ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Математико-механический факультет

Специальность «математика»

Кафедра высшей алгебры и теории чисел

Дипломная работа

Гипероктаэдральные комбинаторные типы

К защите допущен»:	
Зав. кафедрой высшей алгебры и теории чисел, профессор, д.фм.н.	 Яковлев А.В.
Научный руководитель, доцент??, д.фм.н.	 Пименов К.И
Рецензент, д.фм.н.	 ??? ?.?.
Дипломник	 Ватманн В.В.

г. Санкт-Петербург, 2012

Содержание

Глава I. Введение

Гипероктаэдральные или кубические комбинаторные виды — развите идеи комбинаторных типов (species). Мы будем обозначать их h-species для краткости. ТОО:добавить введение (видимо взять часть из Bergeron)

План: Изложить теорию для species, параллельно строить ее для h-species species — сложение умножение — аналитический функтор — композиция аналитических функторов — композиция species — декатегорификация аналитического функтора — примеры

1.1. Комбинаторные виды

Комбинаторные виды (*species*) были введены Джоялем в [ref, ref, ref]. Они, в некоторой степени, являются развитием идеи производящих функций. О комбинаторных видах можно говорить на нескольких языках: категорном, комбинаторном и на языке теории представлений. Последний наиболее часто встречается в литературе, хотя автору он кажется наимение выразительным. Во введении будет изложено начало теории комбинаторных видов.

1.1.1. Определение

Рассмотрим категорию \mathcal{B} — подкатегорию конечных множеств с морфизмами — биекциями конечных множеств. Это подкатегория в Set. Функтор $F:\mathcal{B}\to Set$ — это комбинаторный вид. То есть вид, это сопоставление каждому числу $n\in\mathbb{N}$ множества с действием группы S_n . Комбинаторная интерпретация: множеству точек сопоставляются структуры на точках, а действие S_n ествественно возникает из перестановок исходных точек. Например, вид \mathbb{E} — структура множеста. Он сопоставляет набору точек одно множество, состоящие из этих точек. Все элементы S_n переходят в тождественное отображение. Другой пример \mathbb{C} — циклический порядок. Сопоставляет набору из n точек (n-1)! возможных циклических порядков на них. Линейный порядок \mathbb{L} сопоставляет n! линейных порядков. На картинке ?? изображен вид «корневые деревья с 3 вершинами» (без какого-либо порядка на потомках).

Можно рассмотреть функтор $I: Set \to Vec$, который сопоставляет множеству векторное пространство со свободным базисом из этого множества. Тогда $F \circ I: \mathcal{B} \to Vec$, получается для каждого n перестановочное представление группы S_n . При таком подходе, характер этого представления $\chi(\sigma)$, это количество структур, неподвижных относительно $\sigma \in S_n$.

TEOPEMA: композиции аналитически функторов соответсвует плетизм цикленных индексов.

Глава II. Основные определения

species HSet h-species аналитический функтор

Глава III. Формулы

3.1. Аналитический функтор для h-species

Аналитический функтор \mathcal{F} соответствующий species F является продуктивной конструкцией, позволяющей определить композиционное произведение species. Вводить его можно разными способами, мы ограничимся универсальным свойством и явной конструкцией (TODO: дописать и возможно добавить определение Дурова). Аналитический функтор является левым расширением по Кану функтора F относительно i.

Эта диаграмма не является коммутативной, а коммутативна лишь настолько, насколько может быть коммутативной диаграмма подобного вида. А именно, имеется естественное преобразование $\kappa F \to i \circ \mathcal{F}$, обладающее следующим универсальным свойством: для любого функтора $M \colon Set \to Set$ и морфизма функторов $\eta \colon F \to i \circ M$ этот морфизм пропускаеться через \mathcal{F} при помощи κ .

Явная формула для аналитического функтора. Для доказательства см (TODO)

$$\mathcal{F} = \sum_{n} F[n] \times A^{n} / S_{n} \tag{3.1}$$

У аналитического функтора для типа структуры F имеется прозрачный комбинаторная интерпретация. Если трактовать множество A как набор цветов, то значение аналитического функтора $\mathcal{F}(A)$ трактуется как множество

структур типа F раскрашенных в цвета из A.

