Binary Semantic Segmentation Lab Report # 3

By 312581020 許瀚丰

Deep Learning Spring 2024 Date Submitted: April 10, 2024

Contents

1	Overview of your lab 3					
	1.1	Problem Statement	9			
2	Implementation Details					
	2.1	Details of your training, evaluating, inferencing code	ું			
		2.1.1 Training	5			
		2.1.2 Evaluating	4			
		2.1.3 Inferencing	Ę			
	2.2	Details of your model (UNet ResNet34_UNet)	6			
		2.2.1 UNet	6			
		2.2.2 ResNet34_UNet	7			
	2.3	Dice Loss	10			
3	Data Preprocessing					
	3.1	How you preprocessed your data?	10			
	3.2	What makes your method unique?	12			
4	Analyze on the experiment results					
	4.1	Hyperparameter settings	12			
	4.2	What did you explore during the training process	12			
	4.3	Found any characteristics of the data?	13			
	4.4	Analyze on testing results	13			
		4.4.1 testing results	13			
		4.4.2 testing analyze	14			
5	Exe	ecution command	15			
	5.1	The command and parameters for the training process	15			
	5.2	The command and parameters for the evaluate process	15			

6	Dis	cussion	16
	6.1	What architecture may bring better results?	16
		6.1.1 Ensemble learning	16
		6.1.2 Object Detection	16
	6.2	What are the potential research topics in this task?	16
\mathbf{L}	isti	ngs	
	1	Training	3
	2	Evaluating	4
	3	Inferencing	5
	4	DoubleConv	6
	5	UNet	6
	6	ResidualBlck	7
	7	ResNet34_UNet	8
	8	Dice Loss	10
	9	Data Preprocessing	11
	10	train script	15
	11	avaluate script	16

1 Overview of your lab 3

1.1 Problem Statement

本次實驗是實作兩個不同的Binary Semantic Segmentation模型,分別為UNet與ResNet34 + UNet,並將其訓練於Oxford-IIIT Pet Dataset上,並期望模型預測出的結果會是一個只含有0與1的矩陣,1代表的是模型預測此位置為物件,0則代表是背景。本次任務的目標是透過計算預測答案與實際答案的Dice Score的方式作為指標,希望計算結果結果越高越好。

2 Implementation Details

2.1 Details of your training, evaluating, inferencing code

2.1.1 Training

Training的過程其實與不同任務的訓練無異,皆是先宣告模型(分別為UNet與ResNet34_UNet),希望使用的Optimizer(在此我使用的是Adam)與Loss Function(Binary Cross Entropy Loss + Dice Loss),與一些額外用來記錄模型訓練情況的工具(Tensorboard,tqdm等)。而在訓練中,就是依照Forward,Calculate Loss,Backward,Update的順序進行,之後分別計算Training與Evaluate的Loss與Dice Score,,並只儲存Evaluate的Dice Score最高時的Model Weights,如程式碼1所示。

```
def train(args):
    train_data = load_dataset(args.data_path, mode="train")
    train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True)

val_data = load_dataset(args.data_path, mode="valid")

val_loader = DataLoader(val_data, batch_size=1, shuffle=False)

if args.model == "unet":
    model = UNet(3, 1).to(args.device)

else:
    model = ResNet34_UNet(3, 1).to(args.device)

optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)

criterion = nn.BCELoss()

writer = SummaryWriter(f"runs/{args.model}/")

best_dice_score = 0.88
```

```
for epoch in range(args.epochs):
           train_loss = []
           train_dice_score = []
          model.train()
18
          progress = tqdm(enumerate(train_loader))
19
          for i, batch in progress:
20
               image = batch["image"].to(args.device)
               mask = batch["mask"].to(args.device)
               pred_mask = model(image)
23
               loss = criterion(pred_mask, mask) + dice_loss(pred_mask, mask)
24
               train_loss.append(loss.item())
25
               optimizer.zero_grad()
26
               loss.backward()
               optimizer.step()
28
               with torch.no_grad():
29
                   train_dice_score.append(dice_score(pred_mask, mask).item())
               progress.set_description((f"Epoch: {epoch + 1}/{args.epochs}, iter: {i +
31
      1}/{len(train_loader)}, Loss: {np.mean(train_loss):.4f}, Dice Score: {np.mean(
      train_dice_score):.4f}"))
           val_loss, val_dice_score = evaluate(model, val_loader, args.device)
32
           writer.add_scalars(f"Loss", {"train": np.mean(train_loss), "valid": np.mean(
      val_loss)}, epoch)
           writer.add_scalars(f"Dice Score", {"train": np.mean(train_dice_score), "valid"
35
      : np.mean(val_dice_score)}, epoch)
           if np.mean(val_dice_score) > best_dice_score:
36
               best_dice_score = np.mean(val_dice_score)
37
               torch.save(model, f"../saved_models/{args.model}.pth")
```

