Perturbing a non homogeneous stationary state of the Vlasov equation

J. Barré⁽¹⁾, D. Métivier⁽²⁾, Y.Y. Yamaguchi⁽³⁾

¹U. of Nice-Sophia Antipolis, France; visiting Imperial College ²U. of Nice-Sophia Antipolis, France ³Kyoto University, Japan

September 7, 2015

Outlook

General goal: explore the Vlasov phase space.

I have no theorem for what I am going to tell

→ heuristic asymptotic expansions backed by numerical simulations

I hope it may catch your interest nonetheless!

An astrophysical motivation

Radial Orbit Instability: take a family of spherically symmetric stationary state of the gravitational Vlasov-Poisson equation, depending on a parameter α .

Few low angular momentum stars (large α) \to stable Many low angular momentum stars (small α) \to unstable, real eigenvalue

What happens when the instability develops? Supposed to play an important role in determining the shape of some galaxies.

Palmer et al. (1990): detailed numerics and approximate computations. Ex:

$$f(E,L) \propto \frac{1}{J^2 + \alpha^2}$$

An astrophysical motivation, 2

Scenario according to Palmer et al.:

How general is it? Can we quantify this (what does "nearby" means)?

Vlasov equations: dynamics close to a stationary state

General problem: investigate the dynamics close to a stationary state

- Difficulties: even the linearized equation around a stable stationary state is not so easy... (eg: Landau damping)
- Close to homogeneous stationary states: tremendous recent mathematical progresses (Mouhot-Villani, Lin-Zeng).
- Close to non homogeneous stationary states (relevant setting in astrophysics!): even more difficult. There are powerful criteria for stablity in the gravitational case (Guo,Rein,Lin,Lemou, Méhats,Raphaël...).

Close to a homogeneous weakly unstable state

- Unstable eigenvector ψ ; unstable eigenvalue ε . Nonlinear dynamics?
- → A bifurcation problem; not a standard one.

• An old problem in plasma physics, many contributions (O'Neil, Crawford, Del-Castillo-Negrete.....), with an interesting story. Nice recent review by Balmforth, Morrison, Thiffeault (preprint 2013)

No theorem here to my knowledge → heuristics and numerics!

Homogeneous weakly unstable state - Phase space

Left: unperturbed homogeneous stationary state Right: perturbed stationary state \rightarrow resonance phenomenon

 \bullet J.D. Crawford: unstable manifold computations \to reduced 1D model with diverging coefficients.

Correct scaling in ε (not trivial!), but not much more.

 \bullet D. Del-Castillo-Negrete \to an infinite dimensional reduced model (Single Wave Model), which seems a satisfactory answer.

Messages: strong non linear effects, divergences in the unstable manifold expansion; universality of the Single Wave Model.

Close to a NON homogeneous weakly unstable state

Goal: address a similar question close to a NON homogeneous weakly unstable state.

Example: radial orbit instability (NB: real unstable eigenvalue).

- 3D gravitational Vlasov-Poisson: technical difficulties, even at linear level.
- ightarrow use simpler 1D models, for which explicit computations can be carried out, and numerics is easy.

Hope: the weakly non linear dynamics may be "universal"

Simplest possible model: cosine potential

• Periodic in space, $x \in [0, 2\pi]$; cosine interaction potential

$$\partial_t f + v \partial_x f - \partial_x \Phi \partial_v f = 0$$

$$\Phi(x) = -C \int f(y, v, t) \cos(x - y) dy = -CM \cos(x - \varphi)$$

M = "magnetization", the only parameter for the potential. Characteristics, particles trajectories = simple pendulum dynamics.

- Actually introduced in an astrophysical context! (Lynden-Bell, Pichon).
- Only model I know where linear computations in the NON homogeneous case are completely explicit.
- → will be helpful

Cosine potential: phase space, frequency

Real eigenvalue (zero frequency) \rightarrow no resonance; non linear effects may be weaker.

Hope: unstable manifold computations less singular than in the homogeneous case; \rightarrow more reliable

Unstable manifold computations,1

Expansion around the reference stationary state $f_0(x, v)$:

$$f(x, v, t) = A(t)\Psi(x, v) + R[A](x, v, t)$$

 $A\psi$ =linear part; R[A] = equation of the unstable manifold. Reduced dynamics:

$$\dot{A} = \varepsilon A + C(\varepsilon)A^2 + \dots$$

with $C(\varepsilon) \sim c/\varepsilon$. Explicit expression for c available (complicated).

 \to 1/ ε singularities appear; next order computation show they are weaker than in the homogeneous case

Unstable manifold computations,2

$$\dot{A} = \varepsilon A + C(\varepsilon)A^2 + \dots$$

Conclusions:

- ▶ There is an attractive (on the unstable manifold) stationary state with $A \propto \varepsilon^2$
- Asymmetry between the two directions on the unstable manifold: one direction goes to a "nearby stationary state", the other one goes far away, out of range for the present theory
- All this can be directly checked numerically

Numerics

- Standard semi-lagrangian method; uses GPU (cf Rocha Filho 2013)
- •1 spatial dimension \rightarrow possible to reach good resolution (1024×1024)
- ullet Order of magnitude of the unstable eigenvalue $arepsilon \simeq 0.05$

How close is the "nearby stationary state"?

Stationary state $f_0 \propto e^2 e^{-\alpha e}$; α_c : instability threshold.

ightarrow confirms the scaling $A(t
ightarrow\infty)\propto arepsilon^2$

Back to Radial Orbit Instability

NB: Radial Orbit Instability associated with a real eigenvalue \rightarrow consistent with the present theory

Some of the findings in Palmer et al. 1990 are recovered:

- Existence of a nearby stationary state, attractive at least for a restricted dynamics; we have a prediction for the *distance* of this state from the reference stationary state.
- Otherwise the system goes far away from the original reference stationary state

Conclusions

- Only heuristic computations; more numerical tests are needed
- What about more complicated models? 1D, 3D gravitational. Universality of this scenario?
- Exploring the case of complex eigenvalues...