Содержание

1	Час	ть 1		3
	1.1	Физич	пеские основы работы п/п приборов	3
		1.1.1	От чего зависит проводимость п/п и каким образом ею мож-	
			но управлять?	3
		1.1.2	Статистика Ферми-Дирака	5
		1.1.3	Уравнение переноса. Какую информацию содержит это урав-	
			нение?	7
		1.1.4	Уравнение непрерывности, какие процессы в полупроводнике описывает это уравнение?	S
		1.1.5	Каково различие между симметричным, асимметричным и резко асимметричным p-n переходами? В каких электронных приборах такие переходы встречаются?	10
		1.1.6	Какова неравновесная концентрация неосновных носителей	12
		1.1.7	заряда на границе р и n?	15
		1.1.8	Чем определяется инерционность pn-перехода? Зависит ли она от режима работы?	19
		1.1.9	Чем определяется тепловой ток p-n перехода? Какую информацию несёт в себе его значение?	22
		1.1.10	Эквивалентная схема рп-перехода и совокупность ее параметров	24
	1.2	Лиоль	и вторичные источники напряжения (питания)	26
	1.2	диодв 1.2.1	Какова совокупность параметров вторичного источника пи-	
		1.0.0	тания? Дать им определение	26
		1.2.2 1.2.3	Однополупериодные выпрямители, их свойства	28
			телей и сравнить их свойства	28
		1.2.4	Умножитель напряжения	30
		1.2.5	Какова система параметров диода и как она связана с эквивалентной схемой диода? Любой ли диод можно представить	0.1
		1.2.6	с помощью этой схемы?	31
		1.2.7	параметров указывается Uобр Iпр. сред, I пр. макс Влияет ли на величину выходного напряжения ёмкость сгла-	34
			живающего конденсатора, устанавливаемого на выходе вы-	
			прямителя? Каково это напряжение?	34
		1.2.8	Стабилитрон. ВАХ Система параметров. Применение	36
		1.2.9	Дать определение коэффициенту стабилизации параметрического стабилизатор напряжения. Какие существуют пути	
			улучшения этого показателя?	37

	1.2.10	Туннельный диод	41
	1.2.11	Варикап. Свойства, режимы работы, области применения	43
	1.2.12	Фотодиод	45
2	Часть 2		46
3	Часть 3		47

1 Часть 1

1.1 Физические основы работы п/п приборов

1.1.1 От чего зависит проводимость π/π и каким образом ею можно управлять?

К полупроводникам относят вещества, которые при комнатной температуре имеют удельное электрическое сопротивление ρ в пределах от $10^{-3} \div 10^{-2} - 10^{8} \div 10^{9}$ Ом×см.

Сопротивление чистых полупроводников сильно зависит от температуры, причём с ростом температуры оно уменьшается. Так, для полупроводников температурный коэффициент может достигать значений 5-6% на 1° С.

В транзисторах чаще всего используются кремний и германий. Однако закономерности, характерные для этих материалов, распространяются на весь класс полупроводников.

Германий и кремний являются IV-валентными элементами и имеют **тетра- эдрический** тип решётки, или решётку типа **алмаза**, для которой характерно одинаковое расстояние центрального атома от четырёх угловых. Каждый угловой в свою очередь является центровым для четырёх других ближайших атомов. Совокупность тетраэдров образует элементарную ячейку.

Удобно пользоваться плоским эквивалентом тетраэдрической структуры, в котором сохранена главная особенность решетки типа алмаза(равенство расстояний).

Рис. 1: "Плоский" эквивалент тетраэдрической решётки

Такая совершенно однородная структура, представленная на Рис. 9, характерна лишь для кристалла, который имеет температуру абсолютного нуля. По мере нагревания часть валентных связей нарушается.

Нарушение валентных связей приводит к одновременному образованию свободных элементов и пустых мест, - к т.н. генерации пар электрон-дырка. Дырка ведёт себя подобно частице с элементарным положительным зарядом.

Таким образом, в полупроводниках имееются два типа подвижных носителей заряда - электроны и дырки, причём при нагревании чистого и однородного полупроводника (называемого **собственным**), свободные электроны и дырки всегда образуются парами.

Проводимость, обусловленную наличием примесных атомов, нарушающий структуру кристаллической решетки, называют **примесной** или **дефектной**.

• Электронная проводимость или проводимость n-типа

Если ввести в n-валентный полупроводник (n+1)-валентную примесь, то n из ее валентных электронов образуют устойчивую связь. Один электрон оказывается слабо связанным с ядром и достаточно легко отрывается от него и делается свободным. При этом примесный атом превращается в неподвижный ион с единичным положительным зарядом. Тк неподвижен \Rightarrow не может участвовать в проводимости. Свободные электроны примесного происхождения добавляются к собственным свободным электронам, порожденным термогенерацией \Rightarrow проводимость полупроводника делается преимущественно электронной. Такие проводники называются проводниками n-типа. Примеси, обусловливающие электронную проводимость, называются донорными.

• Дырочная проводимость или проводимость р-типа

Если ввести в n-валентный полупроводник (n-1)-валентную примесь, то (n-1) ее электронов образуют валентную связь. Однако для образования устойчивой связи требуется дополнительный электрон. Этот электрон отбирается из основной решётки и превращает атом бора в неподвижный отрицательный ион. На том месте, откуда пришёл электрон, образуется дырка, которая добавляется к собственным дыркам, порожденным термогенерацией. Такие проводники называются проводниками р-типа. Примеси называются акцепторными.

Отрыв "лишнего"электрона от донора и "недостающего"электрона для акцептора требует затраты некоторой энергии(энергия ионизации или активации примеси).

Т.к. в п/п один тип подвижных носителей заряда превалирует над другим, принято называть те носители, которые составляют большинство, основными. Меньшинство - неосновными.

 Π/Π с т.з. зонной теории:

Рис. 2: Полупроводники (зонная теория)

1.1.2 Статистика Ферми-Дирака.

Т.к. электроны являются фермионами (частицами с полуцелым спином), то они подчиняются принципу исключения Паули, который утверждает, что в одном и том же состоянии может находится не более 1 фермиона, следовательно на одной орбитали может находиться не более 2-х электронов (с положительной и отрицательной проекцией спина).

Электроны, находясь в энергетическом уровне материалом (полупроводников в частности), находятся под влиянием электрического поля атома. Следовательно, система из достаточно большого количества электронов занимает (с учетом еще и теплового движения) такое состояние, которое обладает максимальной энтропией (или, если угодно, такое состояние, которое имеет наибольшую вероятность).

Таким образом, при нулевой температуре (а следовательно и нулевой тепловой энергии kT=0) все электроны в полупроводнике находятся в валентной зоне, а зона проводимости пуста.

Распределение в общем виде, являющееся функцией вероятности нахождения электрона (фермиона) на уровне с энергией, равной E, является функция распределения Ферми-Дирака

$$F_n(E) = \frac{1}{e^{\frac{E - E_\phi}{kT}} + 1} \tag{1}$$

$$F_n(E) = \frac{1}{e^{\frac{\phi - \phi_F}{\phi_t}} + 1} \tag{2}$$

Где $\frac{kT}{q} = \phi_t$ - тепловой потенциал $\phi_t(300K) \approx 0.025 mV$

При этом, концентрация самих энергетических уровней в зонах вообще говоря неравномерна и подчиняется следующему закону распределения, выражающему

плотность энергетических уровней на промежутке $d\phi$:

$$P(\phi) = \frac{2}{\sqrt{\pi}} \left(\frac{2\pi q m^*}{h^2}\right)^{3/2} \sqrt{\phi - \phi_{gr}}$$
 (3)

Где $\phi_{gr}=rac{E_{gr}}{q}$, где E_{gr} - граничная энергия (потенциальная энергия частицы на границы раздела зоны).

