

Description

The VSM25P15 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =-150V, I_{D} =-25A $R_{DS(ON)}$ <140m Ω @ V_{GS} =-10V
- Super high dense cell design
- Advanced trench process technology
- Reliable and rugged
- High density cell design for ultra low On-Resistance

Portable equipment and battery powered systems

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM25P15-TC	VSM25P15	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-150	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	-25	А	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	-17	Α	
Pulsed Drain Current	I _{DM}	-100	Α	
Maximum Power Dissipation	P _D	120	W	
Derating factor		0.8	W/°C	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{θJc}	1.25	°C/W	Ī
---	------------------	------	------	---

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-150	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-150V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			•
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} ,I _D =-250μA	-1.5	-2	-3	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-20A	-		140	mΩ
Forward Transconductance	Fransconductance g_{FS} V_{DS} =-5V, I_D =-20A		5	-	-	S
Dynamic Characteristics (Note4)			•	•		
Input Capacitance	C _{lss}		-	3780	-	PF
Output Capacitance	C _{oss}	V _{DS} =-50V,V _{GS} =0V,	-	980	-	PF
Reverse Transfer Capacitance	C_{rss}	F=1.0MHz	-	450	-	PF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}		-	17	-	nS
Turn-on Rise Time	t _r	V _{DD} =-75V,I _D =-20A	-	80	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10V, R_{GEN} =9.1 Ω	-	45	-	nS
Turn-Off Fall Time	t _f		-	65	-	nS
Total Gate Charge	Qg	\/ - 75\/ I - 20A	-	96	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =-75V, I_{D} =-20A, V_{GS} =-10V	-	22	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} 10V	-	33	-	nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-25A	-	-	-1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	-25	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =-25A	-	90	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	70	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition: Tj=25 $^{\circ}\text{C}\,\text{,V}_{DD}\text{=-}50\text{V},\text{V}_{G}\text{=-}10\text{V},\text{L=}0.5\text{mH},\text{Rg=}25\Omega$

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

25 (¥) 20 15 10 0 25 50 75 100 125 150 175 T_C Case Temperature(°C)

30

Figure 7 Capacitance vs Vds

Figure 9 Drain Current vs Case Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance