南京航空航天大学 2016 级硕士研究生

共5页 第1页

2016~2017 学年第 1 学期 《矩阵论》 课程考试 A 卷

考试日期: 2017年1月5日 课程编号: 6A080001 命题教师: 阅卷教师:

学院

专业

学号

姓名

成绩

一、(20分) 设3阶矩阵
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$
.

- 1. 求 A 的特征多项式;
- 2. 求 A 的初等因子和 Jordan 标准形;

3. 问:
$$A$$
与矩阵 $B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$ 是否相似?并说明理由.

答案及评分标准:

- 1.特征多项式为 $f(\lambda) = \lambda(\lambda 1)^2$. (5分)
- 2. A 的初等因子为 λ , $(\lambda 1)^2$, (5 分)

Jordan 标准形为 $J = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. (5分)

3. 因为A与B有相同的初等因子, 所以A与B相似. (5分)

二、(20分) 设
$$R^3$$
 的线性变换 σ 定义为 σ $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_3 \\ -2x_1 + x_2 + ax_3 \\ x_1 \end{pmatrix}$.

- 1. 求 R^3 的基 $\varepsilon_1 = (1, 0, 0)^T$, $\varepsilon_2 = (1, 1, 0)^T$, $\varepsilon_3 = (1, 1, 1)^T$ 在 σ 下的像;
- 2. 求 σ 在题 1 所取基下的矩阵 A;
- 3. 求 σ 的全部特征值;
- 4. 给出 σ 可以对角化的充分必要条件(要求以参数a表示).

1. 基像是
$$\sigma(\varepsilon_1) = (0, -2, 1)^T$$
, $\sigma(\varepsilon_2) = (0, -1, 1)^T$, $\sigma(\varepsilon_3) = (1, a - 1, 1)^T$. (5分)

2.
$$A = \begin{pmatrix} 2 & 1 & 2-a \\ -3 & -2 & a-2 \\ 1 & 1 & 1 \end{pmatrix}$$
. (5 分)

- 3. 因为 $|\lambda I A| = (\lambda + 1)(\lambda 1)^2$,所以 σ 的特征值是-1, 1, 1. (5分)
- 4. σ 可对角化 $\Leftrightarrow a=2$. (5 分)

三、
$$(20 分)$$
 设 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 2 & 7 \end{pmatrix}$.

- 1. 证明 A 是正定矩阵;
- 2. 作出 *A* 的 *LDU* 分解;
- 3. 证明: 若 A 是 n 阶 Hermite 正定矩阵,则存在唯一对角元全为正数的下三角矩阵 B ,使得 A = BB^H .

1. A 为对称矩阵,且三个顺序主子式 Δ_1 = 1, Δ_2 = 2, Δ_3 = 8 全为正数,所以 A 是正定矩阵. (5 分)

2.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
. (5 $\%$)

3. 已知 A 是正定矩阵,则 A 的各阶顺序主子式 $\Delta_1, \Delta_2, \cdots, \Delta_n$ 全为正数,从而存在单位下三角矩阵 L ,对角矩阵 $D=diag(d_1,d_2,\cdots,d_n)$,单位上三角矩阵 U ,使得 A=LDU ,其中 $d_k>0$, $k=1,2,\cdots,n$. (5分)

由于
$$A = U^H DL^H 且 A$$
的 LDU 分解式唯一,所以 $U = L^H$.取
$$B = Ldiag(\sqrt{d_1}, \sqrt{d_2}, \cdots, \sqrt{d_n}),$$

则 B 为对角元全为正数的下三角矩阵,且 $A = BB^H$. 再由 A 的 LDU 分解式的唯一性,可知 B 是唯一的. (5分)

四、
$$(20 分)$$
 设 $A = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}$, $b = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}$.

- 1. $||A||_1$, $||A||_{\infty}$, $||A||_{E}$, $||A||_{2}$;
- 2. 求A的加号逆 A^+ ;
- 3. 判断方程组 Ax = b 是否相容?如果相容,求其通解;如果不相容,求其极小最小二乘解.

1.
$$||A||_1 = 2$$
, $||A||_{\infty} = 2$, $||A||_F = \sqrt{6}$, $||A||_2 = \sqrt{3}$. (5 $\%$)

2.
$$A$$
的一种满秩分解为 $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} = BC$; (5 分).

因为
$$B^+ = \frac{1}{3} \begin{pmatrix} 1 & 2 & 1 \\ -2 & -1 & 1 \end{pmatrix}, \quad C^+ = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ -1 & 1 \end{pmatrix}, 所以$$

$$A^{+} = C^{+}B^{+} = \frac{1}{3} \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}. \quad (5 \%)$$

3. 直接验证,或通过计算 $AA^+b = (2, 4, 2)^T \neq b$,可知方程组不相容, 从而极小最小二乘解为 $x = A^+b = (2, 0, -2)^T$. (5分)

五、 $(20 \, \text{分})$ 设 A, B 都是 n 阶 Hermite 矩阵, 且 $A > B \ge 0$, 证明:

- 1. 矩阵 $A^{-1}B$ 的谱半径 $\rho(A^{-1}B) < 1$;
- 2. 存在可逆矩阵 P , 使得 $||P^{-1}A^{-1}BP||_{2} < 1$;
- 3. 存在相容矩阵范数 $\|\cdot\|$,使得 $\|(A-B)^{-1}\| \le \frac{\|A^{-1}\|}{1-\|A^{-1}B\|}$.

答案及评分标准:

1. 已知 A > 0, $B \ge 0$, 则存在可逆矩阵 P, 使得

$$P^{H}AP = I$$
, $P^{H}BP = diag(\lambda_{1}, \lambda_{2}, \dots, \lambda_{n}) \geq 0$,

其中 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是 $A^{-1}B$ 的特征值. (5分)

由于A > B, 所以 $P^{H}AP > P^{H}BP$, 从而 $0 \le \lambda_{i} < 1$, 即 $\rho(A^{-1}B) < 1$. (5分)

2. 由题 1 的结论和证明过程,存在可逆矩阵 P ,使得

$$P^{-1}A^{-1}BP = diag(\lambda_1, \lambda_2, \dots, \lambda_n) \ge 0,$$

且 $\rho(A^{-1}B) = \max\{\lambda_1, \lambda_2, \dots, \lambda_n\} < 1$,于是

$$||P^{-1}A^{-1}BP||_{2} = ||diag(\lambda_{1}, \lambda_{2}, \dots, \lambda_{n})||_{2} = \rho(A^{-1}B) < 1.$$
 (5 $\dot{\gamma}$)

3. 由题 2 的结论,存在可逆矩阵 P ,使得 $\left\|P^{-1}A^{-1}BP\right\|_{2} < 1$. 在 $C^{n\times n}$ 上定义非负实值函数 $\|\cdot\|$ 如下:

$$||X|| = ||P^{-1}XP||_{2}, \quad \forall X \in C^{n \times n},$$

则 $\|\cdot\|$ 是 $C^{n\times n}$ 上的相容矩阵范数,且 $\|I\|=1$, $\|A^{-1}B\|<1$.于是

$$\left\| (A - B)^{-1} \right\| = \left\| (I - A^{-1}B)^{-1} A^{-1} \right\| \le \left\| (I - A^{-1}B)^{-1} \right\| \left\| A^{-1} \right\| \le \frac{\left\| A^{-1} \right\|}{1 - \left\| A^{-1}B \right\|}. \quad (5 \%)$$

南京航空航天大学 2018 级硕士研究生

共5页第1页

2017~2018 学年第 1 学期 《矩阵论》 课程考试 A 卷

考试日期: 2018 年 1 月 5 日 课程编号: 6A080001 命题教师: 阅卷教师:

学院

专业

学号

姓名

成绩

一、(20分) 设4阶矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
.

- 1. 求 A 的特征多项式以及特征值的几何重数与代数重数;
- 2. 求 A 的初等因子、最小多项式;
- 3. 求 A 的 Jordan 标准形;

4. 问:
$$A$$
与矩阵 $B = \begin{pmatrix} 1 & -6 & -6 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ 是否相似?并说明理由.

答案及评分标准:

1.特征多项式为 $f(\lambda) = (\lambda - 1)^2 (\lambda + 1)^2$.

 $\lambda = 1$ 的代数重数是 2,几何重数为 2;

 $\lambda = -1$ 的代数重数是 2,几何重数为 1. (5分)

2.A的初等因子为 $\lambda-1, \lambda-1, (\lambda+1)^2$,最小多项式为 $(\lambda-1)(\lambda+1)^2$ (5分)

3.
$$A$$
 的 Jordan 标准形为 $J = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$. (5 分)

4. 因为B的初等因子为 $\lambda-1$, $\lambda-1$, $\lambda+1$, $\lambda+1$, 所以A与B不相似. (5分)

二、(20 分) 设 $\alpha = (-1, 1, 1)^T$, 在 R^3 中定义映射:

$$\sigma(x) = x - \frac{2}{3}(\alpha^T x)\alpha, \quad \forall x \in \mathbb{R}^3.$$

- 1. 证明 σ 是 R^3 的线性变换;
- 2. 求 σ 在基 $\alpha_1 = (-1,1,1)^T, \alpha_2 = (0,2,1)^T, \alpha_3 = (0,0,3)^T$ 下的矩阵A;
- 3. 证明 σ 是 R^3 的正交变换.

答案及评分标准:

1.
$$\sigma(x+y) = x + y - \frac{2}{3}(\alpha^T x + \alpha^T y)\alpha = \sigma(x) + \sigma(y)$$
;

$$\sigma(k x) = k x - \frac{2}{3} (k \alpha^T x) \alpha = k \sigma(x). \quad (5 \%)$$

2.
$$A = \begin{pmatrix} -1 & -2 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. (10 分)

3. 证法 1: 由于 $(\sigma(x), \sigma(y)) = (x, y)$,所以 σ 是正交变换. (5分)

证法 2: σ 在标准正交基 $\varepsilon_1 = (1, 0, 0)^T$, $\varepsilon_2 = (0, 1, 0)^T$, $\varepsilon_3 = (0, 0, 1)^T$ 下的矩阵为

$$Q = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}.$$

因为 $Q^TQ = I$,所以Q是正交矩阵,从而 σ 是正交变换. (5分)

三、(20 分) 设
$$4 \times 3$$
 列满秩矩阵 $A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, 四维列向量 $b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

- 1. 作出 A 的 QR 分解;
- 2. 求A的加号逆 A^{+} ;
- 3. 证明方程组 Ax = b 不相容, 并求其极小最小二乘解.

1.
$$Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $R = \sqrt{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. (10 $\%$)

2.
$$A^{+} = (A^{T}A)^{-1}A^{T} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$
. (5 $\%$)

3. 由于 $AA^+b = (1, 0, 1, 0)^T \neq b$,所以方程组 Ax = b不相容,其极小最小二乘解为 $A^+b = (1, 0, 0)^T$. (5分)

四、
$$(20 分)$$
 设 $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$.

- 1. $\vec{x} \|A\|_{1}, \|A\|_{\infty}, \|A\|_{F}, \|A\|_{2}$;
- 2. 证明矩阵幂级数 $\sum_{k=1}^{\infty} \left(\frac{1}{3}A\right)^k$ 绝对收敛,并求其和;
- 3. 设A是n阶矩阵,证明 $\frac{1}{\sqrt{n}}||A||_1 \le ||A||_F \le n||A||_1$.

1.
$$||A||_1 = 4$$
, $||A||_{\infty} = 3$, $||A||_F = \sqrt{11}$, $||A||_2 = \sqrt{6}$. (5 $\%$)

2. 因为 $\rho(A) \le \|A\|_2 < 3$,所以 $\rho(\frac{A}{3}) < 1$,从而矩阵幂级数 $\sum_{k=1}^{\infty} \left(\frac{1}{3}A\right)^k$ 绝对收敛,其和为

$$\sum_{k=1}^{\infty} \left(\frac{1}{3}A\right)^k = (I - \frac{A}{3})^{-1} = 3(3I - A)^{-1} = \frac{1}{2} \begin{pmatrix} 4 & -1 & 1 \\ 0 & 2 & 2 \\ 2 & 1 & 5 \end{pmatrix}. \quad (5 \%)$$

3. 设 $A = (a_{ij})_{n \times n}$,且 $\|A\|_1 = \sum_{i=1}^n a_{ik}$,则由 Cauchy 不等式,有

$$||A||_1 = \sum_{i=1}^n 1 \cdot a_{ik} \le \sqrt{n} \left(\sum_{i=1}^n |a_{ik}|^2 \right)^{\frac{1}{2}} \le \sqrt{n} ||A||_F$$

即
$$||A||_F \ge \frac{1}{\sqrt{n}} ||A||_1$$
. (5分) 另一方面,有

$$||A||_F = \left(\sum_{j=1}^n \sum_{i=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} \le \sum_{j=1}^n \sum_{i=1}^n |a_{ij}| \le n \sum_{i=1}^n |a_{ik}| = n ||A||_1,$$

于是
$$\frac{1}{\sqrt{n}} \|A\|_{1} \le \|A\|_{F} \le n \|A\|_{1}.$$
 (5分)

五、 $(20 \, \text{分})$ 设 A, B 是两个 n 阶 Hermite 正定矩阵,证明:

- 1. 存在 n 阶 Hermite 正定矩阵 S ,使得 $A = S^2$;
- 2. $A + A^{-1} 2I \ge 0$;
- 3. 若A > B,则 $B^{-1} > A^{-1}$:
- 4. 若 $A = B^2$, 则 B = S.

答案及评分标准:

1. 已知 A > 0, 则存在正交矩阵 O,使得

$$Q^{H}AQ = diag(\lambda_{1}, \lambda_{2}, \dots, \lambda_{n}) > 0.$$

取 $S = Qdiag(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_n})Q^H$,则 S 是 Hermite 正定矩阵,并且使得 $A = S^2$. (5 分)

2. 由题 1 的结论,有

$$A + A^{-1} - 2I = S^2 + (S^{-1})^2 - 2I = (S - S^{-1})^2 \ge 0$$
. (5 $\%$)

3. 设A > B,则 $\rho(BA^{-1}) < 1$. 由于

$$\rho(BA^{-1}) = \rho(A^{-1}B) = \rho(A^{-1}(B^{-1})^{-1}),$$

所以 $B^{-1} > A^{-1}$. (5分)

4. 证法 1: 设 $A = B^2$,则 $A = S^2 = B^2$,从而

$$(BS^{-1})^H(BS^{-1})=I$$
,

即 BS^{-1} 为酉矩阵,其特征值的模为 1. 另一方面,由于 S^{-1} , B 都是 Hermite 正定矩阵,所以 BS^{-1} 相似于一个正定矩阵,于是 BS^{-1} 的特征值只能为 1,即存在可逆矩阵 P,使得 $P^{-1}BS^{-1}P = I$. 因此 B = S. (5 分)

证法 2: 设 $A = B^2$,则 $S^2 \ge B^2$ 且 $S^2 \le B^2$.由 $S^2 \ge B^2$ 可得

$$\rho(BS^{-1}) \le ||BS^{-1}||_2 \le 1$$

从而 $S \ge B$. 同理由 $S^2 \ge B^2$ 可得 $S \le B$. 因此S = B. (5分)

南京航空航天大学 2003 级硕士研究生

《矩阵论》试题评分标准

2004.1

一、 (20 分) 已知
$$A = \begin{pmatrix} 1 & 0 & i \\ 0 & 1 & 2 \\ -i & 2 & 5 \end{pmatrix}$$
, 其中 $i = \sqrt{-1}$;

- (1) $||\mathbf{x}|||A||_1 = 8, ||A||_2 = 6, ||A||_2 = 8, ||A||_2 = \sqrt{37};$
- (2) 证明: $A \ge 0$:

证明: 首先 A 为 Hermite 矩阵; 又因为 A 的特征值为 6, 1, 0, 所以 $A \ge 0$

(3) 设 $\alpha, \beta \in C^n$, $B = \alpha \beta^H$, 证明: $\|B\|_F = \|\alpha\|_{\cdot} \|\beta\|_{\cdot}$

证明:
$$\|B\|_F = \sqrt{tr(B^H B)} = \sqrt{tr(\beta \alpha^H \alpha B)} = \sqrt{\alpha^H \alpha tr(\beta \beta^H)}$$

$$= \sqrt{\alpha^H \alpha} \sqrt{\beta^H \beta} = \|\alpha\|_{\gamma} \|\beta\|_{\gamma}$$

二、(20分)

- (a) 求 A 的特征多项式和 A 的全部特征值;
- (b) 求 A 的不变因子、初等因子和最小多项式;
- (c) 写出 A 的 Jordan 标准形;

解: (a) 特征多项式 $f(\lambda) = (\lambda - 1)^3$; 特征值为 1, 1, 1;

(b) 不变因子: $1, \lambda - 1, (\lambda - 1)^2$;

初等因子: $\lambda - 1,(\lambda - 1)^2$;

最小多项式: $m(\lambda) = (\lambda - 1)^2$;

(c) A的 Jordan 标准形: $\begin{pmatrix} 1 & 1 \\ & 1 \\ & & 1 \end{pmatrix} or \begin{pmatrix} 1 & & \\ & 1 & 1 \\ & & 1 \end{pmatrix}$

(2) 设A为n阶矩阵,证明: A 非奇异的充分必要条件是存在常数项不为零的 多项式 f(x) 使 f(A) = 0 。

证明: $\Rightarrow :: A # 奇 # f; :: |A| \neq 0;$

$$\therefore A$$
 的特征多项式 $f(\lambda)$ 的常数项不为零; 且 $f(A) = 0$

 \leftarrow 设 A 的特征多项式为 $f(\lambda)$,则其常数项为 A;

$$\therefore f(A) = A^{n} + a_{n-1}A^{n-1} + \dots + a_{1}A + (-1)^{n}|A|I = 0$$

$$\therefore A(A^{n-1} + a_{n-1}A^{n-2} + \dots + a_1I)/(-1)^n |A| = I$$
 所以 A 非奇异。

三、(20分)

设
$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$$

(1) 作出 A 的满秩分解;

解:
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

(2) 计算 A+;

$$\mathbf{\tilde{H}}: \quad A^{+} = C^{T} (CC^{T})^{-1} (B^{T}B)^{-1} B^{T} = \begin{pmatrix} \frac{1}{3} & -\frac{4}{15} & \frac{1}{15} \\ 0 & \frac{1}{5} & \frac{1}{5} \\ -\frac{1}{3} & \frac{7}{15} & \frac{2}{15} \\ \frac{1}{3} & -\frac{4}{15} & \frac{1}{15} \end{pmatrix} = \frac{1}{15} \begin{pmatrix} 5 & -4 & 1 \\ 0 & 3 & 3 \\ -5 & 7 & 2 \\ 5 & -4 & 1 \end{pmatrix}$$

(3) 利用广义逆矩阵方法判断线性方程组 Ax = b 是否相容? 若相容,求其通解;若不相容,求其极小最小二乘解。

解: $AA^+b = b = \begin{pmatrix} 3 & 1 & 4 \end{pmatrix}^T$; ... 相容,即有解。

四、(20分)

- (1) 设A,B均为n阶 Hermite 矩阵,且AB = BA; 证明:
 - (a) 如果A > 0, 且AB > 0, 则B > 0;
 - (b) 如果A > 0, B > 0, 且 $A^3 > B^3$, 则A > B。

证明: (a) : A > 0; $: A = S^2$, S 为可逆hermite 矩阵;

$$\therefore S^{-1}ABS = SBS = S^{H}BS$$

$$\mathcal{X}:AB>0$$

 $\therefore B > 0$

(b) :
$$A^3 - B^3 = (A - B)(A^2 + AB + B^2) > 0$$

$$X : A > 0 : B > 0 : A > B = BA$$

$$\therefore A^2 > \theta; B^2 > \theta; AB > \theta$$

$$\therefore A^2 + AB + B^2 > 0$$

再由(a)的结论,即得 A-B>0;即A>B。

(2) 若 A 是 2 阶实正规矩阵,且 $\alpha \pm i\beta$ 是 A 的一对共轭复特征值,

证明:存在正交矩阵
$$Q$$
,使得 $Q^T A Q = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$ 。

证明: $\partial x \pm iy 为属于\alpha \pm i\beta 的特征向量$

则
$$A(x \pm iy) = (\alpha \pm i\beta)(x \pm iy)$$

因为 A 为正规矩阵; 所以 A 属于不同特征值的特征向量是正交的,

$$\mathbb{P}(x\pm iy)^H(x\pm iy)=0$$

得到
$$x^T x = 1; y^T y = 1; x^T y = 0; y^T x = 0$$

$$\mathbb{P} \|x\|_2 = 1; \|y\|_2 = 1; (x, y) = 0$$

令 $Q = (x \ y)$, 则 Q 为正交矩阵;

所以
$$Q^T A Q = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$

五、(20 分) 设实数域 R 上空间线性 $R^{2\times 2}$ 的子集 $W = \{A \in R^{2\times 2} | tr(A) = \emptyset\}$;

(1) 证明W 是 $R^{2\times 2}$ 的子空间;

证明: $\forall A, B \in W$ $A + B \in W; kA \in W, k \in R$

所以W 是 $R^{2\times2}$ 的子空间

(2) 给出W的变换:

$$T(A) = A + A^T, \quad \forall A \in W$$

证明: $T \in W$ 上的线性变换;

(2) 求 Ker(T)及其维数;

解:
$$Ker(T) = span \left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$
; 且 $dim(Ker(T)) = 1$

(4) 求W的一组基和维数,并写出线性变换T在所取基下的矩阵。

解:
$$W$$
 的一组基: $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$; $dim(W) = 3$;

线性变换 T 在所取基下的矩阵: $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

南京航空航天大学 07-14 硕士研究生矩阵论试题

2007 ~ 2008 学年《矩阵论》 课程考试 A 卷

$$A = \begin{pmatrix} 1 & 1 & -2 \\ -2 & -2 & 3 \\ -1 & -1 & 1 \end{pmatrix},$$

- - (1) \bar{x} A 的特征多项式和 A 的全部特征值:
 - (2) 求 A 的行列式因子、不变因子和初等因子;
 - (3) 求 A 的最小多项式,并计算 $A^6 + 3A 2I$.
 - (4) 写出 A 的 Jordan 标准形。
- 二、 $(20 \, \text{分})$ 设 $R^{2\times 2}$ 是实数域R 上全体 2×2 实矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。
- (1) 求 $R^{2\times2}$ 的维数,并写出其一组基:
- (2) 设W 是全体 2×2 实对称矩阵的集合,

证明: $W \neq R^{2\times 2}$ 的子空间, 并写出W 的维数和一组基:

- (3) 在W 中定义内积(A,B) = tr(BA), 其中 $A,B \in W$,求出W 的一组标准正交基:
- (4) 给出 $R^{2\times 2}$ 上的线性变换 T: $T(A) = A + A^T$, $\forall A \in R^{2\times 2}$

写出线性变换T在(1)中所取基下的矩阵,并求T的核Ker(T)和值域R(T)。

三、(20分)

$$A = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 2 & 1 \end{pmatrix}, \quad ||A||_{1}, \quad ||A||_{2}, \quad ||A||_{\infty}, \quad ||A||_{F},$$

$$(2) \ \mathbf{\mathcal{U}} A = (a_{ij}) \in C^{n \times n}, \ \mathbf{\mathbf{\mathcal{A}}} \|A\|_* = n \cdot \max_{i,j} |a_{ij}|,$$

证明: $\|\cdot\|_{*}$ 是 $C^{"*"}$ 上的矩阵范数并说明具有相容性:

(3) 证明: $\frac{1}{n} ||A||_{*} \le ||A||_{2} \le ||A||_{*}$

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 2 \end{pmatrix},$$

四、(20分)已知矩阵

(1) 求矩阵 A 的 QR 分解:

- (2) 计算A⁺:
- (3) 用广义逆判断方程组 Ax = b 是否相容? 若相容, 求其通解: 若不相容, 求其极小最小二乘解。

五、(20分)

问当 t 满足什么条件时,A > B成立?

