PHP

November 1, 2020

1 Pigeon Hole Principle

Grupo 7:

- Luís Almeida A84180
- João Pedro Antunes A86813

1.1 Enunciado e Descrição do Problema

Foi nos proposta a resolução do problema Pigeon Hole Principle, cujo enunciado é o seguinte:

O "pigeon hole principle" (PHP) é um problema clássico da complexidade. Basicamente:

Existem N pombos e N-1 poleiros de pombos. Cada pombo ocupa totalmente um poleiro. Pretende-se alocar cada pombo a um poleiro próprio.

- 1. Provar que não existe solução do problema, usando Z3 em
 - 1. lógica proposional
 - 2. lógica inteira linear
- 2. Analisar a complexidade de cada uma das provas em função de N de forma empírica.

1.2 Lógica Proposicional

Podemos modelar o problema do PHP em lógica proposicional usando N*(N-1) variáveis, onde a variável $x_{pb,pl}$ determina se o pombo pb foi alocado ao poleiro pl. Temos também de adicionar as seguintes restrições:

- a) A cada poleiro é alocado um só pombo
- b) A cada pombo é alocado um só poleiro
- c) A cada pombo é alocado um poleiro
- A restrição a) traduz-se na seguinte notação:

Seja $x_{i,k}$ uma correspondência entre o pombo i e o poleiro k. Então, para todo o poleiro k:

$$\bigwedge_{i=1}^{N} (x_{i,k} \to \bigwedge_{j \neq i \land j=1}^{N} \neg x_{j,k})$$

• A restrição b) traduz-se na seguinte notação:

Seja $x_{i,k}$ uma correspondência entre o pombo i e o poleiro k. Então, para todo o pombo i:

$$\bigwedge_{k=1}^{N-1} (x_{i,k} \to \bigwedge_{j \neq k \land j=1}^{N-1} \neg x_{j,k})$$

• A restrição c) traduz-se na seguinte notação:

Para todo o pombo i:

$$\bigvee_{k=1}^{N-1} x_{i,k}$$

Traduzindo estas restrições em código e usando o z3, obtemos a seguinte resolução:

```
[8]: from z3 import *
[9]: def phpLPNoOpt(n):
         varProp = {pombo : {poleiro : Bool(str(pombo)+str(poleiro)) for poleiro in_⊔
      \rightarrowrange(n-1)} for pombo in range(n)}
         s = Solver()
         s.push()
         # A cada pombo é alocado um poleiro c)
         for pombo in varProp:
             s.add(Or(list(varProp[pombo].values())))
             s.push()
         # A cada pombo é alocado um só poleiro b)
         for pombo in varProp:
             for poleiro in range(n-1):
                 for poleiroComp in range(n-1):
                     if not poleiroComp == poleiro:
                         s.add(Implies(varProp[pombo][poleiro],_
      →Not(varProp[pombo][poleiroComp])))
                         s.push()
         # A cada poleiro é alocado um só pombo a)
         for poleiro in range(n-1):
             for pombo in varProp:
                 for pomboComp in range(n):
                     if not pomboComp == pombo:
                         s.add(Implies(varProp[pombo][poleiro],_
      →Not(varProp[pomboComp][poleiro])))
                         s.push()
         return s.check()
```

```
phpLPNoOpt(8)
```

[9]: unsat

No entanto, sabemos que a restrição a) é equivalente à seguinte restrição:

$$\bigwedge_{i=1}^{N} (x_{i,k} \to \bigwedge_{j=i+1}^{N} \neg x_{j,k})$$

Assim como a restrição b) é equivalente a:

$$\bigwedge_{k=1}^{N-1} (x_{i,k} \to \bigwedge_{j=k+1}^{N-1} \neg x_{j,k})$$

Estas equivalências são consequências da propriedade:

$$(p \implies \neg q) \iff (q \implies \neg p)$$

Podemos então melhorar a nossa resolução tendo em conta estas novas informações:

```
[10]: def phpLPBasicalOpt(n):
          varProp = {pombo : {poleiro : Bool(str(pombo)+str(poleiro)) for poleiro inu
       \rightarrowrange(n-1)} for pombo in range(n)}
          s = Solver()
          s.push()
          # A cada pombo é alocado um poleiro c)
          for pombo in varProp:
              s.add(Or(list(varProp[pombo].values())))
              s.push()
          # A cada pombo é alocado um só poleiro b)
          for pombo in varProp:
              for poleiro in range(n-1):
                  for poleiroComp in range(poleiro+1,n-1):
                      s.add(Implies(varProp[pombo][poleiro],_
       →Not(varProp[pombo][poleiroComp])))
                      s.push()
          # A cada poleiro é alocado um só pombo a)
          for poleiro in range(n-1):
              for pombo in varProp:
                  for pomboComp in range(pombo+1,n):
```

```
s.add(Implies(varProp[pombo][poleiro],⊔
→Not(varProp[pomboComp][poleiro])))
s.push()

return s.check()

phpLPBasicalOpt(8)
```

