Genetische Algorithmen für die Numerische Optimierung

Torsten Hehl

Physikalisches Institut Tübingen

18.12.2023 / 8.1.2024

Klassische Verfahren

Ziel: Optimierung

(Maximierung/Minimierung) einer Funktion (z.B. χ^2) mit möglichst wenig

Funktionsaufrufen

Verfahren: Kletterverfahren entlang des

steilsten Abfalls/Anstiegs

(ab jetzt: immer Suche nach

Maximum)

Suche

- (A) Landung in der Nähe des globalen Maximums,
- (C) Klettern entlang des steilsten Anstiegs,
- (D) Maximum erreicht

Probleme der klassischen Verfahren

Klettern kann man nur auf lokale Maxima: \rightarrow globales Maximum ist hier schwer zu finden.

18.12.2023 / 8.1.2024

Ausweg mit klassischen Verfahren

Iteration (wiederholter Start von verschiedenen Punkten)

Drei Leistungskriterien:

- Absolut: Numerische Präzision der Lösung
- Global: Ist das gefundene Maximum wirklich das globale Maximum?
- Relativ: Wie schnell konvergiert das Verfahren?

Simplex-Vefahren ist relativ robust, kommt durch enge, lange Täler und über Sattel:

Simplex-Verfahren

Nur ein Bruchteil der Startversuche landet im globalen Maximum:

Ein Neustart nach vermeintlichem Fund des globalen Maximums empfiehlt sich ...

Ein weiteres Problem

0.8/exp(((x-0.5)**2+(y-0.5)**2)/0.09)+0.879008/exp(((x-0.6)**2+(y-0.1)**2)/0.03**2)

Nur in ca. 1% aller Startwerte wird die Spitze der schmalen Verteilung gefunden. Problem verschärft sich drastisch mit höherer Dimension!

Evolution, Optimierung und genetische Algorithmen

Natürliche Auslese: nur die Fittesten überleben

Vererbung: nächste Generation erhält zumindest einen Teil der überdurchschnittlichen Eigenschaften

Variabilität: Individuen unterschiedlicher Fitness müssen koexistieren, sonst keine Selektion möglich

Kodierung in den Genen: Weitergabe und Veränderung (Mutation) an nächste Generation, Anpassung sorgt für Individuen knapp über dem Durchschnitt (Optimum ist nicht nötig)

Kumulative Auswahl sorgt für schnellere Anpassung als zufälliges Suchen im Parameterraum

JEG SNAKKER BARE LITT NORSK

Dieser norwegische Satz soll durch ein genetisches Verfahren gefunden werden.

Wahrscheinlichkeit, diesen 27-Buchstabensatz mit den 30 norwegischen Buchstaben spontan zu finden: $30^{-27} \approx 10^{-40}$

Genetisches Verfahren:

- 1 Bilde 10 zufällige Sätze mit je 27 Buchstaben
- 2 Satz mit den meisten richtigen Buchstaben
- 3 Dupliziere diesen besten Satz zehnmal
- 4 Ändere in jedem dieser Sätze zufällig einige Buchstaben
- **™** Wiederhole Schritte 2 − 4, bis der Zielsatz gefunden wird

Auslese

Vererbung

Mutation

Target	J E G S N A K K E R	BARE LITT NORSK
1	ZEBYENÆTUVP	Q Å O D E M I F V G H D O O 23
50	VEGÆENÆROEO	QÅBDEMI FVNÅDOK 18
100	VEGÆENÆKCEO	OPHZEMI FVNÅØOK 18
150	V E G W X N Æ K C E O	NAHADMI CFNNEROK 16
200	J E G W X N P K K E O	BAHA RICEANEROK 12
250	J E G W V N R K K E	BAEA RIÅEÅN RTK 12
300	JEG RNRKKE	BAET UIØØ NQRKK 10
350	JEG KNKKKE	BAR UIØØ NQRMK 9
400	JEG KNVKKE	BAR PIHØ NQRSK 8
450	JEG KNVKKER	BAR LIDØ NÅRSK 6
500	JEG ØNVKKER	BAR LISØ NKRSK 6
550	JEG ØNFKKER	BARE LISI NBRSK 5
600	JEG SNFKKER	BARE LIAW NBRSK 4
650	JEG SNAKKER	BARE LIAW NORSK 2
700	JEG SNAKKER	BARE LIAT NORSK 1
750	JEG SNAKKER	BARE LIAT NORSK 1
800	JEG SNAKKER	BARE LIAT NORSK 1
850	JEG SNAKKER	BARE LIAT NORSK 1
900	JEG SNAKKER	BARE LIYT NORSK 1
950	JEG SNAKKER	BARE LITT NORSK o

