Tarea 10 - Sistemas con retardos en la entrada

Roberto Cadena Vega

1 de marzo de 2015

Tarea 10 - Desarrollos para asignación de espectro finito.

Revisión de equivalencia de condición de estabilidad para predictor por asignación de espectro.

Dadas las expresiones para x(t) y u(t), demostrar que la estabilidad de una implica la otra.

$$x(t) = Bk \int_{-\tau}^{0} e^{-A\delta} x(t+\delta) d\delta$$
 (1)

$$u(t) = k \int_{-\tau}^{0} e^{-A\theta} Bu(t+\theta) d\theta$$
 (2)

Empezaremos con la ecuación 1. Para obtener la transformada de Laplace, primero haremos el caso mas general.

$$\mathcal{L}\left\{\int_{-\tau}^{0} G(\theta)Bu(t+\theta)d\theta\right\} = \int_{0}^{\infty} e^{-st} \int_{-\tau}^{0} G(\theta)Bu(t+\theta)d\theta dt$$

Si hacemos el cambio de variable $\theta=-\delta$, el diferencial será $d\theta=-d\delta$ con los limites de integración $\tau\to 0$, por lo que la integral queda:

$$\mathcal{L}\left\{\int_{-\tau}^{0} G(\theta)Bu(t+\theta)d\theta\right\} = -\int_{0}^{\infty} e^{-st} \int_{\tau}^{0} G(-\delta)Bu(t-\delta)d\delta dt$$

$$= \int_{0}^{\infty} e^{-st} \int_{0}^{\tau} G(-\delta)Bu(t-\delta)d\delta dt$$

$$= \int_{0}^{\infty} \int_{0}^{\tau} e^{-st}G(-\delta)Bu(t-\delta)d\delta dt$$

$$= \int_{0}^{\tau} \int_{0}^{\infty} e^{-st}G(-\delta)Bu(t-\delta)dt d\delta$$

$$= \int_{0}^{\tau} G(-\delta) \int_{0}^{\infty} e^{-st}Bu(t-\delta)dt d\delta$$

$$= \int_{0}^{\tau} G(-\delta)e^{-s\delta}Bu(s)d\delta$$

$$= \int_{0}^{\tau} G(-\delta)e^{-s\delta}d\delta Bu(s)$$

Si ahora regresamos a nuestra variable original, tendremos:

$$\mathcal{L}\left\{\int_{-\tau}^{0} G(\theta)Bu(t+\theta)d\theta\right\} = \int_{-\tau}^{0} G(\theta)e^{s\theta}d\theta Bu(s) \tag{3}$$

Regresando a la ecuación 1 y aplicando esta identidad, tenemos que:

$$x(t) = Bk \int_{-\tau}^{0} e^{-A\delta} x(t+\delta) d\delta$$

$$x(s) = Bk \int_{-\tau}^{0} e^{-A\delta} e^{s\delta} d\delta x(s)$$

$$= Bk \int_{-\tau}^{0} e^{(sI-A)\delta} d\delta x(s)$$

$$= Bk (sI - A)^{-1} e^{(sI-A)\delta} \Big|_{-\tau}^{0} x(s)$$

$$x(s) = Bk(sI - A)^{-1} \left[I - e^{-(sI-A)\tau} \right] x(s)$$

Por lo que al despejar todo a un lado de la ecuación, tenemos que el polinomio caracteristico es:

$$\det\left\{I - Bk(sI - A)^{-1} \left[I - e^{-(sI - A)\tau}\right]\right\} \tag{4}$$

Por otro lado, si efectuamos el mismo procedimiento a la ecuación 2, obtendremos:

$$u(t) = k \int_{-\tau}^{0} e^{-A\theta} Bu(t+\theta) d\theta$$

$$u(s) = k \int_{-\tau}^{0} e^{-A\theta} e^{s\theta} d\theta Bu(s)$$

$$= k \int_{-\tau}^{0} e^{(sI-A)\theta} d\theta Bu(s)$$

$$= k (sI - A)^{-1} e^{(sI-A)\theta} \Big|_{-\tau}^{0} Bu(s)$$

$$u(s) = k(sI - A)^{-1} \left[I - e^{-(sI-A)\tau} \right] Bu(s)$$

Por lo que al despejar todo a un lado de la ecuación, tenemos que el polinomio caracteristico es:

$$\det\left\{I - k(sI - A)^{-1} \left[I - e^{-(sI - A)\tau}\right]B\right\} \tag{5}$$

Y si aplicamos la identidad $\det(I-MN) = \det(I-NM)[1]$, tendremos que este ultimo polinomio característico es equivalente al primero:

$$\det\left\{I - Bk(sI - A)^{-1} \left[I - e^{-(sI - A)\tau}\right]\right\} \tag{6}$$

por lo que la estabilidad de una expresión, implica la de la otra.

Balanceo de terminos en funcionales de tipo completo.

