Introduction:

Germany, a country known for its rich history and diverse culture, has undergone significant demographic changes over the years. In this project, we delve into the demographic trends of marriages, births, and deaths in Germany from 1950 to 2022. By analyzing various datasets publicly available from **German Federal Statistical Office**, we aim to gain insights into how these key aspects of population dynamics have evolved over time.

Our exploration begins with an examination of marriage statistics, uncovering trends in the number of marriages each year and exploring differences across different states in Germany. We then turn our attention to birth statistics, investigating patterns in the number of births and gender disparities in newborns. Finally, we explore death statistics, analyzing trends in mortality rates and gender disparities in life expectancy.

Through visualizations such as line charts, bar graphs, and pie charts, we aim to present a comprehensive overview of Germany's demographic landscape. By understanding these trends, we can gain valuable insights into the social and economic dynamics shaping the German population.

Dataset from: https://www-genesis.destatis.de/genesis/online/data?operation=sprachwechsel&language=en

Importing Libraries & Datasets

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.tsa.arima.model import ARIMA # used for time series ana
```

Marriages analysis

```
df marriage= pd.read csv('/Users/rising.volkan007/Downloads/Germany Data/
In [80]:
         df_marriage.head()
            Year Marriages Marriages per 1000 inhabitants
Out[80]:
         0 1950
                   750452
                                                 11.0
          1 1951
                    718166
                                                 10.4
         2 1952
                   659779
                                                 9.5
         3 1953
                    620121
                                                 8.9
         4 1954
                   605392
                                                 8.7
In [81]: df_marriage.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 73 entries, 0 to 72
         Data columns (total 3 columns):
                                               Non-Null Count Dtype
              Column
                                               73 non-null
          0
             Year
                                                              int64
                                               73 non-null
          1
              Marriages
                                                               int64
             Marriages per 1000 inhabitants 73 non-null
                                                              float64
         dtypes: float64(1), int64(2)
         memory usage: 1.8 KB
In [82]: # Convert 'Year' to datetime index
         df marriage['Year'] = pd.to datetime(df marriage['Year'], format='%Y')
         df_marriage.set_index('Year', inplace=True)
In [83]: # Plot the number of marriages conducted per year
         plt.figure(figsize=(10, 6))
         plt.scatter(df marriage.index, df marriage['Marriages'], color='green', a
         plt.title('Number of Marriages Conducted per Year')
         plt.xlabel('Year')
         plt.ylabel('Number of Marriages')
         plt.grid(True)
         plt.show()
```


In this scatter plot we can observe that the number of marriages per year is decreasing significantly.

```
In [84]: # Plot the time series
    df_marriage['Marriages per 1000 inhabitants'].plot(figsize=(10, 6))
    plt.xlabel('Year')
    plt.ylabel('Marriages per 1000 inhabitants')
    plt.title('Marriage Rate in Germany')
    plt.show()
```


In the above chart we can also notice that per 1000 inhabitants the marriage percentage is also decreasing. Now it is a matter of concerning and look forward what reasons behind of people in Germany getting less marriages per year.

How do personal characteristics such as gender, education, or income affect the probability of certain life events occurring? A Leibniz Institute for Financial Research SAFE study examined these likelihoods using German Socio-Economic Panel (SOEP) data. The two authors' study, Raimond Maurer and Sehrish Usman, shows that education and income significantly influence the likelihood of getting married, having children, and average life expectancy [1].

In Germany, marriage rates have declined significantly since 1991, with only 51.0% of adults married in 2019 compared to 60.2% in 1991. However, there are indications of stabilization, particularly among families with children, as the proportion of births within wedlock increased from a low of 64.5% in 2016 to 66.9% in 2020. Additionally, there has been a recent uptick in the number of marriages [2].

source_1: https://safe-frankfurt.de/news-latest/all-news/news-view/education-and-income-have-different-effects-on-the-life-cycle-in-germany.html

source_2: https://www.iwkoeln.de/en/studies/wido-geis-thoene-negativtrend-gestoppt-entwicklungen-bei-verheirateten-und-einstellungen-zur-ehe-515380.html

