Higher Theory of Statistics Math2901 UNSW

Jeremy Le *

2023T2

Contents

1	Pro	bability
	1.1	Experiment, Sample Space, Event
	1.2	Sigma-algebra
	1.3	Conditional Probability and Independence
	1.4	Descriptive Statistics and R
2	Rar	ndom Variables
		Random Variables
		Expectation and Variance
		Moment Generating Functions
		2.3.1 Useful Inequalities

^{*}With some inspiration from Hussain Nawaz's Notes

1 Probability

1.1 Experiment, Sample Space, Event

Experiment An experiment is any process leading to recorded observations.

Outcome An outcome is a possible result of an experiment.

Sample Space The set Ω of all possible outcomes is the sample space of an experiment. Ω is discrete if it contains a countable (finite or countably infinite) number of outcomes.

Events An event is a set of outcomes, i.e. a subset of Ω . An event occurs if the result of the experiment is one of the outcomes in that event.

Mutual Exclusion Events are mutually exclusive (disjoint) if they have no outcomes in common.

Set Operations If you have trouble remembering the above rules, then one can essentially replace \cup by multiplication and \cap by addition.

(The associative law) If A, B, C are sets then

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

(Distributive Law) If A, B, C are sets then

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

1.2 Sigma-algebra

The σ -algebra must be defined for rigorously working with probability. The σ -algebra can be thought of as the family of all possible events in a sample space. Analogously, this may be conceptualised as the power set of the sample space.

Probability A probability is a set function, which is usually denoted by \mathbb{P} , that maps events from the σ -algebra to [0,1] and satisfies certain properties.

Probability Space The triplet $(\Omega, \mathcal{A}, \mathbb{P})$ is the probability/sample space where

- Ω is the sample space,
- \mathcal{A} is the σ -algebra,
- \mathbb{P} is the probability function.

Properties of Probability Given the probability/sample space $(\Omega, \mathcal{A}, \mathbb{P})$, the probability function \mathbb{P} must satisfy

- For every set $A \in \mathcal{A}$, $\mathbb{P}(A) \geq 0$
- $\mathbb{P}(\Omega) = 1$
- (Countably additive) Suppose the family of sets $(A_i)_{i\in\mathbb{N}}$ are mutually exclusive, then

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$

Probability Lemmas

• Given a family of disjoint sets $(A_i)_{i=1,...,k}$

$$\mathbb{P}\left(\bigcup_{i=1}^{k} A_i\right) = \sum_{i=1}^{k} \mathbb{P}(A_i)$$

- $\mathbb{P}(\phi) = 0$
- For any $A \in \mathcal{A}, \mathbb{P}(A) \leq 1$ and $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$
- Suppose $B, A \in \mathcal{A}$ and $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$.

Continuity from Below Given an increasing sequence of events $A_1 \subset A_2 \subset ...$ then,

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mathbb{P}(A_n)$$

Continuity from Above Given a decreasing sequence of events $A_1 \supset A_2 \supset \dots$ then,

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mathbb{P}(A_n)$$

1.3 Conditional Probability and Independence

Conditional Probability The conditional probability that an event A occurs given that an event B has occurred is

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cup B)}{\mathbb{P}(B)}, \quad \mathbb{P}(B) > 0$$

Independence Events A and B are independent if $\mathbb{P}(A \cup B) = \mathbb{P}(A)\mathbb{P}(B)$. Lemma - Given two events A and B then $\mathbb{P}(A|B) = \mathbb{P}(A)$ if and only if $\mathbb{P}(B|A) = \mathbb{P}(B)$.

Independence of Sequences

- A countable sequence of event $(A_i)_{i=\mathbb{N}}$ is pairwise independent if $\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j)$ for all $i \neq j$.
- A countable sequence of events $(A_i)_{i=\mathbb{N}}$ are independent if for any sub-collection A_{i_1}, \ldots, A_{i_n} we have

$$\mathbb{P}(A_{i_1} \cap A_{i_2} \cdots \cap A_{i_n}) = \prod_{j=1}^n \mathbb{P}(A_{i_j})$$

Independence implies pairwise independence, but pairwise independence does not imply independence.

