

Pauta Interrogación 1

29 de Septiembre de 2025

Pregunta 1

Sean Σ y Σ' dos conjuntos de fórmulas proposicionales. Sea φ una fórmula proposicional. ¿Son las siguientes afirmaciones verdaderas o falsas? Demuestre o de un contraejemplo.

- (a) Si $\Sigma \models \varphi$ o $\Sigma' \models \varphi$, entonces $\Sigma \cup \Sigma' \models \varphi$.
- (b) Si $\Sigma \cup \Sigma' \models \varphi$, entonces $\Sigma \models \varphi$ o $\Sigma' \models \varphi$.

Solución

(a) Esta afirmación es verdadera.

Notación sección 1 y 3:

Supongamos que $\Sigma \models \varphi$ o $\Sigma' \models \varphi$ y demostremos que $\Sigma \cup \Sigma' \models \varphi$. Sea σ una valuación tal que $\sigma(\Sigma \cup \Sigma') = 1$. Debemos demostrar que $\sigma(\varphi) = 1$. Por hipótesis sabemos que $\Sigma \models \varphi$ o $\Sigma' \models \varphi$, supongamos que se cumple el primer caso $\Sigma \models \varphi$ (el segundo caso es análogo). Como $\Sigma \subseteq \Sigma \cup \Sigma'$, tenemos que $\sigma(\Sigma) = 1$. Como $\Sigma \models \varphi$, concluimos que $\sigma(\varphi) = 1$.

Notación sección 2:

Supongamos que $\Sigma \models \varphi$ o $\Sigma' \models \varphi$ y demostremos que $\Sigma \cup \Sigma' \models \varphi$. Fijamos una valuación de las variables tal que todas las fórmulas en $\Sigma \cup \Sigma'$ tomen valor 1. Debemos demostrar que $\varphi = 1$ para esta valuación. Por hipótesis sabemos que $\Sigma \models \varphi$ o $\Sigma' \models \varphi$, supongamos que se cumple el primer caso $\Sigma \models \varphi$ (el segundo caso es análogo). Como $\Sigma \subseteq \Sigma \cup \Sigma'$, tenemos que todas las fórmulas en Σ toman valor $1\sigma(\Sigma) = 1$. Como $\Sigma \models \varphi$, concluimos que $\varphi = 1$ para nuestra valuación de las variables.

(b) Esta afirmación es falsa.

Notación sección 1 y 3: Demostremos esto con un contraejemplo. Sea $\Sigma = \{p\}$, $\Sigma' = \{q\}$ y $\varphi = p \wedge q$. Tenemos que se cumple $\Sigma \cup \Sigma' \models \varphi$, es decir, $\{p,q\} \models p \wedge q$, ya que cada vez que p y q son verdaderos, entonces $p \wedge q$ debe ser verdadero. Por otra parte, se cumple que $\Sigma \not\models \varphi$, es decir, $\{p\} \not\models p \wedge q$, ya que podemos tomar la valuación $\sigma(p) = 1$ y $\sigma(q) = 0$, obteniendo que $\sigma(\Sigma) = 1$ y $\sigma(\varphi) = 0$. De manera analoga, tenemos que $\Sigma' \not\models \varphi$.

Notación seccion 2:

Demostremos esto con un contraejemplo. Sea $\Sigma = \{p\}$, $\Sigma' = \{q\}$ y $\varphi = p \land q$. Tenemos que se cumple $\Sigma \cup \Sigma' \models \varphi$, es decir, $\{p,q\} \models p \land q$, ya que cada vez que p y q son verdaderos, entonces $p \land q$

debe ser verdadero. Por otra parte, se cumple que $\Sigma \not\models \varphi$, es decir, $\{p\} \not\models p \land q$, ya que podemos tomar la valuación p=1 y q=0 cuando todas las fórmulas en Σ son verdaderas pero $\phi=p \land q$ es falsa. De manera analoga, tenemos que $\Sigma' \not\models \varphi$.

Pregunta 2

Considere las siguientes interpretaciones sobre el predicado binario <.

- \mathcal{I}_1 tiene como dominio a \mathbb{N} e interpreta a < como el orden usual en los números naturales.
- ullet \mathcal{I}_2 tiene como dominio a \mathbb{Z} e interpreta a < como el orden usual en los números enteros.
- \mathcal{I}_3 tiene como dominio a \mathbb{Q} e interpreta a < como el orden usual en los números racionales.

Responda las siguientes preguntas sobre estas interpretaciones.

- (a) Construya una oración φ_1 tal que φ_1 es cierta en \mathcal{I}_1 y falsa en \mathcal{I}_2 e \mathcal{I}_3 .
- (b) Construya una oración φ_2 tal que φ_2 es cierta en \mathcal{I}_2 y falsa en \mathcal{I}_1 e \mathcal{I}_3 .
- (c) Construya una oración φ_3 tal que φ_3 es cierta en \mathcal{I}_3 y falsa en \mathcal{I}_1 e \mathcal{I}_2 .

En cada caso, comente brevemente qué está expresando su oración.

