- 1. Preliminary Work
 - Definition: The pullback m^* (Isomorphism between $K[G \times G]$ and $K[G] \otimes K[G]$)
 - Definition: Rational representation (with infinite-dimensional vector spaces)
 - Definition: Regular action
 - An alternate definition for rational representation for finite vector spaces, and the proof for its equivalence
 - Another equivalent definition for a rational representation which immediately follows from the last characterization
 - Definition: Invariants and the invariant ring
- 2. Linearly reductive groups, the Reynolds operator and Hilbert's finiteness theorem
 - Definition: Reynolds operator
 - Uniqueness of the Reynolds operator
 - Definition: linear reductiveness; definition via the Reynolds operator
 - Remark about different ways to characterize linear reductiveness
 - Definition: A multiplication in $K[G]^*$
 - Proposition: The afore mentioned multiplication makes $K[G]^*$ into an associative algebra
 - Definition: The action of $K[G]^*$ on V induced by an action of G on V.
 - A remark about how we can view the $K[G]^*$ action as an extension of the given one $(\sigma v = \epsilon_{\sigma} \cdot v)$ where $\epsilon_{\sigma} \in K[G]^*$ is the evaluation homomorphism).
 - Remark: $K[G]^*$ contains the Lie algebra as a subalgebra.
 - Proposition: A regular action of G on an affine variety X induces a rational representation K[X] of G
 - \bullet Proposition: A Reynolds operator on K[G] (action via left-multiplication) yields a Reynolds operator on K[X] for any regular action of G on X
 - TODO:

The usual lemmas for Hilbert's finiteness theorem Hilbert's finiteness theorem

- 3. Cayley's Ω -Process
 - Definition: Cayley's Ω -Process
 - A Lemma about a relationship between m^* and Ω

- \bullet Lemma and Definition: The constants $c_{p,n} := \Omega^p(\det(Z)^p)$
- Theorem: GL_n is linearly reductive via the Reynolds operator that can be defined by Cayley's Ω -process
- \bullet Corollary: SL_n is linearly reductive
- 4. Examples (known or easy ones)
 - $\bullet\,$ The cross ratio
 - \bullet SAS^T