1 Somma di Reimann

Dato $[a,b]\subseteq\mathbb{R}$, fissato $\mathbf{n}\in\mathbb{N}$ poniamo $h=\frac{b-a}{n}$ e $x_0=a,\ x_1=a+h,\ x_2=a+2h,\ldots,\ x_n=a+nh$

 $\forall k \in \{1, \dots, n\}$ fissiamo $\xi_k \in [x_k - 1, x_k]$

Sia f
 continua su [a, b]. Poniamo

$$S_n = \sum_{k=1}^n f(\xi_k) h = \sum_{k=1}^n f(\xi_k) \frac{b-a}{n}$$

 $S_n =$ somma di Riemann n-esima

Nota S_n dipende dalla scelta di ξ_1, \dots, ξ_n , che è arbitraria

Osservazione $a = b \Rightarrow S_n = 0 \forall n$

Osservazione $\forall x \in [a,b]. f(x) = c \Rightarrow S_n = c(b-a)$ Dunque $(S_n)_{n \in \mathbb{N}}$ è costante , in questi casi

1.1 Teorema

f continuia in [a,b]. Allora $\exists \lim S_n$ finito t.c limite ** dipende dalla $n \to +\infty$ sulla retta dei punti ξ_1,\ldots,ξ_n fatta nella costurzuone sopra

Si scrive

$$\lim_{n \to +\infty} S_n = \int_a^b f(x) dx = \int_a^b f$$

e si dice che fè integrabile

Osservazione dalle precedenti osservazioni si deduce $\int_a^a f(x) dx = 0 \ e$ $\int_a^b c dx = c(b-a)$

Osservazione Esistono funzioni discontinue per cui $\nexists \lim_{n\to\infty} S_n$ oppure dipende dalla scelta dei punti ξ_1,\ldots,ξ_n fatta ad ogni passo

Osservazione Se f ha un numero finito di punti di discontinuità (con salto finito) allora f è integrabile.

2 Proprietà dell'integrale

1. Linearità: f,g continue su $[a,b], \lambda, \mu \in \mathbb{R}$ Allora $\lambda f + \mu g$ è integrabile e vale

$$\int_{a}^{b} [\lambda f + \mu g] = \lambda \int_{a}^{b} f + \mu \int_{a}^{b} g$$

2. Additività: $f : \mathbb{R} \to \mathbb{R}integrabile$ Allora $\forall a, b, c \in \mathbb{R} \ vale$

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

3. Monotomia: f,g continue su [a, b]

$$\forall x \in [a, b] f(x) \le g(x) \Rightarrow \int_a^b f \le \int_a^b g \quad con \ a < b$$

4. Convenzione:

$$\forall a, b \int_{a}^{b} f = -\int_{b}^{a} f$$

3 Teorema della media integrale

f continua su [a, b], allora $\exists c \in [a, b] \ t.c$

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx = f(c)$$

Dimostazione: Siano x_0 e x_1 punti di minimo e massimo assoluti (Wiestrass). Allora

$$\forall x \in [a, b]. f(x_0) \le f(x) \le f(x_1) \Rightarrow \underbrace{\int_a^b f(x_0) dx}_{f(x_0)(b-a)} \le \int_a^b f(x) dx \le \underbrace{\int_a^b f(x_1) dx}_{f(x_1)(b-a)}$$

Divido per b - a e trovo

$$f(x_0) \le \frac{1}{b-a} \int_a^b f(x) dx \le f(x_1)$$

Per il teorema dei valori intermedi applicato a f,

$$\exists c \in [a, b] \ t.c \ f(c) = \frac{1}{b - a} \int_{a}^{b} f(x) dx \le f(x_1)$$

4 La primitiva di una funzione

4.1 Definizione

 $f:]a,b[\to \mathbb{R}.\ F:]a,b[\to \mathbb{R}$ si dice primidiva di f su]a,b[se vale $F'(x)=f(x)\ \forall x\in]a,b[$

Osservazione: Se F è la primitiva di f su]a,b[, allora $H:]a,b[\to \mathbb{R}, \ H(x) = F(x) + C$ è primitiva di $f \ \forall c \in \mathbb{R}$

Osservazione personale: Le primitive di una funzione f sono infinite, e sono tutte quelle che assumono una forma riconducibile a F(x)+C, dove 'C' è un valore scalare

4.2 Proposizione:

siano F e G primitive di f su]a,b[. Allora

$$\exists k \in \mathbb{R} : F(x) - G(x) = k \quad \forall x \in]a, b[$$

Dimostazione: usiamo $H:]a,b[\to \mathbb{R}, \ H(x) = F(x) - G(x).$ Vale $H'(x) = 0 \forall x \in]a,b[$ e dunque H è costante su]a,b[

