第二十四章 朝花夕拾

24.1 积分定理的一般形式

定理 24.1. 假设 Ω 是平面单连通区域, $q_1, \dots, q_n \in \Omega$ 。 假设 f 在 $\Omega \setminus \{q_1, \dots, q_n\}$ 上全纯, γ 是 $\Omega \setminus \{q_1, \dots, q_n\}$ 中的分段光 滑闭曲线, 则成立积分公式

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} w(\gamma, q_k) \operatorname{Res}(f, q_k).$$

由此知, 欲求积分, 只需计算拓扑量"绕数"和分析量"留数"。

证明: 取 r > 0 足够小, 使去心圆盘 $D(q_k, r) \setminus \{q_k\}$ 不含孤立 奇点。记 f 在 $D(q_k, r) \setminus \{q_k\}$ 上的 Laurent 展式主部为

$$f_k(z) = \sum_{m=1}^{\infty} \frac{a_{k,m}}{(z - q_k)^m}, \ z \in D(q_k, r) \setminus \{q_k\}.$$

由 Laurent 分解的性质知, f_k 为 $\mathbb{C}\setminus\{q_k\}$ 上的全纯函数。定义

$$g(z) = f(z) - \sum_{k=1}^{n} f_k(z).$$

它在 $\Omega\setminus\{q_1,\cdots,q_n\}$ 上全纯, 在 q_k 处连续。由 Riemann 可去奇点定理,g 在 Ω 上全纯。由 Ω 单连通知, $\int_{\gamma}g(z)dz=0$ 。因此,

$$\int_{\gamma} f(z)dz = \sum_{k=1}^{n} \int_{\gamma} f_k(z)dz = \sum_{k=1}^{n} \sum_{m=1}^{\infty} \int_{\gamma} \frac{a_{k,m}}{(z - q_k)^m} dz.$$

上式积分与求和可交换次序, 这是因为 Laurent 展式主部的级数在 γ 上一致收敛。当 $m \ge 2$ 时, $(z - q_k)^{-m}$ 在 $\mathbb{C} \setminus \{q_k\}$ 上有原函数 $(z - q_k)^{1-m}/(1-m)$, 因此 $\int_{\gamma} (z - q_k)^{-m} dz = 0$ 。于是, 利用绕

数的积分表示,

$$\int_{\gamma} f(z)dz = \sum_{k=1}^{n} a_{k,1} \int_{\gamma} \frac{dz}{z - q_k} = 2\pi i \sum_{k=1}^{n} w(\gamma, q_k) \operatorname{Res}(f, q_k).$$

注: 假设 Ω 是有限连通的平面区域, E_1, \dots, E_n 为 $\mathbb{C} \setminus \Omega$ 的 有界连通分支。假设 f 在 Ω 上全纯, γ 是 Ω 中的分段光滑闭曲线,则成立积分公式

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} w(\gamma, E_k) \operatorname{Res}(f, E_k).$$

其中 $w(\gamma, E_k)$ 定义为 $w(\gamma, q), q \in E_k$ (容易验证, 不依赖于 q 的选取), Res (f, E_k) 定义为积分 $\frac{1}{2\pi i} \int_{\gamma_k} f(z) dz$, γ_k 是仅围绕 E_k 的简单闭曲线 (由 Cauchy-Goursat 积分定理可知, 不依赖于 γ_k 的选取)。

上式给出了一般情形下复积分的计算公式, 单复变全纯函数的复积分理论至此文意已尽。

24.2 Cauchy 积分公式的一般形式

定理 24.2. 假设 Ω 是平面单连通区域, $q_1, \dots, q_n \in \Omega$ 。 假设 f 在 $\Omega \setminus \{q_1, \dots, q_n\}$ 上全纯, 在 q_k 处 Laurent 展式主部为 f_k , $\gamma \subset \Omega \setminus \{q_1, \dots, q_n\}$ 是分段光滑闭曲线, 则有积分公式

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = w(\gamma, z) f(z) - \sum_{k=1}^{n} w(\gamma, q_k) f_k(z),$$

其中 $z \in \Omega \setminus (\{q_1, \cdots, q_n\} \cup \gamma).$

证明: 取定 $z \in \Omega \setminus (\{q_1, \dots, q_n\} \cup \gamma)$, 定义函数 $g(\zeta) = f(\zeta)/(\zeta - z)$, 它在 $\Omega \setminus \{q_1, \dots, q_n, z\}$ 上全纯。由定理24.1可知,

$$\int_{\gamma} g(\zeta)d\zeta = 2\pi i \Big(w(\gamma, z) \operatorname{Res}(g, z) + \sum_{k=1}^{n} w(\gamma, q_k) \operatorname{Res}(g, q_k) \Big).$$

