اندازهگیری

حرکت در راستای خط راست

بردارها

حرکت دو بعدی و سه بعدی

نیرو و حرکت

نیرو و حرکت (اصطکاک)

انرژی جنبشی و کار

انرژی پتانسیل و پایستگی انرژی 8.

مركز جرم وتكانة خطي

غلتش، گشتاور نیرو و تکانهٔ زاویهای

12. تعادل و کشسانی

18. دما، گرما و قانون اول ترمودینامیک

19. نظريهٔ جنبشي گازها

20. آنتروپی و قانون دوم ترمودینامیک

$$\Delta K = W_{\mathbf{F}_1} + W_{\mathbf{F}_2} + W_{\mathbf{F}_3} + \cdots$$
قضیه کار – انرژی جنبشی:

کار نیروی ثابت

$$W_{\mathbf{F}} = \overrightarrow{\mathbf{F}} \cdot \Delta \overrightarrow{\mathbf{r}} = F \, \Delta r \, \cos \theta$$

کار نیروی وزن

$$W_g = \mp Mgh$$

کار نیروی فنر

$$W_{k} = \frac{1}{2} kx_{1}^{2} - \frac{1}{2} kx_{2}^{2}$$

جسم M=4~kg توسط نیروی افقی M=4~kg روی سطح شیب دار به سمت M=4~kg بالا لغزانده می شود. ثابت فنر M=4~kg بین جسم و سطح M=4~kg بالا لغزانده می شود. ثابت فنر M=4~kg بین جسم و سطح M=4~kg است. M=4~kg بین به خرکت کرده باشد، M=4~kg بیابید. M=4~kg و نیر و فنر از حال آرامش شروع به حرکت کرده باشد، M=4~kg و فنر از حال آرامش شروع به حرکت کرده باشد، M=4~kg و نیر در باشد، M=4~kg و نیر در باشد و نیر در باشد، M=4~kg و نیر در در باشد، M=4~kg و نیر در باشد، M=4~kg و نیر در در باشد، M=4~kg و نیر در باشد، M=4~kg و نیر در در باشد، M=4~kg و نیر در در باشد، M=4~kg و نیر در در بازد در

نیروهای پایستار و ناپایستار:

انرژی پتانسیل:

بازنویسی قضیه کار-انرژی جنبشی:

انرژی پتانسیل:

8

پایستگی انرژی مکانیکی

9

پایستگی انرژی مکانیکی

10

فنر، طناب و قرقره سبک و سطح زیر M_1 بدون اصطکاک است. دستگاه از حال سکون و فنر از حال آرامش شروع به حرکت می کند. ثابت فنر = M_1 الف) پس از سقوط M_2 به اندازه M_2 سرعت اجسام چقدر است M_2 ($g \approx 10 \, \text{m/s}^2$)

فیزیک ۱ مهندسی

فنر، طناب و قرقره سبک و سطح زیر M_1 بدون اصطکاک است. دستگاه از حال سکون و فنر از حال آرامش شروع به حرکت می کند. ثابت فنر = M_1 ($g \approx 10 \, \text{m/s}^2$) جسم M_2 حداکثر چقدر سقوط خواهد کرد؟ ($g \approx 10 \, \text{m/s}^2$)

اتلاف گرمایی ناشی از اصطکاک

بازنویسی رابطه انرژی با استفاده از اتلاف گرمایی

سطح زیر فنر دارای ضریب اصطکاک جنبشی 0.5 است و بقیه سطح بدون اصطكاك است. جسم با سرعت اوليه 5 m/s رها ($g \approx 10 \text{ m/s}^2$) می شود. فنر سبک است

حداكثر فشردگي فنر چقدر است؟

پایستگی انرژی

© 2014 Encyclopædia Britannica, Inc.