Maximal AND Subsequences

Alice has an array of n long integers, $A = [a_0, a_1, \ldots, a_{n-1}]$. She wants to find all the k-element subsequences of A where the bitwise AND of the subsequence's elements is maximal.

For example, let A=[6,3,7,4] and k=3. Now, let's apply the *AND* operation on all possible subsequences of size k:

Subsequences	Decimal	Binary
{6, 3, 7}	6 & 3 & 7 = 2	110 & 011 & 111 = 010
{6, 7, 4}	6 & 7 & 4 = 4	110 & 111 & 100 = 100
{6, 3,4}	6 & 3 & 4 = 0	110 & 011 & 100 = 000
{3, 7, 4}	3 & 7 & 4 = 0	011 & 111 & 100 = 000

The maximal AND value of these subsequences is 4, and only 1 subsequence has that value: $\{6,7,4\}$.

Given A and k, find the maximal *bitwise AND* value of any subsequence of A, as well as the total number of subsequences having that maximal value modulo $10^9 + 7$.

Input Format

The first line contains two space-separated integers describing the respective values of n (the number of elements in the array) and k (the size of the subsequence).

Each of the n subsequent line contains a long integer describing the respective values of a_0,a_1,\ldots,a_{n-1}

Constraints

- $2 \le k \le n \le 10^5$
- $0 \le a_i \le 10^{18}$

Output Format

Print two lines of output:

- 1. The first line contains the maximal bitwise AND value of any k-element subsequence of A.
- 2. The second line contains the number of subsequences of A having that maximal \emph{AND} value, modulo (10^9+7) .

Sample Input 0

Sample Output 0

Explanation 0

For A=[3,5,6] and $\emph{k}=2$, there are three possible subsequences of size \emph{k} . Let's apply the *AND*

operation to each subsequence:

The maximum bitwise AND of any subsequence is 4, and only 1 subsequence ($\{5,6\}$) gives us that value. We then print 4 as our first line of output and the result of $1 \mod (10^9 + 7) = 1$ as our second line of output.

Sample Input 1

```
4 2
21
19
22
20
```

Sample Output 1

```
20
3
```

Explanation 1

For A=[21,19,22,20] and k=2, we perform the following \emph{AND} operations on each subsequence:

```
21 & 19 = 17

21 & 22 = 20

21 & 20 = 20

19 & 22 = 18

19 & 20 = 16

22 & 20 = 20
```

The maximum *bitwise AND* of any subsequence is 20, and there are 3 such subsequences ($\{21,22\}$, $\{21,20\}$, and $\{22,20\}$) giving us that value. We then print 20 as our first line of output and the result of $3 \mod (10^9 + 7) = 3$ as our second line of output.

Sample Input 2

```
4 3
9
15
27
14
```

Sample Output 2

```
10
1
```

Explanation 2

For A=[9,15,27,14] and k=3, there are four k-element subsequences: $\{9,15,27\}$, $\{9,15,14\}$, $\{9,27,14\}$, and $\{15,27,14\}$. The maximum *bitwise AND* of any subsequence is 10, and there is 1 such

subsequence ($\{15,27,14\}$) giving us that value. We then print 10 as our first line of output and the result of $1 \mod (10^9+7)=1$ as our second line of output.