CMPS 311 Homework #3

This is a written assignment – please turn in your answers in a MS Word document or a text file. **Submit as an attachment in moodle**.

- 1) Define the term *starvation* and how it relates to priority scheduling. Explain how this problem can be solved. **(5 Points)**
- 2) Consider the following set of processes with the length of the CPU burst given in clock cycles:

Process	Burst Time	Priority	Arrival time
P1	10	3	0
P2	1	1	0
P3	5	5	0
P4	4	2	3
P5	3	0	3

Draw a Gantt chart illustrating the execution of these processes using the **preemptive** version of Shortest Job First (shortest remaining time first) and a quantum of 2. **(10 points)**

If a tie occurs between ready processes (they have the same amount of time left to run), then use the priority supplied.

- 3) For the system described in #2, compute the average Response time, turn-around time, and wait time (10 points)
- 4) Compute the average Response Time, Wait Time, and Turnaround Time using priority scheduling with a quantum of 3. Use aging such that each time a process is passed up (when a decision made), its priority is increased 1 (the priority number is decreased by 1). Assume each process arrived at time 0. Break ties by picking the process with the lowest process ID. (10 points)

Process	Process ID	Priority	CPU Burst
P1	43	4	7
P2	13	6	6
Р3	83	3	5

5) Explain how the size of the *quantum* used in Round Robin scheduling effects (a) response time, (b) CPU utilization (5 points)