US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication

Kind Code

A1

Publication Date

Inventor(s)

August 07, 2025

Booth; Robert C. et al.

INSULIN MANAGEMENT

Abstract

A method of administering insulin includes receiving blood glucose measurements of a patient at a data processing device from a glucometer. Each blood glucose measurement is separated by a time interval and includes a blood glucose time associated with a time of measuring the blood glucose measurement. The method also includes receiving patient information at the data processing device and selecting a subcutaneous insulin treatment for tube-fed patients from a collection of subcutaneous insulin treatments. The selection is based on the blood glucose measurements and the patient information. The subcutaneous insulin treatment program for tube-fed patients determines recommended insulin doses based on the blood glucose times. The method also includes executing, using the data processing device, the selected subcutaneous insulin treatment.

Inventors: Booth; Robert C. (Greer, SC), Hebblewhite; Harry (Atlanta, GA)

Applicant: GLYTEC, LLC (Waltham, MA)

Family ID: 53753956

Assignee: GLYTEC, LLC (Waltham, MA)

Appl. No.: 19/190012

Filed: April 25, 2025

Related U.S. Application Data

parent US continuation 18469522 20230918 parent-grant-document US 12288620 child US 19190012

parent US continuation 17813440 20220719 parent-grant-document US 11783946 child US 18469522

parent US continuation 16574056 20190917 ABANDONED child US 17813440

parent US continuation 15862310 20180104 parent-grant-document US 10453568 child US 16574056

parent US continuation 14524756 20141027 parent-grant-document US 9898585 child US

15862310

parent US continuation 14524756 20141027 parent-grant-document US 9898585 child US 16574056

us-provisional-application US 62009575 20140609 us-provisional-application US 61934300 20140131

Publication Classification

Int. Cl.: G16H40/67 (20180101); A61B5/00 (20060101); A61B5/145 (20060101); A61M5/14 (20060101); A61M5/142 (20060101); A61M5/172 (20060101); G16H10/40 (20180101); G16H20/17 (20180101); G16H20/60 (20180101); G16H80/00 (20180101)

U.S. Cl.:

CPC **G16H40/67** (20180101); **A61B5/14532** (20130101); **A61B5/4839** (20130101); **A61M5/14** (20130101); **A61M5/1723** (20130101); **G16H10/40** (20180101); **G16H20/17** (20180101); **G16H20/60** (20180101); **G16H80/00** (20180101); A61B5/4848 (20130101); A61M2005/14208 (20130101); A61M2005/14296 (20130101); A61M2005/1726 (20130101); A61M2205/18 (20130101); A61M2205/3327 (20130101); A61M2205/35 (20130101); A61M2205/3533 (20130101); A61M2205/3584 (20130101); A61M2205/3592 (20130101); A61M2205/50 (20130101); A61M2205/507 (20130101); A61M2205/52 (20130101); A61M2205/581 (20130101); A61M2230/201 (20130101)

Background/Summary

CROSS REFERENCE TO RELATED APPLICATIONS [0001] This U.S. patent application is a continuation of, and claims priority under 35 U.S.C. § 120 from, U.S. patent application Ser. No. 18/469,522, filed on Sep. 18, 2023, which is a continuation of U.S. patent application Ser. No. 17/813,440, filed on Jul. 19, 2022, which is a continuation of U.S. patent application Ser. No. 16/574,056, filed on Sep. 17, 2019, which is a continuation of U.S. patent application Ser. No. 15/862,310, filed on Jan. 4, 2018, which is a continuation of U.S. patent application Ser. No. 14/524,756, filed on Oct. 27, 2014, which claims priority under 35 U.S.C. § 119 (e) to U.S. Provisional Application 61/934,300, filed on Jan. 31, 2014, and U.S. Provisional Application 62/009,575, filed on Jun. 9, 2014. The disclosures of these prior applications are considered part of the disclosure of this application and are hereby incorporated by reference in their entireties.

TECHNICAL FIELD

[0002] This disclosure relates to a system for managing insulin administration or insulin dosing. BACKGROUND

[0003] Today, nearly 40% of patients admitted to acute care hospitals in the United States experience either hyperglycemia or hypoglycemia, both serious medical conditions. Many of these patients have diabetes while others have fluctuating blood sugars due to trauma, drug reactions, stress and other factors. Nurses and doctors managing these patients manually calculate insulin doses using complex paper protocols.

[0004] Manual calculation may not be accurate due to human error, which can lead to patient safety issues. Different institutions use multiple and sometimes conflicting protocols to manually calculate an insulin dosage. Moreover, the protocols may include extra paperwork that nurses and physicians have to manage, which in turn leads to workflow inefficiencies, additional operating

costs, and employee satisfaction issues. SCIP (Surgical Care Improvement Project) scores, length of stay, readmission and even mortality rates adversely affect sub-optimal glycemic management. [0005] The prevalent method of regulating continuous intravenous insulin infusion is by using a set of written instructions, known as a paper protocol. Paper protocols often involve a tree of conditional statements and some use of tables of numbers, for which a given blood glucose value dictates the use of a different column of insulin rates. The complexity of these paper protocols multiplies the probability of error by the nurses using them. These errors can lead to hypoglycemic events.

SUMMARY

[0006] One aspect of the disclosure provides a method of administering insulin. The method includes receiving blood glucose measurements of a patient at a data processing device from a glucometer. The blood glucose measurements are separated by a time interval and include a blood glucose time associated with a time of measuring the blood glucose measurement. The method also includes receiving patient information at the data processing device. The method includes selecting, using the data processing device, a subcutaneous insulin treatment program for tube-fed patients from a collection of subcutaneous insulin treatments. The selection is based on the blood glucose measurements and the patient information. The subcutaneous insulin treatment program for tube-fed patients determines the recommended insulin doses based on the blood glucose times. The method also includes executing, using the data processing device, the selected subcutaneous insulin treatment for tube-fed patients.

[0007] Implementations of the disclosure may include one or more of the following optional features. In some implementations, the method includes: receiving, at the data processing device, a configurable constant; storing the configurable constant in non-transitory memory associated with the data processing device; and determining a correction factor using the data processing device. The configurable constant may be determined from a published statistical correlation. The method may also include determining a pre-meal correction bolus, using the data processing device. The method may include determining, using the data processing device, a post-prandial correction bolus. The method may also include receiving, at the data processing device, a half-life value of the rapid-acting insulin; and determining, using the data processing device, the mean lifetime of the rapid-acting insulin.

[0008] In some implementations, the method includes receiving, at the data processing device, a governing blood glucose value, and determining, using the data processing device, an adjustment factor based on the received governing blood glucose value. Determining the adjustment factor may include determining when the governing blood glucose value is within a pre-configured range of values, and setting the adjustment factor to a preconfigured adjustment factor associated with the pre-configured range of values. Determining the adjustment factor may further include determining the governing blood glucose value is within one of multiple pre-configured ranges of values and setting the adjustment factor to a pre-configured adjustment factor associated with the pre-configured range of values that includes the governing blood glucose value. In some implementations, the method includes determining, using the data processing device, a Carbohydrate-to-Insulin Ratio based on the adjustment factor.

[0009] The subcutaneous insulin treatment program for tube-fed patients includes receiving, at the processing device, a blood glucose time associated with a time of measuring of the blood glucose measurement and determining, using the data processing device, if the blood glucose time is within a pre-configured time interval. The method further includes setting a timer for a next blood glucose measurement based on the pre-configured time interval and determining, using the data processing device, a correction insulin does based on the blood glucose time. In some implementations, the pre-configured time interval includes one of six pre-configured time intervals each spaced four hours apart from the next beginning at 00:00, or one of four pre-configured time intervals each spaced six hours apart from the next beginning at 00:00.

[0010] In some examples, the method includes, when the blood glucose time is within a first one of four pre-configured time intervals each spaced six hours apart from the next: setting, using the data processing device, the blood glucose measurement as a governing blood glucose value; determining, using the data processing device, an adjustment factor for adjusting a value of recommended equal-boluses based on the governing blood glucose value; and retrieving, using the data processing device, a previous day's value of recommended equal-boluses. The method further includes determining, using the data processing device, a new value of recommended equal-boluses by multiplying the adjustment factor times the previous day's value of recommended equal-boluses. The new value of recommended equal-boluses corresponds to an insulin dose of rapid-acting insulin or regular insulin to be administered to the patient at scheduled blood glucose measurements.

[0011] In some implementations, the method includes, when the blood glucose is within a second one of four pre-configured time intervals each spaced six hours apart from the next: setting, using the data processing device, the blood glucose measurement as a governing blood glucose value; determining, using the data processing device, an adjustment factor for adjusting a current day's recommended basal dose based on the governing blood glucose value; and retrieving, using the data processing device, a previous day's recommended basal dose. The method further includes determining, using the data processing device, the current day's recommended basal dose by multiplying the adjustment factor times the previous day's recommended basal dose. The current day's recommended basal dose corresponds to an insulin does of long-acting insulin to be administered to the patient at a configurable frequency of one, two, or three times per day. [0012] When the blood glucose time is within a third of one of six pre-configured time intervals each spaced four hours apart from the next, the method includes: setting, using the data processing device, the blood glucose measurement as a governing blood glucose value; determining, using the data processing device, an adjustment factor for adjusting a current day's recommended basal dose based on the governing blood glucose value; and retrieving, using the data processing device, a previous day's recommended basal dose. The method further includes determining, using the data processing device, the current day's recommended basal dose by multiplying the adjustment factor times the previous day's recommended basal dose. The current day's recommended basal dose corresponds to an insulin dose of long-acting insulin to be administered to the patient at a configurable frequency of one, two, or three times per day.

[0013] In some examples, the method further includes transmitting the subcutaneous insulin treatment program for tube-fed patients to an administration device in communication with the data processing device. The administration device includes a doser and an administration computing device in communication with the doser. The administration computing device, when executing the subcutaneous insulin treatment program for tube-fed patients, causes the doser to administer the recommended doses of insulin determined by the subcutaneous insulin treatment program for tube-fed patients. The administration device includes at least one of an insulin injection pen or an insulin pump.

[0014] Another aspect of the disclosure provides a system for administering insulin. The system includes a glucometer measuring blood glucose of a patient at separate time interval and a dosing controller in communication with the glucometer. The dosing controller includes a data processing device and non-transitory memory in communication with the data processing device. The dosing controller receives blood glucose measurements of a patient from the glucometer, receives patient information, selects a subcutaneous insulin treatment from a collection of subcutaneous insulin treatments based on the blood glucose measurements and the patient information, and executes the selected subcutaneous insulin treatment. Each blood glucose measurement is separated by a time interval and includes a blood glucose time associated with a time of measuring the blood glucose measurement.

[0015] The dosing controller may further determine a pre-meal correction bolus and determine a

post-prandial correction bolus. In some implementations, the dosing controller receives a half-life value of the rapid-acting insulin (e.g., from an external computing device or manually entered via a user interface) and determines the mean lifetime of the rapid-acting insulin.

[0016] In some examples, the dosing controller receives a governing blood glucose value (e.g., from an external computing device or manually entered via a user interface) and determines an adjustment factor based on the received governing blood glucose value. The dosing controller may further determine the adjustment factor by determining when the governing blood glucose value is within a pre-configured range of values and set the adjustment factor to a pre-configured adjustment factor associated with the pre-configured range of values that includes the governing blood glucose value. The dosing controller further determines a carbohydrate-to-insulin ratio based on the adjustment factor.

[0017] In some implementations, during the subcutaneous insulin treatment program for tube-fed patients, the dosing controller receives a blood glucose time associated with a time of measuring the blood glucose measurement and determines if the blood glucose time is within a pre-configured time interval. The dosing controller further sets a time for a next blood glucose measurement based on the pre-configured time interval and determines a correction insulin dose based on the blood glucose type. The pre-configured time interval includes one of six pre-configured time intervals each spaced four hours apart from the next beginning at 00:00 or one of four pre-configured time intervals each spaced six hours apart from the next beginning at 00:00.

[0018] In some examples, when the blood glucose time is within a first one of four pre-configured time intervals each spaced six hours apart from the next, the dosing controller sets the blood glucose measurement as a governing blood glucose value and determines an adjustment factor for adjusting a value of recommended equal-boluses based on the governing blood glucose value. The dosing controller further retrieves a previous day's value of recommended equal-boluses and determines a new value of recommended equal-boluses by multiplying the adjustment factor times the previous day's value of recommended equal-boluses. The new value of recommended equal-boluses corresponds to an insulin dose of rapid-acting insulin or regular insulin to be administered to the patient at scheduled blood glucose measurements.

[0019] When the blood glucose time is within a second one of six pre-configured time intervals each spaced four hours apart from the next, the dosing controller sets the blood glucose measurement as a governing blood glucose value. The dosing controller further determines an adjustment factor for adjusting a value of recommended equal-boluses based on the governing blood glucose value, retrieves a previous day's value of recommended equal-boluses and determines a new value of recommended equal-boluses by multiplying the adjustment factor times the previous day's value of recommended equal-boluses. The new value of recommended equalboluses corresponds to an insulin dose of rapid-acting insulin or regular insulin to be administered to the patient at scheduled blood glucose measurements. When the blood glucose time is within a second one of six pre-configured time intervals each spaced four hours apart from the next, the dosing controller sets the blood glucose measurement as a governing blood glucose value and determines an adjustment factor for adjusting a current day's recommended basal dose based on the governing blood glucose value. The dosing controller further retrieves a previous day's recommended basal dose and determines the current day's recommended basal dose by multiplying the adjustment factor times the previous day's recommended basal dose. The current day's recommended basal dose corresponding to an insulin dose of long-acting insulin to be administered to the patient at a configurable frequency of one, two, or three times per day. [0020] When the blood glucose time is within a second one of six pre-configured time intervals

[0020] When the blood glucose time is within a second one of six pre-configured time intervals each spaced four hours apart from the next, the dosing controller sets the blood glucose measurement as a governing blood glucose value and determines an adjustment factor for adjusting a current day's recommended basal dose based on the governing blood glucose value. The dosing controller further retrieves a previous day's recommended basal dose and determines the current

day's recommended basal dose by multiplying the adjustment factor times the previous day's recommended basal dose. The current day's recommended basal dose corresponds to an insulin dose of long-acting insulin to be administered to the patient at a configurable frequency of one, two, or three times per day.

[0021] The dosing controller transmits the subcutaneous insulin treatment program for tube-fed patients to an administration device in communication with the dosing controller. The administration device includes a doser and an administration computing device in communication with the doser. The administration device, when executing the selected subcutaneous insulin treatment, causes the doser to administer the recommended doses of insulin determined by the subcutaneous insulin treatment program for tube-fed patients. The administration device includes at least one of an insulin injection pen or an insulin pump.

[0022] The details of one or more implementations of the disclosure are set forth in the accompanying drawings and the description below. Other aspects, features, and advantages will be apparent from the description and drawings, and from the claims.

Description

DESCRIPTION OF DRAWINGS

[0023] FIG. **1**A is a schematic view of an exemplary system for monitoring blood glucose level of a patient.

[0024] FIG. **1**B is a schematic view of an exemplary system for monitoring blood glucose level of a patient.

[0025] FIG. **1**C is a schematic view of an exemplary administration device in communication with a dosing controller.

[0026] FIG. **2**A is a schematic view of an exemplary process for monitoring the blood glucose level of a patient.

[0027] FIG. **2**B is a schematic view of an exemplary display for inputting patient information.

[0028] FIG. **2**C is a schematic view of an exemplary display for selecting a patient from a list of patients.

[0029] FIG. **3** is a schematic view of an exemplary dose calculation process of FIG. **2**A.

[0030] FIG. **4**A is a schematic view of an exemplary calculation of the intravenous time interval of FIG. **2**A.

[0031] FIGS. **4**B and **4**C are schematic views of an exemplary display showing the time a next blood glucose measurement is due.

[0032] FIG. **4**D is a schematic view of an exemplary display for inputting patient information.

[0033] FIG. **4**E is a schematic view of an exemplary display of patient information and a timer for a patient's next blood glucose measurement.

[0034] FIGS. 5A and 5B are schematic views of an exemplary meal bolus process of FIG. 2A.

[0035] FIGS. 5C and 5D are schematic views of exemplary displays requesting information from the user.

[0036] FIGS. **6**A and **6**B are schematic views of an exemplary subcutaneous transition process of FIG. **2**A.

[0037] FIG. **6**C is a schematic view of an exemplary warning to the user relating to the patient.

[0038] FIG. **6**D is a schematic view of an exemplary display inquiring whether the patient should continue treatment or stop.

[0039] FIG. **6**E is a schematic view of an exemplary display requesting information from the user relating to the patient.

[0040] FIG. **6**F is a schematic view of an exemplary display showing the recommended dose of insulin.

- [0041] FIG. **6**G is a schematic view of an exemplary view to the user relating to transitioning a patient to subcutaneous delivery.
- [0042] FIG. 7 is a schematic view of an exemplary correction boluses process.
- [0043] FIG. **8** is a schematic view of an exemplary adjustment factor process.
- [0044] FIGS. **9**A and **9**B are a schematic view of an exemplary subcutaneous standard program.
- [0045] FIGS. **9**C-**9**E are schematic views of exemplary displays requesting information from the user relating to the patient.
- [0046] FIG. **10** is a schematic view of an exemplary subcutaneous for tube-fed patients process.
- [0047] FIG. **11** is a schematic view of an exemplary subcutaneous process without meal boluses.
- [0048] FIGS. **12**A and **12**B are a schematic view of an exemplary meal-by-meal subcutaneous process without carbohydrate counting.
- [0049] FIGS. **13**A and **13**B are a schematic view of an exemplary meal-by-meal subcutaneous process with carbohydrate counting.
- [0050] FIGS. **14**A and **14**B are a schematic view of an exemplary subcutaneous non-diabetic process.
- [0051] FIG. **15** is a schematic view of an exemplary arrangement of operations for administering insulin.
- [0052] FIG. **16** is a schematic view of an exemplary arrangement of operations for administering insulin.
- [0053] Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

[0054] Diabetic hospital patients who eat meals often have poor appetites; consequently, coordination of meal boluses and meals is difficult. Meal boluses without meals cause hypoglycemia;
meals without meal boluses cause hyperglycemia. Different providers may use different methods of
adjusting doses: some may use formulas of their own; some may use paper protocols that are
complex and difficult for the nurse to follow, leading to a high incidence of human error; and some
may use heuristic methods. There is no guarantee of consistency. Moreover, for diabetic patients
who do not eat meals, there is no currently no computerized method of tracking the patient's status.
For non-diabetic patient who get include due to "stress hyperglycemia" when they are very sick or
undergoing surgery, there is no current method of monitoring their recovery when the stress
subsides and their need for insulin rapidly decreases. If the dose regimen does not decrease rapidly
also, hypoglycemia may result. Therefore, it is desirable to have a clinical support system 100
(FIGS. 1A and 1B) that monitors patients' blood glucose level.

[0055] Referring to FIG. 1A-1C, in some implementations, a clinical decision support system 100 analyzes inputted patient condition parameters for a patient **10** and calculates a personalized dose of insulin to bring and maintain the patient's blood glucose level into a target range BG.sub.TR. Moreover, the system **100** monitors the glucose levels of a patient **10** and calculates recommended intravenous or subcutaneous insulin dose to bring the patient's blood glucose into the preferred target range BG.sub.TR over a recommended period of time. A qualified and trained healthcare professional **40** may use the system **100** along with clinical reasoning to determine the proper dosing administered to a patient **10**. Therefore, the system **100** is a glycemic management tool for evaluation a patient's current and cumulative blood glucose value BG while taking into consideration the patient's information such as age, weight, and height. The system **100** may also consider other information such as carbohydrate content of meals, insulin doses being administered to the patient **10**, e.g., long-acting insulin doses for basal insulin and rapid-acting insulin doses for meal boluses and correction boluses. Based on those measurements (that may be stored in nontransitory memory 24, 114, 144), the system 100 recommends an intravenous dosage of insulin, glucose, or saline or a subcutaneous basal and bolus insulin dosing recommendation or prescribed dose to adjust and maintain the blood glucose level towards a configurable (based on the patient's information) physician's determined blood glucose target range BG.sub.TR. The system **100** also

considers a patient's insulin sensitivity or improved glycemic management and outcomes. The system **100** may take into account pertinent patient information such as demographics and previous results, leading to a more efficient use of healthcare resources. Finally, the system **100** provides a reporting platform for reporting the recommendations or prescribed dose(s) to the user **40** and the patient **10**. In addition, for diabetic patients who eat meals, the system **100** provides faster, more reliable, and more efficient insulin administration than a human monitoring the insulin administration. The system **100** reduces the probability of human error and insures consistent treatment, due to the system's capability of storing and tracking the patient's blood glucose levels BG, which may be used for statistical studies. As for patients who are tube-fed or do not eat meals, the system **100** provides dedicated subprograms, which in turn provide basal insulin and correction boluses but no meal boluses. Patients who are tube-fed or who do not eat usually have a higher basal insulin level than patients who eat, because the carbohydrates in the nutritive formula are accounted-for in the basal insulin. The system **100** provides a meal-by-meal adjustment of Meal Boluses without carbohydrate counting, by providing a dedicated subprogram that adjusts meal boluses based on the immediately preceding meal bolus and the BG that followed it. The system **100** provides a meal-by-meal adjustment of Meal Boluses with carbohydrate counting by providing a dedicated subprogram that adjusts meal boluses based a Carbohydrate-to-Insulin Ratio (CIR) that is adjusted at each meal, based on the CIR used at the immediately preceding meal bolus and the BG that followed it.

