

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population manipulation

Forward-time simulations using simuPOP, a tutorial

Bo Peng, Ph.D.

Department of Epidemiology U.T. M.D. Anderson Cancer Center Houston, TX

June. 6, 2007
Programmers' Cross Training
U.T. M.D. Anderson Cancer Center

outline

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

- **1** What is simuPOP
- 2 An example
- 3 simuPOP components
- Population manipulation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation

Features of simuPOP

Applications Availability

An example

simuPOP components

Population manipulation

A forward-time population genetics simulation environment

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

Features of simuPOP Applications Availability

An example

simuPOP components

Population manipulation

A forward-time population genetics simulation environment

A population genetics simulation program

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

backward-time

Features of simuPOP Applications Availability

An example

simuPOP components

Population manipulation

A forward-time population genetics simulation environment

- A population genetics simulation program
- Not coalescent-based

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

backward-time simulation

Features of simuPOP Applications Availability

An example

simuPOP components

Population manipulation

A forward-time population genetics simulation environment

- A population genetics simulation program
- Not coalescent-based
- Based on an object-oriented scripting language (Python)

Outline

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP Forward- and

backward-time simulation

Features of simuPOP

Applications
Availability

An example

simuPOP components

Population manipulation

What is simuPOP

- Forward- and backward-time simulation
- Features of simuPOP
- Applications
- Availability

simuPOP tutorial

Bo Peng Ph.D.

What is simuPOP

Forward- and backward-time

simulation

Features of simuPOP

Applications Availability

An example

simuPOP components

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

backward-tin simulation

Features of simuPOP

Applications Availability

An example

simuPOP components

Population manipulation

Start from an initial population

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation Features of

simuPOP Applications

Availability

An example

simuPOP components

- Start from an initial population
- Evolve forward in time, generation by generation, subject to certain number of genetic and/or demographic effects

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation Features of

simuPOP
Applications
Availability

An example

simuPOP components

- Start from an initial population
- Evolve forward in time, generation by generation, subject to certain number of genetic and/or demographic effects

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation

Features of

simuPOP
Applications
Availability

An example

simuPOP components

- Start from an initial population
- Evolve forward in time, generation by generation, subject to certain number of genetic and/or demographic effects

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and

simulation

Features of simuPOP Applications

Application Availability

An example

simuPOP components

- Start from an initial population
- Evolve forward in time, generation by generation, subject to certain number of genetic and/or demographic effects

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation Features of

simuPOP
Applications
Availability

An example

simuPOP components

- Start from an initial population
- Evolve forward in time, generation by generation, subject to certain number of genetic and/or demographic effects

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and

simulation

Features of simuPOP

Applications Availability

An example

simuPOP components

- Start from an initial population
- Evolve forward in time, generation by generation, subject to certain number of genetic and/or demographic effects

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation Features of

simuPOP
Applications
Availability

An example

simuPOP components

- Start from an initial population
- Evolve forward in time, generation by generation, subject to certain number of genetic and/or demographic effects

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation

Features of simuPOP Applications

Availability

An example

simuPOP components

- Start from an initial population
- Evolve forward in time, generation by generation, subject to certain number of genetic and/or demographic effects

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and

simulation Features of

simuPOP
Applications
Availability

An example

simuPOP components

- Start from an initial population
- Evolve forward in time, generation by generation, subject to certain number of genetic and/or demographic effects

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation Features of

simuPOP
Applications
Availability

An example

simuPOP components

- Start from an initial population
- Evolve forward in time, generation by generation, subject to certain number of genetic and/or demographic effects
- Samples are collected from the last several generations

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation

Features of simuPOP

Applications Availability

An example

simuPOP components

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation

Features of simuPOP Applications

Availability

An example

simuPOP components

Population manipulation

 Start from a sample with unknown genotype

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation
Features of

simuPOP
Applications
Availability

An example

simuPOP components

- Start from a sample with unknown genotype
- Coalesce individuals until the most recent common ancestor of all individuals is found

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation
Features of

simuPOP
Applications
Availability

An example

simuPOP components

- Start from a sample with unknown genotype
- Coalesce individuals until the most recent common ancestor of all individuals is found

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation Features of

simuPOP
Applications
Availability

An example

simuPOP components

- Start from a sample with unknown genotype
- Coalesce individuals until the most recent common ancestor of all individuals is found
- Starting from the MRCA, proceed forward in time and fill the genotype of each individual

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation

Features of simuPOP
Applications

Availability

An example

simuPOP components

Population manipulation

Backward-time

 Sample based, efficient

Forward-time

 Population based, inefficient

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

Features of simuPOP

Applications Availability

An example

simuPOP components

Population manipulation

Backward-time

- Sample based, efficient
- Limited selection, recombination models and mating schemes

Forward-time

- Population based, inefficient
- Can simulate almost arbitrary evolutionary scenarios

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time simulation

Features of simuPOP
Applications
Availability

An example

simuPOP components

Population manipulation

Backward-time

- Sample based, efficient
- Limited selection, recombination models and mating schemes
- Can not study population properties, or properties of ancestral generations

