Estructuras de Datos (2022-1) Laboratorio 4

Jaime Ignacio Ansorena Carrasco Matricula: 2020401497

18 de abril de 2022

Ejercicios

Ejecutando n veces los algoritmos implementados, se obtienen los siguientes tiempos promedios :

n	AL insert (s)	LL insert (s)	AL at (s)	LL at (s)	AL pop (s)	LL pop (s)
20000	0.0000175680	0.0000000311	0.0000000025	0.0000408548	0.0000000017	0.0000226765
40000	0.0000348663	0.0000000304	0.0000000025	0.0000835000	0.0000000018	0.0000463540
60000	0.0000521266	0.0000000297	0.0000000025	0.0001250221	0.0000000018	0.0000708093
80000	0.0000702313	0.0000000315	0.0000000028	0.0001691928	0.0000000018	0.0000952474
100000	0.0000869479	0.0000000292	0.0000000024	0.0002061414	0.0000000018	0.0001185201

Cuadro 1: AL: ArrayList, LL: LinkedList

A partir de la tabla se construyen los siguientes gráficos :

Figura 1: Algoritmo insert y at

Figura 2: Algoritmo pop

La mejor implementación de ADT dependerá del método que se vaya a utilizar. Para insert, la lista enlazada es la mejor opción ya que posee una complejidad O(1), debido a que solo agrega un nodo y actualiza la cabeza de la lista, mientras que el arreglo debe desplazar todos los elementos en una posición, teniendo una complejidad O(n).

Para los métodos at y pop la mejor implementación es el arreglo, ya que ambos métodos tienen una complejidad O(1), ya que al saber cual es el tamaño o la posición a buscar, solo basta con retornar o borrar el elemento, no así con la lista ligada, que tiene una complejidad O(n), ya que debe iterar por la lista enlazada dependiendo del caso.