Facultat de Matemàtiques i Estadística Examen extraordinari d'Estructures Algebraiques 30 de juny de 2015

Trieu quatre dels cinc problemes següents. Tots puntuen igual.

Problema 1. Definiu domini euclidià i domini d'ideals principals, i demostreu que tot domini euclidià és un domini d'ideals principals.

Problema 2. Sigui $G = GL_2(\mathbb{Q}) \subset GL_2(\mathbb{C})$ el grup de les matrius invertibles 2×2 a coeficients racionals.

- 1. Demostreu que, en qualsevol grup, dos elements conjugats tenen el mateix ordre.
- 2. Demostreu que una matriu $\gamma \in GL_2(\mathbb{C})$ té ordre finit en aquest grup si, i només si, diagonalitza i els seus valors propis són arrels de la unitat. Doneu l'ordre de γ en funció dels ordres dels seus valors propis.

Indicació: Quan no diagonalitza considereu la seva forma de Jordan.

- 3. Trobeu tots els polinomis ciclotòmics $\Phi_n(X)$ de graus 1 o 2.
- 4. Sigui $\gamma \in G$. Demostreu que si $\operatorname{ord}(\gamma) = n$ és finit, aleshores n = 1, 2, 3, 4 o 6.
- 5. Per a aquests valors n = 1, 2, 3, 4 i 6 doneu un element de G que tingui ordre n.

Solució:

- 1. Siguin $a, b \in G$ amb $b = xax^{-1}$ per a un $x \in G$. Per a tot enter $n \ge 1$ es té $a^n = 1 \Leftrightarrow b^n = 1$, ja que $b^n = xa^nx^{-1}$. Per tant el mínim n tal que $a^n = 1$ és el mateix que el mínim n tal que $b^n = 1$.
- 2. Si $\gamma \in GL_2(\mathbb{C})$ diagonalitza i els seus valors propis són arrels de la unitat γ és conjugada de la matriu $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$, amb λ i μ arrels de la unitat. Si $\lambda^n = 1$ i $\mu^m = 1$ aleshores $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}^{nm} = \mathbf{I}_2$. Per tant, $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ té ordre finit i la seva conjugada γ també.

Recíprocament, suposi's que la matriu té ordre finit n. Si no diagonalitzés la seva forma de Jordan seria $J=\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ i també tindria ordre n. Però $J^n=\begin{pmatrix} \lambda^n & n\lambda^{n-1} \\ 0 & \lambda^n \end{pmatrix} \neq \boldsymbol{I}_2$ per a tot $n\geqslant 1$ ja que si $\lambda^n=1$ aleshores $\lambda\neq 0$ i també $n\lambda^{n-1}\neq 0$. Per tant, la matriu diagonalitza. Sigui $D=\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ la matriu diagonal conjugada corresponent, que també té ordre n. Aleshores $\lambda^n=\mu^n=1$ i els valors propis λ i μ són arrels de la unitat.

Si $D = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ és la conjugada diagonal, $\gamma^n = \mathbf{I}_2 \Leftrightarrow D^n = \mathbf{I}_2 \Leftrightarrow \lambda^n = \mu^n = 1$. Per tant, l'ordre de γ és el mínim comú múltiple dels ordres de les arrels de la unitat λ i μ . En efecte, siguin r, s i t els ordres respectius. Aleshores

- $D^r = I_2 \Rightarrow \lambda^r = \mu^r = 1 \Rightarrow s \mid r \text{ i } t \mid r \Rightarrow [s, t] \mid r;$
- $\lambda^s = \mu^t = 1 \Rightarrow \lambda^{[s,t]} = \mu^{[s,t]} = 1 \Rightarrow D^{[s,t]} = \mathbf{I}_2 \Rightarrow r \mid [s,t].$
- 3. El grau del polinomi ciclotòmic $\Phi_n(X)$ és l'indicador d'Euler $\varphi(n)$, que és igual a 1 per a n=1,2, igual a 2 per a n=3,4,6, i és > 2 per a tots els demés valors de n. En efecte, si $n=\prod p_i^{m_i}$ la fórmula per a l'indicador d'Euler és $\varphi(n)=\prod p_i^{m_i-1}(p_i-1)$ i

- si un primer $p \ge 5$ divideix n aleshores $p-1 \ge 4$ divideix $\varphi(n)$;
- si 3 divideix almenys dues vegades n aleshores 3 divideix $\varphi(n)$;
- si 2 divideix almenys tres vegades n aleshores 4 divideix $\varphi(n)$.

