12.3 习题

张志聪

2025年1月18日

12.3.1

 $\bullet \Rightarrow$

E 是关于 Y 相对闭的,那么 $F=Y\setminus E$ 是关于 Y 相对开的,由命题 12.3.4(a) 可知,存在 X 中的开集 $V\subseteq X$ 使得 $F=V\cap Y$ 是关于 Y 相对开的。

令 $K = X \setminus V$,于是可得 K 是关于 X 的闭集。现在我们来证明 $E = K \cap Y$ 。

任意 $x \in E$, 于是

$$x \in E$$

$$\implies x \in Y, x \notin F$$

$$\implies x \notin V$$

$$\implies x \in K$$

任意 $y \in K \cap Y$, 于是

$$y \in K \cap Y$$

 \Longrightarrow

 $y\in K, y\in Y$

 \Longrightarrow

 $y \notin V$

 \Longrightarrow

 $y \notin F$

 $y \in E$ 因为 $y \notin E, F = Y \setminus E, y \in F$ 存在矛盾

• =

假设存在某个闭集 K 使得 $E=K\cap Y$,那么 $V=X\setminus K$ 是关于 X 相对开的,于是 $V\cap Y$ 是关于 Y 相对开的,于是

$$Y \setminus (V \cap Y) = (Y \setminus V) \cup (Y \setminus Y) = Y \setminus V$$

是关于 Y 相对闭的。

接下来我们证明 $E = Y \setminus V$ 。

任意 $x \in E$, 我们有 $x \in K, x \in Y$, 所以 $x \notin V = X \setminus K$, 于是 $x \in Y \setminus V$, 所以 $E \subseteq (Y \setminus V)$ 。

任意 $x \in Y \setminus V$,我们有 $x \in Y, x \notin V$,于是 $x \in X, x \notin V$,所以 $x \in K$,因为 $V = X \setminus K$,于是 $x \in Y \cap K = E$,所以 $(Y \setminus V) \subseteq E$ 。