FGC Lecture 10

Hardness from Derandomization 1

1. Kannan's lower bound

$$\Sigma_3^{\mathsf{E}} \nsubseteq \mathsf{Size}(2^{o(n)}))$$
 By re-scaling to $T(n)$ s.t. $n^{\omega(1)} \le T(n) \le 2^n$, we get
$$\Sigma_3^{T(n)} \nsubseteq \mathsf{Size}(T(n)^{o(1)})$$

2. Last lecture we showed

Assume $\mathsf{EXP} \subseteq \mathsf{P/poly}$ and $\mathsf{CAPP} \in \mathsf{TIME}[2^{n^{o(1)}}]$ (therefore in $\mathsf{NTIME}[2^{n^{o(1)}}]$),

- a $\,\,{\sf EXP}\subseteq\Sigma_2^{\sf P}\subseteq\Sigma_3^{\sf P}\subseteq{\sf P^{\sf Perm}}\subseteq{\sf EXP}$ (Meyer's Theorem)
- b If $Perm \in P/poly$ then $Perm \in MA$.

Guess circuits. "Purify" it in probabilistic polynomial time. Use as oracle.

- c MA \subseteq NTIME[$2^{n^{o(1)}}$]. Replace probabilistic checking with **CAPP**. d EXP = P^{Perm} = MA = Σ_3^P = NTIME[$2^{n^{o(1)}}$]. e Rescale: Choose a $T(n) = n^{\omega(1)}$ s.t. $\Sigma_3^P \subseteq$ NEXP.

- f So NEXP $\not\subseteq$ P/poly.

Theorem 1.1. If $PIT \in NTIME[2^{n^{o(1)}}]$, then either $Perm \notin AlgP/poly$, or $NEXP \nsubseteq$ P/poly.

Proof. Assume $PIT \in NTIME[2^{n^{o(1)}}]$, and $NEXP \subseteq P/poly$, $Perm \in AlgP/poly$.

Only steps (2.b) and (2.c) in the above proof need to change.

FGC Notes Lecture 10

(2.b)': If **Perm** \in AlgP/poly, then $P^{\text{Perm}} \subseteq NP^{\text{PIT}}$. (This is stronger than (2.b). Now we only allow to do PIT.)

(2.c)': Assume also $PIT \in NTIME[2^{n^{o(1)}}]$. Then $P^{Perm} \subseteq NTIME[2^{n^{o(1)}}]$.

Using downward self-reducibility, aka. expansion by minors, we check

$$\mathbf{Perm}(M_{n\times n}) = \sum_{i=1}^{n} m_{1,i} \mathbf{Perm}([M_{n\times n}]_{-1,i})$$

and

$$\mathbf{Perm}(M_{1\times 1})=m_{1,1}$$

Given C_n , an algebraic circuit that computes **Perm** on $n \times n$ matrices. We define C_1, \ldots, C_{n-1} s.t.

$$C_i = \left(egin{array}{cccc} 1 & & & & & \\ & \ddots & & \mathbf{0} & & \\ & & 1 & & \\ & \mathbf{0} & & M_{i imes i} \end{array}
ight)$$

Verify the identities

$$C_i(M) = \sum_{j=1}^{i} m_{1,j} D_{i-1}(M_{-1,j})$$

using PIT.

Because (2.c)' helps us get rid of the **PIT** oracle, we have (2.d).

2 Natural Proofs

How to prove circuit lower bounds?

- (A) Characterize what circuits can compute.
- (B) Show some particular function doesn't meet (A).

Definition 2.1. f is a boolean function, given by its truth table. A property N(f) is either True or False. (We assume N(f) is True when f is hard)

N is a Natural Property if

- 1. N is constructive: $N \in P = TIME[2^{O(n)}]$.
- 2. *N* is useful: If N(f) then f doesn't have small circuits (say $n^{\omega(1)}$).
- 3. *N* is large: $Prob_f[N(f)] \ge \Omega(1)$.

The proofs of Razborov-Smolensky Theorem and Switching Lemma are natural. (?)

FGC Notes Lecture 10

Let PRG $G: \{0,1\}^s \to \{0,1\}^{2s}$ has exponential security (2^{s^e}) .

We can construct $\hat{G}: \{0,1\}^s \to \{0,1\}^{2^{s^{\delta}}}$, that is "random access", given z, and compute $\hat{G}(z)$ in poly-time.

[Figure: PRG tree]

The depth of the tree is s^{δ} . We pick $\delta < \epsilon$.

Say we want the *i*-th element. We don't need to compute the whole tree.

Define $f_z(i) = \hat{G}(z)_i$ (the *i*-th bit of $\hat{G}(z)$). $\forall z, f_z \in \text{Size}(s^{o(1)}) = \text{Size}(|i|^{o(1)})$.

Let N be defined so that $\forall z, N(f(z))$ =False. But for random function f_R , $N(f_R)$ =True with reasonable probability.

So if we have strong cryptographic PRG, then we don't have natural proofs for circuit lower bound.

3 Easy Witness Lemma

In the definition of natrual property, we replace the "largeness" with "non-emptyness": $Prob_f[N(f)] \neq 0$. We call it "barely natural" property.

Theorem 3.1 (Paraphrase of Easy Witness Lemma from IKW (IKW used "sometimes non-empty")). If there exists a barely natural property, then $NEXP \nsubseteq P/poly$.

Lemma 3.2. If there exists a barely natural property, then $CAPP \in NTIME[2^{n^{o(1)}}]$.

Proof.

- 1. Given an instance of **CAPP**, set $m = n^{\delta}$ (the inverse of the "usefulness" function).
- 2. Guess a function F_n so that $N(F_n)$ holds. $(F_n \text{ is an } n\text{-bit boolean function, given by truth table.})$ The time to verify is $2^{n^\delta} = 2^{o(n)}$.
- 3. Size $(F_n) \ge n^{O(1)}$ (largeness)
- 4. Use BFNW to construct a $G: \{0,1\}^{\text{poly}(n)} \rightarrow \{0,1\}^n$, a PRG that is hard for size n.

5. Try all seeds to estimate circuit probability.

The total time is subexponential.

es es es

FGC Notes Lecture 10

A *easy witness* (succinct witness) is a circuit $C(i) = y_i$ that computes the *i*-th bit of the witness.

Theorem 3.3 (Easy Witness Lemma). All positive instances of all NEXP relations have easy witnesses iff $NEXP \subseteq P/poly$.

Proof.

• If x has easy witness: Search for all circuits. Then NEXP = EXP. And EXP \subseteq P/poly. (use the witness circuits to construct the poly-size circuit)

• If x doesn't have easy witness: Let $N_x(y) = R(x, y)$. N_x is a natural property. By 3.1, NEXP $\not\subseteq$ P/poly.