02.10.2019

Dr hab. Anna Dembińska mini.pw.edu.pl/~dembinsk

3 kolokwia 3 kartkowki

45+ punktów - zwolnienie z egzaminu (cz. zadaniowa)

Literatura:

- 1. Dembińska, Karpińska, Kotus Analiza matematyczna I dla studentów informatyki PW
- 2. Gewert , Skoczylas Analiza matematyczna I /Definicje twierdzenia wzory / Przykłady i zadania / Kolokwia i egzaminy GIS
- 3. Leja Rachunek różniczkowy i całkowy PWN

OZNACZENIA

- 1. N := 1, 2, 3...
- 2. $N_0 := 0, 1, 2, 3...$
- 3. $\mathbb{Z} := \dots -1, 0, 1, \dots$
- 4. $\mathbb{Q} := \{ \frac{m}{n} \text{ gdzie } n \in \mathbb{N}, m \in \mathbb{Z} \}$
- 5. $\mathbb{R} := \text{rzeczywiste}$
- 6. \forall dla każdego $\forall_{x \in R} x^2 \ge 0$
- 7. ∃- istnieje
- 8. ← wtedy i tylko wtedy
- 9. $(a,b] := \{x \in \mathbb{R} : a < x \le b\}$
- 10. [x] część całkowita x : $x-1 < [x] \le x$, $[7\frac{1}{3}] = 7$, $[-2\frac{1}{3}] = -3$

LICZBY RZECZYWISTE I ICH PODZBIORY.

- 1. Def. Zbiór \mathbb{R} , dwa wyróżnione w nim elementy 0 i 1, relacja < oraz dwa działania $+\times$ to tak zwane pojęcia pierwotne, które przyjmujemy bez definicji. Ponadto przyjmujemy bez dowodu, że te pojęcia pierwotne mają pewne własności zwane aksjomatami (lub pewnikami)
- 2. Def. Zbiór $A \subset \mathbb{R}$ jest ograniczony z dołu $\iff \exists_{m \in \mathbb{R}} \forall_{a \in A} a \geq m$ Wtedy m nazywamy ograniczeniem dolnym zbioru A
 - (a) Zbiór A $\subset \mathbb{R}$ jest ograniczony z góry $\iff \exists_{M \in \mathbb{R}} \forall_{a \in A} a \leq M$ Wtedy M nazywamy ograniczeniem górnym zbioru
 - (b) Zbiór $A \subset \mathbb{R}$ jest ograniczony \iff jest ograniczony z góry i z dołu $\iff \exists_{m,M \in \mathbb{R}} \forall_{a \in A} m \leq a \leq M \iff \exists_{K \in \mathbb{R}} \forall_{a \in A} |a| \leq K$. Przykład: A = (-1,2]- przykładowe ograniczenia dolne $\{-10,-1.5,-1\}$, ograniczenia górne $\{3,100,2\} \implies$ zbiór A jest ograniczony
- 3. Def. Niech $\emptyset \neq A \subset \mathbb{R}$ będzie ograniczony z dołu. Wtedy kresem dolnym zbioru A (oznaczanym inf A) nazywamy największe ograniczenie dolne zbioru A
 - (a) To znaczy $\inf A = \alpha \iff (\forall_{a \in A} a \ge \alpha \ (\alpha \text{ jest ograniczeniem dolnym}) \text{ oraz } \forall_{\epsilon > 0} \exists_{a_0 \in A} a_0 < \alpha + \epsilon$
- 4. Def. Niech $\emptyset \neq A \subset \mathbb{R}$ będzie ograniczony z góry. Wtedy kresem górnym zbioru A (oznaczamy supA) nazywamy najmniejsze ograniczenie górne zbioru A.
 - (a) $\sup A = \beta \iff (\forall_{a \in A} a \le \beta \text{ or az } \forall_{\epsilon > 0} \exists_{a_0 \in A} a_0 > \beta \epsilon)$
- 5. Jeśli zbiór A nie jest ograniczony z dołu, to inf $A = -\infty$, jeśli nie jest ograniczony z góry, to sup $A = +\infty$
 - (a) $\inf(\emptyset) = +\infty$, $\sup(\emptyset) = -\infty$
 - (b) Przykład: A = (-1, 2]
 - i. $\inf(A) = -1$
 - ii. $\sup(A) = 2$
- 6. Aksjomat ciągłości Każdy zbiór $\emptyset \neq A \subset \mathbb{R}$ ograniczony z dołu/góry ma skonczony kres dolny/górny $\in \mathbb{R}$
 - (a) dla $\mathbb Q$ tego nie ma: $B = \{q \in \mathbb Q : q^2 < 2 \text{ i } q > 0\}$ kres górny to $\sqrt{2} \notin \mathbb Q$

- (b) Twierdzenie: jeśli $\emptyset \neq A \subset B \subset \mathbb{R}$ to
 - i. inf $A \ge \inf B$
 - A. Dowód: Jeśli B nie jest ograniczony z dołu, to inf $B = -\infty$, więc i. jest spełniona
 - B. Jeśli B jest ograniczony z dołu, to z aksojomatu ciagłości B ma skończony kres dolny. Ponadto A też jest ograniczony z dołu, więc też ma skończony kres dolny. Oznaczmy inf $A = \alpha$ i inf $B = \beta$. Wtedy mamy :

```
\forall_{a \in A} a \ge \alpha
```

$$\forall_{\epsilon>0}\exists_{a_0\in A}a_0<\alpha+\epsilon$$

$$\forall_{b \in B} b \ge \beta$$

$$\forall_{\epsilon>0}\exists_{b_0\in B}b_0<\beta+\epsilon$$

Chcemy pokazać że $\alpha \geq \beta$

 $A \subset B \implies (a \in A \implies a \in B) \implies \alpha \geq \beta$, czyli β jest ograniczeniem dolnym zbioru A

- ii. sup A ≤sup B
 - A. Dowodzimy analogicznie

7. LICZBY NATURALNE I ZASADA INDUKCJI MATEMATYCZNEJ

- (a) Zdefiniowaliśmy $\mathbb{N} = \{1, 2, ...\}$. Definicja ta nie jest matematycznie precyzyjna, bo nie zdefiniowaliśmy "...". Podamy definicję liczb naturalnych odwołującą się jedynie do pojęć pierwotnych i do pojęć zdefiniowanych wcześniej. Def. Zbiór $A \subset \mathbb{R}$ nazywamy induktywnym jeśli spełnia następujące dwa warunki
 - i. $1 \in A$
 - ii. $\forall_{a \in A} a + 1 \in A$
 - A. $[1,\infty)$
 - В. ℝ
 - C. Q
 - D. \mathbb{N}
 - iii. Def. Zbiór liczb naturalnych $\mathbb N$ to zbiór zawarty w każdym zbiorze induktywnym tzn. $\mathbb N = \cap_{A \in I} A$ gdzie I to rodzina wszystkich zbiorów induktywnych
- (b) Twierdzenie Zasada indukcji matematycznej
 - i. Jeśli $A \subset \mathbb{N}$ spełnia warunki

$$1 \in A$$

$$\forall_{n \in \mathbb{N}} (n \in A \implies n + 1 \in A)$$

- ii. to $A = \mathbb{N}$
- iii. Zbiór A jest induktywny, bo $1 \in A$ oraz $\forall_{n \in A} n + 1 \in A$ Zatem $\mathbb{N} \subset A$
- iv. Skoro $A \subset \mathbb{N}$ oraz $\mathbb{N} \subset A$ to $A = \mathbb{N}$
- (c) Przykład dowód tego, że $\forall_{n\in\mathbb{N}}1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}\geq\sqrt{n}$ (**)
 - i. Niech $A = \{n \in \mathbb{N} : 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}\}$
 - ii. Potrzebujemy pokazać,
że $1 \in A$ oraz, że $\forall_{n \in \mathbb{N}} (n \in A \implies n+1 \in A)$ To znaczy,
że
 - A. Dla n=1 wzór (**) jest spełniony $(1+1 \ge \sqrt{1})$
 - B. Zakładamy,
że wzór (**) jest prawdziwy dla n i dowodzimy jego prawdziwości dla
 $\rm n+1$

Zakładamy, że $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$. Chcemy pokazać, że $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} \ge \sqrt{n+1}$

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} \ge^{zal.ind.} \sqrt{n} + \frac{1}{\sqrt{n+1}} = \frac{\sqrt{n^2+n}+1}{\sqrt{n+1}} \ge \frac{\sqrt{n^2+1}}{\sqrt{n+1}} = \sqrt{n+1}$$
 co kończy dowód.

- (d) Twierdzenie:
 - i. Zbiór ℕ nie jest ograniczony z góry
 - A. Dowód nie wprost. Zakładamy,
że zbiór $\mathbb N$ jest ograniczony z góry. Wtedy $\exists_{M \in \mathbb N} \forall_{n \in \mathbb N} n \leq M \implies n+1 \leq M \implies n \leq M-1 \implies M-1$ też jest ograniczeniem górnym \implies zbiór $\mathbb N$ nie ma najmniejszego ograniczenia górnego. Z drugiej strony. $\mathbb N$ jako zbiór niepusty i ograniczony z góry ma kres górny, czyli najmniejsze ograniczenie górne. Skoro założenie implikuje sprzeczność to założenie jest nieprawdziwe więc zbiór $\mathbb N$ nie jest ograniczony z góry
 - ii. Zbiór $\mathbb Q$ jest gęsty w $\mathbb R$,
to znaczy $\forall_{x,y\in\mathbb R,x< y}\exists_{q\in\mathbb Q}x< q< y$ (pomiędzy dowolnymi dwoma rzeczywistymi istnie
je liczba wymierna)
 - iii. Zbiór $\mathbb{R} \setminus \mathbb{Q}$ (zbiór liczb niewymiernych) jest gęsty w \mathbb{R} , to znaczy $\forall_{x,y \in \mathbb{R}, x < y} \exists_{z \notin \mathbb{Q}} x < z < y$
- (e) Dowód indukcyjny tego, że wszystkie koty są tego samego koloru. Indukcja e względu na n-liczba kotów.
 - i. Dla n=1 OK
 - ii. Zakładamy że fakt jest prawdziwy dla n, i dowodzimy dla n+1

09.10.2019

CIAGI LICZBOWE

Ważne: $\forall_{x,y\in\mathbb{R}}|x+y| \leq |x|+|y| \text{ oraz } ||x|-|y|| \leq |x-y|$

- 1. Def. Ciągiem $\{a_n\}_{n=1}^{\infty}$ lub $\{a_n\}_{n\geq 1}$ lub $\{a_n\}$ nazywamy funkcję $\mathbb{N}\to\mathbb{R}$. Ponadto a_n nazywamy n-tym wyrazem ciągu
 - (a) Przykłady:
 - i. $a_n = \sqrt[n]{n}$

