Analysis III

Wintersemester 2014/2015

Prof. Dr. D. Lenz

Blatt 2

Abgabe Dienstag 04.11.2011

(1) Untersuchen Sie die folgenden Kurven auf Rektifizierbarkeit:

(a)
$$\gamma:[0,1] \to \mathbb{R}, \quad t \mapsto \left\{ \begin{array}{cc} t \sin\left(\frac{\pi}{t}\right) & : t > 0, \\ 0 & : t = 0, \end{array} \right.$$

(b)
$$\varrho:[0,1] \to \mathbb{R}, \quad t \mapsto \begin{cases} t^2 \sin\left(\frac{\pi}{t}\right) & : t > 0, \\ 0 & : t = 0. \end{cases}$$

Tipp: Skizzieren Sie die Kurve und geben Sie eine obere bzw. untere Abschätzung für die Kurvenlänge an.

(2) Skizzieren Sie folgende Kurven und berechnen Sie ihre Länge:

(a)
$$\gamma:[0,2\pi]\to\mathbb{R}^3$$
, $t\mapsto (e^{-t}\cos t,e^{-t}\sin t,e^{-t})$,

(b)
$$\varrho: [0, 2\pi] \to \mathbb{R}^2$$
, $t \mapsto (a\cos^3 t, a\sin^3 t)$ für $a > 0$.

(3) Sei

$$F: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2, \quad (x,y) \mapsto \begin{pmatrix} \frac{-y}{x^2 + y^2} \\ \frac{x}{x^2 + y^2} \end{pmatrix}.$$

- (a) Skizzieren Sie das Vektorfeld F.
- (b) Zeigen Sie $\partial_1 F_2 = \partial_2 F_1$.
- (c) Ist F ein Gradientenfeld? (Tipp: Berechnen Sie $\int_{\gamma} F d\gamma$ für $\gamma:[0,2\pi]\to\mathbb{R}^2$, $t\mapsto (\sin t,\cos t)$.)

(4) Sei $h:[0,\infty)\to\mathbb{R}$ stetig differenzierbar und $\varphi:\mathbb{R}^n\setminus\{0\}\to\mathbb{R},\,x\mapsto h(|x|)$

- (a) Berechnen Sie $\nabla \varphi$.
- (b) Ist $G: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n$, $x \mapsto \frac{1}{|x|^3}x$ ein Gradientenfeld? Finden Sie gegebenenfalls ein Potenzial, d.h. eine stetig differenzierbare Funktion $\varphi: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$, so dass $G = \nabla \varphi$.

Bitte wenden.

Zusatz

(Z1) Was ist hier faul?

