

الرياضيات البحتة

الصف الثاني

التخصصات الصناعية (لغة انجليزية)

PURE MATHEMATICS

Second Grade For industrial (**English**)

 $\mathbf{2}_{\mathsf{nd}}$

2023 - 2024

Unit 1 : Differentiation and Its Applications—Integration

Title Page Lesson Rules of differentiation 5 one Derivative of the product of two functions two 9 Derivative of the quotient of two functions three 11 four Derivative of composite functions 14 Derivative of trigonometric functions five 17 Second Term Derivative of trigonometric functions six 20 (follow) **Equation of tangent** 23 seven eight **Equation of normal** 26 Indefinite integration nine 29 Indefinite integration (follow) 33 ten eleven Test 37 **Evaluation** twelve 38

Unit 1: Differentiation and Its Applications

Dear student by the end of this unit you will recognize the following:

- The derivative of the constant function.
- The derivative of the function $f(x) = x^n$.
- The derivative of the function f(x) = x.
- The derivative of the function $f(x) = ax^n$.
- The derivative of the product of two functions.
- The derivative of the quotient of two functions.
- The derivative of the function $y = (f(x))^n$.
- The derivative of trig. functions
- To find the equation of the tangent, the equation of the normal to a curve at a point on it.
- Some rules of indefinite integration.

Lesson One

Rules of differentiation (derivative)

Let y = f(x), the first derivative of this function is symbolized as :

$$y^{\setminus}$$
, $f^{\setminus}(x)$, $\frac{dy}{dx}$, $\frac{d}{dx}(f(x))$

- 1. $f(x) = a \in R$ where a is constant (independent on x) \Rightarrow $f^{\setminus}(x) = 0$
- 2. $f(x) = x^n$, $n \in \mathbb{R}$ \Rightarrow $f^{\setminus}(x) = nx^{n-1}$
- 3. f(x) = x $\Rightarrow f^{\setminus}(x) = 1$

Important note:

First derivative of f(x) is equal to rate of change.

i.e.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 = slope of tangent = $tan\theta$

(where θ is inclination angle of the tangent with +ve X-axis)

Example (1)

Find the first derivative of of:

$$\bullet \quad y = 2x^7 \qquad \qquad \Rightarrow \qquad \frac{dy}{dx} = 14x^6$$

•
$$y = \frac{3}{x^4} = 3x^{-4}$$
 \Rightarrow $y = -12x^{-5}$

•
$$f(x) = \sqrt[4]{x} = (x)^{\frac{1}{4}}$$
 \Rightarrow $f(x) = \frac{1}{4} \cdot 12x^{-\frac{3}{4}}$

Example (2)

Find the slope of the tangent to the curve of the function f where $f(x) = x^2 - x + 1$ at the point (-2 , 7)

Solution

$$f^{\setminus}(x) = 2x - 1$$

at $x = -2$
 $f^{\setminus}(-2) = -5$ \therefore slope of the tangent = -5

Example (3)

Prove that the tangent to the curve of the function $y=3x^2-5x$ at the point (1,-2) makes an angle of measure 45° with the positive direction of X-axis

$$y = 3x^2 - 5x \qquad \therefore y = 6x - 5$$
at $x = 1$ \quad \tau \quad y = 1
i.e. $\tan \theta = 1$ \quad \tau \theta = $\tan^{-1} 1 = 45^\circ$

Example (4)

Find the points on the curve $y = x^3 - 3x^2$ at which the slope of the tangent equals zero (the tangent // X-axis)

$$\frac{dy}{dx} = 3x^2 - 6x = 0 \Rightarrow 3x(x - 2) = 0$$

$$3x = 0 \Rightarrow x - 2 = 0$$

$$x = 0 \Rightarrow x = 2$$

$$y = (0)^3 - 3(0)^2 \Rightarrow y = (2)^3 - 3(2)^2$$

$$y = 0 \Rightarrow x = 2$$

$$y = (2)^3 - 3(2)^2$$

$$y = -4$$
Points: (0,0) and (2,-4)

Management and Operations Unit

for Schools of Applied Technology (MOUSAT)

Example (5) If
$$y = mx^2 - 3x$$
 and $\frac{dy}{dx} = 7$ at $x = 1$ find m .