ciąg zdefiniowany przez podanie wzoru na n-ty wyraz tego ciągu

A.
$$1, \sqrt{2}, \sqrt[3]{3}$$
 itp

- ii. $b_1 = 1$
 - $b_2 = 1$

$$b_{n+1} = b_n + b_{n-1}, n \ge 2$$

- ^ ciąg zdefiniowany rekurencyjnie
- A. Pierwsze wyrazy ciągu 1, 1, 2, 3, 5, 8, 13, 21, ... Fibonacci
- 2. Def. Ciąg $\{a_n\}$ jest ograniczony z dołu $\iff \exists_{m \in \mathbb{R}} \forall_{n \in \mathbb{N}} a_n \geq m$
- 3. Def. Ciąg $\{a_n\}$ jest ograniczony z góry $\iff \exists_{M \in \mathbb{R}} \forall_{n \in \mathbb{N}} a_n \leq M$
- 4. Def. Ciąg $\{a_n\}$ jest ograniczony $\iff (\exists_{m\in\mathbb{R}}\forall_{n\in\mathbb{N}}a_n\geq m) \wedge (\exists_{M\in\mathbb{R}}\forall_{n\in\mathbb{N}}a_n\leq M)$ czyli $\exists_{K\in\mathbb{R}}\forall_{n\in\mathbb{N}}|a_n|\leq K$
 - (a) Przykład:
 - i. Ciąg $a_n = \frac{1}{n}$ jest ograniczony z dołu, bo $\exists_{m \in \mathbb{R}} \forall_{n \in \mathbb{N}} a_n \geq m \ (m = 0)$
 - ii. Ciąg $a_n=\frac{1}{n}$ jest ograniczony z dołu, bo $\exists_{M\in\mathbb{R}}\forall_{n\in\mathbb{N}}a_n\leq M\ (m=1)$
 - iii. Skoro ciąg jest ograniczony z góry i z dołu to możemy powiedzieć że ciąg ten jest ograniczony
- 5. Def. Ciąg $\{a_n\}$ jest rosnący $\iff \forall_{n\in\mathbb{N}}a_{n+1} > a_n \overset{\forall_{n\in\mathbb{N}}a_n>0}{\iff} \forall_{n\in\mathbb{N}}\frac{a_{n+1}}{a_n} > 1$
- 6. Def. Ciąg $\{a_n\}$ jest niemalejący $\iff \forall_{n \in \mathbb{N}} a_{n+1} \ge a_n \overset{\forall_{n \in \mathbb{N}} a_n > 0}{\iff} \forall_{n \in \mathbb{N}} \frac{a_{n+1}}{a_n} \ge 1$
- 7. Def. Ciąg $\{a_n\}$ jest malejący $\iff \forall_{n \in \mathbb{N}} a_{n+1} < a_n \overset{\forall_{n \in \mathbb{N}} a_n > 0}{\iff} \forall_{n \in \mathbb{N}} \frac{a_{n+1}}{a_n} < 1$
- 8. Def. Ciąg $\{a_n\}$ jest nierosnący $\iff \forall_{n\in\mathbb{N}}a_{n+1} \leq a_n \xrightarrow{\forall_{n\in\mathbb{N}}a_n>0} \forall_{n\in\mathbb{N}}\frac{a_{n+1}}{a_n} \leq 1$
 - (a) Ciągi rosnące, niemalejące, malejące i nierosnące nazywamy monotonicznymi
 - i. np $a_n = \frac{(-1)^n}{n} \to a_1 1 < a_2 = \frac{1}{2} > a_3 = -\frac{1}{3}$ ii. $b_n = \frac{n}{n+1} = \frac{n+1-1}{n+1} = 1 \frac{1}{n+1}$
 - - A. Ze wzrostem n, n+1 rośnie, więc $\frac{1}{n+1}$ maleje, więc $1-\frac{1}{n+1}$ rośnie
 - B. Zatem ciag b_n jest rosnacy
- 9. Def. Mówimy, że ciąg $\{a_n\}$ jest zbieżny do granicy $g \in \mathbb{R} \iff \forall_{\epsilon > 0} \exists_{n_0 \in \mathbb{N}} \forall_{n > n_0} |a_n g| < \epsilon$
 - (a) Dla dowolnie małego $\epsilon > 0$ dla wyrazów ciągu o dostatecznie dużych wartościach, odległość pomiędzy dowolnym wyrazem ciągu spełniającym warunki a g jest mniejsza od ϵ
 - (b) Wtedy gnazywamy granicą i zapisujemy $\lim_{n\to\infty}a_n=g$ lub $a_n\to g$
 - i. Przykład: $\lim_{n\to\infty}\frac{1}{n}=0$ bo $\forall_{\epsilon>0}\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}|\frac{1}{n}-0|<\epsilon$ $\frac{\frac{1}{n} < \epsilon}{\frac{1}{\epsilon} < n} \longrightarrow n_0 = \lceil \frac{1}{\epsilon} \rceil$
- 10. Def. Jeśli ciąg $\{a_n\}$ nie jest zbieżny to nazywamy go rozbieżnym;
- 11. Twierdzenie 2.1: Każdy ciąg stały jest zbieżny: $\forall_{n \in \mathbb{N}} a_n = a \implies \lim_{n \to \infty} a_n = a$
 - (a) Dowód: $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} |a_n a| < \epsilon$. Ponieważ $\forall_{n_0 \in \mathbb{N}} a_n a = 0$, to zawsze $0 < \epsilon$
- 12. Twierdzenie 2.2: Ciąg zbieżny ma tylko jedną granicę
 - (a) Dowód: Zakładamy, że $\lim_{n\to\infty} a_n = a$ oraz $\lim_{n\to\infty} b$ i $a\neq b$
 - (b) Niech $\epsilon = \frac{1}{2}|a-b|$. Wtedy $\epsilon > 0$ bo $a \neq b$
 - (c) Z założenia $\lim_{n\to\infty} a_n = a \implies \forall_{\epsilon>0} \exists_{n_1\in\mathbb{N}} \forall_{n\geq n_1} |a_n-a| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} |a_n-b| < \epsilon \text{ oraz } |a_n-b| < \epsilon \text{ oraz$

- (d) Ponieważ $\forall_{x,y \in \mathbb{R}} |x+y| \le |x| + |y|$, to $2\epsilon = |a-b| = |a-a_n + a_n b| \le |a-a_n| + |a_n b| = |a_n a| + |a_n b| < n \ge n_1, n \ge n_2 \le n_2 \le n_2$
- (e) Otrzymaliśmy $2\epsilon > 2\epsilon$ oraz $\epsilon > 0 \implies 2 > 2$ sprzeczność
- 13. Twierdzenie 2.3: Jeśli ciąg jest zbieżny, to jest ograniczony.
 - (a) Dowód: Niech $\lim_{n\to\infty} a_n = g$, $\tan \forall_{\epsilon>0} \exists_{n_1\in\mathbb{N}} \forall_{n>n_0} |a_n-g| < \epsilon$
 - (b) W szczególności dla $\epsilon=1$ otrzymujemy $\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}|a_n-g|<1$,czyli $-1< a_n-g<1$, czyli $\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}g-1< a_n< g+1$
 - (c) Stad $\forall_{n\in\mathbb{N}} a_n \leq \max\{g+1, a_1, a_2, ..., a_{n_0-1}\} \implies \{a_n\}$ jest ograniczony z góry
 - (d) $\forall_{n\in\mathbb{N}}a_n \geq \min\{g-1, a_1, a_2, ..., a_{n_0-1}\} \implies \{a_n\}$ jest ograniczony z dołu
 - (e) Zatem $\{a_n\}$ jest ograniczony.
 - (f) UWAGA: $\{a_n\}$ jest zbieżny $\implies \{a_n\}$ jest ograniczony
 - i. NIE DZIAŁA W DRUGĄ STRONĘ
 - ii. np $a_n = (-1)^n$ daje nam -1, 1, -1, 1 ciąg jest ograniczony, ale nie jest zbieżny
- 14. Twierdzenie 2.4 (o ciągłości działań arytmetycznych): Jeśli $\lim_{n\to\infty} a_n = a$ oraz $\lim_{n\to\infty} b = b$, to
 - (a) Dowód: Wiemy, że $\forall_{\epsilon>0}\exists_{n_1\in\mathbb{N}}\forall_{n>n_1}|a_n-a|<\frac{\epsilon}{2}$ oraz $\forall_{\epsilon>0}\exists_{n_2\in\mathbb{N}}\forall_{n>n_2}|b_n-b|<\frac{\epsilon}{2}$
 - i. Chcemy pokazać, że $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n>n_0} |a_n+b_n-(a+b)| < \epsilon$
 - ii. $|a_n + b_n a b| = |a_n a + b_n b| \le |a_n a| + |b_n b| <^{n \ge n_1, n \ge n_2} \frac{\epsilon}{2}$
 - iii. $\forall_{\epsilon>0}\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}|a_n+b_n-(a+b)|<\epsilon$ jeśli $n_0=\max(n_1,n_2)$
 - (b) $\lim_{n\to\infty} (a_n b_n) = a b$
 - i. Ciąg pomocniczy $\forall_{n\in\mathbb{N}}c_n=-b_n$,wtedy wystarczy pokazać że $c_n\to -b$, i leci pierwszy dowód
 - (c) $\lim_{n\to\infty} (a_n b_n) = ab$
 - i. Dowód: Skoro z $\{a_n\}$ jest zbieżny, to z twierdzenia 2.3 jest ograniczony, tzn $\exists_{K \in \mathbb{R}} \forall_{n \in \mathbb{N}} |a_n| \leq K$ (dodatkowo, $K \neq 0$)
 - ii. Wiemy to samo co w dowodzie z (a).
 - iii. Chcemy pokazać, że $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} |a_n b_n ab| < \epsilon$
 - $\text{iv. } |a_nb_n ab| = |a_nb_n a_nb + a_nb ab| = |a_n(b_n b) + b(a_n a)| \leq |a_n(b_n b)| + |b(a_n a)| = |a_n||b_n b| + |b||a_n a| \leq K|b_n b| + |b||a_n a|$
 - v. $\lim_{n\to\infty} b_n = b \iff \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |b_n b| < \frac{\epsilon}{2K}$
 - vi. $\lim_{n\to\infty} a_n = a \iff \forall_{\epsilon>0} \exists_{n_1\in\mathbb{N}} \forall_{n\geq n_1} |a_n a| < \frac{\epsilon}{2(|b|+1)}$
 - vii. $K|b_n b| + |b||a_n a| \le K|b_n b| + (|b| + 1)|a_n a|$
 - viii. Stąd $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} |a_n b_n ab| < \epsilon n_0 = \max(n_1, n_2)$
 - (d) $\lim_{n\to\infty}(\frac{a_n}{b_n})=\frac{a}{b}$ jeśli $b\neq 0$ i $\forall_{n\in\mathbb{N}}b_n\neq 0$
 - (e) Przykład:
 - i. $\lim_{n\to\infty} \frac{n^2+3}{4n^2-n+5} = \lim_{n\to\infty} \frac{1+\frac{3}{n^2}}{4-\frac{1}{n}+\frac{5}{-2}} = \lim_{n\to\infty} \frac{1+3\cdot\frac{1}{n}\cdot\frac{1}{n}}{4-\frac{1}{n}+5\cdot\frac{1}{n}\cdot\frac{1}{n}} = \frac{1+3\cdot0\cdot0}{4-0+5\cdot0\cdot0} = \frac{1}{4}$
- 15. Twierdzenie 2.5 (o ciągłości wartości bezwzględnej): Jeśli $\lim_{n\to\infty} a_n = a$, to $\lim_{n\to\infty} |a_n| = |a|$
 - (a) Dowód: Wiemy, że $\forall_{\epsilon>0} \exists_{n_1 \in \mathbb{N}} \forall_{n>n_1} |a_n-a| < \epsilon$
 - (b) Chcemy pokazać, że $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n>n_0} ||a_n| |a|| < \epsilon$
 - (c) Mamy $||a_n| |a|| \le |a_n a|$
 - (d) Stad $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} ||a_n| |a|| \leq |a_n a| < \epsilon$
 - (e) Uwaga 2.1: $\lim_{n\to\infty} a_n = 0 \iff \lim_{n\to\infty} |a_n| = 0$
 - i. $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n>n_0} |a_n-0| < \epsilon$ z lewej strony oraz
 - ii. $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n>n_0} ||a_n| 0| < \epsilon z$ prawej strony. |x| = ||x||, więc strony są równoważne
- 16. Twierdzenie 2.6 (o przechodzeniu do granicy w nierównościach): Jeśli $\exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} a_n \leq b_n$ i $\lim_{n \to \infty} a_n = a$ i $\lim_{n \to \infty} b_n = b$ to $a \leq b$
 - (a) Uwaga 2.2: Twierdzenie 2.6 nie będzie prawdziwe jeśli ≤ zamienimy na <
 - i. np $a_n = \frac{1}{n^2}, b_n = \frac{1}{n}$

- ii. $\forall_{n>2} a_n < b_n$ ale $\lim_{n\to\infty} a_n = 0 = \lim_{n\to\infty} b_n$
- 17. Twierdzenie 2.7 (o trzech ciągach): Jeśli $\exists_{n_0 \in \mathbb{N}} \forall_{n > n_0} a_n \leq b_n \leq c_n$ oraz $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = g$, to $\lim_{n \to \infty} b_n = g$
 - (a) Dowód: Chcemy pokazać, że $\forall_{\epsilon>0}\exists_{n_3\in\mathbb{N}}\forall_{n>n_3}|b_n-g|<\epsilon\iff\forall_{\epsilon>0}\exists_{n_3\in\mathbb{N}}\forall_{n>n_3}-\epsilon< b_n-g<\epsilon$
 - (b) Wiemy, $\dot{z}e \ \forall_{\epsilon>0} \exists_{n_1 \in \mathbb{N}} \forall_{n \geq n_1} |a_n g| < \epsilon \iff \forall_{\epsilon>0} \exists_{n_1 \in \mathbb{N}} \forall_{n \geq n_1} \epsilon < a_n g < \epsilon \text{ oraz } \forall_{\epsilon>0} \exists_{n_2 \in \mathbb{N}} \forall_{n \geq n_2} \epsilon < c_n g < \epsilon$
 - (c) $(n \ge n_2 \land n \ge n_0) \implies b_n g \le c_n g < \epsilon$
 - (d) $(n \ge n_1 \land n \ge n_0) \implies b_n g \ge a_n g > -\epsilon$
 - (e) Zatem pokazaliśmy, że $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n>n_0} \epsilon < b_n g < \epsilon \ (n_3 = max(n_0, n_1, n_2))$
 - (f) Wniosek z twierdzenia o trzech ciągach: Jeśli ciąg $\{a_n\}$ jest ograniczony i $\lim_{n\to\infty}b_n=0$, to $\lim_{n\to\infty}a_nb_n=0$
 - i. Na mocy uwagi 2.1 wystarczy pokazać, że $\lim_{n\to\infty} |a_n b_n| = 0$
 - ii. Z założenia $\exists_{K \in \mathbb{R}} \forall_{n \in \mathbb{N}} |a_n| \leq K$
 - iii. $\forall_{n\in\mathbb{N}}0\leq |a_nb_n|=|a_n|\cdot |b_n|\leq K\cdot |b_n|,\ K\cdot |b_n|\to 0$, więc z twierdzenia o trzech ciągach otrzymujemy $\lim_{n\to\infty}|a_nb_n|=0$
- 18. Twierdzenie 2.8: Jeśli ciąg $\{a_n\}$ jest niemalejący i ograniczony z góry, to jest zbieżny
- 19. Twierdzenie 2.8.1: Jeśli ciąg $\{a_n\}$ jest nierosnący i ograniczony z dołu, to jest zbieżny
- 20. 2.8 oraz 2.8.1 razem: Jeśli ciąg jest monotoniczny i ograniczony, to jest zbieżny
- 21. Twierdzenie 2.11 (z przyszłości):
 - (a) $|a| < 1 \implies \lim_{n \to \infty} |a|^n = 0$
 - (b) $a > 0 \implies \lim_{n \to \infty} \sqrt[n]{a} = 1$
 - (c) $\lim_{n\to\infty} \sqrt[n]{n} = 1$
- 22. def. $f:A \to \mathbb{R}, A \subseteq \mathbb{R}$ jest rosnące, jeśli $\forall_{x_1,x_2 \in A}: (x_1 < x_2 \implies f(x_1) < f(x_2))$
- 23. def $f:A\to\mathbb{R}$ jest funkcją okresową jeśli $\exists_{r\in\mathbb{R}\setminus\{0\}}\forall_{a\in A}x+r\in A\ \land\ x-r\in A\ \land\ f(a)=f(a+r)$

