Analisi matematica - modulo 2

Matteo Lombardi

Indice

- 1.0 Integrali
 - 1.1 Somma di Riemann
 - 1.2 Integrale
 - 1.3 Funzioni integrali e primitive elementari
 - 1.4 Integrazione per parti, cambio variabile e integrali generalizzati
- 2.0 Spazio euclideo
 - 2.1 Operazioni nello spazio euclideo
 - 2.2 Vettori
 - 2.3 Successioni e funzioni nello spazio euclideo
- 3.0 Derivate e differenziabilità
 - 3.0 Derivate parziali
 - 3.1 Differenziabilità
 - 3.2 Derivate direzionali
 - 3.3 Direzione di massima crescita
 - 3.4 Curve: velocità, derivate e insiemi di livello
- 4.0 Punti critici e forme quadratiche
 - 4.1 Tipologie di punti critici
 - 4.2 Derivate parziali seconde e forme quadratiche
 - 4.3 Teorema di Taylor
 - 4.4 Teorema di classificazione dei punti critici
- 5.0 Integrale doppio
 - 5.1 Insiemi semplici
 - 5.2 Integrale doppio
- 6.0 Cambio di variabile

▼ 1.0 - Integrali

Gli integrali sono utili per calcolare l'area delle figure curvilinee.

Con essi è infatti possibile determinare l'area del **sottografico** di una certa funzione curvilinea. Data una funzione $f:[a,b]\to\mathbb{R}$ tale che $\forall~x\in[a,b].f(x)\geq0$, il suo sottografico corrisponde a $\{(x,y)\in\mathbb{R}^2\mid x\in[a,b],0\leq y\leq f(x)\}$:

Sottografico di una funzione.

▼ 1.1 - Somma di Riemann

Scomposizione di un intervallo

Dato un intervallo $[a,b]\subseteq\mathbb{R}$ e un numero $n\in\mathbb{N}$, divido [a,b] in n parti uguali:

Ogni k-esima x dell'intervallo è ricavabile tramite: $x_k=a+krac{b-a}{n}.$

Per ogni parte dell'intervallo scelgo un suo punto interno $c_k \in [x_{k-1}, x_k].$

Somma di Riemann

Sia f una funzione continua su [a,b], definiamo la **somma di Riemann** come segue:

$$S_n = \sum_{k=1}^n f(c_k)h = \sum_{k=1}^n f(c_k)rac{b-a}{n}$$

Nota: S_n dipende dalla scelta dei vari c_k , la quale è arbitraria.

▼ 1.2 - Integrale

Sia f una funzione continua su [a,b], allora esiste finito il $\lim_{n\to\infty} S_n$ (non dipende dalla scelta dei punti c_k). Si è soliti scrivere tale limite $\lim_{n\to\infty} f(x)$ come $\int_a^b f(x)\ dx = \int_a^b f$ e si dice che f è **integrabile**.

Osservazioni

- $\int_a^a f(x) \ dx = 0$ e $\int_a^b c \ dx = c(b-a)$.
- L'integrale $\int_a^b f(x) \ dx$ è un numero e indica l'area del sottografico di f(x) nell'intervallo [a,b].

Proprietà dell'integrale

1. Linearità

f,g continue su [a,b]. $\lambda,\mu\in\mathbb{R}$.

 $\lambda f + \mu g$ è integrabile e vale:

$$\int_a^b (\lambda f + \mu g) = \lambda \int_a^b f + \mu \int_a^b g$$

2. Additività

 $f:\mathbb{R} o\mathbb{R}$ integrabile.

 $\forall~a,b,c\in\mathbb{R}$ vale:

$$\int_a^b f = \int_a^c f + \int_c^b f$$

I reali a,b e c possono trovarsi in qualunque posizione, non devono per forza essere nell'ordine a < b < c.

3. Monotonia

f, g continue su [a, b].

$$f(x) \leq g(c) \quad orall \ x \in [a,b] \implies \int_a^b f \leq \int_a^b g$$

4. Convenzione

$$\int_a^b f = -\int_b^a f$$

Teorema della media integrale

Sia f una funzione continua su [a,b], allora $\exists \ c \in [a,b]$ tale che:

$$rac{1}{b-a}\int_a^b f(x)\ dx = f(c)$$

Dimostrazione

Siccome f è continua in [a,b], è possibile utilizzare il teorema di Weierstrass in tale intervallo e affermare che $\exists x_1, x_2$ punti di minimo e massimo in [a,b].

Per definizione di punti di minimo e massimo sappiamo che $f(x_1) \leq f(x) \leq f(x_2) \quad \forall \ x \in [a,b]$. Per la proprietà di monotonia dell'integrale:

$$\int_a^b f(x_1) \ dx \le \int_a^b f(x) \ dx \le \int_a^b f(x_2) \ dx \ \implies f(x_1)(b-a) \le \int_a^b f(x) \ dx \le f(x_2)(b-a) \ \implies f(x_1) \le rac{\int_a^b f(x) \ dx}{b-a} \le f(x_2)$$

Per il teorema dei valori intermedi:

$$\exists \ c \in [a,b] ext{ tale che } f(c) = rac{1}{b-a} \int_a^b f(x)$$

qed

Primitiva di una funzione

Sia $f:]a,b[o \mathbb{R}$, la funzione $F:]a,b[o \mathbb{R}$ si dice **primitiva** di f su]a,b[se vale:

$$F'(x) = f(x) \quad \forall \ x \in [a, b[$$

Proposizioni

• Se F è la primitiva di f su]a,b[, allora anche H:]a,b[$o \mathbb{R}$ tale che H(x)=F(x)+c è primitiva di f \forall $c\in\mathbb{R}$.

Le primitive di una funzione f sono dunque infinite, e sono tutte quelle che assumono una forma riconducibile a F(x)+c, dove c è uno scalare.

• Siano F e G primitive di f su]a,b[. Allora:

$$\exists \ k \in \mathbb{R}, F(x) - G(x) = k \quad orall \ x \in]a,b[$$

Dimostrazione

Sia $H:]a,b[
ightarrow \mathbb{R}$ tale che H(x) = F(x) - G(x).

Calcoliamo la derivata di H(x), ovvero H'(x)=F'(x)-G'(x), che per definizione di primitiva diventa H'(x)=f(x)-f(x)=0.

Siccome la derivata di $H(x)=0 \quad orall \ x\in]a,b[$, allora H(x) è costante in]a,b[, dunque $H(x)=F(x)-G(x)=k \quad orall \ x\in]a,b[$.

qed

▼ 1.3 - Funzioni integrali e primitive elementari

Funzione integrale

Sia $f:]a_0,b_0[\to \mathbb{R}$ continua e sia $c \in]a_0,b_0[$, la funzione integrale di punto base c è la funzione $I_c:]a_0,b_0[\to \mathbb{R}$ tale che:

$$I_c(x) = \int_c^x f(t) \ dt$$

Osservazioni

• La funzione integrale rappresenta l'area sottesa al grafico di f da un certo punto base c fino a x.

Teorema fondamentale del calcolo integrale

Sia f continua in a, b e sia $c \in a, b$, allora:

$$I_c'(x) = f(x) \quad \forall \ x \in [a,b[$$

Dimostrazione

Bisogna dimostrare che $\lim_{h o o}rac{I_c(x+h)-I_c(x)}{h}=f(x).$

Sviluppiamo il numeratore del limite utilizzando la definizione di funzione integrale $I_c(x+h)-I_c(x)=\int_c^{x+h}f(t)\;dt-\int_c^xf(t)\;dt.$

Utilizziamo le proprietà dell'integrale $\int_c^{x+h} f(t) \ dt - \int_c^x f(t) \ dt = \int_x^{x+h} f(t) \ dt$ e abbiamo dimostrato che $\lim_{h \to o} \frac{I_c(x+h) - I_c(x)}{h} = \lim_{h \to 0} \frac{\int_x^{x+h} f(t)}{h} \ dt$.

Per il teorema della media integrale:

$$\exists \ c \in \]x,x+h[ext{ tale che } rac{1}{x+h-x} \int_x^{x+h} f(t)dt = rac{1}{h} \int_x^{x+h} f(t)dt = f(c)$$

Notiamo che $\frac{1}{h}\int_x^{x+h}f(t)dt$ è equivalente al contenuto del limite da dimostrare, dunque ci basta dimostrare che $\lim_{h\to o}f(c)=f(x)$. Visto che $c\in]x,x+h[$, se $h\to 0$ allora $c\to x$, quindi $\lim_{h\to o}f(c)=f(x)$.

qed.

Teorema fondamentale del calcolo integrale 2 - Formula di Torricelli

Sia f continua su]a,b[e sia F la primitiva di f su]a,b[, allora:

$$\int_a^b f(x) \ dx = F(b) - F(a) \quad orall \ x \in \left]a,b
ight[$$

Dimostrazione

Sia $c\in]a,b[$. Sappiamo per ipotesi che F(x) e $I_c(x)$ sono due primitive di f(x) in]a,b[, dunque $F(x)-I_c(x)=k \quad \forall \ x\in]a,b[\implies F(x)=I_c(x)+k \quad \forall \ x\in]a,b[$.

Partendo da F(b)-F(a) e passando per la definizione di funzione integrale $I_c(x)$ dimostriamo che $F(b)-F(a)=\int_a^b f(x)\ dx$:

$$egin{split} F(b) - F(a) &= I_c(b) + k - I_c(a) - k = I_c(b) - I_c(a) \ &= \int_c^b f(x) \ dx - \int_c^a f(x) \ dx = \int_c^b f(x) \ dx + \int_a^c f(x) \ dx \ &= \int_c^b f(x) \ dx \end{split}$$

qed.

Primitive elementari

$$\int k o kx$$

$$\int x^{lpha}, lpha
eq -1 o rac{x^{lpha+1}}{lpha+1}$$

$$\int x^{-1} o \ln |x|$$

$$\int a^x o rac{a^x}{\ln a} \left[\int e^x o e^x
ight]$$

$$\int \sin x o - \cos x$$

$$\int \cos x o \sin x$$

$$\int 1 + an^2 x = \int rac{1}{\cos^2 x} o an x$$

$$\int 1 + \cot^2 x = \int rac{1}{\sin^2 x} o - \cot x$$

$$\int -rac{1}{\sqrt{1-x^2}} o arccos x$$

$$\int rac{1}{\sqrt{1-x^2}} o arccin x$$

$$\int rac{1}{1+x^2} o arctg x$$

$$\int f'(g(x))g'(x) o f(g(x))$$

▼ 1.4 - Integrazione per parti, cambio variabile e integrali generalizzati

Integrazione per parti

Per integrare un prodotto può essere talvolta utilizzata la seguente formula di **integrazione per parti**:

$$\int f'(x)g(x)\ dx = f(x)g(x) - \int f(x)g'(x)\ dx$$

Nota: per integrare $\int \sin x \ e^x$ occorre utilizzare due volte la formula di integrazione per parti.

Dimostrazione

$$d(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) \ \Longrightarrow f'(x)g(x) = d(f(x)g(x)) - f(x)g'(x) \ \Longrightarrow \int f'(x)g(x) = \int d(f(x)g(x)) - \int f(x)g'(x) \ \Longrightarrow \int f'(x)g(x) = f(x)g(x) - \int f(x)g'(x)$$

qed.

Formula per il cambio variabile

Siano I,J intervalli aperti, sia $h:I\to J$ una funzione con derivata h' continua su I e $f:J\to \mathbb{R}$ una funzione continua. Allora $\forall\ \alpha,\beta\in I$ vale:

$$\int_{h(lpha)}^{h(eta)} f(x) \ dx = \int_{lpha}^{eta} f(h(t)) h'(t) \ dt$$

Osservazioni

• Integrali del tipo $\int_a^b g(f(x))f'(x)\ dx$ possono essere risolti sostituendo a f(x) una variabile come z, e visto che $dz=f'(x)\ dx$ possiamo arrivare all'integrale $\int_a^b g'(x)\ dx$. Utilizzando il teorema fondamentale del calcolo integrale possiamo dunque concludere che $\int_a^b g(f(x))f'(x)\ dx=[g(x)]_a^b$.

