

Programación III Práctica Calificada 3

Pregrado 2024-1

Profesor: José Chávez

Lab 2.01

Indicaciones específicas:

- Esta evaluación contiene 3 páginas (incluyendo esta página) con 1 preguntas. El total de puntos son 20.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en un solo archivo con el número de la pregunta.
 - − p1.cpp
- Deberás subir estos archivos directamente a www.gradescope.com, uno en cada ejercicio. También puedes crear un .zip

Calificación:

Tabla de puntos (sólo para uso del professor)

<u> </u>		
Question	Points	Score
1	20	
Total:	20	

1. (20 points) Sistema Jugador vs. Jugador de un Videojuego

Eres un desarrollador de videojuegos trabajando en un juego de enfrentamientos. Tu tarea es implementar un sistema para gestionar los jugadores en linea, lucha, emparejamiento y rankings. Utilizando Programación Orientada a Objetos, Estructuras de Datos, Pilas/Colas y Patrones de Diseño implemente las siguientes características del videojuego:

- La creación de un personaje debería realizarse de acuerdo a su estilo de ataque:
 - Cuerpo a cuerpo: atacan con hachas o espadas, y usan armaduras pesadas (de malla o acero).
 - A distancia: atacan con flechas o rifles, y usan armaduras ligeras (de tela o cuero).
- El campo de batalla es el lugar donde se dan los enfrentamientos entre dos jugadores. El jugador que gana se lleva puntos de batalla (que depende directamente proporcional al nivel de los personajes) los cuales le permiten subir de nivel poco a poco. Al jugador que pierde, se le quita puntos de batalla—directamente proporcional a su nivel. Los campos de batalla deberías estar en un grafo.
- El emparejamiento se da la siguiente manera. Si un jugador busca una partida, se ubica al jugador en un campo de batalla de su nivel y espera hasta que otro jugador del mismo nivel también busque una partida. Cuando en un campo de batalla existen dos jugadores, el enfrentamiento comienza. Si otros jugadores del mismo nivel buscan una partida, tendrán que esperar hasta que el enfrentamiento acabe. Sin embargo, podrían realizarse varios enfrentamientos de distintos niveles al mismo tiempo.
- Justo antes de empezar el enfrentamiento, cada jugador tendrá la opción de elegir el conjunto de armas y armaduras con las que enfrentará a su oponente.
- Los puntos de batalla y el nivel del personaje se deberían de actualizar automáticamente cada vez que el personaje termina una batalla. Cada jugado debería poder ver su historial de enfrentamientos. Indicando con quien se enfrentó y si ganó o perdió puntos de batalla.

Requisitos básicos del programa:

- Integrar al menos dos patrones de diseño. El estudiante puede elegir el escenario en el cual aplicar el patrón de diseño.
- Integrar al menos una pila o una cola en su implementación
- Integrar un grafo o árbol binario de búsqueda en su implementación.
- Implementar la interfaz de su programa en la función principal (-2pts).
- Comente las características y requisitos importantes de su programa (-1pts).
- Adjunte su código en un solo archivo .cpp (-1pt).

La rúbrica para esta pregunta es:

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Patrones	Selección ade-	Selección de un	Selección de un	Selección de
de Diseño	cuada de los	patrón que per-	patrón que per-	un patrón pero
	patrones que per-	mite la solución	mite la solucion	no se justificó
	miten la solución	de alguno de los	de alguno de	y descripción
	de algún prob-	problemas de	los problemas	incorrecta del di-
	lema de diseño	diseño con una	de diseño pero	agrama de clases.
	con una adecuada	justificación y de-	no se tiene una	(1pts)
	justificación y de-	scripción a través	justificación y	,
	scripción a través	de un diagrama	descripción in-	
	de un diagrama	de clases (4pts).	adecuada del	
	de clases (6pts).	\ - /	diagrama de	
			clases (2pts).	
Pilas y Co-	Implementación	Implementación	Implementación	Implementación
las	correcta y com-	mayormente	parcial de una	incorrecta o in-
	pleta de una	correcta de una	pila y/o cola con	completa de una
	pila y/o cola	pila y/o cola con	varios errores.	pila y/o cola con
	con operaciones	algunos errores	Uso de ambos	la mayoría de
	básicas usadas de	menores. Uso	contenedores	las operaciones
	manera adecuada	de ambos con-	en un contexto	básicas fallidas.
	y relevante en un	tenedores en un	práctico pero	Uso inadecuado
	contexto práctico	contexto práctico	con problemas	o irrelevante de
	que integra los	con integración	significativos en	los contenedores
	contenedores	aceptable pero	la integración.	en un contexto
	para resolver un	con algunas defi-	(2pts).	práctico. (1pts).
	problema com-	ciencias. (4pts)		
	plejo. (6pts).			
Algoritmo	Implementación	Implementación	Implementación	Implementación
de Grafos	correcta y com-	mayormente cor-	parcial de algo-	incorrecta o
	pleta de los	recta y completa	ritmos de de los	incompleta de
	algoritmos de	de los algoritmos	algoritmos de	algoritmos de de
	grafos. Cada	de grafos. Los al-	grafos con varios	los algoritmos
	algoritmo se	goritmos se usan	errores. Los al-	de grafos con
	utiliza adecuada-	en un contexto	goritmos se usan	la mayoría de
	mente en un	práctico relevante	en un contexto	las operaciones
	contexto práctico	pero con algunas	práctico pero	fallidas. Uso
	relevante, de-	deficiencias en	con problemas	inadecuado o
	mostrando	la integración	significativos en	irrelevante de
	una clara com-	o aplicación.	la integración	los algoritmos
	prensión de sus	(5pts)	y aplicación.	en un contexto
	propósitos y apli-	, - ,	(3pts).	práctico. (1pts).
	caciones. (8pts).		, - ,	