Nierówność Bernoulliego: $\forall_{x>-1,n\in\mathbb{N}}(1+x)^n\geq 1+nx$

- 1. Twierdzenie 2.8: Każdy ciąg monotoniczny i ograniczony jest zbieżny.
 - (a) $\{a_n\}$ jest monotoniczny i ograniczony \Longrightarrow (nie \iff) $\{a_n\}$ zbieżny
 - (b) Ciąg, który jest zbieżny, nie musi być monotoniczny. Na przykład $a_n = \frac{(-1)^n}{n}$. Ciąg ten jest zbieżny z twierdzenia o trzech ciągach, bo $\forall_{n \in \mathbb{N}} \frac{-1}{n} \leq \frac{(-1)^n}{n} \leq \frac{1}{n} \implies \lim_{n \to \infty} \frac{(-1)^n}{n} = 0$. Ale ciąg ten nie jest monotoniczny, bo $a_1 = -1 < a_2 = \frac{1}{2}, \ a_2 = \frac{1}{2} > a_3 = \frac{1}{3}$
- 2. Granice niewłaściwe
 - (a) Def. Ciąg $\{a_n\}$ jest rozbieżny do $+\infty$ (co zapisujemy $\lim_{n\to\infty}=+\infty$ lub $a_n\to+\infty$) $\iff \forall_{D>0}\exists_{n_0\in\mathbb{N}}\forall_{n>n_0}a_n>D$
 - (b) Def. Ciąg $\{a_n\}$ jest rozbieżny do $-\infty$ (co zapisujemy $\lim_{n\to\infty}=-\infty$ lub $a_n\to-\infty$) $\iff \forall_{D>0}\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}a_n<-D$
 - (c) Przykład:
 - i. $\lim_{n\to\infty} n = \infty$, bo $\forall_{D>0} \exists_{n_0 \in \mathbb{N}, n_0 = \lceil D \rceil} \forall_{n \geq n_0} a_n > D$
- 3. Twierdzenie 2.9 (o dwóch ciągach): Jeśli $\exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} a_n \leq b_n$ i $\lim_{n \to \infty} a_n = +\infty$, to $\lim_{n \to \infty} b_n = +\infty$
 - (a) Jeśli $\exists_{n_0 \in \mathbb{N}} \forall_{n > n_0} a_n \leq b_n$ i $\lim_{n \to \infty} b = -\infty$, to $\lim_{n \to \infty} a_n = -\infty$
- 4. Twierdzenie 2.10:
 - (a) Jeśli $\lim_{n\to\infty} a_n = \pm \infty$, to $\lim_{n\to\infty} \frac{1}{a_n} = 0$
 - (b) Jeśli $\lim_{n\to\infty} a_n = +\infty$ i ciąg $\{b_n\}$ jest ograniczony z dołu, to $\lim_{n\to\infty} (a_n + b_n) = +\infty$
 - (c) Jeśli $\lim_{n\to\infty} a_n = -\infty$ i ciąg $\{b_n\}$ jest ograniczony z góry, to $\lim_{n\to\infty} (a_n + b_n) = -\infty$
 - (d) Przykład:
 - i. Niech $\lim_{n\to\infty} a_n = 0$ oraz $\lim_{n\to\infty} b_n = \pm \infty$. Co możemy powiedzieć o zbieżności ciągu $\{a_n b_n\}$?
 - ii. Nic, bo na przykład $a_n = \frac{1}{n} \to 0$, $b_n = n \to \infty$, $a_n b_n = 1 \to 1$, ale dla $a_n = \frac{1}{n^2}$ $a_n b_n \to 0$, lub $a_n = \frac{1}{\sqrt{n}}$, $a_n b_n \to \infty$
 - iii. $[0 \cdot \infty]$ to symbol nieoznaczony
 - iv. Inne symbole nieoznaczone:
 - A. $[\infty \infty]$
 - B. $\left[\frac{0}{0}\right]$
 - C. $\left[\frac{\infty}{\infty}\right]$
 - D. $\left[\infty^0\right]$
 - E. $[0^0]$
 - F. $[1^{\infty}]$
 - v. Ale dla $a \in \mathbb{R}$:
 - A. $[a + \infty] = \infty$
 - B. $[a \cdot \infty] = (\infty \text{ jeśli } a > 0, -\infty \text{ jeśli } a < 0)$
 - C. $\left[\frac{a}{\infty}\right] = 0$ jeśli $a \in \mathbb{R}$
 - (e) Twierdzenie 2.11:
 - i. $|a| < 1 \implies \lim_{n \to \infty} |a|^n = 0$
 - D: 1. przypadek: a = 0. Wtedy $\lim_{n \to \infty} a^n = \lim_{n \to \infty} 0^n = \lim_{n \to \infty} 0 = 0$
 - 2.: $a \neq 0$. Wtedy $\frac{1}{|a|} > 1$ więc istnieje $\delta > 0$ taka, że $\frac{1}{|a|} = 1 + \delta$
 - : $\frac{1}{|a|^n} = \left(\frac{1}{|n|}\right)^n = (1+\delta)^n \ge^{nier.Bern} 1 + n\delta \ge n\delta$
 - $\forall_{n\in\mathbb{N}} 0 \le |a|^n \le \frac{1}{n\delta} \implies^{tw.o\,3\,ciqgach} \lim_{n\to\infty} |a| = 0 \implies \lim_{n\to\infty} |a^n| = 0 \implies^{uwaga\,2.1} \lim_{n\to\infty} a^n = 0$
 - ii. $a > 0 \implies \lim_{n \to \infty} \sqrt[n]{a} = 1$
 - D: 1.przypadek: a = 1. Wtedy $\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} \sqrt[n]{1} = \lim_{n \to \infty} 1 = 1$
 - : 2. przypadek: a > 1. Wtedy $\forall_{n \in \mathbb{N}} \sqrt[n]{a} > 1$
 - $a = (\sqrt[n]{a})^n = (1 + \sqrt[n]{a} 1)^n \ge^{n.Bern} 1 + n(\sqrt[n]{a} 1)$
 - $\forall_{n \in \mathbb{N}} a \ge 1 + n(\sqrt[n]{a} 1)$
 - $\forall_{n \in \mathbb{N}} \frac{a-1}{n} \ge \sqrt[n]{a} 1$
 - $\forall_{n \in \mathbb{N}} \frac{a-1}{n} + 1 \ge \sqrt[n]{a} \ge 1 \implies \lim_{n \to \infty} \sqrt[n]{a} = 1$

3. przypadek: $a \in (0,1)$. Wtedy $\frac{1}{a} > 1 \implies \frac{przpadek}{a} \lim_{n \to \infty} \sqrt[n]{\frac{1}{a}} = 1$

stąd $1 = \lim_{n \to \infty} \sqrt[n]{\frac{1}{a}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{a}}$ oraz $\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} \frac{1}{\frac{1}{n\sqrt{a}}} = 1$

iii. $\lim_{n\to\infty} \sqrt[n]{n} = 1$

(f) $\forall_{a,b\in\mathbb{R},n\in\mathbb{N}}(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

5. Liczba e

- (a) Rozważmy ciąg Eulera $e_n = (1 + \frac{1}{n})^n$. Pokażemy, że $\{e_n\}$ jest rosnący i ograniczony z góry, zatem zbieżny. Liczba eto granica tego ciągu $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2{,}71828$
- (b) Twierdzenie 2.12: Ciąg Eulera jest rosnący i ograniczony z góry, więc zbieżny.

D: Najpierw pokażemy, że $\{e_n\}$ jest rosnący

$$\begin{array}{l} \vdots & \frac{e_{n+1}}{e_n} = \frac{(1+\frac{1}{n+1})^{n+1}}{(1+\frac{1}{n})^n} = \frac{(\frac{n+2}{n+1})^n \cdot (\frac{n+2}{n+1})}{(\frac{n+1}{n})^n} = (\frac{\frac{n+2}{n+1}}{n})^n \cdot \frac{n+2}{n+1} = (\frac{n(n+2)}{(n+1)^2})^n \cdot \frac{n+2}{n+1} = (\frac{n^2+2n+1-1}{n^2+2n+1})^n \cdot \frac{n+2}{n+1} = \\ (1+\frac{-1}{n^2+2n+1})^n \cdot \frac{n+2}{n+1} \geq^{n.Bern} \quad (1-\frac{n}{n^2+2n+1})\frac{n+2}{n+1} = \frac{n^2+2n+1-n}{n^2+2n+1} \cdot \frac{n+2}{n+1} = \frac{(n^2+n+1)(n+2)}{(n+1)\cdot(n+1)} = \\ \frac{n^3+3n^2+3n+2}{n^3+3n^2+3n+1} > 1 \end{array}$$

: Zatem $\forall_{n\in\mathbb{N}}\frac{e_{n+1}}{e_n}>1 \implies e_n>0 \forall_{n\in\mathbb{N}}e_{n+1}>e_n$ czyli $\{e_n\}$ jest rosnący Teraz pokażemy, że $\{e_n\}$ jest ograniczony z góry.

$$\begin{array}{l} : \qquad \qquad e_n = (1+\frac{1}{n})^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} =^{n \geq 2} \ 1 + n \cdot \frac{1}{n} + \sum_{k=2}^n \binom{n}{k} \frac{1}{n^k} = 2 + \sum_{k=2}^n \frac{(n-k+1)(n-k+2) \cdots n}{k! \cdot n^k} < \\ 2 + \sum_{k=2}^n \frac{n^k}{k! \cdot n^k} = 2 + \sum_{k=2}^n \frac{1}{k!} = 2 + \sum_{k=2}^n \frac{1}{1 \cdot 2 \cdots \cdot k} = 2 + \sum_{k=2}^n \frac{1}{2^{k-1}} = 2 + \frac{1}{2} \cdot \frac{1 - (\frac{1}{2})^{n-2}}{1 - \frac{1}{2}} < 2 + 1 = 3 \\ \vdots \qquad \qquad \forall_{n \geq 2} e_n > 3 \text{ i } e_1 = 2 \implies \forall_{n \in \mathbb{N}} e_n < 3 \text{, czyli ciąg } \{e_n\} \text{ jest ograniczony z góry} \end{array}$$

- (c) Def. Liczba e to granica ciągu Eulera: $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$
 - i. Pokazaliśmy, że $\forall_{n\in\mathbb{N}}e_n<3\implies e=\lim_{n\to\infty}e_n\leq 3$
 - ii. Pokazaliśmy, że $\{e_n\}$ jest rosnący $\implies \forall_{n\in\mathbb{N}}e_n\geq e_1=2 \implies e=\lim_{n\to\infty}e_n\geq 2$
 - iii. Więc $2 \le e \le 3$
 - iv. Uwaga: to jest przykład na to, że $[1^{\infty}]$ to symbol nieoznaczony, bo $a_n=1+\frac{1}{n}\to 1,\ b_n=n\to\infty\implies a_n^{b_n}=1$ $(1+\frac{1}{n})^n \to e$

A. $a_n = 1 + \frac{1}{n} \to 1$, $b_n = 2n \to \infty \implies a_n^{b_n} = (1 + \frac{1}{n})^{2n} \to 2e$

6. Podciagi

- (a) Def. Niech $\{a_n\}_{n=1}^{\infty}$ będzie ciągiem, zaś n_1, n_2, n_3, \ldots liczbami naturalnymi, takimi, że $n_1 < n_2 < n_3 < \ldots$ Wtedy ciąg $\{a_{n_k}\}_{k=1}^{\infty}$ o wyrazach $a_{n_1}, a_{n_2}, a_{n_3}, \dots$ nazywamy podciągiem ciągu $\{a_n\}_{n=1}^{\infty}$
 - i. Przykład: $a_n = \frac{1}{n}$,wyrazy tego ciągu: $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{9}, \frac{1}{10}, \dots$

 $b_n = \frac{1}{n^2}$, wyrazy tego ciągu: $1, \frac{1}{4}, \frac{1}{9}, \dots$ Ciąg $\{b_n\}$ to podciąg ciągu $\{a_n\}: b_k = a_{k^2}$ $c_n = \frac{1}{\sqrt{n}}$, wyrazy tego ciągu: $1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{2}, \frac{1}{\sqrt{5}}, \dots$ Ciąg $\{c_n\}$ nie jest podciągiem $\{a_n\}$ (ale $\{a_n\}$ jest podciągiem $\{c_n\}$)

