HEAT OF COMBUSTION

The heat of combustion of a substance at 25 °C can be calculated from the enthalpy of formation ($\Delta_t H^s$) data in the table "Standard Thermodynamic Properties of Chemical Substances" in this section. We can write the general combustion reaction as

$$X + O_2 \rightarrow CO_2(g) + H_2O(l) + other products$$

For a compound containing only carbon, hydrogen, and oxygen, the reaction is simply

$$C_aH_bO_c + \left(a + \frac{1}{4}b - \frac{1}{2}c\right)O_2 \rightarrow a CO_2(g) + \frac{1}{2}b H_2O(l)$$

and the standard heat of combustion $\Delta_c H^\circ$, which is defined as the negative of the enthalpy change for the reaction (i.e., the heat released in the combustion process), is given by

$$\begin{split} \Delta_c H^o &= -a \Delta_{\rm f} H^o(\mathrm{CO_2}, \mathrm{g}) - \frac{1}{2} b \Delta_{\rm f} H^o(\mathrm{H_2O}, \mathrm{l}) + \Delta_{\rm f} H^o(\mathrm{C_aH_bO_c}) \\ &= 393.51 a + 142.915 b + \Delta_{\rm f} H^o(\mathrm{C_aH_bO_c}) \end{split}$$

This equation applies if the reactants start in their standard states (25 °C and one atmosphere pressure) and the products return to the same conditions. The same equation applies to a compound containing another element if that element ends in its standard reference state (e.g., nitrogen, if the product is N_2); in general, however, the exact products containing the other elements must be known in order to calculate the heat of combustion.

The following table gives the standard heat of combustion calculated in this manner for a few representative substances.

Molecular formula	Name	$\Delta_c H^\circ/\mathrm{kJ}\;\mathrm{mol}^{-1}$	Molecular formula	Name	$\Delta_c H^\circ/\mathrm{kJ}\;\mathrm{mol}^{-1}$
			C ₃ H ₈ O ₃	Glycerol (l)	1655.4
Inorganic substances			$C_4H_{10}O$	Diethyl ether (l)	2723.9
С	Carbon (graphite)	393.5	C ₅ H ₁₂ O	1-Pentanol (l)	3330.9
CO	Carbon monoxide (g)	283.0	C ₆ H ₆ O	Phenol (s)	3053.5
H_{2}	Hydrogen (g)	285.8			
$H_{3}N$	Ammonia (g)	382.8	Carbonyl compounds		
$H_4^N_2$	Hydrazine (g)	667.1	CH ₂ O	Formaldehyde (g)	570.7
$N_2^{}O$	Nitrous oxide (g)	82.1	C ₂ H ₂ O	Ketene (g)	1025.4
			C ₂ H ₄ O	Acetaldehyde (l)	1166.9
Hydrocarbons			C ₃ H ₆ O	Acetone (l)	1789.9
CH ₄	Methane (g)	890.8	C ₃ H ₆ O	Propanal (l)	1822.7
C_2H_2	Acetylene (g)	1301.1	C ₄ H ₈ O	2-Butanone (l)	2444.1
C_2H_4	Ethylene (g)	1411.2			
C_2H_6	Ethane (g)	1560.7	Acids and esters		
C_3H_6	Propylene (g)	2058.0	CH ₂ O ₂	Formic acid (l)	254.6
C_3H_6	Cyclopropane (g)	2091.3	$C_2H_4O_2$	Acetic acid (l)	874.2
C_3H_8	Propane (g)	2219.2	$C_2H_4O_2$	Methyl formate (l)	972.6
C_4H_6	1,3-Butadiene (g)	2541.5	C ₃ H ₆ O ₂	Methyl acetate (l)	1592.2
$C_4^{}H_{10}^{}$	Butane (g)	2877.6	$C_4H_8O_2$	Ethyl acetate (l)	2238.1
C_5H_{12}	Pentane (l)	3509.0	C ₆ H ₅ NO ₂	Nicotinic acid (s)	2731.1
C_6H_6	Benzene (l)	3267.6	$C_7H_6O_2$	Benzoic acid (s)	3228.2
$C_{6}H_{12}$	Cyclohexane (l)	3919.6	, , ,		
$C_{6}H_{14}$	Hexane (l)	4163.2	Nitrogen compounds		
C_7H_8	Toluene (l)	3910.3	CHN	Hydrogen cyanide (g)	671.5
$C_7^{\dagger}H_{16}^{\dagger}$	Heptane (l)	4817.0	CH ₃ NO ₂	Nitromethane (l)	709.2
$C_{10}H_{8}$	Naphthalene (s)	5156.3	CH ₄ N ₂ O	Urea (s)	632.7
10 0	_		CH ₅ N	Methylamine (g)	1085.6
Alcohols and ethers			C ₂ H ₃ N	Acetonitrile (l)	1247.2
CH ₄ O	Methanol (l)	726.1	C ₂ H ₅ NO	Acetamide (s)	1184.6
C_2H_6O	Ethanol (l)	1366.8	C ₃ H ₉ N	Trimethylamine (g)	2443.1
C_2H_6O	Dimethyl ether (g)	1460.4	C_5H_5N	Pyridine (l)	2782.3
$C_2H_6O_2$	Ethylene glycol (l)	1189.2	C ₆ H ₇ N	Aniline (l)	3392.8
C_3H_8O	1-Propanol (l)	2021.3			