1. Considerate la seguente funzione, che deve restituire il prodotto dei suoi due argomenti

```
int multiply(int x, int y) {
   if ( AAAAA ) {
        BBBBB;
   }
   else {
      return multiply(x - 1, y) + y;
   }
}
```

Cosa si deve scrivere al posto di AAAAA e di BBBBB?

- $\begin{array}{ccc} & AAAAA & x == y \\ & BBBBB & return x*y \end{array}$
- AAAAA x == 1
 BBBBB return 1
- AAAAA x == 0
 BBBBB return 1
- $\begin{array}{ccc}
 & AAAAA & x == 0 \\
 & BBBBB & return 0
 \end{array}$
- AAAAA x ==1
 BBBBB return 0
- AAAAA x ==1
 BBBBB return y

2. Considerate il seguente programma:

```
#include <stdio.h>
#define print(x) printf("%d ", x)
int x;
void Q(int z) {
   z += x;
   print(z);
void P(int *y) {
   int x = *y + 2;
   Q(x);
   *y = x - 1;
   print(x);
int main(void) {
   x = 5;
   P(&x);
   print(x);
   return 0;
```

3.	pun	Abbiamo i puntatori al primo e all'ultimo elemento di una lista concatenata semplice (con solo puntatore a next). Quali delle seguenti operazioni hanno tempo di esecuzione che dipende dalla lunghezza della lista?	
		Inserimento alla fine della lista	Si, dato che devo trovare il penultimo elemento e per farlo devo scorrerere tutta la lista
		Cancellazione del primo elemento	NO, costo lineare, basta mettere il puntatore al primo elemento a frist -> next
		Inserimento all'inizio della lista	NO
		Ricerca di un elemento	Si, dato che devo scorrere dall'inizio alla fine
		Cancellazione dell'ultimo elemento	Si, come il primo punto, devo trovare il penultimo elemento e identificalo come nuova tai $2p$

4. Considerate queste porzione di codice.

Sia p l'indirizzo del primo elemento di una lista, la funzione f(p) restituisce 1 se e solo se

- La lista, a partire dal secondo elemento, è ordinata in maniera non decrescente
- La lista è ordinata in maniera decrescente
- La lista è ordinata in maniera crescente
- Nessuna delle altre risposte
- La lista, a partire dal secondo elemento, è ordinata in maniera crescente
- La lista è ordinata in maniera non crescente
- La lista è ordinata in maniera non decrescente

- 5. a) In una lista doppiamente concatenata, il numero di puntatori sui quali si interviene per un'operazione di inserimento è:

 - nessuna delle altre risposte
 - 2
 - () 4
 - 0

b) Giustificate brevemente la risposta.

Risposta:

```
Dipende se l'inserimento avviune in coma/testa Sppure xin altre non sia coda o testa).
L'inserimento in testa/coda è il seguente
ListNode insert(ListNode I, int v){
 Node new = new_node (v);
  new -> next = I -> head;
 I -> head -> prev = new;
 new -> prev = NULL;
 I -> head = new;
 return I -> head;
Nel caso di un inserimento al "centro" della lista
Listnode insert(Listnode I, inv v)
....trovo la posizione desiderata nella lista
 node new = new_node(v);
  new -> next = curr;
  new -> prev = prev;
  prev -> next = new;
  curr -> prev = new;
return I-> head;
```

1p

 Questa funzione dovrebbe incrementare di 1 il valore di ogni nodo di un albero binario, ma non è corretta.

BitNode è un tipo che rappresenta un nodo di albero binario: si tratta di un puntatore a una struttura con 2 membri left e right che puntano rispettivamente ai figli sinistro e destro, e un membro val di tipo intero.

```
void f(BitNode root) {
   if (root != NULL) {
      root -> val++;
      if (root -> left != NULL) {
        root -> left -> val++;
        f(root -> left -> left);
    }
   if (root -> right != NULL) {
      root-> right-> val++;
      f(root -> right -> right);
   }
}
```

Spiegate cosa fa invece la funzione, poi individuate la causa di questo errore e descrivetela.

Risposta:

b) Correggete la funzione.

Risposta:

7. Considerate la seguente funzione, che riceve un vettore A di n interi e un vettore B di m interi.

```
1 int f (int A[], int B[], int n, int m) {
2    for ( int i = 0; i < n; i++) {
3        int found = 0;
4        for (int j = 0; j < m; j++)
5        if (A[i] == B[j])
6        found = 1;
7        if (!found) return 0;
8    }
9    return 1;
10 }</pre>
```

a) Sia $A = \{2,4,5\}$. Selezionate tutti e soli i B per cui la funzione restituisce 1.

2p

- b) Cosa fa la funzione f?
 - Decide se A e B hanno i primi due elementi in comune
 - Decide se A e B sono uguali
 - Decide se ogni valore di A si trova anche in B
 - Decide se A e B hanno almeno un elemento in comune
 - Decide se ogni valore di B si trova anche in A
 - Decide se A e B hanno lo stesso numero di elementi
 - Decide se A e B contengono gli stessi valori

Sia N la lunghezza di A e M la lunghezza di B. Quale è il tempo di esecuzione nel caso pessimo, in funzione di N e M?

O(N^2)
O(NM)
O(M^2)
O(N+M)
O(N log N)

d) Riprogettate la funzione f in modo che sia asintoticamente più veloce. Potete usare strutture dati di supporto.

Potete spiegare la vostra soluzione a parole (siate brevi), con pseudocodice, con un disegno, oppure potete scriverla in C. Indicate il tempo di esecuzione; più la funzione è veloce, meglio è.

Risposta:

