SIEMENS

SAB 80C5XX Microcontroller Family

SAB 80C515 / 80C535 SAB 80C517 / 80C537 SAB 80C515A / 83C515A SAB 80C517A / 83C517A

Pocket Guide 08.98

Instruction List for the SAB 80C51X Microcontroller Family

						Encod	ing								
Kind Instrution			Mnemoi	nic	Regi- ster	Binary	Hex	Affected Flags	Bytes	Cycles	Function	Funktionsbeschreibung			
			MOV	A,Rr	r=0-7	11101 rrr	E8+r	Р	1	1	Move register Rr contents to accumulator	Lade Akkumulator mit Inhalt von Register Rr			
			MOV	Rr,A	r=0-7	11111 rrr	F8+r	-	1	1	Move accumulator contents to register Rr	Lade Register Rr mit Inhalt des Akkumulators			
			MOV	A,@Ri	i=0-1	1110011 i	E6+i	Р	1	1	Move contents of data memory addressed by Ri to accumulator	Lade Akkumulator mit dem Inhalt der internen Datenspeicherzelle, die durch den Inhalt von Ri adressiert ist			
		-	MOV	@Ri,A	i=0-1	1111011 i	F6+i	-	1	1	Move accumulator to data memory addressed by Ri	Lade interne Datenspeicherzelle, die durch den Inhalt von Ri adressiert ist, mit dem Inhalt des Akkumulators			
			MOV	A,dadr *)	_	11100101	E5	Р	2	1	Move contents of direct address to accumulator (MOV A,ACC is not a valld instruction!)	Lade Akkumulator mit Inhalt von dadr (MOV A,ACC ist kein gültiger Befehl!)			
			MOV	dadr,A	-	11110101	F5	-	2	1	Move accumulator contents to direct address	Lade dadr mit Inhalt des Akkumulators			
	:	KAM	MOV	A,#const8	-	01110100	74	Р	2	1	Move immediate data to accumulator	Lade Akkumulator mit 8 Bit Konstante			
			MOV	Rr,#const8	r=0-7	01111 rrr	78+r	-	2	1	Move immediate data to register	Lade Register Rr mit 8 Bit Konstante			
		Internal	MOV	@Ri,#const8	i=0-1	0111011 i	76+i	-	2	1	Move immediate data to data memory addressed by Ri	Lade interne Datenspeicherzelle, die durch den Inhalt von Ri adressiert ist, mit 8 Bit Konstante			
		Inte	MOV	dadr,#const8	-	01110101	75	_	3	2	Move immediate data to data memory	Lade dadr mit 8 Bit Konstante			
			MOV	Rr,dadr	r=0-7	10101 rrr	A8+r	_	2	2	Load register Rr with contents of direct address	Lade Register Rr mit Inhalt von dadr			
			MOV	dadr,Rr	r=0-7	10001 rrr	88+r	-	2	2	Load direct address with contents of register	Lade dadr mit Inhalt von Register Rr			
			MOV	dadr,@Ri	i=0-1	1000011 i	86+i	_	2	2	Move contents of data memory addressed by Ri to direct address	Lade dadr mit Inhalt der Datenspeicherzelle, die durch Ri adressiert ist			
SI			MOV	@Ri,dadr	i=0-1	1010011 i	A6+i	_	2	2	Move data memory to contents of data memory addressed by Ri	Lade interne Datenspeicherzelle, die durch Ri adressiert ist, mit Inhalt von dadr			
tior	¥ ¥ ¥		MOV	dadr1, dadr2	_	10000101	85	-	3	2	Move data memory to data memory	Lade dadr1 mit Inhalt von dadr2			
itru	Ľ		MOV	DPTR,#const16	-	10010000	90	-	3	2	Move immediate data to data pointer	Lade Daten-Pointer DPTR mit 16 Bit Konstante			
Transfer Instructions			MOVX	A,@Ri	i=0-1	1110001 i	E2+i	Р	1	2	Move contents of external data memory addressed by Ri to accumulator	Lade Akkumulator mit dem Inhalt der externen Datenspeicherzelle, die durch Ri adressiert ist			
Trans		I KAM	MOVX	@Ri,A	i=0-1	1111001 i	F2+i	-	1	2	Move accumulator contents to external data memory, addressed by Ri	Lade externe Datenspeicherzelle, die durch den Inhalt von Ri adressiert ist, mit dem Inhalt des Akkumulators			
		External	MOVX	A,@DPTR	-	11100000	E0	Р	1	2	Move contents of external data memory addressed by DPTR to accumulator	Lade Akkumulator mit dem Inhalt der externen Datenspeicherzelle, die durch DPTR adressiert ist			
		_	MOVX	@DPTR,A	-	11110000	F0	_	1	2	Move accumulator contents to external data memory, addressed by DPTR	Lade externe Datenspeicherzelle, die durch den Inhalt von DPTR adressiert ist, mit dem Inhalt des Akkumulators			
			XCH	A,Rr	r=0-7	11001 rrr	C8+r	Р	1	1	Exchange accumulator and register contents	Vertausche die Inhalte von Akkumulator und Register Rr			
			XCH	A,dadr	_	11000101	C5	Р	2	1	Exchange accurnulator and data memory contents	Vertausche die Inhalte von Akkumulator und dadr			
	2	KAM	XCH	A,@Ri	i=0-1	1100011 i	C6+i	Р	1	1	Exchange accumulator and data memory addressed by Ri	Vertausche die Inhalte von Akkumulator und der internen Datenspeicherzelle, die durch den Inhalt von Ri adressiert ist			
			XCHD	A,@RI	i=0-1	1101011 i	D6+i	P	1	1	Exchange low order nibble of accumulator and data memory	Vertausche die Inhalte der niederwertigen Halbbytes von Akkumulator und der internen Datenspeicherzelle, die durch den Inhalt von Ri adressiert ist			
		Internal	SWAP	Α	-	11001010	CA	-	1	1	Exchange nibbles of accumulator	Vertausche die Bytehälften des Akkumulators			
		_	PUSH	dadr	-	11000000	C0	-	2	2	Increment stack pointer and push data memory onto stack	Der Stack-Pointer wird um 1 erhöht und der Inhalt von dadr wird im Stack abgelegt			
			POP	dadr	-	11010000	D0	-	2	2	Pop data memory from stack. and decrement stack pointer	Übertrage den Inhalt der durch den Stack-Pointer adressierten Datenspeicherzelle nach dadr und der Stack-Pointer wird um 1 erniedrigt			
	Ž		MOVC	A,@A+DPTR	-	10010011	93	Р	1	2	Move program memory addressed by accumulator plus DPTR to accumulator	R durch die Summe von DPTR und Akkumulator adressiert ist			
	ROM		MOVC	A,@A+PC	_	10000011	83	Р	1	2	Move program memory addressed by accumulator plus program counter to accumulator	Lade Akkumulator mit dem Inhalt der Programmspeicherzelle, die durch die Summe von Programmzähler und Akkumulator adressier ist			

