HOMEWORK 3: MODULES, TENSORS, AND LOCALIZATION DUE: FRIDAY, MARCH 16TH

- 1) Show that $\mathbb{Q} \cong \mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q} \cong \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$.
- 2) If \mathfrak{q} is a minimal prime ideal of a reduced $(\mathfrak{N}=0)$ Noetherian ring R show that $R_{\mathfrak{q}}$ is a field. (**Hint:** A minimal prime ideal is a prime ideal not containing any other prime ideal. In a Noetherian ring, a minimal prime is composed entirely of zero divisors. You may assume this. What does the localization set to 0?)
- 3) Show that if I, J are ideals of R, then $R/I \otimes_R R/J \cong R/(I+J)$.
- 4) Show that the following conditions are equivalent for a short exact sequence

$$0 \to M' \xrightarrow{\varphi} M \xrightarrow{\psi} M'' \to 0$$

- i. $M \cong M' \oplus M''$.
- ii. There is a homomorphism $\varphi': M \to M'$ such that $\varphi' \circ \varphi = Id_{M'}$.
- iii. There is a homomorphism $\psi': M'' \to M$ such that $\psi \circ \psi' = Id_{M''}$.
- 5) Show that if P and P' are projective modules, so is $P \otimes_R P'$.
- 6) Prove the following lemma from class 12:

Lemma 0.1. For modules M_{λ} , N, $\lambda \in \Lambda$, we have isomorphisms

$$\operatorname{Hom}_R(\bigoplus_{\lambda \in \Lambda} M_\lambda, N) \cong \prod_{\lambda} \operatorname{Hom}_R(M_\lambda, N)$$

$$\operatorname{Hom}_R(N, \bigoplus_{\lambda \in \Lambda} M_{\lambda}) \cong \bigoplus_{\lambda \in \Lambda} \operatorname{Hom}_R(N, M_{\lambda})$$

Recall here that \prod (the direct product) differs from \oplus in the sense that $(m_{\lambda}) \in \bigoplus_{\lambda} M_{\lambda}$ requires all but finitely many m_{λ} be zero. The direct product has no such restriction.

- 7) Prove the following universal property of the tensor product:
 - **Theorem 0.2.** The pair $(M \otimes_R N, \otimes : M \times N \to M \otimes_R N)$ satisfies the following: Given a bilinear map $\varphi : M \times N \to P$, then $\exists ! \varphi' : M \otimes_R N \to P$ a homomorphism factoring φ . That is to say $\varphi = \varphi' \circ q$. If T is any other module with this factorization property, then T is uniquely isomorphic to $M \otimes_R N$.
- 8) Show that for a given ring R, every R-module is projective if and only if every R-module is injective.