

Search for EFT Operators through $t\bar{t}$ Production with Electroweak Loops

Zhen Lin, Chenfeng Lu, <u>Renqi Pan</u>, Yuekai Song, Min Tang, Meng Xiao, Yulei Ye

Zhejiang University renqi.pan@cern.ch

tī Production with Electroweak Loops

arXiv:1911.11244, 1305.5773

- •Three vertices enter the Electroweak loops: Htt, Ztt, Wtb
- Possible to probe EW related EFT operators
- Corrections from Higgs loop, sensitive to Higgs CP property
- New physics could modify these couplings

SMEFT Framework

- Possible to search for NP in a model-independent way
- In Warsaw basis: 59 independent 6D operators

• Effective Lagrangian:
$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_i c_i \mathcal{O}_i + \cdots$$

- $Q_{u\phi} o Htt$, $Q_{\phi u} o Ztt$,
- $Q_{\varphi q}^{(3)}
 ightarrow {
 m Ztt}$, Wtb and Zbb, $Q_{\varphi q}^{(1)}
 ightarrow {
 m Ztt}$ and Zbb

X^3		$arphi^6$ and $arphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G_{\mu}^{A u}G_{ u}^{B ho}G_{ ho}^{C\mu}$	Q_{arphi}	$\left(arphi^\daggerarphi ight)^3$	Q_{earphi}	$\left(arphi^\daggerarphi ight)\left(ar{l}_{p}e_rarphi ight)$
$Q_{\widetilde{G}}$	$f^{ABC} {\widetilde G}_{\mu}^{A u} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{arphi\square}$	$\left(arphi^\daggerarphi ight)\Box\left(arphi^\daggerarphi ight)$	Q_{uarphi}	$\left(arphi^\daggerarphi ight)\left({ar q}_p u_r \widetilde{arphi} ight)$
Q_W	$arepsilon^{IJK}W_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$	$Q_{arphi D}$	$\left(arphi^\dagger D^\mu arphi ight)^\star \left(arphi^\dagger D_\mu arphi ight)$	Q_{darphi}	$\left(arphi^\daggerarphi ight)\left({ar q}_p d_rarphi ight)$
$Q_{\widetilde{W}}$	$arepsilon^{IJK} {\widetilde W}_{\mu}^{I u} W_{ u}^{J ho} W_{ ho}^{K\mu}$				
	X^2arphi^2		$\psi^2 X arphi$		$\psi^2 arphi^2 D$
$Q_{arphi G}$	$arphi^\dagger arphi G^A_{\mu u} G^{A\mu u}$	Q_{eW}	$\Big(ar{l}_{p}\sigma^{\mu u}e_{r}ig) au^{I}arphi W_{\mu u}^{I}$	$Q_{arphi l}^{(1)}$	$igg(arphi^\dagger i \overset{\longleftrightarrow}{D}_\mu arphi igg) ig(\overline{l}_{p} \gamma^\mu l_r ig)$
$Q_{arphi} \widetilde{G}$	$arphi^\dagger arphi {\widetilde G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$\Big({ar l}_p \sigma^{\mu u} e_r \Big) arphi B_{\mu u}$	$Q_{arphi l}^{(3)}$	$igg(arphi^\dagger i \overset{\longleftrightarrow}{D}_\mu^I arphi igg) ig(ar{l}_p au^I \gamma^\mu l_rig)$
$Q_{arphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$\Big[ig({ar q}_p \sigma^{\mu u} T^A u_r ig) \widetilde arphi G^A_{\mu u} \Big]$	$Q_{arphi e}$	$igg(arphi^\dagger i \overset{\longleftrightarrow}{D}_\mu arphi igg) (ar{e}_p \gamma^\mu e_r)$
$Q_{arphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$\Big[\Big({ar q}_p \sigma^{\mu u} u_r \Big) au^I {\widetilde arphi} W^I_{\mu u} \Big]$	$Q_{arphi q}^{(1)}$	$igg(arphi^\dagger i \overset{\longleftrightarrow}{D}_\mu arphi igg) ig(ar{q}_{p} \gamma^\mu q_rig)$
$Q_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$\Big[\left({ar q}_p \sigma^{\mu u} u_r ight) \widetilde arphi B_{\mu u}$	$Q_{arphi q}^{(3)}$	$igg(arphi^\dagger i \overleftrightarrow{D}_\mu^I arphi igg) ig(\overline{q}_{p} au^I \gamma^\mu q_r ig)$
$Q_{arphi\widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$\Big(ar{q}_{p}\sigma^{\mu u}T^{A}d_{r}ig)arphi G_{\mu u}^{A}$		
$Q_{arphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$\Big[\Big({ar q}_p \sigma^{\mu u} d_r \Big) au^I arphi W^I_{\mu u} \Big]$	$Q_{arphi d}$	$i\Big(arphi^\dagger i \overleftrightarrow{D}_\mu arphi\Big) ig(ar{d}_p \gamma^\mu d_rig) \ i\Big(\widetilde{arphi}^\dagger D_\mu arphi\Big) ig(ar{u}_p \gamma^\mu d_rig)$
$Q_{arphi\widetilde{W}B}$	$arphi^\dagger au^I arphi {\widetilde W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$\Big[ig({ar q}_p \sigma^{\mu u} d_r ig) arphi B_{\mu u}$	$Q_{arphi ud}$	$i \Big(\widetilde{arphi}^\dagger D_\mu arphi \Big) (ar{u}_p \gamma^\mu d_r)$

