Introduction to Machine Learning Expectation Maximization

Andres Mendez-Vazquez

February 15, 2023

Outline

- 1 Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

2 Incomplete Data

- Introduction
 - Using the Expected Value
- Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
 - Using the Concave Functions for Approximation
 - From The Concave Function to the EM
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Outline

- Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM
 - Introduction
 - Using the Expected Value
 - Analogy
- Hidden Features
 - Proving Concavity Using the Concave Functions for Approximation

 - From The Concave Function to the EM.
 - The Final Algorithm
 - Notes and Convergence of EM

 - The Beginning of The Process
 - Bayes' Rule for the components
 - Mixing Parameters
 - Maximizing Q using Lagrange Multipliers
 - Lagrange Multipliers
 - In Our Case
 - Example on Mixture of Gaussian Distributions
 - The EM Algorithm

We have a density function $p(x|\Theta)$

Assume that we have a data set of size N, $\mathcal{X} = \{m{x}_1, m{x}_2, ..., m{x}_N\}$

• This data is known as evidence.

The vectors are independent and identically distributed (i.i.d.) with distribution v under parameter heta

We have a density function $p(x|\Theta)$

Assume that we have a data set of size N , $\mathcal{X} = \{m{x}_1, m{x}_2, ..., m{x}_N\}$

• This data is known as evidence.

We assume in addition that

The vectors are independent and identically distributed (i.i.d.) with distribution p under parameter θ .

What Can We Do With The Evidence?

We may use the Bayes' Rule to estimate the parameters $\boldsymbol{\theta}$

$$p(\Theta|\mathcal{X}) = \frac{P(\mathcal{X}|\Theta)P(\Theta)}{P(\mathcal{X})}$$
(1)

Or, given a new observation $ilde{x}$

$$p\left(ilde{oldsymbol{x}} | \mathcal{X}
ight)$$

I.e. to compute the probability of the new observation being supported by the evidence \mathcal{X} .

Thus

The former represents parameter estimation and the latter data predicting

What Can We Do With The Evidence?

We may use the Bayes' Rule to estimate the parameters θ

$$p(\Theta|\mathcal{X}) = \frac{P(\mathcal{X}|\Theta)P(\Theta)}{P(\mathcal{X})} \tag{1}$$

Or, given a new observation $ilde{m{x}}$

$$p\left(\tilde{\boldsymbol{x}}|\mathcal{X}\right) \tag{2}$$

I.e. to compute the probability of the new observation being supported by the evidence \mathcal{X} .

The former represents parameter estimation and the latter data prediction

What Can We Do With The Evidence?

We may use the Bayes' Rule to estimate the parameters θ

$$p(\Theta|\mathcal{X}) = \frac{P(\mathcal{X}|\Theta)P(\Theta)}{P(\mathcal{X})} \tag{1}$$

Or, given a new observation $ilde{m{x}}$

$$p\left(\tilde{\boldsymbol{x}}|\mathcal{X}\right) \tag{2}$$

l.e. to compute the probability of the new observation being supported by the evidence $\ensuremath{\mathcal{X}}$.

Thus

The former represents parameter estimation and the latter data prediction.

Focusing First on the Estimation of the Parameters θ

We can interpret the Bayes' Rule

$$p(\Theta|\mathcal{X}) = \frac{P(\mathcal{X}|\Theta)P(\Theta)}{P(\mathcal{X})}$$
(3)

, . likelihood imes prior

 $posterior = \frac{evidence}{evidence}$

 $likelihood = P(X|\Theta)$

6/130

Focusing First on the Estimation of the Parameters θ

We can interpret the Bayes' Rule

$$p(\Theta|\mathcal{X}) = \frac{P(\mathcal{X}|\Theta)P(\Theta)}{P(\mathcal{X})}$$
(3)

Interpreted as

$$posterior = \frac{likelihood \times prior}{evidence} \tag{4}$$

 $likelihood = P(X|\Theta)$

Focusing First on the Estimation of the Parameters θ

We can interpret the Bayes' Rule

$$p(\Theta|\mathcal{X}) = \frac{P(\mathcal{X}|\Theta)P(\Theta)}{P(\mathcal{X})}$$
(3)

Interpreted as

$$posterior = \frac{likelihood \times prior}{evidence} \tag{4}$$

Thus, we want

$$likelihood = P(\mathcal{X}|\Theta)$$

6/130

What we want...

We have

$$p\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2},...,\boldsymbol{x}_{N}|\Theta\right) = \prod_{i=1}^{N} p\left(\boldsymbol{x}_{i}|\Theta\right)$$
 (5)

Also known as the likelihood function.

$$\mathcal{L}\left(\Theta|\mathcal{X}\right) = \log \prod_{i} p\left(x_{i}|\Theta\right) = \sum_{i} \log p\left(x_{i}|\Theta\right)$$

We have

$$p(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N | \Theta) = \prod_{i=1}^{N} p(\boldsymbol{x}_i | \Theta)$$
 (5)

Also known as the likelihood function.

Because multiplication of quantities $p(\boldsymbol{x}_i|\Theta) \leq 1$ can be problematic

$$\mathcal{L}(\Theta|\mathcal{X}) = \log \prod_{i=1}^{N} p(\mathbf{x}_i|\Theta) = \sum_{i=1}^{N} \log p(\mathbf{x}_i|\Theta)$$
 (6)

8 / 130

9/130

We want to find a
$$\Theta^*$$

$$\Theta^* = \mathrm{argmax}_{\Theta} \mathcal{L}\left(\Theta|\mathcal{X}\right)$$

The classic method

$$\frac{\partial \mathcal{L}\left(\Theta|\mathcal{X}\right)}{\partial \theta_{i}} = 0 \ \forall \theta_{i} \in \Theta$$

(8)

What happened if we have incomplete data

Data could have been split

 $oldsymbol{0}$ $\mathcal{X}=$ observed data or **incomplete** data

For this type of problems

We have the famous Expectation Maximization (EM)

What happened if we have incomplete data

Data could have been split

- **1** $\mathcal{X} = \text{observed data or incomplete data}$
- $\mathcal{Y} = \text{unobserved data}$

For this type of problems

We have the famous Expectation Maximization (EM)

What happened if we have incomplete data

Data could have been split

- **1** $\mathcal{X} = \text{observed data or incomplete data}$
- $\mathcal{Y} = \text{unobserved data}$

For this type of problems

We have the famous Expectation Maximization (EM)

Outline

- Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving ConcavityUsing the Concave Functions for Approximation
 - From The Concave Function to the EM
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- $\begin{tabular}{ll} \hline & Maximizing Q using Lagrange Multipliers \\ \hline \end{tabular}$
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

The EM algorithm

It was first developed by Dempster et al. (1977).

Its popularity comes from the fact

It can estimate an underlying distribution when data is incomplete or has missing values

Two main applic

- When missing values exists
- When a likelihood function can be simplified by assuming extra parameters that are **missing** or **hidden**.

The EM algorithm

It was first developed by Dempster et al. (1977).

Its popularity comes from the fact

It can estimate an underlying distribution when data is incomplete or has missing values.

- When missing values exists
- When a likelihood function can be simplified by assuming extra parameters that are missing or hidden.

The EM algorithm

It was first developed by Dempster et al. (1977).

Its popularity comes from the fact

It can estimate an underlying distribution when data is incomplete or has missing values.

Two main applications

When missing values exists.

The EM algorithm

It was first developed by Dempster et al. (1977).

Its popularity comes from the fact

It can estimate an underlying distribution when data is incomplete or has missing values.

Two main applications

- When missing values exists.
- When a likelihood function can be simplified by assuming extra parameters that are missing or hidden.

Outline

- Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

- Introduction
- Using the Expected Value
- Analogy

- Hidden Features
 - Proving Concavity Using the Concave Functions for Approximation

 - From The Concave Function to the EM.
 - The Final Algorithm
 - Notes and Convergence of EM

- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Clustering

Given a series of data sets

Given the fact that Radial Gaussian Functions are Universal Approximators

- ullet Samples $\{oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N\}$ are the visible parameters
- The Gaussian distributions generating each of the samples are the hidden parameters

Clustering

Given a series of data sets

Given the fact that Radial Gaussian Functions are Universal Approximators

- ullet Samples $\{oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_N\}$ are the visible parameters
- The Gaussian distributions generating each of the samples are the hidden parameters

Unsupervised induction of probabilistic context-free grammars

Here given a series of words $o_1, o_2, o_3, ...$ and normalized Context-Free Grammar

ullet We want to know the probabilities of each rule $P\left(i
ightarrow jk
ight)$

- Here the vou have two variables:
 - ▶ The Visible Ones: The sequence of words
 - ▶ The Hidden Ones: The rule that produces the possible sequence $o_i \rightarrow o_i$

Unsupervised induction of probabilistic context-free grammars

Here given a series of words $o_1, o_2, o_3, ...$ and normalized Context-Free Grammar

• We want to know the probabilities of each rule $P\left(i \rightarrow jk\right)$

Thus

- Here the you have two variables:
 - ▶ The Visible Ones: The sequence of words
 - ▶ The Hidden Ones: The rule that produces the possible sequence $o_i \rightarrow o_i$

Hidden Variables: The circular nodes producing the dataVisible Variables: The square nodes representing the samples

Here

- Hidden Variables: The circular nodes producing the data
- Visible Variables: The square nodes representing the samples.

Outline

- - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

Incomplete Data Introduction

- Using the Expected Value
- Analogy

- Hidden Features
 - Proving Concavity Using the Concave Functions for Approximation

 - From The Concave Function to the EM.
 - The Final Algorithm
 - Notes and Convergence of EM

- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

We assume the following

Two parts of data

lacksquare $\mathcal{X}=$ observed data or incomplete data

y = unobserved data

 $\mathcal{Z} = (\mathcal{X}, \mathcal{Y}) = \mathsf{Complete}$ Data

 $p(z|\Theta) = p(x, y|\Theta) = p(y|x, \Theta) p(x|\Theta)$

We assume the following

Two parts of data

 $\mathbf{0} \ \mathcal{X} = \text{observed data or incomplete data}$

Thus

$$\mathcal{Z} = (\mathcal{X}, \mathcal{Y})$$
=Complete Data

(9)

We assume the following

Two parts of data

- **1** $\mathcal{X} = \text{observed data or incomplete data}$
- $\mathcal{Y} = \text{unobserved data}$

Thus

$$\mathcal{Z} = (\mathcal{X}, \mathcal{Y}) =$$
Complete Data

Thus, we have the following probability

$$p(\boldsymbol{z}|\Theta) = p(\boldsymbol{x}, \boldsymbol{y}|\Theta) = p(\boldsymbol{y}|\boldsymbol{x}, \Theta) p(\boldsymbol{x}|\Theta)$$

(10)

(9)

We assume the following

Two parts of data

- **1** $\mathcal{X} = \text{observed data or incomplete data}$
- $\mathcal{Y} = \text{unobserved data}$

Thus

$$\mathcal{Z} = (\mathcal{X}, \mathcal{Y})$$
=Complete Data

Thus, we have the following probability

 $p(\boldsymbol{z}|\Theta) = p(\boldsymbol{x}, \boldsymbol{y}|\Theta) = p(\boldsymbol{y}|\boldsymbol{x}, \Theta) p(\boldsymbol{x}|\Theta)$ (10)

(9)

Incomplete Data

We assume the following

Two parts of data

- **1** $\mathcal{X} = \text{observed data or incomplete data}$
- $\mathcal{Y} = \text{unobserved data}$

Thus

$$\mathcal{Z} = (\mathcal{X}, \mathcal{Y})$$
=Complete Data

Thus, we have the following probability

$$p(\boldsymbol{z}|\Theta) = p(\boldsymbol{x}, \boldsymbol{y}|\Theta) = p(\boldsymbol{y}|\boldsymbol{x}, \Theta) p(\boldsymbol{x}|\Theta)$$

(10)

(9)

New Likelihood Function

The New Likelihood Function

$$\mathcal{L}(\Theta|\mathcal{Z}) = \mathcal{L}(\Theta|\mathcal{X}, \mathcal{Y}) = p(\mathcal{X}, \mathcal{Y}|\Theta)$$
(11)

Note: The complete data likelihood.

$$\mathcal{L}(\Theta|\mathcal{X},\mathcal{Y}) = p(\mathcal{X},\mathcal{Y}|\Theta) = p(\mathcal{Y}|\mathcal{X},\Theta) p(\mathcal{X}|\Theta)$$

New Likelihood Function

The New Likelihood Function

$$\mathcal{L}(\Theta|\mathcal{Z}) = \mathcal{L}(\Theta|\mathcal{X}, \mathcal{Y}) = p(\mathcal{X}, \mathcal{Y}|\Theta)$$
(11)

Note: The complete data likelihood.

Thus, we have

$$\mathcal{L}(\Theta|\mathcal{X},\mathcal{Y}) = p(\mathcal{X},\mathcal{Y}|\Theta) = p(\mathcal{Y}|\mathcal{X},\Theta) p(\mathcal{X}|\Theta)$$
(12)

ullet $p\left(\mathcal{X}|\Theta\right)$ is the likelihood of the observed data.

New Likelihood Function

The New Likelihood Function

$$\mathcal{L}(\Theta|\mathcal{Z}) = \mathcal{L}(\Theta|\mathcal{X}, \mathcal{Y}) = p(\mathcal{X}, \mathcal{Y}|\Theta)$$
(11)

Note: The complete data likelihood.

Thus, we have

$$\mathcal{L}(\Theta|\mathcal{X}, \mathcal{Y}) = p(\mathcal{X}, \mathcal{Y}|\Theta) = p(\mathcal{Y}|\mathcal{X}, \Theta) p(\mathcal{X}|\Theta)$$
(12)

Did you notice?

- $p(\mathcal{X}|\Theta)$ is the likelihood of the observed data.
- $p(\mathcal{Y}|\mathcal{X},\Theta)$ is the likelihood of the no-observed data under the observed data!!!

Rewriting

This can be rewritten as

$$\mathcal{L}\left(\Theta|\mathcal{X},\mathcal{Y}\right) = h_{\mathcal{X},\Theta}\left(\mathcal{Y}\right) \tag{13}$$

This basically signify that \mathcal{X},Θ are constant and the only random part is $\mathcal{Y}.$

$$\mathcal{L}(\Theta|\mathcal{X})$$

(14)

It is known as the incomplete-data likelihood function

Rewriting

This can be rewritten as

$$\mathcal{L}\left(\Theta|\mathcal{X},\mathcal{Y}\right) = h_{\mathcal{X},\Theta}\left(\mathcal{Y}\right) \tag{13}$$

This basically signify that \mathcal{X}, Θ are constant and the only random part is $\mathcal{Y}.$

In addition

$$\mathcal{L}\left(\Theta|\mathcal{X}\right) \tag{14}$$

It is known as the incomplete-data likelihood function.

$$\mathcal{L}\left(\Theta|\mathcal{X}\right) = p\left(\mathcal{X}|\Theta\right)$$

$$\mathcal{L}(\Theta|\mathcal{X}) = p(\mathcal{X}|\Theta)$$
$$= \sum_{\mathcal{Y}} p(\mathcal{X}, \mathcal{Y}|\Theta)$$

$$\begin{split} \mathcal{L}\left(\Theta|\mathcal{X}\right) = & p\left(\mathcal{X}|\Theta\right) \\ = & \sum_{\mathcal{Y}} p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) \\ = & \sum_{\mathcal{Y}} p\left(\mathcal{Y}|\mathcal{X}, \Theta\right) p\left(\mathcal{X}|\Theta\right) \end{split}$$

$$\mathcal{L}(\Theta|\mathcal{X}) = p(\mathcal{X}|\Theta)$$

$$= \sum_{\mathcal{Y}} p(\mathcal{X}, \mathcal{Y}|\Theta)$$

$$= \sum_{\mathcal{Y}} p(\mathcal{Y}|\mathcal{X}, \Theta) p(\mathcal{X}|\Theta)$$

$$= \sum_{\mathcal{Y}} \left(\prod_{i=1}^{N} p(x_i|\Theta)\right) p(\mathcal{Y}|\mathcal{X}, \Theta)$$

Remarks

Problems

Normally, it is almost impossible to obtain a closed analytical solution for the previous equation.

We can use the expected value of $\log p\left(\mathcal{X},\mathcal{Y}|\Theta\right)$, which allows us to find an iterative procedure to approximate the solution.

Remarks

Problems

Normally, it is almost impossible to obtain a closed analytical solution for the previous equation.

However

We can use the expected value of $\log p\left(\mathcal{X},\mathcal{Y}|\Theta\right)$, which allows us to find an iterative procedure to approximate the solution.

