- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

25 febbraio 2014

(Cognome)													(No	me)			(N	ume	ro d	i ma	trice	ola)		

A	В	С	D	\mathbf{E}	

1	00000
2	
3	
4	
5	
6	
7	
8	
9	
10	0000

1. La funzione
$$f(x)=\begin{cases} \sin(ax) & \text{per } x<0\\ & \text{è derivabile per } x^2+x & \text{per } x\geq 0 \end{cases}$$

A: $a=1$ B: mai C: N.A. D: $a=k\pi$ E: $a>\pi/3$

2. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x) < \frac{\sqrt{3}}{2}\}$$

valgono

A:
$$\{\pi/3, N.E., \pi/3, N.E.\}$$
 B: $\{0, 0, \pi/6, N.E.\}$ C: $\{-\infty, N.E., +\infty, N.E.\}$ D: $\{0, 0, 2\pi, 2\pi\}$ E: N.A.

3. Una soluzione dell'equazione differenziale $y'(x) = \sinh(x)$ è

A:
$$e^x - e^{-x}$$
 B: N.E. C: $\frac{1}{\cos(x)}$ D: $\cosh(x) + 1$ E: N.A.

4. Data $f(x) = (e^x)^x$. Allora f'(1) è uguale a

A:
$$3e^3$$
 B: N.A. C: $2e$ D: $log(2e)$ E: e^2

5. L'integrale

$$\int_{1}^{e} \log(x) \frac{1}{x} \, dx$$

vale

A: N.A. B:
$$\sqrt{e} + 1$$
 C: 0 D: 2/e E: $\frac{1}{2}$

6. La retta tangente al grafico di $y(x) = \sin(3x)$ nel punto $x_0 = \pi/12$ vale

A: N.A. B:
$$1 + \frac{\sqrt{2}}{2}(x - \pi/12)$$
 C: $-\frac{-12x + \pi - 4}{4\sqrt{2}}$ D: $1 + x + x^2$ E: $3x - \frac{\pi}{4} + \frac{1}{2}$

7. Il limite

$$\lim_{x \to 0} \frac{\sqrt{1 + x^2} - 1}{\sin(x^2)}$$

vale

A:
$$\frac{1}{2}$$
 B: $+\infty$ C: N.E. D: N.A. E: 0

8. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^{x^2}$ è

A: N.A. B: monotona crescente C: surgettiva D: iniettiva E: non derivabile in x=0

9. Modulo e argomento del numero complesso $z = \left(\frac{\sqrt{3}}{i}\right)^4$ sono

A:
$$(27, 2\pi)$$
 B: $(3^4, \pi/2)$ C: $(3^5, 0)$ D: N.A. E: $(9^2, 0)$

10. Dato $x \ge 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\log(1+nx)}{n}$$

converge per

A:
$$x > 0$$
 B: $1 < x$ C: $x = 0$ D: $x \le 1$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

25 febbraio 2014

(Cognome)												(No	me)			-	(N	ume	ro di	ma	trico	la)				

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

1. L'integrale

$$\int_{1}^{e} \log(x) \frac{1}{x} \, dx$$

vale

A: 0 B: $\sqrt{e} + 1$ C: $\frac{1}{2}$ D: N.A. E: 2/e

2. La funzione $f(x) = \begin{cases} \sin(ax) & \text{per } x < 0 \\ & \text{è derivabile per} \end{cases}$

A: $a > \pi/3$ B: mai C: N.A. D: a = 1 E: $a \in \mathbb{R}$

3. Una soluzione dell'equazione differenziale $y'(x) = \sinh(x)$ è A: $\frac{1}{\cos(x)}$ B: $\cosh(x) + 1$ C: N.A. D: $e^x - e^{-x}$ E: N.E.

