Power Series Representations

Matthew Seguin

6.4.6

Let
$$f(x) = \frac{1}{x} - \frac{1}{x+1} + \frac{1}{x+2} - \frac{1}{x+3} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{x+n}$$
.

For any $x_0 > 0$ we have that $f(x_0) = \frac{1}{x_0} - \frac{1}{x_0 + 1} + \frac{1}{x_0 + 2} - \frac{1}{x_0 + 3} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{x_0 + n}$ is a series of real numbers.

Furthermore since $x_0 + n$ is strictly increasing as n increases so we get that $\frac{1}{x_0 + n}$ is strictly decreasing as n increases.

Therefore by the alternating series test $f(x_0)$ converges for arbitrary $x_0 > 0$ and therefore for all $x_0 > 0$.

So f(x) is defined pointwise for all x > 0.

Since f(x) converges for all x > 0 we can regroup terms in the series.

$$f(x) = \frac{1}{x} - \frac{1}{x+1} + \frac{1}{x+2} - \frac{1}{x+3} + \dots = \left(\frac{1}{x} - \frac{1}{x+1}\right) + \left(\frac{1}{x+2} - \frac{1}{x+3}\right) + \dots = \frac{1}{x(x+1)} + \frac{1}{(x+2)(x+3)} + \frac{1}{(x+4)(x+5)} + \dots$$

$$\text{Let } f_n(x) = \frac{1}{(x+n)(x+n+1)} = \frac{1}{x^2 + (2n+1)x + n(n+1)} \text{ so that } f(x) = \sum_{n=0}^{\infty} f_n(x).$$

Since x > 0 we get that $|f_n(x)| = |\frac{1}{x^2 + (2n+1)x + n(n+1)}| = \frac{1}{x^2 + (2n+1)x + n(n+1)} < \frac{1}{n(n+1)}$ for all $n \ge 1$.

So let $M_n = \frac{1}{n(n+1)}$ for $n \ge 1$ then since $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges we get by the Weierstrass M-test that $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly.

We have seen previously that $\frac{1}{x}$ is continuous on $(0,\infty)$ and clearly the same is true for $\frac{1}{x+n}$ as it is just a translation of $\frac{1}{x}$ that is still defined on $(0,\infty)$ for all $n \in \mathbb{N}$.

So $f_n(x)$ is continuous on $(0, \infty)$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly so $\sum_{n=1}^{\infty} f_n(x)$ is continuous on $(0, \infty)$ since uniform convergence preserves continuity.

Now we still need to take care of n=0. So look at $f_0(x)=\frac{1}{x(x+1)}=(\frac{1}{x})(\frac{1}{x+1})$.

Again $\frac{1}{x}$ is continuous on $(0, \infty)$ and the same is true for $\frac{1}{x+1}$, so by the algebraic continuity theorem we have $f_0(x) = \frac{1}{x(x+1)}$ is continuous on $(0, \infty)$.

Therefore $f(x) = \sum_{n=0}^{\infty} f_n(x) = f_0(x) + \sum_{n=1}^{\infty} f_n(x)$ is continuous on $(0, \infty)$ by the algebraic continuity theorem.

Let
$$g_n(x) = \frac{(-1)^n}{x+n}$$
 for $n \ge 0$ so that $f(x) = \sum_{n=0}^{\infty} g_n(x)$.

Now for $n \in \mathbb{N}$ and x > 0 look at $g'_n(x) = \frac{(-1)^{n+1}}{(x+n)^2}$. Then $|g'_n(x)| = |\frac{(-1)^{n+1}}{(x+n)^2}| = \frac{1}{(x+n)^2} = \frac{1}{x^2 + 2nx + n^2} < \frac{1}{n^2}$ for $n \ge 1$.

So taking $M_n = \frac{1}{n^2}$ for $n \ge 1$ since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges we get by the Weierstrass M-test that $\sum_{n=1}^{\infty} g'_n(x)$ converges

uniformly.

So $\sum_{n=1}^{\infty} g'_n(x)$ converges uniformly and we also know $\sum_{n=1}^{\infty} g_n(x) = f(x) - \frac{1}{x}$ converges for all $x \in (0, \infty)$ therefore $\sum_{n=1}^{\infty} g_n(x)$ is differentiable on $(0, \infty)$.

Now again we need to take care of n=0, so look at $g_0(x)=\frac{1}{x}$. We have previously seen $\frac{1}{x}$ is differentiable on $(0,\infty)$.

Therefore $f(x) = \sum_{n=0}^{\infty} g_n(x) = g_0(x) + \sum_{n=1}^{\infty} g_n(x)$ is differentiable on $(0, \infty)$ by the algebraic differentiability theorem.

