PHƯƠNG PHÁP CASIO – VINACAL BÀI 33. PHƯƠNG TRÌNH SỐ PHỨC

I) KIẾN THỨC NỀN TẢNG

- 1. Chuyển số phức về dang lương giác
 - **Dạng lượng giác của số phức**: Cho số phức z có dạng $z = r(\cos \varphi + i \sin \varphi)$ thì ta luôn có : $z^n = r^n (\cos n\varphi + i \sin n\varphi)$
 - Lệnh chuyển số phức z = a + bi về dạng lượng giác : Lệnh SHIFT 2 3 Bước 1: Nhập số phức z = a + bi vào màn hình rồi dùng lệnh SHIFT 2 3 (Ví dụ $z=1+\sqrt{3}i$

Bước 2: Từ bảng kết quả ta đọc hiểu r=2 và $\varphi=\frac{\pi}{2}$

II) VÍ DỤ MINH HỌA

VD1. Gọi z_1, z_2 là hai nghiệm phức của phương trình z^2 z+1=0. Giá trị của $|z_1|+|z_2|$ bằng

 $\mathbf{A}.0$

B.1

D. 4

C. 2 (Thi thử chuyên Khoa học tự nhiên lần 1 năm 2017)

Lời giải:

***** Cách Casio

Tính nghiệm của phương trình bậc hai z^2 z+1=0 bằng chức năng MODE 5 3

MODE 5 3 1 = - 1 = 1 = =

$$\chi_{2} = \frac{1}{2} + \frac{\sqrt{3}}{2} \mathbf{i}$$

$$\frac{1}{2} - \frac{\sqrt{3}}{2}\mathbf{i}$$

Math▼▲

Vậy ta được hai nghiệm $z_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ và $z_2 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$. Tính tổng Môđun của hai số phức trên ta lại dùng chức năng SHIFT HYP

MODE 2 SHFT hyp = 1 ▼ 2 ▶ + = 4 3 ▼ 2 ▶ ENG ▶

 $\begin{array}{c} - \\ + \\ \text{SHIFT hyp} \end{array} \begin{array}{c} = \\ 1 \end{array} \begin{array}{c} 2 \end{array} \begin{array}{c} \bullet \\ - \\ \end{array} \begin{array}{c} = \\ \text{CMPLX} \end{array} \begin{array}{c} 3 \end{array} \begin{array}{c} 2 \\ \bullet \\ \text{Math} \end{array} \begin{array}{c} = \\ \bullet \\ \end{array}$

$$\left|\frac{1}{2} + \frac{\sqrt{3}}{2} \mathbf{i}\right| + \left|\frac{1}{2} - \frac{\sqrt{3}}{2}\right|$$

 $\Rightarrow |z_1| + |z_2| = 2$ ta thấy **B** là đáp án chính xác

<u>VD2</u>. Gọi z_1, z_2 là hai nghiệm phức của phương trình $z^2 + 2z + 2 = 0$. Tính giá trị của biểu thức $P = z_1^{2016} + z_2^{2016}$:

 $\mathbf{A} \ 2^{1009}$

 \mathbf{B} 0

C. 2^{2017}

 $D. 2^{1008}$

(Thi thử chuyên Khoa học tự nhiên lần 2 năm 2017)

Lời giải:

Cách Casio 1

Tính nghiệm của phương trình bậc hai $z^2 + 2z + 2 = 0$ bằng chức năng MODE 5 3 MODE 5 3 1 = 2 = 2 = =

$$X_1 =$$

$$-1+i$$

-1-i

Math**∀**▲

Ta thu được hai nghiệm $z_1 = 1+i$ và $z_2 = 1$ i. Với các cụm đặc biệt 1+i, 1 ita có điều đặc biệt sau: $(1+i)^4 = 4$, $(1 i)^4 = 4$

$$(-1+i)^4$$

Vậy
$$P = z_1^{2016} + z_2^{2016} = (1+i)^{2016} + (1-i)^{2016} = [(1+i)^4]^{504} + [(1-i)^4]^{504}$$

$$= (4)^{504} + (4)^{504} = 4^{504} + 4^{504} = 2^{1008} + 2^{1008} = 2 \cdot 2^{1008} = 2^{1009}$$

$$P = z_1^{2016} + z_2^{2016} = 2^{1009} \text{ ta thấy } \mathbf{A} \text{ là đáp án chính xác}$$

