

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15110087403

FCC REPORT

(WIFI)

Applicant: Infinity System, SL

Address of Applicant:

A-2 KM 48.5 Pol. Ind de Cabanillas. Parcela 12B 19171

Guadalajara (SPAIN)

Equipment Under Test (EUT)

Product Name: Smartphone

Model No.: TM54SM

Trade mark: AIRIS

FCC ID: 2AC99TM54SM

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Nov., 2015

Date of Test: 12 Nov., to 04 Dec., 2015

Date of report issued: 04 Dec., 2015

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	04 Dec., 2015	Original

Tested by: Zora Lee Date: 04 Dec., 2015

Test Engineer

Reviewed by: Date: 04 Dec., 2015

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4		ST SUMMARY	
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7	Ci cincoc Limecici	
	6.7.		
	6.7.		
7	TES	ST SETUP PHOTO	57
8	EUT	CONSTRUCTIONAL DETAILS	58

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Infinity System, SL
Address of Applicant:	A-2 KM 48.5 Pol. Ind de Cabanillas. Parcela 12B 19171 Guadalajara (SPAIN)
Manufacturer:	Infinity System, SL
Address of Manufacturer:	A-2 KM 48.5 Pol. Ind de Cabanillas. Parcela 12B 19171 Guadalajara (SPAIN)

5.2 General Description of E.U.T.

•	
Product Name:	Smartphone
Model No.:	TM54SM
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-1.22dBi
	Model: T54SMCH
AC adapter:	Input:100-240V AC, 50/60Hz 0.15A
	Output:5V DC MAX 1000mA
Power supply:	Rechargeable Li-ion Battery DC3.8V-1900mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency						Frequency	
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3 2422MHz 6 2437MHz 9 2452MHz							

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Report No: CCIS15110087403

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 7 of 58

5.6 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016	
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -1.22 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207					
Test Method:	ANSI C63.4: 2009					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Fraguency range (MHz)	Limit (dBu\/)				
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Test procedure Test setup:	 Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 					
rest setup.	LISN 40cm		eer — AC power			
Test Uncertainty:	±3.28 dB					
Test Instruments:	Refer to section 5.6 for details).				
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
		-	·			

Measurement Data

Neutral:

Trace: 11

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Smartphone : TM54SM EUT Model Test Mode : Wifi mode

Power Rating: AC120/60Hz Environment: Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Zora

Remark

NOMALK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∜	dB	₫B	dBu∀	dBu∀	dB		
1	0.150	38.61	0.25	10.78	49.64		-16.36		
2	0.158	24.54	0.25	10.78	35.57	55.56	-19.99	Average	
3	0.162	37.71	0.25	10.77	48.73	65.34	-16.61	QP	
4	0.182	34.86	0.25	10.77	45.88	64.42	-18.54	QP	
1 2 3 4 5 6 7 8 9	0.182	18.43	0.25	10.77	29.45	54.42	-24.97	Average	
6	0.194	34.19	0.25	10.76	45.20	63.84	-18.64	QP	
7	0.211	17.63	0.25	10.76	28.64	53.18	-24.54	Average	
8	0.502	40.71	0.29	10.76	51.76	56.00	-4.24	QP	
9	0.502	23.80	0.29	10.76	34.85	46.00	-11.15	Average	
10	0.558	20.85	0.25	10.77	31.87	46.00	-14.13	Average	
11	0.690	32.99	0.19	10.77	43.95	56.00	-12.05	QP	
12	0.690	21.97	0.19	10.77	32.93	46.00	-13.07	Average	

Line:

Trace: 9

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

: Smartphone : TM54SM EUT Model Test Mode : Wifi mode

Power Rating: AC120/60Hz Environment: Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Zora

