Topología Algebraica

Ejercicios para Entregar - Prácticas 2 y 3 Guido Arnone

Sobre los Ejercicios

lorem ipsum

Lema 1. Sea φ una función de los CW-complejos finitos a los enteros que cumple las hipótesis del ejercicio 8. Entonces,

- (i) Si D es un CW-complejo finito de dimensión 0, entonces $\varphi(D) = \varphi(S^0) \cdot (\#D 1)$.
- (ii) Si X es un CW-complejo finito y A, B \subset X son subcomplejos de X tales que X = A \vee B, entonces $\varphi(X) = \varphi(A) + \varphi(B)$.
- (iii) Para cada $d\in \mathbb{N}_0$ tenemos que $\phi(\mathbb{S}^d)=(-1)^d\cdot \phi(\mathbb{S}^0).$
- (iv) Para cada $d\in\mathbb{N}_0$ y $k\in\mathbb{N}$, es $\phi(\vee_{j=1}^k\mathbb{S}^d)=k\cdot(-1)^d\cdot\phi(\mathbb{S}^0).$

Demostración. Hacemos cada inciso por separado.

(i) Hacemos inducción en el tamaño de D. Sea $e_0^1 \sqcup e_0^2$ una estructura celular para \mathbb{S}^0 . Si #D = 1, luego D $\equiv e_0^1$. Por otro lado, el cociente de un espacio por el subespacio de un punto es siempre homeomorfo al espacio mismo. Tenemos entonces $\varphi(\mathbb{S}^0) = \varphi(\mathbb{S}^0/e_0^1) + \varphi(e_0^1) = \varphi(\mathbb{S}^0) + \varphi(\mathbb{D})$. Restando, tenemos que $\varphi(\mathbb{D}) = 0$. Si #D = 2, es D \simeq \mathbb{S}^0 y $\varphi(\mathbb{D}) = \varphi(\mathbb{S}^0)$. Por último, cuando #D > 2, si tomamos x, y \in D dos 0-celdas, el cociente D' := D/{x, y} por el subcomplejo {x, y} $\equiv \mathbb{S}^0$ corresponde a indentificar x con y, de forma que resulta un espacio discreto de un punto menos. Es decir, es un CW-complejo finito de dimensión cero con una 0-celda menos. Inductivamente, tenemos

$$\begin{split} \phi(D) &= \phi(D/\{x,y\}) + \phi(\{x,y\}) = \phi(D') + \phi(\mathbb{S}^0) \\ &= \phi(\mathbb{S}^0)(\#D'-1) + \phi(\mathbb{S}^0) = \phi(\mathbb{S}^0)\#D' \\ &= \phi(\mathbb{S}^0)(\#D-1). \end{split}$$

(ii) Basta probar que $X/A \equiv B$. En tal caso, tendremos en efecto $\phi(X) = \phi(A) + \phi(X/A) = \phi(A) + \phi(B)$. Consideramos la función $f: B \to X/A$ definida como la composición entre la inclusión $B \hookrightarrow X$ y la proyección $q: X \to X/A$. Como B es compacto pues es un CW-complejo finito y X/A es Hausdorff ya que es CW-complejo, resta ver que f es biyectiva. Sea $p \in X$ el punto de pegado entre A y B. Es decir, $A \cap B = \{p\}$. Ahora,

Guido Arnone Prácticas 2 y 3

• La función f es inyectiva: sean $x,y \in B$ con [x] = f(x) = [y]. Por definición de X/A, o bien x = y o bien $x,y \in A$. Esto último implica $x,y \in A \cap B = \{p\}$. En cualquier caso, es x = y.

- La función f es sobreyectiva: sea $[x] \in A$ con $x \in X = A \lor B$. Si $x \in B$ es [x] = f(x). De lo contrario, necesariamente es $x \in A \setminus \{p\}$. Pero entonces basta notar que como $p \in B$, es f(p) = [p] = [x] pues $p, x \in A$.
- (iii) Hacemos inducción en d. El caso base d=0 es trivial. Si d=1, construimos a S^1 como la adjunción de dos 1-celdas e_1^1 y e_1^2 a $S^0=e_0^1\sqcup e_0^2$. Luego $S^1/S^0\equiv S^1\vee S^1$ y $\phi(S^1)=\phi(S^1/S^0)+\phi(S^0)=2\phi(S^1)+\phi(S^0)$. Restando, obtenemos $\phi(S^1)=-\phi(S^0)$. Cuando d>2, usamos una idea similar: consideramos la estructura celular para S^d que consiste en adjuntar dos d-discos a S^{d-1} . Es decir, tenemos una cero celda e_0 , una (d-1)-celda e_{d-1} que corresponde a pegar el borde de un (d-1)-disco en e_0 , y dos d-celdas e_d^1 y e_d^2 que coresponden a pegar el borde cada d-disco en la (d-1)-esfera sin identificar puntos del borde entre sí. Así, S^{d-1} resulta el "ecuador" de S^d y entonces, el cociente S^d/e_{d-1} es homeomorfo al wedge de dos d-esferas. Por lo tanto,