					Encod	ing					
	d of ruc-	Mnemo	onic	Regi- ster	Binary	Hex	Affected Flags	Bytes	Cycles	Function	Funktionsbeschreibung
		ANL	A,Rr	r=0-7	01011 rrr	58+r	Р	1	1	Logical AND accumulator with register contents to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der UND-Verknüpfung von Akkumulator und dem Inhalt von Register Rr
		ANL	A,@Ri	i=0-1	0101011 i	56+i	Р	1	1	Logical AND accumulator with data memory content addressed by Ri to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der UND-Verknupfüng von Akkumulator und dem Inhalt der internen Datenspeicherzelle, die durch den Inhalt von Ri adressiert ist
	AND	ANL	A,dadr	-	01010101	55	Р	2	1	Logical AND accumulator with contents of direct address to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der UND-Verknüpfung von Akkumulator und dem Inhalt von dadr
	₹	ANL	A,#const8	-	01010100	54	Р	2	1	Logical AND accumulator with immediate data to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der UND-Verknüpfung von Akkumulator und der 8 Bit Konstanten
		ANL	dadr,A	-	01010010	52	-	2	1	Logical AND accumulator with contents of direct address to direct address	Der Inhalt von dadr wird überschrieben durch das Ergebnis der UND-Verknüpfung von Akkumulator und dem Inhalt von dadr
		ANL	dadr,#const8	-	01010011	53	_	3	2	Logical AND contents of direct address and immediate data to direct address	Der Inhalt von dadr wird überschrieben durch das Ergebnis der UND-Verknüpfung der 8 Bit Konstanten mit dem Inhalt von dadr
		ORL	A,Rr	r=0-7	01001 rrr	48+r	Р	1	1	Logical OR accumulator with register contents to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der ODER- Verknüpfung von Akkumulator und dem Inhalt von Register Rr
		ORL	A,@Ri	i=0-1	0100011 i	46+i	Р	1	1	Logical OR accumulator with data memory contents addressed by Ri to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der ODER- Verknüpfung von Akkumulator und dem Inhalt der internen Datenspeicherzelle, die durch den Inhalt von Ri adressiert ist
ons	œ	ORL	A,dadr	_	01000101	45	Р	2	1	Logical OR accumulator with contents of direct address to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der ODER- Verknüpfung von Akkumulator und dem Inhalt von dadr
ucti	OR	ORL	A,#const8	-	01000100	44	Р	2	1	Logical OR accumulator with immediate data to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der ODER- Verknüpfung von Akkurnulator und der 8 Bit Konstanten
Boolean Instructions		ORL	dadr,A	_	01000010	42	_	2	1	Logical OR accumulator with contents of direct address to direct address	Der Inhalt von dadr wird überschrieben durch das Ergebnis der ODER-Verknüpfung von Akkumulator und dem Inhalt von dadr
oolea		ORL	dadr,#const8	-	01000011	43	-	3	2	Logical OR contents of direct address and imrnediate data to direct address	Der Inhalt von dadr wird überschrieben durch das Ergebnis der ODER-Verknüpfung der 8 Bit Konstanten und dem Inhalt von dadr
Δ.		XRL	A,Rr	r=0-7	01101 rrr	68+r	Р	1	1	Logical XOR accumulator with register contents to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der EXODER-Verknüpfung von Akkumulator und dem Inhalt von Register Rr
	OR	XRL	A,@Ri	i=0-1	0110011 i	66+i	Р	1	1	Logical XOR accumulator with data memory contents addressed by Ri to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der EXODER-Verknüpfung von Akkumulator und dem Inhalt der internen Datenspeicherzelle, die durch den Inhalt von Ri adresssiert ist
	EXCLUSIVE	XRL	A,dadr	_	01100101	65	Р	2	1	Logical XOR accumulator with contents of direct address to accumulator	Der Akkurnulator wird überschrieben durch das Ergebnis der EXODER-Verknüpfung von Akkumulator und dem Inhalt von dadr
	CLU	XRL	A,#const8	-	01100100	64	Р	2	1	Logical XOR accumulator with immediate mask	Der Akkurnulator wird überschrieben durch das Ergebnis der EXODER-Verknüpfung von Akkumulator und der 8 Bit Konstanten
	EX	XRL	dadr,A	-	01100010	62	_	2	1	Logical XOR accumulator with coritents of direct address to direct address	Der Inhalt von dadr wird überschrieben durch das Ergebnis der EXODER-Verknüpfung von Akkumulator und dem Inhalt von dadr
		XRL	dadr,#const8	-	01100011	63	_	3	2	Logical XOR contents of direct address and immediate data to direct address	Der Inhalt von dadr wird überschrieben durch das Ergebnis der EXODER-Verknüpfung der 8 Bit Konstanten und dem Inhalt von dadr
	Com- ple- ment	CPL	A	_	11110100	F4	_	1	1	Complement accumulator	Komplementiere Akkumulator (Einer-Komplement)
	Clear	CLR	A	-	11100100	E4	Р	1	1	Clear accumulator	Lösche den Akkumulator
	ns-	MOV	C,badr	_	10100010	A2	CY	2	1	Move contents of bit address to carry	Lade Carry mit Inhalt von badr
suc	Trans- Fer	MOV	badr,C	-	10010010	92	-	2	2	Move content of carry to bit address	Lade badr mit Inhalt des Carry
ılatic		ANL	C,badr	-	10000010	82	CY	2	2	Logical AND carry with contents of bit address	Das Carry wird überschrieben durch das Ergebnis der UND-Verknüpfung von Carry und Inhalt von badr
Instructions for Bit Manipulations	AND	ANL	C,/badr	-	10110000	В0	CY	2	2	Logical AND carry with complement of contents of bit address	Das Carry wird überschrieben durch das Ergebnis der UND-Verknüpfung von Carry und dem invertierten Inhalt von badr
Bit	œ	ORL	C,badr	-	01110010	72	CY	2	2	Logical OR carry with contents of bit address	Das Carry wird überschriebern durch das Ergebnis der ODER-Verknüpfung von Carry und Inhalt von badr
; for	OR	ORL	C,/badr	-	10100000	A0	CY	2	2	Logical OR carry with complement of contents of bit address	Das Carry wird überschriebern durch das Ergebnis der ODER-Verknüpfung von Carry und dem invertierten Inhalt von badr
ons	Clear	CLR	С	-	11000011	C3	CY	1	1	Clear carry	Carry löschen
İ	Com-	CLR	badr C	_	11000010	C2 B3	- CY	2	1	Clear contents of bit address Complement carry	Lösche Inhalt von badr Carry invertieren
nstrı	ple- ment	CPL	badr	-	10110011	B2	-	2	1	Complement carry Complement contents of bit address	Invertiere Inhalt von badr
=	Set	SETB	С		11010011	D3	CY	1	1	Set carry	Carry setzen
		SETB	badr	-	11010010	D2	-	2	1	Set contents of bit address	Setze Inhalt von badr

