1.	己知数据序列(8,9,10,4,5,6,20,1,2)是某种排序算法第二趟排序后得到的结
	果,则该算法可能是。
	A. 选择排序 B. 起泡排序 C. 插入排序 D. 堆排序
2.	设使用某种排序方法对数据序列进行排序,两趟排序后得到结果是(8,9,10,4,5,
	6, 20, 1, 2), 则该排序方法只能是。
	A. 选择排序 B. 起泡排序 C. 插入排序 D. 堆排序
3.	下列选项中,每一趟都能选出一个元素放在其最终位置上,并且是不稳定的排序算法是
	A. 起泡排序 B. 希尔排序 C. 直接选择排序 D. 快速排序
4.	采用递归方式对顺序表进行快速排序,下列关于递归次数的叙述中,正确的是。
	A. 递归次数与初始数据的排列次序无关
	B. 每次划分后,先处理较长的分区可以减少递归次数
	C. 每次划分后,先处理较短的分区可以减少递归次数
	D. 递归次数与每次划分后得到的分区处理顺序无关
5.	已知两个长度分别为 m 和 n 的升序链表, 若将他们合并成一个长度为 m+n 的降序链表,
	则最坏情况下的时间复杂度是。
	A. $O(n)$ B. $O(m*n)$ C. $O(min(m,n))$ D. $O(max(m,n))$
6.	一个长度为 $L(L\geq 1)$ 的升序序列 S ,处在第 $\left[L/2\right]$ 个位置的数称为 S 的中位数。例如,
	若序列 S_1 =(11, 13, 15, 17, 19),则 S_1 的中位数是 15。两个序列的中位数是含它们所有元
	素的升序序列的中位数。例如,若 S_2 =(2,4,6,8,20),则 S_1 和 S_2 的中位数是 11。现有两
	个等长升序序列 A 和 B, 试设计一个在时间和空间两方面都尽可能高效的算法, 找出两
	个序列 A 和 B 的中位数。
	1 / T / T