The **Hedge**(η)Algorithm

Yoav Freund

January 6, 2010

Halving Algorithm

Halving Algorithm

 ${f Hedge}(\eta) {f Algorithm}$ Hedging vs. Halving

Halving Algorithm

 ${f Hedge}(\eta) {f Algorithm}$ Hedging vs. Halving

Bound on total loss

Upper bound on $\sum_{i=1}^{N} w_i^{T+1}$ Lower bound on $\sum_{i=1}^{N} w_i^{T+1}$ Combining Upper and Lower bounds

Halving Algorithm

 $\mathsf{Hedge}(\eta)\mathsf{Algorithm}$ Hedging vs. Halving

Bound on total loss

Upper bound on $\sum_{i=1}^{N} w_i^{T+1}$ Lower bound on $\sum_{i=1}^{N} w_i^{T+1}$ Combining Upper and Lower bounds

tuning η

Halving Algorithm

 $Hedge(\eta)$ Algorithm Hedging vs. Halving

Bound on total loss

Upper bound on $\sum_{i=1}^{N} w_i^{T+1}$ Lower bound on $\sum_{i=1}^{N} w_i^{T+1}$ Combining Upper and Lower bounds

tuning η

Lower Bounds

The halving algorithm

Our goal is to predict a binary sequence:

$$x_1, x_2, \ldots, x_t, \ldots x_t \in \{0, 1\}$$

The halving algorithm

Our goal is to predict a binary sequence:

$$x_1, x_2, \ldots, x_t, \ldots x_t \in \{0, 1\}$$

► We have N experts, at each time each expert makes a binary prediction.

The halving algorithm

Our goal is to predict a binary sequence:

$$x_1, x_2, \ldots, x_t, \ldots x_t \in \{0, 1\}$$

- ▶ We have N experts, at each time each expert makes a binary prediction.
- ▶ We know that one of the experts is perfect

expert1

expert2

expert3

expert4

expert5

expert6

expert7

expert8

alg.

expert1

expert2

expert3

expert4

expert5

expert6

expert7

expert8

alg.

outcome

```
t = 1
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
alg.
```

aig. outcome

outcome

```
t = 1
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
alg.
```

```
t = 1
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
alg.
outcome
```

```
t = 1 t = 2
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
alg.
outcome
```

	t = 1	<i>t</i> = 2
expert1	1	1
expert2	1	0
expert3	0	-
expert4	1	0
expert5	1	0
expert6	0	-
expert7	1	1
expert8	1	1
alg.	1	0
outcome	1	

	t = 1	<i>t</i> = 2
expert1	1	1
expert2	1	0
expert3	0	-
expert4	1	0
expert5	1	0
expert6	0	-
expert7	1	1
expert8	1	1
alg.	1	0
outcome	1	1

	t = 1	t = 2	t = 3
expert1	1	1	1
expert2	1	0	-
expert3	0	-	-
expert4	1	0	-
expert5	1	0	-
expert6	0	-	-
expert7	1	1	1
expert8	1	1	1
alg.	1	0	
outcome	1	1	

	t = 1	<i>t</i> = 2	t = 3
expert1	1	1	1
expert2	1	0	-
expert3	0	-	-
expert4	1	0	-
expert5	1	0	-
expert6	0	-	-
expert7	1	1	1
expert8	1	1	1
alg.	1	0	1
outcome	1	1	

	t = 1	t = 2	t = 3
expert1	1	1	1
expert2	1	0	-
expert3	0	-	-
expert4	1	0	-
expert5	1	0	-
expert6	0	-	-
expert7	1	1	1
expert8	1	1	1
alg.	1	0	1
outcome	1	1	1

	t = 1	<i>t</i> = 2	t = 3	t = 4
expert1	1	1	1	1
expert2	1	0	-	-
expert3	0	-	-	_
expert4	1	0	-	-
expert5	1	0	-	-
expert6	0	-	-	-
expert7	1	1	1	1
expert8	1	1	1	0
alg.	1	0	1	
outcome	1	1	1	

	t = 1	<i>t</i> = 2	t = 3	t = 4
expert1	1	1	1	1
expert2	1	0	-	-
expert3	0	-	-	-
expert4	1	0	-	-
expert5	1	0	-	-
expert6	0	-	-	-
expert7	1	1	1	1
expert8	1	1	1	0
alg.	1	0	1	1
outcome	1	1	1	

	t = 1	<i>t</i> = 2	t = 3	t = 4
expert1	1	1	1	1
expert2	1	0	-	-
expert3	0	-	-	-
expert4	1	0	-	-
expert5	1	0	-	-
expert6	0	-	-	-
expert7	1	1	1	1
expert8	1	1	1	0
alg.	1	0	1	1
outcome	1	1	1	0

