TS: Fonction Exponentielle: Exercice 1

Sébastien Harinck

www.cours-futes.com

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^x(5-x)$.

Soit f la fonction définie sur $\mathbb R$ par $f(x)=e^x(5-x)$. Calculer la limite de f en $+\infty$

Soit f la fonction définie sur $\mathbb R$ par $f(x)=e^x(5-x)$. Calculer la limite de f en $+\infty$ Calculer la limite de f en $-\infty$

Soit f la fonction définie sur $\mathbb R$ par $f(x)=e^x(5-x)$. Calculer la limite de f en $+\infty$ Calculer la limite de f en $-\infty$

La fonction est le produit des fonctions $x \to e^x$ et $x \to 5 - x$

La fonction est le produit des fonctions $x \to e^x$ et $x \to 5-x$ $\lim_{\substack{x \to +\infty \\ x \to +\infty}} e^x = +\infty$ et $\lim_{\substack{x \to +\infty \\ x \to +\infty}} (5-x) = -\infty$; par produit, $\lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = -\infty$. Maintenant, calculons la limite en $-\infty$

La fonction est le produit des fonctions $x \to e^x$ et $x \to 5-x$ $\lim_{\substack{x \to +\infty \\ x \to +\infty}} e^x = +\infty$ et $\lim_{\substack{x \to +\infty \\ x \to +\infty}} (5-x) = -\infty$; par produit, $\lim_{\substack{x \to +\infty \\ x \to -\infty}} f(x) = -\infty$. Maintenant, calculons la limite en $-\infty$ $\lim_{\substack{x \to -\infty \\ x \to -\infty}} e^x = 0$ et $\lim_{\substack{x \to -\infty \\ x \to -\infty}} 5-x = +\infty$

La fonction est le produit des fonctions $x \to e^x$ et $x \to 5-x$ $\lim_{x \to +\infty} e^x = +\infty$ et $\lim_{x \to +\infty} (5-x) = -\infty$; par produit, $\lim_{x \to +\infty} f(x) = -\infty$. Maintenant, calculons la limite en $-\infty$ $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to -\infty} 5-x = +\infty$ Forme Indéterminée \to On ne peut pas conclure.

La fonction est le produit des fonctions $x \to e^x$ et $x \to 5-x$ $\lim_{\substack{x \to +\infty \\ x \to +\infty}} e^x = +\infty$ et $\lim_{\substack{x \to +\infty \\ x \to +\infty}} (5-x) = -\infty$; par produit, $\lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = -\infty$. Maintenant, calculons la limite en $-\infty$ $\lim_{\substack{x \to -\infty \\ x \to -\infty}} e^x = 0$ et $\lim_{\substack{x \to -\infty \\ x \to -\infty}} 5-x = +\infty$ Forme Indéterminée \to On ne peut pas conclure. On développe : $f(x) = 5e^x - xe^x$.

La fonction est le produit des fonctions $x \to e^x$ et $x \to 5-x$ $\lim_{\substack{x \to +\infty \\ x \to +\infty}} e^x = +\infty$ et $\lim_{\substack{x \to +\infty \\ x \to +\infty}} (5-x) = -\infty$; par produit, $\lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = -\infty$. Maintenant, calculons la limite en $-\infty$ $\lim_{\substack{x \to -\infty \\ x \to -\infty}} e^x = 0$ et $\lim_{\substack{x \to -\infty \\ x \to -\infty}} 5-x = +\infty$ Forme Indéterminée \to On ne peut pas conclure. On développe : $f(x) = 5e^x - xe^x$. On a donc $\lim_{\substack{x \to -\infty \\ x \to -\infty}} 5e^x = 0$ et on utilise le résultat $\lim_{\substack{x \to -\infty \\ x \to -\infty}} xe^x = 0$

```
La fonction est le produit des fonctions x \to e^x et x \to 5-x \lim_{x \to +\infty} e^x = +\infty et \lim_{x \to +\infty} (5-x) = -\infty; par produit, \lim_{x \to +\infty} f(x) = -\infty. Maintenant, calculons la limite en -\infty \lim_{x \to -\infty} e^x = 0 et \lim_{x \to -\infty} 5-x = +\infty Forme Indéterminée \toOn ne peut pas conclure. On développe : f(x) = 5e^x - xe^x. On a donc \lim_{x \to -\infty} 5e^x = 0 et on utilise le résultat \lim_{x \to -\infty} xe^x = 0 Par somme, on obtient :
```

La fonction est le produit des fonctions $x \to e^x$ et $x \to 5-x$ $\lim_{x \to +\infty} e^x = +\infty$ et $\lim_{x \to +\infty} (5-x) = -\infty$; par produit, $\lim_{x \to +\infty} f(x) = -\infty$. Maintenant, calculons la limite en $-\infty$ $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to -\infty} 5-x = +\infty$ Forme Indéterminée \to On ne peut pas conclure. On développe : $f(x) = 5e^x - xe^x$. On a donc $\lim_{x \to -\infty} 5e^x = 0$ et on utilise le résultat $\lim_{x \to -\infty} xe^x = 0$ Par somme, on obtient :

$$\lim_{x\to-\infty}f(x)=0.$$

Résoudre dans \mathbb{R} l'équation $e^{2x+1} = e^{-0.5x+4}$.

