Modelos Lineares e Aplicações

Departamento de Matemática e Aplicações

Ficha de Trabalho 2

Regressão Linear Simples

1. O custo de manutenção (em euros) de tractores por 6 meses parece aumentar com a idade (em anos) do tractor. Para verificar esta suposição, obtiveram-se os seguintes dados:

Idade																	
(anos)	0.5	0.5	1.0	1.0	1.0	4.0	4.0	4.0	4.5	4.5	4.5	5.0	5.0	5.0	5.5	6.0	6.0
Custo																	
(€)	163	182	978	466	549	495	723	681	619	1049	1033	890	1522	1194	987	764	1373

Considerando um modelo de RLS, obtenha e interprete as estimativas de mínimos quadrados dos parâmetros do modelo.

- 2. Uma empresa que repara computadores, pretende estudar a relação entre a duração de uma chamada telefónica e o número de componentes reparadas. Os dados encontram-se no ficheiro "P027.dat".
 - (a) Representa os dados graficamente.
 - (b) Determine o coeficiente de correlação.
 - (c) Estime a recta de regressão linear.
 - (d) Utiliza essa equação para prever a duração de uma chamada na qual 4 componentes têm que ser reparados.
 - (e) Determine um intervalo de confiança a 95% para o verdadeiro declive da recta de regressão.
 - (f) Determine um intervalo de confiança a 95% para a ordenada da recta de regressõ.
 - (g) Teste a hipótese de o declive ser igual a zero, supondo que $\alpha = 0.05$.
 - (h) Obtenha o valor predito para a duração de uma chamada telefónica para um número de componentes reparadas de 8 e forneça um intervalo de predição a 95% para esse valor.
 - (i) Com base na tabela de ANOVA, avalie a qualidade da regressão.
 - (j) Avalie a qualidade do ajuste, determinando o coeficiente de determinação. Interprete o valor.
 - (k) Verifique que o quadrado da correlação entre a a duração de uma chamada telefónica e o número de componentes reparadas é igual ao coeficiente de determinação.
- 3. Suponha que foi realizado um ensaio para avaliar o crescimento radicular de uma certa cultivar de uma espécie agrícola. Para o efeito foi medido o comprimento (em mm) da raiz principal (Y), decorridos x dias. Obtiveram-se os seguintes resultados.

- (a) Comece por ler os dados para o ambiente R.
- (b) Construa um diagrama de dispersão para visualizar a relação entre as variáveis.

- (c) Utilizando um modelo de regressão linear simples, exprima os comprimentos da raiz principal como função dos dias decorridos. Interprete os valores obtidos.
- (d) Obtenha estimativas das variâncias e dos desvios padrões associados às estimativas dos parâmetros do modelo de regressão linear.
- (e) Obtenha uma estimativa da variância dos erros.
- (f) Obtenha um intervalo de de confiança a 95% para os coeficientes de regressão.
- (g) Teste se a ordenada na origem é significativamente diferente de 0, ao nível de significância 1%.
- (h) Utilize um teste de hipóteses sobre o declive da recta de regressão para validar a seguinte afirmação: "existe uma relação linear significativa entre os dias e o comprimento da raíz, para a referida cultivar".
- (i) Valide de novo a afirmação anterior mas agora utilizando um teste F.
- (j) Utilize um teste de hipótese para validar a seguinte afirmação: "por cada dia a mais, a raíz da cultivar cresce, em média, 2mm".
- (k) Comente a qualidade da recta obtida, calculando o coeficiente de correlação e interpretando o valor obtido.
- (l) Determine a soma dos quadrados totais a partir do cálculo da variância amostral de Y.
- (m) Indique o valor da soma dos quadrados dos resíduos.
- (n) Suponha agora que a relação entre as variáveis é dada pelo modelo de regressão:

$$Y^{-1} = \beta_0 + \beta_1 X + \epsilon$$

Estime o novo modelo de regressão.

