TITLE HERE

In Partial Fulfillment of the Requirements for the Degree of degree ${\it degree}$

1st Semester A.Y. 2025-2026

by

Nmae

Abstract

Contents

\mathbf{A}	ostra	act	2
1	Me	thodology	4
	1.1	Parametric bootstrap	4
	1.2	Nonrank-based method	5
2	Inti	roduction	7
	2.1	Background of the Study	7
	2.2	Statement of the Problem	7
	2.3	Objective of the Study	7
	2.4	Study Hypothesis	7
	2.5	Significance of the Study	7
	2.6	Scope and Limitation	7
	2.7	Definition of Terms	7
3	Bac	ekground	7
\mathbf{R}	efere	nces	7 7 7 7 7 7 7 7
\mathbf{A}	ppen	dices	7
	Cod	es for CI calculation	7
	Cod	es for T_1, T_2, T_3 calculation	11

1 Methodology

Let $\theta_1, \theta_2, \dots, \theta_K$ be the true parameter values and $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_K$ be the estimates obtained.

1.1 Parametric bootstrap

Let $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_K$ be independent but not identically distributed estimates. For this study, it is assumed that $\hat{\theta}_k \sim N\left(\theta_k, \sigma_k^2\right), \ k = 1, 2, \dots, K$, where σ_k^2 is known. Denote the corresponding ordered values by $\hat{\theta}_{(1)}, \hat{\theta}_{(2)}, \dots, \hat{\theta}_{(K)}$.

Algorithm 1 Computation of Joint Confidence Region via Parametric Bootstrap

1: **for** $b = 1, 2, \dots, B$ **do**

2: Generate $\hat{\theta}_{bk}^* \sim N\left(\hat{\theta}_k, \sigma_k^2\right)$, i = 1, 2, ..., K and let $\hat{\theta}_{b(1)}, \hat{\theta}_{b(2)}, ..., \hat{\theta}_{b(K)}$ be the corresponding ordered values

varaes								
	k=1	k=2		k = K				
b=1	$\hat{ heta}_{1(1)}^*$	$\hat{\theta}_{1(2)}^*$		$\hat{ heta}_{1(K)}^*$				
b=2	$\hat{ heta}_{2(1)}^*$	$\hat{ heta}_{2(2)}^*$		$\hat{ heta}_{2(K)}^*$				
:	:	:		:				
b = B	$\hat{ heta}_{B(1)}^*$	$\hat{ heta}_{B(2)}^*$		$\hat{\theta}_{B(K)}^*$				

3: Compute

$$\hat{\sigma}_{b(k)}^* = \sqrt{\text{kth ordered value among } \left\{ \hat{\theta}_{b1}^{*2} + \sigma_1^2, \hat{\theta}_{b2}^{*2} + \sigma_2^2, \dots, \hat{\theta}_{bK}^{*2} + \sigma_K^2 \right\} - \hat{\theta}_{(k)}^{*2}}$$

4: Compute
$$t_b^* = \max_{1 \le k \le K} \left| \frac{\hat{\theta}_{b(k)}^* - \hat{\theta}_k^*}{\sigma_{b(k)}^*} \right|$$

5: end for

- 6: Compute the (1α) -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .
- 7: The joint confidence region of $\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}$ is given by

$$\mathfrak{R} = \left[\hat{\theta}_{(1)} \pm \hat{t} \times \hat{\sigma}_{(1)}\right] \times \left[\hat{\theta}_{(2)} \pm \hat{t} \times \hat{\sigma}_{(2)}\right] \times \cdots \times \left[\hat{\theta}_{(K)} \pm \hat{t} \times \hat{\sigma}_{(K)}\right]$$

where $\hat{\sigma}_{(k)}$ is computed as

$$\hat{\sigma}_{(k)} = \sqrt{\text{kth ordered value among } \left\{ \hat{\theta}_1^2 + \sigma_1^2, \hat{\theta}_2^2 + \sigma_2^2, \dots, \hat{\theta}_K^2 + \sigma_K^2 \right\} - \hat{\theta}_{(k)}^2}$$

4

Algorithm 2 Computation of Coverage Probability for Parametric Bootstrap

For given values of $\theta_1, \theta_2, \dots, \theta_K$ and thus $\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}$

