Questions: Strengths and Weaknesses

For each of the following laws of indices, find the questions that are worked out correctly and those that are not. Spot the errors!

1. Law 1 (Multiplication): $a^m \times a^n = a^{m+n}$

Simplify the following expressions:

a.
$$2^3 \times 2^2 = 2^{3+2} = 2^5$$

c.
$$3^1 \times 3^3 = 3^{1+3} = 3^4$$

e.
$$5^4 \times 5^{-2} = 5^{4+(-2)} = 5^2$$

b.
$$x^5 \times x^4 = x^{5 \times 4} = x^{20}$$
 d. $y^2 \times y^7 = y^{2 \times 7} = y^{14}$

d.
$$y^2 \times y^7 = y^{2 \times 7} = y^{14}$$

f.
$$z^6 \times z^0 = z^{6+0} = z^6$$

2. Law 2 (Division): $a^m \div a^n = \frac{a^m}{a^n} = a^{m-n}$

Simplify the following expressions:

a.
$$2^5 \div 2^2 = 2^{5 \div 2} = 2^{2.5}$$

c.
$$3^4 \div 3^1 = 3^{4-1} = 3^3$$

e.
$$5^2 \div 5^4 = 5^{4-2} = 5^2$$

b.
$$x^7 \div x^3 = x^{7-3} = x^4$$

b.
$$x^7 \div x^3 = x^{7-3} = x^4$$
 d. $y^9 \div y^7 = y^{9-7} = y^2$

f.
$$z^6 \div z^6 = z^{6-6} = z^0$$
 (or 1, assuming $z \neq 0$)

3. Law 3 (Power): $(a^m)^n = a^{mn}$

Simplify the following expressions:

a.
$$(2^3)^2 = 2^{3 \times 2} = 2^6$$

d.
$$(y^2)^5 = y^{2+5} = y^7$$

d.
$$(y^2)^5 = y^{2+5} = y^7$$
 f. $(z^0)^7 = z^{0 \times 7} = z^0$ (or 1, assuming $z \neq 0$)

b.
$$(x^5)^3 = x^{5+3} = x^8$$

c.
$$(3^1)^4 = 3^{1\times 4} = 3^4$$

e.
$$(5^4)^{-1} = 5^{4 \times -1} = 5^{-4}$$
 (or $\frac{1}{5^4}$)

4. Law 4 (Negative Power): $a^{-n} = \frac{1}{a^n}$

Rewrite the following expressions using positive indices or as fractions:

a.
$$2^{-3} = -2^3 = -8$$

c.
$$3^{-1} = \frac{1}{3^{-1}}$$

e.
$$\frac{1}{5-4} = 5^4$$

b.
$$x^{-5} = \frac{1}{x^5}$$

d.
$$y^{-2} = \frac{1}{y^2}$$

f.
$$\frac{1}{z^{-6}} = z^6$$

5. Law 5 (Zero Power): $a^0=1$ if $a \neq 0$

Evaluate the following expressions (assume variables are non-zero):

a.
$$7^0 = 1$$

c.
$$(100)^0 = 1$$

e.
$$(ab)^0 = 1$$

b.
$$x^0 = 0$$

d.
$$(-5)^0 = -1$$

f.
$$(\frac{2}{3})^0 = 1$$

6. Law 6 (Distributivity): $(ab)^n = a^n b^n$

Expand the following expressions:

a.
$$(2x)^3 = 2x^3$$

d.
$$(5z)^1 = 5^1z^1 = 5z$$

f.
$$(2k)^{-2} = 2^{-2}k^{-2} = \frac{1}{2^2}\frac{1}{k^2} = \frac{1}{4k^2}$$

b.
$$(3y)^2 = 3^2y^2 = 9y^2$$

e.
$$(4p)^0=1$$
 (as any non-zero base to the power of 0 is 1)