					Encod	ina					
	d of			Regi-			De .		G	Foundan	Fort Construction 1 and 1
tion	ruc-	Mnemo	nic	ster	Binary	Hex	Affected Flags	Bytes	Cycles	Function	Funktionsbeschreibung
		ADD	A,Rr	r=0-7	00101 rrr	28+r	CY,AC, OV,P	1	1	Add register contents to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der Addition von Akkumulator und Inhalt des Registers Rr
		ADD	A,@Ri	i=0-1	0010011 i	26+i	CY,AC, OV,P	1	1	Add contents of data memory addressed by Ri to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der Addition von Akkumulator und Inhalt der internen Datenspeicherzelle, die durch Ri adressiert ist
		ADD	A,dadr	-	00100101	25	CY,AC, OV,P	2	1	Add contents of direct address to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der Addition von Akkumulator und Inhalt von dadr
		ADD	A,#const8	-	00100100	24	CY,AC, OV,P	2	1	Add immediate data to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der Addition von Akkum.lator und der 8 Bit Konstanten
		ADDC	A,Rr	r=0-7	00111 rrr	38+r	CY,AC, OV,P	1	1	Add carry and register contents to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der Addition von Akkumulator, dem Inhalt des Registers Rr und dem Inhalt des Carry-Flags
	ADD	ADDC	A,@Ri	i=0-1	0011011 i	36+i	CY,AC, OV,P	1	1	Add carry and contents of data memory addressed by Ri to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der Addition von Akkumulator, dem Inhalt der internen Daternspeicherzelle, die durch Ri adressiert ist, und dem Inhalt des Carry-Flags
		ADDC	A,dadr	-	00110101	35	CY,AC, OV,P	2	1	Add carry and contents of direct address to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der Addition von Akkumulator, dem Inhalt von dadr und dem Inhalt des Carry-Flags
		ADDC	A,#const8	-	00110100	34	CY,AC, OV,P	2	1	Add carry and immediate data to accumulator	Der Akkumulator wird überschrieben durch das Ergebnis der Addition von Akkumulator, der 8 Bit Konstanten und dem Inhalt des Carry-Flags
		INC	A	-	00000100	04	Р	1	1	Increment accumulator	Zum Inhalt des Akkumulators wird 1 addiert
		INC	Rr	r=0-7	00001 rrr	08+r	-	1	1	Increment register	Zum Inhalt des Registers Rr wird 1 addiert
ions		INC	@Ri	i=0-1	0000011 i	06+i	-	1	1	Increment data memory contents addressed by Ri	Zum Inhalt der internen Datenspeicherzelle, die durch den Inhalt von Ri adressiert ist, wird 1 addiert
ruct		INC	dadr	-	00000101	05	-	2	1	Increment contents of direct address	Zum Inhalt von dadr wird 1 addiert
nst		INC	DPTR	-	10100011	А3	-	1	2	Increment data pointer	Zum Inhalt des Registers DPTR wird 1 addiert
Arithmetic Instructions	Deci- mal Adjust	DA	A	-	11010100	D4	CY,P	1	1	Decimal adjust accumulator for addition	Das Ergebnis einer vorangegangenen Addition zweier BCD-Zahlen wird unter Berücksichtigung von Carry und Hilfscarry wieder zu 2 BCD-Ziffern korrigiert
Arithr		SUBB	A,Rr	r=0-7	10011 rrr	98+r	CY,AC, OV,P	1	1	Subtract sum of register and carry from accumulator	Die Summe der Inhalte von Carry und Register Rr wird vom Akkumulator subtrahiert. Das Ergebnis überschreibt den Akkumulator.
		SUBB	A,@Ri	i=0-1	1001011 i	96+i	CY,AC, OV,P	1	1	Subtract sum of contents of data memory addressed by Ri and carry from accumulator	Die Summe der Inhalte von Carry und der internen Daterispeicherzelle, die durch Ri adressiert ist, wird vom Akkumulator subtrahiert. Das Ergebnis überschreibt den Akkumulator.
	act	SUBB	A,dadr	-	10010101	95	CY,AC, OV,P	2	1	Substract sum of contents of direct address and carry from accumulator	Die Summe der Inhalte von Carry und der Adresse dadr wird vom Akkumulator subtrahiert. Das Ergebnis überschreibt den Akkumulator.
	Subtract	SUBB	A,#const8	-	10010100	94	CY,AC, OV,P	2	1	Subtract sum of immediate data and carry from accumulator	Die Summe der Inhalte von Carry und der 8 Bit Konstanten wird vom Akkumulator subtrahiert. Das Ergebnis überschreibt den Akkumulator.
		DEC	A	-	00010100	14	Р	1	1	Decrement accumulator	Vom Inhalt des Akkumulators wird 1 subtrahiert
		DEC	Rr	r=0-7	00011 rrr	18+r	-	1	1	Decrement register	Vom Inhalt des Registers Rr wird 1 subtrahiert
		DEC	@Ri	i=0-1	0001011 i	16+i	-	1	1	Decrement contents of data memory addressed by Ri	Vom Inhalt der internen Daterispeicherzelle, die durch Ri adressiert ist, wird 1 subtrahiert
		DEC	dadr	-	00010101	15	-	2	1	Decrement contents of direct address	Vom Inhalt der Adresse dadr wird 1 subtrahiert
	Multiply	MUL	AB	-	10100100	A4	CY,OV, P	1	4	Multiply accumulator with B-register	Die Inhalte von Akkumulator und B-Register werden multipliziert. Das niederwertige Byte des Produktes überschreibt den Akkumulator, das höherwertige Byte das B-Register. Das Carry wird gelöscht, das OV-Bit wird gesetzt, wenn das Ergebnis im B-Register 0 ist.
	Divide	DIV	AB	-	10000100	84	CY,OV, P	1	4	Divide accumulator by B-register	Der Inhalt des Akkurnulators wird durch den Inhalt des B-Registers dividiert. Der Quotient überschreibt den Akkumulator, der Rest das B-Register. Das Carry wird gelöscht. Bei Division durch 0 wird das OV-Bit gesetzt.
	SL	RL	A	-	00100011	23	-	1	1	Rotate left without carry	Verschiebe den Inhalt des Akkumulators um 1 Stelle nach links. Die Stelle 2 ⁷ wird zur Stelle 2 ⁰ verschoben.
Chif	ctio	RLC	Α	-	00110011	33	CY,P	1	1	Rotate left through carry	Verschiebe den Inhalt des Akkumulators um 1 Stelle nach links über das Carry. Das Carry wird an die Stelle 2 ⁰ verschoben.
ี่	Instructions	RR	Α	-	00000011	03	-	1	1	Rotate right without carry	Verschiebe den Inhalt des Akkumulators um 1 Stelle nach rechts. Die Stelle 2 ⁰ wird zur Stelle 2 ⁷ verschoben.
	드	RRC	Α	_	00010011	13	CY,P	1	1	Rotate right through carry	Verschiebe den Inhalt des Akkumulators um 1 Stelle nach rechts über das Carry. Das Carry wird an die Stelle 2 ⁷ verschoben.

