1439.
$$y = \frac{\ln^2 x}{x}$$
. 1440. $y = \cos x + \frac{1}{2}\cos 2x$.

1441.
$$y = \frac{10}{1 + \sin^3 x}$$
. 1442. $y = \arctan x - \frac{1}{2} \ln(1 + x^2)$.

1443.
$$y = e^x \sin x$$
. 1444. $y = |x| e^{-|x-1|}$.

Найти наименьшие и наибольшие значения следующих функций:

1445.
$$f(x) = 2^x$$
 ha cermente $[-1; 5]$.

1446.
$$f(x) = x^2 - 4x + 6$$
 Ha cermente [-3; 10].

1445.
$$f(x) = 2^x$$
 Ha cermente $[-1; 5]$.
1446. $f(x) = x^2 - 4x + 6$ Ha cermente $[-3; 10]$.
1447. $f(x) = |x^2 - 3x + 2|$ Ha cermente $[-10; 10]$.

1448.
$$f(x) = x + \frac{1}{x}$$
 на сегменте [0,01; 100].

1449.
$$f(x) = \sqrt{5-4x}$$
 Ha cermente [-1; 1].

Найти нижнюю грань (inf) и верхиюю грань (sup) следующих функций:

1450.
$$f(x) = xe^{-0.01x}$$
 на интервале $(0, +\infty)$.

1451.
$$f(x) = \left(1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}\right)e^{-x}$$
 на интерва-
ле $(0, +\infty)$.

1452.
$$f(x) = \frac{1+x^4}{1+x^4}$$
 на интервале $(0, +\infty)$.

1453.
$$f(x) = e^{-x^2} \cos x^2$$
 на интервале $(-\infty, +\infty)$.

1454. Определить нижиюю и верхнюю грани функции $f(\xi) = \frac{1+\xi}{3+\xi^2}$ на интервале $x < \xi < +\infty$.

Построить графики функций

$$M(x) = \sup_{x < \xi < +\infty} f(\xi)$$
 $H(x) = \inf_{x < \xi < +\infty} f(\xi).$

1454. 1. Пусть

$$M_k = \sup \| f^{(k)}(x) \|, \quad k = 0, 1, 2, \ldots$$

Найти M_a , M_1 и M_2 , если $f(x) = e^{-x^2}$.

1455. Определить наибольший член последовательности:

a)
$$\frac{n^{10}}{2^n}$$
 $(n=1, 2, \ldots);$ 6) $\frac{\sqrt{n}}{n+10000}$ $(n=1, 2, \ldots);$

B)
$$\sqrt[n]{n}$$
 $(n = 1, 2, ...).$