```
In [85]:
         # Fit ARIMA model
         model = ARIMA(df marriage['Marriages per 1000 inhabitants'], order=(5,1,0)
         model_fit = model.fit()
         /Users/rising.volkan007/anaconda3/lib/python3.11/site-packages/statsmodel
         s/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was p
         rovided, so inferred frequency AS-JAN will be used.
           self._init_dates(dates, freq)
         /Users/rising.volkan007/anaconda3/lib/python3.11/site-packages/statsmodel
         s/tsa/base/tsa_model.py:473: ValueWarning: No frequency information was p
         rovided, so inferred frequency AS-JAN will be used.
           self._init_dates(dates, freq)
         /Users/rising.volkan007/anaconda3/lib/python3.11/site-packages/statsmodel
         s/tsa/base/tsa model.py:473: ValueWarning: No frequency information was p
         rovided, so inferred frequency AS-JAN will be used.
           self._init_dates(dates, freq)
         # Forecast
In [86]:
         forecast = model fit.forecast(steps=5) # Adjust steps for how many period
         print(forecast)
         2023-01-01
                       4.680414
         2024-01-01
                       4.727601
         2025-01-01
                       4.712037
         2026-01-01
                       4.737568
         2027-01-01
                       4.742740
         Freq: AS-JAN, Name: predicted mean, dtype: float64
```


Marriages in States

In [11]: df_marriage_states= pd.read_csv('/Users/rising.volkan007/Downloads/German

In [12]: df_marriage_states.head()

Out[12]:

	German States	1990	1991	1992	1993	1994	1995	1996	1997	1998	•••
0	Baden- Württemberg	61448	59373	60724	59885	59591	58198	57898	57094	55693	
1	Bayern	74387	72651	72247	70475	69401	67075	66767	65419	64065	
2	Berlin	21850	18130	17895	17111	17269	16383	15813	15399	14526	
3	Brandenburg	16814	8328	7901	7901	8502	8775	8756	8709	9266	
4	Bremen	4338	4264	4005	3969	3859	3561	3509	3553	3477	

5 rows × 34 columns

In [13]: df_marriage_states.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16 entries, 0 to 15
Data columns (total 34 columns):

#	Column	Non-Null Count	Dtype
0	German States	16 non-null	object
1	1990	16 non-null	int64
2	1991	16 non-null	int64
3	1992	16 non-null	int64
4	1993	16 non-null	int64
5	1994	16 non-null	int64
6	1995	16 non-null	int64
7	1996	16 non-null	int64
8	1997	16 non-null	int64
9	1998	16 non-null	int64
10	1999	16 non-null	int64
11	2000	16 non-null	int64
12	2001	16 non-null	int64
13	2002	16 non-null	int64
14	2003	16 non-null	int64
15	2004	16 non-null	int64
16	2005	16 non-null	int64
17	2006	16 non-null	int64
18	2007	16 non-null	int64
19	2008	16 non-null	int64
20	2009	16 non-null	int64
21	2010	16 non-null	int64
22	2011	16 non-null	int64
23	2012	16 non-null	int64
24	2013	16 non-null	int64
25	2014	16 non-null	int64
26	2015	16 non-null	int64
27	2016	16 non-null	int64
28	2017	16 non-null	int64
29	2018	16 non-null	int64
30	2019	16 non-null	int64
	2020	16 non-null	
	2021	16 non-null	
33	2022	16 non-null	int64
dt.vp	es: int64(33).	object(1)	

dtypes: int64(33), object(1)

memory usage: 4.4+ KB

```
In [14]: # Set 'German States' column as index for easier analysis
    df_marriage_states.set_index('German States', inplace=True)

