Лекция 8 Обработка текстовых данных

Господинов Георгий, SberDevices

Отмечайтесь на портале, проявляйте активность

План лекции

- Виды обучения
- Embeddings
 - о мотивация
 - Multiclass Logistic Regression
 - Алгоритм обучения
- Языковые модели
 - что такое модель?
 - мотивация
 - N-gram Language Model
 - порождение текста
 - интерпретация модели
 - сглаживание вероятностей
 - проблемы
 - оценка качества
 - Neural Language Model
- Домашнее задание

- дать ли кредит?
- какое блюдо на фотографии
- цены на недвижимость

supervised learning

- дать ли кредит?
- какое блюдо на фотографии
- цены на недвижимость

- дать ли кредит?
- какое блюдо на фотографии
- цены на недвижимость

unsupervised learning

supervised learning

- дать ли кредит?
- какое блюдо на фотографии
- цены на недвижимость

- детекция аномалий
- тематическое моделирование
- сегментация пользователей

supervised learning

- дать ли кредит?
- какое блюдо на фотографии
- цены на недвижимость

unsupervised learning

- детекция аномалий
- тематическое моделирование
- сегментация пользователей

semi-supervised learning

supervised learning

- дать ли кредит?
- какое блюдо на фотографии
- цены на недвижимость

unsupervised learning

- детекция аномалий
- тематическое моделирование
- сегментация пользователей

semi-supervised learning

- дать ли кредит?
- какое блюдо на фотографии
- цены на недвижимость

- детекция аномалий
- тематическое моделирование
- сегментация пользователей

semi-supervised learning

supervised learning

- дать ли кредит?
- какое блюдо на фотографии
- цены на недвижимость

- детекция аномалий
- тематическое моделирование
- сегментация пользователей

semi-supervised learning

задача бинарной классификации, размеченных данных нет

1. случайно размечаем часть данных

задача бинарной классификации, размеченных данных нет

1. случайно размечаем часть данных, обучаем на разметке модель

- 1. случайно размечаем часть данных, обучаем на разметке модель
- 2. отбираем неразмеченные точки, в которых модель сильнее всего не уверена

- 1. случайно размечаем часть данных, обучаем на разметке модель
- 2. отбираем неразмеченные точки, в которых модель сильнее всего не уверена
- 3. размечаем

- 1. случайно размечаем часть данных, обучаем на разметке модель
- 2. отбираем неразмеченные точки, в которых модель сильнее всего не уверена
- 3. размечаем, обучаем модель

- 1. случайно размечаем часть данных, обучаем на разметке модель
- 2. отбираем неразмеченные точки, в которых модель сильнее всего не уверена
- 3. размечаем, обучаем модель
- 4. ...

Виды обучения: self-supervised learning

"In self-supervised learning, the system learns to predict part of its input from other parts of it input. In other words a portion of the input is used as a supervisory signal to a predictor fed with the remaining portion of the input."

https://www.facebook.com/722677142/posts/10155934004262143/

Виды обучения: self-supervised learning

"In self-supervised learning, the system learns to predict part of its input from other parts of it input. In other words a portion of the input is used as a supervisory signal to a predictor fed with the remaining portion of the input."

https://www.facebook.com/722677142/posts/10155934004262143/

С одной стороны, дорогостоящая разметка данных не требуется. С другой стороны, в терминах машинного обучения ставится задача обучения с учителем

Примеры:

- предсказать следующее слово по предыдущим, предсказать пропущенные в предложении слова по остальным
- изображение и его преобразованная копия (повороты, отражения, шум) должны быть похожими
- ...

Виды обучения: self-supervised learning

"In self-supervised learning, the system learns to predict part of its input from other parts of it input. In other words a portion of the input is used as a supervisory signal to a predictor fed with the remaining portion of the input."

https://www.facebook.com/722677142/posts/10155934004262143/

С одной стороны, дорогостоящая разметка данных не требуется. С другой стороны, в терминах машинного обучения ставится задача обучения с учителем

Примеры:

- предсказать следующее слово по предыдущим, предсказать пропущенные в предложении слова по остальным
- изображение и его преобразованная копия (повороты, отражения, шум) должны быть похожими
- ..

K self-supervised learning как раз относятся Word2Vec и Language Models

Embeddings

Sparse Vector Representations

```
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer

corpus = [
    'машинное обучение',
    'глубокое обучение',
    'метод максимального правдоподобия'
]

vectorizer = TfidfVectorizer().fit(corpus)

pd.DataFrame(
    data=vectorizer.transform(corpus).todense(),
    columns=vectorizer.get_feature_names_out()
)
```

метод обучение правдоподобия глубокое максимального машинное 0.000000 0.00000 0.795961 0.00000 0.605349 0.00000 0.795961 0.00000 0.00000 0.00000 0.605349 0.00000 0.57735 0.000000 0.57735 0.000000 0.000000 0.57735

- какова размерность вектора?
- как сравнить два вектора?
- есть ли проблемы у таких представлений?

