The strong rainbow vertex-connection of graphs *

Xueliang Li, Yaping Mao, Yongtang Shi Center for Combinatorics and LPMC-TJKLC Nankai University, Tianjin 300071, P.R. China E-mails: lxl@nankai.edu.cn; maoyaping@ymail.com; shi@nankai.edu.cn

Abstract

A vertex-colored graph G is said to be rainbow vertex-connected if every two vertices of G are connected by a path whose internal vertices have distinct colors, such a path is called a rainbow path. The rainbow vertex-connection number of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. If for every pair u, v of distinct vertices, G contains a rainbow u-v geodesic, then G is strong rainbow vertex-connected. The minimum number k for which there exists a k-vertex-coloring of G that results in a strongly rainbow vertex-connected graph is called the strong rainbow vertex-connection number of G, denoted by srvc(G). Observe that $rvc(G) \leq srvc(G)$ for any nontrivial connected graph G.

In this paper, sharp upper and lower bounds of srvc(G) are given for a connected graph G of order n, that is, $0 \le srvc(G) \le n-2$. Graphs of order n such that srvc(G) = 1, 2, n-2 are characterized, respectively. It is also shown that, for each pair a, b of integers with $a \ge 5$ and $b \ge (7a-8)/5$, there exists a connected graph G such that rvc(G) = a and srvc(G) = b.

Keywords: vertex-coloring; rainbow vertex-connection; (strong) rainbow vertex-connection number.

AMS subject classification 2010: 05C15, 05C40, 05C76.

1 Introduction

All graphs considered in this paper are finite, undirected and simple. We follow the notation and terminology of Bondy and Murty [1], unless otherwise stated. Consider an edge-coloring (not necessarily proper) of a graph G = (V, E). We say that a path of G is rainbow, if no two edges on the path have the same color. An edge-colored graph G is rainbow connected if every two vertices are connected by a rainbow path. An edge-coloring is a strong rainbow coloring if between every pair of vertices, one of their geodesics, i.e., shortest paths, is a rainbow path. The minimum number of colors required to rainbow color a graph G is called the rainbow connection number, denoted by rc(G).

^{*}Supported by NSFC.

Similarly, the minimum number of colors required to strongly rainbow color a graph G is called the *strong rainbow connection number*, denoted by src(G). Observe that $rc(G) \leq src(G)$ for every nontrivial connected graph G. The notions of rainbow coloring and strong rainbow coloring were introduced by Chartrand et al. [4]. There are many results on this topic, we refer to [2, 3].

In [7], Krivelevich and Yuster proposed a similar concept, the concept of rainbow vertex-connection. A vertex-colored graph G is rainbow vertex-connected if every two vertices are connected by a path whose internal vertices have distinct colors, and such a path is called a rainbow path. The rainbow vertex-connection number of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. Note the trivial fact that rvc(G) = 0 if and only if G is a complete graph (here an uncolored graph is also viewed as a colored one with 0 color). Also, clearly, $rvc(G) \geq diam(G) - 1$ with equality if the diameter is 1 or 2. In [5], the authors considered the complexity of determining the rainbow vertex-connection of a graph. In [7] and [8], the authors gave upper bounds for rvc(G) in terms of the minimum degree of G.

For more results on the rainbow connection and rainbow vertex-connection, we refer to the survey [9] and a new book [10] of Li and Sun.

A natural idea is to introduce the concept of strong rainbow vertex-connection. A vertex-colored graph G is $strongly\ rainbow\ vertex-connected$, if for every pair u,v of distinct vertices, there exists a rainbow u-v geodesic. The minimum number k for which there exists a k-coloring of G that results in a strongly rainbow vertex-connected graph is called the $strong\ rainbow\ vertex-connection\ number$ of G, denoted by srvc(G). Similarly, we have $rvc(G) \leq srvc(G)$ for every nontrivial connected graph G. Furthermore, for a nontrivial connected graph G, we have

$$diam(G) - 1 \le rvc(G) \le srvc(G),$$

where diam(G) denotes the diameter of G. The following results on srvc(G) are immediate from definition.