Где $\phi = \frac{\dot{E}}{q}$, где E - полная энергия, отсчитываемая от граничной.

Где m^* - эффективная масса электрона, т.е. его масса в атоме (отличающася от массы электрона в вакууме)

Рис. 3: Распределение ферми, зоны, распределения уровней

Полупроводники, для которых верно утверждение, что уровень Ферми находится внутри запрещенной зоны называются невырожденными. Для несобственных полупроводников справедливо, что $\phi-\phi_f>0$, следовательно F_n упрощается до $F_n=e^{-\frac{\phi-\phi_F}{\phi_t}}$.

Концентрация электронов, находящихся в зоне проводимости определяется следующим интегралом:

$$n = 2 \int_{\phi_c}^{\infty} P(\phi - \phi_c) F_n(\phi) d\phi \tag{4}$$

Где множитель 2 добавлен из-за того, что на одном уровне может находится 2 электрона с противоположными проекциями спина. А в распределении плотности уровней имеет место разность т.к. само значение ϕ в функции определяется относительно границы зоны

Решение этого интеграла имеет вид:

$$n = N_c e^{-\frac{\phi_c - \phi_F}{\phi_t}} \tag{5}$$

$$N_C = 2\left(\frac{2\pi m_n q \phi_t}{h^2}\right)^{3/2} \approx 0.5 * 10^{16} \left(\frac{m_n}{m}\right) T^{3/2}$$
 (6)

$$np = N_c N_p e^{-\frac{\phi_z}{\phi_t}} \tag{7}$$

Отметим, что произведение np не зависит от уровня Ферми. Для собственных полупроводников:

$$n_i = p_i = \sqrt{N_c N_p} e^{-\frac{\phi_z}{2\phi_t}} \tag{8}$$

Отсюда получаем, что

$$np = n_i^2 \tag{9}$$

Плотность электронов в зоне проводимости определяет проводимость полупроводника. Из данного уравнения следует, что концентрация носителей зарядов зависит от температуры (она в основном определяет температурный потенциал в экспоненте) и ширины запрещенной зоны (которая определяется разностью $\phi_z = \phi_c - \phi_v$).

Так например разница в ширине запрещенной зоны для германия и кремния (0.67 и 1.11 Вольт соответственно) приводит к разнице собственных концентраций (концентраций свободных носителей заряда (электронов в зоне проводимости)) на 3 порядка.

Уравнение $np = n_i^2$ дает возможность выразить концентрации n и p в разного рода полупроводниках (n и p типа) через собственную концентрацию.

$$n = n_i e^{-\frac{\phi_E - \phi_F}{\phi_t}} \tag{10}$$

$$p = n_i e^{-\frac{\phi_F - \phi_E}{\phi_t}} \tag{11}$$

Где $\phi_E = \frac{\phi_c + \phi_v}{2}$ - середина запрещенной зоны (электростатический потенциал). Из этих же уравнений несложным логарифмированием можно выразить уровень Ферми, который лежит у проводников n-типа в верхней половине запрещенной зоны, для p-типа, соответственно, в нижней.

1.1.3 Уравнение переноса. Какую информацию содержит это уравнение?

В общем случае движение носителей заряда в полупроводниках обусловлено двумя процессами: диффузией под действием градиента концентрации и дрейфом под действием градиента потенциала в электрическом поле. Поскольку в

полупроводниках мы имеем дело с двумя типами носителей - дырками и электронами, полный ток состоит из 4 составляющих (воспользуемся уравнением для плотности):

$$j = (j_p)_{dif} + (j_p)_{dr} + (j_n)_{dif} + (j_n)_{dr}$$

Плотности дрейфовых составляющих тока пропорциональны градиенту электрического потенциала ϕ , т.е. напряженности электрического поля Е. В одномерном случае, когда движение носителей происходит только вдоль оси x:

$$(j_p)_{dr} = -qp\mu_p \frac{\delta\varphi}{\delta x} = qp\mu_p E$$

$$(j_n)_{dr} = -qn\mu_n \frac{\delta \varphi}{\delta x} = qn\mu_n E$$

Плотности диффузионных составляющих тока:

$$(j_p)_{dif} = -qD_p \frac{dp}{dx}$$

$$(j_n)_{dif} = qD_n \frac{dn}{dx}$$

Диффузионный ток образуется в результате разной степени лигированности п/п-ка примесями, т.е. когда заряды распределены неравномерно. Ток направлен в сторону убывания концентрации.

Здесь D_p и D_n - коэффициенты диффузии дырок и электронов. Связаны с подвижностями тех же носителей формулой Эйнштейна:

$$D = \varphi_t \mu$$

Получим плотность полного тока:

$$j = -qD_p \frac{dp}{dx} + qp\mu_p E + qD_n \frac{dn}{dx} + qn\mu_n E$$

1.1.4 Уравнение непрерывности, какие процессы в полупроводнике описывает это уравнение?

Временные изменение концентрации носителей в проводнике обуславливается следующими процессами:

- Генерация свободных носителей заряда под действием внешних факторов. $\Delta g_n, \Delta g_p$ скорости генерации электронов и дырок соответственно.
- ullet Рекомбинация избыточных носителей. $\frac{n-n_0}{ au_n}$ скорость рекомбинации
- Приток свободных носителей в область dx. Тогда $\frac{1}{q}\nabla \cdot j_n$ разность между втекающими и вытекающими в обрасти dx для одномерного случая.

Получаем следующее уравнение:

$$\frac{\partial n}{\partial t} = \Delta g_n - \frac{n - n_0}{\tau_n} + \frac{1}{q} \nabla \cdot j_n \tag{12}$$

Для р аналогично, но ток должен быть взят со знаком минус т.к. при увеличении тока с координатой накапливание заряда уменьшается, что видно из следующего уравнения:

$$div(\frac{j}{q}) = \frac{1}{q}\nabla \cdot j = \frac{1}{q}\frac{\partial}{\partial x}\left[j_{dif} + j_{flow}\right]$$
(13)

Подставляя выражения для токов из уравнения переноса в уравнение для дивергенции, дифференцируя и подставляя в уравнение непрерывности получаем следующее уравнение:

$$\frac{\partial n}{\partial t} = -\frac{n - n_0}{\tau_n} + D_n \frac{\partial^2 n}{x^2} + \mu_n E \frac{\partial n}{\partial x} + n\mu_n \frac{\partial E}{\partial x}$$
 (14)

Сие и есть уравнение непрерывности, являющееся в общем случае следствием закона сохранения заряда. Аналогичное уравнение можно получить для р.

Если предположить, что в полупроводнике отсутствует электрическое поле E=0, то уравнение непрерывности упрощается до уравнения диффузии:

$$\frac{\partial n}{\partial t} = -\frac{n - n_0}{\tau_n} + D_n \frac{\partial^2 n}{x^2} \tag{15}$$

Если же полем пренебрегать нельзя, то необходимо применять *уравнение Пуассо*на, определяющее изменение электрического поля с координатой в среде:

$$\frac{\partial E}{\partial x} = \frac{\lambda}{\varepsilon \varepsilon_0} \tag{16}$$

Поскольку в условиях нейтральности $\lambda=0$, можно считать, что объемный заряд есть следствие приращения концентраций, т.е. можно выразить через избыточные концентрации: $\lambda=q(\Delta p-\Delta n)$ - плотность заряда

1.1.5 Каково различие между симметричным, асимметричным и резко асимметричным p-n переходами? В каких электронных приборах такие переходы встречаются?

Прежде всего стоит заметить, что p-n переход нельзя осуществить путём простого соприкосновения двух разнородных пластинок, так как при этом неизбежен промежуточный (хотя бы и очень тонкий) слой воздуха или поверхностных плёнок. Настоящий переход получается в единой пластинке полупроводника, в которой тем или иным образом получена резкая граница между слоями р и n.

