Computer Networks

Lecture 2: Data Link

Data Link Layer

Application Presentation Session Transport Network Data Link **Physical**

Function:

- Send blocks of data (frames) between physical devices
- Regulate access to the physical media
- Key challenge:
 - How to delineate frames?
 - How to detect errors?
 - How to perform media access control (MAC)?
 - How to recover from and avoid collisions?

- Framing
- Error Checking and Reliability
- Media Access Control
 - □ 802.3 Ethernet
 - 802.11 Wifi

- Physical layer determines how bits are encoded
- Next step, how to encode blocks of data
 - Packet switched networks
 - Each packet includes routing information
 - Data boundaries must be known so headers can be read
- Types of framing
 - Byte oriented protocols
 - Bit oriented protocols
 - Clock based protocols

Byte Oriented: Byte Stuffing

FLAGDLEDLEDataDLEFLAFLAGG

- Add FLAG bytes as sentinel to the beginning and end of the data
- Problem: what if **FLAG** appears in the data?
 - Add a special DLE (Data Link Escape) character before FLAG
 - What if **DLE** appears in the data? Add **DLE** before it.
 - Similar to escape sequences in C
 - printf("You must \"escape\" quotes in strings");
 - printf("You must \\escape\\ forward slashes as well");
- Used by Point-to-Point protocol, e.g. modem, DSL, cellular

Byte Oriented: Byte Counting

132 Data

- Sender: insert length of the data in bytes at the beginning of each frame
- Receiver: extract the length and read that many bytes
- What happens if there is an error transmitting the count field?

01111110

Data

01111110

- Add sentinels to the start and end of data (similarly to byte stuffing)
 - Both sentinels are the same
 - Example: 01111110 in High-level Data Link Protocol (HDLC)
- Sender: insert a 0 after each 11111 in data
 - Known as "bit stuffing"
- □ Receiver: after seeing 11111 in the data...
 - 11111**0** □ remove the 0 (it was stuffed)
 - 11111**1** 🛘 look at one more bit
 - 11111**10** 🛘 end of frame
 - 11111**11** 🛘 error! Discard the frame
- □ Disadvantage: 20% overhead at worst
- What happens if error in sentinel transmission?

Clock-based Framing: SONET

- Synchronous Optical Network
 - Transmission over very fast optical links
 - STS-*n*, e.g. STS-1: 51.84 Mbps, STS-768: 36.7 Gbps
- STS-1 frames based on fixed sized frames
 - 9*90 = 810 bytes □ after 810 bytes look for start

- Framing
- Error Checking
- Media Access Control
 - 802.3 Ethernet
 - 802.11 Wifi

Dealing with Noise

- The physical world is inherently noisy
 - Interference from electrical cables
 - Cross-talk from radio transmissions, microwave ovens
 - Solar storms
- How to detect bit-errors in transmissions?
- How to recover from errors?

1

- Idea: send two copies of each frame
 - if (memcmp(frame1, frame2) != 0) { OH NOES, AN ERROR! }
- Why is this a bad idea?
 - Extremely high overhead
 - Poor protection against errors
 - Twice the data means twice the chance for bit errors

Parity Bits

- Idea: add extra bits to keep the number of 1s even
 - Example: 7-bit ASCII characters + 1 parity bit
 - 0101001 1 1101001 0 1011110 1 0001110 1 0110100 1
- Detects 1-bit errors and some 2-bit errors
- Not reliable against bursty errors

Error control

- Error Control Strategies
 - Error Correcting codes (Forward Error Correction (FEC))
 - Error detection and retransmission Automatic Repeat Request (ARQ)

Error control

- Objectives
 - Error detection
 - with correction
 - Forward error correction
 - without correction -> e.g. drop a frame
 - Backward error correction
 - The erroneous frame needs to be retransmitted
 - Error correction
 - without error detection
 - e.g. in voice transmission

Redundancy

- Redundancy is required for error control
- Without redundancy
 - 2^m possible data messages can be represented as data on m bits
 - They all are legal!!!
 - Each error results a new legal data message
- How to detect errors???

Error-correcting codes Redundancy

- A frame consists of
 - m data bits (message)
 - r redundant/check bits
 - The total length n = m + r

This n-bit unit is referred to as an n-bit codeword!

Error Control Codes

How Codes Work: Words and Codewords

- Code = subset of possible words: Codewords
- Example:

n 3 bits => 8 words; codewords: subset

Words:

000, 001, 010, 011 100, 101, 110, 111

Code:

000, 011, 101, 110

Send only codewords

Hamming distance

- The Hamming distance between two codewords is the number of differences between corresponding bits.
 - 1. The Hamming distance d(000, 011) is 2 because

 $000 \oplus 011$ is 011 (two 1s)

2. The Hamming distance d(10101, 11110) is 3 because

 $10101 \oplus 11110 \text{ is } 01011 \text{ (three 1s)}$

Hamming distance

- If not all the 2ⁿ possible codewords are used
 - Set of legal codewords =: S
- Hamming distance of the complete code
 - The smallest Hamming distance of between all the possible pairs in the set of legal codewords (S)

$$d(S) = \min_{x,y \in S, x \neq y} d(x,y)$$

What is the Hamming distance?