- 1: for replications = $1, 2, \dots, 5000$ do
- 2: Generate $\hat{\theta}_k \sim N(\theta_k, \sigma_k^2)$, for $k = 1, 2, \dots, K$
- 3: Compute the rectangular confidence region \Re using Algorithm 1.
- 4: Check if $\left(\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}\right) \in \mathfrak{R}$ and compute $T_1 = \frac{1}{K} \sum_{k=1}^K \left| \Lambda_{Ok} \right|$ $T_2 = \prod_{k=1}^K \left| \Lambda_{Ok} \right|$ $T_3 = 1 \frac{K + \sum_{k=1}^K \left| \Lambda_{Ok} \right|}{K^2}$
- 5: end for
- 6: Compute the proportion of times that the condition in step 4 is satisfied and the average of T_1, T_2 , and T_3 .

1.2 Nonrank-based method

The nonrank-based method assumes that $\hat{\boldsymbol{\theta}} = (\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_K) \sim N(\boldsymbol{\theta}, \boldsymbol{\Sigma})$. It accounts for potential correlation among items being ranked. For this case, an exchangeable correlation, $\boldsymbol{\rho}$ (See Equation 1.1.), is assumed and used in the calculation of the variance covariance matrix (See Equation 1.2.).

$$\boldsymbol{\rho} = (1 - \rho) \mathbf{I}_K + \rho \mathbf{1}_K \mathbf{1}_K' \tag{1.1}$$

$$\Sigma = \Delta^{1/2} \rho \Delta^{1/2} \tag{1.2}$$

where $\Delta = \text{diag}\{\sigma_1^2, \sigma_2^2, \dots, \sigma_K^2\}$, with known σ_k 's and ρ is studied for 0.1, 0.5, 0.9.

Algorithm 3 Computation of Joint Confidence Region via Nonrank-based Method

Let the data consist of $\hat{\theta}_1, \dots, \hat{\theta}_K$ and suppose Σ is known

1: **for** $b = 1, 2, \dots, B$ **do**

2: Generate
$$\hat{\boldsymbol{\theta}}_b^* \sim N_K \left(\hat{\boldsymbol{\theta}}, \boldsymbol{\Sigma} \right)$$
 and write $\hat{\boldsymbol{\theta}}_b^* = \left(\hat{\theta}_{b1}^*, \hat{\theta}_{b2}^*, \dots, \hat{\theta}_{bK}^* \right)'$

3: Compute
$$t_b^* = \max_{1 \le j \le K} \left| \frac{\hat{\theta}_{bj}^* - \hat{\theta}_j^*}{\sigma_j} \right|$$

4: end for

5: Compute the $(1 - \alpha)$ -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .

6: The joint confidence region of $\theta_1, \theta_2, \dots, \theta_K$ is given by

$$\mathfrak{R} = \left[\hat{\theta}_1 \pm \hat{t} \times \sigma_1\right] \times \left[\hat{\theta}_2 \pm \hat{t} \times \sigma_2\right] \times \cdots \times \left[\hat{\theta}_K \pm \hat{t} \times \sigma_K\right]$$

Algorithm 4 Computation of Coverage Probability for Nonrank-based Method

For given values of $\theta_1, \theta_2, \dots, \theta_K$ and Σ

1: for replications = $1, 2, \dots, 5000$ do

2: Generate $\hat{\boldsymbol{\theta}} \sim N_K(\boldsymbol{\theta}, \boldsymbol{\Sigma})$

3: Compute the rectangular confidence region \Re using Algorithm 3.

4: Check if $(\theta_1, \theta_2, \dots, \theta_K) \in \mathfrak{R}$ and compute T_1, T_2 , and T_3 .

5: end for

6: Compute the proportion of times that the condition in step 4 is satisfied and the average of T_1, T_2 , and T_3 .

2 Introduction

- 2.1 Background of the Study
- 2.2 Statement of the Problem
- 2.3 Objective of the Study
- 2.4 Study Hypothesis
- 2.5 Significance of the Study
- 2.6 Scope and Limitation
- 2.7 Definition of Terms

3 Background

THIS IS Rizzo (2008) and Klein et al. (2020)

References

Klein, M., Wright, T., & Wieczorek, J. (2020). A joint confidence region for an overall ranking of populations.

