DNA Extraction and Library Prep

Microbiome Kickstart Workshop Monday 12th 2024

Veronica Roman-Reyna

Overview

Experimental design

- Sampling
- Sequencing technologies
- Contamination
- DNA extraction
- Library prep

Analysis

- Metabarcoding
- Metagenomics
- Metabolomics

Overview

Experimental design

- Sampling
- Sequencing technologies
- Contamination
- DNA extraction
- Library prep

Analysis

- Metabarcoding
- Metagenomics
- Metabolomics

DNA extraction

- 1. Cell lysis
- 2. DNA Separation
- 3. DNA Wash
- 4. DNA Elution/resuspension
- 5. Quality and Quantity Assessment

DNA extraction

What is DNA extraction?

• Isolate and purify DNA from other cell components.

images: BioRender.

1. Cell lysis

Kit or "manual" extraction

6

1. Cell lysis

Mechanical:

Garnet

Chemical:

- Surfactants (aka. soaps)
- Enzymes
 - CTAB, SDS, guanidine
 - Lysozymes

images: BioRender, Revvity.

2. DNA separation

Phase separation

Phenol/chloroform CTAB

Column binding

DNA binds to silica membrane

images: BioRender, generi-biotech.

3. DNA wash

Remove any remaining salts

Ethanol Isopropanol

images: BioRender

4. Elution/resuspension

Dissolve DNA

Nuclease-free Water

Buffer

Long term storage TE buffer

images: BioRender

5. Quality and Quantity Assessment

Spectrophotometry

Nanodrop, UV5nano, Eppendorf

- "Guestimate" of DNA concentration.
- · Best for quality assessment.

- A260/A280 < 1.8 = protein contamination
- A260/A230 < 1.8 = organic contaminants

Fluorescence

Qubit or Quantus

- Accurate DNA concentration
- Dye binds to DNA
- Compares to a standard/curve

Electrophoresis

Agarose gels

- DNA integrity
 - Degradation (smear)
 - Short/long reads
- Purity
 - RNA "leftovers"

TapeStation and Bioanalyzer systemsMicrofluidic chip/channels

- Accurate DNA and RNA
- concentration
- DNA integrity

images: Thermo, Promega, Agilent.

DNA extraction

Considerations

- Why **type** of microbe are you extracting from?
 - How harsh/gentle you should lyse cells?
- How much biomass are you expecting to collect?
- Are there **inhibitors** from your sample?
- Is this for short or long read sequencing?
- What controls should you consider?
- Are you cost-limited?

Library preparation

- 1. DNA fragmentation.
- 2. Adaptor ligation.
- 3. Library amplification
- 4. Pooling

Library Preparation

What is library preparation?

- Prepare DNA for sequencing.
- Create a collection of DNA (library) fragments that are compatible with the sequencing platform.
- Adaptor: short DNA sequence that enable DNA fragment to attach to the sequencing platform. For example, P5, P7.
- **Barcode** (index): <u>unique</u> short DNA sequence to allow the differentiation of multiple samples.

1. DNA fragmentation

Short-read seq.

Illumina

Make small fragments (<1000bp)

Long-read seq.

Oxford Nanopore PacBio

- Direct or DNA fragments.
- Sequence long fragments (>20Kb)

- Mechanical shearing
- Enzymatic digestion
- Tagmentation
- PCR

2. Fragmentation and Adaptor Ligation

Tagmentation

Is a molecular biology technique used to simultaneously **fragment** DNA and **add** known DNA sequences in a single step.

Transposase Enzyme preloaded with known sequences ("tags").

image: Illumina

Metagenomic library (Illumina Nextera)

1. Tagmentation

2. Library amplification.

image: Illumina

Metagenomic library (Illumina Nextera)

image: Illumina, BioRender

16S rRNA and ITS sequencing libraries

One-step (single PCR)

Two-step (two PCRs)

image: de Muinck et al. 2017

Need to order many primers with barcodes in them. (plan barcodes in advance).

image: IDT.com

Do not need to plan barcodes in advance.

4. Pooling / multiplexing

Library preparation (unique barcodes)

Pool samples and sequence

De-multiplex

images: Illumina

Breakout rooms!

Running a microbiome study of Mars

- 1. How would you design DNA extraction and library preparation for your study?
- 2. What are some considerations of your design during the DNA extraction stage?
- 3. What are some considerations of your design during the library prep stage?
- 4. How would you ensure your DNA extractions and library preps are good quality?
- 5. Do current DNA extraction protocols designed for Earth-based life work effectively with potential Martian biomolecules, which may have different chemical compositions?

