Model Documentation of the Inertia Wheel Pendulum

1 Nomenclature

1.1 Nomenclature for Model Equations

- m_1 mass of the pendulum
- m_2 mass of the wheel
- l_1 length of the pendulum
- s_1 distance of the center of gravity
- J_1 moment of inertia of the pendulum
- J_2 moment of inertia of the wheel
- q acceleration due to gravity
- au torque
- q_1 angle between the vertical rest position and the pendulum
- q_2 angel of the wheel

1.2 Graphic of the Structure

Figure 1: Structure of the IWP.
Source: Wang, Yang/Erstellung eines regelungstheoretischen Katalogs unteraktuierter mechanischer Systeme

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (q_1 \ q_2 \ \dot{q}_1 \ \dot{q}_2)^T$$

$$= (x_1 \ x_2 \ x_3 \ x_4)^T$$

$$u = \tau$$

System Equations:

$$\dot{x}_1 = x_3 \tag{1a}$$

$$\dot{x}_2 = x_4 \tag{1b}$$

$$\dot{x}_3 = \frac{J_2(m_1s_1 + m_2l_1)g\sin x_1 - J_2u}{J_2(m_1s_1^2 + m_2l_1^2 + J_1)}$$
(1c)

$$\dot{x}_4 = \frac{-J_2(m_1s_1 + m_2l_1)g\sin x_1 + (m_1s_1^2 + m_2l_1^2 + J_1 + J_2)u}{J_2(m_1s_1^2 + m_2l_1^2 + J_1)}$$
(1d)

Parameters: $m_1, m_2, l_1, s_1, J_1, J_2, g$

Outputs: $\underline{\mathbf{x}}$

2.1 Assumptions

1. The dissipative forces are not taken into account.

2.2 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
mass of the pendulum	m_1	0.5	kg
mass of the wheel	m_2	1	$_{ m kg}$
length of the pendulum	l_1	0.5	\mathbf{m}
distance of the center of gravity	s_1	0.25	\mathbf{m}
moment of inertia of the pendulum	J_1	0.02	$kg \cdot m^2$
moment of inertia of the wheel	J_2	0.002	$kg \cdot m^2$
acceleration due to gravity	g	10	$\frac{m}{s^2}$

3 Derivation and Explanation

The Lagrangian mechanics was used for the solution. Kinetic Energy:

$$T = \frac{1}{2}(m_1s_1^2 + m_2l_1^2 + J_1 + J_2)x_3^2 + J_2x_3x_4 + \frac{1}{2}J_2x_4^2$$
 (2)

Potential Energy:

$$V = (m_1 s_1 - m_2 l_1) g(\cos x_1 - 1)$$
(3)

4 Simulation

Figure 2: Simulation of the iwp.

References

[1] Wang, Yang: Erstellung eines regelungstheoretischen Katalogs unteraktuierter mechanischer Systeme, master thesis at the Institut of Control Theory TU Dresden, published 2016. (not publicly accessible)