4. Dato $x \geq 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\log(1+nx)}{n}$$

converge per

A: 1 < x B: x = 0 C: N.A. D: x > 0 E: $x \le 1$

5. Modulo e argomento del numero complesso $z = \left(\frac{\sqrt{3}}{i}\right)^4$ sono A: N.A. B: $(27, 2\pi)$ C: $(3^5, 0)$ D: $(9^2, 0)$ E: $(3^4, \pi/2)$

6. Data $f(x) = (e^x)^x$. Allora f'(1) è uguale a A: 2e B: $3e^3$ C: $\log(2e)$ D: e^2 E: N.A.

7. Il limite

$$\lim_{x\to 0}\frac{\sqrt{1+x^2}-1}{\sin(x^2)}$$

vale

A: N.A. B: N.E. C: $+\infty$ D: $\frac{1}{2}$ E: 0

8. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x) < \frac{\sqrt{3}}{2}\}$$

valgono

A: N.A. B: $\{0,0,2\pi,2\pi\}$ C: $\{-\infty,N.E.,+\infty,N.E.\}$ D: $\{\pi/3,N.E.,\pi/3,N.E.\}$ E: $\{0,0,\pi/6,N.E.\}$

9. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^{x^2}$ è
A: monotona crescente B: non derivabile in x = 0 C: N.A. D: iniettiva E: surgettiva

10. La retta tangente al grafico di $y(x) = \sin(3x)$ nel punto $x_0 = \pi/12$ vale

A: $-\frac{-12x+\pi-4}{4\sqrt{2}}$ B: $1+x+x^2$ C: N.A. D: $1+\frac{\sqrt{2}}{2}(x-\pi/12)$ E: $3x-\frac{\pi}{4}+\frac{1}{2}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

25 febbraio 2014

(Cognome)											(No	me)			(N	ume	ro di	ma	trico	ola)					

A	В	С	D	\mathbf{E}	

1	0000
2	
3	0000
4	0000
5	0000
6	
7	
8	
9	0000
10	0000

1. Il limite

$$\lim_{x \to 0} \frac{\sqrt{1 + x^2} - 1}{\sin(x^2)}$$

vale

A: N.A. B: $\frac{1}{2}$ C: $+\infty$ D: 0 E: N.E.

2. Dato $x \geq 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\log(1+nx)}{n}$$

converge per

A: N.A. B: $x \le 1$ C: x = 0 D: x > 0 E: 1 < x

3. Modulo e argomento del numero complesso $z=\left(\frac{\sqrt{3}}{i}\right)^4$ sono A: $(27,2\pi)$ B: $(3^4,\pi/2)$ C: $(3^5,0)$ D: N.A. E: $(9^2,0)$

4. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^{x^2}$ è

A: surgettiva B: monotona crescente C: N.A. D: non derivabile in x = 0 E: iniettiva

5. La retta tangente al grafico di $y(x) = \sin(3x)$ nel punto $x_0 = \pi/12$ vale

A:
$$-\frac{-12x+\pi-4}{4\sqrt{2}}$$
 B: $3x - \frac{\pi}{4} + \frac{1}{2}$ C: N.A. D: $1 + \frac{\sqrt{2}}{2}(x - \pi/12)$ E: $1 + x + x^2$

6. Una soluzione dell'equazione differenziale $y'(x) = \sinh(x)$ è

A: $\cosh(x) + 1$ B: N.E. C: $e^x - e^{-x}$ D: $\frac{1}{\cos(x)}$ E: N.A.

7. L'integrale

$$\int_{1}^{e} \log(x) \frac{1}{x} \, dx$$

vale

A: $\sqrt{e} + 1$ B: N.A. C: $\frac{1}{2}$ D: 2/e E: 0

8. Data $f(x) = (e^x)^x$. Allora f'(1) è uguale a A: e^2 B: $3e^3$ C: $\log(2e)$ D: 2e E: N.A.

9. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x) < \frac{\sqrt{3}}{2}\}$$

valgono

A: $\{-\infty, N.E., +\infty, N.E.\}$ B: N.A. C: $\{0, 0, 2\pi, 2\pi\}$ D: $\{\pi/3, N.E., \pi/3, N.E.\}$ E $\{0, 0, \pi/6, N.E.\}$

10. La funzione $f(x) = \begin{cases} \sin(ax) & \text{per } x < 0 \\ & \text{è derivabile per } x^2 + x & \text{per } x \ge 0 \end{cases}$

