DRA73, DRA74, DRA124, DRA125 & DRA127 Series High Power Density, High Efficiency Shielded Inductors for Automotive Applications

Description

- · Halogen free, lead free, RoHS compliant
- 165°C Maximum total temperature operation
- · Five different mechanical sizes available
- · Magnetically shielded-reduces EMI
- · Ferrite core material
- Inductance range from $0.28\mu H$ to $1000\mu H$
- · Current range up to 56 amps
- Rugged construction for high shock and vibration environments

Applications

- Automotive electronics (under hood, interior/ exterior)
- Telematics
- · GPS
- LED Lighting
- · LCD Display
- · Portable media devices

Environmental data

- Storage temperature range (component): -40°C to +165°C
- Operating temperature range: -40°C to +165°C (ambient + self-temperature rise)
- Solder reflow temperature: J-STD-020D compliant
- · Complies with AEC-Q200 standard

Packaging

 Supplied in tape-and-reel packaging on a 13 inch diameter reel

The Coiltronics brand of magnetics (formerly of the Bussmann Division of Cooper Industries) is now part of Eaton's Electrical Group, Electronics Division.

Coiltronics is now part of Eaton Same great products plus even more.

Product specifications

DRA73 Series - 7.6 x 7.6 x 3.55mm

Part	OCL ¹	l 2		I _{sat} 2 ⁴	DCR (Ω) @ 25°C	DCR (Ω) @ 25°C	
Number ⁶	±20% (μH)	' _{rms} (Amps)	(Amps)	(Amps)	Typical	Maximum	K-Factor⁵
DRA73-R33-R	0.29	8.42	14.8	11.8	0.0040	0.0048	636.5
DRA73-1R0-R	0.91	6.50	8.22	6.58	0.0067	0.0080	353.6
DRA73-1R5-R	1.36	5.39	6.73	5.38	0.0097	0.0117	289.3
DRA73-2R2-R	2.52	4.18	4.93	3.95	0.016	0.019	212.2
DRA73-3R3-R	3.18	3.59	4.35	3.48	0.022	0.026	187.2
DRA73-4R7-R	4.86	2.92	3.52	2.82	0.033	0.040	151.6
DRA73-6R8-R	6.63	2.62	2.96	2.37	0.041	0.049	127.3
DRA73-8R2-R	8.06	2.30	2.74	2.19	0.053	0.064	117.9
DRA73-100-R	10.27	2.11	2.39	1.91	0.064	0.077	102.7
DRA73-150-R	14.98	1.74	2.00	1.60	0.094	0.112	86.0
DRA73-220-R	22.39	1.42	1.64	1.32	0.141	0.170	70.7
DRA73-330-R	31.84	1.25	1.35	1.08	0.183	0.219	57.9
DRA73-470-R	47.83	1.02	1.10	0.884	0.275	0.330	47.5
DRA73-680-R	66.89	0.845	0.937	0.749	0.397	0.476	40.3
DRA73-820-R	83.77	0.731	0.851	0.680	0.530	0.636	36.6
DRA73-101-R	101.7	0.682	0.763	0.610	0.609	0.731	32.8
DRA73-151-R	151.1	0.551	0.632	0.506	0.932	1.12	27.2
DRA73-221-R	218.8	0.479	0.510	0.408	1.23	1.48	21.9
DRA73-331-R	326.4	0.391	0.423	0.338	1.85	2.22	18.2
DRA73-471-R	472.6	0.326	0.354	0.283	2.67	3.20	15.2
DRA73-681-R	682.9	0.270	0.297	0.238	3.89	4.66	12.8
DRA73-821-R	825.3	0.252	0.267	0.214	4.46	5.35	11.5
DRA73-102-R	991.9	0.235	0.239	0.192	5.15	6.18	10.3

^{1.} Open Circuit Inductance (OCL) Test Parameters: 100kHz, 0.25V_{ms}, 0.0Adc @ 25°C

I_{ms}: DC current for an approximate temperature rise of 40°C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed 165°C under worst case operating conditions verified in the end application.
3. I_{sat} 1: Peak current for approximately 30% rolloff at +25°C.

