

PSoC® Creator™ Project Datasheet for Driver Station PWM Encoder Design

Creation Time: 02/18/2016 16:54:39

User: Jim-THINK\Jim

Project: Driver Station PWM Encoder Design

Tool: PSoC Creator 3.3 CP1

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intl): 408.943.2600 http://www.cypress.com

Copyright

Copyright © 2016 Cypress Semiconductor Corporation. All rights reserved. Any design information or characteristics specifically provided by our customer or other third party inputs contained in this document are not intended to be claimed under Cypress's copyright.

Trademarks

PSoC and CapSense are registered trademarks of Cypress Semiconductor Corporation. PSoC Creator is a trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Philips I2C Patent Rights

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name, NXP Semiconductors.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that may appear in this document. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of a Cypress product in a life support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Datasheets. Cypress believes that its family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as 'unbreakable.'

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

Table of Contents

1 Overview	1
2 Pins	3
2.1 Hardware Pins	4
2.2 Hardware Ports	6
2.3 Software Pins	8
3 System Settings	10
3.1 System Configuration	10
3.2 System Debug Settings	10
3.3 System Operating Conditions	10
4 Clocks	11
4.1 System Clocks	12
4.2 Local and Design Wide Clocks	12
5 Interrupts and DMAs	
5.1 Interrupts	14
5.2 DMAs	14
6 Flash Memory	15
7 Design Contents	16
7.1 Schematic Sheet: Top Design	16
7.2 Schematic Sheet: Board Graphic	17
7.3 Schematic Sheet: LCD Notes	18
7.4 Schematic Sheet: Wiring Layout	19
7.5 Schematic Sheet: PCB Art 1	
7.6 Schematic Sheet: PCB Bottom View	21
8 Components	22
8.1 Component type: CharLCD [v2.10]	
8.1.1 Instance LCD	22
8.2 Component type: Timer [v2.70]	22
8.2.1 Instance Timer.	
8.3 Component type: USBFS [v2.80]	
8.3.1 Instance USBFS_1	
9 Other Resources	

1 Overview

The Cypress PSoC 5 is a family of 32-bit devices with the following characteristics:

- High-performance 32-bit ARM Cortex-M3 core with a nested vectored interrupt controller (NVIC) and a high-performance DMA controller
- Digital system that includes configurable Universal Digital Blocks (UDBs) and specific function peripherals, such as USB, I2C and SPI
- Analog subsystem that includes 20-bit Delta Sigma converters (ADC), SAR ADCs, 8-bit DACs that can be configured for 12-bit operation, comparators, op amps and configurable switched capacitor (SC) and continuous time (CT) blocks to create PGAs, TIAs, mixers, and more
- Several types of memory elements, including SRAM, flash, and EEPROM
- Programming and debug system through JTAG, serial wire debug (SWD), and single wire viewer (SWV)
- · Flexible routing to all pins

Figure 1 shows the major components of a typical <u>CY8C58LP</u> family member PSoC 5 device. For details on all the systems listed above, please refer to the <u>PSoC 5 Technical Reference Manual</u>.

Figure 1. CY8C58LP Device Family Block Diagram

Table 1 lists the key characteristics of this device.

Table 1. Device Characteristics

Name	Value
Part Number	CY8C5888LTI-LP097
Package Name	68-QFN
Architecture	PSoC 5
Family	CY8C58LP
CPU speed (MHz)	80
Flash size (kBytes)	256
SRAM size (kBytes)	64
EEPROM size (Bytes)	2048
Vdd range (V)	1.71 to 5.5
Automotive qualified	No (Industrial Grade Only)
Temp range (Celcius)	-40 to 85
JTAG ID	0x2E161069

NOTE: The CPU speed noted above is the maximum available speed. The CPU is clocked by Bus Clock, listed in the <u>System Clocks</u> section below.