Proposition 1.1 Let G be a nontrivial connected graph of order n. Then

- (a) srvc(G) = 0 if and only if G is a complete graph;
- (b) srvc(G) = 1 if and only if diam(G) = 2.

Then, it is easy to see the following results.

Corollary 1.2 Let $K_{s,t}$, $K_{n_1,n_2,...,n_k}$, W_n and P_n denote the complete bipartite graph, complete multipartite graph, wheel and path, respectively. Then

- (1) For integers s and t with $s \geq 2, t \geq 1$, $srvc(K_{s,t}) = 1$.
- (2) For $k \geq 3$, $srvc(K_{n_1,n_2,...,n_k}) = 1$.
- (3) For $n \ge 3$, $srvc(W_n) = 1$.
- (4) For $n \geq 3$, $srvc(P_n) = n 2$.

It is easy to see that if H is a connected spanning subgraph of a nontrivial (connected) graph G, then $rvc(G) \leq rvc(H)$. However, the strong rainbow

vertex-connection number does not have the monotone property. An example is given in Figure 1, where $H = G \setminus v$ is a subgraph of G, but it is easy to check that srvc(G) = 9 > 8 = srvc(H). Here, one has to notice that any two cut vertices must receive distinct colors in a rainbow vertex-coloring, just like a rainbow coloring for which any two cut edges must receive distinct colors.

Figure 1.1 A counterexample for the monotonicity of the strong rainbow vertex-connection number.

In this paper, sharp upper and lower bounds of srvc(G) are given for a connected graph G of order n, that is, $0 \le srvc(G) \le n-2$. Graphs of order n such that srvc(G) = 1, 2, n-2 are characterized, respectively. It is also shown that, for each pair a, b of integers with $a \ge 5$ and $b \ge (7a-8)/5$, there exists a connected graph G such that rvc(G) = a and srvc(G) = b.

2 Bounds and characterization of extremal graphs

In this section, we give sharp upper and lower bounds of the strong rainbow vertex-connection number of a graph G of order n, that is, $0 \le srvc(G) \le n-2$. Furthermore, from the these bounds, we can characterize all the graphs with srvc(G) = 0, 1, n-2, respectively. Now we state a useful lemma.

Lemma 2.1 Let u, v be two vertices of a connected graph G. If the distance $d_G(u, v) \ge diam(G) - 1$, then there exists no geodesic containing both of u and v as its internal vertices.

Proof. Assume, to the contrary, that there exists a geodesic $R: w_1 - w_2$ containing both u and v as its internal vertices. Then $d_G(w_1, w_2) \ge d_G(u, v) + d_G(w_1, u) + d_G(v, w_2) \ge diam(G) + 1$, which contradicts to the definition of diameter.

Theorem 2.2 Let G be a connected graph of order $n \ (n \ge 3)$. Then $0 \le srvc(G) \le n-2$. Moreover, the bounds are sharp.

Proof. For n = 3, we know $G = K_3$ or P_3 . Since $srvc(K_3) = 0 < n - 2$ and $srvc(P_3) = 1 = n - 2$, the result holds. Assume $n \ge 4$. If diam(G) = 1, then

G is a complete graph and $srvc(G) = 0 \le n - 2$. If diam(G) = 2, then we have $srvc(G) = 1 \le n - 2$ by Proposition 1.1.

Now suppose that $diam(G) \geq 3$. Let diam(G) = k and u, v be two vertices at distance k. Let $P: u(=x_0), x_1, x_2, \ldots, x_k(=v)$ be a geodesic connecting u and v. Let c be a (n-2)-vertex-coloring of G defined as: $c(u) = c(x_{k-1}) = 1$, $c(x_1) = c(v) = 2$, and assigning the n-4 distinct colors $\{3, 4, \ldots, n-2\}$ to the remaining n-4 vertices of G. Then we will show that the coloring c is indeed a strong rainbow (n-2)-vertex-coloring.

