### POLITECHNIKA BIAŁOSTOCKA

# WYDZIAŁ INFORMATYKI KATEDRA MATEMATYKI

#### PRACA DYPLOMOWA MAGISTERSKA

# TEMAT: KONSTRUKCJA DWUWYMIAROWYCH KWADRATUR NEWTONA-COTESA I ICH ZASTOSOWANIE DO OBLICZANIA CAŁKI PODWÓJNEJ

| WYKONA                    | Wykonawca: Szymon Dąbrowski |  |  |  |
|---------------------------|-----------------------------|--|--|--|
|                           | podpis                      |  |  |  |
| PROMOTOR: DR JAN POPIOŁEK |                             |  |  |  |
| podpis                    |                             |  |  |  |

BIAŁYSTOK 2017 r.

Karta dyplomowa

| Politechnika Białostocka<br>Wydział Informatyki                                  | Studia stacjonarne                            | Numer albumu<br>studenta: 87901                           |  |  |  |  |  |
|----------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|
|                                                                                  | <u>-</u>                                      | Rok akademicki 2016/2017                                  |  |  |  |  |  |
|                                                                                  | II stopnia magisterskie                       | Kierunek studiów:<br>Informatyka                          |  |  |  |  |  |
| Katedra Matematyki                                                               |                                               |                                                           |  |  |  |  |  |
|                                                                                  |                                               | Specjalność: Informatyka i                                |  |  |  |  |  |
|                                                                                  |                                               | finanse                                                   |  |  |  |  |  |
|                                                                                  |                                               |                                                           |  |  |  |  |  |
| Szymon Dąbrowski<br>Temat pracy dyplomowej: Konstrukcja dwuwymiarowych kwadratur |                                               |                                                           |  |  |  |  |  |
| Zakres pracy:<br>Newtonal-Gotasa Lighazastosowanje do obliczania całki podwójnej |                                               |                                                           |  |  |  |  |  |
| 2. Jednowymiarowe kwadratury Newtona-Cotesa.                                     |                                               |                                                           |  |  |  |  |  |
| 3. Dwuwymiarowe kwadrat                                                          | tury Newtona-Cotesa.                          |                                                           |  |  |  |  |  |
| 4. Zastosowanie kwadratur do obliczania całek.                                   |                                               |                                                           |  |  |  |  |  |
|                                                                                  |                                               |                                                           |  |  |  |  |  |
| Imię i nazwisko promotora - podpis                                               |                                               |                                                           |  |  |  |  |  |
| Data wydania tematu pracy dyplomowej -<br>podpis promotora                       | Regulaminowy termin złożenia pracy dyplomowej | Data złożenia pracy dyplomowej - potwierdzenie dziekanatu |  |  |  |  |  |
|                                                                                  |                                               |                                                           |  |  |  |  |  |
|                                                                                  |                                               |                                                           |  |  |  |  |  |
|                                                                                  |                                               |                                                           |  |  |  |  |  |
| Ocena promotora Podp                                                             |                                               | pis promotora                                             |  |  |  |  |  |
| Imię i nazwisko recenzenta                                                       | Ocena recenzenta                              | Podpis recenzenta                                         |  |  |  |  |  |

**Thesis topic:** Construction of twodimensional Newton-Cotes quadratures and their application to calculate of double integral.

**SUMMARY** 

**Key words:** Newton-Cotes quadratures; Lagrange polynomials;

Plik OświadczenieOSamodzielności.pdf

# Spis treści

| W  | stęp                                           |                                                                 | 6  |
|----|------------------------------------------------|-----------------------------------------------------------------|----|
| 1  | Wie                                            | lomiany interpolacyjne <i>Lagrange'a</i>                        | 7  |
|    | 1.1                                            | Wielomiany <i>Lagrange'a</i> dla funkcji jednej zmiennej        | 7  |
|    | 1.2                                            | Wielomiany <i>Lagrange'a</i> dla funkcji dwóch zmiennych        | 11 |
| 2  | Kwa                                            | adratury Newtona-Cotesa dla całki pojedynczej                   | 12 |
|    | 2.1                                            | Wzór trapezów                                                   | 13 |
|    | 2.2                                            | Wzór Simpsona                                                   | 16 |
|    | 2.3                                            | Wzór 'prostokątów'                                              | 16 |
| 3  | Kwadratury Newtona-Cotesa dla całek podwójnych |                                                                 |    |
|    | 3.1                                            | Wzór trapezów                                                   | 17 |
|    | 3.2                                            | Wzór Simpsona                                                   | 17 |
|    | 3.3                                            | Wzór 'prostokątów'                                              | 17 |
| 4  | Zas                                            | tosowanie kwadratur do obliczania całek po obszarach normalnych | 18 |
| Po | dsun                                           | nowanie                                                         | 19 |
| Bi | bliog                                          | rafia                                                           | 20 |
| Sp | is pro                                         | ocedur w języku Maple                                           | 21 |

