# StiCProb: A Novel Feature Mining Approach using Conditional Probability

Yutian Tang, and Dr. Hareton Leung
The Hong Kong Polytechnic University, Hong Kong
@SANER 2017

more: www.chrisyttang.org/loong







#### Motivation

legacy —-> product line



- 1. How to locate the feature?
- 2. How to measure?



### How to locate?



- 1. Select seeds
- 2. Annotate features

### Basic

Programming elements ERelationship  $R \subseteq E \times E$ Feature FAnnotation  $A \subseteq E \times F$ 

### Basic (cond')

mutual exclusion

$$M \subset F \times F$$

implications

full annotation

$$\Rightarrow \subseteq F \times F$$

$$A \subseteq E \times F$$

$$A^* = \{(e,f) | (e,f) \in A, g \Rightarrow^* f \}$$

(e,f)

$$(e,f)|(e,f) \in A,g \Rightarrow f$$

### Annotate Features

**Annotation State** 



Prog. Elements Cand.

feature f



 $S(A^*,f,i+1)$ 

Annotation State (i+1)

 $S(A^*,f,i)$ 

**Annotation** 

State (i)

Prog. Elements Cand.

feature 
$$f$$





Slicing Scope

$$sscope(e) = e \cup \left\{ s \middle| s \xrightarrow{df} e, s \in E \right\}$$

#### Binding

$$bind(e) = def(e) \cup use(e)*$$
 in  $sscope(e)$ 

Context Binding



\* All def and use within e

Context Binding @ Method Invocation

$$l = r_0 .m(r_1, r_2, ..., r_n)$$

$$contbind(m,[r_1,...,r_n]) = dispatch(p_i = r_i) \rightarrow bind(m)$$

[13] L. O. Anderson, "Program analysis and specification for c programming language"

```
Context Binding @ Method Invocation
  main(){
     A a = new A();
csite 1: z = wrapper(a);
                            callsite 1
                                         wrapper (A b){
                                           y = bar(b); return y;
                                       contbind(wrapper(..), [a])
  bar (A c)
     x = c.f; return x;
```

[13] L. O. Anderson, "Program analysis and specification for c programming language"

Context Binding @ Overriding



def and use in m 2. def in parent class/interface, used in m

Context Binding @ Overriding



Context Binding @ Overriding

defined in m: def(m)

- used in m: use(m) 1. used in m and defined in m
  - 2. used in m and not defined in m

$$contbind(m,[p_1,...,p_n]) = def(m) \cup \bigcup_{i=1}^n (use(m) \rightarrow def(p_i))$$

~> used to specify the source of the context

Context Binding @ Overriding : Example

 $contextbind(startEngine) = \{encryptedValue, \begin{center}OperateCar.encryptedValue\\\}\end{center}$ 

#### Context Binding @ Inheritance



$$contbind(c,[p_1,...,p_n]) = bind(c) \cup \bigcup_{i=1}^n def(p_i)$$

Context Binding



by default: context-aware points-to analysis

$$S(A^*, f, i) = \{e | (e, f) \in A^* \}$$



$$S(A^*, f, i) = \bigcup_{a \in S(A^*, f, i)} contextbind(a)$$

### StiCProb

1. Build Program DB

2. Build uniqueness table

3. Annotate features

### StiCProb: Uniquess Table

element s and t with a relation r

$$s \xrightarrow{r} t$$

$$U(E,T,R,P_{forward},P_{backward})$$

**P**<sub>forward</sub>

the uniqueness of *t* to *s* if *s* has been annotated to a feature *f* 

$$s \in S(A^*, f, i)$$

$$t$$

$$S(A^*, f, i) = \{e | (e, f) \in A^* \}$$

## StiCProb: Uniquess Table(cond')

P<sub>forward</sub>

the uniqueness of t to s if s has been annotated to a feature f

$$s \in S(A^*, f, i)$$

$$t$$

$$S(A^*, f, i) = \{e | (e, f) \in A^* \}$$

$$p_{forward}\left(s \xrightarrow{r} t \middle| (s, f) \in A^*\right) = \frac{contbind(t, [s])}{contbind(s)}$$

## StiCProb: Uniquess Table(cond')

 $P_{\it backward}$ 

the uniqueness of *s* to *t* if *t* has been annotated to a feature *f* 

$$p_{backward}\left(s \xrightarrow{r} t \middle| (t, f) \in A^*\right) = \frac{contbind(t, [s])}{\bigcup_{i \xrightarrow{r} t} contbind(t, [i])}$$

$$S = S(A^*, f, i)$$

$$S(A^*, f, i) = \{e \middle| (e, f) \in A^*\}$$

 $\bigcup_{r} contbind(t,[i])$ 

a collection of context binding from all prog. elements, which have relation *r* with *t*.

