TP1 Traitement du signal

IBRAHIM ALAME

18/03/2024

La transformation de Fourier discrète (TFD), outil mathématique, sert à traiter un signal numérique. Elle constitue un équivalent discret de la transformation de Fourier (continue) utilisée pour traiter un signal analogique :

Soit (s_n) un signal discret périodique de période N. Sa transformation (TFD) est un signal discret périodique de même période N défini par :

$$S_p = \frac{1}{N} \sum_{n=0}^{N-1} s_n e^{-2i\pi p \frac{n}{N}} \quad \text{pour} \quad p \in \mathbb{Z}$$

Sa transformation inverse est donnée par

$$s(n) = \sum_{p=0}^{N-1} S_p e^{2i\pi n \frac{p}{N}}$$
 pour $n \in \mathbb{Z}$

La transformation de Fourier rapide **fft** est un algorithme particulier de calcul de la transformation de Fourier discrète :

$$\mathbf{fft}(s)[p] = \sum_{n=0}^{N-1} s_n e^{-2i\pi p \frac{n}{N}} \quad \text{pour} \quad 0 \le p < N$$

Sa transformation inverse ifft est donnée par :

$$\mathbf{ifft}(S)[n] = \frac{1}{N} \sum_{p=0}^{N-1} S_p e^{2i\pi n \frac{p}{N}} \quad \text{pour} \quad 0 \le n < N$$

Nous avons alors

$$S = \frac{1}{N} \times \mathbf{fft}(s) \quad \text{ et } \quad s = N \times \mathbf{ifft}(S)$$

ou bien

$$N \times S = \mathbf{fft}(s)$$
 et $s = \mathbf{ifft}(N \times S)$

En python:

— La fonction fft(signal) du paquetage numpy.fft renvoie à un coefficient de normalisation $\frac{1}{N}$ près, la transformée de Fourier discrète d'un signal à une dimension éventuellement complexe. La fonction abs de numpy renvoie le module d'un tableau de complexes. Sa réciproque à un coefficient multiplicatif N près est la fonction ifft(signal) du même paquetage numpy.fft.

- La fonction fftfreq(N, d) de la bibliothèque numpy.fft renvoie un tableau contenant les fréquences associées à la transformée de Fourier pour un signal contenant N échantillons espacés d'un intervalle d(d est la période d'échantillonnage noté T_e).
- La fonction fftshift(X) de numpy.fft associe à la restriction $X_{/\llbracket 0,N-1\rrbracket}$ d'un signal Npériodique, la restriction $X_{/\llbracket -\frac{N}{2},\frac{N}{2}-1\rrbracket}$ du même signal X.

Transformation de Fourier discrète (TFD)

Soit $x = (x_n)$ un signal 4-périodique qui coïncide sur l'intervalle [0,3] avec la liste [1,1,0,1].

- 1. Tracer $x \sup [-10, 10]$
- 2. Calculer analytiquement puis avec python sa transformée de Fourier discrète X.
- 3. Calculer par la formule de la définition puis par python $\mathscr{F}^{-1}(X)$.
- 4. Tracer X sur un intervalle de fréquence convenable.
- 5. Soit $y = (y_n)$ un signal défini par $y_n = x_{n-1}$ pour tout $n \in \mathbb{Z}$. Calculer par trois méthodes le spectre $Y = \mathcal{F}(y)$ transformation de Fourier de y.
- 6. Tracer sur deux graphiques y et Y.

Transformation de Fourier

1. Calcul analytique : Soit x le signal continu défini par $x(t) = e^{-|t|}$. Montrer que la transformation de Fourier de x s'écrit pour $f \in \mathbb{R}$:

$$\hat{x}(f) = \frac{2}{1 + 4\pi^2 f^2}$$

2. Approximation par FFT de python : On approche le domaine d'intégration $]-\infty, +\infty[$ par l'intervalle $[-\frac{A}{2}, +\frac{A}{2}]$, où A est un réel positif assez grand :

$$\hat{x}(f) = \int_{-\infty}^{\infty} x(t)e^{-2i\pi ft} dt \simeq \int_{-\frac{A}{2}}^{\frac{A}{2}} x(t)e^{-2i\pi ft} dt$$

