# CS422 Database systems

Data warehouses and Decision Support Systems

Data-Intensive Applications and Systems (DIAS) Laboratory École Polytechnique Fédérale de Lausanne

"He uses statistics as a drunken man uses lampposts for support rather than for illumination."

Andrew Lang





#### Overview

- Introduction
- Data warehouses
- On-line analytical processing (OLAP)
- Views
- Top-N queries

#### Introduction

- On-Line Transaction Processing: OLTP
  - Updates and queries involving few tuples
    - Register a purchase, read/update the clients' balance, ...
    - Dynamic data, exact results required
    - DBA/developer knows exactly what to ask for
- Decision support systems (DSS)
  - Long-running queries over (almost) all data
    - Get interesting insights from the data:
      - E.g., smoking causes cancer, more toys sold near xmas
    - Fairly static data
    - Exploratory process ad-hoc queries

## Introduction (2)

#### Three complementary trends

- Data warehousing
  - Consolidate data from many sources in one large repository
- On-Line Analytic Processing (OLAP)
  - Complex SQL queries and views
  - Aggregates and group bys
- Data mining (not in this course)
  - Clustering, classification, decision trees, ...

#### Overview

- Introduction
- Data warehouses
- On-line analytical processing (OLAP)
- Views
- Top-N queries

## Data Warehousing

 Integrated data spanning long time periods

- Mostly static ad-hoc updates uncommon
- Complex ad-hoc queries, interactive response times!



## Warehousing issues

- Semantic integration: Normalize data from multiple sources, eliminate mismatches
- Heterogeneous sources: Access data from different source formats and repositories
- Load, Refresh, Purge cycle: Load data, periodically refresh it, purge old data
- Metadata management: Keep track of sources and metadata (e.g., loading time, format, transformations)

## Warehousing issues (2)

- Querying
  - Huge data
    - Scan-intensive queries, touch (almost) all data

Exploratory, ad-hoc queries

Difficult to describe

Difficult to optimize

#### Overview

- Introduction
- Data warehouses
- On-line analytical processing (OLAP)
- Views
- Top-N queries



#### Multidimensional data model

- Numeric measures which depend on a set of dimensions
  - Measure Sales, dimensions
     Product, Location, Time



| Prod<br>id | Time<br>id | Locid | Sales |
|------------|------------|-------|-------|
| 11         | 1          | 1     | 3     |
| 11         | 2          | 1     | 4     |
| 12         | 1          | 1     | 15    |
| 12         | 2          | 1     | 30    |
| 13         | 1          | 1     | 20    |
| 13         | 2          | 1     | 20    |
| 11         | 1          | 2     | 33    |
| 11         | 2          | 2     | 31    |
|            | •          |       |       |

Store as array (MOLAP) or relations (ROLAP)



#### **ROLAP: Relational OLAP**

Store multi-dimensional data as relations in a star schema:

- Fact table: Huge, stores the measurements/facts
  - Normalized
- Dimension tables
  - Denormalized

In this example, Quantity and TotalPrice are the only *measures!* 





**Locid Sales** 

25

8

15

30

20

**Prod** 

id

11

11

12

12

12

Time

id

2

# Star schema example

- Multi-dimensional data stored as relations
- Fact table
- Dimension tables

|    |     |                  |      |        |      |       |     | 12     | Т    | Т        | 20       |
|----|-----|------------------|------|--------|------|-------|-----|--------|------|----------|----------|
|    | od  | name             | Ca   | ategor | у Р  | rice  |     | 13     | 2    | 1        | 20       |
| id | Loc | i <u>d Cit</u> v | /    | State  | Cou  | untry |     | 11     | 1    | <u> </u> | <u> </u> |
| 1  | 1   | Time             | date |        | week | mont  | h q | uarter | year | holida   | ay       |
| 2  | 2   | id               |      |        |      |       |     |        |      | flag     |          |
| 3  | 3   | 1                | 01.0 | 1.17   | 1    | 1     | 1   |        | 2017 | Т        |          |
|    | 3   | 2                | 02.0 | 1.17   | 1    | 1     | 1   |        | 2017 | F        |          |
|    |     | 3                | 03.0 | 1.17   | 1    | 1     | 1   |        | 2017 | F        |          |
|    |     |                  |      |        |      |       |     |        |      |          | 12       |



#### Dimension hierarchies

 For each dimension, the set of values can be organized in a hierarchy

Time: <timeid,date,week,month,quarter,year>

Location: <locid, city, state, country>



#### ROLAP Alternative: Snowflake Schema



#### Normalized dimension tables

- Space efficient
- Captures hierarchies
- Fact-dimension joins more expensive

#### ROLAP Alternative: Snowflake Schema



Stonebraker: "If you are a data warehouse designer and come up with something other than a snowflake schema, you should probably rethink your design."



