Семинар 23

Свойства несобственных интегралов, зависящих от параметра

Рассмотрим НИ первого рода

$$I(p) = \int_{a}^{+\infty} f(x,p) dx, \qquad p \in [c; d].$$

Т. (о непрерывной зависимости несобственного интеграла от параметра). Пусть

- 1) функция f(x, p) непрерывна при $x \ge a, p \in [c; d]$,
- 2) интеграл I(p) сходится равномерно на отрезке [c; d].

Тогда функция I(p) непрерывна на отрезке [c; d].

Следствие. При условиях предыдущей теоремы

$$\lim_{p \to p_0} \int_a^{+\infty} f(x, p) \, dx = \int_a^{+\infty} f(x, p_0) \, dx, \qquad p_0 \in [c; d].$$

Замечание. Из предыдущей теоремы следует, что если зависящий от параметра несобственный интеграл от непрерывной функции сходится к разрывной функции, то он сходится неравномерно.

Т. (о дифференцировании несобственного интеграла по параметру). Пусть

- 1) функции f(x,p) и $f_p(x,p)$ непрерывны при $x \ge a, p \in [c;d]$,
- 2) интеграл I(p) сходится хотя бы для одного значения $p \in [c; d]$,
- 3) интеграл $\int_{a}^{+\infty} f_p(x,p) dx$ сходится равномерно на отрезке [c; d].

Тогда

$$\exists I'(p) = \frac{d}{dp} \int_{a}^{+\infty} f(x,p) \, dx = \int_{a}^{+\infty} f_p(x,p) \, dx \,, \qquad p \in [c; d].$$

Замечание. Данные теоремы останутся справедливы, если заменить отрезок [c;d] на интервал (c;d), а также при бесконечных c или (u) d.

Т. (об интегрировании несобственного интеграла по параметру). Пусть

- 1) функция f(x, p) непрерывна при $x \ge a, p \in [c; d]$,
- 2) интеграл I(p) сходится равномерно на отрезке [c; d].

Тогда

$$\exists \int_{c}^{d} I(p) dp = \int_{c}^{d} dp \int_{a}^{+\infty} f(x, p) dx = \int_{a}^{+\infty} dx \int_{c}^{d} f(x, p) dp.$$

Это верно только для *конечных c*, d! (О несобственном интегрировании несобственных интегралов по параметру см. Ильин, Позняк «Основы мат. анализа», ч. II, гл. 9, § 2, теорема 9.12.)

Замечание. Аналогичные теоремы справедливы и для несобственных интегралов II рода.

Пример 1 (самостоятельно). Вычислить
$$\lim_{p\to 0+0} I(p)$$
, где $I(p) = \int_0^{+\infty} \frac{xe^{-px}}{(1+x^2)^2} dx$.

Докажем, что интеграл I(p) сходится равномерно на множестве $p \ge 0$. Воспользуемся признаком Вейерштрасса:

1

$$|f(x,p)| = \frac{xe^{-px}}{(1+x^2)^2} \le \frac{x}{(1+x^2)^2} = F(x), \qquad p \ge 0,$$

$$\int_{0}^{+\infty} \frac{x}{(1+x^{2})^{2}} dx = \frac{1}{2} \int_{0}^{+\infty} \frac{d(1+x^{2})}{(1+x^{2})^{2}} = -\frac{1}{2(1+x^{2})} \Big|_{0}^{+\infty} = \frac{1}{2}$$

сходится, поэтому интеграл I(p) сходится равномерно на множестве $p \ge 0$. Поскольку подынтегральная функция $f(x,p) = \frac{xe^{-px}}{(1+x^2)^2}$ непрерывна при $x \ge 0$, $p \ge 0$, то по теореме о непрерывной зависимости НИ от параметра функция I(p) непрерывна на множестве $p \ge 0$. Тогда

$$\lim_{p \to 0+0} I(p) = I(0) = \int_{0}^{+\infty} \frac{x}{(1+x^2)^2} dx = \frac{1}{2}.$$

Ответ: 1/2.

Пример 2. Найти область существования и исследовать на непрерывность функцию $I(p) = \int_1^{+\infty} \frac{\ln x}{x^p} dx.$

Поскольку логарифм растёт на бесконечности медленнее любой положительной степени x, то мы можем предположить, что интеграл I(p) сходится и расходится одновременно с интегралом $\int_{1}^{+\infty} \frac{dx}{x^{p}}$, т. е. сходится при p > 1 и расходится при $p \le 1$.

- **1.** Докажем, что интеграл I(p) расходится при $p \le 1$. При всех достаточно больших положительных x: $\ln x \ge 1$, значит, $\frac{\ln x}{x^p} \ge \frac{1}{x^p}$, а минорантный интеграл $\int_1^{+\infty} \frac{dx}{x^p}$ расходится при $p \le 1$, значит, и интеграл I(p) расходится при $p \le 1$.
- **2.** Докажем, что интеграл I(p) сходится при p > 1.