Table 2 lists the device resources that this design uses:

Table 2. Device Resources

Resource Type	Used	Free	Max	% Used
Digital Clocks	2	6	8	25.00 %
Analog Clocks	0	4	4	0.00 %
CapSense Buffers	0	2	2	0.00 %
Digital Filter Block	0	1	1	0.00 %
Interrupts	8	24	32	25.00 %
10	33	15	48	68.75 %
Segment LCD	0	1	1	0.00 %
CAN 2.0b	0	1	1	0.00 %
I2C	0	1	1	0.00 %
USB	1	0	1	100.00 %
DMA Channels	0	24	24	0.00 %
Timer	0	4	4	0.00 %
UDB				
Macrocells	6		192	3.13 %
Unique P-terms	15	369	384	3.91 %
Total P-terms	15			
Datapath Cells	2	22	24	8.33 %
Status Cells	1	23	24	4.17 %
Statusl Registers	1			
Control Cells	1	23	24	4.17 %
Control Registers	1			
Opamp	0	4	4	0.00 %
Comparator	0	4	4	0.00 %
Delta-Sigma ADC	0	1	1	0.00 %
LPF	0	2	2	0.00 %
SAR ADC	0	2	2	0.00 %
Analog (SC/CT) Blocks	0	4	4	0.00 %
DAC				
VIDAC	0	4	4	0.00 %

2 Pins

Figure 2 shows the pin layout of this device.

Figure 2. Device Pin Layout

2.1 Hardware Pins

Table 3 contains information about the pins on this device in device pin order. (No connection ["n/c"] pins have been omitted.)

Table 3. Device Pins

Pin	Port	Name	Туре	Drive Mode	Reset State
1	P2[6]	Button_14	Software	Res pull	HiZ Analog Unb
		_	Input	down	
2	P2[7]	Button_15	Software	Res pull	HiZ Analog Unb
			Input	down	
3	P12[4]	\LCD:LCDPort[4]\	Software	Strong drive	HiZ Analog Unb
	D. (0) = 1	V 00 1 00 0 (FT)	Output	0, 1,	
4	P12[5]	\LCD:LCDPort[5]\	Software Output	Strong drive	HiZ Analog Unb
5	VSSB	VSSB	Dedicated		
6	IND	IND	Dedicated		
7	VB	VB	Dedicated		
8	VBAT	VBAT	Dedicated		
9	VSSD	VSSD	Power		
10	XRES_N	XRES_N	Dedicated		
11	P1[0]	Debug:SWD_IO	Reserved		
12	P1[1]	Debug:SWD_IO	Reserved		
13	P1[2]	GPIO [unused]	Reserved		HiZ Analog Unb
14		Debug:SWV	Reserved		HIZ AHAIOG OHD
15	P1[3]		Reserved		Hi7 Angles I Inh
16	P1[4]	GPIO [unused]			HiZ Analog Unb
17	P1[5]	GPIO [unused] VDDIO1	Dower		HiZ Analog Unb
	VDDIO1		Power		LI:7 Angles Link
18	P1[6]	GPIO [unused]			HiZ Analog Unb
19	P1[7]	GPIO [unused]	Coffusions	Otano a sa simila so	HiZ Analog Unb
20	P12[6]	\LCD:LCDPort[6]\	Software Output	Strong drive	HiZ Analog Unb
21	P12[7]	SIO [unused]	Output		HiZ Analog Unb
22	P15[6]	USB:D+	Reserved		The Analog Onb
23	P15[7]	USB:D-	Reserved		
24	VDDD	VDDD	Power		
25	VSSD	VSSD	Power		
26	VCCD	VCCD	Power		
27	P15[0]	GPIO [unused]	1 OWEI		HiZ Analog Unb
28	P15[1]	GPIO [unused]			HiZ Analog Unb
29	P3[0]	PWM_X_In	Dgtl In	Res pull	HiZ Analog Unb
_	. 0[0]	,	Dgu III	up/down	The Trialog of is
30	P3[1]	PWM Y In	Software	Res pull	HiZ Analog Unb
			Input	up/down	3 2 3
31	P3[2]	PWM Z In	Software	Res pull	HiZ Analog Unb
			Input	up/down	· ·
32	P3[3]	GPIO [unused]			HiZ Analog Unb
33	P3[4]	GPIO [unused]			HiZ Analog Unb
34	P3[5]	GPIO [unused]			HiZ Analog Unb
35	VDDIO3	VDDIO3	Power		-
36	P3[6]	GPIO [unused]			HiZ Analog Unb
37	P3[7]	GPIO [unused]			HiZ Analog Unb

