1. Week 5 Supplementary material

Remark 1.1. Let X be an RV defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with law \mathbb{P}_X and DF F_X . Consider the set $D := \{x \in \mathbb{R} : F_X \text{ is discontinuous at } x\}$. We claim that it is either finite or countably infinite.

Solution 1: For each $n = 1, 2, \dots$, consider the set $D_n := \{x \in \mathbb{R} : F_X(x+) - F_X(x-) > \frac{1}{n}\} = \{x \in \mathbb{R} : F_X(x) - F_X(x-) > \frac{1}{n}\} = \{x \in \mathbb{R} : \mathbb{P}(X = x) > \frac{1}{n}\}$. Then $D = \bigcup_n D_n$.

Note that each D_n is a finite set. If not, then for some positive integer m, D_m is infinite and we can choose a sequence $\{x_k\}_k$ from D_m with distinct points. Write $A = \{x_k : k \ge 1\}$. Then $\mathbb{P}(X = x_k) > \frac{1}{m}, \forall k$ and

$$1 \ge \mathbb{P}(X \in A) = \sum_{k=1}^{\infty} \mathbb{P}(X = x_k) > \sum_{k=1}^{\infty} \frac{1}{m} = \infty,$$

which is a contradiction. Therefore, each D_n is a finite set. In fact, by the above argument, we have $\#D_n < n$.

Now, $D = \bigcup_{n=1}^{\infty} D_n$ and hence D is either finite or countably infinite.

Solution 2: For each $x \in D$, we have an open interval $(F_X(x-), F_X(x))$ contained in [0,1].

Let $x, y \in D$ with x < y. Then, we have $F_X(x-) < F_X(x) \le F_X(y-) < F_X(y)$ and hence the open intervals $(F_X(x-), F_X(x))$ and $(F_X(y-), F_X(y))$ are pairwise disjoint. For each $x \in D$, choose a rational number $r_x \in (F_X(x-), F_X(x))$. All the chosen rationals r_x are therefore distinct.

By the above construction, the points x in D are in one-to-one correspondence with $r_x \in [0, 1]$. Since the set of rational numbers in [0, 1] are countable, D must be finite or countably infinite.

Example 1.2. Consider the function $F: \mathbb{R} \to [0,1]$ defined by

$$F(x) := \begin{cases} 0, & \text{if } x < 0, \\ \frac{1}{4} + \frac{x}{2}, & \text{if } 0 \le x \le 1, \\ \frac{1}{2} + \frac{x}{4}, & \text{if } 1 < x < 2, \\ 1, & \text{if } x \ge 2. \end{cases}$$

We have F is non-decreasing on $(-\infty,0)$, [0,1], (1,2) and on $[2,\infty)$. Moreover, for $x<0,y\in(0,1),z\in(1,2),w>2$, we have

$$F(x) = 0 < \frac{1}{4} = F(0) < F(y) < \frac{1}{4} + \frac{1}{2} = F(1) < F(z) < 1 = F(2) = F(w).$$

Therefore F is non-decreasing on \mathbb{R} .

By definition, F is continuous on $(-\infty, 0)$, (0, 1), (1, 2) and on $(2, \infty)$. So possible discontinuities may arise at the points 0, 1, 2. We check the right continuity at these points. We have

$$F(0+) = \lim_{h \downarrow 0} F(0+h) = \lim_{h \downarrow 0} \left[\frac{1}{4} + \frac{h}{2} \right] = \frac{1}{4} = F(0),$$

$$F(1+) = \lim_{h \downarrow 0} F(1+h) = \lim_{h \downarrow 0} \left[\frac{1}{2} + \frac{1+h}{4} \right] = \frac{1}{2} + \frac{1}{4} = F(1),$$

$$F(2+) = \lim_{h \downarrow 0} F(2+h) = 1 = F(2).$$

Therefore F is right continuous on \mathbb{R} .

Finally $\lim_{x\to\infty} F(x) = \lim_{x\to\infty} 0 = 0$ and $\lim_{x\to\infty} F(x) = \lim_{x\to\infty} 1 = 1$. Hence, F is a distribution function.

Remark 1.3. Let X be an RV with DF F_X . Then, for all x < y, we have

$$\mathbb{P}(x < X \le y) = F_X(y) - F_X(x),$$

$$\mathbb{P}(x < X < y) = F_X(y-) - F_X(x),$$

$$\mathbb{P}(x \le X < y) = F_X(y-) - F_X(x-),$$

$$\mathbb{P}(x \le X \le y) = F_X(y) - F_X(x-).$$