Word Embeddings

Какая похожесть между следующими фразами, если мы используем в качестве векторов TF-IDF?

```
cosine_similarity( "купить айфон", "приобрести iphone")
cosine_similarity( "карбюратор для машины", "запчасти к авто")
cosine_similarity( "туфли с каблуком", "обувь на танкетке")
```

Word Embeddings

Какая похожесть между следующими фразами, если мы используем в качестве векторов TF-IDF?

```
cosine_similarity( "купить айфон", "приобрести iphone")
cosine_similarity( "карбюратор для машины", "запчасти к авто")
cosine_similarity( "туфли с каблуком", "обувь на танкетке")
```

косинусная близость равна нулю в каждом из этих примеров, так как разные слова отвечают разным координатам вектора для TF-IDF представлений

Для вычисления близости между предложениями не только по общим словам, но и по смыслу можно построить плотные низкоразмерные представления для слов с помощью **self-supervised learning**, а затем агрегировать представления отдельных слов в вектор всего предложения

Решаем задачу классификации на **4** класса. Используем логистическую регрессию. Для каждого объекта имеем **5** признаков

Сколько параметров у модели?

Решаем задачу классификации на **4** класса. Используем логистическую регрессию. Для каждого объекта имеем **5** признаков

Сколько параметров у модели? — 24 (weights: $5 \times 4 + \text{bias}$: 4)

Решаем задачу классификации на **4** класса. Используем логистическую регрессию. Для каждого объекта имеем **5** признаков

Сколько параметров у модели? — 24 (weights: 5 x 4 + bias: 4)

feature vector

ground-truth labels

Решаем задачу классификации на **4** класса. Используем логистическую регрессию. Для каждого объекта имеем **5** признаков

Сколько параметров у модели? — 24 (weights: 5 x 4 + bias: 4)

Решаем задачу классификации на **4** класса. Используем логистическую регрессию. Для каждого объекта имеем **5** признаков

Сколько параметров у модели? — 24 (weights: $5 \times 4 + \text{bias}$: 4)

На выходе модели будут вещественные числа со знаком (logits).

Решаем задачу классификации на **4** класса. Используем логистическую регрессию. Для каждого объекта имеем **5** признаков

Сколько параметров у модели? — 24 (weights: 5 x 4 + bias: 4)

На выходе модели будут вещественные числа со знаком (logits). Хотим перевести их в оценки вероятности => softmax

Решаем задачу классификации на **4** класса. Используем логистическую регрессию. Для каждого объекта имеем **5** признаков

Сколько параметров у модели? — 24 (weights: 5 x 4 + bias: 4)

На выходе модели будут вещественные числа со знаком (logits). Хотим перевести их в оценки вероятности => softmax

Решаем задачу классификации на **4** класса. Используем логистическую регрессию. Для каждого объекта имеем **5** признаков

Сколько параметров у модели? — 24 (weights: 5 x 4 + bias: 4)

На выходе модели будут вещественные числа со знаком (logits). Хотим перевести их в оценки вероятности => softmax

Word2Vec: постановка задачи

Согласно дистрибутивной гипотезе **смысл** слова можно понять по его контексту:

"You shall know a word by the company it keeps" (Firth, J. R. 1957:11)

Пример: Мама пьет कॉफ़ी с молоком Как перевести कॉफ़ी ?

Попробуем поставить задачу машинного обучения: предсказать слово по его окружению

какая это задача?

Будем моделировать распределение (distribution) вероятности встретить слово в контексте других слов

Word2Vec: обучающая выборка

подойдут тексты без разметки! (например, dump википедии)

ПРИМЕР: "Машинное обучение — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи, а обучение в процессе применения решений множества сходных задач"

машинный	обучение	класс	метод	искусственный
обучение	класс	метод	искусственный	интеллект
класс	метод	искусственный	интеллект	характерный
метод	искусственный	интеллект	характерный	черта
		•••	•••	•••

по окружению (синим словам) будем тренировать модель предсказывать центральное слово (выделено красным)

алгоритм обучения

машинный

обучение

класс

метод

искусственный

Случайно инициализируем две матрицы: матрица контекстных слов (синяя) и матрица центральных слов (красная). Эти матрицы — параметры модели, которые настраиваются с помощью градиентного спуска. Суммируем векторы контекстных слов, результат умножаем с матрицей центральных слов. Для оценок вероятности применяем к результату softmax. Варьируем значения в красной и синей матрицах для достижения минимума функции потерь 0.06 -1.27мех искусственный машинный -0.220.18 метод метод softmax 0.38 0.34 класс обучение -1.560.04 кофе

^{*}Ha самом деле softmax в word2vec считается несколько иначе для ускорения обучения

Моделирование языка

"All models are wrong, but some are useful"

George Box

Что такое модель?

Объекты реального мира слишком сложные, для их изучения используются абстрактные представления, описывающие определенные аспекты

атом:

- булочка с изюмом
- планетарная модель
- квант.-мех.