$$\begin{split} \phi(S^d) &= \phi(\mathbb{S}^d/e_{d-1}) + \phi(e_{d-1}) = \phi(\mathbb{S}^d \vee \mathbb{S}^d) + \phi(\mathbb{S}^{d-1}) \stackrel{(ii)}{=} 2\phi(\mathbb{S}^d) + \phi(\mathbb{S}^{d-1}), \\ \text{lo que implica } \phi(\mathbb{S}^d) &= -\phi(\mathbb{S}^{d-1}) = -(-1)^{d-1}\phi(\mathbb{S}^0) = (-1)^d\phi(\mathbb{S}^0). \end{split}$$

(iv) Hacemos inducción en k. El caso base cuando k=1 se verifica por (iii). Si ahora k>1, fijamos $d\in\mathbb{N}_0$ Ahora, consideramos la siguente estructura celular del wedge: tenemos una cero celda e_0 y k celdas de dimensión d, con funciónes de adjunción $f_i:\mathbb{D}^k\stackrel{!}{\to} e_0$ para cada $i\in[\![k]\!]$. Luego cada esfera es un subcomplejo y entonces usando (ii), (iii) y la hipótesis inductiva, tenemos que

$$\begin{split} \phi(\vee_{j=1}^k \mathbb{S}^d) &= \phi(\mathbb{S} \vee \vee_{j=1}^{k-1} \mathbb{S}^d) = \phi(\mathbb{S}^d) + \phi(\vee_{j=1}^{k-1} \mathbb{S}^d) \\ &= (-1)^d \phi(\mathbb{S}^0) + (k-1)(-1)^d \phi(\mathbb{S}^0) = k \cdot (-1)^d \cdot \phi(\mathbb{S}^0). \end{split}$$

Lema 2. Sea X un CW-complejo finito de dimensión d y sea i < d. Si X tiene c_i celdas de dimensión i, entonces $X^i/X^{i-1} \equiv \bigvee_{j \in \llbracket c_i \rrbracket} S^i$.

Demostración. Sea $W := \bigvee_{j \in \llbracket c_i \rrbracket} S^i$. Notemos que X^i/X^{i-1} es Hausdorff al ser un CW-complejo y W es compacto, así que basta con dar una función $W \to X^i/X^{i-1}$ continua y biyectiva. Consideramos primero la función $g : \bigsqcup_{j \in \llbracket c_i \rrbracket} \mathbb{D}^i_j \to X^i/X^{i-1}$ dada por la composición entre la función de adjunción de las i-celdas $f := \bigsqcup_{j \in \llbracket c_i \rrbracket} f_j$ y la proyección al cociente $g : X^i \to X^i/X^{i-1}$. Notemos que si x e y son puntos que pertenecen al borde de dos discos \mathbb{D}^i_k , \mathbb{D}^i_l , luego sus imagenes via f caen en el borde de dos i-celdas. En particular caen en el (i-1)-esqueleto de X^i , así que al proyectar obtenemos que g(x) = g(y). Esto dice que g pasa al cociente por la relación que identifica todos los bordes de los discos. Como $\mathbb{D}^i/\partial\mathbb{D}^i \equiv S^i$, luego $\bigsqcup_{j \in \llbracket c_i \rrbracket} \mathbb{D}^i_j / \bigsqcup_{j \in \llbracket c_i \rrbracket} \partial\mathbb{D}^i_j \equiv W$ y por lo tanto g induce una función continua $\hat{g} : W \to X^i/X^{i-1}$. Para terminar, veamos que es biyectiva:

• La función \hat{g} es inyectiva: sean $x' \neq y' \in W$ y $x,y \in \bigsqcup_{j \in [\![c_i]\!]} \mathbb{D}^i_j$ preimganes de x' e y' respectivamente por la proyección a W. En particular no solo es $x \neq y$ si no que alguno de los puntos debe estar en el interior de algún disco, ya que todos los bordes se proyectan a