Forward-time

- Population based, inefficient
- Can simulate almost arbitrary evolutionary scenarios
- Can study population properties and ancestral generations

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

Features of simuPOP Applications

Availability

An example

simuPOP components

Population manipulation

Backward-time

- Sample based, efficient
- Limited selection, recombination models and mating schemes
- Can not study population properties, or properties of ancestral generations
- Used mostly for sample generation

Forward-time

- Population based, inefficient
- Can simulate almost arbitrary evolutionary scenarios
- Can study population properties and ancestral generations
- Wider application areas

Forward-time simulation programs

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time simulation

Features of simuPOP
Applications
Availability

An example

simuPOP components

Population manipulation

For specific applications

- Easy to write simple simulations
- Difficult to write complicated simulations
- A few programs are available (EasyPOP, FPG, Nemo, ...), easy to use if they happen to fit your need

Forward-time simulation programs

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

backward-time simulation

Features of simuPOP
Applications
Availability

An example

simuPOP components

Population manipulation

For specific applications

- Easy to write simple simulations
- Difficult to write complicated simulations
- A few programs are available (EasyPOP, FPG, Nemo, ...), easy to use if they happen to fit your need

For general purposes

- Difficult to write
- Easy to set up complicated simulations
- simuPOP fits in this category

Outline

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP Forward- and

Forward- and backward-time simulation

Features of simuPOP

Applications Availability

An example

simuPOP

components

Population manipulation

What is simuPOP

- Forward- and backward-time simulation
- Features of simuPOP
- Applications
- Availability

What simuPOP does

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time simulation

Features of simuPOP

Applications Availability

An example

simuPOP components

Population manipulation

simuPOP provides

 a large number of functions to manipulate populations copy, split, merge, manipulate individual genotypes, determine affection status, save to and load from various formats, generate sample, ...

What simuPOP does

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time simulation

Features of simuPOP

Applications Availability

An example

simuPOP components

Population manipulation

simuPOP provides

- a large number of functions to manipulate populations copy, split, merge, manipulate individual genotypes, determine affection status, save to and load from various formats, generate sample, ...
- and a mechanism to evolve populations forward in time subject to arbitrary demographic and genetic forces such as population size changes, mutation, migration, recombination, selection, ...

What distinguishes simuPOP from others

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time simulation

Features of simuPOP

Applications Availability

An example

simuPOP components

Population manipulation

scripting simuPOP is provided as a set of Python modules, and is therefore backed by a full-blown object-oriented programming language.

flexibility simuPOP does not impose any limit on the size of genome, population, demographic model, etc. Using a large number of standard and hybrid (Python-assisted) operators, users can simulate almost arbitrarily complex evolutionary processes.

integration Owing to the 'glue language' nature of Python, it is easy to integrate simuPOP with other languages and programs.

Outline

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP Forward- and

Forward- and backward-time simulation

Features of simuPOP

Applications Availability

An example

simuPOP

components

Population manipulation

What is simuPOP

- Forward- and backward-time simulation
- Features of simuPOP
- Applications
- Availability

This is fun, but is it useful?

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time simulation

Features of simuPOP
Applications
Availability

An example

simuPOP components

Population manipulation

simuPOP can simulate the change of the genetic composition of a population in a complicated evolutionary process. It can be used to

Demonstrate population genetics phenomina

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

hackward-time Features of

simuPOP

Applications Availability

An example

simuPOP components

Population manipulation

- Demonstrate population genetics phenomina
- Study the impact of genetic and demographic forces on the evolution of a population

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

backward-time simulation Features of simuPOP

simuPOP
Applications
Availability

An example

simuPOP components

Population manipulation

- Demonstrate population genetics phenomina
- Study the impact of genetic and demographic forces on the evolution of a population
- Study the evolution of (complex) genetic diseases

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

backward-time simulation Features of simuPOP Applications Availability

An example

simuPOP components

Population manipulation

- Demonstrate population genetics phenomina
- Study the impact of genetic and demographic forces on the evolution of a population
- Study the evolution of (complex) genetic diseases
- Simulate samples to validate gene-mapping methods

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

backward-time simulation Features of simuPOP Applications Availability

An example

simuPOP components

Population manipulation

- Demonstrate population genetics phenomina
- Study the impact of genetic and demographic forces on the evolution of a population
- Study the evolution of (complex) genetic diseases
- Simulate samples to validate gene-mapping methods
- Study ascertainment methods in simulated populations

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

backward-time simulation Features of simuPOP Applications Availability

An example

simuPOP components

Population manipulation

- Demonstrate population genetics phenomina
- Study the impact of genetic and demographic forces on the evolution of a population
- Study the evolution of (complex) genetic diseases
- Simulate samples to validate gene-mapping methods
- Study ascertainment methods in simulated populations
- ...

