Inverse functions

We often think of a function as a rule which takes in an input and assigns to it an output.

Usually we have a nice formula or recipe which tells us how to calculate the output for a given input.

Many hard and interesting problems go the other way: You know the output and you want to work out what the input must have been.

Examples:

- (a) Find all the x such that $f(x) = x^3 3x^2 + x 4 = 0$. This is much harder than finding f(x) for a given input!
- (b) In a scanning device like a CT-machine, the output (what is picked up by the detectors) is a function of what is inside the object being scanned.

The challenge is to reconstruct the 'input data' from the output information.

More abstractly, the problem is

Given a function $f: A \to B$, if we set y = f(x), under what circumstances is it possible to express x as a function of y, that is, to find a function $g: B \to A$ such that x = g(y)?

The first things to worry about are:

- 1. Is it true that: for any $y \in B$ there is $x \in A$ such that y = f(x)?
- 2. If so, is this x unique?

In answering these questions it is vital that one considers not just the formula for f, but also what the domain of f is.

Standard example. Consider the rule

$$y = x^2$$
.

Whether any function defined by this rule is invertible depends on the domain:

•
$$f_1:[0,\infty)\to\mathbb{R}, \qquad y=f_1(x)=x^2$$

If we take into account that $Range(f_1) = [0, \infty)$ then the inverse function is given by

$$g_1: [0, \infty) \to [0, \infty), \qquad x = g_1(y) = \sqrt{y}.$$

•
$$f_2:(-\infty,0]\to\mathbb{R}, \qquad y=f_2(x)=x^2$$

If we take into account that, again, Range $(f_2) = [0, \infty)$ then the inverse function is given by

$$g_2: [0, \infty) \to (-\infty, 0], \qquad x = g_2(y) = -\sqrt{y}.$$

•
$$f_3: \mathbb{R} \to \mathbb{R}, \qquad y = f_3(x) = x^2$$

The latter is not invertible since for any 'output' $y \neq 0$ there exist two 'inputs' $x = \sqrt{y}$ and $x = -\sqrt{y}$.

Remark. It is evident that it might be possible to construct an invertible function by restricting the domain of a given function.

Conclusion. The main criterion for invertibility is the existence of a one-to-one correspondence between 'inputs' and 'outputs'.

One-to-one functions

Idea. A function is one-to-one if every 'output' corresponds to a unique 'input'.

Definition. A function f is said to be one-to-one

if
$$f(x_1) = f(x_2)$$
 implies that $x_1 = x_2$

for all $x_1, x_2 \in Dom(f)$.

Terminology. One-to-one functions are also called **injective** functions.

Remark. An injective function is equivalently characterised by

$$f(x_1) \neq f(x_2)$$
 for all $x_1 \neq x_2$

in the domain of f.

Example. Show that the function

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = x^3 + x + 1$$

is one-to-one.

Solution. Assume that $f(x_1) = f(x_2)$ for some $x_1, x_2 \in \mathbb{R}$. We have that

$$x_1^3 + x_1 + 1 = x_2^3 + x_2 + 1 \Leftrightarrow x_1^3 - x_2^3 + x_1 - x_2 = 0$$

 $(x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2 + 1) = 0.$

Suppose x_1, x_2 has the same sign, then $x_1^2 + x_1x_2 + x_2^2 + 1 > 0$ for all $x_1, x_2 \in \mathbb{R}$. If x_1, x_2 has different signs, we can write

$$x_1^2 + x_1x_2 + x_2^2 + 1 = (x_1 + x_2)^2 - x_1x_2 + 1 > 0.$$

Thus, we have that $x_1^2 + x_1x_2 + x_2^2 + 1$ never equals zero. Therefore, we have $x_1 - x_2 = 0$, or, equivalently, $x_1 = x_2$. Hence, the function f is one-to-one.

If $f: A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$, then you can easily identify one-to-one functions by looking at the graph of f.

f is one-to-one if each horizontal line cuts the graph **at most once**.

The horizontal line test. Suppose that f is a real-valued function defined on some subset of \mathbb{R} . Then, f is one-to-one if and only if every horizontal line in the Cartesian plane intersects the graph of f at most once.

Calculus provides an easy tool for checking whether a function is one-to-one.

Proposition. Suppose that $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). If $f'(x) \neq 0$ for all $x \in (a,b)$ then f is one-to-one.

Proof. Suppose that for some $x_1 < x_2$ we have $f(x_1) = f(x_2)$. Then Rolle's theorem implies that there exists some $c \in (x_1, x_2)$ such that f'(c) = 0. But this is impossible so we must have had $x_1 = x_2$.

More generally, if f is either strictly increasing or strictly decreasing on some interval, then f is one-to-one.

This includes cases like:

- 1. $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ which is strictly increasing, but where f'(x) is sometimes zero.
- 2. $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x |x| which is strictly increasing, but not differentiable.

Example. Is the function $f:(-1,1)\to\mathbb{R}$ defined by

$$f(x) = 3 + 2\tan\left(\frac{\pi}{2}x\right)$$

one-to-one?

Solution. The function $\tan \left(\frac{\pi}{2}x\right)$ is continuous and differentiable at every point of the interval (-1,1). Therefore, the function f is also continuous and differentiable on (-1,1).

We have

$$f'(x) = \frac{\pi}{\cos^2\left(\frac{\pi}{2}x\right)} \neq 0,$$

for every $x \in (-1,1)$. Hence, by the proposition above, the function f is one-to-one.

Remark. Not every function whose derivative is only positive (or only negative) on its domain is one-to-one. For example,

$$\frac{d}{dx}\tan x = \sec^2 x \ge 1$$

but tan is not one-to-one on its maximal domain!

