Clustering

Lecture series "Machine Learning"

Niels Landwehr

Research Group "Data Science" Institute of Computer Science University of Hildesheim

Agenda

- Deterministic approach: K-means
- Probabilistic approach: Gaussian mixture models

Agenda

- Deterministic approach: K-means
- Probabilistic approach: Gaussian mixture models

Motivation: The Clustering Problem

- The problem of clustering is to partition a given set of instances into several clusters (groups) of instances such that instances within one group are similar
- More formally, we are given instances $\mathbf{x}_1,...,\mathbf{x}_N \in \mathcal{X}$, where for this lecture we assume that instances are given by feature vectors, that is, $\mathcal{X} = \mathbb{R}^M$

Example: 272 instances $\mathbf{x}_n \in \mathbb{R}^2$

• We are looking for an assignment of these instances to clusters 1,...,K

Example: assignment to *K=2* clusters

Application Example Clustering

- Example application for clustering: find spam campaigns in email data
 - A spam campaign is a large set of similar (but not identical) emails
 - Emails can be represented as vectors, for example using a bag-of-words representation
 - After clustering, all emails of a spam campaign should form one large cluster

Hello, This is Terry Hagan. We are accepting your mortgage application.

Our company confirms you are legible for a \$250

minute, so please fill out the form of your mortgage application. Best Regards, Terry Hagan; Senior Trades/Fin ance Department North

loan for a \$380.00/month. Approval Dear Mr/Mrs, This is Brenda Dunn. We are accepting

Our office confirms you can get a \$228,000 lo an for a \$371.00 per month payment. Follow the link to our website and submit your contact information.

Best Regards, Brenda Dunn; Accounts Manager Trades/Fin ance Department East Office

Deterministic Clustering

• In **deterministic clustering** approaches, the assignment of instances to clusters is "hard" in the sense that every instance is assigned exactly one cluster. More formally:

Given

- A set of instances $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^M$
- A number of clusters K
 Can be problematic: how should we know K?
- Find
 - Assignment of instances to clusters

$$\mathbf{r}_{n} \in \{0,1\}^{K} \qquad r_{nk} = \begin{cases} 1: x_{n} \text{ is assigned to cluster } k \\ 0: \text{ otherwise} \end{cases} \qquad \text{e.g. } \mathbf{r}_{n} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Cluster centers

$$\mathbf{u}_1,...,\mathbf{\mu}_K \in \mathbb{R}^M$$

Deterministic Clustering

- The idea in clustering is that all instances assigned to one cluster are similar
- To measure similarity, we can for example use Euclidian distance and require that all instances within a cluster are close together in terms of Euclidian distance
- A natural formalization of this objective in the deterministic case is the following:

Minimize

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} || \mathbf{x}_{n} - \mathbf{\mu}_{k} ||^{2}$$
Distance of \mathbf{x}_{n} to cluster center

in
$$\mathbf{r}_1,...,\mathbf{r}_N$$
 and $\boldsymbol{\mu}_1,...,\boldsymbol{\mu}_k$

K-Means Algorithm

Optimization problem:

$$\arg\min_{\substack{\mathbf{r}_1,\dots,\mathbf{r}_N\\\boldsymbol{\mu}_1,\dots,\boldsymbol{\mu}_K}} J = \sum_{n=1}^N \sum_{k=1}^K |r_{nk}| ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2$$

- Simultaneously minimizing the objective in $\mathbf{r}_1,...,\mathbf{r}_N$ and $\boldsymbol{\mu}_1,...,\boldsymbol{\mu}_k$ is difficult
- Instead, use an iterative optimization algorithm as follows ("K-Means clustering"):
 - Start with random cluster centers $\mu_1,...,\mu_K$
 - Update

$$\mathbf{r}_{1}^{new},...,\mathbf{r}_{N}^{new} = \arg\min_{\mathbf{r}_{1},...,\mathbf{r}_{N}} \sum_{n=1}^{N} \sum_{k=1}^{K} |r_{nk}| |\mathbf{x}_{n} - \mathbf{\mu}_{k}||^{2}$$
 "Expectation step"

$$\boldsymbol{\mu}_{1}^{new}, ..., \boldsymbol{\mu}_{K}^{new} = \arg\min_{\boldsymbol{\mu}_{1}, ..., \boldsymbol{\mu}_{K}} \sum_{n=1}^{N} \sum_{k=1}^{K} |r_{nk}| |\mathbf{x}_{n} - \boldsymbol{\mu}_{k}||^{2}$$
"Maximization step"