Хочется построить аналог аналитического функтора для h-species

$$\mathcal{F} = \sum_{n} F[\bar{n}] \times A^{\bar{n}}/B_n \tag{3.2}$$

Где $A^{\bar{n}}$ задает отображение, сохраняющее инволюцию.

TODO:Здесь нужно добавить проверук универсальности картинки

3.2. Декатегорификация аналитического функтора: Фробениусова характеристика / Цикленный индекс

3.2.1. Случай обычных species

Напомним ситуацию с обычными species. Процедура декатегорификации не имеет строго математического смысла, так же как и процедура квантования. Сейчас мы предложим процедуру, которая, стартуя с обычных species, на выходе дает классический цикленный инлдекс/фробениусову характеристику. Затем мы попытаемся аналогические действия провести и в гипероктаэдральном случае. Декатегорификацией моноидальной категории $\mathbb B$ является моноид классов изоморфизма объектов категории $\mathbb B$, то есть моноид натуральных чисел по сложению. Декатегорификкацией $\widehat{\mathbb B}$ естественным образом оказывается моноидная алгебра с коэффициентами из $\mathbb Z$ для моноида $\mathbb N$, то есть кольцо многочленов Z[X]. (Правда это не то, что мы хотели. Чтобы получить цикленный индекс надо декатегорифицировать саму операцию подстановки и аналитический функтор).

Надо устроить морфизм из моноидальной категории (категории с тензорным произведением) в какую-нибудь алгебру функций. Мы вводим весовую функцию таким образом что орбита раскрашенной структуры под действием S_n имеет один и тот же вес. После этого можно задать вопрос о коэффициенте при мономе соответствующего веса. Это будет число орбит с заданной весовой функцией. По Лемме Бернсайда это то же самое, что и усредненное

число неподвижных точек по всем элементам группы. Чтобы раскрашенная структура была неподвижна под действием перестановки σ нужно, чтобы вопервых она была неподвижна как не раскрашенная структура, а во-вторых расскраска должна переходить в себя. В качестве весовой функции выбираем моном возникающий в произведении переменных отвечающим цветам. Например расскраске в которой 2 первых цвета и 1 второй соответсвует моном $x_1^2x_2$. Тогда первое условие дает нам сомножитель $\chi(\sigma)$, где характер это характер соответствующего перестановочного представления с базисом из структур. Второе условие требует покраски каждого цикла в один и тот же цвет. Итоговая формула называеться фробениусовой характеристикой / цикленным индексом. Она считает количество неподвижных раскрашенных структур в среднем.

$$\mathcal{Z}_F = \sum_n \frac{1}{n!} \sum_{\sigma \in S_n} \chi(\sigma) \psi^{\lambda(\sigma)} = \sum_{n, \lambda \vdash n} \chi(\sigma_\lambda) \frac{\psi^\lambda}{z_\lambda}$$
 (3.3)

Где χ — характер (перестановочного) представления заданного F, σ — перестановка цикленного типа λ , $\psi^{\lambda} = (x_1^{\lambda_1} + x_2^{\lambda_1} + x_3^{\lambda_1} + \dots)(x_1^{\lambda_2} + x_2^{\lambda_2} + x_3^{\lambda_2} + \dots)(x_1^{\lambda_3} + x_2^{\lambda_3} + x_3^{\lambda_3} + \dots) \dots, z_{\lambda}$ — индекс класса сопряженности σ . Появляется она из следующих соображений: в числителе стоит симметрическая функция считающая все неподвижные раскраски. Цвета это x_1, x_2, x_3, \dots

3.2.2. Случай h-species

Попробуем построить аналогичную конструкцию для h-species. Прежде всего отметим, что раскраска, элемент $A^{\bar{n}}$, это отображение, сохраняющее инволюцию. Значит элементы n и -n должны отображаться либо в один и тот же элемент A (который инволюцией переводиться в себя), либо в пару элементов сопряженных инволюцией. Будем называть первый случай моно-цветом, второй — бицветом.

Покрашенные структуры сами по себе можно рассматривать как моноцвет, либо бицвет. Это по–прежнему определяется длинной орбиты инволюции A, уже после факторизации по B_n . То есть кроме действия B_n есть еще внешняя инволюция — действие Z_2 . Будем называть их моноструктурами и биструктурами.

