Les séries entières

M6 - Chapitre 4

Définition I.

Une série entière est une série de la forme $\sum a_n z^n$ $z\in\mathbb{C}$

Rayon de convergence

Théorème 1.

$$|a_n r^n|$$
 suite bornée $\Rightarrow \ \forall \ \rho \in [0,r] \ \sum a_n \rho^n \ \text{C.N. sur } \mathcal{D}(0,r)$

Définition

R est le plus grand nombre tel que $|a_n r^n|$ soit bornée.

Si $|a_n r^n|$ bornée $\forall r \in \mathbb{R}, R = +\infty$

3. Critère de d'Alembert

Si
$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l \in \mathbb{R}^+ \quad \begin{cases} l > 0 \Rightarrow R = \frac{1}{l} \\ l = 0 \Rightarrow R = +\infty \end{cases}$$

III. Opérations sur les séries entières

1. Opérations simples

Des séries entières de même rayon s'ajoutent et se multiplient pour donner des séries entières de même rayon.

2. Dérivation

a. Théorème

$$\left(\sum_{n=0}^{+\infty}a_nz^n\right)'=\sum_{n=0}^{+\infty}(a_nz^n)'$$
 et ont même rayon de conv

b. Corollaire

Soit
$$S(z) = \sum_{n=0}^{+\infty} a_n z^n$$

S(z) dérivable une infinité de fois

•
$$S^{(k)}(z) = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n z^{n-k} = \sum_{q=0}^{+\infty} \frac{(q+k)!}{q!} a_{q+k} z^q$$
 est une série entière