The function we would like to have

The Q function

We want an estimation of the complete-data log-likelihood

$$\log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) \tag{15}$$

Based in the info provided by $\mathcal{X}, \Theta_{n-1}$ where Θ_{n-1} is a previously estimated set of parameters at step n.

$$/ \left[\log p\left(\mathcal{X}, \mathcal{Y} | \Theta \right) \right] p\left(\mathcal{Y} | \mathcal{X}, \Theta_{n-1} \right) d\mathcal{Y}$$

Remark: We integrate out \mathcal{Y} - Actually, this is the expected value of $\log n(\mathcal{X}, \mathcal{V}|\Theta)$

The function we would like to have

The Q function

We want an estimation of the complete-data log-likelihood

$$\log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) \tag{15}$$

Based in the info provided by $\mathcal{X}, \Theta_{n-1}$ where Θ_{n-1} is a previously estimated set of parameters at step n.

Think about the following, if we want to remove ${\cal Y}$

$$\int \left[\log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right)\right] p\left(\mathcal{Y}|\mathcal{X}, \Theta_{n-1}\right) d\mathcal{Y} \tag{16}$$

Remark: We integrate out \mathcal{Y} - Actually, this is the expected value of $\log p(\mathcal{X}, \mathcal{Y}|\Theta)$.

Outline

- - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

Incomplete Data

- Using the Expected Value
- Analogy

- Hidden Features
 - Proving Concavity Using the Concave Functions for Approximation
 - From The Concave Function to the EM.
 - The Final Algorithm
 - Notes and Convergence of EM

- The Beginning of The Process
- Bayes' Rule for the components
 - Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Then, we want an iterative method to guess Θ from Θ_{n-1}

$$Q(\Theta, \Theta_{n-1}) = E\left[\log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) \middle| \mathcal{X}, \Theta_{n-1}\right]$$
(17)

- \bigcirc $\mathcal{X}, \Theta_{n-1}$ are taken as constants.
- lacktriangle Θ is a normal variable that we wish to adjust.
- \mathcal{Y} is a random variable governed by distribution $p(\mathcal{Y}|\mathcal{X}, \Theta_{n-1})$ =marginal distribution of missing da

Then, we want an iterative method to guess Θ from Θ_{n-1}

$$Q(\Theta, \Theta_{n-1}) = E\left[\log p(\mathcal{X}, \mathcal{Y}|\Theta) | \mathcal{X}, \Theta_{n-1}\right]$$
(17)

Take in account that

 \bullet $\mathcal{X}, \Theta_{n-1}$ are taken as constants.

Then, we want an iterative method to guess Θ from Θ_{n-1}

$$Q(\Theta, \Theta_{n-1}) = E\left[\log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) | \mathcal{X}, \Theta_{n-1}\right]$$
(17)

Take in account that

- \bullet $\mathcal{X}, \Theta_{n-1}$ are taken as constants.
- \odot Θ is a normal variable that we wish to adjust.

Then, we want an iterative method to guess Θ from Θ_{n-1}

$$Q(\Theta, \Theta_{n-1}) = E\left[\log p\left(\mathcal{X}, \mathcal{Y}|\Theta\right) | \mathcal{X}, \Theta_{n-1}\right]$$
(17)

Take in account that

- \bullet $\mathcal{X}, \Theta_{n-1}$ are taken as constants.
- $oldsymbol{ ilde{Q}}$ is a normal variable that we wish to adjust.
- **3** \mathcal{Y} is a random variable governed by distribution $p(\mathcal{Y}|\mathcal{X}, \Theta_{n-1})$ =marginal distribution of missing data.

Given the previous information

$$E\left[\log p\left(\mathcal{X}, \mathcal{Y} \middle| \Theta\right) \middle| \mathcal{X}, \Theta_{n-1}\right] = \int_{\mathcal{Y} \in \mathbb{Y}} \log p\left(\mathcal{X}, \mathcal{Y} \middle| \Theta\right) p\left(\mathcal{Y} \middle| \mathcal{X}, \Theta_{n-1}\right) d\mathcal{Y}$$

- In the best of cases, this marginal distribution is a simple analytical expression of the assumed parameter Θ_{n-1} .
- In the worst of cases, this density might be very hard to obtain

$$p(\mathcal{Y}, \mathcal{X}|\Theta_{n-1}) = p(\mathcal{Y}|\mathcal{X}, \Theta_{n-1}) p(\mathcal{X}|\Theta_{n-1})$$

which is not dependent on Θ .

Given the previous information

$$E\left[\log p\left(\mathcal{X}, \mathcal{Y} \middle| \Theta\right) \middle| \mathcal{X}, \Theta_{n-1}\right] = \int_{\mathcal{Y} \in \mathbb{Y}} \log p\left(\mathcal{X}, \mathcal{Y} \middle| \Theta\right) p\left(\mathcal{Y} \middle| \mathcal{X}, \Theta_{n-1}\right) d\mathcal{Y}$$

Something Notable

 $\textbf{ In the best of cases, this marginal distribution is a simple analytical expression of the assumed parameter } \Theta_{n-1}.$

Given the previous information

 $E\left[\log p\left(\mathcal{X},\mathcal{Y}|\Theta\right)|\mathcal{X},\Theta_{n-1}\right] = \int_{\mathcal{Y}\in\mathbb{Y}} \log p\left(\mathcal{X},\mathcal{Y}|\Theta\right) p\left(\mathcal{Y}|\mathcal{X},\Theta_{n-1}\right) d\mathcal{Y}$

Something Notable

- In the best of cases, this marginal distribution is a simple analytical expression of the assumed parameter Θ_{n-1} .
- 2 In the worst of cases, this density might be very hard to obtain.

Actually, we use

$$p(\mathcal{Y}, \mathcal{X}|\Theta_{n-1}) = p(\mathcal{Y}|\mathcal{X}, \Theta_{n-1}) p(\mathcal{X}|\Theta_{n-1})$$

which is not dependent on Θ .

(18)

Given the previous information

 $E\left[\log p\left(\mathcal{X},\mathcal{Y}|\Theta\right)|\mathcal{X},\Theta_{n-1}\right] = \int_{\mathcal{Y}\in\mathbb{Y}} \log p\left(\mathcal{X},\mathcal{Y}|\Theta\right) p\left(\mathcal{Y}|\mathcal{X},\Theta_{n-1}\right) d\mathcal{Y}$

Something Notable

- In the best of cases, this marginal distribution is a simple analytical expression of the assumed parameter Θ_{n-1} .
- 2 In the worst of cases, this density might be very hard to obtain.

Actually, we use

$$p(\mathcal{Y}, \mathcal{X}|\Theta_{n-1}) = p(\mathcal{Y}|\mathcal{X}, \Theta_{n-1}) p(\mathcal{X}|\Theta_{n-1})$$

which is not dependent on Θ .

(18)

Outline

- Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

2 Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving ConcavityUsing the Concave Functions for Approximation
 - From The Concave Function to the EM
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- $\begin{tabular}{ll} \hline & Maximizing Q using Lagrange Multipliers \\ \hline \end{tabular}$
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

The intuition

We have the following analogy:

ullet Consider $h\left(heta,oldsymbol{Y}
ight)$ a function

 $ightharpoonup Y \sim n_Y(y)$ a random variable with distribution $n_Y(y)$

 $ightharpoonup Y \sim p_{Y}(y)$, a random variable with distribution $p_{Y}(y)$

Thus, if Y is a discrete random variable

 $q(\theta) = E_Y[h(\theta, Y)] = \sum h(\theta, y) p_Y(y)$

 \overline{y}

The intuition

We have the following analogy:

ullet Consider $h\left(heta, oldsymbol{Y}
ight)$ a function

Thus, if
$$Y$$
 is a discrete random variable

$$q(\theta) = E_{\mathbf{Y}} [h(\theta, \mathbf{Y})] = \sum h(\theta, y) p_{\mathbf{Y}}(y)$$

The intuition

We have the following analogy:

- ullet Consider $h\left(heta, oldsymbol{Y}
 ight)$ a function
 - \blacktriangleright θ a constant

Thus, if $oldsymbol{Y}$ is a discrete random variable

$$q(\theta) = E_{\mathbf{Y}}[h(\theta, \mathbf{Y})] = \sum h(\theta, y) p_{\mathbf{Y}}(y)$$

The intuition

We have the following analogy:

- ullet Consider $h\left(heta, oldsymbol{Y}
 ight)$ a function
 - $\triangleright \theta$ a constant
 - $Y \sim p_{Y}(y)$, a random variable with distribution $p_{Y}(y)$.

Thus, if Y is a discrete random variable

$$q(\theta) = E_{\mathbf{Y}}[h(\theta, \mathbf{Y})] = \sum h(\theta, y) p_{\mathbf{Y}}(y)$$

The intuition

We have the following analogy:

- ullet Consider $h\left(heta, oldsymbol{Y}
 ight)$ a function
 - $\triangleright \theta$ a constant
 - $Y \sim p_{Y}(y)$, a random variable with distribution $p_{Y}(y)$.

Thus, if Y is a discrete random variable

$$q(\theta) = E_{\mathbf{Y}}[h(\theta, \mathbf{Y})] = \sum h(\theta, y) p_{\mathbf{Y}}(y)$$

Why E-step!!!

From here the name

This is basically the E-step

The second ste

It tries to maximize the Q function

 $\Theta_n = \operatorname{argmax}_{\Theta} Q\left(\Theta, \Theta_{n-1}\right)$

(20)

Why E-step!!!

From here the name

This is basically the E-step

The second s

It tries to maximize the O function

 $\Theta_n = \operatorname{argmax}_{\Theta} Q (\Theta, \Theta_{n-1})$

/on

Why E-step!!!

From here the name

This is basically the E-step

The second step

It tries to maximize the ${\cal Q}$ function

$$\Theta_{n} = \operatorname{argmax}_{\Theta} Q\left(\Theta, \Theta_{n-1}\right) \tag{20}$$

Derivation of the EM-Algorithm

The likelihood function we are going to use

Let ${\mathcal X}$ be a random vector which results from a parametrized family:

$$\mathcal{L}(\Theta) = \ln \mathcal{P}(\mathcal{X}|\Theta)$$
 (21)

Note: $\ln(x)$ is a strictly increasing function.

Based on an estimate Θ_n (After the n^{th}) such that $\mathcal{L}\left(\Theta\right)>\mathcal{L}\left(\Theta_n
ight)$

 $\mathbb{C}(\Theta) - \mathcal{L}(\Theta_n) = \ln \mathcal{P}(\mathcal{X}|\Theta) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$

Derivation of the EM-Algorithm

The likelihood function we are going to use

Let ${\mathcal X}$ be a random vector which results from a parametrized family:

$$\mathcal{L}(\Theta) = \ln \mathcal{P}(\mathcal{X}|\Theta) \tag{21}$$

Note: $\ln(x)$ is a strictly increasing function.

We wish to compute Θ

Based on an estimate Θ_n (After the n^{th}) such that $\mathcal{L}(\Theta) > \mathcal{L}(\Theta_n)$

 $\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln \mathcal{P}(\mathcal{X}|\Theta) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$

Derivation of the EM-Algorithm

The likelihood function we are going to use

Let $\ensuremath{\mathcal{X}}$ be a random vector which results from a parametrized family:

$$\mathcal{L}(\Theta) = \ln \mathcal{P}(\mathcal{X}|\Theta) \tag{21}$$

Note: $\ln(x)$ is a strictly increasing function.

We wish to compute Θ

Based on an estimate Θ_n (After the n^{th}) such that $\mathcal{L}\left(\Theta\right) > \mathcal{L}\left(\Theta_n\right)$

Or the maximization of the difference

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln \mathcal{P}(\mathcal{X}|\Theta) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

(22)

Outline

- 1 Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

Incomplete Data

- Introduction
 - Using the Expected Value
 - Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
 - Using the Concave Functions for Approximation
 - From The Concave Function to the EM
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 - Mixing Parameters
- lacksquare Maximizing Q using Lagrange Multipliers
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Introducing the Hidden Features

Given that the hidden random vector \mathcal{Y} exits with y values

$$\mathcal{P}\left(\mathcal{X}|\Theta\right) = \sum_{y} \mathcal{P}\left(\mathcal{X}|y,\Theta\right) \mathcal{P}\left(y|\Theta\right) \tag{23}$$

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln \left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta) \right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$
 (24)

Introducing the Hidden Features

Given that the hidden random vector ${\mathcal Y}$ exits with y values

$$\mathcal{P}(\mathcal{X}|\Theta) = \sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \,\mathcal{P}(y|\Theta) \tag{23}$$

Thus, using our first constraint $\mathcal{L}\left(\Theta\right)-\mathcal{L}\left(\Theta_{n}\right)$

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln \left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta) \right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$
 (24)

32 / 130

Here, we introduce some concepts of convexity

For Convexity

Theorem (Jensen's inequality)

Let f be a convex function defined on an interval I. If $x_1, x_2, ..., x_n \in I$ and $\lambda_1, \lambda_2, ..., \lambda_n \geq 0$ with $\sum_{i=1}^n \lambda_i = 1$, then

$$f\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) \tag{25}$$

Proof:

For n=1

We have the trivial case

For n=2

The convexity definition

Now the inductive hypothesis

We assume that the theorem is true for some n.

Proof:

For n=1

We have the trivial case

For n=2

The convexity definition.

We assume that the theorem is true for some $n_{\rm c}$

Proof:

For n=1

We have the trivial case

For n=2

The convexity definition.

Now the inductive hypothesis

We assume that the theorem is true for some n.

Now, we have

The following linear combination for λ_i

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left(\lambda_{n+1} x_{n+1} + \sum_{i=1}^{n} \lambda_i x_i\right)$$

Now, we have

The following linear combination for λ_i

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left(\lambda_{n+1} x_{n+1} + \sum_{i=1}^n \lambda_i x_i\right)$$
$$= f\left(\lambda_{n+1} x_{n+1} + \frac{(1 - \lambda_{n+1})}{(1 - \lambda_{n+1})} \sum_{i=1}^n \lambda_i x_i\right)$$

Now, we have

The following linear combination for λ_i

$$f\left(\sum_{i=1}^{n+1} \lambda_{i} x_{i}\right) = f\left(\lambda_{n+1} x_{n+1} + \sum_{i=1}^{n} \lambda_{i} x_{i}\right)$$

$$= f\left(\lambda_{n+1} x_{n+1} + \frac{(1 - \lambda_{n+1})}{(1 - \lambda_{n+1})} \sum_{i=1}^{n} \lambda_{i} x_{i}\right)$$

$$\leq \lambda_{n+1} f\left(x_{n+1}\right) + (1 - \lambda_{n+1}) f\left(\frac{1}{(1 - \lambda_{n+1})} \sum_{i=1}^{n} \lambda_{i} x_{i}\right)$$

Did you notice?

Something Notable

$$\sum_{i=1} \lambda_i = 1$$

Thus

$$\sum_{i=1} \lambda_i = 1 - \lambda_{n+1}$$

Einall

$$\frac{1}{(1-\lambda_{n+1})}\sum_{i=1}^{n}\lambda_i=1$$

Did you notice?

Something Notable

$$\sum_{i=1}^{n+1} \lambda_i = 1$$

Thus

$$\sum_{i=1}^{n} \lambda_i = 1 - \lambda_{n+1}$$

Did you notice?

Something Notable

$$\sum_{i=1}^{n+1} \lambda_i = 1$$

Thus

$$\sum_{i=1}^{n} \lambda_i = 1 - \lambda_{n+1}$$

Finally

$$\frac{1}{(1-\lambda_{n+1})} \sum_{i=1}^{n} \lambda_i = 1$$

36 / 130

Now

We have that

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) \le \lambda_{n+1} f\left(x_{n+1}\right) + \left(1 - \lambda_{n+1}\right) f\left(\frac{1}{\left(1 - \lambda_{n+1}\right)} \sum_{i=1}^{n} \lambda_i x_i\right)$$

Now

We have that

$$f\left(\sum_{i=1}^{n+1} \lambda_{i} x_{i}\right) \leq \lambda_{n+1} f\left(x_{n+1}\right) + \left(1 - \lambda_{n+1}\right) f\left(\frac{1}{(1 - \lambda_{n+1})} \sum_{i=1}^{n} \lambda_{i} x_{i}\right)$$

$$\leq \lambda_{n+1} f\left(x_{n+1}\right) + \left(1 - \lambda_{n+1}\right) \frac{1}{(1 - \lambda_{n+1})} \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right)$$

 $\leq \lambda_{n+1} f(x_{n+1}) + \sum \lambda_i f(x_i)$ Q.E.D.

