Finite State Machine

Definition

- State
- Initial state
- Final state
- Light off Turn light off Light on Transition **Turn light** O

Turn light off

Turn light

on

Dealing with actions with uncertainty

Turn light Markov Decision Process (MDP) off Light off Turn light off Turn light O Light O Assume all the actions will only succeed 90% of the time Turn light on

P_a(s, s'), P(s, a, s')

Assume all the actions will only succeed 90% of the time

Transition function affects the probabilities of the system in each state: starting with light on, then turn the light off

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \times \begin{bmatrix} .1 & .9 \\ .9 & .1 \end{bmatrix} = \begin{bmatrix} .1 \\ .9 \end{bmatrix}$$

- R(s) = immediate reward if the state is s
- Define the goal of a MDP
- For example, if we want the light to be off by the end of the game, we can define
- R(light on) = 0
- R(light off) = 1

Automated action selection: maximize expected rewards

```
current state s
```

reward =
$$sum(p(s,a,s')*r(s'))$$

So if the light is on, what is the best action to do? R1step(S1)

Action1: turn the light on

Reward =
$$(.9*0+.1*1) = .1$$

Action 2: turn the light off

Reward =
$$(.1*0+.9*1) = .9$$

Tuple (S, A, P(.,.), R(.)))

— S -> state space

— A -> action space

 $- P_a(s, s') = Pr(s_{t+1} = s' \mid s_t = s, a_t = a)$

— R(s) = immediate reward if the current state is s

Automated action selection: maximize expected

```
rewards

current state s

for each action a:

reward = sum (p(s,a,s')*r(s'))

select a with the highest reward
```

Discount of future rewards:

```
Total reward after n steps= reward0 + \gamma1* reward1 + \gamma2*
                                       reward2+...+\gamma(n-1)* reward(n-1)
```

I want to calculate rewards over two steps starting from S1 I

```
-- step1 reward, reward0
                                  -- step2 reward, reward1
                             0.9*(R1step(S1)) + 0.1*(R1step(S2))
0.9*R(S1) + 0.1*R(S2)
                                                              A2
```

S2	S4
R=.1	R=1
S1	S3
R=0	R=.5

	Start	End state with probability	with proba	bility	
	State	S1	S2	S3	S4
a1	S1	t.	∞.	۲:	
a2	52	9.		ж.	1.
a3	S3	t.	4.	.2	κi
a4	S4		£.	.5	.2
a5	53	.2	.2	4.	.2

- Starting from state S3
- Assuming you can move 3 steps, and we do not discount future rewards
- What is the best movement?
- Max(sum(p(s,a,s')*(r(s')+ \gamma*future_reward from s')))