62316

DETECTION OF RETINOPATHY OF PREMATURITY

Ahsan Siddiqui Mansoor Alam Zohaib Aslam

Research Question

Given a set of retinal images of a patient, classify the severity of ROP in the patient.

Purpose

CHALLENGES

- Requires weekly/bi-weekly checks, causing infant distress (fluctuating heart rate, blood pressure, feeding intolerance, bradycardia).
- Overburdens medical staff, increasing time and cost.

BENEFITS

- Processes large volumes of images efficiently, enabling scalable and faster screening.
- Reduces manual effort, costs, and risks of misdiagnosis.

Dataset

- Our dataset consists of 6004 retinal images.
- These 6004 retinal images are taken from 188 infants, most of whom are premature infants.
- Retinal images were taken at University Hospital Ostrava,
 Czech Republic.

Dataset

- Our dataset consists of 6004 retinal images.
- These 6004 retinal images are taken from 188 infants, most of whom are premature infants.
- Retinal images were taken at University Hospital Ostrava,
 Czech Republic.

Diagnoses Codes

Diagnosis Code (DG)	ROP Stage	
0	NO ROP	
1	ROP 0	
2	ROP 1	
3	ROP 2	
4	ROP 3	
5	ROP 4A	
6	ROP 4B	
7 till 12	ROP 5 (+ additional elements)	

- Our dataset consists of 6004 Each patient has multiple retinal images in multiple post conceptual ages.
- Each image is in the format: Patient's ID_sex_gestational age_(GA)_birth_weight_(BW)_postco nceptual_age_(PA)_diagnosis_code_ (DG)_plusform_(PF)_device(D)__seri es_(S)_image number.jpg.
- Diagnosis Code (DG) will be used to detect and classify ROP into it's stages.

Ourmodels

Convolutional Neural Networks

We used the base model for CNNs with custom layers just like we did in labs.

Efficient-Net

Followed the approach of our CNN model.

Lightweight ResNet Model

Followed the approach of our CNN model with resnet architecture.

Hyper parameters

Hyperparameter	Value	
Epochs	20	
Batch size	16/32	
Learning rate	0.001	
Optimizer	Adam	
Loss function	Sparse Categorical Cross entropy	
Early stopping patience	5	

Efficient Net Results

Confusion Matrix

Accuracy

Efficient Net Results

Res Net Results

Confusion Matrix

Accuracy

Res Net Results

CNN Results

Confusion Matrix

Accuracy

CNN Results

Model Summary

Layer (type)	Output Shape	Param #
resizing_2 (Resizing)	(None, 256, 256, 3)	0
rescaling_2 (Rescaling)	(None, 256, 256, 3)	0
conv2d_4 (Conv2D)	(None, 254, 254, 32)	896
max_pooling2d_4 (MaxPooling2D)	(None, 127, 127, 32)	0
conv2d_5 (Conv2D)	(None, 125, 125, 64)	18,496
max_pooling2d_5 (MaxPooling2D)	(None, 62, 62, 64)	0
conv2d_6 (Conv2D)	(None, 60, 60, 64)	36,928
max_pooling2d_6 (MaxPooling2D)	(None, 30, 30, 64)	0
conv2d_7 (Conv2D)	(None, 28, 28, 64)	36,928
max_pooling2d_7 (MaxPooling2D)	(None, 14, 14, 64)	0
flatten_1 (Flatten)	(None, 12544)	Θ
dense_2 (Dense)	(None, 64)	802,880
dense_3 (Dense)	(None, 11)	715

Total params: 896,845 (3.42 MB)
Trainable params: 896,843 (3.42 MB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 2 (12.00 B)

Loss

Final Results

MODELS	Accuracy	Loss
CNN	94.07%	0.17
Lightweight ResNet Model	90.06%	0.29
EfficientNet	90.03%	0.26

Comparision

Our Results:

Model	Accuracy	Loss	Dataset Size
CNN	94.07%	0.17	6,004 images
ResNet	90.06%	0.29	6,004 images
EfficientNet	90.03%	0.26	6,004 images

Literature Review:

Model	Type/Usage	Accuracy	Dataset Size
ResNet	OC-Net (Identifies ROP)	53.8%	7,033 images
	SE-Net (Classifies Severity)	46.6%	7,033 images
Inception-CNN	General ROP Detection	97.3%	7,000 images
VGG19	Severity Classification	98.8%	7,000 images
SVM + Deep Learning	Combines Image and Clinical Data	95%	7,000 images

Future Milestones

- 1. Implement more robust augmentation techniques.
- 2. Develop explainable AI tools for clinical adoption.
- 3. Test the model on external datasets to validate generalizability.

