The Inequality of Climate Change & Optimal Energy policy

WORK IN PROGRESS

Thomas Bourany
The University of Chicago

JMP Proposal

June 2023

Introduction – this project

- ▶ What is the optimal taxation of energy in the presence of climate externality *and* inequality?
 - In a context where fossil fuels taxation and climate policy redistributes across countries

Introduction – this project

- ▶ What is the optimal taxation of energy in the presence of climate externality *and* inequality?
 - In a context where fossil fuels taxation and climate policy redistributes across countries
- ▶ Develop a simple and flexible model of climate economics
 - Standard IAM model with heterogeneous regions
 - Normative implications : Optimal Ramsey policy for carbon taxation
 - Provide a numerical methodology and a quantitative model

Introduction – this project

- ▶ What is the optimal taxation of energy in the presence of climate externality *and* inequality?
 - In a context where fossil fuels taxation and climate policy redistributes across countries
- Develop a simple and flexible model of climate economics
 - Standard IAM model with heterogeneous regions
 - Normative implications : Optimal Ramsey policy for carbon taxation
 - Provide a numerical methodology and a quantitative model
- Evaluate the heterogeneous welfare costs of global warming
 - Damages of climate & temperature varies across countries
 - ⇒ Inequality increases the welfare cost of carbon
- Solve world optimal carbon policy with heterogeneous regions
 - Does the optimal carbon tax coincide with the social cost of carbon?
 - ⇒ Depends on transfer policy : need to adjust the tax for inequality level

Toy model

- ightharpoonup Consider two countries i = N, S, (North/South)
 - Household consumes good c_i , produced by a rep. firm with energy e_i and productivity z_i
 - Energy producers extract energy e_i^x selling it at price q^e
- ► Country-*i* planner problem :

$$\begin{aligned} \mathcal{V}_i &= \max_{c_i, e_i, e_i^x} U(c_i) \\ c_i &= \mathcal{D}_i(\mathcal{S}) z_i F(\boldsymbol{e}_i) - q^e \boldsymbol{e}_i + e_i^x q^e - c_i(e_i^x) \\ e_N + e_S &= e_N^x + e_S^x \\ &= \text{GHG emissions} \end{aligned}$$

- Climate damage $\mathcal{D}_i(\mathcal{S})$ with $\mathcal{S} = \overbrace{\xi(e_N + e_S)}$
- ► Competitive equilibrium Result :
 - Energy decision:

$$MPe_i = q^e = c_i'(e_i^x)$$
 with $MPe_i := \mathcal{D}_i(\mathcal{S})z_iF'(e_i)$

Toy model – First Best and Decentralization

► Comparison with Social planner with full transfers (First Best)

$$\mathbb{W} = \max_{\{c_i, e_i, e_i^x\}_i} \sum_{i=N,S} \omega_i U(c_i)$$

$$\sum_{i=N,S} c_i + c_i(e_i^x) = \sum_{i=N,S} \mathcal{D}_i(S) z_i F(e_i) \qquad \& \qquad \sum_{i=N,S} e_i = \sum_{i=N,S} e_i^x$$

Toy model – First Best and Decentralization

► Comparison with Social planner with full transfers (First Best)

$$\mathbb{W} = \max_{\{c_i, e_i, e_i^x\}_i} \sum_{i=N,S} \omega_i U(c_i)$$

$$\sum_{i=N,S} c_i + c_i(e_i^x) = \sum_{i=N,S} \mathcal{D}_i(S) z_i F(e_i) \qquad \& \qquad \sum_{i=N,S} e_i = \sum_{i=N,S} e_i^x$$

- ▶ *Proposition 1* : First-Best and decentralization :
 - Redistribution with *lump-sum transfers* / $tax T_S \ge 0 \& T_N \le 0$

$$\omega_S U'(c_S) = \omega_N U'(c_N)$$

$$\Rightarrow c_i = \mathcal{D}_i(S) z_i F(\mathbf{e}_i) - (q^e + \mathbf{t}^e) \mathbf{e}_i + \mathbf{e}_i^x q^e - c_i(\mathbf{e}_i^x) + T_i$$

• *Common* energy tax : $\mathbf{t}_i^e \equiv \mathbf{t}^e = \xi \ \overline{SCC}$

$$MPe_i = c'(e_i^x) + \underbrace{\xi \overline{SCC}}_{-t^e}$$
 with $\overline{SCC} := -\sum_{i=N,S} \mathcal{D}'_i(S)z_i F(e_i)$

Toy model – Optimal energy policy without transfers

- Assume now that lump-sum transfers across countries are prohibited
 - Ramsey policy, allowing country-specific carbon tax \mathbf{t}_i^e and lump-sum rebate $T_i = \mathbf{t}_i^e e_i$
- ▶ *Proposition 2* : Second-Best without transfers :
 - Inequality because of lack of redistribution

$$\omega_S U'(c_S) \neq \omega_N U'(c_N)$$

• Energy tax integrate redistributive concerns : $\mathbf{t}_i^e \neq \mathbf{t}^e := \xi \ SCC$

$$\begin{aligned} \textit{MPe}_i &= c_i'(e_i^x) + \mathbf{t}_i^e \\ \mathbf{t}_i^e &= \frac{\frac{1}{2} \sum_j \omega_j U'(c_j)}{\omega_i U'(c_i)} \big[\xi \textit{SCC} + c''(\bar{E}) \textit{SCE} \big] \end{aligned}$$