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu₹	dBu∜	<u>dB</u>	
1	0.170	42.52	0.27	10.77	53.56	64.94	-11.38	QP
2	0.174	28.20	0.27	10.77	39.24	54.77	-15.53	Average
3	0.182	23.16	0.28	10.77	34.21	54.42	-20.21	Average
4	0.202	38.84	0.28	10.76	49.88	63.54	-13.66	QP
2 3 4 5 6 7 8 9	0.202	23.03	0.28	10.76	34.07	53.54	-19.47	Average
6	0.234	36.51	0.27	10.75	47.53	62.30	-14.77	QP
7	0.398	33.91	0.28	10.72	44.91	57.90	-12.99	QP
8	0.398	21.51	0.28	10.72	32.51	47.90	-15.39	Average
9	0.510	26.82	0.28	10.76	37.86	46.00	-8.14	Average
10	0.513	41.27	0.28	10.76	52.31	56.00	-3.69	QP
11	0.582	34.30	0.26	10.77	45.33	56.00	-10.67	QP
12	0.708	23.71	0.22	10.77	34.70	46.00	-11.30	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	Maximum	Limit(dBm)	Result		
	802.11b	Limit(dDin)			
Lowest	13.90	12.95	10.11		
Middle	14.16	13.40	10.35	30.00	Pass
Highest	14.12	13.58	10.64		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

	Test CH	6dB	Limit(kHz)	Result			
1631 011	802.11b	- Limit(Kriz)	result				
	Lowest	9.76	16.00	17.52			
	Middle	9.28	16.16	17.76	>500	Pass	
	Highest	9.28	16.24	17.60			

Test CH	99%	Limit(kHz)	Result		
	802.11b	Limit(Kriz)			
Lowest	12.08	16.56	17.76		
Middle	12.16	16.80	17.68	N/A	N/A
Highest	12.32	17.52	17.68		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 18.NOV.2015 14:50:01

Lowest channel

Date: 18.NOV.2015 14:51:42

Middle channel

Date: 18.NOV.2015 14:53:43

Highest channel

Date: 18.NOV.2015 14:59:51

Lowest channel

Date: 18.NOV.2015 14:58:16

Middle channel

Date: 18.NOV.2015 14:55:33

Highest channel

Test mode: 802.11n(H20)

Date: 18.NOV.2015 15:02:47

Lowest channel

Date: 18.NOV.2015 15:04:09

Middle channel

Date: 18.NOV.2015 15:05:41

Highest channel

99% OBW

Test mode: 802.11b

Date: 18.NOV.2015 15:11:41

Lowest channel

Date: 18.NOV.2015 15:11:06

Middle channel

Date: 18.NOV.2015 15:12:18

Highest channel

Date: 18.NOV.2015 15:14:37

Lowest channel

Date: 18.NOV.2015 15:14:10

Middle channel

Date: 18.NOV.2015 15:13:35

Highest channel

Test mode: 802.11n(H20)

Date: 18.NOV.2015 15:15:07

Lowest channel

Date: 18.NOV.2015 15:15:40

Middle channel

Date: 18.NOV.2015 15:16:10

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2				
Limit:	8dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	Pow	er Spectral Density (c	Limit(dBm)	Result	
	802.11b	Limit(abin)	Nesult		
Lowest	5.01	0.53	1.83		
Middle	5.30	0.99	-2.06	8.00	Pass
Highest	5.33	1.25	-1.85		

Test plot as follows:

Test mode: 802.11b

Date: 18.NOV.2015 14:35:52

Lowest channel

Date: 18.NOV.2015 14:36:22

Middle channel

Date: 18.NOV.2015 14:36:52

Highest channel

Date: 18.NOV.2015 14:40:01

Lowest channel

Date: 18.NOV.2015 14:39:26

Middle channel

Date: 18.NOV.2015 14:38:48

Highest channel

Test mode: 802.11n(H20)

Date: 18.NOV.2015 14:42:06

Lowest channel

Date: 18.NOV.2015 14:42:48

Middle channel

Date: 18.NOV.2015 14:44:49

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Date: 18.NOV.2015 15:25:23

Lowest channel

Date: 18.NOV.2015 15:49:15

Highest channel

802.11g

Lowest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n(H20)