Цикленный индекс, считающий только моноструктуры будем обозначать

 $\mathcal{Z}^{(1)}$, биструктуры — $\mathcal{Z}^{(2)}$. Количество орбит под действием $H_n \times Z_2$ соответствует $\mathcal{Z}^{(1)} + \mathcal{Z}^{(2)}$, а под действием только H_n соответствует $\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}$. Поскольку каждая биструктура будет посчитан два раза.

В качестве H-множества цветов возьмем счетное множество моноцветов x_1, x_2, x_3, \ldots объединенное с счетным множеством бицветов y_1, y_2, y_3, \ldots

Допустим, что мы придумали весовую функцию, отправляющую каждую расскрашенную структуру в моном и любая орбита отправляеться в один моном. Применив Лемму Бернсайда переходим к подсчету неподвижных точек. Циклы в каждом элементе H_n бывают двух типов: длинные — каждая грань входит в цикл вместе со своей противоположной гранью и короткие — пара граней лежит в симметричных, различных циклах.

Посчитаем количество количество неподвижных точек для H_n . Пусть λ^1 — цикленный тип коротких перестановок, λ^2 — цикленный тип длинных перестановок. Утверждение: неподвижные раскрашенные структуры, это в точности те, у которых длинный цикл соответсвует моноцвету, а пара симметричных коротких может быть покрашена либо в моноцвет, либо в бицвет.

Это можно выразить такой формулой:

$$\mathcal{Z}_{F}^{(1)} + 2\mathcal{Z}_{F}^{(2)} = \sum_{n} \frac{1}{2^{n} n!} \sum_{\sigma \in B_{n}} \chi(\sigma) \psi_{x,y,y}^{\lambda^{1}(\sigma)} \psi_{x}^{\lambda^{2}(\sigma)} = \sum_{n,\lambda^{1} + \lambda^{2} \vdash n} \chi(\sigma_{\lambda^{1} \lambda^{2}}) \frac{\psi_{x,y,y}^{\lambda^{1}} \psi_{x}^{\lambda^{2}}}{z_{\lambda^{1} \lambda^{2}}}$$

$$(3.4)$$

Здесь нижний индекс ψ означает переменные по которым берется степенная сумма. Например $\psi_{x,y,y}^2 = (x_1^2 + x_2^2 + x_3^2 + \dots + y_1^2 + y_2^2 + y_3^2 + \dots + y_1^2 + y_2^2 + y_3^2 + \dots)$. При этом коофициент 2 у y_i^2 отражает тот факт, что можно раскрасить k пар граней в бицвет, так чтобы расскраска была неподвижна, под действием короткого цикла, 2-мя способами.

Посчитаем количество количество неподвижных точек для $H_n \times Z_2$. Разобъем сумму на две части — $(h,\bar{0})$ и $(h,\bar{1})$. Для первой формула будет аналогична $\ref{eq:condition}$, только из-за того что порядок группы в 2 раза больше, появится коофициент $\frac{1}{2}$.

Во второй части по-прежнему можно красить и длинные и короткие циклы в моноцвет. А вот с бицветом происходит любопытная вещь — предположим мы красим цикл (пару циклов в него). Тогда добавляется смена грани

на каждом шаге, а значит для циклов нечетной длинны сменится свойство короткий–длинный. Итоговая формула такая

$$\mathcal{Z}_{F}^{(1)} + \mathcal{Z}_{F}^{(2)} = \frac{1}{2} \sum_{n,\lambda^{1} + \lambda^{2} \vdash n} \chi(\sigma_{\lambda^{1}\lambda^{2}}) \frac{\psi_{x,y,y}^{\lambda^{1}} \psi_{x}^{\lambda^{2}}}{z_{\lambda^{1}\lambda^{2}}} + \frac{1}{2} \sum_{n,\lambda_{o}^{1} + \lambda_{o}^{2} + \lambda_{e}^{1} + \lambda_{e}^{2} \vdash n} \chi(\sigma_{\lambda_{o}^{1}\lambda_{o}^{2}\lambda_{e}^{1}\lambda_{e}^{2}}) \frac{\psi_{x,y,y}^{\lambda_{e}^{1} + \lambda_{o}^{2}} \psi_{x}^{\lambda_{e}^{2} + \lambda_{o}^{1}}}{z_{\lambda_{o}^{1}\lambda_{o}^{2}\lambda_{e}^{1}\lambda_{e}^{2}}}$$
(3.5)

