NAME: Final version 025

MAT-181 FINAL TAKE-HOME EXAM

This exam is to be taken without discussion or correspondance with any human. Please show work!

question	available points	earned points
1	10	
2	15	
3	10	
4	10	
5	10	
6	10	
7	15	
8	20	
EC	5	
EC	5	
Total	100	

1. (10 Points)

For each description below, choose which histogram best fits (I, II, III, or IV). Each histogram should be used once.

- (a) The distribution of hours that students studied for an exam when about half of students studied a lot and a similar number of students studied very little.
- (b) The distribution of quiz scores on an easy quiz. Most students did very well, but a few did poorly.
- (c) The distribution of heights of adult women
- (d) The distribution of test scores on a very difficult exam, in which most students have poor to average scores, but a few did quite well.

Solution:

- (a) III
- (b) II
- (c) I
- (d) IV

2. (15 Points)

In a deck of strange cards, there are 752 cards. Each card has an image and a color. The amounts are shown in the table below.

gray	indigo	orange	teal	yellow	Total
14	26	35	25	33	133
24	37	48	18	42	169
15	41	10	22	13	101
28	27	40	50	36	181
31	45	19	34	39	168
112	176	152	149	163	752
	14 24 15 28 31	14 26 24 37 15 41 28 27 31 45	14 26 35 24 37 48 15 41 10 28 27 40 31 45 19	14 26 35 25 24 37 48 18 15 41 10 22 28 27 40 50 31 45 19 34	14 26 35 25 33 24 37 48 18 42 15 41 10 22 13 28 27 40 50 36 31 45 19 34 39

- (a) What is the probability a random card is either a wheel or orange (or both)?
- (b) What is the probability a random card is orange?
- (c) What is the probability a random card is both a lamp and gray?
- (d) What is the probability a random card is gray given it is a shovel?
- (e) What is the probability a random card is a lamp given it is indigo?
- (f) Is a needle or a wheel more likely to be indigo?
- (g) What is the probability a random card is a lamp?

Solution:

- (a) P(wheel or orange) = 0.4
- (b) P(orange) = 0.202
- (c) P(lamp and gray) = 0.0319
- (d) P(gray given shovel) = 0.155
- (e) P(lamp given indigo) = 0.21
- (f) P(indigo given needle) = 0.406 and P(indigo given wheel) = 0.268, so a needle is more likely to be indigo than a wheel is.
- (g) P(lamp) = 0.225

3. (10 points)

A farm produces 4 types of fruit: *A*, *B*, *C*, and *D*. The fruits' masses follow normal distributions, with parameters dependent on the type of fruit.

Type of fruit	Mean mass (g)	Standard deviation of mass (g)
Α	89	7
В	115	5
C	90	14
D	133	9

One specimen of each type is weighed. The results are shown below.

Type of fruit	Mass of specimen (g)
Α	88.16
В	119.9
C	101.6
D	127.3

Which specimen is the most unusually small (relative to others of its type)?

Solution: We compare the z-scores. The smallest z-score corresponds to the specimen that is most unusually small.

Type of fruit	formula	z-score
Α	$Z = \frac{88.16 - 89}{7}$	-0.12
В	$Z = \frac{119.9 - 115}{5}$	0.98
C	$Z = \frac{101.6 - 90}{14}$	0.83
D	$Z = \frac{127.3 - 133}{9}$	-0.63

Thus, the specimen of type D is the most unusually small.

4. (10 points)

A tree's leaves were found to be normally distributed with a mean of 151.4 millimeters and a standard deviation of 9.3 millimeters. If you pick a random leaf from that tree, what is the probability the length is between 129.2 and 145.3 millimeters?

Solution:

$$\mu = 151.4$$

$$\sigma = 9.3$$

$$x_1 = 129.2$$

$$x_2 = 145.3$$

$$z_1 = \frac{x_1 - \mu}{\sigma} = \frac{129.2 - 151.4}{9.3} = -2.39$$

$$z_2 = \frac{x_2 - \mu}{\sigma} = \frac{145.3 - 151.4}{9.3} = -0.66$$

$$P(x_1 < X < x_2) = P(z_1 < Z < z_2) = 0.2546 - 0.0084 = 0.2462$$

5. (10 points)

A species of duck is known to have a mean weight of 133.9 grams and a standard deviation of 48 grams. A researcher plans to measure the weights of 144 of these ducks sampled randomly. What is the probability the **sample mean** will be between 132.9 and 134.9 grams?

