데이터 분석을 위해 사용하는 라이브러리

Numpy : 행렬 / 고차원 배열을 쉽게 처리, 수치 계산등을 해주는 라이브러리

Pandas: 데이터를 쉽게 다루고, 관리(Series, DataFrame, Panel)해주는 라이브러리

Matplotlib : 시각화를 위한 라이브러리

#분석을 위한 라이브러리 임포트 import numpy as np import pandas as pd import matplotlib.pyplot as plt 인덱스 = 행 컬럼 = 열

인덱싱 : 1) 표준 인덱싱 ~> [] 표기법으로 수행 https://bearwoong.tistory.com/65

- 2) loc https://ichi.pro/ko/python-pandas-dataframe-indegsing-mich-seullaiseu-261108134871414
- 3) iloc

데이터를 불러온 후 해당 열을 인덱스로 사용하기

옵션값으로 "index_col =" 을 사용

```
#CSV데이터 프레임 가져오기
#오토인틱성 현상 생김
practice2 = pd.read_csv('practice.csv',encoding='utf-8')
practice2
```

	Unnamed: 0	날짜	운동	양
0	0	19-3-1	달리기	1.0
1	1	19-3-2	걷기	1.0
2	2	19-3-3	달리기	1.0
3	3	19-3-4	계단오르기	1.0
4	4	19-3-5	걷기	1.5
5	5	19-3-6	달리기	1.0

```
#오토 인덱심 생긴거 제거 ~> index_col = 0 0번째 열을 인덱스로 사용하기!!
pd.read_csv("practice.csv", index_col = 0, encoding = 'utf-8')
```

	날짜	운동	양
0	19-3-1	달리기	1.0
1	19-3-2	걷기	1.0
2	19-3-3	달리기	1.0
3	19-3-4	계단오르기	1.0
4	19-3-5	걷기	1.5
5	19-3-6	달리기	1.0

특정 인덱스를 요약 하거나 분석할 때

.pivot_table 함수사용 => pivot : 축

sum average len

1.25

1.00

1.00

운동

걷기

달리기 5.0

계단오르기

5.0

1.0

날짜 양

4 4.0

1 1.0

5 5.0

```
#pivot_table ~> 요약!!!
practice3.pivot_table(index = '문돔') #avg 기준! 데이터타입이 숫자인 첫만 index기준으로 평균구해줄
        양
    운동
    걷기 1.25
계단오르기 1.00
   달리기 1.00
# aggfunc : 계산방식 / 디플트 : 평균
practice3.pivot_table(index = '문돔', aggfunc = np.sum) #np.sum : 합계를 구해줌
     운동
     걷기 5.0
계단오르기 1.0
    달리기 5.0
#여러 arrfuno 사용하기 ~> 리스트 사용(or 튜플)
practice3.pivot_table(index= '是害', aggfunc=[np.sum, np.average, len])
```

.pivot함수

19-3-10 NaN

19-3-2 1.0

19-3-3 NaN

19-3-4 NaN

19-3-5 1.5

19-3-6 NaN

19-3-7 NaN

19-3-8 1.0

19-3-9 1.5

NaN

NaN

NaN

NaN

NaN

NaN

NaN

1.0

NaN

1.0

NaN

1.0

1.0

NaN

1.0 NaN

NaN NaN

```
prac_pivot = practice3.pivot('날짜','문동','양')

#날짜 : 인덱스(행), 운동: 종류(열), 양: 테이블 가운데 채워지는 값(양)
prac_pivot

#NaN : 행과 열에 적합한 값이 없다() ⇒ 삭제, 수치로 변환해야함

#수치변환 : 평균 / 0 / 기본값으로 변환

운동 겉기 계단오르기 달리기

날짜

19-3-1 NaN NaN 1.0
```