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{12}^H & A_{22} \end{pmatrix} > 0$$
(2) 设 n 阶 Hermite 矩阵 $A_{11} \in C^{k \times k}$, 其中 $A_{11} \in C^{k \times k}$,

证明: $A_{11} > 0$, $A_{22} - A_{12}^H A_{11}^{-1} A_{12} > 0$

(3) 已知 Hermite 矩阵
$$A=\left(a_{ij}\right)\in C^{n\times n}$$
 , $a_{ii}>\sum_{j\neq i}\left|a_{ij}\right|$ $\left(i=1,2,\cdots,n\right)$, 证明: A 正定。

2007 ~ 2008 学年《矩阵论》 课程考试 B 卷

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & -4 & 0 \\ 0 & -4 & 0 \end{pmatrix},$$

- (1) 求 A 的不变因子、初等因子及最小多项式;
- (2) 求 A 的 Jordan 标准形 J 及可逆变换矩阵 P ,使得 $P^{-1}AP = J$:
- $\{A^k\}$ 是否收敛?.
- 二. (20分)

$$A = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 2 & 3 \\ 1 & 2 & 0 \end{pmatrix}, \quad _{||} \|A\|_{_{1}}, \|A\|_{_{2}}, \|A\|_{_{\infty}}, \|A\|_{_{F}};$$

(2) 设A为n阶可逆矩阵, $\|\cdot\|$ 是 $C^{n\times n}$ 上的相容范数, λ 为A的任一特征值,

证明:
$$||A^{-1}||^{-1} \le |\lambda| \le ||A||$$
 。

三. $(20 \, \text{分})$ $R[x]_3$ 表示实数域上次数不小于 3 的多项式与零多项式构成的线性空间,

对 $\forall f(x) \in R[x]_3$, 记 $f(x) = ax^2 + bx + c$,其中 $a,b,c \in R$, 在 $R[x]_3$ 上定义线性变换:

$$T[f(x)] = 3ax^2 + (2a + 2b + 3c)x + (a + b + 4c).$$

- (1) 给出 $R[x]_3$ 的一组基,并求出线性变换 T 在该基下的表示矩阵:
- (2) 求线性变换T 的特征值和特征向量:
- (3) 判断线性变换 T 是否可对角化? 若可以,给出对角化的一组基;若否,证明之。

四. (20分)

$$b = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix}$$

 $b = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix}$,利用广义逆矩阵判断线性方程组 Ax = b 是否相容?若相容,求其通解; 若不相容, 求其极小最小二乘解。

五. (20分)

$$A = \begin{pmatrix} 5 & 3 & 2 \\ 3 & 2 & t \\ 2 & t & 2 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 0.5t \\ 2 & 0.5t & 1 \end{pmatrix}, 其中 t 是实数,$$

问 t 满足什么条件时,A > B 成立?

(2) 设
$$A$$
为 n 阶 Hermite 矩阵,对任意 $x \in C^n, x \neq 0$,记 $R(x) = \frac{x^H A x}{x^H x}$,

证明: $\lambda_{\min}(A) \leq R(x) \leq \lambda_{\max}(A), x \neq 0$

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{12}^H & A_{22} \end{pmatrix}, \ \mbox{其中} \ A_{11} \in C^{k \times k} (1 \le k < n),$$

如果 $A_{11} > 0, A_{22} - A_{12}^H A_{11}^{-1} A_{12} > 0$, 证明, A > 0

2008 ~ 2009 学年《矩阵论》 课程考试 A 卷

$$A = \begin{pmatrix} 8 & -1 & 6 \\ 3 & 0 & 3 \\ -14 & 2 & -10 \end{pmatrix},$$

- (1) 求 A 的特征多项式和 A 的全部特征值;
- (2) 求 A 的不变因子、初等因子和最小多项式:
- (3) 写出 A 的 Jordan 标准形。

$$A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}, \quad \mathbf{x} \|A\|_{1}, \|A\|_{2}, \|A\|_{\infty}, \|A\|_{F},$$

- (2) 设 $^{\parallel \cdot \parallel}$ 是 $^{C'' \times n}$ 上的相容矩阵范数,证明:
- (i) 如果 $A \ge n$ 阶可逆矩阵, $\lambda \ge A$ 的任一特征值,则 $\left\|A^{-1}\right\|^{-1} \le |\lambda| \le \|A\|$;
- (ii) 如果 $P \in C^{n \times n}$ 是可逆矩阵,令 $\|A\|_P = \|P^{-1}AP\|_{p}$,则 $\|A\|_P \in C^{n \times n}$ 上的相容矩阵范数。

$$A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix},$$

- (1) 作出 A 的满秩分解,计算 A^+ ;
- (2) 应用广义逆矩阵判定线性方程组 Ax = b 是否相容。若相容,求其通解;

若不相容, 求其极小最小二乘解;

(3) 设A是 $\mathbb{Z} \times \mathbb{Z}$ 实矩阵,b是m维实向量,证明:不相容线性方程组Ax = b的最小二乘解唯一当且仅当A列满秩。

四 $(20 \, f)$ 设 V 表示实数域 R 上全体 2 × 2 上三角矩阵作成的线性空间(对矩阵的加法和数量乘法)。

(1) 求 V 的维数,并写出 V 的一组基:

$$T(X) = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} X + X \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, X \in V$$

求T在(1)中所取基下的矩阵表示;

- (3) 求 (2) 中线性变换T的值域R(T)和核N(T), 并确定它们的维数;
- (4) 在 V 中能否取一组基使得(2)中线性变换 T 在所取基下的矩阵为对角矩阵?如果能,则取一组基;如果不能,则说明理由。

五(20分)设 $^{A=(a_{ij})}$ 为 n 阶 Hermite 矩阵,证明:

存在唯一 Hermite 矩阵 B 使得 $A = B^3$:

- (2) 如果 $A \ge 0$, 则 $tr(A^2) \le (tr(A))^2$:
- (3) 如果A > 0,则 $tr(A)tr(A^{-1}) \ge n$ 。

2009 ~ 20010 学年《矩阵论》 课程考试 A 卷

$$A = \begin{pmatrix} -1 & -2 & 6 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{pmatrix},$$

一、(20分)设

- (1) 求 A 的特征多项式和 A 的全部特征值;
- (2) 求 A 的不变因子、初等因子和最小多项式:
- (3) 写出 A 的 Jordan 标准型 J;
- (4) 求可逆矩阵 P, 使 $P^{-1}AP = J$ 。

(2) 设
$$A = (a_{ij}) \in C^{n \times n}$$
,令
$$||A||_* = n \cdot \max_{i,j} |a_{ij}|$$
,

证明 || || || 是Cn×n上的矩阵范数并说明具有相容性;

(3) 设 A, B 均为 n 阶矩阵, 并且 AB=BA, 证明: 如果 A 有 n 个互异的特征值,则 B 相似于对 角矩阵。

三、 $(20\, 9)$ 设 $^{R[x]}$ 表示实数域 R 上次数小于 3 的多项式再添上零多项式构成的线性空间(按 通常多项式的加法 和数与多项式的乘法)。

$$\begin{cases} T(1+x+x^2)=4+x^2\\ T(x+x^2)=3-x+2x^2\\ T(x^2)=x^2 \end{cases}$$
 求变换 T 在基 $1,x,x^2$ 下的矩阵;

- (2) 求 T 的值域 R(T)和核 ker(T)的维数和基;
- (3) 求线性变换 T 的特征值及特征向量;
- (4) 在 $R[X]_3$ 中定义内积 $(f,g) = \int_{-1}^4 f(X)g(X)dX$, f(X) , $g(X) \in R[X]_3$ 求出 $R[X]_3$ 的一组标准正交基。

四、(20分)

$$A = \begin{pmatrix} 4 & 0 & -1 \\ 0 & 4 & t \\ -1 & t & 4 \end{pmatrix}, \quad \text{#}$$

- (2) 设 A 是 n 阶 Hermite 矩阵,证明: A 半正定的充分必要条件是 A 的特征值均为非负实数;
- (3) 已知 n 阶矩阵 $A \geq 0$,证明 $A + I \geq 1$,并且等号成立的充分必要条件为 A=0。

五、(20分)

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 1 & 2 & -1 \end{pmatrix}, b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- (i)做出 A 的满秩分解,并计算 A^{+} ;
- (ii)用广义逆矩阵判定线性方程组 Ax=b 是否相容, 若相容, 求其通解: 若不相容, 求其极小最小二乘解:
- (2) 设 A, B, C 分别为 $M \times N$, $P \times Q$, $M \times Q$ 矩阵,则矩阵方程 AXB=C 有解的充分必要条件是 $AA^+CB^+B = C$ 。

2010 ~ 2011 学年《矩阵论》 课程考试 A 卷

$$A = \begin{pmatrix} 2 & -3 & 4 \\ 4 & -6 & 8 \\ 6 & -7 & 8 \end{pmatrix}.$$

- (i) 求A的特征多项式和A的全部特征值;
- (ii) 求 A 的行列式因子,不变因子和初等因子;
- (iii) 写出 A 的 Jordan 标准形:

$$A = \begin{pmatrix} 17 & -6 \\ 45 & -16 \end{pmatrix}$$
, $B = \begin{pmatrix} 14 & -60 \\ 3 & -13 \end{pmatrix}$, 试问 A 和 B 是否相似? 并说明原因。

(2) 设 $A \in C^{n \times n}$ 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,求证:

(i)
$$\sum_{i=1}^{n} \left| \lambda_i \right|^2 \le \left\| A \right\|_F^2$$
;

$$\sum_{i=1}^n \left|\lambda_i\right|^2 = \left\|A\right\|_F^2$$
 的充要条件是 A 为正规矩阵。

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, \quad W = \left\{ X \middle| AX = XA, X \in R^{2 \times 2} \right\}$$
 三 (20分) 设

- (1) 证明: $W \in \mathbb{R}^{2\times 2}$ 的线性子空间,并求W 的基和维数;
- (2) 在W 中定义变换 $T: T(X) = X X^*$, 其中 X^* 为X的伴随矩阵, 证明: T为线性变换;
- (3) 求T在(1)中所取基下的矩阵表示;
- (4) 求(2)中线性变换T的值域R(T)和核Ker(T),并确定它们的维数.

四 (20分) 设 $A \in R^{m \times n}$ 。

- (1) 证明: $A^T A$ 半正定:
- (2) 证明: $|I + A^T A| \ge 1$, 并且等号成立当且仅当 A = 0;

(3) 证明:
$$|A^T A| \le \prod_{k=1}^n (\sum_{i=1}^m a_{ik}^2)$$
;

(4) 证明:存在唯一的对称半正定矩阵S 使得 $A^TA = S^2$ 。

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

五(20分)(1)设

- (i) 求 A 的奇异值分解;
- (ii) 计算广义逆矩阵 A^+ ;
- (iii) 用广义逆矩阵判定线性方程组 Ax = b 是否相容。若相容,求其通解;若不相容,求其极小最小二乘解;

$$A = \begin{pmatrix} -0.2 & 0.3 \\ 0.6 & 0.5 \end{pmatrix}$$
, 判定矩阵级数 $\sum_{k=0}^{\infty} (-1)^k A^k$ 是否收敛。若收敛,求其和。

2011 ~ 2012 学年《矩阵论》 课程考试 A 卷

$$A = \begin{pmatrix} 3 & 6 & -15 \\ 1 & 2 & -5 \\ 1 & 2 & -5 \end{pmatrix}$$

$$- (20 分) 设$$

- (1) 求 A 的特征多项式和 A 的全部特征值:
- (2) 求 A 的行列式因子,不变因子,初等因子和最小多项式;
- (3) 写出A的 Jordan 标准形J。

- (2) 设 $A = (a_{ij}) \in C^{m \times n}$, 证明:
- (i) 对^m 阶酉矩阵 U 和 n 阶酉矩阵 V ,有 $\|UAV\|_F = \|A\|_F$;

(ii) 若
$$rank(A) = r$$
 , $\sigma_1, \sigma_2, \dots, \sigma_r$ 为 A 的全部正奇异值,则 $\sum_{k=1}^r \sigma_k^2 = \sum_{i=1}^m \sum_{j=1}^n \left| a_{ij} \right|^2$ 。

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}.$$

- 三 (20分)设
- (1) 计算 A 的满秩分解;
- (2) 计算广义逆矩阵 A^+ ;

(3) 用广义逆矩阵判定线性方程组 Ax = b 是否相容。若相容,求其通解,若不相容,求其极小最小二乘解。

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & -3 \\ 0 & -3 & 2 \end{pmatrix}$$
, 判断 A 是否是正定或半正定矩阵,并说明理由;

- (2) 设A 是 n 阶 Hermite 正定矩阵,B 是 n 阶 Hermite 矩阵,证明:AB 相似于实对角矩阵;
- (3) 设 A , B 均为 n 阶 Hermite 矩阵,并且 AB = BA , λ 是 AB 的特征值,证明,存在 A 的特征值 α 和 B 的特 征值 $^{\beta}$,使得 $^{\lambda=\alpha\beta}$ 。

五(20分)设 $^{R[x]_3}$ 表示实数域 R 上次数小于3的多项式再添上零多项式构成的线性空间。

(1) 确定 $R[x]_3$ 的维数, 并写出 $R[x]_3$ 的一组基:

(2) 对
$$f(x) = a_0 + a_1 x + a_2 x^2 \in R[x]_3$$
, 在 $R[x]_3$ 上定义线性变换 T 如下:

$$T(f(x)) = (a_0 - a_1) + (a_1 - a_2)x + (a_2 - a_0)x^2$$

求T在(1)中所取基下的矩阵表示;

- (3) 求 (2) 中线性变换 T 的值域 R(T) 和核 Ker(T), 并确定它们的维数:
- (4) 在 $R[x]_3$ 中定义内积

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx, \ \forall f(x), g(x) \in R[x]_{3}$$

或 $R[x]_3$ 的一组标准正交基。

2012 ~ 2013 学年《矩阵论》 课程考试 A 卷

$$V = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in R^{2\times 2} \mid a_{11} = a_{22} \right\}$$
 一、(20 分) 设 是 $R^{2\times 2}$ 的一个线性子空间,对任意 $X \in V$,定义:

$$T(X) = PX + XP$$
,其中 $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

(1) 求 V 的一组基和维数;

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \in V$$
(2) 对任意 ,定义:

$$(A,B) = a_{11}b_{11} + 2a_{12}b_{12} + a_{21}b_{21}$$
,

$$A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix} \quad B = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix} \quad C = \begin{pmatrix} 3 & a & 0 \\ 0 & 3 & a \\ 0 & 0 & 3 \end{pmatrix}$$

- 二、(20分)设三阶矩阵
- (1) 求A的行列式因子、不变因子、初等因子及A Jordan 标准形;
- (2) 利用 $^{\lambda}$ 矩阵的知识,判断矩阵 B 和 C 是否相似,并说明理由.

$$\begin{cases} x_1 + x_2 & + x_4 = 1, \\ x_1 + x_2 + x_3 + 2x_4 = 1, \\ x_3 + x_4 = 1 \end{cases}$$
 不相容.

- 三、(20分)已知线性方程组
- (1) 求系数矩阵 A 的满秩分解:
- (2) 求广义逆矩阵 A^+ :
- (3) 求该线性方程组的极小最小二乘解.

四、(20 分) 已知幂级数
$$k=0$$
 的收敛半径为 3, 矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & -2 & 0 \end{pmatrix}.$$

- (1) $\Re^{\|A\|_1, \|A\|_{\infty}, \|A\|_2, \|A\|_F}$.
- (2) 证明矩阵幂级数 k=0 $\frac{1}{3^k}$ A^k 收敛;
- $\sum_{k=0}^{\infty} \frac{1}{3^k} A^k$ 的和.
- 五、(20 分)设 A,B 是两个 n 阶矩阵,其中 $^{A=(a_{ij})}$,证明:

(1) 若对任意
$$i=1,2,\cdots,n$$
 , 有 $j=1$ a_{ij} $|<1$, 则 $I-A$ 可逆;

- (2) 若 A, B 都是 Hermite 正定矩阵,则 AB 的特征值均为正数;
- (3) 若 A, B 都是 Hermite 半正定矩阵,则 $tr(AB) \ge 0$,并且当等号成立时,必有 AB = 0.
- 2013 ~ 2014 学年《矩阵论》 课程考试 A 卷

$$A = \begin{pmatrix} 1 & 4 & -1 \\ -1 & -3 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$
 一、(20 分) 设三阶矩阵

1. 求 A 的特征多项式和初等因子;

2. 求 A 的 Jordan 标准形;

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
是否相似?并说明理由.

$$\alpha_1=\begin{pmatrix}1\\-1\\0\end{pmatrix},\alpha_2=\begin{pmatrix}0\\2\\-1\end{pmatrix},\alpha_3=\begin{pmatrix}1\\0\\-1\end{pmatrix}$$
 变为向

$$\beta_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \beta_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \beta_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

1. 求 σ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵 A_1

$$\xi = \begin{pmatrix} 1\\2\\3\\ \\ \mathcal{D}^{\sigma(\xi)}$$
在基 $^{\alpha_1,\,\alpha_2,\,\alpha_3}$ 下的坐标;

- 3. 求线性变换 σ 的值域和核.
- $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} \quad b = \begin{pmatrix} -3 \\ 3 \\ 1 \end{pmatrix}$ 三、(15 分)设

- 1. 计算 A⁺;
- 2. 判断方程组 Ax = b 是否相容?如果相容,求方程组的通解;如果不相容,求方程组的极小最小二乘解.

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}, \underbrace{\sum_{k=0}^{\infty} \frac{1}{2^k} x^k}_{\text{head}}$$
 的收敛半径为 2.

- $\|A\|_{1}, \|A\|_{\infty}, \|A\|_{2}, \|A\|_{F}$
- $\sum_{k=0}^{\infty} \frac{1}{2^k} A^k$ 2. 证明矩阵幂级数 k=0 收敛, 并求其和.

五、 $(20 \, \text{分})$ 设 A 是 n 阶 Hermite 正定矩阵, B 是 n 阶 Hermite 矩阵, 证明:

- 1. 存在可逆矩阵P, 使得 $P^HAP = I$, $P^HBP = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$, 并且 $\lambda_1, \lambda_2, \dots, \lambda_n$ 均为实数;
- 2. 存在正数 t_0 , 当 $^{t>t_0}$ 时, $^{tA+B}$ 也是 Hermite 正定矩阵;

南京航空航天大学

研究生考试参考答案及评分标准

共4页 第1页

二00 七 ~二00 八 学年 第 一 学期 课程名称: 矩阵论

试卷类型 A 卷 课程编号: A000003

参考答案及评分标准制定人: 2008 年 1 月 12 日

一、(20分)

解: (1)
$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 2 \\ 2 & \lambda + 2 & -3 \\ 1 & 1 & \lambda - 1 \end{vmatrix} = \lambda^3$$
,

- (2) A 的行列式因子: $1,1,\lambda^3$; A 的不变因子: $1,1,\lambda^3$; A 的初等因子: λ^3 ; 7 分
- (3) 因为 $A^2 \neq 0$, $A^3 = 0$, A 的最小多项式 λ^3 ;

$$A^{6} + 3A - 2I = 3A - 2I = \begin{pmatrix} 1 & 3 & -6 \\ -6 & -8 & 9 \\ -3 & -3 & 1 \end{pmatrix} \dots 4$$

二、(20分)

解: (1)
$$R^{2\times 2}$$
 的维数为 4,一组基 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$; 5 分

(2)
$$\forall A, B \in W, \forall k \in R, \emptyset$$
 $\therefore (A+B)^T = A^T + B^T = A+B, \therefore A+B \in W;$

 $\therefore (kA)^T = kA^T = kA$; $\therefore kA \in W$ 。对加法和数乘封闭,所以是 $R^{2\times 2}$ 的子空间。

$$W$$
 的维数为 3,一组基 $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $A_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$; 5 分

(3)
$$C_1 = A_1$$
, $B_1 = \frac{C_1}{\|C_1\|} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$;

$$C_2 = A_2 - (A_2, B_1)B_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad B_2 = \frac{C_2}{\|C_2\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$$

$$C_3 = A_3 - (A_3, B_1)B_1 - (A_3, B_2)B_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad B_3 = \frac{C_3}{\|C_3\|} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

(4)
$$T$$
 在 (1) 中所取基下的矩阵为 $\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$; T 的核 $Ker(T)$: $\left\{ \begin{pmatrix} 0 & k \\ -k & 0 \end{pmatrix} \middle| k \in R \right\}$;

T 的值域 R(T): $span\{A_1, A_2, A_3\}$ =W. 5 分

三、(20分)

(2) 若
$$A \neq 0$$
,则至少有一个 $a_{ij} \neq 0$, $||A||_* = n \cdot \max_{i} |a_{ij}| > 0$

若
$$A=0$$
, 则 $a_{ij}=0$ $\forall i,j$, $||A||_*=n\cdot\max_i|a_{ij}|=0$

$$\forall k \in C, \quad ||kA||_* = n \cdot \max_{i,j} |ka_{ij}| = k \cdot n \cdot \max_{i,j} |a_{ij}| = k||A||_*$$

$$\forall A, B \in C^{n \times n}, \|A + B\|_{*} = n \cdot \max_{i,j} |a_{ij} + b_{ij}| \le n \cdot \max_{i,j} |a_{ij}| + n \cdot \max_{i,j} |b_{ij}| = \|A\|_{*} + \|B\|_{*}$$

所以 $\| \cdot \|_{*}$ 是 $C^{"\times"}$ 上的矩阵范数。

$$||AB||_{*} = n \cdot \max_{i,j} \left| \sum_{i,j} a_{ik} b_{kj} \right| \leq n \cdot \max_{i,j} \sqrt{\sum_{k} |a_{ik}|^{2} \sum_{k} |b_{kj}|^{2}}$$

$$\leq n \sqrt{n \cdot \max_{i,j} |a_{ij}|^2 n \cdot \max_{i,j} |b_{ij}|^2} \leq n \cdot \sqrt{n} \max_{i,j} |a_{ij}| \cdot \sqrt{n} \max_{i,j} |n_{ij}| = ||A||_* ||B||_*$$

(3)
$$||A||_{2}^{2} = \lambda_{\max}(A^{H}A) \le ||A||_{F}^{2} = \sum_{i=1}^{n} |a_{ij}|^{2} \le n^{2} \max_{i,j} |a_{ij}|^{2} = ||A||_{*}^{2}, \quad \therefore ||A||_{2} \le ||A||_{*}$$

不妨设
$$\max_{i,j} |a_{ij}| = |a_{i_0j_0}|$$
,则 $\frac{1}{n} ||A||_* = \max_{i,j} |a_{ij}| = |a_{i_0j_0}|$

记
$$x_{\scriptscriptstyle 0} = e_{\scriptscriptstyle j_{\scriptscriptstyle 0}}$$
 , $y_{\scriptscriptstyle 0} = e_{\scriptscriptstyle i_{\scriptscriptstyle 0}}$,则 $\left\|x_{\scriptscriptstyle 0}\right\|_{\scriptscriptstyle 2} = 1$,

$$||A||_{2} = \max_{\substack{x^{H} \ x=1 \\ y^{H} \ y=1}} |y^{H} A x| \ge |y_{0}^{H} A x_{0}| = |a_{i_{0} j_{0}}|, \qquad ||A||_{*} \le ||A||_{2}$$

综上可知:
$$\frac{1}{n} ||A||_{*} \le ||A||_{2} \le ||A||_{*}$$
 4 分

四、(20分)

$$(3) : AA^{+}b = \begin{pmatrix} 2 \\ 1 \\ 1.5 \\ 1.5 \end{pmatrix} \qquad \therefore AA^{+}b \neq b \quad 该方程组不相容。$$

五、(20分)

$$(1) A - B = \begin{pmatrix} 5 & 2 & 0 \\ 2 & 1 & 0.5t \\ 0 & 0.5t & 1 \end{pmatrix},$$

$$\Delta_1 = 5 > 0, \Delta_2 = 1 > 0$$
, $\Delta_3 = |A - B| = 1 - \frac{5}{4}t^2 > 0$ 时 $A > B$ 成立

即
$$-\frac{2}{\sqrt{5}} < t < \frac{2}{\sqrt{5}}$$
 时 $A > B$ 成立。 10 分

(2)
$$: A = \begin{pmatrix} A_{11} & A_{12} \\ A_{12}^H & A_{22} \end{pmatrix} > 0$$
, A_{11} 为 A 的前 k 阶顺序主子式, $: A_{11} > 0$.

