1 Ejercicio 1

1.1

a. Demuestra que un conjunto de medida cero no tiene puntos interiores. Primeramente fijaremos algunas definiciones que usaremos para demostrar la proposición.

Definición 1.1.1.

Sea $\vec{x_0} \in \mathbb{R}^n$ y $\epsilon > 0$. Se define la bola abierta de \mathbb{R}^n con centro en $\vec{x_0}$ y radio ϵ por:

$$B(\vec{x_0}, \epsilon) = V_{\epsilon}(\vec{x_0}) = \{\vec{x} \in \mathbb{R}^n | ||\vec{x} - \vec{x_0}||\}$$

Definición 1.1.2.

Sea $A \subseteq \mathbb{R}^n$ y sea $\vec{x_0} \in A$. Entonces $\vec{x_0}$ se llama punto interior de A si existe $\epsilon > 0$ tal que $B(\vec{x_0}, \epsilon) \subseteq A$.

Definición 1.1.3.

Un rectángulo cerrado en \mathbb{R}^n es un conjunto de la forma

$$[a_1,b_1] \times [a_2,b_2] \times \cdots \times [a_n,b_n]$$

con $a_i, b_i \in \mathbb{R}$, $1 \leq i \leq n$. Se define el volumen del rectángulo $S = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$ por:

$$Vol(S) = v(s) = (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n) = \prod_{i=1}^{n} (b_i - a_i)$$

 $si \ a_i \leqslant b_i, \ \forall 1 \leqslant i \leqslant n \ y \ Vol(s) = 0 \ si \ S = \varnothing.$

Definición 1.1.4.

Un conjunto $A \subseteq \mathbb{R}^n$ se dice que tiene medida 0 si dado $\epsilon > 0$, existe un recubrimiento a lo más numerable $\{U_n\}_{n=1}^{\infty}$ de A de rectángulos cerrados es decir

$$A \subseteq \bigcup_{n=1}^{\infty} U_n$$

con U_n un rectángulo cerrado de \mathbb{R}^n , tal que

$$\sum_{i=1}^{\infty} Vol(U_i) < \epsilon.$$

Demostración

Sea un $A \subseteq \mathbb{R}^n$ un conjunto de medida 0. Supongamos que A poseé un punto interior x_0 por definición existe un cierto $\epsilon > 0$ tal que $B(x_0, \epsilon) \subseteq A$ ello implica que $B(x_0, \epsilon)$ consta de todos los puntos x tal que $\|x - x_0\| < \epsilon$. Ahora dado que A tiene medida 0 existe un recubrimiento de rectángulos que satisface $A \subseteq \bigcup_{n=1}^{\infty} U_n$ tal que

$$\sum_{i=1}^{\infty} Vol(U_i) < \varepsilon.$$

Para todo $\varepsilon > 0$.Lo que a su vez implica que $B(x_0, \epsilon) \subseteq A \subseteq \bigcup_{n=1}^{\infty} U_n$. Puesto que la desigualdad

$$\sum_{i=1}^{\infty} Vol(U_i) < \varepsilon.$$

se satisface para cualquier $\varepsilon > 0$ se cumple que para cualquiera de los subrectángulos U_k con $k \in \mathbb{N}$, se satisface que $Vol(U_k) < \sum_{i=1}^{\infty} Vol(U_i) < \varepsilon$. Si tomamos $\epsilon > \varepsilon$ se hace evidente que $B(x_0, \epsilon) \not = \bigcup_{n=1}^{\infty} U_n$ lo cual contradice el hecho de que $B(x_0, \epsilon) \subseteq A \subseteq \bigcup_{n=1}^{\infty} U_n$. Analogamente si tomamos $\epsilon \leq \varepsilon, \forall \varepsilon > 0$, se tiene necesariamente que $\epsilon = 0$ lo cual es una contradicción puesto que hemos supuesto que $\epsilon > 0$. Por tanto podemos concluir que si A tiene medida cero entonces A no poseé puntos interiores.

1.2

b. Construye un conjunto que tenga medida cero pero que su cerradura sea \mathbb{R}^n .

De igual forma establecemos primeramente algunas definiciones que nos ayudaran a demostrar la proposición.