It is easy to see that $d_G(u, x_{k-1}) \ge k-1$ and $d_G(v, x_1) \ge k-1$. From Lemma 2.1, there exists no geodesic containing both of u and x_{k-1} as its internal vertices. The same is true for vertices v and x_1 . So, any geodesic connecting any two vertices of G must be rainbow. Thus, we have $0 \le srvc(G) \le n-2$.

We show that the bounds are sharp. The complete graph K_n attains the lower bound and the path graph P_n attains the upper bound.

From Theorem 2.2, we know that P_n is the graph satisfying that $srvc(P_n) = n-2$. Actually, P_n is the unique graph with this property. That is the following theorem, which can be easily deduced from Lemma 2.4.

Theorem 2.3 (1) srvc(G) = 0 if and only if G is a complete graph;

- (2) srvc(G) = 1 if and only if diam(G) = 2;
- (3) srvc(G) = n 2 if and only if G is a path of order n.

Lemma 2.4 Let G be a connected graph of order $n \ (n \ge 3)$. If G is not a path, then $srvc(G) \le n-3$.

Proof. For n = 3, we know that $G = K_3$ and srvc(G) = 0 = n - 3. For $n \ge 4$, we distinguish the following two cases according to the minimum degree $\delta(G)$ of G. Let diam(G) = k.

Case 1. $\delta(G) \geq 2$.

For $4 \le n \le 5$, $srvc(G) \le 1 \le n-3$ since $k \le 2$. Assume $n \ge 6$. If k=1, then G is a complete graph and $srvc(G) = 0 \le n-3$. If k=2, then it follows that $srvc(G) = 1 \le n-3$.

Now suppose that $k \geq 3$ and let $P: u(=x_0), x_1, x_2, \ldots, x_k(=v)$ be a geodesic of order k. Since $\delta(G) \geq 2$, there exist two vertices $u'(\neq x_1)$ and $v' \neq x_{k-1}$ such that u' and v' are adjacent to u and v, respectively.

We check whether there exists a geodesic in G containing both of u' and x_{k-1} as its internal vertices or containing both of x_1 and v' as its internal vertices. If G has such geodesics, we choose one, say $Q := w_1 - w_2$ containing both of u' and x_{k-1} as its internal vertices. It is easy to see that w_1 and w_2 must be adjacent to u' and x_{k-1} , respectively. We have the following four subcases to consider.

Subcase 1.1. $w_1 \neq u$ and $w_2 = v$.

Since P is a geodesic, $d_G(x_1, v) \geq k - 1$. Since $d_G(u, v') + d_G(v', v) \geq d_G(u, v) = k$, we have $d_G(u, v') \geq k - 1$. By the same reason, $d_G(u', x_{k-1}) \geq k - 2$. Thus $d_G(w_1, x_{k-1}) \geq k - 1$. By Lemma 2.1, there exists no geodesic

Figure 2.1 Four cases of w_1 and w_2

containing both of w_1 and x_{k-1} as its internal vertices. The same is true for v, x_1 or u, v'. Then the following (n-3)-vertex-coloring c_1 of G is a strong rainbow vertex-coloring: $c_1(u) = c_1(v') = 1$, $c_1(v) = c_1(x_1) = 2$, $c_1(w_1) = c_1(x_{k-1}) = 3$ and assigning the n-6 distinct colors $\{4, 5, \ldots, n-3\}$ to the remaining n-6 vertices. So $srvc(G) \leq n-3$.

Subcase 1.2. $w_1 \neq u$ and $w_2 \neq v$.