- Iterate until convergence
- Algorithm will always convergence (because objective decreases), but generally only to local optimum

K-Means: Expectation Step

• The expectation step in K-Means is

$$\mathbf{r}_{1}^{new},...,\mathbf{r}_{N}^{new} = \arg\min_{\mathbf{r}_{1},...,\mathbf{r}_{N}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_{n} - \mathbf{\mu}_{k}\|^{2}$$

• Simple: just assign every point to the nearest cluster center

$$r_{nk}^{new} = \begin{cases} 1: & \text{if } k = \arg\min_{j} || \mathbf{x}_{n} - \mathbf{\mu}_{j} || \\ 0: & \text{otherwise} \end{cases}$$

K-Means: Maximization Step

The maximization step in K-Means is

$$\mu_1^{new}, ..., \mu_K^{new} = \arg\min_{\mu_1, ..., \mu_K} \sum_{n=1}^{N} \sum_{k=1}^{K} |r_{nk}| ||\mathbf{x}_n - \mu_k||^2$$

By setting the derivative to zero, it can be shown that the solution is

• K-Means example (instance space \mathbb{R}^2 , K=2)

Start: Initialize cluster center μ_1, μ_2 randomly

• K-Means example (instance space \mathbb{R}^2 , K=2)

Expectation step:

$$r_{nk}^{new} = \begin{cases} 1: & \text{if } k = \arg\min_{j} || \mathbf{x}_{n} - \mathbf{\mu}_{j} || \\ 0: & \text{otherwise} \end{cases}$$

• K-Means example (instance space \mathbb{R}^2 , K=2)

Maximization step:

$$\mathbf{\mu}_{k}^{new} = \frac{\sum_{n} r_{nk} \mathbf{X}_{n}}{\sum_{n} r_{nk}}$$

• K-Means example (instance space \mathbb{R}^2 , K=2)

Expectation step:

$$r_{nk}^{new} = \begin{cases} 1: & \text{if } k = \arg\min_{j} || \mathbf{x}_{n} - \mathbf{\mu}_{j} || \\ 0: & \text{otherwise} \end{cases}$$

• K-Means example (instance space \mathbb{R}^2 , K=2)

Maximization step:

$$\mathbf{\mu}_{k}^{new} = \frac{\sum_{n} r_{nk} \mathbf{X}_{n}}{\sum_{n} r_{nk}}$$

• K-Means example (instance space \mathbb{R}^2 , K=2)

Expectation step:

$$r_{nk}^{new} = \begin{cases} 1: & \text{if } k = \arg\min_{j} || \mathbf{x}_{n} - \mathbf{\mu}_{j} || \\ 0: & \text{otherwise} \end{cases}$$

• K-Means example (instance space \mathbb{R}^2 , K=2)

Maximization step:

$$r_{nk}^{new} = \begin{cases} 1: & \text{if } k = \arg\min_{j} \| \mathbf{x}_{n} - \mathbf{\mu}_{j} \| \\ 0: & \text{otherwise} \end{cases}$$

K-Means: Cost Function Falling

During optimization, the cost function falls continuously

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} || \mathbf{x}_{n} - \mathbf{\mu}_{k} ||^{2}$$

K-Means: Advantages and Disadvantages

- Advantages and disadvantages of K-Means algorithm can be characterized as follows:
 - ② easy to implement
 - ─ relatively fast, O(NK) per iteration
 - Only local optimum: different initializations will lead to different results
 - And clustering makes "hard" decision even for instances that possibly cannot be clearly assigned to a single cluster. Does not account for uncertainty

Probabilistic Approaches to Clustering

- One central disadvantage of K-Means clustering is that the final clustering does not take into account the remaining uncertainty
- Probabilistic clustering approaches model cluster memberships probabilistically, and thereby account for uncertainty

Agenda

- Deterministic approach: K-means
- Probabilistic approach: Gaussian mixture models

