10417-617 Deep Learning: Fall 2020

Andrej Risteski

Machine Learning Department

Lecture 13:

Variational methods

Graphical Models

Recall: graph contains a set of nodes connected by edges.

In a probabilistic graphical model, each node represents a random variable, links represent "probabilistic dependencies" between random variables.

Graph specifies how joint distribution over all random variables decomposes into a **product** of factors, each factor depending on a subset of the variables.

Two types of graphical models:

- **Bayesian networks**, also known as Directed Graphical Models (the links have a particular directionality indicated by the arrows)
- Markov Random Fields, also known as Undirected Graphical Models (the links do not carry arrows and have no directional significance).

Algorithmic pros/cons of latent-variable models (so far)

RBM's

Hard to draw samples

Easy to sample posterior distribution over latents

Directed models

S Easy to draw samples

Hard to sample posterior distribution over latents

Algorithmic approaches

When faced with a difficult to calculate probabilistic quantity (partition function, difficult posterior), there are two families of approaches:

MARKOV CHAIN MONTE CARLO

*Random walk w/ equilibrium distribution the one we are trying to sample from.

VARIATIONAL METHODS

Based on solving an optimization problem.

Part I: approximating posteriors via variational methods

Sampling posteriors in latentvariable directed models

Recall, sampling from the posterior distribution P(z|x) is **hard**:

$$P(Diseases, Symptoms) = P(Diseases) P(Symptoms|Diseases)$$

Latent

Data

Simple, explicit

By Bayes rule, $P(\text{Diseases}|\text{Symptoms}) \propto P(\text{Diseases},\text{Symptoms})$

Up to normalizing const, simple...

Complicated partition function:

 $\sum_{\text{Diseases}} P(\text{Diseases, Symptoms})$

Gibbs variational principle: Let p(z,x) be a joint distribution over latent variables and observables. Then,

$$p(z|x) = \underset{q(z|x): \text{distribution over } Z}{\operatorname{argmax}} \mathbb{E}_{q(z|x)} \log q(z|x) - \mathbb{E}_{q(z|x)} \log p(z,x)$$
$$-H(q(z|x)) - \mathbb{E}_{z \sim q} [\log p(z,x)]$$

In fact, for every q(z|x), we have

$$\log p(x) = -\left(-H(q(z|x)) - \mathbb{E}_{z \sim q}[\log p(z,x)]\right) + KL(q(z|x)) |p(z|x)|$$

Variational methods for partition functions

Gibbs variational principle: Let p(z,x) be a joint distribution over latent variables and observables. Then,

$$p(z|x) = \underset{q(z|x): \text{distribution over } Z}{\operatorname{argmax}} \mathbb{E}_{q(z|x)} \log q(z|x) - \mathbb{E}_{q(z|x)} \log p(z,x)$$

In fact, for every q(z|x), we have

$$\log p(x) = KL(q(z|x)) \left| p(z|x) \right| - \left(-H(q(z|x)) - \mathbb{E}_{z \sim q}[\log p(z,x)] \right)$$

Why:
$$0 \le KL(q(z|x)) | p(z|x) = \mathbb{E}_{q(z|x)} \log q(z|x) - \mathbb{E}_{q(z|x)} p(z|x)$$
$$= -H(q(z|x)) - \mathbb{E}_{q(z|x)} \log \frac{p(z,x)}{p(x)}$$
$$= -H(q(z|x)) - \mathbb{E}_{q(z|x)} \log p(z,x) + \log p(x)$$

Equality is attained if and only if KL(q(z|x)||p(z|x))=0 i. e. q(z|x)=p(z|x)

Gibbs variational principle: Let p(z, x) be a joint distribution over latent variables and observables. Then,

$$p(z|x) = \underset{q(z|x): \text{distribution over } Z}{\operatorname{argmax}} \mathbb{E}_{q(z|x)} \log q(z|x) - \mathbb{E}_{q(z|x)} \log p(z,x)$$

$$\log p(x) = -\left(-H(q(z|x)) - \mathbb{E}_{z \sim q}[\log p(z,x)]\right) + KL(q(z|x))|p(z|x)$$

Why is this useful?

(1) Instead of finding the argmax over **all** distributions over Z, we can maximize over some **simpler** parametric family Q, i.e. we can solve

$$\max_{q(z|x)\in\mathcal{Q}} \mathbb{E}_{q(z|x)} \log q(z|x) - \mathbb{E}_{q(z|x)} \log p(z,x)$$

The argmax of the above distribution solves $\min_{q(z|x) \in Q} KL(q(z|x)) |p(z|x)$.

