

DALIAN UNIVERSITY OF TECHNOLOGY

此前我们只研究了矩阵的代数运算,但在工程实际中, 特别是涉及到多元分析时,还要用到矩阵的分析运算。

同微积分理论一样,矩阵分析的理论建立,也是以极限 理论为基础的,其内容丰富,是研究数值方法和其它数学分 支的重要工具。

本章讨论矩阵序列的极限运算,然后介绍矩阵序列和矩阵级数收敛的定理,矩阵幂级数的极限运算和一些矩阵函数,如 $sinA,cosA,e^A$ 等,最后介绍矩阵的微积分。

DALIAN UNIVERSITY OF TECHNOLOGY

3.1、矩阵序列与矩阵级数

3.2、矩阵幂级数

3.3、函数矩阵的微积分

DALIAN UNIVERSITY OF TECHNOLOGY

3.1.1. 矩阵序列

定义3. 1 $\{A_k\}_{k=1}^{\infty}$ 为 $\mathbf{C}^{m\times n}$ 中的矩阵序列,其中 $A_k = (a_{ij}^{(k)})$ 又 $\mathbf{A} = (a_{ij}) \in \mathbf{C}^{m\times n}$ 如果 $\lim_{k \to \infty} a_{ij}^{(k)} = a_{ij}$ 对 $\mathbf{i} = 1, 2, \cdots, m$, $\mathbf{j} = 1, 2, \cdots, n$ 均成立,则称矩阵序列 $\{A_k\}_{k=1}^{\infty}$ 收敛,而 \mathbf{A} 称为矩阵序列 $\{A_k\}_{k=1}^{\infty}$ 的极限,记为 $\lim_{k \to \infty} A_k = \mathbf{A}$ 。不收敛的矩阵序列称为发散的。

例1 讨论矩阵序列 $\{A_k\}_{k=1}^{\infty}$ 的收敛性。 其中

解:根据定义,只须求出它的每一个元素的极限即可, 因此

它的极限为:

$$\lim_{k \to \infty} \mathbf{A}_k = \begin{pmatrix} \lim_{k \to \infty} \left(1 + \frac{1}{k}\right)^k & \lim_{k \to \infty} \frac{\sin k}{k} \\ \lim_{k \to \infty} 1 & \lim_{k \to \infty} e^{-k} \\ \lim_{k \to \infty} \frac{2 + k}{k} & \lim_{k \to \infty} \sqrt[k]{k} \end{pmatrix} = \begin{pmatrix} e & 0 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{A}$$

由矩阵序列极限的定义可以看出,矩阵序列收敛的性质和数列收敛性质相似。

由定义可见, C^{m×n}中的矩阵序列的收敛相当于mn个数列同时收敛。因此可以用初等分析的方法来研究它。

但同时研究*mn*个数列极限未免繁琐,我们可以利用矩阵范数 来研究矩阵序列的极限。

DALIAN UNIVERSITY OF TECHNOLOGY

定理3.1 设 $\{A_k\}_{k=1}^{\infty}$ 为 $\mathbf{C}^{m \times n}$ 中的矩阵序列,则为 $\mathbf{C}^{m \times n}$ 中的一种矩阵范数,则矩阵序列 $\{A_k\}_{k=1}^{\infty}$ 收敛于矩阵A的充要条件是 $\|A_k - A\|$ 收敛于零。

证: 首先,利用范数的等价性知,对于 $\mathbb{C}^{m\times n}$ 中的任意两个矩阵范数 $\|\cdot\|$, 和 $\|\cdot\|$, 存在常数 $c_1 \ge c_2 > 0$,使得

$$c_2 \cdot \left\| \boldsymbol{A}_k - \boldsymbol{A} \right\|_t \le \left\| \boldsymbol{A}_k - \boldsymbol{A} \right\|_s \le c_1 \cdot \left\| \boldsymbol{A}_k - \boldsymbol{A} \right\|_t$$

即有

$$\lim_{k\to\infty} \|\boldsymbol{A}_k - \boldsymbol{A}\|_{t} = 0 = \lim_{k\to\infty} \|\boldsymbol{A}_k - \boldsymbol{A}\|_{s}$$

即收敛于零是一致的。

因此,只需证明定理对一种特定的矩阵范数成立即可。

DALIAN UNIVERSITY OF TECHNOLOGY

我们选取∞-范数加以证明。 根据∞-范数的定义, 对于

 $1 \le i \le m$, $1 \le i \le m$ 均有

$$0 - \left| a_{ij}^{(k)} - a_{ij} \right| \le \max_{1 \le i \le m} \left\{ \sum_{j=1}^{n} \left| a_{ij}^{(k)} - a_{ij} \right| \right\} = \left\| A_k - A \right\|_{\infty}$$

$$\le \sum_{i=1}^{m} \sum_{j=1}^{n} \left| a_{ij}^{(k)} - a_{ij} \right| \le mn \cdot \max_{\substack{1 \le i \le m \\ 1 \le j \le n}} \left| a_{ij}^{(k)} - a_{ij} \right| - 0$$

因此,

$$\lim_{k\to\infty} \mathbf{A}_k = \mathbf{A} \iff \lim_{k\to\infty} \|\mathbf{A}_k - \mathbf{A}\|_{\infty} = 0$$

证毕

DUT 大连程三大学

DALIAN UNIVERSITY OF TECHNOLOGY

推论3.1 设 $\{A_k\}_{k=1}^{\infty}$, $A \in \mathbb{C}^{m \times n}$, 并且 $\lim_{k \to \infty} A_k = A$,则 $\lim_{k \to \infty} ||A_k|| = ||A||$

证:由 $||A_k|| - ||A||$ $|| \le ||A_k - A||$ 即结论成立。

需要指出的是,此结论只是充分条件,反过来不一定成立。

给定矩阵序列
$$A_k = \begin{pmatrix} (-1)^k & \frac{1}{k+1} \\ 1 & 2 \end{pmatrix}$$
 和矩阵 $A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$

显然
$$\lim_{k\to\infty} \|A_k\|_F = \lim_{k\to\infty} \sqrt{|-1|^k + 1^2 + 2^2 + \frac{1}{(k+1)^2}} = \sqrt{6} = \|A\|_F$$

但是矩阵序列 A_k 不收敛, 故更不收敛于矩阵 $A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$ 。

DALIAN UNIVERSITY OF TECHNOLOGY

性质3.1 设 $\{A_k\}_{k=1}^{\infty}$ 和 $\{B_k\}_{k=1}^{\infty}$ 为 $\mathbb{C}^{m\times n}$ 中的矩阵序列,并且

$$\lim_{k\to\infty} \mathbf{A}_k = \mathbf{A}, \quad \lim_{k\to\infty} \mathbf{B}_k = \mathbf{B}$$

则

$$\lim_{k\to\infty} (\alpha \mathbf{A}_k + \beta \mathbf{B}_k) = \alpha \mathbf{A} + \beta \mathbf{B}, \quad \forall \alpha, \beta \in \mathbf{C}$$

$$\mathbf{i}\mathbf{E} \quad \mathbf{H} \| (\alpha A_k + \beta B_k) - (\alpha A + \beta B) \| \leq \| \boldsymbol{\alpha} (A_k A_{\overline{k}} A) A \| \boldsymbol{\beta} (B_k A_{\overline{k}} A) - B \|$$

由定理3.1,即结论成立。

DUT 大连醒三大学

DALIAN UNIVERSITY OF TECHNOLOGY

性质3.2 设 $\{A_k\}_{k=1}^{\infty}$ 和 $\{B_k\}_{k=1}^{\infty}$ 分别为 $\mathbf{C}^{n\times n}$ 和 $\mathbf{C}^{n\times l}$ 中的矩阵序列,

并且

$$\lim_{k\to\infty} \boldsymbol{A}_k = \boldsymbol{A}, \quad \lim_{k\to\infty} \boldsymbol{B}_k = \boldsymbol{B}$$

则

$$\lim_{k\to\infty} \boldsymbol{A}_k \boldsymbol{B}_k = \boldsymbol{A}\boldsymbol{B}$$

证由

由定理3.1和推论可知,结论成立。

性质3.3 设 $\{A_k\}_{k=1}^{\infty} \in \mathbb{C}^{n \times n}$ 中的矩阵序列, $\lim_{k \to \infty} A_k = A$ 并且

 $A_k(k=1,2,\cdots)$ 和 $A \in \mathbb{C}^{n \times n}$ 均为可逆矩阵,则 $\lim_{k \to \infty} A_k^{-1} = A^{-1}$ 。

证 因为 $(A_k)^{-1}$ 和 A^{-1} 存在,所以 $\lim_{k\to\infty} \det(A_k) = \det(A) \neq 0$, 又有 $\lim_{k\to\infty} \tilde{A}_k = \lim_{k\to\infty} \tilde{A} \neq 0$,

$$\tilde{\boldsymbol{A}}_{k} = \begin{pmatrix} \det\left(\bar{\boldsymbol{A}}_{11}^{(k)}\right) & \det\left(\bar{\boldsymbol{A}}_{21}^{(k)}\right) & \cdots & \det\left(\bar{\boldsymbol{A}}_{n1}^{(k)}\right) \\ \det\left(\bar{\boldsymbol{A}}_{12}^{(k)}\right) & \det\left(\bar{\boldsymbol{A}}_{22}^{(k)}\right) & \cdots & \det\left(\bar{\boldsymbol{A}}_{n2}^{(k)}\right) \\ \vdots & \vdots & \cdots & \vdots \\ \det\left(\bar{\boldsymbol{A}}_{1n}^{(k)}\right) & \det\left(\bar{\boldsymbol{A}}_{2n}^{(k)}\right) & \cdots & \det\left(\bar{\boldsymbol{A}}_{nn}^{(k)}\right) \end{pmatrix}$$

其中 $\det\left(\left(\overline{A}_{ij}^{(k)}\right)_{(n-1)\times(n-1)}\right)i, j=1,2,\cdots,n$ 为 A_k 的第ij个代数余子式。

于是,
$$\lim_{k\to\infty} (A_k)^{-1} = \lim_{k\to\infty} \frac{A_k}{\det(A_k)} = \frac{A}{\det(A)} = A^{-1}$$

DALIAN UNIVERSITY OF TECHNOLOGY

注意, 性质**3.3**中条件 $A_k(k=1,2,\cdots)$ 和A均为可逆的是不可少的。因为即使 $A_k(k=1,2,\cdots)$ 可逆也不能保证A一定可逆。

例如,
$$A_k = \begin{pmatrix} 1 + \frac{1}{k} & 1 \\ 1 & 1 \end{pmatrix}$$
,对于 $A_k (k=1, 2, \cdots)$ 都有

$$(A_k)^{-1} = \begin{pmatrix} k & -k \\ -k & k+1 \end{pmatrix}$$

但是
$$\lim_{k\to\infty} A_k = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = A$$
 不可逆。

一般的矩阵序列 $\{A_k\}_{k=1}^{\infty} \in \mathbb{C}^{m \times n}$,即 $A_1, A_2, \dots, A_k, \dots$

在矩阵序列中,最常见的是由一个方阵的幂构成的序列:

$$\left\{A^{k}\right\}_{k=0}^{\infty}\in\mathbb{C}^{n\times n}$$
, $\mathbb{P}\left[I,A,A^{2},\cdots,A^{k},\cdots\right]$

关于这样的矩阵序列有以下的概念和收敛定理。

定义 设 $A \in \mathbb{C}^{n \times n}$, 若 $\lim_{k \to \infty} A^k = 0$, 则称A为收敛矩阵。

例 2 设 $A \in \mathbb{C}^{n \times n}$, 证明 $\lim_{k \to \infty} A^k = 0$ 的充分必要条件是 $\rho(A) < 1$ 。 证 必要性 由定理3. 1知 $\lim_{k \to \infty} A^k = 0$ 的充分必要条件是对任意

一种矩阵范数 $\|\cdot\|$ 均有 $\lim_{k\to\infty} \|A^k - \mathbf{0}\| = \lim_{k\to\infty} \|A^k\| = \mathbf{0}$ 。因此对充分大的k,