存在可逆矩阵
$$P = \begin{pmatrix} I_k & 0 \\ -A_{12}^H A_{11}^{-1} & I_{n-k} \end{pmatrix}$$
,使得 $PAP^H = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} - A_{12}^H A_{11}^{-1} A_{12} \end{pmatrix} = B$,

$$\therefore A > 0 \quad \therefore B > 0, \therefore A_{22} - A_{12}^H A_{11}^{-1} A_{12} > 0.$$
 6 分

(3)设 λ 是矩阵 A 的任一特征值,相应的特征向量为 $x=(x_1,\cdots,x_n)^T$,令 $\left|x_{i_0}\right|=\max_i \left|x_i\right|$,

则
$$\left|x_{i_0}\right| > 0$$
,由 $Ax = \lambda x$,有 $(\lambda - a_{i_0 i_0})x_{i_0} = \sum_{i=1}^n a_{i_0 j} x_j$,

从而
$$\left|\lambda - a_{i_0 i_0}\right| \le \sum_{j \ne i_0} \left|a_{i_0 j}\right| \frac{\left|x_j\right|}{\left|x_{i_0}\right|} \le \sum_{j \ne i_0} \left|a_{i_0 j}\right|$$

又因为
$$a_{ii} > \sum_{i \neq i} \left| a_{ij} \right| \quad (i = 1, 2, \dots, n)$$
,所以 $\lambda > 0$,

二00 七 ~二00 八 学年 第 一 学期 课程名称: 矩阵论

试卷类型 B 卷 课程编号: A000003

参考答案及评分标准制定人: 2008 年 1 月 18 日

一、(20分)

解: (1) A 的不变因子: $1,1,(\lambda+1)(\lambda-2)(\lambda+4)$; A 的初等因子: $(\lambda+1),(\lambda-2),(\lambda+4)$; A 的最小多项式 $(\lambda+1)(\lambda-2)(\lambda+4)$ 。

(2)
$$A$$
 的 Jordan 标准形 $J=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$,相应的可逆变换矩阵为 $P=\begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0 \\ \frac{1}{9} & \frac{1}{9} & -\frac{2}{9} \\ \frac{4}{9} & -\frac{2}{9} & -\frac{2}{9} \end{pmatrix}$ 。

(3) $: \rho(A) = 4 > 1$,故矩阵序列 $\left\{A^{k}\right\}$ 发散。

二、(20分)

(2) 设 $x \in C''$ 是 A 相应于特征值 λ 的特征向量, $\therefore Ax = \lambda x, x \neq 0$,

两边取矩阵范数导出的 C'' 上向量范数可得: $|\lambda|||x|| = ||\lambda x|| = ||Ax|| \le ||A||||x||$, $\therefore ||x|| \ne 0, \therefore |\lambda| \le ||A||$;

又:A可逆,: $\frac{1}{\lambda}$ 是 A^{-1} 的特征值,由上述证明可知: $\left|\frac{1}{\lambda}\right| \le \left\|A^{-1}\right\|$;

综上所述有: $||A^{-1}||^{-1} \le |\lambda| \le ||A||$ 。

三、(20分)

解: (1) 可取 $1, x, x^2$ 为 $R[x]_3$ 的一组基,则线性变换T 在该基下的表示矩阵为

$$A = \begin{pmatrix} 4 & 1 & 1 \\ 3 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix};$$

(2) 线性变换 T 的特征值为 5, 1, 3;

在(1)所取基下相应的特征向量分别为 $\eta_1 = 1 + x, \eta_2 = 1 - 3x, \eta_3 = -3 - x + 4x^2$;

(3) :: T 具有 3 个互异特征值,:: T 可对角化,其对角化的一组基为 η_1, η_2, η_3 。

四. (1)
$$A$$
 的满秩分解为: $A = BC = \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & 0 & -3 & 3 \end{pmatrix}$;

$$\therefore A^{+} = C^{T} (CC^{T})^{-1} (B^{T}B)^{-1} B^{T} = \frac{1}{33} \begin{pmatrix} 2 & 1 & -1 \\ 4 & 2 & -2 \\ 1 & -5 & -6 \\ 1 & 6 & 5 \end{pmatrix};$$

(2) 易证
$$AA^+b = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \neq b$$
,该方程组不相容,其极小最小二乘解为: $x = A^+b = \frac{1}{33} \begin{pmatrix} 6 \\ 12 \\ -8 \\ 14 \end{pmatrix}$.

五. (1)
$$A-B=\begin{pmatrix} 5 & 2 & 0 \\ 2 & 1 & 0.5t \\ 0 & 0.5t & 1 \end{pmatrix}>0$$
 当且仅当各阶顺序主子式均为正:

$$\Delta_1 = 5 > 0, \Delta_2 = 1 > 0, \quad \Delta_3 = |A - B| = 1 - \frac{5}{4}t^2 > 0$$

即
$$-\frac{2}{\sqrt{5}}$$
< t < $\frac{2}{\sqrt{5}}$ 时 A > B 成立。

(2) : A 是 Hermite 矩阵, : 存在酉矩阵 U ,使得 $U^H A U = diag\{\lambda_1, \lambda_2, \dots, \lambda_n\}$,

由此可知: $\lambda_{\min}(A)I \leq A \leq \lambda_{\max}(A)I$,

$$\therefore \forall x \in C^n, x \neq 0, \ \ \hat{\pi} \ \lambda_{\min}(A) \leq R(x) = \frac{x^H A x}{x^H x} \leq \lambda_{\max}(A) \quad .$$

(3)
$$: A_{11} > 0, : A_{11}^{-1}$$
存在,构造可逆矩阵 $P = \begin{pmatrix} I_k & 0 \\ -A_{12}^H A_{11}^{-1} & I_{n-k} \end{pmatrix}$,

使得
$$PAP^{H} = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} - A_{12}^{H} A_{11}^{-1} A_{12} \end{pmatrix} = B$$
,

$$\therefore A_{11} > 0, A_{22} - A_{12}^H A_{11}^{-1} A_{12} > 0, \therefore B > 0$$
, 从而有 $A > 0$ 。

00	八	~二 00 九	学年	第 1	学期
	/ \		1 1	// 1	7 ///

课程名称:矩阵论 A 卷

课程编号: A000003

参考答案及评分标准制定人:《矩阵论》课程组 考试日期: 2009年1月13日

一、(20分)

(1) 特征值多项式为 $f(\lambda) = |\lambda I - A| = \lambda(\lambda + 1)^2$ ------3

特征值为 0, -1 (二重)

-----3

(2) 不变因子1,1, $\lambda(\lambda+1)^2$

-----6

初等因子 λ , $(\lambda+1)^2$

-----2

最小多项式 $m(\lambda) = \lambda(\lambda+1)^2$

-----2

$$(3)$$
 Jordan 标准形
$$\begin{bmatrix} -1 & 1 & \\ & -1 & 0 \\ & & 0 \end{bmatrix}$$

-----4

二、(20分)

(1) $||A||_1 = 3$; $||A||_2 = \sqrt{3}$; $||A||_{\infty} = 2$; $||A||_F = \sqrt{5}$

----- 2' *4 = 8

- (2) 证明:
- (i) 因为A可逆,则A的特征值均非零。设 λ 是A的任一特征值,x是相应的特征向量,则

$$Ax = \lambda x$$
, $A^{-1}x = \lambda^{-1}x$

因为 $\|\cdot\|$ 是 $C^{n\times n}$ 上的相容矩阵范数,则存在与 $\|\cdot\|$ 相容的向量范数 $\|\cdot\|_a$,从而

 $\|\lambda\| \|x\|_{a} = \|\lambda x\|_{a} = \|Ax\|_{a} \le \|A\| \|x\|_{a}, \quad \|\lambda^{-1}\| \|x\|_{a} \le \|A^{-1}\| \|x\|_{a}$

因为 $||x||_a > 0$,则 $||A^{-1}||^{-1} \le |\lambda| \le ||A||$ 。

-----6

(ii) 容易验证: $\|A\|_{P} = \|P^{-1}AP\|$ 满足相容矩阵范数的四个条件。

----6

三、(20分)

(1) A的满秩分解为

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 -----5

$$A^{+} = C^{T} (CC^{T})^{-1} (B^{T}B)^{-1} B^{T} = \begin{bmatrix} -\frac{1}{4} & 0 & \frac{1}{4} \\ 0 & 1 & 0 \\ \frac{1}{4} & 0 & -\frac{1}{4} \end{bmatrix}$$
 -----5

(2) 因为
$$AA^{\dagger}b = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \neq b$$
; 所以不相容的。 ------3

其极小最小二乘通解为
$$x = A^+b = \begin{pmatrix} \frac{1}{4} \\ 2 \\ -\frac{1}{4} \end{pmatrix}$$
 ------3

(3) 因为x是不相容线性方程组 Ax = b的最小二乘解当且仅x是如下相容线性方程组 $A^{T}Ax = A^{T}b$

的解,所以不相容线性方程组 Ax = b 的最小二乘解唯一当且仅当 A^TA 非奇异,即 $rank(A^TA) = n$ 。因为 $rank(A^TA) = rank(A)$,所以不相容线性方程组 Ax = b 的最小二乘解唯一当且仅当 A 列满秩。 -------4

四、(20分)

 $(1) \dim(V)=3,$ -----2

V 的一组基为
$$\varepsilon_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \varepsilon_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \varepsilon_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 -----3

(2) 因为

$$T(\varepsilon_1) = \varepsilon_1 + \varepsilon_2, T(\varepsilon_2) = 2\varepsilon_2, T(\varepsilon_3) = -\varepsilon_2 + \varepsilon_3$$

则线性变换T在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵为

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$
 -----5

(3) 因为T在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵 A 非奇异, $Ker(T) = N(T) = \{0\}, \dim(N(T)) = 0$ 。---2

$$R(T) = span(T(\varepsilon_1), T(\varepsilon_2), T(\varepsilon_3)) = span(\varepsilon_1 + \varepsilon_2, 2\varepsilon_2, -\varepsilon_2 + \varepsilon_3) = V$$
, $M = dim(R(T)) = 3$

----3

(4) 因为矩阵 A 的初等因子为 $\lambda-2$, $\lambda-1$, $\lambda-1$, 所以矩阵 A 可对角化。因为线性变换在不同基下的矩阵是相似的,因此存在一组基使得(2)中线性变换 T 在所取基下的矩阵为对角矩阵。

因为矩阵 A 对应于特征值 $\lambda_1=1,\lambda_2=2,\lambda_3=1$ 的特征向量为 $\begin{pmatrix}1\\-1\\0\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix},\begin{pmatrix}1\\0\\1\end{pmatrix}$,则取 V 的

一组基为
$$\alpha_1 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, T 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
 -----5

五、(20分)

(1) 因为 A 为 n 阶 Hermite 矩阵,则存在 n 阶酉矩阵 U,使得

$$A = U \Lambda U^H$$
,

其中 $\Lambda = diag(\lambda_1, \dots, \lambda_n)$,并且 $\lambda_1 \geq \dots \geq \lambda_n$ 。 令

$$B = Udiag(\lambda_1^{\frac{1}{3}}, \dots, \lambda_n^{\frac{1}{3}})U^H,$$

则 B 是 n 阶 Hermite 矩阵,并且 $A = B^3$ 。

-----8

设有另一个 n 阶 Hermite 矩阵 E, 使得 $A = E^3$,则 E 有谱分解

$$E = V diag(\mu_1, \dots, \mu_n)V^H$$

其中 $\mu_1 \ge \dots \ge \mu_n$ 。 因为 $A = E^3$,则 $\mu_i^3 = \lambda_i (i = 1, \dots, n)$, $E = V diag(\lambda_1^{\frac{1}{3}}, \dots, \lambda_n^{\frac{1}{3}}) V^H$ 。 由 $A = B^3 = E^3$,有

$$Udiag(\lambda_1, \dots, \lambda_n)U^H = Vdiag(\lambda_1, \dots, \lambda_n)V^H$$
.

记 $P = U^H V = (p_{ij})$,则 $diag(\lambda_1, \dots, \lambda_n)P = Pdiag(\lambda_1, \dots, \lambda_n)$,从而

$$\lambda_i p_{ij} = \lambda_j p_{ij} \quad (i, j = 1, \dots, n)$$
,

于是

$$\lambda_i^{\frac{1}{3}} p_{ij} = \lambda_j^{\frac{1}{3}} p_{ij} \quad (i, j = 1, \dots, n)$$
,

即

$$diag(\lambda_1^{\frac{1}{3}},\dots,\lambda_n^{\frac{1}{3}})P = Pdiag(\lambda_1^{\frac{1}{3}},\dots,\lambda_n^{\frac{1}{3}}),$$

(2) 因为 $A \ge 0$,所以 A 的特征值均非负。设 A 的特征值为 $\lambda_1, \cdots, \lambda_n$,且 $\lambda_1 \ge \cdots \ge \lambda_n \ge 0$,

则 A^2 的特征值为 $\lambda^2, \dots, \lambda_n^2$, 于是

$$(tr(A))^2 = (\lambda_1 + \dots + \lambda_n)^2 \ge \lambda_1^2 + \dots + \lambda_n^2 = tr(A^2)$$
 • -----4

(3) 因为A > 0,则A可逆,并且 $A^{-1} > 0$ 。由 $I = AA^{-1}$,可得

二00九~二0一0 学年 第1学期

课程名称:矩阵论 A 卷

课程编号: A000003

参考答案及评分标准制定人:《矩阵论》课程组 考试日期: 2010年1月12日

一、(20分)

(1) 特征值多项式为 $f(\lambda) = |\lambda I - A| = (\lambda - 1)^3$

-----3 分

特征值为1(三重)

-----3 分

(2) 不变因子 1, $(\lambda - 1)$, $(\lambda - 1)^2$

-----3 分

初等因子 $(\lambda-1)$, $(\lambda-1)^2$

-----2 分

最小多项式 $m(\lambda) = (\lambda - 1)^2$

-----1 分

(3) Jordan 标准形 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

-----3 分

(4) $ext{th} P^{-1}AP = J$, AP = PJ, $ext{th} P = \begin{pmatrix} p_1 & p_2 & p_3 \end{pmatrix}$, $ext{th} \begin{cases} Ap_1 = p_1 \\ Ap_2 = p_2 \\ Ap_3 = p_2 + p_3 \end{cases}$

(I-A)x=0 可求无关解 $\xi=\begin{pmatrix} -1 & 1 & 0 \end{pmatrix}^T$, $\eta=\begin{pmatrix} 3 & 0 & 1 \end{pmatrix}^T$

取 $p_1=\xi$, $p_2=k_1\xi+k_2\eta$, k_1 , k_2 使 p_1 , p_2 无关且保证 $(I-A)p_3=-p_2$ 有解。

 $k_1 = k_2 \neq 0$ 满足,故可取 $k_1 = k_2 = 1$, $p_2 = \begin{pmatrix} 2 & 1 & 1 \end{pmatrix}^T$, $p_3 = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}^T$

则 $P = (p_1 \quad p_2 \quad p_3)$.

-----5 分

二、(20分)

(1) $||A||_1 = 3$; $||A||_2 = 3$; $||A||_{\infty} = 5$; $||A||_F = \sqrt{14}$

-----8分

(2) 证明:

容易验证: $\|A\|_* = n \cdot \max_{i,j} |a_{ij}|$ 满足矩阵范数三个条件: 非负性,正齐次性,三角不等式相容性:

$$||AB||_{*} = n \cdot \max_{i,j} |\sum_{k=1}^{n} a_{ik} b_{kj}| \le n \cdot \max_{i,j} \sum_{k=1}^{n} |a_{ik}| |b_{kj}| \le n \cdot \max_{i,j} |a_{ij}| \sum_{k=1}^{n} |b_{ij}|$$

$$\le n \cdot \max_{i,j} |a_{ij}| \cdot n \cdot \max_{i,j} |b_{ij}| = ||A||_{*} \cdot ||B||_{*}$$
------8

(3) 由条件知
$$A$$
可对角化,存在可逆矩阵 $\mathbf P$ 使得 $P^{-1}AP=\begin{pmatrix}\lambda_1&&&\\&0&&\\&&\lambda_n\end{pmatrix}$,其中 $\lambda_i\neq\lambda_j$ 。

又 AB=BA 则 $P^{-1}AP\cdot P^{-1}BP=P^{-1}BP\cdot P^{-1}AP$,由 $\lambda_i\neq\lambda_j$,故 $P^{-1}BP$ 为对角形,即 B 可对角化。

三. 解: (1)
$$\begin{cases} T(1+x+x^2) = 4+x^2 \\ T(x+x^2) = 3-x+2x^2 \end{cases} \Rightarrow \begin{cases} T(1) = 1+x-x^2 \\ T(x) = 3-x+x^2 \text{ 故} \end{cases}$$

$$T(1 \times x^2) = (1 \times x^2) \begin{pmatrix} 1 & 3 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix} \quad 故所求矩阵为 A = \begin{pmatrix} 1 & 3 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix} \qquad ------5 分$$

(2) $R(T) = span(T(1), T(x), T(x^2))$, 又因为 $T(1), T(x), T(x^2)$ 线性无关, 故

 $\dim(R(T)) = \dim span(T(1), T(x), T(x^2)) = 3$, 基为 $T(1), T(x), T(x^2)$;

$$\ker(T) = \{p(x) | T(p(x)) = 0\}$$
 设 $p(x) = a_0 + a_1 x + a_2 x^2$, 易求 $a_0 = a_1 = a_2 = 0$

$$\ker(T) = \{0\}$$
 $\dim(\ker(T)) = 0$ -----5 \Re

(3) **变换**
$$T$$
 在基 $1, x, x^2$ **下的矩阵** $A = \begin{pmatrix} 1 & 3 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$,则 A 的特征值及特征向量为

$$\lambda_1 = 1, \quad \eta_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \lambda_2 = 2, \quad \eta_2 = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}, \quad \lambda_3 = -2, \quad \eta_3 = \begin{pmatrix} 3 \\ -3 \\ 2 \end{pmatrix}$$

故变换T的特征值及特征向量,

$$\lambda_1 = 1$$
, $\xi_1 = x^2$, $\lambda_2 = 2$, $\xi_1 = 3 + x - 2x^2$, $\lambda_3 = -2$, $\xi_1 = 3 - 3x + 2x^2$ ------5 \Re

(4) 对1,x,x²进行标准正交化得:

$$\varepsilon_1 = \frac{1}{\sqrt{2}}, \varepsilon_2 = \frac{\sqrt{6}}{2}x \quad , \quad \varepsilon_3 = \frac{\sqrt{10}}{4} \left(3x^2 - 1\right)$$
 -----5 \$\frac{\frac{1}}{2}}

四.解(1)
$$A = \begin{pmatrix} 4 & 0 & -1 \\ 0 & 4 & t \\ -1 & t & 4 \end{pmatrix}$$
, $\Delta_1 = 4 > 0, \Delta_2 = 16 > 0$, $\Delta_3 = 60 - 4t^2 > 0$ 则

$$-\sqrt{15} < t < \sqrt{15}$$
 -----8 $\%$

(2) 由条件,存在酉阵
$$U$$
,使 $U^HAU=\begin{pmatrix} \lambda_1 & & \\ & 0 & \\ & & \lambda_n \end{pmatrix}$ 故

$$A \ge 0 \iff U^H A U = \begin{pmatrix} \lambda_1 & & \\ & 0 & \\ & & \lambda_n \end{pmatrix} \ge 0 \iff \lambda_i \ge 0 (i = 1 L \ n) \qquad -----6$$

(3)
$$A \ge 0$$
,存在酉阵 U ,使 $U^H A U = \begin{pmatrix} \lambda_1 & & \\ & 0 & \\ & & \lambda_n \end{pmatrix}$, $\lambda_i \ge 0 (i = 1 \text{L} \ n)$

$$A = U \begin{pmatrix} \lambda_1 & & \\ & 0 & \\ & & \lambda_n \end{pmatrix} U^H \text{, } A + I = U \begin{pmatrix} \lambda_1 + 1 & & \\ & 0 & \\ & & \lambda_n + 1 \end{pmatrix} U^H \text{,}$$

$$|A+I| = U\begin{pmatrix} \lambda_1 + 1 & & \\ & 0 & \\ & & \lambda_n + 1 \end{pmatrix} U^H = (\lambda_1 + 1)L (\lambda_n + 1) \ge 1$$

等号成立的充分必要条件为
$$\lambda_i = 0$$
 $(i = 1 L n)$ 即 $A = 0$

64

五、(20分)

(1) A的满秩分解为

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 0 & -2 & 0 \end{pmatrix}$$
 -----5 $\frac{1}{2}$

$$A^{+} = C^{T} \left(CC^{T} \right)^{-1} \left(B^{T} B \right)^{-1} B^{T} = \frac{1}{14} \begin{pmatrix} 2 & 4 & 1 \\ 1 & -5 & 4 \\ -2 & -4 & -1 \end{pmatrix}$$
 -----5 \$\frac{\frac{1}}{2}}

由 $AA^{\dagger}b=b$, 故方程组相容, 通解为

$$x = A^{+}b + (I - A^{+}A)y = \frac{1}{2} \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + \begin{pmatrix} 0.5 & 0 & 0.5\\0 & 0 & 0\\0.5 & 0 & 0.5 \end{pmatrix} y$$

其中 y 任意. ------5 分

(3) 矩阵方程 AXB = C 有解的充分必要条件是 $AA^{\dagger}CB^{\dagger}B = C$ 。

必要条件: 取 $X = A^{+}CB^{+}$ 满足AXB = C, 故有解;

充分条件: AXB = C有解,则 $C = AXB = AA^{+}AXBB^{+}B = AA^{+}CB^{+}B$ ------5分

2010~2011 学年第 1 学期 《矩阵论》 课程考试 A 卷 答案

考试日期: 2011年1月12日,课程编号: A000003,命题教师: 阅卷教师:

学院

专业

学号

姓名

成绩

-.

(1)
$$|\lambda I - A| = \lambda^2(\lambda - 4)$$
,所以, $\lambda_1 = \lambda_2 = 0, \lambda_3 = 4$; 4分

$$(\lambda - 2,3) = 1, D_1(\lambda) = 1,$$

$$\begin{vmatrix} \lambda - 2 & 3 \\ -4 & \lambda + 6 \end{vmatrix} = \lambda(\lambda + 4), \begin{vmatrix} -4 & \lambda + 6 \\ -6 & 7 \end{vmatrix} = 6\lambda + 8, 所以, D_2(\lambda) = 1,$$

$$D_3(\lambda) = \lambda^2(\lambda - 4),$$

8分

所以,不变因子为 $d_1(\lambda) = d_2(\lambda) = 1, d_3(\lambda) = \lambda^2(\lambda - 4);$ 10 分

所有初等因子为: λ^2 , $\lambda - 4$;

12分

A 的 Jordan 标准形为 $\begin{pmatrix} 0 & 1 \\ & 0 \\ & & 4 \end{pmatrix}$;

16 分

(2) 矩阵 A, B 特征值均为-1 和 2, 有两个互异的特征值,

所以 A, B 均相似于 $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$; 所以, A, B 相似

20 分

(1)
$$||A||_1 = 6$$
, $A^H A = \begin{pmatrix} 14 & 3 \\ 3 & 6 \end{pmatrix}$, $||A||_2 = \sqrt{15}$, $||A||_{\infty} = 4$, $||A||_F = 2\sqrt{5}$, 8

(2) 根据 Schur 定理,存在酉阵 U,使
$$U^HAU = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ & \lambda_2 & \cdots & \vdots \\ & & \ddots & * \\ & & & \lambda_n \end{pmatrix}$$

所以,
$$\sum_{i=1}^{n} |\lambda_i|^2 \le \|U^H A U\|_F^2 = \|A\|_F^2$$

14分

$$\leftarrow$$
A 为正规矩阵,即 $A^HA = AA^H$,则存在酉阵 U, $U^HAU = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{pmatrix}$,

所以,
$$\sum_{i=1}^{n} |\lambda_i|^2 = \|U^H A U\|_F^2 = \|A\|_F^2$$
, 17 分

- ⇒由(1)的证明知, "="成立时,有 A 酉相似于一对角阵,根据定理 4.5.2, A 为正规阵 20分
- 三. (1) 对任意 $X_1, X_2 \in W$, $k \in R$, 都有 $X_1 + X_2 \in W$, $kX_1 \in W$, 所以, $W \neq R^{2 \times 2}$ 的线性子空

间,设
$$X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \in W$$
,因为 $AX = XA$,所以, $X = \begin{pmatrix} x_{11} & 0 \\ x_{21} & x_{11} + x_{21} \end{pmatrix}$,

$$W$$
 的一组基为 $X_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, 维数是 2. 5 分

- (2) 对任意 $X_1, X_2 \in W$, $k \in R$, 都有 $T(X_1 + X_2) = T(X_1) + T(X_2)$, $T(kX_1) = kT(X_1)$, 所以, T 为线性变换 9 分
- (3) 对于W的一组基为 $X_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, 有:

$$T(X_1) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0X_1 + 0X_2$$
, $T(X_2) = \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} = -1X_1 + 2X_2$,

$$T(X_1, X_2) = (X_1, X_2) \begin{pmatrix} 0 & -1 \\ 0 & 2 \end{pmatrix}$$
, T 在(1)中所取基下的矩阵是 $A = \begin{pmatrix} 0 & -1 \\ 0 & 2 \end{pmatrix}$ 14 分

(4) 对于
$$W$$
的一组基为 $X_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$,

若
$$T(aX_1 + bX_2) = \begin{pmatrix} -b & 0 \\ 2b & b \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
,则有: $b = 0$,

所以,
$$Ker(T) = \{kI_2 : k \in R\}$$
, 维数为 1,

17分

$$R(T) = \{T(X) : X \in W\} = span\{T(X_1), T(X_2)\} = \{k \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} : k \in R\},$$

维数为 1. 20 分

四.