Dimension-six operators other than the four-fermion ones arXiv: 1008.4884, 1704.03888

EW Couplings in the SMEFT

$$\begin{array}{l} \text{. Ztt coupling: } \Gamma^{\mu}_{Ztt} = \frac{-\mathrm{i}e}{s_{\mathrm{w}}c_{\mathrm{w}}} \gamma^{\mu} \left(d_{\mathrm{L}}^{Z}P_{\mathrm{L}} + d_{\mathrm{R}}^{Z}P_{\mathrm{R}} \right) \\ \\ d_{\mathrm{L}}^{Z} \to d_{\mathrm{L}}^{Z,\mathrm{SM}} + \frac{1}{2} \frac{v^{2}}{\Lambda^{2}} \left(C_{33}^{\varphi q3} - C_{33}^{\varphi q1} \right) \text{, and } \quad d_{\mathrm{R}}^{Z} \to d_{\mathrm{R}}^{Z,\mathrm{SM}} - \frac{1}{2} \frac{v^{2}}{\Lambda^{2}} C_{33}^{\varphi u} \end{array}$$

• Wtb coupling:
$$\Gamma^{\mu}_{Wtb} = \frac{-\mathrm{i}e}{\sqrt{2}s_{\mathrm{w}}} \gamma^{\mu} d_{\mathrm{L}}^{W} P_{\mathrm{L}}$$

$$d_{\mathrm{L}}^{W} \rightarrow d_{\mathrm{L}}^{W,\mathrm{SM}} + \frac{v^{2}}{\Lambda^{2}} C_{33}^{\varphi q 3}$$

. Htt Yukawa interaction:
$$\mathscr{L}(Htt) = -\frac{m_t}{v} \bar{\psi}_t \left(\kappa + \mathrm{i} \, \tilde{\kappa} \gamma_5\right) \psi_t$$

$$\kappa = 1 - \frac{v}{\sqrt{2} m_t} \frac{v^2}{\Lambda^2} \operatorname{Re} \left[C_{tt}^{u\phi}\right], \quad \tilde{\kappa} = -\frac{v}{\sqrt{2} m_t} \frac{v^2}{\Lambda^2} \operatorname{Im} \left[C_{tt}^{u\phi}\right]$$

- κ term: CP-even, $\tilde{\kappa}$ term: CP-odd; In SM: $\kappa=1$, $\tilde{\kappa}=0$.
- If κ , $\tilde{\kappa}$ both are non-zero, implies CP violation.

• take
$$\frac{v^2}{\Lambda^2}$$
 Re $\left[C_{tt}^{u\varphi}\right]$, $\frac{v^2}{\Lambda^2}$ Im $\left[C_{tt}^{u\varphi}\right]$, $\frac{v^2}{\Lambda^2}C_{33}^{\varphi u}$ as free parameters

Theoretical calculation and codes offered by Till Martini and Markus Schulze

Note:

- $C_{33}^{\varphi q1}$, $C_{33}^{\varphi q3}$ influence Zbb couplings
- In codes: $C_{33}^{\varphi q1} = -C_{33}^{\varphi q3}$, considering $e^+e^- \to b\bar{b}$
- $C_{33}^{\varphi q3}$ change top decay, while not included in codes
- We don't consider $C_{33}^{\varphi q1}$, $C_{33}^{\varphi q3}$

