Questão 1. Mostre que se \mathcal{M} é \mathbb{R}^3 menos uma reta, então $H^1(\mathcal{M})$ não é trivial.

Solução: A menos de difeomorfismo, só há uma maneira de retirar uma reta do \mathbb{R}^3 , pois as posições dos pontos de duas retas quaisquer diferem apenas por uma rotação e (possivelmente) uma translação não nula, e a composição de uma rotação com uma translação é um difeomorfismo. E como a cohomologia de De Rham é invariante por difeomorfismos, podemos então sem perda de generalidade assumir que a reta retirada é o eixo z, ou seja, considerar

$$\mathcal{M} = \{(x, y, z) \in \mathbb{R}^3 \mid x \neq 0 \text{ ou } y \neq 0\}$$

Defina a seguinte 1-forma τ em \mathcal{M}

$$\tau = -\frac{y}{x^2 + y^2} \cdot \mathrm{d}x + \frac{x}{x^2 + y^2} \cdot \mathrm{d}y$$

Um cálculo direto mostra que τ é fechada. Mas como a integral de τ sobre o círculo

$$\mathbb{S}^1 = \{ (\cos(t), \sin(t), 0) \mid t \in [0, 2\pi) \}$$

é igual a

$$\int_{\mathbb{S}^1} \tau = 2\pi$$

Concluímos que τ não é exata (caso contrário teríamos pelo teorema de Stokes $2\pi = 0$, um absurdo). Portanto $0 \neq [\tau] \in H^1(\mathcal{M})$, $id\ est,\ H^1(\mathcal{M})$ não é trivial.

Questão 2. Se $\mathcal{M} \in \mathbb{R}^3$ menos um ponto, mostre que $H^3(\mathcal{M})$ é trivial sem utilizar argumentos topológicos. Sugestão: tentar adaptar o argumento utilizado acima para o cálculo de $H^2(\mathbb{R}^2 - (0,0))$.

Solução: A menos de difeomorfismo, só há uma maneira de retirar um ponto de \mathbb{R}^3 (basta considerar translações). Portanto podemos assumir sem perda de generalidade que o ponto retirado é a origem. Denotaremos por $r: \mathbb{R}^3 \to \mathbb{R}$ a função raio, dada por $r(x,y,z) = \sqrt{x^2 + y^2 + z^2}$ para cada $(x,y,z) \in \mathbb{R}^3$. Considere em \mathcal{M} a 2-forma τ determinada por

$$\tau = \frac{x}{r^3(x, y, z)} \cdot dy \wedge dz - \frac{y}{r^3(x, y, z)} \cdot dx \wedge dz + \frac{z}{r^3(x, y, z)} \cdot dx \wedge dy$$

para cada $(x, y, z) \in \mathcal{M}$. Uma vez que

$$\begin{split} \mathrm{d}\tau &= \frac{\partial}{\partial x} \left(\frac{x}{r^3(x,y,z)} \right) \mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z + \frac{\partial}{\partial y} \left(\frac{-y}{r^3(x,y,z)} \right) \mathrm{d}y \wedge \mathrm{d}x \wedge \mathrm{d}z \\ &+ \frac{\partial}{\partial z} \left(\frac{z}{r^3(x,y,z)} \right) \mathrm{d}z \wedge \mathrm{d}x \wedge \mathrm{d}y \\ &= \frac{-2x^2 + y^2 + z^2}{r^5(x,y,z)} \cdot \mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z + \frac{x^2 - 2y^2 + z^2}{r^5(x,y,z)} \cdot \mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z \\ &+ \frac{x^2 + y^2 - 2z^2}{r^5(x,y,z)} \cdot \mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z \\ &= 0 \end{split}$$

MATHEUS A. R. M. HORÁCIO

vemos que τ é fechada. Seja agora ω uma 3-forma qualquer em \mathcal{M} . Sem perda de generalidade, podemos assumir que ω satisfaz

$$\omega = \frac{f(x, y, z)}{r^2(x, y, z)} \cdot dx \wedge dy \wedge dz$$

para alguma $f: \mathcal{M} \to \mathbb{R}$ suave. Estamos agora em busca de uma 2-forma η em \mathcal{M} tal que $\omega = \mathrm{d}\eta$. Supondo que $\eta = g\tau$ para alguma $g: \mathcal{M} \to \mathbb{R}$ suave, vemos que tal condição é equivalente a

$$\frac{f(x,y,z)}{r^{2}(x,y,z)} \cdot dx \wedge dy \wedge dz = d\eta = dg \wedge \tau = (g_{x}dx + g_{y}dy + g_{z}dz) \wedge \left(\frac{x}{r^{3}}dy \wedge dz - \frac{y}{r^{3}}dy \wedge dz\right) \\
\iff \frac{xg_{x} + yg_{y} + zg_{z}}{r(x,y,z)} = f(x,y,z)$$
(1)

para cada $(x, y, z) \in \mathcal{M}$. Geometricamente, tal condição é equivalente a

$$dg|_{(x,y,z)}(\mathbf{e}_r) = f(x,y,z), \ \forall (x,y,z) \in \mathcal{M}$$

onde

$$\mathbf{e}_r(x, y, z) = r^{-1}(x, y, z) \cdot (x, y, z)$$

é o vetor unitário na direção radial - ou seja, f é a derivada radial de g. Podemos então determinar g via integrações radiais, id est

$$g(x, y, z) = \int_{1}^{r(x, y, z)} f(s \cdot \mathbf{e}_r) \, \mathrm{d}s$$

Precisamos agora verificar que tal definição de g satisfaz a equação (1). Para isso, precisaremos dos seguintes lemas:

Lema (L.1). Sejam $F, b : \mathbb{R}^n \to \mathbb{R}$ funções diferenciáveis. Defina a função $H : \mathbb{R}^n \to \mathbb{R}$ por

$$H(t, x_2, \cdots, x_n) = \int_1^t F(y, x_2, \cdots, x_n) \, \mathrm{d}y$$

Então as derivadas parciais da função $G: \mathbb{R}^n \to \mathbb{R}$ definida por

$$G(x_1, \cdots, x_n) = H(b(x_1, \cdots, x_n), x_2, \cdots, x_n)$$

são dadas por

$$\frac{\partial G}{\partial x_i}(x_1, x_2, \cdots, x_n) = \frac{\partial b}{\partial x_i}(x_1, x_2, \cdots, x_n)F(b(x_1, x_2, \cdots, x_n), x_2, \cdots, x_n) + \int_1^{b(x_1, x_2, \cdots, x_n)} \frac{\partial F}{\partial x_i}(y, \cdots, x_n) dy$$
para cada $1 \le i \le n$.

Demonstração: Primeiramente, segue da regra da cadeia que

$$\frac{\partial G}{\partial x_i} = \frac{\partial b}{\partial x_i} \frac{\partial H}{\partial t} + \frac{\partial H}{\partial x_i}$$

Agora, pelo teorema fundamental do cálculo, temos

$$\frac{\partial H}{\partial t}(t, x_2, \cdots, x_n) = F(t, x_2, \cdots, x_n)$$

E pela regra de Leibniz, temos também

$$\frac{\partial H}{\partial x_i}(t, x_2, \cdots, x_n) = \int_1^t \frac{\partial F}{\partial x_i}(y, \cdots, x_n) \, dy$$

Concluímos então que

$$\frac{\partial G}{\partial x_i}(x_1, x_2, \cdots, x_n) = \frac{\partial b}{\partial x_i}(x_1, x_2, \cdots, x_n)F(b(x_1, x_2, \cdots, x_n), x_2, \cdots, x_n) + \int_1^{b(x_1, x_2, \cdots, x_n)} \frac{\partial F}{\partial x_i}(y, \cdots, x_n) dy$$
para cada $1 \le i \le n$, como desejado.

<u>Lema (L.2).</u> Seja $r: \mathbb{R}^n \to R$ a função raio, definida por r(p) = ||p|| para cada $p \in \mathbb{R}^n$, e considere a função normalização $h: \mathbb{R}^n \to \mathbb{R}^n$ dada por $h(p) = \frac{p}{||p||} = (h_1(p), \dots, h_n(p)) \in \mathbb{R}^n$. Então h satisfaz

$$\sum_{1 \le i \le n} x_i \left(h_j \right)_{x_i} = 0$$

para cada $1 \le j \le n$ fixado.

