Chemistry Lab 4 proc

- 1. Prepare listed solutions in clean vials. Make sure to label them with tape and to avoid fingerprints on the vials.
 - 1. When mixing the iron standards and unknown solutions, combine everything except the o-phen, which should be added to the solution after inverting for 10 minutes.
 - 2. Ensure everything is homogeneous, and make everything at once

The iron solution has $8.0\cdot 10^{-3}~{\rm mg}\,/\,{\rm mL\,Fe_3}^+$ Calculating concentration:

$$iron solution (mL) * iron concentration (mg / mL) = iron (mg)$$

$$\frac{\mathrm{iron}\,(\mathrm{mg})}{\mathrm{total}\,\mathrm{volume}\,(\mathrm{mL})} = \mathrm{new}\,\mathrm{concentration}$$

Standards

Sample	$ m NaC_2H_3O_2$ (mL)	NaH ₃ OHCL (mL)	iron solution (mL)	deionized $ m H_2O$ (mL)	o- phen (mL)	Concentration of iron-o-phen in standard (mg/mL)	λ_{max} = Absorbance
Blank	1	1	0	7	1	0	
Std 1	1	1	1.25	5.75	1	0.001	
Std 2	1	1	2.5	4.5	1	0.002	
Std 3	1	1	3.75	3.25	1	0.003	
Std 4	1	1	5	2	1	0.004	
Std 5	1	1	6.25	0.75	1	0.005	

Unknowns

Sample	$ m NaC_2H_3O_2$ (mL)	NaH ₃ OHCL (mL)	Unknown sample (mL)	deionized ${ m H_2O}$ (mL)	o-phen (mL)	ω_{max} = Absorbance
Blank	1	1	7	0	1	
Std 1	1	1	1	6	1	

Measuring w/ spectrophotometer

- 1. Set up a spectrophotometer experiment, remembering to blank out wavelengths 360, 775, 850, and 990, and select "Spectrophotometric concentration"
- 2. Set the blank, then measure the absorbance values of all solutions starting from standard 1 as before.
 - 1. λ_{max} should be constant
- 3. Once all is done, construct a standard curve using the calculated concentration of iron-o-phen and the asorbance.
- 4. Enable the trendline, setting the y-intercept to 0, and enable \mathbb{R}^2 . Remember to include axis titles and such.
- 5. R^2 values of under 0.900 indicate a weak correlation. Retake bad data, and possibly recreate any solutions that are unfit.

Cleanup

o-phen is not good for the environment. Do not dump it down the drain.