Time Series Analysis

Lecture 6

Review

- 1. The Autocovariance Generating Function
- 2. Sums of ARMA processes
- 3. Wold's Decomposition and the Box-Jenkins Modeling Philosophy
- 4. Maximum Likelihood Estimation

- 1. Review of AR(1) model
- 2. Brownian motion and Functional central limit theorem
- Asymptotic properties of unit root processes and tests for unit root
- 4. Generalization to processes with serial correlation

- 1. Rewiew of AR(1)
- 2. Brownian Motion and Functional CLT
- Asymptotic properties of Unit Root processes and tests for Unit Root
- 4. Generalization to processes with serial correlation

Gaussian AR(1) process

Consider a Gaussian AR(1) process,

$$y_t = \rho y_{t-1} + u_t, \tag{1}$$

where $u_t \sim i.i.d.N(0, \sigma^2)$, and $y_0 = 0$.

- if $|\rho| < 1$, y_t is called a stationary process;
- if $|\rho| = 1$, y_t is called the Unit Root (random walk) process;
- if $|\rho| > 1$, y_t is called an explosive(unstable) process.

The OLS estimate of ρ is given by

$$\hat{\rho}_T = \frac{\sum_{t=1}^I y_{t-1} y_t}{\sum_{t=1}^T y_{t-1}^2}.$$
 (2)

Asymptotics for stationary AR(1)

We can show that if $|\rho| < 1$, i.e., y_t is stationary, then

$$\sqrt{T}(\hat{\rho}_T - \rho) \xrightarrow{L} N(0, (1 - \rho^2)). \tag{3}$$

To see this, note that

$$\sqrt{T}(\hat{\rho}_T - \rho) = \frac{\frac{1}{\sqrt{T}} \sum_{t=1}^T y_{t-1} u_t}{\frac{1}{T} \sum_{t=1}^T y_{t-1}^2}.$$

But by the Ergodic theorem, we have

$$\frac{1}{T} \sum_{t=1}^{T} y_{t-1}^2 \xrightarrow{\rho} E[y_{t-1}^2] = \sigma^2/(1-\rho^2).$$

By the CLT for MDS, we obtain

$$\frac{1}{\sqrt{T}} \sum_{t=1}^{T} y_{t-1} u_t \xrightarrow{L} N(0, Var(y_{t-1} u_t)),$$

where $Var(y_{t-1}u_t) = \sigma^2 E[y_{t-1}^2] = \sigma^4/(1-\rho^2)$. Therefore, an application of the Slutsky Theorem leads to (3).

Asymptotics for Unit Root AR(1)

If (3) were also valid for $\rho = 1$, it would seem to claim that

$$\sqrt{T}(\hat{\rho}_T - \rho) \xrightarrow{p} 0. \tag{4}$$

This is indeed true for unit root processes, but it obviously is not very helpful for hypothesis tests.

Q: How to obtain a nondegenerate asymptotic distribution for $\hat{\rho}_T$ in the unit root case?

It turns out that we need to look at

$$T(\hat{\rho}_T - 1) = \frac{(1/T)\sum_{t=1}^T y_{t-1} u_t}{(1/T^2)\sum_{t=1}^T y_{t-1}^2}.$$
 (5)

What is the asymptotic distribution of $T(\hat{\rho}_T - 1)$?

1. Rewiew of AR(1)

2. Brownian Motion and Functional CLT

Asymptotic properties of Unit Root processes and tests for Unit Root

4. Generalization to processes with serial correlation

- 1. Rewiew of AR(1)
- Brownian Motion and Functional CLT Brownian Motion
- 3. Asymptotic properties of Unit Root processes and tests for Unit Root
- 4. Generalization to processes with serial correlation

Random walk

Consider a random walk,

$$y_t = y_{t-1} + \varepsilon_t, \varepsilon_t \sim i.i.d.N(0,1). \tag{6}$$

If $y_0 = 0$, then it follows that

$$y_t = \varepsilon_1 + \ldots + \varepsilon_t,$$

 $y_t \sim N(0, t),$

and, for s < t,

$$y_s - y_t = \varepsilon_{t+1} + \ldots + \varepsilon_s,$$

 $y_s - y_t \sim N(0, s - t),$

which is independent with $y_q - y_r$, where t < s < r < q.

Suppose we view ε_t as:

$$\varepsilon_t = e_{1t} + e_{2t}, \tag{7}$$

with $e_{it} \stackrel{i.i.d}{\sim} N(0,1/2)$. We might define some interim point $y_{t-(1/2)}$, s.t.,

$$y_{t-(1/2)} - y_{t-1} = e_{1t},$$

 $y_t - y_{t-(1/2)} = e_{2t}.$

Similarly, we could imagine partitioning the change between t-1 and t into N separate subperiods:

$$y_t - y_{t-1} = e_{1t} + e_{2t} + \dots + e_{Nt},$$
 (8)

with $e_{it} \stackrel{i.i.d}{\sim} N(0, 1/N)$.

The result would be a process with all the same properties as (6), defined at a finer and finer grid of dates as we increase N.

The limit as $N \to \infty$ is a continuous-time process known as standard Brownian motion. The value of this process at time t is denoted as W(t).

Brownian motion

Definition: Standard Brownian motion $W(\cdot)$ is a continuous-time stochastic process, associating each date $t \in [0,1]$ with the scalar W(t) such that:

- (a) W(0) = 0;
- (b) For any dates $0 \le t_1 < t_2 < \cdots < t_k \le 1$, the changes $[W(t_2) W(t_1)], [W(t_3) W(t_2)], \cdots, [W(t_k) W(t_{k-1})]$ are independent multivariate Gaussian with $[W(s) W(t)] \sim N(0, s t)$;
- (c) For any given realization, W(t) is continuous in t with probability 1.

▶ Other continuous-time processes can be generated from standard Brownian motion. For example, the process

$$Z(t) = \sigma \cdot W(t)$$

has independent increment and is distributed $N(0, \sigma^2 t)$ across realizations. Such a process is described as Brownian motion with variance σ^2 .

As another example,

$$Z(t) = [W(t)]^2$$

would be distributed as t times a $\chi^2(1)$ variable.

- 1. Rewiew of AR(1)
- 2. Brownian Motion and Functional CLT

Brownian Motion

Functional CLT

- 3. Asymptotic properties of Unit Root processes and tests for Unit Root
- 4. Generalization to processes with serial correlation

Review of conventional CLT

If $u_t \sim i.i.d$, with zero mean and variance σ^2 , then the sample mean $\bar{u}_T = (1/T) \sum_{t=1}^T u_t$ satisfies

$$\sqrt{T}\bar{u}_T \xrightarrow{L} N(0, \sigma^2).$$
 (9)

Consider now an estimator based on only the first half of the sample,

$$\bar{u}_{[T/2]^*} = (1/[T/2]^*) \sum_{t=1}^{[T/2]^*} u_t.$$

Here $[T/2]^*$ denotes the largest integer that is less than or equal to T/2. This strange estimator would also satisfy the CLT:

$$\sqrt{[T/2]^*} \overline{u}_{[T/2]^*} \xrightarrow[T \to \infty]{L} N(0, \sigma^2).$$

More generally, we can construct a variable $X_T(r)$ from the sample mean of the first rth fraction of observation, $r \in [0,1]$, defined by

$$X_T(r) = (1/T) \sum_{t=1}^{[Tr]^*} u_t.$$
 (10)

For any given realization, $X_T(r)$ is a step function in r, with

$$X_{T}(r) = \begin{cases} 0 & \text{for } 0 \le r < 1/T \\ u_{1}/T & \text{for } 1/T \le r < 2/T \\ \vdots & \\ (u_{1} + u_{2} + \dots + u_{T})/T & \text{for } r = 1. \end{cases}$$
(11)

Then

$$\sqrt{T} \cdot X_T(r) = (1/\sqrt{T}) \sum_{t=1}^{\lceil Tr \rceil^*} u_t = (\sqrt{\lceil Tr \rceil^*}/\sqrt{T}) (1/\sqrt{\lceil Tr \rceil^*}) \sum_{t=1}^{\lceil Tr \rceil^*} u_t.$$

But

$$(1/\sqrt{[Tr]^*})\sum_{t=1}^{[Tr]^*}u_t\stackrel{L}{\to} N(0,\sigma^2),$$

by the CLT, while $(\sqrt{[Tr]^*}/\sqrt{T}) \rightarrow \sqrt{r}$. Hence,

$$\sqrt{T} \cdot X_T(r) \xrightarrow{L} \sqrt{r} N(0, \sigma^2) = N(0, r\sigma^2),$$

and

$$\sqrt{T} \cdot [X_T(r)/\sigma] \xrightarrow{L} N(0,r).$$

Similarly, for $r_2 > r_1$, we have

$$\sqrt{T}\cdot[X_T(r_2)-X_T(r_1)]/\sigma\stackrel{L}{\rightarrow}N(0,r_2-r_1).$$

The stochastic functions $\{\sqrt{T}\cdot[X_T(\cdot)/\sigma]\}_{T=1}^\infty$ has an asymptotic probability law that is described by standard Brownian motion $W(\cdot)$:

$$\sqrt{T} \cdot [X_T(\cdot)/\sigma] \xrightarrow{L} W(\cdot). \tag{12}$$

Result (12) is known as the functional CLT.

