

Distilling from Twitter: New Perspectives in Healthcare Organizations Using Association Rule Mining

Aditya Singhal Group: 34

Course: (2023W) COMP-5112-WA - Research Methodology Comp Sci

CONTENTS

- Main Objectives
- Research Overview
- What is Association Rule Mining?
- Data Set
- Pre-processing
- Itemsets and Association Rules
- Graphical Visualizations
- Quantitative Analysis
- Principal findings and Conclusions

Objectives:

 Examine Twitter usage by US and Canadian health agencies and pharmaceutical companies

Identify text patterns influencing the tweets' content.

Association rule mining is a rule-based machine learning method for discovering interesting if/then statements that help uncover relationships between variables in large databases.

Data Set

Name of organization (Twitter handle)	Total tweets, N					
Public health agencies						
Centers for Disease Control and Prevention (CDCgov)	7,511					
Indian Health Service (IHSgov)	1,632					
Health Canada and PHAC (GovCanHealth)	52,695					
Government of Canada for Indigenous (GCIndigenous)	3,725					
Total	65,563					
Pharmaceutical companies						
AstraZeneca (AstraZeneca)	1,284					
Glaxo SmithKline (GSK)	2,359					
Johnson & Johnson (JNKNews)	2,368					
Novartis (Novartis)	715					
Pfizer (pfizer)	2,474					
Total	9,200					
Non-governmental organization						
World Health Organization (WHO)	24,581					

Table 1: Number of tweets for each organization.

https://creation.co/knowledge/top-50-pharma-tracker-hcps-share-mixed-opinions-on-covid-

19-vaccines-and-treatment-data/

Pre-processing

```
PORTER STEMMER = PorterStemmer()
def clean tweets(x, STOPWORDS):
   # Lowercase
    sentence = x.lower()
   # Remove all non-alphabets (punctuation, numbers, new-line characters and extra-spaces)
    sentence = re.sub('http[s]?://\S+', '', sentence)
    sentence = re.sub(r'([^a-zA-Z ]+?)', '', sentence)
    #print(sentence)
    #sentence = sentence.replace('\n', '')
   # Remove URLS
    sentence = sentence.replace("world health organization", "who")
   #print(sentence)
   # Remove double spacing
    #sentence = re.sub('\s+', ' ', sentence)
    tokenized tweet = [word for word in word tokenize(sentence) if word not in STOPWORDS]
    tokenized tweet = [PORTER STEMMER.stem(word) for word in tokenized tweet]
    return tokenized tweet
```

```
# Plotting the wordcloud
# you can specify fonts, stopwords, background color and other options
import matplotlib.pyplot as plt
from wordcloud import WordCloud, STOPWORDS
# Creating the custom stopwords
customStopwords=list(stopwords df)
wordcloudimage = WordCloud(
                          max words=100,
                          max font size=500,
                          font step=2,
                          stopwords=customStopwords,
                          background color='white',
                          width=1000,
                          height=720
                          ).generate(Tweet_Texts_Cleaned)
plt.figure(figsize=(15,7))
plt.axis("off")
plt.imshow(wordcloudimage)
wordcloudimage
plt.show()
```


(b) Pharmaceutical companies

(c) World Health Organization

Figure 3: Word clouds for different Twitter groups. Public health agencies and WHO shared content focused on COVID-19.

Language use and Style using Itemsets and Association Rules

- Mlxtend python library for ARM
- Data set is encoded in the form of *Numpy* arrays using *TransactionEncoder()* API.
- Using *fit* and *transform* methods, the input data is transformed into a one-hot encoded *Numpy* boolean array
- Generate rules of the form X \rightarrow Y by performing a grid search, where X is the antecedent and Y refers to the consequent. To find an interesting rule, we calculate the confidence metric $confidence(A \rightarrow C) = \frac{support(A \rightarrow C)}{support(A)} \; ; range: [0,1]$

where

 $support(A \to C) = support(A \cup C) \; ; range : [0,1] \; (2)$

(1)

• Lift metric to filter rules having statistically independent antecedents and consequents, i.e., lift \geq 1. $lift(A \rightarrow C) = \frac{confidence(A \rightarrow C)}{support(C)} \quad range: [0, \infty)$

Table 2: Grid search parameters used for obtaining the number of relevant association rules for each Twitter group.