* Cách Casio 2

Ngoài cách sử dụng tính chất đặc biệt của cụm $(1\pm i)^4$ ta có thể xử lý $1\pm i$ bằng cách đưa về dạng lượng giác bằng lệnh SHIFT 2 3

 $V \acute{o} i z_1 = 1 + i = r (\cos \varphi + i \sin \varphi)$

- 1 + ENG SHIFT 2 3 =

Ta nhận được $r = \sqrt{2}$ và góc $\varphi = \frac{3\pi}{4}$

$$\Rightarrow z_1 = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right) \Rightarrow z_1^{2016} = \left(\sqrt{2} \right)^{2016} \left(\cos 2016 \cdot \frac{3\pi}{4} + i \sin 2016 \cdot \frac{3\pi}{4} \right)$$

Tính $\cos\left(2016.\frac{3\pi}{4}\right) + i.\sin\left(2016.\frac{3\pi}{4}\right)$

[COS] 2 0 1 6 X = 3 SHIFT (x10") \(\bar{\chi} \) + ENG (X sin) 2 0 1 6

$$\cos(\frac{2016 \times \frac{3\pi}{4} + \mathbf{i} \times 5}{1})$$

$$z_1^{2016} = \left(\sqrt{2}\right)^{2016} = 2^{1008}$$

Turong tự $z_2^{2016} = 2^{1008} \implies T = 2^{1009}$

<u>VD3</u>. Kí hiệu z_1, z_2, z_3 và z_4 là bốn nghiệm phức của phương trình z^4 z^2 tổng:

$$T = |z_1| + |z_2| + |z_3| + |z_4|$$

$$\mathbf{A}.T = 4$$

B
$$T = 2\sqrt{3}$$

B.
$$T = 2\sqrt{3}$$
 C. $T = 4 + 2\sqrt{3}$ **D**. $T = 2 + 2\sqrt{3}$

D.
$$T = 2 + 2\sqrt{3}$$

(Đề minh họa bộ GD-ĐT lần 1 năm 2017)

Lời giải:

Cách Casio

Để tính nghiệm của phương trình ta dùng chức nặng MODE 5. Tuy nhiên máy tính chỉ tính được phương trình bậc 2 và 3 nên để tính được phương trình bậc 4 trùng phương z^4 z^2 12 = 0 thì ta coi $z^2 = t$ khi đó phương trình trở thành t^2 t 12 = 0

$$X_1 =$$

4

- $V\acute{\alpha}i \ z^2 = 4 \Rightarrow z = +2$
- Với $z^2 = 3$ ta có thể đưa về $z^2 = 3i^2 \Leftrightarrow z = \pm \sqrt{3}i$ với $i^2 = 1$. Hoặc ta có thể tiếp tục sử dụng chức năng MODE 5 cho phương trình $z^2 = 3 \Leftrightarrow z^2 + 3 = 0$

MODE [5] [3] [1] [2] [0] [3] [2] [2]

 $I\!\!\overline{2}$ i.

Tóm lai ta sẽ có 4 nghiêm $z = \pm 1, z = \pm \sqrt{3}i$

Tính T ta lại sử dụng chức năng tính môđun SHIFT HYP

MODE 2 SHIFT hyp 2 \blacktriangleright + SHIFT hyp - 2 \blacktriangleright + SHIFT hyp $\sqrt{}$ 3 \blacktriangleright ENG

★ SHIFT hyp — √■ 3 ★ ENG =

$$|2| + |-2| + |\sqrt{3}i| + |$$

$$4+2\sqrt{3}$$

⇒ Đáp án chính xác là C

VD4- Giải phương trình sau trên tập số phức : $z^3 + (i+1)z^2 + (i+1)z + i = 0$

$$\mathbf{A}.z = i$$

B.
$$z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

B.
$$z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$
 C. $z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$

D.Cå A, B, C đều đúng

(Thi thử nhóm toán Đoàn Trí Dũng lần 3 năm 2017)

Lời giải:

Cách Casio

Để kiểm tra nghiệm của 1 phương trình ta sử dụng chức năng CALC

$$X^3 + (\mathbf{i} + 1)X^2 + (\mathbf{i} + 1)$$

Vây z = i là nghiệm

Tiếp tục kiểm tra $z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ nếu giá trị này là nghiệm thì cả đáp án **A** và **B** đều đúng có nghĩa là đáp án **D** chính xác. Nếu giá trị này không là nghiệm thì chỉ có đáp án A đúng duy nhất.

