Jahrgangsstufen 11/12 - Grundkurs

Ziele

Umgehen mit Daten und Informationen

Die Schüler beherrschen vielfältige Strategien zur Verarbeitung von Daten, können problemadäquate Informatiksysteme auswählen und verwenden.

Sie vertiefen ihr Wissen zu Datenbanken und arbeiten mit verschiedenen Datenbankmanagementsystemen.

Die Schüler bewerten Informationen, deren Daten mit Informatiksystemen bearbeitet wurden. Sie kennen Manipulationsmöglichkeiten und Fehlerquellen im Prozess der Datenverarbeitung.

Kennen lernen von Aufbau und Funktionalität ausgewählter Informatiksysteme

Die Schüler sind in der Lage, Aufbau und Wirkungsweise von einfachen und vernetzten Informatiksystemen sowie die Prinzipien der Datenübertragung anhand verfeinerter Modelle zu erklären.

Sie können das erworbene Wissen über Informatiksysteme in verschiedenen Bereichen anwenden.

Modellieren von Zuständen und Abläufen

Die Schüler erarbeiten einen systematischen Überblick zu verschiedenen Arten informatischer Modelle.

Sie können Verarbeitungsprozesse von Daten, Struktur und Aufbau von Informatiksystemen sowie Mensch-Maschine-Interaktionen modellieren.

Sie wählen problemadäquate Modellierungsmethoden aus und wenden diese an.

Realisieren von Problemlöseprozessen

Die Schüler wenden die Phasen von Problemlöseprozessen systematisch an.

Sie werten Problemlösungen kritisch und können diese unter verschiedenen Aspekten beurteilen.

Die Schüler kennen Beispiele von Problemen, die mit informatischen Werkzeugen nicht oder nur teilweise lösbar sind.

Sie kennen einfache und komplexe Algorithmen- und Datenstrukturen und setzen diese unter Verwendung von Programmiersprachen um.

Bewertung von gesellschaftlichen Aspekten der Informatik

Die Schüler besitzen Einsichten in Entwicklungen von Informatiksystemen und zu Perspektiven der Informatik im wirtschaftlichen und gesellschaftlichen Kontext.

Die Schüler setzen sich mit Anforderungen an den Datenschutz auseinander.

Sie bewerten Maßnahmen zur Datensicherheit.

Lernbereich 1: Kommunikation in Netzen	8 Ustd.
Kennen grundlegender Kommunikationsebenen	Mensch – Mensch Mensch – Maschine Maschine – Maschine
Kennen wesentlicher Strukturen vernetzter Systeme	Vernetzung und Kooperation in Wissenschaft und Gesellschaft virtuelle Welten Vor- und Nachteile von Vernetzung ⇒ Werteorientierung
Übertragen der Kommunikationsebenen und Vernetzungsstrukturen auf Computernetze - Schichtenmodell - Dienste im Intra- und Internet Beherrschen des bewussten Umgangs mit ausgewählten Netzdiensten	einfache Kommunikationsprotokolle Leitungs- und Paketvermittlung dynamische und statische Adressierung

Informatik Jahrgangsstufen 11/12

Einblick gewinnen in Dokument- und Inhaltsmanagement Einsatz spezifischer Applikationen Rechtestruktur

Lernbereich 2: Informatische Modelle

4 Ustd

Einblick gewinnen in die Systematik informatischer Modellierung	→ RE/e, Lk 12, LB 2
- Modellbegriff	konkretes oder gedankliches Abbild oder Vorbild von Realität und Virtualität Ziel der Modellierung Anforderungen und Grenzen
- Klassifizierung von Modellen in der Informatik	nach Abstraktionsgrad, Darstellungsart, Ziel- orientierung
Anwenden auf informatische Problemstellungen	Schrittfolge bei der Modellbildung Nutzen eines Modellierungswerkzeuges

Lernbereich 3: Sicherheit von Informationen

12 Ustd

Lembereich 3. Sichemen von mormationen	12 OSt0
Kennen von Anforderungen an die Informationssicherheit Vertraulichkeit Integrität Authentizität Verbindlichkeit/Anerkennung	Recht auf informationelle Selbstbestimmung ⇒ Werteorientierung
Einblick gewinnen in die Kryptologie im gesell- schaftlichen Kontext	Notwendigkeit und Missbrauch kryptographischer Verfahren ⇒ Empathie und Perspektivwechsel
KryptographieKryptoanalyse	Verschlüsselung und Entschlüsselung an Bei- spielen
Kennen von Verfahren zur Gewährleistung der Vertraulichkeit	
- symmetrische Verfahren	klassische Verfahren: Cäsar-Chiffre, Vigenere- Verschlüsselung, Prinzip der Enigma Verfahren mit geheimem Schlüssel: DES, AES, SSL
- asymmetrische Verfahren	RSA-Verfahren, ElGamal
- nicht kryptographische Verfahren	Steganographie
Kennen von Verfahren zur Gewährleistung der Integrität und Authentizität	One-Way-Hash Funktion elektronische Unterschrift
Beherrschen der Nutzung von Verfahren zur Gewährleistung der Sicherheit von Informationen	Einsatz von Werkzeugen Umsetzung einfacher Verfahren mit einer Programmierumgebung

