Signal Definitions: UNIT - STEP

Unit-Step Function

Unit-Ramp Function

$$r(t) = \begin{cases} t, & \text{for } t \ge 0\\ 0, & \text{for } t < 0 \end{cases}$$

Unit Impulse (Delta Function)

- Zero Duration (Infinitely narrow)
- Infinite Amplitude (height) @ t = 0
- -<u>Finite</u> Area = $Area = \int_{-\infty}^{\infty} \delta(t)dt =$
- -Infinite Energy $Energy = \int_{-\infty}^{\infty} |\delta^{2}(t)| dt =$

OPERATIONS ON IMPULSES

IMPULSE PRODUCT/Siefting PROP:

Unit-Sinc Function

Scaled, Shifted Rectangular **Pulse Function**

How to find $% \beta =\alpha /2$ is setting the $\beta -\alpha /2$ to end point of function.

Oset - + 1 to net endpt and some for T.

Scaled, Shifted Sinusoids

Complex Exponential Representation of Sinusoids

$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$\cos \theta = \mathcal{R}\mathcal{E}\left\{e^{j\theta}\right\} = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin \theta = \mathcal{I}\mathcal{M}\left\{e^{j\theta}\right\} = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$
"Euler Identities"

Operations on signals:

Operations on Signals: Time Scaled: $S\{x(t)\}=x(\alpha t)$

Compressed in time for $|\alpha| = 1$ Ex: y(t) = x() Expanded in time for $|\alpha| = 1$ Ex: y(t) = x() = x()

$$-2 < t < 2 \implies -2/\alpha < t < 2/\alpha$$

Operations on Signals: Time Shift With Reversal y(t) = x(-t+k) = x(-(t-k))

Periodicity, Energy and Power:

Signal Measures

Signal Areas & Integrals:

Signal Area =
$$\int_{-\infty}^{\infty} x(t)dt$$

Absolute Area = $\int_{-\infty}^{\infty} |x(t)|dt$
Absolutely Integrable: $\int_{-\infty}^{\infty} |x(t)|dt$ (finite are:
Time Average = $\frac{1}{2} \int_{-\infty}^{\infty} |x(t)|dt$

Signal Energy = Integral of Instantaneous Power over all time Signal Energy = $\int_{-\infty}^{\infty} P_i(t)dt =$

Avg. Signal Power = Time average of Instant. Power over all time = Total Signal Energy / Time Duration (i.e. energy per unit of time) Avg. Signal Power = $\lim_{t\to\infty} \frac{1}{t} \int_{-t/t}^{t/2} |x^2(t)| dt$ If nonperiodic signal = Energy in 1 Period | If periodic signal | with period "T"

Energy vs. Power Signal:

Signal is a power signal if: (example periodic fns)

- If the signal is not time-limited (infinite time duration
- Has Infinite total signal energy
- Has finite non zero Power (Energy/Period)

Signal is an Energy signal if: (example non periodic fns, half cycle sinusoid)

- Has finite signal Energy
- Has zero signal power($E/\infty=0$)

Power of a Sinusoid: $P_{avg} = \frac{A^2}{2}$

$$P_{ava} = P_0 + \sum_{k=1}^{\infty} P_k = X_0^2 + \sum_{k=1}^{\infty} \frac{A_k^2}{2}$$

Energy of half cycle sinusoid: $E = \frac{A^2b}{2}$

Signal Measures - Periodic Signals

Power Signals: Finite Power / Energy = Average Value $\overline{x} = \frac{1}{T} \int_{t_0}^{t_0+T} x(t) dt$ (DC value)

Average Value
$$\overline{x} = \frac{1}{T} \int_{t_0}^{t_0+t} x(t) dt$$
 (DC value)

Effective Value
$$x_{eff} = \int_{t_0}^{t_0+T} dt = x_{rms}$$
 (rms value)

Effective Value = DC value having same average power as
$$x(t)$$
 = (equare) ROOT of the MEAN (average) of $x(t)$ SQUARED = \sqrt{P}

Signal Power =
$$\frac{1}{T} \int |x^2(t)| dt$$

The "fundamental frequency" f_0 of the sum signal will be the " " of the individual frequencies

Even and Odd Parts of f(t)

Any function f(t) can be represented by the sum of an even symmetric function $f_c(t)$ and an odd symmetric function $f_0(t)$,

$$\begin{split} f(t) &= f_e(t) + f_0(t) \\ \text{determined by:} \\ \text{Even Part of } f(t): \quad f_e(t) &= \frac{f(t) + f(-t)}{2} \\ \text{Odd Part of } f(t): \quad f_o(t) &= \frac{f(t) - f(-t)}{2} \end{split}$$

System Classifications:

Checking Differential Equation For Linearity:

System is <u>Nonlinear</u> if the Diff. Equation describing it contains:

- · A constant term y(t) = x'(t) + 3
- · Products of inputs and/or output terms $y'(t) = b_0 x^2(t) + b_1 x'(t)y(t) + \dots$

Checking Differential Equation For Time-Invariance:

System is Time <u>Varying</u> if the Diff. Equ. describing its behavior contains:

- Coefficients \boldsymbol{A}_k or \boldsymbol{B}_k that are functions

$$y(t) = 2tx'(t) + ...$$

• Time-scaled inputs or output terms $y(t) = b_0 x(2t) + \dots$

Static vs. Dynamic

Static Systems (instantaneous)

- Determining the present output of the system $y(t_0)$ at any particular time " t_0 " requires _____ of the input $x(t_0)$
- All x(t) and y(t) terms have the _______ arguments ().
- Effects of previous inputs do not linger to affect the output later -
- · No derivatives or integrals in system equation. $y(t) = \mathcal{S}\{x(t)\} = Cx(t) + A$

Other Classes / Properties

Causal (non-anticipating)

- At any time " t_0 " (the "present"), the output of the system $y(t_0)$ is determined completely by values of the input x(t)that arrived at the <u>same</u> or <u>previous</u> times ... i.e. x(t) for t ___ t₀
- Causal systems do not use the input $x(t+\tau)$ to determine the present output y(t)

Causal Systems (non-anticipating)

Determining Causality from the system differential equation:

 If the equation is in terms of y(t), y'(t), y"(t),... there are no _____terms in the equation 2. There are no

SOLVING DIFFERENTIAL EQNS:

Alternate Solution Linear Diff. Equ.

(Method of Undetermined Coefficients)

Total Response y_T(t) has 2 Alternate Components

Zero State Response y_{zS}(t) x(t) → Relaxed y_{zS}(t)
 Different from the Forced Response: y_{zS}(t) ≠ y_t(t)
 Includes the Forced Response and part of the Natural Response:

- $\begin{array}{lll} & \text{Includes the part of the Natural Response due to IC's:} \\ & \text{Total Natural Response: } Y_{N_i}(t) = Y_{N_i}(t) + Y_{N_2}(t) \\ & \text{If system is truly "relaxed" (all IC's=0),} & Y_{Zi}(t) = 0 \end{array}$

Power of periodic signal made up of sinusoids ($X_0 isconst$): $P_{avg} = P_0 + \sum_{k=1}^{\infty} P_k = X_0^2 + \sum_{k=1}^{\infty} \frac{A_k^2}{2}$

Solution Method

Method of Undetermined Coefficients -

Solution Steps:

- 1. Convert the Differential Equation to a Single Input Case
- 2. Find ZIR, the **zero-input response**, $y_{ZIR}(t) = y_{N_1}(t)$
- 3. Find the forced response, y_F(t) of the Single Input Case
- 4. Find ZS1, the zero-state response of the Single Input Case $y_{ZS1}(t) = y_F(t) + y_{N_2}(t)$
- 5. Find ZSR, the zero-state response of the General Case
- 6. Find General Case total response, $y_T(t) = y_{ZSR}(t) + y_{ZIR}(t)$

Solution Method

Solution Steps:

1. Find ZIR, the zero-input response, $y_{ZI}(t) = y_{N_1}(t)$ ____; using given I.C.'s.] [Solve with _____

2. Find the forced response, $y_F(t)$

[$y_F(t)$ is a solution of the Single Input Case Diff Equ.]

2. Find ZSR, the **zero-state response**, $y_{ZS}(t) = y_F(t) + y_{N_2}(t)$ [Solve with actual x(t): using

Solution Method - General Case

hen terms such as A x(t) + B dx(t)/dt appear on the right side of a generalized differential equation, a similar approach is used.

 $y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + ... + a_1y'(t) + a_0y(t) = A x(t) + B dx(t)/dt$ We first find the <u>zero state response</u> of the <u>single input case</u> y_{ss1}(t), the response due to <u>iust the x(t)</u> forcing function, for the modified (single input case) differential equation:

$$y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + ... + a_1y'(t) + a_0y(t) = x(t)$$

2. Then linearity and superposition are used to find the overall ZSR due to all the input terms [x(t) and its derivatives] on the right side of the

If input x(t) → yields S.I.C. ZS response y_{zst}(t) from the system, then input of [A x(t) + B dx(t)/dt] → yields Gen. Zero State Response
[Ay_{2s1}(t) + Bdy_{2s1}(t)/dt]

Special Case: Forcing Function Matches Nat. Response Term

Forcing Function (RHS) Form of Forced Response C_0

te: For entries including an e^{at} forcing function (*), if 'a' is also a *root of the characteristic equation*, repeated r times then the forced response should be multiplied by tr.