Demonstração: Um cálculo direto mostra que

$$\frac{\partial}{\partial x_i} h_j = \frac{\partial}{\partial x_i} \left(\frac{x_j}{r} \right) = \frac{\delta_{ij} r^2 - x_i x_j}{r^3}$$

Portanto

$$\sum_{1 \le i \le n} x_i (h_j)_{x_i} = \frac{x_j \cdot r^2 - x_j^3}{r^3} - \sum_{\substack{1 \le i \le n \\ i \ne j}} \frac{x_i^2 \cdot x_j}{r^3}$$
$$= \frac{x_j}{r^3} \sum_{\substack{1 \le i \le n \\ i \ne j}} x_i^2 - \frac{x_j}{r^3} \sum_{\substack{1 \le i \le n \\ i \ne j}} x_i^2 = 0$$

como desejado.

Defina $F: \mathbb{R}^4 \to \mathbb{R}$ por $F(s, x, y, z) \doteq f(s \cdot \mathbf{e}_r)$. Segue do lema (L.1) que

$$\frac{\partial g}{\partial x_i}(x, y, z) = \frac{x_i}{r} \cdot \underbrace{F(r(x, y, z), x, y, z)}_{=f(x, y, z)} + \int_1^{r(x, y, z)} \frac{\partial F}{\partial x_i}(s, x, y, z) \, ds$$

Agora, pela regra da cadeia, temos

$$\frac{\partial F}{\partial x_i}(s, x, y, z) = s \cdot \left(\sum_{1 \le j \le 3} f_{x_j} (h_j)_i\right)$$

Logo

$$\frac{\partial g}{\partial x_i}(x, y, z) = \frac{x_i}{r} f + \int_1^{r(x, y, z)} s \cdot \left(\sum_{1 \le j \le 3} f_{x_j} (h_j)_i \right) ds$$

Assim, temos

$$x_i \cdot \frac{\partial g}{\partial x_i}(x, y, z) = \frac{x_i^2}{r} f + \int_1^{r(x, y, z)} s \cdot \left(\sum_{1 \le j \le 3} x_i \cdot f_{x_j} \left(h_j \right)_i \right) ds$$

Segue que

$$\sum_{1 \le i \le 3} x_i \cdot \frac{\partial g}{\partial x_i}(x, y, z) = rf + s \int_1^{r(x, y, z)} \underbrace{\sum_{1 \le i, j \le n} f_j \cdot x_i(h_j)_{x_i}}_{=0, \text{ pelo lema (L, 2)}} = rf$$

e portanto a condição (1) é obviamente satisfeita.

Observação (O.1). Mutatis mutandis, o argumento apresentado acima se generaliza para mostrar que toda \overline{n} -forma fechada em \mathbb{R}^n é exata. Explicitamente, em tal caso bastará considerar

$$\tau = \frac{\sum_{1 \le i \le n} x_i \star (\mathrm{d}x^i)}{(r(x_1, \cdots, x_n))^{\frac{n}{2}}}$$

e usar os lemas demonstrados anteriormente.

Questão 3. Mostre que se uma 1-forma exata definida em uma variedade \mathcal{M} sem bordo é não nula em todos os pontos de \mathcal{M} , então \mathcal{M} não é compacta.

Solução: Precisaremos do seguinte lema:

<u>Lema (L.3).</u> Seja \mathcal{M} uma variedade compacta e sem bordo e $f: \mathcal{M} \to \mathbb{R}$ uma função suave. Então existe um ponto $p \in \mathcal{M}$ tal que $\mathrm{d} f_p \equiv 0$.

<u>Demonstração</u>: Como \mathcal{M} é compacta e f é a fortiori contínua, existe um ponto de máximo $p \in \mathcal{M}$ de f, ou seja, um ponto $p \in \mathcal{M}$ tal que $f(p) \geq f(q)$ seja qual for $q \in \mathcal{M}$. Fixe $v \in T_p \mathcal{M}$ arbitrariamente e tome uma curva $\gamma : (-\varepsilon, \varepsilon) \to \mathcal{M}$ tal que $\gamma(0) = p$ e $\gamma'(0) = v$. Temos então

$$df_p(v) = \frac{d}{dt} \Big|_{t=0} (f \circ \gamma)(t)$$
$$= \lim_{t \to 0} \frac{(f \circ \gamma)(t) - (f \circ \gamma)(0)}{t}$$

Uma vez que $\gamma(0) = p$ é por construção ponto de máximo de f, segue que $(f \circ \gamma)(t) - (f \circ \gamma)(0) \le 0$ seja qual for $t \in (-\varepsilon, \varepsilon)$. Portanto

$$0 \ge \lim_{t \to 0^+} \frac{(f \circ \gamma)(t) - (f \circ \gamma)(0)}{t}, \text{ e também } 0 \le \lim_{t \to 0^-} \frac{(f \circ \gamma)(t) - (f \circ \gamma)(0)}{t}$$

Como f é suave, os limites laterais acima coincidem, donde concluímos que

$$df_p(v) = \lim_{t \to 0} \frac{(f \circ \gamma)(t) - (f \circ \gamma)(0)}{t} = 0$$

O resultado desejado segue então da arbitrariedade de v.

Mostraremos agora a contrapositiva da questão: ou seja, que toda 1-forma exata definida numa variedade compacta sem bordo é nula em algum ponto de \mathcal{M} . De fato, se ω é uma 1-forma exata em uma variedade compacta em \mathcal{M} , então $\omega = \mathrm{d}f$ para alguma $f: \mathcal{M} \to \mathbb{R}$ suave, donde segue pelo lema anterior que ω se anula em algum ponto de \mathcal{M} .

Observação (O.2). No caso em que \mathcal{M} tem bordo, o lema (L.3) é falso: para um contra-exemplo, be portantoasta considerar a 1-forma dx na variedade compacta uni-dimensional [0, 1] (cujo bordo é $\{0,1\}$). A demonstração desse lema não pode ser estendida ao caso com bordo pois vetores tangentes no bordo podem surgir de curvas definidas somente em intervalos da forma ($-\varepsilon$, 0] ou [0, ε), de forma que o argumento dos limites laterais coincidirem não pode mais ser usado (em tal caso ($f \circ \gamma$)(t) não fará sentido para um dos limites laterais).

Questão 4. Mostre que o produto exterior definido para formas diferenciais em uma variedade \mathcal{M} de dimensão n induz um produto entre classes de cohomologia: para $[\omega] \in H^k(\mathcal{M})$ e $[\tau] \in H^\ell(\mathcal{M})$ definimos

$$[\omega] \wedge [\tau] = [\omega \wedge \tau]$$

Utilizando o produto definido acima, verifique que a soma direta dos grupos de cohomologia

$$H^*(\mathcal{M}) = \bigoplus_{k=0}^n H^k(\mathcal{M})$$

admite uma estrutura de anel (no sentido algébrico).

Observação (O.3). No enunciado original da questão há um erro de digitação: devemos tomar formas $\overline{|\omega|} \in H^k(\mathcal{M})$ e $[\tau] \in H^\ell(\mathcal{M})$, não formas de mesmo grau.

<u>Solução</u>: Todas as propriedades algébricas que definem um anel são obviamente satisfeitas: $H^*(\mathcal{M})$ é claramente um grupo abeliano sob a adição e um monóide sobre a operação de multiplicação \land , e \land é distributiva em relação à adição por definição. Resta apenas verificar que \land induz uma aplicação (que por um abuso de notação inofensivo é também denotada por \land) bem definida sob as classes de equivalência de formas fechadas (onde duas classes de equivalências são iguais se seus representantes diferem por uma forma exata - já vimos que tal relação é bem definida) - ou seja, que o produto exterior de formas fechadas é uma forma fechada e que a aplicação que \land induz sobre as classes de equivalência de formas fechadas não depende dos representantes escolhidos. De fato,

• se $[\omega] \in H^k(\mathcal{M})$ e $[\tau] \in H^\ell(\mathcal{M})$, então

$$d(\omega \wedge \tau) = (d\omega) \wedge \tau + (-1)^k \cdot \omega \wedge d\tau = 0$$

e portanto $\omega \wedge \tau$ é fechada sempre que ω e τ são fechadas.

