

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2008; month=2; day=26; hr=14; min=29; sec=1; ms=69;]

=====

Application No: 10572886 Version No: 1.0

Input Set:

Output Set:

Started: 2008-02-12 16:41:45.798
Finished: 2008-02-12 16:41:47.581
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 783 ms
Total Warnings: 50
Total Errors: 0
No. of SeqIDs Defined: 53
Actual SeqID Count: 53

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)
W 213	Artificial or Unknown found in <213> in SEQ ID (21)
W 213	Artificial or Unknown found in <213> in SEQ ID (22)

Input Set:

Output Set:

Started: 2008-02-12 16:41:45.798
Finished: 2008-02-12 16:41:47.581
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 783 ms
Total Warnings: 50
Total Errors: 0
No. of SeqIDs Defined: 53
Actual SeqID Count: 53

Error code	Error Description
	This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> Michael Moore
Yen Choo
Aaron Klug

<120> ENGINEERED ZINC FINGER PROTEINS FOR REGULATION OF GENE EXPRESSION

<130> 8325-0038 (S38-US1)

<140> 10572886
<141> 2008-02-12

<150> PCT/US2004/030606

<151> 2004-09-17

<150> 60/504,502

<151> 2003-09-19

<160> 53

<170> PatentIn version 3.3

<210> 1
<211> 7
<212> PRT
<213> Artificial Sequence

<220>

<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 1

Arg Ser Asp His Leu Ser Arg
1 5

<210> 2
<211> 7
<212> PRT
<213> Artificial Sequence

<220>

<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 2

Asp Asn Arg Asp Arg Thr Lys
1 5

<210> 3
<211> 7
<212> PRT

<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 3

Asp Arg Lys Thr Leu Ile Glu
1 5

<210> 4
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 4

Thr Ser Ser Gly Leu Ser Arg
1 5

<210> 5
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 5

Arg Ser Asp His Leu Ser Glu
1 5

<210> 6
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 6

Thr Ser Ser Asp Arg Thr Lys
1 5

<210> 7
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 7

Arg Asp His Arg
1

<210> 8
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 8

Asp Arg Asp Lys
1

<210> 9
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 9

Asp Lys Thr Glu
1

<210> 10
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 10

Thr Ser Gly Arg

1

<210> 11
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 11

Arg Asp His Glu
1

<210> 12
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 12

Thr Ser Asp Lys
1

<210> 13
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered linker sequence of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 13

Thr Gly Glu Lys Pro
1 5

<210> 14
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered linker sequence of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 14

Thr Gly Gly Gln Arg Pro
1 5

<210> 15

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered linker sequence of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 15

Thr Gly Gln Lys Pro
1 5

<210> 16

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered linker sequence of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 16

Thr Gly Ser Gln Lys Pro
1 5

<210> 17

<211> 18

<212> DNA

<213> Homo sapiens

<400> 17

acccgggttc ccctcgaa

18

<210> 18

<211> 25

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<222> (2)..(5)

<223> Xaa can be any naturally occurring amino acid and up to 2 residues may be
absent

<220>

```
<221> misc_feature
<222> (7)..(18)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> misc_feature
<222> (20)..(24)
<223> Xaa can be any naturally occurring amino acid and up to 2 residues may be
absent

<400> 18
```

Cys Xaa Xaa Xaa Xaa Cys Xaa
1 5 10 15

Xaa Xaa His Xaa Xaa Xaa Xaa Xaa His
20 25

```
<210> 19
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered linker sequence of a zinc finger peptide designed to bind
with target mammalian sequences
```

<400> 19

Thr Gly Glu Lys Pro
1 5

```
<210> 20
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered linker sequence of a zinc finger peptide designed to bind
with target mammalian sequences
```

<400> 20

Leu Arg Gln Lys Asp Gly Glu Arg Pro
1 5

```
<210> 21
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered linker sequence of a zinc finger peptide designed to bind
```

with target mammalian sequences

<400> 21

Gly Gly Arg Arg

1

<210> 22

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered linker sequence of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 22

Gly Gly Gly Gly Ser

1 5

<210> 23

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered linker sequence of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 23