Solution:

$$\frac{dy}{dx} = 2mx - 3 = 7$$

$$2mx = 10$$

$$2m(1) = 10 \implies m = 5$$

Example (6)

Find the slope of the tangent to the curve $y = x - \frac{2}{x}$ at x = 1

Solution

$$y = x - 2x^{-1}$$

$$\therefore \frac{dy}{dx} = 1 + 2x^{-2}$$
at $x = 1 \implies \frac{dy}{dx} = 1 + 2 = 3$

∴ the slope of the tangent = 3

EXERCISE (1)

- 1. Find the points on the curve $y = x^3 4x + 2$ at which the slope of the tangent = -1
- 2. Find the points on the curve $y = 2x^3 x + 3$ at which the slope of the tangent = 5
- 3. Find the first derivative of:
 - a) $y = x^5 3x^2 + 5x 9$
 - b) $y = 2x^2 + 5$
- 4. Find the slope of the tangent to the curve $y = x^2 \frac{1}{x}$ at x = 1
- 5. Find the measure of the angle which the tangent to the curve $y = 2x^3 + 3x$ makes with the positive direction of X-axis at the point (-1, 0).
- 6. Find the points on the curve $y = x^3 4x + 1$ at which the tangent makes an angle of measure 135° with the positive direction of X-axis.
- 7. If the slope of the tangent to the curve $y = x^2 + ax$ at the point (1,3) is equal to 6 then, find the value of a.

Lesson Two

Derivative Of The Product Of Two Functions

If
$$y = f(x) \cdot g(x)$$
 then, $\frac{dy}{dx} = f(x) \cdot g^{\setminus}(x) + g(x) \cdot f^{\setminus}(x)$
i.e. $\frac{dy}{dx} = \text{first} \times (\text{second})^{\setminus} + \text{second} \times (\text{first})^{\setminus}$

Example (1)

Find the first derivative of the function $y = (3x^2 - 2x + 1)(x^4 - 5x^2 + 2)$ when x = 0

Solution:

$$\frac{dy}{dx} = (3x^2 - 2x + 1)(4x^3 - 10x) + (x^4 - 5x^2 + 2)(6x - 2)$$
when $x = 0$

$$\frac{dy}{dx} = (0 - 0 + 1)(0 - 0) + (0 - 0 + 2)(0 - 2)$$

$$\frac{dy}{dx} = -4$$

Example (2)

Find the slope of the tangent to the curve of the function

$$y = (2x + 5)(3x^2 - 1)$$
 at $x = -1$

Solution:

$$\frac{dy}{dx} = (2x+5)(6x) + (3x^2 - 1)(2)$$

At
$$x = -1$$

$$\frac{dy}{dx} = (-2+5)(-6) + (3-1)(2) = -14$$

 \therefore Slope of the tangent = -14

EXERCISE (2)

- 1. Find the points on the curve $y = (x^2 + 5)(x 1)$ at which the slope of the tangent is equal to -2.
- 2. Find the first derivative of:

a)
$$y = (x^5 - 3x)(5x - 9)$$

b)
$$y = (x^2 + 5)(x^2 - 3)$$

- 3. Find the slope of the tangent to the curve $y = x^2(5x 1)$ at x = 1
- 4. Find the measure of the angle which the tangent to the curve $y = (x^3 + 3x)(x 5)$ makes with the positive direction of X-axis at the point (-1, 0).