• se $\tau' = \tau + d\sigma$, então

$$\omega \wedge \tau' = \omega \wedge \tau + \omega \wedge d\sigma$$

Mas como

$$d(\omega \wedge \sigma) = (d\omega) \wedge \sigma + (-1)^k \cdot \omega \wedge d\sigma = (-1)^k \cdot \omega \wedge d\sigma$$
 (pois $d\omega = 0$, já que ω é por hipótese fechada)

segue que $\omega \wedge \sigma$ é exata: ou seja, $\omega \wedge \tau'$ e $\omega \wedge \tau$ diferem por uma forma exata, e portanto $[\omega \wedge \tau'] = [\omega \wedge \tau]$. Mutatis mutandis, vemos que se ω' é outro representante de ω , então $[\omega' \wedge \tau] = [\omega \wedge \tau]$. Isso conclui a verificação que a aplicação \wedge está bem definida sobre as classes de equivalência. Questão 5. Calcule a co-homologia de De Rham da esfera n-dimensional \mathbb{S}^n .

Solução: Primeiramente, note que por \mathbb{S}^n ser conexa, $H^0_{dR}(\mathbb{S}^n) = \mathbb{R}$. No que segue, consideraremos os abertos $U = \mathbb{S}^n \setminus \{p\}, \ V = \mathbb{S}^n \setminus \{q\}$, onde $p,q \in \mathbb{S}^n$ são pontos arbitrários, que são difeomorfos a \mathbb{R}^n via a projeção estereográfica. Também é fácil ver que a interseção $U \cap V = \mathbb{S}^n \setminus \{p,q\}$ é difeomorfa a $\mathbb{R}^n \setminus \{0\}$ (novamente via a projeção estereográfica), que tem o mesmo tipo de homotopia que \mathbb{S}^{n-1} (via a retração $\mathbb{R}^n \setminus \{0\} \ni x \mapsto \frac{x}{\|x\|} \in \mathbb{S}^{n-1}$). No caso n = 1, o seguinte pedaço da sequência exata de Mayer-Vietoris

$$H^{-1}_{\mathrm{dR}}(U\cap V)\to H^0_{\mathrm{dR}}(\mathbb{S}^1)\to H^0_{\mathrm{dR}}(U)\oplus H^0_{\mathrm{dR}}(V)\to H^0_{\mathrm{dR}}(U\cap V)\to H^1_{\mathrm{dR}}(\mathbb{S}^1)\to H^1_{\mathrm{dR}}(U)\oplus H^1_{\mathrm{dR}}(V)$$

pode ser escrito como

$$0 \to \mathbb{R} \to \mathbb{R}^2 \to \mathbb{R}^2 \to H^1_{\mathrm{dR}}(\mathbb{S}^1) \to 0$$

Segue que

$$1 - 2 + 2 - \dim H^1_{dR}(\mathbb{S}^1) = 0 \iff \dim H^1_{dR}(\mathbb{S}^1) = 1$$

e portanto $H^1_{dR}(\mathbb{S}^1) = \mathbb{R}$. No caso $n \geq 2$, usando o fato de que U e V são difeomorfos a \mathbb{R}^n e sua interseção é conexa, vemos que o seguinte pedaço da sequência exata de Mayer-Vietoris:

$$H^{-1}_{\mathrm{dR}}(U\cap V)\to H^0_{\mathrm{dR}}(\mathbb{S}^n)\to H^0_{\mathrm{dR}}(U)\oplus H^0_{\mathrm{dR}}(V)\to H^0_{\mathrm{dR}}(U\cap V)\to H^1_{\mathrm{dR}}(\mathbb{S}^n)\to H^1_{\mathrm{dR}}(U)\oplus H^1_{\mathrm{dR}}(V)$$

pode ser escrito como

$$0 \to \mathbb{R} \to \mathbb{R}^2 \to \mathbb{R} \to H^1_{\mathrm{dR}}(\mathbb{S}^n) \to 0$$

Logo,

$$1 - 2 + 1 - \dim H^1_{dR}(\mathbb{S}^n) = 0 \iff H^1_{dR}(\mathbb{S}^n) = 0$$

Quando $n \ge 2$ e $k \ge 2$, podemos usar o seguinte pedaço da sequência exata de Mayer-Vietoris

$$0 = H_{\mathrm{dR}}^{k-1}(U) \oplus H_{\mathrm{dR}}^{k-1}(V) \to H_{\mathrm{dR}}^{k-1}(U \cap V) \cong H_{\mathrm{dR}}^{k-1}(\mathbb{S}^{n-1}) \to H_{\mathrm{dR}}^{k}(\mathbb{S}^{n}) \to H_{\mathrm{dR}}^{k}(U) \oplus H_{\mathrm{dR}}^{k}(V) = 0$$

para concluir que

$$H_{\mathrm{dR}}^k(\mathbb{S}^n) \cong H_{\mathrm{dR}}^{k-1}(\mathbb{S}^{n-1})$$

Portanto,

$$H^n_{\mathrm{dR}}(\mathbb{S}^n) \cong H^{n-1}_{\mathrm{dR}}(\mathbb{S}^{n-1}) \cong \cdots H^2_{\mathrm{dR}}(\mathbb{S}^2) \cong H^1_{\mathrm{dR}}(\mathbb{S}^1) \cong \mathbb{R}$$

E em geral, quando $\ell \geq 1$ e $n \geq 2$, temos de maneira inteiramente análoga

$$H_{\mathrm{dR}}^{n-\ell}(\mathbb{S}^n) = H_{\mathrm{dR}}^{n-\ell-1}(\mathbb{S}^{n-1}) = \dots = H_{\mathrm{dR}}^2(\mathbb{S}^{\ell+2}) = H_{\mathrm{dR}}^1(\mathbb{S}^{\ell+1}) = 0$$

Está então provado que:

$$H_{\mathrm{dR}}^k(\mathbb{S}^n) = \begin{cases} \mathbb{R}, & \text{se } k \in \{0, n\} \\ 0, & \text{caso contrário} \end{cases}$$

Questão 6. Calcule a co-homologia de De Rham de uma superfície S compacta, conexa e orientada, de gênero g.

Solução: Denotaremos uma superfície genérica que satisfaz o enunciado da questão por Σ_g , e denotaremos o complemento de um ponto de Σ_g por $\widetilde{\Sigma}_g = \Sigma_g \setminus \{p\}$. Afirmo que

$$H_{\mathrm{dR}}^{k}(\widetilde{\Sigma}_{g}) = \begin{cases} \mathbb{R}, & \text{se } k = 0\\ \mathbb{R}^{2g}, & \text{se } k = 1\\ 0, & \text{caso contrário} \end{cases}$$

е

$$H_{\mathrm{dR}}^{k}(\Sigma_{g}) = \begin{cases} \mathbb{R}, & \text{se } k \in \{0, 2\} \\ \mathbb{R}^{2g}, & \text{se } k = 1 \\ 0, & \text{caso contrário} \end{cases}$$

Já lidamos com os casos $g \in \{0, 1, 2\}$ em aula. Supondo a hipótese de indução que a afirmação é válida para algum inteiro $g \geq 2$, mostraremos que também é valida para g + 1. O caso k = 0 é trivial pela conexidade de todas as superfícies envolvidas. Uma vez que $\Sigma_{g+1} \cong \widetilde{\Sigma}_g \cup \widetilde{\Sigma}_1$ (abertos cuja interseção tem o mesmo tipo de homotopia de \mathbb{S}^1), temos o seguinte pedaço da sequência exata de Mayer-Vietoris:

$$0 \to H^1_{\mathrm{dR}}(\Sigma_{g+1}) \to H^1_{\mathrm{dR}}(\widetilde{\Sigma}_g) \oplus H^1_{\mathrm{dR}}(\widetilde{\Sigma}_1) \stackrel{\alpha}{\to} \mathbb{R} \to H^2_{\mathrm{dR}}(\Sigma_{g+1}) \to 0$$

que pela hipótese de indução, se escreve como

$$0 \to H^1_{\mathrm{dR}}(\Sigma_{g+1}) \to \mathbb{R}^{2(g+1)} \stackrel{\alpha}{\to} \mathbb{R} \to H^2_{\mathrm{dR}}(\Sigma_{g+1}) \to 0$$

Pelo lema 28.3 do livro An Introduction to Manifolds de Loring Tu, a aplicação $\alpha \equiv 0$. Pela exatidão da sequência de Mayer-Vietoris, concluímos (basta usar repetidamente o teorema do núcleo e da imagem) então que $H^1_{dR}(\Sigma_{g+1}) = \mathbb{R}^{2(g+1)}$ e $H^2_{dR}(\Sigma_{g+1}) = \mathbb{R}$.