Caso particolare: $F'(x)=rac{d}{dx}\int_{c}^{x}f(t)dt=f(x).$

Integrali generalizzati

Sia $f:[a,+\infty[$ o $\mathbb R$ continua. Si dice che f è integrabile in senso generalizzato su $[a,+\infty[$ se:

$$\exists \lim_{z o +\infty} \int_a^z f(x) \ dx \coloneqq \int_a^{+\infty} f(x) \ dx$$

7

La definizione per $\int_{-\infty}^a f(x) \ dx$ è omessa perchè analoga.

Osservazioni

• Se $f(x) \geq 0$ su $[a,+\infty[$ e $\int_a^{+\infty} f(x)$ converge, allora tale integrale esprime l'area del sottografico di f(x) nell'intervallo $[a,+\infty[$.

Esercizio:

- lacktriangle Studiare l'integrale generalizzato $\int_1^{+\infty} rac{dx}{x^p}, orall p>0$
 - Esponente $1-p<0 \implies p>1$: la prima frazione del limite tende a $+\infty$ e l'integrale diverge, dunque vale $+\infty$.
 - Esponente $1-p>0 \implies p<1$: la prima frazione del limite tende a 0 e l'integrale è dunque uguale a $\frac{1}{p-1}$.

Per studiare tale integrale occorre dunque studiare il seguente limite: $\lim_{z \to +\infty} \int_1^z \frac{dx}{x^p}$

A questo punto il valore dell'integrale dipende dal valore del parametro p in quanto questo determina il valore dell'esponente di z:

- Esponente $p \neq 1$: il limite da valutare è $\lim_{z \to +\infty} [\frac{x^{1-p}}{1-p}]_1^z = \lim_{z \to +\infty} \frac{z^{1-p}}{1-p} \frac{1}{1-p}$, il quale dipende a sua volta dal valore dell'esponente di z:
- Esponente $1-p=0 \implies p=1$: il limite da valutare è $\lim_{z\to +\infty} [\ln(x)]_1^z=\lim_{z\to +\infty} \ln(z)-\ln(1)$, dunque l'integrale diverge, ovvero vale $+\infty$.

Sia $f:[a,b] o\mathbb{R}$ continua. Si dice che f è integrabile in senso generalizzato su [a,b] se:

$$\exists \lim_{z o a^+}\int_z^b f(x)\ dx \coloneqq \int_a^b f(x)\ dx$$

▼ 2.0 - Spazio euclideo

Lo spazio \mathbb{R}^n o **spazio euclideo** è definito nel seguente modo:

$$\mathbb{R}^n\coloneqq \{x=(x_1,\ldots,x_n)\ |\ x_1,\ldots,x_n\in\mathbb{R}\}$$

Esempi di spazi euclidei:

ullet \mathbb{R}^2 = piano cartesiano. $(x,y)\in\mathbb{R}^2=(x_1,x_2)\in\mathbb{R}^2.$

Visualizzazione grafica di un vettore nello spazio \mathbb{R}^2 .

ullet \mathbb{R}^3 = spazio ordinario. $(x,y,z)\in\mathbb{R}^3=(x_1,x_2,x_3)\in\mathbb{R}^3.$

Visualizzazione grafica di un vettore nello spazio $\mathbb{R}^3.$

▼ 2.1 - Operazioni nello spazio euclideo

Somma tra vettori

Dati due vettori $x=(x_1,\ldots,x_n)$ e $y=(y_1,\ldots,y_n)$, definiamo la **somma** tra di essi come:

$$x+y=(x_1+y_1,\ldots,x_n+y_n)$$

La somma tra vettori nello spazio \mathbb{R}^2 può essere visualizzata in maniera grafica tramite la regola del parallelogramma:

Regola del parallelogramma.

Prodotto con scalare

Dato un vettore $x=(x_1,\ldots,x_n)$ e uno scalare $\lambda\in\mathbb{R}$, definiamo il prodotto con scalare come:

$$\lambda x = (\lambda x_1, \dots, \lambda x_n)$$

Il prodotto con scalare nello spazio \mathbb{R}^2 può essere visualizzato in maniera grafica tramite un cambiamento della lunghezza e/o direzione del vettore di partenza.

Inoltre, se il vettore di partenza è un vettore non nullo, ovvero $x \neq (0, \dots, 0)$, allora l'insieme $\{\lambda x \mid \lambda \in \mathbb{R}\}$ rappresenta la retta generata dal vettore x.

Retta generata da un vettore tramite prodotto con scalare.

Se partiamo da due vettori non nulli invece l'insieme $\{x+ty\mid t\in\mathbb{R}\}$ rappresenta la retta passante per x avente direzione e verso del vettore y.

Retta generata dalla somma di un vettore e un prodotto con scalare.

Prodotto scalare euclideo

Dati due vettori $x,y\in\mathbb{R}^n$, definiamo il prodotto scalare euclideo come:

$$\langle x,y
angle\coloneqq\sum_{k=1}^n x_ky_k$$

Possiamo visualizzare in maniera grafica il prodotto scalare in \mathbb{R}^2 come il prodotto della lunghezza di uno dei due vettori per la lunghezza della componente x dell'altro vettore rispetto al vettore iniziale:

Visualizzazione grafica del prodotto scalare nel piano cartesiano.

Proprietà

1.
$$\langle x,y
angle = \langle y,x
angle \quad orall \; x,y \in \mathbb{R}^n$$

2.
$$\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$$
 e $\langle z, \lambda x + \mu y \rangle = \lambda \langle z, x \rangle + \mu \langle z, y \rangle \quad \forall \; x, y \in \mathbb{R}^n \land \lambda, \mu \in \mathbb{R}$

3.
$$\langle x,x
angle \geq 0 \quad orall \ x\in \mathbb{R}^n$$

•
$$\langle x,x
angle = 0 \iff x = (0,\ldots,0)$$

▼ 2.2 - Vettori

Vettori standard

In uno spazio vettoriale di dimensione n, ci sono n vettori standard i quali hanno tutte le componenti uguali a zero tranne una, che è uguale a 1:

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$$

Visualizzazione grafica dei vettori standard dello spazio \mathbb{R}^3 .

Ortogonalità/Perpendicolarità tra vettori

Due vettori $x,y\in\mathbb{R}^n$ si dicono **ortogonali/perpendicolari** se $\langle x,y
angle = 0.$

L'ortogonalità/perpendicolarità può anche essere visualizzata per due vettori $\in \mathbb{R}^2$. Prendiamo infatti ad esempio due vettori $x=(\cos\theta,\sin\theta)$ e $y=(\cos(\theta+\frac{\pi}{2}),\sin(\theta+\frac{\pi}{2}))=(-\sin\theta,\cos\theta)$. Possiamo verificare che tali vettori sono ortogonali calcolando il loro prodotto euclideo $\langle x,y\rangle=-\cos\theta\sin\theta+\sin\theta\cos\theta=0$. Concludiamo dunque che tutti i vettori che differiscono di un angolo $\frac{\pi}{2}$ sono perpendicolari tra loro.

Visualizzazione grafica di 2 vettori ortoonali tra loro nel piano cartesiano.

Proposizioni

- Il **vettore nullo** è perpendicolare a tutti i vettori, infatti $\sum_{k=1}^n 0y_k = 0.$
- In \mathbb{R}^n i vettori standard e_1, \ldots, e_n sono ortogonali tra loro.

Esercizi:

lacksquare Dato il vettore $v=(1,2,3)\in\mathbb{R}^3$, trovare un vettore $x=(x,y,z)\perp v$ diverso dal vettore nullo.

Occorre impostare l'equazione $\langle x,v\rangle=0$, ovvero $x+2y+3z=0 \implies x=-2y-3z$. Abbiamo dunque trovato che l'insieme $\{(-2y-2z,y,z)\mid (y,z)\in\mathbb{R}^2\}$ è un insieme di vettori perpendicolari al vettore v.

Osserviamo che l'insieme trovato rappresenta un piano, infatti ogni vettore $v \in \mathbb{R}^3$ tranne il vettore nullo identifica un piano di vettori perpendicolari ad esso.

Visualizzazione grafica di un piano perpendicolare ad un vettore.

lacktriangledown Trovare il rapporto dei parametri m e p affinchè le due rette y=mx e y=px siano ortogonali.

Costruiamo i vettori corrispondenti alle due rette: (1,m) e (1,p).

Impostiamo l'equazione
$$\langle (1,m),(1,p) \rangle = 1 + mp = 0$$
, ovvero $p = -\frac{1}{m}$.

Norma euclidea

Dato un vettore $x \in \mathbb{R}^n$, definiamo la **norma euclidea** nel seguente modo:

$$||x|| \coloneqq \sqrt{\langle x, x \rangle} \in [0, +\infty[$$

Nota: le notazioni ||x|| e |x| sono equivalenti.

Proposizioni

• Teorema di pitagora generalizzato in \mathbb{R}^n : se $x\perp y$ in \mathbb{R}^n , allora $|x+y|^2=|x|^2+|y|^2$, che è equivalente, in \mathbb{R}^2 , al quadrato della lunghezza della diagonale del rettangolo che ha come lati i vettori x e y.

Dimostrazione

Per ipotesi abbiamo che $\langle x,y \rangle = 0$.

Dimostriamo la formula del quadrato di un binomio generalizzata sui vettori ($|x+y|^2=|x|^2+|y|^2+2\langle x,y\rangle$). Sappiamo che $|x+y|^2=\langle x+y,x+y\rangle$, utilizziamo la proprietà della linearità del primo argomento per ricavarci $\langle x,x+y\rangle+\langle y,x+y\rangle$ e la linearità del secondo argomento per ottenere $\langle x,x\rangle+\langle x,y\rangle+\langle y,x\rangle+\langle y,y\rangle$, dalla quale, visto che $\langle x,y\rangle=\langle y,x\rangle$, otteniamo infine che $|x+y|^2=|x|^2+|y|^2+2\langle x,y\rangle$.

Utilizziamo dunque la formula del quadrato di un binomio generalizzata appena dimostrata e per ottenere che $|x+y|^2=|x|^2+|y|^2+2|\langle x,y\rangle|=|x|^2+|y|^2+0$, qed.

Esempio:

$$ullet$$
 In \mathbb{R}^2 , $||(a,b)||=\sqrt{a^2+b^2}$. In \mathbb{R}^3 , $||(a,b,c)||=\sqrt{a^2+b^2+c^2}$.

Notiamo che la norma di un vettore indica la "lunghezza" di tale vettore.

Proprietà

1.
$$|\lambda x| = |\lambda||x| \quad orall \ \lambda \in \mathbb{R}, x \in \mathbb{R}^n$$

2.
$$|x| \geq 0 \quad orall \ x \in \mathbb{R}^n$$

a.
$$|x|=0\iff x=\langle 0,\ldots,0
angle$$

3.
$$|x+y| \le |x| + |y|$$

La possiamo anche leggere come $len(x+y) \geq len(x) + len(y)$, ovvero la **disuguaglianza** triangolare.

Normalizzato di un vettore

Il normalizzato di un vettore consiste in quell'unico vettore positivo multiplo del vettore di partenza che ha come norma 1.

Dobbiamo dunque trovare uno scalare r>0 tale che |rx|=1. Scomponiamo la norma in questo modo |r||x|=r|x|=1 e otteniamo che $r=\frac{1}{|x|}$. Il vettore normalizzato |rx| vale dunque $\frac{x}{|x|}$.

Dato il vettore $x \in \mathbb{R}^n$ diverso dal vettore nullo, il **normalizzato** di x è l'unico vettore positivo multiplo di x che ha norma 1, e vale:

$$\frac{x}{|x|}$$

Visualizzazione grafica del normalizzato di un vettore.

Esercizi:

lacktriangledown Trovare il normalizzato di x=(2,3)

Per trovare il normalizzato di x occorre calcolare il prodotto scalare $\frac{x}{|x|}$.

Calcoliamo dunque |x|, il quale è uguale a $|(2,3)|=\sqrt{4+9}=\sqrt{13}$.

Infine calcoliamo il normalizzato come $\frac{(2,3)}{\sqrt{13}}=(\frac{2}{\sqrt{13}},\frac{3}{\sqrt{13}}).$

lacktriangle Trovare il normalizzato di x=(14,21,-28)

Per semplificarci i calcoli osserviamo che $\frac{x}{|x|}=\frac{\lambda x}{|\lambda x|}$, dunque possiamo calcolare il normalizzato nel seguente modo: $\frac{(14,21,-28)}{|(14,21,-28)|}=\frac{(2,3,-4)}{|(2,3,-4)|}=\left(\frac{2}{\sqrt{29}},\frac{3}{\sqrt{29}},\frac{-4}{\sqrt{29}}\right)$.

