#### TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA HỆ THỐNG THÔNG TIN

Tài liệu bài giảng:

# MÔN CƠ SỞ DỮ LIỆU



Chương 6:

PHỤ THUỘC HÀM VÀ DẠNG CHUẨN

ThS. Dương Phi Long – Email: longdp@uit.edu.vn

## **NỘI DUNG BÀI HỌC**

- 01 Các vấn đề gặp phải khi tổ chức CSDL
  - 02 Phụ thuộc hàm

Dạng chuẩn



**VD1: SINHVIEN\_DIEMTHI** (MaSV, MaMH, HoTen, TenMH, Diem)

| SINHVIEN_DIEMTHI |      |                 |                    |      |
|------------------|------|-----------------|--------------------|------|
| MaSV             | MaMH | HoTen           | TenMH              | Diem |
| SV01             | CSDL | Nguyễn Tuyết An | Cơ sở dữ liệu      | 10   |
| SV01             | NMLT | Nguyễn Tuyết An | Nhập môn lập trình | 9.5  |
| SV01             | HDT  | Nguyễn Tuyết An | Hướng đối tượng    | 8.5  |
| SV02             | CSDL | Trần Ngọc Minh  | Cơ sở dữ liệu      | 8    |
| SV02             | CTRR | Trần Ngọc Minh  | Cấu trúc rời rạc   | 5    |
| SV03             | NMLT | Phạm Tiến Dũng  | Nhập môn lập trình | 7    |
| SV03             | CTRR | Phạm Tiến Dũng  | Cấu trúc rời rạc   | 7.5  |



Gây ra những bất thường, mâu thuẫn dữ liệu

**VD1: SINHVIEN\_DIEMTHI** (MaSV, MaMH, HoTen, TenMH, Diem)

| SINHVIEN_DIEMTHI |      |                                   |                    |      |  |
|------------------|------|-----------------------------------|--------------------|------|--|
| MaSV             | MaMH | HoTen                             | TenMH              | Diem |  |
| SV01             | CSDL | Nguyễn Tuyết An                   | Cơ sở dữ liệu      | 10   |  |
| SV01             | NMLT | Nguyễn Tuyết Anh                  | Nhập môn lập trình | 9.5  |  |
| SV01             | HDT  | Nguyễn Tuyết An                   | Hướng đối tượng    | 8.5  |  |
| SV02             | CSDL | Trần Ngọc Minh Cơ sở dữ liệu      |                    | 8    |  |
| SV02             | CTRR | Trần Ngọc Minh                    | Cấu trúc rời rạc   | 5    |  |
| SV03             | NMLT | Phạm Tiến Dũng Nhập môn lập trình |                    | 7    |  |
| SV03             | CTRR | Phạm Tiến Dũng                    | Cấu trúc rời rạc   | 7.5  |  |

Bất thường, mâu thuẫn dữ liệu khi thực hiện thao tác **sửa** dữ liệu

**VD1: SINHVIEN\_DIEMTHI** (MaSV, MaMH, HoTen, TenMH, Diem)

| SINHVIEN_DIEMTHI |      |                                   |                    |      |
|------------------|------|-----------------------------------|--------------------|------|
| MaSV             | МаМН | HoTen                             | TenMH              | Diem |
| SV01             | CSDL | Nguyễn Tuyết An                   | Cơ sở dữ liệu      | 10   |
| SV01             | NMLT | Nguyễn Tuyết An                   | Nhập môn lập trình | 9.5  |
| SV01             | HDT  | Nguyễn Tuyết An Hướng đối tượng   |                    | 8.5  |
| SV02             | CSDL | Trần Ngọc Minh                    | Cơ sở dữ liệu      | 8    |
| SV02             | CTRR | Trần Ngọc Minh                    | Cấu trúc rời rạc   | 5    |
| SV03             | NMLT | Phạm Tiến Dũng Nhập môn lập trình |                    | 7    |
| SV03             | CTRR | Phạm Tiến Dũng                    | Cấu trúc rời rạc   | 7.5  |
| SV04             | Null | Phan Minh Đức                     | Null               | Null |

Thao tác **không** thực hiện được

Bất thường, mâu thuẫn dữ liệu khi thực hiện thao tác **thêm** dữ liệu

VD1: SINHVIEN\_DIEMTHI (MaSV, MaMH, HoTen, TenMH, Diem)

| SINHVIEN_DIEMTHI |      |                 |                    |      |
|------------------|------|-----------------|--------------------|------|
| MaSV             | MaMH | HoTen           | TenMH              | Diem |
| SV01             | CSDL | Nguyễn Tuyết An | Cơ sở dữ liệu      | 10   |
| SV01             | NMLT | Nguyễn Tuyết An | Nhập môn lập trình | 9.5  |
| 3V01             | HDT  | Nguyễn Tuyết An | Hướng đối tượng    | 8.5  |
| SV02             | CSDL | Trần Ngọc Minh  | Cơ sở dữ liệu      | 8    |
| SV02             | CTRR | Trần Ngọc Minh  | Cấu trúc rời rạc   | 5    |
| SV03             | NMLT | Phạm Tiến Dũng  | Nhập môn lập trình | 7    |
| SV03             | CTRR | Phạm Tiến Dũng  | Cấu trúc rời rạc   | 7.5  |

Bất thường, mâu thuẫn dữ liệu khi thực hiện thao tác **xóa** dữ liệu

**VD1: SINHVIEN** (*MaSV*, *HoTen*)

MONHOC (MaMH, TenMH)