Resta provarmos que a afirmação é satisfeita para o inteiro g+1 no caso de $\widetilde{\Sigma}_{g+1}$. Cobrindo Σ_{g+1} com os abertos $\widetilde{\Sigma}_{g+1}$ e um disco \mathbb{D}_p contendo p, temos o seguinte pedaço da sequência exata de Mayer-Vietoris:

$$0 \to H^1_{\mathrm{dR}}(\Sigma_{g+1}) = \mathbb{R}^{2(g+1)} \to H^1_{\mathrm{dR}}(\widetilde{\Sigma}_{g+1}) \oplus H^1_{\mathrm{dR}}(\mathbb{D}_p) \stackrel{\alpha}{\to} \mathbb{R} \to \mathbb{R} \to H^2_{\mathrm{dR}}(\widetilde{\Sigma}_{g+1}) \to 0$$

Novamente, $\alpha \equiv 0$, donde concluímos pela exatidão da sequência de Mayer-Vietoris que $H^1_{dR}(\tilde{\Sigma}_{g+1}) = \mathbb{R}^{2(g+1)}$ e $H^k_{dR}(\tilde{\Sigma}_{g+1}) = 0$ sempre que $k \neq 0$. Isso conclui a demonstração por indução da nossa afirmação inicial.

Questão 7. Calcule a co-homologia de de Rham do plano projetivo real \mathbb{RP}^2 .

Solução: Faremos o caso mais geral e calcularemos a co-homologia de De Rham do espaço projetivo real \mathbb{RP}^n , por meio do seguinte lema

Lema (L.4). Seja G um grupo finito agindo numa variedade \mathcal{M} de forma própria e descontínua (ou seja, $h\acute{a}$ uma correspondência $\varphi: G \to \mathsf{Diff}(\mathcal{M})$, onde $\mathsf{Diff}(\mathcal{M})$ denota o conjunto de todos os difeomorfismos levando \mathcal{M} em \mathcal{M}). A co-homologia de De Rham de grau k do quociente

$$\mathcal{M}/G = \{[p] \mid p \in \mathcal{M}, \text{ onde } [p] = \{\varphi_g(p) \mid g \in G\} \text{ para cada } p \in \mathcal{M}\}$$

é o subconjunto de $H^k_{dR}(\mathcal{M})$ fixado pela ação natural de G, dado por

$$H^k_{dR}(\mathcal{M}/G) \cong (H^k_{dR}(\mathcal{M}))^G \doteq \{ [\omega] \mid \omega \in \Lambda^k(\mathcal{M}), (\varphi_g)^*(\omega) = \omega \ \forall g \in G \}$$

Demonstração: Considere a projeção canônica ao quociente, dada por

$$\pi: \mathcal{M} \to \mathcal{M}/G$$
$$p \mapsto [p]$$

Note que por construção $\pi \circ \varphi_g = \pi$ seja qual for $g \in G$. Além disso, pelo teorema do núcleo e da imagem, basta mostrar que a aplicação

$$\pi^*: H^k_{\mathrm{dR}}(\mathcal{M}/G) \to H^k_{\mathrm{dR}}(\mathcal{M})$$

é injetiva e que a sua imagem é dada por

$$\operatorname{img}(\pi^*) = \{ [\omega] \mid \omega \in \Lambda^k(\mathcal{M}), (\varphi_q)^*(\omega) = \omega \ \forall g \in G \}$$

Começaremos caracterizando a imagem de π^* . Suponha que $[\eta] \in \text{img}(\pi^*)$. Por definição, existe então $\overline{\eta} \in \Lambda^k(\mathcal{M}/G)$ tal que $\eta = \pi^*(\overline{\eta})$. Dada $\varphi_q \in \text{Diff}(\mathcal{M})$, vale então que

$$\varphi_{q}^{*}(\eta) = \varphi_{q}^{*}\left[\pi^{*}(\overline{\eta})\right] = (\pi \circ \varphi_{q})^{*}(\overline{\eta}) = \pi^{*}(\overline{\eta}) = \eta$$

e portanto uma condição necessária para um elemento estar na imagem de π^* é ser invariante pela ação de G. Estamos interessados em provar também a recíproca, ou seja, que se $(\varphi_g)^*\eta = \eta \ \forall g \in G$, então existe $\overline{\eta} \in \Lambda^k(\mathcal{M}/G)$ tal que $\eta = \pi^*(\overline{\eta})$.

Suponha então que $\eta \in \Lambda^k(\mathcal{M})$ satisfaz $(\varphi_g)^*\eta = \eta \ \forall g \in G$. Primeiramente, note que o fato de π ser um difeomorfismo local garante que $d\pi_p$ é um isomorfismo. Assim, dados $\overline{p} = [p] \in \mathcal{M}/G$ e $\overline{v_1}, \dots, \overline{v_k} \in T_{\overline{p}}(\mathcal{M}/G)$, segue que para cada $1 \leq i \leq k$, existe $v_i \in T_p\mathcal{M}$ tal que $d\pi_p(v_i) = \overline{v_i}$. Podemos então definir

$$\overline{\eta}_{\overline{p}}(\overline{v_1},\cdots,\overline{v_k})=\eta_p(v_1,\cdots,v_k)$$

Precisamos agora mostrar que $\overline{\eta}$ está bem definida. Seja então $q \in \mathcal{M}$ tal que [q] = [p] e $u_1, \dots, u_n \in T_q \mathcal{M}$ tais que $d\pi_q(u_i) = \overline{v_i}$. Por definição, existe $g \in G$ tal que $\varphi_g(p) = q$. Agora, uma vez que

$$d\pi_q \left(d \left(\varphi_g \right)_p (v_i) \right) = d \left(\pi \circ \varphi_g \right)_p (v_i)$$

$$= d\pi_p (v_i)$$

$$= \overline{v_i}$$

segue do fato de $d\pi_q$ ser um isomorfismo que $u_i = d(\varphi_g)_p(v_i)$. Portanto

$$\eta_q(u_1, \dots, u_k) = \eta_{\varphi_g(p)}(\operatorname{d}(\varphi_g)_p(v_1), \dots, \operatorname{d}(\varphi_g)_p(v_k))$$

$$= \left[\varphi_g^*(\eta)\right]_p(v_1, \dots, v_k)$$

$$= \eta_p(v_1, \dots, v_k)$$

donde concluímos que $\overline{\eta}$ está de fato bem definida. É imediato da construção de $\overline{\eta}$ que $\eta = \pi^*(\overline{\eta})$.

Mostraremos agora que π^* é injetiva. Quando $k=0, H^0_{dR}(\mathcal{M})$ consiste simplesmente das funções constantes em \mathcal{M} . Assim, se $[\overline{w}] \in H^0_{dR}(\mathcal{M})$ satisfaz $\pi^*(\overline{\omega}) = 0$, então $\overline{\omega}_{\overline{p}} = 0$ seja qual for $\overline{p} \in \mathcal{M}/G$, e portanto $\overline{\omega}$ é identicamente nula. Suponhamos agora então $1 \leq k \leq n = \dim(\mathcal{M}/G) = \dim(\mathcal{M})$. Se $[\omega] \doteq \pi^*(\overline{\omega}) = 0$, então ω é exata, ou seja, existe $\eta \in \Lambda^{k-1}(\mathcal{M})$ tal que $d\eta = \omega$. Pela caracterização da imagem de π^* que acabamos de provar, segue que $d\eta$ é fixada pela ação natural de G, ou seja, $(\varphi_g)^*(d\eta) = d\eta$ seja qual for $g \in G$. Podemos supor sem perda de generalidade que a própria η também é fixada pela ação natural de G. De fato, caso isso não fosse o caso, poderíamos trabalhar com a seguinte forma τ ao invés de η : defina