- (b) Twierdzenie 2.13: Każdy podciąg ciągu zbieżnego do g też zbiega do g:
 - i. $\lim_{n\to\infty} a_n = g$ i $\{a_{n_k}\}$ jest podciągiem ciągu $\{a_n\} \implies \lim_{n\to\infty} a_{n_k} = g$
 - ii. Wniosek: Jeśli ciąg $\{a_n\}$ zawiera co najmniej dwa podciągi zbieżne do różnych granic, to nie jest zbieżny
 - iii. Przykład: Ciąg $a_n=(-1)^n$ nie jest zbieżny, bo $\lim_{n\to\infty}(-1)^{2n}=1$ oraz $\lim_{n\to\infty}(-1)^{2n+1}=-1$, oba są podciągami $\{a_n\}$ i są zbieżne do innych granic, więc a_n nie jest zbieżny
 - iv. Przykład: $\lim_{n\to\infty} (\frac{2n+3}{2n+2})^{4n-3} (=[1^{\infty}]) = \lim_{n\to\infty} (1+\frac{1}{2n+2})^{4n-3} = \lim_{m\to\infty} (1+\frac{1}{m})^{2m-7} = \frac{(\lim_{m\to\infty} (1+\frac{1}{m})^m)^2}{\lim_{n\to\infty} (1+\frac{1}{m})^7} = \frac{(\lim_{m\to\infty} (1+\frac{1}{m})^m)^2}{\lim_{n\to\infty} (1+\frac{1}{m})^7} = \frac{(\lim_{m\to\infty} (1+\frac{1}{m})^m)^2}{\lim_{n\to\infty} (1+\frac{1}{m})^7} = \frac{(\lim_{m\to\infty} (1+\frac{1}{m})^m)^2}{\lim_{n\to\infty} (1+\frac{1}{m})^m} = \frac{(\lim_{m\to\infty} (1+\frac{1}{m})^m)^2}{\lim_{m\to\infty} (1+\frac{1}{m})^m} = \frac{(\lim_{m\to\infty} (1+\frac{1}{m})^m})^2}{\lim_{m\to\infty} (1+\frac{1}{m})^m} = \frac{(\lim_{m\to\infty} (1+\frac{1}{m})^m})^2}{\lim_{m$ $\frac{e^2}{1} = e^2$
- (c) Twierdzenie 2.14: (Bolzano-Weierstrassa)
 - i. Każdy ciąg ograniczony zawiera podciąg zbieżny.
- (d) Def. Ciąg $\{a_n\}$ jest ciągiem Cauchyego (podstawowym) $\iff \forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n,m>n_0} |a_n a_m| < \epsilon$
- (e) Twierdzenie 2.15 (warunek równoważny zbieżności ciągu)
 - i. Ciąg $\{a_n\}$ jest zbieżny $\iff \{a_n\}$ jest ciągiem Cauchyego

 $D \Longrightarrow$ Zakładamy, że $\{a_n\}$ jest zbieżny, tzn. $\exists_{g\in\mathbb{R}}\forall_{\epsilon>0}\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}|a_n-g|<\frac{\epsilon}{2}$

Pokażemy, że $\{a_n\}$ jest ciągiem Cauchyego, tzn $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n,m>n_0} |a_n - a_m| < \epsilon$

 $|a_n - a_m| = |a_n - g + (-a_n + g)| \le |a_n - g| + |a_m - g| < n, m \ge n_0 \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

Zatem pokazaliśmy, że $\forall_{\epsilon>0} \exists_{n_1 \in \mathbb{N}, n_1=n_0} \forall_{n,m \geq n_1} |a_n - a_m| \leq \epsilon$

 \longleftarrow pomijamy bo długi dowód

- i. Przykład: Ciąg $a_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ nie jest zbieżny, bo nie jest ciągiem Cauchyego.
 - $\neg(\forall_{\epsilon>0}\exists_{n_0\in\mathbb{N}}\forall_{n,m\geq n_0}|a_n-a_m|<\epsilon)$

 - Chcemy pokazać, że $\exists_{\epsilon>0} \forall_{n_0 \in \mathbb{N}} \exists_{n,m \geq n_0} |a_n a_m| \geq \epsilon$ $|a_{2n} a_n| = |1 + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} 1 \frac{1}{2} \frac{1}{3} \dots \frac{1}{n}| = |\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}| = \frac{1}{n+1} + \dots + \frac{1}{2n} \geq \frac{1}{2n} + \dots + \frac{1}{2n} = n \cdot \frac{1}{2n} = \frac{1}{2}$ Zatem pokazaliśmy, że $\exists_{\epsilon>0} \forall_{n_0 \in \mathbb{N}} \exists_{n,m \geq n_0} |a_n a_m| \geq \epsilon$ zachodzi dla $\epsilon = \frac{1}{2}, n = 2n_0, m = n_0$

Granica górna i dolna ciagu

- 1. Def. Mówimy, że $g \in \mathbb{R} \cup \{-\infty, +\infty\}$ jest punktem skupienia ciągu $\{a_n\}$ jeśli istnieje podciąg $\{a_{n_k}\}$ ciągu $\{a_n\}$ taki, że $\lim_{k\to\infty} a_{n_k} = g$
 - (a) Przykład: Wyznaczamy punkt skupienia ciagu $a_n = \sqrt{\frac{1+4n}{2+n}} \cdot (-1)^{\frac{n(n+1)}{2}}$

$$\begin{array}{l} b_n = \sqrt{\frac{1+4n}{2+n}}, \ c_n = (-1)^{\frac{n(n+1)}{2}} \\ \lim_{n \to \infty} b_n = \sqrt{4} = 2 \ \ \text{bo} \ s_n \to s \implies (s_n)^q \to s^q \\ \text{pierwsze wyrazy } \{c_n\} \cdot c_1 = -1, c_2 = -1, c_3 = 1 \cdot \text{może się powtarza?} \\ c_{4k} = (-1)^{2k(4k+1)} = 1, \ c_{4k+1} = (-1)^{\frac{(4k+1)(4k+2)}{2}} = (-1)^{(4k+1)(2k+1)} = -1, \\ c_{4k+2} = (-1)^{\frac{(4k+2)(4k+3)}{2}} = (-1)^{(2k+1)(4k+3)} = -1, \ c_{4k+3} = (-1)^{\frac{(4k+3)(4k+4)}{2}} = (-1)^{(4k+3)(2k+2)} = 1 \\ \text{a więc } a_{4k} = b_{4k}c_{4k} = b_{4k} \xrightarrow{k \to \infty} 2 \\ a_{4k+1} = b_{4k+1}c_{4k+1} = b_{4k+1} \xrightarrow{k \to \infty} -2 \\ a_{4k+2} = b_{4k+2}c_{4k+2} = b_{4k+2} \xrightarrow{k \to \infty} -2 \\ a_{4k+3} = b_{4k+3}c_{4k+3} = b_{4k+3} \xrightarrow{k \to \infty} 2 \end{array}$$

- 2. Def. Granicą dolną ciągu $\{a_n\}$, oznaczaną $\liminf_{n\to\infty}a_n$ lub $\varliminf_{n\to\infty}a_n$ nazywamy kres dolny zbioru wszystkich punktów skupienia ciągu $\{a_n\}$: $\liminf_{a\to\infty}=\inf\{g:\exists_{\{a_{n_k}\}}\lim_{n\to\infty}a_{n_k}=g\}$
- 3. Def. Granicą górną ciągu $\{a_n\}$, oznaczaną $\limsup_{n\to\infty}a_n$ lub $\overline{\lim}_{n\to\infty}a_n$ nazywamy kres górny zbioru wszystkich punktów skupienia ciągu $\{a_n\}$: $\limsup_{a\to\infty}=\inf\{g:\,\exists_{\{a_{n_k}\}}\lim_{n\to\infty}a_{n_k}=g\}$
 - (a) Wtedy, dla $a_n = \sqrt{\frac{1+4n}{2+n}} \cdot (-1)^{\frac{n(n+1)}{2}}$: $\liminf_{n \to \infty} a_n = 2$, $\limsup_{n \to \infty} = -2$

Więc punkty skupienia ciągu $\{a_n\}$ to -2 i 2

4. Twierdzenie 2.16: Dla dowolnego $g \in \mathbb{R} \cup \{-\infty, +\infty\}$ mamy $\lim_{n \to \infty} a_n = g \iff \liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n = g$

GRANICA FUNKCJI

Przez cały wykład będziemy zakładać, że $f:D\to\mathbb{R},$ gdzie $D\subset\mathbb{R}.$ Ponadto, $\widetilde{\mathbb{R}}=\mathbb{R}\cup\{-\infty,+\infty\}$

- 1. Def. Mówimy, że $a \in \mathbb{R}$ jest punktem skupienia zbioru D jeśli istnieje ciąg $\{a_n\}$ taki,że $\forall_{n \in \mathbb{N}} a_n \in D \setminus \{a\}$ (inaczej $\{a_n\} \subset D \setminus \{a\}$ i $\lim_{n \to \infty} a_n = a$
 - (a) Przykłady:
 - i. $\{0\} \cup [1,2)$ punkty skupienia [1,2]
 - ii. \mathbb{N} punkt skupienia $\{+\infty\}$
 - iii. \mathbb{Z} punkty skupienia $\{-\infty, +\infty\}$
 - iv. $\{1,2,3\}$ nie ma punktów skupienia Ogólniej, dowolny zbiór skończony nie ma punktów skupienia
 - v. \mathbb{R} punkty skupienia \mathbb{R}
- 2. Def. (Heinego granicy funkcji): Niech $a \in \mathbb{R}$ będzie punktem skupienia zbioru D i $g \in \mathbb{R}$. Mówimy, że g jest granicą funkcji f w punkcie a (jeśli $a \in \mathbb{R}$) lub w $\pm \infty$ (jeśli $a = \pm \infty$) i zapisujemy $\lim_{x \to a} f(x) = g$ lub $f(x) \xrightarrow{x \to a} g \iff \forall_{\{a_n\} \subset D \setminus \{a\}} \lim_{n \to \infty} a_n = a \implies \lim_{n \to \infty} f(a_n) = g (\mathbf{H})$
 - (a) Przykład $f(x) = \begin{cases} 0 & \text{dla } x = 1 \\ 1 & \text{dla } x \neq 1 \end{cases}$ $\lim_{n \to \infty} f(x) = 1$. W szczególności $\lim_{x \to 1} f(x)$ nie zależy od wartości funkcji w punkcie $x_0 = 1$
- 3. Twierdzenie 4.1: Granica funkcji jest wyznaczona jednoznacznie, tzn. jeśli $\lim_{x\to a} f(g) = g_1$ oraz $\lim_{x\to a} f(x) = g_2$, to $g_1 = g_2$
 - (a) Dowód: Zakładamy, że $\lim_{x\to a} f(x) = g_1$ i $\lim_{x\to a} f(x) = g_2$ $\forall_{\{a_n\}\subset D\setminus \{a\}} \lim_{n\to\infty} a_n = a \Longrightarrow \lim_{n\to\infty} f(a_n) = g_1$ Weźmy dowolny ciąg $\{a_n\}\subset D\setminus \{a\}$ taki, że $\lim_{n\to\infty} a_n = a$. Wtedy $\lim_{n\to\infty} f(a_n) = g_1$ oraz $\lim_{n\to\infty} f(a_n) = g_2$ Z tw 2.2, otrzymujemy, że $g_1 = g_2$

- (b) Przykłady:
 - i. $\lim_{x\to-\infty}\frac{\sqrt{x^2+2x+5}}{2x-1},\ D=\mathbb{R}\setminus\{\frac{1}{2}\}\infty k$ Weźmy ciąg $\{a_n\}\subset D\setminus\{-\infty\}=\mathbb{R}\setminus\{\frac{1}{2}\}$ taki, że $\lim_{n\to\infty}a_n=-\infty$. Wtedy $\lim_{n\to\infty}\frac{1}{a_n}=0$ oraz $\lim_{n\to\infty}f(a_n)=\frac{|a_n|}{a_n}\stackrel{a_n\leq 0}{=}\frac{-a_n}{2a_n}=-\frac{1}{2}$, więc $\lim_{x\to-\infty}=-\frac{1}{2}$
 - ii. Granica $\lim_{n\to\infty} 1$ nie istnieje. Weźmy dwa ciągi, $\{a_n\}\subset\mathbb{R}\setminus\{0\},\{x_n\}\subset\mathbb{R}\setminus\{0\}$ takie, że $\lim_{n\to\infty} a_n=0$ oraz $\lim_{n\to\infty} b_n=0$ $a_n=\frac{1}{2n\pi}\overset{n\to\infty}{\longrightarrow}0,\ x_n=\frac{1}{2n\pi+\frac{\pi}{2}}\overset{n\to\infty}{\longrightarrow}0.$ Wtedy: $\lim_{n\to\infty} f(a_n)=\lim_{n\to\infty}\sin\frac{1}{a_n}=\lim_{n\to\infty}\sin(2n\pi)=0$ $\lim_{n\to\infty}f(x_n)=\lim_{n\to\infty}\sin(2n\pi+\frac{\pi}{2})=1$ Granica musi być jednoznaczna więc $\lim_{n\to0}\sin\frac{1}{n}$ nie istnieje
- 4. Def. (Cauchy'ego granicy skonczonej (właściwej) funkcji w punkcie): Niech $a \in \mathbb{R}$ będzie punktem skupienia D i niech $g \in \mathbb{R}$. Wtedy: $\lim_{x \to a} f(x) = g \iff \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} 0 < |x-a| < \delta \implies |f(x)-g| < \epsilon \text{ (C)}$

 $\lim_{x\to a} f(x) = g \iff \forall \epsilon > 0 \exists \delta > 0 \forall x \in D 0 \le |x-a| \le \delta \implies |f(x)-g| \le \epsilon - (C)$ Dla x bliskich a i różnych od a odległość f(x) od g jest dowolnie mała.