So we have shown f(x) is defined on $(0,\infty)$, and is continuous and differentiable on $(0,\infty)$

6.5.5

a. Let $s \in (0,1)$ then let $(x_n) = (ns^{n-1})$.

Since
$$s > 0$$
 clearly $x_n > 0$ for all $n \in \mathbb{N}$.

So all we need to show is that eventually (x_n) is decreasing because this would mean all but finitely many points are decreasing and so we can bound (x_n) by the maximum of those finitely many points.

Let
$$(y_n) = (x_{n+1} - x_n) = ((n+1)s^n - ns^{n-1}) = (s^{n-1}(n(s-1) + s)).$$

Let $N > \frac{s}{1-s}$, then for $n \ge N$ we have $n \ge N > \frac{s}{1-s}$ so n(1-s) > s and 0 > s - n(1-s) = s + n(s-1) and so $0 > s^{n-1}(s+n(s-1))$ for all $n \ge N$ since s > 0.

So we have that $y_n = x_{n+1} - x_n < 0$ and hence $x_{n+1} < x_n$ so (x_n) is decreasing after x_N .

Again let $M = max\{x_1, x_2, ..., x_N\}$ then we have that $M \ge x_n$ for all $n \in \mathbb{N}$ and since $0 < x_n$ for all $n \in \mathbb{N}$ we have that $|x_n| \le M$ for all $n \in \mathbb{N}$ hence the sequence $(x_n) = (ns^{n-1})$ is bounded \square

b. Assume that $\sum_{n=0}^{\infty} a_n x^n$ converges for all $x \in (-R, R)$. Let $x \in (-R, R)$ then let |x| < t < R.

Then if $\sum_{n=0}^{\infty} |na_n x^{n-1}|$ converges we know that $\sum_{n=0}^{\infty} na_n x^{n-1}$ converges.

So
$$\sum_{n=0}^{\infty} |na_n x^{n-1}| = \sum_{n=0}^{\infty} n|a_n||x|^{n-1}|\frac{t^n}{t^n}| = \sum_{n=0}^{\infty} \frac{n}{t}|a_n t^n||\frac{x}{t}|^{n-1} = \sum_{n=0}^{\infty} \frac{1}{t}|a_n t^n|(n|\frac{x}{t}|^{n-1}).$$

Since |x| < t we have that $|\frac{x}{t}| = \frac{|x|}{t} < 1$ and hence by part a we can let M > 0 be such that $n|\frac{x}{t}|^{n-1} \le M$ for all $n \in \mathbb{N}$.

So we have that
$$\sum_{n=0}^{\infty} |na_n x^{n-1}| = \sum_{n=0}^{\infty} \frac{1}{t} |a_n t^n| (n|\frac{x}{t}|^{n-1}) \le \sum_{n=0}^{\infty} \frac{M}{t} |a_n t^n| = \frac{M}{t} \sum_{n=0}^{\infty} |a_n t^n|$$
.

Since $t \in (|x|, R)$ there exists some $r \in (-R, R)$ satisfying t < r < R.

Since $r \in (-R, R)$ we know $\sum_{n=0}^{\infty} a_n r^n$ converges and hence $\sum_{n=0}^{\infty} a_n t^n$ converges absolutely since |t| < |r|.

Therefore $\sum_{n=0}^{\infty} |a_n t^n|$ converges and so $\frac{M}{t} \sum_{n=0}^{\infty} |a_n t^n|$ converges so $\sum_{n=0}^{\infty} |n a_n x^{n-1}|$ converges.

Since $\sum_{n=0}^{\infty} |na_n x^{n-1}|$ converges this means $\sum_{n=0}^{\infty} na_n x^{n-1}$ converges.

This was for arbitrary $x \in (-R, R)$ and is therefore true for all $x \in (-R, R)$.

So if $\sum_{n=0}^{\infty} a_n x^n$ converges for all $x \in (-R, R)$ then so does $\sum_{n=0}^{\infty} n a_n x^{n-1} \square$

Let $\sum a_n x^n$ be a power series where $a_n \neq 0$ and assume $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists.

a. Assume that $L \neq 0$, then let $x \in (-\frac{1}{L}, \frac{1}{L})$. Then let $y_n = a_n x^n$.

If x = 0 then $y_n = 0$ for all $n \in \mathbb{N}$ and clearly then $\sum y_n = \sum a_n x^n$ converges.