Aleshores, si $\varphi(n) \leq 2$, n només es pot dividir per 2 un màxim de dues vegades i per 3 un màxim d'una vegada. Els nombres que compleixen això són 1, 2, 3, 4, 6 i 12 i tots tenen $\varphi(n) \leq 2$ excepte $\varphi(12) = 4$. Els polinomis ciclotòmics de grau ≤ 2 són

$$\Phi_1(X) = X - 1,$$
 $\Phi_2(X) = X + 1,$
$$\Phi_3(X) = X^2 + X + 1,$$
 $\Phi_4(X) = X^2 + 1,$ $\Phi_6(X) = X^2 - X + 1.$

4. Sigui $\gamma \in GL_2(\mathbb{Q})$ d'ordre finit. Aleshores γ diagonalitza sobre \mathbb{C} i els seus valors propis són arrels de la unitat. Els valors propis són arrels del polinomi característic $P(X) = \det(\gamma - \mathbf{I}_2 X) \in \mathbb{Q}[X]$, i per tant els seus polinomis mínims, que són polinomis ciclotòmics, divideixen P(X).

Hi ha dos casos: si P(X) descompon com a producte de dos polinomis de grau 1, les arrels de la unitat han de tenir polinomi ciclotòmic de grau 1 i només poden ser $\zeta = 1$ i $\zeta = -1$ ja que per l'apartat anterior l'ordre és 1 o 2. En aquest cas la matriu té ordre 1 o 2.

Si, en canvi, P(X) és irreductible aleshores ha de ser un polinomi ciclotòmic. Per l'apartat anterior ha de ser n=3,4 o 6 i en tots tres casos els valors propis de γ són les dues arrels n-èsimes primitives de la unitat, que són les arrels diferents de $\Phi_n(X)$. Per tant, l'ordre de γ és n=3,4 o 6, respectivament.

5. En tot grup l'únic element d'ordre 1 és el neutre; en aquest cas l'element d'ordre 1 de G és la matriu I_2 . Un element d'ordre 2 té valors propis que són arrels quadrades de la unitat, i per tant són ± 1 . Clarament $\gamma_2 = \binom{-1}{0} \binom{0}{1}$ té ordre 2. Per a trobar elements d'ordres 3, 4 i 6 es pot observar que $\Phi_3(X) = X^2 + X + 1$, $\Phi_4(X) = X^2 + 1$ i $\Phi_6(X) = X^2 - X + 1$. Si els valors propis han de ser arrels cúbiques, quartes o sisenes de la unitat el polinomi característic ha de ser un dels donats: el coeficient del mig és menys la traça i el terme independent és el determinant. Per exemple, les matrius següents:

$$\gamma_3 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \quad \gamma_4 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \gamma_6 = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix},$$

tenen l'ordre corresponent, tal com es pot comprovar directament. De fet, qualsevol matriu de traça -1 i determinant 1 té ordre 3, qualsevol matriu de traça 0 i determinant 1 té ordre 4 i qualsevol matriu de traça 1 i determinant 1 té ordre 6.

Problema 3.

1. Demostreu el teorema xinès del residu en un domini d'ideals principals \mathbb{A} : si $a, b \in \mathbb{A}$ són elements relativament primers aleshores es té un isomorfisme d'anells:

$$\mathbb{A}/\langle ab \rangle \simeq \mathbb{A}/\langle a \rangle \times \mathbb{A}/\langle b \rangle.$$

- 2. Trobeu tres polinomis mònics $f_i(X) = X^2 + aX + b \in \mathbb{R}[X]$ de grau 2 tals que:
 - (a) L'anell quocient $\mathbb{A}_1 = \mathbb{R}[X]/\langle f_1(X)\rangle$ és un cos.

