```
import pandas as pd
import numpy as np
# Read filenya
df = pd.read_csv (r'Gandum.csv')
print(len(df))
print (df)
def describe(df):
    print( pd.concat([df.describe().T,
                      df.var().rename('variansi'),
                      df.median().rename('median'),
                      df.skew().rename('skewness'),
                      df.kurt().rename('kurtosis'),
                     ], axis=1).T)
    print("\nDATA MODUS ")
    print(df.mode())
    print("\nDATA RANGE ")
    minimum = df.min()
    maksimum = df.max()
    print(maksimum-minimum)
    print("\nDATA IQR ")
    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
    IQR = Q3 - Q1
    print(IQR)
```

describe(df)

```
500
Гэ
               Daerah
                        SumbuUtama
                                     SumbuKecil
                                                        Keliling
                                                                    Bulatan
                                                                                         Kelas
           id
                                                                                 Ransum
    0
            1
                 5781
                        128.288875
                                      58.470846
                                                         316.756
                                                                   0.724041
                                                                              2.194066
                                                                                              1
    1
            2
                 4176
                        109.348294
                                                         260.346
                                                                              2.194088
                                      49.837688
                                                                   0.774227
                                                                                              1
    2
            3
                 4555
                        114.427991
                                                                   0.732159
                                                                                              1
                                      52.151207
                                                         279.606
                                                                              2.194158
    3
            4
                 4141
                        108.701191
                                      49.457349
                                                         260.478
                                                                   0.766960
                                                                              2.197877
                                                                                              1
    4
            5
                 5273
                        122.747869
                                       55.757848
                                                         302.730
                                                                   0.723031
                                                                              2.201446
                                                                                              1
                   . . .
                                                              . . .
    . .
                                             . . .
                                                                                            . . .
    495
         496
                 5083
                        120.083450
                                       54.821580
                                                         286.377
                                                                   0.778850
                                                                              2.190441
                                                                                              2
         497
                                                                                              2
    496
                 4432
                        112.367050
                                      51.294914
                                                         270.823
                                                                   0.759344
                                                                              2.190608
                                                                                              2
    497
         498
                 5020
                        119.873742
                                      54.718545
                                                         285.799
                                                                   0.772311
                                                                              2.190733
    498
         499
                 4035
                        107.311728
                                                         258.503
                                                                   0.758791
                                                                              2.193132
                                                                                              2
                                      48.930802
    499
         500
                 3379
                                                                   0.752196
                                                                                              2
                         99.014789
                                      44.631551
                                                         237.593
                                                                              2.218493
    [500 rows x 12 columns]
                          id
                                      Daerah
                                                         Ransum
                                                                        Kelas
                 500.000000
                                  500.000000
                                                     500.000000
                                                                  500.000000
    count
                 250.500000
                                 4801.246000
                                                       2.150915
                                                                    1.502000
    mean
```

```
std
            144.481833
                            986.395491
                                                 0.249767
                                                             0.500497
min
               1.000000
                           2522.000000
                                         . . .
                                                 1.440796
                                                             1.000000
25%
            125.750000
                           4042.750000
                                                 1.983939
                                                             1.000000
50%
            250.500000
                           4735.000000
                                                 2.193599
                                                             2.000000
75%
            375.250000
                           5495.500000
                                                 2.381612
                                                             2.000000
            500.000000
max
                           7453.000000
                                                 2.464809
                                                             2.000000
variansi
         20875.000000
                         972976.065615
                                                0.062383
                                                             0.250497
median
            250.500000
                           4735.000000
                                                2.193599
                                                             2.000000
skewness
              0.000000
                              0.238144
                                                -0.658188
                                                            -0.008024
kurtosis
             -1.200000
                              -0.434631
                                                -0.428656
                                                            -2.007984
```

[12 rows x 12 columns]

