

Universidad Carlos III

Ingeniería de la Ciberseguridad

Curso 2024-25

Práctica 1

Extracción de contraseñas para binarios y permisos en ACL's

Ingeniería Informática, Cuarto curso

Adrián Fernández Galán (NIA: 100472182, e-mail: 100472182@alumnos.uc3m.es) César López Mantecón (NIA: 100472092, e-mail: 100472092@alumnos.uc3m.es) Manuel Gómez-Plana Rodríguez (NIA: 100472092, e-mail: 100472092@alumnos.uc3m.es)

> Prof .Antonio Nappa Grupo: 81

$\mathbf{\acute{I}ndice}$

1.	Introducción	2
2.	11	2 2 3 3
3.	ACL's	3
4.	Conclusión	3

1. Introducción

En este documento se recoge el proceso de desarrollo de la primera práctica de la asignatura *Ingeniería de la Ciberseguridad*. En esta práctica hemos logrado obtener 9 flags mediante el descubrimiento de contraseñas y ataque a archivos binarios.

2. Estrategias para el descubrimiento de contraseñas

Para extraer las contraseñas de los ejecutables se han empleado 2 estrategias distintas: uso de john the ripper para la obtención de contraseñas y ataque sobre los binarios.

2.1. John The Ripper

John es una herramienta para la optención de contraseñas débiles a partir de su hash. Dado el conocimiento que teníamos de las contraseñas hemos generado una wordlist con todas las contraseñas posibles con el alfabeto proporcionado. Esto se reduce a las permutaciones de 5, 6 y 8 elementos de los conjuntos de caracteres usados para generar cada contraseña.

Para generar la wordlist se ha empleado el siguiente código de python:

```
import itertools
# charset level 1
charset_level1 = "abcdefg123456lab"
# Generate all permutations of length 5
permutations = itertools.permutations(charset_level1, 5)
with open("level1 wordlist.txt", "w+") as file:
    # Print the result
    for p in permutations:
        file.write(''.join(p) + "\n")
# charset level 2
charset_level2 = "abcdefg123456uc3m"
# Generate all permutations of length 6
permutations = itertools.permutations(charset_level2, 6)
with open("level2_wordlist.txt", "w+") as file:
    # Print the result
    for p in permutations:
        file.write(''.join(p) + "\n")
# charset level 3
charset_level3 = "abcdefg123456profe"
# Generate all permutations of length 8
permutations = itertools.permutations(charset_level3, 8)
with open("level3_wordlist.txt", "w+") as file:
    # Print the result
    for p in permutations:
        file.write(''.join(p) + "\n")
```

Sin embargo, no ha sido posible generar la wordlist para level3 debido gran número de contraseñas posibles.

Gracias a estas wordlist hemos podido extraer las contraseñas para los archivos level1 y level2. En la siguiente tabla se recogen los tiempos que ha llevado obtener cada contraseña:

Archivo	Longitud de la wordlist	Tiempo
level1	524160	53s
level2	8910720	383s
level3	1764322560	∞

Cuadro 1: Tiempos por contraseña usando john

Para el archivo level3 no hemos empleado esta estategia debido al elevado tiempo de computación que precisa.

- 2.2. Análisis de binarios
- 2.3. Comparación de métodos
- 3. ACL's
- 4. Conclusión