Listing 1: Training

2.1.2 Evaluating

Evaluating的部分基本上與Training Process差異不大,但仍有幾點需要特別設定,首先是需要將Model設定為Eval Mode 來關閉Model的BatchNorm,並且是由於模型不需要做更新,因此我們在過程中也使用no_grad來節省記憶體的使用,如程式碼2所示。

```
1 def evaluate(net, data, device):
2    val_loss = []
3    val_dice_score = []
```

```
criterion = nn.BCELoss()
      with torch.no_grad():
          net.eval()
          for batch in data:
              image = batch["image"].to(device)
              mask = batch["mask"].to(device)
              pred_mask = net(image)
10
              val_loss.append(criterion(pred_mask, mask).item() + dice_loss(pred_mask,
11
      mask).item())
              val_dice_score.append(dice_score(pred_mask, mask).item())
12
          print(f"val losses: {np.mean(val_loss)}, val dice score: {np.mean(
13
      val_dice_score)}")
      return val_loss, val_dice_score
```

Listing 2: Evaluating

2.1.3 Inferencing

在Inferecning中,首先我們需要將Model給Load進來,之後便與Evaluating類似,但不需要再計算Loss,只需要計算Dice Score即可。

```
1 def inference(args):
      model = torch.load("../saved_models/{args.model}.pth")
      model.eval()
      model.to(args.device)
      data = load_dataset(args.data_path, mode="test")
      dataloader = torch.utils.data.DataLoader(data, batch_size=args.batch_size, shuffle
      =False)
      dice_scores = []
      for i, batch in tqdm(enumerate(dataloader)):
          image = batch["image"].to(args.device)
          mask = batch["mask"].to(args.device)
          pred_mask = model(image)
          dice = dice_score(pred_mask, mask)
          dice_scores.append(dice.item())
13
      print(f"Mean Dice Score: {np.mean(dice_scores)}")
```

Listing 3: Inferencing

2.2 Details of your model (UNet ResNet34_UNet)

2.2.1 UNet

在UNet的架構中,每一個Block都是由兩個Conv組合而成,因此首先我先定義了一個由兩個Conv的架構所組合的DoubleConv,如程式碼4所示。

```
class DoubleConv(nn.Module):

def __init__(self, in_channels, out_channels):

super(DoubleConv, self).__init__()

self.conv = nn.Sequential(

nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False),

nn.BatchNorm2d(out_channels),

nn.ReLU(inplace=True),

nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False),

nn.BatchNorm2d(out_channels),

nn.BatchNorm2d(out_channels),

nn.ReLU(inplace=True)

)

def forward(self, x):

return self.conv(x)
```

Listing 4: DoubleConv

UNet的架構非常單純,就是由四個Down block與四個Up block所組合而成,而中間還有一個bottleneck用來做升維,並將所有Up Blcok的輸出與對應的Up Blcok的輸入做concatenate,最後在輸出結果時在透過一個Conv與一個sigmoid來將其變為一個與輸入影像大小相同(只有H*W),但介於0到1的矩陣,如程式碼5所示。

```
for feature in reversed(features):
               self.ups.append(nn.ConvTranspose2d(feature*2, feature, kernel_size=2,
      stride=2))
               self.ups.append(DoubleConv(feature*2, feature))
17
18
      def forward(self, x):
19
           skips = []
20
           for down in self.downs:
               x = down(x)
               skips.append(x)
23
               x = self.pool(x)
           x = self.bottleneck(x)
25
           for up in self.ups:
26
               if isinstance(up, nn.ConvTranspose2d):
                   x = up(x)
28
                   x = torch.cat((x, skips.pop()), dim=1)
29
                   x = up(x)
31
           x = self.last(x)
32
           return x
```

