Jeremy E. Kozdon, PhD

jkozdon.github.io

jeremy@kozdon.net +1-831-204-5944

EDUCATION

Stanford UniversityStanford, CAPh.D. in Computational and Mathematical Engineering2009M.S. in Computational and Mathematical Engineering2006University of California Santa CruzSanta Cruz, CAB.A. in Physics with minor in Computer Science2004

EXPERIENCE

NextSilicon

(fully remote) Monterey, CA

Staff HPC Applications Engineer

2023 - Present

HPC Applications Engineer

2022 - 2023

- Development, tuning, and profiling of HPC libraries, benchmarks, and applications
- Mentoring of junior team members
- Providing support for customers, documentation, and software release cycle
- Development of best practices for code development and optimization guidelines

Naval Postgraduate School

Monterey, CA

Associate Professor of Applied Mathematics Assistant Professor of Applied Mathematics

2019 - 2022

2012 - 2019

- **High Performance Computing:** Developed multi-GPU scientific software for seismic and climate modeling
- Computational Methods: Created robust, accurate, and adaptive methods for modeling of wave phenomena (earthquakes and atmosphere)
- **Teaching:** Taught a variety of mathematics courses from calculus and differential equations to numerical linear algebra and high performance computing
- **Mentoring:** Mentored undergraduate, graduate, and postdoctoral students on projects related to scientific computing
- Research Funding: PI or co-PI on funding from the National Science Foundation, Department of Navy, and cooperative agreements for other universities

Department of Geophysics

Stanford, CA

 $NSF\ Fellow\ for\ Transformative\ Computational\ Science\ using\ CyberInfrastructure\ Postdoctoral\ Research\ Scholar$

2011 - 2012

2009 - 2011

- Developed finite difference methods for earthquake rupture simulations in complex geometries
- Co-developed a MPI-based software for earthquake science that was used to simulate the 2011 Tohoku earthquake and tsunami

SKILLS

- Skills: numerical methods development, finite {element, difference, volume} methods, scientific software design, parallel computing, numerical linear algebra
- Programming and technologies: C, C++, Fortran, Julia, MATLAB, CUDA, MPI, OpenMP, Git, LATEX, continuous integration testing

Publications

Over 20 peer-reviewed publications in journals such as SIAM Journal on Scientific Computing, Journal of Computational Physics, Journal of Scientific Computing, and Computational Geosciences.