Einführung in die Algebra

Blatt 5

Jendrik Stelzner

15. November 2013

Aufgabe 5.1.

Aufgabe 5.2.

Aufgabe 5.3.

Aufgabe 5.4.

Aufgabe 5.5.

(i)

Da $\mathfrak a$ ein Ideal in R ist, ist $ar \in \mathfrak a$ für alle $a \in \mathfrak a$ und $r \in R$. Es ist nun

$$\mathfrak{b} = (\mathfrak{a}) = \sum_{a \in \mathfrak{a}} aR[X] = \sum_{a \in \mathfrak{a}} \left\{ a \sum_{i=0}^{n} a_i X^i : n \ge 0, a_i \in R \right\}$$

$$= \sum_{a \in \mathfrak{a}} \left\{ \sum_{i=0}^{n} a a_i X^i : n \ge 0, a_i \in R \right\} = \left\{ \sum_{i=0}^{n} a_i X^i : n \ge 0, a_i \in \mathfrak{a} \right\}. \tag{1}$$

Dabei ergibt sich die Gleichheit bei (1) wie folgt: Für alle $f=\sum_{i=0}^n aa_iX^i\in aR[X]$ ist $aa_i\in\mathfrak{a}$, da $a\in\mathfrak{a}$ und \mathfrak{a} ein Ideal in R ist, also

f ein Polynom mit Koeffizienten in $\mathfrak a.$ Andererseits ist jedes Polynom $f=\sum_{i=0}^n a_iX^i$ mit Koeffizienten $a_0,\ldots,a_n\in\mathfrak a$ die Summe der Monome $f_i:=a_iX^i\in a_iR[X].$ Also ist $f\in\sum_{i=1}^n a_iR[X].$