

RELATÓRIO DE LEVANTAMENTO RADIOMÉTRICO AMBIENTAL E MEDIDA DA RADIAÇÃO DE FUGA

Estabelecimento: Grupo Fleury – Unidade Campinas

Endereço: Avenida Aquidaban, 747

Cidade: Campinas/SP

Responsável: Dr. Shri Krishna Jayanthi – CRM: 90874

Equipamento de Densitometria

Validade deste Relatório: Não havendo substituições e/ou manutenções nos componentes da máquina ou dispositivos periféricos, este relatório é <u>válido por 4 anos</u>.

Data de Execução das Medidas: 17/02/2016.

Data deste Relatório: 14/03/2016.

Ordem de Serviço: 003F

Este relatório contém cinco (05) páginas e foi elaborado por:

Renato Dimenstein Físico em Medicina CNEN 004-92

RELATÓRIO DE LEVANTAMENTO RADIOMÉTRICO

1.0 Descrição da Instalação:

O presente relatório aferiu os sistemas de blindagens e as taxas de exposição às radiações do aparelho de densitometria óssea de acordo com os requisitos da portaria do Centro de Vigilância Sanitária CVS/Portaria 453/98.

Equipamento	Densitometro	Qtde	Barreiras Físicas	Carga de Trabalho
				semanal
Marca	General Eletric	4	Paredes em alvenaria	W = 375 mA.min/sem
Modelo	Lunar Prodigy	1	Acesso tipo porta	
	Advance			
Série:	303395GA	1	Distância > 1m do Comando	
TAG:	DENO-0033			
kVp Máximo	76			
mA:	3			

2.0 Medidas de Radiação

- (a) Radiação de Fuga: O equipamento de Densitometria foi avaliado com o detector a 100 cm de distância e técnica de 76 kVp e 0,75 μA durante o tempo correspondente a um exame. Executaram-se medições como a câmara de ionização para cinco (5) diferentes posições ao redor da ampola de raios-X. As leituras foram adquiridas no modo taxa de dose (mGy/h). Características do monitor de radiação: O teste de radiação de fuga foi executado com uma câmara de ionização de 10x5-180cm³ e um monitor modelo 9010 fabricado pela Radcal Corporation, conforme certificado em anexo. Os valores para pressão e temperatura (22· C) foram corrigidos por um fator 1,01.
- (b) Levantamento Radiométrico Ambiental: Os procedimentos de medidas de dose acumulada doses para a radiação espalhada da unidade de raios-X foram executados em regime usual de operação. O feixe direcionado verticalmente para baixo atingiu um phantom (Escada de Cobre dentro da caixa de água) de 40x30x20 cm, o qual tem como finalidade a simulação do espalhamento da radiação no paciente. A dose acumulada foi medida para 5 diferentes posições para paredes, 3 para portas de acesso, 3 para áreas anexas nas condições normais de operação de forma a estimar a eficiência das barreiras de proteção. Características do monitor de radiação: O teste de levantamento radiométrico foi executado com uma câmara de ionização de $10x5-1800cm^3$ e um monitor modelo 9010 fabricado pela Radcal Corporation, conforme certificado em anexo. Os valores para pressão e temperatura ($22 \cdot C$) foram corrigidos por um fator 1,02.

3.0 Tabela de resultados

Tipo de medida realizada	Condição	Validade	Necessidade de retorno		
			após correção		
Levantamento Radiométrico	S	4 anos (*)	Não		
Radiação de Fuga	S	4 anos (**)	Não		
S = satisfatório $NS = não sati$	sfatório				

(*) Validade máxima. Pode ser menor, caso haja alteração no "layout" da instalação ou manutenção na máquina. Nesse caso o relatório deverá ser refeito. O teste de fuga só deverá ser refeito caso o cabeçote ou cúpula da máquina sofra manutenção.