		, 0	, ,		
	t = 1	<i>t</i> = 2	t = 3	t = 4	<i>t</i> = 5
expert1	1	1	1	1	-
expert2	1	0	-	-	-
expert3	0	-	-	-	-
expert4	1	0	-	-	-
expert5	1	0	-	-	_
expert6	0	-	-	-	_
expert7	1	1	1	1	0
expert8	1	1	1	0	-
alg.	1	0	1	1	
outcome	1	1	1	0	

	t = 1	<i>t</i> = 2	t = 3	t = 4	<i>t</i> = 5
expert1	1	1	1	1	-
expert2	1	0	-	-	-
expert3	0	-	-	-	-
expert4	1	0	-	-	-
expert5	1	0	-	-	-
expert6	0	-	-	-	-
expert7	1	1	1	1	0
expert8	1	1	1	0	-
alg.	1	0	1	1	0
outcome	1	1	1	0	

	t = 1	<i>t</i> = 2	t = 3	t = 4	<i>t</i> = 5
expert1	1	1	1	1	-
expert2	1	0	-	-	-
expert3	0	-	-	-	-
expert4	1	0	-	-	-
expert5	1	0	-	-	-
expert6	0	-	-	-	-
expert7	1	1	1	1	0
expert8	1	1	1	0	-
alg.	1	0	1	1	0
outcome	1	1	1	0	0

Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).

- ► Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).
- ▶ We assume that at least one expert is perfect.

- Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).
- We assume that at least one expert is perfect.
- Number of mistakes is at most log₂ N.

- Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).
- We assume that at least one expert is perfect.
- Number of mistakes is at most log₂ N.
- No stochastic assumptions whatsoever.

- Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).
- We assume that at least one expert is perfect.
- ▶ Number of mistakes is at most log₂ N.
- No stochastic assumptions whatsoever.
- Proof is based on combining a lower and upper bounds on the number of perfect experts.

N possible actions

- N possible actions
- ▶ At each time step t = 1, 2, ..., T:

- N possible actions
- At each time step t = 1, 2, ..., T:
 - Algorithm chooses a distribution p^t over actions.

- N possible actions
- At each time step t = 1, 2, ..., T:
 - Algorithm chooses a distribution p^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.

The hedging problem

- N possible actions
- At each time step t = 1, 2, ..., T:
 - Algorithm chooses a distribution p^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.
 - Algorithm suffers expected loss p^t ⋅ ℓ^t

The hedging problem

- N possible actions
- At each time step t = 1, 2, ..., T:
 - Algorithm chooses a distribution p^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.
 - Algorithm suffers expected loss p^t · l^t
- Goal: minimize total expected loss

The hedging problem

- N possible actions
- At each time step t = 1, 2, ..., T:
 - Algorithm chooses a distribution p^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.
 - Algorithm suffers expected loss p^t · l^t
- Goal: minimize total expected loss
- Here we have stochasticity but only in algorithm, not in outcome

▶ Like halving - we want to zoom into best action (expert).

- Like halving we want to zoom into best action (expert).
- Unlike halving no action is perfect.

- Like halving we want to zoom into best action (expert).
- Unlike halving no action is perfect.
- Basic idea reduce probability of lossy actions, but not all the way to zero.

- Like halving we want to zoom into best action (expert).
- Unlike halving no action is perfect.
- Basic idea reduce probability of lossy actions, but not all the way to zero.
- Modified Goal: minimize difference between expected total loss and minimal total loss of repeating one action.

$$\sum_{t=1}^{T} \mathbf{p}^{t} \cdot \ell^{t} - \min_{i} \left(\sum_{t=1}^{T} \ell_{i}^{t} \right)$$

Suppose that there is no perfect expert.