Social Cost of Carbon (SCC) with inequality

► The Energy taxation integrates three motives :

$$\mathbf{t}_{i}^{e} = \frac{\frac{1}{2} \sum_{j} \omega_{j} U'(c_{j})}{\omega_{i} U'(c_{i})} \left[\xi \, SCC + c''(\bar{E}) \, \underline{SCE} \right] \qquad \Rightarrow \qquad \mathbf{t}_{S}^{e} \leq \mathbf{t}_{N}^{e} \quad \underline{i.f.f.} \quad \omega_{S} U'(c_{S}) \geq \omega_{N} U'(c_{N})$$

• A measure of inequality : $\frac{\omega_i U'(c_i)}{\frac{1}{2} \sum_j \omega_j U'(c_j)} \leq 1$

Social Cost of Carbon (SCC) with inequality

► The Energy taxation integrates three motives :

$$\mathbf{t}_{i}^{e} = \frac{\frac{1}{2} \sum_{j} \omega_{j} U'(c_{j})}{\omega_{i} U'(c_{i})} \left[\xi \, SCC + c''(\bar{E}) \, \underline{SCE} \right] \qquad \Rightarrow \qquad \mathbf{t}_{S}^{e} \leq \mathbf{t}_{N}^{e} \quad \underline{i.f.f.} \quad \omega_{S} U'(c_{S}) \geq \omega_{N} U'(c_{N})$$

- A measure of inequality : $\frac{\omega_l U'(c_l)}{\frac{1}{2} \sum_i \omega_l U'(c_l)} \leq 1$
- Social Cost of Carbon (SCC) exacerbated by heterogeneity

$$SCC = -\mathbb{C}\text{ov}_j\left(\frac{\omega_j U'(c_j)}{\frac{1}{2}\sum_j \omega_j U'(c_j)}, \mathcal{D}'_j(\mathcal{S})z_j F(e_j)\right) - \mathbb{E}_j[\mathcal{D}'_j(\mathcal{S})z_j F(e_j)] \gtrsim -\mathbb{E}_j[\mathcal{D}'_j(\mathcal{S})z_j F(e_j)]$$

Social Cost of Carbon (SCC) with inequality

► The Energy taxation integrates three motives :

$$\mathbf{t}_{i}^{e} = \frac{\frac{1}{2} \sum_{j} \omega_{j} U'(c_{j})}{\omega_{i} U'(c_{i})} \left[\xi \, SCC + c''(\bar{E}) \, \underline{SCE} \right] \qquad \Rightarrow \quad \mathbf{t}_{S}^{e} \leq \mathbf{t}_{N}^{e} \quad \underline{i.f.f.} \quad \omega_{S} U'(c_{S}) \geq \omega_{N} U'(c_{N})$$

- A measure of inequality : $\frac{\omega_i U'(c_i)}{\frac{1}{2} \sum_i \omega_i U'(c_i)} \leq 1$
- Social Cost of Carbon (SCC) exacerbated by heterogeneity

$$SCC = -\mathbb{C}\text{ov}_j\left(\frac{\omega_j U'(c_j)}{\frac{1}{2}\sum_j \omega_j U'(c_j)}, \mathcal{D}'_j(\mathcal{S})z_j F(e_j)\right) - \mathbb{E}_j[\mathcal{D}'_j(\mathcal{S})z_j F(e_j)] \gtrsim -\mathbb{E}_j[\mathcal{D}'_j(\mathcal{S})z_j F(e_j)]$$

• Social cost of energy (SCE) accounts for redistribution btw importer and exporter

$$SCE = \mathbb{C}ov_j\left(\frac{\omega_j U'(c_j)}{\frac{1}{2}\sum_i \omega_j U'(c_j)}, \mathbf{e_j} - \mathbf{e_j^x}\right) \lessapprox 0 \qquad c''(\bar{E}) := \left(\sum_i \frac{1}{c_i''(e_i^x)}\right)^{-1} \ge 0$$

Toy model – Optimal policy : no transfers & participation constraint

- ► Assume that lump-sum transfers are prohibited & countries can exit climate agreements
 - Ramsey policy, allowing country-specific carbon tax \mathbf{t}_i^e and lump-sum rebate $T_i = \mathbf{t}_i^e e_i$
 - Participation constraint, with \bar{c}_i autarky level of consumption

$$U(c_i) \ge U(\bar{c}_i)$$
 $[\nu_i]$

Toy model – Optimal policy: no transfers & participation constraint

- Assume that lump-sum transfers are prohibited & countries can exit climate agreements
 - Ramsey policy, allowing country-specific carbon tax \mathbf{t}_i^e and lump-sum rebate $T_i = \mathbf{t}_i^e e_i$
 - Participation constraint, with \bar{c}_i autarky level of consumption

$$U(c_i) \ge U(\bar{c}_i)$$
 $[\nu_i]$

- ▶ Proposition 3 : Second-Best without transfers & participation constraints
 - Participation incentive change our measure of inequality

$$\widetilde{\omega}_N U'(c_N) \leqslant \widetilde{\omega}_S U'(c_S)$$
 $\widetilde{\omega}_N = \omega_N + \nu_N \geq \omega_N$