Guido Arnone

• La función \hat{g} es sobreyectiva: sea $[z] \in X^i/X^{i-1}$. Si $z \in X^{i-1}$, tomamos $p \in W$ el punto de pegado de las esferas. Luego $\hat{g}(p) = g(x)$ para cierto $x \in \mathbb{D}^i_j$ con $j \in [\![c_i]\!]$. Por lo tanto, f(x) está en el borde de una i-celda y entonces $f(x) \in X^{i-1}$. De esta forma, tenemos que $f(x) \sim z$ y entonces $\hat{g}(p) = g(x) = qf(x) = q(z) = [z]$. Si en cambio $z \in X^i \setminus X^{i-1}$, luego z está en el interior de una i-celda y es imagen de cierto punto $x \in \mathbb{D}^{i^0}_j$ con $j \in [\![c_i]\!]$. Si proyectamos x a W, su imagen por \hat{g} es g(x) = qf(x) = q(z) = [z]. En cualquier caso [z] es imagen por \hat{g} de algún punto de W.

Prácticas 2 y 3

Observación 3. Como lo necesitaremos a continuación, recordamos el siguiente resultado visto en clase : sea $0 \cdots \xrightarrow{d_q} C_{q+1} \xrightarrow{d_{q+1}} C_q \xrightarrow{d_q} C_{q-1} \xrightarrow{d_{q-1}} \cdots \xrightarrow{d_1} C_0 \to 0$ un complejo de cadenas de \mathbb{Z} -módulos finitamente generado. Entonces,

$$\sum_{q \ge 0} (-1)^{i} \operatorname{rg} C_{i} = \sum_{q \ge 0} (-1)^{i} H_{q} C$$

En efecto, para cada $q \in \mathbb{N}$ tenemos luego las sucesiones exactas cortas

$$\begin{split} 0 \to im \, d_{q+1} &\hookrightarrow ker \, d_q \to ker \, d_q / \, im \, d_{q+1} = H_q \, C \to 0, \\ 0 \to ker \, d_q &\hookrightarrow C_q \xrightarrow{d_q} im \, d_q \to 0. \end{split}$$

Por lo tanto, $\operatorname{rg} C_q = \operatorname{rg} \ker d_q + \operatorname{rg} \operatorname{im} d_q = (\operatorname{rg} \operatorname{im} d_{q+1} + \operatorname{rg} H_q C) + \operatorname{rg} \operatorname{im} d_q.$ Luego,

$$\begin{split} \sum_{q \geq 0} (-1)^i \, rg \, C_i &= \sum_{q \geq 0} (-1)^i (rg \, im \, d_{q+1} + rg \, H_q C + rg \, im \, d_q) \\ &= \sum_{q \geq 0} (-1)^i H_q C + \sum_{q \geq 0} (-1)^i (rg \, im \, d_{q+1} + rg \, im \, d_q) \\ &= \sum_{q \geq 0} (-1)^i H_q C + \sum_{q \geq 0} (-1)^i \, rg \, im \, d_{q+1} + \sum_{q \geq 0} (-1)^i \, rg \, im \, d_{q+1} \\ &= \sum_{q \geq 0} (-1)^i H_q C + \sum_{q \geq 1} (-1)^{i+1} \, rg \, im \, d_q + \sum_{q \geq 0} (-1)^i \, rg \, im \, d_{q+1} \\ &= \sum_{q \geq 0} (-1)^i H_q C + rg \, im \, d_0 = \sum_{q \geq 0} (-1)^i H_q C. \end{split}$$

como afirmamos.

Ejercicio 8. Sea $n \in \mathbb{Z}$. Probar que existe una única función φ que le asigna a cada CW-complejo finito un entero tal que

(a) $\varphi(X) = \varphi(Y)$ si X e Y son homeomorfos.

Guido Arnone Prácticas 2 y 3

- (b) $\varphi(X) = \varphi(A) + \varphi(X/A)$ si A es subcomplejo de X.
- (c) $\varphi(\mathbb{S}^0) = n$.