заемщик в банке => вектор признаков

Пример модели: шарики в урне

есть урна с разноцветными шариками, хотим научиться оценивать вероятность вытащить красный шарик

Пример модели: шарики в урне

есть урна с разноцветными шариками, хотим научиться оценивать вероятность вытащить красный шарик

$$P$$
(красный) $= rac{3}{3+2+4} = rac{1}{3}$

Пример модели: шарики в урне

есть урна с разноцветными шариками, хотим научиться оценивать вероятность вытащить красный шарик

$$P($$
красный $)=rac{3}{3+2+4}=rac{1}{3}$

Пример модели: анализ тональности текста

Sentiment Analysis (определение тональности текстов) Как мы ее решали?

Пример модели: анализ тональности текста

Sentiment Analysis (определение тональности текстов) Как мы ее решали?

- 1) разбили текст на слова
- 2) нормализовали (регистр, лемматизация, ...) предположение
- 3) составили матрицу признаков с помощью tf-idf (<u>модель</u> **BagOfWords**) потеряли грамматику языка предположение
- 4) использовали логистическую регрессию
- 5) получили хорошее качество предсказания => предложенная модель адекватно описывает тональность текстов в изучаемом корпусе

Задача: построить оценку вероятности предложения:

$$P($$
"мама мыла раму" $) > P($ "vfvf vskf hfve" $)$

Задача: построить оценку вероятности предложения:

$$P($$
"мама мыла раму" $) > P($ "vfvf vskf hfve" $)$

- распознавание речи
 - "бедность не порок" vs "бедность не порог"
 - "услышал скрипка лиса" vs "услышал скрип колеса"

Задача: построить оценку вероятности предложения:

$$P($$
"мама мыла раму" $) > P($ "vfvf vskf hfve" $)$

- распознавание речи
 - "бедность не порок" vs "бедность не порог"
 - o "услышал скрипка лиса" vs "услышал скрип колеса"
- поисковые подсказки

Задача: построить оценку вероятности предложения:

$$P($$
"мама мыла раму" $) > P($ "vfvf vskf hfve" $)$

- распознавание речи
 - "бедность не порок" vs "бедность не порог"
 - 🗅 "услышал скрипка лиса" vs "услышал скрип колеса"
- поисковые подсказки
- исправление опечаток
- ...

Модель языка: шарики в корзинке

Скачиваем интернет, разбиваем тексты на предложения и считаем вероятности аналогично урне с разноцветными шариками

$$P(\text{sentence}) = \frac{1}{|\text{corpus}|} \text{count}(\text{sentence})$$

Модель языка: шарики в корзинке, проблемы

предложения, которых не было в обучающем корпусе, получат нулевую вероятность

$$P("глубокое обучение с тензорфлоу") = rac{ ext{count}("глубокое обучение с тензорфлоу")}{| ext{corpus}|} = 0$$
 $P("глубокое обучение с tenzorflow") = rac{ ext{count}("глубокое обучение с tenzorflow")}{| ext{corpus}|} = 0$
 $P("глбкее обуч tenzuuuorflw") = rac{ ext{count}("глбкее обуч tenzuuuorflw")}{| ext{corpus}|} = 0$

- закон Ципфа => существует длинный хвост редко встречающихся слов => в нашем корпусе статистики либо вообще не будет, либо она будет плохой
- некоторые предложение вполне осмысленные, их вероятность не должна быть нулевой
- гипотезы разной ценности становятся равновероятными

как можем побороть?

Модель языка: шарики в корзинке, проблемы

предложения, которых не было в обучающем корпусе, получат нулевую вероятность

$$P("глубокое обучение с тензорфлоу") = rac{ ext{count}("глубокое обучение с тензорфлоу")}{| ext{corpus}|} = 0$$
 $P("глубокое обучение с tenzorflow") = rac{ ext{count}("глубокое обучение с tenzorflow")}{| ext{corpus}|} = 0$
 $P("глбкее обуч tenzuuuorflw") = rac{ ext{count}("глбкее обуч tenzuuuorflw")}{| ext{corpus}|} = 0$

- закон Ципфа => существует длинный хвост редко встречающихся слов => в нашем корпусе статистики либо вообще не будет, либо она будет плохой
- некоторые предложение вполне осмысленные, их вероятность не должна быть нулевой
- гипотезы разной ценности становятся равновероятными

как можем побороть? нужно переходить к более мелким лингвистическим единицам: токенам

Модель языка: независимые токены

умеем сегментировать предложение на отдельные слова:

мама мыла раму — мама мыла раму

$$P(\text{sentence}) = P(w_1, w_2, \dots, w_n) \approx P(w_1) \cdot P(w_2) \cdot \dots \cdot P(w_n)$$

Модель языка: независимые токены

умеем сегментировать предложение на отдельные слова:

$$P(\text{sentence}) = P(w_1, w_2, \dots, w_n) \approx P(w_1) \cdot P(w_2) \cdot \dots \cdot P(w_n)$$

- потеряем порядок слов (bag of words)
- какие предложения получат самую высокую вероятность?

Модель языка: независимые токены

умеем сегментировать предложение на отдельные слова:

мама мыла раму — мама мыла раму

$$P(\text{sentence}) = P(w_1, w_2, \dots, w_n) \approx P(w_1) \cdot P(w_2) \cdot \dots \cdot P(w_n)$$

- потеряем порядок слов (bag of words)
- какие предложения получат самую высокую вероятность?
 - "и", "в", "и и", "в и", "в в", "и и и", ...