Известна оценка (см. семинар 11): $\forall \varepsilon > 0$, $\forall a > 0$, для всех достаточно больших положительных $x: 0 < \ln x < \varepsilon x^a$, откуда $0 < \frac{\ln x}{x^p} < \frac{\varepsilon}{x^{p-a}}$.

Для каждого p>1 можно подобрать число a>0 настолько малое, что p-a>1.

мажорантный интеграл $\int_1^{+\infty} \frac{\varepsilon \, dx}{x^{p-a}}$ сходится, откуда следует сходимость Тогда ла I(p).

Итак, область существования I(p): p > 1.

3. Докажем равномерную сходимость I(p) на множестве $p \ge p_0 > 1$.

Воспользуемся признаком Вейерштрасса. Сделаем оценку:

$$|f(x,p)| = \frac{\ln x}{x^p} \le \frac{\ln x}{x^{p_0}} = F(x), \qquad x \ge 1, \qquad p \ge p_0.$$

Мажорантный интеграл $\int_1^{+\infty} \frac{\ln x}{x^{p_0}} dx$ сходится при $p_0 > 1$, как показано в п. 2. Поэтому I(p)сходится равномерно на множестве $p \ge p_0$.

Поскольку подынтегральная функция $f(x,p) = \frac{\ln x}{x^p}$ непрерывна при $x \ge 1$, $p \ge p_0$, то по теореме о непрерывной зависимости НИ от параметра функция I(p) непрерывна при $p \geq p_0$.

В силу того что число $p_0 > 1$ — произвольное, его можно брать сколь угодно близким к 1, получим непрерывность функции I(p) на множестве p>1, т. е. на всей области существования.

Ответ: функция I(p) существует и непрерывна при p > 1.

Пример 3 (Демидович № 3812). *«Апофеоз матанализа»* (ср. картину Верещагина «Апофеоз войны», Государственная Третьяковская галерея). Вычислить $D(b) = \int_0^{+\infty} \frac{\sin bx}{x} dx$ — интеграл *Дирихле*.

- **1.** Заметим, что $\lim_{x\to 0} \frac{\sin bx}{x} = b$, т. е. x = 0 точка устранимого разрыва для подынтегральной функции, значит, её можно доопределить в этой точке по непрерывности, тогда x = 0 не является её особой точкой, и интеграл Дирихле является несобственным интегралом I рода. Для каждого фиксированного $b \neq 0$ он сходится по признаку Дирихле (а для b = 0 его сходимость очевидна).
- 2. Во многих случаях НИ можно вычислить с помощью дифференцирования по параметру под знаком интеграла (если после дифференцирования получается более простой интеграл). Естественно, возможность такого дифференцирования нужно обосновывать.

Попробуем (формально) продифференцировать D(b) по параметру b под знаком интеграпа

$$D'(b) = \int_0^{+\infty} \frac{\partial}{\partial b} \left(\frac{\sin bx}{x} \right) dx = \int_0^{+\infty} \cos bx \, dx = \frac{\sin bx}{b} \Big|_0^{+\infty}$$
 — расходится.

Мы видим, что после дифференцирования получился более простой интеграл, который берётся в элементарных функциях, но, увы, расходится. Значит, дифференцировать D(b) по параметру *под знаком интеграла* нельзя. Однако это не значит, что D'(b) не существует.

3. В самом деле, сделаем в D(b) замену (при b > 0) bx = t:

$$D(b) = \int_{0}^{+\infty} \frac{\sin bx}{x} dx = \int_{0}^{+\infty} \frac{\sin bx}{bx} d(bx) = \int_{0}^{+\infty} \frac{\sin t}{t} dt = D(1).$$

При b < 0, в силу нечётности подынтегральной функции относительно параметра b, получаем:

$$D(b) = D(-|b|) = -D(|b|) = -D(1).$$

Таким образом,

$$D(b) = \begin{cases} D(1), & b > 0, \\ 0, & b = 0, \\ -D(1), & b < 0, \end{cases} = D(1) \operatorname{sgn} b. \tag{*}$$

Отсюда D'(b) = 0 при $b \neq 0$.

Значит, производная по параметру b (почти всюду) существует, хотя и не может быть вычислена с помощью дифференцирования под знаком интеграла!

- **4.** Таким образом, чтобы вычислить интеграл ле D(b), нам остаётся найти $D(1) = \int_0^{+\infty} \frac{\sin x}{x} dx$.
- 5. Для этого введём дополнительный параметр и рас-

смотрим интеграл

$$I(p) = \int_{0}^{+\infty} e^{-px} \frac{\sin x}{x} dx, \qquad p \ge 0.$$

При этом I(0) = D(1).

