exercise4 109301060

June 4, 2024

1 Exercises for Lecture 4

1.0.1 109301060

1.0.2 Q1

a.

```
[]: import statsmodels.formula.api as smf
    import scipy.stats as stats
    import pandas as pd
    import numpy as np
    ## a.
    ## Set sample size and number of iterations:
    n = 100
                              ## sample size
    r = 50
                            ## number of iteration
    ## Set true parameters
    beta0 = 0.4
    beta1 = -1.46
    beta2 = 2.5
    df = n - 2 - 1
    cv_005 = stats.t.ppf(1 - 0.05, df = df)
                                                    ## Critical value for
     →95% CI
    ## Create empty vectors to store the simulation results
    beta0_result_005 = np.empty(r)
    beta1_result_005 = np.empty(r)
    beta2_result_005 = np.empty(r)
    beta0_result_001 = np.empty(r)
    beta1_result_001 = np.empty(r)
    beta2_result_001 = np.empty(r)
    ## Set random seed
    np.random.seed(1234567)
```

```
## Generate samples of x1 and x2
x1 = stats.uniform.rvs(size = n)
x2 = stats.norm.rvs(loc = 0.78, size = n)
for i in range(r):
    u = np.random.normal(size = n)
                                                 ## Generate u
    y = beta0 + beta1 * x1 + beta2 * x2 + u ## Generate y
    datax = pd.DataFrame({'y':y, 'x1':x1, 'x2':x2})
    reg = smf.ols(formula = 'y \sim x1 + x2', data = datax)
    results = reg.fit()
    beta_hat = results.params
    bse = results.bse
    ## Whether the true parameters lie in the 95% CI's?
    beta0 result_005[i] = (beta0 >= (beta_hat['Intercept'] -__
  ocv_005*bse['Intercept'])) and (beta0 <= (beta_hat['Intercept'] +∪
  ⇔cv_005*bse['Intercept']))
    beta1 result 005[i] = (beta1 >= (beta hat['x1'] - cv 005*bse['x1'])) and
  \hookrightarrow(beta1 <= (beta_hat['x1'] + cv_005*bse['x1']))
    beta2_result_005[i] = (beta2 >= (beta hat['x2'] - cv_005*bse['x2'])) and
  \hookrightarrow(beta2 <= (beta_hat['x2'] + cv_005*bse['x2']))
    ## Whether the true parameters lie in the 99% CI's?
    beta0_result_001[i] = (beta0 >= (beta_hat['Intercept'] -__
  ocv_001*bse['Intercept'])) and (beta0 <= (beta_hat['Intercept'] +∪
  ⇔cv 001*bse['Intercept']))
    beta1_result_001[i] = (beta1 >= (beta hat['x1'] - cv_001*bse['x1'])) and
 \hookrightarrow(beta1 <= (beta_hat['x1'] + cv_001*bse['x1']))
    beta2_result_001[i] = (beta2 >= (beta_hat['x2'] - cv_001*bse['x2'])) and
  \hookrightarrow(beta2 <= (beta_hat['x2'] + cv_001*bse['x2']))
## Print out the results
## Alpha = 0.05
print(np.mean(beta0_result_005), np.mean(beta1_result_005), np.
 →mean(beta2 result 005))
## Alpha = 0.01
print(np.mean(beta0_result_001), np.mean(beta1_result_001), np.
 →mean(beta2_result_001))
0.94 0.9 0.92
1.0 0.98 0.96
```

