Ácido base

• Disociación ácido/base débil

- Disólvense 20 cm³ de NH₃(g), medidos a 10 °C e 2 atm (202,6 kPa) de presión, nunha cantidade de auga suficiente para alcanzar 172 cm³ de disolución. A disolución está ionizada nun 4,2 %. Escribe a reacción de disociación.
 - a) Calcula a concentración molar de cada unha das especies existentes na disolución unha vez alcanzado o equilibrio.
 - b) Calcula o pH.
 - c) Calcula a K_b do amoníaco.
 - d) Calcula a Ka do seu ácido conxugado.

Problema modelo baseado nas P.A.U. xuño 10 e xuño 11

Rta.: a) $[NH_3]_e = 0,0096 \text{ mol/dm}^3$; $[OH^-]_e = [NH_4^+]_e = 4,2 \cdot 10^{-4} \text{ mol/dm}^3$; b) pH = 10,6; c) $K_b = 1,8 \cdot 10^{-5}$; d) $K_a = 5,6 \cdot 10^{-10}$.

Datos		Cifras significativas: 3
Gas:	Volume	$V = 20.0 \text{ cm}^3 = 2.00 \cdot 10^{-5} \text{ m}^3$
	Presión	$p = 202,6 \text{ Pa} = 2,026 \cdot 10^5 \text{ Pa}$
	Temperatura	$T = 10 ^{\circ}\text{C} = 283 \text{K}$
Volum	ne da disolución	$V_{\rm D}$ = 172 cm ³ = 0,172 dm ³
Grao d	le ionización do NH₃ na disolución	$\alpha = 4,20 \% = 0,0420$
Produ	to iónico da auga	$K_{\rm w} = 1.00 \cdot 10^{-14}$
Incóg	nitas	
Conce	ntración de cada unha das especies presentes na disolución	$[\mathrm{NH_3}]_\mathrm{e},[\mathrm{OH^{\scriptscriptstyle{-}}}]_\mathrm{e},[\mathrm{NH_4^{\scriptscriptstyle{+}}}]_\mathrm{e},[\mathrm{H^{\scriptscriptstyle{+}}}]_\mathrm{e}$
pH da	disolución	pH
Consta	ante de basicidade do NH₃	K_{b}
Outro	s símbolos	
Disolu	ción	D
Conce	ntración (mol/dm³) de base débil que se disocia	x
Cantid	lade da substancia X	n(X)
Cantid	lade disociada	$n_{ m d}$
Cantid	lade inicial	n_0
Conce	ntración da substancia X	[X]
Ecuac	rións	
Consta	ante de basicidade da base: $B(OH)_b(aq) \rightleftharpoons B^{b+}(aq) + b OH^{-}(aq)$	$K_{b} = \frac{\left[B^{b+}\right]_{e} \cdot \left[OH^{-}\right]_{e}^{b}}{\left[B\left(OH\right)_{b}\right]_{e}}$
pН		$pH = -log[H^+]$
рОН		$pOH = -log[OH^{-}]$
Produ	to iónico da auga	$K_{\rm w} = [{\rm H}^+]_{\rm e} \cdot [{\rm OH}^-]_{\rm e} = 1,00 \cdot 10^{-14}$ ${\rm p}K_{\rm w} = {\rm pH} + {\rm pOH} = 14,00$
Grao d	le disociación	$\alpha = \frac{n_{\rm d}}{n_0} = \frac{[s]_{\rm d}}{[s]_0}$

Solución:

a) Supoñendo comportamento ideal para o gas amoníaco

$$n(NH_3) = \frac{p \cdot V}{R \cdot T} = \frac{2,026 \cdot 10^5 \text{ Pa} \cdot 2,00 \cdot 10^{-5} \text{ m}^3}{8,31 \text{ J·mol}^{-1} \cdot \text{K}^{-1} \cdot 283 \text{ K}} = 1,72 \cdot 10^{-3} \text{ mol } NH_3(g)$$

A concentración da disolución será:

$$[NH_3] = \frac{n(NH_3)}{V_D} = \frac{1,72 \cdot 10^{-3} \text{ mol } NH_3}{0.172 \text{ dm}^3 \text{ D}} = 0,010 \text{ 0mol/dm}^3$$

Como o amoníaco é unha base débil, disociarase en auga segundo a ecuación:

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

O grao de disociación α é:

$$\alpha = \frac{[NH_3]_d}{[NH_3]_0}$$

Calcúlase a concentración de amoníaco disociado a partir do grao de ionización:

$$[NH_3]_d = \alpha \cdot [NH_3]_0 = 0.0420 \cdot 0.0100 \text{ mol/dm}^3 = 4.20 \cdot 10^{-4} \text{ mol/dm}^3$$

A concentración do amoníaco no equilibrio é:

$$[NH_3]_e = [NH_3]_0 - [NH_3]_d = 0,0100 \text{ mol/dm}^3 - 4,20 \cdot 10^{-4} \text{ mol/dm}^3 = 0,0096 \text{ mol/dm}^3$$

Pódese calcular a concentración de ións amonio e hidróxido a partir da estequiometría da reacción.

$$[OH^{-}]_{e} = [NH_{4}^{+}]_{e} = [NH_{3}]_{d} = 4,20 \cdot 10^{-4} \text{ mol/dm}^{3}$$

A concentración de ións hidróxeno calcúlase a partir do produto iónico da auga:

$$[H^+]_e = \frac{K_w}{[OH^-]_e} = \frac{1,00 \cdot 10^{-14}}{4,20 \cdot 10^{-4}} = 2,38 \cdot 10^{-11} \text{ mol/dm}^3$$

b) O pH valerá:

$$pH = -\log[H^+] = -\log(2,38\cdot10^{-11}) = 10,6$$

Análise: Este pH é consistente co esperado. Se o amoníaco fose unha base forte, o pH dunha disolución 0,01 mol/dm³ sería pH $\approx 14 + \log 0,01 = 12$. Unha base débil terá un pH menos básico, máis próximo a 7.

c) A constante de equilibrio K_b é:

$$K_{\rm b} = \frac{\left[\text{NH}_{4}^{+} \right]_{\rm e} \cdot \left[\text{OH}^{-} \right]_{\rm e}}{\left[\text{NH}_{3} \right]_{\rm e}} = \frac{4,20 \cdot 10^{-4} \cdot 4,20 \cdot 10^{-4}}{0,009 \text{ 6}} = 1,8 \cdot 10^{-5}$$

d) A ecuación de disociación do ácido conxugado do amoníaco é:

$$NH_4^+(aq) \rightleftharpoons NH_3(aq) + H^+(aq)$$

A expresión da constante de acidez do ácido conxugado do amoníaco é:

$$K_{a} = \frac{\left[NH_{3}\right]_{e} \cdot \left[H^{+}\right]_{e}}{\left[NH_{4}^{+}\right]_{e}}$$

Se multiplicamos a constante de basicidade do amoníaco pola constante de acidez do seu ácido conxugado obtemos:

$$K_{b} \cdot K_{a} = \frac{[\mathrm{NH}_{4}^{+}]_{c} \cdot [\mathrm{OH}]_{e}}{[\mathrm{NH}_{3}]_{c}} \cdot \frac{[\mathrm{NH}_{3}]_{c} \cdot [\mathrm{H}^{+}]_{c}}{[\mathrm{NH}_{4}^{+}]_{c}} = [\mathrm{OH}]_{c} \cdot [\mathrm{H}^{+}]_{c} = K_{w}$$

 $K_{\rm w}$ é a constante de ionización da auga. $K_{\rm w}=1\cdot 10^{-14}$

$$K_{\rm a} = \frac{K_{\rm w}}{K_{\rm b}} = \frac{1,00 \cdot 10^{-14}}{1,8 \cdot 10^{-5}} = 5,6 \cdot 10^{-10}$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>Quimica (gal)</u>
As instrucións para o manexo desta folla de cálculo poden verse na ligazón <u>instrucións</u>.
Para ir á folla onde resolver un problema de Termoquímica, pode elixir unha destas opcións:

- Vaia ao índice, buscando a ligazón <u>Indice</u> na zona superior dereita e pulsando a tecla [Ctrl] mentres preme sobre <u>Indice</u>. No índice, pulse a tecla [Ctrl] mentres preme sobre a cela <u>Equilibrio ácido-base</u> de **Equilibrio químico**.