- (1) 对任意 $x \in R^n$,有: $x^T A^T A x = (Ax)^T A x \ge 0$,所以, $A^T A \ge 0$,2 分
- (2) $A^T A \ge 0$, 所以, $A^T A$ 的任意特征值 $\lambda \ge 0$, $I + A^T A$ 的任意特征值 $1 + \lambda \ge 1$,

所以, $|I+A^TA| \ge 1$

5分

A = 0 时, 显然, $|I + A^{T}A| = 1$,

 $|I+A^TA|$ =1时,根据上面证明, A^TA 的所有特征值都是 0,可得 $A^TA=0$,利用反证法,可得 A=0

- (3) 根据半正定矩阵的 Hadamard 不等式,可得 $|A^T A| \le \prod_{k=1}^n (\sum_{i=1}^m a_{ik}^2)$ 12 分
- (4) 因为 $A^T A \ge 0$,存在正交矩阵 U,使

 $A^TA = U^T diag(\lambda_1, \lambda_2, \cdots, \lambda_n)U = (U^T diag(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n})U)^2$, 其中 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ 是 A^TA 的特征值,取 $S = U^T diag(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n})U$ 即可 15 分

设 $A = S^2 = S_1^2$, 下面证明 $S = S_1$,

根据上面的证明,设 $S = U^T \Lambda U, S_1 = U_1^T \Lambda U_1$,

所以, $U^T \Lambda^2 U = U_1^T \Lambda^2 U_1$,即 $\Lambda^2 U U_1^T = U U_1^T \Lambda^2$,令 $P = U U_1^T = (p_{ij})_{n \times n}$

 $\lambda_i^{\ 2} p_{ij} = \lambda_j^2 p_{ij}$,则有 $\lambda_i p_{ij} = \lambda_j p_{ij}$,即 $\Lambda U U_1^T = U U_1^T \Lambda$,

所以 $U^T \Lambda U = U_1^T \Lambda U_1$,即 $S = S_1$

20分

五.

(1)
$$A^T A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
, A 的奇异值为 $\sqrt{2}$, $\sqrt{3}$, $A^T A$ 对应于特征值 3 和 2 的标准正交特征向量为

$$u_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad AA^T = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
对应于特征值 3 和 2,0 的标准正交特征向量分别为

$$v_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, v_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$
, 所以, A 的奇异值分解为:

$$A = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{T}$$

$$5 \%$$

$$A^{+} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{-1}{3} \end{pmatrix}$$

$$10 \, \%$$

 $AA^+b \neq b$, 所以 Ax = b 不相容,此方程组的极小最小二乘解为 $x = A^+b = \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}$ 15 分

A的全部特征值为 $\lambda_1=0.7,\lambda_2=-0.4$,所以, $\rho(A)<1$,

(2) 矩阵级数
$$\sum_{k=0}^{\infty} (-1)^k A^k$$
 收敛 17 分 $S_m = (I+A)^{-1} - (-1)^{m+1} A^{m+1} (I+A)^{-1}$

所以,
$$S = (I + A)^{-1}$$
 20 分

2011~2012 学年第 1 学期 《矩阵论》 课程考试 A 卷

考试日期: 2012年1月9日,课程编号: A000003,命题教师: 阅卷教师:

一(20分)

$$(1) |\lambda I - A| = \lambda^3,$$

3,

$$A$$
 的特征值 $\lambda_1 = 1, \lambda_2 = \lambda_3 = 0$;

3'

(2)
$$A$$
 的行列式因子1, λ , λ^3 ;

3'

$$A$$
的不变因子1, λ,λ^2 ;

3,

$$A$$
的初等因子 λ, λ^2 ;

2,

$$A$$
的最小多项式 λ^2 ;

1,

(3)
$$A$$
 的 Jordan 标准形 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 。

5'

二(20分)

(1)
$$||A||_1 = 6$$
,

2,

$$A^{H} A = \begin{pmatrix} 14 & 0 \\ 0 & 5 \end{pmatrix}, ||A||_{2} = \sqrt{14};$$

4'

$$||A||_{\infty}=3;$$

2'

$$||A||_F = \sqrt{19}$$
.

2'

(2)(i)
$$\|UAV\|_{F} = [tr((UAV)^{H}UAV)]^{\frac{1}{2}} = [tr(V^{H}A^{H}U^{H}UAV)]^{\frac{1}{2}}$$

$$= [tr(V^{H}A^{H}AV)]^{\frac{1}{2}} = [tr(V^{-1}A^{H}AV)]^{\frac{1}{2}} = [tr(A^{H}A)]^{\frac{1}{2}} = \|A\|_{F}.$$
5'

(ii) 因为rank(A) = r,则由奇异值分解定理知,存在m阶酉矩阵U和n阶酉矩阵V,使得

$$U^HAV = \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix}$$
,其中 $\Sigma = diag(\sigma_1, \sigma_2, \dots, \sigma_r)$,从而

$$\sum_{i=1}^{r} \sigma_i^2 = \left\| \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} \right\|_F^2 = \left\| U^H A V \right\|_F^2 = \left\| A \right\|_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2$$
 5'

三(20分)

$$(1) \quad A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix};$$

(2)
$$A^+ = C^T (CC^T)^{-1} (B^T B)^{-1} B^T$$

$$=\frac{1}{15} \begin{pmatrix} 5 & -4 & 1\\ 0 & 3 & 3\\ -5 & 7 & 2\\ 5 & -4 & 1 \end{pmatrix}$$
 6'

(3) 因为
$$AA^{+}b = \frac{1}{15} \begin{pmatrix} 50 \\ 5 \\ 55 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 10 \\ 1 \\ 11 \end{pmatrix} \neq b$$
,所以 $Ax = b$ 不相容。

$$Ax = b$$
 的极小最小二乘解为 $x = A^+b = \frac{1}{15} \begin{pmatrix} 19\\12\\-7\\19 \end{pmatrix}$ 。

四(20分)

(1) 因为 A 的顺序主子式 $\Delta_1=2>0, \Delta_2=5>0, \Delta_3=-8<0$,所以 A 不是正定的。

η,

因为
$$A$$
有一个主子式 $\Delta_3 = -8 < 0$ 或 $\begin{vmatrix} 3 & -3 \\ -3 & 2 \end{vmatrix} = -3 < 0$,所以 A 也不是半正定的。

η,

(2) 因为 A 是 n 阶 Hermite 正定矩阵,则存在可逆 Hermite 矩阵 S ,使得 $A = S^2$,从而 AB 相似

又因为 B 是 Hermite 矩阵,则 S^HBS 是 Hermite 矩阵。由 Hermite 矩阵的谱分解 S^HBS 相似于实对角矩阵,再由相似的传递性知, AB 相似于实对角矩阵。 3'

(3) 因为 A , B 均为 n 阶 Hermite 矩阵 , 并且 AB = BA , 则存在 n 阶酉矩阵 U , 使得

$$U^{H}AU = diag(\alpha_{1}, \dots, \alpha_{n}), U^{H}BU = diag(\beta_{1}, \dots, \beta_{n})$$
.

从而 $U^HABU=diag(lpha_1eta_1,\cdots,lpha_neta_n)$,即AB相似于对角矩阵 $diag(lpha_1eta_1,\cdots,lpha_neta_n)$ 。因此,如果

 λ 是 AB 的特征值,则存在 A 的特征值 α 和 B 的特征值 β ,使得 $\lambda = \alpha\beta$ 。

3'

3,

五(20分)

(1)
$$\dim(R[x]_3) = 3$$
,

2'

3'

$$R[x]_3$$
 的一组基为 $\alpha_1 = 1, \alpha_2 = x, \alpha_3 = x^2$ 。

(2) 因为

$$T(\alpha_1) = 1 - x^2 = \alpha_1 - \alpha_3$$

$$T(\alpha_2) = -1 + x = -\alpha_1 + \alpha_2$$

$$T(\alpha_3) = -x + x^2 = -\alpha_2 + \alpha_3$$

则
$$T$$
 在基 α_1 , α_2 , α_3 下的矩阵为 $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}$ 。 6'

(3)
$$R(T) = span(T(\alpha_1), T(\alpha_2), T(\alpha_3)) = span(\alpha_1 - \alpha_3, -\alpha_1 + \alpha_2)$$
,

$$\dim(R(T)) = 2,$$

$$Ker(T) = span(\alpha_1 + \alpha_2 + \alpha_3)$$
,

$$\dim(Ker(T)) = 1 \, . \tag{1}$$

(4) $R[x]_3$ 的一组标准正交基为

$$\varepsilon_1 = \frac{1}{\sqrt{2}}$$
; 1' $\varepsilon_2 = \frac{\sqrt{3}}{\sqrt{2}}x$; 2' $\varepsilon_3 = \frac{3\sqrt{5}}{2\sqrt{2}}(x^2 - \frac{1}{3})$. 2'

2012~2013 学年第 1 学期 《**矩阵论**》 课程考试 A 卷

考试日期: 2013 年 1 月 15 日 课程编号: A080001 命题教师: 阅卷教师:

学院

专业

学号

姓名

成绩

一、(20分)

(1)
$$V$$
的一组基为 $E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, 维数为 3.

.....(5 分)

(2) 直接验证内积定义的四个条件成立.(4分)

(3) 标准正交基
$$E_1' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $E_2' = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3' = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. ··········(5 分)

(4) 由于 $T(X) \in V$, 所以 $T \in V$ 的一个变换. 又直接验证, 知

$$T(X+Y) = T(X) + T(Y), T(kX) = kT(X),$$

因此T 是V 的一个线性变换.

(3 分)

线性变换
$$T$$
在基 $E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ 下的矩阵为

$$T = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}. \tag{3 \%}$$

二、(20 分) (1) A 的行列式因子为 $D_1(\lambda) = D_2(\lambda) = 1$, $D_1(\lambda) = (\lambda - 2)(\lambda - 1)^2$; ··· (3 分)

初等因子为 $\lambda-2$, $(\lambda-1)^2$; ······(2分)

Jordan 标准形为
$$J = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.(2 分)

 $a \neq 0$,相似, 理由是各阶行列式因子相同. ················(5分)

三、(20分)

(1) 矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
, A 的满秩分解为

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$
(5 $\%$)

(2)
$$A^{+} = \frac{1}{15} \begin{pmatrix} 5 & 1 & -4 \\ 5 & 1 & -4 \\ -5 & 2 & 7 \\ 0 & 3 & 3 \end{pmatrix}$$
 (10 $\%$)

(3) 方程组的极小最小二乘解为
$$x = \frac{1}{15} \begin{pmatrix} 2 \\ 2 \\ 4 \\ 6 \end{pmatrix}$$
.(5 分)

四、(20分)

(2) 因为 $\|A\|_2$ 是相容范数,且 $\|A\|_2 = \sqrt{6} < 3$,则 $\rho(A) < 3$ 在收敛半径内,因此级数收

(3)
$$\sum_{k=0}^{\infty} \frac{1}{3^k} A^k = \sum_{k=0}^{\infty} \left(\frac{A}{3}\right)^k = 3(3I - A)^{-1} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & -1 & 1 \end{bmatrix}.$$
 (5 $\frac{4}{3}$)

五、(20分)

(1) 由 $\sum_{j=1}^{n} |a_{ij}| < 1$ 可得, $\|A\|_{\infty} < 1$,由于 $\|A\|_{\infty}$ 是相容范数,则 $\rho(A) < 1$,I - A 的特征值都

不为零,因此*I-A*可逆.(6分)

(2) $A > 0 \Rightarrow A = S^2 = SS^H$, 这里 S 是可逆的 Hermite 矩阵, 从而 $AB = SS^HB$. 由于 SS^HB 与 S^HBS 有相同的特征值,且 $S^HBS > 0$,所以 AB 的特征值均为正数.

.....(8 分)

(3) $A \ge 0 \Rightarrow A = S^2 = S^H S$, $AB = S^H SB$, 这里 S 是 Hermite 矩阵. 由于 $S^H SB$ 与 SBS^H 有相 同 的 特 征 值 , 且 $SBS^H \ge 0$,所 以 AB 的 特 征 值 均 为 非 负 数 ,从 而 $tr(AB) = tr(SBS^H) \ge 0$ (4分)

当 tr(AB)=0 时,有 $tr(SBS^H)=0$,从而 $SBS^H=0$.设 $B=Q^2=QQ^H$,这里 Q 也是 Hermite 矩阵,则

$$SBS^{H} = SQQ^{H}S^{H} = (SQ)(SQ)^{H}$$
.

2013~2014 学年第 1 学期 《**矩阵论**》 课程考试 A 卷

考试日期: 2014 年 1 月 14 日 课程编号: A080001 命题教师: 阅卷教师:

学院

专业

学号

姓名

成绩

一、(20分)

1.特征多项式为 $f_A(\lambda) = (\lambda - 1)(\lambda + 1)^2$; (4分)

初等因子为 $\lambda-1$, $(\lambda+1)^2$. (6分)

2.
$$A$$
 的 Jordan 标准形为 $J = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 或 $J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$. (5 分)

3. 设
$$B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, 则 B 的初等因子为 $\lambda - 1$, $\lambda + 1$, $\lambda + 1$, 与 A 的初等因子不同, 所以

A与B不相似. (5分)

二、(20分)

1.
$$\sigma$$
在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为 $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. (6分)

2. 向量 ξ 在基 α_1 , α_2 , α_3 下的坐标为 $x = (10, 6, -9)^T$; 向量 $\sigma(\xi)$ 在基 α_1 , α_2 , α_3 下的坐标

为
$$y = Ax = (4, 0, -3)^T$$
. (6分)

3. 线性变换 σ 的值域为 $R(\sigma) = span\{\beta_1, \beta_2\}$, 核为 $ker(\sigma) = span\{-\alpha_1 - \alpha_2 + \alpha_3\}$ 或

$$\ker(\sigma) = span\{(0,1,0)^T\}$$
 或 $\ker(\sigma) = \{k(0,1,0)^T \mid k \in R\}$. (8 分)

三、(15分)

1.
$$A$$
的一种满秩分解为 $A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}^{\triangle} = BC$; (5 分, 注意: 满秩分解不唯一,

需要检验)

又因为
$$B^+ = \frac{1}{3} \begin{pmatrix} 1 & -2 & -1 \\ 1 & 1 & 2 \end{pmatrix}$$
, $C^+ = \frac{1}{6} \begin{pmatrix} 5 & 2 \\ 2 & 2 \\ -1 & 2 \end{pmatrix}$, 于是

$$A^{+} = C^{+}B^{+} = \frac{1}{18} \begin{pmatrix} 7 & -8 & -1 \\ 4 & -2 & 2 \\ 1 & 4 & 5 \end{pmatrix}$$
. (5分, 公式写对, 计算结果错误可酌情扣分)

2. 不相容. 方程组
$$Ax = b$$
 的极小最小二乘解为 $x = A^+b = \frac{1}{9} \begin{pmatrix} -23 \\ -16 \\ 7 \end{pmatrix}$. (5分)

四、(15分)

1.
$$||A||_1 = 3$$
, $||A||_{\infty} = 3$, $||A||_F = \sqrt{7}$. (6 分)

由于
$$A^{T}A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
, 所以 $A^{T}A$ 的特征值是1,3,3,从而 $||A||_{2} = \sqrt{3}$. (4分)

2. 已知幂级数 $\sum_{k=0}^{\infty} \frac{1}{2^k} x^k$ 的收敛半径为 2, 且 $\rho(A) \le \|A\|_2 < 2$, 则矩阵幂级数 $\sum_{k=0}^{\infty} \frac{1}{2^k} A^k$ 收

敛. 由公式
$$\sum_{k=0}^{\infty} B^k = (I - B)^{-1}$$
, 得到

$$\sum_{k=0}^{\infty} \frac{1}{2^k} A^k = (I - \frac{1}{2} A)^{-1} = 2 \begin{pmatrix} \frac{5}{3} & -\frac{1}{3} & 1\\ \frac{1}{3} & \frac{1}{3} & 0\\ 1 & 0 & 1 \end{pmatrix}. (5 \%)$$

五、(20分)

1. A>0 ⇒ 存在可逆矩阵 P_1 ,使得 $P_1^HAP_1=I$. 由于 $P_1^HBP_1$ 也是 Hermite 矩阵,所以

存在酉矩阵 P_2 ,使得

$$P_2^H(P_1^HBP_1)P_2 = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$
,

且 $\lambda_1, \lambda_2, \dots, \lambda_n$ 均为实数. 取 $P = P_1 P_2$, 即为要证的. (8分)

2. 显然,对任意实数t, tA+B也是 Hermite 矩阵. 对题 1 中的实对角矩阵,取正数 t_0 , 使得

$$t_0 + \lambda_1 \ge 0, t_0 + \lambda_2 \ge 0, \dots, t_0 + \lambda_n \ge 0,$$

则当 $t > t_0$ 时,有 $diag(t + \lambda_1, t + \lambda_2, \dots, t + \lambda_n) > 0$,即

$$P^{H}(tA+B)P = diag(t+\lambda_{1}, t+\lambda_{2}, \dots, t+\lambda_{n}) > 0$$
,

于是tA+B也是 Hermite 正定矩阵. (6分)

3. 根据题 1 的结论, 当 $A > B \ge 0$ 时, 有 $0 \le \lambda_i < 1$, $i = 1, 2, \dots, n$, 于是

$$|A - B| = \frac{1}{|\det P|^2} |P^H (A - B)P| = |A|(1 - \lambda_1)(1 - \lambda_2) \cdots (1 - \lambda_n) \le |A|. \quad (6 \ \%)$$

六、(10分)

1. 由于 $(A^{T}A)^{+} = A^{+}(A^{+})^{T}$, $AA^{+} = (AA^{+})^{T}$, 所以

$$(A^{T}A)(A^{T}A)^{+}(A^{T}b) = A^{T}AA^{+}(A^{+})^{T}A^{T}b = A^{T}(AA^{+})^{T}(AA^{+})^{T}b = A^{T}b$$

因此方程组 $A^T Ax = A^T b$ 相容. (5分)

2. 由于 $(AA^+)^T(AA^+) = (AA^+)^2 = AA^+$,且 $AA^+ \neq 0$,所以 $\lambda_{\max}[(AA^+)^T(AA^+)] = 1$,从而 $\|AA^+\|_2 = 1. (5 分)$

南京航空航天大学

研究生考试参考答案及评分标准

共4页 第1页

二00 七 ~二00 八 学年 第 一 学期 课程名称: 矩阵论

试卷类型 A 卷 课程编号: A000003

参考答案及评分标准制定人: 2008 年 1 月 12 日

一、(20分)

解: (1)
$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 2 \\ 2 & \lambda + 2 & -3 \\ 1 & 1 & \lambda - 1 \end{vmatrix} = \lambda^3$$
,

A 的特征多项式为 λ^3 , A 的特征值 $\lambda_1=\lambda_2=\lambda_3=0$ 6 分

- (2) A 的行列式因子: $1,1,\lambda^3$; A 的不变因子: $1,1,\lambda^3$; A 的初等因子: λ^3 ; 7 分
- (3) 因为 $A^2 \neq 0, A^3 = 0, A$ 的最小多项式 λ^3 ;

$$A^{6} + 3A - 2I = 3A - 2I = \begin{pmatrix} 1 & 3 & -6 \\ -6 & -8 & 9 \\ -3 & -3 & 1 \end{pmatrix} \dots 4$$

二、(20分)

解: (1) $R^{2\times 2}$ 的维数为 4,一组基 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$; 5 分

(2)
$$\forall A, B \in W, \forall k \in R, \emptyset$$
 $\therefore (A+B)^T = A^T + B^T = A+B, \therefore A+B \in W;$

 $\therefore (kA)^T = kA^T = kA$; $\therefore kA \in W$ 。对加法和数乘封闭,所以是 $R^{2\times 2}$ 的子空间。

(3)
$$C_1 = A_1$$
, $B_1 = \frac{C_1}{\|C_1\|} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$;

$$C_2 = A_2 - (A_2, B_1)B_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad B_2 = \frac{C_2}{\|C_2\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$$

$$C_3 = A_3 - (A_3, B_1)B_1 - (A_3, B_2)B_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad B_3 = \frac{C_3}{\|C_3\|} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

(4)
$$T$$
 在 (1) 中所取基下的矩阵为 $\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$; T 的核 $Ker(T)$: $\left\{ \begin{pmatrix} 0 & k \\ -k & 0 \end{pmatrix} \middle| k \in R \right\}$;

T 的值域 R(T): $span\{A_1, A_2, A_3\}$ =W. 5 分

三、(20分)

(2) 若
$$A \neq 0$$
, 则至少有一个 $a_{ij} \neq 0$, $||A||_* = n \cdot \max_{i} |a_{ij}| > 0$

若
$$A = 0$$
, 则 $a_{ij} = 0$ $\forall i, j$, $||A||_* = n \cdot \max_i |a_{ij}| = 0$

$$\forall k \in C, \quad ||kA||_{*} = n \cdot \max_{i,j} |ka_{ij}| = k \cdot n \cdot \max_{i,j} |a_{ij}| = k||A||_{*}$$

$$\forall A, B \in C^{n \times n}, \qquad ||A + B||_* = n \cdot \max_{i,j} |a_{ij} + b_{ij}| \qquad \leq n \cdot \max_{i,j} |a_{ij}| + n \cdot \max_{i,j} |b_{ij}|$$

 $= \|A\|_{*} + \|B\|_{*}$

所以 $\| \|_*$ 是 $C^{"\times "}$ 上的矩阵范数。

$$||AB||_{*} = n \cdot \max_{i,j} \left| \sum_{i,j} a_{ik} b_{kj} \right| \leq n \cdot \max_{i,j} \sqrt{\sum_{k} |a_{ik}|^{2} \sum_{k} |b_{kj}|^{2}}$$

$$\leq n \sqrt{n \cdot \max_{i,j} |a_{ij}|^2 n \cdot \max_{i,j} |b_{ij}|^2} \leq n \cdot \sqrt{n} \max_{i,j} |a_{ij}| \cdot \sqrt{n} \max_{i,j} |n_{ij}| = ||A||_* ||B||_*$$

(3)
$$||A||_{2}^{2} = \lambda_{\max}(A^{H}A) \le ||A||_{F}^{2} = \sum_{i=1}^{n} |a_{ij}|^{2} \le n^{2} \max_{i,j} |a_{ij}|^{2} = ||A||_{*}^{2}, \quad \therefore ||A||_{2} \le ||A||_{*}$$

不妨设
$$\max_{i,j} |a_{ij}| = |a_{i_0j_0}|$$
,则 $\frac{1}{n} ||A||_* = \max_{i,j} |a_{ij}| = |a_{i_0j_0}|$

记
$$x_0 = e_{i_0}, y_0 = e_{i_0}$$
,则 $\|x_0\|_2 = 1, \|y_0\|_2 = 1$,

综上可知:
$$\frac{1}{n} ||A||_* \le ||A||_2 \le ||A||_*$$
 4 分

四、(20分)

$$(3) : AA^{\dagger}b = \begin{pmatrix} 2 \\ 1 \\ 1.5 \\ 1.5 \end{pmatrix} \qquad \therefore AA^{\dagger}b \neq b \quad 该方程组不相容。$$

五、(20分)

$$(1) A-B = \begin{pmatrix} 5 & 2 & 0 \\ 2 & 1 & 0.5t \\ 0 & 0.5t & 1 \end{pmatrix},$$

$$\Delta_1 = 5 > 0, \Delta_2 = 1 > 0$$
, $\Delta_3 = |A - B| = 1 - \frac{5}{4}t^2 > 0$ 时 $A > B$ 成立

即
$$-\frac{2}{\sqrt{5}} < t < \frac{2}{\sqrt{5}}$$
 时 $A > B$ 成立。 10 分

(2)
$$: A = \begin{pmatrix} A_{11} & A_{12} \\ A_{12}^H & A_{22} \end{pmatrix} > 0$$
, A_{11} 为 A 的前 k 阶顺序主子式, $: A_{11} > 0$.

