گزارش دیتاست ۲ تمرین سری ۲- یادگیری ماشین

عرفان کرمی – ۹۸۲۲۲۰۷۹

در این بخش از تمرین سری دوم هدف پیاده سازی الگوریتم رگرسیون خطی و مقایسه نتیجه آموزش آن بر روی دیتاست داده شده با نتیجه مدل های پیاده سازی شده در پکیج های آماده مانند sklean است.

دیتاست مجموعه ای از داده ها درباره املاک است و هدف تخمین قیمت های آنهاست. در شکل زیر اطلاعات کلی از دیتاست آمده است:

<class 'pandas.core.frame.dataframe'=""></class>			
RangeIndex: 268850 entries, 0 to 268849			
	columns (total 49 columns		
#	Column	Non-Null Count	Dtype
0	regio1	268850 non-null	object
1	serviceCharge	261941 non-null	float64
2	_		
3	heatingType	223994 non-null	object
	telekomTvOffer	236231 non-null	object
4	telekomHybridUploadSpeed		float64
5	newlyConst	268850 non-null	bool
6	balcony	268850 non-null	bool
7	picturecount	268850 non-null	int64
8	pricetrend	267018 non-null	float64
9	telekomUploadSpeed	235492 non-null	float64
10	totalRent	228333 non-null	float64
11	yearConstructed	211805 non-null	float64
12	scoutId	268850 non-null	int64
13	noParkSpaces	93052 non-null	float64
14	firingTypes	211886 non-null	object
15	hasKitchen	268850 non-null	bool
16	geo_bln	268850 non-null	object
17	cellar	268850 non-null	bool
18	yearConstructedRange	211805 non-null	float64
19	baseRent	268850 non-null	float64
20	houseNumber	197832 non-null	object
21	livingSpace	268850 non-null	float64
22	geo krs	268850 non-null	object
23	condition	200361 non-null	object
24	interiorQual	156185 non-null	object
25	petsAllowed	154277 non-null	object
26	street	268850 non-null	object
27	streetPlain	197837 non-null	object
28	lift	268850 non-null	bool
29	baseRentRange	268850 non-null	int64
30	typeOfFlat	232236 non-null	object
31	geo plz	268850 non-null	int64
32	noRooms	268850 non-null	float64
33	thermalChar	162344 non-null	float64
34	floor	217541 non-null	float64
35	numberOfFloors	171118 non-null	float64
36	noRoomsRange	268850 non-null	int64
37	garden	268850 non-null	
38	livingSpaceRange	268850 non-null	
39	regio2	268850 non-null	
40	regio3	268850 non-null	object
	description	249103 non-null	
42	facilities	215926 non-null	object
43	heatingCosts	85518 non-null	float64
44	energyEfficiencyClass	77787 non-null	object
45	lastRefurbish	80711 non-null	float64
46	electricityBasePrice	46846 non-null	float64
47	electricityKwhPrice	46846 non-null	float64
48	date	268850 non-null	object
		int64(6), object(_
<pre>dtypes: bool(6), float64(18), int64(6), object(19) memory usage: 89.7+ MB</pre>			
<u>-</u> J 			

serviceCharge, heatingType, telekomUploadSpeed در این بخش از تمارین ما تنها از سه فیچر totalRent خواهد بود.

- ابتدا باید دقت کنیم که در ستونی که میخواهیم آنرا پیشبینی کنیم مقادیر ناموجودی وجود دارد ما این مقادیر را حذف میکنیم و در نتیجه این عمل ۲۶۸۸۴۹ نمونه داده ما به ۲۲۸۳۳۳ داده تقلیل می یابند.
- در مرحله بعد برای فیچر ها مقادیر ناموجود را با استفاده از جایگزین کردن با مد داده ها مدیریت میکنیم این عملیات را با استفاده از SimpleImputer که در پکیج سایکیت لرن پیاده سازی شده است انجام میدهیم.
- سپس فیچر کتگوریکالی که وجود دارد(heatingType) را با استفاده از one hot encoding به مقادیر عددی تبدیل میکنیم.
- داده های پرت را هم با استفاده از محاسبه ZSCOTe شناسایی و از دیتاست حذف میکنیم. شرطی که برای حذف نمونه داده استفاده میکنیم به صورت زیر است:

if $t \in dataset$ and $|zscore(t)| \ge 3 \rightarrow t$ is outlier

با استفاده از این متد تعداد داده های باقی مانده به ۲۲۸۱۲۵ تقلیل می یابد.

- ullet در مرحله بعد داده های تست و ترین را با استفاده از $train_test_split$ از هم جدا میکنیم
- در مرحله نهایی آماده سازی داده ها با استفاده از StandardScaler بر روی دو فیچر عددی serviceSharge, telekomUploadSpedd تغییر مقیاس را انجام میدهیم.

