

Medizinsoziologe mit Schwerpunkten in den Bereichen Statistik und Informatik.

Zwischen 2004 und 2019 Mitarbeiter des Gesundheitsmonitorings am RKI.

Seit 2019 Leiter der Abteilung "Data Science und Versorgungsanalysen" im Zentralinstitut für die kassenärztliche Versorgung.

Versorgungsforschung mit Abrechnungsdaten, Zi Data Science Lab (Machine Learning, App Development, Visualisierung)

Lessons learned

Lehren aus der Pandemie

Infrastruktur, Flexibilität, Schnelligkeit, Open Data, Apps

- Echzeitdaten zur Versorgung
- Surveys schließen Lücken, fehlende Infrastruktur kostet Ressourcen und Deutungshoheit
- Open Data und Reproduzierbarkeit schafft
 Vertrauen

App- und Data Science Kompetenz aufbauen

Modellierungen und Data Mining

Kausalität vermitteln, "KI" für Datengewinnung nutzen

Simulation der Impfkampagne mit Javascript und "Live"-Daten

https://www.zidatasciencelab.de/cov19vaccsim/, Stand: 30.4.2021

Aufbau einer strukturierter
Online DB von Gesundheits-Apps mit "KI"

https://www.kvappradar.de, Stand: 30.4.2021

Digitalisierung des Monitorings

Gesundheitsmonitoring soll als ein flexibel gestaltetes [...] adaptierbares, nachhaltiges System gewährleisten, dass der Gesundheitsberichterstattung und der Gesundheitspolitik jederzeit umfangreiche Informationen zur Gesundheit, zum Gesundheitsverhalten und zur gesundheitlichen Versorgung der in Deutschland lebenden Bevölkerung zur Verfügung stehen [...]

B.-M. Kurth et al. 2009

Monitoring 3.0

Immer mehr Primärerhebungen + Integration von Sekundärdaten

Monitoring im Spannungsfeld der Anforderungen

Ethik

Datenschutz

Datensicherheit

Dauerbeobachtung

Schwerpunkte

Ereignisse

Dissemination

Modellierung

Publikation

Visualisierung

Daten

Datenanalyse

Tabellen

Datenbanken

Text (NLP)

Interviews

Fokusgruppen

Datenaufbereitung

Primärdaten

Feldarbeit

Aufbereitung

Qualitätssicherung

Nutzen

Bereitstellen

Datengewinnung

Sekundärdaten

Akquise

Verstehen

Bereithalten

Nutzen

Politik

Wissenschaft

Bevölkerung

Prozesse optimieren und digitalisieren

"Weniger Aufwand für mehr Daten und Projekte"

Ansatzpunkte

- Infrastruktur
- Zusammenarbeit
- Projektmanagement
- Kompetenzcluster

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE EFFICIENT BEFORE YOU'RE SPENDING MORE TIME THAN YOU SAVE?

(ACROSS FIVE YEARS)

	1	HOW OFTEN YOU DO THE TASK -					
		50/ _{DAY}	5/DAY	DAILY	MEEKLY	MONTHLY	YEARLY
	1 SECOND	1 DAY	2 Hours	30 MINUTES	4 MINUTES	1 MINUTE	5 SECONDS
	5 SECONDS	5 DAYS	12 HOURS	2 HOURS	21 MINUTES	5 MINUTES	25 SECONDS
	30 SECONDS	4 WEEKS	3 DAYS	12 HOURS	2 HOURS	30 MINUTES	2 MINUTES
WOH HOUM	1 MINUTE	8 WEEKS	6 DAYS	1 DAY	4 HOURS	1 HOUR	5 MINUTES
TIME. YOU	5 MINUTES	9 MONTHS	4 WEEKS	6 DAYS	21 HOURS	5 HOURS	25 MINUTES
SHAVE OFF	30 MINUTES		6 Months	5 WEEKS	5 DAYS	1 DAY	2 HOURS
	1 HOUR		IO MONTHS	2 MONTHS	IO DAYS	2 DAYS	5 HOURS
	6 HOURS				2 монтня	2 WEEKS	1 DAY
	1 DAY					8 WEEKS	5 DAYS

https://xkcd.com/1205/

mittagsrunde

Prauen 5.0

PSY KOMO

A demand

© EU Call

@ RKI Pflege Projekt

A appradar_errors

Infrastruktur

Kreativität und digitale Tools

- Nutzung digitaler Tools für Projektmanagement und Projektkommunikation
- Vereinheitlichung von Technologien und Fokussierung auf Open Source
- Entwicklung von Lösungen und Infrastruktur wenn dies die Flexibilität steigert
- Zeitgemäße Technologieplattform für Probandenverwaltung, Befragungen und "Datenspenden"