[0056] Hyperglycemia is a condition that exists when blood sugars are too high. While hyperglycemia is typically associated with diabetes, this condition can exist in many patients who do not have diabetes, yet have elevated blood sugar levels caused by trauma or stress from surgery and other complications from hospital procedures. Insulin therapy is used to bring blood sugar levels back into a normal range.

[0057] Hypoglycemia may occur at any time when a patient's blood glucose level is below a preferred target. Appropriate management of blood glucose levels for critically ill patients reduces co-morbidities and is associated with a decrease in infection rates, length of hospital stay, and death. The treatment of hyperglycemia may differ depending on whether or not a patient has been diagnosed with Type 1 diabetes mellitus, Type 2 diabetes mellitus, gestational diabetes mellitus, or non-diabetic stress hyperglycemia. The blood glucose target range BG.sub.TR is defined by a lower limit, i.e., a low target BG.sub.TRL and an upper limit, i.e., a high target BG.sub.TRH. [0058] Stress-related hyperglycemia: Patients often get "stress hyperglycemia" if they are very sick or undergoing surgery. This condition requires insulin. In diabetic patients, the need for insulin is visibly increased. In non-diabetic patients, the stress accounts for the only need for insulin, and as the patients recover, the stress subsides, and their need for insulin rapidly decreases. For non-diabetic patients, the concern is that their need for insulin decreases faster than their dose regimen, leading to hypoglycemia.

[0059] Diabetes Mellitus has been treated for many years with insulin. Some recurring terms and phrases are described below:

[0060] Injection: Administering insulin by means of manual syringe or an insulin "pen," with a portable syringe named for its resemblance to the familiar writing implement.

[0061] Infusion: Administering insulin in a continuous manner by means of an insulin pump for subcutaneous insulin or an intravenous apparatus **123***a*, both of which are capable of continuous administration.

[0062] Intravenous Insulin Therapy: Intravenous infusion of insulin has been approved by the U.S. Food and Drug Administration as an acceptable indication for use. Intravenous infusion is the fastest of all insulin administration routes and, typically, only available in the hospital setting. For instance, in intensive care units, the patients may be fed by intravenous glucose infusion, by intravenous Total Parenteral Nutrition (TPN), or by a tube to the stomach. Patients are often given insulin in an intravenous infusion at an insulin infusion rate IIR. The IIR is regulated by the

frequent testing of blood glucose, typically at intervals between about 20 minutes and 2 hours. This is combined with a protocol in which a new IIR is computed after each blood glucose test.

[0063] Basal-Bolus Therapy: Basal-bolus therapy is a term that collectively refers to any insulin regimen involving basal insulin and boluses of insulin.

[0064] Basal Insulin: Insulin that is intended to metabolize the glucose released by a patient's the liver during a fasting state. Basal insulin is administered in such a way that it maintains a background level of insulin in the patient's blood, which is generally steady but may be varied in a programmed manner by an insulin pump **123***a*. Basal insulin is a slow, relatively continuous supply of insulin throughout the day and night that provides the low, but present, insulin concentration necessary to balance glucose consumption (glucose uptake and oxidation) and glucose production (glucogenolysis and gluconeogenesis). A patient's Basal insulin needs are usually about 10 to 15 mU/kg/hr and account for 30% to 50% of the total daily insulin needs; however, considerable variation occurs based on the patient **10**.

[0065] Bolus Insulin: Insulin that is administered in discrete doses. There are two main types of boluses, Meal Bolus and Correction Bolus.

[0066] Meal Bolus: Taken just before a meal in an amount which is proportional to the anticipated immediate effect of carbohydrates in the meal entering the blood directly from the digestive system. The amounts of the Meal Boluses may be determined and prescribed by a physician **40** for each meal during the day, i.e., breakfast, lunch, and dinner. Alternatively, the Meal Bolus may be calculated in an amount generally proportional to the number of grams of carbohydrates in the meal. The amount of the Meal Bolus is calculated using a proportionality constant, which is a personalized number called the Carbohydrate-to-Insulin Ratio (CIR) and calculated as follows: [00001] MealInsulinBolus = {gramsofcarbohydratesinthemeal} / CIR (1)

[0067] Correction Bolus CB: Injected immediately after a blood glucose measurement; the amount of the correction bolus is proportional to the error in the BG (i.e., the bolus is proportional to the difference between the blood glucose measurement BG and the patient's personalized Target blood glucose BG.sub.Target). The proportionality constant is a personalized number called the Correction Factor, CF, and is calculated as follows:

[00002]
$$CB = (BG - BG_{Target}) / CF$$
 (2)

[0068] A Correction Bolus CB is generally administered in a fasting state, after the previously consumed meal has been digested. This often coincides with the time just before the next meal. [0069] There are several kinds of Basal-Bolus insulin therapy including Insulin Pump therapy and Multiple Dose Injection therapy:

[0070] Insulin Pump Therapy: An insulin pump **123***a* is a medical device used for the administration of insulin in the treatment of diabetes mellitus, also known as continuous subcutaneous insulin infusion therapy. The device includes: a pump, a disposable reservoir for insulin, and a disposable infusion set. The pump **123***a* is an alternative to multiple daily injections of insulin by insulin syringe or an insulin pen and allows for intensive insulin therapy when used in conjunction with blood glucose monitoring and carbohydrate counting. The insulin pump **123***a* is a battery-powered device about the size of a pager. It contains a cartridge of insulin, and it pumps the insulin into the patient via an "infusion set", which is a small plastic needle or "canula" fitted with an adhesive patch. Only rapid-acting insulin is used.

[0071] Multiple Dose Injection (MDI): MDI involves the subcutaneous manual injection of insulin several times per day using syringes or insulin pens **123***b*. Meal insulin is supplied by injection of rapid-acting insulin before each meal in an amount proportional to the meal. Basal insulin is provided as a once, twice, or three time daily injection of a dose of long-acting insulin. Other dosage frequencies may be available. Advances continue to be made in developing different types of insulin, many of which are used to great advantage with MDI regimens:

[0072] Long-acting insulins are non-peaking and can be injected as infrequently as once per day.

These insulins are widely used for Basal Insulin. They are administered in dosages that make them appropriate for the fasting state of the patient, in which the blood glucose is replenished by the liver to maintain a steady minimum blood glucose level.

[0073] Rapid-acting insulins act on a time scale shorter than natural insulin. They are appropriate for boluses.

[0074] In some examples, critically ill patients are ordered nil per os (NPO), which means that oral food and fluids are withheld from the patient **10**. Typically these patients **10** are unconscious, have just completed an invasive surgical procedure, or generally have difficulty swallowing. Intravenous insulin infusion is typically the most effective method of managing blood glucose levels in these patients. A patient **10** may be NPO and receiving a steady infusion of intravenous glucose, Total Parenteral Nutrition, tube feeding, regular meals that include carbohydrates, or not receiving any nutrition at all. In cases where the patient **10** is not receiving any nutrition, blood glucose is typically replaced by endogenous production by the liver.

[0075] As a patient's condition improves, an NPO order may be lifted, allowing the patient **10** to commence an oral caloric intake. In patients **10** with glycemic abnormalities, additional insulin may be needed to cover the consumption of carbohydrates. These patients **10** generally receive one-time injections of insulin in the patient's subcutaneous tissue.

[0076] Subcutaneous administration of mealtime insulin in critically ill patients **10** can introduce a patient safety risk if, after receiving the insulin injection, the patient **10** decides not to eat, is unable to finish the meal, or experiences emesis.

[0077] Continuous intravenous infusion of mealtime insulin, over a predetermined time interval, allows for an incremental fulfillment of the patient's mealtime insulin requirement, while minimizing patient safety risks. If a patient **10** decides he/she is unable to eat, the continuous intravenous infusion may be stopped or, if a patient **10** is unable to finish the meal, the continuous intravenous infusion rate may be decreased to compensate for the reduction in caloric intake. [0078] The pharmacokinetics (what the body does to a drug over a period of time, which includes the processes of absorption, distribution, localization in tissues, biotransformation, and excretion) and pharmacodynamics (what a drug does to the body) actions of insulin significantly improve when administering insulin via an intravenous route, which is a typical method of delivery for hospitalized patients 10. The management of prandial insulin requirements using an intravenous route can improve patient safety, insulin efficiency, and the accuracy of insulin dosing. The majority of patients who require continuous intravenous insulin infusion therapy may also need to be transitioned to a subcutaneous insulin regimen for ongoing control of blood glucose, regardless of diabetes mellitus (DM) diagnosis. Moreover, the timing, dosing, and process to transition patients **10** from a continuous intravenous route of insulin administration to a subcutaneous insulin regimen is complex and should be individualized based on various patient parameters. Failure to individualize this approach could increase the risk of severe hypoglycemia during the transition process. If not enough insulin is given, the patient **10** may experience acute post-transition hyperglycemia, requiring re-initiation of a continuous intravenous insulin infusion. Therefore, the clinical decision support system **100** calculates a personalized dose of insulin to bring and maintain the patient's blood glucose level into a target range BG.sub.TR, while taking into consideration the condition of the patient **10**.

[0079] The clinical decision support system **100** includes a glycemic management module **50**, an integration module **60**, a surveillance module **70**, and a reporting module **80**. Each module **50**, **60**, **70**, **80** is in communication with the other modules **50**, **60**, **70**, **80** via a network **20**. In some examples, the network **24** (discussed below) provides access to cloud computing resources that allows for the performance of services on remote devices instead of the specific modules **50**, **60**, **70**, **80**. The glycemic management module **50** executes a process **200** (e.g., an executable instruction set) on a processor **112**, **132**, **142** or on the cloud computing resources. The integration module **60** allows for the interaction of users **40** with the system **100**. The integration module **60**

receives information inputted by a user **40** and allows the user **40** to retrieve previously inputted information stored on a storage system (e.g., one or more of cloud storage resources 24, a nontransitory memory **144** of a hospital's electronic medical system **140**, a non-transitory memory **114** of the patient device 110, or other non-transitory storage media in communication with the integration module **60**). Therefore, the integration module **60** allows for the interaction between the users **40** and the system **100** via a display **116**, **146**. The surveillance module **70** considers patient information **208***a* received from a user **40** via the integration module **60** and information received from a glucometer 124 that measures a patient's blood glucose value BG and determines if the patient **10** is within a threshold blood glucose value BG.sub.TH. In some examples, the surveillance module **70** alerts the user **40** if a patient's blood glucose values BG are not within a threshold blood glucose value BG.sub.TH. The surveillance module **70** may be preconfigured to alert the user 40 of other discrepancies between expected values and actual values based on preconfigured parameters (discussed below). For example, when a patient's blood glucose value BG drops below a lower limit of the threshold blood glucose value BG.sub.THL. The reporting module 80 may be in communication with at least one display 116, 146 and provides information to the user **40** determined using the glycemic management module **50**, the integration module **60**, and/or the surveillance module **70**. In some examples, the reporting module **80** provides a report that may be displayed on a display **116**, **146** and/or is capable of being printed. [0080] The system **100** is configured to evaluate a glucose level and nutritional intake of a patient **10**. The system **100** also evaluates whether the patient **10** is transitioning to a subcutaneous insulin regime. Based on the evaluation and analysis of the data, the system **100** calculates an insulin dose, which is administered to the patient **10** to bring and maintain the blood glucose level of the patient **10** into the blood glucose target range BG.sub.TR. The system **100** may be applied to various devices, including, but not limited to, intravenous infusion pumps 123a, subcutaneous insulin infusion pumps **123***a*, glucometers, continuous glucose monitoring systems, and glucose sensors. In some implementations, as the system **100** is monitoring the patient's blood glucose values BG and the patient's insulin intake, the system **100** notifies the user **40** if the patient **10** receives more than 500 units/hour of insulin because the system **100** considers these patients **10** to be insulin resistant. [0081] In some examples the clinical decision support system **100** includes a network **20**, a patient device **110**, a dosing controller **160**, and a service provider **130**. The patient device **110** may include, but is not limited to, desktop computers or portable electronic device (e.g., cellular phone, smartphone, personal digital assistant, barcode reader, personal computer, or a wireless pad) or any other electronic device capable of sending and receiving information via the network **20**. [0082] The patient device **110** includes a data processor **112** (e.g., a computing device that executes instructions), and non-transitory memory 114 and a display 116 (e.g., touch display or non-touch display) in communication with the data processor 112. In some examples, the patient device 110 includes a keyboard 118, speakers 212, microphones, mouse, and a camera. [0083] The service provider **130** may include a data processor **132** in communication with nontransitory memory 134. The service provider 130 provides the patient 10 with a process 200 (see FIG. 2) (e.g., a mobile application, a web-site application, or a downloadable program that includes a set of instructions) executable on a processor 112, 132, 142 of the dosing controller 160 and accessible through the network **20** via the patient device **110**, intravenous infusion pumps **123**a, hospital electronic medical record systems **140**, or portable blood glucose measurement devices **124** (e.g., glucose meter or glucometer). Intravenous infusion pumps infuse fluids, medication or nutrients into a patient's circulatory system. Intravenous infusion pumps **123***a* may be used intravenously and, in some instances, subcutaneous, arterial and epidural infusions are used. Intravenous infusion pumps **123***a* typically administer fluids that are expensive or unreliable if administered manually (e.g., using a pen **123***b*) by a nurse or doctor **40**. Intravenous infusion pumps **123***a* can administer a 0.1 ml per hour injection, injections every minute, injections with repeated boluses requested by the patient, up to a maximum number per hours, or fluids whose

volumes vary by the time of day. [0084] In some implementations, an electronic medical record system **140** is located at a hospital **42** (or a doctor's office) and includes a data processor **142**, a non-transitory memory **144**, and a display **146** (e.g., touch display or non-touch display). The transitory memory **144** and the display **146** are in communication with the data processor **142**. In some examples, the hospital electronic medical system **140** includes a keyboard **148** in communication with the data processor **142** to allow a user 40 to input data, such as patient information 208a (FIGS. 2A and 2B). The nontransitory memory 144 maintains patient records capable of being retrieved, viewed, and, in some examples, modified and updated by authorized hospital personal on the display **146**. [0085] The dosing controller **160** is in communication with the glucometer **124** and includes a computing device 112, 132, 142 and non-transitory memory 114, 134, 144 in communication with the computing device **112**, **132**, **142**. The dosing controller **160** executes the process **200**. The dosing controller **160** stores patient related information retrieved from the glucometer **124** to determine an insulin dose rate IRR based on the received blood glucose measurement BG. [0086] Referring to FIG. 1C., in some implementations, the insulin device 123 (e.g., administration device), in communication with the dosing controller 160, capable of executing instructions for administering insulin according to a subcutaneous insulin treatment program selected by the dosing controller **160**. The administration device **123** may include the insulin pump **123***a* or the pen **123***b*. The administration device **123** is in communication with the glucometer **124** and includes a computing device **112***a*, **112***b* and non-transitory memory **114***a*, **114***b* in communication with the computing device **112***a*, **112***b*. The administration device **123** includes a doser **223***a*, **223***b* in communication with the administration computing device **112***a*, **112***b* for administering insulin to the patient. For instance, the doser **223***a* of the insulin pump **123***a* includes an infusion set including a tube in fluid communication with an insulin reservoir and a cannula inserted into the patient's **10** body and secured via an adhesive patch. The doser **223***b* of the pen **123***b* includes a needle for insertion into the patient's **10** body for administering insulin from an insulin cartridge. The administration device **123** may receive a subcutaneous insulin treatment program selected by and transmitted from the dosing controller **160**, while the administration computing device **112***a*, **112***b* may execute the subcutaneous insulin treatment program. Executing the subcutaneous insulin treatment program by the administration computing device **112***a*, **112***b* causes the doser **223***a*, **223***b* to administer doses of insulin specified by the subcutaneous insulin treatment program. For instance, units for the doses of insulin may be automatically set or dialed in by the administration device **123***a*, **123***b* and administered via the doser **223***a*, **223***b* to the patient **10**. [0087] The network **20** may include any type of network that allows sending and receiving communication signals, such as a wireless telecommunication network, a cellular telephone network, a time division multiple access (TDMA) network, a code division multiple access (CDMA) network, Global system for mobile communications (GSM), a third generation (3G) network, fourth generation (4G) network, a satellite communications network, and other communication networks. The network **20** may include one or more of a Wide Area Network (WAN), a Local Area Network (LAN), and a Personal Area Network (PAN). In some examples, the network **20** includes a combination of data networks, telecommunication networks, and a combination of data and telecommunication networks. The patient device **110**, the service provider **130**, and the hospital electronic medical record system **140** communicate with each other by sending and receiving signals (wired or wireless) via the network **20**. In some examples, the network 20 provides access to cloud computing resources, which may be elastic/on-demand computing and/or storage resources **24** available over the network **20**. The term 'cloud' services generally refers to a service performed not locally on a user's device, but rather delivered from one or more remote devices accessible via one or more networks **20**. [0088] Referring to FIGS. 1B and 2A-2C, the process 200 receives parameters (e.g., patient condition parameters) inputted via the client device 110, the service provider 130, and/or the

hospital system **140**, analyzes the inputted parameters, and determines a personalized dose of insulin to bring and maintain a patient's blood glucose level BG into a preferred target range BG.sub.TR.

[0089] In some implementations, before the process **200** begins to receive the parameters, the process **200** may receive a username and a password (e.g., at a login screen displayed on the display 116, 146) to verify that a qualified and trained healthcare professional 40 is initiating the process **200** and entering the correct information that the process **200** needs to accurately administer insulin to the patient **10**. The system **100** may customize the login screen to allow a user **40** to reset their password and/or username. Moreover, the system **100** may provide a logout button (not shown) that allows the user **40** to log out of the system **100**. The logout button may be displayed on the display **116**, **146** at any time during the execution of the process **200**. [0090] The clinical decision support system **100** may include an alarm system **120** that alerts a user **40** when the patient's blood glucose level BG is outside the target range BG.sub.TR. The alarm system **120** may produce an audible sound via speaker **122** in the form of a beep or some like audio sounding mechanism. In some examples, the alarm system 120 displays a warning message or other type of indication on the display **116** of the patient device **110** to provide a warning message. The alarm system **120** may also send the audible and/or visual notification via the network **20** to the hospital system **140** (or any other remote station) for display on the display **146** of the hospital system **140** or played through speakers **152** of the hospital system **140**. [0091] The process **200** prompts a user **40** to input patient information **208***a* at block **208**. The user **40** may input the patient information **208***a*, for example, via the user device **110** or via the hospital electronic medical record systems 140 located at a hospital 42 (or a doctor's office). The user 40 may input new patient information **208***a* as shown in FIG. **2**B or retrieve previously stored patient information **208***a* as shown in FIG. **2**C. In some implementations, the process **200** provides the user **40** with a patient list **209** (FIG. **2**C) where the user **40** selects one of the patient names from the patient list **209**, and the process **200** retrieves that patient's information **208***a*. The process **200** may allow the user **40** to filer the patient list **209**, e.g., alphabetically (first name or last name), by location, patient identification. The process **200** may retrieve the patient information **208***a* from the non-transitory memory **144** of the hospital's electronic medical system **140** or the non-transitory memory **114** of the patient device **110** (e.g., where the patient information **208***a* was previously entered and stored). The patient information **208***a* may include, but is not limited to, a patient's name, a patient's identification number (ID), a patient's height, weight, date of birth, diabetes history, physician name, emergency contact, hospital unit, diagnosis, gender, room number, and any other relevant information. In some examples, the diagnosis may include, but is not limited to, burn patients, Coronary artery bypass patients, stoke patients, diabetic ketoacidosis (DKA) patients, and trauma patients. After the user **40** completes inputting the patient information **208***a*, the process **200** at block **202** determines whether the patient **10** is being treated with an intravenous treatment module by prompting the user **40** (e.g., on the display **116**, **146**) to input whether the patient **10** will be treated with an intravenous treatment module. If the patient **10** will not be treated with the intravenous treatment module, the process **200** determines at block **210** whether the patient **10** will be treated with a subcutaneous treatment module, by asking the user **40** (e.g., by prompting the user **40** on the display **116**, **146**). If the user **40** indicates that the patient **10** will be treated with the subcutaneous treatment, the process **200** flows to block **216**, where the user **40** enters patient subcutaneous information **216***a*, such as bolus insulin type, target range, basal insulin type and frequency of distribution (e.g., 1 dose per day, 2 doses per day, 3 doses per day, etc.), patient diabetes status, subcutaneous type ordered for the patient (e.g., Basal/Bolus and correction that is intended for patients on a consistent carbohydrate diet, or Basal and correction that is intended for patients who are NPO or on continuous enteral feeds), frequency of patient blood glucose measurements, or any other relevant information. In some implementations, the patient subcutaneous information **216***a* is prepopulated with default parameters, which may be adjusted or

modified. When the user **40** enters the patient subcutaneous information **216**, the subcutaneous program begins at block **226**. The process may determine whether the patient **10** is being treated with an intravenous treatment or a subcutaneous treatment by prompting the user **40** to select between two options (e.g., a button displayed on the display **116**, **146**), one being the intravenous treatment and the other begin the subcutaneous treatment. In some implementations, the subcutaneous program (at block **226**) includes six sub programs: a subcutaneous standard program (FIGS. **9A-9B**); a subcutaneous for tube-fed patients program (FIG. **10**); a subcutaneous program without meal boluses (FIG. **11**); a meal-by-meal subcutaneous program without carbohydrate counting (FIG. **12**); a meal-by-meal subcutaneous program with carbohydrate counting (FIGS. **13**A-**13**B); and a subcutaneous program for non-diabetic patients (FIG. **14**).