Резкость границы играет существенную роль для формирования перехода, так как чересчур плавный переход, как показывает теория, не обладает теми вентильными свойствами, которые лежат в основе работы полупроводниковых дидов и транзисторов. Понятие резкости формулируется следующим образом: граница между слоями является резкой, если градиент концентрации примеси (считающийся постоянным в пределах перехода) удовлетворяет неравенству:

$$\left| \frac{dN}{dx} \right| l_{Di} >> n_i \tag{17}$$

N - эффективная концентрация примеси (разность концентраций акцепторов и доноров), а l_{Di} - дебаевская длина в собственном полупроводнике. (длина области, обогащенной носителями заряда) Это неравество говорит о том, что концентрация примесей в переходе должна существенно изменяться на отрезке, меньшем l_{Di} . Такое требование имеет следующий физический смысл: если градиент dN/dx очень мал, то существенные (сравнимые с n_i) эффективные концентрации получаются вдали от точки $\mathbf{x}{=}0$, на расстояниях $> l_{Di}$. Тогда поля объемных зарядов, обусловленных ионизированными примесными атомами тоже будут расположены вдали от металлургической границы. Соответстветственно в окрестности металлургической границы не сможет образоваться двойной электрический слой, свойственный p-n переходу.

Иллюстрация:

Рис. 4: Распределение полных и эффективных концентраций примеси вблизи металлургической границы плавного перехода

Переходы, в которых имеется скачкообразное изменение концентрации на границе слоев $(dN/dx=\inf)$, называются **ступенчатыми**. Они представляют собой предельный случай более общего класса **резких** переходов, в которых градиент концентрации примесей конечен, но удовлетворяет условию 17. На практике ступенчатые переходы являются лишь приближением. Однако они хорошо отражают свойства многих реальных p-n структур и оказываются проще для анализа.

По соотношению концентраций основных носителей в слоях р и n переходы делятся на **симметричные** и **несимметричные**. В симметричных переходах имеет место соотношение

$$p_p \approx n_n$$

, т.е. концентрации основных носителей в обоих слоях почти одинаковы. Такие переходы трудно реализовать практически и они не являются типичными. Гораздо большее распространение имеют несимметричные переходы, в которых выполняется неравенство:

$$p_p > n_n$$
 или $n_n > p_p$

и концентрации различаются в несколько раз и более. Именно такие переходы будут анализироваться в дальнейшем. В случае резкой асимметрии, когда концентрации основных носителей различаются более чем на порядок, переходы называют односторонними и обычно обозначают символами $p^+ - n$ или $n^+ - p$

1.1.6 Какова неравновесная концентрация неосновных носителей заряда на границе р и n?

Здесь должны быть формулы относительно распределения электростатического потенциала, но они далее

Выведем длины pn-перехода. Для этого воспользуемся уравнением Пуассона. Из предположения ступенчатости перехода следует, что $\lambda_p = -qN_a; \lambda_n = qN_d,$ следовательно:

$$E_p = -\frac{qN_a}{\varepsilon\varepsilon_0}(x+l_p) \tag{18}$$

$$E_n = -\frac{qN_d}{\varepsilon\varepsilon_0}(l_n - x) \tag{19}$$

Домножая обе части уравнения на расстояние, получаем:

$$\phi_p - \phi_{Ep} = -\frac{qN_a}{2\varepsilon\varepsilon_0}(x + l_p)^2 \tag{20}$$

$$\phi_p - \phi_{En} = -\frac{qN_d}{2\varepsilon\varepsilon_0}(x - l_p)^2 \tag{21}$$

Тогда ширина pn-перехода равна $l_0 = l_p + l_n$:

$$l_0 = \sqrt{\frac{2\varepsilon\varepsilon_0\Delta\phi_0}{q}(\frac{1}{N_d} + \frac{1}{N_a})} \tag{22}$$

Для резко асимметричного перехода с условием $N_a>>N_d$ получаем:

$$l_0 = \sqrt{\frac{2\varepsilon\varepsilon_0\Delta\phi_0}{qN_d}}\tag{23}$$

С симметричным рп-переходом

Теперь рассмотрим пр-переход с приложенной к нему разностью потенциалов U. При этом потенциальный барьер должен измениться. Из физических соображений известно, что в зоне перехода практически отсутствуют свободные носители заряда, следовательно, все приложенное напряжение падает на нем.

Если напряжение приложено плюсом к р-слою, то такое включение называется прямым, высота потенциального барьера падает. $\Delta \phi = \Delta \phi_0 - U$. Иначе, высота барьера увеличивается, и, как следствие, увеличивается ширина перехода:

$$l = \sqrt{\frac{2\varepsilon\varepsilon_0(\Delta\phi_0 - U)}{qN_d}} = l_0\sqrt{\frac{\Delta\phi_0 - U}{\Delta\phi_0}}$$
 (24)

При $U >> \Delta \phi_0$

$$l \approx l_0 \sqrt{\frac{|U|}{\Delta \phi_0}} \tag{25}$$

Рис. 5: Плотность неосновных носителей в pn-переходе

Теперь выразим концентрации неосновных носителей заряда, зная новую контактную разность, концентрацию основных носителей и формулу 33:

$$\Delta\varphi_0 = \varphi_T ln \frac{n_{n_0}}{n_{p_0}} = \varphi_T ln \frac{p_{p_0}}{p_{n_0}} \tag{26}$$

Получаем:

$$p_n = p_{p0}e^{-\frac{\Delta\phi}{\phi_t}} = (p_{p0}e^{-\frac{\Delta\phi_0}{\phi_t}})e^{\frac{U}{\phi_t}} = p_{n0}e^{\frac{U}{\phi_t}}$$
(27)

$$n_p = n_{n0}e^{-\frac{\Delta\phi}{\phi_t}} = (n_{n0}e^{-\frac{\Delta\phi_0}{\phi_t}})e^{\frac{U}{\phi_t}} = n_{p0}e^{\frac{U}{\phi_t}}$$
(28)

Таким образом, при приложении прямого напряжения концентрация неосновных зарядов экспоненциально возрастает.

Таким образом, избыточная концентрация на границе pn-перехода:

$$\Delta p_n = p_{n0} \left(e^{\frac{U}{\phi_t}} - 1 \right) \tag{29}$$

$$\Delta n_p = n_{p0} \left(e^{\frac{U}{\phi_t}} - 1 \right) \tag{30}$$

Отсюда можно получить соотношение между избыточной концентрацией и концентрацией основных носителей заряда:

$$\frac{\Delta p_n}{\Delta n_p} = \frac{p_{p0}}{n_{n0}} \tag{31}$$

Рис. 6: Концентрация неосновных носителей заряда при обратном и прямом смещениях

Из данного соотношения следует, что при несимметричном pn-переходе (когда один из контактов сильно легирован, а другой - нет) инжекция имеет односторонний характер. Заряды инжектируются в основном из низкоомного (сильно легированного) в высокоомный (слабо легированный) слой. Инжектирующий слой тогда называют эмиттером, а другой - базой. Высота потенциального барьера, однако, в этом случае не меняется и определяется обыкновенными формулами, как и концентрация избыточных неосновных носителей заряда.

1.1.7 Показать, какова величина контактной разности потенциалов и ее зависимость от свойств р и n областей

Рассмотрим p-n переход, пусть $p_p >> n_n$. Поскльку концентрация дырок в слое p значительно больше, чем в слое n, часть дырок диффундирует из слоя p в слой n. При этом в слое n вблизи границы окажутся избыточные дырки, которые будут рекомбинировать с электронами до тех пор, пока не будет выполнено условие равновесия $np = n_i^2$. Соответственно в этой области уменьшится концентрация свободных электронов и "обнажатся"нескомпенсированные отрицательные заряды акцепторных атомов, поскольку часть дырок перешла отсюда в слой n. Аналогичные рассуждения действительны и для электронов слоя n, которые частично диффундируют в слой p. Однако в нашем случае диффузия электронов несущественна. Область образовавшихся пространственных зарядов и есть область p-n перехода.

