CS-534 Machine Learning

Implementation Assignment 3

Mohammand Velayati $(33.\overline{3}\%)$ Lucas Wells $(33.\overline{3}\%)$ Chirag Shah $(33.\overline{3}\%)$

Introduction

Part I

- (a) Decision tree learning algorithm
- (b) Information gain

Table 1: Information gain for each feature and threshold at the root node

x	θ	I(Y,X)
x_1	5.15	0.38
	5.35	0.48
	5.55	0.59
	5.95	0.48
	6.15	0.4
	6.25	0.37
	6.35	0.3
	6.55	0.18
	6.75	0.16
x_2	2.1	0.01
	2.35	0.03
	2.55	0.08
	2.65	0.1
	2.85	0.2
	3.15	0.34
	3.25	0.32
	3.35	0.3
	3.85	0.07
x_3	2.45	0.92
	4.85	0.7
x_4	0.8	0.92
	1.35	0.67
	1.45	0.64
	1.55	0.64
	1.75	0.68

- (c) Training and testing error vs k
- (d) Effect of k on testing accuracy

Part II

- (a) Feature bagging
- (b) Bootstrap aggregation
- (c) L decision trees
- (d) Training and testing errors vs \boldsymbol{k} for each \boldsymbol{L}
- (e)