Pin	Port	Name	Type	Drive Mode	Reset State
38	P12[0]	\LCD:LCDPort[0]\	Software	Strong drive	HiZ Analog Unb
			Output		
39	P12[1]	\LCD:LCDPort[1]\	Software	Strong drive	HiZ Analog Unb
			Output		
40	P15[2]	GPIO [unused]			HiZ Analog Unb
41	P15[3]	GPIO [unused]			HiZ Analog Unb
42	VCCA	VCCA	Power		
43	VSSA	VSSA	Power		
44	VDDA	VDDA	Power		
45	VSSD	VSSD	Power		
46	P12[2]	\LCD:LCDPort[2]\	Software	Strong drive	HiZ Analog Unb
	D. (0.00)	11.00 1.000 (101)	Output		
47	P12[3]	\LCD:LCDPort[3]\	Software Output	Strong drive	HiZ Analog Unb
48	P0[0]	Thumb_Button	Software Input	Res pull down	HiZ Analog Unb
49	P0[1]	Button_1	Software	Res pull	HiZ Analog Unb
	. 0[1]	Batton_1	Input	down	The 7 maiog one
50	P0[2]	Button 2	Software	Res pull	HiZ Analog Unb
		_	Input	down	Ŭ
51	P0[3]	Button_3	Software	Res pull	HiZ Analog Unb
			Input	down	
52	VDDIO0	VDDIO0	Power		
53	P0[4]	Button_4	Software	Res pull	HiZ Analog Unb
			Input	down	
54	P0[5]	Button_5	Software	Res pull	HiZ Analog Unb
	Dorot	5	Input	down	
55	P0[6]	Button_6	Software	Res pull down	HiZ Analog Unb
56	D0[7]	Putton 7	Input Software		HiZ Analog Unb
30	P0[7]	Button_7	Input	Res pull down	HIZ Allalog Ulib
57	VCCD	VCCD	Power	down	
58	VSSD	VSSD	Power		
59	VDDD	VDDD	Power		
60	P15[4]	GPIO [unused]	1 51151		HiZ Analog Unb
61	P15[5]	GPIO [unused]			HiZ Analog Unb
62	P2[0]	Button 8	Software	Res pull	HiZ Analog Unb
	[-]		Input	down	
63	P2[1]	Button 9	Software	Res pull	HiZ Analog Unb
		_	Input	down	
64	P2[2]	Button_10	Software	Res pull	HiZ Analog Unb
			Input	down	
65	P2[3]	Button_11	Software	Res pull	HiZ Analog Unb
		_	Input	down	
66	P2[4]	Button_12	Software	Res pull	HiZ Analog Unb
			Input	down	
67	VDDIO2	VDDIO2	Power		
68	P2[5]	Button_13	Software	Res pull	HiZ Analog Unb
			Input	down	

Abbreviations used in Table 3 have the following meanings:

- Res pull down = Resistive pull down
- HiZ Analog Unb = Hi-Z Analog Unbuffered
- Dgtl In = Digital Input
- Res pull up/down = Resistive pull up/down

2.2 Hardware Ports

Table 4 contains information about the pins on this device in device port order. (No connection ["n/c"], power and dedicated pins have been omitted.)