Otherwise consider $\left|\frac{y_{n+1}}{y_n}\right| = \left|\frac{a_{n+1}x^{n+1}}{a_nx^n}\right| = \left|\frac{a_{n+1}x}{a_n}\right| = |x|\left|\frac{a_{n+1}}{a_n}\right|$. Note that here |x| is a fixed constant.

So by the algebraic limit theorem $\lim_{n\to\infty} |\frac{y_{n+1}}{y_n}| = \lim_{n\to\infty} |x| |\frac{a_{n+1}}{a_n}| = |x| \lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = |x|L < \frac{1}{L}L = 1$.

So by the ratio test if $L \neq 0$ and $x \in (-\frac{1}{L}, \frac{1}{L})$ then $\sum a_n x^n$ converges \square

b. Assume that L=0, then let $x \in \mathbb{R}$. Then let $y_n=a_nx^n$.

If x = 0 then $y_n = 0$ for all $n \in \mathbb{N}$ and clearly then $\sum y_n = \sum a_n x^n$ converges.

Otherwise consider $\left|\frac{y_{n+1}}{y_n}\right| = \left|\frac{a_{n+1}x^{n+1}}{a_nx^n}\right| = \left|\frac{a_{n+1}x}{a_n}\right| = |x|\left|\frac{a_{n+1}}{a_n}\right|$. Note that here |x| is a fixed constant.

So by the algebraic limit theorem $\lim_{n\to\infty} \left|\frac{y_{n+1}}{y_n}\right| = \lim_{n\to\infty} |x| \left|\frac{a_{n+1}}{a_n}\right| = |x| \lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = 0 < 1.$

So by the ratio test if L = 0 and $x \in \mathbb{R}$ then $\sum a_n x^n$ converges \square

C. Now let $L' = \lim_{n \to \infty} s_n$ where $s_n = \sup\{|\frac{a_{k+1}}{a_k}| : k \ge n\}$.

First I will prove that for a sequence (b_n) if $\lim_{n\to\infty}t_n=M<1$ then $\sum b_n$ converges where $t_n=\sup\{|\frac{b_{k+1}}{b_k}|:k\geq n\}$.

Choose $y \in (M, 1)$ such a y exists because M < 1.

Clearly (t_n) is decreasing as if n increases then the supremum is of a subset of the original one and is therefore less than or equal to the supremum before.

Since $(t_n) \to M < y$ and (t_n) is decreasing there must exist some $N \in \mathbb{N}$ such that $\left|\frac{b_{n+1}}{b_n}\right| < y$ for all $n \ge N$.

So $|b_{n+1}| < y|b_n|$ for all $n \ge N$. I will show by induction that $|b_n| < y^{n-N}|b_N|$ for all n > N.

Let
$$S = \{ n \in \mathbb{N} : |b_n| < y^{n-N} |b_N| \}.$$

For our base case we know that for n = N + 1 we have $|b_n| = |b_{N+1}| < y|b_N| = y^{n-N}|b_N|$. So $N + 1 \in S$.

Assume that $n \in S$, then $|b_n| < y^{n-N}|b_N|$ so $|b_{n+1}| < y|b_n| < y(y^{n-N}|b_N|) = y^{(n+1)-N}|b_N|$ and $n+1 \in S$.

Therefore $n \in S$ for all n > N by induction and hence $|b_n| < y^{n-N}|b_N|$ for all n > N.

So $\sum_{n=N+1}^{\infty} |b_n| < \sum_{n=N+1}^{\infty} y^{n-N} |b_N| = |b_N| \sum_{k=1}^{\infty} y^k$ which converges since y < 1 and this is a geometric series.

By the comparison test $\sum_{n=N+1}^{\infty} |b_n|$ converges and therefore $\sum |b_n| = \sum_{n\leq N} |b_n| + \sum_{n=N+1}^{\infty} |b_n|$ converges since the

first sum is finite. So $\sum b_n$ converges and we are done with this proof.

Now for our example let $t_n = \sup\{|\frac{a_{k+1}x^{k+1}}{a_kx^k}| : k \ge n\}$. Assume that $L' \ne 0$ and that $x \in (-\frac{1}{L'}, \frac{1}{L'})$. Then let $y_n = a_nx^n$ Again if x = 0 then clearly $\sum a_nx^n$ converges.

Otherwise consider $\left|\frac{y_{n+1}}{y_n}\right| = \left|\frac{a_{n+1}x^{n+1}}{a_nx^n}\right| = |x|\left|\frac{a_{n+1}}{a_n}\right|$, then clearly $\lim_{n\to\infty}t_n = |x|\lim_{n\to\infty}s_n = |x|L' < \frac{1}{L'}L' = 1$.

