"DIVERSIDAD"

Trabajo Preparatorio N°7 Laboratorio de Comunicaciones Inalámbricas

Melanny Cecibel Dávila Pazmiño Ingeniería en Telecomunicaciones Facultad de Eléctrica y Electrónica Quito, Ecuador melanny.davila@epn.edu.ec

Abstract—En el siguiente documento se trata acerca de técnicas de diversidad con el fin de poner reducir los efectos causados por el desvanecimiento a pequeña escala en un canal inalámbrico y de esta manera mejorar su desempeño.

Index Terms—Rayleigh, modulación, diversidad, desvanecimiento.

I. Introducción

El canal inalámbrico presenta un comportamiento dinámico producto de los efectos multicamino y del desplazamiento Doppler, los cuales pueden afectar significativamente el rendimiento del sistema. Las técnicas de diversidad permiten en ocasiones evitar este deterioro a un coste relativamente bajo, pudiendo implementarse de diferentes formas tanto en transmisión como en recepción.

II. OBJETIVOS

- Familiarizar al estudiante con las técnicas de diversidad en recepción más usadas en un sistema de comunicación digital.
- Calcular el Bit Error Rate (BER) para una modulación BPSK usando dos técnicas de diversidad en recepción, a saber, maximal ratio combining (MRC) y equal gain combining (EGC) sobre un canal Rayleigh plano (flat fading).

III. CUESTIONARIO

A. Se solicita al estudiante traer preparada la función para generar coeficientes de canal tipo Rayleigh. Se debe usar la función 1 desarrollada para la Práctica 5. Incluir una captura del código.

A continuación se presenta el código implementado para el diseño del canal Rayleigh:

```
function [h_ray] = canal_rayleigh(num, sigma)
    X = randn(1, num); %Creacion X
    Y = 1j*randn(1, num); %Creacion Y
    h_ray = sigma*(X+Y);
end
```

Fig. 1. Función Rayleigh

B. Se solicita al estudiante traer preparadas las funciones para modular y demodular en BPSK. Se debe usar las funciones modulador.m y demodulador.m desarrolladas para la Práctica 4. Incluir una captura del código.

La función solicitada se presenta en la figura 2.

```
function [informacionModulada] = modulador(informacion, m)
%Creacion del objeto de modulador BPSK
moduladorbpsk = comm.BPSKModulator;
switch m
    case 1 %BPSK
        informacionModulada = moduladorbpsk(informacion);
    case 2 %4QAM
        M=2^m;
        informacionModulada = qammod(informacion, M);
    case 4 %16QAM
        M=2^m;
        informacionModulada = qammod(informacion, M);
end
end
```

Fig. 2. Función creada para modular

A continuación, se presenta el segmento de código que realiza demodulación.

```
function [informacionDemodulada] = demodulador(informacion,m)
%Creacion del objeto de modulador BPSK
demoduladorbpsk = comm.BPSKDemodulator;
switch m
    case 1 %BPSK
        informacionDemodulada = demoduladorbpsk(informacion);
    case 2 %4QAM demodulador
        M=2^m; %numero de estados
        informacionDemodulada = qamdemod(informacion, M);
    case 4 %16QAM demodulador
        M=2^m; %numero de estados
        informacionDemodulada = qamdemod(informacion, M);
end
end
```

Fig. 3. Función demodulador.m

- C. Consultar los siguientes comandos en MATLAB
 - Nchoosek: Esta función permite obtener el coeficiente binomial, definido como:

$${}^{n}C_{k} = \binom{n}{k} = \frac{n!}{(n-k)!k!} \tag{1}$$

Si se utiliza la siguiente sintaxis "nchoosek(n,k)" describe el número de combinaciones de n elementos tomados k a la vez; donde n y k deben ser números enteros no negativos [1].

- **conj:** Permite obtener la conjugada compleja de un número complejo o un vector de números complejos. Su sintaxis es sencilla un ejemplo sería "conj(z)" donde z puede ser un escalar o un vector [2].
- angle: Entrega como resultado el ángulo de fase de un número complejo en un intervalo de $-\pi$ a π . Ejemplo de sintaxis b = angle(3+2j) cuyo resultado sería 0.588 radianes [3].

REFERENCES

- [1] "SISTEMAS DE DIVERSIDAD". http://bibing.us.es/proyectos/abreproy/ 11831/fichero/Volumen+I%252FCapitulo+2 + -+Sistemas+de+diversidad.pdf (accedido jul. 12, 2021).
- [2] "Binomial coefficient or all combinations MAT-LAB nchoosek - MathWorks América Latina". https://la.mathworks.com/help/matlab/ref/nchoosek.html#btshfjg-1 (accedido jul. 12, 2021).
- [3] "Complex conjugate MATLAB conj MathWorks América Latina". https://la.mathworks.com/help/matlab/ref/conj.html?searchHighlight=conj&s_tid=srchtitle (accedido jul. 12, 2021).
- [4] "Phase angle MATLAB angle MathWorks América Latina". https://la.mathworks.com/help/matlab/ref/angle.html?searchHighlight= angle&s_tid=srchtitle (accedido jul. 12, 2021).