It is obvious that $d_G(w_1, x_{k-1}) \geq k-1$ and $d_G(w_2, u') \geq k-1$ and $d_G(u, v) > k-1$. Then the following (n-3)-vertex-coloring c_2 of G is a strong rainbow vertex-coloring: $c_2(u') = c_2(w_2) = 1$, $c_2(w_1) = c_2(x_{k-1}) = 2$, $c_2(u) = c_2(v) = 3$ and assigning the n-6 distinct colors $\{4, 5, \ldots, n-3\}$ to the remaining n-6 vertices. So $srvc(G) \leq n-3$.

Subcase 1.3. $w_1 = u$ and $w_2 \neq v$.

It is easy to see that $d_G(u, x_{k-1}) \ge k-1$ and $d_G(w_2, x_1) \ge k-1$ and $d_G(u', v) \ge k-1$. From Lemma 2.1, we know that the following (n-3)-vertex-coloring c_3 of G is a strong rainbow vertex-coloring: $c_3(u') = c_3(v) = 1$, $c_3(u) = c_3(x_{k-1}) = 2$, $c_3(x_1) = c_3(w_2) = 3$ and assigning the n-6 distinct colors $\{4, 5, \ldots, n-3\}$ to the remaining n-6 vertices. Hence, we have $srvc(G) \le n-3$.

Subcase 1.4. $w_1 = u$ and $w_2 = v$.

We will show that the following (n-3)-vertex-coloring c_4 of G is a strong rainbow vertex-coloring: $c_4(u) = c_4(v) = 1$, $c_4(u') = c_4(x_{k-1}) = 2$, $c_4(x_1) = c_4(v') = 3$ and assigning the n-6 distinct colors $\{4,5,\ldots,n-3\}$ to the remaining n-6 vertices.

In this case, we can use the geodesic $P: w_1(=u), x_1, x_2, \ldots, x_{k-1}, v(=w_2)$ instead of geodesic Q to connect w_1 and w_2 , which implies that u' and x_{k-1} can be assigned with the same color. From this together with $d_G(u, v) = k$, we know that if there exists no geodesic containing x_1 and v' as its internal vertices, then c_4 is a strong rainbow vertex-coloring.

If there exists a geodesic $R: s_1-s_2$ containing both of x_1 and v' as its internal vertices and $s_1 \neq u, s_2 \neq v$ or $s_1 \neq u, s_2 = v$ or $s_1 = u, s_2 \neq v$, we can employ similar discussions as the above three subcases of Case 1 to get $srvc(G) \leq n-3$.

If there is no geodesic containing both of u' and x_{k-1} as its internal vertices and containing both of v' and x_1 as its internal vertices, then it is obvious that c_4 is also a strong rainbow vertex-coloring of G. Therefore, $srvc(G) \leq n-3$.

Case 2. G has pendant vertices.

In this case, we will show that $srvc(G) \leq n-3$ by induction on n. If n=4, then G must be the star $K_{1,3}$ or a graph obtained by identifying a vertex of K_3 to a vertex of K_2 . From Proposition 1.1, we have srvc(G) = 1 = n-3 since diam(G) = 2. Suppose that the assertion holds for a graph G of smaller order. We can always find a pendant vertex v in G such that H = G - v is not a path. Let u be adjacent to v in G. We distinguish the following two subcases.

Subcase 2.1. $\delta(H) = 1$.

Since H has pendant vertices but H is not a path, by induction hypothesis, $srvc(H) \leq n-4$. We give G a strong rainbow (n-4)-vertex-coloring. Without loss of generality, suppose that color 1 was assigned to u in H. Then we give u a fresh color instead of 1 and color v with 1. Such a (n-3)-vertex-coloring of G is a strong rainbow vertex-coloring. Thus, we have $srvc(G) \leq n-3$.

Subcase 2.2. $\delta(H) \geq 2$.

In this subcase, we can get $srvc(H) \leq n-4$ by a similar discussion to Case 1. We also can obtain $srvc(G) \leq n-3$ by giving a same vertex-coloring of G as Subcase 2.1.

From the above arguments, we obtain that $srvc(G) \le n-3$ if G is not a path.