^{4.} I_{sat} 2: Peak current for approximately 40% rolloff at +125°C. 5. K-factor: Used to determine Bp-p for core loss (see graph). $B_{so} = K * L * \Delta I$. B_{po} :(Gauss), K: (K-factor from table), L: (Inductance in μ H), ΔI (peak-to-peak ripple current in amps).

^{6.} Part Number Definition: DRAxxx-yyy-R

DRAxxx = Product code and size
 yyy= Inductance value in uH, R = decimal point, if no R is present then third character = number of zeros.

• -R suffix = RoHS compliant1

High Power Density, High Efficiency Shielded Inductors for **Automotive Applications** DRA73, DRA74, DRA124, DRA125 and DRA127 Series

Product specifications

DRA74 Series - 7.6 x 7.6 x 4.35mm

Part	OCL ¹	l 2 rms	I _{sat} 1 ³	I _{sat} 2 ⁴	DCR (Ω) @ 25°C	DCR (Ω) @ 25°C	
Number ⁶	±20% (μH)	(Amps)	(Amps)	(Amps)	Typical	Maximum	K-Factor⁵
DRA74-R33-R	0.29	7.26	18.4	14.7	0.0054	0.0064	547.9
DRA74-1R0-R	0.90	6.01	10.2	8.18	0.0078	0.0094	304.4
DRA74-1R5-R	1.31	5.55	8.36	6.69	0.0092	0.0110	249.0
DRA74-2R2-R	2.33	4.82	6.13	4.91	0.012	0.015	182.6
DRA74-3R3-R	3.05	4.16	5.41	4.33	0.016	0.020	161.1
DRA74-4R7-R	4.68	3.41	4.38	3.50	0.024	0.029	130.4
DRA74-6R8-R	6.51	2.91	3.68	2.94	0.034	0.040	109.6
DRA74-8R2-R	8.51	2.66	3.17	2.54	0.040	0.048	94.5
DRA74-100-R	9.62	2.56	2.97	2.37	0.043	0.052	88.4
DRA74-150-R	15.14	2.06	2.36	1.89	0.067	0.080	70.2
DRA74-220-R	22.25	1.68	1.96	1.57	0.100	0.120	58.3
DRA74-330-R	33.21	1.37	1.61	1.29	0.151	0.181	48.1
DRA74-470-R	46.56	1.14	1.37	1.10	0.219	0.263	40.9
DRA74-680-R	68.37	0.996	1.11	0.887	0.286	0.343	33.0
DRA74-820-R	81.45	0.879	1.03	0.827	0.367	0.440	30.8
DRA74-101-R	98.50	0.822	0.929	0.743	0.419	0.503	27.7
DRA74-151-R	150.9	0.661	0.748	0.598	0.648	0.780	22.3
DRA74-221-R	218.9	0.544	0.626	0.501	0.960	1.15	18.6
DRA74-331-R	328.9	0.435	0.514	0.411	1.50	1.79	15.3
DRA74-471-R	471.5	0.383	0.420	0.336	1.93	2.31	12.5
DRA74-681-R	682.8	0.315	0.352	0.282	2.86	3.43	10.5
DRA74-821-R	815.0	0.279	0.327	0.262	3.63	4.35	9.7
DRA74-102-R	1001.7	0.260	0.292	0.234	4.19	5.02	8.7

^{1.} Open Circuit Inductance (OCL) Test Parameters: 100kHz, 0.25V_{ms}, 0.0Adc @ 25°C

^{2.5°}C 2. I_{rms}: DC current for an approximate temperature rise of 40°C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed 165°C under worst case operating conditions verified in the end application.

3. I_{sat}1: Peak current for approximately 30% rolloff at +25°C.

^{4.} I_{sat} 2: Peak current for approximately 40% rolloff at +125°C. 5. K-factor: Used to determine Bp-p for core loss (see graph). $B_{so} = K * L * \Delta I$. B_{po} :(Gauss), K: (K-factor from table), L: (Inductance in μ H), ΔI (peak-to-peak ripple current in amps).

^{6.} Part Number Definition: DRAxxx-yyy-R

DRAxxx = Product code and size
 yyy= Inductance value in uH, R = decimal point, if no R is present then third character = number of zeros.