- Normalized dimension tables
  - Space efficient
  - Captures hierarchies
  - Fact-dimension joins more expensive



## **OLAP** queries

#### Combination of SQL and spreadsheets

SELECT
product.category, SUM(sales)
FROM sales, product, time
WHERE time.year=2016 AND
sales.timeid=time.timeid AND
sales.prodid=product.prodid
GROUP BY product.category
locid

|          |     | Α              | В     |        | С      | D     | Е     |      |
|----------|-----|----------------|-------|--------|--------|-------|-------|------|
| 1        | pr  | oduct.category | locid | l time | e.year | sales | SUM   |      |
| 2        |     | 1              | 1     | 20     | 016    | 721   |       |      |
| 3        |     | 1              | 2     | 20     | 016    | 586   |       |      |
| 4        |     | Α              |       | В      | С      |       | D     | E    |
| 5        | 1   | product.categ  | ory   | locid  | time.  | year  | sales | SUM  |
| 6        | 2   | 1              |       | 1      | 20:    | 16    | 256   |      |
| 7        | 3   | 2              |       | 1      | 203    | 16    | 669   | 1080 |
| 8        | 4   | 3              |       | 1      | 203    | 16    | 155   |      |
| 9        | 5   | 1              |       | 2      | 203    | 16    | 337   |      |
| 10       | 6   | 2              |       | 2      | 203    | 16    | 208   | 647  |
| 11       | - 7 | 3              |       | 2      | 203    | 16    | 102   |      |
| 12       | 8   | 1              |       | 3      | 203    | 16    | 409   |      |
| 13       | 9   | 2              |       | 3      | 203    | 16    | 881   | 1358 |
| 14<br>15 | 10  | 3              |       | 3      | 203    | 16    | 68    |      |
| 16       | 11  | 1              |       | 4      | 20:    | 16    | 647   |      |
| 17       | 12  | 2              |       | 4      | 203    | 16    | 125   | 895  |
| 18       | 13  | 3              |       | 4      | 20:    | 16    | 123   |      |
|          | 14  | 1              |       | 5      | 20:    | 16    | 775   |      |
|          | 15  | 2              |       | 5      | 203    | 16    | 686   | 2220 |
|          | 16  | 3              |       | 5      | 203    | 16    | 759   |      |
|          | 17  |                |       |        |        |       |       | 6200 |

## OLAP queries (2)

- Combination of SQL and spreadsheets
- Key operation: Aggregations & group by
  - Find total sales
  - Find total sales for each city/state/location/category/...
  - Find top-5 products ranked by average sales

**–** ...

## **Examples of OLAP**

- Comparisons (this period v.s. last period)
  - Show me the sales per region for this year and compare it to that of the previous year to identify discrepancies
- Multidimensional ratios (percent to total)
  - Show me the contribution to weekly profit made by all items sold in the northeast stores between may 1 and may 7
- Ranking and statistical profiles (top N/bottom N)
  - Show me sales, profit and average call volume per day for my 10 most profitable salespeople
- Custom consolidation (market segments, ad hoc groups)
  - Show me an abbreviated income statement by quarter for the last four quarters for my northeast region operations



## OLAP queries (3)

- Roll-up: Aggregation at different levels
  - E.g., given total sales by city, roll-up to get sales by state

country

|
state
|
city

<locid, city, state, country>

| STATE | CITY     | SUM(sales) |
|-------|----------|------------|
|       |          |            |
| NY    | New York | 43324      |
| NY    | Albany   | 6343       |
| NY    | Buffalo  | 5535       |
| NY    |          | 55202      |
| CA    | Berkeley | 44200      |
| CA    | Davis    | 553        |
| CA    |          | 44753      |
|       |          | 99955      |
|       |          |            |

## OLAP queries (4)

- Roll-up: Aggregation at different levels
  - E.g., given total sales by city, roll-up to get sales by state

country
|
state
|
city

- Drill-down: Inverse of roll-up
  - E.g., given total sales by state, drill-down to get total sales by city, by product, by quarter, ...
- Pivoting: Aggregation on selected dimensions
  - Result: cross-tabulation
  - E.g., pivoting on Location and Time:



# Comparison with SQL queries

 Cross-tabulation obtained by pivoting can be computed using a collection of SQL queries

```
Q1: SELECT SUM(S.sales)
FROM sales S,
times T, locations L WHERE
S.timeid=T.timeid AND
S.locid=L.locid
```

|           | St       | ate |              |
|-----------|----------|-----|--------------|
|           | <u> </u> | CA  | <b>Total</b> |
| ( 0       | 7 30     | 44  | 74           |
| /ear<br>o | 8 52     | 113 | 165          |
| 0         | 9 55     | 442 | 497          |
| Tota      | 137      | 599 | 736          |

```
Q2: SELECT SUM(S.sales) FROM sales S, times T WHERE S.timeid=T.timeid GROUP BY T.year
```

```
Q3: SELECT SUM(S.sales) FROM sales S, locations L WHERE S.locid=L.locid GROUP BY L.state
```

## OLAP queries (5)

 Slicing and dicing: Equality and range selections on one or more dimensions



## The CUBE operator

- k dimensions → 2<sup>k</sup> possible SQL GROUP BY queries
  - 10 dimensions → 1024 queries!
- Cube operator: compute all combinations

Oracle syntax: modify GROUP BY clause:

GROUP BY CUBE (prodid, locid, timeid)

Alternative syntax: CUBE BY

## The CUBE operator (2)

- Cube operator: compute all combinations
  - Equivalent to aggregating sales on all eight subsets of the set (prodid, locid, timeid)
  - Each group corresponds to an SQL query:
     SELECT SUM(S.sales) FROM sales S
     GROUP BY grouping-list

Why CUBE?
Why not individual queries?

### Relational View of Data Cube

| Sales |     | Product |     |     |      |      |  |
|-------|-----|---------|-----|-----|------|------|--|
|       |     | 1       | 2   | 3   | 4    | ALL  |  |
|       | 1   | 454     | -   | -   | 925  | 1379 |  |
| 4)    | 2   | 468     | 800 | -   | _    | 1268 |  |
| Store | 3   | 296     | -   | 240 | -    | 536  |  |
|       | 4   | 652     | -   | 540 | 745  | 1937 |  |
|       | ALL | 1870    | 800 | 780 | 1670 | 5120 |  |

SELECT LOCATION.store, SALES.product\_key, SUM (amount)

FROM SALES, LOCATION

WHERE SALES.location\_key=LOCATION.location\_key

CUBE BY SALES.product\_key, LOCATION.store

| Store | Product_key | sum(amount) |
|-------|-------------|-------------|
| 1     | 1           | 454         |
| 1     | 4           | 925         |
| 2     | 1           | 468         |
| 2     | 2           | 800         |
| 3     | 1           | 296         |
| 3     | 3           | 240         |
| 4     | 1           | 625         |
| 4     | 3           | 240         |
| 4     | 4           | 745         |
| 1     | ALL         | 1379        |
| 2     | ALL         | 1268        |
| 3     | ALL         | 536         |
| 4     | ALL         | 1937        |
| ALL   | 1           | 1870        |
| ALL   | 2           | 800         |
| ALL   | 3           | 780         |
| ALL   | 4           | 1670        |
| ALL   | ALL         | 5120        |

#### Data Cube: Multidimensional View



# Cube: Computing "super-aggregates"



in a guery used to build a cube cell => 'ALL'

# Cube: Computing "super-aggregates"

- What's the type of super-aggregate to compute?
  - COUNT, MIN, MAX, SUM:
     Compute directly from other cells

AVG():
 Keep track of SUM, COUNT to compute from other cells

Median, Rank:Must examine entire dataset



## Optimizations: Bitmap Indexes

- Indexing crucial for performance
- Bitmap indexes

#### Bit vectors:

1 bit for each possible value.

Many queries can be answered using bit-vector ops!

| ge               | en |
|------------------|----|
| 1                | 0  |
| 1                | 0  |
| 1<br>1<br>0<br>1 | 1  |
| 1                | 0  |

| custid | name | gen | rating |
|--------|------|-----|--------|
| 114    | Joe  | M   | 3      |
| 113    | Sam  | M   | 5      |
| 115    | Sue  | F   | 1      |
| 118    | John | M   | 4      |

| rating |
|--------|
| 00100  |
| 00001  |
| 10000  |
| 00010  |

Why is this faster?

