13. 4. 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 1月30日

REC'D 0.3 JUN 2004

WIPO

PCT

出願番号 Application Number:

特願2004-022719

[ST. 10/C]:

[JP2004-022719]

日本曹達株式会社

出 願 人 Applicant(s):

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 5月21日

今井康

BEST AVAILABLE COPY

【書類名】 特許願 【整理番号】 03P00109 【あて先】 特許庁長官殿 【国際特許分類】 C07C211/09 【発明者】 【住所又は居所】 神奈川県小田原市高田345 日本曹達株式会社 小田原研究所 【氏名】 梅田 信広 【発明者】 【住所又は居所】 神奈川県小田原市高田345 日本曹達株式会社 小田原研究所 内 【氏名】 望月 信夫 【発明者】 【住所又は居所】 神奈川県小田原市高田345 日本曹達株式会社 小田原研究所 内 【氏名】 内田 誠一 【発明者】 【住所又は居所】 神奈川県小田原市高田345 日本曹達株式会社 小田原研究所 内 【氏名】 池山 聖一 【特許出願人】 【識別番号】 000004307 【氏名又は名称】 日本曹達株式会社 【代表者】 井上 克信 【代理人】 【識別番号】 100113860 【弁理士】 【氏名又は名称】 松橋 泰典 【先の出願に基づく優先権主張】 【出願番号】 特願2003-109665 【出願日】 平成15年 4月14日 【手数料の表示】 【予納台帳番号】 044347 【納付金額】 21,000円

特許請求の範囲 1

1

明細書

要約書 1

0303064

【提出物件の目録】 【物件名】

【物件名】

【物件名】

【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

式(1)

【化1】

$$\begin{array}{c|c} CH_2NH_2 \\ H_2N & (CH_2) n \\ R2 & R1 & R3 \\ \end{array}$$
 (1)

(式中、R1、R2、R3、および、R4は、それぞれ独立して、水素原子または C_{1-6} アルキル基を表し、nは、1または2の整数を表す。)で表される化合物。

【請求項2】

式(2)

【化2】

$$R2$$
 (CH_2) n
 $R3$
 $R1$
 $R4$
 (CH_2) n
 (CH_2) R3

(式中、R1、R2、R3、R4、および、nは、前記と同じ意味を表す。)で表される化合物をニトロ化して、式(3)【化3】

$$\begin{array}{c|c}
CH_2NO_2 \\
\hline
0_2N & (CH_2) n \\
R2 & R3 \\
R1 & R4
\end{array}$$
(3)

(式中、R1、R2、R3、R4、および、nは、前記と同じ意味を表す。)で表される化合物を得る工程1、得られた化合物を還元剤を用いてアミノ基に変換する工程2、からなることを特徴とする式(1)

【化4】

$$\begin{array}{c|c} CH_2NH_2 \\ H_2N & (CH_2) n \\ R2 & R1 & R3 \end{array} \tag{1}$$

(式中、R1、R2、R3、R4、および、nは、前記と同じ意味を表す。) で表される化合物の製造法。

【請求項3】

式(1)

【化5】

$$\begin{array}{c|c} CH_2NH_2 \\ H_2N & (CH_2) n \\ R2 & R3 \\ R1 & R4 \end{array}$$
 (1)

(式中、R1、R2、R3、R4、および、nは、前記と同じ意味を表す。) で表される化合物またはその薬学的に許容される塩の1種または2種以上を有効成分とし て含有することを特徴とする、抗酸化薬。

【請求項4】

請求項3記載の抗酸化薬を含有することを特徴とする腎疾患、脳血管又は循環器疾患治療 薬

【請求項5】

請求項3記載の抗酸化薬を含有することを特徴とする脳梗塞治療薬

【請求項6】

請求項3記載の抗酸化薬を含有することを特徴とする網膜の酸化障害抑制薬。

【請求項7】

加齢性黄斑変性症あるいは糖尿病性網膜症等に対する請求項6記載の網膜の障害抑制薬。

【請求項8】

請求項3記載の抗酸化薬を含有することを特徴とするリポキシゲナーゼ阻害薬。

【書類名】明細書

【発明の名称】ジアミン誘導体、製造法及び抗酸化薬 【技術分野】

[0001]

