```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt

In [2]: data = pd.read_csv('E:/New folder/train.csv')
Out[2]:
```

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	
0	LP001002	Male	No	0	Graduate	No	5849	0.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	

Set index

```
In [3]: data.set_index(data['Loan_ID'], inplace=True)
In [4]:
```

Out[4]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	Loa
Loan_ID								
LP001002	Male	No	0	Graduate	No	5849	0.0	
LP001003	Male	Yes	1	Graduate	No	4583	1508.0	
LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	
LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	
LP001008	Male	No	0	Graduate	No	6000	0.0	
LP001011	Male	Yes	2	Graduate	Yes	5417	4196.0	
LP001013	Male	Yes	0	Not Graduate	No	2333	1516.0	
LP001014	Male	Yes	3+	Graduate	No	3036	2504.0	
LP001018	Male	Yes	2	Graduate	No	4006	1526.0	
LP001020	Male	Yes	1	Graduate	No	12841	10968.0	
LP001024	Male	Yes	2	Graduate	No	3200	700.0	
LP001027	Male	Yes	2	Graduate	NaN	2500	1840.0	
LP001028	Male	Yes	2	Graduate	No	3073	8106.0	
LP001029	Male	No	0	Graduate	No	1853	2840.0	
LP001030	Male	Yes	2	Graduate	No	1299	1086.0	
LP001032	Male	No	0	Graduate	No	4950	0.0	
LP001034	Male	No	1	Not Graduate	No	3596	0.0	
LP001036	Female	No	0	Graduate	No	3510	0.0	
LP001038	Male	Yes	0	Not Graduate	No	4887	0.0	
LP001041	Male	Yes	0	Graduate	NaN	2600	3500.0	

Remove NaN

```
In [5]: data['Credit_History'].fillna((data['Credit_History'].median()), inplace=True)
    data['LoanAmount'].fillna((data['LoanAmount'].median()), inplace=True)
    data['Loan_Amount_Term'].fillna((data['Loan_Amount_Term'].median()), inplace=True)
    data['Gender'].fillna((data['Gender'].mode()[0]), inplace=True)
    data['Married'].fillna((data['Married'].mode()[0]), inplace=True)
    data['Dependents'].fillna((data['Dependents'].mode()[0]), inplace=True)
```

In [6]:

Out[6]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	Loa
Loan_ID								
LP001002	Male	No	0	Graduate	No	5849	0.0	
LP001003	Male	Yes	1	Graduate	No	4583	1508.0	
LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	
LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	
LP001008	Male	No	0	Graduate	No	6000	0.0	
LP001011	Male	Yes	2	Graduate	Yes	5417	4196.0	
LP001013	Male	Yes	0	Not Graduate	No	2333	1516.0	
LP001014	Male	Yes	3+	Graduate	No	3036	2504.0	
LP001018	Male	Yes	2	Graduate	No	4006	1526.0	
LP001020	Male	Yes	1	Graduate	No	12841	10968.0	
LP001024	Male	Yes	2	Graduate	No	3200	700.0	
LP001027	Male	Yes	2	Graduate	No	2500	1840.0	
LP001028	Male	Yes	2	Graduate	No	3073	8106.0	
LP001029	Male	No	0	Graduate	No	1853	2840.0	
LP001030	Male	Yes	2	Graduate	No	1299	1086.0	
LP001032	Male	No	0	Graduate	No	4950	0.0	
LP001034	Male	No	1	Not Graduate	No	3596	0.0	
LP001036	Female	No	0	Graduate	No	3510	0.0	
LP001038	Male	Yes	0	Not Graduate	No	4887	0.0	
LP001041	Male	Yes	0	Graduate	No	2600	3500.0	
LP001043	Male	Yes	0	Not Graduate	No	7660	0.0	
LP001046	Male	Yes	1	Graduate	No	5955	5625.0	
LP001047	Male	Yes	0	Not Graduate	No	2600	1911.0	
LP001050	Male	Yes	2	Not Graduate	No	3365	1917.0	
LP001052	Male	Yes	1	Graduate	No	3717	2925.0	
LP001066	Male	Yes	0	Graduate	Yes	9560	0.0	
LP001068	Male	Yes	0	Graduate	No	2799	2253.0	
LP001073	Male	Yes	2	Not Graduate	No	4226	1040.0	
LP001086	Male	No	0	Not Graduate	No	1442	0.0	
LP001087	Female	No	2	Graduate	No	3750	2083.0	

```
In [7]:
Out[7]: Gender
                                           0
           Married
                                        0
           Dependents
                                        0
           Education
                                         0
           Self_Employed 0
ApplicantIncome 0
CoapplicantIncome 0
LoanAmount 0
           Loan_Amount_Term 0
Credit_History 0
Property_Area 0
Loan_Status 0
            dtype: int64
In [8]:
Out[8]: 360.0 526
           360.0 526

180.0 44

480.0 15

300.0 13

84.0 4

240.0 4

120.0 3

36.0 2

60.0 2

12.0 1
            Name: Loan_Amount_Term, dtype: int64
```

Convert categorical data to numerical

```
In [9]:
In [10]:
In [11]:
In [12]:
In [13]: for col in cat data:
```

In [14]:

Out[14]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	Lo
Loan_ID								
LP001002	1	0	0	0	0	5849	0.0	
LP001003	1	1	1	0	0	4583	1508.0	
LP001005	1	1	0	0	1	3000	0.0	
LP001006	1	1	0	1	0	2583	2358.0	
LP001008	1	0	0	0	0	6000	0.0	
LP001011	1	1	2	0	1	5417	4196.0	
LP001013	1	1	0	1	0	2333	1516.0	
LP001014	1	1	3	0	0	3036	2504.0	
LP001018	1	1	2	0	0	4006	1526.0	
LP001020	1	1	1	0	0	12841	10968.0	

Split the data into training and testing data

```
In [15]: loan_x = data.iloc[:,1:-1]
In [16]:
```

Out[16]:

Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_ID 0 LP001002 0 0 5849 0.0 128.0 LP001003 0 0 4583 1508.0 128.0 LP001005 3000 0.0 66.0 LP001006 0 0 2583 2358.0 120.0 1 1 LP001008 0 0 0 6000 0.0 141.0 LP002978 0 0 0 0 2900 0.0 71.0 3 0 4106 LP002979 1 0 0.0 40.0 LP002983 0 0 8072 240.0 253.0 1 LP002984 2 0 7583 187.0 0 0.0 1 LP002990 4583 0.0 133.0 0

614 rows × 10 columns

```
In [17]:
Out[17]: Loan_ID
       LP001002 1
       LP001003 0
       LP001005 1
       LP001006 1
       LP001008
       LP002978
       LP002979
       LP002983
       LP002984 1
LP002990 0
       Name: Loan Status, Length: 614, dtype: int32
In [19]:
In [20]: print(X_train.shape)
       (491, 10)
       (123, 10)
       Ensemble with KNN
In [22]:
In [23]:
Out[24]: BaggingClassifier(base estimator=KNeighborsClassifier(algorithm='auto',
                                                    leaf size=30,
                                                   metric='minkowski',
                                                   metric_params=None,
                                                   n_jobs=None,
                                                   n neighbors=5, p=2,
                                                   weights='uniform'),
                      bootstrap=True, bootstrap features=False, max features=1.0,
                      max_samples=1.0, n_estimators=10, n_jobs=None,
                      oob score=False, random state=None, verbose=0,
                      warm start=False)
Out[26]: 0.6178861788617886
In [28]:
Out[28]: array([[ 4, 36],
             [11, 72]], dtype=int64)
```

There are 42 false predicted values, with 65.84% accuracy

Only KNN

Same accuracy and confusion matrix found

Only Bagging

```
In [35]: from sklearn.ensemble import BaggingClassifier
   bag = BaggingClassifier()
   bag.fit(X_train, y_train)
   print('Accuracy Score: ', bag.score(X_test, y_test))
   y_pred2 = bag.predict(X_test)
   from sklearn.metrics import confusion_matrix

Accuracy Score: 0.7967479674796748
   Confusion Matrix: [[25 15]
   [10 73]]
```

Bagging Classifier gave 19 wrong predictions, with 84.5% accuracy

KNN Algorithm Visualization

```
In [38]: knn=KNeighborsClassifier()
    knn.fit(X_train, y_train)
    plot_decision_regions(X_train.to_numpy(), y_train.to_numpy(), clf=knn)
    plt.xlabel('X_train')
    plt.ylabel('y_train')
    plt.title('KNN Algorithm')
```

C:\Users\SR1407SM1106\AppData\Local\Continuum\anaconda3\lib\site-packages\mlxten d\plotting\decision_regions.py:249: MatplotlibDeprecationWarning: Passing unsupp orted keyword arguments to axis() will raise a TypeError in 3.3.

ax.axis(xmin=xx.min(), xmax=xx.max(), y_min=yy.min(), y_max=yy.max())

Bagging Classifier Visualization

```
In [39]: bag = BaggingClassifier()
    bag.fit(X_train, y_train)
    plot_decision_regions(X_train.to_numpy(), y_train.to_numpy(), clf=bag)
    plt.xlabel('X_train')
    plt.ylabel('y_train')
    plt.title('Bagging Classification')
```

C:\Users\SR1407SM1106\AppData\Local\Continuum\anaconda3\lib\site-packages\mlxten d\plotting\decision_regions.py:249: MatplotlibDeprecationWarning: Passing unsupp orted keyword arguments to axis() will raise a TypeError in 3.3.

ax.axis(xmin=xx.min(), xmax=xx.max(), y_min=yy.min(), y_max=yy.max())

Decision Tree Classifier

```
In [40]: X_train, X_test, y_train, y_test = train_test_split(loan_x, loan_y, train_size=0.8
```

Score: 69.9%

Errors: 37 wrong predictions

```
In [45]: from mlxtend.plotting import plot_decision_regions
    X_train_plot = X_train[['Credit_History', 'Property_Area']]
    dt = DecisionTreeClassifier()
    dt.fit(X_train_plot, y_train)
    plot_decision_regions(X_train_plot.to_numpy(), y_train.to_numpy(), clf=dt)
    plt.xlabel('X_train')
    plt.ylabel('y_train')
    plt.title('Decision Tree Algorithm')
```

C:\Users\SR1407SM1106\AppData\Local\Continuum\anaconda3\lib\site-packages\mlxten
d\plotting\decision_regions.py:249: MatplotlibDeprecationWarning: Passing unsupp
orted keyword arguments to axis() will raise a TypeError in 3.3.
 ax.axis(xmin=xx.min(), xmax=xx.max(), y_min=yy.min(), y_max=yy.max())