b.

```
[]: import statsmodels.formula.api as smf
    import scipy.stats as stats
    import pandas as pd
    import numpy as np
    ## Set sample size and number of iterations:
    n = 100
                               ## sample size
    r = 200
                              ## number of iteration
    ## Set true parameters
    beta0 = 0.4
    beta1 = -1.46
    beta2 = 2.5
    df = n - 2 - 1
    cv_005 = stats.t.ppf(1 - 0.05, df = df)
                                                     ## Critical value for
     →95% CI
    ## Create empty vectors to store the simulation results
    beta0_result_005 = np.empty(r)
    beta1_result_005 = np.empty(r)
    beta2_result_005 = np.empty(r)
    beta0_result_001 = np.empty(r)
    beta1_result_001 = np.empty(r)
    beta2_result_001 = np.empty(r)
    ## Set random seed
    np.random.seed(1234567)
    ## Generate samples of x1 and x2
    x1 = stats.uniform.rvs(size = n)
    x2 = stats.norm.rvs(loc = 0.78, size = n)
    for i in range(r):
        u = np.random.normal(size = n)
                                                ## Generate u
        y = beta0 + beta1 * x1 + beta2 * x2 + u ## Generate y
        datax = pd.DataFrame(\{'y':y, 'x1':x1, 'x2':x2\})
        reg = smf.ols(formula = 'y \sim x1 + x2', data = datax)
        results = reg.fit()
        beta_hat = results.params
        bse = results.bse
```

```
## Whether the true parameters lie in the 95% CI's?
         beta0_result_005[i] = (beta0 >= (beta_hat['Intercept'] -__
      ocv_005*bse['Intercept'])) and (beta0 <= (beta_hat['Intercept'] +__
      ⇔cv_005*bse['Intercept']))
         beta1_result_005[i] = (beta1 >= (beta_hat['x1'] - cv_005*bse['x1'])) and__
      \hookrightarrow(beta1 <= (beta hat['x1'] + cv 005*bse['x1']))
         beta2_result_005[i] = (beta2 >= (beta_hat['x2'] - cv_005*bse['x2'])) and_u
      \hookrightarrow(beta2 <= (beta_hat['x2'] + cv_005*bse['x2']))
         ## Whether the true parameters lie in the 99% CI's?
         beta0_result_001[i] = (beta0 >= (beta_hat['Intercept'] -__
      ocv_001*bse['Intercept'])) and (beta0 <= (beta_hat['Intercept'] +∪
      ⇔cv_001*bse['Intercept']))
         beta1_result_001[i] = (beta1 >= (beta hat['x1'] - cv_001*bse['x1'])) and
      \hookrightarrow(beta1 <= (beta_hat['x1'] + cv_001*bse['x1']))
         beta2_result_001[i] = (beta2 >= (beta_hat['x2'] - cv_001*bse['x2'])) and
      \hookrightarrow(beta2 <= (beta_hat['x2'] + cv_001*bse['x2']))
     ## Print out the results
     ## Alpha = 0.05
     print(np.mean(beta0_result_005), np.mean(beta1_result_005), np.
      →mean(beta2_result_005))
     ## Alpha = 0.01
     print(np.mean(beta0_result_001), np.mean(beta1_result_001), np.
      →mean(beta2_result_001))
    0.895 0.89 0.915
    1.0 0.975 0.97
       c.
[]: import statsmodels.formula.api as smf
     import scipy.stats as stats
     import pandas as pd
     import numpy as np
     ## a.
     ## Set sample size and number of iterations:
     n = 100
                                    ## sample size
     r = 1000
                                    ## number of iteration
     ## Set true parameters
     beta0 = 0.4
     beta1 = -1.46
     beta2 = 2.5
```

```
df = n - 2 - 1
cv_005 = stats.t.ppf(1 - 0.05, df = df)
                                                     ## Critical value for
→95% CI
## Create empty vectors to store the simulation results
beta0_result_005 = np.empty(r)
beta1_result_005 = np.empty(r)
beta2_result_005 = np.empty(r)
beta0_result_001 = np.empty(r)
beta1_result_001 = np.empty(r)
beta2_result_001 = np.empty(r)
## Set random seed
np.random.seed(1234567)
## Generate samples of x1 and x2
x1 = stats.uniform.rvs(size = n)
x2 = stats.norm.rvs(loc = 0.78, size = n)
for i in range(r):
   u = np.random.normal(size = n)
                                               ## Generate u
   y = beta0 + beta1 * x1 + beta2 * x2 + u ## Generate y
   datax = pd.DataFrame(\{'y':y, 'x1':x1, 'x2':x2\})
   reg = smf.ols(formula = 'y \sim x1 + x2', data = datax)
   results = reg.fit()
   beta_hat = results.params
   bse = results.bse
   ## Whether the true parameters lie in the 95% CI's?
   beta0_result_005[i] = (beta0 >= (beta_hat['Intercept'] -__
 ocv_005*bse['Intercept'])) and (beta0 <= (beta_hat['Intercept'] + ∪
 ⇔cv_005*bse['Intercept']))
   beta1_result_005[i] = (beta1 >= (beta_hat['x1'] - cv_005*bse['x1'])) and_{\sqcup}
 ⇔(beta1 <= (beta_hat['x1'] + cv_005*bse['x1']))</pre>
   beta2_result_005[i] = (beta2 >= (beta_hat['x2'] - cv_005*bse['x2'])) and
 \hookrightarrow(beta2 <= (beta_hat['x2'] + cv_005*bse['x2']))
   ## Whether the true parameters lie in the 99% CI's?
   beta0_result_001[i] = (beta0 >= (beta_hat['Intercept'] -__
 ocv_001*bse['Intercept'])) and (beta0 <= (beta_hat['Intercept'] + ∪
 ⇔cv_001*bse['Intercept']))
   beta1_result_001[i] = (beta1 >= (beta_hat['x1'] - cv_001*bse['x1'])) and__
 ⇔(beta1 <= (beta_hat['x1'] + cv_001*bse['x1']))</pre>
```

