Lec 8: Maximum Non-Bipartite Matching

Outline

- Curse of odd circuits
- Tutte-Berge Set
- · Alternating Forest
- · Blossom Shrinking
- · Blossom Algorithm for Augmenting-Path
- · Edmonds-Gallai Decomposition

O. Curse of Odd Circuits

Recap: Maximum matching

- Input: undirected graph G = (V, E).
- . $M \subseteq E$ is a matching if each node appears in at most edge in M.
- . Max matching: find a max cardinality matching.

Matching number $\alpha'(G) :=$ the maximum size of all matchings in G

Def. A matching is perfect if it covers all vertices.

Recap: Grow a matching via augmenting paths

For each M-augmenting path P, $M \oplus P$ is a matching of size |M| + 1

Recap: Augmenting-path method

Theorem: [Petersen 1891] [Kőnig 1931] [Berge 1957] M is a maximum matching \Leftrightarrow there is no M-augmenting path.

Augmenting-path method:

- \square Start with some initial matching M, possibly the empty one.
- While there is an M-augmenting path P, augment M using P

Challenge: How to find augmenting path?

Curse of odd circuits

A graph G is bipartite \Leftrightarrow it contains no odd circuit

Essential nodes

Def. A node is essential if it is covered by all maximum matchings, and inessential otherwise.

Recap. Let M be a maximum matching, and v be a node matched by M. Then v is inessential $\Leftrightarrow v$ is reachable from an unmatched node along an even M-alternating path.

Fact. A bipartite graph with at least one edge has at least one essential vertex.

Extreme cases:

- All nodes are essential: perfectly matchable graph
- · All nodes are inessential: ??

Factor-critical graphs

Def. G is factor-critical if G - v has a perfect matching for every $v \in V$

Fact. odd, non-bipartite, bridgeless

Exercise: Every edge lies in an odd circuit

Factor-critical graphs

Lem. G is factor-critical \Leftrightarrow G is connected and all nodes are inessential.

Pf. (\Rightarrow) simple; (\Leftarrow) by contradiction:

- u, v: a closest pair missed by some max matching M //non-adjacent
- ullet w: an internal node in a shortest u-v path //covered by M

- N: a max. matching missing w //covers u, v
- ullet components of $M \oplus N$: even and alternating

1. Tutte-Berge Set

Number of nodes missed by a matching

M: a matching

|V| - 2|M|: # of nodes missed by M, has the same parity as |V|

Observation. M misses at least one node from each odd component.

o(G): # of odd components of G, has the same parity as |V|

Fact.
$$|V| - 2|M| \ge o(G)$$
 hence $|V| - 2\alpha'(G) \ge o(G)$

 $|V| - 2\alpha'(G) = \min\{|V| - 2|M|: M \text{ is a matching}\}:$ # of nodes missed by any max matching

Deficiency of a subset of nodes

Claim. For any $U \subseteq V$, M misses at least o(G - U) - |U| nodes.

Pf. Trivial if $o(G - U) \le |U|$. Suppose o(G - U) > |U|.

Fully covering an odd component of G-U by M requires matching one of its nodes with a node of U.

So $\geq o(G-U)-|U|$ odd components in G-U are not fully covered.

Def. o(G - U) - |U| is called the deficiency of U.

Tutte-Berge set

Def. A subset with maximum deficiency is called a Tutte-Berge set.

Weak duality.
$$|V| - 2|M| \ge o(G - U) - |U|$$

If the equality holds, M is a max matching and U is a Tutte-Berge set.

$$|V| - 2\alpha'(G) \ge$$
 deficiency of a Tutte-Berge set

Applications: linear-time test, perfectly as an optimality certificate.

Example

Example

Tutte-Berge set in bipartite graph

Fact. Any MVC in a biparite graph is Tutte-Berge set, and strong duality holds.

Stong duality in general (Tutte-Berge Formular)

[Tutte 1947, Berge 1958].