[0092] In some implementations and referring back to block **202**, if the process **200** determines that the patient **10** will be treated with the intravenous treatment module, the process **200** prompts the user **40** at block **204** for setup data **204***a*, such as patient parameters **204***a* relevant to the intravenous treatment mode. In some examples, the patient parameter **204***a* relating to the intravenous treatment may be prepopulated, for example, with default values that may be adjusted and modified by the user **40**. These patient parameters **204***a* may include an insulin concentration (i.e., the strength of insulin being used for the intravenous dosing, which may be measured in units/milliliter), the type of insulin and rate being administered to the patient, the blood glucose target range BG.sub.TR, the patient's diabetes history, a number of carbohydrates per meal, or any other relevant information. In some implementations, the type of insulin and the rate of insulin depend on the BG of the patient **10**. For example, the rate and type of insulin administered to a patient **10** when the blood glucose value BG of the patient **10** is greater or equal to 250 mgl/dl may be different than the rate and type of insulin administered to the patient **10** when the blood glucose value BG of the patient is greater than 250 ml/dl. The blood glucose target range BG.sub.TR may be a configurable parameter, customized based on various patient factors. The blood glucose target range BG.sub.TR may be limited to 40 mg/dl (e.g., 100-140 mg/dl, 140-180 mg/dl, and 120-160 mg/dl).

[0093] After the user **40** inputs patient parameters **204***a* for the intravenous treatment at block **204**, the process **200** prompts the user **40** to input the blood glucose value BG of the patient **10** at block **206**. The blood glucose value BG may be manually inputted by the user **40**, sent via the network **20** from a glucometer **124**, sent electronically from the hospital information or laboratory system **140**, or other wireless device. The process **200** determines a personalized insulin dose rate, referred to as an insulin infusion rate IIR, using the blood glucose value BG of the patient **10** and a dose calculation process **300**.

[0094] In some implementations, the process **200** executes on the processor **112**, **132**, **142** the following instruction set. Other instructions are possible as well.

[0095] FIG. **3** provides a dose calculation process **300** for calculating the insulin infusion rate IIR of the patient **10** for intravenous treatment after the process **200** receives the patient information **208***a* discussed above (including the patients' blood glucose value BG). At block **301** the dose calculation process **300** determines if the patient's blood glucose BG is less than a stop threshold value BG.sub.THstop. If not, then at block **303** the dose calculation process **300** goes to block **304** without taking any action. If, however, the patient's blood glucose BG is less than a stop threshold value BG.sub.THstop, then the calculation dose process sets the patient's regular insulin dose rate IRR to zero at block **302**, which then goes to block **322**. The dose calculation process **300** determines at decision block **304** if the inputted blood glucose value BG is the first inputted blood glucose value.

[0096] The patient's regular insulin dose rate IIR is calculated at block **320** in accordance with the following equation:

[00003] IIR = (BG - K)* M (3A)

where K is a constant, known as the Offset Target, with the same unit of measure as blood glucose and M is a unit-less multiplier. In some examples, the Offset Target K is lower than the blood glucose target range of the patient **10**. The Offset Target K allows the dose calculation process **300** to calculate a non-zero stable insulin dose rate even with a blood glucose result is in the blood glucose target range BG.sub.TR.

[0097] The initial multiplier M.sub.I, determined by the physician **40**, approximates the sensitivity of a patient **10** to insulin. For example, the initial multiplier equals 0.02 for adults ages 18 and above. In some examples, the initial multiplier M.sub.I equals 0.01 for frail elderly patients **10** who may be at risk for complications arising when their blood glucose level BG falls faster than 80 mg/dl/hr. Moreover, the physician **40** may order a higher initial multiplier M.sub.I for patients **10** with special needs, such as CABG patients (i.e., patients who have undergone coronary artery bypass grafting) with BMI (Body Mass Index which is a measure for the human body shape based on the individual's mass and height) less than 30 might typically receive an initial multiplier of 0.05, whereas a patient **10** with BMI greater than 30 might receive an initial multiplier M.sub.I of 0.06. In addition, a patient's weight may be considered in determining the value of the initial multiplier M.sub.I, for examples, in pediatric treatments, the system **100** calculates a patient's initial multiplier M.sub.I using the following equation:

```
[00004] M_I = 0.0002 \times \text{Weightofpatient(inkilograms)} (3B)
```

In some implementations, K is equal to 60 mg/dl. The dose calculation process **300** determines the target blood glucose target range BG.sub.TR using two limits inputted by the user **40**, a lower limit of the target range BG.sub.TRL and an upper (high) limit of the target range BG.sub.TRH. These limits are chosen by the user **40** so that they contain the desired blood glucose target as the midpoint. Additionally, the Offset Target K may be calculated dynamically in accordance with the following equation:

```
[00005] K = BG_{Target} - Offset, (4)
```

where BG.sub.Target is the midpoint of the blood glucose target range BG.sub.TR and Offset is the preconfigured distance between the target center BG.sub.Target and the Offset Target, K. [0098] In some implementations, the insulin dose rate IRR may be determined by the following process on a processor **112**, **132**, **142**. Other processes may also be used.

```
function IIR($sf, $current_bg, $bg_default = 60, $insulin_concentration,
TABLE-US-00001
                                             settype($sf,'float');
$ins units of measure = 'units/hr') {
                                                                      settype($bg default, 'float');
                                        settype($insulin_concentration, 'float');
     settype($current bg,'float');
@param $sf = sensitivity factor from db
                                                  @param $current bg = the current bg value being
                  @param $db_default = the default "Stop Insulin When" value....If it isn't passed,
submitted
                        @param $insulin_concentration = the default insulin concentration from
it defaults to 60
                     if(\text{scurrent\_bg} > 60)  {
settings
                                                     \sin = \operatorname{array}();
                                                                            \sin[0] =
                                                      if ($ins_units_of_measure != 'units/hr') {
round(($current_bg - $bg_default) * $sf, 1);
          $iir[1] = round(($current_bg - $bg_default) * $sf / $insulin_concentration ,1);
                        } else {
       return $iir;
                                        return 0:
                                                       }
```

[0099] Referring to decision block **304**, when the dose calculation process **300** determines that the inputted blood glucose value BG is the first inputted blood glucose value, then the dose calculation process **300** defines the value of the current multiplier M equal to an initial multiplier (M.sub.I) at block **306**. The dose calculation process **300** then calculates, at block **320**, the Insulin Infusion Rate in accordance with the IIR equation (EQ. 3A) and returns to the process **200** (see FIG. **2**). [0100] However, referring back to decision block **304**, when the dose calculation process **300** determines that the inputted blood glucose value BG is not the first inputted blood glucose value, the dose calculation process **300** determines if the Meal Bolus Module has been activated at decision block **308**. If the dose calculation process **300** determines that the Meal Bolus Module has been activated, then the dose calculation process **300** begins a Meal Bolus process **500** (see FIG. **5**).

[0101] Referring back to decision block **308**, if the Meal Bolus Module has not been activated, the dose calculation process **300** determines, at decision block **310**, if the current blood glucose value BG is greater than the upper limit BG.sub.TRH of the blood glucose target range BG.sub.TR. If the blood glucose value BG is greater than the upper limit BG.sub.TRH of the blood glucose target range BG.sub.TR, the dose calculation process **300** determines, at block **314**, a ratio of the current blood glucose value BG to the previous blood glucose value BG.sub.P, where BG.sub.P was measured at an earlier time than the current BG. The process **200** then determines if the ratio of the blood glucose to the previous blood glucose, BG/BG.sub.P, is greater than a threshold value L.sub.A, as shown in the following equation:

 $[00006] (BG/BG_P) > L_A$ (5)

where BG is the patient's current blood glucose value; BG.sub.P is the patient's previous blood glucose value; and L.sub.A is the threshold ratio of BG/BG.sub.P for blood glucose values above the upper limit of the blood glucose target range BG.sub.TRH. If the ratio BG/BG.sub.P exceeds the threshold ratio L.sub.A, then the Multiplier M is increased. In some examples, the threshold ratio L.sub.A equals 0.85.

[0102] If the dose calculation process **300** determines that the ratio (BG/BG.sub.P) of the blood glucose value BG to the previous blood glucose value BG.sub.P is not greater than the threshold ratio L.sub.A for a blood glucose value BG above the upper limit BG.sub.TRH of the blood glucose target range BG.sub.TR, then the dose calculation process **300** sets the value of the current multiplier M to equal the value of the previous multiplier M.sub.P, see block **312**.

 $[00007] M = M_P$ (6)

[0103] Referring back to block **314**, if the dose calculation process **300** determines that the ratio (BG/BG.sub.P) of the blood glucose value BG to the previous blood glucose BG.sub.P is greater than the threshold ratio L.sub.A for a blood glucose value above upper limit BG.sub.TRH of the blood glucose target range BG.sub.TR, then dose calculation process **300** multiplies the value of the current multiplier M by a desired Multiplier Change Factor (M.sub.CF) at block **318**. The dose calculation process **300** then calculates the insulin infusion rate at block **320** using the IIR equation (EQ. 3A) and returns to the process **200** (see FIG. **2**).

[0104] Referring back to block **310**, when the dose calculation process **300** determines that the current blood glucose value BG is not greater than the upper limit BG.sub.TRH of the blood glucose target range BG.sub.TR, the dose calculation process **300** then determines if the current blood glucose concentration BG is below the lower limit BG.sub.TRL of the blood glucose target range BG.sub.TR at decision block **311**. If the current blood glucose value BG is below the lower limit BG.sub.TRL of the blood glucose target range BG.sub.TR, the dose calculation process **300** at block **316** divides the value of the current multiplier M by the Multiplier Change Factor (M.sub.CF), in accordance with the following equation:

[00008] $M = M_P / M_{CF}$ (7)

and calculates the current insulin infusion rate IIR using equation 3 at block **320** and returns to the process **200** (see FIG. **2**).

[0105] At block **311**, if the dose calculation process **300** determines that the blood glucose value BG is not below the lower limit of the blood glucose target range BG.sub.TRL, the dose calculation process **300** sets the value of the current multiplier to be equal to the value of the previous multiplier M.sub.P at block **312** (see EQ. 6).

[0106] Referring again to FIG. **3**, at block **311**, if the current blood glucose value BG is below the lower limit of the target range BG.sub.TRL, logic passes to decision block **322**, where the process **300** determines if the current blood glucose concentration BG is below a hypoglycemia threshold BG.sub.Hypo. If the current blood glucose BG is below the hypoglycemia threshold BG.sub.Hypo, logic then passes to block **324**, where the process **300** recommends hypoglycemia treatment, either by a calculation of an individualized dose of intravenous glucose or oral hypoglycemia treatment.

[0107] Referring back to FIG. **2**A, after the dose calculation process **300** calculates the insulin infusion rate IIR, the process **200** proceeds to a time calculation process **400** (FIG. **4**A) for calculating a time interval T.sub.Next until the next blood glucose measurement. [0108] FIG. **4**A shows the time interval calculation process **400** for calculating a time interval T.sub.Next between the current blood glucose measurement BG and the next blood glucose measurement BG.sub.next. The time-duration of blood glucose measurement intervals T.sub.Next may vary and the starting time interval can either be inputted by a user **40** at the beginning of the process **200**, **300**, **400**, or defaulted to a predetermined time interval, T.sub.Default (e.g., one hour). The time interval T.sub.Next is shortened if the blood glucose concentration BG of the patient **10** is decreasing excessively, or it may be lengthened if the blood glucose concentration BG of the patient **10** becomes stable within the blood glucose target range BG.sub.TR. [0109] The time-interval calculation process **400** determines a value for the time interval T.sub.Next based on several conditions. The time-interval process **400** checks for the applicability of several conditions, where each condition has a value for T.sub.next that is triggered by a logictest (except T.sub.default). The process **400** selects the lowest value of T.sub.next from the values triggered by logic tests (not counting T.sub.default). If no logic test was triggered, the process selects T.sub.default. This is accomplished in FIG. **4**A by the logic structure that selects the lowest values of T.sub.next first. However, other logic structures are possible as well. [0110] The time calculation process **400** determines at decision block **416** if the current blood glucose BG is below the lower limit BG.sub.TRL (target range low limit) of the blood glucose target range BG.sub.TR. If the current blood glucose BG is below the lower limit BG.sub.TRL of the blood glucose target range BG.sub.TR, then the time calculation process **400** determines, at decision block **418**, if the current blood glucose BG is less than a hypoglycemia-threshold blood

glucose level BG.sub.Hypo. [0111] If the current blood glucose BG is less than the hypoglycemia-threshold blood glucose level BG.sub.Hypo the time calculation process **400** sets the time interval T.sub.Next to a hypoglycemia time interval T.sub.Hypo, e.g., 15 or 30 minutes, at block **426**. Then the time calculation process **400** is complete and returns to the process **200** (FIG. **2**) at block **428**.

[0112] If the current blood glucose BG is not less than (i.e., is greater than) the hypoglycemia-threshold blood glucose level BG.sub.Hypo at block **418**, the time calculation process **400** determines at block **422** if the most recent glucose percent drop BG.sub.% Drop, is greater than the threshold glucose percentage drop % Drop.sub.Low Limit (for a low BG range) using the following equation:

[00009]
$$BG_{\text{%drop}} > \text{%Drop}_{\text{LowLimit}}$$
 (8 A) since $BG_{\text{%drop}} = (\frac{(BG_P - BG)}{BG_P})$ (8 B) then,
$$(\frac{(BG_P - BG)}{BG_P}) > \text{%Drop}_{\text{LowLimit}}$$
 (8 C)

where BG.sub.P is a previously measured blood glucose.

[0113] If the current glucose percent drop BG.sub.% Drop, is not greater than the limit for glucose percent drop (for the low BG range) % Drop.sub.Low Limit, the time calculation process **400** passes the logic to block **412**. In some examples, the low limit % Drop.sub.Low Limit equals 25%. [0114] Referring back to block **422**, if the current glucose percent drop BG.sub.% Drop is greater than the limit for glucose percent drop (for the low BG range) % Drop.sub.Low Limit, the time calculation process **400** at block **424** sets the time interval to a shortened time interval T.sub.Short, for example 20 minutes, to accommodate for the increased drop rate of the blood glucose BG. Then the time calculation process **400** is complete and returns to the process **200** (FIG. **2**) at block **428**. [0115] Referring back to decision block **416**, if the time calculation process **400** determines that the current blood glucose BG is not below the lower limit BG.sub.TRL for the blood glucose target range BG.sub.TR, the time calculation process **400** determines at block **420** if the blood glucose BG has decreased by a percent of the previous blood glucose that exceeds a limit % Drop.sub.Regular (for the regular range, i.e., blood glucose value BG>BG.sub.TRL), using the

formula:

$$[00010] \left(\frac{(BG_P - BG)}{BG_P}\right) > \% \text{Drop}_{Regular} \quad (9)$$

[0116] If the blood glucose BG has decreased by a percentage that exceeds the regular threshold glucose percent drop (for the regular BG range) % Drop.sub.Regular, the time calculation process **400**, at block **425**, sets the time interval to the shortened time interval T.sub.Short, for example 20 minutes. A reasonable value for % Drop.sub.Regular for many implementations is 66%. Then the time calculation process **400** is complete and returns to the process **200** (FIG. **2**) at block **428**. If, however, the glucose has not decreased by a percent that exceeds the threshold glucose percent drop % Drop.sub.Regular, (for the regular BG range), the time calculation process **400** routes the logic to block **412**. The process **400** determines, at block **412**, a blood glucose rate of descent BG.sub.DropRate based on the following equation:

[00011]
$$BG_{DropRate} = (BG_P - BG)/(T_{Current} - T_{Previous})$$
 (10)

where BG.sub.P is the previous blood glucose measurement, T.sub.Current is the current time and T.sub.Previous is the previous time. Moreover, the process **400** at block **412** determines if the blood glucose rate of descent BG.sub.DropRate is greater than a preconfigured drop rate limit BG.sub.dropRateLimit.

[0117] If the time calculation process **400** at block **412** determines that the blood glucose rate of descent BG.sub.DropRate, has exceeded the preconfigured drop rate limit BG.sub.dropRateLimit, the time interval T.sub.Next until the next blood glucose measurement is shortened at block **414** to a glucose drop rate time interval T.sub.BGDR, which is a relatively shorter time interval than the current time interval T.sub.Current, as consideration for the fast drop. The preconfigured drop rate limit BG.sub.dropRateLimit may be about 100 mg/dl/hr. The glucose drop rate time interval T.sub.BGDR may be 30 minutes, or any other predetermined time. In some examples, a reasonable value for T.sub.Default is one hour. Then the time calculation process **400** is complete and returns to the process **200** (FIG. **2**) at block **428**.

[0118] If the time calculation process **400** determines at block **412** that the glucose drop rate BG.sub.DropRate does not exceed the preconfigured rate limit BG.sub.dropRateLimit, the time calculation process 400 determines, at block 408, if the patient's blood glucose concentration BG has been within the desired target range BG.sub.TR (e.g., BG.sub.TRL<BG<BG.sub.TRH) for a period of time T.sub.Stable. The criterion for stability in the blood glucose target range BG.sub.TR is a specified time in the target range BG.sub.TR or a specified number of consecutive blood glucose measurements in the target range BG.sub.TR. For example, the stable period of time T.sub.Stable may be one hour, two hours, two and a half hours, or up to 4 hours. If the stability criterion is met then the time interval T.sub.Next until the next scheduled blood glucose measurement BG may be set at block **410** to a lengthened time interval T.sub.Long (such as 2 hours) that is generally greater than the default time interval T.sub.Default. Then the time calculation process **400** is complete and returns to the process **200** (FIG. **2**) at block **428**. If the time calculation process **400** determines that the patient **10** has not met the criteria for stability, the time calculation process **400** sets the time interval T.sub.Next to a default time interval T.sub.Default at block **406**. Then the time calculation process **400** is complete and returns to the process **200** (FIG. 2) at block **428**.

[0119] Referring to FIGS. **4**B and **4**C, once the time calculation process **400** calculates the recommended time interval T.sub.Next, the process **200** provides a countdown timer **430** that alerts the user **40** when the next blood glucose measurement is due. The countdown timer **430** may be on the display **116** of the patient device **110** or displayed on the display **146** of the hospital system **140**. When the timer **430** is complete, a "BG Due!" message might be displayed as shown in FIG. **4**B. The countdown timer **430** may include an overdue time **432** indicating the time late if a blood glucose value is not entered as scheduled.

