

Description

Image

Caption

1. Nickel used in almost pure form for coinage. © Granta Design 2. AA battery. © Sbn1984 at en.wikipedia - Public domain

The material

Nickel forms a wide range of alloys, valued by the chemical engineering and food processing industries for their resistance to corrosion, and by the makers of furnaces and high temperature equipment for their ability to retain useful strength at temperatures up to 1200 C. Typical of these are the nickel-chromium (Ni-Cr) alloys, often containing some iron (Fe) as well. The chromium increases the already-good resistance to corrosion and oxidation by creating a surface film of Cr203, the same film that makes stainless steel stainless. The data given here are for nickel-chromium alloys. There are separate records for stainless steel and nickel-based super alloys.

Composition (summary)

Ni + 10 to 30% Cr + 0 to 10% Fe

I propertie	

General properties				
Density	518	-	531	lb/ft^3
Price	* 10.2	-	11.3	USD/lb
Date first used	1905			
Mechanical properties				
Young's modulus	29	-	31.9	10^6 psi
Shear modulus	10.4	-	11.9	10^6 psi
Bulk modulus	22.5	-	41.3	10^6 psi
Poisson's ratio	0.305	-	0.315	
Yield strength (elastic limit)	52.9	-	66.7	ksi
Tensile strength	89.2	-	110	ksi
Compressive strength	52.9	-	66.7	ksi
Elongation	20	-	35	% strain
Hardness - Vickers	160	-	200	HV
Fatigue strength at 10^7 cycles	* 35.5	-	55.1	ksi
Fracture toughness	* 72.8	-	100	ksi.in^0.5
Mechanical loss coefficient (tan delta)	* 4e-4	-	0.002	
Thermal properties				
Melting point	2.45e3	-	2.61e3	°F
Maximum service temperature	* 1.65e3	-	1.83e3	°F
Minimum service temperature	-458	-	-456	°F

Nickel-chromium alloys

Thermal conductor or insulator?

Thermal conductivity

5.2 - 8.67 BTU.ft/h.ft^2.F

Specific heat capacity

0.103 - 0.107 BTU/lb.°F

Thermal expansion coefficient

6.67 - 7.78 µstrain/°F

Electrical properties

Electrical conductor or insulator? Good conductor

Electrical resistivity 102 - 114 µohm.cm

Optical properties

Transparency Opaque

Processability

Castability 3
Formability 3 - 4
Machinability 3
Weldability 4 - 5
Solder/brazability 5

Durability: water and aqueous solutions

Water (fresh) Excellent
Water (salt) Excellent
Soils, acidic (peat) Excellent
Soils, alkaline (clay) Excellent
Wine Excellent

Durability: acids

Acetic acid (10%) Excellent Acetic acid (glacial) Excellent Citric acid (10%) Excellent Hydrochloric acid (10%) Acceptable Hydrochloric acid (36%) Unacceptable Hydrofluoric acid (40%) Acceptable Nitric acid (10%) Acceptable Nitric acid (70%) Limited use Phosphoric acid (10%) Acceptable Phosphoric acid (85%) Acceptable Sulfuric acid (10%) Acceptable Sulfuric acid (70%) Acceptable

Durability: alkalis

Sodium hydroxide (10%)

Sodium hydroxide (60%)

Acceptable

Acceptable

Durability: fuels, oils and solvents

Amyl acetate Excellent Benzene Excellent Carbon tetrachloride Excellent Chloroform Excellent Crude oil Excellent Diesel oil Excellent Excellent Lubricating oil Paraffin oil (kerosene) Excellent Petrol (gasoline) Excellent Silicone fluids Excellent

Nickel-chromium alloys

Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Excellent
Acetone	Excellent
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Durability: halogens and gases

Chlorine gas (dry)

Fluorine (gas)

C2 (oxygen gas)

Sulfur dioxide (gas)

Excellent

Excellent

Excellent

Acceptable

Durability: built environments

Industrial atmosphereExcellentRural atmosphereExcellentMarine atmosphereExcellentUV radiation (sunlight)Excellent

Durability: flammability

Flammability Non-flammable

Durability: thermal environments

Tolerance to cryogenic temperatures

Excellent
Tolerance up to 150 C (302 F)

Tolerance up to 250 C (482 F)

Excellent
Tolerance up to 450 C (842 F)

Excellent
Tolerance up to 850 C (1562 F)

