```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [2]: df= pd.read_csv("C:\\Users\\DELL\\Downloads\\archive (1)\\diamonds.csv")

In [3]: df.head()

Out[3]:

	carat	cut	color	clarity	depth	table	price	x	у	z
0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
2	0.23	Good	Ε	VS1	56.9	65.0	327	4.05	4.07	2.31
3	0.29	Premium	ı	VS2	62.4	58.0	334	4.20	4.23	2.63
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75

In [4]: df.tail()

Out[4]:

	carat	cut	color	clarity	depth	table	price	x	У	z
53935	0.72	I deal	D	SI1	60.8	57.0	2757	5.75	5.76	3.50
53936	0.72	Good	D	SI1	63.1	55.0	2757	5.69	5.75	3.61
53937	0.70	Very Good	D	SI1	62.8	60.0	2757	5.66	5.68	3.56
53938	0.86	Premium	Н	SI2	61.0	58.0	2757	6.15	6.12	3.74
53939	0.75	Ideal	D	SI2	62.2	55.0	2757	5.83	5.87	3.64

In [5]: df.info()

2 color 53940 non-null object 3 clarity 53940 non-null object 4 depth 53940 non-null float64 53940 non-null float64 5 table 6 53940 non-null int64 price 7 53940 non-null float64 Х 8 53940 non-null float64 У 9 53940 non-null float64

dtypes: float64(6), int64(1), object(3)

memory usage: 4.1+ MB

```
In [6]: df.describe()
```

Out[6]:

	carat	depth	table	price	x	у	Z
count	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000
mean	0.797940	61.749405	57.457184	3932.799722	5.731157	5.734526	3.538734
std	0.474011	1.432621	2.234491	3989.439738	1.121761	1.142135	0.705699
min	0.200000	43.000000	43.000000	326.000000	0.000000	0.000000	0.000000
25%	0.400000	61.000000	56.000000	950.000000	4.710000	4.720000	2.910000
50%	0.700000	61.800000	57.000000	2401.000000	5.700000	5.710000	3.530000
75%	1.040000	62.500000	59.000000	5324.250000	6.540000	6.540000	4.040000
max	5.010000	79.000000	95.000000	18823.000000	10.740000	58.900000	31.800000

```
In [7]: df.shape
```

Out[7]: (53940, 10)

```
In [8]: df.isnull().sum()
```

Out[8]: carat 0 cut 0 color 0 clarity 0 depth 0 table 0 price 0 x 0 y 0 z 0 dtype: int64

EDA

```
In [9]: num_features = df.select_dtypes(include =['int64','float64'])
print(num_features.columns)
```

```
Index(['carat', 'depth', 'table', 'price', 'x', 'y', 'z'], dtype='object')
```

```
In [10]: num_features.hist(figsize =(15,10))
Out[10]: array([[<AxesSubplot:title={'center':'carat'}>,
                    <AxesSubplot:title={'center':'depth'}>,
                    <AxesSubplot:title={'center':'table'}>],
                   [<AxesSubplot:title={'center':'price'}>,
                    <AxesSubplot:title={'center':'x'}>,
                    <AxesSubplot:title={'center':'y'}>],
                   [<AxesSubplot:title={'center':'z'}>, <AxesSubplot:>,
                    <AxesSubplot:>]], dtype=object)
                                                                                                   table
                            carat
                                                               depth
           25000
                                               40000
           20000
                                                                                  30000
                                               30000
           15000
                                                                                  20000
                                               20000
           10000
                                                                                  10000
                                               10000
            5000
                            price
           25000
                                                                                   30000
                                               20000
                                                                                  25000
           20000
                                               15000
                                                                                  20000
           15000
                                               10000
                                                                                  15000
           10000
                                                                                  10000
                                                5000
            5000
                                                                                   5000
                      5000
                                   15000
                            10000
           30000
           20000
           10000
              0
                        10
                            15
          cat_features = df.select_dtypes(include=['object'])
In [11]:
          print(cat_features.columns)
```

```
Index(['cut', 'color', 'clarity'], dtype='object')
```

```
In [12]: plt.figure(figsize=(24, 48))
    plt.subplot(411)
    sns.countplot(y='cut', hue='color', data = cat_features)
    plt.title('Color vs Cut')
```

Out[12]: Text(0.5, 1.0, 'Color vs Cut')


