

Monte Carlo Theory & Practice (MCNP)

For Radiation Transport Solutions Lecture 3 Dr Dennis Allen

Lecture 3 Summary

- Random numbers
- Probability distribution sampling
- Particle interactions
- More on tallies

Random Number Generation

- What is Monte Carlo famous for?
- Random number generation
 - The heart of any Monte Carlo method

DILBERT By Scott Adams

"Random number generation is too important to be left to chance" Robert R Coveyou, Research Mathematician, ORNL Pseudo-random number generation

Pseudo RNG (or deterministic RNG)

Algorithm for generating a sequence of numbers whose distribution appears to be random Needs to be "seeded" to start the sequence

Can we ever have a true RNG?

MCNP RNG

- MCNP uses a pseudo-RNG
- The implementation uses 48-bit integers and has a "period" of 2⁴⁶ values ~7.04x10¹³
- This can be exceeded for some problems!
- Random number "stride"
 - The number of random numbers between those used to select source particles

Random Number Generation

- RNGs aim to generate a sequence of random numbers within a fixed range whose distribution is uniform
- ξ generated "random" number
 - Usually within the unit interval $0 \le \xi < 1$
- $P(\xi)$ the probability of selecting ξ
- Clearly $P(\xi)$ is chosen so that

$$\int_0^1 P(\xi)d\xi = 1$$

Non-Uniform Sampling

- Random variable x defined in the range $a \le x \le b$
- We think we know the probability distribution P(x)
- Wish to generate a series of random values of x to match this distribution
- We have a pseudo-RNG to generate ξ within the range $0 \le \xi < 1$

Non-Uniform Sampling

Non-Uniform Sampling

• Transform from ξ space to x space by equating probability of obtaining x' in range dx' about x' = probability of obtaining ξ in range d ξ about ξ Integrate from lower limit to a value x

$$\int_{0}^{x} P(x')dx' = \int_{0}^{\xi} d\xi' = \xi$$

Random Sampling Rule

Applied to Radiation Transport

- The cross-section
- Describes the probability of a particle interaction

$$\Sigma_{\mathsf{T}} = \Sigma_{\mathsf{s}} + \Sigma_{\mathsf{a}}$$

• Macroscopic cross-sections are required

$$\Sigma$$
(cm⁻¹) = σ (cm²) n(atoms/cm³)
n(atoms/cm³) = ρ (g/cm³) N_A ÷ A(g/mol)

Distance to Next Collision

- Basic Monte Carlo question
 - Where is the next collision?
 - Diagram of scatter point
- Probability of collision within dr' about r' is P(r')dr'

$$P(r') = \Sigma_T e^{-\Sigma_T r'}$$

Use random sampling rule

$$\int_{0}^{\xi} P(r')dr' = \int_{0}^{\xi} d\xi' = \xi$$

Distance to Next Collision

$$\int_{0}^{r} \Sigma_{T} e^{-\Sigma_{T} r'} dr' = \int_{0}^{\xi} d\xi' = \xi$$

$$= 1 - e^{-\Sigma_{T} r}$$

Rearrange to

$$r = \frac{-ln(1-\xi)}{\Sigma_T} \equiv \frac{-ln(\xi)}{\Sigma_T}$$

Where is the Collision?

- Distance to cell boundary = d
- If *r* < *d* collision occurs within cell
- If r > d particle leaves cell and enters next one
 - Need to recalculate new d and next collision distance (r)
 - New cell may have different cross-sections

Then What?

- We know where is collides, but what happens next?
- Choose which atom it collides with
 - For a material composed of several types of atom
 - a, b, c, ... (isotopes considered separately for neutrons)

$$\Sigma_{\mathsf{T}} = \Sigma_{\mathsf{Ta}} + \Sigma_{\mathsf{Tb}} + \Sigma_{\mathsf{Tc}} + \dots$$

Normalise by dividing by Σ_T so sum now = 1 Generate ξ and select from a, b, c, etc.

Then What?