• Energy tax integrate both redistributive and participation concerns : $\mathbf{t}_i^e \neq \mathbf{t}^e := \xi \ SCC$

$$\mathbf{t}_{i}^{e} = \frac{\frac{1}{2} \sum_{j} \widetilde{\omega}_{j} U'(c_{j})}{\widetilde{\omega}_{i} U'(c_{i})} \left[\xi \, SCC + c''(\bar{E}) \, \underline{SCE} \right] \qquad \Rightarrow \qquad \mathbf{t}_{N}^{e} \leq \mathbf{t}_{S}^{e}$$

► In a large class of IAM models, optimal carbon policy goes hand in hand with the availability of redistribution instruments

- ▶ In a large class of IAM models, optimal carbon policy goes hand in hand with the availability of redistribution instruments
- ▶ With lump-sum tax, fossil energy tax is proportional to the Social Cost of Carbon
 - Optimal fossil tax : $\mathbf{t}^f = \xi SCC$
 - Redistribution is taken care of by transfers T_i across locations i

- ▶ In a large class of IAM models, optimal carbon policy goes hand in hand with the availability of redistribution instruments
- ▶ With lump-sum tax, fossil energy tax is proportional to the Social Cost of Carbon
 - Optimal fossil tax : $\mathbf{t}^f = \xi SCC$
 - Redistribution is taken care of by transfers T_i across locations i
- ▶ Without such instruments, energy taxes are country *i*-specific & accounts for 3 motives :

•
$$\mathbf{t}_{i}^{e} = \frac{\overline{\omega U'(c)}}{\omega_{i}U'(c_{i})} [\xi SCC + c''(E)SCE]$$

• Adjusted for Pareto weights ω_i and marg. utility of consumption $U'(c_i)$ \Rightarrow lower energy tax for poorer countries

- ► In a large class of IAM models, optimal carbon policy goes hand in hand with the availability of redistribution instruments
- ▶ With lump-sum tax, fossil energy tax is proportional to the Social Cost of Carbon
 - Optimal fossil tax : $\mathbf{t}^f = \xi SCC$
 - Redistribution is taken care of by transfers T_i across locations i
- ▶ Without such instruments, energy taxes are country *i*-specific & accounts for 3 motives :
 - $\mathbf{t}_{i}^{e} = \frac{\overline{\omega U'(c)}}{\omega_{i}U'(c_{i})} [\xi SCC + c''(E)SCE]$
 - Adjusted for Pareto weights ω_i and marg. utility of consumption $U'(c_i)$ \Rightarrow lower energy tax for poorer countries
 - Account for both Social Cost of Carbon (SCC) terms-of-trade redistribution $SCE \propto \mathbb{C}ov_i(\omega_i U'(c_i), ne_i)$

- ► In a large class of IAM models, optimal carbon policy goes hand in hand with the availability of redistribution instruments
- ▶ With lump-sum tax, fossil energy tax is proportional to the Social Cost of Carbon
 - Optimal fossil tax : $\mathbf{t}^f = \xi SCC$
 - Redistribution is taken care of by transfers T_i across locations i
- ▶ Without such instruments, energy taxes are country *i*-specific & accounts for 3 motives :
 - $\mathbf{t}_{i}^{e} = \frac{\overline{\omega U'(c)}}{\omega_{i}U'(c_{i})} [\xi SCC + c''(E)SCE]$
 - Adjusted for Pareto weights ω_i and marg. utility of consumption $U'(c_i)$ \Rightarrow lower energy tax for poorer countries
 - Account for both Social Cost of Carbon (SCC) terms-of-trade redistribution $SCE \propto \mathbb{C}ov_i(\omega_i U'(c_i), ne_i)$

Model – Representative Household

- ▶ Deterministic Neoclassical economy, in continuous time
 - heterogeneous countries $i \in \mathbb{I}$
 - In each country, 4 agents: (i) representative household, (ii) homogeneous good firm, (iii) fossil and (iv) renewable energy producers.
- \triangleright Representative household problem in each country i:

$$\mathcal{V}_{it_0} = \max_{\{c_{it}, k_{it}, b_{it}\}} \int_{t_0}^{\infty} e^{-\rho t} u_i(c_{it}, \tau_{it}) dt$$

▶ Dynamics of wealth of country i, $w_{it} = b_{it} + k_{it}$ More details

$$\dot{w}_{it} := \dot{k}_{it} + \dot{b}_{it} = y_{it} + \pi_{it}^f + \pi_{it}^r + r_t^* b_{it} + (r_t^* - \bar{\delta}) k_{it} - c_{it} + \mathbf{t}_{it}^{ls}$$

- Labor income y_{it} from homogeneous good firm.
- All the lower-case variables are expressed per unit of efficient labor $y_{it} = Y_{it}/(L_{it}A_{it})$

9/24

Model – Representative Firm

► Competitive homogeneous good producer in country *i*

$$\max_{k_{it},e_{it}^f,e_{it}^r} \mathcal{D}^{y}(\tau_{it}) z_i f(k_{it},e_{it}^f,e_{it}^r) - r_t^{\star} k_{it} - (q_t^f + \mathbf{t}_{it}^f) e_{it}^f - (q_t^r + \mathbf{t}_{it}^r) e_{it}^r - y_{it}$$

- Energy mix with fossil e_{it}^f emitting carbon subject to price q_t^f and tax/subsidy \mathbf{t}_{it}^f . Similarly "clean" renewable e_t^r , at price q_{it}^r and tax \mathbf{t}_{it}^r .
- No international trade in goods and Labor is immobile

