Наилучшие равномерные приближения. Экономизация степенных рядов

Задача №3

- 1) Проведите экономизацию полинома, построенного для вычисления функции $f(x) = e^x$ на отрезке $x \in [-1;1]$ на основе формулы Тейлора по степеням x, усеченной до степени n=4 включительно (то есть степень остатка не менее n+1=5).
- 2) Оцените погрешность применения на отрезке $x \in [-1; 1]$ экономизированного полинома.
- 3) Сравните погрешность применения экономизированного полинома с погрешностью применения на отрезке $x \in [-1;1]$ «другой» формулы Тейлора, изначально усеченной до той степени, которую имеет экономизированный полином.
- 4) Проведите повторную экономизацию (то есть еще одно понижение степени уже экономизированного полинома) и анализ погрешности применения нового полинома.

Решение

Шаг 1

Для функции e^{x} запишем формулу Тейлора

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} e^{\xi}, \ \xi \in [0; x]$$

Остаток представлен в форме Лагранжа.

Шаг 2

С целью приближенного вычисления e^x используем полином $S_4(x)$ степени n=4 , полученный **усечением формулы**, то есть

1

$$e^x \approx S_A(x)$$
, где

$$S_4(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$$

Шаг 3

Погрешность применения $S_4(x)$ в точке x (то есть погрешность усечения) составит

$$E(x) = e^x - S_4(x) = \frac{x^5}{5!} e^{\xi}, \ \xi \in [0; x]$$

При $x \in [-1; 1]$ верна оценка

$$\max_{\xi \in [-1;1]} \left| e^{\xi} \right| \le e$$

поэтому для погрешности усечения формулы Тейлора верна оценка

$$\max_{x \in [-1,1]} |E(x)| \le \frac{e}{5!} = \frac{e}{120}$$

то есть

$$\max_{x \in [-1;1]} |E(x)| \le 0.02265$$

Шаг 4

Чтобы провести **экономизацию** полинома $S_4(x)$ при $x \in [-1;1]$,

нужен полином Чебышёва степени n=4, наименее уклоняющийся от нуля на отрезке [-1;1] в классе полиномов степени n=4 со старшим коэффициентом, равным единице (название у него такое, короче нельзя).

Такой полином обозначим $T_4(x)$.

Комментарий

То, что выше сказано о $T_4(x)$ текстом, записывают так:

 $T_4(x)$ есть решение задачи

$$\max_{x \in [-1;1]} |P_4(x)| \to \min$$

когда в качестве $P_4(x)$ рассматривают все полиномы степени n=4, у которых коэффициент при x^4 равен единице.

Шаг 5

Чтобы записать $T_4(x)$, используем сведения о его корнях:

$$x_s = \cos\left(\frac{\pi}{2\cdot 4}(1+2s)\right), \quad s = 0,...3$$

и учтем, что старший коэффициент полинома равен единице.

Поэтому

$$T_4(x) = (x - \cos\frac{\pi}{8})(x - \cos\frac{3\pi}{8})(x - \cos\frac{5\pi}{8})(x - \cos\frac{7\pi}{8})$$

После преобразований получим

$$T_4(x) = \left(x^2 - \cos^2\left(\frac{\pi}{8}\right)\right) \cdot \left(x^2 - \cos^2\left(\frac{3\pi}{8}\right)\right) = x^4 - x^2 + \frac{1}{8}$$

Шаг 6

Запишем максимальное по модулю значение, которое принимает на отрезке [-1;1] полином Чебышёва $T_4(x)$:

$$\max_{x \in [-1; 1]} |T_4(x)| = \frac{1}{2^{4-1}} = \frac{1}{2^3} = \frac{1}{8}$$

Шаг 7

Проведем **экономизацию** полинома $S_4(x)$ при $x \in [-1;1]$.

