Definizione:

È una tecnica formale per determinare la relazione ingressouscita di un circuito, in modo tale che:

- la variabile indipendente (frequenza o tempo)
- le variabili dipendenti (tensioni o correnti)
- gli elementi del circuito (tutti o alcuni)
 siano rappresentati da simboli.

Analisi Simbolica

$$\frac{V_o}{V_{in}} = \frac{1}{1 + (C_1 R_1 + C_2 R_2 + C_2 R_1) s + (C_2 C_1 R_1 R_2) s^2}$$

Simulazione numerica

Analisi Semisimbolica

$$\frac{V_o}{V_{in}} = \frac{2 \cdot 10^6}{1 + 4000s + 2 \cdot 10^6 s^2}$$

- È uno strumento complementare alla simulazione numerica
- Non costituisce un'alternativa ai simulatori numerici

Descrizione del circuito (netlist)

Funzione di rete In forma simbolica

Cenni Storici

- I primi programmi di analisi simbolica risalgono agli anni '70
- Erano in grado di analizzare circuiti di dimensioni molto limitate (10 – 15 nodi)
- Negli anni '90 si è verificato un notevole ritorno di interesse per i programmi di analisi simbolica
- Sono stati sviluppati e distribuiti numerosi programmi: SAPEC, SYNAP, SCYMBAL, ISAAC, SSPICE, SCAPP, GASCAP, ASAP,

<u>Motivazioni</u>

- Disponibilità di computers sempre più potenti ed economici
- Sviluppo di nuovi e più efficienti algoritmi di analisi simbolica
- Nuovi campi di applicazione
 - Progetto di circuiti integrati analogici

Tendenza attuale nel settore VLSI e ASIC

Integrazione su di un unico chip di sistemi completi per specifiche applicazioni

Integrazione sullo stesso chip sia della parte digitale che della parte analogica

Progetto e sviluppo di C.I.

Parte digitale: automazione pressoché completa

Parte analogica: viene svolto, in gran parte, in modo pressoché manuale;

richiede una notevole esperienza da

parte del progettista.

Obiettivi delle tecniche di Analisi Simbolica nel settore CAD per C.I. analogici

- Fornire al progettista uno strumento che gli consenta una maggiore comprensione del funzionamento del circuito
- Automatizzare alcune funzioni finora svolte manualmente e con metodi, prevalentemente, euristici
 - Dimensionamento del circuito, analisi di testabilità, centraggio di tolleranza,
- Le tecniche di analisi simbolica trovano utili applicazioni anche in settori diversi dal CAD per C.I.

Esempio

107

108

Esempio

$$Z_{out} = \frac{Hgm_1 Hgm_2 \left(G_2 + sC_1\right)}{Gce_1 Gbe_1 \left(Hgm_2 G_2 + sC_1 G_1\right)}$$

$$zero : \frac{1}{R_2 C_1} \qquad polo : \frac{R_1 Hgm_2}{R_2 C_1}$$

$$Z_{out}(0) = \frac{Hgm_1}{Gce_1 Gbe_1} \qquad Z_{out}(\infty) = R_1 \frac{Hgm_1 Hgm_2}{Gce_1 Gbe_1}$$

Esplorazione interattiva di nuove topologie circuitali

- Monte Carlo Statistical Simulation
- Large-change sensitivity analysis
- Yield estimation
- Design centering
- Fault diagnosis
-

Algoritmi per l'analisi simbolica

Metodi Algebrici

Metodi Topologici

Metodi Algebrici

- Formulazione delle equazioni della rete (MNA, Tableau, ...)
- Le f.d.r. sono ottenute tramite tecniche di manipolazione simbolica delle espressioni algebriche applicate a queste equazioni
 - Metodi tipo Cramer
 - Espansione simbolica di determinanti
 - Nonzero Permutation,
 - Sparse Laplace expansion,
 - ...

Metodi Topologici

- Rappresentazione del circuito mediante grafi con pesi di ramo simbolici
- Le f.d.r. sono ottenute tramite operazioni sui grafi
 - Tree enumeration
 - Signal Flowgraph
 - **–**

- Circuito RCgm (cioè circuito costituito solo da componenti con rappresentazione ammettenza e transconduttanze (CVT))
- Si costruiscono il grafo delle correnti ed il grafo delle tensioni.
- Il determinante della matrice delle ammettenze ai nodi è dato da:

$$\Delta = \sum_{\substack{alberi\,comuni\\ai\,due\,grafi}} \mathcal{E}_i \left(\begin{array}{c} \text{prodotto delle ammettenze presenti}\\ \text{sull'} i\text{-esimo albero comune} \end{array} \right)$$

$$\begin{split} \varepsilon_i &= \pm 1 \\ \varepsilon_i &= \Big(\det \mathbf{m} \big\{ \mathbf{A}_i \big\} \Big) \Big(\det \mathbf{m} \big\{ \mathbf{A}_v \big\} \Big) \\ \mathbf{m} \big\{ \mathbf{A}_i \big\} & e & \mathbf{m} \big\{ \mathbf{A}_v \big\} & \text{minori matrici incidenza relativi} \\ & \text{ai due alberi considerati} \end{split}$$

W. Mayeda, S. Seshu, Topological Formulas for Network Functions, Eng. Exper. Stat., Univ. Illinois, Bull. 446, Urbana, 1957

- I componenti bipolari producono, sui due grafi (G_i e G_v), un ramo tra gli stessi due nodi.
- La transconduttanza (g_m) produce, nel grafo G_v, un ramo tra i nodi di controllo e, nel grafo G_i, un ramo tra i nodi controllati. In entrambi i grafi il peso del ramo è il valore della transconduttanza.
- E' un metodo cancellation-free.
- Algoritmo per la determinazione degli alberi comuni:
 - MRT Algorithm (Schach 1983):

Partendo dalla lista dei rami costruisce, in parallelo, i due alberi, aggiungendo un ramo alla volta sui due grafi, testando la presenza di anelli.

