Adapting by Pruning: A Case Study on BERT Supplementary Material

1 Convergence analysis

1.1 Definitions

The results presented in this appendix are more general than the convergence bound reported in the main text. To simplify the exposition, we use a slightly different notation. In particular,

- t_l and t_s are called M_{hard} and M_{small}
- t = 1, ..., T is used as an upper index to label the SGD epochs (except for the learning parameters α_t)
- $m_{t_l} = \sigma(t_l \theta)$ is called v throughout this appendix
- $\ell(z; m_{t_l}, p)$ and $\mathcal{L}_{t_l}(\theta) = \mathcal{L}_t(\sigma(t\theta))$ of the main text are called f(v, z) and F(v)
- Theorem 1 of the main text is Corollary 1.4
- \mathcal{D}_{train} is \mathcal{D}
- $\nabla_v f(v,z)$ is $\nabla f(v,z)$ defined by $[\nabla f(v,z)]_i = \frac{\partial}{\partial v_i} f(v',z)|_{v'=v}$

To avoid confusion, we list of all quantities and conventions used throughout this technical appendix:

- $d \in \mathbb{N}$: number of model parameters
- $\mathcal{Z} = \mathcal{X} \otimes \mathcal{Y}$: object-label space
- P_Z : object-label distribution
- $Z \sim P_Z$: object-label random variable
- $\mathcal{D} = \{z_n \in \mathcal{Z} | z_n \text{ is realization of } Z \sim P_Z\}_{n=1}^N$: training data set
- $f:[0,1]^d\otimes\mathcal{Z}\to\mathbf{R}$: single-input classification error
- $F: [0,1]^d \to \mathbf{R}, \ F(v) = \sum_{z \in \mathcal{D}} f(v,z) \approx |\mathcal{D}| \ E_{Z \sim P_Z}(f(v,Z))$: average classification error
- M_{soft} and $M_{hard} > 0$, such that $0 \le M_{soft} \le M_{hard}$: soft- and hard-binarization constants
- $\sigma(s) = \frac{1}{1+e^{-s}} \in [0,1]^d$ for all $s \in \mathbf{R}^d$
- $\sigma'(s) := \sigma(s) \odot (1 \sigma(s))$, for all $s \in \mathbf{R}^d$

-
$$[\nabla g(s)]_i = \frac{\partial g(s')}{\partial s_i'}|_{s'=s}$$

- $\operatorname{diag}(s) \in \mathbf{R}^{d \times d}$ is such that $[\operatorname{diag}(s)]_{ii} = v_i$ and $[\operatorname{diag}(s)]_{ij} = 0$ if $i \neq j, i, j = 1, \dots, d$

1.2 Assumptions and proofs

Assumption 1. $f:[0,1]^d\otimes\mathcal{Z}\to\mathbf{R}$, is differentiable over $[0,1]^d$ for all $z\in\mathcal{Z}$ and obeys

$$\max_{v \in [0,1]^d, z \in \mathcal{Z}} \|\nabla f(v,z)\|^2 \le G^2, \tag{1}$$

$$f(v,z) - f(v',z) \ge \nabla f(v',z)^T (v - v'), \tag{2}$$

for all $v, v' \in [0, 1]^d$ and $z \in \mathcal{Z}$.

Lemma 1.1. Let $f:[0,1]^d\otimes\mathcal{Z}\to\mathbf{R}$ be the function defined in Assumption 1 and $F:[0,1]^d\to\mathbf{R}$ be defined by

$$F(v) = \sum_{z \in \mathcal{D}} f(v, z) \approx |\mathcal{D}| E_Z(f(v, Z))$$

where $\mathcal{D} = \{z_n \in \mathcal{Z} | z_n \text{ is realization of } Z \sim P_Z\}_{n=1}^N$. Then

$$F(v) - F(v') \ge \nabla F(v')^T (v - v'), \tag{3}$$

for all $v, v' \in [0, 1]^d$ and $z \in \mathcal{X} \times \mathcal{Y}$.

