Link Analysis (Part I)

With slide contributions from J. Leskovec, Anand Rajaraman, Jeffrey D. Ullman

OUTLINE

Problem and Motivation

How to rank a web page?

Three Approaches

- 1. Page Rank
- 2. Topic-Specific (personalized) Page Rank
- 3. Web Spam Detection

Web as a Graph

Web as a directed graph:

Nodes: Webpages

• Edges: Hyperlinks

I teach a class on Networks.

CS224W: Classes are in the Gates building

Computer
Science
Department
at Stanford

Stanford University

Web as a Graph

Web as a directed graph:

Nodes: Webpages

• Edges: Hyperlinks

Web as a Directed Graph

Broad Question

•How to organize the Web?

- First try: Human curated Web directories
 - Yahoo, DMOZ, LookSmart

About Become an Editor Suggest a Site Help Login

Broad Question (Cont'd)

•How to organize the Web?

- Second try: Web Search
 - Information Retrieval investigates:
 Find relevant docs in a small and trusted set
 - Newspaper articles, patents, etc.

<u>But:</u> Web is **huge**, full of untrusted documents, random things, web spam, etc.

Early Web Search

- Keywords extracted from web pages
 - E.g., title, content
 - Used to build inverted index
- Queries are matched with web pages
 - Via lookup in the inverted index
 - Pages ranked by <u>occurrences of query keywords</u>

```
"a": {2}
"banana": {2}
"is": {0, 1, 2}
"it": {0, 1, 2}
"what": {0, 1}
```

Inverted Index

• Problem: susceptible to term spam

https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/SearchKitConcepts/searchKit_basics/searchKit_basics.html

Term Spam

- Disguise a page as something it is not about
 - E.g., adding thousands of keyword "movies"
 - Actual content may be some advertisement
 - Fool search engine to return it for query "movies"
- May even fade spam words into background
- Spam pages may be based on top-ranked pages

Web Search: Two Challenges

Two challenges of web search:

- (1) Web contains many sources of information Who to "trust"?
 - Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

All web pages are not equally "important"

blog.bob.com vs. www.usc.edu

- There is large diversity in the web-graph node connectivity
- Let's rank the pages by the link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importance of nodes in a graph:
 - Page Rank
 - Topic-Specific (Personalized) Page Rank
 - Web Spam Detection Algorithms

PageRank: The "Flow" Formulation

PageRank: Combating Term Spam

- Key idea: rank pages by linkage too
 - How many pages point to a page
 - How important these pages are
 - => PageRank

- USC.edu can be important
 - because many pages point to it
- Your home page can be important
 - If it is pointed to by USC ©

Random Surfer Model

- Random surfer of web
 - starts from any page
 - follows its outgoing links randomly
- Page is important if it attracts a large # of surfers

PageRank

• Probability that a random surfer lands on the page

Intuition

- If a page is important, then
 - many other pages may directly/indirectly link to it
 - random surfer can easily find it
- Spam pages are less connected
 - So less chance to attract random surfer
- Random surfer model more robust than manual approach
 - A collective voting scheme

Assumption: A Strongly Connected Web Graph

- Nodes = pages
- Edges = hyperlinks between pages
- every node is reachable from every other node

Model: Random Surfer on the Graph

- Can start at any node, say A
 - Can next go to B, C, or D, each with 1/3 prob.
 - If at B, can go to A and D, each with 1/2 prob.
 - So on...

Random Surfer Property: Memoryless

• Where to go from node X is not affected by how the surfer got to X

Extreme Case: Dead End

- Dead end: a page with no edges out
 - Absorb PageRanks
 - PageRank → 0 for any page that can reach the dead end (including the dead end itself)

Dead end

Extreme Case: Spider Trap

- Group of pages with no edges going out of group
 - Absorb all PageRanks (rank of $C \rightarrow 1$, others $\rightarrow 0$)
 - Surfer can never leave, once trapped
 - Can have > 1 nodes

Spider trap

PageRank: Formulation Details

PageRank: Links as Votes

- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - www.stanford.edu has 23,400 in-links
 - www.joe-schmoe.com has 1 in-link
- Are all in-links equal?
 - Links from important pages count more
 - Recursive question!