Ein einfacher genetischer Algorithmus

- **I** Generiere eine zufällige Population und messe ihre Fitness (z.B. χ^2)
- Die fittesten Individuen werden zur Fortpflanzung ausgewählt
- 3 Ersetze Eltern durch Kinder
- 4 Bestimme die Fitness der Kinder
- **I** Wiederhole Schritte 2 − 4, bis fittestes Individuum fit genug ist

Genetischer Algorithmus: Beispiel

Kodierung		=0.14429628 y=0.72317247 =0.71281369 y=0.83459991
Fortpflanzung	S(P1) S(P2)	144 <mark>2962872317247</mark> 712 <mark>8136983459991</mark>
Kreuzung	S(O1) S(O2)	1448136983459991 7122962872317247
Mutation	S'(02)	712 2962 87 <u>8</u> 317247
Dekodierung		=0.712 <mark>29628</mark> y=0.7 8 317247 =0.14481369 y=0.83459991

PIKAIA – eine genetischer Algorithmus für numerische Optimierungen

PIKAIA: FORTRAN-77 Routine

(Charbonneau & Knapp, 1995-2002)

www.hao.ucar.edu/modeling/pikaia/pikaia.php

Nutzerdefinierte Funktion f(x) in begrenztem *n*-dimensionalen Gebiet wird *maximiert*,

$$x \equiv (x_1, x_2, \dots x_n), \qquad x_k \in [0, 1]$$

- \blacksquare starte mit Anfangspopulation N_p , Populationsgröße fix
- Zahl der Generationen N_g ist Abbruchkriterium
- Auswahl: proportional zu Fitness-Rang (nicht Fitness, sonst droht Degenerierung)
- Kreuzung: wie in Schema vorgeführt
- Fortpflanzung: Kreuzungsrate (0.85), Mutationsrate (0.005 je Stelle)
- Elitismus: Fittestes Individuum mutiert nicht
- Variable Mutationsrate: Fitness-Differenz $\Delta f \sim 1/mut.r$.

Lösung von Problem 1 mit PIKAIA

Lösung von Problem 1 (konzentrische Wellen) mit PIKAIA:

Entwicklung des fittesten Individuums für verschiedene Anfangspopulationen

Entwicklung der Generationen

Erst in der 55. Generation ist ein Mutant in der Nähe des Maximums der Fitteste!

Weitere Verfeinerungen von PIKAIA

- $lue{}$ Hamming-Wände: Das Kodierschema kennt keinen Übertrag, der Übergang von z.B. ..19.. ightarrow ..20.. oder umgekehrt durch synchrone Mutationen ist extrem unwahrscheinlich
- Binäre Kodierung: Binärstellen stellen kein unüberwindliches Hindernis dar
- Schleichende Mutation: Übertrag wird berücksichtigt

Alternativen zu PIKAIA

- Python: geneticalgorithm (https://pypi.org/project/geneticalgorithm) Empfehlung!
- weitere Python-Algorithmen https://towardsdatascience.com/genetic-algorithm-implementation -in-python-5ab67bb124a6
- F90-Version mit Optimierungen: http://jacobwilliams.github.io/pikaia/
- VBA-Version für Excel: http://www.ecy.wa.gov/programs/eap/models/pikaia.zip
- Excel/LibreOffice: Solver (Evolutionary Method)
- GA in MATLAB: >> help ga
- GPAPACK (in C), siehe GitHub