Proof of Lemma 1.1 The convexity of f implies the convexity of F as

$$F(v) - F(v') = |\mathcal{D}|^{-1} \sum_{z \in \mathcal{D}} f(v, z) - f(v', z)$$
(4)

$$\geq |\mathcal{D}|^{-1} \sum_{z \in \mathcal{D}} \nabla f(v', z)^T (v - v') \tag{5}$$

$$= \nabla F(v')^T (v - v'). \tag{6}$$

Lemma 1.2. Let $\alpha_t = \frac{c}{\sqrt{t}}$, c > 0, and $\theta^t \in \mathbf{R}^d$ be defined by

$$\theta^{t+1} = \theta^t - \alpha_t M_{soft} \nabla f(\sigma(M_{hard}\theta^t), z_t) \odot \sigma'(M_{soft}\theta^t), \tag{7}$$

where, for all t = 1, ..., T, $\sigma'(s) = \sigma(s) \odot (1 + \sigma(s))$ $(s \in \mathbf{R}^d)$, and z_t is chosen randomly in \mathcal{D} . Then, for all t = 1, ..., T, $v^t = \sigma(M_{hard}\theta^t)$ obeys

$$v^{t+1} = v^t - \alpha_t (\nabla f(v^t, z_t) + r^t), \tag{8}$$

where

$$r^{t} = \nabla f(v^{t}, z) - M_{hard} M_{soft} \sigma'(M_{hard} \xi^{t}) \odot \nabla f(v^{t}, z) \odot \sigma'(M_{soft} \theta^{t})$$

$$(9)$$

$$\xi^t \in [\theta^t, \theta^t - \alpha_t M_{soft} \nabla f(v^t, z) \odot \sigma'(M_{soft} \theta^t)]$$
(10)

for any $z_t \in \mathcal{Z}$. Furthermore, for all t = 1, ..., T, r^t , obeys

$$||r^t||^2 \le G^2 C \tag{11}$$

where G is defined in (1) and

$$C = M_{hard}M_{soft} \left(\frac{1}{M_{hard}M_{soft}} - 2g_{max}(M_{hard})g_{max}(M_{soft}) + \frac{M_{hard}M_{soft}}{16^2} \right)$$
(12)

$$g_{max}(M) = \sigma(M\theta_{max})(1 - \sigma(M\theta_{max})) \tag{13}$$

$$\theta_{max} = \max_{t} |\theta^{t}| \tag{14}$$

Proof of Lemma 1.2 Let $\sigma_M(s) = \sigma(Ms)$, $\sigma'_M(s) = M\sigma(Ms)(1-\sigma(Ms))$, and $v = \sigma_M(\theta)$, for any $\theta \in \mathbf{R}^d$ and M > 0. Then (7) is equivalent to (8) as

$$v^{t+1} = \sigma_{M_{hard}} \left(\theta^t - \alpha_t \nabla f(\sigma_{M_{hard}}(\theta^t), z) \odot \sigma'_{M_{soft}}(\theta^t) \right)$$
(15)

$$= v^t - \alpha_t \sigma'_{M_{hard}}(\xi^t) \odot \nabla f(\sigma_{M_{hard}}(\theta^t), z) \odot \sigma'_{M_{soft}}(\theta^t)$$
(16)

$$= v^t - \alpha_t \nabla f(v^t, z) + \alpha_t r^t \tag{17}$$

$$r^{t} = \nabla f(v^{t}, z) - \operatorname{diag}\left(\sigma'_{M_{hard}}(\xi^{t}) \odot \sigma'_{M_{soft}}(\theta^{t})\right) \cdot \nabla f(\sigma_{M_{hard}}(\theta^{t}), z)$$
(18)

$$= \nabla f(v^t, z) - \operatorname{diag}\left(\sigma'_{M_{hard}}(\xi^t) \odot \sigma'_{M_{soft}}(\theta^t)\right) \cdot \nabla f(v^t, z) \tag{19}$$

$$\xi^t \in [\theta^t, \theta^t - \alpha_t \nabla f(v^t, z) \odot \sigma'_{M_{soft}}(\theta^t)]$$
(20)

where the first equality follows from $\sigma_M(a+b) - \sigma_M(a) = \sigma'_M(\xi)$ b for some $\xi \in [a, a+b]$ (mean value theorem). For any $\theta \in \mathbf{R}$ and $z \in \mathcal{Z}$, one has

$$||r^t||^2 = ||\nabla f(v^t, z)||^2 + ||\operatorname{diag}\left(\sigma'_{M_{hard}}(\xi^t) \odot \sigma'_{M_{soft}}(\theta^t)\right) \cdot \nabla f(v^t, z)||^2$$
(21)

