Math 104 HW3

Neo Lee

09/15/2023

Exercise 7.4

Give examples of

(a) A sequence (x_n) of irrational numbers having a limit $\lim x_n$ that is rational.

Solution. Consider $(x_n) = \frac{1}{n} \cdot \sqrt{2}$. Clearly, $\lim x_n = 0$ and x_n is irrational for all n.

(b) A sequence (r_n) of rational numbers having a limit $\lim x_n$ that is irrational.

Solution. A simple one would be $(r_n) = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$. Certianly, $\lim r_n = e$ and e is irrational, while r_n is rational for all n.

Exercise 7.5

Determine the following limits. No proofs are required, but show any relevant algebra.

(a) $\lim s_n$ where $s_n = \sqrt{n^2 + 1} - n$. Hint: first show $s_n = \frac{1}{\sqrt{n^2 + 1} + n}$.

Solution.

$$s_n = \sqrt{n^2 + 1} - n$$

$$= \left(\sqrt{n^2 + 1} - n\right) \times \frac{\sqrt{n^2 + 1} + n}{\sqrt{n^2 + 1} + n}$$

$$= \frac{1}{\sqrt{n^2 + 1} + n}$$

 $\lim s_n = 0.$

(b) $\lim (\sqrt{n^2 + n} - n)$.

Solution.

$$\begin{split} \sqrt{n^2+n}-n &= \frac{n}{\sqrt{n^2+n}+n} \\ &= \frac{1}{\sqrt{1+\frac{1}{n}}+1} \\ \lim \left(\sqrt{n^2+n}-n\right) &= \frac{1}{2}. \end{split}$$

(c) $\lim(\sqrt{4n^2+n}-2n)$.

Solution.

$$\sqrt{4n^2 + n} - 2n = \frac{n}{\sqrt{4n^2 + n} + 2n}$$

$$= \frac{1}{\sqrt{4 + \frac{1}{n}} + 2}$$

$$\lim \left(\sqrt{4n^2 + n} - 2n\right) = \frac{1}{4}.$$

Exercise 8.5

(a)

Proposition 1. Consider three sequences (a_n) , (s_n) , and (c_n) such that $a_n \leq s_n \leq c_n$ for all n and $\lim a_n = \lim c_n = s$. Then, $\lim s_n = s$. This is called the squeeze lemma.

Proof. For an arbitrary $\epsilon > 0$, we know $\exists N_c$ such that for $n > N_c$,

$$|c_n - s| < \epsilon \Rightarrow c_n < s + \epsilon$$

and $\exists N_a$ such that for $m > N_a$,

$$|a_m - s| < \epsilon \Rightarrow a_m > s - \epsilon.$$

Now take for $N = \max\{N_c, N_a\}$, we have for k > N,

$$s_k < c_k < s + \epsilon$$
.

At the same time,

$$s - \epsilon < a_k < s_k.$$

Hence,

$$s - \epsilon < s_k < s + \epsilon$$

and $|s_k - s| < \epsilon$.

(b)

Proposition 2. Suppose (s_n) and (t_n) are sequences such that $|s_n| \le t_n$ for all n and $\lim t_n = 0$. Then $\lim s_n = 0$.

Proof. Notice $-t_n \le s_n \le t_n$. If we can show that $\lim(-t_n) = 0$, then by the squeeze lemma, $\lim s_n = 0$. We know $\exists N$ such that for $\epsilon > 0$, take n > N,

$$|t_n - 0| < \epsilon \Rightarrow |-t_n - 0| = |t_n| = |t_n - 0| < \epsilon.$$

Hence, $\lim(-t_n) = 0$.

Exercise 8.6

Let (s_n) be a sequence in \mathbb{R} .

(a)

Proposition 3. $\lim s_n = 0$ if and only if $\lim |s_n| = 0$.

Proof. For any $\epsilon > 0$, we know $\exists N$ such that for n > N,

$$\begin{split} |s_n - 0| < \epsilon \Leftrightarrow |s_n| < \epsilon \\ \Leftrightarrow |(|s_n|)| < \epsilon \\ \Leftrightarrow |(|s_n|) - 0| < \epsilon. \end{split}$$

Read the equivalence form in both forward and backward directions, we can see that $\lim s_n = 0$ if and only if $\lim |s_n| = 0$.

(b) Observe that if $s_n = (-1)^n$, then $\lim |s_n|$ exists, but $\lim s_n$ does not exist.

Solution. The first claim is trivial, since $|s_n| = 1$ for all n, so $\lim |s_n| = 1$.

Now assume for contradiction that $\lim s_n = s \in \mathbb{R}$ exists. Then, $\exists N$ such that for n > N implies for any $\epsilon > 0$,

$$|(-1)^n - s| < \epsilon.$$

Consider $\epsilon = 1$, then $|(-1)^{N+1} - s| < 1$ and $|(-1)^{N+2} - s| < 1$. This means |-1 - s| < 1 and $|1-s| < 1 \Rightarrow s \in (-2,0)$ and $s \in (0,2)$. This is a contradiction.

Or another way to arrive at contradiction is using the triangle inequality such that

$$2 > |1 - s| + |-1 - s| \ge |1 - s - (-1 - s)|$$

 $2 > |1 - s| + |-1 - s| \ge 2$
 $2 > 2$.

