PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Integnationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ :		(11)	Internationale Veröffentlichungsnum	mer: WO 98/31102
H03K 19/177, G06F 17/50	A1		Internationales Veröffentlichungsdatum:	16. Juli 1998 (16.07.98)
(21) Internationales Aktenzeichen: PC	PCT/DE97/02999		(81) Bestimmungsstaaten: JP, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,	
(22) Internationales Anmeldedatum: 22. I	22. Dezember 1997		SE).	

(22.12.97)

(30) Prioritätsdaten:

196 54 593.5

20. Dezember 1996 (20.12.96) DE

(71) Anmelder: PACT INFORMATIONSTECHNOLOGIE GMBH [DE/DE]; Thelemannstrasse 15, D-81545 München (DE).

(72) Erfinder: VORBACH, Martin; Hagebuttenweg 36, D-76149 Karlsruhe (DB). MÜNCH, Robert; Hagebuttenweg 36, D-76149 Karlsruhe (DE).

(74) Anwalt: ZAHN, Roland; Im Speitel 102, D-76229 Karlsruhe (DE).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: RECONFIGURATION METHOD FOR PROGRAMMABLE COMPONENTS DURING RUNNING TIME

(54) Bezeichnung: UMKONFIGURIERUNGS-VERFAHREN FÜR PROGRAMMIERBARE BAUSTEINE ZUR LAUFZEIT

(57) Abstract

The invention relates to a method for reconfiguration during the running time of FPGA, in which there is a loading logic or several loading logics which react to signals of any kind and recognize and can process special loading logic commands within a configuration programme consisting of data and commands, and, on the basis of the source of an event, can compute an entry in a branch table. For this, there are one or more branch tables for locating the address of the configuration data to be loaded after computing. One or more configuration memory areas exist, in which one or more configuration programmes are loaded; and there are one or more FIFO memory areas into which configuration data is copied which could not be sent to the element or elements to be configured. When an event occurs, an address is computed in a branch table, based on the source of the event. FIFO memory area is provided and run through before each reloading, and, if the cell can not be reloaded, the configuration data is copied into it nearer the beginning; if the cell can be reloaded, the configuration data is transferred to the cell. The computed branch table entry is read-out, and the configuration data which is stored at the read-out address is loaded into the cell, or, if the cell cannot be reprogrammed, it is copied into the FIFO memory area.

Propose COM Indigen date Restrictions Res

(57) Zusammenfassung

In Verbindung mit einem Verfahren zum Umkonfigurieren zur Laufzeit von FPGA ist vorgesehen, dass eine Ladelogik oder mehrere Ladelogiken existieren, welche auf Signale, gleich welcher Art, reagieren und spezielle Ladelogik Befehle, innerhalb eines Konfigurationsprogramms, bestehend aus Daten und Befehlen, erkennen und verarbeiten können, sowie auf Grund der Quelle eines Ereignisses einen Eintrag in einer Sprung-Tabelle berechnen können. Dabei existieren eine oder mehrere Sprung-Tabellen zum Auffinden der Adresse der zu ladenden Konfigurationsdaten, welche berechnet wurde. Ein oder mehrere Konfigurations-Speicherbereiche existieren, in denen ein oder mehrere Konfigurationsprogramme geladen werden, und es existieren ein oder mehrere FIFO-Speicherbereiche, in die konfigurationsdaten kopiert werden, welche nicht an die oder das zu konfigurierende Element gesandt werden konnte. Trifft ein Ereignis ein, so wird auf Grund der Quelle des Ereignisses eine Adresse in einer Sprung-Tabelle berechnet. Es ist ein FIFO-Speicherbereich vorgesehen, der vor jedem Umladen durchlaufen wird, und falls die Zelle nicht umgelanden werden kann, in den die Konfigurationsdaten näher an den Anfang koplert werden; falls die Zelle umgelanden werden kann, werden die Konfigurationsdaten an die Zelle übertragen. Der berechnete Sprung-Tabellen-Eintrag wird ausgelesen und die Konfigurationsdaten, welche an der ausgelesenen Adresse gespeichert sind, werden in die Zelle geladen, oder, falls die Zelle nicht umprogrammiert werden kann, in den FIFO-Speicherbereich kopiert.