Multiplicative Law Given events A and B then

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B)\mathbb{P}(B),$$

and similarly, if you have events A, B, C then

$$\mathbb{P}(A_1 \cap A_2 \cap A_3) = \mathbb{P}(A_3 | A_2 \cap A_1) \mathbb{P}(A_2 | A_1) \mathbb{P}(A_1)$$

Additive Law Let A and B be events then

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Law of Total Probability Suppose $(A_i)_{i=1,...,k}$ are mutually exclusive and exhaustive of Ω , that is $\bigcup_{i=1}^k A_i = \Omega$, then for any event B, we have

$$\mathbb{P}(B) = \sum_{i=1}^{k} \mathbb{P}(B|A_i)\mathbb{P}(A_i)$$

Bayes Formula Given sets B, A and a family of disjoint and exhaustive sets $(A_i)_{i=1,\dots,k}$ then

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\sum_{i=1}^{k} \mathbb{P}(B|A_i)\mathbb{P}(A_i)}$$

1.4 Descriptive Statistics and R

Categorical Data can be sorted into a finite set of (unordered) categories. e.g. Gender

Quantitative Responses are measured on some sort of scale. e.g. Weight.

Numerical Summaries of the Quantitative Data Given observations $x = (x_1, \dots, x_n)$. The sample mean (estimated mean) or average is given by

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Sample variance (estimated variance)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

2 Random Variables

2.1 Random Variables

Random Variables A random variable (r.v) X is a function from Ω to \mathbb{R} such that $\forall \mathbf{x} \in \mathbb{R}$, the set $A_{\mathbf{x}} = \{\omega \in \Omega, X(\omega) \leq \mathbf{x}\}$ belongs to the σ -algebra \mathcal{A} .

Cumulative Distribution Function The cumulative distribution function of a r.v X is defined by

$$F_X(\mathbf{x}) := \mathbb{P}(\{\omega : X(\omega) \le \mathbf{x}\}) = \mathbb{P}(X \le \mathbf{x})$$

Cumulative Distribution Theorems Suppose F_X is a cumulative distribution function of X, then

• it is bounded between zero and one, and

$$\lim_{x \downarrow -\infty} F_X(x) = 0 \quad \text{and} \quad \lim_{x \uparrow \infty} F_X(x) = 1$$

- it is non-decreasing, that is if $x \leq y$ then $F_X(x) \leq F_X(y)$
- for any x < y,

$$\mathbb{P}(x < X \le y) = \mathbb{P}(X \le y) - P(X \le x) = F_X(y) - F_X(x)$$

• it is right continuous, that is

$$\lim_{n \uparrow \infty} F_X(x + \frac{1}{n}) = F_X(x)$$

• it has finite left limit and

$$\mathbb{P}(X < x) = \lim_{n \to \infty} F_X(x - \frac{1}{n})$$

which we denote by $F_X(x-)$.

Discrete Random Variables A r.v X is said to be discrete if the image of X consists of countable many values x, for which $\mathbb{P}(X = x) > 0$.

Discrete Probability Function The probability function of a discrete r.v X is the function $\nabla F_X(x) = \mathbb{P}(X=x)$ and satisfies

$$\sum_{\text{all possible } x} \mathbb{P}(X = x) = 1$$

Continuous Random Variables A r.v X is said to be continuous if the image of X takes a continuum of values.

Continuous Probability Density Function The probability density function of a continuous r.v is a real-valued function f_X on \mathbb{R} with the property that

$$\mathbb{P}(X \in A) = \int_A f_X(y) \, dy$$

for any 'Borel' subset of \mathbb{R} .

For a function $f: \mathbb{R} \to \mathbb{R}$ to be a valid density function, the function f must satisfy the following properties.

- 1. for all $x \in \mathbb{R}$, $f(x) \ge 0$
- $2. \int_{-\infty}^{\infty} f(x) dx = 1$

Useful Properties (for continuous random variable) For any continuous random variable X with the density f_X ,

1. by taking $A = (-\infty, x], \mathbb{P}(X \in (-\infty, x]) = \mathbb{P}(X \leq x)$ and

$$F_X(x) = \int_{-\infty}^x f_X(y) \, dy$$

2. For any $a < b \in \mathbb{R}$, one can compute $\mathbb{P}(a < X \leq b)$ by

$$F_X(b) - F_X(a) = \int_a^b f_X(x) \, dx$$

3. From the fundamental theorem of calculus and 1, we have

$$F_X'(x) = \frac{d}{dx} \int_{-\infty}^x f_X(y) \, dy = f_X(x).$$

2.2 Expectation and Variance

Expectation The expectation of a r.v X is denoted by $\mathbb{E}(X)$ and it is computed by