Listing 5: UNet

2.2.2 ResNet34_UNet

在ResBet34_UNet中,首先ResNet34就是由ConvBlcok與ResidualBlock所組合而成,ConvBlcok的其實就是Conv+batchNorm+ReLU,比較需要注意的是由於在ResNet34中可能會有需要Downsampling的部分,因此需要特別設定Conv的stride為何。而在ResidualBlock中,由於每個blcok的輸入是由上個block而來,因此需要特別注意在做Downsample時,skip connection時維度會不相同,因此就有前半部shortcut的部分,若需要Downsample時就需要一個額外的Conv來做降維。而其餘的部分就是一般的Residual的作法,輸出的結果就是原始輸入(可能有經過shortcut)再加上經過兩個ConvBlock的結果,如程式碼6所示。

```
self.bn = nn.BatchNorm2d(out_channels)
           self.act = nn.ReLU(inplace=True)
      def forward(self, x):
          h = self.conv(x)
10
          h = self.bn(h)
11
          h = self.act(h)
12
          return h
13
15 class ResidualBlock(nn.Module):
      def __init__(self, in_channels, out_channels, down = False):
16
           super(ResidualBlock, self).__init__()
17
           if down:
18
               self.shortcut = nn.Sequential(
                   nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=2),
20
                   nn.BatchNorm2d(out_channels)
21
          else:
23
               self.shortcut = nn.Identity()
24
           self.block = nn.Sequential(
25
               ConvBlock(in_channels, out_channels, down=down),
               ConvBlock(out_channels, out_channels, down=False),
28
      def forward(self, x):
           return self.shortcut(x) + self.block(x)
```

Listing 6: ResidualBlck

而整體ResNet34_UNet架構的部分可以分為前半的Encoder與後半的Decoder。前半部分就是直接使用ResNet34的架構,並在中間的Conv2至Conv5將輸出結果儲存下來,而在建立時使用build_layer來建立,需要特別注意除了Conv2外其餘的Conv在第一個ResidualBlcok皆會需要設定Down為True來做降維,其餘的部分只需要使用迴圈一一建立即可。至於BottleNeck的部分,我使用了一個ResidualBock來建立。而之後Decoder的部分與將結果轉為與輸入影像大小相同的矩陣的部分與UNet後半部分完全相同,如程式碼7所示。

```
class ResNet34_UNet(nn.Module):
    def __init__(self, in_channels, out_channels, features=[64, 128, 256, 512],
        num_block=[3, 4, 6, 3]):
        super(ResNet34_UNet, self).__init__()
        self.init = nn.Sequential(
```

```
nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
              nn.BatchNorm2d(64),
               nn.ReLU(inplace=True),
              nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
          self.downs = nn.ModuleList()
           self.downs.append(self.build_layer(features[0], features[0], num_block[0],
11
           self.downs.append(self.build_layer(features[0], features[1], num_block[0],
12
      True))
          self.downs.append(self.build_layer(features[1], features[2], num_block[0],
13
      True))
           self.downs.append(self.build_layer(features[2], features[3], num_block[0],
      True))
15
           self.bottleneck = ResidualBlock(features[-1], features[-1] * 2, True)
17
          self.ups = nn.ModuleList()
18
           for feature in reversed(features):
               self.ups.append(nn.ConvTranspose2d(feature*2, feature, kernel_size=2,
20
      stride=2))
               self.ups.append(DoubleConv(feature*2, feature))
21
22
           self.last = nn.Sequential(
               nn.ConvTranspose2d(features[0], features[0], kernel_size=2, stride=2),
24
               nn.BatchNorm2d(features[0]),
              nn.ReLU(inplace=True),
26
               nn.ConvTranspose2d(features[0], features[0], kernel_size=2, stride=2),
27
               nn.BatchNorm2d(features[0]),
29
               nn.ReLU(inplace=True),
               nn.Conv2d(features[0], out_channels, kernel_size=1),
30
               nn.Sigmoid()
31
      def build_layer(self, in_channels, out_channels, num_block, down):
33
34
          layer = [ResidualBlock(in_channels, out_channels, down)]
          for _ in range(1, num_block):
35
               layer.append(ResidualBlock(out_channels, out_channels, False))
          return nn.Sequential(*layer)
38
      def forward(self, x):
          x = self.init(x)
40
          skips = []
```

```
for down in self.downs:
               x = down(x)
43
               skips.append(x)
44
           x = self.bottleneck(x)
45
           for up in self.ups:
46
               if isinstance(up, nn.ConvTranspose2d):
47
                   x = up(x)
48
                   x = torch.cat((x, skips.pop()), dim=1)
49
                   x = up(x)
           x = self.last(x)
           return x
```

