What can a deterministic algorithm do?

• Starts with deterministic matrices $S_{\scriptscriptstyle 1}^{(1)}, \ldots S_{\scriptscriptstyle t}^{(1)}$ and obtains

• Based on responses, pick $S_1^{(2)}, \ldots, S_t^{(2)}$ and so on

• Assume $\text{vec}(S_i^{(j)})$ are orthonormal w.l.o.g

 Are first round responses enough to pick good measurements in second round?

$$r_i^{(1)} = \langle \operatorname{vec}(S_i^{(1)}), (\alpha/\sqrt{n}) \cdot u \otimes v \rangle + \langle \operatorname{vec}(S_i^{(1)}), \operatorname{vec}(G) \rangle$$

What can a deterministic algorithm do?

• Starts with deterministic matrices $S_1^{(1)}, \ldots S_t^{(1)}$ and obtains

$$r_i^{(1)} = \langle \operatorname{vec}(S_i^{(1)}), (\alpha/\sqrt{n}) \cdot u \otimes v \rangle + \langle \operatorname{vec}(S_i^{(1)}), \operatorname{vec}(G) \rangle$$

- Based on responses, pick $S_1^{(2)}, \ldots, S_t^{(2)}$ and so on
- Assume $\text{vec}(S_i^{(j)})$ are orthonormal w.l.o.g
- Are first round responses enough to pick good measurements in second round?

Deterministic Algorithm

• Stack $S_1^{(1)}, \ldots, S_t^{(1)}$ to get a matrix $Q^{(1)}$

$$r^{(1)} = \frac{\alpha}{\sqrt{n}} \qquad Q^{(1)} \qquad u \otimes v \qquad + \qquad Q^{(1)} \qquad \text{vec}(G)$$

• Based on $r^{(1)}$ pick $Q^{(2)}[r^{(1)}]$