Note that $X_T(\cdot)$ is a random function while $X_T(r)$ is a random variable. The conventional CLT is a special case of functional CLT:

$$\sqrt{T}X_T(1)/\sigma = [1/(\sigma\sqrt{T})]\sum_{t=1}^T u_t \xrightarrow{L} W(1) \sim N(0,1).$$

Continuous Mapping Theorem

- ▶ CMT: if $\{x_T\}_{T=1}^{\infty}$ is a sequence of random variables with $x_T \xrightarrow{L} x$ and if $g : \mathbb{R}^1 \to \mathbb{R}^1$ is a continuous function, then $g(x_T) \xrightarrow{L} g(x)$. A similar result holds for sequence of random functions.
- ▶ If $\{X_T(\cdot)\}_{T=1}^{\infty}$ is a sequence of stochastic functions with

$$X_T(\cdot) \xrightarrow{L} X(\cdot)$$

and $g(\cdot)$ is a continuous functional, then

$$g(X_T(\cdot)) \stackrel{L}{\to} g(X(\cdot))$$

► **Example:** Since $\sqrt{T} \cdot X_T(\cdot) \xrightarrow{L} \sigma \cdot W(\cdot)$, define $S_T(r) = [\sqrt{T} \cdot X_T(r)]^2$, it follows that

$$S_{\mathcal{T}}(\cdot) \xrightarrow{L} \sigma^2[W(\cdot)]^2.$$
 (13)

Applications to Unit Root Processes

Example 1

Consider

$$y_t = y_{t-1} + u_t, (14)$$

where $\{u_t\}$ is an i.i.d. sequence with mean zero and variance σ^2 . If $y_0 = 0$, then

$$y_t = u_1 + u_2 + \dots + u_t. (15)$$

This can be used to express the stochastic function $X_T(r)$ defined in (11) as

$$X_{T}(r) = \begin{cases} 0 & \text{for } 0 \le r < 1/T \\ y_{1}/T & \text{for } 1/T \le r < 2/T \\ y_{2}/T & \text{for } 2/T \le r < 3/T \\ \vdots \\ y_{T}/T & \text{for } r = 1. \end{cases}$$
(16)

FIGURE 17.1 Plot of $X_T(r)$ as a function of r.

The integral of $X_T(r)$ is thus equivalent to

$$\int_0^1 X_T(r)dr = y_1/T^2 + y_2/T^2 + \dots + y_{T-1}/T^2. \tag{17}$$

Multiplying both sides of (17) by \sqrt{T} establishes that

$$\int_0^1 \sqrt{T} \cdot X_T(r) dr = T^{-3/2} \sum_{t=1}^T y_{t-1}.$$

We know from the FCLT and the continuous mapping theorem that as $T \to \infty$,

$$\int_0^1 \sqrt{T} \cdot X_T(r) dr \xrightarrow{L} \sigma \cdot \int_0^1 W(r) dr,$$

then we get

$$T^{-3/2} \sum_{t=1}^{I} y_{t-1} \xrightarrow{L} \sigma \cdot \int_{0}^{1} W(r) dr. \tag{18}$$

Example 2

Further consider

$$S_T(r) = T \cdot [X_T(r)]^2$$

which can be written as

$$S_T(r) = \begin{cases} 0 & \text{for } 0 \le r < 1/T \\ y_1^2/T & \text{for } 1/T \le r < 2/T \\ y_2^2/T & \text{for } 2/T \le r < 3/T \\ \vdots \\ y_T^2/T & \text{for } r = 1. \end{cases}$$

It follows that

$$\int_0^1 S_T(r)dr = y_1^2/T^2 + y_2^2/T^2 + \dots + y_{T-1}^2/T^2.$$

Thus from the FCLT and the CMT,

$$T^{-2} \sum_{t=1}^{T} y_{t-1}^2 \xrightarrow{L} \sigma^2 \cdot \int_0^1 [W(r)]^2 dr.$$
 (19)

Example 3

Note that for a random walk.

$$y_t^2 = (y_{t-1} + u_t)^2 = y_{t-1}^2 + 2y_{t-1}u_t + u_t^2,$$

implying that

$$y_{t-1}u_t = (1/2)\{y_t^2 - y_{t-1}^2 - u_t^2\}.$$

Then

$$\sum_{t=1}^{T} y_{t-1} u_t = (1/2) \{ y_T^2 - y_0^2 \} - (1/2) \sum_{t=1}^{T} u_t^2.$$

Recalling that $y_0 = 0$, then

$$(1/T) \sum_{t=1}^{T} y_{t-1} u_t = (1/2) \cdot y_T^2 / T - (1/2) \cdot \sum_{t=1}^{T} u_t^2 / T$$
$$= (1/2) S_T(1) - (1/2) \cdot \sum_{t=1}^{T} u_t^2 / T$$
$$\stackrel{L}{\rightarrow} (1/2) \sigma^2 [W(1)]^2 - (1/2) \sigma^2.$$

- 1. Rewiew of AR(1)
- 2. Brownian Motion and Functional CLT
- 3. Asymptotic properties of Unit Root processes and tests for Unit Root
- 4. Generalization to processes with serial correlation

- 1. Rewiew of AR(1)
- 2. Brownian Motion and Functional CLT
- 3. Asymptotic properties of Unit Root processes and tests for Unit Root

Asymptotics for unit root processes

Dickey-Fuller tests

4. Generalization to processes with serial correlation

Asymptotics for unit root processes

Proposition 1 Suppose that y_t follows a random walk without drift,

$$y_t = y_{t-1} + u_t,$$

where $y_0 = 1$ and $\{u_t\}$ is an i.i.d. sequence with mean zero and variance σ^2 . Then

- (a) $T^{-1/2} \sum_{t=1}^{T} u_t \xrightarrow{L} \sigma \cdot W(1)$;
- (b) $T^{-1} \sum_{t=1}^{T} y_{t-1} u_t \xrightarrow{L} (1/2) \sigma^2 \{ [W(1)]^2 1 \}; \text{ (Example 3)}$
- (c) $T^{-3/2} \sum_{t=1}^{T} t u_t \xrightarrow{L} \sigma \cdot W(1) \sigma \cdot \int_0^1 W(r) dr$;
- (d) $T^{-3/2} \sum_{t=1}^{T} y_{t-1} \stackrel{L}{\rightarrow} \sigma \cdot \int_{0}^{1} W(r) dr$; (Example 1)
- (e) $T^{-2} \sum_{t=1}^{T} y_{t=1}^2 \xrightarrow{L} \sigma^2 \cdot \int_0^1 [W(r)]^2 dr$; (Example 2)
- (f) $T^{-5/2} \sum_{t=1}^{T} t y_{t-1} \xrightarrow{L} \sigma \cdot \int_{0}^{1} r W(r) dr$;
- (g) $T^{-3} \sum_{t=1}^{T} t v_{t+1}^2 \xrightarrow{L} \sigma^2 \cdot \int_0^1 r \cdot [W(r)]^2 dr$
- (h) $T^{(\nu+1)}\sum_{t=1}^T t^{
 u} o 1/(
 u+1)$ for $u=0,1,\cdots$

The asymptotics of $T(\hat{\rho}_T - 1)$

Now we can apply Proposition 1 (b) and (e) to show that

$$T(\hat{\rho}_{T}-1) = \frac{(1/T)\sum_{t=1}^{T} y_{t-1}u_{t}}{(1/T^{2})\sum_{t=1}^{T} y_{t-1}^{2}}$$

$$\xrightarrow{L} \frac{(1/2)\{[W(1)]^{2}-1\}}{\int_{0}^{1}[W(r)]^{2}dr}.$$

This answers the question raised at the beginning of this lecture. It is worth noting that such a limiting result involves:

- (i) a convergence rate T (super-consistent), and
- (ii) a nonstandard limiting distribution.

