

CALMET-CALPUFF modeling system

http://www.src.com

Dr. Najmeh Foroozani najmeh.foroozani@gmail.com April 2018

You can find all the information on the website

http://www.src.com

Outline of our course

- 1) Calmet-Calpuff model
- 2) Case study on Sydney, Asutralia
- 3) Case study on Monfalcone, Italy

Data requirements for Air Quality Model (AQM)

- 1) Meteorological data (Wind, Temperature, Humidity, ...)
- 2) Geophysical data (Terrain, Land use)

3) Emission data

The CALPUFF Modelling System

After running the CALMET model, inputs to CALPUFF must be prepared.

The CALPUFF air quality dispersion model requires CALMET model output and a properly formatted CALPUFF input control file.

The CALPUFF input control file contains a vast array of options for defining a dispersion model.

CALPro GUI & SURFER

CALMET (diagnostic meteo processor)

- **Input data**: P, Elevation m.s.l, T, wind direction, wind speed, vertical velocity, relative humidity at different levels and every *three* hours
- Output data: U, V, W wind components, T and all the micrometeorological variables on a specified grid and *every* hour

Meteorological data processing flowchart

Preprocessors GUI

1) Geophysical Processors

✓TERREL → Terrain Preprocessor
 ✓CTGPROC → Land Use Data Preprocessor
 ✓MAKEGEO → Geo.dat

TERREL database, you can find them here

Exponent® Engineering and Scientific Consulting

- » Atmospheric Sciences
- » CALPUFF Model
- » Download
- » FAQs
- » CALPUFF Training
- » Data Sets
- » Computational Fluid Dynamics Modeling
- » Meteorological Modeling and Analysis

Terrain Data

Data Set	Coverage	Resolution	Data format	Date of data	TERREL dataset keyword
GMTED2010 ¹	Global	30 arc-second (~1 km) 15 arc-second (~500m) 7.5 arc-second (~250m)	GeoTIFF	2010	GEOTIFF
ASTER ¹	Global	1 arc-second (~30m) 1° by 1° tiles	GeoTIFF	2011	GEOTIFF
SRTM30 ²	Global	SRTM30: 30 arc-second (~1 km)	SRTM	2000	GTOPO30
SRTM3 ¹	Global	SRTM3: 3 arc-second (~100m)	SRTM	2000	GEOTIFF
GTOPO30 ¹	Global	30 arc-second (~1 km)	DEM	1996	GEOTIFF
SRTM1 ¹	U.S.	SRTM1: 1 arc second (~30m)	SRTM	2000	GEOTIFF
NED ³	U.S.	2 arc-second (Alaska), 1 arc-second (U.S., most of Canada, Mexico, Hawaii, portions of Alaska) 1/3 arc-second (U.S., Hawaii, and portions of Alaska), or 1/9 arc-second (limited areas of U.S.)	ArcGrid, GridFloat, or IMG	updated continually as new data become available	GEOTIFF ³
CDED ⁴	Canada	0.75 arc-second (~23m) 3 arc-second (~100m)	DEM	2007	CDED
IFSAR ¹	Alaska		GeoTIFF	2010, 2012	GEOTIFF

CALMET Primer: Geophysical Data

2) Meteorological Data Preprocessors

- ✓ READ62 Upper Air Preprocessor (UPn.dat)
- ✓ PMERGE Precipitation Data Preprocessor (pricip.dat)
- ✓ SMERGE Surface Meteorological Data Preprocessor (surf.dat)
- ✓ Over water data file (SEAn.dat)
- **√** ...

Receptor sites around Trieste

CALMET Primer: Surface Met Data

Sample "surf.dat" file

CALMET Primer: Upper Air Data

Meteorological data processing flowchart

CALMET Primer: Control File

The CALMET input file contains a large variety of model option, parameters, and I/O settings.

These controls are split across several input groups:

1 / Temporal Parameters	2 / Grid & Levels	3 / Output Option	4 / Met Data Options
5 / Wind Field Options & Parameters	6 / Mixing Height, Precipitation Para	Temperature, 7 / meters	Station Parameters

CALMET.INP looks like this

```
1 CALMET.INP
                   2.1
                                   Hour Start and End Times with Seconds
 2 CALMET MOD6 TEST CASE -
 3 30x30 1km km meteorological grid -
 4 1hr met data -----
 5 Run title (3 lines) ------
                        CALMET MODEL CONTROL FILE
 9 INPUT GROUP: 0 -- Input and Output File Names
10 Subgroup (a)
11 -----
12 Default Name Type File Name
13 -----
14 GEO.DAT input ! GEODAT=GEO.DAT
15 SURF.DAT input ! SRFDAT=SURF.DAT !
16 CLOUD.DAT input * CLDDAT= *
17 PRECIP.DAT input ! PRCDAT=PRECIP.DAT !
18 WT.DAT input * WTDAT= *
19 CALMET.LST output ! METLST=CALMET.LST !
20 CALMET.DAT output ! METDAT=CALMET.DAT !
21 PACOUT.DAT output * PACDAT=
22 All file names will be converted to lower case if LCFILES = T
23 Otherwise, if LCFILES = F, file names will be converted to UPPER CASE
            T = lower case ! LCFILES = T !
            F = UPPER CASE
26 NUMBER OF UPPER AIR & OVERWATER STATIONS:
       Number of upper air stations (NUSTA) No default ! NUSTA = 1 !
       Number of overwater met stations
                                     (NOWSTA) No default ! NOWSTA = 2 !
30 NUMBER OF PROGNOSTIC and IGF-CALMET FILEs:
       Number of MM4/MM5/3D.DAT files
31
                                      (NM3D) No default ! NM3D = 0 !
32
      Number of IGF-CALMET.DAT files
33
                                      (NIGF) No default ! NIGF = 0 !
34
                           ! END!
```

CALMET Primer: Model Execution

The CALMET model is to be run with the input file and the associated input data files. CALMET.DAT contain hourly gridded fields of micrometeorological parameters and 3D wind and Temp. it also contain geophysical data.