умеем сегментировать предложение на отдельные слова:

$$P(w_1, w_2, w_3) = P(w_3|w_1, w_2)P(w_1, w_2)$$

умеем сегментировать предложение на отдельные слова:

мама мыла раму — мама мыла раму

$$P(w_1,w_2,w_3) = P(w_3|w_1,w_2)P(w_1,w_2) = P(w_3|w_1,w_2)P(w_2|w_1)P(w_1)$$

умеем сегментировать предложение на отдельные слова:

мама мыла раму → мама мыла раму

$$P(w_1, w_2, w_3) = P(w_3|w_1, w_2)P(w_1, w_2) = P(w_3|w_1, w_2)P(w_2|w_1)P(w_1)$$

нужно по корпусу текста вычислить статистики:

умеем сегментировать предложение на отдельные слова:

мама мыла раму → мама мыла раму

$$P(w_1, w_2, w_3) = P(w_3|w_1, w_2)P(w_1, w_2) = P(w_3|w_1, w_2)P(w_2|w_1)P(w_1)$$

нужно по корпусу текста вычислить статистики:

$$P(w_1,w_2,\ldots,w_n) = \prod_k P(w_k|w_1,\ldots,w_{(k-1)})$$

умеем сегментировать предложение на отдельные слова:

мама мыла раму → мама мыла раму

$$P(w_1,w_2,w_3) = P(w_3|w_1,w_2)P(w_1,w_2) = P(w_3|w_1,w_2)P(w_2|w_1)P(w_1)$$

нужно по корпусу текста вычислить статистики:

$$P(w_1,w_2,\ldots,w_n) = \prod_k P(w_k|w_1,\ldots,w_{(k-1)})$$

какие проблемы у такого подхода?

 придется считать вероятность всего предложения как в модели шариков в корзинке :)

count(Введение, в, машинное, обучение, с помощью, sklearn)

гипотеза: слово в предложении зависит только от предыдущих N слов

гипотеза: слово в предложении зависит только от предыдущих N слов

$$P(w_1, w_2, \dots, w_n) = \prod_k P(w_k | w_1, \dots, w_{(k-1)}) pprox \prod_k P(w_k | w_{(k-N+1)}, \dots, w_{(k-1)})$$

гипотеза: слово в предложении зависит только от предыдущих N слов

$$P(w_1, w_2, \dots, w_n) = \prod_k P(w_k | w_1, \dots, w_{(k-1)}) pprox \prod_k P(w_k | w_{(k-N+1)}, \dots, w_{(k-1)})$$

Р(введение в машинное обучение с помощью sklearn) =

P(sklearn | введение в машинное обучение с помощью)

- х Р(помощью | введение в машинное обучение с)
- х Р(с | введение в машинное обучение)
- х Р(обучение | введение в машинное)
- х Р(машинное | введение в)
- х Р(в введение)
- х Р(введение)

гипотеза: слово в предложении зависит только от предыдущих N слов

$$P(w_1, w_2, \dots, w_n) = \prod_k P(w_k | w_1, \dots, w_{(k-1)}) pprox \prod_k P(w_k | w_{(k-N+1)}, \dots, w_{(k-1)})$$

Р(введение в машинное обучение с помощью sklearn) =

P(sklearn | введение в машинное обучение с помощью)

- х Р(помощью | введение в машинное обучение с)
- х Р(с | введение в машинное обучение)
- х Р(обучение | введение в машинное)
- х Р(машинное | введение в)
- х Р(в введение)
- х Р(введение)

гипотеза: слово в предложении зависит только от предыдущих N слов

$$P(w_1, w_2, \dots, w_n) = \prod_k P(w_k | w_1, \dots, w_{(k-1)}) pprox \prod_k P(w_k | w_{(k-N+1)}, \dots, w_{(k-1)})$$

Р(введение в машинное обучение с помощью sklearn) =

P(sklearn | введение в машинное обучение с помощью)

- х Р(помощью | введение в машинное обучение с)
- х Р(с | введение в машинное обучение)
- х Р(обучение | введение в машинное)
- х Р(машинное | введение в)
- х Р(в введение)

х Р(введение)

придется считать только статистику по тройкам слов!

count(с помощью sklearn)

count(обучение с помощью)

Модель языка: N-gram Language Model (Statistical Language Model)

$$\begin{aligned} & \text{N = 1 (unigram LM)} \quad P(w_1, \dots, w_n) = \prod_{k=1}^n P(w_k) \\ & \text{N = 2 (bigram LM)} \quad P(w_1, \dots, w_n) = \prod_{k=1}^n P(w_k | w_{k-1}) \\ & \text{N = 3 (trigram LM)} \quad P(w_1, \dots, w_n) = \prod_{k=1}^n P(w_k | w_{k-2}, w_{k-1}) \\ & P(w_t \mid w_{t-n+1}, \dots, w_{t-1}) \approx \frac{\text{count}(w_{t-n+1} \dots, w_{t-1}, w_t)}{\sum_{w} \text{count}(w_{t-n+1} \dots w_{t-1}, w)} = \frac{\text{count}(w_{t-n+1} \dots, w_{t-1}, w_t)}{\text{count}(w_{t-n+1} \dots w_{t-1})} \end{aligned}$$

