Araş. Gör. Mustafa Ersen Araş. Gör. Gökhan Seçinti

1) A sayısı B sayısına bölündüğünde oluşan kalanı bulan bir algoritmik durum makinesi(ASM) tasarlanacaktır. Tasarlanacak makine, bir S butonuna basıldığında giriş bilgilerini kaydedip hesaba başlayacak ve işlemler tamamlandığında sonuç C saklayıcısına yazılacaktır. Karşılaştırma işlemleri için bir adet çıkarma devresi kullanılacaktır. Bu devrenin ASM diyagramını çiziniz.

Çözüm:

- 2) Aşağıda Mealy modeline uygun bir makinanın durum geçiş tablosu verilmiştir.
 - a) Bu tabloyu indirgeyiniz.
 - **b)** Gerektirme grafı ve bağıntı grafını çizerek tam ve minimal örtüleri belirleyiniz.
 - c) Minimal örtüye göre oluşan tabloyu Mealy modelinde gösteriniz.
 - d) c şıkkında oluşturduğunuz modeli Moore modeline dönüştürünüz.

	l1	12	13	14
Α	B/0	-/-	-/-	E/1
В	A/0	C/-	-/-	-/-
С	C/-	A/1	D/1	E/-
D	-/-	В/-	-/-	A/-
E	C/-	B/1	F/-	-/0
F	F/1	A/-	E/-	B/-

Çözüm:

a) Gerektirme merdiveni ile indirgeme:

A		_			
В	٧	В	_		
С	B-C √	A-C √	С	_	
D	E-A X	X B-C √	A-B	D	
			A-E X	U	
Ε	X	A-C	A-B	V	Е
		B-C √	D-F √	V	
F	х	v	D-E	A-B √	A-B
		^	E-B √	A-D V	C-F √

b) Bağıntı grafı:

Gerektirme grafı:

Tam \ddot{o} rt \ddot{u} = {A,B,C}, {B,D,E}, {C,E,F}, {B,C,E}, {D,E,F}

Minimal kapalı örtü:

<u>Amaç:</u> En az sayıda uyuşanlar sınıfı ile(minimal) tüm durumları kapsamak (örtme) ve seçilen uyuşanlar sınıflarındaki her bir durum çiftinin uyuşması için gerektirdiği durum çiftlerinin de seçilen uyuşanlar sınıflarından herhangi birinde kapsanması(kapalılık).

1-Minimalliğin sağlanması için öncelikle, tam örtüdeki en üst uyuşanlar sınıflarına bakılabilir. Bu sınıflar ile tüm durumları örten tek seçenek {A,B,C} ve {D,E,F} şeklinde olur ki bu seçim de kapalılığı

sağlamaz(E-F durum uyuşması için gereken C-F çifti {A,B,C} ve {D,E,F} uyuşanlar sınıflarından herhangi birinde bulunmadığı için).

2-Bu durumda en az 3 uyuşanlar sınıfı ile minimal kapalı örtü yapmak mümkün olmaktadır. Bağıntı grafına bakıldığında, başka durum çiftlerini gerektiren uyuşan çiftlerden C-F dışındakilerin tamamında {A,B,C} en üst sınıfının bir parçasının gerektirildiği dikkati çekmekte. Bu nedenle ilk olarak {A,B,C}'nin seçilmesi mantıklı olacaktır. Bu seçim sonrasında örtmenin sağlanması için D,E ve F durumlarını kapsayan uyuşanlar sınıflarına ihtiyaç var. D-E çifti başka bir çiftin uyuşmasını gerektirmediği için kolaylıkla seçilebilir ve D-F çifti de sadece daha önce kapsanan {A,B,C} sınıfında dahil olan A-B uyuşmasına bağlı olduğu için alınabilir. Bu durumda minimal kapalı örtü: {A,B,C}, {D,E} ve {D,F} şeklinde olur.

Not: Yukarıdaki amacı sağlayan başka alternatifler de bulunabilir. Örneğin, {A,B,C}, {B,E} ve {D,F}

c) b sıkkında bulunan minimal kapalı örtüye göre Mealy modelinde indirgeme yapılırsa:

$\alpha = \{A,B,C\}$
β ={D,E}
$\gamma = \{D,F\}$

	I1	12	13	14
α	α/0	α/1	Β, γ/1	β/1
β	α/-	α/1	γ/-	α/0
γ	γ/1	α/-	β/-	α/-

d) c sıkkındaki modelin Moore modelindeki hali:

		l1	12	13	14	Çıkış
K	α/0	K	Ш	M,N	Μ	0
L	α/1	K	L	M,N	М	1
M	β/1	K,L	L	N	K	1
N	γ/1	N	K,L	М	K,L	1

- **3)** A, B, Σ üzerinde tanımlı diller, Λ ∉ B ise, A U BX = X denkleminin
 - a) Çözümünü veriniz. Önerdiğiniz bu çözümü tanıtlayınız.
 - **b)** A = {aa,ab,ba,bb}, B = {a,b} ise, bu A ve B dilleri yukarıdaki denklemin bir çözümünü oluşturur mu? Cevabınızı tanıtlayınız.