- (b) L'anell quocient $\mathbb{A}_2 = \mathbb{R}[X]/\langle f_2(X)\rangle$ conté elements nilpotents diferents de zero (un element nilpotent d'un anell és un element α tal que $\alpha^n = 0$ per a algun exponent $n \ge 1$).
- (c) L'anell quocient $\mathbb{A}_3 = \mathbb{R}[X]/\langle f_3(X)\rangle$ no és isomorf a cap dels dos anteriors.
- 3. Demostreu que per a tot polinomi $f(X) = X^2 + aX + b \in \mathbb{R}[X]$ l'anell quocient $\mathbb{R}[X]/\langle f(X)\rangle$ és isomorf a un dels tres anells \mathbb{A}_i de l'apartat anterior.

Solució:

- 1. Com que a i b són relativament primers l'ideal que generen és el total: $\langle a \rangle + \langle b \rangle = \langle a, b \rangle = \mathbb{A}$. Siguin $u \in \langle a \rangle$ i $v \in \langle b \rangle$ elements tals que u + v = 1.
 - Es considera l'homomorfisme d'anells $\mathbb{A} \to \mathbb{A}/\langle a \rangle \times \mathbb{A}/\langle b \rangle$ que és la projecció canònica en cada component, que envia $\alpha \in \mathbb{A}$ al parell $(\alpha + \langle a \rangle, \alpha + \langle b \rangle)$. Aquest homomorfisme és exhaustiu: donats elements x i y de \mathbb{A} sigui $\alpha = uy + vx$. Aleshores, com que $u \in \langle a \rangle$ també ux i uy són elements de $\langle a \rangle$ i per tant $\alpha + \langle a \rangle = uy + vx + \langle a \rangle = ux + vx + \langle a \rangle = x + \langle a \rangle$; de la mateixa manera $\alpha + \langle b \rangle = y + \langle b \rangle$.

El nucli de l'homomorfisme és $\langle a \rangle \cap \langle b \rangle$, que com que a i b són relativament primers, és l'ideal $\langle ab \rangle$. Aplicant el teorema d'isomorfisme es dedueix l'isomorfisme de l'enunciat.

