

5.5. CLOSURE SYSTEMS

13

Unlike the union, the intersection is defined only for collections that

consist of subsets of a set S. If C is a collection of subsets of S, that is, if $C \subseteq \mathcal{P}(S)$ then the intersec-

tion of $\mathcal C$ is the set of all elements of $\mathcal S$ that belong to every set of $\mathcal C$. The intersection of $\mathcal C$ is denoted by $\bigcap \mathcal C$.

If \mathcal{C} and \mathcal{C}' are two collections of subsets of a set S and $\mathcal{C} \subseteq \mathcal{C}'$, then $\bigcap \mathcal{C}' \subseteq \bigcap \mathcal{C}$.

Definition 2.7. A closure system on the set S is a collection K of subsets of S such that for every collection of subsets C such that $C\subseteq K$ we have

If \emptyset is the empty collection of subsets of S, we define $\bigcap \emptyset = S$.

 $\bigcup \mathcal{C} \in \mathcal{K}$.

Note that if K is a closure system on a set S, then $S \in K$ because S is the intersection of the empty collection of subsets of K.

Definition 2.8. Let K be a closure system on a set S and let T be a subset of S. The closure of T relative to the closure system K is the set

 $\mathbf{K}(T) = \bigcap \{U \in \mathcal{K} \mid T \subseteq U\}.$ For every set T the collection $\mathcal{C}_T = \{U \in \mathcal{K} \mid T \subseteq U\}$ is non-empty

because it includes at least S. The set $\bigcap C_T$ is denoted by $\mathbf{K}(T)$ and is referred to as the closure of T.

To emphasize that the closure of T is computed relative to the closure

system K we may denote this closure by $\mathbf{K}_{\mathcal{K}}(T)$.

Example 2.7. A subset E of R is said to be symmetric if $x \in E$ if and only if $-x \in E$.

Let $\{E_i \mid i \in I\}$ be a collection of symmetric subsets of \mathbb{R} . It is easy to see that $\bigcap \{E_i \mid i \in I\}$ is a symmetric set. Note that \mathbb{R} itself is symmetric. Thus, the collection \mathcal{E} of symmetric subsets of \mathbb{R} is a closure system. For a subset T of \mathbb{R} the set $\mathbf{K}_{\mathcal{E}}(T)$ is the smallest symmetric set that includes T.

The notion of closure operator can be defined independently.

Definition 2.9. A closure operator on set S is a mapping $\mathbf{K}: \mathcal{P}(S) \longrightarrow \mathcal{P}(S)$ that has the following properties:

- (i) $X \subseteq \mathbf{K}(X)$ (extensivity);
- (ii) $\mathbf{K}(X) = \mathbf{K}(\mathbf{K}(X))$ (idempotency);
- (iii) $X \subseteq X'$ implies $\mathbf{K}(X) \subseteq \mathbf{K}(X')$ (monotonicity).

CLUSTERING

Theoretical and Practical Aspects

Dan A Simovici

University of Massachusetts Boston, USA

NEW JERSEY · LONDON · SINGAPORE · BEIJING · SHANGHAI · HONG KONG · TAIPEI · CHENNAI · TOKYO

Clustering - Theoretical and Practical Aspects

The intersection of M and N is the multiset $M \cap N$ defined by

$$(M \cap N)(x) = \min\{M(x), N(x)\}\$$

for $x \in S$.

12

The sum of M and N is the multiset M + N given by

$$(M+N)(x) = M(x) + N(x)$$

for $x \in S$.

Let S be a multiset and let U be a sub-multiset of S. The complement of U relative to S is the sub-multiset V = S - U of S defined by $m_V(x) = m_S(x) - m_U(x)$ for $x \in S$.

Example 2.6. Let $m, n \in \mathbb{N}$ be two numbers that have the prime factorizations

$$m = p_{i_1}^{k_1} \cdots p_{i_r}^{k_r},$$

$$n = p_{j_1}^{h_1} \cdots p_{h_s}^{h_s},$$

and let M_m, M_n be the multisets of their prime divisors, as defined in Example 2.5. Denote by gcd(m, n) the greatest common divisor of m and n, and by lcm(m, n) the least common multiple of these numbers.

We have

$$M_{\gcd(m,n)} = M_m \cap M_n,$$

$$M_{\operatorname{lcm}(m,n)} = M_m \cup M_n,$$

$$M_{mn} = M_m + M_n,$$

as the reader can easily verify.

Definition 2.6. Let M be a multiset. Its *cardinality* is the number $|\{x \in S | M(x) \ge 0\}$; its size is $|M| = \sum \{M(x) \mid x \in S\}$.