存在可逆矩阵
$$P = \begin{pmatrix} I_k & 0 \\ -A_{12}^H A_{11}^{-1} & I_{n-k} \end{pmatrix}$$
,使得 $PAP^H = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} - A_{12}^H A_{11}^{-1} A_{12} \end{pmatrix} = B$,

$$\therefore A > 0 \quad \therefore B > 0, \therefore A_{12} - A_{12}^H A_{11}^{-1} A_{12} > 0.$$
 6 分

(3)设 λ 是矩阵 A 的任一特征值,相应的特征向量为 $x=\left(x_1,\cdots,x_n\right)^T$,令 $\left|x_{i_0}\right|=\max_i \left|x_i\right|$,

则
$$\left|x_{i_0}\right| > 0$$
,由 $Ax = \lambda x$,有 $(\lambda - a_{i_0 i_0})x_{i_0} = \sum_{j=1, j \neq i_0}^n a_{i_0 j} x_j$,

从而
$$\left|\lambda - a_{i_0 i_0}\right| \le \sum_{j \ne i_0} \left|a_{i_0 j}\right| \frac{\left|x_j\right|}{\left|x_{i_0}\right|} \le \sum_{j \ne i_0} \left|a_{i_0 j}\right|$$

又因为
$$a_{ii} > \sum_{i \neq i} \left| a_{ij} \right| \quad (i = 1, 2, \dots, n)$$
,所以 $\lambda > 0$,

南京航空航天大学矩阵论试卷

南京航空航天大学

研究生考试参考答案及评分标准

共3页 第1页

二00 七 ~二00 八 学年 第 一 学期 课程名称: 矩阵论

试卷类型 B 卷 课程编号: A000003

参考答案及评分标准制定人: 2008 年 1 月 18 日

一、(20分)

解: (1) A 的不变因子: $1,1,(\lambda+1)(\lambda-2)(\lambda+4)$; A 的初等因子: $(\lambda+1),(\lambda-2),(\lambda+4)$; A 的最小多项式 $(\lambda+1)(\lambda-2)(\lambda+4)$ 。

(2)
$$A$$
 的 Jordan 标准形 $J=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$,相应的可逆变换矩阵为 $P=\begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0 \\ \frac{1}{9} & \frac{1}{9} & -\frac{2}{9} \\ \frac{4}{9} & -\frac{2}{9} & -\frac{2}{9} \end{pmatrix}$ 。

(3) $:: \rho(A) = 4 > 1$,故矩阵序列 $\left\{A^{k}\right\}$ 发散。

二、(20分)

$$\mathbf{M}$$
: (1) $\|A\|_{1} = 5$; $\|A\|_{\infty} = 5$; $\|A\|_{F} = \sqrt{23}$;

$$\therefore \lambda(A^T A) = \{3, 5, 15\}, \quad \therefore \|A\|_2 = [\lambda_{\max}(A^T A)]^{\frac{1}{2}} = \sqrt{15}.$$

(2) 设 $x \in C''$ 是 A 相应于特征值 λ 的特征向量, $\therefore Ax = \lambda x, x \neq 0$,

两边取矩阵范数导出的 C'' 上向量范数可得: $|\lambda|||x|| = ||\lambda x|| = ||Ax|| \le ||A||||x||$, $\therefore ||x|| \ne 0, \therefore |\lambda| \le ||A||$;

又:A可逆,: $\frac{1}{\lambda}$ 是 A^{-1} 的特征值,由上述证明可知: $\left|\frac{1}{\lambda}\right| \le \left\|A^{-1}\right\|$;

综上所述有: $||A^{-1}||^{-1} \le |\lambda| \le ||A||$ 。

三、(20分)

解: (1) 可取 $1, x, x^2$ 为R[x], 的一组基,则线性变换T 在该基下的表示矩阵为

$$A = \begin{pmatrix} 4 & 1 & 1 \\ 3 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix};$$

(2) 线性变换 T 的特征值为 5, 1, 3;

在(1)所取基下相应的特征向量分别为 $\eta_1 = 1 + x, \eta_2 = 1 - 3x, \eta_3 = -3 - x + 4x^2;$

(3) :: T 具有 3 个互异特征值,:: T 可对角化,其对角化的一组基为 η_1, η_2, η_3 。

四. (1)
$$A$$
 的满秩分解为: $A = BC = \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & 0 & -3 & 3 \end{pmatrix}$;

$$\therefore A^{+} = C^{T} (CC^{T})^{-1} (B^{T}B)^{-1} B^{T} = \frac{1}{33} \begin{pmatrix} 2 & 1 & -1 \\ 4 & 2 & -2 \\ 1 & -5 & -6 \\ 1 & 6 & 5 \end{pmatrix};$$

(2) 易证
$$AA^+b = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \neq b$$
 ,该方程组不相容,其极小最小二乘解为: $x = A^+b = \frac{1}{33} \begin{pmatrix} 6 \\ 12 \\ -8 \\ 14 \end{pmatrix}$.

五. (1)
$$A-B=\begin{pmatrix} 5 & 2 & 0 \\ 2 & 1 & 0.5t \\ 0 & 0.5t & 1 \end{pmatrix}>0$$
 当且仅当各阶顺序主子式均为正:

$$\Delta_1 = 5 > 0, \Delta_2 = 1 > 0, \quad \Delta_3 = |A - B| = 1 - \frac{5}{4}t^2 > 0$$

即
$$-\frac{2}{\sqrt{5}} < t < \frac{2}{\sqrt{5}}$$
 时 $A > B$ 成立。

(2) : A 是 Hermite 矩阵, : 存在酉矩阵 U ,使得 $U^H A U = diag\{\lambda_1, \lambda_2, \dots, \lambda_n\}$,

由此可知: $\lambda_{\min}(A)I \leq A \leq \lambda_{\max}(A)I$,

∴
$$\forall x \in C^n, x \neq 0$$
, $\forall x \in C^n, x \neq 0$, $\forall x \in C^n, x \in C^n, x \neq 0$, $\forall x \in C^n, x \in C^n, x \neq 0$, $\forall x \in C^n, x \in C^n, x \neq 0$, $\forall x \in C^n, x \in C^n, x \neq 0$, $\forall x \in C^n, x \in C^n$

(3)
$$: A_{11} > 0, : A_{11}^{-1}$$
存在,构造可逆矩阵 $P = \begin{pmatrix} I_k & 0 \\ -A_{12}^H A_{11}^{-1} & I_{n-k} \end{pmatrix}$

使得
$$PAP^{H} = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} - A_{12}^{H} A_{11}^{-1} A_{12} \end{pmatrix} = B$$
,

$$\therefore A_{11} > 0, A_{22} - A_{12}^H A_{11}^{-1} A_{12} > 0, \therefore B > 0$$
, 从而有 $A > 0$ 。

南京航空航天大学

研究生考试试卷

共 5 页 第 1 页

》课程

二00 七 ~二00 八 学年 第一学期《 矩 阵 论

考试日期: 2008年1月16日 试卷类型 A 课程编号: A000003

学院 学号 姓名 成绩

$$- , (20 分) 设矩阵 $A = \begin{pmatrix} 1 & 1 & -2 \\ -2 & -2 & 3 \\ -1 & -1 & 1 \end{pmatrix},$$$

- (2) 求 A 的行列式因子、不变因子和初等因子;
- (3) 求 A 的最小多项式,并计算 $A^6 + 3A 2I$;
- (4) 写出 A 的 Jordan 标准形。

二、 $(20 \, f)$ 设 $R^{2\times 2}$ 是实数域 R 上全体 2×2 实矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。

- (1) 求 $R^{2\times2}$ 的维数,并写出其一组基:
- (2) 设W 是全体 2×2 实对称矩阵的集合,证明: W 是 $R^{2\times2}$ 的子空间,并写出 W 的维数和一组基:
- (3) 在W 中定义内积(A,B) = tr(BA), 其中 $A,B \in W$, 求出W 的一组标准正交基;
- (4) 给出 $R^{2\times 2}$ 上的线性变换 $T: T(A) = A + A^T, \forall A \in R^{2\times 2}$

写出线性变换 T 在 (1) 中所取基下的矩阵, 并求 T 的核 Ker(T) 和值域 R(T) 。

三、(20分)

(1)
$$abla A = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 2 & 1 \end{pmatrix}, \quad ||A||_1, \quad ||A||_2, \quad ||A||_{\infty}, \quad ||A||_F;$$

(2) 设
$$A = (a_{ij}) \in C^{n \times n}$$
,令 $\|A\|_* = n \cdot \max_{i,j} |a_{ij}|$,

证明: $\| \cdot \|_*$ 是 $C^{n \times n}$ 上的矩阵范数并说明具有相容性;

(3) 证明:
$$\frac{1}{n} \|A\|_{*} \leq \|A\|_{2} \leq \|A\|_{*}$$
.

四、
$$(20\, \mathcal{G})$$
 已知矩阵 $A=egin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$,向量 $b=egin{pmatrix} 2 \\ 1 \\ 1 \\ 2 \end{pmatrix}$,

- (1) 求矩阵 A 的 QR 分解;
- (2) 计算 A⁺;
- (3)用广义逆判断方程组 Ax = b 是否相容? 若相容,求其通解:若不相容,求其极小最小二乘解。

五、(20分)

(1) 设矩阵
$$A = \begin{pmatrix} 5 & 3 & 2 \\ 3 & 2 & t \\ 2 & t & 2 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 0.5t \\ 2 & 0.5t & 1 \end{pmatrix}$$
, 其中 t 为实数,

问当t满足什么条件时, A > B 成立?

(2) 设
$$n$$
 阶 Hermite 矩阵 $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{12}^H & A_{22} \end{pmatrix} > 0$,其中 $A_{11} \in C^{k \times k}$,

证明:
$$A_{11} > 0$$
, $A_{22} - A_{12}^H A_{11}^{-1} A_{12} > 0$.

(3) 已知 Hermite 矩阵
$$A=\left(a_{ij}\right)\in C^{n\times n}$$
 , $a_{ii}>\sum_{i\neq i}\left|a_{ij}\right|$ $\left(i=1,2,\cdots,n\right)$, 证明 : A 正定

南京航空航天大学

研究生考试试卷

共 5 页 第 1 页

 二00 七 ~二00 八 学年 第一学期《 矩 阵 论 》课程

 考试日期: 2008 年 月 日 试卷类型 B 课程编号: A000003

 学院 学号 姓名 成绩

$$-. (20 分) 已知矩阵 $A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & -4 & 0 \\ 0 & -4 & 0 \end{pmatrix},$$$

- (1) 求 A 的不变因子、初等因子及最小多项式;
- (2) 求 A 的 Jordan 标准形 J 及可逆变换矩阵 P ,使得 $P^{-1}AP = J$;

(3) 问矩阵序列
$$\left\{A^{k}\right\}$$
是否收敛? $A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & -4 & 0 \\ 0 & -4 & 0 \end{pmatrix}$.

二. (20分)

(1) 已知矩阵
$$A = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 2 & 3 \\ 1 & 2 & 0 \end{pmatrix}$$
, 求 $\|A\|_1$, $\|A\|_2$, $\|A\|_\infty$, $\|A\|_F$;

(2) 设A 为n阶可逆矩阵, $\lVert \cdot
Vert$ 是 $C^{\prime\prime\prime\prime\prime\prime}$ 上的相容范数, λ 为A的任一特征值,

证明:
$$||A^{-1}||^{-1} \le |\lambda| \le ||A||$$
 。

三. $(20 \, \text{分}) \, R[x]_3$ 表示实数域上次数不小于 3 的多项式与零多项式构成的线性空间,

对 $\forall f(x) \in R[x]_3$, 记 $f(x) = ax^2 + bx + c$,其中 $a,b,c \in R$, 在 $R[x]_3$ 上定义线性变换:

 $T[f(x)] = 3ax^2 + (2a + 2b + 3c)x + (a + b + 4c).$

- (1) 给出 $R[x]_3$ 的一组基,并求出线性变换 T 在该基下的表示矩阵;
- (2) 求线性变换T 的特征值和特征向量:
- (3) 判断线性变换 T 是否可对角化?若可以,给出对角化的一组基:若否,证明之。

四. (20分)

(1) 设
$$A = \begin{pmatrix} 2 & 4 & 1 & 1 \\ 1 & 2 & -1 & 2 \\ -1 & -2 & -2 & 1 \end{pmatrix}$$
, 试给出 A 的满秩分解,并计算 A^{+} ;

(2) 设
$$b = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix}$$
, 利用广义逆矩阵判断线性方程组 $Ax = b$ 是否相容?若相容,求其通解;

若不相容,求其极小最小二乘解。

五. (20分)

(1)
$$abla A = \begin{pmatrix} 5 & 3 & 2 \\ 3 & 2 & t \\ 2 & t & 2 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 0.5t \\ 2 & 0.5t & 1 \end{pmatrix},
abla + t \text{ Exx},$$

问t满足什么条件时,A > B成立?

(2) 设A 为n 阶 Hermite 矩阵,对任意 $x \in C^n, x \neq 0$,记 $R(x) = \frac{x^H A x}{x^H x}$,

证明: $\lambda_{\min}(A) \le R(x) \le \lambda_{\max}(A), x \ne 0$ 。

(3) 设 n 阶 Hermite 矩阵 $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{12}^H & A_{22} \end{pmatrix}$,其中 $A_{11} \in C^{k \times k} (1 \le k < n)$,

如果 $A_{11} > 0$, $A_{22} - A_{12}^H A_{11}^{-1} A_{12} > 0$, 证明: A > 0.

南京航空航天大学

研究生考试参考答案及评分标准

共4页 第1页

二 00 八 ~二 00 九 学年 第 1 学期	
课程名称:矩阵论 A 卷	课程编号: A000003
参考答案及评分标准制定人:《矩阵论》课程组	考试日期: 2009年1月13日
一、(20分)	
(1) 特征值多项式为 $f(\lambda) = \lambda I - A = \lambda(\lambda + 1)^2$	3
特征值为 0, 一1 (二重)	3
(2) 不变因子1,1, $\lambda(\lambda+1)^2$	6
初等因子 λ , $(\lambda+1)^2$	2
最小多项式 $m(\lambda) = \lambda(\lambda+1)^2$	2
(3) Jordan 标准形 $\begin{bmatrix} -1 & 1 \\ & -1 \\ & 0 \end{bmatrix}$	4
二、(20分)	
(1) $ A _1 = 3$; $ A _2 = \sqrt{3}$; $ A _{\infty} = 2$; $ A _F = \sqrt{5}$	2' *4 = 8
(2) 证明:	
(i) 因为 A 可逆,则 A 的特征值均非零。设 λ 是 A 的任一特征值, x 是相应的特征向量,	
则	
$Ax = \lambda x, A^{-1}x = \lambda^{-1}x$	
因为 $\ .\ $ 是 $C^{n\times n}$ 上的相容矩阵范数,则存在与 $\ .\ $ 相容的向量范数 $\ .\ _a$,从而	
$\ \lambda\ \ x\ _{a} = \ \lambda x\ _{a} = \ Ax\ _{a} \le \ A\ \ x\ _{a}$	$\ x\ _{u} \le \ A^{-1}\ \ x\ _{u} \le \ A^{-1}\ \ x\ _{u}$
因为 $\ x\ _a > 0$,则 $\ A^{-1}\ ^{-1} \le \lambda \le \ A\ $ 。	6
(ii) 容易验证: $\ A\ _{P} = \ P^{-1}AP\ $ 满足相容矩阵范蠡	数的四个条件。6

三、(20分)

(1) A的满秩分解为

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A^{+} = C^{T} (CC^{T})^{-1} (B^{T}B)^{-1} B^{T} = \begin{bmatrix} -\frac{1}{4} & 0 & \frac{1}{4} \\ 0 & 1 & 0 \\ \frac{1}{4} & 0 & -\frac{1}{4} \end{bmatrix}$$
-----5

(2) 因为
$$AA^{+}b = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \neq b$$
; 所以不相容的。 ------3

其极小最小二乘通解为
$$x = A^+b = \begin{pmatrix} \frac{1}{4} \\ 2 \\ -\frac{1}{4} \end{pmatrix}$$
 ------3

(3) 因为x是不相容线性方程组 Ax = b 的最小二乘解当且仅x是如下相容线性方程组 $A^{T}Ax = A^{T}b$

的解,所以不相容线性方程组 Ax = b 的最小二乘解唯一当且仅当 A^TA 非奇异,即 $rank(A^TA) = n$ 。因为 $rank(A^TA) = rank(A)$,所以不相容线性方程组 Ax = b 的最小二乘解唯一当且仅当 A 列满秩。 --------4

四、(20分)

 $(1) \dim(V)=3,$

V 的一组基为
$$\varepsilon_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \varepsilon_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \varepsilon_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 -----3

(2) 因为

$$T(\varepsilon_1) = \varepsilon_1 + \varepsilon_2, T(\varepsilon_2) = 2\varepsilon_2, T(\varepsilon_3) = -\varepsilon_2 + \varepsilon_3$$

则线性变换T在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵为

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
 -----5

- (3) 因为T在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵 A 非奇异, $Ker(T) = N(T) = \{0\}, \dim(N(T)) = 0$ 。---2 $R(T) = span(T(\varepsilon_1), T(\varepsilon_2), T(\varepsilon_3)) = span(\varepsilon_1 + \varepsilon_2, 2\varepsilon_2, -\varepsilon_2 + \varepsilon_3) = V$,则 $\dim(R(T)) = 3$ 。 ----3
- (4) 因为矩阵 A 的初等因子为 $\lambda-2$, $\lambda-1$, $\lambda-1$, 所以矩阵 A 可对角化。因为线性变换在不同使得(2)中线性变换T 在所取基下的矩阵为对角矩阵。

因为矩阵 A 对应于特征值 $\lambda_1=1,\lambda_2=2,\lambda_3=1$ 的特征向量为 $\begin{pmatrix} 1\\-1\\0 \end{pmatrix}$

$$\alpha_1 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad , \qquad T \qquad 在 \qquad 基 \qquad \alpha_1, \alpha_2, \alpha_3 \qquad \ \, \mathbb{F} \qquad \ \, \mathrm{in}$$

-----5

五、(20分)

(1) 因为 A 为 n 阶 Hermite 矩阵,则存在 n 阶酉矩阵 U,使得

$$A = U\Lambda U^H$$
,

其中 $\Lambda = diag(\lambda_1, \dots, \lambda_n)$,并且 $\lambda_1 \ge \dots \ge \lambda_n$ 。 令

$$B = Udiag(\lambda_1^{\frac{1}{3}}, \dots, \lambda_n^{\frac{1}{3}})U^H,$$

则 B 是 n 阶 Hermite 矩阵,并且 $A = B^3$ 。

-----8

设有另一个 n 阶 Hermite 矩阵 E, 使得 $A = E^3$,则 E 有谱分解

$$E = V diag(\mu_1, \dots, \mu_n)V^H$$

其中 $\mu_1 \ge \dots \ge \mu_n$ 。 因为 $A = E^3$,则 $\mu_i^3 = \lambda_i (i = 1, \dots, n)$, $E = V diag(\lambda_1^{\frac{1}{3}}, \dots, \lambda_n^{\frac{1}{3}}) V^H$ 。 由 $A = B^3 = E^3$,有

$$Udiag(\lambda_1, \dots, \lambda_n)U^H = Vdiag(\lambda_1, \dots, \lambda_n)V^H$$
.

记 $P = U^H V = (p_{ii})$,则 $diag(\lambda_1, \dots, \lambda_n)P = Pdiag(\lambda_1, \dots, \lambda_n)$,从而

$$\lambda_i p_{ii} = \lambda_i p_{ii} \quad (i, j = 1, \dots, n)$$
,

于是

$$\lambda_i^{\frac{1}{3}} p_{ij} = \lambda_j^{\frac{1}{3}} p_{ij} \quad (i, j = 1, \dots, n) ,$$

即

$$diag(\lambda_1^{\frac{1}{3}}, \dots, \lambda_n^{\frac{1}{3}})P = Pdiag(\lambda_1^{\frac{1}{3}}, \dots, \lambda_n^{\frac{1}{3}})$$

因此
$$B = Udiag(\lambda_1^{\frac{1}{3}}, \dots, \lambda_n^{\frac{1}{3}})U^H = Vdiag(\lambda_1^{\frac{1}{3}}, \dots, \lambda_n^{\frac{1}{3}})V^H = E$$
 。 ------4

(2) 因为 $A \ge 0$,所以 A 的特征值均非负。设 A 的特征值为 $\lambda_1, \dots, \lambda_n$,且 $\lambda_1 \ge \dots \ge \lambda_n \ge 0$,则 A^2 的特征值为 $\lambda_1^2, \dots, \lambda_n^2$,于是

$$(tr(A))^2 = (\lambda_1 + \dots + \lambda_n)^2 \ge \lambda_1^2 + \dots + \lambda_n^2 = tr(A^2)$$
 • -----4

(3) 因为A > 0,则A可逆,并且 $A^{-1} > 0$ 。由 $I = AA^{-1}$,可得

$$n = tr(I) = tr(AA^{-1}) = tr(A^{H}A^{-1}) \le \left[tr(A^{H}A)tr(A^{-H}A^{-1})\right]^{\frac{1}{2}} = \left[tr(A^{2})tr(A^{-2})\right]^{\frac{1}{2}}$$

由 (2) 知
$$\sqrt{tr(A^2)} \le tr(A), \sqrt{tr(A^{-2})} \le tr(A^{-1})$$
,因此 $n \le tr(A)tr(A^{-1})$ 。 ------4

南京航空航天大学

研究生考试试卷

共5页 第1页

二00 八 ~二00 九 学年 第1 学期 《矩阵论》课程 A卷

考试日期: 2009年1月13日 课程编号: A000003

学院

学号

姓名

成绩

$$(20 分) 设 A = \begin{pmatrix} 8 & -1 & 6 \\ 3 & 0 & 3 \\ -14 & 2 & -10 \end{pmatrix},$$

- (1) 求 A 的特征多项式和 A 的全部特征值;
- (2) 求 A 的不变因子、初等因子和最小多项式;
- (3) 写出 A 的 Jordan 标准形。

二 (20分) (1) 设
$$A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
, 求 $\|A\|_1, \|A\|_2, \|A\|_\infty, \|A\|_F$;

- (2) 设 $\|\cdot\|$ 是 $C^{"*"}$ 上的相容矩阵范数,证明:
 - (i) 如果 A 是 n 阶可逆矩阵, λ 是 A 的任一特征值,则 $\|A^{-1}\|^{-1} \le |\lambda| \le \|A\|$;
 - (ii) 如果 $P \in C^{n \times n}$ 是可逆矩阵,令 $\|A\|_p = \|P^{-1}AP\|$,则 $\|A\|_p$ 是 $C^{n \times n}$ 上的相容矩阵范数。

$$\Xi$$
 (20分) 设 $A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$,

- (1) 作出 A 的满秩分解, 计算 A^{+} ;
- (2) 应用广义逆矩阵判定线性方程组 Ax = b 是否相容。若相容,求其通解;若不相容,求其极小最小二乘解;
- (3) 设 $A \not\in m \times n$ 实矩阵, $b \not\in m$ 维实向量,证明:不相容线性方程组Ax = b 的最小二乘解唯一当且仅当A列满秩。

四 $(20 \, f)$ 设V表示实数域R上全体 2×2 上三角矩阵作成的线性空间(对矩阵的加 法和数量乘法)。

- (1) 求V的维数,并写出V的一组基;
- (2) 在V中定义线性变换T: $T(X) = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} X + X \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, $X \in V$ 求T在(1)中所取基下的矩阵表示:
- (3) 求(2) 中线性变换T的值域R(T)和核N(T),并确定它们的维数;
- (4) 在V中能否取一组基使得(2)中线性变换T在所取基下的矩阵为对角矩阵?如果能,则取一组基:如果不能,则说明理由。

五(20 分)设 $A = (a_{ij})$ 为 n 阶 Hermite 矩阵,证明:

- (1) 存在唯一 Hermite 矩阵 B 使得 $A = B^3$;
- (2) $\text{ up } A \ge 0$, $\text{ up } tr(A^2) \le (tr(A))^2$;
- (3) 如果 A > 0,则 $tr(A)tr(A^{-1}) \ge n$ 。

南京航空航天大学 2009 级硕士研究生

共5页 第1页

2009~2010 学年第 1 学期 《矩阵论》 课程考试 A 卷

考试日期: 2010年1月12日 课程编号: A000003 命题教师: 阅卷教师:

学院 专业 学号 姓名 成绩

一、(**20** 分) 设
$$A = \begin{pmatrix} -1 & -2 & 6 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{pmatrix}$$
,

- (1) 求A的特征多项式和A的全部特征值;
- (2) 求 A 的不变因子、初等因子和最小多项式;
- (3) 写出 A 的 Jordan 标准形 J。
- (4) 求可逆矩阵 **P**, 使 **P**¹**AP**=**J**。

二 (20 分) (1) 设 $A = \begin{pmatrix} 1 & -2 & 2 \\ 2 & 0 & -1 \end{pmatrix}$, 求 $||A||_1$, $||A||_2$, $||A||_{\infty}$, $||A||_{F}$;

- (2) 设 $A = (a_{ij}) \in C^{n \times n}$,令 $\|A\|_* = n \cdot \max_{i,j} |a_{ij}|$,证明: $\|\bullet\|_*$ 是 $C^{n \times n}$ 上的矩阵范数,并且是相容范数;
- (3) 设A,B均为n阶矩阵,并且AB=BA,证明:如果A有n个互异的特征值,则B相似于对角阵。

- 共 5 页 第 3 页 三 $(20\,\%)$ 设 R[x]。表示实数域 R 上次数小于 3 的多项式再添上与零多项式构成的线 性空间(按通常多项式的加法和数与多项式的乘法)。
 - (1) 在 R[x], 中定义线性变换 T:

$$\begin{cases} T(1+x+x^2) = 4+x^2 \\ T(x+x^2) = 3-x+2x^2 \\ T(x^2) = x^2 \end{cases}$$

求变换 T 在基 1,x,x2下的矩阵;

- (2) 求 T 的值域 R(T)和 Ker(T)的维数和基;
- (3) 在R[x],中定义内积

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx$$
, $f(x),g(x) \in R[x]_3$

求出R[x],的一组标准正交基。

四(20 分)(1)设 $A = \begin{pmatrix} 4 & 0 & -1 \\ 0 & 4 & t \\ -1 & t & 4 \end{pmatrix}$,其中 t 为实参数,问 t 取何值时 A 正定;

- (2) 设A 是n 阶 **Hermite** 矩阵,证明: A 半正定的充分必要条件是A 的特征值均为非负实数。
- (3) 已知 n 阶矩阵 $A \ge 0$,证明: $\left|A + I\right| \ge 1$,并且等号成立的充分必要条件为 A = 0。

五 (20 分) (1) 设
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 1 & 2 & -1 \end{pmatrix}$$
, $b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,

- (i) 作出 A 的满秩分解,并计算 A^+ ;
- (ii) 用广义逆矩阵判定线性方程组 Ax = b 是否相容。若相容,求其通解;若不相容,求其极小最小二乘解;
- (2) 设 A,B,C 分别为 $m \times n$, $p \times q$, $m \times q$ 矩阵,则矩阵方程 AXB = C 有解的充分 必要条件时 $AA^+CB^+B = C$ 。

南京航空航天大学 2010 级硕士研究生

共5页 第1页

2010~2011 学年第 1 学期 《矩阵论》 课程考试 A 卷

考试日期: 2011 年 1 月 12 日,课程编号: A000003,命题教师: 阅卷教师:

学院

专业

学号

姓名

成绩

$$(20 分) (1) 设 A = \begin{pmatrix} 2 & -3 & 4 \\ 4 & -6 & 8 \\ 6 & -7 & 8 \end{pmatrix}.$$

- (i) 求 A 的特征多项式和 A 的全部特征值;
- (ii) 求A的行列式因子,不变因子和初等因子;
- (iii) 写出 A 的 Jordan 标准形;

(2)设
$$A = \begin{pmatrix} 17 & -6 \\ 45 & -16 \end{pmatrix}$$
, $B = \begin{pmatrix} 14 & -60 \\ 3 & -13 \end{pmatrix}$, 试问 A 和 B 是否相似? 并说明原因。

二 (20 分) (1) 设
$$A = \begin{pmatrix} 2 & -1 \\ 1 & 2 \\ 3 & 1 \end{pmatrix}$$
, 求 $||A||_1$, $||A||_2$, $||A||_\infty$, $||A||_F$;

(2) 设 $A \in C^{n \times n}$ 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,求证:

(i)
$$\sum_{i=1}^{n} |\lambda_i|^2 \le ||A||_F^2$$
;

(ii) $\sum_{i=1}^{n} \left| \lambda_i \right|^2 = \left\| A \right\|_F^2$ 的充要条件是 A 为正规矩阵。

三 (20 分) 设
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$$
, $W = \left\{ X \middle| AX = XA, X \in \mathbb{R}^{2 \times 2} \right\}$

- (1) 证明: $W \in \mathbb{R}^{2\times 2}$ 的线性子空间,并求W 的基和维数;
- (2) 在W 中定义变换T: $T(X) = X X^*$, 其中 X^* 为X 的伴随矩阵, 证明: T 为线性变换;
- (3) 求 T 在 (1) 中所取基下的矩阵表示;
- (4) 求(2) 中线性变换T 的值域R(T) 和核Ker(T),并确定它们的维数.

