1. Last class you showed that if f(x) = 1/x then $f'(x) = -1/x^2$. Find the equation of the tangent line to the curve y = 1/x at x = 2 and at x = 4. Then sketch the graph of y = 1/x and the two tangent lines.

$$\int (\chi) = \frac{1}{\chi}$$

$$\int (\chi) = -\frac{1}{\chi^2}$$

$$Q = 2$$
 $f(z) = \frac{1}{2}$ $y = \frac{1}{2} - \frac{1}{4}(x-2)$
 $f'(z) = -\frac{1}{4}$

2. Given the graph of f(x) below, sketch f'(x).

3. The graph below is $f(x) = \sqrt{x}$. Sketch f'(x).

4. From the definition of the derivative, compute f'(x) when $f(x) = \sqrt{x}$. Does your result agree with you sketch above?

$$\int f'(x) = \lim_{h \to 0} \frac{\int x + h - Jx}{h}$$

$$= \lim_{h \to 0} \frac{\int x + h - Jx}{h}$$

$$= \lim_{h \to 0} \frac{\int x + h - Jx}{h}$$

$$= \lim_{h \to 0} \frac{\int x + h + Jx}{h}$$

$$= \lim_{h \to 0} \frac{\int x + h + Jx}{h}$$

$$= \lim_{h \to 0} \frac{\int x + h + Jx}{h}$$

5. Given the graph of f(x) below, sketch f'(x).

6. Given the graph of f(x) below, sketch f'(x).