Probabilistic Clustering: Gaussian Mixture Model

- We will now talk about a probabilistic model for clustering called the Gaussian mixture model
- Idea: Define a generative model that could have generated the observed data
- Model has parameters $\theta = (\pi, \mu, \Sigma)$

Generative Process

- Assumed generative process that has produced the observed data:
 - Randomly choose a cluster from a distribution over clusters
 - Generate an instance for that cluster based on a cluster-specific distribution

- The generative process defined by the model involves the following random variables:
 - Cluster membership z: encoded in the same way as variable r for K-Means

$$\mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \\ \dots \\ z_n \end{pmatrix} \qquad z_k = \begin{cases} 1 : \mathbf{x} \text{ in cluster } k \\ 0 : \text{otherwise} \end{cases} \qquad \text{e.g. } \mathbf{z} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

e.g.
$$\mathbf{z} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 Instance assigned to cluster 3 of 3

Generated (observed) instance x from a cluster-specific distribution

Generative Process

 Generative process for instances consists of (1) choosing a cluster and (2) generating an instance from a cluster-specific distribution

(1) Distribution over cluster membership variable z: multinomial

Parameter vector
$$\ m{\pi}=(\pi_1,...,\pi_K), \quad \sum_{k=1}^K \pi_k=1$$
 $p(z_k=1)=\pi_k$

$$p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}$$
 All factors equal to one except for one

Generative Process

 Generative process for instances consists of (1) choosing a cluster and (2) generating an instance from a cluster-specific distribution

(2) Distribution over instances within cluster: multivariate normal

$$p(\mathbf{x} \mid z_k = 1) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Cluster-specific parameters of normal distribution: mean vector μ_k and covariance matrix Σ_k

$$p(\mathbf{x} \mid \mathbf{z}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})^{z_{k}}$$
 Again, all factors equal to one except for one

Parameter: $\mu = (\mu_1, ..., \mu_K)$ (cluster centers); $\Sigma = (\Sigma_1, ..., \Sigma_K)$ (covariance matrices)

Instance Distribution Within Cluster

Distribution over instances within one cluster: multivariate normal

Normal distribution with mean vector
$$\mathbf{\mu}_{k} \in \mathbb{R}^{M} \text{ and covariance matrix } \mathbf{\Sigma}_{k} \in \mathbb{R}^{M \times M}$$

$$p(\mathbf{x} \mid \mathbf{Z}_{k} = 1) = \mathcal{N}(\mathbf{x} \mid \mathbf{\mu}_{k}, \mathbf{\Sigma}_{k})$$

$$= \frac{1}{Z} \exp \left(-\frac{1}{2} (\mathbf{x} - \mathbf{\mu}_{k})^{T} \mathbf{\Sigma}_{k}^{-1} (\mathbf{x} - \mathbf{\mu}_{k}) \right)$$

Normalizer

$$Z = 2\pi^{M/2} |\mathbf{\Sigma}|^{1/2}$$

• Example *M*=2:

Density function

Samples from distribution

Instance Distribution Within Cluster

- Interpretation of the parameters μ_k , Σ_k of the cluster-specific normal distributions:
 - Parameter $\mathbf{\mu}_k \in \mathbb{R}^M$ is the center of the cluster
 - covariance matrix $\Sigma_k \in \mathbb{R}^{M \times M}$ describes the shape of the cluster, that is, how instances scatter around the mean

$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$x_2$$
 x_1
 x_1

$$\mathbf{\Sigma} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{\Sigma} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\mathbf{\Sigma} = \begin{pmatrix} 2.5 & 1.5 \\ 1.5 & 2.5 \end{pmatrix}$

Example Full Gaussian Mixture Model

- The overall model is called a "Gaussian mixture model", because the instance distribution the model defines is a mixture of Gaussian distributions
- Example: K=3, drawing 300 instances from the model

$$\mu_{1} \approx \begin{pmatrix} 0.2 \\ 0.4 \end{pmatrix}$$

$$\mu_{2} \approx \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

$$\mu_{3} \approx \begin{pmatrix} 0.8 \\ 0.6 \end{pmatrix}$$

The cluster membership \mathbf{z} is an internal state of the model. If we only observe the generated instances \mathbf{x} , the model will generate the data set on the right.

