

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Ethyl 1,4-bis(4-chlorophenyl)-2-methyl-1*H*-pyrrole-3-carboxylate

K. N. Nandeesh, a Chandra, M. Mahendra, K. Palani and K. Mantelingua*

^aDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India, ^bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and ^cSER-CAT, APS, Argonne National Laboratory, Argonne, IL 60439, USA

Correspondence e-mail: kmantelingu@yahoo.com

Received 8 June 2013; accepted 11 July 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.044; wR factor = 0.125; data-to-parameter ratio = 18.4.

In the title molecule, $C_{20}H_{17}Cl_2NO_2$, the pyrrole moiety makes dihedral angles of 63.42 (11) and 70.43 (12)° with the chlorobenzene rings. The ethoxycarbonyl unit is present in a synperiplanar conformation with respect to the pyrrole ring, as indicated by the dihedral angle of 14.5 (3)°. In the crystal, molecules are linked into chains parallel to the *a*-axis direction by weak $C-H\cdots O$ hydrogen bonds.

Related literature

For the biological importance of pyrroles, see: Banwell *et al.* (2006); Mohamed *et al.* (2009); Sosa *et al.* (2002).

Experimental

Crystal data

 $C_{20}H_{17}Cl_2NO_2$ $M_r = 374.25$ Triclinic, $P\overline{1}$ a = 8.037 (2) Å $\begin{array}{lll} b = 9.797 \ (3) \ \mathring{A} & Z = 2 \\ c = 12.510 \ (4) \ \mathring{A} & \text{Mo } K\alpha \ \text{radiation} \\ \alpha = 72.774 \ (16)^\circ & \mu = 0.37 \ \text{mm}^{-1} \\ \beta = 86.838 \ (16)^\circ & T = 296 \ \text{K} \\ \gamma = 76.804 \ (16)^\circ & 0.15 \times 0.15 \times 0.15 \ \text{mm} \\ V = 915.9 \ (5) \ \mathring{A}^3 & \end{array}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.947$, $T_{\max} = 0.947$

15843 measured reflections 4196 independent reflections 2759 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.032$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.125$ S = 1.034196 reflections

228 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.24$ e Å⁻³ $\Delta \rho_{\rm min} = -0.29$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
$ \begin{array}{c} C2-H2\cdotsO8^{i} \\ C6-H6C\cdotsO8 \end{array} $	0.93	2.58	3.453 (3)	157
	0.96	2.42	3.041 (3)	122

Symmetry code: (i) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*

C and KNN would like to thank the University of Mysore for awarding RFSMS fellowships [DV5/Physics/389/RFSMS/2009–2010/10.07.2012 and No. F4–1/2006(BSR)/7–131/2007, respectively].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2292).

References

Banwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). *Bioorg. Med. Chem.* 14, 4627–4638.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Mohamed, M. S., El-Domany, R. A. & El-Hameed, R. H. A. (2009). Acta Pharm. 59, 145–158.

Sheldrick, G. M. (2001). SADABS, University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sosa, A. C. B., Yakushijin, K. & Horne, D. A. (2002). J. Org. Chem. 67, 4498–4500.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2013). E69, o1269 [doi:10.1107/S1600536813019247]

Ethyl 1,4-bis(4-chlorophenyl)-2-methyl-1*H*-pyrrole-3-carboxylate

K. N. Nandeesh, Chandra, M. Mahendra, K. Palani and K. Mantelingu

Comment

Pyrrole is a five-membered heterocyclic ring with one nitrogen atom. Its derivatives exhibit a variety of biological activities such as antitumor (Banwell *et al.*, 2006) and antimicrobial (Mohamed *et al.*, 2009) activities. They also inhibit protein kinase (Sosa *et al.*, 2002). With this background of pyrrole derivatives, we have synthesized the title compound in order to study its crystal structure.

