Universidad Nacional de Río Negro Física III B - 2022

UnidadO1 – El calor

Clase U01 C03 - 03/30

Cont Teoría Cinética II

Cátedra Asorey

• **Web** https://campusbimodal.unrn.edu.ar/course/view.php?id=24220

Unidad 1: Calor

Unidad 01: El calor Del 08/Mar al 29/Mar (6 encuentros)

El calor. Gases ideales y reales. Energía interna. Calorimetría. Calor específico. Teoría cinética de los gases. Temperatura: concepto macroscópico y microscópico. Cambios de fase y calor latente

Algunos números

- Radio H₂: 0,74A
- ¿Volumen de la molécula?
- ¿Mol de moléculas?
- Volumen molar de un gas CNPT
- ¿Fracción ocupada por las moléculas del gas?

10-5

~ 1 mL en un balde de 20L

Dos recursos para seguir

- Difusión según la teoría cinética de los gases https://phet.colorado.edu/es/simulations/diffusion
- Teoría cinética de los gases

https://phet.colorado.edu/es/simulations/gas-properties

Postulados de la teoría cinética: Gas ideal

- Formado por un gran número de moléculas idénticas
- Separación media es grande respecto a las dimensiones
 - Volumen despreciable respecto al volumen contenedor
- Se mueven aleatoriamente con velocidades diferentes
 - La velocidad media de las moléculas es constante
- Obedecen las leyes de Newton
 - Sólo interactúan (entre sí y con el recipiente) a través de choques elásticos
- El gas está en equilibrio térmico con el recipiente

FÍSICA IIIB

Choques en las paredes del recipiente

Antes del choque

 El choque es elástico. Luego, en el choque con las paredes:

- en la dirección y, $v_y = u_y$
- en la dirección x, $v_x = -u_x$

(¿qué pasa con la conservación de p en este caso?)

Después del choque

El cambio de p en la dirección x:

$$\Delta \vec{p} = \Delta p_x = m(v_x - u_x)$$

$$\Delta p = -2mv_x$$

$$\Rightarrow |(\Delta p)| = 2mv_x$$

¿Cuántos choques se producen en la pared en un tiempo At?

- En el intervalo ∆t, sólo impactarán en la pared A aquellas que estén a cierta distancia y en una cierta dirección
 - tres casos posibles

¿Cuántas moléculas golpearán A en At?

- Verdes son las de interés: golpearán A en el tiempo Δt
- El volúmen de interés es $V_i = A x = A \langle v_x \rangle \Delta t$
- En ese volumen hay $N' = \left(\frac{N}{V}\right)V_i$ Supongamos la mitad van en dirección a A: $N_i = \left(\frac{N}{V}\right)\left(\frac{V_i}{2}\right)$

FÍSICA IIIB

La presión, hasta aquí:

$$P = \frac{2}{3} \left(\frac{N}{V} \right) \underbrace{\left(\frac{1}{2} m \langle v^2 \rangle \right)}_{\langle E_K \rangle}$$

Reordenando

$$\frac{PV}{N} = \left(\frac{2}{3}\langle E_K \rangle\right)$$

Ecuación de estado microscópica

O también:

$$\frac{PV}{N}$$
 = constante

¿Cómo? ¿¿¿no era PV = n R T????

- La <E_k> es "macroscópicamente inaccesible"
- Definimos la temperatura media

$$T \equiv \frac{1}{k_{B}} \left(\frac{2}{3} \langle E_{K} \rangle \right)$$

donde $k_B = 1.3806 \times 10^{-23} \text{ J/K}$ es la constante de Boltzmann.

 La temperatura media es una medida de la energía cinética media de las partículas del sistema.

• Luego:
$$\frac{PV}{N} = k_b T$$

Y entonces

$$PV = Nk_bT$$

Al fin, PV = nRT

Multiplicando y dividiendo por el Número de Avogadro:

$$PV = \frac{N}{N_A}(N_A k_b)T$$

N/N_A es el número de moles de gas en el recipiente V, n:

$$PV = n(N_A k_b)T$$

• Y al producto $(N_A k_B)$:

$$R = N_A k_b = (6.022 \times 10^{23} \text{ mol}^{-1})(1.3806 \times 10^{-23} \text{ J K}^{-1})$$

$$R \equiv N_A k_b = 8,314 \, J \, mol^{-1} \, K^{-1}$$

Resultando:

Ecuación de estado de un gas ideal 12/26

Gases reales

- Átomos y moléculas con interacción entre si (pero de corta distancia) → Fuerzas de Van der Waals
 - Monoatómicos: nobles, He, Ar,...
 - Diatómicos: H₂, O₂, N₂,...
 - Triatómicos: CO₂, H₂O(*)
 - Complejos: NH₃
- Mejor aproximación: gases monoatómicos en condiciones de baja presión y temperatura (baja densidad)

Van de Waals

- Fuerzas de Van der Waals.
 Originadas por potenciales moleculares:
 - atractivo a largas distancias:
 - Multipolos permanentes o inducidos en las moléculas
 - En general son asimétricas (orientación molecular)
 - Repulsivo a cortas distancias
 - Repulsión de Pauli (superposición de orbitales)

FÍSICA IIIB

 Débiles respecto a enlaces covalentes o iónicos

Potencial de Lenard Jones

$$V(r) = 4 \epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

€ → potencial en el mínimoσ → distancia potencial nulo

$$\vec{F}(r) = -\vec{\nabla} V(r) = 4 \epsilon \left[12 \frac{\sigma^{12}}{r^{13}} - 6 \frac{\sigma^6}{r^7} \right] \hat{r}$$