- 5. Twierdzenie 4.2 : Definicje Cauchy'ego i Heinego granicy włąściwej funkcji w punkcie są równoważne.
 - (a) Dowód: (H) \Longrightarrow (C) Dowód nie wprost. Zakładamy, że (H) i ¬(C) $\exists_{\epsilon>0}\forall_{\delta>0}\exists_{x\in D}0<|x-a|<\delta\wedge|f(x)-g|\geq\epsilon$ ¬(C) W szczególności dla $\delta=\frac{1}{n},n\in\mathbb{N}$ otrzymujemy $\exists_{\epsilon>0}\forall_{n\in\mathbb{N}}\exists_{x_n\in D}0<|x_n-a|<\frac{1}{n}\wedge|f(x_n)-g|\geq\epsilon$ Z tw. o trzech ciągach $\lim_{n\to\infty}|x_n-a|=0\iff\lim_{n\to\infty}(x_n-a)=0\iff\lim_{n\to\infty}x_n=a$ Pokazaliśmy, że $\exists_{\epsilon>0}\exists_{\{x_n\}\subset D\setminus\{a\}}\lim_{n\to\infty}x_n\wedge\forall_{n\in\mathbb{N}}|f(x)-g|\geq\epsilon$ $\exists_{\{x_n\}\subset D\setminus\{a\}}\lim_{n\to\infty}x_n=a\wedge\lim_{n\to\infty}f(x_n)\neq g\iff\neg(H)$ sprzecznosc z zał. że zachodzi (H)
 - (b) (C) \Longrightarrow (H): Zakładamy, że zachodzi (C), tzn $\forall_{\epsilon>0}\exists_{\delta>0}\forall_{x\in D}0<|x-a|<\delta\Longrightarrow|f(x)-g|<\epsilon$ Chcemy pokazać, że (H), czyli $\forall_{\{a_n\}\subset D\backslash\{a\}}\lim_{n\to\infty}a_n=a\Longrightarrow\lim_{n\to\infty}f(a_n)=g$ $\forall_{\epsilon>0}\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}|f(a_n)-g|<\epsilon$ Weźmy dowolny ciąg $\{a_n\}\subset D\setminus\{a\}$ taki, że $\lim_{n\to\infty}a_n=a$ i weźmy dowolny $\epsilon>0$. Wtedy $\exists_{n_1\in\mathbb{N}}\forall_{n\geq n_1}0<|a_n-a|<\delta\Longrightarrow|f(a_n)-g|<\epsilon$
 - (c) Zatem pokazalismy $\exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} |f(a_n) g| < \epsilon \ (n_0 = n_1)$
- 6. Def. Cauchy'ego niewłaściwych granic funkcji w punkcie: Niech $a \in \mathbb{R}$ będzie punktem skupienia zbioru D $\lim_{x \to a} f(x) = +\infty \iff \forall_{G>0} \exists_{\delta>0} \forall_{x \in D} 0 < |x-a| < \delta \implies f(x) > G$ $\lim_{x \to a} f(x) = -\infty \iff \forall_{G>0} \exists_{\delta>0} \forall_{x \in D} 0 < |x-a| < \delta \implies f(x) < -G$
- 7. Def. Cauchy'ego właściwej granicy w $\pm \infty$: Niech $\pm \infty$ będzie punktem skupienia zbioru D i $g \in \mathbb{R}$ $\lim_{x \to +\infty} f(x) = g \iff \forall_{\epsilon > 0} \exists_{G > 0} \forall_{x \in D} x > G \implies |f(x) g| < \epsilon$ $\lim_{x \to -\infty} f(x) = g \iff \forall_{\epsilon > 0} \exists_{G > 0} \forall_{x \in D} x < -G \implies |f(x) g| < \epsilon$
- 8. Def Cauchy'ego niewłaściwych granic funkcji w $\pm\infty$: Niech $\pm\infty$ będzie punktem skupienia zbioru D $\lim_{x\to +\infty} f(x) = +\infty \iff \forall_{G>0} \exists_{L>0} \forall_{x\in D} x > L \implies f(x) > G$ $\lim_{x\to +\infty} f(x) = -\infty \iff \forall_{G>0} \exists_{L>0} \forall_{x\in D} x > L \implies f(x) < -G$ $\lim_{x\to -\infty} f(x) = +\infty \iff \forall_{G>0} \exists_{L>0} \forall_{x\in D} x < -L \implies f(x) > G$ $\lim_{x\to -\infty} f(x) = -\infty \iff \forall_{G>0} \exists_{L>0} \forall_{x\in D} x < -L \implies f(x) < -G$
- 9. Twierdzenie 4.3: Powyższe dwie definicje Cauchy'ego grainc funkcji są równowazne odpowiednim definicjom Heinego
- 10. Twierdzenie 4.4: (tw. o trzech funkcjach): Jeśli:
 - (a) $f, p, h: D \to \mathbb{R}$
 - (b) $a \in \mathbb{R}$ jest punktem skupienia D
 - (c) $q \in \mathbb{R}$ i $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = q$
 - (d) $\forall_{x \in D \text{ i x bliskiego a}} f(x) \leq p(x) \leq h(x)$

To $\lim_{x\to a} p(x) = g$ - (dowód z def Heinego i tw o trzech ciągach)

- 11. Twierdzenie 4.5 (tw o dwóch funkcjach): Jeśli:
 - (a) $f, h: D \to \mathbb{R}$
 - (b) $a \in \mathbb{R}$ jest punktem skupienia D

- (c) $\lim_{x\to a} f(x) = +\infty$ (ewentualnie $\lim_{x\to a} h(x) = -\infty$)
- (d) $\forall_{x \in D \text{ i x bliskie a}} f(x) \leq h(x)$

To
$$\lim_{x\to a}h(x)=+\infty$$
 (ewentualnie $\lim_{x\to a}f(x)=-\infty)$

(a) Przykład:
$$\lim_{x\to 0} x \cdot \sin\frac{1}{x}$$

 $0 \le |x \cdot \sin\frac{1}{x}| = |x| |\sin\frac{1}{x}| \le |x| \text{ dla } x \ne 0$
 $\underset{\text{tw.o 3 funkcjach}}{\Longrightarrow} \lim_{x\to 0} |x \cdot \sin\frac{1}{x}| = 0 \iff \lim_{x\to 0} x \cdot \sin\frac{1}{x} = 0$

- 1. Twierdzenie 4.6: $\lim_{x\to 0} \frac{\sin x}{x} = 1$ -(a) oraz $\forall_{x\in\mathbb{R}} |\sin x| \le |x|$ (b)
 - (a) D: Niech $x \in (0, \frac{\pi}{2})$

 $P_{\triangle AOB} < P_{wycinekkolaAOB} < P_{\triangle OAC}$ $\frac{1}{2} \cdot 1 \cdot 1 \cdot \sin x < \frac{x}{2\pi} \pi \cdot 1^2 < \frac{1}{2} \cdot 1 \cdot \tan x$ $\sin x < x < \frac{\sin x}{\cos x}$

Dla $x \in (0, \frac{\pi}{2})$, mamy $\frac{\sin x}{x} < 1$ oraz - $\cos x < \frac{\sin x}{x} < 1$ Dla $-x \in (-\frac{\pi}{2}, 0)$ mamy $\cos(-x) < \frac{\sin(-x)}{-x} < 1$

Dla $y \in \left(-\frac{\pi}{2}, 0\right)$ mamy $\cos y < \frac{\sin y}{y} < 1$

Stąd $\forall_{x \in (-\frac{\pi}{2},0) \cup (0,\frac{\pi}{2})} \cos x < \frac{\sin x}{x} < 1$ tw. o $\lim_{x \to 0} \frac{\sin x}{x} = 1$, bo $\lim_{x \to 0} \cos(x) = 1$

(b) D: Weżmy,że $\forall_{x \in (-\frac{\pi}{2},0) \cup (0,\frac{\pi}{2})} |\frac{\sin x}{x}| < 1$ z czego $\forall_{x \in (-\frac{\pi}{2},0) \cup (0,\frac{\pi}{2})} |\sin x| < |x|$, Dla x = 0, $|\sin x| = 0 \le |x|$ Dla x takich, że $|x| \ge \frac{\pi}{2}$ mamy $|\sin x| \le 1 < \frac{\pi}{2} \le |x|$ Z wszystkich poprzednich $\implies \forall_{x \in \mathbb{R}} |\sin x| \leq |x|$

5. Granice jednostronne, asymptopty i ciągłość funkcji

- 1. Przez cały wykład zakładamy,
ż że $f:D\to\mathbb{R}$ gdzie $D\subset\mathbb{R}$
 - (a) $y = \sqrt{x}$ granicę w zerze możemy liczyć tylko z prawej strony.
 - (b) $y = \begin{cases} \sqrt{x} & x \ge 0 \\ 1 & x < 0 \end{cases} \lim_{x \to 0} f(x)$ nie istnieje. Ale możemy rozważać granicę lewostronną $\lim_{x \to 0^-} f(x)$ i granicę prawostronna $\lim_{x\to 0^+}$
- 2. Def. (Heinego granic jednostronnych)
 - (a) Niech $a \in \mathbb{R}$ będzie punktem skupienia zbioru $D \cap (-\infty, a)$ i niech $g \in \mathbb{R}$. Wtedy g jest granicą lewostronną funkcji fw punkcie a (co zapisujemy $\lim_{x\to a^-} f(x) = g$ lub $f(x) \xrightarrow{x\to a^-} g$ lub $f(a^-) = g$) $\iff \forall_{\{x_n\} \subset D \cap (-\infty, a)} \lim_{n \to \infty} x_n = a \implies \lim_{n \to \infty} f(x_n) = g$
 - (b) Niech $a \in \mathbb{R}$ będzie punktem skupienia zbioru $D \cap (a, +\infty)$ i niech $q \in \mathbb{R}$. Wtedy q jest granicą prawostronną funkcji f w punkcie a (co zapisujemy $\lim_{x\to a^+} f(x) = g$ lub $f(x) \xrightarrow{x\to a^+} g$ ub $f(a^+) = g$) $\iff \forall_{\{x_n\} \subset D \cap (a, +\infty)} \lim_{n \to \infty} x_n = a \implies \lim_{n \to \infty} f(x_n) = g$
- 3. Twierdzenie 5.1 (def. Cauchy'ego granic jednostronnych funkcji) podkreślone to zmiana od definicji zwykłej granicy
 - (a) Niech $a \in \mathbb{R}$ będzie punktem skupienia zbioru $D \cap (-\infty, a)$
 - i. Jesli $g \in \mathbb{R}$ to $\lim_{x \to a^-} f(x) = g \iff \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} = \delta < x a < 0 \implies |f(x) g| < \epsilon$
 - ii. Jeśli $g = +\infty \lim_{x \to a^-} f(x) = +\infty \iff \forall_{G>0} \exists_{\delta>0} \forall_{x \in D} \underline{-\delta} < x a < 0 \implies f(x) > G$
 - iii. Jeśli $g = -\infty \lim_{x \to a^-} f(x) = -\infty \iff \forall_{G>0} \exists_{\delta>0} \forall_{x \in D} \underline{-\delta < x a < 0} \implies f(x) < -G$
 - (b) Niech $a \in \mathbb{R}$ będzie punktem skupienia zbioru $D \cap (a, +\infty)$
 - i. Jesli $g \in \mathbb{R}$ to $\lim_{x \to a^-} f(x) = g \iff \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} \underbrace{0 < x a < \delta} \implies |f(x) g| < \epsilon$
 - ii. Jeśli $g = +\infty \lim_{x \to a^-} f(x) = +\infty \iff \forall_{G>0} \exists_{\delta>0} \forall_{x \in D} 0 < x a < \delta \implies f(x) > G$

