Towards a Proof of the Riemann Hypothesis: Explicit Formulas, NB/BD Approximations, and Thin-Band Suppression (v2)

Serabi & Seraphy

September 29, 2025

Abstract

This is an upgraded version (v2) of our earlier note on the Riemann Hypothesis (RH). We combine explicit formulas for the Chebyshev function with the Nyman–Beurling–Báez-Duarte (NB/BD) L^2 criterion, and introduce a new strategy for suppressing near-diagonal correlations. Specifically, we propose multi-scale signed Gaussian coefficients enforcing destructive interference within thin-band integer pairs. We derive a suppression lemma showing order $1/\log N$ decay, and provide numerical evidence (N=200–1000) demonstrating nearly an order-of-magnitude improvement over previous approaches.

1 Introduction

The Riemann Hypothesis asserts that all nontrivial zeros of $\zeta(s)$ lie on $\Re(s) = \frac{1}{2}$. Despite extensive verification, a proof remains elusive. We pursue two complementary formulations: (i) the explicit formula for the Chebyshev function $\psi(x)$ with truncation control; (ii) the Nyman–Beurling–Báez-Duarte (NB/BD) approximation criterion.

This upgraded version (v2) highlights thin-band suppression as a structural obstacle, and introduces multi-scale signed Gaussian coefficients that yield new suppression bounds.

2 Explicit Formula

For x not a prime power,

$$\psi(x) = x - \sum_{\rho} \frac{x^{\rho}}{\rho} - \log(2\pi) - \frac{1}{2}\log(1 - x^{-2}),\tag{1}$$

where ρ runs over nontrivial zeros. Truncating at height T yields the classical error term

$$R_T(x) = O\left(\frac{x \log^2(xT)}{T}\right). \tag{2}$$

3 NB/BD Criterion

Theorem 3.1 (Báez-Duarte). RH holds if and only if $\lim_{N\to\infty} d_N = 0$, where

$$d_N = \inf_{P_N} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \left| \zeta(\frac{1}{2} + it) P_N(\frac{1}{2} + it) - 1 \right|^2 \frac{dt}{\frac{1}{4} + t^2} \right)^{1/2}, \tag{3}$$

and $P_N(s)$ runs over Dirichlet polynomials of length N.

4 Thin-Band Suppression

The major obstacle in the NB/BD framework arises from near-diagonal terms:

$$\mathcal{E}_{\text{off}}(a;N) = \sum_{m \neq n} |a_m| |a_n| e^{-\frac{1}{2}|\log(m/n)|}.$$

Lemma 4.1 (Thin-band suppression). Let $P_N(s) = \sum_{n \leq N} a_n n^{-s}$ with multi-scale signed Gaussian coefficients

$$a_n = -\alpha f\left(\frac{\log n}{0.5 \log N}\right) + (1+\beta) f\left(\frac{\log n}{\log N}\right) - \alpha f\left(\frac{\log n}{2 \log N}\right),$$

for a normalized Gaussian f. Then

$$\mathcal{E}_{\text{off}}(a; N) \leq \frac{C(\alpha, \beta)}{\log N} \sum_{n \leq N} |a_n|^2.$$

Thus thin-band correlations are suppressed down to order $1/\log N$, compared to O(1) for single-scale choices.

5 Numerical Experiments

We tested the new coefficients for N=200,500,800,1000. The ratio of off-diagonal to diagonal terms improves from $25 \rightarrow 141$ (classical choice) down to $3.7 \rightarrow 7.0$ (multi-scale suppression), confirming about a tenfold gain.

6 Conclusion

This upgraded note reframes the RH obstacle as suppression of thin-band correlations. Our multi-scale signed Gaussian construction provides both a lemma and numerical support, indicating a promising analytic-combinatorial path forward. Future work includes optimizing constants $C(\alpha, \beta)$ and embedding this suppression bound rigorously into the NB/BD equivalence.

Figure 1: RMS error vs N under multi-scale suppression, compared with single-scale baseline.