DLCV 2021 Final Project Challenge 3:

Fine-grained long-tailed food image classification

Team Tami: Ti-Huai Song, Hsin Yang Chang, Chia Yu Chen, Tzu-Han Lin

Problem

- The original TADE [1] suffers the degradation of head's accuracy due to the direct average of the outputs from different experts.
- Tail class experts tend to overfit on small classes, which is harmful to the representation ability of the backbone.

[1] "Test-agnostic long-tailed recognition by test-time aggregating diverse experts with self-supervision." arXiv (2021).

Contribution

- Bring the *Self-Supervised Knowledge Distillation (SSKD)* into the long-tailed problem to have a better representation learning.
- Cumulative learning (CL) is adopted to avoid damaging the learned universal features when emphasizing the tail classes.
- Propose *Image-wise Test-time Aggregation (ITA)* to learn the aggregation weights of three experts image-wisely in test-time.

Self-Supervised Knowledge Distillation (SSKD)

- Utilize self-supervised learning as an auxiliary task (SSL Head) for each expert to mine the dark knowledge.
- Transfer the representational knowledge of head class experts into tail class experts by knowledge distillation (KD).
- Adopt the SSL method of jointly learning the original classification task and self-supervised auxiliary task

Cumulative Learning (CL)

• Adjust the weights of loss function from different experts in a way that model learns the universal representations first, then transition to focus on the tail classes.

Image-wise Test-time Aggregation (ITA)

- Propose that testing images have to be assigned their own aggregation weights of three experts.
- Assign larger aggregation weight for the expert such that it can produce similar predictions for two different augmented inputs.

Experiment

Comparison with SOTA

	All	Frequent	Common	Rare
TADE	0.745	0.754	0.762	0.582
Ours	0.792 (+0.047)	0.821 (+0.067)	0.792 (+0.03)	0.587 (+0.005)

Ablation Study

	All	Frequent	Common	Rare
TADE	0.745	0.754	0.762	0.582
+SSKD	0.780 (+0.035)	0.799 (+0.045)	0.792 (+0.03)	0.587 (+0.005)
+CL	0.790 (+0.01)	0.819 (+0.02)	0.791 (-0.001)	0.588 (+0.001)
+Test-time	0.792 (+0.002)	0.821 (+0.002)	0.792 (+0.001)	0.587 (-0.001)

Effectiveness of SSKD

	All	Frequent	Common	Rare
TADE	0.745	0.754	0.762	0.582
SSL	0.771 (+0.026)	0.783 (+0.029)	0.791 (+0.029)	0.572 (-0.01)
SSKD	0.780 (+0.035)	0.799 (+0.045)	0.792 (+0.03)	0.587 (+0.005)

Choices of KD

	All	Frequent	Common	Rare
From E_1	0.769	0.780	0.789	0.588
From E_{i-1}	0.790 (+0.021)	0.819 (+0.039)	0.791 (+0.002)	0.588