One-Time Passwords

Gianluca Dini Dept. of Ingegneria dell'Informazione University of Pisa

Emai: gianluca.dini@unipi.it

Version: 2024-04-08

1

One-Time Password

- One-Time Password (OTP)
 - A password that is valid for only one login session or transaction
 - A.k.a. dynamic password, dynamic pin
- Pros
 - Not vulnerable to replay attack
 - Not vulnerable to password-reuse attack
- Cons
 - Hard to remember, so you need additional technology

11/04/2024

One-time passwords

Methods

- · Based on time-synchronization
- · Based on the previous password
- · Based on a challenge

11/04/2024

ne-time passwords

3

Time synchronization (\rightarrow)

- Prover
 - Token, clock_p
- Verifier:
 - Authentication server, clock,
- Problems
 - Clocks of prover and verifier are roughly synchronised
 - Network latency, user delay, clock skews

11/04/2024

One-time passwords

4

Time synchronization (\rightarrow)

- Time Parameters
 - T0 = initial time
 - T = current time
 - X = time steps in a second
 - C = # of time-steps between T0 and T
 - C = (T T0)/X
 - W = acceptance window
- Kev
 - Key k shared between prover and verifier

11/04/2024

One-time passwords

5

Time synchronization

- · The protocol
 - Prover

Authenticator

```
 T<sub>p</sub> ← clock<sub>p</sub>()
```

•
$$C_p = (T_p - T_0)/X$$

```
• HOTP = HMAC_k(C_p)
   -----HOTP-----
```

```
T_v \leftarrow clock_v()
for all t in [T_v - W/2, T_v + W/2] {
    C_v = (t - T_0)/X;
    if (HOTP == H_k(C_v)
        return TRUE;
}
```

return FALSE

-----TRUE|FALSE-----11/04/2024 One-time passwords

Time synchronization

- For more details
 - D. M'Raihi, S. Machani, M. Pei, J. Rydell. TOTP: Time-Based One-Time Password Algorithm, <u>RFC</u> 6238, IETF, May 2011

11/04/2024

One-time passwords

7

7

Lamport's scheme

- Hash List
 - Setup
 - Seed p₀ ← random()
 - $p_i = H(p_{i-1}), i = 1, ..., n$
 - p_n is stored at the verifier by offline means
 - Password verification
 - Prover sends p_{n-1} to Verifier
 - Verifier returns $(p_n == H(p_{n-1}))$
 - More in general
 - Verifier returns $(p_i == H(p_{i-1}))$ or $(p_i == H^i(p_0))$
 - 2nd form in case p_i are not verified sequentially

11/04/2024

One-time passwords

8

One-time passwords Apr-24

Challenge-response

• Prover and Verifier share a key K