Now

We have that

$$f\left(\sum_{i=1}^{n+1} \lambda_{i} x_{i}\right) \leq \lambda_{n+1} f\left(x_{n+1}\right) + \left(1 - \lambda_{n+1}\right) f\left(\frac{1}{\left(1 - \lambda_{n+1}\right)} \sum_{i=1}^{n} \lambda_{i} x_{i}\right)$$

$$\leq \lambda_{n+1} f\left(x_{n+1}\right) + \left(1 - \lambda_{n+1}\right) \frac{1}{\left(1 - \lambda_{n+1}\right)} \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right)$$

$$\leq \lambda_{n+1} f\left(x_{n+1}\right) + \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) \text{ Q.E.D.}$$

Thus, for concave functions

It is possible to shown that

Given $\ln(x)$ a concave function:

$$\ln \left| \sum_{i=1}^{n} \lambda_i x_i \right| \ge \sum_{i=1}^{n} \lambda_i \ln \left(x_i \right)$$

- If we take i
- Assume that the $\lambda_i = \mathcal{P}(y|\mathcal{X}, \Theta_n)$. We know that

Thus, for concave functions

It is possible to shown that

Given $\ln(x)$ a concave function:

$$\ln \left| \sum_{i=1}^{n} \lambda_i x_i \right| \ge \sum_{i=1}^{n} \lambda_i \ln \left(x_i \right)$$

If we take in consideration

Assume that the $\lambda_i = \mathcal{P}(y|\mathcal{X}, \Theta_n)$. We know that

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln \left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta) \right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$
$$= \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta) \frac{\mathcal{P}(y|\mathcal{X},\Theta_n)}{\mathcal{P}(y|\mathcal{X},\Theta_n)}\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) = \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

$$= \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta) \frac{\mathcal{P}(y|\mathcal{X},\Theta_n)}{\mathcal{P}(y|\mathcal{X},\Theta_n)}\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

$$= \ln\left(\sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_n) \frac{\mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\mathcal{X},\Theta_n)}\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_n)$$

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_{n}) = \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_{n})$$

$$= \ln\left(\sum_{y} \mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta) \frac{\mathcal{P}(y|\mathcal{X},\Theta_{n})}{\mathcal{P}(y|\mathcal{X},\Theta_{n})}\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_{n})$$

$$= \ln\left(\sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_{n}) \frac{\mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\mathcal{X},\Theta_{n})}\right) - \ln \mathcal{P}(\mathcal{X}|\Theta_{n})$$

$$\geq \sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_{n}) \ln\left(\frac{\mathcal{P}(\mathcal{X}|y,\Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\mathcal{X},\Theta_{n})}\right) - \dots$$

$$\sum_{y} \mathcal{P}(y|\mathcal{X},\Theta_{n}) \ln \mathcal{P}(\mathcal{X}|\Theta_{n}) \text{ Why this?}$$

Next

Because

$$\sum_{y} \mathcal{P}(y|\mathcal{X}, \Theta_n) = 1$$

Then

$$\mathcal{L}\left(\Theta\right) - \mathcal{L}\left(\Theta_{n}\right) \geq \sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y, \Theta\right) \mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$$

Next

Because

$$\sum_{y} \mathcal{P}(y|\mathcal{X}, \Theta_n) = 1$$

Then

$$\mathcal{L}(\Theta) - \mathcal{L}(\Theta_n) \ge \sum_{y} \mathcal{P}(y|\mathcal{X}, \Theta_n) \ln \left(\frac{\mathcal{P}(\mathcal{X}|y, \Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\mathcal{X}, \Theta_n) \mathcal{P}(\mathcal{X}|\Theta_n)} \right)$$
$$= \Delta (\Theta|\Theta_n)$$

Then, we have

Then, we have proved that

$$\mathcal{L}\left(\Theta\right) \ge \mathcal{L}\left(\Theta_n\right) + \Delta\left(\Theta|\Theta_n\right)$$

n we defi

$$l\left(\Theta|\Theta_n\right) = \mathcal{L}\left(\Theta_n\right) + \Delta\left(\Theta|\Theta_n\right)$$

Thus $l(\Theta|\Theta)$

It is bounded from above by $\mathcal{L}(\Theta)$ i.e $l(\Theta|\Theta_n) \leq \mathcal{L}(\Theta)$

(26)

Then, we have

Then, we have proved that

$$\mathcal{L}(\Theta) \ge \mathcal{L}(\Theta_n) + \Delta(\Theta|\Theta_n)$$
 (26)

Then, we define a new function

$$l\left(\Theta|\Theta_n\right) = \mathcal{L}\left(\Theta_n\right) + \Delta\left(\Theta|\Theta_n\right)$$

(27)

Thus //AIC

It is bounded from above by $\mathcal{L}(\Theta)$ i.e $l(\Theta|\Theta_n) \leq \mathcal{L}(\Theta)$

Then, we have

Then, we have proved that

$$\mathcal{L}(\Theta) \ge \mathcal{L}(\Theta_n) + \Delta(\Theta|\Theta_n)$$

Then, we define a new function

$$l\left(\Theta|\Theta_{n}\right) = \mathcal{L}\left(\Theta_{n}\right) + \Delta\left(\Theta|\Theta_{n}\right)$$

(27)

(26)

Thus $l\left(\Theta|\Theta_n\right)$

It is bounded from above by $\mathcal{L}\left(\Theta\right)$ i.e $l\left(\Theta|\Theta_{n}\right)\leq\mathcal{L}\left(\Theta\right)$

We evaluate in Θ_n

$$l(\Theta_n|\Theta_n) = \mathcal{L}(\Theta_n) + \Delta(\Theta_n|\Theta_n)$$

$$=\mathcal{L}\left(\Theta_{n}\right)$$

This means that

For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta|\Theta_n)$ are equal

We evaluate in Θ_n

$$l\left(\Theta_{n}|\Theta_{n}\right) = \mathcal{L}\left(\Theta_{n}\right) + \Delta\left(\Theta_{n}|\Theta_{n}\right)$$
$$= \mathcal{L}\left(\Theta_{n}\right) + \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln\left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta_{n}\right)\mathcal{P}\left(y|\Theta_{n}\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$$

This means that

We evaluate in Θ_n

$$l\left(\Theta_{n}|\Theta_{n}\right) = \mathcal{L}\left(\Theta_{n}\right) + \Delta\left(\Theta_{n}|\Theta_{n}\right)$$

$$= \mathcal{L}\left(\Theta_{n}\right) + \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln\left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta_{n}\right) \mathcal{P}\left(y|\Theta_{n}\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$$

$$= \mathcal{L}\left(\Theta_{n}\right) + \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln\left(\frac{\mathcal{P}\left(\mathcal{X},y|\Theta_{n}\right)}{\mathcal{P}\left(\mathcal{X},y|\Theta_{n}\right)}\right)$$

This means that

We evaluate in Θ_n

$$l(\Theta_{n}|\Theta_{n}) = \mathcal{L}(\Theta_{n}) + \Delta(\Theta_{n}|\Theta_{n})$$

$$= \mathcal{L}(\Theta_{n}) + \sum_{y} \mathcal{P}(y|\mathcal{X}, \Theta_{n}) \ln\left(\frac{\mathcal{P}(\mathcal{X}|y, \Theta_{n}) \mathcal{P}(y|\Theta_{n})}{\mathcal{P}(y|\mathcal{X}, \Theta_{n}) \mathcal{P}(\mathcal{X}|\Theta_{n})}\right)$$

$$= \mathcal{L}(\Theta_{n}) + \sum_{y} \mathcal{P}(y|\mathcal{X}, \Theta_{n}) \ln\left(\frac{\mathcal{P}(\mathcal{X}, y|\Theta_{n})}{\mathcal{P}(\mathcal{X}, y|\Theta_{n})}\right)$$

$$= \mathcal{L}(\Theta_{n})$$

This means that

We evaluate in Θ_n

$$l(\Theta_{n}|\Theta_{n}) = \mathcal{L}(\Theta_{n}) + \Delta(\Theta_{n}|\Theta_{n})$$

$$= \mathcal{L}(\Theta_{n}) + \sum_{y} \mathcal{P}(y|\mathcal{X}, \Theta_{n}) \ln\left(\frac{\mathcal{P}(\mathcal{X}|y, \Theta_{n}) \mathcal{P}(y|\Theta_{n})}{\mathcal{P}(y|\mathcal{X}, \Theta_{n}) \mathcal{P}(\mathcal{X}|\Theta_{n})}\right)$$

$$= \mathcal{L}(\Theta_{n}) + \sum_{y} \mathcal{P}(y|\mathcal{X}, \Theta_{n}) \ln\left(\frac{\mathcal{P}(\mathcal{X}, y|\Theta_{n})}{\mathcal{P}(\mathcal{X}, y|\Theta_{n})}\right)$$

$$= \mathcal{L}(\Theta_{n})$$

This means that

For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta|\Theta_n)$ are equal

Therefore

The function $l\left(\Theta|\Theta_n\right)$ has the following properties

1 It is bounded from above by $\mathcal{L}\left(\Theta\right)$ i.e $l\left(\Theta|\Theta_{n}\right) \leq \mathcal{L}\left(\Theta\right)$.

Therefore

The function $l(\Theta|\Theta_n)$ has the following properties

- **1** It is bounded from above by $\mathcal{L}(\Theta)$ i.e $l(\Theta|\Theta_n) \leq \mathcal{L}(\Theta)$.
- ② For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta|\Theta_n)$ are equal.

Therefore

The function $l(\Theta|\Theta_n)$ has the following properties

- **1** It is bounded from above by $\mathcal{L}(\Theta)$ i.e $l(\Theta|\Theta_n) \leq \mathcal{L}(\Theta)$.
- **2** For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta|\Theta_n)$ are equal.
- **3** The function $l(\Theta|\Theta_n)$ is concave... How?

Outline

- 1 Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

Incomplete Data

- Introduction
 - Using the Expected Value
 - Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
 - Using the Concave Functions for Approximation
 - From The Concave Function to the EM
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
 - Bayes' Rule for the components
 - Mixing Parameters
 - $\begin{tabular}{ll} \hline & Maximizing Q using Lagrange Multipliers \\ \hline \end{tabular}$
 - Lagrange Multipliers
 - In Our Case
 - Example on Mixture of Gaussian Distributions
 - The EM Algorithm

First

We have the value $\mathcal{L}(\Theta_n)$

We know that $\mathcal{L}\left(\Theta_{n}\right)$ is constant i.e. an offset value

$$\sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y, \Theta\right) \mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$$

 $\ln\left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$

First

We have the value $\mathcal{L}(\Theta_n)$

We know that $\mathcal{L}\left(\Theta_{n}\right)$ is constant i.e. an offset value

What about $\Delta\left(\Theta|\Theta_n\right)$

$$\sum_{y} \mathcal{P}(y|\mathcal{X}, \Theta_n) \ln \left(\frac{\mathcal{P}(\mathcal{X}|y, \Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\mathcal{X}, \Theta_n) \mathcal{P}(\mathcal{X}|\Theta_n)} \right)$$

 $\ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)} \right)$

First

We have the value $\mathcal{L}(\Theta_n)$

We know that $\mathcal{L}\left(\Theta_{n}\right)$ is constant i.e. an offset value

What about $\Delta\left(\Theta|\Theta_{n} ight)$

$$\sum_{y} \mathcal{P}(y|\mathcal{X}, \Theta_n) \ln \left(\frac{\mathcal{P}(\mathcal{X}|y, \Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\mathcal{X}, \Theta_n) \mathcal{P}(\mathcal{X}|\Theta_n)} \right)$$

We have that the \ln is a concave function

$$\ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right)\mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)} \right)$$

Each element is concave

$$\mathcal{P}(y|\mathcal{X}, \Theta_n) \ln \left(\frac{\mathcal{P}(\mathcal{X}|y, \Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\mathcal{X}, \Theta_n) \mathcal{P}(\mathcal{X}|\Theta_n)} \right)$$

Therefore, t

$$\sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y, \Theta\right) \mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$$

Each element is concave

$$\mathcal{P}(y|\mathcal{X}, \Theta_n) \ln \left(\frac{\mathcal{P}(\mathcal{X}|y, \Theta) \mathcal{P}(y|\Theta)}{\mathcal{P}(y|\mathcal{X}, \Theta_n) \mathcal{P}(\mathcal{X}|\Theta_n)} \right)$$

Therefore, the sum of concave functions is a concave function

$$\sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y, \Theta\right) \mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)}\right)$$

Outline

- Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

Incomplete Data

- Introduction
 - Using the Expected Value
 - Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
 - Using the Concave Functions for Approximation
 - From The Concave Function to the EM
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
 - Bayes' Rule for the components
 - Mixing Parameters
 - lacksquare Maximizing Q using Lagrange Multipliers
 - Lagrange Multipliers
 - In Our Case
 - Example on Mixture of Gaussian Distributions
 - The EM Algorithm

Given the Concave Function

Thus, we have that

 $\textbf{ 0} \ \ \text{We can select } \Theta_n \ \text{such that} \ l\left(\Theta|\Theta_n\right) \ \text{is maximized}.$

Given the Concave Function

Thus, we have that

- We can select Θ_n such that $l(\Theta|\Theta_n)$ is maximized.
- ② Thus, given a Θ_n , we can generate Θ_{n+1} .

The process can be seen in the following graph

Given the Concave Function

Thus, we have that

- **①** We can select Θ_n such that $l\left(\Theta|\Theta_n\right)$ is maximized.
- **2** Thus, given a Θ_n , we can generate Θ_{n+1} .

Given

The Previous Constraints

 $\textbf{0} \ l\left(\Theta|\Theta_{n}\right) \text{ is bounded from above by } \mathcal{L}\left(\Theta\right)$

$$l\left(\Theta|\Theta_{n}\right) \leq \mathcal{L}\left(\Theta\right)$$

lacktriangle For $\Theta=\Theta_n$, functions $\mathcal{L}\left(\Theta
ight)$ and $l\left(\Theta|\Theta_n
ight)$ are equal

$$\mathcal{L}\left(\Theta_{n}\right) = l\left(\Theta|\Theta_{n}\right)$$

 \bullet The function $l(\Theta|\Theta_n)$ is concave

Given

The Previous Constraints

 $\textbf{0} \ l\left(\Theta|\Theta_{n}\right) \text{ is bounded from above by } \mathcal{L}\left(\Theta\right)$

$$l\left(\Theta|\Theta_{n}\right) \leq \mathcal{L}\left(\Theta\right)$$

② For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta|\Theta_n)$ are equal

$$\mathcal{L}\left(\Theta_{n}\right) = l\left(\Theta|\Theta_{n}\right)$$

 \bullet The function $I(\Theta|\Theta_m)$ is concave

Given

The Previous Constraints

 $\textbf{0} \ l\left(\Theta|\Theta_{n}\right) \text{ is bounded from above by } \mathcal{L}\left(\Theta\right)$

$$l\left(\Theta|\Theta_n\right) \leq \mathcal{L}\left(\Theta\right)$$

② For $\Theta = \Theta_n$, functions $\mathcal{L}(\Theta)$ and $l(\Theta|\Theta_n)$ are equal

$$\mathcal{L}\left(\Theta_{n}\right) = l\left(\Theta|\Theta_{n}\right)$$

3 The function $l\left(\Theta|\Theta_n\right)$ is concave

Outline

- 1 Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

Incomplete Data

- Introduction
 - Using the Expected Value
 - Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
 - Using the Concave Functions for Approximation
 - From The Concave Function to the EM
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 - Mixing Parameters
- $\begin{tabular}{ll} \hline & Maximizing Q using Lagrange Multipliers \\ \hline \end{tabular}$
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

The following

$$\Theta_{n+1} = \! \operatorname{argmax}_{\Theta} \left\{ l \left(\Theta | \Theta_n \right) \right\}$$

The terms with Θ_n are constants.

 $\operatorname{argmax}_{\Delta} \left\{ \sum_{\mathcal{P}} \mathcal{P}\left(y | \mathcal{X}, \Theta_n\right) \ln \left(\mathcal{P}\left(y | \mathcal{X}, \Theta_n\right) \right) \right\}$

 $\mathsf{ax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{1}{2} \right) \right\}$

 $= \operatorname{argmax}_{\Theta} \left\{ \sum \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)}}{\mathcal{P}\left(y, \Theta\right)} \frac{\mathcal{P}\left(y, \Theta\right)}{\mathcal{P}\left(\Theta\right)} \right) \right\} \right\}$

The following

$$\begin{split} \Theta_{n+1} = & \operatorname{argmax}_{\Theta} \left\{ l\left(\Theta|\Theta_{n}\right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \mathcal{L}\left(\Theta_{n}\right) + \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right) \mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)} \right) \right\} \end{split}$$

The terms with Θ_n are constants.