0.883 0.879 0.899 0.98 0.979 0.978

1.0.3 Q2

a.

```
[]: import wooldridge as woo
  import statsmodels.formula.api as smf
  import scipy.stats as stats
  import numpy as np

## Import data
  vote1 = woo.data('vote1')

## a. Descriptive statistics
  vote1[['voteA','lexpendA','lexpendB','prtystrA']].describe()
```

```
[]:
                 voteA
                          lexpendA
                                      lexpendB
                                                  prtystrA
     count 173.000000 173.000000
                                    173.000000 173.000000
             50.502890
                          5.025556
                                      4.944369
    mean
                                                 49.757225
     std
             16.784761
                          1.601602
                                      1.571143
                                                  9.983650
                       -1.197328
                                     -0.072571
                                                 22.000000
    min
             16.000000
     25%
             36.000000
                         4.402246
                                      4.095244
                                                 44.000000
     50%
             50.000000
                          5.492164
                                      5.400558
                                                 50.000000
    75%
             65.000000
                          6.125580
                                      6.110837
                                                 56.000000
             84.000000
                                      7.344844
    max
                          7.293476
                                                 71.000000
```

 β_1 is the percentage point increase in voteA for a one unit increase in lexpendA, holding other variables constant.

c. $H_0: \beta_1+\beta_2=0$ d.

```
[]: ## d. Fit the regression
reg = smf.ols(formula = 'voteA ~ lexpendA + lexpendB + prtystrA', data = vote1)
results = reg.fit()
print(f'results.summary():\n{results.summary()}\n')
```

results.summary():

OLS Regression Results

Dep. Variable:	voteA	R-squared:	0.793
Model:	OLS	Adj. R-squared:	0.789
Method:	Least Squares	F-statistic:	215.2
Date:	Tue, 04 Jun 2024	Prob (F-statistic):	1.76e-57
Time:	09:55:07	Log-Likelihood:	-596.86
No. Observations:	173	AIC:	1202.
Df Residuals:	169	BIC:	1214.

