Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution — Partage dans les mêmes conditions 4.0 International ». https://www.immae.eu/cours/

Chapitre 6 : Comparaison de fonctions

Notation:

Ici, D désigne une partie non vide de \mathbb{R} , a un élément de $\overline{\mathbb{R}}$, adhérent à $D \setminus \{a\}$, et f, g, h, f_1 , g_1 ...des fonctions de D dans \mathbb{R} .

I Fonction négligeable devant une autre

A) Généralités

Définition:

On dit que f est négligeable devant g au voisinage de a lorsqu'il existe une fonction ε , de D dans \mathbb{R} , et qui tend vers 0 en a, telle que, au voisinage de a, $f = \varepsilon g$.

On note f = o(g) au voisinage de a.

En pratique, on manipule les expressions f(x) et g(x) pour $x \in D$, sans que les noms de fonctions f et g aient été introduits. Dans ce cas, on dira plutôt que f(x) est négligeable devant g(x) au voisinage de a, et cela signifiera donc qu'il existe une fonction ε , de D dans \mathbb{R} , qui tend vers 0 en a, et un voisinage V de a, tels que $\forall x \in D \cap V$, $f(x) = \varepsilon(x)g(x)$.

On notera alors f(x) = o(g(x)) au voisinage de a (x étant à prendre comme une variable muette). Par exemple, $x^2 = o(x^3)$ au voisinage de $+\infty$.

Définition simplifiée dans des cas courants :

- Si g ne s'annule pas au voisinage de a, alors $\frac{f}{g}$ est définie sur $D \cap V$, où V est un voisinage de a. f est négligeable devant g au voisinage de a si et seulement si $\lim_{a} \frac{f}{g} = 0$.
- Si $a \in D$ et si g s'annule en a, mais en a seulement au voisinage de a, alors $\frac{f}{g}$ est définie sur $D \cap V \setminus \{a\}$, où V est un voisinage de a. f est négligeable devant g au voisinage de a si et seulement si f(a) = 0 et $\lim_{a} \frac{f}{g} = 0$.

Remarque:

Les fonctions négligeables devant la fonction nulle au voisinage de a sont les fonctions nulles au voisinage de a.

Dire que f = o(1) au voisinage de a revient à dire que f tend vers 0 en a.

B) Comparaisons usuelles

• Au voisinage de $+\infty$:

Quels que soient les réels α, β, γ strictement positifs :

$$(\ln x)^{\gamma} = o(x^{\beta})$$
 et $x^{\beta} = o(e^{\alpha x})$ (6.1)

• Au voisinage de 0 : Quels que soient les réels strictement positifs α,β :

$$|\ln x|^{\beta} = o(x^{-\alpha}) \tag{6.2}$$

Démonstration:

On peut aisément établir toutes ces propositions en ayant montré que $\lim_{x\to+\infty}\frac{e^x}{x}=+\infty$:

• Montrons déjà par récurrence que $\forall n \geq 5, \frac{2^n}{n+1} \geq n$:

Pour n = 5, on a $\frac{2^5}{5+1} = \frac{32}{6} = \frac{16}{3} \ge 5$.

Soit $n \ge 5$. Supposons que $\frac{2^n}{n+1} \ge n$ Alors $\frac{2^{n+1}}{n+2} = \frac{2^n 2}{n+2} = \frac{2^n}{n+1} \times \frac{2(n+1)}{n+2} \ge \frac{2n(n+1)}{n+2}$.

Or, pour $n \ge 2$, $2n \ge n + 2$ soit $\frac{2n}{n+2} \ge 1$.

Donc $\frac{2^{n+1}}{n+2}\geqslant \frac{2n(n+1)}{n+2}\geqslant n+1$ ce qui achève la récurrence.

• Maintenant :

Soit $x \ge 5$. Notons [x] = p. On a :

$$\frac{e^x}{x} \geqslant \frac{e^p}{p+1} \geqslant \frac{2^p}{p+1} \geqslant p \geqslant x-1 \tag{6.3}$$

Donc $\forall x \ge 5, \frac{e^x}{x} \ge x - 1$, donc $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$.