Inverse functions

Theorem. Suppose that f is a one-to-one function. Then, there exists a unique function g satisfying

$$g(f(x)) = x$$
 for all $x \in Dom(f)$

and

$$f(g(y)) = y$$
 for all $y \in \text{Range}(f)$.

Moreover,

$$Dom(g) = Range(f), \qquad Range(g) = Dom(f)$$

and g is one-to-one.

Proof. Set D = Dom(f) and R = Range(f) and define the function

$$g: R \to D$$

by choosing as g(y) the unique $x \in D$ for which y = f(x).

It is then left as an exercise to show that g has the properties listed above.

The theorem allows us to define the term inverse function.

Definition. Suppose that f is a one-to-one function. Then the inverse function of f is the unique function g given by the above theorem. The inverse function for f is often denoted by f^{-1} .

Remark. If f^{-1} denotes the inverse function of a one-to-one function f then the relations in the above theorem may be expressed as

$$f^{-1}(f(x)) = x$$
 for all $x \in \text{Dom}(f)$

and

$$f(f^{-1}(y)) = y$$
 for all $y \in \text{Range}(f)$

so that f may also be interpreted as the inverse of the function f^{-1} .

Note. $f^{-1}(y)$ does not mean 1/f(y)!

Remark. Since f^{-1} is a function just like any other function, we regard it as a function

$$x \mapsto f^{-1}(x)$$

so that we can graph f^{-1} in the usual manner.

Example. Determine f^{-1} , where

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = 4 - \frac{1}{3}x^3.$$

Set

$$y = 4 - \frac{1}{3}x^3$$

so that

$$x = \sqrt[3]{12 - 3y}.$$

Hence, (interchanging x and y),

$$f^{-1}: \mathbb{R} \to \mathbb{R}, \qquad f^{-1}(x) = \sqrt[3]{12 - 3x}.$$

The inverse function theorem

Question. If the derivative of an invertible function exists, under what circumstances is the inverse function also differentiable?

Subtlety. Consider the function

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = x^3.$$

Its inverse is given by

$$g: \mathbb{R} \to \mathbb{R}, \qquad g(x) = \sqrt[3]{x}$$

but g is not differentiable at x = 0!

The inverse function theorem. Suppose that I is an open interval, $f: I \to \mathbb{R}$ is differentiable and

$$f'(x) \neq 0$$

for all x in I. Then,

 \bullet f is one-to-one and has an inverse function

$$g: \operatorname{Range}(f) \to \operatorname{Dom}(f)$$

- g is differentiable at all points in Range(f)
- \bullet The derivative of g is given by

$$g'(y) = \frac{1}{f'(g(y))}$$

for all $y \in \text{Range}(f)$.

Proof.

- Since $f'(x) \neq 0$ on I, f is one-to-one (mean value theorem!).
- \bullet g is differentiable ... too hard! (actually not, but we will skip the proof)
- Differentiation of

$$f(g(y)) = y$$

with respect to y yields

$$f'(g(y)) \times g'(y) = 1.$$

Remark. Once again, we usually write the derivative of the inverse function g as

$$g'(x) = \frac{1}{f'(g(x))}$$

for $x \in \text{Range}(f)$.

Applications to the trigonometric functions

The inverse sine function. We consider the restricted sine function

$$\sin: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1].$$

This function is one-to-one and therefore has an inverse

$$\sin^{-1}: [-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}].$$

On (-1,1), according to the inverse function theorem, the derivative of \sin^{-1} is given by

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\cos(\sin^{-1}x)}.$$

Since cos is positive on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we conclude that

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1 - \sin^2(\sin^{-1}x)}} = \frac{1}{\sqrt{1 - x^2}}.$$

Note. $\frac{d}{dx}(\sin^{-1}x) \to \infty \text{ as } x \to \pm 1.$

Table of inverse trigonometric functions.

Function	Domain	Range	Derivative
sin	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	[-1, 1]	$\frac{d}{dx}(\sin x) = \cos x$
\sin^{-1}	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$
cos	$[0,\pi]$	[-1, 1]	$\frac{d}{dx}(\cos x) = -\sin x$
\cos^{-1}	[-1, 1]	$[0,\pi]$	ux
tan	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$(-\infty,\infty)$	$\frac{d}{dx}(\tan x) = \sec^2 x$
\tan^{-1}			7

Remark. Even though

$$\sin(\sin^{-1} x) = x$$

for $x \in [-1, 1]$, in general,

$$\sin^{-1}(\sin x) \neq x$$

unless $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Example. Determine

(a)

$$\cos\left(2\sin^{-1}\frac{3}{5}\right).$$

Solution.

We have

$$\cos\left(2\sin^{-1}\frac{3}{5}\right) = 1 - 2\sin^{2}\left(\sin^{-1}\frac{3}{5}\right)$$
$$= 1 - 2\left(\frac{3}{5}\right)^{2} = \frac{7}{25}.$$

(b)

$$\sin^{-1}\left(\sin\frac{5\pi}{6}\right)$$
.

Solution. Since $\frac{5\pi}{6}$ does not belong to the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ we do not have $\sin^{-1}\left(\sin\frac{5\pi}{6}\right) = \frac{5\pi}{6}$.

We have

$$\sin^{-1}\left(\sin\frac{5\pi}{6}\right) = \sin^{-1}\left(\sin(\pi - \frac{\pi}{6})\right)$$
$$= \sin^{-1}\left(\sin(\frac{\pi}{6})\right) = \frac{\pi}{6}.$$