Primitivas Bidimensionales

Curso 06/07

Introducción

Definiciones

- Conversión al "raster"
 - Aproximar elementos geométricos continuos mediante un conjunto de puntos discretos (píxel)
 - Píxel: área de la pantalla del ordenador que tiene asociada una posición de memoria

Introducción

- Ejemplo: conversión de puntos discretos
 - Convertir al raster un punto definido mediante una coordenada almacenando el color con el que se va a visualizar
 - Un algoritmo sencillo de conversión punto-raster

```
Sea (x,y) un punto real
(x',y')=(round(x), round(y))
```

- Donde (x', y') es la posición en el raster
- La función round () redondea el valor real al entero más cercano

Conversión de Rectas

Problema

 Calcular las coordenadas de los píxeles que representan una recta infinitamente delgada sobre una malla de un "raster" 2D

Conversión de rectas

- Algoritmo de fuerza bruta
 - Estrategia más simple
 - La ecuación de la recta es:

$$y=m*x+b$$

- Donde m = dx/dy
- El algoritmo para pintar la recta entre los extremos (x_1,y_1) - (x_2,y_2) sería:

```
Para x desde x<sub>1</sub> hasta x<sub>2</sub>
  (incremento/decremento unitario)
  y = x·m + b
  dibujar_pixel(x,round(y))
finPara
```

Conversión de rectas

Algoritmo de fuerza bruta

- Restricción
 - Los valores de m tienen que estar entre -1 y 1
- Solución
 - Intercambiar la x por la y en los extremos de la recta, convertir al raster e intercambiar de nuevo antes de visualizar
 - Calcular la x en función de incrementos unitarios de y
- Desventajas
 - Ineficiente, en cada iteración requiere de una multiplicación en coma flotante y de una invocación a la función round ()

- Algoritmo Diferencial Digital (DDA), incremental básico
 - Elimina el producto de coma flotante
 - Se basa en (si la pendiente es ≤1):

$$y_{i+1} = m \cdot x_{i+1} + b = m \cdot (x_i + \Delta x) + b = y_i + m \cdot \Delta x$$

– Como en las iteraciones $\Delta x=1$ entonces resulta

$$y_{i+1} = y_i + m$$

- Algoritmo Diferencial Digital
 - Los valores de y deben redondearse al entero más próximo
 - Algoritmo:

```
y = y<sub>1</sub>
Para x desde x<sub>1</sub> hasta x<sub>2</sub>
   (incremento unitario)
   y = y + m
   dibujar_pixel(x,round(
   y))
finPara
```


- Algoritmo Diferencial Digital
 - Cuando la pendiente es >1 entonces

$$x_{i+1} = x_i + (1/m)$$

- Los incrementos positivos implican representar la línea de izquierda a derecha, para el trazado inverso los incrementos deben ser negativos
- Desventaja
 - Sigue manteniendo una llamada a la función round()

- Algoritmo Diferencial Digital
- Algoritmo completo para el segmento $(x_1, y_1)-(x_2, y_2)$: $dx=x_2-x_1$ $dy=y_2-y_1$ Si abs(dx)>abs(dy) entonces pasos=abs(dx) sino pasos=abs(dy) finSi xInc=dx/pasos yInc=dy/pasos $x = x_1$ $y = y_1$ dibujar pixel(round(x), round(y)) Para k desde 1 hasta pasos x = x + xIncy = y + yIncdibujar pixel(round(x), round(y)) finPara

- Algoritmo del punto medio de Bresenham (1967)
 - La ecuación del punto es:

$$y = m \cdot (x_k + 1) + b$$

– Por tanto:

$$d_1 = y - y_k = m \cdot (x_k + 1) + b - y_k$$

$$d_2 = (y_k + 1) - y = y_k + 1 - m \cdot (x_k + 1) - b$$

$$d_1 - d_2 = 2m(x_k + 1) - 2y_k + 2b - 1$$

- Algoritmo del punto medio de Bresenham
 - El signo del factor p_k determina el pixel:

$$p_{k} = \Delta x (d_{1} - d_{2}) = \Delta x (2m(x_{k} + 1) - 2y_{k} + 2b - 1) = 2\Delta y \ x_{k} + 2\Delta y - 2\Delta x y_{k} + \Delta x (2b - 1) = 2\Delta y \ x_{k} - 2\Delta x \ y_{k} + \Delta x (2b - 1) + 2\Delta y$$

- El factor p_k
 - Tiene el mismo signo que la diferencia d_1 d_2
 - Todas las operaciones son con enteros
 - La constante c es independiente del pixel
 - Si p_k es negativo se pinta el pixel inferior

