

Introducción a Ciencia de la Computación Práctica Calificada 1 Pregrado 2021-0 Profesor Teofilo Chambilla Lab 1.02

Indicaciones específicas:

- Esta evaluación contiene 10 páginas (incluyendo esta página) con 4 preguntas. El total de puntos son 20.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en un solo archivo con el número de la pregunta y tu código de estudiante. Por ejemplo:
 - 1. p1_2020010202.py
 - 2. p2_2020010202.py
 - $3. p3_2020010202.py$
 - 4. p4_2020010202.py
- Luego deberás incluir estos archivos en una carpeta con nombre pc1; para que finalmente envíes esta carpeta comprimida pc1.zip a www.gradescope.com

Competencias:

- Para los alumnos de la carrera de Ciencia de la Computación
 - Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- Para los alumnos de las carreras de Ingeniería
 - Capacidad de aplicar conocimientos de ingeniería (**nivel 2**).

Calificación:

Tabla de puntos (sólo para uso del professor)

Question	Points	Score
1	5	
2	5	
3	5	
4	5	
Total:	20	

- 1. (5 points) Imaginalandia le declara la guerra al Perú y el general de dicho país decide primero enviar una unidad de reconocimiento a la zona fronteriza. Para lo cual debe dar indicaciones al comándate de división sobre la número de tanques y la cantidad de soldados en cada tanque. Toda esta información es transmitida en un solo número encriptado. Afortunadamente, la inteligencia peruana halló el método de descifrar dicho número y consiste en lo siguiente:
 - El número de tanques corresponde a la mitad de dígitos del número encriptado.
 - La cantidad de soldados en cada tanque es la suma de los números pares.

Restricciones:

- Está prohibido el uso de cualquier librería para realizar sus programas
- No se puede usar listas ni string (cadenas).
- La solución debe ser subida estrictamente en **Grade Scope**, en caso contrario no se podrá evaluar tal solución
- Los nombres de las variables deben ser descriptivas y el código debe estar apropiadamente organizado y ordenado

Algunos ejemplos de diálogo de este programa serían:

Listing 1: Ejemplo 1

Input: 32545

Output:

Numero de tanques: 2 Soldados por tanque:6

Listing 2: Ejemplo 2

Input: 2312542

Output:

Numero de tanques: 3 Soldados por tanque:10

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts).
	quiere (3pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no hay	sentencias son correc-	las sentencias son cor-
	errores de sintáxis.	tas y no hay errores de	rectas (0pts).
	(1pts).	sintáxis. (0.5pts).	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts).

2. (5 points) Dada la siguiente función matemática:

$$F = \frac{(\cos(t) + \cos(2t) + \cos(3t) + \dots + \cos(Nt))}{N} \tag{1}$$

El valor de \mathbf{t} puede estar solo entre -10 y 10. El valor entero recibido deberá convertirse a radianes con la siguiente expresión t = math.radians(grado) escriba un algoritmo en Python para que lea N y el grado y devuelva el resultado.

- Utilice import math para acceder a la función coseno.
- La solución debe ser subida estrictamente en **Grade Scope**, en caso contrario no se podrá evaluar tal solución
- Los nombres de las variables deben ser descriptivas y el código debe estar apropiadamente organizado y ordenado

Algunos ejemplos de diálogo de este programa serían:

Listing 3: Ejemplo 1

Input:
N: 20
grado : 1
Output:

0.9782829790376819

Listing 4: Ejemplo 2

Input:
N: 5
grado : 2
Output:

0.9933105188801943

Criterio	Logrado	Parcialmente Logrado	No Logrado	
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad	
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado	
	que el enunciado re-	que el enunciado re-	requiere (0pts).	
	quiere (2pts)	quiere (1pts)		
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de	
	son correctas y no hay	sentencias son correc-	las sentencias son cor-	
	errores de sintáxis.	tas y no hay errores de	rectas (0pts).	
	(1pts).	sintáxis. (0.5pts).		
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto	
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la	
	das las variables y fun-	de las variables y fun-	mitad de las variables y	
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-	
	(1pts)	(0.5 pts)	vas (0 pts).	
Iteración	Recorre adecuada-		No recorre los elemen-	
	mente los elementos		tos del string de forma	
	del string (1pts)		programática y solo	
			funciona en algunos	
			casos. (0 pts).	

