NCEA Level 3 Trigonometry (exercise set)

7. Trigonometric Equations

Goal To understand the roots of the trigonometry functions.

- 1. Let a and b be real and define a function f by $f(\theta) = a\cos\theta + b\sin\theta$. We will study the behaviour of f.
 - (a) Show that if α and β satisfy $f(\alpha) = f(\beta)$ then $\frac{b}{a} = \tan \frac{\alpha + \beta}{2}$.
 - (b) Find all α such that $f(\alpha) = 0$.
 - (c) Show that $f(\theta) \leq \sqrt{a^2 + b^2}$ for all θ . Is equality ever attained?
- 2. Find all θ such that:
 - (a) $64\sin^7\theta + \sin 7\theta = 0$.
 - (b) $\cot^2 \theta 3 \cot \theta + 2 = 0$. (Note: there is no exact value for $\arctan 1/2$, so leave your answer in this form.)
 - (c) $\frac{\cos 3\theta}{\sec \theta} + \frac{\sin 3\theta}{\csc \theta} = \cos 2\theta$.
- 3. Find sine and cosine of 15° and 150° exactly.

We studied exact values of some trig functions in this section; we will now look at some exact formulae for π .

- 4. Prove Machin's formula, $\pi/4 = 4\arctan(1/5) \arctan(1/239)$.
- 5. The formula we will consider here was discovered by John Wallis in 1655.
 - (a) Recall that if a polynomial $p(x) = p_0 + p_1 x + \cdots + p_n x^n$ has roots $\alpha_1, ..., \alpha_n$ then we can write $p(x) = (x \alpha_1) \cdots (x \alpha_n)$.

Convince yourself that the following infinite product (due to Euler) is plausible.

$$\frac{\sin x}{x} = \left(1 - \frac{x^2}{\pi^2}\right) \left(1 - \frac{x^2}{2^2 \pi^2}\right) \left(1 - \frac{x^2}{3^2 \pi^2}\right) \cdots$$

One can prove this rigorously: it is a special case of the so-called Weierstraß factorisation theorem.

(b) Let $x = \pi/2$, and use the formula in (a) to show that

$$\frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots$$

(c) Calculate π by hand to a few decimal places.

Additional reading Hobson chapter VI.