In the molecular structure of the title compound (Fig. 1), the dihedral angle between the pyrrole ring (N1/C2/C3/C4/C5) with phenyl rings (C19/C20/C21/C22/C23/C24) and (C12/C13/C14/C15/C16/C17) are 63.42 (11)° and 70.43 (12)°, respectively. The ethoxycarbonyl unit is in *syn-periplanar* conformation with respect to the pyrrole moiety, as indicated by the dihedral angle value of 14.5 (3)° (C3/C4/C7/O9). There are no classical hydrogen bonds and the crystal structure is stabilized by C—H···O hydrogen bonds only (see Table 1). C6—H6C···O8 forms an intramolecular hydrogen bond, while C2—H2···O8 links molecules which are parallel to the axis *a*. The packing of the molecules is shown in Fig. 2.

Experimental

To a stirred solution of *para*-chloroaniline (1.5 mmol), *para*-chlorobenzaldehyde (1.0 mmol) and ethyl acetoacetate (1.0 mmol) in nitromethane (1.5 ml), ferric chloride (FeCl₃) (0.1 mmol) was added. The mixture was refluxed at $90-100^{\circ}$ C for 6 hrs and then cooled to room temperature. The excess of solvent was removed under vacuum and the residue was directly purified by column chromatography using 60-120 silica gel with ethyl acetate in hexane (1:9) as eluent which afforded the desired product as yellow solid with 88% yield. The crude product has been recrystallized from hot ethanol. Typical size of the block-shaped crystals was $0.20 \times 0.15 \times 0.10$ mm.

Refinement

All the H atoms were located in the difference electron density map. Nevertheless all the H atoms were situated into the idealized positions and allowed to ride on their parent atoms with C–H distances equal to 0.93, 0.96 and 0.97Å for aryl, methylene and methyl hydrogens. $U_{\rm iso}H_{\rm aryl/methylene} = 1.2 U_{\rm eq}C_{\rm aryl/methylene}$ and $U_{\rm methyl} = 1.5 U_{\rm eq}C_{\rm methyl}$

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1The title molecule with the labelling scheme. The displacement ellipsoids are shown at the 50% probability level.

Figure 2 Packing diagram of the molecule viewed parallel to the *a* axis.

$\label{lem:eq:harmonic} \textbf{Ethyl 1,4-bis} (4-\textbf{chlorophenyl}) \textbf{-} 2-\textbf{methyl-1} \textbf{\textit{H}-pyrrole-3-carboxylate} \\$

Crystal data $C_{20}H_{17}Cl_2NO_2$ $\gamma = 76.804 (16)^{\circ}$ $V = 915.9 (5) \text{ Å}^3$ $M_r = 374.25$ Triclinic, $P\overline{1}$ Z = 2Hall symbol: -P 1 F(000) = 388 $D_{\rm x} = 1.357 \; {\rm Mg \; m^{-3}}$ a = 8.037 (2) Å Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ b = 9.797 (3) Å c = 12.510 (4) ÅCell parameters from 4196 reflections $\alpha = 72.774 (16)^{\circ}$ $\theta = 1.7 - 27.5^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$ $\beta = 86.838 (16)^{\circ}$

T = 296 KBlock, yellow

Data collection

Bruker SMART APEXII CCD area-detector diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

 ω and φ scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.947$, $T_{\max} = 0.947$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.125$

S = 1.02

4196 reflections 228 parameters 0 restraints 66 constraints $0.15 \times 0.15 \times 0.15 \text{ mm}$

15843 measured reflections 4196 independent reflections 2759 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.032$

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$

 $h = -10 \rightarrow 10$

 $k = -12 \rightarrow 12$

 $l = -16 \rightarrow 16$

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier

Hydrogen site location: difference Fourier map

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0487P)^2 + 0.2827P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} \leq 0.001$

 $\Delta \rho_{\text{max}} = 0.24 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.29 \text{ e Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	х	y	Z	$U_{ m iso}$ */ $U_{ m eq}$
C118	0.20768 (10)	0.57041 (7)	0.24828 (5)	0.0884 (2)
C125	0.78934 (10)	-0.46743(9)	1.16162 (6)	0.1057 (3)
O9	-0.18070 (16)	0.14269 (16)	0.59033 (12)	0.0585 (4)
O8	-0.27098 (18)	0.0253 (2)	0.75691 (13)	0.0735 (5)
N1	0.2589 (2)	-0.07110 (19)	0.83555 (13)	0.0521 (4)
C13	0.1310(3)	0.2004(2)	0.46496 (17)	0.0554 (5)
H13	0.1005	0.1157	0.4616	0.067*
C12	0.1613 (2)	0.2151(2)	0.56891 (15)	0.0458 (4)
C3	0.1594(2)	0.0973 (2)	0.67518 (15)	0.0470 (4)
C7	-0.1558(2)	0.0648 (2)	0.69825 (16)	0.0498 (5)
C4	0.0231 (2)	0.0321 (2)	0.73283 (15)	0.0458 (4)
C15	0.1876 (3)	0.4336 (2)	0.37081 (17)	0.0562 (5)
C17	0.2025 (3)	0.3436 (2)	0.56978 (17)	0.0554 (5)
H17	0.2219	0.3576	0.6380	0.066*

