Здравствуйте!

Лекция №7

Часть 4

Числовые ряды

Числовые ряды Определения

Пусть дана последовательность вещественных чисел $\{a_1, a_2, a_3, a_4, \ldots\}$. Образуем новую последовательность по правилу

$$A_1 = a_1;$$
 $A_2 = a_1 + a_2;$ $A_3 = a_1 + a_2 + a_3;$... ; $A_n = a_1 + a_2 + a_3 + \ldots + a_n = \sum_{k=1}^{n} a_k.$

Эти величины называются **частными суммами** числового ряда, а слагаемое a_n называют **общим членом** ряда.

Рассмотрим теперь $\lim_{n\to\infty} A_n = A$. Он называется **числовым рядом** и обозначается символом

$$\sum_{k=1}^{\infty} a_k = A = \lim_{n \to \infty} A_n.$$

Если этот предел **существует и конечен**, то говорят, что числовой ряд **сходится**, а само значение предела, то есть величину A, называют **суммой** числового ряда. Если этот предел **не существует или бесконечен**, то говорят, что числовой ряд **расходится** (так как в данной главе других рядов не будет, то слово «числовой» мы будем опускать).

Обратите внимание на одну деталь: индекс суммирования в знаке бесконечной суммы может быть любым, то есть

$$\sum_{k=1}^{\infty} a_k = \sum_{s=1}^{\infty} a_s = \sum_{r=1}^{\infty} a_r = \sum_{j=1}^{\infty} a_j = \dots,$$

от этого ничего не меняется. Как говорят, индекс суммирования является **немым индексом**, то есть он может быть обозначен **любой** буквой.

Величина

$$\alpha_n = \sum_{k=n+1}^{\infty} a_k$$

называется **остатком ряда после** n-го слагаемого. Его можно записать и так:

$$\alpha_n = \lim_{N \to \infty} \sum_{k=n+1}^N a_k.$$

Простейшие свойства сходящихся рядов

1. Если ряд сходится, то сходится любой из его остатков. Наоборот, из сходимости остатка вытекает сходимость исходного ряда.

Доказательство.

Имеем:

$$A_m = a_1 + a_2 + \ldots + a_m$$

– частная сумма исходного ряда и

$$A'_{m} = a_{n+1} + a_{n+2} + \ldots + a_{n+m}$$

– частная сумма остатка ряда после *n*-го слагаемого. Очевидно, что между этими величинами имеет место соотношение

$$A_m' = A_{n+m} - A_n$$

Если ряд сходится $\Rightarrow \exists \lim_{m \to \infty} A_{n+m} = A \Rightarrow \exists \lim_{m \to \infty} A'_m = \alpha_n = A - A_n \Rightarrow$ остаток ряда после n-го слагаемого.

Далее, $A_{n+m} = A'_m + A_n$, и поэтому если сходится остаток ряда после n-го слагаемого $\Rightarrow \exists \lim_{m \to \infty} A'_m = \alpha_n \Rightarrow \exists \lim_{m \to \infty} A_{n+m} = A = \alpha_n + A_n \Rightarrow$ исходный ряд сходится.

Обратите внимание на важное для дальнейшего соотношение $A = A_n + \alpha_n$.

Следствие. Отбрасывание или изменение **конечного** числа членов ряда не изменяет его сходимости.

2. Если ряд $\sum_{k=1}^{\infty} a_k$ сходится, то $\lim_{n\to\infty} \alpha_n = 0$.

Действительно, из соотношения $\alpha_n = A - A_n$ получаем $\lim_{n \to \infty} \alpha_n = A - \lim_{n \to \infty} A_n = A - A = 0.$

3. Если ряд $\sum_{k=1}^{\infty} a_k$ сходится, то его общий член стремится к нулю, то есть $\lim_{n\to\infty} a_n = 0$.

Действительно, из определения частных сумм легко видеть, что $a_n = A_n - A_{n-1}$. Поэтому

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} A_n - \lim_{n\to\infty} A_{n-1} = A - A = 0.$$

Следствие. (важно!) Признак расходимости ряда. Если общий член ряда не стремится к нулю, то ряд расходится. 4. Если ряд $\sum_{k=1}^{\infty} a_k$ сходится, то ряд $\sum_{k=1}^{\infty} ca_k$ тоже сходится и верно соотношение

$$\sum_{k=1}^{\infty} c a_k = c \cdot \sum_{k=1}^{\infty} a_k.$$

Действительно, для частных сумм наших рядов имеем

$$A_n = \sum_{k=1}^n a_k$$
; $A'_n = \sum_{k=1}^n c a_k = c \cdot \sum_{k=1}^n a_k = c A_n$

Делая предельный переход $n \to \infty$, получаем

$$\lim_{n\to\infty} A'_n = \sum_{k=1}^{\infty} c a_k = c \cdot \lim_{n\to\infty} \sum_{k=1}^{n} a_k = c \cdot \sum_{k=1}^{\infty} a_k.$$

5. Если ряды $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ сходятся, то ряд $\sum_{k=1}^{\infty} (a_k \pm b_k)$ тоже сходится и верно соотношение

$$\sum_{k=1}^{\infty} (a_k \pm b_k) = \sum_{k=1}^{\infty} a_k \pm \sum_{k=1}^{\infty} b_k.$$

Действительно, из определения частных сумм рядов получаем

$$A_n = \sum_{k=1}^n a_k$$
; $B_n = \sum_{k=1}^n b_k$; $C_n = \sum_{k=1}^n (a_k \pm b_k)$.

Отсюда видно, что между частными суммами рядов верно соотношение

$$C_n = A_n \pm B_n.$$

Делая предельный переход, получаем

$$\lim_{n\to\infty} C_n = \sum_{k=1}^{\infty} (a_k \pm b_k) = \lim_{n\to\infty} A_n \pm \lim_{n\to\infty} B_n = \sum_{k=1}^{\infty} a_k \pm \sum_{k=1}^{\infty} b_k.$$

Признаки сходимости для рядов с положительными членами.

Как и в случае несобственных интегралов, важнейшим элементом теории числовых рядов является следующий: надо, **не вычисляя ряда**, ответить на вопрос, сходится он или нет. В конце концов, если он сходится, то его можно вычислить численно на ЭВМ, а вот если он расходится — попытки сосчитать его численно ни к чему хорошему не приведут.

В данном разделе будут рассмотрены признаки сходимости рядов с положительными членами. Итак, пусть даны два ряда $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ и выполнено условие $\forall n \ a_n \geq 0$ и $b_n \geq 0$.

Теорема 1. Для сходимости ряда $\sum_{k=1}^{} a_k$ необходимо и достаточно, чтобы

$$\exists L < +\infty \ \forall n \ A_n \leq L.$$

Доказательство. Имеем: $A_{n+1} = A_n + a_{n+1} \ge A_n$ и поэтому с ростом $n \in A_n$. По теореме о существовании предела монотонно возрастающей последовательности, для существования конечного $\lim_{n\to\infty} A_n$ необходимо и достаточно,

$$\exists L < +\infty \ \forall n \ A_n \leq L.$$

Теорема 2. Пусть даны два ряда $\sum_{k=1}^{\infty} a_k$ (ряд A) и $\sum_{k=1}^{\infty} b_k$ (ряд B) с положительными членами и выполнено условие $\forall n \ a_n \leq b_n$. Тогда из сходимости ряда B следует сходимость ряда A, а из расходимости ряда A – расходимость ряда B.

Доказательство.

- 1. Пусть ряд В сходится $\Rightarrow \exists L < +\infty \ \forall n \ B_n \leq L$. Но $A_n \leq B_n \leq L \Rightarrow$ ряд А сходится.
- 2. Пусть ряд A расходится. Так как в этом случае $A_n \uparrow$, то это означает, что $\lim_{n \to \infty} A_n = +\infty$. Но так как $B_n \ge A_n$, то $\lim_{n \to \infty} B_n \ge \lim_{n \to \infty} A_n = +\infty$ и ряд B расходится.

Замечание. Так как отбрасывание или изменение **конечного** числа членов ряда не изменяет его сходимости, то условие $a_n \le b_n$ может выполняться лишь $\forall n > N$.

Признак сходимости Коши.

Пусть существует
$$\lim_{n\to\infty} \sqrt[n]{a_n} = c$$
. Тогда

если
$$c < 1$$
, то ряд $\sum_{k=1}^{\infty} a_k$ сходится;

если
$$c > 1$$
, то ряд $\sum_{k=1}^{\infty} a_k$ расходится;

если c=1, то вопрос о сходимости или расходимости ряда $\sum_{k=1}^{\infty} a_k$ не

может быть решен на основании данного признака.

Этот признак сходимости носит название признака Коши.

Прежде, чем доказывать признак Коши рассмотрим ряд $\sum_{k=1}^{} q^k$, который называется **геометрической прогрессией.** Его частные суммы равны

$$Q_n = q + q^2 + q^3 + ... + q^n = \frac{q - q^{n+1}}{1 - q}.$$

Рассмотрим теперь возможные варианты.

- 1. Пусть |q|<1. Тогда $\lim_{n\to\infty}q^{n+1}=0$ и поэтому $\lim_{n\to\infty}Q_n=\sum_{k=1}^nq^k=\frac{q}{1-q}$ и ряд $\sum_{k=1}^\infty q^k$ **сходится.**
- 2. Пусть $|q| \ge 1$. Тогда общий член ряда $\sum_{k=1}^{\infty} q^k$ не стремится к нулю и, по признаку расходимости, ряд $\sum_{k=1}^{\infty} q^k$ расходится.

Таким образом, ряд $\sum_{k=1}^{\infty} q^k$ сходится при |q| < 1 и расходится при $|q| \ge 1$.

Доказательство.