**DIEMTHI** (MaSV, MaMH, Diem)

| SINHVIEN             |  |  |  |  |
|----------------------|--|--|--|--|
| <u>MaSV</u> HoTen    |  |  |  |  |
| SV01 Nguyễn Tuyết An |  |  |  |  |
| SV02 Trần Ngọc Minh  |  |  |  |  |
| SV03 Phạm Tiến Dũng  |  |  |  |  |

| MONHOC                  |               |  |  |
|-------------------------|---------------|--|--|
| <u>MaMH</u> TenMH       |               |  |  |
| CSDL                    | Cơ sở dữ liệu |  |  |
| NMLT Nhập môn lập trình |               |  |  |
| HDT Hướng đối tượng     |               |  |  |
| CTRR Cấu trúc rời rạc   |               |  |  |

| DIEMTHI     |             |      |  |  |
|-------------|-------------|------|--|--|
| <u>MaSV</u> | <u>MaMH</u> | Diem |  |  |
| SV01        | CSDL        | 10   |  |  |
| SV01        | NMLT        | 9.5  |  |  |
| SV01        | HDT         | 8.5  |  |  |
| SV02        | CSDL        | 8    |  |  |
| SV02        | CTRR        | 5    |  |  |
| SV03        | NMLT        | 7    |  |  |
| SV03        | CTRR        | 7.5  |  |  |



# Phụ thuộc hàm

- 1. Các khái niệm cơ bản
- 2. Hệ luật dẫn Amstrong
- 3. Bao đóng
- 4. Phủ tối thiểu
- 5. Khóa

#### 1. Các khái niệm cơ bản

- Phụ thuộc hàm (PTH) trên quan hệ R biểu diễn mối liên hệ giữa các tập thuộc tính trong R
- Ký hiệu: X → Y
- Định nghĩa:
  - Quan hệ  $R(A_1, A_2, ..., A_n), R^+ = \{A_1, A_2, ..., A_n\}$
  - $X, Y \subset \mathbb{R}^+$
  - t1, t2: 2 bộ bất kỳ trên R

Ta nói:  $X \rightarrow Y \Leftrightarrow (t1.X = t2.X \Rightarrow t1.Y = t2.Y)$ 

#### 1. Các khái niệm cơ bản

- Nghĩa là: với 1 giá trị của X thì có một giá trị duy nhất của Y
  - X xác định Y
  - Y phụ thuộc (hàm) vào X
- X là vế trái của PTH, Y là vế phải của PTH
- Có nhiều PTH trên 1 quan hệ, Tập PTH được ký hiệu là F

#### **VD2**:

- MaNV → TenNV
- MaNV, MaDA → ThoiGian

#### 1. Các khái niệm cơ bản

- **VD3: CTHD** (SoHD, MaSP, SL, DonGia, ThanhTien)

Xác định các PTH trong CTHD

| CTHD |      |    |        |           |  |
|------|------|----|--------|-----------|--|
| SoHD | MaSP | SL | DonGia | ThanhTien |  |
| HD01 | SP01 | 5  | 2.000  | 10.000    |  |
| HD01 | SP03 | 2  | 10.000 | 20.000    |  |
| HD02 | SP01 | 5  | 2.000  | 10.000    |  |
| HD02 | SP04 | 2  | 3.000  | 6.000     |  |
| HD03 | SP02 | 4  | 10.000 | 40.000    |  |
| HD03 | SP03 | 4  | 12.500 | 50.000    |  |
| HD03 | SP04 | 8  | 2.500  | 20.000    |  |

- X 1) SoHD  $\rightarrow$  MaSP
- $\times$  2) SoHD  $\rightarrow$  SL
- $\times$  3) MaSP  $\rightarrow$  DonGia
- $\checkmark$  4) SoHD, MaSP  $\rightarrow$  SL
- 5) SoHD, MaSP  $\rightarrow$  DonGia
- $\times$  6)  $SL \rightarrow ThanhTien$
- $\times$  7) DonGia  $\rightarrow$  ThanhTien
- $\checkmark$  8) SL, DonGia → ThanhTien
  - 9) SoHD, MaSP ightarrow SL, DonGia, ThanhTien

- Quan hệ R (A, B, C) và F là tập PTH
- $X \rightarrow Y$  được suy ra từ F nếu bất kỳ bộ của quan hệ R thỏa F thì cũng thỏa  $X \rightarrow Y$
- Ký hiệu: F ⊨ X → Y

- $V \circ i X$ , Y, Z,  $W \subseteq R^+$ . Phụ thuộc hàm có các tính chất sau:
  - F1. **Tính phản xạ** (reflexivity):

Nếu  $Y \subseteq X$  thì  $X \to Y$  (PTH hiển nhiên)

**VD4:** MaSV, TenSV → TenSV

- Với X, Y, Z, W⊆ R<sup>+</sup>. Phụ thuộc hàm có các tính chất sau:
  - F2. **Tính tăng trưởng** (augmentation):

Nếu  $X \rightarrow Y$ , thì  $XZ \rightarrow YZ$ 

**VD5:** MaSV → TenSV

⇒ MaSV, NgaySinh → TenSV, NgaySinh

- $V \circ i X$ , Y, Z,  $W \subseteq R^+$ . Phụ thuộc hàm có các tính chất sau:
  - F3. **Tính bắc cầu** (transitivity):

Nếu 
$$X \rightarrow Y$$
 và  $Y \rightarrow Z$ , thì  $X \rightarrow Z$ 
**VD6:**  $MaSV \rightarrow MaLop$ 

$$MaLop \rightarrow TenLop$$

$$\longrightarrow MaSV \rightarrow TenLop$$

- Một số tính chất bổ sung từ Hệ luật dẫn Amstrong:
  - F4. **Tính kết hợp** (union):

