QUIZ de MATHÉMATIQUES N°5

9/12/2016

Durée: 40 minutes.

Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

Les questions peuvent présenter une ou plusieurs réponses valides. Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.

Question 41. Soient f une fonction continue et F l'une de ses primitives sur \mathbb{R} . Le théorème fondamental du calcul intégral affirme que

1.
$$\int_{a}^{b} F(t) dt = f(a) - f(b)$$

2.
$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

1.
$$\int_{a}^{b} F(t) dt = f(a) - f(b)$$
 2. $\int_{a}^{b} f(t) dt = F(b) - F(a)$ 3. $\int_{a}^{b} F'(t) dt = f(a) - f(b)$

4.
$$\int_{a}^{b} f'(t) dt = F(b) - F(a)$$
 5. $f'(t) = F(t)$

$$5. \ f'(t) = F(t)$$

Question 42. La valeur moyenne d'une fonction intégrable $f: \mathbb{R} \to \mathbb{R}$ entre a et b (avec a < b) est, par définition, la quantité ...

1.
$$\frac{b-a}{n} \int_{-\infty}^{b} f$$

2.
$$(b-a) \int_{a}^{b} f$$

1.
$$\frac{b-a}{n} \int_{a}^{b} f$$
 2. $(b-a) \int_{a}^{b} f$ 3. $\frac{1}{b-a} \int_{a}^{b} f$ 4. $\sqrt{\int_{a}^{b} f^{2}}$

$$4. \sqrt{\int_a^b f^2}$$

5. aucune des réponses précédentes n'est correcte.

Question 43. f et g sont supposées intégrables. Parmi les affirmations suivantes lesquelles sont toujours vraies ?

1.
$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} f$$

1.
$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$$
 2. $\int_{a}^{b} (f \times g) = \int_{a}^{b} f \times \int_{a}^{b} g$ 3. $\int_{a}^{b} (f+g) = \int_{a}^{b} f - \int_{b}^{a} g$

3.
$$\int_{a}^{b} (f+g) = \int_{a}^{b} f - \int_{a}^{a} g$$

4.
$$\int_{a}^{b} (f \times g) = \int_{a}^{b} f \times \int_{b}^{a} g$$

4. $\int_{a}^{b} (f \times g) = \int_{a}^{b} f \times \int_{a}^{a} g$ 5. aucune des réponses précédentes n'est correcte.

Question 44. La formule d'intégration par parties est

1.
$$\int_a^b f'g = [f'g']_a^b + \int_a^b fg'$$
 2. $\int_a^b f'g = [f'g']_a^b - \int_a^b fg'$ 3. $\int_a^b f'g = [fg]_a^b + \int_a^b fg'$

2.
$$\int_{a}^{b} f'g = [f'g']_{a}^{b} - \int_{a}^{b} fg'$$

3.
$$\int_{a}^{b} f'g = [fg]_{a}^{b} + \int_{a}^{b} fg'$$

4.
$$\int_{a}^{b} f'g = [fg]_{a}^{b} - \int_{a}^{b} fg'$$

4. $\int_a^b f'g = [fg]_a^b - \int_a^b fg'$ 5. aucune des réponses précédentes n'est correcte.

1

Question 45. Si $f'(x) = 4x^{-2}$, alors f(x) =

1.
$$4x^{-3} + c$$

2.
$$-4x^{-3} + c$$

1.
$$4x^{-3} + c$$
 2. $-4x^{-3} + c$ 3. $-\frac{4}{3}x^{-3} + c$ 4. $-4x^{-1} + c$ 5. $-8x^{-1} + c$

4.
$$-4x^{-1} + \epsilon$$

5.
$$-8x^{-1} + \epsilon$$

Question 46. Soit $I = \int t e^t dt$

1.
$$I = [t \ e^t] - \int t \ e^t dt$$
 2. $I = [e^t] - \int t \ e^t dt$ 3. $I = [t \ e^t] - \int e^t dt$ 4. $I = e^t(t-1)$

$$2. I = [e^t] - \int t e^t \, \mathrm{d}t$$

$$3. I = [t e^t] - \int e^t dt$$

4.
$$I = e^t(t-1)$$

5. aucune des réponses précédentes n'est correcte.

