Nonlinearities in Spacecraft Structural Dynamics

Larry Taylor
NASA Langley Research Center
and
Kelly Latimer
U.S. Air Force and G.W.U.

4th Annual SCOLE Workshop Colorado Springs, CO November 16, 1987

OUTLINE

- SCOLE Configuration Equations of Motion
- Modeling Error Sources
- Approximate Solutions
- Comparison of Model Accuracy
- Linear & Nonlinear Damping
- Experimental Results
- Future Work

ORIGINAL PAGE IS OF POOR QUALITY

Equations of Motion

Shuttle (and Reflector) Body

$$\dot{\mathbf{w}}_{1} = -\mathbf{I}_{1}^{-1} (\widetilde{\mathbf{w}}_{1} \mathbf{I}_{1} \mathbf{w}_{1} - \mathbf{M}_{1} - \mathbf{M}_{1, \text{Beam}})$$

$$\dot{\mathbf{v}}_{1} = (\mathbf{F}_{1} + \mathbf{F}_{1, \text{Beam}}) / \mathbf{m}_{1}$$

$$\dot{\mathbf{T}}_{1}^{T} = -\widetilde{\mathbf{w}}_{1} \mathbf{T}_{1}^{T}$$

Roll (and Pitch) Beam Bending

$$pA_{\phi}\frac{d^{2}u}{dt^{2}}\phi - CI_{\phi}\frac{d^{3}u}{ds^{2}dt}\phi + EI_{\phi}\frac{d^{4}u}{ds^{4}}\phi = \sum_{n=1}^{4} [f_{\phi,n}\delta(s-s_{n}) + g_{\phi,n}\frac{d\delta}{ds}(s-s_{n})]$$

Yaw Beam Torsion

$$p I_{\Psi} \frac{d^{2}u}{dt^{2}} \Psi + C I_{\Psi} \frac{d^{3}u}{ds^{2}dt} - G I_{\Psi} \frac{d^{2}u}{ds^{2}} \Psi = \sum_{n=1}^{4} g_{\Psi,n} \delta(s-s_{n})$$

Beam Elongation

$$pA\frac{d^2u}{dt^2}z + C_zA\frac{d^2u}{dsdt}z - EA\frac{d^2u}{ds^2}z = \sum_{n=1}^4 f_{z,n}\delta(s-s_n)$$

Static Deflection Error

Large Amplitude Deflection Effects

Deflection, y/L	Error, e/y
.05	.17 %
.10	.67 %
.20	2.7 %
.30	6.0 %
.40	10.6 %
.50	16.4 %

Lumped-Mass Model

- Exact Static Deflection
- Approximates Low-Frequency Modes
- Nonlinear Kinematics
- Linearized State Space, Modal Model
- Classical Damping(Working Proportional)
- Extended to n-Body Network

Stiffness Matrices

$$M_{u}' = \begin{bmatrix} -\frac{4EI}{L} - \frac{2WL}{15}^{*} & 0 & 0 \\ 0 & -\frac{4EI}{L} - \frac{2WL}{15}^{*} & 0 \\ 0 & 0 & -\frac{GJ}{L} \end{bmatrix}$$

$$M_{u} = \begin{bmatrix} 0 & \frac{6EI}{L^{2}} + \frac{W}{10}^{*} & 0 \\ \frac{6EI}{L^{2}} + \frac{W}{10}^{*} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

* Gravity Effect

Stiffness Matrices

$$F_{\mathbf{u}} = \begin{bmatrix} -\frac{12EI}{L^3} - \frac{6W}{5L}^* & 0 & 0 \\ 0 & -\frac{12EI}{L^3} - \frac{6W}{5L}^* & 0 \\ 0 & 0 & -\frac{EA}{L} \end{bmatrix}$$

$$F_{\mathbf{u}} = \begin{bmatrix} 0 & \frac{6EI}{L^2} & 0 \\ \frac{6EI}{L^2} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

* Gravity Effect

Asymptotic Approximation

- Motion Approaches Clamp-Clamped System as Mode Number Increases
- Accuracy Increases with Increasing Mode Number
- Explicit Expressions for Modal Frequencies and Mode Shapes
- First Variation Approximation for Motion of End Bodies
- Singular Perturbation Technique can be used to Improve Approximate Solutions

