Data Link Control

Framing

 Process of wrapping data with certain info before sending out

- A frame typically consists of
 - Flag: indication for start and end of a frame
 - Header: source/destination addresses, as well as other control information
 - Data from the upper layer
 - Trailer: error detection/correction code

Byte vs. Bit Oriented

Framing in byte-oriented protocols

Framing in bit-oriented protocols

Byte Stuffing

 Process of adding extra byte whenever there is an escape or a flag character in the data

Bit Stuffing

Process of adding extra bit to ensure flag sequence does not appear

Flow Control and Error Control

- Flow control
 - A set of procedures that tells the sender how much data can be sent before waiting for acknowledgment
- Error control
 - Includes both error detection and correction
 - Allows receiver to inform sender of lost or duplicate frames
 - Mostly based on Automatic Repeat Request (ARQ)

"Simplest": Flow Diagram

Stop-and-Wait Mechanism

- Still noiseless channel
- Receiver has limited buffer
 - Requires flow control
- Sender sends one frame at a time and wait for an acknowledgment

Stop-and-Wait: Flow Diagram

Noisy Channel

- Realistic
 - Error can and will happen
 - Require error control
- Mechanisms:
 - Stop-and-Wait ARQ
 - Go-Back-N ARQ
 - Selective Repeat ARQ

Stop-and-Wait ARQ

- Sender keeps a copy of sent frame until successful delivery is ensured
- Receiver responds with an ack when it successfully receives a frame
- Both data and ack frames must be numbered
- When sender does not receive an ack within certain time, it assumes frame is lost, then retransmits the same frame.

Flow Diagram: Normal Operation

Flow Diagram: Lost Frame

Flow Diagram: Lost ACK

Flow Diagram: Delayed ACK

Bidirectional Transmission

- Data are transferred both ways
- ACK are "piggybacked" with data frames

Example

- Assuming a communication system where:
 - Stop-and-Wait ARQ is used
 - Bandwidth of the link is 1 Mbps
 - Propagation delay is 10 ms
 - One-way data flow
- Questions
 - What should be an appropriate time-out value?
 - What is the bandwidth-roundtrip-delay product?
 - If the system data frames are 1000 bits in length, what is the utilization of the link?

Performance Metrics

Throughput

- Effective rate at which data is transmitted Bitrate acheived
- Data transmitted per unit time
- Protocol induced delay added to delay on transmission link

Latency

- Transmission Delay Depends on data size and data rate of link
- Propagation Delay Depends on distance, speed of signal
- Queueing Delay Only if data is switched across multiple links

Bandwidth-Delay Product

- Measure of number of bits that can be held in transit on a link
- Volume of link

Improving Link Utilization

- On a link of 1Mbps, transmitting 1000 bits takes 11ms (including prop. delay of 10ms)
- Stop-and-wait can send only 1000 bits in 21ms leading to bitrate of 47.6kbps (only about 5% utilization)
- Prefer to send more frames before waiting for ACK
- Example:
 - Recalculate the link utilization if we allow up to 15 frames to be sent before waiting for an ACK

Go-Back-N ARQ

- Allows multiple frames to be sent before waiting for ACK
 - These frames must be numbered differently
 - Frame numbers are called Sequence numbers
- Frames must be received in the correct order
- If a frame is lost, the lost frame and all of the following frames must be retransmitted

Sequence Numbers

- Frame header contains *m* bits for sequence number
- That allows up to 2^m different frame numbers
- How big should *m* be?

Sending Window

- Sending more than one frame at once requires sender to buffer multiple frames
 - Known as "sending window"
 - Any of these frames in the window can be lost

"Sliding" Window

- Once the first frames in the window is ACKed
 - ACKed frames are removed from the buffer
 - More frames are transmitted
 - Result: The window slides to the right

a. Before sliding

b. After sliding two frames

Receiving Window

Receiver expects one frame at a time

a. Before sliding

b. After sliding

Send vs. Receive Windows

Go-Back-N: Window Sizes

- For *m*-bit sequence numbers
- Send window size: at most 2^m-1
 - \rightarrow Up to 2^m -1 frames can be sent without ACK
- Receive window size: 1
 - → Frames must be received in order

Go-Back-N: Normal Operation

Go-Back-N: Lost Frame

Lost ACK: Window Size $< 2^m$

Lost ACK: Window Size = 2^m

Selective Repeat ARQ

- Go-Back-N always discards out-of-order frames
 - Losing one frame may result in retransmission of multiple frames
 - Very inefficient in noisy link
- Selective Repeat ARQ allows frames to be received out of order
 - Therefore, receive window > 1

Send and Receive Windows

- Sender and receiver share window space equally
- For *m*-bit sequence numbers
 - Send window: up to 2^{m-1}
 - Receive window: up to 2^{m-1}

Send Window

Receive Window

Selective Repeat: Window Size

a. Window size = 2^{m-1}

b. Window size $> 2^{m-1}$