Excellent
Tolerance above 850 C (1562 F)

Unacceptable

Geo-economic data for principal component

Annual world production 1.41e6 ton/yr Reserves 6.99e7 I. ton

Primary material production: energy, CO2 and water

Embodied energy, primary production	1.8764	-	2.0764	KCal/ID
CO2 footprint, primary production	* 10.9	-	12.1	lb/lb
Water usage	* 29.4	-	32.4	gal(US)/lb
Eco-indicator 95	5.2e3			millipoints/kg
Eco-indicator 99	2.83e3			millipoints/kg

Material processing: energy

Casting energy	* 1.14e3	-	1.26e3	kcal/lb
Extrusion, foil rolling energy	* 629	-	696	kcal/lb
Rough rolling, forging energy	* 330	-	365	kcal/lb
Wire drawing energy	* 2.28e3	-	2.51e3	kcal/lb
Metal powder forming energy	* 3.72e3	-	4.1e3	kcal/lb
Vaporization energy	* 1.27e6	-	1.4e6	kcal/lb

Iraal/Ib

2.07.4

Nickel-chromium alloys

Coarse machining energy (per unit wt removed)	* 83.2	-	92	kcal/lb
Fine machining energy (per unit wt removed)	* 369	-	407	kcal/lb
Grinding energy (per unit wt removed)	* 687	-	758	kcal/lb
Non-conventional machining energy (per unit wt removed)	1.27e4	-	1.4e4	kcal/lb
Matarial processings CO2 factorint				
Material processing: CO2 footprint	* 0.705		0.000	11. /11.
Casting CO2	* 0.785	-	0.868	lb/lb
Extrusion, foil rolling CO2	* 0.44	-	00	lb/lb
Rough rolling, forging CO2	* 0.23	-	0.25	lb/lb
Wire drawing CO2	* 1.57	-	1.74	lb/lb
Metal powder forming CO2	* 2.75	-	3.03	lb/lb
Vaporization CO2	* 875	-	967	lb/lb
Coarse machining CO2 (per unit wt removed)	* 0.0576	-	0.0637	lb/lb
Fine machining CO2 (per unit wt removed)	* 0.255	-	0.282	lb/lb
Grinding CO2 (per unit wt removed)	* 0.475	-	0.525	lb/lb
Non-conventional machining CO2 (per unit wt removed)	8.75	-	9.67	lb/lb
Material recycling: energy, CO2 and recycle f	raction			
Recycle	V			
Embodied energy, recycling	* 3.26e3	_	3.61e3	kcal/lb
CO2 footprint, recycling	* 2.37	-	2.62	lb/lb
Recycle fraction in current supply	22	_	26	%
Downcycle	1		-	
Combust for energy recovery	×			
Landfill	×			
Biodegrade	×			
Toxicity rating	Non-toxic	;		

A renewable resource? Environmental notes

Nickel alloys are non-toxic and can be recycled.

Supporting information

Design guidelines

Few other alloy systems can equal the nickel-based alloys in their combination of corrosion resistance and strength at low and high temperature. They are used in marine applications for heat exchanges in other structures. Nickel-iron alloys have high magnetic permeability (where electronic shielding and magnetic coils) and low thermal expansion (good for glass-to-metal joints). Invar, an alloy based on nickel, has essentially zero thermal expansion coefficient near room temperature; a magnetic contraction counteracts the ordinary thermal expansion, canceling it out. Nickel-chrome-iron alloys have high electrical resistance and are used as heating elements in toasters and industrial furnaces. Bi-metallic sheet of nickel bonded to copper is used as actuators for thermostats and safety devices. Alloys with titanium (Nitanols) have the remarkable property that they spring back to shape after severe deformation - they are called "shape memory alloys" for this reason.

Technical notes

Ni-Cr-Fe alloys are marketed under a bewildering catalog of tradenames. Chromels are straight Ni-Cr alloys with up to 20% Cr. Durimet and Nichromes contain iron. There are many more.

Phase diagram

Phase diagram description

Nichromes are alloys of nickel (Ni) with 10 - 30% chromium (Cr). They have useful strength and oxidation resistance to 1200 C.

Typical uses

Heating elements and furnace windings; bi-metallic strips; thermocouples; springs; food processing equipment; chemical engineering equipment.

Links

Reference

ProcessUniverse

Producers