TUTORIAL: GROUP ACTIONS ON CATEGORIES

SAM RASKIN

Contents

1.	Strong and weak actions	1
2.	Examples	1
3.	Invariants and coinvariants	2
4.	The averaging functor	2

1. Strong and weak actions

Let G be an affine algebraic group. There are two versions of G acting on C. For $C \in \mathrm{DGCat}$: weak and strong.

An action of D(G) on \mathcal{C} is a "strong action." This is the categorical analogue of $G(\mathbb{F}_q)$ acting on a vector space V.

An action of QCoh(G) on C is a "weak action." There is no classical analogue of this notion.

Remark 1.1. There is a monoidal (with respect to convolution) functor Ind: $QCoh(G) \rightarrow D(G)$. This induces a restriction functor from strong G-actions to weak G-actions.

2. Examples

The main constructions involving group actions on categories are taking the invariants or coinvariants. For G acting strongly on \mathcal{C} , we write \mathcal{C}^G , \mathcal{C}_G for invariant and coinvariants. Write $\mathcal{C}^{G,w}$ and $\mathcal{C}_{G,w}$ for weak invariants and co-invariants.

Example 2.1. If G acts on X, then G acts weakly on $\mathcal{C} := \operatorname{QCoh}(X)$ or $\mathcal{C} := \operatorname{IndCoh}(X)$. Then $\mathcal{C}^{G,w} = \operatorname{QCoh}(X/G)$ (resp. $\operatorname{IndCoh}(X/G)$) where X/G is the stack quotient.

Example 2.2. In geometric terms, if Y is a prestack then G acts QCoh(Y) "if and only if" (i.e. morally) \hat{G}_e acts trivially on Y. If G acts on X then G_{dR} acts on X_{dR} , which is tautologically equivalent to G acting strongly on $QCoh(X_{dR})$.

Example 2.3. We have $D(X)^G = D(X/G) = D_G(X)$, the Bernstein-Lunts equivariant derived category.

On the other hand, $D(X)^{G,w}$ is the category of weakly equivariant D-modules on X. Note that D_X is weakly equivariant but not strongly so.

Example 2.4. A group G acts strongly on D(G) on both sides. Therefore, G acts strongly $D(G)^{G,w} \cong \mathfrak{g}\text{-mod}$. This has no classical incarnation.

Date: January 15, 2018. Notes by Tony Feng. SAM RASKIN

3. Invariants and coinvariants

So what is the definition of invariants? Usually if G acts on V, the space of invariants is the equalizer of the diagram

$$V \rightrightarrows V \otimes \operatorname{Fun}(G) = \{G \to V\}$$

where the two maps are the constant and coaction maps. In the categorical situation, there are two functors

$$\mathcal{C} \rightrightarrows \mathcal{C} \otimes D(G)$$
.

In fact that there is a cosimplicial diagram

$$\mathcal{C} \rightrightarrows \mathcal{C} \otimes D(G) \not\rightrightarrows \dots$$

whose limit is, by definition, C^G .

2

Example 3.1. For $\mathcal{C} = D(X)$. Since D(-) sends products to tensor products, we have

$$D(X)^G := \lim (D(X) \rightrightarrows D(X \times G) \rightrightarrows ...)$$
.

Exercise 3.2. For X = pt, consider the trivial D-module $k \in D(pt)^G$. Show that

$$\operatorname{End}_{D(\operatorname{pt})^G}(k) = H_G^*(\operatorname{pt}).$$

Remark 3.3. What is the difference between D-modules and constructible sheaves? Anything making reference to the Lie algebra $\mathfrak g$ or weak actions is illegal. Also, the category of sheaves on X needs to remembered along with the category of sheaves on $X \times Y$ for any Y: unlike for D-modules, the category of sheaves on $X \times Y$ cannot be recovered from that on X.

There are adjoint factors

triv:
$$\mathrm{DGCat}_{\mathrm{cont}} \stackrel{\longrightarrow}{=} \mathbf{G}\text{-mod} : \mathcal{C} \mapsto \mathcal{C}^G$$
.

This is essentially for formal reasons.

The *coinvariants* of G acting on \mathcal{C} are $\mathcal{C}_G := \mathcal{C} \otimes_{D(G)}$ Vect where G acts trivially on Vect. This means that

$$\operatorname{colim}(\ldots D(G)\otimes \mathcal{C}\otimes \mathcal{C} \stackrel{\Longrightarrow}{\Rightarrow} D(G)\otimes \mathcal{C} \stackrel{\Longrightarrow}{\Rightarrow} \mathcal{C}) =: \mathcal{C}_G.$$

This is left adjoint to triv, again for formal reasons.

4. The averaging functor

Theorem 4.1 (Gaitsgory). (1) There is a forgetful functor Obly: $\mathcal{C} \to \mathcal{C}^G$, which admits a continuous right adjoint $\mathrm{Av}_* = \mathrm{Av}_*^G$.

- (2) There is a forgetful functor Obly : $\mathcal{C} \to \mathcal{C}^{G,w}$, which admits a continuous right adjoint $\operatorname{Av}^{G,w}_*$.
 - (3) The induced functor θ as in

is an equivalence, and similarly in the weak setting.

Remark 4.2. This is an analogue of the fact that for a finite group G acting on a vector space V/\mathbb{Q} , we can average over the group to get a map from V to its invariants.

Here is an important difference between weak invariants and classical invariants:

Theorem 4.3 (Gaitsgory). The functor

$$\mathbf{G}\operatorname{\mathsf{-mod}}_{\operatorname{weak}} \xrightarrow{(-)^{G,w}} \operatorname{DGCat}_{\operatorname{cont}}$$

is conservative. This is totally false for strong invariants!

Heuristically, $D_X \in D(X)^{G,w}$ is weakly invariant, while $\omega_X \in D(X)^G$. Now D_X "knows everything" in D(X) for X affine, while ω_X "knows only itself."

Example 4.4. I'll give one example where this formalism helped me understand something. Let G be reductive and $B \subset G$ be a Borel. Arkhipov defined twisting functors T_w on category \mathcal{O} . The T_w are automorphisms of the derived category \mathcal{O} . I tried to read his paper but I could not understand the construction.

General setup: $\mathfrak{g}_{\text{mod}}^{B}$ is the direct sum

$$\mathfrak{g}^B_{\mathrm{mod}} = \bigoplus_{\lambda \in \Lambda/W} \mathcal{O}_{[\lambda]}.$$

It is a general fact that for G acting on C, the Hecke algebra $D(B \setminus G/B)$ acts on C^B . In fact, $\mathcal{H}_{G,B} = \operatorname{End}(C \mapsto C^B)$. (This is endomorphisms of the functor sending a category to its B-invariants.) We have an inclusion

$$B \backslash G/B \leftarrow X_w = B \backslash BwB/B : j_w.$$

Then we get $j_{w,*,dR}(\omega_{X_w}) \in \mathcal{H}_{G,B}$. These are the twisting operators.

Fact: these are invertible with inverse $j_{w^{-1},!}(k_{X_{w^{-1}}})$ (in $\mathcal{H}_{G,B}$). They correspond to Arkhipov's twisting functors.