Large Scale Structure and Galaxy Formation

Lecture 2

Koen Kuijken 2022

MSc Astronomy, Leiden Observatory

z = 20.0

Growth of perturbations

- Inhomogeneities in the Universe can grow through gravitational instability
- The 'Hubble radius' has a key role in how perturbations grow
- Defined as radius ca/\dot{a} (i.e. distance at which Hubble velocity=c)
 - Perturbations with size larger than the Hubble radius can only evolve very slowly
 - Perturbations smaller than the Hubble radius can grow/damp faster
- Consider <u>co-moving</u> Hubble radius c/\dot{a} , remember $a(t) \propto t^{2/(3+3w)}$ so $\dot{a} \propto a/t \propto a$. $a^{-(3+3w)/2} = a^{-(1+3w)/2}$
 - then

$$r_H \propto \begin{cases} a^{-1} & -\text{ inflation } (w=-1) \\ a & -\text{ radiation } (w=1/3) \end{cases}$$
 $a^{1/2} & -\text{ matter } (w=0)$
 $a^{-1} & -\text{ dark energy } (w=-1)$

Growth of perturbations

- Co-moving horizon size at matter/radiation equality ~ 100 Mpc
 - All <100Mpc structure we see today entered during the radiation era
 - 'initial' fluctuations were set during the inflation era
- We will see that perturbations grow at different rates during radiation epoch and matter epoch

Spherical super-horizon perturbations

- "Universe within a Universe"
- Assume background zero curvature Universe, with $a_1(t), \rho_1(t)$ and containing a spherical region with a different (higher) density

• We can treat this inner region as a different (curved!) solution of the Friedmann eq's $8\pi G$ background

$$\dot{a}_1^2 = \frac{8\pi G}{3}\rho_1 a_1^2 \qquad \text{background}$$

$$(a_1 \dotplus \delta a)^2 = \frac{8\pi G}{3}(\rho_1 + \delta \rho)(a_1 + \delta a)^2 - \delta K$$

$$\Rightarrow 2\dot{a}_1\dot{\delta a} = \frac{8\pi G}{3}\left(a_1^2\delta\rho + 2a_1\rho_1\delta a\right) - \delta K \qquad \text{to 1st order}$$

- Now look for power-law solutions $\delta a(t) \propto t^x, \delta \rho \propto t^y$, given a power-law background solution $a_1(t) \propto t^u, \rho_1 \propto t^\nu$:
- Find (u-1) + (x-1) = 0; 2u + y = 0; u + v + x = 0
- Hence v = -2; x = 2 u; y = -2u
- So finally $\delta \rho/\rho \propto t^{y-\nu} = t^{-2u+2} = \begin{cases} t & \text{if } u = 1/2, \text{ radiation domination} \\ t^{2/3} & \text{if } u = 2/3, \text{ matter domination} \end{cases}$

Sub-horizon fluctuations

- Previous analysis also valid for smaller volumes
- But other processes may oppose growth:
 - Hubble expansion of dominant component
 - Free streaming of matter
 - Effective pressure of collapsed system (virialization)
 - this will be discussed later in the course
- Formulate linearised perturbation equations
 - Use Newtonian dynamics
 - First for static background
 - Then for expanding background

Newtonian density perturbations (static)

Conservation of mass, momentum; Poisson eq.:

$$\dot{\rho} + \nabla \cdot \rho \mathbf{v} = 0$$

$$\dot{\mathbf{v}} + \mathbf{v} \cdot \nabla \mathbf{v} + (1/\rho)\nabla p + \nabla \phi = 0$$

$$\nabla^2 \phi - 4\pi G \rho = 0$$

ρ: density

v: velocity

p: pressure

 ϕ : grav. potential

- Static background solution has v=0, ρ=const, const. gravitational field (NB inconsistent with Poisson eq - correct treatment needs GR)
- Perturb around this: $\rho = \rho_0 + \delta \rho$, $\mathbf{v} = \mathbf{0} + \delta \mathbf{v}$, $\delta p = c_s^2 \delta \rho$

$$\dot{\delta\rho} + \rho_0 \nabla \cdot \delta \mathbf{v} = 0$$

$$\dot{\delta \mathbf{v}} + (c_s^2/\rho_0) \nabla \delta\rho + \nabla \delta\phi = 0$$

