EC3204: Programming Languages and Compilers

Lecture 4 — Lexical Analysis (3) Construction of String Recognizers

> Sunbeom So Fall 2024

This Lecture: Construction of DFA

Methodology: transform a lexical specification (regular expression) into an equivalent string recognizer (DFA).

- RE to NFA: Thompson's construction
- NFA to DFA: subset construction

cf) The transformations are instances of compilation. Their correctness is defined by the semantic equivalence:

- ullet L(RE) = L(NFA) for Thomson's construction
- L(NFA) = L(DFA) for subset construction

Thompson's construction: RE to NFA

Recall RE from Lec. 2:

Method: use two kinds of transformation rules

- Basic rules for transforming primitive regexs into NFA
- Inductive rules for constructing larger NFA from sub-regexs' NFA

A final NFA will have exactly one start and one accepting state.

Basic Rules

•
$$R = \epsilon$$

$$\bullet$$
 $R = \emptyset$

•
$$R = a \ (\in \Sigma)$$

Clearly, $L(\mathit{NFA}) = L(R)$ in every case.

Inductive Rules

- $R = R_1 | R_2$:
 - ① Compile R_1 and R_2 :

2 Construct $R_1|R_2$ using the intermediate results:

$$L(NFA) = L(R_1) \cup L(R_2)$$

- Any path from the start to the final must path through either NFA_{R_1} or NFA_{R_2} , which accept $L(R_1)$ and $L(R_2)$, respectively.
- Strings (labels) are not changed by ϵ -transitions.

Inductive Rules

- $R = R_1 \cdot R_2$:
 - ① Compile R_1 and R_2 :

2 Construct $R_1 \cdot R_2$ using the intermediate results:

$$\begin{array}{lcl} L(\textit{NFA}) & = & \{x \epsilon y \mid x \in L(R_1) \land y \in L(R_2)\} \\ & = & \{xy \mid x \in L(R_1) \land y \in L(R_2)\} = L(R_1)L(R_2) \end{array}$$

Compilation

- $R = R_1^*$:
 - lacktriangledown Compile R_1 :

2 Construct R_1^* using the intermediate results:

$$L(NFA) = \{\epsilon\} \cup (L(R_1))^+ = (L(R_1))^0 \cup (L(R_1))^+ = (L(R_1))^*$$

Exercises

Construct NFAs that accept the languages described by the following regular expressions.

- 0 · 1*
- $(0|1) \cdot 0 \cdot 1$
- \bullet $(0|1)^* \cdot 1 \cdot (0|1)$

Our Context

- RE to NFA: Thompson's construction
- NFA to DFA: subset construction

NFA to DFA

Transform an NFA

$$(N,\Sigma,\delta_N,n_0,N_A)$$

into an equivalent DFA

$$(D, \Sigma, \delta_D, d_0, D_A).$$

Running example $(a \cdot (b|c)^*)$:

Subset Construction

- ullet Input: an NFA $(N,\Sigma,\delta_N,n_0,N_A)$.
- ullet Output: a DFA $(D,\Sigma,\delta_D,d_0,D_A)$.
- Key Idea: eliminate non-deterministic choices in NFA.
 - ▶ How? By merging states whose internal labels do not change strings.

Preliminary: ϵ -Closure

 \bullet ϵ -closure(I): the set of states reachable from I without consuming any symbols.

$$\begin{array}{lcl} \epsilon\text{-closure}(\{1\}) & = & \{1,2,3,4,6,9\} \\ \epsilon\text{-closure}(\{1,5\}) & = & \{1,2,3,4,6,9\} \cup \{3,4,5,6,8,9\} \end{array}$$

Running Example (1/5)

The initial DFA state $d_0 = \epsilon$ -closure $(\{0\}) = \{0\}$.

Running Example (2/5)

For the initial state $d_0 = \{0\}$, consider every $x \in \Sigma$ and compute the corresponding next states:

$$\begin{array}{lcl} \epsilon\text{-closure}(\bigcup_{s\in\{0\}}\delta(s,a)) &=& \{1,2,3,4,6,9\}\\ \epsilon\text{-closure}(\bigcup_{s\in\{0\}}\delta(s,b)) &=& \emptyset\\ \epsilon\text{-closure}(\bigcup_{s\in\{0\}}\delta(s,c)) &=& \emptyset \end{array}$$

Running Example (3/5)

For the state $\{1,2,3,4,6,9\}$, compute the next states:

$$\begin{array}{l} \epsilon\text{-closure}(\bigcup_{s \in \{1,2,3,4,6,9\}} \delta(s,a)) = \emptyset \\ \epsilon\text{-closure}(\bigcup_{s \in \{1,2,3,4,6,9\}} \delta(s,b)) = \{3,4,5,6,8,9\} \\ \epsilon\text{-closure}(\bigcup_{s \in \{1,2,3,4,6,9\}} \delta(s,c)) = \{3,4,6,7,8,9\} \end{array}$$