Solución

Para la parte (a), notemos que en los números naturales \mathbb{N} existe un número mínimo, es decir, un número que es menor o igual que todos los naturales (el número 0). Esto no es cierto en los enteros \mathbb{Z} ni en los racionales \mathbb{Q} . Luego en esta parte podemos tomar la oración:

$$\varphi_1 = \exists x \forall y \, (x = y \lor x < y)$$

Vamos directamente a la parte (c). Una propiedad que cumplen los racionales es la siguiente: para todo par de números racionales a y b tal que a < b, existe un número racional c entremedio, vale decir, tal que a < c < b (por ejemplo, basta tomar c = (a + b)/2). Esto es falso en los números naturales $\mathbb N$ y los enteros $\mathbb Z$ (basta tomar por ejemplo a = 0 y b = 1). Luego en esta parte podemos tomar la oración:

$$\varphi_3 = \forall x \forall y \left((x < y) \to \exists z \left((x < z) \land (z < y) \right) \right)$$

Finalmente, para la parte (b), podemos tomar la oración:

$$\varphi_2 = \neg \varphi_1 \wedge \neg \varphi_3$$

En efecto, φ_1 es verdadera sobre \mathcal{I}_1 así que φ_2 es falsa sobre \mathcal{I}_1 . Por la misma razón, φ_2 es falsa sobre \mathcal{I}_3 . Por el otro lado, φ_1 y φ_3 son falsas sobre \mathcal{I}_2 así que φ_2 es verdadera sobre \mathcal{I}_2 .

Pregunta 3

- (a) Demuestre que $(A \setminus B) \setminus C \subseteq A \setminus (B \setminus C)$, para todos los conjuntos A, B y C.
- (b) Demuestre que $\mathcal{P}(A \setminus B) \neq \mathcal{P}(A) \setminus \mathcal{P}(B)$ para todos los conjuntos A y B.

Solución

- (a) Sean A, B y C conjuntos arbitrarios. Sea $x \in (A \setminus B) \setminus C$. Hay que demostrar que $x \in A \setminus (B \setminus C)$. Como $x \in (A \setminus B) \setminus C$, por definición de la diferencia de conjuntos, tenemos $x \in A \setminus B$ y $x \notin C$. Entonces, $x \in A, x \notin B, x \notin C$. Como $x \notin B$, tenemos $x \notin B \setminus C$. Como $x \in A$, concluimos que $x \in A \setminus (B \setminus C)$.
- (b) Sean A y B conjuntos arbitrarios. Recordar que $\varnothing \in \mathcal{P}(X)$ para todo conjunto X. En particular, $\varnothing \in \mathcal{P}(A \setminus B)$, $\varnothing \in \mathcal{P}(A)$ y $\varnothing \in \mathcal{P}(B)$. Entonces, tenemos $\varnothing \in \mathcal{P}(A \setminus B)$ y $\varnothing \notin \mathcal{P}(A) \setminus \mathcal{P}(B)$. Es decir, \varnothing es un elemento de $\mathcal{P}(A \setminus B)$ pero no es un elemento de $\mathcal{P}(A) \setminus \mathcal{P}(B)$. Concluimos que $\mathcal{P}(A \setminus B) \neq \mathcal{P}(A) \setminus \mathcal{P}(B)$.

Pregunta 4

Recuerde que el sucesor B de un conjunto A se define como $B = A \cup \{A\}$. Demuestre que no existe un conjunto A tal que el sucesor de A es igual a \mathbb{N} , donde \mathbb{N} es el conjunto de los números naturales. (Hint: Recuerde la siguiente propiedad vista en ayudantía: No existe un conjunto A tal que $A \in A$.)

Solución

Recordar que \mathbb{N} es un conjunto inductivo, vale decir, cumple lo siguiente: para todo conjunto B, si $B \in \mathbb{N}$, entonces el sucesor de B está en \mathbb{N} , es decir, $B \cup \{B\} \in \mathbb{N}$. Demostremos la proposición por contradicción. Supongamos que existe un conjunto A tal que $A \cup \{A\} = \mathbb{N}$. Notar que $A \in A \cup \{A\}$, y luego $A \in \mathbb{N}$. Como \mathbb{N} es inductivo, obtenemos que $A \cup \{A\} \in \mathbb{N}$. Concluimos que $\mathbb{N} \in \mathbb{N}$, lo cual contradice la propiedad del hint.

Comentarios corrección

- Los items de cada pregunta valen lo mismo.
- Los estudiantes pueden usar cualquier notación, independiente de su sección.
- No bajar puntaje por "falta de formalidad". Un argumento puede estar correcto, pero puede estar escrito en palabras.
- Sólo bajar puntaje cuando el argumento es incorrecto o incompleto.
- También bajar puntaje en caso que la solución es tan confusa, que no se entiende. Es responsabilidad del estudiante entregar una solución clara.
- La idea es que la corrección no sea binaria (0 o todo el puntaje). Está ok poner puntajes parciales, en caso que la solución no este completamente buena. Eso queda a criterio de los correctores.
- Como siempre, la pauta es una referencia. Podrían llegar otras soluciones que también sean correctas.