# Calculate summary statistics for each state
    summary_stats = df_marriage_states.describe()

# Display summary statistics
    print(summary_stats)
```

	1990	1991	1992	1993	\
count	16.00000	16.000000	16.000000	16.000000	
mean	32274.25000	28393.187500	28339.250000	27662.812500	
std	29478.15969	30323.486511	30449.400455	29366.317797	
min	4338.00000	4264.000000	4005.000000	3969.000000	
25%	14973.25000	8304.750000	7866.500000	7941.500000	
50%	20190.00000	16430.500000	15650.000000	15459.500000	
75%	39741.00000	38854.750000	39649.750000	38364.250000	
max	114422.00000	111286.000000	110904.000000	106315.000000	

	1994	1995	1996	1997	1
998 \ count 000	16.000000	16.00000	16.000000	16.000000	16.000
mean 000	27515.250000	26908.37500	26706.062500	26423.500000	26088.750
std 658	28726.688134	27737.57521	27551.372349	27380.032364	26714.800
min 000	3859.000000	3561.00000	3509.000000	3553.000000	3477.000
25% 000	8528.250000	8641.75000	8456.000000	8414.250000	8441.750
50% 000	16032.000000	15928.50000	15607.500000	15343.000000	15087.000
75% 000	38248.500000	37454.50000	36605.500000	36280.250000	35627.000
max 000	104200.000000	100793.00000	99922.000000	99779.000000	97679.000
	1999	• • •	2013	2014	2015 \
count	16.000000	16.00	0000 16.00	0000 16.00	0000
mean	26917.125000	23353.43			
std	27060.626859	22045.61			
min	3438.000000	2619.00			
25%	9046.500000	9956.75			
50%	15890.000000	14412.00			
75%	36357.750000 99645.000000	29521.75 79895.00			
max	99043.000000	79895.00	0000 02322.00	0000 03043.00	0000
	2016				
20 \	2016	2017	2018	2019	20
20 \ count 00	16.000000	2017 16.000000	2018	2019	16.0000
count					
count 00 mean	16.000000	16.000000	16.000000	16.000000	16.0000
count 00 mean 00 std 48 min 00	16.000000 25651.625000	16.000000 25466.625000 24472.716904 2744.000000	16.000000 28091.625000 26931.905284 3360.000000	16.000000 26020.250000 25126.683757 3117.000000	16.0000 23331.5000
count 00 mean 00 std 48 min 00 25%	16.000000 25651.625000 24396.627696 2677.000000 10377.500000	16.000000 25466.625000 24472.716904 2744.000000 10221.000000	16.000000 28091.625000 26931.905284 3360.000000 11129.000000	16.000000 26020.250000 25126.683757 3117.000000 9998.250000	16.0000 23331.5000 22563.3767 2765.0000 9024.5000
count 00 mean 00 std 48 min 00 25% 00 50%	16.000000 25651.625000 24396.627696 2677.000000 10377.500000 15752.000000	16.000000 25466.625000 24472.716904 2744.000000 10221.000000 15874.500000	16.000000 28091.625000 26931.905284 3360.000000 11129.000000 17593.500000	16.000000 26020.250000 25126.683757 3117.000000 9998.250000 16452.000000	16.0000 23331.5000 22563.3767 2765.0000 9024.5000 14596.0000
count 00 mean 00 std 48 min 00 25% 00	16.000000 25651.625000 24396.627696 2677.000000 10377.500000 15752.000000 32593.750000	16.000000 25466.625000 24472.716904 2744.000000 10221.000000 15874.500000 32361.000000	16.000000 28091.625000 26931.905284 3360.000000 11129.000000 17593.500000 36025.500000	16.000000 26020.250000 25126.683757 3117.000000 9998.250000 16452.000000 33218.500000	16.0000 23331.5000 22563.3767 2765.0000 9024.5000 14596.0000 30010.7500
count 00 mean 00 std 48 min 00 25% 00 50%	16.000000 25651.625000 24396.627696 2677.000000 10377.500000 15752.000000	16.000000 25466.625000 24472.716904 2744.000000 10221.000000 15874.500000	16.000000 28091.625000 26931.905284 3360.000000 11129.000000 17593.500000	16.000000 26020.250000 25126.683757 3117.000000 9998.250000 16452.000000	16.0000 23331.5000 22563.3767 2765.0000 9024.5000 14596.0000
count 00 mean 00 std 48 min 00 25% 00 50% 00 75% 00 max	16.000000 25651.625000 24396.627696 2677.000000 10377.500000 15752.000000 32593.750000	16.000000 25466.625000 24472.716904 2744.000000 10221.000000 15874.500000 32361.000000	16.000000 28091.625000 26931.905284 3360.000000 11129.000000 17593.500000 36025.500000	16.000000 26020.250000 25126.683757 3117.000000 9998.250000 16452.000000 33218.500000	16.0000 23331.5000 22563.3767 2765.0000 9024.5000 14596.0000 30010.7500
