GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

ECE 6270 Midterm Exam

Monday, March 8, 2021

Name:			
	Last,	First	
TIME LIMIT: 120	minutes. MUST I	BE SUBMITTED BY 12:00pm	
Start time:		End time:	
	Academic Integrity	y Statement	
I pledge that I have neith	ner given nor receiv	ed any unauthorized aid on this q	uiz
	Signatur	re	

- Open notes. You may use any of the course materials during this quiz.
- "Closed internet". While you may consult online course materials on or linked to from my website or canvas, the entire internet is not a resource. Do not search for similar problems (or posting these problems) on Chegg, stackexhcange, etc. I do not think you would find anything helpful anyway, but since the internet is a big place and my own searches don't always reveal everything that might be available, I am asking in the interest of fairness that no one consult any outside resources. And of course, you may not ask for help from others.
- This quiz will be conducted under the rules and guidelines of the Georgia Tech Honor Code. Please sign below the statement above.
- Please submit all work. You may perform your work on a printed copy of the quiz itself (preferred), or on your own scratch paper. In either case, be sure to take pictures/scan all of your work before uploading. If working on your own paper, please work each question on a separate sheet of paper and clearly identify your answer by drawing a box around it (where appropriate). Try to mirror the structure of the quiz itself as much as possible in terms of which pages/where to place answers.
- You can use resources like calculators, Wolfram Alpha, Python, MATLAB, etc. However, be sure to document your work as clearly as possible. I cannot give you partial credit if you write nothing down but an answer if it is incorrect.

Problem 1 (16 pts): For each of the following functions on \mathbb{R}^N , indicate if it is convex, concave, both, or neither by circling the appropriate answer.

1.
$$f(x) = \sqrt{\sum_{n=1}^{N} x_n^2}$$
.

Concave Convex Both

Both Neither

2.
$$f(\boldsymbol{x}) = \left(\sum_{n=1}^{N} \sqrt{|x_n|}\right)^2$$
.

Concave Convex Both Neither

3. $f(\mathbf{x}) = \max_{m=1,\dots,M} \mathbf{a}_m^{\mathrm{T}} \mathbf{x}$, where $\mathbf{a}_1,\dots,\mathbf{a}_M \in \mathbb{R}^N$ are fixed vectors and	d can	be arbitrary.
---	-------	---------------

Concave Convex Both Neither

4. $f(\boldsymbol{x}) = \min_{m=1,\dots,M} \boldsymbol{a}_m^{\mathrm{T}} \boldsymbol{x}$, where $\boldsymbol{a}_1,\dots,\boldsymbol{a}_M \in \mathbb{R}^N$ are fixed vectors and can be arbitrary.

Concave Convex Both Neither

Problem 2 (20 pts): Consider the following functions on \mathbb{R} . For each, answer the following questions:

- Is f convex on \mathbb{R} ?
- Is f strictly convex on \mathbb{R} ?
- Is f strongly convex on \mathbb{R} ?
- Is f M-smooth on \mathbb{R} for some $M < \infty$?

Indicate your answer by circling the properties that f satisfies. Show your work, and indicate m and M where appropriate.

1.
$$f(x) = |x|$$

Convex Strictly convex Strongly convex M-smooth m = M =

2.
$$f(x) = x^2$$

Convex Strictly convex Strongly convex M-smooth m = M =

$$3. \ f(x) = x^3$$

Convex Strictly convex Strongly convex
$$M$$
-smooth $m=M=$

4.
$$f(x) = |x|^3$$

Convex	Strictly convex	Strongly convex	M-smooth
		m =	M =

Problem 3 (14 pts): In analyzing the convergence of various algorithms we have generally focused mostly on guarantees of the form

$$f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*) \le \epsilon.$$

A natural question is whether or not this tells us anything about $\|\boldsymbol{x}_k - \boldsymbol{x}^\star\|_2$.

1. Show that if f is strongly convex with parameter m then $\|\boldsymbol{x}_k - \boldsymbol{x}^*\|_2^2 \le \frac{2}{m} \left(f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*) \right)$.

