IP Addressing

IP Addresses

What is an IP Address?

An IP address is a unique global address for a network interface

- An IP address:
 - is a 32 bit long identifier
 - encodes a network number (network prefix)
 and a host number

Dotted Decimal Notation

- IP addresses are written in a so-called dotted decimal notation
- Each byte is identified by a decimal number in the range [0..255]:

Example:

Network prefix and Host number

 The network prefix identifies a network and the host number identifies a specific host (actually, interface on the network).

network prefix host number

- How do we know how long the network prefix is?
 - The network prefix <u>used</u> to be implicitly defined
 - class-based addressing, A,B,C,D
 - The network prefix now is flexible and is indicated by
 - prefix/netmask (classless Interdomain routing)-CIDR

The old way: Classful IP Adresses

- When Internet addresses were standardized (early 1980s), the Internet address space was divided up into classes:
 - Class A: Network prefix is 8 bits long
 - Class B: Network prefix is 16 bits long
 - Class C: Network prefix is 24 bits long
- Each IP address contained a key which identifies the class:
 - Class A: IP address starts with "0"
 - Class B: IP address starts with "10"
 - Class C: IP address starts with "110"

The old way: Internet Address Classes

The old way: Internet Address Classes

	First byte	Second byte	Third byte	Fourth byte
Class A	0			
Class B	10			
Class C	110			
Class D	1110			
Class E	1111			

a. Binary notation

b. Dotted-decimal notation

Example

Find the class of each address.

- **a. 0**0000001 00001011 00001011 11101111
- **b.** <u>110</u>000001 100000011 00011011 111111111
- *c.* <u>14</u>.23.120.8
- **d. 252**.5.15.111

Solution

- a. The first bit is 0. This is a class A address.
- b. The first 2 bits are 1; the third bit is 0. This is a class C address.
- c. The first byte is 14; the class is A.
- d. The first byte is 252; the class is E.

Example

Example: www.google.com

- •IP address is 128.143.137.144
 - Is that enough info to route datagram??? -> No, need netmask or prefix at every IP device (host and router)
- •Using Prefix notation IP address is: 128.143.137.144/16
 - Network prefix is 16 bits long
- •Network mask is: 255.255.0.0 or hex format: ffff0000
 - ----> Network id (IP address AND Netmask) is: 128.143.0.0
 - ----> Host number (IP address AND inverse of Netmask) is: 137.144

128.143

137.144

Problems with Classful IP Addresses

- The original classful address scheme had a number of problems
- In classful addressing, a large part of the available addresses were wasted.

Problem 1. Inflexible. Assume a company requires 2,000 addresses

- Class A and B addresses are overkill
- Class C address is insufficient (requires 8 Class C addresses)

Alternate is: Subnetting

Subnetting

- Problem: Organizations have multiple networks which are independently managed
 - Solution 1: Allocate an address for each network
 - Difficult to manage
 - From the outside of the organization, each network must be addressable ie have an identifiable address.
 - Solution 2: Add another level of hierarchy to the IP addressing structure

Subnetting

Basic Idea of Subnetting

- Split the host number portion of an IP address into a subnet number and a (smaller) host number.
- Result is a 3-layer hierarchy

- Then:
 - Subnets can be freely assigned within the organization
 - Internally, subnets are treated as separate networks
 - Subnet structure is not visible outside the organization

Subnet Masks

 Routers and hosts use an extended network prefix (subnet mask) to identify the start of the host numbers

^{*} There are different ways of subnetting. Commonly used netmasks for university networks with /16 prefix (Class B) are 255.255.255.0 and 255.255.0.0

Example of a Subnetting Plan

Advantages of Subnetting

- With subnetting, IP addresses use a 3-layer hierarchy:
 - » Network
 - » Subnet
 - » Host
- Improves efficiency of IP addresses by not consuming an entire address space for each physical network.
- Reduces router complexity. Since external routers do not know about subnetting, the complexity of routing tables at external routers is reduced.
- Note: Length of the subnet mask need not be identical at all subnetworks.

Subnetting Example

Network without subnets

Same Network with Subnets

Same network with different subnetmasks

Subnetting Example

 An organization with 4 departements has the following IP address space: 10.2.22.0/23. As the systems manager, you are required to create subnets to accommodate the IT needs of 4 departments. The subnets have to support to 200, 61, 55, and 41 hosts respectively. What are the 4 subnet network numbers?

Solution:

- 10.2.22.0/24 (256 addresses > 200)
- 10.2.23.0/26 (64 addresses >61)
- -10.2.23.64/26 (64 addresses > 55)
- 10.2.23.128/26 (64 addresses > 41)