Università di Roma Tor Vergata

Statistica per la ricerca sperimentale e tecnologica (Informatica) (Esercizi 1-2-3-4-5-6)

Probabilità e Statistica (Scienza dei Media e delle Comunicazioni) (Esercizi 1-2-3-4-5-6)

Probabilità e Statistica (Scienza e Tecnologia dei Materiali) (Esercizi 1-2-3-4-5-7)

Anno accademico: 2008-2009. Titolare del corso: Claudio Macci

Esame del 20 Febbraio 2009

Esercizio 1. Un'urna contiene 14 palline numerate da 1 a 14. Si estraggono a caso 2 palline in blocco. Sia X la variabile aleatoria che conta il numero di palline con numero pari estratte.

- D1) Trovare la densità discreta di X.
- D2) Calcolare la probabilità di estrarre i numeri 1 e 2.

Esercizio 2. Consideriamo il seguente gioco. Si lancia una moneta equa: se esce testa si lancia un dado equo e si vince se esce un numero pari; se esce croce si estrae una pallina a caso da un'urna che ne contiene 10 numerate da 1 a 10 e si vince se esce uno dei numeri {1, 2, 3}.

- D3) Calcolare la probabilità di vincere il gioco.
- D4) Calcolare la probabilità di aver ottenuto testa nel lancio di moneta sapendo di aver vinto il gioco.

Esercizio 3. La variabile aleatoria (X_1,X_2) ha la seguente densità congiunta: $p_{(X_1,X_2)}(0,0)=p_{(X_1,X_2)}(1,1)=\frac{3}{8};\ p_{(X_1,X_2)}(1,0)=p_{(X_1,X_2)}(0,1)=\frac{1}{8}.$ D5) Calcolare $\mathrm{Cov}(X_1,X_2).$

- D6) Trovare la densità discreta di $Z = X_1 X_2$.

Esercizio 4. Sia X una variabile aleatoria uniforme su [0,1].

- D7) Calcolare $\mathbb{E}[e^{2X}]$.
- Sia $N_t = \sum_{n \ge 1} 1_{T_n \le t}$ (per $t \ge 0$) un processo di Poisson con intensità di $\lambda = 1$.
- D8) Calcolare $P(N_5=2)$.

Esercizio 5. Sia X una variabile aleatoria normale con media 0 e varianza 3. Poi sia Y una variabile aleatoria normale standard e indipendente da X.

- D9) Calcolare $P(X > 2\sqrt{3})$.
- D10) Qual è la distribuzione di X Y?

Esercizio 6. Sia X una variabile aleatoria esponenziale di parametro $\lambda = 2$. Poi sia (X_n) una successione di variabili aleatorie indipendenti e con la stessa distribuzione di X.

- D11) Calcolare P(3 < X < 5).
- D12) Dire per quale valore di c si ha $\lim_{n\to\infty} P(|\overline{X}_n-c|\geq\varepsilon)=0$ per ogni $\varepsilon>0$, dove $\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$.

Esercizio 7. Sia (X_n) una catena di Markov omogenea con spazio degli stati $\{1,2,3,4\}$ e matrice di transizione

$$P = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 2/3 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

1

- D13) Calcolare $P(X_3 = 3 | X_0 = 3)$.
- D14) Trovare le distribuzioni stazionarie.

Cenno alle soluzioni (Ogni segnalazione di errori o sviste (sempre possibili) è gradita)

Esercizio 1.

- D1) La densità discreta di X è $p_X(k)=\frac{\binom{7}{k}\binom{7}{2-k}}{\binom{14}{2}}$ per $k\in\{0,1,2\},$ da cui segue $p_X(0)=\frac{3}{13},$ $p_X(1) = \frac{7}{13} e p_X(2) = \frac{3}{13}.$
- D2) La probabilità richiesta coincide con la probabilità di estrarre un qualsiasi sottoinsieme di 2 elementi di $\{1, \ldots, 14\}$, che è $1/\binom{14}{2} = 1/91$.

Esercizio 2. Sia V l'evento "vincere il gioco", ed T l'evento "esce testa nel lancio di moneta".

