

Database Lesson 9. Normalization

Learning Map

Sequence	Title			
1	Introduction to Databases			
2	Relational Databases			
3	Relational Algebra			
4	Structured Query Language – Part 1			
5	Structured Query Language – Part 2			
6	Constraints and Triggers			
7	Entity Relationship Model			
8	Functional Dependency			
9	Normalization			
10	Storage - Indexing			
11	Query Processing			
12	Transaction Management – Part 1			
13	Transaction Management – Part 2			

Outline

- Introduction
- Normal Forms
- Normalization

Objectives

- Upon completion of this lesson, students will be able to:
 - Know why we need normalization in relational DB
 - Identify normal forms such as 1st NF, 2nd NF, 3rd NF
 - Know how to normalize a relational DB into 3NF

Keywords

Keyword	Description			
the domain of an attribute must include only atomic (simple, indivisible) val es and the value of any attribute in a tuple must be a single value from the omain of that attribute.				
2 nd Normal Form	A relation that is in 1NF and every non-primary-key attribute is fully functionally d ependent on <i>any candidate key</i> .			
3 rd Normal Form	A relation that is in 1NF and 2NF and in which no non-primary-key attribute is tran sitively dependent on <i>any candidate key</i> .			
Normalization	Normalization is the process of removing anomalies and redundancies from DB			

1. Introduction

- Motivation
- Full & Partial Dependency
- Transitive Dependency

- Designing DB: one of the most difficult tasks
- One simplest design approach is to use a big table and store all data
- But what's the problem with this?
 - Anomalies
 - Redundancies

- Insertion Anomalies
 - PK: (student_id, subject_id)
 - We can not insert a new subject if we do not have a student assigned to it yet
 - We can not insert a null value into PK attributes

student id	full_name	dob	subject id	name	result
1234	David Beckham	12/21/1997	IT3090	Databases	Α
1238	Theresa May	08/06/1998	IT4843	Data integration	В
1234	David Beckham	12/21/1997	IT4868	Web mining	С
1497	Tony Blair	03/01/1999	IT3090	Databases	Α
1238	Theresa May	08/06/1998	IT4868	Web mining	В
1542	Margaret Thatcher	05/08/1997	IT2000	Introduction to ICT	С

- Update anomalies
 - An instance where the same information must be updated in several different places
 - If you update the Databases subject name, you need to update in two different places (not efficient)

student id	full_name	dob	subject id	name	result
1234	David Beckham	12/21/1997	IT3090	Databases	Α
1238	Theresa May	08/06/1998	IT4843	Data integration	
1234	David Beckham	12/21/1997	IT4868	Web mining	С
1497	Tony Blair	03/01/1999	IT3090	Databases	Α
1238	Theresa May	08/06/1998	IT4868	Web mining	В
1542	Margaret Thatcher	05/08/1997	IT2000	Introduction to ICT	С

- Deletion Anomalies
 - Where deleting one piece of data inadvertently causes other data to be lost
 - If we delete student Margaret Thatcher, then we will lose information about subject Introduction to ICT

student id	full_name	dob <u>subject_id</u> name		result	
1234	David Beckham	12/21/1997	IT3090	Databases	Α
1238	Theresa May	08/06/1998	IT4843	Data integration	
1234	David Beckham	12/21/1997	IT4868	Web mining	С
1497	Tony Blair	03/01/1999	IT3090	Databases	
1238	Theresa May	08/06/1998	IT4868 Web mining		В
1542	Margaret Thatcher	05/08/1997	IT2000	Introduction to ICT	С

 Normalization is the process of removing anomalies and redundancies from DB

1.2. Full & Partial Dependency

student id	full_name	dob <u>subject_id</u> name		result	
1234	David Beckham	12/21/1997	IT3090	090 Databases	
1238	Theresa May	08/06/1998	IT4843	Data integration	В
1234	David Beckham	12/21/1997	IT4868	Web mining	С
1497	Tony Blair	03/01/1999	IT3090	Databases	А
1238	Theresa May	08/06/1998	IT4868	Web mining	В
1542	Margaret Thatcher	05/08/1997	IT2000 Introduction to ICT		С

