Optimization approach to Tverberg type theorems

Polina Barabanshchikova Under supervision of Alexandr Polyanskii

MIPT

October 4, 2022

Tverberg Theorem

Tverberg Theorem (1966)

Given (r-1)(d+1)+1 points in \mathbb{R}^d , there is a partition of them into r parts whose convex hulls intersect.

Sketch. For an r-partition \mathcal{P} of a set of (r-1)(d+1)+1 points, consider the function $\mathcal{H}_{\mathcal{P}}: \mathbb{R}^d \to \mathbb{R}$ defined by

$$H_{\mathcal{P}}(x) = \sum_{Y \in \mathcal{P}} \mathsf{dist}^2(x, \mathsf{conv}\ Y),$$

where $\operatorname{dist}(A,B)$ is the distance between sets $A,B\subset\mathbb{R}^d$.

Sketch. For an r-partition \mathcal{P} of a set of (r-1)(d+1)+1 points, consider the function $\mathcal{H}_{\mathcal{P}}: \mathbb{R}^d \to \mathbb{R}$ defined by

$$H_{\mathcal{P}}(x) = \sum_{Y \in \mathcal{P}} \operatorname{dist}^2(x, \operatorname{conv} Y),$$

where dist(A, B) is the distance between sets $A, B \subset \mathbb{R}^d$. Since $H_{\mathcal{P}}$ is convex, it attains its minimum.

Sketch. For an r-partition \mathcal{P} of a set of (r-1)(d+1)+1 points, consider the function $\mathcal{H}_{\mathcal{P}}: \mathbb{R}^d \to \mathbb{R}$ defined by

$$H_{\mathcal{P}}(x) = \sum_{Y \in \mathcal{P}} \operatorname{dist}^2(x, \operatorname{conv} Y),$$

where dist(A, B) is the distance between sets $A, B \subset \mathbb{R}^d$.

Since $H_{\mathcal{P}}$ is convex, it attains its minimum.

Choose a partition \mathcal{P}_0 for which this minimum is the smallest possible; let it be m.

1. If m = 0, then we are done.

2. Suppose that m is positive and attained at $x=x_{\mathcal{P}_0}$. Then, analyzing the arrangement of the point $x_{\mathcal{P}_0}$ and the convex hulls of $Y \in \mathcal{P}_0$, we find a partition \mathcal{P}'_0 such that

$$H_{\mathcal{P}'_0}(x_{\mathcal{P}_0}) < H_{\mathcal{P}_0}(x_{\mathcal{P}_0}) = m,$$

a contradiction.

2. Suppose that m is positive and attained at $x = x_{\mathcal{P}_0}$. Then, analyzing the arrangement of the point $x_{\mathcal{P}_0}$ and the convex hulls of $Y \in \mathcal{P}_0$, we find a partition \mathcal{P}'_0 such that

$$H_{\mathcal{P}_0'}(x_{\mathcal{P}_0}) < H_{\mathcal{P}_0}(x_{\mathcal{P}_0}) = m,$$

a contradiction.

Moreover, the partition \mathcal{P}_0' is obtained from \mathcal{P}_0 by moving one element between two sets.

Optimization approach

Outline.

- **1.** Choose a function $H_{\mathcal{P}}: \mathbb{R}^d \to \mathbb{R}$
- **2.** Minimize it over \mathbb{R}^d
- **3.** Find an optimal partition \mathcal{P}_0
- **4.** Suppose that \mathcal{P}_0 does not satisfy the statement of the theorem
- **5.** Find a new partition \mathcal{P}_0' such that min $H_{\mathcal{P}_0'}$ is less than min $H_{\mathcal{P}_0}$

Tverberg matching

For points $x, y \in \mathbb{R}^d$, denote by D(xy) the closed ball with diameter xy. A perfect matching \mathcal{M} for an even set of points in \mathbb{R}^d is called a **Tverberg** matching if

$$\bigcap_{xy\in\mathcal{M}}D(xy)\neq\varnothing.$$

Replacing **closed** balls by **open** balls in the definition of a Tverberg matching, we define an **open Tverberg matching**.

Tverberg type theorems

Theorem (Pirahmad, Polyanskii, Vasilevskii, 2021+).

For any even set of distinct points in \mathbb{R}^d , there exists an open Tverberg matching.

Tverberg type theorems

Theorem (Pirahmad, Polyanskii, Vasilevskii, 2021+).

For n red points and n blue points in \mathbb{R}^d , there exists a red-blue Tverberg matching (every edge of this matching connects a red vertex with a blue one).

Tverberg type theorems

Theorem (Pirahmad, Polyanskii, Vasilevskii, 2021+).