Data Augmentation:

- Geometric, color, noise Augmentations
- larger dataset
- Mixup- Blend multiple images to increase generalization.

- Incorporation of Clinical Data
- Clinical Decision Support System (CDSS)

- External Validation
- Fine-tuning
- Ensemble Learning: Use predictions from multiple models (ResNet, EfficientNet, CNN) and apply majority voting or weighted averaging.

Thank you.

References

- [1] Timkovič, J., Nowaková, J., Kubíček, J. et al. (2024). Retinal Image Dataset of Infants and Retinopathy of Prematurity. Sci Data 11, 814. https://doi.org/10.1038/s41597-024-03409-7. Dataset available at: Kaggle Retinal Image Dataset
- [2] Hasal, M., Nowaková, J., Hernández-Sosa, D., Timkovič, J. (2022). Image Enhancement in Retinopathy of Prematurity. In: Barolli, L., Miwa, H. (eds) Advances in Intelligent Networking and Collaborative Systems. Lecture Notes in Networks and Systems, vol 527, Springer, Cham. https://doi.org/10.1007/978-3-031-14627-5_43
- [3] Hasal, M., Pecha, M., Nowaková, J., Hernández-Sosa, D., Snášel, V., Timkovič, J. (2023). Retinal Vessel Segmentation by U-Net with VGG-16 Backbone on Patched Images with Smooth Blending. In: Barolli, L. (eds) Advances in Intelligent Networking and Collaborative Systems. Lecture Notes on Data Engineering and Communications Technologies, vol 182, Springer, Cham. https://doi.org/10.1007/978-3-031-40971-4_44 [4] Nowaková, J. (2023). Image Enhancement in Retinopathy of Prematurity. GitHub Repository. https://github.com/JanaNowakova/Image_enhancement_retinopathy_of_prematurity [5] Shah S, Slaney E, VerHage E, Chen J, Dias R, Abdelmalik B, Weaver A, Neu J. Application of Artificial Intelligence in the Early Detection of Retinopathy of Prematurity: Review of the Literature. Neonatology. 2023;120(5):558-565. doi: 10.1159/000531441. Epub 2023 Jul 25. PMID: 37490881.

https://pubmed.ncbi.nlm.nih.gov/37490881/

References

- **[6]** Scruggs BA, Chan RVP, Kalpathy-Cramer J, Chiang MF, Campbell JP. Artificial Intelligence in Retinopathy of Prematurity Diagnosis. Transl Vis Sci Technol. 2020 Feb 10;9(2):5. doi: 10.1167/tvst.9.2.5. PMID: 32704411; PMCID: PMC7343673. https://pubmed.ncbi.nlm.nih.gov/32704411/
- [7] Tan Z, Simkin S, Lai C, Dai S. Deep Learning Algorithm for Automated Diagnosis of Retinopathy of Prematurity Plus Disease. Transl Vis Sci Technol. 2019 Dec 2;8(6):23. doi: 10.1167/tvst.8.6.23. PMID: 31819832; PMCID: PMC6892443. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892443/
- [8] Wu Q, Hu Y, Mo Z, Wu R, Zhang X, Yang Y, Liu B, Xiao Y, Zeng X, Lin Z, Fang Y, Wang Y, Lu X, Song Y, Ng WWY, Feng S, Yu H. Development and Validation of a Deep Learning Model to Predict the Occurrence and Severity of Retinopathy of Prematurity. JAMA Netw Open. 2022 Jun 1;5(6):e2217447. doi:
- 10.1001/jamanetworkopen.2022.17447. PMID: 35708686; PMCID: PMC10881218. https://pubmed.ncbi.nlm.nih.gov/35708686/
- [9] Huang, Yo-Ping, Spandana Vadloori, Hung-Chi Chu, Eugene Yu-Chuan Kang, Wei-Chi Wu, Shunji Kusaka, and Yoko Fukushima. 2020. "Deep Learning Models for Automated Diagnosis of Retinopathy of Prematurity in Preterm Infants" Electronics 9, no. 9: 1444. https://doi.org/10.3390/electronics9091444