Рис. 7: p-n переход

Т.о, на p-n переходе возникает запирающий слой. Из распределения Ферми-Дирака известно, что:

$$F_n(E) = \frac{1}{exp\left(-\frac{E - E_f}{kT}\right) + 1}$$

Концентрация электронов в зоне проводимости определяется интегралом

$$n = 2 \int_{\varphi_c}^{\infty} P(\varphi - \varphi_c) F_n(\varphi) d\varphi$$

2 означает, что по принципу Паули на каждом уровне могут находиться два электрона. Т.о:

$$n = N_c e^{-\frac{\varphi_c - \varphi_F}{\varphi_T}}$$

Величина N_c есть эффективная плотность состояний в зоне проводимости. По физическому смыслу эта величина близка к плотности энергетических уровней в зоне проводимости (на 1 $c M^3$) в полосе энергий от φ_c до $\varphi_c + \varphi_T$.

Концентрация свободных дырок в валентной зоне определяется интегралом

$$p = 2 \int_{\varphi_v}^{-\infty} P(-(\varphi - \varphi_v)) F_p(\varphi) (-d\varphi)$$

ИЛИ

$$p = N_v e^{-\frac{\varphi_F - \varphi_v}{\varphi_T}}$$

Величина N_v есть эффективная плотность состояний в валентной зоне.

 φ_c и φ_v есть ни что иное как потенциалы дна зоны проводимости и потолка валентной зоны соответственно. Коэффициенты N_c и N_v определяются по следующим формулам:

$$N_{c/v} = 2 \left(\frac{2\pi m_{n/p} q \varphi_T}{h^2}\right)^{3/2} \approx 0.5 \times 10^{16} \left(\frac{m_{n/p}}{m}\right)^{3/2}$$

Тогда

$$n/p = exp\left[-\frac{2(\varphi_E - \varphi_F)}{\varphi_T}\right] \tag{32}$$

, где $\varphi_E = 1/2(\varphi_c + \varphi_v)$ - потенциал середины запрещенной зоны.

$$np = n_i p_i = n_i^2$$

 $n_i=p_i$ есть концентрации электронов и дырок в собственном п/п. Тогда по (32) с учётом, что $p=n_i^2/n$ и $n=n_i^2/p$ получаем потенциал Ферми в двух формах:

$$\varphi_F = \varphi_E + \varphi_T ln \frac{n}{n_i}$$

$$\varphi_F = \varphi_E - \varphi_T ln \frac{p}{n_i}$$

Контактная разность потенциалов вводится как $\varphi_{E_p} - \varphi_{E_n}$ (см. рис.). Можно воспользоваться формулами, написанными выше и выразить φ_E через концентрации свободных электронов в р и п-слоях. Выразим электростатический потенциал полупроводника с тем учетом, что концентрация примесей меняется ступенькообразно.

$$\varphi_{E_p} = -\varphi_T ln \frac{n_{p_0}}{n_i} + \varphi_F$$

Рис. 8: Электростатический потенциал пр-перехода

Рис. 9: Зонная диаграмма р-п перехода

$$\varphi_{E_n} = -\varphi_T ln \frac{n_{n_0}}{n_i} + \varphi_F$$

Тогда разность электростатических потенциалов мы будем называть контактной разностью потенциалов $\Delta\phi_0$. Из выше описанных уравнений получаем выражение контактной разности:

$$\Delta\varphi_0 = \varphi_T ln \frac{n_{n_0}}{n_{p_0}} = \varphi_T ln \frac{p_{p_0}}{p_{n_0}} \tag{33}$$

Где n_{n0} - концентрация свободных электронов в n-области в равновесном состоянии. n_{p0} , соответственно, в p-области.

Заметим, что соотношения концентраций всегда подчиняются зависимости 9, а следовательно могут быть выражены формулами 10.

Можно выразить концентрацию неосновных носителей через концентрацию основных. При этом контактная разность потенциалов можно выразить через удельные сопротивления слоёв. Таким образом, при комнатной температуре для кремния можно получить величину 0.82B, а для германия 0.4B.

1.1.8 Чем определяется инерционность pn-перехода? Зависит ли она от режима работы?

пр-переход является инерционным элементом по отношению к быстрым изменениям тока или напряжения т.к. для перехода в новый режим работы требуется установления нового распределения неосновных носителей заряда, а оно устанавливается не сразу. Более того, изменение напряжения на переходе изменяет его ширину, а следовательно, и величину пространственного заряда в этом переходе (см. §1.1.6).

Таким образом, для отражения инерционных процессов в переходе можно считать, что к нему подключены параллельно емкости. Их принято разделять на барьерную, отвечающую за перераспределение зарядов в переходе, и диффузионную, отражающую перераспределение зарядов в базе. Такое разделение условно, но удобно в первую очередь тем, что соотношения этих емкостей сильно меняется в зависимости от прямого или обратного смещения перехода.

Использование эквивалентных емкостей, однако, целесообразно только при малых сигналах, когда емкости можно считать линейными, при больших сигналах использование емкости нецелесообразно и в этом случае применяют уравнение непрерывности.

Барьерная емкость Рассмотрим асимметричный переход, практически полностью расположенный в базе типа n, т.е. $l=l_n$

Под барьерной емкостью будем понимать то количество зарядов, которые скопились в переходе. Одна следует отметить, что в переходе нет свободных носителей заряда, а есть только заряд, обусловленный примесью $(N_a; N_d)$. Таким образом, основная инертность состоит в изгнании лишнего заряда из перехода при его расширении и внесении заряда в освободившуюся область при его сужении. Т.о. можно говорить о заряде конденсатора как о заряде расположенном в области, свободной от всяких распределений и определяемой только концентрацией N_d (в случае n-базы), а инертность будет привнесена уравнением длины перехода:

$$l \approx l_0 \sqrt{\frac{|U|}{\Delta \phi_0}} \tag{34}$$

Заряд тогда:

$$Q_n = qN_d(Sl) (35)$$

Где Sl=V - объем

Подставляя в это уравнение выражение длины перехода и дифференцируя по напряжению получаем выражение для диф. емкости:

$$C = \frac{dQ}{dU} = \frac{S\sqrt{0.5\varepsilon\varepsilon_0 q N_d}}{\sqrt{|U|}} = \frac{\varepsilon\varepsilon_0 S}{l_0} \sqrt{\frac{\Delta\phi_0}{|U|}}$$
(36)

Или в более общем случае без предположения, что $U >> \Delta \phi_0$:

$$C = \frac{\varepsilon \varepsilon_0 S}{l_0} \sqrt{\frac{\Delta \phi_0}{\Delta \phi_0 - U}} \tag{37}$$

Приблизительная величина этой емкости при $l_0=0.5*10^{-6}m; \Delta\phi_0=0.75V; S=0.01sm^2; U=20V\longrightarrow C_b=50*10^{-12}F$

Диффузионная емкость

Диффузионная емкость обусловлена накоплением зарядов в базовом слое изза инжекции.