# Wstęp

Treść wstępu

### 1. Wielomiany interpolacyjne Lagrange'a

W dzisiejszych czasach zaspokojenie głodu czy pragnienia nie wystarcza, by sprostać ludzkim potrzebom. Nieustanna chęć rozwoju naszego gatunku sprawia, że konieczne jest sięganie do wiedzy matematycznej w celu lepszego poznania otaczającego nas świata. Niejednokrotnie posiadamy tylko dyskretne dane pozyskane w trakcie badań i chcąc dokonać analizy matematycznej pewnych zdarzeń czy procesów musimy stworzyć/wyprowadzić regularne funkcje interpolacyjne, które w sposób ciągły i wystarczająco dokładny opisywałyby interesujące nas zjawiska. Jak możemy się spodziewać, często jest to ciężkie do wykonania zadanie.

Funkcje interpolujące w znacznym stopniu upraszczają prowadzenie obliczeń podczas wyznaczania przybliżonych wartości funkcji, których postać analityczna jest bardzo skomplikowana, lub wyliczenie kolejnych jej wartości wymaga wykonania zawiłych obliczeń komputerowych. W tym rozdziale pracy skupimy się zatem na sposobie w jaki możemy wyznaczać tak zwane wielomiany interpolacyjne Lagrange'a dla funkcji jednej oraz dwóch zmiennych.

#### 1.1 Wielomiany *Lagrange'a* dla funkcji jednej zmiennej

Jak wspomnieliśmy we wstępie, często w celu uproszczenia obliczeń skłaniamy się do wykorzystania interpolacji. Stosując ją musimy liczyć się z faktem, że pozyskane wyniki są wartościami przybliżonymi, więc z reguły będą różniły się od wyników dokładnych. Przed przejściem do dalszych rozważań należy zdefiniować pojęcie interpolacji.

#### **Definicja 1.** Interpolacja

Interpolacja jest metodą numeryczną przybliżania funkcji. Polega ona na konstruowaniu tak zwanych **funkcji interpolujących** (przybliżających) W(x). Wykorzystujemy do tego znane nam wartości **funkcji interpolowanej** (przybliżanej) f(x), dla wybranych argumentów należących do jej dziedziny.

Wielomian W(x) tworzony jest w oparciu o dwa powiązane ze sobą zbiory liczbowe [1]:

$$X = \{x_i : i = 0, 1, \dots, n\}, F = \{f_i : i = 0, 1, \dots, n\}.$$

Zbiory X i F są równoliczne. Elementy  $x_i \in X$  definiują współrzędne punktów węzłowych w przestrzeni  $\mathbb{R}^n$ , natomiast elementy z F określają wartości funkcji f(x) w węzłach  $x_i$ , tzn.

$$f_i = f(x_i), \tag{1.1}$$

przy czym  $f_i \in \mathbb{R}$ 

Wyjaśnijmy również pojęcie węzła, którym przed chwilą operowaliśmy:

#### **Definicja 2.** Węzły (Punkty węzłowe)

Węzłami nazywamy punkty w przestrzeni  $\mathbb{R}^n$ , będące takimi argumentami funkcji f(x), dla których jesteśmy w stanie wyznaczyć jej wartość.

W węzłach wartości funkcji interpolującej i interpolowanej są równe. Oznacza to, że:

$$W(x_i) = f(x_i)$$
  $(i = 0, 1, ..., n)$  (1.2)

**Uwaga 1.** W tym podrozdziale ograniczać będziemy się jedynie do funkcji jednej zmiennej niezależnej. Funkcje te badane będą na ograniczonym domkniętym przedziale [a,b]. W związku z tym, zbiór X zawierał będzie elementy  $x_i \in \mathbb{R}$  takie, że  $a = x_0 < x_1 < \ldots < x_n = b$ . Definicja zbioru F nie ulega zmianie.

