

Instructor: Dr. Janakiram Vaitla

Phone: 011-26591559

Email: vaitla@iitd.ac.in

Reference Books

- 1) Jonathan Clayden, Nick Greeves & Stuart Warren, Organic Chemistry, Oxford, 2nd Edition (2012);
- 2) Janice Gorzynski Smith, Organic Chemistry, McGraw-Hill, 5th Edition (2017);

Revised Lecture Schedule for CML 101

MAY 2021	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Date			4 Inorganic Lecture (SK)	5 Org. Lecture-1 (JV)	6	7 Org. Lecture-2 (JV)	8 Common+Tutorial Quiz (Inorganic) 9-10 am
Date	9 Org. Lecture-3 (Live + asynchronous) (JV)	10	Org. Lecture-4 (JV)	12 Org. Lecture-5 (JV)	13	14 Holiday (Eid)	15 Org. Lecture-6 (JV) (Friday Time-table)
Date	16	17	18 Org. Lecture-7 (JV)	19 Org. Lecture-8 (JV)	20	Org. Lecture-9 (JV)	Org. Lecture-10 (JV) Buffer Day
Date	23	24	25 Org. Lecture-11 (JV)	26 Holiday (Buddh Purnima)	27 Buffer Day	28 Buffer Day	29 Common+Tutorial Quiz (Organic) 9-10 am Buffer Day
Date	30 Buffer Day	31 Buffer Day					

Organic structures

Paracetamol (medication used to treat fever and mild to moderate pain)

2D structure

Remdesivir

COVID-19 medication

3D structure

To synthesize any 3D molecule, first we should understand the concept of stereo chemistry

Introduction:

- Stereo (Greek word) Space
- Stereochemistry deals with property of molecule w.r.t 3D spatial arrangement of atoms or groups in a molecule.
- Majority of organic molecules are 3D. Because they associate with SP³ hybrid carbon.
- Orientation of groups/atoms/orbitals around the SP³ hybrid carbon.
- Stereochemistry deals with physical, chemical, spectral, and biological properties of 3D molecules.

What is Stereoisomerism?

Enantiomers:

stereoisomers that are non-superimposable mirror images

Same chemical and physical properties but different optical properties

All enantiomers possess optical activity

Contains one or more stereo centers

Diastereomers:

stereoisomers that are not non-superimposable mirror images

Have different chemical and physical properties

Not all diastereomers possess optical activity

Contains more than one stereo centers

We can classify isomers by asking and answering a series of questions

★ Tetrasubstituted carbon

Comes forward out of the plane of the page (Infront,

Goes backward out of the plane of the page (behind)

Fischer Projection

Fischer Projection

Manipulation of Fischer Projections:

* Both are enantiomers

* Both are Identical

* Both are Identical

Newman Projection

Stabilizing interaction
filled C-H σ bond and empty
C-H σ^* antibonding orbital

Filled orbitals repel each other

Newman Projection

Gauche (60 °C)

(Staggered)

Sawhorse Projection

One to Projection another Projection

Conversion of Fischer Projection into Sawhorse Projection.

Conversion of Sawhorse to Newman to Fischer Projection