Lesson Three

Derivative Of The Quotient Of Two Functions

If
$$y = \frac{f(x)}{g(x)}$$
 where $g(x) \neq 0$

then,
$$\frac{dy}{dx} = \frac{g(x) \cdot f(x) - f(x) \cdot g(x)}{[g(x)]^2}$$

i.e.
$$\frac{dy}{dx} = \frac{\text{denominator.(numerator)} \setminus -\text{numerator.(denominator)} \setminus}{[\text{denominator}]^2}$$

Example (1)

Find the first derivative of the function $y = \frac{3x-2}{2x+3}$ when x = 1

Solution

$$\frac{dy}{dx} = \frac{(2x+3)(3) - (3x-2)(2)}{(2x+3)^2}$$

when
$$x = 1$$
 $\Rightarrow \frac{dy}{dx} = \frac{(2+3)(3) - (3-2)(2)}{(2+3)^2} = \frac{13}{25}$

Example (2)

Find the first derivative of the function $y = \frac{5x + 11}{x + 2}$ when x = 0

$$\frac{dy}{dx} = \frac{(x+2)(5) - (5x+11)(1)}{(x+2)^2}$$

when
$$x = 0$$

$$\frac{dy}{dx} = \frac{(0+2)(5) - (0+11)(1)}{(0+2)^2} = \frac{-1}{4}$$

Example (3)

If
$$f(x) = \frac{x^2}{3x+2}$$
 find $f(-1)$

Solution:

$$f^{\setminus}(x) = \frac{(3x+2)(2x) - x^2(3)}{(3x+2)^2}$$

$$f^{\setminus}(-1) = \frac{(-3+2)(-2)-1(3)}{(-3+2)^2} = -1$$

Example (4)

Find the measure of the angle which the tangent to the curve $y = \frac{x-1}{x^2-x+1}$ makes with the positive direction of X-axis at the point (1, 0).

$$y' = \frac{(x^2 - x + 1)(1) - (x - 1)(2x - 1)}{(x^2 - x + 1)^2}$$
At $x = 1$
$$y' = \frac{\frac{(1 - 1 + 1)(1) - (1 - 1)(2 - 1)}{(1 - 1 + 1)^2}}{\tan \theta = 1} = 1$$

$$\theta = 45^{\circ}$$

EXERCISE (3)

- 1. Find the first derivative of the function $y = \frac{2x+3}{x-2}$ when x = 3
- 2. Find the slope of the tangent to the curve $y = x \frac{2}{x}$ at x = 1
- 3. Find the measure of the angle which the tangent to the curve $y = \frac{1+x}{1-x}$ makes with the positive direction of X-axis at the point (-1, 0).
- 4. Find the points on the curve $y = \frac{x-2}{x-1}$ at which the slope of the tangent is equal to 1.

Lesson Four

Derivative Of Composite Functions

Corollary:

If
$$y = (f(x))^n$$
, then:

If
$$y = (f(x))^n$$
, then:
$$\frac{dy}{dx} = n(f(x))^{n-1}. f^{\setminus}(x)$$

Example (1)

If
$$y = (x^3 + 3x^2 - 1)^7$$
 then, find $\frac{dy}{dx}$ at $x = 0$

Solution:

$$\frac{dy}{dx} = 7(x^3 + 3x^2 - 1)^6 \cdot (3x^2 + 6x)$$

At
$$x = 0$$

$$\frac{dy}{dx} = 7(0+0-1)^6 \cdot (0+0) = 0$$

Example (2)

Find the slope of the tangent to the curve of the function $y = x (2x - 1)^5 + 3$ at the point (0, 3).