必有 $||A^k|| < 1$,利用矩阵谱半径的定义以及相容矩阵范数的性质有:

$$\left(\rho(\mathbf{A})\right)^k = \rho(\mathbf{A}^k) \le \|\mathbf{A}^k\| < 1$$

因此得 $\rho(A) < 1$ 。

大连醒三大学

DALIAN UNIVERSITY OF TECHNOLOGY

充分性 根据定理2.9, 对于 $\varepsilon = \frac{1}{2}(1 - \rho(A)) > 0$ 一定存在

一种相容的矩阵范数 $\|\cdot\|$, 使得 $\|A\| \le \rho(A) + \varepsilon$ 。

又根据相容矩阵范数的性质有, 再注意到上述关系式中

$$\rho(\mathbf{A}) + \varepsilon = \frac{1}{2}(1 + \rho(\mathbf{A})) < 1$$

那么

则

$$\|\mathbf{A}^k\| \le \|\mathbf{A}\|^k \le (\rho(\mathbf{A}) + \varepsilon)^k \le q^k < 1$$
 $(0 < q < 1)$

于是, $\lim_{k\to\infty} ||A^k|| = 0$ 根据定理3.1 即知 $\lim_{k\to\infty} A^k = 0$ 。

推论 设 $A \in \mathbb{C}^{n \times n}$,若对 $\mathbb{C}^{n \times n}$ 上的某种范数 $\|\cdot\|$,有 $\|A\| < 1$

$$\lim_{k\to\infty} \mathbf{A}^k = 0_{\,\circ}$$

DALIAN UNIVERSITY OF TECHNOLOGY

练习题 判断对下列矩阵是否有 $\lim_{k\to\infty} A^k = 0$

(1)
$$\mathbf{A} = \frac{1}{6} \begin{pmatrix} 1 & -8 \\ -2 & 1 \end{pmatrix}$$
, (2) $\mathbf{A} = \begin{pmatrix} 0.2 & 0.1 & 0.2 \\ 0.5 & 0.5 & 0.4 \\ 0.1 & 0.3 & 0.2 \end{pmatrix}$

解: (1) 取
$$\mathbf{B} = \begin{pmatrix} 1 & -8 \\ -2 & 1 \end{pmatrix}$$
, 则 $\lambda(\mathbf{A}) = \frac{1}{6}\lambda(\mathbf{B})$, 令

$$\det (\lambda \mathbf{I} - \mathbf{B}) = \begin{vmatrix} \lambda - 1 & 8 \\ 2 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 - 16 = (\lambda - 5)(\lambda + 3) = 0$$

得
$$\lambda_1(\mathbf{B}) = 5$$
, $\lambda_2(\mathbf{B}) = -3$, 进而得 $\lambda_1(\mathbf{A}) = \frac{5}{6}$, $\lambda_2(\mathbf{A}) = -\frac{1}{2}$ 。
于是, $\rho(\mathbf{A}) = \frac{5}{6} < 1$ 故 $\lim_{k \to \infty} \mathbf{A}^k = \mathbf{0}$ 。

(2) 因为
$$\|A\|_{1} = 0.9 < 1$$
, 由推论, 故 $\lim_{k \to \infty} A^{k} = 0$

3.1.2 矩阵级数

定义3.2 设 $\{A_k\}_{k=1}^{\infty}$ 为 $\mathbf{C}^{m \times n}$ 中的矩阵序列,称 $A_1 + A_2 + \cdots + A_k + \cdots$

为由矩阵序列 $\{A_k\}_{k=1}^{\infty}$ 构成的矩阵级数,记为 $\sum_{k=1}^{\infty}A_k$ 。

定义3.3 记 $S_k = \sum_{i=1}^k A_i$,称之为矩阵级数 $\sum_{k=1}^\infty A_k$ 的前k项部分和。若矩阵序列 $\{S_k\}_{k=1}^\infty$ 收敛且 $\lim_{k\to\infty} S_k = S$,则称矩阵级数 $\sum_{k=1}^\infty A_k$ 收敛,而矩阵S称为矩阵级数的和矩阵,记为 $S = \sum_{k=1}^\infty A_k$ 。 不收敛的矩阵级数称为发散的。

显然,和 $\sum_{k=1}^{\infty} A_k = \mathbf{S} = (s_{ij})$ 的意义指的是: $\sum_{k=1}^{\infty} a_{ij}^{(k)} = s_{ij}$ $(i=1,2,\cdots,m,\ j=1,2,\cdots,n)$ 即 $m \times n$ 个数项级数 $\sum_{k=1}^{\infty} a_{ij}^{(k)}$ 均为收敛的。

练习 研究矩阵级数 $\sum A_k$ 的收敛性。其中

$$S_N = \sum_{k=0}^{N} A_k = 0$$

解: 因为
$$S_{N} = \sum_{k=0}^{N} A_{k} = \begin{bmatrix} \sum_{k=0}^{N} \frac{1}{\sqrt{k} \pm \frac{1}{2}} (k+2)^{2} - \sum_{k=0}^{N} \frac{1}{\sqrt{2}} \\ 0 & \frac{\pi}{3} \left(\sum_{k=0}^{N} \frac{1}{\sqrt{2}} \right) \end{bmatrix}, k = 0, 1, 2, \dots,$$

$$0 \qquad \frac{\pi}{3} \left(\sum_{k=0}^{N} \frac{1\pi}{4^{N_k}} \right)$$

于是

$$S = \lim_{N \to \infty} S_N = \begin{pmatrix} 1 & 2 \\ 0 & \frac{4}{3}\pi \end{pmatrix}$$

故矩阵级数 $\sum_{k=1}^{\infty} A_{k}$ 收敛,且和为S。

DALIAN UNIVERSITY OF TECHNOLOGY

例3 设A为n阶方阵,则有

(1)
$$\sum_{k=0}^{\infty} A^k = I + A + A^2 + \dots + A^k + \dots$$
 收敛 $(A_0 = I)$ 的充要条件是 $\rho(A) < 1$;

(2) 当
$$\sum_{k=0}^{\infty} A^k$$
 收敛时,有
$$\sum_{k=0}^{\infty} A^k = \left(\mathbf{I} - A \right)^{-1},$$

而且存在 $\mathbb{C}^{n\times n}$ 上的算子范数 $\|\cdot\|$,使得

$$\|(I-A)^{-1} - \sum_{k=0}^{m} A^{k}\| \le \frac{\|A\|^{m+1}}{1-\|A\|}$$

证 必要性 若矩阵级数 $\sum_{k=1}^{\infty} A_k$ 收敛,则有 $S = \lim_{k \to \infty} S_k$ 。

又级数
$$I + A + A^2 + \cdots + A^k + \cdots$$

的前k项部分和与前k+1项部分和分别为:

$$S_k = I + A + A^2 + \dots + A^{k-1}, \quad S_{k+1} = I + A + A^2 + \dots + A^k$$

因此 $A^k = S_{k+1} - S_k$, 利用极限运算法则有

$$\lim_{k\to\infty} \mathbf{A}^k = \lim_{k\to\infty} \left[\mathbf{S}_{k+1} - \mathbf{S}_k \right] = \mathbf{0}$$

根据例2, $\rho(A) < 1$ 。

充分性 由 $AS_k = A(I + A + \cdots + A^{k-1}) = A + A^2 + \cdots + A^k$ 则有 $S_k - AS_k = I - A^k$, $(I - A)S_k = I - A^k$ 。 由 $\rho(A) < 1$,可知 则存在某种范数 $\|\cdot\|$,使得 $\|A\| < 1$,且(I - A)可逆。 又有 $\lim_{k \to \infty} A^k = 0$,根据矩阵序列极限法则,有

$$\sum_{k=0}^{\infty} \mathbf{A}^{k} = \lim_{k \to \infty} \mathbf{S}_{k} = \lim_{k \to \infty} \left[\left(\mathbf{I} - \mathbf{A} \right)^{-1} \left(\mathbf{I} - \mathbf{A}^{k} \right) \right] = \left(\mathbf{I} - \mathbf{A} \right)^{-1} \lim_{k \to \infty} \left(\mathbf{I} - \mathbf{A}^{k} \right) = \left(\mathbf{I} - \mathbf{A} \right)^{-1} \circ$$

从而,进一步有

$$\left\| (\boldsymbol{I} - \boldsymbol{A})^{-1} - \sum_{k=0}^{m} \boldsymbol{A}^{k} \right\| = \left\| \sum_{k=m+1}^{\infty} \boldsymbol{A}^{k} \right\| \leq \sum_{k=m+1}^{\infty} \left\| \boldsymbol{A} \right\|^{k} = \frac{\left\| \boldsymbol{A} \right\|^{m+1}}{1 - \left\| \boldsymbol{A} \right\|} .$$

练习 计算
$$\sum_{k=0}^{\infty} A^k$$
, 其中 $A = \begin{pmatrix} 0.1 & 0.7 \\ 0.3 & 0.6 \end{pmatrix}$ 。

解:由于 $\|A\|_{\infty} = 0.9 < 1$,故 $\rho(A) < 1$,从而 $\sum A^k$ 收敛,且有

$$\sum_{k=0}^{\infty} \mathbf{A}^{k} = (\mathbf{I} - \mathbf{A})^{-1} = \begin{pmatrix} 0.9 & -0.7 \\ -0.3 & 0.4 \end{pmatrix}^{-1} = \frac{2}{3} \begin{pmatrix} 4 & 7 \\ 3 & 9 \end{pmatrix}$$

推论3.2 设 $A \in \mathbb{C}^{n \times n}$, 若对 $\mathbb{C}^{n \times n}$ 上的某种矩阵范数 $\|\cdot\|$,

有
$$\|A\| < 1$$
,则 $\lim A^k = 0$ 。

例4 (1) 已知
$$\sum_{k=0}^{k\to\infty} A^k = \begin{pmatrix} 2 & 0 \\ -4 & 2 \end{pmatrix}$$
, 求A。

(2)
$$\begin{aligned} & \& A = \begin{pmatrix} 0.2 & 0.5 & 0.4 \\ 0.5 & 0.2 & 0.1 \\ 0.2 & 0.1 & 0.3 \end{pmatrix}, \quad \& \& \lim_{k \to \infty} A^k = 0.$$

解 (1) 由
$$\sum_{k=0}^{\infty} A^k = (I - A)^{-1} = \begin{pmatrix} 2 & 0 \\ -4 & 2 \end{pmatrix}$$
, 则 $(I - A) = \begin{pmatrix} 2 & 0 \\ -4 & 2 \end{pmatrix}^{-1}$,

$$\mathbf{A} = \mathbf{I} - \begin{pmatrix} 2 & 0 \\ -4 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} & 0 \\ 1 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ -1 & \frac{1}{2} \end{pmatrix}$$

(2) 因为
$$\|A\|_{\infty} = 0.9 < 1$$
,由推论3.2,故 $\lim_{k \to \infty} A^k = 0$ 。

性质3.4 设 $\sum_{k=1}^{\infty} A_k = A$ 和 $\sum_{k=1}^{\infty} B_k = B$, 其中 A_k , A, B_k , $B \in \mathbb{C}^{m \times n}$, 则

$$\sum_{k=0}^{\infty} (\alpha \mathbf{A}_k + \beta \mathbf{B}_k) = \alpha \sum_{k=0}^{\infty} \mathbf{A}_k + \beta \sum_{k=0}^{\infty} \mathbf{B}_k, \quad \forall \alpha, \beta \in \mathbf{C}$$

证 因为
$$S_N = \sum_{k=0}^N (\alpha \mathbf{A}_k + \beta \mathbf{B}_k) = \alpha \sum_{k=0}^N \mathbf{A}_k + \beta \sum_{k=0}^N \mathbf{B}_k, \quad \forall \alpha, \beta \in \mathbf{C}$$

所以

$$\sum_{k=0}^{\infty} (\alpha \mathbf{A}_k + \beta \mathbf{B}_k) = \lim_{N \to \infty} S_N = \alpha \lim_{N \to \infty} \sum_{k=0}^{N} \mathbf{A}_k + \beta \lim_{N \to \infty} \sum_{k=0}^{N} \mathbf{B}_k = \alpha \mathbf{A} + \beta \mathbf{B}$$