C) Propriétés

Proposition:

La relation « …est négligeable devant…au voisinage de a », définie sur $\mathscr{F}(D,\mathbb{R})$, est transitive et compatible avec le produit, c'est-à-dire que, au voisinage de a: Si f = o(g) et g = o(h), alors f = o(h). Si $f_1 = o(g_1)$ et $f_2 = o(g_2)$, alors $f_1 f_2 = o(g_1 g_2)$.

(quasiment la même démonstration que pour les suites)

Mais cette relation n'est pas compatible avec l'addition; par exemple, au voisinage de 0, $x^2 = o(x)$ et $-x^3 = o(-x + x^2)$, mais $x^2 - x^3$ n'est pas négligeable devant x^2 .

Proposition:

Au voisinage de a: si f = o(g), et h = o(g), alors f + h = o(g).

Proposition:

Si f = o(g) au voisinage de a, et si f et g ne s'annulent pas, alors $\frac{1}{g} = o(\frac{1}{f})$ au voisinage de a.

Par exemple, il résulte des comparaisons énoncées plus haut que :

Au voisinage de $+\infty$, et quels que soient les réels strictement positifs α, β, γ :

$$e^{-\alpha x} = o(x^{-\beta})$$
 et $x^{-\beta} = o((\ln x)^{-\gamma})$ (6.4)

II Fonctions équivalentes

A) Généralités

Définition:

On dit que f est équivalente à g au voisinage de a lorsqu'il existe une fonction ε , de D dans \mathbb{R} , et qui tend vers 0 en a telle que, sur un voisinage de $a, f = (1 + \varepsilon)g$.

On note $f \sim g$ au voisinage de a, ou $f \sim g$.

En pratique, on dit plutôt que f(x) est équivalent à g(x) au voisinage de a, et cela signifie donc qu'il existe une fonction ε , de D dans \mathbb{R} , et qui tend vers 0 en a et un voisinage V de a tels que $\forall x \in D \cap V, f(x) = (1 + \varepsilon(x))q(x).$

On notera alors $f(x) \sim g(x)$ au voisinage de a ou $f(x) \sim g(x)$ (x étant alors une variable muette).

Définition simplifiée dans des cas courants :

- Si g ne s'annule pas au voisinage de a, alors $\frac{f}{g}$ est définie sur $D \cap V$, où V est un voisinage de a. Alors f est équivalente à g au voisinage de a si et seulement si $\lim_a \frac{f}{g} = 1$.
- Si $a \in D$, et si g s'annule en a, mais en a seulement au voisinage de a, alors $\frac{f}{g}$ est définie sur $D \cap V \setminus \{a\}$ où V est un voisinage de a. Alors f est équivalente à g au voisinage de a si et seulement si f(a) = 0 et $\lim_{a} \frac{f}{a} = 1$.

Remarque:

On voit aussi en reprenant la définition générale que f est équivalente à g au voisinage de a si et seulement si f = g + o(g) au voisinage de a.

Proposition:

La relation $\sim a$, définie sur $\mathscr{F}(D,\mathbb{R})$, est une relation d'équivalence, c'est-à-dire qu'elle est réflexive, symétrique et transitive.

B) Équivalents usuels au voisinage de 0

$$e^x - 1 \sim x$$
 $\sin x \sim x$ $\ln(1+x) \sim x$ (6.5)

$$e^{x} - 1 \sim x$$
 $\sin x \sim x$ $\ln(1+x) \sim x$ (6.5)
 $\forall \alpha \in \mathbb{R}, (1+x)^{\alpha} - 1 \sim \alpha x$ $\tan x \sim x$ $\cos x - 1 \sim -\frac{x^{2}}{2}$ (6.6)

 $(\alpha \text{ est indépendant de } x)$

Démonstration:

Les premiers résultats résultent du cours de terminale, et sont admis pour l'instant. Le dernier se justifie en considérant que $\cos x - 1 = -2\sin^2\frac{x}{2}$.

C) Équivalents et limites

Proposition:

Si f et g sont équivalentes en a et si f a une limite en a (finie ou non), alors g admet la même limite en a.

