Matrix Decompositions

April 11, 2023

1 Eigenvalues and Eigenvectors

Definition

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Then $\lambda \in \mathbb{R}$ is an eigenvalue of A and $x \in \mathbb{R}^n \setminus \{0\}$ is the corresponding eigenvector of A if

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \tag{1}$$

This equation (Eq. 1) is also called the eigenvalue equation.

The following statements are equivalent:

- λ is an eigenvalue of $\mathbf{A} \in \mathbb{R}^{n \times n}$.
- There exists an $x \in \mathbb{R}^n \setminus \{0\}$ with $Ax = \lambda x$, or equivalently, $(A \lambda I_n)x = 0$ can be solved non-trivially, i.e., $x \neq 0$.
- $rk(\boldsymbol{A} \lambda \boldsymbol{I}_n) < n$.
- $det(\boldsymbol{A} \lambda \boldsymbol{I}_n) = 0.$

Definition - Collinearity and Codirection

Two vectors that point in the same direction are called *codirected*. Two vectors are *collinear* if they point in the same or opposite direction.

All vectors that are collinear to x are also eigenvectors of A. More generally

$$\mathbf{A}(c\mathbf{x}) = c\mathbf{A}\mathbf{x} = c\lambda\mathbf{x} = \lambda(c\mathbf{x}) \tag{2}$$

for any $c \in \mathbb{R} \setminus \{0\}$.

Theorem

 $\lambda \in \mathbb{R}$ is an eigenvalue of $\mathbf{A} \in \mathbb{R}^{n \times n}$ if and only if λ is a root of the characteristic polynomial $p_{\mathbf{A}}(\lambda)$ of \mathbf{A} .

Definition

Let a square matrix A have an eigenvalue λ_i . The algebraic multiplicity of λ_i is the number of times the root appears in the characteristic polynomial.

Definition - Eigenspace and Eigenspectrum

For $A \in \mathbb{R}^{n \times n}$, the set of all eigenvectors of A associated with an eigenvalue λ spans a subspace of \mathbb{R}^n , which is called an *eigenspace* of A with respect to λ and is denoted by E_{λ} . The set of all eigenvalues of A is called the *eigenspectrum*, or just *spectrum*, of A.

If λ is an eigenvalue of $\mathbf{A} \in \mathbb{R}^{n \times n}$, then the corresponding eigenspace E_{λ} is the solution space of the homogeneous system of linear equations $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$.

Useful properties of eigenvalues and eigenvectors:

- ullet A matrix $oldsymbol{A}$ and its transpose $oldsymbol{A}^T$ possess the same eigenvalues, but not necessarily the same eigenvectors.
- The eigenspace E_{λ} is the null-space of $\mathbf{A} \lambda \mathbf{I}$ since

$$Ax = \lambda x \iff Ax - \lambda x = 0$$

$$\iff (A - \lambda I)x = 0 \iff x \in ker(A - \lambda I)$$
(3)

- Similar matrices possess the same eigenvalues. Therefore, a linear mapping Φ has eigenvalues are independent of the choice of basis of its transformation matrix. This makes eigenvalues, together with the determinant and the trace, key characteristic parameters of a linear mapping as they are all invariant under basis change.
- Symmetric, positive definite matrices always have positive real eigenvalues.

Definition

Let λ_i be an eigenvalue of a square matrix A. Then the geometric multiplicity of λ_i is the number of linearly independent eigenvectors associated with λ_i . In other words, it is the dimensionality of the eigenspace spanned by the eigenvectors associated with λ_i .

Theorem

The eigenvectors x_1, \ldots, x_n of a matrix $A \in \mathbb{R}^{n \times n}$ with n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ are linearly independent.

This theorem states that eigenvectors of a matrix with n distinct eigenvalues form a basis of \mathbb{R}^n .

Definition

A square matrix $A \in \mathbb{R}^{n \times n}$ is defective if it possess fewer than n linearly independent eigenvectors. A defective matrix cannot have n distinct eigenvalues, as distinct eigenvalues have linearly independent eigenvectors.

Theorem

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, we can always obtain a symmetric, positive semidefinite matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ by defining

$$S := A^T A \tag{4}$$

If $rk(\mathbf{A}) = n$, then $\mathbf{S} := \mathbf{A}^T \mathbf{A}$ is symmetric, positive definite.

Theorem - Spectral Theorem

If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, there exists an orthonormal basis of the corresponding vector space V consisting of eigenvectors of \mathbf{A} and each eigenvalue is real.

This theorem implicates that the eigendecomposition of a symmetric matrix A exists, and that we can find a ONB of eigenvectors so that $A = PDP^T$, where D is diagonal and the columns of P contain the eigenvectors.

Theorem

The determinant of a matrix $A^{n \times n}$ is the product of its eigenvalues

$$det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i \tag{5}$$

where $\lambda_i \in \mathbb{C}$ are (possibly repeated) eigenvalues of A.

Theorem

The trace of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is the sum of its eigenvalues

$$tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i \tag{6}$$

where $\lambda_i \in \mathbb{C}$ are (possibly repeated) eigenvalues of \boldsymbol{A} .