• -R suffix = RoHS compliant1

Product specifications

DRA124 Series - 12.5 x 12.5 x 4.5mm

Part	OCL ¹	l 2 rms	I _{sat} 1 ³	I _{sat} 2 ⁴	DCR (Ω) @ 25°C	DCR (Ω) @ 25°C	
Number ⁶	±20% (μH)	'rms (Amps)	(Amps)	(Amps)	Typical	Maximum	K-Factor ⁵
DRA124-R47-R	0.42	13.5	30.8	24.6	0.0024	0.0028	196.9
DRA124-1R0-R	0.82	11.7	22.0	17.6	0.0031	0.0038	140.7
DRA124-1R5-R	1.36	9.36	17.1	13.7	0.0049	0.0058	109.4
DRA124-2R2-R	2.04	7.64	14.0	11.2	0.0070	0.0090	89.5
DRA124-3R3-R	2.79	6.94	11.9	9.48	0.0090	0.011	75.7
DRA124-4R7-R	4.74	5.47	9.06	7.25	0.014	0.017	57.9
DRA124-6R8-R	7.28	4.46	7.33	5.87	0.021	0.026	46.9
DRA124-8R2-R	8.88	3.87	6.70	5.36	0.028	0.034	42.8
DRA124-100-R	10.37	3.67	6.16	4.93	0.031	0.038	39.4
DRA124-150-R	14.10	3.10	5.31	4.25	0.044	0.053	34.0
DRA124-220-R	23.00	2.44	4.16	3.33	0.071	0.086	26.6
DRA124-330-R	34.13	1.98	3.42	2.74	0.108	0.130	21.9
DRA124-470-R	46.27	1.78	2.91	2.33	0.134	0.160	18.6
DRA124-680-R	69.77	1.45	2.37	1.90	0.201	0.241	15.1
DRA124-820-R	80.57	1.29	2.23	1.79	0.257	0.309	14.3
DRA124-101-R	98.80	1.20	2.00	1.60	0.296	0.355	12.8
DRA124-151-R	151.7	0.967	1.62	1.30	0.454	0.550	10.4
DRA124-221-R	209.6	0.865	1.36	1.09	0.568	0.680	8.7
DRA124-331-R	326.9	0.690	1.09	0.874	0.892	1.070	7.0
DRA124-471-R	473.0	0.568	0.911	0.729	1.32	1.58	5.8
DRA124-681-R	682.1	0.466	0.759	0.607	1.96	2.35	4.9
DRA124-821-R	826.7	0.406	0.697	0.557	2.57	3.09	4.5
DRA124-102-R	1001.0	0.380	0.629	0.503	2.94	3.52	4.0

^{1.} Open Circuit Inductance (OCL) Test Parameters: 100kHz, 0.25V $_{\rm ms'}$ 0.0Adc @ 25°C

^{2.} I_{rms}: DC current for an approximate temperature rise of 40°C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed 165°C under worst case operating conditions verified in the end application.

^{3.} I_{sat}1: Peak current for approximately 30% rolloff at +25°C.

^{4.} I_{sat} 2: Peak current for approximately 40% rolloff at +125°C.

^{5.} K-factor: Used to determine Bp-p for core loss (see graph). B $_{pp} = K * L * \Delta I$. B $_{pp}$:(Gauss), K: (K-factor from table), L: (Inductance in μ H), ΔI (peak-to-peak ripple current in amps).

^{6.} Part Number Definition: DRAxxx-yyy-R

[•] DRAxxx = Product code and size

[•] yyy= Inductance value in μH , R = decimal point, if no R is present then third character = number of zeros.

^{• -}R suffix = RoHS compliant1

High Power Density, High Efficiency Shielded Inductors for Automotive Applications DRA73, DRA74, DRA124, DRA125 and DRA127 Series