Solution:

$$n = 144$$

$$\mu = 133.9$$

$$\sigma = 48$$

$$SE = \frac{48}{\sqrt{144}} = 4$$

$$x_1 = 132.9$$

$$x_2 = 134.9$$

$$Z_1 = \frac{x_1 - \mu}{SE} = \frac{132.9 - 133.9}{4} = -0.25$$

$$Z_2 = \frac{x_2 - \mu}{SE} = \frac{134.9 - 133.9}{4} = 0.25$$

$$P(x_1 < \overline{X} < x_2) = P(z_1 < Z < z_2) = 0.5987 - 0.4013 = 0.1974$$

6. (10 points)

An ornithologist wishes to characterize the average body mass of *Melospiza georgiana*. She randomly samples 28 adults of *Melospiza georgiana*, resulting in a sample mean of 13.66 grams and a sample standard deviation of 1.07 grams. Determine a 95% confidence interval of the true population mean.

Solution: We are given the sample size, sample mean, sample standard deviation, and confidence level.

$$n = 28$$

 $\bar{x} = 13.66$
 $s = 1.07$
 $\gamma = 0.95$

Find the degrees of freedom.

$$df = n - 1$$

= 28 - 1
= 27

Determine the critical t value, t^* , such that $P(|T| < t^*) = 0.95$ and df = 27.

$$t^* = 2.05$$

Use the formula for bounds (mean, σ unknown).

$$LB = \bar{x} - t^* \frac{s}{\sqrt{n}}$$

$$= 13.66 - 2.05 \times \frac{1.07}{\sqrt{28}}$$

$$= 13.2$$

$$UB = \bar{x} + t^* \frac{s}{\sqrt{n}}$$

$$= 13.66 + 2.05 \times \frac{1.07}{\sqrt{28}}$$

$$= 14.1$$

We are 95% confident that the population mean is between 13.2 and 14.1 grams.

$$CI = (13.2, 14.1)$$

_			
7.	(15	points)	۱

A student is taking a multiple choice test with 1000 questions. Each question has 5 choices. You want to detect whether the student does significantly better than random guessing, so you decide to run a hypothesis test with a significance level of 0.05.

Then, the student takes the test and gets 224 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses.
- (c) Determine the test statistic (z or t), draw a sketch, and determine the p-value.

- (d) Decide whether we reject or retain the null hypothesis.
- (e) Did the student do significantly better than random guessing?

Solution: This is a right-tail (one-tail) proportion test because we only care whether the student does better than random.

Determine the null population proportion.

$$p_0 = \frac{1}{5} = 0.2$$

State the hypotheses.

$$H_0$$
 claims $p = 0.2$

$$H_A$$
 claims $p > 0.2$

Determine the standard error.

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1-p_0)}{n}} = \sqrt{\frac{0.2(1-0.2)}{1000}} = 0.0126$$

Determine the sample proportion.

$$\hat{p} = \frac{224}{1000} = 0.224$$

Determine a *z* score. For simplicity, we ignore the continuity correction.

$$z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{0.224 - 0.2}{0.0126} = 1.9$$

Make a sketch of the null's sampling distribution. The *p*-value is a right area.

To determine that right area, we use the z table.

$$p$$
-value = $P(\hat{p} > 0.224)$
= $P(Z > 1.9)$
= $1 - P(Z < 1.9)$
= 0.0287

Compare *p*-value to α (which is 0.05).

p-value
$$< \alpha$$

Make the conclusion: we reject the null hypothesis.

We think the student did better than random guessing typically allows.

- (a) Right tail (one-tail) proportion test
- (b) Hypotheses: H_0 claims p = 0.2 and H_A claims p > 0.2.
- (c) The *p*-value is 0.0287
- (d) We reject the null hypothesis.
- (e) We think the student did better than random guessing typically allows.

8. (20 points) [Note: this question uses 2 pages.]

You have collected the following data:

X	У	xy
7.7	45	
6.3	23	
2	58	
4.1	65	
2.7	97	
8.2	44	
8.5	36	
$\sum X =$	$\sum y =$	$\sum xy =$
$\bar{X} =$	$\bar{y} =$	
$S_X =$	$s_y =$	

- (a) Complete the table.
- (b) Calculate the correlation coefficient (r) using the formula below.

