Digital Filters & Spectral Analysis

Harmonically Related Complex Exponential

Fourier Series Coefficients

Periodic Signal

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

Periodic Signals

$$\chi(t)=\chi(t+T)$$
 T: fundamental period, $\omega_{\scriptscriptstyle 0}$ = 2 π /T: fundamental frequency

Periodic Signals

$$\chi(t)=\chi(t+T)$$
 T: fundamental period, $\omega_{\scriptscriptstyle 0}$ = 2 π /T: fundamental frequency

Periodic Signals

$$x(t)=x(t+T)$$
 T: fundamental period, ω_{0} = 2 π /T: fundamental frequency

Musical Instruments

Complex Exponential

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

Complex Exponentials

$$e^{\pm j\omega_0 t} = \cos(\omega_0 t) \pm j\sin(\omega_0 t)$$
 Euler's Formula

 $\sin(\omega_0 t)$

Complex Exponentials

$$e^{\pm j\omega_0 t} = \cos(\omega_0 t) \pm j\sin(\omega_0 t)$$
 Euler's Formula

Complex Exponentials

Why not cosines & sines?

$$x(t) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)$$

Trigonometric form of the Fourier Series

$$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$
(1)

$$x(t) = \frac{1}{2}a_0e^{0.j\omega_0t} + \sum_{k=1}^{\infty} \left(\frac{1}{2}a_k + \frac{1}{2j}b_k\right)e^{jk\omega_0t} + \left(\frac{1}{2}a_k - \frac{1}{2j}b_k\right)e^{-jk\omega_0t}$$

$$\frac{1}{2j}b_k \times \frac{j}{j} = -\frac{j}{2}b_k \qquad (2)$$

$$\Rightarrow x(t) = \frac{1}{2} a_0 e^{0.j\omega_0 t} + \sum_{k=1}^{\infty} \left(\frac{a_k - jb_k}{2}\right) e^{jk\omega_0 t} + \left(\frac{a_k + jb_k}{2}\right) e^{-jk\omega_0 t}$$

$$\sum_{k=1}^{\infty} e^{-jk\omega_0 t} = \sum_{k=-\infty}^{-1} e^{jk\omega_0 t}$$
 (3)

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \qquad , \quad c_k = \begin{cases} a_0/2 & k=0\\ (a_k - jb_k)/2 & k>0\\ (a_k + jb_k)/2 & k<0 \end{cases}$$

Complex form of the Fourier Series

Complex Exponentials

Why not cosines & sines?

$$x(t) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)$$

Trigonometric form of the Fourier Series

- + Complex form has 1 set of coefficients (two for the trigonometric form)
- Complex form coefficients c_k are in general complex (a_k , b_k are real) $\Rightarrow c_k = re^{j\theta}$, magnituder, phase θ
- Negative and positive frequencies are present in complex form (positive only in trigonometric)
- + Complex Fourier series of real signal exhibits Hermitian (complex conjugate) symmetry $|c_{-k}| = |c_k|$, $\angle c_{-k} = -\angle c_k$

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} , c_k = \begin{cases} a_0/2 & k=0\\ (a_k - jb_k)/2 & k>0\\ (a_k + jb_k)/2 & k<0 \end{cases}$$

Complex form of the Fourier Series

Harmonically Related Complex Exponential

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

Harmonically Related Complex Exponentials

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \longrightarrow$$

- The Frequency of each complex exponential (i.e. of the cosines and sines taking part in the synthesis) is a multiple of the fundamental frequency
- Fundamental frequency = 1/T,
 where T is the period of x(t)
- $\omega_0 = 2\pi/T$

Harmonically Related Complex Exponentials

Synthesis Function (Inverse Transform)

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

$$c_k c_1$$

$$c_0 c_2 c_3 c_4 c_5 c_6$$

$$c_0 c_2 c_3 c_4 c_5 c_6$$

$$T = \frac{2\pi}{\omega_0}$$

$$t$$

$$T = \frac{2\pi}{\omega_0}$$

$$c_k = ?$$
 Analysis Function (Forward Transform)

