How to Bid the Cloud

SIGCOMM 2015

Cloud Resource Allocation and Pricing

Cloud pricing

Usage-based cloud pricing

Auction-based cloud pricing

Amazon's Elastic Compute Cloud (EC2) spot instance

Spot instance

Step 1: Choose the instance type

Amazon Linux Free tier eligible	Memory optimized	r3.large	2	15	1 x 32 (SSD)	-	Moderate
Thee der engible	Memory optimized	r3.xlarge	4	30.5	1 x 80 (SSD)	Yes	Moderate
Red Hat Free tier eligible	Memory optimized	r3.2xlarge	8	61	1 x 160 (SSD)	Yes	High
	Memory optimized	r3.4xlarge	16	122	1 x 320 (SSD)	Yes	High
SUSE Linux	Memory optimized	r3.8xlarge	32	244	2 x 320 (SSD)	-	10 Gigabit

Step 2: Configure the instance details

Number of instances & bid price

Spot pricing

Spot price history for an r3.xlarge instance in the US Eastern region on September 09, 2014

Our questions

Question #1

How might the cloud provider set the price?

Question #2

What prices should users bid?

Differences

- User-oriented
- 2. Jobs could be interrupted
- 3. Bid prices are dependent on spot prices

4. Goals: satisfy interruptibility requirement minimize user cost (payment);

What is user cost? Runtime * spot price

The user is get charged in job's running time

Outline

Extract pattern of User: spot prices in minimize cost real systems Bid price p*

Outline

spot price π Cloud provider: User: maximize revenue minimize cost at each t User arrivals $\Lambda(t)$: i.i.d. Bid price p* Bid price p: $U(\underline{\pi}, \bar{\pi})$

Outline

Cloud provider model

$$f_p(x) = 1/(\bar{\pi} - \underline{\pi}) \longrightarrow N(t) = L(t) \frac{\bar{\pi} - \pi(t)}{\bar{\pi} - \pi}$$

Cloud provider revenue maximization

$$f_p(x) = 1/(\bar{\pi} - \underline{\pi}) \longrightarrow N(t) = L(t) \frac{\bar{\pi} - \pi(t)}{\bar{\pi} - \underline{\pi}}$$

maximize
$$\beta \log \left(1 + L(t) \frac{\overline{\pi} - \pi(t)}{\overline{\pi} - \underline{\pi}}\right)$$

 $+\pi(t)L(t) \frac{\overline{\pi} - \pi(t)}{\overline{\pi} - \underline{\pi}}$
subject to $\underline{\pi} \leq \pi(t) \leq \overline{\pi}$.

$$\pi^{\star}(t) = \max \left\{ \underline{\pi}, \ \frac{3}{4} \bar{\pi} + \frac{1}{2} (\bar{\pi} - \underline{\pi}) \frac{1}{L(t)} - \frac{1}{4} \sqrt{\left(\bar{\pi} + 2(\bar{\pi} - \underline{\pi}) \frac{1}{L(t)}\right)^2 + 8\beta(\bar{\pi} - \underline{\pi}) \frac{1}{L(t)}} \right\}$$

Stable job queues

$$f_p(x) = 1/(\bar{\pi} - \underline{\pi}) \longrightarrow N(t) = L(t) \frac{\bar{\pi} - \pi(t)}{\bar{\pi} - \underline{\pi}}$$
$$L(t+1) = \left(1 - \theta \frac{\bar{\pi} - \pi^*(t)}{\bar{\pi} - \underline{\pi}}\right) L(t) + \Lambda(t).$$

Stable job queues

Proposition 1. The time-averaged queue size at any time t is uniformly bounded.