显然 $z \in g$ 的一阶极点, 留数可按下式计算

$$\operatorname{Res}(g, z) = \lim_{\zeta \to z} (\zeta - z)g(\zeta) = f(z).$$

留数 $\mathrm{Res}(g,q_k)$ 的计算需要一点技巧。假设 f 在 q_k 处 Laurent 展式主部 f_k 表达式为

$$f_k(\zeta) = \sum_{m=1}^{\infty} \frac{a_{k,m}}{(\zeta - q_k)^m}, \ \zeta \in \mathbb{C} \setminus \{q_k\}.$$

取 $0 < r < |z - q_k|$, 由留数定义

$$\operatorname{Res}(g, q_{k}) = \frac{1}{2\pi i} \int_{|\zeta - q_{k}| = r} \frac{1}{\zeta - z} \sum_{m=1}^{\infty} \frac{a_{k,m}}{(\zeta - q_{k})^{m}} d\zeta$$

$$\stackrel{(1)}{=} \frac{1}{2\pi i} \sum_{m=1}^{\infty} a_{k,m} \int_{|\zeta - q_{k}| = r} \frac{1}{(\zeta - z)(\zeta - q_{k})^{m}} d\zeta$$

$$\stackrel{(2)}{=} \sum_{m=1}^{\infty} a_{k,m} \frac{1}{(m-1)!} \frac{d^{m-1}}{d\zeta^{m-1}} \left(\frac{1}{\zeta - z}\right) \Big|_{\zeta = q_{k}}$$

$$= \sum_{m=1}^{\infty} a_{k,m} \frac{(-1)^{m-1}}{(\zeta - z)^{m}} \Big|_{\zeta = q_{k}}$$

$$= -\sum_{m=1}^{\infty} \frac{a_{k,m}}{(z - q_{k})^{m}}$$

$$= -f_{k}(z).$$

以上等式中, ⁽¹⁾ 利用了级数在圆周上的一致收敛性, 因此积分与求和可交换次序; ⁽²⁾ 利用了高阶导数的 Cauchy 积分公式。

由此得定理中的积分公式。

注: 如果 f 在 Ω 上全纯, 则在 q_k 处 Laurent 展式主部为 0, 此时积分公式为

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = w(\gamma, z) f(z), \ z \in \Omega \setminus \gamma.$$

24.3 映射性质

前文所讲的映射性质为局部性质, 此处讨论整体性质。

假设 Ω 为平面有界区域, 边界 $\partial\Omega$ 为有限条分段光滑简单闭曲线之并。给定 $\overline{\Omega}$ 上的全纯函数 f, 以及 $\zeta \in \mathbb{C}$, 如果存在 $z \in \Omega \cap f^{-1}(\zeta)$, 则 z 是方程 $f(z) = \zeta$ 的一个零点,此零点重数定义为 z 作为 ζ 逆像点的重数。记 $\nu_f(\zeta)$ 为 $f^{-1}(\zeta)$ 中所有逆像点的重数之和, 简称逆像个数。显然,如果 $\zeta \notin f(\Omega)$, 则 $\nu_f(\zeta) = 0$ 。一般情形下, 有如下结论:

命题 24.1. $\nu_f: \mathbb{C} \setminus f(\partial \Omega) \to \mathbb{N} \cup \{0\}$ 是分片常值函数^a。

^a即在 $\mathbb{C} \setminus f(\partial \Omega)$ 的每个连通分支取值为常数。

证明: 由辐角原理

$$\nu_f(\zeta) = Z(f - \zeta, \Omega) = w(f(\partial \Omega), \zeta).$$

上式右端绕数是 $\mathbb{C}\setminus f(\partial\Omega)$ 上的分片常值函数, 中间项 $Z(f-\zeta,\Omega)$ 为零点个数, 取值非负。

类似方法可证明一个有独立趣味的结论:

命题 24.2. 假设 Ω_1, Ω_2 是平面有界区域, 边界都是有限条分段 光滑的简单闭曲线之并。假设 f 在 $\overline{\Omega_1}$ 上全纯。