Solution:

$$\frac{dy}{dx} = (x)[5(2x-1)^4.(2)] + 1(2x-1)^5$$

at
$$x = 0$$

$$\frac{dy}{dx} = (0)[5(0-1)^4 \cdot (2)] + 1(0-1)^5 = -1$$

 \therefore slope of the tangent = -1

If $y=z^3$, $z=2x^2-3x+1$ find $\frac{dy}{dx}$ at x=2

Example (3)

Solution

$$y = (2x^{2} - 3x + 1)^{3}$$

$$\therefore \frac{dy}{dx} = 3(2x^{2} - 3x + 1)^{2} \cdot (4x - 3)$$
At $x = 2$

$$\frac{dy}{dx} = 3(8 - 6 + 1)^{2} \cdot (8 - 3) = 135$$

Example (4)

If
$$y = 2z^3$$
 , $z = \sqrt{x^2 - 2x}$ find $\frac{dy}{dx}$ at $x = 3$

Solution:

$$y = 2(\sqrt{x^2 - 2x})^3 = 2(x^2 - 2x)^{\frac{3}{2}}$$

$$\therefore \frac{dy}{dx} = 3(x^2 - 2x)^{\frac{1}{2}} \cdot (2x - 2)$$
At $x = 3$ $\Rightarrow \frac{dy}{dx} = 3(9 - 6)^{\frac{1}{2}} \cdot (6 - 2) = 12\sqrt{3}$

Example (5)

If
$$y = (3z - 1)^4$$
, $z = x(3x - 2)$ find $\frac{dy}{dx}$ at $x = 1$

$$y = [3(3x^2 - 2x) - 1]^4 = [9x^2 - 6x - 1]^4$$

$$\therefore \frac{dy}{dx} = 4[9x^2 - 6x - 1]^3.(18x - 6)$$

At
$$x = 1$$
 \Rightarrow $\frac{dy}{dx} = 4[9 - 6 - 1]^3 \cdot (18 - 6) = 384$

EXERCISE (4)

1. Find
$$\frac{dy}{dx}$$
 if $y = (2x^2 - 3x - 5)^5$ at $x = 2$

2. If
$$f(x) = \frac{3x^2+1}{x^2+2}$$
, find $f(x)$ at $x = 1$

3. If
$$y = z^2$$
, $z = x^2 + 1$, then find $\frac{dy}{dx}$ at $x = -1$

4. If
$$y = z^3$$
, $z = \frac{x}{x+1}$ then, find $\frac{dy}{dx}$ at $x = 1$

5. If
$$y = z + 2$$
, $z = x^2 + 2x$, then find $\frac{dy}{dx}$ at $x = 2$

6. If
$$y = z^3 + z$$
, $z = x^2 - x$ then, find $\frac{dy}{dx}$ at $x = 2$

Lesson Five

Derivative Of Trigonometric Functions

1. If
$$y = sinx$$

$$\Rightarrow$$

$$\frac{dy}{dx} = \cos x$$

2. If
$$y = \cos x$$

$$\Rightarrow$$

$$\frac{dy}{dx} = -\sin x$$

3. If
$$y = tanx$$

$$\Rightarrow$$

$$\frac{dy}{dx} = sec^2x$$

Corollaries:

1. If
$$y = \sin(ax + b)$$

$$\Rightarrow$$

$$\frac{dy}{dx} = a\cos(ax + b)$$

$$2. If y = cos(ax + b)$$

$$\Rightarrow$$

$$\frac{dy}{dx} = -a\sin(ax+b)$$

3. If
$$y = tan(ax + b)$$

$$\Rightarrow$$

$$\frac{dy}{dx} = a \sec^2(ax + b)$$

Example (1)

Find the first derivative of the function y = sin4xSolution:

$$\frac{dy}{dx} = 4\cos 4x$$

Example (2)

Find the first derivative of the function $y = \cos (2x + 5)$

Solution:

$$\frac{dy}{dx} = -2\sin(2x+5)$$

Example (3)

Find the first derivative of the function $y = x \sin 2x$

$$\frac{dy}{dx} = x (2 \cos 2x) + \sin 2x$$
$$= 2x\cos 2x + \sin 2x$$

Management and Operations Unit for Schools of Applied Technology (MOUSAT)

Example (4)

