1 Grammar

2 Functions

Definition (annot :: $\tau \times \varepsilon \to \hat{\tau}$)

- 1. $annot(\{\bar{r}\}, _) = \{\bar{r}\}$
- 2. $\operatorname{annot}(\tau_1 \to \tau_2, \varepsilon) = \operatorname{annot}(\tau_1, \varepsilon) \to_{\varepsilon} \operatorname{annot}(\tau_2, \varepsilon)$

Definition (annot :: $e \times \varepsilon \rightarrow \hat{e}$)

- 1. annot(x,) = e
- 2. annot(r,) = r
- 3. $\operatorname{annot}(e_1e_2,\varepsilon) = \operatorname{annot}(e_1)\operatorname{annot}(e_2)$
- 4. $annot(e.\pi, \varepsilon) = annot(e).\pi$
- 5. $\operatorname{annot}(\lambda x : \tau.e, \varepsilon) = \lambda x : \operatorname{annot}(\tau, \varepsilon).\operatorname{annot}(e, \varepsilon)$

Definition (annot :: $\Gamma \times \varepsilon \rightarrow \hat{\Gamma}$)

- 1. $annot(\emptyset, _) = \emptyset$
- 2. $\operatorname{annot}((\Gamma, x : \tau), \varepsilon) = \operatorname{annot}(\Gamma, \varepsilon), x : \operatorname{annot}(\tau, \varepsilon)$

Definition (erase :: $\hat{\tau} \rightarrow \tau$)

- $1.\ \mathtt{erase}(\{\bar{r}\},\underline{\ })=\{\bar{r}\}$
- 2. $\operatorname{erase}(\hat{\tau}_1 \to_{\varepsilon} \hat{\tau}_2) = \operatorname{erase}(\hat{\tau}_1) \to \operatorname{erase}(\hat{\tau}_2)$

Definition (erase :: $\hat{e} \rightarrow e$)

- 1. erase(x) = x
- 2. erase(r) = r
- 3. $erase(e_1e_2) = erase(e_1)erase(e_2)$
- 4. $erase(e.\pi) = erase(e).\pi$
- 5. $erase(\lambda x : \hat{\tau}.\hat{e}) = \lambda x : erase(\hat{\tau}).erase(\hat{e})$

Definition (effects :: $\hat{\tau} \to \varepsilon$)

- $\begin{array}{l} 1. \ \, \operatorname{effects}(\{\bar{r}\}) = \{r.\pi \mid r \in \bar{r}, \pi \in \varPi\} \\ 2. \ \, \operatorname{effects}(\hat{\tau}_1 \to_{\varepsilon} \hat{\tau}_2) = \operatorname{ho-effects}(\hat{\tau}_1) \cup \varepsilon \cup \operatorname{effects}(\hat{\tau}_2) \end{array}$

Definition (ho-effects :: $\hat{\tau} \to \varepsilon$)

- 1. ho-effects($\{\bar{r}\}$) = \emptyset
- 2. ho-effects $(\hat{\tau}_1 \to_{\varepsilon} \hat{\tau}_2) = \texttt{effects}(\hat{\tau}_1) \cup \texttt{ho-effects}(\hat{\tau}_2)$

Definition (substitution :: $\hat{e} \times \hat{v} \times \hat{v} \rightarrow \hat{e}$)

The notation $[\hat{v}/x]\hat{e}$ is short-hand for substitution (\hat{e},\hat{v},x) . This function is partial, because the third-input must be a variable. We adopt the usual renaming conventions to avoid accidental capture.

- 1. $[\hat{v}/y]x = \hat{v}$, if x = y
- 2. $[\hat{v}/y]x = x$, if $x \neq y$
- 3. $[\hat{v}/y](\lambda x : \hat{\tau}.\hat{e}) = \lambda x : \hat{\tau}.[\hat{v}/y]\hat{e}$, if $y \neq x$ and y does not occur free in \hat{e}
- 4. $[\hat{v}/y](\hat{e}.\pi) = ([\hat{v}/y]\hat{e}).\pi$
- 5. $[\hat{v}/y](\hat{e}_1\hat{e}_2) = ([\hat{v}/y]\hat{e}_1)([\hat{v}/y]\hat{e}_2)$
- 6. $[\hat{v}/y](\mathtt{import}(\varepsilon) \ x = \hat{e} \ \mathtt{in} \ e) = \mathtt{import}(\varepsilon) \ x = [\hat{v}/y]\hat{e} \ \mathtt{in} \ e$

When performing multiple substitutions we use the notation $[\hat{v}_1/x_1,\hat{v}_2/x_2]\hat{e}$ as shorthand for $[\hat{v}_2/x_2]([\hat{v}_1/x_1]\hat{e})$ (note the order of the variables has been flipped; the substitutions occur as they are written, left-to-right).