1. Let X be a discrete r.v. then

$$\mathbb{E}(X) := \sum_{\text{all possible } x} x \mathbb{P}(X = x) = \sum_{\text{all possible } x} x \nabla F_X(x)$$

2. Let X be a continuous r.v. with density function $f_X(x)$ then

$$\mathbb{E}(x) := \int_{-\infty}^{\infty} x f_X(x) \, dx$$

Expectation of Transformed Random Variables Suppose $g : \mathbb{R} \to \mathbb{R}$, then the expectation of the transformed r.v g(X) is

$$\mathbb{E}(g(X)) = \begin{cases} \int_{\mathbb{R}} g(x) f_X(x) dx & \text{continuous} \\ \sum_{x} g(x) \mathbb{P}(X = x) & \text{discrete} \end{cases}$$

usually one is interested in computing $\mathbb{E}(X^r)$ for $r \in \mathbb{N}$, which is called the r-th moment of X.

Linearity of Expectation The expectation \mathbb{E} is linear, i.e., for any constants $a, b \in \mathbb{R}$,

$$\mathbb{E}(aX + b) = a\mathbb{E}(X) + b.$$

Variance Let X be a r.v and we set $\mu = \mathbb{E}(X)$. The variance is X is denoted by Var(X) and

$$Var(X) := \mathbb{E}((X - \mu)^2)$$

and the standard deviation of X is the square root of the variance.

Properties of Variance Given a random variable X then for any constant $a, b \in \mathbb{R}$,

- 1. $Var(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2$
- 2. $Var(ax) = a^2 Var(X)$
- 3. Var(X + b) = Var(X)
- $4. \operatorname{Var}(b) = 0$

2.3 Moment Generating Functions

Moments A moment of the random variable is denoted by

$$\mathbb{E}[X^r], \quad r = 1, 2, \dots$$

Moments measure mean, variance, skewness, and kurtosis, all ways of looking at the shape of the distribution.

Moment Generating Function The moment generating function (MGF) of a r.v X is denoted by

$$M_X(u) := \mathbb{E}(e^{uX})$$

and we say that the MGF of X exists if $M_X(u)$ is finite in some interval containing zero.

The moment generating function of X exists if there exists h > 0 such that the $M_X(x)$ is finite for $x \in [-h, h]$.

Calculating Raw Moments Suppose the moment generating function of a r.v X exists then

$$\mathbb{E}(X^r) = \lim_{u \to 0} M_X^{(r)}(u) = \lim_{u \to 0} \frac{d^r}{du} M_X(u)$$

Equivalence of Moment Generating Functions Let X and Y be two r.vs such that the moment generating function of X and Y exists and $M_Y(u) = M_X(u)$ for all u in some interval containing zero then $F_X(x) = F_Y(x)$ for all $x \in \mathbb{R}$.

This theorem tells you that if the moment generating function exists then it uniquely characterises the cumulative distribution function of the random variable.

2.3.1 Useful Inequalities

The Markov Inequality (Chebychev's First Inequality) For any non-negative r.v X and a > 0,

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$

Chebychev's Second Inequality Suppose X is any r.v with $\mathbb{E}(X) = \mu, \text{Var}(X) = \sigma^2$ and k > 0 then

$$\mathbb{P}(|X - \mu| > k\sigma) \le \frac{1}{k^2}$$

Convex (Concave) Functions A function h is convex (concave) if for any $\lambda \in [0, 1]$ and x_1 and x_2 in the domain of h, we have

$$h(\lambda x_1 + (1 - \lambda)x_2) \le (\ge)\lambda h(x_1) + (1 - \lambda)h(x_2)$$

Jensen's Inequality Suppose h is a convex (concave) function and X is a r.v then

$$h(\mathbb{E}(X)) \le (\ge)\mathbb{E}(h(X))$$

By using Jensen's inequality, one can show

Arithmetic Mean \geq Geometric Mean \geq Harmonic Mean.

That is given a sequence of number $(a_i)_{i=1,\dots,n}$, we have

$$\frac{1}{n} \sum_{i=1}^{n} a_i \ge \left(\prod_{i=1}^{n} a_i \right)^{\frac{1}{n}} \ge n \left(\sum_{i=1}^{n} a_i^{-1} \right)^{-1}$$