Divide and Conquer

- Polynomial Multiplication Integer Multiplication

Polynomial Multiplication

Polynomials: Coefficient Representation

Polynomial. [coefficient representation]

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}$$

Add: O(n) arithmetic operations.

$$A(x) + B(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_{n-1} + b_{n-1})x^{n-1}$$

Evaluate: O(n) using Horner's method.

$$A(x) = a_0 + (x(a_1 + x(a_2 + \dots + x(a_{n-2} + x(a_{n-1}))\dots))$$

Multiply (convolve): $O(n^2)$ using brute force.

$$A(x) \times B(x) = \sum_{i=0}^{2n-2} c_i x^i$$
, where $c_i = \sum_{j=0}^{i} a_j b_{i-j}$

Polynomials: Point-Value Representation

Fundamental theorem of algebra. [Gauss, PhD thesis] A degree n polynomial with complex coefficients has n complex roots.

Corollary. A degree n-1 polynomial A(x) is uniquely specified by its evaluation at n distinct values of x.

Polynomials: Point-Value Representation

Polynomial. [point-value representation]

$$A(x): (\mathbf{x}_0, y_0), ..., (\mathbf{x}_{n-1}, y_{n-1})$$

$$B(x)$$
: $(x_0, z_0), ..., (x_{n-1}, z_{n-1})$

Add: O(n) arithmetic operations.

$$A(x)+B(x): (x_0, y_0+z_0), ..., (x_{n-1}, y_{n-1}+z_{n-1})$$

Multiply: O(n), but need 2n-1 points.

$$A(x) \times B(x)$$
: $(x_0, y_0 \times z_0), ..., (x_{2n-1}, y_{2n-1} \times z_{2n-1})$

Evaluate: $O(n^2)$ using Lagrange's formula.

$$A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)}$$

Converting Between Two Polynomial Representations

Tradeoff. Fast evaluation or fast multiplication. We want both!

Representation	Multiply	Evaluate
Coefficient	O(n ²)	O(n)
Point-value	O(n)	O(n ²)

Goal. Make all ops fast by efficiently converting between two representations.

$$(x_0,y_0), \dots, (x_{n-1},y_{n-1})$$
 coefficient point-value representation

Converting Between Two Polynomial Representations: Brute Force

Coefficient to point-value. Given a polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$, evaluate it at n distinct points x_0, \dots, x_{n-1} .

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

$$O(\mathsf{n}^2) \text{ for matrix-vector multiply }$$

$$O(\mathsf{n}^3) \text{ for Gaussian elimination }$$

Vandermonde matrix is invertible iff x_i distinct

Point-value to coefficient. Given n distinct points $x_0, ..., x_{n-1}$ and values $y_0, ..., y_{n-1}$, find unique polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$ that has given values at given points.

Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

Divide. Break polynomial up into even and odd powers.

$$= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7.$$

$$A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3.$$

$$A_{odd}(x) = a_1 + a_3x + a_5x^2 + a_7x^3.$$

$$A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2).$$

$$A(-x) = A_{\text{even}}(x^2) - x A_{\text{odd}}(x^2).$$

Intuition. Choose two points to be ± 1 .

$$_{\text{u}}$$
 A(1) = $A_{\text{even}}(1) + 1 A_{\text{odd}}(1)$.

$$_{\circ}$$
 $A(-1) = A_{\text{even}}(1) - 1 A_{\text{odd}}(1)$.

Can evaluate polynomial of degree \leq n at 2 points by evaluating two polynomials of degree $\leq \frac{1}{2}$ n at 1 point.

Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

Divide. Break polynomial up into even and odd powers.

$$= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7.$$

$$A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3.$$

$$A_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + a_7 x^3.$$

$$A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2).$$

$$A(-x) = A_{even}(x^2) - x A_{odd}(x^2).$$

Intuition. Choose four points to be ± 1 , $\pm i$.

$$_{\text{u}}$$
 $A(1) = A_{\text{even}}(1) + 1 A_{\text{odd}}(1).$

$$_{\text{u}}$$
 $A(-1) = A_{\text{even}}(1) - 1 A_{\text{odd}}(1)$.

$$A(i) = A_{even}(-1) + i A_{odd}(-1).$$

$$A(-i) = A_{even}(-1) - i A_{odd}(-1).$$

Can evaluate polynomial of degree \leq n at 4 points by evaluating two polynomials of degree $\leq \frac{1}{2}$ n at 2 points.

Discrete Fourier Transform

Coefficient to point-value. Given a polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

Key idea: choose $x_k = \omega^k$ where ω is principal n^{th} root of unity.

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^1 & \omega^2 & \omega^3 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{bmatrix}$$
Discrete Fourier transform

Fourier matrix F_n

10

Roots of Unity

Def. An n^{th} root of unity is a complex number x such that $x^n = 1$.

Fact. The nth roots of unity are: ω^0 , ω^1 , ..., ω^{n-1} where $\omega = e^{2\pi i / n}$. Pf. $(\omega^k)^n = (e^{2\pi i k / n})^n = (e^{\pi i})^{2k} = (-1)^{2k} = 1$.

Fact. The $\frac{1}{2}$ nth roots of unity are: v^0 , v^1 , ..., $v^{n/2-1}$ where $v = e^{4\pi i/n}$. Fact. $\omega^2 = v$ and $(\omega^2)^k = v^k$.

Fast Fourier Transform

Goal. Evaluate a degree n-1 polynomial $A(x) = a_0 + ... + a_{n-1} x^{n-1}$ at its nth roots of unity: ω^0 , ω^1 , ..., ω^{n-1} .

Divide. Break polynomial up into even and odd powers.

$$A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + ... + a_{n/2-2} x^{(n-1)/2}.$$

$$A_{\text{odd}}(x) = a_1 + a_3x + a_5x^2 + ... + a_{n/2-1}x^{(n-1)/2}$$

$$A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2).$$

Conquer. Evaluate degree $A_{\text{even}}(x)$ and $A_{\text{odd}}(x)$ at the $\frac{1}{2}$ nth roots of unity: v^0 , v^1 , ..., $v^{n/2-1}$.

Combine.

$$A(\omega^{k}) = A_{\text{even}}(v^{k}) + \omega^{k} A_{\text{odd}}(v^{k}), \quad 0 \leq k < n/2$$

$$A(\omega^{k+n}) = A_{\text{even}}(v^{k}) - \omega^{k} A_{\text{odd}}(v^{k}), \quad 0 \leq k < n/2$$

$$(v^k) - \omega^k A_{odd}(v^k), \quad 0 \le k < n_k$$

$$0 \le k < n_k$$

$$\omega^{k+\frac{1}{2}n} = -\omega^k$$

$$v^{k} = (\omega^{k})^{2} = (\omega^{k+\frac{1}{2}n})^{2}$$

FFT Algorithm

```
fft(n, a_0, a_1, ..., a_{n-1}) {
     if (n == 1) return a_0
     (e_0, e_1, ..., e_{n/2-1}) \leftarrow FFT(n/2, a_0, a_2, a_4, ..., a_{n-2})
     (d_0, d_1, ..., d_{n/2-1}) \leftarrow FFT(n/2, a_1, a_3, a_5, ..., a_{n-1})
     for k = 0 to n/2 - 1 {
          \omega^k \leftarrow e^{2\pi i k/n}
          y_k \leftarrow e_k + \omega^k d_k
         y_{k+n/2} \leftarrow e_k - \omega^k d_k
     }
     return (y_0, y_1, ..., y_{n-1})
}
```

FFT Summary

Theorem. FFT algorithm evaluates a degree n-1 polynomial at each of the n^{th} roots of unity in $O(n \log n)$ steps.

Running time. $T(2n) = 2T(n) + O(n) \Rightarrow T(n) = O(n \log n)$.