[0120] In some implementations, the countdown timer 430 connects to the alarm system 120 of the

user device **110**. The alarm system **120** may produce an audible sound via the speaker **122** in the form of a beep or some like audio sounding mechanism. The audible and/or visual notification may also be sent via the network to the hospital system **140** (or any other remote station) and displayed on the display **146** of the hospital system **140** or played through speakers **152** of the hospital system **140**, or routed to the cell phone or pager of the user. In some examples, the audible alarm using the speakers 122 is turned off by a user selection 434 on the display 116 or it is silenced for a preconfigured time. The display **116**, **143** may show information **230** that includes the patient's intravenous treatment information **230***a* or to the patient's subcutaneous treatment information **230***b*. In some examples, the user **40** selects the countdown timer **430** when the timer **430** indicates that the patient **10** is due for his or her blood glucose measurement. When the user **40** selects the timer **430**, the display **116**, **146** allows the user **40** to enter the current blood glucose value BG as shown in FIG. **4**D. For intravenous patients **10**, the process **200** may ask the user **40** (via the display 116, 146) if the blood glucose is pre-meal blood glucose measurement (as shown in FIG. **4**D). When the user **40** enters the information **230** (FIG. **4**D), the user **40** selects a continue button to confirm the entered information 230, which leads to the display 116, 146 displaying blood glucose information **230***c* and a timer **430** showing when the next blood glucose measurement BG is due (FIG, **4**E). In addition, the user **40** may enter the patient's blood glucose measurement BG at any time before the timer **430** expires, if the user **40** selects the 'enter BG' button **436**. Therefore, the user **40** may input blood glucose values BG at any time, or the user **40** may choose to start the Meal Bolus module process **500** (see FIG. **5**) by selecting the start meal button **438** (FIG. **4**E), transition the patient to SubQ insulin therapy **600** (see FIG. **6**), or discontinue treatment **220**. [0121] Referring to FIGS. **5**A-**5**D, in some implementations, the process **200** includes a process where the patient's blood glucose level BG is measured prior to the consumption of caloric intake and calculates the recommended intravenous mealtime insulin requirement necessary to control the patient's expected rise in blood glucose levels during the prandial period. When a user **40** chooses to start the Meal Bolus process **500** (e.g., when the user **40** positively answers that this is a premeal blood glucose measurement in FIG. 4D, or when the user 40 selects the start meal button 438 in FIG. **4**E), the Meal Bolus process **500**, at decision block **504**, requests the blood glucose BG of the patient **10**. The user **40** enters the blood glucose value BG at **501** or the system **100** receives the blood glucose BG from a glucometer **124**. This blood glucose measurement is referred to herein as the Pre-Meal BG or BG1. In some examples, where the user **40** enters the information, the user **40** selects a continue button to confirm the entered information **230***c*. In some examples, the intravenous meal bolus process **500** is administered to a patient **10** over a total period of time T.sub.MealBolus. The total period of time T.sub.MealBolus is divided into multiple time intervals T.sub.MealBolus1 to T.sub.MealBolusN, where N is any integer greater than zero. In some examples, a first time interval T.sub.MealBolus runs from a Pre-Meal blood glucose value BG1 at measured at time T.sub.1, to a second blood glucose value BG2 at measured at time T.sub.2. A second time interval T.sub.MealBolus2 runs from the second blood glucose value BG2 measured at time T.sub.2 to the third blood glucose value BG3 measured at time T.sub.3. A third time interval T.sub.MealBolus3 runs from the third blood glucose value BG3 measured at time T.sub.3 to a fourth blood glucose value BG**4** measured at time T.sub.4. In some implementations where the time intervals T.sub.MealBolusN are smaller than T.sub.Default, the user **40** should closely monitor and control over changes in the blood glucose of the patient **10**. For example, a total period of time T.sub.MealBolus equals 2 hours, and may be comprised of: T.sub.MealBolus1=30 minutes, T.sub.MealBolus2=30 minutes, and T.sub.MealBolus3=1 hour. This example ends on the fourth blood glucose measurement. When the Meal Bolus process **500** has been activated, an indication **440** is displayed on the display **116**, **146** informing the user **40** that the process **500** is in progress. The Meal Bolus process **500** prompts the user **40** if the entered blood glucose value BG is the first blood glucose value prior to the meal by displaying a question on the patient display **116**. If the Meal Bolus process **500** determines that the entered blood glucose value BG is the first blood

glucose value (BG1) prior to the meal, then the Meal Bolus process **500** freezes the current multiplier M from being adjusted and calculates a regular intravenous insulin rate IRR at block **512**. The regular intravenous insulin rate IRR may be determined using EQ. 3A. Meanwhile, at block **502**, the Meal Bolus process **500** loads preconfigured meal parameters, such as meal times, insulin type, default number of carbohydrates per meal, the total period of time of the meal bolus process T.sub.MealBolus, interval lengths (e.g., T.sub.MealBolus1, T.sub.MealBolus1. . . T.sub.MealBolusN), and the percent, "C", of the estimated meal bolus to be delivered in the first interval T.sub.MealBolus1. In some examples, when the system **100** includes a hospital electronic medical record system **140**, nutritional information and number of grams of carbohydrates are retrieved from the hospital electronic medical record systems **140** automatically. The Meal Bolus process **500** allows the user **40** to select whether to input a number of carbohydrates from a selection of standard meals (ActualCarbs) or to use a custom input to input an estimated number of carbohydrates (EstimatedCarbs) that the patient **10** is likely to consume. The Meal Bolus process **500** then flows to block **506**, where the estimated meal bolus rate for the meal is calculated. The calculation process in block **506** is explained in two steps. The first step is calculation of a meal bolus (in units of insulin) in accordance with the following equation:

[00012] EstimatedMealBolus = EstimatedCarbs / CIR (11A)

where CIR is the Carbohydrate-to-Insulin Ratio, previously discussed.

[0122] The Meal Bolus process **500** then determines the Estimated Meal Bolus Rate based on the following equation:

[00013] EstimatedMealBolusRate = EstimatedMealBolus * C / $T_{\text{MealBolus}1}$ (11B)

Where, T.sub.MealBolus1 is the time duration of the first time interval of the Meal Bolus total period of time T.sub.MealBolus. C is a constant adjusted to infuse the optimum portion of the Estimated Meal Bolus during first time interval T.sub.MealBolus1. For instance: if Estimated Meal Bolus=6 units, T.sub.MealBolus1=0.5 hours, and C=25%, then applying Eq. 11A as an example: [00014] EstimatedMealBolusRate = (6units)*25%/(0.5hours) = 3units/hour (11C)

The Meal Bolus process **500** calculates the Total Insulin Rate at block **508** as follows:

[00015] TotalInsulinInfusionRate = EstimatedMealBolusRate + RegularIntravenousRate (12)

[0123] The Meal Bolus process **500** flows to block **510** where it sets the time interval for the first interval T.sub.MealBolus1 to its configured value, (e.g., usually 30 minutes), which will end at the second meal bolus blood glucose (BG**2**).

[0124] After the first time interval T.sub.MealBolus1 expires (e.g., after 30 minutes elapse), the Meal Bolus process **500** prompts the user **40** to enter the blood glucose value BG once again at block **501**. When the Meal Bolus process **500** determines that the entered blood glucose value BG is not the first blood glucose value BG1 entered at block 504 (i.e., the pre-meal BG, BG1, as previously discussed), the process **500** flows to block **514**. At block **514**, the Meal Bolus process **500** determines if the blood glucose value BG is the second value BG2 entered by the user **40**. If the user **40** confirms that the entered blood glucose value BG is the second blood glucose value BG2 entered, the Meal Bolus process 500 uses the just-entered blood glucose BG2 to calculate the intravenous insulin rate IRR at block **516** and flows to block **524**. Simultaneously, if the blood glucose is the second blood glucose BG2, the Meal Bolus process 500 prompts the user 40 to enter the actual amount of carbohydrates that the patient **10** received at block **518**. The Meal Bolus process **500** then determines at decision block **520** and based on the inputted amount of actual carbohydrates, if the patient did not eat, i.e., if the amount of carbohydrates is zero (see FIG. 5C). If the Meal Bolus process **500** determines that the patient did not eat, the Meal Bolus process **500** then flows to block **540**, where the meal bolus module process **500** is discontinued, the multiplier is no longer frozen, and the time interval T.sub.Next is restored to the appropriate time interval T.sub.Next, as determined by process **400**. If however, the Meal Bolus process **500** determines that the patient **10** ate, i.e., the actual carbohydrates is not zero (see FIG. **5**D), then The Meal Bolus

process **500** flows to block **522**, where it calculates a Revised meal bolus rate according to the following equations, where the Revised Meal Bolus and then an amount of insulin (in units of insulin) are calculated:

[00016] RevisedMealBolus = ActualCarbs / CIR (13A)

[0125] The process at block **522** then determines the amount (in units of insulin) of estimated meal bolus that has been delivered to the patient **10** so far:

[00017] EstimatedMealBolusDelivered = EstimatedMealBolusRate * $(T_2 - T_1)$ (13B)

where time T1 is the time of when the first blood glucose value BG1 is measured and time T2 is the time when the second blood glucose value BG2 is measured.

[0126] The process at block **522** then calculates the portion of the Revised Meal Bolus remaining to be delivered (i.e., the Meal Bolus that has not yet been delivered to the patient **10**) as follows: [00018]

RevisedMealBolusRemaining = RevisedMealBolus - EstimatedMealBolusDelivered (13C) [0127] The process at block **522** then calculates the Revised Meal Bolus Rate as follows:

Revised Meal Bolus Rate=Revised Meal Bolus Remaining/Time Remaining (14A) where Time Remaining=T.sub.MealBolus-T.sub.MealBolus1. Since the total time interval T.sub.MealBolus and the first time interval T.sub.MealBolus1 are preconfigured values, the Time Remaining may be determined.

[0128] The Meal Bolus process **500** calculates the total insulin rate at block **524** by adding the Revised Meal Bolus Rate to the regular Intravenous Rate (IIR), based on the blood glucose value BG:

[00019] TotalInsulinRate = RevisedMealBolusRate + IIR (14B)

[0129] The Meal Bolus process **500** flows to block **526** where it sets the time interval T.sub.Next to the second interval T.sub.MealBolus2, which will end at the third meal bolus blood glucose BG**3** e.g., usually 30 minutes.

[0130] After the second interval, T.sub.MealBolus2 expires (e.g., 30 minutes), the Meal Bolus process **500** prompts the user **40** to enter the blood glucose value BG once again at block **501**. The Meal Bolus process **500** determines that the entered blood glucose value BG is not the first blood glucose value entered at block **504** (previously discussed) and flows to block **514**. The Meal Bolus process **500** determines that the entered blood glucose value BG is not the second blood glucose value entered at block **514** (previously discussed) and flows to block **528**. At block **528**, the Meal Bolus process **500** determines if the blood glucose value BG is the third value entered. If the entered blood glucose value BG is the third blood glucose value BG entered, the Meal Bolus process **500** calculates the intravenous insulin rate IRR at block **530** and flows to block **532**. [0131] At block **532** the process determines the Total Insulin Rate by adding the newly-determined Regular Intravenous Insulin Rate (IIR) to the Revised Meal Bolus Rate, which was determined at BG2 and remains effective throughout the whole meal bolus time, T.sub.mealbolus. [0132] The Meal Bolus process **500** flows to block **534** where it sets the time interval T.sub.Next to the third interval T.sub.MealBolus3 for the fourth meal bolus blood glucose, e.g., usually 60 minutes. In some implementations, more than 3 intervals (T.sub.MealBolus1, T.sub.MealBolus2 T.sub.MealBolus3) may be used. Additional intervals T.sub.MealBolusN may also be used and the process handles the additional intervals T.sub.MealBolusN similarly to how it handles the third time interval T.sub.MealBolus3. As discussed in the current example, the third interval T.sub.MealBolus3 is the last time interval, which ends with the measurement of the fourth blood glucose measurement BG**4**.

[0133] After the third time interval, T.sub.MealBolus3, expires (e.g., 60 minutes), the Meal Bolus process **500** prompts the user **40** to enter the blood glucose value BG once again at block **501**. The Meal Bolus process **500** determines that the entered blood glucose value BG is not the first blood

```
glucose value entered at block 504 (previously discussed) and flows to block 514. The Meal Bolus
process 500 determines that the entered blood glucose value BG is not the second blood glucose
value entered at block 514 (previously discussed), nor the third blood glucose level entered at block
528 and flows to block 536. At block 536, the Meal Bolus process 500 determines that the inputted
blood glucose is the fourth blood glucose value BG4. In this example, the fourth blood glucose
value BG4 is the last one. The process 500 then flows to block 538 where the multiplier is no
longer frozen, and the time interval T.sub.Next is restored to the appropriate time interval
T.sub.Next, as determined by the Timer Adjustment process 400 (FIG. 4A). At this time, the Meal
Bolus process 500 ends and the user 40 is prompted with a message indicating that the Meal Bolus
process 500 is no longer active.
[0134] As shown in FIG. 4E, the process 200 provides a countdown timer 430 that alerts the user
40 when the next blood glucose measurement is due. The countdown timer 430 may be on the
display 116 of the patient device 110 or displayed on the display 146 of the hospital system 140.
When the timer 430 is complete, a "BG Due!" message might be displayed as shown in FIG. 4B.
Moreover, the timer 430 may be a countdown timer or a meal timer indicating a sequence of
mealtime intervals (e.g., breakfast, lunch, dinner, bedtime, mid-sleep).
[0135] In some implementations, a Meal Bolus process 500 may be implemented by the following
process on a processor 112, 132, 142. Other processes may also be used.
TABLE-US-00002
                     function PreMealIIR($PatientID, $CurrentBG, $Multiplier,
                           $EstCarbs, $ActualCarbs, $TimeInterval, $InsulinUnitsOfMeasure,
$InsulinConcentration,
$MealBolusCount) {
                          \sin = \operatorname{array}();
                                             $CarbInsulinRatio = CIR($PatientID);
$NormalInsulin = ($CurrentBG - 60) * $Multiplier;
                                                        if($MealBolusCount == 0)
       //first run – Premeal Bolus
                                         $MealBolus = ($EstCarbs /$CarbInsulinRatio);
                         {$MealBolus = 0;}
if($MealBolus <0)
                                                    \sin[0] = \text{NormalInsulin} + (\text{MealBolus} *.5)
         \sin[2] = ( \text{MealBolus } *.5 );
                                                       print "Premeal: MX: ". $Multiplier.
);
"<BR>";
                print ($CurrentBG - 60) * $Multiplier;
                                                              print " + ";
                                                                                  print (
                                 } else if($MealBolusCount == 1){
$MealBolus *.5);
                                                                          //second run Post Meal
             //third run time interval coming in is actually the
                                                                    //difference between the
premeal BG and the first Post Meal BG (second run)
                                                           $MealBolus = ($ActualCarbs /
                           $OldMealBolus = ($EstCarbs / $CarbInsulinRatio);
$CarbInsulinRatio);
$CurrentMealBolus = ($MealBolus - ($OldMealBolus *.5 * $TimeInterval))/1.5;
if($CurrentMealBolus <0)</pre>
                           {$CurrentMealBolus =0;}
                                                                   \sin[0] = NormalInsulin +
$CurrentMealBolus;
                            $iir[2] = $CurrentMealBolus;
                                                                 /*
                                                                           print "PlateCheck:
<BR>MX: ". $Multiplier. "<BR>";
                                           print "Est Carbs: " . $EstCarbs . " < BR > ";
"ActualCarbs: " . $ActualCarbs . "<BR>";;
                                                  print "CarbInsulinRatio: ". $CarbInsulinRatio.
                print "TimeInterval: " . $TimeInterval . "<BR>";
"<BR>";
                                                                        print "Multiplier: ".
$Multiplier;
                    */
                                 else
                                                    $MealBolus = ($ActualCarbs /
$CarbInsulinRatio);
                           $OldMealBolus = ($EstCarbs / $CarbInsulinRatio);
         print "Actual Carbs: " . $ActualCarbs . "<BR>";
                                                                 print "Est Carbs: ". $EstCarbs.
"<BR>":
                print "CIR: " . $CarbInsulinRatio . "<BR>";
                                                                   print "Multiplier: ".
$Multiplier . "<BR>";
                             print "CurrentBG: " . $CurrentBG . "<BR>";
                                                                                 print "IIR: ".
(($CurrentBG - 60) * $Multiplier) . "<BR>";
                                                    print "MealBolus: " . $MealBolus . " < BR > ";
       print "OldMealBolus: " . $OldMealBolus . "<BR>";
                                                                  print "TimeInterval: ".
$TimeInterval . "<BR>";
                           */
                                     $CurrentMealBolus = ($MealBolus - ($OldMealBolus *.5 *
$TimeInterval))/1.5;
                           if($CurrentMealBolus <0)
                                                             {$CurrentMealBolus =0;}
                                                      $iir[2] = $CurrentMealBolus;
                                                                                           /*
$iir[0] = $NormalInsulin + $CurrentMealBolus;
       print "Post PlateCheck: <BR>MX: " . $Multiplier . "<BR>";
                                                                          print "IIR: ";
                                                       print "Est Carbs: " . $EstCarbs . "<BR>";
print ($CurrentBG - 60) * $Multiplier . "<BR>";
       print "Acutal Carbs: " . $\(\frac{A}{C}\)tualCarbs . "<BR>";
                                                              print "Old Meal bolus: ".
                           print "TimeInterval: " . $TimeInterval . "<BR>";
$OldMealBolus . "<BR>";
                                                                                         print
```

```
if ($InsulinUnitsOfMeasure != "units/hr")
                                                        $iir[0] = $iir[0]/$InsulinConcentration;
           return $iir;
[0136] Referring to FIGS. 2A and 6A-6B, if the user elects to initiate the SubQ Transition process
600, the SubQ Transition process 600 determines at decision block 604 if the current blood glucose
BG is within a preconfigured stability target range BG.sub.STR, e.g., 70-180 mg/dl, which is
usually wider than the prescribed Target Range, BG.sub.TR. If the blood glucose BG is not within
the preconfigured stability target range BG.sub.STR (e.g., BG.sub.Low<BG<BG.sub.High), the
SubQ Transition process 600 at block 606 displays a warning notification on the patient display
116. Then, at lock 610, the SubQ Transition process 600 is automatically discontinued.
[0137] Referring back to block 604, if the blood glucose BG is within the preconfigured stability
target range BG.sub.STR (e.g. 70-180 mg/dl), the SubQ Transition process 600 at decision block
608 determines if the patient's blood glucose measurement BG has been in the patient's
personalized prescribed target range BG.sub.TR for the recommended stability period T.sub.Stable,
e.g., 4 hours. If the SubQ Transition process 600 determines that the blood glucose value BG has
not been in the prescribed target range BG.sub.STR for the recommended stability period
T.sub.Stable, the SubQ Transition process 600 moves to block 614 where the system 100 presents
the user 40 with a warning notification on the patient display 116, explaining that the patient 10 has
not been in the prescribed target range for the recommended stability period (see FIG. 6C). The
SubQ Transition process 600 continues to decision block 618 where it determines whether the user
40 wants the patient 10 to continue the SubQ Transition process or to discontinue the SubQ
Transition process. The SubQ Transition process 600 displays on the display 116 of the patient
device 110 the question to the user 40 as shown in FIG. 6D. If the user 40 chooses to discontinue
the SubQ Transition process, the SubQ Transition process 600 flows to block 624, where the SubQ
Transition process is discontinued.
```

print "Final Calc: " . \$iir[0];

[0138] Referring back to block **618**, if the user **40** chooses to override the warning and continue the SubQ Transition process, the process **600** prompts the user **40** to enter SubQ information **617** as shown in FIG. **6**E. The SubQ Transition process **600** flows to block **616**, where the patient's SubQ Transition dose is calculated as a patient's total daily dose TDD. In some implementations, TDD is calculated in accordance with equation:

[00020] TDD = QuickTransitionConstant * M_{Trans} (15A)

"Meal bolus: ". \$MealBolus. "
";

where QuickTransitionConstant is usually **1000**, and M.sub.Trans is the patient's multiplier at the time of initiation of the SubQ transition process.

[0139] Referring again to block **616**, in some implementations TDD is calculated by a statistical correlation of TDD as a function of body weight. The following equation is the correlation used: [00021] TDD = 0.5 * Weight(kg) (15*b*)

[0140] The SubQ Transition process **600** continues to block **620**, where the recommended SubQ dose is presented to the user **40** (on the display **116**) in the form of a Basal recommendation and a Meal Bolus recommendation (see FIG. **6**F).

[0141] Referring again to decision block **608**, if the SubQ Transition process **600** determines that the patient **10** has been in the prescribed target range BG.sub.TR for the recommended stability period, T.sub.Stable, SubQ Transition process **600** continues to block **612**, where the patient's total daily dose TDD is calculated in accordance with the following equation:

```
[00022] TDD = (BG_{Taraet} - K)*(M_{Trans})*24 (16)
```

where M.sub.Trans is the patient's multiplier at the time of initiation of the SubQ transition process. [0142] In some implementations, the patient's total daily dose TDD may be determined by the following process on a processor **112**, **132**, **142**. Other processes may also be used.

