Faktoryzacja liczb całkowitych - część teoretyczna

Krzysztof Zdulski, Kazimierz Kochan, Monika Lewandowska 10 stycznia 2020

Spis treści

1	Dowód 1 - Twierdzenie o dzieleniu z resztą	2
	1.1 Dowód istnienia liczb q i r	$\frac{2}{2}$
2	Dowód 2 - $NWD(a,b) = ax + by$	3
3	Dowód 3 - $NWD(a,b) = 1$, $a c \wedge b c \implies ab c$	4
4	Dowód 4 - $p ab \implies p a \lor p b$	5
5	Dowód 5 - Każda liczba naturalna n daje się przedstawić jako skończony iloczyn samych liczb pierwszych dla $n \geq 2$	6

1 Dowód 1 - Twierdzenie o dzieleniu z resztą

Pokazać, że dla dowolnych liczb całkowitych a i b różnych od 0 istnieją jednoznacznie wyznaczone liczby całkowite q i r takie, że

$$a = q * b + r, \ 0 \le r < |b|$$

1.1 Dowód istnienia liczb q i r

a = q * b + r, $0 \le r < |b|$

q- iloraz całkowity

r- reszta z dzielenia

Załóżmy, że b > 0

- $q = \left[\frac{a}{b}\right] \wedge r = a b * q$
- $q \leq \frac{a}{b} < q+1 \mid *b$
- $b * q \le a < b * q + b$
- Z tego wynika, że $0 \le [r = a b * q] < b = |b|$

Gdy b < 0

 $\bullet \ q = -\left[\frac{a}{|b|}\right] \land r = a - b * q$

i dalej analogicznie jak w przypadku b > 0

1.2 Dowód, jednoznaczności wyboru pary liczb q i r

 \bullet Załóżmy, że istnieją liczby całkowite $q_1,\,q_2,\,r_1$ i r_2 takie, że

$$0 \leq |r_1, r_2 < |b| \wedge a = q_1 * b + r_1 = q_2 * b + r_2$$

- $r_2 r_1 = b * (q_2 q_1)$
- Gdyby $r_2 r_1 \neq 0$ to $|b| < |r_2 r_1| \leq \max\{r_1, r_2\} < |b|$, co prowadzi do sprzeczności
- Więc $r_2 r_1 = 0$, czyli $r_1 = r_2$
- Stąd $(q_2-q_1)*b=0$, zatem $(q_2-q_1)=0$, więc $q_1=q_2$, bo $b\neq 0$

Co potwierdza jednoznaczność wyboru pary liczb q i r.

2 Dowód 2 - NWD(a, b) = ax + by

Pokazać, że istnieją liczby całkowite x i y takie, że NWD(a,b)=a*x+b*y,gdzie $a,b\in\mathbb{Z}$, z których conajmniej jedna jest różna od 0

- Gdy a = 0 = b to 0 = a * 0 + b * 0 jest NWD(a,b), załóżmy więc, że a lub b jest różne od 0
- Niech $I = \{ k * a + l * b \wedge k, l \in \mathbb{Z} \cap N_+ \}$
- Ponieważ $|a| = sign(a) * a + 0 * b \wedge |b| = 0 * b + sign(b) * b$ Zatem I nie jest zbiorem pustym
- Niech $d = min\{I\} \land k, l \in \mathbb{Z} \land d = k * a + l * b$
- Należy pokazać, że d = NWD(a, b); wiadomo, że $d \ge 0$
- Dla $c \in \mathbb{Z}$, $c|a \wedge c|b \implies c|d$
- Należy udowodnić, że $d|a \wedge d|b$
- Liczbę a można zapisać w postaci: $a = q_{ad} * d + r_{ad}$ (dowód nr. 1)
- Zatem $r_{ad} = a q_{ad} * d = a q_{ad} * (k * a + l * b) = a q_{ad} * k * a q_{ad} * l * b = a * (1 k * q_{ad}) q_{ad} * l * b$
- $r_{ad} < d$, wiec $r_{ad} \notin I$, bo $d = min\{I\}$
- $\bullet \ r_{ad} \geq 0,$ więc z def. zbioru I można wnioskować, że $r_{ad} = 0$
- Zatem d|a i analogicznie d|b, więc d=NWD(a,b)

