigen zshg. Graphen G	$O(E)$ mit $\chi(G) \leq C(G) \leq \Delta(G) + 1$
	Brooks: Färbung eines zshg. Graphen G mit $G \neq K_n$ und $G \neq C_{2n+1}$	$O(E)^{1} \min \chi(G) \leq C(G) \leq \Delta(G)$
Färbung	Färbung eines 3-färbbaren Graphen	$O(E)$ mit $O(\sqrt{ V })$ Farben
	Färbung eines Graphen G für den gilt: jeder induzierte Subgraph von G hat einen Knoten v für den gilt $deg(v) \le k$ (so gilt $x(G) \le k+1$)	O(E) mit $O(k+1)$ Farben
men	Quickselect (finde das k-kleinste Element)	O(n)
	Miller-Rabin-Primzahlentest	$O(\ln n)^2$ 'keine PZ' mit $p > \frac{3}{4}$
gorit	Duplikate finden mit Hashmap	$O(n \cdot \ln n)$ $\underbrace{O(n)}_{\text{hashen}} + \underbrace{O(n \cdot log(n))}_{\text{sortieren}} + \underbrace{O(n + Dupl(S))}_{\text{durchlaufen}}$
te Alg	Duplikate finden mit Bloomfilter (k-viele Hashfunktionen)	$O(n \cdot \ln n)^3$
Randomisierte Algorithmen	Finde bunten Pfad Bunt(G, i)	$O(\sum_{v \in V} \deg(v) \cdot {k \choose i} \cdot i) = O({k \choose i} \cdot i \cdot m)$
	Colorful-Path Problem Regenbogen(G, γ)	$O(V + \sum_{i=1}^{k-1} Bunt(G, i) + V) = O(2^k km)^4$ $mit \ p_{Erfolg} \ge e^{-k}$
	Long-Path Problem (stelle fest, ob es einen Pfad der Länge B gibt)	MC: wiederhole $\lceil \lambda e^k ceil - Mal\ Regenbogen(G, \gamma)$ $O(\lambda(2e)^k km)$ $mit\ p_{Fehler} \leq e^{-\lambda}$ 5

¹ Heuristik in O(|E|) liefert Reihenfolge, für die der Greedy-Algorithmus höchstens Δ(G) Farben benötigt. Heuristik: Knoten dem Grad aufsteigend durchlaufen, färben und dann löschen.

² Die Fehlerwahrscheinlichkeit kann mit Satz 2.74 beliebig klein gemacht werden.

 $^{^3}$ wählen wir k und m gross, reduziert sich die #falscherEinträge, jedoch: k gross \rightarrow Algo. langsamer, m gross \rightarrow mehr Speicher

⁴ D.h., für $k \le \log n$ ist die Laufzeit $O(mn \log n)$ und für $k = O(\log n)$ ist die Laufzeit O(poly(n))

⁵ Antwortet der Algorithmus «Graph enthält keinen Pfad der Länge k», so stimmt diese Aussage mit einer Wahrscheinlichkeit von mindestens $1 - e^{-\lambda}$.

Flüsse in Netzwerke	Augmentierender-Pfad finden (mit BFS)	0 (m)
	Ford-Fulkerson ⁶ (suche $O(nU) - Mal$ einen augm. Pfad)	$oldsymbol{O}(oldsymbol{mnU})$ wobei U := obere Schranke für Kap.
	Bestimme MaxFlow mit Capacity-Scaling	$O(mn(1 + \log U))$
e in N	Bestimme MaxFlow mit Dynamic Trees	$O(mn\log n)$
Flüss	Finde ein kardinalitätsmax. Matching in bipartiten Graph	0 (mn)
	Finde alle Kantendisjunkte u-v-Pfade	0 (mn)
a	Fixiere $s \in V$ und berechne MaxFlow zu allen $t \in V$ (nehme Min.)	$(n-1)\cdot O(mn\log n) = O(n^4\log n)$
hnitt	Cut(G) (wähle zufällig Kante aus G und kontrahiere sie, bis $V(G)=2$)	$O(n^2)$ mit $Pr[Cut(G)gibt \mu(G)aus] \ge \frac{1}{\binom{n}{2}}$
Minimale Schnitte	MonteCarlo-Algo: wiederhole $\lambda \binom{n}{2}$ -mal $Cut(G)$	$O(\lambda n^4)$ mit $p_{Erfolg} \ge 1 - e^{-\lambda 8}$
linim	Verbesserung durch Bootstrapping	$O(\lambda n^3)$
2	Grenzwert des Bootstrapping	$O(n^2 \cdot poly(\log n))$
eis	CompleteEnumeration(P) \rightarrow durchlaufe $\binom{n}{3}$ Mengen Q, berechne C(Q) in O(1), prüfe ob $P \subseteq C(Q)$ in O(n)	$O(n^4)$
schl. Kı	CompleteEnumerationSmart(P) \rightarrow durchlaufe $\binom{n}{3}$ Mengen Q, berechne C(Q) in O(1), merke max. Radius in O(1)	$O(n^3)$
Kleinst. umschl. Kreis	Randomised_PrimitiveVersion(P) → Wähle Q (bzw. 3 Punkte) zufällig gleichverteilt: $p_{korrektes Q} \ge \frac{1}{\binom{n}{3}}$	$O(n^4)$
Klei	Randomised_CleverVersion(P) → wähle 11 Punkte zufällig gleichvrtl., bestimme C(Q), verdopple Punkte ausserhalb	$\underbrace{O(\log n)}_{\text{\#Runden}} \cdot \underbrace{O(n)}_{\text{Laufzeit/Runde}} = O(n \log n)$
<u>e</u>	FindNext(q) (finde rechtesten Punkt von q aus)	0 (n)
Konvexe Hülle	JarvisWrap	$O(nh) \leq O(n^2)$
nvex	Untere Schranke für ConvexHull Algorithmen	$O(n \log n)$
Ko	LocalRepair	$\underbrace{O(n\log n)}_{sortieren} + \underbrace{O(n)}_{\#Tests} = O(n\log n)$

⁶ Achtung: alle Kapazitäten müssen aus **Q** sein. Mit Kapazitäten aus **R** können wir nicht garantieren, dass der Algo. terminiert.
⁷ D.h., der Erwartungswert der #Wiederholungen bis wir das erste Mal μ(G) ausgeben ist ≤ $\binom{n}{2}$.
⁸ Wählen wir $\lambda = \ln n$, so erhalten wir eine Laufzeit von $O(n^4 \log n)$ und $p_{Fehler} \ge \frac{1}{n}$ − also sogar schlechter wie vorhin