- 1. 如果 f 满足 $f(\partial\Omega_1) \subset \partial\Omega_2, f(\Omega_1) \subset \Omega_2, 则$
- (a). $f(\partial \Omega_1) = \partial \Omega_2, f(\Omega_1) = \Omega_2;$
- (b). 对任意 $\zeta \in \Omega_2$, 它在 Ω_1 中的逆像个数为常数^a。
- 2. 如果 $f:\partial\Omega_1\to\partial\Omega_2$ 是同胚, 则 $f(\Omega_1)=\Omega_2$ 且 $f:\Omega_1\to\Omega_2$ 双全纯。

a这个常数通常称为 f 的映射度, 记为 deg(f)。

证明: 1. 由 $f(\partial\Omega_1) \subset \partial\Omega_2$ 可知, Ω_2 包含在 $\mathbb{C} \setminus f(\partial\Omega_1)$ 的一个连通分支 U 中。由命题24.1可知, 计数函数 ν_f 分片常值,特别地 $\nu_f|_U$ 为常值。由条件 $f(\Omega_1) \subset \Omega_2$ 可知, $\nu_f|_{\Omega_2} \equiv \nu_f(f(z_0)) \geq 1$, 其中 $z_0 \in \Omega_1$ 。这说明对任意 $\zeta \in \Omega_2$,它在 Ω_1 中有逆像。由此知 $f(\Omega_1) \supset \Omega_2$ 。结合条件 $f(\Omega_1) \subset \Omega_2$ 可得 $f(\Omega_1) = \Omega_2$ 。

下说明 $f(\partial\Omega_1) = \partial\Omega_2$ 。任取 $\zeta \in \partial\Omega_2$,取 $\{\zeta_n\}_{n\geq 1} \subset \Omega_2$ 满足 $\zeta_n \to \zeta$ 。对任意 $n \geq 1$,取 $z_n \in f^{-1}(\zeta_n)$,则 Ω_1 中有界点列 $\{z_n\}_{n\geq 1}$ 在 $\overline{\Omega_1}$ 中有聚点 a。利用连续性可知 $f(a) = \zeta$ 。由开映射定理可知,a 不能为 Ω_1 的内点,故只能是边界点。这样就得到 $f(\partial\Omega_1) \supset \partial\Omega_2$ 。结合 $f(\partial\Omega_1) \subset \partial\Omega_2$ 可知 $f(\partial\Omega_1) = \partial\Omega_2$ 。

2. 由于 $f: \partial \Omega_1 \to \partial \Omega_2$ 是同胚, 可用 $f(\partial \Omega_1)$ 的定向诱导 $\partial \Omega_2$ 的定向。对任意 $\zeta \in \Omega_2$, 有 $w(\partial \Omega_2, \zeta) = \pm 1$; 另由辐角原理

$$w(\partial \Omega_2, \zeta) = w(f(\partial \Omega_1), \zeta) = Z(f - \zeta, \Omega_1) \ge 0.$$

因此 $w(\partial\Omega_2,\zeta)=1$ 。 这说明 $\Omega_2\subset f(\Omega_1)$,并且每个 $\zeta\in\Omega_2$ 在 Ω_1 中有且只有一个逆像。

另一方面, 当 $\zeta \notin \overline{\Omega}_2$ 时, $Z(f - \zeta, \Omega_1) = w(\partial \Omega_2, \zeta) = 0$, 这说 明 $f(\Omega_1) \subset \overline{\Omega}_2$ 。由开映射定理知, $f(\Omega_1) = \Omega_2$ 。结合上述讨论, $f: \Omega_1 \to \Omega_2$ 双全纯。

24.4 无界域的最大模原理

如果 f 在有界域 Ω 上全纯, 且可连续延拓到边界 $\partial\Omega$, 由最大模原理知 $||f||_{\Omega} = ||f||_{\partial\Omega}$.

值得注意的是, 当 Ω 无界时, 未必成立 $||f||_{\Omega} = ||f||_{\partial\Omega}$. 反例如下: 考虑 $f(z) = e^{-iz^2}$, 定义域为第一象限 Ω . 显然, 当 $z \in \mathbb{R}_{\geq 0} \cup i\mathbb{R}_{\geq 0}$ 时, $z^2 \in \mathbb{R}$, |f(z)| = 1. 因此 $||f||_{\partial\Omega} = 1$. 但 f 在 Ω 中无界: 取 $z = ke^{i\pi/4}$, k > 0, 则 $f(z) = e^{k^2} \to +\infty$ $(k \to \infty)$. 因此 $||f||_{\Omega} = +\infty$.

有趣的是, 如果对 f 的增长施加限制, 仍可证明 f 满足 $||f||_{\Omega} = ||f||_{\partial\Omega}$.

定理 24.3. 假设 Ω 是平面无界区域, f 在 Ω 上全纯, 在 $\partial\Omega$ 上连续有界. 如果当 $z \in \Omega$ 且 $|z| \to +\infty$ 时, $|f(z)| = O((\log |z|)^m)$ (其中 m 为正整数), 则

$$||f||_{\Omega} = ||f||_{\partial\Omega}.$$

特别地,上式表明 f 有界。

证明: 不妨假设 f 非常值.