Organisation

Agile Teams, Kompetenzcluster

Agile Projektteams

- Trennung von Projekt- und OE-Leitung
- Notwendige Ressourcen für Core-Team freihalten
- Digitale Tools für Planung/Controlling und Kommunikation
- Arbeitsorganisation nach Kanban-Methode
- Bündelung von Spezialkompetenzen
 - Statistik und Softwareentwicklung
 - Visualisierung, Web-Entwicklung und Data Mining

doors limit communication

SpaceX Office Tour 2010, SpaceX YouTube

Datenquellen

Datenintegrierendes Monitoring

- Echtzeitdaten:
 - Aufbau des RKI Access Panel
 - Behandlungs-/Assessmentdaten
- Mittel/Langfristiges Betriebskonzept der Primärdateninfrastruktur und Erhebungsplanung
- Kompetenzaufbau für Data Mining / Web Scraping

Datenspenden und Nutzerdatensammlung

Flexible Technologieplattformen und Analysekompetenzen

Datenspenden

- Sensordaten Wearables
 (Aktivität, Puls, Schlaf, Sauerstoffsättigung etc.)
- Geodaten
- Behandlungs- und Diagnosedaten (ePA, Data Linkage)
- Soziale Medien

Nutzerdatensammlung

- Fotos
 - Körper (Haut, etc.)
 - Nahrung
 - Wohnumwelt
- Audiodaten
 - Atmung
 - Umgebungslärm
- Messwerte (Innenraum)

Datenaufbereitung Datengewinnung Datenanalyse Dissemination

Dissemination

Interaktivität, Geschwindigkeit, Reproducability

- Verstärkte Nutzung von Preprints für die schnellere Dissemination von Erkenntnissen
- Stärkung der Reproduzierbarkeit von Ergebnissen
- Verstärkte Nutzung von Visualisierungen und Modellierungen
- "Monitoring Data Explorer"
- "Monitoring API" als Open Data Angebot

https://www.zidatasciencelab.de/covidimpfindex/, Stand: 5.5.2021

https://projekte.uni-erfurt.de/cosmo2020/web/explorer/, Stand: 2.5.2021

Prioritäre Handlungsfelder

Aufrechterhaltung des Betriebs im Spannungsfeld der Anforderungen

- 1. Aufbau **RKI-Panel und Entwicklung eines Betriebskonzeptes für Monitoring-Infrastruktur und -erhebungen** ("Preparedness"), Modernisierung der Erhebungstechnologie
- 2. Bildung von Kompetenzclustern und Etablierung agiler Projektorganisation
- 3. Standardisierung von Tools, Förderung/Ermöglichung von mehr Automatisierung bei Datenaufbereitung
- 4. Strukturelle Integration von (Echtzeit-) Sekundärdaten und Identifikation von Datenlücken und -potenzialen

Diskussion

WHAT TECH PEOPLE THINK SCIENTISTS NEED HELP WITH:

PLEASE—OUR DATA, IT'S TOO COMPLEX! CAN YOUR MAGICAL MACHINE MINDS UNEARTH THE PATTERNS THAT LIE WITHIN?

UE SHALL MARSHAL OUR FINEST ALGORITHMS!

WHAT SCIENTISTS ACTUALLY NEED:

FOR A FEW WEEKS IN JUNE, THE LAB WAS INFESTED BY WASPS, 50 WE HAD TO TAKE PICTURES OF THE EQUIPMENT THROUGH THE WINDOW.

HOW DO YOU GET GRAPHS FROM A POLAROID PHOTO INTO EXCEL?

https://xkcd.com/2341/