DATA MODUS

	id	Daerah	SumbuUtama	SumbuKecil	 Keliling	Bulatan	Ransum	Kelas
0	1	3992.0	74.133114	39.906517	 197.015	0.174590	1.440796	2.0
1	2	4881.0	74.364021	41.436419	 200.587	0.261297	1.453137	NaN
2	3	5642.0	74.691881	42.871879	 202.456	0.299298	1.465950	NaN
3	4	6083.0	76.293164	43.284979	 207.325	0.589146	1.483456	NaN
4	5	NaN	76.789043	44.119355	 207.697	0.603807	1.510000	NaN
495	496	NaN	152.068440	63.322854	 375.651	0.872417	2.461017	NaN
496	497	NaN	152.113491	63.762307	 390.125	0.874243	2.461510	NaN
497	498	NaN	153.583387	64.012769	 434.235	0.874743	2.463297	NaN
498	499	NaN	227.105462	65.738475	 448.305	0.891706	2.463546	NaN
499	500	NaN	227.928583	68.977700	 488.837	0.904748	2.464809	NaN

[500 rows x 12 columns]

DATA RANGE

DATA NAMBE	
id	499.000000
Daerah	4931.000000
SumbuUtama	153.795469
SumbuKecil	29.071182
Keunikan	0.194085
AreaBulatan	5141.000000
Diameter	40.747172
KadarAir	0.468972
Keliling	291.822000
Bulatan	0.730158
Ransum	1.024013

df[["Daerah"]].plot(kind="hist",bins=[0,1000,2000,3000,4000,5000,6000,7000,8000,9000,10000],results)

<matplotlib.axes._subplots.AxesSubplot at 0x7f89abb99b50>

df.boxplot(column=['Daerah'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f89ab9d8810>

df[["SumbuUtama"]].plot(kind="hist",bins=[0,20,40,60,80,100,120,140,160,180,200],rwidth=0.95,

<matplotlib.axes._subplots.AxesSubplot at 0x7f89ab7771d0>

df.boxplot(column=['SumbuUtama'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f89ab701590>

df[["SumbuKecil"]].plot(kind="hist",bins=[0,10,20,30,40,50,60,70,80,90,100],rwidth=0.95, colo

<matplotlib.axes._subplots.AxesSubplot at 0x7f89ab5edb10>

df.boxplot(column=['SumbuKecil'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f89ab57a7d0>

df[["Keunikan"]].plot(kind="hist",bins=[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1],rwidth=0.95,

<matplotlib.axes._subplots.AxesSubplot at 0x7f89ab2d9f50>

df.boxplot(column=['Keunikan'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f89ab25f790>

df[["AreaBulatan"]].plot(kind="hist",bins=[0,1000,2000,3000,4000,5000,6000,7000,8000,9000,100

df.boxplot(column=['AreaBulatan'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f89ab0f0390>

df[["Diameter"]].plot(kind="hist",bins=[0,10,20,30,40,50,60,70,80,90,100],rwidth=0.95, color=

<matplotlib.axes._subplots.AxesSubplot at 0x7f89ab0481d0>

df.boxplot(column=['Diameter'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f89aaf81790>

df[["KadarAir"]].plot(kind="hist",bins=[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1],rwidth=0.95,

<matplotlib.axes._subplots.AxesSubplot at 0x7f89ab569fd0>

df.boxplot(column=['KadarAir'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f89aaed2e10>

df[["Keliling"]].plot(kind="hist",bins=[0,50,100,150,200,250,300,350,400,450,500],rwidth=0.95

df.boxplot(column=['Keliling'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f89aadd8210>

df[["Bulatan"]].plot(kind="hist",bins=[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1],rwidth=0.95,

<matplotlib.axes._subplots.AxesSubplot at 0x7f89aad4b890>

df.boxplot(column=['Bulatan'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f89aac5e8d0>

<matplotlib.axes. subplots.AxesSubplot at 0x7f89aa8ac350>

df.boxplot(column=['Ransum'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f89aa8acc10>


```
# NOMOR 3
import scipy.stats as stats
from scipy.stats import norm, normaltest
def normality_test(column):
  stat, pValue = normaltest(df[column])
  if pValue > 0.05:
    print("Kolom "+str(column) + " berdistribusi normal")
    print("Dengan nilai stat : "+str(stat))
    print("Dengan nilai pValue : "+str(pValue)+"\n")
  else:
    print("Kolom "+str(column) + " tidak berdistribusi normal")
    print("Dengan nilai stat : "+str(stat))
    print("Dengan nilai pValue : "+str(pValue)+"\n")
normality_test("Daerah")
normality test("SumbuUtama")
normality test("SumbuKecil")
normality_test("Keunikan")
normality_test("AreaBulatan")
normality_test("Diameter")
normality test("Keliling")
```

```
normality_test("Bulatan")
normality_test("Ransum")
```