Comparison of Modal Frequencies

	EXACT		FINITE ELEMENT		
HUDE NO	REF. 5& 6	REF. 9	<u>REF. 10</u>	REF. 11	
1	.278025624	.278	.277	.2740	
2	.313776751	.317	.314	3229	
3	.812326353	.726	.805	.7494	
4	1.18366347	1.226	1.175	1.244	
5	2.05047101	2.069	2.028	2.052	
6	4.75561758	4.77	4.617		
7	5.51248431	5.52	5.388		
8	12.2598619	12.4	11.782		
9	12.8877037	13.0	12.513		
10	23.5359367	24.2	14.670		
11	24.2568205	24.7	22.968		
12	26.4794890	26.2	23.490		
13	38.9199260	45.4	37.568		
14	39.4643489	45.9	38.146		
15	45.1313668	56.3	44.653		
16	57.90		45.161		
17	57.92		16	% ERROR	
18	80.72			, , , , , , , , , , , , , , , , , , , ,	
19	80.72	7	78		

Comparison of Modal Frequencies

MODE NO.	EXACT REF.5&6	Lumped Mass	Asymptotic
1	.278025624	.258	
2	.313776751	.370	51% ERROR
3	.812326353	.926	
4	1.18366347	1.79	30% ERROR
5	2.05047101	2.57	30 % Exiter
6	4.75561758		4.23885
7	5.51248431		4.23885
8	12.2598619	•	11.88805
9	12.8877037		11.88805
10	23.5359367		23.313674
11	24.2568205		23.313674
12	26.4794890		
13	38.9199260		38.534998
14	39.4643489		38.53.4008
15	45.1313668		.c % Error
16	57.90 [*]		57.455629
17	57.92 [*]		57.455629
18	80.72*		80.24802
19	80.72		80.24802
* - Uncouple et (1971) - 1971) enuage sena se	ed (Reference 3).	79	

Comparison of Modal Frequencies

Comparison of Deflections

A 3-Dimensional Beam Equation

- Includes Nonlinear Kinematics
- Makes No Small Angle Approximation
- Bonding(2 Directions), Torsion & Flongation

It follows that the deflection vector of the beam is:

$$R(s) = \int_{0}^{s} T(s') \begin{bmatrix} du_{x}/ds' \\ du_{y}/ds' \\ 1+du_{z}/ds' \end{bmatrix} ds'$$

and the direction cosine of the cross section axes is given by:

$$\frac{dT(s)}{ds} = T(s) \begin{bmatrix} 0 & -d\psi/ds & d\theta/ds \\ d\psi/ds & 0 & -d\phi/ds \\ -d\theta/ds & d\phi/ds & 0 \end{bmatrix}$$

The forces and moments applied to the beam are related to the beam deformations by:

$$\frac{dFx}{dFy} = \begin{bmatrix} -k'GA & & & \\ -k'GA & & & \\ & -EA & & \\ & & -EI_{XX} & \\ dMy & & & -EI_{ZZ} \end{bmatrix} \begin{bmatrix} du_X/ds \\ du_Y/ds \\ du_Z/ds \\ d\psi/ds \end{bmatrix} ds$$

$$dF = F_u dv + F_e de$$

$$dM = M_u dv + M_e de$$

Where

here
$$du = \begin{bmatrix} du_{x}/ds \\ du_{y}/ds \\ du_{z}/ds \end{bmatrix} ds \qquad de = \begin{bmatrix} d\phi/ds \\ d\theta/ds \\ d\psi/ds \end{bmatrix} ds$$
83

The incremental force can be related to deformation of the beam.

$$\frac{dR}{ds} = \frac{R(s+ds)-R(s)}{ds} = T\begin{bmatrix} 0\\0\\1 \end{bmatrix} + T\begin{bmatrix} du_{x}/ds\\du_{y}/ds\\du_{z}/ds \end{bmatrix}$$

$$\begin{bmatrix} du_{x}/ds \\ du_{y}/ds \\ du_{z}/ds \end{bmatrix} = T^{T} \frac{dR}{ds} - \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\frac{dF}{ds} = \frac{F(s+ds) - F(s)}{ds} = F_{\mathbf{u}}T^{T}\frac{dR}{ds} - F_{\mathbf{u}}\begin{bmatrix}0\\0\\1\end{bmatrix} + F_{\mathbf{e}}\frac{d\mathbf{e}}{ds}$$

Similarly, for the incremental moment..

$$\frac{dM}{ds} = M_{\mathbf{U}}T^{T}\frac{dR}{ds} - M_{\mathbf{U}}\begin{bmatrix} 0\\0\\1 \end{bmatrix} + M_{\mathbf{e}}\frac{d\mathbf{e}}{ds} + \frac{dF}{ds}$$

The equations of motion for the beam element are:

$$m\frac{d^2R}{dt^2} = T\frac{d}{ds}\left[\frac{dF}{ds}\right] + TF$$

and

$$I_0 \frac{\text{d}^2 e}{\text{d} t^2} = - \ \frac{\widetilde{\text{d} e}}{\text{d} t} I_0 \frac{\text{d} e}{\text{d} t} + \frac{\text{d}}{\text{d} s} \left[\frac{\text{d} M}{\text{d} s} \right] + M$$