本発明は、新規なジアミン誘導体、その製造法、当該化合物を有効成分とする抗酸化薬 及びこれを用いた腎疾患治療薬、脳血管疾患治療薬、網膜の酸化障害抑制薬、リポキシゲ ナーゼ阻害薬に関する。

【背景技術】

[0002]

近年、生体内での過酸化脂質の生成とそれに付随したラジカル反応が、膜障害や細胞障 害等を介して、生体に種々の悪影響を及ぼすことが明らかになってきた。それに伴い、抗 酸化薬及び過酸化脂質生成抑制薬の医薬への応用が種々試みられており、多種の抗酸化薬 の研究がなされている(例えば、非特許文献 1)。かかる抗酸化薬として、特定のキノン 誘導体を含有する炎症、感染等に基づくエンドトキシンショックの治療及び予防に用いる 医薬組成物 (例えば、特許文献1) や、細胞増殖抑制作用、血管新生抑制作用を有する自 己免疫疾患の治療及び予防に用いるヒドロキサム酸誘導体(例えば、特許文献 2) や、抗 酸化剤、ラジカルスカベンジャーとして有用な2,3ージヒドロベンゾフラン誘導体(例 えば、特許文献3、4、5)等が知られている。また、抗高脂血症作用を有し、動脈硬化 症の治療及び予防に有用なイミダゾール系化合物(例えば、特許文献 6)や、抗関節炎活 性を有する下記式で表されるベンゾチアジンカルボキサミド(例えば、特許文献7)が知 られている。

[0003]

【化1】

$$\begin{array}{c|c}
N & H & H0 \\
0 & N-S0_2
\end{array}$$

更に、カルボニルアミノフェニルイミダゾール誘導体(特許文献8、特許文献9、特許 文献10参照)や、動脈硬化、肝疾患、脳血管障害等の種々の疾患の予防・治療剤として 有用な過酸化脂質生成抑制作用を有するアミノジヒドロベンゾフラン誘導体(特許文献1 1) や、フェニルアゾール化合物を含有する抗高脂血症薬(特許文献12) や、抗酸化防 御系が不十分なときに生じる酸化ストレスの結果生じる脂質、タンパク質、炭水化物およ びDNAに損傷を有意に改善するジヒドロベンゾフラン誘導体(特許文献13)や、脳卒 中および頭部外傷に伴う脳機能障害の改善、治療及び予防に有効である光学活性アミノジ ヒドロベンゾフラン誘導体(特許文献14)等が知られている。

[0004]

エネルギー需要が大きいにもかかわらず、その供給が循環血液に依存していることから 、脳は虚血に対して極めて脆弱である。種々の原因により脳血流が途絶え脳虚血に陥ると ミトコンドリア障害や神経細胞内のカルシウム上昇などが引き金となって活性酸素種が発 生し、また、虚血後の血流再開時には酸素ラジカルが爆発的に発生することが知られてい る。これらの活性酸素種が最終的には脂質、蛋白質、核酸などに対して作用し、それぞれ を酸化させ細胞死を引き起こすと言われている。このような病態に対する治療として抗酸 化薬があり、日本ではエダラボンが脳保護薬として認可され、用いられている。

[0005]

アラキドン酸に代表される不飽和脂肪酸へ酸素を添加するリポキシゲナーゼ(LO)は 、酸素添加部位により、5-LO、8-LO、12-LO及び15-LO等が知られてい

る。このうち5-LOは強力な炎症メディエーターであるロイコトリエンを合成する初発 酵素である。ロイコトリエン類は、喘息、リュウマチ性関節炎、炎症性大腸炎、乾癬等種 々の炎症性疾患に関与しており、その制御は、これらの疾患の治療に有用である。12-LOや15-LOは、アラキドン酸以外にも、リノール酸やコレステロールエステル、リ ン脂質、低比重リポタンパク質(LDL)とも反応し、その不飽和脂肪酸に酸素添加を添 加することが知られている(非特許文献 2)。マクロファージは、スカベンジャー受容体 を介して、酸化修飾されたLDLを無制限に取りこんで泡沫細胞となり、これが、動脈硬 化巣形成の最初のステップとなることは広く知られている。12-L0及び15-L0は 、マクロファージに高レベルで発現しており、LDLの酸化修飾の引き金として必須であ ることも明らかにされている(非特許文献3)。これらの制御は、動脈硬化に起因する各 種疾患の治療に有用である(特許文献15)。

[0006]

白内障や黄班変性症など老化に伴って多発する眼疾患の多くは、フリーラジカル・活性 酸素が関連する酸化的ストレスがその発症要因の一つとして考えられている(例えば、非 特許文献4、5、6)。眼組織中で、網膜は水晶体とともに老化の影響を受けやすい組織 として知られている(例えば、非特許文献 7)。網膜は高級不飽和脂肪酸を多く含むこと 、網膜血管及び脈絡膜血管の両方から栄養を受けており、酸素消費が多いこと等から種々 のフリーラジカルの影響を受けやすく、例えば太陽光など生涯に亘って受ける光は網膜に とっての酸化ストレスの代表的なものである。地上に到達する太陽光の大部分が可視光線 と赤外線とで占められ、そのうち数%含まれる紫外線は可視光線や赤外線に比べ生体との 相互作用が強く健康に与える影響が大きい。紫外線は波長の違いにより、UV-A (32 $0 \sim 4 \ 0 \ 0 \ n \ m$), UV - B (280 $\sim 3 \ 2 \ 0 \ n \ m$), UV - C (190 $\sim 2 \ 8 \ 0 \ n \ m$) 、に区分され、生体に対する作用や強さが異なっているが、これまで、細胞毒性が特に強 い290 nm以下の紫外線は成層圏のオゾン層により吸収され、地上にははとんど到達し ないと考えられてきた。しかしながら、近年、環境破壊が原因と考えられるオゾンホール の出現により、地球に到達する紫外線量が増加し、南半球では紫外線が関連する皮膚障害 や皮膚がんが急増していることからも、網膜に到達するUVーAの影響により、網膜障害 は非常に高くなると考えられている。

[0007]

眼疾患の中で加齢性黄斑変性症は失明度の高い網膜障害であり、アメリカでは1000 万人が軽度の症状を呈しており、45万人以上がこの疾病による視覚障害をもっていると されている(例えば、非特許文献 8)。急激な老齢化社会に突入している日本においても この疾病の増加が懸念される。黄斑変性症の発症のメカニズムは不明な点が多いが、この 病変の進行には網膜での光吸収による過酸化反応が関与しているとの指摘がある(例えば 、非特許文献9、10)。また、その発症前期にはドルーゼと言われるリポフスチン様蛍 光物質の出現が認められており、リポフスチンは、過酸化脂質の二次的分解産物であるア ルデヒドとタンパク質の結合により生成することから、紫外線や可視光線による網膜での 脂質過酸化反応が、この網膜障害を誘起する可能性が考えられる。

[0008]

このような抗酸化作用による網膜疾患の予防、治療に有用な特定のジヒドロフラン誘導 体を含有する網膜疾患治療剤(例えば、特許文献16)や、プロピオニルL-カルニチン 又は薬理学上許容される塩と、カロテノイドを含有する網膜の黄斑変性を含む視力及び網 膜変化の薬剤(例えば、特許文献17)等が知られている。

