ļ.

5

CLAIMS

What is claimed is:

1. A method of forming a P-N junction within a semiconductor substrate, comprising:

forming a coating comprising a dopant over a surface of the semiconductor substrate; and

dopant to diffuse from the coating into the semiconductor substrate and thereby form a P-N junction within the semiconductor substrate;

wherein the semiconductor substrate comprises a single crystal; prior to heating, the single crystal comprises a semiconductor that forms the majority of the crystal and an impurity atom that forms a part of the crystal and is distributed primarily within a layer of the crystal adjacent the surface;

the impurity atom has a dose of at least about 1x10¹³ atoms/cm² within the layer

the semiconductor has an interstitial form; and at 1000 °C, the impurity atom is a faster diffusing species relative to silicon atoms.

- 2. The method of claim 1, wherein prior to heating, the impurity atom 20 has a dose of a least about 1x10¹⁴ atoms/cm² within the layer.
 - 3. The method of claim 1, wherein the impurity atom is fluorine.
- 4. The method of claim 1, wherein after heating 90% of that portion of the dopant that has diffused into the semidonductor substrate is located within about 50 nm of the surface.

TI-33161

13

	5.	The method of claim 1, wherein the dopant is boron.
SUB,	7 6.	The method of claim 1, wherein after heating the concentration of any of the substrate adjacent the surface is at least about 1x10 ¹⁹
5	atom/cm ³	
Ŭ	atom/orn	
	7.	The method of claim 1, wherein the coating comprises a silicate
	glass.	
10	\ 8.	A method of doping a single crystal semiconductor substrate,
	comprisin	g:
		exposing a surface of the substrate to high energy particles to pre-
	amorphize a layer of the crystal adjacent the surface; and	
	•	implanting the substrate with a temporary impurity atom;
15		heating the substrate to cause the crystal to re-grow within the layer
	adjacent the surface;	
		either before, during, or after heating, forming a coating comprising
	a target dopant over the surface of the substrate; and	
		annealing to cause the target dopant to diffuse from the coating into
20	the substrate.	

- 9. The method of claim 8, wherein:
 the crystal comprises a semiconductor having an interstitial form;
 and
- during annealing, the temporary impurity atom is a faster diffusing species relative to silicon.
- 10. The method of claim 8, wherein the high energy particles comprise particles selected from the group consisting of Ge, In, Sb, Si, and Ar.

15

20

25

- 11. The method of claim 8, wherein the temporary impurity atom is implanted with a dose of at least about 1x10¹⁴ atoms/cm².
- 12. The method of claim 8, wherein the temporary impurity atom is fluorine.
 - 13. The method of claim 8, wherein after annealing 90% of the target dopant that diffuses into the substrate is located within about 50 nm-of the surface.

14. The method of claim 8, wherein the target dopant is boron.

- 15. The method of claim 8, wherein after annealing the concentration of the target dopant within the substrate adjacent the surface is at least about 1x10¹⁹ atom/cm³.
- 16. The method of claim 8, wherein the coating comprises a silicate glass.
- 17. A method of forming transistors, comprising:
 forming a gate layer on a substrate comprising a semiconductor
 crystal;

forming a poly layer over the gate layer;

forming a patterned resist over the poly layer;

etching to pattern the poly layer and the gate layer, whereby a surface of the substrate is exposed;

pre-amorphizing a first layer of the semiconductor crystal adjacent the surface;

implanting a second layer of the substrate adjacent the surface with a temporary impurity atom;

20

5

after implanting, heating to re-grow the semiconductor crystal within the first layer;

either before or after heating, forming a target dopant layer comprising a target dopant over the surface; and

annealing to cause the target dopant to diffuse from the target dopant layer into the substrate.

18. The method of claim 17, further comprising:

except where the target dopant layer functions as a spacer layer,

10 forming a spacer layer comprising a spacer material over the target dopant layer; and

prior to annealing, etching the target dopant layer, and optionally the spacer layer, to form spacers.

- 19. The method of claim 18, wherein the target dopant layer functions as a spacer layer.
- 20. The method of claim 17, wherein the gate layer comprises a high-k dielectric.
- 21. The method of claim 17, wherein the second layer adjacent the substrate surface is within the first layer.

25