

A Mathematics Assistance System and DIALOG: Natural Language-based Interaction with a Mathematics Assistance System

Christoph Benzmüller and Martin Pollet

Saarland University, Saarbrücken, Germany

October 20th 2004

Cambridge, England

Overview

- Mathematics Assistance Environments
- The ΩMEGA Project
 - Mathematics Assistant In-the-small
 - research directions since early 90s –
 - Mathematics Assistant In-the-large
 - novel research directions –
- DIALOG: Natural Language-based Interaction with a Mathematics Assistance System

Mathematics Assistance Systems

Integrated Mathematics

Assistance Environment

'Pen-and-Paper'
Mathematics

VS.

Applications

Mathematics research
Mathematics education
Formal methods

System level: Coq, NuPrl, Isabelle/HOL, PVS, Theorema, ΩMEGA, CLam, . . .

Research Networks:
Calculemus, MKM, Monet,
MoWGLI, . . .

Join of ressources necessary

Mathematics Assistance System In-the-small

Research directions in the Ω MEGA project since the early 90s

The Ω MEGA Instance

MBASE & OMDOC_

MBASE: mathematical knowledge base

- universal syntax for mathematical documents: OMDoc
- mathematical texts in varying degree of formalisation
- query language for OPENMATH formulas

Discussion

- + First step towards system independence
- Version control: concurrent, joint development of mathematical knowledge
- System independent representation formats for proof rules, tactics, methods, and control knowledge

External Specialist Reasoners

External Specialist Reasoners _

Usually required in OMEGA:

- white box integration of external specialist reasoners
- tools for extraction and transformation of results

available for:

FOL ATPs (TRAMP), CASs (SAPPER), TPS, constraint solving

External Specialist Reasoners ___

Discussion

- + White-box integration achieved for heterogenous specialist reasoning systems
- Modular system design supports better maintenance and reuse of system components
- + Better join of resources achieved
- Not reached yet: flexible coordination of specialist reasoning systems
- Missing: Intelligent brokering of systems, coordination of systems, ..., exploitation of and cooperation with QPQ

User Interface

User Interface

LOUI: Lovely OMEGA User Interface

- Support for different views on proof developments: linearized
 ND style, proof tree, natural language
- + Navigation through different levels of the PDS
- + Support for interactive proof construction
- What do users really want to see? Which users?
- Missing: optimal, integrated support for other mathematical activities such as publication, authoring, modeling, etc.

Proof Verbalization

P.REX (successor of PROVERB):

- lifting of proofs in the PDS to assertion level
- macro-planning text structure
- micro-planning sentence structure and linguistic realization
- generation of natural language representation
- pre-required: linguistic knowledge
- user-adaptive proof explanation

Proof Verbalization

Discussion

- + Flexible, adaptable, non-template based proof verbalization
- Missing: full natural language for tutorial dialogs at assertion level

LEARN MATIC

Hybrid system consisting of learn engine and deduction system.

- More theorems provable, proof search more directed, and shorter proofs
- What other information can be considered for learning?

The Complete Picture

 Ω MEGA born in early 90s; inspired by [Bundy88]

paradigm shift from classical FOL ATP to proof planning in HOL

Ω MEGA aspects:

- declarative, domain specific control layer
- strategy = domain specific instantiation of a general proof search algorithm with set of proof methods and control information
- multi-strategy proof planning

soundness guaranteed via . . .

non-sound proof plans

...proof (plan) expansion over ...

Case studies

 ε - δ -proofs: Use of constraint-solver and computer algebra system

Residue class properties: combination of CASs and theory formation system HR, classification of \sim 18.000 structures

Verification of GAP computations on permutation groups: Verification by proof search instead of hard-wired scripts

Discussion

- + Automatic proofs for problem classes in specific domains
- + Coordination of systems
- Brittleness and logic layer dependency

- -

Agent-based Theorem Proving

se-

Agent-based Theorem Proving

Agent-based Theorem Proving

Agent-based Theorem Proving _

Applications

- Tactic suggestion mechanism & automated agent-based proving
- Reasoning with external specialist reasoners
- Agent-based search in knowledge bases
- Interactive proof planning

Discussion

- + Suggestion mechanism useful for interactive theorem proving
- + Looking aside and concurrent search
- Resource-guided agent-based reasoning not fully developed yet

Novel Research Directions Mathematics Assistance System In-the-Large

Current & Future Developments

Theme: Towards a smoother integration into spectrum of typical mathematical activities

- Proof development in-the-large
 - Lifting the level of proof construction
 - Combination/Integration of proof search paradigms
 - Integration of structured mathematical knowledge
- Mathematical Knowledge Management
- Towards typical mathematical activities
 - Writing mathematical publications
 - Tutoring for mathematics students

Assertion Level Reasoning

Theorem 1. $\sqrt{2}$ is irrational.

Proof. (by contradiction)

Assume $\sqrt{2}$ is rational, that is, there exist natural numbers m, n with no common divisor such that $\sqrt{2} = \frac{m}{n}$. Then $n\sqrt{2} = m$, and thus $2n^2 = m^2$. Hence m^2 is even and, since odd numbers square to odds, m is even; say m = 2k. ...