The equations of motion for the beam element become:

$$\begin{split} m\frac{d^2R}{dt^2} &= T\frac{d}{ds}\bigg[F_{\mathbf{u}}\Big(T^T\frac{dR}{ds} - \begin{vmatrix} 0\\0\\1 \end{vmatrix}\Big) + F_{\mathbf{e}}\frac{de}{ds}\bigg] + TF \\ I_0\frac{d^2e}{dt^2} &= -\frac{\widetilde{de}}{dt}I_0\frac{de}{dt} + \frac{d}{ds}\bigg[M_{\mathbf{u}}\Big(T^T\frac{dR}{ds} - \begin{vmatrix} 0\\0\\1 \end{vmatrix}\Big) + M_{\mathbf{e}}\frac{de}{ds}\bigg] \\ &+ F_{\mathbf{u}}\Big(T^T\frac{dR}{ds} - \begin{vmatrix} 0\\0\\1 \end{vmatrix}\Big) + F_{\mathbf{e}}\frac{de}{ds} + M \end{split}$$

Where

$$e = the arc direction cosine[T] = \begin{bmatrix} \phi \\ \Theta \\ \Psi \end{bmatrix}$$

$$\frac{de}{dt} = \begin{bmatrix} d\phi/dt \\ d\theta/dt \\ d\psi/dt \end{bmatrix}$$

$$\frac{dT}{dt} = T \frac{\widetilde{de}}{dt}$$

$$\frac{dT}{ds} = T \frac{\widetilde{de}}{ds}$$

m = the mass per unit length

 I_0 = the moment of inertia per unit length

$$= \begin{bmatrix} I_{XX} & -I_{XY} & -I_{XZ} \\ -I_{XY} & I_{YY} & -I_{YZ} \\ -I_{XZ} & -I_{YZ} & I_{ZZ} \end{bmatrix}$$

For the case in which deflections are small and the end of the beam is aligned with the inertial axes:

$$T \approx I + \tilde{e} = \begin{bmatrix} 1 & -dU & d\theta \\ d\Psi & 1 & -d\varphi \\ -d\theta & d\varphi & 1 \end{bmatrix}$$

$$\frac{dR}{ds} = T \begin{bmatrix} du_x/ds & 0 \\ du_y/ds + 0 \\ du_z/ds & 1 \end{bmatrix} \approx \frac{du_x/ds}{du_z/ds} + \begin{bmatrix} \theta \\ -\phi \\ 1 \end{bmatrix}$$

$$R \approx R_0 + u + \int_0^s \begin{bmatrix} \theta \\ -\phi \\ 1 \end{bmatrix} ds$$

The linearized equations become:

$$m\frac{d^2R}{dt^2} = \frac{d}{ds} \left[F_u \left(\frac{dR}{ds} - \begin{vmatrix} \Theta \\ -\Phi \\ 1 \end{vmatrix} \right) + F_e \frac{de}{ds} \right] + F + \tilde{e} F$$

$$I_{0}\frac{d^{2}e}{dt^{2}} = \frac{d}{ds}\left[M_{u}\left(\frac{dR}{ds} - \begin{vmatrix} \theta \\ -\phi \\ 1 \end{vmatrix}\right) + M_{e}\frac{de}{ds}\right] + F_{u}\left(\frac{dR}{ds} - \begin{vmatrix} \theta \\ -\phi \\ 1 \end{vmatrix}\right) + F_{e}\frac{de}{ds} + M_{e}\frac{de}{ds}$$

For bending only, in a single plane the equations of motion become those for the Timoshenko beam.

$$m \frac{d^2 R_X}{dt^2} = \frac{d}{ds} \left[kGA \left(\frac{dR_X}{ds} - \Theta \right) \right] + F_X$$

$$I_{XX} \frac{d^2\theta}{dt^2} = \frac{d}{ds} \left[EI_{XX} \frac{dR_X}{ds} \right] - kGA \left(\frac{dR_X}{ds} - \theta \right) + M_X$$

If rotary inertia effects are neglected the result is the Bernoulli-Euler beam.

$$m \frac{d^2 R_x}{dt^2} = - \frac{d^2}{ds^2} \left[E I_{xx} \frac{d^2 R_x}{ds^2} \right] + F_x$$

Kelvin-Voight Damping

Bernoulli-Euler Beam Equation with Kelvin-Voight Damping

$$EIu^{\cdots} + C\dot{u}^{\cdots} + m\ddot{u} = 0$$

Allows Separation of Variables

Theoretical Basis for Damping

Locus of Modal Characteristics

EXCESSIVE DAMPING AT HIGH MODE NUMBERS!!!!

