Problem 1:

Consider $\operatorname{Ind}(\partial D(a,r),a)$. Define $\theta:[0,1]\to\mathbb{R}$ by $x\to 2\pi x$. Note that θ satisfies $\gamma(t)-a=|\gamma(t)-a|\,e^{i\theta(t)}$, where $\gamma(t)=re^{2\pi t}+a$. From the definitions, we have

$$\operatorname{Ind}(\partial D(a, r), a) = \frac{1}{2\pi} (\theta(1) - \theta(0))$$
$$= \frac{1}{2\pi} (\theta(1) - \theta(0))$$
$$= 1$$

Problem 2:

Consider $\operatorname{Ind}(\partial D(a,r),z)$. Because $\partial D(a,r)$ is a smooth, closed curve, we have that $\operatorname{Ind}(\partial D(a,r),z) = \frac{1}{2\pi i} \int\limits_{\partial D(a,r)} \frac{dw}{w-z}$.

So,

$$\operatorname{Ind}(\partial D(a,r), z) = \frac{1}{2\pi i} \int_{\partial D(a,r)} \frac{dw}{w - z}$$
$$= \frac{1}{2\pi i} \int_{\partial D(z,r)} \frac{dw}{w - z}$$
$$= \frac{1}{2\pi i} 2\pi i$$
$$= 1$$

if $z \in D(a, r)$. And

$$\operatorname{Ind}(\partial D(a,r), z) = \frac{1}{2\pi i} \int_{\partial D(a,r)} \frac{dw}{w - z}$$
$$= \frac{1}{2\pi i} \int_{\partial D(z,r)} \frac{dw}{w - z}$$
$$= 0$$

if $z \notin D(a,r)$ (as the function is holomorphic on that disk.)

Note that in our definitions, the index isn't defined when $a \in \gamma^*$. That is, $\operatorname{Ind}(\partial D(a,r),z)$ isn't defined when $z \in \partial D(a,r)$.

Problem 3:

Let V be an open subset of the plane and Γ be a cycle in V. Also, let Γ have the property that $\operatorname{Ind}(\Gamma, a) = 0$ for all $a \in \mathbb{C} \setminus V$.

Let $f \in H(V)$.

Problem 8:

Then define $g(w) = \frac{f(w)}{w-z}$. We know that g is differentiable on $V \setminus \{z\}$. Referring to a figure much like Figure 2.1 and using Theorem 4.10 to show that the "outer" chunks of the integral vanish, we get $\int\limits_{\Gamma} g(w)dw = \int\limits_{\partial D(z,r)} g(w)dw$ for arbitrarily small r>0.

Problem	4:		
Problem	5:		
Problem	6:		
Problem	7:		

Problem 9:

Consider f, holomorphic on some disk, Ω , centered at z. Consider $g(w) = \frac{f(w)}{w-z}$; then we have that $\int_{\partial Om} g(w)dw = 2\pi i \mathrm{Res}_z g$. (Note that g's only singu-

larity is at z.) Moreover, note that $g(w) = \frac{\sum\limits_{n=0}^{\infty} a_n (w-z)^n}{w-z}$. Thus, by the residue theorem, $\int\limits_{\partial\Omega} \frac{f(w)}{w-z} dw = f(z)$.

Problem 10:

Problem 11:

Problem 12:

Problem 13:

Problem 14:

Problem 15:

Problem	16:	
Problem	17:	
Problem	18:	
Problem	19:	
Problem	20:	
Problem	21:	
Problem	22:	
Problem	23:	