MATH-H204 - Calcul des probabilités et statistiques Yves DE SMET Résumé du cours

Rodrigue Van Brande 18 juillet 2015 TABLE DES MATIÈRES 2

Table des matières

1	\mathbf{Pre}	remière partie					
	1.1	Statistique descriptive en 1D					
	1.2						
		1.2.1 Covariance					
		1.2.1.1 La covariance $ m_{11} \leq s_1 s_2$					
		1.2.1.2 La covariance maximale $ m_{11} = s_1 s_2$					
		1.2.2 Le coefficient de corrélation					
		1.2.3 Les droites de régression					
2	Deuxième partie						
	2.1	Probabilités					
		2.1.1 Formule de Bayes					
	2.2	Variables aléatoires					
		2.2.0.1 Distribution d'une fonction monotone d'une variable aléatoire					
		2.2.0.2 Distribution de la somme de deux variables aléatoires					
		2.2.0.3 Distribution de la différence de deux variables aléatoires					
		2.2.0.4 Distribution du produit de deux variables aléatoires					
3	Aut	Autres aides					
	3.1	Tableau du formulaire					
	3.2	Densité et répartition					
	3.3	Distributions					

1 PREMIÈRE PARTIE 3

1 Première partie

1.1 Statistique descriptive en 1D

1.2 Statistique descriptive en 2D

1.2.1 Covariance

1.2.1.1 La covariance $|m_{11}| \le s_1 s_2$

La covariance est le moment d'ordre (1,1) :

$$m_{11} = \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} (x_i - \bar{x}) (y_j - \bar{y})$$

$$\alpha = \frac{1}{n} \sum_{i=1}^{p} \sum_{i=1}^{q} n_{ij} ((x_i - \bar{x})(y_j - \bar{y}))^2$$
(1)

$$= \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} (u^2 (x_i - \bar{x})^2 + 2a(x_i - \bar{x})(y_j - \bar{y}) + (y_j - \bar{y})^2)$$
 (2)

$$= u^2 s_1^2 + 2u \ m_{11} + s_2^2 \tag{3}$$

L'équation (1) est au carré car toujours ≥ 0 .

$$\Delta \le 0$$

$$m_{11}^2 - s_1^2 s_2^2 \le 0$$

$$m_{11}^2 \le s_1^2 s_2^2$$

$$|m_{11}| \le s_1 s_2$$

1.2.1.2 La covariance maximale $|m_{11}| = s_1 s_2$

La valeur absolue de la covariance est maximale et vaut $|m_{11}| = s_1 s_2$. Si les points observés se trouvent sur une droite ax + bx + c = 0, on a $ax_i + by_i + c = 0$. On multiplie par $\frac{n_{ij}}{n}$ et on somme sur ij. 1 PREMIÈRE PARTIE 4

$$0 = \sum_{i=1}^{p} \sum_{j=1}^{q} \frac{n_{ij}}{n} (ax_i + by_j + c)$$
(4)

$$=a\frac{1}{n}\sum_{i=1}^{p}\sum_{j=1}^{q}n_{ij}x_{i}+b\frac{1}{n}\sum_{i=1}^{p}\sum_{j=1}^{q}n_{ij}y_{j}+c\frac{1}{n}\sum_{i=1}^{p}\sum_{j=1}^{q}n_{ij}$$
(5)

$$= a\bar{x} + b\bar{y} + c \tag{6}$$

On soustrait $ax_i + by_j + c = 0$ par $a\bar{x} + b\bar{y} + c = 0$.

$$= a(x_i - \bar{x}) + b(y_i + \bar{y}) \tag{7}$$

On utilise $u_0 = \frac{a}{b}$

$$= u_0 b(x_i - \bar{x}) + \frac{a}{u_0} (y_j - \bar{y})$$
 (8)

$$= u_0 b(x_i - \bar{x}) + \frac{u_0 b}{u_0} (y_j - \bar{y}) \tag{9}$$

$$= u_0(x_i - \bar{x}) + (y_j - \bar{y}) \tag{10}$$

L'équation (10) a la même forme que α , du coup...

$$0 = \Delta$$

$$= m_{11}^2 - s_1^2 s_2^2$$

$$m_{11}^2 = s_1^2 s_2^2$$

$$|m_{11}| = s_1 s_2$$

1.2.2 Le coefficient de corrélation

$$r = \frac{m_{11}}{s_1 s_2}$$

1.2.3 Les droites de régression

La droite de régression de y en x est la droite qui minimise la somme des carrés des écarts (parallèles à l'axe y) des points observés à cette droite.