Nếu 
$$X \rightarrow Y$$
 và  $X \rightarrow Z$  thì  $X \rightarrow YZ$ 
**VD7:**  $MaSV \rightarrow TenSV$ 
 $MaSV \rightarrow GioiTinh$ 
 $MaSV \rightarrow GioiTinh$ 

- Một số tính chất bổ sung từ Hệ luật dẫn Amstrong:
  - F5. **Tính phân rã** (decomposition):

Nếu 
$$X \rightarrow YZ$$
, thì  $X \rightarrow Y$  và  $X \rightarrow Z$ 

**VD8:** MaSV → TenSV, GioiTinh

⇒ MaSV → TenSV và MaSV → GioiTinh

- Một số tính chất bổ sung từ Hệ luật dẫn Amstrong:
  - F6. **Tính tựa bắc cầu** (psuedotransitivity):

Nếu 
$$X \rightarrow Y$$
 và  $YZ \rightarrow W$ , thì  $XZ \rightarrow W$ 

VD9:  $MaSV \rightarrow MaLop$ 
 $MaLop$ ,  $MaMon \rightarrow MaGV$ 
 $MaLop$ ,  $MaMon \rightarrow MaGV$ 



- **VD10**: Cho R (A, B, C, D) và  $F = \{A \rightarrow B, A \rightarrow C, BC \rightarrow D\}$ . Chứng minh  $A \rightarrow D$  được suy diễn từ F
  - 1.  $A \rightarrow B$  (giả thiết)
  - 2.  $A \rightarrow C$  (giả thiết)
  - 3.  $A \rightarrow BC$  (tính kết hợp 1 và 2)
  - 4.  $BC \rightarrow D$  (giả thiết)
  - 5.  $A \rightarrow D$  (tính bắc cầu 3 và 4)

- **VD11**: Cho R (A, B, C, D, E)  $var{a} F = \{AB \rightarrow D, C \rightarrow A, B \rightarrow E\}$ . Chứng minh:  $BC \rightarrow DE$  được suy diễn từ F

1.  $C \rightarrow A$ 

(giả thiết)

2.  $AB \rightarrow D$ 

(giả thiết)

3.  $BC \rightarrow D$ 

(tựa bắc cầu 1 và 2)

4.  $B \rightarrow E$ 

(giả thiết)

5.  $BC \rightarrow EC$ 

(tăng trưởng 4)

6.  $BC \rightarrow E$ 

(phân rã 5)

7.  $BC \rightarrow DE$ 

(kết hợp 3 và 6)

- **VD12:** Cho R (A, B, C, D, E, G, H)

$$F = \{AB \rightarrow C, B \rightarrow D, CD \rightarrow E, CE \rightarrow GH, G \rightarrow A\}.$$
  
Chứng minh:  $AB \rightarrow E$  được suy diễn từ  $F$ 

- 1.  $AB \rightarrow C$  (giả thiết)
- 2.  $AB \rightarrow B$  (phản xạ)
- 3.  $B \rightarrow D$  (giả thiết)
- 4.  $AB \rightarrow D$  (bắc cầu 2 và 3)

- 5.  $AB \rightarrow CD$  (kết hợp 1 và 4)
- 6.  $CD \rightarrow E$  (giả thiết)
- 7.  $AB \rightarrow E$  (bắc cầu 5 và 6)

- Bao đóng của tập phụ thuộc hàm F:
  - Ký hiệu: F<sup>+</sup>
  - Là tập tất cả các phụ thuộc hàm được suy ra từ F.
- Bao đóng của tập thuộc tính X đối với tập phụ thuộc hàm F:
  - Ký hiệu là X<sub>F</sub><sup>+</sup>
  - Là tập tất cả các thuộc tính A có thể suy dẫn từ X nhờ tập bao
     đóng của các phụ thuộc hàm F<sup>+</sup>

$$X_F^+ = \{ A \in R^+ \mid X \to A \in F^+ \}$$

#### Tìm bao đóng của tập thuộc tính X đối với tập phụ thuộc hàm F:

- Input: (R, F),  $X \subseteq R^+$
- Output:  $X_F^+$ 
  - **Bước 1:** Tính dãy  $X^{(0)}$ ,  $X^{(1)}$ ,...,  $X^{(i)}$ :
    - $X^{(0)} = X$
    - $X^{(i+1)} = X^{(i)} \cup Z, \exists (Y \to Z) \in F(Y \subseteq X^{(i)}), loại (Y \to Z) ra khỏi F$
    - Dừng khi  $X^{(i+1)} = X^{(i)}$  hoặc khi  $X^{(i)} = R^+$
  - **Bước 2:** Kết luận  $X_F^+ = X^{(i)}$

**VD13:** Cho R(A,B,C,D,E,G,H) và tập PTH  $F = \{f1: B \to A, f2: DA \to CE, f3: D \to H, f4: GH \to C, f5: AC \to D\}$  Tìm  $AC_F^+$ 

#### Bước 1:

- $X^0 = AC$ 
  - Từ f1 đến f4 không thoả,
  - $f5 thod nen X^1 = AC \cup D = ACD$

**VD13:** Cho R(A,B,C,D,E,G,H) và tập PTH  $F = \{f1: B \to A, f2: DA \to CE, f3: D \to H, f4: GH \to C, f5: AC \to D\}$  Tîm  $AC_F^+$ 

#### Bước 1 (tt):

- Lặp lại bước 1,  $X^1 = ACD$ 
  - f1 không thoả
  - $f2 thỏa nên X^1 = ACD \cup E = ACDE$
  - $f3 thỏa nên X^1 = ACDE \cup H = ACDEH$
  - f4 không thỏa, f5 đã thỏa

