Teorema fundamental del álgebra

Elías López Rivera ¹

¹ Universidad Nacional Autónoma de México Facultad de Ciencias

24 de julio de 2024

Ejercicio 1 Prueba que todo polinomio de grado impar P(x) con coeficientes reales tiene al menos una ra \acute{z} real.

Solución Demostraremos el siguiente lema:

Sea $P(x) \in \Re[x]$, tal que $a_n \neq 0$, entonces existe $\delta \in \mathbb{R}^+$, tal que si $|t| > \delta$, con $t \in \mathbb{R}$ entonces:

$$sgn[P(t)] = sgn[a_n t^n]$$

Donde a_n es el coeficiente del termino de mayor grado en el polinomio.

Demostración

Tomemos $P(x) \in \Re[x]$:

$$P(x) = \sum_{i=0}^{n} a_i x^i = a_n x^n \left[1 + \sum_{i=1}^{n} \frac{a_{n-i}}{a_n} \left(\frac{1}{x} \right)^i \right]$$

definimos el polinomio g(x) de tal suerte que:

$$g(x) = \sum_{i=1}^{n} \frac{a_{n-i}}{a_n} x^i$$

De la continuidad de g(x), obtenemos que sea $0 < \epsilon < 1$, existira $\delta \in \mathbb{R}^+$, tal que si $|\frac{1}{t}| < \delta$ $(i.e \ |t| > \frac{1}{\delta})$, con $t \in \mathbb{R}$, entonces $|g(\frac{1}{t})| \le \epsilon$.

Eligiendo t con las caracteristicas anteriores se tiene que:

$$\left|g\left(\frac{1}{t}\right)\right| \leq \epsilon \implies -\epsilon \leq g\left(\frac{1}{t}\right) \implies 0 < 1 - \epsilon \leq 1 + g\left(\frac{1}{t}\right) \implies sgn\left[1 + g\left(\frac{1}{t}\right)\right] = 1$$

y por tanto:

$$sgn[P(t)] = sgn[a_n t^n] sgn\left[1 + g\left(\frac{1}{t}\right)\right] = sgn[a_n t^n]$$

Ahora tomemos que $a_n > 0$, para g(x) de grado impar, donde a_n es el coeficiente del termino con mayor grado:

Si tomamos $t_1 \in \mathbb{R}^-$ suficientemente grande $(|t_1| > \frac{1}{\delta})$, se sigue que:

$$sgn[g(t_1)] = sgn[a_n t_1^{2k+1}] = -1$$

De la misma manera tomemos $t_2 \in \mathbb{R}^+$, sufucientemente grande $(|t| > \frac{1}{\delta})$, se sique que:

$$sgn[g(t_2)] = sgn[a_n t_2^{2k+1}] = 1$$

Al haber un cambio de signo, se puede segurar que existe una raíz en el intervalo $[t_1, t_2]$, el caso $a_n < 0$ es análogo.

Ejercicio 2 Sea $P(z) = \sum_{k=0}^{n} a_k z^k$, $a_n \neq 0$, un polinomio con coeficientes complejos. Muestra que $|P(z)| : \mathbb{C} \to \mathbb{R}$, alcanza su mínimo, i.e, existe $z_0 \in \mathbb{C}$ tal que:

$$|P(z_0)| \le |P(z)| \quad \forall z \in \mathbb{C}$$

Solución

Demostraremos el siguiente lema (lema del crecimiento):

Sea $P(z) = \sum_{i=0}^{n} a_i z^i$ un polinomio de grado $n \ge 1$, con coeficientes complejos, existe un número real R > 0 tal que si $|z| \ge R$ se tiene que:

$$\frac{1}{2}|a_n||z^n| \le |P(z)| \le 2|a_n||z^n|$$

Demostración

Definimos $k(z) = \sum_{i=0}^{n-1} \, a_i \, z^i$ aplicando desigualdad del triángulo se sigue:

$$|a_n||z|^n - r(z) \le |P(z)| \le |a_n||z|^n + r(z)$$

Si $|z| \geq 1$ y elegimos i < n, podemos notar que $|z|^i \leq |z|^{n-1}$, se donde se obtiene que $r(z) \leq M\,|z|^{n-1}$, con $M = \sum_{i=0}^{n-1}\,a_i$. Tomando $R := \max{[1, 2M\,|a_n|^{-1}]}$, para $|z| \geq R$ se sigue que:

$$|P(z)| \le |a_n||z|^n + r(z) \le |z|^{n-1} [|a_n||z| + M] \le 2|a_n||z|^n$$

De la misma manera se tiene que:

$$|P(z)| \ge |a_n||z|^n - r(z) \ge |a_n||z|^n - M|z|^{n-1}$$

$$\ge |a_n||z|^n - \frac{1}{2}|a_n||z|^n = \frac{1}{2}|a_n||z|^n$$

Una vez demostrado lo anterior procedamos a tomar $R_1 := max \left[R, \sqrt[n]{2s|a_n|^{-1}} \right]$, con $s = |P(0)| = |a_0|$, donde R es el número definido por el lema de crecimiento. Si tomamos z de tal suerte que $|z| \ge R_1$, se sigue que:

$$|P(z)| \ge \frac{1}{2}|a_n||z^n| \ge \frac{1}{2}|a_n||R_1^n| \ge s$$

Definimos el disco cerrado $\bar{D}(0, R_1)$, a su vez definimos la función $f: \bar{D} \to \mathbb{R}$ tal que f(x,y) = |P(x+iy)|, debido a la continuidad de f y a que $\bar{D}(0, R_1)$ es compacto se sigue que:

$$\exists (x_0, y_0) \in \bar{D}(0, R_1) : |P(x+iy)| \ge |P(x_0+iy_0)| \ \forall (x, y) \in \bar{D}(0, R_1)$$

Sea $z_0 = x_0 + iy_0$, de lo anterior se sigue que sea $z \in \mathbb{C}$ tal que $|z| \geq R_1$:

$$|P(z)| \ge |P(0)| \ge |P(z_o)|$$

Por tanto la función alcanza su minimo global.

Ejercicio 3 Prueba que existe un polinomio Q tal que:

$$Q(0) = P(z_0)$$
 y $|Q(0)| \le |Q(z)|$ $\forall z \in \mathbb{C}$

Solución

Definimos el polinomio de tal que $Q(z) = P(z+z_0)$, se sigue inmediatamente que $Q(0) = P(z_0)$ además que:

$$|Q(0)| = |P(z_0)| < |P(z + z_0)| = |Q(z)| \quad \forall \ z \in \mathbb{C}$$

Ejercicio 4 Escribe Q como:

$$Q(z) = c_0 + c_j z^j + z^{j+1} R(z)$$

Donde R es un polinomio y $j := min[0 < k \le n : c_k \ne 0]$

Sea
$$-\frac{c_0}{c_j} = r e^{i\theta}$$
 y fija $z_1 = r^{\frac{1}{j}} e^{\frac{i\theta}{j}}$. Calcula $Q(\epsilon z_1)$, donde $\epsilon > 0$.

Solución

Q(z) puede escribirse como:

$$Q(z) = c_n z^n + \dots + c_{j+1} z^{j+1} + c_j z^j + c_0 = z^{j+1} [a_n z^{n-j-1} + \dots + c_{j+1}] + c_j z^j + c_0$$

Tomamos $R(z) = c_n z^{n-j-1} + \dots + c_{j+1}$, tenemos que

$$Q(z) = c_0 + c_J z^j + z^{j+1} R(z)$$

Fijamos z_1 y tomamos un $\epsilon > 0$:

$$Q(\epsilon z_1) = c_0 + c_j (z_1)^j + z_1^j z_1 R(\epsilon z_1) = c_0 - c_0 \epsilon^j + \epsilon^{j+1} c_0 \left[-\frac{z_1}{c_j} R(\epsilon z_1) \right]$$

Como z_1 es fijo podemos ver a $-\frac{z_1}{c_j} R(\epsilon z_1)$ como un polinomio para la variable ϵ , $l(\epsilon)$, por tanto:

$$Q(\epsilon z_1) = c_0 \left[1 - \epsilon^j + \epsilon^{j+1} l(\epsilon) \right]$$

Ejercicio 5 Prueba que $c_0 = Q(0) = 0$, completanto la demostración del Teorema fundamental del álgebra.

