

REDUCING NOISE IN GAN TRAINING WITH VARIANCE REDUCED EXTRAGRADIENT

Tatjana Chavdarova

Research intern at Mila, PhD student at Idiap research institute & EPFL

THIRTY-THIRD CONFERENCE ON NEURAL INFORMATION PROCESSING SYSTEMS, VANCOUVER, CANADA

December 12, 2019

REDUCING NOISE IN GAN TRAINING WITH VARIANCE REDUCED EXTRAGRADIENT

Tatjana Chavdarova *

GAUTHIER GIDEL *

FRANÇOIS FLEURET

SIMON LACOSTE-JULIEN

SINGLE OBJECTIVE VS. TWO-OBJECTIVE OPTIMIZATION

- Standard supervised learning:

$$\min_{m{ heta}} \mathcal{L}(m{ heta})$$

- GANs [Goodfellow et al., 2014]; Different optimization problem (*minimax*)

SINGLE OBJECTIVE VS. TWO-OBJECTIVE OPTIMIZATION

- Standard supervised learning:

$$\min_{ heta} \mathcal{L}(heta)$$

- GANs [Goodfellow et al., 2014]: Different optimization problem (minimax).

$$\min_{\theta_G} \max_{\theta_D} \ V(\theta_G, \theta_D)$$

TERMINOLOGY: "NOISE"-NOISY GRADIENT ESTIMATES

- Using sub-samples (mini-batches) of the full dataset to update the parameters
- Variance Reduced (VR) Gradient: optimization methods that reduce such noise

Minimization: Single-objective

- Batch method direction
- Stochastic method direction: noisy

MOTIVATION: VARIANCE REDUCTION FOR GAMES

- Intuitively: **Minimization** *Vs.* **Game** (Noise from Stochastic gradient)
- EMPIRICALLY:

Minimization
Noisy gradient: "approximately" correct

Game
Noisy gradient: sometimes "opposite"

MOTIVATION: VARIANCE REDUCTION FOR GAMES

- Intuitively: Minimization Vs. Game (Noise from Stochastic gradient)
- EMPIRICALLY:

- **BigGAN** [Brock et al., 2019]: "Increased batch size significantly improves performances"
- Empirically tuned hyper-parameters of Adam [Kingma and Ba, 2015] which effectively use solely the variance reduction term

Variance Reduced Gradient Methods

- Save the full gradient $\frac{1}{n}\sum_{i}\nabla\mathcal{L}(\mathbf{x}_{i},\boldsymbol{\omega}^{\mathcal{S}})$ and the snapshot $\boldsymbol{\omega}^{\mathcal{S}}$.
- For one epoch use the update rule:

$$\boldsymbol{\omega} \leftarrow \boldsymbol{\omega} - \eta \Big[\underbrace{\nabla \mathcal{L}(\mathbf{x}_i, \boldsymbol{\omega})}_{\text{Stochastic gradient}} + \underbrace{\frac{1}{n} \sum_{i} \nabla \mathcal{L}(\mathbf{x}_i, \boldsymbol{\omega}^{\mathcal{S}}) - \nabla \mathcal{L}\left(\mathbf{x}_i, \boldsymbol{\omega}^{\mathcal{S}}\right)}_{\text{correction using saved past iterate}} \Big]$$

- Requires 2 stochastic gradients (at the current point and at the snapshot).
- If $\omega^{\mathcal{S}}$ is close to ωo close to full batch gradient o small variance.
- Full batch gradient is expensive but tractable, e.g., compute it once per pass.

- Save the full gradient $\frac{1}{n}\sum_{i}\nabla\mathcal{L}(\mathbf{x}_{i},\boldsymbol{\omega}^{\mathcal{S}})$ and the snapshot $\boldsymbol{\omega}^{\mathcal{S}}$.
- For one epoch use the update rule:

$$\boldsymbol{\omega} \leftarrow \boldsymbol{\omega} - \eta \Big[\underbrace{\nabla \mathcal{L}(\mathbf{x}_i, \boldsymbol{\omega})}_{\text{Stochastic gradient}} + \underbrace{\frac{1}{n} \sum_{i} \nabla \mathcal{L}(\mathbf{x}_i, \boldsymbol{\omega}^{\mathcal{S}}) - \nabla \mathcal{L}\left(\mathbf{x}_i, \boldsymbol{\omega}^{\mathcal{S}}\right)}_{\text{correction using saved past iterate}} \Big]$$

- Requires 2 stochastic gradients (at the current point and at the snapshot).
- If ω^S is close to $\omega \to$ close to full batch gradient \to small variance.
- Full batch gradient is expensive but tractable, e.g., compute it once per pass.