La réciproque est fausse lorsqu'il s'agit de limites nulles ou infinies : par exemple, x et x^2 ne sont équivalents ni en 0 ni en $+\infty$, alors qu'ils y ont la même limite.

Cependant, il est vrai que si f et g ont la même limite finie et non nulle en a, alors $f \sim g$. Ainsi, si $l \in \mathbb{R}^*$, dire que $f \sim l$ revient à dire que f tend vers l en a.

Mais dire que $f \sim +\infty$ est non sens, et dire que $f \sim 0$ est généralement faux (seules les fonctions nulles au voisinage de a sont équivalentes à 0 en a)

D) Opérations sur les équivalents

Proposition:

La relation ${\sim \atop a}$ est compatible avec le produit, le passage à l'inverse, et l'élévation à une puissance, c'est-à-dire :

- Si $f_1 \sim g_1$ et $f_2 \sim g_2$, alors $f_1 f_2 \sim g_1 g_2$.
- Si $f \sim g$ et si f et g ne s'annulent pas, alors $\frac{1}{f} \sim \frac{1}{q}$.
- Si $f \underset{a}{\sim} g$, alors, pour tout $n \in \mathbb{N}$, $f^n \underset{a}{\sim} g^n$
- Si $f \sim g$ et si f et g sont strictement positives, alors, pour tout $\alpha \in \mathbb{R}$, $f^{\alpha} \sim g^{\alpha}$.

Attention: • la relation \sim n'est pas compatible avec l'addition; cela veut dire qu'on ne doit pas sans vérification ajouter des équivalents, ni même ajouter ou retrancher une même chose de part et autre d'un équivalent, c'est-à-dire opérer des simplifications ou des « passages de l'autre côté » au sens de l'addition. Par exemple, il est vrai que $(1+x)^2 \sim 1+37x$ (puisque les deux termes ont la même limite finie non nulle en 0, à savoir 1), mais il est faux que $(1+x)^2-1 \sim 37x$.

- On ne doit pas non plus composer froidement, à gauche, les deux termes d'un équivalent par une même fonction. Par exemple, il est vrai que $x^2 + x \sim x^2$ (puisque $\frac{x^2 + x}{x^2} \xrightarrow[x \to +\infty]{} 1$), mais pas que $e^{x^2 + x} \sim e^{x^2}$.
- On peut aussi préciser que les élévations à une puissance ne sont justifiées que lorsque ces puissances sont indépendantes de la variable. Par exemple, il est vrai que $x+1 \underset{+\infty}{\sim} x$, mais pas que $(x+1)^x \underset{+\infty}{\sim} x^x$ (car $\frac{(x+1)^x}{x^x} \xrightarrow[x \to +\infty]{} e$).

E) Autres résultats

Proposition:

Soit u une fonction à valeurs dans D, ayant pour limite a en un point s de \mathbb{R} adhérent à son domaine de définition.

Si
$$f(x) \underset{x \to a}{\sim} g(x)$$
, alors $f(u(t)) \underset{t \to s}{\sim} g(u(t))$

Démonstration:

Résulte du théorème de composition de limites : Si $f(x) \sim g(x)$, alors $\lim_{x\to a} \frac{f(x)}{g(x)} = 1$. Or $\lim_{t\to s} u(t) = a$. Donc $\lim_{t\to s} \frac{f(u(t))}{g(u(t))} = 1$...

Exemple:

Si
$$\lim_{t\to s} u(t) = 0$$
, alors $\ln(1+u(t)) \sim u(t)$, et en particulier $\ln(1+t^2) \sim t^2 \dots$

Remarque:

Connaissant les équivalents usuels sur les fonctions données précédemment, on obtient alors les équivalents données dans le cours sur les suites.

Proposition:

Au voisinage de a, si $f_1 \sim f$ et $g_1 \sim g$, et si f = o(g), alors $f_1 = o(g_1)$.

En particulier:

- Si $f_1 \sim f$, et si f = o(g), alors $f_1 = o(g)$ (c'est le cas où $g_1 = g$)
- Ssi $g_1 \sim g$, et si f = o(g), alors $f = o(g_1)$ (c'est le cas où $f_1 = f$).