Kolom Daerah tidak berdistribusi normal Dengan nilai stat : 10.858551334227265 Dengan nilai pValue : 0.004386271773193838

Kolom SumbuUtama tidak berdistribusi normal Dengan nilai stat : 95.12010812035354

Dengan nilai pValue : 2.2127429343273333e-21

Kolom SumbuKecil berdistribusi normal
Dengan nilai stat : 3.698394471986242
Dengan nilai pValue : 0.1573634413290252

Kolom Keunikan tidak berdistribusi normal Dengan nilai stat : 158.61743886606416 Dengan nilai pValue : 3.602971140062405e-35

Kolom AreaBulatan tidak berdistribusi normal Dengan nilai stat : 10.738742339140217 Dengan nilai pValue : 0.004657058890055043

Kolom Diameter tidak berdistribusi normal Dengan nilai stat : 7.446345772505218 Dengan nilai pValue : 0.024157198077543095

Kolom Keliling tidak berdistribusi normal Dengan nilai stat : 67.46548246324498

Dengan nilai pValue : 2.2390130437166565e-15

Kolom Bulatan tidak berdistribusi normal Dengan nilai stat : 442.11941526532235 Dengan nilai pValue : 9.885276103161724e-97

Kolom Ransum tidak berdistribusi normal Dengan nilai stat : 37.060319894694054 Dengan nilai pValue : 8.963008041823752e-09

import seaborn as sns
sns.set()
SOAL 4
Melakukan test hipotesis 1 sampel, dengan menuliskan 6 langkah testing dan menampilkan
juga boxplotnya untuk kolom/bagian yang bersesuaian.
a. Nilai rata-rata Daerah di atas 4700?
b. Nilai Rata-rata Sumbu Utama tidak sama dengan 116?
c. Nilai Rata-rata 20 baris pertama kolom Sumbu Kecil bukan 50?
d. Proporsi nilai Diameter yang lebih dari 85, adalah tidak sama dengan 15% ?
e. Proporsi nilai Keliling yang kurang dari 100, adalah kurang dari 5% ?

sampel = df.sample(250) # ambil setengah data sebagai sampel yaitu 500/2 = 250

```
# Fungsi untuk menghitung nilai Z (Distribusi Sample) dari masing-masing kolom
def hitungNilaiZ(RataSampel, RataPopulasi, DeviasiPopulasi, jumlahSampel):
    return ((RataSampel - RataPopulasi) * (jumlahSampel) ** 1/2)/DeviasiPopulasi

def Soal4(Sampelnya, population, jumlahSampel, columns):
    MeanKolom = Sampelnya[columns].mean()
    print("Mean dari sample kolom Daerah: ", MeanKolom);
    NilaiZ = hitungNilaiZ(MeanKolom, population[columns].mean(), population[columns].std(), j
    print("Nilai Distribusi Z yang dihitung: ", NilaiZ);
    print("P valuenya adalah: ", norm.sf(abs(NilaiZ)));

# Bikin BoxPlot
sns.boxplot(data=Sampelnya, x=str(columns));
```

```
# 4A Nilai rata-rata Daerah di atas 4700 ?
# Langkah 1: null hypothesis Mean (H0) = 4700
# Langkah 2: alternative hypothesis (H1) Mean > 4700
# Langkah 3: alpha = 0.05
# Langkah 4: uji tes mean Z one tailed, alpha = 0.05, daerah kritis: Z > 1.645
# Langkah 5: uji tes statistik one tailed
# Langkah 6: nilai distribusi Z berada pada daerah krisis dan p-value lebih kecil dari alpha,
```

Soal4(sampel, df, 250, "Daerah")

Mean dari sample kolom Daerah: 4783.096 Nilai Distribusi Z yang dihitung: -2.3000409263756096


```
# 4b Nilai Rata-rata Sumbu Utama tidak sama dengan 116 ?
# Langkah 1: null hypothesis Mean (H0) = 116
# Langkah 2: alternative hypothesis (H1) Mean != 116
# Langkah 3: alpha = 0.05
# Langkah 4: uji tes mean Z two tailed, alpha = 0.05 dan statistik two tailed maka daerah Z <
# Langkah 5: uji tes statistik two tailed</pre>
```