Coordinate polari di un vettore

Osserviamo che dato un qualunque vettore $x \in \mathbb{R}^n$ diverso dal vettore nullo, $x = |x| rac{x}{|x|}$

Visto che $\frac{x}{|x|}$ è il normalizzato del vettore e ha lunghezza 1, esso, se il vettore x appartiene a \mathbb{R}^2 , può anche essere scritto in questo modo: $(\cos \theta, \sin \theta)$.

Utilizziamo inoltre la notazione $r \coloneqq |x|$ e scriviamo il vettore x come $r(\cos \theta, \sin \theta)$.

Concludiamo dunque che è possibile descrivere un qualunque vettore $x\in\mathbb{R}^2$ tramite l'utilizzo di due parametri, detti **coordinate polari**: (r,θ) .

Esercizi:

lacktriangle Trovare le coordinate polari del vettore (0,3)

Per trovare le coordinate polari dobbiamo calcolare il valore dei due parametri r e θ .

Sappiamo che r=|(0,3)|=3, dunque x=3y, dove y è un vettore che moltiplicato a 3 restituisce x. Troviamo dunque facilmente che y=(0,1) e, avendo che $\cos\theta=0$ e $\sin\theta=1$, otteniamo $\theta=\frac{\pi}{2}$.

Concludiamo dunque che il vettore (0,3) può essere scritto in coordinate polari come $(3,\frac{\pi}{2})$.

Prodotto scalare in coordinate polari

Presi due vettori $x = r(\cos \theta, \sin \theta)$ e $y = p(\cos \phi, \sin \phi)$, risulta:

$$\langle x, y \rangle = rp \cos(\theta - \phi) = |x||y|\cos(\theta - \phi)$$

Dove $\theta - \phi$ è l'angolo compreso tra i due vettori.

Disuguaglianza Cauchy-Schwarz

Per ogni vettore $x,y\in\mathbb{R}^n$ vale la seguente **disuguaglianza**:

$$|\langle x, y \rangle| \le |x| \cdot |y|$$

Notiamo che l'uguaglianza vale solo nel caso in cui i due vettori sono dipendenti tra loro, dunque in \mathbb{R} giacciono sulla stessa retta.

Distanza tra due vettori in \mathbb{R}^n

La **distanza tra due vettori/punti** in \mathbb{R}^n può essere calcolata tramite la formula:

$$|x-y|$$

Esempio grafico di distanza tra due vettori.

Intorni sferici/palle

Dato un vettore $x\in\mathbb{R}^n$ e uno scalare r>0, possiamo costruire l'insieme intorno sferico/palla con centro x e raggio r in questo modo:

$$B(x,r) = \{y \in \mathbb{R}^n \mid |y-x| < r\}$$

▼ 2.3 - Successioni e funzioni nello spazio euclideo

Successioni in \mathbb{R}^n

Una **successione** $(x_k)_{k\in\mathbb{N}}$ in \mathbb{R}^n è una collezione di n successioni in \mathbb{R} :

$$x_k = (x_k^1, \dots, x_k^n)$$

Esempio:

• $(rac{1}{k},k)_{k\in\mathbb{N}}$ è una successione in \mathbb{R}^2 .

È possibile visualizzare alcuni dei punti che fanno parte di questa successione nella seguente figura:

Successione convergente

Data una successione $(x_k)_{k\in\mathbb{N}}$ in \mathbb{R}^n e un vettore $a=(a_1,\ldots,a_n)$ si dice che:

$$x_k \mathop{\longrightarrow}\limits_{\mathrm{converge}} a \ \mathrm{per} \ k o \infty \iff egin{cases} \lim_{k o \infty} x_k^1 = a_1 \ \dots \ \lim_{k o \infty} x_k^n = a_n \end{cases}$$

Esempi:

- $(\frac{1}{k},\frac{k+2}{k+1}) \to (0,1)$, dunque la successione è convergente.
- $((-1)^k, \frac{1}{k})$ non è una successione convergente in quanto $\lim_{k \to \infty} (-1)^k$ è indefinito.

Funzioni

Dati 2 insiemi $A\subseteq\mathbb{R}^n, B\subseteq\mathbb{R}^q$ e data una funzione $f:A\to B$, il **grafico** di f può essere definito come l'insieme:

$$Graf(f) = \{(x, f(x)) \mid x \in A\} \subseteq A \times B$$

Funzioni radiali

Le **funzioni radiali** sono funzioni $f:\mathbb{R}^2 o \mathbb{R}$ che si scrivono nella forma:

$$f(x,y)=g(|(x,y)|)\quad g:[0,+\infty[
ightarrow\mathbb{R}$$

Esempi:

• $f(x,y) = x^2 + y^2 = |(x,y)|^2$

Innanzitutto creiamo l'insieme grafico di tale funzione: $Graf(f)=\{(x,y,x^2+y^2)\ |\ (x,y)\in\mathbb{R}^2\}.$

Per disegnare tale grafico è utile scrivere (x,y) come $(r\cos\theta,r\sin\theta)$. In questo modo abbiamo che $x^2+y^2=r^2\cos^2\theta+r^2\sin^2\theta=r^2(\cos^2\theta+\sin^2\theta)=r^2$.

Riscriviamo dunque l'insieme grafico utilizzando le coordinate polari: $Graf(f)=\{(r\cos\theta,r\sin\theta,r^2)\mid r\geq 0\}.$

Notiamo dunque che l'insieme appena ottenuto descrive il grafico di una parabola nello spazio \mathbb{R}^3 :

•
$$f(x,y) = 1 - \sqrt{x^2 + y^2} = 1 - |(x,y)|$$

Il grafico di tale funzione è il seguente:

Funzioni affini

Le funzioni affini sono funzioni $f:\mathbb{R}^2 o \mathbb{R}$ che si scrivono nella forma:

$$f(x,y) = ax + by + c$$
 $a,b,c \in \mathbb{R}$

Notiamo che tali funzioni individuano insiemi grafici del tipo $Graf(f)=\{(x,y,ax+by+c)\mid (x,y)\in\mathbb{R}^2\}$, i quali descrivono dei piani in \mathbb{R}^3 .

Esempi:

•
$$f(x,y) = -y$$

Per disegnare il grafico di questa funzione è possibile effettuarne l'intersezione con due piani. Intersechiamo con il piano x=0 e otteniamo $Graf(f)\cap x=0:\{(0,y,-y)\mid y\in\mathbb{R}\},$ ossia la seguente retta:

Intersechiamo ora con un altro piano, ad esempio x=1, e otteniamo $Graf(f)\cap x=1$: $\{(1,y,-y)\mid y\in\mathbb{R}\}$, ossia la seguente retta:

Tramite tali intersezioni possiamo dunque prevedere il grafico della funzione data, il quale è il seguente piano:

Funzioni continue

Sia
$$f:A o B\quad (A\subseteq \mathbb{R}^n, B\subseteq \mathbb{R}^q)$$
, f si dice **continua** in \overline{x} se: $orall \ (x_k)_{k\in \mathbb{N}}, (x_k) ext{ successione in } A, x_k \xrightarrow[k o +\infty]{} \overline{x} \implies f(x_k) \xrightarrow[k o +\infty]{} f(\overline{x})$

È possibile dimostrare che tale definizione di funzione continua è equivalente alla seguente:

$$orall \ \epsilon > 0, \ \exists \ \delta \ ext{ t.c. } |f(x) - f(\overline{x})| < \epsilon \quad orall \ x \in A \cup B(\overline{x}, \delta)$$

Proposizioni

• Tutte le funzioni elementari sono continue nei loro domini.

▼ 3.0 - Derivate e differenziabilità

▼ 3.1 - Derivate parziali

Insiemi aperti in \mathbb{R}^n

Dato un insieme $A\subseteq R^n$, si dice che A è **aperto** se $\forall \ \overline{x}\in A, \exists \ \epsilon>0 \mid B(\overline{x},\epsilon)\subseteq A$, dove $B(\overline{x},\epsilon)$ è l'intorno sferico di centro \overline{x} e raggio ϵ .

Esempio:

• Nella seguente figura osserviamo due insiemi, uno chiuso e uno aperto:

Notiamo che A_1 è un insieme chiuso in quanto esiste un $\overline{x}\in A_1$ che viola la definizione di insieme aperto, mentre in A_2 , preso un qualunque $\overline{x}\in A_2$, questo rispetta la definizione di insieme aperto.

Derivate parziali

Caso \mathbb{R}^2

Siano $A\subseteq\mathbb{R}^2$ aperto, $f:A o\mathbb{R}$ e $(\overline{x},\overline{y})\in A$, poniamo:

$$rac{\partial f}{\partial x}(\overline{x},\overline{y}) = \partial_x f(\overline{x},\overline{y}) = \lim_{t o 0} rac{f(\overline{x}+t,\overline{y})-f(\overline{x},\overline{y})}{t}$$

е

$$rac{\partial f}{\partial y}(\overline{x},\overline{y}) = \partial_y f(\overline{x},\overline{y}) = \lim_{t o 0} rac{f(\overline{x},\overline{y}+t) - f(\overline{x},\overline{y})}{t}$$

Se i due limiti esistono finiti diciamo che f è derivabile parzialmente in $(\overline{x}, \overline{y})$.

Inoltre, nel caso in cui f è derivabile parzialmente in $(\overline{x}, \overline{y})$, è possibile definire il **gradiente** di f in $(\overline{x}, \overline{y})$ come:

$$abla f(\overline{x},\overline{y}) = (\partial_x f(\overline{x},\overline{y}),\partial_y f(\overline{x},\overline{y}))$$

È possibile altrimenti calcolare equivalentemente i due limiti nel seguente modo:

$$rac{\partial f}{\partial x}(\overline{x},\overline{y}) = \lim_{x o \overline{x}} rac{f(x,\overline{y}) - f(\overline{x},\overline{y})}{x - \overline{x}}$$

е

$$rac{\partial f}{\partial y}(\overline{x},\overline{y}) = \lim_{x o \overline{x}} rac{f(\overline{x},y) - f(\overline{x},\overline{y})}{y - \overline{y}}$$

Esempio grafico delle tangenti che consentono di determinare il valore delle derivate parziali nel punto (x_0, y_0) .

Esercizi:

lacksquare Sia $f(x,y)=xy^2$, calcolare $rac{\partial f}{\partial x}(\overline{x},\overline{y})$ e $rac{\partial f}{\partial y}(\overline{x},\overline{y})$.

Per calcolare $\frac{\partial f}{\partial x}(\overline{x},\overline{y})$ occorre calcolare la derivata della funzione in funzione di x e trattare il parametro y come se fosse una costante, dunque $\frac{\partial f}{\partial x}(\overline{x},\overline{y})=y^2$.

Lo stesso deve essere fatto per calcolare $rac{\partial f}{\partial y}(\overline{x},\overline{y})$, dunque $rac{\partial f}{\partial y}(\overline{x},\overline{y})=2xy$.

Caso generale

Siano $A\subseteq\mathbb{R}^n$ aperto, $f:A o\mathbb{R}^n$ e $\overline{x}=(\overline{x}_1,\ldots,\overline{x}_n)\in A$, poniamo:

$$rac{\partial f}{\partial x_{i}}(\overline{x}) = \lim_{t o 0} rac{f(\overline{x} + te_{j}) - f(\overline{x})}{t}$$

Dove $j \in \{1, \dots, n\}$ e e_j è il vettore standard avente un 1 in posizione j. Se i limiti esistono diciamo che f è **derivabile parzialmente** in \overline{x} .

Inoltre, nel caso in cui f è derivabile parzialmente in \overline{x} , è possibile definire il **gradiente** di f in \overline{x} come:

$$abla f(\overline{x}) = (rac{\partial f}{\partial x_1}(\overline{x}), \ldots, rac{\partial f}{\partial x_n}(\overline{x}))$$

Esercizi:

▼ Sia $f(x,y,z) = rac{xe^{z^2}}{x+y^2}$, calcolare il gradiente di f.