Model – Energy markets

- Competitive fossil fuels energy producer :
 - Static problem (for now) extract energy e_{it}^x depleting reserves \mathcal{R}_{it}

$$\begin{aligned} \pi_{it}^f &= \max_{e_{it}^x} q_t^f e_{it}^x - \mathcal{C}_i^f(e_{it}^x, \mathcal{R}_{it}) \\ \dot{\mathcal{R}}_{it} &= -e_{it}^x & \mathcal{R}_{it_0} &= \mathcal{R}_{i0} & \mathcal{R}_{it} \geq 0 \end{aligned}$$

Fossil energy traded in international markets :

$$\int_{\mathbb{I}} e_{it}^f p_i \, di = \int_{\mathbb{I}} e_{it}^x \, di$$

Optimal extraction

$$q_t^f = \mathcal{C}_e^f(e_{it}^x, \mathcal{R}_{it})$$

Model – Energy markets

- ► Competitive fossil fuels energy producer :
 - Static problem (for now) extract energy e_{it}^x depleting reserves \mathcal{R}_{it}

$$\begin{aligned} \pi_{it}^f &= \max_{e_{it}^x} q_t^f e_{it}^x - \mathcal{C}_i^f(e_{it}^x, \mathcal{R}_{it}) \\ \dot{\mathcal{R}}_{it} &= -e_{it}^x & \mathcal{R}_{it_0} &= \mathcal{R}_{i0} & \mathcal{R}_{it} \geq 0 \end{aligned}$$

Fossil energy traded in international markets :

$$\int_{\mathbb{I}} e_{it}^f p_i \, di = \int_{\mathbb{I}} e_{it}^x \, di$$

Optimal extraction

$$q_t^f = \mathcal{C}_e^f(e_{it}^x, \mathcal{R}_{it})$$

June 2023

11/24

▶ Renewable energy as a substitute technology in each country *i* (Static problem for now)

$$\pi_{it}^r = \max_{\{ar{e}_i^r\}} q_{it}^r ar{e}_{it}^r - \mathcal{C}_i^r (ar{e}_{it}^r) \qquad \Rightarrow \qquad q_{it}^r = \mathcal{C}_e^r (ar{e}_t^r) = z_{it}^r$$

Climate system

Fossil energy input e_t^f causes climate externality

$$\mathcal{E}_t = \xi \int_{\mathbb{T}} \mathbf{e_{it}}^f p_i \, di$$

 \triangleright Cumulative GHG in atmosphere S_t increases temperature

$$\dot{\mathcal{S}}_t = \mathcal{E}_t - \delta_s \mathcal{S}_t$$

Country's local temperature :

$$\dot{\tau}_{it} = \zeta \left(\Delta_i \chi \mathcal{S}_t - (\tau_{it} - \bar{\tau}_{it_0}) \right)$$

• Linear model: Climate sensitivity to carbon χ , Climate reaction/inertia ζ , Carbon content of fossils ξ , Country i linear pattern scaling factor Δ_i , Carbon exit from atmosphere δ_s

Model – Equilibrium

► Equilibrium

- Given, initial conditions $\{w_0, \tau_0\}$ and country-specific policies $\{\mathbf{t}_{it}^f, \mathbf{t}_{it}^r, \mathbf{t}_{it}^{ts}\}$, a competitive equilibrium is a continuum of sequences of states $\{w_{it}, \tau_{it}\}_{it}$ and $\{S_t, \mathcal{T}_t, \mathcal{R}_t\}_t$ and policies $\{c_{it}, b_{it}, k_{it}, e_{it}^f, e_{it}^r, e_{it}^s\}_{it}$ and price sequences $\{r_t^\star, q_t^f, q_t^r\}$ such that :
- Households choose policies $\{c_{it}, b_{it}\}_{it}$ to max utility s.t. budget constraint, giving \dot{w}_{it}
- Firm choose policies $\{k_{it}, e_{it}^f, e_{it}^r\}_{it}$ to max profit
- Fossil and renewables firms extract/produce $\{e_{it}^x, \bar{e}_{it}^r\}_{it}$ to max static profit, yielding $\dot{\mathcal{R}}_t$
- Emissions \mathcal{E}_t affects climate $\{\mathcal{S}_t, \mathcal{T}_t\}_t$, & $\{\tau_{it}\}_{it}$.
- Prices $\{r_t^{\star}, q_t^f, q_{it}^r\}$ adjust to clear the markets : $\int_{\mathbb{T}} e_{it}^{\star} di = \int_{\mathbb{T}} e_{it}^f di$ and $e_{it}^r = \overline{e}_{it}^r$, and $\int_{i \in \mathbb{T}} b_{it} di = 0$, with bonds $b_{it} = w_{it} k_{it}$

Calibration – Household

- ▶ Household utility $u_i(c,\tau) = U(\mathcal{D}_i^u(\tau)c)$ with CRRA $U(\tilde{c}) = \frac{\tilde{c}^{1-\eta}}{1-\eta}$
- \triangleright Damage functions in utility *u* or production function *y*:

$$\mathcal{D}_i^{\mathbf{y}}(au) = e^{-\gamma_i^{\pm,\mathbf{y}}(au - au_i^{\star})^2}$$

and similarly for $\mathcal{D}_i^u(\tau)$, with $\gamma^{\pm,y} = \gamma^{\oplus,y} \mathbb{1}_{\{\tau > \tau_i^{\star}\}} + \gamma^{\ominus,y} \mathbb{1}_{\{\tau < \tau_i^{\star}\}}$