Layout não esta em escala e consta com as distâncias utilizadas para as medidas de radiação para fins de atenuação das barreiras

4.0 Resultados – Levantamento Radiométrico

* Dose externa (mSv)*60(s/min)/[I] (mA) *W (mA*min/sem)*U*T

Pac/dia 10 mA 3 Àrea da sala ex/dia 10 dias/sem 5 18,0 m²

tempo/ex 300 s (mA.min/sem)

min/sem 125.0 **750**

min/sem	125,0				750				
						Dose	Dose	Dose anual	Adequado Pub - 1mSv
Posição	Pontos	Blindagem	Т	U	Direção do Feixe	(nSv)	(mSv/min/mA)	(mSv/ano)	Trab- 5mSv
Comando	Al	Dimaugem	1,00	0,25	Vertical para cima	1	2,00E-05	9,38E-02	Sim
	A2		1,00	0,25	Vertical para cima	1	2,00E-05	9,38E-02	Sim
	A3		1,00	0,25	Vertical para cima	1	2,00E-05	9,38E-02	Sim
	A4		1,00	0,25	Vertical para cima	1	2,00E-05	9,38E-02	Sim
	A5		1,00	0,25	Vertical para cima	1	2,00E-05	9,38E-02	Sim
Sala de Raios X	B1	Parede	1,00	0,25	Vertical para cima	1	2,00E-05	9,38E-02	Sim
	B2		1,00	0,25	Vertical para cima	1	2,00E-05	9,38E-02	Sim
	В3		1,00	0,25	Vertical para cima	1	2,00E-05	9,38E-02	Sim
	B4		1,00	0,25	Vertical para cima	1	2,00E-05	9,38E-02	Sim
	B5		1,00	0,25	Vertical para cima	1	2,00E-05	9,38E-02	Sim
Acesso	C1	Porta	0,25	0,25	Vertical para cima	1	2,00E-05	2,34E-02	Sim
	C2		0,25	0,25	Vertical para cima	1	2,00E-05	2,34E-02	Sim
	C3		0,25	0,25	Vertical para cima	1	2,00E-05	2,34E-02	Sim
Corredor Interno	D1	Parede	0,25	0,25	Vertical para cima	1	2,00E-05	2,34E-02	Sim
	D2		0,25	0,25	Vertical para cima	1	2,00E-05	2,34E-02	Sim
	D3		0,25	0,25	Vertical para cima	1	2,00E-05	2,34E-02	Sim
	D4		0,25	0,25	Vertical para cima	1	2,00E-05	2,34E-02	Sim
	D5		0,25	0,25	Vertical para cima	1	2,00E-05	2,34E-02	Sim
Sala de Proc.	E1	Parede	0,25	0,25	Vertical para cima	1	2,00E-05	2,34E-02	Sim
	E2		0,25	0,25	Vertical para cima	1	2,00E-05	2,34E-02	Sim
	E3		0,25	0,25	Vertical para cima	1	2,00E-05	2,34E-02	Sim
	E4		0,25	0,25	Vertical para cima	1	2,00E-05	2,34E-02	Sim
	E5		0,25	0,25	Vertical para cima	1	2,00E-05	2,34E-02	Sim

Tabela de dados relativos ao Teste de Radiação de Fuga

Taxa [mGy/hora] = Expos_{med} mGy * 5,0 * Corrente_{cont} (mA) / tempo _{medida} (seg) * Corrente _{med} (mA)

Ponto	Expos (mGy/h)	Taxa Expos.(mGy/h)	I medida	0,75	mΑ
1	0,00	0,0	I contínua	3	mΑ
2	0,00	0,0	t (seg) medido	300	seg
3	0,00	0,0			
4	0,00	0,0			
5	0,00	0,0			

0,0

5.0 Conclusões

0,00

- (a) A radiação de fuga do cabeçote do equipamento radiológico é inferior aos limites da ANVISA.
- (b) A instalação está segura sob o ponto de vista de Proteção Radiológica, indicando-se adequada às blindagens com relação ao público e trabalhadores.

Renato Dimenstein Físico em Medicina CNEN 004-92