Graphical Model Visualization

- The full model and generated data can be represented as a graphical model as follows
- We draw N instances from the model, resulting in random variables $\mathbf{z}_1,...,\mathbf{z}_N \in \mathbb{R}^K$ and random variables $\mathbf{x}_1,...,\mathbf{x}_N \in \mathbb{R}^M$

Using Gaussian Mixture Models For Clustering

- The introduced Gaussian mixture model defines a distribution over instances, by defining a generative process for instances
- The instance distribution takes the form of (generally overlapping) clusters, with the size, form and location of clusters determined by the model parameters
- We now want to use this model for clustering:
 - Given a set of instances $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^M$
 - Find cluster assignments $\mathbf{z}_1, ..., \mathbf{z}_N \in \mathbb{R}^K$

 This will be achieved by fitting the model to the instance distribution, that is, learn the model parameters from data, and then infer cluster memberships

Learning Gaussian Mixture Models From Data

- Problem setting: Learning Gaussian mixture models from data
 - Given: data set $\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_N)$ with $\mathbf{x}_n \in \mathbb{R}^M$ and number of clusters K
 - Find: parameters $\theta = (\pi, \mu, \Sigma)$ of Gaussian mixture model
- Learn model parameters by maximizing the likelihood:

$$\arg \max_{\boldsymbol{\theta}} p(\mathbf{X} \mid \boldsymbol{\theta}) = \arg \max_{\boldsymbol{\theta}} \prod_{n=1}^{N} p(\mathbf{x}_{n} \mid \boldsymbol{\theta}) \qquad (i.i.d)$$

$$= \arg \max_{\boldsymbol{\theta}} \prod_{n=1}^{N} \sum_{\mathbf{z}_{n}} p(\mathbf{x}_{n}, \mathbf{z}_{n} \mid \boldsymbol{\theta})$$

$$= \arg \max_{\boldsymbol{\theta}} \prod_{n=1}^{N} \sum_{\mathbf{z}_{n}} p(\mathbf{z}_{n} \mid \boldsymbol{\pi}) p(\mathbf{x}_{n} \mid \mathbf{z}_{n}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
The product of sums is difficult to optimize

Maximum Likelihood for Complete Data

- Let's simplify the problem for the time being and assume that we have complete data available: both the $\mathbf{x}_1,...,\mathbf{x}_N$ and the cluster memberships $\mathbf{z}_1,...,\mathbf{z}_N$ are observed
- This is of course unrealistic (we do not know cluster memberships)
- Maximum likelihood for the complete data is given by

$$\mathbf{\theta}^* = \arg\max_{\mathbf{\theta}} p(\mathbf{X}, \mathbf{Z} | \mathbf{\theta}) \qquad \text{define } \mathbf{Z} = (\mathbf{z}_1, ..., \mathbf{z}_N)$$

$$= \arg\max_{\mathbf{\theta}} \prod_{n=1}^{N} p(\mathbf{z}_n | \boldsymbol{\pi}) p(\mathbf{x}_n | \mathbf{z}_n, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$= \arg\max_{\mathbf{\theta}} \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}}$$
Switch to log likelihood
$$= \arg\max_{\mathbf{\theta}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} (\log(\pi_k) + \log(\mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)))$$
Easier to optimize (only sums)

Maximum Likelihood for Complete Data

• For the complete data maximum likelihood problem, there are closed-form solutions:

$$\pi_k^* = \frac{N_k}{N}$$

$$N_k = \sum_{n=1}^{N} Z_{nk}$$
 Number of points that fall into cluster k

$$\boldsymbol{\mu}_k^* = \frac{1}{N_k} \sum_{n=1}^N z_{nk} \mathbf{x}_n$$

$$\mathbf{\Sigma}_{k}^{*} = \frac{1}{N_{k}} \sum_{n=1}^{N} Z_{nk} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{*}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{*})^{T}$$

standard maximum likelihood parameter estimates for normal distribution

Optimizing the Partial Data Likelihood?