Где λ_o — циклы нечетной длинны, λ_e — циклы четной длинны. Откуда легко получить

$$\mathcal{Z}_F^{(1)} = \sum_{n,\lambda_o^1 + \lambda_o^2 + \lambda_e^1 + \lambda_e^2 \vdash n} \chi(\sigma_{\lambda_o^1 \lambda_o^2 \lambda_e^1 \lambda_e^2}) \frac{\psi_{x,y,y}^{\lambda_e^1 + \lambda_o^2} \psi_x^{\lambda_e^2 + \lambda_o^1}}{z_{\lambda_o^1 \lambda_o^2 \lambda_e^1 \lambda_e^2}}$$
(3.6)

$$\mathcal{Z}_{F}^{(2)} = \frac{1}{2} \sum_{n,\lambda^{1}+\lambda^{2}\vdash n} \chi(\sigma_{\lambda^{1}\lambda^{2}}) \frac{\psi_{x,y,y}^{\lambda^{1}} \psi_{x}^{\lambda^{2}}}{z_{\lambda^{1}\lambda^{2}}} - \frac{1}{2} \sum_{n,\lambda^{1}_{1}+\lambda^{2}_{2}+\lambda^{1}_{1}+\lambda^{2}_{2}\vdash n} \chi(\sigma_{\lambda^{1}_{o}\lambda^{2}_{o}\lambda^{1}_{e}\lambda^{2}_{e}}) \frac{\psi_{x,y,y}^{\lambda^{1}_{e}+\lambda^{2}_{o}} \psi_{x}^{\lambda^{2}_{e}+\lambda^{1}_{o}}}{z_{\lambda^{1}_{o}\lambda^{2}_{o}\lambda^{1}_{e}\lambda^{2}_{e}}} \tag{3.7}$$

3.2.3. Примеры

Посчитаем цикленные индексы для простых h-species. Здесь мы будем писать Z(A) вместо Z_A . Это не должно вызывать путаницу, поскольку вместо A будут использоваться схематические картинки и их не перепутать с переменными, от которых считаеться цикленный индекс.

Структура «одна пара граней», будем символически писать

⋄.

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\$) = \frac{1}{2}(\psi_{x,y,y}^1 + \psi_x^1) = \psi_{x,y}^1$$
$$\mathcal{Z}^{(1)}(\$) = \frac{1}{2}(\psi_x^1 + \psi_{x,y,y}^1) = \psi_{x,y}^1$$

Значит

$$\mathcal{Z}^{(2)}(\stackrel{\circ}{\circ}) = 0$$

Структура «одна пара граней, грани различаются». Обозначение 🔓.

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\mathring{\bullet}) = \frac{1}{2}(2\psi_{x,y,y}^1 + 0\psi_x^1) = \psi_{x,y,y}^1$$
$$\mathcal{Z}^{(1)}(\mathring{\bullet}) = \frac{1}{2}(2\psi_x^1 + 0\psi_{x,y,y}^1) = \psi_x^1$$

Значит

$$\mathcal{Z}^{(2)}(\lozenge) = \psi_y^1$$

Структура «квадрат». Обозначение \square .

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\square) = \frac{1}{8}((\psi_{x,y,y}^1)^2 + (\psi_x^1)^2 + 2\psi_x^2 + 2(\psi_x^1\psi_{x,y,y}^1) + 2\psi_{x,y,y}^2)$$

Здесь коофициенты — не характеры (характер при каждом слагаемом = 1).

$$\mathcal{Z}^{(1)}(\Box) = \frac{1}{8}((\psi_x^1)^2 + (\psi_{x,y,y}^1)^2 + 2\psi_{x,y,y}^2 + 2(\psi_{x,y,y}^1 + \psi_x^1)^2 + 2\psi_x^2) = [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\Box)$$

Последнее следовало и из общих соображений: легко видеть что $\mathcal{Z}^{(2)}(\square) = 0$. Структура «квадрат, противоположные грани различаются». Обозначение \square .

