ABSTRACT OF THE DISCLOSURE

A modular exponentiation calculation apparatus obtains a first RNS representation of a value $Cp^{dp} \times B \mod p$ based on an RNS representation of a remainder value $Cp = C \mod p$ and a remainder value $dp = d \mod (p-1)$, obtains a second RNS representation of a value $Cq^{dq} \times B \mod q$ based on an RNS representation of a remainder value $Cq = C \mod q$ and a remainder value $dq = d \mod (p-1)$, obtains a third RNS representation of an integer m' congruent with $C^d \mod (p \times q)$ based on both the first and second RNS representations, and obtains $m = C^d \mod (p \times q)$ based on a value of the integer m' obtained by converting the third RNS representation into a binary representation.

10

5