3 Dowód 3 - NWD(a,b) = 1 , $a|c \wedge b|c \implies ab|c$

Pokazać, że jeżeli liczby a i b są względnie pierwsze, to $a|c \wedge b|c \implies ab|c$, gdzie $a,b,c \in \mathbb{Z}$

- Z definicji zbioru liczb względnie pierwszych wynika, że NWD(a,b)=1, gdy a i b są różne
- Skoro NWD(a,b)=1 wiemy, że (Dowód 2) istnieje taki x,y, że a*x+b*y=1
- Zatem a*c*x+b*c*y=c
- Z założenia b|c, więc ab|ac
- Analogicznie, gdy a|c to ab|bc
- Skoro ab dzieli całkowicie zarówno ac jak i b
c to dzieli również wyrażenie a*c*x+b*c*y=c
- Rozpatrując przypadek dla dowolnej liczby całkowitej m takiej, że c=m*a wiemy, że b|ma oraz NWD(b,a)=1 to prowadzi do stwierdzenia, że b|m
- Dla dowolnej liczby całkowitej n takiej, że m = b * nc = a * m = a * b * n, a zatem ab|c

4 Dowód 4 - $p|ab \implies p|a \vee p|b$

Pokazać, że gdy a,
b $\in \mathbb{Z} \, \wedge \, \mathbf{p}$ jest liczbą pierwszą $p|ab \implies p|a \vee \, p|b$

- \bullet Załóżmy, że p|ab , ale $p\nmid a \wedge \ p\nmid b$
- Więc NWD(p, a) = 1 i NWD(p, b) = 1 (są to pary liczb względnie pierwszych)
- Można zatem zapisać, że

$$x_1 * p + y_1 * a = 1$$

$$x_2 * p + y_2 * b = 1$$

Co wynika z dowodu nr 2

• Mnożymy obustronnie równania i otrzymujemy:

$$x_1 * p * x_2 * p + x_1 * p * y_2 * b + y_1 * a * x_2 * p + y_1 * a * y_2 * b = 1$$
po przekształceniu

$$p * (x_1 * x_2 * p + x_1 * y_2 * b + y_1 * a * x_2) + a * b(y_1 * y_2) = 1$$

- \bullet Z tego wynika, że $NWD(p,ab){=}1,$ co prowadzi do sprzeczności z założeniem, że p|ab
- Zatem, aby założenie plab było prawdziwe to pla V plb

5 Dowód 5 - Każda liczba naturalna n daje się przedstawić jako skończony iloczyn samych liczb pierwszych dla n > 2

Pokazać, że każdą liczbę całkowitą $n \geq 2$ można jednoznacznie przedstawić w postaci $n = p_1^{a1} * p_2^{a2} * ... p_k^{a_k}$, gdzie $p_1, p_2, ..., p_k$ są liczbami pierwszymi, $p_1 < p_2 < ... < p_k$ oraz $a_1, a_2 ..., a_k \in \mathbb{N}$

Inaczej: Każda liczba naturalna daje się przedstawić jako skończony iloczyn samych liczb pierwszych.

Indukcyjnie

Sprawdzam założenie indukcyjne dla n=2 twierdzenie jest prawdziwe, bo $n=2^{1}\,$

Dla dowolnego m należącego do zbioru liczb naturalnych i m>2 niech twierdzenie będzie prawdziwe dla wszystkich n, 1 < n < m

Jeśli m jest liczbą pierwszą to twierdzenie zachodzi, ponieważ liczba pierwsza ma jedynie dzielnik, który jest liczbą pierwszą.

Gdy liczba m jest złożona, to m można zapisać w postaci $m=m_1*m_2$, więc gdy $1 < m_1, m_2 < m$ to na mocy założenia indukcyjnego każde z m_1 i m_2 jest skończonym iloczynem liczb pierwszych. Stąd wynika, że m też jest takim iloczynem.