由定理3.1,即结论成立。

矩阵级数收敛的定义与数项级数的定义没有本质的区别, 我们有一些类似于数项级数的概念和结论。

定义3. 4 设 $\sum_{k=1}^{\infty} A_k$ 为 $\mathbb{C}^{m \times n}$ 中的矩阵级数,其中 $A_k = \left(a_{ij}^{(k)}\right)$ 。 如果 $\sum_{k=1}^{\infty} a_{ij}^{(k)}$ 对任意的 $1 \leq i \leq m$, $1 \leq j \leq n$ 均为绝对收敛的,则称矩阵级数 $\sum_{k=1}^{\infty} A_k$ 绝对收敛。

对比矩阵级数绝对收敛的定义以及高等数学中的数项级数的绝对收敛的定义可以得出矩阵级数收敛的一些性质。

性质3. 5 若矩阵级数 $\sum_{k=1}^{\infty} A_k$ 是绝对收敛,则它一定是收敛的,并且任意调换各项的顺序所得到的级数还是收敛的, 且级数和不变。

性质3.6 矩阵级数 $\sum_{k=1}^{\infty} A_k$ 为绝对收敛的充分必要条件是正项级数 $\sum_{k=1}^{\infty} \|A_k\|$ 收敛。

利用矩阵范数的等价性,只需证明对于∞-范数定理成立即可。

证 必要性 如果 $\sum_{k=1}^{\infty} A_k$ 是绝对收敛的,由定义即对任意的 $1 \leq i \leq m$, $1 \leq j \leq n$, $\sum_{k=1}^{\infty} a_{ij}^{(k)}$ 均绝对收敛,即存在充分大的 N 和一个与N无关的正数M,使得

从而有

$$\sum_{k=1}^{N} |a_{ij}^{(k)}| < M, (i = 1, 2, \dots, m, j = 1, 2, \dots, n)$$

$$\sum_{k=1}^{N} \|A_k\|_{\infty} = \sum_{k=1}^{N} \left(\max_{i} \sum_{j=1}^{n} |a_{ij}^{(k)}| \right) = \max_{i} \left\{ \sum_{j=1}^{n} \sum_{k=1}^{N} |a_{ij}^{(k)}| \right\} \leq \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{N} |a_{ij}^{(k)}| < nm \cdot M$$

因此 $\sum_{k=1}^{\infty} \|A_k\|_{\infty}$ 为收敛的正项级数。

DALIAN UNIVERSITY OF TECHNOLOGY

充分性 如果 $\sum_{k=1}^{\infty} ||A_k||_{\infty}$ 为收敛的正项级数,那么有

$$\sum_{k=1}^{N} |a_{ij}^{(k)}| \leq \sum_{k=1}^{N} ||A_k||_{\infty} < M \quad i = 1, 2, \dots, m, \quad j = 1, 2, \dots, n$$

可知 $m \times n$ 个级数 $\sum_{k=1}^{\infty} a_{ij}^{(k)}$ 均为绝对收敛的,利用定义4可知矩阵级数 $\sum_{k=1}^{\infty} A_k$ 是绝对收敛的。

DALIAN UNIVERSITY OF TECHNOLOGY

性质3.7 设 $\sum_{k=1}^{\infty} A_k$ 为 $\mathbb{C}^{m \times n}$ 中的绝对收敛的矩阵级数,

$$\sum_{k=1}^{\infty} \mathbf{B}_k$$
 为 $\mathbf{C}^{n \times l}$ 中的绝对收敛的级数, 并且 $\mathbf{A} = \sum_{k=1}^{\infty} \mathbf{A}_k$, $\mathbf{B} = \sum_{k=1}^{\infty} \mathbf{B}_k$,

则 $\sum_{k=1}^{\infty} A_k \sum_{k=1}^{\infty} B_k$ 按任何方式排列得到的级数也绝对收敛,

且和为AB。

性质3.8设 $P \in \mathbb{C}^{p \times m}$ 和 $Q \in \mathbb{C}^{n \times q}$ 为给定矩阵,如果 $m \times n$ 型矩阵 级数 $\sum_{k=0}^{A_k}$ A_k $A_$

(或绝对收敛),且有等式

$$\sum_{k=0}^{\infty} \mathbf{P} \mathbf{A}_k \mathbf{Q} = \left(\sum_{k=0}^{\infty} \mathbf{P} \right) \mathbf{A}_k \mathbf{Q}$$

证 设 $\sum_{k=0}^{\infty} A_k$ 收敛于矩阵S, 即 $S = \sum_{k=0}^{\infty} A_k = \lim_{n \to \infty} \sum_{k=0}^{n} A_k$, 而由等式

$$\sum_{k=0}^{n} PA_{k}Q = P\left(\sum_{k=0}^{n} A_{k}\right)Q$$
 取极限即得:

$$\sum_{k=0}^{\infty} PA_k Q = \lim_{n \to \infty} \sum_{k=0}^{n} PA_k Q = P \left(\lim_{n \to \infty} \sum_{k=0}^{n} A_k \right) Q = P S Q = P \left(\sum_{k=0}^{\infty} A_k \right) Q$$

即
$$\sum_{k=0}^{\infty} PA_k Q$$
 收敛, 且有 $\sum_{k=0}^{\infty} PA_k Q = P\left(\sum_{k=0}^{\infty} A_k\right)Q$

DALIAN UNIVERSITY OF TECHNOLOGY

现设 $\sum_{k=0}^{\infty} A_k$ 绝对收敛,由矩阵级数性质2知, $\sum_{k=0}^{\infty} \|A_k\|$ 收敛,又 $\|PA_kQ\| \le \|P\| \|A_k\| \|Q\|$

利用比较判别法,即知级数 $\sum_{k=0}^{\infty} \|PA_kQ\|$ 收敛, 再利用矩阵级数性质2, 便知矩阵级数 $\sum_{k=0}^{\infty} PA_kQ$ 绝对收敛。

3.2、矩阵幂级数

定理3.2 设 $\sum_{k=0}^{\infty} a_k t^k$ 为收敛半径为r的幂级数,A为n阶方阵,则

(1)
$$\rho(A) < r$$
 时,矩阵幂级数 $\sum_{k=0}^{\infty} a_k A^k$ 绝对收敛;

(2)
$$\rho(A) > r$$
 时,矩阵幂级数 $\sum_{k=0}^{\infty} a_k A^k$ 发散。

证(1)如果 $\rho(A) < r$,根据矩阵范数的性质,对于 $\varepsilon = \frac{1}{2} [r - \rho(A)] > 0$,一定存在一种相容的矩阵范数 $\|\cdot\|$,使得 $\|A\| \le \rho(A) + \varepsilon = \rho(A) + \frac{1}{2} r - \frac{1}{2} \rho(A) = \frac{r + \rho(A)}{2} < r$

因此,数项级数 $\sum_{k=0}^{\infty} |a_k| \|A\|^k$ 收敛,又

再由数项级数比较判别法可知, $\sum_{k=0}^{\infty} ||a_k A^k|| \le \sum_{k=0}^{\infty} |a_k| \cdot ||A||^k$ 收敛。 再利用矩阵级数性质3.6知, $\sum_{k=0}^{\infty} a_k A^k$ 绝对收敛。

DUB 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

(2) 如果 $\rho(A) > r$,设 $Ax = \lambda_i x$, 其中 $|\lambda_i| = \rho(A)$,且设x为其单位长度特征向量,亦即 $x^H Ax = \lambda_i$ 。

下面用反证法证明矩阵幂级数 $\sum_{k=0}^{\infty} a_k A^k$ 发散。

如果它是收敛的,则利用矩阵收敛的性质3.8知,应有

$$\sum_{k=0}^{\infty} a_k \lambda_i^k = \sum_{k=0}^{\infty} a_k \left(\mathbf{x}^H \mathbf{A}^k \mathbf{x} \right) = \mathbf{x}^H \left(\sum_{k=0}^{\infty} a_k \mathbf{A}^k \right) \mathbf{x} = \mathbf{x}^H \mathbf{S} \mathbf{x} \leq \infty$$

即得出此数项级数也收敛。但 $|\lambda_i| = \rho(A) > r$,数项级数 $\sum_{k=0}^{\infty} a_k z^k$ 在收敛圆外是发散的。故 $\sum_{k=0}^{\infty} a_k \lambda_i^k$ 应该是发散的, 因此矛盾, 故结论(2)成立。

DALIAN UNIVERSITY OF TECHNOLOGY

经过简单的变换便可得到如下推论:

推论3.3 设 $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ 为收敛半径为r的幂级数,A为n阶方阵,

如果A的特征值均落在收敛圆内,即 $|\lambda-z_0|< r$,其中 λ 为A的任意

特征值,则矩阵幂级数 $\sum_{k=0}^{\infty} a_k (\mathbf{A} - z_0 \mathbf{I})^k$ 绝对收敛; 若有某个 λ_{i_0}

使得 $\left|\lambda_{i_0} - z_0\right| > r$,则幂级数 $\sum_{k=0}^{\infty} a_k \left(\mathbf{A} - z_0 \mathbf{I}\right)^k$ 发散。

DALIAN UNIVERSITY OF TECHNOLOGY

根据幂级数性质,幂级数的和函数是收敛圆内的解析函数(任意次可微,在任一点处均可展成**Taylor**级数),而一个圆内解析的函数可以展开成收敛的幂级数。 于是,如果 f(z)是 $|z-z_0| < r$ 内的解析函数,其展成绝对收敛的幂级数为

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

则当矩阵 $A \in \mathbb{C}^{n \times n}$ 的特征值落在收敛圆 $|z-z_0| < r$ 内时,则由

$$f(\mathbf{A}) \triangleq \sum_{k=0}^{\infty} a_k (\mathbf{A} - z_0 \mathbf{I})^k$$

称之为A关于解析函数f(z)的矩阵函数。

例如,对于收敛半径r=+∞的幂级数

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots;$$

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots;$$
 $\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \cdots;$

根据上述的定义,有矩阵指数函数和矩阵三角函数 $(A \in \mathbb{C}^{n \times n})$

$$e^{A} = I + A + \frac{A^{2}}{2!} + \frac{A^{3}}{3!} + \cdots;$$

$$\cos A = I - \frac{A^2}{2!} + \frac{A^4}{4!} - \cdots; \quad \sin A = A - \frac{A^3}{3!} + \frac{A^5}{5!} - \cdots;$$

对于收敛半径r=1的幂级数

$$(1-z)^{-1} = 1 + z + z^2 + z^3 + \dots; \quad \ln(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots;$$

相应的有 $(A \in \mathbb{C}^{n \times n}, \mathbb{A} \rho (A) < 1)$

$$(I - A)^{-1} = I + A + A^{2} + A^{3} + \cdots; \ln(I + A) = A - \frac{A^{2}}{2} + \frac{A^{3}}{3} - \cdots;$$

DALIAN UNIVERSITY OF TECHNOLOGY

练习 设A为n阶Householder矩阵,则 $\cos(2\pi \mathbf{A}) = \underline{}$

注意, A 是Householder矩阵, 则满足:

$$A^{2} = A^{H}A = I$$
 $A^{4} = I$, ..., $A^{2n} = I$

$$\cos(2\pi \mathbf{A}) = \mathbf{I} - \frac{(2\pi \mathbf{A})^{2}}{2!} + \frac{(2\pi \mathbf{A})^{4}}{4!} - \dots + \frac{(2\pi \mathbf{A})^{2n}}{(2n)!!} + \dots$$

$$= \mathbf{I} - \frac{(2\pi)^{2}}{2!} \mathbf{A}^{2} + \frac{(2\pi)^{4}}{4!} \mathbf{A}^{4} - \dots + \frac{(2\pi)^{2n}}{(2n)!!} \mathbf{A}^{2n} + \dots$$

$$= \left(1 - \frac{(2\pi)^{2}}{2!} + \frac{(2\pi)^{4}}{4!} - \dots + \frac{(2\pi)^{2n}}{(2n)!!} + \dots\right) \mathbf{I}$$

$$=(\cos 2\pi)\boldsymbol{I}=\boldsymbol{I}$$
.