【特許文献1】特開昭61-44840号公報

【特許文献2】特開平1-104033号公報

【特許文献3】特開平2-121975号公報

【特許文献4】欧州特許出願公開第345593号明細書

【特許文献 5】欧州特許出願公開第483772号明細書

【特許文献6】国際公開第95/29163号パンフレット

【特許文献7】独国特許出願公開第DE3,407,505号明細書

【特許文献8】特開昭55-69567号公報

【特許文献9】欧州特許出願公開第324377号明細書

【特許文献10】欧州特許出願公開第458037号明細書

【特許文献11】特開平5-140142号公報

【特許文献12】国際公開第00/006550号パンフレット

【特許文献13】国際公開第96/28437号パンフレット

【特許文献14】特開平6-228136号公報

【特許文献15】特開平2-76869号公報

【特許文献16】特開平6-287139号公報

【特許文献17】国際公開第00/07581号パンフレット

【非特許文献1】ジャーナル・オブ・アメリカン・オイル・ケミスト・ソサイアテイ(J. Amer. Oil Chemists, Soc.)、第51巻、200項、1974年

【非特許文献 2】Biochem.Biophys.Acta、第1304卷、第652項、1996年

【非特許文献3】J.Clin.Invest.、第103卷、第15972項、1999年

【非特許文献4】アンダーソン (Anderson R. E.)、クレツァー (Kretzer F.L.)、ラブ (Rapp L. M.) 「フリーラジカルと眼の疾患」Adv. Exp. Med. Biol.、第366巻、73項、1994年

【非特許文献 5 】 ニシゴオリ (Nishigori H.) , リー (Lee J. W) , ヤマウチ (Yam auchi Y.) , イワツル (Iwatsuru M.) 「発芽鶏胚のグルコチコイド誘発白内障における過酸化脂質変性とアスコルビン酸の効果」Curr. Eye Res. , 第5巻, 37項,1986年

【非特許文献 6】 トルスコット (Truscott R. J. W), オーガスチン (Augusteyn R. C.) 「正常又は白内障のヒト水晶体におけるメルカプト基の作用」Exp. Eye Res., 第25巻, 139項, 1 9 7 7年

【非特許文献7】ヒラミツ(Hiramitsu T.), アームストロング(Armstrong D.)「網膜における脂質過酸化反応に対する抗酸化剤の予防効果」Ophthalmic Research,第23巻,196,1991年

【非特許文献 8 】 ビタミン広報センター(東京) V I C ニュースレター No. 105, 4項, 2002年

【非特許文献9】幸村定昭「白内障と活性酸素・フリーラジカル、活性酸素・フリーラジカル」,第3巻, 402項,1992年

【非特許文献10】ソルバッハ(Solbach U.),ケイハウワー(Keilhauer C.),クナーベン(Knabben H.),ウルフ(Wolf S.)「加齢性黄斑変性症における網膜自己蛍光像」Retina,第17巻,385項,1997年

【発明の開示】

【発明が解決しようとする課題】

[0009]

本発明は、動脈硬化症をはじめ心筋梗塞、脳卒中などの虚血性臓器障害の治療あるいは酸化的細胞障害による疾患の治療に有効な抗酸化薬を提供し、更に、酸化、特に光酸化による網膜障害を抑制する網膜の酸化障害抑制薬や、リポキシゲナーゼ阻害剤を提供することを課題とする。

【課題を解決するための手段】

[0010]

本発明者らは、上記課題を解決すべく鋭意研究の結果、既存の抗酸化薬の効力が十分でない原因は、薬剤が標的部位に到達しないか、標的部位到達前に活性を失活してしまうためであると考え、より臓器移行性のよい、特に血液脳関門又は血液網膜関門を通過しやすい抗酸化薬の開発を目的として鋭意研究を重ねた結果、式(1)で示される化合物が所期の目的を達成した。さらに、投与経路によらず優れたin vivo抗酸化作用を持つことを見い出し、本発明を完成するに至った。

[0011]

