IIT Jodhpur

Biological Vision and Applications Module 02-04: Color Perception

Hiranmay Ghosh

Color perception

... not a property of spectral component of light, but how your eyes respond to it

• Perceived color $C = f(E_S, E_M, E_I)$

Color perception

Color is an emergent entity, distinct from properties of light

- Incident light: $I(\lambda)$
- Excitation levels of the cones are given by

$$E_S = \int_{\lambda} S(\lambda).I(\lambda).d\lambda$$

$$E_M = \int_{\lambda} M(\lambda).I(\lambda).d\lambda$$

$$E_L = \int_{\lambda} L(\lambda).I(\lambda).d\lambda$$

- Perceived color $C = f(E_S, E_M, E_L)$
- Metamars: Lights with different spectral components that give rise to same color perception

EdPuzzle: Is your red the same as my red?

Trichromatic Color Theory

- A perceived color can be matched by a combination of three primary colors
 - Proved by psychological experiments
 - By convention, R, G and B are taken as primary colors

The three colors need not necessarily be "Blue", "Green" and "Red"

Device dependent color models RGB Model

- Electronic devices typically use "red", "green" and "blue" color guns
- Each color is represented by a point in 3D space
 - $\vec{c} = \{\alpha.\vec{r} + \beta.\vec{g} + \gamma.\vec{b}\}\$
 - Are the vectors $\vec{r}, \vec{g}, \vec{b}$ orthogonal?
- Let $\vec{c_1}$, $\vec{c_2}$ and $\vec{c_3}$ represent three colors in rgb space
 - $|\vec{c_1} \vec{c_2}| < |\vec{c_2} \vec{c_3}|$ does not necessarily mean that
 - $ightharpoonup ec{c}_2$ is perceptually closer to $ec{c}_1$ than $ec{c}_3$

sRGB Color space

- Electronic devices use three primary color guns
- Perceived color can be matched by a "linear combination" of three primary colors
- Unfortunately, we can only add (not subtract) color in electronic devices
 - We can produce only a subset of perceivable colors with the devices
- The color space that can be produced by a device is called sRGB space
 - Depends of the device characteristics

Device independent color models

HSV Model, CIE Model

- Munsell described color in terms of its three perceptual properties, namely
 - Hue (shade), Value (brightness), and Chroma (color purity)
- ... referred to as device-independent color model
- It has been later refined to many other models
 - HSV (Hue-Saturation-Value), CIE-XYZ and CIE-LAB
- In these models too, a color is represented by a point in a 3D space
 - ► The color distances in these spaces closely conform to perceptual distances

Merits of Trichromatic Color Theory

- Accounts for the 3 independent dimensions of color space
- Can explain metameric matching
 - Mixing of 3 "primary" colors is sufficient to match any other visible color.
- Partially accounts for color blindness

Are 24-bits sufficient to represent all perceivable colors?

- Human eye can distinguish between
 - Approximately 128 different hues
 - Around 20 to 30 different saturation values (for each hue)
 - ▶ Between 60 and 100 different brightness levels
- Combinatorially, human eye can distinguish between roughly 300,000 350,000 different color shades
- 24 bits has a provision to represent 16 million color shades!
 - ► The issue is how we intelligently utilize the 24 bits

After-images (experiment)

Concentrate on the picture below for about 15 sec

After-images (experiment)

... Contd.

Opponent (color) process theory

- Opponent colors show up as after-image
 - Because of "fatigue" of the photoreceptors
- 3 pairs of opponent colors (observed through psychological experiments)
 - red *vs.* green
 - blue vs. vellow
 - dark (black) vs. bright (white)

Opponent process theory (Continued)

- Opponent color contrasts are explained by neural connections
- 3 new (derived) color channels are formed

Opponent process theory (Continued)

• Different organizations for opponent color sensitive cells

Dual (color) process theory

Stages of color processing

Quiz 02-04

End of Module 02-04