Generative models Outline

- 1. Preview: Auto-Encoders, VAE
- 2. Generative models with GAN
- 3. GAN architectures

Drawing? => learning from examples

Review: Auto-encoder

Review: Auto-encoder

Review: Auto-encoder

Auto-encoder

Auto-Encoding Variational Bayes, https://arxiv.org/abs/1312.6114

Problems of AE/VAE

It does not really try to simulate real images

Problems of AE/VAE

GAN to tackle this pb:

Realistic

GAN: generative adversarial networks

Game scenario:

Player1, Generator, produces samples **Player2,** – Its adversary **Discriminator**, attempts to distinguish real samples from fake generated ones (produced by Player1)!

Player1 aims at producing Realistic images to fool the Player2

Generative models Outline

- 1. Preview: Auto-Encoders, VAE
- 2. Generative models with GAN
 - GAN Algorithm

Adversarial Nets Framework

Game scenario:

Player1, Generator G
Player2, Discriminator D

$$V(G, D) = \mathbb{E}_{x \sim P_{data}}[log D(x)] + \mathbb{E}_{x \sim P_{G}}[log(1 - D(x))]$$

$$G^* = arg \min_{G} \max_{D} V(G, D)$$

GAN Learning – D and G updates

GAN - Discriminator

Discriminator Optimization on a batch of images:

Using gradient descent to update the parameters in the discriminator, with a fixed generator

GAN - Generator

Updating the parameters of generator

The output be classified as "real" (as close to 1 as possible)

Generator + Discriminator = a network

Optimization:

Using gradient descent to update the parameters in the generator, but fixing the discriminator

GAN Learning – D and G updates

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

• Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.

• Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

GAN algorithm

$$V = \mathbb{E}_{x \sim P_{data}}[log D(x)] + \mathbb{E}_{x \sim P_G}[log(1 - D(x))]$$

$$G^* = arg \min_{G} \max_{D} V(G, D)$$

One example GAN

Source of images: https://zhuanlan.zhihu.com/p/24767059

DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

GAN

100 rounds

GAN

1000 rounds

GAN

50,000 rounds

Generative models Outline

- 1. Preview: Auto-Encoders, VAE
- 2. Generative models with GAN
 - GAN Algorithm
 - KL vs. Jensen Shannon Divergence

$$V(G,D) = \mathbb{E}_{x \sim P_{data}}[logD(x)] + \mathbb{E}_{x \sim P_{G}}[log(1 - D(x))]$$

$$G^* = arg \min_{G} \max_{D} V(G,D)$$

Which measure to evaluate how $P_G(x;\theta)$ is close to $P_{data}(x)$ in Maximum Likelihood optimization?

- Given a data distribution $P_{data}(x)$
- We have a distribution $P_G(x; \theta)$ parameterized by θ
 - E.g. $P_G(x;\theta)$ is a Gaussian Mixture Model, θ are means and variances of the Gaussians
 - We want to find θ such that $P_G(x;\theta)$ close to $P_{data}(x)$

Sample $\{x^1, x^2, ..., x^m\}$ from $P_{data}(x)$

We can compute $P_G(x^i; \theta)$

Likelihood of generating the samples

$$L = \prod_{i=1}^{m} P_G(x^i; \boldsymbol{\theta})$$

Find θ^* maximizing the likelihood

Which measure to evaluate how $P_G(x;\theta)$ is close to $P_{data}(x)$ in Maximum Likelihood optimization?

$$\theta^* = arg \max_{\theta} \prod_{i=1}^{m} P_G(x^i; \theta) = arg \max_{\theta} \log \prod_{i=1}^{m} P_G(x^i; \theta)$$

$$= arg \max_{\theta} \sum_{i=1}^{m} \log P_G(x^i; \theta) \quad \{x^1, x^2, ..., x^m\} \text{ from } P_{data}(x)$$

$$\approx arg \max_{\theta} \mathbb{E}_{x \sim P_{data}} [\log P_G(x; \theta)]$$

$$= arg \max_{\theta} \int P_{data}(x) \log P_G(x; \theta) dx - \int P_{data}(x) \log P_{data}(x) dx$$

$$= \arg\min_{\theta} \frac{x}{KL(P||Q)} = \int_{x} P(x)\log\frac{P(x)}{Q(x)}dx$$

In Maximum Likelihood it is a KLD Kullback Leibler Divergence

If $P_G(x;\theta)$ is a coming with a NN

$$P_G(x;\theta) = \int P_{prior}(z)I_{[G(z)=x]}dz$$

It is difficult to compute the likelihood.