Two examples:

Error detection

To detect d errors, you need a distance d+1 code.

Error correction

To correct d errors, you need a distance 2d+1 code.

Example

```
S={ 00000000,
00001111,
11110000,
11111111
}
```

Parity bit – already discussed

- A single parity bit is appended to the data
 - Choosen according to the number of 1 bits in the message
 - odd or even
- An example using even parity
 - Original message: 1011010
 - A 0 bit is added to the end: 10110100
 - m=8 and r=1 in this case
- The distance of this code is 2, since any single-bit error produces a codeword with the wrong parity.

25

- □ Idea:
 - Add up the bytes in the data
 - Include the sum in the frame

START Data Checksum END

- Use ones-complement arithmetic
- Lower overhead than parity: 16 bits per frame
- But, not resilient to errors
 Why?
- Used in UDP, TCP, and IP

Cyclic Redundancy Check (CRC)

Uses field theory to compute a semi-unique value for a given message

- Much better performance than previous approaches
 - Fixed size overhead per frame (usually 32-bits)
 - Quick to implement in hardware
 - Only 1 in 2³² chance of missing an error with 32-bit CRC

CRC (Cyclic Redundancy Check)

- Polynomial code
 - Treating bit strings as representations of polynomials with coefficients of 0 and 1.
- CRC
 - Add k bits of redundant data to an n-bit message.
 - Represent n-bit message as an n-1 degree polynomial;
 - •e.g., MSG=10011010 corresponds to $M(x) = x^7 + x^4 + x^3 + x^1$.
 - Let k be the degree of some divisor polynomial G(x);
 - e.g., $G(x) = x^3 + x^2 + 1$.
 - Generator polynomial
 - Agreed upon it in advance

CRC

- Transmit polynomial P(x) that is evenly divisible by G(x), and receive polynomial P(x) + E(x);
 - E(x)=0 implies no errors.

- \square Recipient divides (P(x) + E(x)) by G(x);
 - the remainder will be zero in only two cases:
 - E(x) was zero (i.e. there was no error),
 - or E(x) is exactly divisible by C(x).
- Choose G(x) to make second case extremely rare.

A basic example with numbers

- Make all legal messages divisible by 3
- If you want to send 10
 - First multiply by 4 to get 40
 - Now add 2 to make it divisible by 3 = 42
- When the data is received ..
 - Divide by 3, if there is no remainder there is no error
 - If no error, divide by 4 to get sent message
- If we receive 43, 44, 41, 40, then error
- 45 would not be recognized as an error

Mod 2 arithmetic

Operations are done modulo 2

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	0

Α	В	A - B
0	0	0
0	1	1
1	0	1
1	1	0

Α	В	A · B
0	0	0
0	1	0
1	0	0
1	1	1

0110111011 + 1101010110 = 1011101101 1111 11001 +1010 x 101 ===== 0101 11001 + 11001 ======== 1111101

A basic example with polynomials

Sender:

- multiply $M(x) = x^7 + x^4 + x^3 + x^1$ by x^k ; for our example, we get
 - $x^{10} + x^7 + x^6 + x^4 (10011010000);$
- divide result by *C(x)* (1101);

```
11111001
                                                       10011010000
                                      Generator 1101
                                                                      Message
                                                       1101
                                                        1001
                                                        1101
                                                         1000
                                                         1101
                                                          1011
                                                          1101
                                                           1100
                                                           1101
Send 10011010000 + 101 = 10011010101,
                                                              1000
                                                              1101
since this must be exactly divisible by C(x);
                                                               101
                                                                      Remainder
```

Further properties

- □ Want to ensure that G(x) does not divide evenly into polynomial E(x).
- All single-bit errors, as long as the x^k and x⁰ terms have non-zero coefficients.
- □ All double-bit errors, as long as G(x) has a factor with at least three terms.
- □ Any odd number of errors, as long as G(x) contains the factor (x + 1).
- Any "burst" error (i.e sequence of consecutive errored bits) for which the length of the burst is less than k bits.
- Most burst errors of larger than k bits can also be detected.

Even Parity

```
Actually consists of using x+1 polynomial
Given message 0111, multiply by x to get 01110
Now divide by x+1=11
0101
11
0010
11
1=remainder
```

Message = 01110+1=01111 even parity

□ Common polynomials for *C*(*x*):

CRC	C(x)		
CRC-8	$x^8 + x^2 + x^1 + 1$		
CRC-10	$x^{10} + x^9 + x^5 + x^4 + x^1 + 1$		
CRC-12	$x^{12} + x^{11} + x^3 + x^2 + x^1 + 1$		
CRC-16	$x^{16} + x^{15} + x^2 + 1$		
CRC-CCITT	$x^{16} + x^{12} + x^5 + 1$		
CRC-32	$\left x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1 \right $		