The following

$$\begin{split} \Theta_{n+1} = & \operatorname{argmax}_{\Theta} \left\{ l\left(\Theta|\Theta_{n}\right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \mathcal{L}\left(\Theta_{n}\right) + \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right) \mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)} \right) \right\} \end{split}$$

The terms with Θ_n are constants.

$$pprox \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \ln \left(\mathcal{P}\left(\mathcal{X}|y, \Theta\right) \mathcal{P}\left(y|\Theta\right)\right) \right\}$$

The following

$$\begin{split} \Theta_{n+1} = & \operatorname{argmax}_{\Theta} \left\{ l\left(\Theta|\Theta_{n}\right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \mathcal{L}\left(\Theta_{n}\right) + \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right) \mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)} \right) \right\} \end{split}$$

The terms with Θ_n are constants.

$$\approx \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \ln \left(\mathcal{P}\left(\mathcal{X}|y, \Theta\right) \mathcal{P}\left(y|\Theta\right)\right) \right\}$$

$$=\!\!\operatorname{argmax}_{\Theta}\left\{\sum_{y}\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\ln\left(\frac{\mathcal{P}\left(\mathcal{X},y|\Theta\right)}{\mathcal{P}\left(y|\Theta\right)}\frac{\mathcal{P}\left(y,\Theta\right)}{\mathcal{P}\left(\Theta\right)}\right)\right\}$$

The following

$$\begin{split} \Theta_{n+1} = & \operatorname{argmax}_{\Theta} \left\{ l\left(\Theta|\Theta_{n}\right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \mathcal{L}\left(\Theta_{n}\right) + \sum_{y} \mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}|y,\Theta\right) \mathcal{P}\left(y|\Theta\right)}{\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right) \mathcal{P}\left(\mathcal{X}|\Theta_{n}\right)} \right) \right\} \end{split}$$
 The terms with Θ_{n} are constants.

$$pprox \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y|\mathcal{X}, \Theta_{n}\right) \ln \left(\mathcal{P}\left(\mathcal{X}|y, \Theta\right) \mathcal{P}\left(y|\Theta\right)\right) \right\}$$

$$= \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y | \Theta\right)}{\mathcal{P}\left(y | \Theta\right)} \frac{\mathcal{P}\left(y, \Theta\right)}{\mathcal{P}\left(\Theta\right)} \right) \right\}$$

$$=\!\!\operatorname{argmax}_{\Theta}\left\{\sum_{y}\mathcal{P}\left(y|\mathcal{X},\Theta_{n}\right)\ln\left(\frac{\frac{\mathcal{P}\left(\mathcal{X},y,\Theta\right)}{\mathcal{P}\left(\Theta\right)}}{\frac{\mathcal{P}\left(y,\Theta\right)}{\mathcal{P}\left(\Theta\right)}}\frac{\mathcal{P}\left(y,\Theta\right)}{\mathcal{P}\left(\Theta\right)}\right)\right\}$$

Then

$$\theta_{n+1} = \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(y, \Theta\right)} \frac{\mathcal{P}\left(y, \Theta\right)}{\mathcal{P}\left(\Theta\right)} \right) \right\}$$

Then

Then

$$\begin{split} \theta_{n+1} = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(y, \Theta\right)} \frac{\mathcal{P}\left(y, \Theta\right)}{\mathcal{P}\left(\Theta\right)} \right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)} \right) \right\} \end{split}$$

Then

Then

$$\begin{split} \theta_{n+1} = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(y, \Theta\right)} \frac{\mathcal{P}\left(y, \Theta\right)}{\mathcal{P}\left(\Theta\right)} \right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)} \right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\mathcal{P}\left(\mathcal{X}, y | \Theta\right) \right) \right\} \end{split}$$

hen $\operatorname{argmax}_{\Theta} \left\{ l\left(\Theta|\Theta_{n}\right) \right\} pprox \operatorname{argmax}_{\Theta} \left\{ l\left(\Theta|\Theta_{n}\right) \right\}$

Then

$$\begin{split} \theta_{n+1} = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(y, \Theta\right)} \frac{\mathcal{P}\left(y, \Theta\right)}{\mathcal{P}\left(\Theta\right)} \right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\frac{\mathcal{P}\left(\mathcal{X}, y, \Theta\right)}{\mathcal{P}\left(\Theta\right)} \right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P}\left(y | \mathcal{X}, \Theta_{n}\right) \ln \left(\mathcal{P}\left(\mathcal{X}, y | \Theta\right) \right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ E_{y | \mathcal{X}, \Theta_{n}} \left[\ln \left(\mathcal{P}\left(\mathcal{X}, y | \Theta\right) \right) \right] \right\} \end{split}$$

Then $\operatorname{argmax}_{\Theta}\left\{l\left(\Theta|\Theta_{n}\right)\right\} pprox \operatorname{argmax}_{\Theta}\left\{E_{y|\mathcal{X},\Theta_{n}}\left[\ln\left(\mathcal{P}\left(\mathcal{X},y|\Theta\right)\right)\right]\right\}$

Then

$$\begin{split} \theta_{n+1} = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P} \left(y | \mathcal{X}, \Theta_{n} \right) \ln \left(\frac{\mathcal{P} \left(\mathcal{X}, y, \Theta \right)}{\mathcal{P} \left(y, \Theta \right)} \frac{\mathcal{P} \left(y, \Theta \right)}{\mathcal{P} \left(\Theta \right)} \right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P} \left(y | \mathcal{X}, \Theta_{n} \right) \ln \left(\frac{\mathcal{P} \left(\mathcal{X}, y, \Theta \right)}{\mathcal{P} \left(\Theta \right)} \right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ \sum_{y} \mathcal{P} \left(y | \mathcal{X}, \Theta_{n} \right) \ln \left(\mathcal{P} \left(\mathcal{X}, y | \Theta \right) \right) \right\} \\ = & \operatorname{argmax}_{\Theta} \left\{ E_{y | \mathcal{X}, \Theta_{n}} \left[\ln \left(\mathcal{P} \left(\mathcal{X}, y | \Theta \right) \right) \right] \right\} \end{split}$$
 Then $\operatorname{argmax}_{\Theta} \left\{ l \left(\Theta | \Theta_{n} \right) \right\} \approx \operatorname{argmax}_{\Theta} \left\{ E_{y | \mathcal{X}, \Theta_{n}} \left[\ln \left(\mathcal{P} \left(\mathcal{X}, y | \Theta \right) \right) \right] \right\} \end{split}$

Outline

- 1 Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

Incomplete Data

- Introduction
 - Using the Expected Value
 - Analogy

3 Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
 - Using the Concave Functions for Approximation
 - From The Concave Function to the EM
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 - Mixing Parameters
- $\begin{tabular}{ll} \hline & Maximizing Q using Lagrange Multipliers \\ \hline \end{tabular}$
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Steps of EM

- Expectation under hidden variables.
- Maximization of the resulting formula
- F_Sten
- Determine the conditional expectation, $E_{y|\mathcal{X},\Theta_n}\left[\ln\left(\mathcal{P}\left(\mathcal{X},y|\Theta\right)\right)\right]$
- M-Step
 - Maximize this expression with respect to Θ .

Steps of EM

- Expectation under hidden variables.
- 2 Maximization of the resulting formula.

E-Step

Determine the conditional expectation, $E_{u|\mathcal{X},\Theta_n}[\ln(\mathcal{P}(\mathcal{X},y|\Theta))].$

Maximize this expression with respect to A

Steps of EM

- Expectation under hidden variables.
- 2 Maximization of the resulting formula.

E-Step

Determine the conditional expectation, $E_{u|\mathcal{X},\Theta_n}[\ln(\mathcal{P}(\mathcal{X},y|\Theta))].$

M-Step

Maximize this expression with respect to Θ .

Steps of EM

- Expectation under hidden variables.
- 2 Maximization of the resulting formula.

E-Step

Determine the conditional expectation, $E_{u|\mathcal{X},\Theta_n}[\ln(\mathcal{P}(\mathcal{X},y|\Theta))].$

M-Step

Maximize this expression with respect to Θ .

Outline

- 1 Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

Incomplete Data

- Introduction
 - Using the Expected Value
 - Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
 - Using the Concave Functions for Approximation
 - From The Concave Function to the EM
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- $\begin{tabular}{ll} \hline & Maximizing Q using Lagrange Multipliers \\ \hline \end{tabular}$
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Gains between $\mathcal{L}\left(\Theta\right)$ and $l\left(\Theta|\Theta_{n}\right)$

Using the hidden variables it is possible to simplify the optimization of $\mathcal{L}\left(\Theta\right)$ through $l\left(\Theta|\Theta_{n}\right)$.

Remember that Θ_{n+1} is the estimate for Θ which maximizes the difference Δ (Θ|Θ_n).

Gains between $\mathcal{L}\left(\Theta\right)$ and $l\left(\Theta|\Theta_{n}\right)$

Using the hidden variables it is possible to simplify the optimization of $\mathcal{L}(\Theta)$ through $l(\Theta|\Theta_n)$.

Convergence

• Remember that Θ_{n+1} is the estimate for Θ which maximizes the difference $\Delta\left(\Theta|\Theta_n\right)$.

Gains between $\mathcal{L}\left(\Theta\right)$ and $l\left(\Theta|\Theta_{n}\right)$

Using the hidden variables it is possible to simplify the optimization of $\mathcal{L}(\Theta)$ through $l(\Theta|\Theta_n)$.

Convergence

• Remember that Θ_{n+1} is the estimate for Θ which maximizes the difference $\Delta\left(\Theta|\Theta_n\right)$.

Then, we have

Given the initial estimate of Θ by Θ_n

$$\Delta \left(\Theta_n | \Theta_n \right) = 0$$

If we choose Θ_{n+1} to maximize the $\Delta\left(\Theta|\Theta_n\right)$, then

 $\Delta\left(\Theta_{n+1}|\Theta_n\right) \ge \Delta\left(\Theta_n|\Theta_n\right) = 0$

We have that

The Likelihood $\mathcal{L}\left(\Theta
ight)$ is not a decreasing function with respect to Θ .

Then, we have

Given the initial estimate of Θ by Θ_n

$$\Delta \left(\Theta_n | \Theta_n \right) = 0$$

Now

If we choose Θ_{n+1} to maximize the $\Delta\left(\Theta|\Theta_{n}\right)$, then

$$\Delta\left(\Theta_{n+1}|\Theta_n\right) \ge \Delta\left(\Theta_n|\Theta_n\right) = 0$$

vve have that

The Likelihood $\mathcal{L}(\Theta)$ is not a decreasing function with respect to Θ .

Then, we have

Given the initial estimate of Θ by Θ_n

$$\Delta \left(\Theta_n | \Theta_n \right) = 0$$

Now

If we choose Θ_{n+1} to maximize the $\Delta\left(\Theta|\Theta_n\right)$, then

$$\Delta\left(\Theta_{n+1}|\Theta_n\right) \ge \Delta\left(\Theta_n|\Theta_n\right) = 0$$

We have that

The Likelihood $\mathcal{L}(\Theta)$ is not a decreasing function with respect to Θ .

Properties

When the algorithm reaches a fixed point for some Θ_n , the value maximizes $l(\Theta|\Theta_n)$.

A fixed point of a function is an element on domain that is mapped to itself by the function:

 $f\left(oldsymbol{x}
ight) =oldsymbol{x}$

 $EM[\Theta^*] = \Theta^*$

Properties

When the algorithm reaches a fixed point for some Θ_n , the value maximizes $l(\Theta|\Theta_n)$.

Definition

A fixed point of a function is an element on domain that is mapped to itself by the function:

$$f(\boldsymbol{x}) = \boldsymbol{x}$$

 $EM\left[\Theta^*\right] = \Theta^*$

Notes and Convergence of EM

Properties

When the algorithm reaches a fixed point for some Θ_n , the value maximizes $l\left(\Theta|\Theta_n\right)$.

Definition

A fixed point of a function is an element on domain that is mapped to itself by the function:

$$f(\boldsymbol{x}) = \boldsymbol{x}$$

Basically the EM algorithm does the following

$$EM\left[\Theta^*\right] = \Theta^*$$

At this moment

We have that

The algorithm reaches a fixed point for some Θ_n , the value Θ^* maximizes $l\left(\Theta|\Theta_n\right)$.

Then when the

• It reaches a fixed point for some Θ_n the value maximizes $l\left(\Theta|\Theta_n\right)$

At this moment

We have that

The algorithm reaches a fixed point for some Θ_n , the value Θ^* maximizes $l(\Theta|\Theta_n)$.

Then, when the algorithm

- It reaches a fixed point for some Θ_n the value maximizes $l(\Theta|\Theta_n)$.
 - ▶ Basically $\Theta_{n+1} = \Theta_n$.

Therefore

Then

If \mathcal{L} and l are differentiable at Θ_n

- Since \mathcal{L} and l are equal at Θ_n
 - ▶ Then, Θ_n is a stationary point of $\mathcal L$ i.e. the derivative of $\mathcal L$ vanishes at that point.

However

For more on the subject

Please take a look to

Geoffrey McLachlan and Thriyambakam Krishnan, "The EM Algorithm and Extensions," John Wiley & Sons, New York, 1996.

Something Notable

The mixture-density parameter estimation problem is probably one of the most widely used applications of the EM algorithm in the computational pattern recognition community.

Something Notable

The mixture-density parameter estimation problem is probably one of the most widely used applications of the EM algorithm in the computational pattern recognition community.

We have

$$p(\boldsymbol{x}|\Theta) = \sum_{i=1}^{M} \alpha_i p_i(\boldsymbol{x}|\theta_i)$$
 (28)

where

$$\bullet \Theta = (\alpha_1, ..., \alpha_M, \theta_1, ..., \theta_M)$$

igotimes Each p_i is a density function parametrized by $heta_i$

Something Notable

The mixture-density parameter estimation problem is probably one of the most widely used applications of the EM algorithm in the computational pattern recognition community.

We have

$$p(\boldsymbol{x}|\Theta) = \sum_{i=1}^{M} \alpha_i p_i(\boldsymbol{x}|\theta_i)$$
 (28)

where

$$\bullet \Theta = (\alpha_1, ..., \alpha_M, \theta_1, ..., \theta_M)$$

$$\sum_{i=1}^{M} \alpha_i = 1$$

Something Notable

The mixture-density parameter estimation problem is probably one of the most widely used applications of the EM algorithm in the computational pattern recognition community.

We have

$$p(\boldsymbol{x}|\Theta) = \sum_{i=1}^{M} \alpha_i p_i(\boldsymbol{x}|\theta_i)$$
 (28)

where

$$\bullet \Theta = (\alpha_1, ..., \alpha_M, \theta_1, ..., \theta_M)$$

$$\sum_{i=1}^{M} \alpha_i = 1$$

3 Each p_i is a density function parametrized by θ_i .

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}) = \log \prod_{i=1}^{N} p(x_i|\Theta) = \sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_j p_j(x_i|\theta_j) \right)$$
(29)

Note: This is too difficult to optimize due to the log function.

- \bullet We assume that each unobserved data $\mathcal{Y}=\{y_i\}_{i=1}^N$ has a the following range $y_i\in\{1,...,M\}$
- $y_i = k$ if the i^{th} samples was generated by the k^{th} mixture

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}) = \log \prod_{i=1}^{N} p(x_i|\Theta) = \sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_j p_j(x_i|\theta_j) \right)$$
(29)

Note: This is too difficult to optimize due to the log function.

However

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}) = \log \prod_{i=1}^{N} p(x_i|\Theta) = \sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_j p_j(x_i|\theta_j) \right)$$
(29)

Note: This is too difficult to optimize due to the log function.

However

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}) = \log \prod_{i=1}^{N} p(x_i|\Theta) = \sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_j p_j(x_i|\theta_j) \right)$$
(29)

Note: This is too difficult to optimize due to the log function.

However

We can simplify this assuming the following:

① We assume that each unobserved data $\mathcal{Y} = \{y_i\}_{i=1}^N$ has a the following range $y_i \in \{1,...,M\}$

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}) = \log \prod_{i=1}^{N} p(x_i|\Theta) = \sum_{i=1}^{N} \log \left(\sum_{j=1}^{M} \alpha_j p_j(x_i|\theta_j) \right)$$
(29)

Note: This is too difficult to optimize due to the log function.

However

- ① We assume that each unobserved data $\mathcal{Y} = \{y_i\}_{i=1}^N$ has a the following range $y_i \in \{1,...,M\}$
- \mathbf{Q} $y_i = k$ if the i^{th} samples was generated by the k^{th} mixture.

