

Edgard Broggio edgard.broggio@dataex.com.br +55 11 3446-8380 www.dataex.com.br

Edgard Broggio de Sousa – 45 anos

- DataEX (Atual) 4 anos
 - Gerente de Infraestrutura, Cloud e Data Services
 - Responsável pelo time de Sustentação Banco de Dados e Cloud;
 - Responsável pela infraestrutura DataEX;
- Banco ABC Brasil 10 anos
 - Coordenador de Infraestrutura;
 - Especialista SQL Server;
 - Coordenador Operação;
- Deutsche Bank 5 anos
 - DBA SQL Server e Oracle;
 - Operações Noturnas;

- Unitronics do Brasil Tecnologia Ltda 1 ano
 - Analista de Suporte alocado no Deutsche Bank
 - Helpdesk
- Equant Integration Services 3 anos
 - Suporte Técnico;
- Estágios:
 - PC Tech;
 - Equant Integration Services;
 - Secretária da Educação;

Edgard Broggio de Sousa

- Gestão em Sistemas da Informação
 - UNINOVE 2006
- MBA em Tecnologias para Negócios: Al, Data Science e Big Data
 - PUCRS 2022

Edgard Broggio de Sousa

- Certificações
 - Microsoft
 - AZ-104 Azure Administrator Associate
 - AZ-120 Azure for SAP Workloads Specialty
 - AZ-140 Azure Virtual Desktop Specialty
 - AZ-305 Azure Solutions Architect Expert
 - AZ-500 Azure Security Engineer Associate
 - AZ-600 Azure Stack Hub Operator Associate
 - AZ-900 Azure Fundamentals
 - DP-300 Azure Database Administrator Associate
 - DP-900 Azure Data Fundamentals

- Certificações
 - AWS
 - Cloud Practitioner
 - Databricks
 - Lakehouse Fundamentals

Data Managed Services

Área responsável pela sustentação dos clientes DataEX.

Especialistas focados no monitoramento e resolução de problemas em ambientes críticos.

Ambientes sustentados:

- Azure
- AWS
- SQL Server (Onpremises e laas)
- Azure SQL Database (PaaS)
- Azure SQL Managed Instance (PaaS)
- Amazon RDS
- Data Factory
- Databricks
- Power BI

Hardening

Implantado em todos os clientes.

Utilizado para ajustar melhores práticas, afim de garantir que o SQL Server consiga obter melhor desempenho, utilizando de forma adequada os recursos de Hardware e Sistema Operacional.

Alguns itens que devem ser ajustados para melhorar a performance:

- Memória mínima e máxima
 - O SQL Server aloca toda memória configurada para ele, mesmo que não esteja sendo utilizada. Nenhum outro recurso poderá utilizar o que estiver alocado;
 - Importante configurar a memória mínima com 1024;
 - A configuração errada pode causar "congelamento" no Sistema Operacional deixando o ambiente indisponível;

- Autogrowth
 - Indica o tamanho que cada arquivo de dados ou log irá crescer quando necessário;
 - A não configuração adequada pode impactar na performance do ambiente;
 - Se o valor for muito baixo o SQL terá que trabalhar muitas vezes até que alcance o tamanha necessário;
 - Se o valor for muito alto a espera até que o processo seja concluído irá impactar na disponibilidade dos dados;
 - % pode ser um problema, 10% de 1GB e diferente de 10% de 1TB;
 - Recomendação deixar configurado em MB ou GB;

- TempDB
 - Quantidade de arquivos de dados de acordo com a quantidade de Cores no ambiente (1x1);
 - Recomendado ter apenas 1 arquivo de LOG;

- Max Degree of Parallelism
 - Item de extrema importância pois impacta na performance do SQL Server;
 - Esta configuração informa a quantidade de CPU's que o SQL poderá utilizar para fazer paralelismo;
 - Deve ser configurado de acordo com a quantidade de CPU's por NumaNode;
 - Quantidade de CPU's por NumaNode / 2, limitado a 8;
 - Valor default na instalação é 0, significa que o SQL poderá utilizar todas as CPU's disponíveis, podendo causar problemas ao Sistema Operacional;

Hardening

OdalaEX

- Cost Threshold for Parallelism
 - Trabalha em conjunto ao MaxDOP;
 - Informa a partir de qual custo o SQL poderá utilizar mais de uma CPU;

Custo

- Está associado ao otimizador de consultas e plano de execução;
- É uma estimativa utilizada pelo otimizador para escolher o plano de execução mais eficiente;
- É expresso em unidades arbitrárias chamadas de "unidades de custo" ou "unidades estimadas";
- Geralmente quanto menor o custo mais eficiente é o plano de execução escolhido pelo otimizador;

Hardening

- Configurar como "False";
- Quando habilitado o banco é "fechado" quando não existem conexões ativas;
- Quando habilitado podemos ter os problemas abaixo:
 - Overhead de Abertura e Fechamento;
 - Latência;
 - Desempenho geral;

Antivírus

- Recomendado adicionar à lista de exceção os arquivos de dados do SQL (.mdf
 e .ndf), arquivos de log (.ldf) e backup (.bak e .trn);
- A varredura destes arquivos pode ser muito onerosa ao Sistema Operacional,
 podendo causar indisponibilidade do ambiente;