Ratio of EW Corrections

- $+ \text{ EW correction factor: } \delta_{\text{wk}} = \frac{d\sigma_{\text{wk}}^{\text{NLO}} d\sigma^{\text{LO}}}{d\sigma^{\text{LO}}}$
- $lacktright \delta_{wk}$ can be used to reweight distributions to include EW effects
- lacktriangledistributions of $\Delta y_{t\bar{t}}$ and $M_{t\bar{t}}$ sensitive to EFT operators
- ◆ Two variables have correlation, reweight in 2D

Martini, Schulze: arXiv:1911.11244

Martini, Pan, Schulze, Xiao: arXiv: 2104.04277

EW corrections in 2D, SM case

Analyze the tt Production

Analyze the $t\bar{t}$ production with Electroweak loops in the semileptonic channel at the CMS

Final state:

- · At least 3 jets with at least two bjets
- · One isolated and high quality lepton

Data: 2016-2018, 137fb⁻¹

Background: single top, VV, V+jets, DY, QCD

MC Datasets

```
/TTToSemiLeptonic_TuneCP5_13TeV-powheg-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/TTToHadronic_TuneCP5_13TeV-powheg-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/WWTo1L1Nu2Q_TuneCP5_13TeV-amcatnloFXFX-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/ZZTo2Q2L_mllmin4p0_TuneCP5_13TeV-amcatnloFXFX-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/WZTo1L1Nu2Q_TuneCP5_13TeV-amcatnloFXFX-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v2/NANOA0DSIM
/ST_s-channel_4f_leptonDecays_TuneCP5_13TeV-amcatnlo-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/ST_t-channel_top_4f_InclusiveDecays_TuneCP5_13TeV-powheg-madspin-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/ST_t-channel_antitop_4f_InclusiveDecays_TuneCP5_13TeV-powheg-madspin-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIN
/ST_tW_top_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v2/NANOA0DSIM
/ST_tW_antitop_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v2/NANOA0DSIM
/WJetsToLNu_HT-100To200_TuneCP5_13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoAODv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOAODSIM
/WJetsToLNu_HT-200To400_TuneCP5_13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoAODv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOAODSIM
/WJetsToLNu HT-400To600 TuneCP5 13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoAODv9-106X upgrade2018 realistic v16 L1v1-v1/NANOAODSIM
/WJetsToLNu_HT-600To800_TuneCP5_13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoAODv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOAODSIM
/WJetsToLNu_HT-800To1200_TuneCP5_13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/WJetsToLNu_HT-1200To2500_TuneCP5_13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoAODv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOAODSIM
/WJetsToLNu_HT-2500ToInf_TuneCP5_13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoAODv9-106X_upgrade2018_realistic_v16_L1v1-v2/NANOAODSIM
/DYJetsToLL_M-50_HT-70to100_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/DYJetsToLL_M-50_HT-100to200_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/DYJetsToLL_M-50_HT-200to400_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/DYJetsToLL_M-50_HT-400to600_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/DYJetsToLL_M-50_HT-600to800_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/DYJetsToLL_M-50_HT-800to1200_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/DYJetsToLL_M-50_HT-1200to2500_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
/DYJetsToLL_M-50_HT-2500toInf_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/RunIISummer20UL18NanoA0Dv9-106X_upgrade2018_realistic_v16_L1v1-v1/NANOA0DSIM
```

QCD background will be estimated through Data-Driven. To be done!

Ren-Qi Pan(ZJU)

Data Datasets

```
/EGamma/Run2018A-UL2018_MiniAODv2_NanoAODv9-v1/NANOAOD
/EGamma/Run2018B-UL2018_MiniAODv2_NanoAODv9-v1/NANOAOD
/EGamma/Run2018C-UL2018_MiniAODv2_NanoAODv9-v1/NANOAOD
/EGamma/Run2018D-UL2018_MiniAODv2_NanoAODv9-v3/NANOAOD
/SingleMuon/Run2018A-UL2018_MiniAODv2_NanoAODv9-v2/NANOAOD
/SingleMuon/Run2018B-UL2018_MiniAODv2_NanoAODv9-v2/NANOAOD
/SingleMuon/Run2018C-UL2018_MiniAODv2_NanoAODv9-v2/NANOAOD
/SingleMuon/Run2018D-UL2018_MiniAODv2_NanoAODv9-v1/NANOAOD
```

And 2016, 2017 Datasets

Ren-Qi Pan(ZJU)

Lepton Selection

Muon selection criteria

- • $p_T > 30 \text{ GeV}$, $|\eta| < 2.4$
- cut-baed identification criteria: tight
- PF-based combined relative isolation value: tight

Vote events with additional electron:

- • $p_T > 15 \text{ GeV}, |\eta| < 2.4$
- Identification criteria: loose
- PF-based combined relative isolation: loose

Electron selection criteria

- • $p_T > 30 \text{ Gev}, |\eta| \notin [1.4442, 1.5660]$
- cut-based identification: tight
- impact parameter:

Barrel: $d_z \le 0.10$ cm, $d_{xy} < 0.05$ cm.