- Of course, we do not know the cluster memberships, therefore $\mathbf{Z} = \mathbf{z}_1,...,\mathbf{z}_N$ is unknown
- Therefore, in practice, we have to solve the more difficult problem

$$\mathbf{\theta}^* = \arg \max_{\mathbf{\theta}} p(\mathbf{X} | \mathbf{\theta})$$

$$= \arg \max_{\mathbf{\theta}} \prod_{n=1}^{N} \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{\pi}) p(\mathbf{x}_n | \mathbf{z}_n, \mathbf{\mu}, \mathbf{\Sigma})$$

We will solve this with the so-called EM-algorithm ("expectation-maximization algorithm")

EM Algorithm: Update Step

- EM-Algorithm: iterative optimization method where we compute a sequence of parameter vectors $\theta_1, \theta_2, \theta_3, ...$
- We compute θ_{t+1} by maximizing the expectation of the full data likelihood
 - The observable data \mathbf{X} and the current parameter values $\mathbf{\theta}_{t}$ together define a conditional distribution $p(\mathbf{Z} | \mathbf{X}, \mathbf{\theta}_{t})$ over the cluster memberships
 - This distribution implies an expectation of the complete data likelihood $\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \mathbf{\theta}) | \mathbf{X}, \mathbf{\theta}_{t}]$
 - This is the so-called Q-function:

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}_t) = \mathbb{E}_{\mathbf{Z}}[\underbrace{\log p(\mathbf{X}, \mathbf{Z} \,|\, \boldsymbol{\theta})}_{\text{complete data log-likelihood}} |\, \mathbf{X}, \boldsymbol{\theta}_t]$$

EM-Algorithm

- The EM-Algorithm consists of iterated maximizations of the Q-function:
 - Start with a random initialization of the model parameters, called θ_0
 - Iterate *t*=0,1,2,...
 - Expectation: compute $Q(\theta, \theta_t) = \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \theta) | \mathbf{X}, \theta_t]$
 - Maximization: compute $\theta_{t+1} = \arg \max_{\theta} Q(\theta, \theta_t)$
- Theorem: every step of the EM-Algorihtm increases the partial-data likelihood:

$$p(\mathbf{X} | \mathbf{\theta}_{t+1}) \ge p(\mathbf{X} | \mathbf{\theta}_{t})$$

 Therefore, the algorithm will converge to a local optimum (global optimum not guaranteed)

Expectation Step in EM Algorithm

• Expectation step: calculate $Q(\theta, \theta_t) = \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \theta) | \mathbf{X}, \theta_t]$

$$\begin{split} Q(\boldsymbol{\theta}, \boldsymbol{\theta}_t) &= \mathbb{E}_{\mathbf{Z}} \Big[\log p(\mathbf{X}, \mathbf{Z} \,|\, \boldsymbol{\theta}) \,|\, \mathbf{X}, \boldsymbol{\theta}_t \Big] \\ &= \sum_{\mathbf{Z}} p(\mathbf{Z} \,|\, \mathbf{X}, \boldsymbol{\theta}_t) \log p(\mathbf{X}, \mathbf{Z} \,|\, \boldsymbol{\theta}) & \text{Definition of expectation of a random variable} \\ &= \sum_{\mathbf{Z}} p(\mathbf{Z} \,|\, \mathbf{X}, \boldsymbol{\theta}_t) \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} (\log \pi_k + \log \mathcal{N}(\mathbf{x}_n \,|\, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)) & \text{Plugging in complete data log-likelihood} \\ &= \sum_{n=1}^{N} \sum_{k=1}^{K} \sum_{k=1} p(\mathbf{Z} \,|\, \mathbf{X}, \boldsymbol{\theta}_t) z_{nk} (\log \pi_k + \log \mathcal{N}(\mathbf{x}_n \,|\, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)) \\ &= \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E} \big[z_{nk} \,|\, \mathbf{X}, \boldsymbol{\theta}_t \big] (\log \pi_k + \log \mathcal{N}(\mathbf{x}_n \,|\, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)) \end{split}$$

Expectation Step in EM Algorithm

- Q-Function is identical to complete data log-likelihood, except that cluster membership indicators z_{nk} are replaced by their expectations $\mathbb{E}[z_{nk} \mid \mathbf{X}, \mathbf{\theta}_t]$:
 - Complete data log-likelihood:

$$\log p(\mathbf{X}, \mathbf{Z} \mid \mathbf{\theta}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} (\log(\pi_k) + \log(\mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)))$$