(a) On discrétise l'intervalle $\left[-\frac{A}{2},+\frac{A}{2}\right]$ en N+1 points $(t_n)_{n=-\frac{N}{2},\frac{N}{2}}$ régulièrement espacés avec un pas $T_e=\frac{A}{N}$, on a donc $t_n=nT_e$. On pose $x_n=x(t_n)$, montrer en utilisant une méthode d'intégration approchée que l'on a :

$$\hat{x}(f) \simeq T_e \sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} x_n e^{-2i\pi f n T_e}$$

(b) On pose $f_k = k \frac{1}{NT_e}$ et $\hat{x}_k = \hat{x}(f_k)$. Montrer que

$$\hat{x}_k = \frac{A}{N} \sum_{n=0}^{N-1} x_n e^{-2i\pi \frac{kn}{N}}, \quad k = 0, ..., N-1$$

Donc $\hat{x}_k \simeq A \times X_k$. La FFT décrit alors, à une constante près, la TF de x(t), notée $\hat{x}_k = \hat{x}(f_k)$ pour f_k entre $-\frac{1}{2T_e}$ et $\frac{1}{2T_e}$ par pas de $F_e = \frac{1}{NT_e}$ où N est le nombre de sous intervalles subdivisant $\left[-\frac{A}{2}, +\frac{A}{2}\right]$.

- (c) La fonction numpy.fft.fftfreq renvoie les fréquences du signal calculé dans la FFT. La liste f renvoyé contient les fréquences discrètes en Hz. Si le signal contient N pas de temps et que le pas de temps vaut Te:
 - si n est pair, $f = [0, 1, \ldots, \frac{n}{2} 1, -\frac{n}{2}, \ldots, -1] \times \frac{1}{N Te}$ si n est impair, $f = [0, 1, \ldots, \frac{n-1}{2}, -\frac{n-1}{2}, \ldots, -1] \times \frac{1}{N Te}$ Justifier l'algorithme suivant :

```
t=np.arange(-A,A,Te)
x=s(t)
xtilde = np.fft.fftshift(x)
Xtilde = np.fft.fft(xtilde)/N
ftilde = np.fft.fftfreq(N,Te)
plt.plot(ftilde,Xtilde)
```

(d) Soit X le spectre de x centré à l'origine (déshifté), et f l'intervalle des fréquences déshifté. tracer X en fonction de f et comparer avec le graphe précédent :

```
1  X = np.fft.ifftshift(Xtilde)
2  f = np.fft.ifftshift(ftilde)
3  plt.plot(f,X)
```

On prendra A = 5 et N = 64.

3. Décalage fréquentiel : Illustrer la propriété de décalage fréquentiel de la TF en représentant le module de la TF de $x(t) \times e^{i2\pi f_0 t}$. En déduire que la transformation de Fourier de $s: t \mapsto e^{-|t|} \cos(2\pi t)$ est donnée par :

$$\hat{s}: f \mapsto \frac{1}{1 + 4\pi^2(f-1)^2} + \frac{1}{1 + 4\pi^2(f+1)^2}$$

Tracer \hat{x} et \hat{s} sur l'intervalle [-3,3]. Comparer graphiquement avec la transformée de Fourier rapide obtenue à l'aide de fft.

Signal périodique

Considérer le signal x suivant :

$$t \mapsto x(t) = 2\cos(4\pi t) + 3\cos(8\pi t)$$

- 1. Quelle est sa période que l'on note T?
- 2. Écrire le signal x(t) sous forme exponentielle (formule d'Euler!). En déduire les coefficients de Fourier de x(t).
- 3. On définit $\tilde{x}: n \mapsto \tilde{x}[n] = x(t_n)$ le signal en temps discret résultant de l'échantillonnage de x à la fréquence $f_e = 8$ Hz. Quel est le pas de discrétisation correspondant à une telle fréquence?
- 4. Calculer le nombre d'échantillons N sur une période en fonction de T et f_e .
- 5. Dessiner sur le même graphique la fonction x(t) sur l'intervalle [0,T] et le signal précédent $\tilde{x}[n]$ tronqué à N échantillons correspondant aux temps t_n , n=0,...,N-1. On utilisera les deux fonctions python : plot et stem de la bibliothèque matplotlib.pyplot.

- 6. Calculer et tracer la transformée de Fourier discrète (TFD) du signal évalué aux temps t_n , n=0,...,N-1. Comparer avec le spectre de la question 2.
- 7. Refaire les questions 4 et 5 pour $fe=10,12,20,\dots$