In other words, we are finding the **projection** of p(z|x) onto Q.

Gibbs variational principle: Let p(z, x) be a joint distribution over latent variables and observables. Then,

$$p(z|x) = \underset{q(z|x): \text{distribution over } Z}{\operatorname{argmax}} \mathbb{E}_{q(z|x)} \log q(z|x) - \mathbb{E}_{q(z|x)} \log p(z,x)$$

$$\log p(x) = -\left(-H(q(z|x)) - \mathbb{E}_{z \sim q}[\log p(z,x)]\right) + KL(q(z|x)||p(z|x))$$

Gibbs variational principle: Let p(z, x) be a joint distribution over latent variables and observables. Then,

$$p(z|x) = \underset{q(z|x): \text{distribution over } Z}{\operatorname{argmax}} \mathbb{E}_{q(z|x)} \log q(z|x) - \mathbb{E}_{q(z|x)} \log p(z,x)$$

$$\log p(x) = -\left(-H(q(z|x)) - \mathbb{E}_{z \sim q}[p(z,x)]\right) + KL(q(z|x)||p(z|x))$$

Why is this useful?

(1) Instead of finding the argmax over *all* distributions over Z, we can maximize over some **simpler** parametric family Q, i.e. we can solve

$$\max_{q(z|x)\in\mathcal{Q}} \mathbb{E}_{q(z|x)} \log q(z|x) - \mathbb{E}_{q(z|x)} \log p(z,x)$$

There are several common families *Q* that are used for which the above optimization is solveable – we will see **mean-field** family today, **neural-net** parametrized families when we study variational autoencoders.

Gibbs variational principle: Let p(z, x) be a joint distribution over latent variables and observables. Then,

$$p(z|x) = \underset{q(z|x): \text{distribution over } Z}{\operatorname{argmax}} \mathbb{E}_{q(z|x)} \log q(z|x) - \mathbb{E}_{q(z|x)} \log p(z,x)$$

$$\log p(x) = -\left(-H(q(z|x)) - \mathbb{E}_{z \sim q}[p(z,x)]\right) + KL(q(z|x)||p(z|x))$$

Why is this useful?

(2) Provides a lower bound on $\log p(x)$ -- sometimes called the **ELBO (evidence lower bound)**, since

$$\log p(x) \ge \max_{q(z|x) \in Q} \mathbb{E}_{q(z|x)} \log q(z|x) - \mathbb{E}_{q(z|x)} \log p(z,x)$$

This will be useful when learning latent-variable directed models (stay tuned!).

Gibbs variational principle: Let p(z, x) be a joint distribution over latent variables and observables. Then,

$$p(z|x) = \underset{q(z|x): \text{distribution over } Z}{\operatorname{argmax}} \mathbb{E}_{q(z|x)} \log q(z|x) - \mathbb{E}_{q(z|x)} \log p(z,x)$$

$$\log p(x) = -\left(-H(q(z|x)) - \mathbb{E}_{z \sim q}[p(z,x)]\right) + KL(q(z|x)||p(z|x))$$

Solving the mean-field relaxation: coordinate ascent

Inspiration from physics: consider the case where Q contains product distributions, that is, for every $q(\cdot | x) \in Q$:

$$q(z|x) = \prod_{i=1}^{d} q_i(z_i|x).$$

Consider updating a **single** coordinate of the mean-field distribution, that is keep q_{-i} ($z_i|x$) fixed and optimize for q_i ($z_i|x$). We have:

$$\min_{\boldsymbol{q}(\boldsymbol{Z}|\boldsymbol{X}) \in \mathcal{Q}} KL(q(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z}|\boldsymbol{x})) = \min_{\boldsymbol{q}(\boldsymbol{Z}|\boldsymbol{X}) \in \mathcal{Q}} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \log q(\boldsymbol{z}|\boldsymbol{x}) - \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \log p(\boldsymbol{z},\boldsymbol{x})$$

