Molekylær modellering av oppsprekking i gasshydrater

Henrik Andersen Sveinsson

Fysisk institutt
Det matematisk-naturvitenskapelige fakultet
Universitetet i Oslo

8. mai 2015

1 Introduksjon og Bakgrunn

2 Modellering og simulering (med resultater)

3 Oppsummering

Oversikt

1 Introduksjon og Bakgrunn

2 Modellering og simulering (med resultater)

3 Oppsummering

Hva skjer i masteren min?

Jeg kombinerer 3 ting som ikke er så vanlig å kombinere:

Hva er gasshydrater?

- Et isliknende stoff som inneholder molekyler av stoffer som opptrer som gasser under vanlige forhold.
- Vanligvis mener man metanhydrater når man sier gasshydrater.

Bruksområder

- Energi (brenne metan)
- CO₂-lagring

Det ligger masse gasshydrater i havet, men sannsynligvis ikke så mye som man ofte blir fortalt..

Figur: The World Ocean Review, Marine Resources - Opportunities and Risks, 2014

Det ligger masse gasshydrater i havet, men sannsynligvis ikke så mye som man ofte blir fortalt..

Kartet viser ca 500 gigatonn med karbon lagret i gasshydrater. Det er mye. Vanlige estimater ligger mellom 500 og 2500 gigatonn. Høye estimater er $\sim 10~000$ gigatonn. Det 120 gigatonn karbon i kjente naturgassreservoarer.

Det ligger masse gasshydrater i havet, men sannsynligvis ikke så mye som man ofte blir fortalt..

Risiko

Operasjonell

■ Tette rør

Geologisk

- Sedimentskred
- the clathrate gun hypothesis

Overordnet mål: Utvinne metan fra gasshydrater, og lagre CO₂

FIG. 2

Hva lurer vi på akkurat nå?

Hvordan sprekker i gasshydrater bidrar til å oppløse hydratet.

Materialegenskaper

- Hva er bruddstyrken?
- Er gasshydratet spøtt eller duktilt?
- Hvor mye metan frigjøres ved oppsprekking?
- Hva er bruddmekanismen?

Simuleringsteknisk

- Hvilke interaksjonspotensialer er best?
- Hvordan bør man utløse sprekker?

Oversikt

1 Introduksjon og Bakgrunn

2 Modellering og simulering (med resultater)

3 Oppsummering

Molekylærdynamikk: Tidsutvikle et system av punktpartikler som styres av Newtons 2. lov, ${\bf F}=m\ddot{\bf r}$

Molekylærdynamikk: Tidsutvikle et system av punktpartikler som styres av Newtons 2. lov, $\mathbf{F} = m\ddot{\mathbf{r}}$

Molekylærdynamikk: Tidsutvikle et system av punktpartikler som styres av Newtons 2. lov, ${\bf F}=m\ddot{\bf r}$

Molekylærdynamikk: Tidsutvikle et system av punktpartikler som styres av Newtons 2. lov, ${\bf F}=m\ddot{\bf r}$

Lennard-Jonespotensialet

$$U = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Coulomb-potensialet

$$U = k \frac{q_a q_b}{r}$$

Kraftberegning

$$\mathbf{F} = -\nabla U$$

- Lennard-Jones-sentrum
- Negativ ladning

TIP4P/ICE + UAM (vann og metan)

Simulert system for mekaniske egenskaper

Simulert system for mekaniske egenskaper

Simulert system for mekaniske egenskaper

Beregner Youngs modul og Poissonforholdet basert på de forrige figurene:

Youngs modul

$$E = \frac{\sigma_x l_0}{\Delta x} = \frac{\sigma_x}{\epsilon_x}$$

Poissonforholdet

$$\nu = -\frac{\Delta y}{\Delta x}$$

Mekaniske egenskaper

Youngs modul er omtrent 7.1 GPa.

Det ser bra ut. (Exp ≈ 7.8 GPa). Til sammenlikning: PMMA har ≈ 3 GPa.

Mekaniske egenskaper

Poissonforholdet er omtrent 0.4.

Det er litt mye. (Exp ≈ 0.32)

Hva skal til for at det sprekker opp?

Griffith og Irwins energibalanse

$$\mathcal{G} > \mathcal{G}_c \stackrel{\mathsf{sprøtt}}{=} 2\gamma_s$$

Dersom den *mekaniske* energien som frigjøres ved å åpne ny sprekkflate (\mathcal{G}) er større enn energien som kreves for å åpne sprekken (\mathcal{G}_c), vil sprekken vokse.

Bruddstyrken defineres vanligvis som den mekaniske energien som må tilføres med tensilt stress for å åpne sprekkareal. Tilført energi måles ved å integrere stresset over utvidelsen:

$$W = \int F \, \mathrm{d}x = l_x l_y \int_{l_0}^{l_0 + \Delta x} \sigma_x \, \mathrm{d}x \tag{1}$$

Hva var det vi lurte på?

0000000

- Bruddstyrke
- Bruddmekanisme
- Frigjort metan

Måling av arealet til sprekkoverflaten

Jeg bruker en Monte-Carlo-metode for å finne tilgjengelig overflate:

$$A_{ss} = 2V \frac{n_s}{L}$$

 $egin{array}{ll} A_{ss} & ext{overflatearealet} \ V & ext{volum av prøven} \ n_s & ext{antall krysninger vegg-tomrom} \ L & ext{total lengde av trukne linjestykker} \ \end{array}$

- Hver fargede strek er en sprekksimulering.
- Oppsprekking skjer først sakte, ved smelting, deretter fort, ved brudd.

Oversikt

1 Introduksjon og Bakgrunn

2 Modellering og simulering (med resultater)

3 Oppsummering