

1.4 Membrane potential

Cellular Mechanisms of Brain Function

Prof. Carl Petersen

Membrane potential

Electrochemical diffusion

Nernst equilibrium potential

$$E_{K^{+}} = \frac{RT}{zF} \quad \text{In } \frac{[K^{+}]_{o}}{[K^{+}]_{i}}$$

$$E_{K^{+}} = 61.5 \log_{10} \frac{5}{150}$$

$$E_{K^{+}} = \sim -90 \text{ mV}$$

Ion concentrations

lon	Intracellular Extracellul		
K ⁺	150 mM	150 mM 4 mM	
Na ⁺	12 mM	145 mM	
CI-	5 mM 120 mM		
Ca ²⁺	100 nM	1 mM	

Equilibrium potentials

lon	Intracellular	Extracellular	E _{ion}
K ⁺	150 mM	4 mM	-97 mV
Na ⁺	12 mM	145 mM	+67 mV
CI-	5 mM	120 mM	-85 mV
Ca ²⁺	100 nM	1 mM	+123 mV

Goldman-Hodgkin-Katz (GHK) equation

$$V_{m} = \frac{RT}{zF} ln \frac{P_{K^{+}}[K^{+}]_{o} + P_{Na^{+}}[Na^{+}]_{o} + P_{Cl^{-}}[Cl^{-}]_{i}}{P_{K^{+}}[K^{+}]_{i} + P_{Na^{+}}[Na^{+}]_{i} + P_{Cl^{-}}[Cl^{-}]_{o}}$$

$$P_{K^+}: P_{Na^+}: P_{Cl^-} = 1:0.04:0.45$$

$$V_{\rm m} = 61.5 \log_{10} \frac{4 + 5.8 + 2.25}{150 + 0.48 + 54}$$

$$V_m = -76 \text{ mV}$$

Outside 0 mV

Inside V_m

Electrical equivalent of a cell

Electrical equivalent of a cell

Ohm's law:

V = IR

I = V G

Capacitance:

Q = C V

I = C dV/dt

Electrical equivalent of a cell

$$I_{m} = I_{C} + I_{K^{+}} + I_{Na^{+}} + I_{CI^{-}}$$

$$I_C = C_m dV_m/dt$$

$$I_{K^{+}} = (V_{m} - E_{K^{+}}) G_{K^{+}}$$

$$I_{Na^{+}} = (V_{m} - E_{Na^{+}}) G_{Na^{+}}$$

$$I_{Cl^{-}} = (V_m - E_{Cl^{-}}) G_{Cl^{-}}$$

Ion conductances determine $V_{\rm m}$

Solving for steady state
$$V_m$$

($I_m = 0$ and $dV_m/dt = 0$)
 $G_{Total} = G_K + G_{Na} + G_{Cl}$

$$V_{m} = \frac{G_{K}}{G_{Total}} E_{K} + \frac{G_{Na}}{G_{Total}} E_{Na} + \frac{G_{Cl}}{G_{Total}} E_{C}$$

Membrane potential - $V_{\rm m}$

Some numbers – K^+ conductance and $V_{\rm m}$

What happens to V_m if K⁺ channels increase their open probabilty?

Some numbers – K^+ , Na^+ , CI^- conductances and V_m

What happens to V_m if:

- i) G_{K+} increases
- ii) G_{Na+} increases
- iii) G_{CI}- increases

Membrane potential

- Electrochemical diffusion describes ion flow through ion channels and defines Nernst equilibrium potentials.
- Independently regulated ion channel conductances with selective permeability control membrane potential.