**VD13:** Cho R (A,B,C,D,E,G,H) và tập PTH  $F = \{f1: B \to A, f2: DA \to CE, f3: D \to H, f4: GH \to C, f5: AC \to D\}$  Tîm  $AC_F^+$ 

#### Bước 1 (tt):

- Lặp lại bước 1,  $X^2 = ACDEH$ 
  - f2, f3, f5 đã thỏa
  - f1 không thỏa, f4 không thỏa nên  $X^3 = X^2 = ACDEH$

Bước 2: Vậy  $AC_F^+ = ACDEH$ 



#### - Bài toán thành viên

- Cho quan hệ R, tập phụ thuộc hàm F trên R và một phụ thuộc hàm X → Y trên R.
- Câu hỏi đặt ra:  $X \rightarrow Y \in F^+$  hay không?

$$=>$$
 Giải quyết:  $X \rightarrow Y \in F^+ \Leftrightarrow Y \subseteq X^+$ 



VD14: Cho R (A,B,C,D,E,G,H) và tập PTH

$$F = \{f1: B \rightarrow A, f2: DA \rightarrow CE, f3: D \rightarrow H, f4: GH \rightarrow C, f5: AC \rightarrow D\}$$
  
Cho biết  $AC \rightarrow E \in F^+$ ?

Từ kết quả ở VD13, ta có  $AC_F^+ = ACDEH$  $Vì E \in AC_F^+$ , nên  $AC \rightarrow E \in F^+$ 



#### - Các khái niệm:

- Hai tập PTH tương đương
- PTH có thuộc tính vế trái dư thừa
- PTH có vế phải một thuộc tính
- PTH không dư thừa
- Phủ tổi thiểu

#### - Các thuật toán:

- Tìm PTH đầy đủ (PTH có thuộc tính vế trái không dư thừa)
- Tìm PTH loại những PTH dư thừa
- Tìm Phủ tối thiểu

- Hai tập PHT tương đương:
  - Hai tập PTH F và G tương đương nếu  $F^+ = G^+$
  - Ký hiệu G ≡ F

- PTH có thuộc tính vế trái dư thừa
  - Cho F là tập PTH trên R, X → Y ∈ F là PTH có thuộc tính vế trái dư thừa nếu:

$$\exists A \in m \grave{a} F = F - (X \to Y) \cup ((X - A) \to Y)$$

Ngược lại Z → Y là PTH có thuộc tính vế trái không dư thừa hay
 Y phụ thuộc đầy đủ vào Z.

**VD15:** R(A, B, C, D)  $var{a} F = \{A \rightarrow B, BC \rightarrow D, C \rightarrow D\}$ 

Khi đó BC→ D là PTH có thuộc tính vế trái dư thừa

- Thuật toán tìm PTH đầy đủ (PTH có vế trái không dư thừa)
  - Với mỗi PTH X  $\rightarrow$  Y,  $X = A_1 A_2 \dots A_n$  và  $n \ge 2$ , đặt Z = X
  - Với mỗi A<sub>i</sub>, thực hiện:
    - $Tam = Z \setminus A_i$
    - $N\acute{e}u Tam \rightarrow Y \in (F \{X \rightarrow Y\})^+ thì Z = Tam$

- Thuật toán tìm PTH đầy đủ (PTH có vế trái không dư thừa)

**VD16:** R(A, B, C, D)  $var{a} F = \{A \rightarrow B, BC \rightarrow D, C \rightarrow D\}$ 

- *Xét BC* → *D*:
  - $COC_{F-\{BC\longrightarrow D\}}^+ = CD$
  - $Vi D \subseteq C_F^+$  nên B là thuộc tính dư thừa  $\rightarrow$  loại bỏ B
- $V\hat{q}y F=\{A \rightarrow B, C \rightarrow D\}$



- Tập PTH có vế phải một thuộc tính:

Mỗi tập PTH F đều tương đương với một tập PTH G mà vế phải của các PTH thuộc G chỉ gồm một thuộc tính.

#### - PTH không dư thừa

- F là tập PTH không dư thừa nếu không tồn tại F'⊂ F sao cho F' ≡
   F.
- Ngược lại F được gọi là tập PTH dư thừa.
- Thuật toán loại những PTH dư thừa
  - Với mỗi PTH  $X \to Y \in F$ , nếu  $X \to Y$  là thành viên của  $F \{X \to Y\}$  thì loại  $X \to Y$  khỏi F.

- Phủ tối thiểu (PTT) của một tập phụ thuộc hàm

F được gọi là PTT của tập PTH (hay tập PTH tối thiểu) nếu thỏa:

- (i) F có thuộc tính vế trái không dư thừa
- (ii) F có vế phải một thuộc tính
- (iii) F không dư thừa

- Thuật toán tìm Phủ tối thiểu (PTT) của một tập phụ thuộc hàm
  - **Bước 1:** Phân rã các PTH có vế phải nhiều thuộc tính thành các PTH có vế phải một thuộc tính
  - Bước 2: Loại bỏ các thuộc tính vế trái dư thừa của các PTH
  - Bước 3: Loại bỏ các PTH dư thừa

- **VD17:** Cho R(A,B,C,D) và  $F = \{AB \rightarrow CD, B \rightarrow C, C \rightarrow D\}$ Tìm phủ tối thiểu?

Bước 1: Phân rã các PTH sao cho vế phải có một thuộc tính

Ta có  $F = \{f1: AB \rightarrow C, f2: AB \rightarrow D, f3: B \rightarrow C, f4: C \rightarrow D\}$ 

Bước 2: Loại bỏ các thuộc tính vế trái dư thừa của các PTH

f3: B→C, f4: C → D: Không xét vì vế trái chỉ có một thuộc tính.



