

Negations and uncertanties

DETECTION

Neil de la Fuente, Paula Feliu, Roger Garcia, Daniel Vidal

Index

OBJECTIVES

01

DETECT NEGATIONS

02

DETECT UNCERTAINTIES

03

DETECT THE SCOPES

"The patient showed <u>no signs of infection</u>, but further <u>tests for</u> <u>diabetes might be needed.</u>"

DATA

DATA

"nº historia clinica: *****

nºepisodi: *****

sexe: *****

data de naixement: *****

edat: *****

assumpta informe d'alta d'hospitalitzacio motiu d'ingres paciente de 79 años que acude derivada a urgencias de psiquiatria tras sim. antecedents -sin alergias mediamentosas conocidas hipertension arterial en tratamiento farmaoclogico con tres farmacos."

DATA

```
{"start": 2748,
 "end": 2749,
 "labels": ["NEG"]},
          "id":"ent6",
          "from_name":"label",
          "to_name":"text",
          "type":"labels"}
{"start": 3038,
 "end": 3049,
 "labels": ["UNC"]},
          "id":"ent7",
          "from_name":"label",
          "to_name":"text",
```

"type":"labels"}

```
{"start": 3049,
"end": 3080,
"labels": ["USCO"]},
(...)
```


RULE-BASED APPROACH

01

02

03

Extract and reformat the Ground-Truth

List of medical keywords that may have a negation afterwords (i.e. resultado negativo)

Use the words of step 1 as keywords that will flag the position of these **NEG** and **UNC**

04

05

Analyze the words around the **negation** or **medical** keywords to find the scope using Part of Speech tagging.

Return the position of the **NEG**, **UNC**, **NSCO** and **USCO**

Rule-Based

NEGATIONS & UNCERTAINTIES

[((start, end), scope sentence), for each medical text]

Negations and scopes

Uncertainties and scopes

MACHINE LEARNING APPROACH

HIDDEN MARKOV MODEL

MACHINE LEARNING APPROACH

HIDDEN MARKOV MODEL NER WITH BERT MODEL

DEEP LEARNING APPROACH

BERT: Bidirectional Encoder Representations from Transformers

NER with BERT

NER with BERT

Scope before negation

Some test with legal texts:

NER with BERT

CONCLUSIONS

RULE-BASED METHOD

- Succesfully achieved the objective
 - Poor performance

DEEP LEARNING MODEL

- Outperformed the first approach
 - Good performance on medical texts

TEST IT WITH DIFFERENT DATA

- Legal texts
- Sport texts

Negations and uncertanties

DETECTION

Neil de la Fuente, Paula Feliu, Roger Garcia, Daniel Vidal