

BLM2502 Theory of Computation

Pushdown Automata PDA

Pushdown Automaton -- PDA

Input String

Initial Stack Symbol

The States

C	•
h	
e	
\$	

C	—
b	
h	
P	
\$	

h	•
\mathbf{e}	
\$	

$$\begin{array}{c}
q_1 & a, \varepsilon \to \varepsilon \\
 & q_2
\end{array}$$

No Change

b	4
h	
$\mid e \mid$	
\$	

Pop from Empty Stack

If the automaton attempts to pop from empty stack then it halts and rejects input

Non-Determinism

PDAs are non-deterministic

Allowed non-deterministic transitions

Example PDA

PDA M:

$$L(M) = \{a^n b^n : n \ge 0\}$$

$$L(M) = \{a^n b^n : n \ge 0\}$$

Basic Idea:

1. Push the a's on the stack

2. Match the b's on input with a's on stack

Execution Example: Time 0

Input

current
$$a, \varepsilon \to a$$
 $b, a \to \varepsilon$
state
$$b, a \to \varepsilon$$

$$\varepsilon, \varepsilon \to \varepsilon$$

$$b, a \to \varepsilon$$

$$\varepsilon, \$ \to \$$$

Input

$$a,\varepsilon \to a \qquad b,a \to \varepsilon$$

$$q_0 \qquad \varepsilon,\varepsilon \to \varepsilon \qquad q_1 \qquad b,a \to \varepsilon \qquad \varepsilon,\$ \to \$ \qquad q_3$$

Input

Input

Input

Input

$$a,\varepsilon \to a \qquad b,a \to \varepsilon$$

$$q_0 \qquad \varepsilon,\varepsilon \to \varepsilon \qquad q_1 \qquad b,a \to \varepsilon \qquad \varepsilon,\$ \to \$ \qquad q_3$$

Input

$$a,\varepsilon \to a \qquad b,a \to \varepsilon$$

$$q_0 \quad \varepsilon,\varepsilon \to \varepsilon \quad q_1 \quad b,a \to \varepsilon \quad \varphi_2 \quad \varepsilon,\$ \to \$ \quad \varphi_3$$

Time 7

Input

$$a,\varepsilon \to a \qquad b,a \to \varepsilon$$

$$q_0 \quad \varepsilon,\varepsilon \to \varepsilon \qquad q_1 \quad b,a \to \varepsilon \qquad \varepsilon,\$ \to \$$$

Input

A string is accepted if there is a computation such that:

All the input is consumed AND

The last state is an accepting state

we do not care about the stack contents at the end of the accepting computation

Input

current
$$a, \varepsilon \to a$$
 $b, a \to \varepsilon$
state
$$b, a \to \varepsilon$$

$$c, \varepsilon \to \varepsilon \to \varepsilon$$

$$q_1 \to b, a \to \varepsilon$$

$$q_2 \to \varepsilon, \varepsilon \to \varepsilon$$

Input

Input

current state

$$Q_0 \xrightarrow{\mathcal{E},\mathcal{E} \to \mathcal{E}}$$

$$a, \varepsilon \rightarrow a$$

$$b,a \rightarrow \varepsilon$$
 q_2

$$b,a \rightarrow \varepsilon$$

$$\varepsilon, \$ \rightarrow \$$$

Input

$$Q_0 \xrightarrow{\varepsilon,\varepsilon \to \varepsilon}$$

$$a,\varepsilon \to a$$

$$b,a \rightarrow \varepsilon$$

Input

Input

Stack

reject

current
$$a, \varepsilon \to a$$
 $b, a \to \varepsilon$ state $b, a \to \varepsilon$ $e, s \to s$

There is no accepting computation for aab

The string aab is rejected by the PDA

Another PDA example

PDA
$$M: L(M) = \{vv^R : v \in \{a,b\}^*\}$$

$$a, \varepsilon \to a$$
 $a, a \to \varepsilon$

$$b, \varepsilon \to b$$
 $b, b \to \varepsilon$

$$q_0$$

$$\varepsilon, \varepsilon \to \varepsilon$$

$$q_1$$

$$\varepsilon, \$ \to \$$$

Basic Idea:

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

- 1. Push v on stack

 - $a, \varepsilon \rightarrow a$
 - $b, \varepsilon \rightarrow b$
- $\varepsilon, \varepsilon \to \varepsilon$

2. Guess

middle

of input

3. Match v^R on input with v on stack

 $a, a \rightarrow \varepsilon$ 4. Match $b, b \rightarrow \varepsilon$ found $\varepsilon, \$ \rightarrow \$$

