Second degré (Partie 2)

Définition. Une fonction $f: \mathbb{R} \to \mathbb{R}$ est une fonction polynôme de degré 2 ssi :

Il existe trois nombres réels $a, b, c \in \mathbb{R}$ avec $a \neq 0$, tels que pour tout $x \in \mathbb{R}$, $f(x) = ax^2 + bx + c$.

Définition. Une <u>équation</u> de degré 2 est une égalité " f(x) = 0 " où f est de degré 2.

Théorème (Forme canonique). $f(x) = a(x - \alpha)^2 + \beta$ avec α , β uniques. On a $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$

Propriété. Les coordonnées du sommet de la parabole sont toujours $(\alpha; \beta)$

Théorème. La forme canonique permet de trouver les variations et les extremums de f suivant le signe de a

Définition. Une <u>racine</u> d'une <u>fonction</u> f est un nombre x tel que f(x) = 0.

C'est une **solution** de l'équation " f(x) = 0 ".

Hypothèse. Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynôme de degré 2. $(a \ne 0)$

Définition. $\Delta = b^2 - 4ac$ est appelé discriminant de f.

Théorème. Résolution d'une équation de degré 2.

On calcule le discriminant Δ de f. On a 3 situations possibles suivant le signe de Δ .

Si $\Delta < 0$: Alors f n'a pas de racines sur $\mathbb R$ autrement dit " $ax^2 + bx + c = 0$ " n'a pas de solutions dans $\mathbb R$. Dans ce cas on ne peut pas factoriser f sur \mathbb{R} .

Si $\Delta=0$: Alors f a exactement 1 racine sur $\mathbb R$ autrement dit " $ax^2+bx+c=0$ " a exactement 1 solution dans \mathbb{R} , et cette solution est $x_0 = -\frac{b}{2a} = \alpha$. On peut alors factoriser f. Pour tout $x \in \mathbb{R}$, $f(x) = a(x - x_0)^2$

Si $\Delta > 0$: Alors f a exactement 2 racines sur \mathbb{R} , " $ax^2 + bx + c = 0$ " a exactement 2 solutions dans \mathbb{R} , et ces deux solutions sont $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$. On a alors pour tout $x \in \mathbb{R}$, $f(x) = a(x - x_1)(x - x_2)$

Définition. La forme " $f(x) = a(x - x_1)(x - x_2)$ " est appelée **forme factorisée** de f.

<u>Factoriser</u> un polynôme de degré 2 revient à <u>déterminer ses racines</u>, donc revient à <u>résoudre</u> " f(x) = 0 "

Remarque. Le cas $\Delta = 0$ correspond au cas limite où $x_1 = x_2$. On dit que x_0 est une **racine double** de f.

Exemple. Résoudre $2x^2 + x - 3 = 0$. On pose $f: x \mapsto 2x^2 + x - 3$. Le discriminant de f est

$$\Delta = (1)^2 - 4 \times (2) \times (-3) = 25 \text{ donc l'équation a 2 solutions} : x_1 = \frac{-(1) - \sqrt{(25)}}{2 \times (2)} = -\frac{3}{2} \text{ et } x_2 = \frac{-(1) + \sqrt{(25)}}{2 \times (2)} = 1$$

Exemple. Déterminer les racines de $f: x \mapsto x^2 + x + 1$. Le discriminant de f est $\Delta = (1)^2 - 4 \times (1) \times (1) = 1$ -3 < 0 donc f n'a pas de racines sur \mathbb{R} . L'équation $x^2 + x + 1 = 0$ n'a pas de solution réelle.

Exemple. Factoriser $f: x \mapsto 9x^2 - 30x + 25$. Le discriminant de f est $\Delta = (-30)^2 - 4 \times (9) \times (25) = 0$.