Listing 7: ResNet34_UNet

2.3 Dice Loss

在Loss Function的部分,經過實驗我發現使用BCELoss加上Dice Loss的結果是最好的,Dice Loss的部分實作了一個Dice Loss來作為其中一個Objective,其與Dice Score最大的差別主要是比較注重於畫面Object (class = 1) 的部分,且與Dice Score相比並不需要兩個predict class與actual class完全相同,而是直接用相乘的方式,我認為此方式對於在做Backpropagation也會更有幫助,如程式碼8所示。

```
def dice_loss(pred_mask, gt_mask, eps=1e-8):
    import torch
    intersection = torch.sum(gt_mask * pred_mask) + eps
    union = torch.sum(gt_mask) + torch.sum(pred_mask) + eps
    loss = 1 - (2 * intersection / union)
    return loss
```

Listing 8: Dice Loss

3 Data Preprocessing

3.1 How you preprocessed your data?

在Data Preprocessing的部分,我使用Albumentations這個套件,此套件最主要的優勢是可以同時對Image與Mask做一樣的操作,而我在Training時對每張照片皆做以下

操作,如程式碼9所示:

- Resize成256 × 256
- 隋機翻轉
- 隨機擷取畫面一部分並Resize成256 × 256
- 隨機平移與旋轉±30度
- 隨機調整畫面的HSI
- 依照ImageNet 影像的統計結果來對資料做Normalization

```
def load_dataset(data_path, mode):
      import albumentations as A
      from albumentations.pytorch import ToTensorV2
      train_transform = A.Compose(
               A.Resize(256, 256),
               A.Flip(),
               A.RandomResizedCrop(size=(256, 256), scale=(0.8, 1)),
               A.ShiftScaleRotate(shift_limit=0.2, scale_limit=0.2, rotate_limit=30, p
      =0.5),
10
               A.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2, p
      =0.5),
               A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
11
               ToTensorV2(),
12
          ],
      transform = A.Compose(
           Ε
16
17
               A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
18
               ToTensorV2(),
19
          ],
20
21
22
      if mode == "train":
          dataset = OxfordPetDataset(root=data_path, mode="train", transform=
23
      train_transform)
      elif mode == "valid":
          dataset = OxfordPetDataset(root=data_path, mode="valid", transform=transform)
```

```
elif mode == "test":

dataset = OxfordPetDataset(root=data_path, mode="test", transform=transform)
return dataset
```

Listing 9: Data Preprocessing

3.2 What makes your method unique?

其中我認為較為特別的是我加上了ColorJitter與參考了ImageNet所統計出來的mean與std來做Normalization。前者可以在不改變畫面內容物位置的情況下透過調整畫面的HSI來增加資料的多樣性,而後者與直接將資料Normalize成-1到1的方法更能符合實際影像上的結果,期望因此能提升模型的泛化能力。

4 Analyze on the experiment results

4.1 Hyperparameter settings

以下為本次實驗的超參數設定:

• Batch Size: 32

• Loss Function: CrossEntropyLoss + Dice Loss

• Optimizer: Adam

• Epoch: 400

• Learning Rate: $1 * 10^{-3}$

4.2 What did you explore during the training process

訓練結果的Comparison figure如表1所示,可以觀察到ResNet34_UNet相比於UNet在前期更容易提升,可見使用ResNet34的架構對於模型是更容易訓練的,然而在訓練後期UNet在Training Dataset的Mean Dice Score是更高的。另外我們也可以觀察到,

兩者訓練到最後Training的Mean Dice Score雖然只相差1%左右,然而在Validation上兩者則相差無幾,可見ResNet34_UNet的架構泛化能力可能是更好的。

Table 1: Comparison figure

4.3 Found any characteristics of the data?

在常見的Image Semantic Segmentation任務上,我們想要擷取的Object往往是畫面中的一小部分,因此物件與背景在畫面中的比例往往是不均衡的,因此在訓練上可能會傾向於使用Focal Loss來加强對於物件的訓練。然而對於此資料集來說,物件在畫面中的比例相較起來是更大的,且再加上Crop等Image Augmentation便能使物體在畫面的比例變大,因此在我的實驗中,使用BCE Loss與Dice Loss的效果是比使用Focal Loss更好的。

4.4 Analyze on testing results

4.4.1 testing results

實驗結果如表2所示,我們可以發現兩者在Testing dataset上的結果差異不大,Mean Dice Score都有約0.95左右,而ResNet34_UNet在Testing略好一些。

UNet Mean Dice Score	ResNet34_UNet Mean Dice Score
inference on UNet Mean Dice Score: 0.9527780944042357	inference on ResNet34_UNet Mean Dice Score: 0.9566519927770574

Table 2: Testing Mean Dice Score

4.4.2 testing analyze

實驗結果如3所示,我發現兩者模型有些各的優缺點,UNet的結果在不規則的情況可能表現較好,如左上,但也因此更容易産生出不規則且破碎的狀況,如左下。而ResNet34_UNet在不規則的情況小表現就不如UNet,如右上,而對於整體較圓滑的物件效果就不錯,如右下。

Table 3: Testing Accuracy on Pretrained Model

5 Execution command

5.1 The command and parameters for the training process

若需要訓練,有一些簡單的parameters可以設定,如下所示:

• model: unet or resnet34_unet

• device: cpu or cuda

• data_path: "../dataset/oxford-iiit-pet/"(default)

• epoch: 400(default)

• batch_size: 32(default)

• learning-rate: 1e-3(default)

```
python train.py \
--model unet \
--device cuda \
--data_path "../dataset/oxford-iiit-pet/" \
--epoch 400 \
--batch_size 32 \
--learning-rate 1e-3
```

Listing 10: train script

5.2 The command and parameters for the evaluate process

若需要evaluate,基本上與train的參數類似,如下所示:

• model: unet or resnet34_unet

• device: cpu or cuda

• data_path: "../dataset"(default)

• batch_size: 1(default)

```
python inference.py \
  --model unet \
  --device cuda \
  --data_path "../dataset/" \
  --batch_size 32
```

Listing 11: evaluate script

6 Discussion

6.1 What architecture may bring better results?

6.1.1 Ensemble learning

我認為不管是UNet與ResNet34_UNet在不同任務上的表現各有優劣,因此若能夠使用多個模型一起做預測,並透過Ensemble learning的方式進行預測,相信在結果上會更加準確。

6.1.2 Object Detection

對於困難的資料集或者物體與背景比例差異很大的影像,或許我們能夠先採用Object Detection的方式,先將包含物件的範圍從影像中擷取出來,再透過UNet或ResNet34_UNet來做預測,我認為此方式能夠去除畫面中的Outlier,就更加有利於模型的預測與訓練。

6.2 What are the potential research topics in this task?

我認為Image Semantic Segmentation這項Task非常適合當一些影像處理上的Downstream task,例如尋找ROI或者是希望只針對影像的某個物件做操作例如針對某個Object的Style Transfer、Image Manipulation等,都可以先透過找出影相中Object的Mask後,只需要對Mask内的目標做操作即可,以此就可以減少需要操作的影像大小,進而減少不必要的計算量。