Introduction to Deep Learning

7. Multilayer Perceptron

Slides From Mu Li and Alex Smola courses.d2l.ai/berkeley-stat-157

Outline

- Single Layer Perceptron
 - Decision Boundary
 - XOR is hard
- Multilayer Perceptron
 - Layers
 - Nonlinearities
 - Computational Cost

Perceptron

Mark I Perceptron, 1960 (wikipedia.org)

Perceptron

• Given input x, weight w and bias b, perceptron outputs:

$$o = \sigma(\langle \mathbf{w}, \mathbf{x} \rangle + b)$$
 $\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$

Perceptron

Given input x, weight w and bias b, perceptron outputs:

$$o = \sigma(\langle \mathbf{w}, \mathbf{x} \rangle + b)$$
 $\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$

- Binary classification (0 or 1)
 - Vs. scalar real value for regression
 - Vs. probabilities for logistic regression

Training the Perceptron

initialize w=0 and b=0repeat if $y_i \left[\langle w, x_i \rangle + b \right] \leq 0$ then $w \leftarrow w + y_i x_i$ and $b \leftarrow b + y_i$ end if

until all classified correctly

Equals to SGD (batch size is 1) with the following loss $\ell(y, \mathbf{x}, \mathbf{w}) = \max(0, -y\langle \mathbf{w}, \mathbf{x} \rangle)$

From wikipedia

From wikipedia

Convergence Theorem

Assume Radius r enclosing the data

• $\exists \rho$, Margin ρ , separating the classes

$$y(\mathbf{x}^{\mathsf{T}}\mathbf{w} + b) \ge \rho$$

for
$$\|\mathbf{w}\|^2 + b^2 \le 1$$

Guaranteed that perceptron will converge after

$$\frac{r^2+1}{\rho^2}$$
 steps

Consequences

- Only need to store errors.
 This gives a compression bound for perceptron.
- Fails with noisy data

do NOT train your avatar with perceptrons

XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function (neurons can only generate linear separators)

Multilayer Perceptron

Learning XOR

	1	2	3	4
	+	-	+	-
	+	+	-	-
product	+	-	-	+

Hyperparameter - size m of hidden layer

- Input $\mathbf{x} \in \mathbb{R}^n$
- Hidden $\mathbf{W}_1 \in \mathbb{R}^{m \times n}, \mathbf{b}_1 \in \mathbb{R}^m$
- Output $\mathbf{w}_2 \in \mathbb{R}^{3 \times m}, b_2 \in \mathbb{R}^3$

$$\mathbf{h} = \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)$$

$$\mathbf{o} = \mathbf{w}_2^T \mathbf{h} + b_2$$

 σ is an element-wise activation function

Output layer

Hidden layer

Input layer

Why is this a good idea?

Why do we need an a nonlinear activation?

Output layer

Input layer

 $\mathbf{h} = \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)$

$$\mathbf{o} = \mathbf{w}_2^T \mathbf{h} + b_2$$

 σ is an element-wise activation function

Why do we need an a nonlinear activation?

Output layer

$$\mathbf{h} = \mathbf{W}_1 \mathbf{x} + \mathbf{b}_1$$

 $\mathbf{o} = \mathbf{w}_2^T \mathbf{h} + b_2$

hence
$$o = \mathbf{w}_2^\mathsf{T} \mathbf{W}_1 \mathbf{x} + b'$$

Hidden layer

Input layer

Linear ...

Sigmoid Activation

Map input into (0, 1), a soft version of $\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$ sigmoid(x) = $\frac{1}{1 + \exp(-x)}$

Tanh Activation

Map inputs into (-1, 1)

$$tanh(x) = \frac{1 - \exp(-2x)}{1 + \exp(-2x)}$$

ReLU Activation

ReLU: rectified linear unit

$$ReLU(x) = max(x,0)$$

Multiclass Classification

$$y_1, y_2, ..., y_k = \text{softmax}(o_1, o_2, ..., o_k)$$

Multiclass Classification

• Input $\mathbf{x} \in \mathbb{R}^n$

- Output layer
- Hidden $\mathbf{W}_1 \in \mathbb{R}^{m \times n}$ and $\mathbf{b}_1 \in \mathbb{R}^m$
- Output $\mathbf{W}_2 \in \mathbb{R}^{m \times d}$ and $\mathbf{b}_2 \in \mathbb{R}^d$

Hidden layer

$$\mathbf{h} = \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)$$
$$\mathbf{o} = \mathbf{w}_2^T \mathbf{h} + \mathbf{b}_2$$

Input layer

y = softmax(o)

Multiclass Classification

- Input $\mathbf{x} \in \mathbb{R}^n$
- Hidden $\mathbf{W}_1 \in \mathbb{R}^{m \times n}$ and $\mathbf{b}_1 \in \mathbb{R}^m$
- Output $\mathbf{W}_2 \in \mathbb{R}^{m \times d}$ and $\mathbf{b}_2 \in \mathbb{R}^d$

Hidden layer

Input layer

$$\mathbf{h} = \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)$$
$$\mathbf{o} = \mathbf{w}_2^T \mathbf{h} + \mathbf{b}_2$$

y = softmax(o)

Multiple Hidden Layers

$$\mathbf{h}_1 = \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)$$

$$\mathbf{h}_2 = \sigma(\mathbf{W}_2 \mathbf{h}_1 + \mathbf{b}_2)$$

$$\mathbf{h}_3 = \sigma(\mathbf{W}_3 \mathbf{h}_2 + \mathbf{b}_3)$$

$$\mathbf{o} = \mathbf{W}_4 \mathbf{h}_3 + \mathbf{b}_4$$

Hidden layer

Output layer

Hidden layer

Hyper-parameters

- # of hidden layers
- Hidden size for each layer

Hidden layer

Input layer

Summary

- Perceptron
 - Simple updates
 - Limited function complexity
- Multilayer Perceptron
 - Multiple layers add more complexity
 - Nonlinearity is needed
 - Simple composition (but architecture search needed)