Lowest channel

Highest channel

Date: 18.NOV.2015 15:45:51

6.6.2 Radiated Emission Method

0.0.2	Radiated Emission Method							
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
	Test Method:	ANSI C63.10: 2009 and KDB 558074v03r03 section 12.1						
	Test Frequency Range:	2.3GHz to 2.5GHz						
	Test site:	Measurement Distance: 3m						
	Receiver setup:	Frequency Detector RBW VBW Remark						
		Above 1GHz Peak 1MHz 3MHz Peak Value						
	Limit:	Above 13112 RMS 1MHz 3MHz Average Value	,					
	LIIIII.	Frequency Limit (dBuV/m @3m) Remark						
		Above 1GHz 54.00 Average Value)					
		74.00 Peak Value						
	Toot cotup:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						
	Test setup:	Horn Antenna Tower Ground Reference Plane Test Receiver Controller						
	Test Instruments:	Refer to section 5.6 for details						
	Test mode:	Refer to section 5.3 for details						
	Test results:	Passed						

802.11b

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smartphone : TM54SM Model Test mode : Wifi-b-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Zora REMARK :

MU	n :									
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	<u>dB</u> /m	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		-
	2390.000			6.63			74.00			
)	2390.000	7.92	27.58	6.63	0.00	42.13	54.00	-11.87	Average	

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smartphone

Model TM54SM Test mode : Wifi-b-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Zora REMARK :

	n 1		011				^	
Freq		Antenna Factor						
MHz	dBu₹	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2390,000				200000000000				The second second
2390,000	0. (8	21.00	n. n.i	11. 1111	47.99	D4. UU	-11.111	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smartphone Model : TM54SM

: Wifi-b-H Mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Zora REMARK :

WAL.	r :	Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∜	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	20.87	27.52	6.85	0.00	55.24	74.00	-18.76	Peak
2	2483 500	0 05	27 52	6 95	0.00	44 32	54 00	-0 68	Amerece

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smartphone EUT : TM54SM Model Test mode : Wifi-b-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Zora REMARK :

М	m :								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀		<u>d</u> B	dB	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500	19.53	27.52	6.85	0.00	53.90	74.00	-20.10	Peak
	2483.500	9.37	27.52	6.85	0.00	43.74	54.00	-10.26	Average

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smartphone Model : TM54SM

Model : TM54SM
Test mode : Wifi-g-L Mode
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5 C Huni: 55%

Test Engineer: Zora

REMARK

Freq	ReadAntenna Level Factor			reamp actor Level		
MHz		<u>dB</u> /m				
2390.000 2390.000						

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smartphone EUT Model : TM54SM

Test mode : Wifi-g-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Zora REMARK :

T.L	•								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
239	0.000	23.30	27.58	6.63	0.00	57.51	74.00	-16.49	Peak
239	0.000	9.71	27.58	6.63	0.00	43.92	54.00	-10.08	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smartphone Model : TM54SM Test mode : Wifi-g-H Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Zora

REMARK

Freq		Antenna Factor						
MHz	dBu∀	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500								

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: IM54SM

Test mode : Wifi-g-H Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Zora

REMARK : EUT : Smartphone

4.1	KK :	2000	20.0000				120 20 120	8200	
	100		Ant enna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500	33.68	27.52	6.85	0.00	68.05	74.00	-5.95	Peak
	2483.500	18.01	27.52	6.85	0.00	52.38	54.00	-1.62	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smartphone : TM54SM Model

Test mode : Wifi-n20-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Zora

REMARK

	Freq		Antenna Factor						
	MHz	dBu∀	dB/m	<u>dB</u>	<u>dB</u>	dBu∜/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000					54.61 42.15			

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Smartphone Model : TM54SM

: Wifi-n20-L Mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Zora REMARK :

m_0										
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>		-
	2390.000	19.71	27.58	6.63	0.00	53.92	74.00	-20.08	Peak	
)	2390 000	8 44	27 58	6 63	0.00	42 65	54 00	-11 35	Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

: 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smartphone Model : TM54SM

Test mode : Wifi-n20-H Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Zora REMARK :

nimin										
	Freq		Antenna Factor				Limit Line	- C.	Remark	
_	MHz	dBu₹	$-\overline{dB/m}$	<u>d</u> B	dB	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>		
1	2483.500	28.20	27.52	6.85	0.00	62.57	74.00	-11.43	Peak	
2	2483.500	11.95	27.52	6.85	0.00	46.32	54.00	-7.68	Average	
3	2484.683	30.61	27.52	6.85	0.00	64.98	74.00	-9.02	Peak	
4	2484.683	12.40	27.52	6.85	0.00	46.77	54.00	-7.23	Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smartphone Model : TM54SM