四 (20分) 设 $A \in R^{m \times n}$ 。

- (1) 证明: $A^T A$ 半正定;
- (2) 证明: $|I + A^T A| \ge 1$,并且等号成立当且仅当 A = 0;
- (3) 证明: $|A^T A| \leq \prod_{k=1}^n (\sum_{i=1}^m a_{ik}^2)$;
- (4) 证明:存在唯一的对称半正定矩阵 S 使得 $A^T A = S^2$ 。

五(20分)(1)设
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & -1 \end{pmatrix}$$
, $b = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

- (i) 求A的奇异值分解;
- (ii) 计算广义逆矩阵 A+;
- (iii) 用广义逆矩阵判定线性方程组 Ax = b 是否相容。若相容,求其通解;若不相容,求其极小最小二乘解;
 - (2) 设 $A = \begin{pmatrix} -0.2 & 0.3 \\ 0.6 & 0.5 \end{pmatrix}$,判定矩阵级数 $\sum_{k=0}^{\infty} (-1)^k A^k$ 是否收敛。若收敛,求其和。

南京航空航天大学 2010 级硕士研究生

共4页 第1页

《矩阵论》 答案 2010~2011 学年第 1 学期 课程考试A卷

考试日期: 2011 年 1 月 12 日,课程编号: A000003,命题教师: 阅卷教师:

学院

专业

学号

姓名

成绩

(1)
$$|\lambda I - A| = \lambda^2 (\lambda - 4)$$
,所以, $\lambda_1 = \lambda_2 = 0, \lambda_3 = 4$; 4分 $(\lambda - 2,3) = 1, D_1(\lambda) = 1$,

$$\begin{vmatrix} \lambda - 2 & 3 \\ -4 & \lambda + 6 \end{vmatrix} = \lambda(\lambda + 4), \begin{vmatrix} -4 & \lambda + 6 \\ -6 & 7 \end{vmatrix} = 6\lambda + 8, \text{MU}, \quad D_2(\lambda) = 1,$$

$$D_3(\lambda) = \lambda^2(\lambda - 4),$$

所以,不变因子为 $d_1(\lambda) = d_2(\lambda) = 1, d_3(\lambda) = \lambda^2(\lambda - 4)$; 所有初等因子为: λ^2 , $\lambda - 4$;

A 的 Jordan 标准形为
$$\begin{pmatrix} 0 & 1 \\ & 0 \\ & & 4 \end{pmatrix}$$
;

16分

(2) 矩阵 A, B 特征值均为-1 和 2, 有两个互异的特征值,

所以 A, B 均相似于
$$\begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
; 所以, A, B 相似

(1)
$$||A||_1 = 6$$
, $A^H A = \begin{pmatrix} 14 & 3 \\ 3 & 6 \end{pmatrix}$, $||A||_2 = \sqrt{15}$, $||A||_{\infty} = 4$, $||A||_F = 2\sqrt{5}$, 8

(2)根据 Schur 定理,存在酉阵 U,使
$$U^HAU=egin{pmatrix} \lambda_1 & * & \cdots & * \\ & \lambda_2 & \cdots & \vdots \\ & & \ddots & * \\ & & & \lambda_n \end{pmatrix}$$

所以,
$$\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}\leq\left\|U^{H}AU\right\|_{F}^{2}=\left\|A\right\|_{F}^{2}$$

14 分

$$\Leftarrow$$
A 为正规矩阵,即 $A^HA=AA^H$,则存在酉阵 U, $U^HAU=\begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$

所以,
$$\sum_{i=1}^{n} |\lambda_i|^2 = \|U^H A U\|_F^2 = \|A\|_F^2$$
, 17 分

⇒由(1)的证明知, "="成立时,有 A 酉相似于一对角阵,根据定理 4.5.2, A 为 正规阵 20 分

三. (1) 对任意 $X_1, X_2 \in W$, $k \in R$, 都有 $X_1 + X_2 \in W$, $kX_1 \in W$, 所以, $W \not\in R^{2 \times 2}$ 的 线性子空间,设 $X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \in W$, 因为AX = XA, 所以,

$$X = \begin{pmatrix} x_{11} & 0 \\ x_{21} & x_{11} + x_{21} \end{pmatrix},$$

$$W$$
 的一组基为 $X_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, 维数是 2. 5 分

(2) 对任意 $X_1, X_2 \in W$, $k \in R$, 都有 $T(X_1 + X_2) = T(X_1) + T(X_2)$, $T(kX_1) = kT(X_1)$,所以, T 为线性变换 9分

(3) 对于W的一组基为 $X_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, X_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, 有:$

$$T(X_1) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0X_1 + 0X_2, \quad T(X_2) = \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} = -1X_1 + 2X_2,$$

 $T(X_1, X_2) = (X_1, X_2) \begin{pmatrix} 0 & -1 \\ 0 & 2 \end{pmatrix}$, T 在(1)中所取基下的矩阵是 $A = \begin{pmatrix} 0 & -1 \\ 0 & 2 \end{pmatrix}$ 14 分

(4) 对于
$$W$$
的一组基为 $X_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$,

若
$$T(aX_1+bX_2) = \begin{pmatrix} -b & 0 \\ 2b & b \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
,则有: $b = 0$,

所以, $Ker(T) = \{kI_2 : k \in R\}$, 维数为 1,

17分

$$R(T) = \{T(X) : X \in W\} = span\{T(X_1), T(X_2)\} = \{k \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} : k \in R\},$$

维数为 1. m 20分

四.

- (1) 对任意 $x \in R^n$,有: $x^T A^T A x = (Ax)^T A x \ge 0$,所以, $A^T A \ge 0$,2分
- (2) $A^TA \ge 0$,所以, A^TA 的任意特征值 $\lambda \ge 0$, $I + A^TA$ 的任意特征值 $1 + \lambda \ge 1$,所以, $|I + A^TA| \ge 1$ 5分

A = 0 时,显然, $|I + A^{T}A| = 1$,

 $|I+A^TA|$ =1时,根据上面证明, A^TA 的所有特征值都是 0,可得 $A^TA=0$,利用反证法,可得 A=0 9分

- (3) 根据半正定矩阵的 Hadamard 不等式,可得 $|A^T A| \le \prod_{k=1}^n (\sum_{i=1}^m a_{ik}^2)$ 12 分
- (4) 因为 $A^T A \ge 0$,存在正交矩阵 U,使

$$A^TA = U^T diag(\lambda_1, \lambda_2, \dots, \lambda_n)U = (U^T diag(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_n})U)^2$$
 , 其 中 $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$ 是 A^TA 的特征值,取 $S = U^T diag(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_n})U$ 即可 15 分 设 $A = S^2 = S_1^2$,下面证明 $S = S_1$,

根据上面的证明,设 $S = U^T \Lambda U, S_1 = U_1^T \Lambda U_1$,

所以,
$$U^T\Lambda^2U = U_1^T\Lambda^2U_1$$
,即 $\Lambda^2UU_1^T = UU_1^T\Lambda^2$,令 $P = UU_1^T = (p_{ij})_{n\times n}$
 $\lambda_i^2 p_{ij} = \lambda_j^2 p_{ij}$,则有 $\lambda_i p_{ij} = \lambda_j p_{ij}$,即 $\Lambda UU_1^T = UU_1^T\Lambda$,

所以
$$U^T \Lambda U = U_1^T \Lambda U_1$$
,即 $S = S_1$ 20分

五.

(1) $A^T A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, A 的奇异值为 $\sqrt{2}$, $\sqrt{3}$, $A^T A$ 对应于特征值 3 和 2 的标准正交特

征向量为
$$u_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $AA^T = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ 对应于特征值 3 和 2, 0 的标准正交

特征向量分别为

$$v_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, v_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$
, 所以, A 的奇异值分解为:

$$A = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{T}$$

$$5 \%$$

$$A^{+} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{-1}{3} \end{pmatrix}$$

$$10 \, \%$$

 $AA^{\dagger}b \neq b$, 所以 Ax = b 不相容,此方程组的极小最小二乘解为 $x = A^{\dagger}b = \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}$ 15 分

A的全部特征值为 $\lambda_1=0.7,\lambda_2=-0.4$,所以, $\rho(A)<1$,

(2) 矩阵级数
$$\sum_{k=0}^{\infty} (-1)^k A^k$$
 收敛
$$17 分 S_m = (I+A)^{-1} - (-1)^{m+1} A^{m+1} (I+A)^{-1}$$
 所以, $S = (I+A)^{-1}$ 20 分

南京航空航天大学 2011 级硕士研究生

共5页 第1页

成绩

2011~2012 学年第 1 学期 《**矩阵论**》 课程考试 A 卷

考试日期: 2012年1月9日,课程编号: A000003,命题教师: 阅卷教师:

学院 专业 学号 姓名

$$(20 分) 设 A = \begin{pmatrix} 3 & 6 & -15 \\ 1 & 2 & -5 \\ 1 & 2 & -5 \end{pmatrix}.$$

- (1) 求 A 的特征多项式和 A 的全部特征值;
- (2) 求 A 的行列式因子,不变因子,初等因子和最小多项式;
- (3) 写出 A 的 Jordan 标准形 J 。

$$(1) |\lambda I - A| = \lambda^3,$$
 3'

$$\boldsymbol{A}$$
 的特征值 $\lambda_1 = 1, \lambda_2 = \lambda_3 = 0$; 3'

(2)
$$\boldsymbol{A}$$
 的行列式因子1, λ, λ^3 ;

$$A$$
的不变因子 1 , λ , λ^2 ; 3'

$$m{A}$$
 的初等因子 $m{\lambda}$, $m{\lambda}^2$; 2' $m{A}$ 的最小多项式 $m{\lambda}^2$; 1'

(3)
$$\mathbf{A}$$
 的 Jordan 标准形 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 。

二(20分)(1)设
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \\ 0 & -3 \end{pmatrix}$$
,求 $||A||_1, ||A||_2, ||A||_\infty, ||A||_F$;

- (2) 设 $A = (a_{ii}) \in C^{m \times n}$, 证明:
- (i) 对m阶酉矩阵U和n阶酉矩阵V, 有 $\|UAV\|_F = \|A\|_F$;

(ii) 若
$$rank(A) = r$$
 , $\sigma_1, \sigma_2, \dots, \sigma_r$ 为 A 的全部正奇异值,则 $\sum_{k=1}^r \sigma_k^2 = \sum_{i=1}^m \sum_{j=1}^n \left| a_{ij} \right|^2$ 。

$$(1) ||A||_{1} = 6,$$

$$A^{H}A = \begin{pmatrix} 14 & 0 \\ 0 & 5 \end{pmatrix}, \|A\|_{2} = \sqrt{14};$$

$$||A||_{\infty}=3;$$

$$||A||_{E} = \sqrt{19}$$
.

(2)(i)
$$||UAV||_{F} = [tr((UAV)^{H}UAV)]^{\frac{1}{2}} = [tr(V^{H}A^{H}U^{H}UAV)]^{\frac{1}{2}}$$

$$= [tr(V^{H}A^{H}AV)]^{\frac{1}{2}} = [tr(V^{-1}A^{H}AV)]^{\frac{1}{2}} = [tr(A^{H}A)]^{\frac{1}{2}} = ||A||_{F}.$$
5'

(ii) 因为rank(A) = r,则由奇异值分解定理知,存在m 阶酉矩阵U 和n 阶酉矩阵V,

使得
$$U^HAV=egin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix}$$
,其中 $\Sigma=diag(\sigma_1,\sigma_2,\cdots,\sigma_r)$,从而

$$\sum_{i=1}^{r} \sigma_i^2 = \left\| \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} \right\|_F^2 = \left\| U^H A V \right\|_F^2 = \left\| A \right\|_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2$$
 5'

$$\Xi$$
 (20 分) 设 $A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 1 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}$.

- (1) 计算A的满秩分解;
- (2) 计算广义逆矩阵 A+;
- (3) 用广义逆矩阵判定线性方程组 Ax = b 是否相容。若相容,求其通解;若不相容,求其极小最小二乘解。

(1)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix};$$
 8'

(2)
$$A^+ = C^T (CC^T)^{-1} (B^T B)^{-1} B^T$$

$$=\frac{1}{15} \begin{pmatrix} 5 & -4 & 1\\ 0 & 3 & 3\\ -5 & 7 & 2\\ 5 & -4 & 1 \end{pmatrix}$$
 6'

(3) 因为
$$AA^{+}b = \frac{1}{15} {50 \choose 5} = \frac{1}{3} {10 \choose 1} \neq b$$
,所以 $Ax = b$ 不相容。

$$Ax = b$$
 的极小最小二乘解为 $x = A^+b = \frac{1}{15} \begin{pmatrix} 19\\12\\-7\\19 \end{pmatrix}$ 。

四(20分)(1)设
$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & -3 \\ 0 & -3 & 2 \end{pmatrix}$$
,判断 A 是否是正定或半正定矩阵,并

说明理由;

- (2) 设A是n阶 Hermite 正定矩阵,B是n阶 Hermite 矩阵,证明: AB 相似于实对角矩阵:
- (3) 设A, B均为n阶 Hermite 矩阵,并且AB = BA, $\lambda \in AB$ 的特征值,证明:存在A的特征值 $\alpha \cap B$ 的特征值 β , 使得 $\lambda = \alpha\beta$ 。
- (1) 因为A的顺序主子式 $\Delta_1=2>0, \Delta_2=5>0, \Delta_3=-8<0$,所以A不是正定的。

因为
$$A$$
有一个主子式 $\Delta_3 = -8 < 0$ 或 $\begin{vmatrix} 3 & -3 \\ -3 & 2 \end{vmatrix} = -3 < 0$,所以 A 也不是半正定的。

(2) 因为A 是 n 阶 Hermite 正定矩阵,则存在可逆 Hermite 矩阵S ,使得 $A = S^2$,从而AB 相似于 $S^{-1}ABS = SBS = S^HBS$ 。

又因为B 是Hermite 矩阵,则 S^HBS 是Hermite 矩阵。由Hermite 矩阵的谱分解 S^HBS 相似于实对角矩阵,再由相似的传递性知,AB 相似于实对角矩阵。

(3) 因为A,B均为n阶 Hermite 矩阵,并且AB = BA,则存在n阶酉矩阵U,使得 $U^{H}AU = diag(\alpha_{1}, \dots, \alpha_{n}), U^{H}BU = diag(\beta_{1}, \dots, \beta_{n})$ 。3

从而 $U^HABU=diag(\alpha_1eta_1,\cdots,\alpha_neta_n)$,即AB相似于对角矩阵 $diag(\alpha_1eta_1,\cdots,\alpha_neta_n)$ 。因此,如果 λ 是AB的特征值,则存在A的特征值 α 和B的特征值 β ,使得 $\lambda=\alpha\beta$ 。

3,

- 五(20分)设 $R[x]_3$ 表示实数域R上次数小于3的多项式再添上零多项式构成的线性空间。
 - (1) 确定 R[x], 的维数, 并写出 R[x], 的一组基;
 - (2) 对 $f(x) = a_0 + a_1 x + a_2 x^2 \in R[x]_3$, 在 $R[x]_3$ 上定义线性变换 T 如下: $T(f(x)) = (a_0 a_1) + (a_1 a_2)x + (a_2 a_0)x^2$,

求T在(1)中所取基下的矩阵表示;

- (3) 求(2) 中线性变换T的值域R(T)和核Ker(T),并确定它们的维数;
- (4) 在R[x],中定义内积

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx, \ \forall f(x), g(x) \in R[x]_{3}$$

求 R[x], 的一组标准正交基。

(1)
$$\dim(R[x]_3) = 3$$
, 2' $R[x]_3$ 的一组基为 $\alpha_1 = 1$, $\alpha_2 = x$, $\alpha_3 = x^2$. 3'

(2) 因为

$$T(\alpha_1) = 1 - x^2 = \alpha_1 - \alpha_3$$

 $T(\alpha_2) = -1 + x = -\alpha_1 + \alpha_2$
 $T(\alpha_3) = -x + x^2 = -\alpha_2 + \alpha_3$

则 T 在基 α_1 , α_2 , α_3 下的矩阵为 $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}$ 。

(3)
$$R(T) = span(T(\alpha_1), T(\alpha_2), T(\alpha_3)) = span(\alpha_1 - \alpha_3, -\alpha_1 + \alpha_2)$$
, 1' $dim(R(T)) = 2$, 1' $Ker(T) = span(\alpha_1 + \alpha_2 + \alpha_3)$, 1'

$$\dim(Ker(T)) = 1 \, . \tag{1}$$

(4) R[x], 的一组标准正交基为

$$\varepsilon_1 = \frac{1}{\sqrt{2}}$$
;

$$\varepsilon_2 = \frac{\sqrt{3}}{\sqrt{2}}x$$
;

$$\varepsilon_3 = \frac{3\sqrt{5}}{2\sqrt{2}}(x^2 - \frac{1}{3})$$

2012 年矩阵论试题参考答案

- 一、(16 分)已知 4 阶方阵 A 的特征值为 1, 2, 2, 2,且其一阶和二阶行列式因子分别为 $D_1(\lambda)=1, D_2(\lambda)=\lambda-2.$
- 1. (6 分) 求 A 的不变因子和最小多项式;
- 2. (4 分) 求 A 的 Jordan 标准形;
- 3.(6分) 求实数t的取值范围,使 $\cos At$ 为收敛矩阵.
- 解. 1. 因为 $D_4(\lambda)$ 即为 A 的特征多项式,且 A 的特征值为 1, 2, 2, 2,故 $D_4(\lambda) = (\lambda-1)(\lambda-2)^3$. 再由行列式因子与不变因子的性质与相互关系知 $D_3(\lambda) = (\lambda-2)^2$,从而 A 的不变因子为

$$d_1(\lambda) = 1$$
, $d_2(\lambda) = \lambda - 2$, $d_3(\lambda) = \lambda - 2$, $d_4(\lambda) = (\lambda - 1)(\lambda - 2)$,

A 的最小多项式为 $m_{A}(\lambda) = d_{A}(\lambda) = (\lambda - 1)(\lambda - 2)$.

2. 由 A 的不变因子知,A 的初等因子为 $\lambda-1$, $\lambda-2$, $\lambda-2$, $\lambda-2$, 故 A 的 Jordan 标准形

为
$$J = \begin{pmatrix} 1 & & \\ & 2 & \\ & & 2 \\ & & & 2 \end{pmatrix}$$
.

- 3. $\cos At$ 的特征值为 $\cos t$, $\cos 2t$, $\cos 2t$, $\cos 2t$, $\dot{\theta}$ 半径为 $\rho(\cos At) = \max\{|\cos t|, |\cos 2t|\}$. $\cos At$ 为收敛矩阵当且仅当其谱半径小于1,即 $|\cos t| \neq 1$, $|\cos 2t| \neq 1$,故实数t 的取值范围是: $t \neq \frac{k\pi}{2}$,k = 0, ± 1 , ± 2 ,…
- 二、(16 分) 设 $\|\cdot\|_a$ 和 $\|\cdot\|_b$ 分别是 \mathbf{C}^m 和 \mathbf{C}^n 上的向量范数. 对任何 $x = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_m, \boldsymbol{\xi}_{m+1}, \dots, \boldsymbol{\xi}_{m+n})^T \in \mathbf{C}^{m+n}$,定义 $\|x\| = \|u\|_a + \|v\|_b$,其中 $u = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_m)^T$, $v = (\boldsymbol{\xi}_{m+1}, \dots, \boldsymbol{\xi}_{m+n})^T$.
- 1. (10 分) 证明 || || 是 C"" 上的一种向量范数;
- 2. (6 分) 若 $\forall A_{11} \in \mathbb{C}^{m \times m}$, $A_{12} \in \mathbb{C}^{m \times n}$, $A_{21} \in \mathbb{C}^{n \times m}$, $A_{22} \in \mathbb{C}^{n \times n}$, $\emptyset \forall u \in \mathbb{C}^m$, $v \in \mathbb{C}^n$ 有

 $\|A_{11}u\|_{a} \leq \|A_{11}\|_{m_{1}} \cdot \|u\|_{a}, \quad \|A_{12}v\|_{a} \leq \|A_{12}\|_{m_{1}} \cdot \|v\|_{b}, \quad \|A_{21}u\|_{b} \leq \|A_{21}\|_{m_{1}} \cdot \|u\|_{a}, \quad \|A_{22}v\|_{b} \leq \|A_{22}\|_{m_{1}} \cdot \|v\|_{b},$ 其中 $\|\cdot\|_{m_{1}}$ 是矩阵 m_{1} 范数. 证明 $\mathbf{C}^{(m+n)\times(m+n)}$ 上的矩阵 m_{1} 范数与上面定义的向量范数 $\|\cdot\|$ 相容.

证明. 1. 1) 非负性. 当 $x = (\xi_1, \dots, \xi_m, \xi_{m+1}, \dots, \xi_{m+n})^T = 0$ 时, $u = (\xi_1, \dots, \xi_m)^T = 0$, $v = (\xi_{m+1}, \dots, \xi_{m+n})^T = 0$, 故 $||x|| = ||u||_a + ||v||_b = 0$. 当 $x = (\xi_1, \dots, \xi_m, \xi_{m+1}, \dots, \xi_{m+n})^T \neq 0$ 时, $u \neq 0$ 或 $v \neq 0$, 故 $||u||_a > 0$ 或 $||v||_b > 0$, 从而 $||x|| = ||u||_a + ||v||_b > 0$.