$$= \min_{\boldsymbol{q}(\boldsymbol{Z}|\boldsymbol{X}) \in \mathcal{Q}} \sum_{i} \mathbb{E}_{q_{i}(z_{i}|\boldsymbol{x})} \log q_{i}(z_{i}|\boldsymbol{x}) - \mathbb{E}_{q_{i}(z_{i}|\boldsymbol{x})} \left[\mathbb{E}_{q_{-i}(\boldsymbol{z}_{-i}|\boldsymbol{x})} \log p(\boldsymbol{z}_{i},\boldsymbol{z}_{-i},\boldsymbol{x}) \right]$$

$$= \min_{\boldsymbol{q}(\boldsymbol{z}|\boldsymbol{X}) \in \mathcal{Q}} \mathbb{E}_{q_{i}(z_{i}|\boldsymbol{x})} \log q_{i}(z_{i}|\boldsymbol{x}) - \mathbb{E}_{q_{i}(z_{i}|\boldsymbol{x})} [\log \tilde{p}(z_{i},\boldsymbol{x})] + C$$

Renormalize to make it a distribution

Solving the mean-field relaxation: coordinate ascent

Inspiration from physics: consider the case where Q contains product distributions, that is, for every $q(\cdot | x) \in Q$:

$$q(z|x) = \prod_{i=1}^{d} q_i(z_i|x).$$

Consider updating a **single** coordinate of the mean-field distribution, that is keep $q_{-i}(z_i|x)$ fixed, and optimize for $q_i(z_i|x)$. We have:

$$\min_{\boldsymbol{q}(\boldsymbol{z}|\boldsymbol{x}) \in \mathcal{Q}} KL(\boldsymbol{q}(\boldsymbol{z}|\boldsymbol{x})| \left| p(\boldsymbol{z}|\boldsymbol{x}) \right| = \min_{\boldsymbol{q}(\boldsymbol{z}|\boldsymbol{x}) \in \mathcal{Q}} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \log q(\boldsymbol{z}|\boldsymbol{x}) - \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \log p(\boldsymbol{z},\boldsymbol{x})$$

$$= \min_{q(\boldsymbol{z}|\boldsymbol{x}) \in \mathcal{Q}} KL(q_i(\boldsymbol{z}_i|\boldsymbol{x})||\tilde{p}(\boldsymbol{z}_i,\boldsymbol{x})) + C$$

Optimum is $q_i(z_i|x) = \tilde{p}(z_i,x)$ $= \frac{\mathbb{E}_{q_{-i}(Z_{-i}|x)} \log p(z_i, z_{-i}, x)}{\int_{Z_i} \mathbb{E}_{q_{-i}(Z_{-i}|x)} \log p(z_i, z_{-i}, x)}$

Coordinate ascent: iterate above updates!

A tale of two KL divergences

Approximation is too compact.

Approximation is too spread.

The "variational" KL divergence

$$\mathrm{KL}(q||p) = -\int q(\mathbf{Z}) \ln \frac{p(\mathbf{Z})}{q(\mathbf{Z})} d\mathbf{Z}.$$

There is a large positive contribution to the KL divergence from regions of Z space in which:

- p(Z) is near zero
- unless q(Z) is also close to zero.

Minimizing KL(q||p) leads to distributions q(Z) that avoid regions in which p(Z) is small.

The "maximum likelihood" KL divergence

$$\mathrm{KL}(p||q) = -\int p(\mathbf{Z}) \ln \frac{q(\mathbf{Z})}{p(\mathbf{Z})} \mathrm{d}\mathbf{Z}.$$

There is a large positive contribution to the KL divergence from regions of Z space in which:

- -q(Z) is near zero,
- unless p(Z) is also close to zero.

Minimizing KL(p||q) leads to distributions q(Z) that are nonzero in regions where p(Z) is nonzero.

What happens when distribution class for Q is not rich enough?

Blue contours show bimodal distribution, red contours single Gaussian distribution that best approximates it.

KL(q||p) will tend to find a single mode, whereas KL(p||q) will average across all of the modes.

Part II: learning latent-variable directed models

Learning latent-variable directed graphical models

How should we try to learn the parameters of a graphical model?