A multiset on the set $\mathcal{P}(S)$ is referred to as a multicollection of sets on S.

2.5 Closure Systems

Let $C = \{S_i \mid i \in I\}$ be a collection of sets. Its union is the set U defined as

$$U = \bigcup_{i \in I} S_i.$$

Note that $C \subseteq C'$ implies $\bigcup C \subseteq \bigcup C'$.

 Λq pəysi $_{l}qn_{d}$

World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

IIV office: 27 Shelton Street Covert Gorden London WC2H 9HE

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Theoretical and Practical Aspects CLUSTERING

Copyright © 2022 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-124-119-2 (hardcover) ISBN 978-981-124-120-8 (ebook for institutions) ISBN 978-981-124-121-5 (ebook for individuals)

For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/12394#t=suppl

Printed in Singapore

2.4. MULTISETS

ΙI

Example 2.5. Let PRIMES be the set of prime numbers:

PRIMES =
$$\{2, 3, 5, 7, 11, \ldots\}$$
.

A number is determined by the multiset of its prime divisors in the following sense. If $n \in \mathbb{N}$, $n \geqslant 1$, can be factored as a product of prime numbers, $n = p_{i_1}^{k_1} \cdots p_{i_\ell}^{k_\ell}$, where p_i is the i^{th} prime number and k_1, \ldots, k_ℓ are positive numbers, then the multiset of its prime divisors is the multiset M_n : PRIMES $\longrightarrow \mathbb{N}$, where $M_n(p)$ is the exponent of the prime number p

in the product (2.3). For example, M_{1960} is given by

$$\begin{pmatrix} .2 = q & \text{ii} & \xi \\ .6 = q & \text{ii} & \text{I} \\ .7 = q & \text{ii} & \text{L} \end{pmatrix} = (q)_{0001} M$$

Thus, $carr(M_{1960}) = \{2, 5, 7\}$. Note that if $m, n \in \mathbb{N}$, we have $M_m = M_n$ if and only if m = n.

We denote a multiset by using square brackets instead of braces. If x has the multiplicity n in a multiset M, we write x a number of times n inside the square brackets. For example, the multiset of Example 2.5 can be written as [2,2,2,5,7,7].

Note that while multiplicity counts in a multiset, order does not matter; therefore, the multiset [2,2,2,5,7,7] could also be denoted by [5,2,7,2,2,7] or [7,5,2,7,2,2]. We also use the abbreviation n*x in a multiset to mean that x has the multiplicity n in M. For example, the multiset M_{1960} can be written as $M_{1960} = [3*2,1*5,2*7]$.

The multiset M on the set S defined by M(x)=0 for $x\in S$ is the

empty multiset. Let U and V be two multisets on a set S. U is a sub-multiset of V if

 $V(x) \le V(x)$ for every $x \in S$.

Multisets can be combined to construct new multisets. Common settheoretical operations such as union and intersection have natural general-

Definition 2.5. Let M and N be two multisets on a set S. The union of M and N is the multiset $M \cup N$ defined by

$$\{(x)N,(x)M\}$$
xsm $=(x)(N\cup M)$

 $S \ni x$ 101

izations to multisets.

To my wife Doina, and to the memory of my parents, Adelina and Avram Simovici Clustering - Theoretical and Practical Aspects

The sequence \mathbf{s}_n is the *state* of S at moment n.

Example 2.4. Let $A = \{a, b, c\}$, $\mathbf{q}_0 = \lambda$. By pushing a, b, b, c starting from $\mathbf{s}_0 = \lambda$ we obtain

$$\begin{split} \mathbf{s}_1 &= \mathsf{push}(\mathbf{s}_0, a) = (a), \\ \mathbf{s}_2 &= \mathsf{push}(\mathbf{s}_1, b) = (b, a), \\ \mathbf{s}_3 &= \mathsf{push}(\mathbf{s}_2, b) = (b, b, a), \\ \mathbf{s}_4 &= \mathsf{push}(\mathbf{s}_3, c) = (c, b, b, a). \end{split}$$

When the pop operation is applied, elements are extracted from the left end of the sequence. This yields:

$$\begin{aligned} & \mathsf{pop}(\mathbf{s}_4) = (\mathbf{s}_5, c), \mathbf{s}_5 = (b, b, a) \\ & \mathsf{pop}(\mathbf{s}_5) = (\mathbf{s}_6, b), \mathbf{s}_6 = (b, a) \\ & \mathsf{pop}(\mathbf{s}_6) = (\mathbf{s}_7, b), \mathbf{s}_7 = (a) \\ & \mathsf{pop}(\mathbf{s}_7) = (\mathbf{s}_8, a), \mathbf{s}_8 = \lambda. \end{aligned}$$

Note that the elements of the stack are extracted in the reverse order of their push on the stack, c, b, b, a.

