WYDZIAŁ ELEKTRONIKI POLITECHNIKA KOSZALINSKA	Inżynieria (Inżynieria Oprogramowania	
Rok akademicki: 2016/2017	TEMAT: Kalkulator objętości		
Kierunek studiów: Semestr:	Informatyka	- Wykonawca:	Mateusz Adrian Wenta
	5		
Data rozpoczęcia	28.11.2021	Data zakończenia	16.01.2022

Aplikacja Kalkulator objętości

1. Opis komponentu

Aplikacja kalkulator objętości jest to aplikacja wyliczająca objętość na podstawie podanych przez użytkownika danych oraz po wybraniu odpowiedniej figury.

2. Słowniczek

Objętość – miara przestrzeni, którą zajmuje dane ciało w przestrzeni trójwymiarowej. W układzie SI jednostką objętości jest metr sześcienny, jednostka zbyt duża do wykorzystania w życiu codziennym. Z tego względu najpopularniejszą w Polsce jednostką objętości jest jeden litr (l)

Sześcian jest szczególnym przypadkiem prostopadłościanu, w którym wszystkie ściany są w kształcie identycznych kwadratów.

Prostopadłościan - to graniastosłup, którego każda ściana jest prostokątem, a dowolne dwie ściany są równoległe, albo prostopadłe.

Walec kołowy prosty jest bryłą geometryczną powstałą w wyniku obrotu prostokąta wokół jednego z jego boków. Podstawą walca oraz jego górną częścią jest koło, a jego szerokość jest w każdym miejscu taka sama.

Stożek powstaje przez obrót trójkąta prostokątnego wokół jednej z przyprostokątnych. Przyprostokątna ta tworzy wysokość stożka, a druga przyprostokątna staje się promieniem podstawy. Przeciwprostokątna trójkąta prostokątnego staje się tworzącą stożka.

Koło – zbiór wszystkich punktów płaszczyzny, których odległość od ustalonego punktu na tej płaszczyźnie, nazywanego środkiem koła, jest mniejsza lub równa długości promienia koła.

Przycisk (ang. button) – widżet realizujący operację poprzez naciśnięcie go wskaźnikiem myszy.

Etykieta (ang. Label) - widżet przedstawiający tekst z góry narzucony przez programistę.

TextArea – widżet pozwalający na wpisanie tekstu, który może być następnie użyty przez aplikację.

3. Użyte funkcje

Aplikacja testowa posiada 3 funkcje: funkcja wybrania figury (buttony z nazwami funkcji), funkcja obliczenia objętości (textarea + button oblicz) oraz reset wszystkich opcji (button reset). Wynik obliczeń pojawia się w labelu wynik.

Aplikacja/komponent składa się z trzech funkcji: setWybor (do określenia wybranej figury), getWzór(do wyświetlenia wzoru w labelu Figura) oraz funkcji objetosc (wyliczającej objętość na podstawie podanych danych w textareach oraz wybranej figury za pomocą funkcji setWybor, wynik podawany jest w labelu wyniki).

4. Użyte zmienne

Aplikacja testowa posiada 5 publicznych zmiennych:

- a) string X1 wartość x
- b) string Y1 wartość y
- c) string R1 wartość r
- d) string H1 wartość h
- e) string wzor używany do uzyskania wyniku obliczenia i pokazania w labelu wyniki

Aplikacja/komponent posiada x prywatnych zmiennych:

- a) private static final long serialVersionUID = 1125258259561446216L
- b) private int wybor = 0 używany do określenia wybranej figury
- c) private String Opcja = "Wybierz figure z listy powyżej."
- d) private final String string1 = "Wybierz figure z listy powyżej."
- e) private final String stringsz = "Wybrano sześcian. Wzór na objętość sześcianu to X^3. Podaj wartość X."
- f) private final String stringpro = "Wybrano prostopadłościan. Wzór na objętość prostopadłościanu to X*Y*H. Podaj wartość X,Y i H."
- g) private final String stringwal = "Wybrano walec. Wzór na objętość walca to pi*R^2*H. Podaj wartość R i H.";
- h) private final String stringsto = "Wybrano stożek. Wzór na objętość stożka to pi*R^2*H/3. Podaj wartość R i H.";
- i) private final String stringku = "Wybrano kulę. Wzór na objętość kuli to 4/3*pi*R^3. Podaj wartość R.";
- j) private String Wynik = " " w niej zapisywany jest wynik obliczeń wysyłany do aplikacji testowej
- k) private final Double pi = 3.14
- i) private Double wynik = 0.0 w niej zapisywany jest wynik obliczeń

Ponadto komponent posiada dla funkcji objetose eztery zmienne double "x,y,r,h" do których przypisywana jest wartość uzyskana z aplikacji testowej z textarea X, Y, R i H. Zmienne te są zmiennymi tymczasowymi używanymi tylko podczas wywołania funkcji.

