Warsaw University of Technology

FACULTY OF ELECTRONICS AND INFORMATION TECHNOLOGY

PhD Thesis

in the discipline of Information and Communication Technology

Few-Shot Human Neural Rendering with Partial Information

Kacper Kania, M.Sc.

supervisor Tomasz Trzciński, Prof. PhD DSc.

assistant supervisor Marek Kowalski, PhD DSc.

WARSZAWA 2025

Acknowledgements

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Abstract

This thesis is a series of publications that introduce novel methods for human neural rendering using limited information, focusing on Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS). It explores how these models construct 3D representations from 2D images and demonstrates ways to condition these representations for generating high-quality human renderings. We propose techniques that use simple, interpretable inputs derived from sparse training data and extends these methods to perform effectively in few-shot learning scenarios.

We begin by examining the field of neural radiance fields, addressing limitations in existing approaches and presenting contributions to controllable radiance fields. By incorporating partial and sparse data during training, it leverages the smoothness of neural networks to produce controllable, high-quality human images.

To tackle the reliance on extensive, high-quality data annotations from multi-view videos, we introduce a new method for training neural radiance fields in few-shot, multi-view settings. This approach learns internal deformation templates, which blend smoothly during inference, significantly improving image quality compared to existing baselines and enabling effective human rendering from limited input images.

The work also addresses the need for adaptable computational efficiency during inference. It proposes a fine-to-coarse learning strategy for 3D Gaussian Splatting, which upscales a latent 2D grid that stores Gaussian representations. This strategy achieves competitive results while allowing deployment on various computational devices with minimal quality loss.

In addition, we develop a novel model for controlling radiance fields through environmental lighting. By incorporating precomputed radiance transfer, this model enables physically plausible scene relighting and provides users with intuitive control over lighting in reconstructed scenes.

This research advances the state of the art in controllable neural radiance fields and expands their application to few-shot learning scenarios. These innovations enhance the possibilities for human rendering from limited information and open new directions for future research in the field.

Keywords: Neural Rendering, Neural Radiance Fields, Few-Shot Learning, Human Rendering, Partial Information, Gaussian Splatting

Streszczenie

To jest streszczenie. To jest trochę za krótkie, jako że powinno zająć całą stronę.

Słowa kluczowe: A, B, C

Lay Summary

ok

Contents

Acknowledgements	iii
Abstract	V
treszczenie	vi
ay Summary	ix
Contents	xi
sist of Abbreviations and Symbols	1
dist of Figures	1
ist of Tables	1
Introduction	3
1.1 Motivation and problem statement	3
1.2 Research objectives	3
1.3 Contributions	3
1.4 Thesis outline	S
Background	5
2.1 Neural Rendering	5
2.2 Neural Radiance Field	5
2.3 3D Gaussian Splatting	5
Final remarks and discussion	7
3.1 Conclusions	7
3.2 Future work	7
Bibliography	q

List of Abbreviations and Symbols

List of Figures

List of Tables

- π Stała matematyczna równa stosunkowi obwodu okręgu do jego średnicy
- I Natężenie prądu elektrycznego

Chapter 1

Introduction

With the advent of deep learning, research have been exploring varying ways to apply it to computer graphics. One of the most recent and promising approaches is neural rendering. Neural rendering is a field that combines deep learning and computer graphics to generate realistic images of 3D scenes. The neural radiance field (NeRF) is a popular neural rendering technique that represents a 3D scene as a continuous function that maps 3D coordinates to radiance values. NeRF has shown impressive results in generating photorealistic images of 3D scenes. However, NeRF has limitations in terms of memory and computational requirements, which makes it difficult to scale to large scenes.

To alievate the problem, Kerbl et al. [1] proposed a new technique—3D Gaussian Splatting (3DGS). 3DGS is a neural rendering technique that represents a 3D scene as a set of 3D Gaussian that are splatted to an image space using algorithm proposed by Zwicker et al. [2]. In contrast to NeRF, 3DGS is more memory efficient and can be used to render large scenes. It can also render scenes with millions of points in real-time on a single GPU.

In this thesis, we focus on those two milestone techniques in neural rendering and address their fundamental problem—lack of controllability.

- 1.1 Motvation and problem statement
- 1.2 Research objectives
- 1.3 Contributions
- 1.4 Thesis outline

Chapter 2

Background

- 2.1 Neural Rendering
- 2.2 Neural Radiance Field
- 2.3 3D Gaussian Splatting

Chapter 3

Final remarks and discussion

- 3.1 Conclusions
- 3.2 Future work

Bibliography

- [1] Kerbl, B., Kopanas, G., Leimkühler, T. and Drettakis, G. [2023], '3D Gaussian Splatting for Real-Time Radiance Field Rendering', TOG~42(4), 139–1.
- [2] Zwicker, M., Pfister, H., Van Baar, J. and Gross, M. [2001], EWA volume splatting, in 'Proceedings Visualization, 2001. VIS'01.', IEEE, pp. 29–538.