STABILITY FROM LOOKING AT DE:

BIBO Stability Requirements

- . Every root of the characteristic equation must have a
- Constrains natural response to be bounded

BIBO Stability Requirements

2. The degree of the highest derivative of x(t) in the differential equation (RHS) must the order of the differential equation (the highest derivative of v(t) on Left Hand Side)

 $y'(t) + a_0y(t) = b_0 x(t) + b_1 x'(t) + b_2 x''(t)$

Impulse response and step response: Methods for Determining h(t)

- 1. Find the Impulse Response h(t) as the
- derivative of the Step Response s(t) - First find the Step Response by solving the relaxed system differential equation [ICs=0] for: x(t) = u(t)

2. Solve the *relaxed* system differential equation for: $x(t) = \delta(t)$

Method for Finding Impulse Response h(t)

- 1. Set all SIC Initial Conditions to zero (relaxed) y(0)=0, y'(0)=0,...
- 2. Set the highest order initial condition to 1

 $y^{n-1}(0)=1$ Ex: n=2: y(0)=0, y'(0)=1

- 3. Solve Single-Input Diff Equ. for x(t) = 0
- Solve for the natural response only (y_F(t)=0)
 Use the above IC's to find unknown coef's
- Determine generalized h(t) same way as generalizing the ZSR.

Other System Properties from h(t)

• For a stable system: h(t) must be '

Causality

• For a system to be causal:

$$h(t) = ____, \text{ for } t < 0$$

Convolution:

Properties of Convolution

$$y(t) = \int_{-\infty}^{\infty} x(\lambda)h(t-\lambda)d\lambda$$

Time Shift: x(t) * h(t) = y(t) $x(t-\tau)*h(t) = y(t-\tau)$ $x(t-\tau)*h(t-\alpha)=$

x(t) * h(t) = y(t)Derivative: x'(t) * h(t) =

Properties of Convolution

$$y(t) = \int_{-\infty}^{\infty} x(\lambda)h(t-\lambda)d\lambda$$

Convolution with Impulse

 $\delta(t) * h(t) =$

Convolution with a Shifted Impulse

Convolution: Multiplication:
$$\delta(t-\tau)*h(t) = \delta(t-\tau)h(t) = \delta(t-\tau)h(t)$$

Combined Systems in Cascade

Find the effective impulse response $h_{eff}(t)$ of the combined CASCADED Filters:

Combined Systems in Parallel

Find the effective impulse response $h_{eg}(i)$ of the combined **PARALLEL** Filter:

Evaluation of Convolution Integral

- Two Methods: 1. Analytical Evaluation
 - Use step functions u(t) to define the begin x() and h()
- Break up the integral based on similar pairings of u(t)'s in x() and h() functions
- olution of two causal functions that are infinite duration Then you're still doing "Con
- 2. Graphical Evaluation (Convolution By Ranges)

- Break up problem into different regions based on where signal transitions and overlaps occur
 In each region, find a unique solution using the appropriate analytical functions for x() and h()

Convolution by Ranges:

- First determine both x(t) and h(t) Range End Point.
- Then find pairwise sum 2.)

REPT(y(t)) = SORT(set(PWS(REPT(h(t)), REPT(x(t))))

Then write y(t) as a piecewise where y_1,.., y_k is the value between the endpoints.

GRAPHICAL CONVOLUTION

For each range of "t" determined above:

- Draw x(t-λ) relative to h(λ) {or h(t-λ) relative to x(λ)} on a single set of λ axes.
- Observe the endpoints of the regions where the two functions overlap. The beginning and endpoint of the overlapping regions (in terms of λ) determine the lower and upper limits of integration for λ in the convolution integral in this range.
- Solve the integral and evaluate over the upper and lower limits.
- REPEAT Steps above for each range of t

CHECKing answers for solution:

$$Lenth_y = Lenth_x + Lenth_h$$
$$T_{start,y} = T_{start,x} + T_{start,h}$$
$$T_{end,y} = T_{end,x} + T_{end,h}$$

Correlation:

Correlation

$$r_{xh}(t) = x(t) **h(t) = \int_{0}^{\infty} x(t)h(t-\tau)dt = x(t) *h(-t)$$

- Measure of similarity between x, h
- Like Convolution, But Shift h(t) without Flipping it
- Not Commutative: $r_{xh}(t) = r_{hx}(-t)$
- "Cross-Correlation" if $x(t) \neq h(t)$
- "Auto-Correlation" if x(t) = h(t)

Cross-Correlation

• For non-periodic functions:

$$r_{12}(\tau) = \int_{-\infty}^{+\infty} x_1(t) x_2(t-\tau) dt, \qquad -\infty < \tau < +\infty$$

For **periodic** functions, with period T, the correlation function is given by:

$$r_{12}(\tau) = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} v_1(t) v_2(t-\tau) dt$$

Summary - Correlation

· Correlation is computed similarly to Convolution, but without the signal flip

$$r_{xh}(\tau) = x(t) * *h(t) = \int_{0}^{\infty} x(t)h(t-\tau)dt = x(t) *h(-t)$$

- Cross-Correlation $r_{xh}(\tau)$ reveals the degree of similarity between two different signals, and how the similarity changes with time alignment of the signals
- Auto-Correlation r_{xx}(r) (correlating a signal with itself) reveals the randomness or periodicity of a signal

$$r_{xx}(\tau) = x(t) * *x(t) = \int x(t)x(t-\tau)dt = x(t) *x(-t)$$

Filtering (convolution) a noisy signal with a time-reversed clean version of a signal implements correlation detection (also called "matched filtering") by cross correlating the noisy and clean signals to find if the signal is detected and at what time position.