

아이 발용 데이터 분석 및 머신 러닝

13차시

시계열분석 (Time Series Analysis)

예측이란 무엇인가?

확률적

데이터 기반

명시

추정(estimation)

Forecasting? Prediction?

과거와 현재 수익 객관적

예상

경험이나 지식을 기반으로 미래를 기술

패턴 통계 모델에 의한 예측

혀재

현상

사전에 과학적으로 헤아릴 수 있는 미래

- Forecast : 과거와 현재 데이터에 기반하여 예측을 수행하는 과정이다. [위키피디아]. 미래에 어떤 일이 발생할지를 판단하는 설명이다 [캠브리지 사전]
- Prediction: 라틴어 prœ-, "전", dicere, "말하다"의 조합어로 명명되며, 미래의 사건이나 데이터에 대해 서술하는 것이다 [위키피디아]. 미래에 어떤 사건이나 행위가 일어날 것이라고 말하는 것으로써 지식 또는 경험의결과로써 서술된다 [캠브리지 사전].

시계열 그림 (Time series Plot)

- 시간의 변화에 따라 시계열 자료의 값이 변하는 것을 나타낸 그림
- 시계열의 특징을 쉽게 파악할 수 있어 해당 자료의 성격에 적합한 분석 방법의 선택에 도움을 줌
- 불규칙변동 / 확률적 변동 : 규칙성이 없이 예측 불가능하게 발생하는 변동 (전쟁, 홍수 화재 파업 등의 원인이 있을 수 있음).
- 체계적 변동:
 - 추세변동 (trend variation): 장기간에 걸쳐 어떤 추세로 나타나며 장기간에 걸쳐 지속적으로 증가 또는 감소하거나 일정 상태를 유지하려는
 성향을 의미한다.. 예로 국민 총생산, 인구증가율, 기술변화 등..)
 - 순환변동 (syclical variation): 장기적인 일정기간을 주기로 순환적으로 나타나며 경기 변동 곡선과 같이 불황과 회복, 호황과 경기후퇴 등이 수 년을 주기로 나타나는 변동이 그 예이다.
 - 계절변동 (seasonal variation) : 계절적 영향과 사회적 관습에 따라 1년 주기로 발생하는 변동요인. 순환주기가 짧은 특징을 지님.

출처 : 경영자를 위한 디지털 전략 가이드, 스마투스 비즈니스 리뷰(http://www.sbr.ai)

Stationary(정상성) vs. Non-Stationary

정상 프로세스: 시간에 관계없이 평균과 분산이 일정한 시계열 데이터

정상성 (stationary): 데이터 변동의 안정성

- · 정상성을 가진 데이터 : 일관된 평균과 분산과 자기상관정도를 보이는 데이터. 모든 시점에 대해서 일정한 평균과 분산을 가진다.
 - 1) 평균이 일정하지 않은 시계열은 차분(difference)을 통해 정상화 할 수 있다.
 - 차분(difference)은 현 시점 자료에서 전 시점 자료를 뺌.
 - 2) 분산이 일정하지 않은 시계열은 변환(transformation)을 통해 정상화한다.
 - 변환을 통해 정상성을 높이는 방법에는 이동평균법, 지수 평활법 등이 있다.
- 정상성을 가진 데이터로 만드는 이유: 시간의 흐름에 따라 증가 혹은 감소 추세가 있는 현상을 연구할 때, 혹은 계절적, 주기적으로 증감 현상을 보이는 이슈를 연구할 때 자연 발생적인, 혹은 문제의 예측 변수와 관계 없는 요인(힘: forces)들의 영향력을 배제하고 순수한 예측변수의 힘을 보기 위한 것

출처 : 경영자를 위한 디지털 전략 가이드, 스마투스 비즈니스 리뷰(http://www.sbr.ai)

대부분의 데이터는 Non-Stationary

[표] 대표적인 시계열 분석 모형들

- ○시계열 정보 = 규칙성을 가지는 패턴 + 불규칙한 패턴의 결합
- 규칙성: 자기상관성 / 이동 평균

종류

AR (자기회귀모형): Auto regressive model

MA (이동평균모형): Moving Average model

ARMA (자기회귀이동평균모형): Autoregressive Moving Average model

ARIMA (자기회귀누적이동평균모형): Autoregressive Integrated Moving Average model

AR, MA, ARMA

◦ AR - 자기상관(Autocorrelation) 모형

$$y_t = \emptyset_0 + \emptyset_1 y_{t-1} + \emptyset_2 y_{t-2} + ... + \emptyset_p y_{t-p} + \varepsilon_t$$

◦ MA 이동평균(Moving Average) 모형

$$y_t = \theta_0 + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

◦ ARMA 모형

$$y_t = \emptyset_0 + \emptyset_1 y_{t-1} + \emptyset_2 y_{t-2} + \cdots \oplus_p y_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \ldots + \theta_q \varepsilon_{t-q}$$

ARIMA (자기회귀누적이동평균모형): Autoregressive Integrated Moving Average model

- 과거의 데이터변화에 대한 추세관계 (cointegration) 까지 고려한 모델
- Correlation 서로 간의 선형관계
 - ∘ Correlation > 0 => x가 클 때 y값도 큰 값을 가진다.
 - Correlation < 0 => x가 클 때 y값은 작은 값을 가진다.
- Cointegration 추세관계
 - ∘ Cointegration > 0 => x의 값이 이전 값보다 증가하면 y 값은 현재는 작은 값이지만 곧 증가하는 추세로 바뀐다.
 - ∘ Cointegration <0 => x의 값이 이전 값보다 증가하면 y 값은 현재는 큰 값이지만 곧 하락하는 추세로 바뀐다.

Autocorrelation

lag 1: 자기 자신과 자기 자신 이전 데이터와의 correlation

orang

월간 에너지 생산량을 예측해보자.

Time Series 위젯

일반 회귀모델로 예측한 결과와의 비교

Time slice 연습 - 나스닥 주가 변동 확인하기

orange

다음 시간에는 데이터 전처리 과정의 필요성 및 오렌지에서 제공되는 전처리 과정을 연습해 보도록 하겠습니다.