COMP3421

Curves, modelling

Robert Clifton-Everest

Email: robertce@cse.unsw.edu.au

- We want a general purpose solution for drawing curved lines and surfaces. It should:
 - Be easy and intuitive to draw curves
 - General, supporting a wide variety of shapes.
 - Be computationally cheap.

Easy

Batman Equation

$$\left(\frac{x}{7} \right)^2 \frac{\left| |x| - 3 \right|}{|x| - 3} + \left(\frac{y}{3} \right)^2 \frac{\left| y + \frac{3\sqrt{33}}{7} \right|}{y + \frac{3\sqrt{33}}{7}} - 1 \right) \cdot \left(\left| \frac{x}{2} \right| - \left(\frac{3\sqrt{33} - 7}{112} \right) x^2 - 3 + \sqrt{1 - \left(|x| - 2| - 1 \right)^2} - y \right)$$

$$\cdot \left(9 \sqrt{\frac{\left| (|x| - 1)(|x| - 75) \right|}{(1 - |x|)(|x| - 75)}} - 8|x| - y \right) \cdot \left(3|x| + .75 \sqrt{\frac{\left| (|x| - .75)(|x| - .5) \right|}{(.75 - |x|)(|x| - .5)}} - y \right)$$

$$\cdot \left(2.25 \sqrt{\frac{\left| (|x - .5)(x + .5) \right|}{(.5 - x)(.5 + x)}} - y \right) \cdot \left(\frac{6\sqrt{10}}{7} + (1.5 - .5|x|) \sqrt{\frac{\left| |x| - 1}{|x| - 1}} - \frac{6\sqrt{10}}{14} \sqrt{4 - (\left| x \right| - 1)^2} - y \right) = 0$$

$$- 2.4$$

$$- 1.4$$

$$- 2.8$$

$$- 1.4$$

$$- 1.4$$

$$- 2.8$$

$$- 1.4$$

$$- 1.4$$

$$- 2.8$$

$$- 3.6$$

$$- 4.2$$

$$- 2.8$$

$$- 3.6$$

$$- 4.2$$

$$- 2.8$$

$$- 3.6$$

$$- 4.2$$

$$- 3.8$$

$$- 3.6$$

$$- 4.2$$

$$- 3.8$$

$$- 3.6$$

$$- 4.2$$

$$- 3.8$$

$$- 3.6$$

$$- 4.2$$

$$- 3.8$$

$$- 3.6$$

$$- 4.2$$

$$- 3.8$$

$$- 3.6$$

$$- 4.2$$

$$- 3.8$$

$$- 3.6$$

$$- 4.2$$

$$- 3.8$$

$$- 3.6$$

$$- 4.2$$

$$- 3.8$$

$$- 3.6$$

$$- 4.2$$

$$- 3.8$$

$$- 3.6$$

$$- 4.2$$

$$- 3.8$$

$$- 3.6$$

$$- 4.2$$

$$- 3.8$$

$$- 3.6$$

$$- 4.2$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

$$- 3.8$$

(this is not easy)

Cheap

- Drawn every frame (up to 60 times a second)
- -How many curves on a car?

Parametric curves

 It is generally useful to express curves in parametric form:

$$\begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = P(t), \text{ for } t \in [0, 1]$$

• Eg:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos 2\pi t \\ \sin 2\pi t \end{pmatrix}$$

Interpolation

- Trigonometric operations like sin() and cos() are expensive to calculate.
- We would like a solution that involves fewer floating point operations.
- We also want a solution which allows for intuitive curve design.
- Interpolating control points is a good solution to both these problems.

Linear interpolation

Good for straight lines.

Linear function: Degree 1

2 control points: Order 2

$$P(t) = (1 - t)P_0 + tP_1$$

Quadratic interpolation

Interpolates (passes through) P0 and P2. Approximates (passes near) P1. Tangents at P0 and P2 point to P1. Curves are all parabolas.

$$P(t) = (1-t)^2 P_0 + 2t(1-t)P_1 + t^2 P_2$$

Exercise

 Using de Casteljau's algorithm calculate the point at t = 0.75 for the quadratic Bezier with the following control points:

$$(0,0)$$
, $(4,8)$, and $(12,4)$

Confirm your answer using the equation

$$P(t) = (1-t)^2 P_0 + 2t(1-t)P_1 + t^2 P_2$$

Exercise

 Prove that de Casteljau's algorithm is equivalent to the quadratic interpolation formula

Cubic interpolation

Interpolates (passes through) P0 and P3.
 Approximates (passes near) P1 and P2.
 Tangents at P0 to P1 and P3 to P2.
 A variety of curves.

$$P(t) = (1-t)^3 P_0 + 3t(1-t)^2 P_1 + 3t^2(1-t)P_2 + t^3 P_3$$

Degree and Order

- Linear Interpolation: Degree one curve (m=1), Second Order (2 control points)
- Quadratic Interpolation: Degree two curve (m=2), Third Order (3 control points)
- Cubic Interpolation: Degree three curve (m=3), Fourth Order (4 control points)
- Quartic Interpolation: Degree four curve (m=4), Fifth Order (5 control points)
- Etc...