Execution Example: Time 0

Input

$$a, \varepsilon \rightarrow a$$

$$b, \varepsilon \rightarrow b$$

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$

$$\mathcal{E},\mathcal{E} \to \mathcal{E}$$

$$\varepsilon$$
,\$ \rightarrow \$

Input

Stack

$a, \varepsilon \rightarrow a$

$$b, \varepsilon \rightarrow b$$

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$

$$\varepsilon,\varepsilon \to \varepsilon$$

$$q_1$$

$$\varepsilon$$
,\$ \rightarrow \$

Input

$$a, \varepsilon \to a$$

$$b, \varepsilon \to b$$

$$\varepsilon, \varepsilon \to \varepsilon$$

$$a, a \to \varepsilon$$

$$b, b \to \varepsilon$$

$$q_1 = \varepsilon$$

Input

Guess the middle of string

Stack

$$a, \varepsilon \rightarrow a$$
 $b, \varepsilon \rightarrow b$

$$\varepsilon, \varepsilon \rightarrow \varepsilon$$

 $b, b \rightarrow \varepsilon$

 $a, a \rightarrow \varepsilon$

Input

$$a, \varepsilon \to a$$
 $b, \varepsilon \to b$

$$\varepsilon, \varepsilon \to \varepsilon$$

$$a, a \to \varepsilon$$

$$b, b \to \varepsilon$$

$$a, \varepsilon \rightarrow a$$

$$b, \varepsilon \rightarrow b$$

$$b, b \rightarrow \varepsilon$$

$$\mathcal{E},\mathcal{E} \to \mathcal{E}$$

$$\mathcal{E},\mathcal{E} \to \mathcal{E}$$

$$\varepsilon, \$ \rightarrow \$$$

Input

$$a, \varepsilon \rightarrow a$$

$$b, \varepsilon \rightarrow b$$

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$

Rejection Example:

Time 0

Input

$$a, \varepsilon \rightarrow a$$

$$b, \varepsilon \rightarrow b$$

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$

$$\mathcal{E},\mathcal{E} \to \mathcal{E}$$

$$\varepsilon$$
,\$

$$\varepsilon$$
,\$ \rightarrow \$

Input

Stack

$a, \varepsilon \rightarrow a$

$$b, \varepsilon \rightarrow b$$

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$

$$\varepsilon,\varepsilon \to \varepsilon$$

$$\varepsilon$$
, $\$$

$$\varepsilon$$
,\$ \rightarrow \$

Input

$$a, \varepsilon \to a$$

$$b, \varepsilon \to b$$

$$\varepsilon, \varepsilon \to \varepsilon$$

$$a, a \to \varepsilon$$

$$b, b \to \varepsilon$$

$$\varepsilon,\$ \to \$$$

Input

Guess the middle of string

Stack

$$a, \varepsilon \to a$$
 $b, \varepsilon \to b$

$$\varepsilon, \varepsilon \to \varepsilon$$

$$b, b \rightarrow \varepsilon$$

 ε ,\$ \rightarrow \$

 $a, a \rightarrow \varepsilon$

Input

$$a, \varepsilon \rightarrow a$$
 $b, \varepsilon \rightarrow b$

$$\varepsilon, \varepsilon \rightarrow \varepsilon$$

Input

There is no possible transition.

Input is not consumed

Stack

$$a, \varepsilon \rightarrow a$$

$$b, \varepsilon \rightarrow b$$

$$b, b \rightarrow \varepsilon$$

 $a, a \rightarrow \varepsilon$

$$\varepsilon,\$ \to \$$$

Another computation on same string:

Input

 $a \mid b \mid b \mid b$

Time 0

Stack

$$a, \varepsilon \rightarrow a$$

 $b, \varepsilon \rightarrow b$

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$

$$\mathcal{E},\mathcal{E} \to \mathcal{E}$$

$$(q_2)$$

Input

Stack

$a, \varepsilon \rightarrow a$

$$b, \varepsilon \rightarrow b$$

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$

$$\varepsilon,\varepsilon \to \varepsilon$$

$$\varepsilon$$
,\$ \rightarrow \$

Input

$$a, \varepsilon \to a$$

$$b, \varepsilon \to b$$

$$\varepsilon, \varepsilon \to \varepsilon$$

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$

Input

$$a, \varepsilon \rightarrow a$$

$$b, \varepsilon \rightarrow b$$

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$

$$\varepsilon,\varepsilon \to \varepsilon$$

$$q_1$$

$$\varepsilon, \$ \rightarrow \$$$

Input

$$a, \varepsilon \rightarrow a$$

$$b, \varepsilon \rightarrow b$$

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$

$$\varepsilon,\varepsilon \to \varepsilon$$

$$\varepsilon$$
,\$ \rightarrow \$

Input

No accept state is reached

b	-
b	
b	
a	
\$	

$$a, \varepsilon \rightarrow a$$

$$b, \varepsilon \rightarrow b$$

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$

$$\varepsilon, \varepsilon \to \varepsilon$$

$$q_1$$

$$\varepsilon$$
,\$ \rightarrow \$

There is no computation that accepts string abbb

 $abbb \notin L(M)$

$$a, \varepsilon \to a$$
 $a, a \to \varepsilon$
 $b, \varepsilon \to b$ $b, b \to \varepsilon$
 q_0 $\varepsilon, \varepsilon \to \varepsilon$ q_1 $\varepsilon, \$ \to \$$

