Digital Logic Design + Computer Architecture

Sayandeep Saha

Assistant Professor
Department of Computer
Science and Engineering
Indian Institute of Technology
Bombay

Do You Want to Design Some Day?

Design with Gates

- Logic gates: perform logical operations on input signals
- **Positive (negative) logic polarity**: constant 1 (0) denotes a high voltage and constant 0 a low (high) voltage
- Combinational circuits: No memorization
- Synchronous sequential circuits: have memory; driven by a clock that produces a train of equally spaced pulses
- Propagation delay: time to propagate a signal through a gate
- **Asynchronous circuits**: are almost free-running and do not depend on a initiation and completion signals

Combinational Circuits

Circuit analysis: determine the Boolean function that describes the circuit

• Done by tracing the output of each gate, starting from circuit inputs and continuing towards each circuit output

Example: a multi-level realization of a full binary adder

Combinational Circuits: Parity-bit Generator

Parity-bit generator: produces output value 1 if and only if an odd number of its inputs have value 1

(a) Map.

(b) Implementation.

$$P = x'y'z + x'yz' + xy'z' + xyz = x. + y + z$$

Combinational Circuits: Serial to Parallel

Serial-to-parallel converter: distributes a sequence of binary digits on a serial input to a set of different outputs, as specified by external control signals

Control		(Dutpu	t line	Logic equations	
C_1	C_2	L_1	L_2	L_3	L_4	
0	0	x	0	0	0	$L_1 = xC_1'C_2'$
0	1	0	x	0	0	$L_2 = xC_1'C_2$
1	0	0	0	x	0	$L_3 = xC_1C_2'$
1	1	0	0	0	\boldsymbol{x}	$L_4 = xC_1C_2$

Combinational Circuits: Comparators

n-bit comparator: compares the magnitude of two numbers X and Y, and has three outputs f_1, f_2 , and f_3

- $f_1 = 1 \text{ iff } X > Y$
- $f_2 = 1 \text{ iff } X = Y$
- $f_3 = 1 \text{ iff } X < Y$

(a) Block diagram.

(b) Map for f_1 , f_2 , and f_3 .

$$f_1 = ?$$

$$f_2 = ?$$

$$f_3 = ?$$

Combinational Circuits: Comparators

n-bit comparator: compares the magnitude of two numbers X and Y, and has three outputs f_1, f_2 , and f_3

- $f_1 = 1 \text{ iff } X > Y$
- $f_2 = 1 \text{ iff } X = Y$
- $f_3 = 1 \text{ iff } X < Y$

(a) Block diagram.

X_1	X_1X_2										
<i>y</i> ₁ <i>y</i> ₂	00	01	11	10							
00	2	1	1	1							
01	3	2	1	1							
11	3	3	2	3							
10	3	3	1	2							

(b) Map for f_1 , f_2 , and f_3 .

(c) Circuit for f_1 .

$$f_1 = x_1 x_2 y_2' + x_2 y_1' y_2' + x_1 y_1'$$

= $(x_1 + y_1')x_2 y_2' + x_1 y_1'$

$$f_2 = x_1 'x_2 'y_1 'y_2 ' + x_1 'x_2 y_1 'y_2 + x_1 x_2 'y_1 y_2 ' + x_1 x_2 y_1 y_2$$

$$= x_1 'y_1 '(x_2 'y_2 ' + x_2 y_2) + x_1 y_1 (x_2 'y_2 ' + x_2 y_2)$$

$$= (x_1 'y_1 ' + x_1 y_1)(x_2 'y_2 ' + x_2 y_2)$$

$$f_3 = x_2 'y_1y_2 + x_1 'x_2 'y_2 + x_1 'y_1$$

= $x_2 'y_2(y_1 + x_1 ') + x_1 'y_1$

Combinational Circuits: Comparators

Four-bit comparator: 8 inputs (four for A, four for B, and three outputs A > B, A < B and A = B

$$x_i = A_i B_i + A_i' B_i'$$
 $i = 0, 1, 2, 3$

$$(A = B) = x_3 x_2 x_1 x_0$$

$$(A > B) = A_3 B_3' + x_3 A_2 B_2' + x_3 x_2 A_1 B_1' + x_3 x_2 x_1 A_0 B_0'$$

$$(A < B) = A_3' B_3 + x_3 A_2' B_2 + x_3 x_2 A_1' B_1 + x_3 x_2 x_1 A_0' B_0$$

Combinational Circuits: Multiplexers

Multiplexer: electronic switch that connects one of *n* inputs to the output

Data selector: application of multiplexer

- n data input lines, $D_0, D_1, ..., D_{n-1}$
- m select digit inputs $s_0, s_1, ..., s_{m-1}$

Combinational Circuits: Multiplexers

Data selectors: can implement arbitrary switching functions

Example: implementing two-variable functions

$$z = sD_1 + s'D_0$$

If
$$s = A$$
, $B = D_0$, and $B' = D_1$, then $z = A \oplus B$.

