Herbst 12 Themennummer 3 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Berechnen Sie die (lokale) Lösung des Differentialgleichungssystems

$$\dot{y} = \begin{pmatrix} \frac{t}{1-t^2} & 1\\ 0 & \frac{2t}{1-t^2} \end{pmatrix} y$$

jeweils zum Anfangswert

a)
$$y(0) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

b)
$$y(2) = \begin{pmatrix} 0 \\ -\frac{1}{3} \end{pmatrix}$$
.

Lösungsvorschlag:

- a) Wir schreiben $y(t)=(y_1(t),y_2(t))$, dann erhalten wir das Anfangswertproblem $y_2'(t)=\frac{2t}{1-t^2}y_2(t),y_2(0)=2$; dessen Lösung ist $\frac{2}{1-t^2}$. Daraus ergibt sich das Anfangswertproblem $y_1'(t)=\frac{t}{1-t^2}y_1(t)+\frac{2}{1-t^2},y_1(0)=0$. Die homogene Lösung ist $u(t)=\frac{1}{\sqrt{1-t^2}}$; mittels $y_1(t)=c(t)u(t)$ erhalten wir $c'(t)=\frac{2}{\sqrt{1-t^2}},c(0)=0$, also $c(t)=2\arcsin(t)$. Daher lautet die Lösung, die auf (-1,1) existiert, $y(t)=(\frac{2\arcsin t}{\sqrt{1-t^2}},\frac{2}{1-t^2})$.
- b) Wir gehen wie bei a) vor. Hier erhalten wir $y_2(t) = \frac{1}{1-t^2}$. Wir folgern $y_1'(t) = \frac{t}{1-t^2}y_1(t) + \frac{1}{1-t^2}$. Die homogene Lösung lautet nun $u(t) = \frac{1}{\sqrt{t^2-1}}$ und aus $y_1(t) = c(t)u(t)$ folgt $c'(t) = -\frac{1}{\sqrt{t^2-1}}$, c(2) = 0. Das wiederum führt zu $c(t) = \operatorname{arcosh} 2 \operatorname{arcosh} t$. Daher lautet die Lösung, die auf $(1, \infty)$ existiert, $y(t) = \left(\frac{\operatorname{arcosh} 2 \operatorname{arcosh} t}{\sqrt{t^2-1}}, \frac{1}{1-t^2}\right)$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$