Lernbereich 4:	Datenstrukturen und M	Modularisierung
----------------	-----------------------	-----------------

10 Ustd.

Kennen von Datenstrukturen

- einfache Datentypen
- strukturierte Datentypen
- höhere Datenstrukturen

Einblick gewinnen in Verarbeitungsprinzipien LIFO, FIFO

Beherrschen der Implementierung ausgewählter Datenstrukturen in einer Programmierumgebung

Beherrschen der Arbeit mit Unterprogrammen

- Struktur von Unterprogrammen
- Verwendung von Parametern

Aufzählungstyp, Teilbereichstyp

Feld, Verbund, Datei, Objekt

Stapel, Schlange, Baum

einfache und strukturierte Datentypen

Funktion, Prozedur

Lernbereich 5: Algorithmen

18 Ustd.

Kennen typischer Algorithmen und Verfahren

- Sortieralgorithmen
- Rekursion, Iteration

Beurteilen von Algorithmen bezüglich ihrer Effizienz

- Komplexität
- experimentelles Ermitteln und theoretischer Nachweis der Zeitkomplexität
- Beispiele für Algorithmen mit polynomialem Aufwand
- Beispiel für Algorithmen mit exponentiellem Aufwand

Kennen von Grenzen der Berechenbarkeit

Beherrschen der Implementierung ausgewählter Algorithmen in einer Programmierumgebung

Behandlung ausgewählter Beispiele

Reflexions- und Diskursfähigkeit

Speicherplatz, Rechenzeit

Sortieralgorithmen

Rundreiseproblem, Dameproblem, Stundenplan

technische Grenzen theoretische Grenzen

Problemlösestrategien Entwicklung eigener Programme

Lernbereich 6: Datenmodellierung und Datenbanken

26 Ustd.

Anwenden informatischer Modellierung auf die Abbildung von Daten und Datenstrukturen

- Darstellung des Modells als Diagramm
- Datenbankschema

Anwenden von Verfahren zur Optimierung von Modellen am Beispiel relationaler Modelle

Normalisierung unter Verwendung von Normalformen

objektrelationales Modell als Klassendiagramm oder Entity-Relationship-Modell als Entity-Relationship-Diagramm

Möglichkeiten und Grenzen relationaler Modellierung

weitere Modelle: hierarchisches Modell, Netzwerkmodell

Probleme der Effizienz und der Grenzen des Modells

Informatik Jahrgangsstufen 11/12

Beherrschen der Abbildung des relationalen Modells als Repräsentation in Daten

- Datenbanksystem, Datenbasis, Datenbank-Management-System

- Aufgaben und Eigenschaften eines Datenbanksystems

- Redundanz, Konsistenz, Integrität

Anwenden von Möglichkeiten der Auswertung einer Datenbasis

- Relationenalgebra

- Selektion, Projektion, Verbund

- formale Datenbanksprache

Auswahl eines Datenbank-Management-Systems unter Berücksichtigung von Aspekten der Implementierung des Modells und Auswertung der Datenbasis

Vergleich Datenbanksystem – Dateisystem

als theoretische Grundlage

Datenbanksprache zur praktischen Realisierung

SQL

Lernbereich 7: Wissenschaft Informatik

4 Ustd.

Kennen der Wissenschaftsbereiche der Informatik	Zuordnen ausgewählter Aufgaben zu den Wissenschaftsbereichen
- theoretische Informatik	Sprachen und Automaten
	Probleme der Berechenbarkeit
- technische Informatik	Betriebssysteme und Hardware
- praktische Informatik	Software Engineering
- angewandte Informatik	Realisierung theoretischer, technischer und praktischer Aspekte
Einblick gewinnen in die Vielfalt der Anwendungsbereiche der Informatik	Wirtschaft, Wissenschaft, Bildung, private Bereiche
Kennen gesellschaftlicher Auswirkungen der Informatik	neue Berufe, effiziente Arbeitsverteilung, weltweite Kommunikation

Lernbereich 8 A: Theoretische Informatik – Theoretische Grundlagen von Programmiersprachen

14 Ustd.

Einblick gewinnen in den Aufbau von Sprachen	natürliche, künstliche, formale Sprachen
Syntax und Semantik	
Kennen des hierarchischen Regelaufbaus formaler Sprachen	Klassen von formalen Sprachen nach Chomsky
	reguläre Sprachen kontextsensitive Sprachen kontextfreie Sprachen
Einblick gewinnen in den Prozess der Synthese	Erzeugungsprozess durch Regelanwendung
Kennen der Analyse von Sprachelementen mit Hilfe von Automatenmodellen	Aufbau und Arbeitsweise anhand einfacher Beispiele endlicher Automat Kellerautomat Turingmaschine
Anwenden der Kenntnisse zur Sprachanalyse auf Funktionsprinzipien von Compiler und Interpreter	

Lernbereich 8 B	Technische Informatik – Hardware und Prozessdatenverarbeitung	14 Ustd.
Lei ilbei eleli o D.	reclinistic informatik – Haraware and riozessuatenverarbeitung	IT USIU.