Product specifications

DRA125 Series - 12.5 x 12.5 x 6.0mm

Part	OCL ¹	l 2 rms	I _{sat} 1 ³	I _{sat} 2 ⁴	DCR (Ω) @ 25°C	DCR (Ω) @ 25°C	
Number ⁶	±20% (μH)	(Amps)	(Amps)	(Amps)	Typical	Maximum	K-Factor⁵
DRA125-R47-R	0.45	14.7	33.2	26.6	0.0025	0.0030	176.9
DRA125-1R0-R	0.85	12.7	23.7	19.0	0.0034	0.0042	126.4
DRA125-1R5-R	1.41	12.9	18.4	14.8	0.0033	0.0039	98.3
DRA125-2R2-R	2.12	10.6	15.1	12.1	0.0048	0.0058	80.4
DRA125-3R3-R	2.89	8.63	12.8	10.2	0.0073	0.0087	68.0
DRA125-4R7-R	4.90	7.67	9.76	7.81	0.0092	0.011	52.0
DRA125-6R8-R	6.23	6.81	8.74	6.99	0.012	0.014	46.6
DRA125-8R2-R	7.49	6.41	7.90	6.32	0.013	0.016	42.1
DRA125-100-R	9.22	5.57	7.22	5.77	0.017	0.021	38.5
DRA125-150-R	14.67	4.45	5.72	4.58	0.027	0.033	30.5
DRA125-220-R	20.65	3.95	4.74	3.79	0.035	0.042	25.3
DRA125-330-R	31.47	3.19	3.86	3.09	0.053	0.064	20.6
DRA125-470-R	47.83	2.59	3.13	2.51	0.081	0.097	16.7
DRA125-680-R	68.48	2.13	2.64	2.11	0.120	0.144	14.0
DRA125-820-R	80.86	2.01	2.41	1.93	0.135	0.162	12.8
DRA125-101-R	97.60	1.75	2.21	1.77	0.178	0.214	11.8
DRA125-151-R	150.0	1.41	1.79	1.43	0.273	0.330	9.5
DRA125-221-R	222.8	1.14	1.47	1.18	0.416	0.500	7.8
DRA125-331-R	325.1	1.00	1.19	0.96	0.543	0.650	6.4
DRA125-471-R	466.3	0.826	1.01	0.805	0.790	0.950	5.4
DRA125-681-R	683.3	0.673	0.834	0.667	1.200	1.440	4.4
DRA125-821-R	813.6	0.632	0.758	0.606	1.360	1.630	4.0
DRA125-102-R	992.8	0.552	0.695	0.556	1.780	2.130	3.7

^{1.} Open Circuit Inductance (OCL) Test Parameters: 100kHz, 0.25V $_{\rm ms'}$ 0.0Adc @ 25°C

^{2.} I_{ms}: DC current for an approximate temperature rise of 40°C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed 165°C under worst case operating conditions verified in the end application.

^{3.} I_{sat}1: Peak current for approximately 30% rolloff at +25°C.

^{4.} I_{sat} 2: Peak current for approximately 40% rolloff at +125°C.

K-factor: Used to determine Bp-p for core loss (see graph). B_{pp} = K * L * ΔI. B_{pp}:(Gauss), K: (K-factor from table), L: (Inductance in μH), ΔI (peak-to-peak ripple current in amps).

^{6.} Part Number Definition: DRAxxx-yyy-R

[•] DRAxxx = Product code and size

[•] yyy= Inductance value in μH , R = decimal point, if no R is present then third character = number of zeros.