- Suppose that there is no perfect expert.
- action i = use prediction of expert i

- Suppose that there is no perfect expert.
- action i = use prediction of expert i
- Now each iteration of game consistst of three steps:

- Suppose that there is no perfect expert.
- action i = use prediction of expert i
- Now each iteration of game consistst of three steps:
 - ► Experts make predictions $e_i^t \in \{0, 1\}$

- Suppose that there is no perfect expert.
- action i = use prediction of expert i
- Now each iteration of game consistst of three steps:
 - ▶ Experts make predictions $e_i^t \in \{0, 1\}$
 - ► Algorithm predicts 1 with probability $\sum_{i:e_i^t=1} p_i^t$.

- Suppose that there is no perfect expert.
- action i = use prediction of expert i
- Now each iteration of game consistst of three steps:
 - ▶ Experts make predictions $e_i^t \in \{0, 1\}$
 - Algorithm predicts 1 with probability $\sum_{i:e^t=1} p_i^t$.
 - outcome o_i^t is revealed. $\ell_i^t = 0$ if $e_i^t = o_i^t$, $\ell_i^t = 1$ otherwise.

The **Hedge**(η)Algorithm

Consider action *i* at time *t*

► Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Consider action *i* at time *t*

► Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$w_i^t = w_i^1 e^{-\eta L_i^t}$$

Consider action *i* at time *t*

► Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$w_i^t = w_i^1 e^{-\eta L_i^t}$$

Note freedom to choose initial weight $(w_i^1) \sum_{i=1}^n w_i^1 = 1$.

▶ $\eta > 0$ is the learning rate parameter. Halving: $\eta \to \infty$

Consider action *i* at time *t*

► Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$w_i^t = w_i^1 e^{-\eta L_i^t}$$

- ▶ $\eta > 0$ is the learning rate parameter. Halving: $\eta \to \infty$
- Probability:

$$p_i^t = \frac{w_i^t}{\sum_{i=1}^N w_i^t},$$

Consider action *i* at time *t*

► Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$w_i^t = w_i^1 e^{-\eta L_i^t}$$

- ▶ $\eta > 0$ is the learning rate parameter. Halving: $\eta \to \infty$
- Probability:

$$p_i^t = \frac{w_i^t}{\sum_{i=1}^N w_i^t},$$

Consider action *i* at time *t*

► Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$w_i^t = w_i^1 e^{-\eta L_i^t}$$

- ▶ $\eta > 0$ is the learning rate parameter. Halving: $\eta \to \infty$
- Probability:

$$p_i^t = rac{w_i^t}{\sum_{j=1}^N w_i^t}, \;\; \mathbf{p}^t = rac{\mathbf{w}^t}{\sum_{j=1}^N w_i^t}$$

Choosing the initial weights

Giving an action high initial weight makes alg perform well if that action performs well.

Choosing the initial weights

- Giving an action high initial weight makes alg perform well if that action performs well.
- If good action has low initial weight, our total loss will be larger.

Choosing the initial weights

- Giving an action high initial weight makes alg perform well if that action performs well.
- If good action has low initial weight, our total loss will be larger.
- As $\sum_{i=1}^{n} w_i^1 = 1$ increasing one weight implies decreasing some others.

Choosing the initial weights

- Giving an action high initial weight makes alg perform well if that action performs well.
- If good action has low initial weight, our total loss will be larger.
- As $\sum_{i=1}^{n} w_i^1 = 1$ increasing one weight implies decreasing some others.
- Plays a similar role to prior distribution in Bayesian algorithms.

Bound on the loss of $Hedge(\eta)$ Algorithm

Bound on the loss of $Hedge(\eta)$ Algorithm

► Theorem (main theorem) For any sequence of loss vectors ℓ^1, \dots, ℓ^T , and for any $i \in \{1, \dots, N\}$, we have

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{-\mathsf{In}(w_i^1) + \eta L_i}{1 - e^{-\eta}}.$$

Bound on the loss of $Hedge(\eta)$ Algorithm

Theorem (main theorem)
For any sequence of loss vectors ℓ¹,...,ℓ^T, and for any
i ∈ {1,...,N}, we have

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{-\mathsf{ln}(w_i^1) + \eta L_i}{1 - e^{-\eta}}.$$

► Proof: by combining upper and lower bounds on $\sum_{i=1}^{N} w_i^{T+1}$

Upper bound on $\sum_{i=1}^{N} w_i^{T+1}$

Lemma (upper bound)

For any sequence of loss vectors ℓ^1, \dots, ℓ^T we have

$$\ln\left(\sum_{i=1}^N w_i^{T+1}\right) \leq -(1-e^{-\eta})L_{\mathsf{Hedge}(\eta)}.$$

▶ If $a \ge 0$ then a^r is convex.