					Encodi	ing					
	d of truc- า	Mnemoi	nic	Regi- ster	Binary	Hex	Affected Flags	Bytes	Cycles	Function	Funktionsbeschreibung
	<u>~</u>	LJMP	adr16	-	00000010	02	-	3	2	Jump to absolute address	Setze das Programm bei der 16 Bit Adresse adr16 fort
	ű	SJMP	rel	-	10000000	80	-	2	2	Jump to relative address	Setze das Programm relativ zum Programmzähler fort
	condition Jumps	AJMP	adr11	_	See Table 'E instructions'		-	2	2	Jump to absolute address	Setze das Programm bei der 11 Bit Adresse adr11 innerhalb der 2K, auf die der Programmzähler zeigt, fort
	Unconditional Jumps	JMP	@A+DPTR	-	01110011	73	-	1	2	Jump to sum of accumulator and data pointer	Setze das Programm an der Adresse fort, die sich aus der Summe von Akkumulator und DPTR ergibt
		JC	rel	_	01000000	40	-	2	2	Jump if carry is set	Springe relativ zum Programmzähler, wenn Carry = 1 ist
		JNC	rel	-	01010000	50	-	2	2	Jump if carry is not set	Springe relativ zum Prograrnmzähler, wenn Carry = 0 ist
		JB	badr,rel	-	00100000	20	-	3	2	Jump if bit is set	Springe relativ zum Programmzähler, wenn der Inhalt von badr=1 ist
		JNB	badr,rel	-	00110000	30	-	3	2	Jump if bit is not set	Springe relativ zum Programmzähler, wenn der Inhalt von badr=0 ist
		JBC	badr,rel	_	00010000	10	-	3	2	Jump and clear if bit is set	Springe relativ zum Programmzähler, wenn der Inhalt von badr=1 ist und lösche den Inhalt von badr
		JZ	rel	_	01100000	60	_	2	2	Jump relative if accumulator is zero	Springe relativ zum Programmzähler, wenn der Akkumulator = 0 ist
	_	JNZ	rel	_	01110000	70	_	2	2	Jump relative If accumulator is not zero	Springe relativ zum Programmzähler, wenn der Akkumulator ≠ 0 ist
ions	Conditional Jumps	CJNE	A,dadr,rel	_	10110101	B5	CY	3	2	Compare memory to accumulator. Jump if not equal	Springe relativ zum Programmzähler, wenn die Inhalte von Akkumulator und dadr ungleich sind. Das Carry wird gesetzt, wenn dadr größer ist, sonst wird es rückgesetzt.
struct	Conc	CJNE	A,#const8,rel	_	10110100	B4	CY	3	2	Compare immediate data to accumulator. Jump if not equal	Springe relativ zum Programmzähler, wenn der Inhalt des Akkumulators ungleich const8 ist. Das Carry wird gesetzt, wenn const8 größer ist, sonst wird es rückgesetzt.
Branch Instructions		CJNE	Rr,#const8,rel	r=0-7	10111 rrr	B8+r	CY	3	2	Compare immediate data to register. Jump if not equal	Springe relativ zum Programmzähler, wenn der Inhalt von Rr ungleich const8 ist. Das Carry wird gesetzt, wenn const8 größer ist, sonst wird es rückgesetzt.
Bra		CJNE	@Ri,#const8,rel	i=0-1	1011011 i	B6+i	CY	3	2	Compare constants of indirect address to immediate data. Jump if not equal	Springe relativ zum Programmzähler, wenn der Inhalt der Datenspeicherzelle, die durch Ri adressiert ist, ungleich const8 ist. Das Carry wird gesetzt, wenn const8 größer ist, sonst wird es rückgesetzt.
		DJNZ	Rr,rel	r=0-7	11011 rrr	D8+r	-	2	2	Decrement register and jump if not zero	Der Inhalt von Register Rr wird um 1 erniedrigt. Ist dann der Inhalt ≠ 0, springe relativ zum Programmzähler
		DJNZ	dadr,rel		11010101	D5	-	3	2	Decrement memory and jump if not zero	Der Inhalt von dadr wird um 1 erniedrigt. Ist dann der Inhalt ≠ 0, springe relativ zum Programmzähler
	SII	LCALL	adr16	_	00010010	12	_	3	2	Long call to adr16	Der Stack-Pointer wird erhöht. Der Inhalt des Programmzählers wird im Stack abgelegt. Das Programm wird bei der Adresse adr16 fortgesetzt.
	Unconditional Calls & Returns	ACALL	adr11	_	See Table 'E instructions'		_	2	2	Absolute call within current 2 K	Der Stack-Pointe, wird erhöht. Der Inhalt des Programmzählers wird im Stack abgelegt. Das Programm wird bei der 11 Bit Adresse adr11 innerhalb der 2 K fortgesetzt, auf die der Programmzähler zeigt.
	nditi . Ret	RET		-	00100010	22	-	1	2	Return from subroutine	Die oberen zwei Byte des Stack werden in den Programmzähler geladen. Der Stack-Pointer wird dabei erniedrigt.
	Unco	RETI		_	00110010	32	_	1	2	Return from interrupt routine	Die oberen zwei Byte des Stack werden in den Programmzähler geladen. Der Stack-Pointer wird dabei erniedrigt. Die aktuelle Interruptebene wird freigegeben
		NOP		_	00000000	00	_	1	1	No operation	Leerbefehl

