Poros plazma kísérletek támogatása multiprocesszoros környezetben

KÉSZÍTETTE: BAKRÓ NAGY ISTVÁN

KONZULENS: HARTMANN PÉTER (MTA WIGNER FK, SZFI)

REICHARDT ANDRÁS (BME SZHVT)

A poros plazma kísérlet

- Alacsony nyomású ionizált nemesgáz
- RF gerjesztés
- Plazmába szórt porrészecskék
- Gravitációs, villamos, szóródásos, hőmérséklet gradiensi, ion sodrási erő
- Részecskék erős vagy gyenge kölcsönhatása: Coulomb csatolási param. (Γ)

A kísérlet

- Elővákuum, középvákuum szivattyú
- Nemesgáz áramlás
- RF gerjesztés
- Porrészecskék
- Megvilágító lézer és kamera

Részecskék detektálása

- Küszöb módszer
- Küszöb módszer szűréssel
 - Gauss szűrővel
 - Medián szűrő
- Adaptív küszöb módszer szűréssel
 - Fényképezés okozta részletesség-különbség problémája
 - Fényes területekben kevésbé bízhatunk meg

Részecske pozíciójának számítása momentum módszerrel

- Ditherelés a fókusz elállításával
- Megjelölt pixel kiterjesztése
- •Flood-fill algoritmussal a ROI megkeresése
- Maximálisan világos pont
- Súlypont számítása

Momentum módszer

Momentum módszer

OpenCL architektúrája

ESZKÖZ ARCHITEKTÚRÁJA

MEMÓRIA SZINTEK

	Allo	Sobossóg		
	Hoszt	Kernel	Sebesség	
Globális	Din	Statik.	Lassú	
Konstans	Din	Statik.	Gyors	
Lokális	Din	Statik.	Gyors	
Privát	Din	Statik.	Regiszter	

A host-program működése

A meghívott kernelek

- Medián szűrő
- Átlag számító
- Szórás számító
- Detektáló
- ROI-t megkereső és tömegpont számító

	GTX 330m	Xeon E5-1620	Xeon PHI	GTX 590
MAX_COMPUTE_UNITS	6	8	224	16
MAX_CLOCK_FREQUENCY	$1265\mathrm{MHz}$	$3000\mathrm{MHz}$	$1100\mathrm{MHz}$	$1225\mathrm{MHz}$
MAX_MEM_ALLOC_SIZE	$\sim 0.25\mathrm{Gbyte}$	$\sim 8\mathrm{Gbyte}$	$\sim 1.5\mathrm{Gbyte}$	$\sim 0.4\mathrm{Gbyte}$
LOCAL_MEM_SIZE	16 Kbyte	32 Kbyte	32 Kbyte	48 Kbyte
LOCAL_MEM_TYPE	Local	Global	Global	Local
Futási idő E $\{T\}$	114.12 s	202.01 s	52.74 s	7.74 s
Feldolgozási seb. $\frac{1000}{\mathbf{E}\{T\}}$	8.65 FPS	4.82 FPS	18.46 FPS	128.51 FPS

6.1. táblázat. Az eszközök erőforrásainak és a program futási idejének összehasonlítása.

6.1. ábra. 1000 kép feldolgozásának futási ideje [s]. A kissebb érték a kedvezőbb.

	GTX 330m	Xeon E5-1620	Xeon PHI	GTX 590
MAX_COMPUTE_UNITS	6	8	224	16
MAX_CLOCK_FREQUENCY	$1265\mathrm{MHz}$	$3000\mathrm{MHz}$	1100 MHz	$1225\mathrm{MHz}$
Futási idő $\mathbf{E}\left\{T\right\}$	114.1 s	202.0 s	52.7 s	7.74 s
Fajlagos futási idő $T_{\rm fajl}$	$0.86{ imes}10^{12}$	$4.85{ imes}10^{12}$	13.00×10^{12}	$0.15{ imes}10^{12}$

6.2. táblázat. Eszközök fajlagos futási idejének összehasonlítása

6.2. ábra. 1000 kép feldolgozásának fajlagos futási ideje. A kissebb érték a kedvezőbb.

Összegzés

- Bemutattam a porosplazma kísérletek apparátusát
- Részecske detektálása szűréssel és adaptív döntési küszöbbel
- Szűrés Gauss helyett medián szűrővel
- Host-program producer-consumer szálba rendezése
- Eredmény grafikus megjelenítése (OpenGL)

További lehetőségek:

- Paraméterek GUI-val történő online állítása
- Eredeti stream megjelenítése

Bírálói kérdések

- 1) Hogyan történt a program tesztelése, validálása, különös tekintettel a kernelre?
- 2) Mikor kell a "ditherelés" a gyakorlatban? (Lásd 2.2 fejezet!)
- 3) A 2. oldalon található Fn és Fi függetlenek-e egymástól? Válaszát indokolja!
- 4) A 2.1 egyenletben található paramétereket hogyan választjuk meg? (Lásd 10. oldal!)

$$K = \mathbf{E} \left\{ P - \hat{\mathbf{M}} P \right\} +$$

$$+ \delta \cdot \mathbf{STD} \left\{ P - \hat{\mathbf{M}} P \right\} \cdot \left[1 + a \left(\frac{\hat{\mathbf{M}} P}{\max \left\{ \hat{\mathbf{M}} P \right\} - \min \left\{ \hat{\mathbf{M}} P \right\}} \right)^{b} \right] \quad (2.1)$$

Bírálói kérdések

5) A 19. oldal alján olvasható: "Az összehasonlíthatóság végett a legkisebb memóriájú eszközre fogom a problémát skálázni. Tehát maximálisan 16Kbyte lokális memóriát fogok használni. A többi eszköz memóriája nagyobb, így a kód mindegyiken tud futni."

E fenti feltételezés viszont azt jelenti, hogy csak az egyik eszközre lesz optimális a kernel. Ez módisítja a 6.1 ábrán vázolt futási sebességeket. Mi a helyzet, ha a 16Kbyte helyett az egyes hardverek optimum memória blokkját használjuk a párhuzamosításhoz? Történt-e ez irányú vizsgálat?

6) A diploma dolgozatban ismertetett program alkalmazása hogyan történik a poros plazma készüléken végrehajtott mérések során? A jelölt lehetőleg konkrét példán keresztül mutassa be az általa kifejlesztett program alkalmazását