更に、本発明者らは、一定線量のUVーAをラット眼にスポット照射することにより網膜への影響を検討した。黄斑変性症などの失明度の高い網膜疾患の発症前期にはしばしば、過酸化脂質由来アルデヒドとタンパク質との反応生成物によるリポフスチン様の蛍光物質が検出される。UVーA照射眼網膜組織の変化とよく比例する66kDa付近のタンパク質の増加が見られ、このタンパク質は機器分析や無アルブミンラットを使用した検討結果から、アルブミン様物質であることが認められている。in vitro下、網膜組織の有意な化反応において、アルブミンを共存させることにより、リポフスチン様蛍光物質の有意な増加が認められることから、UVーA照射による網膜組織での一部のタンパク質の異常は増加は網膜での蛍光物質の増加と関係し、網膜障害の引き金となる可能性が高い。本発明加は網膜での網膜タンパク質の変化を第一の生化学的指標として、網膜障害抑制薬の検討をこれまでおこなってきた。その過程で、強い抗酸化能を有する本特許化合物が、経質の増をこれまでおこなってきた。その過程で、強い抗酸化能を有する本特許化合物が、経質の増加を顕著に抑制することが認められた。この結果は、本特許化合物が酸化による網膜管害に対し有効であり、特に、老化に伴って増加する網膜の加齢性黄斑変性症の進行や症状の軽減に有効であることの知見を得て、かかる知見に基づき本発明を完成するに至った。

[0012]

すなわち本発明は、

1. 式(1)

[0013]

【化2】

$$\begin{array}{c|c}
 & CH_2NH_2 \\
 & CH_2NH_2 \\
 & CH_2) n \\
 & R2 & R3 \\
 & R4 & R4
\end{array}$$
(1)

(式中、R1、R2、R3、および、R4は、それぞれ独立して、水素原子または C_{1-6} アルキル基を表し、nは、1または2の整数を表す。)で表される化合物。

2. 式(2)

[0014]

【化3】

$$R2$$
 CH_3
 CH_2) n
 $R3$
 $R1$
 $R4$
 (CH_2) n
 $R3$

(式中、R1、R2、R3、R4、および、nは、前記と同じ意味を表す。)で表される化合物をニトロ化して、式(3) 【0015】

【化4】

$$\begin{array}{c|c}
CH_2NO_2 \\
\hline
CH_2) n \\
R2 & R3 \\
R1 & R4
\end{array}$$
(3)

(式中、R1、R2、R3、R4、および、nは、前記と同じ意味を表す。) で表される化合物を得る工程1、

得られた化合物を還元剤を用いてアミノ基に変換する工程2、 からなることを特徴とする式 (1)

[0016]

【化5】

$$\begin{array}{c|c} CH_2NH_2 \\ H_2N & (CH_2) n \\ R2 & R3 \\ R1 & R4 \end{array}$$
 (1)

(式中、R1、R2、R3、R4、および、nは、前記と同じ意味を表す。) で表される化合物の製造法。

3. 式(1)

[0017]

【化6】

$$\begin{array}{c|c}
CH_2NH_2\\
H_2N & (CH_2) n\\
R2 & R1 & R3\\
R4
\end{array}$$
(1)

(式中、R1、R2、R3、R4、および、nは、前記と同じ意味を表す。) で表される化合物またはその薬学的に許容される塩の1種または2種以上を有効成分とし て含有することを特徴とする、抗酸化薬。

- 4. 3記載の抗酸化薬を含有することを特徴とする腎疾患、脳血管又は循環器疾患治療薬
- 5. 3記載の抗酸化薬を含有することを特徴とする脳梗塞治療薬
- 6. 3記載の抗酸化薬を含有することを特徴とする網膜の酸化障害抑制薬。
- 7. 加齢性黄斑変性症あるいは糖尿病性網膜症等に対する6記載の網膜の障害抑制薬。
- 8. 3記載の抗酸化薬を含有することを特徴とするリポキシゲナーゼ阻害薬。 である。

【発明の効果】

[0018]

本発明のジアミン誘導体又はその薬学的に許容される塩は、動脈硬化症をはじめ心筋梗 塞、脳卒中などの虚血性臓器障害の治療あるいは酸化的細胞障害による疾病の治療に有効 な抗酸化活性を有し、光等の酸化による網膜障害を有効に抑制することができ、本発明の