DALIAN UNIVERSITY OF TECHNOLOGY

现在利用矩阵的Jordan分解写出矩阵函数f(A) 的具体表达式首先介绍一个引理

引理3.1 设 $f(z) = \sum_{k=0}^{\infty} a_k z^k$ 是收敛半径为r的幂级数, J_i 是特征值为 λ_i 的 n_i 阶Jordan块阵,且 $|\lambda_i| < r$,则

$$m_{i}$$
阶 Jordan 块阵,且 $|\lambda_{i}| < r$,则
$$f(\mathbf{J}_{i}) := \begin{pmatrix} f(\lambda_{i}) & f'(\lambda_{i}) & \cdots & \frac{f^{(n-1)}(\lambda_{i})}{(n_{i}-1)!} \\ f(\lambda_{i}) & f'(\lambda_{i}) & & \vdots \\ & \ddots & & \vdots \\ & & \ddots & & \vdots \\ & & & f'(\lambda_{i}) \end{pmatrix}$$

$$(3-1)$$

DUT 大连醒三大学

DALIAN UNIVERSITY OF TECHNOLOGY

推论3. 4 设 $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ 是收敛半径为r的幂级数, J_i 是特征值为 λ_i 的Jordan块, 且 $|\lambda_i - z_0| < r$,

$$f(\boldsymbol{J}_{i}) = \begin{pmatrix} f(\lambda_{i}) & f'(\lambda) & \cdots & \frac{f^{(n-1)}(\lambda_{i})}{(n_{i}-1)!} \\ & f(\lambda_{i}) & \ddots & \vdots \\ & & \ddots & f'(\lambda_{i}) \\ & & f(\lambda_{i}) \end{pmatrix}$$

DALIAN UNIVERSITY OF TECHNOLOGY

推论3.5 设 $f(z) = \sum_{k=0}^{\infty} a_k z^k$ 是收敛半径为r的幂级数,J是特征值为 λ_i 的 n_i 阶Jordan块阵,且 $|t\lambda_i| < r$,则

$$f(t\boldsymbol{J}_{i}) = \begin{pmatrix} f(t\lambda_{i}) & t f'(t\lambda_{i}) & \cdots & \frac{t^{n-1}f^{(n-1)}(t\lambda_{i})}{(n_{i}-1)!} \\ f(t\lambda_{i}) & \ddots & \vdots \\ & \ddots & t f'(t\lambda_{i}) \\ & & f(t\lambda_{i}) \end{pmatrix}$$
(3-3)

练习

$$f(\boldsymbol{J_i}) = \begin{pmatrix} f(\lambda_i) & f'(\lambda_i) & \cdots & \frac{f^{(n-1)}(\lambda_i)}{(n_i-1)!} \\ & f(\lambda_i) & \ddots & \vdots \\ & & \ddots & f'(\lambda_i) \\ & & & f(\lambda_i) \end{pmatrix}$$

$$e^{-1} e^{-1} e^{-1} e^{-1} e^{-1} e^{-1}$$

$$e^{-1} e^{-1} e^{-1} e^{-1}$$

$$e^{-1} e^{-1} e^{-1}$$

$$e^{-1} e^{-1}$$

$$e^{-1} e^{-1}$$

$$f(t\lambda_{i}) = \begin{cases} f(t\lambda_{i}) & t f'(t\lambda_{i}) & \cdots & \frac{t^{n-1}f^{(n-1)}(t\lambda_{i})}{(n_{i}-1)!} \\ f(t\lambda_{i}) & \ddots & \vdots \\ & \ddots & t f'(t\lambda_{i}) \\ & & f(t\lambda_{i}) \end{cases}$$

DALIAN UNIVERSITY OF TECHNOLOGY

根据上面的引理和矩阵级数的性质,有

定理3. 3 设 $f(z) = \sum_{k=0}^{\infty} a_k z^k$ 为收敛半径为r的幂级数, A 为n阶 方阵, $A = TJT^{-1}$ 为其Jordan分解, $J = diag(J_1, J_2, ..., J_s)$ 。当A的特征 值均落在收敛圆内时, 即 $|\lambda| < r$,其中 λ 为A的任意特征值, 则 矩阵幂级数 $\sum_{k=0}^{\infty} a_k A^k$ 绝对收敛, 并且和矩阵为

$$f(A) = T \operatorname{diag}(f(J_1), f(J_2), \dots, f(J_s)) T^{-1}$$
 (3-4)

其中 $f(J_i)$ 的定义如表达式(3-1)。

那么, 若A的特征值为 λ_1 , λ_2 , …, λ_n , 则 f(A) 的特征值应为 $f(\lambda_1)$, $f(\lambda_2)$, …, $f(\lambda_n)$ 。

证明
$$(TJT^{-1})^k = (TJT^{-1})(TJT^{-1})\cdots(TJT^{-1}) = TJJJ\cdots JT^{-1} = TJ^kT^{-1}$$

$$(TJT^{-1})^k = (TJT^{-1})(TJT^{-1})\cdots(TJT^{-1}) = TJJJ\cdots JT^{-1} = TJ^kT^{-1}$$

$$(TJT^{-1})^k = \sum_{k=0}^{\infty} a_k A^k = \sum_{k=0}^{\infty} a_k (TJT^{-1})^k = \sum_{k=0}^{\infty} a_k (TJ^kT^{-1}) = T\left(\sum_{k=0}^{\infty} a_k J^k\right) T^{-1}$$

$$= T \operatorname{diag}\left(\sum_{k=0}^{\infty} a_k J^k\right), \quad f(J_2), \quad \cdots, \quad f(J_s) T^{-1}$$

$$= T \operatorname{diag}\left(f(J_1), \quad f(J_2), \quad \cdots, \quad f(J_s)\right) T^{-1}$$

$$= T\left(\sum_{k=0}^{\infty} a_k t^k J^k\right) T^{-1}$$

$$= T \operatorname{diag}\left(\sum_{k=0}^{\infty} a_k (tJ_1)^k, \quad \sum_{k=0}^{\infty} a_k (tJ_2)^k, \quad \cdots, \quad \sum_{k=0}^{\infty} a_k (tJ_s)^k\right) T^{-1}$$

$$= T\operatorname{diag}\left(f(tJ_1), \quad f(tJ_2), \quad \cdots, \quad f(tJ_s)\right) T^{-1}$$

$$= T\operatorname{diag}\left(f(tJ_1), \quad f(tJ_2), \quad \cdots, \quad f(tJ_s)\right) T^{-1}$$

$$f(A) = T \operatorname{diag}(f(J_1), f(J_2), \dots, f(J_s)) T^{-1}$$

$$= T \begin{pmatrix} f(J_i) & & \\ & f(J_i) & \\ & & \ddots & \\ & & f(J_i) \end{pmatrix} T^{-1}$$

$$f(\boldsymbol{J}_{i}) = \begin{pmatrix} f(\lambda_{i}) & f'(\lambda_{i}) & \cdots & \frac{f^{(n-1)}(\lambda_{i})}{(n_{i}-1)!} \\ f(\lambda_{i}) & \ddots & \vdots \\ & \ddots & f'(\lambda_{i}) \\ & & f(\lambda_{i}) \end{pmatrix} \quad i = 1, 2, \dots, s.$$

$$f(tA) = T \operatorname{diag}(f(tJ_1), f(tJ_2), \cdots, f(tJ_s))T^{-1}$$

$$= T \begin{pmatrix} f(tJ_1) \\ f(tJ_2) \\ \ddots \\ f(tJ_s) \end{pmatrix}$$

$$T^{-1}$$

$$f(t\mathbf{J}_{i}) = \begin{pmatrix} f(t\lambda_{i}) & tf'(t\lambda_{i}) & \cdots & \frac{t^{n-1}f^{(n-1)}(t\lambda_{i})}{(n_{i}-1)!} \\ f(t\lambda_{i}) & \ddots & \vdots \\ & \ddots & tf'(t\lambda_{i}) \\ & & f(t\lambda_{i}) \end{pmatrix} i = 1, 2, \dots, s.$$

例1 设
$$A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$$
, 求 $\sin A$ 。

$$A = TJT^{-1} = \begin{pmatrix} 0 & 4 & 1 \\ 1 & 3 & 0 \\ 0 & -2 & 0 \end{pmatrix} \begin{pmatrix} -1 & \\ & -1 & 1 \\ & & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & -\frac{1}{2} \\ 1 & 0 & 2 \end{pmatrix}$$

$$= f(A) - T \operatorname{diag}(f(I)) - f(I)) T^{-1}$$

因此,由
$$\sin A = f(A) = T \operatorname{diag}(f(J_1), f(J_2)) T^{-1}$$

解 根据矩阵A的Jordan分解
$$A = TJT^{-1} = \begin{pmatrix} 0 & 4 & 1 \\ 1 & 3 & 0 \\ 0 & -2 & 0 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ -1 & 1 \\ 0 & 0 & -\frac{1}{2} \\ 1 & 0 & 2 \end{pmatrix}$$
因此,由 $\sin A = f(A) = T \operatorname{diag}(f(J_1), f(J_2)) T^{-1}$

$$= \begin{pmatrix} 0 & 4 & 1 \\ 1 & 3 & 0 \\ 0 & -2 & 0 \end{pmatrix} \begin{pmatrix} -\sin 1 & 0 & 1 \\ -\sin 1 & -\sin 1 & \cos 1 \\ 0 & 0 & -\frac{1}{2} \\ 1 & 0 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 4\cos 1 - \sin 1 & 0 & 8\cos 1 \\ 3\cos 1 & -\sin 1 & 6\cos 1 \\ -2\cos 1 & 0 & -\sin 1 - 4\cos 1 \end{pmatrix}$$

$$-2\cos 1$$
 0 $-\sin 1-4\cos 3$

例2 设
$$A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 2 & -1 \\ 2 & 1 & 0 \end{pmatrix}$$
, 求 e^{At} 。

解 根据矩阵的Jordan 分解

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & & & \\ & 2 & 1 \\ & & 2 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \quad \boxed{\mathbb{N}}$$

$$e^{At} = f(At) = T \operatorname{diag}(f(tJ_1), f(tJ_2)) T^{-1}$$

$$e^{At} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} e^{t} & & & \\ & e^{2t} & te^{2t} \\ & & e^{2t} \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & e^{2t} & (t+1)e^{2t} \\ e^{t} & 0 & e^{2t} \\ e^{t} & e^{2t} & (t+1)e^{2t} \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} (1+t)e^{2t} & te^{2t} & -te^{2t} \\ e^{2t} - e^{t} & e^{2t} & -e^{2t} + e^{t} \\ (1+t)e^{2t} - e^{t} & te^{2t} & e^{t} - te^{2t} \end{pmatrix}$$

为避免求矩阵A的的Jordan 分解,也可用有限待定系数法计算f(A)和f(At)。

有限待定系数法 $\partial A \in \mathbb{C}^{n \times n}$ 且

$$\psi(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_s)^{m_s}$$
 (3-5)
其中 $m_i(i=1,2,\cdots,s)$ 均为正整数, $\sum_{i=1}^s m_i = n$, $\lambda_1, \lambda_2, \cdots, \lambda_s$ 为 \mathbf{A} 的不同特征值
为计算矩阵函数 $f(\mathbf{A}t) = \sum_{k=0}^\infty a_k \mathbf{A}^k t^k$,记 $f(\lambda t) = \sum_{k=0}^\infty a_k \lambda^k t^k$,将 $\mathbf{f}(\mathbf{A}t)$ 改写为

$$f(\lambda t) = p(\lambda, t)\psi(\lambda) + q(\lambda, t)$$
(3-6)

其中 $p(\lambda,t)$ 是含参数t的 λ 的幂级数, $q(\lambda,t)$ 是含参数t且次数不超过 n-1的 λ 的多项式,即

$$q(\lambda, t) = b_{n-1}(t)\lambda^{n-1} + b_{n-2}(t)\lambda^{n-2} + \dots + b_0(t)$$