[10]: unsat

Como temos restrições do tipo "apenas uma váriavel pode ser verdadeira" e "pelo menos uma variável tem de ser verdadeira", uma outra forma de resolver o problema seria usando **restrições** de cardinalidade, que são inequações da seguinte forma:

$$\sum_{i,j=1}^{N,N-1} x_{i,j} <= k, \sum_{i,j=1}^{N,N-1} x_{i,j} >= k$$

Onde k é uma constante entre 1 e N. Estas inequações dizem-nos que no máximo k variáveis são verdadeiras, e que no mínimo k variáveis são verdadeiras, respetivamente. Ora, se considerarmos k = 1, e usando as funções Atleast() e Atmost() do z3, conseguimos implementar esta ideia na nossa solução.

```
[11]: def phpLPMoreOpt(n):
          varProp = {pombo:{poleiro:Bool(str(pombo)+str(poleiro)) for poleiro in_
       \rightarrowrange(n-1)} for pombo in range(n)}
          s = Solver()
          s.push()
          # Todos os pombos são alocados a um e um só poleiro
          for x in varProp.values():
              p = list(x.values())
              s.add(AtLeast(*p,1))
              s.add(AtMost(*p,1))
              s.push()
          # Todo o poleiro só pode ter um pombo
          for x in range(n-1):
              p = [varProp[z][x] for z in varProp]
              s.add(AtMost(*p,1))
              s.push()
          return s.check()
      phpLPMoreOpt(8)
```

[11]: unsat

1.2.1 Análise de Complexidade

Para medirmos a complexidade empírica das nossas soluções, desenvolvemos as seguintes funções utilizando o timeit para obter o gráfico dos tempos de execução de cada uma:

```
[25]: import matplotlib.pyplot as plt
      from timeit import timeit
      def timer(functNm,n,tests):
          t = timeit(setup=f"from __main__ import {functNm}", \
             stmt=f"{functNm}({n})",number=tests)/tests
          return t
      def testeTmr(functNm,tests,samples):
          return [timer(functNm,n,tests) for n in samples]
      def testePlot(functNm, samples):
          plt.plot(samples, testeTmr(functNm,3,samples), label= functNm, marker = "o")
      def timerLP(Nmax):
          tests = range(2,Nmax)
          testePlot("phpLPMoreOpt",tests)
          testePlot("phpLPBasicalOpt",tests)
          testePlot("phpLPNoOpt",tests)
          plt.ylabel('time')
          plt.xlabel('N')
          plt.title("Complexity Plot")
          plt.legend()
          plt.show()
      timerLP(10)
```


Observando o gráfico apresentado, podemos constatar que as 3 funções têm complexidade exponencial. De facto, mesmo com as otimizações tidas em conta, não conseguimos impedir que as nossas soluções não tenham este nível de complexidade. Esta situação deve-se ao facto de não conseguirmos limitar polinomialmente o número de monómios do polinómio que representa a função booleana do nosso problema. Assim sendo, e tendo em conta que o algoritmo de SAT tem complexidade exponencial nestes casos, seria de esperar que todas as nossas funções tivessem esta complexidade.

1.3 Lógica Inteira Linear

Usando Lógica Inteira Linear, vamos modelar cada pombo como uma variável inteira x_i , cujo valor será o poleiro que lhe foi alocado. Temos então as seguintes restrições:

a) Todos os pombos têm um poleiro entre 1 e N-1:

$$1 \leqslant x_i \leqslant N - 1$$

b) Todos os pombos têm um poleiro diferente:

$$\forall x_i \quad x_i \neq x_i, \quad \forall i \neq j$$

Usando o z3:

```
[13]: def phpLIL(n):
    varProp = {x : Int(str(x)) for x in range(n)}
```

```
s = Solver()
s.push()

# Todos os pombos têm um poleiro diferente b)
for i in range(len(varProp)-1):
        s.add(varProp[i] < varProp[i+1])

s.push()

# Todos os pombos têm um poleiro entre 1 e N-1 a)
for x in varProp:
        s.add(0 < varProp[x], varProp[x] <= (n-1))

return s.check()

phpLIL(100)</pre>
```

[13]: unsat

Uma alternativa a esta solução, usando também Lógica Inteira Linear, seria usar N*(N-1) variáveis inteiras binárias, onde a variável $x_{i,j}$ determina se foi alocado o poleiro j ao pombo i. Esta modelação permite-nos ter enormes ganhos de eficiência, pois facilita-nos a implementação das restrições acima descritas. Vejamos como estas serão "traduzidas":

a) Todo o poleiro j é alocado a um único pombo:

$$\sum_{i=1}^{N} x_{i,j} = 1$$

b) Todo o pombo i é alocado a um único poleiro:

$$\sum_{i=1}^{N-1} x_{i,j} = 1$$

c) As variáveis são binárias, ou seja:

$$\bigwedge_{i,j=1}^{N,N-1} x_{i,j} = 1 \lor x_{i,j} = 0$$

Posteriormente, usando o z3:

```
[14]: def phpLILBin(n):
    varProp = {}
    s = Solver()
    s.push()
```

```
# As variáveis são binárias c)
    for pombo in range(n):
        varProp[pombo] = {}
        for poleiro in range(n-1):
            varProp[pombo][poleiro] = Int(str(pombo)+str(poleiro))
            s.add(Or(0 == varProp[pombo][poleiro], 1 ==_u
→varProp[pombo][poleiro]))
            s.push()
    # Todo o pombo x é alocado a um único poleiro b)
    for x in varProp.values():
        p = list(x.values())
        s.add(Sum(p) == 1)
        s.push()
    # Todo o poleiro x é alocado a um único pombo a)
    for x in range(n-1):
        p = [varProp[z][x] for z in varProp]
        s.add(Sum(p) == 1)
        s.push()
    return s.check()
phpLILBin(20)
```