count 00 mean 00 std 48 min 00 25% 00 50% 00 75% 00 max	16.000000 25651.625000 24396.627696 2677.000000 10377.500000 15752.000000 32593.750000 87060.000000	16.000000 25466.625000 24472.716904 2744.000000 10221.000000 15874.500000 32361.000000 86475.000000	16.000000 28091.625000 26931.905284 3360.000000 11129.000000 17593.500000 36025.500000	16.000000 26020.250000 25126.683757 3117.000000 9998.250000 16452.000000 33218.500000	16.0000 23331.5000 22563.3767 2765.0000 9024.5000 14596.0000 30010.7500
count 00 mean 00 std 48 min 00 25% 00 50% 00 75% 00 max 00	16.000000 25651.625000 24396.627696 2677.000000 10377.500000 15752.000000 32593.750000 87060.000000	16.000000 25466.625000 24472.716904 2744.000000 10221.000000 15874.500000 32361.000000 86475.000000	16.000000 28091.625000 26931.905284 3360.000000 11129.000000 17593.500000 36025.500000	16.000000 26020.250000 25126.683757 3117.000000 9998.250000 16452.000000 33218.500000	16.0000 23331.5000 22563.3767 2765.0000 9024.5000 14596.0000 30010.7500
count 00 mean 00 std 48 min 00 25% 00 50% 00 75% 00 max 00	16.000000 25651.625000 24396.627696 2677.000000 10377.500000 15752.000000 32593.750000 87060.000000	16.000000 25466.625000 24472.716904 2744.000000 10221.000000 15874.500000 32361.000000 86475.000000	16.000000 28091.625000 26931.905284 3360.000000 11129.000000 17593.500000 36025.500000	16.000000 26020.250000 25126.683757 3117.000000 9998.250000 16452.000000 33218.500000	16.0000 23331.5000 22563.3767 2765.0000 9024.5000 14596.0000 30010.7500
count 00 mean 00 std 48 min 00 25% 00 50% 00 75% 00 max 00 count mean std min	16.000000 25651.625000 24396.627696 2677.000000 10377.500000 15752.000000 32593.750000 87060.000000 2021 16.000000 22361.562500	16.000000 25466.625000 24472.716904 2744.000000 10221.000000 15874.500000 32361.000000 86475.000000 2022 16.0000000 24421.437500	16.000000 28091.625000 26931.905284 3360.000000 11129.000000 17593.500000 36025.500000	16.000000 26020.250000 25126.683757 3117.000000 9998.250000 16452.000000 33218.500000	16.0000 23331.5000 22563.3767 2765.0000 9024.5000 14596.0000 30010.7500
count 00 mean 00 std 48 min 00 25% 00 75% 00 max 00 count mean std min 25%	16.000000 25651.625000 24396.627696 2677.000000 10377.500000 15752.000000 32593.750000 87060.000000 2021 16.000000 22361.562500 21969.443625 2439.000000 8252.250000	16.000000 25466.625000 24472.716904 2744.000000 10221.000000 15874.500000 32361.000000 86475.000000 24421.437500 24160.271602 2642.000000 9083.000000	16.000000 28091.625000 26931.905284 3360.000000 11129.000000 17593.500000 36025.500000	16.000000 26020.250000 25126.683757 3117.000000 9998.250000 16452.000000 33218.500000	16.0000 23331.5000 22563.3767 2765.0000 9024.5000 14596.0000 30010.7500
count 00 mean 00 std 48 min 00 25% 00 50% 00 75% 00 max 00 count mean std min 25% 50%	16.000000 25651.625000 24396.627696 2677.000000 10377.500000 15752.000000 32593.750000 87060.000000 22361.562500 21969.443625 2439.000000 8252.250000 13655.500000	16.000000 25466.625000 24472.716904 2744.000000 10221.000000 15874.500000 32361.000000 86475.000000 24421.437500 24160.271602 2642.000000 9083.000000 14712.000000	16.000000 28091.625000 26931.905284 3360.000000 11129.000000 17593.500000 36025.500000	16.000000 26020.250000 25126.683757 3117.000000 9998.250000 16452.000000 33218.500000	16.0000 23331.5000 22563.3767 2765.0000 9024.5000 14596.0000 30010.7500
count 00 mean 00 std 48 min 00 25% 00 75% 00 max 00 count mean std min 25%	16.000000 25651.625000 24396.627696 2677.000000 10377.500000 15752.000000 32593.750000 87060.000000 2021 16.000000 22361.562500 21969.443625 2439.000000 8252.250000	16.000000 25466.625000 24472.716904 2744.000000 10221.000000 15874.500000 32361.000000 86475.000000 24421.437500 24160.271602 2642.000000 9083.000000	16.000000 28091.625000 26931.905284 3360.000000 11129.000000 17593.500000 36025.500000	16.000000 26020.250000 25126.683757 3117.000000 9998.250000 16452.000000 33218.500000	16.0000 23331.5000 22563.3767 2765.0000 9024.5000 14596.0000 30010.7500