Зная распределение инжектированных зарядов в базе (которое должно выводиться в тепловом токе), а именно:

$$\Delta p(x) = p_0 \left(e^{\frac{U}{\phi_t}} - 1\right) \frac{\sinh(\frac{\omega - x}{L})}{\sinh(\frac{\omega}{L})}$$
(38)

Можем получить заряд обкладки:

$$\Delta Q = qS \int_0^\omega \Delta p(x) dx = \frac{qSL\Delta p(0)}{\operatorname{th}(\omega/L)} (1 - \operatorname{sech}\frac{\omega}{L})$$
(39)

И учитывая выражение $L=\sqrt{D au}$

Подставим в данное выражение значение $\Delta p(0) = p_0 \frac{I}{I_0}$, определенное через ток и выражение для самого тока $I_0 \approx q \frac{DS}{L \operatorname{th}(\frac{\omega}{L})} p_0$, получаем:

$$\Delta Q = I\tau(1 - \operatorname{sech}\frac{\omega}{L}) \tag{40}$$

Интегральная емкость:

$$C_I = \frac{\Delta Q}{U} = \frac{\tau}{R_d} (1 - \operatorname{sech} \frac{\omega}{L}) \tag{41}$$

Где $R_d = U/I$ - сопротивление диода постоянному току. Дифференциальная:

$$C_d = \frac{d(\Delta Q)}{dU} = \frac{\tau}{r_d} (1 - \operatorname{sech} \frac{\omega}{L}) = \frac{I\tau}{\phi_t} (1 - \operatorname{sech} \frac{\omega}{L}) \tag{42}$$

Для толстой базы:

$$\Delta Q \approx I\tau \tag{43}$$

$$C_d \approx \frac{I\tau}{\phi_t}$$
 (44)

Для тонкой базы выражение упрощается до:

$$\Delta Q \approx I \frac{\omega^2}{2D} \tag{45}$$

$$C_d \approx \frac{I \frac{\omega^2}{2D}}{\phi_t} \tag{46}$$

Приблизительные значения дифференциальной емкости при $\tau=5*10^{-6}s; I=0.01A\longrightarrow C_d=2*10^{-6}F$

1.1.9 Чем определяется тепловой ток p-n перехода? Какую информацию несёт в себе его значение?

Рассмотрим одно из уравнений диффузии:

$$\frac{\partial p}{\partial t} = -\frac{p - p_0}{\tau_p} + D_p \frac{\partial^2 p}{\partial x^2} \tag{47}$$

Будем считать p-n переход несимметричным и p-слой значительно больше легированным. При этом можно сосредоточить внимание на анализе процессов в базе, а результаты анализа затем распространить на аналогичные, менее существенные процессы в эмиттере.

Рассмотрим статический режим. Получим стационарное распределение дырок в базе. Для этого положим

$$\frac{\partial \Delta p}{\partial t} = 0$$

Получим, деля обе части уравнения на D_p :

$$\frac{\partial^2 p}{\partial x^2} - \frac{\Delta p}{L_p^2} = 0$$

Где $L = \sqrt{D\tau}$

Т.к. $p=p_0+\Delta p$, при этом $p_0=const$, следовательно на производную влияет только Δp

$$\frac{\partial^2 \Delta p}{\partial x^2} - \frac{\Delta p}{L_p^2} = 0$$

Решением такого дифференциального уравнения является сумма экспонент:

$$\Delta p_n = A_1 exp\left(\frac{x}{\sqrt{D_p \tau}}\right) + A_2 exp\left(-\frac{x}{\sqrt{D_p \tau}}\right)$$

Найдём коэффициенты, воспользовавшись граничными условиями:

$$\Delta p(0) = p_0 \left(e^{\frac{U}{\varphi_T}} - 1 \right)$$

Считая, что на омическом контакте концентрации носителей имеют равновесное значение, запишем

$$\Delta p(w) = 0$$

, где w - ширина базы. Для достаточно толстой базы (w>(2-3)L можно положить $w\to\infty$. Тогда можно записать коэффициенты в следующем виде:

$$A_1 = 0; A_2 = \Delta p(0)$$

В этом случае можно записать

$$\Delta p(x) = p_0 \left(exp \left[\frac{U}{\varphi_T} \right] - 1 \right) exp \left[-\frac{x}{L} \right]$$

А для тонкой:

$$\Delta p(x) = p_0 \left(exp \left[\frac{U}{\varphi_T} \right] - 1 \right) \left(1 - \frac{x}{\omega} \right) \tag{48}$$

При этом распределение получается практически линейным.

Т.к.

$$j_p = -qD_p \frac{dp}{dx}$$

В свою очередь,

$$I_p = j_p \cdot S = -qD_p S \frac{dp}{dx}$$

Тогда

$$I_p(x) = \underbrace{\frac{qD_pSp_{n_0}}{L_p}}_{I_0} \left[exp\left(\frac{U}{\varphi_T}\right) - 1 \right] exp\left[-\frac{x}{L} \right]$$

Нас интересует ток через p-n переход. Положим x=0:

$$I = I_0 \left(e^{\frac{U}{\varphi_T}} - 1 \right) \tag{49}$$

Дырочная составляющая тока является основной, поэтому I_n можно пренебречь и дать определению тепловому току I_0 как это сделано выше.

Тепловой ток I_0 определяет масштаб BAX. Термин "тепловой" отражает сильную температурную зависимость этого тока. Также он равен 0 при абсолютном нуле температуры. Также его называют обратным током насыщения, что связано с тем, что при обратном смещении обратный ток идеализированного диода равен $-I_0$ и не зависит от напряжения.

Рис. 10: ВАХ р-п перехода

1.1.10 Эквивалентная схема pn-перехода и совокупность ее параметров.

Эквивалентная схема, отражающая работу полупроводникового диода имеет следующий вид:

Рис. 11: Эквивалентная схема диода

 Γ де ток определяется из уравнения:

$$I = I_0 \left(e^{\frac{V}{\varphi_t}} - 1 \right) \tag{50}$$

Где I_0 - тепловой ток, значение которого является одним из параметров модели. R_s -объемное сопротивление, является параметром.

 $C = C_b + C_{dif}$ - Инерционность перехода, определяемая

 $C_{dif} = au rac{dI}{dV}$, где au - время переноса заряда(параметр)

 $C_b = C_{b0} \sqrt{1 - \frac{V}{\Delta \phi_0}}$, где C_{b0} - барьерная емкость при нулевом смещении (параметр), $\Delta \phi_0$ - контактная разность потенциалов (параметр)

При этом, если учитывается пробой диода, то обратный ток диода принимает следующий вид:

$$I_r = I_{rh} + I_{rl} \tag{51}$$

$$I_{rh} = IBVe^{\frac{-V+BV}{\phi_t}} \tag{52}$$

Где IBV - начальный ток пробоя, являющийся параметром, как и BV- напряжение пробоя.

ВАХ диода в этом случае:

Рис. 12: ВАХ при пробое у экв. схемы

1.2 Диоды и вторичные источники напряжения (питания)

1.2.1 Какова совокупность параметров вторичного источника питания? Дать им определение

Питание электрической энергией устройств измерительной техники, электроники, ЭВМ и автоматики очень редко удается осуществить непосредственно от первичного источника электроэнергии. Это обусловлено тем, что стандартная электрическая сеть или автономный первичный источник электрической энергии обычно непригодны для питания электронных устройств из-за их несоответствия требованиям по величине напряжения, его стабильности, форме, частоте. Поэтому в большинстве случаев приходится применять источники вторичного питания. Под этим термином обычно понимаются преобразователи вида электрической энергии, которые выполняют нужные преобразования.

ИВЭП принято характеризовать следующим рядом показателей и признаков:

- Условия эксплуатации
- Параметры входной и выходной электрической энергии
- Выходная мощность
- КПД
- Время непрерывной работы
- Время готовности к работе
- Число каналов и пр.

Электрические показатели ИВЭП принято делить на две группы: **Статические**, определяемые при медленном изменении во времени возмущающих факторов и **Динамические**, определяемые при ...

