: Applying Statistical Process Control to the Adaptive Rate Control Problem

Nelson R. Manohar*
Marc Willebeek-LeMair*
Atul Prakash+

*IBM T.J. Watson

*Univ. Michigan

Introduction and Motivation

Goal

 integration of meaningful feedback about the requirements and performance of multimedia applications into adaptive multimedia networking.

We would like to explore

- mechanisms for long-term characterization of network variability (e.g., delay, bandwidth, buffer size).
- mechanisms for inducing application requirements into adaptive multimedia networking.

We would these mechanisms

to be robust and easy to implement.

Outline of the Talk

- Statistical Process Control & Multimedia Networking
 - Long-Term vs. Short-Term Variability

- Statistical Quality Control
- Long-Term Stability Monitor
- Applications of SPC to Adaptive Rate Control
 - Adaptive Media Coding
 - Adaptive Media Synchronization
- Conclusions

Outline of the Talk

- Statistical Process Control & Multimedia Networking
 - Long-Term vs. Short-Term Variability

- Statistical Quality Control
- Long-Term Stability Monitor
- Applications of SPC to Adaptive Rate Control
 - Adaptive Media Coding
 - Adaptive Media Synchronization
- Conclusions

Long-Term vs. Short-Term Variability

Long-Term vs. Short-Term Variability

Long-Term vs. Short-Term Variability

Statistical Process Performance (Specification of a Long-Term Monitor)

• smoothed process indicators (time scale, sampling, weights)

-BMW(
$$x_i$$
,m) = UWMA smoothing

$$\mu(i,m) = \mu(x_i ... x_{m-i})$$

$$\sigma(i,m) = \mu(x_i ... x_{m-i})$$

$$\mu(i,m') = \mu(x_i ... x_{m'-i})$$

Statistical Process Performance (Specification of a Long-Term Monitor)

• smoothed process indicators (time scale, sampling, weights)

-BMW(
$$x_i$$
,m) = UWMA smoothing

$$\mu(i,m) = \mu(x_i ... x_{m-i})$$

$$\sigma(i,m) = \mu(x_i ... x_{m-i})$$

$$\mu(i,m') = \mu(x_i ... x_{m'-i})$$

stationarity hypothesis testing

-H0:
$$\mu(i,m') = \mu(i,m)$$

-Z0 = $\mu(i,m')$ - $\mu(i-m/2,m)$

Statistical Process Performance (Specification of a Long-Term Monitor)

• smoothed process indicators (time scale, sampling, weights)

$$-BMW(x_i,m) = UWMA$$
 smoothing

$$\mu(i,m) = \mu(x_i ... x_{m-i})$$
 $\sigma(i,m) = \mu(x_i ... x_{m-i})$
 $\mu(i,m') = \mu(x_i ... x_{m'-i})$

stationarity hypothesis testing

$$-H0: \mu(i,m') = \mu(i,m)$$

$$-Z0 = \mu(i,m') - \mu(i-m/2, m)$$

• confidence interval & forecast estimation

$$-if |Z0| < k * \sigma(i,m)$$
 then $mon_i = mon_{i-1}$

$$-else mon_i = \mu(i,m)$$

$$-mon^*_{i+1} = mon_i$$

estimator

stationarity
hypothesis

o(m) complexity

Statistical Process Control & Multimedia Networking

- Long-Term vs. Short-Term Variability
- Statistical Quality Control
- Long-Term Stability Monitor

Applications of SPC to Adaptive Rate Control

- Adaptive Media Coding/Streaming
- Adaptive Media Synchronization
- Conclusions

Long-Term Media Adaptation

- adaptive rate problem
 - ARC(media, degree of freedom, feedback)
- statistical quality control
 - SQC(process indicator, process variability)

Long-Term Media Adaptation

- adaptive rate problem
 - ARC(media, degree of freedom, feedback)
- statistical quality control
 - SQC(process indicator, process variability)

End-to-End Adaptive Media Coding

- applicationoriented
- mediaindependent feedback
- reactive to long-term (persistent) trends

End-to-End Adaptive Media Coding

- applicationoriented
- mediaindependent feedback
- reactive to long-term (persistent) trends

Adaptive Media Synchronization

Adaptive Media Synchronization

- way for specifying long-term performance of its media integration in terms of tradeoffs between:
 - the playback continuity of audio and
 - the asynchrony tolerance between audio & video.

Concluding Remarks

- Introduced application and relevance of online SPC for multimedia networking
- Proposed a framework for the streaming of heterogeneous media with applicationoriented requirements
- Showed the detection and forecast of longterm stationary conditions on network performance indicators

Long-Term Process Performance

Long-Term Process Performance

Assumptions

distribution of samples

- UWMA smoothed over large horizon
- central limit theorem … "roughly" normal

autocorrelation between smoothers

- sampling frequency between measurements
- time scale of smoothers (approx. random sampling)
- relative weight horizons of smoothers (m and m')

stationarity

- hypothesis testing discards random fluctuations
- variance prediction confidence over forecast