Zadanie 1. (0–1)

Liczba $\sqrt{3-2\sqrt{2}} - \sqrt{9+4\sqrt{2}}$ jest równa:

Zadanie 2. (0–1)

Wartość wyrażenia $\log_2 5 \cdot \log_5 81 \cdot \log_9 216$ wynosi:

Zadanie 3. (0–1)

Równanie $|x^2-2x-8|=m+1$ w zależności od parametru m, gdzie $m \in R$, ma maksymalną liczbę pierwiastków dla:

A.
$$m \in (0,9)$$

B.
$$m \in \langle -1, 8 \rangle$$

B.
$$m \in (-1,8)$$
 C. $m \in (-9,0)$ **D.** $m \in (-1,8)$

D.
$$m \in (-1,8)$$

Zadanie 1. (0–1)

Wyrażenie $\frac{\sqrt[3]{18}}{\sqrt[3]{9}-2\sqrt[3]{3}+4}$ jest równe:

A.
$$\sqrt[3]{36} - 2\sqrt[3]{18}$$

C.
$$\frac{\sqrt[3]{54}-2\sqrt[3]{18}}{7}$$

B.
$$3\sqrt[3]{2} + 2\sqrt[3]{18}$$

C.
$$\frac{\sqrt[3]{54} - 2\sqrt[3]{18}}{7}$$
D.
$$\frac{3\sqrt[3]{2} + 2\sqrt[3]{18}}{11}$$

Zadanie 3. (0–1)

Suma wszystkich współczynników wielomianu $W(x) = (7x^3 - 5x^2 - 2x + 8)^5$ stojących przy nieparzystych potęgach zmiennej x wynosi:

Zadanie 5. (0-2)

Oblicz $\log_{ab} \frac{\sqrt[3]{a}}{\sqrt{b}}$, jeżeli wiadomo, że $\log_{ab} a = 4$.

Zakoduj cyfrę jedności i dwie cyfry po przecinku otrzymanego wyniku.

Zadanie 6. (0-3)

Z dwóch podobnych trójkątów prostokątnych o skali podobieństwa 2 zbudowano trapez *ABCD*. Oblicz miarę kąta ostrego tego trapezu.

Zadanie 7. (0-3)

Wiesz, że a + b + c = 0 i abc = 2. Wykaż, że $a^3 + b^3 + c^3 = 6$.

Zadanie 8. (0-4)

Reszta z dzielenia wielomianu W(x) przez dwumian x-1 jest równa 2, a reszta z dzielenia wielomianu W(x) przez dwumian x-2 jest równa 5. Wyznacz wielomian R(x), który jest resztą z dzielenia wielomianu W(x) przez (x-1)(x-2).

Zadanie 13. (0-4)

Wyznacz wszystkie wartości parametru m, dla których trójmian kwadratowy $f(x) = -x^2 + mx - m$ ma dwa różne pierwiastki rzeczywiste x_1 i x_2 , spełniające warunek $(x_1 + 3x_2)(x_2 + 3x_1) = -1$.

Zadanie 10. (0-4)

W trójkącie równobocznym ABC na boku AB zaznaczono punkt D w taki sposób, że $\frac{|AD|}{|DB|} = \frac{1}{3}$. Wyznacz sinus kąta BCD.

Zadanie 9. (0-3)

Dany jest trójkąt prostokątny o przyprostokątnych długości a i b, w którym kąt między środkową a wysokością wychodzącymi z wierzchołka kąta prostego ma miarę α . Wykaż, że $tg\alpha = \frac{\left|a^2 - b^2\right|}{2ab}.$

Zadanie 17. (0-4)

Dane jest równanie $x^2 + (2m+1)x - 3m^2 - \frac{1}{2}m + \frac{1}{4} = 0$. Wyznacz zbiór wszystkich wartości parametru wartości parametru m, dla których to równanie ma dokładnie dwa różne rozwiązania mniejsze od 4.

Zadanie 14. (0-4)

Dany jest trójkąt równoboczny ABC, w którym punkt D jest środkiem boku AB. Przez punkt D poprowadzono prostą pod kątem do boku AB, która przecięła bok BC w punkcie E takim, że pole trójkąta BDE jest równe $\frac{1}{8}$ pola trójkąta ABC. Wykaż, że $\alpha = 30^{\circ}$.

Zadanie 7. (0–3)

Rozwiąż nierówność 3x - |2x - 7| < 11.

Zadanie 11. (0-4)

Wielomian $W(x) = 2x^3 + ax^2 + bx + c$ jest podzielny przez trójmian $x^2 + x - 6$, a przy dzieleniu przez dwumian x + 1 daje resztę 6. Wyznacz wartości współczynników a, b i c.

Zadanie 8. (0-3)

Wykaż, że dla dowolnych liczb rzeczywistych x, y zachodzi nierówność $2x^2 + 5y^2 + 10 > 6xy + 4y$.

Zadanie 7. (0–2)

Wyznacz największą liczbę spełniającą równanie $x^3 + x^2 - 7x + 5 = 0$. Zakoduj cyfrę jedności i dwie początkowe cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Zadanie 11. (0–3)

Wykaż, że jeśli liczby
$$a$$
 i b są dodatnie, to $\frac{a^2}{b^2} + \frac{b^2}{a^2} + 3\left(\frac{a}{b} + \frac{b}{a}\right) \ge 8$.

Zadanie 10. (0-2)

Pierwiastkami równania $x^2 + 7x + 4 = 0$ są liczby x_1, x_2 . Oblicz wartość sumy sześcianów liczb x_1, x_2 . Zakoduj cyfrę setek, dziesiątek i jedności wartości bezwzględnej otrzymanego wyniku.

Zadanie 11. (0-3)

Wykaż, że jeśli
$$\log_{24} 6 = a$$
, to $\log_{6} 256 = \frac{4(1-a)}{a}$.

Zadanie 14. (0-5)

W trójkącie ABC poprowadzono środkową CD i wyznaczono na niej taki punkt E, że $\frac{|CE|}{|ED|} = \frac{1}{3}$. Prosta przechodząca przez punkty AE przecina bok BC w punkcie P. Wykaż, że $\frac{|CP|}{|PB|} = \frac{1}{6}$.

Zadanie 2. (4 pkt)

Dana jest funkcja $f(x) = x^2 + 2mx + m^2 - 4m + 9$. Wyznacz najmniejszą wartość iloczynu miejsc zerowych tej funkcji.

Zadanie 3. (*3 pkt*)

Wiadomo, że $\log_7 4 = a$. Wyznacz $\log_{\sqrt{2}} 49$.

Zadanie 6. (*6 pkt*)

Reszta z dzielenia wielomianu W(x) przez dwumian (x+2) jest równa 4, reszta z dzielenia tego samego wielomianu przez dwumian (x-2) to (-8), a reszta z dzielenia wielomianu przez (x-1) wynosi 6. Wyznacz resztę z dzielenia wielomianu W(x) przez (x+2)(x-2)(x-1).