Matchings I: Definitions COMS20010 2020, Video 5-1

John Lapinskas, University of Bristol

Definition by example

Suppose I'm trying to schedule a sequence of meetings with my tutees. I can only see one of them at once, and each of them can make a different set of times:

Tutee	Available times
Aisha	2:00, 3:00, 3:30
Bob	2:30
Cara	2:00, 2:30, 4:00
Dale	2:00, 3:30, 4:00
Erica	2:00, 2:30, 3:00, 3:30, 4:00

Who should I see when?

We can represent this with a graph:

Tutee	Available times
Aisha	2:00, 3:00, 3:30
Bob	2:30
Cara	2:00, 2:30, 4:00
Dale	2:00, 3:30, 4:00
Erica	2:00, 2:30, 3:00,
	3:30, 4:00

We join a student to a time if they can make that time.

We can represent this with a graph:

Tutee	Available times
Aisha	<u>2:00</u> , 3:00, 3:30
Bob	<u>2:30</u>
Cara	2:00, 2:30, <u>4:00</u>
Dale	2:00, <u>3:30</u> , 4:00
Erica	2:00, 2:30, <u>3:00</u> ,
	3:30, 4:00

We join a student to a time if they can make that time.

A valid choice of times corresponds to a **matching** in the graph.

Formal definitions

A matching in a graph is a collection of disjoint edges.

Formal definitions

A matching in a graph is a collection of disjoint edges. It is perfect if every vertex is contained in some matching edge.

Formal definitions

A matching in a graph is a collection of disjoint edges. It is **perfect** if every vertex is contained in some matching edge.

A graph G = (V, E) is **bipartite** if V can be partitioned into disjoint sets A and B which contain no edges; these are a **bipartition**. Here, can take:

 $A = \{Aisha, Bob, Cara, Dale, Erica\}, B = \{2:00, 2:30, 3:00, 3:30, 4:00\}.$

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition. Here, can take:

 $A = \{\mathsf{Aisha}, \mathsf{Bob}, \mathsf{Cara}, \mathsf{Dale}, \mathsf{Erica}\}, \ B = \{2:00, 2:30, 3:00, 3:30, 4:00\}.$

A graph G = (V, E) is **bipartite** if V can be partitioned into disjoint sets A and B which contain no edges; these are a **bipartition**. Here, can take:

$$A = \{Aisha, Bob, Cara, Dale, Erica\}, B = \{2:00, 2:30, 3:00, 3:30, 4:00\}.$$

Note that bipartitions are not unique! E.g. we could also take:

$$A = \{2:00, 2:30, 3:00, 3:30, 4:00\}, B = \{Aisha, Bob, Cara, Dale, Erica\}.$$

(Exercise: Are there ever more than two possibilities?)

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: *G* is bipartite if and only if it has no odd-length cycle.

A graph G = (V, E) is **bipartite** if V can be partitioned into disjoint sets A and B which contain no edges; these are a **bipartition**.

Lemma: *G* is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: *G* is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

Wlog $v_1 \in A$.

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: G is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

Wlog $v_1 \in A$.

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: G is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

Wlog $v_1 \in A$. Since A has no edges, this means $v_2 \in B$.

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: G is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

Wlog $v_1 \in A$. Since A has no edges, this means $v_2 \in B$.

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: *G* is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: *G* is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: *G* is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: *G* is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: *G* is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: *G* is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: *G* is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

Wlog $v_1 \in A$. Since A has no edges, this means $v_2 \in B$. Continuing the argument, $v_i \in A$ if i is odd, and $v_i \in B$ if i is even. In particular, $v_k \in A$.

But v_1 and v_k are adjacent, so this is a contradiction. •

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: *G* is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

Wlog $v_1 \in A$. Since A has no edges, this means $v_2 \in B$. Continuing the argument, $v_i \in A$ if i is odd, and $v_i \in B$ if i is even. In particular, $v_k \in A$.

But v_1 and v_k are adjacent, so this is a contradiction.

A graph G = (V, E) is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: *G* is bipartite if and only if it has no odd-length cycle.

Proof of "only if": Suppose G has bipartition (A, B) and $C = v_1 \dots v_k$ is an odd cycle in G.

Wlog $v_1 \in A$. Since A has no edges, this means $v_2 \in B$. Continuing the argument, $v_i \in A$ if i is odd, and $v_i \in B$ if i is even. In particular, $v_k \in A$.

But v_1 and v_k are adjacent, so this is a contradiction.

 $\begin{array}{c}
C \\
v_1 \\
v_k
\end{array}$ $\begin{array}{c}
\in A \\
\in B
\end{array}$

● ∈ В

"If": See problem sheet.

General problem statement: Given a bipartite graph G = (V, E), output a matching which is as large as possible.

Algorithms for this problem (or generalisations) can be applied to e.g.:

- Scheduling meetings.
- Matching lectures to available rooms.
- Matching people to tasks they're qualified for.
- Matching residents to hospitals. (Must output a "stable" matching.)
- Matching banner ads to viewers. (Must be an "online" algorithm.)
- Matching people as a dating site. (Must handle non-bipartite graphs!)