Na rysunku 2.1 zobrazowano w sposób symboliczny na czym polega interpolacja, oraz czym są węzły(punkty  $x_i$  przecięcia wykresów W(x) i f(x), zachodzi dla nich równość (1.2)).



Rysunek 1.1: Funkcja interpolacyjna W(x) oraz interpolowana f(x)

Mając już podstawy do tego, by wiedzieć czym jest interpolacja - przejdźmy o krok dalej. Rozważmy pewien liniowo niezależny układ funkcji, zdefiniowanych na domkniętym przedziale [a,b]:

$$\phi_0(x), \phi_1(x), \dots, \phi_n(x) \tag{1.3}$$

oraz zbiór szukanych współczynników

$$\alpha_0, \alpha_1, \dots, \alpha_n \tag{1.4}$$

takich, że ich kombinacja liniowa z (1.3) będzie spełniała poniższy układ równań:

$$\alpha_0 \phi_0(x_i) + \alpha_1 \phi_1(x_i) + \dots + \alpha_n \phi_n(x_i) = f_i$$
(1.5)

gdzie  $f_i \in F$  oraz  $x_i \in X$ .

W *interpolacji Lagrange'a* w skład (1.3) wchodzą wielomiany określone w następujący sposób:

$$l_i(x) = \prod_{j=0, j\neq i}^n \frac{x - x_j}{x_i - x_j} \quad (i = 0, 1, \dots, n).$$
 (1.6)

Są one nazywane funkcjami bazowymi stopnia n. Warto zauważyć, że zachodzi następująca równość:

$$l_i(x_j) = \delta_{ij} = \begin{cases} 1, & gdy \ i = j \\ 0, & wp.p. \end{cases}$$
 (1.7)

Z powyższego wynika, że tylko w jednym przypadku  $l_i(x)$  będzie miała wartość różną od 0 (gdy  $x = x_i$ ), zatem  $\sum_{i=0}^{n} l_i(x) = 1$ . Dodatkowo zauważmy, że macierzą charakterystyczną układu (1.5) jest macierz jednostkowa. Skutkuje to tym, iż [2]

$$L_n(x) = \sum_{i=0}^n f_i \cdot l_i(x) = \sum_{i=0}^n f_i \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j}$$
(1.8)

będzie wielomianem o stopniu nie większym niż n, oraz przyjmie wartości (1.1) w punktach węzłowych. Wielomian (1.8) nazywany jest **wielomianem interpolacyjnym Lagrange'a**. Z jego pomocą w dosyć przystępny sposób możemy interpolować dowolną funkcję.

**Przykład 1.** (Wyznaczanie wielomianu interpolacyjnego *Lagrange'a* stopnia n = 2)

Zbuduj wielomian interpolacyjny  $L_2(x)$  dla funkcji  $f(x) = e^{x^2}$  rozpatrywanej na ograniczonym przedziale [0,1]. Kolejno oblicz  $L_2(0,6)$  i wynik porównaj z wartością rzeczywistą wiedząc, że  $f(0,6) = e^{(0,6)^2} = 1,4(3)$ .

W celu wyznaczenia wielomianu *Lagrange'a* stopnia n=2, potrzebować będziemy n+1 węzłów takich, że  $a=x_0 < x_1 < x_2 = b$ . Przyjmijmy zatem następujące ich wartości:  $x_0=0$ ,  $x_1=\frac{1}{2}, x_2=1$ . Korzystając bezpośrednio z równania (1.8) dostajemy:

$$L_2(x) = f(x_0) \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + f(x_2) \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

Podstawiamy kolejno wartości węzłów do równania  $L_2(x)$ , otrzymując wielomian interpolujący naszą funkcję  $f(x) = e^{x^2}$  na [a, b] = [0, 1]:

$$L_2(x) = e^0 \frac{\left(x - \frac{1}{2}\right)(x - 1)}{\left(0 - \frac{1}{2}\right)(0 - 1)} + e^{\left(\frac{1}{4}\right)} \frac{\left(x - 0\right)(x - 1)}{\left(\frac{1}{2} - 0\right)\left(\frac{1}{2} - 1\right)} + e^4 \frac{\left(x - 0\right)(x - \frac{1}{2})}{\left(1 - 0\right)\left(1 - \frac{1}{2}\right)} = 2,30046x^2 - 0,58218x + 1$$

Ostatecznie wyznaczamy wartość  $L_2(0,6)$ :

$$L_2(0,6) = 2,30046 \cdot (0,6)^2 - 0,58218 \cdot (0,6) + 1 = 1,4788576$$

Wartość interpolowana  $L_2(0,6)$  odbiega nieco od wartości dokładnej f(0,6).