الگوریتمی که خودمان نوشته ایم را بر روی ای داده ها تست میکنیم و به نتایج زیر میرسیم:

MSE on tran data: 24334680.01762735 MSE on test data: 3628373838.197944

:Model trained Coefficients

```
[[783.18398146],
 [373.16230277],
   4.86713413],
  [ 34.54975101],
 [100.26810721],
 [-6.52008139],
 [ 24.05504818],
 [261.46311662],
 [ 13.82019429],
 [158.75762303],
   2.5825481 ],
  [ 33.00363146],
  [ 93.96850311],
 [ 13.20496554],
    6.71141905],
 [ 52.4892397 ]]
```

حال الگوریتم رگرسیون خطی پیاده سازی شده در پکیج سایکیت لرن را بر روی داده ها ترین میکنیم. نتایج به صورت زیر هستند:

MSE on tran data: 24334540.52064295

MSE on test data: 3628346496.0389085 Model trained coefficients:

[3.72417140e+02, 4.70839506e+00, 7.58484533e+12, 7.58484533e+12]

حال اگر نتایج را مقایسه کنیم میبینیم که عملکرد ها تقریبا بر روی داده های ترین و تست در هر دو مدل یکسان بوده اند، که البته مدل پکیج سایکیت لرن کمی بهتر بوده است(دلیل این امر هم این است که در کتابخانه سایکیت لرن رگرسیون خطی احتمالا با استفاده از معادله نرمال که یک روش تحلیلی است پیاده سازی شده است در نتیجه مقدار دقیق مینیمم سراسری را به دست می آورد- دقت به این امر مهم است که نرخ یادگیری را به عنوان ورودی دریافت نمیکند- درحالیکه در مدل ما با اینکه معادله نرمال هم در آن پیاده سازی شده است اما با استفاده از گرادیان کاهشی که یک روش تکرار شونده است و تابع هرینه را مینیمم میکند بر روی مدل آموزش دیده است.). البته باید دقت کنیم که با توجه به اینه در رگرسیون خطی مینیمم میکند بر روی مدل آموزش دیده است.). البته باید دقت کنیم که با توجه به اینه در رگرسیون خطی مینیمم میکند بر روی داده ها مناسب. باشد.

البته مقایسه ضرایب آموزش دیده توسط دو مدل نشان میدهد که به جز دو ضریب اول این ضرایب بسیار متفاوت از هم بوده اند (ضریب اول در مدل ما ضریب مقدار بایاس است)و این نشان دهنده این میتواند باشد که احتمالا مهمترین فیچر ها همین دو فیچر هستند.

حال مدل های Lasso, Ridge که در کتابخانه سایکیت لرن پیاده سازی شده اند را بر روی داده ها فیت میکنیم.

نتایج در صفحه بعد قابل مشاهده اند:

:Ridge •

MSE on tran data: 24334540.408087403

MSE on test data: 3628346275.6042223 Model trained coefficients:

```
[ 372.56912748, 4.7154186 , -58.45163401, 67.70890021, -101.75303253, -36.06264722, 165.80059033, -81.94273229, 138.80006449, -112.55880602, -70.28853469, -2.97877502, 108.30333094, -61.31034583, 44.73362296]
```

:Lasso •

MSE on tran data: 24334560.546804726

MSE on test data: 3628352200.2974377 *Model trained coefficients:*

```
[372.75110254, 4.66541182, -35.13204585, 78.00316543, -77.51975823, -0. , 187.37895858, -57.54236596, 151.65730478, -69.64761302, -42.11163546, 18.70538964, 0. , -0. , 41.5836656 ]
```

اگر دقت کنیم نتایج این دو مدل بر روی داده ها شبیه دو مدل قبلی هستند و این مجددا این نکته را تقویت میکنند که رگرسیون خطی و توسیع های آن مدل مناسبی برای برازش بر روی این داده ها نیستند اما نکته جالب اینجاست که ضرایب آموزش دیده توسط این دو مدل بسیارشبیه مدلی هستند که خودمان پیاده سازی کردیم، دلیل این امر هم این است که این دو الگوریتم هم از یک روند مبتنی بر مشتق برای مینیم سازی تابع هزینه استفاده میکنند(در ابتدا هم ابرپارامتر های نرخ یادگیری و تعداد تکرار ها را برای آنها باید مشخص کرد). البته برای Lasso سه تا از ضرایب کاملا صفر شده اند که این به دلیل ویژگی خاصی است که این مدل در صفر کردن اهمیت فیچر های کم اهمیت دارد.

** در این بخش خودمان الگوریتم رگرسیون خطی را پیاده سازی کردیم و آنرا بر روی تعدادی از فیپچر های دیتاست املاک ترین کردیم و نتایج را با مدل های آماده مقایسه کردیم.