Phase Space We recalled in chapter 1 the definition of *Phase Space* in ordinary classical mechanics as the cotangent bundle T^*Q of the classical configuration space Q. We showed that every classical phase space is symplectic trough the natural PoincarÃÍ form. However, every quantization procedure require a modification of this standard symplectic form in order to implement the canonical commutation rules.

This leads us to the abstract formulation for the Hamiltonian systems[?]:

Definition 1: Hamiltonian System

 (\mathcal{M}, ω, H) 3.3.1 fomm

Observation 1

In classical mechanics Hamiltonian systems could be seen as a subset of Lagrangian systems.

The key is the definition of the Legendre Map $TL: TQ \to T^*Q$. Only in the case that the Lagrangian L is *hyperegular*, i.e. TL is a diffeomorphism, is possible to push-forward L to give a proper Hamiltonian on $\mathcal{M} = T^*Q$. (see for example \P)

Remember that there's an important theorem attributed to Darboux that state that, at least locally, every symplectic form can be coordinated as the ...canonical coordinate

Theorem 0.0.1 (Darboux) 3.2.2 fomm

Classical Observables Observables in classical mechanics are represented by real valued smooth function on $\mathcal M$

Notation fixing

The Classical Observables space is denoted as:

$$\mathscr{E} \equiv C^{\infty}(\mathscr{M}, \mathbb{R})$$

Observation 2

Trivially, the space $C^{\infty}(\mathcal{M},\mathbb{R})$ of smooth real valued function on \mathcal{M} , inherits the structure of commutive algebra over \mathbb{R} from its codomain \mathbb{R} .

The symplectic structure on \mathcal{M} give rise to an alternative algebraic structure on the vector space of observables. At first it is necessary to introduce the Hamiltonian fields:

Definition 2: Hamiltonian field

3.3.1 fomm

from that follows the definition of the bracket:

Definition 3: Poisson Bracket

3.3.11 fomm

Proposition 0.0.1 (Symplectic char representation) 3.3.14 fomm