- **VD17:** Cho R(A,B,C,D) và  $F = \{AB \rightarrow CD, B \rightarrow C, C \rightarrow D\}$ Tìm phủ tối thiểu?

#### Bước 2: Loại bỏ các thuộc tính vế trái dư thừa của các PTH (tt)

- *Xét f1: AB* → *C:* 
  - Nếu bỏ A thì  $B_{F-\{f1\}}^+ = BCD$  chứa C nên bỏ A.
  - Nếu bỏ B thì  $A_{F-\{f1\}}^+ = A$  không chứa C, không bỏ B.
  - ⇒ Viết lại f1: B → C

- **VD17:** Cho R(A,B,C,D) và  $F = \{AB \rightarrow CD, B \rightarrow C, C \rightarrow D\}$ Tìm phủ tối thiểu?

#### Bước 2: Loại bỏ các thuộc tính vế trái dư thừa của các PTH (tt)

- *Xét f2: AB* → *D:* 
  - Nếu bỏ A thì  $B_{F-\{f2\}}^+ = BCD$  chứa D, nên bỏ A.
  - Nếu bỏ B thì  $A_{F-\{f2\}}^+ = A$  không chứa D, không bỏ B.
  - $\Rightarrow$  Viết lại f2:  $B \rightarrow D$
- $\Rightarrow$  Ta có  $F = \{B \rightarrow C, C \rightarrow D\}$

- **VD17:** Cho R(A,B,C,D) và  $F = \{AB \rightarrow CD, B \rightarrow C, C \rightarrow D\}$ Tìm phủ tối thiểu?

Bước 3: Loại khỏi F các PTH dư thừa

- $f1: B \rightarrow C: ta có B_{F-\{f1\}}^+ = B$ , f1 không dư thừa.
- $f2: C \rightarrow D: ta có C_{F-\{f2\}}^+ = D$ , f2 không dư thừa.

Vậy Phủ tối thiểu là  $F = \{B \rightarrow C, C \rightarrow D\}$ 



- **VD18:** Cho R(A, B, C, D, E, G, H)

 $v \grave{a} F = \{B \rightarrow A, A \rightarrow BC, AB \rightarrow G, GH \rightarrow E, BCG \rightarrow A\}.$ 

Tìm phủ tối thiểu?

- **Định nghĩa:** Cho R  $(A_1, A_2, ..., A_n)$ ,  $R^+ = \{A_1, A_2, ..., A_n\}$ , F là tập phụ thuộc hàm trên R, K là tập con của  $R^+$ . Khi đó K gọi là một khóa của R nếu:
  - (i)  $K_F^+ = R^+$ (ii) Không tồn tại  $K' \subset K$  sao cho  $K'_F^+ = R^+$
- Thuộc tính A được gọi là thuộc tính khóa nếu A ∈ K, trong đó K là khóa của R. Ngược lại thuộc tính A được gọi là thuộc tính không khóa.
- K'' được gọi là siêu khóa nếu K⊆ K''.

- Thuật toán tìm tất cả Khóa
  - · Bước 1:
    - Xác định tập thuộc tính nguồn (ký hiệu N), chứa những thuộc tính chỉ xuất hiện ở vế trái của các PTH.
    - Tính  $N_F^+$ :
      - Nếu  $N_F^+ = R^+$ : Kết luận Khóa là N
      - Ngược lại: Tiếp tục đến bước 2

- Thuật toán tìm tất cả Khóa (tt)
  - · Bước 2:
    - Xác định tập thuộc tính trung gian (ký hiệu TG), chứa những thuộc tính xuất hiện ở cả vế trái và vế phải của các PTH
    - Xác định các tập con  $X_i$  có thể có của tập TG
  - Bước 3:  $\forall X_i \subseteq TG$ , nếu  $(N \cup X_i)_F^+ = R^+$  Thì  $S_i = N \cup X_i$ , loại bỏ các tập  $X_j$ :  $X_i \subset X_j$
  - **Bước 4:** Kết luận tập các khóa  $K = \{S_i\}$

- VD19: Cho R(A, B, C, D, E, G, H)
Tập PTH F= {B → A, DA → CE, D → H, GH → C, AC → D}
Tîm Khóa?

**Bước 1:** Tập nguồn  $N = \{B,G\}$ Ta có  $BG_F^+ = BGA \neq R^+ => BG$  không là Khóa

**Bước 2:** Tập trung gian  $TG = \{A, C, D, H\}$ 

⇒ Các tập con khác rỗng của TG là {A}, {C}, {D}, {H}, {AC}, {AD}, {AH}, {CD}, {CH}, {DH}, {ACD}, {ACH}, {ADH}, {CDH}, {ACDH}

- **VD19:** Cho R(A, B, C, D, E, G, H)

$$T\hat{q}p \ PTH \ F = \{B \rightarrow A, \ DA \rightarrow CE, \ D \rightarrow H, \ GH \rightarrow C, \ AC \rightarrow D\}$$

#### Bước 3:

| $N \cup X_i$ | $(N \cup X_i)_F^+$ | $(N \cup X_i)_F^+ = R^+$ | Kết luận                                                                       |
|--------------|--------------------|--------------------------|--------------------------------------------------------------------------------|
| BGA          | BGA                | Sai                      |                                                                                |
| BGC          | BGCADEH            | Đúng                     | BGC là 1 khóa, loại xét các tập con chứa C: AC,<br>CD, CH, ACD, ACH, CDH, ACDH |
| BGD          | BGDACEH            | Đúng                     | BGD là 1 khóa, loại xét các tập con chứa D: AD,<br>DH, ADH                     |
| BGH          | BGHACDE            | Đúng                     | BGH là 1 khóa, loại xét các tập con chứa H: AH                                 |