$$\nabla^2 \delta\phi - 4\pi G \delta\rho = 0$$

Dispersion relation for wave-like solutions: –

$$\omega^2 - c_s^2 k^2 + 4\pi G \rho_0 = 0$$

$$\delta \rho = \rho_0 \delta_0 e^{i(\mathbf{k} \cdot \mathbf{r} + \omega)}
\delta \mathbf{v} = \mathbf{V} e^{i(\mathbf{k} \cdot \mathbf{r} + \omega t)}
\delta \phi = \Phi e^{i(\mathbf{k} \cdot \mathbf{r} + \omega t)}$$

(Aside: dispersion relation)

 Dispersion relation is the condition on frequency and wavenumber that is necessary to allow non-zero amplitude waves:

Substitute wave-like solutions

$$\delta \rho = \rho_0 \delta_0 e^{i(\mathbf{k} \cdot \mathbf{r} + \omega t)}$$

$$\delta \mathbf{v} = \mathbf{V} e^{i(\mathbf{k} \cdot \mathbf{r} + \omega t)}$$

$$\delta \phi = \Phi e^{i(\mathbf{k} \cdot \mathbf{r} + \omega t)}$$

(Note we write overdensity $\delta \equiv \delta \rho / \rho$)

$$\dot{\delta\rho}+\rho_0\nabla\cdot\delta\mathbf{v}=0$$
 into dynamical eqs.
$$\dot{\delta\mathbf{v}}+(c_s^2/\rho_0)\nabla\delta\rho+\nabla\delta\phi=0$$

$$\nabla^2\delta\phi-4\pi G\delta\rho=0$$

with $\partial/\partial t \rightarrow i\omega$ etc.

This results in a matrix equation $\begin{pmatrix} i\omega & i\mathbf{k} \cdot & 0 \\ c_s^2 i\mathbf{k} & i\omega & i\mathbf{k} \\ -4\pi G\rho_0 & 0 & -k^2 \end{pmatrix} \begin{pmatrix} \delta_0 \\ \mathbf{V} \\ \Phi \end{pmatrix} = 0$

which only has non-trivial solutions if the determinant is zero.

Newtonian density perturbations (static)

Dispersion relation for wave-like solutions:

$$\omega^2 - c_s^2 k^2 + 4\pi G \rho_0 = 0$$

- This gives the relation between frequency ω and wavenumber k for density waves that can propagate in a static nearly uniform self-gravitating medium.
- Simplest case, where self-gravity is unimportant $(G\rho_0\ll\omega^2)$: pressure waves (i.e., sound), for which $\frac{\omega}{k}=c_{\rm s}$, as expected.

Newtonian density perturbations: Jeans mass

$$\omega^2 - c_s^2 k^2 + 4\pi G \rho_0 = 0 \qquad \qquad \delta_0, \, \delta \mathbf{v} \propto e^{i(\mathbf{k} \cdot \mathbf{r} + \omega t)}$$

• Perturbations are unstable (hence grow) when $\omega^2 < 0$ i.e., when the wavelength exceeds the *Jeans Length* L_I

$$\lambda = \frac{2\pi}{k} > c_s \left(\frac{\pi}{G\rho_0}\right)^{1/2} \equiv L_J$$

- (Simply said: pressure waves too slow to escape collapse)
- Associated Jeans Mass $M_J = \frac{4\pi}{3} \left(\frac{L_J}{2}\right)^3 \rho_0 \sim \frac{c_s^3}{G^{3/2} \rho_0^{1/2}}$

- M_J is the smallest mass that can collapse in the medium
- largest scales (k = 0) always unstable "gravity always wins"

• Homogeneously expanding solution with expansion factor a(t), as function of comoving coordinates ${\bf r}$: $\rho_{bg} = \rho_0 a^{-3}$

$$\mathbf{v}_{bg} = \dot{a}\mathbf{r}$$
 $\phi_{bg} = \frac{2}{3}\pi G \rho_{bg} a^2 r^2$
 $p_{bg} = p(\rho_{bg})$

