

PREDSoutenance finale

Fouille de données olfactives : clustering de molécules odorantes par Graph Neural Networks

Sommaire

01	Présentation du sujet -	Graph Neural Networks (GNNs)	02
03	_ Fonctionnement des GNNs	Notre implémentation	04
05	_ Nos résultats	Conclusion	06

01. Présentation du sujet

Olfactométrie

Décomposition

Tri

Identification

Olfactométrie

Figure 1 : Molécule et leurs descripteurs d'odeurs associés de l'article¹

ProblèmesOn sent la molécule seule, ce qui n'est pas commun
Nous percevons tous les odeurs de différentes façons

Figure 2 : Découverte de l'olfactométrie, au laboratoire d'Oniris

Nos objectifs : 1. Reproduire la démarche de l'équipe de Google brain, afin d'être en capacité de prédire les descripteurs d'odeur d'une molécule

Comment et pourquoi les GNNs sont utilisés pour la prédiction des odeurs

Équipe Brain de Google Research, 2019 **Nos objectifs :** 2. Déterminer la partie de la molécule qui est émettrice du descripteur d'odeur

Nos plannings

Figure 3 : Gantt prévisionnel et effectif

02. Graph Neural Networks (GNNs)

Qu'est-ce que c'est?

Prédiction des odeurs

Organisation

Figure 5 : Modèle schématique de l'article¹ : organisation du GNN

- 01. Transformation de la molécule en graphe
- 02. Couches d'échange de messages
- 03. Vecteur représentant la molécule
- 04. Réseau de neurones (MLP)
- 05. Prédiction des odeurs

Pourquoi l'utiliser?

Comparaison du GNN avec les méthodes d'encodage :

- bit-based fingerprints (**bFP**)
- count-based fingerprints (**cFP**)

Comparaison du GNN avec les modèles :

- random forest (RF)
- k-nearest neighbor (**KNN**)

<u>AUROC</u>: l'aire sous la courbe ROC (mesure de la performance d'un classificateur binaire)

<u>Précision</u>: nombre d'observations positives et négatives correctement classées

 $\underline{F1}$: combine précision et rappel (recall) en une seule métrique.

	AUROC	Precision	F1
GNN	0.894 [0.888, 0.902]	0.379 [0.351, 0.398]	0.360 [0.337, 0.372]
RF-bFP	0.832 [0.821, 0.842]	0.321 [0.293, 0.339]	0.295 [0.272, 0.308]
RF-cFP	0.845 [0.835, 0.854]	0.315 [0.280, 0.332]	0.295 [0.272, 0.311]
KNN-bFP	0.791 [0.778, 0.803]	0.328 [0.305, 0.347]	0.323 [0.299, 0.335]
KNN-cFP	0.796 [0.785, 0.809]	0.333 [0.307, 0.351]	0.316 [0.292, 0.327]

Figure 6 : Résultats de l'article¹ : comparaison de différents modèles et façons d'encoder la molécule

Différentes architectures

Des performances similaires, des architectures différentes

		GCN			MPNN	
Message Passing Layers		concatenation message layers of dim: [15,20,2 selu activation, max g pooling	27,36],	edge-conditioned matrix multiply message type, 5 layer of dim 43, GRU-update at each layer		
Readout		Global sum pooling softmax, 175 dim, one layer and summe	per MP	Global sum pooling with softmax, 197 dim, one per MP layer with residual connections and summed		
fully-connected neural net		2-layers of dim [96, 63] with relu, batchnorm, dropout of 0.47 3-layers of dim 392 w batchnorm, dropout of 11/12 regularization		, dropout of 0.12 and		
Prediction		Multi-headed sigmoid, 138 tasks				
Training		Weighted-cross entropy loss, optimized with Adam, used learning rate decay with warm restarts, 300 epochs				
	AUROC	Precision	R	ecall	F1	
MPNN GCN	0.890 [0.882, 0.89 0.894 [0.888, 0.90			366, 0.408] 365, 0.412]	0.362 [0.335, 0.375] 0.360 [0.337, 0.372]	

Figure 7: Performances GCN / MPNN de l'article¹

03. Fonctionnement des GNNs

De la molécule à un graphe

On encode les caractéristiques de chaque atome de la molécule :

Figure 8 : Encodage de l'atome O de la molécule H₂O

Symbole de l'atome (0 1 2 3 4 5 6) : (C O N S CI Br H)

Degré de l'atome (0 1 2 3 4) : nombre de voisins de l'atome hors hydrogène

Valence implicite (0 1 2 3 4) : nombre d'atomes d'hydrogène connectés à l'atome

Noyau aromatique (0 1):

Appartenance ou non à un noyau aromatique

Chiralité (0 1 2):

(0: non asymétrique, 1: asymétrique sens horaire, 2: asymétrique sans anti-horaire)

L'échange de messages

Pour chaque couche, tous les sommets du graphe (atomes), vont échanger leurs caractéristiques avec leurs voisins