```
In [14]: corr=df.corr()
sns.heatmap(corr,annot=True)
```

Out[14]: <AxesSubplot:>


```
In [15]: for num_var in num_features:
    plt.figure(figsize=(5,5))
    plt.xlabel('price')
    plt.ylabel(num_var)
    x=df['price']
    y=df[num_var]
    plt.scatter(x,y)
```


Feature Transformation

```
In [16]: df_cat = pd.get_dummies(cat_features,drop_first=True)
    df_cat.head()
```

Out[16]:

	cut_Good	cut_ldeal	cut_Premium	cut_Very Good	color_E	color_F	color_G	color_H	color_l	color_J	clarity_IF
0	0	1	0	0	1	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
2	1	0	0	0	1	0	0	0	0	0	0
3	0	0	1	0	0	0	0	0	1	0	0
4	1	0	0	0	0	0	0	0	0	1	0
4											

In [17]: new_df = pd.concat([num_features, df_cat], axis=1)
 new_df.head()

Out[17]:

	carat	depth	table	price	x	у	z	cut_Good	cut_ldeal	cut_Premium	 color_H	color_l	color_J
0	0.23	61.5	55.0	326	3.95	3.98	2.43	0	1	0	 0	0	0
1	0.21	59.8	61.0	326	3.89	3.84	2.31	0	0	1	 0	0	0
2	0.23	56.9	65.0	327	4.05	4.07	2.31	1	0	0	 0	0	0
3	0.29	62.4	58.0	334	4.20	4.23	2.63	0	0	1	 0	1	0
4	0.31	63.3	58.0	335	4.34	4.35	2.75	1	0	0	 0	0	1

5 rows × 24 columns

In [18]: X = new_df.drop(columns = ['price'],axis = 1)
X.head()

Out[18]:

	carat	depth	table	x	у	z	cut_Good	cut_ldeal	cut_Premium	cut_Very Good	 color_H	color_l	color
0	0.23	61.5	55.0	3.95	3.98	2.43	0	1	0	0	 0	0	
1	0.21	59.8	61.0	3.89	3.84	2.31	0	0	1	0	 0	0	
2	0.23	56.9	65.0	4.05	4.07	2.31	1	0	0	0	 0	0	
3	0.29	62.4	58.0	4.20	4.23	2.63	0	0	1	0	 0	1	
4	0.31	63.3	58.0	4.34	4.35	2.75	1	0	0	0	 0	0	

5 rows × 23 columns

In [19]: y =new_df['price']
y.head()

Out[19]: 0

0 326

1 326

2 327

3 334

4 335

Name: price, dtype: int64

Splitting

```
In [21]: # split into train and test
         from sklearn.model selection import train test split
         X train, X test, y train, y test = train test split(X, y, train size=0.7, random state=100
In [22]: print(X_train.shape, y_train.shape)
         print(X test.shape, y test.shape)
         (37758, 23)(37758,)
         (16182, 23) (16182,)
In [23]: from sklearn.preprocessing import MinMaxScaler
         scaler = MinMaxScaler()
In [24]: | scaler.fit_transform(X_train)
         scaler.transform(X_test)
Out[24]: array([[0.07692308, 0.51388889, 0.26923077, ..., 1.
                                                                    , 0.
                [0.1995842 , 0.51388889, 0.23076923, ..., 0.
                                                                    , 0.
                [0.06444906, 0.56111111, 0.28846154, ..., 0.
                                                                    , 0.
                 0.
                [0.08523909, 0.50833333, 0.23076923, ..., 0.
                                                                    , 0.
                [0.04365904, 0.525
                                      , 0.25
                                              , ..., 0.
                                                                    , 0.
                [0.16216216, 0.51666667, 0.44230769, ..., 0.
                           11)
```

Training the Model

```
In [25]: from sklearn.ensemble import RandomForestRegressor
In [26]: model_rf = RandomForestRegressor()
In [27]: model_rf.fit(X_train,y_train)
Out[27]: RandomForestRegressor()
In [28]: y_pred_rf = model_rf.predict(X_test)
In [30]: from sklearn import metrics
In [31]: metrics.r2_score(y_test,y_pred_rf)
Out[31]: 0.9738458454322558
```

In []: