

Geometry & Topology Monographs
 Volume 3: Invitation to higher local fields
 Part I, section 16, pages 137–142

16. Higher class field theory without using K -groups

Ivan Fesenko

Let F be a complete discrete valuation field with residue field $k = k_F$ of characteristic p . In this section we discuss an alternative to higher local class field theory method which describes abelian totally ramified extensions of F without using K -groups. For n -dimensional local fields this gives a description of abelian totally ramified (with respect to the discrete valuation of rank one) extensions of F . Applications are sketched in 16.3 and 16.4.

16.1. p -class field theory

Suppose that k is perfect and $k \neq \wp(k)$ where $\wp: k \rightarrow k$, $\wp(a) = a^p - a$.

Let \widetilde{F} be the maximal abelian unramified p -extension of F . Then due to Witt theory $\text{Gal}(\widetilde{F}/F)$ is isomorphic to $\prod_{\kappa} \mathbb{Z}_p$ where $\kappa = \dim_{\mathbb{F}_p} k/\wp(k)$. The isomorphism is non-canonical unless k is finite where the canonical one is given by $\text{Frob}_F \mapsto 1$.

Let L be a totally ramified Galois p -extension of F .

Let $\text{Gal}(\widetilde{F}/F)$ act trivially on $\text{Gal}(L/F)$.

Denote

$$\text{Gal}(L/F)^{\sim} = H^1_{\text{cont}}((\text{Gal}(\widetilde{F}/F), \text{Gal}(L/F)) = \text{Hom}_{\text{cont}}(\text{Gal}(\widetilde{F}/F), \text{Gal}(L/F)).$$

Then $\text{Gal}(L/F)^{\sim} \simeq \bigoplus_{\kappa} \text{Gal}(L/F)$ non-canonically.

Put $\widetilde{L} = L\widetilde{F}$. Denote by $\varphi \in \text{Gal}(\widetilde{L}/L)$ the lifting of $\varphi \in \text{Gal}(\widetilde{F}/F)$.

For $\chi \in \text{Gal}(L/F)^{\sim}$ denote

$$\Sigma_{\chi} = \{\alpha \in \widetilde{L} : \alpha^{\varphi\chi(\varphi)} = \alpha \quad \text{for all } \varphi \in \text{Gal}(\widetilde{F}/F)\}.$$

The extension Σ_{χ}/F is totally ramified.

As an generalization of Neukirch's approach [N] introduce the following:

Definition. Put

$$\Upsilon_{L/F}(\chi) = N_{\Sigma_{\chi}/F}\pi_{\chi}/N_{L/F}\pi_L \mod N_{L/F}U_L$$

where π_χ is a prime element of Σ_χ and π_L is a prime element of L .

This map is well defined. Compare with 10.1.

Theorem ([F1, Th. 1.7]). *The map $\Upsilon_{L/F}$ is a homomorphism and it induces an isomorphism*

$$\mathrm{Gal}(L \cap F^{\mathrm{ab}}/F)^\sim \xrightarrow{\sim} U_F/N_{L/F}U_L \xrightarrow{\sim} U_{1,F}/N_{L/F}U_{1,L}.$$

Proof. One of the easiest ways to prove the theorem is to define and use the map which goes in the reverse direction. For details see [F1, sect. 1]. \square

Problem. If π is a prime element of F , then p -class field theory implies that there is a totally ramified abelian p -extension F_π of F such that $F_\pi \tilde{F}$ coincides with the maximal abelian p -extension of F and $\pi \in N_{F_\pi/F}F_\pi^*$. Describe F_π explicitly (like Lubin–Tate theory does in the case of finite k).

Remark. Let K be an n -dimensional local field ($K = K_n, \dots, K_0$) with K_0 satisfying the same restrictions as k above.

For a totally ramified Galois p -extension L/K (for the definition of a totally ramified extension see 10.4) put

$$\mathrm{Gal}(L/K)^\sim = \mathrm{Hom}_{\mathrm{cont}}(\mathrm{Gal}(\tilde{K}/K), \mathrm{Gal}(L/K))$$

where \tilde{K} is the maximal p -subextension of K_{pur}/K (for the definition of K_{pur} see (A1) of 10.1).