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

Features of simuPOP

Applications Availability

An example

simuPOP components

Population manipulation

Backward-time

Haploid simulation only

Forward-time

No limit on ploidy

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time simulation

Features of simuPOP

Applications Availability

An example

simuPOP components

Population manipulation

Backward-time

- Haploid simulation only
- Additive selection and penetrance models

Forward-time

- No limit on ploidy
- Arbitrary selection and penetrance models

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time

simulation Features of

simuPOP Applications

Availability

An example

simuPOP components

Population manipulation

Backward-time

- Haploid simulation only
- Additive selection and penetrance models
- One disease susceptibility locus

Forward-time

- No limit on ploidy
- Arbitrary selection and penetrance models
- Multiple DSL with interaction

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time simulation

Features of simuPOP

Applications
Availability

An example

simuPOP components

Population manipulation

Backward-time

- Haploid simulation only
- Additive selection and penetrance models
- One disease susceptibility locus
- Generate independent samples

Forward-time

- No limit on ploidy
- Arbitrary selection and penetrance models
- Multiple DSL with interaction
- Generate multi-generation populations

Outline

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time simulation

Features of simuPOP

Applications

Availability

An example

simuPOP components

Population manipulation

What is simuPOP

- Forward- and backward-time simulation
- Features of simuPOP
- Applications
- Availability

I like it, but, oohm, why Python??

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

backward-time simulation Features of

simuPOP
Applications
Availability

Availability

An example

simuPOP components

- The core of simuPOP is written in C++ for efficiency
- Python is the glue language, a wrapper of the core
- Python is used to write simuPOP extensions (user interface etc)
- The core sometimes calls Python (Python operators) for maximum flexibility

Availability

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

Forward- and backward-time simulation Features of

simuPOP
Applications
Availability

An example

simuPOP components

- simuPOP website: http://simupop.sourceforge.net
- Mailing list: simupop-list@lists.sourceforge.net
- License: GPL 2.0
- Platforms: all OS on which Python is available
- Monthly release, currently at 0.7.10
- Documentation: simuPOP User's Guide and simuPOP Reference Manual

Outline

simuPOP tutorial

Bo Peng Ph.D.

What is simuPOP

An example

Visualization with R

simuPOP components

- 2 An example
 - An example
 - Visualization with R

A simple example

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

An example
Visualization with R

simuPOP components

```
>>> from simuPOP import *
>>> simu = simulator(
        population(size=1000, ploidy=2, loci=[2]),
        randomMating(),
. . .
      rep = 3)
>>> simu.evolve(
        preOps = [initByValue([1,2,2,1])],
. . .
        ] = ago
            recombinator(rate=0.1),
. . .
             stat(LD=[0,1]),
. . .
            pvEval(r"' %3d ' % gen", rep=0, step=10),
            pyEval(r"'%f ' % LD[0][1]", step=10),
. . .
            pvEval(r"'\n'", rep=REP LAST, step=10)
        1.
        end=100
. . .
. . . )
```


Output of the example

simuPOP tutorial

Bo Penç Ph.D.

What is simuPOP

An example

Visualization with R

simuPOP

components

0	0.196745	0.200253	0.202646	
10	0.070055	0.069072	0.053272	
20	0.011108	0.024689	0.025818	
30	0.001009	0.008473	0.012216	
40	0.000663	0.004254	0.010879	
50	0.025414	0.004853	0.002686	
60	0.027291	0.000917	0.003569	
70	0.022889	0.009723	0.001386	
80	0.001847	0.004545	0.006552	
90	0.011127	0.034419	0.000716	
100	0.001537	0.000542	0.010050	

simuPOP modules

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

An example
Visualization with R

simuPOP components

Population manipulation

```
>>> from simuPOP import *
>>> simu = simulator(
... population(size=1000, ploidy=2, loci=[2]),
... randomMating(),
... rep = 3)
```

Import the default simuPOP module

population

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

Visualization with R

simuPOP components

Population manipulation

Create a population of 1000 diploid individuals, each having two loci on the first chromosome

simulator and mating scheme

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

Visualization with R

components

Population manipulation

Create a simulator that has one replicate of this population, and a random mating scheme

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

Visualization with R

simuPOP components

Population manipulation

```
>>> from simuPOP import *
>>> simu = simulator(
        population(size=1000, ploidy=2, loci=[2]),
. . .
        randomMating(),
. . .
        rep = 3)
>>> simu.evolve(
        preOps = [initByValue([1,2,2,1])],
        ] = ago
            recombinator(rate=0.1),
. . .
            stat(LD=[0,1]),
            pyEval(r"'%3d ' % gen", rep=0, step=10),
. . .
            pyEval(r"'%f ' % LD[0][1]", step=10),
            pyEval(r"'\n'", rep=REP_LAST, step=10)
        end = 100
. . . )
```

initByValue is applied before evolution

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

An example
Visualization with R

simuPOP components

Population manipulation

```
>>> from simuPOP import *
>>> simu = simulator(
        population(size=1000, ploidy=2, loci=[2]),
        randomMating(),
        rep = 3)
. . .
>>> simu.evolve(
        preOps = [initByValue([1,2,2,1])],
        ops = [
            recombinator(rate=0.1),
            stat(LD=[0,1]),
            pyEval(r"'%3d ' % gen", rep=0, step=10),
            pvEval(r"'%f ' % LD[0][1]", step=10),
            pyEval(r"'\n'", rep=REP LAST, step=10)
. . .
        end = 100
```

recombinator is applied at every generation when an offspring is produced

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

An example
Visualization with R

simuPOP components

Population manipulation

```
>>> from simuPOP import *
>>> simu = simulator(
        population(size=1000, ploidy=2, loci=[2]),
   randomMating(),
        rep = 3)
. . .
>>> simu.evolve(
        preOps = [initByValue([1,2,2,1])],
        ops = [
            recombinator(rate=0.1),
            stat(LD=[0,1]),
            pyEval(r"'%3d ' % gen", rep=0, step=10),
            pvEval(r"'%f ' % LD[0][1]", step=10),
            pyEval(r"'\n'", rep=REP LAST, step=10)
        end = 100
```

stat is applied to the offspring generation at every generation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