Table 4. Device Ports

Port	Pin	Name	Type	Drive Mode	Reset State
P0[0]	48	Thumb Button	Software	Res pull	HiZ Analog Unb
			Input	down	
P0[1]	49	Button_1	Software	Res pull	HiZ Analog Unb
		_	Input	down	
P0[2]	50	Button_2	Software	Res pull	HiZ Analog Unb
			Input	down	
P0[3]	51	Button_3	Software	Res pull	HiZ Analog Unb
			Input	down	
P0[4]	53	Button_4	Software	Res pull	HiZ Analog Unb
			Input	down	
P0[5]	54	Button_5	Software	Res pull	HiZ Analog Unb
Data		D 11	Input	down	
P0[6]	55	Button_6	Software	Res pull	HiZ Analog Unb
D0[7]	EC	Dutton 7	Input	down	Li7 Analas IInt
P0[7]	56	Button_7	Software Input	Res pull down	HiZ Analog Unb
D1[0]	11	Dobug:SWD IO	Reserved	down	
P1[0]	12	Debug:SWD_IO Debug:SWD CK	Reserved		
P1[1]	13	GPIO [unused]	reserved		Hi7 Angles Linh
P1[2]	14		Decembed		HiZ Analog Unb
P1[3]		Debug:SWV GPIO [unused]	Reserved		Hi7 Angles Linh
P1[4]	15				HiZ Analog Unb
P1[5]	16	GPIO [unused]			HiZ Analog Unb
P1[6]	18	GPIO [unused]			HiZ Analog Unb
P1[7]	19	GPIO [unused]	0 - 6	Otro a series	HiZ Analog Unb
P12[0]	38	\LCD:LCDPort[0]\	Software Output	Strong drive	HiZ Analog Unb
P12[1]	39	\LCD:LCDPort[1]\	Software	Strong drive	HiZ Analog Unb
			Output		
P12[2]	46	\LCD:LCDPort[2]\	Software Output	Strong drive	HiZ Analog Unb
P12[3]	47	\LCD:LCDPort[3]\	Software	Strong drive	HiZ Analog Unb
			Output		
P12[4]	3	\LCD:LCDPort[4]\	Software Output	Strong drive	HiZ Analog Unb
P12[5]	4	\LCD:LCDPort[5]\	Software Output	Strong drive	HiZ Analog Unb
P12[6]	20	\LCD:LCDPort[6]\	Software Output	Strong drive	HiZ Analog Unb
P12[7]	21	SIO [unused]	<u> </u>		HiZ Analog Unb
P15[0]	27	GPIO [unused]			HiZ Analog Unb
P15[1]	28	GPIO [unused]			HiZ Analog Unb
P15[2]	40	GPIO [unused]			HiZ Analog Unb
P15[3]	41	GPIO [unused]			HiZ Analog Unb
P15[4]	60	GPIO [unused]			HiZ Analog Unb
P15[5]	61	GPIO [unused]			HiZ Analog Unb
P15[6]	22	USB:D+	Reserved		
P15[7]	23	USB:D-	Reserved		
					l

Port	Pin	Name	Type	Drive Mode	Reset State
P2[0]	62	Button_8	Software	Res pull	HiZ Analog Unb
			Input	down	
P2[1]	63	Button_9	Software	Res pull	HiZ Analog Unb
			Input	down	
P2[2]	64	Button_10	Software	Res pull	HiZ Analog Unb
			Input	down	
P2[3]	65	Button_11	Software	Res pull	HiZ Analog Unb
			Input	down	
P2[4]	66	Button_12	Software	Res pull	HiZ Analog Unb
Dores		B # 49	Input	down	
P2[5]	68	Button_13	Software	Res pull	HiZ Analog Unb
Dotol		D # 44	Input	down	11.2 4 1 11 1
P2[6]	1	Button_14	Software	Res pull down	HiZ Analog Unb
DOCT		Dutter 45	Input		LUZ Analası Link
P2[7]	2	Button_15	Software Input	Res pull down	HiZ Analog Unb
DSIOI	29	DWW V In	Dgtl In	Res pull	HiZ Analog Unb
P3[0]	29	PWM_X_In	Dynin	up/down	The Analog Onb
P3[1]	30	PWM_Y_In	Software	Res pull	HiZ Analog Unb
	30	1 *************************************	Input	up/down	The Analog Onb
P3[2]	31	PWM_Z_In	Software	Res pull	HiZ Analog Unb
. 0[=]	•		Input	up/down	<u>-</u> ,
P3[3]	32	GPIO [unused]	·	•	HiZ Analog Unb
P3[4]	33	GPIO [unused]			HiZ Analog Unb
P3[5]	34	GPIO [unused]			HiZ Analog Unb
P3[6]	36	GPIO [unused]			HiZ Analog Unb
P3[7]	37	GPIO [unused]			HiZ Analog Unb

Abbreviations used in Table 4 have the following meanings:

- Res pull down = Resistive pull down
- HiZ Analog Unb = Hi-Z Analog Unbuffered
- Dgtl In = Digital Input
- Res pull up/down = Resistive pull up/down

2.3 Software Pins

Table 5 contains information about the software pins on this device in alphabetical order. (Only software-accessible pins are shown.)

Table 5. Software Pins

Name	Port	Type	Reset State
\LCD:LCDPort[0]\	P12[0]	Software	HiZ Analog Unb
		Output	_
\LCD:LCDPort[1]\	P12[1]	Software	HiZ Analog Unb
		Output	
\LCD:LCDPort[2]\	P12[2]	Software	HiZ Analog Unb
N OD L ODD - HIOT	D40[0]	Output	117 Analan Hab
\LCD:LCDPort[3]\	P12[3]	Software Output	HiZ Analog Unb
\LCD:LCDPort[4]\	P12[4]	Software	HiZ Analog Unb
(LCD.LCDI OIL[4](1 12[4]	Output	THE Allalog OHD
\LCD:LCDPort[5]\	P12[5]	Software	HiZ Analog Unb
.202.2021 011[0]1	[0]	Output	rii z r ii laiog o ii o
\LCD:LCDPort[6]\	P12[6]	Software	HiZ Analog Unb
		Output	ŭ
Button_1	P0[1]	Software	HiZ Analog Unb
		Input	
Button_10	P2[2]	Software	HiZ Analog Unb
		Input	
Button_11	P2[3]	Software	HiZ Analog Unb
Dutter 10	D0[4]	Input	LUZ Analan Linh
Button_12	P2[4]	Software Input	HiZ Analog Unb
Button_13	P2[5]	Software	HiZ Analog Unb
Button_13	1 2[0]	Input	The Analog Onb
Button_14	P2[6]	Software	HiZ Analog Unb
	[-]	Input	
Button_15	P2[7]	Software	HiZ Analog Unb
_		Input	
Button_2	P0[2]	Software	HiZ Analog Unb
		Input	
Button_3	P0[3]	Software	HiZ Analog Unb
D !!	D0141	Input	11.2 4 1 11 1
Button_4	P0[4]	Software	HiZ Analog Unb
Putton 5	DOISI	Input Software	Hi7 Analog I Inh
Button_5	P0[5]	Input	HiZ Analog Unb
Button_6	P0[6]	Software	HiZ Analog Unb
Batton_o	. 0[0]	Input	The Thailey onb
Button 7	P0[7]	Software	HiZ Analog Unb
_	' '	Input	ŭ
Button_8	P2[0]	Software	HiZ Analog Unb
		Input	_
Button_9	P2[1]	Software	HiZ Analog Unb
		Input	
Debug:SWD_CK	P1[1]	Reserved	
Debug:SWD_IO	P1[0]	Reserved	
Debug:SWV	P1[3]	Reserved	11:7 A
PWM_X_In	P3[0]	Dgtl In	HiZ Analog Unb

Name	Port	Type	Reset State
PWM_Y_In	P3[1]	Software Input	HiZ Analog Unb
PWM_Z_In	P3[2]	Software Input	HiZ Analog Unb
Thumb_Button	P0[0]	Software Input	HiZ Analog Unb
USB:D-	P15[7]	Reserved	
USB:D+	P15[6]	Reserved	

Abbreviations used in Table 5 have the following meanings:

- HiZ Analog Unb = Hi-Z Analog Unbuffered
- Dgtl In = Digital Input

For more information on reading, writing and configuring pins, please refer to:

- Pins chapter in the System Reference Guide
 - CyPins API routines
- Programming Application Interface section in the cy_pins component datasheet

3 System Settings

3.1 System Configuration

Table 6. System Configuration Settings

Name	Value
Device Configuration Mode	Uncompressed
Enable Error Correcting Code (ECC)	False
Store Configuration Data in ECC Memory	True
Instruction Cache Enabled	True
Enable Fast IMO During Startup	False
Unused Bonded IO	Allow but warn
Heap Size (bytes)	0x80
Stack Size (bytes)	0x0800
Include CMSIS Core Peripheral Library Files	True

3.2 System Debug Settings

Table 7. System Debug Settings

Name	Value
Debug Select	SWD+SWV (serial
	wire debug and
	viewer)
Enable Device Protection	False
Embedded Trace (ETM)	False
Use Optional XRES	False

3.3 System Operating Conditions

Table 8. System Operating Conditions

Name	Value
Variable VDDA	False
VDDA (V)	5.0
VDDD (V)	5.0
VDDIO0 (V)	5.0
VDDIO1 (V)	5.0
VDDIO2 (V)	5.0
VDDIO3 (V)	5.0
Temperature Range	-40C -
	85/125C

