Modern Synchronization Techniques for Reliable Communication

Theresh Babu Benguluri and G V V Sharma*

CONTENTS

1	Time Offset: Gardner TED]
	1.1	Plots]
2	Frequency Offset: LR Technique]
	2.1	Plots	1
3	Phase	Offset: Feed Forward Maximum	
Like	elihood (FFML)technique	1
	3.1	Plots	

References

1. Time Offset: Gardner TED

Let the mth sample in the rth received time slot be

$$Y_k(m) = X_k + V_k(m), \quad k = 1, ..., N, m = 1,$$

where X_k is the transmitted symbol in the slot and $V_k(m) \sim \mathcal{N}(0, \sigma^2)$. The decision for the kth symbol is

$$U_k = Y_{k-1} \left(\frac{M}{2} \right) [Y_k (M) - Y_{k-1} (M)]$$

A. Plots

2. Frequency Offset: LR Technique

Let the frequency offset be Δf [1]. Then

$$Y_k = X_k e^{j2\pi\Delta f kM} + V_k, \quad k = 1, ..., N$$
 (2.1)

From (2.1),

$$Y_k X_k^* = |X_k|^2 e^{j2\pi\Delta f k M} + X_k^* V_k$$
 (2.2)

$$\implies r_k = e^{j2\pi\Delta fkM} + \bar{V}_k \tag{2.3}$$

*The authors are with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in.

(1.2) Where N is the length of the received signal. For large centre frequency, the following yields a good approximation for frequency offset upto 40 MHz.

$$\Delta \hat{f} \approx \frac{1}{2\pi M} \frac{\sum_{k=1}^{P} \operatorname{Im}(R(k))}{\sum_{k=1}^{P} k \operatorname{Re}(R(k))}, \quad P\Delta fM << 1 \quad (2.6)$$

where *P* is the number of pilot symbols.

A. Plots

The number of pilot symbols is P = 18. The codes for generating the plots are available at

Fig. 1 shows the variation of the error in the offset estimate with respect to the offset Δf when the SNR = 10 dB. Similarly Fig. ?? shows the variation of the error with respect to the SNR for $\Delta f = 5MHz$.

$$Y_k X_k^* = |X_k|^2 e^{j2\pi\Delta\phi kM} + X_k^* V_k$$
 (3.2)

$$\implies r_k = e^{j2\pi\Delta\phi kM} + \bar{V}_k \tag{3.3}$$

where

$$r_k = Y_k X_k^*, \bar{V}_k = X_k^* V_k, |X_k|^2 = 1$$
 (3.4)

 $\hat{\phi}$ can be written as:

$$\hat{\phi}_k = arg(r_k) \tag{3.5}$$

This equation gives the final estimation of phase

$$\hat{\theta}_f^{(p)}(l) = \hat{\theta}_f^{(p)}(l-1) + \alpha SAW[\hat{\theta}_f^{(p)}(l) - \hat{\theta}_f^{(p)}(l-1)] \eqno(3.6)$$

Where SAW is a saw tooth non-linearity and $\alpha \le 1$

A. Plots

REFERENCES

- [1] M. Luise and R. Reggiannini: Carrier frequency recovery in all-digital modems for burst mode transmissions, IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 1169-1178, Feb/Mar/Apr 1995.
- [2] U. Mengali and A. N. D'Andrea: synchronization Techniques for Digital Receivers, New York: Plenum, 1997.