- D3) Per la formula delle probabilità totali si ha $P(V) = P(V|T)P(T) + P(V|T^c)P(T^c) = \frac{3}{6} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}$ $\frac{3}{10} \cdot \frac{1}{2} = (\frac{1}{2} + \frac{3}{10})\frac{1}{2} = \frac{5+3}{10}\frac{1}{2} = \frac{8}{20} = \frac{2}{5}$.

 D4) Per la formula di Bayes e, sfruttando il valore di P(V) calcolato prima, si ha $P(T|V) = \frac{3}{10} \cdot \frac{1}{10} = \frac{1}{10} \cdot \frac{1}{10} \frac{1}{10} = \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{10}$
- $\frac{P(V|T)P(T)}{P(V)} = \frac{3}{6} \cdot \frac{1}{2} / \frac{2}{5} = \frac{1}{4} \cdot \frac{5}{2} = \frac{5}{8}.$

Esercizio 3.

- D5) Si ha $p_{X_1}(0) = p_{(X_1,X_2)}(0,0) + p_{(X_1,X_2)}(0,1) = \frac{3+1}{8} = \frac{1}{2} e p_{X_1}(1) = p_{(X_1,X_2)}(1,0) + p_{(X_1,X_2)}(1,1) = \frac{1+3}{8} = \frac{1}{2}$, da cui segue $\mathbb{E}[X_1] = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$; $p_{X_2}(0) = p_{(X_1,X_2)}(0,0) + p_{(X_1,X_2)}(1,0) = \frac{3+1}{8} = \frac{1}{2}$ e $p_{X_2}(1) = p_{(X_1,X_2)}(0,1) + p_{(X_1,X_2)}(1,1) = \frac{1+3}{8} = \frac{1}{2}$, da cui segue $\mathbb{E}[X_2] = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$. Infine $\mathbb{E}[X_1X_2] = 0 \cdot 0 \cdot \frac{3}{8} + 0 \cdot 1 \cdot \frac{1}{8} + 1 \cdot 0 \cdot \frac{1}{8} + 1 \cdot 1 \cdot \frac{3}{8} = \frac{3}{8}$, da cui segue $Cov(X_1, X_2) = \mathbb{E}[X_1X_2] \mathbb{E}[X_1]\mathbb{E}[X_2] = \frac{3}{8}$ $\frac{3}{8} - \frac{1}{2} \cdot \frac{1}{2} = \frac{3-2}{8} = \frac{1}{8}.$ D6) Si ha $p_Z(0) = p_{(X_1, X_2)}(0, 0) + p_{(X_1, X_2)}(1, 1) = \frac{3}{8} + \frac{3}{8} = \frac{6}{8}, \ p_Z(1) = p_{(X_1, X_2)}(1, 0) = \frac{1}{8}$ e
- $p_Z(-1) = p_{(X_1, X_2)}(0, 1) = \frac{1}{8}.$

Esercizio 4.

- D7) Si ha $\mathbb{E}[e^{2X}] = \int_0^1 e^{2t} dt = \frac{1}{2} \int_0^1 2e^{2t} dt = \frac{1}{2} [e^{2t}]_{t=0}^{t=1} = \frac{e^2 1}{2}.$ D8) Si ha $P(N_5 = 2) = \frac{(1 \cdot 5)^2}{2!} e^{-1 \cdot 5} = \frac{25}{2} e^{-5}.$

Esercizio 5.

- D9) Si ha $P(X > 2\sqrt{3}) = P(\frac{X-0}{\sqrt{3}} > \frac{2\sqrt{3}}{\sqrt{3}}) = P(\frac{X-0}{\sqrt{3}} > 2) = 1 \Phi(2) = 1 0.97725 = 0.02275$.

 D10) La variabile aleatoria X Y ha distribuzione normale con media 0 0 = 0 e varianza
- $3 + (-1^2) \cdot 1 = 4.$

Esercizio 6.