- 1. Rewiew of AR(1)
- 2. Brownian Motion and Functional CLT
- 3. Asymptotic properties of Unit Root processes and tests for Unit Root

Asymptotics for unit root processes Dickey-Fuller tests

4. Generalization to processes with serial correlation

Dickey-Fuller tests of Unit Root

We shall consider four cases in sequence,

- Case 1 Estimated regression: $y_t = \rho y_{t-1} + u_t$ True process: $y_t = y_{t-1} + u_t$ $u_t \sim i.i.d.N(0, \sigma^2)$
- Case 2 Estimated regression: $y_t = \alpha + \rho y_{t-1} + u_t$ True process: $y_t = y_{t-1} + u_t$ $u_t \sim i.i.d.N(0, \sigma^2)$
- Case 3 Estimated regression: $y_t = \alpha + \rho y_{t-1} + u_t$ True process: $y_t = \alpha + y_{t-1} + u_t$ $\alpha \neq 0, u_t \sim i.i.d.(0, \sigma^2)$
- Case 4 Estimated regression: $y_t = \alpha + \delta t + \rho y_{t-1} + u_t$ True process: $y_t = \alpha + y_{t-1} + u_t \alpha$ any, $u_t \sim i.i.d.N(0, \sigma^2)$

Dickey-Fuller tests of Unit Root: Case 1

```
We first consider Case 1
```

```
Case 1 Estimated regression: y_t = \rho y_{t-1} + u_t
True process: y_t = y_{t-1} + u_t u_t \sim i.i.d.N(0, \sigma^2)
```

Dickey-Fuller ρ test for Case 1

Under the null hypothesis that ho=1, the Dickey-Fuller ho statistic

$$T(\hat{\rho}_T - 1) \xrightarrow{L} \frac{(1/2)\{[W(1)]^2 - 1\}}{\int_0^1 [W(r)]^2 dr} \stackrel{\triangle}{=\!\!=} DF_{\rho,case1}.$$
 (20)

Sample size T	Probability that $T(\hat{\rho}-1)$ is less than entry									
	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99		
				Case 1						
25	-11.9	-9.3	-7.3	-5.3	1.01	1.40	1.79	2.28		
50	-12.9	-9.9	-7.7	-5.5	0.97	1.35	1.70	2.16		
100	-13.3	-10.2	-7.9	-5.6	0.95	1.31	1.65	2.09		
250	-13.6	-10.3	-8.0	-5.7	0.93	1.28	1.62	2.04		
500	-13.7	-10.4	-8.0	-5.7	0.93	1.28	1.61	2.04		
∞	-13.8	-10.5	-8.1	-5.7	0.93	1.28	1.60	2.03		

Figure 1 : Table 1 Critical values for the Dickey-Fuller ρ test

Skewed to the left! For finite T, these are exact only under the assumption of Gaussian innovations. As T becomes large, these values are also valid for non-Gaussian innovations.

Example 1 (Nominal Interest Rate)

Data: nominal three-month U.S. Treasury bill rate, quarterly, from

1947:2 to 1989:1, T = 168

Model: AR(1) by OLS estimation

$$i_t = 0.99694 i_{t-1},$$

$$(0.010592)$$

The Dickey-Fuller ho test of ho=1 is

$$T(\hat{\rho}_T - 1) = 168(0.99694 - 1) = -0.51,$$

This is well above the critical value -7.9 (T=100). So the null is accepted at the 5% level.

Dickey-Fuller t test for Case 1

Another popular statistics for testing the null hypothesis that ho=1 is based on the usual OLS t test of this hypothesis,

$$t_{\mathcal{T}} = \frac{(\hat{\rho}_{\mathcal{T}} - 1)}{\hat{\sigma}_{\hat{\rho}_{\mathcal{T}}}},\tag{21}$$

where $\hat{\sigma}_{\hat{\rho}_{\mathcal{T}}}$ is the usual OLS standard error for the estimated coefficient,

$$\hat{\sigma}_{\hat{\rho}_T} = \left\{ s_T^2 \div \sum_{t=1}^T y_{t-1}^2 \right\}^{1/2},$$

and s_T^2 denotes the OLS estimate of the residual variance:

$$s_T^2 = \sum_{t=1}^T (y_t - \hat{\rho}_T y_{t-1})^2 / (T - 1).$$

As $T \to \infty$,

$$t_T \xrightarrow{L} \frac{(1/2)\{[W(1)]^2 - 1\}}{\left\{\int_0^1 [W(r)]^2 dr\right\}^{1/2}} \stackrel{\triangle}{=\!=\!=} DF_{t,case1}.$$
 (22)

Sample size T	Probability that $(\hat{\rho}-1)/\hat{\sigma}_{\hat{\rho}}$ is less than entry									
	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99		
				Case 1	-					
25	-2.66	-2.26	-1.95	-1.60	0.92	1.33	1.70	2.16		
50	-2.62	-2.25	-1.95	-1.61	0.91	1.31	1.66	2.08		
100	-2.60	-2.24	-1.95	-1.61	0.90	1.29	1.64	2.03		
250	-2.58	-2.23	-1.95	-1.62	0.89	1.29	1.63	2.01		
50 0	-2.58	-2.23	-1.95	-1.62	0.89	1.28	1.62	2.00		
&	-2.58	-2.23	-1.95	-1.62	0.89	1.28	1.62	2.00		

Figure 2 : Table 2 Critical values for the Dickey-Fuller t test

Example 1 (Nominal Interest Rate)

$$i_t = 0.99694 i_{t-1},$$

$$(0.010592)$$

The Dickey-Fuller t test of ho=1 is

$$t = (0.99694 - 1)/0.010592 = -0.29,$$

This is well above the 5% critical value of -1.95 (T=100). So the null is again accepted.

Dickey-Fuller tests of Unit Root: Case 2

We now consider Case 2

Case 2 Estimated regression: $y_t = \alpha + \rho y_{t-1} + u_t$ True process: $y_t = y_{t-1} + u_t$ $u_t \sim i.i.d.N(0, \sigma^2)$

Dickey-Fuller ρ test for Case 2

Let us first describe the properties of the OLS estimates:

$$\begin{bmatrix} \hat{\alpha}_T \\ \hat{\rho}_T \end{bmatrix} = \begin{bmatrix} T & \sum y_{t-1} \\ \sum y_{t-1} & \sum y_{t-1}^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum y_t \\ \sum y_{t-1} y_t \end{bmatrix}, \tag{23}$$

under the null hypothesis that $\alpha=0$ and $\rho=1$ (here \sum indicates summation over $t=1,2,\cdots,T$). We have

$$\begin{bmatrix} T^{1/2} \hat{\alpha}_T \\ T(\hat{\rho}_T - 1) \end{bmatrix} \xrightarrow{L} \begin{bmatrix} \sigma & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \int W(r) dr \\ \int W(r) dr & \int [W(r)]^2 dr \end{bmatrix}^{-1} \times \begin{bmatrix} W(1) \\ (1/2) \left\{ [W(1)]^2 - 1 \right\} \end{bmatrix}$$

The second element in the above vector expression states that

$$T(\hat{\rho}_T - 1) \xrightarrow{L} \frac{\frac{1}{2}\{[W(1)]^2 - 1\} - W(1) \cdot \int W(r)dr}{\int [W(r)]^2 dr - \left[\int W(r)dr\right]^2} \stackrel{\triangle}{=\!\!\!=} DF_{\rho,case2}.$$

(24)

This distribution is even more strongly skewed than $DF_{\rho,case1}$.