3 The difference of rvc(G) and srvc(G)

Figure 3.1 Graphs that are used in the proof of Theorem 3.1.

In [4], the authors proved that for any pair a, b of integers with a = b or $3 \le a < b$ and $b \ge (5a - 6)/3$, there exists a connected graph G such that rc(G) = a and src(G) = b. Later, Chen and Li [6] confirmed a conjecture of [4] that for any pair a, b of integers, there is a connected graph G such that rc(G) = a and src(G) = b if and only if $a = b \in \{1, 2\}$ or $3 \le a \le b$. For the two vertex-version parameters rvc(G) and srvc(G), we can obtain a similar result as follows.

Theorem 3.1 Let a and b be integers with $a \ge 5$ and $b \ge (7a - 8)/5$. Then there exists a connected graph G (as shown in Figure 3(b)) such that rvc(G) = a and srvc(G) = b.

We construct a two-layers-wheel graph, denoted by W_n^2 , as follows: given two n-cycles $C_n^1: u_1, u_2, \ldots, u_n, u_1$ and $C_n^2: v_1, v_2, \ldots, v_n, v_1$, for $1 \leq i \leq n$, join u_i to a new vertex w and v_i (see Figure 3 (a)).

Lemma 3.2 For $n \geq 3$, the rainbow vertex-connection number of the two-layers-wheel W_n^2 is

$$rvc(W_n^2) = \begin{cases} 1 & if \ n = 3, \\ 2 & if \ 4 \le n \le 6, \\ 3 & if \ 7 \le n \le 10, \\ 4 & if \ n \ge 11. \end{cases}$$

Proof. Since $diam(W_3^2) = 2$, it follows that $rvc(W_3^2) = 1$. For $4 \le n \le 6$, $diam(W_n^2) = 3$ and then $rvc(W_n^2) \ge 2$. Given a 2-coloring c_1 as follows: $c_1(w) = 2$, $c_1(u_i) = 1$ for $1 \le i \le n$, $c_1(v_i) = 1$ when i is odd and $c_1(v_i) = 2$ otherwise. Observe that c_1 is a rainbow vertex-coloring, which implies that $rvc(W_n^2) = 2$ for $4 \le n \le 6$.

For n=7, $diam(W_n^2)=3$ and so $rvc(W_n^2)\geq 2$. We will show that $rvc(W_n^2) \neq 2$. Assume, to the contrary, that $rvc(W_n^2) = 2$. Let c' be a rainbow 2-coloring of W_n^2 . We consider the rainbow path connecting v_1 and v_4 . Since $rvc(W_n^2) = 2$, v_2 and v_3 must have distinct colors. Without loss of generality, let $c'(v_2) = 1$ and $c'(v_3) = 2$. Similarly, v_6 and v_7 must have distinct colors if considering the rainbow path connecting v_1 and v_5 . If $c'(v_6) = 1$ and $c'(v_7) = 2$, then there is no rainbow path connecting v_2 and v_6 if $c'(v_1) = 2$ and also no rainbow path connecting v_3 and v_7 if $c'(v_1) = 1$. Now suppose $c'(v_6) = 2$ and $c'(v_7) = 1$, there is no rainbow path connecting v_2 and v_6 if $c'(v_1) = 1$. Thus $c'(v_1) = 2$. By the same reason, v_4 and v_5 must have distinct colors. But there is no rainbow path connecting v_4 and v_7 if $c'(v_4) = 1$ and $c'(v_5) = 2$ and no rainbow path connecting v_2 and v_5 if $c'(v_4) = 2$ and $c'(v_5) = 1$, a contradiction. Hence, we have $rvc(W_n^2) \geq 3$. Define the 3-coloring c_2 of W_n^2 as follows: $c_2(w) = 3$, $c_2(u_i) = 1$ when i is odd and $c_2(u_i) = 2$ otherwise; $c_2(v_i) = 3$ when i is odd and $c_2(v_i) = 2$ when i is even for $1 \le i \le 5$, $c_2(v_6) = 1, c_2(v_7) = 2$. It is easy to check that c_2 is a rainbow vertex-coloring, which means that $rvc(W_n^2) = 3$ for n = 7.