S.R. Schach, Efficient algorithm for common spanning tree problem, Elect. Letters, v.19, n.9, Apr. 1983.

<u>Determinazione del Numeratore</u>

Consideriamo un circuito con *n* nodi, con un'eccitazione tra i nodi 1 e 0 ed uscita tra i nodi 2 ed 0.

Le f.d.r. del circuito possono essere scritte come:

$$Z_{in} = \frac{V_{1}}{I_{1}} = \frac{\Delta_{11}}{\Delta}$$

$$\frac{V_{o}}{I_{in}} = \frac{V_{2}}{I_{1}} = \frac{\Delta_{12}}{\Delta}$$

$$\frac{V_{o}}{V_{in}} = \frac{V_{2}}{V_{1}} = \frac{\Delta_{12}}{\Delta_{11}}$$

 Δ = det. matrice ammettenze ai nodi

$$\Delta_{ij} = ij - esimo$$
 cofattore

Circuito modificato:

Il determinante della matrice delle ammettenze per il circuito modificato è:

$$\Delta' = \Delta + y' \Delta_{11} + g'_m \Delta_{12}$$

Estensione a componenti con rappresentazione impedenza:

$$\Delta = \sum_{\substack{alberi\,comuni\\ai\,due\,grafi}} \mathcal{E}_i \left(\begin{array}{c} \text{prodotto delle ammettenze presenti}\\ \text{sull'} i\text{-esimo albero comune}\\ \textbf{e delle impedenze presenti sul coalbero} \end{array} \right)$$

Estensione a circuiti contenenti nullori e generatori controllati non di tipo transconduttanza.

ELEMENT	SYMBOL	I-GRAPH	V-GRAPH	CONSTITUTIVE EQUATIONS
vct	j	oj ok	pj ok oj' ok'	g V — I = O
VVT	j ο κ ν ₁ j'ο κ'	oj k≝k' oj'	oj ok	$\begin{bmatrix} \mu & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0$
сст	$ \begin{array}{c c} & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow$	oj ok	j≞j' ok • ok'	$\begin{bmatrix} \alpha & -1 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = 0$
сут	j	oj k≡k' oj'	j≡j' ok'	r I - V = 0
OPA M P	$ \begin{array}{c c} i & I_1 & I_2 \\ \downarrow V_1 & \downarrow & \downarrow \\ V_1 = 0 & i & I_1 = 0 \end{array} $	oj k≘k' oj'	j⊞j'ok jej'ok'	

Problema:

I due grafi hanno un diverso numero di nodi e di rami

Nullore:

Nullatore → i 2 nodi collassano in G_v

Noratore → i 2 nodi collassano in G_i

Modifica:

I 2 nodi restano distinti, nei due grafi, ma il ramo corrispondente <u>deve</u> far parte dell'albero.

L'algoritmo di ricerca degli alberi comuni parte forzando la presenza sull'albero dei rami nullatore per G_v e dei rami noratore per G_i.

 I generatori controllati (non transconduttanza) vengono sostituiti da circuiti equivalenti realizzati con nullori:

- Il massimo errore, nella formula semplificata, deve essere prefissabile dall'utente:
 - errore della risposta in ampiezza, della risposta in fase, di poli e zeri, o dei coefficienti della f.d.r.
- L'errore deve essere valutato su un intervallo di frequenze, sugli estremi dell'intervallo, o su un valore particolare della frequenza.

Tecniche principali

- Approssimazione dopo la generazione
 - L'algoritmo è applicato dopo che l'espressione completa della f.d.r. è stata generata.
- Approssimazione durante la generazione
 - L'approssimazione è applicata insieme all'algoritmo di generazione delle espressioni simboliche.
- Approssimazione prima della generazione
 - La semplificazione è applicata a livello di circuito, operando sul grafo o sulla formulazione matriciale.
 - E' applicata, insieme ad una delle altre due tecniche.

Approssimazione durante la generazione

- La generazione della f.d.r. simbolica è preceduta dal calcolo numerico (per esempio risolvendo il sistema MNA) dei valori del numeratore e del denominatore della f.d.r. alle frequenze prefissate (valori numerici esatti di riferimento).
- L'algoritmo Two-Graph tree enumeration viene modificato in modo tale da generare i vari termini in ordine decrescente di ampiezza.
- La generazione dei termini, per numeratore e denominatore, viene interrotta non appena i valori della f.d.r. simbolica alle frequenze prefissate sono affetti da un errore inferiore a quello stabilito.

Approssimazione durante la generazione

 In caso di approssimazione dei coefficienti della f.d.r., la generazione della f.d.r. simbolica è preceduta dal calcolo numerico dei valori dei coefficienti del numeratore e del denominatore della f.d.r., mediante la tecnica di interpolazione polinomiale sul cerchio di raggio unitario (valori esatti di riferimento per i coefficienti).