- 2) **齐次性**. $\forall \lambda \in \mathbf{C}, \ \forall x = (\xi_1, \ \cdots, \ \xi_m, \ \xi_{m+1}, \ \cdots, \ \xi_{m+n})^T \in \mathbf{C}^{m+n},$ $\|\lambda x\| = \|\lambda u\|_a + \|\lambda v\|_b = |\lambda| \cdot \|u\|_a + |\lambda| \cdot \|v\|_b = |\lambda| \cdot (\|u\|_a + \|v\|_b) = |\lambda| \cdot \|x\|.$
- 3) 三角不等式.

$$\forall x = (\xi_1, \dots, \xi_m, \xi_{m+1}, \dots, \xi_{m+n})^T, \quad y = (\eta_1, \dots, \eta_m, \eta_{m+1}, \dots, \eta_{m+n})^T \in \mathbf{C}^{m+n}, \quad \exists \exists u_1 = (\xi_1, \dots, \xi_m)^T, \quad v_1 = (\xi_{m+1}, \dots, \xi_{m+n})^T, \quad u_2 = (\eta_1, \dots, \eta_m)^T, \quad v_2 = (\eta_{m+1}, \dots, \eta_{m+n})^T, \quad []$$

$$\|x + y\| = \|u_1 + u_2\|_a + \|v_1 + v_2\|_b \le \|u_1\|_a + \|u_2\|_a + \|v_1\|_b + \|v_2\|_b = \|x\| + \|y\|.$$

由定义知 $\|\cdot\|$ 是 \mathbb{C}^{m+n} 上的一种向量范数.

2. $\forall A \in \mathbf{C}^{(m+n)\times(m+n)}$, $\forall x = (\xi_1, \dots, \xi_m, \xi_{m+1}, \dots, \xi_{m+n})^T \in \mathbf{C}^{m+n}$, 将 A 和 x 分块为 $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \mathcal{R} \ x = \begin{pmatrix} u \\ v \end{pmatrix}, \ \ \sharp \mapsto A_{11} \in \mathbf{C}^{m\times m}, \ A_{12} \in \mathbf{C}^{m\times n}, \ A_{21} \in \mathbf{C}^{n\times m}, \ A_{22} \in \mathbf{C}^{n\times n}, \ u \in \mathbf{C}^{m},$ $v \in \mathbf{C}^{n}, \ \ \emptyset \ Ax = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} A_{11}u + A_{12}v \\ A_{21}u + A_{22}v \end{pmatrix},$

$$\begin{aligned} \|Ax\| &= \|A_{11}u + A_{12}v\|_{a} + \|A_{21}u + A_{22}v\|_{b} \le \|A_{11}u\|_{a} + \|A_{12}v\|_{a} + \|A_{21}u\|_{b} + \|A_{22}v\|_{b} \\ &\le \|A_{11}\|_{m_{1}} \cdot \|u\|_{a} + \|A_{12}\|_{m_{1}} \cdot \|v\|_{b} + \|A_{21}\|_{m_{1}} \cdot \|u\|_{a} + \|A_{22}\|_{m_{1}} \cdot \|v\|_{b} \\ &= \left(\|A_{11}\|_{m_{1}} + \|A_{21}\|_{m_{1}}\right) \cdot \|u\|_{a} + \left(\|A_{12}\|_{m_{1}} + \|A_{22}\|_{m_{1}}\right) \cdot \|v\|_{b} \le \|A\|_{m_{1}} \cdot \|u\|_{a} + \|A\|_{m_{1}} \cdot \|v\|_{b} \\ &= \|A\|_{m_{1}} \cdot \left(\|u\|_{a} + \|v\|_{b}\right) = \|A\|_{m_{1}} \cdot \|x\|, \end{aligned}$$

所以 $\mathbf{C}^{(m+n)\times(m+n)}$ 上的矩阵范数 $\|\cdot\|_{m_1}$ 与上面定义的向量范数 $\|\cdot\|$ 相容.

三、(18分)

1. (8 分) 设
$$X = (x_{ij})_{n \times n}$$
 是矩阵变量,且 $\det X \neq 0$. 求 $\frac{d}{dX^T} \det (X^{-1})$;

2. (10 分)设
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
. 求矩阵幂级数 $\sum_{k=1}^{+\infty} \frac{(-1)^{k-1} A^{2k} t^{2k-1}}{(2k-1)!}$ 的和.

解. 1.
$$\det(X^{-1}) = \frac{1}{\det X}$$
, $\det X = \sum_{k=1}^{n} x_{ik} X_{ik} = x_{ij} X_{ij} + \sum_{k \neq i}^{n} x_{ik} X_{ik}$, 其中 X_{ik} 是 x_{ik} 的代数

余子式,
$$\frac{\partial}{\partial x_{ij}} (\det X) = X_{ij}$$
,从而

$$\frac{\partial \det\left(X^{-1}\right)}{\partial x_{ij}} = \frac{\partial}{\partial x_{ij}} \left(\frac{1}{\det X}\right) = -\frac{1}{\left(\det X\right)^{2}} \cdot \frac{\partial}{\partial x_{ij}} \left(\det X\right) = -\frac{X_{ij}}{\left(\det X\right)^{2}},$$

$$\frac{d}{dX^{T}}\det\left(X^{-1}\right) = \left(\frac{\partial \det\left(X^{-1}\right)}{\partial x_{ij}}\right)^{T} = \left(-\frac{X_{ij}}{\left(\det X\right)^{2}}\right)^{T} = -\frac{1}{\left(\det X\right)^{2}}X^{*} = -\frac{1}{\det X}X^{-1}.$$

2.
$$\sum_{k=1}^{+\infty} \frac{\left(-1\right)^{k-1} A^{2k} t^{2k-1}}{\left(2k-1\right)!} = A \sum_{k=1}^{+\infty} \frac{\left(-1\right)^{k-1} A^{2k-1} t^{2k-1}}{\left(2k-1\right)!} = A \sin At.$$

$$\left|\lambda I - A\right| = \begin{vmatrix} \lambda - 1 & 0 \\ -1 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2. \quad \text{if } \sin \lambda t = q(\lambda, t)(\lambda - 1)^2 + \frac{b_1(t)\lambda}{b_1(t)\lambda} + \frac{b_0(t)}{b_0(t)}. \quad \text{fix}$$

式及对其两边关于 λ 求导后的式子中,将 $\lambda=1$ 代入得

$$\begin{cases} \sin t = b_1(t) + b_0(t), \\ t \cos t = b_1(t), \end{cases}$$

解得

$$b_0(t) = \sin t - t \cos t, \quad b_1(t) = t \cos t.$$

从而

$$\sin At = b_{1}(t)A + b_{0}(t)I = t\cos t \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + (\sin t - t\cos t) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \sin t & 0 \\ t\cos t & \sin t \end{pmatrix}.$$

$$\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}A^{2k}t^{2k-1}}{(2k-1)!} = A\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}A^{2k-1}t^{2k-1}}{(2k-1)!} = A\sin At = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \sin t & 0 \\ t\cos t & \sin t \end{pmatrix}.$$

$$= \begin{pmatrix} \sin t & 0 \\ \sin t + t\cos t & \sin t \end{pmatrix}.$$

四、
$$(14 分)$$
 设 $A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & 0 \\ 2 & 3 & 2 \end{pmatrix}$.

- 1. (8 分) 求矩阵 A 的 Crout 分解;
- 2. (6 分) 利用 Crout 分解求方程 Ax = b 的解,其中 $b = (1, 1, -1)^T$.

解. 1. 设
$$A = \begin{pmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{pmatrix} \begin{pmatrix} 1 & r_{12} & r_{13} \\ 0 & 1 & r_{23} \\ 0 & 0 & 1 \end{pmatrix}$$
. 由 Crout 分解的紧凑计算格式得

$$l_{11}=a_{11}=1,\ l_{21}=a_{21}=0,\ l_{31}=a_{31}=2\,,\ r_{12}=\frac{a_{12}}{l_{11}}=1,\ r_{13}=\frac{a_{13}}{l_{11}}=2,$$

$$l_{22} = a_{22} - l_{21}r_{12} = -1$$
, $l_{32} = a_{32} - l_{31}r_{12} = 1$, $r_{23} = \frac{1}{l_{22}}(a_{23} - l_{21}r_{13}) = 0$,

$$l_{33} = a_{33} - l_{31}r_{13} - l_{32}r_{23} = -2,$$

故A的Crout分解为

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 2 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

2. 由
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 2 & 1 & -2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
解得
$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix},$$

再由
$$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
 解得 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$,

即方程
$$Ax = b$$
 的解的解为 $x = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$.

五、(14分)利用 Gerschgorin 定理及特征值的隔离方法判断矩阵

$$A = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 6 & 2 \\ 1 & 1 & 11 \end{pmatrix}$$

是否有小于零的特征值,并估计A的每个特征值的分布范围.

证明. 1. A有小于零的特征值.

A 的三个行盖尔圆为

$$G_1 = \left\{ z \in \mathbf{C}^n \mid \left| z + 1 \right| \le 3 \right\}, \quad G_2 = \left\{ z \in \mathbf{C}^n \mid \left| z - 6 \right| \le 3 \right\}, \quad G_3 = \left\{ z \in \mathbf{C}^n \mid \left| z - 11 \right| \le 2 \right\},$$
 三个列盖尔圆为

$$\widetilde{G}_1 = \left\{ z \in \mathbf{C}^n \mid |z+1| \le 2 \right\}, \quad \widetilde{G}_2 = \left\{ z \in \mathbf{C}^n \mid |z-6| \le 3 \right\}, \quad \widetilde{G}_3 = \left\{ z \in \mathbf{C}^n \mid |z-11| \le 3 \right\}.$$

 G_1 与 \widetilde{G}_1 均为孤立的盖尔圆,且 \widetilde{G}_1 \subset G_1 ,而 G_2 与 G_3 相交, \widetilde{G}_2 与 \widetilde{G}_3 也相交.由盖尔圆定理知 \widetilde{G}_1 中有A的一个特征值, $(G_2 \cup G_3) \cap (\widetilde{G}_2 \cup \widetilde{G}_3)$ 中有A的两个特征值.

$$D_{1} = \begin{pmatrix} \frac{5}{2} & & \\ & 1 & \\ & & 1 \end{pmatrix}, B_{1} = D_{1}AD_{1}^{-1} = \begin{pmatrix} -1 & 5 & \frac{5}{2} \\ \frac{2}{5} & 6 & 2 \\ \frac{2}{5} & 1 & 11 \end{pmatrix},$$

则 B_1 与 A 相似,从而与 A 有相同的特征值. B_1 的三个列盖尔圆为

$$\widetilde{G}_{1}^{B_{1}} = \left\{ z \in \mathbf{C}^{n} \mid \left| z + 1 \right| \le \frac{4}{5} \right\}, \quad \widetilde{G}_{2}^{B_{1}} = \left\{ z \in \mathbf{C}^{n} \mid \left| z - 6 \right| \le 6 \right\},$$

$$\widetilde{G}_{3}^{B_{1}} = \left\{ z \in \mathbf{C}^{n} \mid \left| z - 11 \right| \le \frac{9}{2} \right\}.$$

 $\widetilde{G}_{1}^{B_{1}}$ 仍为孤立的盖尔圆. 由盖尔圆定理知 $\widetilde{G}_{1}^{B_{1}}$ 中仍有且仅有 B_{1} 的一个特征值.

由于 B_1 为实矩阵,其特征多项式为实系数多项式,从而其特征值如为复数,则必共轭成对出现.注意到 $\widetilde{G}_1^{B_1}$ 的圆心为 $\left(-1,0\right)$,在实轴上, $\widetilde{G}_1^{B_1}$ 关于实轴对称,如果含有复特征值,则其共轭的特征值也在 $\widetilde{G}_1^{B_1}$ 中,与每个孤立盖尔圆中只有一个特征值矛盾.因此,含于 $\widetilde{G}_1^{B_1}$ 中的该特征值必为实数,即位于实轴上.再注意到 $\widetilde{G}_1^{B_1}$ 的半径为 $\frac{4}{5}$ 知,该特征值位于闭区间 $\left[-\frac{9}{5},-\frac{1}{5}\right]$ 中,故 B_1 ,从而A,有一个小于零的特征值.

$$D_{2} = \begin{pmatrix} \frac{3}{5} & & \\ & 1 & \\ & & 1 \end{pmatrix}, \quad B_{2} = D_{2}AD_{2}^{-1} = \begin{pmatrix} -1 & \frac{8}{3} & \frac{4}{3} \\ \frac{3}{4} & 6 & 2 \\ \frac{3}{4} & 1 & 11 \end{pmatrix},$$

则 B_2 与 A 相似,从而与 A 有相同的特征值. B_2 的三个行盖尔圆为

$$G_1 = \left\{ z \in \mathbf{C}^n \mid |z + 1| \le 4 \right\}, \quad G_2 = \left\{ z \in \mathbf{C}^n \mid |z - 6| \le \frac{11}{4} \right\}, \quad G_3 = \left\{ z \in \mathbf{C}^n \mid |z - 11| \le \frac{7}{4} \right\},$$

它们是3个孤立的盖尔圆,从而每个盖尔圆中各有 B_2 ,即A的一个特征值。由与上面相同的推理知,每个特征值均为实数,都位于实轴上,故A的特征值分别位于 $\left[-5,\ 3\right]$,, $\left[\frac{13}{4},\ \frac{35}{4}\right]$

和
$$\left[\frac{37}{4}, \frac{51}{4}\right]$$
中.

综合 1.的结果知,A的 3 个特征值分别位于 $\left[-\frac{9}{5}, -\frac{1}{5}\right]$, $\left[\frac{13}{4}, \frac{35}{4}\right]$ 和 $\left[\frac{37}{4}, \frac{51}{4}\right]$ 中.

六、
$$(22 分)$$
 设 $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 2 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}$.

- 1. (8分) 求A的全部{1}逆;
- 2. (8分) 求A的加号逆 A^+ ;
- 3. (6 分) 判断矩阵方程 AX = D 是否有解.

$$\text{\notR.$ 1. $} \begin{pmatrix} A & I_3 \\ I_2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \triangleq \begin{pmatrix} I_2 & S \\ 0 & T & 0 \end{pmatrix},$$

$$T \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \end{pmatrix} S = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ -2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 - 2a & a & a \\ -2b & -1 + b & b \end{pmatrix},$$

故 A 的全部 {1} 逆为

$$A{1} = \left\{ \begin{pmatrix} 1-2a & a & a \\ -2b & -1+b & b \end{pmatrix} \middle| a, b$$
任意 \delta.

2. A为列满秩矩阵,故A的加号逆为

$$A^{+} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 2 & 1 \end{bmatrix} \end{bmatrix}^{-1} \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \end{pmatrix}$$
$$= \frac{1}{6} \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 2 & 2 & 2 \\ -2 & -5 & 1 \end{pmatrix}.$$

3. 在 A 的 $\{1\}$ 逆的集合 $A\{1\}$ 中取 A 的一个 $\{1\}$ 逆 $A^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$. 由教材定理 6.5 知

AX = D 有解的充要条件是 $AA^{(1)}D = D$. 计算得

$$AA^{(1)}D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 2 \end{pmatrix} \neq D,$$

故矩阵方程 AX = D 无解.

南京航空航天大学 2012 级硕士研究生

共6页 第1页

2012~2013 学年第 1 学期 《矩阵论》 课程考试 A 卷

考试日期: 2013 年 1 月 15 日 课程编号: A080001 命题教师: 阅卷教师:

学院

专业

学号

姓名

成绩

一、(20 分)设
$$V = \left\{ \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} \\ \mathbf{a}_{21} & \mathbf{a}_{22} \end{pmatrix} \in R^{2\times2} \mid \mathbf{a}_{11} = \mathbf{a}_{22} \right\}$$
 是 $R^{2\times2}$ 的一个线性子空间,对

任意
$$X \in V$$
, 定义: $T(X) = PX + XP$, 其中 $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

(1) 求 V 的一组基和维数;

(2) 对任意
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \in V$$
,定义:
$$(A,B) = a_{11}b_{11} + 2a_{12}b_{12} + a_{21}b_{21},$$

证明(A,B)是V的一个内积;

- (3) 求 V 在题(2) 所定义的内积下的一组标准正交基;
- (4) 证明T是V的线性变换,并求T在题(1)所取基下的矩阵.

解答: (1)
$$V$$
的一组基为 $E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, 维数为 3.

(5 分)

- (2) 直接验证内积定义的四个条件成立. ………………(4分)
- (3) 标准正交基 $E_1' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $E_2' = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3' = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. ···········(5 分)
- (4) 由于 $T(X) \in V$, 所以 $T \in V$ 的一个变换. 又直接验证, 知

$$T(X + Y) = T(X) + T(Y), T(kX) = kT(X),$$

线性变换
$$T$$
在基 $E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ 下的矩阵为

$$T = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}. \tag{3 \(\frac{1}{2}\)}$$

二、 $(20 分)$ 设三阶矩阵 $A =$	$\overline{(-1)}$	1	0)		B =	(3	1	0)	, C=		(3	а	0))
	-4	3	0	,		0	3	1		C =	0	3	a	
	1	0	2			0	0	3			0	0	3	

- (1) 求 A 的行列式因子、不变因子、初等因子及 Jordan 标准形;
- (2) 利用 λ 矩阵的知识,判断矩阵B和C是否相似,并说明理由.

Jordan 标准形为
$$J = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.(2 分)

(2) a = 0, 不相似, 理由是 2 阶行列式因子不同; ·······(5 分) $a \neq 0$, 相似, 理由是各阶行列式因子相同. ·····(5 分)

三、(20 分)已知线性方程组
$$\begin{cases} x_1 + x_2 & +x_4 = 1, \\ x_1 + x_2 + x_3 + 2x_4 = 1, \end{cases}$$
 不相容.

- (1) 求系数矩阵 A 的满秩分解;
- (2) 求广义逆矩阵 A+;
- (3) 求该线性方程组的极小最小二乘解.

解答:(1) 矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
, A 的满秩分解为

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}. \qquad (5 \%)$$

(2)
$$A^{+} = \frac{1}{15} \begin{pmatrix} 5 & 1 & -4 \\ 5 & 1 & -4 \\ -5 & 2 & 7 \\ 0 & 3 & 3 \end{pmatrix}$$
 (2)

(3) 方程组的极小最小二乘解为
$$x = \frac{1}{15} \begin{pmatrix} 2 \\ 2 \\ 4 \\ 6 \end{pmatrix}$$
.(5分)

四、 $(20 \, \beta)$ 已知幂级数 $\sum_{k=0}^{\infty} \frac{1}{3^k} x^k$ 的收敛半径为 3, 矩阵 $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & -2 & 0 \end{pmatrix}$.

- (1) $\Re \|A\|_{1}, \|A\|_{\infty}, \|A\|_{2}, \|A\|_{F};$
- (2) 证明矩阵幂级数 $\sum_{k=0}^{\infty} \frac{1}{3^k} A^k$ 收敛;
- (3) 求矩阵幂级数 $\sum_{k=0}^{\infty} \frac{1}{3^k} A^k$ 的和.

解答: (1) $\|A\|_{1} = 4$, $\|A\|_{\infty} = 3$, $\|A\|_{2} = \sqrt{6}$, $\|A\|_{F} = 3$. ········(10 分)

(2) 因为 $\|A\|_2$ 是相容范数,且 $\|A\|_2 = \sqrt{6} < 3$,则 $\rho(A) < 3$ 在收敛半径内,因此级数收敛.(5分)

(3)
$$\sum_{k=0}^{\infty} \frac{1}{3^k} A^k = \sum_{k=0}^{\infty} \left(\frac{A}{3}\right)^k = 3(3I - A)^{-1} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & -1 & 1 \end{bmatrix}.$$
 (5 \(\frac{1}{2}\))

五、(20 分)设A,B是两个n阶矩阵,其中 $A=(a_{ii})$,证明:

- (1) 若对任意 $i = 1, 2, \dots, n$,有 $\sum_{i=1}^{n} |a_{ij}| < 1, 则 I A$ 可逆;
- (2) 若 A, B 都是 Hermite 正定矩阵,则 AB 的特征值均为正数;
- (3) 若 A, B 都是 Hermite 半正定矩阵,则 $tr(AB) \ge 0$,并且当等号成立时,必有 AB = 0.

解答:

当 tr(AB) = 0 时,有 $tr(SBS^H) = 0$,从而 $SBS^H = 0$.设 $B = Q^2 = QQ^H$,这里 Q 也是 Hermite 矩阵,则

$$SBS^{H} = SQQ^{H}S^{H} = (SQ)(SQ)^{H}$$
.

于是SO = 0,由此得到AB = 0.(2分)

٠

南京航空航天大学 2013 级硕士研究生

共6页 第1页

2013~2014 学年第 1 学期 《矩阵论》 课程考试 A 卷

考试日期: 2014年1月14日 课程编号: A080001 命题教师: 阅卷教师:

学院

专业

学号

姓名

成绩

一、(20 分) 设三阶矩阵
$$A = \begin{pmatrix} 1 & 4 & -1 \\ -1 & -3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- 1. 求 A 的特征多项式和初等因子;
- 2. 求 A 的 Jordan 标准形;
- 3. 问: A与矩阵 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 是否相似?并说明理由.

答案及评分标准: 1.特征多项式为 $f_A(\lambda) = (\lambda - 1)(\lambda + 1)^2$; (4 分) 初等因子为 $\lambda - 1$, $(\lambda + 1)^2$. (6 分)

2.
$$A$$
 的 Jordan 标准形为 $J = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 或 $J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$. (5 分)

3. 设 $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, 则 B 的初等因子为 $\lambda - 1$, $\lambda + 1$, $\lambda + 1$, 与 A 的初等因子不

同,所以A与B不相似. (5分)

二、(20 分)设
$$R^3$$
 的线性变换 σ 将基 $\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ 变为向量

$$\beta_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \beta_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \beta_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

- 1. 求 σ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵A;
- 2. 求向量 $\xi = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ 及 $\sigma(\xi)$ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标;
- 3. 求线性变换 σ 的值域和核.

答案及评分标准:
$$1. \sigma$$
在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为 $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. (6分)

- 2. 向量 ξ 在基 α_1 , α_2 , α_3 下的坐标为 $x = (10, 6, -9)^T$; 向量 $\sigma(\xi)$ 在基 α_1 , α_2 , α_3 下的坐标为 $y = Ax = (4, 0, -3)^T$. (6 分)
- 3. 线性变换 σ 的值域为 $R(\sigma) = span\{\beta_1, \beta_2\}$,核为 $ker(\sigma) = span\{-\alpha_1 \alpha_2 + \alpha_3\}$ 或 $ker(\sigma) = span\{(0, 1, 0)^T\}$ 或 $ker(\sigma) = \{k(0, 1, 0)^T \mid k \in R\}$. (8 分)

三、
$$(15 分)$$
设 $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$, $b = \begin{pmatrix} -3 \\ 3 \\ 1 \end{pmatrix}$.

- 1. 计算 A+:
- 2. 判断方程组 Ax = b 是否相容?如果相容,求方程组的通解;如果不相容,求方程组的极小最小二乘解.

答案及评分标准: 1. A 的一种满秩分解为 $A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}^{\triangle} = BC$; (5 分,

注意:满秩分解不唯一,需要检验)

又因为
$$B^+ = \frac{1}{3} \begin{pmatrix} 1 & -2 & -1 \\ 1 & 1 & 2 \end{pmatrix}$$
, $C^+ = \frac{1}{6} \begin{pmatrix} 5 & 2 \\ 2 & 2 \\ -1 & 2 \end{pmatrix}$, 于是

 $A^{+} = C^{+}B^{+} = \frac{1}{18} \begin{pmatrix} 7 & -8 & -1 \\ 4 & -2 & 2 \\ 1 & 4 & 5 \end{pmatrix}$. (5分, 公式写对, 计算结果错误可酌情扣分)

2. 不相容. 方程组 Ax = b 的极小最小二乘解为 $x = A^+b = \frac{1}{9} \begin{pmatrix} -23 \\ -16 \\ 7 \end{pmatrix}$. (5分)

四、(15 分)已知矩阵 $A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}$, 且幂级数 $\sum_{k=0}^{\infty} \frac{1}{2^k} x^k$ 的收敛半径为 2.

- 1. $|\vec{x}||A|_1, ||A|_{\infty}, ||A|_2, ||A|_E;$
- 2. 证明矩阵幂级数 $\sum_{k=0}^{\infty} \frac{1}{2^k} A^k$ 收敛,并求其和.