For n red points and n blue points in \mathbb{R}^d , there exists a red-blue Tverberg matching (every edge of this matching connects a red vertex with a blue one).

Moreover, this matching maximizes the function $\mathcal{Q}(\mathcal{M})$ defined by

$$Q(\mathcal{M}) = \sum_{rb \in \mathcal{M}} (r - b)^2.$$

Generalized optimization approach

Outline.

- **1.** Choose a function $H_{\mathcal{P}}: \mathbb{R}^d \to \mathbb{R}$
- **2.** Minimize it over \mathbb{R}^d
- **3.** Find an optimal partition \mathcal{P}_0 with respect to some function Q
- 4. Suppose that \mathcal{P}_0 does not satisfy the statement of the theorem
- **5.** Find a new partition \mathcal{P}_0' such that $Q(\mathcal{P}_0')$ is more extreme than $Q(\mathcal{P}_0)$

Maximum-sum matching

A partition $\mathcal M$ of an even point set into pairs is called **maximum-sum matching** if it maximizes the total Euclidean distance of the matched pairs $\sum_{ab\in\mathcal M}\|a-b\| \to \max$.

Ellipse

For points $a, b \in \mathbb{R}^2$ and a coefficient λ , denote by $E_{\lambda}(ab)$ the ellipse with foci a and b

$$E_{\lambda}(ab) := \{x \in \mathbb{R}^2 : ||a - x|| + ||b - x|| \le \lambda ||a - b||\}.$$

Put $\lambda^* \coloneqq \frac{2}{\sqrt{3}} \approx 1.1547$.

Fingerhut Conjecture

Fingerhut Conjecture (1995)

For any maximum-sum matching \mathcal{M} of an even point set in the plane, the intersection of the corresponding ellipses with coefficient λ^* is not empty, that is,

$$\bigcap_{ab\in\mathcal{M}} E_{\lambda^*}(ab) \neq \varnothing.$$

Fingerhut Conjecture

Fingerhut Conjecture (1995)

For any maximum-sum matching $\mathcal M$ of an even point set in the plane, the intersection of the corresponding ellipses with coefficient λ^* is not empty, that is,

$$\bigcap_{ab\in\mathcal{M}} E_{\lambda^*}(ab) \neq \varnothing.$$

Fingerhut Conjecture: Lower bound

Consider an equilateral triangle, where at each vertex two points are located.

Fingerhut Conjecture: Lower bound

The maximum-sum matching of the six points is made of 3 edges.

Fingerhut Conjecture: Lower bound

The corresponding 3 ellipses have exactly one point in common.

1. By Helly's theorem it is sufficient to prove conjecture for n=2,3

2. Suppose to the contrary that for an even set of points $S \subset \mathbb{R}^2$ and a maximum-sum matching \mathcal{M} of S the corresponding ellipses do not intersect

$$g_{ab}(x) := \frac{\|a - x\| + \|b - x\|}{\|a - b\|}$$
 $H(x) := \max_{ab \in \mathcal{M}} g_{ab}(x) \to \min_{x \in \mathbb{R}^2}$

 $o := \operatorname{argmin} H(x)$

$$g_{ab}(x) := \frac{\|a - x\| + \|b - x\|}{\|a - b\|} \qquad H(x) := \max_{ab \in \mathcal{M}} g_{ab}(x) \to \min_{x \in \mathbb{R}^2}$$
$$o := \operatorname{argmin} H(x) \qquad \qquad \lambda := H(o) > \lambda^*$$

$$E_b = \mathcal{M}$$
 $E_r = \{vu : ||v|| + ||u|| < \lambda ||v - u||\}$

Fingerhut Conjecture: Alternating cycle

$$\|a_2 - b_2\| = \frac{1}{\lambda} (\|a_2\| + \|b_2\|) \qquad \|a_2 - b_3\| > \frac{1}{\lambda} (\|a_2\| + \|b_3\|)$$

 $\|a_3 - b_3\| = \frac{1}{\lambda} (\|a_3\| + \|b_3\|) \qquad \|a_3 - b_2\| > \frac{1}{\lambda} (\|a_3\| + \|b_2\|)$

Tverberg matching in \mathbb{R}^2

Theorem (Bereg, Chacón-Rivera, Flores-Peñaloza, Huemer, Pérez-Lantero, Seara, 2019)

For any even set S of distinct points in \mathbb{R}^2 , any maximum-sum matching of S is a Tverberg matching.

Theorem

For any even set S of distinct points in \mathbb{R}^2 , any maximum-sum matching of S is an open Tverberg matching.

