MATH5301 Elementary Analysis. Homework 7. Due: 10/22/2021, 11:59 pm

First Name: Last Name:

7.1

Provide an examples of the sets $A, B \subset \mathbb{R}^2$ such that

- (a) A and B are connected, but $A \cup B$ is not.
- (b) A and B are connected, but $A \cap B$ is not.
- (c) A and B are not connected, but $A \cup B$ is connected.
- (d) A and B are not connected, but $A \cap B$ is connected.
- (e) A and B are not connected, but $A \setminus B$ is connected.

- (a) Prove that every monotone bounded sequence in $\mathbb R$ converge.
- (b) Provide an example of the set $A \in \mathbb{R}$ having exactly four limit points.
- (c) Provide an example of a sequence $\{a_n\}$, such that every point of the interval [2019, 2021] is a limit point of it.

- (a) Provide an example of a sequence $\{a_n\}$ such that a_n diverges, but $\lim_{n\to\infty}(a_n-a_{2n})=0$
- (b) Provide an example of two sequences $\{a_n\}$ and $\{b_n\}$ such that

$$(\liminf_{n\to\infty}a_n+\liminf_{n\to\infty}b_n)<\liminf_{n\to\infty}(a_n+b_n)<(\liminf_{n\to\infty}a_n+\limsup_{n\to\infty}b_n)<\limsup_{n\to\infty}(a_n+b_n)<(\limsup_{n\to\infty}a_n+\limsup_{n\to\infty}b_n)$$

Show the equivalence of the norms $\|\cdot\|_1$, $\|\cdot\|_2$, $\|\cdot\|_p$, p>1 and $\|\cdot\|_\infty$ on \mathbb{R}^n

Are there any open sets A and B4 in \mathbb{R}^2 such that d(A,B)=0 but $A\cap B=\emptyset$?

Let $\mathcal{B}([0,1])$ denote the set of all bounded functions from [0,1] to \mathbb{R} . Define the metric on $\mathcal{B}[0,1]$ as $d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$.

- (a) Show that this is indeed a metric.
- (b) Prove that the space $(\mathcal{B}([0,1]),d)$ is complete metric space.
- (c) Is the unit ball $B_1(0) = \{f(x) \mid d(f,0) \leqslant 1\}$ compact?