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\square) = \frac{1}{8} (4(\psi_{x,y,y}^1)^2 + 0(\psi_x^1)^2 + 0\psi_x^2 + 0(\psi_x^1\psi_{x,y,y}^1) + 2 \times 2\psi_{x,y,y}^2)$$
$$\mathcal{Z}^{(1)}(\square) = \frac{1}{8} (4(\psi_x^1)^2 + 2 \times 2\psi_{x,y,y}^2)$$

Откуда

$$\mathcal{Z}^{(2)}(\square) = \frac{1}{2}([\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\square) - \mathcal{Z}^{(1)}(\square)) = \frac{1}{2}(\psi_{y,y}^1\psi_x^1 + \frac{1}{2}(\psi_{y,y}^1)^2) = \psi_y^1\psi_x^1 + (\psi_y^1)^2$$

Структура $\stackrel{\diamond}{\bullet} \times \stackrel{\diamond}{\bullet}$. Это не то же самое что \square , поскольку это «упорядоченная пара $\stackrel{\diamond}{\bullet}$ ». Ее цикленный индекс мы посчитаем дальше.

3.3. Сумма и произведение цикленных индексов

3.3.1. Сумма

Сумма цикленных индексов соответсвует поточечной сумме аналитических функторов и здесь нет никаких сюрпризов:

$$\mathcal{Z}_{A+B}^{(1)} = \mathcal{Z}_{A}^{(1)} + \mathcal{Z}_{B}^{(1)}$$

$$\mathcal{Z}_{A+B}^{(2)} = \mathcal{Z}_{A}^{(2)} + \mathcal{Z}_{B}^{(2)}$$

3.4. Произведение

Для произведения уже не совсем так. Утверждается, что моноструктура получается в произведении двух моноструктур. А биструктура получается, если один из сомножителей биструктура. Причем в случае, когда оба сомножителя — биструктуры, получается две различных биструктуры. То есть

$$\mathcal{Z}_{A*B}^{(1)} = \mathcal{Z}_{A}^{(1)} * \mathcal{Z}_{B}^{(1)}$$

$$\mathcal{Z}_{A*B}^{(2)} = \mathcal{Z}_A^{(1)} * \mathcal{Z}_B^{(2)} + \mathcal{Z}_A^{(2)} * \mathcal{Z}_B^{(1)} + 2(\mathcal{Z}_A^{(2)} * \mathcal{Z}_B^{(2)})$$

Откуда следует

$$(\mathcal{Z}_{A*B}^{(1)} + 2\mathcal{Z}_{A*B}^{(2)}) = (\mathcal{Z}_A^{(1)} + 2\mathcal{Z}_A^{(2)}) * (\mathcal{Z}_B^{(1)} + 2\mathcal{Z}_B^{(2)})$$

Что логично, поскольку $(\mathcal{Z}_F^{(1)} + 2\mathcal{Z}_F^{(2)})$ — это цикленный индекс для цветов, с «забытой» инволюцией.

3.4.1. Примеры

Посчитаем произведение уже известных h-структур и их цикленных индексов.

Структура $\stackrel{\circ}{\circ} \times \stackrel{\circ}{\circ}$.

$$\mathcal{Z}^{(1)}(\begin{cases} \begin{cases} \be$$

Структура $\stackrel{\circ}{\bullet} \times \stackrel{\circ}{\bullet}$.

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\mathring{\bullet} \times \mathring{\bullet}) = [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\mathring{\bullet}) \times [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\mathring{\bullet}) = (\psi^1_{x,y,y})^2$$

Легко получить эту же формулу и из других соображений, как $\frac{1}{8}(8(\psi^1_{x,y,y})^2)$.

$$\mathcal{Z}^{(1)}({}^{\circ}_{\bullet} \times {}^{\circ}_{\bullet}) = \mathcal{Z}^{(1)}({}^{\circ}_{\bullet}) \times \mathcal{Z}^{(1)}({}^{\circ}_{\bullet}) = (\psi_x^1)^2$$

