1 选择填空题

- (1) 数字系统中,常用_____电路,将输入缓变信号变为矩形脉冲信号。
 - (a) 施密特触发器 (b) 单稳态触发器 (c) 多谐振荡器 (d) 集成定时器
- (2) 数字系统中,能自行产生矩形波的电路是。
 - (a) 施密特触发器 (b) 单稳态触发器 (c) 多谐振荡器 (d) 集成定时器
- (3) 数字系统中,能实现精确定时的电路是。
 - (a) 施密特触发器 (b) 单稳态触发器 (c) 多谐振荡器 (d) 晶振配合集成计数器
- (4) 若将输入脉冲信号延迟一段时间后输出,应用电路。
 - (a) 施密特触发器 (b) 单稳态触发器 (c) 多谐振荡器 (d) 集成定时器
- (5) 集成施密特触发器的逻辑符号,是在原来门符号中加上 符号。

- (a) & (b) =1 (c) ≥ 1 (d) \mathcal{I}

- (7) 欲在一串幅度不等的脉冲信号中,剔除幅度不够大的脉冲,可用 电路。 (a) 施密特触发器 (b) 单稳态触发器 (c) 多谐振荡器 (d) 集成定时器 (9) 欲增加集成单稳电路的延迟时间 t_{w} , 可以 。 (a) 提高 $V_{\rm CC}$ (b) 降低 $V_{\rm CC}$ (c) 增大 $C_{\rm x}$ (d) 减小 $R_{\rm x}$ (10) 为了检测周期性复现的脉冲列中是否丢失脉冲或停止输出脉冲,可用 电路。 (a) 可重触发单稳(b) 单触发单稳(c) 施密特触发器(d) 555 定时器 (11) 顺序加工控制系统的控制时序可用 电路实现。 (a) 施密特触发器 (b) 单稳态触发器 (c) 多谐振荡器 (d) 集成定时器
 - (a) 更多非门 (b) 电感 L (c) RC 环节 (d) 大容量电容

(12) 在环形振荡器中,为了降低振荡频率,通常在环形通道中串入。

(14) 在对频率稳定性要求高的场合,普遍采用振荡器。
(a) 双门 RC (b) 三门 RC 环形 (c) 555 构成 (d) 石英晶体
(15) 555 集成定时器构成的施密特触发器,当电源电压为15V时,其回差电压Δ
值为。
(a) 15 V (b) 10 V (c) 5 V (d) 2.5 V
(16) 555 集成定时器构成的单稳态触发器, 其暂态时间 $t_{ m W}$ =。
(a) $0.7RC$ (b) RC (c) $1.1RC$ (d) $1.4RC$
(17) 改变之值不会影响 555 构成单稳态触发器的定时时间 t_w 。
(a) 电阻 R (b) 电容 C (c) C - U 端电位 (d) 电源 $V_{\rm CC}$

(18)	改变_	值,	,不会	改变 55	55 构成	这的多	8谐振	荡岩	器电路的振荡频率。	
	(a)) 电源	$V_{\rm CC}$ (b) 电	阻 R_1	(c)	电阻.	R_2	(d) 电容 C	
(19)	555 构)	成的多	谐振荡	器中,	还可通	通过改	文变		_端电压值使振荡周期改变。	
	(a)) V _{CC}	(b) R _D	(c) C-U	J	((d) GND	
(20)	在	端加	可变的		可使 55	5多	谐振落	易器	幹输出调频波 。	

(21) 555 构成的多谐振荡器电路中,当 R_1 = R_2 时,欲使输出占空比约为 50%,最简单的办法是____。

(a) R_D (b) OUT (c) C-U (d) GND

(a) 电容 C 减半 (b) R2 两端并接二极管 (c) C-U 端接地 (d) Vcc 减半

$$q = R_1 / (R_1 + R_2)100\%$$

2. 填空题(请在空格中填上合适的词语,将题中的论述补充完整)
(1) 表征脉冲特性的性能指标是、、、、、。
(2) 脉冲频率 f 是指。
(3) 脉冲幅度 U _m 是指。
(4) 脉冲宽度 tw 是指。
(5) 施密特触发器的固有性能指标是、、。
(6) 根据制作工艺的不同,集成施密特触发器可分为和两大类
(7) 要消除脉冲顶部和底部的干扰信号,可用电路。
(8)电路能把幅度满足要求的不规则波形变换成前后沿陡峭的矩形波
(12) 555 集成定时器由、、、、和和
几个基本单元组成。
(13) 555 构成的单稳电路对输入触发脉冲的要求是。
(14)555 定时器构成的应用电路中,当 C-U 端不用时,通常对地接,
其作用是防止。

9.4 用74121设计一个将50kHz,占空比为80%的矩形波信号,转换成50kHz,占空比为50%的方波。即高低电平时间相等。

[解] 周期 $T=1/50=20\mu s$

将暂稳态宽度设计为 $10\mu s$ 即可,即 $t_w=0.7RC=10\mu s$

适当选取R、C的值。

9.7 控制系统为了实现时序配合,要求输入、输出波形如图所示, t_1 可在1~99s之间变化,试用CMOS精密单稳态触发器4538和电阻R、电位器 R_W 和电容器C构成电路,并计算R、 R_W 和C的值。