Visualization with R

simuPOP components

Population manipulation

```
>>> from simuPOP import *
>>> simu = simulator(
        population(size=1000, ploidy=2, loci=[2]),
. . .
        randomMating(),
. . .
        rep = 3)
>>> simu.evolve(
        preOps = [initByValue([1,2,2,1])],
        ] = ago
            recombinator(rate=0.1),
. . .
            stat(LD=[0,1]),
            pyEval(r"'%3d ' % gen", rep=0, step=10),
. . .
            pyEval(r"'%f ' % LD[0][1]", step=10),
            pyEval(r"'\n'", rep=REP_LAST, step=10)
        end = 100
. . . )
```

pyEval is applied every 10 generations

Outline

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example
An example
Visualization with R

simuPOP components

- 2 An example
 - An example
 - Visualization with R

Use R to plot

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

Visualization with R

simuPOP components

```
>>> from simuPOP import *
>>> from simuRPv import *
>>> simu = simulator(
        population(size=1000, ploidy=2, loci=[2]),
        randomMating(),
        rep = 3)
>>> simu.evolve(
        preOps = [initBvValue([1,2,2,1])],
        ops = [
. . .
            recombinator(rate=0.1),
             stat(LD=[0,1]),
. . .
            varPlotter('LD[0][1]', numRep=3, step=10,
. . .
                 saveAs='ld', ylim=[0,.25],
                 lty=range(1, 4), col=range(2, 5),
                 xlab='generation', vlab='D',
                 title='LD Decay'),
. . .
        end = 100
. . . )
True
>>>
```


simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example An example

simuPOP components

- Update at every 10 generations
- LD=0.25 before generation 0
- LD is calculated at the end of each generation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example
An example
Visualization with R

simuPOP components

Population manipulation

10

15

5

- Update at every 10 generations
- LD=0.25 before generation 0
- LD is calculated at the end of each generation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example An example

simuPOP components

- Update at every 10 generations
- LD=0.25 before generation 0
- LD is calculated at the end of each generation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example An example

simuPOP components

- Update at every 10 generations
- LD=0.25 before generation 0
- LD is calculated at the end of each generation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example An example

simuPOP components

- Update at every 10 generations
- LD=0.25 before generation 0
- LD is calculated at the end of each generation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

Visualization with R
simuPOP
components

- Update at every 10 generations
- LD=0.25 before generation 0
- LD is calculated at the end of each generation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

Visualization with R
simuPOP
components

- Update at every 10 generations
- LD=0.25 before generation 0
- LD is calculated at the end of each generation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

visualization with R simuPOP components

- Update at every 10 generations
- LD=0.25 before generation 0
- LD is calculated at the end of each generation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example
An example
Visualization with R

simuPOP components

- Update at every 10 generations
- LD=0.25 before generation 0
- LD is calculated at the end of each generation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

visualization with R simuPOP components

- Update at every 10 generations
- LD=0.25 before generation 0
- LD is calculated at the end of each generation

Exercise time

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example
An example
Visualization with R

simuPOP components

Population manipulation

- Start python
- Load simuPOP
- Create a population and run

• run tutorial_example1.py

Outline

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP
An example

All example

simuPOP components

component Population

Individual
Operator
Mating scheme

Simulator Other utilities

Population manipulation

simuPOP components

- Population
- Individual
- Operator
- Mating scheme
- Simulator
- Other utilities

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP component

Population Population

Individual
Operator
Mating scheme
Simulator
Other utilities

- Unaffected
- Affected

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population
Individual

Individual
Operator
Mating scheme
Simulator
Other utilities

Population manipulation

- Unaffected
- Affected

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components Population

Individual
Operator
Mating scheme
Simulator
Other utilities

Population manipulation

- Unaffected
- Affected

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual Operator Mating scheme Simulator

Other utilities

Population
manipulation

- Unaffected
- Affected

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components Population

Individual
Operator
Mating scheme
Simulator
Other utilities

Population manipulation

- Unaffected
- Affected

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual Operator Mating scheme Simulator

Other utilities

Population
manipulation

- Unaffected
- Affected

Ancestral generation 1

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual Operator

Operator

Mating scheme
Simulator
Other utilities

Population manipulation

Affected

gen = 2, numAffected = 5, ...

