Bài toán 1. Xét hai dãy số $x_n = an + b$ và $y_n = cn + d$, trong đó a, b, c, d là các số tự nhiên và thỏa mãn $\gcd(a, b) = \gcd(c, d) = 1$. Chứng minh rằng tồn tại vô số giá trị n sao cho cả x_n và y_n đều là số square-free.

Độ khó: 4 (Iranian Our MO 2020/5

Lời giải. Ta có các bổ đề sau:

Bổ đề 1: Ký hiệu $\pi(n)$ là số số nguyên tố không vượt quá n. Khi đó:

$$\pi(n) \approx \frac{n}{\log n}$$

Bổ đề 2: Ta có:

$$\sum \frac{1}{p^2} < \frac{1}{2}$$

Trong đó p là các số nguyên tố.

Có thể chứng minh bổ đề 2 bằng việc chú ý rằng tổng $\sum \frac{1}{n^2}$ với $n \in \mathbb{Z}^+$ tiến đến $\frac{\pi^2}{6}$ sau đó trừ đi một vài các giá trị đầu tiên mà không vải là số nguyên tố.

Quay trở lại bài toán, đặt X_n là tập các số không là square-free có dạng ai+b với $i \leq n$. Tương tự với tập Y_n

Với $p \in \mathbb{P}$, phương trình $ax + b \equiv 0 \pmod{p^2}$ có nhiều nhất một nghiệm trong $\mathbb{F}_{\not\models}$. Vậy nên số lượng phần tử trong X_n chia hết cho p^2 là $\lceil \frac{n}{p^2} \rceil$.

Vậy lực lượng của X_n sẽ không vượt quá:

$$\sum_{p \le n} \lceil \frac{n}{p^2} \rceil \le \sum_{p \le n} \left(\frac{n}{p^2} + 1 \right) = n \left(\sum_{p \le n} \frac{1}{p^2} \right) + \pi(n) < 0.499n + \mathcal{O}(\frac{n}{\log n}) < \frac{n}{2}$$

Tương tự với lực lượng của Y_n . Giờ ta lấy tổng lại sẽ thấy lực lượng của tập $X_n \cup Y_n$ sẽ nhỏ hơn cN trong đó 0 < c < 1. Vậy nên sẽ tồn tại vô hạn n đề x_n, y_n cùng là số square-free. Ta kết thúc chứng minh.