Модель языка: N-gram Language Model (Statistical Language Model)

Итак, обучение:

- фиксируем порядок (N) языковой модели
- токенизируем коллекцию текстов, добавляем спец. символы (BOS & EOS | <s> & </s>)
- считаем, сколько раз встречались последовательности длины N и (N 1)
- оцениваем вероятность следующего слова при условии контекста длины (N 1)

Генерация текста: машинное

Генерация текста: машинное

Генерация текста: машинное обучение

Генерация текста: машинное обучение

Генерация текста: машинное обучение по

Генерация текста: машинное обучение по

Генерация текста: машинное обучение по телефону

Генерация текста: машинное обучение по телефону

Генерация текста: машинное обучение по телефону.

Генерация текста: машинное обучение по телефону.

Генерация текста: машинное обучение по телефону . <EOS>

- Связности (coherency)
- Разнообразия (diversity)

- Связности (coherency)
- Разнообразия (diversity)

Для увеличения связности можно брать более высокие порядки, увеличивать обучающий корпус, переходить от статистических к нейросетевым языковым моделям

Для увеличения разнообразия можно применить сэпмлирование с температурой

- Связности (coherency)
- Разнообразия (diversity)

Для увеличения связности можно брать более высокие порядки, увеличивать обучающий корпус, переходить от статистических к нейросетевым языковым моделям

Для увеличения разнообразия можно применить сэпмлирование с температурой

$$\operatorname{softmax}(x)_i = rac{e^{x_i}}{\displaystyle\sum_j e^{x_j}} \hspace{1.5cm} ext{softmax}(x,T)_i = rac{e^{rac{x_i}{T}}}{\displaystyle\sum_j e^{rac{x_j}{T}}}$$

- Связности (coherency)
- Разнообразия (diversity)

Для увеличения связности можно брать более высокие порядки, увеличивать обучающий корпус, переходить от статистических к нейросетевым языковым моделям

Для увеличения разнообразия можно применить сэпмлирование с температурой

$$ext{softmax}(x)_i = rac{e^{x_i}}{\displaystyle\sum_j e^{x_j}} \hspace{0.5cm} ext{softmax}(x,T)_i = rac{e^{rac{x_i}{T}}}{\displaystyle\sum_j e^{rac{x_j}{T}}}$$

$$p=e^{\log p} \hspace{0.2in} riangleq \hspace{0.2in} p_T \sim e^{rac{\log p}{T}} = e^{rac{1}{T}\log p} = p^{rac{1}{T}}$$

Генерация текста: понижение температура

Генерация текста: повышение температуры

Примеры сгенерированных текстов

машинное обучение с помощью которого вы и ваши друзья примеряете шляпу индианы джонса и отправляетесь на встречу приключениям в самое сердце женщины

машинное обучение с помощью scikit learn и tensorflow концепции, инструменты и садовая техника, товары для спорта и охоты, устройство конструкции и последовательность сборки своими руками, для настольной лампы своими руками из природных материалов.

машинное обучение с помощью и командлетов можно довольно просто скопировать членство в группах одного пользователя и добавить в бульон пока варится картофель займемся всеми грибами

машинное обучение с помощью scikit learn и tensorflow концепции , инструменты и технологии поддержки инновационного предпринимательства на базе технопарков , а также показали золото и бронзу паралимпиады .

Интерпретация языковых моделей


```
Говорить ...

P("о"|"говорить") ~ 0.30

P("с"|"говорить") ~ 0.02

P("над"|"говорить") = 0

красивая ...

P("жизнь" | "красивая") ~ 0.03

P("песня" | "красивая") ~ 0.01

P("улыбка" | "красивая") ~ 0.01

P("умная" | "красивая") = 0
```

```
Говорить ...

P("о"|"говорить") ~ 0.30

P("с"|"говорить") ~ 0.02

P("над"|"говорить") = 0

красивая ...

P("жизнь" | "красивая") ~ 0.03

P("песня" | "красивая") ~ 0.01

P("улыбка" | "красивая") ~ 0.01

P("умная" | "красивая") = 0
```

модель выучивает грамматику:

- после глагола вероятен предлог
- говорят обычно о чем-то и с кем-то (предлог "над" неуместен)
- после прилагательного "красивый" следует существительное (а не еще одно прилагательное)
- красивых вещей в мире много => вероятностная масса для префикса "красивая" размазана по разным словам

```
говорить ...
Р("о"|"говорить") ~ 0.30
Р("с"|"говорить") ~ 0.02
P("над"|"говорить") = 0
красивая ...
Р("жизнь" ∣ "красивая") ~ 0.03
Р("песня" ∣ "красивая") ~ 0.01
Р("улыбка" | "красивая") ~ 0.01
Р("умная" ∣ "красивая") = О
слушать ...
Р("музыку" | "слушать") ~ 0.05
Р("аудиокнигу" | "слушать") ~ 0.01
```

модель выучивает грамматику:

- после глагола вероятен предлог
- говорят обычно о чем-то и с кем-то (предлог "над" неуместен)
- после прилагательного "красивый" следует существительное (а не еще одно прилагательное)
- красивых вещей в мире много => вероятностная масса для префикса "красивая" размазана по разным словам

```
говорить ...
Р("о"|"говорить") ~ 0.30
Р("с"|"говорить") ~ 0.02
P("над"|"говорить") = 0
красивая ...
Р("жизнь" ∣ "красивая") ~ 0.03
Р("песня" ∣ "красивая") ~ 0.01
Р("улыбка" | "красивая") ~ 0.01
Р("умная" ∣ "красивая") = О
слушать ...
Р("музыку" | "слушать") ~ 0.05
Р("аудиокнигу" | "слушать") ~ 0.01
```

модель выучивает грамматику:

- после глагола вероятен предлог
- говорят обычно о чем-то и с кем-то (предлог "над" неуместен)
- после прилагательного "красивый" следует существительное (а не еще одно прилагательное)
- красивых вещей в мире много => вероятностная масса для префикса "красивая" размазана по разным словам

модель выучивает знания о мире:

 музыку слушают чаще, чем аудиокниги

```
президент россии ...
```

```
Р("владимир" | "президент россии") \sim 0.62 Р("дмитрий" | "президент россии") \sim 0.08
```

президент сша ...

```
P("дональд" | "президент сша") ~ 0.28 
 <math>P("барак" | "президент сша") ~ 0.24 
 <math>P("джозеф" | "президент сша") ~ 0.02
```

модель выучивает факты (хоть иногда и устаревшие, определяется корпусом обучающих текстов)

Сглаживание вероятностей

гипотеза: слово в предложении зависит только от предыдущих N слов

$$P(w_1, w_2, \dots, w_n) = \prod_k P(w_k | w_1, \dots, w_{(k-1)}) pprox \prod_k P(w_k | w_{(k-N+1)}, \dots, w_{(k-1)})$$

$$P(w_t \mid w_{t-n+1}, \dots, w_{t-1}) \approx \frac{\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_t)}{\sum_{w} \text{count}(w_{t-n+1}, \dots, w_{t-1}, w_t)} = \frac{\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_t)}{\text{count}(w_{t-n+1}, \dots, w_{t-1})}$$

гипотеза: слово в предложении зависит только от предыдущих N слов

$$P(w_1, w_2, \dots, w_n) = \prod_k P(w_k | w_1, \dots, w_{(k-1)}) pprox \prod_k P(w_k | w_{(k-N+1)}, \dots, w_{(k-1)})$$

$$P(w_t \mid w_{t-n+1}, \dots, w_{t-1}) \approx \frac{\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_t)}{\sum_{w} \text{count}(w_{t-n+1}, \dots, w_{t-1}, w)} = \frac{\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_t)}{\text{count}(w_{t-n+1}, \dots, w_{t-1})}$$

- встречаемость последовательностей слов оцениваем по корпусу текстов
- после обучения модели к нам поступают предложения, вероятности которых нужно оценить

гипотеза: слово в предложении зависит только от предыдущих N слов

$$P(w_1, w_2, \dots, w_n) = \prod_k P(w_k | w_1, \dots, w_{(k-1)}) pprox \prod_k P(w_k | w_{(k-N+1)}, \dots, w_{(k-1)})$$

$$P(w_t \mid w_{t-n+1}, \dots, w_{t-1}) \approx \frac{\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_t)}{\sum_{w} \text{count}(w_{t-n+1}, \dots, w_{t-1}, w_t)} = \frac{\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_t)}{\text{count}(w_{t-n+1}, \dots, w_{t-1})}$$

- встречаемость последовательностей слов оцениваем по корпусу текстов
- после обучения модели к нам поступают предложения, вероятности которых нужно оценить
- что произойдет, если в новом предложении встретится пара словосочетаний, которые никогда раньше не встречались?

гипотеза: слово в предложении зависит только от предыдущих N слов

$$P(w_1, w_2, \dots, w_n) = \prod_k P(w_k | w_1, \dots, w_{(k-1)}) pprox \prod_k P(w_k | w_{(k-N+1)}, \dots, w_{(k-1)})$$

$$P(w_t \mid w_{t-n+1}, \dots, w_{t-1}) \approx \frac{\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_t)}{\sum_{w} \text{count}(w_{t-n+1}, \dots, w_{t-1}, w_t)} = \frac{\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_t)}{\text{count}(w_{t-n+1}, \dots, w_{t-1})}$$

- встречаемость последовательностей слов оцениваем по корпусу текстов
- после обучения модели к нам поступают предложения, вероятности которых нужно оценить
- что произойдет, если в новом предложении встретится пара словосочетаний, которые никогда раньше не встречались?

В числителе и/или знаменателе формулы для оценки вероятности будет стоять ноль

Laplace Smoothing

$$P(w_1, w_2, \dots, w_n) = \prod_k P(w_k | w_1, \dots, w_{(k-1)}) pprox \prod_k P(w_k | w_{(k-N+1)}, \dots, w_{(k-1)})$$

$$P(w_{t} \mid w_{t-n+1}, \dots, w_{t-1}) \approx \frac{\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_{t}) + 1}{\sum_{w} (\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_{t}) + 1)} = \frac{\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_{t}) + 1}{\text{count}(w_{t-n+1}, \dots, w_{t-1}) + |V|}$$

Laplace Smoothing

$$P(w_1, w_2, \dots, w_n) = \prod_k P(w_k | w_1, \dots, w_{(k-1)}) pprox \prod_k P(w_k | w_{(k-N+1)}, \dots, w_{(k-1)})$$

$$P(w_{t} \mid w_{t-n+1}, \dots, w_{t-1}) \approx \frac{\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_{t}) + 1}{\sum_{w} (\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_{t}) + 1)} = \frac{\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_{t}) + 1}{\text{count}(w_{t-n+1}, \dots, w_{t-1}) + |V|}$$

- перераспределяем часть вероятностной массы на события, которые не наблюдали в ходе обучения
- есть ли проблемы?

Delta Smoothing

$$P(w_1, w_2, \dots, w_n) = \prod_k P(w_k | w_1, \dots, w_{(k-1)}) pprox \prod_k P(w_k | w_{(k-N+1)}, \dots, w_{(k-1)})$$

$$P(w_{t} \mid w_{t-n+1}, \dots, w_{t-1}) \approx \frac{\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_{t}) + \delta}{\sum_{w} (\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_{t}) + \delta)} = \frac{\text{count}(w_{t-n+1}, \dots, w_{t-1}, w_{t}) + \delta}{\text{count}(w_{t-n+1}, \dots, w_{t-1}) + \delta|V|}$$

• вносим меньшее искажение в истинные оценки

Другие подходы к сглаживания

• Stupid Backoff: используем модель порядка N, если нам попадается неизвестная N-грамма, то пробуем оценить вероятность с помощью языковой модели (N - 1) порядка, то есть уменьшаем длину контекста

Другие подходы к сглаживания

Stupid Backoff: используем модель порядка N, если нам попадается неизвестная N-грамма, то
пробуем оценить вероятность с помощью языковой модели (N - 1) порядка, то есть уменьшаем
длину контекста

$$\hat{P}(w_4|w_1, w_2, w_3) = \lambda_4 P(w_4|w_1, w_2, w_3) + \lambda_3 P(w_4|w_2, w_3) + \lambda_2 P(w_4|w_3) + \lambda_1 P(w_4)$$

• Linear Interpolation

$$\sum_{i} \lambda_{i} = 1$$

Другие подходы к сглаживания

Stupid Backoff: используем модель порядка N, если нам попадается неизвестная N-грамма, то
пробуем оценить вероятность с помощью языковой модели (N - 1) порядка, то есть уменьшаем
длину контекста

$$\hat{P}(w_4|w_1, w_2, w_3) = \lambda_4 P(w_4|w_1, w_2, w_3) + \lambda_3 P(w_4|w_2, w_3) + \lambda_2 P(w_4|w_3) + \lambda_1 P(w_4)$$

Linear Interpolation

$$\sum_{i} \lambda_{i} = 1$$

• Kneser-Ney / Witten-Bell — наиболее популярные, учитывают коллокации

Оценка качества

Подходы к оценке качества

extrinsic (внешние)

- обучаем модель для решения практической задачи
- по метрикам качества этой задачи можно понять,
 хорошо ли работает модель
- н позволяет явно оценить, приносит ли компонент пользу
- долго

Intrinsic (внутренние)

- подготовить тестовые датасеты, не связанные с конечной задачей
 - о для эмбеддингов слов <u>RuSimLex 365</u>
 - О для языковых моделей перплексия
- + относительно быстро
- оцениваем качество модели в отрыве от конечной задачи

Перплексия

- perplexity: недоумение, замешательство, растерянность
- считается на отдельном наборе данных (dev / test), который модель не видела (хотим обобщения, а не заучивания)
- вероятность, нормированная на длину текста

$$P(w_{1},...,w_{N})^{-\frac{1}{N}} = \left(\prod_{t} P(w_{t} \mid w_{t-n+1},...,w_{t-1})\right)^{-\frac{1}{N}} = \frac{1}{\sqrt[N]{\prod_{t} P(w_{t} \mid w_{t-n+1},...,w_{t-1})}}$$

$$e^{\log P(w_{1},...,w_{N})^{-\frac{1}{N}}} = e^{-\frac{1}{N}\log P(w_{1},...,w_{N})} = e^{-\frac{1}{N}\log \left(\prod_{t} P(w_{t} \mid w_{t-n+1},...,w_{t-1})\right)}$$

$$-\frac{1}{N}\sum_{t} \log P(w_{t} \mid w_{t-n+1},...,w_{t-1})$$

- какая для идеальной модели?
- какая для худшей модели?

