HoloFood sampling and experimental design and Q&A

About perspectives

The host perspective

Termites and wood decay Lignocellulose degradation

Crop plants and root microbiome Nutrient provision

The microbiota perspective

About complexity

Different levels of complexity in real world

Rarefaction curve

Rarefaction curve

Rarefaction curve

Figure S1. Rarefaction curve showing the sequencing saturation of the samples. Only a few samples reached saturation.

Where do you need the deepest sequencing?

Assessing the complexity of your study system

Can you control this complexity?

Study systems and varying complexity

About space and time and complexity

About sampling design

There are many holo-omics layers

There are many holo-omics layers

B) Holo'omic interactions

Biomolecular interactions between hosts and symbiotic microorganisms triggered by environmental factors yield different holobiont phenotypes

Shall we generate data for all layers?

Shall we generate data for all layers?

About sampling protocols

Multiple potential sites to sample

Gut content vs gut mucosa sampling

About Preservation methods

Preservation methods

Contents lists available at ScienceDirect

Journal of Microbiological Methods

journal homepage: www.elsevier.com/locate/jmicmeth

A comparison of storage methods for gut microbiome studies in teleosts: Insights from rainbow trout (*Oncorhynchus mykiss*)

Mathis Hildonen, Miyako Kodama, Lara C. Puetz, M. Thomas P. Gilbert, Morten T. Limborg*

National History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark

Contents lists available at ScienceDirect

Journal of Microbiological Methods

A comparison of storage methods for gut microbiome studies in teleosts: Insights from rainbow trout (Oncorhynchus mykiss)

Mathis Hildonen, Miyako Kodama, Lara C. Puetz, M. Thomas P. Gilbert, Morten T. Limborg* National History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark

Metagenome libraries

Preservation method

Ok - that's enough background

Group exercise - take 2

- 1. Re-visit exercise from lecture 1
- Now design a sampling protocol for the hologenomic study you proposed in exercise 1
- 3. Consider for example:
 - O What data do you want?
 - Types of samples from host
 - Types of samples from microbiota
 - o Tissues?
 - Buffer or no buffer?
 - More steps of the protocol to obtain your samples?
- 4. Speed presentations by all + discussions

HoloFood sampling and experimental design and Q&A