Find the first derivative of the function $y = \frac{\sin 2x}{\cos 3x}$ at $x = \pi$ Solution:

$$\frac{dy}{dx} = \frac{\cos 3x (2\cos 2x) - \sin 2x (-3\sin 3x)}{(\cos 3x)^2}$$

at
$$x = \pi$$

$$\frac{dy}{dx} = \frac{\cos 3\pi \ (2\cos 2\pi) - \sin 2\pi \ (-3\sin 3\pi)}{(\cos 3\pi)^2} = \frac{(-1)(2) - 0(0)}{(-1)^2} = -2$$

Example (5)

Find the first derivative of the function y = 2cosx - tan5xSolution:

$$\frac{dy}{dx} = -2\sin x - 5\sec^2 5x$$

EXERCISE (5)

Find the first derivative of each of the following functions:

1.
$$y = tan2x$$

$$2. y = \sin 2x + \sin 3x$$

3.
$$y = x \sin x - x^2$$

$$4. y = \sin 2x + \cos 3x$$

5.
$$y = 2x + \sin 2x$$
 $at x = 0$

6.
$$y = \cos 2x + \sin 5x$$

7.
$$y = \tan (3x + 2)$$

8.
$$y = cosx.sinx$$
 at $x = \pi$

9.
$$y = (3x - \cos 2x)^3$$

10.
$$y = x^3 \cos 2x$$

Lesson six

<u>Derivative Of Trigonometric Functions (follow)</u>

Example (1)

If
$$y = sin\left(2x + \frac{\pi}{3}\right)$$
 find $y \mid at \ x = \pi$
Solution:

$$y \mid = 2cos\left(2x + \frac{\pi}{3}\right) = 2cos\left(2\pi + \frac{\pi}{3}\right) = 2 \times \frac{1}{2} = 1$$

Example (2) If $y = 2x \sin x \cos x$, prove that: $y' = \sin 2x + 2x \cos 2x$

Solution

Note:

$$y = x \sin 2x$$

 $Sin2x = 2sinx \cdot cosx$

$$y' = x(2\cos 2x) + \sin 2x = 2x\cos 2x + \sin 2x$$

Example (3)

If
$$y = \frac{\sin x}{\sin x + \cos x}$$
, prove that: $y = \frac{1}{1 + \sin 2x}$

$$y' = \frac{\cos x (\sin x + \cos x) - \sin x (\cos x - \sin x)}{(\sin x + \cos x)^2}$$

$$= \frac{\cos x \sin x + \cos^2 x - \sin x \cos x + \sin^2 x}{\sin^2 x + \cos^2 x + 2\sin x \cos x}$$

$$= \frac{1}{1 + \sin 2x}$$

Example (4)

If
$$y = \sqrt{1 + Cos2x}$$
, find $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$ Solution:

$$y = (1 + Cos2x)^{\frac{1}{2}}$$

$$\therefore y^{\setminus} = \frac{1}{2} (1 + \cos 2x)^{\frac{-1}{2}} \quad (-2 \sin 2x)$$

When
$$x = \frac{\pi}{4}$$
 \Rightarrow $y = -1$

EXERCISE (6)

1. If
$$y = Cosx.sinx$$
, find $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$

2. If
$$y = (sinx + cosx)^2$$
, prove that: $y = 2cos2x$

3. Find
$$\frac{d}{dx}(2x^2sinx cosx)$$
 at $x = \pi$

4. If
$$y = sinx - \frac{1}{3}sin^3x$$
 , prove that: $y = cos^3x$

5. If
$$y = \frac{x}{\sin x}$$
, find $\frac{dy}{dx}$ at $x = \frac{\pi}{2}$

6. If
$$y = x \cos 2x$$
, find $\frac{dy}{dx}$ at $x = \frac{\pi}{2}$

7. Find
$$\frac{d}{dx} \left(\frac{x}{\cos 3x} \right)$$
 at $x = \frac{\pi}{3}$

8. Find the slope of the tangent to the curve y = sin2x. cosx at x = sin2x

 π

Lesson seven

Equation of Tangent

Slope of the tangent to a curve:

Remember: Let m_1 , m_2 be the slopes of two straight lines L_1 , L_2

- 1. If $L_1 // L_2$ then, $m_1 = m_2$
- 2. If $L_1 \perp L_2$ then, $m_1 m_2 = -1$
- 3. Equation of the tangent to a curve at any point (x_1, y_1) is

$$(y - y_1) = m(x - x_1)$$

Example (1) Find the equation of the tangent to the curve

 $y = 2x^3 - 4x^2 + 3$ at the point (2,3) which lies on the curve.