If
$$s = A$$
, $D_0 = 1$, and $D_1 = B'$, then $z = A' + B'$.

Implementing Switching Function with Mux

To implement an *n*-variable function: a data selector with n-1 select inputs and 2^{n-1} data inputs

Implementing three-variable functions:

$$z = s_2 \dot{s}_1 \dot{D}_0 + s_2 \dot{s}_1 D_1 + s_2 s_1 \dot{D}_2 + s_2 s_1 D_3$$

Example:
$$s_1 = A$$
, $s_2 = B$, $D_0 = C$, $D_1 = 1$, $D_2 = 0$, $D_3 = C'$

$$z = A'B'C + AB' + ABC'$$

$$= AC' + B'C$$

General case: Assign *n*-1 variables to the select inputs and last variable and constants 0 and 1 to the data inputs such that desired function results

Implementing Switching Function with Mux

•
$$Y = AC' + B'C$$

• Make A, B as select lines.

$$- A,B=0,0 => Y=C$$

$$- A,B=0,1 => Y=0$$

$$- A,B=1,0 => Y=C'+C=1$$

$$- A,B=1,1 => Y=C'$$

Implementing Switching Function with Mux

$$F(A, B, C) = \sum (1,3,5,6)$$

Minterm	A	В	C	F
0	0	0	0	0
1	0	0	1	1
2	0	t	0	0
3	0	1	1	1
4	l	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	l	1	0

Adders: Half Adder

Add two variables and generate the sum and carry

x	у	C	<u></u>
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = x \oplus y$$

$$C = xy$$

Adders: Full Adder

Add two variables and an input carry..

X	У	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
			1	

Try it yourself...!!!

Adders: Full Adder

Add two variables and an input carry..

x	У	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = x \oplus y \oplus z$$

$$C = xy + yz + zx$$

Adders: Full Adder with Half Adders

Use two half adder and something else to generate a full adder

Try it yourself...!!!

Priority Encoders

Priority encoder: n input lines and log_2n output lines

- Input lines represent units that may request service
- When inputs p_i and p_j , such that i > j, request service simultaneously, line p_i has priority over line p_j
- Encoder produces a binary output code indicating which of the input lines requesting service has the highest priority

Example: Eight-input, three-output priority encoder

(a) Block diagram.

	Input lines									Outputs		
p_0	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	p_5	p_6	<i>p</i> ₇	Z 4	Z ₂	Z ₁		
1	0	0	0	0	0	0	0	0	0	0		
ϕ	1	0	0	0	0	0	0	0	0	1		
φ	ϕ	1	0	0	0	0	0	0	1	0		
φ	ϕ	ϕ	1	0	0	0	0	0	1	1		
φ	φ	ϕ	ϕ	1	0	0	0	1	0	0		
φ	ϕ	ϕ	ϕ	ϕ	1	0	0	1	0	1		
φ	ϕ	ϕ	ϕ	ϕ	φ	1	0	1	1	0		
φ	φ	φ	ϕ	φ	φ	φ	1	1	1	1		

(b) Truth table.

$$z_4 = p_4 p_5 ' p_6 ' p_7 ' + p_5 p_6 ' p_7 ' + p_6 p_7 ' + p_7 = p_4 + p_5 + p_6 + p_7$$

$$z_2 = p_2 p_3 ' p_4 ' p_5 ' p_6 ' p_7 ' + p_3 p_4 ' p_5 ' p_6 ' p_7 ' + p_6 p_7 ' + p_7 = p_2 p_4 ' p_5 ' + p_3 p_4 ' p_5 ' + p_6 + p_7$$

$$z_1 = p_1 p_2 ' p_3 ' p_4 ' p_5 ' p_6 ' p_7 ' + p_3 p_4 ' p_5 ' p_6 ' p_7 ' + p_5 p_6 ' p_7 ' + p_7 = p_1 p_2 ' p_4 ' p_6 ' + p_3 p_4 ' p_6 ' + p_5 p_6 ' + p_7$$

Priority Encoders

(c) Logic diagram.