Thus, the working of a stack can be described by "first-in last-out" rule.

2.4 Multisets

10

Multisets generalize the notion of a set by allowing multiple copies of an element. Formally, we have the following definition.

Definition 2.4. A multiset on a set S is a function $M: S \longrightarrow \mathbb{N}$. Its carrier is the set $carr(M) = \{x \in S \mid M(x) > 0\}$.

The multiplicity of an element x of S in the multiset M is the number M(x).

The set of all multisets on S is denoted by $\mathcal{M}(S)$.

Note that a subset T of S can be regarded as a multiset $T:S\longrightarrow \mathbb{N},$ where

$$T(x) = \begin{cases} 1 & \text{if } x \in T, \\ 0 & \text{otherwise,} \end{cases}$$

for $x \in S$.

S°3° SEÔ∩ENCES

6

Sequences allow us to define two algorithmic concepts, namely, queues

and stacks.

Definition 2.2. Let A be a set. A queue on A is a triple $\mathbf{q}=(\mathbb{Q},e,d)$, where \mathbb{Q} is a sequence of sequences of A,

$$(\dots, \mathbf{p}, \mathbf{q}_1, \dots),$$

 $\epsilon: A \times Q \longrightarrow Q$ is the enqueing operation and $a: A \times Q \longrightarrow Q$ is the enqueing operation are two functions that satisfy the following conditions:

- $(\mathbf{p}(n) = (\mathbf{p}, n) \cdot \mathbf{a}$
- (ii) $d(\mathbf{q})$ is defined on non-null sequence and $d(\mathbf{q}) = (\mathbf{q}', a)$ if $\mathbf{q} = \mathbf{q}'(a)$.

Example 2.3. Let $A = \{a, b, c\}$, $\mathbf{q}_0 = \lambda$. By enqueueing the a, b, b, c

starting from $\mathbf{q}_0 = \lambda$ we obtain

$$\mathbf{q}_1 = e(\mathbf{q}_0, a) = (a),$$

$$\mathbf{q}_2 = e(\mathbf{q}_1, b) = (b, b, a),$$

$$\mathbf{q}_3 = e(\mathbf{q}_2, b) = (b, b, a),$$

$$\mathbf{q}_4 = e(\mathbf{q}_3, c) = (c, b, b, a).$$

When the dequeuing operation is applied, elements are extracted from the right end of the sequence. This yields the sequence

$$d(\mathbf{q}_4) = (\mathbf{q}_5, a), \mathbf{q}_5 = (c, b, b)$$

$$d(\mathbf{q}_5) = (\mathbf{q}_6, b), \mathbf{q}_6 = (c, b)$$

$$d(\mathbf{q}_6) = (\mathbf{q}_7, b), \mathbf{q}_7 = (c)$$

$$d(\mathbf{q}_7) = (\mathbf{q}_8, c), \mathbf{q}_8 = \lambda.$$

Note that the working of a queue can be described by the syntagm "first-in first-out". Indeed, the order in which elements are produced by the dequeuing operation is the same as the order these elements were enqueued: a,b,b,c.

Definition 2.3. Let A be a set. A stack on A is a triple $\mathbf{s}=(S,e,d)$, where S is a sequence of sequences of A,

$$(\dots, \mathbf{1}\mathbf{s}, 0\mathbf{s}) = S$$

push: $A \times S \longrightarrow S$ is the push operation and pop: $S \longrightarrow A \times A$ is the popping operation are two functions that satisfy the following conditions:

- $\mathbf{b}(\mathbf{b}) = (\mathbf{s}, \mathbf{b}) \mathsf{dsuq}$ (i)
- (ii) $\mathsf{pop}(\mathbf{s}) = (\mathbf{s}', \mathbf{s}) = (\mathbf{s}) \mathsf{pop}(\mathbf{s}) = \mathbf{s}$ if $(a, a) = (\mathbf{s}', a)$ is defined on non-null sequence and $\mathsf{pop}(\mathbf{s}) = (\mathbf{s}', \mathbf{s})$

Preface

Clustering is a part of machine learning that seeks to identify groups into sets of objects such that objects that belong to the same group are as similar as possible, and objects that belong to two distinct groups are as dissimilar as possible. In general, clustering exploration is based on computing similarities (or dissimilarities) between objects but does not provide the reasons for the existence of these groupings.

Various notions of dissimilarities are considered among objects ranging from simple dissimilarities, metrics on linear spaces, ultrametrics, and extensions of these measures to sets. Studying these measures requires incursions in a variety of mathematical disciplines ranging from linear algebra and optimization to functional analysis and topology.