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links, each link gets r_j / n votes
- Page j's own importance is the sum of the votes on its in-links

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_j for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i = out-degree of node i

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Solving the flow equations

"Flow" equations:

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

 $r_m = r_a/2$

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo scale factor
- Additional constraint forces uniqueness
 - Add some constant constraints: e.g., $r_v + r_m + r_a = 1$
 - Solve for unique solutions: $r_v = 2/5$, $r_a = 2/5$, $r_m = 1/5$
- Gaussian elimination method (in the later slides) works for small examples, but we need a better method for large graphs

$$\left[\begin{array}{ccc|c} 1 & 3 & 1 & 9 \\ 1 & 1 & -1 & 1 \\ 3 & 11 & 5 & 35 \end{array}\right] \rightarrow \left[\begin{array}{ccc|c} 1 & 3 & 1 & 9 \\ 0 & -2 & -2 & -8 \\ 0 & 2 & 2 & 8 \end{array}\right] \rightarrow \left[\begin{array}{ccc|c} 1 & 3 & 1 & 9 \\ 0 & -2 & -2 & -8 \\ 0 & 0 & 0 & 0 \end{array}\right] \rightarrow \left[\begin{array}{ccc|c} 1 & 0 & -2 & -3 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

PageRank: Matrix formulation

- Stochastic Transition (or adjacency) Matrix M
- Suppose page j has n outlinks
 - If outlink j -> i, then M_{ii}=1/n
 - Else M_{ij}=0
- M is a column stochastic matrix
 - Columns sum to 1

Transition Matrix

- M[i,j] = prob. of going from node j to node i
 - If j has k outgoing edges, prob. for each edge = 1/k

PageRank: Matrix formulation (Cont'd)

- Stochastic Transition (or adjacency) Matrix M
- Suppose page j has n outlinks
 - If outlink j -> i, then Mii=1/n
 - Else **M**_{ii}=**0**
- M is a column stochastic matrix
 - Columns sum to 1
- Rank vector r is a vector with one entry per web page
 - r_i is the importance score of page I
- The flow equations can be written as r = Mr

Example

- Flow equation in matrix form: Mr = r
- Suppose page *j* links to 3 pages, including *i*

Stationary Distribution

- Limiting prob. distribution of random surfer
 - PageRanks are based on limiting distribution
 - the probability destribution will converge eventually
- Requirement for its existence
 - Graph is strongly connected: a node can reach any other node in the graph
 - => Cannot have dead ends, spider traps

Eigenvectors and Eigenvalues

- An eigenvector of a <u>square matrix</u> A is a non-zero <u>vector</u> v that, when the matrix <u>multiplies</u> v, yields the same as when some scalar multiplies v, the scalar multiplier often being denoted by λ
- That is:

$$Av = \lambda v$$

• The number λ is called the **eigenvalue** of A corresponding to v

Eigenvalues and Eigenvectors Example

• The transformation matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ preserves the direction of vectors parallel to $\mathbf{v} = (1,-1)^T$ (in purple) and $\mathbf{w} = (1,1)^T$ (in blue). The vectors in red are not parallel to either eigenvector, so, their directions are changed by the transformation.

$$A\mathbf{v} = \lambda \mathbf{v}$$

http://setosa.io/ev/eigenvectors-and-eigenvalues/

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Eigenvector Formulation

The flow equations can be written

$$r = M \cdot r$$

limiting distribution

- So the rank vector r is an eigenvector of the stochastic web matrix M
 - r is M's <u>first or principal eigenvector</u>, with corresponding <u>eigenvalue</u> <u>1</u>
 - Largest eigenvalue of *M* is 1 since *M* is column stochastic (with non-negative entries)
 - We know r is unit length and each column of M sums to one

NOTE: *x* is an eigenvector with the corresponding eigenvalue λ if:

$$Ax = \lambda x$$

- We can now efficiently solve for r!
 - 1. Power Iteration: https://en.wikipedia.org/wiki/Power_iteration
 - 2. Use the principal eigenvector

Example

 $r_m = r_a/2$

$$r = Mr$$

$$\begin{vmatrix} r_y \\ r_a \\ r_m \end{vmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{vmatrix} r_y \\ r_a \\ r_m \end{vmatrix}$$

Power Iteration method

- Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- Initialize: $\mathbf{r}^0 = [1/N,....,1/N]^T$
- Iterate: $\mathbf{r}^{k+1} = \mathbf{M}\mathbf{r}^k$
- Stop when $|\mathbf{r}^{k+1} \mathbf{r}^k|_1 < \epsilon$
- \bullet $|\mathbf{x}|_1 = \sum_{1 < i < N} |\mathbf{x}_i|$ is the L₁ norm
 - Can use any other vector norm e.g., Euclidean

Power Iteration Example

$$\boldsymbol{r}^{k+1} = \boldsymbol{M}\boldsymbol{r}^k$$

$${r_y \atop r_a} = {1/3 \atop 1/3} {1/3 \atop 1/2} {5/12 \atop 1/3} {3/8 \atop 1/24 \atop 1/3} {2/5 \atop 1/3} {1/2 \atop 1/4} {1/24 \atop 1/6} {1/5}$$