Figure 9 : Exemple d'échange de messages entre l'atome rouge et ses voisins

L'échange de messages

A matrice d'adjacence + identité

D matrice des degrés

À matrice de régularisation

H^t matrice des caractéristiques à la couche t

W^t matrice des poids à la couche t

H^{t+1} matrice des caractéristiques à la couche t+1

Figure 10 : Détail des calculs du processus d'échange de messages

Sortie du GNN

Figure 11: Détail du fonctionnement du global average pooling

Prédiction des odeurs

Architecture entière

Figure 12 : Architecture du GCN

04. Notre implémentation

Librairies

Les fonctions sont moins transparentes qu'avec StellarGraph

Ensemble de **2 843 molécules** et **98 descripteurs d'odeur**

Caractérisation des molécules

Objet "Molécule"

Pour chaque atome

Caractéristiques

Symbole atomique

Degré

Valence implicite

Aromatique

Chiralité

Matrice d'adjacence de la molécule

 $GetSymbol((Atom)arg1) \rightarrow str$:

Returns the atomic symbol (a string)

GetDegree((Atom)arg1) → int :

Returns the degree of the atom in the molecule.

GetImplicitValence((Atom)arg1) → int:

Returns the number of implicit Hs on the atom.

GetChiralTag((Atom)arg1) → ChiralType:

C++ signature :

RDKit::Atom::ChiralType GetChiralTag(RDKit::Atom {Ivalue})

GetIsAromatic((Atom)arg1) → bool:

C++ signature:

bool GetIsAromatic(RDKit::Atom {Ivalue})

Modèle du GCN

```
qc_model = GCNSupervisedGraphClassification(
   layer_sizes=[15, 20, 27, 36],
   activations=["selu", "selu", "selu", "selu"],
   generator=generator,
x_inp, x_out = qc_model.in_out_tensors()
predictions = Dense(units=96, activation="relu")(x_out)
predictions = BatchNormalization()(predictions)
predictions = Dropout(0.47)(predictions)
predictions = Dense(units=63, activation="relu")(predictions)
predictions = BatchNormalization()(predictions)
predictions = Dropout(0.47)(predictions)
predictions = Dense(units=n_odors, activation="sigmoid")(predictions)
```


Entrée

Global average Softmax

Réseau de

neurones

Figure 13: Architecture du GCN sous Stellargraph

05. Nos résultats

Figure 15 : Précision des différents modèles en fonction du pli

Confusion Matrix

Figure 16 : Matrice de confusion : odeurs prédites / réelles

Figure 17 : Ontologie des descripteurs d'odeur¹

Figure 18 : Représentation 2D des caractéristiques des molécules

06. Conclusion

01. 02. 03. 04. 05. 06. Conclusion

Nos difficultés

- Compréhension des articles
- Fonctionnement des GNNs
- Comment caractériser une molécule
- Deepchem

01. 02. 03. 04. 05. 06. Conclusion

Pistes d'améliorations

- Encodage : Type des liaisons
- Retrouver le sous graphe responsable de l'odeur
- t-SNE avec odeurs prédites
- Matrice de confusion en multilabel : définir un seuil (très compliqué)

Bibliographie

Machine Learning for Scent: Learning Generalizable Perceptual Representations of Small Molecules https://arxiv.org/pdf/1910.10685.pdf

Learning to Smell: Using Deep Learning to Predict the Olfactory Properties of Molecules

https://ai.googleblog.com/2019/10/learning-to-smell-using-deep-learning.html

Odor-GCN: Graph Convolutional Network for Predicting Odor Impressions Based on Molecular Structures https://assets.researchsquare.com/files/rs-1377643/v1_covered.pdf?c=1667972722

SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

https://openreview.net/pdf?id=SJU4ayYgI

StellarGraph

https://stellargraph.readthedocs.io/en/stable/index.html

RDKit

https://www.rdkit.org/docs/GettingStartedInPython.

html

Jure Leskovec

https://cs.stanford.edu/people/jure/teaching.html

Understanding Graph Convolutional Networks for Node Classification

https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bf db/aba7b

Table des figures

Figure 1 : Molécule et leurs descripteurs d'odeurs associés de l'article¹

Figure 2 : Découverte de l'olfactométrie, au laboratoire d'Oniris

Figure 3 : Gantt prévisionnel et effectif

Figure 4: Morgan Fingerprints

Figure 5 : Modèle schématique de l'article¹ : organisation du GNN

Figure 6 : Résultats de l'article¹ : comparaison de différents modèles et façons d'encoder la molécule

Figure 7 : Performances GCN / MPNN de l'article¹

Figure 8 : Encodage de l'atome O de la molécule H₂O

Figure 9 : Exemple d'échange de messages entre l'atome rouge et ses voisins

Figure 10 : Détail des calculs du processus d'échange de messages

Figure 11: Détail du fonctionnement du global average pooling

Figure 12: Architecture du GCN

Figure 13: Architecture du GCN sous Stellargraph

Figure 14 : Fréquence d'apparition des odeurs

Figure 15 : Précision des différents modèles en fonction du pli

Figure 16 : Matrice de confusion : odeurs prédites / réelles

Figure 17 : Ontologie des descripteurs d'odeur²

Figure 18 : Représentation 2D des caractéristiques des molécules

https://arxiv.org/pdf/1910.10685.pdf

² https://oniris-polytech.univ-nantes.io/sketchoscent/