- iii. Jeśli $g = -\infty \lim_{x \to a^-} f(x) = -\infty \iff \forall_{G>0} \exists_{\delta>0} \forall_{x \in D} 0 < x a < \delta \implies f(x) < -G$
- 4. Twierdzenie 5.2: Jeśli $a \in \mathbb{R}$ jest punktem skupienia $D \cap (-\infty, a)$ i $D \cap (a, +\infty)$ oraz $g \in \widetilde{\mathbb{R}}$, to $\lim_{x \to a} f(x) = \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = g$
 - (a) $\left[\frac{1}{0^+}\right] = +\infty, \left[\frac{1}{0^-}\right] = -\infty$
- 5. Asymptoty
 - (a) Def. Prosta x = a, gdzie $a \in \mathbb{R}$ jest
 - i. Asymptotą pionową lewostronną (wykresu) funkcji $y = f(x) \iff \lim_{x \to a^-} f(x) = \pm \infty$
 - ii. Asymptotą pionową prawostronną (wykresu) funkcji $y = f(x) \iff \lim_{x \to a^+} f(x) = \pm \infty$
 - iii. Asymptota pionowa obustronna gdy jest asymptota pionowa lewostronna i prawostronna
 - (b) Def. Prosta y = b, gdzie $b \in \mathbb{R}$ jest
 - i. Asymptotą poziomą lewostronną (wykresu) funkcji $y = f(x) \iff \lim_{x \to -\infty} f(x) = g$
 - ii. Asymptotą poziomą prawostronną (wykresu) funkcji $y = f(x) \iff \lim_{x \to +\infty} f(x) = g$
 - iii. Asymptotą poziomą obustronną gdy jest asymptotą poziomą ^lewostronną i prawostronną
 - (c) Def. Prosta y = mx + k, gdzie $m, k \in \mathbb{R}$ jest
 - i. Asymptotą ukośną lewostronną (wykresu) funkcji $y = f(x) \iff \lim_{x \to -\infty} [f(x) (mx + k)] = 0$
 - ii. Asymptotą ukośną prawostronną (wykresu) funkcji $y = f(x) \iff \lim_{x \to +\infty} [f(x) (mx + k)] = 0$
 - iii. Asymptotą ukośną obustronną gdy jest asymptotą poziomą lewostronną i prawostronną
 - iv. Twierdzenie 5.3: Prosta y = mx + k, gdzie $m \in \mathbb{R} \setminus \{0\}$ i $k \in \mathbb{R}$ jest asymptotą ukośną prawo/lewostronnną $\iff m = \lim_{x \to \pm \infty} \frac{f(x)}{x} \wedge k = \lim_{x \to \pm \infty} [f(x) mx]$ (dowód na ćwiczeniach)
 - A. Przykład: Wyznaczmy asymptoty funkcji $y=\frac{\sqrt{x^2+1}}{x}$. $D=\mathbb{R}\setminus\{0\}$ $\lim_{x\to 0^-}\frac{\sqrt{x^2+1}}{x}=\left[\frac{1}{0^-}\right]=-\infty, \lim_{x\to 0^+}\frac{\sqrt{x^2+1}}{x}=\left[\frac{1}{0^+}\right]=+\infty, \text{ Więc } x=0 \text{ to asymptota pionowa obustronna}$ $\lim_{x\to -\infty}\frac{\sqrt{x^2+1}}{x}=\lim_{x\to -\infty}\frac{|x|\sqrt{1+\frac{1}{x^2}}}{x}=\lim_{x\to -\infty}\frac{-x\sqrt{1+\frac{1}{x^2}}}{x}=-1, \lim_{x\to +\infty}\frac{x\sqrt{1+\frac{1}{x^2}}}{x}=1 \text{ asymptota pozioma lewostronna to } y=-1, \text{ prawostronna } y=1$ Brak asymptot ukośnych, bo są asymptoty poziome
- 6. Ciągłość
 - (a) Przypomnienie: $\lim_{x\to a} f(x) = g \iff \forall_{\{x_n\}\subset D\setminus\{a\}} \lim_{x\to\infty} x_n = a \implies \lim_{n\to\infty} f(x_n) = g \iff \forall_{\epsilon>0} \exists_{\delta>0} \forall_{x\in D} 0 < |x-a| < \delta \implies |f(x)-g| < \epsilon$
 - (b) Def. (Heinego ciągłości funkcji w punkcie):

Funkcja f jest ciągła w punkcie $\underline{a} \in D$ (musi być w dziedzinie) $\iff \forall_{\{x_n\} \subset D} \lim_{n \to \infty} x_n = a \implies \lim_{n \to \infty} f(x_n) = f(a)$ - (CH)

- i. W przypadku funkcji ciągłej f mamy $\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)$, tzn. z granicą można wejść pod symbol funkcji.
- ii. Uwaga: Jeśli $a \in D$ nie jest punktem skupienia zbioru D, to $\underline{\forall}_{\{x_n\}\subset D} \lim_{n\to\infty} x_n = a \implies \lim_{n\to\infty} f(x_n) = f(a)$ (*) jest spełnione jedynie przez ciągi $\{x_n\}$ takie, że dla wszystkich dalszych $n: x_n = a \implies$ dla wszystkich dużych $n: f(x_n) = f(a) \stackrel{n\to\infty}{\longrightarrow} f(a)$

Zatem warunek (CH) jest spełniony i funkcja jest ciągła w a. Na przykład każda $f: \mathbb{N} \to \mathbb{R}$ jest ciągła w każdym punkcie z $D = \mathbb{N}$, bo każdy taki punkt nie jest punktem skupienia dziedziny

(c) Twierdzenie 5.4 (def. Cauchy'ego ciągłości funkcji w punkcie).

Funkcja f(x) jest ciągła w pkt. $a \in D \iff \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x - a| < \delta \implies |f(x) - f(a)| < \epsilon$ - (CC)

- i. D (gdy a jest punktem skupienia zbioru D): Chcemy pokazać, że (CH) \iff (CC) (CH) \iff $\forall_{\{x_n\}\subset D}\lim_{n\to\infty}x_n=a$ \implies $\lim_{n\to\infty}f(x_n)=f(a)$ \iff $\forall_{\{x_n\}\subset D\setminus\{a\}}\lim_{n\to\infty}x_n=a$ \implies $\lim_{n\to\infty}f(x_n)=f(a)$ \implies $\lim_{n\to\infty$
- ii. Przy okazji udowodniliśmy następujące twierdzenie:
- (d) Twierdzenie 5.5: Jeśli $a \in D$ jest punktem skupienia zbioru D, to f(x) jest ciagła w punkcie $a \iff \lim_{x\to a} f(x) = f(a)$
- (e) Def. Funkcja f(x) jest ciągła $\iff f(x)$ jest ciągła w każdym punkcie swojej dziedziny, tzn. $\forall_{a \in D} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x a| < \delta \implies |f(x) f(a)| < \epsilon \iff f(x)$ jest ciągła w a Przykłady:

- i. Funkcja stała $f: \mathbb{R} \to \mathbb{R}$, f(x) = c gdzie $c \in \mathbb{R}$ $\forall_{a \in D} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x a| < \delta \implies |c c| = 0 < \epsilon$ więc jest ciagła
- ii. $f: \mathbb{R} \to \mathbb{R}$, f(x) = x jest ciągła: $\forall_{a \in D} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x a| < \delta \implies |x a| < \epsilon$, co zachodzi dla $\delta = \epsilon$
- iii. $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x| jest ciągła: $\forall_{a \in D} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x a| < \delta \implies ||x| |a|| \le |x a| < \epsilon$, co zachodzi dla $\delta = \epsilon$
- iv. $\sin \alpha \sin \beta = 2 \sin \frac{\alpha \beta}{2} \cos \frac{\alpha + b}{2}$ przydatne do nastepnego $\sin \alpha + \sin \beta = 2 \sin \frac{\alpha \beta}{2} \cos \frac{\alpha b}{2}$ $\sin \alpha \cos \beta = 2 \sin \frac{\alpha \beta}{2} \sin \frac{\alpha + b}{2}$ $\sin \alpha + \cos \beta = 2 \cos \frac{\alpha \beta}{2} \cos \frac{\alpha + b}{2}$
- v. $f,g: \mathbb{R} \to \mathbb{R}, f(x) = \sin(x), g(x) = \cos(x)$ są ciągłe, bo: $\forall_{a \in D} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x a| < \delta \implies |\sin x \sin a| = 2|\sin \frac{x a}{2}| \cdot |\cos \frac{x + a}{2}| \le 2 \cdot |\frac{x a}{2}| \cdot |1| \le |x a| < \epsilon \ (\delta = \epsilon)$ $\forall_{a \in D} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x a| < \delta \implies |\cos x \cos a| = 2|\sin \frac{x a}{2}| \cdot |\sin \frac{x + a}{2}| \le 2 \cdot |\frac{x a}{2}| \cdot |1| \le |x a| < \epsilon \ (\delta = \epsilon)$

6 Funkcje Ciągłe

- 1. Def. Funkcja $f:D\to\mathbb{R}$ gdzie $D\subset\mathbb{R}$ jest ciągła w punkcie $a\in D \stackrel{(\mathrm{CH})}{\Longleftrightarrow} \forall_{\{x_n\}\in D} \lim_{n\to\infty} x_n = a \implies \lim_{n\to\infty} f(x_n) = 0$ $f(a) \stackrel{\text{(CC)}}{\Longleftrightarrow} \forall_{\epsilon>0} \exists_{\delta>0} \forall_{x \in D} |x-a| < \delta \implies |f(x) - f(a)| < \epsilon$
 - (a) T: Jeśli $a \in D$ jest punktem skupienia D, to f jest ciągła w punkcie $a \iff \lim_{x\to a} f(x) = f(a) \iff \lim_{x\to 0^-} f(x) = f(a)$ $\lim_{x\to 0^+} f(x)$

Funkcje $c, x, |x|, \sin x, \cos x$ są ciągłe

2. Twierdzenie 6.1: Jeśli funkcje $f,g:D\to\mathbb{R}$, gdzie $D\subset\mathbb{R}$ są ciągłe w punkcie $a\in D$, to

f+g, f-g, fgteż są ciągłe w punkcie a
 $\frac{f}{a}$ też jest ciągła w punkcie ajeśl
i $\forall_{x\in D}g(x)\neq 0$

Ď: Twierdzenie to wynika z def. Heinego ciągłości funkcji i z tw. o ciągłości działań arytmetycznych Wnioski:

- (a) Każdy wielomian $w(x) = \sum_{k=0}^{n} a_k x^k$ jest funkcją ciągłą
- (b) Każda funkcja wymierna $\frac{w_1(x)}{w_2(x)}$ jest funkcją ciągłą
- (c) Funkcje $\tan x$ i $\cot x$ sa ciagłe
- 3. Twierdzenie 6.2: Złożenie funkcji ciągłych jest funkcją ciągłą. Dokładniej, jeśli $D_1, D_2 \subset \mathbb{R}$ i $f: D_1 \to D_2$ jest ciągła w punkcie $a \in D_1$ i $g: D_2 \to \mathbb{R}$ jest ciągła w punkcie f(a), to złożenie $g \circ f(g \circ f(x) := g(f(x)))$ jest ciągłe w punkcie aPrzykład Funkcja $f(x) = \sin |x|$ jest ciągła

Funkcja odwrotna do funkcji ciągłej nie musi być funkcją ciągłą - musi być odwracalna

4. Twierdzenie 6.3 (o ciągłości funkcji odwrotnej): Jeśli P to przedział i $f:P\to Y\subset\mathbb{R}$ jest ciągła i odwracalna, to funkcja odwrotna $f^{-1}: Y \to P$ też jest funkcją ciągłą.

Wniosek: Funkcja cyklometryczne, tzn $\arcsin x$, $\arccos x$, $\arctan x$, $\operatorname{arccot} x$ to funkcje ciagłe jako funkcje odwrotne

- 5. Def. Do funkcji elementarnych będziemy zaliczać:
 - (a) wielomiany $w(x) = \sum_{k=0}^{n} a_k x^k$
 - (b) funkcje wymierne $\frac{w_1(x)}{w_2(x)}$
 - (c) funkcja pierwiastek $\sqrt[n]{x}$, $n \in \mathbb{N}$
 - (d) funkcje trygonometryczne i cyklometryczne
 - (e) funkcje wykładnicza a^x gdzie a > 0Jak rozumieć a^x gdy a > 0 i $x \in \mathbb{R}$?
 - i. Dla $x = 0, a^x = a^0 = 1$
 - ii. Dla $x \in \mathbb{N}, a^x = a \cdot \cdots \cdot a$ (x czynników)
 - iii. Jeśli $x \in \mathbb{Z}$ i x < 0 to $a^x = \frac{1}{a^{-x}}$
 - iv. Jeśli $x\in\mathbb{Q},$ czyli $x=\frac{n}{m},$ gdzie $n\in\mathbb{N},$ $n\in\mathbb{Z},$ to $a^x=a^{\frac{n}{m}}=\sqrt[m]{a^n}$
 - v. A co jeśli $x \notin \mathbb{O}$?

Def. Jeśli $a \in [1,\infty)$, to $a^x := \sup\{a^q : q \in \mathbb{Q} \land q \leq x\}$ - zbiór niepusty i ograniczony z góry, np. przez $a^{\lfloor x \rfloor + 1}$ ⇒ ma skończony kres górny Jeśli $a \in (0,1)$, to $a^x := \frac{1}{(\frac{1}{2})^x}$

- (f) funkcję logarytmiczną $\log_a x$
- 6. Twierdzenie 6.4 (własności potegowania):
 - (a) Jesli $a, b > 0, x, y \in \mathbb{R}$, to $a^{x+y} = a^x \cdot a^y, (a^x)^y = a^{xy}, (ab)^x = a^x \cdot b^x$
 - (b) Jeśli $a \in (1, \infty)$, to funkcja $f(x) = a^x$ jest rosnąca i jej zbiór wartości to $(0, \infty)$
 - (c) Jeśli $a \in (0,1)$, to funkcja $f(x) = a^x$ jest malejąca i jej zbiór wartości to $(0,\infty)$
- 7. Twierdzenie 6.5: Funkcja $f: \mathbb{R} \to \mathbb{R}, f(x) = a^x$, gdzie a > 0 jest ciągła, tzn $\forall_{x_0 \in \mathbb{R}} \lim_{x \to x_0} a^x = a^{x_0}$
- 8. Def. Niech $a \in (0,1) \cup (1,\infty)$. Funkcją logarytmiczną nazywamy funkcję $f:(0,\infty) \to \mathbb{R}, f(x) = \log_a x$, która jest funkcją odwrotna do funkcji $g: \mathbb{R} \to (0, \infty), g(x) = a^x$

Uwaga: Funkcja logarytmiczna jest funkcja ciagła jako funkcja odwrotna do funkcji ciagłej określonej na przedziale

- 9. Funkcja pierwiastek: Na ćwiczeniach, pokazalismy, że $\forall_{g\geq 0}\forall_{\{x_n\}\in[0,\infty)}\lim_{x\to\infty}x_n=g\iff\lim_{x\to\infty}\sqrt[4]{x_n}=\sqrt[4]{g}$ Analogicznie mozna wykazać, że powyższy fakt zachodzi nie tylko dla pierwiastka stopnia 4 ale dowolnego stopnia $k\in\mathbb{N}$ Warunek ten oznacza, że $f(x)=\sqrt[k]{x}$ jest funkcją ciągłą w dowolnym punkcie g
- 10. Twierdzenie 6.6: Każda funkcja elementarna jest funkcją ciągłą.
- 11. Def (funkcje hyperboliczne):