A: mai B: a = 1 C: $a = k\pi$ D: $a \in \mathbb{R}$ E: N.A

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

25 febbraio 2014

(Cognome)											(No	me)			(N	ume	ro di	ma	trico	ola)					

A	В	С	D	\mathbf{E}	
4 1	ט	\sim	יב	ப	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

1. Dato $x \ge 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\log(1+nx)}{n}$$

converge per

A: $x \le 1$ B: x = 0 C: N.A. D: 1 < x E: x > 0

2. La funzione $f(x) = \begin{cases} \sin(ax) & \text{per } x < 0 \\ & \text{è derivabile per } x^2 + x & \text{per } x \ge 0 \end{cases}$

A: mai B: N.A. C: $a = k\pi$ D: $a \in \mathbb{R}$ E: a = 1

3. L'integrale

$$\int_{1}^{e} \log(x) \frac{1}{x} \, dx$$

vale

A: 2/e B: N.A. C: $\sqrt{e} + 1$ D: $\frac{1}{2}$ E: 0

4. La retta tangente al grafico di $y(x)=\sin(3x)$ nel punto $x_0=\pi/12$ vale

A:
$$-\frac{-12x+\pi-4}{4\sqrt{2}}$$
 B: N.A. C: $1+x+x^2$ D: $3x-\frac{\pi}{4}+\frac{1}{2}$ E: $1+\frac{\sqrt{2}}{2}(x-\pi/12)$

5. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^{x^2}$ è

A: N.A. B: surgettiva C: non derivabile in x=0 D: monotona crescente E: iniettiva

6. Il limite

$$\lim_{x \to 0} \frac{\sqrt{1 + x^2} - 1}{\sin(x^2)}$$

vale

A: 0 B: N.E. C: $\frac{1}{2}$ D: $+\infty$ E: N.A.

7. Modulo e argomento del numero complesso $z = \left(\frac{\sqrt{3}}{i}\right)^4$ sono

A:
$$(3^4, \pi/2)$$
 B: $(3^5, 0)$ C: N.A. D: $(9^2, 0)$ E: $(27, 2\pi)$

8. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x) < \frac{\sqrt{3}}{2}\}$$

valgono

A: $\{0, 0, \pi/6, N.E.\}$ B: N.A. C: $\{0, 0, 2\pi, 2\pi\}$ D: $\{-\infty, N.E., +\infty, N.E.\}$ E: $\{\pi/3, N.E., \pi/3, N.E.\}$

9. Data $f(x) = (e^x)^x$. Allora f'(1) è uguale a

A:
$$3e^3$$
 B: $log(2e)$ C: N.A. D: $2e$ E: e^2

10. Una soluzione dell'equazione differenziale $y'(x) = \sinh(x)$ è

A:
$$\cosh(x) + 1$$
 B: $\frac{1}{\cos(x)}$ C: $e^x - e^{-x}$ D: N.A. E: N.E.

25 febbraio 2014

			(Co	gno	me)						(No	me)			_	ume	i ma	trice	ola)

ABCDE	A	В	\mathbf{C}	D	\mathbf{E}
-------	---	---	--------------	---	--------------

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	\bigcirc

25 febbraio 2014

			(Co	gno	me)				_			(No	ome)			_	ume	i ma	trice	ola)

CODICE = 816710

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

25 febbraio 2014

	(Cogn	ome)					(No	me)				ume	ro d	i ma	trice	ola)

CODICE = 582612

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

25 febbraio 2014

			(Co	gno	me)				_			(No	me)			-	ume	ma	trico	ola)

CODICE = 871306

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

25 febbraio 2014

PARTE B

1. Studiare il numero di soluzioni, al variare di $\lambda \in \mathbb{R}$ della equazione

$$\lambda = \frac{2 - |x|}{1 + x}, \qquad x \neq -1.$$

Soluzione: Per risolvere l'esercizio basta tracciare il grafico di $f(x) = \frac{2-|x|}{1+x}$ e vedere quante volte interseca le rette orizzontali $y = \lambda$. Si ha immediatamente che i limiti agli estremi del dominio sono i seguenti:

$$\lim_{x \to -\infty} \frac{2 - |x|}{1 + x} = 1 \qquad \lim_{x \to -\infty} \frac{2 - |x|}{1 + x} = -1$$

$$\lim_{x \to -1^-} \frac{2 - |x|}{1 + x} = -\infty \qquad \lim_{x \to -1^+} \frac{2 - |x|}{1 + x} = +\infty.$$