C14	0.1448 (3)	0.3078 (2)	0.36672 (17)	0.0589 (5)
H14	0.1251	0.2949	0.2982	0.071*
C19	0.3838 (2)	-0.1689(2)	0.91686 (16)	0.0505 (5)
C2	0.2999 (2)	0.0304(2)	0.74178 (16)	0.0533 (5)
H2	0.4079	0.0502	0.7263	0.064*
C22	0.6316(3)	-0.3508(3)	1.06663 (17)	0.0615 (6)
C16	0.2157 (3)	0.4528 (2)	0.47182 (19)	0.0640 (6)
H16	0.2436	0.5388	0.4746	0.077*
C6	0.0083 (3)	-0.1721(3)	0.92294 (19)	0.0655 (6)
H6A	-0.0078	-0.1366	0.9874	0.098*
H6B	0.0816	-0.2684	0.9426	0.098*
H6C	-0.1003	-0.1764	0.8973	0.098*
C5	0.0887 (2)	-0.0707(2)	0.83166 (16)	0.0501 (5)
C23	0.6287 (3)	-0.3663 (3)	0.9623 (2)	0.0794 (8)
H23	0.7100	-0.4383	0.9421	0.095*
C20	0.3894(3)	-0.1548(3)	1.02199 (18)	0.0664 (6)
H20	0.3088	-0.0826	1.0424	0.080*
C21	0.5134 (3)	-0.2469(3)	1.09782 (18)	0.0690 (6)
H21	0.5162	-0.2381	1.1697	0.083*
C24	0.5039 (3)	-0.2739(3)	0.88682 (18)	0.0721 (7)
H24	0.5014	-0.2832	0.8151	0.087*
C10	-0.3529(3)	0.1775 (3)	0.54626 (19)	0.0698 (6)
H10A	-0.4272	0.2462	0.5798	0.084*
H10B	-0.3972	0.0894	0.5630	0.084*
C11	-0.3464(3)	0.2438 (3)	0.4224 (2)	0.0822 (8)
H11A	-0.3013	0.3303	0.4068	0.123*
H11B	-0.4596	0.2694	0.3910	0.123*
H11C	-0.2742	0.1744	0.3900	0.123*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C118	0.1196 (6)	0.0733 (4)	0.0583 (4)	-0.0226 (4)	0.0054(3)	0.0019(3)
Cl25	0.1053 (6)	0.1152 (6)	0.0738 (4)	0.0282 (4)	-0.0484(4)	-0.0242(4)
O8	0.0469 (8)	0.1037 (13)	0.0608 (9)	-0.0179(8)	0.0010(7)	-0.0098(9)
O9	0.0441 (7)	0.0719 (10)	0.0534 (8)	-0.0092(7)	-0.0091 (6)	-0.0103(7)
N1	0.0445 (9)	0.0604 (10)	0.0448 (9)	-0.0098(7)	-0.0067 (7)	-0.0056(8)
C2	0.0458 (11)	0.0623 (13)	0.0474 (11)	-0.0157 (9)	-0.0044(8)	-0.0057 (10)
C3	0.0447 (10)	0.0518 (11)	0.0444 (10)	-0.0085(8)	-0.0044(8)	-0.0146 (9)
C4	0.0431 (10)	0.0495 (11)	0.0440 (10)	-0.0073 (8)	-0.0011 (8)	-0.0143 (9)
C5	0.0445 (10)	0.0551 (12)	0.0495 (11)	-0.0099(9)	-0.0014 (8)	-0.0141 (9)
C6	0.0567 (13)	0.0673 (15)	0.0614 (14)	-0.0137 (11)	0.0008 (10)	-0.0022 (11)
C7	0.0471 (11)	0.0542 (12)	0.0470 (11)	-0.0065(9)	-0.0031(9)	-0.0163(9)
C10	0.0461 (11)	0.0895 (17)	0.0670 (14)	-0.0050(11)	-0.0159 (10)	-0.0172 (13)
C11	0.0730 (16)	0.104(2)	0.0638 (15)	-0.0006 (14)	-0.0226 (12)	-0.0256 (14)
C12	0.0391 (9)	0.0498 (11)	0.0454 (10)	-0.0043(8)	-0.0050(7)	-0.0126(9)
C13	0.0609 (12)	0.0560 (12)	0.0521 (12)	-0.0145 (10)	-0.0025 (9)	-0.0181 (10)
C14	0.0657 (13)	0.0681 (14)	0.0432 (11)	-0.0131 (11)	-0.0025 (9)	-0.0177 (10)
C15	0.0562 (12)	0.0538 (12)	0.0487 (11)	-0.0031 (9)	0.0008 (9)	-0.0072 (10)
C16	0.0803 (15)	0.0499 (12)	0.0617 (14)	-0.0140(11)	-0.0046(11)	-0.0157(11)

