MATH 1010 7	Tutorial Sep. 17th
(English II)	
	Presenter: WANG, Yizi
	Email: yzwang@math.cuhk.edu.hk
<u> </u>	
Schedule:	1
	toria presentation
	Questions will be discussed)
6:05-6:15 Q	& A
()	tosted by: YI, Tianhan)

Determine whether the sequence

$$a_n = \frac{n^7 + \cos(6n^2 + 2)}{n^9}$$

Converges or diverges.

If it converges, find the limit.

 $|S_{0}| = -| \leq |C_{0}| \leq |C_{0}| \leq |C_{0}|$

 $b_n := \frac{n^7 - 1}{n^9} \le O_{11} \le \frac{n^7 + 1}{n^9} = : C_n$

 $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{n^2 - n^2}{1} = 0$

 $\lim_{n\to\infty} C_n = \lim_{n\to\infty} \frac{n^2 + n^2}{n} = 0.$

By squeeze theorem, him an = 0.

Q2.

Determine whether the sequence

$$a_n = \frac{7 + \arctan(n^n + 4)}{2^n}$$

Converges or diverges.

If it converges, find the limit.

Sol: $-\frac{\pi}{2} \leq \arctan(n^n + 4) \leq \frac{\pi}{2}$

By squeeze theorem, Lin an = 0

Q3

Consider the sequence

$$Q_n = \frac{2n \sin(\frac{\pi}{2} + n\pi)}{3n + 2}$$

Write the first five terms of an, and find him an if it exists.

Sol: $Sin(\frac{\pi}{2} + n\pi) = ?$ $Sin(\frac{\pi}{2} + n\pi) = (-1)^n$

 $a_1 = -\frac{2}{5}$ $a_2 = \frac{4}{8} = \frac{1}{2}$ $a_3 = -\frac{6}{11}$ $a_4 = \frac{8}{14} = \frac{4}{7}$ $a_5 = -\frac{10}{17}$

 $b_n = \frac{2n}{3n+2} \rightarrow \frac{2}{3} \quad as \quad n \rightarrow \infty$

When n = 2k for $k \in \mathcal{N}$, $a_{2k} = \frac{2(2k)}{3(2k) + 2}$.

lim azk = = = = 3

When n=2k+1, $\alpha_{2k+1}=-\frac{2(2k+1)}{3(2k+1)+2}$.

Since $\frac{2}{3} \pm -\frac{2}{3}$, then $\lim_{n\to\infty}$ and does not exist.

Q4. Consider the sequence $an = \frac{1}{n^2 + n}$ (a) Find him an if it exists. (b) Find $\frac{2}{2}$ an if it exists. Sol: (a) $\lim_{n \to \infty} \frac{1}{n^2 + n} = 0$ (b) Let $S_n = \sum_{b=1}^n \alpha_b$ 2 an = lim Sn $a_{n} = \frac{1}{n^{2} + n} = \frac{1}{(n+1)n} = \frac{1}{n} - \frac{1}{n+1}$ Hence Sn = Z ax = (1-美)+(五一致)+(六一前) $=1-\frac{1}{n+1}\rightarrow 0$ $\lim_{n\to\infty} S_n = 1$

Q5.
Consider the recursively defined sequence
$a_1 = 2\sqrt{3}$, $a_{n+1} = \sqrt{12+a_n}$ for $n \ge 1$
Determine if the sequence defined above converges or diverges and find its limit if it converges.
converges or diverges and find its
limit if it converges.
Ideas: Monotone convergence theorem
Ideas: Monotone convergence theorem Bounded + Monotonic, Convergent. I
Use Mathematical Induction (M. I.)
II: Let P(n) be the statement that "an+1 > an"
aval = P(n) is true for no 1.
Goal = P(n) is true for n=1.
$A = \sqrt{12 + \alpha_1} = \sqrt{12 + 2\sqrt{3}} > \sqrt{12} = \alpha_1$
Hence P(1), is true.
·
D'We assume P(n) is true for some n? I.
t.e. an+1 7, an
Then $a_{n+2} = \sqrt{12 + a_{n+1}}$ $a_{n+1} = \sqrt{12 + a_n}$
$7/\sqrt{12+\alpha_n}=\alpha_{n+1}$

Hence P(n+1) is true. Thoufre an is increasing. I. Lower bound: $\alpha_1 = 2\sqrt{3}$ => an > 2J3 Upper bound: Let Pan be the statement that
" an = 4". $0 \ \alpha_1 = 2\sqrt{3} = \sqrt{12} \le \sqrt{16} = 4$ P(1) is true D Assure P(n) is true for n7.1, i.e. $an \leq 4$. $an = \sqrt{12+an} \leq \sqrt{12+4} = \sqrt{1b} = 4$ Hence $an \leq 4$ for $n \geq 1$. Limit: Let him an = L lim ant = lim 12 + an $L = \sqrt{12+L}$ 1-1-12=0 L=4 or (L=-3) dropped. lim an = 4. tonce