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}, \mathcal{Y}) = \log \left[P(\mathcal{X}, \mathcal{Y}|\Theta) \right]$$
 (30)

 $\log [P(\mathcal{X}, \mathcal{Y}|\Theta)] = \log [P(x_1, x_2, ..., x_N, y_1, y_2, ..., y_N|\Theta)]$ = log [P(x_1, y_1, ..., x_i, y_i, ..., x_N, y_N|\Theta)]

$$= \log \prod_{i=1}^{N} P(x_i, y_i | \Theta)$$

$$= \sum_{i=1}^{N} \log P(x_i, y_i | \Theta)$$

Cinvestav

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}, \mathcal{Y}) = \log \left[P(\mathcal{X}, \mathcal{Y}|\Theta) \right]$$
 (30)

$$\log [P(X, Y|\Theta)] = \log [P(x_1, x_2, ..., x_N, y_1, y_2, ..., y_N|\Theta)]$$

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}, \mathcal{Y}) = \log \left[P(\mathcal{X}, \mathcal{Y}|\Theta) \right]$$
(30)

$$\log [P(\mathcal{X}, \mathcal{Y}|\Theta)] = \log [P(x_1, x_2, ..., x_N, y_1, y_2, ..., y_N|\Theta)]$$

= \log [P(x_1, y_1, ..., x_i, y_i, ..., x_N, y_N|\Theta)]

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}, \mathcal{Y}) = \log \left[P(\mathcal{X}, \mathcal{Y}|\Theta) \right]$$
 (30)

$$\log [P(X, Y|\Theta)] = \log [P(x_1, x_2, ..., x_N, y_1, y_2, ..., y_N|\Theta)]$$

$$= \log [P(x_1, y_1, ..., x_i, y_i, ..., x_N, y_N|\Theta)]$$

$$= \log \prod_{i=1}^{N} P(x_i, y_i|\Theta)$$

We have

$$\log \mathcal{L}(\Theta|\mathcal{X}, \mathcal{Y}) = \log \left[P(\mathcal{X}, \mathcal{Y}|\Theta) \right]$$
(30)

$$\log [P(X, Y|\Theta)] = \log [P(x_1, x_2, ..., x_N, y_1, y_2, ..., y_N|\Theta)]$$

$$= \log [P(x_1, y_1, ..., x_i, y_i, ..., x_N, y_N|\Theta)]$$

$$= \log \prod_{i=1}^{N} P(x_i, y_i|\Theta)$$

$$= \sum_{i=1}^{N} \log P(x_i, y_i|\Theta)$$

Then

Thus, by the chain Rule

$$\sum_{i=1}^{N} \log P(x_i, y_i | \Theta) = \sum_{i=1}^{N} \log \left[P(x_i | y_i, \theta_{y_i}) P(y_i | \theta_{y_i}) \right]$$
(31)

Question Do you need y_i if you know θ_{u_i} or the other way around?

$$\sum_{i=1}^{N} \log \left[P(x_{i}|y_{i}, \theta_{y_{i}}) P(y_{i}|\theta_{y_{i}}) \right] = \sum_{i=1}^{N} \log \left[P(y_{i}) p_{y_{i}}(x_{i}|\theta_{y_{i}}) \right]$$
(32)

 $\sum_{i=1} \log \left[P\left(x_{i} | y_{i}, \theta_{y_{i}} \right) P\left(y_{i} | \theta_{y_{i}} \right) \right] = \sum_{i=1} \log \left[P\left(y_{i} \right) p_{y_{i}} \left(x_{i} | \theta_{y_{i}} \right) \right]$ (3)

NOPE: You do not need y_i if you know θ_{y_i} or the other way around

Then

Thus, by the chain Rule

$$\sum_{i=1}^{N} \log P(x_i, y_i | \Theta) = \sum_{i=1}^{N} \log \left[P(x_i | y_i, \theta_{y_i}) P(y_i | \theta_{y_i}) \right]$$
(31)

Question Do you need y_i if you know θ_{u_i} or the other way around?

Finally

$$\sum_{i=1}^{N} \log \left[P(x_i | y_i, \theta_{y_i}) P(y_i | \theta_{y_i}) \right] = \sum_{i=1}^{N} \log \left[P(y_i) p_{y_i} (x_i | \theta_{y_i}) \right]$$
(32)

NOPE: You do not need y_i if you know θ_{u_i} or the other way around.

Finally, we have

Making
$$\alpha_{y_i} = P\left(y_i\right)$$

$$\log \mathcal{L}\left(\Theta|\mathcal{X},\mathcal{Y}\right) = \sum_{i=1}^{N} \log \left[\alpha_{y_i} P\left(x_i|y_i,\theta_{y_i}\right)\right]$$

(33)

Problem

Which Labels?

We do not know the values of \mathcal{Y} .

Assume the ${\mathcal V}$ is a random variable

Problem

Which Labels?

We do not know the values of \mathcal{Y} .

We can get away by using the following idea

Assume the ${\cal Y}$ is a random variable.

Outline

- - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

- Introduction
 - Using the Expected Value
 - Analogy

- Hidden Features
 - Proving Concavity Using the Concave Functions for Approximation

 - From The Concave Function to the EM.
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Thus

You do a first guess for the parameters at the beginning of EM

$$\Theta^g = (\alpha_1^g, ..., \alpha_M^g, \theta_1^g, ..., \theta_M^g)$$

Then, it is possible to calculate given the parametric probability

$$p_j\left(x_i| heta_j^g
ight)$$

Therefore

The mixing parameters α_j can be though of as a prior probabilities of each mixture:

 $\alpha_i = p$ (component j)

(34)

Thus

You do a first guess for the parameters at the beginning of EM

$$\Theta^g = (\alpha_1^g, ..., \alpha_M^g, \theta_1^g, ..., \theta_M^g)$$
(34)

Then, it is possible to calculate given the parametric probability

$$p_j\left(x_i|\theta_j^g\right)$$

I herefore

The mixing parameters α_j can be though of as a prior probabilities of each mixture:

 $\alpha_j = p \text{ (component } j)$

Thus

You do a first guess for the parameters at the beginning of EM

$$\Theta^g = (\alpha_1^g, ..., \alpha_M^g, \theta_1^g, ..., \theta_M^g) \tag{34}$$

Then, it is possible to calculate given the parametric probability

$$p_j\left(x_i|\theta_j^g\right)$$

Therefore

The mixing parameters α_j can be though of as a prior probabilities of each mixture:

$$\alpha_j = p \left(\text{component } j \right)$$
 (35)

71 / 130

Outline

- Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

Derivation of the EM-Algorithm

- Hidden FeaturesProving Concavity
 - Using the Concave Functions for Approximation
 - From The Concave Function to the EM
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 Mixing Parameters
- Maximizing Q using Lagrange Multipliers
- Lagrange Multipliers
- In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Outline

- Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
 - Using the Concave Functions for Approximation
 - From The Concave Function to the EM
 - From The Concave Function to the E
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 - Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

We want to calculate the following probability

We want to calculate

$$p\left(y_i|x_i,\Theta^g\right)$$

Basically

We want a Bayesian formulation of this probability.

• Assuming that the $y = (y_1, y_2, ..., y_N)$ are samples identically independent samples from a distribution.

We want to calculate the following probability

We want to calculate

 $p\left(y_i|x_i,\Theta^g\right)$

Basically

We want a Bayesian formulation of this probability.

We want to calculate the following probability

We want to calculate

$$p\left(y_i|x_i,\Theta^g\right)$$

Basically

We want a Bayesian formulation of this probability.

• Assuming that the $y = (y_1, y_2, ..., y_N)$ are samples identically independent samples from a distribution.

Using Bayes' Rule

Compute

$$p(y_i|x_i, \Theta^g) = \frac{p(y_i, x_i|\Theta^g)}{p(x_i|\Theta^g)}$$

Using Bayes' Rule

Compute

$$\begin{split} p\left(y_{i}|x_{i},\Theta^{g}\right) = & \frac{p\left(y_{i},x_{i}|\Theta^{g}\right)}{p\left(x_{i}|\Theta^{g}\right)} \\ = & \frac{p\left(x_{i}|\Theta^{g}\right)p\left(y_{i}|\theta_{y_{i}}^{g}\right)}{p\left(x_{i}|\Theta^{g}\right)} \text{ We know } \theta_{y_{i}}^{g} \Rightarrow \text{Drop it} \end{split}$$

Using Bayes' Rule

Compute

$$\begin{split} p\left(y_{i}|x_{i},\Theta^{g}\right) &= \frac{p\left(y_{i},x_{i}|\Theta^{g}\right)}{p\left(x_{i}|\Theta^{g}\right)} \\ &= \frac{p\left(x_{i}|\Theta^{g}\right)p\left(y_{i}|\theta_{y_{i}}^{g}\right)}{p\left(x_{i}|\Theta^{g}\right)} \text{ We know } \theta_{y_{i}}^{g} \Rightarrow \text{Drop it} \\ &= \frac{\alpha_{y_{i}}^{g}p_{y_{i}}\left(x_{i}|\theta_{y_{i}}^{g}\right)}{p\left(x_{i}|\Theta^{g}\right)} \end{split}$$

Using Bayes' Rule

Compute

$$\begin{split} p\left(y_{i}|x_{i},\Theta^{g}\right) &= \frac{p\left(y_{i},x_{i}|\Theta^{g}\right)}{p\left(x_{i}|\Theta^{g}\right)} \\ &= \frac{p\left(x_{i}|\Theta^{g}\right)p\left(y_{i}|\theta_{y_{i}}^{g}\right)}{p\left(x_{i}|\Theta^{g}\right)} \text{ We know } \theta_{y_{i}}^{g} \Rightarrow \text{Drop it} \\ &= \frac{\alpha_{y_{i}}^{g}p_{y_{i}}\left(x_{i}|\theta_{y_{i}}^{g}\right)}{p\left(x_{i}|\Theta^{g}\right)} \\ &= \frac{\alpha_{y_{i}}^{g}p_{y_{i}}\left(x_{i}|\theta_{y_{i}}^{g}\right)}{\sum_{k=1}^{M}\alpha_{k}^{g}p_{k}\left(x_{i}|\theta_{k}^{g}\right)} \end{split}$$

As in Naive Bayes

We have the fact that there is a probability per probability at the mixture and sample

$$p\left(y_{i}|x_{i},\Theta^{g}\right) = \frac{\alpha_{y_{i}}^{g}p_{y_{i}}\left(x_{i}|\theta_{y_{i}}^{g}\right)}{\sum_{k=1}^{M}\alpha_{k}^{g}p_{k}\left(x_{i}|\theta_{k}^{g}\right)} \; \forall x_{i}, \; y_{i} \; \text{and} \; k \in \{1,...,M\}$$

This is going to be updated at each iteration of the EM

After the initial GuessIII Until convergenceIII

As in Naive Bayes

We have the fact that there is a probability per probability at the mixture and sample

$$p\left(y_i|x_i,\Theta^g\right) = \frac{\alpha_{y_i}^g p_{y_i}\left(x_i|\theta_{y_i}^g\right)}{\sum_{k=1}^M \alpha_k^g p_k\left(x_i|\theta_k^g\right)} \ \forall x_i, \ y_i \ \text{and} \ k \in \{1,...,M\}$$

This is going to be updated at each iteration of the EM algorithm

After the initial Guess!!! Until convergence!!!

Additionally

We assume again that the samples $y_i^\prime s$ are identically and independent samples

$$p(\mathbf{y}|\mathcal{X}, \Theta^g) = \prod_{i=1}^{N} p(y_i|x_i, \Theta^g)$$
(36)

Where
$$y = (y_1, y_2, ..., y_N)$$

Now, using equation 17

$$Q\left(\boldsymbol{\Theta}|\boldsymbol{\Theta}^{g}\right) = \sum_{\boldsymbol{y} \in \mathcal{Y}} \log\left(\mathcal{L}\left(\boldsymbol{\Theta}|\mathcal{X}, \boldsymbol{y}\right)\right) p\left(\boldsymbol{y}|\mathcal{X}, \boldsymbol{\Theta}^{g}\right)$$

Now, using equation 17

$$Q\left(\Theta|\Theta^{g}\right) = \sum_{\boldsymbol{y} \in \mathcal{Y}} \log \left(\mathcal{L}\left(\Theta|\mathcal{X}, \boldsymbol{y}\right)\right) p\left(\boldsymbol{y}|\mathcal{X}, \Theta^{g}\right)$$
$$= \sum_{\boldsymbol{y} \in \mathcal{Y}} \sum_{i=1}^{N} \log \left[\alpha_{y_{i}} p_{y_{i}}\left(x_{i}|\theta_{y_{i}}\right)\right] \prod_{i=1}^{N} p\left(y_{j}|x_{j}, \Theta^{g}\right)$$

Here, a small stop

What is the meaning of $\sum_{y \in \mathcal{Y}}$

It is actually a summation of all possible states of the random vector $\boldsymbol{y}.$

$$\sum_{y \in \mathcal{Y}} = \underbrace{\sum_{y_1=1}^{M} \sum_{y_2=1}^{M} \cdots \sum_{y_N=1}^{M}}_{N}$$

Running over all the samples $\{x_1, x_2, ..., x_N\}.$

Here, a small stop

What is the meaning of $\sum_{u \in \mathcal{V}}$

It is actually a summation of all possible states of the random vector $\boldsymbol{y}.$

Then, we can rewrite the previous summation as

$$\sum_{y \in \mathcal{Y}} = \underbrace{\sum_{y_1=1}^{M} \sum_{y_2=1}^{M} \cdots \sum_{y_N=1}^{M}}_{N}$$

Running over all the samples $\{x_1, x_2, ..., x_N\}$.

Then

We have

$$Q(\Theta|\Theta^{g}) = \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \sum_{i=1}^{N} \left[\log \left[\alpha_{y_{i}} p_{y_{i}} \left(x_{i} | \theta_{y_{i}} \right) \right] \prod_{j=1}^{N} p\left(y_{j} | x_{j}, \Theta^{g} \right) \right]$$

We introduce the following

We have the following function

$$\delta_{l,y_i} = \begin{cases} 1 & I = y_i \\ 0 & I \neq y_i \end{cases}$$

$$\alpha_i = \sum_{j=1} \delta_{i,j} \alpha_j$$

We introduce the following

We have the following function

$$\delta_{l,y_i} = \begin{cases} 1 & I = y_i \\ 0 & I \neq y_i \end{cases}$$

Therefore, we can do the following

$$\alpha_i = \sum_{j=1}^{M} \delta_{i,j} \alpha_j$$

 $\log\left[lpha_{y_i}p_{y_i}\left(x_i| heta_{y_i}
ight)
ight]\prod_{i=1}^{N}p\left(y_j|x_j,\Theta^g
ight)=\sum_{l=1}^{M}\delta_{l,y_l}\log\left[lpha_{l}p_{l}\left(x_i| heta_{l}
ight)
ight]\prod_{i=1}^{N}p\left(y_j|x_j,\Theta^g
ight)$

We introduce the following

We have the following function

$$\delta_{l,y_i} = \begin{cases} 1 & I = y_i \\ 0 & I \neq y_i \end{cases}$$

Therefore, we can do the following

$$\alpha_i = \sum_{j=1}^{M} \delta_{i,j} \alpha_j$$

Then

 $\log\left[\alpha_{y_i} p_{y_i}\left(x_i | \theta_{y_i}\right)\right] \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g\right) = \sum_{l=1}^{M} \delta_{l, y_i} \log\left[\alpha_l p_l\left(x_i | \theta_l\right)\right] \prod_{j=1}^{N} p\left(y_j | x_j, \Theta^g\right)$

We have that for

$$\sum_{y_{1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \sum_{i=1}^{N} \log \left[\alpha_{y_{i}} p_{y_{i}} \left(x_{i} | \theta_{y_{i}} \right) \right] \prod_{j=1}^{N} p \left(y_{j} | x_{j}, \Theta^{g} \right) = *$$

$$* = \sum_{y_1=1}^{M} \sum_{y_2=1}^{M} \cdots \sum_{y_N=1}^{M} \sum_{i=1}^{N} \sum_{l=1}^{M} \delta_{l,y_i} \log \left[\alpha_l p_l \left(x_i | \theta_l \right) \right] \prod_{j=1}^{N} p \left(y_j | x_j, \Theta^g \right)$$

 $\sum_{y_1=1}^{M}\sum_{y_2=1}^{M}\cdots\sum_{y_N=1}^{M}$ applies only to $\delta_{l,y_i}\prod_{j=1}^{N}p\left(y_j|x_j,\Theta^g\right)$