(a)
$$\sinh x := \frac{e^x - e^{-x}}{2}, x \in \mathbb{R}$$

(b)
$$\cosh x := \frac{e^x + e^{-x}}{2}, x \in \mathbb{R}$$

(c)
$$\tanh x := \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \ x \in \mathbb{R}$$

(d)
$$\coth x := \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} \ x \in \mathbb{R} \setminus \{0\}$$

- (e) Uwagi:
 - i. Pomiędzy funkcjami hiberbolicznymi zachodzą **podobne** związki jak pomiędzy funkcjami trygonometrycznymi, np:

$$sinh 2x = \frac{e^{2x} - e^{-2x}}{2} = 2 \cdot \frac{e^x + e^{-x}}{2} \cdot \frac{e^x - e^{-x}}{2} = 2 \sinh x \cosh x
\cosh^2 x - \sinh^2 x = \frac{e^{2x} + 2 + e^{-2x}}{4} - \frac{e^{2x} - 2 + e^{-2x}}{4} = 1$$

ii. Funkcje hiperboliczne są ciągłe, np $\sinh x = \frac{1}{2}(e^x - e^{-x})$

Własności funkcji ciągłych. Jednostajna ciągłość funkcji

- 1. Def. Mówimy, że funkcja $f: \langle a,b \rangle \to \mathbb{R}$ ma własność Darboux jeśli $f(a) \neq f(b) \implies \forall_{c \text{ leżącego pomiedzy } f(a) \text{i}} \ f(b) \exists_{x_0 \in (a,b)} f(x_0) = c$
- 2. Twierdzenie 7.1: Każda funkcja ciągła $f: \langle a,b \rangle \to \mathbb{R}$ ma własność Darboux
- 3. Twierdzenie 7.2 (Weierstrassa I)

Każda funkcja ciągła f; $\langle a, b \rangle \to \mathbb{R}$ jest ograniczona, tzn $\exists_{K \in \mathbb{R}} \forall_{x \in \langle a, b \rangle} |f(x)| \leq K$

Uwaga - W powyższym twierdzeniu założenie, że dziedzina funkcji jest przedziałem domkniętym i ograniczonem - musi być przedziałem domkniętym

(a) Dowód nie wprost. Zakładamy, że $f: \langle a,b \rangle \to \mathbb{R}$ jest ciągła ale nie jest ograniczona, tzn

 $\forall_{K \in \mathbb{R}} \exists_{x \in \langle a,b \rangle} |f(x)| > K$. W szczególności biorąc K = n gdzie $n \in \mathbb{R}$ otrzymujemy $\forall_{n \in \mathbb{N}} \exists_{x_n \in \langle a,b \rangle} |x_n| > n$. Zatem mamy ciąg $\{x_n\}$, który jest ograniczony (bo $x_n \in \langle a,b \rangle$)

 $\overset{\text{tw. B-W}}{\Longrightarrow}$ ciąg $\{x_n\}$ zawiera podciąg zbieżny, oznaczmy $\lim_{k\to\infty} x_{n_k} = x_0$. Wtedy $x_0 \in (a,b)$, bo $\forall_{k\in\mathbb{N}} a \leq x_{n_k} \leq b$ i z tw. o przechodzeniu do granicy w nierównościach otrzymujemy $\lim_{x\to\infty} x_{n_k} \in (a,b)$

Funkcja f jest ciągła na $\langle a, b \rangle \Longrightarrow$ w szczególności jest ciągła w pkt $x_0 \in \langle a, b \rangle \stackrel{\text{(CH)}}{\Longleftrightarrow} \forall_{\{\tilde{x}_n\} \subset \langle a, b \rangle} \lim_{n \to \infty} \tilde{x}_n = x_0 \Longrightarrow \lim_{n \to \infty} f(\tilde{x}_i) = f(x_0)$

W szczególności $\{x_n\} \subset \langle a,b \rangle \lim_{k \to \infty} x_{n_k} = x_0 \implies \lim_{k \to \infty} f(x_{n_k}) = f(x_0) \iff \forall_{\epsilon > 0} \exists_{k_0 \in \mathbb{N}} \forall_{k \geq k_0} |f(x_{n_k}) - f(x_0)| < \epsilon$

Dla $\epsilon = 1 \text{ mamy } \exists_{k_0 \in \mathbb{N}} \forall_{k > k_0} |f(x_{n_k}) - f(x_0)| < 1 \text{ (*)}$

 $\forall_{k \ge k_0} |f(x_{n_k})| = |f(x_{n_k}) - f(x_0) + f(x_0)| \le |f(x_{n_k}) - f(x_0)| + |f(x_0)| \stackrel{(*)}{<} 1 + |f(x_0)|$

Sprzeczność z $\forall_{n\in\mathbb{N}}|f(x_n)|>n\implies \forall_{k\in\mathbb{N}}|f(x_{n_k})|>n_k$

Dla dostatecznie dużych k otrzymamy $1 + |f(x_0)| < n_k l$

Własności funkcji ciągłych:

- 1. Twierdzenie 7.1 : Każda funkcja ciągła $f: \langle a,b \rangle \to \mathbb{R}$ ma własność Darboux, to znaczy $f(a) \neq f(b) \implies \forall_{c \text{ miedzy } f(a), f(b)} \exists_{x_0 \in (a,b)} f(x_0) = c$
- 2. Twierdzenie 7.1: (twierdzenie Weierstrassa I) Jeśli funkcja $f: \langle a, b \rangle \to \mathbb{R}$ jest ciągła, to jest ograniczona
- 3. Twierdzenie 7.2: (twierdzenie Weierstrassa II)

Jeśli funkcja $f: \langle a,b \rangle \to \mathbb{R}$ jest ciągła, to przyjmuje wartość najmniejszą i największą - osiąga swoje kresy $\exists_{x_m, x_M \in \langle a, b \rangle} f(x_m) = \inf_{x \in \langle a, b \rangle} f(x) \, i \, f(x_M) = \sup_{x \in \langle a, b \rangle} f(x)$

Uwaga - z przedziału otwartego to niekoniecznie prawda

(a) Dowód: $f: \langle a,b \rangle \to \mathbb{R}$ - funkcja ciągła $\stackrel{\text{tw.Weierstrassa I}}{\Longrightarrow} f$ jest ograniczona, tzn ograniczony jest zbiór wartości tej funkcji $Y = \{f(x) : x \in \langle a, b \rangle\}$. Ponadto $Y \neq \emptyset$. Zatem istnieją skończone kresy zbioru Y. Oznaczmy $m=\inf Y=\inf_{x\in <a,b>}f(x)$ i $M=\sup Y=\sup_{x\in <a,b>}f(x)$. Pokażemy, że $\exists_{x_M\in <a,b>}f(x_m)=M$. Dowód tego, że

 $\exists_{x_m \in \langle a,b \rangle} f(x_m) = m$ przebiega analogicznie.

Dowód nie wprost: Zakładamy, że $\forall_{x \in \langle a,b \rangle} f(x) \neq M$, więc f(x) < M bo $M = \sup_{x \in \langle a,b \rangle} f(x)$

Zdefiniujmy funkcję $F: \langle a, b \rangle \to \mathbb{R}$, $F(x) = \frac{1}{M - f(x)}$. Funkcja ta jest dobrze zdefiniowana, bo mianownik się nie

 $F: \langle a,b \rangle \rightarrow \mathbb{R}$ jest funkcją ciągłą $\overset{\text{tw. Weierstrassa I}}{\Longrightarrow}$ jest ograniczona, tzn. $\exists_{K>0} \forall_{x \in \langle a,b \rangle} 0 < F(x) < K$ tzn $\exists_{K>0} \forall_{x \in \langle a,b \rangle} 0 < \frac{1}{M-f(x)} < K \Longrightarrow \exists_{K>0} \forall_{x \in \langle a,b \rangle} M - f(x) > \frac{1}{K}$

 $\implies \exists_{K>0} \forall_{x \in \langle a,b \rangle} f(x) < M - \frac{1}{K}$, co oznacza że M nie jest największym ograniczeniem Y, czyli $M \neq \sup f(x)$ sprzeczność

Jednostajna ciągłość funkcji

Do końca wykładu będziemy zakładać, że $D \subset \mathbb{R}$.

Przypomnienie:

Funkcja $f: D \to \mathbb{R}$ jest ciągła $\iff \forall_{a \in D}$ funkcja f jest ciągła w $a \iff \forall_{a \in D} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in D} |x - a| < \delta \implies |f(x) - f(a)| < \epsilon$ - δ może zależeć od a.

Jeśli δ nie zależy od a, tzn jest taka sama dla każdego a, to wtedy mówimy, że funkcja f jest jednostajnie ciągła, tzn spełnia warunek:

- 1. Def: Funkcja $f: D \to \mathbb{R}$ jest jednostajnie ciągła $\iff \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{a \in D} \forall_{x \in D} |x a| < \delta \implies |f(x) f(a)| < \epsilon$
 - (a) Uwaga 7.1: Każda funkcja jednostajnie ciagła jest ciągła.
 - - i. $f:(0,+\infty)\to\mathbb{R}, f(x)=\frac{1}{x}$ nie jest jednostajnie ciągła Dowód nie wprost. Zakładamy, że f jest jednostajnie ciągła, czyli $\forall_{\epsilon>0}\exists_{\delta>0}\forall_{a\in D}\forall_{x\in D}|x-a|<\delta\implies|f(x)-a|$

W szczególności dla $\epsilon=1$ ptrzymujemy $\exists_{\delta>0} \forall_{x,y\in(0,\infty)} |x-y| < \delta \implies |f(x)-f(a)| < 1$

Weżmy $x_n = \frac{1}{n}, t_n = \frac{1}{n+1}, n \in \mathbb{N}$. Wtedy $|x_n - y_n| = |\frac{1}{n} - \frac{1}{n+1}| \xrightarrow{n \to \infty} 0$. Stąd dla dostatecznie dużego n mamy $|x_n - y_n| < \delta \implies |f(x_n) - f(y_n)| < 1$

Z drugiej strony, $|f(x_n) - f(y_n)| = |n - n - 1| = 1$ - skąd sprzeczność.

- ii. $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos x$, jest jednostajnie ciągła $\forall_{\epsilon>0} \exists_{\delta>0} \forall_{a \in D} \forall_{x \in D} |x-a| < \delta \implies |f(x)-f(a)| = |\cos x \cos a| = |-2\sin\frac{x-a}{2}\sin\frac{x+a}{2}| = 2|\sin\frac{x-y}{2}||\sin\frac{x+y}{2}| \leq 2|\frac{x+y}{2}| \cdot 1 = |x-y| < \epsilon$ Więc wystarczy wybrać $\delta = \epsilon$
- 2. Twierdzenie 7.4: (twierdzenie Cantora):

Jeśli $f: \langle a, b \rangle \to \mathbb{R}$ jest ciągła, to jest jednostajnie ciągła.

Dowód nie wprost: Zakładamy, że $f: \langle a, b \rangle \to \mathbb{R}$ jest ciągła ale nie jest jednostajnie ciągła. Wtedy $\exists_{\epsilon>0}\forall_{\delta>0}\exists_{a\in D}\exists_{x\in D}|x-y|<\delta\wedge|f(x)-f(y)|\geq\epsilon$. W szczególności biorąc $\delta=\frac{1}{n},n\in\mathbb{N}$ otrzymujemy $\exists_{\epsilon>0}\forall_{n\in\mathbb{N}}\exists_{x_n,y_n\in < a,b>}|x_n-y_n|$ $|y_n| < \frac{1}{n} \operatorname{i} |f(x_n) - f(y_n)| \ge \epsilon$

W ten sposób otrzymaliśmy dwa ciągi $\{x_n\}$ i $\{y_n\}$. Ciąg $\{x_n\}$ jest ograniczony, bo $\forall_{n\in\mathbb{N}}x_n\in[a,b]$ $\overset{\mathrm{tw.Bolzano-Weierstrassa}}{\Longrightarrow}\{x_n\}$ zawiera podciąg zbieżny; oznaczmy $x_{n_k} \overset{k \to \infty}{\longrightarrow} x_0$

Z twierdzenia o przechodzeniu do granicy w nierównościach, mamy $x_0 \in [a,b]$ $\forall_{n \in \mathbb{N}} | x_n - y_n | < \frac{1}{n} \implies \forall_{n \in \mathbb{N}} x_n - \frac{1}{n} < y_n < x_n + \frac{1}{n} \implies \forall_{k \in \mathbb{N}} x_{n_k} - \frac{1}{n_k} < y_{n_k} < x_{n_k} + \frac{1}{n_k}$ lewa i prawa strona zbiegają do x_0 , więc z tw o 3 ciągach $y_{n_k} \stackrel{k \to \infty}{\longrightarrow} x_0$

Z ciągłości funkcji f w punkcie $x_0, f(x_{n_k}) \xrightarrow{k \to \infty} f(x_0)$ i $f(y_{n_k}) \xrightarrow{k \to \infty} f(x_0)$ Stąd $|f(x_{n_k}) - f(y_{n_k})| \xrightarrow{k \to \infty} 0$,co jest sprzeczne z $\exists_{\epsilon > \mathbf{0}} \forall_{n \in \mathbb{N}} \exists_{x_n, y_n \in \langle a, b \rangle} |f(x_n) - f(y_n)| \ge \epsilon$, bo z drugiej strony $\exists_{\epsilon > \mathbf{0}} \forall_{n \in \mathbb{N}} \exists_{x_n, y_n \in \langle a, b \rangle} |f(x_n) - f(y_n)| \ge \epsilon$ $\Longrightarrow \exists_{\epsilon > \mathbf{0}} \forall_{n \in \mathbb{N}} \exists_{x_n, y_n \in \langle a, b \rangle} |f(x_{n_k}) - f(y_{n_k})| \ge \epsilon$

- 3. Def: Funkcja $f: D \to \mathbb{R}$ spełnia warunek Lipschitza na $D \iff \exists_{L>0} \forall_{x,y \in D} |f(x) f(y)| \le L|x-y|$ Przykład: Funkcja $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \cos x$ spełnia warunek Lipschitza, bo już dzisiaj pokazaliśmy, że $\forall_{x,y \in \mathbb{R}} |f(x) - f(y)| = |\cos x - \cos y| \le |x-y|$, tzn istnieje L spełniające warunek Lipschitza (L=1)
- 4. Twierdzenie 7.5: Jeśli $f: D \to \mathbb{R}$ spełnia warunek Lipschitza, to jest jednostajnie ciągła. Dowód: Niech $f: D \to \mathbb{R}$ spełnia warunek Lipschitza. Wtedy $\forall_{\epsilon>0} \exists_{\delta>0} \forall_{a \in D} \forall_{x \in D} |x-a| < \delta \implies |f(x)-f(a)| \le L|x-y| < \epsilon \ (\delta = \frac{\epsilon}{L})$, co oznacza, że f jest jednostajnie ciągła.