Статические электрические показатели ИВЭП в общем случае имеют следующие характеристики:

- Номинальное значение питающего напряжения (чаще всего 220-380В) и номинальные значения выходных напряжений.
- Допускаемые отклонения напряжения первичной питающей сети от номинального значения
- Номинальная частота питающего напряжения
- Номинальные токи нагрузки
- Суммарная мощность, отдаваемая в нагрузку

• Нестабильность выходного напряжения при изменении напряжения питания: (Определяется как отношение изменения выходного напряжения к номинальному его значению)

$$\delta_{U_{out}(U)} = \frac{\pm \Delta U_{out}(U)}{U_{out}} 100\%$$

- Нестабильность выходного напряжения при изменениях тока нагрузки. (аналогично см. выше)
- Нестабильность выходного напряжения во времени. (аналогично см. выше)
- Температурный коэффициент выходного напряжения:

$$TKH = \frac{\pm \Delta U_{out(T)}}{U_{out}\Delta T} 100\%$$

• Один из самых важных показателей - Коэффициент стабилизации по напряжению. Показывает, во сколько раз относительное приращение выходного напряжения меньше относительного приращения данного возм. фактора:

$$K_s = \left(\frac{\Delta U_{in}}{U_{in}}\right) / \left(\frac{\Delta U_{out}}{U_{out}}\right)$$

• Способность стабилизированного источника уменьшать переменную составляющую на выходе U_{out_P} по отношению к ее значению на входе U_{in_P} . Характеризуется коэффициентом сглаживания пульсаций K_p . Коэффициент пульсации - отношение амплитуды первой гармоники разложения сигнала в спектр к среднему значению сигнала. Фактически, K_p есть отношение этих дел на входе к выходу.

$$K_p = \left(\frac{U_{in_P}}{U_{in}}\right) / \left(\frac{U_{out_P}}{U_{out}}\right)$$

Так выглядит схема простейшего ИВЭП:

Рис. 13:

1.2.2 Однополупериодные выпрямители, их свойства

Однополупериодные выпрямители характеризуются тем, что пропускают только положительную (отрицательную) волну синусоидального тока.

Рис. 14: Схема элементарного 1 п/п выпрямителя

Среднее значение напряжение определяется как и в случае 2 п/п выпрямителя. Выходное напряжение имеет следующее разложение в ряд Фурье:

$$U_{out} = \frac{U_m}{\pi} + \frac{U_m}{2} sin(\omega t)... \tag{53}$$

$$U_{mid} = \sqrt{2} \frac{U_{in}}{\pi} \tag{54}$$

КПД:

$$\nu = \frac{I^2 R_n}{I^2 (R_n + r_d)} \tag{55}$$

1.2.3 Привести примеры различных двуполупериодных выпрямителей и сравнить их свойства

В источниках вторичного питания необходимо использование т.н. выпрямителей сигнала. Они преобразуют переменный разнополярный сигнал в сигнал одной полярности. В неуправляемых выпрямителях широкое применение находят кремниевые полупроводниковые диоды.

Простейший 2х п/п выпрямитель имеет вид:

На этой схеме два диода включены встречно друг другу, \Rightarrow они открыты в разные полупериоды. U_{cemu} передаётся на вторую обмотку, где оно делится выводом на две составляющие U_1 и U_2 .

Рис. 15: Простейший двух п/п выпрямитель

Среднее значение напряжения на выходе получается из формулы

$$U_{out_{med}} pprox rac{1}{T} \left(\int\limits_{0}^{T/2} U_{1_m} \sin(\omega t) dt + \int\limits_{0}^{T/2} U_{2_m} \sin(\omega t) dt \right)$$

Или, с допущением, что $U_1 = U_2$,

$$U_{out_{med}} \approx 2 \frac{1}{T} \int_{0}^{T/2} U_{m_i} \sin(\omega t) dt = 2U_{m_i} / \pi$$

Среднее значение тока:

$$I_{med} = \frac{U_{out_{med}}}{R_{out}}$$

Основным недостатоком данного выпрямителя является то, что в каждый полупериод используется только часть входного напряжения. Также, следует предъявить удвоенные требования к пробивному напряжению для каждого диода по сравнению с выпрямителем на основе диодного моста, который сейчас и рассмотрим:

Рис. 16: двух п/п выпрямитель на основе диодного моста

Вследствие лучшиъ массогабаритных и стоимостных показателей мостовой схемы ей, как правило, отдают предпочтение перед двух п/п схемой с двумя одинаковыми вторичными обмотками и выпрямительными диодами.

Нетрудно показать, что среднее значение U_{out} этой схемы в два раза больше среднего значения выходного напряжения предыдущей схемы. (\Rightarrow то же и для тока)

Следует заметить, что в двух π/π выпрямителях выпрямленное напряжение имеет частоту пульсаций в два раза превышающую частоту пульсации питающей цепи.

Нередко к нагрузке подключают фильтрующий конденсатор, чтобы снизить пульсации. Коэффициент пульсаций определяется в обоих случаях как

$$K_{puls} = \frac{U_{out_{A_1}}}{U_{out_{med}}}$$

1.2.4 Умножитель напряжения

Схема, позволяющая получить из переменного тока постоянный, напряжение которого в несколько раз больше чем у исходного переменного.

Рис. 17: Схема умножителя напряжения

Рис. 18: Временная характеристика забыты схемы

Суть работы такова:

- Через диод D1 конденсатор C1 заряжается максимально до E
- При обратной полуволне через диод D2 заряжается конденсатор C2, при этом контур зарядки содержит предварительно заряженный конденсатор C1, следовательно, максимальное напряжение до которого о может зарядиться = 2E, без учета падения напряжения на диодах.
- etc.
- PROFIT!

1.2.5 Какова система параметров диода и как она связана с эквивалентной схемой диода? Любой ли диод можно представить с помощью этой схемы?

В общем случае, диод - элемент, изготовленный на основе p-n перехода. К основным параметрам диода относятся

- \bullet r_{dif}
- \bullet $I_{f_{max}}$

- \bullet r_{static}
- \bullet U_{break}
- \bullet I_{rev}
- \bullet U_{rev}
- \bullet S крутизна ВАХ.
- P мощность, рассеиваемая диодом.

Эквивалентная схема диода имеет следующий вид:

Рис. 19: Эквивалентная схема диода

Здесь не учтён ток утечки.

$$I = I_0(exp\left(\frac{U}{\varphi_T} - 1\right))$$

 I_0 - тепловой ток. Определяется в общем виде для толстой базы как

$$q\frac{SD_p}{L_p}p_{n_0} + q\frac{SD_n}{L_n}n_{p_0}$$

 $D_p=\varphi_T\mu_p$ и $D_n=\varphi_T\mu_n$ - коэффициенты диффузии. $L=\sqrt{D au}$ Под C понимается ёмкость p-n перехода.

$$C = C_{bar} + C_{dif}$$

В зависимости от того, прямое смещение или обратное, решающую роль отдают диффузионной или барьерной ёмкости соответственно.

$$C_{bar}^{U} = C_{bar}^{0} \left(\frac{\varphi_k}{\varphi_k + U_{rev}} \right)^{\frac{1}{n}}$$

где n=2,3 (резкий, плавный) переходы соответственно. C^0_{bar} - один из параметров диода.

$$C_{dif} = \tau \frac{dI}{dU}$$

где τ - время жизни неосновных носителей в базе. Доп. про ток пробоя можно посмотреть тут 1.1.10

1.2.6 Почему у диодов в качестве предельных эксплуатационных параметров указывается Uобр Inp. сред, I пр. макс

Основной причиной, по которой диод (да и вообще любой полупроводниковый прибор) может функционировать неверно (отлично от ожидаемых аппроксимаций) - это изменение температуры функционирования. Среднее количество теплоты, рассеиваемой телом, пропорционально его температуре, а мощность нагрева пропорциональна току помноженному на напряжение, таким образом, при заданном среднем значении тока можно вычислить среднюю температуру в данном режиме (которая зависит от кучи параметров включая геометрию тела и наличие радиатора). Этим обуславливается наличие такого параметра как максимальный средний ток.

