Cellular Systems

Dr. Muhammad Nadeem Majeed

Frequency Assignments

Frequency usage in GSM at Europe

Bandwidth per channel is 200 kHz
Each user is assigned channel for an uplink and a downlink
So at most 124 simultaneous calls. Wow!

Goals

- Low power transmitter system
- Increase network capacity
- Frequency reuse
- Build robust scaleable system
- Architecture to deal with different user densities at different places

Idea!

- Partition the region into smaller regions called cells.
- Each cell gets at least one base station or tower
- Users within a cell talks to the tower
- How can we divide the region into cells?

"Cell"ular Structure

Properties of Cell structure

- Typical Cell sizes
 - some cites few hundred meters
 - country side few tens of kilometers
- Advantages of cell structures:
 - more capacity due to frequency reusage
 - less transmission power needed
 - more robust, tolerate failures
 - deals interference, transmission area locally

• Problems:

- fixed network needed for the base stations
- handover (changing from one cell to another) necessary
- interference with other cells

Inside a cell

- Center-excited cell where the tower is placed somewhat near the center with a omni-directional antenna
- Edge-excited cell where the towers are placed on three of the six corners with sectored directional antennas.

Channels Reuse

- Cell structure can reuse frequency only when certain distance is maintained between cells that use the same channels.
- Fixed frequency assignment:
 - certain frequencies are assigned to a certain cell
 - problem: different traffic load in different cells
- Dynamic frequency assignment:
 - base station chooses frequencies depending on the frequencies already used in neighbor cells
 - more capacity in cells with more traffic
 - assignment can also be based on interference measurements

Interference

- Co-channel interference
 - Signals from cells that share a channel cause cochannel interference
 - Can't remove it by increasing power.
- Adjacent channel interference
 - Signals from adjacent cells cause this.
 - Use filter to reduce it
- But, available channels decrease for incoming calls.

Handoff

- What happens when a user is mobile?
 - Especially when crossing a cell boundary while continuing the call.
- Handoff strategy is invoked.
 - Find a new base station
 - Process handoff
 - higher priority over new call invocation

Who and When

- Who initiates handoff
 - Network directed (tower determines)
 - Terminal assisted (user helps the tower)
 - Terminal directed (user determines)
- When to initiate handoff
 - When the mean signal (over some predetermined time) is below some threshold

Types of Handoff

Hard handoff

 Mobile user is passed between disjoint towers that assign different frequency or adapt different air-interface technology

Soft handoff

 Mobile user communicates to two towers simultaneously and the signal is treated as a multipath signal

High priority for Handoff

• Fraction of available channels is kept for handoff purpose. These channels are called guard channel.

Other problems with handoff

- High speed vehicles can cross many "small" cells in a short time.
 - Umbrella cell. Large cell with a powerful tower to handle high speed vehicles
- Another problem is called cell dragging.
 - Happens when the user moves slowly away from the cell and the tower didn't recognize it due to strong average signal.

Improving Capacity

- Sectoring
- Cell splitting
 - Process of subdividing a congested cell into smaller cells.
 - Each has its own base station
 - Smaller antenna and reduced transmission power
 - These smaller cells are called microcells

Generations

- 1G First generation (Analog and FM)
- 2G Second generation (Digital, TDMA, CDMA)
- 3G Third generation (Multi-media)
- 4G Fourth generation ()

Thanks