Running Example (4/5)

Compute the next states of $\{3,4,5,6,8,9\}$:

$$\begin{split} &\epsilon\text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,a)) = \emptyset \\ &\epsilon\text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,b)) = \{3,4,5,6,8,9\} \\ &\epsilon\text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,c)) = \{3,4,6,7,8,9\} \end{split}$$

Running Example (5/5)

Compute the next states of $\{3,4,6,7,8,9\}$:

$$\begin{split} &\epsilon\text{-closure}(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta(s,a)) = \emptyset \\ &\epsilon\text{-closure}(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta(s,b)) = \{3,4,5,6,8,9\} \\ &\epsilon\text{-closure}(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta(s,c)) = \{3,4,6,7,8,9\} \end{split}$$

Subset Construction Algorithm

Algorithm 1 Subset Construction

```
Input: An NFA (N, \Sigma, \delta_N, n_0, N_A)
Output: An equivalent DFA (D, \Sigma, \delta_D, d_0, D_A)
 1: d_0 \leftarrow \epsilon-closure(\{n_0\})
 2: D \leftarrow \{d_0\}
                                                                              ▷ D: a set of DFA states
 3: W \leftarrow \{d_0\}
                                                   \triangleright W (workset): a set of DFA states to process
 4: while W \neq \emptyset do
 5:
         pick and remove q from W
     for x \in \Sigma do
 6:
                                                                         7:
             t \leftarrow \epsilon-closure(\bigcup_{s \in a} \delta_N(s, x))
 8:
             D \leftarrow D \cup \{t\}
 9:
             \delta_D(q,c) \leftarrow t
10:
             if t has not been added to W before then
11:
                W \leftarrow W \cup \{t\}
12: D_A \leftarrow \{q \mid q \in D, q \cap N_A \neq \emptyset\}
13: return (D, \Sigma, \delta_D, d_0, D_A)
```

• Note (small optimization): At line 10, if $t = \emptyset$, we can skip line 11, and instead update $\delta_D(\emptyset, x)$ as \emptyset for all $x \in \Sigma$.

Running Example (1/5)

The initial state $d_0 = \epsilon\text{-}\mathsf{closure}(\{0\}) = \{0\}$. Initialize D and W:

$$D=\{\{0\}\}, \qquad W=\{\{0\}\}$$

Running Example (2/5)

Choose $q=\{0\}$ from W.

- When x = a:
 - ullet ϵ -closure $(igcup_{s\in\{0\}}\delta_N(s,a))=\{1,2,3,4,6,9\}$
 - $D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}\}$
 - $W = \{\{1, 2, 3, 4, 6, 9\}\}$
- When x = b:
 - ϵ -closure $(\bigcup_{s \in \{0\}} \delta_N(s,b)) = \emptyset$
 - $D = \{\emptyset, \{0\}, \{1, 2, 3, 4, 6, 9\}\}$
 - $W = \{\{1, 2, 3, 4, 6, 9\}\}$
- When x = c:
 - ϵ -closure $(\bigcup_{s\in\{0\}}\delta_N(s,c))=\emptyset$
 - $D = \{\emptyset, \{0\}, \{1, 2, 3, 4, 6, 9\}\}$
 - $W = \{\{1, 2, 3, 4, 6, 9\}\}$

Running Example (3/5)

Choose $q=\{1,2,3,4,6,9\}$ from W.

- When x = a:
 - ϵ -closure $(\bigcup_{s \in \{1,2,3,4,6,9\}} \delta_N(s,a)) = \emptyset$
 - $D = \{\emptyset, \{0\}, \{1, 2, 3, 4, 6, 9\}\}$
 - $\mathbf{W} = \emptyset$
- When x = b:
 - ϵ -closure $(\bigcup_{s \in \{1,2,3,4,6,9\}} \delta_N(s,b)) = \{3,4,5,6,8,9\}$
 - $D = \{\emptyset, \{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}\}$
 - $W = \{ \{3, 4, 5, 6, 8, 9\} \}$
- When x = c:
 - $\qquad \quad \epsilon\text{-closure}(\bigcup_{s \in \{1,2,3,4,6,9\}} \delta_N(s,c)) = \{3,4,6,7,8,9\}$
 - $D = \{\emptyset, \{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$
 - $W = \{ \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\} \}$

Running Example (4/5)

Choose $q = \{3, 4, 5, 6, 8, 9\}$ from W.

