Лабораторная работа 3.2.3

Герасименко Д.В.

2 курс ФРКТ, группа Б01-104

Аннотация

Тема:

Резонанс токов в параллельном контуре

Цель работы: Исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура

Оборудование:

Генератор сигналов, источник тока, нагруженный на параллельный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

Теория

Рис. 1. Блок-схема экспериментального стенда

Из данной схемы цепи ток на генераторе:

$$I = \frac{E}{R_I} = \frac{E_0 cos(\omega t + \varphi_0)}{R_I} = I_0 cos(\omega t + \varphi_0)$$

$$R_S = \frac{U_{RS}}{I} = \frac{U_{RS}}{\omega C U_{CS}} = \frac{1}{\omega C} tg\delta$$
(1)

где R_S - эквивалентное последовательное сопротивление (ЭПС). Для используемых емкостей C_n выполнено

$$\operatorname{tg} \delta < 10^{-3}; \ R_{\Sigma} = R + R_L + R_S$$

где R_{\sum} - суммарное активное сопротивление контура. Воспользуемся методом комплексных амплитуд:

$$Z_L = R_L + i\omega L; \ Z_C = R_S - i\frac{1}{\omega C}; \ Z = R_{\sum} + i\left(\omega L - d\frac{1}{\omega C}\right)$$
 (2)

Тогда напряжение на контуре и токи на индуктивной и емкостной частях контура при нулевой начальной фазе можно предствить в виде:

$$\begin{split} I_c &= I \frac{Z_L}{Z_C + Z_L} = iQI_0 \frac{\omega}{\omega_0} \frac{1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega}}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \\ I_L &= I \frac{Z_c}{Z_C + Z_L} = iQI_0 \frac{\omega_0}{\omega} \frac{1 + itg\delta}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \\ U &= I \frac{Z_L Z_c}{Z_C + Z_L} = Q\rho I_0 \frac{(1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega})(1 + itg\delta)}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \end{split}$$

где $\omega_0=\frac{1}{\sqrt{LC}}$ - собственная частота, $\rho=\sqrt{\frac{L}{C}}$ - реактивное сопротивление контура, $Q=\frac{\rho}{-}R_{\sum}$ - добротность

Рассмотрим случай, когда $|\Delta\omega|=|\omega-\omega_0|\ll\omega_0$. Тогда

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} = \frac{2\Delta\omega}{\omega_0} \tag{3}$$

Пренебрегая поправками порядка Q^{-2} , получим:

$$I_C(t) = Q I_0 \frac{\omega}{\omega_0} \frac{\cos(\omega t - \psi_C)}{\sqrt{1 + (\tau \Delta \omega)^2}}; \quad \psi_C = \arctan(\tau \Delta \omega) - \frac{\pi}{2} + \frac{R + R_L}{\rho}$$
(4)

$$I_L(t) = Q I_0 \frac{\omega}{\omega_0} \frac{\cos(\omega t - \psi_L)}{\sqrt{1 + (\tau \Delta \omega)^2}}; \quad \psi_L = \arctan(\tau \Delta \omega) + \frac{\pi}{2} - \delta$$
 (5)

$$U(t) = Q\rho I_0 \frac{\omega}{\omega_0} \frac{\cos(\omega t - \psi_U)}{\sqrt{1 + (\tau \Delta \omega)^2}}; \quad \psi_U = \arctan(\tau \Delta \omega) + \frac{\omega_0}{\omega} \frac{R + R_L}{\rho} - \delta$$
 (6)

где $au=rac{2L}{R_{\Sigma}}=rac{2Q}{\omega_0}$ - время затухания. При резонансе, т.е. когда $\Delta\omega=0$:

$$I_C(\omega_0) = QI_0; \ \psi_C(\omega_0) = \frac{\pi}{2} - \frac{R + R_L}{\rho}$$

$$I_L(\omega_0) = QI_0; \ \psi_L(\omega_0) = -\frac{\pi}{2} + \delta$$

$$U(\omega_0) = Q\rho I_0 = Q^2 R_{\sum} I_0; \ \psi_U(\omega_0) = -\frac{R + R_L}{\rho} + \delta$$
$$\psi'_C(\omega_0) = \psi'_L(\omega_0) = \psi'_U(\omega_0) = -\tau$$

Выполнение

Данные установки: R = 3,50 Ом, $R_1 = 1008$ Ом.