Decoders

Decoders with n inputs and 2^n outputs: for any input combination, only one output is 1

Useful for:

- Routing input data to a specified output line, e.g., in addressing memory
- Basic building blocks for implementing arbitrary switching functions
- Code conversion
- Data distribution

Example: 2-to-4- decoder

Decoders with Enable

4-16 decoder using 3-8 decoder

Realizing Arbitrary Functions

Idea: Realize a distinct minterm at each output

Demultiplexer

Demultiplexers: decoder with 1 data input and *n* address inputs

• Directs input to any one of the 2^n outputs

Adders Again

Full adder: performs binary addition of three binary digits

- Inputs: arguments A and B and carry-in C
- Outputs: sum S and carry-out C_0

Α	В	С	S	C_0	
0	0	0	0	0	
0	0	1	1	0	
0	1	1	0	1	$A \longrightarrow S$
0	1	0	1	0	$B \longrightarrow FA$
1	1	0	0	1	$C \longrightarrow \square$
1	1	1	1	1	(b) Block diagram.
1	0	1	0	1	
1	0	0	1	0	

(a) Truth table for S and C_0 .

$$S = A \oplus B \oplus C$$
$$C_0 = AB + BC + CA$$

Ripple Carry Adder

Ripple-carry adder: Stages of full adders

- C_f : forced carry
- $C_{\theta(n-1)}$: overflow carry

$$S_i = A_i \oplus B_i \oplus C_i$$

$$C_{0i} = A_i B_i + B_i C_{0i} + C_{0i} A_i$$

Time required:

- Carry propagation takes longest time in the worst case, the carry propagates through all the stages
- •Time per full adder: 2 units (assuming each gate takes one unit of time)
 - Time for carry generation
 - Assumption: two level circuit realisation with 2 input gates
- Time for ripple-carry adder: 2n units

Ripple Carry Adder

Carry-lookahead adder: several stages simultaneously examined and their carries generated in parallel

- Generate signal $D_i = A_i B_i$
- Propagate signal $T_i = A_i \oplus B_i$
- Thus, $C_{0i} = D_i + T_i C_i$

To generate carries in parallel: convert recursive form to nonrecursive

$$\begin{split} C_{0i} &= D_i + T_i C_i \\ C_i &= C_{0(i-1)} \\ C_{0i} &= D_i + T_i (D_{i-1} + T_{i-1} C_{i-1}) \\ &= D_i + T_i D_{i-1} + T_i T_{i-1} (D_{i-2} + T_{i-2} C_{i-2}) \\ &= D_i + T_i D_{i-1} + T_i T_{i-1} D_{i-2} + T_i T_{i-1} T_{i-2} C_{i-2} \\ &\dots \\ C_{0i} &= D_i + T_i D_{i-1} + T_i T_{i-1} D_{i-2} + \dots + T_i T_{i-1} T_{i-2} \dots T_0 C_f \end{split}$$

Thus, $C_{0i} = 1$ if it has been generated in the ith stage or originated in a preceding stage and propagated to all subsequent stages

Implementation of lookahead for the complete adder impractical:

- Divide the *n* stages into groups
- Full carry lookahead within group
- Ripple carry between groups

Example: Three-digit adder group with full carry lookahead

(a) Block diagram of initial three-stage group

Implementation of lookahead for the complete adder impractical:

- Divide the *n* stages into groups of 3-bit adders
- Full carry lookahead within group
- Ripple carry between groups

Example: Three-digit adder group with full carry lookahead

 C_{g10}

Time taken:

- 4 time units for C_{g1} why 4?
- Only 2 time units for C_{g2} and other group carries why?

(b) The carry networks

 $SN_5 \cdots SN_3$

• • •

 $|A_i|$

 $SN_{29}\cdots SN_{27}$

 (CN_2)

 B_{i}

Example: divide *n* stages into groups of three bits for a 30 bit adder

- Very very important!!!
 - First stage requires more time (2 units extra to generate T_i).
 - Last stage requires more time (2 extra units for the final sum, for the other units it's not coming in the critical path)
- Time taken: 4 + 2n/3 time units
- 50% additional hardware for a threefold speedup

Adder Subtractor

- Implements two's complement subtraction
- The idea is to have both an adder and subtractor in the same circuit
- Overflow detection

Adder Subtractor: The Overflow

- Overflow: When two numbers with n digits each are added and the sum is a number occupying n + 1 digits, we say that an overflow occurred.
- This is true for binary or decimal numbers, signed or unsigned
- An overflow condition can be detected by observing the carry into the sign bit position and the carry out of the sign bit position. If these two carries are not equal, an overflow has occurred.
- If the numbers are unsigned
 - C bit detects the overflow
- If the numbers are signed
 - V bit detections the overflow

BCD Adder

- Adds two BCD Numbers
- First add in binary and then convert the sum to BCD
- Values beyond 9 requires "correction"
 - For values beyond 9, 0110 needs to added to generate the BCD encoded sum
- We use a bit C to detect when correction is needed
- C = 1, when
 - Carry K or the binary sum is 1
 - Z8 = 1 and Z4 = 1
 - Z8 = 1 and Z2 = 1
- C = K + Z8Z4 + Z8Z2

	Bir	ary S	um			В	CD Su	m		Decimal
K	Z 8	Z ₄	Z ₂	Z ₁	С	S 8	S ₄	S ₂	S ₁	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

BCD Adder

