# Intro: Asymptotic Notation

#### Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

## Data Structures and Algorithms Algorithmic Toolbox

#### Learning Objectives

- Understand the basic idea behind asymptotic runtimes.
- Describe some of the advantages to using asymptotic runtimes.

#### Last Time

#### Computing Runtimes Hard

- Depends on fine details of program.
- Depends on details of computer.

#### Idea

All of these issues can multiply runtimes by (large) constant. So measure runtime in a way that ignores constant multiples.

#### Problem

Unfortunately, 1 second, 1 hour, 1 year only differ by constant multiples.

#### Solution

Consider asymptotic runtimes. How does runtime scale with input size.

### Approximate Runtimes

|              | n               | $n \log n$        | $n^2$             | 2 <sup>n</sup>         |
|--------------|-----------------|-------------------|-------------------|------------------------|
| n = 20       | 1 sec           | 1 sec             | 1 sec             | 1 sec                  |
| n = 50       | 1 sec           | 1 sec             | 1 sec             | 13 day                 |
| $n = 10^2$   | 1 sec           | 1 sec             | 1 sec             | $4 \cdot 10^{13}$ year |
| $n = 10^6$   | 1 sec           | 1 sec             | 17 min            |                        |
| $n = 10^9$   | 1 sec           | 30 sec            | 30 year           |                        |
| max <i>n</i> | 10 <sup>9</sup> | 10 <sup>7.5</sup> | 10 <sup>4.5</sup> | 30                     |

#### $\log n \prec \sqrt{n} \prec n \prec n \log n \prec n^2 \prec 2^n$

