

Processamento e Análise de Sinais Acústicos em Cenários Urbanos com ConvNets: Teoria e Prática

Deborah Magalhães, Flávio Araújo, Jederson Luz, Myllena Caetano, Fátima Medeiros

Agenda

- 1. Introdução
- 2. Aquisição dos áudios
- **3.** Pré-processamento
- **4.** Extração de características
- **5.** Classificação de áudios
- 6. Validação

Olá!

Esse minicurso foi desenvolvido em uma parceria entre o laboratório Pavic da Universidade Federal do Piauí e o laboratório LabVis da Universidade Federal do Ceará.

Onde nos encontrar:

- http://www.gpi.ufc.br/
- https://github.com/deborahvm/AudioProcessing

1.
Introdução

A China apresentou um crescimento de 40% no número de habitantes urbanos nos últimos 50 anos

Em 2018, cerca de 55,3% da população mundial vivia em espaços urbanos, esse número chegou a 80% quando tratamos da Europa e América do Norte

Até 2030, as áreas urbanas devem abrigar 60% das pessoas em todo o mundo.

O aumento da densidade populacional traz consigo diversos desafios

Aumento dos congestionamentos

Saúde

Aumento da poluição do ar e sonora, aumento do esgoto e lixo sólido

Segurança

Aumento da criminalidade

Cidades Inteligentes

As cidades inteligentes oferecem melhores serviços e infraestrutura aos cidadãos

Urban IoT + **Cidades Inteligentes** ajudam a transpor os desafios gerados pela urbanização

Mobilidade

Gerenciamento do tráfego, estacionamento e paradas de ônibus inteligentes

Saúde

Assistência de idosos, gerenciamento da poluição do ar e sonora

Segurança

Vigilância e manutenção de espaços públicos e ações antiterroristas

Monitoramento Acústico

O som é uma importante fonte de informação a respeito da vida urbana

Microfone como dispositivo de monitoramento

PROJETO SONYC

Desafios do monitoramento acústico

Objetivo

Apresentar os passos para realizar a classificação automática de eventos sonoros urbanos:

- Pré-processamento dos áudios
- Aprendizagem de características

2. Classificação de eventos sonoros urbanos

Classificação de eventos Sonoros

Extrair informação útil do sinal de áudio para discriminar da melhor forma possível diferentes classes sonoras

Identificar o evento sonoro em meio a uma cena sonora

Metodologia

1. Aquisição dos dados

1. Aquisição dos dados

UrbanSound8K

- 8732 áudios com rótulos [0-4s], distribuídos em 10 pastas com classes misturadas
- Formato WAV (diferentes taxas de amostragem e quantização)
- 10 classes sonoras desbalanceadas

1. Aquisição dos dados

Ar condicionado

1000 amostras

Buzina de carro

429 amostras

Crianças brincando

1000 amostras

Motor de veículo

1000 amostras

Latido de cachorro

1000 amostras

1. Aquisição dos dados

Furadeira

1000 amostras

Tiro

374 amostras

Britadeira

1000 amostras

Música de rua

1000 amostras

Sirene

929 amostras

2. Préprocessamento dos áudios

2. Préprocessamento dos áudios

2.1. Aumento dos dados

Aplicar alterações no conjunto de **treinamento** a fim de :

- Aumentar o número de amostras
- Balancear as classes

Tipos de alterações aplicadas

- Variações no tom: {1, 1.5,2,2.5,3,3.5}
- Ruído de fundo: trabalhadores na rua, tráfego de rua, e pessoas na rua

2.1. Aumento dos dados

- 1. Realizar a divisão treino e teste do conjunto de dados: 80/20 (pastas 1 e 2)
- 2. Gerar os arquivos de notação JAMS
- 3. Aplicar as alterações nos áudios

2.1. Aumento dos dados

Exemplos de saída dos áudios transformados:

Variação do tom:

Motor de Veículo

Original / 3 semitons

Crianças brincando

Original / 3 semitons

Ruído de fundo:

Motor de Veículo

Original / cidade

Crianças Brincando

Original / cidade

2.2. Uniformização dos dados

Etapa aplicada ao conjunto de treino e teste:

- Re-amostragem: 44 kHz
- Quantização: 16 bits

2.3. Representação do Sinal

2.3. Representação do Sinal

2.3. Representação do Sinal

3. Extração de Características

3. Aprendizado de Características

O que é uma imagem?