Determiniamo innanzitutto il dominio della funzione f, ovvero $Dom(f)=\{(x,y,z)\in\mathbb{R}^3|x+y^2\neq 0\}.$

Calcoliamo poi le 3 derivate parziali:

•
$$rac{\partial f}{\partial x}(x,y,z)=rac{y^2e^{z^2}}{(x+y^2)^2}$$

•
$$\frac{\partial f}{\partial x}(x,y,z) = -\frac{2xye^{z^2}}{(x+y^2)^2}$$

•
$$\frac{\partial f}{\partial x}(x,y,z)=rac{2xze^{z^2}}{x+y^2}$$

Possiamo dunque concludere che il gradiente di f è il seguente:

$$abla f(x,y,z) = (rac{y^2 e^{z^2}}{(x+y^2)^2}, -rac{2xy e^{z^2}}{(x+y^2)^2}, rac{2xz e^{z^2}}{x+y^2}) \quad (
abla f: Dom(f)
ightarrow \mathbb{R}^3)$$

Matrice Jacobiana

Sia $f:\mathbb{R}^n o\mathbb{R}^q$ tale che $f(x)=(f_1(x),\ldots,f_q(x))$ con $x=(x_1,\ldots,x_n)$, allora la **matrice Jacobiana** $J_f(x)\in\mathbb{R}^{q\times n}$ di tale funzione è definita nel seguente modo:

$$J_{f(x)} = egin{pmatrix} rac{\partial}{\partial x_1}f_1 & \dots & rac{\partial}{\partial x_n}f_1 \ & \dots & \ rac{\partial}{\partial x_1}f_q & \dots & rac{\partial}{\partial x_n}f_q \end{pmatrix}$$

▼ 3.2 - Differenziabilità

Legame tra derivabilità e continuità

L'esistenza della derivata parziale non implica la continuità.

Dimostrazione

È possibile dimostrare tale teorema attraverso un esempio. Prendiamo la seguente funzione:

$$f:\mathbb{R}^2 o\mathbb{R}, f(x,y)=egin{cases} rac{xy}{x^2+y^2} & ext{se }(x,y)
eq (0,0) \ 0 & ext{se }(x,y)=(0,0) \end{cases}$$

Possiamo infatti dimostrare che:

• f è derivabile parzialmente in (0,0)Calcoliamo infatti le derivate parziali in (0,0):

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0 \text{ e } \frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0$$

• f è discontinua in (0,0)Utilizziamo il metodo delle successioni e scegliendo la successione $(\frac{1}{k},\frac{1}{k})$ troviamo che:

$$(rac{1}{k},rac{1}{k}) \stackrel{k o +\infty}{\longrightarrow} (0,0), f(rac{1}{k},rac{1}{k}) = rac{rac{1}{k}rac{1}{k}}{rac{1}{k^2} + rac{1}{k^2}} = rac{1}{2}
eq f(0,0) = 0$$

O-piccolo in \mathbb{R}^2

Sia $\mathbb{R}^2 o \mathbb{R}$ e p>0, si scrive $f(x,y)=o(|(x,y)|^p)$ se:

$$orall \ \epsilon > 0, \exists \ \delta > 0 \quad | \quad rac{f(x,y)}{|(x,y)|^p} \leq \epsilon \quad orall \ (x,y) \ | \ |(x,y)| < \delta$$

Alternativamente:

$$orall \left(x_n,y_n
ight)
ightarrow (0,0), \quad \lim_{n
ightarrow \infty} rac{f(x_n,y_n)}{|(x_n,y_n)|^p} = 0$$

Proposizioni

- f(x,y): polinomio di grado $>p \implies f(x,y)=o(|(x,y)|^p)$ Ad esempio, $x^3+xy+2y=o(|(x,y)|^2)$

Esercizi

lacksquare Verificare che $f(x,y)=x^2=o(|(x,y)|)$

Per verificare ciò dobbiamo dimostrare che $\lim_{(x,y) o (0,0)} rac{x^2}{|(x,y)|} = 0.$

Utilizziamo il teorema del confronto, sapendo che:

$$f(x,y) = 0 \xrightarrow[(x,y) o (0,0)]{} 0 \leq rac{x^2}{|(x,y)|} \leq f(x,y) = rac{|(x,y)|^2}{|(x,y)|} = |(x,y)| \xrightarrow[(x,y) o (0,0)]{} 0$$

Otteniamo dunque che $\frac{x^2}{|(x,y)|} \xrightarrow{(x,y) \to (0,0)} 0$, verificando quindi il limite.

Funzione differenziabile

Caso generale

Dato $A\subseteq\mathbb{R}^n$, sia $f:A o\mathbb{R}$, f è differenziabile in $\overline{x}\in A$ se:

- $\exists \ \partial_1 f, \ldots, \partial_n f$ nel punto \overline{x}
- $f(\overline{x}+h)=f(\overline{x})+\langle
 abla f(\overline{x}),h
 angle +o(|h|)$, dove $h=(h_1,\ldots,h_n)\in \mathbb{R}^n$.

Caso n=2

Sia $f:\mathbb{R}^2 o\mathbb{R}$, f è differenziabile in $(\overline{x},\overline{y})$ se:

- $\exists \; \partial_x f(\overline{x}, \overline{y}), \partial_y f(\overline{x}, \overline{y})$
- $\bullet \ \ f(\overline{x}+h,\overline{y}+k)=f(\overline{x},\overline{y})+\langle \nabla f(\overline{x},\overline{y}),(h,k)\rangle+o(|(h,k)|)$

Polinomio di Taylor di grado 1

Se f è differenziabile possiamo sviluppare l'equazione della derivabilità impostando $x=\overline{x}+h$ e $y=\overline{y}+k$ e ottenendo il cosiddetto polinomio di Taylor di grado 1 e punto iniziale $(\overline{x},\overline{y})$:

$$T(x,y) = f(\overline{x},\overline{y}) + \langle \nabla f(\overline{x},\overline{y}), (x-\overline{x},y-\overline{y}) \rangle + o(|(x-\overline{x},y-\overline{y})|)$$

Tale polinomio descrive il **piano tangente** al grafico di f nel punto $(\overline{x}, \overline{y}, f(\overline{x}, \overline{y}))$.

Esercizi

lacktriangle Trovare il piano tangente della funzione $x^2+y^2+z^2=1$ nel punto (0,0,1).

Per trovare il piano tangente a tale funzione occorre calcolare il polinomio di Taylor di grado 1.

Riscriviamo innanzitutto l'equazione in funzione di $z=\sqrt{1-x^2-y^2}$ (non inseriamo il \pm poichè dobbiamo calcolare la funzione nella parte positiva dell'asse z). Per fare ciò occorre prima di tutto calcolare le derivate parziali di f:

$$\partial_x f(x,y) = rac{-2x}{2\sqrt{1-x^2-y^2}} = -rac{x}{\sqrt{1-x^2-y^2}}$$

$$\partial_y f(x,y) = rac{-2y}{2\sqrt{1-x^2-y^2}} = -rac{y}{\sqrt{1-x^2-y^2}}$$

Calcoliamo a questo punto il polinomio di Taylor ottenendo il piano:

$$z = \sqrt{1-0-0} + \langle (-rac{0}{\sqrt{1-0-y^2}}, -rac{0}{\sqrt{1-x^2-0}}), (x-0,y-0)
angle \ = 1+0x+0y=1$$

Possiamo infatti visualizzare che il piano z=1 è tangente alla sfera $x^2+y^2+z^2=1$ nel punto (0,0,1).

lacktriangledown Scrivere il polinomio di Taylor per la funzione $f(x,y,z)=xe^{x^2yz^2}$ in (-1,2,1) dando per scontato che sia differenziabile.

Il polinomio di Taylor per funzioni con 3 variabili è il seguente:

$$T(x,y,z) = f(\overline{x},\overline{y},\overline{z}) + \langle
abla f(\overline{x},\overline{y},\overline{z}), (x-\overline{x},y-\overline{y},z-\overline{z})
angle + o(|(x-\overline{x},y-\overline{y},z-\overline{z})|)$$

Per calcolare dunque il gradiente di f nel punto (-1,2,1) occorre calcolare innanzitutto le 3 derivate parziali:

$$\partial_x f = 5e^2, \quad \partial_y f = -e^2, \quad \partial_z f = -4e^2$$

A questo otteniamo il polinomio di Taylor nel seguente modo:

$$T(x,y,z) = f(-1,2,1) + \langle (\partial_x f, \partial_y f, \partial_z f), (x+1,y-2,z-1) \rangle + o(|(x+1,y-2,z-1)|) + o(|(x+1,y-2,z-1)|) = -e^2 + \langle (5e^2, -e^2, -4e^2), (x+1,y-2,z-1) \rangle + o(|(x+1,y-2,z-1)|) = -e^2 + 5e^2(x+1) - e^2(y-2) - 4e^2(z-1)$$

Proposizioni

• $f: \mathbb{R}^2 o \mathbb{R}^2$ differenziabile in $(\overline{x}, \overline{y}) \in \mathbb{R}^2 \implies f$ continua in $(\overline{x}, \overline{y})$.

Dimostrazione:

Supponendo che f sia differenziabile, abbiamo che $f(\overline{x}+h,\overline{y}+k)-f(\overline{x},\overline{y})=\langle \nabla f(\overline{x},\overline{y}),(h,k)\rangle+o(|(h,k)|)$, che per $h,k\to +\infty$ diventa $f(\overline{x}+h,\overline{y}+k)-f(\overline{x},\overline{y})=0$, dimostrando la continuità.

Teorema della differenziabilità

Sia $f: \mathbb{R}^2 \to \mathbb{R}$ continua. Se $\exists \ \partial_x f, \partial_y f$ in ogni punto e le funzioni $\partial_x f, \partial_y f$ sono continue, allora $\forall \ (\overline{x}, \overline{y}) \in \mathbb{R}^2$, f è differenziabile in $(\overline{x}, \overline{y})$.

Lemma

Sia $f:\mathbb{R}^2 o \mathbb{R}$ continua con derivate prime continue $\forall~(a,b) \in \mathbb{R}^2$, allora:

- $\forall \ h \in \mathbb{R}, \exists \ \theta \in [0,1]$ tale che $f(a+h,b) f(a,b) = \partial_x f(a+\theta h,b) h$
- $\forall \ k \in \mathbb{R}, \exists \ \overline{\theta} \in [0,1]$ tale che $f(a,b+k) f(a,b) = \partial_u f(a,b+\overline{\theta}k)k$

Dimostrazione lemma

ullet Definiamo $g:\mathbb{R} o\mathbb{R}$ in questo modo: $g(x)=f(x,b)\quad orall x\in\mathbb{R}$

Uso Lagrange per g nell'intervallo [a,a+h]. $\exists \theta \in [0,1]$ tale che $g(a+h)-g(a)=g'(a+\theta h)(a+h-a)$, dunque, per definizione di $\partial_x f$:

$$g(a+h)-g(a)=\partial_x f(a+\theta h,b)h$$

Cvd.

· Analogo.

Dimostrazione teorema della differenziabilità

Supponiamo che $f, \partial_x f, \partial_y f$ siano continue, dobbiamo dimostrare che f è differenziabile, dunque che vale Taylor:

$$f(\overline{x}+h,\overline{y}+k) = f(\overline{x},\overline{y}) + \langle \nabla f(\overline{x},\overline{y}),(h,k) \rangle + o(|(h,k)|) \ \Longrightarrow f(\overline{x}+h,\overline{y}+k) - f(\overline{x},\overline{y}) = \langle \nabla f(\overline{x},\overline{y}),(h,k) \rangle + o(|(h,k)|)$$

Riscriviamo la parte a sinistra dell'=:

$$f(\overline{x}+h,\overline{y}+k)-f(\overline{x},\overline{y})=f(\overline{x}+h,\overline{y}+k)-f(\overline{x}+h,\overline{y})+f(\overline{x}+h,\overline{y})-f(\overline{x},\overline{y})$$

Da ora in avanti, per semplificare la dimostrazione, rappresentiamo la formula ottenuta come [1]+[2], dove $[1]=f(\overline{x}+h,\overline{y}+k)-f(\overline{x}+h,\overline{y})$ e $[2]=f(\overline{x}+h,\overline{y})-f(\overline{x},\overline{y})$.