- Today $\gamma_i^{\pm,y} = \bar{\gamma}^{\pm,y} \& \tau_i^* = \bar{\alpha} \tau_{it_0} + (1 \bar{\alpha}) \tau^*$.
- Future : $\gamma_i^{\pm,y}$ depends on daily temperature distribution $\tau \sim \mathcal{T}_i(\bar{T}, \sigma^T)$ following Rudik et al. (2022)

Calibration – Firms

▶ Production function $y_i = \mathcal{D}_i^y(\tau_i)z_i f(k, \varepsilon(e^f, e^r))$

$$f_{i}(k,\varepsilon(e^{f},e^{r})) = \left[(1-\epsilon)^{\frac{1}{\sigma_{y}}} k^{\alpha \frac{\sigma_{y}-1}{\sigma_{y}}} + \epsilon^{\frac{1}{\sigma_{y}}} \left(z_{i}^{e} \varepsilon(e^{f},e^{r}) \right)^{\frac{\sigma_{y}-1}{\sigma_{y}}} \right]^{\frac{\sigma_{y}}{\sigma_{y}-1}}$$

$$\varepsilon(e^{f},e^{r}) = \left[\omega^{\frac{1}{\sigma_{e}}} (e^{f})^{\frac{\sigma_{e}-1}{\sigma_{e}}} + (1-\omega)^{\frac{1}{\sigma_{e}}} (e^{r})^{\frac{\sigma_{e}-1}{\sigma_{e}}} \right]^{\frac{\sigma_{e}}{\sigma_{e}-1}}$$

- Calibrate TFP z_i to match $y_i = GDP_i$ per capita in 2011 (PPP).
- Now : $\omega_i = \bar{\omega} = 85\%$ and $\epsilon_i = \bar{\epsilon} = 12\%$ for all i
- Future : $(z_i^e, \omega_i, \epsilon_i)$ to match Energy/GDP $(e_i^f + e_i^r)/y_i$ and energy mix (e_i^f, e_i^r)

Calibration – Energy markets

- ► Fossil production e_{it}^x and reserve \mathcal{R}_{it}
 - Cost $C_i(e^x, \mathcal{R}) = \frac{\bar{\nu}_i}{1+\nu_i} \left(\frac{e^x}{\mathcal{R}}\right)^{1+\nu_i} \mathcal{R}$
 - Now : $\bar{\nu}_i = \bar{\nu}$ and $\nu_i = \nu$ and \mathcal{R}_{it} calibrated to proven reserves data from BP.
 - Future : Choose $(\bar{\nu}_i, \nu_i, \mathcal{R}_i)$ to match marginal cost \mathcal{C}_e & extraction level data e_i^x (BP, IEA)
 - Extension: Divide fossils into oil/gas/coal, and match the production/cost/reserves data across countries + use a dynamic model (extraction/exploration Hotelling problem).

Calibration – Energy markets

- ► Fossil production e_{it}^x and reserve \mathcal{R}_{it}
 - Cost $C_i(e^x, \mathcal{R}) = \frac{\bar{\nu}_i}{1+\nu_i} \left(\frac{e^x}{\mathcal{R}}\right)^{1+\nu_i} \mathcal{R}$
 - Now : $\bar{\nu}_i = \bar{\nu}$ and $\nu_i = \nu$ and \mathcal{R}_{it} calibrated to proven reserves data from BP.
 - Future : Choose $(\bar{\nu}_i, \nu_i, \mathcal{R}_i)$ to match marginal cost C_e & extraction level data e_i^x (BP, IEA)
 - Extension: Divide fossils into oil/gas/coal, and match the production/cost/reserves data across countries + use a dynamic model (extraction/exploration Hotelling problem).
- ▶ Renewable : Production \bar{e}_{it}^r and price q_{it}^r
 - Now : $q_{it}^r = z^r e^{-g_r t}$, with g_r growth rate in renewable energy price decreases.
 - Future : Choose z_i^r to match the energy mix (e_i^f, e_i^r)
 - Extension : make the problem dynamic with capacity C_{it}^r

Model Solution

- ► Household consumption/saving problem
 - Using Pontryagin Max. Principle: states $\{x\} = \{w_{it}, \tau_{it}\}$, controls $\{c\} = \{c_{it}, b_{it}, k_{it}\}$ and costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_{it}^s\} \Rightarrow$ system of coupled ODEs.

$$\mathcal{H}^{hh}(\lbrace x\rbrace, \lbrace c\rbrace, \lbrace \lambda\rbrace) = u(c_i, \tau_i) + \lambda_{it}^w \dot{w}_{it} + \lambda_{it}^\tau \dot{\tau}_{it} + \lambda_{it}^S \dot{S}_t$$

└─ Model Solution

Model Solution

- ► Household consumption/saving problem
 - Using Pontryagin Max. Principle: states $\{x\} = \{w_{it}, \tau_{it}\}$, controls $\{c\} = \{c_{it}, b_{it}, k_{it}\}$ and costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_{it}^s\} \Rightarrow \text{system of coupled ODEs.}$

$$\mathcal{H}^{hh}(\lbrace x\rbrace, \lbrace c\rbrace, \lbrace \lambda\rbrace) = u(c_i, \tau_i) + \lambda_{it}^w \dot{w}_{it} + \lambda_{it}^\tau \dot{\tau}_{it} + \lambda_{it}^S \dot{S}_t$$

