Guide to Computer Forensics and Investigations Sixth Edition

Chapter 3

Data Acquisition

Objectives (1 of 2)

- List digital evidence storage formats
- Explain ways to determine the best acquisition method
- Describe contingency planning for data acquisitions
- Explain how to use acquisition tools

Objectives (2 of 2)

- Explain how to validate data acquisitions
- Describe RAID acquisition methods
- Explain how to use remote network acquisition tools
- List other forensic tools available for data acquisitions

Understanding Storage Formats for Digital Evidence

- Data in a forensics acquisition tool is stored as an image file
- Three formats
 - Raw format
 - Proprietary formats
 - Advanced Forensics Format (AFF)

Raw Format

- Makes it possible to write bit-stream data to files
- Advantages
 - Fast data transfers
 - Ignores minor data read errors on source drive
 - Most computer forensics tools can read raw format
- Disadvantages
 - Requires as much storage as original disk or data
 - Tools might not collect marginal (bad) sectors

Proprietary Formats

- Most forensics tools have their own formats
- Features offered
 - Option to compress or not compress image files
 - Can split an image into smaller segmented files
 - Can integrate metadata into the image file
- Disadvantages
 - Inability to share an image between different tools
 - File size limitation for each segmented volume
- The Expert Witness Compression format is unofficial standard

Advanced Forensics Format

- Developed by Dr. Simson L. Garfinkel as an open-source acquisition format
- Design goals
 - Provide compressed or uncompressed image files
 - No size restriction for disk-to-image files
 - Provide space in the image file or segmented files for metadata
 - Simple design with extensibility
 - Open source for multiple platforms and Oss
 - Internal consistency checks for self-authentication
- File extensions include .afd for segmented image files and .afm for AFF metadata
- AFF is open source

- Types of acquisitions
 - Static acquisitions and live acquisitions
- Four methods of data collection
 - Creating a disk-to-image file
 - Creating a disk-to-disk
 - Creating a logical disk-to-disk or disk-to-data file
 - Creating a sparse data copy of a file or folder
- Determining the best method depends on the circumstances of the investigation

- Creating a disk-to-image file
 - Most common method and offers most flexibility
 - Can make more than one copy
 - Copies are bit-for-bit replications of the original drive
 - Compatible with many commercial forensics tools
- Creating a disk-to-disk
 - When disk-to-image copy is not possible
 - Tools can adjust disk's geometry configuration
 - Tools: EnCase and X-Ways

Logical acquisition or sparse acquisition

- Can take several hours; use when your time is limited
- Logical acquisition captures only specific files of interest to the case
- Sparse acquisition collects fragments of unallocated (deleted) data
- For large disks
- PST or OST mail files, RAID servers

Determining the Best Acquisition Method (4 of 4)

- When making a copy, consider:
 - Size of the source disk
 - Lossless compression might be useful
 - Use digital signatures for verification
 - When working with large drives, an alternative is using lossless compression
 - Whether you can retain the disk
 - Time to perform the acquisition
 - Where the evidence is located

Contingency Planning for Image Acquisitions

- Create a duplicate copy of your evidence image file
- Make at least two images of digital evidence
 - Use different tools or techniques
- Copy host protected area of a disk drive as well
 - Consider using a hardware acquisition tool that can access the drive at the BIOS level
- Be prepared to deal with encrypted drives
 - Whole disk encryption feature in Windows called BitLocker makes static acquisitions more difficult
 - May require user to provide decryption key

Using Acquisition Tools

- Acquisition tools for Windows
 - Advantages
 - Make acquiring evidence from a suspect drive more convenient
 - Especially when used with hot-swappable devices
 - Disadvantages
 - Must protect acquired data with a well-tested write-blocking hardware device
 - Tools can't acquire data from a disk's host protected area
 - Some countries haven't accepted the use of write-blocking devices for data acquisitions

Mini-WinFE Boot CDs and USB Drives

- Mini-WinFF
 - Enables you to build a Windows forensic boot CD/DVD or USB drive so that connected drives are mounted as read-only
- Before booting a suspect's computer:
 - Connect your target drive, such as a USB drive
- After Mini-WinFE is booted:
 - You can list all connected drives and alter your target USB drive to read-write mode so you can run an acquisition program

Acquiring Data with a Linux Boot CD (1 of 6)

- Linux can access a drive that isn't mounted
- Windows OSs and newer Linux automatically mount and access a drive
- Forensic Linux Live CDs don't access media automatically
 - Which eliminates the need for a write-blocker
- Using Linux Live CD Distributions
 - Forensic Linux Live CDs
 - Contain additionally utilities

Acquiring Data with a Linux Boot CD (2 of 6)

- Using Linux Live CD Distributions (cont'd)
 - Forensic Linux Live CDs (cont'd)
 - Configured not to mount, or to mount as read-only, any connected storage media
 - Well-designed Linux Live CDs for computer forensics
 - Penguin Sleuth Kit
 - CAINE
 - Deft
 - Kali Linux
 - Knoppix
 - SANS Investigative Forensic Toolkit (SIFT)

Acquiring Data with a Linux Boot CD (3 of 6)

- Preparing a target drive for acquisition in Linux
 - Current Linux distributions can create Microsoft FAT and NTFS partition tables
 - fdisk command lists, creates, deletes, and verifies partitions in Linux
 - mkfs.msdos command formats a FAT file system from Linux
 - If you have a functioning Linux computer, follow steps starting on page 105 to learn how to prepare a target drive for acquisition

Acquiring Data with a Linux Boot CD (4 of 6)

- Acquiring data with dd in Linux
 - dd ("data dump") command
 - Can read and write from media device and data file
 - Creates raw format file that most computer forensics analysis tools can read
 - Shortcomings of dd command
 - Requires more advanced skills than average user
 - Does not compress data
 - dd command combined with the split command
 - Segments output into separate volumes

Acquiring Data with a Linux Boot CD (5 of 6)

- Acquiring data with dd in Linux (cont'd)
 - Follow the step starting on page 112 in the text to make an image of an NTFS disk on a FAT32 disk
- Acquiring data with dcfldd in Linux
 - The dd command is intended as a data management tool
 - Not designed for forensics acquisitions

Acquiring Data with a Linux Boot CD (6 of 6)

- Acquiring data with dcfldd in Linux (cont'd)
 - dcfldd additional functions
 - Specify hex patterns or text for clearing disk space
 - Log errors to an output file for analysis and review
 - Use several hashing options
 - Refer to a status display indicating the progress of the acquisition in bytes
 - Split data acquisitions into segmented volumes with numeric extensions
 - Verify acquired data with original disk or media data

Capturing an Image with AccessData FTK Imager Lite (1 of 8)

- Included with AccessData Forensic Toolkit
- Designed for viewing evidence disks and disk-to-image files
- Makes disk-to-image copies of evidence drives
 - At logical partition and physical drive level
 - Can segment the image file
- Evidence drive must have a hardware write-blocking device
 - Or run from a Live CD, such as Mini-WinFE

Capturing an Image with AccessData FTK Imager Lite (2 of 8)

Figure 3-2 The FTK Imager main window

Capturing an Image with AccessData FTK Imager Lite (3 of 8)

- FTK Imager can't acquire a drive's host protected area
- Use a write-blocking device and follow these steps
 - Boot to Windows
 - Connect evidence disk to a write-blocker
 - Connect target disk to write-blocker
 - Start FTK Imager Lite
 - Create Disk Image use Physical Drive option
 - See Figures on the following slides for more steps

Capturing an Image with AccessData FTK Imager Lite (4 of 8)

Figure 3-3 The Select Drive dialog box

Capturing an Image with AccessData FTK Imager Lite (5 of 8)

Figure 3-4 The Select Image Type dialog box

Capturing an Image with AccessData FTK Imager Lite (6 of 8)

Figure 3-5 The Evidence Item Information dialog box

Capturing an Image with AccessData FTK Imager Lite (7 of 8)

Figure 3-6 Selecting where to save the image file

Capturing an Image with AccessData FTK Imager Lite (8 of 8)