Result:

Tactic-based theorem provers

like PVS, ISABELLE, COQ, etc.

(and OMEGA) can construct a proof -

but not at an adequate level

Proof Planning & The CoRE Calculus

- new explicit layer for proof sketches
- easy to add to proof data structure
- proof sketches may be unsound
- verification by expansion to ND

Problem:

expansion distance to base-layer

- CORE is more natural/abstract-level base calculus for proof assistants
- subsumes old ND base and (parts of) the old tactic layer
- provides more direct, constructive support for upper layer(s)

Mathematical Knowledge Management _ MEGA

- 1. Types of knowledge
 - Formalized mathematical theories
 - Structured
 - Domain specific proof knowledge tactics, proof-planning methods, symbol orderings, ...

Mathematical Knowledge Management _ MEGA

- 1. Types of knowledge
- 2. Distributed over different physical locations
 - Origin tracking, remote access, ...

Mathematical Knowledge Management _ MEGA

- 1. Types of knowledge
- 2. Distributed over different physical locations
- 3. Evolution of mathematical knowledge
 - Management of change Benefit from experience with MAYA
 - Versioning

Integration into Mathematical Activities MEGA

Assistance in Preparing Mathematical Documents

Technical Support for Tutoring Tools

DIALOG

Natural Language-based Interaction with a Mathematics Assistance System

The DIALOG Project

- Joint project (between Coli and CS) as part of the SFB378 on Resource-adaptive cognitive processes
- Selected mathematical domain: naive set theory

Team

- Directly Involved Researchers: Manfred Pinkal (Coli), Jörg Siekmann (CS), Christoph Benzmüller (CS), Ivana Kruijff-Korbayova (Coli), Magdalena Wolska (Coli), Quoc Bao Vo (CS), Armin Fiedler (CS), Dimitra Tsovaltzis (CS)
- Collaborators: Serge Autexier (CS), Malte Gabsdil (Coli),
 Helmut Horacek (CS), Alexander Koller (Coli), Erica Melis (CS)
- Hiwis and Students: Mark Buckley (CS), Hussain Syed Sajjad (CS), Marvin Schiller, Jochen Setz (CS), Michael Wirth (Coli), Sreedhar Ellisetty (CS), Andrea Schuch (Coli), Beata Biehl (Coli), Oliver Culo (Coli)

Method: Progressive Refinement

WOZ-Experiment — Own Corpus

- collect data (for analysis of phenomena)
- test coarse grained model of system
- test hinting algorithm

- 24 Subjects:
 - university students
 - varying background
 - varying math knowledge
- Wizard:
 - mathematician with tutoring experience
 - assisted by developers of hinting algorithm
- Experimenter

WOZ-Experiment — Own Corpus

http://www.ags.uni-sb.de/~chris/dialog/

Corpus Example

Example: didactic, vp16, dryrun

```
T1: Bitte zeigen Sie : K((A \cup B) \cap (C \cup D)) = (K(A) \cap K(B)) \cup (K(C) \cap K(D))   !</s> S1: (correct) nach deMorgan-Regel-2 ist K((A \cup B) \cap (C \cup D)) = (K(A \cup B) \cup K(C \cup D))   | (K(A \cup B) \cap (C \cup D)) = (K(A \cup B) \cup K(C \cup D))
```

T2: Das ist richtig !</s>

S2: (correct) K (A \cup B) ist laut DeMorgan-1 K (A) \cap K (B)</s>

T3: Das stimmt auch .</s>

S3: (correct) und K ($C \cup D$) ist ebenfalls laut DeMorgan-1 K (C) \cap K (D)</s>

T4: Auch das stimmt .</s>

S4: (correct) also folgt letztendlich : K ((A \cup B) \cap (C \cup D)) = (K (A) \cap K (B)) \cup (K (C) \cap K (D)) .</s>

T5: Das stimmt genau .</s> Ich wiederhole noch einmal : Auf die linke Seite der Gleichung kann ich zuerst die zweite und danach die erste de-Morgan-Regel anwenden , so daß sich folgende Argumentationskette ergibt : $K((A \cup B) \cap (C \cup D)) = K(A \cup B) \cup K(C \cup D) = (K(A) \cap K(B)) \cup (K(C) \cap K(D)) .</s>$

Demonstrator Architecture

Example Utterance

T1: Bitte zeigen Sie : $K((A \cup B) \cap (C \cup D)) = (K(A) \cap K(B)) \cup (K(C) \cap K(D))$!</s>

S1: (correct) nach deMorgan-Regel-2 ist K ((A \cup B) \cap (C \cup D)) = (K (A \cup B) \cup K (C \cup D))</s>