Usiamo il lemma:

- $\exists \theta \in [0,1]$ tale che $[2] = \partial_x f(\overline{x} + \theta h, \overline{y})h$
- $\exists \; \theta \in [0,1]$ tale che $[1] = \partial_{y} f(\overline{x},\overline{y} + \theta k) k$

Espandiamo le equivalenze appena ottenute nel seguente modo:

- $[2]=\partial_x f(\overline{x},\overline{y})h+(\partial_x f(\overline{x}+\theta h,\overline{y})-\partial_x f(\overline{x},\overline{y}))h$ (aggiungendo e sottraendo $\partial_x f(\overline{x},\overline{y})h$)
- $[1] = \partial_{y} f(\overline{x}, \overline{y})k + (\partial_{y} f(\overline{x}, \overline{y} + \theta k) \partial_{y} f(\overline{x}, \overline{y}))k$ (aggiungendo e sottraendo $\partial_{y} f(\overline{x}, \overline{y})k$)

Sostituiamo dunque nell'uquaglianza iniziale gli equivalenti a [1] e [2] appena trovati ottenendo:

$$f(\overline{x}+h,\overline{y}+k)-f(\overline{x},\overline{y})=\partial_x f(\overline{x},\overline{y})h+\partial_y f(\overline{x},\overline{y})k+(\partial_x f(\overline{x}+\theta h,\overline{y})-\partial_x f(\overline{x},\overline{y}))h+(\partial_y f(\overline{x},\overline{y})$$

Visto che $\partial_x f(\overline{x}, \overline{y})h + \partial_y f(\overline{x}, \overline{y})k$ è equivalente a $\langle \nabla f(\overline{x}, \overline{y}), (h, k) \rangle$, per dimostrare la validità di Taylor ci basta dunque dimostrare che:

$$egin{aligned} &(\partial_x f(\overline{x}+ heta h,\overline{y})-\partial_x f(\overline{x},\overline{y}))h+(\partial_y f(\overline{x},\overline{y}+ heta k)-\partial_y f(\overline{x},\overline{y}))k=o(|(h,k)|)\ \Longrightarrow &rac{(\partial_x f(\overline{x}+ heta h,\overline{y})-\partial_x f(\overline{x},\overline{y}))h+(\partial_y f(\overline{x},\overline{y}+ heta k)-\partial_y f(\overline{x},\overline{y}))k}{|(h,k)|} &rac{(h,k) o(0,0)}{(h,k)o(0,0)} \ 0\ \Longrightarrow &(\partial_x f(\overline{x}+ heta h,\overline{y})-\partial_x f(\overline{x},\overline{y}))rac{h}{|(h,k)|}+(\partial_y f(\overline{x},\overline{y}+ heta k)-\partial_y f(\overline{x},\overline{y}))rac{k}{|(h,k)|} &rac{(h,k) o(0,0)}{(h,k)o(0,0)} \end{aligned}$$

Osserviamo che $\frac{h}{|(h,k)|}$ e $\frac{k}{|(h,k)|} \leq \frac{|(h,k)|}{|(h,k)|} = 1$ in quanto $\sqrt{h^2+k^2}$ è sempre maggiore o alla peggio uguale dei singoli h e k, dunque ci basta dimostrare che:

$$(\partial_x f(\overline{x}+ heta h,\overline{y})-\partial_x f(\overline{x},\overline{y}))+(\partial_y f(\overline{x},\overline{y}+ heta k)-\partial_y f(\overline{x},\overline{y})) \xrightarrow[(h,k) o(0,0)]{} 0$$

Lo dimostriamo facilmente sostituendo ad h e k i valori ai quali tendono:

$$egin{split} \left(\partial_x f(\overline{x}+ heta h,\overline{y})-\partial_x f(\overline{x},\overline{y})
ight)+\left(\partial_y f(\overline{x},\overline{y}+ heta k)-\partial_y f(\overline{x},\overline{y})
ight) & \xrightarrow{(h,k) o(0,0)} \ \left(\partial_x f(\overline{x},\overline{y})-\partial_x f(\overline{x},\overline{y})
ight)+\left(\partial_y f(\overline{x},\overline{y})-\partial_y f(\overline{x},\overline{y})
ight)=0+0=0 \end{split}$$

▼ 3.3 - Derivate direzionali

Rette in \mathbb{R}^n

A partire da un dominio R^n di partenza e due vettori $x=(x_1,\ldots,x_n)$ e $v=(v_1,\ldots,v_n)\neq 0$ è possibile definire la retta passante per x e avente direzione v tramite l'insieme:

$$r = \{x + tv \mid t \in \mathbb{R}\}$$

Rappresentazione grafica di una retta generica nel piano \mathbb{R}^2 .

Derivate direzionali in \mathbb{R}^2

Sia $f:\mathbb{R}^2 o\mathbb{R}, (\overline{x},\overline{y})\in\mathbb{R}^2$ e $v=(v_1,v_2)$ unitario (|v|=1). La **derivata direzionale** di f in $(\overline{x},\overline{y})$ nella direzione (v_1,v_2) è il limite, se esiste finito:

$$\lim_{t o 0}rac{f((\overline{x},\overline{y})+t(v_1,v_2))-f(\overline{x},\overline{y})}{t}=rac{\partial f}{\partial v}(\overline{x},\overline{y})=\partial_v f(\overline{x},\overline{y})=D_v f(\overline{x},\overline{y})$$

Osservazione

Sia $f: \mathbb{R}^2 \to \mathbb{R}, (\overline{x}, \overline{y}) \in \mathbb{R}^2$ e $v = (v_1, v_2)$ unitario (|v| = 1). Per calcolare $\frac{\partial f}{\partial v}(\overline{x}, \overline{y})$ è possibile introdurre una funzione ausiliaria $g: \mathbb{R} \to \mathbb{R}$ tale che:

$$g(t) = f((\overline{x},\overline{y}) + t(v_1,v_2))$$

Utilizzando tale funzione è possibile calcolare $rac{\partial f}{\partial v}(\overline{x},\overline{y})$, infatti è possibile dimostrare che:

$$g'(0)=rac{\partial f}{\partial v}(\overline{x},\overline{y})$$

Dimostrazione

$$g'(0) = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = \lim_{t \to 0} \frac{f((\overline{x}, \overline{y}) + t(v_1, v_2)) - f(\overline{x}, \overline{y})}{t} = \frac{\partial f}{\partial v}(\overline{x}, \overline{y})$$

Esercizi

▼ Data $f(x,y) = xy^2$ e $(\overline{x},\overline{y}) = (1,2)$, calcolare $\frac{\partial f}{\partial y}(1,2)$.

Per fare ciò è possibile utilizzare la funzione ausiliaria $g(t)=f((\overline{x},\overline{y})+t(v_1,v_2))=f((1,2)+t(v_1,v_2))=f((1+tv_1),(2+tv_2))=(1+tv_1)(2+tv_2)^2.$

Calcoliamo infine il valore della derivata g'(0):

$$g'(t) = v_1(2 + tv_2)^2 + (1 + tv_1)2(2 + tv_2)v_2 \ \Longrightarrow g'(0) = \frac{\partial f}{\partial v}(1, 2) = 4v_1 + 4v_2$$

Teorema del calcolo delle derivate direzionali in \mathbb{R}^2

Sia $f:\mathbb{R}^2 o\mathbb{R},(\overline{x},\overline{y})\in\mathbb{R}^2$ e $v=(v_1,v_2)$ unitario (|v|=1), se f è differenziabile in $(\overline{x},\overline{y})$, allora vale:

$$rac{\partial f}{\partial v}(\overline{x},\overline{y}) = \langle
abla f(\overline{x},\overline{y}), (v_1,v_2)
angle = \partial_x f(\overline{x},\overline{y}) v_1 + \partial_y f(\overline{x},\overline{y}) v_2$$

Dimostrazione

Dobbiamo calcolare $\lim_{t\to 0} rac{f((\overline{x},\overline{y})+t(v_1,v_2))-f(\overline{x},\overline{y})}{t}$.

Per fare ciò utilizziamo la formula di Taylor, ottenendo $f((\overline{x},\overline{y})+t(v_1,v_2))-f(\overline{x},\overline{y})=\langle \nabla f(\overline{x},\overline{y}),t(v_1,v_2)\rangle+o(|t(v_1,v_2)|).$

Osserviamo che $|t(v_1, v_2)| = |t| |(v_1, v_2)|$ e, sapendo che $|(v_1, v_2)| = 1$, otteniamo $|t(v_1, v_2)| = |t|$, quindi $o(|t(v_1, v_2)|) = o(t)$.

Calcoliamo dunque il limite iniziale sostituendo ciò che abbiamo appena trovato:

$$\lim_{t o 0}rac{\langle
abla f(\overline{x},\overline{y}),t(v_1,v_2)
angle +o(t)}{t}=\lim_{t o 0}(\langle
abla f(\overline{x},\overline{y}),(v_1,v_2)
angle +rac{o(t)}{t})=\langle
abla f(\overline{x},\overline{y}),(v_1,v_2)
angle$$

Derivate direzionali in \mathbb{R}^n

Sia $f:\mathbb{R}^n \to \mathbb{R}, \overline{x}=(x_1,\dots,x_n) \in \mathbb{R}^n$ e $v=(v_1,\dots,v_n)$ unitario (|v|=1). La **derivata direzionale** di f in \overline{x} nella direzione (v_1,\dots,v_n) è il limite, se esiste finito:

$$\lim_{t o 0}rac{f(\overline{x}+tv)-f(\overline{x})}{t}=rac{\partial f}{\partial v}(\overline{x})=\partial_v f(\overline{x})=D_v f(\overline{x})$$

Teorema del calcolo delle derivate direzionali in \mathbb{R}^n

Sia $f:\mathbb{R}^n o\mathbb{R},\overline{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$ e $v=(v_1,\ldots,v_n)$ unitario (|v|=1), se f è differenziabile in \overline{x} , allora vale:

$$rac{\partial f}{\partial v}(\overline{x}) = \langle
abla f(\overline{x}), v
angle = \sum_{k=1}^n \partial_{x_k} f(\overline{x}) v_k$$

▼ 3.4 - Direzione di massima crescita

Direzione di massima crescita in \mathbb{R}^2

Sia $f:\mathbb{R}^2 o\mathbb{R}, (\overline{x},\overline{y})\in\mathbb{R}^2, f$ differenziabile in $(\overline{x},\overline{y})$ e $abla f(\overline{x},\overline{y})
eq (0,0).$

È possibile derivare $f(\overline{x}, \overline{y})$ in ∞ direzioni v unitarie in \mathbb{R}^2 . Cerchiamo la direzione v che renda massima la derivata $\frac{\partial f}{\partial v}(\overline{x}, \overline{y})$ e la chiameremo direzione di massima crescita v_{max} .

Scriviamo il gradiente di $f(\overline{x}, \overline{y})$ utilizzando le coordinate polari: $\nabla f(\overline{x}, \overline{y}) = (r \cos \varphi, r \sin \varphi)$, con $r = |\nabla f(\overline{x}, \overline{y})|$ e $\varphi \in [0, 2\pi]$.

Dobbiamo trovare $v=(\cos\vartheta,\sin\vartheta)$ (|v|=1) tale che $\frac{\partial f}{\partial v}(\overline{x},\overline{y})$ sia massima.

Ricordiamo che $\frac{\partial f}{\partial v}(\overline{x},\overline{y})=\langle \nabla f(\overline{x},\overline{y}),(v_1,v_2)\rangle=\langle (r\cos\varphi,r\sin\varphi),(\cos\vartheta,\sin\vartheta)\rangle=r\cos\varphi\cos\vartheta+r\sin\varphi\sin\vartheta=r\cos(\varphi-\vartheta).$ Tale derivata è dunque massima se $\varphi-\vartheta=1$, ovvero $\vartheta=\varphi\pm 2k\pi$, dunque tale direzione di massima crescita è quella del vettore gradiente e notiamo inoltre che $\langle \nabla f(\overline{x},\overline{y}),(\cos\vartheta,\sin\vartheta)\rangle=r$.