^{• -}R suffix = RoHS compliant1

Product specifications

DRA127 Series - 12.5 x 12.5 x 8.0mm

Part	OCL ¹	l 2	I _{sat} 1 ³	I _{sat} 2 ⁴	DCR (Ω) @ 25°C	DCR (Ω) @ 25°C	
Number ⁶	±20% (μH)	(Amps)	(Amps)	(Amps)	Typical	Maximum	K-Factor⁵
DRA127-R47-R	0.41	15.9	56.0	44.8	0.0024	0.0030	120.0
DRA127-1R0-R	0.77	13.6	40.0	32.0	0.0034	0.0040	85.7
DRA127-1R5-R	1.27	12.2	31.1	24.9	0.0043	0.0051	66.7
DRA127-2R2-R	1.92	12.5	25.5	20.4	0.0040	0.0048	54.6
DRA127-3R3-R	3.51	8.54	18.7	14.9	0.0086	0.0104	40.0
DRA127-4R7-R	4.58	8.14	16.5	13.2	0.0094	0.011	35.3
DRA127-6R8-R	6.72	6.52	13.3	10.7	0.015	0.018	28.6
DRA127-8R2-R	8.33	6.33	12.2	9.74	0.016	0.019	26.1
DRA127-100-R	9.63	6.02	11.2	8.96	0.017	0.021	24.0
DRA127-150-R	14.90	4.83	9.03	7.23	0.027	0.032	19.4
DRA127-220-R	21.47	3.98	7.57	6.05	0.040	0.047	16.2
DRA127-330-R	32.01	3.22	6.22	4.98	0.060	0.072	13.3
DRA127-470-R	47.91	2.62	5.09	4.07	0.091	0.110	10.9
DRA127-680-R	68.22	2.33	4.18	3.34	0.115	0.138	9.0
DRA127-820-R	83.91	2.01	3.84	3.07	0.155	0.186	8.2
DRA127-101-R	100.8	1.89	3.46	2.77	0.175	0.210	7.4
DRA127-151-R	151.2	1.52	2.83	2.26	0.269	0.320	6.1
DRA127-221-R	219.8	1.25	2.35	1.88	0.398	0.480	5.0
DRA127-331-R	328.3	1.01	1.93	1.54	0.612	0.730	4.1
DRA127-471-R	474.5	0.827	1.62	1.29	0.910	1.10	3.5
DRA127-681-R	676.6	0.736	1.33	1.06	1.15	1.39	2.8
DRA127-821-R	824.6	0.637	1.22	0.978	1.54	1.85	2.6
DRA127-102-R	998.7	0.598	1.10	0.878	1.75	2.10	2.4

^{1.} Open Circuit Inductance (OCL) Test Parameters: 100kHz, 0.25V_{ms}, 0.0Adc @ 25°C

^{2.} I_{ms}: DC current for an approximate temperature rise of 40°C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed 165°C under worst case operating conditions verified in the end application.

^{3.} I_{sat}1: Peak current for approximately 30% rolloff at +25°C.

^{4.} I_{sat} 2: Peak current for approximately 40% rolloff at +125°C. 5. K-factor: Used to determine Bp-p for core loss (see graph). $B_{co} = K * L * \Delta I$. B_{po}:(Gauss), K: (K-factor from table), L: (Inductance in μH), ΔI (peak-to-peak ripple current in amps).

^{6.} Part Number Definition: DRAxxx-yyy-R

• DRAxxx = Product code and size

 $[\]bullet$ yyy= Inductance value in $\mu H,\,R$ = decimal point, if no R is present then third character = number of zeros.

^{• -}R suffix = RoHS compliant1

Temperature rise vs. total loss

Core loss

Inductance characteristics

Dimensions - mm

DRA73 & DRA74

Part Marking: ### = inductance value in μ H, R = decimal point; if no R is present, then 3rd digit equals number of zeros willyy = Date code, R = revision level
All soldering surfaces to be coplanar within 0.10 millimeters
Tolerances are ± 0.2 millimeters unless stated otherwise.

DRA124, DRA125 & DRA127

Part Marking: DRAxx, xx = 124, 125 or 127, ### = inductance value in µH, R = decimal point; if no R is present, then 3rd digit equals number of zeros wwllyy = Date code, R = revision level

All soldering surfaces to be coplanar within 0.10 millimeters Tolerances are ± 0.2 millimeters unless stated otherwise.

Packaging information - mm

DRA73 & DRA74

Supplied in tape and reel packaging, on a 13" diameter reel:

- · DRA73 1350 pieces
- · DRA74 1100 pieces

DRA124, DRA125 & DRA127

Supplied in tape and reel packaging, on a 13" diameter reel:

- · DRA124 750 pieces
- · DRA125 600 pieces
- · DRA127 350 pieces

Solder reflow profile

Table 1 - Standard SnPb Solder (T_c)

Package Thickness	Volume mm³ s <350	Volume mm³ ≥350
<2.5mm	235°C	220°C
≥2.5mm	220°C	220°C

Table 2 - Lead (Pb) Free Solder (Tc)

Package	Volume mm³	Volume mm³	Volume mm³
Thickness	<350	350 - 2000	>2000
<1.6mm	260°C	260°C	260°C
1.6 - 2.5mm	260°C	250°C	245°C
>2.5mm	250°C	245°C	245°C