Key: (student_id, subject_id)

Full Key Dependency: {student_id, subject_id} → result

Partial Key Dependency: student_id → full_name

1.3. Transitive dependency

- If $A \rightarrow B$ and $B \rightarrow C$
 - Attribute A must be the determinant of C.
 - Attribute A transitively determines attribute C or
 - C is transitively dependent on A

2. Normal Forms

- Introduction
- 1st Normal Form
- 2nd Normal Form
- 3rd Normal Form

2.1. Introduction

- Each form was designed to eliminate one or more of the anomalies: First NF; Second NF; Third NF
- Unnormalised Form (UNF)

• A table that contains one or more repeating groups. I.e., its cell may

contain multiple values

Multi Value Or repeating groups

student_id	full_name	dob	subject_id	name	result
1234	David Beckham	12/21/1997	IT3090, IT4868	Databases, Web mining	A, C
1238	Theresa May	08/06/1998	IT4843, IT4868	Data integration, Web mining	B, B
1497	Tony Blair	03/01/1999	IT3090	Databases	Α
1542	Margaret Thatcher	05/08/1997	IT2000	Introduction to ICT	С

2.2. First Normal Form (1NF)

- A cell in a relation contains one and only one value.
 - Disallows composite attributes, multivalued attributes or nested relations

student_id	full_name	dob	subject_id	name	result
1234	David Beckham	12/21/1997	IT3090	Databases	Α
1238	Theresa May	08/06/1998	IT4843	Data integration	
1234	David Beckham	12/21/1997	IT4868	Web mining	С
1497	Tony Blair	03/01/1999	IT3090	Databases	
1238	Theresa May	08/06/1998	IT4868 Web mining		В
1542	Margaret Thatcher	05/08/1997	IT2000	Introduction to ICT	С

Full functional dependency

- Given R(U), F is a set of FDS in R. X, Y ⊆ U. Y is fully dependent on X iff:
 - $X \rightarrow Y \subset F+$
 - $!\exists X' \subset X : X' \rightarrow Y \in F+$

2.3. Second Normal Form (2NF)

- Based on the concept of full functional dependency
- A prime attribute
 - It is an attribute that is member of some candidate key
- 2NF relation is
 - in 1NF and every non-primary-key attribute is fully functionally dependent on the primary key

2.3. Example

- Sales(sid, sname, city, item, price)
- $F = \{sid \rightarrow (sname, city), (sid, item) \rightarrow price\}$
- PK (sid,item)
- sname, city are partially dependent on PK
- Sales is not in 2NF

2.4. Third Normal Form (3NF)

- A relation that is
 - In 2NF and in which no non-primary-key attribute is transitively dependent on the primary key
 - I.e, all non-prime attributes are fully & directly dependent on the PK.

2.4. Example

```
S (sid, sname, city)
Sales(sid, item, price)
F = {sid → sname, city, sid -> iitem, price}
```

- S, Sales are in 3NF
 ItemInfo(item, price, discount).
 F = {item→price, price→discount}
- The attribute discount is not directly dependent on item
- ItemInfo is not in 3NF

3. Normalization

- Properties of relational decompositions
- An algorithm decomposes a universal relation into 3NF
- Some examples

3.1. Properties of relational decompositions

- A single universal relation schema R = {A1, A2, ..., An} that includes all the attributes of the DB
- F is a set of FDs holds on R
- Using the FDs, the algorithms decompose the universal relation schema R into a set of relation schemas D = {R1, R2, ..., Rm}; D is called a decomposition of R.