Endcap: $d_z \le 0.2$ cm, $d_{xy} \le 0.10$ cm.

Vote events with additional electron:

- • $p_T > 15 \text{ Gev}, |\eta| \notin [1.4442, 1.5660]$
- cut-baed identification criteria: loose

Jet Selection

Jets should pass the following criteria:

- • $p_T > 30 \text{ GeV}$, $|\eta| < 2.4$
- $\cdot \Delta R > 0.4$ with the selected lepton
- Pass the tight jet ID

b-jet

- pass the deep CSV algorithm at medium working point
- Correct identification efficiency: 68%
- misidentify light-flavor jets as b-jets: 1.1%

Reconstruct Top Quark Pairs

- . Transverse momentum of neutrino from MET: $p_{\nu_{\scriptscriptstyle Y}}=p_{\scriptscriptstyle X}, p_{\nu_{\scriptscriptstyle V}}=p_{\scriptscriptstyle X}$
- Consider all combination of jets
- Assume invariant masses have Gaussian distributions

$$\begin{split} P(M_{W_{lep}}) &= Gaus(M_{W_{lep}}, m_{W}, \sigma_{W}), \\ P(M_{W_{had}}) &= Gaus(M_{W_{had}}, m_{W}, \sigma_{W}), \\ P(M_{t_{lep}}) &= Gaus(M_{t_{lep}}, m_{t}, \sigma_{t}), \\ P(M_{t_{had}}) &= Gaus(M_{t_{had}}, m_{t}, \sigma_{t}), \end{split}$$

- •Find the value of p_{ν_z} such that the likelihood function $ln(L(\nu_z))$ has maximum.
- •The value is the wanted p_{ν}

Include 3 Jets Final State

When only three jets are reconstructed, in 93% of the cases it is because a soft jet from W decay is out of acceptance criteria.

$$P_{t_{\text{had}}} = P_b + P_j$$

Larger corrections in low energy regions(soft jets)

Signal Selection Efficiency

Selection efficiency of signal with cut likelihood <19.0

process	cross section(pb)	efficiency(%)	efficiency(>=4jets)(%)	efficiency(3jets)(%)
TTToSemiLeptonic	366.9	6.37	4.17	2.20
TTTo2L2Nu	89.1	2.15	0.75	1.40
TTToHadronic	378.0	0.01	0.00	0.01

Event Distribution at $\mathcal{L} = 137 \mathrm{fb}^{-1}$

- right reco: correctly reconstructed $t\bar{t}$
- · wrong reco: all decay products available, but fail to match jets
- non reco: at least one decay products missing
- tt background: dileptonic, hadronic, $W \to \tau \nu$

QCD bkg to be added

Observables

- $M_{t\bar{t}}$, $\Delta y_{t\bar{t}}$ are sensitive to D6 operators
- Fit 2D ($M_{t\bar{t}}$, $\Delta y_{t\bar{t}}$) distributions to get sensitivity

Ren-Qi Pan(ZJU)

Parameterize Signal Model

- Define notation: $\frac{v^2}{\Lambda^2}C_{33}^{\varphi u} \to c_1$, $\frac{v^2}{\Lambda^2}\operatorname{Re}\left[C_{tt}^{u\varphi}\right] \to c_2$, $\frac{v^2}{\Lambda^2}\operatorname{Im}\left[C_{tt}^{u\varphi}\right] \to c_3$,
- Cross Section: $\sigma \propto |\mathcal{M}_0|^2 + 2Re[\sum_{i=1,2,3} (g_i^{\rm SM} + c_i)^2 \mathcal{M}_i M_0]$ 4 independent terms
- $g_1^{\text{SM}} = 1.2$, $g_2^{\text{SM}} = 1.0$, $g_3^{\text{SM}} = 0.0$
- $\sigma = a(c_1 + g_1^{\text{SM}})^2 + b(c_2 + g_2^{\text{SM}})^2 + c(c_3 + g_3^{\text{SM}})^2 + d$ 4 independent terms
- Define notation: $N_{mnp} \equiv N(c_1 = m, c_2 = n, c_3 = p)$