The most obvious strategy: maximum likelihood estimation

Given data $x_1, x_2, ..., x_n$, solve the optimization problem

$$\max_{\theta \in \Theta} \sum_{i=1}^{n} \log p(x_i)$$

Latent variables: we will use the Gibbs variational principle again!

$$\log_{\theta} p(x) = \max_{q(z|x): \text{ distribution over } \mathcal{Z}} H(q(z|x)) + \mathbb{E}_{q(z|x)}[\log p_{\theta}(x,z)]$$

Hence, MLE objective can be written as double maximization:

$$\max_{\theta \in \Theta} \max_{\{q_i(z|x_i)\}} \sum_{i=1}^n H(q_i(z|x_i)) + \mathbb{E}_{q_i(z|x_i)}[\log p_{\theta}(x_i, z)]$$

Expectation-maximization/variational inference

The canonical algorithm for learning a single-layer latent-variable Bayesian network is an iterative algorithm as follows.

Consider the max-likelihood objective, rewritten as in the previous slide:

$$\max_{\theta \in \Theta} \max_{\{q_i(z|x_i) \in \mathbf{Q}\}} \sum_{i=1}^n H(q_i(z|x_i)) + \mathbb{E}_{q_i(z|x_i)}[\log p_{\theta}(x_i, z)]$$

Algorithm maintains iterates θ^t , $\{q_i^t(z|x_i)\}$, and updates them iteratively

(1) Expectation (E)-step:

Keep θ^t fixed, set $\{q_i^{t+1}(z|x_i) \in Q\}$, s.t. they maximize the objective above.

(2) Maximization (M)-step:

Keep $\{q_i^t(z|x_i)\}$ fixed, set θ^{t+1} s.t. it maximizes the objective above.

Clearly, every step cannot make the objective worse!

Does *not* mean it converges to global optimum – could, e.g. get stuck in a local minimum.

Expectation-maximization/variational inference

The canonical algorithm for learning a single-layer latent-variable Bayesian network is an iterative algorithm as follows.

Consider the max-likelihood objective, rewritten as in the previous slide: $\max_{\theta \in \Theta} \max_{q_i(z|x_i)} \sum_{i=1}^n H(q_i(z|x_i)) + \mathbb{E}_{q_i(z|x_i)}[\log p_\theta(x_i,z)]$

Algorithm maintains iterates θ^t , $q_i^t(z|x_i)$, and updates them iteratively

(1) Expectation step:

Keep θ^t and set $q_i^{t+1}(z|x_i)$, s.t. they maximize the objective above.

If the class is infinitely rich, the optimum is $q_i^{t+1}(z|x_i) = p_{\theta^t}(z|x_i)$

This is called **expectation-maximization (EM)**. If class is not infinitely rich, it's called **variational inference**.

Example

Mixture of spherical Gaussians

Consider a mixture of K Gaussians with unknown means $p = \sum_{i=1}^{K} \frac{1}{K} \mathcal{N}(\mu_i, I_d)$

Let's try to calculate the E and M steps.

E-step: the optimal $q_i^{t+1}(z|x_i)$ is $p_{\theta^t}(z|x_i)$. Can we calculate this?

By Bayes rule,
$$p_{\theta^t}(z = k|x_i) \propto p(x_i|z = k) \propto e^{-\left||x_i - \mu_k^t|\right|^2}$$

Writing out the normalizing constant, we have

$$p_{\theta^t}(z = k|x_i) = \frac{e^{-||x_i - \mu_k^t||^2}}{\sum_{k'} e^{-||x_i - \mu_{k'}^t||^2}}$$

"Soft" version of assigning point to nearest cluster

Example

Mixture of spherical Gaussians

Consider a mixture of K Gaussians with unknown means $p = \sum_{i=1}^{K} \frac{1}{K} \mathcal{N}(\mu_i, I_d)$

Let's try to calculate the E and M steps.

M-step: given a quess $q_i^t(z|x_i)$, we can rewrite the maximization for θ as:

$$\max_{\theta \in \Theta} \sum_{i=1}^{n} H(q_i^t(z|x_i)) + \mathbb{E}_{q_i^t(z|x_i)}[\log p_{\theta}(x_i, z)]$$

$$= \mathbb{E}_{q_i^t(z|x_i)}[\log p_{\theta}(x|z)]$$

$$= \mathbb{E}_{q_i^t(z|x_i)}[\log p_{\theta}(x|z)]$$

$$\mathbb{E}_{q_i^t(z|x_i)}[\log p_{\theta}(x|z)]$$

Example

Mixture of spherical Gaussians

Consider a mixture of K Gaussians with unknown means $p = \sum_{i=1}^{K} \frac{1}{\nu} \mathcal{N}(\mu_i, I_d)$

Let's try to calculate the E and M steps.