由**Hamilton-Cayley**定理知 $\psi(A)=0$,于是由(3-5)式得

$$f(At) = p(A,t)\psi(A) + q(A,t) = b_{n-1}(t)A^{n-1} + \dots + b_1(t)A + b_0(t)I$$

可见,只要求出 $b_0(t), b_1(t), \dots, b_{n-1}(t)$ 即可得到f(At)。 注意到 $\psi^{(j)}(\lambda_i) = 0 \quad (j = 0, 1, \dots, m_i - 1; i = 1, 2, \dots, s)$

将(3-6)式两端对λ求导,并利用上式,得

$$\frac{\mathrm{d}^{j} f\left(\lambda t\right)}{\mathrm{d} \lambda^{j}} \bigg|_{\lambda = \lambda_{i}} = \frac{\mathrm{d}^{j} q\left(\lambda, t\right)}{\mathrm{d} \lambda^{j}} \bigg|_{\lambda = \lambda_{i}}$$

即

$$t^{j} \frac{\mathrm{d}^{j} f(u)}{\mathrm{d}u^{j}} \bigg|_{u=\lambda_{i}t} = \frac{\mathrm{d}^{j} q(\lambda, t)}{\mathrm{d}\lambda^{j}} \bigg|_{\lambda=\lambda_{i}}$$

$$(j=0,1,\cdots,m_{i}-1; i=1,2,\cdots,s)$$
(3-7)

由 (3-7) 式即得到以 $b_0(t), b_1(t), \dots, b_{n-1}(t)$ 为未知量的线性

方程组

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

用有限待定级数法计算矩阵函数f(A) 和f(At)的步骤如下:

(一) 求矩阵A的特征多项式 (3-4);

(二) 设
$$q(\lambda, t) = b_{n-1}(t)\lambda^{n-1} + b_{n-2}(t)\lambda^{n-2} + \dots + b_0(t)$$
。 根据
$$q^{(j)}(\lambda_i) = t^j f^{(j)}(\lambda) \Big|_{\lambda = \lambda_i t} \quad (j = 0, 1, \dots, m_i - 1; i = 1, 2, \dots, s)$$

或

$$q^{(j)}(\lambda_i) = f^{(j)}(\lambda_i)$$
 $(j = 0, 1, \dots, m_i - 1; i = 1, 2, \dots, s)$

列出线性方程组,并求解 b_0 , b_1 , \cdots , b_{n-1} 。

(三) 计算
$$f(tA)$$
 (当取 $t=1$ 时,为 $f(A)=q(A)$)

$$q(A) = b_{n-1}(t)A^{n-1} + \cdots + b_1(t)A + b_0(t)I$$

大连疆三大登

例3 用有限待定级数法计算(1)例1,(2)计算
$$e^{At}$$
。
解 首先求 $\det(\lambda I - A) = \begin{vmatrix} \lambda - 3 & 0 & -8 \\ -3 & \lambda + 1 & -6 \\ 2 & 0 & \lambda + 5 \end{vmatrix} = (\lambda + 1)^3$

(1) 设
$$q(\lambda) = b_2 \lambda^2 + b_1 \lambda + b_0$$
, $f(\lambda) = \sin \lambda$ 。

因此,由(3-6)可得

$$\begin{cases} q(-1) = b_2 - b_1 + b_0 = f(-1) = -\sin 1 \\ q'(-1) = -2b_2 + b_1 = f'(-1) = \cos 1 \\ q''(-1) = 2b_2 = \sin 1 = f''(-1) \end{cases}$$

$$\begin{cases} b_0 = \cos 1 - \frac{1}{2}\sin 1 \\ b_1 = \sin 1 + \cos 1 \\ b_2 = \frac{1}{2}\sin 1 \end{cases}$$

于是, $\sin A = f(A) = b_2 A^2 + b_1 A + b_0 I$, 即

$$\sin \mathbf{A} = \frac{1}{2} \sin 1 \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix} + (\sin 1 + \cos 1) \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$$

$$+\left(\cos 1 - \frac{1}{2}\sin 1\right) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{7}{2}\sin 1 & 0 & -8\sin 1 \\ -3\sin 1 & \frac{1}{2}\sin 1 & 6\cos 1 \\ 2\sin 1 & 0 & \frac{9}{2}\sin 1 \end{pmatrix} + \begin{pmatrix} 3(\sin 1 + \cos 1) & 0 & 8(\sin 1 + \cos 1) \\ 3(\sin 1 + \cos 1) & -(\sin 1 + \cos 1) & 6(\sin 1 + \cos 1) \\ -2(\sin 1 + \cos 1) & 0 & -5(\sin 1 + \cos 1) \end{pmatrix}$$

$$+ \begin{pmatrix} \cos 1 - \frac{1}{2} \sin 1 & 0 & 0 \\ 0 & \cos 1 - \frac{1}{2} \sin 1 & 0 \\ 0 & 0 & \cos 1 - \frac{1}{2} \sin 1 \end{pmatrix} = \begin{pmatrix} 4 \cos 1 - \sin 1 & 0 & 8 \cos 1 \\ 3 \cos 1 & -\sin 1 & 6 \cos 1 \\ -2 \cos 1 & 0 & -\sin 1 - 4 \cos 1 \end{pmatrix}$$

(2) 设
$$q(\lambda) = b_2(t)\lambda^2 + b_1(t)\lambda + b_0(t)$$
, $f(t\lambda) = e^{\lambda t}$ 。

因此,由(3-6)可得

$$\begin{cases} q(-1) = b_2 - b_1 + b_0 = f(-t) = e^{-t} \\ q'(-1) = -2b_2 + b_1 = f'(-t) = te^{-t} \\ q''(-1) = 2b_2 = f''(-t) = t^2 e^{-t} \end{cases}$$

$$\begin{cases} b_0 = \left(1 + t + \frac{t^2}{2}\right)e^{-t} \\ b_1 = \left(t + t^2\right)e^{-t} \\ b_2 = \frac{t^2}{2}e^{-t} \end{cases}$$

于是,
$$e^{tA} = f(tA) = b_2(t)A^2 + b_1(t)A + b_0(t)I$$
, 即

$$e^{tA} = \begin{pmatrix} 1+t+\frac{t^2}{2} \end{pmatrix} e^{-t} \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}^2 + \begin{pmatrix} t+t^2 \end{pmatrix} e^{-t} \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$$

$$+\frac{t^2}{2}e^{-t}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$e^{At} = \begin{pmatrix} -\frac{7}{2}t^{2}e^{-t} & 0 & -8t^{2}e^{-t} \\ -3t^{2}e^{-t} & \frac{1}{2}t^{2}e^{-t} & 6t^{2}e^{-t} \\ 2t^{2}e^{-t} & 0 & \frac{9}{2}t^{2}e^{-t} \end{pmatrix} + \begin{pmatrix} 3(t+t^{2})e^{-t} & 0 & 8(t+t^{2})e^{-t} \\ 3(t+t^{2})e^{-t} & -(t+t^{2})e^{-t} & 6(t+t^{2})e^{-t} \\ -2(t+t^{2})e^{-t} & 0 & -5(t+t^{2})e^{-t} \end{pmatrix}$$

$$\begin{pmatrix}
\left(1+t+\frac{t^{2}}{2}\right)e^{-t} & 0 & 0 \\
0 & \left(1+t+\frac{t^{2}}{2}\right)e^{-t} & 0 \\
0 & 0 & \left(1+t+\frac{t^{2}}{2}\right)e^{-t}
\end{pmatrix}$$

$$= \begin{pmatrix}
\left(1+4t\right)e^{-t} & 0 & 8te^{-t} \\
3te^{-t} & e^{-t} & 6te^{-t} \\
-2te^{-t} & 0 & \left(1-4t\right)e^{-t}
\end{pmatrix}$$

大连疆三大学

我们还可以证明

- (I) $\forall A \in \mathbb{C}^{n \times n}$, 总有
 - (1) $\sin(-A) = -\sin A$, $\cos(-A) = \cos A$
- (2) $e^{iA} = \cos A + i \sin A$, $\cos A = \frac{1}{2} (e^{iA} + e^{-iA})$, $\sin A = \frac{1}{2} (e^{iA} e^{-iA})$

(1)
$$e^{A+B} = e^A e^B = e^B e^A = \left[I + B + \frac{B^2}{2!} + \frac{B^3}{3!} + \cdots \right] \left[I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots \right]$$

(2)
$$\sin(\mathbf{A} + \mathbf{B}) = \sin \mathbf{A} \cos \mathbf{B} + \cos \mathbf{A} \sin \mathbf{B} + \cos \mathbf{A} \sin \mathbf{B} + \cos \mathbf{A} \sin \mathbf{B} + \cos \mathbf{A} \cos \mathbf{B} \cos \mathbf{A} \cos \mathbf{B} + \cos \mathbf{A} \cos \mathbf{B} \cos \mathbf{A} \cos \mathbf{B} \cos \mathbf{A} \cos \mathbf{B} \cos \mathbf{A} \cos \mathbf{B} + \cos \mathbf{A} \cos \mathbf{B} \cos \mathbf{A} \cos \mathbf{A} \cos \mathbf{B} \cos \mathbf{A} \cos$$

(3)
$$\cos(A+B) = \cos A \cos B - \sin A \sin B / \sin B / \sin B / \sin A = B$$
, 则 $\cos 2A = \cos^2 A - \sin^2 A / \sin 2A = 2 \sin A \cos A$

需要指出的是,对任何n阶方阵A, e^A 总是可逆矩阵。

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

对任何n阶方阵A, $\sin A$ 与 $\cos A$ 不一定可逆。

例如,取
$$A = \begin{pmatrix} \pi & 0 \\ 0 & \frac{\pi}{2} \end{pmatrix}$$
,则

$$\sin \mathbf{A} = \begin{pmatrix} \sin \pi & 0 \\ 0 & \sin \frac{\pi}{2} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 不可逆;

$$\cos \mathbf{A} = \begin{pmatrix} \cos \pi & 0 \\ 0 & \cos \frac{\pi}{2} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$$
 不可逆。

DUT 大连醒三大学

DALIAN UNIVERSITY OF TECHNOLOGY

(1)
$$\det(e^A) = e^{\operatorname{tr} A}$$
, (2) $(e^A)^{-1} = e^{-A}$, (3) $\|e^A\| \le e^{\|A\|}$

(4) 若A为Hermite阵,则eiA是酉阵。

证: (1) 设A的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,由定理3(A的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,则矩阵f(A)的特征值为 $f(\lambda_1), f(\lambda_2), \dots, f(\lambda_n)$),知 e^A 的特征值为 $e^{\lambda_1}, e^{\lambda_2}, \dots, e^{\lambda_n}$,从而

$$\det(e^A) = e^{\lambda_1} e^{\lambda_2} \cdots e^{\lambda_n} = e^{\lambda_1 + \lambda_2 + \cdots + \lambda_n} = e^{\operatorname{tr} A} \circ$$

(2) 由于 $\det(e^A) = e^{\operatorname{tr} A} \neq 0$,故 e^A 总是可逆的,从而

$$e^{A}e^{-A} = e^{A-A} = e^{0} = I \implies (e^{A})^{-1} = e^{-A}$$

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

(3) 由

$$\|S_N\| = \left\| \sum_{k=0}^N \frac{1}{k!} A^k \right\| \le \sum_{k=0}^N \frac{1}{k!} \|A\|^k, \quad \text{Min} N \to \infty \text{ if, } \hat{A}$$

$$\|e^A\| \le e^{\|A\|}$$

(4) 因为
$$f(\mathbf{A}^T) = (f(\mathbf{A}))^T$$
, 所以

$$(e^{iA})^H = e^{(iA)^H} = e^{-iA^H} = e^{-iA}$$
, then

$$(e^{iA})^H e^{iA} = e^{-iA} e^{iA} = e^{i(A-A)} = e^0 = I$$

则 e^{iA} 是酉阵。

值得注意: 当 $AB \neq BA$ 时, $e^{A+B} = e^A e^B$ 或 $e^{A+B} = e^B e^A$ 不一定成立。 例如

$$\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \mathbb{M} \quad \mathbf{A}\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \mathbf{B}\mathbf{A},$$