C17	0.0637 (13)	0.0549 (13)	0.0474 (11)	-0.0092 (10)	-0.0085 (9)	-0.0161 (10)
C19	0.0464 (10)	0.0563 (12)	0.0429 (10)	-0.0089(9)	-0.0073 (8)	-0.0059(9)
C20	0.0676 (14)	0.0734 (15)	0.0534 (13)	0.0026 (11)	-0.0073 (10)	-0.0238(11)
C21	0.0756 (15)	0.0849 (17)	0.0443 (11)	-0.0051 (13)	-0.0134 (10)	-0.0225(12)
C22	0.0628 (13)	0.0675 (14)	0.0463 (11)	-0.0038 (11)	-0.0170(9)	-0.0098(10)
C23	0.0809 (16)	0.0853 (18)	0.0589 (14)	0.0205 (13)	-0.0208 (12)	-0.0267(13)
C24	0.0764 (15)	0.0865 (17)	0.0474 (12)	0.0090 (13)	-0.0181 (10)	-0.0275 (12)

Geometric parameters (Å, °)

<i>P</i> · · · · · · · · · · · · · · · · · · ·	, ,		
Cl18—C15	1.740 (2)	C19—C24	1.366 (3)
C125—C22	1.739 (3)	C20—C21	1.376 (3)
O8—C7	1.211 (2)	C21—C22	1.358 (4)
O9—C7	1.340(2)	C22—C23	1.360(3)
O9—C10	1.447 (3)	C23—C24	1.379 (4)
N1—C2	1.375 (3)	C2—H2	0.9300
N1—C5	1.371 (2)	С6—Н6А	0.9600
N1—C19	1.434 (3)	C6—H6B	0.9600
C2—C3	1.357 (3)	С6—Н6С	0.9600
C3—C4	1.445 (2)	C10—H10A	0.9700
C3—C12	1.482 (3)	C10—H10B	0.9700
C4—C5	1.383 (3)	C11—H11A	0.9600
C4—C7	1.461 (2)	C11—H11B	0.9600
C5—C6	1.499 (3)	C11—H11C	0.9600
C10—C11	1.495 (3)	C13—H13	0.9300
C12—C13	1.390(3)	C14—H14	0.9300
C12—C17	1.376 (3)	C16—H16	0.9300
C13—C14	1.379 (3)	C17—H17	0.9300
C14—C15	1.369 (3)	C20—H20	0.9300
C15—C16	1.369 (3)	C21—H21	0.9300
C16—C17	1.385 (3)	C23—H23	0.9300
C19—C20	1.367 (3)	C24—H24	0.9300
C118····C21 ⁱ	3.505 (3)	C10···H2 ^v	3.0500
C118···H23 ⁱⁱ	3.0100	C10···H16 ^{vii}	3.0400
C125···H17 ⁱⁱⁱ	3.0000	C11···H16 ^{vii}	3.0700
O8···C6	3.041 (3)	C15···H11B ^x	2.9100
$O8\cdots C20^{iv}$	3.377 (3)	C17···H10A ^x	2.9100
O9···C12	2.971 (2)	C19···H6B	2.7900
O9···C13	2.957 (3)	H2···O8 ^x	2.5800
O8···H10A	2.7200	H2···C10 ^x	3.0500
O8···H10B	2.5300	H2···H10B ^x	2.5000
$O8\cdots H20^{iv}$	2.7200	H6B···C19	2.7900
$O8\cdots H21^{iv}$	2.8500	H6C···O8	2.4200
O8···H2 ^v	2.5800	H6C···C7	2.8500
O8···H6C	2.4200	H10A…O8	2.7200
O9···H13	2.7100	H10A···C17 ^v	2.9100
O9···H13 ^{vi}	2.7300	H10B···O8	2.5300
O9···H16 ^{vii}	2.9100	$H10B\cdots H2^{v}$	2.5000
C6···O8	3.041 (3)	H11A···H16vii	2.3500