Résoudre dans $\mathbb R$ l'équation $e^{2x+1}=e^{-0,5x+4}.$ Résoudre dans $\mathbb R$ l'inéquation $e^{-x+3}\leq e^{2x+9}.$

Résoudre dans $\mathbb R$ l'équation $e^{2x+1}=e^{-0,5x+4}.$ Résoudre dans $\mathbb R$ l'inéquation $e^{-x+3}\leq e^{2x+9}.$

Pour résoudre des équations ou des inéquations du type $e^{u(x)}=e^{v(x)}$ ou $e^{u(x)}\leq e^{v(x)}$, on utilise la propriété : quels que soient les réels a et b, e^a et e^b équivaut à a=b; $e^a\leq e^b$ équivaut à $a\leq b$.

Pour résoudre des équations ou des inéquations du type $e^{u(x)}=e^{v(x)}$ ou $e^{u(x)}\leq e^{v(x)}$, on utilise la propriété : quels que soient les réels a et b, e^a et e^b équivaut à a=b; $e^a\leq e^b$ équivaut à $a\leq b$. Résoudre $e^{2x+1}=e^{-0,5x+4}$ équivaut à résoudre

$$2x + 1 = -0.5x + 4$$

Pour résoudre des équations ou des inéquations du type $e^{u(x)}=e^{v(x)}$ ou $e^{u(x)}\leq e^{v(x)}$, on utilise la propriété : quels que soient les réels a et b, e^a et e^b équivaut à a=b; $e^a\leq e^b$ équivaut à $a\leq b$. Résoudre $e^{2x+1}=e^{-0.5x+4}$ équivaut à résoudre

$$2x + 1 = -0.5x + 4 \ 2.5x = 3$$

Pour résoudre des équations ou des inéquations du type $e^{u(x)}=e^{v(x)}$ ou $e^{u(x)}\leq e^{v(x)}$, on utilise la propriété : quels que soient les réels a et b, e^a et e^b équivaut à a=b; $e^a\leq e^b$ équivaut à $a\leq b$. Résoudre $e^{2x+1}=e^{-0.5x+4}$ équivaut à résoudre : 2x+1=-0.5x+4 2.5x=3 $x=\frac{3}{2.5}=1,2$

Pour résoudre des équations ou des inéquations du type $e^{u(x)}=e^{v(x)}$ ou $e^{u(x)}\leq e^{v(x)}$, on utilise la propriété : quels que soient les réels a et b, e^a et e^b équivaut à a=b; $e^a\leq e^b$ équivaut à $a\leq b$. Résoudre $e^{2x+1}=e^{-0.5x+4}$ équivaut à résoudre : 2x+1=-0.5x+4 2.5x=3 $x=\frac{3}{2,5}=1,2$ Résoudre $e^{-x+3}\leq e^{2x+9}$ équivaut à résoudre : $-x+3\leq 2x+9$

Pour résoudre des équations ou des inéquations du type $e^{u(x)}=e^{v(x)}$ ou $e^{u(x)}\leq e^{v(x)}$, on utilise la propriété : quels que soient les réels a et b, e^a et e^b équivaut à a=b; $e^a\leq e^b$ équivaut à $a\leq b$. Résoudre $e^{2x+1}=e^{-0.5x+4}$ équivaut à résoudre : 2x+1=-0.5x+4 2.5x=3 $x=\frac{3}{2,5}=1,2$ Résoudre $e^{-x+3}\leq e^{2x+9}$ équivaut à résoudre : $-x+3\leq 2x+9$ $-3x\leq 6$

Pour résoudre des équations ou des inéquations du type $e^{u(x)}=e^{v(x)}$ ou $e^{u(x)}\leq e^{v(x)}$, on utilise la propriété : quels que soient les réels a et b, e^a et e^b équivaut à a=b; $e^a\leq e^b$ équivaut à $a\leq b$. Résoudre $e^{2x+1}=e^{-0.5x+4}$ équivaut à résoudre : 2x+1=-0.5x+4 2.5x=3 $x=\frac{3}{2,5}=1,2$ Résoudre $e^{-x+3}\leq e^{2x+9}$ équivaut à résoudre : $-x+3\leq 2x+9$ $-3x\leq 6$ $x\geq -2$

Pour résoudre des équations ou des inéquations du type $e^{u(x)}=e^{v(x)}$ ou $e^{u(x)}\leq e^{v(x)}$, on utilise la propriété : quels que soient les réels a et b, e^a et e^b équivaut à a=b; $e^a\leq e^b$ équivaut à $a\leq b$. Résoudre $e^{2x+1}=e^{-0.5x+4}$ équivaut à résoudre : 2x+1=-0.5x+4 2.5x=3 $x=\frac{3}{2,5}=1,2$ Résoudre $e^{-x+3}\leq e^{2x+9}$ équivaut à résoudre : $-x+3\leq 2x+9$ $-3x\leq 6$ $x\geq -2$