Uniform bounds on tropical

torsion points

arXN: 2112.00168

Harry Richman

TG:F Seminar

21 January 2022

Y[P]

A[2]

What are torsion points?

A = abelian group, N-torsion subgroup A[n] = {a FA: N.a=0}

torsion subgroup Atoms = U A[n]

A[2]

For this talk: always have

=> A ton = Q"/Z"

algebraic curve

$$\cong \mathbb{R}^{9}/\mathbb{Z}^{9}$$

tropical curve

= R25/7 29

Why care about torsion points ?

- Start with rational points on varieties, $X(Q) = X \cap Q^*$

Fernat Conjecture (Wiles et al) If n23, # { solutions to x" +y" = z" in Q3 }/scaling < 00 ≤ 4 ?

Mordell Conjecture (Faltings, 1983) $X = alg. curve of genus <math>\geq 2$, $\# X(R) < \infty$

Uniform Mordell Conjecture Open) X = alg. curve of genns $g \ge 2$ $\# X(Q) \le N(g)$ - Ypply analogy:

torsion points in Jacobian Jac(X)tors 1 X using embedding cq: X → Jac(X) Q"/7"

Manin - Mumford Conjecture (Raynaud, 1983)

Mordell Conjecture (Fallings, 1983) X = alg. curve of genny 22, # X(Q) < 0

$$X = alg.$$
 curve of genus ≥ 2 , $X = alg.$ curve of genus ≥ 2 , $\# X(\mathbb{R}) < \infty$ $\# X(\mathbb{R}) < \infty$

Uniform Mordell Conjecture (Open) X = alg. curve of genus of 22 # X(Q) < N(g)

Uniform Manin - Mumbord Conj. (Kühne, Looper - Silvernan - Wilmes)
$$X = alg. \quad curve \quad cf \quad genns \quad g \geq 2,$$

$$H\left(L_{q}(x) \cap Jac(x) + oss\right) \leq N(g)$$

Apply analogy:

rational points on
$$X$$
 $Q^n \cap X$

torsion points in Jacobian

Jac(X) tors

Apply another analogy:

algebraic curve tropical curve

Jac (K) Jac (T)

Trop. Manin - Mumford Conjecture (Raymond, 1983)

T = alg. curve of genus ≥ 2,

(Lq (r) 1 Jac (r) toss) < 00

Trop. Uniform Manin-Mumford Conj. (Kühne, Looper-Silvenan-Wilmes) $\Gamma = \frac{trop}{alg} \quad curve \quad \text{if genus} \quad g \geq 2,$ $H\left(L_q\left(\Gamma \right) \cap Jac\left(\Gamma \right) \text{ toss} \right) \leq N(g)$

T = (G, L) where G = (V, E) finite, connected graph

l: E → R>0 length function on edges

Ex.

J= 0

The

genus of Γ is $q = dim H_1(\Gamma, \mathbb{R})$

Tropical curves: Divisors & Jacobian

A divisor on \(\tag{is a formal } \mathbb{Z}-sum of points in \(\tag{\tag{Garantee}} \)

Ex. D = x + y + 27

A divisor is effective if all coeffs, are 20.

The degree of a diresor is sum of coeffs.

$$\operatorname{deg}\left(\sum_{x\in\Gamma}a_{x}\cdot x\right)=\sum_{x\in\Gamma}\alpha_{x}$$

The Jacobian of C

Linear equivalence: Discrete case

Linear equivalence: Continuous case

r = (G, 1) arbitrary edge lengths R>0

Equivalence relation generated by "continuous-firing" moves, data: (A, E)

closed subset R>D

Ex, O

moving chips move

same distance

on all edges

<u>E</u>×.

$$\Gamma = (G, I)$$
 tropical curve, $Jac(\Gamma) = Div^{\circ}(\Gamma) / (linear equivalence)$

$$\begin{array}{ccc} \iota_{q}: & \bigcap & \longrightarrow & Jac(\Gamma) \\ \times & \mapsto & [x-q] \end{array}$$

H'(r,R) / H,(r,Z)

Theorem (An-Baker-Kuperberg-Shokrich)

Up to linear equivalence, a divisor class [D] & day 0 has a unique* representative whose positive support lies in an chousing brieft, edge set of G whose complement is a spanning tree.

$$Ex. \Gamma = \int_{-\infty}^{\infty} \int$$

$$\Gamma = (G, L)$$
 trops(a) curve, $Jac(\Gamma) = Div^{\circ}(\Gamma) / (linear equivalence)$

Theorem (An-Baker-Kuperberg-Shokrich)

Up to linear equivalence, a divisor class [D] of dog. O has a unique* representative whose positive support lies in an edge set of G whose complement is a spanning tree.

$$Ex. \Gamma =$$

three types* of divisor classes in $Jac(\Gamma)$:

Theorem = 7 $Jac(\Gamma)$ decomposes as union of cells indexed by spanning trees of $\Gamma = (G, \ell)$

-2

Tropical curves and Jacobians

Multiples 5= 0 15[0] 4 [0] [0]

$$\underline{\underline{E}}_{x}$$
. $\Gamma = 2$

Tropical torsion points: Failure of finite bounds Eact: In a graph of who unit edge lengths, all vertices

are torsion points

Ex.

Vertex-supported divisors form "critical group" of G.

4 ff (critical gp) = ff (spanning trens of G)

Tropical torsion points: Failure of finite bounds Fact: In a graph of which edge lengths, all vertices are torsion points Ex.

Vertex-supported divisors form "critical group" & G.

Fact: In a graph Γ of wait edge (eugths, there are ∞ - many torsion points, i.e. $\#(c_q(\Gamma) \cap Jac(\Gamma)) = \infty$

Ex,

=> Tropical "Manin - Mumford Conjecture" fails

Tropical torsion points: Failure of finite bounds

Fact: In a graph I w arbitrary edge lengths, if a

single edge contains Z torsion points, then it

contains on - many

Justification: Abel - Jacobi embedding $L_q: \Gamma \longrightarrow Jac(\Gamma)$ is affine on each edge of Γ

$$\mathbb{E}^{x}$$
, Γ :
$$\mathbb{R}^{3}/\mathbb{Z}^{3} \supset \mathbb{Q}^{3}/\mathbb{Z}^{9}$$

=> Tropical "Manin - Mumford Conjecture" really fails, i.e. locally

Theorem (R.) [Conditional Uniform tropical Manie - Maniford]

For a metric graph
$$\Gamma$$
 of genus g_1

if the number of toision points is

finite then

 $\#\left(\iota_{q}(\Gamma) \cap \operatorname{Jac}(\Gamma) \operatorname{tors} \right) \leq 3g-3$
 $\#\left(\iota_{q}(\Gamma) \cap \operatorname{Jac}(\Gamma) \operatorname{tors} \right) \leq 3g-3$

Theorem (R.) [Creat tropical Mann-Mumbod]

If Cr is a biconnected graph of genus $d \ge 2$,

then $\Gamma = (G, l)$ has finitely many torsion points for very general edge lengths $l : E(G) \to \mathbb{R}_{>0}$

Theorem (R.) [Central tropical Mann - Mumford]

If Cr is a biconnected graph of genus $g \ge 2$, then $\Gamma = (G, l)$ has finitely many torsion points for very general edge lengths $\left(l : E(G) \to \mathbb{R}_{>0}\right) \cong \mathbb{R}_{>0}^{\#E}$

- , "biconnected" ensures that Γ "behaves like" genus ≥ 2 $\xrightarrow{E_{\times}}$ not g = 1
- of positive codim, algebraic subsets,

Ex. $U_i = \mathbb{R}^N \setminus \{(x_1,...,x_N) \text{ where some } x_i \in \mathbb{Q} \}$