### StiCProb



### StiCProb

```
Algorithm 1: StiCProb feature mining approach
   Input: seeds, fm, threshold, U
   Output: all annotation states for features Sset in fm
 1 Create a set of annotation states as
   Sset = \bigcup_{f}^{f \in features} S(A^*, f);
 2 Assign seeds to each feature as S(A^*, f) = seeds(f);
 3 Create feature set features with all features in fm;
 4 while features not NULL do
       for feature f in features do
           Create set waitList = \emptyset;
           Create candidate set C(S, f) = \emptyset for f;
           Add all elements have relations with elements in
           S(A^*,f) to C(S,f);
                                            // initialize C(S, f)
           for element m in C(S, f) do
               if there is a relation r from m to the element
10
               e in S(A^*, f) then
                   Let value =
11
                  p_{backward}\left(m \stackrel{r}{\rightarrow} e | (e, f) \in A^*\right);
               else
12
                   Let value =
                  p_{forward}\left(e \stackrel{r}{\rightarrow} m | (e, f) \in A^*\right);
               if value > threshold then
14
                   Add m to waitList;
           Update S(A^*, f) \leftarrow S(A^*, f) \cup waitList;
           if StopCheck(f) is TRUE then
               Remove f from features;
```

19 return Sset;

Feature model(fm)

Seeds(seeds)

threshold

Uniqueness Table(U)

### Case Study

| Projects    | LOC    | #features | domain                           |
|-------------|--------|-----------|----------------------------------|
| Prevalyer   | 8,009  | 5         | object<br>persistence<br>librarv |
| MobileMedia | 4,653  | 6         | mobile                           |
| Lampiro     | 44,584 | *2        | message client                   |
| ArgoUML     | ~120K  | 7         | modeling tool                    |

### Case Study

tool: Loong Eclipse plugin

#### **Experimental Setting:**

seeds: FLAT3 tool

feature model: benchmark

benchmark

#### **Related Approaches:**

Type system, Topology analysis, Text comparison

#### **Measurement:**

precision recall f-score

### Case Study

#### **Other Settings:**

# **seeds**: 3

threshold: 0.6

### Experimental Result

StiCProb with threshold t = 0.6

|           |                  | Feature Size |    |    | Mining Results |        |       |
|-----------|------------------|--------------|----|----|----------------|--------|-------|
| Project   | Feature          | LOC          | FR | FI | IT             | Recall | Prec. |
| Prevayler | Censor           | 105          | 10 | 5  | 3              | 17%    | 60%   |
|           | Gzip             | 165          | 4  | 4  | 3              | 16%    | 100%  |
|           | Monitor          | 240          | 19 | 8  | 2              | 17%    | 82%   |
|           | Replication      | 1487         | 37 | 28 | 26             | 79%    | 98%   |
|           | Snapshot         | 263          | 29 | 5  | 9              | 42%    | 99%   |
| MobileM.  | CopyMedia        | 79           | 18 | 6  | 4              | 43%    | 95%   |
|           | Sorting          | 85           | 20 | 6  | 4              | 32%    | 100%  |
|           | <b>Favorites</b> | 63           | 18 | 6  | 12             | 20%    | 100%  |
|           | SMS Trans.       | 714          | 26 | 14 | 23             | 91%    | 49%   |
|           | Music            | 709          | 38 | 16 | 4              | 39%    | 90%   |
|           | Photo            | 493          | 35 | 13 | 5              | 63%    | 61%   |

LOC: line of code, FR: count of distinct code fragments, IT: number of iteration,

Prec.: precision 30

### Experimental Result (cond')

StiCProb with threshold t = 0.6

|          |            | Feature Size |     |     | Mining Results |        |       |
|----------|------------|--------------|-----|-----|----------------|--------|-------|
| Project  | Feature    | LOC          | FR  | FI  | IT             | Recall | Prec. |
| MobileM. | M.Transfer | 153          | 4   | 3   | 14             | 97%    | 94%   |
| Lampiro  | Compre.    | 5155         | 33  | 20  | 34             | 40%    | 82%   |
| ArgoUML  | Cognitive  | 16319        | 285 | 233 | 127            | 70%    | 92%   |
|          | Activity   | 2282         | 115 | 80  | 17             | 26%    | 74%   |
|          | State      | 3917         | 115 | 88  | 18             | 33%    | 82%   |
|          | Collab.    | 1579         | 53  | 40  | 40             | 17%    | 72%   |
|          | Sequence   | 5379         | 65  | 53  | 98             | 33%    | 89%   |
|          | Use-Case   | 2712         | 59  | 49  | 39             | 19%    | 70%   |
|          | Deployment | 3147         | 57  | 47  | 36             | 22%    | 67%   |

LOC: line of code, FR: count of distinct code fragments, IT: number of iteration,

**Prec.**: precision

### Experimental Result (cond')



Recall Performance

SP: StiCProb (t = 0.6)

TP: topology analysis



Precision Performance

TS: type system

TC: text comparison

### Experimental Result f-score



SP: StiCProb (t = 0.6)

TP: topology analysis

TS: type system

TC: text comparison

### Experimental Result Runtime



SP: StiCProb (t = 0.6)

TP: topology analysis

TS: type system

TC: text comparison

#### Discussion

#### Seeds:

1. seeds provided by FLAT3 might be not correct

2. number of seeds

3. granularity of seeds: coarse granularity could improve the recall performance, but sometimes at the cost of precision.

### Discussion

#### **Thresholds:**

threshold: 0.6 —-> 0.8

precision: 83% —-> 85%

The threshold contributes less to the performance.

Structure of the program



### Loong Plugin

- Download: <a href="http://www.chrisyttang.org/loong/">http://www.chrisyttang.org/loong/</a>
- Source code: <a href="https://github.com/csytang/Loong">https://github.com/csytang/Loong</a>
- Experimental results: https://drive.google.com/folderview? id=0B9l0qvk6pnW0ZDRYMmxIQVhRb0U&usp=sharing
- Online Tutorial: <a href="http://www.chrisyttang.org/loong/">http://www.chrisyttang.org/loong/</a>

### Discussion

- Need of req. specification <—> seeds selection/ poor naming
- Variants of our approach? or better solutions?
- weighted graph —> graph clustering
- ?