Figure 3-7 An image save in progress

Validating Data Acquisitions

- Validating evidence may be the most critical aspect of computer forensics
- Requires using a hashing algorithm utility
- Validation techniques
 - CRC-32, MD5, and SHA-1 to SHA-512

Linux Validation Methods

- Validating dd-acquired data
 - You can use md5sum or sha1sum utilities
 - md5sum or sha1sum utilities should be run on all suspect disks and volumes or segmented volumes
- Validating dcfldd acquired data
 - Use the hash option to designate a hashing algorithm of md5, sha1, sha256, sha384, or sha512
 - hashlog option outputs hash results to a text file that can be stored with the image files
 - vf (verify file) option compares the image file to the original medium

Windows Validation Methods

- Windows has no built-in hashing algorithm tools for computer forensics
 - Third-party utilities can be used
- Commercial computer forensics programs also have built-in validation features
 - Each program has its own validation technique
- Raw format image files don't contain metadata
 - Separate manual validation is recommended for all raw acquisitions

Performing RAID Data Acquisitions

- Acquisition of RAID drives can be challenging and frustrating because of how RAID systems are
 - Designed
 - Configured
 - Sized
- Size is the biggest concern
 - Many RAID systems now have exabytes of data

Understanding RAID (1 of 7)

- Redundant array of independent disks (RAID)
 - Computer configuration involving two or more disks
 - Originally developed as a data-redundancy measure
- RAID 0
 - Provides rapid access and increased storage
 - Biggest disadvantage is lack of redundancy
- RAID 1
 - Designed for data recovery
 - More expensive than RAID 0

Understanding RAID (2 of 7)

Figure 3-8 RAID 0: Striping

Understanding RAID (2 of 6)

Figure 3-9 RAID 1: Mirroring

Understanding RAID (3 of 6)

- RAID 2
 - Similar to RAID 1
 - Data is written to a disk on a bit level
 - Has better data integrity checking than RAID 0
 - Slower than RAID 0
- RAID 3
 - Uses data stripping and dedicated parity
 - Requires at least three disks
- RAID 4
 - Similar to RAID 3
 - Data is written in blocks

Understanding RAID (4 of 6)

Figure 3-10 RAID 2: Striping (bit level)

Understanding RAID (5 of 6)

- RAID 5
 - Similar to RAIDs 0 and 3
 - Places parity recovery data on each disk
- RAID 6
 - Redundant parity on each disk
- RAID 10 (1+0), or mirrored striping
 - Combination of RAID 1 and RAID 0
 - Provides fast access and redundancy
- RAID 15 (1+5)
 - Combination of RAID 1 and RAID 5
 - More costly option

Understanding RAID (6 of 6)

Figure 3-11 RAID 5: Block-level striping with distributed parity

Acquiring RAID Disks (1 of 2)

- Address the following concerns:
 - How much data storage is needed?
 - What type of RAID is used?
 - Do you need to have all drives connected?
 - Do you have the right acquisition tool?
 - Can the tool read a forensically copied RAID image?
 - Can the tool read split data saves of each RAID disk?
- Copying small RAID systems to one large disk is possible

Acquiring RAID Disks (2 of 2)

- Vendors offering RAID acquisition functions
 - Guidance Software EnCase
 - X-Ways Forensics
 - AccessData FTK
 - Runtime Software
 - R-Tools Technologies
- Occasionally, a RAID system is too large for a static acquisition
 - Retrieve only the data relevant to the investigation with the sparse or logical acquisition method

Using Remote Network Acquisition Tools

- You can remotely connect to a suspect computer via a network connection and copy data from it
- Remote acquisition tools vary in configurations and capabilities
- Drawbacks
 - Antivirus, antispyware, and firewall tools can be configured to ignore remote access programs
 - Suspects could easily install their own security tools that trigger an alarm to notify them of remote access intrusions

Remote Acquisition with ProDiscover (1 of 3)

- ProDiscover Incident Response functions:
 - Capture volatile system state information
 - Analyze current running processes
 - Locate unseen files and processes
 - Remotely view and listen to IP ports
 - Run hash comparisons
 - Create a hash inventory of all files remotely