Langkah 6: nilai distribusi Z tidak berada pada daerah krisis dan p-value lebih kecil dari

```
Soal4(sampel, df, 250, "SumbuUtama")
```

Mean dari sample kolom Daerah: 116.15149638995999 Nilai Distribusi Z yang dihitung: 0.7269539837082097

P valuenya adalah: 0.2336270727187293


```
# 4c Nilai Rata-rata 20 baris pertama kolom Sumbu Kecil bukan 50 ?
# Langkah 1: null hypothesis Mean (H0) = 50
# Langkah 2: alternative hypothesis (H1) Mean != 50
# Langkah 3: alpha = 0.05
# Langkah 4: uji tes mean Z two tailed, alpha = 0.05 dan statistik two tailed maka daerah Z <
# Langkah 5: uji tes statistik two tailed

RataRataSampel20BarisPertama = sampel["SumbuKecil"].iloc[:19].mean()
print("Rata-rata 20 Baris Pertama pada kolom SumbuKecil adalah ", RataRataSampel20BarisPertam zValue = hitungNilaiZ(RataRataSampel20BarisPertama, 50, df["SumbuKecil"].std(), 20)
print("zValue : ", zValue);
print("pValue : ", norm.sf(abs(zValue)));
# Langkah 6: nilai distribusi Z berada pada daerah krisis maka null hypothesis ditolak
# Boxplot "SumbuUtama"
sns.boxplot(data=sampel, x="SumbuKecil");</pre>
```

Rata-rata 20 Baris Pertama pada kolom SumbuKecil adalah 53.62848566315788

zValue: 8.912844601912363 pValue: 2.486983619008461e-19


```
# 4d Proporsi nilai Diameter yang lebih dari 85, adalah tidak sama dengan 15% ?
# Langkah 1: null hypothesis Mean (H0) P = 0.15
# Langkah 2: alternative hypothesis (H1) P != 0.15
# Langkah 3: alpha = 0.05
# Langkah 4: uji tes mean Z two tailed, alpha = 0.05 dan statistik two tailed maka daerah Z <
# Langkah 5: uji tes statistik two tailed
# Langkah 6: nilai Z tidak berada pada daerah kritis, maka null hypothesis di terima

countAbove85 = len(sampel["Diameter"].loc[sampel["Diameter"] > 85])
print("Banyaknya Gandum yang memiliki diameter lebih besar dari 85 adalah ", countAbove85);
zValue = ((countAbove85/250) - 0.15)/(0.15*0.85/250)**(1/2)
print("zValue : ", zValue);
print("pValue : ", norm.sf(abs(zValue)) * 2);
# Boxplot "Diameter"
sns.boxplot(data=sampel, x="Diameter");
```

Banyaknya Gandum yang memiliki diameter lebih besar dari 85 adalah 49

zValue : 2.0369142367422195 pValue : 0.041658637191145986


```
# 4e Proporsi nilai Keliling yang kurang dari 100, adalah kurang dari 5% ?
# Langkah 1: null hypothesis Mean (H0) P = 0.05
# Langkah 2: alternative hypothesis (H1) P < 0.05
# Langkah 3: alpha = 0.05
# Langkah 4: uji tes mean Z one tailed, maka daerah kritis Z < -1.645
# Langkah 5: uji tes statistik one tailed
# Langkah 6: nilai Z berada pada daerah kritis, maka null hypothesis ditolak</pre>
```

```
print("Jumlah keliling gandum yang lebih dari 100: ", countBelow100);
zValue = ((countBelow100/250) - 0.15)/(0.15*0.85/250)**(1/2)
print("zValue: ", zValue);
print("pValue: ", norm.sf(abs(zValue)));

# Boxplot "Keliling"
sns.boxplot(data=sampel, x="Keliling");

Jumlah keliling gandum yang lebih dari 100: 0
```