Static Rules 3

$$\Gamma \vdash e : \tau$$

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma, x : \tau \vdash x : \tau} \text{ (T-VAR)} \qquad \frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x : \tau_1 \cdot e : \tau_1 \rightarrow \tau_2} \text{ (T-Abs)}$$

$$\frac{\varGamma \vdash e_1 : \tau_2 \to \tau_3 \quad \varGamma \vdash e_2 : \tau_2}{\varGamma \vdash e_1 \ e_2 : \tau_3} \ (\text{T-APP}) \qquad \frac{\varGamma \vdash e : \{\bar{r}\} \quad \forall r \in \bar{r} \mid r \in R \quad \pi \in \varPi}{\varGamma \vdash e.\pi : \text{Unit}} \ (\text{T-OperCall})$$

$$|\hat{arGamma}dash\hat{e}:\hat{ au}$$
 with $arepsilon$

$$\frac{1}{\hat{\Gamma}, x : \tau \vdash x : \tau \text{ with } \varnothing} \ (\varepsilon\text{-VAR}) \qquad \frac{1}{\hat{\Gamma}, r : \{r\} \vdash r : \{r\} \text{ with } \varnothing} \ (\varepsilon\text{-RESOURCE})$$

$$\frac{\hat{\varGamma}, x: \hat{\tau}_2 \vdash \hat{e}: \hat{\tau}_3 \text{ with } \varepsilon_3}{\hat{\varGamma} \vdash \lambda x: \tau_2. \hat{e}: \hat{\tau}_2 \to_{\varepsilon_3} \hat{\tau}_3 \text{ with } \varnothing} \ (\varepsilon\text{-ABS}) \qquad \frac{\hat{\varGamma} \vdash \hat{e}_1: \hat{\tau}_2 \to_{\varepsilon} \hat{\tau}_3 \text{ with } \varepsilon_1 \quad \hat{\varGamma} \vdash \hat{e}_2: \hat{\tau}_2 \text{ with } \varepsilon_2}{\hat{\varGamma} \vdash \hat{e}_1 \hat{e}_2: \hat{\tau}_3 \text{ with } \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon} \ (\varepsilon\text{-APP})$$

$$\frac{\hat{\varGamma} \vdash \hat{e} : \{\bar{r}\} \quad \forall r \in \bar{r} \mid r : \{r\} \in \varGamma \quad \pi \in \varPi}{\hat{\varGamma} \vdash \hat{e} . \pi : \mathtt{Unit with} \ \{\bar{r} . \pi\}} \ (\varepsilon \text{-}\mathsf{OPERCALL}) \qquad \frac{\hat{\varGamma} \vdash e : \tau \ \mathtt{with} \ \varepsilon \quad \tau <: \tau' \quad \varepsilon \subseteq \varepsilon'}{\hat{\varGamma} \vdash e : \tau' \ \mathtt{with} \ \varepsilon'} \ (\varepsilon \text{-}\mathsf{SUBSUME})$$

$$\begin{split} \hat{\varGamma} \vdash \hat{e} : \hat{\tau} \text{ with } \varepsilon_1 & \quad \varepsilon = \texttt{effects}(\hat{\tau}) \\ & \quad \texttt{ho-safe}(\hat{\tau}, \varepsilon) & \quad x : \texttt{erase}(\hat{\tau}) \vdash e : \tau \\ & \quad \\ & \quad \hat{\varGamma} \vdash \texttt{import}(\varepsilon) \; x = \hat{e} \; \texttt{in} \; e : \texttt{annot}(\tau, \varepsilon) \; \texttt{with} \; \varepsilon \cup \varepsilon_1 \end{split}$$

 $safe(\tau, \varepsilon)$

$$\frac{\text{safe}(\{\bar{r}\},\varepsilon) \text{ (SAFE-RESOURCE)}}{\frac{\varepsilon \subseteq \varepsilon' \text{ ho-safe}(\hat{\tau}_1,\varepsilon) \text{ safe}(\hat{\tau}_2,\varepsilon)}{\text{safe}(\hat{\tau}_1 \to_{\varepsilon'} \hat{\tau}_2,\varepsilon)} \text{ (SAFE-ARROW)}}$$

$$\texttt{ho-safe}(\widehat{\tau},\varepsilon)$$

$$\frac{1}{\mathsf{ho\text{-}safe}(\{\bar{r}\},\varepsilon)} \ (\mathsf{HOSAFE\text{-}RESOURCE}) \qquad \frac{1}{\mathsf{ho\text{-}safe}(\mathsf{Unit},\varepsilon)} \ (\mathsf{HOSAFE\text{-}UNIT}) \\ \frac{\mathsf{safe}(\hat{\tau}_1,\varepsilon) \quad \mathsf{ho\text{-}safe}(\hat{\tau}_2,\varepsilon)}{\mathsf{ho\text{-}safe}(\hat{\tau}_1 \to_{\varepsilon'} \hat{\tau}_2,\varepsilon)} \ (\mathsf{HOSAFE\text{-}ARROW})$$

 $\hat{\tau} <: \hat{\tau}$

$$\frac{\varepsilon \subseteq \varepsilon' \quad \hat{\tau}_2 <: \hat{\tau}_2' \quad \hat{\tau}_1' <: \hat{\tau}_1}{\hat{\tau}_1 \to_{\varepsilon} \hat{\tau}_2 <: \hat{\tau}_1' \to_{\varepsilon'} \hat{\tau}_2'} \text{ (S-EFFECTS)}$$