- 4. Um conjunto de n=23 dados bidimensionais $\{(x_i,y_i)\}_{i=1}^{23}$ têm centro de gravidade $(\overline{x},\overline{y})=(12.5,-116.8261)$. Foi ajustada a reta de regressão de y sobre x. O resíduo associado ao ponto (9.5,-48.0) é $e_i=3.93$.
 - (a) Qual é a equação da reta de regressão?
 - (b) Sabendo que a soma dos quadrados devidos à regressão é SQR=124742.0703 e que a variância de y é $s_y^2=6071.8828$, calcule (justificando as suas respostas):
 - i. s^2
 - ii. cov_{xy}
 - iii. o coeficiente de determinação
 - iv. a soma dos quadrados dos resíduos, SQE
 - v. o coeficiente de correlação

Fórmula de cálculo:

$$SQRE = SQT - SQM = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 - \hat{\beta}_1^2 \sum_{i=1}^{n} (x_i - \overline{x})^2$$

5. Os encargos diários com o consumo de gás propano (Y) de uma empresa dependem da temperatura ambiente (X). A tabela seguinte apresenta o valor desses encargos em função da temperatura exterior:

Temperatura (
0
C) 5 10 15 20 25
Encargos (€) 20 17 13 11 9

- (a) Ajuste um modelo de regressão linear simples aos dados.
- (b) Diga como interpreta o valor de $\hat{\beta}_1$ obtido.
- (c) Quantifique a qualidade do ajuste obtido e interprete.
- (d) Determine um intervalo de confiança a 95% para os encargos médios com gás propano num dia em que a temperatura ambiente é de 17^{0} C.

2

- (e) Determine o respectivo coeficiente de correlação; com base no valor obtido, que pode concluir quanto ao grau de associação das duas variáveis?
- (f) Determine um intervalo de confiança a 95% para o verdadeiro declive da recta de regressão.
- (g) Determine um intervalo de confiança a 95% para a ordenada da recta de regressão.
- 6. Os seguintes dados representam os valores de PH (X) e de iões de hidrogénio (Y) na urina de 9 doentes diabéticos.

- (a) Estime um modelo de regressão linear.
- (b) Construa intervalos de confiança a 95% para cada um dos coeficientes de regressão.
- (c) Teste a hipótese de o declive ser igual a zero, supondo que $\alpha=0.05$.
- (d) Determine os valores estimados da variável dependente.
- (e) Represente graficamente os valores observados e estimados da variável dependente.
- (f) Estime E(Y) para os doentes diabéticos de valor de PH na urina de 6.0. Determine o intervalo de confiança relativo ao número médio de iões de hidrogénio na urina desses doentes diabéticos
- (g) Supondo que um dado doente apresentava valor de PH na urina de 6.0, qual o valor de \hat{Y} . Preveja, com um grau de confiança de 95% o número de iões de hidrogénio na urina desse doente.
- (h) Indique:
 - i. qual a a percentagem de variância de Y explicada pela recta de regressão.
 - ii. a tabela ANOVA associada à regressão estimada neste exercício e conclua se o modelo de regressão é significativo?
- (i) Por último faça a **análise dos residuos**, por forma a garantir que se cumprem os vários pressupostos do modelo.
- 7. Considere X: a altura do atleta (em metros) e Y: a melhor marca em salto em altura (em metros). Para 20 atletas obteve-se: $\sum x_i = 37.36$ $\sum y_i = 47.42$ $\sum x_i y_i = 88.618$ $\sum x_i^2 = 69.8978$ $\sum y_i^2 = 112.4638$
 - (a) Estimar a recta de regressão de Y sobre X.
 - (b) Qual a percentagem de variância de Y explicada pela recta de regressão?
 - (c) Estimar a variância dos erros.
 - (d) Testar $H_0: \beta_1 = 0$ ao nível de significância de 5%.
 - (e) Estimar E(Y) para os atletas que medem 2 metros.
 - (f) Determine o intervalo de confiança relativo ao número médio da melhor marca em salto em altura dos atletas de 2 metros de altura, com um nível de confiança de 99%.
 - (g) Estabeleça a tabela Anova associada a esta regressão.
- 8. Seja $\hat{y}_i = 3 5x_i$ e $R^2 = 60.84\%$ e n = 50.
 - (a) Determine o coeficiente de correlação r_{XY} .
 - (b) Testar $H_0: \beta_1 = 0$ ao nível de significância de 5%.