$$N = N_{100}(-0.42 + 0.29(c_1 + 1.2)^2) + N_{010}(1.0 - (c_2 - 1.0)^2) +$$

• $N_{001}c_3^2 + N_{000}(0.42 - 0.29(c_1 + 1.2)^2 + (c_2 - 1.0)^2 - c_3^2)$

Systematic Uncertainty

- Considered theoretical uncertainty:
 - * μ_{F} , μ_{R}
 - + PDF
 - * EW corrections (only signal)
 - * FSR, ISR
- Considered experimental uncertainty:
 - * CMS luminosity
 - * JER, JES, MET
- •To be considered:
 - $^{+}m_{t}$, lepton ID, bjet tagging, ...

2D Likelihood Scan with Other POI Fixed

- Have absorbed factor $\frac{v^2}{\Lambda^2}$ into C_i : $\frac{v^2}{\Lambda^2}C_i \to C_i$
- Based on 2018 MC samples, scaled to luminosity $\mathcal{L} = 137 \mathrm{fb}^{-1}$
- · QCD background haven't been considered yet

Ren-Qi Pan(ZJU)

Apr 28th, 2022

2D Likelihood Scan with Other POI Floated

Ren-Qi Pan(ZJU)

Apr 28th, 2022

1D Likelihood Scan with Other POI Fixed

68%: [-0.16, 0.15] 95%: [-0.32, 0.26]

68%: [-0.10, 0.12] 95%: [-0.20, 0.26]

68%: [-1.24, 1.24] 95%: [-1.75, 1.75]

Summary and unfinished tasks

Summary:

- measure EW related EFT operators in $tar{t}$ production
- Sensitive to the CP structure of Htt couplings
- ullet Possible give more stringent constraints than $t \bar t H$ and $t \bar t Z$

Tasks to be done:

- · Consider all systematic uncertainties
- Deal with 2016 and 2017 MC samples
- QCD background estimation

Backup

Backup

Puzzles about tt Samples

Separate samples:

- TTToSemiLeptonic_TuneCP5_13TeV-powheg-pythia8
- TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8
- TTToHadronic_TuneCP5_13TeV-powheg-pythia8

Inclusive sample:

TT_TuneCH3_13TeV-powheg-herwig7

	Sig(semi)	Sig(3jets)	Sig(4jets)
Separate	1428313	503004	925308
Inclusive	1304615	468682	835933
Difference	8%	7%	10%

Inconsistent in expect number of events for separate and inclusive $t\bar{t}$ samples

Phenomenological Results

Sensitivity of $t\bar{t}$ production at 300 fb⁻¹. Martini, Pan, Schulze, Xiao, arXiv: 2104.04277

Compare $t\bar{t}$ with $t\bar{t}Z$ at 300 fb⁻¹. Martini, Schulze, arXiv:1911.11244

Cross Section

$$\sigma_{t\bar{t}} \approx 832 \text{ pb}$$
 $\sigma_{t\bar{t}H} \approx 0.5 \text{ pb}$
 $\sigma_{t\bar{t}Z} \approx 1 \text{ pb}$

EW corrections: 1-5%

Compare with Other Analysis

$35.8 \mathrm{fb}^{-1}$	$\mathrm{Re}(C_{uarphi})(68\%)$	$\operatorname{Re}(C_{uarphi})(95$	%)	
TOP-17-004	$\left[-0.35,0.50\right]$	[-0.60,]		
our work	$\left[-0.19,0.24\right]$	[-0.33, 0.56]		
$137.1 { m fb}^{-1}$	$C_{arphi u}(68\%)$	$C_{arphi u}(95\%)$	$\mathrm{Re}(C_{uarphi})(68\%)$	$\mathrm{Re}(C_{uarphi})(95\%)$
TOP19-008			[-0.30, 0.57]	[-0.51,]
TOP-21-003	$\left[-0.60,0.36\right]$	$\left[-1.03,0.54\right]$	$\left[-0.30,0.40\right]$	[-0.60,]
our work	$\left[-0.16,0.15\right]$	$\left[-0.32,0.26\right]$	$\left[-0.10,0.12\right]$	$\left[-0.20,0.26\right]$

Ren-Qi Pan(ZJU)

Apr 28th, 2022

Top Yukawa couplings through tt with EW Corrections

Measurement of the top quark Yukawa couplings from $t\bar{t}$ from kinematic distributions

Semileptonic channel, arXiv:1907.01590

Dilepton channel, arXiv:2009.07123