Počet koster K_n

VĚTA (Cayleyho formule):

 $\forall n \geq 2$: počet koster grafu K_n je n^{n-2} (tedy počet stromů na $\{1,\ldots,n\}$).

Příklad:

$$\begin{array}{l} n = 2 \colon {\stackrel{\bullet}{_1}} - {\stackrel{\bullet}{_2}} \\ 2^0 = 1 \text{ kostra.} \\ n = 3 \colon {\stackrel{\bullet}{_1}} - {\stackrel{\bullet}{_2}} - {\stackrel{\bullet}{_3}}, {\stackrel{\bullet}{_2}} - {\stackrel{\bullet}{_1}} - {\stackrel{\bullet}{_3}}, {\stackrel{\bullet}{_1}} - {\stackrel{\bullet}{_3}} - {\stackrel{\bullet}{_2}} \\ 3^1 = 3 \text{ kostry.} \end{array}$$

n=4: 12 koster typu housenka, 4 kostry typu vějíř.

DŮKAZ:

Slunce: Strom, v němž všechny hrany jsou zorientovány směrem od jediného vrcholu (středu slunce).

Pozorování 1:

Počet stromů na $\{1,\ldots,n\}$ je roven

$$\frac{\text{počtu sluncí na } \{1, \dots, n\}}{n}$$

DŮKAZ:

Každý strom odpovídá n sluncím (máme v každém stromu n možností volby středu). Q.E.D.

Sousluní: Orientovaný graf, kde každá komponenta je slunce.

Pozorování 2:

Po odstranění libovolných khran ze slunce dostaneme sousluní s $k\!+\!1$ komponentami (slunci).

DŮKAZ:

Zřejmý z obrázku. Vyhozením hrany ze slunce se slunce rozpadne na 2 další slunce. Q.E.D.

Pozorování 3:

Přidáním orientované hrany do sousluní dostaneme opěr sousluní, právě když přidaná hrana vede do středu libovolné jiné komponenty (slunce).

DŮKAZ:

Z obrázku.

Důkaz věty:

Z grafu izolovaných vrcholů $1, \ldots, n$ dostaneme slunce na $\{1, \ldots, n\}$ postupným přidáváním n-1 orientovaných hran právě, když přidaná hrana vždy vede z libovolného vrcholu do středu jiné komponenty.

Máme n(n-1) možností volby první hrany. Možností volby druhé hrany máme n(n-2). Pro třetí hranu máme n(n-3) možností. ... Pro (n-1). hranu máme $n \cdot 1$ možností.

Celkem máme $n^{n-1}(n-1)!$ možností, jak zvolit 1. až (n-1). hranu. Každé slunce dostaneme (n-1)!-krát. Sluncí tedy dostaneme n^{n-1} a stromů tak bude n^{n-2} . Q.E.D.

/L:1