```
In [15]: # Calculate the overall trend (mean) of marriages conducted in each state
    mean_trend = df_marriage_states.mean(axis=1)

In [16]: # Plot the trend for each state over the years
    plt.figure(figsize=(12, 6))
    for state in df_marriage_states.index:
        plt.plot(df_marriage_states.columns, df_marriage_states.loc[state], l

    plt.title('Marriages Conducted in German States (1990-2022)')
    plt.xlabel('Year')
    plt.ylabel('Number of Marriages')
    plt.legend()
    plt.grid(True)
    plt.xticks(rotation=45)
```

plt.tight_layout()

plt.show()

From the chart above we can observe that Nordrhein-Westfalen state holds highest number of marriages conducted. since it is the largest state in Germany and many people reside in this state. Below chart we can observe in details marriages conducted in this state

```
In [17]: # Filter the row corresponding to Nordrhein-Westfalen
    df_nrw = df_marriage_states.loc['Nordrhein-Westfalen']

# Plot the trend of marriages in Nordrhein-Westfalen
    df_nrw.plot(marker='o', figsize=(10, 6))
    plt.title('Trend of Marriages Conducted in Nordrhein-Westfalen (1990-2022
    plt.xlabel('Year')
    plt.ylabel('Number of Marriages')
    plt.grid(True)
    plt.sticks(rotation=45)
    plt.tight_layout()
    plt.show()
```


One thing to be noticed here in the 90's era people used to get marriages more rather than this decades.

```
In [18]:
         import matplotlib.pyplot as plt
         from matplotlib.ticker import FuncFormatter
         # Calculate the total number of marriages for each state
         df_marriage_states['Total Marriages'] = df_marriage_states.sum(axis=1)
         # Function to format y-axis labels in thousands
         def thousands formatter(x, pos):
             return '{:,.0f}K'.format(x/1000)
         # Plot the total number of marriages for each state
         plt.figure(figsize=(12, 6))
         plt.bar(df_marriage_states.index, df_marriage_states['Total Marriages'],
         plt.title('Total Number of Marriages by State (1990-2022)')
         plt.xlabel('State')
         plt.ylabel('Total Marriages')
         plt.xticks(rotation=90)
         plt.grid(axis='y')
         # Format y-axis labels in thousands
         formatter = FuncFormatter(thousands formatter)
         plt.gca().yaxis.set_major_formatter(formatter)
         # Highlight the state with the lowest trend
         min_trend state = df marriage states[df marriage states['Total Marriages'
         plt.bar(min_trend_state.index, min_trend_state['Total Marriages'], color=
         plt.tight_layout()
         plt.show()
```


In the above bar chart shows the Bremen state the number of marriages are the **lowest**. it is also the smallest states in Germany this could be a probable reason and there might be less people residing there as it is small state.

