Summer 2014

PRINTABLE VERSION

Quiz 1

You scored 0 out of 100

Question I

You did not answer the question.

Determine whether or not the given function is one to one and, if so, find the inverse. It f has an inverse, give the domain of f $f(x) = 2 - x^2$

a)
$$\int_{0}^{1} (v_{j} = -\sqrt{x-2}) domain \left(-\infty, 1\right)$$

b)
$$\bigoplus_{f \mid (x) = 1} 1 - 2\sqrt{x}$$
; domain: $\{0, \infty\}$

$$e^{-1}(x) = \sqrt{x-2}$$
 domain $(-\infty, \infty)$

Question 2

You did not answer the question.

Determine whether or not the given function is one-to-one and, if so, find the inverse, If f has an inverse, give the domain of f¹

$$\frac{1}{(1-\alpha)^2}$$

d)
$$0 f^{1}(y) = (x-2)^{1/5}$$
, domain: $(+\infty, \infty)$

e)
$$(x-2)^{1/5}$$
 domain $(2, \infty)$ (2) Find inverse function of f .

Ouestion 3

i. Switch x and $y \Rightarrow x=y^5+2$ ii. Find $y \Rightarrow y=(x-2)^5$ Domain: XE (-10,10)

7 always INCREASE

=> ONE -TO -ONE.

f(x)=-2X => NOT MONOTONE

> NOT ONE-TO-ONE

You did not answer the question.

Determine whether or not the given function is one-to-one and, if so, find the inverse. If f has an inverse, give the domain of f^{-1}

a)
$$\bigoplus f^1(v) = \frac{1}{3} x^{11/5}$$
; domain: $(-\infty, \infty)$

c)
$$\int_{0}^{1} f(x) = \left(\frac{1}{3}x\right)^{5/11}$$
 domain: $\{0, \infty\}$

$$dt \otimes f^{1}(t) = \left(\frac{1}{3}x\right)^{11/5} \text{ domain: } (0, \infty)$$

$$ii - Find y$$

$$(v) = \left(\frac{1}{3}x\right)^{11/5} \text{ idomain: } (-\infty, \infty)$$

> NOT ONE-TO-ONE.

You did not answer the question.

Determine whether or not the given function is one to one and, if so, find the inverse. If f has an inverse, give the domain of f.

$$f(x) = (1 + 2x^{2})^{3}$$

$$f(x) = (1 + 2x^{2})^{3}$$

$$f(x) = (1 + 2x^{2})^{3}$$

$$f(x) = 5 (1 + 2x^{2})$$

$$f(x) =$$

c)
$$\bigcirc f^1(\gamma) = \sqrt{\frac{1}{2} x^{1/5} - \frac{1}{2}}$$
 domain: $\{0, \infty\}$

$$d_1 \oplus f^1(v) = (1 + 2x^2)^{1/5}$$
 (domain: $(-\infty, \infty)$

e)
$$0 f^{1}(x) = \sqrt{\frac{1}{2} x^{1/5} - \frac{1}{2}}$$
 domain $(-\infty, \infty)$

You did not answer the question.

Determine whether or not the given function is one to one and, if so, find the inverse

$$f(x) = \frac{4}{3}\cos(x)$$
$$x \in \left[-\frac{1}{2}\pi, \frac{1}{2}\pi \right]$$

f(x)= - \$ sinx > NOT MONOTONE

for=6-7= => NOT MONOTONE

PNOT ONE-TO-ONE

=>NOT ONE-TO-ONE

For on [-21, 1]

$$f^{1}(v) = \arccos\left(\frac{3}{4}x\right)$$

b)
$$f^{1}(x) = \sec\left(\frac{3}{4}x\right)$$
c) Not one-to-one

$$\mathbf{d}) = f^1(\mathbf{v}) = \frac{\frac{4}{3}}{\sin(\mathbf{x})}$$

e)
$$f^{1}(x) = \frac{4}{3} \sec(x)$$

Question 6

You did not answer the question.

Determine whether or not the given function is one-to-one and, if so, find the inverse,

$$f(\tau) = 6\tau + \frac{7}{x}$$

a) Not one-to-one

$$f^{\dagger}(v) = -6x - \frac{7}{x}$$

$$f^{\dagger}(x) = \frac{6}{x} - 7x$$

$$\mathbf{d} = f^{1}(\mathbf{x}) = -\frac{1}{12} \mathbf{x} - \frac{1}{12} \sqrt{\mathbf{x}^{2} - 168}$$

e)
$$= f^1(x) = \frac{1}{12} x + \frac{1}{12} \sqrt{x^2 - 168}$$

Question 7

You did not answer the question.

Which of the following represents the graph of the inverse of the given graph?

This graph is ONE-TO-ONE by horizontal line test.

The graph of the inverse one is the given graph reflected in the line X=9.

h)

e) in The given function is not one-to-one

Question 8

You did not answer the question.

