Векторные пространства

Абелева группа V называется векторным пространством над полем F, если определено произведение $\cdot: F \times V \to V$ такое, что:

- для любого $\vec{a} \in V$ верно равенство $1 \cdot \vec{a} = \vec{a}$;
- для любых $x, y \in F$ и $\vec{a} \in V$ верно равенство $x \cdot (y \cdot \vec{a}) = xy \cdot \vec{a}$;
- для всех $x,y \in F$ и $\vec{a} \in V$ верно равенство $(x+y) \cdot \vec{a} = x \cdot \vec{a} + y \cdot \vec{a};$ для всех $x \in F$ и $\vec{a}, \vec{b} \in V$ верно равенство $x \cdot (\vec{a} + \vec{b}) = x \cdot \vec{a} + x \cdot \vec{b}.$

Нетрудно видеть, что следующие абелевы группы являются векторными пространствами (с обычным умножением): векторы на координатной плоскости: \mathbb{R}^2 над \mathbb{R} ; $\mathbb{Q}[x]$ над \mathbb{Q} ; $\mathbb{R}[x_1,\ldots,x_n]$ над \mathbb{Q} ; \mathbb{R} над \mathbb{Q} .

Размерность

Пусть $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\} \in V$ — семейство векторов в векторном пространстве V над полем F. Их *линейной оболочкой* называется множество всех линейных комбинаций $a_1\vec{u}_1 + a_2\vec{u}_2 + \dots a_k\vec{u}_k$, $a_i \in F$, обозначение: $(\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k)$. Векторы называются линейно зависимыми, если какаято их линейная комбинация, в которой не все коэффициенты – нули, равна нуль-вектору. Векторы образуют базис, если они линейно независимы и их линейная оболочка – всё V. Размерностью векторного пространства называется количество элементов базиса, если оно конечно. В противном случае говорят, что пространство бесконечномерно.

- 1. Докажите, что линейная оболочка любого набора векторов сама является векторным (под)пространством.
- 2. Убедитесь, что любое поле является одномерным векторным пространством над самим собой (относительно произведения в этом поле).
- 3. Докажите, что в векторном пространстве \mathbb{R}^2 любой базис имеет размерность 2, т. е. \mathbb{R}^2 двумерно.
- 4. Найдите минимальную мощность базиса $\mathbb{R}[x]$ над \mathbb{R} .
- 5. Докажите, что у векторного пространства $\mathbb R$ над $\mathbb Q$ не может быть конечного, ни даже счётного базиса.
- 6. Докажите, что, если $\langle \vec{u}_1, \vec{u}_2, \dots, \vec{u}_k \rangle = V$, то у пространства V есть базис, состоящий из $\vec{u_i}$.
- 7. В конечномерном пространстве V дан набор $U = \{ \vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k \}$ линейно независимых векторов. Докажите, что, добавив к U несколько векторов, можно получить базис пространства V.
- 8. Докажите, что определение размерности корректно, а именно: в конечномерном пространстве все базисы состоят из одинакового количества векторов.
- 9. Пусть F конечное поле, а p его характеристика. Докажите, что F состоит из p^k элементов, где k некоторое натуральное число.

Векторные пространства

Задачи.

- 10. Докажите, что в любом параллелепипеде $ABCDA_1B_1C_1D_1$ плоскости A_1BD и CB_1D_1 делят диагональ AC_1 на три равные части.
- 11. Функция f каждому вектору v линейного n-мерного пространства ставит в соответствие число f(v), причём для любых векторов u, v и любых чисел α, β значение $f(\alpha u + \beta v)$ не превосходит хотя бы одного из чисел f(u) или f(v). Какое наибольшее количество значений может принимать такая функция?
- 12. Определите, какое наибольшее количество чисел возможно выбрать из чисел 1, 2, . . . , 100 так, чтобы произведение всех чисел никакого набора выбранных чисел не являлось полным квадратом. (Если набор состоит из одного числа, то его считаем произведением чисел набора.)
- 13. В множестве $\{1,\ldots,n\}$ выбрали n+1 различное подмножество A_1 , A_2,\ldots,A_{n+1} . Докажите, что можно выбрать два непустых набора $\{A_{i_1},\ldots,A_{i_p}\}$ и $\{Aj_1,\ldots,A_{j_q}\}$ так, что все числа i_s и j_ζ различны, а объединение подмножеств первого набора совпадает с объединением подмножеств второго набора.