$10_{79} \ (K10a_{78})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 1.48752 \times 10^{31} u^{33} - 1.92107 \times 10^{31} u^{32} + \dots + 2.67160 \times 10^{30} b - 8.42537 \times 10^{31},$$

$$2.31853 \times 10^{30} u^{33} - 3.45308 \times 10^{30} u^{32} + \dots + 7.63313 \times 10^{29} a - 1.53986 \times 10^{31}, \ u^{34} - 2u^{33} + \dots - 4u + 4u + 4u^{30} = \langle b - u - 1, \ a, \ u^2 + u - 1 \rangle$$

$$I_1^v = \langle a, b - v + 2, v^2 - 3v + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 38 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I.} \\ I_1^u = \langle 1.49 \times 10^{31} u^{33} - 1.92 \times 10^{31} u^{32} + \dots + 2.67 \times 10^{30} b - 8.43 \times 10^{31}, \ 2.32 \times 10^{30} u^{33} - 3.45 \times 10^{30} u^{32} + \dots + 7.63 \times 10^{29} a - 1.54 \times 10^{31}, \ u^{34} - 2u^{33} + \dots - 4u + 4 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -3.03746u^{33} + 4.52380u^{32} + \dots + 15.5234u + 20.1734 \\ -5.56789u^{33} + 7.19074u^{32} + \dots + 16.8842u + 31.5368 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -6.74042u^{33} + 9.34081u^{32} + \dots + 25.8322u + 41.5551 \\ -3.71677u^{33} + 4.73023u^{32} + \dots + 11.0317u + 20.5108 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -8.87471u^{33} + 12.3007u^{32} + \dots + 32.0519u + 57.5877 \\ -5.70723u^{33} + 7.43204u^{32} + \dots + 16.7561u + 33.4853 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -14.5819u^{33} + 19.7327u^{32} + \dots + 48.8081u + 91.0730 \\ -5.70723u^{33} + 7.43204u^{32} + \dots + 16.7561u + 33.4853 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -14.5819u^{33} + 19.7327u^{32} + \dots + 48.8081u + 91.0730 \\ -5.70723u^{33} + 7.43204u^{32} + \dots + 16.7561u + 33.4853 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -14.5819u^{33} + 19.7327u^{32} + \dots + 48.8081u + 91.0730 \\ -0.387583u^{33} + 0.811626u^{32} + \dots + 3.84702u + 4.23934 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 15.6894u^{33} - 20.9276u^{32} + \dots + 48.8834u - 95.7780 \\ 1.33189u^{33} - 1.83094u^{32} + \dots - 48.8834u - 95.7780 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $3.23572u^{33} 4.86218u^{32} + \cdots 45.6005u 20.0908$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4	$u^{34} - 4u^{33} + \dots + 10u + 1$
c_2, c_6	$u^{34} + 2u^{33} + \dots + 4u + 4$
c_5, c_8	$u^{34} - 2u^{33} + \dots - 4u + 4$
c_7, c_9, c_{10}	$u^{34} + 4u^{33} + \dots - 10u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_4 \\ c_7, c_9, c_{10}$	$y^{34} - 32y^{33} + \dots - 42y + 1$
c_2, c_5, c_6 c_8	$y^{34} - 18y^{33} + \dots - 296y + 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.334121 + 0.939075I		
a = 0.665187 + 1.185390I	8.19540 - 1.89242I	7.34522 + 1.79557I
b = 0.168561 - 1.149830I		
u = -0.334121 - 0.939075I		
a = 0.665187 - 1.185390I	8.19540 + 1.89242I	7.34522 - 1.79557I
b = 0.168561 + 1.149830I		
u = 0.286460 + 0.973864I		
a = 0.697313 - 0.627321I	-2.64192 + 2.05432I	-2.87162 - 3.29014I
b = -0.30439 + 1.55545I		
u = 0.286460 - 0.973864I		
a = 0.697313 + 0.627321I	-2.64192 - 2.05432I	-2.87162 + 3.29014I
b = -0.30439 - 1.55545I		
u = 0.810678 + 0.499386I		
a = 0.792602 + 0.713045I	2.64192 - 2.05432I	2.87162 + 3.29014I
b = 0.050287 - 0.622907I		
u = 0.810678 - 0.499386I		
a = 0.792602 - 0.713045I	2.64192 + 2.05432I	2.87162 - 3.29014I
b = 0.050287 + 0.622907I		
u = -0.995699 + 0.467507I		
