Physical Chemistry (Chem 132A)

Lecture 25 Wednesday, December 6

Homework 9 (last homework) Due on Saturday, December 9 Last homework of the quarter

Reminder: FINAL EXAM, DEC. 15,

8—10AM

Simple Collision Theory Picture

For a Bimolecular Reaction:

$$A + B \longrightarrow P$$

$$k \sim P \sigma (T/M)^{1/2} e^{-E'/RT}$$

Energy Dependence

$$k_{r} = \left\{ \int_{0}^{\infty} \sigma(E) \left(\frac{2E}{\mu} \right)^{1/2} 2\pi \left(\frac{\mu}{2\pi kT} \right)^{3/2} E^{1/2} e^{-E/kT} dE \right\} N_{A}$$

$$k_r = \left(\frac{8}{\pi \mu kT}\right)^{1/2} \left(\frac{1}{kT}\right) \int_0^\infty E\sigma(E) e^{-E/kT} dE$$

 $\sigma = 0$ unless $E > E_a$

$$k_r = \left(\frac{8}{\pi \mu kT}\right)^{1/2} \left(\frac{1}{kT}\right) \int_{E_a}^{\infty} E\sigma(E) e^{-E/kT} dE$$

$$k_r = \sigma N_A \left(\frac{8kT}{\pi\mu}\right)^{1/2} e^{-E_a/kT}$$

There are various approximations for the functional form of $\sigma(E)$

$$k_r = \sigma N_A \left(\frac{8kT}{\pi\mu}\right)^{1/2} e^{-E_a/kT}$$

	$A/(dm^3 m^3)$	$E_{\rm a}/({\rm kJmol^{-1}})$	
	Experiment	Theory	
2 NOCl→ 2 NO+2 Cl	9.4×10^{9}	5.9×10^{10}	102
$2~\text{ClO} \rightarrow \text{Cl}_2 + \text{O}_2$	6.3×10^7	2.5×10^{10}	0
$H_2 + C_2 H_4 \rightarrow C_2 H_6$	1.24×10^{6}	7.4×10^{11}	180
$K+Br_2 \rightarrow KBr+Br$	1.0×10^{12}	2.1×10^{11}	0

Introduce the Steric Factor

$$k_r = P\sigma N_A \left(\frac{8kT}{\pi\mu}\right)^{1/2} e^{-E_a/kT}$$

	$A/(dm^3 mol^{-1} s^{-1})$		$E_{\rm a}/({\rm kJmol^{-1}})$	P
	Experiment	Theory	<u></u>	
2 NOCl→ 2 NO+2 Cl	9.4×10^{9}	5.9×10^{10}	102	0.16
$2 \text{ ClO} \rightarrow \text{Cl}_2 + \text{O}_2$	6.3×10^7	2.5×10^{10}	0	2.5×10^{-3}
$H_2 + C_2 H_4 \rightarrow C_2 H_6$	$1.24{\times}10^6$	7.4×10^{11}	180	1.7×10^{-6}
$K+Br_2 \rightarrow KBr+Br$	1.0×10^{12}	2.1×10^{11}	0	4.8

What's Going on with $K + Br_2 = KBr + Br$

Diffusion Controlled Reactions In Solution

$$A + B \longrightarrow AB$$
 rate = $k_d[A][B]$

$$AB \longrightarrow A+B \text{ rate} = k'_d[AB]$$

$$AB \longrightarrow P$$
 rate = $k_a[AB]$

$$\frac{d[AB]}{dt} = k_d[A][B] - k_d[AB] - k_a[AB] = 0$$
 Steady Sta

Steady State approximation

$$[AB]_{ss} = \frac{k_d[A][B]}{k_a + k_d'}$$

$$\frac{dP}{dt} = k_a[AB] = \frac{k_a k_d}{k_a + k_d}[A][B]$$

Photochemistry

Light is another way to initiate a reaction

$$A + photon (hv) \longrightarrow A^*$$

$$v = c/\lambda$$

Energy = hv

UV light $\sim 3.5 \text{ eV} = 337.7 \text{ kJ/mol}$ A few Bond enthalpies:

Br-CH₃ 293

O₂N-NO₂ 54

H-CH₃ 435

H-OH 492

$$R = 8.314 \text{ JK}^{-1}\text{mol}^{-1}$$

$$RT = 337 \text{ kJ/mol at } T = 40,534 \text{ K}$$

Example Photochemical Reactions

Process	General form	Example
Ionization	$A^* \rightarrow A^+ + e^-$	$NO^* \xrightarrow{134 \text{nm}} NO^+ + e^-$
Electron transfer	$A^*+B \rightarrow A^++B^-$ or A^-+B^+	
Dissociation	$A^* \rightarrow B + C$	$O_3^* \xrightarrow{1180 \mathrm{nm}} O^2 + O$
	$A^* + B - C \rightarrow A + B + C$	$Hg^* + CH_4 \xrightarrow{254 \text{ nm}} Hg + CH_3 + H$
Addition	$2 A^* \rightarrow B$	2()* 230 nm
	$A^* + B \rightarrow AB$	
Abstraction	$A^* + B - C \rightarrow A - B + C$	$Hg^* + H_2 \xrightarrow{254 \text{ n m}} HgH + H$
Isomerization or rearrange- ment	$A^* \rightarrow A'$	
		380 nm

Nature of Excited States

Singlet Excited State (S₁)

Ground state (S_0)

Excited Triplet State (T₁)

A More Detailed Picture

A Diatomic Molecule (A-B)

Internuclear separation, R

What Happens to S_1 ?

Internuclear separation, R

Jablonski Diagram

Nature of Excited States and Processes

Primary absorption $S+h\nu \rightarrow S^*$

Excited-state absorption $S^* + h\nu \rightarrow S^{**}$

 $T^* + h\nu \rightarrow T^{**}$

Fluorescence $S^* \rightarrow S + h\nu$

Stimulated emission $S^* + h\nu \rightarrow S + 2 h\nu$

Intersystem crossing (ISC) $S^* \rightarrow T^*$

Phosphorescence $T^* \rightarrow S + h\nu$

Internal conversion (IC) $S^* \rightarrow S$

Collision-induced emission $S^* + M \rightarrow S + M + h\nu$

Collisional deactivation $S^*+M \rightarrow S+M$

 $T^*+M \rightarrow S+M$

Electronic energy transfer:

Singlet-singlet $S^*+S \rightarrow S+S^*$

Triplet-triplet $T^*+T \rightarrow T+T^*$

Excimer formation $S^*+S \rightarrow (SS)^*$

Energy pooling

Singlet-singlet $S^* + S^* \rightarrow S^{**} + S$

Triplet-triplet $T^*+T^* \rightarrow S^{**}+S$

S = Singlet state

T = Triplet state

 $S \rightarrow S$ can be fast

 $S \rightarrow T$ slow

Photochemical Reaction Yields

Define what is called the "Quantum Yield" = Φ

$$\phi = \frac{number_of_events}{number_of_photons_absorbed}$$

$$\phi = \frac{rate_of_process}{rate_of_photon_absorption}$$

$$\phi = \frac{v}{I_{abs}}$$

Individual Quantum Yields

Fluorescence
Internal conversion
Intersystem crossing (S----T)
Phosphorescence
Reaction

$$\sum_{i} \phi_{i} = \sum_{i} \frac{v_{i}}{I_{abs}} = 1$$

$$\phi_{F} + \phi_{IC} + \phi_{ISC} + \phi_{P} + \phi_{r} = 1$$

Energy Transfer

Mechanisms:

Collisional deactivation:

$$S^* + Q \longrightarrow S + Q$$

Resonance Energy Transfer

$$S^* + Q \longrightarrow S + Q^*$$

Electron Transfer

$$S^* + Q \longrightarrow S^{+/-} + Q^{-/+}$$

Resonance Energy Transfer

$$S^* + Q \longrightarrow S + Q^*$$

Efficiency of Resonance Energy Transfer

Monitor Excited State S_1 by monitoring Fluorescence

$$\eta_T = 1 - \frac{\phi_f}{\phi_{F,0}}$$

Theory due to Forster:

$$\eta_T = \frac{R_0^6}{R_0^6 + R^6}$$

 $\eta_T = \frac{R_0^{\circ}}{R_0^6 + R^6}$ R₀ is a parameter dependent on the two chromophores

R is the distance between the two chromophores

A Molecular Ruler

THE END

SEE YOU ON FRIDAY