For $8 \leq n \leq 9$, $diam(W_n^2) = 4$ and so $rvc(W_n^2) \geq 3$. In this case, we define the 3-coloring c_3 of W_n^2 as follows: $c_3(w) = 3$, $c_3(u_i) = 1$ when i is odd and $c_3(u_i) = 2$ otherwise, $c_3(v_i) = 1$ when $i \equiv 2 \pmod{3}$, $c_3(v_i) = 2$ when $i \equiv 0 \pmod{3}$, $c_3(v_i) = 3$ when $i \equiv 1 \pmod{3}$. This coloring is also a rainbow vertex-coloring and it follows that $rvc(W_n^2) = 3$ for $8 \leq n \leq 9$.

For n = 10, $diam(W_n^2) = 4$ and so $rvc(W_n^2) \ge 3$. Define the 3-coloring c_4 as follows: $c_4(w) = 3$, $c_4(u_i) = 1$ for $1 \le i \le 5$ and $c_4(u_i) = 2$ for $6 \le i \le 10$, $c_4(v_1) = 2$, $c_4(v_i) = i - 1$ for $2 \le i \le 4$, $c_4(v_i) = i - 4$ for $5 \le i \le 7$, $c_4(v_8) = 2$, $c_4(v_9) = 1$, $c_4(v_{10}) = 3$. One can check that c_4 is a rainbow vertex-coloring and it follows that $rvc(W_n^2) = 3$ for n = 10.

Finally, suppose that $n \geq 11$. Observe that the 4-coloring c is a rainbow vertex-coloring: c(w) = 3, $c(u_i) = 1$ when i is odd and $c(u_i) = 2$ otherwise, $c(v_i) = 4$ for all i. It remains to show that $rvc(W_n^2) \geq 4$. Assume, to the contrary, that $rvc(W_n^2) = 3$. Let c' be a rainbow 3-vertex-coloring of W_n^2 . Without loss of generality, assume that $c'(u_1) = 1$. For each i with $6 \leq i \leq n-4$, v_1, u_1, w, u_i, v_i is the only $v_1 - v_i$ path of length 4 in W_n^2 and so u_1, w and u_i must have different colors. Without loss of generality, let c'(w) = 3 and $c'(u_i) = 2$. Since $c'(u_6) = 2$, it follows that $c'(u_n) = 1$. This forces $c'(u_5) = 2$, which in turn forces $c'(u_{n-1}) = 1$. Similarly, $c'(u_{n-1}) = 1$ forces $c'(u_4) = 2$; $c'(u_4) = 2$ forces $c'(u_{n-2}) = 1$; $c'(u_{n-2}) = 1$ forces $c'(u_3) = 2$; $c'(u_3) = 2$ forces $c'(u_{n-3}) = 1$; $c'(u_{n-3}) = 1$ forces $c'(u_2) = 2$. There is no rainbow $v_2 - v_7$ path in W_n^2 , which is a contradiction. Therefore, $rvc(W_n^2) = 4$ for $n \geq 11$.

Lemma 3.3 For $n \geq 3$, the strong rainbow vertex-connection number of the two-layers-wheel W_n^2 is

$$srvc(W_n^2) = \left\{ \begin{array}{ll} \lceil \frac{n}{5} \rceil & if \ n = 3, 6; \\ \lceil \frac{n}{5} \rceil + 1 & if \ n \geq 4 \ and \ n \neq 6. \end{array} \right.$$