Remote Acquisition with ProDiscover (2 of 3)

- PDServer remote agent
 - ProDiscover utility for remote access
 - Needs to be loaded on the suspect
- PDServer installation modes
 - Trusted CD
 - Preinstallation
 - Pushing out and running remotely
- PDServer can run in a stealth mode
 - Can change process name to appear as OS function

Remote Acquisition with ProDiscover (3 of 3)

- Remote connection security features
 - Password protection
 - Encryption
 - Secure communication protocol
 - Write-protected trusted binaries
 - Digital signatures

Remote Acquisition with EnCase Enterprise

- Remote acquisition features
 - Search and collect internal and external network systems over a wide geographical area
 - Support multiple Oss and file systems
 - Triage to help determine system's relevance to an investigation
 - Perform simultaneous searches of up to five systems at a time

Remote Acquisition with R-Tools R-Studio

- R-Tools suite of software is designed for data recovery
- Can remotely access networked computer systems
- Creates raw format acquisitions
- Supports various file systems

Remote Acquisition with WetStone US-LATT

- US-LATT PRO
 - Part of a suite of tools developed by WetStone
 - Can connect to a networked computer remotely and perform a live acquisition of all drives connected to it

Remote Acquisition with F-Response

- F-Response
 - A vendor-neutral remote access utility
 - Designed to work with any digital forensics program
 - Sets up a security read-only connection
 - Allows forensics examiners to access it
- Four different version of F-Response
 - Enterprise Edition, Consultant + Convert Edition, Consultant Edition, and TACTICAL Edition

Using Other Forensics-Acquisition Tools

- Other commercial acquisition tools
 - PassMark Software ImageUSB
 - ASRData SMART
 - Runtime Software
 - ILookIX Investigator IXimager
 - SourceForge

PassMark Software ImageUSB

- PassMark Software has an acquisition tool called ImageUSB for its OSForensics analysis product
- To create a bootable flash drive, you need:
 - Windows XP or later
 - ImageUSB downloaded from the OSForensics Web site

- ASR Data SMART
 - A Linux forensics analysis tool that can make image files of a suspect drive
 - Can produce proprietary or raw format images
- Capabilities:
 - Data reading of bad sectors
 - Can mount drives in write-protected mode
 - Can mount target drives in read/write mode
 - Compression schemes to speed up acquisition or reduce amount of storage needed

Runtime Software

- Runtime Software offers shareware programs for data acquisition and recovery:
 - DiskExplorer for FAT and NTFS
- Features:
 - Create a raw format image file
 - Segment the raw format or compressed image for archiving purposes
 - Access network computers' drives

ILook Investigator IXimager

- IXimager
 - Runs from a bootable floppy or CD
 - Designed to work only with ILookIX
 - Can acquire single drives and RAID drives
 - Supports:
 - IDE (PATA)
 - SCSI
 - USB
 - FireWire

SourceForge

- SourceForge provides several applications for security, analysis, and investigations
- For a list of current tools, see:
 - SourceForge-Tools
- Windows version of dcfldd
 - SourceForge-dcfldd

Summary (1 of 3)

- Forensics data acquisitions are stored in three different formats:
 - Raw, proprietary, and AFF
- Data acquisition methods
 - Disk-to-image file
 - Disk-to-disk copy
 - Logical disk-to-disk or disk-to-data file
 - Sparse data copy

Summary (2 of 3)

- Several tools available
 - Lossless compression is acceptable
- Plan your digital evidence contingencies
 - Make a copy of each acquisition
- Write-blocking devices or utilities must be used with GUI acquisition tools
- Always validate acquisition
- A Linux Live CD, such as SIFT, Kali Linux, or Deft, provides many useful tools for digital forensics acquisitions

Summary (3 of 3)

- Preferred Linux acquisition tool is dcfldd (not dd)
- Use a physical write-blocker device for acquisitions
- To acquire RAID disks, determine the type of RAID
 - And then which acquisition tool to use
- Remote network acquisition tools require installing a remote agent on the suspect computer

