

Grado en Ingeniería Informática Tecnología de Computadores. 2ª prueba parcial Grupos 84,85. Diciembre de 2008

Problema 1

Con motivo de la campaña de Navidad, una empresa de juguetes quiere diseñar un nuevo juego basado en un dado electrónico binario que puede tomar los valores '0' y '1'. J representa el valor por el que apuesta el jugador y D el valor que se obtiene al tirar el dado.

En este juego, un jugador (J) apuesta por que va a salir un valor del dado (D) y consigue un punto cuando acierta el valor obtenido en dos tiradas consecutivas con el dado binario. Es decir, obtiene un punto cuando J = D dos veces seguidas y 0 puntos en el resto de casos.

Entradas al sistema:

- Reloj: (CLK)
- Reset: activo a nivel bajo (/R)
- J: valor por el que apuesta el jugador (J) antes de tirar el dado
- D: valor obtenido al tirar el dado (D)

Salidas

• P: Puntuación, si el jugador ha acertado el valor de las dos últimas tiradas vale '1' y '0' en el resto de casos.

Todas las señales mencionadas son activas por nivel alto.

- 1) Dibuje el diagrama de estados según el modelo de Mealy del circuito que asigna la puntuación a un jugador. ¿Cuántos estados son necesarios? ¿Cuántos biestables se necesitan?
- 2) Implemente el circuito utilizando biestables D, especificando claramente la asignación de estados y la tabla de transiciones.

TECNOLOGÍA DE COMPUTADORES GII PRUEBA PARCIAL Z DICIEMBRE 2008 G-84/85 PROBLEMA 1

1) Diagrama de estados de Mealy

Se necesitor 2 estados y 1 biestable

$$2^{N} > 2$$
 $3 \Rightarrow N = 1$
N minimo 3

2) Implementación con biestables D

Asignación de estados Acierto = 0' Fallo = 11'

Tabla de Transiciones

DFF =	D	del	biestable
-------	---	-----	-----------

	lt			(t†	1)	D
	10	J	DI	Q)	DFF	<u> </u>
. 1	0	0	.0	0	0	4
Acierto	0	0	1	1	1	0
J=D	0	1	0	1	1	0
0	0	1	1	0	0	1
. 1	1	0	0	0	0	0
Fallo	1	0	1	1	1	0
] + P	1	1	0	1	1	0
1	1	1	1	0_	0	0

(PFE)	JP	,	1	1.401
@\	00	01	11	10
ol	0	1	0	17
11	0	(1)	0	[4]
DF	F = {]D+	Jō=	= 1@D

(D) 7D				
200	01	111	10	Ĺ
a (4)	0	(1)	0	_
10	0	0	0	·
P= 1	Q (-	1D+	JD):	= Q(JED)

Grado en Ingeniería Informática Tecnología de Computadores. 2ª prueba parcial Grupos 84,85. Diciembre de 2008

Nombre:	Grupo:				
Apellidos:					

Cuestión 1

Dado el circuito de la figura:

- a) Determinar las ecuaciones de estado y las de salida, suponiendo que S es la única señal de salida.
- b) Rellenar el cronograma adjunto utilizando las variables intermedias que sean precisas.

c) A partir de la simulación, determine el periodo y la frecuencia de reloj $f = \frac{1}{T} = \frac{\lambda}{500} = 20$ H2 d) Explique la funcionalidad del circuito

Détector de flanco de bajada. Cuando E pasa de 1 a 0, la salida da un pulso de un aido de reloj. Puede considerarse un detector de la securia "10".