Perturb the conservation eqns by setting

$$\rho(\mathbf{r},t) = \rho_{bg} + \delta\rho(\mathbf{r},t)$$

$$\mathbf{v}(\mathbf{r},t) = \mathbf{v}_{bg} + \delta\mathbf{v}(\mathbf{r},t)$$

$$\phi(\mathbf{r},t) = \phi_{bg} + \delta\phi(\mathbf{r},t)$$

• and note that in comoving coordinates $\mathbf{r} \equiv \mathbf{x}/a(t)$ the time derivatives and gradients become

$$\left(\frac{\partial}{\partial t}\right)_{r} = \left(\frac{\partial}{\partial t}\right)_{r} - \frac{\dot{a}}{a}\mathbf{r} \cdot \nabla$$

$$\nabla_{x} = a \nabla_{r}$$

 NB: note non-relativistic treatment means background v and φ are not homogeneous!

12

• Mass conservation: $\dot{\rho} + \nabla \cdot (\rho \mathbf{v}) = 0$ becomes

$$\left(\frac{\partial}{\partial t} - \frac{\dot{a}}{a}\mathbf{r} \cdot \nabla\right) \left[\rho_{bg}(t)(1 + \delta(\mathbf{r}, t))\right] + \frac{\rho_{bg}}{a}\nabla \cdot \left[(1 + \delta(\mathbf{r}, t)))(\dot{a}\mathbf{r} + \mathbf{v}(\mathbf{r}, t))\right] = 0$$

- Order 0 terms cancel as $\dot{\rho}_{bg} = -3(\dot{a}/a)\rho_{bg}$
- Remaining terms:

$$\frac{\partial \delta}{\partial t} + \frac{1}{a} \nabla \cdot \left[(1 + \delta) \mathbf{v} \right] = 0$$

• Momentum conservation: $\dot{\mathbf{v}} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \phi - (1/\rho) \nabla p$ becomes

$$\frac{\partial \mathbf{v}}{\partial t} + \frac{\dot{a}}{a}\mathbf{v} + \frac{1}{a}\mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{a}\nabla \delta \phi - \frac{1}{\rho_{bg}}\frac{1}{a}\nabla \rho$$

• Poisson equation: $\nabla^2 \phi = 4\pi G \rho$ becomes

$$\nabla \delta \phi = 4\pi G \rho_{bg} a^2 \delta$$

• Keeping only first-order terms in δ and \mathbf{v} :

$$\dot{\delta} + \frac{1}{a} \nabla \cdot \mathbf{v} = 0 \tag{1}$$

$$\dot{\mathbf{v}} + \frac{\dot{a}}{a}\mathbf{v} + \frac{1}{a}\nabla\delta\phi + \frac{1}{\rho_{bg}}\frac{1}{a}\nabla\rho = 0$$
 (2)

• Take $\nabla \cdot (2)$, use $\partial/\partial t(1)$ to eliminate $\nabla \cdot \mathbf{v}$ and Poisson for $\partial \phi$:

$$\frac{\partial^2 \delta}{\partial t^2} + 2 \frac{\dot{a}}{a} \frac{\partial \delta}{\partial t} - \frac{1}{\rho_{bo}} \frac{1}{a^2} \nabla^2 p - 4\pi G \rho_{bg} \delta = 0$$

• Finally, write pressure as $p(\rho)$ with $dp/d\rho = c_s^2$ (sound speed):

$$\frac{\partial^2 \delta}{\partial t^2} + 2 \frac{\dot{a}}{a} \frac{\partial \delta}{\partial t} - c_s^2 \frac{1}{a^2} \nabla^2 \delta - 4\pi G \rho_{bg} \delta = 0$$

• This equation tells us the evolution of small-amplitude density perturbations in expanding background. Note damping effect of \dot{a} term - 'Hubble friction'.

$$\frac{\partial^2 \delta}{\partial t^2} + 2 \frac{\dot{a}}{a} \frac{\partial \delta}{\partial t} - c_s^2 \frac{1}{a^2} \nabla^2 \delta - 4\pi G \rho_{bg} \delta = 0$$

- Now look for wave-like solutions $\delta(\mathbf{r}, t) = \delta_k(t)e^{i\mathbf{k}\cdot\mathbf{r}}$:
 - note: time-dependent coefficients, so we cannot have $e^{i\omega t}$!

$$\ddot{\delta}_k + 2\frac{\dot{a}}{a}\dot{\delta}_k + \left(\frac{k^2c_s^2}{a^2} - 4\pi G\rho_{bg}\right)\delta_k = 0$$

- Generalization of the static case derived earlier
- Gives evolution of density perturbation waves of wavenumber k as long as $\delta \ll 1$.
- Velocity perturbations: $\mathbf{v}(\mathbf{r},t) = \mathbf{V}(t)\mathrm{e}^{i\mathbf{k}\cdot\mathbf{r}}$ gives $\dot{\delta}_k + \frac{1}{a}i\mathbf{k}\cdot\mathbf{V} = 0$, so only longitudinal motions along \mathbf{k} affect the density.
- To solve this equation requires prescription of the background: a(t), $\rho_{\rm bg}(t)$, $c_{\rm s}(t)$.

Linear perturbations

$$\ddot{\delta} + 2(\dot{a}/a)\dot{\delta} + (c_s^2 k^2/a^2 - 4\pi G\rho_{\rm bg})\delta = 0$$

- Pressureless case: $c_s = 0$
 - No k dependence, all modes grow at same rate!
 - Numerical solutions:
 - (for flat universe)

Generally requires a numerical integration, but for matter-dominated expansion we had

pansion we had $\rho_{\rm bg}(t) = \frac{1}{6\pi G t^2}; \qquad a(t) \propto t^{2/3}$

- So putting $\delta(t) \propto t^x$ we find $x = -1, \frac{2}{3}$: i.e., growing mode $\propto a(t)$
- Density perturbations grew by factor x3000 since t_{eq}!

Linear perturbations

$$\ddot{\delta} + 2(\dot{a}/a)\dot{\delta} + (c_s^2 k^2/a^2 - 4\pi G\rho_{\rm bg})\delta = 0$$

- 'Pressure is important' case: $c_s > 0$, large k (short waves)
 - Evolution of the amplitude depends on k
 - Short waves oscillate (slowly damped, slowly decreasing freq.)
 - Generally requires a numerical integration. Approx., for large k/a: $\delta(t) \sim \mathrm{e}^{-H(t)} \sin[c_s kt/a(t)]$
 - valid as long as self-gravity term remains small, and the frequency $c_s k/a \gg H(t), \dot{H}/H$
 - relativistic gas $c_s^2 \sim a^0$, $\rho_{\rm bg} \sim a^{-4}$ so growth \rightarrow oscillations
 - cold gas $c_s^2 \sim a^{-2}$, $\rho_{\rm bg} \sim a^{-3}$ so oscillations \rightarrow growth
 - While oscillating, the perturbations do not grow

Newtonian perturbations?

- Note that we have done a Newtonian treatment. This can only be justified for sub-horizon fluctuations, with wavelengths < ct
 - (longer wavelengths would imply causal behaviour beyond horizon scale)

 Another thing to note is that these growing modes are power-law and not exponential. This much slower growth is due to the damping effect ('Hubble friction') of the expansion of space.

Matter-radiation equality

- At early times radiation dominates the energy density of the
 - Universe

$$H(t)^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2}(\Omega_{r}a^{-4} + \Omega_{m}a^{-3} + \Omega_{\Lambda} + \Omega_{k}a^{-2})$$

$$- - 168 - - -$$

• Friedmann eq. $H(t)^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2}(\Omega_{r}a^{-4} + \Omega_{m}a^{-3} + \Omega_{\Lambda} + \Omega_{k}a^{-2})$ • T=2.73K Radiation (+ neutrino) b/g imply $\rho_{r}c^{2} = \sigma_{r}T_{\text{CMB}}^{4} \times \left[1 + N_{\nu}\frac{7}{8}\left(\frac{4}{11}\right)^{4/3}\right]$