Rizzo, M. (2008). Statistical computing with r.

Appendices

Codes for CI calculation

```
K <- length(theta_hat)
 gamma = \frac{1}{(1-alpha)}(\frac{1}{K})
 z = qnorm(1-gamma/2)
 ci_lower < - theta_hat - z*S
 ci\_upper <- theta\_hat + z*S
 return(list(
  ci_lower = ci_lower,
  ci\_upper = ci\_upper
 ))
}
get_bonferroni_ci <- function(theta_hat,
                      S,
                      alpha){
 K <- length(theta_hat)
 z = qnorm(1-(alpha/K)/2)
 ci_lower < - theta_hat - z*S
 ci\_upper < - theta\_hat + z*S
 return(list(
  ci_lower = ci_lower,
   ci\_upper = ci\_upper
 ))
}
get_parametric_ci <- function(B,
                      theta_hat,
                      S,
                      alpha) {
 K <- length(theta_hat)
```

```
thetahat_star <- sapply(seq_len(K), function(i) {
 rnorm(B, mean = theta\_hat[i], sd = S[i])
})
colnames(thetahat star) <- paste0("thetahat star",
                 sprintf("%02d", 1:K))
sorted_thetahat_star <- t(apply(thetahat_star, 1, sort))
colnames(sorted_thetahat_star) <- paste0("sorted_thetahat_star",
                     sprintf("%02d", 1:K))
variance vector <- S^2
minuend \leftarrow thetahat_star^2 + rep(
 variance\_vector, each = nrow(thetahat\_star))
sigma_hat_star <- sqrt(
 t(apply(minuend, 1, sort)) - sorted_thetahat_star^2)
sorted_theta_hat <- sort(theta_hat)
t_star <- apply(
 abs(
   sorted thetahat star - rep(
    sorted theta hat,
    each = nrow(sorted thetahat star)
   )/sigma_hat_star
  ),
 1,
 max)
```

```
t_hat <- quantile(t_star, probs = 1 - alpha)
sigma_hat <- sqrt(
 sort(theta_hat^2 + variance_vector) - sorted_theta_hat^2)
ci_lower <- sorted_theta_hat - t_hat*sigma_hat
ci_upper <- sorted_theta_hat + t_hat*sigma_hat
return(list(
 ci_lower = ci_lower,
 ci\_upper = ci\_upper
))
get_nonrankbased_ci <- function(B,
              theta hat,
              alpha,
              varcovar_matrix) {
K <- length(theta_hat)
generate_data <- function(){MASS::mvrnorm(n = 1,
                 mu = theta hat,
                 Sigma = varcovar matrix)
thetahat_star <- t(replicate(B, generate_data()))
t_star <- apply(thetahat_star,
        function(x) max(abs((x - theta_hat) / sqrt(
         diag(varcovar_matrix)))))
```

Codes for T_1, T_2, T_3 calculation

```
get ranks <- function(k, tuple list){
 Lambda_lk <- which(
  tuple_list[,2] < = tuple_list[k,1])
 Lambda_lk <- Lambda_lk[Lambda_lk != k]
 Lambda_Ok <- which(
  tuple_{list[,2]} > tuple_{list[k,1]} \& tuple_{list[k,2]} > tuple_{list[,1]})
 Lambda_Ok <- Lambda_Ok[Lambda_Ok != k]
 ranks <- seq(
  length(unique(Lambda_lk)) + 1,
  length(unique(Lambda_lk)) + length(unique(Lambda_Ok)) + 1,
  1
 )
 return(list(
  ranks = ranks,
  Lambda_Ok = Lambda_Ok
 ))
}
```

```
\begin{split} & get\_t1 < \text{-} \ \mathbf{function}(v) \ mean(v) \\ & get\_t2 < \text{-} \ \mathbf{function}(v) \ prod(v)^(1/length(v)) \\ & get\_t3 < \text{-} \ \mathbf{function}(v) \ \{ \\ & 1 - ((length(v) + sum(v)) / (length(v)^2)) \\ & \} \end{split}
```