[解] 本题要求实现的是脉冲延时电路,可用4538双单稳态触发器实现。第一级暂态脉宽在1~99s可调,其输出作为第二级的触发脉冲; 第二级暂态脉宽为 1s。

又因为
$$t_{\text{W1min}} = R_1 C_1 = 1 \text{ s}$$
, $t_{\text{W1max}} = (R_1 + R_{\text{W}})C_1 = 99 \text{ s}$, $t_{\text{W2}} = R_2 C_2 = 1 \text{ s}$,所以,

取 C_1 =10 μ F,则 R_1 =100 $k\Omega$, R_W =9.8 $M\Omega$; C_2 =10 μ F,则 R_2 =100 $k\Omega$ 。

- 9.13 用双定时器组成的脉冲发生电路,设555输出高电平为5V,输出低电平为0V,二极管D为理想二极管。
 - (1) 每一个555组成什么电路?
 - (2) 若开关S置于1, 分别计算u01和u02的频率;
 - (3) 画出开关置于2时, 画出u01和u02波形图, 注意关键点的高低电平。

数字电子技

[解](1)每个555各自组成多谐振荡器电路。

(2) 开关S置于1时, 二极管始终反偏截止, 振荡器正常工作。

$$f_1 = \frac{1}{0.7(R_1 + 2R_2)C_1} = \frac{1}{0.7 \times (33 + 2 \times 27) \times 10^3 \times 0.082 \times 10^{-6}} \approx 200$$

$$f_2 = \frac{1}{0.7(R_3 + 2R_4)C_2} = 10f_1 \approx 2002$$

数字电子技术

开关S置于2时,若 u_{01} 为高电平,则二极管截止,第二级555振荡;若 u_{01} 为低电平,则二极管导通, u_{c2} 被钳制在 $0.7V \le 1/3V_{CC}$, u_{02} 为高电平。

$$T_1 = 0.7(R_1 + R_2)C_1 \approx 3.4$$
 $T_2 = 0.7(R_3 + 2R_4)C_2 \approx 0.5$

 $T_1 \approx 7T_2$ 所以, u_{O1} 高电平对应于 u_{O2} 的7个周期。

9.18 图题电路中石英晶体的谐振频率为10MHz,试分析电路的逻辑功能。指出该电路的CP时钟频率是多少?画出CP、 Q_1 、 Q_2 和 Q_3 的波形。

电路的逻辑功能为3位环形寄存器。

数字电子技术基础

- **9.20** 由 555 定时器、计数器 74LS193 和单稳态触发器 4538 组成的电路 如图题 9.20 所示。已知 $_{R_x} = 4k\Omega, C_x = 0.02μF$ 。 $^+$
 - (1) 说明各集成器件在电路中的功能。若 $R_1 = 10$ k Ω , $R_2 = 20$ k Ω ,, C = 0.01 μ F ,求 u_{O1} 的周期 T;
 - (2) 74LS193 (假设初值为 0000) 芯片 CO 端输出信号 co 是 uo₁ 的多少分频; →
 - (3) 4538 芯片的输出脉宽 tw 为多少; 。
 - (4) 画出 u_{01} 、 \overline{co} 和 u_{0} 的波形,说明 u_{0} 是 u_{01} 的多少分频。

[解] (1) 555 组成了多谐振荡器; 74LS193 是具有双时钟和异步清零预置功能的同步 4 位加/减二进制计数器,图中组成了 16 进制加 1 计数器; 4538 组成了单稳态电路。 u_{O1} 的周期 $T=0.7\times(R_1+2R_2)\times C=0.35$ ms。 \star

- (2) 16,参考图解 9.20 波形图。
- (3) $t_{\rm w} = R_{\rm x} C_{\rm x} = 80 \, \mu \rm s$.
- (4) 波形图略, $\overline{co}=Q_3Q_2Q_1Q_0\overline{cP_U}$,输出低电平有效,下沿触发一次单稳, u_0 是 u_{01} 的 16 分频。

数字电子技术基础

Note A: Clear overrides load, data, and count inputs

Note B: When counting up, count-down input must be HIGH; when counting down, count-up input must be HIGH.

- 9.21 图为某非接触式转速表的逻辑框图,其由A~H八部分构成。 转动体每转动一周,传感器发出一信号如图所示。
 - (1) 根据输入输出波形图,说明B框中应为何种电路?
 - (2) 试用集成定时器(可附加JKFF)设计C框中电路;
 - (3) 若已知测速范围为0~9999, E、F框中各需集成器件若干?
 - (4) E框中的计数器应为何种进制的计数器?试设计之?
- (5) 若G框中采用74LS47, H框中应为共阴还是共阳显示器?当译码器输入代码为0110和1001时,显示的字形为何?

[解](1)输入为缓变信号,输出为矩形波,B框中应为施密特触发器。

(2) 可用555构成单稳态电路,产生脉宽为1min的正脉冲。或555构成多

谐振荡器,正脉冲宽度为1min.

上页 下页 返回

(3) 最大计数脉冲个数为9999。因后续电路H中的显示部分为人们能直接读取的十进制0~9,译码部分必为BCD七段显示译码器,要求E框中的计数器应为10进制计数器。故,十进制计数器需4块;

F框中, 若寄存器为8位,则需2块, 若为4位,则需4块;

(4)具体设计可采用任一种集成计数器,直接选用10进制集成计数器实现时,电路最简单。

(5) 因7447为输出低有效的译码器,所以,H框中应为共阳显示器。 当译码器输入代码为0110和1001时,显示字形分别为6,9。