Colorida: União de 3 imagens nível de cinza.

Nível de cinza: composta por níveis de cinza que variam de 0 (preto) a 255

Binária: composta por duas cores, o preto (0) e o branco (1).

Processo de aprendizagem

Dados os grupos abaixo

A qual grupo esse objeto pertence?

Processo de aprendizagem

Dados os grupos abaixo

A qual grupo esse objeto pertence?

Processo de aprendizagem

Dados os grupos abaixo

A qual grupo esse objeto pertence?

(b)

Processo de aprendizagem

Dados os grupos abaixo

A qual grupo esse objeto pertence?

Processo de aprendizagem

- Certamente, sua decisão foi tomada com base no grau de similaridade entre o objeto desconhecido e os grupos conhecidos:
 - Conhecidos como características, atributos ou features.

- A extração de features requer:
 - Conhecimento do domínio do problema;
 - Algumas vezes os problemas são bem específicos;
 - Em aplicações industriais isso representa 90% do tempo.

Métodos tradicionais X Deep learning

TRADITIONAL APPROACH

The traditional approach uses fixed feature extractors.

DEEP LEARNING APPROACH

Deep Learning approach uses trainable feature extractors.

O que é deep learning?

- Múltiplas definições, porém todas possuem em comum:
 - Múltiplas camadas de unidades de processamento;
 - As camadas formam uma hierarquia de features low-level para high-level.

O que é deep learning?

 Em 1998 Yann LeCun e seus colaboradores desenvolveram uma rede para reconhecimento de dígitos manuais:

LeNet

Camada convolucional

Mapa de ativação

Camada de pooling

Camada de pooling

Camada totalmente conectada

Treinando a CNN

 Passo 1: todos os filtros e pesos da rede são inicializados de forma aleatória;

 Passo 2: a rede recebe uma amostra de treino como entrada e realiza o processo de propagação, com isso são obtidos os valores de probabilidade da entrada pertencer a cada classe;

Treinando a CNN

Passo 3: é calculado o erro total obtido na camada de saída;

 Passo 4: o algoritmo do backpropagation é utilizado para calcular os valores do gradiente do erro, em seguida os valores dos filtros e pesos são ajustados na proporção que eles contribuíram no erro total;

Treinando a CNN

 Passo 5: os passos 2-4 são repetidos para todas as amostras do conjunto de treinamento;

 Devido ao ajuste realizado no passo 4, o erro obtido pela rede é menor a cada vez que uma mesma amostra passa pela rede.
 Essa redução no erro significa que a rede está aprendendo a classificar corretamente as amostras do treinamento;

 Caso o conjunto de treinamento seja abundante e variado o suficiente, a rede apresentará capacidade de generalização e conseguirá classificar corretamente novas amostras que não estavam presentes no processo de treinamento.

4. Classificação

Aprendizado de máquina

Paradigmas do aprendizado de máquina

Random forest

5. Validação

Divisão treino/teste

Cross-validation

Cross-Validation

Matriz de confusão

Ar condicionado	Buzina de carro	Crianças brincando	Latido de cachorro	Furadeira	Motor de veículo	Tiro	Britadeira	Sirene	Música de rua
79	0	3	1	7	14	0	0	0	6
0	31	0	0	3	0	0	0	2	2
29	0	178	13	9	9	0	1	15	11
3	0	6	116	4	7	0	0	0.8	0
3	1	0	0	103	0	1	3	0	5
56	0	0	2	0	134	0	105	3	0
1	0	1	0	1	26	23	0	1	0
19	0	0	0	18	0	0	82	0	4
0	0	3	4	4	4	0	21	147	7
9	0	9	1	8	1	0	2	1	165

Muito Obrigado!

Se você tiver qualquer dúvida ou sugestão a respeito desse minicurso, por favor fale conosco:

- deborah.vm@ufpi.edu.br
- flavio86@ufpi.edu.br