Thm. $|V| - 2\alpha'(G) = \text{deficiency of a Tutte-Berge set}$

Pf. By induction on |V|. Trivial when |V| = 0,1. Induction with |V| > 1:

- If G is not connected, apply induction to the components of G
- If G is factor-critical, $|V| 2\alpha'(G) = 1$ and \emptyset is a Tutte-Berge set.
- Otherwise, G has an essential v. Apply induction to G v with a max matching M and a Tutte-Berge set U'.

deficiency of
$$U' \cup \{v\}$$
 in $G = -1 + \text{deficiency of } U' \text{ in } G - v$
= $-1 + (|V| - 1) - 2|M| = |V| - 2(|M| + 1) = |V| - 2\alpha'(G)$

Tutte-Berge Decomposition

Every maximum matching M

- contains a perfect matching in each even component of G-U
- · contains a near-perfect matching in each odd component of G-U
- matches U with nodes in (distinct, odd) component of G-UAll nodes in U and even components of G-U are essential

Implications

$$\alpha'(G) = \frac{1}{2} \min_{U \subseteq V} (|V| + |U| - o(G - U)).$$

Tutte's perfect matching theorem: G has a perfect matching \Leftrightarrow $o(G-U) \leq |U|$ for all $U \subseteq V$.

Edge-cover theorem: For any graph G = (V, E) without isolated vertices,

$$\tau'(G) = \frac{1}{2} \max_{U \subseteq V} (|U| + o(G[U])).$$

2. Alternating Forest

Search from both (multiple) unmatched nodes

- · disjoint even alternating paths fanning out from unmatched nodes
- joined by an unmatched edge (successfully!)
- parity:
 - successful joining edge is between two even nodes

M-alternating forest

- a spanning forest (V, F) in G with $M \subseteq F$
- each tree either has exactly one unmatched node (root of the tree), or is a single edge in M
- all root-to-leaf paths are M-alternating and even

Parity of nodes

 $even(F) := \{v \in V \mid F \text{ contains an even-length } X - v \text{ path} \}$ $odd(F) := \{v \in V \mid F \text{ contains an odd-length } X - v \text{ path} \}$ $free(F) := \{v \in V \mid F \text{ contains no } X - v \text{ path} \}.$

Simple test for maximality

- no edge between even(F) and $even(F) \cup free(F)$
- · Claim. M is a maximum matching and odd(F) is a Tutte-Berge set.

re-layout of the M-alternating forest

A certificate for optimality

- no edge between even(F) and $even(F) \cup free(F)$
- · Claim. M is a maximum matching and odd(F) is a Tutte-Berge set.

the entire graph G

A certificate for optimality

- no edge between even(F) and $even(F) \cup free(F)$
- · Claim. M is a maximum matching and odd(F) is a Tutte-Berge set.

component structure of G - odd(F)deficiency of odd(F): |even(F)| - |odd(F)| = |X|

each component of free nodes has a perfect matching and has even size.

Growth of the forest

- e = (u, v) with $u \in even(F)$ and $v \in free(F)$
- · $F \leftarrow F \cup \{e\}$; afterwards, $v \in odd(F)$, its mate $w \in even(F)$

Composition of an augmenting path

- e = (u, v) with $u, v \in even(F)$ and across two tree components
- · an augmenting path through e

The remaining challenging case

e = (u, v) with $u, v \in even(F)$ but in the same tree component

3. Blossom Shrinking

Blossom, flower

Which is a blossom?

Blossom shrinking

$$|V/B| = |V| - (|B| - 1)$$

 $|M/B| = |M| - (|B| - 1)/2$
 $|V/B| - 2|M/B| = |V| - 2|M|$

Growth/Optimality preserving

Thm: G has an M-augmenting path $\Leftrightarrow G/B$ has an M/B-augmenting path.

Thm: M is a max. matching in $G \Leftrightarrow M/B$ is a max. matching in G/B.

(*⇐*) Parity-preserving lift of a path

Parity-preserving lift of a path P in G/B to a path P^+ in G:

- if P does not go through B, then $P^+ := P$;
- otherwise, $P^+ \coloneqq P \cup \text{the even } u b \text{ path within the blossom}$

If P is M/B-augmenting in G/B, then P^+ is M-augmenting in G

(*⇐*) Lift of a matching

Lift a matching N in G/B to N^+ in G: add (|B|-1)/2 edges in B

- $|N^+| |N| = (|B| 1)/2$
- if |N| > |M/B|, then $|N^+| > |M/B| + (|B| 1)/2 = |M|$

Question. If N is a max. matching G/B, is N^+ also a max. matching in G?