Pushing & Popping Strings

Example: $a, eb \rightarrow cdf$ q_1 a astack push top string pop string h h Replace e e

\$

Another PDA example

$$L(M) = \{w \in \{a,b\}^*: n_a(w) = n_b(w)\}$$

PDA M

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$
 $a, 1 \rightarrow \varepsilon$ $b, 0 \rightarrow \varepsilon$
 $\varepsilon, \$ \rightarrow \$$

Execution Example: Time 0

Input

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$

$$a,1 \rightarrow \varepsilon$$
 $b,0 \rightarrow \varepsilon$

current state

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$

$$a,1 \rightarrow \varepsilon$$

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b,0 \rightarrow \varepsilon$$

Stack

$$a, \$ \to 0\$$$
 $b, \$ \to 1\$$

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$a,1 \rightarrow \varepsilon$$

$$(b,0 \to \varepsilon)$$

Stack

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$a,1 \rightarrow \varepsilon$$
 $b,0 \rightarrow \varepsilon$

$$b,0 \rightarrow \varepsilon$$

$$\varepsilon, \$ \rightarrow \$$$

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$

$$a, 0 \rightarrow 00$$

$$a,1 \to \varepsilon$$
 $b,0 \to \varepsilon$

Stack

$$a, \$ \to 0\$$$
 $b, \$ \to 1\$$

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b.1 \rightarrow 11$$

$$(a,1 \rightarrow \varepsilon)$$

$$b,0 \rightarrow \varepsilon$$

Stack

$$a, \$ \to 0\$$$
 $b, \$ \to 1\$$

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$(a,1 \rightarrow \varepsilon)$$

$$b,0 \rightarrow \varepsilon$$

Stack

Input

$$a, \$ \to 0\$$$
 $b, \$ \to 1\$$

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$a,1 \rightarrow \varepsilon$$

$$b,0 \rightarrow \varepsilon$$

Formalities for PDAs

$$q_1 \xrightarrow{a, w_1 \rightarrow w_2} q_2$$

Transition function:

$$\delta(q_1,a,w_1) = \{(q_2,w_2)\}$$

Transition function:

$$\delta(q_1,a,w_1) = \{(q_2,w_2), (q_3,w_3)\}$$

Formal Definition

Pushdown Automaton (PDA)

Instantaneous Description

Example:

Instantaneous Description

 $(q_1,bbb,aaa\$)$

Time 4:

Input

 $a,\varepsilon \to a$

Stack

\$

 $\mathcal{E},\mathcal{E} \to \mathcal{E}$

 $b,a \rightarrow \varepsilon$

 $b,a \to \varepsilon$

 $\varepsilon,\$ \to \$$

Example:

Instantaneous Description

$$(q_2,bb,aa\$)$$

Γime 5:

$$\varepsilon,\varepsilon \to \varepsilon \qquad b,a \to \varepsilon$$

$$q_0 \qquad q_1 \qquad q_2$$

\$
Stack

 ε ,\$ \rightarrow \$

a

a

We write:

$$(q_1,bbb,aaa\$) \succ (q_2,bb,aa\$)$$

Time 4 Time 5

A computation:

$$(q_0, aaabbb,\$) \succ (q_1, aaabbb,\$) \succ$$

 $(q_1, aabbb, a\$) \succ (q_1, abbb, aa\$) \succ (q_1, bbb, aaa\$) \succ$
 $(q_2, bb, aa\$) \succ (q_2, b, a\$) \succ (q_2, \varepsilon,\$) \succ (q_3, \varepsilon,\$)$

$$(q_0, aaabbb,\$) \succ (q_1, aaabbb,\$) \succ$$

 $(q_1, aabbb, a\$) \succ (q_1, abbb, aa\$) \succ (q_1, bbb, aaa\$) \succ$
 $(q_2, bb, aa\$) \succ (q_2, b, a\$) \succ (q_2, \varepsilon,\$) \succ (q_3, \varepsilon,\$)$

For convenience we write:

$$(q_0, aaabbb,\$) \stackrel{*}{\succ} (q_3, \varepsilon,\$)$$

Language of PDA

Language L(M) accepted by PDA M:

$$L(M) = \{w: (q_0, w, z) \succeq^* (q_f, \varepsilon, s)\}$$

Initial state

Accept state

Example:

$$(q_0, aaabbb,\$) \succ (q_3, \varepsilon,\$)$$

 $aaabbb \in L(M)$

PDA M

PDAM:

Therefore:

$$L(M) = \{a^n b^n : n \ge 0\}$$

PDA M