The results of clusterings are evaluated using a variety of criteria allowing users to choose clusterings that are desirable from the point of view of these criteria.

Clustering use is widespread, ranging from genomics, epidemiology, medicine, economics and many other disciplines. The intended readership of this volume consists of researchers and graduate students who work in data mining and pattern recognition, or apply those in their domain of interest. I strived to make this volume as self-contained as possible. Appendices, exercises, and supplements are provided to help readers in their search of mathematical tools useful for clustering.

Boston and Brookline

Dan A. Simovici May 2021

vii

Clustering - Theoretical and Practical Aspects

2.3 Sequences

Definition 2.1. Let S be a set. A sequence of length n on S is a mapping $s : \{1, ..., n\} \longrightarrow S$. The set of sequences of length n on S is denoted by $\mathbf{Seq}_n(S)$.

An ordered pair on S is a sequence of length 2 on S; a singleton is a sequence of length 1.

If **s** is a sequence of length n on S and $\mathbf{s}(i) = x_i$ for $1 \le i \le n$, we write $\mathbf{s} = (x_1, \dots, x_n)$. The elements x_1, \dots, x_n are the *components* of **s**.

The length of a sequence \mathbf{s} is denoted by $|\mathbf{s}|$.

Example 2.1. A sequence of natural numbers of length 6 is $\mathbf{s} = (6, 5, 2, 4, 9, 6)$. Note that in a sequence the same element of S may occur on multiple positions.

If S is a finite set containing m elements, then there are m^n sequences of length n for any $n \ge 1$. We extend the definition of sequences on S be defining the null sequence on S as the sequence λ that has no components, $\lambda = ()$. Note that there exists exactly one such sequence on S and this is consistent with the fact that $m^0 = 1$ for every $m \ge 1$.

The set of sequences of elements of S is the set

$$\mathbf{Seq}(S) = \bigcup \{ \mathbf{Seq}_n(S) \mid n \geqslant 0 \}.$$

If $\mathbf{s} = (s_1, s_2, \dots, s_n)$ is a sequence in S, we refer to the sequence $\tilde{s} = (s_n, \dots, s_2, s_1)$ as the *reversal* of the sequence s. Clearly $\tilde{\lambda} = \lambda$.

If $\mathbf{s} = (s_1, \dots, s_n)$ and $\mathbf{t} = (t_1, \dots, t_m)$ are two sequences on a set S, their *concatenation* is the sequence $\mathbf{st} = (s_1, \dots, s_n, t_1, \dots, t_m)$. For the null sequence we define $\lambda \mathbf{s} = \mathbf{s}\lambda = \mathbf{s}$ for every $\mathbf{s} \in \mathbf{Seq}(S)$. Note that $|\mathbf{st}| = |\mathbf{s}| + |\mathbf{t}|$ for all sequences $\mathbf{s}, \mathbf{t} \in \mathbf{Seq}(S)$.

Note that sequence concatenation is not a commutative operation in general.

Example 2.2. Let
$$s = (1, 2, 3), t = (4, 5)$$
. We have

$$st = (1, 2, 3, 4, 5)$$
 and $ts = (4, 5, 1, 2, 3)$,

so $\mathbf{st} \neq \mathbf{ts}$.

We leave to the reader to verify that sequence concatenation is an associative operation on $\mathbf{Seq}(S)$, that is $(\mathbf{st})\mathbf{u} = \mathbf{s}(\mathbf{tu})$ for every $\mathbf{s}, \mathbf{t}, \mathbf{u} \in \mathbf{Seq}(S)$.

3.2. SETS AND SET OPERATIONS

7

Ţ	0	Ţ	0	Ţ	I
0	0	0	Ţ	0	0
Ţ	0		Ţ	0	\oplus

field as Define the scalar multiplication of a subset T of S by an element of the Let S be a set and let GF(2) be the two element field defined in earlier.

$$T = T \cdot 1 \text{ bns } \emptyset = T \cdot 0$$

for every $T \in \mathcal{P}(S)$.