So by the proof before we know that $\sum a_n x^n$ converges.

Now assume that L' = 0 and let $x \in \mathbb{R}$. Then let $y_n = a_n x^n$.

Again if x = 0 then clearly $\sum a_n x^n$ converges.

Otherwise consider $|\frac{y_{n+1}}{y_n}|=|\frac{a_{n+1}x^{n+1}}{a_nx^n}|=|x||\frac{a_{n+1}}{a_n}|$, then clearly $\lim_{n\to\infty}t_n=|x|\lim_{n\to\infty}s_n=0<1$.

So by the proof before we know that $\sum a_n x^n$ converges.

Therefore the result still holds if L is replaced by $L' = \lim_{n \to \infty} s_n$

Let
$$g(0) = 0$$
 and $g(x) = e^{-\frac{1}{x^2}}$ for $x \neq 0$.

a. We are given that g'(0) = 0.

Let $c \neq 0$ then $g'(c) = (e^{-\frac{1}{c^2}})(\frac{2}{c^3})$ by using the chain rule and the fact that e^y is its own derivative.

Now let's find $g''(0) = \lim_{x\to 0} \frac{g'(x) - g'(0)}{x - 0} = \lim_{x\to 0} \frac{\frac{2}{x^3}e^{-\frac{1}{x^2}}}{x} = \lim_{x\to 0} \frac{2e^{-\frac{1}{x^2}}}{x^4}$ which satisfies the 0/0 case for L'hospital's rule because $\frac{1}{x^2}$ grows arbitrarily large and hence $e^{-\frac{1}{x^2}}$ grows arbitrarily close to 0.

So
$$g''(0) = \lim_{x \to 0} \frac{2e^{-\frac{1}{x^2}}}{x^4} = \lim_{x \to 0} \frac{2}{x^4 e^{\frac{1}{x^2}}} = \lim_{x \to 0} \frac{0}{4x^3 e^{\frac{1}{x^2} + x^4 e^{\frac{1}{x^2}}(-\frac{2}{x^3})}} = 0.$$

b. We have from before that $g'(x) = \frac{2}{x^3}e^{-\frac{1}{x^2}}$ for $x \neq 0$.

So for
$$x \neq 0$$
 we have $g''(x) = -\frac{6}{x^4}e^{-\frac{1}{x^2}} + (\frac{2}{x^3})(\frac{2}{x^3})e^{-\frac{1}{x^2}} = (\frac{4}{x^6} - \frac{6}{x^4})e^{-\frac{1}{x^2}}$.

And thus for
$$x \neq 0$$
 we have $g'''(x) = \left(-\frac{24}{x^7} + \frac{24}{x^5}\right)e^{-\frac{1}{x^2}} + \left(\frac{4}{x^6} - \frac{6}{x^4}\right)\left(\frac{2}{x^3}\right)e^{-\frac{1}{x^2}} = \left(\frac{8}{x^9} - \frac{36}{x^7} + \frac{24}{x^5}\right)e^{-\frac{1}{x^2}}$.

I claim that $f^{(n)}(x)$ is of the form $(\sum_{k=1}^n a_k x^{-(n+2k)})e^{-\frac{1}{x^2}}$ for all $n \in \mathbb{N}$ when $x \neq 0$ and I will show this by induction.

Let
$$S = \{ n \in \mathbb{N} : f^{(n)}(x) = (\sum_{k=1}^{n} a_k x^{-(n+2k)}) e^{-\frac{1}{x^2}} \}.$$

For our base case we know $g'(x) = g^{(1)}(x) = (2x^{-3})e^{-\frac{1}{x^2}} = (a_1x^{-(1+2(1))})e^{-\frac{1}{x^2}}$ so $1 \in S$.

Now assume
$$n \in S$$
, that is assume $f^{(n)}(x) = (\sum_{k=1}^n a_k x^{-(n+2k)}) e^{-\frac{1}{x^2}}$.

Then
$$f^{(n+1)}(x) = (\sum_{k=1}^{n} (a_k)(-(n+2k))x^{-(n+2k+1)})e^{-\frac{1}{x^2}} + (\sum_{k=1}^{n} a_k x^{-(n+2k)})(\frac{2}{x^3})e^{-\frac{1}{x^2}} = (\sum_{k=1}^{n} a_k x^{-(n+2k)})(\frac{2}{x^3})e^{-\frac{1}{x^3}} = (\sum_{k=1}^{n} a_k x^{-(n+2k)}$$

$$\left(\left(\sum_{k=1}^{n}b_{k}x^{-((n+1)+2k)}\right)+\left(\sum_{k=1}^{n}c_{k}x^{-((n+1)+2(k+1))}\right)\right)e^{-\frac{1}{x^{2}}}=\left(\sum_{k=1}^{n+1}d_{k}x^{-((n+1)+2k)}\right)e^{-\frac{1}{x^{2}}}. \text{ Therefore } n+1\in S.$$

So by induction
$$S = \mathbb{N}$$
 and hence $f^{(n)}(x) = (\sum_{k=1}^n a_k x^{-(n+2k)}) e^{-\frac{1}{x^2}}$ for all $n \in \mathbb{N}$ when $x \neq 0$.