3.5. Цикленный индекс композиции

3.5.1. Случай обычных species

Аналитический функтор позволяет дать определние композиционного произведения двух структур. Рассмотрим два species F и G. По ним можно построить аналитические функторы \mathcal{F} и \mathcal{G} . Композиция этих функторов снова будет анлитическим функтором $\mathcal{F} \circ \mathcal{G}$. Доказательство его аналитичности можно найти в [TODO: где или взять доказательство Дурова]. Species который соответсвует цикленному индексу $\mathcal{F} \circ \mathcal{G}$ и будет называться $F \circ G$. У этого определения есть простая, наглядная комбинаторная интерпретация: каждую точку структуры F раздуваем(красим) в структуру типа G. Чудесный факт заключается в том, что в декатегорификации композиция соответствует простой формуле подстановки. Сейчас мы ее напишем и приведем набросок доказательства. В качестве множества цветов A рассмотрим счетный набор цветов x_1, x_2, x_3, \ldots Цикленный индекс запишем относительно базиса кольца симметрических функций $\psi^1, \psi^2, \psi^3, \ldots$

$$\mathcal{Z}_{F \circ G}(\psi^{1}, \psi^{2}, \psi^{3}, \dots) = \\ \mathcal{Z}_{F}(\mathcal{Z}_{G}(\psi^{1}, \psi^{2}, \psi^{3}, \dots), \mathcal{Z}_{G}(\psi^{2}, \psi^{4}, \psi^{6}, \dots), \mathcal{Z}_{G}(\psi^{3}, \psi^{6}, \psi^{9}, \dots), \dots)$$
(3.8)

В композиции двух аналитических функторов получается, что цвета в которые мы красим структуру F это структуры типа G. То есть $\mathcal{Z}_{F\circ G}=\mathcal{Z}_F(\psi_g^1,\psi_g^2,\psi_g^3,\dots)$, где $\psi_g^i=(g_1^i+g_2^i+g_3^i+\dots)$, где g_i — перечисление всех структур типа G. Нужно раскрыть переменные g_i — написать их относительно начальных цветов. Формулу $\psi_g^i=\mathcal{Z}_G(\psi^i,\psi^{2i},\psi^{3i},\dots)$ легко понять в переменных x_1,x_2,x_3,\dots Мы должны покрасить i кусков в одну и ту же G-структуру. Значит каждый цвет x_j заменяется на x_i^i .

Формулу ?? можно специализировать для подсчета labeled—структур. То есть покрашенных структур у которых нет двух одинаковых цветов в расскраске. Соответсвующие мономы (в базисе x_1, x_2, x_3, \ldots) возникают только при раскрытии мономов вида $c(\psi^1)^k$ и коэффициент в них равен ck! — такой же как при мономе с точностью до факториала. Этот факториал приводит к необходимости рассматривать экспоненциальные производящие функции вместо обычных. Можно занулить все остальные мономы подстановкой $\psi^1 = t, \psi^2 = 0, \psi^3 = 0, \psi^4 = 0$. Формула ?? примет вид $\mathcal{Z}_{F\circ G}(t,0,0,\ldots) = \mathcal{Z}_F(\mathcal{Z}_G(t,0,0,\ldots),0,0,\ldots)$. А значит для экспоненциальных производящих функции labeled-структур справедливо равенство

$$(f \circ g)(t) = f(g(t)) \tag{3.9}$$

А поскольку labeled структур ровно в k! раз больше, чем unlabeled, то равенство $\ref{eq:constraint}$ справедливо для обыкновенных производящих функций unlabeled структур.

3.5.2. Случай h-species

Теперь попробуем выстроить теорию композиции цикленного индекса для h-species, параллельно теории species. Прежде всего отметим, что инволюция на множестве цветов делит их на моноцвета $(x_1, x_2, x_3, ...)$ и бицвета $(y_1, y_2, y_3, ...)$. Однако, формулы ?? и ?? подсказывают, что в качестве базиса можно брать не ψ_x^i, ψ_y^j а $\psi_x^i, \psi_{x,y,y}^j$. Впрочем это тривиальная замена переменных.

