Topic 11 - General Linear Test

STAT 525 - Fall 2013

STAT 525

Outline

- Extra Sums of Squares
- Partial correlations
- Standardized regression coefficients

Topic 11

_

STAT 525

General Linear Test

- Comparison of a <u>full</u> model and <u>reduced</u> model that involves a subset of full model predictors (i.e., hierarchical structure)
- Involves a comparison of unexplained SS
- Consider a full model with k predictors and reduced model with l predictors (l < k)
- Can show that

$$F^* = \frac{(SSE(R) - SSE(F))/(k-l)}{SSE(F)/(n-k-1)}$$

• Degrees of freedom for F^* are the number of <u>extra</u> variables and the error degrees of freedom for the larger model

STAT 525

General Linear Test

- Testing the Null hypothesis that the regression coefficients for the **extra** variables are all zero.
- Examples:
 - $X_1, X_2, X_3, X_4 \text{ vs } X_1, X_2 \longrightarrow \beta_3 = \beta_4 = 0$
 - $-X_1, X_2, X_4 \text{ vs } X_1 \longrightarrow \beta_2 = \beta_4 = 0$
 - $-\ X_1,X_2,X_3,X_4 \text{ vs } X_1 \longrightarrow \beta_2 = \beta_3 = \beta_4 = 0$
- Because SSM+SSE=SSTO, can also compare using explained SS (SSM)

Topic 11

3

Topic 11

ic 11

Notation for Extra SS

- Consider $H_0: X_1, X_3$ vs $H_a: X_1, X_2, X_3, X_4$
- Null can also be written $H_0: \beta_2 = \beta_4 = 0$
- Write SSE(F) as $SSE(X_1, X_2, X_3, X_4)$
- Write SSE(R) as $SSE(X_1, X_3)$
- Difference in SSE's is the extra SS
- Write as

$$\mathrm{SSE}(X_2, X_4 | X_1, X_3) = \mathrm{SSE}(X_1, X_3) - \mathrm{SSE}(X_1, X_2, X_3, X_4)$$

• Recall SSM can also be used

Topic 11

5

STAT 525

Special Cases

• Consider test based on

$$\mathrm{SSE}(X_i|X_1,...,X_{i-1},X_{i+1},....X_{p-1})$$

• These are SAS's indiv parameter t-tests

$$F(1, n - p) = t^2(n - p)$$

• Decomposition of $SSM(X_1, X_2, X_3)$

- $= SSM(X_1) + SSM(X_2|X_1) + SSM(X_3|X_2, X_1)$
- $= SSM(X_2) + SSM(X_1|X_2) + SSM(X_3|X_2, X_1)$
- $= SSM(X_3) + SSM(X_2|X_3) + SSM(X_1|X_2, X_3)$
- Can decompose SSM variety of ways
- Stepwise sum of squares called Type I SS

General Linear Test

• Can rewrite F test as

$$F^{\star} = \frac{SSE(X_2, X_4 | X_1, X_3)/(4-2)}{SSE(X_1, X_2, X_3, X_4)/(n-5)}$$

- Under $H_0 F^* \sim F(2, n-5)$
- If reject, conclude either X_2 or X_4 or both contain additional useful information to predict Y in a linear model with X_1 and X_3
- Example: Consider predicting GPA with HS grades, do SAT scores add any useful information?

Topic 11

c

STAT 525

Example Page 256

- ullet Twenty healthy female subjects
- \bullet Y is body fat via underwater weighing
- Underwater weighing expensive/difficult
- X_1 is triceps skinfold thickness
- X_2 is thigh circumference
- X_3 is midarm circumference

Topic 11

7

Topic 11

STAT 525

SAS code

```
options nocenter;
data a1;
  infile 'U:\Ch07ta01.txt';
  input skinfold thigh midarm fat;
proc reg data=a1;
  model fat=skinfold thigh midarm /ss1 ss2;
run;
proc reg data=a1;
  model fat=skinfold;
run;
proc reg data=a1;
   model fat=skinfold thigh midarm;
   thimid: test thigh, midarm;
run;
```

Topic 11

STAT 525

• Set of three variables helpful in predicting body fat (P < 0.0001)

Conclusions

- None of the indiv parameters significant
 - Addition of each predictor to a model containing the other two is not helpful
 - Example of multicollinearity
 - Will discuss more in next topic
- Will now focus on extra SS