The sum of two subsets V and V is defined as their symmetric difference

$$(U - V) \cup (V - U) = V + U$$

With these definitions the set $\mathcal{P}(S)$ of subsets of S is an $\mathsf{GF}(2)$ -linear space,

The set of subsets $\mathcal{P}(S)$ of a finite set $S = \{x_1, \dots, x_n\}$ can be organized as the reader can easily verify.

as a GF(2)-linear space by defining the sum of two subsets U, V as their

symmetric difference

$$(U - V) \cup (V - U) = V \oplus U$$

Note that $U \oplus \emptyset = \emptyset \oplus U$ take that

Multiplication with scalars in {0, 1} is defined as

$$U = U$$
 I bas $\emptyset = U$ 0

is the collection $\{\{x_1\},\ldots,\{x_n\}\}$. Every subset U of S can be uniquely A basis in the $\mathsf{GF}(2)$ -linear space of subsets of the set $S = \{x_1, \dots, x_n\}$ for every $U \in \mathcal{P}(S)$.

$$U = a_1\{x_1\} \oplus \cdots \oplus a_n\{x_n\},$$

мреге

written as

$$(0) = \begin{cases} 1 & \text{if } x \text{ if } \\ 0 & \text{if } x \text{ if } \end{cases}$$

for $1 \le i \le n$. Thus, the GF(2)-linear space of subsets of S is of dimension

The inner product of two vectors $\mathbf{u}, \mathbf{v} \in \mathsf{GF}(2)^n$ is

$$\mathbf{v}_i u_i u_{\perp = i} = \mathbf{v}' \mathbf{u} = (\mathbf{v}, \mathbf{u})$$

 $\cdot_n \mathbf{0} \neq \mathbf{n}$ if $\mathbf{n} \neq \mathbf{0}_n$. Note that if $\mathbf{u} \in \mathsf{GF}(2)^n$, where n is an even number, we have $(\mathbf{u},\mathbf{u}) = 0$,

Contents

Pr	eface		vii
1.	Intro	duction	1
2.	Set-T	Theoretical Preliminaries	5
	2.1	Introduction	5
	2.2	Sets and Set Operations	5
	2.3	Sequences	8
	2.4	Multisets	10
	2.5	Closure Systems	12
	2.6	Permutations	14
	2.7	Relations	19
	2.8	Partially Ordered Sets	26
	2.9	The Poset of Partitions of a Set	38
	2.10	Boolean Matrices	43
	2.11	Galois Connections and Formal Concepts	56
	2.12	Exercises and Supplements	65
	2.13	Bibliographical Comments	71
3.	Dissii	milarities, Metrics, and Ultrametrics	73
	3.1	Introduction	73
	3.2	Dissimilarity Spaces	73
	3.3	Similarities and Dissimilarities between Sets	80
	3.4	Norms and Metrics on \mathbb{R}^n	84
	3.5	The Geometry of Ultrametric Spaces	96
	3.6	Matrices on Semirings	103

ix

Clustering – Theoretical and Practical Aspects

have

6

$$A \oplus B = (A - B) \cup (B - A).$$

For set inclusion we write $A \subseteq B$ to denote that each element x of A also belongs to B.

Note that A = B if and only if $A \oplus B = \emptyset$.

For a set S we denote by $\mathcal{P}(S)$ the set of its subsets. The collection of subsets of S that contain k elements is denoted by $\mathcal{P}_k(S)$. The sets in $\mathcal{P}_2(S)$ are the *unordered pairs* of S.

A subset A of a set S is completely described by its characteristic function $\mathbf{1}_A: S \longrightarrow \{0,1\}$ defined as

$$\mathbf{1}_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise} \end{cases}$$

for $x \in S$.

If $A, B, C \in \mathcal{P}(S)$ we have:

$$A \oplus B = (A \oplus C) \oplus (C \oplus B). \tag{2.1}$$

This equality can be verified by considering all cases determined by the membership of an element x in A, B and C. These are summarized by the following table, where 1 indicates that x belongs to the set and 0 means that x is not a member of the set that labels the each column.

A	B	C	$A \oplus B$	$A \oplus C$	$C \oplus B$	$(A \oplus C) \oplus (C \oplus B)$
0	0	0	0	0	0	0
0	0	1	0	1	1	0
0	1	0	1	0	1	1
0	1	1	1	1	0	1
1	0	0	1	1	0	1
1	0	1	1	0	1	1
1	1	0	0	1	1	0
1	1	1	0	0	0	0

In all cases, the entries of the column $A \oplus B$ coincide with the entries of the column $(A \oplus C) \oplus (C \oplus B)$ proving Equality (2.1). This equality implies immediately

$$|A \oplus B| \leqslant |A \oplus C| + |C \oplus B| \tag{2.2}$$

for $A, B, C \in \mathcal{P}(S)$.