zValue : -6.642111641550714 pValue : 1.546102975657358e-11


```
# SOAL 5

# Melakukan test hipotesis 2 sampel, dengan menuliskan 6 langkah testing dan menampilkan

# juga boxplotnya untuk kolom/bagian yang bersesuaian.

# a. Data kolom AreaBulatan dibagi 2 sama rata: bagian awal dan bagian akhir kolom.

# Benarkah rata-rata kedua bagian tersebut sama?

# b. Data kolom Kadar Air dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah

# rata-rata bagian awal lebih besar dari pada bagian akhir sebesar 0.2?

# c. Rata-rata 20 baris pertama kolom Bulatan sama dengan 20 baris terakhirnya?

# d. Proporsi nilai bagian awal Ransum yang lebih dari 2, adalah lebih besar daripada,

# proporsi nilai yang sama di bagian akhir Ransum?

# e. Bagian awal kolom Diameter memiliki variansi yang sama dengan bagian akhirnya?
```

```
# 5A Data kolom AreaBulatan dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah
# Kita bagi dahulu menjadi 2 bagian
data1 = df.iloc[0:250]
data2 = df.iloc[250:500]
# asumsi alpha 0.05
alpha = 0.05
sns.boxplot(data1['AreaBulatan'],color = "red")
sns.boxplot(data2['AreaBulatan'],color = "green")
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass th
  FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass th
  FutureWarning
<matplotlib.axes. subplots.AxesSubplot at 0x7f23a4e485d0>
```



```
def hitungDerajatKebebasan(var data1,var data2):
  return ((var_data1/250 + var_data2/250)**2)/ ((((var_data1/250)**2) / (249)) + (((var_data2
def tTest(mean data1,mean data2,var data1,var data2):
  return (mean data1 - mean data2)/(np.sqrt(var data1/250 + var data2/250))
print("Mean Comparison data 1 vs data 2")
mean data1 = data1['AreaBulatan'].mean()
mean_data2 = data2['AreaBulatan'].mean()
print(mean data1)
print(mean_data2)
print("\nVariance Comparison data 1 vs data 2")
var data1 = data1['AreaBulatan'].var()
var data2 = data2['AreaBulatan'].var()
print(var data1)
print(var_data2)
print("\nDerajat Kebebasan : ")
print(hitungDerajatKebebasan(var data1,var data2))
print("\nNilai t-test : ")
print(tTest(mean data1, mean data2, var data1, var data2))
     Mean Comparison data 1 vs data 2
     5549.804
     4324.292
     Variance Comparison data 1 vs data 2
     751733.1060080321
     545480.4244337347
     Derajat Kebebasan :
```

```
485.7209958986575
     Nilai t-test :
     17.013036648485464
# Untuk penentuannya disini ya kak
bound = stats.t.cdf(0.025,hitungDerajatKebebasan(var data1,var data2))
print("Daerah kritisnya terdapat pada :")
print("-∞ < "+str(-bound)+" atau "+str(bound)+ " < ∞")</pre>
print("Jadi t harus bernilai antara "+str(-bound)+" dan "+str(bound)+" agar H0 diterima")
tt = tTest(mean data1, mean data2, var data1, var data2)
if (tt < -bound or tt > bound):
  print("H0 tidak diterima karena t bernilai "+str(tt))
else:
  print("H0 diterima karena t bernilai "+str(tt))
     Daerah kritisnya terdapat pada :
     -∞ < -0.5099673845396994 atau 0.5099673845396994 < ∞
     Jadi t harus bernilai antara -0.5099673845396994 dan 0.5099673845396994 agar H0 diterima
     HO tidak diterima karena t bernilai 17.013036648485464
# 5B Data kolom Kadar Air dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah ra
# Kita bagi dahulu menjadi 2 bagian
data1 = df.iloc[0:250]
data2 = df.iloc[250:500]
# asumsi alpha 0.05
alpha = 0.05
sns.boxplot(data1['KadarAir'],color = "red")
sns.boxplot(data2['KadarAir'],color = "green")
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass th FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass th FutureWarning
<mathlotlih axes subplots AxesSubplot at 0x7f23a51818d0>
sns.boxplot(data1['KadarAir'],color = "red")
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f23a52d1ad0>

sns.boxplot(data2['KadarAir'],color = "green")

<matplotlib.axes._subplots.AxesSubplot at 0x7f23a537c190>


```
print("Mean Comparison data 1 vs data 2")
mean_data1 = data1['KadarAir'].mean()
mean_data2 = data2['KadarAir'].mean()
print(mean_data1)
```

