Relational Algebra: Basic Operators for Reducing Relations

Computing on Data

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Kevin C.C. Chang, Professor Computer Science @ Illinois

Learning Objectives

By the end of this video, you will be able to:

- Identify the basic operators that reduce tables to what we want.
- Use these operators to write RA expressions.

Reduction Operators

• Reducing rows: Selection: σ

Reducing rows from a table

• Reducing columns: Projection: π

Reducing columns from a table

Selection σ

- Notation: $\sigma_c(R)$
- Input: relation R
- Parameters: c is a condition: =, <, >, and, or, not.
- Output:
 - A relation as a subset of R that satisfies condition c
 - Schema: same as R

- What is the major of Bugs Bunny?
 - $\sigma_{\text{name}=\text{"Bugs Bunn}y"}$ (Students)

id	name	major	birthday
1	Bugs Bunny	CS	2004-11-06
2	Donald Duck	Bio	1997-02-01
3	Peter Pan	Econ	1998-10-01
4	Mickey Mouse	CS	1995-04-01

Example relation Students

Selection Examples

Q1: Find beers that are made by "AB InBev".

• Q2: Find beers that are made by "Boston Beer".

Q3: Find beers that are sold for less than \$5.

Projection π

- Notation: $\pi_{A_1,...,A_n}(R)$
- Input: relation $R(B_1, ..., B_m)$
- Parameters: $\{A_1, \dots, A_n\} \subseteq \{B_1, \dots, B_m\}$
- Output:
 - A relation of tuples with attribute A_1, \dots, A_n from R
 - Duplicates are removed.
 - Schema: $\{A_1, ..., A_n\}$
- What majors do students have?
 - $\pi_{\text{major}}(\text{Students})$

id	name	major	birthday
1	Bugs Bunny	CS	2004-11-06
2	Donald Duck	Bio	1997-02-01
3	Peter Pan	Econ	1998-10-01
4	Mickey Mouse	CS	1995-04-01

Example relation Students

Projection Examples

• Q1: Find the brewers of beers.

• Q2: Find each bar-beer pair where a bar is selling a beer.

Sigma and Pi often are used together. Can you explain why?

References

• SigmaPi, 1908. Sigma Pi University of Illinois [Online image]. Retrieved from https://www.facebook.com/PhiofSigmaPi/.