Proposition 2. Let L(t)=L(t+1), the optimal spot prices should satisfy:

$$\pi^{\star}(t) = h(\Lambda(t)) = \frac{1}{2} \left(\bar{\pi} - \frac{\beta}{1 + \frac{1}{\theta} \Lambda(t)} \right). \tag{6}$$

Proposition 3. The predicted PDF of the spot price is:

$$f_{\pi}(\pi) \simeq f_{\Lambda}(h^{-1}(\pi))$$

Validation from historical spot prices

$$f_{\Lambda}(\Lambda) = \frac{\alpha \Lambda_{min}^{\alpha}}{\Lambda^{\alpha+1}}, \text{ for } \Lambda \geq \Lambda_{min}, f_{\Lambda}(\Lambda) = \frac{1}{\eta} e^{-\frac{1}{\eta}\Lambda}, \text{ for } \Lambda \geq 0.$$

$$f_{\Lambda}(\Lambda) = \frac{1}{\eta} e^{-\frac{1}{\eta}\Lambda}, \text{ for } \Lambda \geq 0.$$

Bid types

- One-time user bid
 - > Exit the system once they fall below spot price.
- Persistent user bid
 - Resubmitted until job finishes or is manually terminated by the user.
 - > Longer completion time.

Bid types

One-time user bid
 How to finish the job before it exits?
 How to reduce cost?

Persistent user bid
 How to reduce cost with acceptable completion time?

Bid types

- Job completion time
 - = running time ($p \ge \pi$) + idle time
- One-time bid
 - running time = execution time
- Persistent bid
 - running time = execution time + recovery time

Notations

- $f_{\pi}(\pi) \longrightarrow f_{\pi}$
- $F_{\pi}(p) = Pr[p \ge \pi(t)]$
- $\underline{\pi}$, $\bar{\pi}$

Placing one-time bids

Expected length of time

without interruption =
$$t_k \sum_{i=1}^{\infty} i F_{\pi}(p)^{i-1} (1 - F_{\pi}(p)) = \frac{t_k}{1 - F_{\pi}(p)}$$
.

Placing one-time bids

Expected length of time

without interruption =
$$t_k \sum_{i=1}^{\infty} i F_{\pi}(p)^{i-1} (1 - F_{\pi}(p)) = \frac{t_k}{1 - F_{\pi}(p)}$$
.

Cost minimization for one-time jobs

execution time <

minimize
$$\Phi_{so}(p) = t_s \mathbb{E}(\pi \mid \pi \leq p) = \frac{t_s \int_{\underline{\pi}}^p x f_{\pi}(x) dx}{F_{\pi}(p)}$$

subject to $\Phi_{so}(p) \leq t_s \bar{\pi}, \ t_s \leq \frac{t_k}{(1 - F_{\pi}(p))}, \ \underline{\pi} \leq p \leq \bar{\pi}.$

execution time ≤ expected running time without interruption

The optimal bid price:
$$p^* = \max\left\{\underline{\pi}, F_{\pi}^{-1}\left(1 - \frac{t_k}{t_s}\right)\right\}$$
.

Conclusion:
$$t_s/t_k \uparrow \longrightarrow p^* \uparrow$$

Placing persistent bids

Placing persistent bids

The expected number of interruptions is:

=1, if
$$p \ge \pi(t)$$

$$\mathbb{E}\left(\frac{1}{2}\sum_{k=0}^{T/t_k-1} \left(\mathbb{I}_{\pi}(\pi(t)) - \mathbb{I}_{\pi}(\pi(t+1))\right)^2\right) = 0, \text{ otherwise}$$

$$\stackrel{(a)}{=} \frac{T}{t_k} \left(\mathbb{E}\left(\mathbb{I}_{\pi}(\pi(t))\right) - \mathbb{E}\left(\mathbb{I}_{\pi}(\pi(t))\mathbb{I}_{\pi}(\pi(t+1))\right)\right)$$

$$= \frac{T}{t_k} F_{\pi}(p) \left(1 - F_{\pi}(p)\right),$$

Placing persistent bids

The expected # of interruptions
$$=$$
 $\frac{T}{t_k}F_\pi(p) (1 - F_\pi(p))$

Expected running

time
$$TF_{\pi}(p) = \left(\frac{T}{t_k}F_{\pi}(p)\left(1 - F_{\pi}(p)\right) - 1\right)t_r + t_s$$

constraint:

$$TF_{\pi}(p) = \underbrace{\frac{t_s - t_r}{1 - \frac{t_r}{t_k} (1 - F_{\pi}(p))}}_{t_r < \frac{t_k}{1 - F_{\pi}(p)}}, > 0$$

Cost minimization (persistent bids)