Reference JDEC J-STD-020D

Profile Feature		Standard SnPb Solder	Lead (Pb) Free Solder	
Preheat and Soak	• Temperature min. (T _{smin})	100°C	150°C	
	Temperature max. (T _{smax})	150°C	200°C	
	• Time (T _{smin} to T _{smax}) (t _s)	60-120 Seconds	60-120 Seconds	
Average ramp up rate T _{smax} to T _p		3°C/ Second Max.	3°C/ Second Max.	
Liquidous temperatu	re (TL)	183°C	217°C	
Time at liquidous (t _L		60-150 Seconds	60-150 Seconds	
Peak package body temperature (Tp)*		Table 1	Table 2	
Time $(t_p)^{**}$ within 5 °C of the specified classification temperature (T_c)		20 Seconds**	30 Seconds**	
Average ramp-down rate (T _p to T _{smax})		6°C/ Second Max.	6°C/ Second Max.	
Time 25°C to Peak	Temperature	6 Minutes Max.	8 Minutes Max.	

 $^{^{\}star}$ Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

North America

Eaton's Electrical Group Electronics Division 1225 Broken Sound Parkway NW Suite F Boca Raton, FL 33487-3533 Tel: 1-561-998-4100 Fax: 1-561-241-6640 Toll Free: 1-888-414-2645 Eaton's Electrical Group Electronics Division P.O. Box 14460 St. Louis, MA 63178-4460

Tel: 1-636-394-2877 Fax: 1-636-527-1607

Europe

Eaton's Electrical Group Electronics Division Burton-on-the-Wolds Leicestershire, LE 12 5th UK Phone: +44 (0) 1509 882 600 Fax: +44 (0) 1509 882 786

Eaton's Electrical Group Electronics Division Avda Santa Eulalia, 290 Terrassa, Barcelona 08223 Spain Phone: +34-93-736-2813 Fax: +34-93-783-5055

Asia Pacific

Eaton's Electrical Group Electronics Division No.2, #06-01 Serangoon North Avenue 5 Singapore 554911 Tel: +65 6645 9888 Fax: +65 6728 3155

The only controlled copy of this Data Sheet is the electronic read-only version located on the Bussmann Network Drive. All other copies of this document are by definition uncontrolled. This bulletin is intended to clearly present comprehensive product data and provide technical information that will help the end user with design applications. Bussmann reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Bussmann also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.

Life Support Policy: Bussmann does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton's Electrical Group Electronics Division 114 Old State Road Ellisville, MO 63021 United States www.eaton.com/elx

© 2014 Eaton All Rights Reserved Publication No. 4319 — BU-SB14110 January 2014 Eaton is a registered trademark.

All other trademarks are property of their respective owners.

^{**} Tolerance for time at peak profile temperature (t_p) is defined as a supplier minimum and a user maximum.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cooper Bussmann:

 DRA124-100-R
 DRA124-101-R
 DRA124-102-R
 DRA124-150-R
 DRA124-151-R
 DRA124-1R0-R
 DRA124-1R5-R

 DRA124-220-R
 DRA124-221-R
 DRA124-222-R
 DRA124-330-R
 DRA124-331-R
 DRA124-3R3-R
 DRA124-470-R

 DRA124-471-R
 DRA124-487-R
 DRA124-680-R
 DRA124-681-R
 DRA124-688-R
 DRA124-820-R
 DRA124-821-R

 DRA124-882-R
 DRA124-R47-R
 DRA125-100-R
 DRA125-101-R
 DRA125-102-R
 DRA125-150-R
 DRA125-151-R

 DRA125-1R0-R
 DRA125-1R5-R
 DRA125-220-R
 DRA125-221-R
 DRA125-680-R
 DRA125-681-R
 DRA125-330-R
 DRA125-331-R

 DRA125-3R3-R
 DRA125-470-R
 DRA125-471-R
 DRA125-487-R
 DRA125-680-R
 DRA125-681-R
 DRA125-688-R

 DRA125-820-R
 DRA125-821-R
 DRA125-882-R
 DRA125-847-R
 DRA127-100-R
 DRA127-100-R
 DRA127-100-R
 DRA127-100-R
 DRA127-120-R
 DRA127-120-R
 DRA127-120-R
 DRA127-120-R
 DRA127-120-R
 DRA127-120-R
 DRA127-120-R
 DRA127-120-R
 DRA127-470-R
 DRA127-471-R
 DRA127-471-R
 DRA127-471-R
 DRA127-471-R