- D11) Si ha $P(3 < X < 5) = F_X(5) F(3) = 1 e^{-2.5} (1 e^{-2.3}) = e^{-6} e^{-10}$.
- D12) Per la legge dei grandi numeri (e per formule note sulla distribuzione esponenziale) si ha $c = \mathbb{E}[X_n] = 1/\lambda = 1/2.$

Commenti.

- D1) Si ha $p_X(0) + p_X(1) + p_X(2) = \frac{3+7+3}{13} = 1$ in accordo con la teoria.
- D2) In altro modo, se Y è la variabile aleatoria che conta il numero di successi (dove per successo si intende l'estrazione di uno dei due numeri 1 e 2), la probabilità richiesta è $p_Y(2) = \frac{\binom{2}{2}\binom{18}{0}}{\binom{14}{0}} = \frac{1}{\binom{14}{0}} = \frac{1}{\binom{14}{0}}$
- D6) Si ha $p_Z(-1) + p_Z(0) + p_Z(1) = \frac{1+6+1}{8} = 1$ in accordo con la teoria.

Esercizio 7.

D13) Se la catena parte da 3, quando lascia tale stato finisce nello stato assorbente 4 e non torna in 3. Quindi, indicando con p_{ij} gli elementi della matrice di transizione P, si ha

$$P(X_3 = 3 | X_0 = 3) = p_{33} \cdot p_{33} \cdot p_{33} = (1/3)^3 = 1/27.$$

D14) Gli stati $\{1,2\}$ comunicano tra loro (la catena oscilla tra i due stati senza aleatorietà). Lo stato 3 comunica con lo stato 4 ma non vale il viceversa perché 4 è uno stato assorbente. Allora, se $\pi = (\pi_1, \pi_2, \pi_3, \pi_4)$ è una distribuzione stazionaria, si ha $\pi_3 = 0$. Possiamo dunque dire che tutte le distribuzioni stazionarie si ottengono come combinazione lineare convessa delle uniche distribuzioni stazionarie che competono alle classi chiuse $\{1,2\}$ e $\{4\}$, cioè

$$\pi^{(\alpha)} = \alpha \pi^{(12)} + (1 - \alpha) \pi^{(4)}$$
 (per ogni $\alpha \in [0, 1]$)

dove: $\pi^{(12)} = (\beta, 1 - \beta, 0, 0)$, con $(\beta, 1 - \beta)$ distribuzione stazionaria della catena ristretta agli stati $\{1, 2\}$; $\pi^{(4)} = (0, 0, 0, 1)$ distribuzione stazionaria della catena ristretta allo stato assorbente $\{4\}$. In particolare si ha

$$(\beta, 1-\beta) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (\beta, 1-\beta)$$

da cui segue

$$\left\{ \begin{array}{l} 1-\beta=\beta\\ \beta=1-\beta. \end{array} \right.$$

Le equazioni coincidono e hanno soluzione $\beta = 1/2$. In conclusione le distribuzioni stazionarie sono

$$\pi^{(\alpha)} = (\alpha/2, \alpha/2, 0, 1 - \alpha) \quad \text{(per ogni } \alpha \in [0, 1]\text{)}. \tag{1}$$

Commenti.

D14) In altro modo, se $\pi = (\pi_1, \pi_2, \pi_3, \pi_4)$ è una distribuzione stazionaria, si ha

$$(\pi_1, \pi_2, \pi_3, \pi_4) \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 2/3 \\ 0 & 0 & 0 & 1 \end{pmatrix} = (\pi_1, \pi_2, \pi_3, \pi_4),$$

da cui segue il sistema

$$\begin{cases} \pi_2 = \pi_1 \\ \pi_1 = \pi_2 \\ \pi_3/3 = \pi_3 \\ \pi_4 = \pi_4. \end{cases}$$

Allora si deve avere

$$\pi = (\gamma, \gamma, 0, 1 - 2\gamma)$$
 (per qualche $\gamma \in [0, 1/2]$),

dove i valori assunti da γ consentono di avere componenti non negative e a somma 1. Cambiando parametrizzazione con $\alpha = 2\gamma$ e osservando che in questo modo si ha $\alpha \in [0, 1]$, otteniamo tutte e sole le distribuzioni nella formula (1).