#### 빅데이터 혁신공유대학

## 파이썬으로 배우는 데이터 구조

한동대학교 전산전자공학부 김영섭 교수











# **Data Structures in Python Chapter 2 - 2**

- Performance Analysis
- Big-O Notation
- Big-O Properties
- Growth Rates
- Growth Rates Examples









#### Agenda & Reading

- Big-O Notation
  - Asymptotic Analysis
- Big-O Properties
  - Calculating Big-O

- References:
  - Textbook: Problem Solving with Algorithms and Data Structures
    - Chapter 3. <u>Analysis</u>
  - Textbook: <u>www.github.idebtor/DSpy</u>
    - Chapter 2.1 ~ 3







#### 4 Properties of Big-O

- There are three properties of Big-O
  - Ignore low order terms in the function (smaller terms)
    - $O(f(n)) + O(g(n)) = O(\max of f(n) and g(n))$
  - Ignore any constants in the high-order term of the function
    - C \* O(f(n)) = O(f(n))
  - Combine growth-rate functions
    - O(f(n)) \* O(g(n)) = O(f(n) \* g(n))
    - O(f(n)) + O(g(n)) = O(f(n) + g(n))







#### 4 Properties of Big-O - Ignore low order terms

- Consider the function:  $f(n) = n^2 + 100n + \log 10n + 1000$ 
  - For small values of n the last term, 1000, dominates.
  - When n is around 10, the terms 100n + 1000 dominate.
  - When n is around 100, the terms  $n^2$  and 100n dominate.
  - When n gets much larger than 100, the  $n^2$  dominates all others.
  - So, it would be safe to say that this function is  $O(n^2)$  for values of n > 100
- Consider another function:  $f(n) = n^3 + n^2 + n + 5000$ 
  - Big-O is  $O(n^3)$
- And consider another function:  $f(n) = n + n^2 + 5000$ 
  - Big-O is  $O(n^2)$









### 4 Properties of Big-O - Ignore any Constant Multiplications

- Consider the function:
  - $f(n) = 254 * n^2 + n$
  - Big-O is  $O(n^2)$
- Consider the function:
  - f(n) = n / 30
  - Big-O is O(n)
- And consider another function:
  - f(n) = 3n + 1000
  - Big-O is O(n)







### 4 Properties of Big-O - Combine growth-rate functions

- Consider the function:
  - f(n) = n \* log n
  - Big-O is O(n log n)
- Consider another function:
  - $f(n) = n^2 * n$
  - Big-O is  $O(n^3)$









#### 4 Properties of Big-O - Exercise 2

What is the Big-O performance of the following growth functions?

$$T(n) = n + \log(n)$$

• 
$$T(n) = n^4 + n*log(n) + 300 n^3$$

$$T(n) = 300n + 60 * n * log(n) + 342$$







#### 4 Properties of Big-O - Exercise 2

What is the Big-O performance of the following growth functions?

$$T(n) = n + \log(n) \qquad O(n)$$

• 
$$T(n) = n^4 + n*log(n) + 300 n^3$$
  $O(n^4)$ 

• 
$$T(n) = 300n + 60 * n * log(n) + 342$$
 O(n log n)







#### 5 Calculating Big-O

- We will investigate rules for finding out the time complexity of a piece of code
  - Straight-line code
  - Loops
  - Nested Loops
  - Consecutive statements
  - If-then-else statements
  - Logarithmic complexity









#### 5 Calculating Big-O - Rules

- Rule 1: Straight-line code
  - Big-O = Constant time O(1)
  - Does not vary with the size of the input
  - Example:
    - Assigning a value to a variable
    - Performing an arithmetic operation.
    - Indexing a list element

$$x = a + b$$
  
 $i = y[2]$ 

- Rule 2: Loops
  - The running time of the statements inside the loop (including tests) times the number of iterations
  - Example:
    - Constant time \* n = c \* n = O(n)









#### 5 Calculating Big-O - Rules (con't)

- Rule 3: Nested Loop
  - Analyze inside out. Total running time is the product of the sizes of all the loops.
  - Example:
    - constant \* (inner loop: n)\*(outer loop: n)
    - Total time =  $c * n * n = c*n^2 = O(n^2)$
- Rule 4: Consecutive statements
  - Add the time complexities of each statement
  - Example:
    - Constant time + n times \* constant time

```
• c_0 + c_1 n

• Big-O = O(f(n) + g(n))

= O( max( f(n) + g(n) ) )

= O(n)
```

executed n times

```
for i in range(n):
    for j in range(n):
        k = i + j
```

```
x = x + 1 ← constant time

for i in range(n):

m = m + 2;
```









#### 5 Calculating Big-O - Rules (cont.)

- Rule 5: if-else statement
  - Worst-case running time: the test, plus either the if part or the else part (whichever is the larger).
  - Example:
    - $c_0 + \text{Max}(c_1, (n * (c_0 + c_0)))$
    - Total time =  $c_0 * n(c_1 + c_2) = O(n)$
  - Assumption:
    - The condition can be evaluated in constant time. If it is not, we need to add the time to evaluate the expression.

```
if len(a) != len(b):
    return False

else:
    for index in range(len(a)):
        if a[index] != b[index]: Another if: constant c_2 + constant c_3
        return False
```







#### 5 Calculating Big-O - Rules (cont.)

- Rule 6: Logarithmic
  - An algorithm is O(log n) if it takes a constant time to cut the problem size by a fraction (usually by ½)
  - Example:
    - Finding a word in a dictionary of n pages
      - Look at the center point in the dictionary
      - Is word to left or right of center?
      - Repeat process with left or right part of dictionary until the word is found
  - Example:
    - Size: n, n/2, n/4, n/8, n/16, . . . 2, 1
    - If  $n = 2^K$ , it would be approximately k steps. The loop will execute log k in the worst case ( $log_2n = k$ ). Big-O = O( $log_2n$ )
    - Note: we don't need to indicate the base.
       The logarithms to different bases differ only by a constant factor.

```
size = n
while size > 1:
    // O(1) stuff
size = size / 2
```









#### **Exercise**

- Example: Running time estimates empirical analysis
  - Personal computer executes 10<sup>9</sup> compares/second
  - Super-computer executes 10<sup>13</sup> compares/second

|           | Selection sort ( N <sup>2</sup> ) |            |         | Merge sort (N log <sub>2</sub> N) |            |         |
|-----------|-----------------------------------|------------|---------|-----------------------------------|------------|---------|
| N         | Million                           | 10 million | Billion | Million                           | 10 million | Billion |
| PC        | 16.7 min                          |            |         | instant                           | 0.2 sec    |         |
| Super Com | 0.1 sec                           |            |         | Instant                           | Instant    | Instant |

 $log_{10}2 \cong 0.3$ 86,400sec/day instant  $\langle 0.1 \text{ sec} \rangle$  Use a reasonable or understandable time units. Do not say, for example, "3660 days" nor "1220 seconds", but 10.0 years or 20.3 min, respectively.

**X Bottom line**: Good algorithms are better than supercomputers.









#### Summary

- Big-O Notation is a mathematical formula that best describes an algorithm's performance.
- Big-O notation is often called the asymptotic notation (점근적 표기법) since it uses so-called the asymptotic analysis (점근적 분석) approach.
- Normally we assume worst-case analysis, unless told otherwise.
- In some cases, it may need to consider the best, worst and/or average performance of an algorithm









# **Data Structures in Python Chapter 2 - 2**

- Performance Analysis
- Big-O Notation
- Big-O Properties
- Growth Rates
- Growth Rates Examples







