INF. ANT. ZHZ MEGOLDA'S (2017, 11, 23. &VARIA'NS; 1, a, i, x, a D, tolodin portje, es (x) = (x-E, x,+E)\{x,} $\frac{L_{1}}{|x^{2}-4|} = \frac{x+2}{|x+2|\cdot|x-2|} = \frac{1}{|x-2|} > P, ln |x-2| (\frac{1}{P}, tell)$ E(P) = min {4, \$ } 10 hax)-2 2, a, trilR\{0,3} holmon f folytons. 1)

\[
\begin{align*}
\text{[2]} \\
\lim_{\text{X}\rightarrow 3} & \text{Lim} & \text{E}\frac{\(\text{X}\rightarrow 3\)}{\(\text{X}\rightarrow 3\)} & = 0 =) megnintethetic meladis 1) $\lim_{x \to 0+} L(x) = \lim_{x \to 0+} e^{-\frac{1}{(x-3)^2}} = e^{-\frac{1}{9}} 3$ $\lim_{x\to0^{-}} f(x) = \lim_{x\to0^{-}} \frac{2^{2}(2x)}{3x^{2}} = \lim_{x\to0^{-}} \left(\frac{2^{2}(2x)}{2x}\right)^{2} \cdot \frac{4}{3} = \frac{4}{3}$ we're region (12) b, frem lift. - hate a O-ben, ned A new folgtmes, es a 3-ben, med off news extelnence. IR\{0,3\frac{1}{3}\rightharpoonup folgo. - hate. 2 Kuxco; $f'(x) = \left(\frac{2^{2}(2x)}{3x^{2}}\right)' = \frac{2\sin(2x)\cos(2x)\cdot 3x^{2} - 2^{2}(2x)\cdot 6x}{2}$ Mu X>0 5 X \$ 3; $f'(x) = \left(e^{-\frac{1}{(x-3)^2}}\right)' = \frac{1}{(x-3)^3} \cdot e^{-\frac{1}{(x-3)^2}}$ 3, a, $f(x) = 3\pi - \alpha n \cdot (2x - 3)$ (10) Dan=[-1,+1]; -1(2x-3(+1 (=)1(x(2 =) D=[1,2] $3\pi - an \frac{1}{1}(-1) = \frac{7}{2}\pi ; 3\pi - our (+1) = \frac{5}{2}\pi \Rightarrow R_{\frac{1}{2}} \left[\frac{5}{2}\pi, \frac{7}{2}\pi\right]$ $1'(x) = \frac{-2}{\sqrt{1 - (2x - 3)^2}} (x \in (1, 2))$

3, b, VX E(1,2) ente f'(x) CO, igy of nigorian monden viller, telet (4) rightiv, letterit invene. vap X +> 24-3 ny. non. no, X +> are n= x ny, non. no =) X +> - are n= (24-3) nig. morn. withen => finjektive, If! $[5] \, {}^{C_{1}} \, D_{2^{-1}} = R_{2} = \left[\frac{5}{2}\pi, \, \frac{2}{2}\pi\right]^{0}; \, R_{2^{-1}} = D_{2} = [1, 2]^{0}$ $\gamma = f(x) = 12x - 3 = nin(3\pi - \gamma) = 1 f(\gamma) = x = \frac{1}{2} (nin(3\pi - \gamma) + 3)$ 3 4, a, li an $\frac{an \cdot 2(3x)}{an \cdot 4(2x)} = \frac{3 \cdot \sqrt{1-3x^2}}{2 \cdot \sqrt{1+4x^2}} = \frac{3}{2}$ $= \frac{2 \times 2}{2 \times 2} = \frac{2}{1} = \frac{2}{1} = \frac{2}{1} = \frac{2}{1}$ $\lim_{x\to 1} \frac{\ln x}{1-x} = \lim_{x\to 1} \frac{1/x}{1-x} = \frac{3}{1}, \text{ this } \lim_{x\to 1} x \xrightarrow{1-x} = \frac{-1}{1}$ [6] $\lim_{x\to\infty} \frac{e^{x} \, dx(2x)}{2dx(3x)} = \lim_{x\to\infty} \frac{e^{x} \int_{2}^{x} (e^{2x} + e^{-2x})}{\int_{2}^{x} (e^{3x} - e^{-3x})} = \lim_{x\to\infty} \frac{e^{3x} + e^{-x}}{e^{3x} - e^{-3x}} =$ $= \frac{1}{x \to \infty} \frac{1 + e^{-6x}}{1 - e^{-6x}} = \frac{1}{1}$

