Linear Integer Optimization problems

- **Integer linear programs**: Problems that are modeled as linear programs with the additional requirement that one or more variables must be integer.
- All-integer linear program: If all variables are required to be integer.
- **LP Relaxation** (linear programming relaxation) of the integer linear program: The linear program that results from dropping the integer requirements.
- Mixed-integer linear program: If some, but not necessarily all, variables are required to be integer.
- **Binary integer linear program**: The integer variables may take on only the values 0 or 1.

Eastborne Realty

Eastborne Realty

- Eastborne cannot purchase fractional numbers of townhouses and apartment buildings—further analysis is necessary.
- In many cases, a non-integer solution can be rounded to obtain an acceptable integer solution.
- Optimal non-integer solution:
 T = 2.479 townhouses and A =
 3.252 apartment buildings.
- Rounding trial and error approach

Applications with binary variables

- Capital budgeting problem: A binary integer programming problem that involves choosing which possible projects or activities provide the best investment return.
- In a capital budgeting problem, the objective function is to maximize the net present value of the capital budgeting projects.
- The Ice-Cold Refrigerator Company is considering investing in several projects that have varying capital requirements over the next four years.
- Faced with limited capital each year, management would like to select the most profitable projects that it can afford.

Constraints

$$\begin{array}{lll} 15P+10W+10M+15R\leq 40 & \text{(Year 1 capital available)} \\ 20P+15W & +10R\leq 50 & \text{(Year 2 capital available)} \\ 20P+20W & 10R\leq 40 & \text{(Year 3 capital available)} \\ 15P+5W & +4M+10R\leq 35 & \text{(Year 4 capital available)} \end{array}$$

$$P, W, M, R = 0, 1$$

RMC – fixed cost

Objective → Maximize 40F + 30S + 50C

$$0.4F + 0.5S + 0.6C \le 20 \text{ (Material 1)} \\ 0.2S + 0.1C \le 5 \text{ (Material 2)} \\ 0.6F + 0.3S + 0.3C \le 21 \text{ (Material 3)} \\ F, S, C, \ge 0$$

SF, SS, SC are binary variables - 1, if produced, else 0

Constraints

$$0.4F + 0.5S + 0.6C \le 20$$
 Material 1
 $0.2S + 0.1C \le 5$ Material 2
 $0.6F + 0.3S + 0.3C \le 21$ Material 3
 $F \le 50SF$ Maximum Fuel Additive
 $S \le 25SS$ Maximum Solvent Base
 $C \le 40SC$ Maximum Carpet Cleaning
 $F, S, C, \ge 0$; $SF, SS, SC = 0$ or 1

Ohio trust company

- As an initial step in its planning, Ohio Trust would like to determine the minimum number of PPBs necessary to do business throughout the 20county region.
- A binary integer programming model can be used to solve this location problem for Ohio Trust.
- x_i=1, if a PPB is established in county, i; else '0'

Adjacent counties

1. Ashtabula

2, 12, 16

Salem foods

- Salem must design a pizza (choose the type of crust, cheese, sauce, and sausage flavor) that will have the highest utility for a sufficient number of people to ensure sufficient sales to justify making the product.
- Assuming the sample of eight consumers in the current study is representative of the marketplace for frozen sausage pizza:
 - Formulate and solve an integer programming model that can help Salem come up with such a design.
 - o In marketing literature, the problem being solved is called the share of choice problem.

Consumer	Thin Crust	Thick Crust	Mozzarella Cheese	Cheese Blend	Smooth Sauce	Chunky Sauce	Mild Sausage	Medium Sausage	Hot Sausage
1	11	2	6	7	3	17	26	27	8
2	11	7	15	17	16	26	14	1	10
3	7	5	8	14	16	7	29	16	19
4	13	20	20	17	17	14	25	29	10
5	2	8	6	11	30	20	15	5	12
6	12	17	11	9	2	30	22	12	20
7	9	19	12	16	16	25	30	23	19
8	5	9	4	14	23	16	16	30	3

Salem foods

 I_{ij} = 1, if Salem chooses level *i* for attribute *j*; 0 otherwise. y_k = 1, if consumer k chooses the Salem brand; 0 otherwise.

Max
$$y_1 + y_2 + ... + y_8$$

$$I_{11} = I_{22} = I_{23} = I_{14} = 1$$
 and $y_2 = y_5 = y_6 = y_7 = 1$.

Modeling flexibility - binary variables

- Binary integer variables can be used to model:
 - Multiple-choice and mutually exclusive constraints.
 - Situations in which *k* projects out of a set of *n* projects must be selected.
 - Situations in which the acceptance of one project is conditional on the acceptance of another project.

Multiple-Choice and Mutually Exclusive Constraints:

- Multiple-choice constraint: A constraint requiring that the sum of two or more binary variables equals one.
- Any feasible solution makes a choice of which variable to set equal to one.
- Mutually exclusive constraint: A constraint requiring that the sum of two or more binary variables be less than or equal to one.
 - o If one of the variables equals one, the others must equal zero.
 - All variables could equal zero.