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

Fourier Series Coefficients

Harmonically Related Complex Exponentials

Analysis Function (Forward Transform)

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

$$x(t)e^{-jl\omega_0 t} = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} e^{-jl\omega_0 t}$$

$$\int_T x(t)e^{-jl\omega_0 t} dt = \int_T \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} e^{-jl\omega_0 t} dt$$

$$\int_T x(t)e^{-jl\omega_0 t} dt = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} e^{-jl\omega_0 t} dt$$

$$\int_T x(t)e^{-jl\omega_0 t} dt = \sum_{k=-\infty}^{\infty} c_k \int_T e^{j(k-l)\omega_0 t} dt$$
(2) Interchange the order of summation & integration & combine exponentials

 $c_k = \frac{\text{Forward Fourier Series}}{\text{(Analysis Function)}}$

Harmonically Related Complex Exponentials

Analysis Function (Forward Transform)

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

Inverse Fourier Series (Synthesis Function)

$$\int_{T} x(t)e^{-jl\omega_{0}t}dt = \sum_{k=-\infty}^{\infty} c_{k} \int_{T} e^{j(k-l)\omega_{0}t}dt$$

$$\int_{-\infty}^{\infty} e^{j(k-l)\omega_0 t} dt = 0, \text{ for } k \neq l, \int_{-\infty}^{\infty} e^{j(k-l)\omega_0 t} dt = T, \text{ for } k = l$$

$$\int_{T} x(t)e^{-jl\omega_{0}t}dt = c_{l}T \Rightarrow c_{l} = \frac{1}{T}\int_{T} x(t)e^{-jl\omega_{0}t}dt$$

Handout Page 6: Integrating over
$$k$$
 complete periods of a cos, sin or complex exponential gives zero

$$\int_{0}^{T} \cos(k\omega t) . dt = \begin{cases} 0 & k \neq 0 \\ T & k = 0 \end{cases},$$

$$\int_{0}^{T} \sin(k\omega t) . dt = 0$$

$$\int_{0}^{T} e^{jk\omega t} . dt = \begin{cases} 0 & k \neq 0 \\ T & k = 0 \end{cases}$$

$$T = k = 0$$

$$c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

Forward Fourier Series (Analysis Function)

Can we represent all periodic signals with harmonics?
What about discontinuous signals?

Analysis	Synthesis
$c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$	$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$

Can we represent all periodic signals with harmonics?

Triangle Wave

Can we represent all periodic signals with harmonics?

Triangle Wave

$$x(t) = \begin{cases} -\frac{1}{2}t + \frac{3}{8}, & \frac{1}{2} \le t < 1 \\ \frac{1}{2}t - \frac{1}{8}, & 0 \le t < \frac{1}{2} \end{cases}$$
1. Apply the forward transform
$$c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$
2. Synthesise triangular wave by adding together harmonics weighted by c_k

$$c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

together harmonics weighted by c_k

Can we represent all periodic signals with harmonics?

Triangle Wave

- Integration by parts $\int_a^b f(t)g(t)dt = \left[f(t)\int g(t)dt\right]_a^b \int_a^b f'(t)\left(\int g(t)dt\right)dt$ where f(t) = t, $g(t) = e^{-jk\omega_0 t}$, a=0, b=1/2 (a=1/2, b=1 for the second part)
- Time-shift property of Fourier series (page 19)
- Linearity property of Fourier series (page 19) 3.

to solve the integral

$$x(t) = \begin{cases} -\frac{1}{2}t + \frac{3}{8}, & \frac{1}{2} \le t < 1 \\ \frac{1}{2}t - \frac{1}{8}, & 0 \le t < \frac{1}{2} \end{cases}$$
1. Apply the forward transform
$$c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$
2. Synthesise triangular wave by adding together harmonics weighted by c_k

$$c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

together harmonics weighted by c_k

Can we represent all periodic signals with harmonics?

