Naam: Daniël Martoredjo & Kevin Oe
Klas: EQ2
Practicumgroep: EQ2.a
Datum van inlevering: 2015.03.19

Beoordeling:

Datum beoordeling:

Paraaf docent:

PROEF 3: VAAN TUIT SYSTEEM

Inhoud:

Ook nu nog worden in de procesindustrie pneumatische instrumenten gebruikt bv. in zeer explosiegevaarlijke ruimten. Als voorbeeld meten we hier aan een vaan-tuit-systeem; een pneumatische versterker.

Thuisopdracht 1:

De overdracht wordt:

$$\frac{Y}{X_1} = K_1 = \frac{G_1 A}{1 + G_1 G_2 A}$$

De versterking A in deze overdracht is groot ten opzichten van G_1 en G_2 , zodat we voor de overdracht K_1 de limietovergang krijgen met $A \to \infty$:

$$K_1 = \lim_{A \to \infty} \frac{G_1 A}{1 + G_1 G_2 A} = \lim_{A \to \infty} \frac{G_1}{\frac{1}{A} + G_1 G_2} = \frac{G_1}{G_1 G_2}$$

Meetopdracht 1:

De overdracht K_1 kan ook gemeten worden. Hiervoor wordt er een kleine verandering van het ingangssignaal, rond het werkpunt $(X_1=0.5\ X_2=0.5\ en\ Y=0.5)$, aangebracht en de bijbehorende uitgangsverandering gemeten. Hierdoor ontstaat een lineaire overdracht K_1 .

$$K_1 = \frac{\Delta Y}{\Delta X}$$

Meet Y bij $X_1 = 0.4$ Bar en Y bij $X_1 = 0.6$ Bar ($X_2 = 0.5$ bar constant) voor de tuitposities 10, 30, 50, 70, 90 en bereken daarmee K_1 . (Met deze meetwaarden heb je een ΔX_1 van 0.2 Bar). Zet je meetwaarden in een tabel samen met de gemeten versterking K_1 en teken de grafiek voor $K_1 = f(tuitpositie)$:

Tuitpositie	Y		K_1
Tunposme	$X_1 = 0,4$	$X_1 = 0.6$	111
10	0,48	0,515	0,175
30	0,46	0,53	0,35
50	0,44	0,55	0,55
70	0,37	0,6	1,15
90	0,28	0,74	2,3

Grafiek: teken K_1 als functie van de tuitpositie.

K1 als functie van de tuitpositie

Meetopdracht 2:

Meet K op dezelfde manier als in de vorige opdracht K_1 gemeten is:

$$K_1 = \frac{\Delta Y}{\Delta X}$$

Zet de gemeten waarden van K voor de vijf tuitposities in een tabel. Bereken de waarden van K met de formule: K = K₁ / (1 + K₁). K is namelijk het teruggekoppelde systeem van K₁.

Tuitpositie	Y		K	
Tunipositie	$X_1 = 0.4$	$X_1 = 0.6$	gemeten	berekend
10	0,47	0,495	0,125	0,149
30	0,44	0,5	0,3	0,259
50	0,43	0,515	0,425	0,355
70	0,42	0,525	0,525	0,535
90	0,405	0,55	0,725	0,698

Grafiek: teken K als functie van de tuitpositie in een grafiek.

K als functie van de tuitpositie