TABLE-US-00003 function getIV_TDD(\$PatientID) { //\$weight = getOneField("weight", "patients", "patientID", \$PatientID); //return \$weight/2; \$CI = get_instance();

```
$d["Multiplier"];
                   $MidPoint = ($TargetHigh + $TargetLow) / 2;
                                                                   Formula = (MidPoint - 60)
* $Multiplier * 24;
                     return $Formula; }
[0143] When the patient's total daily dose TDD is calculated, the SubQ Transition process 600
continues to block 620 where the recommended SubQ dose is presented to the user 40 as described
above. The SubQ Transition process 600 continues to block 622, where the SubQ Transition
process 600 provides information to the user 40 including a recommended dose of Basal insulin.
The user 40 confirms that the Basal insulin has been given to the patient 10; this starts a transitions
timer using the TransitionRunTime.sub.Next, usually 4 hours. At this point, normal calculation
rules governing the IIR are still in effect, including the intravenous IIR timer (Timer Adjustment
process 400), which continues to prompt for blood glucose tests at time intervals T.sub.Next as
described previously. The SubQ Transition process 600 passes to decision block 626, which
determines whether the recommended time interval TransitionRunTime has elapsed, e.g., 4 hours,
after which time SubQ Transition process 600 continues to block 630, providing the user with
subcutaneous insulin discharge orders and exiting the IV Insulin process in block 634.
[0144] Referring back to FIG. 2A, in some implementations, the subcutaneous program (at block
226) includes six sub programs: a subcutaneous standard program (FIGS. 9A-9B); a subcutaneous
for tube-fed patients Program (FIG. 10); a subcutaneous program with no meal boluses (FIG. 11); a
meal-by-meal subcutaneous program without carbohydrate counting (FIG. 12); a meal-by-meal
subcutaneous program with carbohydrate counting (FIGS. 13A-13B); and a subcutaneous program
for non-diabetic patients (FIG. 14). Some functions or processes are used within the six
subcutaneous programs such as determining the general and pre-meal correction (FIG. 7),
determining the adjustment factor AF (FIG. 8), and hypoglycemia treatment.
[0145] Referring to FIG. 7, correction boluses CB are used in the six subprograms of SubQ
program (block 226, FIG. 2); because of this, correction boluses CB may be incorporated into a
function having variables such as the blood glucose measurement BG of a patient 10, a patient's
personalized target blood glucose BG.sub.Target, and a correction factor CF. Thus, correction
boluses CB are described as a function of the blood glucose measurement BG, the target blood
glucose BG.sub.Target, and the correction factor CF (see EQ. 19 below). The process 700
calculates the correction bolus CB immediately after a blood glucose value BG of a patient 10 is
measured. Once a calculation of the correction bolus CB is completed, a nurse 40 administers the
correction bolus CB to the patient 10, right after the blood glucose value BG is measured and used
to calculate the correction bolus CB.
[0146] In some examples, the process 700 may determine the total daily dose TDD of insulin once
per day, for example, every night at midnight. Other times may also be available. In addition, the
total daily dose TDD may be calculated more frequently during the day, in some examples, the total
daily dose TDD is calculated more frequently and considers the total daily dose TDD within the
past 24 hours. The process 700 provides a timer 702, such as a countdown timer 702, where the
timer 702 determines the time the process 700 executes. The timer 702 may be a count up timer or
any other kind of timer. When the timer 702 reaches its expiration or reaches a certain time (e.g.,
```

\$d = \$CI->options->GetIVTDDData(\$PatientID);

\$Multiplier =

\$TargetLow = \$d["TargetLow"];

\$CI->load->model('options');

\$TargetHigh = \$d["TargetHigh"];

TDD=Sum over previous day(all basal+all meal boluses+all correction boluses) (17) [0147] After the process **700** determines the total daily dose TDD of insulin at block **706**, the process **700** determines a Correction Factor CF immediately thereafter at block **710**, using the

process **700** determines a total daily dose of insulin TDD, based on the following equation:

zero for a countdown timer **702**), the timer **702** executes the process **700**. The counter **702** is used to determine at what time the process **704** calculates the total daily dose TDD. If the counter is set to 24 hours for example, then decision block **704** checks if the time has reached 24 hours, and when it does, then the process **700** calculates the total daily dose TDD of insulin. The correction bolus

calculated total daily dose TDD from block **706** and Eq. 17. The correction factor CF is determined using the following equation:

$$[00023] CF = CFR / TDD (18)$$

where CFR is a configurable constant stored in the non-transitory memory **24**, **114**, **144** of the system. At block **708**, the process **700** retrieves the configurable constant CFR value from the non-transitory memory **24**, **114**, **144** to calculate the correction factor CF at block **710**. The configurable constant CFR is determined from a published statistical correlation and is configurable by the hospital, nurses and doctors. The flexibility of modifying the correction constant CF, gives the system **100** flexibility when a new published configurable constant CFR is more accurate than the one being used. In some examples, the configurable constant CFR is a configurable constant set to 1700, other values may also be available. In some examples, the total daily dose TDD and CF are determined once per day (e.g., at or soon after midnight).

[0148] Once the correction factor CF is determined in EQ. 18, the process **700** determines the correction bolus insulin dose at block **714** using the following equation:

[00024] CB =
$$(BG - BG_{Taraet}) / CF$$
 (19)

where BG is the blood glucose measurement of a patient **10** retrieved at block **712**, BG.sub.Target is the patient's personalized Target blood glucose, and CF is the correction factor. The process **700** returns the correction bolus CB at block **716**. Rapid-acting analog insulin is currently used for Correction Boluses because it responds quickly to a high blood glucose BG. Also rapid acting analog insulin is currently used for meal boluses; it is usually taken just before or with a meal (injected or delivered via a pump). Rapid-acting analog insulin acts very quickly to minimize the rise of patient's blood sugar which follows eating.

[0149] A Correction Bolus CB is calculated for a blood glucose value BG at any time during the process 200. Pre-meal Correction Boluses CB, are calculated using EQ. 19. In the Pre-meal Correction Bolus equation (19) there is no need to account for Remaining Insulin I.sub.Rem because sufficient time has passed for almost all of the previous meal bolus to be depleted. However, post-prandial correction boluses (after-meal correction boluses) are employed much sooner after the recent meal bolus and use different calculations, that account for remaining insulin I.sub.Rem that remains in the patient's body after a recent meal bolus. Rapid-acting analog insulin is generally removed by a body's natural mechanisms at a rate proportional to the insulin remaining I.sub.Rem in the patient's body, causing the remaining insulin I.sub.Rem in the patient's body to exhibit a negative exponential time-curve. Manufacturers provide data as to the lifetime of their insulin formulations. The data usually includes a half-life or mean lifetime of the rapid-acting analog insulin. The half-life of the rapid-acting analog insulin may be converted to mean lifetime iLifeRapid for rapid-acting insulin by the conversion formula:

[00025] iLifeRapid = Half - life * ln(2) (20)

where ln(2) is the natural logarithm {base e} of two.

[0150] The present invention uses the mean lifetime iLifeRapid in its formulas (EQ. 20). Since the manufacturers and brands of insulin are few, the system **100** maintains the Half-life or iLifeRapid value of each insulin manufacturer up-to-date.

[0151] The insulin remaining in the patient's body Remaining Insulin I.sub.Rem is determined by multiplying the most recent insulin bolus {Meal Bolus, Correction Bolus, or combined bolus} times a time-dependent exponentially-declining factor as follows:
[00026]

$$I_{Rem} = (PreviousBolus) * e^{-(\frac{T_{Current}^{T}_{Previous}}{TLIfeRapid})} = (PreviousBolus) * EXP(-(\frac{T_{Current}^{T}_{Previous}}{iLifeRapid}))$$
 (21)

where T.sub.Current is the current time, and T.sub.PrevBolus is the time at which the last bolus was given to the patient **10**. The Post Meal Correction bolus CB.sub.post is calculated similar to an ordinary correction bolus CB (EQ. 19) with a deduction of the remaining insulin I.sub.Rem in the

patient's body:

[00027]
$$CB_{post} = \frac{(BG - BG_{Target})}{CF} - (PreviousBolus)e^{-(\frac{T_{Current} - T_{Previous}}{ILifeRapid})}$$
 (22)

[0152] In some examples, Post Meal Correction doses CB.sub.Post (EQ. 22) are taken into consideration only if they are positive (units of insulin), which means a negative value post meal correction bolus CB.sub.Post cannot be used to reduce the meal bolus portion of a new combined bolus.

[0153] Referring to FIG. **8**, the process **800** describes a function that determines an Adjustment Factor AF based on an input of a Governing Blood GlucoseBGgov. The Adjustment Factor AF is used by the six subcutaneous subprograms: a subcutaneous standard program (FIGS. 9A-9B); a subcutaneous for tube-fed patients Program (FIG. 10); a subcutaneous program without meal boluses (FIG. 11); a meal-by-meal subcutaneous program without carbohydrate counting (FIG. 12); a meal-by-meal subcutaneous program with carbohydrate counting (FIGS. **13**A-**13**B); and a subcutaneous program for non-diabetic patients (FIG. 14). These six subprograms adjust the insulin dose administered to a patient **10**. An insulin adjustment process **800**, applied to Basal doses and Meal Boluses, determines an adjusted Recommended Basal dose RecBasal, or a Recommended Meal Bolus RecMealBol, by applying a unit-less Adjustment Factor AF to the preceding recommendation of the same dose, RecBasal.sub.prev, or RecMealBol.sub.prev. All dose adjustments are governed by a Governing Blood Glucose value BG.sub.gov. The Governing Blood Glucose values BG.sub.gov in the process are selected based on the criteria of preceding the previous occurrence of the dose to be adjusted by a sufficient amount of time for the effect (or lack of effect) of the insulin to be observable and measurable in the value of the BG.sub.gov. [0154] At block **802**, the adjustment factor process **800** receives the Governing Glucose value BG.sub.gov from non-transitory memory 24, 114, 144, since the adjustment factor AF is determined using the Governing Glucose value BG.sub.gov. To determine the adjustment factor AF, the adjustment factor process **800** considers the blood glucose target range BG.sub.TR (within which Basal doses and Meal Boluses, are not changed), which is defined by a lower limit, i.e., a low target BG.sub.TRL and an upper limit, i.e., a high target BG.sub.TRH. As previously discussed, the target range BG.sub.TR is determined by a doctor **40** and entered manually (e.g., using the patient device **110** or the medical record system **140**, via, for example, a drop down menu list displayed on the display **116**, **146**). Each target range BG.sub.TR is associated with a set of configurable constants including a first constant BG.sub.AFL, a second constant BG.sub.AFH1, and a third constant BG.sub.AFH2 shown in the below table.

TABLE-US-00004 TABLE 1 Target Range Settings Input Ranges BG.sub.AFL BG.sub.TRL BG.sub.AFH1 BG.sub.AFH2 70-100 70 70 100 140 180 80-120 80 80 120 160 200 100-140 70 100 140 180 220 120-160 90 120 160 200 240 140-180 110 140 180 220 260 [0155] The adjustment factor process **800** determines, at block **804**, if the Governing Glucose value BG.sub.gov is less than or equal to the first constant BG.sub.AFL (BG.sub.gov<=BG.sub.AFL), if so then at block **806**, the adjustment factor process **800** assigns the adjustment factor AF to a first pre-configured adjustment factor AF1 shown in Table 2.

[0156] If, at block **804**, the Governing Glucose value BG.sub.gov is not less than the first constant BG.sub.AFL, (i.e., BG.sub.gov≥BG.sub.AFL), then at block **808**, the adjustment factor process **800** determines if the Governing Glucose value BG.sub.gov is greater than or equal to the first constant BG.sub.AFL and less than the low target BG.sub.TRL of the target range BG.sub.TR (BG.sub.AFL≤BG.sub.gov<BG.sub.TRL). If so, then the adjustment factor process **800** assigns the adjustment factor AF to a second pre-configured adjustment factor AF**2**, at block **810**. If not, then at block **812**, the adjustment factor process **800** determines if the Governing Glucose value BG.sub.gov is greater than or equal to the low target BG.sub.TRL of the target range BG.sub.TR and less than the high target level BG.sub.TRH of the target range BG.sub.TR (BG.sub.TRL≤BG.sub.gov<BG.sub.TRH). If so, then the adjustment factor process **800** assigns the

adjustment factor AF to a third pre-configured adjustment factor AF3, at block **814**. If not, then at block **816**, the adjustment factor process **800** determines if the Governing Glucose value BG.sub.gov is greater than or equal to the high target level BG.sub.TRH of the target range BG.sub.TR and less than the second constant BG.sub.AFH1

(BG.sub.TRH≤BG.sub.gov<BG.sub.AFH1). If so, then the adjustment factor process **800** assigns the adjustment factor AF to a fourth pre-configured adjustment factor AF4, at block **818**. If not, then at block **820**, the adjustment process **800** determines if the Governing Glucose value BG.sub.gov is greater than or equal to the second constant BG.sub.AFH1 and less than the third constant BG.sub.AFH2 (BG.sub.AFH1≤BG.sub.gov<BG.sub.AFH2). If so, then the adjustment factor process **800** assigns the adjustment factor AF to a fifth pre-configured adjustment factor AF5, at block **822**. If not, then at block **824**, the adjustment process **800** determines that the Governing Glucose value BG.sub.gov is greater than or equal to the third constant BG.sub.AFH2 (BG.sub.gov≥BG.sub.AFH2); and the adjustment factor process **800** assigns the adjustment factor AF to a sixth pre-configured adjustment factor AF6, at block **826**. After assigning a value to AF the adjustment factor process **800** returns the adjustment factor AF to the process requesting the adjustment factor AF at block **828** (e.g., the subcutaneous process (FIGS. **9**A-**9**B)).

TABLE-US-00005 TABLE 2 Configurable values for Adjustment Factor AF AF1= 0.8 AF2= 0.9

AF3= 1 AF4= 1.1 AF5= 1.2 AF6= 1.3 [0157] In some examples, a patient **10** may suffer from hypoglycemia during the execution of the process **200**. Hypoglycemia treatment may be needed in the Intravenous process **300** (FIGS. **3**A and **3**B) and **400** (FIG. **4**A) or in the Subcutaneous process **900** (FIGS. **9**A and **9**B). The process **200** includes a sub-process that monitors the current blood glucose value BG of a patient **10** and determines if it is less than a hypoglycemia threshold BG.sub.Hypo (configurable by the hospital or

doctor). If the current blood glucose value BG is less than the hypoglycemia threshold BG.sub.Hypo, a warning message is displayed on the display **116**, **146** warning the patient **10**, the nurse and the doctor **40** of the patient's condition, the value of the low current blood glucose value BG, a reminder to turn off the insulin (if the hypoglycemia event occurs in the IV Process (FIG.

2)), and a selector that allows the nurse or doctor **40** to select the type of glucose administered to the patient **10**. Some of the selections include: Intravenous D50 (50% glucose by weight) if the patient **10** has an intravenous connection; and Oral glucose (tablets or gel). Once the nurse or doctor **40** enters, using the patient device **110** or the medical record system **140**, a type of glucose to be administered to the patient, the process **200** calculates a dose recommendation (or prescribed dose) and displays the calculated dose on the display **116**, **146**. Moreover, the process **200** prompts the nurse or doctor **40** to input via the patient device **110** or the hospital device **160**, the dose D.sub.hypo administered to the patient **10** to treat the hypoglycemia by grams of glucose may be determined based on the following equation:

[00028]
$$D_{hypo}$$
 (ingrams) = $F_{HypoTreatment} * (BG_{Target} - BG)$ (23)

where BG.sub.TR is the blood glucose target range and F.sub.Hypo Treatment is a hypoglycemia treatment factor that is a configurable constant. In some examples, the hypoglycemia treatment factor F.sub.Hypo Treatment equals 0.2 (glucose gm/(mg/dl)).

[0158] If the nurse or doctor **40** selected a solution (e.g., D50 as opposed to oral glucose), the process **200** uses a different formula to calculate the recommended dose, where the calculated grams of glucose are divided by the concentration of glucose C.sub.HypoFluidConc in the fluid in (grams of glucose/ml) to obtain the recommended dose in units of solution volume (e.g., ml). The formula is:

[00029]
$$D_{hypo}$$
 (inml) = $(BG_{TR} - BG) * F_{HypoTreatment} / C_{HypoFluidConc}$ (24)

For D50, the hypoglycemic fluid concentration is 0.5 grams of glucose/ml.

[0159] Referring to FIGS. **2**A and **9**A-**9**B, if the user **40** initiates a subcutaneous insulin process **900** at block **210** or block **600**, also referred to as a Standard SubQ Program, the subcutaneous

insulin process **900** requests the user **40** to enter SubQ information **617** for the patient **10**, such as patient diabetes status, subcutaneous type ordered for the patient 10 (e.g., Basal/bolus and correction that is intended for patients on a consistent carbohydrate diet, or Basal and correction that is intended for patients who are NPO or on continuous eternal feeds), total daily dosage (TDD) (e.g., calculated using any of EQs. 15A-15C), bolus insulin type (e.g., Novolog), basil insulin type (e.g., Lantus) and frequency of distribution (e.g., 1 dose per day, 2 doses per day, 3 doses per day, etc.), basil time, basal percentage of TDD, meal bolus percentage of TDD, daily meal bolus distribution (e.g., breakfast bolus, lunch bolus and dinner bolus), or any other relevant information. In some implementations, the patient SubQ information **617** is prepopulated with default parameters, which may be adjusted or modified. In some examples, portions of the patient SubQ information **617** is prepopulated with previously entered patient subcutaneous information **216***a*. The subcutaneous insulin process **900** may prompt the request to the user **40** to enter the SubQ information **617** on the display **116** of the patient device **110**. In some implementations, the subcutaneous insulin process **900** prompts the request to the user **40** to enter the SubQ information **617** on the display **116** of the patient device **110** for new SubQ patients after transitioning from being treated with an intravenous treatment as shown in FIG. 9C. For instance, the user 40 may select whether or not to continue treating the patient with the subcutaneous insulin process **900**. In other implementations, the subcutaneous insulin process 900 prompts the request on the display **116** for a custom start of new SubQ patients being treated with the subcutaneous insulin process **900** shown in FIG. **9**D. In some examples, the subcutaneous insulin process **900** prompts the request on the display 116 for a weight-based start of SubQ patients being treated with the subcutaneous insulin process **900** as shown in FIG. **9**E. For instance, the user **40** may input the weight (e.g., 108 kg) of the patient 10, and in some examples, the TDD may be calculated using EQ. 15B based on the patient's weight.

[0160] Basal insulin is for the fasting insulin-needs of a patient's body. Therefore, the best indicator of the effectiveness of the basal dose is the value of the blood glucose BG after the patient 10 has fasted for a period of time. Meal Boluses are for the short-term needs of a patient's body following a carbohydrate-containing meal. Therefore, the best indicator of the effectiveness of the Meal Bolus is a blood glucose measurement BG tested about one mean insulin-lifetime iLifeRapid after the Meal Bolus, where the lifetime is for the currently-used insulin type. For rapid-acting analog insulin the lifetime is conveniently similar to the time between meals. The SubQ process 900 begins with the manual entry of a blood glucose value BG at block 902. Then the SubQ process 900 determines the type of the blood glucose value BG, i.e., the time that the blood glucose BG is measured, e.g., midsleep, breakfast, lunch, dinner, or bedtime. In some examples, the subcutaneous insulin process 900 includes a default setup of three meals per day, but a bedtime snack or other additional meals may be configurable.

[0161] At block **904**, the subcutaneous insulin process **900** determines if the blood glucose type BG.sub.type is Midsleep (measured during a patient's midsleep). If so, then the subcutaneous insulin process **900** calculates a midsleep correction dose CB.sub.Midsleep of insulin at block **914**, using the following equation (based on EQ. 2):

[00030] $CB_{Midsleep} = (BG_{Midsleep} - BG_{Target}) / CF;$ (25)

or by the Correction Bolus Function, process **700**, (FIG. **7**), and sends the blood glucose value BG at midsleep BG.sub.Midsleep (received at block **902**) to block **942**.