Question 47. On considère la fonction partie entière sur [-2, 2].

- 1. (-2, -1, 0, 1, 2) est une subdivision uniforme
- 2. $(-2,-\frac{3}{2},-1,\frac{1}{4},0,1,2)$ est une subdivision uniforme adaptée
- 3. $(-2, -\frac{3}{2}, -1, 1, 2)$ est une subdivision non uniforme adaptée
- 4. $(-2,-\frac{3}{2},-1,0,1,2)$ est une subdivision non uniforme adaptée
- 5. aucune des réponses précédentes n'est correcte

Question 48. f et g sont supposées intégrables et a < b. Parmi les affirmations suivantes lesquelles sont vraies ?

- 1. f et g admettent une primitive sur [a, b].
- 2. Si f est paire alors $\int_a^b f = 2 \int_a^b f$
- 3. $\int_{-a}^{a} f = 0$
- 4. Si f est périodique de période $T \in \mathbb{R}$ alors $\int_{a+T}^{b+T} f = -\int_a^b f$
- 5. aucune des réponses précédentes n'est correcte.

Question 49. f et g sont supposées intégrables sur [a,b]. Parmi les affirmations suivantes lesquelles sont vraies ?

- 1. Si f est continue, alors $\int_a^b f = 0$ si et seulement si f = 0
- 2. $\int_{a}^{b} |f| \le |\int_{a}^{b} f|$
- 3. Si f est positive, alors $\int_a^b f \ge 0$.
- 4. Si $f \leq g$, alors $\int_a^b g \geq \int_a^b f$.
- 5. aucune des réponses précédentes n'est correcte.

Question 50. Soit f définie et intégrable sur I = [a, b]. On a :

- 1. f est continue sur I.
- 2. Si F est une primitive de f, alors F est unique.
- 3. L'application $F: x \in [a,b] \mapsto \int_a^x f(t) \, \mathrm{d}t$ est appelée intégrale indéfinie de f.
- 4. Si F est une primitive de f, alors F est continue sur I.
- 5. aucune des réponses précédentes n'est correcte.

Question 51. Soient f une fonction continue définie sur I et ϕ définie sur J une bijection telle que $\phi(J) \subset I$.

2

- 1. Si F est une primitive de f, alors $F \circ \phi$ est une primitive de $(f \circ \phi) \cdot \phi'$.
- 2. $\int_{\phi^{-1}(a)}^{\phi^{-1}(b)} f(x) \, \mathrm{d}x = \int_{a}^{b} f(\phi(t)) \cdot \phi'(t) \, \mathrm{d}t$
- 3. Si $x = \phi(t)$, alors dx = dt.
- 4. $\int_{a}^{b} f(\phi(t)) \cdot \phi'(t) dt = F(\phi(b)) F(\phi(a))$
- 5. aucune des réponses précédentes n'est correcte.

Question 52. Soient f une fonction continue définie sur I et ϕ définie sur J une bijection telle que $\phi(J) \subset I$.

1.
$$\int f(\phi(x)) \cdot \phi'(x) dx = (F \circ \phi)(x) + c$$
, avec F une primitive de f sur I et $c \in \mathbb{R}$.

2.
$$\int \phi'(x) \cdot \phi^r(x) dx = (r+1)\phi^{r+1}(x) + c$$
, avec r, c réels.

3.
$$\int \phi'(x)e^{\phi(x)} dx = e^{\phi(x)} + c$$

4.
$$\int \frac{1}{\phi(x)} dx = \ln |\phi(x)| + c, \text{ avec } c \in \mathbb{R}.$$

5. aucune des réponses précédentes n'est correcte.

Question 53. Soit f la fonction définie par $I = \int \frac{1}{1+x^2} dx$

1.
$$I = \arctan x + c$$
 2. $I = \arcsin x + c$ 3. $\int_0^1 \frac{1}{1+x^2} dx = \frac{\pi}{4}$ 4. $\int_0^1 \frac{1}{1+x^2} dx = \frac{\pi}{2}$

5. aucune des réponses précédentes n'est correcte.