```
In [19]:
          # Calculate the total number of marriages for each state
          df marriage states['Total Marriages'] = df marriage states.sum(axis=1)
          # Find the state with the lowest total number of marriages
          state_with_lowest_trend = df_marriage_states[df_marriage_states['Total Ma
          print("State(s) with the lowest trend:")
          print(state_with_lowest_trend)
          State(s) with the lowest trend:
                         1990
                                1991
                                      1992
                                            1993
                                                   1994
                                                         1995
                                                               1996
                                                                      1997
                                                                            1998
                                                                                  1999
          German States
                         4338
                                4264
                                      4005
                                            3969
                                                   3859
                                                         3561
                                                               3509
                                                                      3553
                                                                                  3438
          Bremen
                                                                            3477
                               2014
                                     2015
                                           2016
                                                  2017
                                                        2018
                                                              2019
                                                                     2020
                                                                           2021
                                                                                 2022
          German States
                                                        3360
          Bremen
                               2800
                                     2708
                                           2677
                                                  2744
                                                              3117
                                                                     2765
                                                                           2439
                                                                                 2642
                         Total Marriages
          German States
                                   208484
          Bremen
          [1 rows x 34 columns]
```

above output data shows the details of the marriage trends of the state.

Husband Wife Age in marriages

```
In [51]: df_marriage_age= pd.read_csv('/Users/rising.volkan007/Downloads/Germany D
In [54]: df_marriage_age.head(15)
```

Out[54]:

	Age of the husband	Age of the wife	Age of the wife.1	Age of the wife.2	Age of the wife.3	Age of the wife.4	Age of the wife.5	Age of the wife.6	Age of the wife.7	Age of the wife.8	Age of the wife.9
0	NaN	under 15 years	15 to under 20 years	20 to under 25 years	25 to under 30 years	30 to under 35 years	35 to under 40 years	40 to under 45 years	45 to under 50 years	50 to under 55 years	55 to under 60 years
1	under 15 years	-	-	-	-	-	-	-	-	-	-
2	15 to under 20 years	-	254	192	37	9	5	2	2	-	-
3	20 to under 25 years	-	1754	11616	3627	664	191	59	36	17	8
4	25 to under 30 years	-	808	19666	54419	11133	1864	357	161	68	19
5	30 to under 35 years	-	168	5425	43396	44918	7742	1225	323	138	34
6	35 to under 40 years	-	46	1246	11206	26532	18314	3319	889	269	66
7	40 to under 45 years	-	15	368	2568	7457	11392	6995	2287	763	181
8	45 to under 50 years	-	10	174	964	2850	5736	6991	8005	3651	878
9	50 to under 55 years	-	4	84	438	1130	2249	3763	8550	9560	2950
10	55 to under 60 years	-	2	28	145	333	783	1378	3821	7073	5718
11	60 to under 65 years	-	-	14	54	119	235	435	1226	2887	3855
12	65 to under 70 years	-	-	5	22	31	91	136	400	939	1403
13	70 to under 75 years	-	-	2	6	13	32	47	138	292	454
14	75 years and over	-	-	2	3	7	17	44	96	178	312

This above dataframe represents the data from 2017 published data in Database of the Federal Statistical Office of Germany.

This dataframe provides a breakdown of marriages by the age groups of husbands and wives in Germany. Interestingly, the majority of marriages occur between individuals aged 25 to under 40 years, with the highest frequency observed in the **25 to under 30 years** age group for both husbands and wives. There's a noticeable decline in the number of marriages as the age of both spouses increases beyond 40 years. Additionally, the dataset reveals a relatively low number of marriages involving individuals under 20 years old.

Birth Statistics

plt.show()

```
df_birth= pd.read_csv('/Users/rising.volkan007/Downloads/Germany Data/Bir
In [56]:
In [57]: df birth.head()
Out [57]:
            Year
                   Male Female
                                   Total
         0 1950 578191 538510 1116701
         1 1951 571699 534681 1106380
         2 1952 571152 533932 1105084
         3 1953 564929 530100 1095029
         4 1954 572559 537184 1109743
In [62]:
         import matplotlib.pyplot as plt
         # Divide total births by 1 million
         total_births_millions = df_birth['Total'] / 1e6
         # Plotting the trend of total births
         plt.figure(figsize=(10, 6))
         plt.plot(df_birth['Year'], total_births_millions, marker='o', color='b',
         plt.title('Trend of Total Births in Germany (1950-2022)')
         plt.xlabel('Year')
         plt.ylabel('Total Births (Millions)')
         plt.grid(True)
         plt.xticks(range(1950, 2023, 5)) # Adjust x-axis ticks for better readab
         plt.tight_layout()
```


The chart shows the trend of total births in Germany from **1950 to 2022**. The y-axis shows the total number of births in millions, while the x-axis shows the years.

The chart shows that there was a baby boom in Germany after World War II, with the number of births peaking at around **1.3 million in the mid-1960s**. The birth rate then declined steadily over the next few decades, reaching a low of around **700,000 in the early 2000s**. Since then, the birth rate has recovered somewhat, but it is still well below the levels seen in the **1950s and 1960s**.

There are a number of factors that have contributed to the decline in Germany's birth rate, including economic uncertainty, the increasing cost of raising children, and the changing role of women in society.