而且易知,A和B的特征值均为0;

又
$$A+B=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $A+B$ 的特征值为: $\lambda_1=1$, $\lambda_2=-1$ 。 显然,有

A的Jordan分解为:
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\boldsymbol{B}$$
的Jordan分解为: $\boldsymbol{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

由定理3.3可知,

$$e^{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} e^{0} & \left(\frac{\mathbf{d}e^{\lambda}}{\mathbf{d}\lambda} \right) \Big|_{\lambda=0} \\ e^{0} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$e^{\mathbf{B}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} e^{0} & \left(\frac{\mathbf{d}e^{\lambda}}{\mathbf{d}\lambda} \right) \Big|_{\lambda=0} \\ e^{0} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

则

$$e^A e^B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \neq \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = e^B e^A$$

A+B的Jordan分解为:

は対:

$$A + B = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

从而

$$e^{A+B} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} e & 0 \\ 0 & e^{-1} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} e+e^{-1} & e-e^{-1} \\ e-e^{-1} & e+e^{-1} \end{pmatrix}$$

即

$$e^{A+B} \neq e^A e^B$$

$$e^{A+B} \neq e^B e^A$$

則有
$$e^{A^{T}t} = \begin{pmatrix} e^{t} & te^{t} & \frac{t^{2}}{2}e^{t} & \frac{t^{3}}{6}e^{t} \\ e^{t} & te^{t} & \frac{t^{2}}{2}e^{t} \\ e^{t} & te^{t} & \frac{t^{2}}{2}e^{t} \\ e^{t} & te^{t} \end{pmatrix}; \quad e^{At} = \left(e^{A^{T}t}\right)^{T} = \begin{pmatrix} e^{t} & & & \\ te^{t} & e^{t} & & \\ \frac{t^{2}}{2}e^{t} & te^{t} & e^{t} \\ \frac{t^{3}}{6}e^{t} & \frac{t^{2}}{2}e^{t} & te^{t} & e^{t} \end{pmatrix};$$

同理
$$\sin tA = \begin{pmatrix} \sin t \\ t\cos t & \sin t \\ -\frac{t^2}{2}\sin t & t\cos t & \sin t \\ \frac{t^3}{6}\cos t & -\frac{t^2}{2}\sin t & t\cos t & \sin t \end{pmatrix}$$

三、函数矩阵的微积分

在研究微分方程组时,为了简化对问题的表达及求解过程,需要考虑以函数为元素的矩阵的微分和积分; 在研究优化等问题时,则要碰到数量函数对向量变量或矩阵变量的导数, 以及向量值或矩阵值函数对向量变量或矩阵变量的导数。

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

1 相对于数量变量的微分和积分

定义5 如果矩阵 $A(t) = (a_{ij}(t))_{m \times n}$ 的每一个元素 $a_{ij}(t)$ $i = 1, 2, \cdots, m$; $j = 1, 2, \cdots, n$ 在[a,b]上均为变量t的可微函数,则称A(t)可微,且导数 定义为

例如

$$A'(t) = \frac{\mathrm{d}}{\mathrm{d}t} A(t) = \left(\frac{\mathrm{d}}{\mathrm{d}t} a_{ij}(t)\right)_{m \times n}$$

$$\mathbf{A}(t) = \begin{pmatrix} t + e^t & \sin t \\ t & 4 \end{pmatrix}, \quad \text{M} \quad \mathbf{A}'(t) = \begin{pmatrix} 1 + e^t & \cos t \\ 1 & 0 \end{pmatrix}$$

由定义5可以验证矩阵导数的如下运算性质.

定理4 设A(t)、B(t)是可进行运算的两个可微矩阵,则以下的运算规则成立

(1)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\mathbf{A} \left(t \right) + \mathbf{B} \left(t \right) \right) = \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{A} \left(t \right) + \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{B} \left(t \right)$$

(2)
$$\frac{\mathrm{d}}{\mathrm{d}t} (\mathbf{A}(t)\mathbf{B}(t)) = \left(\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{A}(t)\right)\mathbf{B}(t) + \mathbf{A}(t) \left(\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{B}(t)\right)$$

(3)
$$\frac{\mathrm{d}}{\mathrm{d}t}(\alpha A(t)) = \alpha \cdot \frac{\mathrm{d}}{\mathrm{d}t} A(t)$$
, 其中 α 为任意常数

(4) 当
$$u=f(t)$$
关于 t 可微时,有
$$\frac{d}{dt}(A(u)) = f'(t)\frac{d}{du}A(u)$$

(5) 当
$$A^{-1}(t)$$
 为可微矩阵时,有
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(A^{-1}(t) \right) = -A^{-1}(t) \left(\frac{\mathrm{d}}{\mathrm{d}t} A(t) \right) A^{-1}(t)$$

由于 $\frac{d}{dt}(A(t))$ 仍是函数矩阵,如果它仍是可导函数矩阵,则可定义其二阶导数。不难给出函数矩阵的高阶导数:

$$\frac{\mathrm{d}^{k}}{\mathrm{d}t^{k}} \left(\boldsymbol{A}(t) \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}^{k-1}}{\mathrm{d}t^{k-1}} \left(\boldsymbol{A}(t) \right) \right)$$

只就(2)、(5)证之。

(2) 设
$$A(t) = (a_{ij}(t))_{m \times n}$$
, $B(t) = (b_{ij}(t))_{n \times p}$ 则

$$\frac{d}{dt}(\boldsymbol{A}(t)\boldsymbol{B}(t)) = \frac{d}{dt} \left(\sum_{k=1}^{n} a_{ik}(t)b_{kj}(t) \right)_{m \times p} = \left(\sum_{k=1}^{n} \left[\frac{d}{dt} \left(a_{ik}(t)b_{kj}(t) \right) \right] \right)_{m \times p}$$

$$= \left(\sum_{k=1}^{n} \left[\frac{d}{dt} \left(a_{ik}(t) \right) \cdot b_{kj}(t) + a_{ik}(t) \cdot \frac{d}{dt} \left(b_{kj}(t) \right) \right] \right)_{m \times p}$$

$$= \left(\sum_{k=1}^{n} \left(\frac{d}{dt} \left(a_{ik}(t) \right) \right) \cdot b_{kj}(t) \right)_{m \times p} + \left(\sum_{k=1}^{n} a_{ik}(t) \cdot \left(\frac{d}{dt} \left(b_{kj}(t) \right) \right) \right)_{m \times p}$$

$$= \frac{d}{dt} (\mathbf{A}(t)) \mathbf{B}(t) + \mathbf{A}(t) \frac{d}{dt} \mathbf{B}(t)$$

(5) 由于 $A(t)^{-1}A(t)=I$, 由性质(2), 两端对t求导得

从而
$$\frac{d}{dt}(A^{-1}(t))A(t) = -A^{-1}(t)\frac{d}{dt}(A(t))A^{-1}Q(t)$$
 证毕

注:
$$\frac{d}{dt}(A^m(t)) = mA^{m-1}(t) \frac{d}{dt}(A(t))$$
 不一定成立。

例如,对m=2,并取

$$\mathbf{A}(t) = \begin{pmatrix} t^2 & t \\ 0 & t \end{pmatrix}, \quad \text{III} \quad \frac{\mathrm{d}}{\mathrm{d}t} (\mathbf{A}(t)) = \begin{pmatrix} 2t & 1 \\ 0 & 1 \end{pmatrix},$$

 $\overline{|III|} 2\mathbf{A}(t)\frac{d}{dt}(\mathbf{A}(t)) = 2 \begin{pmatrix} t^2 & t \\ 0 & t \end{pmatrix} \begin{pmatrix} 2t & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4t^3 & 2t^2 + 2t \\ 0 & 2t \end{pmatrix}$

故
$$\frac{d}{dt}(A^2(t)) \neq 2A(t)\frac{d}{dt}(A(t))$$
。只有 $A(t)\frac{d}{dt}(A(t)) = \frac{d}{dt}(A(t))A(t)$,时成立。

定理5 设n阶方阵A与t无关,则有

$$(1) \quad \frac{\mathrm{d}}{\mathrm{d}\,t}e^{tA} = Ae^{tA} = e^{tA}A$$

(2)
$$\frac{\mathrm{d}}{\mathrm{d}t}\sin(t\mathbf{A}) = \mathbf{A}\cos(t\mathbf{A}) = \cos(t\mathbf{A})\mathbf{A}$$

(3)
$$\frac{\mathrm{d}}{\mathrm{d}t}\cos(tA) = -A\sin(tA) = -\sin(tA)A$$

证明 只证(1),(2)和(3)的证明与(1)类似。

由 $e^{tA} = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k$ 并利用绝对收敛的级数可以逐项求导的性质得

$$\frac{\mathrm{d}\left(e^{tA}\right)}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}\left(\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k}\right) = \sum_{k=0}^{\infty} \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{t^{k}}{k!}\right) A^{k} = \left(\sum_{k=1}^{\infty} \frac{t^{k-1}}{(k-1)!} A^{k-1}\right)$$

$$= \left(\sum_{k=1}^{\infty} \frac{t^{k-1}}{(k-1)!} \mathbf{A}^{k-1}\right) \mathbf{A} \implies \mathbf{A} e^{t\mathbf{A}} = e^{t\mathbf{A}} \mathbf{A} \circ$$

$$\cos \mathbf{A} = \mathbf{I} - \frac{\mathbf{A}^2}{2!} + \frac{\mathbf{A}^4}{4!} - \cdots;$$

下面利用性质2, 进行矩阵计算。

练习1 已知
$$\sin tA = \frac{1}{4} \begin{pmatrix} \sin 5t + \sin 3t & 2\sin 5t - 2\sin t \\ \sin 5t - \sin t & 2\sin 5t + 2\sin t \end{pmatrix}$$
, 求A

解:由于

$$\left(\sin tA\right)' = \frac{1}{4} \begin{bmatrix} 5\cos 5t + 3\cos 3t & 10\cos 5t - 2\cos t \\ 5\cos 5t - \cos t & 10\cos 5t + 2\cos t \end{bmatrix} = A\cos At$$

 $\diamondsuit t=0$,并注意 $\cos \theta=I$,则

$$A = \frac{1}{4} \begin{pmatrix} 5\cos 0 + 3\cos 0 & 10\cos 0 - 2\cos 0 \\ 5\cos 0 - \cos 0 & 10\cos 0 + 2\cos 0 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 8 & 8 \\ 4 & 12 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$$

练习2

已知
$$e^{tA} = \begin{pmatrix} 2e^{2t} - e^t & e^{2t} - e^t & e^t - e^{2t} \\ e^{2t} - e^t & 2e^{2t} - e^t & e^t - e^{2t} \\ 3e^{2t} - 3e^t & 3e^{2t} - 3e^t & 3e^t - 2e^{2t} \end{pmatrix}$$
, 求A

$$\begin{pmatrix} e^{tA} \end{pmatrix}' = \begin{pmatrix} 4e^{2t} - e^t & 2e^{2t} - e^t & e^t - 2e^{2t} \\ 2e^{2t} - e^t & 4e^{2t} - e^t & e^t - 2e^{2t} \\ 6e^{2t} - 3e^t & 6e^{2t} - 3e^t & 3e^t - 4e^{2t} \end{pmatrix} = \mathbf{A}e^{\mathbf{A}t}$$

令t=0 ,并注意 $e^0=I$,则

$$\mathbf{A} = \begin{pmatrix} 4e^{0} - e^{0} & 2e^{0} - e^{0} & e^{0} - 2e^{0} \\ 2e^{0} - e^{0} & 4e^{0} - e^{0} & e^{0} - 2e^{0} \\ 6e^{0} - 3e^{0} & 6e^{0} - 3e^{0} & 3e^{0} - 4e^{0} \end{pmatrix} = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 3 & 3 & -1 \end{pmatrix}$$