Osservazione: La proposizione è valida purché si lavori su un intervallo [a, b]

5 Funzioni integrali

5.1 Definizione

data $f: a_0, a_0 \rightarrow \mathbb{R}$ continua e $c \in \mathbb{R}$ definiamo

(Funzione integrale di punto base c)
$$[a_0, b_0[\to \mathbb{R}, \ I_c(x) = \int_c^x f(t) dt]$$

5.2 Proprietà di I_c

- 1. $I_c(c) = 0$
- 2. Dati $c_1, c_2 \in]a_0, b_0[$,

$$I_{c_1}(x) - I_{c_2}(x) = \int_{c_1}^{c_2} f(t)dt \Rightarrow I_{c_1} - I_{c_2} \ e \ costante$$

5.3 Teorema fondametale del calcolo integrale

Sia f continua su $]a_0, b_0[$, sia $c \in]a_0, b_0[$ Allora $\forall x \in]a_0, b_0[$ vale $I'_c(x) = f(x)$ Dimostazione: Bisogna trovare

$$\lim_{h \to 0} \frac{I_c(x+h) - I_c(x)}{h} = f(x)$$

 $\forall x \in]a_0, b_0[$ Guardiamo il limite destro; dunque dobbiamo provare che $\forall h_n \to 0^+$

$$h_n > 0 \forall n \text{ vale } \frac{I_c(x + h_n) - I_c(x)}{h_n} \xrightarrow[n \to +\infty]{} f(x)$$

Si scrive

$$I_c(x + h_n) - I_c(x) = \int_c^{x+h_n} f - \int_c^x f = \int_x^{x+h_n} f(t)dt$$

Per teorema della media integrale

$$\exists c_n \in [x_1, x + h_n] \ t.c \ \frac{1}{h_n} \int_x^{x+h_n} f(t)dt = f(c_n).$$

Poiché f è continua e $c_n \to x$, si ottiene $f(c_n) \to f(x)$. **qed**

5.4 Teorema fondametale del calcolo 2 o Formula di Torricelli

Se f è continua su $]a_0,b_0[$ e se F è primitiva di f su $]a_0,b_0[$ allora $\forall a,b\in]a_0,b_0[$ vale:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Dimostazione: Sia $c \in [a_0, b_0[$

 I_c e F sono le primitive di f si a_0, b_0 .

Per il teorema di caratterizzatione delle primitive

$$\exists k \in \mathbb{R} \ t.c \ F(x) = I_c(x) + k \forall x \in]a_0, b_0[$$

Dunque

$$F(b) - F(a) = I_c(b) + k - I_c(a) + k = I_c(b) - I_c(a) = \int_c^b f - \int_c^a f = \int_a^b f(x)dx$$
qed

6 Integrazione per parti

Viene usata nei casi come $\int x^k \sin x$

6.1 Variante del teorema fondamentale del calcolo

Proposizione: Sia $h:I\to J$ derivabile e $f:J\to\mathbb{R}$ continua $(I,J\subseteq\mathbb{R})$ intervalli aperti. Definiamo $F:I\to\mathbb{R}$

$$F(x) = \int_{c}^{h(x)} f(t)dt$$

Allora F è derivabile in ogni $x \in I$ e vale F'(x) = f(h(x))h'(x).

Dimostrazione: scrivo

$$I_c(z) = \int_c^z f(t)dt \quad \forall z \in J$$

Allora si scrive $F = I_c \circ h$.

Dalla formula per la derivata di funzioni composte otteniamo

$$F'(x) = I'_c(h(x))h'(x) = f(h(x))h'(x)$$

7 Formula per il cambio variabile

Teorema: I, J intervalli aperti, $h: I \to J$ con derivata h' continua su I $f: J \to \mathbb{R}$ continua. Allora $\forall \alpha, \beta \in I$ vale

$$\int_{h(\alpha)}^{h(\beta)} f(x)dx = \int_{\alpha}^{\beta} f(h(t))h'(t)dt$$

Dimostrazione: siano $F:I\to\mathbb{R}, G:I\to R, F(z)=\int_{h(\alpha)}^{h(z)}f(x)dx, G(z)=\int_{\alpha}^{z}f(h(t))h'(t)dt$

Le funzioni integrande sono continue, h' è continua. Dunque F e G sono derivabili in I.

Vale F'(z) = f(h(z))h'(z) e $G'(z) = f(h(z))h'(z) \quad \forall z \in I$

Dunque F - G è costante su I.