Çözüm:

a) Onerilen cozum: X=B*A

Tanıtlamak icin:

Yol-1) AUBX=X
$$\rightarrow$$
 AUBB*A =? B*A
AUB⁺A = $\{\Lambda\}$ AUB⁺A = $(\{\Lambda\}$ UB⁺)A = B*A
Yol-2) Eşitliğin sağ tarafından baslayarak da tanıtlayabiliriz:
AUBB*A =? B*A = $(\{\Lambda\}$ UB⁺)A = $\{\Lambda\}$ AUB⁺A = AUB⁺A = AUBB*A

b) X = B*A çözümünde verilen A ve B dillerini deneriz:

```
AUBB*A = {aa,ab,ba,bb} U {a,b}{a,b}*{aa,ab,ba,bb}

= {aa,ab,ba,bb} U {a,b}<sup>+</sup>{aa,ab,ba,bb}

= {\Lambda}{aa,ab,ba,bb} U {a,b}<sup>+</sup>{aa,ab,ba,bb}

= ({\Lambda} U {a,b}<sup>+</sup>) {aa,ab,ba,bb}

= {a,b}*{aa,ab,ba,bb} = B*A \rightarrow verilen A ve B dilleri bir çözüm oluşturur.
```

4) {a, b, c} kümesi içerisinde tanımlı aşağıda R bağıntı matrisinin bağıntı grafını veriniz. Bağıntının kuvvet graflarını oluşturunuz. Yansımalı, bakışlı, geçişli kapanışları ve bakışlı kapanışını yansımalı kapanışını bulunuz.

		а	b	C		
	а	0	1	0		
	b	1	0	1		
	С	0	0	0		

Çözüm:

a)
$$R = \{(a, b), (b, a), (b, c)\}$$

R bağıntı grafı:

$$R: a \longrightarrow c$$

b)Bağıntı kuvvetleri: Geçişli kapanış bulunurken, bağıntı kuvvetleri de bulunacak.

c) Yansımalı kapanış:

R bağıntısı için yansımalı kapanış $r(R) = R \cup R^0 = R \cup E$, $E = R^0$ (E birim bağıntı)

$$R = \{(a,b), (b,a), (b,c)\}$$

$$E = \{(a,a), (b,b), (c,c)\}$$

$$r(R) = \{(a,b), (b,a), (b,c), (a,a), (b,b), (c,c)\}$$

d)Bakışlı kapanış:

$$s(R) = R \cup R^{-1}$$

 $R = \{(a,b), (b,a), (b,c)\}$
 $R^{-1} = \{(b,a) \mid (a,b) \in R \}$
 $R^{-1} = \{(a,b), (b,a), (c,b)\}$
 $R \cup R^{-1} = s(R) = \{(a,b), (b,a), (b,c), (c,b)\}$

e)Geçişli kapanış:

$$t(R) = \bigcup_{i=1}^{\infty} R^i$$

Çözüm için bağıntının kuvvet graflarını bulmamız gerekmektedir.

$$R = \{(a,b), (b,a), (b,c)\}$$

$$R: a \longrightarrow c$$

 $R^2 = R \cdot R = \{(a,b), (b,a), (b,c)\} \cdot \{(a,b), (b,a), (b,c)\} = \{(a,a), (b,b), (a,c)\}$

 $R^3 = R^2 \cdot R = \{(a,a), (b,b), (a,c)\} \cdot \{(a,b), (b,a), (b,c)\} = \{(a,b), (b,a), (b,c)\}$

$$R^{1}=R^{3}$$
 $R \cdot R = R^{3} \cdot R \rightarrow R^{2}=R^{4}$
 $R^{2n+1}=R^{3} \text{ ve } R^{2n}=R^{2} \text{ (n>0)}$

Bağıntının kuvvetleri grafı:

Geçişli kapanış $\rightarrow t(R) = R \cup R^2$:

$$t(R) = \{(a,b), (b,a), (b,c)\} \cup \{(a,a), (b,b), (a,c)\}$$

= $\{(a,b), (b,a), (b,c), (a,a), (b,b), (a,c)\}$

f)Bakışlı kapanışın yansımalı kapanışını bulunuz.

$$rs(R) = ?$$
 $P = s(R)$ olsun
 $s(R) = \{(a,b), (b,a), (b,c), (c,b)\}$
olarak bulunmuştu.
 $r(P)$ 'yi bulmamız gerekmektedir.
 $r(P) = \{(a,b), (b,a), (b,c), (c,b), (a,a), (b,b), (c,c)\}$

