Statistica I

Esercitazione 2: indici di posizione

Tommaso Rigon

Università Milano-Bicocca

Descrizione del problema (continuazione)

Si faccia riferimento ai dati dell'Esercitazione 1 riguardanti gli abeti rossi. Vengono misurati ulteriori n = 30 diametri.

Campione addizionale di abeti rossi (diametro), n = 30

[1] 20 20 22 23 28 29 29 31 33 34 34 37 38 38 39 40 42 42 44 44 45 49 54 [24] 54 54 55 58 59 60 68

Domande

- Si costruisca tale tabella indicando frequenze assolute, cumulate assolute e cumulate relative per ciascun diametro.
- Si calcolino la media aritmetica e la mediana.
- Si calcoli il primo quartile ($Q_{0.25}$), il terzo quartile ($Q_{0.75}$) ed il quarto decile ($Q_{0.4}$), seguendo la definizione data nell'unità C.
- Si rappresentino primo, secondo (mediana) e terzo quartile nel grafico della funzione di ripartizione.

Tabella di frequenze

D (diametro)	nj	N_j	f_j	F_j
20	2	2	0.067	0.067
22	1	3	0.033	0.100
23	1	4	0.033	0.133
28	1	5	0.033	0.167
29	2	7	0.067	0.233
31	1	8	0.033	0.267
33	1	9	0.033	0.300
34	2	11	0.067	0.367
37	1	12	0.033	0.400
38	2	14	0.067	0.467
39	1	15	0.033	0.500
40	1	16	0.033	0.533
42	2	18	0.067	0.600
44	2	20	0.067	0.667
45	1	21	0.033	0.700
49	1	22	0.033	0.733
54	3	25	0.100	0.833
55	1	26	0.033	0.867
58	1	27	0.033	0.900
59	1	28	0.033	0.933
60	1	29	0.033	0.967
68	1	30	0.033	1

Quantili e funzione di ripartizione

■ La media è circa 40.77, la mediana è 39.5. Il primo quartile è pari a 31, il terzo quartile è pari a 54 mentre il quarto decile è pari a 37.

Commenti ai risultati

- Questo nuovo insieme di dati è del tutto compatibile con i dati degli abeti rossi analizzati nell'Esercitazione 1; qui la numerosità campionaria è n = 30.
- Da un punto di vista "tecnico", l'esercizio serve a insegnare come calcolare media, mediana e quantili in presenza di osservazioni ripetute.
- Da un punto di vista dell'analisi, i dati confermano quanto già visto nell'Esercitazione 1: il centro della distribuzione è circa 40cm; media e mediana sono quasi coincidenti.
- Inoltre, come in parte già notato in precedenza, circa la metà dei dati ha diametro compreso tra 31 e 54 cm.

Descrizione del problema

- Siamo interessati a quantificare la lunghezza di n = 100 foglie di platano, dopo 10 giorni di siccità.
- È noto che, dopo un giorno di pioggia, la lunghezza delle foglie aumenta di una quota percentuale del 10% più una quota fissa pari a 0.5 mm.

Dati raggruppati e domande

È riportata di seguito una tabella che riassume le lunghezze in mm. Si noti che le classi non sono equispaziate.

Classe	Frequenza assoluta <i>n_j</i>	Frequenza cumulata N_j
(120, 135]	10	10
(135, 145]	20	30
(145, 150]	60	90
(150, 165]	10	100

Domande

- Si calcoli un'approssimazione della media e della mediana.
- Si calcoli un'approssimazione della media e della mediana dopo un giorno di pioggia continuata.