Given the following function, with k as a constant, find the values of k for which f is one-to-one.

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k such that

$$f(x) = \frac{1}{3}x^{2} + 8x^{2} + kx$$

Find k suc

Question 9

You did not answer the question.

Suppose that f has an inverse and f'(5) = 6, f''(5) = 2/3. What is $(f^{-1})''(6)$? fraj=b and f has an inverse Now a=5, b=6. $\Rightarrow (f^{-1})'(6) = f(5) = \frac{3}{2} = \frac{3}{2}$

Question 10

You did not answer the question.

Suppose that the given function f is differentiable, has an inverse and that f(1) = -7. Find $(f^{-1})^+(-7)$. $f(x) = -4 - 2x - x^3$

Question 11

You did not answer the question.

Suppose that the given function f is differentiable, has an inverse and that f(9) = 30. Find $(f^{-1})^{+}(30)$. $f(x) = 2x + 4\sqrt{x}$

Now
$$a=q$$
, $b=30$, Then.

a) $\frac{3}{4}$ $(f^{-1})(30) = f(a)$ $\frac{3}{8}$ $\frac{3$

Question 12

You did not answer the question.

Suppose that the given function f is differentiable, has an inverse and that $f(\frac{3}{2}\pi) = \frac{1}{2}\pi$. Find $(f^{-1})^{-1}(\frac{1}{2}\pi)$.

$$f(x) = x - \pi + \cos(x)$$

$$0 < x < 2\pi$$

$$1 - \frac{1}{4}$$

$$(x) = \frac{3}{2} \text{ Tr. } b = \frac{1}{2}. \text{ Then}$$

$$\frac{1}{4}$$

$$(x) = \frac{1}{2} \text{ Tr. } b = \frac{1}{2}. \text{ Then}$$

$$\frac{1}{4}$$

$$(x) = \frac{1}{2} \text{ Tr. } b = \frac{1}{2}. \text{ Then}$$

$$\frac{1}{4}$$

$$(x) = \frac{1}{2} \text{ Tr. } b = \frac{1}{2}. \text{ Then}$$

$$\frac{1}{4}$$

You did not answer the question.

Use the properties of logarithms and the table given below to estimate $\ln(56)$.

Question 14

You did not answer the question.

Use the properties of logarithms and the table given below to estimate $\ln(\frac{4\sqrt{5}}{\sqrt{5}})$.

	3.37	
	2 0.69 7 1.95	
	3 1.10 8 2.08	
	4 1.39 9 2.20	
	5 1.61 10 2.30	
a) 2 39	In45= In4,5=	Inz. 52
b) 2 19	= lnz + ln 52	
c) 2.59 d) 1.79	3 > 2lnz+ ± ln5	
e) 💮 2.74	=2.0.69+7.1.61 =	1,38+0,805

0.00

In n

Question 15 You did not answer the question.

2,185

Using the approximation $1/2[L_1(P) + U_1(P)]$ with $P = \{1 = 10/10, 11/10, 12/10, 13/10, 14/10, 15/10, 16/10, 17/10, 18/10, 19/10, 20/10, 18$

$21/10 = 2.1$ }.	P	Max	longth	min
a) 0 769	[1,1/2]		10	10
ы 143	[10,17]	10	10	12
c) 1.49	[112,103]	19	to	12
d) 0.743	810,1143	10	(0	10
	[14 (1,5]	10	to	10 10 15
e) 0716	[11.2.11.6]	15	40	
Question 16	[(1, 0,1)]	10	1	(0 th
58	[1.7.1.8]	10/10	10	10
15	P11 , 811]	19/18	10	18
	[119, 2,0)	19/19	10-10	10
174	[2101 21]	10/20	10	120

Differentials estemate. f(x+h)=f(x)+hf(x).

You did not answer the question.

Taking In(5) is approximately 1.61, use differentials to estimate In(5.1).

Given
$$2n5 = 1.61$$
 and $6n5 = 1.61$ and

Ouestion 17

You did not answer the question.

Taking In(5) is approximately 161, use differentials to estimate In(5.3).

Given 1.05 = 1.61, f(x) = 1.75To Final 1.05 = 1.61, f(x) = 1.05, f(x) = 1.05To Final 1.05 = 1.05, f(x) = 1.05To Final 1.05 =

Question 18

You did not answer the question.

Solve the equation for x

Take "e" on both sides.

We have
$$e^{\ln x} = e^{-\frac{1}{2}} \times = e$$
.

You did not answer the question. Solve the equation for a Take e on both sides en(x)= en(2X-10) \$ X=(2X-10) => x= Ux -40X+100 $\Rightarrow (X-4)(4X-25)=0$ Solve the equation for a Take "e" $(2X+3)(X+10) = (X+10)^{2}$ => (2X+3)(X+10) - (X+10) =0 > (X+10)/(2X+3) - (X+10)]>0 \Rightarrow (X+10)(X-7)>0=) X= -40 or 7