CALC \longrightarrow (1 \div 2) \bigcirc + (\mathbf{i} 3) \div 2) \bigcirc ENG \Longrightarrow $\chi^3 + (\mathbf{i} + 1)\chi^2 + (\mathbf{i} + 1)$

$$X^3 + (\mathbf{i} + 1)X^2 + (\mathbf{i} + 1)$$

Π

Vậy $z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ tiếp tục là nghiệm có nghĩa là đáp án **A** và **B** đều đúng

⇒ Đáp án chính xác là **D**

Cách tư luân

Để giải phương trình số phức xuất hiện số *i* trong đó ta không thể sử dụng chức năng MODE 5 được mà phải tiến hành nhóm nhân tử chung

Phương trình $\iff z^{3} + z^{2} + z + (z^{2} + z + 1)i = 0$

$$\Leftrightarrow (z+i)(z^2+z+1) = 0 \Leftrightarrow \begin{bmatrix} z = i \\ z^2+z+1 = 0 \end{bmatrix}$$

Phương trình $z^2 + z + 1 = 0$ không chứa số i nên ta có thể sử dụng máy tính Casio với chức nặng giải phương trình MODE 5

MODE [5] [3] [1] [2] [1] [2] [2]

$$\chi_{1} = \chi_{2} = \frac{1}{2} + \frac{\sqrt{3}}{2} \mathbf{i} \qquad \qquad \frac{3}{2} = \frac{\text{Math} \mathbf{V} \mathbf{A}}{\mathbf{A}}$$

Tóm lại phương trình có 3 nghiệm $z = i; z = \frac{1}{2} + \frac{\sqrt{3}}{2}i; z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$

⇒ D là đáp án chính xác

VD5. Trong các phương trình dưới đây, phương trình nào có hai nghiệm

$$z_1 = 1 + \sqrt{3}$$
; $z_2 = 1 \sqrt{3}$

A.
$$z^2 + i\sqrt{3}z + 1 = 0$$
 B. $z^2 + 2z + 4 = 0$ **C**. $z^2 - 2z + 4 = 0$ **D**. $z^2 - 2z - 4 = 0$

B.
$$z^2 + 2z + 4 = 0$$

C.
$$z^2$$
 2z + 4 = 0

D.
$$z^2$$
 2z 4 = 0

(Thi thử báo Toán học tuổi trẻ lần 3 năm 2017)

Lời giải:

Ta hiểu phương trình bậc hai $ax^2 + bx + c = 0$ nếu có hai nghiệm thì sẽ tuân theo định lý Vi-et (kể cả trên tập số thực hay tập số phức)

$$\begin{cases} z_1 + z_2 = \frac{b}{a} \\ z_1 + z_2 = \frac{c}{a} \end{cases}$$

ightharpoonup Tính $z_1 + z_2 = 2$

2

Tính $z_1 z_2 = 4$

(1 +
$$\sqrt{3}$$
 3 \triangleright ENG) (1 - $\sqrt{3}$ 3 \triangleright ENG) = $(1+\sqrt{3}i)(1-\sqrt{3}i)$

4

Rõ ràng chỉ có phương trình z^2 2z + 4 = 0 có $\frac{b}{a} = 2$ và $\frac{c}{a} = 4$

⇒ Đáp số chính xác là C

<u>VD6</u>. Phương trình $z^2 + iz + 1 = 0$ có bao nhiều nghiệm trong tập số phức :

A. 2

B.1

 \mathbf{C} 0

D.Vô số

(Thi thử chuyên Khoa học tự nhiên lần 1 năm 2017)

Lời giải:

Ta phân biệt : Trên tập số thực phương trình bậc hai $ax^2+bx+c=0$ sẽ có hai nghiệm phân biệt nếu $\Delta>0$, có hai nghiệm kép nếu $\Delta=0$, vô nghiệm nếu $\Delta<0$. Tuy nhiên trên tập số phức phương trình bậc hai $ax^2+bx+c=0$ có 1 nghiệm duy nhất nếu

$$\Delta = 0$$
, có hai nghiệm phân biệt nếu $\begin{bmatrix} \Delta > 0 \\ \Delta < 0 \end{bmatrix}$

Vậy ta chỉ cần tính Δ là xong. Với phương trình $z^2 + iz + 1 = 0$ thì $\Delta = i^2$ 4 = 5 là một đại lượng < 0 vậy phương trình trên có 2 nghiệm phân biệt

⇒ Đáp số chính xác là A

<u>VD7.</u> Phần thực của số phức z là bao nhiều biết $z = \frac{\left(1 - i\right)^{10} \left(\sqrt{3} + i\right)^5}{\left(1 - i\sqrt{3}\right)^{10}}$

