Exhibit D

OIF 99-107-01

Submitted July 20, 1999

parallel optics nterface based LOW Cost OCT (OIF99.120)

Mark Nowell & Gary Nicholl Cisco Systems mnowell@cisco.com gnicholl@cisco.com

Go-Authors

Hank Zannini Bjorn Liencres Mauro Macchi Pete Widdoes Alan Hannan **Kevin White** Klaus Kuhn Stan Hanks **Larry Davis** Alan Iguchi **Gary Smith Allen Dixon** James Zik Jim Boyle

Enron Communications W.L. Gore & Associates Vitesse Semiconductor Pirelli Optical Systems **Corvis Corporation Conexant Systems** Ciena Corporation **Qtera Corporation Juniper Networks Global Crossing Avici Systems** JS Conec Level 3

+39 02 6442 9265 (561) 999 4291 (978) 964 2222 (650) 526 8005 303) 926-3100 (410) 865 8556 302) 368 2575 443) 259 4033 508) 628 0509 (503) 464 8480 408) 543 4700 828) 323 8883 303) 543 2047 828) 327

- Majority < 500m, 75% < 100m
- Current OC-192 interfaces optimized for longer reaches

Typical POP Configuration

Version 4.2

00-192 VSR Link

Oc-192 Very Short Reach Proposal

- 16 x 622 Mb/s LVDS electrical interface (OIF99.102)
- 12 x 1.244 Gb/s parallel ribbon fiber optical interface
- leverage Gigabit Ethernet and parallel optical technology
- Converter ASIC maps OC-192 frame onto 10 data channels plus 2 auxiliary channels
- byte stripping across data channels
- each channel framed and encoded
- protection against single channel failure
- CRC based error detection/correction

OC-192 VSR Channel Formal

OC-192 VSR Framing

- SONET frame bytes are byte stripped across the 10 data channels
- Each channel is 8B10B encoded to control transmission properties

OC-192 VSR Framing

A1 _{n+30}	
A1 _{N+20}	
A1 _{n+10}	
A1 _n	

+30 r Frame delimiter for channels 1-0	
A1 _{n+30}	
K28.5	ر م
D3.1	OR
3	1

••• Frame delimiter for channels 7-12 **/A1**_{n+30} D21.2 | K28.5 K28.5 n = 1..10

pattern that is overwritten onto first 3 A1 bytes on each channel Each channel is framed with a unique 8B10B frame delimiter

- Used for de-skewing at the receiver
- Unique frame delimiters for channels 1-6 & 7-12 allow robustness to polarity issues with connector

Profection Channel

- Dominant failure mechanism is single channel failure VCSEL arrays have been shown to be very reliable.
- Protection channel protects against a single channel failure (similar concept to 1:N protection)
- Protection channel carries XOR data from channels 1-10
- recovered from the information contained in the XOR · If single channel failure is detected, the data can be channel and the remaining valid data channels
- Protection performed at receiver, no signaling required.

Dotection Example

GSS of Synchronization

- LOSyn used to determine when single channel failure occurs
- Single channel failure can be detected and protected before any SONET alarms triggered
- codewords (Similar to Fiber Channel/Gigabit Ethernet) LOSyn algorithm based on detecting invalid 8B10B

7

Effor Detection Channel

- Each channel (1-12) divided in virtual blocks of 24 bytes
- 16-bit CRC calculated for each virtual block on channels 1 to 11 (data channels + protection channel)
- corresponding 24 byte virtual block on the Error the 11 16-bit CRCs are transmitted within the detection channel (EDC)
- final two bytes of the EDC virtual block filled with 16-bit **CRC** calculated over the rest of the virtual block

16-bit CRC calculated over rest of block

Error Detection Channe

16-bit CRC for every virtual block on each channel is calculated and transmitted within the corresponding virtual block on the

Error Correction

X Path block diagram

RX Path block diagram

OIF, October 19/20, Los Angeles

Ocking Scheme

5

OCTONSR Optical Specifications

	ses se Min.	Max.	Units
Transmitter			
Baud Rate	1.244 - 20 ppm	1.244 + 20 ppm	Gb/s
λnom	830	860	uu
Power (out)	-10	See footnote (2)	dBm
Extinction Ratio	9		dB
RMS Spectral Width		0.85	nm
Trise/Tfall (20-80%)		260	sd
Systematic Jitter		160	(dd) sd
Total Jitter		345	(dd) sd
RIN(max)		-116	dB/Hz
Receiver			
Power (in)	-16	0	dBm
λnom	830	860	dBm
Optical Return Loss	12		dB
Signal Detect assert		-19	dBm
Signal Detect De-assert	-26		dBM
Signal Detect hysteresis	1	4	dВ

- Connector is MTP/MPO (IEC61754-7)
 Output power for combined channels will be compliant with FDA class 1 and IEC Class 3A eye safety requirements (all channels aggregated)
 - 3. Optical Specifications based on Gigabit Ethernet Link Model

Farget Distance Options

Fiber Effective Modal Bandwidth	Target Distance
205 Mhz.km (1)	250m
400 Mhz.km (2)	400m

Votes

- 1. Fiber which is guaranteed to provide 300m transmission for Gigabit Ethernet operating at 850nm, meets this requirement
 - 2. Fiber which is guaranteed to provide 500m transmission for Gigabit Ethernet operating at 850nm, meets this requirement

WSR Size Comparison

OC-192 VSR Summary

SONET Framed 16x 622Mb/s (OIF99.102)

Features:

- Parallel Optics (based on GE)
- Multimode fiber & VCSELs
- < 250m 62MMF/205MHz.km</p>< 400m 62MMF/400MHz.km</p>
- Compensates for inter-channel skew
- · Channel protection (1:N)
- · Error detection/correction
- Compatible with OC-192 framer interface (OIF99.102)
- · Compact form factor

OIF PLL WG to adopt OIF99.120 as a baseline specification for an OC-192 very short reach document for the development of a interface based on parallel optics.

Polarity and cable crossover

Option 1: Ribbon Fiber cables are connected back to back. Implication is that Tx channel #1 is connected to Rx channel #12.

Fiber ribbon is rotated by 160 deg before second connector is terminated

Option 2: Ribbon Fiber cables are connectorised with a rotation on the fiber. Implication is that Tx channel #1 is connected to Rx channel #1.