Методы оптимизации Семинар 4. Условия оптимальности. Теорема Каруша-Куна-Таккера

Лобанов Александр Владимирович

Московский физико-технический институт Факультет инноваций и высоких технологий

lobanov.av@mipt.ru

22 сентября 2022 г.

Напоминание

Теорема Вейерштрасса

Пусть $S\subset\mathbb{R}^n$ — компактное множество, а f(x) — непрерывная функция на S. Тогда точка глобального минимума функции f(x) на S существует.

2/12

Напоминание

Теорема Вейерштрасса

Пусть $S\subset \mathbb{R}^n$ – компактное множество, а f(x) – непрерывная функция на S. Тогда точка глобального минимума функции f(x) на S существует.

Множетели Лагранжа

$$f(x) o \min_{x \in \mathbb{R}^n}$$
s.t. $h_i(x) = 0, \quad i = 1,...,p$

Основная идея метода множителей Лагранжа заключается в переходе от условной оптимизации к безусловной за счет увеличения размерности задачи:

$$L(x,\mu) = f(x) + \sum_{i=1}^{p} \mu_i h_i(x) \to \min_{x \in \mathbb{R}^n, \mu \in \mathbb{R}^p}$$

Пусть $f(x):\mathbb{R}^n o \mathbb{R}$ – дважды дифференцируемая функция.

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

Пусть $f(x):\mathbb{R}^n o \mathbb{R}$ – дважды дифференцируемая функция.

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

Необходимое условие

Если x^* – локальный минимум f(x), тогда

$$\nabla f(x^*) = 0$$

Пусть $f(x):\mathbb{R}^n o \mathbb{R}$ – дважды дифференцируемая функция.

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

Необходимое условие

Если x^* – локальный минимум f(x), тогда

$$\nabla f(x^*) = 0$$

Достаточное условие

Если f(x) в некоторой точке x^{*} удовлетворяет следующим условиям:

$$H_f(x^*) = \nabla^2 f(x^*) \succ (\prec) 0,$$

тогда (при выполнении необходимого условия) x^* является локальным минимум (максимумом) функции f(x).

Пусть $f(x):\mathbb{R}^n o \mathbb{R}$ – дважды дифференцируемая функция.

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

Необходимое условие

Если x^* – локальный минимум f(x), тогда

$$\nabla f(x^*) = 0$$

Достаточное условие

Если f(x) в некоторой точке x^* удовлетворяет следующим условиям:

$$H_f(x^*) = \nabla^2 f(x^*) \succ (\prec) 0,$$

тогда (при выполнении необходимого условия) x^* является локальным минимум (максимумом) функции f(x).

(Peano surface $f(x, y) = (2x^2 - y)(y - x^2)$).

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

s.t. $h(x) = 0$

Попробуем проиллюстрировать подход к решению данной задачи а простом примере с $f(x) = x_1 + x_2$ и $h(x) = x_1^2 + x_2^2 - 2$.

22 сентября 2022 г.

$$f(x) \to \min_{x \in \mathbb{R}^n}$$
 s.t. $h(x) = 0$

Попробуем проиллюстрировать подход к решению данной задачи а простом примере с $f(x) = x_1 + x_2$ и $h(x) = x_1^2 + x_2^2 - 2$.

$$f(x) \to \min_{x \in \mathbb{R}^n}$$
 s.t. $h(x) = 0$

Попробуем проиллюстрировать подход к решению данной задачи а простом примере с $f(x) = x_1 + x_2$ и $h(x) = x_1^2 + x_2^2 - 2$.

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

s.t. $h(x) = 0$

Попробуем проиллюстрировать подход к решению данной задачи а простом примере с $f(x) = x_1 + x_2$ и $h(x) = x_1^2 + x_2^2 - 2$.

Чтобы двигаться от точки X_R по допустимому множеству в сторону убывания функции, нужно гарантировать два условия:

$$\langle \delta x, \nabla h(x_R) \rangle = 0$$

$$\langle \delta x, -\nabla f(x_R) \rangle > 0$$

Предположим, что в процессе движения мы подошли к точке, где $\left\lfloor -\nabla f(x) = \mu \nabla h(x) \right\rfloor$. Тогда мы подошли к точке допустимого множества, отодвинувшись от которой не получится сократить нашу функцию. Это локальный минимум в условной задаче.

Теперь определим функцию Лагранжа

$$L(x,\mu) = f(x) + \mu h(x).$$

Тогда точка x^* является локальным минимумом задачи, описанной выше, тогда и только тогда, когда:

Необходимые условия

$$\nabla_x L(x^*, \mu^*) = 0$$

$$\nabla_{\mu} L(x^*, \mu^*) = 0$$

Достаточные условия

$$\langle y, \nabla^2_{xx} L(x^*, \mu^*) y \rangle > 0,$$

$$\forall y \neq 0 \in \mathbb{R}^n : \nabla h(x^*)^T y = 0$$

22 сентября 2022 г.