Wyprowadzona w powyższym przykładzie dla funkcji f(x) i zadanych węzłów postać wielomianu  $L_2(x)$  jest jednoznaczna. Mówi o tym następujące twierdzenie:

**Twierdzenie 1.** (O istnieniu i jednoznaczności wielomianu interpolacyjnego Lagrange'a) Niech  $R_n[x]$  będzie przestrzenią liniową wielomianów stopnia  $\leq n$  o współczynnikach rzeczywistych tzn.:  $R_n[x] = \{W(x) = a_n x^n + x_{n-1} x^{n-1} + \dots + a_1 x + a_0 : a_i \in \mathbb{R}, (i = 0, 1, \dots, n)\}.$  Dla dowolnej funkcji  $f: X \to \mathbb{R}$  istnieje dokładnie jeden wielomian  $W(x) \in R_n[x]$  interpolujący f przy zadanych węzłach  $x_i$   $(i = 0, 1, \dots, n)$ .

W powyższym przykładzie zauważyliśmy, że wynik jest obarczony pewnym błędem. Nosi on miano *błędu interpolacji*. Dla wielomianów *Lagrange'a* definiujemy go w następujący sposób:

**Definicja 3.** (Błąd interpolacji wielomianu *Lagrange'a*)

Weźmy

$$M_{n+1} = \sup_{[a,b]} |f^{(n+1)}(x)|$$

$$m_{n+1} = \sup_{[a,b]} |\omega_{n+1}(x)|,$$

przy czym  $\omega_n(x) = (x - x_0) \dots (x - x_n) = \prod_{k=0}^n (x - x_k)$ , zaś f(x) to funkcja interpolowana. Błędem interpolacji wielomianu *Lagrange'a* (stopnia n) nazywamy wówczas takie

$$\delta_L = \frac{M_{n+1} \cdot m_{n+1}}{(n+1)!} \tag{1.9}$$

dla którego zachodzi:

$$|L_n(x) - f(x)| \le \delta_L$$
,  $x \in [a, b]$ 

### 1.2 Wielomiany Lagrange'a dla funkcji dwóch zmiennych

### 2. Kwadratury Newtona-Cotesa dla całki pojedynczej

Niech f(x) będzie funkcją zdefiniowaną na przedziale [a,b] o wartościach rzeczywistych tzn.  $f:[a,b] \to \mathbb{R}$ . Rozważmy pewną całkę

$$I(f) = \int_{a}^{b} f(x)dx \tag{2.1}$$

Funkcję podcałkową zawsze możemy zastąpić inną funkcją taką, że w miarę możliwości poniższe przybliżenie będzie prawdziwe:

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} g(x)dx \tag{2.2}$$

W praktyce często spotkać możemy się z przypadkiem takim, ze do wyznaczenia przybliżonych wartości I(f) stosowane są wzory nazywane kwadraturami. Owe kwadratury opierają się jedynie na wartościach f(x) w punktach węzłowych i mogą niezbyt dokładnie przybliżać wynik tzn:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} a_{i}f(x_{i}), \quad x_{i} \in [a,b],$$
(2.3)

przy czym współczynniki  $a_i$  są niezależne od f(x) (nazywamy je współczynnikami kwadratury), zaś  $x_i$  nosi miano węzłów kwadratury.

Naszym celem jest jednak to, by jak najbardziej zminimalizować błąd pojawiający się podczas przybliżania wartości I(f). W związku z tym możemy zastosować zabieg zastąpienia funkcji f(x) w całce I(f) wielomianem interpolującym ją. W tym celu wykorzystamy wielomian interpolacyjny Lagrange'a (1.8). Po podstawieniu go do (2.3) otrzymamy:

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} L_{n}(x)dx = \sum_{i=0}^{n} \alpha_{i} f(x_{i})dx,$$
(2.4)

gdzie

$$\alpha_i = \int_a^b l_i(x), \tag{2.5}$$

natomiast

$$l_i(x) = \prod_{j=0, j\neq i}^{n} \frac{x - x_j}{x_i - x_j} \quad (i = 0, 1, \dots, n).$$
 (2.6)

