

Title Page

Contents

Page 33 of 55

Go Back

Full Screen

Close

Quit

- Definiteness of a symmetric matrix depends on the sign of its eigenvalues Quadratic Form: for $\mathbf{B}_{k \times k}$ the scalar $\mathbf{x}^T \mathbf{B} \mathbf{x}$ is a quadratic form = $\sum_{i=1}^k \sum_{j=1}^k b_{ij} x_i x_j \mathbf{x}_j \mathbf{x}_$
 - (*) PSD matrix has non-negative eigenvalues: \blacksquare Let λ be an eigenvalue of $\mathbf{A}_{k \times k}$ with eigenvector \mathbf{u} . $\blacksquare \mathbf{A} \mathbf{u} = \lambda \mathbf{u}$: $\blacksquare \mathbf{A} \mathbf{u} = \lambda \mathbf{u}^T \mathbf{u}$. $\blacksquare \mathbf{S}$ ince $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0 \ \forall \mathbf{x}$, $\mathbf{u}^T \mathbf{A} \mathbf{u} \geq 0$. $\blacksquare \mathbf{u}^T \mathbf{u} \geq 0 \ \blacksquare \Rightarrow \lambda \geq 0 \ \blacksquare$ (*) Non-negative eigenvalues \Longrightarrow PSD: \blacksquare Symmetric matrix $\mathbf{A} = \mathbf{U} \mathbf{A} \mathbf{U}^T$. $\blacksquare \mathbf{k}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{U} \mathbf{A} \mathbf{U}^T \mathbf{x} = \mathbf{y}^T \mathbf{A} \mathbf{y} = \sum_{i=1}^k \lambda_i y_i^2$. \blacksquare If all $\lambda_i \geq 0$, $\mathbf{x}^T \mathbf{A} \mathbf{x}$ is PSD.

Title Page

Contents

Page 34 of 55

Go Back

Full Screen

Close

Quit

• The Quadratic form for Constrained Optimisation of a Symmetric Matrix: $|| \max / \min_{\mathbf{x}} \mathbf{x}^T \mathbf{A} \mathbf{x}, \ || \mathbf{x} ||^2 = 1$ | Take $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \lambda (\mathbf{x}^T \mathbf{x} - 1)$ | (or $(1 - \mathbf{x}^T \mathbf{x})$) | $\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = 0$: $|| \mathbf{A} \mathbf{x} + \lambda 2\mathbf{x} = \mathbf{0}|$ | ($\mathbf{A} + \lambda \mathbf{I}$) $|| \mathbf{x} = \mathbf{0}|$ | For this, take $\mu = -\lambda$ | (λ suffices for $(1 - \mathbf{x}^T \mathbf{x})$) | ($\mathbf{A} - \mu \mathbf{I}$) $|| \mathbf{x} = \mathbf{0}$: Soln: eigenvec \mathbf{u} of $\mathbf{A} \equiv$ eigenval μ | To optimise: $\mathbf{x}^T \mathbf{A} \mathbf{x}$. At the opt: $\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{u}^T \mathbf{A} \mathbf{u} = \lambda \mathbf{u}^T \mathbf{u} = \lambda$ | $\mathbf{a} \mathbf{u} = \lambda \mathbf{u}$ | $\mathbf{u} = \lambda \mathbf{u}$ |

Title Page

Contents

Page 35 of 55

Go Back

Full Screen

Close

Quit

Similar Matrices

- For a $k \times k$ matrix **B** and any invertible $k \times k$ matrix **E**, $\mathbf{E}\mathbf{B}\mathbf{E}^{-1}$ and **B** are Similar Matrices
- Bu = λ u, \Longrightarrow EBu = λ Eu, \Longrightarrow EB E⁻¹E u = λ Eu \Longrightarrow EBE⁻¹ Eu = λ Eu \Longrightarrow EBE⁻¹ v = λ v

Diagonalisation of a $k \times k$ matrix B₁

- B: eigenvectors $\mathbf{u_i}$, stacked to get \mathbf{U} . $\mathbf{u_i}$'s not necessarily orthonormal, assume lin indep (non-repeated e'vals) \Longrightarrow basis of k-dim space
- What if accidentally end up with repeated eigenvalues? **BVD** always works. **Applications**: use eigenvectors as an orthonormal basis. Extend with extra orthonormal vectors to span the space
- Any k-dimensional pattern p_i can be written as a linear combination of these basis vectors
- $\mathbf{p_i} = \sum_{j=1}^k c_j \mathbf{u_j}$

Title Page

Contents

Page 36 of 55

Go Back

Full Screen

Close

Quit

- $\mathbf{p_i} = \sum_{j=1}^k c_j \mathbf{u_j} = \mathbf{Uc}$
- $\mathbf{Bp_i} = \sum_{j=1}^k c_j \mathbf{Bu_j}$ = $\sum_{j=1}^k c_j \lambda_j \mathbf{u_j} = \mathbf{UAc}$
- $\begin{vmatrix}
 \mathbf{k} \\
 \mathbf{B}\mathbf{U} = \mathbf{U}\mathbf{\Lambda}\mathbf{c} \Longrightarrow \mathbf{I}
 \end{vmatrix}$
 - $\mathbf{B} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{-1} \blacksquare \Longrightarrow \blacksquare$
 - $\mathbf{U}^{-1}\mathbf{B}\mathbf{U} = \mathbf{\Lambda}$

If U is additionally orthonormal, $U^{-1} = U^{T}$