- 2. Siguin $f_1(X) = X^2 + 1$, $f_2(X) = X^2$, $f_3(X) = X^2 1$. Aleshores
 - (a) Com que $f_1(X)$ és irreductible a \mathbb{R} i té arrels complexes $\pm i$ l'anell $\mathbb{A}_1 = \mathbb{R}[X]/\langle X^2 + 1 \rangle$ és un cos, isomorf al cos dels nombres complexos $\mathbb{C} = \mathbb{R}(i)$, que és el cos obtingut adjuntant a \mathbb{R} una arrel d'aquest polinomi.
 - (b) A l'anell quocient $\mathbb{A}_2 = \mathbb{R}[X]/\langle X^2 \rangle$ el polinomi X no és zero ja que no és múltiple de X^2 i en canvi el seu quadrat X^2 sí que és zero. Per tant, X és un element nilpotent a \mathbb{A}_2 .
 - (c) L'anell $\mathbb{A}_3 = \mathbb{R}[X]/\langle f_3(X)\rangle$ no és íntegre ja que els elements X-1 i X+1 són diferents de zero amb producte zero. Per tant, com que tot cos és íntegre, $\mathbb{A}_3 \not\simeq \mathbb{A}_1$. A més, \mathbb{A}_3 no té elements no nuls amb quadrat zero. En efecte, tot element no nul és un polinomi a+bX de grau $\leqslant 1$ amb $a \neq 0$ o $b \neq 0$. El seu quadrat és $a^2+2abX+b^2X^2=a^2+b^2+2abX$ (ja que $X^2-1=0 \Rightarrow X^2=1$), que no és zero ja que $a^2+b^2\neq 0$ a \mathbb{R} per ser $a\neq 0$ o $b\neq 0$. Per tant, $\mathbb{A}_3 \not\simeq \mathbb{A}_2$.
- 3. Sigui $f(X) = X^2 + aX + b \in \mathbb{R}[X]$ un polinomi mònic de segon grau. Aleshores, l'anell $\mathbb{A} = \mathbb{R}[X]/\langle f(X) \rangle$ és isomorf a l'anell \mathbb{A}_1 , \mathbb{A}_2 o \mathbb{A}_3 segons que f(X) no tingui arrels reals (discriminant $a^2 4b$ negatiu) o tingui una arrel real doble (discriminant zero) o tingui dues arrels reals diferents (discriminant positiu). En efecte,
 - Si f és irreductible a $\mathbb{R}[X]$ aleshores \mathbb{A} és isomorf al cos obtingut adjuntant a \mathbb{R} el nombre complex $\alpha = \frac{1}{2}(-a + \sqrt{a^2 4b})$, i per tant és isomorf a $\mathbb{C} \simeq \mathbb{A}_1$.
 - Sigui $f(X) = (X \alpha)^2$, amb $\alpha \in \mathbb{R}$. L'aplicació $\mathbb{R}[X] \to \mathbb{R}[X]$ que envia cada polinomi P(X) al polinomi $P(X \alpha)$ és un isomorfisme d'anells (amb invers l'aplicació que envia P(X) a $P(X + \alpha)$), i envia l'ideal $\langle X^2 \rangle$ a l'ideal $\langle (X \alpha)^2 \rangle$. Per tant, en passar al quocient dóna un isomorfisme entre \mathbb{A}_2 i \mathbb{A} .
 - Sigui $f(X) = (X \alpha)(X \beta)$ amb α i β nombres reals differents. Aleshores els ideals $X \alpha$ i $X \beta$ són elements relativament primers a $\mathbb{R}[X]$ i per tant el teorema xinès del residu dóna un isomorfisme d'anells

$$\mathbb{R}[X]/\langle f(X)\rangle \simeq \mathbb{R}[X]/\langle X-\alpha\rangle \times \mathbb{R}[X]/\langle X-\beta\rangle.$$

Per altra banda l'aplicació $P(X) \mapsto P(\alpha)$ és un homomorfisme d'anells $\mathbb{R}[X] \to \mathbb{R}$ exhaustiu amb nucli generat per $X - \alpha$ i per tant es té un isomorfisme d'anells $\mathbb{R}[X]/\langle X - \alpha \rangle \simeq \mathbb{R}$. De la mateixa manera, $\mathbb{R}[X]/\langle X - \beta \rangle \simeq \mathbb{R}$. Això vol dir que tots els anells $\mathbb{R}[X]/\langle f(X) \rangle$ on f(X) és un polinomi amb dues arrels reals diferents (entre ells, en particular, l'anell \mathbb{A}_3) són isomorfs al producte cartesià d'anells $\mathbb{R} \times \mathbb{R}$.

Problema 4. De les afirmacions següents, digueu si són certes o falses; si són certes demostreu-les i si són falses doneu un contraexemple.

- 1. Sigui E/K una extensió finita de grau n. Per a tot element $\alpha \in E$ el grau del polinomi mínim $Irr(\alpha, K; X)$ és un divisor de n.
- 2. Si E/K és una extensió infinita existeix algun element $\alpha \in E$ que és transcendent sobre K.
- 3. El cos finit \mathbb{F}_q de $q=p^n$ elements conté subcossos d'ordre p^m per a $m=1,2,\ldots,n$.
- 4. Donats nombres complexos $\alpha_1, \dots, \alpha_n$, si l'extensió $\mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n)/\mathbb{Q}$ és algebraica aleshores és finita.
- 5. Si els polígons regular de n i de m costats són construïbles i gcd(n, m) és parell, aleshores el polígon regular de nm costats també és construïble.
- 6. Si p és un primer senar, $\zeta = e^{2\pi i/p}$ i $H \subseteq (\mathbb{Z}/p\mathbb{Z})^*$ és un subgrup, aleshores $\zeta^H = \sum_{a \in H} \zeta^a$ és un nombre real si, i només si, $-1 \in H$.