$$-2\nabla f(v^t, z)^T \operatorname{diag}\left(\sigma'_{M_{hard}}(\xi^t) \odot \sigma'_{M_{soft}}(\theta^t)\right) \cdot \nabla f(v^t, z)$$
(22)

$$\leq G^2 \left(1 - 2\min \sigma'_{M_{hard}}(\xi^t) \odot \sigma'_{M_{soft}}(\theta^t) + \left(\max \sigma'_{M_{hard}}(\xi^t) \odot \sigma'_{M_{soft}}(\theta^t) \right)^2 \right) \tag{23}$$

$$\leq G^2 \left(1 - 2\sigma'_{M_{hard}}(\theta_{max})\sigma'_{M_{soft}}(\theta_{max}) + \left(\frac{M_{hard}M_{soft}}{16} \right)^2 \right) \tag{24}$$

$$\leq G^2 M_{hard} M_{soft} \left(\frac{1}{M_{hard} M_{soft}} - 2g_{max}(M_{hard}) g_{max}(M_{soft}) + \frac{M_{hard} M_{soft}}{16^2} \right)$$
(25)

$$=G^2C (26)$$

where G is defined in Assumption 1, min a and max a are the smallest and largest entries of $a \in \mathbf{R}^d$, $\theta_{max} = \max_t |\theta^t|$,

$$g_{max}(M) = \sigma_M(\theta_{max})(1 - \sigma_M(\theta_{max})) = \sigma(M\theta_{max})(1 - \sigma(M\theta_{max})),$$

and we have used

$$\max_{s \in \mathbf{R}} \sigma'_{M}(s) = \sigma'_{M}(0) = \frac{M}{4}, \quad \min_{s \in [-a,a]} = \sigma'_{M}(s) = \sigma'(-a) = \sigma'(a)$$

for any M>0, the Cauchy-Schwarz inequality $s^Ts'\leq \|s\|\|s'\|$, and $s^T\mathrm{diag}(s')\cdot s\leq (\max s')\|s\|^2$, and defined

$$C = M_{hard}M_{soft} \left(\frac{1}{M_{hard}M_{soft}} - 2g_{max}(M_{hard})g_{max}(M_{soft}) + \frac{M_{hard}M_{soft}}{16^2} \right)$$

Theorem 1.3. Let $f:[0,1]^d \otimes \mathcal{Z} \to \mathbf{R}$ and $F:[0,1]^d \to \mathbf{R}^d$ be defined as in Assumption 1 and Lemma 1.1. Let v^t and $\alpha_t = \frac{c}{\sqrt{t}}$ $(t=1,\ldots,T,\ c>0)$ be the sequence of weights defined in (8) and a sequence of decreasing learning rates and $v^* = \arg\min_{v \in [0,1]^d} f(v)$. Then

$$E(F(v^T) - F(v^*)) \le \frac{1}{c\sqrt{T}} + \frac{cG^2(1+C)(1+\log T)}{T}$$
 (27)

where the expectation is over $Z \sim P_Z$ and G and C are defined in Lemma 1.2.

Proof of Theorem 1.3 Assumption (1) and Lemma (1.1) imply that $F:[0,1]^d \to \mathbf{R}$ is a convex function over $[0,1]^d$. The first part of Lemma 1.2 implies that the sequence of approximated \mathbf{R}^d -valued gradient updates (7) can be rewritten as the sequence of approximated $[0,1]^d$ -valued gradient updates (8). The second part of Lemma 1.2 implies that the norm of all error terms in (8) is bounded from above. In particular, as each r^t is multiplied by the learning rate, $\alpha_t = \frac{c}{t}$, it is possible to show that (8) converges to a local optimum of $F:[0,1]^d \to \mathbf{R}$.

To show that (8) converges to a local optimum of $F:[0,1]^d\to \mathbf{R}$ we follows a standard technique for proving the convergence of stochastic and make the further (standard) assumption

$$E(r^t) = 0, \quad t = 1, \dots, T.$$
 (28)

First, we let v^t , r^t and α_t , $t=1,\ldots,T$, be defined as in Lemma 1.2, and $z\in\mathcal{D}$ be the random sample at iteration t+1. Then

$$||v^{t+1} - v^*||^2 = E(||v^{t+1} - v^*||^2)$$
(29)

$$= \|v^t - v^*\|^2 - 2\alpha_t E(\nabla f(v^t, z) - r^t)^T (v^t - v^*)$$
(30)

$$+ \alpha_t^2 E\left(\|\nabla f(v^t, \tilde{z}) - r^t\|^2 \right)$$

$$\leq \|v^t - v^*\|^2 - 2\alpha_t E(\nabla f(v^t, z)^T (v^t - v^*) + \alpha_t^2 \left(G^2 + E(\|r^t\|^2)\right)$$
(31)

$$\leq \|v^t - v^*\|^2 + 2\alpha_t E(F(v^*) - F(v^t)) + \alpha_t^2 G^2(1 + C)$$
(32)

where G^2 and C are defined in (1) and (21). Rearranging the terms one obtains

$$E(F(v^t) - F(v^*)) \le \frac{\|v^t - v^*\|^2 - \|v^{t+1} - v^*\|^2}{2\alpha_t} + \frac{\alpha_t}{2}G^2(1+C)$$
(33)

Since $F(v^T) - F(v^*) = \frac{1}{T} \sum_{t=1}^{T} (F(v^t) - F(v^*))$, the bound in (33) implies

$$E\left(F(v^T) - F(v^*)\right) = E\left(\frac{1}{T}\sum_{t=1}^{T} \left(F(v^t) - F(v^*)\right)\right)$$
(34)

$$\leq \frac{1}{T} \sum_{t=1}^{T} E\left(F(v^t) - F(v^*)\right) \tag{35}$$

$$\leq \frac{1}{2cT} \sum_{t=1}^{T} \left(\sqrt{t} (\|v^t - v^*\|^2 - \|v^{t+1} - v^*\|^2) + \frac{c^2 G^2 (1+C)}{\sqrt{t}} \right)$$
 (36)

$$= \frac{1}{2cT} \left(\sum_{t=1}^{T} (\sqrt{t+1} - \sqrt{t}) \|v^t - v^*\|^2 - T \|v^{T+1} - v^*\|^2 + c^2 G^2 (1+C) \sum_{t=1}^{T} \frac{1}{t} \right)$$
(37)

$$\leq \frac{1}{2cT} \left(\sqrt{T} \max_{t} \{ \|v^{t} - v^{*}\|^{2} \}_{t=1}^{T} + c^{2}G^{2}(1+C)(1+\log T) \right)$$
 (38)

$$\leq \frac{1}{c\sqrt{T}} + \frac{cG^2(1+C)(1+\log T)}{T}$$
(39)

where the second line follows from the Jensen's inequality and we have used $\sum_{t=1}^{T} (\sqrt{t+1} - \sqrt{t}) \le \sqrt{T}$ and $\sum_{t=1}^{T} \frac{1}{t} \le 1 + \log T$. \square

Corollary 1.4. Let $f:[0,1]^d\otimes\mathcal{Z}\to\mathbf{R}$ and $F:[0,1]^d\to\mathbf{R}^d$ be defined as in Assumption 1 and Lemma 1.1. Let θ^t be a sequences of stochastic weight updates defined by

$$\theta^{t+1} = \theta^t - \alpha_t M_{soft} \nabla f(\sigma(M_{hard}\theta^t), z_t) \odot \sigma'(M_{soft}\theta^t)$$

where, for all t = 1, ..., T, $\alpha_t = \frac{c}{\sqrt{t}}$ (c > 0) and z_t is chosen randomly in \mathcal{D} . Then

$$E(F(\sigma(M_{hard}\theta^T)) - F(\sigma(M_{hard}\theta^*)) \le \frac{1}{c\sqrt{T}} + \frac{cG^2(1+C)(1+\log T)}{T}$$

where the expectation is over $Z \sim P_Z$, $\theta^* = \arg\min_{\theta \in \mathbf{R}^d} F(\sigma(M_{hard}\theta), G \text{ is defined in (1),} and$

$$C = M_{hard}M_{soft} \left(\frac{1}{M_{hard}M_{soft}} - 2g_{max}(M_{hard})g_{max}(M_{soft}) + \frac{M_{hard}M_{soft}}{16^2} \right)$$
(40)

$$g_{max}(M) = \sigma(M\theta_{max})(1 - \sigma(M\theta_{max})), \quad \theta_{max} = \max_{t} |\theta^{t}|$$
 (41)