Definición 1.2.1.

Dado $A \subseteq \mathbb{R}^n$. Un punto $\vec{x_0} \in \mathbb{R}^n$. Se llama punto de adherencia de A si para todo $\epsilon > 0$, $B(x_0, \epsilon) \cap A \neq \emptyset$. El conjunto

$$\overline{A} = {\{\vec{x} \in \mathbb{R}^n | \vec{x} \text{ es un punto de adherencia de } A\}}$$

recibe el nombre de cerradura de A.

Demostración

Sabemos que un conjunto que tiene medida por el ejercicio no contiene puntos interiores por lo que podemos proponer un conjunto que tenga medida 0 en \mathbb{R} y cuya cerradura sea precisamente \mathbb{R} . Tomando en consideracion lo anteriormente mencionado sea $A = \mathbb{Q}$, con \mathbb{Q} el conjunto de números racionales procederemos a demostrar que \mathbb{Q} tiene medida cero en \mathbb{R} para ello consideremos la colección de todos los números racionales De la forma p/q con $p, q \in \mathbb{Z}$ y con la condición de que p y q sean primos relativos. Sea dicho conjunto $A = \{r_n\}_{n=1}^{\infty}$ y definamos los intervalos

$$I_n = \left(r_n - \frac{\epsilon}{2^n}, r_n + \frac{\epsilon}{2^n}\right)$$

Si consideramos la unión de los infinitos intervalos, se cumple que

$$A \subseteq \bigcup_{n=1}^{\infty} I_n$$

Ahora puesto que $Vol(U_k) = \frac{\epsilon}{2^{k-1}}, \forall k \in \mathbb{N}$, se tiene que

$$\sum_{k=1}^{\infty} \frac{\epsilon}{2^{k-1}} \leqslant \epsilon$$

la serie anterior converge para cualquier ϵ que escojamos y preserva la desigualdad, ahora puesto que podemos hacer ϵ tan pequeño como queramos se tiene necesariamente que el conjunto A tiene medida cero en \mathbb{R} . Es decir el conjunto $\mathbb{Q} \subset \mathbb{R}$ es de medida cero. Ahora puesto que \mathbb{Q} , es de medida cero y se tiene que la cerradura $\overline{\mathbb{Q}}$ es precisamente \mathbb{R} , tomemos el conjunto

$$\mathbb{Q}^n = \mathbb{Q} \times \mathbb{Q} \times \dots \times \mathbb{Q}$$

formado al realizar el producto de \mathbb{Q} con sigo mismo n veces. Entoces se hace evidente que $\mathbb{Q}^n \subset \mathbb{R}^n$ es de medida cero, esto se sigue del hecho de que podemos verificar esto siguiendo los pasos anteriormente descritos, de que \mathbb{Q} es de medida cero considerando unicamente rectángulos en \mathbb{R}^n . Con ello obtenemos que \mathbb{Q}^n es de medida cero y su cerradura $\overline{\mathbb{Q}}^n$ es \mathbb{R}^n .

2 Ejercicio 2

Construye una función acotada $f: I \to \mathbb{R}$ que sea igual a cero en casi todo punto del intervalo I y que no sea Riemann integrable.

Definición 2.0.1 (Riemann-integrabilidad).

Una función f definida en [a, b] es Riemann integrable (R-integrable) si existe un número real \Re tal que para cualquier $\epsilon > 0$, $\exists \delta > 0$, tal que $\forall \mathcal{P}$ partición de [a, b] con $\|\mathcal{P}\| < \delta$ y toda elección ξ se tiene

$$|\mathcal{R}(f,\mathcal{P},\xi) - \mathfrak{R}| < \epsilon$$

En este sentido la función $\mathcal{R}(f, \mathcal{P}, \xi)$ esta dada por

$$\mathcal{R}(f, \mathcal{P}, \xi) = \sum_{i=1}^{n} f(\xi_i) |x_i - x_{i-1}|$$

A esta suma la llamaremos **Suma de Riemann** de f relativa a la partición $\mathcal{P} = \{a = x_0 < x_2 < \dots < x_n = b\}$ de [a, b] y la elección $\xi = \{\xi_1, \xi_2, \dots, \xi_n\}$, donde $\xi_i \in [x_{i-1}, x_i], 1 \leq i \leq n$. A este número \mathfrak{R} lo denotaremos mediante el símbolo

$$\int_{a}^{b} f(x)dx = \lim_{\|\mathcal{P}\| \to 0} \mathcal{R}(f, \mathcal{P}, \xi)$$