$$g(a,b) = \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} (y_j - a \ x_i - b)^2$$

$$g(a,b)|_{a} = \sum_{i=1}^{p} \sum_{j=1}^{q} 2n_{ij}(y_{j} - a x_{i} - b)(-x_{i})$$
(11)

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} 2n_{ij}(-y_j + a x_i^2 + b x_i)$$
(12)

1 PREMIÈRE PARTIE 5

$$g(a,b)|_b = \sum_{i=1}^p \sum_{j=1}^q 2n_{ij}(y_j - a \ x_i - b)(-1)$$
(13)

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} 2n_{ij}(-y_j + a x_i + b)$$
(14)

2 DEUXIÈME PARTIE 6

2 Deuxième partie

- 2.1 Probabilités
- 2.1.1 Formule de Bayes
- 2.2 Variables aléatoires
- 2.2.0.1 Distribution d'une fonction monotone d'une variable aléatoire

$$W = G(V)$$

2.2.0.2 Distribution de la somme de deux variables aléatoires

$$Z = V + W$$

2.2.0.3 Distribution de la différence de deux variables aléatoires

$$Z = V - W$$

2.2.0.4 Distribution du produit de deux variables aléatoires

$$Z = VW F_Z(x) = \iint_{\xi, \eta \le x} f_{(V,W)}(\xi, \eta) d\xi d\eta$$

3 Autres aides

3.1 Tableau du formulaire

	μ	σ^2	$\psi(t)$	
$\mathcal{B}(n,p)$	np	np(1-p)	$(pe^t + q)^n$	
\mathcal{P}_{λ}	λ	λ	$e^{\lambda(e^t-1)}$	
Exp_{λ}	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$	
Indicatrice(p)	p	p(1 - p)	$1 + p(e^t - 1)$	
Uniforme $[a,b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{1}{t} \frac{e^{tb} - e^{ta}}{b - a}$	
$\mathcal{N}(\mu, \sigma)$	μ	σ^2	$e^{\mu t + (\sigma^2 t^2)/2}$	
$\chi^2_{(n)}$	n	2n	$(1-2t)^{-n/2}$	
t_n	0 n > 1	$\frac{n}{n-2}$ $n > 2$	aucun	
$\mathcal{F}_{(m,n)}$	$\frac{n}{n-2}$ $n>2$	$\frac{2n^2(n+m-2)}{m(n-2^2(m-4))} \qquad n > 2$	aucun	

Tableau dans le formulaire disponible à l'examen écrit (en rouge à connaître)

3.2 Densité et répartition

	Fonction de densité $f(x)$	Fonction de répartition $F(x)$
$\mathcal{B}(n,p)$	P[B(n,p)=k]	$\sum_{k=0}^{x} P[B(n,p) = k]$
\mathcal{P}_{λ}	$P[\mathcal{P}_{\lambda} = k] = \frac{\lambda^k}{k!} e^{-\lambda}$	$\frac{\sum_{k=0}^{x} P[\mathcal{P}_{\lambda} = k]}{1 - e^{-\lambda x} x \ge 0}$
$\operatorname{Exp}_{\lambda}$	$\begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$
$\boxed{ \text{Indicatrice}(p) }$	$V_A \Rightarrow \begin{cases} P(V_A = 1) = p \\ P(V_A = 0) = 1 - p \end{cases}$	$\begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$
$ \qquad \qquad \text{Uniforme}[a,b] $	$\begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & sinon \end{cases}$	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & x \ge b \end{cases}$
$\mathcal{N}(\mu, \sigma)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{(u-\mu)^2}{2\sigma^2}} du$
$\chi^2_{(n)}$	$\frac{\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}}{\begin{cases} \frac{1}{\sqrt{2\pi}}e^{\frac{x^2}{2}} & x > 0\\ 0 & x \le 0 \end{cases}}$	$\frac{1}{\sqrt{2\pi}} \int_0^x e^{\frac{x^2}{2}} du$
t_n	Densité indépendante de σ	
$\mathcal{F}_{(m,n)}$	Densité indépendante de σ	

3.3 Distributions