Однако температура распространяется по телу не мгновенно, более того, если изначально тело находится в рабочей температуре, то нагрев до критической требует некоторого количества энергии, следовательно, допустимо подавать на прибор кратковременное напряжение выше среднего максимального без увеличения его температуры выше критической. Этим объясняется параметр I пиковое максимальное.

Максимальное обратное напряжение обусловлено напряжением теплового пробоя диода, которое приводит к резкому увеличению тока при маленьком изменении падения напряжения, что приводит к выделению большой мощности и нагреву прибора.

1.2.7 Влияет ли на величину выходного напряжения ёмкость сглаживающего конденсатора, устанавливаемого на выходе выпрямителя? Каково это напряжение?

Рассмотрим простейший 1 п/п выпрямитель со сглаживающим конденсатором на выходе.

Рис. 20:

В первый полупериод конденсатор $C=C_s$ заряжается до величины входного сигнала с учётом потерь $(R_g$ и т.п.). А во второй разряжается через $R_{out}(\text{т.к. диод закрыт})$.

После переходного процесса установится примерно следующая картина для выходного напряжения:

Рис. 21:

В течение времени 2Θ диод открыт и происходит зарядка конденсаора. У Пилообразного выходного напряжения можно выделить среднее значение, которое будет равно

$$U_0 = U_m \cos \Theta$$

 Θ можно найти из уравнения:

$$tg\Theta - \Theta = \frac{\pi r_{nomepb}}{mR_{out}}$$

 ${
m m}=1,2$ для одно и двух полупериодных выпрямителей.

Когда диод открыт, конденсатор заряжается через R_g и диод с постоянной времени

$$\tau_{zar} = C(R_g + r_{dif})$$

Когда диод закрыт, конденсатор разряжается через R_{out} (сопротивление обратно включенного диода примем большим).

На ВАХ развертка сигналов выглядит примерно следующим образом:

Таким образом, конденсатор обеспечивает сглаживание пульсаций. Его величина практически не влияет на величину среднего выходного напряжения.

Рис. 22:

1.2.8 Стабилитрон. ВАХ Система параметров. Применение.

Стабилитрон - это полупроводниковый прибор, являющийся аналогом газоразрядного стабилитрона. Основное его свойство - резкое увеличение крутизны вольт-амперной характеристики при определенном значении напряжения. ВАХ стабилитрона представлена на рисунке 24.

Достигается такая крутизна характеристики обычно за счет туннельного или лавинного пробоя (тепловой пробой обычно все портит). Рассмотрим эти явления:

Туннельный пробой

Из квантово-механической магии известно, что электрон может преодолевать потенциальный барьер, если его ширина достаточно мала для этого (но не высота). Вероятность данного события оценивается следующей формулой:

$$P = e^{-10^{-8}d\sqrt{\Phi}} {56}$$

Где d - ширина, а Φ - высота барьера.

В случае полупроводника, высота барьера - это ширина запрещенной зоны, а ширина - расстояние между противостоящими зонами.

Ширина d оценивается следующим соотношением: $d=l(\phi_z/U)$, отсюда понятно, что вероятность туннелирования тем больше, чем больше напряжение (из-за минуса в экспоненте). Тогда туннельный ток определяется умножением вероятности туннельного эффекта на некоторые параметры валентной зоны (не уточняется,

но наверняка что-то с концентрацией) и на напряжение.

$$j = UAe^{-\frac{\phi_z^{3/2}}{E}} \tag{57}$$

Лавинный пробой

Лавинный пробой возникает, если электрон в процессе свободного полета успевает набрать достаточную энергию для выбивания электрона из валентной зоны при столкновении. Тогда выбитый электрон также будет разгоняться и выбивать другие электроны, что приведет к возрастанию тока.

Описывается полуэмпирической формулой:

$$M = \frac{|I|}{I_0} = \frac{1}{1 - (\frac{U}{U_m})^n} \tag{58}$$

Где M - коэффициент ионизации, U_m - напряжение пробоя, n - значение, экспериментально определяемое для каждого вида полупроводника $\approx 3 \div 5$.

Сами стабилитроны делают в основном кремниевые, т.к. у них обратный ток до пробоя меньше и они не греются.

Для стабилитронов существенна зависимость напряжения пробоя от температуры, определяемой температурной чувствительностью: $\varepsilon = \frac{dU_{break}}{dT}$, которая отрицательная для низковольтных туннельный диодов и положительная для высоковольтных лавинных.

К параметрам стабилитрона относятся:

- Напряжение пробоя (стабилизации)
- Максимальный ток стабилизации
- Минимальный ток стабилизации
- Дифференциальное сопротивление $r_d = \frac{dU_{st}}{dI_{st}}$
- Температурный коэффициент

1.2.9 Дать определение коэффициенту стабилизации параметрического стабилизатор напряжения. Какие существуют пути улучшения этого показателя?

Параметрические стабилизаторы применяют в случае, когда необходимо получить высокостабильное напряжение и при этом допустимо, что в сопротивлении нагрузки может быть рассеяна малая мощность. В качестве нелинейного элемента, обеспечивающего стабилизацию выходного напряжения, используют стабилитрон. Стабилитроны могут туда ставиться импульсные и двуханодные. Первые для однополярных импульсов, а вторые - для двуполярных. Рассмотрим простейший параметрический стабилизатор:

Рис. 23: Простейший параметрический стабилизатор

и его ВАХ:

Как видно, схема содержит балластный резистор R_b и стабилитрон VD1, который включается параллельно нагрузке. Необходимо обеспечить PT стабилитрона в пределах, показанных на его BAX. Из этих соображений параллельно еще часто включают фильтрующий конденсатор C_f . Принцип работы параметрического стабилизатора хорошо виден при рассмотрении нагрузочных характеристик, представленных на BAX. Здесь угол наклона прямой определяется сопротивлением балластного резистора R_b (из предположений, что $R_b << r_{st}$). Видно, что выходное напряжение стабилизатора, а также ток стабилитрона определяются положением точки пересечения нагрузочной прямой резистора и BAX стабилитрона. Если значение входного напряжения изменится, то изменится и положение рабочей точки, но при этом напряжение на стабилитроне, а значит и на нагрузке останется практически неизменным.

Итак, пусть изменится входное напряжение. Тогда изменится ток через стабилитрон. Это приведёт к изменению падения напряжения на балластном сопротивлении R_b и к изменению падения напряжения на сопротивлении нагрузки.

$$\Delta U_{out} = \Delta I_{st} r_{st}$$

 $r_s t = \partial U_{st}/\partial I_{st}$ - дифференциальное сопротивление стабилитрона.

Рис. 24: Простейший параметрический стабилизатор

Очевидно, что для нашего случая справедливо уравнение

$$\Delta U_{out} = \Delta U_{in} - \Delta I_{st} R_b$$

Подставив предыдущее в это получим:

$$\Delta U_{out} \left(1 + \frac{R_b}{r_{st}} \right) = \Delta U_{in}$$

Коэффициент стабилизации напряжения будет равен

$$K_s = \frac{\Delta U_{in}}{U_{in}} \frac{U_{out}}{\Delta U_{out}} = \frac{U_{out}}{U_{in}} \left(1 + \frac{R_b}{r_{st}} \right)$$

Отсюда видно, что коэффициент стабилизации напряжения тем больше, чем меньше дифференциальное сопротивление и больше балластное. Но при увеличении R_b меньше будет доставаться нагрузке, так же, как и в случае уменьшения r_{st} . В свою очередь, при увеличении нагрузки, всё больший ток будет течь через стабилитрон, будет уменьшаться дифференциальное сопротивление r_{st} . Как следствие, ухудшается КПД цепи. Стабилитрон должен предусматривать максимально возможный ток $I_{max} = U_{in}/(R_b + r_{st})$.