Hardening

- Contas de Serviço
 - Utilizar contas de domínio com permissões especificas;
 - De preferência uma conta para cada serviço (Engine e Agent);
- Gerenciamento de Energia do Windows
 - Alterar a configuração para "High Performance", evitando que o Sistema
 Operacional diminua a capacidade computacional quando o Workload estiver

reduzido;

- Optimize for Ad hoc Workloads
 - Recomendado habilitar;
 - Faz melhor utilização do cache de plano de execução para consultas Ad hoc;
- Page Verify
 - Configurar como CHECKSUM;
 - Faz verificações de integridade nas bases de dados;
- Auto Shrink
 - Configurar como false;
 - Shrink é o processo de redução dos espaços "vazios" dentro dos arquivos de dados e logs;
 - Quando o shrink é feito ocorre uma desorganização nas páginas de dados, causando problemas de performance, pois os dados podem ficar em páginas separadas;

Miscellaneous	
Allow Triggers to Fire Others	True
Blocked Process Threshold	0
Boost SQL Server Priority	False
Cursor Threshold	-1
Default Full-Text Language	1033
Default Language	English
Full-Text Upgrade Option	Import
Max Text Replication Size	65536
Optimize for Ad hoc Workloads	False V
Scan for Startup Procs	False
Two Digit Year Cutoff	2049
Use Windows fibers (lightweight pooling)	False

Recovery	
Page Verify	CHECKSUM
Target Recovery Time (Seconds)	60

Automatic	
Auto Close	False
Auto Create Incremental Statistics	False
Auto Create Statistics	True
Auto Shrink	False
Auto Update Statistics	True
Auto Update Statistics Asynchronously	False

- Permissões no Sistema Operacional
 - Logon as batch job
 - Refere-se a um direito especial concedido a uma conta de usuário. Essa permissão permite que uma conta faça logon interativamente como uma tarefa em lote (batch job) no sistema operacional. Uma tarefa em lote geralmente se refere a um script ou programa que é executado em segundo plano, muitas vezes de maneira automatizada, sem interação direta do usuário;
 - Perform volume maintenance task
 - Está associada à capacidade de realizar tarefas de manutenção em volumes, particularmente em relação à manipulação de espaço não alocado em arquivos de dados;
 - Este direito é muitas vezes relevante em ambientes onde o SQL Server precisa alocar espaço rapidamente para crescer um banco de dados e onde a manipulação eficiente do espaço em disco é crítica;
 - Locking pages in memory
 - Está associada à gestão da memória física do sistema e pode impactar o desempenho do SQL Server, especialmente em sistemas com grandes quantidades de memória RAM;

- Backup
 - Um dos itens mais importantes quando o ambiente encontra-se em produção;
 - Podendo variar os tipos de backups:
 - Full
 - Differential
 - Transaction Log
 - A retenção dos dados depende da política da empresa;
 - Pode ser utilizado o próprio SQL Server para automatizar os backups ou ferramentas proprietárias:
 - Veeam
 - Commvault
 - IBM Spectrum Protect
 - Entre outras...
 - Importante ter rotina para validar se os backups estão consistentes, ou seja, fazer restore periodicamente;

Always On

É uma solução robusta de alta disponibilidade e de recuperação de desastres que fornece uma alternativa em nível corporativo para espelhamento de banco de dados.

Foi apresentada no SQL Server 2012.

Oferece recursos avançados para garantir a disponibilidade de Banco de Dados críticos.

- Principais Recuros:
 - Failover automático
 - Em caso de falha, o Always On pode realizar um failover automático para uma réplica secundária;
 - Leitura de réplicas secundárias
 - Réplicas secundárias podem ser utilizadas para leituras, minimizando a concorrência na réplica primária;
 - Balanceamento de carga
 - É possível distribuir a carga de trabalho entre réplicas secundárias para melhorar a eficiência e escalabilidade;
 - Replicação Síncrona ou Assíncrona
 - Pode-se configurar a replicação como Síncrona a fim de garantir a consistência dos dados entre as réplicas;
 - Ou Assíncrona para melhorar o desempenho, permitindo alguma latência nos dados;

- Principais diferenças entre as replicações Síncrona e Assíncrona:
 - Síncrono
 - Garante que todas as transações confirmadas na réplica primária sejam replicadas para as réplicas secundárias antes de serem consideradas concluídas, ou seja, a transação só é liberada quando a réplica secundária informa o servidor primário que recebeu a transação e já foi aplicada;
 - Tende a ter uma latência maior;
 - Oferece uma maior proteção contra perda de dados, já que as transações são replicadas em tempo real entre todas as réplicas;

- Principais diferenças entre as replicações Síncrona e Assíncrona:
 - Assíncrono
 - Permite pequena latência;
 - A réplica primária não aguarda confirmação da secundária;
 - Durante o failover (automático ou manual) a réplica pode não estar totalmente sincronizada, podendo resultar em pequena perda de dados;
 - Recomendado deixar como failover manual;

OBRIGADO!

⊘dala€X

