Kevin Wang October 18, 2024

### PHYS 410 - Computational Physics - Project 1

#### Introduction

In this project I consider collections of N identical charges which are confined to the surface of a sphere, but which can move over that surface under the influence of their mutual electrostatic interactions. By modeling such a system using finite difference approximations of the equations of motion with a velocity dependent retarding force, I find properties and characterizations of equilibrium configurations an arbitrary N. I catalogue these properties, which include the electrostatic potential and equivalence classes. Finally, the model and approximations used will be examined to understand their accuracy and convergence.

## **Review of Theory**

# Setup

Given N charges, index each identical point charges by the variable

$$i = 1, 2, \dots, N \tag{1}$$

Without loss of generality, I non-dimensionalize by setting the mass and charge of each particle, as well as Coulomb's constant, to be 1. Define the position vector of each particle to be

$$\mathbf{r}_i(t) \equiv [x_i(t), y_i(t), z_i(t)]. \tag{2}$$

We confine the charges to the unit sphere, and thus the norm of the position vectors is 1. Associated with the position vectors are the unit separation vectors, given by

$$\boldsymbol{r}_{ij} = \boldsymbol{r}_j - \boldsymbol{r}_i \tag{3}$$

# **Equations of Motion**

We begin by establishing the exact second order ordinary differential equation that governs the motion of the charges. We have

$$m_i \boldsymbol{a_i} = -k_e \sum_{j=1, j \neq i}^{N} \frac{q_i q_j}{r_{ij}^3} \boldsymbol{r}_{ij} - \gamma \boldsymbol{v}_i, \qquad 0 \le t \le t_{max}$$

$$\tag{4}$$

where  $a_i = \frac{d^2 r_i}{dt^2}$  and  $v_i = \frac{dr_i}{dt}$ ,  $k_e$  is the Coulomb constant,  $\gamma$  controls the magnitude of the velocity-dependent dissipative force,  $\gamma v_i$ , and  $t_{max}$  is the final time of the evolution. Rewriting in terms of  $r_i$  and simplifying,

$$\frac{d^2 \mathbf{r}_i}{dt^2} = -\sum_{i=1, j\neq i}^N \frac{\mathbf{r}_{ij}}{r_{ij}^3} - \gamma \frac{d\mathbf{r}_i}{dt}, \qquad 0 \le t \le t_{max}.$$
 (5)

#### Finite Differencing

To numerically model charge systems, we solve Eq. 5 via finite difference approximations. We replace the continuum values of t with a temporal mesh of integer level parameter *l*. We define

$$n_t = 2^l + 1, (6)$$

$$\Delta t = \frac{t_{max}}{n_t - 1} = 2^{-l} t_{max},$$

$$t^n = (n - 1)\Delta t, \qquad n = 1, 2, ..., n_t,$$
(8)

$$t^n = (n-1)\Delta t, \qquad n = 1, 2, ..., n_t,$$
 (8)

and introduce the finite difference notation for a grid function,

$$\mathbf{r}_i^n \equiv \mathbf{r}_i(t_n). \tag{9}$$

Recalling the  $O(\Delta t^2)$  accurate FDAs for the first and second time derivatives of position,

$$\mathbf{r}_i'(t^n) \approx \frac{\mathbf{r}_i^{n+1} - \mathbf{r}_i^{n-1}}{2\Delta t},\tag{10}$$

$$r_i''(t^n) \approx \frac{r_i^{n+1} - 2r_i^n + r_i^{n-1}}{\Delta t^2},$$
 (11)

we can fully discretize **Eq. 4**:

$$\frac{\boldsymbol{r}_{i}^{n+1} - 2\boldsymbol{r}_{i}^{n} + \boldsymbol{r}_{i}^{n-1}}{\Delta t^{2}} = -\sum_{j=1, j \neq i}^{N} \frac{\boldsymbol{r}_{ij}}{r_{ij}^{3}} - \gamma \frac{\boldsymbol{r}_{i}^{n+1} - \boldsymbol{r}_{i}^{n-1}}{2\Delta t}.$$
 (12)