⇒ Khóa của R là BGC, BGD, BGH



- 1. Dạng chuẩn 1
- 2. Dạng chuẩn 2
- 3. Dạng chuẩn 3
- 4. Dạng chuẩn Boyce Codd
- 5. Dạng chuẩn của lược đồ quan hệ, lược đồ CSDL

- Được sử dụng để chuẩn hóa quan hệ, đáp ứng các mục tiêu thiết kế:
  - Giảm tối đa trùng lắp thông tin
  - Kiểm tra RBTV dễ dàng
- Đánh giá chất lượng thiết kế của lược đồ CSDL
  - E.F.Codd đưa ra 3 dạng chuẩn (Normal Form)
  - R.F.Boyce và E.F.Codd cải tiến dạng chuẩn gọi dạng chuẩn Boyce-Codd (BC)
- Các dạng chuẩn được định nghĩa dựa trên khái niệm PTH

- Lược đồ R đạt dạng chuẩn 1 (DC1) nếu tất cả thuộc tính đều mang giá trị nguyên tố.
- Giá trị nguyên tố là giá trị không phân nhỏ được nữa.
- Các thuộc tính đa trị (multi-valued), thuộc tính đa hợp (composite) không là nguyên tố.
- VD20: DiaChi: Số 175 Đường 3/2 Phường 10 Quận 5 không là nguyên tố.

- **VD21:** HOADON(<u>MaHD</u>, MaKH, NgayHD, CTietMua, SoTien)

| MaHD | MaKH | NgayHD   | CtietMua   |          |     | SoTien |
|------|------|----------|------------|----------|-----|--------|
|      |      |          | Tên hàng   | Số lượng | ĐVT |        |
| HD01 | KH01 | 15-10-05 | Bánh Orion | 1        | Gói | 25.000 |
|      |      |          | Kẹo mút    | 2        | Cây | 2.000  |
| HD02 | KH01 | 18-10-05 | Gạo        | 2        | Kg  | 30.000 |
| HD03 | KH02 | 24-10-05 | Đường      | 1        | Kg  | 15.000 |
|      |      |          | Bánh AFC   | 2        | Gói | 24.000 |

⇒ CTietMua không là nguyên tố, nên LĐQH không thỏa DC1

- **VD22:** THAMGIA (<u>MaNV</u>, HoTen, NgSinh, MaDA, TenDA, ThoiGian)

| THAMGIA     |                 |            |      |          |          |  |
|-------------|-----------------|------------|------|----------|----------|--|
| <u>MaNV</u> | HoTen           | NgSinh     | MaDA | TenDA    | ThoiGian |  |
| NV01        | Nguyễn Tuyết An | 01/10/1978 | DA01 | Dự án 01 | 20       |  |
|             |                 |            | DA02 | Dự án 02 | 15       |  |
|             |                 |            | DA04 | Dự án 04 | 10       |  |
| NV02        | Trần Ngọc Minh  | 25/01/1987 | DA03 | Dự án 03 | 30       |  |
| NV03        | Phạm Tiến Dũng  | 12/12/1882 | DA02 | Dự án 02 | 20       |  |
|             |                 |            | DA04 | Dự án 04 | 20       |  |

#### ⇒ THAMGIA không đạt DC1

- **VD23:** THAMGIA (<u>MaNV</u>, HoTen, NgSinh, <u>MaDA</u>, TenDA, ThoiGian)

| THAMGIA     |                 |            |             |          |          |  |
|-------------|-----------------|------------|-------------|----------|----------|--|
| <u>MaNV</u> | HoTen           | NgSinh     | <u>MaDA</u> | TenDA    | ThoiGian |  |
| NV01        | Nguyễn Tuyết An | 01/10/1978 | DA01        | Dự án 01 | 20       |  |
| NV01        | Nguyễn Tuyết An | 01/10/1978 | DA02        | Dự án 02 | 15       |  |
| NV01        | Nguyễn Tuyết An | 01/10/1978 | DA04        | Dự án 04 | 10       |  |
| NV02        | Trần Ngọc Minh  | 25/01/1987 | DA03        | Dự án 03 | 30       |  |
| NV03        | Phạm Tiến Dũng  | 12/12/1882 | DA02        | Dự án 02 | 20       |  |
| NV03        | Phạm Tiến Dũng  | 12/12/1882 | DA04        | Dự án 04 | 20       |  |

⇒ THAMGIA đạt DC1 nhưng còn trùng lặp thông tin

- Lược đồ R đạt dạng chuẩn 2 (DC2) nếu thỏa:
  - R đạt DC1 và
  - Các thuộc tính không khóa đều phụ thuộc đầy đủ vào khóa

#### - Kiểm tra DC2:

- Tìm tất cả khóa của R
- Với mỗi khóa K, tìm  $S_i^+$  với  $S_i$  là tất cả các tập con thực sự của K
- Nếu tồn tại  $S_i^+$  chứa thuộc tính không khóa thì R không đạt DC2, ngược lại Q đạt DC 2.



- VD24: Cho R1 (A, B, C, D)
Tập PTH F= {A → B, B → DC}
Kiểm tra R1 có đạt DC2 không?

• Tìm khóa của R1

Tập nguồn N = A

Ta có:  $A_F^+ = ABCD$ 

Lược đồ có khóa là A

VD24: Cho R1 (A, B, C, D)
 Tập PTH F= {A → B, B → DC}

Kiểm tra R1 có đạt DC2 không?