Proof of Corollary 1.4 The Corollary follows directly from Theorem 1.3 because σ is a strictly increasing function, which implies that the mappings $\mathbf{R}^d \to [0,1]^d$ and $[0,1]^d \to \mathbf{R}^d$ are both one-to-one. In particular, for all $t=1,\ldots,T$ one has $\theta^t = \frac{1}{M_{hard}}\sigma^{-1}(v^t)$ and

$$\theta^* := \arg \min_{\theta \in \mathbf{R}^d} F(\sigma(M_{hard}\theta)) \tag{42}$$

$$= \frac{1}{M_{hard}} \sigma^{-1} \left(\arg \min_{v \in [0,1]^d} F(v)|_{v = \sigma(M_{hard}\theta)} \right)$$

$$\tag{43}$$

$$=\frac{1}{M_{hard}}\sigma^{-1}(v_*)\tag{44}$$

Hyper-parameter	Candidate and selected values
batch size	4, 8(all), 10
α (max learning rate for θ)	2e-4, 2e-5 (all), 2e-6
β (max learning rate for p)	2e-4, 2e-5 (all), 2e-6
γ (max regularisation)	2e-5, 2e-6, 2e-7 (all), 2e-8
num. of epoch	2 (MNLI), 3 (SST-2), 5 (STS-B), 10
$\mid t_l \mid$	10^{5} (all), 10^{3} , 10
$ t_s $	$10^{-2}, 10^{-1}, 1(\text{all})$

Table 1: Hyper-parameters tested and selected for our adapt-by-pruning algorithm (Alg. 1 in the main paper). Values in boldface are the ones yielding best performance on the validation set for a certain task. For batch size, due to the hardware limit, we cannot test larger values.

with
$$v^* := \arg\min_{v \in [0,1]} F(v)$$
. It follows that $F(v^t) \to F(v^*)$ implies $F(\sigma(M_{hard}\theta^t)) \to F(\sigma(M_{hard}\theta^*))$. \square

2 Hyper-Parameters Selection

The hyper-parameters selection details are presented in Table 1.

3 Detailed Main Results

Table 2 compares the performance of different model adaptation and pruning methods; these data are illustrated in Fig. 2 in the main paper.

4 Topological Analysis

The component-wise and layer-wise sparsity comparison of sub-networks obtained by different pruning methods are presented in Fig. 1 (on SST-2) and Fig. 2 (on STS-B).

Figure 1: Component- (left) and layer-wise (right) sparsity of the sub-networks obtained by our method and IMP/MP, on the SST-2 dataset.

Figure 2: Component- (left) and layer-wise (right) sparsity of the sub-networks obtained by our method and IMP/MP, on the STS-B dataset.

Sparsity	STS-B (rho)				SST-2 (acc)				MNLI (acc)			
	Rnd	IMP	MP	Ours	Rnd	IMP	MP	Ours	Rnd	IMP	MP	Ours
Feat. Ext.		.761	± .003		$.867 \pm .004$				$.585 \pm .001$			
Fine-Tune	$.855 \pm .013$				$.926 \pm .017$				$.843 \pm .014$			
0.2	.193	.743	.739	.794	.645	.862	.863	.908	.372	.674	.675	.769
0.5	.126	.707	.706	.837	.558	.825	.819	.856	.341	.641	.648	.709
0.7	.016	.383	.607	.720	.509	.806	.793	.843	.331	.551	.564	.696
0.9	.009	.203	.147	.624	.509	.717	.722	.836	.322	.458	.436	.679
0.95	.002	.077	.095	.600	.509	.691	.509	.831	.333	.357	.343	.671
0.99	.006	.067	022	.547	.506	.509	.509	.810	.337	.348	.341	.628
0.999	NA	.028	.023	.301	NA	.509	.509	.772	NA	.341	.341	.446
0.9999	NA	NA	NA	NA	NA	.509	.509	.509	NA	.341	.341	.341
Rnd bsl	$.003 \pm .026$				$.509 \pm .018$				$.341 \pm .003$			

Table 2: Performance of subnetworks obtained by different pruning algorithms. Performance (mean± stddev) of feature extraction, fine-tuning and random baselines are also presented. Results are averaged over 100 (Rnd and random baseline) or five runs (the others) with different random seeds. NA: no results produced as some layers in the network are completely pruned. Boldface: significantly better results.