Genetic Algorithms

Sean Peng, Ron Guter, Quintin Buckley

What are Genetic Algorithms (GAs)?

- Method of solving optimization problems, inspired by natural selection
- A heuristic algorithm, not analytic
- Each candidate solution is an array called a chromosome
- The initial *population* is randomly generated
- The solutions improve over generations

Four Stages of GA

For each generation:

- Evaluation: calculate a score for each chromosome
- **Selection:** the best chromosomes become parents
- **Crossover:** the parents combine and reproduce
- **Mutation:** random change of part of a chromosome at a very low probability (flipping a bit).

Evaluation

- Calculate the *fitness* for each chromosome
- Ex. For an algorithm where each chromosome has 2 parameters, a fitness function could be

$$f(p_1, p_2) = \pi^{p_1} + p_2$$

- For maximizing, higher fitness indicates a better solution
- For minimizing, lower fitness indicates a better solution
- Better solutions dictate the general direction of the evolution process

Selection

- Some high fitness chromosomes in the current generation become parents
- Many different selection methods
- Roulette Wheel Selection (for the ith chromosome)

	nrob of solaction —	fitness _i
0	prob. of selection $_i =$	$\sum_{j=0}^{n} \text{fitness}_{j}$

- **Tournament Selection**
 - Break population into groups of k
 - The fittest of each group is selected

Crossover

- Selected parents will "reproduce" by swapping segments of their genes, based on randomized crossover point(s).
- Ex. P1 = 11111, P2 = 00000, one crossover point at bit 2
 - Child 1 = 11000, Child 2 = 00111
- Potentially combine the best features of the parents

Mutation

- Randomly flips bits in a chromosome at a very low probability
- Inspired by nature, maintains genetic diversity
- Prevents the algorithm from getting stuck at local optima before finding the global optimum
 - Advantage over other algorithms, e,g. gradient descent


```
Algorithm 1 GA g = 0 \qquad \qquad \text{Initialize generation 0} \\ P_g = \text{population of } n \text{ randomly generated chromosomes} \\ \text{Compute } f(p_i) \text{ for all } p_i \in P_g \qquad \Rightarrow \text{Compute initial fitness} \\ \text{while population has not converged do} \\ \text{Selection} \\ \text{Crossover} \\ \text{Mutation} \\ g = g + 1 \\ \text{Compute } f(p_i) \text{ for all } p_i \in P_g \\ \text{return fittest chromosome in } P_g
```

Simple Function Optimization

- ullet Maximize f(x,y) = 0.01(x-1)(x+2)(x+5)(x-3)(y-3)(y+2)(y+5)
 - \circ Constrained domain: $x, y \in [-5, 3]$
 - This is our fitness function
- Population size: 20 chromosomes
- Tournament selection: k = 3, Crossover rate = 0.8, Mutation rate = 0.1

Improving GA

- Genetic algorithms follow a simple set of rules
- This makes them easier to understand and modify
- What if we combined GA with other kinds of optimization methods?

Particle Swarm Optimization (PSO)

- Another *heuristic* algorithm
- Instead of "chromosomes," we have a "swarm" of random "particles"
- Each particle starts with a random initial *velocity* in a random direction
- At every iteration (t), every particle (X_i) steps in the direction of its velocity
- At every iteration, every particle calculates its new velocity (V_i) using the equation

$$V_i(t+1) = \omega \cdot V_i(t)$$

+ $c_1 \phi_1(\text{pbest}_i - X_i(t)) + c_2 \phi_2(\text{gbest} - X_i(t))$

 $[\]omega$, c_1 , and c_2 are preset hyperparameters on [0, 1] ϕ_1 and ϕ_2 are randomly selected numbers on [0, 1]

What does this mean?

- Every particle tracks its own best position over time (pbest_i) and the swarm's overall best (gbest)
- At every step, a particle's velocity will gradually shift towards both its personal best and the swarm's global best
- We both "explore" a particle's individual results and "exploit" the knowledge of the entire swarm

A Hybrid of Genetic Algorithms and Particle Swarm (HGAPSO)

- Apply the principles of *exploration* and *exploitation* to a genetic algorithm
- Give each chromosome a velocity, and for every generation:
 - 1. Step ("enhance") each chromosome in the direction of its velocity
 - 2. Compute every chromosome's new velocity with the same equation as in PSO
 - 3. Apply selection, crossover, and mutation to these "*enhanced chromosomes*"
 - 4. Repeat

Standard GA vs. HGAPSO

Both algorithms tested on the function

$$f(x,y) = (x-3.14)^2 + (y-2.72)^2 + \sin(3x+1.41) + \sin(4y-1.73)$$

$$x, y \in [0, 5]$$

- On average, HGAPSO was able to find a solution within one-hundredth of the true global minimum in fewer generations than the standard GA could
- Even better results could be achieved by finding optimal hyperparameters

Application to Portfolio Optimization

- A portfolio is a partition of the total capital, with each portion is allocated to a different asset
- We can build an optimal portfolio based off some metric (fitness function) using GAs.
- We used data sets from Yahoo Finance to get the stock prices of companies from 2019–2021.

	ADBE	BTC-USD	IRX	AMZN	TXN	MSFT	NVDA
Date							
2019-05-31	270.899994	8574.501953	2.293	1775.069946	98.278275	121.004944	33.731499
2019-06-01	270.899994	8564.016602	2.293	1775.069946	98.278275	121.004944	33.731499
2019-06-02	270.899994	8742.958008	2.293	1775.069946	98.278275	121.004944	33.731499
2019-06-03	259.029999	8208.995117	2.280	1692.689941	99.088554	117.247993	33.313152
2019-06-04	268.709991	7707.770996	2.295	1729.560059	102.810135	120.496185	35.609070

Defining the Stages

- **Chromosome:** each chromosome is a partition that sums to 1 (the total capital)
- **Fitness function:** expected return
- **Selection:** top third of the current generation
- **Crossover:** Random constant k, the computation $k \cdot a + (1-k) \cdot b$ for parents a, b
- Mutation: Randomly transferring capital from one asset to another

TABLE II BEST CHROMOSOME FOR MAX RETURN				
Stock	Weight for Max Return			
AAPL	0.12			
ADBE	0.01			
AMZN	0.06			
BTC-USD	0.07			
FB	0.12			
GC=F	0.05			
IRX	0.17			
MSFT	0.21			
NVDA	0.06			
QCOM	0.03			
TSLA	0.03			
TXN	0.08			

Improvement Using the Sharpe Ratio

- Original fitness function focused on returns, but doesn't account for risk
 - resulted in high volatility
- Better metric: Sharpe ratio (reward-to-variability ratio)
- Achieved 0.5738 Sharpe ratio with 6.21% returns
 - > 0.5 means well-diversified portfolio

