Kerberos Password Security

A Real-World Analysis

Tom Wu <tjw@cs.stanford.edu>
Stanford University / Arcot Systems

Topics Covered

- **** Background, known security problems with Kerberos V4 and V5**
- ** Prevalent attitudes regarding password security
- * Analysis of experimental password data
- * Who is affected and what can be done?

Background

- * Weaknesses in Kerberos V4 publicly known
 - 1991 Bellovin & Merritt
- * Password studies date back many years
 - 1979 Morris & Thompson
 - 1989 Feldmeier & Karn
 - 1992 Spafford
- * Many more papers on related topics

The Dictionary Attack

- ** Under Kerberos V4, attack is undetectable and can be carried out by anyone
- * No sniffer or prior access needed

The Experiment

- * Conducted on an actual Kerberos V4 domain during April, 1998 for two weeks
- * "Strong" password-checking already in place
- * Small cluster of SPARC stations (8 CPUs) performed brute-force computation

Experimental Results

- *** First success: 9 seconds**
- * Over 2000 passwords guessed in two weeks
- * Green: 1992 study, no password checking
- * Blue: 1998 study, with password checking
- * Nearly 10% success rate

Implementation Details

- * Tested each guess against entire database
- * Slower str2key() only evaluated once per password guess

Optimizations

- * Attack against Kerberos V4 KDC runs faster than attack against /etc/shadow files
 - Uses unmodified DES instead of crypt()
 (e.g. 3.3us instead of 110us)
 - Parity optimization further doubles speed
- * Other optimizations possible
 - Dedicated hardware (e.g. Deep Crack)
 - Bitslice DES (Biham 1997)

Analysis of Results

- * Password-checking had unintended effects
 - Users picked "just good enough" passwords
- * Attack used larger and more up-to-date dictionary than checker
 - New word sets and rules can be tried quickly
 - Additional lists compiled via Internet, WWW
- * Password choice limited by human memory
- * Problem gets worse with time...

Long-Term Implications

- * There really is no such thing as an "uncrackable" password
 - Computing power getting cheaper
 - Larger dictionaries easily built, searched
 - Keys can be brute-forced directly
- * Kerberos V5 is only a partial solution
 - V5 adds "pre-authentication" better security
 - A sniffer still defeats "naked" Kerberos V5

Better Solutions

- * Kerberos V5 pre-authentication can accept stronger authentication (Jaspan 1993)
 - EKE patent held by AT&T (license required)
 - SPEKE patent held by D. Jablon (license required)
 - SRP patent held by Stanford (Open Source, no royalties)

Authentication Economics

- * Password enforcement is expensive!
 - Increased help-desk support costs
 - Lost productivity, user frustration
 - Sacrifices convenience for security
- * Hardware tokens are expensive!
 - High initial cost of readers, tokens
 - Recurring costs for HW, SW support
- * Strong authentication is cost-effective

Summary

- * Kerberos V4: Subject to dictionary attack
- ** Password-checking: Moderate benefits, but at high cost
- ** Kerberos V5: Secure password technologies interface well with preauthentication and provide a workable solution

http://theory.stanford.edu/~tjw/kerberos.html