Math Week 1: Problem Solving Tips

Mathematics for Data Science - 1

• Natural numbers and integers

- The set of natural numbers : $\{0, 1, 2, 3, 4, \ldots\}$, i.e. 0 is a natural number.
- The set of integers: $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- In general when we talk about prime numbers we generally consider set of natural numbers as our universal set.
- Observe that 0 and 1 are neither prime nor composite.
- To check whether a natural number n is prime or not, it is enough to check whether it is divisible by any natural number less than or equal to \sqrt{n} . If it is divisible by some natural number less than or equal to \sqrt{n} , other than 1, then the number n is not prime.
 - * Suppose we want to check whether 11 is prime or not. At first observe that $\sqrt{11}$ is a number between 3 and 4, as $3^2 = 9$ and $4^2 = 16$. Hence, we have to check whether 11 is divisible by 0, 1, 2, 3.
 - 0 cannot be a divisor of any non-zero number. 1 is divisor of any natural number. 2 and 3 do not divide 11. Hence, there is only one divisor (i.e. 1) of 11 which is less than $\sqrt{11}$. Hence, we can conclude 11 is prime.
- To list out all the primes less than some fixed natural number "Sieve of Eratosthenes" is an efficient algorithm.
- Finding the gcd (greatest common divisor) of finitely many natural numbers:
 - * Factorise all the given numbers.
 - * List out all the common factors.
 - * Find the greatest one among those common factors.
- -gcd(0,a) = a = gcd(a,0), for any non-zero natural number a.
- qcd(0,0) is undefined.

• Rational and irrational numbers

- Learn to identify perfect squares, perfect cubes etc
 - * Squares: $1^2 = 1$, $2^2 = 4$, $3^2 = 9$, $4^2 = 16$ etc
 - * Cubes: $1^3 = 1$, $2^3 = 8$, $3^3 = 27$, $4^3 = 64$ etc
- Learn to identify numbers that are not perfect squares cubes etc
 - * Non-squares: 2, 3, 5, 6, 7, 8, 10
 - * Non-cubes: 2, 3, 4, 5, 6, 7, 9, 10
- Square root of a non-square is irrational

- Operations with rational and irrational numbers
 - * rational + rational = rational
 - * rational \times rational = rational
 - * rational + irrational = irrational
 - * rational (except 0) \times irrational = irrational
 - * irrational + irrational = can be rational or irrational
 - * irrational \times irrational = can be rational or irrational
- Learn to deal with fractions that have a numerator and a denominator that could be rational or irrational
- Rationalising the denominator:
 - * multiply both top and bottom by square root of a non-square
 - * multiply both top and bottom by conjugate of the denominator
- Learn to deal with square roots of an irrational number

• How to check two sets A and B are equal

Let $A = \{x \mid x \text{ satisfies } condition A\}$ and $B = \{y \mid y \text{ satisfies } condition B\}$ be the set-builder form of sets A and B.

- Procedure 1: If possible try to list out all the elements of A and B and then check all the elements of A and B are same. This is possible if the sets are finite and cardinalities of these two sets are small.
- Procedure 2: In some cases it is easier to use Venn-diagram to compare two sets.
- Procedure 3: If condition A can be derived from condition B, then $B \subseteq A$. Similarly, if condition B can be derived from condition A, then $A \subseteq B$. These two together implies A = B.
 - Some equalities when A = B:
 - $* A \cup B = A = B$
 - $*A \cap B = A = B$

• Relations

- Observe that relations are subsets of cartesian products of sets.
- Suppose a relation R is defined on a set A. Then $R \subseteq A \times A$.
 - * If for each $a \in A$, $(a, a) \in R$ then R is reflexive.
 - * If for each pair $(a, b) \in R$, the pair (b, a) is also in R then R is symmetric.
 - * If for pairs $(a,b) \in R$ and $(b,c) \in R$, the pair (a,c) is also in R then R is transitive.
 - * If $(b, a) \notin R$, whenever $(a, b) \in R$ (together with $a \neq b$) then R is anti-symmetric.
- Reflexive + Symmetric + Transitive = Equivalence relation

• Functions

- Observe that all functions are relations but all relations are not functions.
- An ordered pair can be represented as (input, output). A function is a relation which
 describes that there should be only one output for each input.
 - * The sets from which inputs are taken is called 'Domain'.
 - * The set into which all of the output of the function is constrained to fall is called 'Codomain'.
 - * The set of outputs are called 'Range'.
 - * If for a function f, f(a) = b, then a is called a preimage of b.
- Domain of some function with special form:
 - * If $f(x) = \sqrt{g(x)}$, then for the function f(x) to be real valued we must have $g(x) \ge 0$. Hence, domain of f(x) is $\{x \mid g(x) \ge 0\}$.
 - * If $f(x) = \frac{g(x)}{h(x)}$, then for the function f(x) to be defined we must have $h(x) \neq 0$. Domain of f(x) is
 - $\{x \mid h(x) \neq 0 \text{ and } x \text{ is in the intersection of domain of } g(x) \text{ and domain of } h(x)\}$
- Learn to deal with different types of functions:
 - * For one to one (injective) function two different inputs cannot give same output.
 - * For onto (surjective) function codomain=range, i.e. for each element in the codomain there exists a preimage in the domain.