```
pr inc (mcan_uacai)
print(mean data2)
print("\nVariance Comparison data 1 vs data 2")
var data1 = data1['KadarAir'].var()
var_data2 = data2['KadarAir'].var()
print(var data1)
print(var data2)
print("\nDerajat Kebebasan : ")
print(hitungDerajatKebebasan(var_data1,var_data2))
print("\nNilai t-test : ")
print(tTest(mean data1, mean data2, var data1, var data2))
     Mean Comparison data 1 vs data 2
     0.63574344072
     0.6609999030760001
     Variance Comparison data 1 vs data 2
     0.009043200047076563
     0.008482636662870607
     Derajat Kebebasan :
     497.4910475600773
     Nilai t-test :
     -3.016498704781028
# Untuk penentuannya disini ya kak
bound = stats.t.cdf(0.025,hitungDerajatKebebasan(var data1,var data2))
print("Daerah kritisnya terdapat pada :")
print("-∞ < "+str(-bound)+" atau "+str(bound)+ " < ∞")</pre>
print("Jadi t harus bernilai antara "+str(-bound)+" dan "+str(bound)+" agar H0 diterima")
tt = tTest(mean data1,mean data2,var data1,var data2)
if (tt < -bound or tt > bound):
  print("H0 tidak diterima karena t bernilai "+str(tt))
else:
  print("H0 diterima karena t bernilai "+str(tt))
     Daerah kritisnya terdapat pada :
     -∞ < -0.5099675059652441 atau 0.5099675059652441 < ∞
     Jadi t harus bernilai antara -0.5099675059652441 dan 0.5099675059652441 agar H0 diterima
     HO tidak diterima karena t bernilai -3.016498704781028
# 5C Rata-rata 20 baris pertama kolom Bulatan sama dengan 20 baris terakhirnya?
data1 = df.iloc[0:20]
```

data2 = df.iloc[480:500]

```
sns.boxplot(data1['Bulatan'],color = "red")
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f23a50d6390>

sns.boxplot(data2['Bulatan'],color = "Green")

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f23a5065810>


```
def hitungDerajatKebebasan(var_data1,var_data2):
    return ((var_data1/20 + var_data2/20)**2)/ ((((var_data1/20)**2) / (19)) + (((var_data2/20)

def tTest(mean_data1,mean_data2,var_data1,var_data2):
    return (mean_data1 - mean_data2)/(np.sqrt(var_data1/20 + var_data2/20))
```

```
print("Mean Comparison data 1 vs data 2")
mean data1 = data1['Bulatan'].mean()
https://colab.research.google.com/drive/1dGs3pg7ZeoiyvIPZ_LRy262wiH8lguIF#printMode=true
```

```
mean data2 = data2['Bulatan'].mean()
print(mean data1)
print(mean data2)
print("\nVariance Comparison data 1 vs data 2")
var data1 = data1['Bulatan'].var()
var_data2 = data2['Bulatan'].var()
print(var data1)
print(var_data2)
print("\nDerajat Kebebasan : ")
print(hitungDerajatKebebasan(var_data1,var_data2))
print("\nNilai t-test : ")
print(tTest(mean data1, mean data2, var data1, var data2))
     Mean Comparison data 1 vs data 2
     0.7375353552499999
     0.767322437
     Variance Comparison data 1 vs data 2
     0.0009232346025806985
     0.0006307661055759374
     Derajat Kebebasan :
     36.70006222999688
     Nilai t-test :
     -3.3792268633124025
# Untuk penentuannya disini ya kak
bound = stats.t.cdf(0.025,hitungDerajatKebebasan(var data1,var data2))
print("Daerah kritisnya terdapat pada :")
print("-∞ < "+str(-bound)+" atau "+str(bound)+ " < ∞")</pre>
print("Jadi t harus bernilai antara "+str(-bound)+" dan "+str(bound)+" agar H0 diterima")
tt = tTest(mean data1,mean data2,var data1,var data2)
if (tt < -bound or tt > bound):
  print("H0 tidak diterima karena t bernilai "+str(tt))
else:
  print("H0 diterima karena t bernilai "+str(tt))
     Daerah kritisnya terdapat pada :
     -∞ < -0.5099047967145734 atau 0.5099047967145734 < ∞
     Jadi t harus bernilai antara -0.5099047967145734 dan 0.5099047967145734 agar H0 diterima
     H0 tidak diterima karena t bernilai -3.3792268633124025
```