Оптимизации с ограничениями типа равенств (в общем случае)

$$f(x) \to \min_{x \in \mathbb{R}^n}$$
 s.t. $h_i(x) = 0, \; i = 1,...,p$

Решение

$$L(x,\mu) = f(x) + \sum_{i=1}^{p} \mu_i h_i(x) = f(x) + \mu^T h(x).$$

Пусть f(x) и $h_i(x)$ дважды дифференцируемы в точке x^* и непрерывно дифференцируемы в некоторой окрестности x^* . Тогда условия локального минимума для $x \in \mathbb{R}^n, \ \mu \in \mathbb{R}^p$ записываются как

$$\nabla_x L(x^*, \mu^*) = 0$$
$$\nabla_\mu L(x^*, \mu^*) = 0$$
$$\langle y, \nabla_{xx}^2 L(x^*, \mu^*) y \rangle > 0,$$
$$\forall y \neq 0 \in \mathbb{R}^n : \nabla h_i(x^*)^T y = 0$$

Зависимость критической точки от поведения Гессиана

$y^t H_f y$	Определенность H	x^*	
> 0	Положительно опр.	Минимум	
≥ 0	Положительно полуопр.	Складка	
$\neq 0$	Не определен	Седловая точка	
≤ 0	Отрицательно полуопр.	Складка	
< 0	Отрицательно опр.	Максимум	

Задача условной оптимизации

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

$$\text{s.t. } g(x) \leq 0$$

Задача условной оптимизации

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

$$\text{s.t. } g(x) \leq 0$$

Случай 1

Рассмотрим пример, где $f(x)=x_1^2+x_2^2$, $g(x)=x_1^2+x_2^2-1$

Задача условной оптимизации

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

$$s.t. \ g(x) \le 0$$

Случай 1

Рассмотрим пример, где $f(x)=x_1^2+x_2^2$, $g(x)=x_1^2+x_2^2-1$

Случай 2

Рассмотрим пример, где $f(x) = (x_1 - 1)^2 + (x_2 + 1)^2$, $g(x) = x_1^2 + x_2^2 - 1$

Задача условной оптимизации

Таким образом, при решении следующей задачи:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

s.t.
$$g(x) \leq 0$$

возможны два случая:

$$g(x) \le 0$$
 неактивно. $g(x^*) < 0$

$$g(x^*) < 0$$
$$\nabla f(x^*) = 0$$
$$\nabla^2 f(x^*) > 0$$

$$g(x) \leq 0$$
 активно. $g(x^*) = 0$

$$g(x^*) = 0$$
$$-\nabla f(x^*) = \lambda \nabla g(x^*), \lambda > 0$$
$$\langle y, \nabla_{xx}^2 L(x^*, \lambda^*) y \rangle > 0,$$
$$\forall y \neq 0 \in \mathbb{R}^n : \nabla g(x^*)^T y = 0$$

Объединяя два возможных случая, мы можем записать общие условия задачи:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

s.t.
$$g(x) \le 0$$

Определим функцию Лагранжа:

$$L(x,\lambda) = f(x) + \lambda g(x)$$

тогда точка x^{*} является локальным минимумом тогда и только тогда, когда:

- $\lambda^* \geq 0$
- $\bullet \ \lambda^* g(x^*) = 0$
- $g(x^*) \le 0$
- $\langle y, \nabla^2_{xx} L(x^*, \lambda^*) y \rangle > 0$, $\forall y \neq 0 \in \mathbb{R}^n : \nabla g(x^*)^T y \leq 0$

Условная оптимизация

Общая формулировка задачи математического программирования

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

s.t.
$$g_i(x) \le 0, i = 1, ..., m$$

$$h_i(x) = 0, i = 1, ..., p$$

Функция Лагранжа

Решение включает в себя построение функции Лагранжа:

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{p} \mu_i h_i(x)$$

Условия Каруша-Куна-Такера

Необходимые условия

Пусть x^* – решение задачи математического программирования, и функции f,g_i,h_i дифференцируемы. Тогда найдутся такие λ^*,μ^* , что выполнены следующие условия:

$$\nabla_x L(x^*, \lambda^*, \mu^*) = 0$$

$$\nabla_\mu L(x^*, \lambda^*, \mu^*) = 0$$

$$\lambda_i^* \ge 0, \ i = 1, ..., m$$

$$\lambda_i^* g_i(x^*) = 0, \ i = 1, ..., m$$

$$g_i(x^*) \le 0, \ i = 1, ..., m$$