a = 0.638734 + 0.769428I	4.00435I	0 6.49701I
b = 0.60499 - 1.49342I		
u = -0.995699 - 0.467507I		
a = 0.638734 - 0.769428I	-4.00435I	0. + 6.49701I
b = 0.60499 + 1.49342I		
u = 1.088970 + 0.372927I		
a = 0.911686 - 0.699013I	-3.39729 - 2.12414I	-2.18234 + 2.03948I
b = 1.62610 + 0.98618I		
u = 1.088970 - 0.372927I		
a = 0.911686 + 0.699013I	-3.39729 + 2.12414I	-2.18234 - 2.03948I
b = 1.62610 - 0.98618I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.845756 + 0.036069I		
a = -0.613787 + 0.538660I	-1.359860 + 0.095322I	-5.80027 + 0.42636I
b = 0.203218 - 0.673856I		
u = 0.845756 - 0.036069I		
a = -0.613787 - 0.538660I	-1.359860 - 0.095322I	-5.80027 - 0.42636I
b = 0.203218 + 0.673856I		
u = -1.112820 + 0.516604I		
a = -0.842410 + 0.743758I	-2.34523 + 5.26340I	-1.79194 - 3.97493I
b = -0.101206 + 0.252455I		
u = -1.112820 - 0.516604I		
a = -0.842410 - 0.743758I	-2.34523 - 5.26340I	-1.79194 + 3.97493I
b = -0.101206 - 0.252455I		
u = -0.304859 + 0.635319I		
a = -0.625675 + 0.780084I	-0.739532I	0 4.35806I
b = 0.24828 - 2.17048I		
u = -0.304859 - 0.635319I		
a = -0.625675 - 0.780084I	0.739532I	0. + 4.35806I
b = 0.24828 + 2.17048I		
u = -0.538543 + 0.433436I		
a = -0.920373 - 0.807720I	1.359860 - 0.095322I	5.80027 - 0.42636I
b = -0.674327 + 1.021010I		
u = -0.538543 - 0.433436I		
a = -0.920373 + 0.807720I	1.359860 + 0.095322I	5.80027 + 0.42636I
b = -0.674327 - 1.021010I		
u = 1.253480 + 0.421212I		
a = 0.690781 - 0.529640I	3.39729 - 2.12414I	2.18234 + 2.03948I
b = -0.104017 + 0.977410I		
u = 1.253480 - 0.421212I		
a = 0.690781 + 0.529640I	3.39729 + 2.12414I	2.18234 - 2.03948I
b = -0.104017 - 0.977410I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.650050		
a = -2.72250	6.73970	-7.32000
b = -1.02677		
u = -1.335420 + 0.228599I		
a = 0.360026 - 0.641577I	-8.19540 + 1.89242I	-7.34522 - 1.79557I
b = 0.062959 - 0.180613I		
u = -1.335420 - 0.228599I		
a = 0.360026 + 0.641577I	-8.19540 - 1.89242I	-7.34522 + 1.79557I
b = 0.062959 + 0.180613I		
u = 1.215470 + 0.599118I		
a = -0.588471 + 0.824257I	-5.53452 - 7.73594I	-3.53535 + 5.97450I
b = -1.38976 - 1.48159I		
u = 1.215470 - 0.599118I		<u>-</u>
a = -0.588471 - 0.824257I	-5.53452 + 7.73594I	-3.53535 - 5.97450I
b = -1.38976 + 1.48159I		
u = -1.209090 + 0.649293I		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
a = -0.573728 - 0.803607I	5.53452 + 7.73594I	3.53535 - 5.97450I
b = -0.46886 + 1.54639I		
u = -1.209090 - 0.649293I	F F0.4F0 F F0F0.4F	0.50505 . 5.05450.5
a = -0.573728 + 0.803607I	5.53452 - 7.73594I	3.53535 + 5.97450I
b = -0.46886 - 1.54639I $u = 0.553222 + 1.262860I$		
	2 24522 5 262401	1.79194 - 3.97493I
a = -0.667081 + 0.588961I	2.34523 + 5.26340I	1.79194 — 3.974937
b = 0.13797 - 1.43868I $u = 0.553222 - 1.262860I$		
a = -0.667081 - 0.588961I	2.34523 - 5.26340I	1.79194 + 3.97493I
	2.34323 — 3.203401	1.13134 + 3.314331
b = 0.13797 + 1.43868I $u = 0.522880$		
a = -0.522860 $a = -0.711056$	$\begin{vmatrix} -1.14323 \end{vmatrix}$	$\begin{vmatrix} -10.3340 \end{vmatrix}$
b = 0.786385	1.14020	10.5540
0 - 0.100303		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.26084 + 0.79719I		
a = 0.428806 - 0.903397I	-12.5403I	0. + 7.07308I
b = 1.11261 + 1.64372I		
u = 1.26084 - 0.79719I		
a = 0.428806 + 0.903397I	12.5403I	0 7.07308I
b = 1.11261 - 1.64372I		
u = -0.371797		
a = -1.40636	1.14323	10.3340
b = -0.980790		
u = -1.76976		
a = -0.367310	-6.73970	0
b = -0.123664		