Df Model: 3
Covariance Type: nonrobust

=========			========			========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	45.0789	3.926	11.481	0.000	37.328	52.830
${\tt lexpendA}$	6.0833	0.382	15.919	0.000	5.329	6.838
lexpendB	-6.6154	0.379	-17.463	0.000	-7.363	-5.868
prtystrA	0.1520	0.062	2.450	0.015	0.030	0.274
Omnibus:	=======	======== 8	======== 3.900 Durk	oin-Watson:		1.604
Prob(Omnibus	s):	C	0.012 Jaro	que-Bera (JB)):	8.832
Skew:		C	.493 Prob	o(JB):		0.0121
Kurtosis:		3	3.505 Cond	l. No.		344.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

From the regression output, we cannot reject the null hypothesis that $\beta_1 + \beta_2 = 0$ at 5% significance level.

```
print(f'fpval: {round(fpval, 3)}\n')
```

fstat: 0.996

fpval: 0.32

The p-value is larger than 0.05, so we cannot reject the null hypothesis at 5% significance level.

e.

results_mod.summary():

OLS Regression Results

Dep. Variable:	voteA	R-squared:	0.791
Model:	OLS	Adj. R-squared:	0.789
Method:	Least Squares	F-statistic:	322.3
Date:	Tue, 04 Jun 2024	Prob (F-statistic):	1.42e-58
Time:	09:55:07	Log-Likelihood:	-597.37
No. Observations:	173	AIC:	1201.
Df Residuals:	170	BIC:	1210.
Df Model:	2		
Covariance Type:	nonrobust		

0010	11 141100	Typo.		110111	ODUDO			
====				======		 ========		=======
			•			D. I. I	FO 00F	0 075

	coef	std err	t	P> t	[0.025	0.975]
Intercept 1B_1A prtystrA	42.7028 -6.3517 0.1464	3.122 0.272 0.062	13.677 -23.394 2.370	0.000 0.000 0.019	36.539 -6.888 0.024	48.866 -5.816 0.268
Omnibus: Prob(Omnibus	======= s):			======================================		1.599 12.607

 Prob(Omnibus):
 0.003
 Jarque-Bera (JB):
 12.607

 Skew:
 0.554
 Prob(JB):
 0.00183

Kurtosis: 3.721 Cond. No. 270.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
547.2726 0.9963
```

f.

```
[]: ## f. Test H0: beta1 + beta2 = 1.5
     ## Use the method f_test
     hypotheses = ['lexpendA + lexpendB = 1.5']
     ftest = results.f_test(hypotheses)
     fstat = ftest.fvalue
     fpval = ftest.pvalue
     print(f'fstat: {round(fstat, 3)}\n')
     print(f'fpval: {round(fpval, 3)}\n')
     ## Estimate a modified model
     vote1['lA lB'] = vote1['lexpendA'] - vote1['lexpendB']
     reg_mod = smf.ols(formula = 'voteA ~ 1A_1B + prtystrA', data = vote1)
     results_mod = reg_mod.fit()
     print(f'results_mod.summary():\n{results_mod.summary()}\n')
     ## Manually calculate t statistic
     n = vote1.shape[0]
     k = 3
     df = n - k - 1
     b_lexpendA = results_mod.params['lA_lB']
     se_lexpendA = results_mod.bse['lA_lB']
     tstat = round((b_lexpendA - 1.5) / se_lexpendA, 3)
     tpval = 2*stats.t.cdf(-abs(tstat), df = df)
     print(f'tstat: {round(tstat, 3)}\n')
     print(f'tpval: {round(tpval, 3)}\n')
                                                          ## should be the same_
     ⇔value as fpval
     ## Use method t_{t}
     hypothesis = 'lA_lB = 1.5'
     ttest = results_mod.t_test(hypothesis)
     tstat = ttest.statistic[0][0]
     tpval = ttest.pvalue
     print(f'tstat: {round(tstat, 3)}\n')
```

fstat: 14.531

fpval: 0.0

results_mod.summary():

OLS Regression Results

voteA	R-squared:	0.791
OLS	Adj. R-squared:	0.789
Least Squares	F-statistic:	322.3
Tue, 04 Jun 2024	Prob (F-statistic):	1.42e-58
09:55:07	Log-Likelihood:	-597.37
173	AIC:	1201.
170	BIC:	1210.
	OLS Least Squares Tue, 04 Jun 2024 09:55:07 173	OLS Adj. R-squared: Least Squares F-statistic: Tue, 04 Jun 2024 Prob (F-statistic): 09:55:07 Log-Likelihood: 173 AIC:

Df Model: 2
Covariance Type: nonrobust

========	=======	=======	=======		========	=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	42.7028	3.122	13.677	0.000	36.539	48.866
1A_1B	6.3517	0.272	23.394	0.000	5.816	6.888
${ t prtystrA}$	0.1464	0.062	2.370	0.019	0.024	0.268
========	=======	=======	========		========	=======
Omnibus:		11	.793 Durl	oin-Watson:		1.599
Prob(Omnibus):	0	.003 Jar	que-Bera (JB):	12.607
Skew:		0	.554 Prol	o(JB):		0.00183
Kurtosis:		3	.721 Cond	i. No.		270.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

tstat: 17.869

tpval: 0.0

tstat: 17.869

tpval: 0.0

1.0.4 Q3

a.