Solució:

1. Cert. L'aplicació $K[X] \to K(\alpha)$ que envia un polinomi P(X) a $P(\alpha)$ és exhaustiva (ja que α és algebraic sobre K per ser E/K finita) amb nucli l'ideal generat pel polinomi mínim $Irr(\alpha, H; X)$. Per tant es té un isomorfisme $K[X]/\langle Irr(\alpha, H; X)\rangle \simeq K(\alpha)$ i l'extensió $K(\alpha)/K$ té grau el grau del polinomi irreductible de α . Per multiplicativitat dels graus,

$$[E:K] = [E:K(\alpha)] \cdot [K(\alpha):K]$$

i per tant el grau de $Irr(\alpha, K; X)$ divideix n = [E : K].

2. Fals. Sigui $\overline{\mathbb{Q}} \subset \mathbb{C}$ el subcos format per tots els nombres complexos que són algebraics sobre \mathbb{Q} . Aleshores l'extensió $\overline{\mathbb{Q}}/\mathbb{Q}$ és algebraica ja que els elements de $\overline{\mathbb{Q}}$ són tots algebraics sobre \mathbb{Q} . En canvi, és una extensió infinita ja que per a cada $n \geqslant 1$ l'extensió $\mathbb{Q}(\sqrt[n]{2})$ està continguda a $\overline{\mathbb{Q}}$ i $[\mathbb{Q}(\sqrt[n]{2}):\mathbb{Q}] = n$, de manera que $[\overline{\mathbb{Q}}:\mathbb{Q}] \geqslant n$.

Un altre exemple: sigui $\alpha_n = \sqrt[2^n]{2} \in \mathbb{R}$ i sigui $K_n = \mathbb{Q}(\alpha_n) \subset \mathbb{R}$. Com que $\alpha_{n+1}^2 = \alpha_n$ es tenen inclusions $K_n \subseteq K_{n+1}$, de manera que

$$\mathbb{Q} \subseteq K_1 \subseteq K_2 \subseteq K_3 \subseteq \cdots$$

Sigui $K = \bigcup_{n \geqslant 1} K_n \subset \mathbb{R}$ la reunió de tots aquests cossos. K és un cos ja que donats dos elements qualsevol estan en algun K_n per n prou gran i aquest $K_n \subset K$ conté la seva suma, resta, producte i quocient (si el segon és no nul). A més K/\mathbb{Q} és una extensió algebraica ja que cada element de K pertany a algun K_n , que és una extensió finita i, per tant, algebraica, de \mathbb{Q} . En canvi K/\mathbb{Q} no és finita ja que conté subcossos K_n de grau 2^n arbitràriament gran sobre \mathbb{Q} .

3. Fals. El cos F_{pⁿ} conté subcossos de cardinal p^m només per als exponents m que són divisors de n. En efecte, si F és un subcos de F_{pⁿ} de p^m elements aleshores F_{pⁿ} és un F-espai vectorial. Si k és la dimensió corresponent aleshores el nombre d'elements pⁿ de F_{pⁿ} és (p^m)^k, i d'aquí es dedueix que n = mk i per tant m és un divisor de n. Això demostra que la condició m | n és necessària de manera que l'enunciat és fals. Es pot veure que la condició m | n és suficient veient que, en aquest cas, el polinomi X^{p^m} − X divideix el polinomi X^{pⁿ} − X, però això no cal per fer el problema.