Для этого в формуле полинома $S_4(x)$ заменим x^4 полиномом $\{x^4-T_4(x)\}$. Полином, полученный после замены, обозначим $S_3^*(x)$:

$$S_3^*(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{\{x^4 - T_4(x)\}}{4!}$$

Полином $S_3^*(x)$ можно записывать разными способами, перечислим их:

$$S_3^*(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{\left\{x^4 - \left(x^4 - x^2 + \frac{1}{8}\right)\right\}}{4!}$$

(здесь видно, как получен $S_3^*(x)$)

$$S_3^*(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{\{x^2 - \frac{1}{8}\}}{4!}$$

(здесь видно, что $S_3^*(x)$ не содержит степени 4 и отличается от $S_4(x)$ только последним слагаемым)

$$S_3^*(x) = \left(1 - \frac{1}{8 \cdot 24}\right) + x + \left(\frac{1}{2} + \frac{1}{24}\right) \cdot x^2 + \frac{x^3}{6}$$
, то есть

$$S_3^*(x) = \frac{191}{192} + x + \frac{13}{24} \cdot x^2 + \frac{x^3}{6}$$

(здесь видно, как нужно вычислять (программировать) $S_3^*(x)$)

Шаг 8

Погрешность применения $S_3^*(x)$ в точке x для вычисления e^x (по определению) составит

$$E^*(x) = e^x - S_3^*(x)$$

По Утверждению 3, для погрешности при $x \in [-1;1]$ верна оценка

$$\max_{x \in [-1; 1]} \left| E^*(x) \right| \le \frac{e}{5!} + \frac{1}{2^3 \cdot 4!},$$

то есть

$$\max_{x \in [-1; 1]} \left| E^*(x) \right| \le \frac{e}{120} + \frac{1}{192} = 0.02786$$

Здесь $\frac{e}{120}$ – оценка погрешности усечения, то есть замены e^x полиномом $S_4(x)$;

$$rac{1}{2^3 \cdot 4!}$$
 – погрешность экономизации, то есть замены $S_4(x)$ полиномом $S_3^*(x)$.

Комментарии и выводы

Как и следовало ожидать, применение экономизированного $S_3^*(x)$ имеет несколько большую погрешность, чем применение усеченной формулы Тейлора $S_4(x)$

$$\max_{x \in [-1;1]} \left| e^x - S_4(x) \right| \le 0.02265$$

$$\max_{x \in [-1; 1]} \left| e^x - S_3^*(x) \right| \le 0.02786$$

Напомним: экономизация не уменьшает, а **увеличивает** погрешность применения формулы, но снижает **вычислительную погрешность** (которая здесь не показана), потому что вычисляются полиномы меньших степеней.

Шаг 9

Сравним, что в данном случае полезнее:

использовать экономизированный полином степени 3

$$S_3^*(x) = \frac{191}{192} + x + \frac{13}{24} \cdot x^2 + \frac{x^3}{6}$$

или записать формулу Тейлора в виде

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} e^{\xi}, \qquad \xi \in [0; x]$$

и применять ее усечение до степени 3.

Усечение до степени 3 имеет вид

$$S_3(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$$

Погрешность применения полинома $S_{3}\left(x\right)$ в точке x составит

$$E_3(x) = e^x - S_3(x) = \frac{x^4}{4!} e^{\xi}, \ \xi \in [0; x]$$

При $x \in [-1; 1]$ верна оценка

$$\max_{x \in [-1;1]} |E_3(x)| \le \frac{e}{4!} = \frac{e}{24}$$

то есть

$$\max_{x \in [-1;1]} |E_3(x)| \le 0.11326$$

Очевидно, что на отрезке [-1;1] экономизированный полином третьей степени $S_3^*(x)$ даст погрешность в три (почти в четыре) раза меньше , чем усеченная до третьей степени формула Тейлора $S_3(x)$:

$$\max_{x \in [-1; 1]} \left| e^x - S_3^*(x) \right| \le 0.02786$$

$$\max_{x \in [-1; 1]} \left| e^x - S_3(x) \right| \le 0.11326$$

Выводы

$$S_{3}^{*}(x)$$
 лучше, чем $S_{3}^{}(x)$.

Шаг 10

Проведем повторную экономизацию, то есть понизим степень уже экономизированного полинома

$$S_3^*(x) = \frac{191}{192} + x + \frac{13}{24} \cdot x^2 + \frac{x^3}{6}$$

используя **наилучшее равномерное приближение** полинома x^3 на отрезке [-1;1] полиномом меньшей степени.

Потребуется полином Чебышёва степени n=3, наименее уклоняющийся от нуля на отрезке [-1;1] в классе полиномов степени n=3 со старшим коэффициентом, равным единице (как раньше: название такое, сократить нельзя).

