

FIG. IA

FIG. IB

Host cell:	HeLa			BSC40		
p53:	-	+	+	-	+	+
p53 Ab:	+	+	-	+	+	-

FIG. 2A

FIG. 2B

Protein source	Vac	Vac	Vac	Bac
p53:	-	wt	175^{his}	wt
	B	B	C	B
			B	B

FIG. 3A

1 10 20 30 40 50 60 80 90
 VECT 98
 ↓
 1 AATACGACTCACTATAGGGCAATTGGGTACCGGCCCCCTGAGGTATCGATAAGCTTGAATTCTCCAGATGTTAGTG
 TTATGCTGAGTGTATCCCCGTTAACCCATGGGCCATTGGCTTAACCGTAACTGGGAAACGGGACCTGAAACGGGAA
 100 110 120 130 140 150 160 170 180
 AAAAGCAGGTAGATTGCCTGGCCTGGACTTGGCTGGCTTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTT
 TTTCTGTCATCTAACGGAACCTAACGGAACCTAACGGAACCTAACGGAACCTAACGGAACCTAACGGAACCTAACGGAAC
 190 200 210 220 230 240 250 260 270
 TCTT
 AGA
 280 290 300 310 320 330 340 350 360
 TAGAGGGCAATGGCCGATCTCGGCTCACCGCACCCCTCCGGCTCAAGGGATTGGGGATCCACTAGTTCTAGAGGCCGCC
 ATCTCCCCTTACGGGCTAACGGGATGGCTAACGGCTAACGGCTAACGGCTAACGGCTAACGGCTAACGGCTAACGGCT
 370 380 410 420
 ACCGGGGTGGAGCTCAGCTTTTGTTCCTTAACTGAGGGTTAACT
 TGGCCACCTCGAGGTGCAAAACAGGAATCACTCCCAATT

FIG. 3B

→
VECTOR 10 20 30 40 50 60 70 80
1 AAGCTTGAATCATGGAGGTGAGTTTCAGTGCTGTTCTCATGATAAGTCACTAAGTCTCCATGATGGTTTATAAGGGCA
TTCGAACATTAGTACCTCCACTAAAAGGTACGACAAGAGTACTAGGACTGATTAGACTACCAAAATATTCCCCT
100 110 120 130 140 150 160 170 180
GTCCTTCTCACATGCTCTTGGCTTACCATGTAAGAACATGCCATGCTCCTCTGGCTTCTGCCATGATTGTGAGACCTCCCCA
CAGGAAGATGTGTACGAGAACGAAACGATGGTACATTCTGTACGGACACAGGGAGAACGGAAAGAACGGTACTAACACTCTGGAAAGGT
190 200 VECTOR → 210 220 230
GCCATGTGGAACTGTGAGTATCGAATTCTGCAGCCCCGGGGATCCACTAGTTCTAGA
CCTGACCCCTGACACTCATAGCTTAAGGAACGTCGGGCCCTAGGTCAAGATCT

FIG. 4A

FIG. 4B

FIG. 5A

FIG. 5B

Frag.

no:

5mut1

C B

5mut2

C B

5

C B

FIG. 6

FIG. 7A

FIG. 7B

FIG. 8A

FIG. 8B

FIG. 9

Combined Nucleotide Usage (%) within the Two Monomers of the Consensus Binding Site:

FIG. 10A

Clone	Size (bp)	5'-bp	monomer	R R R C W G Y Y Y	monomer
1. S57	295	144	cgaccctgtcacacccg	G G G C T G T C A	
2. W22	357	178	atttcacatgttt	C T G C A T G T C T	
3. 11A2	387	317	ccccatccactg	A A A C A A T G C C C	
4. W211	249	119	tttgtcctaccatcc	A G G C A T G C C C T	
5. W7B2	139	41	tatctgtgcagctgt	G G G C A T G T T T	t
6. 3H	126	50	aacttagatccctttc	A G A C A T G T T C C	
7. 8A	483	445	gctgggtgcacaagg	T G A C A T G T T C C	
8. 532	335	229	catcatgccaccctgc	A G G C A T G C C C T	
9. 64A2	349	120	caaaaccagggtgtct	T G A C T T G C C C T	
10. W7A1	264	124	gccaaacataaccac	C A G C T G C C A	
11. S61	202	1	c	C A A C T T G T C T	attctgtgttat
12. 11B3	248	201	actgtttagatgaa	A G A C A A G C C T	a
13. W42	248	49	gcagggtgtggagg	A A A C A A G C C C	a
14. S201	326	164	tgttcataacctgtcc	A C A C T T G T C T	
15. S15B3	248	83	cttaattcaatgtgt	A A A C A T G A C T T	
16. S5921	254	39	cteagttctcagctg	G G A C T T G C C C	
17. S5921I	254	130	tgccctcagcaccttc	A G G T T C T G C C C	
18. 2Nb	470	42	gccttttgttgtgccc	T G A C T T G C C C T	
19. 9H	467	108	gtattctcttttcct	A A G C A T G C C T	
20. CBE10d	425	89	tgaaggcaggtagat	T G C C T T G C C T	

