SVR in Load Prediction

Chuan Lu, Fudan University

Nov 11, 2016

Outline

Goal

SVR

Parameters Selection

Details in Code

Results in Forecast

Goal

To predict the max load of the following $1/3/7,\ldots$ days with information we can get from history data and/or forecast of the next days.

SVR

From Wikipedia:

SVR is a version of Support Vector Machine (SVM) used for regression, proposed by Vladimir N. Vapnik in 1996. It is a supervised learning method, equivalent to solving

$$\textit{minimize} \quad \frac{1}{2} \| \mathbf{w} \|^2$$

$$subject \ to \left\{ \begin{array}{l} y_i - < w, x_i > -b \leq \varepsilon \\ < w, x_i > +b - y_i \leq \varepsilon \end{array} \right.$$

SVR

It can be used to do linear or unlinear regressions using the support vectors, especially when the characters of data are linearly non-separable. In this case we can use different kernels to map data points into a higher-dimensional space. The most commonly used kernel is Gaussian Kernel (or called Radial Basis Function)

$$K(x,x_c)=e^{-\frac{\|x-x_c\|^2}{2\sigma^2}}$$

Parameters

In the given dataset, the only useful information is the dependent variable **load**. But from publications we can find many other parameters which could be used in our model.

Parameters

- MAX Load of yesterday
- ▶ MAX Load of 3, 5, 7, ... days before
- Weather information: temperature, wind speed/direction, humidity, ...
- ► Calendar information: weekends, weekday, holiday, ...
- ▶ Special Case: G20 summit, Regulation, ...
- **.**..

Parameters in practical use

After Cross-Validation, we finally chose the following parameters:

- ► MAX Load of past 6 days (Scaled: Divided by 10000)
- ► Temperature of tomorrow (Scaled: Divided by 29)
- ► Calendar info: Weekdays (By 6 Bi-digits), Holidays (By -1, 0, 1)

Dependency

Written and Tested By Python 3.5. We wish the module could be deployed in Linux-based systems.

- ▶ Python 3+ (3.4+ preferred)
- Python-numpy (The latest version)
- Python-scipy
- ▶ Python-scikit-learn
- Python-pandas
- Python-matplotlib

Usage

See Readme.html

Prediction Result

Conclusion

Use 2 years' data as training set, 3.5 years' data as testing set.s

- ► Total average error is 3.1%.
- MAX error is 33%.
- ▶ Those over 20% are almost caused by holidays.
- ▶ The prediction is somehow too convergent.

Conclusion

There are some points for further study and improvement:

- Holidays could be marked artificially, we can adjust simply by multiplying a constant.
- ▶ We can bind the results of different methods, for example, Kalman Filters always produce radical results and SVR produce moderate ones; If we use the average of these two methods, there could be a more accurate one.