IN THE CLAIMS

Please cancel claim 10, amend claims 1-9, and add new claims 11 and 12 as follows:

	1. (Currently Amended) <u>Loudspeaker A loudspeaker protection</u>
	system comprising:
	filter means for defining one or more dividing a frequency
	spectrum of an input audio signal into a plurality of frequency
5	bands of an audio signal, characterised in that the loudspeaker
	protection system further comprises :
	controllable amplifier/attenuator means coupled to the
	filter means, and
	processing means coupled to control for controlling the
10	amplifier/attenuator means, such as to determinesaid processing
	means determining audio power in at least one of said frequency
	bands representing relevant loudspeaker protection information, and
	selectively controlling said controllable amplifier/attenuator
	means in response to the determined used for selective audio power
15	control in said at least one of said plurality of frequency bands.

2. (Currently Amended) <u>Loudspeaker_The loudspeaker_protection</u>
system according to as claimed in claim 1, characterised
characterized in that the processing means are equipped to

determined the audio power S_j in frequency band j in proportion to:

$$v_{jtop}^2 * R\{Y_j\},$$

where v_{jtop} is the peak value of the amplitude of the frequency components in frequency band j, and $R\{Y_j\}$ is the real part of the electric admittance of the loudspeaker in frequency band j.

- 3. (Currently Amended) Loudspeaker The loudspeaker protection system according to as claimed in claim 2, characterised characterized in that in the loudspeaker protection system, j = 1, 2, 3 ... n, where n equals the number of frequency bands wherein into which the frequency spectrum of the audio signal is divided.
- 4. (Currently Amended)

 Loudspeaker protection system according to claim 2A loudspeaker protection system comprising:

 filter means for defining one or more frequency bands of an audio signal;

 controllable amplifier/attenuator means coupled to the filter means; and

 processing means coupled to control the amplifier/attenuator means, such as to determine audio power in at least one of said frequency bands representing relevant loudspeaker protection information used for selective audio power control in said at least one frequency band, characterised

5

10

characterized in that the processing means determines the audio power S₁ in frequency band j in proportion to:

 $v_{jtop}^2 * R\{Y_j\}$

where v_{jtop} is the peak value of the amplitude of the frequency components in frequency band j, and R{Y₁} is the real part of the electric admittance of the loudspeaker in frequency band j, and the processing means are capable of summingsums the audio power S_j in the plurality of frequency bands over a specified sub-range of possible values of j, where j is in the rangeranges from 1, 2, ... n.

- 5. (Currently Amended) Loudspeaker The loudspeaker protection system according to as claimed in claim 4, characterised characterized in that if any summed value or combination of values S_j approximates some normalised normalized value S_{norm}, the processing means then controls the amplifier/attenuator means—are controlled by the processing means.
- 6. (Currently Amended) Loudspeaker The loudspeaker protection system according to as claimed in claim 4, characterised characterized in that the processing means are equipped to determined termines S_j or any summation thereof every 0.001 2 sec., in particular every .1 1 sec.

7. (Currently Amended) Loudspeaker The loudspeaker protection system according to as claimed in claim 15, characterised characterized in that the processing means controls the amplifier/attenuator means are controlled such by the processing means that attenuation factors of the amplifier/attenuator means are proportional to:

$$1 / \sqrt{\alpha} + \beta_1 (1 - 1 / \sqrt{\alpha})$$

where $\alpha = S/S_{norm}$, S is the summed value, and β_j represents a factor whose having a value depends depending empirically on the particular frequency band j.

8. (Currently Amended) Loudspeaker The loudspeaker protection system according to as claimed in claim 1, characterised characterized in that output means of said amplifier/attenuator means is coupled to a first terminal of a loudspeaker, and the loudspeaker protection system further comprises a series arrangement of the loudspeaker and a measuring element coupling a second terminal of the loudspeaker to ground, such as a resistance, whose a common connection point is between the loudspeaker and the measuring element being coupled to the processing means, whereby to account for actual impedance data of the loudspeaker as determined by the measuring element is taken into account by the processing means.

5

10

5

10

- 9. (Currently Amended) Loudspeaker The loudspeaker protection system according to as claimed in claim 1, characterised characterized in that the processing means is arranged to initiate initiates control of the amplifier/attenuator means in a shorter amount of time than that the amount of time over which control is withdrawn.
- R

5

- 10. (Cancelled).
- 11. (New) The loudspeaker protection system as claimed in claim 6, characterized in that the processing means determines S_j or any summation thereof every 0.1 1 sec.
- 12. (New) The loudspeaker protection system as claimed in claim 8, wherein said measuring element is a resistor.