Modele systemów dynamicznych

Ćwiczenia – lista zadań nr 3

Zad. 1.

Wyznacz charakterystyki amplitudowo-fazową oraz amplitudową dla obiektu dynamicznego opisanego transmitancją:

a)
$$K(s) = \frac{k}{s(sT+1)}$$

b)
$$K(s) = \frac{k}{sT+1}$$

Zad. 2.

Wyznacz charakterystyki logarytmiczne fazy i modułu dla obiektu dynamicznego opisanego transmitancją:

a)
$$K(s) = \frac{k}{s}$$

b)
$$K(s) = \frac{1}{(s+2)(s+3)}$$

Zadanie domowe

Zad. 1.

Wyznacz charakterystyki amplitudowo-fazową oraz amplitudową dla obiektu dynamicznego opisanego transmitancją:

$$K(s) = \frac{sT}{sT+1}$$

Zad. 2.

Wyznacz charakterystyki logarytmiczne fazy i modułu dla obiektu dynamicznego opisanego transmitancją:

$$K(s) = \frac{k}{s(sT+1)}$$

Zad. 3.

Korzystając z pakietu MATLAB lub języka Python wyznacz charakterystyki amplitudowo-fazową oraz logarytmiczne fazy i modułu dla:

a)
$$K(s) = k \left(1 + \frac{1}{sT} \right)$$

b)
$$K(s) = k \left(1 + \frac{1}{sT} + s \right)$$

DODATEK

Transmitancja widmowa.

Transmitancję widmową systemu dynamicznego można wyznaczyć na podstawie transmitancji operatorowej Laplace'a podstawiając za s wyrażenie $j\omega$:

$$K(j\omega) = P(\omega) + jQ(\omega)$$

gdzie:

 $P(\omega)$ – część rzeczywista transmitancji widmowej;

 $Q(\omega)$ – część urojona transmitancji widmowej.

Na podstawie $P(\omega)$ i $Q(\omega)$ wyznaczyć można:

 $A(\omega)$ – moduł transmitancji widmowej (stosunek aplitudy sygnału wyjściowego do amplitudy sygnału wejściowego – wzmocnienie),

 $\varphi(\omega)$ – argument transmitancji widmowej (przesunięcie w fazie),

posługując się wzorami:

$$A(\omega) = |K(j\omega)| = \sqrt{P^2(\omega) + Q^2(\omega)}$$

$$\varphi(\omega) = \arg(K(j\omega)) = \arctan\left(\frac{Q(\omega)}{P(\omega)}\right).$$

Charakterystyka amplitudowa jest wykresem $A(\omega)$, natomiast charakterystyka fazowa jest wykresem $\varphi(\omega)$.

 ${\bf Charakterystyka\ amplitudowo-fazowa\ jest\ wykresem\ transmitancji:}$

$$K(j\omega) = P(\omega) + jQ(\omega)$$

we współrzędnych $(P,\!Q)$ dla ω zmieniającego się od 0 do $\infty.$

Logarytmiczne charakterystyki częstotliwościowe:

Modułu:

$$M(\omega) = 20 \log |K(j\omega)|$$

Fazy:

$$\varphi(\omega) = \arg(K(j\omega))$$