4 Dynamic Rules

$$\hat{e} \longrightarrow \hat{e} \mid \varepsilon$$

$$\frac{\hat{e}_{1} \longrightarrow \hat{e}'_{1} \mid \varepsilon}{\hat{e}_{1}\hat{e}_{2} \longrightarrow \hat{e}'_{1}\hat{e}_{2} \mid \varepsilon} \text{ (E-APP1)} \qquad \frac{\hat{e}_{2} \longrightarrow \hat{e}'_{2} \mid \varepsilon}{\hat{v}_{1}\hat{e}_{2} \longrightarrow \hat{v}_{1}\hat{e}'_{2} \mid \varepsilon} \text{ (E-APP2)} \qquad \frac{(\lambda x : \hat{\tau}.\hat{e})\hat{v}_{2} \longrightarrow [\hat{v}_{2}/x]\hat{e} \mid \varnothing}{(\lambda x : \hat{\tau}.\hat{e})\hat{v}_{2} \longrightarrow [\hat{v}_{2}/x]\hat{e} \mid \varnothing} \text{ (E-APP3)}$$

$$\frac{\hat{e} \to \hat{e}' \mid \varepsilon}{\hat{e}.\pi \longrightarrow \hat{e}'.\pi \mid \varepsilon} \text{ (E-OPERCALL1)} \qquad \frac{r \in R \quad \pi \in \Pi}{r.\pi \longrightarrow \text{unit} \mid \{r.\pi\}} \text{ (E-OPERCALL2)}$$

$$\frac{\hat{e} \longrightarrow \hat{e}' \mid \varepsilon'}{\text{import}(\varepsilon) \ x = \hat{e} \text{ in } e \longrightarrow \text{import}(\varepsilon) \ x = \hat{e}' \text{ in } e \mid \varepsilon'} \text{ (E-MODULE1)}$$

$$\frac{\hat{e} \longrightarrow \hat{e}' \mid \varepsilon}{\text{import}(\varepsilon) \ x = \hat{v} \text{ in } e \longrightarrow [\hat{v}/x] \text{annot}(e, \varepsilon) \mid \varnothing} \text{ (E-MODULE2)}$$

5 Encodings

5.1 \perp

We can define the bottom type as $\bot = \{\}$, because there is no empty-set literal.

5.2 unit, Unit

Define unit = λx : {}.x, i.e. the function which takes an empty set of resources and returns it. We shall refer to its type, which is {} $\rightarrow_{\varnothing}$ {}, as Unit. It has various properties befitting unit.

- 1. unit cannot be invoked, as {} is uninhabited.
- 2. unit is a value.
- 3. The only term with type Unit is unit.
- 4. \vdash unit: Unit, by using ε -ABS and ε -VAR.
- $5. \ \mathtt{effects}(\mathtt{Unit}) = \mathtt{ho\text{-effects}}(\mathtt{Unit}) = \varnothing$
- 6. $safe(Unit, \varepsilon)$ and ho-safe(Unit, ε)

6 Proofs

Theorem 1 (Progress). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A then \hat{e}_A is a value or $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$.

Proof. By induction on $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A .

Case: ε -RESOURCE, ε -UNIT, ε -ABS Then \hat{e}_A is a value.

Case: ε -Subsume Then $\hat{\Gamma} \vdash e : \tau'$ with ε' , and $\hat{\Gamma} \vdash e : \tau$ with ε , where $\tau' <: \tau$ and $\varepsilon' \subseteq \varepsilon$ are subderivations. The theorem conclusion holds by inductive assumption applied to $\hat{\Gamma} \vdash e : \tau$ with ε .

Case: ε -APP Then $\hat{e}_A = \hat{e}_1$ \hat{e}_2 . We consider the cases in which \hat{e}_1 and \hat{e}_2 are values.

If \hat{e}_1 is not a value then by inductive assumption there is a reduction $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$. Then $\hat{e}_1 \ \hat{e}_2$ reduces by the rule E-APP1, giving $\hat{e}_1 \ \hat{e}_2 \longrightarrow \hat{e}'_1 \ \hat{e}_2 \mid \varepsilon$.

If \hat{e}_2 is not a value then WLOG \hat{e}_1 is a value. By inductive assumption $\hat{e}_2 \longrightarrow \hat{e}'_2 \mid \varepsilon$. Then \hat{v}_1 \hat{e}_2 reduces by the rule E-APP2, giving \hat{v}_1 $\hat{e}_2 \longrightarrow \hat{v}_1$ $\hat{e}'_2 \mid \varepsilon$.

If \hat{e}_1 and \hat{e}_2 are both values then by canonical forms $\hat{e}_1 = \hat{v}_1 = \lambda x : \tau_2.e$. Then \hat{v}_1 \hat{v}_2 reduces by the rule E-APP3, giving \hat{v}_1 $\hat{v}_2 \longrightarrow [\hat{v}_2/x]\hat{e} \mid \varnothing$.

Case: ε -OperCall Then $\hat{e}_A = \hat{e}_1.\pi$. We consider whether \hat{e}_1 is a value.