Triangle Wave

$$c_{k} = \frac{-1}{2k^{2}\pi^{2}}, k \text{ odd}$$

$$x(t) = \begin{cases} -\frac{1}{2}t + \frac{3}{8}, & \frac{1}{2} \le t < 1 \\ \frac{1}{2}t - \frac{1}{8}, & 0 \le t < \frac{1}{2} \end{cases}$$
1. Apply the forward transform
$$c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$
2. Synthesise triangular wave by adding together harmonics weighted by c_k

$$c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

together harmonics weighted by c_k

Can we represent all periodic signals with harmonics?

Triangle Wave – Fourier Series Convergence

 $k = -\infty$, k odd

Can we represent all periodic signals with harmonics?

Triangle Wave – Fourier Series Convergence

 $k = -\infty$, k odd

Can we represent all periodic signals with harmonics?

Triangle Wave – Fourier Series Convergence

$$c_k = \frac{-1}{2k^2\pi^2}, k \text{ odd}$$

$$x(t) = \sum_{k=-\infty, k \text{ odd}}^{\infty} c_k e^{j2\pi kt}$$

Can we represent all periodic signals with harmonics?

Triangle Wave – Fourier Series Convergence

 $k = -\infty$, k odd

Can we represent all periodic signals with harmonics?

Triangle Wave – Fourier Series Convergence

 $k = -\infty$, k odd

Can we represent all periodic signals with harmonics?

Triangle Wave – Fourier Series Convergence

$$c_k = \frac{-1}{2k^2\pi^2}, k \ odd$$

$$x(t) = \sum_{k=-\infty, k \text{ odd}}^{\infty} c_k e^{j2\pi kt}$$

Can we represent all periodic signals with harmonics?

Triangle Wave - Fourier Series Convergence

 $k = -\infty$, k odd

Can we represent all periodic signals with harmonics?

Triangle Wave – Fourier Series Convergence

 $k = -\infty$, k odd

Can we represent all periodic signals with harmonics?

Square Wave

Can we represent all periodic signals with harmonics?

Square Wave

$$x(t) = \begin{cases} \frac{1}{2}, & 0 \le t < \frac{1}{2} \\ -\frac{1}{2}, & -\frac{1}{2} \le t < 0 \end{cases}$$

1. Apply the forward transform

$$c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

2. Synthesise square wave by adding together harmonics weighted by c_k

Can we represent all periodic signals with harmonics?

Square Wave

$$c_k = \frac{1}{T} \int_T x(t)e^{-j\frac{2\pi}{T}kt} dt = -\frac{1}{2} \int_{-\frac{1}{2}}^0 e^{-j2\pi kt} dt + \frac{1}{2} \int_0^{\frac{1}{2}} e^{-j2\pi kt} dt$$

$$=\frac{1}{j4\pi k}\left(2-e^{j\pi k}-e^{-j\pi k}\right)=\begin{cases} \frac{1}{j\pi k}\;; & \text{if k is odd}\\ 0\;; & \text{otherwise} \end{cases}$$

$$x(t) = \begin{cases} \frac{1}{2}, & 0 \le t < \frac{1}{2} \\ -\frac{1}{2}, & -\frac{1}{2} \le t < 0 \end{cases}$$

1. Apply the forward transform

$$c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

2. Synthesise square wave by adding together harmonics weighted by c_k

Can we represent all periodic signals with harmonics?

Square Wave

$$x(t) = \begin{cases} \frac{1}{2}, & 0 \le t < \frac{1}{2} \\ -\frac{1}{2}, & -\frac{1}{2} \le t < 0 \end{cases}$$

1. Apply the forward transform

$$c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

2. Synthesise square wave by adding together harmonics weighted by c_k

Can we represent all periodic signals with harmonics?