```
[]: import wooldridge as woo
    import numpy as np
    import statsmodels.formula.api as smf
    import scipy.stats as stats
     ## Import data
    hprice1 = woo.data('hprice1')
    ## a. Descriptive statistics
    hprice1[['price','sqrft','bdrms']].describe()
[]:
                             sqrft
                                         bdrms
                price
            88.000000
                         88.000000 88.000000
    count
           293.546034 2013.693182
                                     3.568182
    mean
    std
           102.713445 577.191583
                                     0.841393
           111.000000 1171.000000
                                     2.000000
    min
    25%
           230.000000 1660.500000
                                     3.000000
    50%
           265.500000 1845.000000
                                     3.000000
    75%
           326.250000 2227.000000
                                     4.000000
    max
           725.000000 3880.000000
                                     7.000000
      b.
[]: ## b. Fit the regression
    reg = smf.ols(formula = 'np.log(price) ~ sqrft + bdrms', data = hprice1)
    results = reg.fit()
    ## Estimate theta1: 150 sqrft bed room added
    theta1 = 150*results.params['sqrft'] + results.params['bdrms']
    theta1 = round(theta1, 4)
    print(f'Percentage change:\n{theta1*100}%\n')
    Percentage change:
    8.58%
      c.
[]: ## c.
    ## Calculate standard error of theta1 and construct CI's
    hprice1['new_var'] = hprice1['sqrft'] - 150*hprice1['bdrms']
    reg_mod = smf.ols(formula = 'np.log(price) ~ new_var + bdrms', data = hprice1)
    results_mod = reg_mod.fit()
    print(round(results_mod.bse['bdrms'],4))
    0.0268
```

standard error of the percentage change in b is 0.0268

```
[]: ## Now the slope parameters of bdrms is theta1
     bse = results_mod.bse['bdrms']
     n = hprice1.shape[0]
     k = 2
     df = n - k - 1
     cv_005 = stats.t.ppf(1 - 0.025, df = df)
cv_001 = stats.t.ppf(1 - 0.005, df = df)
                                                         ## Critical value for 95% CI
                                                         ## Critical value for 99% CI
     ci_005_up = theta1 + cv_005*bse
     ci_005_low = theta1 - cv_005*bse
     ci_005 = [round(ci_005_low, 3), round(ci_005_up, 3)]
     print(f'ci_005:\n{ci_005}\n')
                                                          ## 95% CI for theta1
     ci_001_up = theta1 + cv_001*bse
     ci_001_low = theta1 - cv_001*bse
     ci_001 = [round(ci_001_low, 3), round(ci_001_up, 3)]
     print(f'ci_001:\n{ci_001}\n')
                                                          ## 99% CI for theta1
    ci_005:
    [0.033, 0.139]
    ci_001:
    [0.015, 0.156]
```

Based on the confidence intervals do not contain zero. This provides statistical evidence that adding a 150-square-foot bedroom significantly increases the house price, with the percentage increase ranging from approximately 3.3% to 15.6% (95% confidence interval).