MATH 416H Lecture 3 Note

James Liu

Edit: August 30, 2024, Class: Aug 30

 $F = \mathbb{C}$ or $F = \mathbb{R}$ distinguish by context.

1 Linear maps

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$

Claim that for a linear map $L_A: F^n \to F^m \exists A \text{ that } L_A(\overrightarrow{x}) = A \overrightarrow{x}$ prof is similar with the ones in L1 note.

2 Vector Space

2.1 Linear Combinations

Let V be a Vector space, $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \cdots, \overrightarrow{v_k}\} \subseteq V$ A linear combination of v_1, \cdots, v_k is a vector of the form $\overrightarrow{u} = \lambda_1 \overrightarrow{v_1} + \lambda_2 \overrightarrow{v_2} + \lambda_3 \overrightarrow{v_3} + \cdots + \lambda_k \overrightarrow{v_k}$ for some $\lambda_i \in F$

2.1.1 Example

In \mathbb{R}^2 , $\overrightarrow{u} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ is a linear combination from $\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\overrightarrow{v_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, as $\overrightarrow{u} = 1 \times \overrightarrow{v_1} + 2 \times \overrightarrow{v_2}$

2.2 Span

A set of vectors $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \cdots, \overrightarrow{v_k}\} \subseteq V$ in a vector space V span V if $\forall \overrightarrow{u} \in V$, $\exists \lambda_1 \cdots \lambda_k \in F$ that $\overrightarrow{u} = \lambda_1 \overrightarrow{v_1} + \lambda_2 \overrightarrow{v_2} + \lambda_3 \overrightarrow{v_3} + \cdots + \lambda_k \overrightarrow{v_k}$

2.2.1 Example

in \mathbb{R}^2 , $\binom{1}{0}$, $\binom{1}{1}$ spans the vector space of \mathbb{R}^2 while $\binom{1}{0}$, $\binom{2}{0}$ does not.

2.3 Linear dependency

A set of vectors $\{\overrightarrow{v_1},\overrightarrow{v_2},\cdots,\overrightarrow{v_k}\}\subseteq V$ in vector space V is **linearly dependent** if $\exists \lambda_1,\lambda_2,\lambda_3,\cdots,\lambda_k\in F$ not all being zeros while $\lambda_1\overrightarrow{v_1}+\lambda_2\overrightarrow{v_2}+\cdots+\lambda_k\overrightarrow{v_k}=\overrightarrow{0}$ And if a set of vectors are not linearly dependent then it is linear independent.

2.4 Basis

Let V be a vector space over F, A set of vectors $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \cdots, \overrightarrow{v_k}\} \subseteq V$ is a basis if it is linearly independent and spans V.

2.4.1 Definition

Suppose V is a vector space, $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \cdots, \overrightarrow{v_k}\} \subseteq V$. $\forall v \in V, \exists \{\lambda_1, \lambda_2, \lambda_2, \cdots, \lambda_k\}, \lambda_i \in F \text{ that } v = \lambda_1 \overrightarrow{v_1} + \lambda_2 \overrightarrow{v_2} + \lambda_3 \overrightarrow{v_3} + \cdots + \lambda_k \overrightarrow{v_k} \text{ then the set of vectors is a set of basis of } V$

2.5 Examples

1. NO-EXAMPLE
$$\left\{\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix},\begin{pmatrix}1\\1\end{pmatrix}\right\} \text{ is not a set of basis for } \mathbb{R}^2$$

2.