W związku z powyższym całkę (2.1) możemy wyrazić w następujący sposób:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} f(x_i) \int_{a}^{b} l_i(x)dx \tag{2.7}$$

Jeżeli w (2.7) rozpatrzymy tylko węzły takie, że  $x_0 = a$ ,  $x_n = b$ , a każdy węzeł pośredni leżący pomiędzy  $x_0$  a  $x_n$  jest postaci  $x_i = a + ih$  (i = 0, 1, ..., n),  $h = \frac{x_n - x_0}{n}$ , to kwadraturę taką nazwiemy kwadraturą **Newtona-Cotesa**. Skupimy się na rozważeniu trzech różnych kwadratur tego typu, będą nimi: wzór trapezów, wzór trapezów, trapezów, trapezów.

#### 2.1 Wzór trapezów

Do wyznaczenia wzoru trapezów będziemy wykorzystywać wielomian interpolacyjny Lagrange'a rzędu n=1 ( $L_1(x)$ ) utworzony dla węzłów a i b. Zastosujmy w (2.6) następujące podstawienie: x=a+hs. Wartości a,h są pewnymi stałymi, natomiast s jest zmienną niezależną.

$$l_i(x) = \prod_{j=0, j\neq i}^n \frac{x - x_j}{x_i - x_j} = \prod_{j=0, j\neq i}^n \frac{a + hs - (a + jh)}{(a + ih) - (a + jh)} = \prod_{j=0, j\neq i}^n \frac{s - j}{i - j}$$

Otrzymujemy zatem:

$$l_i(x) = \prod_{j=0, j \neq i}^{n} \frac{s-j}{i-j} = \psi_i(s)$$
 (2.8)

 $\psi_i(s)$  to nasza nowa funkcja zmiennej s.

Całkę z równania (2.5) obliczymy metodą całkowania przez podstawienie. Skorzystamy z przedstawionego przed chwilą podstawienia x = a + hs oraz równania (2.8)

$$a_{i} = \int_{a}^{b} l_{i}(x)dx = \begin{cases} x = a + hs \\ dx = hds \\ b = a + hs \Rightarrow \frac{b-a}{h} = s \Rightarrow s = n \\ a = a + hs \Rightarrow 0 = hs \Rightarrow s = 0 \end{cases} = h \int_{0}^{n} \psi_{i}(s)ds$$

Chcemy wyliczyć teraz wartości współczynników kwadratury  $a_0$  i  $a_1$ . Pamiętamy o tym, że do obliczeń wykorzystujemy postać wielomianu Lagrange'a rzędu n=1, zatem będziemy całkowali w granicach [0,n]=[0,1]

$$a_0 = h \int_0^1 \phi_0(s) ds = h \int_0^1 \frac{s-1}{0-1} ds = \int_0^1 (1-s) ds = h \left[ s - \frac{s^2}{2} \right]_0^1 = \frac{h}{2}$$

$$a_1 = h \int_0^1 \phi_1(s) ds = h \int_0^1 \frac{s-0}{1-0} ds = \int_0^1 (s) ds = h \left[ \frac{s^2}{2} \right]_0^1 = \frac{h}{2}$$

Po wstawieniu wyliczonych współczynników do (2.3) otrzymujemy

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{1} a_{i}f(x_{i}) = a_{0}f(x_{0}) + a_{1}f(x_{1}) =$$

$$= \frac{h}{2}f(x_{0}) + \frac{h}{2}f(x_{1}) = \frac{h}{2}(f(x_{0}) + f(x_{1}))$$
(2.9)

Wzór ten nazywamy wzorem trapezów. Zauważmy, że suma współczynników  $\alpha_0, \alpha_1$  jest równa  $h \cdot n$ . W późniejszych podrozdziałach również zetkniemy się z taką prawidłowością rozpatrując wyższy rząd wielomianów Lagrange'a dla n > 1.