M-step: given a quess $q_i^t(z|x_i)$, we can rewrite the maximization for θ as:

$$\max_{\theta} \mathbb{E}_{q_i^t(z|x_i)}[\log p_{\theta}(x|z)] = \max_{\theta} -\sum_{i=1}^n \sum_{k=1}^K q_i^t(z=k|x_i)||x_i - \mu_k||^2$$

Setting the derivative wrt to μ_k to 0, we have:

$$\mu_k^{t+1} = \sum_{i=1}^n \frac{e^{-\left||x_i - \mu_k^t|\right|^2}}{\sum_{k'} e^{-\left||x_i - \mu_{k'}^t|\right|^2}} x_i$$
Average points, weighing nearby points more

Part III: Deep Belief Networks (DBNs)

- > it is a generative model that mixes undirected and directed connections between variables
- > top 2 layers' distribution $p(\mathbf{h}^{(2)}, \mathbf{h}^{(3)})$ is an RBM!
- other layers form a Bayesian network with conditional distributions:

$$p(h_j^{(1)} = 1 | \mathbf{h}^{(2)}) = \text{sigm}(\mathbf{b}^{(1)} + \mathbf{W}^{(2)}^{\top} \mathbf{h}^{(2)})$$

$$p(x_i = 1 | \mathbf{h}^{(1)}) = \text{sigm}(\mathbf{b}^{(0)} + \mathbf{W}^{(1)} \mathbf{h}^{(1)})$$

The joint distribution of a DBN is as follows

$$p(\mathbf{x}, \mathbf{h}^{(1)}, \mathbf{h}^{(2)}, \mathbf{h}^{(3)}) = p(\mathbf{h}^{(2)}, \mathbf{h}^{(3)}) p(\mathbf{h}^{(1)}|\mathbf{h}^{(2)}) p(\mathbf{x}|\mathbf{h}^{(1)})$$

where

$$p(\mathbf{h}^{(2)}, \mathbf{h}^{(3)}) = \exp\left(\mathbf{h}^{(2)}^{\top} \mathbf{W}^{(3)} \mathbf{h}^{(3)} + \mathbf{b}^{(2)}^{\top} \mathbf{h}^{(2)} + \mathbf{b}^{(3)}^{\top} \mathbf{h}^{(3)}\right) / Z$$

$$p(\mathbf{h}^{(1)}|\mathbf{h}^{(2)}) = \prod_{j} p(h_j^{(1)}|\mathbf{h}^{(2)})$$

$$p(\mathbf{x}|\mathbf{h}^{(1)}) = \prod_i p(x_i|\mathbf{h}^{(1)})$$

(I realize this looks odd.)

 $Q(h^t|h^{t-1})$, $P(h^{t-1}|h^t)$ are product distributions, s.t.:

$$Q\left((h^t)_j = 1 \middle| h^{t-1}\right) = \frac{1}{1 + \exp(W_{t, h^{t-1}})} \quad P\left((h^{t-1})_j = 1 \middle| h^t\right) = \frac{1}{1 + \exp((h^t)^T W_{., t})}$$

 Learn an RBM with an input layer v=x and a hidden layer h.

- Learn an RBM with an input layer v=x and a hidden layer h.
- Treat inferred values $Q(\mathbf{h}^1|\mathbf{v}) = P(\mathbf{h}^1|\mathbf{v})$ as the data for training 2nd-layer RBM.

• Learn and freeze 2nd layer RBM.

 Learn an RBM with an input layer v=x and a hidden layer h.

Unsupervised Feature Learning.

• Treat inferred values $Q(\mathbf{h}^1|\mathbf{v}) = P(\mathbf{h}^1|\mathbf{v})$ as the data for training 2nd-layer RBM.

Learn and freeze 2nd layer RBM.

Proceed to the next layer.

Where does this training come from??

Let's write the marginal p(x) in terms of the Gibbs variational principle.

Recall, we have:

For every distribution $q(\mathbf{h}^{(1)}|\mathbf{x})$:

$$\log p(\mathbf{x}) \geq \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{h}^{(1)})$$
$$-\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

Equality is attained if
$$q(\mathbf{h}^{(1)}|\mathbf{x}) = p(\mathbf{h}^{(1)}|\mathbf{x})$$
.

Let's write the marginal p(x) in terms of the Gibbs variational principle.