Expected running time, $\text{TF}_{\pi}(p)$ $\text{minimize} \quad \Phi_{sp}(p) = \underbrace{\frac{t_s - t_r}{1 - \frac{t_r}{t_k} \left(1 - F_{\pi}(p)\right)}}_{\text{Subject to}} \underbrace{\frac{\int_{\underline{\pi}}^p x f_{\pi}(x) dx}{F_{\pi}(p)}}_{\text{Subject to}}$ subject to $\Phi_{sp}(p) \leq t_s \bar{\pi}, \ t_r < \frac{t_k}{1 - F_{\pi}(p)}, \ \underline{\pi} \leq p \leq \bar{\pi},$

recovery time should be short

Optimal bid price:
$$p^{\star} = \psi^{-1} \left(\frac{t_k}{t_r} - 1 \right)$$

where $\psi^{-1}(\cdot)$ is the inverse function of

$$\psi(p) = F_{\pi}(p) \left(\frac{\int_{\underline{\pi}}^{p} x f(x) dx}{\int_{\underline{\pi}}^{p} (p-x) f(x) dx} - 1 \right)$$

Bidding MapReduce jobs

Experiment setup (single-instance bids)

They simulate an one hour running time of a spot instance by creating Amazon Machine Image (AMI) $t_k = 5 \text{ min}$

Spot price history: 2 months

Job: $t_s = 1$ hour, $t_r = 10$ s/ $t_r = 30$ s

Compared heuristic: bid price is the minimum that consistently exceeds the spot prices for the past 1 hour

Single-instance one-time bids

Optimal bid prices for one-time bids that run for one hour.

		One-time bid			
Instance type	On-demand price	Optimal bid price p*	Offline retrospective price	Actual price $E[\pi \pi < p^*]$	
r3.xlarge	\$0.35	\$0.0374	\$0.0324	\$0.033	
r3.2xlarge	\$0.70	\$0.0795	\$0.0644	\$0.066	
r3.4xlarge	\$1.40	\$0.1430	\$0.1304	\$0.130	
c3.4xlarge	\$0.84	\$0.1669	\$0.1324	\$0.128	
c3.8xlarge	\$1.68	\$0.2903	\$0.2640	\$0.256	

One-time bids

User costs are reduced by up to 91%, without any interruptions.

Single-instance persistent bids

Optimal bid prices with different recovery times.

		Persistent bid			
Instance type	On-demand price	Optimal price p* (t _r =10s)	Optimal price p* (t _r =30s)		
r3.xlarge	\$0.35	\$0.0332	\$0.0355		
r3.2xlarge	\$0.70	\$0.0661	\$0.0711		
r3.4xlarge	\$1.40	\$0.1327	\$0.1422		
c3.4xlarge	\$0.84	\$0.1322	\$0.1413		
c3.8xlarge	\$1.68	\$0.2648	\$0.2831		

Longer recovery times yield higher bid prices.

Single-instance persistent bids

Our bid prices are optimal for minimizing users' costs.

Persistent bids

bid price (time) of persistent bids – bid price (time) of one-time bids

bid price (time) of one-time bids

A lower optimal bid price.

A longer completion time.

Persistent bids

The overall costs are further reduced.

Experiment setup (MapReduce jobs)

Job: run Hadoop MapReduce jobs (count the frequency of words) on the Common Crawl Dataset using Amazon Elastic MapReduce (EMR)

$$t_r = 10s$$
; $t_0 = 60s$

MapReduce jobs

The cost is reduced by up to 92.6% with just a 14.9% completion time increase.

Conclusion

- Model for cloud provider's setting of the spot prices.
- Bidding strategies: tradeoff between prices and runtimes
 - One-time bids: bidding higher prices to avoid interruptions.
 - Persistent bids: bidding lower prices to save money.
- Application to the MapReduce jobs.

Discussion

- Risk-awareness of users.
- Social welfare maximization in predicting the spot price.
- Adaptation to an online algorithm with good competitive ratio if possible.

Thank you Q&A

Jan. 21, 2016

Validation from historical spot prices

PDF of Pareto distribution

PDF of exponential distribution

Single-instance persistent bids

Bidding at the 90th percentile price yields either higher bid prices and lower completion times or lower bid prices and longer completion times.