2. Show that if f is M-smooth then $\|\boldsymbol{x}_k - \boldsymbol{x}^*\|_2^2 \ge \frac{2}{M} \left(f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*) \right)$.

¹The solutions to these problems are short. If you do not see it relatively quickly, skip them and come back later.

Problem 4 (10 pts): Consider the quadratic function

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{x} - \boldsymbol{b}^{\mathrm{T}} \boldsymbol{x}, \tag{1}$$

where $Q \in \mathbb{S}_{++}^N$ and $b \in \mathbb{R}^N$. In class we derived an explicit formula for the exact minimizer of the one-dimensional function $\phi(\alpha) = f(x + \alpha d)$. Specifically, the α that minimizes ϕ is given by

$$lpha^{\star} = rac{oldsymbol{d}^{\mathrm{T}}(oldsymbol{b} - oldsymbol{Q} oldsymbol{x})}{oldsymbol{d}^{\mathrm{T}} oldsymbol{Q} oldsymbol{d}}.$$

Recall the Armijo condition for sufficient decrease:

$$f(\boldsymbol{x} + \alpha \boldsymbol{d}) \leq f(\boldsymbol{x}) + c_1 \alpha \langle \boldsymbol{d}, \nabla f(\boldsymbol{x}) \rangle.$$

For what values of c_1 does α^* satisfy the Armijo condition?

To save you some time, I will point out that $f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x}) = \frac{1}{2}\alpha^2 \mathbf{d}^{\mathrm{T}} \mathbf{Q} \mathbf{d} + \alpha (\mathbf{Q} \mathbf{x} - \mathbf{b})^{\mathrm{T}} \mathbf{d}$.

Answer:		

Problem 5 (40 p	ts):	Consider	the	function	on	\mathbb{R}^2	given	by
-----------------	------	----------	-----	----------	----	----------------	-------	----

$$f(\mathbf{x}) = f(x_1, x_2) = 2x_1^2 + x_2^2 - 2x_1(x_2 + 1).$$

In the following problems we will explore different ways to think about solving

$$\underset{\boldsymbol{x} \in \mathbb{R}^2}{\text{minimize}} f(\boldsymbol{x}). \tag{2}$$

1. Calculate the gradient $\nabla f(\boldsymbol{x})$.

$$abla f(oldsymbol{x}) =$$

2. Calculate the Hessian $\nabla^2 f(\boldsymbol{x})$.

$$abla^2 f(m{x}) =$$

3. Is f convex? Justify your answer.

Circle one: Yes No
Justification:

4.	Find (analytically) the \boldsymbol{x} that s	olves (2) .
	$oldsymbol{x}^\star =$	

5. Suppose that you wish to solve this problem using gradient descent. If $x_0 = 0$, what will the first step direction d_0 be?

 $oldsymbol{d}_0 =$

6. With $\mathbf{x}_0 = 0$ and the \mathbf{d}_0 calculat	ed in the previous problem, find the step size α that minimizes
$f(\boldsymbol{x}_0 + \alpha \boldsymbol{d}_0)$, and calculate \boldsymbol{x}_1 to	using this α .
$\alpha_0 =$	

7. Repeat this process for one more step, i.e., compute d_1 , find the optimal α , and then compute x_2 .

$oldsymbol{d}_1 =$		
$\alpha_1 =$		
$oldsymbol{x}_2 =$		

8.	choose α . The first iteration of but the step from x_1 to x_2 will heavy ball method where $\beta =$	ethod where an exact line search is used at each iteration to the heavy ball method is identical to that of gradient descent, be different. Calculate the x_2 that would result if using the $\frac{1}{5}$ (which is the choice suggested by theory), but where α is the choice suggested by theory).
	$\alpha_1 =$	
	$oldsymbol{x}_2 =$	

9.	to choose α . Once again, the first	hm where, again, an exact line search is used at each iteration rst iteration is identical to the previous methods, but x_2 will
	be different. Calculate the x_2 t	hat would result for BFGS assuming that $H_0^{-1} = \mathbf{I}$.
	$oldsymbol{H}_1^{-1} =$	

ssuming a fixed	step size of α	= 1.		
$x_1 =$				