Podczas wyznaczania (2.9) przyjęliśmy, że przedział całkowania nie został podzielony, a jedynymi węzłami były jego początek i koniec. W rzeczywistości rozpatrujemy przypadki z wielokrotnym podziałem przedziału. Jeżeli przedział całkowania [a,b] podzielimy na  $\geq 2$  równe części takie, że  $a=x_0 < x_1 < \ldots < x_n=b$ , to wzór przyjmie postać:

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x)dx \approx$$

$$\approx \left(\frac{h}{2}(f(x_{0}) + f(x_{1})) + \dots + \frac{h}{2}(f(x_{n-1}) + f(x_{n}))\right) =$$

$$= \frac{h}{2}(f(x_{0}) + 2f(x_{1}) + \dots + 2f(x_{n-1}) + f(x_{n})) =$$

$$= \frac{h}{2} \sum_{i=0}^{n-1} [f(x_{i}) + f(x_{i+1})]$$
(2.10)

W wyprowadzonym powyżej wzorze trapezów (jak sama nazwa sugeruje) przybliżamy wartość całek sumując pola trapezów o ustalonej wysokości h (odległość pomiędzy kolejnymi węzłami) i podstawach o długości  $f(x_i)$  i  $f(x_{i+1})$  dla  $i=0,1,\ldots,n-1$ . Rysunek 2.1 z pewnością pomoże nam lepiej zrozumieć zagadnienie, któremu poświęcony jest ten podrozdział.



Rysunek 2.1: Graficzne przedstawienie idei zastosowania wzoru trapezów do całkowania

———OD TAD POPRAWIC, Dodać wstęp przed przykładem, rozszerzyć przykład do n=6, opisac wzor na błąd metody trapezów, dodać procedurę licząca z wzoru trapezów, porównać wyniki otrzymane metodą trapezów dla n=6 liczone recznie i dla duzego n liczonego procedurą, pokazać ze im większa liczba podziałów tym dokładniejszy wynik——

**Przykład 2.** (Wyznaczanie przybliżonej wartości całki przy wykorzystaniu wzoru trapezów) Wyznaczyć przybliżoną wartość całki  $\int\limits_0^1 e^{x^2} dx$  przyjmując, że przedział dzielimy na n=4 równe części(5 węzłów)

$$h = \frac{1-0}{4} = \frac{1}{4}$$
,  $x_0 = 0$ ,  $x_1 = 0.25$ ,  $x_2 = 0.5$ ,  $x_3 = 0.75$ ,  $x_4 = 1$ .

Do rozwiązania zadania sorzystamy ze wzoru (2.10)

$$\int_{0}^{1} e^{x^{2}} dx = \frac{\frac{1}{4}}{2} (f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + 2f(x_{3}) + f(x_{4})) =$$

$$= \frac{1}{8} (e^{0} + 2e^{\frac{1}{16}} + 2e^{\frac{1}{4}} + 2e^{\frac{9}{16}} + e) \approx 1.49068$$

Wartość dokładna wynosi 1.46265, zatem różnica w wyniku jest nieznaczna.

Im więcej podziałów przedziału wykonamy, tym dokładniejszy otrzymamy wynik. Wynika to bezpośrednio ze wzoru na błąd metody trapezów. Wygląda on następująco:

**Definicja 4.** (Błąd przybliżenia wzorem trapezów)

$$\delta_{\mathbf{T}} = \frac{(\mathbf{b} - \mathbf{a})^3}{12\mathbf{n}^2} \cdot \mathbf{M}_2,\tag{2.11}$$

gdzie

$$\mathbf{M_2} = \sup_{\mathbf{x} \in [\mathbf{a}, \mathbf{b}]} |\mathbf{f}''(\mathbf{x})| \tag{2.12}$$

- 2.2 Wzór Simpsona
- 2.3 Wzór 'prostokatów'

# 3. Kwadratury Newtona-Cotesa dla całek podwójnych

- 3.1 Wzór trapezów
- 3.2 Wzór Simpsona
- 3.3 Wzór 'prostokatów'

| 4. | Zastosowanie | kwadratur | do obliczania | całek po | obszarach |
|----|--------------|-----------|---------------|----------|-----------|
| n  | ormalnych    |           |               |          |           |

## Podsumowanie

Celem przyświecającym pisaniu pracy było...

### **Bibliografia**

- [1] Olszowski B., Wybrane metody numeryczne: podręcznik dla studentów wyższych szkół technicznych, Wydawnictwo Politechniki Krakowskiej, Kraków 2007, s. 27-37
- [2] Kosma Z., *Metody numeryczne dla zastosowań inżynierskich*, Wydawnictwo Politechniki Radomskiej, Radom 2007, s. 155-160

[3]

[4]

# Spis procedur w języku Maple