Solución

Sí $c_0 \neq 0$, veamos que se cumple que:

$$|Q(\epsilon z_1)| = |c_0| |1 - \epsilon^j + \epsilon^{j+1} l(\epsilon)| \le |c_0| [|1 - \epsilon^j| + |\epsilon^j| |\epsilon| l(\epsilon)|]$$

Definimos $m: \mathbb{R} \to \mathbb{R}$, tal que $m(\epsilon) = \epsilon |l(\epsilon)|$, por la continuidad de m se sigue que, sea $\lambda = 1 > 0$:

$$\exists \ \delta \in \mathbb{R}^+ : |\epsilon| < \delta \implies |m(\epsilon)| < 1$$

Definimos $\epsilon := \min\left[\frac{1}{2}, \frac{\delta}{2}\right]$, se sigue que necesarimente $0 < \epsilon < 1$ por tanto:

$$|Q(\epsilon z_1)| \le |c_0| [1 - \epsilon^j + \epsilon^j |\epsilon| l(\epsilon)|] = |c_0| [1 - \epsilon^j (1 - |\epsilon| l(\epsilon)|)] < |c_0|$$

Lo cual es una contradicción ya que $|c_0|$, es el punto mínimo de Q(z), por tanto se tiene que necesariamente $c_0 = 0$

Ejercicio 6 Colorario. Todo polinomio mónico con coeficientes complejos puede descomponerse como un producto de factores de la forma $(z - \alpha)$, para algunas $\alpha \in \mathbb{C}$

Solución

Tomemos cualquier polinomio de coeficientes complejos, P(x), cuyo grado es $n \in \mathbb{N}$, por el teorema fundamental de álgebra se tiene que exite al menos un $\alpha_1 \in \mathbb{C}$ tal que $P(\alpha_1) = 0$, por tanto P(x) puede verse como

$$P(x) = (x - \alpha_1) Q(x)$$

Donde Q(x) tiene grado n-1, de la misma manera Q(x), por el teorema fundamental del algebra, tiene al menos una raíz α_2 compleja por tanto:

$$P(x) = (x - \alpha_1)(x - \alpha_2)T(x)$$

Donde T(x) tiene grado n-2, por tanto si aplicamos el proceso n veces, al ser un número finito se sigue que:

$$P(x) = (x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n)$$

Ejercicio 7 Muestra que si p es un polinomio con coeficientes reales y α es una raíz compleja de p, entonces $\bar{\alpha}$ también es raíz de p. Usa este hecho para demostrar que p puede expresarse como el producto de polinomios de grado uno o dos, con coeficientes reales.

Solución

Tomemos $p(x) = \sum_{i=0}^{n} a_i x^i$, encontremos $p(\bar{\alpha})$:

$$p(\bar{\alpha}) = \sum_{i=0}^{n} a_i (\bar{\alpha})^i = \sum_{i=0}^{n} a_i \bar{\alpha}^i = \sum_{i=0}^{n} \overline{a_i \alpha^i} = \overline{\sum_{i=0}^{n} a_i \alpha^i}$$

Del hecho de que α es raíz de sigue:

$$p(\bar{\alpha}) = \bar{0} = 0$$

Por tanto $\bar{\alpha}$ es raíz del polinomio.

Ahora calculamos $(x - \alpha)(x - \bar{\alpha})$:

$$(x - \alpha)(x - \bar{\alpha}) = x^2 - \bar{\alpha}x - \alpha x + \alpha \bar{\alpha} = x^2 + bx + c$$

Donde $b, c \in \mathbb{R}$, por tanto sea un polinomio p con coeficientes reales tomemos el siguiente algoritmo:

Sea p un polinomio con coeficientes reales, de grado $n \in \mathbb{N}$, si el grado de p es impar entonces existe $\alpha_1 \in \mathbb{R}$ tal que:

$$p(x) = (x - \alpha_1) l(x)$$

Donde el grado de l es n-1

Si el grado de p es par, entonces por teorema fundamental del álgebra, existe α_1 raíz compleja de p si $Im(\alpha_1) = 0$, se sique que $z(x) = (x - \alpha_1)$ es un polinomio de coeficientes reales y p puede escribirse como:

$$p(x) = (x - \alpha_1) l(x)$$

Donde el grado de l es n-1

Si $Im(\alpha_1) \neq 0$, entonces $\bar{\alpha}_1$ es raíz de p, por tanto $q(x) = (x - \alpha_1)(x - \bar{\alpha}_1)$, es polinomio de coeficientes reales y que p puede escribirse como:

$$p(x) = (x - \alpha_1) (x - \bar{\alpha_1}) l(x)$$

Donde el grado de l(x) es n-2

Podemos aplicar este mismo algoritmo a l(x) para factorizarlo en un polinomio de grado uno o dos de coeficientes reales por otro polinomio de grado n-3 o n-4, de la misma manera podemos aplicar el algoritmo sobre este polinomio para factorizarlo, si aplicamos este proceso suficientes veces podremos factorizar p en polinomios de grado uno o dos con coeficientes reales.