Solution:

$$y^{\setminus} = 6x^2 - 8x$$

When x = 2 , y = 8

Equation of the tangent : y - 3 = 8(x - 2)

$$y - 8x + 13 = 0$$

Example (2) Find the equation of the tangent to the curve $y = \frac{x-1}{x^2-x+1}$ at the point (1,0) which lies on the curve.

Solution:

$$y' = \frac{1(x^2 - x + 1) - (x - 1)(2x - 1)}{(x^2 - x + 1)^2}$$

When x = 1,

$$y' = \frac{1(1-1+1) - (1-1)(2-1)}{(1-1+1)^2} \qquad m = 1$$

Equation of the tangent : y - 0 = 1(x - 1)

$$y = x - 1$$

Management and Operations Unit for Schools of Applied Technology (MOUSAT)

Example (3)

Find the equation of the tangent to the curve $y = (2x + 5)(3x^2 - 1)$ at x = 0.

$$y^{\setminus} = (2x + 5)(6x) + (3x^2 - 1)(2)$$

at $x = 0$,
 $\therefore y^{\setminus} = -2 = \text{the slop of the tangent}$
and $y = (0 + 5)(0 - 1) = -5$
 $\Rightarrow \text{point } (0, -5)$

Equation of the tangent :
$$y + 5 = -2(x - 0)$$

 $y + 2x + 5 = 0$

EXERCISE (7)

- 1. Find the equation of the tangent to the curve $y = x \frac{2}{x}$ at x = 1
- 2. Find the equation of the tangent to the curve $y = \frac{x-2}{x-3}$ at x = 2
- 3. Find the equation of the tangent to the curve $y = (x^2 + 5)(x 1)$ at x = 2
- 4. Find the equation of the tangent to the curve $y = x^2(5x 1)$ at x = 3

Lesson eight

Equation Of Normal

Equation of the normal to a curve at any point (x_1, y_1) is :

$$y - y_1 = \frac{-1}{m}(x - x_1)$$

Example (1) Find the equation of the normal to the curve

 $y = 2x^3 - 4x^2$ at the point (2,0) which lies on the curve Solution:

$$y^{\setminus} = 6x^2 - 8x$$

When x = 2 , $y^{\setminus} = 8$

Equation of the normal:
$$y - 0 = \frac{-1}{8}(x - 2)$$

$$8y + x - 2 = 0$$

Example (2)

Find the equation of the normal to the curve $y = \frac{x-1}{x^2 - x + 1}$ at the point (1,0) which lies on the curve.

Solution:

$$y^{\setminus} = \frac{1(x^2 - x + 1) - (x - 1)(2x - 1)}{(x^2 - x + 1)^2}$$

When x = 1,

$$y^{\setminus} = \frac{1(1-1+1)-(1-1)(2-1)}{(1-1+1)^2}$$

$$, m = 1$$

Equation of the normal : y - 0 = -1(x - 1)

$$y + x - 1 = 0$$

Management and Operations Unit for Schools of Applied Technology (MOUSAT)

Example (3)

Find the equation of the normal to the curve $y = (2x + 5)(3x^2 - 1)$ at x = 0.