Γable "Branch Instructions"

AJMP		ACALL	
aaa 0000)1	aaa 1000)1
Binary	Hex	Binary	Hex
000 00001	01	000 10001	11
001 00001	21	001 10001	31
010 00001	41	010 10001	51
011 00001	61	011 10001	71
100 00001	81	100 10001	91
101 00001	A1	101 10001	B1
110 00001	C1	110 10001	D1
111 00001	E1	111 10001	F1
	aaa 0000 Binary 000 00001 001 00001 010 00001 011 00001 100 00001 101 00001	aaa 00001 Binary Hex 000 00001 01 001 00001 21 010 00001 41 011 00001 61 100 00001 81 101 00001 A1 110 00001 C1	aaa 00001 aaa 1000 Binary Hex Binary 000 00001 01 000 10001 001 00001 21 001 10001 010 00001 41 010 10001 011 00001 61 011 10001 100 00001 81 100 10001 101 00001 A1 101 10001 101 00001 C1 110 10001

 $^{^{\}star})$ One page represents the range 00 \dots FF addressed by the low byte of a 16-bit address.

Interrupt Vectors

Address	Interrupt Source	80C515	80C515A	80C517	80C517A
0000H	Start address after Reset	Х	Х	Х	Х
0003H	External interrupt 0	Χ	Х	Х	Х
000BH	Timer 0 overflow interrupt	Χ	Х	Х	Х
0013H	External interrupt 1	Х	Х	Х	Х
001BH	Timer 1 overflow interrupt	Х	Х	Х	Х
0023H	Serial channel interrupt Serial channel 0 interrupt	Х	Х	Х	Х
002BH	Timer 2 overflow / external reload interrupt	Х	Х	Х	Х
0043H	A/D converter interrupt	Χ	Х	Х	Х
004BH	External interrupt 2 External interrupt 2 / Compare event with CC4	Х	Х	Х	Х
0053H	External interrupt 3 / Compare event with CRC	Х	Х	Х	Х
005BH	External interrupt 4 / Compare event with CC1	Х	Х	Х	Х
0063H	External interrupt 5 / Compare event with CC2	Χ	Х	Х	Х
006BH	External interrupt 6 / Compare event with CC3	Х	Х	Х	Х
0083H	Serial channel 1 interrupt			Х	Х
0093H	CMx compare register interrupt				Х
009BH	Compare timer overflow interrupt				Х
00A3H	Compare set interrupt				Х
00ABH	Compare clear interrupt				Х

[&]quot;X" means that an interrupt is available for the corresponding microcontroller.