We will use frequently to two-element field $\mathsf{GF}(2)$ known as the 2-element Galois field, $\mathsf{GF}(2) = \{0,1\}$. Addition " \oplus " and multiplication " \cdot " in this field are defined by the following tables:

v_{SDGC}	Practical	puv	Theoretical	– burrəteniO	

270	Graph Searching	₽I.3	
897	smsrgsiG ionoroV	5.13	
592	Planar Graphs	5.12	
797	Matrices and Dissimilarities	11.6	
526	səərT gainnaqZ muminiM	61.6	
252	From Matrices to Graphs	6.5	
243	Oirected Graphs	$8.\overline{c}$	
238	Graphs and Matrices	7.8	
233	GF(2)-Linear Spaces and Graphs	6.5	
228	Co-cycles	$\vec{c}.\vec{c}$	
112	Giraphartite Graphs	1.3	
202	səər T - bA 2.8.8		
504	$sqspH$ 1.8.8		
961		6.5	
175	Vertices, Edges and Weights	5.5	
175	Introduction	$1.\overline{c}$	
175	hs and Hypergraphs	Grap	Ġ.
74T	Bibliographical Comments	7.4	
891	Exercises and Supplements	9. ₽	
160	Convex Functions	$\overline{d}.\overline{L}$	
156	Extreme Points	₽.₽	
331	Operations on Convex Sets	£.4	
137	Convex Sets	4.2	
137	$Introduction \dots \dots$	1.4	
137	exity	Conv	٦.
136	Bibliographical Comments	8.8	
127	Exercises and Supplements	8.8	
811	Sets		
	3.7.4 The Entropic Metric Space of Partitions of Finite		
115	3.7.3 Conditional Entropy and Entropy Gain		
113	3.7.2 Generalized Entropy		
112	7.7.5 Partition Entropy		
601	Entropy	7.8	

5.17 Exercises and Supplements

Chapter 2

Set-Theoretical Preliminaries

2.1 Introduction

results. presented as they facilitate an elegant presentation of future mathematical erations. Closure systems and their connection to closure operators are We begin with sets, sequences, collection of sets and set-theoretical op-

are partitions of sets of objects). This topic is discussed in the context of Set partitions are very important to clusterings (which, in most cases,

partially ordered set of partitions provides the mathematical underpinnings A presentation of partially ordered sets and a detailed study of the relations and, especially, of equivalence relations.

The chapter concludes with a discussion of Galois connections that reof families of clusterings.

We assume that the reader is familiar with the notions of Cartesian late formal concept analysis to biclustering.

product of sets, relations, and function, that are part of many texts.

2.2 Sets and Set Operations

set is denoted by Ø. For a finite set S the number of elements of S is denoted by |S|. The empty

the union of the sets A and B, $A \cap B$ is the intersection of the sets A and The usual symbols are used to denote set-theoretical operations: $A \cup B$ is We write $x \in S$ to denote the fact that x is an element of the set S.

The symmetric difference of the sets A and B is denoted by $A \oplus B$. We B, and A - B is the difference of the sets A and B.

CONTENTS xi

	5.18	Bibliographical Comments	309
6.	Parti	tional Clustering	311
	6.1	Introduction	311
	6.2	Inertia of a Set of Vectors	311
	6.3	The k-Means Algorithm	317
	6.4	Clustering and Matrices	326
	6.5	The PAM Algorithm	331
	6.6	Kernel k-Means Clustering	334
	6.7	A Geometric Approach to k-Clustering	339
	6.8	Clustering and Singular Value Decomposition of Matrices	341
	6.9	Vector Quantization and Matching Pursuit	343
	6.10	Partitional Clustering in R	348
	6.11	Clustering in Python	355
	6.12	Exercises and Supplements	359
	6.13	Bibliographical Comments	387
7.	Statis	stical Approaches to Clustering	389
	7.1	Introduction	389
	$7.1 \\ 7.2$	Sampling	389
	7.2	Likelihood Function	391
	7.4	Data Density Estimations	394
	$7.4 \\ 7.5$	Density Kernels for Unidimensional Data	396
	7.6	Density Kernels for Multidimensional Data	402
	7.7	Mean Shift Clustering	404
	7.8	Expectation Maximization and Clustering	411
	7.9	The EM Algorithm for Unidimensional Data	411
	7.10	Exercises and Supplements	421
	7.10	* *	421 427
	7.11	Bibliographical Comments	421
8.	Hiera	archical Clustering	429
	8.1	Introduction	429
	8.2	Ultrametrics, Hierarchies, and Partition Chains	429
	8.3	Ultrametrics and Minimum Spanning Trees	441
	8.4	The Single-Link Algorithm	447
	8.5	Other Hierarchical Clustering Algorithms	449
	8.6	Hierarchical Clustering in R	455
	8.7	Hierarchical Clustering in Python	461

