

Applied Machine Learning in Engineering

Lecture 07, May 24, 2023

Prof. Merten Stender

Cyber-Physical Systems in Mechanical Engineering, Technische Universität Berlin

www.tu.berlin/cpsme merten.stender@tu-berlin.de

X-Student Research Groups

- Research teams of 15 students (BUA) and young researchers
- Seminar (6 ECTS, free choice modules) for one semester (winter 23)

Proposal for Research Group: Physical Reservoir Computing

Use a bucket of water for building a machine learning computer

- Build a demonstrator (electronics, micro-controllers, computer vision, coding, ML)
- Show a proof of concept for time series prediction or natural language processing
- Present results at scientific conference or publish scientific paper

Spread the word! If interested: email to M. Stender!

Recap: Lecture 06

Supervised learning: the crucial role of high-quality labels. Example: labels for object detection

Bounding box

- Coordinates of lower-left corner
- Width & height
- Class label

Recap: Lecture 06

- Decision trees: sequential binary feature space segmentation
- Splitting of parent nodes to increase purity in child nodes
 - Measure of purity: **entropy** H(x)
 - Increased purity from parent to child nodes: **information gain** I(x)

$$H(x) = -\sum_{i \in C} P(x_i) \log P(x_i)$$

$$I(x) = H_{\mathrm{P}}(x) - \left(\frac{N_{\mathrm{L}}}{N_{\mathrm{P}}} \cdot H_{\mathrm{L}}(x) + \frac{N_{\mathrm{R}}}{N_{\mathrm{P}}} \cdot H_{\mathrm{R}}(x)\right)$$

Recap: Lecture 06

- Stopping criteria for avoiding overfitting
 - Max. tree depth
 - Min. samples per node
- Regression trees: binning of continuous variables
- Generally:
 - Decision trees are prone to overfitting
 - Issues arise as the number of features grows

Today

- Understand different types of ensemble methods
- Differentiate bagging and boosting algorithms
- Explain the difference between bagging and random forests

Agenda

Machine Learning:

- Ensemble methods
- Random forests

Python:

Recursive functions

Ensemble Methods

Ensemble Methods

Ensemble methods combine different weak learners into a larger meta-model that exhibits increased robustness against overfitting while obtaining more accurate predictions.

Why? Models can suffer the *curse of dimensionality* – as the number of feature dimensions grow, models get too complex and get prone to overfitting <u>or</u> suffer from high bias and underfit the data

Two main approaches to build ensemble methods:

- 1. Bagging Boostrap Aggregating: base models on bootstrapped data subsamples → avoid overfitting
- 2. Boosting Increase the complexity of models where their performance is weak → avoid underfitting

Note: ensemble methods can be used for any kind of estimator, not only for decision trees!

Bagging

- m different data subsets are obtained from bootstrapping and 1 model is formed on each subset
- Final prediction is obtained by aggregating the predictions of all m models (all of which independent of each other)

Data Sets and Sampling

 Data set contains N samples and n feature dimensions

$$n = 4$$

N = 7, one color for each sample

Bootstrapping: drawing N_B samples at random with replacement for m times

$$N_B = 7, m = 3$$

Random Forests

- Ensemble method for decision trees using a variant of bagging
- m decision tree classifiers are trained on m bootstrapped data subsamples of the complete data set using $N_B = N$ (as many samples in subsets as there are in the complete data set)
- → Bagged Trees

■ Difference to classical bootstrapping: random choice of $n_B < n$ feature dimensions for each subset

→ Random Forest

$$n_B = 2$$

Random Forests

sklearn.ensemble.RandomForestClassifier

 $class \ \, \text{sklearn.ensemble.} \ \, \textbf{RandomForestClassifier} (n_estimators=100, \, ^*, \, criterion='gini', \, max_depth=None, \\ min_samples_split=2, \, min_samples_leaf=1, \, min_weight_fraction_leaf=0.0, \, max_features='sqrt', \, max_leaf_nodes=None, \\ min_impurity_decrease=0.0, \, bootstrap=True, \, oob_score=False, \, n_jobs=None, \, random_state=None, \, verbose=0, \, warm_start=False, \\ class_weight=None, \, ccp_alpha=0.0, \, max_samples=None) \\ [source]$

bootstrap: bool, default=True

Whether bootstrap samples are used when building trees. If False, the whole dataset is used to build each tree.

max_features: {"sqrt", "log2", None}, int or float, default="sqrt"

The number of features to consider when looking for the best split:

- If int, then consider max features features at each split.
- If float, then max_features is a fraction and max(1, int(max_features * n_features_in_)) features are
 considered at each split.
- If "auto", then max_features=sqrt(n_features).
- If "sqrt", then max_features=sqrt(n_features).
- If "log2", then max_features=log2(n_features).
- If None, then max_features=n_features.

Boosted Trees

 Bagged Trees / decision trees cannot deal well with errors made by individual trees. Weak predictions will always enter the result aggregation

 Boosting: adaptive learning from mistakes and improving models where different base learners in the ensemble did not perform well

Examples: XGBoost

Boosting

- Boosting is used to incrementally increase complexity of a model in regions of the data set where the model's performance is poor, i.e. performing adaptive learning
- Boosting is based assigning weights to individual data points, and increasing the weights of data points that were misclassified by the model (adaptive boosting AdaBoost)
- Very simple classifiers (so-called weak learners) are combined into an ensemble by sequential learning: the current weak learner is dependent on the previous learner

Boosted Trees: AdaBoost

- Weak learners: decision tree (DT) with only 1 splitting rule (two leaf nodes) decision tree stump model
- Build first tree, find data set regime where is performs weak
- 2. Put larger weight on mis-classified data points
- 3. Build second tree using weighted data set
- Continue (without weight reduction)

Python

Learning Curve

Recursive Functions

- Functions can call different functions
- Recursive functions call themselves.
- Example: finding the factorial of a number, e.g. 3! = 1 * 2 * 3 = 6

Recursive Functions


```
def factorial(x: int) -> int:
   """Compute the factorial of an
   integer using a recursive function"""
   if x == 1:
      return 1
   else:
   return x * (factorial(x-1))
print(f'factorial of x=3 is {factorial(3)}')
```

```
x = factorial(3) \leftarrow
def factorial(n):
                                     3*2 = 6
   if n == 1:
                                     is returned
      return 1
   else:
      return n * factorial(n-1)
def factorial(n):
                                     2*1 = 2
   if n == 1:
                                     is returned
      return 1
   else:
      return n * factorial(n-1)
def factorial(n):
                                     is returned
   if n == 1:
      return 1
   else:
      return n * factorial(n-1)
 From https://www.programiz.com/python-
 programming/recursion
```


Exercise 07

May 31, 2023

Exercise 07

- Implementation of a decision tree from scratch
- Implement a recursive function to grow the tree as long as no stopping condition is met
- Implement a method for traversing data through the final tree
- Test implementation on sample data set

© Marvin Lanhenke, https://towardsdatascience.com/implementing-a-decision-tree-from-scratch-f5358ff9c4bb

Questions?