ÁLGEBRAS DE LIE

EXERCÍCIOS :: AULA 04

- 4.1. Dada uma álgebra de Lie \mathfrak{g} , mostre que uma transformação linear $\delta \colon \mathfrak{g} \to \mathfrak{g}$ é uma derivação se, e somente se, $\operatorname{ad}(\delta x) = \delta \circ \operatorname{ad}(x) \operatorname{ad}(x) \circ \delta$ para todo $x \in \mathfrak{g}$.
- 4.2. Dada uma álgebra de Lie \mathfrak{g} , mostre que uma transformação linear $\phi \colon \mathfrak{g} \to \mathfrak{g}$ é um automorfismo se, e somente se, $\operatorname{ad}(\phi x) = \phi \circ \operatorname{ad}(x) \circ \phi^{-1}$ para todo $x \in \mathfrak{g}$.
- 4.3. (Humphreys 2.1) Mostre que $Inn(\mathfrak{g})$ é um ideal de $Der(\mathfrak{g})$.
- 4.4. (Humphreys 2.10) Mostre que $\sigma(x) = -y$, $\sigma(h) = -h$, $\sigma(y) = -x$ define um automorfismo em $\mathfrak{sl}(2)$.
- 4.5. (Humphreys 2.11) Mostre que toda matriz $A \in GL(n)$ define um automorfismo de $\mathfrak{sl}(n)$ via $\phi_A(x) = Ax^tA^{-1}, x \in \mathfrak{sl}(n)$.
- 4.6. Sejam \mathfrak{g} uma álgebra de Lie e A e uma álgebra associativa e comutativa. Dadas $\delta_1 \in \operatorname{Der}(\mathfrak{g})$ (resp. $\operatorname{Aut}(\mathfrak{g})$) e $\delta_2 \in \operatorname{Der}(A)$ (resp. $\operatorname{Aut}(A)$), determine se $\delta \colon \mathfrak{g} \otimes A \to \mathfrak{g} \otimes A$ dada por $\delta(x \otimes a) = \delta_1(x) \otimes \delta_2(a)$ é uma derivação (resp. um automorfismo) da álgebra de Lie $\mathfrak{g} \otimes A$.
- 4.7. Seja $\mathfrak g$ uma álgebra de Lie e σ um automorfismo de $\mathfrak g$. Mostre que $\mathfrak g^\sigma:=\{x\in\mathfrak g\mid\sigma(x)=x\}$ é uma subálgebra de $\mathfrak g$.
- 4.8. Dadas duas álgebras de Lie \mathfrak{g}_1 e \mathfrak{g}_2 , verifique que o produto semidireto delas é uma álgebra de Lie
- 4.9. Dados uma álgebra de Lie \mathfrak{g} , um \mathfrak{g} -módulo V e um automorfismo $\sigma \colon \mathfrak{g} \to \mathfrak{g}$. Mostre que $x \cdot v := \sigma(x)v$ define uma estrutura de \mathfrak{g} -módulo em V. (Esse \mathfrak{g} -módulo é chamado de torcido e, às vezes, denotado por V^{σ} .)

Entregar dia: 09 de abril de 2019.