

#### FEATURES

- Default +5V Output Voltage.
- Adjustable Output Voltage with Two Resistors.
- Power-Saving Shutdown Mode (7μA typical).
- 120KHz Switching Rate.
- · On-Chip Low Battery Detector.

#### APPLICATIONS

- Palmtop & Notebook Computers.
- · Battery Charger Supply.
- · Cellular Telephone.
- · LCD Contrast Supply.
- Flash Memory Programmer.
- Battery Backup Supplies.
- · Portable Instruments.

### **DESCRIPTION**

The AIC1630A is a DC-DC converter designed to drive an external power switch for more flexibility, especially in higher voltage and larger power applications. Typically six components are required to set up a step up configuration easily achieving efficiency beyond 80%. A few more components are required to set up a step down configuration delivering 4A load current with 83% typical efficiency, 86% at 2A load, and  $300\mu A$  quiescent current.

The output voltage can be internally set to 5V or externally set to an arbitrary value below breakdown voltage of the power switch. Logic-controlled shutdown mode is provided for power saving. The low battery detector can be also configured as a linear regulator.

120KHz switching rate reduces the inductor size. Inductors of  $25\mu H$  to  $50\mu H$  inductance are recommended for most applications.

### ■ TYPICAL APPLICATION CIRCUIT



Note :  $V_{IN} \ge 1.8 V$ ,  $V_{OUT} \le 7 V$ High Efficiency Step-Up DC/DC Converter

## ORDERING INFORMATION



|     | ORDER NUMBER                | PIN CONFIGURATION                 |  |  |  |
|-----|-----------------------------|-----------------------------------|--|--|--|
| 1 1 | AIC1630ACN<br>(PLASTIC DIP) | TOP VIEW  SD 1 8 VOUT VIN 2 7 LBI |  |  |  |
| 1 - | AIC1630ACS<br>(PLASTIC SO)  | EXT 3 6 LBO GND 4 5 FB            |  |  |  |



### ■ ABSOLUTE MAXIMUM RATINGS

| Supply Voltage                       | 7.0V         |
|--------------------------------------|--------------|
| DC Voltage Applied On All Other Pins | 7.0V         |
| Operating Temperature Range          | 0°C~70°C     |
| Storage Temperature Range            | -65°C ~150°C |

## ■ TEST CIRCUIT

Refer to Typical Application Circuit.

# ■ ELECTRICAL CHARACTERISTICS (V<sub>IN</sub>=3.0V, Ta=25°C, unless otherwise specified.)

| PARAMETER                   | TEST CONDITIONS                                                          | MIN.  | TYP.     | MAX.  | UNIT              |
|-----------------------------|--------------------------------------------------------------------------|-------|----------|-------|-------------------|
| Input Voltage               |                                                                          | 1.8   |          | 7     | V                 |
| Default Output Voltage      | I <sub>L</sub> =200mA                                                    | 4.8   | 5        | 5.2   | V                 |
| Switch Off Current          |                                                                          |       | 105      | 140   | μА                |
| Shutdown Mode Current       |                                                                          |       | 7        | 15    | μА                |
| Recovery Time from Shutdown | V <sub>IN</sub> =2.5V, I <sub>L</sub> =200mA                             |       | 0.4      |       | mS                |
| Efficiency                  | I <sub>L</sub> =300mA<br>Fig. 1 in Appl. Examples                        |       | 85       |       | %                 |
| Line Regulation             | V <sub>IN</sub> =2.2~3.3V<br>V <sub>OUT</sub> =5V, I <sub>L</sub> =100mA |       | 0.6      |       | %V <sub>OUT</sub> |
| Load Regulation             | I <sub>L</sub> =10mA~500mA<br>V <sub>OUT</sub> =5V                       |       | 2.5      |       | %V <sub>OUT</sub> |
| Oscillator Frequency        |                                                                          | 90    | 120      | 150   | KHz               |
| LBI Pin Trip Point          |                                                                          | 1.17  | 1.22     | 1.27  | V                 |
| FB Threshold Voltage        |                                                                          | 0.598 | 0.617    | 0.636 | V                 |
| EXT Pin Driving Capability  | Pin 8=5V, Pin 3= 0.85V<br>Sourcing<br>Sinking                            |       | 80<br>50 |       | mA<br>mA          |
| LBO "ON Resistance"         | V <sub>IN</sub> =2V                                                      |       | 45       |       | Ω                 |
| Input Pin Bias Current      |                                                                          |       |          | 10    | nA/Pin            |
| Output Pin Leakage          |                                                                          |       |          | 10    | nA/Pin            |