4 Clocks

The clock system includes these clock resources:

- Four internal clock sources increase system integration:
 - o 3 to 74.7 MHz Internal Main Oscillator (IMO) ±1% at 3 MHz
 - o 1 kHz, 33 kHz, and 100 kHz Internal Low Speed Oscillator (ILO) outputs
 - 12 to 80 MHz clock doubler output, sourced from IMO, MHz External Crystal Oscillator (MHzECO), and Digital System Interconnect (DSI)
 - 24 to 80 MHz fractional Phase-Locked Loop (PLL) sourced from IMO, MHzECO, and DSI
- Clock generated using a DSI signal from an external I/O pin or other logic
- Two external clock sources provide high precision clocks:
 - o 4 to 25 MHz External Crystal Oscillator (MHzECO)
 - o 32.768 kHz External Crystal Oscillator (kHzECO) for Real Time Clock (RTC)
- Dedicated 16-bit divider for bus clock
- Eight individually sourced 16-bit clock dividers for the digital system peripherals
- Four individually sourced 16-bit clock dividers with skew for the analog system peripherals
- IMO has a USB mode that synchronizes to USB host traffic, requiring no external crystal for USB. (USB equipped parts only)

Figure 3. System Clock Configuration

4.1 System Clocks

Table 9 lists the system clocks used in this design.

Table 9. System Clocks

Name	Domain	Source	Desired	Nominal	Accuracy	Start	Enabled
			Freq	Freq	(%)	at	
						Reset	
BUS_CLK	DIGITAL	MASTER_CLK	? MHz	48 MHz	±0.25	True	True
MASTER_CLK	DIGITAL	PLL_OUT	? MHz	48 MHz	±0.25	True	True
USB_CLK	DIGITAL	IMO	48 MHz	48 MHz	±0.25	False	True
PLL_OUT	DIGITAL	IMO	48 MHz	48 MHz	±0.25	True	True
IMO	DIGITAL		24 MHz	24 MHz	±0.25	True	True
ILO	DIGITAL		? MHz	100 kHz	-55,+100	True	True
XTAL 32kHz	DIGITAL		32.768	? MHz	±0	False	False
			kHz				
Digital Signal	DIGITAL		? MHz	? MHz	±0	False	False
XTAL	DIGITAL		25 MHz	? MHz	±0	False	False

4.2 Local and Design Wide Clocks

Local clocks drive individual analog and digital blocks. Design wide clocks are a user-defined optimization, where two or more analog or digital blocks that share a common clock profile (frequency, etc) can be driven from the same clock divider output source.

Figure 4. Local and Design Wide Clock Configuration

Table 10 lists the design wide clocks used in this design.

Table 10. Design Wide Clocks

Name	Domain	Source	Desired Freq	Nominal Freq	Accuracy (%)	Start at	Enabled
						Reset	
dwClock_1	DIGITAL	MASTER_CLK	24 MHz	24 MHz	±0.25	True	True

Table 11 lists the local clocks used in this design.

Table 11. Local Clocks

Table 11. Eddar Glocke							
Name	Domain	Source	Desired Freq	Nominal Freq	Accuracy (%)	Start at Reset	Enabled
USBFS_1 Clock_vbus	DIGITAL	BUS_CLK	? MHz	48 MHz	±0.25	True	True
CLK_1MHZ	DIGITAL	MASTER_CLK	1 MHz	1 MHz	±0.25	True	True

For more information on clocking resources, please refer to:

- Clocking System chapter in the PSoC 5 Technical Reference Manual
 Clocking chapter in the System Reference Guide

 CyPLL API routines
 Cyllo API routines
 CyMaster API routines
- - o CyXTAL API routines

5 Interrupts and DMAs

5.1 Interrupts

This design contains the following interrupt components: (0 is the highest priority)

Table 12. Interrupts

Name	Priority	Vector
isr_Capture	7	1
USBFS_1_arb_int	7	22
USBFS_1_bus_reset	7	23
USBFS_1_dp_int	7	12
USBFS_1_ep_0	7	24
USBFS_1_ep_1	7	0
USBFS_1_ord_int	7	25
USBFS_1_sof_int	7	21

For more information on interrupts, please refer to:

- Interrupt Controller chapter in the PSoC 5 Technical Reference Manual
- Interrupts chapter in the System Reference Guide
 - o Cylnt API routines and related registers
- Datasheet for cy_isr component

5.2 DMAs

This design contains no DMA components.