Escriba as fórmulas químicas nas celas de cor branca con bordo verde e os datos nas celas de cor branca con bordo azul. Prema nas celas de cor laranxa para elixir entre as opcións que se presentan. A folla intenta escribir a fórmula da especie conxugada. Se o fai mal, corríxaa. DATOS:

J	DATOS:						
			Base	Ácido co	nxugado		
		Fórmula:	NΗ₃	NH ₄			
	Grao de disociación	α =	4,2	%			
		pH =					
	Concentración	[s] =	0,01	mol/dm³			
]	RESULTADOS:						
	Concentración	NH ₃ +	F	$H_2O \rightleftharpoons$	NH ₄ +	OH-	
	inicial:	0,0100					mol/dm^3
	en equilibrio:	0,00958			4,20.10	4 4,20.10-4	mol/dm^3
					$[H_3O^+]$	= 2,38·10 ⁻¹¹	mol/dm^3
	pH = 10,62						
	pOH = 3,38	Constan	te de	basicidad	e: K_b	$= 1,84 \cdot 10^{-5}$	
	Constant	e de acide	z do o	conxugado	o: K_a	$= 5,43 \cdot 10^{-10}$	

- 2. Para unha disolución acuosa de concentración 0,200 mol/dm³ de ácido láctico (ácido 2-hidroxipropanoico), calcula:
 - a) A concentración de todas as especies presentes na disolución.
 - b) O grao de ionización do ácido en disolución.
 - c) O pH da disolución.
 - d) Que concentración debería ter unha disolución de ácido benzoico (C₀H₅COOH) para que tivese o mesmo pH?

Datos: $K_a(CH_3CH(OH)COOH) = 3.2 \cdot 10^{-4}$; $(C_6H_5COOH) = 6.42 \cdot 10^{-5}$; $K_w = 1.0 \cdot 10^{-14}$.

Problema modelo baseado no A.B.A.U. xuño 17

Rta.: a) $[CH_3CH(OH)COO^-]_e = [H^+]_e = 0.00784 \text{ mol/dm}^3$; $[CH_3CH(OH)COOH]_e = 0.192 \text{ mol/dm}^3$; $[OH^-]_e = 1.28 \cdot 10^{-12} \text{ mol/dm}^3$; b) $\alpha = 3.92 \%$; c) pH = 2.11; d) $[C_6H_5COOH]_0 = 0.965 \text{ mol/dm}^3$.

Datos	Cifras significativas: 3
Concentración de ácido láctico	$[C_3H_6O_3]_0 = 0,200 \text{ mol/dm}^3$
Constante de acidez do ácido láctico	$K_{\rm a}({\rm C_3H_6O_3}) = 3{,}20{\cdot}10^{-4}$
Constante de acidez do ácido benzoico	$K_{\rm a}({\rm C_7H_6O_2}) = 6.42 \cdot 10^{-5}$
Incógnitas	
pH da disolución de ácido láctico	рН
Grao de ionización do ácido láctico	α
Concentración da disolución de ácido benzoico do mesmo pH	[C ₆ H ₅ COOH]

Outros símbolos

Concentración (mol/dm³) de ácido débil que se ioniza xCantidade de substancia ionizada n_i Cantidade inicial n_0 Concentración da substancia X [X]

Concentración inicial de ácido benzoico

Ecuacións

Constante de acidez dun ácido monoprótico: $K_{a} = \frac{[A^{-}]_{e} \cdot [H^{+}]_{e}}{[HA]_{e}}$ pH pDH $pOH = -log[OH^{-}]$ $\alpha = \frac{n_{i}}{n_{0}} = \frac{[s]_{i}}{[s]_{0}}$

Solución:

a) O ácido láctico é un ácido débil. Escríbese a reacción da súa ionización.

$$CH_3CH(OH)COOH(aq) \rightleftharpoons H^+(aq) + CH_3CH(OH)COO^-(aq)$$

 c_0

Chámase x á concentración de ácido láctico que se ioniza. Da estequiometría da reacción dedúcese que a concentración de ácido láctico ionizado [CH₃CH(OH)COOH]_i é a mesma (x) que a dos ións hidróxeno [H⁺] e a dos ións lactato [CH₃CH(OH)COO⁻] producidos.

