An Introduction to Reinforcement Learning

by John Sigmon

Supervised Learning

A classification or regression problem where we have labeled data we can use to learn the model.

Supervised Learning	A classification or regression problem where we have labeled data we can use to learn the model.
Unsupervised Learning	A problem where there are no labels and the goal is to find hidden structure in the data.

Supervised Learning	A classification or regression problem where we have labeled data we can use to learn the model.

A problem where there are no labels and the goal is to find hidden

Unsupervised Learning

A problem where there are no labels and the goal is to find hidden structure in the data.

Unsupervised Learning structure in the data.

Reinforcement A time dependent problem where the model must learn based on rewards.

Learning

Typically means solving any problem that fits into this diagram

How people (in RL) see the field

Self driving cars

- State is recorded camera data and other sensor input
- Actions are acceleration, deceleration, turning, and others
- Rewards could be obeying traffic laws

Playing video games

- State is the pixels on the computer screen
- Actions are defined by the game (e.g. moving up and down in Pong)
- Rewards could be the game score

Grasping objects in robotics

- State is recorded camera data
- Actions are movement of the robot (usually a robotic arm in object grasping)
- Rewards could be positive for successful grasping, and penalty for no success

Simulated robot soccer

- State is the set of robot joint angles along with location of ball and other players
- Actions are defined by robot joint angles directly to form complex movement
- Rewards are defined differently for different skills, e.g. kick distance when learning a long kick

Chatbots (work in progress)

- State is the state of the conversation encoded somehow
- Actions are chatbot responses to human input
- Rewards could be given when correct information is provided to the human (depends on what type of chatbot)

First, difference in notation

RL Terminology	RL Notation	Control Terminology	Control Notation
Action	a	Control Signal	u
State	s (or o)	State / Environment	X
Reward	r	Cost / Payoff	J or c

The Markov Decision Process:

 $< S, A, P_a, R_a, \gamma >$

The Markov Decision Process:

$$<$$
 $S,$ $A,$ $P_a,$ $R_a,$ $\gamma >$ State Set of all possible states (usually infinite) $S=$

$$\frac{1}{C}$$

$$S = \{s_1, s_2, ..., s_n\}$$

The Markov Decision Process:

$$$$

Set of all possible actions (usually infinite)

$$S = \{s_1, s_2, ..., s_n\}$$

 $A = \{a_1, a_2, ..., a_m\}$

Action

State

Action

Dynamics

The Markov Decision Process

and action

1 110	Maikuv	Decision	T	10003

$$\langle S, A, P_a, R_a, \gamma \rangle$$

$$\langle \mathcal{D}, \mathcal{D} \rangle$$

$$A = \{a_1, a_2, ..., a_m\}$$
 $Pr(s_{t+1} | s_t, a_t)$

$$Pr(s_{t+1}|s_t, a_t)$$

$$|s_{t+1}|s_t$$

 $S = \{s_1, s_2, ..., s_n\}$

State

Action

Reward

Dynamics

The Markov Decision Process:

 $\langle S, A, P_a, R_a, \gamma \rangle$

$$A = \{$$

$$a_1, a_2, ...$$

 $r(s_t, a_t, s_{t+1}): S \times A \times S \to \mathbb{R}$

$$S = \{s_1, s_2, ..., s_n\}$$

 $A = \{a_1, a_2, ..., a_m\}$

$$(a_1, a_2, ..., a_m)$$

$$s_{t+1}|s_t,a_t)$$

$$Pr(s_{t+1}|s_t, a_t)$$

State

Action

Reward

Factor

Dynamics

The Markov Decision Process:

Set of all possible states (usually infinite)

Probability of a state given previous state and action

Reward for transitioning to a state, given a previous state, action pair **Discounting** Discounting factor for future rewards

Set of all possible actions (usually infinite)

 $< S, A, P_a, R_a, \gamma >$

 $r(s_t, a_t, s_{t+1}): S \times A \times S \to \mathbb{R}$

 $A = \{a_1, a_2, ..., a_m\}$ $Pr(s_{t+1}|s_t,a_t)$

 $S = \{s_1, s_2, ..., s_n\}$

 $\gamma \in [0,1]$

Policy:

A function from the state space to the action space.

$$\pi(s): S \to A$$

Policy:

A function from the state space to the action space.

$$\pi(s):S\to A$$

Optimal Policy:

The policy that maximizes the sum of all future rewards.

$$\pi^* = \operatorname*{argmax}_{\pi} \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t \cdot r_t(s_t, a_t, s_{t+1}) \mid \pi]$$

Finding an Optimal Policy

Value Iteration

Policy Iteration

Dynamic Programming

Policy Gradients

Temporal Difference Learning

Q Learning

Sarsa Learning

Monte Carlo Methods

How to Get Started

OpenAI

Founded December 2015 Released OpenAI Gym April 2016 https://gym.openai.com/

How to Get Started

OpenAI

Founded December 2015 Released OpenAI Gym April 2016 https://gym.openai.com/

Gym

Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Pinball.

View documentation > View on GitHub >

RandomAgent on LunarLander-v2

```
import gym
    env = gym.make('CartPole-v0')
    env.reset()
13
```

```
import gym
    env = gym.make('CartPole-v0')
    env.reset()
    for _ in range(20):
        observation = env.reset()
        for t in range(100):
13
```

```
import gym
    env = gym.make('CartPole-v0')
    env.reset()
    for _ in range(20):
        observation = env.reset()
        for t in range(100):
            env.render()
            print(observation)
            action = env.action space.sample()
            observation, reward, done, info = env.step(action)
13
```

```
import gym
    env = gym.make('CartPole-v0')
    env.reset()
    for in range(20):
        observation = env.reset()
        for t in range(100):
            env.render()
            print(observation)
            action = env.action space.sample()
            observation, reward, done, info = env.step(action)
            if done:
                print("Episode finished after {} timesteps".format(t+1))
                break
13
```

Current Research

World Models by David Ha, Jurgen Schmidhuber

https://arxiv.org/abs/1803.10122 and https://worldmodels.github.io/

Current Research

World Models by David Ha, Jurgen Schmidhuber

https://arxiv.org/abs/1803.10122 and https://worldmodels.github.io/

World Models

Vision Model A variational autoencoder

World Models

Vision Model

A variational autoencoder

Memory Model

RNN feeding into a Mixture Density Network

https://worldmodels.github.io/

World Models

Current Research

World Models by David Ha, Jurgen Schmidhuber

https://arxiv.org/abs/1803.10122 and https://worldmodels.github.io/

Deep Neuroevolution by Uber AI Labs

https://arxiv.org/abs/1712.06567 and https://eng.uber.com/deep-neuroevolution/

Learning Dexterous In-Hand Manipulation by Open AI

https://arxiv.org/abs/1808.00177 and https://blog.openai.com/learning-dexterity/

One Shot Imitation Learning by Open AI

https://arxiv.org/abs/1703.07326 and https://blog.openai.com/robots-that-learn/

Reinforcement Learning with Deep Energy Based Policies

https://arxiv.org/abs/1702.08165

Educational Resources

Reinforcement Learning by Richard Sutton, Andrew Barto available online: http://incompleteideas.net/book/bookdraft2017nov5.pdf

Richard Sutton's home page http://incompleteideas.net

Peter Stone's course on Reinforcement Learning http://www.cs.utexas.edu/~pstone/Courses/394Rfall16/resources/index.html

Levin, Schulman, and Finn's course on Deep Reinforcement Learning http://rll.berkeley.edu/deeprlcoursesp17/

David Silver's course on Reinforcement Learning http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Some Other RL Environments

VizDoom for playing the 1993 video game Doom http://vizdoom.cs.put.edu.pl/

TorchCraft a library to connect Torch and RTS games like StarCraft https://github.com/TorchCraft/TorchCraft

DeepMind Lab a 3d environment based on Quake III https://github.com/deepmind/lab

Dopamine a Google RL framework

https://ai.googleblog.com/2018/08/introducing-new-framework-for-flexible.html https://github.com/google/dopamine

Thank You

Twitter
onnSigmon

LinkedIn https://www.linkedin.com/in/john-sigmon/

Email johnsigmon@gmail.com

GitHub Page for this talk https://github.com/jsigee87/rl talk