ML Assignment 4

Monsoon 2024 Dr. Jainendra Shukla Rahul Oberoi 2021555

Section A:

Anu a)	Dimensions: $((M-K+1) \times (N-K+1))$
b	Kennel Size: KXK (KXKXP, Pis in put channel)
	Multiplications: K ² xP
	Additions: K*xP-1
=	Total = K2xP+(K2xP-1) = 2K2P-1
c) f	on q kennels,
	the forward pass computes $(M-K+1) \times (N-K+1)$
	und we have K2. P operations per input
	per kunnel.
2:	computation cost
	= 0((M-K+1) .(N-K+1) K2.P)
When	min(M,N) >> K then M-K+14M
,	und N-K+I & N
	0 (Q.H.N. K2. P)

<u>Anuz</u> Assignment:

- i) each data point is assigned to the chuster with the nearest controid
- ii) distance is computed b/w each point and all centroid
- iii) point x; is auigned to chuter C if

j = orgmin | | xi - Hj | 1

H = controid of cluster

Update:

is the centhoiou of the clusters are necomputed

Hj = 1 Ex

Snumber of points in cluterj.

We can determine the optimal number of clusters on K by using the elbow method. It calculates the sum of squared distances for different numbers of K. The optimal k is the elbow point where increasing K tesuts in diminishing neturns.

We cannot neach global minimum b handomly anighing centroids. We will only heach local minima.

Section B:

Initialized centroids = (3.0, 3.0) (2.0, 2.0) Centroids obtained after 3 iterations = (5.8, 2.125) (4.2, -0.055)

Randomly initialized centroids = (5.1, 2.5) (3.5, 2.5)

The clusters created using the initial centroids have more points in the yellow cluster and seems to have a better split whereas in the random centroid initialization the clusters could have been better. However, both converge after 3-4 iterations depending upon the random centroids.

As it is clear from the plot that there is not much gain after k=4,5 therefore the optimal k can be 4 or 5 depending on the desired output.

Section C:

Training Images:

Validation Images:

CustomCNN class built in code.