Ex. $V_{z} = \mathbb{R}^{n} \setminus \left\{ (x_{1}, ..., x_{N}) \text{ where } f(x_{1}, ..., x_{N}) = 0 \right.$ for some polynomial $v \in \mathbb{R}$ rolls,

Theorem (R.) [Central tropical Mann - Mumford]

If Cr is a biconnected graph of genus $g \ge 2$, then $\Gamma = (G, I)$ has finitely many torsion points for very general edge lengths $I : E(G) \to \mathbb{R}_{>0}$

Proof Idea:

- * Torsion condition on [x-y] equivalent to rational slopes on "unit potential function" j_y^x : $\Gamma \to \mathbb{R}$
- . Kirchhoff: Each slope of j_y^x is ratio of \mathbb{Z} -polynomial of edge lengths $l:E \to \mathbb{R}_{>0}$
- { $f(x_1,...,x_n) \notin \mathbb{Q}$ for \mathbb{Z} -polynomials f } forms countable collection

Higher-degree Abel-3acdoi embedding, choose $Q \in DiJ^d(\Gamma)$ $\begin{bmatrix} (a) & : & \Gamma \times \dots \times \Gamma & \longrightarrow & Jac(\Gamma) \\ (x_1, \dots, x_d) & \longmapsto & \left[x_1 + \dots + x_d - Q \right] \end{bmatrix}$

 Higher-degree Mbel-Jacobi embedding, choose $Q \in DiJ^d(\Gamma)$ $\begin{bmatrix} (d) & : & \Gamma \times ... \times \Gamma & \longrightarrow & Jac(\Gamma) \\ [Q] & \vdots & \ddots & \ddots & \longrightarrow & \begin{bmatrix} (x_1,...,x_d) & \longmapsto & \begin{bmatrix} x_1+...+x_d - Q \end{bmatrix} \end{bmatrix}$

 $\frac{\text{Problem}: \text{When is}}{\#\left(\lfloor \frac{(d)}{\log 1} (\lceil \frac{1}{d} \rceil) \cap J_{ac}(\lceil \frac{1}{\log 1} \rceil < \infty \right) }$

Theorem (R.) [Conditional uniform higher-degree ...]

If it is finite, then $\#\left({\binom{d}{100}} \left({\Gamma^d} \right) \bigcap {\rm Jac}(\Gamma) \text{ fors} \right) \leq {\binom{3}{4}}^{+3}$

Tropical torsion points: Higher degree

 $\frac{\text{Problem}: \text{When is}}{\#\left(\begin{bmatrix} (d) \\ [G] \end{bmatrix}\left(\Gamma^{d}\right) \cap J_{ac}(\Gamma) \text{ fors}}\right) < \infty \quad ?$

Theorem (R.)

If G has independent girth $\gamma^{ind}(G) \leq d$, then it is not finite.

Otherwise, if $\gamma^{ind}(G) > d$ then it is finite for $\Gamma : (G, I)$ for very general edge lengths $I: E(G) \to R_{>0}$

Note: Yind (G) 22 (=> biconnected components have $g \ge Z$

Recall girth is length of shortest cycle

$$\gamma(G) = min \left\{ \#E(C) \right\}, \qquad C(G) = \left\{ all \ cycles \ A G \right\}$$

Let
$$rk^{\perp}$$
: $E(G) \rightarrow \mathbb{Z}$ denote rank of cographic matroid, i.e.

$$rk^{\perp}(A) = \#A + 1 - h_o(G \setminus A)$$
 for $A \subset E$

$$\gamma^{ind}(G) = min \left\{ rk^{\perp}(E(G)) \right\} \subset \gamma(G)$$

-> Where has this been studied?

Thanks!

Uniform bounds on tropical

torsion points

arXiv: 2112.00168

Harry Richman

TG:F Seminar

21 January 2022