Car Finder

Recuperação de Informação - Projeto 1

Jailson Gomes (jjgsj) Lucas Cavalcanti (lhcs) Roberto Fernandes (rcf6)

Crawler

Crawler

- Pre Processing
 - Limpeza analisando robots.txt
 - shift.com/robots.txt 404
- Acesso via python requests
 - 0.5 segundos entre request
 - shift.com PhantomJS e Selenium
- Busca
 - o BFS
 - Heurística pesos para 4 grupos de palavras
 - Classificador de links

BFS - Páginas Relevantes pelo total

Heurística - Páginas Relevantes pelo total

Classificador de Links

- Modelo pré-treinado
- 160 links (80 positivos, 80 negativos)
- SVM SVR
- Tokenizar links
- Bag of words

Classificador de Links - Páginas Relevantes pelo total

Comparação das abordagens

Comparação das abordagens

	BFS	Heurística	Classificador
munstermanauto.com	0,763848	0,760479	0,761062
marblesautomotive.com	0,017	0,016016	0
cars.com	0,353783	0,511535	0,742363
kbb.com	0,388889	0,756757	0,740741
shift.com	0,039039	0,001001	0
usedcars.com	0	0	0
kijiji.ca	0	0,854855	0,24024
buyacar.co.uk	0,118593	0,442329	0,242699

Conclusões e melhorias

- Heurística
 - Testar heurística separadamente para cada site
 - Abordagem única pode ter afetado o resultado em alguns sites, como o shift.com e usedcars.com
 - Aprimorar a heurística com mais grupos de pesos e mais informações da âncora
- Classificador de Links
 - Testar mais modelos para o regressor
 - Adicionar mais casos de treinamento ao regressor
 - Adicionar mais features ao modelo

Classificação

Features Selection

1º Passo

- Download das 160 páginas rotuladas.
- Extração do texto do html.
- Utilização do
- Remoção de caracteres especiais.
- O Tokenização das palavras.

Features Selection

2º Passo:

- Dataset com raw features.
- Dataset com tokens lower case.
- Retirar stopwords do dataset.
- Fazer stemming das palavras do dataset.
- Retirar palavras de df > 0.9.
- Retirar palavras de df > 0.8 e de df < 0.2.
- Retirar palavras de df > 0.9 e df < 0.05, com Information gain > média.

DataSets

DataSet	Tamanho	
Raw	(27409, 160)	
Lower Case	(24455, 160)	
Lower Case + no StopWords	(24319, 160)	
Lower Case + no StopWords + Stemming	(22534, 160)	
Lower + StopWords + max df 0.9	(1000, 160)	
Lower + StopWords + df max 0.8 & min 0.2	(899, 160)	
Information Gain > média	(408, 160)	

Classifiers

- Naive Bayes
 - Gaussian.
- Logistic Regression
 - o Regularization: I2
 - o Grid Search para C (0.1)
- Random Forest
 - o Estimators: [100, **200**, 500]
 - Max features: [n, sqrt, log2]
 - Max depth: [5, 6, 7, 8]

- SVM
 - GridSearch
 - **C** = 0.01, **0.1**, 1, 10, 100, 1000
 - Kernel = 'rbf', 'linear', 'poly', 'sigmoid'
- MLP
 - Hidden Layers: (10, 5)
- Ensemble
 - Com todos classificadores anteriores.

DataSet 1 - Raw Corpus

DataSet 2 - Lower Case

DataSet 3 - Lower Case + no StopWords

DataSet 4 - Lower Case + no StopWords + Stemming

DataSet 5 - Lower + StopWords + max df 0.9

DataSet 6 - Lower + Stop + max df 0.8 min df 0.2

DataSet 7 - max df 0.9 min df 0.05 + InfoGain > avg

Fit Time in Seconds

Classifier	dSet1	dSet2	dSet3	dSet4	dSet5	dSet6	dSet7
SVM	1.18	1.42	0.82	0.78	0.02	0.02	0.01
Random Forest	0.46	0.52	0.75	0.42	0.47	0.29	0.39
Naive Bayes	0.49	0.43	0.44	0.44	0.01	0.01	0.01
MLP	6.45	3.47	4.31	5.62	0.28	0.39	0.14
Logistic Regression	0.34	0.29	0.29	0.27	0.01	0.01	0.01
Ensemble	4.80	5.98	3.60	6.41	1.10	1.11	1.09