4. Cert. Suposi's que l'extensió és algebraica. Aleshores cada element α_i és algebraic sobre \mathbb{Q} i, per tant, també és algebraic sobre $\mathbb{Q}(\alpha_1, \ldots, \alpha_{i-1})$. Com que una extensió $K(\alpha)/K$ amb α algebraic sobre K és finita de grau el polinomi mínim de α sobre K, cada extensió $\mathbb{Q}(\alpha_1, \ldots, \alpha_i) = (\mathbb{Q}(\alpha_1, \ldots, \alpha_{i-1}))(\alpha_i)/\mathbb{Q}(\alpha_1, \ldots, \alpha_{i-1})$ és finita, de grau el del polinomi irreductible de α_i sobre $\mathbb{Q}(\alpha_1, \ldots, \alpha_{i-1})$. Per multiplicativitat dels graus en una torre d'extensions

$$[\mathbb{Q}(\alpha_1,\ldots,\alpha_n):\mathbb{Q}] = [\mathbb{Q}(\alpha_1,\ldots,\alpha_n):\mathbb{Q}(\alpha_1,\ldots,\alpha_{n-1})] \cdots [\mathbb{Q}(\alpha_1):\mathbb{Q}]$$

l'extensió total també és finita.

- 5. Fals. Contraexemple: n=m=6 tenen màxim comú divisor 6 i en canvi el polígon de $36=4\cdot 9$ no és construïble ja que el de 9 costats no ho és.
- 6. Cert. Un nombre complex és real si, i només si, és igual al seu conjugat. El conjugat d'una arrel de la unitat ζ és la seva inversa ζ^{-1} ja que $\zeta \overline{\zeta} = |\zeta| = 1 = \zeta \zeta^{-1}$. Si $-1 \in H$ aleshores la classe lateral (-1)H coincideix amb H i, per tant,

$$\overline{\zeta^H} = \overline{\sum_{a \in H} \zeta^a} = \sum_{a \in h} \overline{\zeta}^a = \sum_{a \in H} \zeta^{-a} = \sum_{b \in (-1)H} \zeta^b = \sum_{a \in H} \zeta^a = \zeta^H$$

Si, en canvi, $-1 \notin H$ aleshores H i (-1)H són classes laterals disjuntes. Suposi's que $\zeta^H = \overline{\zeta^H}$, o sigui, que $\zeta^H = \zeta^{(-1)H}$. Aleshores es tindria una expressió

$$\sum_{a \in H} \zeta^a - \sum_{b \in (-1)H} \zeta^b = 0$$

on els exponents a i b són enters diferents entre 1 i p-1. Dividint per ζ es dedueix una expressió

$$\sum_{a \in H} \zeta^{a-1} - \sum_{b \in (-1)H} \zeta^{b-1} = 0$$

on els exponents a-1 i b-1 són enters diferents entre 0 i p-2. Aquesta expressió assegura que ζ és arrel d'un polinomi no nul a coeficients racionals (tots són 1 o -1) de grau $\leq p-2$, però el polinomi irreductible de ζ té grau $\varphi(p)=p-1$. Això és una contradicció.

Problema 5. Donat un primer p, considereu els nombres reals següents:

$$\alpha = \sqrt{p - \sqrt[3]{p}}, \qquad \beta = \sqrt[3]{p - \sqrt{p}}.$$

- 1. Calculeu els polinomis mínims de α i de β sobre \mathbb{Q} .
- 2. Proveu que $g(\beta^2) = \beta$ per a algun polinomi $g[X] \in \mathbb{Q}[X]$ i que, en canvi, aquesta igualtat no se satisfà mai per a α en lloc de β .
- 3. Proveu que, si $\mathbb{Q}(\gamma)/\mathbb{Q}$ és una extensió de grau senar, aleshores $g(\gamma^2) = \gamma$ per a algun polinomi $g[X] \in \mathbb{Q}[X]$.

Solució:

1. $\alpha^2 = p - \sqrt[3]{p} \Rightarrow p = (p - \alpha^2)^3 = p^3 - 3p^2\alpha^2 + 3p\alpha^4 - \alpha^6$. Per tant α és arrel del polinomi $X^6 - 3pX^4 + 3p^2X^2 - p(p^2 - 1)$, que és irreductible per ser p-Eisenstein. $\beta^3 = p - \sqrt{p} \Rightarrow p = (p - \beta^3)^2 = p^2 - 2p\beta^3 + \beta^6$. Per tant β és arrel del polinomi $X^6 - 2pX^3 + p(p - 1)$, que és irreductible per ser p-Eisenstein.