[0162] If the entered blood glucose BG is not measured during midsleep, i.e., BG.sub.type is not equal MidSleep, then the subcutaneous insulin process **900** determines if the blood glucose type BG.sub.type is measured during breakfast (BG.sub.type=Breakfast) at block **906**. If so, then the subcutaneous insulin process **900** calculates a breakfast correction dose CB.sub.Breakfast of insulin at block **916**, using the following equation (based on EQ. 2):

[00031] $CB_{\text{Breakfast}} = (BG_{\text{Breakfast}} - BG_{Target}) / \text{CF};$ (26)

and the patient **10** is administered the breakfast correction dose CB.sub.Breakfast as soon as possible. Block **906** sends the blood glucose value BG at breakfast to block **924** and block **950**. At block **924**, the nurse **40** administers the patient **10** with the breakfast bolus RecBreakBol.sub. (current)), and then passes the breakfast blood glucose BG.sub.Breakfast to block **936** (where the next Recommendation Breakfast bolus is calculated after the lunch BGtype is entered). Once the lunch blood glucose is entered at block **902**, and the adjustment factor parameter AF based on the lunch blood glucose is determined (FIG. **8**), the adjustment factor AF is also sent to block **936**. At block **936**, the process **900** determines the next recommended Breakfast Bolus RecBreakBol (Next) based on the following equation:

```
[00032] RecBreakBol_{(Next)} = (RecBreakBol_{(current)}) * AF (27)
```

At block **950**, the subcutaneous insulin process **900** determines if the breakfast blood glucose BG.sub.Breakfast has been tested, if not then the subcutaneous insulin process **900** blocks basal recommendation, and posts a warning, displayed on the display **116**, **146**, to the patient **10**, nurse and doctor **40** at block **954** and is stored in the non-transitory memory **24**, **114**, **144** at block **954**. However, if the breakfast blood glucose BG.sub.Breakfast has been tested, then the subcutaneous insulin process **900** selects, at block **942**, the Governing blood glucose BG.sub.gov as the lesser of the two blood glucose values, i.e., the midsleep blood glucose BG.sub.MidSleep or the breakfast blood glucose BG.sub.Breakfast, as shown in the following equation:

```
[00033] BG_{qov} (for Basaladjustment) = MIN(BG<sub>MidSleep</sub> or BG<sub>Breakfast</sub>) (28)
```

[0163] In some implementations, the governing blood glucose BG.sub.gov for Basal is the lesser of the MidSleep blood glucose BG.sub.MidSleep or the breakfast blood glucose BG.sub.Breakfast unless the system **100** determines that the MidSleep blood glucose BG.sub.MidSleep caused a Correction bolus dose CB greater than a maximum value (MSCorrMAX), and the following equation applies:

[00034] (TimeofB $G_{Breakfast}$ - TimeofB $G_{MidSleep}$ Correctiondose) < DTmin (29)

where DT.sub.min is a preset time window. In other words:

TABLE-US-00006 { IF {(TbreakfastBG – TMSCorr) > DTmin} AND {MidSleep Correction > MSCorrMAX} THEN {BGgov for Basal} = MAX{ pre-breakfastBG, MidSleepBG} ELSE {BGgov for Basal} = MIN{pre-breakfastBG, MidSleepBG} }

[0164] After determining the governing blood glucose BG.sub.gov, the subcutaneous insulin process **900** determines the adjustment factor AF at block **944** (see. FIG. **8**). The adjustment factor process **800**, returns the adjustment factor AF as a function of the governing blood glucose BG.sub.gov. The subcutaneous insulin process **900** sends the adjustment factor AF to block **946**, where the subcutaneous insulin process **900** determines the adjustment to the patient's insulin dose by the following equation:

[00035] RecomBasal = (previousRecomBasal_{PM}) * AF, (30)

and the nurse **40** give the patient **10** the Recommended basal dose RecomsBasal at block **948**. [0165] In some implementations, where the patient **10** receives multiple Basal doses per day, the subcutaneous insulin process **900** provides the patient **10** with equal doses each time. Therefore, the recommended basal doses RecomBasal for a full day are equal to the first recommended basal dose of Eq. 30. This makes it possible to administer the morning Basal dose RecomBasal immediately after the Breakfast BG has been tested.

[0166] For meal Bolus adjustments, the adjustment is applied to the meal bolus of the same meal of the previous day (known as the Governing Meal Bolus MB.sub.gov). An equivalent statement is that the next day's meal bolus is the adjustment applied to the current meal bolus. The adjustment is based on the Governing Blood Glucose BG.sub.gov, which is the next scheduled blood glucose BG, following the Governing Meal Bolus MB.sub.gov. The adjustment value is determined by the Adjustment Factor process **800** (FIG. **8**), whose input is the Governing Blood Glucose BG.sub.gov

and whose output is the adjustment factor AF. The adjustment factor AF is multiplied by the Governing Meal Bolus MB.sub.gov to obtain the adjusted Recommended Meal Bolus RecMealBol. [0167] If either the governing blood glucose BG.sub.gov or the governing meal bolus MB.sub.gov is missing, then the previous day's Recommended Meal Bolus RecMealBol.sub.prev is kept in place.

[0168] The SubQ process **900** is designed with three meals during the day, Breakfast, Lunch, Dinner. Considering the lunch as the meal, after the blood glucose BG is manually entered at block **902**, the SubQ process **900**, at block **908**, determines that the blood glucose type, BG.sub.type is lunch, i.e., BG.sub.Lunch. the SubQ process **900**, at block **918** determines the correction dose based on the following equation (based on EQ. 2):

[00036] $CB_{Lunch} = (BG_{Lunch} - BG_{Target}) / CF$, (31)

[0169] Once the SubQ process **900** determines the correction dose, the dose is displayed on the display **114**, **146** so that the nurse **40** can administer the dose to the patient **10** as soon as possible. [0170] The current Recommended Lunch Bolus is available at block **962**; it has been available since the previous day's Dinner BG. This current Recommended Lunch Bolus is displayed on the display, and the nurse gives the Lunch Bolus RecLunchBol.sub.Current at block **926**. The SubQ process **900** does not determine a new recommended dose until the Dinner blood glucose is tested at block **910**. Then the dinner blood glucose BG serves as the BG.sub.gov for the Lunch Bolus and the SubQ process sends the BG.sub.gov to block **932**, which is the input/output box of the adjustment factor process **800**. The adjustment factor process **800** returns the adjustment factor parameter AF, which is in turn sent to block **938**. At block **938**, the process determines the Next Recommended Lunch Bolus, RecLunchBol.sub.Next based on the following equation:

[00037] RecLunchBol_{Next} = RecLunchBol_{Current} * AF (32)

[0171] The other meals, Breakfast and Dinner follow the same pattern as the example of Lunch set forth above.

[0172] Considering dinner as the meal, after the blood glucose BG is manually entered at block **902**, the SubQ process **900**, at block **910**, determines that the blood glucose type, BG.sub.type is dinner. The SubQ process **900**, at block **920** determines the correction dose based on the following equation (based on EQ. 2):

[00038] $CB_{Dinner} = (BG_{Dinner} - BG_{Target}) / CF$, (33)

[0173] Once the SubQ process **900** determines the correction dose, the dose is displayed on the display **116**, **146** so that the nurse **40** can administer the dose to the patient **10** as soon as possible. [0174] The current Recommended Dinner Bolus RecDinnerBolus.sub.Current is available at block **962**; it has been available since the previous day's Bedtime blood glucose.sub.Bedtime. This current Recommended Dinner Bolus is displayed on the display, and the nurse gives the patient **10** the recommended Dinner Bolus RecDinnerBolus.sub.current at block **928**. The SubQ process **900** does not determine a new recommended dose RecomBolus until the bedtime blood glucose is tested at block **912**. Then the bedtime blood glucose BG serves as the BG.sub.gov for the dinner Bolus and the SubQ process sends the BG.sub.gov to block **934**, which is the input/output box of the adjustment factor process **800**. The adjustment factor process **800** returns the adjustment factor parameter AF, which is in turn sent to block **940**. At block **940**, the process **900** determines the Next recommended Dinner Bolus RecDinnerBolus.sub.Next based on the following equation: [00039] RecDinnerBolus_{Next} = RecDinnerBolus_{current} * AF (34)

[0175] When the SubQ process **900** determines that the blood glucose BG type BG.sub.type is bedtime BG.sub.Bedtime (i.e., the blood glucose BG is taken at bedtime) at block **912**, the SubQ process **900** determines at block **922** the correction dose (based on EQ. 2):

[00040] $CB_{Bedtime} = (BG_{Bedtime} - BG_{Target}) / CF,$ (35)

[0176] As previously mentioned, the SubQ process 900 is configurable to add additional blood

glucose BG measurements having blood glucose type BG.sub.type of miscellaneous, as shown in block **956**. The SubQ process **900** determines a correction dose at block **958**.

[00041] RecMiscBolus_{Next} = (RecMiscBolus_{Current}) * AF (36)

[0177] FIG. **10** shows the SubQ for Tube-Fed Patients process **1000** for critically ill patients who are ordered nil per os (NPO), which means that oral food and fluids are withheld from the patient **10**. This process **1000** is designed specifically for patients **10** who are receiving a nutrition formula via a tube to the stomach or intravenous TPN (total parenteral nutrition). TPN is when the patient **10** is only receiving nutritional benefits intravenously. Neither TPN nor Tube-Fed patients require meal boluses because they are not eating meals. Instead, they are given equal boluses of Rapid-Acting insulin at equally-spaced scheduled times around the clock to meet the continuous insulin needs of their continuous tube-feeding or TPN nutrition; these boluses are called Equal-Boluses (EqBolus).

[0178] SubQ for Tube-Fed Patients process **1000** allows the nurse or doctor **40** to divide the day into equal intervals, via the display **110**, **140**. In addition, the nurse or doctor **40** can choose the number of scheduled blood glucose measurements BG per day, which equals the number of intervals per day. Each interval includes a scheduled blood glucose measurement BG and an Equal-Bolus EqBolus. The scheduled blood glucose times are: Tsched**1**; Tsched**2**; Tsched**3** . . . etc., with associated blood glucoses BG**1**; BG**2**; BG**3** . . . etc. The SubQ for Tube-Fed Patients process **1000** displays the time and BG number of the next-scheduled blood glucose, via the display **110**, **140** at block **1040**. Optionally, the SubQ for Tube-Fed Patients process **1000** may employ a countdown timer **1050** to obtain the blood glucose measurements BG at the proper times.

[0179] To prevent the BG schedule from "migrating around the clock-face", the following method is used: The SubQ for Tube-Fed Patients process **1000** determines if the time at which the blood glucose BG was measured BG.sub.Time falls within one of the intervals listed above. If so, then the countdown timer **1050** is set to time-out on the next scheduled blood glucose time Tsched**1**, Tsched**2**, Tsched**3**, . . . etc. Each interval is configured with a start time margin (M.sub.Start) and an end time margin (M.sub.End). The SubQ for Tube-Fed Patients process **1000** may be summarized as follows: [0180] IF [(T.sub.sched1–M.sub.Start)<BG.sub.Time<=(T.sub.sched1+M.sub.End)]; THEN Set countdown timer to time-out at T.sub.sched2, [0181] IF [(T.sub.sched2–M.sub.Start)<BG.sub.Time<=(T.sub.sched2+M.sub.End)]; THEN Set countdown timer to time-out at T.sub.sched3 . . . and so on.

In some examples, where there are four intervals configured, then the last interval's logic is as follows: [0182] 25IF [(T.sub.sched4–M.sub.Start)<BG.sub.Time<=(T.sub.sched4+M.sub.End)]; THEN Set countdown timer to time-out at T.sub.sched1.

[0183] In some implementations, the SubQ for Tube-Fed Patients process **1000** provides two blood glucose schedule plans: Six blood glucose BG tests per day; or four blood glucose BG tests per day. The nurse or doctor **40** can select which one to use for a specific patient **10**. The first blood glucose plan for six blood glucose measurements per day includes the following details: each scheduled blood glucose measurement is four hours apart from the next, e.g., 00:00, 04:00, 08:00, 12:00, 16:00, and 20:00, with a start margin M.sub.start of 2 hours and an end margin M.sub.end of 2 hours. If a blood glucose measurement BG falls within the interval (i) from {T.sub.sched(i)-2 hrs} to {T.sub.sched(i)+2 hrs} the Countdown Timer is set to expire on the next scheduled time, T.sub.sched(i+1).

[0184] The second blood glucose plan for four blood glucose measurements per day is shown in FIG. **10**. FIG. **10** further shows a miscellaneous blood glucose measurement that is not scheduled. The blood glucose measurements are each scheduled six hours apart from the next at 00:00, 06:00, 12:00, and 18:00, with a start margin M.sub.start of 4 hours and an end margin M.sub.end of 2 hours. If a the blood glucose measurement falls within the interval (i) from {T.sub.sched(i)–4 hrs} to {T.sub.shed(i)+2 hrs} the Countdown Timer is set to expire on the next scheduled BG

T.sub.sched(i+1). All four of the blood glucose BG tests.

TABLE-US-00007 TABLE 3 Blood Glucose Measurement every 6 hours Start Margin (M.sub.Start) 4 hours End Margin (M.sub.End) 2 hours T.sub.sched1 00:00 T.sub.sched2 06:00 T.sub.sched3 12:00 T.sub.sched4 18:00

[0185] The SubQ for Tube-Fed Patients process **1000** starts with a manual blood glucose measurement BG entry accompanied by the blood glucose measurement time BG.sub.Time at block **1002**. At block **1080**, an interactive popup asks the user if the blood glucose is a "Scheduled BG" or a miscellaneous ('Misc ") blood glucose test that is not scheduled. If the user chooses "Misc", then the SubQ for Tube-Fed Patients process **1000**, at block **1012**, assigns a value of "Misc" to the field BGype and records the date-time stamp ("Recorded time"). At block **1030**, the SubQ for Tube-Feeding process **1000** determines a correction dose CB for the manual blood glucose measurement, using EQ. 2. The SubQ for Tube-Feeding process **1000** displays the correction dose CB on the display **116**, **146**, to the patient **10**, nurse and doctor **40** at block **1040** and stores the value in non-transitory memory **24**, **114**, **144** at block **1042**.

[0186] Returning to block **1080**, if the user chooses "Scheduled BG", the SubQ for Tube-Fed Patients process **1000** determines, at block **1004**, if the blood glucose time BG.sub.Time is within the interval from (T.sub.sched1–M.sub.Start) to (T.sub.sched1+M.sub.End). If the blood glucose measurement time BG.sub.Time is within the interval, i.e., (T.sub.sched1–M.sub.Start) <BG.sub.Time (T.sub.sched1+M.sub.End), then the SubQ for Tube-Fed Patients process **1000**, at block **1014**, assigns the value "BG1" to the field BG.sub.type, resets the countdown timer to T.sub.sched 2 and displays a reminder of the next BG time on the display **116**, **146** at block **1040**. Then, the SubQ for Tube-Fed Patients process **1000**, at block **1022**, determines the correction dose CB based on the blood glucose value BG**1**, using EQ. 2:

 $[00042] CB - (BG - BG_{Target}) / CF$ (2)

or using the Correction Dose Function, process **700**. The SubQ for Tube-Feeding process **1000** displays the correction dose CB on the display **116**, **146**, to the patient **10**, nurse and doctor **40** at block **1040** and stores the value in non-transitory memory **24**, **114**, **144** at block **1042**. Additionally, the SubQ for Tube-Fed Patients process **1000**, at block **1044**, uses the blood glucose value BG**1** as the governing BG for adjusting the value of the four Equal-Boluses (EqBolus). Specifically, at block **1044**, the SubQ for Tube-Fed Patients process **1000** uses the blood glucose value BG**1** as the input value BG.sub.gov for the Adjustment Factor (AF) function for determining a value for the AF. The SubQ for Tube-Fed Patients process **1000**, at block **1046**, retrieves the Previous Day's Recommended Equal-Bolus from memory **24**, **114**, **144**, and at block **1048**, determines a new value for the Recommended Equal-Bolus (e.g., all four EqBolus) by multiplying the AF value from block **1044** by the Previous Day's Recommended Equal-Bolus from block **1046**. The SubQ for Tube-Feeding process **1000** displays the Recommended Equal-Bolus (EqBolus) on the display **116**, **146**, to the patient **10**, nurse and doctor **40** at block **1040** and stores the value in non-transitory memory **24**, **114**, **144** at block **1042**.

[0187] However, if at block **1004** the SubQ for Tube-Fed Patients process **1000** determines that the blood glucose measurement time BG.sub.Time is not within the interval from (T.sub.sched1–M.sub.Start) to (T.sub.sched1+M.sub.End), the SubQ for Tube-Fed Patients process **1000** determines if the blood glucose measurement time BG.sub.Time is within a second interval (T.sub.sched2–M.sub.Start) to (T.sub.sched2+M.sub.End) at block **1006**, and if so, then the SubQ for Tube-Fed Patients process **1000** at block **1016** assigns the value "BG2" to the field BG.sub.type, resets the countdown timer to T.sub.sched3 and displays a reminder of the next BG time on the display v**116**, **146** at block **1040**. Then, the SubQ for Tube-Fed Patients process **1000**, at block **1024**, determines the correction dose CB based on the blood glucose value BG2, using EQ. 2 or using the Correction Dose Function, process **700**.

[0188] The SubQ for Tube-Feeding process 1000 displays the correction dose CB on the display

116, **146**, to the patient **10**, nurse and doctor **40** at block **1040** and stores the value in non-transitory memory **24**, **114**, **144** at block **1042**. Additionally, the SubQ for Tube-Fed Patients process **1000**, at block **1036**, uses the blood glucose value BG**2** as the governing BG for adjusting the Basal dose. Specifically, at block **1036**, the SubQ for Tube-Fed Patients process **1000** uses the blood glucose value BG**2** as the input value BG.sub.gov for the Adjustment Factor (AF) function for determining a value for the AF.

[0189] The SubQ for Tube-Fed Patients process **1000**, at block **1056**, retrieves the last Basal dose of the previous day RecBasal.sub.Last from memory **24**, **114**, **144**, and at block **1058**, determines a current day's Recommended Basal Dose RecBasal by multiplying the AF value by the RecBasal.sub.Last, as follows:

[00043] RecBasal = $(RecBasal_{Last}) * AF$ (37)

The SubQ for Tube-Feeding process **1000** displays the RecBasal on the display **116**, **146**, to the patient **10**, nurse and doctor **40** at block **1040** and stores the value in non-transitory memory **24**, **114**, **144** at block **1042**.

[0190] However, if at block **1006** the SubQ for Tube-Fed Patients process **1000** determines that the blood glucose measurement time BG.sub.Time is not within the interval from (T.sub.sched2–M.sub.Start) to (T.sub.sched2+M.sub.End), the SubQ for Tube-Fed Patients process **1000** determines if the blood glucose measurement time BG.sub.Time is within a third interval (T.sub.sched3–M.sub.Start) to (T.sub.sched3+M.sub.End) at block **1008**, and if so, then the SubQ for Tube-Fed Patients process **1000** at block **1018** assigns the value "BG3" to the field BG.sub.type, resets the countdown timer to T.sub.sched4 and displays a reminder of the next BG time on the display **116**, **146** at block **1040**. Then, the SubQ for Tube-Fed Patients process **1000**, at block **1026**, determines the correction dose CB based on the blood glucose value BG3, using EQ. 2 or using the Correction Dose Function, process **700**.

[0191] However, if at block **1008** the SubQ for Tube-Fed Patients process **1000** determines that the blood glucose measurement time BG.sub.Time is not within the interval from (T.sub.sched3–M.sub.Start) to (T.sub.sched3+M.sub.End), the SubQ for Tube-Fed Patients process **1000** determines if the blood glucose measurement time BG.sub.Time is within a fourth interval (T.sub.sched4–M.sub.Start) to (T.sub.sched4+M.sub.End) at block **1010**, and if so, then the SubQ for Tube-Fed Patients process **1000** at block **1020** assigns the value "BG4" to the field BG.sub.type, resets the countdown timer to T.sub.sched1 and displays a reminder of the next BG time on the display **116**, **146** at block **1040**. Then, the SubQ for Tube-Fed Patients process **1000**, at block **1028**, determines the correction dose CB based on the blood glucose value BG4, using EQ. 2 or using the Correction Dose Function, process **700**.

[0192] FIG. 11 describes a SubQ Without Meal Boluses process 1100, where the blood glucose measurements BG are deferred until after the meals, resulting in large after-meal correction boluses that incorporate insulin to cover the meals. The SubQ Without Meal Boluses process 1100 divides the day into intervals that may be of equal duration or unequal duration. Each interval includes a scheduled blood glucose measurement BG. In some examples, the SubQ Without Meal Boluses process 1100 includes five blood glucose measurements BG per day. The SubQ Without Meal Boluses process 1100 may be configured to include other numbers of time intervals. In addition, the SubQ Without Meal Boluses process 1100 includes configurable blood glucose BG measurement times. In some examples, the measurement schedule includes blood glucose measurements BG places about one to three hours after regular mealtimes, which is an appropriate timing for post-meal correction.

[0193] The scheduled Blood glucose measurement times BG times are named with a T.sub.sched**0**, T.sub.sched**1**, T.sub.sched**2** etc. The Time-intervals are marked by Time Boundaries, named "T.sub.bound" with numbered subscripts. These time-values are configurable. An example of default times are shown in the following table:

TABLE-US-00008 TABLE 4 Default Times T.sub.bound0 = 0:00 BG.sub.MidSleep: T.sub.sched1 = 03:00 T.sub.bound1 = 05:00 BG.sub.Before-Breakfast: T.sub.sched2 = 07:00 T.sub.bound2 = 08:00 BG.sub.After-Breakfast: T.sub.sched3 = 10:00 T.sub.bound3 = 11:00 BG.sub.After-Lunch: T.sub.sched4 = 15:00 T.sub.bound4 = 18:00 BG.sub.Bedtime: T.sub.sched5 = 22:00 [0194] Similar to the SubQ for tube-fed patients process **1000** (FIG. **10**), the SubQ Without Meal Boluses process **1100** (FIG. **11**) includes a countdown timer **1001** used to obtain the blood glucose BG tests at the proper times.