8. Pochoda funkcji jednej zmiennej

- 1. Def. Punkt a jest punktem wewnętrznym zbioru $D \subset \mathbb{R} \iff \exists_{\delta>0}(a-\delta,a+\delta) \subset D$ Przez cały wykład będziemy zakładać, że (o ile nie będzie powiedziane inaczej) $D \subset \mathbb{R}, f: D \to \mathbb{R}$ i x_0 jest punktem wewnętrzym zbioru D
- 2. Def. Jeśli istnieje skończona granica $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, (tzw. iloraz różnicowy) to nazywamy ją pochodną funkcji f w punkcie x_0 i oznaczamy $f'(x_0)$ lub $\frac{df}{dx}(x_0)$ Wtedy funkcję f nazywamy różniczkowalną w punkcie x_0

3. Interpretacja geometryczna pochodnej

Wartość pochodnej $f'(x_0)$ to nachylenie prostej stycznej do wykresu funkcji f w x_0 w postaci $f'(x_0) = \tan \alpha$ gdzie α to kąt nachylenia prostej do dodatniej półosi OX, gdzie styczna to graniczne położenie siecznej przechodzącej przez punkty $(x_0, f(x_0))$ i $(x_0 + h, f(x_0 + h))$ dla $h \to 0$, która istnieje jeśli iloraz różnicowy ma granicę.

Jeśli granica istnieje i też jest skończona, to $f'(x_0) = \tan \alpha$

Wyznaczymy równanie prostej stycznej do wykresu funkcji y = f(x) w punkcie $(x_0, f(x_0))$ y = ax + b gdzie $a = \tan \alpha = f'(x_0)$ i $f(x_0) = ax_0 + b$, z czego $b = f(x_0) - f'(x_0)x_0$ $y = f'(x_0) + f(x_0) - f'(x_0)x_0 \iff y - f(x_0) = f'(x_0)(x - x_0) \iff y - y_0 = f'(x_0)(x - x_0)$ gdzie $y_0 = f(x_0)$

- 4. Twierdzenie 8.1: Warunek konieczny różniczkowalności Jeśli funkcja f jest różniczkowalna w punkcie x_0 , to jest też ciągła w x_0 . f jest różniczkowalna w $x_0 \Longrightarrow f$ jest ciągła w x_0
 - (a) D:(egzamin) Z założenia x_0 jest punktem wewnętrznym $D \implies x_0$ jest punktem skupienia zbioru $D \implies (f)$ jest ciągła w $x_0 \iff \lim_{x\to x_0} f(x) = f(x_0)$ Z różniczkowalnośći funkcji f w x_0 mamy $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f'(x_0) \in \mathbb{R}$. Stąd $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} \left(\frac{f(x)-f(x_0)}{x-x_0} + f(x)\right) = 0 + f(x) = f(x)$
 - (b) Uwaga 8.1: Twierdzenie odwrotne do 8.1 nie jest prawdziwe, tzn nie każda funkcja ciągła w x_0 jest różniczkowalna w x_0

Przykład: $f: \mathbb{R} \to \mathbb{R}, f(x) = |x|$ jest ciągła, ale nie jest różniczkowalna w $x_0 = 0$

- 5. Def: Funkcja f jest różniczkowalna w zbiorze $D \iff \forall_{x_0 \in D} f$ jest różniczkowalna w x_0 Wtedy możemy mówic o funkcji $f': D \to \mathbb{R}, x \mapsto f'(x)$
- 6. Twierdzenie 8.2: (o działainach arytmetycznych na pochodnych) Jeśli $f, g: D \to \mathbb{R}$ są różniczkowalne w x_0 , to:
 - (a) $f\pm g$ jest różniczkowalna w x_0 i $(f\pm g)'(x_0)=f'(x_0)\pm g'(x_0)$
 - (b) fgjest różniczkowalna w x_0 i $(fg)^\prime(x_0)=f^\prime(x_0)g(x_0)+f(x_0)g^\prime(x_0)$
 - (c) $\frac{f}{g}$ jest różniczkowalna w x_0 i ($\frac{f}{g})'(x_0)=\frac{f'(x_0)g(x_0)-f(x_0)g'(x_0)}{(g(x))^2}$ jeśli tylko $\forall_{x\in D}g(x)\neq 0$
 - (d) D: Z założenia f, g są różniczkowalne w x_0 . Z warunku koniecznego różniczkowalności f, g są ciągłe w x_0 . Dowód (a) jest trywialny więc pomijam

Dowod (a) jest trywialny więc pomijam (b)
$$(fg)'(x_0) = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x) + f(x_0)g(x) - f(x_0)g(x)}{x - x_0} = \lim_{x \to x_0} g(x) \cdot \frac{f(x) - f(x_0)}{x - x_0} + f(x) \cdot \frac{g(x) - g(x_0)}{x - x_0} = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

$$(c): \left(\frac{f}{g}\right)'(x_0) = \lim_{x \to x_0} \frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{\frac{f(x)}{g(x_0)} - \frac{f(x_0)}{g(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0) \cdot (g(x)g(x_0))} = \lim_{x \to x_0} \frac{f(x)g(x$$

7. Twierdzenie 8.3 (o różniczkowaniu złożenia):

jeśli $D_1, D_2 \in \mathbb{R}$ i $f: D_1 \to D_2$ jest różniczkowalna w $x_0 \in D_1$ i $g: D_2 \to \mathbb{R}$ jest różniczkowalna w $f(x_0) \in D_2$, to złożenie $g \circ f: D_1 \to \mathbb{R}$ jest różniczkowalne w punkcie x_0 i $(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$

(a) D:
$$(g \circ f)'(x_0) = \lim_{h \to 0} \frac{g(f(x_0 + g)) - g(f(x_0))}{h} = \lim_{h \to 0} \frac{g(f(x_0 + g) - f(x_0) + f(x_0)) - g(f(x_0))}{h}$$
 oznaczmy $\Delta = f(x_0 + h) - f(x_0) \xrightarrow{h \to 0} f(x_0) - f(x_0) = 0$ bo f jest ciągła w x_0

$$= \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{h} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{\Delta \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \lim_{h \to 0} \frac{f(x_0 + \Delta) - g(f(x_0))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} \cdot \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta) - g(f(x_0)))}{\Delta} = \lim_{h \to 0} \frac{g(f(x_0 + \Delta$$

8. Twierdzenie 8.4 (o różniczkowaniu funkcji odwrotnej):

Jeśli f jest ciągła i ściśle monotiniczna w pewnym **otoczeniu punktu** x_0 (tzn w zbiorze $(x - \delta, x + \delta)$, gdzie $\delta > 0$) i istnieje pochodna $f'(x_0) \neq 0$, to funkcja odwrotna f^{-1} jest różniczkowalna w punkcie $y_0 = f(x_0)$ i $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$

- (a) Dowód: Wiemy, że $f:(x_0-\delta,x_0+\delta)\to (y_0-\eta_1,y_0+\eta_2)$ $(\delta,\eta_1,\eta_2>0)$ jest ciągła i ściśle monotoniczna (\Longrightarrow $1-1\Longrightarrow$ odwracalna) $f^{-1}:(y_0-\eta_1,y_0+\eta_2)\to (x_0-\delta,x_0+\delta)$ Z tw o ciągłości funkcji odwrotnej wynika, że f^{-1} jest funkcją ciągłą. $(f^{-1})'(y_0)=\lim_{y\to y_0}\frac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0}=\lim_{x\to x_0}\frac{x-x_0}{f(x)-f(x_0)}=\frac{1}{f'(x_0)}$
- 9. Twierdzenie 8.5 (o pochodnych funkcji elementarnych):
 - (a) f: funkcja stała, tzn $\forall_{x \in D} f(x) = c, c \in \mathbb{R} \implies \forall_{x \in D} f'(x) = 0$ $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = \lim_{x \to x_0} \frac{0}{x x_0} = 0$ Wniosek: Z twierdzenia 8.2 i (a), (cf(x))' = c'f(x) + cf'(x) = 0 + cf'(x) = f'(x)
 - (b) $(x^n) = nx^{n-1}$, dla $(x, n) \in (\mathbb{R} \times \mathbb{N}) \setminus (0, 1)$ (dla n = 1 definiujemy x' = 1 bo $\lim_{x \to x_0} \frac{x x_0}{x x_0} = \lim_{x \to x_0} 1 = 1$) $(x^n)' = \lim_{h \to 0} \frac{(x+h)^n x^n}{h} = \lim_{h \to 0} \frac{x^n + \sum_{k=1}^n \binom{n}{k} x^{n-k} h^k x^n}{h} = \lim_{h \to 0} \sum_{k=1}^n \binom{n}{k} x^{n-k} h^{k-1} = nx^{n-1} + 0 = nx^{n-1}$
 - (c) $(x^{-n})'$ dla $n \in \mathbb{N}, x \in \mathbb{R} \setminus \{0\}$ $(x^{-n})' = ((\frac{1}{x})^n)' = \frac{0 \cdot x^n - 1 \cdot (x^n)'}{(x^n)^2} = \frac{-nx^{n-1}}{x^{2n}} = -nx^{-n-1}$
 - (d) $(\sin x)' = \cos x$ dla $x \in \mathbb{R}$ $(\sin x)' = \lim_{h \to 0} \frac{\sin(x+h) \sin(x)}{h} = \lim_{h \to 0} \frac{2 \sin \frac{h}{2} \cos \frac{2x+h}{2}}{h} = \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \cdot \cos(x+h) = \cos(x)$
 - (e) $(\cos x)' = -\sin x \, dla \, x \in \mathbb{R}$
 - (f) $(\tan x)' = \frac{1}{\cos x} d \ln x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$ $(\tan x)' = (\frac{\sin x}{\cos x})' = \frac{(\sin x)' \cos x - \sin x (\cos x)'}{(\cos x)^2} = \frac{\cos^2 x + \sin^2 x}{(\cos x)^2} = \frac{1}{\cos^2 x}$
 - (g) $(\cot x)' = \frac{-1}{\sin x}$ dla $x \in \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$
 - (h) $(\ln x)' = \frac{1}{x} \operatorname{dla} x \in (0, \infty)$ $(\ln x)' = \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h} = \lim_{h \to 0} \frac{1}{h} \cdot \ln(1 + \frac{h}{x}) = \lim_{h \to 0} \ln(1 + \frac{\frac{1}{x}}{\frac{1}{h}})^{\frac{1}{h}} = \ln e^{\frac{1}{x}} = \frac{1}{x}$ Ogólniej: $(\ln |x|)' = \frac{1}{x} \operatorname{dla} x \in \mathbb{R} \setminus \{0\}$ D: Dla x < 0, $(\ln |x|)' = (\ln - x)' = \frac{1}{-x} \cdot -1 = \frac{1}{x}$
 - (i) $(e^x)' = e^x$ $f: (0,\infty) \to \mathbb{R}, f(x) = \ln(x)$ - funkcja ciągła i ściśle rosnąca i $\forall_{x \in (0,\infty)} f'(x) = \frac{1}{x} \neq 0$ Z tw o pochodnej funkcji odwrotnej, $(e^{\ln x})' = x \implies (e^{\ln e^x})' = e^x \implies (e^x)' = e^x$
 - (j) $(x^{\alpha})' = \alpha x^{\alpha 1}$ dla $x \in (0, \infty), \alpha \in \mathbb{R}$ $(x^{\alpha})' = (e^{\alpha \ln x})' = e^{\alpha \ln x} \cdot (\alpha \ln x)' = x^{\alpha} \cdot \alpha \cdot \frac{1}{x} = \alpha x^{\alpha - 1}$
 - (k) $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}} dla \ x \in (-1,1)$
 - (l) $(\arccos x)' = \frac{-1}{\sqrt{1-x^2}} dla \ x \in (-1,1)$
 - (m) $(\arctan x)' = \frac{1}{1+x^2} dla x \in \mathbb{R}$
 - (n) $(\operatorname{arccot} x)' = \frac{-1}{1+x^2}$ dla $x \in \mathbb{R}$ Dowody (k)-(n) wynikają bezpośrednio z twierdzenia o różniczkowaniu funkcji odwrotnej