- Save the full gradient $\frac{1}{n}\sum_{i}\nabla\mathcal{L}(\mathbf{x}_{i},\boldsymbol{\omega}^{\mathcal{S}})$ and the snapshot $\boldsymbol{\omega}^{\mathcal{S}}$.
- For one epoch use the update rule:

$$\boldsymbol{\omega} \leftarrow \boldsymbol{\omega} - \eta \Big[\underbrace{\nabla \mathcal{L}(\mathbf{x}_i, \boldsymbol{\omega})}_{\text{Stochastic gradient}} + \underbrace{\frac{1}{n} \sum_{i} \nabla \mathcal{L}(\mathbf{x}_i, \boldsymbol{\omega}^{\mathcal{S}}) - \nabla \mathcal{L}\left(\mathbf{x}_i, \boldsymbol{\omega}^{\mathcal{S}}\right)}_{\text{correction using saved past iterate}} \Big]$$

- Requires 2 stochastic gradients (at the current point and at the snapshot).
- If $m{\omega}^{\mathcal{S}}$ is close to $m{\omega} o$ close to full batch gradient o small variance.
- Full batch gradient is expensive but tractable, e.g., compute it once per pass.

- Save the full gradient $\frac{1}{n}\sum_{i}\nabla\mathcal{L}(\mathbf{x}_{i},\boldsymbol{\omega}^{\mathcal{S}})$ and the snapshot $\boldsymbol{\omega}^{\mathcal{S}}$.
- For one epoch use the update rule:

$$\boldsymbol{\omega} \leftarrow \boldsymbol{\omega} - \eta \Big[\underbrace{\nabla \mathcal{L}(\mathbf{x}_i, \boldsymbol{\omega})}_{\text{Stochastic gradient}} + \underbrace{\frac{1}{n} \sum_{i} \nabla \mathcal{L}(\mathbf{x}_i, \boldsymbol{\omega}^{\mathcal{S}}) - \nabla \mathcal{L}\left(\mathbf{x}_i, \boldsymbol{\omega}^{\mathcal{S}}\right)}_{\text{correction using saved past iterate}} \Big]$$

- Requires 2 stochastic gradients (at the current point and at the snapshot).
- If ω^S is close to ωo close to full batch gradient o small variance.
- Full batch gradient is expensive but <u>tractable</u>, e.g., compute it <u>once</u> per pass.

Two players θ , φ , and a "lookahead step" at $t+\frac{1}{2}$:

Extrapolation:
$$\begin{cases} \boldsymbol{\theta}_{t+1/2} = \boldsymbol{\theta}_t - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{G}}(\boldsymbol{\theta}_t, \varphi_t) \\ \boldsymbol{\varphi}_{t+1/2} = \boldsymbol{\varphi}_t - \eta \nabla_{\boldsymbol{\varphi}} \mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}_t, \varphi_t) \end{cases}$$

$$\label{eq:potential} \text{Update:} \begin{cases} \boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_{t} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\textit{G}}(\boldsymbol{\theta}_{t+1/2}, \boldsymbol{\varphi}_{t+1/2}) \\ \boldsymbol{\varphi}_{t+1} = \boldsymbol{\varphi}_{t} - \eta \nabla_{\boldsymbol{\varphi}} \mathcal{L}_{\textit{D}}(\boldsymbol{\theta}_{t+1/2}, \boldsymbol{\varphi}_{t+1/2}) \end{cases}$$

SVRE: STOCHASTIC VARIANCE-REDUCED EXTRAGRADIENT

- 1. Save snapshot $\omega^{\mathcal{S}} \leftarrow \omega_t$ and compute $\frac{1}{n} \sum_i \nabla \mathcal{L}(\mathbf{x}_i, \omega^{\mathcal{S}})$.
- 2. For i in $1, \ldots$, epoch length:
 - 2.1 Compute $\omega_{t+\frac{1}{2}}$ with variance reduced gradients at ω_t . 2.2 Compute ω_{t+1} with variance reduced gradients at $\omega_{t+\frac{1}{2}}$
- 3. Repeat until convergence