There is a map $\Upsilon_{L/K}$ which induces an isomorphism [F2, Th. 3.8]

$$\mathrm{Gal}(L \cap K^{\mathrm{ab}}/K)^\sim \xrightarrow{\sim} VK_n^t(K)/N_{L/K}VK_n^t(L)$$

where $VK_n^t(K) = \{V_K\} \cdot K_{n-1}^t(K)$ and K_n^t was defined in 2.0.

16.2. General abelian local p -class field theory

Now let k be an arbitrary field of characteristic p , $\wp(k) \neq k$.

Let \tilde{F} be the maximal abelian unramified p -extension of F .

Let L be a totally ramified Galois p -extension of F . Denote

$$\mathrm{Gal}(L/F)^\sim = H_{\mathrm{cont}}^1((\mathrm{Gal}(\tilde{F}/F), \mathrm{Gal}(L/F)) = \mathrm{Hom}_{\mathrm{cont}}(\mathrm{Gal}(\tilde{F}/F), \mathrm{Gal}(L/F)).$$

In a similar way to the previous subsection define the map

$$\Upsilon_{L/F}: \mathrm{Gal}(L/F)^\sim \rightarrow U_{1,F}/N_{L/F}U_{1,L}.$$

In fact it lands in $U_{1,F} \cap N_{\tilde{L}/\tilde{F}}U_{1,\tilde{L}}/N_{L/F}U_{1,L}$ and we denote this new map by the same notation.

Definition. Let \mathbf{F} be complete discrete valuation field such that $\mathbf{F} \supset \widetilde{F}$, $e(\mathbf{F}|\widetilde{F}) = 1$ and $k_{\mathbf{F}} = \cup_{n \geq 0} k_{\mathbf{F}}^{p^{-n}}$. Put $\mathbf{L} = L\mathbf{F}$.

Denote $I(L|F) = \langle \varepsilon^{\sigma-1} : \varepsilon \in U_{1,\mathbf{L}}, \sigma \in \text{Gal}(L/F) \rangle \cap U_{1,\widetilde{L}}$.

Then the sequence

$$(*) \quad 1 \rightarrow \text{Gal}(L/F)^{\text{ab}} \xrightarrow{g} U_{1,\widetilde{L}}/I(L|F) \xrightarrow{N_{\widetilde{L}/\widetilde{F}}} N_{\widetilde{L}/\widetilde{F}}U_{1,\widetilde{L}} \rightarrow 1$$

is exact where $g(\sigma) = \pi_L^{\sigma-1}$ and π_L is a prime element of L (compare with Proposition 1 of 10.4.1).

Generalizing Hazewinkel's method [H] introduce

Definition. Define a homomorphism

$$\Psi_{L/F} : (U_{1,F} \cap N_{\widetilde{L}/\widetilde{F}}U_{1,\widetilde{L}})/N_{L/F}U_{1,L} \rightarrow \text{Gal}(L \cap F^{\text{ab}}/F)^{\sim}, \quad \Psi_{L/F}(\varepsilon) = \chi$$

where $\chi(\varphi) = g^{-1}(\eta^{1-\varphi})$, $\eta \in U_{1,\widetilde{L}}$ is such that $\varepsilon = N_{\widetilde{L}/\widetilde{F}}\eta$.

Properties of $\Upsilon_{L/F}, \Psi_{L/F}$.

- (1) $\Psi_{L/F} \circ \Upsilon_{L/F} = \text{id}$ on $\text{Gal}(L \cap F^{\text{ab}}/F)^{\sim}$, so $\Psi_{L/F}$ is an epimorphism.
- (2) Let \mathcal{F} be a complete discrete valuation field such that $\mathcal{F} \supset F$, $e(\mathcal{F}|F) = 1$ and $k_{\mathcal{F}} = \cup_{n \geq 0} k_{\mathcal{F}}^{p^{-n}}$. Put $\mathcal{L} = L\mathcal{F}$. Let

$$\lambda_{L/F} : (U_{1,F} \cap N_{\widetilde{L}/\widetilde{F}}U_{1,\widetilde{L}})/N_{L/F}U_{1,L} \rightarrow U_{1,\mathcal{F}}/N_{\mathcal{L}/\mathcal{F}}U_{1,\mathcal{L}}$$

be induced by the embedding $F \rightarrow \mathcal{F}$. Then the diagram

$$\begin{array}{ccccc} \text{Gal}(L/F)^{\sim} & \xrightarrow{\Upsilon_{L/F}} & (U_{1,F} \cap N_{\widetilde{L}/\widetilde{F}}U_{1,\widetilde{L}})/N_{L/F}U_{1,L} & \xrightarrow{\Psi_{L/F}} & \text{Gal}(L \cap F^{\text{ab}}/F)^{\sim} \\ \downarrow & & \lambda_{L/F} \downarrow & & \text{iso} \downarrow \\ \text{Gal}(\mathcal{L}/\mathcal{F})^{\sim} & \xrightarrow{\Upsilon_{\mathcal{L}/\mathcal{F}}} & U_{1,\mathcal{F}}/N_{\mathcal{L}/\mathcal{F}}U_{1,\mathcal{L}} & \xrightarrow{\Psi_{\mathcal{L}/\mathcal{F}}} & \text{Gal}(\mathcal{L} \cap \mathcal{F}^{\text{ab}}/\mathcal{F})^{\sim} \end{array}$$

is commutative.

- (3) Since $\Psi_{\mathcal{L}/\mathcal{F}}$ is an isomorphism (see 16.1), we deduce that $\lambda_{L/F}$ is surjective and $\ker(\Psi_{L/F}) = \ker(\lambda_{L/F})$, so

$$(U_{1,F} \cap N_{\widetilde{L}/\widetilde{F}}U_{1,\widetilde{L}})/N_*(L/F) \xrightarrow{\sim} \text{Gal}(L \cap F^{\text{ab}}/F)^{\sim}$$

where $N_*(L/F) = U_{1,F} \cap N_{\widetilde{L}/\widetilde{F}}U_{1,\widetilde{L}} \cap N_{\mathcal{L}/\mathcal{F}}U_{1,\mathcal{L}}$.

Theorem ([F3, Th. 1.9]). Let L/F be a cyclic totally ramified p -extension. Then

$$\Upsilon_{L/F} : \text{Gal}(L/F)^{\sim} \rightarrow (U_{1,F} \cap N_{\widetilde{L}/\widetilde{F}}U_{1,\widetilde{L}})/N_{L/F}U_{1,L}$$

is an isomorphism.

Proof. Since L/F is cyclic we get $I(L|F) = \{\varepsilon^{\sigma-1} : \varepsilon \in U_{1,\tilde{L}}, \sigma \in \text{Gal}(L/F)\}$, so

$$I(L|F) \cap U_{1,\tilde{L}}^{\varphi-1} = I(L|F)^{\varphi-1}$$

for every $\varphi \in \text{Gal}(\tilde{L}/L)$.

Let $\Psi_{L/F}(\varepsilon) = 1$ for $\varepsilon = N_{\tilde{L}/F}\eta \in U_{1,F}$. Then $\eta^{\varphi-1} \in I(L|F) \cap U_{1,\tilde{L}}^{\varphi-1}$, so $\eta \in I(L|F)L_\varphi$ where L_φ is the fixed subfield of \tilde{L} with respect to φ . Hence $\varepsilon \in N_{L_\varphi/F \cap L_\varphi}U_{1,L_\varphi}$. By induction on κ we deduce that $\varepsilon \in N_{L/F}U_{1,L}$ and $\Psi_{L/F}$ is injective. \square

Remark. Miki [M] proved this theorem in a different setting which doesn't mention class field theory.

Corollary. Let $L_1/F, L_2/F$ be abelian totally ramified p -extensions. Assume that L_1L_2/F is totally ramified. Then

$$N_{L_2/F}U_{1,L_2} \subset N_{L_1/F}U_{1,L_1} \iff L_2 \supset L_1.$$

Proof. Let M/F be a cyclic subextension in L_1/F . Then

$N_{M/F}U_{1,M} \supset N_{L_2/F}U_{1,L_2}$, so $M \subset L_2$. Thus $L_1 \subset L_2$. \square

Problem. Describe $\ker(\Psi_{L/F})$ for an arbitrary L/F . It is known [F3, 1.11] that this kernel is trivial in one of the following situations:

- (1) L is the compositum of cyclic extensions M_i over F , $1 \leq i \leq m$, such that all ramification breaks of $\text{Gal}(M_i/F)$ with respect to the upper numbering are not greater than every break of $\text{Gal}(M_{i+1}/F)$ for all $1 \leq i \leq m-1$.
- (2) $\text{Gal}(L/F)$ is the product of cyclic groups of order p and a cyclic group.