Schema della soluzione I

- I dati sono raggruppati per cui non è possibile calcolare la media e la mediana dei dati originari. È però possibile ottenere un'approssimazione.
- La mediana è il valore medio delle unità statistiche in posizione 50 e 51. Entrambe queste unità appartengono alla classe (145, 150] e perciò anche la mediana.
- Una possibile approssimazione per la mediana si ottiene tramite la formula:

$$\mathsf{Me_x} \approx 145 + (150 - 145) \frac{0.5 - 0.3}{0.9 - 0.3} = 145 + (150 - 145) \frac{50 - 30}{90 - 30} = 146.7.$$

 Siano m₁,..., m₄ i valori centrali degli intervalli. Allora, un valore approssimato per la media è

$$\bar{x} \approx \frac{1}{n} \sum_{i=1}^{4} m_i n_i = \frac{1}{100} (127.5 \times 10 + \cdots + 157.5 \times 10) = 145.$$

Schema della soluzione II

 Il secondo quesito si risolve rapidamente poichè è equivalente al calcolo della media e della mediana dei dati trasformati

$$y_i = 0.5 + (1 + 0.1)x_i, \qquad i = 1, ..., n.$$

- I dati y_1, \dots, y_n rappresentano le lunghezze i mm dopo un giorno di pioggia continuata.
- Trattandosi di una trasformazione lineare monotona crescente, sfruttando le proprietà della mediana si ottiene che

$$Me_y = 0.5 + (1 + 0.1)Me_x \approx 161.87,$$

mentre per la media vale che

$$\bar{y} = 0.5 + (1 + 0.1)\bar{x} \approx 160.$$

Descrizione del problema

- In una strada rettilinea sono collocati 5 condomini, chiamati A, B, C, D ed E. Il comune desidera determinare la posizione ottimale per un nuovo supermercato.
- I condomini sono occupati dal seguente numero di inquilini:

	Α	В	С	D	Ε
Numero di inquilini	6	6	20	12	8

■ Inoltre, la posizione dei condomini, ovvero i metri di distanza dall'inizio della via, sono:

	Α	В	С	D	Ε
Distanza dall'inizio della via (metri)	1000	2000	3000	3100	3150

Domande

- Si indichi la posizione ideale del supermercato, ovvero la posizione che minimizza il disagio degli inquilini in termini di distanza percorsa, in due casi:
 - Supponendo che disagio cresca linearmente con la distanza.
 - Supponendo che disagio cresca con il quadrato della distanza.

Schema della soluzione I

- Siano $x_1, ..., x_{52}$ le posizioni dei vari inquilini nella strada rettilinea.
- Sebbene i coinquilini siano 52, le modalità sono solamente 5, dal momento che essi vivono in 5 condomini.
- Nella tabella seguente, riscriviamo il testo del problema con una notazione più familiare.

Modalità <i>c_j</i>	Frequenza assoluta n_j	Frequenza cumulata N_j
1000	6	6
2000	6	12
3000	20	32
3100	12	44
3150	8	52

Schema della soluzione II

 $lue{}$ Il primo quesito chiede di individuare il valore lpha, ovvero la posizione ottimale del supermercato, che minimizza la seguente quantità

$$\sum_{i=1}^{52} |x_i - \alpha| = \sum_{j=1}^{5} n_j |c_j - \alpha| = 6|1000 - \alpha| + \dots + 8|3150 - \alpha|.$$

- Un possibile valore (ce ne potrebbero essere tanti!), che minimizza tale somma è la mediana.
- In questo caso, la numerosità campionaria è pari a n=52 e pertanto la mediana è pari alla media dei due valori centrali, ovvero i valori degli individui in posizione 26 e 27.
- Poichè entrambi sono pari a 3000, la mediana è a sua volta pari a 3000.
- Inoltre, poichè $x_{(26)} = x_{(27)} = 3000$, il valore $\alpha = 3000$ è l'unico che minimizza la somma degli scarti in valore assoluto.

Schema della soluzione III

 \blacksquare La seconda domanda chiede il valore α che minimizza il quadrato delle distanza, ovvero il valore che rende minima la somma

$$\sum_{i=1}^{52} (x_i - \alpha)^2 = \sum_{j=1}^5 n_j (c_j - \alpha)^2 = 6(1000 - \alpha)^2 + \cdots + 8(3150 - \alpha)^2.$$

- Come visto nell'unità C, tale valore è la media aritmetica.
- Si ottiene quindi che il valore cercato è semplicemente

$$\alpha = \bar{x} = \frac{1}{52} \sum_{i=1}^{52} x_i = \frac{1}{52} \sum_{j=1}^{5} n_j c_j = \frac{1}{52} (1000 \times 6 + \dots + 3150 \times 8) = 2700.$$