

54LS113 Dual JK Edge-Triggered Flip-Flop

General Description

The 54LS113 offers individual J, K, Set and Clock inputs. When the clock goes HIGH the inputs are enabled and data may be entered. The logic level of the J and K inputs may be changed when the clock pulse is HIGH and the bistable will perform according to the Truth Table as long as minum setup and hold times are observed. Input data is transferred to the outputs on the falling edge of the clock pulse.

Connection Diagram

TL/F/10205-1

Order Number 54LS113DMQB, 54LS113FMQB or 54LS113LMQB See NS Package Number E20A, J14A or W14B

Logic Symbol

Truth Table

Inputs		Output		
@ t _n		@ t _n + 1		
J	K	Q		
L	L	Qn		
L	Н	L		
Н	L	Н		
Н	Н	\overline{Q}_n		

 $t_n = Bit Time before Clock Pulse$

 $t_n + 1 = Bit Time after Clock Pulse$

H = HIGH Voltage Level

L = LOW Voltage Level

Asynchronous Input:

Low input to \overline{S}_D sets Q to HIGH level Set is independent of clock

Pin Names	Description
J1, J2, K1, K2 CP 1, CP 2	Data Inputs
	Clock Pulse Inputs (Active Falling Edge)
SD1, SD2	Direct Set Inputs (Active LOW)
$Q1, Q2, \overline{Q}1, \overline{Q}2$	Outputs

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage Input Voltage 5.5V Operating Free Air Temperature Range . 54LS -55°C to +125°C

-65°C to +150°C Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual operation.

Recommended Operating Conditions

Symbol	Parameter	54LS113			Units
	raiametei	Min	Nom	Max	Julia
V _{CC}	Supply Voltage	4.5	5	5.5	V
V _{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.7	V
Іон	High Level Output Current			-0.4	mA
loL	Low Level Output Current			4	mA
T _A	Free Air Operating Temperature	-55		125	°C
t _s (H) t _s (L)	Setup Time J _n or K _n to CP _n	20 20			ns
t _h (H) t _h (L)	Hold Time J _n or K _n to CP _n	0			ns
t _w (H) t _w (L)	CP _n Pulse Width	20 15			ns
t _w (L)	S _{Dn} Pulse Width LOW	15			ns

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_{I} = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output Voltage	$egin{aligned} V_{CC} &= \mbox{Min, I}_{OH} &= \mbox{Max,} \ V_{IL} &= \mbox{Max, V}_{IH} &= \mbox{Min} \end{aligned}$		2.5			V
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max,$ $V_{IH} = Min, V_{IL} = Max$				0.4	V
II	Input Current	$V_{CC} = Max, V_I = 5.5V$	J, K			0.1	
	@ Max Input Voltage		SD			0.3	mA
			СР			0.4	
l _{IH}	High Level	$V_{CC} = Max, V_I = 2.7V$	J, K			20	
	Input Current		SD			60	μΑ
			CP			80	
I _{IL}	Low Level	$V_{CC} = Max, V_I = 0.5V$	J, K	-30		-400	μΑ
	Input Current		CP, SD	-60		-800	μ, τ
los	Short Circuit Output Current	V _{CC} = Max (Note 2)		-20		-100	mA
Icc	Supply Current	V _{CC} = Max (Note 3)				8	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: ICC is measured with all outputs open and all inputs grounded.

$\textbf{Switching Characteristics} \ \ V_{CC} = \ +5.0 \text{V}, \ T_{A} = \ +25^{\circ}\text{C} \ (\text{See Section 1 for test waveforms and output load})$

		54		
Symbol	Parameter	C _L =	Units	
		Min	Max	
f _{max}	Maximum Clock Frequency	30		MHz
t _{PLH} t _{PHL}	Propagation Delay CP _n to Q _n or Q n		16 24	ns
t _{PLH} t _{PHL}	Propagation Delay \$\overline{S}_{Dn}\$ to \$Q_n\$ or \$\overline{Q}_n\$		16 24	ns

Logic Diagram (one half shown)

TL/F/10205-3

Physical Dimensions inches (millimeters) (Continued)

14-Lead Ceramic Flat Package (W) Order Number 54LS113FMQB NS Package Number W14B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) 0-180-530 8b 9b Email: onjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 8 35 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408