Итак мы хотим выяснить чему равняются

$$\mathcal{Z}_{F \circ G}^{(1)}(\psi_x^1, \psi_x^2, \psi_x^3, \dots, \psi_{x,y,y}^1, \psi_{x,y,y}^2, \psi_{x,y,y}^3, \dots)$$

$$\mathcal{Z}_{F \circ G}^{(2)}(\psi_x^1, \psi_x^2, \psi_x^3, \dots, \psi_{x,y,y}^1, \psi_{x,y,y}^2, \psi_{x,y,y}^3, \dots)$$

Утверждается следующее:

$$\mathcal{Z}_{F\circ G}^{(1)/(2)}(\psi_{x}^{1}, \psi_{x}^{2}, \psi_{x}^{3}, \dots, \psi_{x,y,y}^{1}, \psi_{x,y,y}^{2}, \psi_{x,y,y}^{3}, \dots) = \\
\mathcal{Z}_{F}^{(1)/(2)}(\mathcal{Z}_{G}^{(1)}(\psi_{x}^{1}, \psi_{x}^{2}, \psi_{x}^{3}, \dots, \psi_{x,y,y}^{1}, \psi_{x,y,y}^{2}, \psi_{x,y,y}^{3}, \dots), \\
\mathcal{Z}_{G}^{(1)}(\psi_{x}^{2}, \psi_{x}^{4}, \psi_{x}^{6}, \dots, \psi_{x,y,y}^{2}, \psi_{x,y,y}^{4}, \psi_{x,y,y}^{6}, \dots), \\
\mathcal{Z}_{G}^{(1)}(\psi_{x}^{3}, \psi_{x}^{6}, \psi_{y}^{9}, \dots, \psi_{x,y,y}^{3}, \psi_{x,y,y}^{6}, \psi_{x,y,y}^{9}, \dots), \\
\dots, \\
[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}]_{G}(\psi_{x}^{1}, \psi_{x}^{2}, \psi_{x}^{3}, \dots, \psi_{x,y,y}^{1}, \psi_{x,y,y}^{2}, \psi_{x,y,y}^{3}, \dots), \\
[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}]_{G}(\psi_{x}^{2}, \psi_{x}^{4}, \psi_{x}^{6}, \dots, \psi_{x,y,y}^{2}, \psi_{x,y,y}^{4}, \psi_{x,y,y}^{6}, \dots), \\
[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}]_{G}(\psi_{x}^{3}, \psi_{x}^{6}, \psi_{y}^{9}, \dots, \psi_{x,y,y}^{3}, \psi_{x,y,y}^{6}, \psi_{y,y,y}^{9}, \dots), \\
\dots)$$
(3.10)

Эта формула слишком грамоздкая, поэтому давайте напишем ее на уровне членов:

$$\psi_x^i \circ (\mathcal{Z}_G^{(1)}, \mathcal{Z}_G^{(2)}) = \mathcal{Z}_G^{(1)}(\psi_x^i, \psi_x^{2i}, \psi_x^{3i}, \dots, \psi_x^i, \psi_x^{2i}, \psi_x^{3i}, \dots)$$

$$\psi_{x,y,y}^{i} \circ (\mathcal{Z}_{G}^{(1)}, \mathcal{Z}_{G}^{(2)}) = [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}]_{G}(\psi_{x}^{i}, \psi_{x}^{2i}, \psi_{x}^{3i}, \dots, \psi_{x}^{i}, \psi_{x}^{2i}, \psi_{x}^{3i}, \dots)$$

Здесь мы пишем $(\mathcal{Z}_G^{(1)}, \mathcal{Z}_G^{(2)})$, поскольку цикленный индекс для h-species в действительности представляет собой пару. Биструктуры подставляются вместо бицветов, моноструктуры, вместо моноцветов. В остальном рассуждение дословно повторяет случай обычных species.

Аналогично, если сделать подстановку

$$\psi_x^1 = t, \psi_x^k = 0, k > 1$$

$$\psi_{x,y,y}^1 = s, \psi_{x,y,y}^k = 0, k > 1$$

То полученная формула показывает, что ?? справедливо для экспоненциальных производящих функций bilabeled-структур (то есть производящая функция от двух переменных). А можно сделать подстановку s:=t, которая даст выполнение формулы ?? для exp-производящей функции просто labeled-структур. А значит и обычной производящей функции unlabeled-структур.