 \mathbf{A} . 1+i

B. 1

 C_3 2i

D. $2^{5}i$

Lời giải:

ightharpoonup Để xử lý số phức bậc cao (>3) ta sử đưa số phức về dạng lượng giác và sử dụng công thức Moa-vơ . Và để dễ nhìn ta đặt $z=\frac{z_1^{10}.z_2^5}{z^{10}}$

ightharpoonup Tính $z_1 = 1$ $i = r(\cos \varphi + i \sin \varphi)$. Để tính r và φ ta lại sử dụng chức năng SHIF 2 3

$$\sqrt{2} \angle -\frac{1}{4}\pi$$

Vậy
$$z_1 = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) z_1^{10} = \left(\sqrt{2} \right)^{10} \left(\cos 10 \cdot \frac{\pi}{4} + i \sin 10 \cdot \frac{\pi}{4} \right)$$

Tính $\cos 10.\frac{\pi}{4} + i \sin 10.\frac{\pi}{4}$

$$[\cos 1]$$
 0 $[\times]$ $[=]$ $[-]$ $[\sin 1]$ $[\times]$ $[\times]$

SHIFT $\times 10^x$ \bigcirc 4 \bigcirc) \equiv

$$\cos(10 \times \frac{-\pi}{4}) + i \sin \phi$$

-i

Vậy
$$z_1^{10} = \left(\sqrt{2}\right)^{10} .i = 2^5 .i$$

Further Turong tup
$$z_2^5 = 2^5 \left(\cos 5 \cdot \frac{\pi}{6} + i \sin 5 \cdot \frac{\pi}{6}\right) = 2^5 \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)$$

$$z_3^{10} = 2^{10} \left(\cos 10 \cdot \frac{2\pi}{3} + i \sin 10 \cdot \frac{2\pi}{3} \right) = 2^{10} \left(\frac{1}{2} \cdot \frac{\sqrt{3}}{2} i \right)$$

Tổng hợp

$$z = \frac{z_1^{10}.z_2^5}{z_3^{10}} = \frac{2^5 i.2^5 \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)}{2^{10} \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)}$$

$$\frac{210\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)}{10}$$

Vậy $z = 1 \Rightarrow$ Đáp số chính xác là **B**

III) BÀI TẬP TỰ LUYỀN

<u>Bài 1.</u> Cho phương trình z^2 2z+17=0 có hai nghiệm phức z_1 và z_2 . Giá trị của $|z_1|+|z_2|$ là :

A.
$$2\sqrt{17}$$

B.
$$2\sqrt{13}$$

C.
$$2\sqrt{10}$$

D.
$$2\sqrt{15}$$

(Thi thử chuyên Lam Sơn – Thanh Hóa lần 2 năm 2017)

<u>**Bài 2.**</u> Gọi z_1, z_2 là hai nghiệm của phương trình $z^2 + 2z + 10 = 0$. Tính giá trị biểu thức $A = |z_1|^2 + |z_2|^2$ **A** $2\sqrt{10}$ C $5\sqrt{2}$ **D** $10\sqrt{3}$ **B**. 20 (Đề thi toán Đai học - Cao đẳng khối A năm 2009) **<u>Bài 3.</u>** Kí hiệu z_1, z_2, z_3 là nghiệm của phương trình $z^3 + 27 = 0$. Tính tổng $T = |z_1| + |z_2| + |z_3|$ **B**. $T = 3\sqrt{3}$ $\mathbf{A} \cdot T = 0$ C.T = 9(Thi thử Group Nhóm toán lần 5 năm 2017) **<u>Bài 4.</u>** Gọi z_1, z_2, z_3, z_4 là bốn nghiệm phức của phương trình $2z^4$ $3z^2$ 2=0. Tính tổng sau $T = |z_1| + |z_2| + |z_3| + |z_4|$ C. $3\sqrt{2}$ D. $\sqrt{2}$ (Thi thử THPT Bảo Lâm – Lâm Đồng lần 1 năm 2017) **B** $5\sqrt{2}$ **A** 5 **<u>Bài 5.</u>** Xét phương trình $z^3 = 1$ trên tập số phức . Tập nghiệm của phương trình là : **B**. $S = \left\{1; \frac{1 \pm \sqrt{3}}{2}\right\}$ **C**. $S = \left\{1; \frac{1}{2} \pm \frac{\sqrt{3}}{2}i\right\}$ **D**. $S = \left\{\frac{1}{2} \pm \frac{\sqrt{3}}{2}i\right\}$ **A**. $S = \{1\}$ (Thi thử THPT Bảo Lâm – Lâm Đồng lần 1 năm 2017) **Bài 6.** Biết z là nghiệm của phương trình $z + \frac{1}{z} = 1$. Tính giá trị biểu thức $P = z^{2009} + \frac{1}{z^{2009}}$ $C. P = \frac{5}{2}$ **D**. $P = \frac{7}{4}$ **B**. P = 0**A**. P = 1LỜI GIẢI BÀI TẬP TỰ LUYỆN **<u>Bài 1.</u>** Cho phương trình z^2 2z+17=0 có hai nghiệm phức z_1 và z_2 . Giá trị của $|z_1|+|z_2|$ là : A $2\sqrt{17}$ **B** $2\sqrt{13}$ C $2\sqrt{10}$ **D** $2\sqrt{15}$ (Thi thử chuyên Lam Sơn – Thanh Hóa lần 2 năm 2017) Lời giải: Cách Casio ■ Tìm hai nghiệm của phương trình z^2 2z+17=0MODE 5 3 1 = - 2 = 1 7 = = Math▼ В Math**▼**▲ $X_1 =$ X2= 1-4i 1+4i Tính tổng hai môđun bằng lênh SHIFT HYP MODE 2 SHIFT hyp 1 + 4 ENG \longrightarrow + SHIFT hyp 1 - 4 ENG \equiv |1+4i|+|1-4i| 2/17 Vây $|z_1| + |z_2| = 2\sqrt{17} \implies \text{Đáp số chính xác là } \mathbf{A}$