Question 54. Une primitive de $I = \int_1^3 3x^2 - \frac{2}{x^2} dx$ est

1.
$$F(x) = x^3 - \ln|x|^2 + c$$
 2. $F(x) = x^3 - 2\ln|x| + c$ 3. $F(x) = x^3 - \frac{4}{x^3} + c$ 4. $F(x) = x^3 + \frac{2}{x} + c$

5. aucune des réponses précédentes n'est correcte.

Question 55. Soit $I = \int \frac{2}{(x-2)^2(x-1)} dx$.

1.
$$I = \frac{2}{x-1} + \frac{2}{x-2} + c$$
 2. $I = 2\ln|x-1| - \frac{2}{x-2} + c$ 3. $I = 2\ln|x-1| - \frac{2}{x-2} - 2\ln|x-2| + c$

4.
$$I = \frac{2}{x-1} - \frac{2}{x-2} - 2\ln|x-2| + c$$
 5. $I = 2\ln|x-1| - 2\ln|x-2| + c$

Question 56. L'intégrale $I = \int_1^e \frac{(\ln x)^5}{x} dx$ vaut :

1.
$$I=\frac{1}{6}$$
 2. $I=-\frac{1}{6}$ 3. $I=\frac{1}{4}$ 4. $I=-\frac{1}{4}$ 5. aucune des réponses précédentes n'est correcte.

Question 57. L'intégrale $I = \int_{1}^{2} \frac{1}{x^2} dx$ vaut :

1.
$$I = \ln 2$$
 2. $I = \ln 4$ 3. $I = \frac{1}{2}$ 4. $I = -\frac{1}{2}$ 5. aucune des réponses précédentes n'est correcte.

Question 58. Soit $I = \int_0^1 \sqrt{1-x^2} \, dx$. On peut effectuer le changement de variable suivant :

1.
$$\phi(t) = \sin t = x$$
, $dt = dx$, $\phi^{-1}(0) = 0$, $\phi^{-1}(1) = 1$

2.
$$\phi(t) = \sin t = x$$
, $dt = dx$, $\phi^{-1}(0) = 0$, $\phi^{-1}(1) = \frac{\pi}{2}$

3.
$$\phi(t) = \cos t = x$$
, $\sin t \, dt = dx$, $\phi^{-1}(0) = 0$, $\phi^{-1}(1) = 1$

4.
$$\phi(t) = \cos t = x$$
, $dt = dx$, $\phi^{-1}(0) = 0$, $\phi^{-1}(1) = \frac{\pi}{2}$

5.
$$\phi(t) = \sin t = x$$
, $\cos t \, dt = dx$, $\phi^{-1}(0) = 0$, $\phi^{-1}(1) = \frac{\pi}{2}$

Question 59. Soit $I = \int_0^1 \frac{e^t}{\sqrt{e^t + 1}} dt$.

1.
$$I = \int_0^1 \frac{x}{\sqrt{x+1}} dx$$
 2. $I = \int_0^1 \frac{1}{\sqrt{x+1}} dx$ 3. $I = \int_1^e \frac{1}{\sqrt{x+1}} dx$ 4. $I = \int_1^e \frac{x}{\sqrt{x+1}} dx$

5. aucune des réponses précédentes n'est correcte.

Question 60. On note f la fonction qui à $t \in \mathbb{R}$, associe $f(t) = \frac{1}{(t+3)(t^2-4)}$.

- 1. f possède une primitive définie sur \mathbb{R} .
- 2. La décomposition en éléments simples de f a la forme suivante : $f(t) = \frac{A}{t+3} + \frac{B}{t+2} + \frac{C}{t-2}$
- 3. Une primitive de f(t) est $A \ln |t+3| \frac{B}{t+2} \frac{C}{t-2}$
- 4. Une primitive de f(t) est $A \ln |t+3| + B \ln |t+2| + C \ln |t-2|$
- 5. aucune des réponses précédentes n'est correcte.