[14]: unsat

1.3.1 Análise De Complexidade

Analisemos então a Complexidade das nossas soluções:

```
[15]: def timerLI(Nmax):
    tests = [x for x in range(2,Nmax,10)]
    testePlot("phpLILBin",tests)
    testePlot("phpLIL",tests)
    plt.ylabel('time')
    plt.xlabel('N')
    plt.title("Complexity Plot")
    plt.legend()
    plt.show()
```


Ora, comparando ambas as soluções observamos que a função que implementa lógica inteira linear sem variáveis binárias é muito mais rápida que a função que implementa esta solução, devido ao facto de ter menos variáveis, o que faz com que o número de monómios do polinómio que representa o nosso problema seja menor na função phpLIL. No entanto, este gráfico é enganador pois leva-nos a crer que a função phpLILBin tem complexidade exponencial e a função phpLIL não. Observando o gráfico seguinte, constata-se que tal não é verdade:

```
def timerLIL(Nmax):
    tests = [x for x in range(2,Nmax,100)]
    testePlot("phpLIL",tests)
    plt.ylabel('time')
    plt.xlabel('N')
    plt.title("Complexity Plot")
    plt.legend()
    plt.show()

timerLIL(1000)
```


1.4 Versão SCIP

De seguida apresentamos funções que não são nada mais do que "traduções" para SCIP das funções implementadas anteriormente em z3:

```
[17]: from pyscipopt import Model

def phpLILscip(n):
    model = Model()
    varProp = {}

for i in range(n):
        varProp[i] = model.addVar(str(i), vtype="INTEGER")

for i in range(n-1):
        model.addCons(varProp[i]+1 <= varProp[i+1])

for i in range(n):
        model.addCons(1 <= varProp[i])
        model.addCons(varProp[i] <= n-1)

model.optimize()

return model.getStatus()</pre>
```

```
phpLILscip(3000)
     <ipython-input-17-e01948d1412a>:4: UserWarning: linked SCIP 7.0 is not
     recommended for this version of PySCIPOpt - use version 7.0.1
       model = Model()
[17]: 'infeasible'
[18]: def phpLILscipBin(n):
          model = Model()
          varProp = {}
          for i in range(n):
              varProp[i] = {}
              for j in range(n-1):
                  varProp[i][j] = model.addVar(str(i) + ' ' + str(j), vtype="INTEGER")
                  model.addCons(0 <= varProp[i][j])</pre>
                  model.addCons(varProp[i][j] <= 1)</pre>
          for i in range(n):
              x = list(varProp[i].values())
              model.addCons(sum(x) == 1)
          for x in range(n-1):
              p = [varProp[z][x] for z in varProp]
              model.addCons(sum(p) == 1)
          model.optimize()
          return model.getStatus()
      phpLILscipBin(100)
     <ipython-input-18-da342ad67639>:2: UserWarning: linked SCIP 7.0 is not
     recommended for this version of PySCIPOpt - use version 7.0.1
       model = Model()
[18]: 'infeasible'
     1.4.1 Análise de Complexidade
[19]: def timerLIscip(Nmax):
          tests = [x for x in range(2,Nmax,10)]
          testePlot("phpLILscip",tests)
          testePlot("phpLILscipBin",tests)
          plt.ylabel('time')
```

```
plt.xlabel('N')
plt.title("Complexity Plot")
plt.legend()
plt.show()

timerLIscip(100)
```

```
<ipython-input-17-e01948d1412a>:4: UserWarning: linked SCIP 7.0 is not
recommended for this version of PySCIPOpt - use version 7.0.1
  model = Model()
<ipython-input-18-da342ad67639>:2: UserWarning: linked SCIP 7.0 is not
recommended for this version of PySCIPOpt - use version 7.0.1
  model = Model()
```


Observamos uma vez mais a diferença entre a velocidade de cada função e a complexidade exponencial da função phpLILscipBin. Novamente, este gráfico é enganador:

```
[22]: def timerLILscip(Nmax):
    tests = [x for x in range(2,Nmax,1000)]
    testePlot("phpLILscip",tests)
    plt.ylabel('time')
    plt.xlabel('N')
    plt.title("Complexity Plot")
    plt.legend()
```

```
plt.show()
timerLILscip(10000)
```

<ipython-input-17-e01948d1412a>:4: UserWarning: linked SCIP 7.0 is not
recommended for this version of PySCIPOpt - use version 7.0.1
 model = Model()