- Algoritmo del punto medio de Bresenham
 - En el paso k+1 el parámetro p_{k+1}

$$p_{k+1} = 2\Delta y \ x_{k+1} - 2\Delta x \ y_{k+1} + c$$

Restando

$$p_{k+1}$$
- p_k = $2\Delta y (x_{k+1}$ - x_k)- $2\Delta x (y_{k+1}$ - y_k)

Como

$$x_{k+1} = x_k + 1$$

Entonces

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x (y_{k+1} - y_k)$$

- Con el término y_{k+1} - y_k que toma el valor 0 o el valor 1
- Si $p_0 = 2\Delta y \Delta x$ entonces

- Algoritmo del punto medio de Bresenham
 - 1. Trazar el primer pixel (x_1, y_1)
 - 2. Calcular las constantes Δx , Δy , $2\Delta x$, $2\Delta y$
 - 3. Calcular $p_0 = 2\Delta y \Delta x$
 - 4. Para cada x_k (comenzando en k=0)
 - si $p_k < 0$ se traza el punto $(x_k + 1, y_k)$ con $p_{k+1} = p_k + 2\Delta y$
 - otro caso se traza el punto (x_k+1,y_k+1) con $p_{k+1}=p_k+2\Delta y-2\Delta x$
 - 5. Repetir el paso 4 Δx veces

- Algoritmo del punto medio de Bresenham
 - Ejemplo: Trazar una recta entre (20,10)-(30,18)

•
$$\Delta x = 10$$
, $\Delta y = 8$, $2\Delta y = 16$, $2\Delta y - 2\Delta x = -4$

•
$$p_0 = 2\Delta y - \Delta x = 2.8 - 10 = 6$$

•
$$(x_0, y_0) = (20, 10)$$

k	p_k	(x_{k+1}, y_{k+1})
0	6	(21,11)

La ecuación del círculo es:

$$(x-x_c)^2 + (y-y_c)^2 = r^2$$

Podría dibujarse según:

$$y = y_c \pm \sqrt{r^2 - \left(x - x_c\right)^2}$$

- Inconveniente
 - Cálculo computacional
 - Coma flotante
 - Raíz cuadrada y redondeo
 - Distancia no uniforme entre píxeles

Ecuación en polares

$$x = x_c + r\cos\theta$$
$$y = y_c + r\sin\theta$$

- Inconvenientes
 - Hay cálculos de funciones trigonométricas
- Puede mejorarse teniendo en cuenta la simetría del círculo
 - Sólo requiere dibujarse en $[0,\pi/4]$

- Algoritmo de punto medio
 - Siguiendo un razonamiento similar al empleado para líneas se traslada para dibujar circunferencias
 - Utiliza aritmética entera
 - Utiliza la simetría del círculo
 - Si el último punto dibujado es (x_k, y_k) entonces el siguiente será (x_{k+1}, y_k) o (x_{k+1}, y_{k-1})
 - El parámetro de decisión es el punto medio de ambos

- Algoritmo de punto medio (La discusión completa del algoritmo está en Foley y en Hearn)
 - Algoritmo
 - 1. Primer punto $(x_0, y_0) = (0, r)$
 - 2. Si *r* es:
 - Real, $p_0 = 5/4 r$
 - Entero, $p_0=1-r$
 - 3. Si p_k
 - <0 entonces (x_{k+1}, y_k) , $p_{k+1} = p_k + 2x_{k+1} + 1$
 - \geq 0 entonces $(x_{k+1}, y_{k-1}), p_{k+1} = p_k + 2x_{k+1} + 1 2y_{k+1}$

$$\begin{array}{c} \text{Con } 2x_{k+1} = 2x_k + 2\\ 2y_{k+1} = 2y_k - 2 \end{array}$$

- 4. Calcular los puntos simétricos
- 5. Desplazar los puntos (calculados para una circunferencia centrada en el origen) a la circunferencia centrada en (x_c, y_c)
- 6. Repetir los pasos 3-5 hasta que $x \ge y$

- Algoritmo de punto medio
 - Ejemplo, circunferencia r=10 centrada en (0,0)

•
$$p_0 = 1 - r = -9$$

•
$$(x_0, y_0) = (0, 10)$$

k	p_k	(x_{k+1}, y_{k+1})
0	-9	(1,10)

Trazado de otras figuras

- El algoritmo de punto medio se generaliza a
 - Elipses
 - Cónicas
 - Splines
 - Curvas generadas a partir de la composición de segmentos de polinomios cúbicos

$$x = a_{x0} + a_{x1}u + a_{x2}u^{2} + a_{x3}u^{3}$$
$$y = a_{y0} + a_{y1}u + a_{y2}u^{2} + a_{y3}u^{3}$$

 Las constantes se resuelven imponiendo continuidad y "suavidad"