```
In [63]: # Plotting
   plt.figure(figsize=(12, 6))
   plt.plot(df_birth['Year'], df_birth['Male'], label='Male Births')
   plt.plot(df_birth['Year'], df_birth['Female'], label='Female Births')

# Adding labels and title
   plt.xlabel('Year')
   plt.ylabel('Number of Births')
   plt.title('Comparison of Male and Female Births Over the Years')
   plt.legend()

# Show plot
   plt.show()
```

1990

2010

2020

2000

The chart is titled "Comparison of Male and Female Births Over the Years". It shows the number of male and female births over a period that is not specified on the chart. The y-axis shows the number of births, and the x-axis shows the years. From the information provided in the chart, it is impossible to say exactly how many births are represented or the exact time period covered.

1980

Here are some observations about the chart:

1960

1950

• The number of births appears to fluctuate somewhat over time.

1970

- There seems to be a generally higher number of male births than female births.
- The gap between the number of male and female births appears to be widening over time.

It is important to note that this chart does not show sex ratios at birth, which is the number of male births for every 100 female births. According to Our World in Data: https://ourworldindata.org/gender-ratio, naturally occurring sex ratios at birth are around 105 males per 100 females.

Death Statistics

```
In [64]: df_death= pd.read_csv('/Users/rising.volkan007/Downloads/Germany Data/Dea
In [65]: df_death.head()
```

```
      Out [65]:
      Year
      Male
      Female
      Total

      0
      1950
      375323
      373006
      748329

      1
      1951
      380155
      372542
      752697

      2
      1952
      387003
      380636
      767639

      3
      1953
      400373
      390281
      790654

      4
      1954
      392610
      382681
      775291
```

```
In [69]: # Divide total deaths by 1 million
    total_deaths_millions = df_death['Total'] / 1e6

# Plotting the trend of total deaths
    plt.figure(figsize=(10, 6))
    plt.plot(df_death['Year'], total_deaths_millions, marker='o', color='r',
    plt.title('Trend of Total Deaths in Germany (1950-2022)')
    plt.xlabel('Year')
    plt.ylabel('Total Deaths (Millions)')
    plt.grid(True)
    plt.xticks(range(1950, 2023, 5)) # Adjust x-axis ticks for better readab

plt.tight_layout()
    plt.show()
```


The chart shows the trend of total deaths in Germany from 1950 to 2022. The y-axis shows the total number of deaths in millions, while the x-axis shows the years.

There are two main things to note about the trend:

- Overall, the number of deaths in Germany has increased over time. There are a few exceptions, such as a decrease between 1975 and 2004.
- The rate of increase has slowed in recent years.

There are a number of reasons why the number of deaths in Germany has increased over time. One reason is that the population of Germany is aging. As people get older, they are more likely to die. Another reason is that medical advances have led to people living longer with chronic conditions, which can eventually lead to death. And also people died more in the Covid-19 time period from 2019-2022.

The fact that the rate of increase has slowed in recent years may be due to a number of factors, including improvements in public health and medical care.

Here are some additional resources that you may find helpful:

Population, mortality and place of death in Germany (1950-2050) - implications for end-of-life care in the future: https://pubmed.ncbi.nlm.nih.gov/23041107/

