

Institut Provençana

Activitat 1

Sistemes de Numeració

Mòdul 1:

SISTEMES INFORMÀTICS

Unitat Formativa 1:

Instal·lació, Configuració i Explotació del Sistema Informàtic

Eina Coma Bages

Curs 2022/2023

1. Descompassar el número octal 3565 segons el Teorema Fonamental de la Numeració:

$$3565_8 = 3 \cdot 8^3 + 5 \cdot 8^2 + 6 \cdot 8^1 + 5 \cdot 8^0 =$$

$$= 3 \cdot (2^3)^3 + 5 \cdot (2^3)^2 + 6 \cdot (2^3)^1 + 5 \cdot (2^3)^0 =$$

$$= 3 \cdot 2^9 + 5 \cdot 2^6 + 6 \cdot 2^3 + 5 \cdot 2^0 =$$

$$= 3 \cdot 512 + 5 \cdot 64 + 6 \cdot 8 + 5 \cdot 1 =$$

$$= 1536 + 320 + 485 + 5 = 1909$$

- 2. Quants números binaris diferents podem codificar amb 5 bits? Amb 5 bits disposem de 5 dígits que poden prendre dos valors (0 o 1) cada un, per tant ens tenim 2^5 o 32 combinacions diferents.
- 3. Quin és el número més gran que podem representar amb 6 bits?

 Amb 6 bits el nombre més gran que podem expressar és 111111. De la mateixa manera que amb 5 bits, teníem 2⁵ nombres diferents, amb 6 bits en tenim 2⁶ o 64. Com que comencem a comptar des de 0, això vol dir que el més gran és 63.

Ho podem comprovar convertint-lo a decimal: $2^5+2^4+2^3+2^2+2^1+2^0=32+16+8+4+2+1=63$

4. Resoldre les següents conversions

La conversió entre octal i binari i hexadecimal i binari és senzilla, ja que les bases 8 i 16 són potències de 2. Cada dígit d'octal es pot substituir directament per 3 de binari $(8 = 2^3)$, i cada xifra d'hexadecimal per 4 $(16 = 2^4)$.

Oct i Hex	Binari		Hex	Binari
0	0000		8	1000
1	0001	_	9	1001
2	0010		A	1010
3	0011	_	В	1011
4	0100	_	С	1100
5	0101	_	D	1101
6	0110	_	Е	1110
7	0111		F	1111
		_		

Per fer la conversió des de decimal o cap a decimal no tenim més remei que calcular-la.

-	Dec	ima	1	Hexadecimal				Octal			Binari										
0	2	0	0	0	0	С	8	3	1	0	0	0	1	1	0	0	1	0	0	0	
0	2	2	3	0	0	D	F	3	3	7	0	0	1	1	0	1	1	1	1	1	
0	0	8	7	0	0	5	7	1	2	7	0	0	0	1	0	1	0	1	1	1	
0	1	6	7	0	0	A	7	2	4	7	0	0	1	0	1	0	0	1	1	1	

 200_{10} :

200/16 = 12, residu 8;

12/16 = 0, residu 12 (C, en hexadecimal)

 $200_{10} = C8_{16}$

 DF_{16} : $13 \cdot 16 + 15 = 208 + 15 = 223_{10}$

 57_{16} : $5 \cdot 16 + 7 = 80 + 7 = 87_{10}$

 $A7_{16}$: $10 \cdot 16 + 7 = 160 + 7 = 167_{10}$

-	Dec	ima	1	Hexadecimal				Octal			Binari											
0	0	6	0	0	0	3	С	0	7	4	0	0	0	0	1	1	1	1	0	0		
0	0	9	1	0	0	5	В	1	3	3	0	0	0	1	0	1	1	0	1	1		
0	0	4	8	0	0	3	0	0	6	0	0	0	0	0	1	1	0	0	0	0		
0	0	6	3	0	0	3	F	0	7	7	0	0	0	0	1	1	1	1	1	1		

 60_{10} :

$$60/16=3,$$
residu 12 (C, en hexadecimal);
$$3/16=0, \ {\rm residu} \ 3$$

$$60_{10}=3C_{16}$$

$$5B_{16}$$
: $5 \cdot 16 + 11 = 80 + 11 = 91_{10}$

$$30_{16}$$
: $3 \cdot 16 + 0 = 48_{10}$

$$3F_{16}$$
: $3 \cdot 16 + 15 = 48 + 15 = 63_{10}$

]	Dec	ima	l	Hexadecimal				Octal			Binari										
0	1	9	2	0	0	С	0	3	0	0	0	0	1	1	0	0	0	0	0	0	
0	1	6	8	0	0	A	8	2	5	0	0	0	1	0	1	0	1	0	0	0	
								1	9	2											
0	2	1	7	0	0	D	9	3	3	1	0	0	1	1	0	1	1	0	0	1	

 192_{10} :

$$192/16 = 12$$
, residu 0;
 $12/16 = 0$, residu 12 (C, en hexadecimal)
 $192_{10} = C0_{16}$

$$A8_{16}$$
: $10 \cdot 16 + 8 = 160 + 8 = 168_{10}$

La tercera fila no es pot resoldre, ja que el número 9 no existeix en octal.

$$D9_{16}$$
: $13 \cdot 16 + 9 = 208 + 9 = 217_{10}$

	Dec	ima	l	Hexadecimal				Octal			Binari										
0	2	1	0	0	0	D	2	3	2	2	0	0	1	1	0	1	0	0	1	0	
0	2	1	3	0	0	D	5	3	2	5	0	0	1	1	0	1	0	1	0	1	
0	0	7	3	0	0	4	9	1	1	1	0	0	0	1	0	0	1	0	0	1	
0	1	6	9	0	0	A	9	2	5	1	0	0	1	0	1	0	1	0	0	1	

 210_{10} :

$$210/16 = 13$$
, residu 2;
 $13/16 = 0$, residu 13 (D, en hexadecimal)
 $210_{10} = D2_{16}$

$$D5_{16}$$
: $13 \cdot 16 + 5 = 208 + 5 = 213_{10}$

$$49_{16}$$
: $4 \cdot 16 + 9 = 64 + 9 = 73_{10}$

$$A9_{16}$$
: $10 \cdot 16 + 9 = 160 + 9 = 169_{10}$