Proof. Since $diam(W_3^2) = 2$, it follows by Proposition 1.1 that $srvc(W_3^2) = 1$. If $4 \le n \le 6$, we can check that the coloring c_1 given in the proof of Lemma 3.2 is a strong rainbow 2-vertex-coloring. So $srvc(W_n^2) \le 2$. From this together with $srvc(W_n^2) \ge rvc(W_n^2) = 2$, it follows that $srvc(W_n^2) = 2$. If $7 \le n \le 10$, we can check that the coloring c_2 , c_3 and c_4 given in the proof of Lemma 3.2 is a strong rainbow 3-vertex-coloring. So $srvc(W_n^2) \le 3$. Combining this with $srvc(W_n^2) \ge rvc(W_n^2) = 3$, we have $srvc(W_n^2) = 3$.

Now we may assume that $n \geq 11$. Then there is an integer k such that $5k-4 \leq n \leq 5k$. We first show that $srvc(W_n^2) \geq k+1$. Assume, to the contrary, that $srvc(W_n^2) \leq k$. Let c be a strong rainbow k-vertex-coloring of W_n . If $C_n^1 \cup \{w\}$ uses all the k colors, it is easy to see that w and u_i must have distinct colors, which implies $c(u_j) \in \{1, 2, \ldots, k-1\}$ for $1 \leq i \leq n$. If there exists one color which only appears in $V(C_n^2)$, then we also have $c(u_j) \in \{1, 2, \ldots, k-1\}$ for $1 \leq i \leq n$. Since d(w) = n > 5(k-1), there exists one subset $S \subseteq V(C_n^1)$ such that |S| = 6 and all vertices in S are colored the same. Thus, there exist at least two vertices u', $u'' \in S$ such that $d_{C_n^1}(u', u'') \geq 5$ and $d_P(u', u'') = 4$, where P := v', u', w, u'', v''. Since P is the

only u'-u'' geodesic in W_n^2 , it follows that there is no rainbow v'-v'' geodesic in W_n^2 , a contradiction. Therefore, $srvc(W_n^2) \ge k+1$.

To show that $srvc(W_n^2) \leq k+1$, we provide a strong rainbow (k+1)-vertex-coloring $c^*: V(W_n^2) \to \{1, 2, \dots, k+1\}$ of W_n^2 defined by

$$c^*(v) = \begin{cases} k+1 & v = w \\ 1, & if \ v = v_i \ and \ i \equiv 2 \pmod{5}, \\ 2 & if \ v = v_i \ and \ i \equiv 3 \pmod{5}, \\ 3 & if \ v = v_i \ and \ i \equiv 4 \pmod{5}, \\ j+1 & if \ v = u_i \ i \in \{5j+1, \dots, 5j+5\} \ for \ 0 \le j \le k-1, \\ 1 & otherwise. \end{cases}$$

Therefore, $srvc(W_n^2) = k + 1 = \lceil \frac{n}{5} \rceil + 1$ for $n \ge 11$.

Proof of Theorem 3.1. Let n = 5b - 5a + 10 and let W_n^2 be the two-layers-wheel. Let G be the graph constructed from W_n^2 and the path P_{a-1} : $s_0, s_1, s_2, \ldots, s_{a-2}$ of order a-1 by identifying w and s_{a-2} (see Figure 3 (b)).

First, we show that rvc(G) = a. Since $b \ge (7a - 8)/5$ and $a \ge 5$, it follows that b > a and so n = 5b - 5a + 10 > 11. By Lemma 3.2, we then have rvc(G) = 4. Define a vertex-coloring c of the graph G by

$$c(v) = \begin{cases} 1 & \text{if } v = v_i \text{ for } 1 \le i \le n, \\ a & \text{if } v = u_i \text{ and } i \text{ is odd,} \\ a - 1 & \text{if } v = u_i \text{ and } i \text{ is even,} \\ i & \text{if } v = s_i \text{ for } 1 \le i \le a - 2. \end{cases}$$

It follows that $rvc(G) \leq a$, since c is a rainbow a-vertex-coloring of G.

