Mathematics - Brush-up Problem Set 1

Instructor: Alessandro Ruggieri*

1 Metric Spaces

Exercise 1

For each pair $(x, y) \in \mathbb{R} \times \mathbb{R}$, let $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by:

1.
$$d(x,y) = \frac{|x-y|}{1+|x-y|}$$

2.
$$d(x,y) = |x - 2y|$$

3.
$$d(x,y) = (x-y)^2$$

4.
$$d(x,y) = \sqrt{|x-y|}$$

Are d(x, y) a metric? Prove it.

Exercise 2

Show that for p > 1 the function

$$d(x,y): \mathbb{R}^n \to \mathbb{R}_+ \text{ s.t. } d(x,y) = \left(\sum_{i=1}^n |x_i + y_i|^p\right)^{\frac{1}{p}}$$

defines (d_p, \mathbb{R}^n) as a metric space. Hint: To prove triangle inequality use the property called Minkowsky inequality 1:

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}}$$

Exercise 3

Consider the function $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by the **British Rail** distance, d(x,y) = ||x|| + ||y|| if $x \neq y$, 0 otherwise, where the function $||\cdot||$ is, in turn, 1) the taxicab norm and 2) the euclidean norm. Check whether d defines a metric function for each type of norm.

Exercise 4

Consider two metric spaces (d, X) and (d', X). Define $d_{\text{max}} = \max(d, d')$ and $d_{\text{min}} = \min(d, d')$. Is (d_{max}, X) a metric space? Is (d_{min}, X) a metric space? Prove it.

^{*}Universitat Autonoma de Barcelona and Barcelona GSE, alessandro.ruggieri@uab.cat

2 Sequences

Exercise 5

Assume $x \in (0,1)$. Prove that the sequence $(1+x,1+x+x^2,1+x+x^2+x^3,...)$ converges to $\bar{x} = \frac{1}{1-x}$.

Exercise 6

Show that the sum of two convergent sequences in a generic normed space is a convergent sequence.

Exercise 7

Prove that, for all non-increasing function mapping naturals to positive reals, $f: \mathbb{N} \to \mathbb{R}_+$ (that is $f(i) \leq f(j)$, $\forall i \geq j$) the sequence of real numbers $(x_n)_{n \in \mathbb{N}}$ defined by $x_n = \frac{f(n)}{n}$ is a Cauchy sequence.

Exercise 8:

Prove that every discrete metric space (i.e. a space endowed with a discrete metric) is complete.

3 Open and Closed Sets

Exercise 9:

Given a space X, two metrics d and d' are said to be **strongly equivalent** in X if $\exists \alpha, \beta \in \mathbb{R}_+$ s.t. $\forall x, y \in X$, $\alpha d(x, y) \leq d'(x, y) \leq \beta d(x, y)$. Strong equivalence implies topological equivalence; that is, if two metrics are strongly equivalent in X, then they generate the same topology on X. Using this notion, show that statements 1 and 2 are equivalent, while statement 2 and 3 are **not** equivalent:

- 1. Under $d_1(x,y) = \sum_{i=1}^n |x_i y_i|, \forall x,y \in S \subseteq \mathbb{R}^n$, S is an open set in \mathbb{R}^n
- 2. Under $d_1(x,y) = \max_i |x_i y_i|, \forall x, y \in S \subseteq \mathbb{R}^n, S$ is an open set in \mathbb{R}^n
- 3. Under the discrete metric, d_d , S is an open set in \mathbb{R}^n

Exercise 10:

Is the intersection of an arbitrary family of open intervals open? Why? Prove it.

Exercise 11:

A set $A \subset X$ is said to be **closed** if, given $x \in X$ s.t. $d(x, A) = \inf_{a \in A} (d(x, a)) = 0$ then $x \in A$. Prove that this definition is equivalent to the notion of closed set that says: a set A is closed if and only if it coincides with its closure.

4 Boundedness and Compactness

Exercise 12:

Prove that a finite union of bounded sets is a bounded set.

Continuity

Exercise 13:

Let $f_1: \mathbb{R} \to \mathbb{R}$ and $f_2: \mathbb{R} \to \mathbb{R}$ be two continuous functions. Is it $f: \mathbb{R} \to \mathbb{R}$ given by

1.
$$g(x) = \min\{f_1(x); f_2(x)\}\$$

2.
$$h(x) = \max\{f_1(x); f_2(x)\}\$$

continuous?

Exercise 14:

Let $f: X \subseteq \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that if f(x) > 0 for an element $x \in X$ then there exists an open subset O in X such that f(y) > 0 for all $y \in O$.

Exercise 15:

Show that if $f: \mathbb{R} \to \mathbb{R}$ is a continuous function, then for any $\alpha \in \mathbb{R}$, the set $S_{\alpha}: \{x \in \mathbb{R}: f(x) \geq \alpha\}$ is closed.

Exercise 16:

Is the function $f: \mathbb{R}_+ \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ continuous in \mathbb{R}_+ ? What about in \mathbb{R}_{++} ? Is it uniformly continuous in \mathbb{R}_{++} ? What about in $X = [\alpha, \infty)$? Prove it.

5 Convexity

Exercise 17:

Prove that the intersection of any collection of convex set is a convex set.

Exercise 18:

Let $f: \mathbb{R} \to \mathbb{R}$ be a concave function and $g: \mathbb{R} \to \mathbb{R}$ a quasi-concave function. Is h = f + g necessarily quasi-concave? Prove it.

Exercise 19:

The functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are concave. Is the function $f: \mathbb{R} \to \mathbb{R}$ defined by h = fg necessarily quasi-concave?