- Q-Function:

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}_t) = \sum_{n=1}^{N} \sum_{k=1}^{K} \underbrace{\mathbb{E}[z_{nk} \mid \mathbf{X}, \boldsymbol{\theta}_t]}_{\text{"Responsibilities" } \gamma(z_{nk})} (\log(\pi_k) + \log(\mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k))$$

• The expectations of the cluster membership indicators z_{nk} are also called "responsibilities": to what extend is cluster k "responsible" for instance n

Computing Responsibilities

• The responsibilities can be computed from the current model θ_i as follows:

$$\begin{split} \gamma(z_{nk}) &\coloneqq \mathbb{E}[z_{nk} \mid \mathbf{X}, \mathbf{\theta}_t] = p(z_{nk} = 1 \mid \mathbf{X}, \mathbf{\theta}_t) \\ &= p(z_{nk} = 1 \mid \mathbf{x}_n, \mathbf{\theta}_t) \\ &= \frac{p(z_{nk} = 1, \mathbf{x}_n \mid \mathbf{\theta}_t)}{p(\mathbf{x}_n \mid \mathbf{\theta}_t)} \end{split}$$
 Definition conditional probability
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \mathbf{\mu}_k, \mathbf{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n \mid \mathbf{\mu}_j, \mathbf{\Sigma}_j)}$$
 Plugging in model

- Responsibilities $\gamma(z_{nk})$:
 - Probability that the instance \mathbf{x}_n should be assigned to cluster k
 - Can be seen as "soft" cluster assignments

Maximization Step

• Maximization step: maximize in $\theta = (\pi, \mu, \Sigma)$:

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}_t) = \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta}) | \mathbf{X}, \boldsymbol{\theta}_t]$$

• Result of maximization is almost the same as for complete data likelihood, just with the cluster memberships z_{nk} replaced with the responsibilities $\gamma(z_{nk})$

$$\pi_k^* = \frac{N_k}{N}$$

Expected fraction of instances in cluster k

$$N_k = \sum_{n=1}^N \gamma(z_{nk})$$

Expected number of instances in cluster k

$$\mathbf{\mu}_{k}^{*} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n}$$
 Weighted average of instances in cluster k

$$\Sigma_k^* = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k^*) (\mathbf{x}_n - \boldsymbol{\mu}_k^*)^T \quad \text{Weighted covariance for cluster } k$$

EM-Algorithm: Summary

- Summary of EM-Algorithm:
 - Start with randomly initialized π, μ, Σ
 - For t=0,1,2,... until convergence:
 - Expectation step: compute responsibilities

$$\gamma(z_{nk}) = \mathbb{E}[z_{nk} \mid \mathbf{X}, \mathbf{\theta}_t] = p(z_{nk} = 1 \mid \mathbf{X}, \mathbf{\theta}_t)$$

Maximization step:

$$\pi_k^* = \frac{N_k}{N} \qquad N_k = \sum_{n=1}^N \gamma(z_{nk})$$

$$\mu_k^* = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

$$\Sigma_k^* = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k^*) (\mathbf{x}_n - \boldsymbol{\mu}_k^*)^T$$

Gaussian mixture model with EM can be seen as a soft version of K-Means

Beyond K-Means and Mixture Models

- K-Means and mixture models are only one possible approach to clustering
- Many other approaches exist
- For example, in **hierarchical clustering** we find a hierarchy of cluster assignments:
 - at the lowest level, each instance is one cluster
 - at the highest level, all instances fall into one cluster
 - in between we have clusterings of different granularity

Summary: Clustering

- Problem setting of clustering:
 - Given a set of instances and a number of clusters
 - Find an assigment of instances to clusters and cluster centers/shapes
- K-Means is a simple deterministic algorithm for clustering
 - Advantages: fast, simple
 - Disadvantages: no characterization of uncertainty, only local optimum
- Gaussian mixture models approach the clustering problem by defining a generative model for instances that represents a cluster structure
- Learning the model from data using the EM-algorithm solves the clustering problem
- Gaussian mixture models with the EM-Algorithm can be seen as a probabilistic version of the K-Means algorithm

Further Reading

Further reading: Bishop 2006, Chapter 8

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.