<u>Bài 2.</u> Gọi z_1, z_2 là hai nghiệm của phương trình $z^2 + 2z + 10 = 0$. Tính giá trị biểu thức $A = \left| z_1 \right|^2 + \left| z_2 \right|^2$

B. 20

C $5\sqrt{2}$

D $10\sqrt{3}$

(Đề thi toán Đại học – Cao đẳng khối A năm 2009)

Lời giải:

Cách Casio

• Tìm hai nghiêm của phương trình $z^2 + 2z + 10 = 0$

MODE 5 3 1 = 2 = 1 0 = =

 $X_1 =$

X2=

Math**∀**▲

-1+3i

-1-3i

Tính tổng bình phương hai môđun bằng lệnh SHIFT HYP

MODE 2 SHIFT hyp — 1 + 3 ENG \bigcirc x^2 + SHIFT hyp — 1 — 3 ENG \bigcirc x^2 = CMPLX \bigcirc Math \blacktriangle

|-1+3i|²+|-1-3i▷

20

Vậy $A = |z_1|^2 + |z_2|^2 = 20 \implies \text{Đáp số chính xác là } \mathbf{B}$

<u>Bài 3.</u> Kí hiệu z_1, z_2, z_3 là nghiệm của phương trình $z^3 + 27 = 0$. Tính tổng $T = |z_1| + |z_2| + |z_3|$

 $\mathbf{A} \cdot T = 0$

B $T = 3\sqrt{3}$

C.T = 9

D. T = 3

(Thi thử Group Nhóm toán lần 5 năm 2017)

Lời giải:

Cách Casio

• Tính nghiệm của phương trình $z^3 + 27 = 0$ bằng chức năng MODE 5 4

MODE 5 4 1 = 0 = 0 = 2 7 = =

 $X_1 =$

Хз=

Vậy
$$z_1 = 3, z_2 = \frac{3}{2} + \frac{3\sqrt{3}}{2}i, z_3 = \frac{3}{2} \frac{3\sqrt{3}}{2}i$$

■ Tính tổng môđun $T = |z_1| + |z_2| + |z_3|$

[MODE] 5 4 1 = 0 = 0 = 2 7 = = = [MODE] 1 [MODE] 2

SHIFT hyp = 3 ▶ + SHIFT hyp = 3 ▼ 2 ▶ + = 3 ▼ 2 ▼ 2

$$|-3| + \frac{3}{2} + \frac{3\sqrt{3}}{2} i + \frac{1}{9}$$

Vậy $T = 9 \Rightarrow \text{Đáp số chính xác là } \mathbf{C}$

Bài 4. Gọi z_1, z_2, z_3, z_4 là bốn nghiệm phức của phương trình $2z^4$ $3z^2$ 2=0. Tính tổng sau $T = |z_1| + |z_2| + |z_3| + |z_4|$