Demostración

Sea la función $f:[0,1]\subseteq\mathbb{R}\to\mathbb{R}$ definida por

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \cap [0, 1] \\ 0 & x \in [0, 1] \setminus \mathbb{Q} \end{cases}$$

es claro que la función f es igual a 0 en casi todos los puntos del intervalo [0,1], se demostrara que la función f no es Riemann-integrable. De acuerdo a lo anteriormente mencionado se tiene que si f es R-integrable entonces debe existir un número real \Re tal que $\forall \epsilon > 0, \exists \delta > 0$ de tal modo que

$$\|\mathcal{P}\| < \delta \Rightarrow |\mathcal{R}(f, \mathcal{P}, \xi) - \mathfrak{R}| < \epsilon$$

Para toda partición \mathcal{P} de el intervalo [0,1] y toda elección ξ .

Sea $\mathcal{P} = \{x_0 = 0 < x_1 < x_2 < \dots < x_n = 1\}$ una partición de intervalo [0,1] tal que $\|\mathcal{P}\| < \delta$, para algún $\delta > 0$ y sea $\xi = \{\xi_1, \xi_2, \dots, \xi_n\}$ una elección de tal forma que $\xi_i \in [x_{i-1}, x_i]$. Queda claro entonces que el valor de $\mathcal{R}(f, \mathcal{P}, \xi)$ dependera de la elección ξ que escojamos puesto que independientemente de que $\|\mathcal{P}\| \to 0$ se tendra que cuando menos el intervalo $[x_{i-1}, x_i]$ contendra un número $a \in \mathbb{Q} \cap [0, 1]$ y otro $b \in [0, 1] \setminus \mathbb{Q}$, sin importar cuan fina sea la partición \mathcal{P} . Ello implica que en este caso la elección ξ determinara el valor de $\mathcal{R}(f, \mathcal{P}, \xi)$ puesto que si tomamos la elección $\xi_{\mathbb{Q}}$ de tal forma que $\forall \xi_i \in \xi_{\mathbb{Q}}, \xi_i \in \mathbb{Q} \cap [0, 1]$ se tendra que

$$\mathcal{R}(f, \mathcal{P}, \xi_{\mathbb{Q}}) = \sum_{i=1}^{n} f(\xi_i) |x_i - x_{i-1}| = \sum_{i=1}^{n} 1 * |x_i - x_{i-1}| = 1$$

Analogamente si tomamos la elección $\xi_{\mathbb{I}}$ de tal forma que $\forall \xi_i \in \xi_{\mathbb{I}}, \xi_i \in [0, 1] \setminus \mathbb{Q}$ se tendra que

$$\mathcal{R}(f, \mathcal{P}, \xi_{\mathbb{I}}) = \sum_{i=1}^{n} f(\xi_i) |x_i - x_{i-1}| = \sum_{i=1}^{n} 0 * |x_i - x_{i-1}| = 0.$$

Por tanto el resultado de $\mathcal{R}(f, \mathcal{P}, \xi)$ dependera de la elección ξ y por tanto de existir un número real \mathfrak{R} este deberia de cumplir que $\|\mathcal{P}\| < \delta \Rightarrow |1 - \mathfrak{R}| < \epsilon$ y a su vez $\|\mathcal{P}\| < \delta \Rightarrow |0 - \mathfrak{R}| < \epsilon$. Esto implica que si \mathfrak{R} existe entonces \mathfrak{R} debe de cumplir

$$\Re \in (-\epsilon + 1, \epsilon + 1)$$
 y $\Re \in (-\epsilon, \epsilon)$

Por lo tanto dicho número $\mathfrak R$ no puede existir puesto que de existir deberia pertenecer a dos entornos distintos al mismo tiempo. Con ello queda demostrado que la función f no es Riemann-integrable.

3 Ejercicio 3