6. Se define la función $mex: \mathcal{P}(\mathbb{N}) \to \mathbb{N}$ como

$$mex(X) = \min\{j : j \in \mathbb{N} \land j \notin X\}$$

Intuitivamente, mex devuelve, dado un conjunto X, el menor número natural que no está en x. Por ejemplo, $mex(\{0,1,2\}) = 3$, $mex(\{0,1,3\}) = 2$ y $mex(\{1,2,3,\ldots\}) = 0$.

Dado un vector de número $a_1 \dots a_n$ queremos encontrar la permutación $b_1 \dots b_n$ de los mismos que maximize

$$\sum_{i=1}^{n} mex(\{b_1 \dots b_i\})$$

Por ejemplo, si el vector es $\{3,0,1\}$ podemos ver que la mejor permutación es $\{0,1,3\}$, que alcanza un valor de

$$mex({0}) + mex({0,1}) + mex({0,1,3}) = 1 + 2 + 2 = 5$$

a) Proponer un algoritmo greedy que resuelva el problema y demostrar su correctitud. **Ayuda**: ¿Cuál el máximo valor que puede tomar mex(X) si X tiene n elementos? Si $X \subseteq Y$, ¿Qué pasa con los valores mex(X) y mex(Y)?

Estrategia

Empezamos con una lista S con las posiciones iniciales y una lista R vacia de tamaño |S|, 0-indexed.

Vamos iterando sobre los j elementos de S y:

- Si $S_j \geq |S|$ entonces ponemos S_j al ultimo disponible de R
- Si $S_j < |S|$:
-
- Si su lugar está ocupado, entonces al ultimo disponible de
 ${\cal R}$
- • Sino, $R_i := S_i$

Algoritmo

La solución propuesta trae problemas de implementación por lo que la modifiqué un poco, siguiendo la misma idea

```
MaxMex(S):
    R <- array de tamaño |S| con todo -1
    Pila <- pila vacia

For j ∈ S:
    Si j < |S| entonces:
        R[j] := j

    Sino:
        Pila.agregar(j)

For j: 0...|R|-1:
    Si R[j] = -1 entonces:
        R[j] := Pila.desapilar

Return R</pre>
```

Precondiciones

Lo que queremos demostrar es que lo único que importa en la posición de los elementos de $S = \{s_0, s_1, ... s_{n-1}\}$ (n = |S|) son los $s_i = i$ para que la solución sea óptima.

Lo que hace nuestro algoritmo es dar una salida $R = \{r_0, r_1, ..., r_{n-1}\}$ tal que:

Iteración 1:

$$\bullet \ i \in S \land 0 \leq i < n \underset{L}{\rightarrow} r_i = i \land S = S \setminus \{r_i\}$$

Iteración 2:

$$\bullet \ \forall r_i \neq i :: r_i = s, s \in S \mathop{\rightarrow}_L S = S \mathop{\backslash} s$$

Demostración

Haremos inducción en |R|

Caso base:

Si |R|=1 entonces R tiene un solo elemento, r_0 , por lo tanto una única forma de ordenarlo, por lo que es óptimo.

$$\mathrm{Si}\; r_0=0,\, mex(R)=1$$

Si
$$r_0 \neq 0$$
, $mex(R) = 0$

Paso inductivo

HI:
$$R=\{r_0,...,r_{k-1},r_k,...r_{n-1}\}$$
 donde desde r_0 hasta r_{k-1} vale $r_i=i$ por lo que vale
$$mex(\{0\})+...+mex(\{0,...,k-1\})=1+...+k$$

Que es trivialmente la máxima suma posible, $\sum_{i=1}^k i$

Si
$$r_k = k$$
:

Entonces sigue siendo la máxima suma posible, ya que $mex(\{0,...,k\})=k+1$ entonces sumamos hasta el paso k un total de $\sum_{i=1}^{k+1} i$

Si
$$r_k \neq k$$
:

Sabemos que desde r_0 hasta r_{k-1} vale $r_i=i$, por lo que si $r_k\neq k\Rightarrow r_k>k$, pero el siguiente número natural disponible es k, por lo que si no existe en el conjunto, entonces cualquier p>k, $mex(\{0,...,k-1,p,...\})=k$, por lo que todas las sumas siguientes sumarán siempre k ya que es el primer natural disponible.

- : queda demostrado que nuestra solución greedy computa una solución óptima
- b) Dar una implementación del algoritmo del inciso anterior con complejidad temporal O(n).

```
public static int[] maxMex(int[] S) {
   int[] R = new int[S.length];
   Arrays.fill(R, -1);

   Stack<Integer> pila = new Stack<>();

   for (int j:S) {
      if (j < S.length) R[j] = j;
      else pila.push(j);
   }</pre>
```

```
for (int j=0; j < R.length ;j++) if (R[j] == -1) R[j] = pila.pop(); return R; }
```