Gly Gly Arg Arg Gly Gly Ser

1 5

<210> 24

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered linker sequence of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 24

Leu Arg Gln Arg Asp Gly Glu Arg Pro

1 5

<210> 25

<211> 12

<212> PRT

<213> Artificial Sequence

<220>
<223> Engineered linker sequence of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 25

Leu Arg Gln Lys Asp Gly Gly Ser Glu Arg Pro
1 5 10

<210> 26
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered linker sequence of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 26

Leu Arg Gln Lys Asp Gly Gly Ser Gly Gly Ser Glu Arg Pro
1 5 10 15

<210> 27
<211> 181
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc finger protein designed to bind to a target sequence in the human
CHK2 gene

<400> 27

Met Ala Glu Arg Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser
1 5 10 15

Arg Ser Asp His Leu Ser Arg His Ile Arg Thr His Thr Gly Glu Lys
20 25 30

Pro Phe Ala Cys Asp Ile Cys Gly Arg Lys Phe Ala Asp Asn Arg Asp
35 40 45

Arg Thr Lys His Thr Lys Ile His Thr Gly Gly Gln Arg Pro Tyr Ala
50 55 60

Cys Pro Val Glu Ser Cys Asp Arg Arg Phe Ser Asp Arg Lys Thr Leu
65 70 75 80

Ile Glu His Ile Arg Ile His Thr Gly Gln Lys Pro Phe Gln Cys Arg
85 90 95

Ile Cys Met Arg Asn Phe Ser Thr Ser Ser Gly Leu Ser Arg His Ile
100 105 110

Arg Thr His Thr Gly Ser Gln Lys Pro Phe Gln Cys Arg Ile Cys Met
115 120 125

Arg Asn Phe Ser Arg Ser Asp His Leu Ser Glu His Ile Arg Thr His
130 135 140

Thr Gly Glu Lys Pro Phe Ala Cys Asp Ile Cys Gly Arg Lys Phe Ala
145 150 155 160

Thr Ser Ser Asp Arg Thr Lys His Thr Lys Ile His Leu Arg Gln Lys
165 170 175

Asp Ala Ala Arg Asn
180

<210> 28
<211> 6308
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(6308)
<223> Double stranded DNA sequence

<220>
<221> CDS
<222> (956)..(1849)

<400> 28
gacggatcg gagatctccc gatccctat ggtcgactct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggagggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180
ttagggtag gcgtttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240
gattattgac tagtattaa tagtaatcaa ttacgggtc attagttcat agcccatata 300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaaacgacc 360
ccccccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420

attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt	480		
atcatatgcc aagtacgccc octattgacg tcaatgacgg taaatggccc gcctggcatt	540		
atgcccagta catgacctta tgggacttgc ctacttggca gtacatctac gtattagtca	600		
tcgctattac catggtgatg cggtttggc agtacatcaa tgggcgtgga tagcggttg	660		
actcacgggg atttccaagt ctccacccca ttgacgtcaa tggagtttgc ttttggcacc	720		
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcgc	780		
gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggctaact agagaaccca	840		
ctgcttactg gcttatcgaa attaatacga ctcaactatag ggagacccaa gctggctagc	900		
gtttaaactt aagctgatcc actagtccag tgtggtgaa ttcgctagcg ccacc atg	958		
Met			
1			
gcc ccc aag aag aag agg aag gtg gga atc gat ggg gta ccc ttc cag	1006		
Ala Pro Lys Lys Lys Arg Lys Val Gly Ile Asp Gly Val Pro Phe Gln			
5	10	15	
tgt cga atc tgc atg cgt aac ttc agt cgt agt gac cac ctg agc cgg	1054		
Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser Asp His Leu Ser Arg			
20	25	30	
cac atc cgc acc cac aca ggc gag aag cct ttt gcc tgt gac att tgt	1102		
His Ile Arg Thr His Thr Gly Glu Lys Pro Phe Ala Cys Asp Ile Cys			
35	40	45	
ggg agg aaa ttt gcc gac aac cgg gac cgc aca aag cat acc aag ata	1150		
Gly Arg Lys Phe Ala Asp Asn Arg Asp Arg Thr Lys His Thr Lys Ile			
50	55	60	65
cac acg ggc gga cag cgg ccg tac gca tgc cct gtc gag tcc tgc gat	1198		
His Thr Gly Gly Gln Arg Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp			
70	75	80	
cgc cgc ttt tct gac agg aag aca ctt atc gag cat atc cgc atc cac	1246		
Arg Arg Phe Ser Asp Arg Lys Thr Leu Ile Glu His Ile Arg Ile His			
85	90	95	
acc ggt cag aag ccc ttc cag tgt cga atc tgc atg cgt aac ttc agt	1294		
Thr Gly Gln Lys Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser			
100	105	110	
acc agc agc ggg ctg agc cgc cac atc cgc acc cac aca gga tct cag	1342		
Thr Ser Ser Gly Leu Ser Arg His Ile Arg Thr His Thr Gly Ser Gln			
115	120	125	
aag ccc ttc cag tgt cga atc tgc atg cgt aac ttc agt cgt agt gac	1390		
Lys Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser Asp			
130	135	140	145