3.1. Properties of relational decompositions

Properties:

- Attribute preservation
 - Each attribute in *R* will appear in at least one relation schema R_i in the decomposition so that no attributes are *lost*
- Dependency preservation
 - Each FD X→Y specified in F either appeared directly in one of the R_i in the decomposition D or could be inferred from the dependencies that appear in some R_i.
- Lossless join
 - $r = \Pi_{R1}(r) \bowtie \Pi_{R2}(r) \bowtie ... \bowtie \Pi_{Rm}(r)$

3.1. Properties of relational decompositions

- An example
 - Suppose we have a relation:

```
Learn(student_id, full_name, dob, subject_id, name, result)
```

• We split it into two relations:

```
Student(student_id, full_name, dob)
Subject(subject_id, name)
```

- This decomposition does not warrant:
 - Attribute preservation: Lost information about "result"
 - Dependency preservation condition, for instance, (student_id, subject_id) →
 result is loss.
 - Lossless join property, i.e., we can join these two relations

3.2. An algorithm decomposes a universal relation into 3NF

- Input: An universal relation R and a set of FDs F on the attributes of R.
 - Find a minimal cover G for F
 - For each left-hand-side X of a FD that appears in G, create a relation schema in D with attributes $\{X \cup \{A1\} \cup \{A2\} ... \cup \{Ak\}\}\}$, where $X \to A1$, $X \to A2$, ..., $X \to Ak$ are the only dependencies in G with X as the left-hand-side (X is the key of this relation);
 - If none of the relation schemas in D contains a key of R, then create one more relation schema in D that contains attributes that form a key of R.

3.3. Some examples

- Example 1:
 - Given $R = \{A,B,C,D,E,F,G\}$, $F = \{A \rightarrow B; ABCD \rightarrow E; EF \rightarrow G; ACDF \rightarrow EG\}$
 - A minimal cover of F is $G = \{A \rightarrow B, ACD \rightarrow E, EF \rightarrow G\}$
 - Find a minimal key: K = ACDF
 - We have R1(AB), R2(ACDE), R3(EFG)
 - Since K is not a subset of Ri, we have a new relation R4(ACDF)
 - In conclusion, we have a decomposition D = {R1, R2, R3, R4}

3.3. Some examples

- Example 2:
 - Given R(student_id, name, birthday, advisor, department, semester, course, grade)
 - F = { student_id → (name, birthday); advisor → department; (student_id, semester, course)
 → (grade, advisor, department)}
 - We denote like this: student_id (A), name (B), birthday (C), advisor (D), department (E), semester (F), course (G), grade (H)
 - F is rewritten as $\{A \rightarrow BC; D \rightarrow E; AFG \rightarrow HDE\}$
 - A minimal cover of F is G = $\{A \rightarrow B; A \rightarrow C; D \rightarrow E; AFG \rightarrow H, AFG \rightarrow D\}$
 - Find a minimal key: K = AFG
 - We have R1(ABC), R2(DE), R3(AFGHD)
 - Since K is a subset of R3, we have a decomposition D = {R1, R2, R3} or {R1(student_id, name, birthday), R2(advisor, department), R3(student_id, semester, course, advisor, grade)}

- Given R(U, F), U = {A B C D E G H}
- $F = \{ A \rightarrow CGE, B \rightarrow CA, BDA \rightarrow H \}$
- a. Find a minimal key of R
- b. Is R in 3 NF? If not, please normalize R in 3 NF

Remarks

- Motivation of normalization
- Full & Partial Dependency
- Transitive dependency
- 1NF, 2 NF, 3 NF
- Properties of relational decompositions
- An algorithm decomposes a universal relation into 3NF

Quiz

No	Question (Multiple Choice)	Answer (1,2,3,4)	Commentary
1	How many kinds of anomalies have we just studied? 1. 1 2. 2 3. 3 4. 4	3	Insert anomalies, Update anomalies, Delete anomalies
2	A relation is under the form of 3NF must satisfy: 1. A cell in a relation contains one and only one value 2. All non-primary-key attributes fully depend on the primary key 3. All non-primary-key attributes directly depend on the primary key 4. 1, 2, 3 together	4	A relation is under the form of 3NF must satisfy: - Each cell contains only an atomic value (1NF) - All non-primary-key attributes fully depend on the primary key (2NF) - All non-primary-key attributes directly depend on the primary key (3NF)
3			21

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Next lesson: Storage & Indexing

- Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom. Database Systems: The Complete Book. Pearson Prentice Hall. the 2nd edition. 2008: Chapter 7
- Nguyen Kim Anh, Nguyên lý các hệ cơ sở dữ liệu, NXB Giáo dục. 2004: Chương 7