Examenul de bacalaureat național 2020 Proba E. c)

Matematică M mate-info BAREM DE EVALUARE SI DE NOTARE

Test 20

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	Cum $2-3i = \overline{2+3i}$, $A = z(2+3i) + \overline{z} \cdot \overline{2+3i} =$	2 p
	$=z(2+3i)+\overline{z(2+3i)}\in\mathbb{R}$, deoarece este suma dintre un număr complex și conjugatul său	3 p
2.	$f(3+\sqrt{2}) = (3+\sqrt{2})^2 - 6(3+\sqrt{2}) + 7 = 9 + 6\sqrt{2} + 2 - 18 - 6\sqrt{2} + 7 = 9 + 2 - 18 + 7 = 9 + 2 + 18 + 2 + 18 + 2 + 18 + 2 + 18 + 2 + 18 + 2 + 18 + 2 + 18 + 2 + 18 + 2 + 18 + 2 + 18 + 2 + 18 + 2 + 18 + 2 + 18 + 2 + 18 + 2 + $	3 p
	= 0, deci $f(\sqrt{2}) \cdot f(1+\sqrt{2}) \cdot f(2+\sqrt{2}) \cdot \dots \cdot f(10+\sqrt{2}) = 0$	2p
3.	$\lg(x^2 + x - 2) = \lg(10 \cdot \frac{x - 1}{2}) \Rightarrow x^2 + x - 2 = 5x - 5 \Rightarrow x^2 - 4x + 3 = 0$	3 p
	x = 1, care nu convine, sau $x = 3$, care convine	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Numerele naturale de două cifre care au produsul cifrelor mai mare decât 51 sunt 69, 96, 78, 87, 79, 97, 88, 89, 98 și 99, deci sunt 10 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{10}{90} = \frac{1}{9}$	1p
5.	AM = 5, $BM = 5$, $CM = 5$	3p
	$AM = BM = CM$, deci punctul M este centrul cercului circumscris $\triangle ABC$	2 p
6.	$\frac{AB}{\sin C} = \frac{AC}{\sin B} = \frac{BC}{\sin A} = 2R \Rightarrow \sin A + \sin B + \sin C = \frac{BC}{2R} + \frac{AC}{2R} + \frac{AB}{2R} \Rightarrow \frac{AB + AC + BC}{2R} = \frac{1}{rR}$	3p
	$p = \frac{1}{r}$ și, cum $r = \frac{S}{p}$, obținem $S = 1$	2p

SUBIECTUL al II-lea

(30 de puncte) $A(0) = \begin{pmatrix} 2 & 1 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 2 & 1 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & -1 \end{vmatrix} =$ 1.a) 2p =-2+0+0-0-(-4)-0=23p b) $\det(A(m)) = 2(1-m)(1+m)$, pentru orice număr real m **3p** Matricea A(m) este inversabilă $\Leftrightarrow \det(A(m)) \neq 0 \Leftrightarrow m \in \mathbb{R} \setminus \{-1,1\}$ 2p c) $m \in \mathbb{R} \setminus \{-1,1\} \Rightarrow \det(A(m)) \neq 0$, deci sistemul de ecuații are soluția $\Big| 1$, 3p $m \in \mathbb{R} \setminus \{-1,1\}$ $\frac{y_0}{z_0} = \frac{\frac{2}{m+1}}{2} = 1 = x_0, \text{ pentru orice } m \in \mathbb{R} \setminus \{-1,1\}$ 2p

2.a)	$2*(-2) = 2 \cdot \sqrt{(-2)^2 + 1} + (-2) \cdot \sqrt{2^2 + 1} =$	3p
	$=2\sqrt{5}-2\sqrt{5}=0$	2p
b)	$x*0 = x\sqrt{0^2 + 1} + 0 \cdot \sqrt{x^2 + 1} = x\sqrt{1} = x$, pentru orice număr real x	2p
	$0*x = 0 \cdot \sqrt{x^2 + 1} + x\sqrt{0^2 + 1} = x\sqrt{1} = x$, pentru orice număr real x , deci $e = 0$ este elementul neutru al legii de compoziție ,,*"	3р
c)	$f(x)*f(y) = f(x)\sqrt{f^2(y)+1} + f(y)\sqrt{f^2(x)+1} = \frac{e^{2x}-1}{2e^x}\sqrt{\left(\frac{e^{2y}-1}{2e^y}\right)^2+1} + \frac{e^{2y}-1}{2e^y}\sqrt{\left(\frac{e^{2x}-1}{2e^x}\right)^2+1} = \frac{e^{2x}-1}{2e^x}\sqrt{\left(\frac{e^{2x}-1}{2e^x}\right)^2+1} = \frac{e^{2x}-1}{2e^x}\left(\frac{e^{2x$	2p
	$= \frac{e^{2x} - 1}{2e^x} \sqrt{\left(\frac{e^{2y} + 1}{2e^y}\right)^2 + \frac{e^{2y} - 1}{2e^y} \sqrt{\left(\frac{e^{2x} + 1}{2e^x}\right)^2}} = \frac{e^{2x} - 1}{2e^x} \cdot \frac{e^{2y} + 1}{2e^y} + \frac{e^{2y} - 1}{2e^y} \cdot \frac{e^{2x} + 1}{2e^x} = \frac{e^{2(x+y)} - 1}{2e^{x+y}} = f(x+y),$ pentru orice numere reale x și y	3 p

