Links are disabled because this is a static copy of a profile report

time evolution (Calls: 26, Time: 55.378 s)

Generated 15-Jul-2024 18:42:07 using performance time.

function in file D:\Aalto\2324\BScThesis\FullRepo\parallelsimulations_finitebath\src\modular\time_evolution.m Copy to new window for comparing multiple runs

Lines where the most time was spent

Line Number	Code	Calls	Total Time	% Time	Time Plot
28	U_op = vel*U_t*(vel');	26	27.732 s	50.1%	
32	rho_t = U_op*rho0*(U_op');	25	26.328 s	47.5%	
25	U_t = expm((-1i/hbar)*tmax*el)	26	0.793 s	1.4%	I
41	end	25	0.520 s	0.9%	ı
36	e1 = diag(rho_t);	25	0.003 s	0.0%	
All other lines			0.002 s	0.0%	
Totals			55.378 s	100%	

Function listing

```
Calls
 time
                 line
                  21 function E1 = time evolution (N, hbar, tmax, vel, el, rho0)
                  23 % Time-evolution operator U(t)=exp(-iHt/hbar)
                  24 % in the eigenbasis of the Hamiltonian
 0.793
             26
                  25 U_t = expm((-1i/hbar)*tmax*el);
                  27 % Spectral decomposition of the time-evolution operator
             26
                  28 U_op = vel*U_t*(vel');
 27.732
                  30 % Formal solution of Liouville-von Neumann equation
                  31 % rho(t) = U(t)*rho(0)*U(t)^dagger
 26.328
             25
                  32 rho_t = U_op*rho0*(U_op');
                  34 % A column (N+1) vector with the diagonal elements (probabilities of
                  35 % occupying the eigenstates) of the evolved density matrix
             25
                  36 e1 = diag(rho_t);
  0.003
                  37
                  38 % The part of the bath only, i.e. N
< 0.001
             25
                  39 E1 = e1(1:N);
                  40
             25
                  41 end
  0.520
```