Increasing, decreasing and periodic sequences

A sequence is strictly increasing if the terms are always increasing, i.e.

$$u_{n+1} > u_n$$
 for all $n \in \mathbb{N}$.

 $e.g. 1, 2, 4, 8, 16, ...$
 $|| 1, 1, 2, 2, 3, 8, 12, 12|$

Similarly a sequence is **strictly decreasing** if $u_{n+1} < u_n$ for all $n \in \mathbb{N}$ 10, 8, 6, 4, 2, 0

A sequence is **periodic** if the terms repeat in a cycle. The **order** k of a sequence is **how often it repeats**, i.e. $u_{n+k} = u_n$ for all n. e.g. 2, 3, 0, 2, 3, 0, 2, 3, 0, 2, ... is periodic and has order 3. $u_1 = u_1 = 1 < 3$

For each sequence:

- State whether the sequence is increasing, decreasing or periodic.
- ii) If the sequence is periodic, write down its order.

a)
$$u_{n+1} = u_n + 3$$
, $u_1 = 7$ 7, $|0|$ 13, $|6|$ increasing

a)
$$u_{n+1} = u_n + 3$$
, $u_1 = 7$

b) $u_{n+1} = (u_n)^2$, $u_1 = \frac{1}{2}$

c) $u_{n+1} = \sin(90n^\circ)$
 $u_1 = 0$
 $u_2 = 1$
 $u_3 = 0$
 $u_4 = 0$
 $u_4 = 0$
 $u_4 = 0$

Ex 3H

c)
$$u_{n+1} = \sin(90n^\circ)$$
 $n = 0$ $u_1 = 0$ $u_3 = 0$ $u_4 = -1$ $0, 1, 0, -1$, $0, 1, 0, 1$