6. Вычислим I(p) с помощью дифференцирования по параметру p под знаком интеграла (при этом интеграл упростится). Сначала сделаем это формально, а потом обоснуем возможность дифференцирования.

$$I'(p) = \int_{0}^{+\infty} \frac{\partial}{\partial p} \left(e^{-px} \frac{\sin x}{x} \right) dx = -\int_{0}^{+\infty} e^{-px} \sin x \, dx = -\int_{0}^{+\infty} e^{-px} \operatorname{Im}(e^{ix}) \, dx =$$

$$= -\operatorname{Im} \int_{0}^{+\infty} e^{-px} e^{ix} \, dx = -\operatorname{Im} \int_{0}^{+\infty} e^{(-p+i)x} \, dx = -\operatorname{Im} \left(\frac{e^{(-p+i)x}}{-p+i} \right)_{0}^{+\infty} = -\operatorname{Im} \frac{1}{p-i} =$$

$$= -\operatorname{Im} \frac{p+i}{p^2+1} = -\operatorname{Im} \left(\frac{p}{p^2+1} + i \frac{1}{p^2+1} \right) = -\frac{1}{p^2+1}, \quad p > 0.$$

Для разнообразия, мы вычислили интеграл $\int_0^{+\infty} e^{-px} \sin x \, dx$ не с помощью интегрирования по частям (дважды), а путём перехода от $\sin x$ к e^{ix} .

Заметим, что при p = 0 последний интеграл расходится.

Пояснение, почему $e^{(-p+i)x} \to 0$ при $x \to +\infty$:

$$e^{(-p+i)x} = e^{-px} \cdot e^{ix}.$$

$$|e^{ix}| = |\cos x + i \sin x| = \sqrt{\cos^2 x + \sin^2 x} = 1,$$

т. е. e^{ix} — ограниченная функция.

A $e^{-px} \to 0$ при $x \to +\infty$, т. е. e^{-px} — бесконечно малая функция при $x \to +\infty$.

Произведение ограниченной функции на бесконечно малую — бесконечно малая функция:

 $e^{-px} \cdot e^{ix} \to 0$ при $x \to +\infty$.

- **7.** Теперь обоснуем возможность дифференцирования I(p) по параметру p под знаком интеграла при p > 0:
 - 1) функция $f(x,p) = e^{-px} \frac{\sin x}{x}$ непрерывна при $p>0, \ x\geq 0$ (при x=0 доопределим функцию её предельным значением 1); функция $f_p(x,p) = -e^{-px} \sin x$ тоже непрерывна;
 - 2) интеграл I(p) сходится при p > 0 (ибо при $x \neq 0$ справедливо неравенство $\left|\frac{\sin x}{x}\right| < 1$, откуда $\left|e^{-px}\frac{\sin x}{x}\right| < e^{-px}$, а мажорантный интеграл $\int_0^{+\infty} e^{-px} \, dx = \frac{1}{n}$ сходится при p > 0);
 - 3) интеграл $\int_0^{+\infty} f_p(x,p) dx = \int_0^{+\infty} e^{-px} \sin x dx$ сходится равномерно на множестве $p \ge p_0 > 0$ — задача № 3756 (3756 б) из Демидовича (ДЗ 22).

Значит, $I'(p) = -\frac{1}{p^2+1}$ при $p \ge p_0$, а в силу произвольности числа $p_0 > 0$ — при $\forall p > 0$.

- **8.** Отсюда $I(p) = -\arctan p + C$ при p > 0.
- **9.** Неизвестную константу C найдём из следующих соображений. Заметим, что

$$|I(p)| = \left| \int_0^{+\infty} e^{-px} \frac{\sin x}{x} dx \right| \le \int_0^{+\infty} \left| e^{-px} \frac{\sin x}{x} \right| dx < \int_0^{+\infty} e^{-px} dx = \frac{1}{p} \to 0 \text{ при } p \to +\infty.$$

Значит, $\lim_{p\to +\infty} I(p) = \lim_{p\to +\infty} (-\arctan p + C) = -\frac{\pi}{2} + C = 0$, откуда $C = \frac{\pi}{2}$. Итак, $I(p) = \frac{\pi}{2} - \arctan p$ при p>0.

10. Кроме того, интеграл I(p) сходится равномерно на множестве $p \ge 0$ (Демидович № 3760 (3760 а) из ДЗ 22), поэтому функция I(p) непрерывна при $p \ge 0$.

Тогда
$$I(0) = \lim_{p \to 0+0} I(p) = \lim_{p \to 0+0} \left(\frac{\pi}{2} - \operatorname{arctg} p\right) = \frac{\pi}{2} = D(1).$$

11. Окончательно имеем:

$$D(b) = \int_{0}^{+\infty} \frac{\sin bx}{x} dx = \frac{\pi}{2} \operatorname{sgn} b.$$

Запомним этот важный результат.

Ответ:
$$\int_0^{+\infty} \frac{\sin bx}{x} dx = \frac{\pi}{2} \operatorname{sgn} b.$$

ДЗ 23. Демидович 1997 г. (2003 г.) № 3777 (3777.2), 3779, 3780, 3784, 3804, 3806, 3809, 3810 (3810 а), 3815, 3816.