Перплексия

https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

Model	Perplexity
Interpolated Kneser-Ney 5-gram (Chelba et al., 2013)	67.6
RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013)	51.3
RNN-2048 + BlackOut sampling (Ji et al., 2015)	68.3
Sparse Non-negative Matrix factorization (Shazeer et al., 2015)	52.9
LSTM-2048 (Jozefowicz et al., 2016)	43.7
2-layer LSTM-8192 (Jozefowicz et al., 2016)	30
Ours small (LSTM-2048)	43.9
Ours large (2-layer LSTM-2048)	39.8

https://paperswithcode.com/task/language-modelling

Проблемы статистических языковых моделей

Компьютер, на который я откладывал деньги с первого курса, у меня украли

Компьютер, на который я откладывал деньги с первого курса, у меня <mark>украли</mark>

Компьютер, на который я откладывал деньги с первого курса, у меня <mark>украли</mark>

не учитывают длинный контекст

Нейросетевые языковые модели


```
from transformers import AutoTokenizer, AutoModelForCausalLM
```

```
checkpoint = "ai-forever/rugpt3small_based_on_gpt2"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
tokenized_tensors_dict = tokenizer(
    text='camoe красивое в людях - это',
    return_tensors='pt'
generated = model.generate(
    **tokenized_tensors_dict,
    max_length=300,
    temperature=1.0,
    do_sample=True
print(
    tokenizer.decode(generated.numpy()[0])
```


Neural LM

https://huggingface.co/models

```
from transformers import AutoTokenizer, AutoModelForCausalLM
```

```
checkpoint = "ai-forever/rugpt3small_based_on_gpt2"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
tokenized_tensors_dict = tokenizer(
    text='camoe красивое в людях - это',
    return_tensors='pt'
generated = model.generate(
    **tokenized_tensors_dict,
   max_length=300,
    temperature=1.0,
   do_sample=True
print(
    tokenizer.decode(generated.numpy()[0])
```


Neural LM

самое красивое в людях — это их внутренний мир. Только его надо уметь слушать. Быть самим собой — это самое прекрасное и сложное в жизни. А еще — это время. Это время, в котором ты должен принимать решения, обдумывать и обдумывать свое поведение, чтобы жизнь не казалась такой пресной и бессмысленной, как раньше...

Как начать обучение

Мы начинаем с базовых принципов: любви, уважения, сострадания и милосердия. Однако, это не означает, что нужно говорить со всеми и каждому. Необходимо следовать этим принципам, не ожидая "конструктивной обратной связи". Вы должны быть готовы к тому, что все, что вы хотите получить — это как раз то, что вам нужно!

Самое главное — это не просто получить все, что вы хотите, но и понять, есть ли у вас какие-то ценности или принципы, которые вы хотите реализовать. Не говорите прямо: это не так важно, это все можно будет найти. Ищите ценности других людей, то, что кажется вам интересным. Вы увидите, что вы обязательно найдете что-то общее в своих отношениях и в отношениях с другими людьми. Что именно, вы обязательно можете найти.

Когда вы все узнаете, возможно, вы будете чувствовать себя так, будто все, о чем вы не хотите говорить, есть в вас самом и есть его, если вы захотите услышать от других.

Когда вы научитесь слушать других людей и принимать решения "свой — чужой". Вы поймете

https://huggingface.co/models

Сегодня в МГТУ им. Н.Э. Баумана состоялась лекция по машинному обучению и обработке текста

Сегодня в МГТУ им. Н.Э. Баумана состоялась лекция по машинному обучению и обработке текста, организованная совместно с И.И. Глинусом.

- 1. Конечная цель обучения создать условия для развития навыков восприятия текста как средства выразительности речи на основе авторского и языкового программирования.
- 2. По завершении лекций была выдана брошюра "Творческий подход, обучение и эффективность" (М.: МГАУ, 2013). Данная книга призвана повысить мотивацию учащихся к овладению языком, познакомить их с различными аспектами творческой деятельности.
- 3. В этом году в МГТУ имени Н.Э. Баумана состоялась творческая встреча с Ю. Гребенщиковым, И. П. Ивановым, Н.Н. Кагановичем, И. А. Тихомировым, Г.Л. Марченко и другими. Для многих из них в рамках этого мероприятия стала возможной публикация ее в журнале "Русский язык и культура: XXI век".
- 4. В рамках "Открытых городских лекций" состоялась лекция "Космос, история, культура и традиции МГУ имени Н.Э. Баумана (2010 год). Тема лекции: "Влияние на восприятие текста: формирование умения выделять "животные" и находить их "находящие" слова и действия.

rugpt3small

rugpt3small

#include <iostream>

```
* Gets the current map of the current map from the user's list.
* @return true if this method doesn't give me the _int_tip
* @throws IllegalArgumentException if the map is found
* @throws Any Error error or abuse
* @since 5.5.2
*/
public static void updateRowMap(object baseMap, Object object dataType)
   throws IllegalArgumentException, GeneralException, LOGO_LOGO
 // create initialization to this method
 DBBean main()
    DBBean main()
   // create a new class for this method
      binary.add_tip
   // get the dynamics on the set
   // clause all the data
   // for each table
      boolean do
      = this = dynamics.object_do
```

rugpt3small

Домашнее задание

Noisy Text Aggregation

https://github.com/vadim0912/ML2023/blob/main/lecture 08/noisy text aggregation.ipynb

Спасибо за внимание!

@georgygospodinov