Пути улучшения коэффициента стабилизации

Как неоднократно упоминалось в предыдущих вопросах, коэффициент стабилизации есть отношение коэффициента пульсаций на входе к коэффициенту пульсаций на выходе.

Один из способов улучшить коэффициент стабилизации:

Рис. 25: Простейший параметрический стабилизатор

Как известно, напряжение стабилизации стабилитрона с изменением температуры может смещаться, такое смещение характеризуется параметром, называемым температурным коэффициентом напряжения стабилизации. Для стабилитронов с низким напряжением стабилизации (< 5...6 В) температурный коэффициент напряжения стабилизации имеет отрицательный знак, а для стабилитронов с большим значением напряжения стабилизации — положительный. Для компенсации температурного ухода напряжения стабилизации в параметрические стабилизаторы могут вводиться различные дополнительные элементы. Например, в схеме на рис. выше последовательно со стабилитроном включены два диода в прямом смещении. Такая схема предполагает, что напряжение стабилизации стабилитрона превышает 6 В, а температурный коэффициент напряжения стабилизации составляет около $4 \ mV/^{\circ}C$. Известно, что кремниевые диоды в прямом включении

имеют отрицательный коэффициент напряжения (порядка $-2 \ mV/^{\circ}C$), поэтому последовательное включение двух диодов компенсирует температурный уход напряжения стабилитрона.

Следует учитывать, что в таких схемах значение стабилизированного выходного напряжения несколько выше, чем в типовой схеме без диодов, поскольку к напряжению стабилизации стабилитрона в этом случае добавляется падение напряжения на прямосмещенных диодах. При этом существенно увеличивается сопротивление нелинейного элемента, следовательно уменьшается общий коэффициент стабилизации.

Часто применяются мостовые параметрические стабилизаторы:

Рис. 26: Простейший параметрический стабилизатор

В этой схеме повышение коэффициента стабилизации происходит за счёт того, что при изменении U_{in} изменяется и падение напряжения U_{R_3} . При увеличении напряжения входного, увеличивается ток через стабилитрон, а значит увеличивается и напряжение, падающее на нём. Если резисторы R_1 и R_3 будут подобраны таким образом, что на резисторе R_3 в следствие придешдей ΔU на вход упадёт такая же Δ , как и на диоде VD1, то выходное напряжение практически не изменится.

K минусам данной схемы можно отнести то, что на диоде падает не U_{st}

1.2.10 Туннельный диод

Туннельный диод выполнен из двух сильно легированных n и p слоев. Эти слои легированы так сильно, что уровень ферми лежит не в запрещенной зоне, а в зоне проводимости для n-типа и в валентной зоне для p-типа. Ширина pn-перехода также крайне мала у таких диодов, что приводит к появлению туннельного эффекта. При подаче обратного напряжения на диод количество электронов, энергия которых превышает уровень Ферми в n-слое не возрастет, а в p-слое возрастет и следовательно электроны будут туннелировать из p слоя в n, что соответствует току из n в p.

При включении прямого напряжение начальное возрастание тока обусловлено теми же причинами, которыми обусловлено его наличие при обратном включении,

Рис. 27: ВАХ и энергетические диаграммы при различных смещениях

но только до той степени, пока энергетические зоны окончательно не разъехались. После этого диод начинает работать как обычный.

Так как возникновение туннельного тока нес вязано с инжекцией носителей заряда, туннельные диоды имеют малую инерционность и вследствие этого могут применяться для усиления и генерации высокочастотных колебаний.

1.2.11 Варикап. Свойства, режимы работы, области применения

Извиняюсь, не нашёл ничего в Степаненко и Гусеве. Поэтому вырезки из интернета:

Варикап – это специально сконструированный полупроводниковый диод, емкость которого меняется в широких пределах при изменении приложенного к p-п-перехода обратного напряжения, т.е. электрически управляемая емкость. В качестве управляемой ёмкости в данном случае выступает только барьерная ёмкость. Диффузионная ёмкость не подходит, т.к. она проявляется при прямом смещении.

ВФХ варикапа выражается следующей формулой: (как и для обычных барьерных емкостей)

$$C_U = \frac{C_0}{(1 - U/\varphi_k)^{\frac{1}{n}}}$$

где C_0 - ёмкость, соответствующая нулевому смещению, ${\bf n}=3$ для плавного, и 2 для резкого перехода.

Характер изменения емкости p-n-перехода в зависимости от приложенного напряжения U_{rev} показан на рис:

Рис. 28:

Важным свойством барьерной емкости является ее практическая безынерционность. Изменение барьерной емкости p-n-перехода при изменениии приложенного напряжения обусловлено смещением основных носителей заряда в прилегающих к барьерному слою областях. Скорость этого процесса очень велика, так как время

перестройки объемного заряда в этом случае определяется временем максвелловской релаксации $au_r=rac{arepsilon arepsilon_0}{qn\mu},$ где q - элементарный заряд, μ - его подвижность, n - концентрация. Для кремния, к примеру, время релаксации составляет $pprox 10^{-14} {
m c}.$

Эквивалентная схема варикапа:

Рис. 29:

(Кондёр шунтирует дифференциальное сопротивление) На высоких частотах ёмкость шунтирует дифференциальное сопротивление и => можно представить эквивалентную схему просто как последовательное соединение сопротивления, отражающего объемное сопротивления тела базы и барьерного конденсатора.

Параметры варикапа:

- Добротность Q характеризует качество емкости диода, она определяется как отношение полного реактивного сопротивления к полному активному сопротивлению диода на заданной частоте. Добротность варикапа, определяемая для рекомендуемого режима на заданной частоте, называется номинальной и является важным параметром прибора.
- Коэффициент перекрытия по емкости K_c в рабочем интервале обратных напряжений $K_c = \frac{C_{max}}{C_{min}}$
- Предельная частота варикапа значение частоты, на которой реактивная составляющая проводимости варикапа становится равной активной составляющей. Измерение предельной частоты производится при конкретных заданных обратном напряжении и температуре, которые в свою очередь зависят от типа варикапа.
- Постоянный обратный ток постоянный ток, протекающий через варикап при заданном обратном напряжении.
- Максимально допустимое постоянное обратное напряжение.
- Максимально допустимая рассеиваемая мощность.

Варикапы находят широкое применение для электронной подстройки резонансной частоты колебательных контуров. Изменяя напряжение на варикапе, подключенном к колебательному контуру, можно обеспечить дистанционное и безынерционное управление резонансной частотой контура.

Выглядит это примерно так:

Рис. 30:

При подаче управляющего напряжения Uупр меняется емкость варикапа и как следствие резонансная частота.

1.2.12 Фотодиод

Структура фотодиода не отличается от структуры обычного диода. При облучении полупроводника солнечным светом генерируются концентрация носителей заряда. Они диффундируют в нейтральную область и в область перехода, где неосновные пролетают через переход благодаря полю, а основные задерживаются. Этот ток есть фототок, который способствует уменьшению потенциального барьера создавая фотоЭДС.

Если фотодиод подключен к резистору, то ток в цепи определяется следующим уравнением:

$$I = I_{\Phi} - I_0(e^{\frac{IR}{\phi_t}} - 1) \tag{59}$$

Фотодиоды характеризуются спектральной характеристикой, которая отвечает за количество генерируемого фототока

$$I_{\Phi} = S\Phi \tag{60}$$

S зависит как от частоты излучения, так и от частоты его интенсивности (мерцания). Определяется материалом и примесями.

2 Часть 2

3 Часть 3