APPLIED STATISTICAL ANALYSIS I Multiple linear regression

Trajche Panov, PhD frankh@tcd.ie

Department of Political Science Trinity College Dublin

November 12, 2024

Today's Agenda

(1) Lecture recap

Categorical independent variables

(2) Tutorial exercises: What is the relationship between education and Euroscepticism?

How to include categorical independent variables with more than two levels?

Categorical independent variables

Environmental performance_i = $\alpha + \beta_1 * Income_i + \beta_2 * Region_i + \epsilon_i$ ## table(qog data\$ht region)

```
##
                        Eastern Europe (1)
                                                            Latin America(2)
##
                                   28
                                                                        20
##
       North Africa & the Middle East (3)
                                                     Sub-Saharan Africa (4)
##
                                   20
                                                                        49
##
    Western Europe and North America (5)
                                                               East Asia (6)
##
                                   27
                                                                         6
##
                       South-East Asia (7)
                                                              South Asia (8)
##
                                   11
                                                                         8
##
                           The Pacific (9)
                                                         The Caribbean (10)
##
                                   12
                                                                        13
```

0000,000

```
# Load package
   library (fast Dummies)
  # Create dummy variables for categorical variable
   qog _data <- dummy _ cols (qog _ data ,
                            select _columns = c("ht _region"))
   # Print first 5 rows in dataset
   head(qog _data [c("ht _region _1",
10
               "ht_region_2",
11
               "ht_region_3",
12
               "ht_region_4",
13
               "ht_region_5".
14
               "ht_region_6",
15
               "ht_region_7",
16
               "ht_region_8".
17
               "ht_region_9",
18
               "ht_region_10")], 5)
```

```
ht region 1 ht region 2 ht region 3 ht region 4 ht region 5
## 1
## 2
     ht region 6 ht region 7 ht region 8 ht region 9 ht region 10
## 1
## 2
## 3
## 4
## 5
```

0.0000

```
# Run regression model
  m2 <- Im (epi epi income +
             ht_region_1 + ht_region_2 + ht_region_3 +
             # no region 4 (Sub-Saharan Africa) = reference category.
4
5
             ht region 5 + ht region 6 + ht region 7 + ht region 8 + ht region 9 +
             ht region 10, data = gog data)
7
 # Print results
  summary (m2)
```

```
Coefficients: (1 not defined because of singularities)
             Estimate Std. Error t value Pr(>|t|)
                32.3992
                            1.1296 28.683 < 2e-16 ***
(Intercept)
income
                1.7410
                            0.4061 4.287 3.23e-05
               18.4245
                            1.8769 9.817
                                           < 2e-16
ht region 1
ht region 2
             11.6208
                            2.0362
                                    5.707 6.01e-08
                            2 4665
ht region 3
               9 4434
                                    3.829 0.000189
               35.2532
                            2.4854 14.184
                                           < 2e-16 ***
ht region 5
               16.2287
                            3.6737 4.418 1.91e-05 ***
ht region 6
ht region 7
                4.1247
                            2.7820 1.483 0.140281
ht region 8
               -2.1694
                            3.2676 -0.664 0.507774
                                       NA
ht region 9
                   NA
                               NA
                                                 NA
                                    3.108 0.002257 **
ht region 10
                11 0665
                            3 5607
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.528 on 149 degrees of freedom
  (35 observations deleted due to missingness)
Multiple R-squared: 0.7897, Adjusted R-squared: 0.777
F-statistic: 62.16 on 9 and 149 DF, p-value: < 2.2e-16
```

000000

Categorical independent variables

```
1 # Use relevel to code dummy variables on the fly
2 # specify region 4 (Sub-Saharan Africa) = reference category
3 m3 <- Im(epi epi ~ income + relevel(as factor(ht region), ref = "4"),
              data = qoq data)
5
 # Print results
  summary (m3)
```

```
Estimate Std. Error t value Pr(>|t|)
                                              32.3992
                                                          1.1296
                                                                28.683
(Intercept)
                                                                          < 2e-16
                                              1.7410
                                                          0.4061
                                                                   4.287 3.23e-05
income
relevel(as.factor(ht region), ref = "4")1
                                              18.4245
                                                          1.8769
                                                                   9.817
                                                                          < 2e-16
relevel(as.factor(ht region), ref = "4")2
                                              11.6208
                                                          2 0362
                                                                   5 707
                                                                          6.01e-08
relevel(as.factor(ht region), ref = "4")3
                                              9.4434
                                                          2 4665
                                                                   3.829 0.000189
relevel(as.factor(ht region), ref = "4")5
                                              35.2532
                                                          2.4854
                                                                14.184
                                                                         < 2e-16
relevel(as.factor(ht region), ref = "4")6
                                              16.2287
                                                          3.6737
                                                                   4.418 1.91e-05
relevel(as.factor(ht region), ref = "4")7
                                              4 1247
                                                          2 7820 1 483 0 140281
relevel(as.factor(ht region), ref = "4")8
                                             -2.1694
                                                          3.2676
                                                                  -0.664 0.507774
relevel(as.factor(ht region), ref = "4")10
                                             11.0665
                                                          3.5607
                                                                   3.108 0.002257 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.528 on 149 degrees of freedom
  (35 observations deleted due to missingness)
Multiple R-squared: 0.7897. Adjusted R-squared:
                                                  0.777
F-statistic: 62.16 on 9 and 149 DF. p-value: < 2.2e-16
```

Under control of income, Eastern Europe has an Environmental Performance Index score of 18.4245 scale points higher than Sub-Saharan Africa.

