	Utech
Name :	
Roll No.:	In Annual Will asserted a Real Experience
Invigilator's Signature :	

CS / B.TECH (NEW) / SEM-2 / M-201 / 2011

2011

MATHEMATICS - II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

$$10 \times 1 = 10$$

i) The order and degree of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \left\{ y + \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)^2 \right\}^{\frac{1}{4}} \text{is}$$

a) 2, 4

b) 4, 2

c) 1, 4

- d) none of these.
- ii) The integrating factor of the differential equation $\frac{dy}{dx} 3y = \sin 2x \text{ is}$
 - a) e^{3x}

b) e^{-3x}

c) e^{λ}

d) none of these.

2073 [Turn over

For the differential equation $f(x,y)\frac{dy}{dx} + g(x,y)$ exact if

a)
$$\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$$
 b) $\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y}$

b)
$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y}$$

c)
$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 g}{\partial y^2}$$

d) none of these.

The auxiliary equation of $\frac{d^2y}{dx^2} + a^2y = \sec ax \ (a \neq 0)$ is

a)
$$m^2 + a^2 = 0$$
 b) $m^2 + 2a^2 = 0$

b)
$$m^2 + 2a^2 = 0$$

c)
$$m^2 + a = 0$$
 d) none of these.

The general solution of $y = px + \sqrt{a^2 p^2 + b^2}$, where v) $p = \frac{\mathrm{d}y}{\mathrm{d}x}$ is

a)
$$y = cx + \sqrt{a^2c^2 + b^2}$$
 b) $y = cx - \sqrt{a^2c^2 + b^2}$

b)
$$y = cx - \sqrt{a^2c^2 + b^2}$$

c)
$$y = c - x\sqrt{a^2c^2 + b^2}$$
 d) none of these.

The maximum number of edges in a simple graph vi) with n vertices is

b)
$$\frac{n-1}{2}$$

c)
$$\frac{n(n-1)}{2}$$

d) none of these.

- vii) A binary tree has exactly
 - a) two vertices of degree two
 - b) one vertex of degree 2
 - c) one vertex of degree one
 - d) none of these.
- viii) If a graph G has 7 vertices and 9 edges, then the size of the adjacency matrix is
 - a) 7×7

b) 7×9

c) 9×9

- d) none of these.
- ix) Dijkstra's algorithm is used to
 - a) find maximum flow in a network
 - b) scan all vertices of a graph
 - c) find the shortest path from a specific vertex to another one
 - d) none of these.
- x) The singularities of the integral $\int_{-1}^{2} \frac{dx}{x(x-1)}$ are
 - a) 0, 1

b) 1, 2

c) -1, 2

- d) 0, 2.
- xi) The value of $\Gamma\left(\frac{1}{2}\right)$ is
 - a) 2π

b) $\sqrt{\tau}$

c) $\frac{\pi}{2}$

d) none of these.

xii) Laplace transform of the function sin at is

a)
$$\frac{s}{s^2 + a^2}$$

b)
$$\frac{s}{s^2-a^2}$$

c)
$$\frac{a}{s^2 + a^2}$$

d)
$$\frac{a}{s^2-a^2}$$
.

xiii) The value of $\Gamma(m) \Gamma(1-m)$ is

a)
$$\frac{2\pi}{\sin \pi}$$

b)
$$\frac{3\pi}{\sin m\pi}$$

c)
$$\frac{\pi}{\sin m\pi}$$

xiv) The value of $\beta\left(\frac{1}{2}, \frac{1}{2}\right)$ is

a)
$$\sqrt{\pi}$$

c)
$$\frac{\pi}{2}$$

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following

 $3 \times 5 = 15$

2. Solve
$$(D^2 - 5D + 6) y = e^x \cos x$$
 where $D = \frac{d}{dx}$.

- 3. Find the general and singular solution of (y px)(p-1) = p where $p = \frac{dy}{dx}$.
- 4. Evaluate $L^{-1} \left(\frac{s^2}{(s^2 + a^2)(s^2 + b^2)} \right)$.

2073

- 5. Prove that a tree with n vertices has (n-1) edges.
- 6. Find the value of the improper integral $\int_{0}^{\infty} \frac{dx}{(1+x)\sqrt{x}}$.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Apply the variation of parameters to solve $\frac{d^2y}{dx^2} + 4y = \sin 2x.$
 - b) Solve: $(x^2D^2 xD + 4)y = x \sin(\log x)$ where $D = \frac{d}{dx}$.
 - c) Show that $\int_{-\infty}^{\infty} xe^{-x^2} dx = 0$. 5 + 5 + 5
- 8. a) State convolution theorem. Using convolution theorem prove that $L^{-1} \left(\frac{s}{(s^2 + a^2)^2} \right) = \frac{t \sin at}{2a}$.
 - b) Solve the following differential equation using Laplace transform ($D^2 + 6D + 9$) y = 1:

$$y(0) = 0$$
, $y'(0) = 1$ $D = \frac{d}{dx}$.

c) Evaluate $\int_{0}^{\infty} e^{-3^{t}} \sin t \cos t dt$ using Laplace transform.

6 + 5 + 4

CS / B.TECH (NEW) / SEM-2 / M-201 / 2011

- b) Evaluate $\int_{0}^{1} x^{2} \left(1 x^{2}\right)^{\frac{7}{2}} dx.$
- c) Prove that the number of odd degree vertices in a graph is always even. 5 + 5 + 5
- 10. a) Draw the graph whose incidence matrix is

b) Define isomorphism. Examine whether the following two graphs are isomorphic or not.

c) Determine the adjacency matrix of the given graph:

5 + 5 + 5

2073

11. a) Apply Prim's algorithm to find the shortest spanning tree of the following graph and find the corresponding minimum weight.

b) Find the shortest path from the vertex a to f in the following graph using Dijkstra's algorithm.

c) Construct the spanning tree of the following graph by BFS algorithm.

6 + 5 + 4

========