Important information

- 1. Work with data + code provided in 'Notebooks old data.zip'
- 2. This has limited amount of data to work in colab
- 3. Preliminary code already implemented benchmark
- 4. Shap analysis (force plots) can be time-consuming better work with limited data for fast turnaround

To - Dos

- 1. EDA Data Exploration (**Priority 3**)
 - a. There is already some provided in the notebook
 - b. You need to understand the relationship between the current excitation in the stator poles, rotor position and generated torque.
- 2. Improve on the NN trained (Priority 2)
 - a. There is a benchmark model already in the notebook shared.
 - b. Find a better architecture with improved predictive performance
 - i. Use AutoML (keras-tuner, TPOT, HyperOpt)
 - ii. Also search for models in ensemble modeling
 - 1. Random Forest
 - 2. Gradient Boosted trees
 - a. LightGBM
 - b. CatBoost
- 3. Perform shap analysis and create Control function (**Priority 1**)
 - a. Train a shap analyzer
 - b. Generate a function which takes in 3 inputs
 - i. Current Rotor position
 - ii. Present Stator excitation
 - iii. Target Torque
 - c. Returns output
 - Optimal Stator current sequence to achieve 'Target Torque'.
 - d. Find ways to reduce the computation time to train shap analyzer
 - i. SHAP trains faster on Tree based model, if you use TreeKernel
 - ii. Is it necessary to train shap analyzer on the whole data? Can we find a data efficient way of training shap analyzer
- 4. Progress tracking
 - a. Excel sheet to track the experiments you perform
 - i. Link Excel sheet
 - b. Code track
 - i. Github <u>repo</u> Use this to save all your work
 - ii. Useful for version control when you write your report

iii. Allows me to check on any code without asking your code