Sample size T	Probability that $T(\hat{\rho}-1)$ is less than entry										
	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99			
				Case 1							
25	-11.9	-9.3	-7.3	-5.3	1.01	1.40	1.79	2.28			
50	-12.9	-9.9	-7.7	-5.5	0.97	1.35	1.70	2.16			
100	-13.3	-10.2	-7.9	-5.6	0.95	1.31	1.65	2.09			
250	-13.6	-10.3	-8.0	-5.7	0.93	1.28	1.62	2.04			
500	-13.7	-10.4	-8.0	-5.7	0.93	1.28	1.61	2.04			
∞	-13.8	-10.5	-8.1	-5.7	0.93	1.28	1.60	2.03			
				Case 2							
25	-17.2	-14.6	-12.5	-10.2	-0.76	0.01	0.65	1.40			
50	-18.9	-15.7	-13.3	-10.7	-0.81	-0.07	0.53	1.22			
1 00	-19.8	-16.3	-13.7	-11.0	-0.83	-0.10	0.47	1.14			
250	-20.3	-16.6	-14.0	-11.2	-0.84	-0.12	0.43	1.09			
500	-20.5	-16.8	-14.0	-11.2	-0.84	-0.13	0.42	1.06			
∞	-20.7	-16.9	-14.1	-11.3	-0.85	-0.13	0.41	1.04			

Figure 3 : Table 1 Critical values for the Dickey-Fuller ho test

Dickey-Fuller t test for Case 2

An alternative test based on the OLS t test of the null hypothesis that $\rho=1$:

$$t_T = rac{\hat{
ho}_T - 1}{\hat{\sigma}_{\hat{
ho}_T}}$$

where

$$\hat{\sigma}_{\hat{\rho}_{T}}^{2} = s_{T}^{2}[0 \ 1] \begin{bmatrix} T & \sum y_{t-1} \\ \sum y_{t-1} & \sum y_{t-1}^{2} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$s_{T}^{2} = (T - 2)^{-1} \sum_{t=1}^{T} (y_{t} - \hat{\alpha}_{T} - \hat{\rho}_{T} y_{t-1})^{2}.$$

The asymptotic distribution is

$$t_{T} \xrightarrow{L} \frac{\frac{1}{2} \{ [W(1)]^{2} - 1 \} - W(1) \cdot \int W(r) dr}{\left\{ \int [W(r)]^{2} dr - \left[\int W(r) dr \right]^{2} \right\}^{1/2}} \stackrel{\triangle}{=} DF_{t,case2}.$$
 (25)

Sample		Probability that $(\hat{\rho}-1)/\hat{\sigma}_{\hat{\rho}}$ is less than entry									
size T	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99			
				Case 1							
25	-2.66	-2.26	-1.95	-1.60	0.92	1.33	1.70	2.16			
50	-2.62	-2.25	-1.95	-1.61	0.91	1.31	1.66	2.08			
100	-2.60	-2.24	-1.95	-1.61	0.90	1.29	1.64	2.03			
250	-2.58	-2.23	-1.95	-1.62	0.89	1.29	1.63	2.01			
500	-2.58	-2.23	-1.95	-1.62	0.89	1.28	1.62	2.00			
œ	-2.58	-2.23	-1.95	-1.62	0.89	1.28	1.62	2.00			
				Case 2							
25	-3.75	-3.33	-3.00	-2.63	-0.37	0.00	0.34	0.72			
50	-3.58	-3.22	-2.93	-2.60	-0.40	-0.03	0.29	0.66			
100	-3.51	-3.17	-2.89	-2.58	-0.42	-0.05	0.26	0.63			
250	-3.46	-3.14	-2.88	-2.57	-0.42	-0.06	0.24	0.62			
500	-3.44	-3.13	-2.87	-2.57	-0.43	-0.07	0.24	0.61			
œ	-3.43	-3.12	-2.86	-2.57	-0.44	-0.07	0.23	0.60			

Figure 4: Table 2 Critical values for the Dickey-Fuller t test

Dickey-Fuller *F* test for case 2

We are also concerned with the joint hypothesis that $\alpha=0$ and $\rho=1$. This null can be represented as $R\theta=r$, with $R=I_2$, $\theta=(\alpha,\rho)'$ and r=(0,1)'.

The *F* test is then

$$F_T = (\hat{\theta}_T - \theta)' R' \left\{ s_T^2 \cdot R(\sum x_t x_t')^{-1} R' \right\}^{-1} R(\hat{\theta}_T - \theta)/2,$$

where $x_t = (1, y_{t-1})'$. We have

$$F_{T} \stackrel{L}{\to} \frac{1}{2} \left[W(1) \frac{1}{2} \{ [W(1)]^{2} - 1 \} \right] \times \left[\frac{1}{\int W(r) dr} \int W(r) dr \right]^{-1} \left[\frac{W(1)}{\frac{1}{2} \{ [W(1)]^{2} - 1 \}} \right].$$

Sample size T	Probability that F test is greater than entry										
	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01			
				Case 2							
	(F test	of $\alpha = 0$,	$\rho = 1 \text{ ir}$	regressi	on $y_t = a$	$\alpha + \rho y_{t-}$	$_1 + u_t$				
25	0.29	0.38	0.49	0.65	4.12	5.18	6.30	7.88			
50	0.29	0.39	0.50	0.66	3.94	4.86	5.80	7.00			
100	0.29	0.39	0.50	0.67	3.86	4.71	5.57	6.7			
250	0.30	0.39	0.51	0.67	3.81	4.63	5.45	6.52			
50 0	0.30	0.39	0.51	0.67	3.79	4.61	5.41	6.4			
∞	0.30	0.40	0.51	0.67	3.78	4.59	5.38	6.4			

Figure 5: Table 3 Critical values for the Dickey-Fuller F test

Example 1 (nominal interest rate)

The estimated regression now is

$$i_t = 0.211 + 0.96691$$
 i_{t-1} , $(0.112) (0.019133)$

The Dickey-Fuller ρ test is

$$T(\hat{\rho}_T - 1) = 168(0.96691 - 1) = -5.56,$$

The critical value is found by interpolation to be -13.8. Since -5.56 > -13.8, the null of a unit root is accepted at the 5% level.

The Dickey-Fuller *t* test is

$$(0.96691 - 1)/0.019133 = -1.73.$$
 (26)

Since -1.73 > -2.89 (the cv when T=100), the null of $\rho=1$ is again accepted.

Example 1 (nominal interest rate)

We further consider the joint hypothesis that $\alpha = 0$ and $\rho = 1$.

The Dickey Fuller F statistic is 1.81. This would have an nonstandard distribution. The 5% critical value is found by interpolation to be 4.67. Since 1.81 < 4.67, the joint null is accepted.

Dickey-Fuller tests of Unit Root: Case 3

We now consider Case 3

```
Case 3 Estimated regression: y_t = \alpha + \rho y_{t-1} + u_t

True process: y_t = \alpha + y_{t-1} + u_t \ \alpha \neq 0, u_t \sim i.i.d.(0, \sigma^2)
```

Standard Inference for Case 3

Note that under the null, $y_t = \alpha + y_{t-1} + u_t$, we have

$$y_t = y_0 + \alpha t + (u_1 + \ldots + u_t) = y_0 + \alpha t + \xi_t,$$

where $\xi_t = u_1 + \ldots + u_t$ with $\xi_0 = 0$. This leads to

$$\sum_{t=1}^{T} y_{t-1} = \sum_{t=1}^{T} [y_0 + \alpha(t-1) + \xi_{t-1}],$$

where the second term is $O(T^2)$, while the last term is $O(T^{3/2})$. Thus, y_{t-1} behaves approximately as $\alpha(t-1)$, a time trend.

The asymptotic distribution of the OLS estimate is

$$\begin{bmatrix} T^{1/2}(\hat{\alpha}_{\mathcal{T}} - \alpha) \\ T^{3/2}(\hat{\rho}_{\mathcal{T}} - 1) \end{bmatrix} \xrightarrow{L} \mathsf{N}(0, \sigma^2 Q^{-1}),$$

where $Q = \begin{vmatrix} 1 & \alpha/2 \\ \alpha/2 & \alpha^2/3 \end{vmatrix}$. Therefore,

$$(\hat{\rho}_{\tau}-1)/\hat{\sigma}_{\hat{\sigma}_{\tau}} \xrightarrow{L} N(0,1).$$

The normal and F critical values are applicable (West, 1988).

Dickey-Fuller tests of Unit Root: Case 4

We now consider Case 4

Case 4 Estimated regression: $y_t = \alpha + \delta t + \rho y_{t-1} + u_t$ True process: $y_t = \alpha + y_{t-1} + u_t$ α any, $u_t \sim i.i.d.N(0, \sigma^2)$

Dickey-Fuller ρ test for Case 4

For this case, the true value of α turns out not to matter for the asymptotic distribution.

Note that the estimated regression can be equivalently be written as

$$y_{t} = (1 - \rho)\alpha + \rho[y_{t-1} - \alpha(t-1)] + (\delta + \rho\alpha)t + u_{t},$$

= $\alpha^{*} + \rho^{*}\xi_{t-1} + \delta^{*}t + u_{t},$ (27)

where
$$\alpha^* = (1 - \rho)\alpha$$
, $\rho^* = \rho$, $\delta^* = (\delta + \rho\alpha)$, and $\xi_t = y_t - \alpha t$.

The maintained hypothesis is that $\alpha=\alpha_0, \rho=1$, and $\delta=0$, which in the transformed system would mean $\alpha^*=0, \rho^*=1$, and $\delta^*=\alpha_0$.

The asymptotic distribution is

$$\begin{bmatrix} T^{1/2} \hat{\alpha}_{T}^{*} \\ T(\hat{\rho}_{T}^{*} - 1) \\ T^{3/2} (\hat{\delta}_{T}^{*} - \alpha_{0}) \end{bmatrix}$$

$$\xrightarrow{L} \begin{bmatrix} \sigma & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \sigma \end{bmatrix} \begin{bmatrix} 1 & \int W(r) dr & \frac{1}{2} \\ \int W(r) dr & \int [W(r)]^{2} dr & \int rW(r) dr \\ \frac{1}{2} & \int rW(r) dr & \frac{1}{3} \end{bmatrix}^{-1}$$

$$\times \begin{bmatrix} W(1) \\ \frac{1}{2} \{ [W(1)]^{2} - 1 \} \\ w(1) - \int W(r) dr \end{bmatrix}. \tag{28}$$

The asymptotic distribution of $\hat{\rho}_T$ is identical to $\hat{\rho}_T^*$, denoted as $DF_{o,case4}$.

Sample		P	robability	that T(p̂ -	- 1) is less	than entr	у	
size T	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99
				Case 1				
25	-11.9	-9.3	-7.3	-5.3	1.01	1.40	1.79	2.28
50	-12.9	-9.9	-7.7	-5.5	0.97	1.35	1.70	2.16
100	-13.3	-10.2	-7.9	-5.6	0.95	1.31	1.65	2.09
250	-13.6	-10.3	-8.0	-5.7	0.93	1.28	1.62	2.04
500	-13.7	-10.4	-8.0	-5.7	0.93	1.28	1.61	2.04
œ	-13.8	- 10.5	-8.1	-5.7	0.93	1.28	1.60	2.03
				Case 2				
25	-17.2	-14.6	-12.5	-10.2	-0.76	0.01	0.65	1.40
50	-18.9	-15.7	-13.3	-10.7	-0.81	-0.07	0.53	1.22
100	-19.8	-16.3	-13.7	-11.0	-0.83	-0.10	0.47	1.14
250	-20.3	-16.6	-14.0	-11.2	-0.84	-0.12	0.43	1.09
500	-20.5	-16.8	-14.0	-11.2	-0.84	-0.13	0.42	1.06
œ	-20.7	-16.9	-14.1	-11.3	-0.85	-0.13	0.41	1.04
				Case 4				
25	-22.5	-19.9	-17.9	-15.6	-3.66	-2.51	-1.53	-0.43
50	-25.7	-22.4	-19.8	-16.8	-3.71	-2.60	-1.66	-0.65
100	-27.4	-23.6	-20.7	-17.5	-3.74	-2.62	-1.73	-0.75
250	-28.4	-24.4	-21.3	-18.0	-3.75	-2.64	-1.78	-0.82
500	-28.9	-24.8	-21.5	-18.1	-3.76	-2.65	-1.78	-0.84
∞	-29.5	-25.1	-21.8	-18.3	-3.77	-2.66	-1.79	-0.87

The probability shown at the head of the column is the area in the left-hand tail.

Figure 6 : Table 1 Critical values for the Dickey-Fuller ho test

Dickey-Fuller t test for Case 4

The asymptotic distribution of the OLS $\it t$ test of the hypothesis that ho=1 is given by

$$t_T = T(\hat{\rho}_T - 1) \div (T^2 \cdot \hat{\sigma}_{\hat{\rho}_T}^2)^{1/2} \xrightarrow{p} T(\hat{\rho}_T - 1) \div \sqrt{Q} \xrightarrow{\triangle} DF_{t,case4},$$

where

$$Q = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & \int W(r)dr & \frac{1}{2} \\ \int W(r)dr & \int [W(r)]^2 dr & \int rW(r)dr \\ \frac{1}{2} & \int rW(r)dr & \frac{1}{3} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Sample		Probability that $(\hat{\rho}-1)/\hat{\sigma}_{\hat{\rho}}$ is less than entry									
size T	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99			
				Case 1							
25	-2.66	-2.26	-1.95	-1.60	0.92	1.33	1.70	2.16			
50	-2.62	-2.25	-1.95	-1.61	0.91	1.31	1.66	2.08			
100	-2.60	-2.24	-1.95	-1.61	0.90	1.29	1.64	2.03			
250	-2.58	-2.23	-1.95	-1.62	0.89	1.29	1.63	2.01			
500	-2.58	-2.23	-1.95	-1.62	0.89	1.28	1.62	2.00			
œ	-2.58	-2.23	-1.95	-1.62	0.89	1.28	1.62	2.00			
				Case 2							
25	-3.75	-3.33	-3.00	-2.63	-0.37	0.00	0.34	0.72			
50	-3.58	-3.22	-2.93	-2.60	-0.40	-0.03	0.29	0.66			
100	-3.51	-3.17	-2.89	-2.58	-0.42	-0.05	0.26	0.63			
250	-3.46	-3.14	-2.88	-2.57	-0.42	-0.06	0.24	0.62			
500	-3.44	-3.13	-2.87	-2.57	-0.43	-0.07	0.24	0.61			
œ	-3.43	-3.12	-2.86	-2.57	-0.44	-0.07	0.23	0.60			
				Case 4							
25	-4.38	-3.95	-3.60	-3.24	-1.14	-0.80	-0.50	-0.15			
50	-4.15	-3.80	-3.50	-3.18	-1.19	-0.87	-0.58	-0.24			
100	-4.04	-3.73	-3.45	-3.15	-1.22	-0.90	-0.62	-0.28			
250	-3.99	-3.69	-3.43	-3.13	-1.23	-0.92	-0.64	-0.31			
500	-3.98	-3.68	-3.42	-3.13	-1.24	-0.93	-0.65	-0.32			
∞	-3.96	-3.66	-3.41	-3.12	-1.25	-0.94	-0.66	-0.33			

The probability shown at the head of the column is the area in the left-hand tail.

Figure 7: Table 2 Critical values for the Dickey-Fuller t test

Dickey-Fuller *F* test for case 4

We are concerned with the hypothesis that $\rho=1$ and $\delta=0$. The F statistic can be derived in a similar way to that of case 2.