- ODE for the costate for wealth $\lambda_{it}^w = u_c(c_{it}, \tau_{it}) \Rightarrow$ Euler equation
- The "local social cost of carbon" (SCC) for region i:

$$LSCC_{it} := -\frac{\partial \mathcal{V}_{it}/\partial \mathcal{S}_{t}}{\partial \mathcal{V}_{it}/\partial c_{it}} = -\frac{\lambda_{it}^{S}}{\lambda_{it}^{W}}$$

- ODEs for Costates: temperature λ_{it}^{τ} and carbon λ_{it}^{S} , More details
- Stationary equilibrium closed-form formula, analogous to GHKT (2014) Here

17 / 24

Sequential solution method

- Summary of the model :
 - ODEs for states $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$
 - Backward ODE for the costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_{it}^s\}_{it}$
 - Non-linear equations (FOCs) for household controls $\{c_1\} = \{c_{it}, b_{it}, k_{it}\}_{it}$ and static demands for energy/capital $\{c_2\} = \{e_{it}^f, e_{it}^r, k_{it}\}_{it}$ and static supplies $\{c_3\} = \{e_{it}^x, \bar{e}_{it}^r\}_{it}$.
 - Market clearing as equation for prices $\{q\} = \{q_t^f, r_t^{\star}\}_t$

Sequential solution method

- ► Summary of the model :
 - ODEs for states $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$
 - Backward ODE for the costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_{it}^s\}_{it}$
 - Non-linear equations (FOCs) for household controls $\{c_1\} = \{c_{it}, b_{it}, k_{it}\}_{it}$ and static demands for energy/capital $\{c_2\} = \{e_{it}^f, e_{it}^r, k_{it}\}_{it}$ and static supplies $\{c_3\} = \{e_{it}^x, \bar{e}_{it}^r\}_{it}$.
 - Market clearing as equation for prices $\{q\} = \{q_t^f, r_t^{\star}\}_t$
- Global Numerical solution :
 - Discretize agents (countries) space $i \in \mathbb{I}$ with M and time-space $t \in [t_0, t_T]$ with T periods
 - Express as a large vector $y = \{x, \lambda, c, q\}$ in a large non-linear function

$$F(\mathbf{y}) = \mathbf{0}$$

• Solve for the large system with $N = (N_{ind,vars} \times M + N_{agg,vars}) \times T$ unknowns and N equations with gradient-descent – Newton-Raphson methods.

Sequential method: Pros and Cons

- ▶ Why use a sequential approach?
 - Global approach : Only need to follow the trajectories for i agents :
 - Arbitrary (!) number of dimension of *ex-ante* heterogeneity : Productivity z_i Population p_i , Temperature scaling Δ_i , Fossil energy cost $\bar{\nu}_i$, Energy mix ϵ_i , ω_i , z_i^r , Local damage γ_i^y , γ_i^u , τ_i^* , Directed Technical Change z_i^e
 - Potentially large dimensions of *ex-post* heterogeneity and aggregate state variables: For now: Wealth w_{it} , temperature τ_{it} , reserves \mathcal{R}_{it} , Carbon \mathcal{S}_t Extension with a large climate system as a proof of concept (e.g. Cai, Lontzek, Judd, 2013)
 - Newton method & Non-linear solvers very efficient

► Why not:

- Numerical constraint to solve a large system of ODEs and non-linear equations :
- \Rightarrow Constraint on $N = (N_{ind,vars} \times M + N_{agg,vars}) \times T$, so either M or T can't be too large
 - Relying on numerical solvers/structure of the problem can be opaque

Competitive equilibrium

- \triangleright Simulation for M = countries and T = 20.
- ▶ Result of CE to show here

Optimal policy

- ► Social planner, First best with a full set of instruments :
 - Lump-sum transfers to solve inequality, s.t.

$$\lambda_t = \omega_i u'(c_{it}) = \omega_j u'(c_{jt}) \ \forall i, j \in \mathbb{I}$$

- Pigouvian tax in RA economy with $\mathbf{t}_t^f = -\frac{\lambda_t^3}{\lambda_t^k} =: SCC_t$, c.f. GHKT (2014)
- Imply cross-countries lump-sum transfers $\exists i \text{ s.t. } T_i > 0 \text{ and } \exists j \text{ s.t. } T_j < 0$

Optimal policy

- Social planner, First best with a full set of instruments :
 - Lump-sum transfers to solve inequality, s.t.

$$\lambda_t = \omega_i u'(c_{it}) = \omega_j u'(c_{jt}) \ \forall i, j \in \mathbb{I}$$

- Pigouvian tax in RA economy with $\mathbf{t}_t^f = -\frac{\lambda_t^S}{\lambda_t^k} =: SCC_t$, c.f. GHKT (2014)
- Imply cross-countries lump-sum transfers $\exists i \ s.t. \ T_i > 0$ and $\exists j \ s.t. \ T_j < 0$
- Second best without access to lump-sum transfers
 - Only region-*i*-specific distortive energy taxes : $\{\mathbf{t}_{it}^f, \mathbf{t}_{it}^r\}$. Tax receipts redistributed lump-sum : $\mathbf{t}_{it}^{ls} = \mathbf{t}_{it}^f e_{it}^f + \mathbf{t}_{it}^r e_{it}^r$
 - Welfare of the Ramsey planner:

$$\mathcal{W}_{t_0} = \max_{\{oldsymbol{t},oldsymbol{x},oldsymbol{\lambda},oldsymbol{c}_{t_0}\}} \int_{\mathbb{T}}^{\infty} \int_{\mathbb{T}} e^{-ar{
ho}t} \; \omega_i \; u(c_{it}, au_{it}) p_i \; di \; dt$$

