Last fime: $A \in \mathbb{C}^{n \times n}$, $b \in \mathbb{C}^n$, $A \times = b$, find $x \in \mathbb{C}^n$ (A nonsingular) · Projection method: given $x_0 \in \mathbb{C}^n$, find $x_R \in x_0 + K_R$ s.+. b-AXR I IR Petrov-Galerkin condition want: $A(x_0 + \hat{x}) = b$. $\hat{x} \in KR$ $A \approx r_o$ x ≈ A-1 γ. need to choose Kn such that A'ro can be well-approximated (Cayley- Hamilton) · Krylov subspace methods: $Rn = K_R(A, r_0) = Span i r_0, Ar_0, ..., A^{k-1} r_0 i$ =) $\chi_k = \chi_0 + \beta_{k-1}(A) \gamma_0$. β_{k-1} is (k-1)-degree polynomial Different choices of Lx lead to different methods · FOM , L = KK Galerkin Condition: Tx = b - AXK L KK - Different formulation let $e_k = \chi_k - \chi$, then $\gamma_k = A(\chi - \chi_k) = -Ae_k$ If A is Hermitian positive definite. MKLKK () CK LA KK perpendicular under A-inner product $e_{\kappa} = \chi_{\kappa-\chi} = \chi_{o} + \widetilde{\chi} - \chi = e_{o} + \widetilde{\chi}, \quad \widetilde{\chi} \in K_{\kappa}$

(=)
$$\gamma_0 - \tilde{\gamma} \perp A K_K$$

Since $\tilde{\gamma} = A\tilde{\chi} = A(\chi_K - \chi_0)$
we know $\gamma_0 - \tilde{\gamma} = b - A\chi_K = \gamma_K$ formulation (χ)

- The least-squares problem (
$$**$$
) is uniquely solvable as long as A is munsiquear. When $k=n$, $x_n=x$.

- Use Atnoldi to find an orthonormal basis of
$$K\kappa$$

$$Q_{K} = [q_{1} ... q_{K}] \in \mathbb{C}^{n \times k}$$

and
$$H_{K} \in \mathbb{C}^{k \times k}$$
, $h_{K+1, K} \in \mathbb{C}$, $q_{K+1} \in \mathbb{C}^{k}$, $q_{K+1} \in \mathbb{C}^{k}$, $q_{K+1} \in \mathbb{C}^{k}$ (AI)

and
$$r_0 = \beta q_1$$
, $\beta = 1|r||_2$

-
$$(A)$$
 \iff min $||b-Ay||_2 = \min ||Y_0 - A\widetilde{\chi}||_2$
 $y \in X_0 + K_K$
 $\widetilde{\chi} \in K_K$

To keep
$$k \ll n$$
, use restart technique to fix the k and use the obtained approximate solution as the initial guess in the next step.

· Even though GIMPLES provide an output for any le (unlike FOM), there is no guarantee that XK improves steadily as K increases.

ex.
$$A = \begin{bmatrix} 0 & \cdots & 1 \\ 1 & 0 & \vdots \\ 1 & 0 & \vdots \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, $\chi_0 = 0$, $\chi = A^{-1}b$ $= en$

By running Amoldi,
$$H_{K} = \begin{bmatrix} 0 \\ 10 \\ 10 \end{bmatrix}$$
, $H_{K} = \begin{bmatrix} 0 \\ 10 \\ 10 \end{bmatrix}$
 $q_{i} = e_{i}, i = 1, ..., K$
 p_{KKK}
 $q_{i} = e_{i}, i = 1, ..., K$
 p_{KKK}
 p_{KKKK}
 p_{KKK}
 p_{KKKK}
 p_{KKKK}
 p_{KKKK}
 p_{KKKK}

The L-S goroblem, min 11 Be, - HKZ112

is uniquely solvable, with $2k = arg min ||\beta e| + Hk = 1|z = 0$ $3 + R^{k}$ $3 + R^{k} = R + R^{k}$ $3 + R^{k} = R + R^{k}$

So restarted GMRES fails for any k < n!

Eigenvalues of A $\lambda_{ij} = e^{i\frac{2\pi}{n}j}$

```
· When does GMRES have good performance?
  Since \chi_k \in \chi_0 + K_K, \exists p_{\kappa_1} \in P_{\kappa_2}(C), s.t.
                     \chi_k = \chi_0 + \rho_{k-1}(A) \gamma_0
    So 11/41/2 = 11 b- AXXII2
                  = 11 70 - APK-1 (A) 70 112
                  = 11 (I-A pr. (A)) ro 1/2
                                =: q_{\kappa}(A), q_{\kappa}(\lambda) = 1 - \lambda p_{\kappa}(\lambda) \in \mathcal{P}_{\kappa}(C)
     Since Ilrk112 is minimal, as we vary pur, we run through
      all elements in xo+ Kk, thus
                 ||YK||2 = min || q(A) Yo ||2
| q(0) = |
| q & Pk(C)
    Assume that A = V \Lambda V^{-1} diagonalizable.
               then q(A) = V p(A) V^{-1}
               ||Y_{k}||_{2} = \min_{\substack{q(0)=1\\q\in\mathcal{P}_{k}(C)}} ||V_{p}(\Lambda)V^{-1}Y_{o}||_{2}
                           \leq K_2(V) min ||p(\Delta)||_2 ||r_3||_2
q_{(0)=1}
                                            9 6 Pe(C)
                           = K2(V) ||Y0||2 min max |p(li)|
9(0)=1 |6i6n
                      is singular,
                    there is no convergence for GMRES =: EK(A)
                       in general
```


<u>ુ</u>)	In genero	d. Gr	ures	ponfo	rms w	ell w	hen	eig.	valu	دها ه	f A
	cluster	away	from	20r0	and	A	is	mt	tov	far	from
	normalif	<u>4</u> .									

· MINRES

When $A^* = A$, we can replace Arnoldi iteration by

Lanczos process in GMRES (obtain tridiagonal Hk)

Some flops as well as memory. (See Y. Sood's book)