B $5\sqrt{2}$

(Thi thử THPT Bảo Lâm – Lâm Đồng lần 1 năm 2017)

& Cách Casio

• Đặt $t = z^2$. Tìm nghiệm của phương trình $2t^2$

MODE 5 3 2 = - 3 = - 2 = =

$$X_1 =$$

Math▼

X2=

В Math**▼**▲

2

• Với $z^2 = 2 \Rightarrow z = \pm \sqrt{2}$

Với
$$z^2 = \frac{1}{2} \Rightarrow z^2 = \frac{i^2}{2} \Rightarrow z = \pm \frac{i}{\sqrt{2}}$$

• Tính tổng môđun $T = |z_1| + |z_2| + |z_3| + |z_4|$

 $\hline \texttt{MODE} \ \ \textbf{2} \ \ \textbf{SHFT} \ \ \textbf{hyp} \ \ \textbf{-} \ \ \textbf{3} \ \ \textbf{ENG}$

 $\begin{picture}(2000)(2000)(2000)(2000) \put(0.000)(0.000$

Vậy $T = 3\sqrt{2} \implies \text{Đáp số chính xác là C}$

Bài 5. Xét phương trình $z^3 = 1$ trên tập số phức. Tập nghiệm của phương trình là:

$$\mathbf{A}.\,S = \{1\}$$

$$\mathbf{B}. S = \left\{1; \frac{1 \pm \sqrt{3}}{2}\right\}$$

B.
$$S = \left\{1; \frac{1 \pm \sqrt{3}}{2}\right\}$$
 C. $S = \left\{1; \frac{1}{2} \pm \frac{\sqrt{3}}{2}i\right\}$ **D**. $S = \left\{\frac{1}{2} \pm \frac{\sqrt{3}}{2}i\right\}$

$$\mathbf{D}.\,S = \left\{ \quad \frac{1}{2} \pm \frac{\sqrt{3}}{2}i \right\}$$

(Thi thử THPT Bảo Lâm – Lâm Đồng lần 1 năm 2017)

Lời giải:

Cách Casio

• Giải phương trình bậc ba z^3 1 = 0 với chức năng MODE 54

 $\hline \texttt{MODE} \ 5 \ 4 \ 1 \ = \ 0 \ = \ 0 \ = \ - \ 1 \ = \ =$

■ Phương trình có 3 nghiệm $x_1 = 1, x_2 = \frac{1}{2} + \frac{\sqrt{3}}{2}i, x_3 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$

⇒ Đáp số chính xác là C

<u>Bài 6.</u> Biết z là nghiệm của phương trình $z + \frac{1}{z} = 1$. Tính giá trị biểu thức $P = z^{2009} + \frac{1}{z^{2009}}$

$$\mathbf{A} \cdot P = 1$$

$$\mathbf{B}.\,P=0$$

$$\mathbf{C}.P = \frac{5}{2}$$
 $\mathbf{D}.P = \frac{7}{4}$

D.
$$P = \frac{7}{4}$$

Lời giải:

& Cách Casio

• Quy đồng phương trình $z + \frac{1}{z} = 0$ ta được phương trình bậc hai z^2 z + 1 = 0. Tính nghiệm phương trình này với chức năng MODE 5 3

[MODE] [5] [3] [1] = [-1] [1] [1] [1]

$$\chi_{1} = \chi_{2} = \frac{1}{2} + \frac{\sqrt{3}}{2} \mathbf{i}$$

■ Ta thu được hai nghiệm z nhưng hai nghiệm này có vai trò như nhau nên chỉ cần lấy một nghiệm z đại diện là được

Với $z = \frac{1}{2} \frac{\sqrt{3}}{2}i$ ta chuyển về dạng lượng giác $\Rightarrow z = 1 \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$

$$V_{ay}^{2009} \Rightarrow z^{2009} = 1^{2009} \left(\cos 2009 \cdot \frac{\pi}{3} + i \sin 2009 \cdot \frac{\pi}{3}\right) = \left(\cos 2009 \cdot \frac{\pi}{3} + i \sin 2009 \cdot \frac{\pi}{3}\right)$$

Tính z^{2009} và lưu và biến A

ON COS 2 0 0 9 X = SHFT x10" 3 D) + ENG sin 2 0 0 9

★ SHFT x10² **3) | SHFT RCL (-)**

0.5-0.866025403 \\ 0.5-0.866025403 \\

Tổng kết $P = A + \frac{1}{4} = 1$

CMPLX ☑ Math ▲

A+ 1 A

1

⇒ Đáp số chính xác là **A**