Assignment 2.1

Apply Convolution on above image step by step in a blank paper (first iteration only)

08	1	▼ : :	× ~	f _x									
4	Α	В	С	D	Е	F	G	Н	1	J	K	L	М
1	0	0	0	1	0	0	0	0	0	0	1	0	
2	0	0	0	0	0	1	1	1	1	1	0	0	
3	1	0	0	1	0	1	1	1	1	1	0	0	
4	0	0	0	0	0	0	0	0	1	1	1	0	
5	1	0	0	0	0	0	0	0	1	1	0	0	
6	0	0	0	0	0	0	0	1	1	0	0	0	
7	0	0	0	0	0	0	1	1	0	0	0	0	
8	1	0	0	0	0	1	1	0	0	0	0	0	
9	0	0	1	0	1	1	0	0	1	0	0	0	
10	0	0	0	1	1	0	0	1	0	0	0	0	
11	0	0	1	1	1	1	1	1	1	1	0	0	
12	0	1	1	1	1	1	1	1	1	1	0	0	
13													

Filter,

```
[
  [0, 1, 0],
  [1, -4, 1],
  [0, 1, 0]
]
```

Kernel - Convolution: 3 x 3

Step size - Convolution: 1

Weight: 0.9

Assignment 2.2

Problem Statement

Build a CNN for Cifar10 data

Data:

from keras.datasets import cifar10
https://www.cs.toronto.edu/~kriz/cifar.html

0:'Airplane', 1:'Automobile', 2:'Bird', 3:'Cat', 4:'Deer', 5:'Dog',6:'Frog', 7:'Horse', 8:'Ship', 9:'Truck'

Task:

- 1. Load the cifar10 data
- 2. Display 10 random cifar images in one grid (subplots)
- 3. Build 2 Conv2D layer with 2 MaxPooling2D, filter 64, and 32 respectively, padding true, activation relu, kernel size (3, 3), stride for Conv2d will be 1, for maxpool stride 2
- 4. Use RMSprop optimizer, sparse categorical loss, and accuracy, epochs 10
- 5. Calculate test set accuracy score and log loss, build confusion matrix
- 6. Display 10 random test set cifar images with actual and predicted value (use word cifar labels)
- 7. Justify on paper the estimation of trainable parameters of the model (refer summary)