Tutorial - 3: Calculus 11

- 1) Let $D = [0, 1] \times [0, 1] \in \mathbb{R}^2$ and $P = \left\{ (x_i, y_i) : i = 0, 1, ..., n_i \right\}$ J = 0, 1, ..., K be a partition of D where $x_i = \frac{1}{n}$ and $y_i = \frac{1}{k}$. Also let f(x, y) = xy, $(x, y) \in D$.
 - i) Calculate L(P,f) & U(P,f)
 - ii) Calculate $\iint_D f(x,y) d(x,y)$ using U(P,f) and L(P,f).
 - (iii) Calculate If f(x,y)d(x,y) using Fubini's theorem and verify the value.
- Let $\phi: [a,b] \to \mathbb{R}$ be a bounded function of one variable. Also let $f: [a,b] \times [c,d] \to \mathbb{R}$ be defined as $f(x,y) = \phi(x) \ \forall \ (x,y) \in [a,b] \times [c,d]$. Prove that $f: [a,b] \times [c,d] = \phi(x)$ is double integrable on $[a,b] \times [c,d] = \phi(x)$ is Riemann integrable on $[a,b] \times [c,d] = \phi(x)$
- 3 Consider f: [0,1] × [0,1] → R defined by

$$f(x,y) = \begin{cases} \frac{1}{x^2}, & \text{if } 0 < y < \alpha < 1 \\ -\frac{1}{y^2}, & \text{if } 0 < \alpha < y < 1 \end{cases}$$
or other wise.

- i) Show that f is not integrable
- ii) Calculate the iterated integrals.

- 4) Change the order of the following integrals & write down the iterated integral.
 - i) $\int_{0}^{1} \left[\int_{1}^{e^{2x}} dy \right] dx$ ii) $\int_{0}^{1} \left[\int_{-\sqrt{y}}^{\sqrt{y}} f(x,y) dx \right] dy$
- 5) Sketch the region and evaluate the integrals i) $\int_{0}^{\pi} \left[\int_{z}^{\pi} \frac{5 \sin y}{y} dy \right] dx$
 - ii) $\int_{M} \int_{M} \int_{M}$
 - iii) $\int_{0}^{4} \left[\int_{0}^{\sqrt{2}} \frac{3}{9!} e^{\sqrt{2}} dy \right] dx$
 - 6) Find the volume of the region bounded by the paraboloid $2=x^2+y^2$ and below by the triangle enclosed by the lines y=ze, ze=0 and ze=ze.
 - (7) Find the area of the region bounded by the following cureves in the first quadrant of my plane.

i)
$$y = x^2$$
 and $y = x$.

ii)
$$y=e^{\gamma}$$
 and $x=2$.
iii) $y=\ln x$, $y=2\ln x$, $x=e$.

- (8) i) Sketch the domain $D = \{(x,y) \in \mathbb{R}^2 : y = x^2, y = 1, x = 2\}$ in the zy-plane.
- Express D in the forum of elementary region of type-1 and type-2 both.
- Theorem for elementary region of type 1 and type-2 both and deduce that the value is some in both the cases.
- Q Let D be the 3 dimensional region bounded by the place x+y+2=a(a>0), x=0, y=0, z=0. Then evaluate $\int \int (x^2+y^2+z^2) d(x,y,z).$
- (a) Let S be the spherce of reading 5 centered at (0.0.0) and D be the region under the spherce that lies above the plane Z=3. Set the limit of integration for evaluating the triple integral SSSF(x,y,z) of (2,y,z) for any fun F.
- In each of the following region D evaluate $\iiint f(x,y,z)d(x,z,z)$ where $f(x,y,z)=1 \ \forall (x,y,z) \in D$.
 - i) $D = \text{The region between the cylinder } 2=y^2 \text{ and } 2=y^2 \text{ from that is bounded by } x=0, x=1, y=-1, y=-1, y=1$
 - ii) The wedge cut from the cylinder $2^2+y^2=1$ by the planes z=-y and z=0.