CPSC 354 Report

Drew Floyd

	•	ıteı	
•	'	$+\alpha$	ntc
•	, () [

1 The MU-Puzzle 2

1 The MU-Puzzle

```
\mathrm{MI} \to \mathrm{MU}
```

Rule 1: If you possess a string whose last letter is I, add U.

Rule 2: Suppose you have Mx, you may add Mxx.

Rule 3: If III occurs in one of the strings, you may make a new string with U in place of III.

Rule 4: If UU, you can drop it.

 $\begin{array}{c} \text{MI} \\ \text{MII} \ \ Mxx \\ \text{MIIII} \ \ Mxx \\ \text{MIIIIIIIII} \ \ Mxx \\ \text{MUIIU} \ \ MIU \\ \varnothing \end{array}$

MI \rightarrow use Mxx rule ∞ times MIIII...

No matter what Rule you use you will never be able to get 0 Mod3, because I will always be 1 mod 3 or 2 mod 3

MUUU

MIII

Rule 1 does not affect # of I's.

Rule 2 does not give 0 mod 3.

Rule 3 does not solve the problem as removing 3 I's does not change the output of mod3.

Rule 4 does not change the # of I's.

We can never get rid of all of the I's, $0 \mod 3$ is not possible. Thus you cannot get MU from MI.