Step 2:
$$T(n) = \frac{(n(n+1))^{2}}{2}$$

[st: prove $T(n) \in O(n^{4})$.

 $T(n) = \frac{(n(n+1))^{2}}{2} = \frac{n^{4} + 2n^{4} + n^{2}}{4} = \frac{n^{4} + 2n^{4} + n^{4}}{4}$
 $T(n) \in O(n^{4})$ for $C_{1} = 1$

2nd: prove $T(n) \in \Omega(n^{4})$.

 $T(n) = \frac{(n(n+1))^{2}}{2} = \frac{n^{4} + 2n^{4} + n^{4}}{2} \ge \frac{n^{4}}{4}$
 $T(n) \in O(n^{4})$ for $C_{2} = \frac{1}{4}$, $n = 1$

Therefore $T(n) \in O(n^{4})$ for $C_{2} = \frac{1}{4}$, $n = 1$.

Therefore $T(n) \in O(n^{4})$ for $C_{2} = \frac{1}{4}$, $n = 1$.

Therefore $T(n) \in O(n^{4})$ for $C_{2} = \frac{1}{4}$, $n = 1$.

Thus, $T(n) \in O(n^{4})$ for $T(n) \in O(n^{4})$.

 $T(n) \in O(n^{4})$ for $C_{2} = \frac{1}{4}$, $n = 1$.

Thus, $T(n) \in O(n^{4})$ for $T(n) \in O(n^{4})$.

Thus, $T(n) \in O(n^{4})$ for $T(n) \in O(n^{4})$.

Thus, $T(n) \in O(n^{4})$ for $T(n) \in O(n^{4})$.

 $T(n) \in O(n^{4})$ for $T(n) \in O(n^{4})$ for $T(n) \in O(n^{4})$.

 $T(n) \in O(n^{4})$ for $T(n) \in O(n^{4})$ for $T(n) \in O(n^{4})$.

 $T(n) \in O(n^{4})$ for $T(n) \in O(n^{4$