$$\tau \doteq \frac{1}{|G|} \sum_{g \in G} (\varphi_g)^*(\eta)$$

Temos então

$$d\tau = \frac{1}{|G|} \sum_{g \in G} d\left[(\varphi_g)^*(\eta) \right] = \frac{1}{|G|} \sum_{g \in G} \varphi_g^*(d\eta)$$
$$= \frac{1}{|G|} \sum_{g \in G} d\eta = \omega$$
$$= d\eta$$

o que justifica a opção de trabalhar com τ ao invés de η . Além disso, $(\varphi_q^*)(\tau) = \tau$ seja qual for $g \in G$ por construção. Suporemos então sem perda de generalidade que η é preservada pela ação natural de G. Segue então da caracterização da imagem de π^* que acabamos de demonstrar que $\eta = \pi^*(\overline{\eta})$ para alguma $\eta \in \Lambda^k(\mathcal{M}/G)$. Como π é um difeomorfismo local e formas são objetos de natureza local, podemos cometer o abuso de notação de escrever $\bar{\eta} = (\pi^{-1})^* (\eta)$. Localmente, temos então

$$d\overline{\eta} = d\left(\left(\pi^{-1}\right)^*(\eta)\right)$$
$$= \left(\pi^{-1}\right)^*(d\eta)$$
$$= \left(\pi^{-1}\right)^*(\omega) = \overline{\omega}$$

e portanto $d\overline{\eta} = \overline{\omega}$, de forma que $[\overline{\omega}] = 0$. Concluímos então que π^* é injetora, como desejado.

Note que $\mathbb{RP}^n = \mathbb{S}^n/\mathbb{Z}_2$, onde $\mathbb{Z}_2 = \{ \mathrm{Id}_{\mathbb{S}^n}, A \}$, sendo A a aplicação antípoda. Como a aplicação antípoda preserva a orientação somente no caso em que n é impar, concluimos que os espaços projetivos de dimensão ímpar têm a mesma co-homologia de De Rham que as esferas de dimensão ímpar correspondentes. No caso em que n é par, a aplicação antípoda reverte a orientação e portanto age como a multiplicação por -1, donde concluímos então que $H^k_{dR}(\mathbb{RP}^{2m})=0$ seja qual for $k\neq 0$. Resumidamente,

$$H^k_{\mathrm{dR}}(\mathbb{RP}^n) = \begin{cases} \mathbb{R}, & \text{se } n \text{ \'e impar e } k \in \{0, n\} \\ 0, & \text{caso contr\'ario} \end{cases}$$

Em particular, $H_{dR}^0(\mathbb{RP}^2) = \mathbb{R} \ e \ H_{dR}^k(\mathbb{RP}^2) = 0$ seja qual for $k \neq 0$.

Questão 8. Calcule a co-homologia de De Rham do plano \mathbb{R}^2 menos um número finito de pontos.

Solução: Denotaremos por \mathbb{R}^n_ℓ o complemento de ℓ pontos de \mathbb{R}^n . Afirmo que

$$H_{\mathrm{dR}}^{k}(\mathbb{R}^{n}_{\ell}) = \begin{cases} \mathbb{R}, & \text{se } k = 0\\ \mathbb{R}^{\ell}, & \text{se } k = n - 1\\ 0, & \text{caso contrário} \end{cases}$$

Já vimos que \mathbb{R}_1^n e \mathbb{S}^{n-1} têm o mesmo tipo de homotopia, portanto já lidamos com o caso $\ell=1$. Terminaremos a prova por indução ao mostrar que se a afirmação é válida para algum inteiro $\ell \geq 1$, também é válida para $\ell+1$. Suponhamos então que a afirmação é satisfeita para um inteiro $\ell\geq 1$. Uma vez que $\mathbb{R}^n=\mathbb{R}^n_\ell\cup\mathbb{R}^n_1$

(onde o primeiro aberto da união acima é o complemento de ℓ pontos de \mathbb{R}^n e o segundo é o complemento de um ponto distinto dos ℓ pontos anteriores), temos o seguinte pedaço da sequência exata de Mayer-Vietoris

$$H^k_{\mathrm{dR}}(\mathbb{R}^n) \to H^k_{\mathrm{dR}}(\mathbb{R}^n_\ell) \oplus H^k_{\mathrm{dR}}(\mathbb{R}^n_1) \to H^k_{\mathrm{dR}}(\mathbb{R}^n_{\ell+1}) \to H^{k+1}_{\mathrm{dR}}(\mathbb{R}^n)$$

Se $k \notin \{0, n-1\}$, temos então a sequência exata

$$0 \to 0 \to H^k_{\mathrm{dR}}(\mathbb{R}^n_{\ell+1}) \to 0$$

donde concluímos que $H^k_{dR}(\mathbb{R}^n_{\ell+1})=0$ sempre que $k\notin\{0,n-1\}$. Como $\mathbb{R}^n_{\ell+1}$ é conexo, temos também $H^0_{dR}(\mathbb{R}^n_{\ell+1})=\mathbb{R}$, de forma que resta lidarmos com o caso k=n-1. Em tal caso, temos a sequência exata

$$H^{n-1}_{\mathrm{dR}}(\mathbb{R}^n) = 0 \to H^{n-1}_{\mathrm{dR}}(\mathbb{R}^n_\ell) \oplus H^{n-1}_{\mathrm{dR}}(\mathbb{R}^n_1) \to H^{n-1}_{\mathrm{dR}}(\mathbb{R}^n_{\ell+1}) \to H^n_{\mathrm{dR}}(\mathbb{R}^n) = 0$$

que pela hipótese de indução se escreve como

$$0 \to \mathbb{R}^{\ell+1} \to H^{n-1}_{\mathrm{dR}}(\mathbb{R}^n_{\ell+1}) \to 0$$

Portanto $H^{n-1}_{dR}(\mathbb{R}^n_{\ell+1}) = \mathbb{R}^{\ell+1}$, o que conclui a demonstração por indução da afirmação.

Questão 9. Mostre que o fibrado tangente da esfera \mathbb{S}^3 é trivial.

Observação (O.4). Vimos em aula que se $\pi: E \to \mathcal{M}$ é um fibrado vetorial de posto n que admite um referencial global (chamado também de uma base global de seções) $\{s_i\}_{1 \leq i \leq n}$, então E é um fibrado trivial. Nesse caso, diremos que o referencial $\{s_i\}_{1 \leq i \leq n}$ testemunha a trivialidade de E.

Solução: O espaço tangente de um ponto $p \in \mathbb{S}^3$ consiste de todos os vetores tangentes iniciais de curvas suaves $\gamma: (-\varepsilon, \varepsilon) \to \mathbb{S}^3$ que partem de p, ou seja

$$T_p\mathbb{S}^3=\{\gamma'(0)\mid \gamma:(-\varepsilon,\varepsilon)\ \to\mathbb{S}^3 \text{ \'e suave e satisfaz } \gamma(0)=p, \text{ com } \varepsilon>0 \text{ arbitr\'ario}\}$$

Qualquer tal curva obviamente satisfaz $\|\gamma\|^2 = \langle \gamma, \gamma \rangle = 1$. Derivando tal igualdade e a avaliando em t = 0, concluímos que $\langle \gamma'(0), p \rangle = 0$. Isso mostra que $T_p \mathbb{S}^3 \subset p^\perp = \{v \in \mathbb{R}^4 \mid \langle v, p \rangle = 0\}$. Agora, se $0 \neq v \in \mathbb{R}^4$ satisfaz $\langle v, p \rangle = 0$, então definindo a seguinte curva (onde podemos tomar, por exemplo, $\varepsilon = 1$)

$$(-\varepsilon, \varepsilon) \ni t \mapsto \gamma_v(t) \doteq \cos(t)p + \frac{\sin(t)}{\|v\|}v$$

vemos que γ_v satisfaz $\operatorname{Im}(\gamma_v) \subset \mathbb{S}^3$ (pois $p \in v$ são por hipótese ortogonais e vale a identidade trigonométrica $\cos^2(t) + \sin^2(t) = 1$), $\gamma_v(0) = p \in \gamma_v'(0) = \frac{v}{\|v\|} \in T_p\mathbb{S}^3$. Como $T_p\mathbb{S}^3$ é um espaço vetorial, temos também que $v \in T_p\mathbb{S}^3$. Pela arbitrariedade de v, segue que $p^{\perp} \subset T_p\mathbb{S}^3$. Assim, concluímos então que

$$T_p \mathbb{S}^3 = p^{\perp} = \{ v \in \mathbb{R}^4 \mid \langle p, v \rangle = 0 \}$$