5D Proporsi nilai bagian awal Ransum yang lebih dari 2, adalah lebih besar daripada propors # untuk soal ini kita pakai z-test

```
ddata1 = data1.Ransum[data1.Ransum>2]
sns.boxplot(ddata1,color = "Red")
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f23a4cb4ed0>

ddata2 = data2.Ransum[data2.Ransum>2]
sns.boxplot(ddata2,color = "Green")

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f23a4ce9490>


```
def zTest(ddata1,ddata2):
```

temp1 = ddata1.shape[0] / 250

temp2 = ddata2.shape[0] / 250

temp3 = (ddata1.shape[0] + ddata2.shape[0]) / (500)

```
return (temp1-temp2)/np.sqrt(temp3*(1-temp3)*(1/125))

def hitungNilaiKritis(alpha):
    return stats.norm.ppf(alpha)

print(" Nilai kritisnya diatas "+str(hitungNilaiKritis(alpha)))
print(" Nilai hasil Z test kita : "+str(zTest(ddata1,ddata2)))
print(" Karena nilai Z lebih besar daripada nilai kritis kita, H0 ditolak")

    Nilai kritisnya diatas -1.6448536269514729
    Nilai hasil Z test kita : 13.397486455610238
    Karena nilai Z lebih besar daripada nilai kritis kita, H0 ditolak
```

```
# 5E Bagian awal kolom Diameter memiliki variansi yang sama dengan bagian akhirnya?
# untuk soal ini kita pakai F-test
ddata1 = data1["Diameter"]
sns.boxplot(ddata1,color = "Red")
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass th
FutureWarning
<matplotlib.axes. subplots.AxesSubplot at 0x7f23a496d490>


```
ddata2 = data2["Diameter"]
sns.boxplot(ddata2,color = "Green")
```

/usr/local/lib/python3.7/dist-packages/seaborn/ decorators.py:43: FutureWarning: Pass th FutureWarning

```
<matplotlib.axes. subplots.AxesSubplot at 0x7f23a496d6d0>
```

```
def pValue(var data1,var data2):
 return (1-stats.f.cdf((var_data1/var_data2),249,249))
def critBoundary(alpha):
 lower = stats.f(249,249).ppf(1-(alpha/2))
 upper = stats.f(249,249).ppf(alpha/2)
 return lower, upper
def BoundaryCheck(boundLow,boundUpp,num):
 if (num < boundLow or num > boundUpp):
   print ("H0 diterima karena f bernilai "+str(num))
 else:
   print ("H0 tidak diterima karena f bernilai "+str(num))
var data1 = np.var(ddata1, ddof=1)
var data2 = np.var(ddata2, ddof=1)
print("Variance Comparison antara ddata 1 dan ddata 2")
print(var_data1)
print(var data2)
print("F value : "+str(var data1/var data2))
print("P value : "+str(pValue(var data1,var data2)))
temp1,temp2 = critBoundary(alpha)
print("Daerah kritisnya diatas "+str(temp1)+" dan dibawah "+str(temp2))
BoundaryCheck(temp1,temp2,var data1/var data2)
     Variance Comparison antara ddata 1 dan ddata 2
     43.16898042632247
     39.82826438807723
     F value: 1.0838780220421882
     P value: 0.26278959201893937
     Daerah kritisnya diatas 1.2827228078241388 dan dibawah 0.7795916576054985
     H0 diterima karena f bernilai 1.0838780220421882
# Nomor 6 tes korelasi
import matplotlib.pyplot as plt
def cor(corr):
 if (corr > 0):
   print("Terdapat korelasi positif antara kedua kolom : "+str(corr))
 elif (corr == 0):
   print("Kedua kolom tidak berkorelasi")
  2152.
```

CTOC.

```
print("Terdapat korelasi negatif antara kedua kolom : "+str(corr))
```

```
print("KORELASI ANTARA KOLOM DAERAH - KELAS")
data = df["Daerah"].corr(df["Kelas"])
cor(data)
plt.scatter(df.Daerah, df.Kelas, color = "red")
plt.xlabel("Daerah")
plt.ylabel("Kelas")
plt.show()
```

