<u>Task:</u> Design a simple Rankine cycle using only a single pump, Boiler, turbine and condenser, subject to the limitations given in the datasheets below.

<u>Objective</u>: Create a system that will pay off its initial investment over a 5 year period. Special acknowledgement will be given to the **lowest cost system** that has a positive return within 5 years, and the system with the **greatest 5 year profit**.

<u>Parameters:</u> Fuel for the boiler costs \$0.007/MJ. The energy produced is worth \$0.10/kWh. Make sure that your design meets all the requirements for the individual components you chose.

Results to Hand In:

- 1. A 1 paragraph description of the calculation steps necessary to analyze the cycle
- 2. A brief summary of what variables you thought played the biggest role in determining the cycle performance, and which variables didn't seem to matter
- 3. A summary of the following parameters of your cycle
 - a. System parts chosen
 - b. Low and high operating pressures
 - c. Max cycle temperature
 - d. Turbine outlet quality
 - e. Mass flow rate
 - f. Cycle efficiency
 - g. Net power produced
 - h. Total system cost
 - i. Total annual energy produced
 - j. Payback time

Datasheets for the Cycle Components:

Pumps

Name	Cost	Isentropic	Min Inlet P	Max	Max Flow
		Efficiency		Outlet P	Rate
Α	\$250,000	0.85	100 kPa	9 MPa	5.0 kg/s
В	\$300,000	0.75	50 kPa	9 MPa	10.0 kg/s
С	\$400,000	0.88	100 kPa	10 MPa	7.5 kg/s
D	\$400,000	0.80	40 kPa	12 MPa	10.0 kg/s
E	\$500,000	0.88	50 kPa	15 MPa	7.5 kg/s

Turbines

Name	Cost	Isentropic	Max inlet	Min outlet	Max Flow
		Efficiency	Т	quality	Rate
Α	\$250,000	0.85	450°C	0.8	5.0 kg/s
В	\$350,000	0.80	475°C	0.85	7.5 kg/s
С	\$400,000	0.80	550°C	0.85	10.0 kg/s
D	\$400,000	0.95	475°C	0.90	7.5kg/s
E	\$500,000	0.90	500°C	0.90	10.0 kg/s

Boiler

Name	Cost	Heat Xfer	Max outlet	Max	Max Flow
		Efficiency	Т	pressure	Rate
Α	\$250,000	0.85	475°C	8 MPa	7.5 kg/s
В	\$350,000	0.90	500°C	8 MPa	10.0 kg/s
С	\$400,000	0.88	500°C	10 MPa	7.5 kg/s
D	\$400,000	0.85	525°C	9 MPa	5.0 kg/s
E	\$500,000	0.90	550°C	12 MPa	10.0 kg/s

Condenser

Name	Cost	Max Flow		
		Rate		
Α	\$250,000	5.0 kg/s		
В	\$300,000	7.5 kg/s		
С	\$350,000	10 kg/s		

Installation Instructions:

- 1. Download and install Python 3.6 for your platform: https://www.python.org/downloads/
- 2. Open a command prompt. From the Windows 10 search bar, this may be found by typing cmd in the search bar.
- 3. In your command prompt type each of the following commands to download required libraries
 - pip install numpy
 - pip install matplotlib
 - pip install pyromat