5. Settery i gettery użyte w aplikacji

W aplikacji użyto jeden setter o nazwie setWybor, który na podstawie wybranego przez użytkownika buttona z nazwą figury zmienia wartość zmiennej wybor, który jest używany do "wybrania" odpowiedniego tekstu informującego o o wzorze na objętość wybranej przez użytkownika figury, a także używany jest do wyboru wzoru, który będzie użyty podczas obliczeń (dla funkcji if else). Kod tego settera wygląda tak:

Ponadto w aplikacji jest też jeden getter, który na podstawie wartości przypisanej do zmiennej wybor wyświetla w labelu odpowiedni tekst zawierający informacje o wzorze użytym do obliczeń. Kod tego gettera wygląda tak:

```
public String getWzor()

{
    if (wybor==0) Opcja = string1;
    else if (wybor==1) Opcja = stringsz;
    else if (wybor==2) Opcja = stringpro;
    else if (wybor==3) Opcja = stringwal;
    else if (wybor==4) Opcja = stringsto;
    else if (wybor==5) Opcja = stringku;

return Opcja;
}
```

6. Wygląd aplikacji testowej - GUI

Aplikacja testowa została stworzona w celu przetestowania poprawności działania komponentu. Poniżej pokazany jest widok aplikacji testowej:

Jak widać na powyższym obrazie GUI aplikacji testowej musi posiadać a) pięć buttonów odpowiadających za wybieranie figury (Sześcian, Prostopadłościan, Walec, Stożek, Koło)

- b) label na którym jest wyświetlany tekst dotyczący figur label figura, który przedstawia prośbę o wybranie figury lub tekst iż wybrano figurę oraz jej wzór
- c) cztery labele z textareami, w których będą wpisywane wartości poszczególnych zmiennych
- d) button oblicz używany do wywołania funkcji obliczającej wartość objętości figury
- e) button RESET używany do resetowania labela figura oraz textarea zmiennych
- f) label wynik zawierający wynik obliczeń dla zmiennych podanych powyżej.

Biorąc pod uwagę, iż GUI testowe jest używane tylko do przedstawienia działania poszczególnych funkcji użytych w komponencie, zastosowano prosty oraz intuicyjny wygląd GUI. W przypadku użycia komponentu dla aplikacji biznesowej należy użyć bardziej estetycznego GUI.

7. Testy funkcjonalne API

Poniżej znajdują się testy wykorzystania aplikacji testowej dla komponentu. Testy wykonano dla każdej funkcji, zaś wyniki podano poniżej.

Test obliczenia objętości sześcianu:

W celu dokonania obliczenia powierzchni sześcianu należy:

- a) kliknąć button sześcian
- b) wpisać wartość X w textarea obok "X:"
- c) kliknąć przycisk oblicz
- d) wynik obliczenia pojawi się w labelu wyniki znajdującym się najniżej Przykład użycia znajduje się poniżej:

Test obliczenia objętości prostopadłościanu:

W celu dokonania obliczenia powierzchni prostopadłościanu należy:

- a) kliknąć button prostopadłościan
- b) wpisać wartość X w textarea obok "X:" oraz wartość Y w textarea obok "Y:", a także wartość H w textarea obok "H:"
- c) kliknąć przycisk oblicz
- d) wynik obliczenia pojawi się w labelu wyniki znajdującym się najniżej Przykład użycia znajduje się poniżej:

Test obliczenia objętości walca:

W celu dokonania obliczenia powierzchni walca należy:

- a) kliknąć button walec
- b) wpisać wartość R w textarea obok "R:" oraz wysokość walca H w w textarea obok "H:"
- c) kliknąć przycisk oblicz
- d) wynik obliczenia pojawi się w labelu wyniki znajdującym się najniżej Przykład użycia znajduje się poniżej:

Test obliczenia objętości stożka:

W celu dokonania obliczenia powierzchni stożka należy:

- a) kliknąć button stożek
- b) wpisać wartość R w textarea obok "R:" oraz wysokość walca H w w textarea obok "H:"
- c) kliknąć przycisk oblicz
- d) wynik obliczenia pojawi się w labelu wyniki znajdującym się najniżej Przykład użycia znajduje się poniżej:

Test obliczenia objętości kuli:

W celu dokonania obliczenia powierzchni kuli należy:

- a) kliknąć button kula
- b) wpisać wartość R w textarea obok "R:"
- c) kliknąć przycisk oblicz
- d) wynik obliczenia pojawi się w labelu wyniki znajdującym się najniżej Przykład użycia znajduje się poniżej:

Test resetu danych:

W celu zresetowania aplikacji należy nacisnąć przycisk RESET. Wyczyści on wszystkie testarea oraz zmieni labele figura i wyniki na wartości początkowe. Przykład użycia znajduje się poniżej:

8. Cechy komponentu w technologii javabeans

Przedstawiany komponent posiada najważniejsze cechy jakie powinien posiadać każdy komponent:

- a) posiada w sobie wszystkie funkcje, które są potrzebne do działania
- b) zmienne wewnętrzne są prywatne, aby uzyskać wartości zmiennych należy użyć getterów i setterów
- c) komponent można używać w różnych aplikacjach zaś widok GUI dla tych aplikacji może się różnić od siebie, jedyne co musi posiadać każda z tych aplikacji to kody operacyjne dla komponentu.

9. Wnioski

Aplikacja kalkulator objętości została wykonana jako komponent, który wymaga stworzenia innych komponentów, które będą ją obsługiwały (buttony wyboru figury, labela przedstawienia figury, labela wypisania wyniku, labele X, Y, H, R oraz textboxy dla X, Y, H, R oraz bottony obliczenia i resetu). Nie stworzono actioneventu, który by zabezpieczał aplikację przed wprowadzeniem błędnych danych – aplikacja wtedy nie pokazuje wyniku obliczenia objętości.