FIG. 10

FIG. 10A	FIG. 10B
FIG. 10C	FIG. 10D

R R R C W H G Y Y Y mmmmmmmmmmm
3'-bp

C A G C A T G a C C T acctgtcacacccggg 194
 A G G C A A G T C a ccttctcaactggcc 227
 A G A C T T G T C T ctccggcctgaatga 367
 A G A C T T G C C T cactcgttatttcct 164
 A G G C A A G C T T cctgtgtcttagttccc 91
 t A A C A A G T C a gtacaaggtttatTTT 99
 C G G C T G T C T tgtc 483
 t G A C A T G T C T ttgtgttttgtgttt 282
 A G G C A T G C a g ctccccctccccctc 181
 C G A C A T G T C T taccacgctcagccc 173
 C G G C A B G T C C cggtttttggctatt 49
 C G G A t G T G C C tggggggggggggg 248
 A t A C C T G C C T agggcaggctggac 99
 t G A C A T G T C T acacctgtcttggttt 214
 t G G C C A G C C C aattacaabttcgatt 143
 G G G C T T G T T C tgggggtcaactgtgc 88
 A G A C A T G T T C ctttcccttcagcat 179
 t G A C T T G T C T ggaaatgtctgtgc 91
 G G A C T T G C C T ttcatcttcctctga 157
 ggccttgcctttct 138

FIG. IOC

	<u>5'</u> - R	R	R	C	W	U
A	<u>40</u>	<u>20</u>	<u>55</u>	0	<u>53</u>	<u>15</u>
C	13	3	3	<u>23</u>	8	0
G	<u>23</u>	<u>70</u>	<u>40</u>	0	8	3
T	23	5	0	5	<u>30</u>	<u>82</u>

Synthetic Oligonucleotides:

p53 Binding

No.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

A G G A T t C C T
 A G G A T t C C T
 A G G C A T G T C T
 A G G C A T G T C T
 A G G C A A G G C A
 A G G C A T G T C T
 A G G C A T G T C T
 A G G C A T G T C T
 A G G C A T G T C T
 tgcaggaaatttcgat
 tgcaggaaatttcgat
 tgcaggaaatttcgat
 tgcaggaaatttcgat
 tgcaggaaatttcgat

FIG. IOD

G Y Y -3'

0	0	0	12	A
0	<u>50</u>	<u>68</u>	<u>35</u>	C
<u>100</u>	0	0	3	G
0	<u>50</u>	<u>30</u>	<u>48</u>	T

A G G a A T t C C T

A G G C A T G C C T
A G G C A A G g C a
A G G C A T G T C T atcaagcttatcgat
A G A C A T G C C T atcaagcttatcgat
A G G C A T G T C T atcaagcttatcgat
atcaagcttatcgat
atcaagcttatcgat

FIG. II A

1 2 3 4 5 6 7 8 9
C B C B C B C B C B C B C B C B C B
2.9 ►

CONSENSUS
MONOMER (↑):

1 2 3 4 5 6 7

0.06 ►

FIG. II B

p 53 : w.t. 143 175 248 273 w.t.
C B B B B B

2.9 ►

FIG. 12A

FIG. 12B

FIG. 13A

FIG. 13B

FIG. 14

FIG. 15A

FIG. 15B

FIG. 16A

FIG. 16B

FIG. 17

p53-wt (ug):	0	85	.85	.85	.85
p53-175 (ug):	0	0	0	.85	2.55
PG ₁₃ -CAT:	+	-	+	+	+
Activity:	12	0	100	44	11

FIG. 18

319

FIG. 19

p53 MISSENSE MUTATION

LOSS OF WILD-TYPE ALLELE