Radiation const. 7.566 10⁻¹⁶ J/m³/K⁴

- Hence $\Omega_r = 8.5 \cdot 10^{-5} h_{70}^{-2}$
 - At $t=t_{\rm eq}$, $\Omega_r a^{-4}=\Omega_m a^{-3}$, i.e., $a=a_{\rm eq}=\Omega_r/\Omega_m$, hence $1 + z_{eq} = \Omega_m / \Omega_r = 3520 (\Omega_m / 0.3) h_{70}^2$
- Co-moving horizon radius at teq :

$$r_{H,\text{eq}} = \int_0^{a_{\text{eq}}} \frac{cda}{a^2 H(a)} \simeq \frac{c}{H_0 \Omega_r^{1/2}} a_{\text{eq}} = \frac{c}{H_0 \Omega_m^{1/2} (1 + z_{\text{eq}})^{1/2}}$$

(We ignored Ω_{m} term in F.eqn.: exact solution has extra factor $2(\sqrt{2}-1)\simeq 0.83$)

Matter-radiation equality

Putting in some numbers:

$$1 + z_{eq} = \Omega_m / \Omega_r = 3520(\Omega_m / 0.3) h_{70}^2$$

$$r_{H,\text{eq}} = \frac{2(\sqrt{2} - 1)c}{H_0 \Omega_m^{1/2} (1 + z_{\text{eq}})^{1/2}} = 0.83 \left(\frac{1.68 \sigma_r T_{\text{CMB}}^4 (8\pi G)}{3H_0^2} \right)^{1/2} \frac{1}{H_0 \Omega_m} \simeq \frac{109 \text{Mpc}}{(\Omega_m / 0.3) h_{70}^2}$$

A fluctuation with this co-moving wavelength contains a mass of

$$\sim \frac{4\pi}{3} \left(\frac{r_{H,\text{eq}}}{2}\right)^3 \Omega_m \rho_{\text{crit}} \simeq 2.8 \ 10^{16} (\Omega_m/0.3)^{-2} h_{70}^{-4} \text{M}_{\odot}$$

(~10x mass of most massive galaxy clusters)

Linear growth around time teq

$$\ddot{\delta} + 2(\dot{a}/a)\dot{\delta} + (c_s^2 k^2/a^2 - 4\pi G\rho_{\text{bg}})\delta = 0$$

- Consider the behaviour of dark matter (with $c_s = 0$) in a background solution dominated by matter+radiation
 - The relevant ρ_{bg} is the (dark) matter density
 - For $t \ll t_{\rm eq}$ the matter density $\rho_{bg} \propto t^{-3/2}$ so no power-law growth is possible
 - For $t\gg t_{\rm eq}$ the matter density $\rho_{bg}\propto t^{-2}$ so power law solution exists
- [Exercise]

$$\delta \propto 1 + \frac{3}{2} \frac{a}{a_{\text{eq}}}$$

- This is only true for perturbations inside the horizon
- Conclusion: dark matter perturbations grow almost exclusively in the matter dominated era, after $t_{\rm eq}$.

Linear growth around time teq

- Intuitive way to understand this transition to fast growth:
 - Characteristic timescale for the expansion of the universe:

- Significant change to distances between particles, and density, happens on this timescale
- Dynamical time for collapse of a fluctuation: $1/\sqrt{G\rho_m}$

$$(\ddot{R} \simeq GM/R^2 \simeq G\rho R)$$

- The fastest process dominates
- Friedmann eq. reads $H(t) \sim \sqrt{G\rho_{\rm tot}}$ where $\rho_{\rm tot}$ includes matter & radiation
 - So, as long as $\rho_{\rm tot} \gg \rho_m$ the expansion will 'win' and fluctuations won't grow
 - (even when matter dominates, the timescales are equal, preventing exponential growth)

Other processes that slow/prevent growth

- Free streaming of particles
 - Perhaps particles move out of fluctuations before they grow?
 - Perhaps radiation pressure moves particles? (Silk damping)
- Effective pressure of a collapsed system
 - Internal motions increase 'virialisation'

Free streaming

- Particles do not move precisely with the Hubble flow
 - (thermal motions, perturbations, collisions, ...)
- Compare timescale for these **peculiar motions** to dynamical (collapse) time: for typical streaming speed v in region of proper size L

require
$$\frac{L}{v} \ll t_{\rm dyn} \sim \frac{1}{\sqrt{G\rho}}$$
 to erase perturbation, i.e. $L \ll \frac{v}{\sqrt{G\rho}} \equiv L_{\rm FS}$