Instruction List in Hexadecimal Order

Hex	Mnemon	ic	Hex	Mnem	onic	Hex			Hex	Mnem	onic	Hex	Mnem	onic									
00	NOP		20	JB		40	JC	rel	60	JZ	rel	80	SJMP	rel	A0	ORL	C,/badr	C0	PUSH	dadr	E0	MOVX	A,@DPTR
01	AJMP	page 0	21	AJMP	page 1	41	AJMP	page 2	61	AJMP	page 3	81	AJMP	page 4	Α1	AJMP	page 5	C1	AJMP	page 6	E1	AJMP	page 7
02	LJMP	adrl 6	22	RET		42	ORL	dadr,A	62	XRL	dadr,A	82	ANL		A2	MOV	C,badr	C2	CLR	С	E2	MOVX	A,@R0
03	RR	Α	23	RL	Α	43	ORL	dadr,#c8	63	XRL	dadr,#c8	83	MOVC	A,@A+PC	АЗ	INC	DPTR	СЗ	CLR	Α	E3	MOVX	A,@R1
04	INC	Α	24	ADD	A,#c8	44	ORL	A,#c8	64	XRL	A,#c8	84	DIV	AB	A4	MUL	AB	C4	SWAP	Α	E4	CLR	Α
05	INC	dadr	25	ADD	A,dadr	45	ORL	A,dadr	65	XRL	A,dadr	85	MOV	dadr,dadr	A5	-		C5	XCH	a,dadr	E5	MOV	A,dadr
06	INC	@R0	26	ADD	A,@R0	46	ORL	A,@R0	66	XRL	A,@R0	86	MOV	dadr,@R0	A6	MOV	@R0,dadr	C6	XCH	A,@R0	E6	MOV	A,@R0
07	INC	@RI	27	ADD	A,@R1	47	ORL	A,@R1	67	XRL	A,@R1	87	MOV	dadr,@R1	Α7	MOV	@R1,dadr	C7	XCH	A,@R1	E7	MOV	A,@R1
80	INC	R0	28	ADD	A,R0	48	ORL	A,R0	68	XRL	A,R0	88	MOV	dadr,R0	A8	MOV	R0,dadr	C8	XCH	A,R0	E8	MOV	A,R0
09	INC	R1	29	ADD	A,R1	49	ORL	A,R1	69	XRL	A,R1	89	MOV	dadr,R1	Α9	MOV	R1,dadr	C9	XCH	A,R1	E9	MOV	A,R1
0A	INC	R2	2A	ADD	A,R2	4A	ORL	A,R2	6A	XRL	A,R2	A8	MOV	dadr,R2	AA	MOV	R2,dadr	CA	XCH	A,R2	EΑ	MOV	A,R2
0B	INC	R3	2B	ADD	A,R3	4B	ORL	A,R3	6B	XRL	A,R3	8B	MOV	dadr,R3	AB	MOV	R3,dadr	СВ	XCH	A,R3	EB	MOV	A,R3
0C	INC	R4	2C	ADD	A,R4	4C	ORL	A,R4	6C	XRL	A,R4	8C	MOV	dadr,R4	AC	MOV	R4,dadr	СС	XCH	A,R4	EC	MOV	A,R4
0D	INC	R5	2D	ADD	A,R5	4D	ORL	A,R5	6D	XRL	A,R5	8D	MOV	dadr,R5	AD	MOV	R5,dadr	CD	XCH	A,R5	ED	MOV	A,R5
0E	INC	R6	2E	ADD	A,R6	4E	ORL	A,R6	6E	XRL	A,R6	8E	MOV	dadr,R6	ΑE	MOV	R6,dadr	CE	XCH	A,R6	EE	MOV	A,R6
0F	INC	R7	2F	ADD	A,R7	4F	ORL	A,R7	6F	XRL	A,R7	8F	MOV	dadr,R7	AF	MOV	R7,dadr	CF	XCH	A,R7	EF	MOV	A,R7
10	JBC	badr,rel	30	JNB	badr,rel	50	JNC	rel	70	JNZ	rel	90	MOV	DPTR	B0	ANL	C,/badr	D0	POP	dadr	F0	MOVX	@DPTR,A
11	ACALL	page 0	31	ACALL	page 1	51	ACALL	page 2	71	ACALI	page 3	91	ACALL	page 4	B1	ACALL	page 5	D1	ACALL	page 6	F1	ACALL	page 7
12	LCALL	adr16	32	RETI		52	ANL	dadr,A	72	ORL	C;badr	92	MOV	badr,C	B2	CPL	badr	D2	SETB	badr	F2	MOVX	@R0,A
13	RRC	Α	33	RLC	Α	53	ANL	dadr,#c8	73	JMP	@A+DPTR	93	MOVC	A,@A+DPTR	ВЗ	CPL	С	D3	SETB	С	F3	MOVX	@R1,A
14	IDEC	Α	34	ADDC	A,#c8	54	ANL	A,#c8	74	MOV	A,#c8	94	SUBB	A,#c8	B4	CJNE	A,#c8,rel	D4	DA	Α	F4	CPL	Α
15	DEC	dadr	35	ADDC	A,dadr	55	ANL	A,dadr	75	MOV	dadr,#c8	95	SUBB	A,dadr	B5	CJNE	A,dadr,rel	D5	DJNZ	dadr,rel	F5	MOV	dadr,A
16	DEC	@R0	36	ADDC	A,@R0	56	ANL	A,@R0	76	MOV	@R0,#c8	96	SUBB	A,@R0	B6	CJNE	@R0,#c8,rel	D6	XCHD	A,@R0	F6	MOV	@R0,A
17	DEC	@R1	37	ADDC	A,@R1	57	ANL	A,@R1	77	MOV	@R1,#c8	97	SUBB	A,@R1	В7	CJNE	@R1,#c8,rel	D7	XCHD	A,@R1	F7	MOV	@R1,A
18	DEC	R0	38	ADDC	A,R0	58	ANL	A,R0	78	MOV	R0,#c8	98	SUBB	A,R0	B8	CJNE	R0,#c8,rel	D8	DJNZ	R0,rel	F8	MOV	R0,A
19	DEC	R1	39	ADDC	A,R1	59	ANL	A,R1	79	MOV	R1,#c8	99	SUBB	A,R1	В9	CJNE	R1,#c8,rel	D9	DJNZ	R1,rel	F9	MOV	R1,A
1A	IDEC	R2	ЗА	ADDC	A,R2	5A	ANL	A,R2	7A	MOV	R2,#c8	9A	SUBB	A,R2	BA	CJNE	R2,#c8,rel	DA	DJNZ	R2,rel	FA	MOV	R2,A
1B	IDEC	R3	3B	ADDC	A,R3	5B	ANL	A,R3	7B	MOV	R3,#c8	9B	SUBB	A,R3	BB	CJNE	R3,#c8,rel	DB	DJNZ	R3,rel	FB	MOV	R3,A
1C	DEC	R4	3C	ADDC	A,R4	5C	ANL	A,R4	7C	MOV	R4,#c8	9C	SUBB	A,R4	ВС	CJNE	R4,#c8,rel	DC	DJNZ	R4,rel	FC	MOV	R4,A
1D	DEC	R5	3D	ADDC	A,R5	5D	ANL	A,R5	7D	MOV	R5,#c8	9D	SUBB	A,R5	BD	CJNE	R5,#c8,rel	DD	DJNZ	R5,rel	FD	MOV	R5,A
1E	DEC	R6	3E	ADDC	A,R6	5E	ANL	A,R6	7E	MOV	R6,#c8	9E	SUBB	A,R6	BE	CJNE	R6,#c8,rel	DE	DJNZ	R6,rel	FE	MOV	R6,A
1F	DEC	R7	3F	ADDC	A,R7	5F	ANL	A,R7	7F	MOV	R7,#c8	9F	SUBB	A,R7	BF	CJNE	R7,#c8,rel	DF	DJNZ	R7,rel	FF	MOV	R7,A

c8 = const8 c16=const16

ASCII-Code Table

Hex	ASCII	Hex	ASCII	Hex	ASCII	Hex	ASCII	Hex	ASCII	Hex	ASCII	Hex	ASCII	Hex	ASCII
00	NUL	10	DLE	20	SP	30	0	40	@	50	Р	60	4	70	р
01	SOH	11	DC1 (X-ON)	21	!	31	1	41	A	51	Q	61	а	71	q
02	STX	12	DC2 (TAPE)	22	u	32	2	42	В	52	R	62	b	72	r
03	ETX	13	DC3 (X-OFF)	23	#	33	3	43	С	53	S	63	С	73	s
04	EOT	14	DC4 (TAPE)	24	\$	34	4	44	D	54	Т	64	d	74	t
05	ENQ	15	NAK	25	%	35	5	45	E	55	U	65	е	75	u
06	ACK	16	SYN	26	&	36	6	46	F	56	V	66	f	76	v
07	BEL	17	ETB	27	,	37	7	47	G	57	W	67	9	77	w
08	BS	18	CAN	28	(38	8	48	Н	58	X	68	h	78	x
09	HT (TAB)	19	EM	29)	39	9	49	1	59	Υ	69	i	79	у
0A	LF	1A	SUB	2A	*	3A	:	4A	J	5A	Z	6A	j	7A	z
0B	VT	1B	ESC	2B	+	3B	;	4B	K	5B	[6B	k	7B	{
0C	FF	1C	FS	2C	,	3C	<	4C	L	5C	\	6C	I	7C	1
0D	CR	1D	GS	2D	-	3D	=	4D	M	5D]	D	m	7D	} (ALT MODE)
0E	SO	1E	RS	2E	-	3E	>	4E	N	5E	^	6E	n	7E	~
0F	SI	1F	US	2F	/	3F	?	4F	0	5F	_	6F	0	7F	DEL(RUBOUT)