Isolating for  $r_i^{n+1}$ , we get

$$r_i^{n+1} = \frac{-\Delta t^2 \sum_{j=1, j \neq i}^{N} \frac{r_j^n - r_i^n}{\left|r_j^n - r_i^n\right|^3} + 2r_i^{n-1} - r_i^{n-2} + \frac{\gamma \Delta t}{2} r_i^{n-2}}{1 + \frac{\gamma \Delta t}{2}}.$$
 (13)

Finally, we enforce that the charges must stay on the unit sphere by normalizing the vector

$$\hat{r}_i^{n+1} = \frac{r_i^{n+1}}{|r_i^{n+1}|} \tag{14}$$

### Properties of Charge System

The total potential energy of the system, V(t), after non-dimensionalization is given by

$$V(t) = \sum_{i=2}^{N} \sum_{j=1}^{N} \frac{1}{r_{ij}}$$
 (15)

For a stable equilibrium solution,  $\lim_{n\to\infty} V(t)$  is a local minimum. It may be the global minimum, depending on the number of charges and initial conditions.

We can further characterize the symmetry of the equilibrium distribution by examining the pairwise distances between the charges. For each charge, express the distances to every other charge as a distance list with elements sorted in ascending order. We say that two charges are in the same equivalence class if the elementwise absolute difference between their distance lists is less than or equal to some tolerance  $\epsilon_{ec}$ . This in turn implies that the two charges are indistinguishable in the equilibrium configuration.

### **Numerical Approach and Implementation**

# Charge Modeling

In charges.m, I implemented Eqs. 13, 14 numerically to model the position of an arbitrary number of charges. The particle positions in the first two time steps were assigned the initial particle positions, assuming the initial velocity of the particles is zero. The initial positions are generated via a uniform distribution over the volume  $-1 \le x, y, z \le 1$  and then normalized to be on the unit sphere (generate\_r0.m). Then, the charges positions are found by iterating over the charges on a specific time step, and then time step is then incremented. While it may seem intuitive to compute the summation in the numerator of Eq. 13 via iteration, doing so would

result in three nested loops. Instead, vector and matrix operations, which are far more efficient in MATLAB, were used to compute the sum. See the code snippet below:

```
rij = r(:, :, n-1) - r(i, :, n-1);
norms = sqrt(sum(rij.^2, 2));
norms(i) = inf;
r(i, :, n) = r(i, :, n) + sum(rij./ norms.^3, 1);
```

In addition, the function calculates and records the electrostatic potential of the system over time. This is done by calling the function in *potential.m*, which simply computes the potential via iteration using **Eq. 15**. Simple calculations in two nested loops is less computationally intensive compared to modeling particle positions.

Finally, the function computes the equivalence classes in the system by calling the function in *equivalence.m*. It represents the result in a descending vector, the equivalence class count, where each element is the number of charges in a particular equivalence class. The distance list of each charge is examined in order, and it is compared with previously examined unique distance lists. We check if an equivalent distance list has been encountered before. If so, the element corresponding to the equivalence class is incremented. Otherwise, a new equivalence class is added with a count of 1.

#### Simulations and calculations

So far, I've discussed how the model is implemented, but how can the accuracy be verified? For some values of  $t_{max}$ , l, and  $\gamma$ , the model may not converge in time or have unsatisfactory oscillations. In particular, the survey of  $V(t_{max}; N)$  displays potential values to 10 decimal places, which is a reasonable goal to set for the absolute error in the final step. This absolute error can be computed over some number of iterations for a charge model  $(v_{error.m})$ . Since for the same values of  $t_{max}$ , l, and  $\gamma$ , a smaller N generally converges faster, an satisfactory absolute error for the model with largest N should ensure the accuracy of the results for the required simulations and calculations.

#### Results

To reproduce the results, change the working directory to *Simulations and Results*. Relevant function calls will be included.