Acta Cryst. (2013). E**69**, o1269

C6···C20	3.424 (4)	H11B···C15 ^v	2.9100
C12···O9	2.971 (2)	H11B···H24 ^{vi}	2.5800
C13···O9	2.957 (3)	H11C···C2 ^{vi}	3.0000
C15···C17 ^{vii}	3.567 (3)	H11C···C3 ^{vi}	2.9500
C16···C17 ^{vii}	3.473 (3)	H13···O9	2.7100
C16···C16 ^{vii}	3.468 (4)	H13···O9 ^{vi}	2.7300
C17···C15 ^{vii}	3.567 (3)	H13···C7 ^{vi}	2.9900
C17···C16 ^{vii}	3.473 (3)	H16···O9 ^{vii}	2.9100
$C20\cdots O8^{iv}$	3.377 (3)	H16···C10 ^{vii}	3.0400
C20···C6	3.424 (4)	H16···C11 ^{vii}	3.0700
C21···Cl18viii	3.505 (3)	H16···H11A ^{vii}	2.3500
C23···C23 ^{ix}	3.582 (4)	H17···C2	3.0100
C2···H11C ^{vi}	3.0000	H17···Cl25 ⁱⁱⁱ	3.0000
C2···H24	3.0200	$H20\cdots O8^{iv}$	2.7200
C2···H17	3.0100	H21···O8 ^{iv}	2.8500
C3···H11C ^{vi}	2.9500	H23···Cl18 ⁱⁱ	3.0100
C7···H13 ^{vi}	2.9900	H24···C2	3.0200
С7…Н6С	2.8500	H24···H11B ^{vi}	2.5800
C7—O9—C10	116.77 (15)	C19—C24—C23	120.4(2)
C2—N1—C5	109.47 (16)	N1—C2—H2	125.00
C2—N1—C19	122.99 (16)	C3—C2—H2	125.00
C5—N1—C19	127.29 (16)	C5—C6—H6A	109.00
N1—C2—C3	109.90 (16)	C5—C6—H6B	109.00
C2—C3—C4	105.42 (16)	C5—C6—H6C	109.00
C2—C3—C12	122.85 (16)	H6A—C6—H6B	109.00
C4—C3—C12	131.70 (16)	H6A—C6—H6C	110.00
C3—C4—C5	108.37 (15)	H6B—C6—H6C	109.00
C3—C4—C7	128.27 (17)	O9—C10—H10A	110.00
C5—C4—C7	123.36 (16)	O9—C10—H10B	110.00
N1—C5—C4	106.84 (16)	C11—C10—H10A	110.00
N1—C5—C6	121.23 (18)	C11—C10—H10B	110.00
C4—C5—C6	131.92 (17)	H10A—C10—H10B	108.00
O8—C7—O9	122.15 (17)	C10—C11—H11A	109.00
O8—C7—C4	125.71 (18)	C10—C11—H11B	109.00
O9—C7—C4	112.13 (15)	C10—C11—H11C	109.00
O9—C10—C11	107.67 (19)	H11A—C11—H11B	109.00
C3—C12—C13	123.03 (18)	H11A—C11—H11C	110.00
C3—C12—C17	119.97 (17)	H11B—C11—H11C	110.00
C13—C12—C17	116.92 (18)	C12—C13—H13	119.00
C12—C13—C14	121.90 (19)	C14—C13—H13	119.00
C13—C14—C15	119.53 (19)	C13—C14—H14	120.00
C118—C15—C14	120.60 (16)	C15—C14—H14	120.00
Cl18—C15—C16	119.25 (17)	C15—C16—H16	120.00
C14—C15—C16	120.15 (19)	C17—C16—H16	120.00
C15—C16—C17	119.7 (2)	C12—C17—H17	119.00
C12—C17—C16	121.80 (19)	C16—C17—H17	119.00
N1—C19—C20	121.23 (19)	C19—C20—H20	120.00
N1—C19—C24	119.19 (18)	C21—C20—H20	120.00

