TOPOLOGY, SUMMER 2025

ANON

Contents

1. Introduction

Problems primarily from [?lee2011manifolds].

2. Topological Spaces

2.1. Topologies.

Problem 1. Suppose M is a set and d, d' are two different metrics on M. Prove that d, d' generate the same topology on M iff $\forall x \in M, \forall r > 0, \exists r_1, r_2 > 0 : B_{r_1}^{d'}(x) \subseteq$ $B_r^d(x)$ and $B_{r_2}^d(x) \subseteq B_r^{d'}(x)$

Proof. $\implies d, d'$ generate the same topology so, $B_r^d(x)$ is open in d' topology. Thus by definition of openness, $\forall x \in B_r^d(x), \exists r_1 > 0 : B_{r_1}^{d'}(x) \subseteq B_r^d(x)$ Similar reasoning yields, $B_{r_2}^d(x) \subseteq B_r^{d'}(x)$

Let U be an open set in d topology. So, $B^d_r(x) \subseteq U$ and we also have $\forall r > 0, \exists r_1 > 0: B^{d'}_{r_1}(x) \subseteq B^d_r(x) \implies B^{d'}_{r_1}(x) \subseteq U$. Thus, U is open set in d' topology. Similar reasoning yields V is open set in d topology given that V is open set in d'topology.

Problem 2. Let (M,d) be a metric space, let c be a positive real number, and define a new metric d' on M by $d'(x,y) = c \cdot d(x,y)$. Prove that d and d' generate the same topology on M.

Proof. Let U be an open subset in d topology. Now, $B_r^d(x) \subseteq U, B_r^d(x) = \{y \in M | d(x, y) < r\}$ Define $r_1 = r \cdot c, c > 0$

Strategy: Same as above.
$$B^{d'}_{r_1}(x) = \{y \in M | d'(x,y) < r_1\} = \{y \in M | c \cdot d(x,y) < r_1\} = \{y \in M | d(x,y) < \frac{r_1}{c} = \text{we have } \frac{d}{d}(x) \text{ is relation between the metrics.}$$

Thus, $B_{r_1}^{d'}(x) \subseteq U$, so U is open in d' topology.

With similar reasoning, for an open subset V in d' topology, V is open in d topology. Therefore, d, d' generate the same topology on M.

Date: Draft of August 29, 2025.

Strategy: Show open set in d topology is open in d'topology and vice versa to prove that they generate the same topology.Please feel free to add new insights:)

Problem 3. Define a metric d' on \mathbb{R}^n by $d'(x,y) = \max\{|x_1 - y_1, \dots, |x_n - y_n|\}$. Show that the Euclidean metric and d' generate the same topology on \mathbb{R}^n .

- 2.2. Convergence and Continuity.
- 2.3. Hausdorff Spaces.
- 2.4. Bases and Countability.
- 2.5. Manifolds.
- 2.6. Problems.

3. New Spaces From Old

- 3.1. Subspaces.
- 3.2. Product Spaces.
- 3.3. Disjoint Union Spaces.
- 3.4. Quotient Spaces.
- 3.5. Adjunction Spaces.
- 3.6. Topological Groups and Group Actions.
- 3.7. Problems.

References

[1] John M. Lee, *Introduction to Topological Manifolds*, 2nd ed., Graduate Texts in Mathematics, Springer, New York, NY, 2011. Originally published: 28 December 2010.