In sintesi:

Sia $f:\mathbb{R}^2 o\mathbb{R}, (\overline{x},\overline{y})\in\mathbb{R}^2, f$ differenziabile in $(\overline{x},\overline{y})$ e $abla f(\overline{x},\overline{y})
eq (0,0)$, allora:

$$v_{max} = rac{
abla f(\overline{x}, \overline{y})}{|
abla f(\overline{x}, \overline{y})|} \quad \mathrm{e} \quad rac{\partial f}{\partial v}(\overline{x}, \overline{y}) = |
abla f(\overline{x}, \overline{y})|$$

▼ 3.5 - Curve: velocità, derivate e insiemi di livello

Funzioni di curve parametrizzate

Le funzioni di curve parametrizzate sono del tipo $r:\mathbb{R} o \mathbb{R}^n$:

$$r(t) = (r_1(t), \ldots, r_n(t))$$

Esempio di funzione di curva parametrizzata $r:\mathbb{R} \to \mathbb{R}^2.$

Vettore velocità di una curva

Il ${\bf vettore}\ {\bf velocità}\ {\bf di}\ {\bf una}\ {\bf curva}\ r$ nel punto t indica la direzione tangente alla curva in tale punto e corrisponde al seguente ${\bf vettore}$:

$$r'(t)=(r'_1(t),\ldots,r'_n(t))$$

Velocità scalare di una curva

Data $r:\mathbb{R} \to \mathbb{R}^n$ avente r'(t) come vettore velocità, la **velocità scalare** di tale curva è lo scalare:

Formula di Taylor per una curva

Sia $r:]a,b[
ightarrow \mathbb{R}^n$ derivabile in $t\in]a,b[$. Vale dunque:

$$egin{cases} r_1(t+h) = r_1(t) + r_1'(t)h + o(h) \ \ldots \ r_n(t+h) = r_n(t) + r_n'(t)h + o(h) \end{cases}$$

Esempio grafico dell'uguaglianza di Taylor in una curva.

Lunghezza di un tratto di curva

Sia $r:\mathbb{R} o\mathbb{R}^n$ e $[a,b]\subseteq\mathbb{R}$, se r'(t)
eq 0, allora la **lunghezza del tratto** compreso tra r(a) e r(b) vale:

$$lungh(a,b) = \int_a^b |r'(t)| dt$$

Derivata funzione composta

 $f: \mathbb{R}^n o \mathbb{R}, r: \mathbb{R} o \mathbb{R}^n$.

Funzione composta: $f\circ r:\mathbb{R} o\mathbb{R}$ tale che $(f\circ r)(t)=f(r(t)).$

Visualizzazione di una funzione composta.

Sia $f:\mathbb{R}^n o\mathbb{R}$ differenziabile, $r:\mathbb{R} o\mathbb{R}^n$ derivabile e sia definita $(f\circ r)(t)=f(r(t))\ orall\ t\in\mathbb{R}$. Tale funzione è **derivabile** $\forall\ t\in\mathbb{R}$ e vale:

$$(f\circ r)'(t)=rac{d}{dt}f(r(t))=\langle
abla f(r(t)),r'(t)
angle$$

Dimostrazione

Sia $f:\mathbb{R}^n o\mathbb{R}$ e $r:\mathbb{R} o\mathbb{R}^n$, dobbiamo dimostrare che $\lim_{h o 0}rac{f(r(t+h))-f(r(t))}{h}=\langle
abla f(t),r'(t)
angle.$

Iniziamo scrivendo r e $f \circ r$ con Taylor:

$$r(t+h)-r(t)=r'(t)h+o(h) \ f(r(t+h))-f(r(t))=\langle
abla f(r(t)),r(t+h)-r(t)
angle +o(|r(t+h)-r(t)|)$$

Sostituiamo la prima uguaglianza nella seconda espressione ottenendo:

$$f(r(t+h)) - f(r(t)) = \langle
abla f(r(t)), r'(t)h + o(h)
angle + o(|r(t+h) - r(t)|) = \langle
abla f(r(t)), r'(t)
angle$$

A questo punto dividiamo il tutto per h, e otteniamo:

$$rac{f(r(t+h))-f(r(t))}{h} = rac{\langle
abla f(r(t)), r'(t)
angle h}{h} + rac{\langle
abla f(r(t)), o(h)
angle}{h} + rac{o(|r(t+h)-r(t)|)}{h}$$

 $\text{Calcoliamo dunque } \tfrac{\langle \nabla f(r(t)), r'(t) \rangle h}{h} + \tfrac{\langle \nabla f(r(t)), o(h) \rangle}{h} + \tfrac{o(|r(t+h) - r(t)|)}{h} \text{ per } H \to 0 :$

$$\begin{aligned} 1.\frac{\langle \nabla f(r(t)), r'(t) \rangle h}{h} &= \langle \nabla f(r(t)), r'(t) \rangle \\ 2.\frac{\langle \nabla f(r(t)), o(h) \rangle}{h} &= \langle \nabla f(r(t)), \frac{o(h)}{h} \rangle = 0 \\ 3.\frac{o(|r(t+h)-r(t)|)}{h} &\approx \frac{o(h)}{h} = 0 \quad (|r(t+h)-r(t)| \approx h \text{ viene lasciato informale}) \end{aligned}$$

Otteniamo infine l'uguaglianza:

$$\lim_{h o 0} rac{f(r(t+h)) - f(r(t))}{h} = \langle
abla f(r(t)), r'(t)
angle$$

Esercizi

lacklash Date $f(x,y)=\ln(1+xy^2)$ e $r(t)=(t^2,e^{2t})$ scrivere $f\circ r$ e calcolare $(f\circ r)'(t)$ sia direttamente che con il teorema.

Per calcolare $f \circ r$ basta sostituire $r_1(t)$ e $r_2(t)$ a x e y:

$$f(r(t)) = \ln(1 + t^2 e^{4t})$$

Calcolando $(f \circ r)'(t)$ direttamente otteniamo:

$$(f\circ r)'(t)=rac{2te^{4t}+4t^2e^{4t}}{1+t^2e^{4t}}$$

Utilizzando il teorema dobbiamo invece prima calcolare $\nabla f(x,y)$ e r'(t):

$$abla f(x,y) = (rac{y^2}{1+xy^2}, rac{2xy}{1+xy^2}), \quad r'(t) = (2t, 2e^{2t})$$

Calcoliamo poi $abla f(r(t))=(rac{e^{4t}}{1+t^2e^{4t}},rac{2t^2e^{2t}}{1+t^2e^{4t}})$ e infine la derivata:

$$(f\circ r)'(t) = \langle
abla f(r(t)), r'(t)
angle = rac{2te^{4t}}{1+t^2e^{4t}} + rac{4t^2e^{4t}}{1+t^2e^{4t}} = rac{2te^{4t}+4t^2e^{4t}}{1+t^2e^{4t}}$$

Insiemi di livello

Sia $f:\mathbb{R}^2 o\mathbb{R}$ differenziabile e $b\in\mathbb{R}.$ Si dice **insieme di livello** il seguente insieme:

$$L_b = \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = b\}$$

È possibile inoltre costruire una curva $r:\mathbb{R}\to\mathbb{R}^2$ tale che $r(t)\in L_b, \forall\ t\in\mathbb{R}$ e quindi $f(r(t))=b, \forall\ t\in\mathbb{R}$. Notiamo dunque, visto che $f\circ r$ è costante in t, la sua derivata $\frac{d}{dt}f(r(t))=0$, dunque anche $\langle \nabla f(r(t)), r'(t) \rangle =0$, il che implica che il gradiente della funzione f calcolato in un qualunque punto di L_b è perpendicolare alla derivata della curva r calcolata in quel punto.

Perpendicolarità tra vettore gradiente e derivata della curva $r(t) \in L_b$.

▼ 4.0 - Punti critici e forme quadratiche

▼ 4.1 - Tipologie di punti critici

Punti di massimo e minimo locale

Sia
$$f:A o\mathbb{R}$$
 $(A\subseteq\mathbb{R}^n)$, $\overline{x}\in A$ si dice di **massimo (minimo) locale** per f se: $\exists\;\delta>0\; \mathrm{tale}\;\mathrm{che}\;f(x)\leq (\geq)f(\overline{x})\quad orall\;x\in A\cap B(\overline{x},\delta)$

Teorema di fermat

Sia $f:A o\mathbb{R}$ $(A\subseteq\mathbb{R}^n)$, f differenziabile. Se $\overline{x}\in A$ è di massimo/minimo locale, allora:

$$\nabla f(\overline{x}) = \underline{0} \in \mathbb{R}^n$$

Dimostrazione in n=2

Definiamo la funzione $h(t)=f(\overline{x}+t,\overline{y})$, definita per $t\in$ intorno dell'origine. Siccome f ha un minimo in $(\overline{x},\overline{y})$, allora $f(\overline{x}+t,\overline{y})\geq f(\overline{x},\overline{y}) \quad \forall t\in$ intorno dell'origine, dunque $h(t)\geq h(0)$, quindi h(t) ha un minimo in 0.

Inoltre, per definizione di derivata parziale, abbiamo che $\exists \ h'(t)=\partial_x f(\overline{x}+t,\overline{y})$. Per il teorema di fermat in n=1 sappiamo infine che f'(0)=0, e possiamo quindi concludere che $\partial_x f(\overline{x}+t,\overline{y})=0$.

È possibile fare lo stesso ragionamento con $h(t)=f(\overline{x},\overline{y}+t)$ e arrivare alla conclusione che $\partial_u f(\overline{x}+t,\overline{y})=0$, dunque abbiamo dimostrato che $\nabla f(\overline{x})=(0,0)$.

Punto critico o stazionario

Un punto in cui $\nabla f(x) = \underline{0}$ si dice **punto critico o stazionario**.

Caso n=1

Una funzione $f:\mathbb{R} o\mathbb{R}$ tale che f'(x)=0, con $x\in\mathbb{R}$, può avere in x:

- Punto di massimo
- Punto di minimo
- Punto di flesso

${\rm Caso}\ n=2$

Una funzione $f:\mathbb{R}^2 o\mathbb{R}$ tale che $abla f(\overline{x})=0$, con $\overline{x}\in\mathbb{R}^2$, può avere in \overline{x} :

- Punto di massimo
- Punto di minimo
- Punto di sella

Una funzione $f:\mathbb{R}^2 o\mathbb{R}$ ha un punto di sella in $\overline{x}\in\mathbb{R}$ se:

$$orall \ \operatorname{intorno} \ B(\overline{x},\delta), \exists \ x_- \ \mathrm{e} \ x_+ \in B(\overline{x},\delta) \ \mathrm{tale} \ \mathrm{che} \ f(x_-) < f(\overline{x}) \ \mathrm{e} \ f(x_+) > f(\overline{x})$$

Esempio grafico di punto di sella.

▼ 4.2 - Derivate parziali seconde e forme quadratiche

Derivate parziali seconde

Caso \mathbb{R}^2

Sia $f:\mathbb{R}^2 o\mathbb{R}$ differenziabile con $egin{cases} \partial_x f:\mathbb{R}^2 o\mathbb{R} \ \partial_y f:\mathbb{R}^2 o\mathbb{R} \end{cases}$, allora definiamo **derivate parziali** seconde le seguenti:

$$\begin{cases} \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \\ \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \to \text{miste} \\ \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \\ \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) \end{cases} \to \text{pure}$$

Caso \mathbb{R}^n

Sia $f:\mathbb{R}^n o\mathbb{R}$ differenziabile, allora definiamo **derivate parziali seconde** le seguenti:

$$orall \ j,k \in \{1,\ldots,n\} \quad rac{\partial^2 f}{\partial x_j x_k} \coloneqq rac{\partial}{\partial x_j} (rac{\partial f}{\partial x_k})$$

Nel caso in cui j=k scriviamo $rac{\partial^2 f}{\partial x_j}$ e tali derivate vengono dette **pure**.

Nel caso in cui $j \neq k$ tali derivate vengono dette **miste**.

Teorema di Schwarz

Sia $f:A o\mathbb{R}$ $(A\subseteq\mathbb{R}^n)$ e siano tutte le sue derivate seconde continue allora:

$$orall \ j,k \in \{1,\ldots,n\} \quad rac{\partial^2 f}{\partial x_j x_k} = rac{\partial^2 f}{\partial x_k x_j} \quad ext{(in ogni punto di A)}$$

Matrice Hessiana

Sia $f:A o\mathbb{R}$ $(A\subseteq\mathbb{R}^n)$ e siano tutte le sue derivate seconde continue allora possiamo definire la **matrice Hessiana** $Hf(x)\in\mathbb{R}^{n imes n}$ nel seguente modo:

$$(Hf(x))_{jk} = rac{\partial^2 f}{\partial x_j \partial x_k}(x) \qquad Hf = egin{pmatrix} \partial_{11} f & \partial_{12} f & \dots & \partial_{1n} f \ \partial_{21} f & \partial_{22} f & \dots & \partial_{2n} f \ \dots & & & & \ \partial_{n1} f & \partial_{n2} f & \dots & \partial_{nn} f \end{pmatrix}$$

La matrice Hessiana è l'equivalente del gradiente per le derivate seconde.