C20—C19—C24 119.5 (2) C20—C21—H21 120.00 C19—C20—C21 120.4 (2) C22—C21—H21 120.00 C20—C21—C22 119.3 (2) C22—C23—H23 120.00 Cl25—C22—C21 119.70 (17) C24—C23—H23 120.00 Cl25—C22—C23 119.1 (2) C19—C24—H24 120.00	
C20—C21—C22 119.3 (2) C22—C23—H23 120.00 C125—C22—C21 119.70 (17) C24—C23—H23 120.00	
Cl25—C22—C21 119.70 (17) C24—C23—H23 120.00	
Cl25—C22—C23 119 1 (2) C19—C24—H24 120 00	
C120 C21 C23 117.1 (2) C17 C24 1124 120.00	
C21—C22—C23 121.2 (2) C23—C24—H24 120.00	
C22—C23—C24 119.2 (3)	
C10—O9—C7—O8	
C10—O9—C7—C4 178.21 (19) C3—C4—C7—O8 -167.2 (2	.)
C7—O9—C10—C11	
C5—N1—C2—C3	
C19—N1—C2—C3 174.18 (18) C5—C4—C7—O9 -166.22	19)
C2—N1—C5—C4	.)
C2—N1—C5—C6 179.4 (2) C17—C12—C13—C14 1.3 (3)	
C19—N1—C5—C4 — 173.79 (19)	
C19—N1—C5—C6 5.0 (3) C13—C12—C17—C16 -0.9 (3)	
C2—N1—C19—C20 110.8 (2) C12—C13—C14—C15 -0.8 (4)	
C2—N1—C19—C24 — 66.3 (3) — C13—C14—C15—C118 — 179.48 (1	9)
C5—N1—C19—C20	
C5—N1—C19—C24 107.5 (2) C118—C15—C16—C17 -179.05 (19)
N1—C2—C3—C4	
N1—C2—C3—C12 178.42 (18) C15—C16—C17—C12 -0.1 (4)	
C2—C3—C4—C5	.)
C2—C3—C4—C7 179.6 (2) C24—C19—C20—C21 -1.0 (4)	
C12—C3—C4—C5	
C12—C3—C4—C7	
C2—C3—C12—C13	
C2—C3—C12—C17 — 60.8 (3) — C20—C21—C22—C125 — 179.8 (2)	
C4—C3—C12—C13	
C4—C3—C12—C17	.)
C3—C4—C5—N1	
C3—C4—C5—C6 —179.1 (2) ———————————————————————————————————	
C7—C4—C5—N1 —179.95 (18)	

Symmetry codes: (i) x, y+1, z-1; (ii) -x+1, -y, -z+1; (iii) -x+1, -y, -z+2; (iv) -x, -y, -z+2; (v) x-1, y, z; (vi) -x, -y, -z+1; (viii) -x, -y+1, -z+1; (viii) x, y-1, z+1; (ix) -x+1, -y-1, -z+2; (x) x+1, y, z.

Hydrogen-bond geometry (Å, o)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	\mathbf{H} ··· A	D··· A	D— H ··· A	
C2—H2···O8 ^x	0.93	2.58	3.453 (3)	157	
C6—H6 <i>C</i> ···O8	0.96	2.42	3.041 (3)	122	

Symmetry code: (x) x+1, y, z.

Acta Cryst. (2013). E**69**, o1269