T2: Das ist richtig !</s>

Abbrev.	Meaning	Example	
STDIN	standard input	"nach deMorgan-Regel-2 ist $K((A \cup B) \cap (C \cup D)) = (K(A \cup B) \cup K(C \cup D))$ "	
LM	linguistic meaning	s : @h1(holds $\land <$ Norm $>$ (d1 \land deMorgan-Regel-2) $\land <$ Patient $>$ (f1 \land FORMULA1))	
LU	proof language with underspecification	(input (label 1_1) (formula (= (complement (intersection (union a b) (union c d))) (union (complement (union a b)) (complement (union c d)))))))))))))))))))))))))))))))))))	
LS	system-oriented proof language (+ evaluation)	((KEY 1_1) → ((Evaluation (expStepRepr (label 1_1) (formula (=(complement(intersection(union(A B) union(C D))) union(complement(union(A B)) complement(union(C D))))))))))))))))))))))))))))))))))))	
DMS	dialog move specifica- tion	{ fwd = "Assert", bwd = "Address_statement", commm = "", taskm = "", comms = "", task = "Domain_contribution" }	
PSI	proof step information	{domConCat: "correct", proofCompleted: false, proofstepCompleted: true, proofStep: "", relConU: true, hypConU: true, domRelU: false, iRU: true, relCon: "" "+(char)8745", hypCon: "" "+(char)8746", domRel: "", iR: "deMorgan-Regel-2"}	
TMS	tutorial move specifica- tion	{mode= "min"; task= (signalAccept; {proofStep= ""; relCon= ""; hypCon= ""; domRel= ""; iR= ""; taskSet= ""; completeProof= ""})}	
SDMS	system dialog move specification	{ mode = "min"; fwd = "Assert"; bwd = "Address_statement"; task = ("signalCorrect",	
STD_out	textual representation of NL output	"Das ist richtig".	

Project Progress: First Phase __

- Experiment & WOZ Tool & Corpus
- NL Analysis
- Tutoring Aspects
- Dialog Management
- Proof Manager
- Proof Step Evaluation
- Modeling of System & Demonstrator

Overview, Papers, Corpus, etc.: see

http://www.ags.uni-sb.de/~chris/dialog/

Proof Manager: Tasks_

- Resolution of
 - Ambiguities
 - Underspecification
- Proof Step Evaluation
 - Soundness: Can the proof step be verified by a formal inference system?
 - Granularity: Is the granularity (i.e., 'logical size' or 'argumentative complexity') of the proof step acceptable?
 - Relevance: Is the proof step needed or useful in achieving the goal?

Ambiguities and Underspecification

Discourse:

- (1) From previous observations we know that A or B.
- (2) The former implies D by Lemma X.
- (3) Similarly, from the latter follows C.

Alternative user utterances with underspecification:

- (a) From this follows D since C implies D by Lemma Y.
- this may refer to (1)+(2)+(3), to (3), or even (1) or (2) with wrong justification
- (b) It holds D since C implies D by Lemma Y.
- no underspecified anaphoric reference but ambiguity at domain reasoning level

Ambiguities and Underspecification ____

Example	Where does ambiguity arise?	Ambiguity resolution means
$(1) \times \in B$ und somit $\times \subseteq K(B)$ und $\times \subseteq K(A)$ wegen Vorraussetzung	linguistic meaning level;	linguistic means;
(2) A enthaelt B	attachment, coordination	type checking in (2)
$(3) P((A \cup C) \cap (B \cup C)) = PC \cup (A \cap B)$	linguistic meaning level;	type checking for (3);
(4) K((A∪C)∩(B∪C))=KC ∪(A∩B)	informal character of discourse	domain reasoning for (4)
(5) T1: Bitte zeigen Sie: $K((A \cup B) \cap (C \cup D)) = (K(A) \cap K(B)) \cup (K(C) \cap K(D))$!		
S1: nach deMorgan-Regel-2 ist $K((A \cup B) \cap (C \cup D)) = (K(A \cup B) \cup K(C \cup D))$	underspecified proof step	domain reasoning

Example: Proof Step Evaluation

Assertions already introduced

 $(A1) A \wedge B$.

 $(A2) A \Rightarrow C.$

 $(A3) C \Rightarrow D.$

 $(A4) F \Rightarrow B.$

 $(G) D \vee E$.

Alternative proof step directives.

- (a) Aus den Annahmen folgt D.
- (b) B gilt.
- (c) Es genügt D zu zeigen.
- (d) Wir zeigen E.

Proof Step Evaluation ___

Criterion	Task (first approach)	Requirements for theorem prover	
Soundness	E⊢ [?] D∨E	'Yes' or 'No' answer; any theorem prover resp. calculus C	
Granularity	proof-steps($E \vdash_{C}^{?} D \lor E$)	adequate abstract-level theorem prover resp. calculus C; measure 'shortest' proof; take tutorial constraints into account; proof planning or assertion level reasoning?	
Relevance	$A \wedge B$ $A \Rightarrow C$ $C \Rightarrow D \vdash_{C}^{?} E$ $F \Rightarrow B$	recognize detours; compare with other 'shorter' proofs; take tutorial constraints into account; forward case more challenging	

What are the right provers? _

???

DIALOG project is (from a cognitive science perspective) a

→ very fascinating, novel application domain for deduction systems.