SUBIECTUL al III-lea

(30 de puncte)

SOBII	BIECTUL al III-lea (30 de pui	
1.a)	$f'(x) = \frac{e^x \sqrt{x^2 + 1} - e^x \cdot \frac{x}{\sqrt{x^2 + 1}}}{x^2 + 1} =$	3 p
	$= \frac{e^x (x^2 + 1) - x e^x}{(x^2 + 1) \sqrt{x^2 + 1}} = \frac{e^x (x^2 - x + 1)}{(x^2 + 1) \sqrt{x^2 + 1}}, \ x \in \mathbb{R}$	2 p
b)	$\lim_{x \to 0} \frac{f(x) - f(-x)}{x} = \lim_{x \to 0} \frac{e^x - e^{-x}}{x\sqrt{x^2 + 1}} = \lim_{x \to 0} \left(\frac{1}{\sqrt{x^2 + 1}} \cdot \frac{e^x - e^{-x}}{x} \right)$	2 p
	Cum $\lim_{x\to 0} \frac{e^x - e^{-x}}{x} = \lim_{x\to 0} \frac{\left(e^x - e^{-x}\right)'}{x'} = \lim_{x\to 0} \frac{e^x + e^{-x}}{1} = 2$, obţinem $\lim_{x\to 0} \frac{f(x) - f(-x)}{x} = 2$ $f'(x) > 0$, pentru orice număr real $x \Rightarrow f$ este strict crescătoare	3 p
c)	$f'(x) > 0$, pentru orice număr real $x \Rightarrow f$ este strict crescătoare	2 p
	$\lim_{x \to -\infty} f(x) = 0, \lim_{x \to +\infty} f(x) = +\infty \text{ si } f \text{ este continuă, deci Im } f = (0, +\infty)$	3 p
2.a)	$\int_{0}^{2} f(x) dx = \int_{0}^{2} \frac{1}{x^{2} + 4} dx = \frac{1}{2} \operatorname{arctg} \frac{x}{2} \Big _{0}^{2} =$	3 p
	$= \frac{1}{2} \arctan \left(1 - \frac{1}{2} \arctan \left(0 - \frac{1}{2} \cdot \frac{\pi}{4} - \frac{\pi}{8}\right)\right)$	2 p
b)	$0 < \frac{1}{x^2 + 4} \le \frac{1}{4}, \text{ deci } 0 < \left(\frac{1}{x^2 + 4}\right)^n \le \frac{1}{4^n}, \text{ pentru orice } x \in [0, 1] \text{ si orice număr natural } n,$ $\text{deci } 0 \le \int_0^1 \left(\frac{1}{x^2 + 4}\right)^n dx \le \int_0^1 \frac{1}{4^n} dx, \text{ de unde obținem } 0 \le I_n \le \frac{1}{4^n}, \text{ pentru orice număr natural } n$	3 p
	Cum $\lim_{n \to +\infty} \frac{1}{4^n} = 0$, obținem $\lim_{n \to +\infty} I_n = 0$	2p
c)	$\int_{0}^{a} x f(x) dx = \int_{0}^{a} \frac{x}{x^{2} + 4} dx = \frac{1}{2} \int_{0}^{a} \frac{(x^{2} + 4)'}{x^{2} + 4} dx = \frac{1}{2} \ln(x^{2} + 4) \Big _{0}^{a} = \frac{1}{2} \ln(a^{2} + 4) - \frac{1}{2} \ln 4 = \frac{1}{2} \ln \frac{a^{2} + 4}{4}$	3 p
	$\frac{1}{2} \ln \frac{a^2 + 4}{4} = \frac{1}{2} \ln \frac{5}{4} \Leftrightarrow a^2 + 4 = 5$ şi, cum $a > 0$, obţinem $a = 1$	2p