3. (5 points) Reinaldo Tres Santos es un reconocido profeta y vidente de talla internacional. Uno de sus mejores aciertos es predecir el desenlace amoroso de una pareja de enamorados tan solo sabiendo el nombre de ellos. Gracias a una fuente confiable, mi amigo El Tigrillo descubrió que el vidente aplica una fórmula de **Love Match Score**, en donde a menor score, son mayores las probabilidades de fracasar en la relación.

Diseñe un algoritmo usando para calcular el Love Match Score de una pareja de enamorados.

Criterio	Score
Ambos nombres tienen la misma cantidad de vocales	+5
Ambos nombres empiezan con alguna de estas letras: 'l', 'o', 'v', 'e'	+3
Ambos tienen una longitud mayor o igual 7	+2

- Está prohibido el uso de listas
- La solución debe ser subida estrictamente en **Grade Scope**, en caso contrario no se podrá evaluar tal solución
- Los nombres de las variables deben ser descriptivas y el código debe estar apropiadamente organizado y ordenado

Algunos ejemplos de diálogo de este programa serían:

Listing 5: Ejemplo 1

Input:			
Eduardo			
Veronica			
Output:	10		

Listing 6: Ejemplo 2

Input:
Lola
Omar
Output: 8

Listing 7: Ejemplo 3

Input:	
Lucio	
Julia	
Output:5	

Criterio	Logrado	Parcialmente Logrado	No Logrado	
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad	
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado	
	que el enunciado re-	que el enunciado re-	requiere (0pts).	
	quiere (2pts)	quiere (1pts)		
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de	
	son correctas y no hay	sentencias son correc-	las sentencias son cor-	
	errores de sintáxis.	tas y no hay errores de	rectas (0pts).	
	(1pts).	sintáxis. (0.5pts).		
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto	
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la	
	das las variables y fun-	de las variables y fun-	mitad de las variables y	
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-	
	(1pts)	(0.5 pts)	vas (0 pts).	
Iteración	Recorre adecuada-		No recorre los elemen-	
	mente los elementos		tos del string de forma	
	del string (1pts)		programática y solo	
			funciona en algunos	
			casos. (0 pts).	

4. (5 points) Escribe un programa que lea un número entero N como entrada y retorne como salida una 'X' dibujada en un cuadrado de $N \times N$. Si N = 5, tendríamos:

Listing 8: Ejemplo 0

- Está prohibido el uso de cualquier librería para realizar sus programas
- La solución debe ser subida estrictamente en **Grade Scope**, en caso contrario no se podrá evaluar tal solución
- Se debe utilizar obligatoriamente al menos un loop anidado para dar una solución concreta a esta pregunta
- Los nombres de las variables deben ser descriptivas y el código debe estar apropiadamente organizado y ordenado

Algunos ejemplos de diálogo de este programa serían:

Listing 9: Ejemplo 1

	 v	1
Input:		
5		
Output:		
* *		
* *		
*		
* *		
* *		

Listing 10: Ejemplo 2

Input:			
3			
Output:			
* *			
*			
* *			

Listing 11: Ejemplo 3

Criterio	Logrado	Parcialmente Logrado	No Logrado	
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad	
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado	
	que el enunciado re-	que el enunciado re-	requiere (0pts).	
	quiere (2pts)	quiere (1pts)		
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de	
	son correctas y no hay	sentencias son correc-	las sentencias son cor-	
	errores de sintáxis.	tas y no hay errores de	rectas (0pts).	
	(1pts).	sintáxis. (0.5pts).		
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto	
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la	
	das las variables y fun-	de las variables y fun-	mitad de las variables y	
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-	
	(1pts)	(0.5 pts)	vas (0 pts).	
Iteración	Recorre adecuada-		No recorre los elemen-	
	mente los elementos		tos del string de forma	
	del string (1pts)		programática y solo	
			funciona en algunos	
			casos. (0 pts).	