Sample size T		Probability that F test is greater than entry									
	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01			
				Case 2							
	(F test	of $\alpha = 0$,	$\rho = 1 \text{ in}$	regressi	on $y_t = c$	$\alpha + \rho y_{t-}$	$_1 + u_t$				
25	0.29	0.38	0.49	0.65	4.12	5.18	6.30	7.88			
50	0.29	0.39	0.50	0.66	3.94	4.86	5.80	7.06			
100	0.29	0.39	0.50	0.67	3.86	4.71	5.57	6.70			
250	0.30	0.39	0.51	0.67	3.81	4.63	5.45	6.52			
500	0.30	0.39	0.51	0.67	3.79	4.61	5.41	6.47			
∞	0.30	0.40	0.51	0.67	3.78	4.59	5.38	6.43			
				Case 4							
	(F test of	$\delta = 0, \rho$	= 1 in re	egression	$y_t = \alpha$	$+\delta t + \rho$	$y_{t-1} + u_t$				
25	0.74	0.90	1.08	1.33	5.91	7.24	8.65	10.61			
50	0.76	0.93	1.11	1.37	5.61	6.73	7.81	9.31			
100	0.76	0.94	1.12	1.38	5.47	6.49	7.44	8.73			
250	0.76	0.94	1.13	1.39	5.39	6.34	7.25	8.43			
500	0.76	0.94	1.13	1.39	5.36	6.30	7.20	8.34			
∞	0.77	0.94	1.13	1.39	5.34	6.25	7.16	8.27			

The probability shown at the head of the column is the area in the right-hand tail.

Figure 8 : Table 3 Critical values for the Dickey-Fuller F test

Summary of Dickey-Fuller tests for unit roots

► Case 1:

- Estimated regression: $y_t = \rho y_{t-1} + u_t$
- ► True process: $y_t = y_{t-1} + u_t \ u_t \sim i.i.d.N(0, \sigma^2)$
- $ightharpoonup T(\hat{\rho}_T 1)$ has the distribution $DF_{\rho,case1}$ (Case 1 in Table 1)
- $(\hat{\rho}_T 1)/\hat{\sigma}_{\hat{\rho}_T}$ has the distribution $DF_{t,case1}$ (Case 1 in Table 2)

► Case 2:

- Estimated regression: $y_t = \alpha + \rho y_{t-1} + u_t$
- ► True process: $y_t = y_{t-1} + u_t \ u_t \sim i.i.d.N(0, \sigma^2)$
- ▶ $T(\hat{\rho}_T 1)$ has the distribution $DF_{\rho,case2}$ (Case 2 in Table 1)
- $(\hat{\rho}_T 1)/\hat{\sigma}_{\hat{\rho}_T}$ has the distribution $DF_{t,case2}$ (Case 2 in Table 2)
- ▶ OLS F test of the joint hypothesis that $\alpha=0$ and $\rho=1$ has nonstandard distribution (Dickey and Fuller, 1981), see Case 2 in Table 3

- Case 3:
 - Estimated regression: $y_t = \alpha + \rho y_{t-1} + u_t$
 - ► True process: $y_t = \alpha + y_{t-1} + u_t \ \alpha \neq 0, \ u_t \sim i.i.d.(0, \sigma^2)$
 - $(\hat{\rho}_T 1)/\hat{\sigma}_{\hat{\rho}_T} \xrightarrow{L} N(0,1)$
- ► Case 4:
 - Estimated regression: $y_t = \alpha + \rho y_{t-1} + \delta t + u_t$
 - ▶ True process: $y_t = \alpha + y_{t-1} + u_t \alpha$ any, $u_t \sim i.i.d.N(0, \sigma^2)$
 - ▶ $T(\hat{\rho}_T 1)$ has the distribution $DF_{\rho,case4}$ (Case 4 in Table 1)
 - $(\hat{\rho}_T 1)/\hat{\sigma}_{\hat{\rho}_T}$ has the distribution $DF_{t,case4}$ (Case 4 in Table 2)
 - ▶ OLS F test of joint hypothesis that $\rho=1$ and $\delta=0$ has nonstandard distribution (Case 4 in Table 3)

Which is the 'correct' case to use?

- 1. If the analyst has a specific null hypothesis about the process that generated the data, then obviously this would guide the choice of test.
- 2. In the absence of such guidance, one general principle would be to fit a specification that is a plausible description of the data under both the null hypothesis and the alternative. Thus principle would suggest using the case 4 test for a series with an obvious trend and the case 2 test for series without a significant trend.

Example 1 (nominal interest rate)

FIGURE 17.2 U.S. nominal interest rate on 3-month Treasury bills, data sampled quarterly but quoted at an annual rate, 1947:I to 1989:I.

Although the time series has tended upward over this sample period, there is nothing in economic theory to suggest that nominal interest rates should exhibit a deterministic time trend, so a natural null hypothesis is that the true process is a random walk without trend. In terms of framing a plausible alternative, it is difficult to maintain that these data could have been generated by $i_t = \rho i_{t-1} + u_t$ with $|\rho|$ significantly less than 1. If these data were to be described by a stationary process, surely the process would have a positive mean. This argues for including a constant term in the estimated regression, even though under the null hypothesis the true process does not contain a constant term. Thus, case 2 is a sensible approach for these data.

Example 2 (U.S. real GNP)

FIGURE 17.3 U.S. real GNP, data sampled quarterly but quoted at an annual rate in billions of 1982 dollars, 1947:I to 1989:I.

Given a growing population and technological improvements, such a series would certainly be expected to exhibit a persistent upward trend, and this trend is unmistakable in the figure. The question is whether this trend arises from positive drift term of a random walk:

$$H_0: y_t = \alpha + y_{t-1} + u_t, \alpha > 0,$$
 (29)

or from a deterministic time trend added to a stationary AR(1):

$$H_A: y_t = \alpha + \delta t + \rho y_{t-1} + u_t, |\rho| < 1.$$
 (30)

Thus the recommended test statistics for this case are those described in case 4.

The following model for 100 times the log of real GNP (denoted y_t) was estimated by OLS regression:

$$y_t = 27.24 + 0.96252 \ y_{t-1} + 0.02753 \ t.$$
(0.019304) (0.01521)

The sample size is T=168. The Dickey-Fuller ρ test is

$$T(\hat{\rho} - 1) = 168(0.96252 - 1.0) = -6.3.$$
 (31)

Since -6.3 > -21.0, the null hypothesis that GNP is characterized by a random walk with possible drift is accepted at the 5% level. The Dickey-Fuller t test,

$$t = \frac{0.96252 - 1.0}{0.019304} = -1.94,\tag{32}$$

exceeds the 5% critical value of -3.44, so that the null hypothesis of a unit root is accepted by this test as well. Finally the F test of the joint null hypothesis that $\delta=0$ and $\rho=1$ is 2.44. Since this is less than the 5% critical value of 6.42 from Table 3, this null hypothesis is again accepted.

Today's Topics

- 1. Rewiew of AR(1)
- 2. Brownian Motion and Functional CLT
- Asymptotic properties of Unit Root processes and tests for Unit Root
- 4. Generalization to processes with serial correlation

Today's Topics

- 1. Rewiew of AR(1)
- 2. Brownian Motion and Functional CLT
- Asymptotic properties of Unit Root processes and tests for Unit Root
- 4. Generalization to processes with serial correlation
 Asymptotic Results for unit root processes with general serial correlation

Phillips-Perron Unit Root test for Case 2 Augmented Dickey-Fuller tests for unit roots

Serially correlated disturbances

Proposition 2 (Beveridge and Nelson (1981) Decomposition)

$$u_t = \phi(L)\varepsilon_t = \sum_{j=0}^{\infty} \phi_j \varepsilon_{t-j}$$

where

$$egin{array}{lcl} E(arepsilon_t) &=& 0 \ E(arepsilon_t arepsilon_{ au}) &=& \left\{egin{array}{ll} \sigma^2 & ext{for } t= au \ 0 & ext{otherwise} \end{array}
ight. \ \sum_{j=0}^{\infty} j \cdot |\phi_j| &<& \infty. \end{array}$$

Then

$$u_1+\ldots+u_t=\phi(1)\cdot(\varepsilon_1+\ldots+\varepsilon_t)+\eta_t-\eta_0,$$
 where $\phi(1)=\sum\phi_j,\ \eta_t=\sum\alpha_j\varepsilon_{t-j},\ \alpha_j=-(\phi_{j+1}+\phi_{j+2}+\ldots),$ and $\sum|\alpha_j|<\infty.$

