Assignment 3

Math 351

Contents

	Inst	Instructions														-			
	1.1	Due Date																	-
•	Eule	er was exc	ellent																1

1 Instructions

There are two exercises (which were typeset using the theorem environment).

Exercise 1. Recreate this entire document.¹

Exercise 2. Create a new document containing a short description of three of your favorite books, papers, or other publications. Be sure to include a bibliography, created using BibTeX.

An assignment which completes Exercise 2 in an interesting way or makes amusing use of mathematical typesetting will earn the coveted LATEXer of the week distiction.

1.1 When to turn it in

Please upload the .tex and .bib source files and the .pdf output files to your solutions to Assingment 3 on or before Sunday.

2 Euler was excellent

Euler proved many statements, such as

$$\prod_{m=1}^{\infty} (1 - q^m) = \sum_{n=\infty}^{\infty} (-1)^n q^{(3n^2 - n)/2}.$$
 (1)

where q is an indeterminate. Equation (1) is known as Euler's pentagonal number theorem. Euler also proved theorem 1 below.

¹How meta.

Theorem 1 (The Basel Problem.). We have
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
.

Euler's original proof of Theorem 1 makes unjustified assumptions that infinite products and sums behave like finite products and sums, but interesting nonetheless and worth displaying.

Proof. Using the power series for sin x, we have

$$\frac{\sin x}{x} = \frac{1}{x} \left(x - \frac{x^3}{3!} - \frac{x^5}{5!} - \dots \right)
= 1 - \frac{x^2}{3!} - \frac{x^4}{5!} - \dots
= \left(1 - \frac{x}{\pi} \right) \left(1 + \frac{x}{\pi} \right) \left(1 - \frac{x}{2\pi} \right) \left(1 + \frac{x}{2\pi} \right) \dots$$
(2)

where the reasoning² behind (2) is that a polynomial can be factored if its roots are known, and the roots of $\sin x/x$ are $\pm \pi, \pm 2\pi, \ldots$ Multiplying each pair of consecutive terms in this product gives

$$\left(1 - \frac{x^2}{\pi^2}\right) \left(1 - \frac{x^2}{4\pi^2}\right) \left(1 - \frac{x^2}{9\pi^2}\right) \cdots$$
 (3)

The coefficient of x^2 in (3) is $-\frac{1}{\pi^2} - \frac{1}{4\pi^2} - \dots = -\frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2}$ the coefficient of x^2 in $\sin x/x$ is -1/3!, so equating these two expressions proves the theorem. \square

 $^{^2}$ This reasoning is actually true, just needs further justification.

\mathbf{Index}