Square Wave - Fourier Series Convergence

 $k = -\infty$, k odd

Can we represent all periodic signals with harmonics?

Square Wave – Fourier Series Convergence

Can we represent all periodic signals with harmonics?

Square Wave - Fourier Series Convergence

 $k=-\infty$, k odd

Can we represent all periodic signals with harmonics?

Square Wave - Fourier Series Convergence

Can we represent all periodic signals with harmonics?

Square Wave - Fourier Series Convergence

Can we represent all periodic signals with harmonics?

Square Wave – Fourier Series Convergence

Can we represent all periodic signals with harmonics?

Square Wave – Fourier Series Convergence

Can we represent all periodic signals with harmonics?

Square Wave – Fourier Series Convergence

Ringing

Gibb's phenomenon: Partial sums of Fourier series of discontinuous functions ring near discontinuities

Ringing

$$c_k = \frac{1}{jk\pi}, k \ odd$$

Square Wave: Magnitude of FS coefficients decreases as 1/k

$$c_k = \frac{-1}{2k^2\pi^2}, k \text{ odd}$$

Triangle Wave: Magnitude of FS coefficients decreases as

$$1/k^2$$

Ringing – Image Compression

Image	Lossless Compression	Lossy Compression
Original		
Processed by Canny edge detector, highlighting artifacts.		

Ringing – Image Compression

Compressed

Original

Compressed

Synthesise Sound

Synthesise Sound

Application: Generating sine waves from square waves

$$x(t) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)$$

$$c_k = \frac{2V}{jk\pi}, k \ odd \implies c_k = -\frac{j2V}{k\pi}, k \ odd$$

$$x(t) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)$$

$$c_k = \frac{2V}{jk\pi}, k \text{ odd} \implies c_k = -\frac{j2V}{k\pi}, k \text{ odd}$$

$$c_k = \begin{cases} a_0/2 & k = 0 \\ (a_k - jb_k)/2 & k > 0 \\ (a_k + jb_k)/2 & k < 0 \end{cases}$$

$$x(t) = \sum_{k=1}^{\infty} b_k \sin(k\omega_0 t), b_k = \frac{4V}{k\pi}, k \text{ odd}$$

Band pass filter with resonant frequency of ω_0 (fundamental frequency)

Application: Generating sine waves from square waves

SIMPLE FILTER TURNS SQUARE WAVES INTO SINE WAVES

by R. Mark Stitt (602) 746-7445

Many signals are digitally generated or transmitted as square waves. It is often desirable to convert these signals into sine waves. For example, the 350Hz, 440Hz, 480Hz, and 620Hz telephone supervisory tones transmitted over fiber-optics may appear at curb-side as square waves. To be used in telephone equipment it is desirable to convert the square waves into low-distortion sine waves. This can be done with a simple filter.

According to its Fourier series, a 50% duty-cycle square wave consists of odd order harmonic sine waves with the fundamental at the same frequency as the square wave.

Fourier Series for a Square Wave

$$\frac{4k}{\pi} \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right)$$

where k = peak amplitude of the square wave

A sine wave with the same frequency as the square wave can be gleaned by filtering out the harmonics above the fundamental. A "tuned-circuit" bandpass filter with a Q of 10 attenuates signals at three times the bandpass frequency by 28.4dB. Since the amplitude of the third harmonic is 1/3 that of the fundamental, the total attenuation of the third harmonic compared to the fundamental is nearly 40dB. The result is a low distortion sine wave as shown in Figure 1A. Notice that although the filter has unity gain, the amplitude of the sine wave output signal is greater than that of the

square wave. This is because the fundamental has an amplitude of $4/\pi$ times that of the square wave as shown by the Fourier series. The bandpass filter will also filter out any DC

1a. A square wave passed through a simple "tuned-circuit" bandpass filter produces a low distortion sine wave.