Při podpisu neznámé zprávy s využitím schématu RSASSA-PKCS1-v1_5 (viz PKCS#1) došlo k chybě při výpočtu podepisovací transformace RSASP1 (viz PKCS#1). K výpočtu byla použita Čínská věta o zbytku, chyba zasáhla právě jen parciální hodnotu podpisu modulo p, tj. hodnotu označovanou dle popisu v PKCS#1 jako s_1. Signatář později zjistil, že vypočtený podpis je neplatný, a nechal tutéž zprávu podepsat znovu. Nyní už vše proběhlo bez chyb. Nalezněte soukromý klíč signatáře, máte-li dán veřejný modul n, veřejný exponent e, hodnotu chybného podpisu f a hodnotu správného podpisu s:

In[43]:= **n =**

 $143\,439\,281\,935\,793\,709\,829\,883\,511\,119\,512\,297\,318\,347\,597\,781\,777\,879\,206\,016\,778\,171\,534\,720\,301\,^{\cdot}.$ $126\,138\,047\,071\,671\,599\,318\,397\,710\,025\,065\,932\,294\,231\,888\,139\,238\,578\,615\,677\,641\,709\,345\,935\,^{\cdot}.$ $975\,961\,129\,727\,859\,596\,609\,343\,289\,124\,965\,796\,285\,308\,717\,120\,051\,606\,006\,794\,321\,837\,387\,662\,^{\cdot}.$ $808\,710\,892\,762\,405\,359\,764\,253\,183\,416\,603\,706\,120\,250\,336\,984\,377\,143\,647\,112\,873\,468\,386\,573\,^{\cdot}.$ $559\,510\,267\,301\,025\,317$

 $e = 2^16 + 1$

f =

71 251 176 378 222 026 591 825 270 924 710 333 598 755 025 600 583 408 398 417 673 044 948 036 838 \div 605 203 199 365 453 395 684 541 835 766 338 661 162 672 639 861 182 656 220 165 947 252 131 425 \div 810 938 132 667 168 370 928 457 399 579 218 032 946 166 229 495 635 857 434 396 515 864 365 919 \div 188 222 925 205 058 641 667 971 268 925 279 334 818 704 393 729 730 175 259 569 121 845 705 737 \div 661 313 402 980 864 137

s =

 $15\,223\,702\,582\,445\,980\,286\,808\,606\,927\,407\,147\,872\,606\,816\,408\,515\,094\,671\,195\,941\,573\,747\,873\,776\,\overset{\cdot}{\cdot}.$ $542\,763\,859\,988\,851\,309\,420\,835\,589\,410\,131\,772\,963\,096\,153\,108\,282\,509\,175\,871\,696\,342\,163\,196\,\overset{\cdot}{\cdot}.$ $550\,032\,899\,522\,429\,025\,717\,395\,838\,274\,305\,099\,296\,786\,258\,069\,032\,517\,578\,628\,430\,962\,210\,476\,\overset{\cdot}{\cdot}.$ $221\,001\,719\,559\,330\,646\,207\,213\,315\,978\,859\,400\,699\,157\,086\,660\,962\,631\,721\,005\,185\,511\,377\,251\,\overset{\cdot}{\cdot}.$ $893\,703\,145\,230\,857\,109$

Out[44]= 65537

 $\text{Out} \text{(}^{145}\text{)=} 71\,251\,176\,378\,222\,026\,591\,825\,270\,924\,710\,333\,598\,755\,025\,600\,583\,408\,398\,417\,673\,044\,948\,036\,838\, \frac{1}{2}\, \frac{1$ $605\,203\,199\,365\,453\,395\,684\,541\,835\,766\,338\,661\,162\,672\,639\,861\,182\,656\,220\,165\,947\,252\,131\,425\,810\,^{\odot}$ $938\,132\,667\,168\,370\,928\,457\,399\,579\,218\,032\,946\,166\,229\,495\,635\,857\,434\,396\,515\,864\,365\,919\,188\,222\,\frac{1}{12}$ $925\ 205\ 058\ 641\ 667\ 971\ 268\ 925\ 279\ 334\ 818\ 704\ 393\ 729\ 730\ 175\ 259\ 569\ 121\ 845\ 705\ 737\ 661\ 313\ 402\ \cdot$ 980 864 137

 $\mathsf{Out}[46] = \ 15\ 223\ 702\ 582\ 445\ 980\ 286\ 808\ 606\ 927\ 407\ 147\ 872\ 606\ 816\ 408\ 515\ 094\ 671\ 195\ 941\ 573\ 747\ 873\ 776\ \cdot.$ $542\,763\,859\,988\,851\,309\,420\,835\,589\,410\,131\,772\,963\,096\,153\,108\,282\,509\,175\,871\,696\,342\,163\,196\,550\,^{\circ}.$ $032\,899\,522\,429\,025\,717\,395\,838\,274\,305\,099\,296\,786\,258\,069\,032\,517\,578\,628\,430\,962\,210\,476\,221\,001\,^{\div}$ 719559330646207213315978859400699157086660962631721005185511377251893703145230 857 109

