XII: Substances, Phase Changes and Ideal Gases

1: Substances

1.1: Pure Substance

- A pure substance has a fixed chemical composition.
- A homogeneous mixture qualifies

1.2: Phases of Pure Substance

- Possible to have different molecular structure in the same phase, such as **graphite or diamond**.
- Molecules in a **solid** are kept in place by strong intermolecular forces.
- Weaker intermolecular force in a **liquid**.
- Molecules in a gas are further apart and move about at radom.

- Phase equilibrium:
 - · A system involves two phases and when the mass of each phase reached an equilibrium level asn stays on.
- State postulate
 - The state postulate for a simple, pure substance states that the equilibrium state can be determined by specifying any two independent intensive properties.

2: Phases of Changes

2.1: Phase-Change Processes

• Example-Water:

Compressed liquid \Rightarrow Saturated Liquid (About to vaporise) \Rightarrow Saturated liquid-vapour mixture \Rightarrow Saturated Vapour \Rightarrow Superheated vapour

2.2: Saturation Temperature and Saturation Pressure

- The temperature at which change occurs depends on the pressure.
- Saturation temperature T_{sat}
 - Temperature at which a substance changes phase at a given pressure.
- Saturation pressure p_{sat}
 - o Pressure at which a substance changes phase at given temperature.

•

2.3: Latent and Sensible Heat

Latent heat:

- Energy absorbed or released during a phase-change process:
- $\circ \ Q = m \lambda$
- $\circ \;\; \lambda$ is specific latent heat

Sensible heat

- $\circ\;$ Energy transferred in single phase resulting in temperature change.
- $\circ \ Q = mc\Delta T$
- $\circ \ c$ is specific heat capacity.

2.4: Property diagrams fro phase-change processes

• T-v or P-v diagram could be helpful.

V

3: Ideal Gases

3.1: Equation of State

- An equation of state(EOS) is any equation that relates the pressure, temperature and volume of substance.
- The simplest EOS is the ideal-gas equation of state.
- Boyle's Law:
 - $\circ~$ p $\propto v^{-1}$ at constant T
- · Charles's Law:
 - \circ v $\propto T$ at constant p.
- Gay-Lussac's Law:
 - \circ p $\propto T$ at constant V.
- Avogadro's Law:
 - 1 mol all gases at same T and P occupy same volume.

- $\circ~$ The volume of 1 mol of a gas is $V=24.5*10^{-3}~{
 m L}$
- \circ Avogadro's constant: $n_A=6.022 imes 10^{23}$ particles/mol
- \circ Molar mass: $m=n\widetilde{m}$
- Ideal gas law:
 - $\circ pV = nR_0T$
 - $\circ \ R_0 = 8.314$ kJ/kmol K (Universal gas constant)
 - $\circ \ \ R = rac{R_0}{\widetilde{m}}$, Special gas constant

3.2: Real gases: other equations of state

$$(p+rac{a}{V^2})(V-b)=mRT$$

4: Mixtures of Ideal Gases

4.1: Mole and Mass Fraction

- There is a mixture of ideal gases with a number of components(i=i...n)
- ullet Mass m of mixture = sum of masses m_i of components: $m=\Sigma_i m_i$
- Amount of substance n of mixture = sum of n_i of components: $n=\Sigma_i n_i$
- Mass (gravimetric or ultimate) fraction Y_i and mole X_i fraction:
 - \circ mass fraction: $Y_i = \frac{m_i}{m}$
 - \circ mole fraction: $X_i = rac{n_i}{n}$

4.2: Molar Mass

$$\widetilde{m_{mix}} = rac{m}{n} = rac{\Sigma_i m_i}{n} = \Sigma X_i \widetilde{m_i}$$

4.3: Specific Heat Capacity

• It is the sum of the **heat capacities** of the components:

$$m_{mix}c_{mix}=\Sigma_i m_i c_i$$

$$c_{mix} = \Sigma_i rac{m_1}{m_{mix}} c_i$$

$$c_{mix} = \Sigma_i Y_i c_i$$

4.4: Partial Pressure

- ullet Define partial pressure using mole fraction: $p_i=X_ip$
- Total pressure is the sum of partial pressures: $p=\Sigma p_i$
- This is known as **Dalton's Law** fro am ideal gas.

4.5: Partial Volume

- $V_i = X_i V$
- $V = \Sigma V_i$
- This is Amagat's Law for a ideal gas.