- Depends on particle type photon, neutron, low energy neutron
- Select type of collision in the same way
- E.g. for photon we have to choose from:
 - Compton scatter, photo-electric absorption & pair production

$$\Sigma_{\rm T} = \Sigma_{\rm cs} + \Sigma_{\rm pe} + \Sigma_{\rm pp}$$

Normalise by dividing by Σ_T so sum now = 1 Generate ξ and select from cs, pe & pp

Neutron Interactions

- For neutrons, in general there are many to choose from:
 - Elastic scatter (n,n)
 - Inelastic scatter (n,n')
 - Absorption (n,abs) (n, γ), (n, α), (n,d), (n,t), (n,p), ...
 - Multiplication (n,2n), (n,3n) ...
 - Fission (n,f) this too implies further neutron production
- The collision isotope determines which ones are available and what the cross-sections are
 - Also depends on neutron energy

Neutron Interactions - MCNP

- Identify collision nuclide
- Is $S(\alpha, \beta)$ scattering required?
 - Low energy neutrons only material dependent
- Are any photons generated?
 - Depends on mode of problem and collision type.
- Is neutron captured?
- Is collision elastic, inelastic or a fission event
 - Determines energy of ongoing neutron
 - Whether more particles (photons & neutrons) are generated
- For neutrons E<4eV, need to take thermal motion of collision atoms into account.
 - Temperature matters
 - Target nuclide velocity sampling required subtracted from velocity of incoming neutron

Absorption

- Can lead to a number of potential events.
 - (n,γ) , (n,α) , (n,p), (n,d), (n,2n), (n,f),
- Gammas are tracked (in MODE N P)
- Fissions lead to more neutrons
 - By default MCNP will track fission-generated neutrons
 - Can be switched off
- All particles generated are "banked" if required to be tracked
 - Record location of production
 - Sample direction and energy later

Scattering - Selection of Scattering Angle Defining the scatter angles:

Angle of Scatter (polar)

Probability of scattering within $d\mu$ about μ

$$P(\mu) = \int_{-1}^{\mu} \frac{\sum_{s} (\mu') 2\pi d\mu'}{\sum_{s}} = \int_{-1}^{\mu} \frac{d\mu'}{2} = (\mu+1)/2$$

For isotropic scattering

$$\Sigma_s(\mu)$$
 is constant and $(\mu+1)/2=\xi$ $\Sigma_s(\mu)/\Sigma_s=1/4\pi$ $\mu=2\xi-1$

For non-isotropic scatter use random sampling rule

$$\int_{0}^{\kappa} P(x')dx' = \int_{0}^{\xi} d\xi' = \xi$$

Azimuthal Scattering Angle

$$P(\phi) = \int_{0}^{\phi} \frac{1}{2\pi} \cdot d\phi' = \frac{\phi}{2\pi}$$

$$\frac{\phi}{2\pi} = \xi$$

$$\phi = 2\pi \xi$$

Energy After Collision

For neutrons (elastic scatter)

$$E = E_{in} \left[\frac{1 + A^2 + 2A\cos\theta}{(1+A)^2} \right]$$

For photons – Klein Nishina formula

$$\frac{d\sigma}{d\Omega} = \alpha^2 r_c^2 P(E_{\gamma}, \theta)^2 [P(E_{\gamma}, \theta) + P(E_{\gamma}, \theta)^{-1} - 1 + \cos^2(\theta)]/2$$

$$P(E_{\gamma}, \theta) = \frac{1}{1 + (E_{\gamma}/m_e c^2)(1 - \cos \theta)}$$

Basic Flux Tally

$$F(ux) = \iint_{E} (\vec{r}, E, t) dEdt = \frac{dV}{V}$$

- Each particle, i, is assigned a "weight" W_i
- Track length S_i
- ullet Volume of cell V
- N source particles

Variations on Tallies

Fn4 - cell flux (track length)

*Fn4 – cell energy-weighted flux

Tallies – Summary of Units

Type	Particles	Description	Fn Units	*Fn Units			
F1	NPE	Surface current	Particles	MeV			
F2	NPE	Surface flux	Particles/cm ²	MeV/cm ²			
F4	NPE	Cell flux	Particles/cm ²	MeV/cm ²			
F5	ΝP	Point detector	Particles/cm ²	MeV/cm ²			
F6	NPE	Energy deposition average over cell	MeV/g	jerks/g			
F7	N	Fission energy deposited over a cell	MeV/g	jerks/g			
F8	P E or P,E	Energy distribution of pulses in a detector	Pulses	MeV			
+F8	E	Charge deposition in a cell	Charge	n/a			
1 MeV = 1.602191 x 10 ⁻²² jerks							