定义6 如果矩阵 $A(t) = (a_{ij}(t))_{m \times n}$ 的每一个元素 $a_{ij}(t)$ 都是区间

 $[t_0,t_1]$ 上的可积函数,则定义A(t)在区间 $[t_0,t_1]$ 上的积分为

$$\int_{t_0}^{t_1} \mathbf{A}(t) dt = \left(\int_{t_0}^{t_1} a_{ij}(t) dt \right)_{m \times n}$$

例如
$$\mathbf{A}(t) = \begin{pmatrix} t + e^t & \sin t \\ t & 4 \end{pmatrix}$$
, 则 $\int_0^1 \mathbf{A}(t) dt = \begin{pmatrix} \frac{1}{2} + e - 1 & 1 - \cos 1 \\ \frac{1}{2} & 4 \end{pmatrix}$

容易验证如下运算法则成立

(1)
$$\int_{t_0}^{t_1} \left(\alpha \mathbf{A}(t) + \beta \mathbf{B}(t) \right) dt = \alpha \int_{t_0}^{t_1} \mathbf{A}(t) dt + \beta \int_{t_0}^{t_1} \mathbf{B}(t) dt \quad \forall \alpha, \beta \in \mathbf{C}$$

(2)
$$\int_{t_0}^{t_1} (\mathbf{A}(t)\mathbf{B}) dt = \int_{t_0}^{t_1} \mathbf{A}(t) dt \mathbf{B}$$
, 其中**B**为常数矩阵;

$$\int_{t_0}^{t_1} (A B(t)) dt = A \int_{t_0}^{t_1} B(t) dt, 其中A 为常数矩阵;$$

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

(3) 当A(t)在[a, b]上连续可微时,对任意 $t \in (a,b)$,有

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\int_a^t \mathbf{A}(\tau) \, \mathrm{d}\tau \right) = \mathbf{A}(t)$$

(4) 当A(t)在[a, b]上连续可微时,对任意 $t \in (a,b)$,有

$$\int_{a}^{b} \frac{\mathrm{d}(A(t))}{\mathrm{d}t} \, \mathrm{d}t = A(b) - A(a)$$

DALIAN UNIVERSITY OF TECHNOLOGY

2 相对于矩阵变量的微分

定义7 设 $X = (x_{ij})_{m \times n}$,函数 $f(\mathbf{X}) = f(x_{11}, x_{12}, \dots x_{1n}, x_{21}, \dots, x_{mn})$ 为mn元的多元函数,且 $\frac{\partial f}{\partial x_{ij}}$ $(i=1,2,\dots,m;\ j=1,2,\dots,n)$ 都存在, 定义 f(X) 对矩阵X的导数为

$$\frac{\mathrm{d}f\left(\mathbf{X}\right)}{\mathrm{d}\mathbf{X}} = \begin{pmatrix} \frac{\partial f}{\partial x_{ij}} \end{pmatrix}_{m \times n} = \begin{pmatrix} \frac{\partial f}{\partial x_{11}} & \cdots & \frac{\partial f}{\partial x_{1n}} \\ \cdots & \ddots & \cdots \\ \frac{\partial f}{\partial x_{m1}} & \cdots & \frac{\partial f}{\partial x_{mn}} \end{pmatrix}$$

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

例7 设 $\mathbf{x} = (\xi_1, \xi_2, \dots \xi_n)^T$,n元函数 $f(\mathbf{x}) = f(\xi_1, \xi_2, \dots \xi_n)$, 求 $\frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}^T}$, $\frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}}$.

解 根据定义有

$$\frac{\mathrm{d}f}{\mathrm{d}x^{T}} = \left(\frac{\partial f}{\partial \xi_{1}}, \frac{\partial f}{\partial \xi_{2}}, \dots, \frac{\partial f}{\partial \xi_{n}}\right)$$

以x为自变量的函数的导数为:

$$\nabla f(\mathbf{x}) = \frac{\mathbf{d}f}{\mathbf{d}\mathbf{x}} = \left(\frac{\partial f}{\partial \xi_1}, \frac{\partial f}{\partial \xi_2}, \dots, \frac{\partial f}{\partial \xi_n}\right)^T$$

称为数量函数对向量变量的导数,即为高等数学学过的函数的梯度向量,也记为 $\operatorname{grag} f$ 。

例7-1, 设 $a = (a_1, a_2, \dots, a_n)^T$ 为常向量, $x = (\xi_1, \xi_2, \dots, \xi_n)^T$

为向量变量,且
$$f(x) = (x, a) = a^T x = x^T a$$
, 求 $\frac{\partial f}{\partial x}$ 。

解由于
$$f(x) = \sum_{i=1}^{n} a_i \xi_i$$
, $\frac{\partial f}{\partial \xi_j} = a_j$, $(j = 1, 2, \dots, n)$

所以

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \begin{pmatrix} \frac{\partial f}{\partial \xi_1} \\ \frac{\partial f}{\partial \xi_2} \\ \vdots \\ \frac{\partial f}{\partial \xi_n} \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \boldsymbol{a}$$

例8 设 $x=(\xi_1, \xi_2, \dots, \xi_n)^T$, $A=(a_{ij})_{n\times n}$, n元函数 $f(x)=x^TAx$, 求 $\frac{\mathrm{d}f}{\mathrm{d}x}$ 。

解: 因
$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \xi_i \xi_j = \xi_1 \sum_{j=1}^{n} a_{1j} \xi_j + \dots + \xi_k \sum_{j=1}^{n} a_{kj} \xi_j + \dots + \xi_n \sum_{j=1}^{n} a_{nj} \xi_j$$

$$\iint \bigcup \frac{\partial f(x)}{\partial \xi_k} = \xi_1 a_{1k} + \dots + \xi_{k-1} a_{k-1,k} + \left(\sum_{j=1}^n a_{kj} \xi_j + \xi_k a_{kk}\right) + \xi_{k+1} a_{k+1,k} + \dots + \xi_n a_{nk}$$

$$= \sum_{j=1}^n a_{jk} \xi_i + \sum_{j=1}^n a_{kj} \xi_j, \qquad k = 1, 2, \dots, n$$

$$\frac{\mathrm{d}f}{\mathrm{d}\boldsymbol{x}} = \begin{pmatrix} \frac{\partial f}{\partial \,\xi_1} \\ \frac{\partial f}{\partial \,\xi_2} \\ \vdots \\ \frac{\partial f}{\partial \,\xi_n} \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^n a_{1j} \,\xi_j \\ \sum_{j=1}^n a_{2j} \,\xi_j \\ \vdots \\ \sum_{j=1}^n a_{nj} \,\xi_j \end{pmatrix} + \begin{pmatrix} \sum_{i=1}^n a_{i1} \,\xi_i \\ \sum_{i=1}^n a_{i2} \,\xi_i \\ \vdots \\ \sum_{i=1}^n a_{in} \,\xi_i \end{pmatrix} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{A}^T \boldsymbol{x} = (\boldsymbol{A} + \boldsymbol{A}^T) \boldsymbol{x}$$

特别地, 当A时对称矩阵时, $\frac{df}{dx} = 2Ax$

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

练习2 设 $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, x \in \mathbb{R}^n, f(x) = ||Ax - b||_2^2$,试求 $\frac{\mathrm{d}f}{\mathrm{d}x}$

解: 因为

$$f(x) = ||Ax - b||_{2}^{2} = (Ax - b, Ax - b) = (Ax - b)^{T} (Ax - b)$$

$$= (x^{T} A^{T} - b^{T}) (Ax - b)$$

$$= x^{T} A^{T} Ax - b^{T} Ax - x^{T} A^{T} b + b^{T} b$$

$$= x^{T} (A^{T} A) x - (A^{T} b)^{T} x - x^{T} (A^{T} b) + b^{T} b$$

从而,由例7-1、例8,可得

$$\frac{\mathrm{d}f}{\mathrm{d}\mathbf{r}} = 2\mathbf{A}^T \mathbf{A}\mathbf{x} - \mathbf{A}^T \mathbf{b} - \mathbf{A}^T \mathbf{b} = 2(\mathbf{A}^T \mathbf{A}\mathbf{x} - \mathbf{A}^T \mathbf{b})$$

3 矩阵函数在微分方程中的应用

在线性控制系统中,常常涉及求解线性微分方程组的问题。矩阵函数在其中有重要的应用。

我们首先讨论一阶线性常系数齐次微分方程组的定解问:

$$\begin{cases} \frac{\mathbf{d}x_{1}(t)}{\mathbf{d}t} = a_{11}x_{1}(t) + a_{12}x_{2}(t) + \dots + a_{1n}x_{n}(t) \\ \frac{\mathbf{d}x_{2}(t)}{\mathbf{d}t} = a_{21}x_{1}(t) + a_{22}x_{2}(t) + \dots + a_{2n}x_{n}(t) \\ \vdots \\ \frac{\mathbf{d}x_{n}(t)}{\mathbf{d}t} = a_{n1}x_{1}(t) + a_{n2}x_{2}(t) + \dots + a_{nn}x_{n}(t) \end{cases}$$
给定初始条件: $x_{i}(0)$, $(i = 1, 2, \dots, n)$, 记 $A = (a_{ij}) \in \mathbb{C}^{n \times n}$, $X(0) = (x_{1}(0), x_{2}(0), \dots, x_{n}(0))^{T}$ $X(t) = (x_{1}(t), x_{2}(t), \dots, x_{n}(t))^{T}$,

则上述微分方程组可写成:

$$\begin{cases}
\frac{dX(t)}{dt} = AX(t) \\
X(0) = (x_1(0), x_2(0), ..., x_n(0))^T
\end{cases} (2)$$

利用矩阵微分的性质有

$$\frac{\mathrm{d}(e^{-At}X(t))}{\mathrm{d}t} = \frac{\mathrm{d}e^{-At}}{\mathrm{d}t}X(t) + e^{-At}\frac{\mathrm{d}X(t)}{\mathrm{d}t}$$
$$= -e^{-At}AX(t) + e^{-At}\frac{\mathrm{d}X(t)}{\mathrm{d}t} = e^{-At}\left(\frac{\mathrm{d}X(t)}{\mathrm{d}t} - AX(t)\right)$$

方程(2)意味着

$$\frac{\mathrm{d}(e^{-\mathbf{A}t}\boldsymbol{X}(t))}{\mathrm{d}t} = \boldsymbol{0}$$

因此 $X=e^{At}C$, 其中C为常数向量, 由初始条件(3), C=X(0)

$$X(t) = e^{\mathbf{A}t}X(0) \tag{4}$$

DUT 大连醒三大学

DALIAN UNIVERSITY OF TECHNOLOGY

下面说明解的唯一性。

如果定解问题(2)和(3)有两个解 $X_1(t)$, $X_2(t)$,则令 $Y(t)=X_1(t)-X_2(t)$,显然满足

$$\begin{cases} \frac{\mathrm{d} \boldsymbol{Y}(t)}{\mathrm{d}t} = \boldsymbol{A} \boldsymbol{Y}(t) \\ \boldsymbol{Y}(0) = \boldsymbol{X}_{1}(0) - \boldsymbol{X}_{2}(0) = \boldsymbol{0} \end{cases}$$

由上述推导可知, $Y(t) = e^{\mathbf{A}t}Y(0) = \mathbf{0}$, 即 $X_1(t) = X_2(t)$ 。

综上所述,

定理6 一阶线性常系数齐次微分方程组的定解问题(2)

(3) 有唯一解 $X(t) = e^{At}X(0)$ 。

最后我们考虑一阶线性常系数非齐次微分方程组的定解问题

$$\begin{cases} \frac{dX(t)}{dt} = AX(t) + F(t) \\ X(0) = (x_1(0), x_2(0), ..., x_n(0))^T \end{cases}$$
(4)

这里 $\mathbf{F}(t) = (f_1(t), f_2(t), \dots, f_n(t))^T$ 是已知向量函数, \mathbf{A} 和 \mathbf{X} 意义同前。 改写方程为 并以 $\mathbf{e}^{-\mathbf{A}t}$ 左乘方程两边,即

$$e^{-\mathbf{A}t} \left[\frac{\mathrm{d}\mathbf{X}(t)}{\mathrm{d}t} - \mathbf{A}\mathbf{X}(t) \right] = e^{-\mathbf{A}t} \mathbf{F}(t)$$