Ancestral generation 2

Ancestral generation 1

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Component
Population
Individual

Operator
Mating scheme
Simulator
Other utilities

Population manipulation

- Unaffected
- Affected

Ancestral generation 2

Ancestral generation 1

Current generation

Population variables

Create and manipulate populations

```
simuPOP
              >>> pop = population(size=10, loci=[2, 3])
  tutorial
              >>> Dump(pop)
 Bo Peng,
              Ploidy:
   Ph.D.
              Number of chrom:
              Number of loci:
What is
simuPOP
              Maximum allele state:
                                            255
An example
              Loci positions:
simuPOP
                                  1 2 3
components
              Loci names:
Population
Individual
                                  1001-1 1001-2
Operator
                                  loc2-1 loc2-2 loc2-3
Mating scheme
Simulator
              population size:
                                            10
Other utilities
              Number of subPop:
Population
              Subpop sizes:
                                            10
manipulation
              Number of ancestral populations:
              individual info:
              sub population 0:
                  0: MTT
                                            0
                     MIJ
                                            n
                     MIT
```

MU

Genotypic structure

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components Population

Individual
Operator
Mating scheme
Simulator
Other utilities

```
>>> pop = population(subPop=[200, 300], loci=[3, 2],
        maxAllele=3, ploidy=3,
        lociPos=[[1, 3, 5], [2.5, 4]],
        alleleNames=['A', 'C', 'T', 'G'])
>>> pop.numLoci(0)
3
>>> pop.totNumLoci()
5
>>> pop.locusPos(4)
4.0
>>> pop.subPopSize(1)
300
>>> pop.popSize()
500
>>> pop.ploidyName()
'triploid'
>>> pop.individual(1).allele(1, 2)
0
>>>
```


simuPOP

tutorial

Bo Peng,

Ph.D.

Population manipulation

>>> pop.removeLoci(keep=[0, 1])

>>> # make a copy of pop

>>> # remove loci 2, 3, 4

>>> pop1 = pop.clone()

```
>>> # pop2 will have 3 chromosomes, with loci 2, 3, 2
What is
simuPOP
            >>> pop2 = MergePopulationsByLoci(pops=[pop, pop1])
            >>> # randomly assign alleles using given allele frequencies
An example
            >>> InitByFreq(pop2, [0.8, .2])
simuPOP
            >>> # calculate population allele frequency
components
            >>> Stat(pop2, alleleFreq=range(pop2.totNumLoci()))
Population
Individual
            >>> # print allele frequency
Operator
            >>> print pop2.dvars().alleleFreq
Mating scheme
Simulator
            Other utilities
            >>> # assign affection status using a penetrance model
Population
            >>> MapPenetrance(pop2, locus=1,
manipulation
                    penetrance=\{'0-0': 0.05, '0-1': 0.2, '1-1': 0.8\})
            >>> # draw case control sample
            >>> (sample,) = CaseControlSample(pop2, cases=5, controls=5)
            >>> # save sample in Merlin OTDT format
            >>> from simuUtil import SaveOTDT
            >>> SaveQTDT(sample, output='sample', affectionCode=['U', 'A'],
                    fields=['affection'])
            . . .
                                                  4 T > 4 A > 4 E > 4 E > E 90 C
```


Population manipulation (cont.)

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual

Operator Mating scheme Simulator Other utilities

```
>>> # have a look at the sample in Merlin-OTDT Format
>>> print open('sample.map').read()
CHROMOSOME MARKER POSITION
        loc1-1
               1.000000
       loc1-2 3.000000
       loc1-1_1
                        1.000000
       loc1-2 1
                        3.000000
        1001-3 5.000000
3
       loc2-1 2.500000
       1002-2 4.000000
>>> print open('sample.dat').read()
        affection
Α
М
       loc1-1
       1001-2
M
       loc1-1 1
M
М
       loc1-2 1
       1001-3
M
       loc2-1
М
       loc2-2
```


Population manipulation (cont.)

simuPOP tutorial

Bo Peng Ph.D.

What is simuPOP

An example

simuPOP components

Population
Individual
Operator

Operator Mating scheme Simulator Other utilities

Population manipulation

```
>>> print open('sample.ped').read()
1 1 0 0 2 A 1 1 1 1 1 1 2 1 1 2 1 2 1 2 1 1 2
2 1 0 0 2 A 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1
3 1 0 0 2 A 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1
4 1 0 0 1 A 2 1 2 2 1 2 2 1 1 1 1 1 1 1 2 1
5 1 0 0 1 A 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1
6 1 0 0 1 U 1 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1
7 1 0 0 2 U 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1
8 1 0 0 2 U 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1
9 1 0 0 1 U 1 1 1 1 1 1 2 1 1 1 1 1 2 2 1
10 1 0 0 2 U 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2
```

>>>

Population variables

```
simuPOP
tutorial
```

Bo Peng, Ph.D.