Nos inspirando agora no fato de que o campo $\mathbb{S}^1 \ni (x,y) \mapsto (-y,x)$ é uma seção global de \mathbb{S}^1 (que, por virtude da unidimensionalidade de \mathbb{S}^1 , testemunha a trivialidade do fibrado $T\mathbb{S}^1$), podemos considerar o campo

$$s_1: \mathbb{S}^3 \to T\mathbb{S}^3$$
$$p = (x, y, z, w) \mapsto (p, -y, x, w, -z)$$

E para produzir mais duas seções que testemunhem a trivialidade do fibrado tangente de \mathbb{S}^3 , podemos aplicar matrizes de rotações apropriadas a s_1 e obter mais dois campos ortogonais entre si que, juntos, formam (pontualmente) uma base do complemento ortogonal em \mathbb{S}^3 do espaço gerado por s_1 . A saber, podemos considerar também os campos

$$s_2: \mathbb{S}^3 \to T\mathbb{S}^3$$

$$p = (x, y, z, w) \mapsto (p, z, w, -x, -y)$$

$$s_3: \mathbb{S}^3 \to T\mathbb{S}^3$$

$$p = (x, y, z, w) \mapsto (p, w, -z, y, -x)$$

Como s_1, s_2 e s_3 são ortogonais entre si, tais seções são linearmente independentes (é trivial verificar que de fato $s_i(p) \in \{p\} \times T_p \mathbb{S}^3 \cong T_p \mathbb{S}^3 = p^{\perp}$ seja qual for $p \in \mathcal{M}$ e $1 \leq i \leq 3$.). E como

$$\dim(T_p\mathbb{S}^3) = 3 \ \forall p \in \mathcal{M}$$

segue que s_1, s_2 e s_3 são uma base global de seções de $T\mathbb{S}^3$. Como vimos em aula, isso garante a trivialidade de $T\mathbb{S}^3$.

Questão 10. Seja $f: \mathbb{S}^3 \to \mathbb{S}^2$ diferenciável. Fixe orientações para as esferas e escolha uma forma de volume θ em \mathbb{S}^2 tal que

$$\int_{\mathbb{S}^2} \theta = 1$$

Assumindo que os grupos de co-homologia de de Rham das esferas é conhecido, mostre que:

- existe $\eta \in \Lambda^1(\mathbb{S}^3)$ tal que $d\eta = f^*(\theta)$.
- Definindo

e

$$H(f) = \int_{\mathbb{S}^3} \eta \wedge \mathrm{d}\eta$$

o valor de H(f) não depende da escolha de θ e de η .

• Calcule o valor de H(h), onde h é a aplicação que define a fibração de Hopf.

Observação (O.5). Denotaremos as coordenadas usuais em \mathbb{R}^4 e \mathbb{R}^3 por (x, y, z, t) e (x, y, z), respectivamente (o que constitui um abuso de notação inofensivo). A aplicação h que define a fibração de Hopf é dada por

$$h: \mathbb{S}^3 \to \mathbb{S}^2 \\ \mathbb{S}^3 \ni p = (x, y, z, t) \mapsto h(p) = (2(xz + yt), 2(yz - xt), x^2 + y^2 - z^2 - t^2) \in \mathbb{S}^2$$

Solução: Considere a seguinte 2-forma de volume "canônica" na esfera \mathbb{S}^2 :

$$\omega = x \cdot dy \wedge dz - y \cdot dx \wedge dz + z \cdot dx \wedge dy$$

Sabemos do cálculo que

$$\int_{\mathbb{S}^2} \omega = 4\pi$$

Definindo então $\theta \doteq \frac{1}{4\pi}\omega$, temos

$$\int_{\mathbb{S}^2}\theta=1$$

E podemos considerar as orientações das esferas em questão como sendo as correspondentes às suas formas de volumes "canônicas". Sendo assim

- Note que $d\theta = 0$ por motivos de dimensão (já que $d\theta$ é uma 3-forma em \mathbb{S}^2), logo θ é uma forma fechada. Como o pullback comuta com a derivada exterior, $f^*(\theta)$ também é uma 2-forma fechada em \mathbb{S}^3 . Agora, como $H^2_{dR}(\mathbb{S}^3) = 0$ (o que acontece se, e só se, toda 2-forma fechada em \mathbb{S}^3 também é exata), segue que existe $\eta \in \Lambda^1(\mathbb{S}^2)$ tal que $d\eta = f^*(\theta)$.
- Primeiramente, seja ξ outra 1-forma em \mathbb{S}^2 tal que $\mathrm{d}\xi = f^*(\theta)$. Temos então que

$$d(\xi \wedge \eta) = d\xi \wedge \eta + (-1)^{1} \cdot \xi \wedge d\eta$$
$$= (-1)^{2 \cdot 1} \cdot \eta \wedge d\xi - \xi \wedge d\eta$$
$$= \eta \wedge f^{*}(\theta) - \xi \wedge f^{*}(\theta)$$

Agora, pelo teorema de Stokes

$$\int_{\mathbb{S}^3} \eta \wedge f^*(\theta) - \int_{\mathbb{S}^3} \xi \wedge f^*(\theta) = \int_{\mathbb{S}^3} d(\xi \wedge \eta) = \int_{\partial \mathbb{S}^3 = \emptyset} \xi \wedge \eta = 0$$

E portanto H(f) não depende da escolha de η . Mostraremos em seguida que H(f) também não depende da escolha de θ . Seja então ζ outra forma de volume em \mathbb{S}^2 que satisfaz

$$\int_{\mathbb{S}^2} \zeta = 1$$

Novamente, por motivos de dimensão ambas θ e ζ são fechadas. Como $H^2_{dR}(\mathbb{S}^2) = \mathbb{R}$, tanto θ quanto ζ geram $H^2_{dR}(\mathbb{S}^2)$. E como vimos na prova da dualidade de Poincaré, a aplicação

$$H^2_{\mathrm{dR}}(\mathbb{S}^2) \ni [\omega] \mapsto \int_{\mathbb{S}^2} \omega \in \mathbb{R}$$

é um isomorfismo. Segue então do fato de que

$$0 = \int_{\mathbb{S}^2} \theta - \int_{\mathbb{S}^2} \zeta = \int_{\mathbb{S}^2} (\theta - \zeta)$$

que $[\theta] = [\zeta]$. Por definição, temos então que θ e ζ diferem por uma forma exata, ou seja, existe $\beta \in \Lambda^1(\mathbb{S}^2)$ tal que $\theta - \zeta = \mathrm{d}\beta$. Logo

$$\int_{\mathbb{S}^3} \eta \wedge f^*(\theta) - \int_{\mathbb{S}^3} \eta \wedge f^*(\zeta) = \int_{\mathbb{S}^3} \eta \wedge f^*(d\beta)
= \int_{\mathbb{S}^3} \{ d\eta \wedge f^*(\beta) - d(\eta \wedge f^*(\beta)) \}
= \int_{\mathbb{S}^3} d\eta \wedge f^*(\beta) - \underbrace{\int_{\partial \mathbb{S}^3 = \emptyset} \eta \wedge f^*(\beta)}_{=0}
= \int_{\mathbb{S}^3} f^*(\theta) \wedge f^*(\beta)
= \int_{\mathbb{S}^3} f^*(\theta \wedge \beta)
= 0$$

onde na última linha usamos o fato de que $\theta \wedge \beta \equiv 0$ é uma 3-forma em \mathbb{S}^2 (e portanto ela e seu pullback se anulam). Concluímos então que H(f) não depende da escolha de θ e de η , como desejado.