Probar además que una tal función debe cumplir que $\phi(X) = \phi(Y)$ si $X \simeq Y$

Demostración. Probamos en primera instancia la unicidad, y luego la existencia. Fijemos $n \in \mathbb{Z}$ y supongamos que existe una tal función φ como en el enunciado. Ahora, sea X un CW-complejo finito de dimensión $d \in \mathbb{N}_0$. Por (b), obtenemos

$$\phi(X) = \phi(X^d) = \phi(X^d/X^{d-1}) + \phi(X^{d-1}) = \dots = \sum_{i=1}^d \phi(X^i/X^{i-1}) + \phi(X^0).$$

Como por el Lema 2 es $X^i/X^{i-1} \equiv \bigvee_{j \in [\![c_i]\!]} S^i$ con c_i la cantidad de i-celdas, luego usando (a) y los ítems (i) y (iv) del Lema 1 tenemos que

$$\begin{split} \phi(X) &= \sum_{i=1}^d \phi(\vee_{j \in \llbracket c_i \rrbracket} S^i) + \phi(S^0) \cdot (\#X^0 - 1) = \sum_{i=1}^d c_i \phi(S^i) + (c_0 - 1) \phi(S^0) \\ &= \sum_{i=0}^d c_i \phi(S^i) - \phi(S^0) = \sum_{i=0}^d c_i (-1)^i \phi(S^0) - \phi(S^0) \\ &= \phi(S^0) \sum_{i=0}^d (-1)^i c_i - \phi(S^0). \end{split}$$

Observando que $c_i = rg(C_iX)$, es entonces

$$\phi(X) = \phi(\mathbb{S}^0) \sum_{i=0}^d (-1)^i \, rg(C_i X) - \phi(\mathbb{S}^0) = \phi(\mathbb{S}^0) \chi(X) - \phi(\mathbb{S}^0) = \phi(\mathbb{S}^0) (\chi(X) - 1).$$

Esto prueba la unicidad, pues una tal función queda unívocamente determinada por su valor en la 0-esfera. Además, como la característica de Euler es un invariante homotópico, vemos que si $X \simeq Y$ luego $\phi(X) = \phi(\mathbb{S}^0)(\chi(X)-1) = \phi(\mathbb{S}^0)(\chi(Y)-1) = Y$. Para terminar, veamos la existencia: dado $n \in \mathbb{Z}$, por lo anterior necesariamente debemos definir $\phi(X) := n(\chi(X)-1)$ para cada CW-complejo finito X. Observemos también que si una función ψ cumple las condiciones (a) y (b) y $m \in \mathbb{Z}$ es un entero, la función $m \cdot \psi$ sigue verificándolas. Por lo tanto, resta probar la afirmación para n=1. Una vez más como χ es un invariante homotópico, en particular $\chi-1$ verifica (a), y entonces para terminar basta ver que si X es un CW-complejo finito y X un subcomplejo de X, entonces $\chi(X)-1=\chi(X)+\chi(X/X)-2$. Es decir, debemos ver que $\chi(X)=\chi(X)+\chi(X/X)-1$. Siempre tenemos una sucesión exacta corta $0\to S_{\bullet}X\to S_{\bullet}X\to S_{\bullet}(X,X)\to 0$ de complejos singulares, i.e. tenemos

$$0 \to S_q A \to S_q X \to S_q(X,A) \to 0.$$

sucesión exacta para cada $q \ge 0$ con los morfismos de inclusión y proyección canónicos, ya que por definicion es $S_q(X,A) = S_qX/S_qA$. En particular, sabemos entonces que $\operatorname{rg} S_qX = \operatorname{rg} S_qA + \operatorname{rg} S_q(X,A)$. Ahora, usando la Observación 3,

$$\begin{split} \chi(X) &= \sum_{i \geq 0} (-1)^i \operatorname{rg} S_i X = \sum_{i \geq 0} (-1)^i (\operatorname{rg} S_i A + \operatorname{rg} S_i (X, A)) \\ &= \chi(A) + \sum_{i \geq 0} (-1)^i \operatorname{rg} S_i (X, A) = \chi(A) + \sum_{i \geq 0} (-1)^i \operatorname{rg} H_i (X, A). \end{split}$$

Guido Arnone Prácticas 2 y 3

Como (X,A) es un par bueno, como consecuencia de escisión tenemos que $H_i(X,A)=\tilde{H}_i(X/A)$ para todo $i\geq 0$. Observando que para cualquier espacio Y es $\tilde{H}_0(Y)\oplus \mathbb{Z}\simeq H_0(Y)$, en particular $\operatorname{rg} H_0(X,A)=\operatorname{rg} \tilde{H}_0(X/A)=\operatorname{rg} H_0(X/A)-1$ y entonces

$$\begin{split} \chi(X) &= \chi(A) + \sum_{i \geq 0} (-1)^i \, \text{rg} \, H_i(X,A) \\ &= \chi(A) + \sum_{i \geq 0} (-1)^i \, \text{rg} \, H_i(X/A) - 1 \\ &= \chi(X) + \chi(X/A) - 1, \end{split}$$

lo que concluye la demostración.