Recursion Tree

Point-Value to Coefficient Representation: Inverse DFT

Goal. Given the values y_0 , ..., y_{n-1} of a degree n-1 polynomial at the n points ω^0 , ω^1 , ..., ω^{n-1} , find unique polynomial $a_0 + a_1 \times + ... + a_{n-1} \times^{n-1}$ that has given values at given points.

Inverse FFT

Claim. Inverse of Fourier matrix is given by following formula.

$$G_{n} = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \cdots & \omega^{-(n-1)} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & \cdots & \omega^{-2(n-1)} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-9} & \cdots & \omega^{-3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \omega^{-3(n-1)} & \cdots & \omega^{-(n-1)(n-1)} \end{bmatrix}$$

Consequence. To compute inverse FFT, apply same algorithm but use $\omega^{-1} = e^{-2\pi i / n}$ as principal n^{th} root of unity (and divide by n).

Inverse FFT: Proof of Correctness

Claim. F_n and G_n are inverses. Pf.

$$(F_n G_n)_{kk'} = \frac{1}{n} \sum_{j=0}^{n-1} \omega^{kj} \omega^{-jk'} = \frac{1}{n} \sum_{j=0}^{n-1} \omega^{(k-k')j} = \begin{cases} 1 & \text{if } k = k' \\ 0 & \text{otherwise} \end{cases}$$
summation lemma

Summation lemma. Let ω be a principal nth root of unity. Then

$$\sum_{j=0}^{n-1} \omega^{kj} = \begin{cases} n & \text{if } k \equiv 0 \text{ mod } n \\ 0 & \text{otherwise} \end{cases}$$

Pf.

- If k is a multiple of n then $\omega^k = 1 \implies sums$ to n.
- Each n^{th} root of unity ω^k is a root of $x^n 1 = (x 1)(1 + x + x^2 + ... + x^{n-1})$.
- if $\omega^k \neq 1$ we have: $1 + \omega^k + \omega^{k(2)} + \ldots + \omega^{k(n-1)} = 0 \implies \text{sums to } 0$.

Inverse FFT: Algorithm

```
ifft(n, a_0, a_1, ..., a_{n-1}) {
     if (n == 1) return a_0
     (e_0, e_1, ..., e_{n/2-1}) \leftarrow FFT(n/2, a_0, a_2, a_4, ..., a_{n-2})
     (d_0, d_1, ..., d_{n/2-1}) \leftarrow FFT(n/2, a_1, a_3, a_5, ..., a_{n-1})
     for k = 0 to n/2 - 1 {
          \omega^k \leftarrow e^{-2\pi i k/n}
         y_k \leftarrow (e_k + \omega^k d_k) / n
         y_{k+n/2} \leftarrow (e_k - \omega^k d_k) / n
     return (y_0, y_1, ..., y_{n-1})
```

Inverse FFT Summary

Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial given values at each of the n^{th} roots of unity in $O(n \log n)$ steps.

assumes n is a power of 2

Polynomial Multiplication

Theorem. Can multiply two degree n-1 polynomials in O(n log n) steps.

Integer Multiplication

Integer Multiplication

 $A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$

 $B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}$

Integer multiplication. Given two n bit integers $a = a_{n-1} \dots a_1 a_0$ and $b = b_{n-1} \dots b_1 b_0$, compute their product $c = a \times b$.

Convolution algorithm.

- Form two polynomials.
- Note: a = A(2), b = B(2).
- Compute $C(x) = A(x) \times B(x)$.
- Evaluate $C(2) = a \times b$.
- Running time: O(n log n) complex arithmetic operations.

Theory. [Schönhage-Strassen 1971] O(n log n log log n) bit operations.

Theory. [Fürer 2007] $O(n \log n 2^{O(\log *n)})$ bit operations.

References

References

- Section 5.6 of the text book "algorithm design" by Jon Kleinberg and Eva Tardos
- The <u>original slides</u> were prepared by Kevin Wayne. The slides are distributed by <u>Pearson Addison-Wesley</u>.