Donc f admet une seule racine $x_0 = -\frac{(-30)}{2\times 9} = \frac{30}{18} = \frac{5}{3}$. Donc pour tout $x \in \mathbb{R}$, $f(x) = 9\left(x - \frac{5}{3}\right)^2$

Propriété. Si $\Delta \geq 0$, alors $x_1 + x_2 = -\frac{b}{a}$ et $x_1 x_2 = \frac{c}{a}$ (Utile pour trouver l'autre racine connaissant l'une)

Exemple. Trouver les racines de $f: x \mapsto 2x^2 - x - 1$. En testant des petites valeurs entières x = 1

1; 2; 3; -1; -2 on trouve par chance une racine évidente : f(1) = 0 donc $x_1 = 1$ est racine évidente.

D'après les relations coefficients racines, on a $1 \times x_2 = \frac{c}{a} = \frac{-1}{2} = -\frac{1}{2}$ donc $x_2 = -\frac{1}{2}$ est l'autre racine.

Propriété. Deux réels ont pour somme S et produit P ssi ils forment les 2 solutions de " $x^2 - Sx + P = 0$ ".

Rappels. Fonction polynome (affine) de degré 1. Si $f: x \mapsto ax + b$ est un polynôme de degré 1 $(a \ne 0)$: $x_1 = -\frac{b}{a}$ est l'unique racine de f. La fonction s'annule et change de signe une fois en $-\frac{b}{a}$.

Exemple. Déterminer le signe de $g: \mathbb{R} \to \mathbb{R}: x \mapsto -3x + 4$. g est une fonction affine avec a = -3 et b = 4. a est <u>négatif</u> donc g est <u>décroissante</u> sur \mathbb{R} . g s'annule en $\frac{4}{3}$, g est positive sur $]-\infty; \frac{3}{4}]$ et g est négative sur $[\frac{3}{4}; +\infty[$.

Exemple. Déterminer le signe de $h: \mathbb{R} \to \mathbb{R}: x \mapsto (3x+4)(-2x+6)$

x	- ∞	$-\frac{4}{3}$		3		+ ∞
3 <i>x</i> + 4	_	0	+		+	
-2x+6	+		+	0	-	
h(x)	_	0	+	0	-	

Exemple. Déterminer le signe de

$$k: \mathbb{R} \to \mathbb{R}: \chi \mapsto \frac{3\chi - 5}{2\chi + 7}$$

2x+7						
x	- ∞	$-\frac{7}{2}$		$\frac{5}{3}$		+∞
3 <i>x</i> – 5	-		-	0	+	
2 <i>x</i> + 7	-	0	+		+	
k(x)	+		-	0	+	

Théorème. Résolution d'une inéquation de degré 2.

Le signe d'un trinôme est déterminé par les 6 cas de figures suivants :

	Δ $<$ 0	$\Delta = 0$	$\Delta > 0$			
a > 0		x_0	X_1 X_2			
u > 0	$x - \infty + \infty$ $f(x) + $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$x - \infty$ x_1 x_2 $+ \infty$ $f(x)$ $+$ 0 - 0 +			
a < 0		x_0	X_1 X_2			
G ()	$x - \infty + \infty$ $f(x)$	$\begin{array}{c cccc} x & -\infty & x_0 & +\infty \\ \hline f(x) & - & 0 & - \\ & & & \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Exemple. Résoudre (I): $2x^2 + x - 3 < 0$ sur \mathbb{R} . On pose $f(x) = 2x^2 + x - 3$ pour tout $x \in \mathbb{R}$.

$$\Delta = (1)^2 - 4 \times (2) \times (-3) = 25 \text{ donc l'équation a 2 solutions} : x_1 = \frac{-(1) - \sqrt{(25)}}{2 \times (2)} = -\frac{3}{2} \text{ et } x_2 = \frac{-(1) + \sqrt{(25)}}{2 \times (2)} = 1$$

On a a>0, et $\Delta>0$. On est donc dans le cas n° 3. On observe que pour satisfaire (I), il faut se placer strictement (car (I) est une inégalité stricte) entre (pour être négatif) les racines. L'ensemble des solutions de (I) est donc] $-\frac{3}{2}$; 1[.