TD7 STRUCTURES ALGÉBRIQUES POUR L'INFORMATIQUE

Exercice 1 . Soit la permutation $\alpha \in S_9$ donnée par

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1
\end{pmatrix}$$

- 1. Calculer la permutation réciproque α^{-1} .
- 2. Donner la décomposition de α en produit de cycles de supports disjoints (appelés cycles disjoints).
- 3. En déduire une nouvelle expression de α^{-1} (en produit de cycles disjoints).

EXERCICE 2 . On considère le groupe symétrique S_n .

- 1. Rappeler $\operatorname{card}(S_n)$.
- 2. Calculer (34)(45)(23)(12)(56)(23)(45)(34)(23).
- 3. Décomposer les permutations suivantes en produits de cycles à supports disjoints:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 1 & 2 & 3 & 4 & 5 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 2 & 5 & 7 & 8 & 1 & 3 & 4 \end{pmatrix}$$

Exercice 3 . Soit α un cycle de longueur r.

1. Un exemple. On se place dans S_9 et on choisit $\alpha = (4, 5, 1, 2, 3)$. (et donc r = 5) Montrer que 5 est le plus petit entier strictement positif tel que $\alpha^r = id$. Quel est le groupe engendré par α ? Combien a-t-il d'éléments?

On se place dorénavant dans le cas général.

- 2. Montrer que $\alpha^r = id$.
- 3. Montrer que r est le plus petit entier strictement positif tel que $\alpha^r = id$.
- 4. Quel est le sous-groupe engendré par α ? Combien a-t-il d'éléments?

EXERCICE 4 . Soit $K = \{\text{Id}, f_1, f_2, f_3\}$ où f_1, f_2 , et f_3 sont les permutations de $E = \{1, 2, 3, 4\}$ définies par

$$f_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, f_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, f_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}.$$

Montrer que K est un sous-groupe de S_4 . Donner le sous-groupe engendré par $K' = \{f_1, f_2\}$.

EXERCICE 5 . Écrire tous les éléments de S_3 , puis la table de S_3 . En déduire tous les sous-groupes de S_3 .

Exercice 6. Déterminer les ensembles suivants:

- 1. $\{\sigma \in S_4 : \sigma(1) = 3\}$
- 2. $\{\sigma \in S_4 : \sigma(2) = 2\}$
- 3. $\{\sigma \in S_4 : \sigma(1) = 3 \text{ et } \sigma(2) = 2\}$

Ces ensembles sont-ils des sous-groupes de S_4 ?