- When x = a:
 - ϵ -closure $(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta_N(s,a)) = \emptyset$
 - $D = \{\emptyset, \{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$
 - $W = \{ \{3, 4, 6, 7, 8, 9\} \}$
- When x = b:
 - ϵ -closure $(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta_N(s,b)) = \{3,4,5,6,8,9\}$
 - $D = \{\emptyset, \{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$
 - $W = \{\{3,4,6,7,8,9\}\}$
- When x = c:
 - $\qquad \quad \epsilon\text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta_N(s,c)) = \{3,4,6,7,8,9\}$
 - $D = \{\emptyset, \{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$
 - $W = \{ \{3, 4, 6, 7, 8, 9\} \}$

Running Example (5/5)

Choose $q = \{3, 4, 6, 7, 8, 9\}$ from W.

- When x = a:
 - ϵ -closure $(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta_N(s,a)) = \emptyset$
 - $D = \{\emptyset, \{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\} \}$
 - $\mathbf{W} = \emptyset$
- When x = b:
 - ϵ -closure $(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta_N(s,b)) = \{3,4,5,6,8,9\}$
 - $D = \{\emptyset, \{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$
 - $ightharpoonup W = \emptyset$
- When x = c:
 - $\qquad \quad \epsilon\text{-closure}(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta_N(s,c)) = \{3,4,6,7,8,9\}$
 - $D = \{\emptyset, \{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$
 - $\mathbf{W} = \emptyset$

Running Example: Termination

The while-loop terminates:

$$D = \{\emptyset, \{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$$

Since $N_A=\{9\}$, the accepting states of DFA is:

$$D_A = \{\{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$$

The final transition table can be obtained by incorporating δ_D computed so far:

	a	b	c
{0}	$\{1, 2, 3, 4, 6, 9\}$	Ø	Ø
$\{1,2,3,4,6,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,5,6,8,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,6,7,8,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$

Algorithm for Computing ϵ -Closures

• The definition " ϵ -closure(I) is the set of states reachable from I without consuming any symbols." is neither formal nor constructive.

Algorithm for Computing ϵ -Closures

- The definition " ϵ -closure(I) is the set of states reachable from I without consuming any symbols." is neither formal nor constructive.
- A formal definition: $T = \epsilon\text{-}\mathbf{closure}(I)$ is the smallest set such that

$$I \cup \bigcup_{s \in T} \delta(s, \epsilon) \subseteq T.$$

ullet Equivalently, T is the smallest solution X of the equation

$$F(X) \subseteq X$$

where

$$F(X) = I \cup \bigcup_{s \in X} \delta(s, \epsilon).$$

Such a solution is called the least fixed point of F. In words: we want the smallest ("least") and stabilized ("fixed point") solution X that does not change no matter how we apply F on X.

Why Smallest Solution?

• Recall ϵ -closure($\{1\}$) = $\{1,2,3,4,6,9\}$. Is this a unique solution that satisfies $F(X)\subseteq X$?

Why Smallest Solution?

- Recall ϵ -closure($\{1\}$) = $\{1, 2, 3, 4, 6, 9\}$. Is this a unique solution that satisfies $F(X) \subseteq X$?
- $X=\{1,2,3,4,6,7,8,9\}$ is also the solution that satisfies $F(X)\subseteq X.$ So what is the problem?

Why Smallest Solution?

- Recall ϵ -closure({1}) = {1, 2, 3, 4, 6, 9}. Is this a unique solution that satisfies $F(X) \subseteq X$?
- $X=\{1,2,3,4,6,7,8,9\}$ is also the solution that satisfies $F(X)\subseteq X$. So what is the problem? We may accept an invalid lexeme c!
- cf) In programming language theories, we are mostly interested in computing the least fixed point F, denoted fixF (typically indicates the most precise solution).

Fixed Point Iteration

The least fixed point of a function can be computed by the **fixed point iteration**.

$$T = \emptyset$$
repeat
 $T' = T$
 $T = T' \cup F(T')$
until $T = T'$
return T

In words: starting from \emptyset , iteratievly apply F until T remains unchanged.

Example

ϵ -closure($\{1\}$):

Iteration	T'	T
1	Ø	{1}
2	{1}	$\{1,2\}$
3	$\{1,2\}$	$\{1, 2, 3, 9\}$
4	$\{1,2,3,9\}$	$\{1,2,3,4,6,9\}$
5	$\{1,2,3,4,6,9\}$	$\{1,2,3,4,6,9\}$

Summary

Construction of string recognizers (DFA)

- RE to NFA: Thompson's construction
- NFA to DFA: subset construction
 - Key idea: eliminate non-deterministic transitions in NFA.
 - More specifically, to make every transition unique, we simulate all possibilities at once for each input symbol, where all possibilities for each input symbol are computed using ϵ -closure.

Next class: functional programming in OCaml. Bring your laptop after installing OCaml!