It remains to show that $rvc(G) \geq a$. Assume, to the contrary, that $rvc(G) \leq a-1$. Let c' be a rainbow (a-1)-vertex-coloring of G. Since the path $s_0, s_1, s_2, \ldots, s_{a-2}(=w), u_i$ is the only $s_0 - u_i$ path in G, the internal vertices of this path must be colored differently by c'. We may assume, without loss of generality, that $c'(s_i) = i$ for $1 \leq i \leq a-2$. For each j with $1 \leq j \leq 5b-5a+10$, there is a unique $s_0 - v_j$ path of length a in G and so $c'(u_j) = a-1$ for $1 \leq j \leq 5b-5a+10$. Consider the vertices v_1 and v_{a+2} . Since $b \geq (7a-8)/5$, $n=5b-5a+10 \geq 2a+2$ and the possible rainbow path connecting v_1 and v_{a+2} must be $v_1, u_1, w, u_{a+2}, v_{a+2}$. But it is impossible since $c'(u_1) = c'(u_{a+2}) = a-1$, which implies that there is no $v_1 - v_{a+2}$ rainbow path, contradicting our assumption that c' is a rainbow (a-1)-coloring of G. Thus, $rvc(G) \geq a$ and then rvc(G) = a.

In the following, we show that srvc(G) = b. Since n = 5b - 5a + 10 = 5(b-a+2) > 11, it follows from Lemma 3.3 that $srvc(W_n^2) = b - a + 3$. Let c_1 be a strong rainbow (b-a+3)-vertex-coloring of W_n^2 . Define a vertex-coloring c of the graph G by

$$c(v) = \begin{cases} c_1(v) & \text{if } v \in V(W_n^2); \\ b - a + 3 + i & \text{if } v = s_i \text{ for } 0 \le i \le a - 3. \end{cases}$$

It follows that $srvc(G) \leq b$, since c is a strong rainbow b-vertex-coloring of G. It remains to show that $srvc(G) \geq b$. Assume, to the contrary, that $srvc(G) \leq b-1$. Let c^* be a strong rainbow (b-1)-vertex-coloring of G. We may assume, without loss of generality, that $c^*(s_i) = i$ for $1 \leq i \leq a-2$. For each j with $1 \leq j \leq 5b-5a+10$, there is a unique s_0-w-v_j geodesic in G, implying $c^*(u_j) \in \{a-1,a,\ldots,b-1\}$. Let $S = \{u_j : 1 \leq j \leq 5b-5a+10\}$. Then |S| = 5b-5a+10 and |C| = b-a+1. Since at most five vertices in S can be colored the same, the b-a+1 colors in C can color at most 5(b-a+1) = 5b-5a+5 vertices, producing a contradiction. Therefore, $srvc(G) \geq b$ and so srvc(G) = b.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
- [2] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008), R57.
- [3] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connectivity, 26th International Symposium on Theoretical Aspects of Computer Science STACS 2009 (2009), 243–254. Also, see *J. Combin. Optim.* **21**(2011), 330–347.
- [4] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, *Rainbow connection in graphs*, Math. Bohem. **133**(2008), 85-98.
- [5] L. Chen, X. Li, Y. Shi, The complexity of determining the rainbow vertex-connection of a graph, *Theoret. Comput. Sci.* **412**(2011), 4531–4535.
- [6] X. Chen, X. Li, A solution to a conjecture on two rainbow connection numbers of a graph, *Ars Combin.* 104(2012).
- [7] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree three, IWOCA 2009, LNCS 5874(2009), 432-437.
- [8] X. Li, Y. Shi, On the rainbow vertex-connection, arXiv:1012.3504 [math.CO] 2010.
- [9] X. Li, Y. Sun, Rainbow connections of graphs—A survey, arXiv:1101.5747 [math.CO] 2011.
- [10] X. Li, Y. Sun, *Rainbow Connections of Graphs*, SpringerBriefs in Math., Springer, New York, 2012.