Exercise 8.9

Let (s_n) be a sequence that converges.

(a)

Proposition 4. If $s_n \geq a$ for all but finitely many n, then $\lim s_n \geq a$.

Proof. Assume for contradiction that $\lim s_n = s < a$, which can be written as $a = s + 2\epsilon$ for some $\epsilon > 0$. Now take $N = max\{n : s_n < a\}$, for all n > N,

$$s_n \ge a = s + 2\epsilon \Rightarrow |s_n - s| > \epsilon.$$

This contradicts the definition of limit $\lim s_n = s$. Hence, $\lim s_n \geq a$.

(b)

Proposition 5. If $s_n \leq b$ for all but finitely many n, then $\lim s_n \leq b$.

Proof. Similarly, assume for contradiction that $\lim s_n = s > b$, which can be written as $b = s - 2\epsilon$ for some $\epsilon > 0$. Now take $N = \max\{n : s_n > b\}$, for all n > N,

$$s_n \le b = s - 2\epsilon \Rightarrow |s_n - s| > \epsilon.$$

This contradicts the definition of limit $\lim s_n = s$. Hence, $\lim s_n \leq b$.

(c)

Proposition 6. If all but finitely many s_n belong to [a,b], then $\lim s_n$ belongs to [a,b].

Proof. It means for all but finitely many $n, s_n \leq b$. Also, for all but finitely many m, and $s_m \geq a$. Following from (a) and (b), then $\lim s_n \geq a$ and $\lim s_n \leq b$. Hence $\lim s_n \in [a, b]$.

Exercise 9.1a

Proposition 7. $\lim \frac{n+1}{n} = 1$.

Proof.

$$\lim \frac{n+1}{n} = \lim \frac{1+1/n}{1}$$

$$= \lim (1+1/n) \cdot \lim 1 \quad (\because \lim s_n/t_n = \lim s_n \cdot \lim 1/t_n)$$

$$= (\lim 1 + \lim 1/n) \cdot \lim 1 \quad (\because \lim s_n + t_n = \lim s_n + \lim t_n)$$

$$= 1. \quad (\because \lim 1 = 1, \lim 1/n = 0)$$

Exercise 9.4

Let $s_1 = 1$ and for $n \ge 1$ let $s_{n+1} = \sqrt{s_n + 1}$.

(a) List the first four terms of (s_n) .

Solution.

- 1. 1
- 2. $\sqrt{2}$
- 3. $\sqrt{\sqrt{2}+1}$
- 4. $\sqrt{\sqrt{\sqrt{2}+1}+1}$

(b)

Proposition 8. Assume (s_n) converges, then $\lim(s_n) = \frac{1}{2} (1 + \sqrt{5})$.

Proof. Notice $\lim_{n\to\infty} s_{n+1} = s = \lim_{n\to\infty} s_n$. Hence,

$$\lim_{n \to \infty} s_{n+1} = \lim_{n \to \infty} \sqrt{s_n + 1}$$

$$\left(\lim_{n \to \infty} s_{n+1}\right)^2 = \lim_{n \to \infty} \sqrt{s_n + 1} \cdot \lim_{n \to \infty} \sqrt{s_n + 1}$$

$$\left(\lim_{n \to \infty} s_{n+1}\right)^2 = \lim_{n \to \infty} (s_n + 1)$$

$$s^2 = s + 1$$

$$s^2 - s - 1 = 0.$$

Solving the quadratic equation, we get $s = \frac{1}{2} \left(1 \pm \sqrt{5} \right)$. Notice $s_n > 0$ for all n, so $\lim s_n \ge 0$ [check proposition 4]. Thus, $\lim (s_n) = \frac{1}{2} \left(1 + \sqrt{5} \right)$.

Attempt to prove (s_n) converges:

We first show that s_n is monotonic increasing in the interval $I = \left(\frac{\left(1-\sqrt{5}\right)}{2}, \frac{\left(1+\sqrt{5}\right)}{2}\right)$. Indeed, for $s_n \in I$,

$$s_n^2 - s_n - 1 < 0$$

 $s_n^2 < s_n + 1$
 $s_n < \sqrt{s_n + 1}$
 $s_n < s_{n+1}$.

Then, we show that (s_n) is bounded by $\frac{\left(1+\sqrt{5}\right)}{2}$. We proceed with induction to show that $s_n < \frac{\left(1+\sqrt{5}\right)}{2}$ for all $n \in \mathbb{N}$. The base case $s_1 = 1$ is trivial. Now assume $s_k < \frac{\left(1+\sqrt{5}\right)}{2}$ for some $k \in \mathbb{N}$. To show $s_{k+1} < \frac{\left(1+\sqrt{5}\right)}{2}$, we need

$$\sqrt{s_k + 1} < \frac{\left(1 + \sqrt{5}\right)}{2}$$

$$s_k + 1 < \frac{6 + 2\sqrt{5}}{4}$$

$$s_k < \frac{6 + 2\sqrt{5}}{4} - 1$$

$$s_k < \frac{\left(1 + \sqrt{5}\right)}{2},$$

which is indeed true by our inductive hypothesis.

Hence, by mathematical induction, $s_n = |s_n| < \frac{(1+\sqrt{5})}{2}$ for all $n \in \mathbb{N}$. Now, since s_n is a bounded monotone, it converges.