Processing Choices

- Microprocessors
- Domain-specific processors
 - **DSPs**
 - Network processors
 - Microcontrollers
- ASIPs
- Reconfigurable SoC
- FPGA
- ASIC

See L3 notes

Hardware vs. Software

- Hardware = functionality implemented via a custom architecture e.g., datapath + controller (FSM)
- Software = functionality implemented on a programmable processor
- - Multiplexing

• Key differences:

allocate each fon to sep. set of transistors

multiplex in time for software using same set of transistors

- Software modules multiplexed with others on a processor
- Hardware modules are typically mapped individually on dedicated hardware
- Concurrency
 - Processors usually have one "thread of control"
 - Dedicated hardware often has concurrent datapaths

```
"Think about Functionality first, corner cases, before jumping into Hardware and Software parts of the embedded systems."
```

Microcontrollers (MCU)

- Chip vendors either develop own CPU core or license IP
- Specific chips usually targeted toward a small set of applications

Mi cro controller

- entire computer in a chip (include CPU ore, RAM, accelerators, etc.)

VS.

Micro processor

Microcontrollers

- Different from your regular desktop CPU
 - Smaller in size (transistor count)
 - Reduced instruction set (Less complex set)
 - Less power consumption (less computationally capable)
 - Lower frequencies
- Within microcontrollers, there is a large variation

code needs to be memory efficient

critical,
constrained
resource when
writing software

Bus Width	CPU Speeds	RAM	ROM
8-bit	1-8 MHz	128-1K	512 to 10K
16-bit	4-25 Mhz	1K to 10K	10K to 128K
32-bit	10-1000 Mhz	10K to 512M	128K to 512M

Atmel Atmega / TI MSP430

triggers

- Examples: toys, small appliances, automotive, etc.
- Atmel chips are 8-bit, TI chips are 16-bit
- Very low sleep power (~5 µA)
- Rapid wake up (~10 µs) ← Better for event-based
- Rich set of peripherals
 - ▶ Timers, counters
 - Wired communication modules
 - Watchdog timers
 - Brownout detection
 - ADC/DAC

Microcontrollers are extremely efficient at doing nothing

Brownout Detection \\ \tow-power optimization (i.e., Sleep current)

- Examples: Smartphone, ebook reader, automotive, etc
- CPU core licensed by ARM
- Many different manufacturers with different set of peripherals
- Tens to hundreds of MHz core speed
- 32-bit data bus
- Several 10k of RAM
- Several 100k of ROM
- Rich set of peripherals
- Recent cores very power efficient and still have very low sleep power!

- Programmable System-on-Chip
- The core
 - M8C, 8051, Cortex-M3
 - ▶ Flash memory, SRAM
 - Watchdog, Multiple clock sources
- Configurable Analog and Digital Blocks
 - Similar to CPLD or FPGAs
 - Blocks can be combined to offer
 - ADC
 - Counters
 - Amplifiers
- Programmable Routing and Interconnects
- Some examples where they are used
 - Sonicare tooth brush
 - **►**TiVo
 - Capacitive sensing of the iPod
- Cypress has its own radio module CyFi

Digital Signal Processors

- Similar to MCUs in architecture
- CPU core optimized for complex numeric tasks
 - ► Basic execution unit: multiply+accumulate
 - Data intensive operations
 - Usually used as co-processor
 - Signal filtering
 - Video Compression / Decompression

- ► Uses ADI-Intel "Micro Signal Architecture"
- Runs embedded OS (e.g., uCLinux), doesn't need another host CPU
- ▶600 MHz and below
- Example: Texas Instruments C64x
 - Used primarily for data encoding / decoding
 - Coupled with ARM Cortex A8 (as host CPU) in OMAP architecture
 - ▶ 1 GHz and below

Communication Interfaces

- Communication is an important aspect of embedded systems
- Often contain specialized communication chips
- Wired
 - Interfacing with sensors and other system components (like comm. chips)

no embedded system that is stand-alone

- CAN
- I2C
- SPI
- UART
- USB
- Communication with other embedded systems
 - Ethernet
- Wireless
 - Becoming more and more important because of ease of installation
 - Many different standards for short, mid, and long range communication

Wireless Technologies

Proprietary point to point links

standard defined by IEEE Short Range ►IEEE 802.15.4, ZigBee Alliance Home automation - Sensor Networks z-Wave > has taken over the market Home automation Bluetooth -Ly virtually every cell-phone has this interface - Short range communication Audio headsets Proprietary Mid Range > pretty much the only option for mid range ►802.11 **-**L some microcontrollers are embedded with Wide Area Networks ►GSM/CDMA this. ▶ Satellite

Telos Platform

- Key Features
 - ►CC2420 Radio (2.4 GHz, IEEE 802.15.4)
 - MSP430F1611 (8MHz, 10k RAM, 48k Flash)
 - Integrated 12 bit ADC/DAC, DMA Controller
 - ► Onboard PCB Antenna 50-125m range
 - ► Ultra low sleep current (<10uA)
 - Rapid wakeup (<6us)</p>
- Programming via USB or JTAG

Epic

- Key Features
 - CC2420 Radio
 - MSP430F1611 MCU
 - Modular design!
 - Core module (MCU, Radio, Serial Flash)
 - Essentially Telos in different form factor
 - Modularity promotes reuse -
 - USB module (FTDI chip, Battery Power)
 - Storage module (1 Gbit NAND, 2x 16 Mbit NOR, 512 Kbit FRAM)

> cool ! <

Epic-based Systems

ACme AC Meter

Irene Mote

PowerNet Mote

Benchmark Mote

Hydro Watch

Meraki Interface

mBed

- Cortex-M3 Core running at 96MHz, with 512KB FLASH, 64KB RAM and a load of interfaces including Ethernet, USB Device, CAN, SPI, I2C and other I/O
- "Cloud" compiler
 - Web-based tool chain, lots of libraries and documentation, and good community support
 - Significantly simplifies the learning curve