• Precisamos primeiramente calcular $h^*(\theta)$ e encontrar $\eta \in \Lambda^1(\mathbb{S}^3)$ tal que $d\eta = h^*(\theta)$. Como $h^*(\theta)$ é uma 2-forma em \mathbb{S}^3 , existem seis funções reais suaves $\{a_{12}, a_{13}, a_{14}, a_{23}, a_{24}, a_{34}\} \subset \mathcal{C}^{\infty}(\mathbb{S}^3)$ tais que

$$h^*(\theta) = a_{12} \cdot dx \wedge dy + a_{13} \cdot dx \wedge dz + a_{14} \cdot dx \wedge dt + a_{23} \cdot dy \wedge dz + a_{24} \cdot dy \wedge dt + a_{34} \cdot dz \wedge dt$$

Avaliando os dois lados da igualdade acima em $(\mathbf{e}_i, \mathbf{e}_j)$ para cada $1 \leq i, j \leq 3$ (com $i \neq j$, claro), vemos que para cada $q = (x, y, z, t) \in \mathbb{S}^3$, vale

$$a_{ij}(q) = (h^*(\theta))_q(\mathbf{e}_i, \mathbf{e}_j) = \theta_{h(q)}(\mathrm{d}h_q(\mathbf{e}_i), \mathrm{d}h_q(\mathbf{e}_j))$$

Calcularemos agora então a matriz dh_q . Temos

$$dh_q = \begin{pmatrix} dh_q(\mathbf{e}_1) & dh_q(\mathbf{e}_2) & dh_q(\mathbf{e}_3) & dh_q(\mathbf{e}_4) \end{pmatrix}$$
$$= \begin{pmatrix} 2z & 2t & 2x & 2y \\ -2t & 2z & 2y & -2x \\ 2x & 2y & -2z & -2t \end{pmatrix}$$

Portanto,

$$4\pi \cdot a_{12}(q) = 4\pi \cdot \theta_{h(q)}((2z, -2t, 2x), (2t, 2z, 2y))$$

$$= 2(xz + yt) \begin{vmatrix} -2t & 2x \\ 2z & 2y \end{vmatrix} - 2(yz - xt) \begin{vmatrix} 2z & 2x \\ 2t & 2y \end{vmatrix} + (x^2 + y^2 - z^2 - t^2) \begin{vmatrix} 2z & -2t \\ 2t & 2z \end{vmatrix}$$

$$= 2(xz + yt)(-4yt - 4xz) - 2(yz - xt)(4yz - 4xt) + (x^2 + y^2 - z^2 - t^2)(4z^2 + 4t^2)$$

$$= \cdots \text{ expandiremos e agruparemos os termos em seguida}$$

$$= -4t^2(x^2 + y^2 + z^2 + t^2) - 4z^2(x^2 + y^2 + z^2 + t^2)$$

$$= -4(t^2 + z^2)$$

De maneira inteiramente análoga, obtemos

$$4\pi \cdot a_{13}(q) = -4(xt - yz)$$

$$4\pi \cdot a_{14}(q) = 4(xz + yt)$$

$$4\pi \cdot a_{23}(q) = -4(xz + yt)$$

$$4\pi \cdot a_{24}(q) = -4(xt - yz)$$

$$4\pi \cdot a_{34}(q) = -4(x^2 + y^2)$$

Logo,

$$4\pi \cdot h^*(\theta) = -4(z^2 + t^2) \cdot dx \wedge dy - 4(xt - yz) \cdot dx \wedge dz + 4(xz + yt) \cdot dx \wedge dt - 4(xz + yt) \cdot dy \wedge dz - 4(xt - yz) \cdot dy \wedge dt - 4(x^2 + y^2) \cdot dz \wedge dt$$
(2)

Agora, como

$$x^{2} + y^{2} + z^{2} + t^{2} = 1, \forall q = (x, y, z, t) \in \mathbb{S}^{3}$$

temos que

$$x \cdot dx + y \cdot dy + z \cdot dz + t \cdot dt = 0$$

Daí, obtemos

$$-4(z^{2} + t^{2}) \cdot dx \wedge dy = -4(1 - x^{2} - y^{2}) \cdot dx \wedge dy$$

$$= -4 \cdot dx \wedge dy + 4x \cdot (x \cdot dx) \wedge dy + 4y \cdot dx \wedge (y \cdot dy)$$

$$= -4 \cdot dx \wedge dy + 4x \cdot (-y \cdot dy - z \cdot dz - t \cdot dt) \wedge dy$$

$$+ 4y \cdot dx \wedge (-x \cdot dx - z \cdot dz - t \cdot dt)$$

$$= -4 \cdot dx \wedge dy + 4xz \cdot dy \wedge dz + 4xt \cdot dy \wedge dt - 4yz \cdot dx \wedge dz - 4yt \cdot dx \wedge dt$$
(3)

Analogamente, temos

$$-4(x^{2} + y^{2}) \cdot dz \wedge dt = -4(1 - z^{2} - t^{2}) \cdot dz \wedge dt$$

$$= -4 \cdot dz \wedge dt - 4xz \cdot dx \wedge dt - 4yz \cdot dy \wedge dt + 4xt \cdot dx \wedge dz + 4yt \cdot dy \wedge dz$$
(4)

Substituindo as expressões (3) e (4) na equação (2), obtemos

$$h^*(\theta) = -\frac{1}{\pi} \cdot (dx \wedge dy + dz \wedge dt)$$
$$= d\left(-\frac{1}{\pi} \cdot (x \cdot dy + z \cdot dt)\right)$$

Estamos então justificados em tomar η como sendo

$$\eta = -\frac{1}{\pi} \cdot (x \cdot dy + z \cdot dt)$$

Agora, um cálculo direto mostra que

$$\eta \wedge d\eta = \frac{1}{\pi^2} \cdot (x \cdot dy \wedge dz \wedge dt + z \cdot dx \wedge dy \wedge dt)$$

Assim,

$$H(h) = \int_{\mathbb{S}^3} \eta \wedge d\eta$$

$$= \frac{1}{\pi^2} \cdot \int_{\mathbb{S}^3} (x \cdot dy \wedge dz \wedge dt + z \cdot dx \wedge dy \wedge dt)$$

$$= \frac{2}{\pi^2} \cdot \int_{\mathbb{S}^3} x \cdot dy \wedge dz \wedge dt, \text{ por simetria}$$

Note que na última igualdade, para formalizar o argumento da simetria, basta aplicar o teorema da mudança de variáveis para a mudança de coordenadas $(x, y, z, t) \mapsto (z, y, x, t)$, cuja matriz jacobiana tem determinante -1. Usando coordenadas esféricas na forma

$$x = \operatorname{sen}(a)\operatorname{sen}(b)\cos(c)$$
$$y = \operatorname{sen}(a)\operatorname{sen}(b)\operatorname{sen}(c)$$
$$z = \operatorname{sen}(a)\cos(b)$$
$$t = \cos(a)$$

com $a,b \in [0,\pi]$ e $c \in [0,2\pi],$ obtemos então

$$H(h) = \frac{2}{\pi^2} \cdot \int_0^{\pi} \int_0^{\pi} \int_0^{2\pi} \sin^4(a) \sin^3(b) \cos^2(c) dc db da$$

= $\frac{2}{\pi^2} \cdot \frac{\pi^2}{2}$
= 1

Concluímos então que H(h) = 1.

Questão 11. Seja $\pi: E \to \mathcal{M}$ um fibrado vetorial sobre \mathcal{M} e seja $f: \mathcal{N} \to \mathcal{M}$ uma aplicação diferenciável entre variedades diferenciáveis. Considere:

$$f^*(E) = \{(p, u) \in \mathcal{N} \times E \mid f(p) = \pi(u)\}$$

Mostre que a projeção no primeiro fator $\pi_1: f^*(E) \to \mathcal{N}$ define um fibrado vetorial com espaço total $f^*(E)$ e espaço base \mathcal{N} (chamado fibrado pullback pela aplicação f).

Observação (O.6). Por completude, incluíremos agora a definição de um fibrado vetorial. Um fibrado vetorial de posto n sobre uma variedade diferenciável é uma variedade diferenciável E juntamente com uma aplicação suave e sobrejetora $\pi: E \to \mathcal{M}$ que satisfaz as seguintes condições

1. Para cada $p \in \mathcal{M}$, a fibra

$$E_p \doteq \pi^{-1}(\{p\})$$

é um espaço vetorial real de dimensão n.

