LECTURE NOTES

NON LIFE INSURANCE First Draft

Prof. Dr. Ricardo Gatto

SWITZERLAND-SPAIN-ECUADOR

Índice

1. Individual Risk and Distributions

3

1. Individual Risk and Distributions

A non negative random variable is called a **loss** and it its distribution a **loss distribution**. $X \sim Exponential(\alpha)$ means that X has density $f_X(x) = \alpha e^{-\alpha x}$ and distribution function (d.f) $F_X(x) = 1 - e^{-\alpha x} \ \forall x > 0$ and $\alpha > 0$.

Let $Y = e^x$,

$$F_Y(Y) = F_X(logY)$$

$$= 1 - e^{\alpha log(y)}$$

$$= 1 - y^{-\alpha}$$

Is called the **Pareto Distribution**. If Y follows a Pareto distribution, denoted $Y \sim Pareto(\alpha)$

Exponential distribution with parameter α

 $X \sim Exponential(\lambda)$ and $Y \sim X^{\frac{1}{\tau}} \ \forall \tau > 0$

$$F_Y(Y) = F_X(Y^{\tau})$$
$$= 1 - e^{-\lambda y^{\tau}} \quad \forall y > 0$$

Y follows the **Weibull distribution**, τ is called the Weibull index. It is denoted by $Y \sim Weibull(\tau, \lambda)$