There are several other types of input data files that could be used, <u>depending on model settings:</u>

Precipitation Data File

Overwater Station Files

Gridded Cloud Field File

Preprocessed Met Data for Diagnostic Wind Module

Hourly Gridded Wind Fields

CALPUFF modeling

CALPUFF Modeling System

- Developed in the 90's by Sigma Research Corporation (now part of the Earth Tech, Inc.) as air quality modeling system
- Proposed by U.S. EPA as a *Guideline* model for regulatory applications
- 3 main components and a set of preprocessing and postprocessing programmes

CALPUFF modelling

- CALPUFF is a multi-layer, multi-species non-steady-state puff dispersion model that can simulate the effects of time- and space-varying meteorological conditions on pollutant transport, transformation, and removal. CALPUFF is designed to be applied on different scales from tens of meters to hundreds of kilometers (far-field).
- It includes algorithms for sub-grid scale effects, such as complex terrain, as well as, longer range effects, such as pollutant removal due to wet scavenging, dry deposition, and chemical reactions. CALPUFF can handle various types of emission source characterization, such as point, volume, line, and area sources. The non-steady-state nature allows CALPUFF to account for causal effects and non-straight-line trajectories.

☐ More importantly, CALPUFF can account for spatially varying meteorological conditions with a three-dimensional wind field. As such, in many situations CALPUFF is capable of producing more accurate results than other models, such as AERMOD.

☐ The advantages of the model over a Gaussian-based model is that it can realistically simulate the transport of substances in calm/stagnant conditions, complex terrain and coastline regions with sea.

CALPUFF is a Lagrangian puff model

$$C = \frac{Q}{2\pi u \sigma_y \sigma_z} exp\left(\frac{-y^2}{2\sigma_y^2}\right) \left[exp\left(\frac{-(h-z)^2}{2\sigma_y^2}\right) + r_G exp\left(\frac{-(h+z)^2}{2\sigma_y^2}\right)\right]$$

Where,

C is the species concentration at a location (x, y, z)

Q is the source emission rate

u is the average wind speed normal to the box

h is the effective source height to which the plume

has risen

 r_G is the ground reflection coefficient where

$$0 \le r_G \ge 1$$

y is the crosswind distance

z is the receptor height above ground

 σ_x is the standard deviation (m) of the Gaussian distribution in the along-wind direction σ_y is the standard deviation (m) of the Gaussian distribution in the cross-wind direction σ_z is the standard deviation (m) of the Gaussian distribution in the vertical direction

CALPUFF Primer: Sources

CALPUFF Primer: Source Parameters

CALPUFF

Example, For the **rising plume**:

•Exit velocity	25-75 m/sec
Exit temperature	100-300 °C
Initial radius	25-75 m
•Ground elevation	2550 m

•Emission height a.g. 100 m

Point	Source:

ıιι	Source.									
	Point Source			Stack	Base	Stack	Exit Vel.	Temp	Emiss.	
	<u>Name</u>	<u>X (km)</u>	<u>Y (km)</u>	<u>Ht (m)</u>	Elev (m)	Diam (m)	<u>(m/s)</u>	(°K)	Rate	
									(g/s)	
	P1	1671.527	-896.092	200.0	5	8	30	800	10	

CALPUFF Primer: Receptors

CALPUFF Primer: Model Execution

The **CALPUFF** model is to be run with the input file and the associated input data files.

There are several other types of input data files that could be used, depending on model settings:

Coastline Data File

Hydrogen Peroxide Data

Ozone Data

Ammonia Data

Background Conditions

Arbitrarily Changing Point, Area, Line, or Volume Sources

Analyzing the CALPUFF Output with CALPOST

Install these software!

1. CalWindRose

- wind rose plotting software
- Display wind roses directly from SURF.DAT

2. Surfer

- Display vector/contour/3-D perspective plots

Case study 1 Sydney, Australia

This exercise includes 3 separate sections. The first section involves meteorological and geophysical processing. You will be required to use CALPUFF PROfessional GUI (CALPRO) to assist you in the preparation of the required input files for the CALMET model. The second section involves meteorological modeling using CALMET while the third section involves dispersion modeling using CALPUFF and post-processing using CALPOST. In this section you will model the effects of SO2 from a point source on the model domain and graphically plot the results.

PART 1, Create geophysical data

1) Process the geophysical data using the CALPRO GUI- Edit the screens for CTGPROC (landuse.dat), TERREL (terrain.dat) and MAKEGEO. Combine the Land Use and terrain files into a GEO.DAT file (MAKEGEO) for the Sydney region. Note: Use the model default values wherever you are not sure. (Geo.dat is given)

PART 2, CALMET simulations

- **2.1**) Conduct simulations of the wind flow in the Sydney region using CALMET. The file CALMET.INP is already setup and provided on the folder in the Sydney directory.
- **2.2**) Display vector plots of the CALMET wind fields using PRTMET and SURFER

Layer 1

1660

LCC East (km)

Layer 10

Part 3: CALPUFF/CALPOST simulations

3.1) **Step 1: CALPUFF Runs,** Using the 3-D meteorological fields computed with CALMET in Part 2, conduct CALPUFF simulations of a single fictitious tall point source in the Sydney Metropolitan region.

3.2) **Step 2. CALPOST run** Compute the 9 hour-average concentrations using CALPOST. Create plot files with CALPOST and contour plots with SURFER.