Прежде всего заметим, что существование $\lim_{n\to\infty} \sqrt[n]{a_n} = c$ означает, что $\forall \varepsilon > 0 \; \exists N \; \forall n > N \; c - \varepsilon < \sqrt[n]{a_n} < c + \varepsilon$.

А теперь – варианты.

1. Пусть c < 1. Возьмем ϵ настолько малым, чтобы было $c + \epsilon = q < 1$. Но тогда имеем

$$\exists N \ \forall n > N \ \sqrt[n]{a_n} < c + \varepsilon = q \implies a_n < q^n.$$

Но, так как q < 1, ряд $\sum_{k=1}^{\infty} q^k$ сходится, и, по теореме 2, сходится и ряд

$$\sum_{k=1}^{\infty} a_k$$

2. Пусть c > 1. Возьмем ε настолько малым, чтобы было $c - \varepsilon = q > 1$. Но тогда имеем

$$\exists N \forall n > N \quad \sqrt[n]{a_n} > c - \varepsilon = q \implies a_n > q^n.$$

Но, так как q > 1, ряд $\sum_{k=1}^{\infty} q^k$ расходится, и, по теореме 2, расходится и

ряд
$$\sum_{k=1}^{\infty} a_k$$
.

Теорема 3. Если $\forall n$ выполнено условие $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$, то из сходимости ряда В следует сходимость ряда А, а из расходимости ряда А – расходимость ряда В.

Доказательство.

Имеем следующую цепочку неравенств

$$\frac{a_2}{a_1} \le \frac{b_2}{b_1}; \frac{a_3}{a_2} \le \frac{b_3}{b_2}; \frac{a_4}{a_3} \le \frac{b_4}{b_3}; \dots \frac{a_n}{a_{n-1}} \le \frac{b_n}{b_{n-1}}.$$

Перемножая эти неравенства, получаем

$$\frac{a_n}{a_1} \le \frac{b_n}{b_1}$$
, или $a_n \le \frac{a_1}{b_1} b_n$.

Ссылка на теорему 2 и доказывает эту теорему.

Признак Даламбера

Пусть существует
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=D$$
 . Тогда

если
$$D < 1$$
, то ряд $\sum_{k=1}^{\infty} a_k$ сходится;

если
$$D > 1$$
, то ряд $\sum_{k=1}^{\infty} a_k$ расходится;

если D=1, то вопрос о сходимости или расходимости ряда $\sum_{k=1}^{\infty} a_k$ не может быть решен на основании данного признака.

Доказательство.

Прежде всего заметим, что существование $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = D$ означает, что

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ D - \varepsilon < \frac{a_{n+1}}{a_n} < D + \varepsilon.$$

1. Пусть D < 1. Возьмем ε настолько малым, чтобы было $D + \varepsilon = q < 1$. Но тогда имеем

$$\exists N \ \forall n > N \ \frac{a_{n+1}}{a_n} < D + \varepsilon = \frac{(D+\varepsilon)^{n+1}}{(D+\varepsilon)^n} = \frac{q^{n+1}}{q^n}.$$

Но, так как q < 1, ряд $\sum_{k=1}^{\infty} q^k$ сходится, и, по теореме 3, сходится и ряд

$$\sum_{k=1}^{\infty} a_k$$

2. Пусть D > 1. Возьмем ε настолько малым, чтобы было $D - \varepsilon = q > 1$. Но тогда имеем

$$\exists N \ \forall n > N \ \frac{a_{n+1}}{a_n} > D - \varepsilon = \frac{(D - \varepsilon)^{n+1}}{(D - \varepsilon)^n} = \frac{q^{n+1}}{q^n}.$$

Но, так как q > 1, ряд $\sum_{k=1}^{\infty} q^k$ расходится, и, по теореме 3, расходится

и ряд
$$\sum_{k=1}^{\infty} a_k$$
.

Теорема 4. Пусть существует $\lim_{n\to\infty}\frac{a_n}{b_n}=K$ и $0< K<+\infty$. Тогда

ряды $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ сходятся или расходятся одновременно.

Доказательство.

1. Прежде всего отметим, что существование $\lim_{n\to\infty} \frac{a_n}{b_n} = K$ означает, что

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ K - \varepsilon < \frac{a_n}{b_n} < K + \varepsilon.$$

- 2. Пусть ряд $\sum_{k=1}^{\infty} b_k$ сходится. Но тогда ряд $\sum_{k=1}^{\infty} (K+\epsilon)b_k$ также сходится, и, так как $a_n < (K+\epsilon)b_n$, то, по теореме 2, сходится и ряд $\sum_{k=1}^{\infty} a_k$.
- 3. Так как K>0, то всегда можно взять є настолько малым, чтобы было $K-\varepsilon>0$. Пусть теперь ряд $\sum_{k=1}^{\infty}a_k$ сходится. Но тогда сходится и ряд $\sum_{k=1}^{\infty}\frac{a_k}{K-\varepsilon}$ и, так как $b_n<\frac{a_n}{K-\varepsilon}$, то, по теореме 2, сходится и ряд

$$\sum_{k=1}^{\infty} b_k$$
.