2. Para cada $p \in \mathcal{M}$ existe uma vizinhança $U_p \ni p$ de $p \in \mathcal{M}$ e um difeomorfismo

$$\psi_p: \pi^{-1}(U_p) \to U \times \mathbb{R}^n$$

tal que, se pr₁ : $U_p \times \mathbb{R}^n \to U_p$ denota a projeção na primeira coordenada, então

$$\pi = \operatorname{pr}_1 \circ \psi_p$$

3. Para cada $q \in U$, a aplicação

$$\psi_p|_{E_q}: E_q \to \{q\} \times \mathbb{R}^n \cong \mathbb{R}^n$$

é um isomorfismo entre espaços vetoriais.

Observação (O.7). Denotaremos a aplicação $\psi_p|_{E_q}$ do item (iii) acima por $\xi_{p,q}^E$. Além disso, para eliminar possíveis confusões, denotaremos a aplicação $\pi: E \to \mathcal{M}$ por π_E , o fibrado $f^*(E)$ por \widetilde{E} , a aplicação $\pi_1: \widetilde{E} \to \mathcal{N}$ por $\pi_{\widetilde{E}}$, e a projeção na segunda coordenada por $\operatorname{pr}_2: U_p \times \mathbb{R}^n \to \mathbb{R}^n$.

Observação (O.8). Para demonstrar que um conjunto E admite uma estrutura de fibrado, não há necessidade de se provar anteriormente que E admite uma estrutura de variedade diferenciável para depois provarmos que o mesmo satisfaz as condições (i) a (iii). Isso acontece pois tais condições já implicam na existência de tal estrutura: de fato, se $\{U_{\alpha}\}_{{\alpha}\in I}$ é um atlas de \mathcal{M} , a coleção $\{\psi_{\alpha}\}_{{\alpha}\in I}$,

$$\psi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^n$$

induz naturalmente um atlas em E (e portanto induz também uma estrutura topológica e uma estrutura diferenciável para E).

Solução: Suponha que E tenha posto n sobre \mathcal{M} . Primeiramente, note que para cada $p \in \mathcal{N}$, temos

$$\widetilde{E}_{p} = \pi_{\widetilde{E}}^{-1}(\{p\}) = \{p\} \times \{u \in E \mid f(p) = \pi_{E}(u)\}
= \{p\} \times \pi_{E}^{-1}(\{f(p)\})
= \{p\} \times E_{f(p)}
\cong E_{f(p)}$$

Logo, segue do fato de E ser (por hipótese) um fibrado vetorial de posto n sobre \mathcal{M} que \widetilde{E}_p é um espaço vetorial real de dimensão n, o que mostra que a condição (ii) é satisfeita.

Seja agora $p \in \mathcal{N}$ arbitrário. Considere a vizinhança \tilde{U}_p de p definida por $\tilde{U}_p \doteq f^{-1}(U_{f(p)})$, onde $U_{f(p)}$ é uma vizinhança de $f(p) \in \mathcal{M}$ - note que por f ser suave, e a fortiori contínua, \tilde{U}_p é de fato uma vizinhança de p - satisfazendo as hipóteses (ii) e (iii) (cuja existência é garantida pela hipótese de E ser um fibrado vetorial sobre \mathcal{M}). Definimos então a aplicação

$$\varphi_p: \pi_{\widetilde{E}}^{-1}(\widetilde{U}_p) \subset \widetilde{E} \to \widetilde{U}_p \times \mathbb{R}^n$$
$$(q, u) \mapsto (q, \xi_{f(p), f(q)}^E(u))$$

Por construção, é evidente que $\pi_{\widetilde{E}} = \operatorname{pr}_1 \circ \varphi_p$ (onde tal igualdade faz sentido, claro). É claro também (novamente, por construção) que a inversa de φ_p é dada por

$$\varphi_p^{-1}: \widetilde{U}_p \times \mathbb{R}^n \to \pi_{\widetilde{E}}^{-1}(\widetilde{U}_p) \subset \widetilde{E}$$
$$(q, v) \mapsto (q, (\xi_{f(p), f(q)}^E)^{-1}(v))$$

Observação (O.9). Lembramos que uma função contínua $F: \mathcal{M}_1 \to \mathcal{M}_2$ entre duas variedades de dimensões $n \in m$, respectivamente, é dita diferenciável em $p \in \mathcal{M}_1$ se existe uma carta (φ, U) em torno de p e uma carta (ξ, V) em torno de p entre duas variedades de dimensões p entre duas variedades p

Portanto, também é óbvio por construção que φ_p e sua inversa são suaves: de fato, dado $(q, u) \in \pi_{\widetilde{E}}^{-1}(\widetilde{U}_p)$, a própria φ_p é uma carta em torno do ponto (q, u), e tomando uma carta x_q em torno de $q \in \mathcal{N}$ (que poderia sem perda de generalidade ser tomada como uma carta inicial em torno do próprio p, pois diferenciabilidade é uma propriedade local - e portanto pode ser verificada em abertos arbitrariamente pequenos), que induz a carta

$$\widetilde{U}_q \times \mathbb{R}^n \ni (w, v) \mapsto (x_q \times \mathrm{Id})(w, v) = (x_q(w), v) \in \mathbb{R}^{\dim(\mathcal{N})} \times \mathbb{R}^n$$

em torno de $\varphi_p(q)$, as composições

$$(x_q \times \mathrm{Id}) \circ \varphi_p \circ (\varphi_p)^{-1}$$

 $\varphi_p \circ (\varphi_p)^{-1} \circ (x_q \times \mathrm{Id})^{-1}$

são trivialmente diferenciáveis. Alternativamente e de maneira mais simples, poderíamos utilizar o fato de que as componentes de φ_p e sua inversa são trivialmente suaves. Concluímos então que φ_p é um difeomorfismo.

Finalmente, uma vez que para cada $q \in \widetilde{U}_p$, temos

$$\varphi_p|_{E_q} = \xi_{f(p),f(q)} : E_{f(q)} \to \mathbb{R}^n$$

segue que $\varphi_p|_{E_q}$ é um isomorfismo para cada $q \in \widetilde{U}_p$ (novamente, pela hipótese de E ser um fibrado vetorial sobre \mathcal{M} , que garante que $\xi_{f(p),f(q)}$ é um isomorfismo). Pelo que fizemos até aqui, está demonstrado que a projeção no primeiro fator $\pi_1: f^*(E) \to \mathcal{N}$ definie um fibrado vetorial com espaço total $f^*(E)$ e espaço base \mathcal{N} , como desejado.

Questão 12. Seja \mathcal{M} uma variedade diferenciável compacta, conexa e orientável. Mostre que se a dimensão de \mathcal{M} é impar, então a característica de Euler de \mathcal{M} é zero.

Solução: Como nesse caso os grupos de co-homologia de de Rham todos têm dimensão finita, segue da dualidade de Poincaré que

$$\dim(H^k_{\mathrm{dR}}(\mathcal{M})) = \dim(H^{n-k}_{\mathrm{dR}}(\mathcal{M})), \ \forall k \in \{0, \dots, n\}$$

onde denotamos $n = \dim(\mathcal{M})$. Segue da hipótese de $\dim(\mathcal{M})$ ser ímpar que existe $m \in \mathbb{Z}$ tal que n = 2m + 1. Chamemos $d_i \doteq \dim(H^i_{dR}(\mathcal{M}))$ e $a_i = (-1)^i d_i$ para cada $i \in \{0, \dots, n\}$. Sabemos que

$$\chi(\mathcal{M}) = \sum_{i=0}^{2m+1} (-1)^i \dim(H_{\mathrm{dR}}^i(\mathcal{M})) = \sum_{i=0}^{2m+1} a_i = \sum_{i=0}^m (a_i + a_{n-i})$$

Note que se $i \in \{0, \dots, m\}$ é par, temos $a_i = d_i = -a_{n-i}$, enquanto que se $i \in \{0, \dots, m\}$ é impar, temos $a_i = -d_i = -a_{n-i}$. Portanto $a_i + a_{n-i} = 0$ seja qual for $i \in \{0, \dots, m\}$. Concluímos então que

$$\chi(\mathcal{M}) = \sum_{i=0}^{m} (a_i + a_{n-i}) = \sum_{i=0}^{m} 0 = 0$$

MATHEUS A. R. M. HORÁCIO