Project: Health Care-Prediction of Risk of a Heart Attack

Problem statement: Cardiovascular diseases are the leading cause of death globally. It is therefore necessary to identify the causes and develop a system to predict heart attacks in an effective manner. The data below has the information about the factors that might have an impact on cardiovascular health.

Dataset description:

e Description	Variable
e Age in year	Age
x 1 = male; 0 = female	Sex
p Chest pain type	ср
s Resting blood pressure (in mm Hg on admission to the hospital	trestbps
ol Serum cholesterol in mg/o	chol
s Fasting blood sugar > 120 mg/dl (1 = true; 0 = false	fbs
g Resting electrocardiographic result	restecg
h Maximum heart rate achieved	thalach
g Exercise induced angina (1 = yes; 0 = no	exang
k ST depression induced by exercise relative to res	oldpeak
e Slope of the peak exercise ST segmen	slope
a Number of major vessels (0-3) colored by fluoroscop	ca
al 3 = normal; 6 = fixed defect; 7 = reversible defect	thal
et 1 or	Target

Task to be performed:

- 1. Preliminary analysis:
 - a. Perform preliminary data inspection and report the findings on the structure of the data, missing values, duplicates, etc.
 - b. Based on these findings, remove duplicates (if any) and treat missing values using an appropriate strategy.
- 2. Prepare a report about the data explaining the distribution of the disease and the related factors using the steps listed below:

a. Get a preliminary statistical summary of the data and explore the measures o f central tendencies and spread of the data.

- b. Identify the data variables which are categorical and describe and explore these variables using the appropriate tools, such as count plot.
- c. Study the occurrence of CVD across the Age category.
- d. Study the composition of all patients with respect to the Sex category.
- e. Study if one can detect heart attacks based on anomalies in the resting bloo d pressure (trestbps) of a patient.
- f. Describe the relationship between cholesterol levels and a target variable.
- g. State what relationship exists between peak exercising and the occurrence of a heart attack.
- h. Check if thalassemia is a major cause of CVD.
- i. List how the other factors determine the occurrence of CVD.
- j. Use a pair plot to understand the relationship between all the given variables.
- 3. Build a baseline model to predict the risk of a heart attack using a logistic regression and random forest and explore the results while using correlation analysis and logistic regression (leveraging standard error and pvalues from statsmodels) for feature selection.

In [1]:

```
import numpy as np
import pandas as pd

import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
hcare = pd.read_excel("1645792390_cep1_dataset.xlsx")
```

In [3]:

```
hcare.head()
```

Out[3]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

In [4]:

```
hcare.tail()
```

Out[4]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0
4														•

In [5]:

hcare.shape

Out[5]:

(303, 14)

In [6]:

```
hcare.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

#	Column	Non-Null Cour	it Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64
2	ср	303 non-null	int64
3	trestbps	303 non-null	int64
4	chol	303 non-null	int64
5	fbs	303 non-null	int64
6	restecg	303 non-null	int64
7	thalach	303 non-null	int64
8	exang	303 non-null	int64
9	oldpeak	303 non-null	float64
10	slope	303 non-null	int64
11	ca	303 non-null	int64
12	thal	303 non-null	int64
13	target	303 non-null	int64
	63		. •

dtypes: float64(1), int64(13)

memory usage: 33.3 KB

In [7]:

```
hcare.dtypes
```

Out[7]:

int64 age sex int64 int64 ср trestbps int64 chol int64 fbs int64 int64 restecg thalach int64 int64 exang oldpeak float64 slope int64 int64 ca thal int64 target int64 dtype: object

In [8]:

```
# Checking for missing values
hcare.isnull().sum(axis = 0)
```

Out[8]:

0 age 0 sex 0 ср 0 trestbps chol 0 0 fbs 0 restecg 0 thalach 0 exang 0 oldpeak slope 0 0 ca thal 0 target dtype: int64

In [9]:

hcare.describe()

Out[9]:

	age	sex	ср	trestbps	chol	fbs	restecg	t
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.0
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.6
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.9
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.(
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.5
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.(
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.(
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.0
4								•

We can see that the scale of each feature column is different and varied.

In [10]:

```
# For visualizations
import matplotlib.pyplot as plt
from matplotlib import rcParams
from matplotlib.cm import rainbow
%matplotlib inline
import seaborn as sns
```

In [11]:

From the above histogram plots, we can see that the features are skewed and not normally distributed. Also, the scales are different between one and another.

Understanding the Data

Let us observe the creelation between different features with help of a heat mat.

In [12]:

```
# Creating a correlation heatmap
sns.heatmap(hcare.corr(),annot=True, cmap='terrain', linewidths=0.1)
fig=plt.gcf()
fig.set_size_inches(20,20)
plt.show()
```


From the above HeatMap, we can see that cp and thalach are the features with highest positive correlation whereas exang, oldpeak and ca are negatively correlated. While other features do not hold much correlation with the response variable "target".

Outlier Detection

Since the dataset is not large, we cannot discard the outliers. We will treat the outliers as potential observations.

In [13]:

```
# Boxplots
fig_dims = (15,8)
fig, ax = plt.subplots(figsize=fig_dims)
sns.boxplot(data=hcare, ax=ax);
```


Handling Imbalance

Imbalance in a dataset leads to inaccuracy and high precision, recall scores. There are certain resampling techniques such as undersampling and oversampling to handle these issues.

Considering our dataset, the response variable target has two outcomes "Patients with Heart Disease" and "Patients without Heart Disease". Let us now observe their distribution in the dataset.

In [14]:

```
hcare["target"].value_counts()
```

Out[14]:

1 165
 0 138

Name: target, dtype: int64

From the above chart, we can conclude even when the distribution is not exactly 50:50, but still the data is good enough to use on machine learning algorithms and to predict standard metrics like Accuracy and AUC scores. So, we do not need to resample this dataset.

Train-Test Split

Let us distribute the data into training and test datasets using the train_test_split() function.

```
In [15]:
X = hcare.drop("target",axis=1)
y = hcare["target"]
Logistic Regression
In [16]:
from sklearn.model selection import train test split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.20,stratify=y,random_stat
e=7)
In [17]:
from sklearn.linear_model import LogisticRegression
In [18]:
lr = LogisticRegression()
lr.fit(X_train, y_train)
Out[18]:
LogisticRegression()
In [19]:
pred = lr.predict(X_test)
In [20]:
from sklearn.metrics import accuracy score, confusion matrix, classification report
In [21]:
# Accuracy on Test data
accuracy score(y test, pred)
Out[21]:
0.8032786885245902
In [22]:
# Accuracy on Train data
accuracy_score(y_train, lr.predict(X_train))
```

Out[22]:

0.8471074380165289

Building a predictive system

In [23]:

```
import warnings
in_data = (57,0,0,140,241,0,1,123,1,0.2,1,0,3)

# Changing the input data into a numpy array
in_data_as_numpy_array = np.array(in_data)

# Reshaping the numpy array as we predict it
in_data_reshape = in_data_as_numpy_array.reshape(1,-1)
pred = lr.predict(in_data_reshape)
print(pred)

if(pred[0] == 0):
    print('The person does not have heart disease.')
else:
    print('The person has heart disease.')
```

[0]

The person does not have heart disease.

- Rajeev Vhanhuve