La constante universal de los gases ideales, R

- Relaciona, a través de la ecuación de estado, las distintas magnitudes físicas asociadas a un gas ideal:
 - Cantidad de gas, n (moles)
 - Presión del gas, P (Pa)
 - Volúmen del gas, V (m³)
 - Temperatura del gas, T (K)
- En unidades del SI:

$$R = N_A k_b = (6,022 \times 10^{23} \text{ mol}^{-1})(1,3806 \times 10^{-23} \text{ J K}^{-1})$$

$$R = N_A k_b = 8,314 \text{ J mol}^{-1} \text{ K}^{-1}$$

• Otro valor usual (no SI): $R = 0.082 L atm K^{-1} mol^{-1}$

 $R = \frac{PV}{nT} \equiv N_A k_B$

Condiciones "Normales" de Presión y Temperatura (CNPT)

- Parámetros "estandarizados" para trabajar con un gas...
 - Hay muchas convenciones → no son estándares...
 - ¿qué presión? ¿qué temperatura? ¿en qué unidades?
- Nuestra convención:

$$V = \frac{nRT}{P}$$

- $T = 0^{\circ}C \rightarrow T = 273,15 K$
- P = 1atm \rightarrow P = 101325 Pa (\acute{o} P=1013,25 hPa \acute{o} P=101,325 kPa)
- \rightarrow V_{molar}=0,022309m³=22,398 L (volumen molar normal)
- Otras, por ej., T=273,15 K; P = 10^5 Pa \rightarrow V_{molar} = 22,7 L ó, T=293.15K; P = 1atm \rightarrow V_{molar} = 24,06 L, etc

Aplicación: buscando al Helio

- La concentración de Helio en la atmósfera es tan baja (~5.2 ppm) que este gas fue descubierto en el Sol (Lockyer, 1868)
- Sin embargo, es muy abundante en el Universo
- ¿Dónde está el Helio?

Escape atmosférico (1ra parte)

UOI-COZ - 2

Mejorando el cálculo

- Lo que hay que recordar es que hemos utilizado la velocidad promedio del Helio
- Un conjunto grande (~Número de Avogadro) de átomos de Helio a 300K, la <v> ~ 1370 m/s ~ 0,1 v_e.
- Es ~ 10% de la velocidad de escape
- Las velocidades de cada átomo individual podrá distar (y mucho) de la promedio

Paréntesis: Distribución de probabilidad

- Función que asigna a cada suceso la probabilidad de que dicho suceso ocurra:
- Se puede determinar empíricamente a partir de la fracción de sucesos observados sobre el total

Distribución normal o Gaussiana

Sea un gas ideal a una temperatura T

 ¿Cuál es la distribución de probabilidad del módulo de la velocidad |v| de las moléculas que componen un gas

$$|\vec{\mathbf{v}}| = \sqrt{\mathbf{v}_{x}^{2} + \mathbf{v}_{y}^{2} + \mathbf{v}_{z}^{2}}$$

 ¿Cuál es la distribución de probabilidad de cada componente v_i de las moléculas que componen un gas?

Ley de los grandes números → v, tiene distribución Normal

 La Distribución de Maxwel-Boltzmann representa la distribución |v| si sus componentes son normales

Si v_i tiene una distribución normal, |v| tiene una distribución de Maxwel-Boltzmann

FÍSICA IIIB 22/26

Fourain de Mexical Botte monn.

En un gos de N moleculos, hay à Custos problevos en ordoonsal or kings? $\rightarrow 0$. Ge an aboutons or y when? $\Rightarrow 0$ f(x) in f(x) $\Rightarrow 0$ $\Rightarrow 0$ f(x) $\Rightarrow 0$ $\Rightarrow 0$

$$\frac{dn}{dt} = f(n) dr$$

Se pende ver per 15m2 se do poro 3+ = 0=5

di funo en engra = Se hare un contro di monthe

$$\frac{1}{2} Nf(r) = N F(E) dE cm E = 1 mo^{2}$$

$$\frac{1}{2} \frac{3}{2} = 1 = 1 - E/rT$$

$$\frac{1}{2} \frac{3}{2} = 1 - E/rT$$

$$\frac{1}{2} \frac{1}{2} = 1 - E/rT$$

Maxwell-Boltzmann

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2kT}\right)^{3/2} v^2 e^{-\frac{mv^2}{2kT}}$$

$$F(E) = \frac{2}{\sqrt{\pi}} \left(\frac{1}{kT}\right)^{3/2} E^{\frac{1}{2}} e^{-\frac{E}{kT}}$$

Distribución de Maxwell-Boltzmann

probability density
$$f(u) = \left[\frac{M}{2\pi RT}\right]^{3/2} \cdot 4\pi u^2 \cdot e^{-Mu^2/2RT}$$

FÍSICA IIIB

Distribución de Boltzmann (google sheet)

Distribución de Maxwell-Boltzmann

Distribución de Maxell-Boltzmann para 1 mol He a T=300K

https://docs.google.com/spreadsheets/d/10XqxvzYkFXKWgC1mOw8eqaVhJz6qjnUEoIBcjsTv6bM/edit#gid=0

FÍSICA IIIB 25/26

El problema de Richter

FÍSICA IIIB