1. Consider a 4-variable Boolean function. Using K-map, list the cells adjacent to cell m_{13} .

\	00	01	11	10	
00	m0	m4	m12	m8	
01	m1	m5	m13	m9	
11	m3	m7	m15	m11	
10	m2	m6	m14	m10	

 $A + \bar{A} = 1$

Ans:

Adjacent cells to cell 13 is cell 5, 9, 12, 15

- 2. Plot the following functions on the K-map.
 - (a) $f(x, y, z) = \sum m(0, 1, 3, 5)$
 - (b) $f(a, b, c, d) = \sum m(2, 4, 6, 7, 15)$
 - (c) Identify the prime implicants and the essential prime implicants for the answers (a) and (b).
 - (d) Find the simplest SOP from of the above functions from the K-maps.
 - (e) Find the simplest POS from of the above functions from the K-maps.

Ans:

f(x, y, z) = x'y' + y'z + x'zf(a, b, c, d) = a'bd' + bcd + a'cd'

3. (a) Plot the following function on the K-map.

- (b) Convert the standard POS expression in part (a) into
 - (i) Minimum POS expression.
 - (ii) Standard SOP expression.
 - (iii) Minimum SOP expression.

(b)

(i) Group the 0s to produce the <u>complement of f</u> in SOP form f'(A, B, C, D) = A'B'C + BC'D' + B'C'DObtain f by applying De Morgan's theorem to f' f(A, B, C, D) = (A + B + C')(B' + C + D)(B + C + D')

- (ii) Assign 1s to the K-map, we obtain $f(A, B, C, D) = \sum m(0, 5, 6, 7, 8, 10, 11, 13, 14, 15)$
- (iii) By grouping the 1s, we have f(A, B, C, D) = AC + BC + BD + B'C'D'

4. Simplify the following function to SOP form using Q-M method: $f(a,b,c,d) = \sum m(4, 5, 6, 8, 11, 13, 15)$

Ans:

List the minterms

minterms	a b c d
m_4	0100
m_5	010
m_6	0110
m_8	1000
m_{11}	1011
m_{13}	1 1/0/1
m_{15}	11111

$$A + \bar{A} = 1$$

\	00	01	11	10
00	m0	r 1 4	m12	1 n8
01	m1	m 1 5	m 1 3	m9
11	m3	m7	m 1 5	m 1 11
10	m2	m <u>1</u>	m14	m10

Partition and Combine the minterms from neighboring group. Find the PI.

	minterms		a b c d	minterms		a b c d
One 1	m_4	~	0100	m_4, m_5	PI_1	0 1 0 -
One 1	m_8	PI_6	1000	m_4, m_6	PI_2	0.1 - 0
Two 1s	m_5	~	0101	m_5, m_{13}	PI_3	-101
	m_6	~	0110	m_{11}, m_{15}	PI_4	1-11
Three 1s	m_{11}	~	1011	m_{13}, m_{15}	PI_5	11-1
	m_{13}	~	1101			
Four 1s	m ₁₅	~	1111			

minterms		a b c d	minterms		a b c d
m_4	>	0100	m_4, m_5	PI_1	010-
m_8	PI_6	1000	m_4, m_6	PI_2	0.1 - 0
m_5	~	0 1 0 1	m_5, m_{13}	PI_3	-101
m_6	~	0110	m_{11}, m_{15}	PI_4	1-11
m_{11}	~	1011	m_{13}, m_{15}	PI_5	$1 \ 1 - 1$
m_{13}	~	1101			
m 15	~	1111			

Create PI chart. Find the EPI. Reduce the chart.

			~		~	~	~		~
	PIs	abcd	m_4	m_5	m_6	m_8	m_{11}	m_{13}	m_{15}
	PI_1	010-	k	X					
~	PI_2	0.1 - 0	-		(X)				
	PI_3	-101		X	\mathbb{P}			X	
~	PI_4	1 - 11	_		 				X
	PI_5	11 - 1					ΙΨ	X	X
~	PI_6	1000							

Further reduce the chart by covering minterms.

		PIs	a b c d	m ₅	<i>m</i> ₁₃	
Ξ		PI ₁	010-	y		PI ₃ covers PI ₁ and PI ₅ .
	~	PI_3	-101	X	X	PI ₁ and PI ₅ can be eliminated
		PI_5	11 - 1.		X	-

Write the final answer.

EPIs are PI₂, PI₄ and PI₆. Select PI₃ to cover the remaining minterms m_5 and m_{13} . So the selected PIs are PI₂, PI₃, PI₄ and PI₆. f(a, b, c, d) = a'bd' + bc'd + acd + ab'c'd'