No example with non-trivial kernel is known.

16.3. Norm groups

Proposition ([F3, Prop. 2.1]). *Let F be a complete discrete valuation field with residue field of characteristic p . Let L_1/F and L_2/F be abelian totally ramified p -extensions. Let $N_{L_1/F}L_1^* \cap N_{L_2/F}L_2^*$ contain a prime element of F . Then L_1L_2/F is totally ramified.*

Proof. If k_F is perfect, then the claim follows from p -class field theory in 16.1. If k_F is imperfect then use the fact that there is a field \mathcal{F} as above which satisfies $L_1\mathcal{F} \cap L_2\mathcal{F} = (L_1 \cap L_2)\mathcal{F}$. \square

Theorem (uniqueness part of the existence theorem) ([F3, Th. 2.2]). *Let $k_F \neq \wp(k_F)$. Let $L_1/F, L_2/F$ be totally ramified abelian p -extensions. Then*

$$N_{L_2/F}L_2^* = N_{L_1/F}L_1^* \iff L_1 = L_2.$$

Proof. Use the previous proposition and corollary in 16.2. \square

16.4. Norm groups more explicitly

Let F be of characteristic 0. In general if k is imperfect it is very difficult to describe $N_{L/F}U_{1,L}$. One partial case can be handled: let the absolute ramification index $e(F)$ be equal to 1 (the description below can be extended to the case of $e(F) < p - 1$).

Let π be a prime element of F .

Definition.

$$\mathcal{E}_{n,\pi}: W_n(k_F) \rightarrow U_{1,F}/U_{1,F}^{p^n}, \quad \mathcal{E}_{n,\pi}((a_0, \dots, a_{n-1})) = \prod_{0 \leq i \leq n-1} E(\tilde{a}_i^{p^{n-i}} \pi)^{p^i}$$

where $\tilde{a}_i \in \mathcal{O}_F$ is a lifting of $a_i \in k_F$ (this map is basically the same as the map ψ_n in Theorem 13.2).

The following property is easy to deduce:

Lemma. $\mathcal{E}_{n,\pi}$ is a monomorphism. If k_F is perfect then $\mathcal{E}_{n,\pi}$ is an isomorphism.

Theorem ([F3, Th. 3.2]). *Let $k_F \neq \wp(k_F)$ and let $e(F) = 1$. Let π be a prime element of F .*

Then cyclic totally ramified extensions L/F of degree p^n such that $\pi \in N_{L/F}L^$ are in one-to-one correspondence with subgroups*

$$\mathcal{E}_{n,\pi}(\mathbf{F}(w)\wp(W_n(k_F)))U_{1,F}^{p^n}$$

of $U_{1,F}/U_{1,F}^{p^n}$ where w runs over elements of $W_n(k_F)^*$.

Hint. Use the theorem of 16.3. If k_F is perfect, the assertion follows from p -class field theory.

Remark. The correspondence in this theorem was discovered by M. Kurihara [K, Th. 0.1], see the sequence (1) of theorem 13.2. The proof here is more elementary since it doesn't use étale vanishing cycles.

References

- [F1] I. Fesenko, Local class field theory: perfect residue field case, Izvest. Russ. Acad. Nauk. Ser. Mat. (1993); English translation in Russ. Acad. Scienc. Izvest. Math. 43(1994), 65–81.
- [F2] I. Fesenko, Abelian local p -class field theory, Math. Ann. 301(1995), 561–586.
- [F3] I. Fesenko, On general local reciprocity maps, J. reine angew. Math. 473(1996), 207–222.
- [H] M. Hazewinkel, Local class field theory is easy, Adv. Math. 18(1975), 148–181.
- [K] M. Kurihara, Abelian extensions of an absolutely unramified local field with general residue field, Invent. Math. 93(1988), 451–480.
- [M] H. Miki, On unramified abelian extensions of a complete field under a discrete valuation with arbitrary residue field of characteristic $p \neq 0$ and its application to wildly ramified \mathbb{Z}_p -extensions, J. Math. Soc. Japan 29(1977), 363–371.
- [N] J. Neukirch, Class Field Theory, Springer, Berlin etc. 1986.

*Department of Mathematics University of Nottingham
Nottingham NG7 2RD England
E-mail: ibf@maths.nott.ac.uk*