II.
$$I_2^u = \langle b - u - 1, \ a, \ u^2 + u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ 2u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u-1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u+1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -9

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing		
c_1, c_2	$u^2 + u - 1$		
c_3, c_4, c_6	u^2-u-1		
c_5, c_8	u^2		
c ₇	$(u+1)^2$		
c_9, c_{10}	$(u-1)^2$		

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_6	$y^2 - 3y + 1$		
c_5, c_8	y^2		
c_7, c_9, c_{10}	$(y-1)^2$		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 0	0.657974	-9.00000
b = 1.61803		
u = -1.61803		
a = 0	-7.23771	-9.00000
b = -0.618034		

III.
$$I_1^v=\langle a,\ b-v+2,\ v^2-3v+1
angle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ v - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2v - 1 \\ v - 2 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} v \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} v+1\\1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -v \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -v \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2v+1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 9

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^2$
c_2, c_6	u^2
c_3, c_4	$(u+1)^2$
c_5, c_7	$u^2 - u - 1$
c_8, c_9, c_{10}	$u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4	$(y-1)^2$
c_{2}, c_{6}	y^2
c_5, c_7, c_8 c_9, c_{10}	$y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.381966		
a = 0	-0.657974	9.00000
b = -1.61803		
v = 2.61803		
a = 0	7.23771	9.00000
b = 0.618034		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^2)(u^2+u-1)(u^{34}-4u^{33}+\cdots+10u+1)$
c_2	$u^{2}(u^{2}+u-1)(u^{34}+2u^{33}+\cdots+4u+4)$
c_3, c_4	$((u+1)^2)(u^2-u-1)(u^{34}-4u^{33}+\cdots+10u+1)$
c_5	$u^{2}(u^{2}-u-1)(u^{34}-2u^{33}+\cdots-4u+4)$
	$u^{2}(u^{2}-u-1)(u^{34}+2u^{33}+\cdots+4u+4)$
C ₇	$((u+1)^2)(u^2-u-1)(u^{34}+4u^{33}+\cdots-10u+1)$
c_8	$u^{2}(u^{2}+u-1)(u^{34}-2u^{33}+\cdots-4u+4)$
c_9,c_{10}	$((u-1)^2)(u^2+u-1)(u^{34}+4u^{33}+\cdots-10u+1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_4 \\ c_7, c_9, c_{10}$	$((y-1)^2)(y^2-3y+1)(y^{34}-32y^{33}+\cdots-42y+1)$
c_2, c_5, c_6 c_8	$y^{2}(y^{2} - 3y + 1)(y^{34} - 18y^{33} + \dots - 296y + 16)$