Bézier curves

This family of curves are known as Bézier curves.

They have the general form:

$$P(t) = \sum_{k=0}^{m} B_k^m(t) P_k$$

where m is the degree of the curve and P₀...P_m are the control points.

Bernstein polynomials

• The coefficient functions $B_k^m(t)$ are called Bernstein polynomials. They have the general form:

$$B_k^m(t) = \binom{m}{k} t^k (1-t)^{m-k}$$

where:

$$\binom{m}{k} = \frac{m!}{k!(m-k)!}$$

• is the binomial function.

Binomial Function

Remember Pascal's triangle

Bernstein polynomials

$$B_k^m(t) = \binom{m}{k} t^k (1-t)^{m-k}$$

• For the most common case, m = 3:

$$B_0^3(t) = (1-t)^3$$

 $B_1^3(t) = 3t(1-t)^2$
 $B_2^3(t) = 3t^2(1-t)$
 $B_3^3(t) = t^3$

$$P(t) = (1-t)^3 P_0 + 3t(1-t)^2 P_1 + 3t^2 (1-t)P_2 + t^3 P_3$$

Bernstein Polynomials for m = 3

Properties

- Bézier curves interpolate their endpoints and approximate all intermediate points.
- Bézier curves are convex combinations of points:

$$\sum_{k=0}^{m} B_k^m(t) = 1$$

 Therefore they are invariant under affine transformation. The transformation of a Bézier curve is the curve based on the transformed control points.

Properties

 A Bézier curve lies within the convex hull of its control points:

Tangents

 The tangent vector to the curve at parameter t is given by:

$$\frac{dP(t)}{dt} = \sum_{k=0}^{m} \frac{dB_k^m(t)}{dt} P_k$$

$$= m \sum_{k=0}^{m-1} B_k^{m-1}(t) (P_{k+1} - P_k)$$

 This is a Bézier curve of degree (m-1) on the vectors between control points.

Exercise

Compute the tangent at t = 0.25 for a quadratic Bezier curve with control points (0,0) (4,4) (8,2)

Problem: Polynomial Degree

- The degree of the Bernstein polynomials used is coupled to the number of control points: L+1 control points is a combination of L-degree polynomials.
- High degree polynomials are expensive to compute and are vulnerable to numerical rounding errors

Problem: Local control

- These curves suffer from non-local control.
- Moving one control point affects the entire curve.
- Each Bernstein polynomial is active (non-zero) over the entire interval (0,1). The curve is a blend of these functions so every control point has an effect on the curve for all t from (0,1)

Splines

- A spline is a smooth piecewise-polynomial function (for some measurement of smoothness).
- The places where the polynomials join are called knots.
- A joined sequence of Bézier curves is an example of a spline.

Local control

- A spline provides local control.
- A control point only affects the curve within a limited neighbourhood.

Bézier splines

 We can draw longer curves as sequences of Bézier sections with common endpoints:

Generality

- Bezier splines can represent a large variety of different shapes.
- Not all the ones we want, though. We'll come back to this later in the course.

Links

http://www.malinc.se/m/DeCasteljauAndBezier.php
https://www.cse.unsw.edu.au/~cs3421/18s2/demos/nurbs.html

3D Modeling

- What if we want to generate meshes dynamically and not just load them from files?
- How can we make our own 3d meshes that are not just cubes?
- We will look at simple examples along with some clever techniques such as
 - Extrusion
 - Revolution

Exercise: Cone

- How can we model a cone?
- There are many ways.
- Simple way: Make a circle using a triangle fan parallel to the x-y plane. For example at z = -3
- Change to middle point to lie at a different z-point for example z = -1.

Extruding shapes

- Extruded shapes are created by sweeping a 2D polygon along a line or curve.
- The simplest example is a prism.

Variations

 One end of the prism can be translated, rotated or scaled from the other.

Segmented Extrusions

• A polygon P extruded multiple times, in different directions with different tapers and twists. The first segment has end polygons M_0P and M_1P , where the initial matrix M_0 positions and orients the starting end of the extrusion. The second segment has end polygons M_1P and M_2P , etc.

Segmented extrusions

 We can extrude a polygon along a path by specifying it as a series of transformations.

$$poly = P_0, P_1, \dots, P_k$$
$$path = \mathbf{M_0}, \mathbf{M_1}, \dots, \mathbf{M_n}$$

 At each point in the path we calculate a crosssection:

$$poly_i = \mathbf{M_i}P_0, \mathbf{M_i}P_1, \dots, \mathbf{M_i}P_k$$

Segmented Extrusion

- Sample points along the spine using different values of t
- For each t:
 - generate the current point on the spine
 - generate a transformation matrix
 - multiply each point on the cross section by the matrix.
 - join these points to the next set of points using quads/triangles.