The convergence of the FDA seems to be linear in  $\Delta t$ . This is because for  $\rho=2$  the curves get closer for higher level differences (**Fig. 1**). The tight convergence further implies that the FDA is reliable. Recall that the per time step accuracy of our derivative discretization in **Eqs. 10,11** is  $O(\Delta t^2)$  accurate. Since we take a total of  $n_t$  steps, where  $(n_t-1) \propto \frac{1}{\Delta t}$ , the FDA is  $O(\Delta t)$  accurate over the interval  $0 \le t \le t_{max}$ . The convergence of the voltage can also be observed. Take a model with 12 charges,  $t_{max}=10$ , t=12, t=12. The potential converges to 49.165, reaching an equilibrium configuration.

Computed equilibrium potential values match with the theoretically calculated ones (**Table 1**.). I chose  $t_{max} = 500$ , l = 12,  $\gamma = 1$ , and epsec = 1.0e-5. I confirmed the parameters by running  $v_{-error}(60, 500, 12, 1, 1.0e-5, 10)$ , which yielded an absolute less than 1.0e-10. Notice I chose to run this function for N = 60, as it is the model I expect to converge slowest. The equivalence class value show that for N = 2, 3, 4, 6, 8, 12, all particles are in the same equivalent class. In addition, for some values of N there are many equivalence classes with very few particles in each class. Many equivalence classes have the same number of particles belonging to that class for a specific N. In general, the number of equivalence classes increases.



**Figure 1.** Convergence Test: X-Coordinate of the First Particle Over Time. The lines represent the differences between approximations at adjacent levels of 10, 11, 12, and 13. Produced by calling *convtest()*.



**Figure 2.** Voltage of 12 Charge System Over Time. The voltage asymptotically approaches a value. Produced by calling *plotv()*.

**Table 1.** Equilibrium Voltage of N-Particle System for N = 2 to 60.

| N | Actual      | Computed    | N  | Actual      | Computed    | N  | Actual      | Computed    |
|---|-------------|-------------|----|-------------|-------------|----|-------------|-------------|
| 2 | 0.5         | 0.5         | 22 | 185.2875361 | 185.2875361 | 42 | 732.0781075 | 732.0781075 |
| 3 | 1.732050808 | 1.732050808 | 23 | 203.9301907 | 203.9301907 | 43 | 769.1908465 | 769.1908465 |
| 4 | 3.674234614 | 3.674234614 | 24 | 223.3470741 | 223.3470741 | 44 | 807.1742631 | 807.1742631 |
| 5 | 6.474691495 | 6.474691495 | 25 | 243.8127603 | 243.8127609 | 45 | 846.1884011 | 846.1884147 |
| 6 | 9.985281374 | 9.985281374 | 26 | 265.1333263 | 265.1333263 | 46 | 886.1671136 | 886.170216  |
| 7 | 14.45297741 | 14.45297751 | 27 | 287.302615  | 287.302615  | 47 | 927.0592707 | 927.0592707 |

| 8  | 19.67528786 | 19.67528786 | 28 | 310.4915424 | 310.4915424 | 48 | 968.7134553 | 968.7134553 |
|----|-------------|-------------|----|-------------|-------------|----|-------------|-------------|
| 9  | 25.75998653 | 25.75998653 | 29 | 334.6344399 | 334.6344399 | 49 | 1011.557183 | 1011.557183 |
| 10 | 32.71694946 | 32.71694946 | 30 | 359.6039459 | 359.6039459 | 50 | 1055.182315 | 1055.182315 |
| 11 | 40.59645051 | 40.59645051 | 31 | 385.5308381 | 385.5308381 | 51 | 1099.81929  | 1099.81929  |
| 12 | 49.16525306 | 49.16525306 | 32 | 412.2612747 | 412.2612747 | 52 | 1145.418964 | 1145.437597 |
| 13 | 58.85323061 | 58.85323061 | 33 | 440.2040574 | 440.2040578 | 53 | 1191.92229  | 1191.92229  |
| 14 | 69.3063633  | 69.3063633  | 34 | 468.9048533 | 468.9048533 | 54 | 1239.361475 | 1239.361475 |
| 15 | 80.67024411 | 80.67024411 | 35 | 498.5698725 | 498.5698725 | 55 | 1287.772721 | 1287.777261 |
| 16 | 92.9116553  | 92.9116553  | 36 | 529.1224084 | 529.1224103 | 56 | 1337.094945 | 1337.095348 |
| 17 | 106.0504048 | 106.0504048 | 37 | 560.6188877 | 560.6279731 | 57 | 1387.383229 | 1387.383229 |
| 18 | 120.0844674 | 120.0844674 | 38 | 593.0385036 | 593.0385036 | 58 | 1438.618251 | 1438.633708 |
| 19 | 135.0894676 | 135.0894679 | 39 | 626.389009  | 626.389009  | 59 | 1490.773335 | 1490.774386 |
| 20 | 150.8815683 | 150.8815683 | 40 | 660.6752788 | 660.6752788 | 60 | 1543.830401 | 1543.8351   |
| 21 | 167.6416224 | 167.6416224 | 41 | 695.9167443 | 695.9167443 |    |             |             |