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

(c) The least-squares regression line will be represented as y = a + bx. Determine the parameters (b and a) using the formulas below.

$$b=r\frac{s_y}{s_x}$$

$$a = \bar{y} - b\bar{x}$$

(d) Write the equation of the regression line (using the calculated values of *a* and *b*.)

(e) Please plot the data and a corresponding regression line.

Solution: Remember the formula for the correlation coefficient.

$$r = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

We calculate the necessary values.

X	У	xy
7.7	45	346.5
6.3	23	144.9
2	58	116
4.1	65	266.5
2.7	97	261.9
8.2	44	360.8
8.5	36	306
$\sum x = 39.5$	$\sum y = 368$	$\sum x_i y_i = 1802.6$
$\bar{x} = 5.643$	$\bar{y} = 52.57$	
$s_x = 2.698$	$s_y = 23.94$	

$$r = \frac{1802.6 - (7)(5.643)(52.57)}{(7 - 1)(2.698)(23.94)} = -0.707$$

If you didn't round any of the steps up to here, you'd get an exact value which is pretty close to our value.

$$r_{\text{exact}} = -0.7070388$$

The regression line has the form

$$y = a + bx$$

So, a is the y-intercept and b is the slope. We have formulas to determine them:

$$b = r \frac{s_y}{s_x} = -0.707 \cdot \frac{23.94}{2.698} = -6.27$$

$$a = \bar{y} - b\bar{x} = 52.6 - (-6.27)(5.64) = 88$$

Our regression line:

$$y = 88 + (-6.27)x$$

Make a plot.

9. (Extra credit: 5 points)

Let each trial have a chance of success p = 0.92. If 164 trials occur, what is the probability of getting at least 147 but at most 155 successes?

In other words, let $X \sim \text{Bin}(n = 164, p = 0.92)$ and find $P(147 \le X \le 155)$.

Use a normal approximation along with the continuity correction.

Solution: Find the mean.

$$\mu = np = (164)(0.92) = 150.88$$

Find the standard deviation.

$$\sigma = \sqrt{np(1-p)} = \sqrt{(164)(0.92)(1-0.92)} = 3.4742$$

Make a sketch, specifically try to picture whether you need to add or subtract 0.5 for the continuity correction.

Find the z scores.

$$z_1 = \frac{146.5 - 150.88}{3.4742} = -1.26$$

$$Z_2 = \frac{155.5 - 150.88}{3.4742} = 1.33$$

Find the percentiles (from z-table).

$$\ell_1 = 0.1038$$

$$\ell_2 = 0.9082$$

Calculate the probability.

$$P(147 \le X \le 155) = 0.9082 - 0.1038 = 0.8044$$

10. (Extra credit: 5 points)

A null hypothesis claims a population has a mean μ = 90. You decide to run two-tail test on a sample of size n = 9 using a significance level α = 0.02.

You then collect the sample:

92.9	88.3	91.2	92.2	100.4
98.8	102.9	91.7	93.5	

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?

Solution: State the hypotheses.

$$H_0$$
 claims $\mu = 90$

$$H_A$$
 claims $\mu \neq 90$

Find the mean and standard deviation of the sample.

$$\bar{x} = 94.656$$

$$s = 4.869$$

Determine the degrees of freedom.

$$df = 9 - 1 = 8$$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{4.869}{\sqrt{9}} = 1.623$$

Make a sketch of the null's sampling distribution.

Find the *t* score.

$$t = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{94.656 - 90}{1.623} = 2.87$$

Find the *p*-value.

$$p$$
-value = $P(|T| > 2.87)$

We can't get an exact value with our table, but we can determine an interval that contains the p-value. (Look at row with df = 8.)

$$P(|T| > 2.9) = 0.02$$

$$P(|T| > 2.45) = 0.04$$

Basically, because t is between 2.9 and 2.45, we know the p-value is between 0.02 and 0.04.

$$0.02 < p$$
-value < 0.04

Compare the *p*-value and the significance level (α = 0.02).

p-value
$$> \alpha$$

No, we do not reject the null hypothesis.

- (a) 0.02 < p-value < 0.04
- (b) No, we do not reject the null hypothesis.