Basics of Probability

Eklavya Sharma

Definition 1 (Probability Space). A probability space is a triple (Ω, \mathcal{F}, P) where

- Ω is the sample space, also called the set of all outcomes.
- \mathcal{F} is a σ -algebra over Ω . \mathcal{F} is called the set of all events.
- $P: \mathcal{F} \mapsto [0,1]$ is a measure over (Ω, \mathcal{F}) (i.e., P is σ -additive) such that $P(\Omega) = 1$. P is called the probability measure.

Theorem 1 (Inclusion-Exclusion Principle).

$$\Pr\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} \Pr(A_{i_{1}} \cap \dots \cap A_{i_{k}}).$$

Theorem 2. For randvars X and Y, E(X + Y) = E(X) + E(Y).

Theorem 3. For independent randvars X_1, \ldots, X_n , $E(X_1, \ldots, X_n) = E(X_1) \ldots E(X_n)$.

Theorem 4. For a non-negative randvar X,

$$E(X) = \begin{cases} \sum_{i=0}^{\infty} \Pr(X > i) & \text{if } X \text{ is discrete} \\ \int_{0}^{\infty} \Pr(X > x) dx & \text{if } X \text{ is continuous} \end{cases}.$$

Definition 2.

$$Cov(X, Y) := E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

 $Var(X) := Cov(X, X) = E((X - E(X))^2) = E(X^2) - E(X)^2$

Theorem 5.

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{1 \leq i < j \leq n} \operatorname{Cov}(X_{i}, X_{j}).$$

Theorem 6. Let $MGF_t(X) := E(e^{tX})$. Then MGF_t uniquely determines X's CDF.

Theorem 7 (Change of variables). Let $X \in \mathbb{R}^n$ be a continuous random vector. Let $g : \mathbb{R}^n \mapsto \mathbb{R}^n$ be a bijective function having continuous partial derivatives. Then $f_{g(X)}(y) = f_X(x)|J_g(x)|^{-1}$, where $x := g^{-1}(y)$ and J_g is the Jacobian of g (i.e., $J_g(x)[i,j] := \partial g(x)_i/\partial x_j$).

Table 1: Discrete Probability Distributions

Distribution	$\Pr(X=x)$	E(X)	Var(X)	$\mathrm{MGF}_t(X)$
Bernouilli(p)	$p^x(1-p)^{1-x}$	p	p(1-p)	$pe^t + 1 - p$
Binomial(n, p)	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	$(pe^t + 1 - p)^n$
Geometric(p)	$(1-p)^{x-1}p$	1/p	$(1-p)/p^2$	$\frac{pe^t}{1 - (1 - p)e^t}$
$Poisson(\lambda)$	$e^{-\lambda}\lambda^x/x!$	λ	λ	$\exp(\lambda(e^t-1))$

Table 2: Continuous Probability Distributions

Distribution	$f_X(x)$	E(X)	Var(X)	$\mathrm{MGF}_t(X)$
Uniform (a, b)	$\frac{1(a \le x \le b)}{b - a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
Exponential(λ)	$\lambda e^{-\lambda x}$	$1/\lambda$	$1/\lambda^2$	$\lambda/(\lambda-t)$
$\operatorname{Gamma}(n,\lambda)$	$\frac{(\lambda x)^{n-1}}{(n-1)!}\lambda e^{-\lambda x}$	n/λ	n/λ^2	$\left(1-\frac{t}{\lambda}\right)^{-n}$
$\mathrm{Normal}(\mu,\sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2	$\exp(\mu t + \sigma^2 t^2/2)$

1 Probability Distributions

Theorem 8 (Poisson approximates Binomial). Let $\lambda \in \mathbb{R}_{\geq 0}$ and $k \in \mathbb{Z}_{\geq 0}$ be constants. Let $X_n \sim \operatorname{Binom}(n, \lambda/n)$. Then $\lim_{n \to \infty} \Pr(X_n = k) = e^{-\lambda} \lambda^k / k!$.

Theorem 9 (Scaling normal). $X \sim N(\mu, \sigma^2) \implies aX + b \sim N(a\mu + b, a^2\sigma^2)$.

1.1 Sum of Random Variables

Theorem 10 (Convolution).

$$f_{X+Y}(z) = \begin{cases} \sum_{y \in D} f_{X,Y}(z-y,y) = \sum_{x \in D} f_{X,Y}(x,z-x) & discrete \\ \int_{-\infty}^{\infty} f_{X,Y}(z-y,y) dy = \int_{-\infty}^{\infty} f_{X,Y}(x,z-x) dx & continuous \end{cases}.$$

Theorem 11. Let X_1, \ldots, X_n be independent. Then $\mathrm{MGF}_t\left(\sum_{i=1}^n X_i\right) = \prod_{i=1}^n \mathrm{MGF}_t(X_i)$.

Theorem 12. Let X_1, \ldots, X_n be independent. Let $Y := \sum_{i=1}^n X_i$. Then

- $X_i \sim \text{Bernouilli}(p) \implies Y \sim \text{Binomial}(n, p)$.
- $X_i \sim \text{Poisson}(\lambda_i) \implies Y \sim \text{Poisson}(\sum_{i=1}^n \lambda_i).$
- $X_i \sim \text{Exponential}(\lambda) \implies Y \sim \text{Gamma}(n, \lambda).$

2 Inequalities and Limits

Theorem 13 (Markov). For non-negative randvar X, $\Pr(X \ge a) \le E(X)/a$.

Theorem 14 (Chebyshev). $\Pr(|X - E(X)| \ge a) \le \frac{\operatorname{Var}(X)}{a^2}$.

Theorem 15 (One-sided Chebyshev).

$$\Pr(X - \mathcal{E}(X) \ge a) \le \frac{\operatorname{Var}(X)}{\operatorname{Var}(X) + a^2}$$
 $\Pr(X - \mathcal{E}(X) \le -a) \le \frac{\operatorname{Var}(X)}{\operatorname{Var}(X) + a^2}$

Theorem 16 (Strong law of large lumbers). Let X_1, X_2, \ldots be IID randvars having mean μ . Let $Y_n := \frac{1}{n} \sum_{i=1}^n X_i$. Let

$$E := \left\{ \omega \in \Omega : \lim_{n \to \infty} Y_n(\omega) = \mu \right\}.$$

Then Pr(E) = 1.

Definition 3. Let Z be a random variable and $S := [X_1, X_2, \ldots]$ be an infinite sequence of random variables. We say that S converges to Z if $\lim_{n\to\infty} F_{X_n}(x) = F_Z(x)$ for all $x \in \mathbb{R}$ where F_Z is continuous.

Theorem 17 (Central Limit Theorem). Let X_1, X_2, \ldots be IID randvars having mean μ and variance σ^2 . Let $Y_n := \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n X_i - \mu \right)$. Then $[Y_1, Y_2, \ldots]$ converges to $N(0, \sigma^2)$.

Theorem 18 (Jensen's inequality). If X is a random variable and f is a convex function, then $f(E(X)) \leq E(f(X))$.

Theorem 19 (Cauchy-Schwarz inequality). For random variables X and Y, $|E(XY)|^2 \le E(X^2) E(Y^2)$ and $|Cov(X,Y)|^2 \le Var(X) Var(Y)$.