Proposizioni

• Per il teorema del gradiente la matrice Hessiana Hf(x) è simmetrica $\forall \ x \in A$.

Forma quadratica

Sia $A \in \mathbb{R}^{n \times n}$, $A = A^T$, la forma quadratica associata ad A è la funzione:

$$q: \mathbb{R}^n o \mathbb{R} \quad q(h) = \langle Ah, h \rangle \quad \forall \ h \in \mathbb{R}^n$$

Caso \mathbb{R}^2

Sia $A=egin{pmatrix} a & b \ b & c \end{pmatrix}$, la forma quadratica associata ad A è:

$$q(h_1,h_2) = \langle egin{pmatrix} a & b \ b & c \end{pmatrix} egin{pmatrix} h_1 \ h_2 \end{pmatrix}, egin{pmatrix} h_1 \ h_2 \end{pmatrix}
angle = \langle egin{pmatrix} ah_1 + bh_2 \ bh_1 + ch_2 \end{pmatrix}, egin{pmatrix} h_1 \ h_2 \end{pmatrix}
angle = ah_1^2 + 2bh_1h_2 + ch_2^2$$

Segno di forme quadratiche

Sia $A = A^T \in \mathbb{R}^{n \times n}$:

- $\langle Ah,h \rangle > 0, \forall \ h \neq 0 \in \mathbb{R}^n \iff A > 0$
- $\langle Ah,h \rangle < 0, \forall \ h \neq 0 \in \mathbb{R}^n \iff A < 0$
- $\exists~h^+,h^-\in\mathbb{R}^n,\langle Ah^-,h^angle<0<\langle Ah^+,h^+
 angle\iff A$ è indefinita.

Osservazioni

• Sia $A = A^T \in \mathbb{R}^{n \times n}$:

$$\circ \begin{cases} a > 0 \\ det(A) > 0 \end{cases} \iff A > 0.$$

$$\circ \ \begin{cases} a < 0 \\ det(A) > 0 \end{cases} \iff A < 0.$$

$$\circ \ det(A) < 0 \iff A$$
 è indefinita.

$$\circ det(A) = 0 \iff A$$
 è semidefinita ($A \ge 0$ oppure $A \le 0$ in base al valore di a).

Dimostrazione

Dimostriamo solo il caso in cui A>0:

 $\circ \implies$

Dalle ipotesi abbiamo che $a>0 \land det(A)=ac-b^2>0$. Siccome $(h_1,h_2)\neq (0,0)$ si possono presentare i seguenti due casi:

■ $h_2 = 0$

In questo caso deve essere sicuramente $h_1 \neq 0$. e calcolando la forma quadratica otteniamo $q(h) = ah_1^2$, la quale è sicuramente $> 0 \quad \forall (h_1,h_2) \neq (0,0) \in \mathbb{R}^2$ perchè dalle ipotesi abbiamo che a>0.

■ $h_2 \neq 0$

Calcolando la forma quadratica otteniamo $q(h)=ah_1^2+2bh_1h_2+ch_2^2=h_2^2(a(\frac{h_1}{h_2})^2+2b\frac{h_1}{h_2}+c)$. Calcoliamo il $\Delta=4b^2-4ac=-4(ac-b^2)$. Dalle ipotesi abbiamo che $ac-b^2>0$, quindi $\Delta<0\implies q(h)>0 \quad \forall (h_1,h_2)\neq (0,0)\in\mathbb{R}^2$

.

∘ ←

Dalle ipotesi abbiamo che
$$A>0 \implies \langle A(h_1,h_2),A\rangle>0 \implies ah_1^2+2bh_1h_2+ch_2^2>0 \quad \forall (h_1,h_2)
eq (0,0) \in \mathbb{R}^2.$$

Scegliamo ad esempio h=(1,0), in tal caso la disequazione diventa a>0, avendo dimostrato la prima condizione.

Scegliendo invece h=(x,1) la disequazione diventa $ax^2+2bx+c>0$. Poniamo il $\Delta=b^2-ac<0\implies -det(A)<0\implies det(A)>0$.

qed

• Sia $A = A^T \in \mathbb{R}^{n \times n}$, allora A ammette n autovalori reali e vale:

$$\circ \ A>0 \iff$$
 tutti gli autovalori sono >0

$$\circ \ A < 0 \iff$$
 tutti gli autovalori sono < 0

$$\circ~~A$$
 indefinita $\iff\exists~\lambda_1,\lambda_2$ autovalori tali che $egin{cases} \lambda_1<0 \ \lambda_2>0 \end{cases}$

Esercizi

lacktriangledown Classificare il segno della forma quadratica $A=egin{pmatrix} 2 & 1 \ 1 & e \end{pmatrix}$ al variare di e nei reali.

Calcoliamo innanzitutto il valore di det(A) = 2e - 1.

Notando che a=2 otteniamo 3 casistiche

- $e > \frac{1}{2} \iff det(A) > 0 \iff A > 0$
- $e < \frac{1}{2} \iff det(A) < 0 \iff A < 0$.
- $e=\frac{1}{2}\iff det(A)=0\iff A$ è semidefinita positiva.

Calcoliamo inoltre la forma quadratica associata ad A:

$$egin{aligned} q(h_1,h_2) &= 2h_1^2 + 2h_1h_2 + rac{1}{2}h_2^2 = rac{1}{2}(4h_1^2 + 4h_1h_2 + h_2^2) \ &= rac{1}{2}(2h_1 + h_2)^2 \geq 0 \quad orall (h_1,h_2) \in \mathbb{R}^2 \end{aligned}$$

Possiamo infatti notare che $q(h_1,h_2)$ si annulla $\forall h=\lambda(1,2),\quad \lambda\in\mathbb{R}$, dunque A non può essere definita positiva.

Segno del determinante delle sottomatrici

Sia
$$A=A^T\in\mathbb{R}^{n imes n}$$
 tale che $A=egin{pmatrix}a_{11}&a_{12}&\dots&a_{1n}\\\dots&&&\\a_{n1}&a_{n2}&\dots&a_{nn}\end{pmatrix}$, considero A_k (es. $A_1=a_{11}$, $A_2=egin{pmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}$ ecc.), allora:

- $det(A_k) > 0 \quad \forall \ k \in \{1, \ldots, n\} \implies A > 0$
- $(-1)^k det(A_k) > 0 \quad \forall \ k \in \{1, \dots, n\} \implies A < 0$

Ovvero il determinante assume segni alternati per ogni k (k pari $\implies det(A_k)$ positivo, k dispari $\implies det(A_k)$ negativo).

▼ 4.3 - Teorema di Taylor

Teorema di Taylor di grado 2

Caso \mathbb{R}^2

Sia $f:\mathbb{R} o\mathbb{R}$ con f' e f'' continue, allora $orall\,\overline{x},h\in\mathbb{R},\exists\;\sigma\in\]0,1[$ tale che:

$$f(\overline{x}+h)=f(\overline{x})+f'(\overline{x})h+f''(\overline{x}+\sigma h)rac{h^2}{2}\quadorall\ \overline{x}\in\mathbb{R}$$

Osservazioni

• Dalla formula trovata segue quella con gli o piccoli:

$$f(\overline{x}+h)=f(\overline{x})+f'(\overline{x})h+f''(\overline{x}+\sigma h)rac{h^2}{2} \ =f(\overline{x})+f'(\overline{x})h+f''(\overline{x})rac{h^2}{2}+\underbrace{(f''(\overline{x}+\sigma h)-f''(\overline{x}))rac{h^2}{2}}_{o(h^2)}$$

Dimostrazione

Usando $x=\overline{x}+h$ dimostriamo che $\forall \ \overline{x}, x\in \mathbb{R}, \exists \ \sigma\in]0,1[$ tale che:

$$f(x) = f(\overline{x}) + f'(\overline{x})(x-\overline{x}) + f''(\overline{x} + \sigma(x-\overline{x})) rac{(x-\overline{x})^2}{2}$$

Modifichiamo la formula da dimostrare nella seguente: $f(x)-f(\overline{x})-f'(\overline{x})(x-\overline{x})-k(x-\overline{x})^2=0$ e mostriamo che esiste $\sigma\in]0,1[$ tale che $k=\frac{f''(\overline{x}+\sigma(x-\overline{x}))}{2}.$

Costruiamo la seguente funzione:

$$g(t) = f(x) - f(t) - f'(t)(x - t) - k(x - t)^{2}$$

Se utilizziamo x e \overline{x} come t otteniamo:

$$g(x) = f(x) - f(x) - f'(x)(x - x) - k(x - x)^2 = 0$$

$$g(\overline{x}) = f(x) - f(\overline{x}) - f'(\overline{x})(x - \overline{x}) - k(x - \overline{x})^2 = 0$$

Siccome $g(x)=g(\overline{x})$ possiamo utilizzare il teorema di Rolle nell'intervallo $[x,\overline{x}]$ e ottenere:

$$\exists \ \sigma \in \]0,1[\quad g'(\overline{x}+\sigma(x-\overline{x}))=0$$

Calcoliamo g'(t):

$$g'(t) = -f'(t) - f''(t)(x - t) - f'(t)(-1) - 2k(x - t)^{1}(-1)$$

= $(-f''(t) + 2k)(x - t)$

Sappiamo dunque che:

$$\exists \ \sigma \in [0,1[\quad (-f''(\overline{x}+\sigma(x-\overline{x}))+2k)(x-\overline{x}+\sigma(x-\overline{x}))=0$$

Siccome per $\sigma\in]0,1[\Longrightarrow (x-\overline{x}+\sigma(x-\overline{x}))
eq 0$, allora $(-f''(\overline{x}+\sigma(x-\overline{x}))+2k)=0$, ovvero $k=\frac{f''(\overline{x}+\sigma(x-\overline{x}))}{2}$, come volevasi dimostrare.

Caso \mathbb{R}^n

Sia $f:A\to\mathbb{R}$ $(A\subseteq\mathbb{R}^n)$ con derivate parziali prime e seconde continue, allora $\forall\ \overline{x}\in A,h\in\mathbb{R}^n,\exists\ \sigma\in]0,1[\ (\{\overline{x}+\sigma h\}\subseteq A)$ tale che:

$$egin{aligned} f(\overline{x}+h) &= f(\overline{x}) + \langle
abla f(\overline{x}), h
angle + rac{1}{2} \langle Hf(\overline{x}+\sigma h)h, h
angle \ &= f(\overline{x}) + \sum_{k=1}^n \partial_k f(\overline{x})h_k + rac{1}{2} \sum_{j,k=1}^n \partial_{jk} f(\overline{x}+\sigma h)h_j h_k \end{aligned}$$

Osservazioni

• Dalla formula trovata segue quella con gli o piccoli:

$$f(\overline{x}+h)=f(\overline{x})+\langle
abla f(\overline{x}),h
angle +rac{1}{2}\langle Hf(\overline{x})h,h
angle +o(h^2)$$

Dimostrazione

Basta mostrare che:

Dimostrazione

Siano f, \overline{x}, h come da ipotesi, costruiamo la funzione:

$$g(t) = f(\overline{x} + th)$$
 $t \in [0,1]$

Abbiamo dunque che $g(0)=f(\overline{x}), g(1)=f(\overline{x}+h).$

Utilizziamo Taylor grado 2 per g(1):

$$g(1) = g(0) + g'(0) + \frac{1}{2}g''(\sigma)$$

Calcoliamo ora g'(t) utilizzando il teorema per il calcolo della derivata di una funzione su una curva:

$$g'(t) = rac{\partial}{\partial t} f(\overline{x} + th) = \langle
abla f(\overline{x} + th), h
angle = \sum_{j=1}^n \partial_j f(\overline{x} + th) h_j$$

Dunque, $g'(0) = \langle \nabla f(\overline{x}), h \rangle$.

Passiamo a calcolare g''(t):

$$g''(t) = \sum_{j=1}^n \sum_{k=1}^n (\partial_k \partial_j f(\overline{x} + th) h_k) h_j = \sum_{k,j=1}^n \partial_{kj} f(\overline{x} + th) h_k h_j \ = \langle Hf(\overline{x} + th) h, h
angle$$

Dunque, $g''(\sigma) = \langle Hf(\overline{x} + \sigma h)h, h
angle$.