3.5.3. Примеры

Посчитаем $(\mathcal{Z}^{(1)}, \mathcal{Z}^{(2)})(\stackrel{\diamond}{\bullet} \circ \stackrel{\diamond}{\circ})$

$$\mathcal{Z}^{(1)}({}^{\lozenge}_{\bullet} \circ {}^{\lozenge}) = \psi^1_x \circ \psi^1_{x,y} = \psi^1_{x,y} = \mathcal{Z}^{(1)}({}^{\lozenge}_{\bullet})$$

$$\mathcal{Z}^{(2)}({}^{\diamond} \circ {}^{\diamond}) = \psi_y^1 \circ 0 = 0 = \mathcal{Z}^{(2)}({}^{\diamond})$$

Да и вобще, справедливо

$$\mathcal{Z}^{(1)}(\overset{\circ}{\bullet} \circ A) = \mathcal{Z}^{(1)}(A)$$

$$\mathcal{Z}^{(2)}(\stackrel{\circ}{\bullet} \circ A) = \mathcal{Z}^{(2)}(A)$$

А так же

$$\mathcal{Z}^{(1)}(A \circ \stackrel{\circ}{\bullet}) = \mathcal{Z}^{(1)}(A)$$

$$\mathcal{Z}^{(2)}(A \circ \stackrel{\circ}{\bullet}) = \mathcal{Z}^{(2)}(A)$$

Это дает некоторое понимание композиции. Так $A \circ \mathring{\bullet} = \mathring{\bullet} \circ A = A$. То есть $\mathring{\bullet}$ является нейтральным элементом в монойде h-species по композиции. Это несколько контр-интуитивно, поскольку в обычных species нейтральным элементом являеться одноточечное множество. А его образом при вложении species в h-species являеться $\mathring{\circ}$. [ТОДО A не значит ли это что просто можно по другому вложить?]

Интересно посмотреть чем является 🖇 . Например

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\square \circ \lozenge) = \frac{1}{2} (\frac{1}{2} (\psi_{x,y,y}^1 + \psi_x^1))^2 + \frac{1}{2} (\frac{1}{2} (\psi_{x,y,y}^2 + \psi_x^2)) = \frac{1}{8} ((\psi_x^1)^2 + (\psi_{x,y,y}^1)^2 + 2\psi_{x,y,y}^2 + 2(\psi_{x,y,y}^1 \psi_x^1) + 2\psi_x^2) = [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\square)$$
(3.11)

Откуда можно сделать вывод, что $\square \circ \lozenge = \square$. То есть подстановка \lozenge , это «стирание различий между противоположными гранями».

3.5.4. Предложения [TODO]

$$(\mathcal{Z}_G^{(1)}, \mathcal{Z}_G^{(2)})(\psi_x^1, \psi_x^2, \psi_x^3, \dots, \psi_{x,y,y}^1, \psi_{x,y,y}^2, \psi_{x,y,y}^3, \dots) = (\mathcal{Z}_G(\psi_{x,y}^1, \psi_{x,y}^2, \psi_{x,y}^3, \dots), 0)$$

Где G — обычный species, вложенный в h-species. А \mathcal{Z}_G — его цикленный индекс.

3.6. Примеры [TODO]

Посчитаем для структуры V «вершина куба».

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](V) = e^{\psi_{x,y,y}^1 + \frac{\psi_{x,y,y}^2}{2!} + \frac{\psi_{x,y,y}^3}{3!} + \dots}$$

$$\mathcal{Z}^{(1)}(V) = e^{(\psi_x^1 + \frac{\psi_x^2}{2!} + \frac{\psi_x^3}{3!} + \dots) + (\psi_y^2 + \frac{\psi_y^4}{2!} + \frac{\psi_y^6}{3!} + \dots)}$$

Для структуры куба H «куб».

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](H) = \mathcal{Z}^{(1)}(H) = e^{\psi_{x,y}^1 + \frac{\psi_{x,y}^2}{2!} + \frac{\psi_{x,y}^3}{3!} + \dots}$$

Нетрудно убедится что $\mathcal{Z}^{(i)}(V \circ \S) = \mathcal{Z}^{(i)}(H)$.