Démonstration (de la proposition):

Si
$$f_1 \sim f$$
, $g_1 \sim g$ et si $f = o(g)$:

Il existe alors une fonction ε qui tend vers 0 en a telle que $f(x) = \varepsilon(x)g(x)$ au voisinage de a, et deux fonctions ε_f , ε_g qui tendent vers 0 en a telles que $f(x) = (1 + \varepsilon_f(x))f_1(x)$ et $g(x) = (1 + \varepsilon_g(x))g_1(x)$ au voisinage de a.

Alors, au voisinage de
$$a$$
, $(1 + \varepsilon_f(x))f_1(x) = \varepsilon(x) \times (1 + \varepsilon_g(x))g_1(x)$, c'est-à-dire $f_1(x) = \underbrace{\frac{\varepsilon(x) \times (1 + \varepsilon_g(x))}{(1 + \varepsilon_f(x))}}_{\text{(1 + }\varepsilon_f(x))}g_1(x)$, soit $f_1 = o(g_1)$.

Ces résultats sont souvent utilisés ; par exemple :

- De $\sin x \sim x$ et $x = o(\sqrt{x})$ au voisinage de 0, on tire que $\sin x = o(\sqrt{x})$ au voisinage de 0.
- On écrira plutôt, au voisinage de 0, o(x) plutôt que $o(x+x^2)$ puisque $x \sim x + x^2$

F) Fonctions polynômes et fonctions rationnelles

Proposition:

Une fonction polynôme non nulle équivaut, au voisinage de $+\infty$ ou $-\infty$, à son terme non nul de plus haut degré.

C'est-à-dire que :

Si $n \in \mathbb{N}$, si $a_0, a_1, \dots, a_n \in \mathbb{R}$ et $a_n \neq 0$, alors, au voisinage de $+\infty$ ou $-\infty$:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \sim a_n x^n$$
(6.7)

(on vérifie immédiatement que le rapport tend bien vers 1)

Une fonction polynôme non nulle équivaut, au voisinage de 0, à son terme non nul de plus bas degré, c'est-à-dire que :

Si $n, p \in \mathbb{N}$ avec $n \ge p$, si $a_p, a_{p+1}, \dots, a_n \in \mathbb{R}$ et $a_p \ne 0$, alors, au voisinage de 0:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_{p+1} x^{p+1} + a_p x^p \sim a_p x^p$$
 (6.8)

On en déduit ensuite les résultats pour les fonctions rationnelles, grâce à la compatibilité de \sim avec le passage à l'inverse et le produit :

Une fonction rationnelle équivaut, en $+\infty$ ou $-\infty$, au rapport des termes non nuls de plus haut degré. Une fonction rationnelle non nulle équivaut, au voisinage de 0, au rapport de ses termes non nuls de plus bas degré.

III Fonction dominée par une autre

Définition:

On dit que f est dominée par g au voisinage de a lorsqu'il existe $k \in \mathbb{R}_+$ tel que, au voisinage de a, $|f| \leq k|g|$. On note f = O(g) au voisinage de a.

De même que pour les autres comparaisons, on peut aussi noter f(x) = O(g(x)) au voisinage de a, ce qui signifie qu'il existe un réel positif k et un voisinage V de a tels que $\forall x \in D \cap V, |f(x)| \leq k|g(x)|$.

Définition simplifiée dans des cas courants :

- Si g ne s'annule pas au voisinage de a, alors $\frac{f}{g}$ est définie sur $D \cap V$, où V est un voisinage de a. Et f est dominée par g au voisinage de a si et seulement si $\frac{f}{g}$ est bornée au voisinage de a.
- Si $a \in D$, et si g s'annule en a, mais en a seulement au voisinage de a, alors $\frac{f}{g}$ est définie sur $D \cap V \setminus \{a\}$, où V est un voisinage de a, et f est dominée pas g au voisinage de a si et seulement si f(a) = 0 et $\frac{f}{g}$ est bornée au voisinage de a.

Exemple:

Au voisinage de $+\infty$, $x^3 \sin x = O(x^3)$, mais $x^3 \sin x$ n'est pas un $o(x^3)$.