gggccatcg cctgatagac ggttttcgc ccttgacgt tggagtccac gttcttaat 2469
agtggactct tgttccaaac tggacaaca ctcAACCTA tctcggtcta ttctttgat 2529
ttataaggga ttttgggat ttccggctat tggtaaaaa atgagctgat ttaacaaaaa 2589
ttaaacgcga attaattctg tggaatgtgt gtcagtagg gtgtggaaag tccccaggct 2649
ccccaggcag gcagaagtat gcaaagcatg catctcaatt agtcagcaac caggtgtgga 2709
aagtccccag gctccccagc aggcaagaatg atgcaaagca tgcatactcaa ttagtcagca 2769
accatagtcg cgcccttaac tccgcccatac ccggccctaa ctccgcccag ttccgcccatt 2829
tctccgcccc atggctgact aattttttt atttatgcag aggccgaggc cgccctctgcc 2889
tctgagctat tccagaagta gtgaggaggc tttttggag gcctaggctt ttgcaaaaag 2949
ctcccgggag ctgtatatac catttcgga tctgatcaag agacaggatg aggatcgtt 3009
cgcatgattt aacaagatgg attgcacgca ggttctccgg ccgttgggt ggagaggcta 3069
tccggctatg actggcaca acagacaatc ggctgctctg atgcccggcgt gttccggctg 3129
tcagcgcagg ggccggcgggt tcttttgtc aagaccgacc tgtccggtgc cctgaatgaa 3189
ctgcaggacg aggcaagcgcg gctatcgtgg ctggccacga cggcgttcc ttgcgcagct 3249
gtgctcgacg ttgtcactga agcgggaagg gactggctgc tattggcga agtgcggggg 3309
caggatctcc tgtcatctca cttgtctctt gccgagaaag tatccatcat ggctgatgca 3369
atgcggcggc tgcatacgct tgatccggctt acctgcccatt tcgaccacca agcggaaacat 3429
cgcatcgagc gagcacgtac tcggatggaa gccggcttgc tcgatcagga tgatctggac 3489
gaagagcatc aggggctcgc gccagccgaa ctgttcgcca ggctcaaggc gcgcatgccc 3549
gacggcgagg atctcgctgt gacccatggc gatgcctgtc tgccgaatat catggtgaa 3609
aatggccgct tttctggatt catcgactgt ggccggctgg gtgtggcgga ccgtatcag 3669
gacatagcgt tggctacccg tgatattgtt gaagagctt gcccgaatg ggctgaccgc 3729
ttcctcggtc ttacggat cggcgctccc gattcgcagc gcatcgccctt ctatcgccctt 3789
cttgcacgt tttctgagc gggactctgg ggttcgaaat gaccgaccaa gcgacgccc 3849
acctgccatc acgagatttc gattccacccg ccgccttcta taaaagggttggcttcc 3909
tcgtttccg ggacggccggc tggatgatcc tccagcgcgg ggatctcatg ctggagttct 3969
tcgcccaccc caacttgttt attgcagctt ataatggta caaataaagc aatagcatca 4029
caaatttcac aaataaagca ttttttac tgcattctag ttgtggtttgc tccaaactca 4089

tcaatgtatc ttatc