### ■ TYPICAL PERFORMANCE CHARACTERISTICS















# TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)







# ■ BLOCK DIAGRAM



### ■ PIN DESCRIPTION

PIN 1: SD - The AIC1630A goes in shutdown mode and consumes less than 10µ A when SD pin is pulled to ground and it goes in normal operating

mode when the SD pin is pulled to a positive voltage above 100mV.

PIN 2: VIN - Input supply.

PIN 3: EXT - Push-pull drive output to drive external power switch.

PIN 4: GND - Ground.

PIN 5: FB - Output voltage can either be

internally set to 5 volt by grounding FB pin, or be externally set to an arbitrary voltage by applying to FB pin the divider voltage of two divider

resistors.

 $V_{\text{OUT}}$  voltage is given by the

following equation:

$$\frac{R1}{R2} = \frac{V_{\text{OUT}}}{0.628} - \frac{1}{100}$$

where R1=Resistor connected between FB pin and VOUT pin.

R2= Resistor connected between FB pin and ground.

V<sub>OUT</sub>=Output voltage to be set.

PIN 6: LBO - Open drain output of the battery low detector, with  $45\Omega$  "ON resistance" at  $V_{IN}$ =2V. It is pulled low when the voltage on LBI pin is below 1.22V.

PIN 7: LBI - The noninverting input of the battery low detector, of which the inverting input is internally connects to 1.22V voltage reference.

PIN 8: VOUT- The output voltage feedbacks to the IC through this pin. If output voltage was externally set, the VOUT pin can be tied to any low impedance node with voltage between the external power switch threshold and 7V

## ■ APPLICATION EXAMPLES





Fig. 1 5V Output Step-Up Converter



## **APPLICATION EXAMPLES (CONTINUED)**



Note:  $V_{IN} \ge 2.2V$ 

Fig. 2 12V Output Step-Up Converter for Flash Memory



Fig. 3 36V Output Step-Up Converter for Color LCD



Fig. 4 -24V Output Inverting Converter for LCD



### APPLICATION EXAMPLES (CONTINUED)



Fig. 5 2V Input 20mA Load -24V Output Inverting Converter for LCD



Fig. 6 12V Dual Output Converter for computer for computer Interfacing



Fig. 7 5V Output Step-Down Converter -1



## APPLICATION EXAMPLES (CONTINUED)



Fig. 8 5V Output Step-Down Converter -2



Note:  $V_{IN} \ge 2.2V$ 

Charging current =0.8A, Auto-Cut-Off at 0.75/0.25% -∆V point and Fault Conditions.

(R<sub>IF</sub> sets the Charging Current)

 $m V_{IN}$  must be lower than  $m V_{BAT}$ . Short Circuit Condition is protected with a 2A Fuse.

Fig. 9 Step-Up Rechargeable Battery Charger



## **APPLICATION EXAMPLES (CONTINUED)**



= 0.8A  $@V_{IN} < V_{BAT}$ Note: Fast Charge Current  $=(V_{IN} - V_{BAT} - 0.5)/0.82 @V_{IN} > V_{BAT}$ 

Trickle charge Current = 30mA.

(RIF sets Fast Charge Current, RIT sets Trickle Charge Current)

Typical Efficiency = 75%. With Short Circuit Protection.

Fig. 10 Step-Up/Down Rechargeable Battery Charger

### PHYSICAL DIMENSIONS

#### **8 LEAD PLASTIC DIP**