What is simuPOP
An example

simuPOP

components

Population Individual Operator

Mating scheme Simulator Other utilities

```
>>> pop = population(subPop=[5, 10], loci=[5])
>>> InitByFreg(pop, [.6, .3, .1])
>>> Stat(pop, alleleFreg=[1], genoFreg=[2])
>>> print pop.dvars().alleleFreg[1][0]
0.66666666667
>>> from simuUtil import ListVars
>>> ListVars(pop.dvars(), useWxPvthon=False)
grp: -1
 rep : -1
 alleleNum :
  [1]
     [0]
               20
     [1]
     [2]
 genoFreg :
   [2]
     [0]
               0.266666666667
       0
               0.26666666667
      2:
               0 333333333333
    [1]
               0.066666666667
       2:
               0.066666666667
 genoNum :
  [2]
     [0]
               4 0
               4.0
       2
               5.0
     [1]
                                               1.0
```


Population variables (cont.)

```
simuPOP
tutorial
```

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual

Operator
Mating scheme
Simulator
Other utilities

```
0.2333333333333
    [2]
                 0.1
subPop
  [0]
    alleleNum :
       [1]
         [0]
                 7
         [1]
         [2]
                 1
    genoNum :
       [2]
         [0]
                 2.0
                 2.0
           2:
                 1.0
    genoFreq :
       [2]
         [0]
                 0 4
                 0.4
                 0.2
    alleleFreg :
       [1]
         [0]
                 0.7
         [1]
                 0.2
         [2]
                 0.1
```


Outline

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

An example

simuPOP components

Population

Individual

Operator Mating scheme

Simulator Other utilities

Population manipulation

simuPOP components

- Population
- Individual
- Operator
- Mating scheme
- Simulator
- Other utilities

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population

Individual Operator

Mating scheme Simulator Other utilities

Population manipulation

Assume ploidy = 2, maxAllele = 1

Male

Affected

fitness father

father_id ...

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population

Individual Operator

Mating scheme Simulator Other utilities

Population manipulation

Assume ploidy = 2, maxAllele = 1

Male

Affected

fitness father_id ...

Chromosome 0

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual

Operator Mating scheme

Simulator
Other utilities

Population manipulation

Assume ploidy = 2, maxAllele = 1

Chromosome 0

Chromosome 1

Affected

fitness

father_id ...

simuPOP

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population

Individual
Operator
Mating scheme

Mating scheme Simulator Other utilities

Population manipulation

Assume ploidy = 2, maxAllele = 1

Male

Affected

fitness father_id ...

Chromosome 0

Chromosome 1

Sex

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual

Operator Mating scheme Simulator Other utilities

Population manipulation

Assume ploidy = 2, maxAllele = 1

Male

Affected

fitness father_id ...

Chromosome 0

Chromosome 1

Sex

Affection status

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population

Individual
Operator
Mating scheme

Other utilities

Population manipulation

Male

Affected

fitness father_id ...

Chromosome 0

Chromosome 1

Sex

Affection status

Information fields

Individuals

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual

Operator

Mating scheme
Simulator
Other utilities

```
>>> pop = population(subPop=[5, 8], loci=[5],
        infoFields=['penetrance'])
>>> InitByFreq(pop, [.6, .3, .1])
>>> MaPenetrance(pop, locus=2, penetrance=[0.05, 0.2, 0.5],
        wildtype=[0], infoFields=['penetrance'])
>>> # iterate through all inviduals in subPop 1
>>> for ind in pop.individuals(1):
        print 'Aff: %d Fit: %.3f Geno: %d %d' % \
. . .
            (ind.affected(), ind.info('penetrance'), \
. . .
            ind.allele(2, 0), ind.allele(2, 1))
. . .
Aff: 0 Fit: 0.200 Geno: 0 2
     0 Fit: 0.050 Geno: 0 0
Aff:
Aff: 0 Fit: 0.200 Geno: 0 2
Aff: 0 Fit: 0.200 Geno: 0 1
Aff: 0 Fit: 0.200 Geno: 0.1
Aff: 1 Fit: 0.200 Geno: 1 0
Aff: 0 Fit: 0.050 Geno: 0.0
Aff: 0 Fit: 0.050 Geno: 0 0
>>>
```


Information fields

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP
An example

simuPOP components

Population Individual

Operator Mating scheme

Mating scheme Simulator Other utilities

```
>>> pop = population(100, loci=[5, 8],
... infoFields=['father_idx', 'mother_idx'])
>>> simu = simulator(pop, randomMating(numOffspring=2))
>>> simu.evolve(ops=[parentsTagger()], end=5)
True
>>> ind = simu.population(0).individual(0)
>>> ind1 = simu.population(0).individual(1)
>>> print ind.info('father_idx'), ind.info('mother_idx')
56.0 88.0
>>> print indl.info('father_idx'), indl.info('mother_idx')
56.0 88.0
>>> print indl.info('father_idx'), indl.info('mother_idx')
```


Outline

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

An exampi

simuPOP components

Population Individual

Operator

Mating scheme

Simulator Other utilities

Population manipulation

simuPOP components

- Population
- Individual
- Operator
- Mating scheme
- Simulator
- Other utilities

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP

components
Population

Individual

Operator

Mating scheme Simulator Other utilities

Population manipulation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population

Individual Operator

Mating scheme Simulator

Other utilities

Population
manipulation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population

Individual Operator

Mating scheme Simulator Other utilities

Population manipulation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population

Individual

Operator Mating scheme

Simulator Other utilities

Population manipulation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual

Operator Mating scheme

Simulator Other utilities

Population manipulation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population

Individual

Operator

Mating scheme

Simulator Other utilities

Population manipulation

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population

Individual Operator

Mating scheme Simulator Other utilities

Population manipulation

Pre-, During- and PostMating operators

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

All example

simuPOP components

Population Individual

Operator

Mating scheme Simulator

Other utilities

```
>>> simu = simulator(
        population(subPop=[20, 80], loci=[3]),
        randomMating())
>>> simu.evolve(
        preOps = [initBvFreq([0.2, 0.8])],
        l = ago
            kamMutator(maxAllele=10. rate=0.00005. atLoci=[0.2]).
            recombinator(rate=0.001).
            dumper(stage=PrePostMating),
            stat(alleleFreg=[1]),
        drvrun=True
...)
Dryrun mode: display calling seguence
Apply pre-evolution operators
  Replicate 0
      - <simuPOP::initByFreg> end at 1
Start evolution
  Replicate 0
    Pre-mating operators
      - <simuPOP::dumper> at all generations
    Start mating
      - <simuPOP::recombination> at all generations
    Apply post-mating operators
      - <simuPOP::k-allele model mutator K=10> at all generations
      - <simuPOP::dumper> at all generations
      - <simuPOP::statistics> at all generations
True
>>>
```


Applicable generations

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual

Operator

Mating scheme

Simulator Other utilities

```
>>> simu = simulator(
        population(10000, loci=[3]),
        randomMating())
>>> eval1 = r"'Gen: %3d Freg: %f\n' % (gen, alleleFreg[1][0])"
   eval2 = r"'Last Gen: %3d Freg: %s\n' % (gen, alleleFreg[1])"
   simu.evolve(
        preOps = [initByFreq([0.3, 0.7])],
       ] = ago
            recombinator(rate=0.01, begin=10, end=30),
            stat(alleleFreq=[1], step=10),
            pvEval(eval1, step=10),
            pvEval(eval2, at=[-1])
        ],
        end = 50
. . . )
          Freq: 0.298050
Gen:
Gen:
          Freq: 0.298300
Gen:
          Freq: 0.298150
Gen:
      3.0
          Freq: 0.295000
          Freq: 0.295350
Gen:
      40
Gen:
          Freq: 0.299200
           50 Freq: [0.2992000000000002, 0.7007999999999998]
Last Gen:
True
>>>
```


Applicable replicates

```
simuPOP
tutorial
Bo Pena.
```

Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual

Operator Mating scheme

Simulator Other utilities

```
>>> simu = simulator(
        population(100, loci=[3]),
        randomMating(),
        rep=5, qrp=[1,1,2,2,2])
. . .
>>> simu.evolve(
        preOps = [initByFreq([0.5, 0.5])],
. . .
        ops = [
. . .
             stat(alleleFreq=[1]),
             recombinator(rate=0.01, grp=1),
. . .
             recombinator(rate=0.01, grp=2),
. . .
             pvEval(r"'%.2f' % alleleFreg[1][0]", grp=1),
            pyEval(r"'\n'", rep=REP LAST),
. . .
        1.
        end=5
. . .
0.43 0.43
0.48 0.41
0.470.47
0.48 0.46
0.47 0.45
0.45 0.41
True
>>>
```


Output

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual

Operator

Operator Mating scheme

Simulator Other utilities

```
>>> simu = simulator(
        population(100, loci=[3]),
        randomMating(),
       rep=5, grp=[1,1,2,2,2])
>>> simu.evolve(
        preOps = [initBvFreq([0.5, 0.5])].
       ops = [
            stat(alleleFreg=[1]).
            pvEval(r"'%,2f ' % alleleFreg[1][0]".
                output='>>out'),
            pyEval(r"'\n'", rep=REP LAST, output='>>out'),
            pvEval(r"'%,2f ' % alleleFreg[1][0]".
                outputExpr="'>>out%d' % grp"),
        ],
        end=2
True
>>> print open('out').read()
0.41 0.53 0.41 0.54 0.52
0.40 0.55 0.43 0.52 0.52
0.40 0.56 0.46 0.51 0.55
>>> print open('out1').read()
0.41 0.53 0.40 0.55 0.40 0.56
>>> print open('out2').read()
0.41 0.54 0.52 0.43 0.52 0.52 0.46 0.51 0.55
>>>
```


Outline

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP An example

An example

simuPOP

components
Population

Individual

Operator Mating scheme

Simulator Other utilities

Population manipulation

simuPOP components

- Population
- Individual
- Operator
- Mating scheme
- Simulator
- Other utilities

Mating schemes

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Individual
Operator
Mating scheme
Simulator

Other utilities

Population
manipulation

Mating schemes

- Population offspring subpopulation from corresponding parental subpopulation
- Can change subpopulation size
- Select parents according to their fitness value (information field)
- Can produce more than one offspring

Demographic model

```
simuPOP
tutorial
```

Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual

Operator Mating scheme

Simulator Other utilities

```
>>> def lin inc(gen, oldsize=[]):
        return [10+gen]*5
>>> simu = simulator(
        population(subPop=lin_inc(1), loci=[1]),
        randomMating(newSubPopSizeFunc=lin inc)
. . .
. . .
>>> simu.evolve(
        ops = [
             stat(popSize=True),
             pvEval(r'"%d %d\n"%(gen, subPop[0]["popSize"])').
. . .
        end=5
 10
  11
 12
 13
 14
5 15
True
>>>
                                         4 N D D A R D D A R D D D D D D
```