Special Function Registers in Order of Their Addresses

ec	ial Fur	ncti	on	R	eg	iste		Ord				eir	Addres	sse	S	_	-	.1	Helevtica na Helevtica n Helevtica Helevtica	arrow` ((6.5)			
Hex	Name	80C515	80C515A	80C517	80C517A	Hex	Name	80C515	80C515A	80C517	80C517A	Hex	Name	80C515	80C515A	80C517	80C517A	Hex	Name	80C515	80C515A	80C517	000 547 A
80	P0	Х	Х	Х	Х	A0	P2	Х	Х	Х	Х	C0	IRCON IRCON0	Х	Х	Х	Х	E0	ACC	Х	Х	Х)
81	SP	Х	Х	Х	Х	A1	COMSETL				Х	C1	CCEN	Х	Х	Х	Х	E1	CTCON			Х	
82	DPL	Х	Х	Х	Х	A2	COMSETH				Х	C2	CCL1	Х	Х	Х	Х	E2	CML3			Х	
83	DPH	Х	Х	Х	Х	А3	COMCLRL				Х	C3	CCH1	Х	Х	Х	Х	E3	СМНЗ			Х	
84	WDTL				Х	A4	COMCLRH				Х	C4	CCL2	Х	Х	Х	Х	E4	CML4			Х	
85	WDTH				Х	A5	SETMSK				Х	C5	CCH2	Х	Х	Х	Х	E5	CMH4			Х	
86	WDTREL		Х	Х	Х	A6	CLRMSK				Х	C6	CCL3	Х	Х	Х	Х	E6	CML5			Х	
37	PCON	Х	Х	Х	Х	A7						C7	ССНЗ	Х	Х	Х	Х	E7	CMH5			Х	
88	TCON	Х	Х	Х	Х	A8	IEN0	Х	Х	Х	Х	C8	T2CON	Х	Х	Х	Х	E8	P4	Х	Х	Х	
39	TMOD	Х	Х	Х	Х	A9	IP0	Х	Х	Х	Х	C9	CC4EN			Х	Х	E9	MD0			Х	
ВА	TL0	Х	Х	Х	Х	AA	SRELL SORELL		Х	Х	Х	CA	CRCL	Х	Х	Х	Х	EA	MD1			Х	
зв	TL1	Х	Х	Х	Х	AB						СВ	CRCH	Х	Χ	Х	Χ	EB	MD2			Х	
3C	TH0	Х	Х	Х	Х	AC						CC	TL2	Х	Х	Х	Х	EC	MD3			Х	
3D	TH1	Х	Х	Х	Х	AD						CD	TH2	Х	Х	Х	Х	ED	MD4			Х	
3E						AE						CE	CCL4			Х	Χ	EE	MD5			Х	
8F						AF						CF	CCH4			Х	Х	EF	ARCON			Х	
90	P1	Х	Х	Х	Х	В0	P3	Х	Х	Х	Х	D0	PSW	Х	Х	Х	Х	F0	В	Х	Х	Х	
91	XPAGE		Х		Х	B1	SYSCON		Х		Х	D1	IRCON1				Х	F1					Ī
92	DPSEL			Х	Х	B2						D2	CML0			Х	Х	F2	CML6			Х	
93						В3						D3	CMH0			Х	Х	F3	CMH6			Х	
94						B4						D4	CML1			Х	Х	F4	CML7			Х	
95						B5						D5	CMH1			Х	Х	F5	CMH7			Х	
96						В6						D6	CML2			Х	Х	F6	CMEN			Х	
97						В7						D7	CMH2			Х	Х	F7	CMSEL			Х	
98	SCON SOCON	Х	Х	Х	Х	B8	IEN1	Х	Х	Х	Х	D8	ADCON ADCON0	Х	Х	Х	Х	F8	P5	Х	Х	Х	
99	SBUF S0BUF	Х	Х	Х	Х	В9	IP1	Х	Х	Х	Х	D9	ADDAT ADDATH	Х	Х	Х	Х	F9					Ī
9A	IEN2			Х	Х	ВА	SRELH S0RELH		Х	Х	Х	DA	DAPR ADDATL	Х	Х	Х	Х	FA	P6			Х	
В	S1CON			Х	Х	BB	S1RELH			Х	Х	DB	P6 P7	Х	Х	Х	Х	FB					
9C	S1BUF			Х	Х	ВС						DC	ADCON1		Х	Х	Х	FC					
9D	S1RELL			Х	Х	BD						DD	P8			Х	Х	FD					T
9E						BE						DE	CTRELL			Х	Х	FE					T
9F						BF						DF	CTRELH			Х	Х	FF					Γ