1 MeV = 1.602191 x 10⁻²² jerks All tally types except 8 can be modified

Response Functions

Table H.2
Photon Flux-to-Dose Rate Conversion Factors

ANSI/ANS-6.1.1-1977

ICRP-21

Energy, E (MeV)	DF(E) (rem/hr)/(p/cm ² -s)	Energy, E (MeV)	DF(E) (rem/hr)/(p/cm ² -s)
0.01	3.96E-06	0.01	2.78E-06
0.03	5.82E-07	0.015	1.11E-06
0.05	2.90E-07	0.02	5.88E-07
0.07	2.58E-07	0.03	2.56E-07
0.1	2.83E-07	0.04	1.56E-07
0.15	3.79E-07	0.05	1.20E-07
0.2	5.01E-07	0.06	1.11E-07
0.25	6.31E-07	0.08	1.20E-07
0.3	7.59E-07	0.1	1.47E-07
0.35	8.78E-07	0.15	2.38E-07
0.4	9.85E-07	0.2	3.45E-07
0.45	1.08E-06	0.3	5.56E-07

Response Functions

- Tally Multipliers Response functions
- Enable conversion from fluence to dose or anything

DEn
$$E_1 E_2 E_3 E_k$$

DFn
$$F_1 F_2 F_3 \dots F_k$$

The values of F represent a pointwise function of energy (E). Logarithmic (default) or linear interpolation is used between these values. Use DEn LIN E_1 E_2 E_3 E_k for linear.

Can be used to calculate any required response function e.g. dose rate, damage rate, reaction rate, etc.

If value of response function at energy E is R(E), then

General Tally Multiplier FM Card

- Can specify several multipliers for one tally
 - MCNP reports the results for each
 - i.e. the same tracks are weighted in different ways to achieve different results
 - E.g. to tally several reaction rates in the same cell

FMn (multiplier set 1) (multiplier set 2)

n = tally number

For each multiplier set

C m reaction list

C = multiplicative constant (e.g. atom density)

m = material number (defined on a Mm card)

reaction list = list of reaction numbers required

see Appendix G of manual e.g. $102 = (n,\gamma)$, 103 = (n,p), 19 = (n,f)

FM Example from Manual

Consider the following input cards.

F4:N	10		
FM4	0.04786	999	102
M999	92238.13	1	

The F4 neutron tally is the track length estimate of the average fluence in cell 10. Material 999 is ²³⁸U with an atomic fraction of 100%.

```
C = 0.04786 normalization factor (such as atom/barn·cm)

M = 999 material number for ^{238}U as defined on the material card

(with an atom density of 0.04786 atom/barn·cm)

R_1 = 102 ENDF reaction number for radiative capture

cross-section (microscopic)
```

The average fluence is multiplied by the microscopic (n,γ) cross section of 238 U (with an atomic fraction of 1.0) and then by the constant 0.04786 (atom/barn·cm). Thus the tally 4 printout will indicate the number of 239 U atoms/cm³ produced as a result of (n,γ) capture with 238 U.

- Cell 10 need not actually contain material 999
- You can pretend that it does

Variations on Tallies

CFn - Cell flagging

F12:N 5 \$ Flux of neutrons crossing surface 5

CF12 1 10 \$ Separate tally for those passing through either cell 1 or cell 10

SFn - Surface flagging

F114:P 5 \$ Flux of photons in cell 5

SF114 100 \$ Separate tally for those which have crossed surface 100

Tally Segmentation

Can be used to subdivide cells or surfaces into sub-tallies

F2:N 1\$ neutron flux over surface 1

FS2 -3 \$ Separate tally for those inside surface 3 and those outside

Other Tally Multipliers

Energy multiplier

```
EMn M_1 M_2 M_3 \dots M_k

n = \text{tally number}
```

 M_k = multiplier for the k^{th} energy bin

- Time bin multiplier TMn
- Cosine bin multiplier CMn (Type 1 only)

EMO, TMO or CMO

 0 tally bin multipliers apply to all tallies unless specifically overridden by another EM, TM or CM card