• Lược đồ chỉ có một khóa là A và khóa có duy nhất 1 thuộc tính, nên mọi thuộc tính không khóa đều phụ thuộc đầy đủ vào

• Do vậy R1 đạt DC 2.

khóa.

- VD25: Cho R2 (A, B, C, D)
Tập PTH F= {AB → D, C → D}
Kiểm tra R2 có đạt DC2 không?

• Tìm khóa của R2

Tập nguồn N = ABC

Ta có:  $ABC_F^+ = ABCD$ 

Lược đồ có khóa là ABC

- **VD25**: Cho R2 (A, B, C, D)

Tập PTH 
$$F = \{AB \rightarrow D, C \rightarrow D\}$$
  
Kiểm tra R2 có đạt DC2 không?

- Ta thấy C ⊂ ABC và C → D, D là thuộc tính không khóa, nên D không phụ thuộc đầy đủ vào khóa.
- Do vậy R2 không đạt DC2.

- **VD26:** Cho SINHVIEN (MSSV, MaMH, TenSV, DiaChi, Diem) Tập PTH F= {MSSV, MaMH → Diem, MSSV → TenSV, DiaChi} Kiểm tra SINHVIEN có đạt DC2 không?
  - Tîm khóa của SINHVIEN

```
Tập nguồn N = \{MSSV, MaMH\}
Ta có: \{MSSV, MaMH\}_F^+ = \{MSSV, MaMH, TenSV, DiaChi, Diem\}
Lược đồ có khóa là K = \{MSSV, MaMH\}
```

- VD26: Cho SINHVIEN (MSSV, MaMH, TenSV, DiaChi, Diem)
  Tập PTH F= {MSSV, MaMH → Diem, MSSV → TenSV, DiaChi}
  Kiểm tra SINHVIEN có đạt DC2 không?
  - Ta thấy  $MSSV \subset K$  và  $MSSV \to TenSV$ , DiaChi. TenSV, DiaChi là thuộc tính không khóa, nên không phụ thuộc đầy đủ vào khóa.
  - Do vậy SINHVIEN không đạt DC2.
- $\Rightarrow$  Tách thành 2 lược đồ, đạt DC2
  - DANGKY(MSSV, MaMH, Diem); F1={MSSV, MaMH → Diem}
  - SINHVIEN (MSSV, TenSV, DiaChi); F2={MSSV → TenSV, DiaChi}

- VD27: Cho NHANVIEN (MaNV, TenNV, NgSinh, SDT, MaPB, TenPB, TrgPB)
   Tập PTH F= {MaNV → TenNV, NgSinh, SDT, MaPB; MaPB → TenPB, TrgPB}
   Kiểm tra NHANVIEN có đạt DC2 không?
  - Tîm khóa của NHANVIEN
     Tập nguồn N = {MaNV}
     Ta có: MaNV<sup>+</sup><sub>F</sub> = {MaNV, TenNV, NgSinh, SDT, MaPB, TenPB, TrgPB}
     Lược đồ có khóa là MaNV

- VD27: Cho NHANVIEN (MaNV, TenNV, NgSinh, SDT, MaPB, TenPB, TrgPB)
Tập PTH F= {MaNV → TenNV, NgSinh, SDT, MaPB; MaPB → TenPB, TrgPB}
Kiểm tra NHANVIEN có đạt DC2 không?

- Lược đồ có khóa là MaNV, duy nhất 1 thuộc tính, nên các thuộc không khóa đều phụ thuộc đầy đủ vào khóa.
- Do vậy NHANVIEN đạt DC2 nhưng vẫn còn trùng lặp dữ liệu

#### - Nhận xét:

- Lược đồ đạt DC2 thì cũng đạt DC1
- Nếu lược đồ chỉ có 1 khóa và khóa gồm 1 thuộc tính => Đạt DC2
- DC2 còn trùng lặp dữ liệu

- Định nghĩa 1: Lược đồ R đạt dạng chuẩn 3 (DC3) nếu thỏa:
  - R đạt DC2 và
  - Các thuộc tính không khóa không phụ thuộc bắc cầu vào khóa
- Phụ thuộc bắc cầu: Thuộc tính  $A \in R^+$  được gọi là phụ thuộc bắc cầu vào tập thuộc tính X nếu  $\exists Y \in R^+$  :
  - $1)X \to Y \in F^+ \text{ và } Y \to A \in F^+$
  - 2)  $Y \rightarrow X \notin F^+$
  - $3)A \notin (X \cup Y)$

- Định nghĩa 2: Lược đồ R đạt DC3 nếu tất cả các phụ thuộc hàm
   X → Y ∈ F, với Y ∉ X đều có:
  - X là siêu khóa, hoặc
  - Y là thuộc tính khóa

#### - Kiểm tra DC3:

- Tìm tất cả khóa của R
- Phân rã vế phải của các PTH trong F thành các PTH có vế phải một thuộc tính
- Nếu mọi phụ thuộc hàm  $X \to Y \in F$ , và  $Y \notin X$  đều thỏa:
  - X là siêu khóa (vế trái chứa một khóa), hoặc
  - Y là thuộc tính khóa (vế phải là tập con của khóa)
- $\Rightarrow$  Thì R đạt DC 3. Ngược lại R không đạt DC 3.

- VD28: Cho R1 (A, B, C, D)
Tập PTH F= {AB → D, C → D}
Kiểm tra R1 có đạt DC3 không?

Tìm khóa của R1

Tập nguồn  $N = \{A, B, C\}$ 

Ta có:  $ABC_F^+ = ABCD$ 

Lược đồ có khóa là ABC

- **VD28:** Cho R1 (A, B, C, D)

Tập PTH 
$$F = \{AB \rightarrow D, C \rightarrow D\}$$
  
Kiểm tra R1 có đạt DC3 không?