불린 인덱싱 : 조건을 주어서 나온 true/false로 인덱싱 하기

```
#대분류를 통해 연령, 성별, 등등으로 나눠서 분석 조건 주기!!
#not_exercise[] : 조건을 넣기위한 [] 역할
not_exercise['대분류'] == '성별' #대분류 안에 있는 것 중 성별에 해당하는 것만 가져오기 : 불린값 추출
                        #브로드캐스팅(백터(열)를 다 돌아 다니면서 확인)
                        #불린 인덱실 ~> 인덱실 방법중 1개 DataFrame에 적용시 DataFrame 반환, Series에 적용시 Series반환
    False
     True
     True
    False
    False
                                              불린 값으로 인덱싱하기
    False
                                   not_ex_sex = not_exercise[not_exercise['대분류'] == '성별'].copy()
    False
                                   not_ex_sex
    False
    False
    False
                                      대분류 분류 운동을 할 충분한 시간이 없어서 함께 운동을 할 사람이 없어서 운동을 할 만한 장소가 없어서 운동을 싫어해서 기타
    False
                                                                                                                          1.6
    False
                                        성별 남자
                                                                  55.2
                                                                                       7.9
                                                                                                            5.5
                                                                                                                       29.8
    False
                                        성별 여자
                                                                  45.0
                                                                                       8.3
                                                                                                                       38.8
                                                                                                                           1.8
                                                                                                           6.0
Name: 대분류, dtype: bool
```

drop함수 : 특정 행 혹은

df

	c0	c1	c2	c3
0	0	1	4	7
1	1	2	5	8
2	2	3	6	9

df.drop(index= 0, inplace=True)
df

df.drop(index= range(1,3), inplace=True)
df

df.drop(columns= 'c2', inplace=True)
df

df.drop(columns= ['c2', 'c3'], inplace=True)
df

원하는 컬럼을 인덱스(행)으로 변환 : set_index 함수 사용

	분류	운동을 할 충분한 시간이 없어서	함께 운동을 할 사람이 없어서	운동을 할 만한 장소가 없어서	운동을 싫어해서	기타
23	도심권	50.5	6.9	4.5	36.4	1.7
24	동북권	47.4	7.9	5.9	36.1	2.7
25	서북권	49.4	13.9	7.4	28.5	8.0
26	서남권	50.7	6.7	5.7	35.0	1.9
27	동남권	52.2	6.9	4.9	35.4	0.6

not_ex_place.set_index('분류', inplace=True)

not_ex_place

운동을 할 충분한 시간이 없어서 함께 운동을 할 사람이 없어서 운동을 할 만한 장소가 없어서 운동을 싫어해서 기타

분류					
도심권	50.5	6.9	4.5	36.4	1.7
동북권	47.4	7.9	5.9	36.1	2.7
서북권	49.4	13.9	7.4	28.5	8.0
서남권	50.7	6.7	5.7	35.0	1.9
동남권	52.2	6.9	4.9	35.4	0.6

loc VS iloc

- loc의 경우

df1.loc[:2, ['Survived', 'Pclass', 'Name']]
라벨을 이용

_	•	Surv	ived	Pclass	Name
	0	,	0	, 3	Braund, Mr. Owen Harris
	1		1	1	Cumings, Mrs. John Bradley (Florence Briggs Th
	2		1	3	Heikkinen, Miss. Laina

- iloc의 경우

df1.iloc[:2,1:4]

인덱스를 이용

	Survived	Pclass	Name
0	0	3	Braund, Mr. Owen Harris
1	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th

비파괴함수인 경우 함수사용하고 변경된 값이 기존 변수에 변경이 안되서

따로 변수에 넣어줘야하는데

파괴함수로 사용할 경우

변수에 넣어주지 않아도 기존 변수 내용 이 바뀌는?

오후 3:46

이런 느낌 인거 같아여

- [일반적인 분석]:
 - 기술통계: 간단한 통계(평균, 합, 그룹별 요약)
 - 추론통계: 평균차이낸 결과값이 확률적으로 올바른지 검증
 - => 주장하는 바가 있어야 함. 주장하는 바가 있어서 증명.
 - => 내가 주장하는 가설: 대립가설(연구가설), alternative hypothesis(대안, 선택가설), H1
 - => 내 가설을 무력화(0으로 만들어버리는)시키는 가설: 영가설(귀무가설) null hypothesis, Ho
 - => 영가설이 발생할 확률이 희박하다면 나의 영가설과 대립되는 대립가설이 옳다.
 - => 대륙별로 차이가 있는 것 같다.(대립가설), 나는 95%이상! <----> 대륙별로 차이가 없는 것 같다.(영가설) 5%미만! _{인 것만 확인하면 됨} 정말로 희박하다면! 내 주장이 옳다.

Ln 11, Col 28

0% Windows (CRLF)

UTF-8