KLAUS THEWALT und WALTER RUDOLPH

Notiz zur Hydrierung von β-[5-Phenyl-furyl-(2)]-propionsäureestern 1)

Darstellung von γ-Cyclohexylpropyl-γ-butyrolacton und 7-Phenyl-heptanol-(1)

Aus der Wissenschaftlichen Abteilung der Chemischen Werke Witten, Gesellschaft mit beschränkter Haftung, Witten/Ruhr

(Eingegangen am 19. März 1963)

Wie wir nachträglich feststellten, hatten wir bei der von uns beschriebenen $^{2)}$ Lacton-Hydrogenolyse nicht das γ -Phenylpropyl- γ -butyrolacton (VIIIa in l. c. $^{1)}$), sondern das γ -Cyclohexylpropyl- γ -butyrolacton eingesetzt. Das neben dem 7-Cyclohexyl-heptanol-(1) anfallende Diol ist demnach als 7-Cyclohexyl-heptandiol-(1.4) anzusprechen, wie Reproduktionsversuche ergaben. Das bei den seinerzeitigen Untersuchungen verwendete Lacton war nicht, wie üblich, aus β -[5-Phenyl-furyl-(2)]-propionsäure-butylester mittels Pd/C hergestellt worden, sondern stammte aus einer Versuchscharge mit Raney-Nickel bei $160^{\circ}/250$ at, wobei der Phenylkern des entstehenden Lactons ebenfalls hydriert wird. Die Temperaturgrenze liegt, wie wir jetzt feststellten, in Analogie zu den bisherigen Erfahrungen im Bereich von $150-170^{\circ}$. Es ist so eine bequeme Möglichkeit gegeben, aus β -[5-Phenyl-furyl-(2)]-propionsäureestern sowohl γ -Phenylpropyl- γ -butyrolacton als auch das γ -Cyclohexylpropyl- γ -butyrolacton herzustellen. Durch Hydrogenolyse erhält man: 7-Phenyl-heptanol-(1) und 7-Phenyl-heptanol-(1) und 7-Cyclohexyl-heptandiol-(1.4), von denen das 7-Phenyl-heptanol-(1) damit ebenfalls auf der Basis von Furfurylidenacetophenon zugänglich geworden ist.

BESCHREIBUNG DER VERSUCHE

 γ -Cyclohexylpropyl- γ -butyrolacton: 100 g β -[5-Phenyl-furyl-(2)]-propionsäure-butylester werden in Dioxan gelöst und in Gegenwart von 3 g Raney-Nickel bei 250 at/220° hydriert. Nach Abdestillieren des Lösungsmittels und des abgespaltenen Butanols erhält man 74 g des fruchtartig riechenden, farblosen Lactons (96% d. Th.). Sdp.₁ 159-160°, n_2^{20} 1.4772 *).

C₁₃H₂₂O₂ (210.3) Ber. C 74.40 H 10.56 Gef. C 74.56 H 10.32

7-Phenyl-heptanol-(1): 100 g γ -Phenylpropyl- γ -butyrolacton werden in Dioxan gelöst und mit 15 g Kupfer-Chromit-Katalysator bei 250 at/220° hydriert. Nach Abdestillieren des Lösungsmittels erhält man durch fraktionierende Destillation 39 g (41% d. Th.) 7-Phenylheptanol-(1) bei 122–123°/1 Torr (Lit.3): 135°/4 Torr) und 46 g (45% d. Th.) 7-Phenyl-heptandiol-(1.4) bei 170–171°/1 Torr. $n_{\rm P}^{20}$ 1.5109.

C₁₃H₂₀O (192.3) Ber. C 81.19 H 10.48 Gef. C 81.02 H 10.70

Phenylurethan: Farblos kristallin, Schmp. 77-78°.

C₂₀H₂₅NO₂ (311.5) Ber. N 4.50 Gef. N 4.75

3.5-Dinitro-benzoat: Farblos kristallin, Schmp. 48-49°.

C₂₀H₂₂N₂O₆ (386.4) Ber. N 7.25 Gef. N 7.45

^{*)} Berichtigung für γ -Phenylpropyl- γ -butyrolacton (VIIIa): lies n_D^{20} 1.5209.

¹⁾ K. THEWALT und W. RUDOLPH, Chem. Ber. 96, 136 [1963].

^{2) 1.} c. 1), S. 139, 5. Absatz.

I. N. NAZAROV und L. I. SHMONINA, Zhur. Obshchei Khim. 20, 1114 [1950]; C. A. 44, 9461 [1950].