If \hat{e}_1 is not a value then by inductive assumption there is a reduction $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$. Then $\hat{e}_1.\pi$ reduces by the rule E-OPERCALL1, giving $\hat{e}_1.\pi \longrightarrow \hat{e}'_1.\pi \mid \varepsilon$.

If \hat{e}_1 is a value then $\hat{e}_1 = r$ by canonical forms. By the assumption that $r.\pi$ is closed under Γ , we know $r \in R$ and $\pi \in \Pi$. Then $\hat{e}_1.\pi$ reduces by the rule E-OPERCALL2, giving $r.\pi \longrightarrow \text{unit } \mid \varepsilon$.

Case: ε -MODULE Then $e_A = \text{import}(\varepsilon)$ $x = \hat{e}$ in e. If \hat{e} is an expression then it can be reduced, so $\hat{e} \longrightarrow \hat{e}' \mid \varepsilon'$, and so by E-MODULE1 we get import(ε) $x = \hat{e}$ in $e \longrightarrow \text{import}(\varepsilon)$ $x = \hat{e}'$ in $e \mid \varepsilon'$. Otherwise $\hat{e} = \hat{v}$ is a value. Then by E-MODULE2 we get import(ε) $x = \hat{v} \longrightarrow [\hat{v}/x] \text{annot}(e, \varepsilon) \mid \varnothing$.

Lemma 1 (Substitution). If $\hat{\Gamma}, x : \hat{\tau}' \vdash e : \hat{\tau}$ with ε and $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}'$ with \varnothing then $\hat{\Gamma} \vdash [\hat{v}/x]e : \hat{\tau}$ with ε .

Proof. By induction on $\hat{\Gamma}, x : \hat{\tau}' \vdash e : \hat{\tau}$ with ε .

 ε -VAR Then $\hat{e} = y$. Either y = x or $y \neq x$.

Subcase: $y \neq x$. Then $[\hat{v}/x]y = y$ and $\hat{\Gamma} \vdash y : \hat{\tau}$ with \varnothing . Therefore $\hat{\Gamma} \vdash [\hat{v}/x]y : \hat{\tau}$ with \varnothing .

Subcase: y = x. By inversion on ε -VAR, the original typing judgement is $\hat{\Gamma}, x : \hat{\tau}' \vdash x : \hat{\tau}'$ with \varnothing . Since $[\hat{v}/x]y = \hat{v}$ and by assumption $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}'$ with \varnothing , then we have $\hat{\Gamma} \vdash [\hat{v}/x]x : \hat{\tau}'$ with \varnothing .

E-RESOURCE Because $\hat{e} = r$ is a resource literal then $\hat{\Gamma} \vdash r : \hat{\tau}$ with \emptyset . By definition, $[\hat{v}/x]r = r$, so $\hat{\Gamma} \vdash [\hat{v}/x]r : \hat{\tau}$ with \emptyset .

[ε-ABS] Then $\hat{\Gamma}, x : \hat{\tau}' \vdash \lambda z : \hat{\tau}_2.\hat{e}_{body} : \hat{\tau}_2 \to_{\varepsilon_3} \hat{\tau}_3$ with Ø. From inversion on ε-ABS we get the judgement $\hat{\Gamma}, x : \hat{\tau}', z : \hat{\tau}_2 \vdash \hat{e}_{body} : \hat{\tau}_3$ with ε₃. By applying the inductive assumption to $[\hat{v}/x]e_{body}$, we get $\hat{\Gamma}, z : \hat{\tau}_2 \vdash [\hat{v}/x]\hat{e}_{body} : \hat{\tau}_3$ with ε₃. Then applying ε-ABS, we get $\hat{\Gamma} \vdash \lambda z : \hat{\tau}_2.[\hat{v}/x]\hat{e}_{body} : \hat{\tau}_2 \to_{\varepsilon_3} \hat{\tau}_3$ with Ø. Then we are done, as $\lambda z : \hat{\tau}_2.[\hat{v}/x]\hat{e}_{body} = [\hat{v}/x](\lambda z : \hat{\tau}_2.\hat{e}_{body})$

E-APP By inversion we know $\hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e}_1 : \hat{\tau}_2 \to_{\varepsilon_3} \hat{\tau}_3$ with ε_A and $\hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e}_2 : \hat{\tau}_2$ with ε_B , where $\varepsilon = \varepsilon_A \cup \varepsilon_B \cup \varepsilon_3$ and $\hat{\tau} = \hat{\tau}_3$. By inductive assumption, $\hat{\Gamma} \vdash [\hat{v}/x]\hat{e}_1 : \hat{\tau}_2 \to_{\varepsilon_3} \hat{\tau}_3$ with ε_A and $\hat{\Gamma} \vdash [\hat{v}/x]\hat{e}_2 : \hat{\tau}_2$ with ε_B . By ε -APP we have $\hat{\Gamma} \vdash ([\hat{v}/x]\hat{e}_1)([\hat{v}/x]\hat{e}_2) : \hat{\tau}_3$ with $\varepsilon_A \cup \varepsilon_B \cup \varepsilon_3$. By simplifying and applying the definition of substitution, this is the same as $\hat{\Gamma} \vdash [\hat{v}/x](\hat{e}_1\hat{e}_2) : \hat{\tau}$ with ε .

 $[\varepsilon\text{-OPERCALL}]$ By inversion we know $\hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e}_1 : \{\bar{r}\}$ with ε_1 , where $\varepsilon = \varepsilon_1 \cup \{r.\pi \mid r.\pi \in \bar{r} \times \Pi\}$ and $\hat{\tau} = \{\bar{r}\}$. By applying the inductive assumption, $\hat{\Gamma} \vdash [\hat{v}/x]\hat{e}_1 : \{\bar{r}\}$ with ε_1 . Then by $\varepsilon\text{-OPERCALL}$,

 $\hat{\Gamma} \vdash ([\hat{v}/x]\hat{e}_1).\pi : \{\bar{r}\}\$ with $\varepsilon_1 \cup \{r.\pi \mid r.\pi \in \bar{r} \times \Pi\}$. By simplifying and applying the definition of substitution, this is the same as $\hat{\Gamma} \vdash [\hat{v}/x](\hat{e}_1.\pi) : \hat{\tau}$ with ε .

E-Subsume By inversion we know $\hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e} : \hat{\tau}_2$ with ε_2 , where $\hat{\tau}_2 <: \hat{\tau}$ and $\varepsilon_2 \subseteq \varepsilon$. By inductive hypothesis, $\hat{\Gamma} \vdash [\hat{v}/x]\hat{e} : \hat{\tau}_2$ with ε_2 . Then by ε -Subsume we get $\hat{\Gamma} \vdash [\hat{v}/x]\hat{e} : \hat{\tau}$ with ε .

 $[\varepsilon\text{-Module}]$ Then $\hat{\Gamma}, x: \hat{\tau}' \vdash \text{import}(\varepsilon) \ x = \hat{e} \text{ in } e: \text{annot}(\tau, \varepsilon) \text{ with } \varepsilon \cup \varepsilon_1$. By inversion we know $\hat{\Gamma}, x: \hat{\tau}' \vdash \hat{e}: \hat{\tau}_1 \text{ with } \varepsilon_1$. By inductive assumption, $\hat{\Gamma} \vdash [\hat{v}/x]\hat{e}: \hat{\tau}_1 \text{ with } \varepsilon_1$. Then by $\varepsilon\text{-Module}$ we have $\hat{\Gamma} \vdash \text{import}(\varepsilon) \ x = \hat{e} \text{ in } e: \text{annot}(\tau, \varepsilon) \text{ with } \varepsilon \cup \varepsilon_1$.

Lemma 2. If effects($\hat{\tau}$) $\subseteq \varepsilon$ and ho-safe($\hat{\tau}$, ε) then $\hat{\tau}$ <: annot(erase($\hat{\tau}$), ε).

Lemma 3. If ho-effects($\hat{\tau}$) $\subseteq \varepsilon$ and safe($\hat{\tau}, \varepsilon$) then annot(erase($\hat{\tau}$), ε) <: $\hat{\tau}$.

Proof. By simultaneous induction.

Case: $\hat{\tau} = \{\bar{r}\}\$ Then $\hat{\tau} = \mathtt{annot}(\mathtt{erase}(\hat{\tau}), \varepsilon)$ and the results for both lemmas hold immediately.

Case: $\hat{\tau} = \hat{\tau}_1 \to_{\varepsilon'} \hat{\tau}_2$, $\operatorname{effects}(\hat{\tau}) \subseteq \varepsilon$, $\operatorname{ho-safe}(\hat{\tau}, \varepsilon)$ It is sufficient to show $\hat{\tau}_2 <: \operatorname{annot}(\operatorname{erase}(\hat{\tau}_2), \varepsilon)$ and $\operatorname{annot}(\operatorname{erase}(\hat{\tau}_1), \varepsilon) <: \hat{\tau}_1$, because the result will hold by S-Effects. To achieve this we shall inductively apply lemma 2 to $\hat{\tau}_2$ and lemma 3 to $\hat{\tau}_1$.

From effects($\hat{\tau}_1$) $\subseteq \varepsilon$ we have ho-effects($\hat{\tau}_1$) $\cup \varepsilon' \cup$ effects($\hat{\tau}_2$) $\subseteq \varepsilon$ and therefore effects($\hat{\tau}_2$) $\subseteq \varepsilon$. From ho-safe($\hat{\tau}, \varepsilon$) we have ho-safe($\hat{\tau}_2, \varepsilon$). Therefore we can apply lemma 2 to $\hat{\tau}_2$.

From effects($\hat{\tau}$) $\subseteq \varepsilon$ we have ho-effects($\hat{\tau}_1$) $\cup \varepsilon' \cup$ effects($\hat{\tau}_2$) $\subseteq \varepsilon$ and therefore ho-effects($\hat{\tau}_1$) $\subseteq \varepsilon$. From ho-safe($\hat{\tau}, \varepsilon$) we have ho-safe($\hat{\tau}_1, \varepsilon$). Therefore we can apply lemma 3 to $\hat{\tau}_1$.