Proposition 3 Let $u_t = \phi(L)\varepsilon_t = \sum_{j=0}^{\infty} \phi_j \varepsilon_{t-j}$, where $\sum_{j=0}^{\infty} j \cdot |\phi_j| < \infty$ and $\{\varepsilon_t\}$ is an *i.i.d.* sequence with mean zero, variance σ^2 , and finite fourth moment. Define

$$\gamma_{j} = E(u_{t}u_{t-j}) = \sigma^{2} \sum_{s=0}^{\infty} \phi_{s}\phi_{s+j} \text{ for } j = 0, 1, 2, \cdots$$

$$\lambda = \sigma \sum_{j=0}^{\infty} \phi_{j} = \sigma \cdot \phi(1)$$

$$y_{t} = u_{1} + u_{2} + \cdots + u_{t} \text{ for } t = 1, 2, \cdots, T$$

with $y_0 = 0$, Then

(a)
$$T^{-1/2} \sum_{t=1}^{T} u_t \xrightarrow{L} \lambda \cdot W(1);$$

(b) $T^{-1/2} \sum_{t=1}^{T} u_{t-j} \varepsilon_t \xrightarrow{L} N(0, \sigma^2 \gamma_0)$ for $j = 1, 2, \dots;$
(c) $T^{-1} \sum_{t=1}^{T} u_t u_{t-j} \xrightarrow{P} \gamma_j$ for $j = 0, 1, 2, \dots;$

(c)
$$T = \sum_{t=1}^{T} u_t u_{t-j} \rightarrow \gamma_j$$
 for $j = 0, 1, 2, \cdots$,
(d) $T^{-1} \sum_{t=1}^{T} y_{t-1} \varepsilon_t \xrightarrow{L} (1/2) \sigma \cdot \lambda \cdot \{ [W(1)]^2 - 1 \};$
(e) $T = \sum_{t=1}^{T} y_{t-1} u_{t-j}$

$$\frac{L}{\rightarrow} \begin{cases}
(1/2)\{\lambda^2 \cdot [W(1)]^2 - \gamma_0\} & \text{for } j = 0 \\
(1/2)\{\lambda^2 \cdot [W(1)]^2 - \gamma_0\} + \gamma_0 + \gamma_1 + \dots + \gamma_{j-1}
\end{cases}$$

$$\text{for } j = 1, 2, \dots;$$
(f) $T^{-3/2} \sum_{t=1}^{T} y_{t-1} \stackrel{L}{\rightarrow} \lambda \cdot \int_{0}^{1} W(r) dr;$

(g)
$$T^{-3/2} \sum_{t=1}^{T} y_{t-1} \to \lambda \cdot \int_{0}^{T} VV(r)dr;$$

 $V(r) = \int_{0}^{T} V(r)dr$ for $f = 0, 1, 2, \dots;$

(h)
$$T^{-2} \sum_{t=1}^{T} y_{t-1}^2 \xrightarrow{L} \lambda^2 \cdot \int_0^1 [W(r)]^2 dr;$$

(i) $T^{-5/2} \sum_{t=1}^{T} t y_{t-1} \xrightarrow{L} \lambda \cdot \int_0^1 r W(r) dr;$
(i) $T^{-3} \sum_{t=1}^{T} t y_{t-1}^2 \xrightarrow{L} \lambda^2 \cdot \int_0^1 r [W(r)]^2 dr;$

(j)
$$T^{-3} \sum_{t=1}^{T} t y_{t-1}^2 \xrightarrow{L} \lambda^2 \cdot \int_0^1 r \cdot [W(r)]^2 dr$$
;

(k)
$$T^{(\nu+1)} \sum_{t=1}^{T} t^{\nu} \to 1/(\nu+1)$$
 for $\nu = 0, 1, \dots, p$

Unit Root tests with serial correlation

Two approaches:

- ▶ Phillips-Perron Tests: Phillips (1987) and Phillips and Perron (1988) still use OLS estimation, but modify the statistics
- ▶ Augmented Dickey-Fuller Tests: Said and Dickey (1984) add lagged changes of *y* as explanatory variables in the regression to deal with serial correlation

Today's Topics

- 1. Rewiew of AR(1)
- 2. Brownian Motion and Functional CLT
- 3. Asymptotic properties of Unit Root processes and tests for Unit Root
- 4. Generalization to processes with serial correlation

Asymptotic Results for unit root processes with general serial correlation

Phillips-Perron Unit Root test for Case 2

Augmented Dickey-Fuller tests for unit roots

Phillips-Perron tests for unit roots

Case 2:

Estimated regression: $y_t = \alpha + \rho y_{t-1} + u_t$ True process: $y_t = y_{t-1} + u_t$ where $u_t = \phi(L)\varepsilon_t = \sum_{j=0}^{\infty} \phi_j \varepsilon_{t-j}$ satisfies Proposition 3.

We have

$$T(\hat{\rho}_T - 1) \xrightarrow{L} DF_{\rho,case2} + \frac{(1/2) \cdot (\lambda^2 - \gamma_0)}{\lambda^2 \left\{ \int [W(r)]^2 dr - \left[\int W(r) dr \right]^2 \right\}},$$

where the second term in the right hand side is a correction for serial correlation. By modifying the test statistic, we have

$$Z_{\rho} = T(\hat{\rho}_{T} - 1) - (1/2) \{ T^{2} \cdot \hat{\sigma}_{\hat{\rho}_{T}}^{2} \div s_{T}^{2} \} (\hat{\lambda}_{T}^{2} - \hat{\gamma}_{0,T})
\stackrel{L}{\rightarrow} DF_{\rho,case2}$$

where

$$\hat{\gamma}_{j,T} = T^{-1} \sum_{t=j+1}^{T} \hat{u}_t \hat{u}_{t-j}$$

$$\hat{u}_t = OLS \text{ sample residual from the estimated regression}$$

$$\hat{\lambda}_T^2 = \hat{\gamma}_{0,T} + 2 \cdot \sum_{j=1}^{q} [1 - j/(q+1)] \hat{\gamma}_{j,T}$$

$$s_T^2 = (T - k)^{-1} \sum_{t=1}^{T} \hat{u}_t^2$$

$$k = \text{number of parameters in estimated regression}$$

$$\hat{\sigma}_{\hat{n}_T} = OLS \text{ standard error for } \hat{\rho}_T$$

We also have

$$Z_{t} = (\hat{\gamma}_{0,T}/\hat{\lambda}_{T}^{2})^{1/2} \cdot (\hat{\rho}_{T} - 1)/\hat{\sigma}_{\hat{\rho}_{T}} \\ - (1/2)(\hat{\lambda}_{T}^{2} - \hat{\gamma}_{0,T})(1/\hat{\lambda}_{T})\{T \cdot \hat{\sigma}_{\hat{\rho}_{T}} \div s_{T}\} \\ \stackrel{L}{\rightarrow} DF_{t,case2}.$$

For Case 1, we have $Z_{\rho} \xrightarrow{L} DF_{\rho,case1}$ and $Z_{t} \xrightarrow{L} DF_{t,case1}$. For Case 4, we have $Z_{\rho} \xrightarrow{L} DF_{\rho,case4}$ and $Z_{t} \xrightarrow{L} DF_{t,case4}$.

Then Table 1 and 2 can be used to find out the critical values for the Phillips-Perron test.

Today's Topics

- 1. Rewiew of AR(1)
- 2. Brownian Motion and Functional CLT
- 3. Asymptotic properties of Unit Root processes and tests for Unit Root
- 4. Generalization to processes with serial correlation

Asymptotic Results for unit root processes with general serial correlation

Phillips-Perron Unit Root test for Case 2

Augmented Dickey-Fuller tests for unit roots

Augmented Dickey-Fuller tests for unit roots

Suppose y_t were really generated from an AR(p) process,

$$(1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p) y_t = \varepsilon_t, \tag{33}$$

where $\varepsilon_t \sim i.i.d.(0, \sigma^2)$, and finite fourth moment.