This page intentionally left blank

vebec	mananı ı	ກາເກ	прэнэлоэн т	_	ดีนน เอารถา
Jaus H	TUJUJUJA	puv	TUJUJUJUJU I.	_	Dullastill'

iiχ

	* * * * *		
909	elation and Consensus Clustering	Corr	15.
809		Biblic	
₹6g	ises and Supplements		
169	Spectral Clustering in A ni gariestral Clustering	7.11	
282	Spectral Clustering Algorithms	9.11	
499	Cuts, Separators, and Clusterings	3.11	
552	The Laplacian Spectrum of a Graph	₽.II	
$0\overline{5}$	The Ordinary Spectrum of a Graph	8.11	
679	Data and Graphs	2.11	
679	ntroduction	1.11	
6⊅g	garinstering	Spec	.11
848	Bibliographical Comments	7.01	
2	Exercises and Supplements	9.01	
143	An Entropy-based Framework	3.01	
983	The CACTUS Approach	4.01	
153	The ROCK Algorithm mdtiroglA NOOA	8.01	
528	Market Basket Data and Clustering Sets	10.2	
527	Introduction	1.01	
527	gorical Data Clustering	Cate	.01
225	Bibliographical Commenta	8.6	
521	Exercises and Supplements	7.6	
515	Subspace Clustering	9.6	
512	Density-based Clustering in Python	$\vec{a}.6$	
803	Density-based Clustering in ${f R}$ ni gniretering Density-based	₹ .6	
900	В Polgorithm тибрітодія SJIT9О ә.П	8.6	
€6₽	Core, Border and Noise Objects in DBSCAN	2.6	
₹6₹	Introduction	1.6	
€67	ty-based Clustering	Densi	.6
167	Bibliographical Comments	21.8	
₽8₽	Exercises and Supplements	11.8	
947			
94V	Complexity of Hierarchical Clustering	01.8	
94 <i>v</i> 04 <i>t</i>	The CURE Algorithm	6.8 01.8	
	Divisive Hierarchical Clustering		

INLEODUCTION

Machine learning algorithms struggle to match the human performance. Many clustering algorithms require the number of clusters to be provided as an input parameter, which forces these algorithms to combine of split pursuit of clusterings with a prescribed number of clusters is an ill-posed pursuit of clusterings with a prescribed number of clusters is an ill-posed problem because a set of points can be clustered in many ways. Even if a data set has no meaningful structure, a clustering algorithm may find some partition of the data.

For the data set shown in Figure 1.1 a clustering algorithm that starts with a prescribed number of two clusters may split this data into two arbi-

trary clusters defined by the separating line ℓ (see Figure 1.3).

Fig. 1.3 Line separating the data set into two arbitrary clusters.

A clustering algorithm acting on the data set shown in Figure 1.2 may find two clusters or three clusters depending on the decision to fuse or not the two leftmost point groupings (which are very close).

There are many types of clustering algorithms, many of them are covered in this text. The most important are:

- \bullet partitional algorithms (represented by the k-means algorithm and
- its variants);

 hierarchical algorithms (which include agglomerative and divisive
- algorithms);

 other classes include density-based clustering, grid-based cluster-
- ing, spectral clustering;

 specialized algorithms have been developed for clustering categorical data, for stream data, for collections of documents and multi-

media data, for time series, etc.

701

2

	12.2 12.3 12.4 12.5 12.6 12.7	Graphs and Correlation Clustering	606 607 609 622 627 630
13.		Bibliographical Comments	631
	13.1	Introduction	631
	13.1 13.2	Internal Criteria	631
	10.2	13.2.1 The Davies-Bouldin Criterion	631
		13.2.2 The Dunn Quality Indices	634
		13.2.3 The Silhouette Coefficient	634
	13.3	External Criteria	637
	13.4	Pairwise Measures	642
	13.5	Graph Clustering and Modularity	645
	13.6	Exercises and Supplements	649
	13.7	Bibliographical Comments	652
14.	Clus	stering Axiomatization	653
	14.1	Introduction	653
	14.2	Clustering Functions	654
	14.3	An Impossibility Result	655
	14.4	Antichains of Partitions	658
	14.5	Centroid-based Clustering and Consistency	660
	14.6	Partitioning Functions	661
	14.7	An Axiomatization of Clustering Quality Measures	663
	14.8	Exercises and Supplements	665
15.	Bicl	ustering	673
	15.1	Introduction	673
	15.2	Reorderable Matrices	674
	15.3	A Boolean Approach to Binary Data Sets Biclustering	677
	15.4	The Cheng and Church Algorithm	684
	15.5	Numerical Aspects of Biclustering of Binary Data Sets .	695
	15.5	Numerical Aspects of Dictustering of Dinary Data Sets .	000
	15.6	Exercises and Supplements	697

16. Semi-supervised Clustering

ing, is very much work in progress. Various clustering algorithms applied to the same data set may produce distinct types of clusterings and no general principles to guide algorithm selection exist.

