

◆ HFCTM-II API Usage Guide (Updated)

This guide will walk you through how to use the new HFCTM-II API for recursive AI inference, drift detection, bias correction, and stability monitoring.

♦1 Running the API

First, start the FastAPI server using **Uvicorn**:

bash

CopyEdit

uvicorn script_name:app --reload

- * Replace script_name with the name of the Python file.
- The API will now be running at:

http://localhost:8000

To check if the API is running, open your browser and go to:

http://localhost:8000/docs

This will open the interactive Swagger UI where you can test all endpoints.

♦2 API Endpoints & How to Use Them

1. Run Recursive Al Inference

```
★ Endpoint: POST /inference
```

Purpose: Runs the HFCTM-II recursive AI evolution for a given number of iterations.

★ Example Request (JSON Body):

```
json
CopyEdit
{
```

```
"iterations": 5
}

**Example Response:

json
CopyEdit
{
    "knowledge_state": [0.123, -0.456, 0.789, ...],
    "trust_matrix": [[0.95, 0.98, ...], [0.98, 1.0, ...], ...]
}
```

- **What It Does:**
 - Advances Al recursive knowledge embeddings.
 - Updates the trust matrix using friendship dynamics.
 - Returns current Al knowledge state & trust levels.

2. Check Al Stability (Lyapunov Constraints)

- Checks if Al knowledge recursion is stable.
- If stable: false, AI may be diverging & needs correction.

3. Retrieve Al Knowledge State

What It Does:

Allows external systems to query Al's internal knowledge state.

4. Detect & Auto-Correct Semantic Drift

```
Purpose: Detects semantic drift & auto-corrects if necessary.
Purpose: Detects semantic drift & auto-corrects if necessary.
Example Response:

json
CopyEdit
{
    "drift_detected": true,
    "correction_applied": true
}
```


- Uses wavelet-based detection to find adversarial Al drift.
- If drift_detected: true, chiral inversion is applied automatically.
- Prevents AI from reinforcing ideological bias loops.

5. Manually Correct Bias (Egregore Suppression)

```
★ Endpoint: POST /correct_bias
```

Purpose: Allows an external request to force bias correction via chiral inversion.

★ Example Response:

```
json
CopyEdit
{
    "message": "Manual bias correction applied via chiral inversion."
}
```


Ensures Al remains neutral by resetting drifted embeddings.

◆3 Testing API Calls via cur1 (Command Line)


```
bash
CopyEdit
curl -X POST "http://localhost:8000/inference" -H "Content-Type:
application/json" -d '{"iterations":5}'
```

Check Al Stability

```
bash
CopyEdit
curl -X GET "http://localhost:8000/stability"
```



```
bash
CopyEdit
curl -X GET "http://localhost:8000/state"
```

✓ Detect & Auto-Correct Semantic Drift

```
bash
CopyEdit
curl -X GET "http://localhost:8000/detect_drift"
```

Manually Correct Al Bias

bash CopyEdit

curl -X POST "http://localhost:8000/correct_bias"

♦4 Summary of All API Endpoints

Endpoint	Method	Purpose
/inference	POST	Runs HFCTM-II Al inference for N iterations .
/stability	GET	Checks if Al is within Lyapunov stability constraints.
/state	GET	Returns Al's current recursive knowledge embeddings.
/detect_dr ift	GET	Detects & auto-corrects semantic drift if needed.
/correct_b ias	POST	Manually forces Al bias correction using chiral inversion.