C. Let $S = \{n \in \mathbb{N} : g^{(n)}(0) = 0\}$. We already know $g'(0) = g^{(1)}(0) = 0$, so $1 \in S$.

Now assume
$$n \in S$$
, that is $g^{(n)}(0) = 0$.

Then
$$g^{(n+1)}(0) = \lim_{x \to 0} \frac{g^{(n)}(x) - g^{(n)}(0)}{x - 0} = \lim_{x \to 0} \frac{(\sum_{k=1}^{n} a_k x^{-(n+2k)}) e^{-\frac{1}{x^2}}}{x} = \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{(\sum_{k=1}^{n} a_k x^{(n+2k)}) x}$$
 satisfies the 0/0 case

for L'hospital's rule.

So
$$g^{(n+1)}(0) = \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{(\sum_{k=1}^n a_k x^{(n+2k)})_x} = \lim_{x \to 0} \frac{1}{(\sum_{k=1}^n a_k x^{(n+2k+1)})e^{\frac{1}{x^2}}} = \lim_{x \to 0} \frac{0}{(\sum_{k=1}^n b_k x^{(n+2k+2)})e^{\frac{1}{x^2}} + (\sum_{k=1}^n b_k x^{(n+2k+1)})(\frac{2}{x^3})e^{\frac{1}{x^2}}} = 0$$

Therefore $n+1 \in S$. So by induction $S = \mathbb{N}$ and hence $g^{(n)}(0) = 0$ for all $n \in \mathbb{N}$

Let (f_n) be a sequence of differentiable functions on [a, b] such that (f'_n) converges uniformly and at some point $x_0 \in [a, b], (f_n(x_0))$ is convergent.

Let
$$\epsilon > 0$$
 and let $\alpha = \epsilon/2$ and let $\beta = \frac{\epsilon}{2(b-a)}$.

Then since $(f_n(x_0))$ is convergent it is also Cauchy so let $N_1 \in \mathbb{N}$ be such that for all $m, n \geq N_1$ we have

$$|f_n(x_0) - f_m(x_0)| < \alpha.$$

Furthermore we know each f_n is differentiable so for all $m, n \in \mathbb{N}$ we have $(f_n - f_m)' = f'_n - f'_m$.

Since $(f'_n) \to g$ uniformly for some g we have that (f'_n) satisfies the Cauchy criterion for uniform convergence.

So let
$$N_2$$
 be such that $|f'_n(x) - f'_m(x)| < \beta$ when $m, n \ge N_2$ and $x \in [a, b]$.

Then for any $x \in [a, b]$ we can apply the mean value theorem to $f_n - f_m$ on $[x, x_o]$ to conclude there exists a $c \in [x, x_0]$

such that
$$|(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))| = |x - x_0||f'_n(c) - f'_m(c)|$$
.

Therefore for $m, n > N_2$ we have

$$|(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))| = |x - x_0||f_n'(c) - f_m'(c)| \le (b - a)|f_n'(c) - f_m'(c)| < (b - a)\beta = (b - a)\frac{\epsilon}{2(b - a)} = \epsilon/2 = \alpha.$$

Let $N = max\{N_1, N_2\}$ this N exists since we are looking at a finite set.

Then for $m, n \ge N$ we have that $|f_n(x_0) - f_m(x_0)| < \alpha$ and $|(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))| < \alpha$.

Therefore for
$$m, n \ge N$$
 we have $|f_n(x) - f_m(x)| = |f_n(x) - f_m(x) - (f_n(x_0) - f_m(x_0))| + (f_n(x_0) - f_m(x_0))| \le 1$

$$|(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))| + |f_n(x_0) - f_m(x_0)| < 2\alpha = \epsilon.$$

So for all $\epsilon > 0$ we have found an $N \in \mathbb{N}$ such that $|f_n(x) - f_m(x)| < \epsilon$ when $m, n \ge N$ and $x \in [a, b]$.

Therefore (f_n) converges uniformly on [a, b]