Case: $\hat{\tau} = \hat{\tau}_1 \to_{\varepsilon'} \hat{\tau}_2$, ho-effects $(\hat{\tau}) \subseteq \varepsilon$, safe $(\hat{\tau}, \varepsilon)$ It is sufficient to show annot(erase $(\hat{\tau}_2), \varepsilon$) <: $\hat{\tau}_2$ and $\hat{\tau}_1$ <: annot(erase $(\hat{\tau}_1), \varepsilon$), because the result will hold by S-Effects. To achieve this we shall inductively apply lemma 3 to $\hat{\tau}_2$ and lemma 2 to $\hat{\tau}_1$.

From ho-effects($\hat{\tau}$) $\subseteq \varepsilon$ we have effects($\hat{\tau}_1$) \cup ho-effects($\hat{\tau}_2$) $\subseteq \varepsilon$ and therefore ho-effects($\hat{\tau}_2$) $\subseteq \varepsilon$. From safe($\hat{\tau}, \varepsilon$) we have safe($\hat{\tau}_2, \varepsilon$). Therefore we can apply lemma 3 to $\hat{\tau}_2$.

From ho-effects($\hat{\tau}$) $\subseteq \varepsilon$ we have effects($\hat{\tau}_1$) \cup ho-effects($\hat{\tau}_2$) $\subseteq \varepsilon$ and therefore effects($\hat{\tau}_1$) $\subseteq \varepsilon$. From safe($\hat{\tau}, \varepsilon$) we have ho-safe($\hat{\tau}_1, \varepsilon$). Therefore we can apply lemma 2 to $\hat{\tau}_1$.

Theorem 2 (Preservation). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $e_A \longrightarrow e_B \mid \varepsilon_C$, then $\hat{\Gamma} \vdash e_B : \tau_B$ with ε_B , where $e_B <: e_B \text{ and } \varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$.

Proof. By induction on $\hat{\Gamma} \vdash \hat{e}_A : \tau_A$ with ε_A , and then on $e_A \longrightarrow e_B \mid \varepsilon$.

 ε -VAR, ε -RESOURCE, ε -UNIT, ε -ABS Then e_A cannot be reduced and so the theorem statement vacuously holds.

Otherwise the rule used was E-APP3. Then $(\lambda x : \hat{\tau}_2.\hat{e})\hat{v}_2 \longrightarrow [\hat{v}_2/x]\hat{e} \mid \varnothing$. By inversion on the typing rule for $\lambda x : \hat{\tau}_2.\hat{e}$ we know $\Gamma, x : \hat{\tau}_2 \vdash \hat{e} : \hat{\tau}_3$ with ε_3 . By canonical forms, $\varepsilon_2 = \varnothing$ because $\hat{e}_2 = \hat{v}_2$ is a value. Then by the substitution lemma, $\hat{\Gamma} \vdash [\hat{v}_2/x]\hat{e} : \hat{\tau}_3$ with ε_3 . By canonical forms, $\varepsilon_1 = \varepsilon_2 = \varnothing = \varepsilon_C$. Therefore

```
\varepsilon_A = \varepsilon_3 = \varepsilon_B \cup \varepsilon_C.
```

 ε -OperCall Then $e_A = e_1.\pi$ and $\hat{\Gamma} \vdash e_1 : \{\bar{r}\}$ with ε_1 . If the reduction rule used was E-OperCall then the result follows by applying the inductive hypothesis to \hat{e}_1 .

Otherwise the reduction rule used was E-OPERCALL2 and $v_1.\pi \longrightarrow \text{unit} \mid \{r.\pi\}$. By canonical forms, $\hat{\Gamma} \vdash v_1$: unit with $\{r.\pi\}$. Also, $\hat{\Gamma} \vdash \text{unit}$: Unit with \emptyset . Then $\tau_B = \tau_A$. Also, $\varepsilon_C \cup \varepsilon_B = \{r.\pi\} = \varepsilon_A$.

 $[\varepsilon\text{-Module}]$ Then $e_A = \mathsf{import}(\varepsilon)$ $x = \hat{e}$ in e. If the reduction rule used was E-ModuleCall then the result follows by applying the inductive hypothesis to \hat{e} .

Otherwise \hat{e} is a value and the reduction used was E-ModuleCall2. The following are true:

```
\begin{array}{ll} 1. & e_A = \operatorname{import}(\varepsilon) \ x = \hat{v} \ \operatorname{in} \ e \\ 2. & \hat{\Gamma} \vdash e_A : \operatorname{annot}(\tau,\varepsilon) \ \operatorname{with} \ \varepsilon \cup \varepsilon_1 \\ 3. & \operatorname{import}(\varepsilon) \ x = \hat{v} \ \operatorname{in} \ e \longrightarrow [\hat{v}/x] \operatorname{annot}(e,\varepsilon) \mid \varnothing \\ 4. & \hat{\Gamma} \vdash \hat{v} : \hat{\tau} \ \operatorname{with} \ \varnothing \\ 5. & \varepsilon = \operatorname{effects}(\hat{\tau}) \\ 6. & \operatorname{ho-safe}(\hat{\tau},\varepsilon) \\ 7. & x : \operatorname{erase}(\hat{\tau}) \vdash e : \tau \end{array}
```

Apply the annotation lemma with $\Gamma = \emptyset$ to get $\hat{\Gamma}, x : \hat{\tau} \vdash \mathtt{annot}(e, \varepsilon) : \mathtt{annot}(\tau, \varepsilon)$ with ε .