It is easy to verify that (33) can equivalently be written as

$$y_t = \rho y_{t-1} + \zeta_1 \Delta y_{t-1} + \zeta_2 \Delta y_{t-2} + \dots + \zeta_{p-1} \Delta y_{t-p+1} + \varepsilon_t,$$
 (34)

with

$$\rho = \phi_1 + \phi_2 + \dots + \phi_p,$$

$$\zeta_j = -[\phi_{j+1} + \phi_{j+2} + \dots + \phi_p] \text{ for } j = 1, 2, \dots, p-1.$$

Under the null hypothesis that $\rho=1$, expression (34) can be written as

$$(1 - \zeta_1 L - \zeta_2 L^2 - \dots - \zeta_{p-1} L^{p-1}) \Delta y_t = \varepsilon_t$$

or

$$\Delta y_t = u_t$$

where

$$u_t = (1 - \zeta_1 L - \zeta_2 L^2 - \dots - \zeta_{p-1} L^{p-1})^{-1} \varepsilon_t.$$

This indicates that y_t behaves like the variable y_t described in Proposition 3, with

$$\phi(L) = (1 - \zeta_1 L - \zeta_2 L^2 - \dots - \zeta_{p-1} L^{p-1})^{-1}.$$

Case 1:

Estimated Regression:

$$y_t = \rho y_{t-1} + \zeta_1 \Delta y_{t-1} + \zeta_2 \Delta y_{t-2} + \dots + \zeta_{p-1} \Delta y_{t-p+1} + \varepsilon_t.$$

- \blacktriangleright True process: same specification as estimated regression with $\rho=1$
- Any t or F test involving $\zeta_1, \zeta_2, \cdots, \zeta_{p-1}$ can be compared with the usual t or F tables for an asymptotically valid test.
- ▶ The augmented Dickey-Fuller ρ test

$$Z_{DF} = \frac{T \cdot (\hat{\rho}_{T} - 1)}{1 - \hat{\zeta}_{1,T} - \hat{\zeta}_{2,T} - \dots - \hat{\zeta}_{p-1,T}} \xrightarrow{L} DF_{\rho,case1}$$

▶ OLS t test of $\rho = 1 \xrightarrow{L} DF_{t,case1}$

Case 2:

Estimated Regression:

$$y_t = \alpha + \rho y_{t-1} + \zeta_1 \Delta y_{t-1} + \zeta_2 \Delta y_{t-2} + \dots + \zeta_{p-1} \Delta y_{t-p+1} + \varepsilon_t.$$
(35)

- \blacktriangleright True process: same specification as estimated regression with $\alpha=$ 0 and $\rho=1$
- Any t or F test involving $\zeta_1, \zeta_2, \cdots, \zeta_{p-1}$ can be compared with the usual t or F tables for an asymptotically valid test.
- ▶ The augmented Dickey-Fuller ρ test $Z_{DF} \xrightarrow{L} DF_{\rho,case2}$
- ▶ OLS t test of $\rho = 1 \xrightarrow{L} DF_{t,case2}$
- ▶ OLS F test of joint hypothesis that $\alpha = 0$ and $\rho = 1$ (Case 2 in Table 3).

Example 1 (nominal interest rate)

The following model was estimated by *OLS* for the interest rate data described in Example 17.3 (standard errors in parentheses):

Dates t=1948:II through 1989:I were used for estimation, so in this case the sample size is T=164. For these estimates, the augmented Dickey-Fuller ρ test [17.7.35] would be

$$\frac{164}{1 - 0.335 + 0.388 - 0.276 + 0.107} (0.96904 - 1) = -5.74.$$

Since -5.74 > -13.8, the null hypothesis that the Treasury bill rate follows a fifth-order autoregression with no constant term, and a single unit root, is accepted at the 5% level. The *OLS* t test for this same hypothesis is

$$(0.96904 - 1)/(0.018604) = -1.66.$$

Since -1.66 > -2.89, the null hypothesis of a unit root is accepted by the augmented Dickey-Fuller t test as well. Finally, the *OLS F* test of the joint null hypothesis that $\rho = 1$ and $\alpha = 0$ is 1.65. Since this is less than 4.68, the null hypothesis is again accepted.

Case 3:

Estimated Regression:

$$y_t = \alpha + \rho y_{t-1} + \zeta_1 \Delta y_{t-1} + \zeta_2 \Delta y_{t-2} + \dots + \zeta_{p-1} \Delta y_{t-p+1} + \varepsilon_t.$$

- ▶ True process: same specification as estimated regression with $\alpha \neq 0$ and $\rho = 1$
- $\hat{\rho}_{\mathcal{T}}$ converges at rate $T^{3/2}$ to a Gaussian variable; all other estimated coefficients converge at rate $T^{1/2}$ to Gaussian variables.
- ► Any t or F test involving any coefficients from the regression can be compared with the usual t or F tables for an asymptotically valid test.

Case 4:

Estimated Regression:

$$y_t = \alpha + \rho y_{t-1} + \delta t + \zeta_1 \Delta y_{t-1} + \zeta_2 \Delta y_{t-2} + \dots + \zeta_{p-1} \Delta y_{t-p+1} + \varepsilon_t.$$

- ▶ True process: same specification as estimated regression with α any value, $\rho=1$, and $\delta=0$
- Any t or F test involving $\zeta_1, \zeta_2, \cdots, \zeta_{p-1}$ can be compared with the usual t or F tables for an asymptotically valid test.
- ▶ The augmented Dickey-Fuller ρ test $Z_{DF} \xrightarrow{L} DF_{\rho,case4}$
- ▶ OLS t test of $\rho = 1 \xrightarrow{L} DF_{t,case4}$
- ▶ OLS F test of joint hypothesis that $\rho = 1$ and $\delta = 0$ (Case 4 in Table 3).

Example 2 (U.S. real GNP)

The following autoregression was estimated by *OLS* for the GNP data in Figure 17.3 (standard errors in parentheses):

$$y_{t} = 0.329 \Delta y_{t-1} + 0.209 \Delta y_{t-2} - 0.084 \Delta y_{t-3}$$

$$- 0.075 \Delta y_{t-4} + 35.92 + 0.94969 y_{t-1} + 0.0378 t.$$
(0.0788)

Here, T = 164 and the augmented Dickey-Fuller ρ test is

$$\frac{164}{1 - 0.329 - 0.209 + 0.084 + 0.075} (0.94969 - 1) = -13.3.$$

Since -13.3 > -21.0, the null hypothesis that the log of GNP is ARIMA(4, 1, 0) with possible drift is accepted at the 5% level. The augmented Dickey-Fuller t test also accepts this hypothesis:

$$(0.94969 - 1)/(0.019386) = -2.60 > -3.44.$$

The OLS F test of the joint null hypothesis that $\rho = 1$ and $\delta = 0$ is 3.74 < 6.42, and so the augmented Dickey-Fuller F test is also consistent with the unit root specification.

Choice of *p* in ADF test

Take Case 2 as an example. Ng and Perron (1995) suggest estimate (35) with p taken to be some prespecified upper bound \bar{p} .

First consider the OLS t test of $\zeta_{\bar{p}-1}=0$. If this null is accepted, then consider OLS F test of $\zeta_{\bar{p}-1}=0$ and $\zeta_{\bar{p}-2}=0$ (F(2,T-k)). The procedure continued sequentially until the joint null hypothesis that $\zeta_{\bar{p}-1}=0,\zeta_{\bar{p}-2}=0,\cdots,\zeta_{\bar{p}-\ell}=0$ is rejected for some ℓ . The recommended regression is then

$$y_t = \alpha + \rho y_{t-1} + \zeta_1 \Delta y_{t-1} + \zeta_2 \Delta y_{t-2} + \dots + \zeta_{\bar{p}-\ell} \Delta y_{t-\bar{p}+\ell} + \varepsilon_t.$$

If no value of ℓ leads to the rejection, the simple Dickey-Fuller test is used.

See Hall (1994) for a variety of alternative approaches for estimating p.

For other issues with unit roots, see Choi (2015), Almost All About Unit Roots, Cambridge University Press.