The Ramsey Problem – Optimal Energy Policy

Optimal Pigouvian tax for fossil energy :

$$\Rightarrow \quad \widehat{\psi}_{it}^{w} \mathbf{t}_{it}^{f} = p_{i} \xi \, SCC_{t} + \underbrace{SCF_{t}}_{t} \mathcal{C}_{EE}^{f} \qquad \& \qquad \mathbf{t}_{it}^{r} = 0$$

Integrate several redistribution motives :

$$\widehat{\psi}_{it}^{w} = \frac{\psi_{it}^{w}}{\overline{\psi}_{t}^{w}} = \frac{\omega_{i}u_{c}(c_{it}, \tau_{it})p_{i}}{\int_{j \in \mathbb{I}}\omega_{j}u_{c}(c_{jt}, \tau_{jt})p_{j}dj} \leqslant 1$$

- \Rightarrow lower tax on poorer/high $\widehat{\psi}_{it}^{w}$ countries
- Level depends on SCC_t & fossil price SCF_t

$$\begin{split} SCC_t &= \mathbb{C}\text{ov}_j\Big(\widehat{\psi}_{it}^w, LSCC_{jt}\Big) + \mathbb{E}_j[LSCC_{jt}] \\ SCF_t &= \mathbb{C}\text{ov}_j\Big(\widehat{\psi}_{it}^w, e_{jt}^f - e_{jt}^x\Big) \\ &\qquad \mathcal{C}_{EE}^f = \Big(\int_{j \in \mathbb{I}} \frac{1}{\mathcal{C}_{i,\text{obs}}^f} dj\Big)^{-1} \end{split}$$

Optimal Energy tax

- Numerical results for M = countries and T = 20.
- ► Result of Optimal Policy to show here

Conclusion & Future plans

Appendices

More details – Capital market

In each countries, the agent can save in two assets, capital k_{it} and bonds b_{it} :

$$\begin{cases} \dot{k}_{it} &= \mathcal{D}_i^{y}(\tau_{it})z_i f(k_{it},e_{it}) - (\delta + n + \bar{g})k_{it} + \iota_{it} \\ \dot{b}_{it} &= r^{\star}b_{it} + \theta_i \pi_t^f + \pi_{it}^r - (q_t^f + \mathbf{t}_{it}^f)e_{it}^f - (q_t^r + \mathbf{t}_{it}^r)e_{it}^r - \iota_{it} - c_{it} + \mathbf{t}_{it}^{ls} \\ b_{it} &\geq -\vartheta k_{it} \end{cases}$$

 \triangleright Combining, substituting ι_{it} and defining wealth $w_{it} = k_{it} + b_{it}$, we obtain the main equation

$$\dot{w}_{it} = r^{\star} w_{it} + \mathcal{D}^{y}(\tau_{it}) z_{it} f(k_{it}, e_{it}) - (\bar{\delta} + r_{t}^{\star}) k_{it} + \theta_{i} \pi_{t}^{f} + \pi_{it}^{r} - (q_{t}^{f} + \mathbf{t}_{it}^{f}) \mathbf{e}_{it}^{f} - (q_{t}^{r} + \mathbf{t}_{it}^{r}) \mathbf{e}_{it}^{r} - c_{it} + \mathbf{t}_{it}^{f}$$

$$k_{it} \leq \frac{1}{1 - \vartheta} w_{it}$$

- ► Two polar cases :
 - $\vartheta \to 0$, full autarky (no trade), and $w_{it} = k_{it}$
 - $\vartheta \to 1$, full financial integration :

$$k_{it}$$
 s.t. $MPk_{it} - \bar{\delta} = \mathcal{D}_{i}^{y}(\tau_{it})z_{i}\partial_{k}f(k_{it}, e_{it}) - (\delta + n + \bar{g}) = r_{t}^{\star}$

2/6

Impact of increase in temperature

Marginal values of the climate variables : λ_{it}^s and λ_{it}^{τ}

$$\dot{\lambda}_{it}^{\tau} = \lambda_{it}^{\tau}(\rho + \zeta) + \overbrace{\gamma_{i}(\tau_{it} - \tau_{i}^{\star})\mathcal{D}^{y}(\tau_{it})}^{-\partial_{\tau}\mathcal{D}^{y}(\tau_{it})} f(k_{it}, e_{it}) \lambda_{it}^{k} + \overbrace{\phi_{i}(\tau_{it} - \tau_{i}^{\star})\mathcal{D}^{u}(\tau_{it})^{1-\eta} c_{it}^{1-\eta}}^{\partial_{\tau}u(c,\tau)}$$

$$\dot{\lambda}_{it}^{S} = \lambda_{it}^{S}(\rho + \delta^{s}) - \zeta \chi \Delta_{i} \lambda_{it}^{\tau}$$

- Costate λ_{it}^S : marg. cost of 1Mt carbon in atmosphere, for country i. Increases with:
 - Temperature gaps $\tau_{it} \tau_i^*$ & damage sensitivity of TFP γ_i^y and utility γ_i^u
 - Development level $f(k_{it}, e_{it})$ and c_{it}
 - Climate params : χ climate sensitivity, Δ_i "catching up" of τ_i and ζ reaction speed
 - back