- 1. Save snapshot $\omega^{\mathcal{S}} \leftarrow \omega_t$ and compute $\frac{1}{n} \sum_i \nabla \mathcal{L}(\mathbf{x}_i, \omega^{\mathcal{S}})$.
- 2. For i in $1, \ldots, \text{epoch_length}$:
 - 2.1 Compute $\omega_{t+\frac{1}{2}}$ with variance reduced gradients at ω_t .
 - 2.2 Compute ω_{t+1} with variance reduced gradients at $\omega_{t+\frac{1}{2}}$.
 - $2.3 \quad t \leftarrow t + 1$
- 3. Repeat until convergence

- 1. Save snapshot $\omega^{\mathcal{S}} \leftarrow \omega_t$ and compute $\frac{1}{n} \sum_i \nabla \mathcal{L}(\mathbf{x}_i, \omega^{\mathcal{S}})$.
- 2. For i in $1, \ldots, \text{epoch_length}$:
 - 2.1 Compute $\omega_{t+\frac{1}{8}}$ with variance reduced gradients at ω_t .
 - 2.2 Compute ω_{t+1} with variance reduced gradients at $\omega_{t+\frac{1}{2}}$.
 - $2.3 \quad t \leftarrow t + 1$
- 3. Repeat until convergence

- 1. Save snapshot $\omega^{\mathcal{S}} \leftarrow \omega_t$ and compute $\frac{1}{n} \sum_i \nabla \mathcal{L}(\mathbf{x}_i, \omega^{\mathcal{S}})$.
- 2. For i in $1, \ldots, \text{epoch_length}$:
 - 2.1 Compute $\omega_{t+\frac{1}{2}}$ with variance reduced gradients at ω_t .
 - 2.2 Compute ω_{t+1} with variance reduced gradients at $\omega_{t+\frac{1}{2}}$.
- 3. Repeat until convergence

- 1. Save snapshot $\omega^{\mathcal{S}} \leftarrow \omega_t$ and compute $\frac{1}{n} \sum_i \nabla \mathcal{L}(\mathbf{x}_i, \omega^{\mathcal{S}})$.
- 2. For i in $1, \ldots$, epoch_length:
 - 2.1 Compute $\omega_{t+\frac{1}{8}}$ with variance reduced gradients at ω_t .
 - 2.2 Compute ω_{t+1} with variance reduced gradients at $\omega_{t+\frac{1}{6}}$.
 - 2.3 $t \leftarrow t + 1$
- 3. Repeat until convergence

- 1. Save snapshot $\omega^{\mathcal{S}} \leftarrow \omega_t$ and compute $\frac{1}{n} \sum_i \nabla \mathcal{L}(\mathbf{x}_i, \omega^{\mathcal{S}})$.
- 2. For i in $1, \ldots$, epoch_length:
 - 2.1 Compute $\omega_{t+\frac{1}{2}}$ with variance reduced gradients at ω_t .
 2.2 Compute ω_{t+1} with variance reduced gradients at $\omega_{t+\frac{1}{2}}$.
 2.3 $t \leftarrow t + 1$
- 3. Repeat until convergence.

SVRE yields the fastest convergence rate for strongly convex stochastic game optimization in the literature.

SVRE: EXPERIMENTS

EXPERIMENTS SVRE VIELDS STABLE GAN OPTIMIZATION

Stochastic baseline

- Always diverges.
- Many hyperparameters $(\eta_G, \eta_D, \beta_1, \gamma, r)$.
- + if convergence → fast

EXPERIMENTS SVRE YIELDS STABLE GAN OPTIMIZATION

Stochastic baseline

- Always diverges.
- Many hyperparameters $(\eta_G, \eta_D, \beta_1, \gamma, r)$.
- + if convergence → fast

SVRF

- + Does not diverge.
- + fewer hyperparameters (omits β_1, γ, r)
- slower for very deep nets.

SVRE: TAKEAWAYS

SVRE: TAKEAWAYS

- Controlling variance is more critical for games (could be reason behind success of Adam on GANs)
- SVRE: combines Extragradient and variance reduction
- Best convergence rate (under some assumptions) for large class of games
- Good stability properties

THANKS!

REFERENCES I

A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity natural image synthesis. In ICLR, 2019.

lan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.