Факультет компьютерных технологий и прикладной математики Кафедра информационных технологий 02.03.03

Приложение нейросетевых алгоритмов Лабораторная работа № 4. Радиальные нейронные сети.

Задание. Требуется реализовать алгоритмы на языке программирования Python без использования специализированных библиотек.

Задача. Провести самообучение нейронной сети Кохонена для решения задачи кластеризации данных об успеваемости студентов. Исходная выборка представлена в таблице 1.

Распределение должно осуществляться строго по 4 кластерам. В качестве входных переменных используем x_1 - x_7 , переменная x_8 не будет использоваться для обучения, однако информация о ее значениях будет задействована в ходе кластерного анализа. Таким образом, структурно сеть будет состоять из единственного слоя нейронов, имеющего 7 входов и 4 выхода.

Выполнить линейную нормализацию аналоговых значений входных переменных выборки в пределах [0, 1].

Дискретные значения опишем следующим образом:

- 1. Пол студента: 0 женский, 1 мужской.
- 2. Наличие всех зачетов: 0 нет, 1 да.

Рисунок 1 — Структура нейронной сети Кохонена для кластеризации студентов

Таблица 1 – Исходная выборка данных об успеваемости студентов

3.6	Петемодния высо		По- луч. Рейтинг по дисциплинам						Ко- эфф.
№ при- мера	Фамилия	Пол x ₁	все за- четы	Ис- то- рия	Инж. гра- фика	Ма- тем. <i>x</i> ₅	Орг. хи- мия	Фи- зика <i>x</i> ₇	сти- пен- дии
	_		<i>x</i> ₂	x_3	<i>X</i> ₄	_	x_6	,	<i>x</i> ₈
1	Варданян	M	Да	60	79	60	72	63	1,00
2	Горбунов	M	Нет	60	61	30	5	17	0,00
3	Гуменюк	Ж	Нет	60	61	30	66	58	0,00
4	Егоров	M	Да	85	78	72	70	85	1,25
5	Захарова	Ж	Да	65	78	60	67	65	1,00
6	Иванова	Ж	Да	60	78	77	81	60	1,25
7	Ишонина	Ж	Да	55	79	56	69	72	0,00
8	Климчук	M	Нет	55	56	50	56	60	0,00
9	Лисовский	M	Нет	55	60	21	64	50	0,00
10	Нетреба	M	Нет	60	56	30	16	17	0,00
11	Остапова	Ж	Да	85	89	85	92	85	1,75
12	Пашкова	Ж	Да	60	88	76	66	60	1,25
13	Попов	M	Нет	55	64	0	9	50	0,00
14	Сазон	Ж	Да	80	83	62	72	72	1,25
15	Степоненко	M	Нет	55	10	3	8	50	0,00
16	Терентьева	Ж	Да	60	67	57	64	50	0,00
17	Титов	M	Да	75	98	86	82	85	1,50
18	Чернова	Ж	Да	85	85	81	85	72	1,25
19	Четкин	M	Да	80	56	50	69	50	0,00
20	Шевченко	M	Нет	55	60	30	8	60	0,00

Алгоритм самообучения настроим следующим образом. Выберем начальный коэффициент скорости обучения, равный 0,30, уменьшающийся с каждой эпохой на 0,05. Таким образом, будет выполнено 6 эпох обучения с различным коэффициентом скорости, на каждой из которых будет 20 корректировок весов одного из нейронов.

Сделать выводы о факте получения стипендии в описаниях кластеров на основе анализа значений переменной x_8 , не участвовавшей в процессе обучения.

Полученные описания и обученную нейронную сеть можно использовать для получения характеристики любого другого студента, для которого имеется тот же набор входных данных.