Related Work

Abstract

Concrete

reachability

 \Rightarrow

reachability

Related Work

Paper	Query lang.	Abstractions	Updates
3-valued logic	FO(TC)	possible edge	yes
Canonical Graph Shapes	???	Local FOL	no
Modal logic Graph Abstr.	Modal logic	Multiplicities	yes

Parametric Shape Analysis

Parametric Shape Analysis

Concrete

Abstract

Any property in FO(TC) that holds in the abstract graph, also holds in the concrete graph

Concrete Abstract

"The notion of graph typing is rather weak: the existence of a morphism from a would-be instance graph to a would-be type graph can only forbid but never enforce the presence of certain edges in the instance."

Local Shape Logic

$$\xi ::= v \mid \xrightarrow{a} v \mid \xleftarrow{a} v \mid \xrightarrow{a} .$$

$$\phi ::= \mathbf{tt} \mid {}^{\mu}[\xi] \mid \neg \phi \mid \phi \lor \phi \mid \forall_{v} \phi .$$

- Only ever talk about 2 nodes at a time
- Constraints given as multiplicities


```
 \begin{array}{ll} (1') \ \forall_{v_1}(\uparrow[\underrightarrow{\operatorname{List}}] \wedge ((^{\mathbf{1}}[\underrightarrow{\operatorname{head}} v_2] \wedge ^{\mathbf{0}}[\underrightarrow{\operatorname{head}} v_3]) \vee (^{\mathbf{0}}[\underrightarrow{\operatorname{head}} v_2] \wedge ^{\mathbf{1}}[\underrightarrow{\operatorname{head}} v_3]))) \\ (2') \ ^{\mathbf{1}}[v_3] \wedge \forall_{v_3}^{\uparrow}[\underrightarrow{\operatorname{Null}}] \\ (3') \ \forall_{v_2}((^{\mathbf{1}}[\underrightarrow{\operatorname{next}} v_2] \wedge ^{\mathbf{0}}[\underrightarrow{\operatorname{next}} v_3]) \vee (^{\mathbf{0}}[\underrightarrow{\operatorname{next}} v_2] \wedge ^{\mathbf{1}}[\underrightarrow{\operatorname{next}} v_3])) \\ (4') \ \forall_{v_2}((^{\mathbf{1}}[\underleftarrow{\operatorname{head}} v_1] \wedge ^{\mathbf{0}}[\underleftarrow{\operatorname{next}} v_2]) \vee (^{\mathbf{0}}[\underleftarrow{\operatorname{head}} v_1] \wedge ^{\mathbf{1}}[\underleftarrow{\operatorname{next}} v_2])) \\ (5') \ \exists_{v_4}{}^{\mathbf{0}}[\underleftarrow{\operatorname{val}} v_2] \\ \end{array}
```

Modal Logic Graph Abstraction

Abstract

Concrete

Concrete

Abstract

0	Zero
1	One
0+	Zero or more
1+	One or more
*	All/any number

Multiplicities

Concrete

Abstract

Reachability

Reachability Query

If I start from some node in T0, which/how many nodes are reachable in T2, T1, T0?

Reachability

Idea

Abstract the reachable nodes as (None | Some | All)

Reachability

Define max operator

Outgoing edge information not enough

Reachability — Issue

Not strong enough Implicit disjunction

Reachability — Issue

$$\forall$$
 TO, $^{1}[<--T1_{e}] \lor ^{1}[<--T1_{w}]$

Dominators

Fixpoint computation

$$Dom(n_o) = \{n_o\}$$

$$Dom(n) = \left(\bigcap_{p \in preds(n)} Dom(p)\right) \bigcup \{n\}$$