先考虑 $||f||_{\partial\Omega} > 0$ 的情形. 此时, 用 $f/||f||_{\partial\Omega}$ 代替 f, 不妨假设 $||f||_{\partial\Omega} = 1$. 证明想法与 Landau's 技巧如出一辙.

任取 $a \in \Omega$. 构造全纯函数 $g: \Omega \to \mathbb{C}$:

$$g(z) = \frac{f(z) - f(a)}{z - a}, z \in \Omega \setminus \{a\}; \ g(a) = f'(a).$$

显然 g 可连续延拓至边界. 因 f 非常值, 故可适当选取 a, 使 $0 < \|g\|_{\partial\Omega} < +\infty$. 易见: 当 |z| 很大时,有 $|g(z)| = O((\log|z|)^m)/|z|$. 对任意自然数 $n \geq 1$, 构造函数 $h(z) = f(z)^n g(z)$. 显然

$$||h||_{\partial\Omega} \le ||f||_{\partial\Omega}^n \cdot ||g||_{\partial\Omega} = ||g||_{\partial\Omega} < +\infty.$$

另一方面, 当 $z \in \Omega$ 且 $|z| \to +\infty$ 时,

$$|h(z)| = O((\log|z|)^m)^{n+1}/|z| \to 0.$$

因此可取 R_n 足够大, 满足 $||h||_{\partial D(0,R_n)\cap\Omega} \leq ||g||_{\partial\Omega}$ (不妨假设当 $n\to\infty$ 时, $R_n\to\infty$).

在有界域 $\Omega_n = \Omega \cap D(0, R_n)$ 上对 h 应用最大模原理可知

$$|f(z)|^n|g(z)| = |h(z)| \le ||h||_{\partial\Omega_n} \le ||g||_{\partial\Omega}, \ z \in \Omega_n.$$

若取定 $z \in \Omega \setminus g^{-1}(0)$, 总存在自然数 $n_z \ge 1$, 使得当 $n \ge n_z$ 时, $z \in \Omega_n$, 从而保证上式成立. 因此有

$$|f(z)| \le (||g||_{\partial\Omega}/|g(z)|)^{1/n}, \ \forall n \ge n_z.$$

上式令 $n\to +\infty$ 可知 $|f(z)|\le 1,\ z\in\Omega\setminus g^{-1}(0).$ 由 $g^{-1}(0)$ 的 离散性以及 f 的连续性可知 $|f(z)|\le 1,z\in\Omega.$ 由此得 $\|f\|_\Omega\le 1=\|f\|_{\partial\Omega}.$ 另一方面,由 f 的连续性易验证 $\|f\|_\Omega\ge \|f\|_{\partial\Omega}.$ 因此 $\|f\|_\Omega=\|f\|_{\partial\Omega}=1.$

最后,考虑 $||f||_{\partial\Omega} = 0$ 的情形. 此时,对任意 $\epsilon > 0$, $f_{\epsilon} = f + \epsilon$ 满足 $||f_{\epsilon}||_{\partial\Omega} > 0$. 对 f_{ϵ} 应用上述结论可知 $||f_{\epsilon}||_{\Omega} = ||f_{\epsilon}||_{\partial\Omega} = \epsilon$, 因此 $||f||_{\Omega} \le 2\epsilon$. 由 $\epsilon > 0$ 的任意性,得 $||f||_{\Omega} = 0$,即 f = 0. 但这矛盾于 f 非常值。这说明此种情形不能发生。

例题 24.1. 假设 f 是非常值整函数, 则存在路径 $\gamma:[1,+\infty)\to \mathbb{C}$ 满足

$$\lim_{t\to +\infty} \gamma(t) = \infty, \ \lim_{t\to +\infty} f(\gamma(t)) = \infty.$$

证明: 任取自然数 $k \geq 1$. 记 $T_k = \{z \in \mathbb{C}; |f(z)| > k\} = f^{-1}(\mathbb{C} \setminus \overline{D(0,k)})$. 显然 T_k 是平面的开集. 取 S_k 为 T_k 的一个连通分支. 则任取 $z \in \partial S_k$, 必然有 |f(z)| = k (事实上,由连续性可知当 $z \in \partial S_k$,有 $|f(z)| \geq k$. 如果 |f(z)| > k,则由开映射性质得到矛盾).

首先说明 S_k 是无界区域. 事实上,如果有界,则由有界区域的最大模原理得 $|f(z)| < k = ||f||_{\partial S_k}, z \in S_k$,矛盾.