I. Измерения резонансных частот и напряжений, а также сопутствующих величин

Проведем для 7 разных конденсаторов емкости C_n измерения резонансных частот и напряжений на них, поддерживая напряжение на вольтметре 1 равным E=0,2 B, а также вычислим дополнительные величины, следующие из наших измерений, по следующим формулам:

$$L = \frac{1}{C(2\pi f)^2} \tag{7}$$

$$\rho = \frac{1}{2\pi f C} \tag{8}$$

$$Z_{\text{pes}} = \frac{U}{E_0} R_1 \tag{9}$$

$$Q = \frac{UR_1}{E_0} 2\pi f C \tag{10}$$

$$R_{\sum} = \frac{E_0}{UR_1} \frac{1}{(2\pi fC)^2} \tag{11}$$

$$R_{Smax} = 10^{-3} \cdot \frac{1}{\omega_0 C} \tag{12}$$

$$R_L = \frac{E_0}{UR_1} \frac{1}{(2\pi fC)^2} - R - 10^{-3} \cdot \frac{1}{\omega_0 C}$$
 (13)

Результаты занесём в таблицу:

Nº	Сп, нФ	f_0, кГц	U, B	E, B	L , мк Γ н	ρ , Om	Zрез, Ом	Q	R, Ом	Rs, Ом	R_L , Om
1	22,0	34,4	1,55	0,279	972,97	210,30	4704,55	22,37	9,40	0,21	5,28
2	33,1	28,0	1,07	0,279	976,10	171,73	3126,89	18,21	9,43	0,17	5,35
3	47,9	23,5	0,77	0,280	957,57	141,39	2160,75	15,28	9,25	0,14	5,20
4	57,4	21,2	0,65	0,280	981,88	130,79	1803,14	13,79	9,49	0,13	5,45
5	66,7	19,7	0,57	0,280	978,55	121,12	1551,72	12,81	9,45	0,12	5,42
6	82,1	17,7	0,46	0,280	984,81	109,52	1260,66	11,51	9,52	0,11	5,50
7	99,6	16,1	0,39	0,281	981,14	99,25	1039,16	10,47	9,48	0,10	5,47
Средние значения			976,1						5,4		
С	Среднеквадратичная погрешность				3,4						0,04

II. Измерение АЧХ

Теперь измерим амплитудно-частотную характеристику для конденсаторов C_3, C_4 . При этом посчитаем также измеряемые величины по отношению к резонансным U_0, f_0 . Результаты сведем в таблицу:

f ,к Γ ц	U,B	f/f_0	U/U_0
19,0	0,157	0,805	0,209
19,4	0,159	0,822	0,212
19,8	0,167	0,839	0,223
20,2	0,179	0,856	0,239
20,6	0,196	0,873	0,261
21,0	0,215	0,890	0,287
21,4	0,242	0,907	0,323
21,8	0,284	0,924	0,379
22,2	0,342	0,941	0,456
22,6	0,426	0,958	0,568
23,0	0,572	0,975	0,763
23,4	0,749	0,992	0,999
23,8	0,735	1,008	0,980
24,2	0,549	1,025	0,732
24,6	0,373	1,042	0,497
25,0	0,277	1,059	0,369
25,4	0,213	1,076	0,284
25,8	0,171	1,093	0,228

f ,к Γ ц	$_{U,\mathrm{B}}$	f/f_0	U/U_0
19,0	0,206	0,888	0,317
19,3	0,226	0,902	0,348
19,6	0,250	0,916	0,385
19,8	0,277	0,925	0,426
20,1	0,318	0,939	0,489
20,4	0,379	0,953	0,583
20,7	0,467	0,967	0,718
21,1	0,619	0,986	0,952
21,4	0,641	1,000	0,986
21,7	0,527	1,014	0,811
22,0	0,380	1,028	0,585
22,3	0,298	1,042	0,458
22,6	0,236	1,056	0,363
22,9	0,189	1,070	0,291

Теперь найдем добротность по ширине резонансной кривой $\delta\omega$ на 2 графике как

$$Q = \frac{\omega_0}{\Delta\omega} \tag{14}$$

Где $\Delta \omega$ — расстояние между частотами при значении напряжения $\frac{1}{\sqrt{2}} \approx 0.707$. Получаем ответ:

$$Q_3 = (17.5 \pm \Delta Q)$$
 $Q_4 = (16.7 \pm \Delta Q)$ $\Delta Q = \frac{|Q_3 - Q_4|}{2} = 0.4$ (15)