- ▶ If $a \ge 0$ then a^r is convex.
- ▶ For $r \in [0, 1]$, $a^r \le 1 (1 a)r$

- ▶ If $a \ge 0$ then a^r is convex.
- ► For $r \in [0, 1]$, $a^r \le 1 (1 a)r$

Applying
$$a^r \le 1 - (1 - a)^r$$
 where $a = e^{-\eta}, r = \ell_i^t$

$$\sum_{i=1}^{N} w_i^{t+1} = \sum_{i=1}^{N} w_i^t e^{-\eta \ell_i^t}$$

Applying
$$a^r \le 1 - (1 - a)^r$$
 where $a = e^{-\eta}, r = \ell_i^t$

$$\sum_{i=1}^{N} w_i^{t+1} = \sum_{i=1}^{N} w_i^t e^{-\eta \ell_i^t}$$

$$\leq \sum_{i=1}^{N} w_i^t \left(1 - (1 - e^{-\eta}) \ell_i^t \right)$$

Applying
$$a^r \le 1 - (1 - a)^r$$
 where $a = e^{-\eta}, r = \ell_i^t$

$$\sum_{i=1}^{N} w_i^{t+1} = \sum_{i=1}^{N} w_i^t e^{-\eta \ell_i^t}
\leq \sum_{i=1}^{N} w_i^t \left(1 - (1 - e^{-\eta}) \ell_i^t \right)
= \left(\sum_{i=1}^{N} w_i^t \right) \left(1 - (1 - e^{-\eta}) \frac{\mathbf{w}^t}{\sum_{i=1}^{N} w_i^t} \cdot \ell^t \right)$$

Applying $\mathbf{a}^r \leq 1 - (1 - \mathbf{a})^r$ where $\mathbf{a} = \mathbf{e}^{-\eta}, r = \ell_i^t$

$$\begin{split} \sum_{i=1}^{N} w_i^{t+1} &= \sum_{i=1}^{N} w_i^t e^{-\eta \ell_i^t} \\ &\leq \sum_{i=1}^{N} w_i^t \left(1 - (1 - e^{-\eta}) \ell_i^t \right) \\ &= \left(\sum_{i=1}^{N} w_i^t \right) \left(1 - (1 - e^{-\eta}) \frac{\mathbf{w}^t}{\sum_{i=1}^{N} w_i^t} \cdot \ell^t \right) \\ &= \left(\sum_{i=1}^{N} w_i^t \right) \left(1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell^t \right) \end{split}$$

Combining

$$\sum_{i=1}^{N} w_i^{t+1} \le \left(\sum_{i=1}^{N} w_i^t\right) \left(1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell^t\right)$$

Combining

$$\sum_{i=1}^{N} w_i^{t+1} \leq \left(\sum_{i=1}^{N} w_i^t\right) \left(1 - (1 - e^{-\eta})\mathbf{p}^t \cdot \ell^t\right)$$

$$ightharpoonup$$
 for $t = 1, \dots, T$

Proof of upper bound (slide 3)

Combining

$$\sum_{i=1}^{N} w_i^{t+1} \leq \left(\sum_{i=1}^{N} w_i^t\right) \left(1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell^t\right)$$

- \blacktriangleright for $t=1,\ldots,T$
- yields

$$\sum_{i=1}^{N} w_i^{T+1} \leq \prod_{t=1}^{T} (1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell^t)$$

Proof of upper bound (slide 3)

Combining

$$\sum_{i=1}^{N} w_i^{t+1} \leq \left(\sum_{i=1}^{N} w_i^t\right) \left(1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell^t\right)$$

- \blacktriangleright for $t=1,\ldots,T$
- yields

$$\sum_{i=1}^{N} w_i^{T+1} \leq \prod_{t=1}^{T} (1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell^t)$$