$$5/4(x)=x^2e^{2x}$$

$$\frac{a}{7}$$
 $f'(x) = 2xe^{2x} + 2x^{2}e^{2x} = 2x(x+1)e^{2x}$

1×	X (-1	-1	-1(×(0	0	0 (X	7)
l'	+	0	-	0	+	T / ω
1	7	Los.	7	Lk.	1	7 7 4

$$\frac{b_{1} \int_{1}^{4} (x) = (2+4x) e^{2x} + 2(2x+2x^{2}) e^{2x} = 2(2x^{2}+4x+1) e^{2x} }{4} = -1 \pm \frac{1}{\sqrt{2}}$$

X	× (-1- 1/2	$-1-\frac{1}{\sqrt{2}}$	-1-1/2(x <-1+1/2	-1+ 1/2	-1+1/2 CX	
1"	+	0	_	0	+	_ }
4	U	infl.	\cap	mfl.	U	_)

5 Lithati Ay \$101=0, li 1(x)=0, li 1(x)=+0

Tetridys 9 6 IN, erstin a H. & holmends nins vales toloderi putja.

Ty end vejs uniopened, An={p/peH, 967, 96{1,2...n}}-nd sims.

He $\times \in |R \setminus A_n$, abbr $|f(x)| \in \mathbb{R}$. Telid $\forall \times \in |R|$ selen $\lim_{x \to \infty} f(x) = 0$.

Telid 4 folytons as inscionalis pontollar, is eloi fajor negorioristeleto' reladira vom a racionalis pontollar.

B VARIA'NS (tomor) 1, a, x, a D, tml. portju is (VP) 0) (E>0) (Vx & D, nk(x,)) (1(x) <-P) (4) $\frac{6}{[6]} \frac{x-3}{[x^2-9]} = \frac{x-3}{[x-3]} \cdot \frac{1}{[x+3]} = \frac{-1}{[x+3]} (-P, Ln | x+3 | (\frac{1}{p})) = \text{min} \left\{ 6, \frac{1}{p} \right\}$ 2, a, & folytons 1R180,53-on. D Lig f(x) = 03=) 5. le regnintetleta raledis van. 1 $f(0+0) = e^{-\frac{1}{25}}, f(0-0) = \frac{1}{25} = 0$ - but also taji, very requise 1 6, 7 \$ (0) (0-lune bly), A \$ (5) (5 & P_1) $X(0): \int_{0}^{1} (x) = \frac{3 \cdot 2 \cdot 2 \cdot 2 \cdot 3x}{4x^{4}} \frac{(3x) \cdot 2x^{2} - 2^{2}(3x) \cdot 4x}{4x^{4}}$ $x > 0, x \neq 5$; $\int_{-\infty}^{\infty} (x) = \frac{2}{(x-5)^2} e^{-(x-5)^2}$ $\frac{3}{100}$, $D_4 = \left[\frac{1}{3}, 1\right]^{(3)}$; $R_4 = \left[\frac{9}{2}\pi, \frac{11}{2}\pi\right]^{(3)}$; $\ell'(x) = \frac{-3}{\sqrt{4(2\pi)^{2}}}$ (41b, Lind & various; (51-1(x) = \frac{1}{3} (\sin(517-x) + 2) 3; D_4-1= R_4; R_4= D_4 4, a, \(\frac{5}{2} \) \(\text{b}, \(0 \) \(\text{mintd} \) (\(\overline{\pi} \) ; \(\cdot \), \(\ell^{-1} \) \(\text{mintd} \) (\(\overline{\pi} \) ; \(\delta \), \(\overline{\pi} \) (\(\overline{\pi} \)) (\(\overli 5/9/1(x) = x(3x+2)e3x C, 1(0)=0; Li f(x)=0 x x (-3 - 3 - 3 - 3 cxco 0 x-2+00 f(x)=+00 b, f"(x)=(6x+2+9x2+6x)e3x=3 = (9x2+12x+2) e3x