Segmented Extrusion Example

• For example we may wish to extrude a circle cross-section around a helix spine.

• helix C(t) = (cos(t), sin(t), bt).

Transformation Matrix

- How can we automatically generate a matrix to transform our cross-section by?
- We need the origin of the matrix to be the new point on the spine. This will translate our cross-section to the correct location.
- Which way will our cross-section be oriented?
 What should i, j and k of our coordinate frame be?

Frenet Frame

• We can get the curve values at various points t_i and then build a polygon perpendicular to the curve at C(t_i) using a Frenet frame.

Example

a). Tangents to the helix.

b). Frenet frame at various values of *t*, for the helix.

Frenet Frame

- Once we calculate the tangent to the spine at the current point, we can use this to calculate normals.
- We then use the tangent and the 2 normals as i, j and k vectors of a co-ordinate frame.
- We can then build a matrix from these vectors, using the current point as the origin of the matrix.

Frenet frame

 We align the k axis with the (normalised) tangent, and choose values of i and j to be perpendicular.

$$\phi = C(t)$$

$$\mathbf{k} = \hat{C}'(t)$$

$$\mathbf{i} = \begin{pmatrix} -k_2 \\ k_1 \\ 0 \end{pmatrix}$$

$$\mathbf{i} = \mathbf{k} \times \mathbf{i}$$

Frenet Frame Calculation

Finding the tangent (our k vector):

1. Using maths. Eg for

$$C(t) = (cos(t), sin(t), bt)$$

$$T(t) = normalise(-sin(t), cos(t), b)$$

2. Or just approximate the tangent

$$T(t) = normalise(C(t+1) - C(t-1))$$

Revolution

Revolution

 A surface with radial symmetry (i.e. a round object, like a ring, a vase, a glass) can be made by sweeping a half cross-section around an axis.

Revolution

Given a 2D curve

$$C(t) = (X(t), Y(t))$$

• We can revolve it by adding an extra parameter $P(t,\theta) = (X(t)\cos(\theta), Y(t), X(t)\sin(\theta))$

L-Systems

- A Lindenmayer System (or L-System) is a method for producing fractal structures.
- They were initially developed as a tool for modelling plant growth.
- http://madflame991.blogspot.com.au/p/ lindenmayer-power.html

L-Systems

Can give us realistic plants and trees

Some determinstic 3D branching plants.

Rewrite rules

An L-system is a formal grammar: a set of symbols and rewrite rules. Eg:

Symbols:

Rules:

$$A \rightarrow B - A - B$$

$$B \rightarrow A + B + A$$

Iteration

We start with a given string of symbols and then iterate, replacing each on the left of a rewrite rule with the string on the right.

Drawing

Each string has a graphical interpretation, usually using turtle graphics commands:

A = draw forward 1 step

B = draw forward 1 step

+ = turn left 60 degrees

- = turn right 60 degrees

Sierpinski Triangle

 This L-System generates the fractal known as the Sierpinski Triangle:

Parameters

We can add parameters to our rewrite rules handle variables like scaling:

$$A(s) \rightarrow B(s/2) - A(s/2) - B(s/2)$$

$$B(s) \rightarrow A(s/2) + B(s/2) + A(s/2)$$

A(s): draw forward s units

B(s): draw forward s units

Push and Pop

We can also use a LIFO stack to save and restore global state like position and heading:

```
A \rightarrow B [+A] - A
B \rightarrow B B

A: forward 10 B: forward 10

+: rotate 45 left -: rotate 45 right
[: push ]: pop;
```

Stochastic

We can add multiple productions with weights to allow random selection:

$$(0.5) A \rightarrow B [A] A$$

$$(0.5) A \rightarrow A$$

$$B \rightarrow B B$$

Example

$$(0.5) X \rightarrow F - [[X] + X] + F[+ FX] - X$$

 $(0.5) X \rightarrow F - F[+ FX] + [[X] + X] - X$
 $F \rightarrow FF$

3D L-Systems

We can build 3D L-Systems by allowing symbols to translate to models and transformations of the coordinate frame.

C: draw cylinder mesh

F: translate(0,0,10)

X:rotate(10, 1, 0, 0)

Y:rotate(10, 0, 1, 0)

S: scale(0.5, 0.5, 0.5)

Example

$$S -> A [+B] + A$$

 $A \rightarrow A - A + A - A$

B -> BA

After 1 iteration?

After 2 iterations?

After 3 iterations?

: A forward 10

: + rotate 45 (CW)

: - rotate -90

:[push

:] pop

Example in Format For Web Demo

pop

```
-> S
                         : A
1A[+B] + A
                         forward 10
-> A
1A-A+A-A
                         rotate 45
-> B
1 BA
                         rotate -90
                         push
```

Algorithmic Botany

- You can read a LOT more here:
- http://algorithmicbotany.org/papers/