Poiché $F(\alpha) = 0, G(\alpha) = 0$, si conclude che F(z) = G(z) $z \in I$

8 Integrali generalizzati

Definizione $f:[a,+\infty[\to\mathbb{R} \text{ continua.}]$

Si dice che f è integrabile in senso generalizzato su $[a, +\infty]$ se

$$\exists \lim_{z \to +\infty} \int_{a}^{z} f(x)dx =: \int_{a}^{+\infty} f(x)dx$$

La definizione per $f:]-\infty,b]\to\mathbb{R}$ è omessa perché analoga

Definizione: $f:]a,b] \to \mathbb{R}$, continua. Si dice che f è integrabile in senso generalizzato su [a,b] se

$$\exists \lim_{z \to a^+} \int_z^b f(x) dx =: \int_a^b f(x) dx$$

9 Spazio euclideo

$$\mathbb{R}^n := \{ x = (x_1, x_2, \dots, x_n | x_1, x_2, x_n \in \mathbb{R} \}$$

In \mathbb{R}^n vale

Somma tra vettori $x = (x_1, ..., x_2), y = (y_1, ..., y_n)$

$$x + y = (x_1 + y_1 + \dots + x_n + y_n)$$

Prodotto con scalare dato $x = (x_1, \dots, x_n), \lambda \in \mathbb{R}$, poniamo

$$\lambda x := (\lambda x_1, \dots, \lambda x_n)$$

Definizione Prodotto scalare euclideo Dati $x, y \in \mathbb{R}^n$, poniamo:

$$\langle x, y \rangle := \sum_{k=1}^{n} x_k y_k$$

9.1 Proprietà:

- 1. $\langle x, y \rangle = \langle y, x \rangle \quad \forall x, y \in \mathbb{R}^n$
- 2. $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$ e $\langle z, \lambda x + \mu y \rangle = \lambda \langle z, x \rangle + \mu \langle z, y \rangle$ $\forall x, y, z \in \mathbb{R}^n \lambda, \mu \in \mathbb{R}$
- 3. $\langle x, x \rangle \ge 0 \quad \forall x \in \mathbb{R}^n$
- 4. $\langle x, x \rangle = 0 \iff x = \underline{0} = (0, 0, \dots, 0).$

9.2 Definizione Vettori ortogonale

 $x,y\in\mathbb{R}^n$ si dicono ortogonali se $\langle x,y\rangle=0$

9.3 Definizione Norma euclidea

Dato $x \in \mathbb{R}^n$, poniamo $||x|| := \sqrt{\langle x, x \rangle} \in [0, +\infty[$ Si dice norma di x (viene usata la notazione |x|)

Interpretazione della norma con lunghezza (con il Teorema di Pitagora)

9.3.1 Proprietà della norma

- 1. $|\lambda x| = |\lambda| \cdot |x| \quad \forall \lambda \in \mathbb{R}, x \in \mathbb{R}^n$
- 2. $|x| \ge 0 \quad \forall x \in \mathbb{R}^n \text{ in oltre } |x| = 0 \iff x = 0$
- 3. $|x+y| \leq |x| + |y|$ for all $x, y \in \mathbb{R}^n$ (disuguanza triangolare, con relativa interpretazione)

9.4 Normalizzato di un vettore

Definizione: dato $x \neq 0, x \in \mathbb{R}^n$, il normalizzato di x è il vettore $\frac{x}{|x|}$, l'unico multiplo positivo di x che ha norma 1

9.5 Scrittura del prodotto scalare in coordinate polati in \mathbb{R}^n

Dati $x \in \mathbb{R}^2 \setminus \{0\}$, scriviamo

$$x = |x| \frac{x}{|x|} = r(\cos \theta, \sin \theta)$$

dove r=|x| e $\theta\in\mathbb{R}$ è opportuno. Presi $x=(r\cos\theta,r\sin\theta)$ e $y=(\rho\cos\phi,\rho\sin\phi)$, risulta

$$\langle x, y \rangle = r\rho \cos(\phi - \theta) = |x| \cdot |y| \cos(\phi - \theta)$$

la conseguenza è la disuguaglianza di Clauchy-Schwarz

9.6 La disuguaglianza di Clauchy-Schwarz

 $\forall x, y \in \mathbb{R}^n \text{ vale}$

$$|\langle x, y \rangle| \le |x| \cdot |y|$$

Inoltre vale l'uguaglianza sse x e y sono indipendenti

9.7 Formula del "quadrato di un binomio"

Dati $x, y \in \mathbb{R}^n$ vale

$$|x + y|^2 = |x|^2 + 2\langle x, y \rangle + |y|^2$$

La dimostazione avviene con le proprietà del prodotto scalare. Dalla formula sopra segue che, se $x \perp y$ in \mathbb{R}^n , allora vale

$$|x+y|^2 = |x|^2 + |y|^2$$

Teorema dio Pitagora

9.8 Disuguaglianza triangolare

Ancora della formula del "quadrato di un binomio" si può ottenere la dimostazione della disuguaglianza triangolare

$$|x+y| \le |x| + |y| \quad \forall x, y \in \mathbb{R}^n$$

Infatti

$$|x+y|^2 = |x|^2 + |y|^2 + 2\langle x,y\rangle \leq \text{ (per Clauchy-Schwarz)} \leq |x|^2 + |y|^2 + 2|x| \cdot |y| = (|x|+|y|)^2 \quad \forall x,y \in \mathbb{R}^n$$