答案及评分标准: 1. $\|A\|_{_{1}}=3$, $\|A\|_{_{\infty}}=3$, $\|A\|_{_{F}}=\sqrt{7}$. (6 分)

由于
$$A^T A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
, 所以 $A^T A$ 的特征值是 1, 3, 3, 从而 $||A||_2 = \sqrt{3}$. (4分)

2. 已知幂级数 $\sum_{k=0}^{\infty} \frac{1}{2^k} x^k$ 的收敛半径为 2, 且 $\rho(A) \le \|A\|_2 < 2$, 则矩阵幂级数

$$\sum_{k=0}^{\infty} \frac{1}{2^k} A^k$$
 收敛. 由公式 $\sum_{k=0}^{\infty} B^k = (I - B)^{-1}$, 得到

$$\sum_{k=0}^{\infty} \frac{1}{2^k} A^k = \left(I - \frac{1}{2} A\right)^{-1} = 2 \begin{pmatrix} \frac{5}{3} & -\frac{1}{3} & 1\\ \frac{1}{3} & \frac{1}{3} & 0\\ 1 & 0 & 1 \end{pmatrix}. (5 \%)$$

五、 $(20 \, \mathcal{G})$ 设A是n阶 Hermite 正定矩阵, B是n阶 Hermite 矩阵, 证明:

- 1. 存在可逆矩阵P,使得 $P^HAP=I$, $P^HBP=diag(\lambda_1,\lambda_2,\cdots,\lambda_n)$,并且 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 均为实数;
- 2. 存在正数 t_0 , 当 $t > t_0$ 时, tA + B也是 Hermite 正定矩阵;
- 3. 若 $A > B \ge 0$,则有 $|A B| \le |A|$.

证明及评分标准: 1. $A > 0 \Rightarrow$ 存在可逆矩阵 P_1 ,使得 $P_1^H A P_1 = I$. 由于 $P_1^H B P_1$ 也是 Hermite 矩阵,所以存在酉矩阵 P_2 ,使得

$$P_2^H(P_1^HBP_1)P_2 = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$
,

且 $\lambda_1, \lambda_2, \dots, \lambda_n$ 均为实数. 取 $P = P_1 P_2$, 即为要证的. (8分)

2. 显然, 对任意实数t, tA + B 也是 Hermi te 矩阵. 对题 1 中的实对角矩阵, 取正数 t_0 , 使得

$$t_0 + \lambda_1 \ge 0, t_0 + \lambda_2 \ge 0, \dots, t_0 + \lambda_n \ge 0,$$

则当 $t > t_0$ 时,有 $diag(t + \lambda_1, t + \lambda_2, \dots, t + \lambda_n) > 0$,即

$$P^{H}(tA+B)P = diag(t+\lambda_{1}, t+\lambda_{2}, \dots, t+\lambda_{n}) > 0$$

于是tA+B也是Hermite正定矩阵. (6分)

3. 根据题 1 的结论, 当 $A > B \ge 0$ 时, 有 $0 \le \lambda_i < 1$, $i = 1, 2, \dots, n$, 于是

$$|A - B| = \frac{1}{|\det P|^2} |P^H (A - B)P| = |A|(1 - \lambda_1)(1 - \lambda_2) \cdots (1 - \lambda_n) \le |A|. \quad (6 \ \%)$$

六、 $(10 \, \text{分})$ 设 $A \neq m \times n$ 实矩阵,且 $A \neq 0$.

- 1. 利用广义逆矩阵证明:对任意 $b \in R^m$,方程组 $A^T Ax = A^T b$ 相容;
- 2. 证明: $||AA^+||_2 = 1$.

证明及评分标准: 1. 由于 $(A^TA)^+ = A^+(A^+)^T$, $AA^+ = (AA^+)^T$, 所以 $(A^TA)(A^TA)^+(A^Tb) = A^TAA^+(A^+)^TA^Tb = A^T(AA^+)^T(AA^+)^Tb = A^Tb$, 因此方程组 $A^TAx = A^Tb$ 相容. (5 分)

2. 由于 $(AA^+)^T(AA^+) = (AA^+)^2 = AA^+$,且 $AA^+ \neq 0$,所以 $\lambda_{\max}[(AA^+)^T(AA^+)] = 1$,从而 $\|AA^+\|_2 = 1$. (5 分)

南京航空航天大学

Matrix Theory Midterm Nov. 22, 2014

第1页 (共5页)

矩阵论班	矩阵论班号: 学号				姓名				
题号	1	2	3	4	5	6	7	8	总分
得分									

Part I (70分,必做题)

第1题	10 分
得分	

Let P_4 be the vector space consisting of all real polynomials of degree less than 4 with usual addition and scalar multiplication.

(1) Let $S = \{ f \in P_4 \mid f \text{ has at least one real root} \}$. Determine if S is a subspace of P₄. Explain.

(2) Let x_1, x_2, x_3 be three distinct real numbers. For each pair of polynomials f and g in P_4 , define $< f, g > = \sum_{i=1}^{3} f(x_i)g(x_i)$. Determine if < f, g > defines an inner product on \mathbf{P}_4 . Explain

(1) S is not a subspace of P_A . Let f(x) = x+1, g(x) = -x+1. Then f(x) + g(x) = 2, which does not have real roots. Thus, S is not closed under addition. Hence, S is not a subspace of P₄

(2) It does not define an inner product on \mathbf{P}_4 . Let $f(x) = (x - x_1)(x - x_2)(x - x_3) \in \mathbf{P}_4$. Then $\langle f, f \rangle = 0$. It is obvious that $f \neq 0$. The axiom 1 in the definition of inner product is violated

第2题	15分
得分	

Consider the inner product space C[-1,1] with inner product defined by $\langle f,g \rangle = \frac{1}{2} \int_{-1}^{1} f(x)g(x)dx$.

$$< f, g > = \frac{1}{2} \int_{-1}^{1} f(x)g(x) dx$$

Let **S** be the subspace spanned by the set of vectors $\{1, x, x^2\}$

(1) Find an orthonormal basis for S.

(2) Let $f(x) = e^x$. Find a linear function(线性函数) $g(x) \in S$ such that ||f(x) - g(x)|| is minimal Solution

(1)
$$<1,1> = \frac{1}{2} \int_{-1}^{1} 1 dx = 1$$
, the first vector is 1.
 $< x,1> = \frac{1}{2} \int_{-1}^{1} x dx = 0$, the second vector is $\frac{x-0}{\|x-0\|} = \sqrt{3}x$
 $< x^{2},1>1+< x^{2},\sqrt{3}x>\sqrt{3}x=(\frac{1}{2} \int_{-1}^{1} x^{2} dx)1+(\frac{1}{2} \int_{-1}^{1} \sqrt{3}x^{3} dx)\sqrt{3}x=\frac{1}{3}$
The third vector is $\frac{x^{2}-\frac{1}{3}}{\|x^{2}-\frac{1}{3}\|} = \frac{\sqrt{45}}{2}(x^{2}-\frac{1}{3})$.

(2) $\{1,\sqrt{3}x\}$ is an orthonormal basis for $Span\{1,x\}$. g(x) must be the orthogonal projection of f(x)onto $Span\{1, x\}$. Suppose that $g(x) = a\sqrt{3}x + b$. Hence,

$$a = \langle f, 1 \rangle = \frac{1}{2} \int_{-1}^{1} e^{x} dx = \frac{1}{2} (e - e^{-1}),$$

$$b = \langle f, \sqrt{3}x \rangle = \frac{1}{2} \int_{-1}^{1} e^{x} \sqrt{3}x dx = \frac{\sqrt{3}}{2} \int_{-1}^{1} e^{x} x dx = \frac{\sqrt{3}}{2} [e^{x}x - e^{x}]_{-1}^{1} = \sqrt{3}e^{-1}$$

$$g(x) = \frac{1}{2} (e - e^{-1}) + 3e^{-1}x$$

第3题	10分
得分	

Given four points (-1,0), (0,1), (1,3) and (2,9) on the plane, find a linear function (线性函数) y = ax + b that best fits (拟合) the given data in the "least squares" sense (在最小二乘意义下).

Solution

The question can be formulated as finding the least squares solution to the following system

$$\begin{pmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 3 \\ 9 \end{pmatrix}.$$
 The least squares solutions are the solution to the following system

$$\begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 3 \\ 9 \end{pmatrix}.$$
 This system is simplified to $\begin{pmatrix} 6 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 21 \\ 13 \end{pmatrix}.$

This system has a unique solution $a = \frac{29}{10}, b = \frac{9}{5}$. The linear function is $y = \frac{29}{10}x + \frac{9}{5}$

第4题	15 分
得分	

For the given matrix

$$A = \begin{pmatrix} 1 & 3 & -2 & 1 \\ 2 & 1 & 6 & 2 \\ 3 & 4 & 4 & 3 \end{pmatrix} \in \mathbf{R}^{3 \times 4}$$

- (1) Find an orthonormal basis for N(A), the nullspace of A
- (2) Find the orthogonal projection matrix P from \mathbb{R}^4 to N(A)
- (3) What is the orthogonal projection matrix from \mathbb{R}^4 to $R(A^T)$? Explain.

Solution

(1) Reduce matrix A to its reduced row echelon form by performing elementary row operations.
$$A = \begin{pmatrix} 1 & 3 & -2 & 1 \\ 2 & 1 & 6 & 2 \\ 3 & 4 & 4 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & -2 & 1 \\ 0 & -5 & 10 & 0 \\ 0 & -5 & 10 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & -2 & 1 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 4 & 1 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

A basis for N(A) is $\{(1,0,0,-1)^T,(-4,2,1,0)^T\}$

Applying the Gram-Schmidt orthogonalization process, we obtain an orthonormal basis

$$(\frac{1}{\sqrt{2}},0,0,-\frac{1}{\sqrt{2}})^T,\frac{1}{\sqrt{13}}(-2,2,1,-2)^T$$
.

Find the vector projection of $(-4, 2, 1, 0)^T$ onto $(\frac{1}{\sqrt{2}}, 0, 0, -\frac{1}{\sqrt{2}})^T$, which is

$$(-4,2,1,0)^{T} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} (-4,2,1,0)^{T} = (-2,0,0,2)^{T}$$

$$(-4,2,1,0)^{T} - (-2,0,0,2)^{T} = (-2,2,1,-2)^{T} = (-2,2,1,-2)^{T}$$

$$(-4,2,1,0)^T - (-2,0,0,2)^T = (-2,2,1,-2)^T = (-2,2,1,-2)^T$$

Normalize this vector, we obtain $\frac{1}{\sqrt{13}}(-2,2,1,-2)^T$.

(2)

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{2}{\sqrt{13}} \\ 0 & \frac{2}{\sqrt{13}} \\ 0 & \frac{1}{\sqrt{13}} \\ -\frac{1}{\sqrt{2}} & -\frac{2}{\sqrt{13}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} \\ -\frac{2}{\sqrt{13}} & \frac{2}{\sqrt{13}} & \frac{1}{\sqrt{13}} & -\frac{2}{\sqrt{13}} \end{pmatrix} = \begin{pmatrix} \frac{21}{26} & -\frac{4}{13} & -\frac{2}{13} & -\frac{5}{26} \\ -\frac{4}{13} & \frac{4}{13} & \frac{2}{13} & -\frac{4}{13} \\ -\frac{2}{13} & \frac{2}{13} & \frac{1}{13} & -\frac{2}{13} \\ -\frac{5}{26} & -\frac{4}{13} & -\frac{2}{13} & \frac{21}{26} \end{pmatrix}$$

(3) The projection from \mathbf{R}^4 to $R(A^T)$ is I-P.

第 5 题	20分
得分	

Let **V** be the vector space spanned by the set of functions $\{1, \sin x, \cos x\}$ over the real number field with usual addition and scalar multiplication. Let σ be a linear transformation on **V** defined by

$$\sigma(p(x)) = 2p(x) + p'(x)$$
. (注: $p'(x)$ 为 $p(x)$ 的一阶导数)

- (1) Find the kernel and image of σ .
- (2) Find the matrix A representing σ with respect to the ordered basis $[1, \sin x, \cos x]$.
- (3) Is matrix A diagonalizable over the real number field? Why?
- (4) Find all one-dimensional σ -invariant subspaces of **S**.

Solution

(1) Let $p(x) = a + b\sin x + c\cos x$. $\sigma(p(x)) = 0$ if and only if a = 0.2b + c = 0.2c + b = 0.2c + b

 $2a + 2b\sin x + 2c\cos x + b\cos x - c\sin x = 0$, if and only if a = 0, 2b - c = 0, 2c + b = 0 if and only if a = b = c = 0

Hence, the kernel of σ is $\{0\}$,

The image of σ is spanned by $\sigma(1) = 2$, $\sigma(\sin x) = 2\sin x + \cos x$, $\sigma(\cos x) = 2\cos x - \sin x$. Hence, the image of σ is the subspace spanned by $\{1, \sin x, \cos x\}$.

(2) $\sigma(1) = 2 \cdot 1 + 0 \cdot \sin x + 0 \cdot \cos x$ $\sigma(\sin x) = 0 \cdot 1 + 2 \cdot \sin x + 1 \cdot \cos x$ $\sigma(\cos x) = 0 \cdot 1 + (-1) \cdot \sin x + 2 \cdot \cos x$

The representing matrix is $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix}$. It is not diagonalizable over the real number field since this

matrix has complex eigenvalues.

(3) A one-dimensional σ -invariant subspace is a subspace spanned by an eigenvector of σ . Because σ has only one real eigenvalue, there is a unique one-dimensional σ -invariant subspace which is spanned by $\{1\}$.

Part II (选做题, 30 分)

请在第 6、第 7、第 8 题中选择两题解答. 如果你做了三题,请在题号上画圈标明需要批改的两题. 否则,阅卷者会随意挑选两题批改,这可能影响你的成绩.

第6题	15 分
得分	

Let $S,\,T,$ and U be subspaces of a vector space V.

Determine if $S \cap (T+U) = (S \cap T) + (S \cap U)$ always true. (注: + 表示子空间的和) If $S \cap (T+U) = (S \cap T) + (S \cap U)$ is always true, prove it. Otherwise, give a <u>counter example</u>(反例).

第7题	15 分
得分	

A matrix $A \in \mathbf{R}^{m \times n}$ is said to have a right inverse (右逆) if there exists a matrix $P \in \mathbf{R}^{n \times m}$ such that $AP = I_m$.

- (a) If A has a right inverse, show that the column vectors of A span \mathbb{R}^m
- (b) Is it possible for an $m \times n$ matrix to have a right inverse if n < m? $n \ge m$? Explain.

第8题	15分
得分	

A matrix $A \in \mathbb{C}^{n \times n}$ is said to be skew-hermitian if $A^H = -A$. Show that an eigenvalue of a skew-hermitian matrix is either 0 or purely imaginary(纯虚数).

选做题参考解答:

第6题

Solution: The statement is not always true. For example, let $\mathbf{V} = \mathbf{R}^2$, $\mathbf{S} = Span\{(1,1)^T\}$, $\mathbf{T} = Span\{(1,0)^T\}$, $\mathbf{U} = Span\{(0,1)^T\}$. Then

$$\begin{split} S & \cap T = \{0\}, \ S \cap U = \{0\}, \ T + U = R^2, \\ S & \cap (T + U) = S \cap R^2 = S, \\ (S \cap T) + (S \cap U) = \{0\} + \{0\} = \{0\} \end{split}$$

Two sides are not the same since $S \neq \{0\}$.

第 7 题

Proof

- (a) If A has a right inverse, then for any vector $\mathbf{x} \in \mathbf{R}^m$, we have $AP\mathbf{x} = I_m\mathbf{x} = \mathbf{x}$. $A(P\mathbf{x}) = \mathbf{x}$. Since $P\mathbf{x}$ is a vector in \mathbf{R}^n , $A(P\mathbf{x})$ is a linear combination of the column vectors of A. Thus, the column vectors of A span \mathbf{R}^m .
- (b) If n < m, then r(A) < m. It is impossible for the column vectors of A to span \mathbb{R}^m since the dimension of tR(A) is less than m. Hence, matrix A cannot have a right inverse.

If $n \ge m$, matrix A may or may not have a right inverse. In the case of r(A) < m, matrix A cannot have a right inverse. In the case of r(A) = m, $R(A) = \mathbf{R}^m$ since R(A) is a subspace of \mathbf{R}^m and the dimension of R(A) is equal to the dimension of \mathbf{R}^m . There exists $\mathbf{p}_i \in \mathbf{R}^n$ such that $\mathbf{e}_i = A\mathbf{p}_i$ for $i = 1, 2, \dots, m$. Let $P = (\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_m)$, we obtain that $AP = I_m$.

第8题

Proof Let λ be an eigenvalue of A, \mathbf{x} be an eigenvector of A belonging to λ .

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

$$\mathbf{x}^H A \mathbf{x} = \lambda \mathbf{x}^H \mathbf{x} ,$$

Take the conjugate transpose of the equality above, we obtain that

$$-\mathbf{x}^H A \mathbf{x} = \overline{\lambda} \mathbf{x}^H \mathbf{x} .$$

Hence,
$$\overline{\lambda} \mathbf{x}^H \mathbf{x} + \lambda \mathbf{x}^H \mathbf{x} = \mathbf{0}$$
.

Since $\mathbf{x}^H \mathbf{x} \neq \mathbf{0}$, we obtain that $\overline{\lambda} + \lambda = 0$. Thus, λ is either 0 or pure imaginary.

Method 2

Consider the matrix iA. $(iA)^H = -i(-A) = iA$. So iA is Hermitian.

We know that the eigenvalues of iA are all real numbers. There is a unitary matrix U such that $U^H(iA)U = D$, where D is a diagonal matrix whose diagonal elements are real numbers.

Then $U^H A U = -iD$. Matrix A is similar to matrix -iD. Thus, the eigenvalues of A are purely imaginary or zero.

Method 3

Consider the matrix iA. $(iA)^H = -i(-A) = iA$. So iA is Hermitian.

We know that the eigenvalues of iA are all real numbers.

Suppose that $\det(\lambda I - iA) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$, where $\lambda_1, \lambda_2, \cdots, \lambda_n$ are real numbers.

Then
$$\det(\lambda I - A) = i^{-n} \det(i\lambda I - iA) = i^{-n} (i\lambda - \lambda_1)(i\lambda - \lambda_2) \cdots (i\lambda - \lambda_n)$$

= $(\lambda + i\lambda_1)(\lambda + i\lambda_2) \cdots (\lambda + i\lambda_n)$

Hence, the eigenvalues of A are $-i\lambda_1, -i\lambda_2, \dots, -i\lambda_n$. Each of the eigenvalues is either purely imaginary or zero.

《矩阵论》复习提纲与习题选讲

Chapter 1 线性空间和内积空间

内容总结:

- 线性空间的定义、基和维数;
- 一个向量在一组基下的坐标;
- 线性子空间的定义与判断;
- 子空间的交
- 内积的定义;
- 内积空间的定义;
- 向量的长度、距离和正交的概念;
- Gram-Schmidt 标准正交化过程;
- 标准正交基。

习题选讲:

- 1、设 $R[x]_3$ 表示实数域R上次数小于 3 的多项式再添上零多项式构成的线性空间(按通常多项式的加法和数与多项式的乘法)。
 - (1) 求 $R[x]_3$ 的维数; 并写出 $R[x]_3$ 的一组基; 求 $1+x+2x^2$ 在所取基下的坐标;
 - (2) 在R[x],中定义

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx$$
, $f(x),g(x) \in R[x]_n$

证明:上述代数运算是内积;求出R[x],的一组标准正交基;

- (3) 求 $1+x+2x^2$ 与 $1-x+2x^2$ 之间的距离;
- (4) 证明: R[x], 是 R[x], 的子空间;
- (5) 写出 R[x], $\cap R[x]$, 的维数和一组基;

- 二、 设 $R^{2\times 2}$ 是实数域R上全体 2×2 实矩阵构成的线性空间(按通常矩阵的加 法和数与矩阵的乘法)。
 - (1) 求 $R^{2\times 2}$ 的维数,并写出其一组基;
 - (2) $\begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}$ 在(1)所取基下的坐标;
 - (3) 设W 是实数域R 上全体 2×2 实对称矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。

证明: $W \in \mathbb{R}^{2\times 2}$ 的子空间; 并写出W 的维数和一组基;

(4) 在W中定义内积

$$(A,B) = tr(B^T A), A,B \in W$$

求出W 的一组标准正交基;

- (5) 求 $\begin{bmatrix} 1 & 3 \\ 3 & 0 \end{bmatrix}$ 与 $\begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$ 之间的距离;
- (6) 设V 是实数域 R 上全体 2×2 实上三角矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。

证明: V 也是 R^{2x2} 的子空间; 并写出 V 的维数和一组基;

(7) 写出子空间 $W \cap V$ 的一组基和维数。

Chapter 2 线性映射与线性变换

内容总结:

- 线性映射在基对下的矩阵表示;
- 矩阵的典型关系:相抵(等价)、相似与相合;
- 线性变换在基下的矩阵表示:
- 线性变换在不同基下的矩阵之间的关系——相似;
- 矩阵的特征值和特征向量的定义与计算;
- 矩阵可对角化的条件。

习题选讲:

- 一、 设 $R[x]_3$ 表示实数域R上次数小于 3 的多项式再添上零多项式构成的线性空间(按通常多项式的加法和数与多项式的乘法)。
 - (1) 求R[x],的维数,并写出R[x],的一组基;
 - (2) $1+x + 2x^2$ 在(1) 所取基下的坐标;
 - (3) 求 $1+x^3+2x^2$ 与 $1-x+2x^2$ 之间的距离:
 - (4) 在R[x],中定义内积

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx$$
, $f(x),g(x) \in R[x]_n$

求出R[x],的一组标准正交基;

(5) 在 $R[x]_3$ 中定义线性变换 $D: D(f(x))=f'(x), f(x) \in R[x]_n$ 求D在(1) 中所取基下的矩阵表示.

二、设
$$A = \begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix}$$

- (1) 求 A 的特征多项式和 A 的全部特征值;
- (2) 求 A 的全部特征向量;
- (3) 求每个特征值的代数重数和几何重数;
- (4) 判断 A 是否可对角化。

Chapter3 礼矩阵与矩阵的 Jordan 标准形

内容总结:

- λ矩阵的定义与运算;
- λ 矩阵的 smith 标准形、不变因子、行列式因子和初等因子;
- 矩阵的相似的条件;
- 矩阵的 Jordan 标准形;
- 最小多项式理论

习题选讲:

一、设
$$A = \begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix}$$

- (1) 求A的特征多项式和A的全部特征值;
- (2) 求A的行列式因子、不变因子、初等因子;
- (3) 写出 A 的 Jordan 标准形;
- (4) 写出 A 的最小多项式
- (5) 求 $A^4 A^2$ 。

Chapter4 矩阵的因子分解

内容总结:

- 矩阵的满秩分解;
- 矩阵的三角分解;
- 了解矩阵的 QR 分解;
- 了解矩阵的 schur 定理和奇异值分解

习题选讲:

一、(1) 已知
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 1 & 9 \\ 1 & 2 & -6 \end{bmatrix}$$
, 作出矩阵 A 的 LU 分解;

(2) 已知
$$A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$
, 作出矩阵 A 的满秩分解;

Chapter5 Hermite 矩阵与正定矩阵

- Hermite 矩阵的定义和性质;
- 正定矩阵的定义、性质和判定定理;
- 矩阵不等式

习题选讲:

__,

- (1) 设 $A = \begin{pmatrix} 2 & i & i \\ -i & 2 & i \\ -i & -i & 2 \end{pmatrix}$, 其中 $i = \sqrt{-1}$, 证明: A > 0;
- (2) 设 $A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, 问: A > B吗? 说明理由;
- (3) 设A,B均为n阶 Hermite 矩阵,且A>0, $B\geq 0$,且AB=BA,证明: $AB\geq 0$;
- (4) 设A,B均为n阶 Hermite 矩阵,且A>0,即A正定, 证明: AB 相似于实对角矩阵;
- (5) 设A,B均为n阶 Hermite 矩阵,A>0,且AB>0;证明: B>0;

Chapter6 范数与极限

- 向量范数
- 矩阵范数-1、2、 ∞ 、F 范数的定义与计算:
- 范数等价性--范数不等式

习题选讲:

- (2) 设 $A \in C^{n \times n}$ 是可逆矩阵, $\| \cdot \|$ 是满足 $\| I \| = I$ 的相容矩阵范数,证明: $\| A^{-1} \| \ge \| A \|^{-1}$;
- (3) 设 $A \in C^{m \times n}$, 证明: $||A||_2 \le ||A||_F \le \sqrt{rank(A)} ||A||_2$;

Chapter8 广义逆矩阵

- 广义逆矩阵的定义
- 广义逆矩阵 A^{+} 的定义、性质、计算
- 利用广义逆矩阵 A⁺ 判断线性方程组的相容性,并表示通解形式

习题选讲:

(1) 叙述广义逆矩阵 A^+ 的定义;

(2) 设
$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 2 & 1 & -1 \\ 1 & 0 & 2 & 1 \end{pmatrix}$$
; 作出 A 的满秩分解,并计算 A^+ ;

(3) 利用(2)中广义逆矩阵判断如下线性方程组

$$Ax = [6.3.31^T]$$

是否相容? 若相容, 求其通解; 若不相容, 求其极小最小二乘解。