Number of offspring

simuPOP

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual

Operator Mating scheme

Simulator Other utilities

```
>>> simu = simulator(
        population(size=10000, loci=[1]),
        randomMating(),
>>> simu.evolve(
        preOps = [initByFreq([0.1, 0.9])],
. . .
   ops = [], end=100
. . .
True
>>> simu.setMatingScheme(randomMating(numOffspring=2))
>>> simu.addInfoFields(['father idx', 'mother idx'])
>>> simu.setAncestralDepth(1)
>>> simu.step(ops=[parentsTagger()])
True
>>> pop = simu.getPopulation(0)
>>> MaPenetrance(pop, locus=0, penetrance=[0.05, 0.1, 0.5])
>>> AffectedSibpairSample(pop, size=100)
[<simuPOP::population of size 200>]
>>>
```


Outline

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP component

components
Population

Individual Operator

Mating scheme

Other utilities

Population manipulation

simuPOP components

- Population
- Individual
- Operator
- Mating scheme
- Simulator
- Other utilities

Simulator

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP
An example

An example

simuPOP components

Population Individual Operator Mating scheme

Simulator
Other utilities

Population manipulation

A simulator manages

- Replicates of a population
- A mating scheme
- Many operators

and evolve the populations.

Outline

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP An example

An example

simuPOP components

Components
Population

Individual Operator

Mating scheme Simulator

Other utilities

Population manipulation

simuPOP components

- Population
- Individual
- Operator
- Mating scheme
- Simulator
- Other utilities

Utility modules and scripts

simuPOP

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

Population Individual Operator Mating scheme Simulator Other utilities

Population manipulation

simuOpt.py provides an easy way to handle parameters.
simuUtil.py provides functions to save/load in many formats, gene mapping functions, list variables etc

simuCluster.py a control script to send jobs to cluster systems

simuLDDecay.py a simple script to demonstrate the decay of linkage disequilibrium under recombination

simuForward.py implements a traditional forward-time simulation scenario

simuComplexDisease.py implements a new forward-time simulation method (PLoS Genetics, 2007)

simuCDCV.py demonstrate the evolution of allelic spectrum

simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

```
from simuOpt import setOptions
setOptions(optimized=True, alleleType='binary')
from simuPOP import *
```


populations.

```
simuPOP
            def load_population(pop, ch, type):
 tutorial
                '''Load population from file, with type (subpopulation type
 Bo Peng,
            # For the CEU and YRI the haplotypes are arranged as follows:
  Ph.D.
             row 1 - trio 1 parent 1 transmitted haplotype
            # row 2 - trio 1 parent 1 untransmitted haplotype
What is
simuPOP
            # row 3 - trio 1 parent 2 transmitted haplotype
An example
             row 4 - trio 1 parent 2 untransmitted haplotype
            # row 5 - trio 2 parent 1 transmitted haplotype
simuPQP
             row 6 - trio 2 parent 1 untransmitted haplotype
components
            # row 7 - trio 2 parent 2 transmitted haplotype
Population
            # row 8 - trio 2 parent 2 untransmitted haplotype
manipulation
             For the JPT+CHB the haplotypes are arranged as
             row 1 - individual 1 haplotype 1
             row 2 - individual 1 haplotype 2
             row 3 - individual 2 haplotype 1
             row 4 - individual 2 haplotype 2
             row 5 - individual 3 haplotype 1
             row 6 - individual 3 haplotype 2
```

We are loading row by row, so actually only load the parents

 $subPop = {'CEU':0. 'YRI':1. 'JPT+CHB':2}[type]$

90 Q


```
simuPOP
           if __name__ == '__main__':
 tutorial
               [0,0,0] = aq
 Bo Peng,
               for ch in range(1, 23):
  Ph.D.
                   popFile = "hapmap %d.bin" % ch
                   print "Processing chromosome %d..." % ch
What is
simuPOP
                   (lociPos, lociName) = getLoci(ch)
An example
                   print " Number of loci", len(lociPos)
                   print " Getting population size and verifying data f;
simuPOP
                   popSize = getPopSize(len(lociPos), ch)
components
                   print " Population size %s (CEU and YRI only counts ;
Population
                   if ps[0] == 0:
manipulation
                       ps = popSize
                   else:
                       if ps[0] != popSize[0] or ps[1] != popSize[1] or ps
                           print "Population size does not match across chi
                           sys.exit(1)
                             Creating population"
                   pop = population(subPop=popSize, ploidy=2, loci=[len(loc
                       lociPos=lociPos, lociNames=lociName)
                   print " Loading CEU population...",
                   load_population(pop, ch, type='CEU')
                   print " Loading YRI population...",
```


simuPOP tutorial

Bo Peng, Ph.D.

What is simuPOP

An example

simuPOP components

```
from simuOpt import setOptions
setOptions(optimized=True, alleleType='binary')
from simuPOP import *
```