1. Problem Solving using Search

Knowledge Apprecentation and reasoning

- 2. Symbolic (logic)
- 3. Numeric (Probability)
- 4. Machine Learning.

PROBLEM SOLVIND VIIND SEARCH:

- 3. Actions
- 4. Heuristic

8 - PUZZLE:

	7	6	1	
I S:	4	5		e xa
	8	3	2	act

example
\longrightarrow
action
(L)

7	6	ſ
4		5
g	3	2

Fg:

8		4
7	6	5

Actions: U,D,L,R.

> blank up, down, left or right. We nove Ane can

GOAL: Solve Lithout creating a search tree.

COST: length of the path from Is to Fs.

cast 9

OPTIMIZE:

- (1) (ost of a solution.
- (2) Cost of finding a solution.

Assumptions:

(i) Actions are deterministic

(2) Know the initial State.

PLANNIND

- -> Conditional Plans
- Conformant Plans.

REVER / BOAT:

Ruces:

- * Boat can take at most 2
- * Cannot have more o's on one side than x's.
- " We can have all o's on one side.
- * Boat cannot travel empty.

Actions:

COMMUNICATING WITH THE SEARCH ENDINE:

- 1. Initial State
- 2. Final State
- 3. Actions

(Legal States and actions)
(Successor function)

State

(a b c)

a: number of x at boat location

b: number of o at boost location

c: boat location -> + right

Ly NIL 1844

Is (3 3 t)

Fs (3 3 MIL)

State

State

State

State of the state of t

Sociessor
function.

J
Returns list of

legal State-

Complexity:

- * Number of branching factors.
- * Search Space number of distinct states.
- . Depth at which Solution exists.

CONSTRAINT SATISFACTION PROBLEMS (CSPS) :

Q							
				Q			
	Q						
					Q		
		a					
						Q	
			Q				
							Q

No two queens

- Actions.

- 1. Have a function that says if a state is final state.
- 2. Finite depth. All solutions at same depth.