ジアミン誘導体化合物を含有する優れた抗酸化薬とすることができ、副作用が少ない網膜 の酸化障害抑制薬として有用である。

【発明を実施するための最良の形態】

[0019]

前記式(1)の定義においてR1、R2、R3、および、R4は、それぞれ独立して、水素原子、;または、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、イソブチル、t-ブチル等の C_{1-6} アルキル基;を表す。

[0020]

(化合物の製造方法)

本発明化合物である前記式(1)で表される化合物は、例えば、次のようにして製造することができるが、本発明化合物は一般的に知られる方法によっても合成することができ、この方法に限定されるものではない。

製造工程1

【0021】 【化7】

(式中、R1、R2、R3、R4、および、nは、前記と同じ意味を表す。)即ち、式(2)で示される化合物をニトロすることにより、式(3)で示される化合物を得るものである。このニトロ化反応は、酢酸あるいは無水酢酸中、硝酸あるいは発煙硝酸を用いてニトロ化するものである。反応は、-30℃から溶媒の沸点程度、好ましくは-10~30℃で行われる。

製造工程2

[0022]

【化8】

$$O_2$$
N O_2 O_2 N O_2 O_2 N O_2 O_2 N $O_$

(式中、R1、R2、R3、R4、および、nは、前記と同じ意味を表す。)

即ち、式(3)で示される化合物を触媒を用いて水素添加を行うことにより、式(1)で示される化合物を得るものである。触媒としては、パラジウム炭素、二酸化白金、ラネーニッケル等を挙げることができる。反応溶媒としては、メタノール、エタノール等のアルコール類、ジエチルエーテル,THF,1,4ージオキサン等のエーテル類、ベンゼン、トルエン、キシレン、シクロヘキサン等の炭化水素類、DMF等のアミド類、ギ酸、酢酸等の有機酸類、酢酸エチル等のエステル類等およびこれらの混合溶媒を用いることがで

[0023]

本発明化合物の構造は、IR、NMR及びMS等から決定した。

[0024]

なお、前記式(1)で表せる本発明化合物、前記式(3)および前記式(4)で表せる 原料化合物には、いくつかの光学活性体が存在し得る。これらは、すべて本発明の範囲に 含まれる。

[0025]

前記式(1)で表される化合物の薬学的に許容される塩としては、塩酸、硫酸、硝酸、 燐酸等の無機酸の塩や、酢酸、プロピオン酸、乳酸、コハク酸、酒石酸、クエン酸、安息 香酸、サリチル酸、ニコチン酸、ヘプタグルコン酸等の有機酸の塩を挙げることができる 。これらは、通常の合成化学的手法により容易に製造することができる。

[0026]

以上のようにして製造することのできる本発明化合物(式 (1))の代表例を、表1に示すが本発明化合物はこれに限定されるものではない。また、これらの薬学的に許容される塩酸塩等の塩も本代表例に含まれる。なお、表中の略記号は以下の意味を示す。

Me:メチル

[0027]

【表1】

第1表

	·	1(1		
R 1	R 2	R 3	R 4	n
H	H	Н	Н	$\overline{1}$
H	Н	H	Ме	1
H	Н	Ме	Н	1
Н	Н	Мe	Ме	$\overline{1}$
H	Мe	H	H	1
H	Ме	Н	Ме	1
H	Мe	Мe	Н	1
Н	Мe	Мe	Ме	1
Ме	H	H	Ме	1
Ме	Н	H	Ме	1
Ме	Н	Мe	Н	1
Ме	Н	Ме	Ме	1
Ме	Ме	H	Н	1
Мe	Ме	Мe	H	1
Мe	Мe	Ме	Ме	1
Мe	Ме	Мe	Ме	1
<u>H</u>	Н	Н	H	2
H	Н	Н	Ме	2
Н	Н	Ме	Н	2
Н	Н	Ме	Ме	2
Н	Ме	Н	H	2
H	Ме	Н	Ме	2
H	Мe	Ме	Н	2
H	Ме	Ме	Ме	2
Ме	H	Н	Ме	2
Ме	Н	Н	Ме	2
Ме	H	Мe	Н	2
Ме	H	Ме	Ме	2
Ме	Ме	Н	H	2
Ме	Мe	Мe	Н	2
Ме	Ме	Ме	Ме	2
Ме	Ме	Ме	Ме	2