[0195] To prevent the BG schedule from "migrating around the clock-face", the following method is used:

[0196] The SubQ Without Meal Boluses process **1100** determines if the time at which the blood glucose BG was measured BG.sub.Time falls within one of the intervals. If so, then the countdown timer is set to time-out on the next interval's scheduled blood glucose measurement T.sub.sched1, T.sub.sched2, T.sub.sched3, . . . etc. This can be thought of as a "snap-to-the-schedule" feature. Each interval is configured with a start time margin (M.sub.start) and an end time margin (M.sub.End). The SubQ Without Meal Boluses process **1100** may be summarized as follows: [0197] IF [T.sub.bound0<BG.sub.Time≤T.sub.bound1]; THEN Set countdown timer to time-out at T.sub.sched2 [0198] IF [T.sub.bound1<BG.sub.Time≤T.sub.bound2]; THEN Set countdown timer to time-out at T.sub.sched3 [0199] IF [T.sub.bound2<BG.sub.Time≤T.sub.bound3]; THEN Set countdown timer to time-out at T.sub.sched4 [0200] IF

[T.sub.bound3<BG.sub.Time≤T.sub.bound4]; THEN Set countdown timer to time-out at T.sub.sched5 [0201] IF [T.sub.bound4<BG.sub.Time≤T.sub.bound0]; THEN Set countdown timer to time-out at T.sub.sched1

[0202] The SubQ Without Meal Boluses process **1100** starts with a manual blood glucose measurement BG entry accompanied by the blood glucose measurement time BG.sub.Time at block **1102**. Then at block **1104**, the SubQ Without Meal Boluses process **1100** determines if the blood glucose measurement time BG.sub.Time is within the interval from T.sub.bound0 to T.sub.bound1. If the blood glucose measurement time BG.sub.Time is within the interval, i.e., T.sub.bound0<BG.sub.Time≤T.sub.bound1, then the SubQ Without Meal Boluses process **1100**, at block **1114**, resets the countdown timer to T.sub.sched**2**. Then the SubQ Without Meal Boluses process **1100**, determines a correction dose CB at block **1122**, using EQ. 2.

[0203] However, if at block **1104** the SubQ Without Meal Boluses process **1100** determines that the blood glucose measurement time BG.sub.Time is not within the interval from T.sub.bound0 to T.sub.bound1, the SubQ Without Meal Boluses process **1100** determines if the blood glucose measurement time BG.sub.Time is within a second interval T.sub.bound1 to T.sub.bound2, and if so then the SubQ Without Meal Boluses process **1100** at block **1116**, resets the countdown timer to T.sub.sched**3** and at block **1124**, determines a correction dose CB, using EQ. 2.

T.sub.sched3 and at block **1124**, determines a correction dose CB, using EQ. 2. [0204] However, if at block **1106** the SubQ Without Meal Boluses process **1100** determines that the blood glucose measurement time BG.sub.Time is not within the interval from T.sub.bound1 to T.sub.bound2, the SubQ Without Meal Boluses process **1100** determines if the blood glucose measurement time BG.sub.Time is within a third interval T.sub.bound2 to T.sub.bound3 at block **1108**, and if so then the SubQ Without Meal Boluses process **1100** at block **1118**, resets the countdown timer to T.sub.sched4 and at block **1126**, determines a correction dose CB, using EQ. 2. [0205] However, if at block **1108** the SubQ Without Meal Boluses process **1100** determines that the blood glucose measurement time BG.sub.Time is not within the third time interval from T.sub.bound2 to T.sub.bound3, the SubQ Without Meal Boluses process **1100** determines if the blood glucose measurement time BG.sub.Time is within a fourth interval T.sub.bound3 to T.sub.bound4, and if so then the SubQ Without Meal Boluses process **1100** at block **1120**, resets the countdown timer to T.sub.sched5 and at block **1128**, determines a correction dose CB, using EQ. 2. [0206] However, if at block **1110** the SubQ Without Meal Boluses process **1100** determines that the

blood glucose measurement time BG.sub. Time is not within the fourth time interval from

T.sub.bound3 to T.sub.bound4, the SubQ Without Meal Boluses process **1100** determines if the blood glucose measurement time BG.sub.Time is within a fifth interval T.sub.bound4 to T.sub.bound5, and if so then the SubQ Without Meal Boluses process **1100** at block **1130**, resets the countdown timer to T.sub.sched1 and at block **1131**, determines a correction Dose CB, using EQ. 2. [0207] As shown, the SubQ Without Meal Boluses process **1100** repeats itself five times since there are five scheduled blood glucose measurement BG; however, the SubQ Without Meal Boluses process **1100** may include more or less time intervals.

[0208] The SubQ Without Meal Boluses process **1100** adjusts the basal insulin dosage by first determining the Governing blood glucose BG.sub.gov at block **1134**. The SubQ Without Meal Boluses process **1100** determines the Governing blood glucose BG.sub.gov as the blood glucose BG closest to 06:00 earlier on the same day as the basal dose whose recommendation is being calculated. To insure that the closest blood glucose BG is obtained, the basal dose is not allowed until an elapsed time after 06:00 equal to the elapsed time from the preceding BG until 0600. This is to insure that all opportunity for "another BG closer to 0600" has passed.

[0209] The SubQ Without Meal Boluses process **1100** passes the Governing blood glucose BG.sub.gov from block **1134** to block **1136**, which determines the adjustment factor AF (see FIG. **8**) and passes it to block **1138**. At block **1138**, the SubQ Without Meal Boluses process **1100** determines the current day's recommended first basal dose using the following equation: $[00044] \text{ RecBasal}_{\text{First}} = (\text{RecBasal}_{\text{Last(prev)}}) * \text{AF}, \quad (38)$

[0210] The basal dose may be one of several administered to the patient **10** during the day, but all the doses are kept at the same value.

[0211] The process **1000** displays the correction dose CB and the recommended basal dose on the display **116**, **146**, to the patient **10**, nurse and doctor **40** at block **1140** and stores the values in non-transitory memory **24**, **114**, **144** at block **1142**.

[0212] Referring to FIG. **12**, the Meal-by-Meal SubQ Without Carbohydrate-counting process **1200** calculates the Recommended Meal Bolus by employing the preceding Meal Bolus (of any type or time-of-day) as the Governing Meal Bolus MB.sub.gov and employing the next blood glucose following the Governing Meal Bolus as the Governing Blood Glucose BG.sub.gov. This means BG.sub.gov is often the current BG in real-time.

[0213] The Correction Boluses and Basal Dose adjustment are conducted similar to the Standard SubQ process **300** (FIGS. **9**A and **9**B). Therefore, a correction dose is determined at blocks **1214**, **1216**, **1218**, **1220**, **1222**, **1258** based on the blood glucose type.

[0214] The Meal Bolus Adjustment portion of the Meal-by-Meal SubQ process 1200 begins with a manual blood glucose measurement BG entry at block 1202. If the blood glucose measurement BG is determined by block 1204 to be a blood glucose type BG.sub.type of a Midsleep BG, then the process 900 sends the blood glucose measurement to block 1242. If the blood glucose measurement BG is not a blood glucose type BG.sub.type of a Midsleep BG, then Meal-by-Meal SubQ process 1200 determines at block 1206 whether the BG is a Breakfast blood glucose BG.sub.Breakfast. If the BG is determined at block 1206 to be a Breakfast blood glucose BG.sub.Breakfast, then at block 1250, the process 1200 determines if the breakfast blood glucose BG.sub.Breakfast has been tested, if not then the process 1200 blocks basal recommendation, and posts a warning, displayed on the display 116, 146, to the patient 10, nurse and doctor 40 at block 1254 and is stored in the non-transitory memory 24, 114, 144 at block 1251. However, if the breakfast blood glucose BG.sub.Breakfast has been tested, then the process 1200 selects, at block 1242, the Governing blood glucose BG.sub.gov as the lesser of the two blood glucose values, i.e., the midsleep blood glucose BG.sub.MidSleep or the breakfast blood glucose BG.sub.Breakfast, as shown in EQ. 28 (above).

[0215] After determining the governing blood glucose BG.sub.gov, the process **1200** determines the adjustment factor AF at block **1244** (see. FIG. **8**). The adjustment factor process **800**, returns the

adjustment factor AF as a function of the governing blood glucose BG.sub.gov. The process **1200** sends the adjustment factor AF to block **1246**, where the process **1200** determines the adjustment to the patient's insulin dose by the following EQ. 30, then the nurse **40** give the patient **10** the Recommended basal dose RecomsBasal at block **1248**.

[0216] If the Meal-by-Meal SubQ process **1200**, at block **1206**, determines that the blood glucose measurement BG is not a breakfast blood glucose measurement BG.sub.Breakfast, then it is passed to block **1208** where a determination is made whether the blood glucose measurement BG is a Lunch blood glucose BG.sub.Lunch, then block **1208** routes the Lunch BG to block **1230** where it is used as the input (BGgov) for the AF Function. The AF Function returns a value of the Adjustment Factor (AF), which is routed to block **1238** where the Recommended Lunch Bolus is calculated by the following equation:

[00045] RecLunchBol = $AF * RecBreakfastBol_{Prev}$ (39)

[0217] The process **1200** sends the Recommended Lunch Bolus RecLunchBolus to the remote processor at block **1254**, to the display **114**, **146**, at block **1252**, and to block **1240** for Dinner bolus calculation.

[0218] If the blood glucose BG is determined at block **1208** to not be a Lunch blood glucose BG.sub.Lunch, then it is routed to block **1210**. If the BG is determined by block **1210** to be a Dinner blood glucose BG.sub.Dinner, then the blood glucose BG is routed to block **1232** where it is used as the input (BG.sub.gov) for the adjustment factor process **700**. The AF Function returns a value of the Adjustment Factor AF, which is routed to block **1240**. The preceding Recommended Lunch Bolus is available at block **1240**, which has all the necessary data to calculate the Recommended Dinner Bolus by the following equation:

[00046] RecDinnerBol = $AF*(RecLunchBol_{Prev})$ (40)

[0219] The process **1200** sends the Recommended Dinner Bolus, RecDinnerBol to the remote processor at block **1254**, to the display **114**, **146**, block **1252**, and to block **1236** for the next day's Breakfast bolus calculation.

[0220] If the process **1200** determines the blood glucose BG at block **1210** to not be a Dinner BG, then the process **1200** routes the blood glucose BG to block **1212**. If the process **1200** determines the blood glucose BG at block **1212** to be a Bedtime BG, then the process **1200** routes the BG to block **1234** where it is used as the input (BG.sub.gov) for the AF Function. The AF Function returns a value of the Adjustment Factor (AF), which is routed to block **1236**. The preceding Recommended Dinner Bolus (from the previous day) is available at block **1236**, which has all the necessary data to calculate the Recommended Breakfast Bolus by the following equation: [00047] RecBreakfastBol = AF*(RecDinnerBol_{Prev}) (41)

[0221] The process **1200** sends the Recommended Breakfast Bolus to the remote processor at block **1254**, to the Subject Data Display, block **1252**, and to block **1238** for Lunch bolus calculation. [0222] The Meal-by-Meal SubQ With Carbohydrate-counting program calculates the Recommended Meal Bolus by dividing the carbohydrates in the upcoming meal by CIR (Carbohydrate-to-Insulin Ratio). The Carbohydrate-to-Insulin Ratio CIR is in the form of a single parameter that is re-calculated at each meal and passed to the next meal. The Governing CIR is defined as the CIR passed to the current meal from the preceding meal. The process employs the next blood glucose BG following the Governing CIR as the Governing BG (BG.sub.gov). This means BG.sub.gov is often the current BG in real-time.

[0223] The Correction Boluses and Basal Dose adjustment are conducted similar to the Standard SubQ process **300** (FIGS. **9**A and **9**B). Therefore, a correction dose CB is determined at blocks **1314**, **1316**, **1318**, **1320**, **1322**, **1258** based on the blood glucose type.

[0224] Referring to FIGS. **13**A and **13**B, the Meal Bolus Adjustment portion of the Meal-by-Meal Process **1300** begins with a manual BG entry at block **1302**. If the process **1300** determines the blood glucose value BG at block **1304** to not be a Midsleep BG, then the process **1300** makes a

determination at block **1306** whether the BG is a Breakfast BG. If the process **1300** determines the blood glucose BG at block **1308** to be a Breakfast blood glucose BG.sub.breakfast, then at block **1350**, the process **1300** determines if the breakfast blood glucose BG.sub.Breakfast has been tested. If not, then the process **1300** blocks basal recommendation and posts a warning, displayed on the display **116**, **146**, to the patient **10**, nurse, and doctor **40** at block **1354**. The process **1300** stores the warning in the non-transitory memory **24**, **114**, **144** at block **1351**. If, however, the breakfast blood glucose BG.sub.Breakfast has been tested, then the process **1300** selects, at block **1342**, the Governing blood glucose BG.sub.gov as the lesser of the two blood glucose values, i.e., the midsleep blood glucose BG.sub.MidSleep or the breakfast blood glucose BG.sub.Breakfast, as shown in EQ. 28 (above).

[0225] After determining the governing blood glucose BG.sub.gov, the process **1300** determines the adjustment factor AF at block **1344** (see. FIG. **8**). The adjustment factor process **800** returns the adjustment factor AF as a function of the governing blood glucose BG.sub.gov. The process **1300** sends the adjustment factor AF to block **1246**, where the process **1300** determines the adjustment to the patient's insulin dose by the following EQ. 30, then the nurse **40** gives the patient **10** the Recommended basal dose RecomsBasal at block **1348**.

[0226] If the process **1300** determines the blood glucose BG at block **1306** to not be a Breakfast BG, then the process **1300** passes the blood glucose BG to block **1308**, where the process **1300** determines whether the blood glucose BG is a lunch blood glucose BG.sub.lunch. If the blood glucose BG is a Lunch blood glucose BG.sub.lunch, then the process **1300**, at block **1308**, routes the lunch blood glucose BG.sub.lunch to block **1330**, where it is used as the input (BG.sub.gov) for the adjustment factor AF Function. The adjustment factor AF Function (FIG. **8**) returns a value of the Adjustment Factor AF, which is routed to block **1334** where the Carbohydrate-to-Insulin Ratio (CIR) is calculated by the following formula:

[00048] CIR = (CIRfromBreakfast) / AF (42)

[0227] The Meal-by-Meal with Carb-Counting process **1300** routes the Carbohydrate-to-Insulin Ratio CIR to block **1338** where the Recommended Lunch Bolus is calculated as follows: [00049] RecLunchBolus = (CarbohydrategmsinLunch) / CIR (43)

[0228] The Carbohydrate-to-Insulin Ratio CIR is also sent from block **1334** to block **1336** for use in the upcoming Dinner calculations.

[0229] If the process **1300** determines the blood glucose BG at block **1308** to not be a lunch blood glucose BG.sub.lunch, then the process **1300** routes the blood glucose BG to block **1310**. If the process **1300** determines the blood glucose BG at block **1310** to be dinner blood glucose BG.sub.dinner, then the process **1300** routes the blood glucose BG to block **1332**, where it is used as the input (BG.sub.gov) for the adjustment factor AF Function. The adjustment factor AF Function returns a value of the Adjustment Factor (AF), which the process **1300** routes to block **1336**, where the Carbohydrate-to-Insulin Ratio CIR is calculated by the following formula: [00050] CIR = (CIRfromLunch) / AF (44)

[0230] The Meal-by-Meal with Carb-Counting process **1300** routes the CIR to block **1340** where the Recommended Dinner Bolus is calculated as follows:

[00051] RecDinnerBol = (CarbohydrategmsinDinner) / CIR (45)

[0231] The Carbohydrate-to-Insulin Ratio CIR is also sent from block **1336** to block **1332** for use in the upcoming Breakfast calculations. The process **1300** sends the Recommended Dinner Bolus, RecomDinnerBol to the remote processor at block **1354**, and to the display **114**, **146**, block **1352**. [0232] If the process **1300** determines the blood glucose BG at block **1310** to not be a Dinner BG, then the process **1300** routes the blood glucose BG to block **1312**. If the process **1300** determines the blood glucose BG at block **1312** to be a Bedtime BG, then the process **1300** routes the blood glucose BG to block **1330**, where it is used as the input (BGgov) for the AF Function. The AF Function returns a value of the Adjustment Factor (AF), which is routed to block **1332**, where the

Carbohydrate-to-Insulin Ratio (CIR) is calculated by the following formula at block **1334**: [00052] CIR = (CIRfromDinner) / AF (46)

[0233] The Meal-by-Meal with Carb-Counting process **1300** routes the CIR to block **1336** where the Recommended Breakfast Bolus is calculated as follows:

[00053] RecBreakfastBol = (CarbohydrategmsinBreakfast) / CIR (47)

[0234] The CIR is also sent from block **1330** to block **1334** for use in the upcoming Lunch calculations. The process **1300** sends the Recommended Breakfast Bolus to the remote processor at block **1354**, and to the Subject Data Display at block **1352**.

[0235] FIG. **14** shows a subcutaneous process **1400** for non-diabetic patients **10** who have a temporary condition of diabetes-like symptoms. A typical example is stress-hyperglycemia, a condition that is encountered when the patient's body is under stress due to surgery, certain medications, or another disease other than diabetes. The stress causes the patient's body to react by raising the blood glucose. As the patient recovers, this hyperglycemic condition typically disappears, sometimes rapidly, leaving the patient without need of insulin. The principle of the process is to rapidly reduce the entire insulin dosing regimen of the patient by a factor NonDMfactor, whenever a blood glucose measurement BG falls below a threshold. [0236] The Non-DM process **1400** begins at block **1402** with a blood glucose measurement BG. The process **1400** determines at block **1460** if the blood glucose BG is below a threshold for insulin reduction NonDMfloor. If the blood glucose BG is less than the values of the last recommended NonDMfloor, the process **1400** reduces, at block **1462**, the value of all the last-recommended insulin doses in a table at block **1463**, by multiplying each value by a dimensionless configurable constant whose value is between 0 and 1, threshold for insulin reduction NonDMfactor. The group at block **1463** includes the last-recommended-doses such as Breakfast Bolus BG.sub.Breakfast, Lunch Bolus BG.sub.Lunch, Dinner Bolus BG.sub.Dinner, and Basal Dose, irrespective of whether the dose has been given or not. In other words, the latest recommendation (or prescribed dose) is changed whether a dose was given or not. In many implementations, the threshold for insulin reduction NonDMfactor is configured to a value of 0.5.

[0237] Corrective insulin may also be reduced. This is accomplished by raising the Correction Factor CF as follows: Returning to block **1462**, the logic is passed to block **1464**, where a value of Total Daily Dose of Insulin TDD is recalculated each time the dose is reduced. This is accomplished by summing all the newly-reduced values of the last recommended values of meal boluses and basal doses. The process **1400** passes the TDD to block **1466**, where a live Correction Factor is calculated as follows:

[00054] CF = CFR / TDD (46)

[0238] Returning to block **1402**, the process **1400** routes the blood glucose BG to block **1404** where the process **1400** determines if the blood glucose type BG.sub.type is MidSleep BG.sub.Midsleep. If so, then the process **1400** routes the MidSleep blood glucose BG.sub.Midsleep to block **1442**. If it is determined at block **1405** that the blood glucose type BG.sub.type is not MidSleep, the logic is passed to block **1406**, where it is determined if the blood glucose type BG.sub.type is Breakfast BG.sub.Breakfast. If the blood glucose type BG.sub.type is Breakfast BG.sub.Breakfast, the process **1400** calculates a Correction dose CB at block **1416** and is administered as soon as possible. Also, if blood glucose type BG.sub.type is Breakfast BG.sub.Breakfast, the logic is passed to box **1424**, where the previously-recommended Breakfast meal bolus is administered. The value of this previously-recommended Breakfast meal bolus is passed to block **1436**, where it is one of the two required parameters for calculation of the Next Recommended Breakfast Bolus. Returning to block **1406**, the process **1400** routes the Breakfast BG to box **1450**.

[0239] The condition at block **1450** is that the administration of basal is blocked by not-posting the recommended Basal dose until the arrival of the breakfast blood glucose BG.sub.Breakfast from

block **1406**, where the breakfast blood glucose BG.sub.Breakfast is sent to block **1442**. At block **1442**, the process **1400** determines the governing blood glucose BG.sub.gov for Basal adjustment as the lesser of the two blood glucose values, midsleep blood glucose BG.sub.Midsleep and breakfast blood glucose BG.sub.Breakfast. At block **1444**, the process **1400** inputs the governing blood glucose BG.sub.gov for Basal into the Adjustment Factor AF Function (FIG. **7**), which returns an Adjustment Factor AF for basal adjustment. The process **1400** sends the adjustment factor AF to block **1446**, where it is used to calculate the Recommended First Basal Dose of the day by the formula:

[00055] RecommendedfirstBasalDose = AF * (Previousday's lastBasalDose) (48)

[0240] Basal dosing is adjusted only once per day, because a fasting blood glucose BG is needed as the governing blood glucose BG.sub.gov, and the midsleep blood glucose BG.sub.Midsleep and breakfast blood glucose BG.sub.Breakfast BG are the only reliable fasting blood glucose measurements BG during the day. If more than one basal dose is used, then the values are set to be equal to the first basal dose of the day. The last basal dose of the day is used as the Governing Basal Dose because it is the most recent dose at the time of the midsleep blood glucose BG.sub.Midsleep and B breakfast blood glucose BG.sub.Breakfast.