6 Flash Memory

PSoC 5 devices offer a host of Flash protection options and device security features that you can leverage to meet the security and protection requirements of an application. These requirements range from protecting configuration settings or Flash data to locking the entire device from external access.

Table 13 lists the Flash protection settings for your design.

Table 13. Flash Protection Settings

Start Address	End Address	Protection Level
0x0	0x3FFFF	U - Unprotected

Flash memory is organized as rows with each row of flash having 256 bytes. Each flash row can be assigned one of four protection levels:

- U Unprotected
- F Factory Upgrade
- R Field Upgrade
- W Full Protection

For more information on Flash memory and protection, please refer to:

- Flash Protection chapter in the PSoC 5 Technical Reference Manual
- Flash and EEPROM chapter in the System Reference Guide
 - o CyWrite API routines
 - CyFlash API routines

7 Design Contents

This design's schematic content consists of the following 6 schematic sheets:

7.1 Schematic Sheet: Top Design

Figure 5. Schematic Sheet: Top Design

This schematic sheet contains the following component instances:

- Instance LCD (type: CharLCD_v2_10)
- Instance <u>Timer</u> (type: Timer_v2_70)
- Instance <u>USBFS_1</u> (type: USBFS_v2_80)

7.2 Schematic Sheet: Board Graphic

Figure 6. Schematic Sheet: Board Graphic

7.3 Schematic Sheet: LCD Notes

Figure 7. Schematic Sheet: LCD Notes

Hitachi
Compatable
10k

4. RS
5. R/IW
6. E

11. DB4
12. DB5
13. DB6
14. DB7

Logical Port Pin	LCD Module Pin	Description		
LCDPort_0	DB4	Data Bit 0		
LCDPort_1	DB5	Data Bit 1		
LCDPort_2	DB6	Data Bit 2		
LCDPort_3	DB7	Data Bit 3		
LCDPort_4	E	LCD Enable (strobe to confirm new data available)		
LCDPort_5	RS	Register Select (select data or control input data)		
LCDPort 6	R/!W	Read/not Write (toggle for polling the ready bit of the LCD)		

7.4 Schematic Sheet: Wiring Layout

Figure 8. Schematic Sheet: Wiring Layout

7.5 Schematic Sheet: PCB Art 1

Figure 9. Schematic Sheet: PCB Art 1

7.6 Schematic Sheet: PCB Bottom View

Figure 10. Schematic Sheet: PCB Bottom View

8 Components

8.1 Component type: CharLCD [v2.10]

8.1.1 Instance LCD

Description: Character LCD Component

Instance type: CharLCD [v2.10]

Datasheet: online component datasheet for CharLCD

Table 14. Component Parameters for LCD

Parameter Name	Value	Description
ConversionRoutines	true	Defines if the conversion
		routines will be included in the
		project.
CustomCharacterSet	None	Defines the type of custom
		character set (User defined,
		Vertical or Horizontal bargraph).
		Based on the selection a look-
		up table with proper characters
		representation will be generated
		in the source code.

8.2 Component type: Timer [v2.70]

8.2.1 Instance Timer

Description: 8, 16, 24 or 32-bit Timer

Instance type: Timer [v2.70]

Datasheet: online component datasheet for Timer

Table 15. Component Parameters for Timer

Parameter Name	Value	Description
CaptureAlternatingFall	false	Enables data capture on either edge but not until a valid falling edge is detected first.
CaptureAlternatingRise	false	Enables data capture on either edge but not until a valid rising edge is detected first.
CaptureCount	2	The CaptureCount parameter works as a divider on the hardware input "capture". A CaptureCount value of 2 would result in an actual capture taking place every other time the input "capture" is changed.
CaptureCounterEnabled	false	Enables the capture counter to count capture events (up to 127) before a capture is triggered.
CaptureMode	Software Controlled	This parameter defines the capture input signal requirements to trigger a valid capture event