Credits: https://blog.openai.com/generative-models/

Basic Idea of GAN: the 2 players G-D game

- Generator G
 Hard to learn by maximum likelihood
 - G is a function, input z, output x
 - Given a prior distribution $P_{prior}(z)$, a probability distribution $P_{G}(x)$ is defined by function G (and P_{prior})
- Discriminator D
 - D is a function, input x, output scalar
 - Evaluate the "difference" between $P_G(x)$ and $P_{data}(x)$
- Global objective function V(G,D)

$$\theta^* = G^* = arg \min_{G} \max_{D} V(G, D)$$

Basic Idea

$$G^* = arg \min_{G} \max_{D} V(G, D)$$

$$V = \mathbb{E}_{x \sim P_{data}}[log D(x)] + \mathbb{E}_{x \sim P_G}[log(1 - D(x))]$$

Given a generator G, $\max_D V(G,D)$ evaluate the "difference" between P_G and P_{data} Pick the G defining P_G most similar to P_{data}

$$\max_{D} V(G,D) \qquad G^* = \arg\min_{G} \max_{D} V(G,D)$$

Given G, what is the optimal D* maximizing

$$V = \mathbb{E}_{x \sim P_{data}}[logD(x)] + \mathbb{E}_{x \sim P_{G}}[log(1 - D(x))]$$

$$= \int_{x} P_{data}(x)logD(x) dx + \int_{x} P_{G}(x)log(1 - D(x)) dx$$

$$= \int_{x} \left[P_{data}(x)logD(x) + P_{G}(x)log(1 - D(x)) \right] dx$$
Assume that D(x) can have any value here

Given x, the optimal D* maximizing

$$P_{data}(x)logD(x) + P_G(x)log(1 - D(x))$$

$$\max_{D} V(G,D) \qquad G^* = \arg\min_{G} \max_{D} V(G,D)$$

Given x, the optimal D* maximizing

$$P_{data}(x)logD(x) + P_{G}(x)log(1 - D(x))$$

• Find D* maximizing: f(D) = alog(D) + blog(1 - D)

$$\frac{df(D)}{dD} = a \times \frac{1}{D} + b \times \frac{1}{1 - D} \times (-1) = 0$$

$$a \times \frac{1}{D^*} = b \times \frac{1}{1 - D^*} \qquad a \times (1 - D^*) = b \times D^*$$
$$a - aD^* = bD^*$$

$$D^* = \frac{a}{a+b}$$

$$D^*(x) = \frac{P_{data}(x)}{P_{data}(x) + P_G(x)}$$

$${}^{*}(x) = \frac{1}{P_{data}(x) + P_{G}(x)} < 1$$

$$\max_{D} V(G,D) \qquad G^* = \arg\min_{G} \max_{D} V(G,D)$$

$$\max_{D} V(G, D)$$

$$V = \mathbb{E}_{x \sim P_{data}}[logD(x)]$$
$$+ \mathbb{E}_{x \sim P_{G}}[log(1 - D(x))]$$

$$\max_{D} V(G, D) = V(G, D^{*}) \qquad D^{*}(x) = \frac{P_{data}(x)}{P_{data}(x) + P_{G}(x)}$$

$$= \mathbb{E}_{x \sim P_{data}} \left[log \frac{P_{data}(x)}{P_{data}(x) + P_{G}(x)} \right] + \mathbb{E}_{x \sim P_{G}} \left[log \frac{P_{G}(x)}{P_{data}(x) + P_{G}(x)} \right]$$

$$= \int_{x} P_{data}(x) log \frac{\frac{1}{2} P_{data}(x)}{\frac{P_{data}(x) + P_{G}(x)}{2}} dx$$

$$+ \int_{x} P_{G}(x) log \frac{\frac{1}{2} P_{G}(x)}{\frac{P_{data}(x) + P_{G}(x)}{2}} dx$$

$$= > +2log \frac{1}{2} = -2log 2$$

$$\max_{D} V(G, D)$$

$$JSD(P||Q) = \frac{1}{2}KL(P||M) + \frac{1}{2}KL(Q||M)$$

$$M = \frac{1}{2}(P + Q)$$

$$\begin{aligned} \max_{D} V(G, D) &= V(G, D^{*}) & D^{*}(x) &= \frac{P_{data}(x)}{P_{data}(x) + P_{G}(x)} \\ &= -2log2 + \int_{x} P_{data}(x)log \frac{P_{data}(x)}{\left(P_{data}(x) + P_{G}(x)\right)/2} dx \\ &+ \int_{x} P_{G}(x)log \frac{P_{G}(x)}{\left(P_{data}(x) + P_{G}(x)\right)/2} dx \\ &= -2log2 + \text{KL}\left(P_{data}(x)||\frac{P_{data}(x) + P_{G}(x)}{2}\right) \\ &+ \text{KL}\left(P_{G}(x)||\frac{P_{data}(x) + P_{G}(x)}{2}\right) \end{aligned}$$

 $= -2log2 + 2JSD(P_{data}(x)||P_G(x))$ Jensen-Shannon divergence

In the end

$$V = \mathbb{E}_{x \sim P_{data}}[logD(x)]$$
$$+ \mathbb{E}_{x \sim P_G}[log(1 - D(x))]$$

- Generator G, Discriminator D
- Looking for G* such that $G^* = arg \min_{G} \max_{D} V(G, D)$
- Given G, $\max_{D} V(G, D) = -2log2 + 2JSD(P_{data}(x)||P_{G}(x))$
- What is the optimal G?

$$P_G(x) = P_{data}(x)$$

with/using the $JS(P_G, P_{data})$ Divergence

(In Maximum Likelihood it is a KL Divergence)