Recall, we have:

For every distribution
$$q(\mathbf{h}^{(1)}|\mathbf{x})$$
:

$$\log p(\mathbf{x}) \geq \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{h}^{(1)})$$
$$-\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

The idea will be to add layers, s.t. we improve the variational bound (i.e. the right-hand side)

adding 2nd layer means untying the parameters

$$\log p(\mathbf{x}) \geq \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \left(\log p(\mathbf{x}|\mathbf{h}^{(1)}) + \log p(\mathbf{h}^{(1)})\right)$$
$$-\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

- When adding a second layer, we model $\,p(\mathbf{h}^{(1)})\,$ using a separate set of parameters
 - \succ they are the parameters of the RBM involving $\,{f h}^{(1)}$ and $\,{f h}^{(2)}$
 - $ho p(\mathbf{h}^{(1)})$ is now the marginalization of the second hidden layer

$$p(\mathbf{h}^{(1)}) = \sum_{\mathbf{h}^{(2)}} p(\mathbf{h}^{(1)}, \mathbf{h}^{(2)})$$

adding 2nd layer means untying the parameters

$$\log p(\mathbf{x}) \geq \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \left(\log p(\mathbf{x}|\mathbf{h}^{(1)}) + \log p(\mathbf{h}^{(1)})\right)$$
$$-\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

we can train the parameters of bound. This is equivalent to m terms are constant:

Layerwise training improves variational lower bound

$$-\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log p(\mathbf{h}^{(1)})$$

 \succ this is like training an RBM on data ${\sf generated}$ from $\,q({f h}^{(1)}|{f x})$!

Stacking the layers

This is where the RBM stacking procedure comes from:

idea: improve prior on last layer by adding another hidden layer

Improvement at initialization: weight-tied DBN is equivalent to a RBM

Observation: a two-layer DBN with appropriately tied weights is

equivalent to an RBM:

Formal proof is a little annoying. Intuition:

- Gibbs sampling converges to model distribution in first case.
- Gibbs sampling on top two layers, plus one last sample of x given $h^{(1)}$ converges to model distribution in second.
- The steps in these two random walks are *exactly* the same.

Improvement at initialization: weight-tied DBN is equivalent to a RBM

adding 2nd layer means untying the parameters

$$\log p(\mathbf{x}) \geq \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \left(\log p(\mathbf{x}|\mathbf{h}^{(1)}) + \log p(\mathbf{h}^{(1)})\right)$$
$$-\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

- \succ for $q(\mathbf{h}^{(1)}|\mathbf{x})$ we use **the posterior of the first layer RBM**.
- by initializing the weights of the second layer RBM as the transpose of the first layer weights, the bound is initially tight! (As we showed, a 2layer DBN with tied weights is equivalent to a 1-layer RBM)
- Need not keep being tight: as $p(\mathbf{h}^{(1)})$ changes, so does $p(\mathbf{h}^{(1)}|\mathbf{x})$, and so does the KL to $q(\mathbf{h}^{(1)}|\mathbf{x})$

Deep Belief Networks

This process of adding layers can be repeated recursively

we obtain the greedy layer-wise pre-training procedure for neural networks

We now see that this procedure corresponds to maximizing a bound on the likelihood of the data in a DBN

- ightharpoonup in theory, if our approximation $q(\mathbf{h}^{(1)}|\mathbf{x})$ is very far from the true posterior, the bound might be very loose
- this only means we might not be improving the true likelihood
- we might still be extracting better features!

Fine-tuning is done by the Up-Down algorithm

A fast learning algorithm for deep belief nets. Hinton, Teh, Osindero,
 2006.

Sampling from DBNs

To sample from the DBN model:

$$P(\mathbf{v}, \mathbf{h}^1, \mathbf{h}^2, \mathbf{h}^3) = P(\mathbf{v}|\mathbf{h}^1)P(\mathbf{h}^1|\mathbf{h}^2)P(\mathbf{h}^2, \mathbf{h}^3)$$

- Sample h² using alternating Gibbs sampling from RBM.
- Sample lower layers using sigmoid belief network.

Learned Features

 1^{st} -layer features

 2^{nd} -layer features

Learning Part-based Representation

Convolutional DBN

Groups of parts.

Object Parts

Trained on face images.

Learning Part-based Representation

Learning Part-based Representation

Groups of parts.

Class-specific object parts

Trained from multiple classes (cars, faces, motorbikes, airplanes).