Intro and Terminology

Decision trees

- Are a structured sequence of questions
- That recursively partitions the universe of possible examples
- May be used for both Classification and Regression tasks

We will illustrate the terminology by referring to a <u>Decision Tree for the Titanic Survival</u> <u>problem (Decision_Trees.ipynb#Example:-Decision-Tree-for-Titanic-Survival)</u>

Training

As you've seen, a Decision Tree is really nothing more than a structured series of questions.

Thus, the parameters Θ , which will be discovered by training (as usual), consists of

- A specification of the structure (parent/child relationships)
- An encoding of the "best" question to ask at each node
- A class prediction on the leaf nodes

High level view

We start with a high level introduction to the algorithm that constructs a decision tree.

Let's visit the notebook section on <u>training (Decision_Trees.ipynb#Training:-a-first-look-at-the-algorithm)</u>

Deeper view: creating the test

At this point we have a rough idea of the algorithm.

There are still unanswered questions

- How to choose the test/question at each node
- Is there a better point at which to stop?

Let's visit the notebook section <u>Training: a deeper look (Decision_Trees.ipynb#Training:-a-deeper-look-at-the-algorithm)</u>

Decision Trees for Regression

It might seem surprising to use a Classification model (discrete targets) for a Regression task (continuous targets).

The notebook section <u>Decision Tree Regression (Decision_Trees.ipynb#Decision-Tree-Regression)</u> shows just how to do that.

Overfitting

If we continue the training algorithm to it conclusion

- We wind up with leaf nodes that are pure (all examples in same category)
- Potentially have leaf nodes with small number of examples

Thus, the danger of overfitting (poor out of sample generalization) is present.

Let's go to the notebook for an <u>example (Decision_Trees.ipynb#Overfitting-example)</u>

Hyper parameters

We can control for the possibility of overfitting

• With hyper-parameters to control various aspects of training

There are other hyper-parameters than affect performance.

These hyper-parameters may be adjusted as part of Fine Tuning, or earlier.

Let's go to the notebook for a quick introduction to <u>hyper-parameters (Hyper-parameters-for-Decision-Trees)</u>

The Good and the Bad of Decision Trees

The good

- Very fast prediction
 - Just a small number of comparisons
- Relatively interpretable
 - Can explain why prediction was made
 - Sequence of tests lead to prediction

The bad

- Prone to overfitting
- Interpretable?
 - Does the answer to a *long* sequence of tests really clarify the choice?
 - Explainable rather than understandable
- More procedural/less mathematical
 - Greedy tests: locally optimal but perhaps not globally

Categorical variables: one more time

In the Titanic Survival example used in this module

• We treated Pclass (Passenger class) as a categorical rather than a numeric feature

The test applied by a node in a Decision Tree highlights the difference

- ullet Consider Titanic Passenger Class Pclass $\in \{1,2,3\}$
- As a numeric, Pclass implies an ordering (magnitude doesn't matter for Decision Tree split)
 - The test: $\neg(PClass \leq 2)$
 - lacktriangle Is True for any example where $PClass \in \{3\}$
- As a categorical
 - The test: $\neg Is_{Pclass=2}$
 - lacktriangle Is True for any example where $\operatorname{PClass} \in \{1,3\}$

Not the same!

The resu	latter is probably what we had in mind, but Pclass as numeric does not give us this llt.
	 Arbitrary encodings are dangerous! Treat variables with discrete values as categorical.

```
In [4]: print("Done")
```

Done