CVPR 2017 Aggregated Residual Transformations for Deep Neural Networks

2022.07.27

논문 리뷰

배성훈

- Research Background:
 - 문제: Network Depth가 깊어질수록 <u>Hyper-parameters 증가</u>하는 어려움 발생
 - 해결: Cardinality 라는 새로운 차원의 도입과 Hyper-parameter 효율적 조절을 통해 성능 향상 (ResNet에서 발전)

Repeating layer 전략(VGG, ResNet) + "Cardinarity" + Split/Transform/Merge 전략(InceptionNet) + Grouped convolution

Method:

• 같은 Spatial map인 경우, block들은 같은 hyper-parameter 공유 => <u>Hyper-Parameter 선택 부담감↓</u>

	<u>가장 최적의 </u> 성능					
cardinality C	1	2	4	8	32	
width of bottleneck d	64	40	24	14	4	
width of group conv.	64	80	96	112	128	

• Experiment:

Cardinality라는 새로운 차원을 활용해, 기존의 ResNet 보다 더 좋은 성능을 달성

Training curves on ImageNet-1K

Ablation experiments on ImageNet-1K

	setting	top-1 error (%)	
ResNet-50	1 × 64d	23.9	
ResNeXt-50	$2 \times 40d$	23.0	
ResNeXt-50	$4 \times 24d$	22.6	
ResNeXt-50	8 × 14d	22.3	
ResNeXt-50	$32 \times 4d$	22.2	
ResNet-101	1 × 64d	22.0	
ResNeXt-101	$2 \times 40d$	21.7	
ResNeXt-101	$4 \times 24d$	21.4	
ResNeXt-101	8 × 14d	21.3	
ResNeXt-101	$32 \times 4d$	21.2	

- 1. ResNet 보다 ResNeXt가 더 좋은 성능을 보임
- 2. Cardinality(C)와 width(d)의 설정 값에 따른 비교, 32 x 4d가 가장 좋은 성능을 보임

• Experiment:

Cardinality라는 새로운 차원을 활용해, 기존의 ResNet 보다 더 좋은 성능을 달성

Increasing Cardinality vs Deeper/Wider

	setting	top-1 err (%)	top-5 err (%)		
1× complexity references:					
ResNet-101	1 × 64d	22.0	6.0		
ResNeXt-101	$32 \times 4d$	21.2	5.6		
2× complexity models follow:					
ResNet-200 [15]	1 × 64d	21.7	5.8		
ResNet-101, wider	1 × 100 d	21.3	5.7		
ResNeXt-101	2 × 64d	20.7	5.5		
ResNeXt-101	64 × 4d	20.4	5.3		

State-of-the-art models on ImageNet-1K Validation

	224×224		320×320 / 299×299		
	top-1 err	top-5 err	top-1 err	top-5 err	
ResNet-101 [14]	22.0	6.0	-	-	
ResNet-200 [15]	21.7	5.8	20.1	4.8	
Inception-v3 [39]	-	-	21.2	5.6	
Inception-v4 [37]	-	-	20.0	5.0	
Inception-ResNet-v2 [37]	-	-	19.9	4.9	
ResNeXt-101 (64 × 4d)	20.4	5.3	19.1	4.4	

성능: deeper < wider << Cardinality

한줄평: 개인적으로, 본 논문은 Network Depth와 Width를 함께 활용한 방법이라 생각함 Cardinality는 결국 convolution을 얼마나 분할할지 나타내는 것 -> Residual block을 wider하게 만듬