Nom:	Prénom:
------	---------

MAIN4

Année 2018/2019

Calculabilité - Décidabilité (ICC)

Interrogation n°2 - Grammaires hors-contexte et automates à pile

Le barême est donné à titre indicatif

Le sujet se décompose en 4 exercices indépendants. La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'évaluation de la copie. Il conviendra de bien détailler les étapes d'un algorithme et non pas de donner directement le résultat.

Exercice 1 (5 pts).

- 1. Construire une grammaire hors-contexte G sur l'alphabet $\Sigma = \{a, b, c\}$ reconnaissant le langage $L = \{a^i b^j c^k \mid i = 2j \text{ ou } j = 2k\}$.
- **2.** À partir de la grammaire G, construire un automate à pile reconnaissant L(G).

	:	:		:					
				<u> </u>		 			

			:		:			:									
			<u>:</u> :														
Exerc	ice 2 (5 pts).	Cons	struire	un au	tomate	e à pile	e recoi	nnaissa	ant le l	angag	e <i>L</i> = -	$\{a^ib^j\mid$	i = 2j	i}. Voi	ıs préc	iserez

Exercice 2 (5 pts). Construire un automate à pile reconnaissant le langage $L = \{a^i b^j \mid i = 2j\}$. Vous préciserez bien le mode d'acceptation. Avant de donner la construction, vous expliquerez *rapidement* le fonctionnement de votre automate. Donner une exécution de l'automate sur le mot *aaaabb* et préciser si elle est acceptante.

	 				 	 	 			: :
				 ,	 	 	 			
								:	: :	
			 		 	 	 	; ;	· ·	:
								-		
	 				 	 	 			:
	 	 	 	 	 	 	 			<u>.</u>
) · · · · · · · · · · · · · · · · · · ·		}
			 	 	 	 	 			<u>:</u>
L	 				 		 <u> </u>	<u> </u>	<u> </u>	

Exercice 3 (5 pts). On considère la grammaire G suivante

 $S \to TU|VW|X$ $T \to TT|W$ $U \to aU|V$ $V \to U|W|XaV$ $W \to cW|\varepsilon$ $X \to W|b$

Trouver une grammaire reconnaissant $L(G)\setminus\{\varepsilon\}$ sans ε -productions et sans production unitaire.

Exercice 4 (5 pts). On considère la grammaire G définie par :

 $S \rightarrow AB|BC$

 $\begin{array}{ccc}
A & \rightarrow & BA|a \\
B & \rightarrow & CC|b
\end{array}$

 $C \rightarrow AB|a$

En utilisant l'algorithme CYK, décider si le mot aabab appartient à L(G).