## Optimizations: Join Indexes

- Join index: compute join and store [s,p,t,l]
  - s, p, t, l: record ids in Sales, Products, Times, Locations
- Problem: Number of join indexes grows rapidly
- Alternative
  - For each dimension table with column c, compute [c,s]
    - Include selection attributes inside the index!
  - Join-merge the indexes at query time



## **Optimizations: Star Join**



- Apply filters on dimensions during hashtable creation
- Get qualifying keys from each dimension, and use them to prune Fact table => Reduce fact tuples used in joins

# HED HOT CHILI PEPPERS



#### Overview

- Introduction
- Data warehouses
- On-line analytical processing (OLAP)
- Views
- Top-N queries

#### Views

- Most OLAP queries: aggregate queries
  - Cube large collection of aggregate queries
  - Expensive precomputation is essential

- Views: A key component of warehouses
  - Evaluate-on-demand
  - Pre-computed materialized
    - Different refresh policies



#### Evaluate-on-demand views

```
CREATE VIEW RegionalSales
(category, sales, state) AS SELECT P.category,
S.sales, L.state FROM Products P, Sales S,
Locations L WHERE S.pid=P.pid AND
S.locid=L.locid
```

SELECT category, state, SUM (sales) FROM RegionalSales GROUP BY category, state



## Evaluate-on-demand views (2)

```
CREATE VIEW RegionalSales
(category, sales, state) AS SELECT P.category,
S.sales, L.state FROM Products P, Sales S,
Locations L WHERE S.pid=P.pid AND
S.locid=L.locid
```

SELECT category, state, SUM (sales) FROM RegionalSales GROUP BY category, state

#### Modified query:

```
SELECT category, state, SUM(sales) FROM
(SELECT P.category, S.sales, L.state FROM
Products P, Sales S, Locations L WHERE
S.pid=P.pid AND S.locid=L.locid)
GROUP BY category, state
```

#### View materialization

- Materialized view: A view whose tuples are stored in the database – a virtual table
  - Efficiency: Fast access, similar to a query cache 

     enable interactive queries
  - Indexing: Ability to add indexes on aggregate queries
  - Reusability: Reuse results across queries/users
- But introducing complexity
  - Data replication → additional space requirements
  - Maintenance/refreshing



#### Issues in view materialization

- Which views to materialize which indexes to build on top of them
- How/when to exploit views
  - Both are application-dependent: expected workload, cost with/without the view, real-time requirements

How to maintain the views up-to-date

### View maintenance policies

- Immediate view maintenance
- Deferred view maintenance
  - Lazy: update before query
    - Slower queries, faster updates
    - Queries still faster than no-view in most cases
  - Periodic: update at regular intervals
  - Forced: update after a certain number of updates to the base tables
    - Fast queries, batch updating
    - Possibly stale results



# Computing Data Cube From Existing Views

Model dependencies among the aggregates:



## Cube building optimizations

Agrawal et al [VLDB96]



Optimize hash/sort-based cube computation:

- Smallest-parent
- Cache-results
- Amortize-scans
- Share-sorts
- Share-partitions



#### Which views to build?

- Use some notion of benefit per view
- Limit: disk space or maintenance-time



Hanirayan et al SIGMOD'96:



Pick views greedily until space is filled

Catch: quadratic in the number of views, which is exponential!!!

#### Overview

- Introduction
- Data warehouses
- On-line analytical processing (OLAP)
- Views
- Top-N queries

## Top-N queries

#### Examples

- Find the 20 most expensive products
- Find the 10 products sold most in the USA
- Find the 5 cities where products of category "Apparel" are sold most

#### Key optimization insight

Focus on very few results

# Top-N queries (2)

#### **Examples**

 Find the 10 products with the highest sales in locid=1 and timeid=3

```
SELECT P.pid, P.pname, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3
ORDER BY S.sales DESC OPTIMIZE FOR 10 ROWS
```



```
SELECT P.pid, P.pname, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3
AND S.sales>c ORDER BY S.sales DESC
```



### Summary

OLAP: Providing decision support for your future managers

- Multidimensional data model, typically represented as special db schema
  - Star, snowflake
- Materialize views for fast retrieval of summaries
  - Keep in mind though: Column stores are changing the picture!!!