Proof of upper bound (slide 3)

Combining

$$\sum_{i=1}^N w_i^{t+1} \leq \left(\sum_{i=1}^N w_i^t\right) \left(1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell^t\right)$$

- ightharpoonup for $t = 1, \ldots, T$
- yields

$$\sum_{i=1}^{N} w_i^{T+1} \leq \prod_{t=1}^{T} (1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell^t)$$

$$\leq \exp\left(-(1 - e^{-\eta}) \sum_{t=1}^{T} \mathbf{p}^t \cdot \ell^t\right)$$

since
$$1+x \le e^x$$
 for $x=-(1-e^{-\eta})$.

Lower bound on $\sum_{i=1}^{N} w_i^{T+1}$

For any
$$j = 1, \dots, N$$
:

$$\sum_{i=1}^{N} w_i^{T+1} \ge w_j^{T+1} = w_j^{1} e^{-\eta L_j}$$

Combining Upper and Lower bounds

► Combining bounds on $\ln \left(\sum_{i=1}^{N} w_i^{T+1} \right)$

$$\ln w_j^1 - \eta L_j \le \ln \sum_{i=1}^N w_i^{T+1} \le -(1 - e^{-\eta}) \sum_{t=1}^T \mathbf{p}^t \cdot \ell^t$$

Combining Upper and Lower bounds

► Combining bounds on $\ln \left(\sum_{i=1}^{N} w_i^{T+1} \right)$

$$\ln w_j^1 - \eta L_j \le \ln \sum_{i=1}^N w_i^{T+1} \le -(1 - e^{-\eta}) \sum_{t=1}^T \mathbf{p}^t \cdot \ell^t$$

► Reversing signs, using $L_{\text{Hedge}(\eta)} = \sum_{t=1}^{T} \mathbf{p}^t \cdot \boldsymbol{\ell}^t$ and reorganizing we get

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{-\ln(w_i^1) + \eta L_i}{1 - e^{-\eta}}$$

How to Use Expert Advice

451

▶ Suppose $\min_i L_i \leq \tilde{L}$

- ▶ Suppose $\min_i L_i \leq \tilde{L}$
- set

$$\eta = \ln\left(1 + \sqrt{\frac{2 \ln N}{\tilde{L}}}\right) pprox \sqrt{\frac{2 \ln N}{\tilde{L}}}$$

- ▶ Suppose $\min_i L_i \leq \tilde{L}$
- set

$$\eta = \ln\left(1 + \sqrt{\frac{2\ln N}{\tilde{L}}}\right) pprox \sqrt{\frac{2\ln N}{\tilde{L}}}$$

▶ use uniform initial weights $\mathbf{w}^1 = \langle 1/N, \dots, 1/N \rangle$

- ▶ Suppose $\min_i L_i \leq \tilde{L}$
- set

$$\eta = \ln\left(1 + \sqrt{\frac{2\ln N}{\tilde{L}}}\right) \approx \sqrt{\frac{2\ln N}{\tilde{L}}}$$

- ▶ use uniform initial weights $\mathbf{w}^1 = \langle 1/N, \dots, 1/N \rangle$
- ▶ Then

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{-\ln(w_i^1) + \eta L_i}{1 - e^{-\eta}} \leq \min_i L_i + \sqrt{2\tilde{L} \ln N} + \ln N$$

Tuning η as a function of T

▶ trivially $\min_i L_i \leq T$, yielding

$$L_{\mathsf{Hedge}(\eta)} \leq \min_i L_i + \sqrt{2T \ln N} + \ln N$$

Tuning η as a function of T

▶ trivially $\min_i L_i \leq T$, yielding

$$L_{\mathsf{Hedge}(\eta)} \leq \min_{i} L_{i} + \sqrt{2T \ln N} + \ln N$$

per iteration we get:

$$\frac{L_{\mathsf{Hedge}(\eta)}}{T} \leq \min_{i} \frac{L_{i}}{T} + \sqrt{\frac{2 \ln N}{T}} + \frac{\ln N}{T}$$

How good is this bound?

Very good! There is a closely matching lower bound!

How good is this bound?