9.9 Definizione distanza

 $\forall x, y \in \mathbb{R}$ la distanza tra $x \in y$ è

$$|x-y|$$

9.10 Intorni sferici o dischi o palle

Dato $x \in \mathbb{R}^n$ (centro) e r > 0 (raggio), poniamo

$$B(x,r) = \{ y \in \mathbb{R}^n \mid |y - x| < r \}$$
 (palla con centro x e raggio r)

9.11 Definizione insieme limitato

Sia $A \subseteq \mathbb{R}^n$, si dice limitato se $\exists R > 0$ t.c $A \subseteq B(0, R)$

9.12 Insieme aperto

Sia $A \subseteq \mathbb{R}^n$ si dice aperto se

$$\forall x \in A \exists r > 0 \text{ t.c } B(x,r) \subseteq A$$

Esempi: Gli intervalli]a,b[, i rettangoli $A=IJ\subseteq\mathbb{R}^2$ con I,J aperti in R.

10 Sucessioni in \mathbb{R}^n

Sia $(x_k)_{k\in\mathbb{N}}$ una sucessione in $\mathbb{R}^n \quad \forall k \in \mathbb{N}$

10.1 Definizione

 $(x_k)_{k\in\mathbb{N}}$ sucessione in \mathbb{R}^n ; $x\in\mathbb{R}^n$ Si dice $x_k\to x$ per $k\to+\infty$ se vale

$$\lim_{k \to +\infty} x_k^j = x^j \quad \forall j \in \{1, 2, \dots, n\}$$

Equivalentemente se vale $\lim_{k\to+\infty} |x_k-x|=0$

11 Funzioni di più variabili

 $A \subseteq \mathbb{R}^n, B \subseteq \mathbb{R}^q$. Data $f: A \to B$, il grafico di f è

$$Graf(G) = \{(x, f(x)) \mid x \in A\} \subseteq A \times B$$

11.1 Definizione funzione continua

 $f: A \to B \text{ (con } A \subseteq \mathbb{R}^n, B \subseteq \mathbb{R}^q)$

f si dice continua se \overline{x} se vale quanto segue:

$$\forall (x_k)_{k \in \mathbb{N}}, (x_k) \text{ successione in A, } x_k \xrightarrow[k \to +\infty]{} \overline{x} \implies f(x_k) \to f(\overline{x}) \quad k \to +\infty$$

Si dimostra che la definizione di continuà "per sucessioni" opportuna data è equivalente alla seguente:

$$f:A\to B\ continua\ in\ x\in A\ se$$

$$\forall \varepsilon > 0 \exists \delta \ t.c \ |f(x) - f(\overline{x})| < \varepsilon$$
$$\forall x \in A \cap B(x, \delta)$$

A Proprietà integrali

$$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$$
$$\int kf(x)dx = k \int f(x)dx$$

Tabella primitive \mathbf{B}

TODO

\mathbf{C} Integrazione di una funzione composta

La formula generica è:

$$\int_{a}^{b} g'(f(x))f'(x)dx = \left[g(f(x))\right]_{a}^{b}$$

deriva da

$$f:I \to J, g:J \to \mathbb{R}, \ f, g \ derivabili$$

$$\int_a^b \frac{d}{dx} (g \circ f)(x) = \int_a^b g'(f(x))f'(x) dx = \Big[g(f(x))\Big]_a^b$$

Integrali notevoli di funzioni composte

- $-\int f'(x)[f'(x)]^{\alpha}dx = \frac{[f(x)]^{\alpha+1}}{\alpha+1} \ con \ \alpha \neq -1$ $-\int \frac{f'(x)}{f(x)}dx = \ln|f(x)| \ \mathbf{NB:} questo \ \grave{e} \ il \ caso \ \alpha = -1 \ della \ prec.$ $-\int f'(x)\cos f(x)dx = \sin f(x)$ $-\int f'(x)\sin f(x)dx = -\cos f(x)$ $-\int f'(x)e^{f(x)}dx = e^{f(x)}$