```
In [70]: # Plotting the trend of male and female deaths
    plt.figure(figsize=(10, 6))
    plt.plot(df_death['Year'], df_death['Male'] / 1e6, marker='o', color='b',
    plt.plot(df_death['Year'], df_death['Female'] / 1e6, marker='o', color='r
    plt.title('Trend of Male and Female Deaths in Germany (1950-2022)')
    plt.xlabel('Year')
    plt.ylabel('Deaths (Millions)')
    plt.grid(True)
    plt.xticks(range(1950, 2023, 5)) # Adjust x-axis ticks for better readab
    plt.legend()

plt.tight_layout()
    plt.show()
```


Based on the details the chart depicting trends in male and female deaths in Germany between 1950 and 2022, here's a revised analysis of the observations:

- Generally, male death rates appear consistently higher than female death rates throughout the timeframe, with a possible exception in the mid-1970s where female deaths might have been higher.
- There appears to be a downward trend in death rates for both genders, barring the potential anomaly in the 1970s.
- The disparity between male and female death rates may be shrinking, with female death rates potentially approaching or surpassing male death rates in recent years.

Important Considerations:

 To validate these observations and acquire a more comprehensive understanding of mortality trends in Germany, consulting reliable sources like official German health statistics or reputable publications is essential.

```
In [71]: import matplotlib.pyplot as plt
         # Calculate total births and deaths for males and females
         total births male = df birth['Male'].sum()
         total births female = df birth['Female'].sum()
         total deaths male = df death['Male'].sum()
         total_deaths_female = df_death['Female'].sum()
         # Data for pie chart of births
         births_labels = ['Male Births', 'Female Births']
         births_sizes = [total_births_male, total_births_female]
         # Data for pie chart of deaths
         deaths_labels = ['Male Deaths', 'Female Deaths']
         deaths sizes = [total deaths male, total deaths female]
         # Plotting pie chart for births
         plt.figure(figsize=(12, 6))
         plt.subplot(1, 2, 1)
         plt.pie(births sizes, labels=births labels, autopct='%1.1f%%', startangle
         plt.title('Percentage of Births (Male vs Female)')
         # Plotting pie chart for deaths
         plt.subplot(1, 2, 2)
         plt.pie(deaths_sizes, labels=deaths_labels, autopct='%1.1f%%', startangle
         plt.title('Percentage of Deaths (Male vs Female)')
         plt.tight layout()
         plt.show()
```

Percentage of Births (Male vs Female)

The chart you sent is titled "Percentage of Births (Male vs Female)" and "Percentage of Deaths (Male vs Female)". It compares the percentage of male and female births and deaths.

Here are some observations about the chart:

Births:

- The pie chart shows that the percentage of male and female births is nearly equal.
- There are slightly more male births (51.4%) than female births (48.6%).

Deaths:

• The pie chart shows that there are more female deaths (51.6%) than male deaths (48.4%).

further information in details:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822249/

```
In [72]: import matplotlib.pyplot as plt
         # Calculate total births and deaths for each year
         total_births = df_birth['Total'].sum()
         total_deaths = df_death['Total'].sum()
         # Calculate percentages for births and deaths
         birth_percentages = (df_birth['Total'] / total_births) * 100
         death_percentages = (df_death['Total'] / total_deaths) * 100
         # Plotting the trend of birth and death percentages
         plt.figure(figsize=(10, 6))
         plt.plot(df_birth['Year'], birth_percentages, marker='o', color='b', line
         plt.plot(df_death['Year'], death_percentages, marker='o', color='r', line
         plt.title('Percentage of Total Births and Deaths in Germany (1950-2022)')
         plt.xlabel('Year')
         plt.ylabel('Percentage')
         plt.grid(True)
         plt.legend()
         plt.tight_layout()
         plt.show()
```


The chart titled "Percentage of Total Births and Deaths in Germany (1950-2022)" shows the percentage of total births and deaths in Germany from 1950 to 2022. The y-axis shows the percentage, and the x-axis shows the years.

Here are some observations about the chart:

- The percentage of births and deaths fluctuates over time, but there seems to be a general trend of decline in both.
- Births start at around 1.8% in 1950 and then steadily decline to around 1% by 2022. Deaths start at around 1.2% and increase to over 1.6% by 2022.
- Overall, the death rate is higher than the birth rate throughout the entire period.

This suggests that Germany's population is aging.

Here are some additional resources that you may find helpful:

Demographics of Germany - Wikipedia:

https://en.wikipedia.org/wiki/Demographics_of_Germany

Live births and deaths (time series) - German Federal Statistical Office:

https://www.destatis.de/DE/Themen/Gesellschaft-

Umwelt/Bevoelkerung/Geburten/Tabellen/lebendgeborene-gestorbene.html