A concentración de ácido láctico no equilibrio obtense restando a concentración que se disociou da concentración inicial.

$$[CH_3CH(OH)COOH]_e = [CH_3CH(OH)COOH]_0 - [CH_3CH(OH)COOH]_i = 0,200 - x$$

Créase unha táboa que mostra as concentracións de cada especie nas distintas fases:

		CH₃CH(OH)COOH	=	H ⁺	CH ₃ CH(OH)COO	
$[X]_0$	Concentración inicial	0,200		0	0	mol/dm³
[X] _i	Concentración ionizada ou formada	x	\rightarrow	х	x	mol/dm³
[X] _e	Concentración no equilibrio	0,200 - x		x	X	mol/dm³

Emprégase a expresión da constante de acidez e substitúense nela os símbolos polos valores ou expresións das concentracións no equilibrio

$$K_{a} = \frac{[\text{CH}_{3} - \text{CH}(\text{OH}) - \text{COO}^{-}]_{e} \cdot [\text{H}^{+}]_{e}}{[\text{CH}_{3} - \text{CH}(\text{OH}) - \text{COOH}]_{e}} \Rightarrow 3,20 \cdot 10^{-4} = \frac{x \cdot x}{0,200 - x}$$

Suponse, en primeira aproximación, que x é desprezable fronte a 0,200. A ecuación redúcese a:

$$x \approx \sqrt{0.200 \cdot 3.20 \cdot 10^{-4}} = 0.00800 \text{ mol/dm}^3$$

Calcúlase o grao de ionización:

$$\alpha = \frac{[s]_{i}}{[s]_{0}} = \frac{0,00800 \text{ mol/dm}^{3}}{0,200 \text{ mol/dm}^{3}} = 0,040 \oplus 4,00 \%$$

Un valor inferior ao 5% considérase desprezable, polo que esta solución é aceptable. Ao ser superior ao 1%, o número de cifras significativas redúcese a dúas. Calcúlase o pH:

$$pH = -log[H^+] = -log(0,0080) = 2,10$$

b) A disolución de ácido benzoico que ten o mesmo pH terá a mesma concentración de ión hidróxeno, e tamén de ión benzoato, por ser un ácido monoprótico.

$$C_6H_5COOH(aq) \rightleftharpoons H^+(aq) + C_6H_5COO^-(aq)$$

 $[C_6H_5COO^-]_e = [H^+]_e = 0,0080 \text{ mol/dm}^3$

Chámase c_0 á concentración inicial de ácido benzoico e a x á concentración de ácido benzoico que se ioniza, e Créase unha táboa que mostra as concentracións de cada especie nas distintas fases:

		C ₆ H ₅ COOH	\rightleftharpoons	H⁺	C ₆ H ₅ COO⁻	
[X] ₀	Concentración inicial	c_{0}		0	0	mol/dm³
[X] _i	Concentración ionizada ou formada	x	\rightarrow	х	х	mol/dm³
[X] _e	Concentración no equilibrio	$c_0 - x$		0,0080	0,0080	mol/dm³

Dedúcese que:

$$x = 0.0080 \text{ mol/dm}^3$$

Escríbese a expresión da constante de acidez do ácido benzoico cos datos das concentracións no equilibrio:

$$K_{a} = \frac{\left[C_{6} H_{5} COO^{-}\right]_{e} \cdot \left[H^{+}\right]_{e}}{\left[C_{6} H_{5} COOH\right]_{e}} \Rightarrow 6,42 \cdot 10^{-5} = \frac{0,008 \ 00,008 \ 0}{c_{0} - 0,008 \ 0}$$

Calcúlase a concentración inicial de ácido benzoico:

$$[C_6H_5COOH]_0 = c_0 = \frac{0,008 \ 00,008 \ 0}{6,42 \cdot 10^{-5}} + 0,008 \ C = 1,0 \ \text{mol/dm}^3$$

Análise: O resultado ten sentido, porque como o ácido benzoico é máis débil que o ácido láctico (K_a (C_6H_5 CO-OH) = $6,42\cdot10^{-5}$ < $3,2\cdot10^{-4}$ = K_a (CH₃CH(OH)COOH)), a súa concentración ten que ser maior que $0,200 \text{ mol/dm}^3$ para dar o mesmo pH.