- (if the density is for the dominant component of the Universe then $L_{\rm FS} \sim vt$ since dynamical time is then Hubble time $\sim t$, otherwise it is larger)
- Free streaming most effective for fast-moving particles
- Relativistic particles can stream a distance $ct \sim r_H a$ (proper horizon size)
 - Particles lose momentum $\propto a^{-1}$
 - Once they have lost enough momentum to become non-relativistic their peculiar velocity decays and free streaming becomes less effective at erasing structure

Free streaming

- Take a particle that becomes non-relativistic at t_{NR} .
- In a time dt it moves a proper distance a dr = v dt
- We have approximately v = c $(t < t_{NR});$ $v = c(a_{NR}/a)$ $(t > t_{NR})$
- So the co-moving distance traveled (free-streamed) after time t is

- which shows that the co-moving free streaming length grows as $2c(t_{\rm NR}t)^{1/2}/a_{\rm NR}$ up to $t_{\rm NR}$, logarithmically between $t_{\rm NR}$ and $t_{\rm eq}$, and then saturates in the matter-dominated era (when $a \propto t^{2/3}$).
- Any structure on scales smaller than this will be erased by FS

Free streaming: massive neutrinos

- Example: can neutrines be the dark matter? They would need to have a rest mass of about 30 eV [check!: 0.3ρ_{crit}/n_{photon})]
- Particles of mass m_V become non-relativistic at the time when their rest mass ~ their temperature, m_Vc²≈3k_BT. Neutrino temperature is ~ 2K now and scales as 1/a(t).

$$a_{\text{NR}} = \frac{3k_B T_{\nu,0}}{m_\nu c^2} \simeq \frac{5 \, 10^{-4}}{m_\nu (eV)}$$
 or $z_{\text{NR}} \simeq 2000 m_\nu (eV)$

- Masses above 2eV put t_{NR} in the radiation epoch, above z~3500.
- Assume $\Omega_m=0.3$, $H_0=70$ km/s/Mpc. Then

$$z_{\text{eq}} = 3520;$$
 $t_{\text{eq}} = 3520^{-3/2}/H_0 \sim 2 \cdot 10^{12} \text{s};$ $t_{\text{NR}} = (a_{\text{NR}}/a_{\text{eq}})^2 t_{\text{eq}} \sim \frac{6 \cdot 10^{12}}{m_{\nu} (eV)^2} \text{s}$

And the co-moving free streaming length is therefore

$$\frac{2ct_{\rm NR}}{a_{\rm NR}} \simeq \frac{250 \rm Mpc}{m_{\nu}(eV)}$$

(more accurate calculation gives length 3x larger)

Free streaming: Silk damping

- Before recombination baryonic matter and radiation were tightly coupled: photons scattered off free electrons (Thomson scattering).
 - Very small <u>mean free path</u> $L_{\rm mfp} \equiv (n_e \sigma_T)^{-1}$ where $\sigma_T = 6.65 \ 10^{-29} {\rm m}^2$
 - The electron density decays as time approaches t_{rec} , so m.f.p. increases: just before t_{rec} the electron density was $\rho_{crit} \Omega_b/m_p (1+z_{rec})^3$, or ~ 2.108 / m³. So mfp ~ 7.10¹9m, ~2.5kpc (3Mpc in co-moving coordinates).
- Scattering creates a random walk (diffusion), in which average distance travelled L_{Silk} scales as L_{mfp} x √(N/3) after N scatterings.
 - Estimate N as $\frac{ct_{\rm rec}}{L_{\rm mfp}(t_{\rm rec})} \simeq 40$ so L_{Silk} ~ 11Mpc (comoving)
 - Allowing for expansion gives other factor of 1/3: ~4Mpc
- In absence of dark matter, erases structure $< 4(\Omega_b/0.05)^{-1/2}$ Mpc