KORELASI ANTARA KOLOM DAERAH - KELAS

Terdapat korelasi negatif antara kedua kolom : -0.6027466517416661


```
print("KORELASI ANTARA KOLOM SUMBU UTAMA - KELAS")
data = df["SumbuUtama"].corr(df["Kelas"])
cor(data)
plt.scatter(df.SumbuUtama, df.Kelas, color = "red")
plt.xlabel("SumbuUtama")
plt.ylabel("Kelas")
plt.show()
```

```
KORELASI ANTARA KOLOM SUMBU UTAMA - KELAS
    Terdapat korelasi negatif antara kedua kolom : -0.7130906104204592
print("KORELASI ANTARA KOLOM SUMBU KECIL - KELAS")
data = df["SumbuKecil"].corr(df["Kelas"])
cor(data)
plt.scatter(df.SumbuKecil, df.Kelas, color = "red")
plt.xlabel("SumbuKecil")
plt.ylabel("Kelas")
plt.show()
```

KORELASI ANTARA KOLOM SUMBU KECIL - KELAS
Terdapat korelasi negatif antara kedua kolom : -0.1529751733553502


```
print("KORELASI ANTARA KOLOM KEUNIKAN - KELAS")
data = df["Keunikan"].corr(df["Kelas"])
cor(data)
plt.scatter(df.Keunikan, df.Kelas, color = "red")
plt.xlabel("Keunikan")
plt.ylabel("Kelas")
plt.show()
```

```
KORELASI ANTARA KOLOM KEUNIKAN - KELAS
print("KORELASI ANTARA KOLOM AREA BULATAN - KELAS")
data = df["AreaBulatan"].corr(df["Kelas"])
cor(data)
plt.scatter(df.AreaBulatan, df.Kelas, color = "red")
plt.xlabel("AreaBulatan")
plt.ylabel("Kelas")
plt.show()
```

KORELASI ANTARA KOLOM AREA BULATAN - KELAS
Terdapat korelasi negatif antara kedua kolom : -0.6073125434153749


```
print("KORELASI ANTARA KOLOM DIAMETER - KELAS")
data = df["Diameter"].corr(df["Kelas"])
cor(data)
plt.scatter(df.Diameter, df.Kelas, color = "red")
plt.xlabel("Diameter")
plt.ylabel("Kelas")
plt.show()
```

KORELASI ANTARA KOLOM DIAMETER - KELAS

```
print("KORELASI ANTARA KOLOM KADAR AIR - KELAS")
data = df["KadarAir"].corr(df["Kelas"])
cor(data)
plt.scatter(df.KadarAir, df.Kelas, color = "red")
plt.xlabel("KadarAir")
plt.ylabel("Kelas")
plt.show()
```

KORELASI ANTARA KOLOM KADAR AIR - KELAS Terdapat korelasi positif antara kedua kolom : 0.13434422605727642


```
print("KORELASI ANTARA KOLOM KELILING - KELAS")
data = df["Keliling"].corr(df["Kelas"])
cor(data)
plt.scatter(df.Keliling, df.Kelas, color = "red")
plt.xlabel("Keliling")
plt.ylabel("Kelas")
plt.show()
```

KORELASI ANTARA KOLOM KELILING - KELAS Terdapat korelasi negatif antara kedua kolom : -0.6348607454756854


```
print("KORELASI ANTARA KOLOM BULATAN - KELAS")
data = df["Bulatan"].corr(df["Kelas"])
cor(data)
plt.scatter(df.Bulatan, df.Kelas, color = "red")
plt.xlabel("Bulatan")
plt.ylabel("Kelas")
plt.show()
```

KORELASI ANTARA KOLOM BULATAN - KELAS

Terdapat korelasi positif antara kedua kolom : 0.5450045317240071


```
print("KORELASI ANTARA KOLOM RANSUM - KELAS")
data = df["Ransum"].corr(df["Kelas"])
cor(data)
plt.scatter(df.Ransum, df.Kelas, color = "red")
plt.xlabel("Ransum")
plt.ylabel("Kelas")
plt.show()
```

KORELASI ANTARA KOLOM RANSUM - KELAS

Terdapat korelasi negatif antara kedua kolom : -0.8399038681287484

×