	NAME:	COMBN:	
	AHSN		
	S.6 TOPICAL TEST 1 TERM II 2023		
	ELECTROCHEMISTRY		
	1 hour 45 minutes		
	Instructions		
	Attempt all questions		
1.	(a) Define the term molar conductivity.		(01 mark)
	•		
		•••••	•••••
	(b) (i) Chatch a growth to show the gradient of malor and dusting		
	(b) (i) Sketch a graph to show the variation of molar conductive	ity of socium enfortee with	
			(02 marks)
	(ii) Explain the shape of the graph in (b)(i).		(2½ marks)
			•••••
	(c) The electrolytic conductivity of saturated solution of silver		
	molar conductivities at infinite dilution of silver and chloric	le ions are 6.2×10^{-3} and 7	7.7×10^{-3} $^{-1}$ m
	¹ mol ⁻¹ respectively. Determine the solubility of silver chloric	de at 25° C.	(3½ marks)
			,
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		•••••	•••••

electrolysis conductivity of a s					
The electrolysis conductivity of a saturated solution of silver chloride in water at 25°C is 3.41 x 1 $^{-1}$ cm ⁻¹ and that of pure water is 1.6 x 10 ⁻⁶ $^{-1}$ cm ⁻¹ . Calculate the solubility product of a satural solution of silver chloride at 25°C. (The molar conductivity at infinite dilution of silver nitrations)					
assium nitrate and potassium of C.	chloride are 133.4, 145.0 and 149.9 ⁻¹ cm	1-1 mol ⁻¹ respectivel (4½ marks)			
		•••••			
Write					
Equation for the ionization of n	nethanoic acid in water.	(1½ marks			
The expression for the acid diss	sociation constant ka, for methanoic acid.	(1 mark)			
The molar conductivities of some electrolytes at infinite dilution at 25°C are given in the ta					
below:					
	Molar conductivity at infinite	dilution (Scm ² m			
		diddon (bem inc			
dium methanoate	101.0				
dium hydroxide	252.2				
الباء واسواءاه وساور	397.8				
drochloric acid	f methanoic acid at infinite dilution.				
	te Equation for the ionization of n The expression for the acid diss molar conductivities of some ow: ectrolyte dium chloride dium methanoate	te Equation for the ionization of methanoic acid in water. The expression for the acid dissociation constant ka, for methanoic acid. molar conductivities of some electrolytes at infinite dilution at 25°C ow: extrolyte dium chloride dium methanoate Molar conductivity at infinite dium chloride dium methanoate 101.0			

2. (a) Silver chloride dissolves in water according to the following equation:

	The molar conductivity of a 0.05M methanoic acid solution is 24.318Scm ² mol ⁻¹ at 25 ^o C. Calculate						
	(i) Degree of ionization of methanoic acid at 25°C				(1½ marks)		
		• • • • • • • • • • • • • • • • • • • •	•••••	••••••	• • • • • • • • • • • • • • • • • • • •		
	(ii) Dissociation constant ke of meth		5 ⁰ C	••••••	(02 marks)		
	(ii) Dissociation constant, ka of methanoic acid at 25°C.				(02 marks)		
TI.							
	e table blow shows the atomic radius	and the first i	onization energ	y of some elem	ients in period		
	the periodic table.	Ma	Ca	Sr	Ba		
	tandard electrode potential $E^{\circ}(v)$	-2.37	-2.87	-2.89	-2.91		
a)	(i) Identify the element which is the	most powerful	reducing agent	t.	(1 mark)		
	(ii) Give a reason for your answer in		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	(1½ mark		
	(ii) Give a reason for your answer in (a)(i)				(1/2 IIIai K		
					`		
b)							
b)					(1 mark)		
b)							
o)							
o)	(i) State the trend in standard electronic (ii) Explain your answer in (b) (i)	ode potential of			(1 mark) (2 marks)		
o)	(i) State the trend in standard electronic (ii) Explain your answer in (b) (i)	ode potential of	the elements?		(1 mark) (2 marks)		
o)	(i) State the trend in standard electronic (ii) Explain your answer in (b) (i)	ode potential of	the elements?	•••••	(1 mark) (2 marks)		
0)	(i) State the trend in standard electrons. (ii) Explain your answer in (b) (i)	ode potential of	the elements?		(1 mark) (2 marks)		
)	(i) State the trend in standard electronic (ii) Explain your answer in (b) (i)	ode potential of	the elements?		(1 mark) (2 marks)		
	(i) State the trend in standard electronic (ii) Explain your answer in (b) (i)	ode potential of	the elements?		(1 mark) (2 marks)		
	(ii) State the trend in standard electrons (ii) Explain your answer in (b) (i) What is meant by the term: The statemergy	andard electroc	the elements?		(1 mark) (2 marks)		
b) 5.	(ii) State the trend in standard electrons. (iii) Explain your answer in (b) (i) What is meant by the term: The standard electrons.	andard electroc	the elements?		(1 mark) (2 marks)		

		(1)	the cell convention for the combined cell.	(1 mark)
		(ii)	the equation for the overall cell reaction	(1½ mark)
	(b) Cal	culate	the overall electrode potential for the cell.	(1½ marks)
		•••••		
	••••			
	(c) (i)	State v	whether the reaction is feasible or not	(½ mark)
	(ii)	Give a	reason for your answer.	(½ mark)
	(11)			
6.	(a) (i)]	Define	standard electrode potential.	(02 marks)
	(ii)	Why is	s it not possible to measure standard electrode potential absolutely?	(02 marks)
		• • • • • • • •		
	(iii) Discu	ss the factors which affect the value of standard electrode potential.	(5½ marks)
	`	•••••		
		• • • • • • • •		