Watson gave Sherlock a collection of arrays $oldsymbol{V}$. Here each $oldsymbol{V_i}$ is an array of variable length. It is guaranteed that if you merge the arrays into one single array, you'll get an array, M, of n distinct integers in the range [1, n].

Watson asks Sherlock to merge $oldsymbol{V}$ into a sorted array. Sherlock is new to coding, but he accepts the challenge and writes the following algorithm:

- $M \leftarrow []$ (an empty array).
- $k \leftarrow$ number of arrays in the collection V.
- ullet While there is at least one non-empty array in $oldsymbol{V}$:
 - $\circ \ T \leftarrow [\] \ (\text{an empty array}) \ \text{and} \ i \leftarrow 1.$
 - While i < k:

 - $\begin{tabular}{ll} \blacksquare & \mbox{If V_i is not empty:} \\ \blacksquare & \mbox{Remove the first element of V_i and push it to T.} \end{tabular}$
 - \circ While T is not empty:
 - lacksquare Remove the minimum element of T and push it to M.
- Return M as the *output*.

Let's see an example. Let V be $\{[3,5],[1],[2,4]\}$.

The image below demonstrates how Sherlock will do the merging according to the algorithm:

Sherlock isn't sure if his algorithm is correct or not. He ran Watson's input, V, through his pseudocode algorithm to produce an output, $m{M}$, that contains an array of $m{n}$ integers. However, Watson forgot the contents of $ec{V}$ and only has Sherlock's $oldsymbol{M}$ with him! Can you help Watson reverse-engineer $oldsymbol{M}$ to get the original contents of V?

Given m, find the number of different ways to create collection V such that it produces m when given to Sherlock's algorithm as *input*. As this number can be quite large, print it modulo $10^9 + 7$.

Notes:

- Two collections of arrays are *different* if one of the following is *true*:
 - Their sizes are different.
 - Their sizes are the same but at least one array is present in one collection but not in the other.
- Two arrays, \boldsymbol{A} and \boldsymbol{B} , are different if one of the following is true:
 - Their sizes are different.
 - \circ Their sizes are the same, but there exists an index i such that $a_i \neq b_i$.

Input Format

The first line contains an integer, n, denoting the size of array M. The second line contains n space-separated integers describing the respective values of $m_0, m_1, \ldots, m_{n-1}$.

Constraints

- $\begin{array}{ll} \bullet & 1 \leq n \leq 1200 \\ \bullet & 1 \leq m_i \leq n \end{array}$
- **Output Format**

Print the number of different ways to create collection V, modulo $10^9 + 7$.

Sample Input 0

3 1 2 3

Sample Output 0

4

Explanation 0

There are four distinct possible collections:

```
1. V = \{[1, 2, 3]\}
2. V = \{[1], [2], [3]\}
3. V = \{[1, 3], [2]\}
4. V = \{[1], [2, 3]\}.
```

Thus, we print the result of $4 \mod (10^9 + 7) = 4$ as our answer.

Sample Input 1

2 2 1

Sample Output 1

1

Explanation 1

The only distinct possible collection is $V = \{[2,1]\}$, so we print the result of $1 \mod (10^9 + 7) = 1$ as our answer.