(⇒) Reduction to blossom without stem

$$|M| = |M \oplus Q|$$
$$|M/B| = |(M/B) \oplus Q| = |(M \oplus Q)/B|$$

(⇒) Augmenting path for contracted matching

 \exists an M-augmenting path in G

- $\Rightarrow \exists$ an $M \oplus Q$ -augmenting path P in G
- $\Rightarrow \exists \text{ an } (M \oplus Q)/B$ -augmenting path P' in G/B
- $\Rightarrow \exists$ an M/B-augmenting path in G/B

4. Blossom Algorithm for Augmenting-Path

Contract & Conquer

```
Initialization: F \leftarrow M;
while there exists an edge between even(F) and even(F) \cup free(F)
  find such edge e = (u, v) with u \in even(F);
  Case 1: v \in free(F)
          \Rightarrow Extend the forest:
  Case 2: v \in even(F) and is in the same tree as u
          ⇒ Shrink a blossom;
  Case 3: v \in even(F) and is in another tree than u
          ⇒ Lift an augmenting path iteratively, and return this path;
return null. // M is maximum matching
```

Case 1: extending forest

 $F \leftarrow F \cup \{e\};$ [afterwards, $v \in odd(F)$, its mate $w \in even(F)$]

Case 2: shrinking blossom

- A blossom B is found.
- Shrink the blossom B in G and the forest [afterwards, $B \in even(F)$]

Case 3: lifting an augmenting path

- An augmenting path P is found
- Lift P by expanding all blossoms in reverse order of shrinking
- Return the lifted path P

Demo: evolution of alternating forest

Demo: lift of augmenting path

Invariant properties

- Odd and free vertices are original nodes.
- Even vertices are produced by a sequence of blossoms, and each contain an odd number of original nodes.

Number of iterations

Thm. The number of iterations $\leq |V|/2 + |M| \leq |V|$

Pf. Evolution of the "potential" |V| + |free(F)|:

- ightharpoonup Initially, |V| + 2|M|
- > In both Case 1 and Case 2, decreases by at least 2
 - Case 1 (forest extension): |V| same, |free(F)| drops by 2
 - Case 2 (blossom shrink): |V| drops by $|B|-1 \ge 2$, |free(F)| same

Running time

- For each $v \in even(F) \cup free(F)$, maintain a neighbor $u \in even(F)$ if there is any (for testing the while-condition)
- $O(n^2)$ -time in total:
 - Case 1 (forest extension): O(n) per iteration, total $O(n^2)$
 - Case 2 (blossom shrinking): O(|B|n) per iteration, total $O(n^2)$
 - sum of $|B| \le$ twice the decrease in # of vertices
 - > Case 3 (path lift): O(n)

Implication: $O(n^3)$ -time algorithm for max matching

- Speed-up with special data structure: O(mn) time
- □ Fastest-known (Micali and Vazirani 1980): $O(mn^{1/2})$ time

Nested (Laminar, Tree) family

 Ω : a collection of subsets of a set V

Def. Ω is called nested if for all $S, T \in \Omega$: $S \subseteq T$ or $T \subseteq S$ or $S \cap T = \emptyset$.

Tree representation of nested family

Nested family of blossoms

size of a blossom = number of children

total size of blossoms

- = total number of edges
- < total number of vertices
- < twice total number of leaves (nodes)

5. Edmonds-Gallai Decomposition

Node classification from a maximum matching

- M: a maximum matching
- \cdot F: the final M-alternating forest output by the Blossom Algorithm
- · Classification of V: S = odd(F), T = free(F), R =the rest

Thm. S is a Tutte-Berge set.

- $B_1, B_2, ..., B_k$: sequence of contracted blossoms
- $G_i = (V_i, E_i)$: the graph obtained after contracting B_1, B_2, \dots, B_i
- □ M_i : the matching obtained after contracting $B_1, B_2, ..., B_i$
- $G_0 = (V_0, E_0) = (V, E), M_0 = M$
- $o(G_k S) |S| = |V_k| 2|M_k|$

Claim. $o(G_i - S)$ and $|V_i| - 2|M_i|$ are invariant with i.

Pf. Unshrinking B_i increases the size of the component containing B_i by an even number $|B_i| - 1$. The parity of all components are preserved.

Tutte-Berge decomposition from S

Component structure of G - S from $G_k - S$:

Each component of free nodes has a perfect matching

Invariance of node classification

Thm. R is exactly the set of inessential nodes. In addition, each (odd) component Q of G[R] is factor-critical.

Pf. Each $v \notin R$ is essential due to the Tutte-Berge decomposition. For each $v \in R$, there is an even M-alternating path in G from X to v:

- \triangleright P: the path in F from X to either v or the blossom containing v,
- \triangleright Lift P by unshrinking the blossoms in the reverse order

Each $v \in Q$ is inessential and missed by a max matching, which must contain a perfect matching of Q - v.

$$S = N(R)$$
: Edmonds-Gallai set $T = V \setminus N[R]$