We claim:

- 1. A method for screening to identify a selective anxiolytic agent comprising contacting a candidate molecule with the α 2-GABA $_{A}$ receptor and the α 1-GABA $_{A}$ receptor and determining whether the candidate molecule selectively or preferentially binds to or activates the α 2-GABA $_{A}$ receptor as compared to the α 1-GABA $_{A}$ receptor, wherein a molecule that selectively or preferentially binds to or activates the α 2-GABA $_{A}$ receptor as compared to the α 1-GABA $_{A}$ receptor is a selective anxiolytic agent.
- 2. A method for screening to identify a selective anxiolytic agent comprising contacting a candidate molecule with the α2-GABA_A receptor and the α3-GABA_A receptor and determining whether the candidate molecule selectively or preferentially binds to or activates the α2-GABA_A receptor as compared to the α3-GABA_A receptor, wherein a molecule that selectively or preferentially binds to or activates the α2-GABA_A receptor as compared to the α3-GABA_A receptor as
- 3. A method for screening to identify a selective anxiolytic agent comprising contacting a candidate molecule with the α2-GABA_A receptor and the α5-GABA_A receptor and determining whether the candidate molecule selectively or preferentially binds to or activates the α2-GABA_A receptor as compared to the α5-GABA_A receptor, wherein a molecule that selectively or preferentially binds to or activates the α2-GABA_A receptor as compared to the α5-GABA_A receptor is a selective anxiolytic agent.
- 4. A selective anxiolytic agent which selectively or preferentially binds to or activates the α 2-GABA_A receptor as compared to the α 1-GABA_A receptor.
 - 5. A selective anxiolytic agent which selectively or preferentially binds to or activates the α 2-GABA_A receptor as compared to the α 3-GABA_A receptor.
- 30 6. A selective anxiolytic agent which selectively or preferentially binds to or activates the α 2-GABA_A receptor as compared to the α 5-GABA_A receptor.
 - 7. The selective anxiolytic agent according to claim 4, 5 or 6, wherein the agent binds to the benzodiazepine binding site of the receptor.

35

10

25

- 8. The selective anxiolytic agent according to claim 4, 5 or 6, wherein the agent binds to the neurosteroid binding site of the receptor.
- 9. The selective anxiolytic agent according to claim 4, 5 or 6, wherein the agentbinds to the barbiturate binding site of the receptor.
 - 10. A method of treating an anxiety-related disorder comprising administering a therapeutically effective amount of a selective anxiolytic agent and a pharmaceutically acceptable carrier to a patient in need thereof.
 - 11. The method according to claim 10 in which the selective anxiolytic agent is identified by the method of claim 1, 2 or 3.
- 12. The method according to claim 10 in which the selective anxiolytic agent binds to the benzodiazepine binding site of the receptor.
 - 13. The method according to claim 10 in which the selective anxiolytic agent binds to the neurosteroid binding site of the receptor.
- 20 14. The method according to claim 10 in which the selective anxiolytic agent binds to the barbiturate binding site of the receptor.
 - 15. The method according to claim 10 in which the selective anxiolytic agent is a pro-drug.
- 16. A method of identifying a molecule that decreases the ability of a non-selective benzodiazepine to bind to the α1-GABA_A receptor but does not substantially decrease the ability of the non-selective benzodiazepine to bind to the α2-GABA_A receptor comprising contacting the α1-GABA_A receptor and the α2-GABA_A receptor with a non-selective
 30 benzodiazepine and a candidate molecule and detecting the ability of the candidate molecule to decrease the ability of the benzodiazepine to bind to the α1-GABA_A receptor but not substantially decrease the ability of the benzodiazepine to bind to the α2-GABA_A receptor.
- 35 17. A method of identifying a molecule that decreases the ability of a non-selective benzodiazepine to bind to the α 3-GABA_A receptor but does not substantially decrease the

- 30 -

ability of the non-selective benzodiazepine to bind to the $\alpha 2\text{-}GABA_A$ receptor comprising contacting the $\alpha 3\text{-}GABA_A$ receptor and the $\alpha 2\text{-}GABA_A$ receptor with a non-selective benzodiazepine and a candidate molecule and detecting the ability of the candidate molecule to decrease the ability of the benzodiazepine to bind to the $\alpha 3\text{-}GABA_A$ receptor but not substantially decrease the ability of the benzodiazepine to bind to the $\alpha 2\text{-}GABA_A$ receptor.

18. A method of identifying a molecule that decreases the ability of a non-selective benzodiazepine to bind to the α5-GABA_A receptor but does not substantially decrease the ability of the non-selective benzodiazepine to bind to the α2-GABA_A receptor comprising contacting the α5-GABA_A receptor and the α2-GABA_A receptor with a non-selective benzodiazepine and a candidate molecule and detecting the ability of the candidate molecule to decrease the ability of the benzodiazepine to bind to the α5-GABA_A receptor but not substantially decrease the ability of the benzodiazepine to bind to the α2-GABA_A receptor.

20

25

30

35