DataSet 2 - Lower Case

Logistic Regression - Learning Curve - dataSet1

SVM - Learning Curve - dataSet1

Random Forest - Learning Curve - dataSet1

Naive Bayes - Learning Curve - dataSet1

MLP - Learning Curve - dataSet1

Best Classifier - Ensemble

DataSet	Test Accuracy	Precision	Recall	Fit Time
dataSet 1	0.97 (+/- 0.06)	0.97 (+/- 0.10)	0.97 (+/- 0.10)	4.80s (+/- 2.68)
dataSet 2	0.95 (+/- 0.09)	0.97 (+/- 0.11)	0.94 (+/- 0.17)	5.98s (+/- 4.91)
dataSet 3	0.95 (+/- 0.07)	0.96 (+/- 0.11)	0.95 (+/- 0.17)	3.60s (+/- 0.45)
dataSet 4	0.96 (+/- 0.08)	0.96 (+/- 0.14)	0.96 (+/- 0.11)	6.41s (+/- 3.47)
dataSet 5	0.93 (+/- 0.12)	0.92 (+/- 0.21)	0.95 (+/- 0.17)	1.10s (+/- 0.26)
dataSet 6	0.93 (+/- 0.10)	0.94 (+/- 0.16)	0.94 (+/- 0.17)	1.11s (+/- 0.26)
dataSet 7	0.93 (+/- 0.12)	0.92 (+/- 0.16)	0.95 (+/- 0.17)	1.02s (+/- 0.22)

Ensemble - Learning Curve - dataSet 7

Ensemble - Learning Curve - dataSet 1

Extração

Dificuldades

- Sites com estruturas completamente diferentes;
- Estruturas de páginas diferentes para um mesmo site;
- Sites com atributos importantes no JavaScript;
- Tratar o atributo após ser coletado por conta de lixos adicionais;

Ferramentas

- Coleta HTML Requests
- Navegação e Pesquisa no HTML Beautiful Soup
- Tratar páginas JavaScript Selenium + PhantomJS

(816) 598-1286

609 SW State Route 7 Blue Springs, MO 64014

Map

Contact

Finance Application

2013 Volkswagen Beetle Coupe 2.5L Entry Hatchback 2D for sale in Blue Springs MO from **Munsterman Automotive Group**

Stock: 644702

Exterior : GRAY

Mileage: 90,028 Drive Type : FWD

Engine: 5-Cyl, PZEV, 2.5 Liter

VIN: 3VWFP7AT7DM644702

Sale Price: \$8,475

Transmission: Automatic

We Finance!

Financing Guaranteed Buy Here, Pay Here / Rates as Low as 1.9%

Text "bigsale" to 21000 for \$1000 Cash Assistance

816-598-1286 · www.munstermanauto.com


```
103 
184 <a name="vptitle"></a><h1 class="ar_vehtitle">2013 Volkswagen Beetle Coupe 2.5L Entry Hatchback 2D for sale in Blue Springs MO from Munsterman Automotive Group</h1>
105 
 <div class="undoreset"></div>
110 
112 
 117 <b>Stock</b>: 644702  <b>VIN</b>: 3WWFP7AT7DM644702 
 120 
                                                                                   \overline{\phantom{a}}
122  
123 <b>Exterior</b> : GRAY 
124  
125 
                            127 
128 <b>Mileage</b>: 90,028 
129  
131 <b>Transmission</b> : Automatic 
132 
135 
 <b>Drive Type</b>: FWD  <b>Engine</b>: 5-Cyl, PZEV, 2.5 Liter 
137  
141 
143 <form name="storage" action="" style="margin:0px;"><div>
144 <input type="hidden" name="autoslide" value="0">
145 <input type="hidden" name="stopslide" value="0">
 <input type="hidden" name="thispicnum" value="1">
147 <input type="hidden" name="picselected" value="picnav1">
148 <input type="hidden" name="stripselected" value="stripnav1">
149 </div></form>
```

Avaliação Extratores Específicos

	RECALL	PRECISION	F-MEASURE
SITES	100,00%	100,00%	100,00%

Extrator Genérico

Baseado em Keywords

Utiliza palavras mais importantes para a extração

Fuel

Transmission

Title

Price

Exterior

Colo

Interior

Colour

Odometer

Engine

Kilometers

Mileage

Avaliação Extrator Genérico

	RECALL	PRECISION	F-MEASURE
BUYSCAR	100,00%	75,00%	85,71%
CARS	100,00%	100,00%	100,00%
KBB	100,00%	100,00%	100,00%
KIJIJI	86,67%	65,00%	74,29%
MARBLES	85,71%	75,00%	80,00%
MUNSTERMANAUTO	83,33%	62,50%	71,43%
SHIFT	28,57%	25,00%	26,67%
USEDCARS	100,00%	87,50%	93,33%

Car Finder

Recuperação de Informação - Projeto 1

Jailson Gomes (jjgsj) Lucas Cavalcanti (lhcs) Roberto Fernandes (rcf6)