[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 779 G Your Roll No......

Unique Paper Code : 234501

Name of the Paper : Theory of Computation (CSHT-511)

Name of the Course : B.Sc. (H) Computer Science

Semester : V

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. All questions from Part A is compulsory and attempt any four questions from Part B.
- 3. Assume $\Sigma = \{a,b\}$ is the underlying alphabet unless mentioned otherwise. Parts of a question must be answered together.

PART A

- 1. (a) Prove that for all sets S, $(S^+)^+=S^+$. (2)
 - (b) Give regular expression for the language of all words that have at least two a's in them. (2)
 - (c) Consider the language PALINDROME over the alphabet {a b}. Prove that if x is in PALINDROME then so is xⁿ for any n. (3)
 - (d) Show that $(a^*+b)^*$ and $(a+b)^*$ defines the same language over alphabet $\{ab\}$.
 - (e) Build an FA that accepts only those words that have more than four letters.

- (f) Build FA for the regular expression (a+b)b(a+b)*. (3)
- (g) Find a CFG for the language defined by regular expression (baa + abb)*.
- (h) Use the pumping lemma to show that the language {aⁿbⁿaⁿ n= 1 2 3...} is non regular.(4)
- (i) Show that if L1 and L2 are regular languages, then so are $L_1 + L_2$, L_1L_2 and L_1^* . (4)
- (j) Construct a PDA for the language $L = \{a^{2n}b^n \ n=0 \ 1 \ 2 \ 3 \dots\}$. (4)
- (k) Explain the Church Turing Thesis. (4)

PART B

- 2. (a) Define Finite Automata. (2)
 - (b) Build a regular expression for all words that have exactly two b's or exactly three b's not more.
 (3)
 - (c) Build an FA that accepts only those words that begin or end with double letter. (5)
- 3. (a) Define Non Deterministic Finite Automaton. (2)
 - (b) Convert the following Transition graph into regular expression. (4)

(c) Convert the following NFA into DFA:

- 4. (a) For the given languages $L1 = (a+b)b(a+b)^*$ and $L2 = b(a+b)^*$, find regular expression and finite automata that define $L_1 \cap L_2$. (5)
 - (b) Use pumping lemma to show that language $\{a^{2n}b^n \ n = 1 \ 2 \ 3 \dots \}$ is non regular. (5)
- 5. (a) Construct a CFG for the language $L = \{a^m b^n \ n > m, m, n > = 1\}$. (5)
 - (b) Construct a PDA for the language $L = (a^nbb^n n=1 2 3 ...)$. (5)
- 6. (a) State pumping lemma for context free languages. (2)
 - (b) Show that the family of context free languages is not closed under intersection. (4)
 - (c) Show that the language {aⁿbⁿaⁿbⁿaⁿ for n = 1 2 3 ...} is non context free. (4)
- 7. (a) Define Turing Machine. (2)
 - (b) Prove that If L is a recursive language, then its compliment L' is also recursive. (4)

(4)

(c) Design a Turing Machine that provides output as a compliment of the given number which is provided to the machine as input in binary form over the alphabet {01}.
(4)