其次说明 f 在 S_k 上无界. 如不然,f 在无界域 S_k 上有界,由无界域的最大模原理 (定理24.3) 可得 $|f(z)| \le k = ||f||_{\partial S_k}, z \in S_k$, 这与 S_k 的定义矛盾.

以上表明, T_k 的每一个连通分支都是无界的,并且 f 在每一个连通分支上也无界. 由此可得, 存在 T_k 的连通分支 S_k , 满足

$$S_1 \supset S_2 \supset S_2 \supset \cdots$$
.

24.5 习题 215

取 $z_k \in S_k \setminus S_{k+1}$. 显然 $\{z_n, n \geq k\} \subset S_k$. 在 S_k 中存在路径 $\gamma_k : [k, k+1] \to S_k$ (路径即连续单射), 起点为 z_k , 终点为 z_{k+1} . 显然 $|f(z)| \geq k, z \in \gamma_k$. 最后令 $\gamma = \bigcup_{k \geq 1} \gamma_k$, 使得 $\gamma(t) = \gamma_k(t), t \in [k, k+1]$. 它满足要求.

24.5 习题

"我在那一小时之内看到了一切伟大艺术的永恒秘密,即看到了世间任何一种艺术创作的全部诀窍:全神贯注,不仅思想高度集中,而且要集中全身精力;每一个艺术家都得把自己置之度外,忘却周围整个世界。我学到了这点对我毕生有用的教益。"

--斯蒂芬. 茨威格《昨日的世界》

1. (原函数的存在性) 假设 Ω 是平面单连通区域, $q_1, \dots, q_n \in \Omega$. 假设 f 在 $\Omega \setminus \{q_1, \dots, q_n\}$ 上全纯, 证明

$$f - \sum_{k=1}^{n} \frac{\operatorname{Res}(f, q_k)}{z - q_k}$$

在 $\Omega \setminus \{q_1, \dots, q_n\}$ 上存在原函数。

- 2. (一般形式的辐角原理) 假设 Ω 是平面单连通区域, f 在 Ω 中半纯, 在 Ω 中的零点为 z_1, \dots, z_n , 阶分别为 l_1, \dots, l_n ; 极点为 p_1, \dots, p_m , 阶分别为 n_1, \dots, n_m 。
- (1). 假设 γ 是 Ω 中的分段光滑闭曲线, 不过 f 的零点和极点, 证明

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{s=1}^{n} l_s w(\gamma, z_s) - \sum_{k=1}^{m} n_k w(\gamma, p_k).$$

(2). 假设 γ 是 Ω 中的分段光滑闭曲线, 不经过 f 的极点。对任意 $\zeta \notin f(\gamma)$, 证明

$$w(f(\gamma), \zeta) = \sum_{q \in f^{-1}(\zeta)} w(\gamma, q) \operatorname{deg}(f, q) - \sum_{k=1}^{m} n_k w(\gamma, p_k),$$

其中 $\deg(f,q)$ 是 f(z) - f(q) 在 z = q 处零点的重数, 称为 f 在 q 处的局部映射度 (即 f(q) 在 q 处计重数意义的逆像个数)。

3. (映射性质) 假设 Ω_1, Ω_2 都是平面有界单连通区域, 边界为一条分段光滑的简单闭曲线. $f \in \overline{\Omega_1}$ 上全纯, 满足 $f(\partial \Omega_1) \subset \partial \Omega_2$, $f(\Omega_1) \subset \Omega_2$ 。证明:

- (1). $f(\partial \Omega_1) = \partial \Omega_2$, $f(\Omega_1) = \Omega_2$.
- (2). 对任意 $\zeta \in \Omega_2$, 其逆像 $f^{-1}(\zeta)$ 个数 (计重数) 为常数。
- 4. (绕数是双全纯变换的不变量吗?) 假设 $f:\Omega\to D$ 是平面区域之间的双全纯映射, γ 是 Ω 中一条分段光滑的闭曲线, 任取一点 $q\in\Omega\setminus\gamma$ 。
 - (1). 如果 Ω , D 都单连通, 证明 $w(\gamma, q) = w(f(\gamma), f(q))$;
 - (2). 如果 Ω, D 非单连通, 举例说明 $w(\gamma, q) \neq w(f(\gamma), f(q))$ 。
- 5. (辐角原理的应用) 假设 Ω 是平面有界多连通区域, 边界由 $n\geq 1$ 条分段光滑的简单闭曲线组成, f 在 $\overline{\Omega}$ 上全纯, 满足 $f(\Omega)\subset \mathbb{D}, f(\partial\Omega)\subset \partial\mathbb{D}$ 。证明 f 在 Ω 中至少有 n 个零点。