Special Function Registers in Functional Groups

CPU	-	Serial C	hannels			-		Time	r 2 /	Com	apre	/Cap	ture	Unit		1
EO _H .7 .6 .5 .4 .3 .2 .1 .0	ACC 98 _H	SM0 SM	1 SM2 REN	TB8 RB8	TI RI	SCON 1) 2)	C8 _H	T2PS	I3FR	I2FR	T2R1	T2R0	T2CM	T2I1	T2I0	T2CON
FO _H .7 .6 .5 .4 .3 .2 .1 .0	B 98 _H	SM0 SM	1 SM20 REN0	TB80 RB80	TIO RIO	S0CON 3) 4)	CCH	.7	.6	.5	.4	.3	.2	.1	.0	TL2
DO _H CY AC FO RS1 RS0 OV F1 P	PSW 99 _H	.7 .6	.5 .4	.3 .2	.1 .0	SBUF 1)2) S0BUF 3)4)	CD_H	.7	.6	.5	.4	.3	.2	.1	.0	TH2
81 _H .7 .6 .5 .4 .3 .2 .1 .0	SP 9B _F	SM -	SM2 REN1	TB81 RB81	TI1 RI1	S1CON 3) 4)	E1 _H	T2PS1	- 	-	-	CTF	CLK2	CLK1	CLK0	CTCON 3)
82 _H .7 .6 .5 .4 .3 .2 .1 .0	DPL 9C _H	.7 .6	.5 .4	.3 .2	.1 .0	S1BUF 3) 4)	E1 _H	T2PS1	-	ICR	ICS	CTF	CLK2	CLK1	CLK0	CTCON 4)
83 _H .7 .6 .5 .4 .3 .2 .1 .0	DPH AA _H	.7 .6	.5 .4	.3 .2	.1 .0	SRELL 2) SORELL 3) 4)	DE _H	.7	.6	.5	.4	.3	.2	.1	.0	CTRELL 3) 4)
92 _H 2 .1 .0	DPSEL BA _F	_			.1 .0	CDELLI 2\	DF_H	.7	.6	.5	.4	.3	.2	.1	.0	CTRELH 3) 4)
91 _H .7 .6 .5 .4 .3 .2 .1 .0	XPAGE 9D _F	.7 .6	.5 .4	.3 .2	.1 .0	S1RELL 3) 4)	F7 _H	.7	.6	.5	.4	.3	.2	.1	.0	CMSEL 3) 4)
B1 _H XMAP ^X XMAF	SYSCON BB _t 2) 4)			 - - 	.1 .0	S1RELH 3) 4)	C1 _H	COCA H3	COCA L3	COCA H2	COCA L2	COCA H1	COCA L1	COCA H0	COCA L0	CCEN
D8 _H BD CLK - BSY ADM MX2 MX1 MX0	ו י	BD CL	C - BSY	ADM MX2	MX1 MX0	ADCON 1)	C9 _H	-	COCO N2	COCO N1	COCO N0	COCO EN0	COCA H4	COCA L4	СОМО	CC4EN 3)
D8 _H BD CLK ADEX BSY ADM MX2 MX1 MX0	ADCONO D8 _h	BD CL	ADEX BSY	ADM MX2	MX1 MX0	ADCON0 2) 3) 4)	C9 _H	COCO EN1	COCO N2	COCO N1	COCO N0	COCO EN0	COCA H4	COCA L4	СОМО	CC4EN 4)
Timer 0/1		SMOD PD	S IDLS SD	GF1 GF0	PDE IDLE	PCON	F6 _H	.7	.6	.5	.4	.3	.2	.1	.0	CMEN 3) 4)
88 _H TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0	TCON	A/D Co	nverter			_	CA _H	.7	.6 I	.5	.4	.3	.2	.1	.0	CRCL
89 _H GATE C/T M1 M0 GATE C/T M1 M0	TMOD D8 _F	BD CLI	- BSY	ADM MX2	MX1 MX0	ADCON 1)	СВН	.7	.6	.5	.4	.3	.2	.1	.0	CRCH
8A _H .7 .6 .5 .4 .3 .2 .1 .0	TLO D8 _F	BD CL	ADEX BSY	ADM MX2	MX1 MX0	ADCON0 2) 3) 4)	A1 _H	.7	.6	.5	.4	.3	.2	.1	.0	COMSETL 4)
8B _H .7 .6 .5 .4 .3 .2 .1 .0	TL1 DC	- -	 - 	MX3 MX2	MX1 MX0	ADCON1 1)	A2 _H	.7	.6	.5	.4	.3	.2	.1	.0	COMSETH 4)
8C _H .7 .6 .5 .4 .3 .2 .1 .0	THO DC	ADCL -		MX3 MX2	MX1 MX0	ADCON1 2) 4)	A3 _H	.7	.6	.5	.4	.3	.2	.1	.0	COMCLRL
8D _H .7 .6 .5 .4 .3 .2 .1 .0	TH1 D9 _F	.7 .6	.5 .4	.3 .2	.1 .0	ADDAT 1)3) ADDATH 2) 4)) A4 _H	.7	.6	.5	.4	.3	.2	.1	.0	COMCLRH
Interrupt System	DA _l	.7 .6	 - 			ADDATL 2) 4)	A5 _H	.7	.6	.5	.4	.3	.2	.1	.0	SETMSK
A8 _H EAL WDT ET2 ES ET1 EX1 ET0 EX0	IEN0 1) 2) DA _I	.7 .6	.5 .4	.3 .2	.1 .0	DAPR 1) 3)	A6 _H	.7	.6	.5	.4	.3	.2	.1	.0	CLRMSK
A8 _H EAL WDT ET2 ES0 ET1 EX1 ET0 EX0	IEN0 3) 4)	MUL/DI	V Unit 3	3) and 4) only	1	_	C2 _H	.7	.6	.5	.4	.3	.2	.1	.0	CCL1
B8 _H EX SWDT EX6 EX5 EX4 EX3 EX2 EADC	IEN1 EF _h	MDEF MDC	V SLR SC.4	SC.3 SC.2	SC.1 SC.0	ARCON	C3 _H	.7	.6	.5	.4	.3	.2	.1	.0	CCH1
9A _H ECT ES1	IEN2 E9 _F	.7 .6	.5 .4	.3 .2	.1 .0	MD0	C4 _H	.7	.6	.5	.4	.3	.2	.1	.0	CCL2
9A _H ECR ECS ECT ECMP - ES1	IEN2 EA _l	.7 .6	.5 .4	.3 .2	.1 .0	MD1	C5 _H		.6	.5	.4	.3	.2	.1	.0	CCH2
A9 _H - WDTS IP0.5 IP0.4 IP0.3 IP0.2 IP0.1 IP0.0] IPO EB _I	.7 .6	.5 .4	.3 .2	.1 .0	MD2	C6 _H		.6	.5	.4	.3	.2	.1	.0	CCL3
A9 _H OWDS WDTS IP0.5 IP0.4 IP0.3 IP0.2 IP0.1 IP0.0	IP0 EC ₁	.7 .6	.5 .4	.3 .2	.1 .0	MD3	 С7 _Н		.6	.5	.4	.3	.2	.1	.0	ССН3
B9 _H IP1.5 IP1.4 IP1.3 IP1.2 IP1.1 IP1.0	IP1 ED _I	.7 .6	.5 .4	.3 .2	.1 .0	MD4	CEH		.6 .6	.5	.4	.3	.2	.1	.0	CCL4
88 _H TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0	TCON EE,	.7 .6	.5 .4	.3 .2	.1 .0	MD5	CF _H		I	I		 				3) 4)
C8 _H T2PS I3FR I2FR T2R1 T2R0 T2CM T2I1 T2I0	T2CON	Ports							.6	.5 	.4	.3	.2	.1	.0	CCH4 3) 4)
CO _H EXF2 TF2 IEX6 IEX5 IEX4 IEX3 IEX2 IADC	IRCON 1-3) 80 _H IRCON0 4)	.7 .6	.5 .4	.3 .2	.1 .0	P0	D2 _H	.7	.6 	.5	.4			.1		CML0 3) 4)
D1 _H ICMP ^I ICM	IRCON1 ⁹⁰ H	T2 CL OU		INT6 INT5	INT4 INT3	P1	D3 _H	.7	.6 	.5 	.4	.3	.2	.1	.0	CMH0 3) 4)
E1 _H T2PS1 CTF CLK2 CLK1 CLK0	ı	.7 .6	.5 .4	.3 .2	.1 .0	P2	D4 _H	.7	.6 	.5 I	.4	.3	.2	.1	.0	CML1 3) 4)
	- 9)						D5 _H	.7	.6 L	.5 L	.4	.3	.2	.1	.0	CMH1 3) 4)

Revision History	ocontroller Family Pocket Guide : 08.98
Previous Releases	: 08.96
Item	Subjects (changes since last revision)
Instruction List (long version)	MOV dadr,Rr : binary encoding corrected Several writing errors in columns "Function" and "Funktionsbeschreibung" corrected
Instruction List in Hexadecimal Ord.	Mnemonics for Hexcodes 75 _H to 7F _H and AD _H to AF _H corrected