Chapter 4, Section 1

James Lee

August 9, 2025

1.	Let X be a curve, and let $P \in X$ be a point. Then there exists a nonconstant rational function f	$\epsilon \in$	K(I)	X)
	which is regular everywhere except at P .			

Proof. Pick another closed point $Q \neq P \in X$. By (1.3.2), there exists n > 0 such that $\dim |n(-P+2Q)| > 0$. Hence, there exists a rational function with a pole at P of order n and regular everywhere else.

2. Again let X be a curve, and let $P_1, \ldots, P_r \in X$ be points. Then there is a rational function $f \in K(X)$ having poles (of some order) at each of the P_i , and regular elsewhere.

Proof. Imitate the proof of the previous exercise for the divisor $D = -\sum_{i=1}^{r} P_i + (r+1)Q$. This time, such a Q always exists because k is algebraically, so it is infinite.

- **3.** Let X be an integral, separated, regular, one-dimensional scheme of finite type over k, which is *not* proper over k. Then X is affine.
- **4.** Show that a separated, one-dimensional scheme of finite type over k, none of whose irreducible components is proper over k, is affine.
- **5.** For an effective divisor D on a curve X of genus g, show that $\dim |D| \leq \deg D$. Furthermore, equality holds if and only if D = 0 or g = 0.

Proof. By definition dim $|D| = \ell(D) - 1$. Rearranging the Riemann-Roch Theorem gives

$$\dim |D| = \ell(K - D) + \deg D - q,$$

so we want to show $\ell(K-D) \leq g$. But D is effective, so $\mathcal{L}(K-D) \to \mathcal{L}(K)$ is injective, and $g = \ell(K) = \dim H^0(X, \mathcal{L}(K))$ by definition.

6. Let X be a curve of genus g. Show that there is a finite morphism $f: X \to \mathbf{P}^1$ of degree $\leq g+1$.

Proof.

- 7. A curve X is called hyperelliptic if $g \ge 2$ and there exists a finite morphism $f: X \to \mathbf{P}^1$ of degree 2.
 - (a) If X is a curve of genus g = 2, show that the canonical divisor defines a complete linear system |K| of degree 2 and dimension 1, without base points. Use (II, 7.8.1) to conclude that X is hyperelliptic.
 - (b) Show that the curves constructed in (1.1.1) all admit a morphism of degree 2 to \mathbf{P}^1 . Thus, there exist hyperelliptic curves of any genus $g \geq 2$.

Proof.

(a) In general, |K| has no base points for $g \ge 2$ (5.1). If g = 2, then dim |K| = g - 1 = 1 and deg K = 2g - 2 = 2. Thus, |K| defines a finite morphism $f: X \to \mathbf{P}^1$ of degree 2 by (II, 7.8.1).

(b)

8. p_a of a Singular Curve. Let X be an integral projective scheme of dimension 1 over k, and let \widetilde{X} be its normalization (II, Ex. 3.8). Then there is an exact sequence of sheaves on X,

$$0 \longrightarrow \mathscr{O}_X \longrightarrow f_*\mathscr{O}_{\widetilde{X}} \longrightarrow \sum_{P \in X} \widetilde{\mathscr{O}}_P/\mathscr{O}_P \longrightarrow 0$$

where $\widetilde{\mathcal{O}}_P$ is the integral closure of \mathscr{O}_P . For each $P \in X$, let $\delta_P = \operatorname{length}(\widetilde{\mathcal{O}}_P/\mathscr{O}_P)$.

- (a) Show that $p_a(X) = p_a(\widetilde{X}) + \sum_{P \in X} \delta_P$.
- (b) If $p_a(X) = 0$, show that X is already nonsingular and in fact isomorphic to \mathbf{P}^1 .
- (c) If P is a node or an ordinary cusp (I, Ex. 5.6, Ex. 5.14), show that $\delta_P = 1$.
- **9.** Riemann-Roch for Singular Curves. Let X be an integral projective scheme of dimension 1 over k. Let X_{reg} be the set of regular points of X.
 - (a) Let $D = \sum n_i P_i$ be a divisor with support in X_{reg} , i.e., all $P_i \in X_{\text{reg}}$. Then define deg $D = \sum n_i$. Let $\mathscr{L}(D)$ be the associated invertible sheaf on X, and show that

$$\chi(\mathcal{L}(D)) = \deg D + 1 - p_a.$$

- (b) Show that any Cartier divisor on X is the difference of two very ample Cartier divisors.
- (c) Conclude that every invertible sheaf $\mathscr L$ on X is isomorphic to $\mathscr L(D)$ for some divisor D with support in X_{reg} .
- (d) Assume Furthermore that X is locally complete intersection in some projective space. Then by (III, 7.11) the dualizing sheaf ω_X° is an invertible sheaf on X, so we can define the *canonical divisor* K to be a divisor with support in X_{reg} corresponding to ω_X° . Then the formula of (a) becomes

$$\ell(D) = \ell(K - D) = \deg D + 1 - p_a.$$

(e) Let X be an integral projective scheme of dimension 1 over k, which is locally complete intersection, and has $p_a = 1$. Fix a point $P_0 \in X_{\text{reg}}$. Imitate (1.3.7) to show that the map $P \to \mathcal{L}(P - P_0)$ gives a one-to-cone correspondence between the pints of X_{reg} and the elements of the group $\text{Pic}^{\circ} X$. This generalizes (II, 6.11.4) and (II, Ex. 6.7).