Interactions

What are interactions?

Interactions

The association between X on Y might vary depending on the value of a third variable M (=Moderator):

$$\hat{Y_i} = \alpha + \beta_1 X_i + \beta_2 M_i + \beta_3 (X_i M_i) + \epsilon_i$$

The interpretation of the regression coefficients changes:

- α is the expected value of Y when X=0 and M=0
- β_1 is the change in Y when X increases by one unit, when M=0
- β_2 is the change in Y when M increases by one unit, when X=0
- B₃ is the *interaction term* of X and M

Rearrange terms:

orical independent variables

$$\hat{Y_i} = \alpha + \beta_2 M_i + (\beta_1 + \beta_3 M_i) X_i + \epsilon_i$$

 β_3 is the added increase in β_1 , if M increases by one unit.

Categorical by continuous interaction

Environmental Performance = α + β 1 Income + β 2 Regime Type + β 3 Income * Regime Type + ϵ 1

```
1 # Run regression model with interaction term
  int m2 <- Im(epi epi ~ income + democracy + income *democracy, data = gog data)
4 # Print results
5 summary (int _m2)
```

```
## Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
                                       1.0684
                                                34.768 < 2e-16 ***
## (Intercept)
                              37.1474
                              ## income
                              3.4490
                                        2.7819 1.240
                                                         0.217
## democracyDemocracy
## income:democracyDemocracy
                              5.1029
                                        0.8686
                                                 5.875 2.55e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.046 on 153 degrees of freedom
    (37 observations deleted due to missingness)
## Multiple R-squared: 0.6879, Adjusted R-squared: 0.6818
## F-statistic: 112.4 on 3 and 153 DF. p-value: < 2.2e-16
```

Categorical by continuous interaction

```
## Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
##
                             37.1474
                                       1.0684
                                               34.768 < 2e-16 ***
## (Intercept)
                             ## income
                             3.4490 2.7819
                                               1.240
                                                       0.217
## democracyDemocracy
## income:democracyDemocracy
                             5.1029
                                       0.8686
                                                5.875 2.55e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.046 on 153 degrees of freedom
    (37 observations deleted due to missingness)
## Multiple R-squared: 0.6879, Adjusted R-squared: 0.6818
## F-statistic: 112.4 on 3 and 153 DF, p-value: < 2.2e-16
```

- The average Environmental Protection Index (EPI) for poor (Income=0) autocracies is 37.1474 scale points (α).
- For autocracies, with every additional 10,000 USD of income, the EPI increases by 2.1902 scale points (β_1). \rightarrow Income effect for autocracies
- For poor democracies, the EPI is 3.4490 scale points higher, in comparison to poor autocracies (B2).
- For democracies, with every additional 10,000 USD of income, the EPI increases by 7.2931 scale points ($\beta_1 + \beta_3 = 2.1902 + 5.1029 = 7.2931$). \rightarrow Income effect for democracies

Categorical by continuous interaction

```
Model for Autocracies (democracy = 0)
\hat{Y}_i = 37.1474 + (2.1902 * Income_i) + (3.4490 * Regime Type_i) +
(5.1029 *Income; *Regime Type;)
\hat{Y}_i = 37.1474 + (2.1902 * Income_i) + (3.4490 * 0) + (5.1029 * Income_i * 0)
\hat{Y}_i = 37.1474 + (2.1902 * Income_i)
Model for Democracies (democracy = 1)
\hat{Y}_i = 37.1474 + (2.1902 * Income_i) + (3.4490 * Regime Type_i) +
(5.1029 *Income; *Regime Type;)
\hat{Y}_i = 37.1474 + (2.1902 * Income_i) + (3.4490 * 1) + (5.1029 * Income_i * 1)
\hat{Y}_i = 40.5964 + (7.2931 * Income_i)
```

Categorical by continuous interaction

Non-linear effects

Model a curvilinear (=curved lines) relationship between an independent variable and the dependent variable.

Include X and the square of X:

$$\hat{Y_i} = \alpha + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$$

Non-linear effects

"U-shaped" relationship between democracy and environment protection?

```
# Generate quadratic term
   gog data sgr vdem polyarchy <- gog data vdem polyarchy 2
  # Run ols regression with quadratic term
  q m1 <- Im (epi epi income + vdem polyarchy
6
              + sqr_vdem_polyarchy,
7
              data = qoq_data
8
  # Print results
10 summary (q m1)
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    39.4244
                               4.2944
                                        9.180 2.82e-16
                     3.0094 0.4576
                                        6.576 7.19e-10
income
              -44.3531 17.7037 -2.505
                                                0.0133 *
vdem polyarchy
sqr vdem polyarchy
                 74.1559 17.0553
                                        4.348 2.50e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.133 on 153 degrees of freedom
  (37 observations deleted due to missingness)
Multiple R-squared: 0.6819. Adjusted R-squared: 0.6757
F-statistic: 109.3 on 3 and 153 DF. p-value: < 2.2e-16
```

Non-linear effects

What is the relationship between education and Euroscepticism?

- H_1 : The higher the years of education, the lower the level of Euroscepticism.
- H₂: The higher the income, the lower the level of Euroscepticism.
- H₃: The higher the trust in politics, the lower the level of Euroscepticism.
- H₄: The more positive attitudes towards immigration, the lower the level of Euroscepticism.

Does gender influence the effect of attitudes towards immigration on Euroscepticism?

Does whether the person was born in the country influence the effect of education on Euroscepticism?

Is the effect of education on Euroscepticism inverted U-shaped?

Is the effect of income on Euroscepticism U-shaped?