A maior parte das respostas pode calcularse coa folla de cálculo <u>Quimica (gal)</u> DATOS:

RESULTADOS: As concentracións, o grao de disociación e o pH aparecen na táboa:

Concentración	$C_3H_6O_3$ +	$H_2O \rightleftharpoons$	$C_3H_5O_3^- +$	H ₃ O ⁺	
inicial:	0,200				mol/dm^3
en equilibrio:	0,192		0,00784	0,00784	mol/dm^3
			[OH ⁻] =	= 1,28·10 ⁻¹²	² mol/dm ³
pH = 2,11	Grao de di	sociación	$\alpha =$	3,92 %	
pOH = 11,89					

Para resolver o apartado d) anote o valor do pH, borre os datos facendo clic no botón Borrar datos, e escriba os novos datos.

	Ácido	Base conxugada
Fórmula:	HC₀H₅COO	C ₆ H ₅ COO ⁻

Constante
$$K_a = 6,42 \cdot 10^{-5}$$
 de acidez $pH = 2,11$

Obterá o resultado:

Concentración
$$HC_6H_5COO + H_2O \rightleftharpoons C_6H_5COO^- + H_3O^+$$
 inicial: 0,946 mol/dm³

O resultado é diferente polo número de cifras significativas do primeiro cálculo. Se tivese elixido 4 cifras, o pH houbese sido 2,106. Con ese dato a concentración inicial sería 0,964 mol/dm³.

Mesturas ácido base

- 1. Calcula:
 - a) O pH dunha disolución de hidróxido de sodio de concentración 0,010 mol/dm³.
 - b) O pH dunha disolución de ácido clorhídrico de concentración 0,020 mol/dm³.
 - c) O pH da disolución obtida ao mesturar 100 cm³ da disolución de hidróxido de sodio de concentración 0,010 mol/dm³ con 25 cm³ da disolución de ácido clorhídrico de concentración 0,020 mol/dm³.

Dato: $K_{w} = 1,0 \cdot 10^{-14}$. (A.B.A.U. xuño 18)

Rta.: a) pH = 12; b) pH = 1,7; c) pH = 11,6.

Datos	Cifras significativas: 3
Concentración da disolución de NaOH	$[NaOH] = 0,0100 \text{ mol/dm}^3$
Volume que se mestura da disolución de NaOH	$V_{\rm b} = 100 \text{ cm}^3 = 0,100 \text{ dm}^3$
Concentración da disolución de HCl	[HCl] = 0.0200 mol/dm^3
Volume que se mestura da disolución de HCl	$V_{\rm a}$ = 25,0 cm ³ = 25,0·10 ⁻³ dm ³
Incógnitas	
pH da disolución de NaOH	pH_b
pH da disolución de HCl	$pH_{\mathtt{a}}$
pH da mestura	pH_3
Ecuacións	

pH	$pH = -log[H^+]$
рОН	$pOH = -log[OH^{-}]$

Produto iónico da auga $K_{\rm w} = [{\rm H^+}]_{\rm e} \cdot [{\rm OH^-}]_{\rm e} = 1,00 \cdot 10^{-14}$ $pK_{\rm w} = p{\rm H} + p{\rm OH} = 14,00$

Solución:

a) O hidróxido de sodio é unha base forte que se ioniza totalmente:

$$NaOH(aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)$$

O pOH da disolución de NaOH valerá:

$$pOH = -log[OH^{-}] = -log[NaOH] = -log(0,0100) = 2,000$$

(O número de díxitos na mantisa do logaritmo debe ser igual ao número de cifras significativas). Por tanto o seu pH será:

$$pH = 14,000 - pOH = 14,000 - 2,000 = 12,000$$

b) O ácido clorhídrico é un ácido forte que se ioniza totalmente:

$$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$$

O pH da disolución de HCl valerá:

$$pH = -log[H^+] = -log[HCl] = -log(0,0200) = 1,700$$

c) Estúdase a reacción entre o HCl e o NaOH para ver que reactivo está en exceso,

En 25 cm³ da disolución de HCl hai: $n=0.0250~\rm dm^3\cdot 0.0200~\rm mol/dm^3=5.00\cdot 10^{-4}~\rm mol~HCl$ En 100 cm³ da disolución de NaOH hai: $n'=0.100~\rm dm^3\cdot 0.0100~\rm mol/dm^3=1.00\cdot 10^{-3}~\rm mol~NaOH$ Supoñendo volumes aditivos:

		HCl	NaOH	\rightarrow	Na⁺	Cl-	H ₂ O	
n_0	Cantidade inicial	5,00.10-4	1,00.10-3		0	0		mol
$n_{\rm r}$	Cantidade que reacciona ou se forma	5,00.10-4	5,00.10-4		5,00.10-4	5,00.10-4	5,00.10-4	mol
$n_{ m f}$	Cantidade ao final da reacción	0	5,0.10-4		5,00.10-4	5,00.10-4		mol

A concentración final de hidróxido de sodio é:

[NaOH] =
$$5.0 \cdot 10^{-4}$$
 mol NaOH / 0.125 dm³ D = $4.0 \cdot 10^{-3}$ mol/dm³

O pOH da disolución final valerá:

$$pOH = -log[OH^{-}] = -log[NaOH] = -log(4,0\cdot10^{-3}) = 2,40$$

Por tanto o seu pH será:

$$pH = 14,00 - pOH = 14,00 - 2,40 = 11,60$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>Quimica (gal)</u>. As instrucións para o manexo desta folla de cálculo poden verse na ligazón <u>instrucións</u>. Para ir á folla onde resolver un problema de Termoquímica, pode elixir unha destas opcións:

- Vaia ao índice, buscando a ligazón <u>Indice</u> na zona superior dereita e pulsando a tecla [Ctrl] mentres preme sobre <u>Indice</u>. No índice, pulse a tecla [Ctrl] mentres preme sobre a cela <u>Estequiometría: cálculos en reaccións químicas</u> de **Cálculos elementais**.

Escriba as fórmulas químicas nas celas de cor branca con bordo verde e os datos nas celas de cor branca con bordo azul. Prema nas celas de cor laranxa para elixir entre as opcións que se presentan. DATOS:

D111	co.								
				Reactivos \rightarrow			Produ	utos	
	NaOH		HCl		NaCl		H ₂ O		
	'		•						
	Calcular:	a)	рН	disolución	NaOH				
		b)	рН	disolución	HCl				
		c)	рН	mestura		−			
que	se precisa		para reaccio	nar con			,		
	100)	cm ³	disolución	NaOH		[NaOH] =	0,01	mol/dm³
	25	5	cm ³	disolución	HCl		[HCl] =	0,02	mol/dm³
RESU	ULTADOS:						,		
	NaC	DΗ	+]	HCl		\rightarrow	NaCl	+	H_2O
	mol 5,00·	10-	5,0	$00 \cdot 10^{-4}$			$5,00 \cdot 10^{-4}$		$5,00\cdot 10^{-4}$
				a)		pH =	12,0]	NaOH	
				b)		pH =	1,70]	HCl	
				c)		pH =	11,6		

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 30/09/24

Sumario

ÁCIDO BASE

Diso	ciación ácido/base débil	. 1
1.	Disólvense 20 cm³ de $NH_3(g)$, medidos a 10 °C e 2 atm (202,6 kPa) de presión, nunha cantidade de auga suficiente para alcanzar 172 cm³ de disolución. A disolución está ionizada nun 4,2 %. Escribe	a
	reacción de disociación	1
	a) Calcula a concentración molar de cada unha das especies existentes na disolución unha vez al- canzado o equilibrio	
	b) Calcula o pH	
	c) Calcula a K _b do amoníaco	
	d) Calcula a K _a do seu ácido conxugado	
2.	Para unha disolución acuosa de concentración 0,200 mol/dm³ de ácido láctico (ácido 2-hidroxipro-	
	panoico), calcula:	
	a) A concentración de todas as especies presentes na disolución	
	b) O grao de ionización do ácido en disolución	• • •
	c) O pH da disolución	•••
	d) Que concentración debería ter unha disolución de ácido benzoico (C₅H₅COOH) para que tivese o mesmo pH?	
Mest	uras ácido base	
	Calcula:	
	a) O pH dunha disolución de hidróxido de sodio de concentración 0,010 mol/dm³	
	b) O pH dunha disolución de ácido clorhídrico de concentración 0,020 mol/dm³	
	c) O pH da disolución obtida ao mesturar 100 cm³ da disolución de hidróxido de sodio de concen-	
	tración 0,010 mol/dm³ con 25 cm³ da disolución de ácido clorhídrico de concentración	
	0,020 mol/dm ³	