2. Per l'apartat anterior se saben els graus $[\mathbb{Q}(\alpha):\mathbb{Q}]=6$ i $[\mathbb{Q}(\beta):\mathbb{Q}]=6$. Es té $\mathbb{Q}\subseteq\mathbb{Q}(\beta^2)\subseteq\mathbb{Q}(\beta)$. Operant amb la identitat $\beta^6-2p\beta^3+p(p-1)=0$ (aïllant una β del terme del mig) s'obté la identitat

$$\beta = \frac{\beta^6 + p(p-1)}{2p\beta^2} \in \mathbb{Q}(\beta^2).$$

Per tant, $\mathbb{Q}(\beta) = \mathbb{Q}(\beta^2)$ i tot element de $\mathbb{Q}(\beta)$, en particular el mateix β , pertany a l'extensió simple $\mathbb{Q}(\beta^2)$, els elements de la qual s'escriuen com a polinomis (de grau < 6) a coeficients en \mathbb{Q} avaluats en β^2 ; o sigui $\beta = g(\beta^2)$ per a un $g(X) \in \mathbb{Q}[X]$ (de grau < 6).

En canvi α^2 és arrel del polinomi $X^3 - 3pX^2 + 3p^2X - p(p^2 - 1)$ irreductible de grau 3. Per tant $[\mathbb{Q}(\alpha^2) : \mathbb{Q}] = 3$ i per la multiplicativitat dels graus ha de ser $[\mathbb{Q}(\alpha) : \mathbb{Q}(\alpha^2)] = 2$. En particular, $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\alpha^2)$ i $\alpha \notin \mathbb{Q}(\alpha^2)$, de manera que α no pot ser de la forma $g(\alpha^2)$ amb $g(X) \in \mathbb{Q}[X]$.

3. Com que $\gamma^2 \in \mathbb{Q}(\gamma)$ es tenen inclusions $\mathbb{Q} \subseteq \mathbb{Q}(\gamma^2) \subseteq \mathbb{Q}(\gamma)$. Per multiplicativitat dels graus, $[\mathbb{Q}(\gamma):\mathbb{Q}(\gamma^2)]$ divideix $[\mathbb{Q}(\gamma):\mathbb{Q}]$, que és un nombre senar, i per tant també és senar. Com que γ és arrel del polinomi $X^2 - \gamma^2 \in \mathbb{Q}(\gamma^2)[X]$ el seu polinomi irreductible ha de ser un divisor d'aquest polinomi, i té grau senar. Per tant, el grau de $\mathrm{Irr}(\gamma,\mathbb{Q}(\gamma^2);X)$ és igual a 1 i això vol dir que $\gamma \in \mathbb{Q}(\gamma^2)$. Això implica que γ s'escriu de la forma $g(\gamma^2)$ amb g un polinomi a coeficients racionals (de grau menor que el grau de l'extensió $\mathbb{Q}(\gamma^2)/\mathbb{Q}$, que és el mateix que el grau de l'extensió $\mathbb{Q}(\gamma)/\mathbb{Q}$). Una altra manera de veure que $\gamma = \mathbb{Q}(\gamma^2)$ és fer servir el polinomi irreductible $\mathrm{Irr}(\gamma,\mathbb{Q};X) = X^{2n+1} + a_{2n}X^{2n} + \cdots + a_3X^3 + a_2X^2 + a_1X + a_0$ i a partir de la identitat

$$\beta^{2n+1} + a_{2n}\beta^{2n} + \dots + a_3\beta^3 + a_2\beta^2 + a_1\beta + a_0$$

= $\beta(\beta^{2n} + \dots + a_3\beta^2 + a_1) + (a_{2n}\beta^{2n} + \dots + a_2\beta^2 + a_0) = 0$

aïllar β i obtenir-lo com un element de $\mathbb{Q}(\beta^2)$. Observi's que el denominador no pot ser zero ja que és el valor de β en un polinomi de grau 2n, que no pot ser zero ja que el polinomi irreductible de β té grau 2n + 1.