Solution:

$$y^{\setminus} = (2x + 5)(6x) + (3x^2 - 1)(2)$$

When x = 0 ,

$$y = -2 = m$$
 (slope of tangent)

and
$$y = (0+5)(0-1) = -5$$

$$\Rightarrow$$
 point $(0, -5)$

Equation of the normal :
$$y + 5 = \frac{1}{2}(x - 0)$$

$$2y - x + 10 = 0$$

EXERCISE (8)

- 1. Find the equation of the normal to the curve $y = x \frac{2}{x}$ at x = 2
- 2. Find the equation of the normal to the curve $y = \frac{x-2}{x-3}$ at x = 2
- 3. Find the equation of the normal to the curve $y = (x^2 + 5)(x 1)$ at x = 1
- 4. Find the equation of the normal to the curve $y = x^2(5x 1)$ at x = 1

Lesson nine

Indefinite Integration

Rules:

1.
$$\int x^n \ dx = \frac{x^{n+1}}{n+1} + c$$

$$2. \int a \ dx = ax + c$$

3.
$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + c$$

4.
$$\int [f(x)]^n \cdot [f^{\setminus}(x)] dx = \frac{[f(x)]^{n+1}}{n+1} + c$$

Example (1)

Find: (a) $\int 5x \ dx$

(b) $\int (3x^2 - x + 1) \ dx$

a)
$$\int 5x \ dx = \frac{5}{2}x^2 + c$$

b)
$$\int (3x^2 - x + 1) dx = x^3 - \frac{1}{2}x^2 + x + c$$

Example (2)

Find:
$$\int (x-2)(x-1)(x+1) dx$$

Solution:

$$\int (x-2)(x-1)(x+1) \, dx = \int (x-2)(x^2-1) \, dx$$
$$= \int (x^3 - 2x^2 - x + 2) \, dx$$
$$= \frac{x^4}{4} - \frac{2x^3}{3} - \frac{x^2}{2} + 2x + c$$

Example (3) Find: $\int \frac{x^2+m^2x}{x} dx$, m is constant

Solution:

$$\int \frac{x^2 + m^2 x}{x} dx = \int (x + m^2) dx = \frac{1}{2} x^2 + m^2 x + c$$

Example (4) Find: $\int (x + \frac{1}{x})^2 dx$

Solution:

$$\int (x + \frac{1}{x})^2 dx = \int \left(x^2 + 2 + \frac{1}{x^2}\right) dx$$
$$= \int (x^2 + 2 + x^{-2}) dx = \frac{1}{3}x^3 + 2x - x^{-1} + c$$

Example (5) Find: $\int (7x - 3)^8 dx$

$$\int (7x-3)^8 dx = \frac{(7x-3)^9}{9 \times 7} + c$$
$$= \frac{(7x-3)^9}{63} + c = \frac{1}{63} (7x-3)^9 + c$$

Management and Operations Unit for Schools of Applied Technology (MOUSAT)

Example (6) Find:
$$\int (2x+11)(\sqrt{2x+11})dx$$

Solution:

$$\int (2x+11)(2x+11)^{\frac{1}{2}} dx$$

$$= \int (2x+11)^{\frac{3}{2}} dx = \frac{(2x+11)^{\frac{5}{2}}}{\frac{5}{2} \times 2} + c = \frac{1}{5} (2x+11)^{\frac{5}{2}} + c$$

Example (7) Find: $\int 2x (x^2 + 2)^5 dx$

$$\int 2x (x^2 + 2)^5 dx = \frac{(x^2 + 2)^6}{6} + c$$

EXERCISE (9)

Find

$$1. \int x(x+3) \ dx$$

2.
$$\int x^2 (4x + 2) dx$$

3.
$$\int (x-4)(x+4) dx$$

4.
$$\int \frac{x^2 + 2x - 3}{x - 1} dx$$

5.
$$\int \frac{x^3 + 27}{x + 3} dx$$

6.
$$\int (2x-4)^5 dx$$

7.
$$\int x^2 (4x^3 - 1)^7 dx$$

Lesson ten

Indefinite Integration(follow)

Integrals of some trig. functions:

1.
$$\int \sin x \ dx = -\cos x + c$$

$$2. \int \cos x \ dx = \sin x + c$$

$$3. \int sec^2 x \ dx = tanx + c$$

Corollaries:

$$1. \int \sin(ax+b) \ dx = -\frac{1}{a}\cos(ax+b) + c$$

$$2. \int \cos(ax+b) \ dx = \frac{1}{a} \sin(ax+b) + c$$

3.
$$\int sec^2(ax+b) \ dx = \frac{1}{a}tan(ax+b) + c$$

Remember:

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

$$Sin2x = 2sinx \cdot cosx$$

$$tan2x = \frac{2tanx}{1 - tan^2x}$$

$$\cos 2x = \cos^{2}x - \sin^{2}x$$

$$= 2 \cos^{2}x - 1$$

$$= 1 - 2 \sin^{2}x$$

$$\cos^{2}x = \frac{1}{2} + \frac{1}{2}\cos 2x$$

$$\sin^{2}x = \frac{1}{2} - \frac{1}{2}\cos 2x$$

Management and Operations Unit for Schools of Applied Technology (MOUSAT)

Example (1): $\int (\cos x - \sin x) dx = \sin x + \cos x + c$

Example (2): $\int (sec^2x + cosx) dx = tanx + sinx + c$

Example (3): $\int (1 + \sin x)^2 dx$

$$= \int (1 + 2\sin x + \sin^2 x) \ dx$$

$$= \int \left(1 + 2\sin x + \frac{1}{2} - \frac{1}{2}\cos 2x\right) \ dx = \int \left(\frac{3}{2} + 2\sin x - \frac{1}{2}\cos 2x\right) \ dx$$

$$= \frac{3}{2}x - 2\cos x - \frac{1}{4}\sin 2x + c$$

Example (4): $\int (\sin x + \cos)^2 dx$

$$= \int (\sin^2 x + \cos^2 x + 2\sin x \cos x) \ dx$$

$$= \int (1+\sin 2x) \cdot dx = x - \frac{1}{2}\cos 2x + c$$

Management and Operations Unit

for Schools of Applied Technology (MOUSAT)

Example (5):
$$\int \frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} dx$$

$$= \int \frac{(\sin x + \cos x) (\sin^2 x - \sin x \cos x + \cos^2 x)}{\sin x + \cos x} dx$$

$$= \int (1 - \sin x \cos x) dx$$

$$= \int (1 - \frac{1}{2}\sin 2x) dx = x + \frac{1}{4}\cos 2x + c$$

EXERCISE (10)

Find

- 1. $\int (7\sin x 2\cos x) dx$
- $2. \int (\sin 2x 5\cos x) \ dx$
- 3. $\int (\sin x + \sec^2 x) \ dx$
- 4. $\int \sin (7x + 3) dx$
- 5. $\int \cos (5 2x) dx$
- 6. $\int 2\cos^2 x \ dx$
- $7. \int (\cos^2 x \sin^2 x) \ dx$

Unit TEST

FIRST QUESTION:

- 1. Find the measure of the angle which the tangent to the curve $y=2x^3+3x$ makes with the positive direction of X-axis at the point (-1 , 0).
- 2. Find the slope of the tangent to the curve of the function $y = x^2(5x 1)$ at x = 1.

SECOND QUESTION:

- 1. Find the first derivative of the function $y = \frac{2x+3}{x-2}$ when x = 3
- 2. If y = z + 2, $z = x^2 + 2x$ then, find $\frac{dy}{dx}$ at x = 2

THIRD QUESTION:

- 1. Find the first derivative of the function $y = x \sin x x^2$
- 2. Find the equation of the tangent to the curve $y = 2x^3 4x^2 + 3$ at the point (2,3) which lies on the curve.

FOURTH QUESTION:

Find

$$1. \int x^2 (4x+2) dx$$

$$2. \int \cos (5-2x) dx$$

Management and Operations Unit for Schools of Applied Technology (MOUSAT)

EVALUATION