

#### Different Scales for Infection Risk Integrating COVID-19 Models at **Estimation and Control** Optimization

Collin Schwantes, Benno Lee, Marjorie Willner, Ben Ortiz, Viveca Pabon-Harr

#### Introduction



## The system is complex

- Processes are non-linear
- Policies outside your institution impact outcomes in your institution
- Systems within your institution interact in unexpected ways

#### Problem Statement

Assessing risk of SARS-COV-2 infection in indoor spaces is temporal scales influence fine scale disease transmission. complicated because interactions at multiple spatial and

## Graphical User Interface



### Simulation Framework

We developed extensible simulation engine accepts modules that modify transmission dynamics.



### Extended SIR Model



### Infectiousness Profile



# How does transmission happen in our Model?

- 1. External Transmission
- 2. Environmental Transmission
- 3. Direct Contact Transmission

## Estimating external infections



 External infections are derived from a micro markov process model that explicitly incorporates mobility metrics and imported cases

## Estimating Environmental infections



#### Risk of Infection

- **Emission Rate**
- Viral Concentration in Room
- Inhalataion Rate
- Time divided into 15 minute segments

G. Buonanno et al. 2020

## Estimating direct contact infections



$$R_j = \sum_{i=1}^n I_i \delta_i P_{dc}$$
= relative infectiousne

 $I_i$  = relative infectiousness of adjacent infected nodes  $\delta_i$  = transmission modifiers  $P_{dc}$  = probability of infection given direct contact

How is transmission prevented?

### Hierarchy of Controls



Image produced by University of California Davis

## Hazard Control modules

- Leave Policy removes individuals who tested positive for a number of time steps
- Room Density Limits reduces number of people in a room
  - Personal Protective Equipment reduces the probability of acquiring infection
- **Testing** does not directly impact transmission but may inform other policies (e.g. leave)

#### Vaccination

- Protects from severe disease
- May not prevent transmission

#### Data Collection



- Surveyed lab mates asking them to indentify contacts (n=46)
- Took mean of reported contact strength
- Estimated room volumes
- Other values derived from literature

## Model Initial Conditions

- Three random infections
- Testing occurs every three days, 50% of population is tested and receives results within two days.
- 95% of people using full PPE suite (surgical mask, eye protection, distancing)
- Density limit of  $\frac{1 \ person}{12 \ m^3}$
- 100 simulation runs, 60 time steps each
- Other parameters determined by exhaustive lit review (see table in appendix)

#### Results



- Testing frequency and leave policy have greatest impact on transmission
- Increasing room density increases transmission
- Direct contact and environmental transmission are the primary transmission modes

#### Conclusions

#### Appendix

## SARS-COV-2 Transmission

- Presence of infectious individuals or materials
- Inhalation of infectious particles
- Introduction of fomites to mucus membranes

#### Model layers



- External Transmission
- Environmental Transmission
- Direct Contact Transmission
- Transmission Modifiers

## Environmental Infections Equations

Emission Rate

$$ER_{q,j} = c_v * c_i * IR * \sum_{i=1}^4 (N_{i,j} * V_i)$$

Viral Concentration in Room

$$n(t) = rac{ER_q * I}{IVRR * V} + (n_o + rac{ER_q * I}{IVRR}) * rac{e^{IVRR * t}}{V}$$

Risk of Infection

$$R_{env} = 1 - e^{-IR} \int_0^T n(t) dt$$