- Very good! There is a closely matching lower bound!
- There exists a stochastic adversarial strategy such that with high probability for any hedging strategy S after T trials

$$L_{S} - \min_{i} L_{i} \geq (1 - o(1))\sqrt{2T \ln N}$$

How good is this bound?

- Very good! There is a closely matching lower bound!
- There exists a stochastic adversarial strategy such that with high probability for any hedging strategy S after T trials

$$L_{S} - \min_{i} L_{i} \geq (1 - o(1))\sqrt{2T \ln N}$$

► The adversarial strategy is random, extremely simple, and does not depend on the hedging strategy!

Adversary sets each loss ℓ_i^t indepedently at random to 0 or 1 with equal probabilities (1/2, 1/2).

- Adversary sets each loss ℓ_i^t independently at random to 0 or 1 with equal probabilities (1/2, 1/2).
- ► Obviously, nothing to learn ! $L_S \approx T/2$.

- Adversary sets each loss ℓ_i^t independently at random to 0 or 1 with equal probabilities (1/2, 1/2).
- ► Obviously, nothing to learn ! $L_S \approx T/2$.
- ▶ On the other hand $\min_i L_i \approx T/2 \sqrt{2T \ln N}$

- Adversary sets each loss ℓ_i^t indepedently at random to 0 or 1 with equal probabilities (1/2, 1/2).
- ▶ Obviously, nothing to learn ! $L_S \approx T/2$.
- ▶ On the other hand $\min_i L_i \approx T/2 \sqrt{2T \ln N}$
- ► The difference L_S min_i L_i is due to unlearnable random fluctuations!

- Adversary sets each loss ℓ_i^t independently at random to 0 or 1 with equal probabilities (1/2, 1/2).
- Dobviously, nothing to learn ! L_S ≈ T/2.
- ▶ On the other hand $\min_i L_i \approx T/2 \sqrt{2T \ln N}$
- ► The difference L_S min_i L_i is due to unlearnable random fluctuations!
- Detailed proof quite involved. See games paper.

Summary

• Given learning rate η the **Hedge**(η)algorithm satisfies

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{\ln N + \eta L_i}{1 - e^{-\eta}}$$

Summary

• Given learning rate η the **Hedge**(η)algorithm satisfies

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{\ln N + \eta L_i}{1 - e^{-\eta}}$$

► Setting $\eta \approx \sqrt{\frac{2 \ln N}{T}}$ guarantees

$$L_{\mathsf{Hedge}(\eta)} \leq \min_i L_i + \sqrt{2T \ln N} + \ln N$$

Summary

Given learning rate η the **Hedge**(η)algorithm satisfies

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{\ln N + \eta L_i}{1 - e^{-\eta}}$$

► Setting $\eta \approx \sqrt{\frac{2 \ln N}{T}}$ guarantees

$$L_{\mathsf{Hedge}(\eta)} \leq \min_{i} L_{i} + \sqrt{2T \ln N} + \ln N$$

A trivial random data, in which there is nothing to be learned forces any algorithm to suffer this total loss

▶ Total Loss of best action usually scales linearly with time, but we can't change η on the fly. NormalHedge will be explained later in the course.

- ▶ Total Loss of best action usually scales linearly with time, but we can't change η on the fly. NormalHedge will be explained later in the course.
- Observing only the loss of chosen action the multi-armed bandit problem. Will get to that later in the course.

- ▶ Total Loss of best action usually scales linearly with time, but we can't change η on the fly. NormalHedge will be explained later in the course.
- Observing only the loss of chosen action the multi-armed bandit problem. Will get to that later in the course.
- ► Send me email vfreund@ucsd.edu

- ▶ Total Loss of best action usually scales linearly with time, but we can't change η on the fly. NormalHedge will be explained later in the course.
- Observing only the loss of chosen action the multi-armed bandit problem. Will get to that later in the course.
- ► Send me email yfreund@ucsd.edu
- Register on the Wiki, and post your project ideas.

- ▶ Total Loss of best action usually scales linearly with time, but we can't change η on the fly. NormalHedge will be explained later in the course.
- Observing only the loss of chosen action the multi-armed bandit problem. Will get to that later in the course.
- ► Send me email yfreund@ucsd.edu
- Register on the Wiki, and post your project ideas.
- next time: Using experts for estimation and control a large set of possible projects!