Inoltre

$$f'(x) = \begin{cases} -\frac{3}{(x+1)^2} & x > 0\\ -\frac{1}{(x+1)^2} & x < 0, \ x \neq -1 \end{cases}$$

e la derivata non esiste per x=0, anche se la funzione è continua in $\mathbb{R}\setminus\{-1\}$. La funzione risulta decrescente in senso stretto in $]-\infty,-1[\cup]-1,+\infty[$. Il grafico qualitativo è il seguente

da cui si ricava che esiste una sola soluzione se $\lambda \le -1$ e $\lambda \ge 1$, e 2 soluzioni per $-1 < \lambda < 1$.

2. Risolvere il problema di Cauchy

$$\begin{cases} y''(t) + y(t) = \sin(\pi t) \\ y(0) = 1 \\ y'(0) = 0. \end{cases}$$

Soluzione Le soluzioni del problema omogeneo sono

$$Y(t) = c_1 \sin(t) + c_2 \cos(t),$$

Figura 1: Grafico di $f(x) = \frac{2-|x|}{1+x}$

e quindi non c'è risonanza e la soluzione particolare va cercata della forma $y_f(t) = a \sin(\pi t) + b \cos(\pi t)$. Sostituendo si trova che

$$y_f(t) = \frac{1}{1 - \pi^2} \sin(\pi t)$$

e imponendo poi le condizioni iniziali

$$y(t) = \frac{\left(-1 + \pi^2\right)\cos(t) + \pi\sin(t) - \sin(\pi t)}{-1 + \pi^2}$$

3. Studiare la convergenza ed eventualmente calcolare l'integrale generalizzato

$$\int_{3}^{+\infty} \frac{x}{(x-1)(x^2+9)} \, dx.$$

Soluzione L'integrale in questione converge dato che la funzione integranda è non-negativa e inoltre

$$\frac{x}{(x-1)(x^2+9)} = \mathcal{O}(1/x^2).$$

Effettuando la scomposizione in fratti semplici del tipo

$$\frac{x}{(x-1)(x^2+9)} = \frac{A}{x-1} + \frac{Bx+c}{x^2+9}$$

si trova che una primitiva è

$$G(x) = \frac{3}{10}\arctan\left(\frac{x}{3}\right) + \frac{1}{10}\log(x-1) - \frac{1}{20}\log\left(x^2 + 9\right)$$

e quindi

$$\int_3^{+\infty} \frac{x}{(x-1)(x^2+9)}\,dx = \lim_{b\to +\infty} G(x)\bigg|_3^b = \frac{1}{40}\left(3\pi + \log\left(\frac{81}{4}\right)\right).$$

4. Calcolare l'integrale

$$\int_{1}^{3/2} \{x\} \log(x) \, dx$$

dove $\{x\}$ è la parte frazionaria di $x \in \mathbb{R}$.

Soluzione Per calcolare l'integrale basta osservare che $\{x\} = x - [x]$, dove [x] è la parte intera di x. Nell'intervallo]1,2[si ha quindi $\{x\} = x - 1$ e pertanto

$$\int_{1}^{3/2} \{x\} \log(x) \, dx = \int_{1}^{3/2} (x-1) \log(x) \, dx$$

con una integrazione per parti si ha che

$$\frac{1}{2}\log(x)x^2 - \frac{x^2}{4} - \log(x)x + x$$

è una primitiva di $(x-1)\log(x)$ e dunque

$$\int_{1}^{3/2} \{x\} \log(x) \, dx = \frac{1}{2} \log(x) x^2 - \frac{x^2}{4} - \log(x) x + x \Big|_{1}^{3/2} = \frac{3}{16} - \frac{3}{8} \log\left(\frac{3}{2}\right).$$