- Mọi phụ thuộc hàm trong F đều đã có vế phải một thuộc tính.
- Xét AB → D, có
  - Vế trái (AB) không phải là siêu khóa, và
  - Vế phải (D) không là thuộc tính khóa
- ⇒ Do vậy R1 không đạt DC3.

- VD29: Cho NHANVIEN (MaNV, TenNV, NgSinh, SDT, MaPB, TenPB, TrgPB)
   Tập PTH F= {MaNV → TenNV, NgSinh, SDT, MaPB; MaPB → TenPB, TrgPB}
   Kiểm tra NHANVIEN có đạt DC3 không?
  - Tîm khóa của NHANVIEN
     Tập nguồn N = {MaNV}
     Ta có: MaNV<sup>+</sup><sub>F</sub> = {MaNV, TenNV, NgSinh, SDT, MaPB, TenPB, TrgPB}
     Lược đồ có khóa là MaNV

- VD29: Cho NHANVIEN (MaNV, TenNV, NgSinh, SDT, MaPB, TenPB, TrgPB)
  Tập PTH F= {MaNV → TenNV, NgSinh, SDT, MaPB; MaPB → TenPB, TrgPB}
  Kiểm tra NHANVIEN có đạt DC3 không?
  - Phân rã vế phải của các PTH trong F, ta có:
     F= MaNV → TenNV; MaNV → NgSinh; MaNV → SDT; MaNV → MaPB; MaPB →

TenPB; MaPB → TrgPB}

- Xét MaPB → TenPB có vế trái không là siêu khóa và vế phải không là thuộc tính
   khóa
- ⇒ NHANVIEN Không đạt DC3. Thuộc tính không khóa TenPB phụ thuộc bắc cầu vào khóa chính MaNV, gây trùng lặp dữ liệu.

#### - Nhận xét:

- Lược đồ đạt DC3 thì cũng đạt DC2
- Phụ thuộc bắc cầu gây nên trùng lắp dữ liệu
- Khi thiết kế CSDL, yêu cầu tối thiểu đạt DC3

 Lược đồ R đạt dạng chuẩn Boyce Codd (DC BC) nếu tất cả các phụ thuộc hàm X → Y ∈ F, với Y ∉ X đều có X là siêu khóa.

#### Kiểm tra DCBC:

- Tìm tất cả khóa của R
- Phân rã vế phải của các PTH trong F thành các PTH có vế phải một thuộc tính
- Nếu mọi phụ thuộc hàm X → Y ∈ F, và Y ∉ X đều thỏa: X là siêu khóa (vế trái chứa một khóa)
- ⇒ Thì R đạt DC BC. Ngược lại R không đạt DC BC.

- VD30: Cho R (A, B, C, D, E, I)
Tập PTH F= {ACD → EBI, CE → AD}
Kiểm tra R có đạt DC BC không?

• Tîm khóa của R:

R có 2 khóa là {ACD, CE}

Phân rã vế phải của các PTH trong F, ta có:

$$F = \{ACD \rightarrow E, ACD \rightarrow B, ACD \rightarrow I, CE \rightarrow A, CE \rightarrow D\}$$

- Tất cả PTH trong F đều có vế trái là một siêu khóa
- ⇒ Do vậy•R đạt DC BC.

- **VD31:** Cho R (A, B, C, D)

Tập PTH 
$$F = \{A \rightarrow BCD, BC \rightarrow AD, D \rightarrow B\}$$
  
Kiểm tra  $R$  có đạt  $DC$   $BC$  không?

• Tîm khóa của R:

R có 3 khóa là {A, BC, CD}

Phân rã vế phải của các PTH trong F, ta có:

$$F = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, BC \rightarrow A, BC \rightarrow D, D \rightarrow B\}$$

- Xét D → B có vế trái không chứa 1 khóa
- ⇒ Do vậy•R không đạt DC BC.

#### - Nhận xét:

- Lược đồ đạt DC BC thì cũng đạt DC3
- Vẫn có thể trùng lặp thông tin

# 5. Dạng chuẩn của Lược đồ quan hệ, Lược đồ CSDL

- Dạng chuẩn của một lược đồ quan hệ: là dạng chuẩn cao nhất của lược đồ quan hệ đó
- Dạng chuẩn của một lược đồ CSDL: là dạng chuẩn thấp nhất trong các dạng chuẩn của các lược đồ quan hệ con.

# 5. Dạng chuẩn của Lược đồ quan hệ, Lược đồ CSDL

- Kiểm tra dạng chuẩn của lược đồ quan hệ R
  - Tîm mọi khóa của R
  - Kiểm tra DC BC, nếu đúng thì kết luận R đạt DC BC, ngược lại qua bước 3.
  - Kiểm tra DC 3, nếu đúng thì kết luận R đạt DC 3, ngược lại qua bước 4.
  - Kiểm tra DC 2, nếu đúng thì kết luận R đạt DC 2, ngược lại kết luận R đạt DC 1.



# Tổng kết chương



#### Phụ thuộc hàm

- 1. Các khái niệm cơ bản
- 2. Hệ luật dẫn Amstrong
- 3. Bao đóng
- 4. Phủ tối thiểu
- 5. Khóa



- 1. Dạng chuẩn 1
- 2. Dạng chuẩn 2
- 3. Dạng chuẩn 3
- 4. Dạng chuẩn Boyce Codd
- 5. Dạng chuẩn của lược đồ quan hệ, lược đồ CSDL

# THANKS!

Any questions?