Dada la funcional asociada al problema de robustez ante la incertidumbre del retardo, tenemos que su derivada cumple:

$$\frac{dv(z_{t})}{dt} \leq -\alpha_{1} ||z(t)||^{2} - \alpha_{2} ||z(t-h)||^{2} - \alpha_{3} \int_{-h}^{0} ||z(t+\theta)||^{2} d\theta$$
terminos positivos a compensar
$$+\alpha_{4} \int_{-h-\eta}^{-h} ||z(t+\theta)||^{2} + \alpha_{5} \int_{-2h-2\eta}^{-2h-\eta} ||z(t+\theta)||^{2} \tag{7}$$

por lo que investigamos la manera de introducir terminos similares para compensarlos y obtener $\frac{dv(x_t)}{dt} \le 0$. Propongamos una funcional de la forma:

$$\bar{v}(z_t) = \int_{\delta - n}^{\delta} \int_{t + \theta}^{t - h} z^T(s) Rz(s) ds d\theta$$
 (8)

La cual tendrá una derivada de la forma:

$$\begin{split} \frac{d\bar{v}(z_t)}{dt} &= \int_{\delta-\eta}^{\delta} \frac{d}{dt} \int_{t+\theta}^{t-h} z^T(s) Rz(s) ds d\theta \\ &= \int_{\delta-\eta}^{\delta} z^T(t-h) Rz(t-h) d\theta - \int_{\delta-\eta}^{\delta} z^T(t+\theta) Rz(t+\theta) d\theta \\ &= z^T(t-h) Rz(t-h) \left[\delta - (\delta-\eta)\right] - \int_{\delta-\eta}^{\delta} z^T(t+\theta) Rz(t+\theta) d\theta \\ &= \eta z^T(t-h) Rz(t-h) - \int_{\delta-\eta}^{\delta} z^T(t+\theta) Rz(t+\theta) d\theta \\ &\leq \eta \lambda_{max}(R) \left| |z(t-h)||^2 - \lambda_{max}(R) \int_{\delta-\eta}^{\delta} ||z(t+\theta)||^2 \end{split}$$

por lo que:

$$\varepsilon \frac{d\bar{v}(z_t)}{dt} \le \varepsilon \eta \lambda_{max}(R) ||z(t-h)||^2 - \varepsilon \lambda_{max}(R) \int_{\delta-n}^{\delta} ||z(t+\theta)||^2$$

Si proponemos dos funcionales:

$$\bar{v}_4(z_t) = \int_{-h-\eta}^{-h} \int_{t+\theta}^{t-h} z^T(s) Rz(s) ds d\theta$$

$$\bar{v}_5(z_t) = \int_{-2h-2\eta}^{-2h-\eta} \int_{t+\theta}^{t-h} z^T(s) Rz(s) ds d\theta$$

tendremos que sus derivadas estarán acotadas por:

$$\varepsilon_{4} \frac{d\bar{v}(z_{t})}{dt} \leq \varepsilon_{4} \eta \lambda_{max}(R) ||z(t-h)||^{2} - \varepsilon_{4} \lambda_{max}(R) \int_{-h-\eta}^{-h} ||z(t+\theta)||^{2} \\
\varepsilon_{5} \frac{d\bar{v}(z_{t})}{dt} \leq \varepsilon_{5} \eta \lambda_{max}(R) ||z(t-h)||^{2} - \varepsilon_{5} \lambda_{max}(R) \int_{-2h-2\eta}^{-2h-\eta} ||z(t+\theta)||^{2}$$

y al agregar estas funcionales a la original, tendremos:

$$\begin{aligned} \frac{dv(z_{t})}{dt} &\leq -\alpha_{1} ||z(t)||^{2} - [\alpha_{2} - \varepsilon_{4} \eta \lambda_{max}(R) - \varepsilon_{5} \eta \lambda_{max}(R)] ||z(t-h)||^{2} \\ &- \alpha_{3} \int_{-h}^{0} ||z(t+\theta)||^{2} d\theta - [\varepsilon_{4} \lambda_{max}(R) - \alpha_{4}] \int_{-h-\eta}^{-h} ||z(t+\theta)||^{2} \\ &- [\varepsilon_{5} \lambda_{max}(R) - \alpha_{5}] \int_{-2h-2\eta}^{-2h-\eta} ||z(t+\theta)||^{2} \end{aligned}$$

Por lo que conlcuimos que para que esta funcional cumpla con la condición de negatividad de la derivada de Lyapunov-Krasovskii y estabilice al sistema, se deben cumplir:

 $\alpha_{1} \geq 0 \tag{9}$ $\alpha_{2} - \varepsilon_{4} \eta \lambda_{max}(R) - \varepsilon_{5} \eta \lambda_{max}(R) \geq 0 \tag{10}$ $\alpha_{3} \geq 0 \tag{11}$ $\varepsilon_{4} \lambda_{max}(R) - \alpha_{4} \geq 0 \tag{12}$ $\varepsilon_{5} \lambda_{max}(R) - \alpha_{5} \geq 0 \tag{13}$

Referencias

[1] T. Kailath, Linear Systems. Prentice-Hall, 1980.