即 $\frac{\mathrm{d}(e^{-\mathbf{A}t}X(t))}{\mathrm{d}t} = e^{-\mathbf{A}t}\mathbf{F}(t) \text{ 对此方程在}[t_0, t] 上进行积分,可得$ $e^{-\mathbf{A}t}X(t) - e^{-\mathbf{A}t_0}X(t_0) = \int_{t_0}^t e^{-\mathbf{A}\tau}\mathbf{F}(\tau)\mathrm{d}\tau$ $e^{-\mathbf{A}t}X(t) = e^{-\mathbf{A}t_0}X(t_0) + \int_{t_0}^t e^{-\mathbf{A}\tau}\mathbf{F}(\tau)\mathrm{d}\tau$ $X(t) = e^{\mathbf{A}(t-t_0)}X(t_0) + \int_{t_0}^t e^{\mathbf{A}(t-\tau)}\mathbf{F}(\tau)\mathrm{d}\tau \quad \text{就是上述定解问题的解。}$

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

一阶线性常系数微分方程组在 $[t_0, t]$ 上的解:

$$\begin{cases} \frac{\mathrm{d}\mathbf{X}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{X}(t) \\ \mathbf{X}(t_0) = (x_1(t_0), x_2(t_0), \dots, x_n(t_0))^T \end{cases}$$

$$\boldsymbol{X}\left(t\right) = e^{A\left(t-t_0\right)} \boldsymbol{X}\left(t_0\right)$$

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{X}(t)}{\mathrm{d}t} = \boldsymbol{A}\boldsymbol{X}(t) + \boldsymbol{F}(t) \\ \boldsymbol{X}(t_0) = (x_1(t_0), x_2(t_0), \dots, x_n(t_0))^T \end{cases}$$

$$\boldsymbol{X}(t) = e^{A(t-t_0)} \boldsymbol{X}(t_0) + \int_{t_0}^{t} e^{A(t-\tau)} \boldsymbol{F}(\tau) d\tau$$

例9 求定解问题
$$\begin{cases} \frac{dX(t)}{dt} = AX(t) \\ X(0) = (1,1,1)^T \end{cases} \quad 其中 A = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

A
$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 3 & 1 & -1 \\ -2 & \lambda & 1 \\ -1 & 1 & \lambda - 2 \end{vmatrix} = \lambda(\lambda - 2)(\lambda - 3),$$

故A有三个不同的特征根,A可与对角形矩阵相似。 与特征根

$$\lambda_1$$
=0, λ_2 =2, λ_3 =3相应的三个线性无关的特征向量分别为:

$$X_1 = (1, 5, 2)^T, X_2 = (1, 1, 0)^T, X_3 = (2, 1, 1)^T$$

进一步得
$$T = \begin{pmatrix} 1 & 1 & 2 \\ 5 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}, \quad T^{-1} = -\frac{1}{6} \begin{pmatrix} 1 & -1 & -1 \\ -3 & -3 & 9 \\ -2 & 2 & -4 \end{pmatrix}$$

由定理6可得所求的解为

由定理6可得所求的解为
$$X = e^{\mathbf{A}t}X(0) = T \begin{pmatrix} 1 & & \\ & e^{2t} & \\ & & e^{3t} \end{pmatrix} X \begin{pmatrix} t \\ & & \\ & & \\ & & \end{pmatrix} = \begin{pmatrix} 1 & 1 & \\ & & \\ & & \\ & & \\ & & \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ & & \\ & & \\ & & \\ & & \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ & & \\ & & \\ & & \\ & & \\ & & \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ & &$$

例10 求定解问题
$$\begin{cases} \frac{dX(t)}{dt} = AX(t) + F(t) & \text{的解, 其中矩阵} A 见例9. \\ X(0) = (1,1,1)^T & F(t) = (0,0,e^{2t})^T \end{cases}$$

解由前面讨论,该问题的解为 $X(t) = e^{\mathbf{A}t}X(0) + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{F}(\tau)d\tau$

下面计算
$$P = \int_0^t e^{\mathbf{A}(t-\tau)} \mathbf{F}(\tau) d\tau$$
,由 $e^{\mathbf{A}(t-\tau)} \mathbf{F}(\tau) = \mathbf{T} e^{[\mathbf{J}(t-\tau)]} \mathbf{T}^{-1} \mathbf{F}(\tau)$

$$= \begin{pmatrix} 1 & 1 & 2 \\ 5 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & e^{2(t-\tau)} & e^{3(t-\tau)} \end{pmatrix} \begin{pmatrix} -\frac{1}{6} \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ -3 & -3 & 9 \\ -2 & 2 & -4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ e^{2\tau} \end{pmatrix} = \begin{pmatrix} -\frac{1}{6} \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 5 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} -e^{2\tau} \\ 9e^{2\tau} \\ -4e^{2\tau} \end{pmatrix}$$

$$= -\frac{1}{6} \begin{pmatrix} -e^{2\tau} + 9e^{2t} - 8e^{3t-\tau} \\ -5e^{2\tau} + 9e^{2t} - 4e^{3t-\tau} \end{pmatrix} \circ$$
 将这一结果对变量 τ
$$-2e^{2\tau} - 4e^{3t-\tau} \end{pmatrix} \circ$$
 从0到 t 进行积分,即得 $P = -\frac{1}{6} \begin{pmatrix} \frac{1}{2} + (9t + \frac{15}{2})e^{2t} - 8e^{3t} \\ \frac{5}{2} + (9t + \frac{3}{2})e^{2t} - 4e^{3t} \\ 1 + 3e^{2t} - 4e^{3t} \end{pmatrix}$

因此 $X(t) = e^{At}X(0) + P$ $X(t) = -\frac{1}{6} \begin{bmatrix} -\frac{1}{2} + (9t + \frac{21}{2})e^{2t} - 16e^{3t} \\ -\frac{5}{2} + (9t + \frac{9}{2})e^{2t} - 8e^{3t} \\ -1 + 3e^{2t} - 8e^{3t} \end{bmatrix}$

THE END

定理2.12 (Hamilton-Caylay) 设 $A \in \mathbb{C}^{n \times n}, \psi(\lambda) = \det(\lambda I - A),$

$$\psi(A) = 0$$

则

证 存在 $P \in \mathbb{C}^{n \times n}$,使得 $P^{-1}AP = J$,其中J是A的Jordan标准型,可以写成为:

$$J = \begin{pmatrix} \lambda_1 & \delta & & & \\ & \lambda_2 & \ddots & & \\ & & \ddots & \delta & \\ & & & \lambda_n \end{pmatrix}$$
 (δ 或为1或为 $\mathbf{0}$)
$$\lambda_n$$
是的特征值,于是

由于 λ_1 , λ_2 , …, λ_n , 是的特征值, 于是 $\psi(\lambda) = \det(\lambda I - A) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$ $\psi(A) = (A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_n I)$ $= (PJP^{-1} - \lambda_1 I)(PJP^{-1} - \lambda_2 I) \cdots (PJP^{-1} - \lambda_n I)$ $= P(J - \lambda_1 I)(J - \lambda_2 I) \cdots (J - \lambda_n I)P^{-1}$

$$\psi(\boldsymbol{A}) = \boldsymbol{P}(\boldsymbol{J} - \lambda_1 \boldsymbol{I})(\boldsymbol{J} - \lambda_2 \boldsymbol{I}) \cdots (\boldsymbol{J} - \lambda_n \boldsymbol{I}) \boldsymbol{P}^{-1}$$

$$= \mathbf{p} \begin{pmatrix} 0 & \delta & & & \\ & \lambda_2 - \lambda_1 & \ddots & & \\ & & \ddots & \delta & & \\ & & & \lambda_n - \lambda_1 \end{pmatrix} \begin{pmatrix} \lambda_1 - \lambda_2 & \delta & & & \\ & 0 & \ddots & & \\ & & \ddots & \delta & \\ & & & \lambda_n - \lambda_2 \end{pmatrix} \cdot \begin{pmatrix} \lambda_1 - \lambda_n & \delta & & & \\ & \ddots & \ddots & & \\ & & & \lambda_{n-1} - \lambda_n & \delta \\ & & & & 0 \end{pmatrix} \mathbf{p}^{-1}$$

$$=\cdots=O_{n\times n}$$

以下用例子说明Hamilton-Caylay定理在简化矩阵计算中的应用

例 已知矩阵
$$A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
, 试计算

(1)
$$A^7 - A^5 - 19A^4 + 28A^3 + 6A - 4I$$
;

(2)
$$A^{-1}$$
, (3) A^{100} \circ

解取
$$\psi(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda + 1 & -1 & 0 \\ 4 & \lambda - 3 & 0 \\ -1 & 0 & \lambda - 2 \end{vmatrix} = \lambda^3 - 4\lambda^2 + 5\lambda - 2,$$

(1) 令
$$f(\lambda) = \lambda^7 - \lambda^5 - 19\lambda^4 + 28\lambda^3 + 6\lambda - 4$$
,则只须计算 $f(A)$ 。

用 $\psi(\lambda)$ 除 $f(\lambda)$, 得 $-3\lambda^2 + 22\lambda - 8$,则

用
$$\psi(\lambda)$$
 ほ $f(\lambda)$, 1年 $-3\lambda + 22\lambda - 8$, 例
$$f(\lambda) = (\lambda^4 + 4\lambda^3 + 10\lambda^2 + 3\lambda - 2)\psi(\lambda) - 3\lambda^2 + 22\lambda - 8,$$
 由**H-C**定理知, $\psi(A) = 0$, 于是 $f(A) = -3A^2 + 22A - 8I = \begin{pmatrix} -19 & 6 & 0 \\ -64 & 43 & 0 \\ 19 & -3 & 24 \end{pmatrix}$

(2) 由
$$\psi(A) = A^3 - 4A^2 + 5A - 2I = 0$$
, 可得

$$\frac{1}{2}(A^3 - 4A^2 + 5A) = I,$$

$$\boldsymbol{A}^{-1}\boldsymbol{A}\left[\frac{1}{2}(\boldsymbol{A}^2-4\boldsymbol{A}+5\boldsymbol{I})\right]=\boldsymbol{A}^{-1}$$

从而

$$\mathbf{A}^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}^{2} - 2 \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix} + \begin{pmatrix} \frac{5}{2} & 0 & 0 \\ 0 & \frac{5}{2} & 0 \\ 0 & 0 & \frac{5}{2} \end{pmatrix} = \begin{pmatrix} 3 & -1 & 0 \\ 4 & -1 & 0 \\ -\frac{3}{4} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

(3) 设①
$$\lambda^{100} = g(\lambda)\psi(\lambda) + a\lambda^2 + b\lambda + c$$
, 注意到, $\psi(\lambda) = (\lambda - 2)(\lambda - 1)^2$ 即有, $\psi(2) = \psi(1) = \psi'(1) = 0$, 又 $100\lambda^{99} = g'(\lambda)\psi(\lambda) + g(\lambda)\psi'(\lambda) + 2a\lambda + b$,

分别将 $\lambda = 2$, $\lambda = 1$ 代入①式, 再对上式求导后将 $\lambda = 1$ 代入,得

$$\begin{cases} 2^{100} = 4a + 2b + c \\ 1 = a + b + c \\ 100 = 2a + b \end{cases} \qquad \text{AP} \begin{cases} a = 2^{100} - 101 \\ b = -2^{101} + 302 \\ c = 2^{100} - 200 \end{cases}$$

故
$$A^{100} = g(A)\psi(A) + aA^2 + bA + cI$$

$$= (2^{100} - 101)A^2 + (-2^{101} - 302)A + (2^{100} - 200)I$$

$$= \begin{pmatrix} -199 & 100 & 0\\ -400 & 201 & 0\\ 201 - 2^{100} & 2^{100} - 101 & 2^{100} \end{pmatrix}$$