We have that for

$$\sum_{y_{1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \sum_{i=1}^{N} \log \left[\alpha_{y_{i}} p_{y_{i}} \left(x_{i} | \theta_{y_{i}} \right) \right] \prod_{j=1}^{N} p \left(y_{j} | x_{j}, \Theta^{g} \right) = *$$

$$* = \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \sum_{i=1}^{N} \sum_{l=1}^{M} \delta_{l,y_{i}} \log \left[\alpha_{l} p_{l}\left(x_{i} \middle| \theta_{l}\right)\right] \prod_{j=1}^{N} p\left(y_{j} \middle| x_{j}, \Theta^{g}\right)$$

$$= \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left[\alpha_{l} p_{l}\left(x_{i} \middle| \theta_{l}\right)\right] \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \left[\delta_{l,y_{i}} \prod_{j=1}^{N} p\left(y_{j} \middle| x_{j}, \Theta^{g}\right)\right]$$

Because

We have that for

$$\sum_{y_{1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \sum_{i=1}^{N} \log \left[\alpha_{y_{i}} p_{y_{i}} \left(x_{i} | \theta_{y_{i}} \right) \right] \prod_{j=1}^{N} p \left(y_{j} | x_{j}, \Theta^{g} \right) = *$$

$$* = \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \sum_{i=1}^{N} \sum_{l=1}^{M} \delta_{l,y_{i}} \log \left[\alpha_{l} p_{l}\left(x_{i} \middle| \theta_{l}\right)\right] \prod_{j=1}^{N} p\left(y_{j} \middle| x_{j}, \Theta^{g}\right)$$

$$= \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left[\alpha_{l} p_{l} \left(x_{i} | \theta_{l} \right) \right] \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \left[\delta_{l, y_{i}} \prod_{j=1}^{N} p \left(y_{j} | x_{j}, \Theta^{g} \right) \right]$$

Because

$$\sum_{y_1=1}^{M}\sum_{y_2=1}^{M}\cdots\sum_{y_N=1}^{M}$$
 applies only to $\delta_{l,y_i}\prod_{j=1}^{N}p\left(y_j|x_j,\Theta^g
ight)$

First notice the following

$$\sum_{y_1=1}^{M}\sum_{y_2=1}^{M}\cdots\sum_{y_N=1}^{M}\left[\delta_{l,y_i}\prod_{j=1}^{N}p\left(y_j|x_j,\Theta^g\right)\right]=$$

$$\sum_{l=1}^{M} \delta_{l,y_i} p(y_i|x_i, \Theta^g) = p(l|x_i, \Theta^g)$$

First notice the following

$$\begin{split} & \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \left[\delta_{l,y_{i}} \prod_{j=1}^{N} p\left(y_{j} | x_{j}, \Theta^{g}\right) \right] = \\ & = \left(\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \left\{ \left[\sum_{y_{i}=1}^{M} \delta_{l,y_{i}} p\left(y_{i} | x_{i}, \Theta^{g}\right) \right] \prod_{j=1, j \neq i,}^{N} p\left(y_{j} | x_{j}, \Theta^{g}\right) \right\} \right) \end{split}$$

Then, we have

First notice the following

$$\begin{split} & \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \left[\delta_{l,y_{i}} \prod_{j=1}^{N} p\left(y_{j} | x_{j}, \Theta^{g}\right) \right] = \\ & = \left(\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \left\{ \left[\sum_{y_{i}=1}^{M} \delta_{l,y_{i}} p\left(y_{i} | x_{i}, \Theta^{g}\right) \right] \prod_{j=1, j \neq i,}^{N} p\left(y_{j} | x_{j}, \Theta^{g}\right) \right\} \right) \end{split}$$

Then, we have

$$\sum_{l}^{M} \delta_{l,y_i} p(y_i|x_i, \Theta^g) = p(l|x_i, \Theta^g)$$

In this way

Plugging back the previous equation

$$\sum_{y_1=1}^{M}\sum_{y_2=1}^{M}\cdots\sum_{y_N=1}^{M}\delta_{l,y_i}\prod_{j=1}^{N}p\left(y_j|x_j,\Theta^g\right)=$$

In this way

Plugging back the previous equation

$$\begin{split} & \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \delta_{l,y_{i}} \prod_{j=1}^{N} p\left(y_{j} | x_{j}, \Theta^{g}\right) = \\ & = \left(\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} p\left(l | x_{i}, \Theta^{g}\right) \prod_{j=1, j \neq i}^{N} p\left(y_{j} | x_{j}, \Theta^{g}\right)\right) \end{split}$$

In this way

Plugging back the previous equation

$$\begin{split} & \sum_{y_{1}=1}^{M} \sum_{y_{2}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \delta_{l,y_{i}} \prod_{j=1}^{N} p\left(y_{j} | x_{j}, \Theta^{g}\right) = \\ & = \left(\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} p\left(l | x_{i}, \Theta^{g}\right) \prod_{j=1, j \neq i}^{N} p\left(y_{j} | x_{j}, \Theta^{g}\right)\right) \\ & = \left(\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \prod_{j=1, j \neq i}^{N} p\left(y_{j} | x_{j}, \Theta^{g}\right)\right) p\left(l | x_{i}, \Theta^{g}\right) \end{split}$$

Now, what about...?

The left part of the equation

$$\sum_{y_1=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_N=1}^{M} \prod_{j=1}^{N} p(y_j|x_j, \Theta^g) =$$

Now, what about...?

The left part of the equation

$$\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \prod_{j=1, j \neq i}^{N} p(y_{j}|x_{j}, \Theta^{g}) =$$

$$= \left[\sum_{y_{1}=1}^{M} p(y_{1}|x_{1}, \Theta^{g}) \right] \cdots \left[\sum_{y_{i-1}=1}^{M} p(y_{i-1}|x_{i-1}, \Theta^{g}) \right] \times \dots \left[\sum_{y_{N}=1}^{M} p(y_{N}|x_{N}, \Theta^{g}) \right]$$

Now, what about ...?

The left part of the equation

$$\sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \prod_{j=1, j \neq i}^{N} p\left(y_{j} | x_{j}, \Theta^{g}\right) =$$

$$= \left[\sum_{y_{1}=1}^{M} p\left(y_{1} | x_{1}, \Theta^{g}\right)\right] \cdots \left[\sum_{y_{i-1}=1}^{M} p\left(y_{i-1} | x_{i-1}, \Theta^{g}\right)\right] \times \dots \left[\sum_{y_{i+1}=1}^{M} p\left(y_{i+1} | x_{i+1}, \Theta^{g}\right)\right] \cdots \left[\sum_{y_{N}=1}^{M} p\left(y_{N} | x_{N}, \Theta^{g}\right)\right]$$

$$= \prod_{j=1, j \neq i}^{N} \left[\sum_{y_{j}=1}^{M} p\left(y_{j} | x_{j}, \Theta^{g}\right)\right]$$

Plugging back to the original equation

$$\left\{\sum_{y_1=1}^{M}\cdots\sum_{y_{i-1}=1}^{M}\sum_{y_{i+1}=1}^{M}\cdots\sum_{y_N=1}^{M}\prod_{j=1,j\neq i}^{N}p\left(y_j|x_j,\Theta^g\right)\right\}p\left(l|x_i,\Theta^g\right)=$$

Plugging back to the original equation

$$\left\{ \sum_{y_{1}=1}^{M} \cdots \sum_{y_{i-1}=1}^{M} \sum_{y_{i+1}=1}^{M} \cdots \sum_{y_{N}=1}^{M} \prod_{j=1, j \neq i}^{N} p(y_{j}|x_{j}, \Theta^{g}) \right\} p(l|x_{i}, \Theta^{g}) =$$

$$= \left\{ \prod_{j=1, j \neq i}^{N} \left[\sum_{y_{i}=1}^{M} p(y_{j}|x_{j}, \Theta^{g}) \right] \right\} p(l|x_{i}, \Theta^{g})$$

We know that

$$\sum_{y_{i}=1}^{M} p(y_{i}|x_{i}, \Theta^{g}) = 1$$
(37)

$$\left[\prod_{j=1, j\neq i}^{N} \left[\sum_{y_{j}=1}^{M} p\left(y_{j}|x_{j}, \Theta^{g}\right)\right]\right\}$$

87 / 130

We know that

$$\sum_{y_i=1}^{M} p(y_i|x_i, \Theta^g) = 1$$
 (37)

$$\left\{ \prod_{j=1, j \neq i}^{N} \left[\sum_{y_{j}=1}^{M} p\left(y_{j} | x_{j}, \Theta^{g}\right) \right] \right\} p\left(l | x_{i}, \Theta^{g}\right) =$$

$$= \left\{ \prod_{j=1, j \neq i}^{N} 1 \right\} p\left(l | x_{i}, \Theta^{g}\right)$$

We know that

$$\sum_{y_i=1}^{M} p(y_i|x_i, \Theta^g) = 1$$
 (37)

$$\left\{ \prod_{j=1,j\neq i}^{N} \left[\sum_{y_{j}=1}^{M} p\left(y_{j}|x_{j},\Theta^{g}\right) \right] \right\} p\left(l|x_{i},\Theta^{g}\right) = \\
= \left\{ \prod_{j=1,j\neq i}^{N} 1 \right\} p\left(l|x_{i},\Theta^{g}\right) \\
= p\left(l|x_{i},\Theta^{g}\right)$$

We know that

$$\sum_{y_i=1}^{M} p(y_i|x_i, \Theta^g) = 1$$
 (37)

$$\left\{ \prod_{j=1,j\neq i}^{N} \left[\sum_{y_j=1}^{M} p(y_j|x_j, \Theta^g) \right] \right\} p(l|x_i, \Theta^g) = \\
= \left\{ \prod_{j=1,j\neq i}^{N} 1 \right\} p(l|x_i, \Theta^g) \\
= p(l|x_i, \Theta^g) \\
= \frac{\alpha_l^g p_{y_i} (x_i|\theta_l^g)}{\sum_{k=1}^{M} \alpha_k^g p_k (x_i|\theta_k^g)}$$

We can write Q in the following way

$$Q\left(\Theta, \Theta^{g}\right) = \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left[\alpha_{l} p_{l}\left(x_{i} | \theta_{l}\right)\right] p\left(l | x_{i}, \Theta^{g}\right)$$

We can write Q in the following way

$$Q(\Theta, \Theta^g) = \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left[\alpha_l p_l(x_i | \theta_l)\right] p(l | x_i, \Theta^g)$$
$$= \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left(\alpha_l\right) p(l | x_i, \Theta^g) + \dots$$

 $\sum_{l} \sum_{l} \log \left(p_l \left(x_i | \theta_l \right) \right) p \left(l | x_i, \Theta^g \right)$

We can write Q in the following way

$$Q(\Theta, \Theta^g) = \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left[\alpha_l p_l\left(x_i | \theta_l\right)\right] p\left(l | x_i, \Theta^g\right)$$
$$= \sum_{i=1}^{N} \sum_{l=1}^{M} \log \left(\alpha_l\right) p\left(l | x_i, \Theta^g\right) + \dots$$
$$\sum_{i=1}^{N} \sum_{l=1}^{M} \log \left(p_l\left(x_i | \theta_l\right)\right) p\left(l | x_i, \Theta^g\right)$$

 $i = 1 \ l = 1$

(38)

Outline

- 1 Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

2 Incomplete Data

- Introduction
 - Using the Expected Value
 - Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
 - Using the Concave Functions for Approximation
 - From The Concave Function to the EM
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 - Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

A Method

That could be used as a general framework

To solve problems set as EM problem.

Then, we will look at a specific case using the mixture of Gaussian's

Note

Not all the mixture of distributions will get you an analytical solution

A Method

That could be used as a general framework

To solve problems set as EM problem.

First, we will look at the Lagrange Multipliers setup

Then, we will look at a specific case using the mixture of Gaussian's

A Method

That could be used as a general framework

To solve problems set as EM problem.

First, we will look at the Lagrange Multipliers setup

Then, we will look at a specific case using the mixture of Gaussian's

Note

Not all the mixture of distributions will get you an analytical solution.

Outline

- 1 Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

Incomplete Data

- Introduction
- Using the Expected Value
- Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving ConcavityUsing the Concave Functions for Approximation
 - From The Concave Function to the EM
 - From The Concave Function to the E
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- Maximizing Q using Lagrange Multipliers
 Lagrange Multipliers
- In Our CaseExample on Mixture of Gaussian Distributions
- The EM Algorithm

The method of Lagrange multipliers

• It gives a set of necessary conditions to identify optimal points of equality constrained optimization problems.

The method of Lagrange multipliers

• It gives a set of necessary conditions to identify optimal points of equality constrained optimization problems.

This is done by converting a constrained problem to an equivalent unconstrained problem

• with the help of certain unspecified parameters known as <u>Lagrange</u> multipliers.

The classical problem formulation

min
$$f(x_1, ..., x_n)$$

s.t $h_1(x_1, ..., x_n) = 0$

- t can be converted into
 - $\min L(x_1, ..., x_n, \lambda) = \min \{ f(x_1, ..., x_n) \lambda h_1(x_1, ..., x_n) \}$

- $L(\mathbf{x}, \lambda)$ is the Lagrangian function.
- $oldsymbol{\circ}$ λ is an unspecified positive or negative constant called the **Lagrange** Multiplier

The classical problem formulation

min
$$f(x_1, ..., x_n)$$

s.t $h_1(x_1, ..., x_n) = 0$

It can be converted into

$$\min L(x_1, ..., x_n, \lambda) = \min \{ f(x_1, ..., x_n) - \lambda h_1(x_1, ..., x_n) \}$$

- $L(\mathbf{x}, \lambda)$ is the Lagrangian function
- λ is an unspecified positive or negative constant called the Lagrange
 Multiplier.

The classical problem formulation

min
$$f(x_1, ..., x_n)$$

s.t $h_1(x_1, ..., x_n) = 0$

It can be converted into

$$\min L(x_1, ..., x_n, \lambda) = \min \{ f(x_1, ..., x_n) - \lambda h_1(x_1, ..., x_n) \}$$

where

- $L(\mathbf{x}, \lambda)$ is the Lagrangian function.
- $oldsymbol{\lambda}$ is an unspecified positive or negative constant called the **Lagrange** Multiplier.

Finding an Optimum using Lagrange Multipliers

New problem

min
$$L(x_1,...,x_n,\lambda) = \min \{f(x_1,...,x_n) - \lambda h_1(x_1,...,x_n)\}$$

If the minimum of $L(x_1, ..., x_n, \lambda^*)$ occurs at

 $(x_1, x_2, ..., x_n)^T = (x_1, x_2, ..., x_n)^{T*}$

Finding an Optimum using Lagrange Multipliers

New problem

 $\min \ L\left(x_{1},...,x_{n},\lambda\right)=\min \left\{f\left(x_{1},...,x_{n}\right)-\lambda h_{1}\left(x_{1},...,x_{n}\right)\right\}$

We want a $\lambda = \lambda^*$ optimal

If the minimum of $L(x_1,...,x_n,\lambda^*)$ occurs at

$$(x_1, x_2, ..., x_n)^T = (x_1, x_2, ..., x_n)^{T*}$$

Therefore

$$(x_1,...,x_n)^{T*}$$
 satisfies $h_1(x_1,...,x_n)=0$, then $(x_1,...,x_n)^{T*}$ minimizes

min
$$f(x_1, ..., x_n)$$

s.t $h_1(x_1, ..., x_n) = 0$

Therefore

$$(x_1,...,x_n)^{T*}$$
 satisfies $h_1(x_1,...,x_n)=0$, then $(x_1,...,x_n)^{T*}$ minimizes

min
$$f(x_1, ..., x_n)$$

s.t $h_1(x_1, ..., x_n) = 0$

Trick

• It is to find appropriate value for Lagrangian multiplier λ .

Remember

Think about this

Remember First Law of Newton!!!

100

Remember

Think about this

Remember First Law of Newton!!!

Yes!!!

A system in equilibrium does not move

Definition

Gives a set of necessary conditions to identify optimal points of $\underline{\text{equality}}$ constrained optimization problem

Lagrange was a Physicists

He was thinking in the following formula

A system in equilibrium has the following equation:

$$F_1 + F_2 + \dots + F_K = 0 (39)$$

But functions do not have fco Are you sure?

Think about the following

The Gradient of a surface.

Lagrange was a Physicists

He was thinking in the following formula

A system in equilibrium has the following equation:

$$F_1 + F_2 + \dots + F_K = 0 (39)$$

But functions do not have forces?

Are you sure?

Think about the following

The Gradient of a surface.