Output

	Analysis	of Variance		
	Sum o	f Mean		
Source	DF Square	s Square	F Value	Pr > F
Model	3 396.9846	1 132.32820	21.52	<.0001
Error	16 98.4048	9 6.15031		
Corrected Total	19 495.3895	0		
Root MSE	2.47998	R-Square	0.8014	
Dependent Mean	20.19500	Adj R-Sq	0.7641	
Coeff Var	12.28017			
	Parameter	Estimates		
	Parameter	Standard		
Variable DF	Estimate	Error t V	alue Pr	> t
Intercept 1	117.08469	99.78240	1.17	0.2578
skinfold 1	4.33409	3.01551	1.44	0.1699
thigh 1	-2.85685	2.58202 -	1.11	.2849
midarm 1	-2.18606	1.59550 -	1.37	0.1896

Topic 11

Output

Parameter Estimates

		Parameter		
Variable	DF	Estimate	Type I SS	Type II SS
Intercept	1	117.08469	8156.76050	8.46816
skinfold	1	4.33409	352.26980	12.70489
thigh	1	-2.85685	33.16891	7.52928
midarm	1	-2.18606	11.54590	11.54590

Topic 11 Topic 11

STAT 525

Interpretation

- Type I and Type II very different
- Type I depends on model statement
- In this example the SS are:

Type I	Type II
$SSM(X_1)$	$\operatorname{SSM}(X_1 X_2,X_3)$
$\operatorname{SSM}(X_2 X_1)$	$\operatorname{SSM}(X_2 X_1,X_3)$
$\operatorname{SSM}(X_3 X_1,X_2)$	$\operatorname{SSM}(X_3 X_1,X_2)$

- Could variables be explaining same SS and "canceling" each other out?
- Look at other models / general linear test

Topic 11

Output

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	${\tt Square}$	F Value	Pr > F
Model	1	352.26980	352.26980	44.30	<.0001
Error	18	143.11970	7.95109		
Corrected Total	19	495.38950			
Root MSE		2.81977	R-Square	0.7111	
Dependent Mean	:	20.19500	Adj R-Sq	0.6950	
Coeff Var	:	13.96271			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error t Va	lue Pr > t	
Intercept	1	-1.49610	3.31923 -0	.45 0.6576	
skinfold	1	0.85719	0.12878 6	.66 <.0001	

** Skinfold now helpful. Note the change in coefficient estimate and standard error compared to the full model

Topic 11

STAT 525

Output

- Does this variable alone do the job?
- Perform general linear test

Test thimid Results for Dependent Variable fat

Source					
	DF	Square	F Value	Pr > F	
Numerator	2	22.35741	3.64	0.0500	
Denominator	16	6 15031			

**Appears there is additional information in the variables. Perhaps the addition of one more variable would be helpful.

STAT 525

Partial Correlations

- Measures the strength of a linear relation between two variables taking into account other variables or after adjusting for other variables
- Procedure for X_i vs Y
 - Predict Y using other X's
 - Predict X_i using other X's
 - Find correlation between residuals
- Each residual represents what is not explained by the other variables
- Looking for <u>additional</u> information in X_i that better explains Y

Topic 11

15

Topic 11

STAT 525

SAS code and Output

proc reg data=a1;
 model fat=skinfold thigh midarm / pcorr2;
run;

Parameter Estimates

Squared Partial Parameter Variable DF Estimate Corr Type II 117.08469 Intercept 4.33409 skinfold 0.11435 -2.85685 0.07108 thigh -2.18606 midarm 0.10501

** Partial squared correlation also called coefficient of partial determination. Has similar interpretation.

In this case, variables only explain approximately 10% of the remaining variability after the other two variables are fit

Topic 11

Standardized Regression Model

- Can reduce round-off errors in calculations
- Standardization

$$Y_{i}^{'} = \frac{1}{\sqrt{n-1}} \left(\frac{Y_{i} - \overline{Y}}{s_{Y}} \right) \quad \text{and} \quad X_{ik}^{'} = \frac{1}{\sqrt{n-1}} \left(\frac{X_{ik} - \overline{X}_{i}}{s_{X_{i}}} \right)$$

- Puts regression coefficients in common units
- A one SD change in X_i' corresponds to β_i' SD increase in Y
- Can show

$$\beta_i = \left(\frac{s_Y}{s_{X_i}}\right) \beta_i'$$

Topic 11 18

STAT 525

SAS code and Output

proc reg data=a1;
 model fat=skinfold thigh midarm / stb;
run:

Parameter Estimates

		Parameter	Standardized
Variable	DF	Estimate	Estimate
Intercept	1	117.08469	0
skinfold	1	4.33409	4.26370
thigh	1	-2.85685	-2.92870
midarm	1	-2.18606	-1.56142

**Skinfold has highest standardized coefficient. Midarm does not appear to be as important a predictor. Perhaps best model includes skinfold and thigh.

STAT 525

Background Reading

- KNNL Sections 7.1-7.5
- knnl256.sas
- KNNL Sections 7.6-7.7

Topic 11

Topic 11