Такой полином обозначим $T_3(x)$. Он имеет вид

$$T_3(x) = (x - \cos\frac{\pi}{6})(x - \cos\frac{3\pi}{6})(x - \cos\frac{5\pi}{6})$$

то есть

$$T_3(x) = \left(x^2 - \cos^2\left(\frac{\pi}{6}\right)\right) \cdot x = x^3 - \frac{3}{4} \cdot x$$

Запишем максимальное по модулю значение, которое принимает на отрезке [-1;1] полином $T_3(x)$:

$$\max_{x \in [-1; 1]} |T_3(x)| = \frac{1}{2^{3-1}} = \frac{1}{2^2} = \frac{1}{4}$$

Проведем **экономизацию** $S_3^*(x)$ при $x \in [-1; 1]$.

Для этого в формуле полинома $S_3^*(x)$ заменим x^3 полиномом $\{x^3-T_3(x)\}$. Полином, полученный после замены, обозначим $S_2^{**}(x)$:

$$S_2^{**}(x) = \frac{191}{192} + x + \frac{13}{24} \cdot x^2 + \frac{\{x^3 - T_3(x)\}}{6}$$

то есть

$$S_2^{**}(x) = \frac{191}{192} + x + \frac{13}{24} \cdot x^2 + \frac{\left\{x^3 - \left(x^3 - \frac{3}{4} \cdot x\right)\right\}}{6}$$

или

$$S_2^{**}(x) = \frac{191}{192} + x + \frac{13}{24} \cdot x^2 + \frac{3}{4 \cdot 6} \cdot x$$

$$S_2^{**}(x) = \frac{191}{192} + \frac{9}{8} \cdot x + \frac{13}{24} \cdot x^2$$

Шаг 11

Исследуем погрешность применения новой формулы.

Погрешность применения $S_2^{**}(x)$ в точке x для вычисления e^x (по определению) составит

$$E^{**}(x) = e^x - S_2^{**}(x)$$

Запишем эту погрешность, вычитая и добавляя удобные для анализа величины:

$$E^{**}(x) = e^x - S_2^{**}(x) = \underbrace{e^x - S_4(x)}_{norpeuhocmb} + \underbrace{S_4(x) - S_3^*(x)}_{norpeuhocmb} + \underbrace{S_3^*(x) - S_2^{**}(x)}_{norpeuhocmb}$$
 погрешность повторной экономизации

Для первых двух компонент погрешности оценки уже получены (см. Утверждение 3).

Напомним, что $S_3^*(x)$ и $S_2^{**}(x)$ отличаются только последним слагаемым:

$$S_3^*(x) = \frac{191}{192} + x + \frac{13}{24} \cdot x^2 + \frac{x^3}{6}$$

$$S_2^{**}(x) = \frac{191}{192} + x + \frac{13}{24} \cdot x^2 + \frac{\{x^3 - T_3(x)\}}{6}$$

Поэтому

$$S_3^*(x) - S_2^{**}(x) = T_3(x) \cdot \frac{1}{6}$$

и на отрезке [-1;1] справедлива оценка

$$\max_{x \in [-1; 1]} \left| S_3^*(x) - S_2^{**}(x) \right| = \frac{1}{6} \cdot \max_{x \in [-1; 1]} \left| T_3(x) \right| = \frac{1}{6 \cdot 4}$$

Таким образом, для погрешности применения $S_2^{**}(x)$ в точке x для вычисления e^x при $x \in [-1;1]$ доказана оценка

$$\max_{x \in [-1, 1]} \left| E^{**}(x) \right| \le \frac{e}{5!} + \frac{1}{2^3 \cdot 4!} + \frac{1}{6 \cdot 4}.$$

то есть

$$\max_{x \in [-1; 1]} \left| e^x - S_2^{**}(x) \right| \le 0.06953$$

Комментарии и выводы

Повторная экономизация (степень полинома 2) приводит к заметному росту начальной погрешности усечения:

$$\max_{x \in [-1; 1]} \left| e^x - S_2^{**}(x) \right| \le 0.06953$$

что намного хуже, чем усеченная до степени 4 формула Тейлора

$$\max_{x \in [-1;1]} \left| e^x - S_4(x) \right| \le 0.02265$$

намного хуже, чем экономизированный на ее основе полином степени 3

$$\max_{x \in [-1; 1]} \left| e^x - S_3^*(x) \right| \le 0.02786$$

но не хуже, а лучше

формулы Тейлора, усеченной до степени 3:

$$\max_{x \in [-1; 1]} \left| e^x - S_3(x) \right| \le 0.11326$$

Выбор формулы для вычисления экспоненты остается на усмотрение исследователя.