Cost of carbon / Marginal value of temperature

► Solving for the cost of carbon and temperature ⇔ solving ODE

$$\dot{\lambda}_{it}^{\tau} = \lambda_{t}^{\tau}(\widetilde{\rho} + \Delta\zeta) + \gamma(\tau - \tau^{\star})\mathcal{D}^{y}(\tau)f(k, e)\lambda_{t}^{k} + \phi(\tau - \tau^{\star})\mathcal{D}^{u}(\tau)u(c)
\dot{\lambda}_{t}^{S} = \lambda_{t}^{S}(\widetilde{\rho} + \delta^{s}) - \int_{\mathbb{I}} \Delta_{i}\zeta\chi\lambda_{it}^{\tau}$$

Solving for λ_t^{τ} and $\lambda_t^{\mathcal{S}}$, in stationary equilibrium $\dot{\lambda}_t^{\mathcal{S}} = \dot{\lambda}_t^{\tau} = 0$

$$\begin{split} &\lambda_{it}^{\tau} = -\int_{t}^{\infty} e^{-(\widetilde{\rho} + \zeta)u} (\tau_{u} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{u}) y_{\tau} \lambda_{u}^{k} + \phi \mathcal{D}^{u}(\tau_{u}) u(c_{u}) \Big) du \\ &\lambda_{it}^{\tau} = -\frac{1}{\widetilde{\rho} + \Delta \zeta} (\tau_{\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{\infty}) y_{\infty} \lambda_{\infty}^{k} + \phi \mathcal{D}^{u}(\tau_{\infty}) u(c_{\infty}) \Big) \\ &\lambda_{t}^{S} = -\int_{t}^{\infty} e^{-(\widetilde{\rho} + \delta^{S})u} \zeta \chi \int_{\mathbb{I}} \Delta_{j} \lambda_{j,u}^{\tau} dj du \\ &= \frac{1}{\widetilde{\rho} + \delta^{S}} \zeta \chi \int_{\mathbb{I}} \Delta_{j} \lambda_{j,\infty}^{\tau} \\ &= -\frac{\chi}{\widetilde{\rho} + \delta^{S}} \frac{\zeta}{\widetilde{\rho} + \zeta} \int_{\mathbb{I}} \Delta_{j} (\tau_{j,\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{j,\infty}) y_{\infty} \lambda_{j,\infty}^{k} + \phi \mathcal{D}^{u}(\tau_{j,\infty}) u(c_{j,\infty}) \Big) dj \\ &\lambda_{t}^{S} \xrightarrow{\zeta \to \infty} -\frac{\chi}{\widetilde{\rho} + \delta^{S}} \int_{\mathbb{I}} \Delta_{j} (\tau_{j,\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{j,\infty}) y_{j,\infty} \lambda_{j,\infty}^{k} + \mathcal{D}^{u}(\tau_{j,\infty}) u(c_{j,\infty}) \Big) dj \end{split}$$

Cost of carbon / Marginal value of temperature

► Proposition (Stationary LSCC) :

When $t \to \infty$ and for a BGP with $\mathcal{E}_t = \delta_s \mathcal{E}_t$ and $\tau_t \to \tau_\infty$, the LSCC is *proportional* to climate sensitivity χ , marg. damage γ_i^y , γ_i^u , temperature, and output, consumption.

$$LSCC_{it} \equiv \frac{\Delta_i \chi}{\rho - n + \bar{g}(\eta - 1) + \delta^s} (\tau_{\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^y(\tau_{\infty}) y_{\infty} + \phi \mathcal{D}^u(\tau_{\infty}) c_{\infty} \Big)$$

- Stationary equilibrium : $\dot{\lambda}_t^S = \dot{\lambda}_t^T = 0$
- Fast temperature adjustment $\zeta \to \infty$
- Back

Social cost of carbon & temperature

► Cost of carbon depends only on final temperatures and path of emissions :

$$\tau_T - \tau_{t_0} = \Delta \chi \xi \omega \int_{t_0}^T e^{(n+\bar{g})t - \delta_s(T-t)} q_t^{f-\sigma_e} \int_{j \in \mathbb{I}} (z_j z_{j,t}^e \mathcal{D}(\tau_{j,t}))^{\sigma-1} y_{j,t} q_{j,t}^{\sigma_e-\sigma} dj dt$$

- Geographical factors determining warming Δ_i
- Climate sensitivity χ & carbon exit from atmosphere δ_s
- Growth of population n, aggregate productivity \bar{g}
- Deviation of output from trend y_i & relative TFP z_i
- Directed technical change z_t^e , elasticity of energy in output σ Fossil energy price q^{ef} and Hotelling rent $g^{ef} \approx \lambda_t^R/\lambda_t^R = \rho$
- Change in energy mix, renewable share ω , price q_t^r & elasticity of source σ_e
- Approximations at $T \equiv$ Generalized Kaya (or I = PAT) identity More details

$$rac{\dot{ au}_T}{ au_T} \propto \, n \, + \, ar{g}^{ ext{y}} - (1-\sigma)ig(g^{z^e} - \widetilde{\gamma}ig) + (\sigma_e - \sigma)(1-\omega)g^{q^r} - (\sigma_e(1-\omega) + \sigma\omega)g^{q^f}$$