Kennen des Modells Von-Neumann-Rechner

Einblick gewinnen in die Prozessdatenverarbeitung

- historische Entwicklung
- Modelle zur Veranschaulichung von Prozessautomatisierung
- Signal, Daten, Datentransport
- Messen
- Steuern
- Regeln
- Aktorik

Anwenden der Kenntnisse über die Ansteuerung paralleler und serieller Schnittstellen unter Nutzung eines vorgegebenen Objektes

Kennen der Bedeutung eines Interface

Einordnung in die historische Entwicklung Vergleich mit dem Aufbau eines Computersystems

Mensch als Prozessmanager

Messprozess, Steuerkette, Regelkreis

Signalwandler, Interface, Schnittstellen ausgewählte Sensoren, Messwerterfassung, -speicherung, -auswertung

Lichtsteuerung

Temperaturregelung

computerintegrierte Fertigung

einfache Datenübertragung zwischen PC und peripheren Geräten, z. B. byteweise Übertragung an der LPT-Schnittstelle serielle Übertragung an COM- oder USB-Schnittstelle

Optokoppler Pegelanpassung AD-, DA-Wandler

Lernbereich 8 C: Praktische Informatik – Vertiefte Programmierung

14 Ustd.

Kennen des Software-Life-Cycle

Kennen der Grundlagen objektorientierter Programmierung

- Vererbung
- Polymorphie
- Kapselung

Anwenden von Programmierprinzipien in der selbstständigen Bearbeitung einer komplexen Problemstellung

- Arbeitsorganisation
- Problemlösestrategien

Arbeit im Team

Lernbereich 8 D: Angewandte Informatik - Computergrafik und Bildbearbeitung

14 Ustd.

Kennen von Farbmodellen

Kennen von Verfahren der Bildgenerierung und -analyse

Modellierung von grafischen Objekten

Rasterkonvertierung, Antialiasing, Clipping Bezierkurven

16 2011 GY - INF Informatik Jahrgangsstufen 11/12

rechnerinterne Beschreibung grafischer Objekte
 Mustererkennung

Kennen von ausgewählten Anwendungen zur Computergrafik

- Klassen und Objekte der Pixelgrafik und Vektorgrafik
- Methoden und deren Umsetzung in ausgewählten Anwendungen

Beurteilen von Algorithmen zur Konvertierung und Komprimierung

Einblick gewinnen in Möglichkeiten der Manipulation von Daten

Hardwarevoraussetzungen

Bild- und Texterkennung

CAD, Animation oder Simulation

Effizienz, Verlustbehaftung

- ⇒ Reflexions- und Diskursfähigkeit
- ⇒ Werteorientierung

Wahlpflicht 1: Dynamische Datentypen

4 Ustd.

Einblick gewinnen in die Arbeit mit dynamischen Datentypen

Unterschied zu statischen Datentypen Vorgänge im Speicher

→ LB 5

Kennen der Implementierung von Zeigern in einer Programmierumgebung

Einblick gewinnen in die Arbeit mit Listen

Listen als Struktur zur dynamischen Implementierung höherer Datenstrukturen
Grundoperationen mit Listen

Wahlpflicht 2: Suchalgorithmen

4 Ustd

Einblick gewinnen in Suchverfahren

- sequentielle Suche
- binäre Suche
- Hash-Verfahren

Problematik des Suchens

Beschreibung der Verfahren

rechentechnische Realisierung am Beispiel

Effizienz der Suchverfahren

- → LB 4
- → LB 5

Wahlpflicht 3: Computergrafik im Alltag

4 Ustd.

Kennen weiterer Anwendungsbereiche der Computergrafik

Geschäftsgrafik, Computergrafik in der Medizin, Fraktale

Exkursion

→ LB8D

Beurteilen der Einsatzmöglichkeiten der Computergrafik im Alltag

⇒ Interdisziplinarität und Mehrperspektivität

Wahlpflicht 4: Programmieren von Grafiken		4 Ustd
Kennen von ausgewählten Grafikobjekten der Programmierumgebung	→ LB 4	
Anwenden der Programmierprinzipien auf das Erstellen einer Grafik	⇒ Problemlösestrategien⇒ Arbeitsorganisation	