Perturbations in baryons + dark matter

- We saw that structure can be erased by
 - Free streaming of weakly interacting hot/relativistic particles (e.g., neutrinos, hot dark matter)
 - Silk damping = diffusion of baryons due to radiation scattering
 - Expansion of the universe during radiation dominated era stops growth on sub-horizon scales
- Structure growth comes from cold, non-interacting dark matter
 - Slow growth during radiation era, more rapid collapse in matter era
- Treat perturbations in a universe containing multiple fluid components

Perturbations in baryons + dark matter

For each component X we have

$$\left(\frac{\partial^2}{\partial t^2} + 2\frac{\dot{a}}{a}\frac{\partial}{\partial t}\right)\delta_k^X = 4\pi G\overline{\rho}\delta_k^{\text{tot}} - \frac{c_{s,X}^2k^2}{a^2}\delta_k^X$$

 e.g., after recombination, the main components, baryons (B) and dark matter (DM) evolve as:

$$\left(\frac{\partial^{2}}{\partial t^{2}} + 2\frac{\dot{a}}{a}\frac{\partial}{\partial t}\right)\delta_{k}^{B} = 4\pi G\overline{\rho}(\Omega_{B}\delta_{k}^{B} + \Omega_{DM}\delta_{k}^{DM}) - \frac{c_{s}^{2}k^{2}}{a^{2}}\delta_{k}^{B}$$

$$\left(\frac{\partial^{2}}{\partial t^{2}} + 2\frac{\dot{a}}{a}\frac{\partial}{\partial t}\right)\delta_{k}^{DM} = 4\pi G\overline{\rho}(\Omega_{B}\delta_{k}^{B} + \Omega_{DM}\delta_{k}^{DM})$$

- Before recombination, sound speed was c/√3 (relativistic fluid, driven by the photons coupled to matter); after this time it drops very steeply to √(kT/m_H), where m_H is the mass of a Hydrogen atom
 - ~ 10⁻⁵ c!

Subhorizon perturbations in baryons + dark matter

- Subhorizon dark matter fluctuations start to grow at teq.
- Before recombination, matter is a high pressure radiationdominated plasma
 - Jeans length ~ $\sqrt{(c_s^2/G\rho)}$ ~ $\sqrt{(c^2/G\rho)}$ ~ c/H ~ ct ~ r_H.
 - subhorizon fluctuations in baryons don't grow but oscillate ($\omega^2 > 0$)
 - pressure (i.e., sound) waves
- After recombination, $c_s \sim 10^{-5}c$ (Jeans mass $\sim 10^5 M_{\odot}$).
 - subhorizon baryon fluctuations: if $\lambda > \lambda_J$ baryons fall into the potential wells created by the dark matter
- Behaviour of the fluctuations depends on when they enter the horizon: before or after t_{eq} (dark matter) and t_{dec} (baryons)
 - i.e. whether $\lambda=2\pi/k \ll ct_{eq/dec}$

$ct_{dec} < \lambda$

- Largest scales, enter the horizon after decoupling
 - DM and baryons behave as super-horizon fluctuations
 - super-horizon and sub-horizon solutions are identical

$ct_{eq} < \lambda < ct_{dec}$

- Scales that enter the horizon between decoupling and teq
 - DM behaves as super-horizon fluctuations
 - Baryons oscillate until t_{dec}, then fall into DM concentrations

$\lambda < ct_{eq} < ct_{dec}$

- Scales that enter the horizon before teq
 - DM grows as super-horizon fluctuations, until enters horizon
 - but growth pauses between t_{enter} and t_{eq} (follows the $1 + \frac{3}{2} \frac{a}{a_{eq}}$ solution)
 - Baryons oscillate until t_{dec}, then fall into DM concentrations

Interpreting the fluctuations

- Inflation is thought to produce fluctuations that are ~scale-free
 - (the amplitudes of initial density fluctuations vary as power of k)
- The large-scale structure that was 'released' at t_{dec}, and is now observed in the Cosmic Microwave Background and in the matter distribution, contains much information:
 - an imprint of t_{eq}, because scales that entered the horizon before this time grew more slowly for a period
 - information about the baryon density, through Silk damping of the smaller fluctuations
 - an imprint of the sound horizon size at t_{dec}.
- REMEMBER that this lecture was about small amplitude fluctuations, $\delta \ll 1$ i.e. $\delta \rho \ll \rho_{bg}$