P2 de Álgebra Linear I – 2002.1 Data: 4 de maio de 2002.

Nome:	Matrícula:	
Assinatura:	Turma:	

Questão	Valor	Nota	Revis.
1	2.5		
2	1.0		
3a	0.5		
3b	1.0		
3c	1.0		
3d	1.0		
4a	0.5		
4b	1.0		
4c	1.0		
4d	0.5		
Total	10.0		

Instruções:

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando ou rasuradas terá nota zero.
- Nas questões 2, 3 e 4 justifique cuidadosamente todas as respostas de forma completa, ordenada e coerente. Escreva de forma clara e legível.
- Nas questões 2, 3 e 4 da prova não haverá pontuação menor que 0.5 Verifique cuidadosamente suas respostas.
- Faça a prova na sua turma.

Marque no quadro as respostas da primeira questão. Não é necessário justificar esta questão.

ATENÇÃ0: resposta errada vale ponto negativo!, a questão pode ter nota negativa!

Para uso exclusivo do professor	****	****
Certas:	$\times 0.3$	
Erradas:	$\times -0.2$	
****	Total	

1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque **com caneta** sua resposta no quadro abaixo. **Atenção:** responda **todos** os itens, use " $\mathbf{N} =$ não sei" caso você não saiba a resposta. Cada resposta certa vale 0.3, cada resposta errada vale -0.2, cada resposta \mathbf{N} vale 0. Respostas confusas e ou rasuradas valerão -0.2.

Itens	V	\mathbf{F}	N
1.a			
1.b			
1.c			
1.d			
1.e			
1.f			
1.g			
1.h			
1.i			

- **1.a)** Seja P uma transformação linear de \mathbb{R}^2 tal que $P^2 = P \circ P = P$, então P é uma projeção ortogonal.
- **1.b)** Considere vetores $v, y \in w$ de \mathbb{R}^3 linearmente dependentes. Então existem números reais $\sigma \in \lambda$ tais que $v = \sigma y + \lambda w$.
- 1.c) Seja $P: \mathbb{R}^3 \to \mathbb{R}^3$ uma projeção ortogonal em um plano e $E: \mathbb{R}^3 \to \mathbb{R}^3$ um espelhamento em um plano. Então $E \circ P: \mathbb{R}^3 \to \mathbb{R}^3$ é uma projeção ortogonal.
- **1.d)** Sejam π_1 , π_2 e π_3 três planos de \mathbb{R}^3 contendo a origem e P_1 , P_2 e P_3 as respetivas projeções ortogonais nestes planos. Suponha que $P_3 \circ P_2 \circ P_1$ é a transformação linear nula. Então os planos se interceptam em um ponto.
- **1.e)** Dada uma base $\beta = \{u, v, w\}$ de \mathbb{R}^3 considere a nova base $\gamma = \{u + v + w, u + v, u + w\}$ de \mathbb{R}^3 . Considere o vetor h cujas coordenadas na base β são (1, 1, 1). Então as coordenadas de h na base γ são (1/3, 2/3, 1/3).
 - 1.f) A matriz

$$\left(\begin{array}{ccc}
1 & 0 & a \\
1 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)$$

é sempre inversível (independentemente do valor de a).

- **1.g)** Seja A uma matriz 2×2 inversível. Suponha que $A^2 = 2A$. Então det A = 2.
- **1.h)** Existe uma projeção ortogonal $P \colon \mathbb{R}^3 \to \mathbb{R}^3$ tal que P(1,1,2) = (0,1,1).
- **1.i)** Existe uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,0,0) = (1,1), T(1,1,0) = (1,1), T(1,1,1) = (1,1).
 - 2) Determine quais das matrizes
 - 2.a)

$$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right),$$

$$\left(\begin{array}{cc} 2 & -1 \\ 2 & -1 \end{array}\right),$$

representam uma projeção (ortogonal ou não) ou um espelhamento.

- No caso das projeções determine se são ou não ortogonais. No caso de projeções ortogonais, determine a reta ou o plano de projeção, e no caso não ortogonal a direção (reta ou plano) de projeção e o plano ou reta de projeção.
- No caso dos espelhamentos determine a reta ou o plano de espelhamento.
- 3) Considere a projeção P no plano $\pi\colon x+y-z=0$ na direção do vetor (1,-1,-1).
- **3.a)** Seja u = (4, -1, 1) = (2, -2, -2) + (2, 1, 3) (onde $(2, 1, 3) \in \pi$). Sem determinar a matriz de P, calcule P(u).
 - **3.b)** Determine a matriz de P.
- **3.c)** Sejam M a projeção ortogonal na reta (t, -t, -t) e N a projeção ortogonal no plano $\pi \colon x y z = 0$. Determine as matrizes de M e N.
 - **3.d)** Determine as matrizes de $P \circ M$ e $M \circ P$.
 - 4) Seja β a base formada pelos vetores $\{(1,1,1),(1,0,1),(0,1,1)\}.$
 - **4.a)** Verifique que β é uma base.
 - **4.b)** Determine as coordenadas do vetor v = (1, 2, 3) na base β .
 - **4.c**) Seja S a transformação linear definida por

$$S(u) = u \times (1, 1, 1).$$

Calcule a matriz deS.

4.d) Determine se a matriz de S é inversível e em caso afirmativo determine sua inversa.