**Table 2.** Equivalence Class Count for N = 2 to 60.

| N  | Equivalence Class Count for N = 2 to 60.  Equivalence Class Count |
|----|-------------------------------------------------------------------|
| 2  | 2                                                                 |
| 3  | 3                                                                 |
| 4  | 4                                                                 |
| 5  | 3 2                                                               |
| 6  | 6                                                                 |
| 7  | 1111111                                                           |
| 8  | 8                                                                 |
| 9  | 63                                                                |
| 10 | 82                                                                |
| 11 | 42221                                                             |
| 12 | 12                                                                |
| 13 | 422221                                                            |
| 14 | 12 2                                                              |
| 15 | 663                                                               |
| 16 | 12 4                                                              |
| 17 | 10 5 2                                                            |
| 18 | 882                                                               |
| 19 | 22222221                                                          |
| 20 | 6662                                                              |
| 21 | 222222111111                                                      |
| 22 | 12 6 4                                                            |
| 23 | 66632                                                             |
| 24 | 24                                                                |
| 25 | 11111111111111111111111                                           |
| 26 | 2222222222                                                        |
| 27 | 10 10 5 2                                                         |

| 28 | 12 12 4                                 |
|----|-----------------------------------------|
| 29 | 666632                                  |
| 30 | 222222222211                            |
| 31 | 663333331                               |
| 32 | 20 12                                   |
| 33 | 111111111111111111111111111111111111111 |
| 34 | 4444442                                 |
| 35 | 2222222222221                           |
| 36 | 22222222222222                          |
| 37 | 111111111111111111111111111111111111111 |
| 38 | 12 12 12 2                              |
| 39 | 1266663                                 |
| 40 | 12 12 12 4                              |
| 41 | 12666632                                |
| 42 | 10 10 10 10 2                           |
| 43 | 22222222222211111111                    |
| 44 | 16 16 12 8                              |
| 45 | 22222222222222222                       |
| 46 | 444444422222211                         |
| 47 | 22222222222222111111                    |
| 48 | 24 24                                   |
| 49 | 333333333333333                         |
| 50 | 12 12 12 12 2                           |
| 51 | 66666663                                |
| 52 | 111111111111111111111111111111111111111 |
| 53 | 222222222222222222222                   |
| 54 | 2222222222222222222222                  |
| 55 | 4444444442222221                        |
| 56 | 22222222222222222222222                 |
| 57 | 666666663                               |
| 58 | 222222222222222222222222                |
| 59 | 111111111111111111111111111111111111111 |
| 60 | 22222222222222222222222222              |

# **Discussion/Conclusions**

In this project, I modeled and examined the properties of N identical charged particles on a unit sphere by applying finite difference approximations. The model has accuracy  $O(\Delta t)$  over a specified time period and converges well both in particle positions and electrostatic potential. I compared the computed values of equilibrium potentials with known values and found general trends in the equivalence class counts.

I had no particular problems with the assignment and no generative AI was used.