Moments of the value of single payments and annuities with iid returns

- 4.1 Let i_t be the rate of return over the peiord (t-1, t) and suppose $\{i_t : t = 1, ..., 15\}$ is a series of independent random variables all distributed U(0.06, 0.12). Let A_{15} reperesent the accumulation, at time 15, of 1 invested at time 0.
 - (a) Calculate the mean and standard deviation of A_{15} .
 - (b) Making such theoretical assumptions as you feel might be appropriate, calculate the probability that $A_{15} > 4$.
- 4.2 Make the same assumptions in relation to $\{i_t: t=1,\ldots 15\}$ as the previous exercise and let \ddot{s}_{15} represent the accumulation, at time 15, of 1 invested at times 0, 1,and 14. Calculate the mean and standard deviation of \ddot{s}_{15} . (Hint: use spreadsheet)
- 4.3 Show by induction that $\left(\sum_{j=1}^{n} V_{j}\right)^{2} = \sum_{j=1}^{n} V_{j}^{2} + 2 \sum_{j=2}^{n} \sum_{i=1}^{j-1} V_{i}V_{j}$.
- 4.4 Consider a sequence of n payments of $1, (1+s), (1+s)^2, \dots (1+s)^{n-1}$ at unit intervals with the first payment due immediately where s is a scalar constant.

Let i_t be a random variable denoting the return over the time period (t-1,t) where $\{i_t: t=1,\ldots n\}$ is a set of independent and identically distributed random variables.

Justifying your steps, paying particular attention to independence, derive recursive formulae for calculating the first two moments of

- (i) \ddot{z}_n , the accumulation of this cash-flow at time n and
- (ii) (hard) \ddot{u}_n the present value of this cash-flow.