- 1. For each of the languages below, find the largest distinguishable set. If it is finite, draw the DFA with the corresponding number of states.
 - (a) $L = \{ w \mid \text{ ends with } 1111 \}.$
 - (b) $L = \{1^k x \mid x \in \{0, 1\}^* \text{ and } \#1(x) \ge k, k \ge 1\}.$
 - (c) $L = \{1^k x \mid x \in \{0, 1\}^* \text{ and } \#1(x) \le k, k \ge 1\}.$
 - (d) $L = \{w \mid \exists x, y \in \{0, 1\}^* \varepsilon \text{ such that } w = xyx\}.$
 - (e) $L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i = 1 \Rightarrow j = k\}.$
 - (f) $L = \{ w \mid w \neq w^R \}.$
 - (g) $L = \{cabc \mid a, b, c \text{ are non-empty strings}\}.$
- 2. Consider the following language that we discussed in detail in class.

$$L = \{ w \mid \exists x, y \in \{0, 1\}^* - \varepsilon \text{ s.t } w = xy, \text{ and } \#1(y) > \#1(x) \}.$$

Draw two non-isomorphic DFAs with the same number of states for L, and write down the equivalence classes of the Myhill-Nerode relation corresponding to the DFAs.

- 3. Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$ accepting L, recall the quotient automata M/\approx defined in class. Verify the following properties mentioned in class.
 - (a) Show that $L(M/\approx) = L(M)$.
 - (b) Show that $\equiv_L \subseteq \equiv_{M/\approx}$, and hence conclude that M/\approx is the minimal automata.
- 4. Let $S, L \subseteq \Sigma^*$ be two infinite sets. Suppose that for any two strings $x, y \in S$, there exist strings $w, z \in \Sigma^*$ such that $wxz \in L$ and $wyz \notin L$. Show that L is not regular.