[0241] If the process **1400** determines at block **1406** that the Blood Glucose type BG.sub.type is not Breakfast, the logic passes to block **1408**, where the process **1400** determines if the BG.sub.type is Lunch. If the BG.sub.type is Lunch, the process **1400** calculates a Correction dose CB at block **1418**, which is administered as soon as possible. Also, the logic passes to box **1426**, where the previously-recommended Lunch meal bolus is administered. The process **1400** passes the value of this previously-recommended Lunch meal bolus to block **1438**, where it is one of the two required parameters for calculation of the Next Recommended Lunch Bolus. Returning to block **1408**, the process **1400** also routes the lunch blood glucose BG.sub.lunch to block **1430**, providing the second of the two required parameters for calculation of the Next Recommended Breakfast Bolus as follows:

[00056] NextRecom . BreakfastBolus = AF * (CurrentRecomBreakfast Bolus) (49)

[0242] If it is determined at block **1408** that BG.sub.type is not Lunch, the logic passes to block **1410**, where the process **1400** determines if the BG.sub.type is Dinner. If the BG.sub.type is Dinner, the process **1400** calculates a Correction dose at block **1420**, which is administered as soon as possible. Also, the logic is passes to box **1428**, where the previously-recommended Dinner meal bolus is administered. The value of this previously-recommended Dinner meal bolus is passed to box **1440**, where is one of the two required parameters for calculation of the Next Recommended Dinner Bolus. Returning to block **1410**, the process **1400** also routes the Dinner blood glucose BG.sub.Dinner to block **1432**, providing the second of the two required parameters for calculation of the Next Recommended Lunch Bolus as follows:

[00057] NextRecom.LunchBolus = AF * (CurrentRecomLunchBolus) (50)

[0243] If it is determined at block **1410** that BG.sub.type is not Dinner, the logic passes to block **1412**, where the process **1400** determines if the BG.sub.type is Bedtime. If the blood glucose type BG.sub.type is Bedtime, the process **1400** calculates a Correction dose CB at block **1422**, which is administered as soon as possible. Also, the logic passes to box **1434**, providing the second of the two required parameters for calculation of the Next Recommended Dinner Bolus as follows: [00058] NextRecom . DinnerBolus = AF * (CurrentRecomDinnerBolus) (51)

[0244] If it is determined at block **1412** that the blood glucose BG.sub.type is not Bedtime, the logic passes to block **1456**, where the process **1400** determines if the BG.sub.type is Bedtime. If the BG.sub.type is Bedtime, the process **1400** calculates a Correction dose at block **1458**, which is administered as soon as possible. The process **1400** sends the next recommended meal bolus to the remote processor at block **1454**, and to the display **114**, **146**, at block **1452**.

[0245] FIG. 15 provides an arrangement of operations for a method 1500 of administering

intravenous insulin to a patient **10**. The method includes receiving **1502** blood glucose measurements BG on a computing device (e.g., a processor 112 of a patient device 110, a processor **152** of a hospital electronic medical record system **150**, or a data processor **132** of a service provider **130**) of a dosing controller **160** from a blood glucose measurement device **124** (e.g., glucose meter or glucometer). The blood glucose measurements BG are separated by a time interval T.sub.Next. The method **1500** includes determining **1504**, using the computing device **112**, 132, 152, an insulin dose rate IIR based on the blood glucose measurements BG. In some implementations, the method **1500** determines the insulin dose rate IRR based on the current blood glucose measurement BG, a constant K, and a multiplier M (see EQ. 3A above). The constant K may equal 60 mg/dl. The method **1500** includes leaving the multiplier M unchanged between time intervals T.sub.Next when the current blood glucose measurement BG is greater than an upper limit BG.sub.TRH of the blood glucose target range BG.sub.TR and the blood glucose percent drop BG.sub.% Drop from the previous blood glucose value BG.sub.P is greater than or equal to a desired percent drop BG % dropM (see EQ. 5). The method also includes multiplying the multiplier M by a change factor M.sub.CF when the current blood glucose measurement BG is greater than an upper limit BG.sub.TRH of the blood glucose target range BG.sub.TR and the blood glucose percent drop BG.sub.% Drop (or blood glucose percent drop) is less than the desired percent drop BG % dropM. Additionally or alternatively, the method **1500** includes leaving the multiplier M unchanged between time intervals T.sub.Next when the current blood glucose measurement BG is in the target range BG.sub.TR i.e. when BG is less than an upper limit BG.sub.TRH of the blood glucose target range and greater than the lower limit BG.sub.TRL of the target range, BG.sub.TR. The method also includes dividing the multiplier M by a change factor M.sub.CF when the current blood glucose measurement BG is less than the lower limit BG.sub.TRL of the blood glucose target range BG.sub.TR.

[0246] The method **1500** may include setting the time interval T.sub.Next to a hypoglycemia time interval T.sub.Hypo of between about 15 minutes and about 30 minutes, when the current blood glucose measurement BG is below a hypo-threshold blood glucose level BG.sub.Hypo. [0247] The method **1500** includes determining **1506** a blood glucose drop rate BG.sub.DropRate based on the blood glucose measurements BG and the time interval T.sub.Next. The method 1500 includes determining **1507** a blood glucose percent drop BG.sub.% Drop, using the computing device 112, 132, 152 from a previous blood glucose measurement BG.sub.P. When the blood glucose drop rate BG.sub.DropRate is greater than a threshold drop rate BG.sub.DropRateLimit, the method **1500** includes decreasing at **1508** the time interval T.sub.Next between blood glucose measurements measure by the glucometer.

[0248] The method **1500** also includes decreasing **1510** the time interval T.sub.Next between blood glucose measurements BG when the percent drop BG.sub.% Drop of the blood glucose BG is greater than the threshold of the percent drop % Drop.sub.Regular, where the threshold of the percent drop % Drop.sub.Regular depends on whether the current blood glucose measurement BG is below a lower limit BG.sub.TRL of a blood glucose target range BG.sub.TR. In some implementations, the method **1500** includes decreasing the time interval T.sub.Next when the current blood glucose measurement BG is greater than or equal to the lower limit BG.sub.TRL of the blood glucose target range BG.sub.TR and the blood glucose percent drop BG.sub.% Drop exceeds a threshold percent drop % Drop.sub.Regular. In some implementations, the method **1500** includes decreasing the time interval T.sub.Next when the current blood glucose measurement BG is below the lower limit BG.sub.TRL of the blood glucose target range BG.sub.TR and above the hypo-threshold blood glucose level BG.sub.Hypo, and the blood glucose percent drop BG.sub.% Drop is greater than or equal to a threshold percent drop % Drop.sub.LowLimit. [0249] In some examples, the method **1500** includes leaving the multiplier M unchanged for at least two subsequent time intervals, T.sub.Next, when the current blood glucose measurement BG

is a pre-meal measurement. In some examples, the method 1500 includes receiving, on the

computing device **112**, **132**, **142**, a number of carbohydrates for a meal as well as a blood glucose measurement, and determining, using the computing device **112**, **132**, **142**, an intravenous insulin rate IIR based on the blood glucose (this IIR may be calculated using EQ. 3A). In addition, the method **1500** includes determining, using the computing device **112**, **132**, **142**, a meal bolus insulin rate IIR based on the number of carbohydrates. The method **1500** then calculates a Total insulin rate as the sum of the meal bolus rate and the regular intravenous rate as shown in EQ. 12. The method **1500** may further include setting the time interval T.sub.Next to about 30 minutes. If the blood glucose measurement BG is a second consecutive measurement after (but not including) an initial pre-meal blood glucose measurement BG, the method **1500** includes setting the time interval T.sub.Next to about 30 minutes.

[0250] In some implementations, the method **1500** includes electronically displaying on a display **116**, **146** a warning and blocking transition to a subcutaneous administration of insulin when the current blood glucose measurement BG is outside a stability target range BG.sub.STR. In addition, the method **1500** includes electronically displaying on the display **116**, **146** a warning when the current blood glucose measurement BG is within the patient's personalized target range BG.sub.TR for less than a threshold stability period of time T.sub.Stable. In some examples, the method **1500** includes determining a total daily dose of insulin TDD based on the multiplier M when the current blood glucose measurement BG is within a stability target range BG.sub.STR for a threshold stability period of time T.sub.Stable.

[0251] Referring to FIG. **16**, a method **1600** of administering insulin includes receiving **1602** blood glucose measurements BG of a patient **10** at a data processing device **112** from a glucometer **124**. The blood glucose measurements BG are separated by a time interval T.sub.Next. The method **1600** also includes receiving **1604** patient information at the data processing device **112**, and in some examples, storing the received patient information on non-transitory memory **24**, **114**, **144** associated with the processor **112**. The method **1600** includes receiving **1606** a selection **226**, at the data processing device **112**, of a subcutaneous insulin treatment **900**, **1000**, **1100**, **1200**, **1300**, **1400**. The selection **226** is based on the blood glucose measurements BG and the patient information **208***a*. The method **1600** also includes executing **1608**, using the data processing device **112**, the selected subcutaneous insulin treatment **900**, **1000**, **1100**, **1200**, **1300**, **1400**.

[0252] In some implementations, the method **1600** includes: receiving a configurable constant CFR; storing the configurable constant CFR in non-transitory memory associated with the data processing device; and determining a correction factor. The configurable constant CFR may be determined from a published statistical correlation. The method **1600** may also include determining a pre-meal correction bolus CB, and/or a post-prandial correction bolus CB. The method **1600** may include receiving a half-life value of the rapid-acting insulin; and determining the mean lifetime iLifeRapid of the rapid-acting insulin.

[0253] In some implementations, the method **1600** includes receiving a governing blood glucose value BG.sub.gov, and determining an adjustment factor AF based on the received governing blood glucose value BG.sub.gov. Determining the adjustment factor AF may include determining when the governing blood glucose value BG.sub.gov is within a threshold range of values, and setting the adjustment factor to a preconfigured adjustment factor based on the threshold range of values. In some implementations, the method **1600** includes determining a Carbohydrate-to-Insulin Ratio CIR based on the adjustment factor AF by calculating one of EQs. 42, 44, and 46.

[0254] The selection of subcutaneous insulin treatments **900**, **1000**, **1100**, **1200**, **1300**, **1400** includes one or more of a subcutaneous standard program **900**, a subcutaneous for tube-fed patients program **1000**, a subcutaneous program without meal boluses **1100**, a meal-by-meal subcutaneous program with carbohydrate counting **1200**, a meal-by-meal subcutaneous program with carbohydrate counting **1300**, and a subcutaneous program for non-diabetic patients **1400**. In some examples, the subcutaneous for tube-fed patients **1000** includes: receiving a blood glucose time

BG.sub.Time associated with a time of measuring of the blood glucose measurement BG; determining if the blood glucose time BG.sub. Time is within a threshold time interval; setting a timer **1001**, **1101** for a next blood glucose measurement BG based on the threshold time interval; and determining a correction insulin dose CB based on the blood glucose type BG.sub.Type. [0255] In some examples, the standard program **900** includes determining a blood glucose type BG.sub.Type of the received blood glucose measurement BG; and determining a correction insulin dose CB based on the blood glucose type BG.sub.Type. In some examples, the method **1600** includes receiving a governing blood glucose value BG.sub.gov, and determining an adjustment factor AF based on the received governing blood glucose value and the blood glucose measurement. The method **1600** may also include determining a next recommended meal bolus based on the determined adjustment factor AF and a current recommended meal bolus. [0256] Various implementations of the systems and techniques described here can be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various implementations can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device.

[0257] These computer programs (also known as programs, software, software applications or code) include machine instructions for a programmable processor and can be implemented in a high-level procedural and/or object-oriented programming language, and/or in assembly/machine language. As used herein, the terms "machine-readable medium" and "computer-readable medium" refer to any computer program product, apparatus and/or device (e.g., magnetic discs, optical disks, memory, Programmable Logic Devices (PLDs)) used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term "machine-readable signal" refers to any signal used to provide machine instructions and/or data to a programmable processor. [0258] Implementations of the subject matter and the functional operations described in this specification can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Moreover, subject matter described in this specification can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus. The computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter affecting a machine-readable propagated signal, or a combination of one or more of them. The terms "data processing apparatus", "computing device" and "computing processor" encompass all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them. A propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal that is generated to encode information for transmission to suitable receiver apparatus.

[0259] A computer program (also known as an application, program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing

environment. A computer program does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.

[0260] The processes and logic flows described in this specification can be performed by one or

more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit). [0261] Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Moreover, a computer can be embedded in another device, e.g., a mobile telephone, a personal digital assistant (PDA), a mobile audio player, a Global Positioning System (GPS) receiver, to name just a few. Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks.

[0262] To provide for interaction with a user, one or more aspects of the disclosure can be implemented on a computer having a display device, e.g., a CRT (cathode ray tube), LCD (liquid crystal display) monitor, or touch screen for displaying information to the user and optionally a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can provide input to the computer. Other kinds of devices can be used to provide interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, or tactile input. In addition, a computer can interact with a user by sending documents to and receiving documents from a device that is used by the user; for example, by sending web pages to a web browser on a user's client device in response to requests received from the web browser.

The processor and the memory can be supplemented by, or incorporated in, special purpose logic

circuitry.

[0263] One or more aspects of the disclosure can be implemented in a computing system that includes a backend component, e.g., as a data server, or that includes a middleware component, e.g., an application server, or that includes a frontend component, e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the subject matter described in this specification, or any combination of one or more such backend, middleware, or frontend components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include a local area network ("LAN") and a wide area network ("WAN"), an inter-network (e.g., the Internet), and peer-to-peer networks (e.g., ad hoc peer-to-peer networks).

[0264] The computing system can include clients and servers. A client and server are generally

remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other. In some implementations, a server transmits data (e.g., an HTML page) to a client device (e.g., for purposes of displaying data to and receiving user input from a user interacting with the client device). Data generated at the client device (e.g., a result of the user interaction) can be received from the client device at the server.

[0265] While this specification contains many specifics, these should not be construed as limitations on the scope of the disclosure or of what may be claimed, but rather as descriptions of features specific to particular implementations of the disclosure. Certain features that are described in this specification in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may

[0266] Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multi-tasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.

be directed to a sub-combination or variation of a sub-combination.

[0267] A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other implementations are within the scope of the following claims. For example, the actions recited in the claims can be performed in a different order and still achieve desirable results.

Claims

- 1. A computer-implemented method executing on data processing hardware that causes the data processing hardware to perform operations comprising: prompting a body weight of a patient to be input to a graphical user interface displayed on a screen of an insulin pump associated with the patient; receiving a value of the body weight of the patient via a manual input to the graphical user interface; determining an initial value of a basal dose of insulin to administer to the patient based on the value of the body weight of the patient; instructing the insulin pump to automatically dial in a number of units of insulin corresponding to the initial value of the basal dose and cause a doser of the insulin pump to administer the number of units of insulin corresponding to the initial value of the basal dose to the patient; receiving sequential glucose measurements of the patient, the sequential glucose measurements comprising a current glucose measurement measured at a current time and a previous glucose measurement measured before the current time; determining an adjustment factor for adjusting the initial value of the basal dose of insulin; determining a new value of the basal dose of insulin to administer to the patient by multiplying the adjustment factor times the initial value of the basal dose of insulin; and instructing the insulin pump to automatically dial in a new number of units of insulin corresponding to the new value of the basal dose and cause the doser of the insulin pump to administer the new number of units of insulin corresponding to the new value of the basal dose to the patient.
- **2.** The computer-implemented method of claim 1, wherein the operations further comprise: calculating a total daily dose (TDD) of insulin per day for the patient based on the value of the

- body weight of the patient, wherein determining the initial value of the basal dose of insulin to administer to the patient is based on the TDD of insulin calculated for the patient.
- **3.** The computer-implemented method of claim 2, wherein the TDD of insulin per day for the patient is calculated by: TDD = 0.5 * Weight(kg), wherein Weight (kg) denotes the value of the body weight of the patient in kilograms.
- **4.** The computer-implemented method of claim 1, wherein the operations further comprise: receiving a target glucose range for the patient, the target glucose range comprising a range of glucose values between and including a lower limit glucose value and an upper limit glucose value greater than the lower limit glucose value; and determining a correction bolus based on the current glucose measurement by calculating: $CB = (GM GM_{Target}) / CF$, wherein CB is the correction bolus, CB is the current glucose measurement, CB is a correction factor.
- **5.** The computer-implemented method of claim 4, wherein the operations further comprise instructing the insulin pump to automatically dial in another number of units of insulin corresponding to the correction bolus and cause the doser of the insulin pump to administer the another number of units of insulin corresponding to the correction bolus to the patient.
- **6**. The computer-implemented method of claim 4, wherein the operations further comprise: determining the correction factor using the data processing device by calculating: CF = CFR / TDD, wherein CF is the correction factor, CFR is a constant determined from a statistical correlation, and TDD is a total daily dose of insulin per day.
- **7.** The computer-implemented method of claim 1, wherein receiving the sequential glucose measurements of the patient comprises receiving the sequential glucose measurements from a continuous glucose monitoring system in communication with the data processing hardware.
- **8.** The computer-implemented method of claim 1, wherein receiving the sequential glucose measurements of the patient comprises: receiving the current glucose measurement measured at the current time via one of a manual input or a continuous glucose monitoring system in communication with the data processing hardware; and receiving the previous glucose measurement measured before the current time via the other one of the manual input or the continuous glucose monitoring system in communication with the data processing hardware.
- **9**. The computer-implemented method of claim 1, wherein the data processing hardware resides on the insulin pump.
- **10**. The computer-implemented method of claim 1, wherein the data processing hardware resides on a computing device in communication with the insulin pump via a wireless network.
- 11. A system comprising: a dosing controller including data processing hardware and a nontransitory computer-readable medium in communication with the data processing hardware, the data processing hardware configured to perform operations comprising: prompting a body weight of a patient to be input to a graphical user interface displayed on a screen of an insulin pump associated with the patient; receiving a value of the body weight of the patient via a manual input to the graphical user interface; determining an initial value of a basal dose of insulin to administer to the patient based on the value of the body weight of the patient; instructing the insulin pump to automatically dial in a number of units of insulin corresponding to the initial value of the basal dose and cause a doser of the insulin pump to administer the number of units of insulin corresponding to the initial value of the basal dose to the patient; receiving sequential glucose measurements of the patient, the sequential glucose measurements comprising a current glucose measurement measured at a current time and a previous glucose measurement measured before the current time; determining an adjustment factor for adjusting the initial value of the basal dose of insulin; determining a new value of the basal dose of insulin to administer to the patient by multiplying the adjustment factor times the initial value of the basal dose of insulin; and instructing the insulin pump to automatically dial in a new number of units of insulin corresponding to the new value of the basal dose and cause the doser of the insulin pump to administer the new number of

units of insulin corresponding to the new value of the basal dose to the patient.

- **12**. The system of claim 11, wherein the operations further comprise: calculating a total daily dose (TDD) of insulin per day for the patient based on the value of the body weight of the patient, wherein determining the initial value of the basal dose of insulin to administer to the patient is based on the TDD of insulin calculated for the patient.
- **13**. The system of claim 12, wherein the TDD of insulin per day for the patient is calculated by: TDD = 0.5 * Weight(kg), wherein Weight (kg) denotes the value of the body weight of the patient in kilograms.
- **14**. The system of claim 11, wherein the operations further comprise: receiving a target glucose range for the patient, the target glucose range comprising a range of glucose values between and including a lower limit glucose value and an upper limit glucose value greater than the lower limit glucose value; and determining a correction bolus based on the current glucose measurement by calculating: $CB = (GM GM_{Target}) / CF$, wherein CB is the correction bolus, CB is the current glucose measurement, CB is a midpoint of the target glucose range for the patient, and CB is a correction factor.
- **15.** The system of claim 14, wherein the operations further comprise instructing the insulin pump to automatically dial in another number of units of insulin corresponding to the correction bolus and cause the doser of the insulin pump to administer the another number of units of insulin corresponding to the correction bolus to the patient.
- **16.** The system of claim 14, wherein the operations further comprise: determining the correction factor using the data processing device by calculating: CF = CFR / TDD, wherein CF is the correction factor, CFR is a constant determined from a statistical correlation, and TDD is a total daily dose of insulin per day.
- **17**. The system of claim 11, wherein receiving the sequential glucose measurements of the patient comprises receiving the sequential glucose measurements from a continuous glucose monitoring system in communication with the data processing hardware.
- **18.** The system of claim 11, wherein receiving the sequential glucose measurements of the patient comprises: receiving the current glucose measurement measured at the current time via one of a manual input or a continuous glucose monitoring system in communication with the data processing hardware; and receiving the previous glucose measurement measured before the current time via the other one of the manual input or the continuous glucose monitoring system in communication with the data processing hardware.
- **19**. The system of claim 11, wherein the data processing hardware resides on the insulin pump.
- **20**. The system of claim 11, wherein the data processing hardware resides on a computing device in communication with the insulin pump via a wireless network.