Test mode : Wifi-n20-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Zora REMARK :

MM										
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
2	MHz	dBu₹	$\overline{dB/m}$	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>		
	2483.500	29.52	27.52	6.85	0.00	63.89	74.00	-10.11	Peak	
	2483 500	14 46	27 52	6 85	0.00	48 83	54 00	-5 17	Amerage	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	NSI C63.10:2009 and KDB558074 section 11							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:								
	Spectrum Analyzer							
	E.U.T							
	Non-Conducted Table							
	Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Date: 16.NOV.2015 06:59:50

30MHz~25GHz

Middle channel

Date: 16.NOV.2015 06:12:40

30MHz~25GHz

Highest channel

Date: 16.NOV.2015 06:13:18

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 16.NOV.2015 06:19:05

30MHz~25GHz

Middle channel

Date: 16.NOV.2015 06:16:34

30MHz~25GHz

Highest channel

Date: 16.NOV.2015 06:17:46

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 16.NOV.2015 06:20:53

30MHz~25GHz

Middle channel

Date: 16.NOV.2015 06:21:34

30MHz~25GHz

Highest channel

Date: 16.NOV.2015 06:22:20

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:2	009						
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement [Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above 1G112	RMS	1MHz	3MHz	Average Value			
Limit:	Freque		Limit (dBuV	/m @3m)	Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-21		43.5		Quasi-peak Value			
	216MHz-960MHz 46.0 Quasi-peak Valu							
	960MHz-1GHz 54.0 Quasi-peak Value							
	Above 1GHz 54.0 Average Value							
	74.0 Peak Value							
Test Procedure:	the ground degrees to degrees to antenna, we tower. 3. The antenithe ground Both horizmake the reach scase and to find the specified If the emist the limit spof the EUT have 10dE	d at a 3 meters of determine the was set 3 meters which was more than the determined ontal and verneasurement to the rota tab maximum respected embers of the rota tab maximum respected of the rota tab maximum respected to the	r chamber. The position of the position of the position of the ters away from punted on the fraction of the maximum tical polarization. The Europe was turned ading. In was set to Find the Europe the the Europe the testing could be ported. Otherwood of the ported. Otherwood of the ported of the position of the ported of the ported of the ported of the position of the ported of the position of the ported of the position	e table was the highest of the interfector of a varie meter to fund a value of the constant of the a late of the constant of t	rotated 360 radiation. rence-receiving able-height antenna our meters above ne field strength. Intenna are set to nged to its worst from 1 meter to 4 rees to 360 degrees			

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Smartphone Model : TM54SM
Test mode : Wifi Mode
Power Rating : AC 120V/60Hz

Environment: Temp:25.5°C Huni:55% Test Engineer: Zora REMARK:

nnnn									
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	$\overline{dB/m}$	<u>d</u> B	<u>d</u> B	dBu√/m	dBu√/m	dB	
1	65.114	39.46	10.57	0.75	29.76	21.02	40.00	-18.98	QP
1 2 3	83.230	48.66	9.72	0.87	29.61	29.64	40.00	-10.36	QP
3	87.725	47.78	11.18	0.90	29.58	30.28	40.00	-9.72	QP
4 5 6	103.442	38.27	12.82	0.99	29.50	22.58	43.50	-20.92	QP
5	193.095	47.67	10.56	1.37	28.88	30.72	43.50	-12.78	QP
6	319.937	41.94	13.33	1.84	28.50	28.61	46.00	-17.39	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT Smartphone Model : TM54SM Test mode : Wifi Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Zora REMARK :