Studying clustering requires a broad spectrum of mathematical disciplines ranging from combinatorics, topology, linear algebra, optimization theory, etc. We strived to make the book as self contained as possible, including some preliminary chapters, as well as a number of appendices.

Treating clustering as an optimization problem is difficult because for each type of clustering there are objective function that fail to have optimal properties; additionally, most optimization problems are intractable and the users must contend with approximate algorithms.

The existence of clusters in data, that is, data clusterability is hard to formalize due to the variety in data distribution and the inadequacy of certain basic notions of clustering.

Humans are very good ar identifying groupings of objects, at least in the case of uni-, bi-, or even tri-dimensional sets of objects. An examination of the data shown in Figure 1.1 shows that there is no obvious grouping of objects.

On other hand, the data shown in Figure 1.2 contains some "natural" groupings.

Fig. 1.1 Data set without an obvious grouping structure.

Fig. 1.2 Data that displays some grouping tendency.

stəəqeA lasitəar q	puv	Theoretical	-	Clustering	
----------------------	-----	-------------	---	------------	--

ATV	

444	smeldord bue shroW	6 Cl
222	Introduction	D.1
222	D Nb Completeness	xibn∍qqÆ
977	Bibliographical Comments	C.5
DU	The Bir Packing Problem	₽.D
894	sməldor T. I.	C.3
897	The Fourier-Motzkin Elimination	C.2
897	Introduction	C.1
897	C Linear Programming	∡ibnəqq <i>A</i>
194	· · · · · · · · · · · · · · · · · · ·	B.13
694	Geometry of Subspaces	8.12
757	CS Decomposition	B.11
194	Singular Values of Matrices	B.10
6₹ <i>L</i>	Positive Definite Matrices	B.9
∠ ₹∠	Unitary Matrices and Orthogonal Projections	B.8
174	· · · · · · · · smroV xirtsM	F.7
687	\ldots sənlərinə Eigenvalues \ldots sənlərinə Eigenvalues	B.6
P3 4	Eigenvalues of Matrices	B.5
674	moitsitnerentistion noitsitnereflit xirtsM	B.4
827	Ansh xirtsM	B.3
727	səsirices	B.2
727	Introduction	B.1
727	B Linear Algebra	Appendix xibnəqq. ₹
777	Spheres and Cubes in \mathbb{R}^n	£.A
617	Euler's Functions	2.A
617	Introduction	I.A
612	A Special Functions and Applications	∡ibnəqq <i>\</i>
817	Bibliographical Comments	7.91
817	Exercises and Supplements	9.91
604	Learning Mahalanobis Metrics	3.91
904	Semi-Supervised Hierarchical Clustering	4.91
807	Constraint Propagation	8.91
207	snæ M- $\!$	2.91
107	Introduction	1.91

Chapter 1

Introduction

Clustering is the process of grouping a set of objects into subsets referred to as clusters according to some dissimilarity measure between objects. The goal is to group together similar objects, and to ensure that objects placed in distinct groups are dissimilar.

Supervised machine learning makes use of labelled data and creates a model of the data that allows predicting the label for a yet unseen piece of data. In contrast, clustering belongs to the area of unsupervised machine learning defined as the task of discovering hidden structure from "unlabelled" data. Data items are not pre-categorized or labelled, which makes the quality of unsupervised learning defined as the task of discovering hidden structure from "unlabelled" data. Data items are not pre-categorized or labelled, which

makes the evaluation of unsupervised learning algorithm difficult.

Supervised machine learning begins with a sample of data about which

we have prior knowledge and tries to extrapolate this knowledge to larger volumes of data. Unsupervised learning, on the other hand, does not have prior knowledge, so its goal is to infer the "natural" structure present within data.

Typical unsupervised learning activities include classification and regression; typical unsupervised activities include clustering and density estimation. Machine learning has been successful in the realm of supervised learning by providing significant understanding of various tasks, in constructing algorithmic tools to address them, insights about the alternative machine learning paradigms and their parameter settings, and initiating the develoaming paradigms and their parameter settings, and initiating the development of new algorithmic approaches. No comparable successes are yet available in clustering which is a major unsupervised learning activity.

In general, unsupervised learning, utilizing the huge amounts of raw data available, is widely recognized as one of the most important challenges $\hat{}$

facing machine learning nowadays.

The unsupervised machine learning domain, and in particular cluster-

	CONTENTS	xv
D.3	Problems and Algorithms	778
D.4	Variables and Propositional Formulas	780
D.5	Turing Machines	798
D.6	NP Complete Problems	799
D.7	Parameterized Problems	835
D.8	Approximation Algorithms	837
D.9	Bibliographical Comments	839
Bibliography		841
Index		855