By **4.** we have $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}$ with \varnothing .

By substitution lemma, $\hat{\Gamma} \vdash [\hat{v}/x] \text{annot}(e, \varepsilon)$: annot (τ, ε) with ε .

By canonical forms, $\varepsilon_1 = \varepsilon_C = \emptyset$. Then $\varepsilon_B = \varepsilon = \varepsilon_A \cup \varepsilon_C$. By examination, $\tau_A = \tau_B = \operatorname{annot}(\tau, \varepsilon)$.

Lemma 4 (Annotation). If the following are true:

```
\begin{split} & - \ \hat{\varGamma} \vdash \hat{v} : \hat{\tau} \ \text{with} \ \varnothing \\ & - \ \varGamma, y : \texttt{erase}(\hat{\tau}) \vdash e : \tau \\ & - \ \varepsilon = \texttt{effects}(\hat{\tau}) \\ & - \ \text{ho-safe}(\hat{\tau}, \varepsilon) \end{split}
```

Then $\hat{\Gamma}$, annot (Γ, ε) , $y : \hat{\tau} \vdash \text{annot}(e, \varepsilon) : \text{annot}(\tau, \varepsilon)$ with $\varepsilon \cup \text{effects}(\text{annot}(\Gamma, \varepsilon))$.

Proof. By induction on $\Gamma, y : erase(\hat{\tau}) \vdash e : \tau$.

Case: T-VAR Then e = x and Γ, y : erase $(\hat{\tau}) \vdash x : \tau$. There are two cases: x = y or $x \neq y$.

Subcase 1: x=y. Then by ε -VAR we get $\hat{\Gamma}$, annot $(\Gamma,\varepsilon),y:\hat{\tau}\vdash x:\hat{\tau}$ with \varnothing . First note that annot $(x,\varepsilon)=x$ in this case. Therefore $\Gamma,y:$ erase $(\hat{\tau})\vdash$ annot $(\operatorname{erase}(x),\varepsilon):\hat{\tau}$ with \varnothing . We know by assumption that $\operatorname{effects}(\hat{\tau})=\varepsilon$ and ho-safe $(\hat{\tau},\varepsilon)$. Applying Lemma 2 we know $\hat{\tau}<:$ annot $(\operatorname{erase}(\hat{\tau}),\varepsilon)$. Lastly, by ε -Subsume we have $\Gamma,y:$ erase $(\hat{\tau})\vdash$ annot $(\operatorname{erase}(x),\varepsilon):$ annot $(\operatorname{erase}(x),\varepsilon)$ with ε \cup effects $(\operatorname{annot}(\Gamma,\varepsilon)).$

Subcase 2: $x \neq y$. Then $x : \tau \in \Gamma$. Together with the definition $\mathtt{annot}(x,\varepsilon) = x$, we know $x : \mathtt{annot}(\tau,\varepsilon) \in \mathtt{annot}(\Gamma,\varepsilon)$. By ε -Var we have $\hat{\Gamma}$, $\mathtt{annot}(\Gamma,\varepsilon)$, $y : \hat{\tau} \vdash \mathtt{annot}(x,\varepsilon) : \mathtt{annot}(\tau,\varepsilon)$ with \varnothing . Lastly, by ε -Subsume we have $\Gamma, y : \mathtt{erase}(\hat{\tau}) \vdash \mathtt{annot}(\mathtt{erase}(x),\varepsilon) : \mathtt{annot}(\mathtt{erase}(x),\varepsilon)$ with $\varepsilon \cup \mathtt{effects}(\mathtt{annot}(\Gamma,\varepsilon))$.

Case: T-RESOURCE Then $\Gamma, y : \operatorname{erase}(\hat{\tau}) \vdash r : \{r\}$. By definition, $\operatorname{annot}(r, \varepsilon) = r$ and $\operatorname{annot}(\{r\}, \varepsilon)$. By ε -RESOURCE $\hat{\Gamma}$, $\operatorname{annot}(\Gamma, \varepsilon), y : \hat{\tau} \vdash r : \{r\}$ with \varnothing . By ε -Subsume, $\hat{\Gamma}$, $\operatorname{annot}(\Gamma, \varepsilon), y : \hat{\tau} \vdash r : \{r\}$ with $\varepsilon \cup \operatorname{effects}(\operatorname{annot}(\Gamma, \varepsilon))$.

```
Case: T-ABS | Then \Gamma, y : erase(\hat{\tau}) \vdash \lambda x : \tau_1.e_{body} : \tau_1 \to \tau_2.
```

By inversion, we get the sub-derivation $\Gamma, y : \mathtt{erase}(\hat{\tau}), x : \tau_1 \vdash e_2 : \tau_2$. By definition, $\mathtt{annot}(e, \varepsilon) = \mathtt{annot}(\lambda x : \tau_1.e_2, \varepsilon) = \lambda x : \mathtt{annot}(\tau_1, \varepsilon).\mathtt{annot}(e_2, \varepsilon)$ and $\mathtt{annot}(\tau, \varepsilon) = \mathtt{annot}(\tau_1, \tau_2, \varepsilon) = \mathtt{annot}(\tau_1, \varepsilon) \to_{\varepsilon} \mathtt{annot}(\tau_2, \varepsilon)$.