Linundi		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor				Line	Limit	Remark
_	MHz	dBu₹	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	65.803	43.46	10.30	0.76	29.75	24.77	40.00	-15.23	QP
2	82.648	44.10	9.57	0.87	29.62	24.92	40.00	-15.08	QP
2	130.837	45.21	8.88	1.20	29.32	25.97	43.50	-17.53	QP
4	134.088	43.98	8.61	1.22	29.31	24.50	43.50	-19.00	QP
5	180.649	46.25	9.76	1.36	28.97	28.40	43.50	-15.10	QP
6	207.123	46.25	10.80	1.42	28.78	29.69	43.50	-13.81	QP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak			
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Fulai.	
4824.00	48.56	31.54	10.58	40.22	50.46	74.00	-23.54	Vertical	
4824.00	55.42	31.54	10.58	40.22	57.32	74.00	-16.68	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.07	31.54	10.58	40.22	47.97	54.00	-6.03	Vertical	

Test mode: 80	Test mode: 802.11b		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.84	31.57	10.64	40.15	48.90	74.00	-25.10	Vertical
4874.00	51.07	31.57	10.64	40.15	53.13	74.00	-20.87	Horizontal
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.73	31.57	10.64	40.15	47.79	54.00	-6.21	Vertical
4874.00	48.37	31.57	10.64	40.15	50.43	54.00	-3.57	Horizontal

Test mode: 80	Test mode: 802.11b			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	49.63	31.61	10.70	40.08	51.86	74.00	-22.14	Vertical	
4924.00	53.03	31.61	10.70	40.08	55.26	74.00	-18.74	Horizontal	
Test mode: 80	02.11b		Test channel: Highest		Remark: Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	45.18	31.61	10.70	40.08	47.41	54.00	-6.59	Vertical	
4924.00	50.02	31.61	10.70	40.08	52.25	54.00	-1.75	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11g		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	50.14	31.54	10.58	40.22	52.04	74.00	-21.96	Vertical
4824.00	53.93	31.54	10.58	40.22	55.83	74.00	-18.17	Horizontal
Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	42.86	31.54	10.58	40.22	44.76	54.00	-9.24	Vertical
4824.00	48.74	31.54	10.58	40.22	50.64	54.00	-3.36	Horizontal

Test mode: 80	02.11g		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	47.28	31.57	10.64	40.15	49.34	74.00	-24.66	Vertical
4874.00	48.99	31.57	10.64	40.15	51.05	74.00	-22.95	Horizontal
Test mode: 80	02.11g		Test channel: Middle			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.31	31.57	10.64	40.15	48.37	54.00	-5.63	Vertical
4874.00	47.58	31.57	10.64	40.15	49.64	54.00	-4.36	Horizontal

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	47.65	31.61	10.70	40.08	49.88	74.00	-24.12	Vertical
4924.00	50.83	31.61	10.70	40.08	53.06	74.00	-20.94	Horizontal
Test mode: 8	02.11g		Test channel: Highest		Remark: Ave			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	44.17	31.61	10.70	40.08	46.40	54.00	-7.60	Vertical
4924.00	47.98	31.61	10.70	40.08	50.21	54.00	-3.79	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	48.62	31.54	10.58	40.22	50.52	74.00	-23.48	Vertical
4824.00	50.18	31.54	10.58	40.22	52.08	74.00	-21.92	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	44.25	31.54	10.58	40.22	46.15	54.00	-7.85	Vertical
4824.00	48.59	31.54	10.58	40.22	50.49	54.00	-3.51	Horizontal

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	48.68	31.57	10.64	40.15	50.74	74.00	-23.26	Vertical	
4874.00	49.31	31.57	10.64	40.15	51.37	74.00	-22.63	Horizontal	
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.25	31.57	10.64	40.15	48.31	54.00	-5.69	Vertical	
4874.00	48.54	31.57	10.64	40.15	50.60	54.00	-3.40	Horizontal	

Test mode: 802.11n(H20)		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	47.41	31.61	10.70	40.08	49.64	74.00	-24.36	Vertical
4924.00	51.88	31.61	10.70	40.08	54.11	74.00	-19.89	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	45.82	31.61	10.70	40.08	48.05	54.00	-5.95	Vertical
4924.00	47.15	31.61	10.70	40.08	49.38	54.00	-4.62	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.