Задача А. Решето Эратосфена за линейное время

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 6 секунд

Ограничение по памяти: 1024 мегабайта

Для целого $x \geqslant 2$ обозначим MinPrime(x) функцию, возвращающую наименьший простой делитель числа x. Найдите сумму MinPrime(x) по всем x в пределах от L до R.

Формат входных данных

В единственной строке находятся два целых числа L и R — границы отрезка натурального ряда ($2 \le L \le R \le 10^8$).

Формат выходных данных

Выведите одно число — искомую сумму.

стандартный ввод	стандартный вывод
2 2	2
3 3	3
4 4	2
5 5	5
6 6	2
7 7	7
2 7	21
2 100000000	279218813374515

Задача В. Диофантово уравнение

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайта

Даны натуральные числа a, b и c. Решите в целых числах уравнение ax+by=c. Среди множества решений следует выбрать такое, где x имеет наименьшее неотрицательное значение.

Формат входных данных

Входной файл содержит три целых числа a и b и c $(1 \le a, b, c \le 10^9)$.

Формат выходных данных

В выходной файл выведите искомые x и y через пробел. Если решения не существует, выведите одну строку «Impossible».

stdin	stdout
1 2 3	1 1

Задача С. Обратное по модулю

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Даны два целых числа — $a, m \ (0 \le a < m)$. Нужно найти такое целое x, что $a \cdot x \equiv 1 \pmod{m}$.

Формат входных данных

На первой строке два целых числа — $a, \, m \; (0 \leqslant a \leqslant 10^{18}, \, 1 < m \leqslant 10^{18}, \, a < m).$

Формат выходных данных

Если такого x не существует, выведите -1. Иначе выведите целое x ($0 \le x < m$). Если ответов несколько, выведите любой.

стандартный ввод	стандартный вывод
7 30	13

Задача D. Китайская теорема

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Решите в целых числах систему уравнений

$$\begin{cases} x \equiv a \pmod{n} \\ x \equiv b \pmod{m}, \end{cases}$$

где n и m взаимно просты. Среди решений следует выбрать наименьшее неотрицательное число.

Формат входных данных

Входной файл содержит четыре целых числа a, b, n и m $(1 \leqslant n, m \leqslant 10^6, 0 \leqslant a < n, 0 \leqslant b < m).$

Формат выходных данных

В выходной файл выведите искомое наименьшее неотрицательное число x.

stdin	stdout
1 0 2 3	3
3 2 5 9	38

Задача Е. Простые сложности

 Имя входного файла:
 again.in

 Имя выходного файла:
 again.out

 Ограничение по времени:
 5 секунды

 Ограничение по памяти:
 256 мегабайта

В этой жизни не всё так просто. Особенно числа. Вам дан набор чисел. Необходимо для каждого из них определить, является ли оно простым.

Формат входных данных

В первой строке входных данных содержится единственное число $1\leqslant T\leqslant 5\,000$ — количество чисел, которые необходимо проверить на простоту. Далее содержится T целых положительных чисел, не превосходящих 10^{18} .

Формат выходных данных

В i-й строке выходных данных должно быть записано «YES», если i-е число является простым, и «NO» в противном случае.

again.in	again.out
2	YES
3	NO
4	

Задача F. Факторизация

Имя входного файла: pollard.in Имя выходного файла: pollard.out Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Дано натуральное число. Факторизуйте его, то есть представьте в виде произведения набора простых чисел. Число p называется простым, если имеет ровно два различных натуральных делителя: 1 и p.

Формат входных данных

В единственной строке записано единственное натуральное число $N.~2 \leqslant N \leqslant 9 \cdot 10^{18}.$

Формат выходных данных

Выведите в неубывающем порядке одно или несколько простых чисел, произведение которых равно N.

pollard.in	pollard.out
6	2 3
7	7

Задача G. RSA. Взлом RSA

Имя входного файла: rsa.in
Имя выходного файла: rsa.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

В 1977 году Ronald Linn Rivest, Adi Shamir и Leonard Adleman предложили новую криптографическую схему RSA, используемую до сих пор. RSA является криптосистемой с открытым ключом: зашифровать сообщение может кто угодно, знающий общеизвестный открытый ключ, а расшифровать сообщение — только тот, кто знает специальный секретный ключ.

Желающий использовать систему RSA для получения сообщений должен сгенерировать два простых числа p и q, вычислить n=pq и сгенерировать два числа e и d такие, что $ed\equiv 1\pmod{(p-1)(q-1)}$ (заметим, что $(p-1)(q-1)=\varphi(n)$). Числа n и e составляют открытый ключ и являются общеизвестными. Число d является секретным ключом, также необходимо хранить в тайне и разложение числа n на простые множители, так как это позволяет вычислить секретный ключ d.

Сообщениями в системе RSA являются числа из \mathbb{Z}_n . Пусть M — исходное сообщение. Для его шифрования вычисляется значение $C = M^e \mod n$ (для этого необходимо только знание открытого ключа). Полученное зашифрованное сообщение C передается по каналу связи. Для его расшифровки необходимо вычислить значение $M = C^d \mod n$, а для этого необходимо знание секретного ключа.

Вы перехватили зашифрованное сообщение C и знаете только открытый ключ: числа n и e. "Взломайте" RSA — расшифруйте сообщение на основе только этих данных.

Формат входных данных

Программа получает на вход три натуральных числа: $n, e, C, n \leq 10^9, e \leq 10^9, C < n$. Числа n и e являются частью какой-то реальной схемы RSA, т.е. n является произведением двух простых и e взаимно просто с $\varphi(n)$. Число C является результатом шифрования некоторого сообщения M.

Формат выходных данных

Выведите одно число M ($0 \le M < n$), которое было зашифровано такой криптосхемой.

rsa.in	rsa.out
143	123
113	
41	
9173503	111111
3	
4051753	