Proportional Damping

Bernoulli-Euler Beam Equation with Proportional Damping

$$EIu^{\cdots} + C\dot{u}^{\cdots} + m\ddot{u} = 0$$

Allows Separation of Variables for Pinned and Infinite End Conditions

Lacks Theoretical Basis for Damping

Locus of Modal Characteristics

REASONABLE DAMPING AT HIGH MODE NUMBERS

Piano-Wire Damping

Viscous Damping Ratio

Smaller Mass $\S = .0015$

General Mass $\mathcal{E} = .0015\sqrt{\frac{m_1}{m}}$

Nonlinear Damping

$$m\ddot{x} = -c_1\dot{x} - c_2|\dot{x}|\dot{x} - kx$$

$$A_{n+1} = A_n - A_n(.00138)2\pi - (.0012)A_n^2$$

Determined to be Air Damping

SCOLE DAMPING

Viscous Damping Ratio

Mode	Configuration # 1	Configuration #2
1	.0016	.0013
2	.0011	.0009
3	.00058	
4	.0011	
5	.00084	

Nonlinear Damping is Evident for Large Amplitude Motion. Analysis is Underway.

Nonlinear Damping

Mass, Spring, Nonlinear Damper

$$\mathbf{m} \ddot{\mathbf{x}} = -\mathbf{c} |\mathbf{x}|^{\mathbf{a}} |\dot{\mathbf{x}}|^{\mathbf{b}} \dot{\mathbf{x}} - \mathbf{k} \mathbf{x}$$

Considering Only Light Damping ...

$$\mathbf{w} = \sqrt{\mathbf{k}/\mathbf{m}}$$

For Free Decay

$$x(t) = A(t) \sin(\omega t)$$

$$\dot{\mathbf{A}} = -\frac{\mathbf{c}}{\mathbf{m}} |\mathbf{x}|^{\mathbf{a}} |\dot{\mathbf{x}}|^{\mathbf{b}} = -\frac{\mathbf{c}}{\mathbf{m}} \mathbf{m}^{\mathbf{b}} \mathbf{A}^{\mathbf{a}+\mathbf{b}}$$

Solving

$$dt = \frac{m dA}{c w^b A^{a+b}}$$

$$t + t_0 - \frac{m}{c(a+b-1)w^b A^{a+b-1}}$$

$$A(t) = \left[\frac{m}{c(a+b-1)\omega^{b}(t+t_{0})}\right]^{\frac{1}{a+b-1}}$$

Nonlinear Damping

$$A(n) = \left[\frac{m}{c(a+b-1)w^b n}\right] \frac{1}{a+b-1}$$

Where
$$t + t_0 = n \frac{2\pi}{111}$$
, $w = [k/m]^{1/2}$

$$A(n) = \left[\frac{\frac{(b+1)/2}{c(a+b-1)k^{(b-1)/2}2\pi n}\right] \frac{1}{a+b-1}$$

For Example

•
$$\frac{c}{m}\dot{x}$$

$$a=b=0$$

$$a=b=0$$
 $\frac{dA}{A} = 2\pi \hat{S} = \frac{c\pi}{\sqrt{km}}$

•
$$\frac{c}{m}|\dot{x}|\dot{x}$$

$$a=0$$
 $b=1$

$$a=0$$
 $b=1$
 $\frac{dA}{A} = \frac{4cAw}{3m} = \frac{4cAk^{1/2}}{3m^{3/2}}$

•
$$\frac{c}{m}|x|\dot{x}$$

$$a=1$$
 $b=0$

$$\begin{array}{ccc}
a=1 \\
b=0
\end{array} \qquad \frac{dA}{A} = \frac{2cA}{3m}$$

95

Number of Cycles

Number of Cycles

Number of Parameters

Number of Modes

Concluding Remarks

- The Accuracy of the Modal Characteristics of the SCOLE Configuration were Examined Using Exact and Approximate Solutions.
- Sixty-Seven Modes are Required for a Static Deflection Error of less than 1 %. SCOLE Model Requires Hundreds of Modes.
- Exact Solutions Encounter Numerical Difficulties.
- Asymptotic Solutions in Combination with Limited Exact Solutions Enable Generation of a Proof Model with the Required Accuracy.
- Damping Must be Incorporated into the Model from the Start. Proportional Damping is Not Adequate.

"It will never be possible to have the absolute conviction before flight that a valid mathematical model has been devised for a space vehicle.

....we surely must make every effort to ensure that failures do not come from inadequate analysis of the best models available."

Peter Likins 1971