

Aufgabe 1:

Erstelle für die Funktion $f(x) = -0.5(x+1)^2 + 2.5$ eine Wertetabelle und zeichne den dazugehörigen Graphen im Bereich von x = -3 bis x = 3 in ein Koordinatensystem.

Aufgabe 2:

Gib für die folgenden Parabeln Scheitelpunkt, Symmetrieachse, Nullstellen und Öffnung an. Gib weiter an, ob die Parabeln durch Streckung oder Stauchung aus der Normalparabel entstehen.

	Scheitelpunkt	Symmetrieachse	Nullstellen	Öffnung	Form
f_1					
f_2					
f_3					

Aufgabe 3:

Streiche die Graphen, die nicht zur Funktionsgleichung passen.

$$f_1(x) = \frac{1}{2} (x+1)^2$$

Aufgabe 4:

Unterstreiche die Funktionsgleichung, die zum Graphen passt.

$$f_1(x) = (x+2)^2 + 1$$

$$f_2(x) = -\frac{x^2}{4} + 1$$

$$f_3(x) = -2(x+2)^2 - 2$$

$$f_4(x) = (x+1)^2 - 1$$

Aufgabe 5:

Bringe die Funktionsgleichungen auf Normalform.

a)
$$f_1(x) = (x+1)^2 + 2$$

c)
$$f_3(x) = -3x^2 + 2$$

e)
$$f_5(x) = (x+2)^2$$

b)
$$f_2(x) = -2(x+2)^2 + 2$$
 d) $f_4(x) = -3x^2 + 2$

d)
$$f_4(x) = -3x^2 + 2$$

f)
$$f_6(x) = -3(x-2)^2 - 1$$

Aufgabe 6:

Bringe die Funktionsgleichungen auf Scheitelpunktform.

a)
$$f_1(x) = 3x^2 + 6x + 5$$

c)
$$f_3(x) = x^2 + 2x$$

e)
$$f_5(x) = 2x^2 + 12x + 18$$

b)
$$f_2(x) = 3x^2 - 18x + 29$$
 d) $f_4(x) = x^2 - 1$

$$f_4(x) = x^2 - 1$$

f)
$$f_6(x) = 2x^2 + 8x + 8$$

Aufgabe 1:

Erstelle für die Funktion $f(x) = -0.5(x+1)^2 + 2.5$ eine Wertetabelle und zeichne den dazugehörigen Graphen im Bereich von x = -3 bis x = 3 in ein Koordinatensystem.

-3	-2	-1	0	1	2	3
0.5	2.0	2.5	2.0	0.5	-2.0	-5.5

Aufgabe 2:

Gib für die folgenden Parabeln Scheitelpunkt, Symmetrieachse, Nullstellen und Öffnung an. Gib weiter an, ob die Parabeln durch Streckung oder Stauchung aus der Normalparabel entstehen.

	Scheitelpunkt	Symmetrieachse	Nullstellen	Öffnung	Forn
$\overline{f_1}$	S(-2 -1)	x = -2	$x_1 \approx -3.73 x_2 \approx -0.27$	oben	gestau
f_2	S(-1 0)	x = -1	x = -1	unten	gestau
f_3	S(0 -2)	x = 0	$x_1 \approx -2.83 x_2 \approx 2.83$	oben	gestau

Aufgabe 3:

Streiche die Graphen, die nicht zur Funktionsgleichung passen.

$$f_1(x) = \frac{1}{2} (x+1)^2$$

Aufgabe 4:

Unterstreiche die Funktionsgleichung, die zum Graphen passt.

$$f_1(x) = -2(x+2)^2 - 2$$

$$f_2(x) = (x+2)^2 + 1$$

$$f_3(x) = (x+1)^2 - 1$$

$$f_2(x) = (x+2)^2 + 1$$

$$f_3(x) = (x+1)^2 - 1$$

$$f_4(x) = -\frac{x^2}{4} + 1$$

Aufgabe 5:

Bringe die Funktionsgleichungen auf Normalform.

a)
$$f_1(x) = (x+1)^2 + 2$$

 $f_1(x) = x^2 + 2x + 3$

c)
$$f_3(x) = -3x^2 + 2$$

 $f_3(x) = -3x^2 + 2$

e)
$$f_5(x) = (x+2)^2$$

 $f_5(x) = x^2 + 4x + 4$

b)
$$f_2(x) = -2(x+2)^2 + 2$$

 $f_2(x) = -2x^2 - 8x - 6$

d)
$$f_4(x) = -3x^2 + 2$$

 $f_4(x) = -3x^2 + 2$

f)
$$f_6(x) = -3(x-2)^2 - 1$$

 $f_6(x) = -3x^2 + 12x - 13$

Aufgabe 6:

Bringe die Funktionsgleichungen auf Scheitelpunktform.

a)
$$f_1(x) = 3x^2 + 6x + 5$$

 $f_1(x) = 3(x+1)^2 + 2$

c)
$$f_3(x) = x^2 + 2x$$

 $f_3(x) = (x+1)^2 - 1$

e)
$$f_5(x) = 2x^2 + 12x + 18$$

 $f_5(x) = 2(x+3)^2$

b)
$$f_2(x) = 3x^2 - 18x + 29$$

 $f_2(x) = 3(x-3)^2 + 2$

d)
$$f_4(x) = x^2 - 1$$

 $f_4(x) = x^2 - 1$

f)
$$f_6(x) = 2x^2 + 8x + 8$$

 $f_6(x) = 2(x+2)^2$