Possiamo infine concludere che:

$$f(\overline{x}+h)=f(\overline{x})+\langle
abla f(\overline{x}),h
angle +rac{1}{2}\langle Hf(\overline{x}+\sigma h)h,h
angle$$

▼ 4.4 - Teorema di classificazione dei punti critici

Teorema di classificazione dei punti critici

Sia $f:A o\mathbb{R}$ $(A\subseteq\mathbb{R}^n)$ con derivate parziali prime e seconde continue e sia $\overline{x}\in A$, se $\nabla f(\overline{x})=0$ allora:

- se $Hf(\overline{x}) > 0 \implies \overline{x}$ è un punto di **minimo locale**.
- se $Hf(\overline{x}) < 0 \implies \overline{x}$ è un punto di massimo locale.
- se $Hf(\overline{x})$ è indefinita \implies è un punto di **sella**.
- se $Hf(\overline{x})$ è semidefinita \implies nessuna conclusione, occorre verificare in altro modo, magari analizzando gli intorni di \overline{x} .

Lemma

Sia $A = A^T \in \mathbb{R}^{n imes n}$ tale che A > 0, allora:

$$\exists \ m>0 \quad \langle Ah,h
angle \geq m \quad \underbrace{|h|^2}_{\langle Ih,h
angle = \displaystyle\sum_{j=0}^n h_j^2} \quad orall h \in \mathbb{R}^n$$

Dimostrazione lemma in \mathbb{R}^2

Sia
$$A=A^T\in\mathbb{R}^{2 imes 2}$$
 tale che $A=egin{pmatrix} a & b \ b & c \end{pmatrix}>0.$

Sia $h=(r\cos\theta,r\sin\theta)
eq 0$, con $\theta\in[0,2\pi]$, e sia r=|h|.

Calcoliamo $\langle Ah, h \rangle$:

$$\langle Ah,h
angle = ar^2\cos^2 heta + 2br^2\sin heta\cos heta + cr^2\sin^2 heta \ = r^2(a\cos^2 heta + 2b\sin heta\cos heta + c\sin^2 heta) = r^2g(heta) = |h|^2g(heta)$$

Siccome A>0, allora $g(\theta)>0 \quad \forall \theta \in [0,2\pi]$.

Inoltre, siccome $g(\theta)$ è continua su $[0,2\pi]$, allora per il teorema di Weierstrass esiste un valore $\overline{\theta} \in [0,2\pi]$ tale che $g(\theta) \geq \underbrace{g(\overline{\theta})}_{m>0} \quad \forall \theta \in [0,2\pi].$

Siccome $\langle Ah,h\rangle=|h|^2g(\theta)\geq |h|^2m$, possiamo dunque concludere che:

$$\langle Ah,h
angle \geq |h|^2 m$$

Dimostrazione (primo caso)

Sia $f:A o\mathbb{R}$ $A\subseteq\mathbb{R}^n$ e $\overline{x}\in A$, supponiamo che $\begin{cases}
abla f(\overline{x})=0 \\ Hf(\overline{x})>0 \end{cases}$, dobbiamo dimostrare che \overline{x} è un punto di minimo, ovvero che.

$$\exists \ \delta > 0 \quad f(\overline{x} + h) \geq f(\overline{x}) \quad orall \ h \in B(0, \delta) \ ext{ovvero} \ f(\overline{x} + h) - f(\overline{x}) \geq 0 \quad orall \ h \in B(0, \delta)$$

Approssimiamo $f(\overline{x}+h)-f(\overline{x})$ tramite la formula di Taylor:

$$egin{aligned} f(\overline{x}+h)-f(\overline{x}) &= \langle
abla f(\overline{x}),h
angle + rac{1}{2}\langle Hf(\overline{x})h,h
angle + o(|h|^2) \ &= rac{1}{2}\langle Hf(\overline{x})h,h
angle + o(|h|^2) \end{aligned}$$

Siccome da ipotesi sappiamo che $Hf(\overline{x})>0$, per il lemma abbiamo che $\exists \ m>0 \quad \langle Hf(\overline{x})h,h\rangle \geq m|h|^2 \quad \forall \ h\in \mathbb{R}^n.$

Per l'equivalenza mostrata sopra abbiamo dunque che:

$$f(\overline{x}+h)-f(\overline{x})\geq \frac{m}{2}|h|^2+o(|h^2|)$$

Usando la definizione di o piccolo con $\epsilon=\frac{m}{4}$ sappiamo che $\exists \ \delta>0$ tale che $-\frac{m}{4}\leq \frac{o(|h|^2)}{|h|^2}\leq \frac{m}{4} \ \ \forall \ h\in B(0,\delta)$, dunque, per $|h|<\delta$, abbiamo che $o(|h|^2)\leq \frac{m}{4}|h|^2$ e $o(|h|^2)\geq -\frac{m}{4}|h|^2$. Possiamo dunque procedere affermando che:

$$egin{aligned} f(\overline{x}+h)-f(\overline{x})&\geq rac{m}{2}|h|^2+(-rac{m}{4}|h|^2) &orall\ h\in B(0,\delta) \ \Longrightarrow\ f(\overline{x}+h)-f(\overline{x})&\geq rac{m}{4}|h|^2\geq 0 &orall\ h\in B(0,\delta) \ \Longrightarrow\ f(\overline{x}+h)\geq f(\overline{x}) &orall\ h\in B(0,\delta) \ \Longrightarrow\ \overline{x}\ \mathrm{\grave{e}}\ \mathrm{di}\ \mathrm{minimo}\ \mathrm{locale}. \end{aligned}$$

▼ 5.0 - Integrale doppio

▼ 5.1 - Insiemi semplici

Insieme x-semplice

Siano $h_1,h_2:[c,d]\to\mathbb{R}$ continue e tali che $h_1(y)\le h_2(y)$ $\forall~y\in[c,d]$, l'insieme x-semplice definito da h_1 e h_2 è definito nel seguente modo:

$$A=\{(x,y)\in\mathbb{R}^2\mid y\in[c,d], h_1(y)\leq x\leq h_2(y)\}$$

Insieme y-semplice.

Insieme y-semplice

Siano $g_1,g_2:[a,b]\to\mathbb{R}$ continue e tali che $g_1(x)\leq g_2(x)$ $\forall~x\in[a,b]$, l'insieme y-semplice definito da g_1 e g_2 è definito nel seguente modo:

$$A=\{(x,y)\in\mathbb{R}^2\mid x\in[a,b], g_1(x)\leq y\leq g_2(x)\}$$

Insieme x-semplice.

▼ 5.2 - Integrale doppio

Definizione di integrale doppio

Sia f una funzione continua e A un insieme semplice, l'**integrale doppio** di f in A viene definito nel seguente modo:

$$\int_A f(x,y) \ dx \ dy$$

Proprietà dell'integrale doppio

• Linearità:

$$\int_A \left(\lambda_1 f_1 + \lambda_2 f_2
ight) \, dx \; dy = \lambda_1 \int_A f_1 \; dx \; dy + \lambda_2 \int_A f_2 \; dx \; dy$$

- A è un insieme degenere ($g_1(x)=g_2(x) \quad orall \ x$, quindi A è una linea)

$$\implies \int_A f(x,y) \ dx \ dy = 0$$

• $\int_A 1 \ dx \ dy =$ area di A

Idea grafica dell'integrale doppio

Integrale in n=1

Sia $f:[a,b] o [0,+\infty[$ continua, l'integrale $\int_a^b f(x) \ dx$ indica il valore dell'area del sottografico di f:

$$\{(x,y)\in\mathbb{R}^2\mid x\in[a,b], 0\leq y\leq f(x)\}$$

Idea grafica dell'integrale in n=1.

Integrale in n=2

Sia $f:A\to\mathbb{R}$ $((x,y)\to f(x,y)>0$ $\forall~(x,y)\in A)$, dove A è un insieme semplice, l'integrale $\int_A f(x,y)~dx~dy$ indica il valore del volume del sottografico di f:

$$\{(x,y,z)\in\mathbb{R}^3\mid (x,y)\in A, 0\leq z\leq f(x,y)\}$$

Idea grafica dell'integrale in n=2.

Formula di riduzione

Insiemi y-semplici

Sia $f:A\to\mathbb{R}$ continua, con A un insieme y-semplice del tipo $\{(x,y)\in\mathbb{R}\mid x\in[a,b],g_1(x)\leq y\leq g_2(x)\}$, allora è definito $\int_A f(x,y)\ dx\ dy$ e vale la seguente **formula di riduzione**:

$$\int_A f(x,y) \ dx \ dy = \int_a^b (\int_{g_1(x)}^{g_2(x)} f(x,y) \ dy) \ dx$$

Osservazioni

• Se $f(x,y)=1 \quad orall (x,y)\in A$, allora:

$$\int_A f(x,y) \ dx \ dy = \int_A \ dx \ dy = \int_b^a (g_1(x) - g_2(x)) dx = ext{area di } A$$

Insiemi x-semplici

Sia $f:A\to\mathbb{R}$ continua, con A un insieme x-semplice del tipo $\{(x,y)\in\mathbb{R}\mid y\in[c,d],h_1(y)\leq x\leq h_2(y)\}$, allora è definito $\int_A f(x,y)\ dx\ dy$ e vale la seguente **formula di riduzione**:

$$\int_A f(x,y) \ dx \ dy = \int_c^d (\int_{h_1(y)}^{h_2(y)} f(x,y) \ dx) \ dy$$

Osservazioni

• Se $f(x,y)=1 \quad orall (x,y)\in A$, allora:

$$\int_A f(x,y) \; dx \; dy = \int_A \; dx \; dy = \int_b^a (g_1(x)-g_2(x)) dx = ext{area di } A$$

▼ 6.0 - Cambio di variabile

Funzioni per cambio variabile

Per il cambio variabile vengono utilizzare funzioni f:A o G $A,G\subseteq\mathbb{R}^2$ tali che:

$$(u,v)
ightarrow f(u,v) = (x(u,v),y(u,v))$$

Matrice jacobiana di f:A o G

Sia $f:A\to G$ una funzione definita come sopra e siano x e y funzioni con derivate continue in A, la **matrice jacobiana** di tale funzione è la seguente:

$$J_{f(u,v)} = \begin{pmatrix} rac{\partial x}{\partial u} & rac{\partial x}{\partial v} \ rac{\partial y}{\partial u} & rac{\partial y}{\partial v} \end{pmatrix} \in \mathbb{R}^{2 imes 2}$$

Definizione di cambio di variabile

Sia f:A o G $A,G\subseteq\mathbb{R}^2$ regolare (derivate continue), si dice che f è un **cambio di variabile** se:

- f è iniettiva e suriettiva.
- $det(J_{f(u,v)}) \neq 0 \quad \forall \ (u,v) \in A$.

Formula del cambio di variabile

Sia h:A o G un cambio di variabile e sia $f:G o \mathbb{R}$ continua, allora vale:

$$\int_G f(x,y) \ dx \ dy = \int_A f(h(u,v)) \ |det(J_{h(u,v)})| \ du \ dv$$

Cambio di variabile.

Esercizi

▶ Dato l'insieme $G = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq R\}$, calcolare l'area di tale insieme (cerchio). Per calcolare l'area di un tale insieme occorre calcolare l'integrale doppio $\int_G \ dx \ dy$. Per fare ciò è possibile rappresentare G utilizzando un cambio di variabile:

$$f(\{(r, \theta) \in]0, +\infty[\times]0, 2\pi[\mid 0 < r \le R, \theta \in]0, 2\pi[\})$$

Tale funzione può essere rappresentata graficamente nel seguente modo:

Siccome $det(J_{f(r,\theta)})=r$, possiamo calcolare l'integrale doppio utilizzando la formula del cambio di variabile:

$$\int_G dx \, dy = \int_A 1 \cdot r \, dr \, r heta$$

Dove $A=\{(r,\theta)\mid 0\leq r\leq R, \theta\in [0,2\pi]\}.$

Continuiamo a questo punto il calcolo dell'integrale doppio ottenuto per ottenere l'area del cerchio:

$$\int_A 1 \cdot r \; dr \; r heta = \int_0^R (\int_0^{2r} r \; d heta) \; dr = [\pi r^2]_0^R = \pi R^2$$