Lagrange was a Physicists

He was thinking in the following formula

A system in equilibrium has the following equation:

$$F_1 + F_2 + \dots + F_K = 0 (39)$$

But functions do not have forces?

Are you sure?

Think about the following

The Gradient of a surface.

Gradient to a Surface

After all a gradient is a measure of the maximal change

For example the gradient of a function of three variables:

$$\nabla f(\mathbf{x}) = i \frac{\partial f(\mathbf{x})}{\partial x} + j \frac{\partial f(\mathbf{x})}{\partial y} + k \frac{\partial f(\mathbf{x})}{\partial z}$$

where i, j and k are unitary vectors in the directions x, y and z.

(40)

Example

We have $f(x, y) = x \exp\{-x^2 - y^2\}$

Example

Now, Think about this

Yes, we can use the gradient

However, we need to do some scaling of the forces by using parameters $\boldsymbol{\lambda}$

Thus, we

 $F_0 + \lambda_1 F_1 + \dots + \lambda_K F_K = 0$

(41)

where F_0 is the gradient of the principal cost function and F_i for $i=1,2,\ldots,K$

Now, Think about this

Yes, we can use the gradient

However, we need to do some scaling of the forces by using parameters $\boldsymbol{\lambda}$

Thus, we have

$$F_0 + \lambda_1 F_1 + \dots + \lambda_K F_K = 0$$

where F_0 is the gradient of the principal cost function and F_i for i=1,2,..,K.

(41)

Thus

If we have the following optimization:

$$\min f(\mathbf{x})$$

$$s.tg_1(\mathbf{x}) = 0$$

$$g_2(\mathbf{x}) = 0$$

Geometric interpretation in the case of minimization

What is wrong? Gradients are going in the other direction, we can fix by simple multiplying by -1 $\,$

Here the cost function is $f\left(x,y\right)=x\exp\left\{ -x^{2}-y^{2}\right\}$ we want to minimize

Nevertheless: it is equivalent to $\nabla f\left(\overrightarrow{x}\right) - \lambda_1 \nabla g_1\left(\overrightarrow{x}\right) - \lambda_2 \nabla g_2\left(\overrightarrow{x}\right) = 0$

Basically, we convert the problem into a one looking for a **Saddle Point**

Yes!!!

Basically

 We convert the minimization or maximization of a convex or concave section of a function living in a constrained environment!!!

The Basic Method

Steps

- Original problem is rewritten as:
 - $\bullet \ \ \text{minimize} \ L\left(\boldsymbol{x},\lambda\right) = f\left(\boldsymbol{x}\right) \lambda h_1\left(\boldsymbol{x}\right)$

The Basic Method

Steps

- Original problem is rewritten as:
 - $\bullet \text{ minimize } L\left(\boldsymbol{x},\lambda\right) = f\left(\boldsymbol{x}\right) \lambda h_1\left(\boldsymbol{x}\right)$
- ② Take derivatives of $L\left(\boldsymbol{x},\lambda\right)$ with respect to x_{i} and set them equal to zero.

From the step 2

The Basic Method

Steps

- Original problem is rewritten as:
 - $\bullet \text{ minimize } L\left(\boldsymbol{x},\lambda\right) = f\left(\boldsymbol{x}\right) \lambda h_1\left(\boldsymbol{x}\right)$
- 2 Take derivatives of $L(x, \lambda)$ with respect to x_i and set them equal to zero.

$$\sum_{i=1}^{N} \left(y_i - \boldsymbol{x}^T \boldsymbol{w} \right)^2 + \lambda \sum_{i=1}^{d} |w_i|$$
 (42)

3 Express all x_i in terms of Lagrangian multiplier λ .

From the step 2

The Basic Method

Steps

- Original problem is rewritten as:
 - minimize $L(\boldsymbol{x}, \lambda) = f(\boldsymbol{x}) \lambda h_1(\boldsymbol{x})$
- ② Take derivatives of $L\left(\boldsymbol{x},\lambda\right)$ with respect to x_{i} and set them equal to zero.

$$\sum_{i=1}^{N} \left(y_i - \boldsymbol{x}^T \boldsymbol{w} \right)^2 + \lambda \sum_{i=1}^{d} |w_i|$$
 (42)

- **3** Express all x_i in terms of Lagrangian multiplier λ .
- Plug x in terms of λ in constraint $h_1(x) = 0$ and solve λ .

From the step 2

The Basic Method

Steps

- Original problem is rewritten as:
 - $\bullet \text{ minimize } L(\boldsymbol{x}, \lambda) = f(\boldsymbol{x}) \lambda h_1(\boldsymbol{x})$
- ② Take derivatives of $L\left(\boldsymbol{x},\lambda\right)$ with respect to x_{i} and set them equal to zero.

$$\sum_{i=1}^{N} \left(y_i - \boldsymbol{x}^T \boldsymbol{w} \right)^2 + \lambda \sum_{i=1}^{d} |w_i|$$
 (42)

- **3** Express all x_i in terms of Lagrangian multiplier λ .
- **①** Plug \boldsymbol{x} in terms of λ in constraint $h_1(\boldsymbol{x}) = 0$ and solve λ .
- **5** Calculate x by using the just found value for λ .

From the step 2

The Basic Method

Steps

- Original problem is rewritten as:
 - $\bullet \text{ minimize } L(\boldsymbol{x}, \lambda) = f(\boldsymbol{x}) \lambda h_1(\boldsymbol{x})$
- ② Take derivatives of $L\left(\boldsymbol{x},\lambda\right)$ with respect to x_{i} and set them equal to zero.

$$\sum_{i=1}^{N} \left(y_i - \boldsymbol{x}^T \boldsymbol{w} \right)^2 + \lambda \sum_{i=1}^{d} |w_i|$$
 (42)

- **3** Express all x_i in terms of Lagrangian multiplier λ .
- **①** Plug \boldsymbol{x} in terms of λ in constraint $h_1(\boldsymbol{x}) = 0$ and solve λ .
- **5** Calculate x by using the just found value for λ .

From the step 2

Example

We can apply that to the following problem

$$\min f(x,y) = x^2 - 8x + y^2 - 12y + 48$$
s.t $x + y = 8$

Outline

- 1 Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

Incomplete Data

- Introduction
 - Using the Expected Value
 - Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
 - Using the Concave Functions for Approximation
 - From The Concave Function to the EM
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
 - Bayes' Rule for the components
 - Mixing Parameters
- lacktriangle Maximizing Q using Lagrange Multipliers
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Lagrange Multipliers for ${\cal Q}$

We can us the following constraint for that

$$\sum_{l} \alpha_{l} = 1 \tag{43}$$

$$Q\left(\Theta,\Theta^{g}\right) + \lambda \left(\sum_{l} \alpha_{l} - \alpha_{l}\right)$$

4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 3

Lagrange Multipliers for Q

We can us the following constraint for that

$$\sum_{l} \alpha_{l} = 1 \tag{43}$$

We have the following cost function

$$Q\left(\Theta,\Theta^{g}\right) + \lambda \left(\sum_{l} \alpha_{l} - 1\right)$$

(44)

 $\left| \frac{\partial}{\partial \alpha_l} \left| Q\left(\Theta, \Theta^g\right) + \lambda \left(\sum_i \alpha_l - 1 \right) \right| = 0.$

Lagrange Multipliers for Q

We can us the following constraint for that

$$\sum_{l} \alpha_l = 1 \tag{43}$$

We have the following cost function

$$Q\left(\Theta,\Theta^{g}\right) + \lambda \left(\sum_{l} \alpha_{l} - 1\right)$$

(44)

Deriving by α_l

$$\frac{\partial}{\partial \alpha_{l}} \left[Q\left(\Theta, \Theta^{g}\right) + \lambda \left(\sum_{i} \alpha_{l} - 1\right) \right] = 0$$

(45)

Thus

The Q function

$$Q(\Theta, \Theta^g) = \sum_{i=1}^{N} \sum_{l=1}^{M} \log(\alpha_l) p(l|x_i, \Theta^g) + \dots$$
$$\sum_{i=1}^{N} \sum_{l=1}^{M} \log(p_l(x_i|\theta_l)) p(l|x_i, \Theta^g)$$

 $i = 1 \ l = 1$

Deriving

We have

$$\frac{\partial}{\partial \alpha_l} \left[Q(\Theta, \Theta^g) + \lambda \left(\sum_{l} \alpha_l - 1 \right) \right] = \sum_{i=1}^{N} \frac{1}{\alpha_l} p(l|x_i, \Theta^g) + \lambda$$

We have making the previous equation equal to 0

$$\sum_{i=1}^{N} \frac{1}{\alpha_i} p(l|x_i, \Theta^g) + \lambda = 0$$
(46)

$$\sum_{i=1}^{N} p(l|x_i, \Theta^g) = -\lambda \alpha_l$$

(47)

We have making the previous equation equal to 0

$$\sum_{i=1}^{N} \frac{1}{\alpha_i} p(l|x_i, \Theta^g) + \lambda = 0$$
(46)

Thus

$$\sum_{i=1}^{N} p(l|x_i, \Theta^g) = -\lambda \alpha_l$$
(47)

We have making the previous equation equal to 0

$$\sum_{i=1}^{N} \frac{1}{\alpha_i} p(l|x_i, \Theta^g) + \lambda = 0$$
(46)

Thus

$$\sum_{i=1}^{N} p(l|x_i, \Theta^g) = -\lambda \alpha_l$$
(47)

Summing over l, we get

$$\lambda = -N \tag{48}$$

Lagrange Multipliers

Thus

$$\alpha_l = \frac{1}{N} \sum_{i=1}^{N} p(l|x_i, \Theta^g)$$
(49)

It is possible to get an analytical expressions for θ_l as functions of everything else.

This is for you to try!!!

For more, please look at

"Geometric Idea of Lagrange Multipliers" by John Wyatti

Lagrange Multipliers

Thus

$$\alpha_l = \frac{1}{N} \sum_{i=1}^{N} p(l|x_i, \Theta^g)$$
(49)

About θ_I

It is possible to get an analytical expressions for θ_l as functions of everything else.

• This is for you to try!!!

"Geometric Idea of Lagrange Multipliers" by John Wyatti

Lagrange Multipliers

Thus

$$\alpha_l = \frac{1}{N} \sum_{i=1}^{N} p(l|x_i, \Theta^g)$$
(49)

About θ_l

It is possible to get an analytical expressions for θ_l as functions of everything else.

• This is for you to try!!!

For more, please look at

"Geometric Idea of Lagrange Multipliers" by John Wyatt.

Outline

- 1 Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

Incomplete Data

- Introduction
 - Using the Expected Value
 - Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
 - Using the Concave Functions for Approximation
 - From The Concave Function to the EM
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
- Mixing Parameters
- lacksquare Maximizing Q using Lagrange Multipliers
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

Remember?

Gaussian Distribution

$$p_l\left(\boldsymbol{x}|\boldsymbol{\mu_l}, \boldsymbol{\Sigma_l}\right) = \frac{1}{\left(2\pi\right)^{d/2} \left|\boldsymbol{\Sigma_l}\right|^{1/2}} \exp\left\{-\frac{1}{2} \left(\boldsymbol{x} - \boldsymbol{\mu_l}\right)^T \boldsymbol{\Sigma_l}^{-1} \left(\boldsymbol{x} - \boldsymbol{\mu_l}\right)\right\} \quad (50)$$

For this, we need to refresh some linear algebra

- $\sum_{i} x_{i}^{T} A x_{i} = t r (AB) \text{ where } B = \sum_{i} x_{i} x_{i}^{T}$
- $|A^{-1}| = \frac{1}{|A|}$
- Now we need the deriva
 - Thus, $rac{\partial f(A)}{\partial A}$ is going to be the matrix with i,j^{th} entry $\left[rac{\partial f(A)}{\partial a_{i,j}}
 ight]$ where $a_{i,j}$
- is the i, j^{th} entry of A.

For this, we need to refresh some linear algebra

- 2 tr(AB) = tr(BA)

Now, we need the derivative of a matrix function f(A)

For this, we need to refresh some linear algebra

- 2 tr(AB) = tr(BA)

Now, we need the derivative of a matrix function f(A)

For this, we need to refresh some linear algebra

- 2 tr(AB) = tr(BA)
- $|A^{-1}| = \frac{1}{|A|}$

Now, we need the derivative of a matrix function f(A)

For this, we need to refresh some linear algebra

- 2 tr(AB) = tr(BA)
- $|A^{-1}| = \frac{1}{|A|}$

Now, we need the derivative of a matrix function f(A)

If A is symmetric

$$\frac{\partial |A|}{\partial A} = \begin{cases} \mathcal{A}_{i,j} & \text{if } i = j\\ 2\mathcal{A}_{i,j} & \text{if } i \neq j \end{cases}$$
(51)

 $A_{i,j}$ is the i,j - coractor or A

a given element of a matrix or determinant. The **cofactor** preceded by
$$a + or - sign$$
 depending whether the element in $a + or - sign$

$$\frac{\partial \log |A|}{\partial A} = \begin{cases} \frac{A_{i,j}}{|A|} & \text{if } i = j\\ 2A_{i,j} & \text{if } i \neq j \end{cases} = 2A^{-1} - \operatorname{diag}\left(A^{-1}\right) \tag{52}$$

Cinvestay

If A is symmetric

$$\frac{\partial |A|}{\partial A} = \begin{cases} A_{i,j} & \text{if } i = j\\ 2A_{i,j} & \text{if } i \neq j \end{cases}$$
(51)

Where $A_{i,j}$ is the i, j^{th} cofactor of A.

$$\frac{\partial \log |A|}{\partial A} = \begin{cases} \frac{\mathcal{A}_{i,j}}{|A|} & \text{if } i = j\\ 2\mathcal{A}_{i,j} & \text{if } i \neq j \end{cases} = 2A^{-1} - \operatorname{diag}\left(A^{-1}\right) \tag{52}$$

Cinvestav

If A is symmetric

$$\frac{\partial |A|}{\partial A} = \begin{cases} A_{i,j} & \text{if } i = j\\ 2A_{i,j} & \text{if } i \neq j \end{cases}$$
(51)

Where $A_{i,j}$ is the i, j^{th} cofactor of A.

Note: The determinant obtained by deleting the row and column of a given element of a matrix or determinant. The **cofactor** is preceded by a + or - sign depending whether the element is in a + or - position.

Thus

$$\frac{\partial \log |A|}{\partial A} = \begin{cases} \frac{\mathcal{A}_{i,j}}{|A|} & \text{if } i = j\\ 2\mathcal{A}_{i,j} & \text{if } i \neq j \end{cases} = 2A^{-1} - \operatorname{diag}\left(A^{-1}\right) \tag{52}$$

If A is symmetric

$$\frac{\partial |A|}{\partial A} = \begin{cases} A_{i,j} & \text{if } i = j\\ 2A_{i,j} & \text{if } i \neq j \end{cases}$$
(51)

Where $A_{i,j}$ is the i, j^{th} cofactor of A.

Note: The determinant obtained by deleting the row and column of a given element of a matrix or determinant. The **cofactor** is preceded by a + or - sign depending whether the element is in a + or - position.