V dokumentaci PKCS1 si v kapitole popisující RSASP1 můžeme najít následující vztahy:

```
s1 = m^d p \mod p
s2 = m^d q \mod q
h = (s1 - s2) * ginv mod p
s = s2 + a * h
s = s2 + ((s1 - s2) * qinv mod p) * q
f = s2 + ((f1 - s2) * qinv mod p) * q,
```

z čehož můžeme odvodit, že s-f = ((s1 - f1) * qinv mod p) * q. Vidíme, že výraz (s-f) by měl být dělitelný hodnotou q. Stejně tak modul n, který je definován jako p*q, by měl být dělitelný hodnotou q. GCD(s-f, n) by měl vrátit hodnotu q:

```
ln[47]:= q = GCD[s - f, n]
```

 $\mathsf{Out}[47] = \ 11\ 145\ 675\ 583\ 776\ 161\ 284\ 741\ 912\ 926\ 727\ 745\ 648\ 703\ 060\ 011\ 516\ 338\ 086\ 549\ 608\ 716\ 744\ 154\ 655\ \ddots$ $738\,423\,874\,335\,992\,638\,362\,226\,875\,566\,767\,011\,901\,243\,344\,195\,332\,769\,827\,451\,303\,171\,056\,161\,026\,\frac{1}{12}$ 441313

Další složky soukromého klíče můžeme spočítat následujícím způsobem:

```
ln[48] = p = n / q
        phiN = (p-1)*(q-1);
        numberInversion[number_, modul_] := ExtendedGCD[number, modul][[2, 1]];
       d = numberInversion[e, phiN];
        dp = Mod[d, p-1]
        dq = Mod[d, q-1]
       qinv = numberInversion[q, p]
\mathsf{Out}[48] = \ 12\,869\,500\,898\,140\,837\,397\,706\,923\,413\,079\,199\,173\,469\,904\,660\,586\,509\,801\,920\,841\,064\,317\,993\,770^{\,\circ}.
         622\,112\,121\,326\,933\,954\,966\,860\,024\,587\,236\,575\,663\,939\,092\,182\,686\,452\,690\,201\,655\,411\,641\,582\,708\,\%
         669 509
\mathsf{Out}[52] = \ 11\,803\,604\,520\,901\,896\,564\,364\,640\,728\,699\,476\,373\,927\,743\,095\,399\,461\,642\,792\,008\,110\,458\,066\,245 \ \ .
         911\,844\,263\,558\,610\,755\,742\,603\,250\,345\,823\,020\,989\,421\,470\,192\,549\,246\,757\,638\,147\,994\,848\,160\,505\,
\texttt{Out} \texttt{[53]} = 8848581726717330235517672911144004243435314591745045861775426728904258155516^{\circ}.
         276\,213\,157\,478\,935\,166\,191\,072\,764\,070\,488\,872\,265\,913\,888\,080\,992\,631\,983\,327\,036\,484\,002\,291\,922\, .
         753
 \texttt{Out} \texttt{[54]} = 5\,026\,835\,150\,067\,583\,972\,020\,801\,402\,186\,043\,934\,621\,540\,841\,569\,760\,878\,519\,113\,653\,182\,701\,347\,598\, \overset{.}{\cdot} . 
         328\,017\,405\,215\,298\,044\,810\,415\,161\,553\,104\,166\,360\,627\,379\,921\,882\,593\,749\,815\,857\,032\,934\,461\,149\, .
         556
```

Předpokládejme, že šestice SK = (n,p,q,dp,dq,qinv) by mohla představovat soukromý klíč signatáře. Nyní tento výsledek bude třeba ověřit. Nejprve můžeme ověřit základní vlastnosti RSA-CRT:

```
In[55] := Mod[e * dp, p - 1] == 1
       Mod[e * dq, q - 1] == 1
Out[55]= True
Out[56]= True
```

Dále ověřme, že platí principy v dokumentaci PKCS1 v kapitolách RSAVP1 a RSASP1. Dle kapitoly RSAVP1 získáme šifrovanou reprezentaci zprávy m následujícím způsobem:

```
m = s^e \mod n.
```

V kapitole RSASP1 jsou pak uvedeny vztahy, pomocí kterých lze vypočítat podpis

k dané šifrované reprezentaci zprávy m a soukromému klíči SK:

```
In[57]:= \mathbf{m} = Mod[s^e, n];
      s1 = PowerMod[m, dp, p];
       s2 = PowerMod[m, dq, q];
       h = Mod[(s1 - s2) * qinv, p];
      s == s2 + q * h
Out[61]= True
```

Šestice SK = (n,p,q,dp,dq,qinv) tedy tvoří soukromý klíč signatáře.