0.1

0.00625

0.5

1.0

0.1

0.01

World health organization

ARM (Rules)

```
matrix_df = pd.DataFrame(columns=['Threshold Support', 'Threshold Confidence', 'Count of rules'])
for min_support_initialize in np.arange(0.1, 0.5, 0.0625): #0.125, 0.5, 0.0625
for min_threshold_initialize in np.arange(0.5, 1, 0.1):
    frequent_itemsets_temp = apriori(df, min_support=min_support_initialize, use_colnames=True)
    if(frequent_itemsets_temp.empty):
        continue
    rules = association_rules(frequent_itemsets_temp, metric="confidence", min_threshold=min_threshold_initialize)
# rules = rules.sort_values(by='confidence', ascending =False)
# print(rules)
    matrix_df.loc[len(matrix_df.index)] = [min_support_initialize, min_threshold_initialize, len(rules.index)]

print(matrix_df)

Threshold Support Threshold Confidence Count of rules
```

0.1000	0.5	1705.0
0.1000	0.6	1590.0
0.1000	0.7	1316.0
0.1000	0.8	1057.0
0.1000	0.9	986.0
0.1625	0.5	89.0
0.1625	0.6	68.0
0.1625	0.7	57.0
0.1625	0.8	47.0
0.1625	0.9	41.0
0.2250	0.5	6.0
	0.1000 0.1000 0.1000 0.1625 0.1625 0.1625 0.1625	0.1000 0.6 0.1000 0.7 0.1000 0.8 0.1000 0.9 0.1625 0.5 0.1625 0.6 0.1625 0.7 0.1625 0.8 0.1625 0.9

Twitter group	Support threshold	Confidence threshold	Number of rules
Public health agencies	0.1	0.8	1057
Pharmaceutical companies	0.01625	0.5	274
World health organization	0.01	0.8	1022

Table 3: The parameters used for obtaining association rules for each Twitter group.

```
# 3
                            0.1000
                                                        0.8
                                                                      1057.0
          frequent_itemsets_temp = apriori(df, min_support=0.1, use_colnames=True)
          rules = association_rules(frequent_itemsets_temp, metric="confidence", min_threshold=0.8)
          rules[rules['lift']>=1]
          print(rules)
                                       Antecedent
                                                              Overall
                                                                                                                Rule
                                                   Consequent
Twitter group
              Antecedents
                          Consequents
                                                                        Confidence
                                                                                   Lift
                                                                                          Leverage
                                                                                                    Conviction
                                       support
                                                   support
                                                                                                               Support
                                                               support
Public health
              (repli
```

(whoafro, whowpro, pahowho)	(whose aro)	0.019	0.023	0.019	1.0	42.454	0.019	∞	∞
(click, offic)	(contact)	0.016	0.107	0.016	1.0	9.330	0.014	∞	∞
(repli, optout, stop, covid)	(learn, vaccin)	0.122	0.179	0.122	1.0	5.580	0.100	∞	∞

Table 4: Top association rules and performance metrics obtained.

agencies

companies

World Health

Organization

Pharmaceutical

Graphical Visualizations

We create a hierarchical edge bundling chart (d3js library) where Source = antecedents and Target = consequents

Figure 5: Graph networks showing Antecedent - Consequent pairs. Public health agencies and WHO generate sparse graphs focused on COVID-19, while pharmaceutical companies generate a denser graph with words from different topics.

Quantitative Analysis using Evaluation Metrics

$$Tweet_popularity = likes + quotes + retweets + replies$$
 $Rule_support = antecedent_support$
 $+ consequent_support$
 $+ overall_support + confidence$
 $+ lift + leverage + conviction$

$$leverage(A \rightarrow C) = S(A \rightarrow C) - S(A) \times S(C)$$
 where range: [-1,1], and $S = support$
$$conviction(A \rightarrow C) = \frac{1 - support(C)}{1 - confidence(A \rightarrow C)}$$
 where range: [-1,\infty)

Frequency of occurrence of association rules in the top 10% of tweets is calculated, and the results obtained are plotted:

Figure 6: Occurrence of association rules in data set. The top ranked tweets from public health agencies and pharmaceutical companies contain a higher percentage of relevant association rules.

Principal Findings & Conclusion

- Building a reputation goes beyond just evaluating a tweet's popularity in the online sphere.
- Language use and style across the Twitter groups impacts public engagement.
- The association rules, which are mined from existing content, can be utilized to structure future tweets' content to ensure maximum public engagement.

Thank you!

Any questions?