Thus

$$\frac{\partial \log |A|}{\partial A} = \begin{cases} \frac{\mathcal{A}_{i,j}}{|A|} & \text{if } i = j\\ 2\mathcal{A}_{i,j} & \text{if } i \neq j \end{cases} = 2A^{-1} - \operatorname{diag}\left(A^{-1}\right) \tag{52}$$

The last equation we need

$$\frac{\partial tr\left(AB\right)}{\partial A} = B + B^{T} - \mathsf{diag}\left(B\right) \tag{53}$$

 $\frac{\partial \boldsymbol{x}^T A \boldsymbol{x}}{\partial \boldsymbol{x}}$

(54)

The last equation we need

$$\frac{\partial tr\left(AB\right)}{\partial A} = B + B^{T} - \operatorname{diag}\left(B\right) \tag{53}$$

In addition

$$\frac{\partial \boldsymbol{x}^T A \boldsymbol{x}}{\partial \boldsymbol{x}} \tag{54}$$

Thus, using last part of equation 38

We get, after ignoring constant terms

Remember they disappear after derivatives

$$\sum_{i=1}^{N} \sum_{l=1}^{M} \log \left(p_l \left(\boldsymbol{x}_i | \mu_l, \Sigma_l \right) \right) p \left(l | \boldsymbol{x}_i, \Theta^g \right)$$

Thus, using last part of equation 38

We get, after ignoring constant terms

Remember they disappear after derivatives

$$\sum_{i=1}^{N} \sum_{l=1}^{M} \log \left(p_l \left(\boldsymbol{x}_i | \mu_l, \Sigma_l \right) \right) p\left(l | \boldsymbol{x}_i, \Theta^g \right)$$

$$= \sum_{i=1}^{N} \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_l| \right) - \frac{1}{2} \left(\boldsymbol{x}_i - \mu_l \right)^T \Sigma_l^{-1} \left(\boldsymbol{x}_i - \mu_l \right) \right] p\left(l | \boldsymbol{x}_i, \Theta^g \right) \quad (55)$$

Thus, when taking the derivative with respect to μ_l

$$\sum_{i=1}^{N} \left[\Sigma_l^{-1} \left(\boldsymbol{x}_i - \mu_l \right) p\left(l | \boldsymbol{x}_i, \Theta^g \right) \right] = 0$$
 (56)

$$\mu_{l} = \frac{\sum_{i=1}^{N} \boldsymbol{x}_{i} p\left(l|\boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g}\right)}{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g}\right)}$$

(57)

Thus, when taking the derivative with respect to μ_l

$$\sum_{i=1}^{N} \left[\Sigma_{l}^{-1} \left(\boldsymbol{x}_{i} - \mu_{l} \right) p\left(l | \boldsymbol{x}_{i}, \Theta^{g} \right) \right] = 0$$
 (56)

Then

$$\mu_l = \frac{\sum_{i=1}^{N} x_i p\left(l|\mathbf{x}_i, \Theta^g\right)}{\sum_{i=1}^{N} p\left(l|\mathbf{x}_i, \Theta^g\right)}$$

(57)

First, we rewrite equation 55

$$\sum_{i=1}^{N} \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_l| \right) - \frac{1}{2} \left(\boldsymbol{x}_i - \mu_l \right)^T \Sigma_l^{-1} \left(\boldsymbol{x}_i - \mu_l \right) \right] p \left(l | \boldsymbol{x}_i, \Theta^g \right)$$

First, we rewrite equation 55

$$\sum_{i=1}^{N} \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_l| \right) - \frac{1}{2} \left(\boldsymbol{x}_i - \mu_l \right)^T \Sigma_l^{-1} \left(\boldsymbol{x}_i - \mu_l \right) \right] p \left(l | \boldsymbol{x}_i, \Theta^g \right)$$

$$= \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_l| \right) \sum_{i=1}^{N} p\left(l|\boldsymbol{x}_i, \Theta^g \right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l|\boldsymbol{x}_i, \Theta^g \right) tr \left\{ \Sigma_l^{-1} \left(\boldsymbol{x}_i - \mu_l \right) \left(\boldsymbol{x}_i - \mu_l \right)^T \right\} \right]$$

First, we rewrite equation 55

$$\sum_{i=1}^{N} \sum_{l=1}^{M} \left[-\frac{1}{2} \log (|\Sigma_{l}|) - \frac{1}{2} (\boldsymbol{x}_{i} - \mu_{l})^{T} \Sigma_{l}^{-1} (\boldsymbol{x}_{i} - \mu_{l}) \right] p(l|\boldsymbol{x}_{i}, \Theta^{g})$$

$$= \sum_{l=1}^{M} \left[-\frac{1}{2} \log (|\Sigma_{l}|) \sum_{i=1}^{N} p(l|\boldsymbol{x}_{i}, \Theta^{g}) - \frac{1}{2} \sum_{i=1}^{N} p(l|\boldsymbol{x}_{i}, \Theta^{g}) tr \left\{ \Sigma_{l}^{-1} (\boldsymbol{x}_{i} - \mu_{l}) (\boldsymbol{x}_{i} - \mu_{l})^{T} \right\} \right]$$

$$= \sum_{l=1}^{M} \left[-\frac{1}{2} \log (|\Sigma_{l}|) \sum_{i=1}^{N} p(l|\boldsymbol{x}_{i}, \Theta^{g}) - \frac{1}{2} \sum_{i=1}^{N} p(l|\boldsymbol{x}_{i}, \Theta^{g}) tr \left\{ \Sigma_{l}^{-1} N_{l,i} \right\} \right]$$

Where $N_{t+} = (x_t - u_t)(x_t - u_t)^T$

First, we rewrite equation 55

$$\sum_{i=1}^{M} \sum_{l=1}^{M} \left[-\frac{1}{2} \log (|\Sigma_{l}|) - \frac{1}{2} (\mathbf{x}_{i} - \mu_{l})^{T} \Sigma_{l}^{-1} (\mathbf{x}_{i} - \mu_{l}) \right] p(l|\mathbf{x}_{i}, \Theta^{g})$$

$$= \sum_{l=1}^{M} \left[-\frac{1}{2} \log (|\Sigma_{l}|) \sum_{i=1}^{N} p(l|\mathbf{x}_{i}, \Theta^{g}) - \frac{1}{2} \sum_{i=1}^{N} p(l|\mathbf{x}_{i}, \Theta^{g}) tr \left\{ \Sigma_{l}^{-1} (\mathbf{x}_{i} - \mu_{l}) (\mathbf{x}_{i} - \mu_{l})^{T} \right\} \right]$$

$$= \sum_{l=1}^{M} \left[-\frac{1}{2} \log (|\Sigma_{l}|) \sum_{i=1}^{N} p(l|\mathbf{x}_{i}, \Theta^{g}) - \frac{1}{2} \sum_{i=1}^{N} p(l|\mathbf{x}_{i}, \Theta^{g}) tr \left\{ \Sigma_{l}^{-1} N_{l,i} \right\} \right]$$

Where $N_{l,i} = (x_i - \mu_l) (x_i - \mu_l)^T$.

We have that

$$\frac{\partial}{\partial \Sigma_{l}^{-1}} \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_{l}| \right) \sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \Theta^{g} \right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \Theta^{g} \right) tr\left\{ \Sigma_{l}^{-1} N_{l,i} \right\} \right]$$

We have that

$$\begin{split} &\frac{\partial}{\partial \Sigma_{l}^{-1}} \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_{l}| \right) \sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g} \right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g} \right) tr \left\{ \boldsymbol{\Sigma}_{l}^{-1} N_{l,i} \right\} \right] \\ &= \frac{1}{2} \sum_{l=1}^{N} p\left(l | \boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g} \right) \left(2 \boldsymbol{\Sigma}_{l} - \operatorname{diag} \left(\boldsymbol{\Sigma}_{l} \right) \right) - \frac{1}{2} \sum_{l=1}^{N} p\left(l | \boldsymbol{x}_{l}, \boldsymbol{\Theta}^{g} \right) \left(2 N_{l,i} - \operatorname{diag} \left(N_{l,i} \right) \right) \end{split}$$

We have that

$$\begin{split} &\frac{\partial}{\partial \boldsymbol{\Sigma}_{l}^{-1}} \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\boldsymbol{\Sigma}_{l}| \right) \sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g} \right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g} \right) tr \left\{ \boldsymbol{\Sigma}_{l}^{-1} N_{l,i} \right\} \right] \\ &= &\frac{1}{2} \sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g} \right) \left(2\boldsymbol{\Sigma}_{l} - \operatorname{diag}\left(\boldsymbol{\Sigma}_{l} \right) \right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g} \right) \left(2N_{l,i} - \operatorname{diag}\left(N_{l,i} \right) \right) \\ &= &\frac{1}{2} \sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g} \right) \left(2M_{l,i} - \operatorname{diag}\left(M_{l,i} \right) \right) \end{split}$$

We have that

$$\begin{split} &\frac{\partial}{\partial \Sigma_{l}^{-1}} \sum_{l=1}^{M} \left[-\frac{1}{2} \log \left(|\Sigma_{l}| \right) \sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g} \right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g} \right) tr \left\{ \boldsymbol{\Sigma}_{l}^{-1} N_{l,i} \right\} \right] \\ &= \frac{1}{2} \sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g} \right) \left(2 \boldsymbol{\Sigma}_{l} - \operatorname{diag}\left(\boldsymbol{\Sigma}_{l} \right) \right) - \frac{1}{2} \sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g} \right) \left(2 N_{l,i} - \operatorname{diag}\left(N_{l,i} \right) \right) \\ &= \frac{1}{2} \sum_{i=1}^{N} p\left(l | \boldsymbol{x}_{i}, \boldsymbol{\Theta}^{g} \right) \left(2 M_{l,i} - \operatorname{diag}\left(M_{l,i} \right) \right) \\ &= 2S - \operatorname{diag}\left(S \right) \end{split}$$

Where $M_{l,i} = \Sigma_l - N_{l,i}$ and $S = \frac{1}{2} \sum_{i=1}^N p(l|\boldsymbol{x}_i, \Theta^g) M_{l,i}$

Thus, we have

Thus

If $2S - \operatorname{diag}(S) = 0 \Longrightarrow S = 0$

Implying

$$\frac{1}{2} \sum_{i=1}^{N} p(l|\mathbf{x}_i, \Theta^g) \left[\Sigma_l - N_{l,i} \right] = 0$$

 $\Sigma_{l} = \frac{\sum_{i=1}^{N} p(l|\mathbf{x}_{i}, \Theta^{g}) N_{l,i}}{\sum_{i=1}^{N} p(l|\mathbf{x}_{i}, \Theta^{g})} = \frac{\sum_{i=1}^{N} p(l|\mathbf{x}_{i}, \Theta^{g}) (\mathbf{x}_{i} - \mu_{l}) (\mathbf{x}_{i} - \mu_{l})^{T}}{\sum_{i=1}^{N} p(l|\mathbf{x}_{i}, \Theta^{g})}$

Thus, we have

Thus

If $2S - \operatorname{diag}(S) = 0 \Longrightarrow S = 0$

Implying

$$\frac{1}{2} \sum_{i=1}^{N} p(l|\mathbf{x}_{i}, \Theta^{g}) [\Sigma_{l} - N_{l,i}] = 0$$
(58)

 $\Sigma_{l} = \frac{\sum_{i=1}^{N} p(l|\mathbf{x}_{i}, \Theta^{g}) N_{l,i}}{\sum_{i=1}^{N} p(l|\mathbf{x}_{i}, \Theta^{g})} = \frac{\sum_{i=1}^{N} p(l|\mathbf{x}_{i}, \Theta^{g}) (\mathbf{x}_{i} - \mu_{l}) (\mathbf{x}_{i} - \mu_{l})^{T}}{\sum_{i=1}^{N} p(l|\mathbf{x}_{i}, \Theta^{g})}$

Thus, we have

Thus

If $2S - \operatorname{diag}(S) = 0 \Longrightarrow S = 0$

Implying

$$\frac{1}{2} \sum_{i=1}^{N} p(l|\mathbf{x}_{i}, \Theta^{g}) [\Sigma_{l} - N_{l,i}] = 0$$
(58)

Or

$$\Sigma_{l} = \frac{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) N_{l,i}}{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right)} = \frac{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right) \left(\boldsymbol{x}_{i} - \mu_{l}\right) \left(\boldsymbol{x}_{i} - \mu_{l}\right)^{T}}{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right)}$$
(50)

Thus, we have the iterative updates

They are

$$\alpha_l^{New} = \frac{1}{N} \sum_{i=1}^{N} p(l|x_i, \Theta^g)$$

Thus, we have the iterative updates

They are

$$\begin{split} \alpha_{l}^{New} = & \frac{1}{N} \sum_{i=1}^{N} p\left(l|x_{i}, \Theta^{g}\right) \\ \mu_{l}^{New} = & \frac{\sum_{i=1}^{N} \boldsymbol{x}_{i} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right)}{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_{i}, \Theta^{g}\right)} \end{split}$$

Thus, we have the iterative updates

They are

$$\alpha_l^{New} = \frac{1}{N} \sum_{i=1}^{N} p(l|\mathbf{x}_i, \Theta^g)$$

$$\mu_l^{New} = \frac{\sum_{i=1}^{N} \mathbf{x}_i p(l|\mathbf{x}_i, \Theta^g)}{\sum_{i=1}^{N} p(l|\mathbf{x}_i, \Theta^g)}$$

$$\Sigma_l^{New} = \frac{\sum_{i=1}^{N} p(l|\mathbf{x}_i, \Theta^g) (\mathbf{x}_i - \mu_l) (\mathbf{x}_i - \mu_l)^T}{\sum_{i=1}^{N} p(l|\mathbf{x}_i, \Theta^g)}$$

Outline

- 1 Introduction
 - Maximum-Likelihood
 - Expectation Maximization
 - Examples of Applications of EM

2 Incomplete Data

- Introduction
 - Using the Expected Value
 - Analogy

Derivation of the EM-Algorithm

- Hidden Features
 - Proving Concavity
 - Using the Concave Functions for Approximation
 - From The Concave Function to the EM
 - The Final Algorithm
 - Notes and Convergence of EM

Finding Maximum Likelihood Mixture Densities

- The Beginning of The Process
- Bayes' Rule for the components
 - Mixing Parameters
- lacksquare Maximizing Q using Lagrange Multipliers
 - Lagrange Multipliers
 - In Our Case
- Example on Mixture of Gaussian Distributions
- The EM Algorithm

EM Algorithm for Gaussian Mixtures

Step 1

Initialize:

- The means μ_l
- Covariances Σ_l
- Mixing coefficients α_l

Evaluate

Step 2 - **E-Step**

• Evaluate the the probabilities of component l given x_i using the current parameter values:

$$p(l|x_i, \Theta^g) = \frac{\alpha_l^g p_{y_i} \left(x_i | \theta_l^g\right)}{\sum_{k=1}^{M} \alpha_k^g p_k \left(x_i | \theta_k^g\right)}$$

Now

Step 3 - M-Step

• Re-estimate the parameters using the current iteration values:

$$\alpha_l^{New} = \frac{1}{N} \sum_{i=1}^{N} p(l|x_i, \Theta^g)$$

Step 3 - M-Step

Re-estimate the parameters using the current iteration values:

$$\alpha_l^{New} = \frac{1}{N} \sum_{i=1}^{N} p\left(l|x_i, \Theta^g\right)$$
$$\mu_l^{New} = \frac{\sum_{i=1}^{N} \boldsymbol{x}_i p\left(l|\boldsymbol{x}_i, \Theta^g\right)}{\sum_{i=1}^{N} p\left(l|\boldsymbol{x}_i, \Theta^g\right)}$$

Step 3 - M-Step

• Re-estimate the parameters using the current iteration values:

$$\begin{split} &\alpha_{l}^{New} = \frac{1}{N} \sum_{i=1}^{N} p\left(l|\mathbf{x}_{i}, \Theta^{g}\right) \\ &\mu_{l}^{New} = \frac{\sum_{i=1}^{N} \mathbf{x}_{i} p\left(l|\mathbf{x}_{i}, \Theta^{g}\right)}{\sum_{i=1}^{N} p\left(l|\mathbf{x}_{i}, \Theta^{g}\right)} \\ &\Sigma_{l}^{New} = \frac{\sum_{i=1}^{N} p\left(l|\mathbf{x}_{i}, \Theta^{g}\right) \left(\mathbf{x}_{i} - \mu_{l}\right) \left(\mathbf{x}_{i} - \mu_{l}\right)^{T}}{\sum_{i=1}^{N} p\left(l|\mathbf{x}_{i}, \Theta^{g}\right)} \end{split}$$

Evaluate

Step 4

Evaluate the log likelihood:

$$\log p\left(\boldsymbol{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\alpha}\right) = \sum_{i=1}^{N} \log \left\{ \sum_{l=1}^{M} \alpha_{l}^{New} p_{l}\left(\boldsymbol{x_{i}}|\boldsymbol{\mu_{l}^{New}}, \boldsymbol{\Sigma_{l}}^{New}\right) \right\}$$

Step 6

• Check for convergence of either the parameters or the log likelihood

Evaluate

Step 4

Evaluate the log likelihood:

$$\log p\left(\boldsymbol{X}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\alpha}\right) = \sum_{i=1}^{N} \log \left\{ \sum_{l=1}^{M} \alpha_{l}^{New} p_{l}\left(\boldsymbol{x_{i}}|\boldsymbol{\mu_{l}^{New}},\boldsymbol{\Sigma_{l}}^{New}\right) \right\}$$

Step 6

- Check for convergence of either the parameters or the log likelihood.
- If the convergence criterion is not satisfied return to step 2.

References I

- S. Borman, "The expectation maximization algorithm-a short tutorial," *Submitted for publication*, pp. 1–9, 2004.
 - J. Bilmes, "A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models," *International Computer Science Institute*, vol. 4, 1998.
- F. Dellaert, "The expectation maximization algorithm," tech. rep., Georgia Institute of Technology, 2002.
- G. McLachlan and T. Krishnan, *The EM algorithm and extensions*, vol. 382.
 - John Wiley & Sons, 2007.