Parameter Name	Value	Description
EnableMode	Software Only	This parameter specifies the methods in enabling the component. Hardware mode makes the enable input pin visible. Software mode may reduce the resource usage if not enabled.
FixedFunction	false	Configures the component to use fixed function HW block instead of the UDB implementation.
InterruptOnCapture	true	Parameter to check whether interrupt on a capture event is enabled or disabled.
InterruptOnFIFOFull	false	Parameter to check whether interrupt on a FIFO Full event is enabled disabled.
InterruptOnTC	false	Parameter to check whether interrupt on a TC is enabled or disabled.
NumberOfCaptures	1	Number of captures allowed until the counter is cleared or disabled.
Period	65535	Defines the timer period (This is also the reload value when terminal count is reached)
Resolution	16	Defines the resolution of the hardware. This parameter affects how many bits are used in the Period counter and defines the maximum resolution of the internal component signals.
RunMode	Continuous	Defines the hardware to run continuously, run until a terminal count is reached or run until an interrupt event is triggered.
TriggerMode	None	Defines the required trigger input signal to cause a valid trigger enable of the timer

8.3 Component type: USBFS [v2.80]

8.3.1 Instance USBFS_1

Description: USB 2.0 Full Speed Device Framework

Instance type: USBFS [v2.80]

Datasheet: online component datasheet for USBFS

Table 16. Component Parameters for USBFS_1

Parameter Name	Value	Description
EnableCDCApi	false	Enables additional high level API's that allow the CDC device to be used similar to a UART device.
EnableMidiApi	true	Enables additional high level MIDI API's.

Parameter Name	Value	Description
endpointMA	MA_Static	Endpoint memory allocation
endpointMM	EP_Manual	Endpoint memory management
epDMAautoOptimization	false	This parameter enables resource optimization for DMA
		with Automatic Memory
		Management mode. Set this
		parameter value to true only
		when a single IN endpoint is
		present in the device. Enabling
		this parameter in a multi IN
		endpoint device configuration
		causes undesired effects.
extern_cls	false	This parameter allows for user
		or other component to
		implement his own handler for Class requests. USBFS -
		DispatchClassRqst() function
		should be implemented if this
		parameter enabled.
extern_vbus	false	This parameter enables external
_		VBUSDET input.
extern_vnd	false	This parameter allows for user
_		or other component to
		implement his own handler for
		Vendor specific requests.
		USBFS_HandleVendorRqst()
		function should be implemented
11 10 1	•	if this parameter enabled.
extJackCount	0	Max number of External MIDI IN Jack or OUT Jack descriptors
max_interfaces_num	1	Defines maximum interfaces
		number
Mode	false	Specifies whether the
		implementation will create API
		for interfacing to UART
		component(s) for a
		corresponding set of external
	foloo	MIDI connections.
mon_vbus	false	The mon_vbus parameter adds a single VBUS monitor pin to
		the design. This pin must be
		connected to VBUS and must
		be assigned in the pin editor.
out sof	false	The out sof parameter enables
	.3.00	Start-of-Frame output.
Pid	F232	Product ID
Vid	04B4	Vendor ID

9 Other Resources

The following documents contain important information on Cypress software APIs that might be relevant to this design:

- Standard Types and Defines chapter in the <u>System Reference Guide</u>
 - Software base types
 - Hardware register types
 - Compiler defines
 - Cypress API return codes
 - Interrupt types and macros
- Registers
 - o The full PSoC 5 register map is covered in the PSoC 5 Registers Technical Reference
 - o Register Access chapter in the System Reference Guide

 - § CY_GET API routines § CY_SET API routines
- System Functions chapter in the **System Reference Guide**
 - General API routines
 - o CyDelay API routines
 - o CyVd Voltage Detect API routines
- Power Management
 - o Power Supply and Monitoring chapter in the PSoC 5 Technical Reference Manual
 - o Low Power Modes chapter in the PSoC 5 Technical Reference Manual
 - o Power Management chapter in the System Reference Guide
 - § CyPm API routines
- Watchdog Timer chapter in the System Reference Guide
 - CyWdt API routines
- Cache Management
 - o Cache Controller chapter in the PSoC 5 Technical Reference Manual
 - o Cache chapter in the System Reference Guide
 - § CyFlushCache() API routine