III. Фазово-частотная характеристика

Для тех же кондесаторов определим фазово-частотную характеристику. Будем определять разность фазмежду сигналами U(t), E(t) как $\Delta \varphi = \frac{x}{x_0} \varphi$, где x, x_0 — расстояния от начала отсчёта до момента обращения графиков этих значений в нуль. Результаты занесем в таблицу:

f ,к Γ ц	f/f_0	x,cm	x_0,cm	x/x_0	φ/π
19,0	0,81	2,8	5,4	0,52	0,165
19,4	0,82	2,8	5,3	0,53	0,168
19,8	0,84	2,7	5,0	0,54	0,172
20,2	0,86	2,6	5,0	0,52	0,166
20,6	0,87	2,5	5,0	0,50	0,159
21,0	0,89	2,5	4,8	0,52	0,166
21,4	0,91	2,4	4,7	0,51	0,163
21,8	0,92	2,3	4,7	0,49	0,156
22,2	0,94	2,2	4,6	0,48	0,152
22,6	0,96	1,8	4,5	0,40	0,127
23,0	0,97	1,5	4,3	0,35	0,111
23,4	0,99	0,8	4,2	0,19	0,061
23,8	1,01	0,5	4,2	0,12	0,038
24,2	1,03	0,7	4,3	0,16	0,052
24,6	1,04	1,0	4,2	0,24	0,076
25,0	1,06	1,2	4,2	0,29	0,091
25,4	1,08	1,3	4,0	0,33	0,103
25,8	1,09	1,4	4,0	0,35	0,111

f ,к Γ ц	f/f_0	x,cm	x_0,cm	x/x_0	φ/π
19,0	0,89	2,7	5,3	0,51	0,162
19,3	0,90	2,6	5,3	0,49	0,156
19,6	0,92	2,6	5,2	0,50	0,159
19,8	0,93	2,5	5,1	0,49	0,156
20,1	0,94	2,3	5	0,46	0,146
20,4	0,95	2,1	4,9	0,43	0,136
20,7	0,97	1,8	4,8	0,38	0,119
21,1	0,99	1,1	4,7	0,23	0,074
21,4	1,00	0,4	4,6	0,09	0,028
21,7	1,01	0,6	4,6	0,13	0,042
22,0	1,03	0,8	4,5	0,18	0,057
22,3	1,04	1	4,4	0,23	0,072
22,6	1,06	1,2	4,4	0,27	0,087
22,9	1,07	1,4	4,3	0,33	0,104

График фазово-частотной характеристики в осях $\frac{\Delta \phi}{\pi} \left(\frac{f}{f_0} \right)$

Определим добротности контуров как расстояние $\frac{1}{Q}$ между точками по оси x, в которых фаза меняется от $\frac{-\pi}{4}$ до $\frac{\pi}{4}$:

$$Q_3 \approx Q_4 = 16 \pm \Delta Q$$
 $\Delta Q = \frac{\sigma_x}{x} Q_{\rm cp} = 0.4$ (16)

IV. График зависимости R_L от f_{0n}

Теперь построим график зависимости $R_L(f_{0n})$ и проведем прямую $\langle R_L \rangle = 5,4$ Ом.

Рис. 1: График зависимости $R_L(f_{0n})$

V. Векторная диаграмма

Теперь построим векторную диаграмму для контура с наименьшей добротностью, т.е. для последнего — $Q_4=16,9.$

Посчитаем ток $I=\frac{E}{R_1}=\frac{0,2}{953}\approx 0,2$. Его вектор равен сумме: $\vec{I}=\vec{I_L}+\vec{I_C}$, причем сам \vec{I} расположен на оси абсцисс, а его компоненты расположены к нему под углами

$$\varphi_C = \frac{\pi}{2} - \frac{R + R_l}{\rho}, \quad \varphi_L = -\frac{\pi}{2} + \delta \tag{17}$$

Здесь $\delta \simeq 10^{-3}$ — очень малый параметр установки, которым допустимо пренебречь при расчёте, однако можно изобразить для наглядности. Подсчитаем угол $\varphi_C' = \frac{R+R_L}{\rho} = \frac{3.9+5.4}{140.6} \approx 0,0665$.

Аналогичный угол у напряжения $\vec{U}: \varphi_U = -\frac{R+R_l}{\rho}$. Т.е. оно незначительно отклоняется от оси абсцисс на отрицательный угол. Изобразим это на рисунке.

В данной работе мы изучили резонанс токов в параллельном контуре. С помощью непосредственных измерений, графиков АЧХ и Φ ЧХ мы определили добротность контуров и получили, в пределах погрешности, хорошо совпадающие результаты.

Таблица 6. Значения Q, полученные разными способами

По результатам АЧХ	По результатам ФЧХ
$Q_3 = 17.5 \pm 0.4$	$Q_3 = 16.0 \pm 0.4$
$Q_4 = 16.7 \pm 0.4$	$Q_4 = 16.0 \pm 0.4$

Проделав измерения при двух разных напряжениях E, мы выяснили, что меняется только абсолютное значение резонансных амплитуд напряжения U (увеличивается при более высоком E).

В конце работы мы построили векторную диаграмму как наглядное представление "резонанса токов".