To apply the inductive assumption to e_2 we use the unlabelled context $\Gamma, x : \tau_1$. The inductive assumption tells us $\hat{\Gamma}$, annot $(\Gamma, \varepsilon), y : \hat{\tau}, x : \mathtt{annot}(\tau_1, \varepsilon) \vdash \mathtt{annot}(e_2, \varepsilon) : \mathtt{annot}(\tau_2, \varepsilon)$ with $\varepsilon \cup \mathtt{effects}(\mathtt{annot}(\Gamma, \varepsilon)) \cup \mathtt{effects}(\mathtt{annot}(\tau_1, \varepsilon))$. Call this last effect-set ε' .

By ε -ABS, we get $\hat{\Gamma}$, annot (Γ, ε) , $y : \hat{\tau} \vdash \lambda x : \mathtt{annot}(\tau_1, \varepsilon)$.annot $(e_2, \varepsilon) : \mathtt{annot}(\hat{\tau}_1) \to_{\varepsilon'} \mathtt{annot}(\hat{\tau}_2)$ with \varnothing .

By ε -Subsume, we get $\hat{\Gamma}$, annot (Γ, ε) , $y : \hat{\tau} \vdash \mathtt{annot}(e, \varepsilon) : \mathtt{annot}(\hat{\tau}_1) \to_{\varepsilon} \mathtt{annot}(\hat{\tau}_2)$ with $\varepsilon \cup \mathtt{effects}(\mathtt{annot}(\Gamma), \varepsilon)$.

Case: T-APP Then $\Gamma, y : \operatorname{erase}(\hat{\tau}) \vdash e_1 \ e_2 : \tau_3$, where $\Gamma, y : \operatorname{erase}(\hat{\tau}) \vdash e_1 : \tau_2 \to \tau_3$ and $\Gamma, y : \operatorname{erase}(\hat{\tau}) \vdash e_2 : \tau_2$.

By applying the inductive assumption to e_1 and e_2 , we get $\hat{\Gamma}$, $\mathtt{annot}(\Gamma, \varepsilon)$, $y : \hat{\tau} \vdash \mathtt{annot}(e_1, \varepsilon) : \mathtt{annot}(\tau_1, \varepsilon)$ with ε and $\hat{\Gamma}$, $\mathtt{annot}(\Gamma, \varepsilon)$, $y : \hat{\tau} \vdash \mathtt{annot}(e_2, \varepsilon) : \mathtt{annot}(\tau_2, \varepsilon)$ with ε .

By simplifying: $\hat{\Gamma}$, annot (Γ, ε) , $y : \hat{\tau} \vdash \mathtt{annot}(e_1, \varepsilon) : \mathtt{annot}(\tau_2, \varepsilon) \to_{\varepsilon} \mathtt{annot}(\tau_3, \varepsilon)$ with ε .

By ε -APP, we get $\hat{\Gamma}$, annot (Γ, ε) , $y : \hat{\tau} \vdash \mathtt{annot}(e_1 \ e_2, \varepsilon) : \mathtt{annot}(\tau_3, \varepsilon)$ with ε .

Case: T-OPERCALL Then Γ, y : erase $(\hat{\tau}) \vdash e_1.\pi$: Unit.

By inversion we get the sub-derivation $\Gamma, y : \mathbf{erase}(\hat{\tau}) \vdash e_1 : \{\bar{r}\}.$

By definition, annot($\{\bar{r}\}, \varepsilon$) = $\{\bar{r}\}$.

By inductive assumption, $\hat{\Gamma}$, annot (Γ, ε) , $y : \hat{\tau} \vdash e_1 : \{\bar{r}\}\$ with $\varepsilon \cup \text{effects}(\text{annot}(\Gamma, \varepsilon))$.

By ε -OperCall, $\hat{\Gamma}$, annot $(\Gamma, \varepsilon), y : \hat{\tau} \vdash e_1.\pi : \{\bar{r}\}$ with $\varepsilon \cup \{\bar{r}.\pi\}$.

It remains to show $\{\bar{r}.\pi\}\subseteq \varepsilon$. We shall do this by considering where r must have come from (which subcontext left of the turnstile).

Subcase 1. $r = \hat{\tau}$. As $\varepsilon = \text{effects}(\hat{\tau})$, then $r.\pi \in \text{effects}(\hat{\tau})$.

Subcase 2. $r: \{r\} \in \Gamma$. As annot $(r, \varepsilon) = r$, then $r.\pi \in \text{annot}(\Gamma, \varepsilon)$.

Subcase 3. $r:\{r\}\in \hat{\Gamma}$. Then because $\Gamma,y:\mathtt{erase}(\hat{\tau})\vdash e_1:\{\bar{r}\}$, then $r\in\Gamma$ or $r=\mathtt{erase}(\hat{\tau})=\hat{\tau}$ and one of the above subcases must also hold.