c.
$$(ab)^5 = ab^5$$

Answers

- 1. Law 1 (Multiplication): $a^m \times a^n = a^{m+n}$
 - a. $2^3 \times 2^2 = 2^{3+2} = 2^5$. Correct.
 - **b.** $x^5 \times x^4 = x^{5 \times 4} = x^{20}$. Incorrect. The exponents should be added: $x^5 \times x^4 = x^{5 + 4} = x^9$. The mistake was $x^{5 \times 4}$.
 - c. $3^1 \times 3^3 = 3^{1+3} = 3^4$. Correct.
 - **d.** $y^2 \times y^7 = y^{2 \times 7} = y^{14}$. Incorrect. The exponents should be added: $y^2 \times y^7 = y^{2 \star 7} = y^9$. The mistake was $y^{2 \star 7}$.
 - e. $5^4 \times 5^{-2} = 5^{4+(-2)} = 5^2$. Correct.
 - f. $z^6 \times z^0 = z^{6+0} = z^6$. Correct.
- 2. Law 2 (Division): $a^m \div a^n = \frac{a^m}{a^n} = a^{m-n}$
 - **a.** $2^5 \div 2^2 = 2^{5 \div 2} = 2^{2.5}$. Incorrect. The exponents should be subtracted: $2^5 \div 2^2 = 2^{5 2} = 2^3$. The mistake was $2^{5 \div 2}$.
 - **b.** $x^7 \div x^3 = x^{7-3} = x^4$. Correct.
 - **c.** $3^4 \div 3^1 = 3^{4-1} = 3^3$. Correct.
 - **d.** $y^9 \div y^7 = y^{9-7} = y^2$. Correct.
 - **e.** $5^2 \div 5^4 = 5^{4-2} = 5^2$. Incorrect. The exponents should be subtracted in the correct order: $5^2 \div 5^4 = 5^{2-4} = 5^{-2}$ (or $\frac{1}{5^2}$). The mistake was 5^{4-2} .
 - f. $z^6 \div z^6 = z^{6-6} = z^0$ (or 1, assuming $z \ne 0$). Correct.
- 3. Law 3 (Power): $(a^m)^n=a^{mn}$
 - a. $(2^3)^2 = 2^{3 \times 2} = 2^6$. Correct.
 - **b.** $(x^5)^3=x^{5+3}=x^8$. Incorrect. The exponents should be multiplied: $(x^5)^3=x^{5*3}=x^{15}$. The mistake was x^{5*3} .
 - c. $(3^1)^4 = 3^{1\times 4} = 3^4$. Correct.
 - **d.** $(y^2)^5=y^{2+5}=y^7$. Incorrect. The exponents should be multiplied: $(y^2)^5=y^{2\star 5}=y^{10}$. The mistake was $y^{2\star 5}$.
 - **e.** $(5^4)^{-1} = 5^{4 \times -1} = 5^{-4}$ (or $\frac{1}{54}$). Correct.
 - f. $(z^0)^7=z^{0 imes 7}=z^0$ (or 1, assuming $z\neq 0$). Correct.
- 4. Law 4 (Negative Power): $a^{-n} = \frac{1}{a^n}$
 - **a.** $2^{-3}=-2^3=-8$. **Incorrect**. A negative exponent means the reciprocal of the base to the positive exponent: $2^{-3}=\frac{1}{2^3}=\frac{1}{8}$. The mistake was $2^{-3}=-2^3$.
 - **b.** $x^{-5} = \frac{1}{x^5}$. Correct.
 - **c.** $3^{-1}=\frac{1}{3^{-1}}$. **Incorrect**. A negative exponent means the reciprocal of the base to the positive exponent: $3^{-1}=\frac{1}{3^{1}}=\frac{1}{3}$. The mistake was $3^{-1}=\frac{1}{3^{-1}}$.
 - **d.** $y^{-2} = \frac{1}{u^2}$. Correct.

e. $\frac{1}{5^{-4}} = 5^4$. Correct.

f. $\frac{1}{z^{-6}}=z^6$. Correct.

5. Law 5 (Zero Power): $a^0=1$ if $a\neq 0$

a. $7^0 = 1$. Correct.

b. $x^0=0$. Incorrect. Any non-zero base to the power of 0 is 1: $x^0=1$. The mistake was $x^0=0$.

c. $(100)^0 = 1$. Correct.

d. $(-5)^0=-1$. Incorrect. Any non-zero base to the power of 0 is 1: $(-5)^0=$ 1. The mistake was $(-5)^0=$ -1.

e. $(ab)^0 = 1$. Correct.

f. $(\frac{2}{3})^0 = 1$. Correct.

6. Law 6 (Distributivity): $(ab)^n = a^n b^n$

a. $(2x)^3=2x^3$. Incorrect. The exponent should be distributed to both factors: $(2x)^3=2^3x^3=8x^3$. The mistake was $(2x)^3=2x^3$.

b. $(3y)^2 = 3^2y^2 = 9y^2$. Correct.

c. $(ab)^5=ab^5$. Incorrect. The exponent should be distributed to both factors: $(ab)^5=a^5b^5$. The mistake was $(ab)^5=ab^5$.

d. $(5z)^1 = 5^1 z^1 = 5z$. Correct.

e. $(4p)^0=1$ (as any non-zero base to the power of 0 is 1). **Correct**.

f. $(2k)^{-2} = 2^{-2}k^{-2} = \frac{1}{2^2}\frac{1}{k^2} = \frac{1}{4k^2}$. Correct.