(抗酸化薬)

本発明のジアミン誘導体は、抗酸化作用を有することから、低比重リボ蛋白(Low dens ity lipoprotein、以下LDLと略記する。)の酸化的変性を防ぐことによって動脈硬化病変の発生、進展を阻止することができ、動脈硬化の治療薬に適用することができると共に、酸化作用に基づく各種疾病、例えば、老化痴呆性疾患、心臓病、癌、糖尿病、消化器疾患、熱傷、眼疾患、腎疾患等の治療薬としても有用である。更に、脳卒中や心筋梗塞等

の虚血性臓器疾患では、虚血部位の血液再潅流時に種々の活性酸素が発生し、脂質過酸化 反応による細胞膜破壊等により組織障害が増悪されるが、本発明のジアミン誘導体は、そ の抗酸化活性により種々の活性酸素や過酸化脂質を除去し、虚血病変部の組織障害を防ぐ ことができ、虚血臓器障害の治療薬に適用することができる。また、本発明のジアミン誘 導体は、リポキシゲナーゼ阻害作用を有し、リポキシゲナーゼの作用を阻害することによ りアラキドン酸をHPETEに変換するのを抑制することができる。

[0028]

更に、本発明のジアミン誘導体は、網膜の酸化障害に起因する疾病、糖尿病、高血圧症 、動脈硬化症、貧血症、白血病、全身性エリテマトーデスや強皮症等の結合組織疾患、テ イーザックス(Tay-Sacks)病やフォークトーシュピールマイヤー(Vogt-Spielmeyer)病等の先天代謝異常等の全身疾患に起因する網膜の血管障害や炎 症性及び変性病変、また、未熟児網膜症、網膜静脈閉塞症、網膜動脈閉塞症、網膜静脈周 囲炎等の網膜血管の障害、網膜剥離や外傷に由来する網膜の炎症や変性、加齢黄斑変性症 等の加齢に伴う網膜の変性疾患、先天的な網膜変性疾患等の網膜局所の疾患の予防および 治療に用いることができ、特に光酸化障害により発症する加齢黄斑変性症等の疾患の治療 薬として有用である。

[0029]

本発明の抗酸化薬は、上記抗酸化作用を有する本発明のジアミン誘導体又はその薬学的 に許容される塩の1種又は2種以上を有効成分として含有するものであれば、特に限定さ れるものではなく、上記疾病の医薬として、任意の様式で投与することができる。例えば 、経口、経鼻、非経口、局所、経皮又は経直腸で投与することができ、その形態も、固体 、半固体、凍結乾燥粉末又は液体の剤形、例えば、錠剤、坐薬、丸薬、軟質及び硬質カプ セル、散薬、液剤、注射剤、懸濁剤、エアゾル剤、持続放出製剤等とすることができ、正 確な投与量を処方でき、かつ、簡便に投与することができる適当な剤形とすることができ る。

[0030]

また、本発明の抗酸化薬は、有効成分と、慣用の医薬用担体又は賦形剤の他、他の薬剤 、アジュバント等を他の成分と反応しない範囲で含有する組成物とすることができる。か かる組成物は、投与様式に応じて、有効成分を1~99重量%、適当な医薬用担体又は賦 形剤を99~1重量%含有するものとすることができ、好ましくは、有効成分を5~75 重量%、残部を適当な医薬用担体又は賦形剤とするものである。

[0031]

本発明の抗酸化薬には、投与様式に拘わらず、所望により、少量の補助物質、例えば、 湿潤剤、乳化剤、pH緩衝剤、抗酸化剤等、他の成分と反応しない範囲で、例えば、クエ ン酸、ソルピタンモノラウレート、トリエタノールアミンオレエート、プチル化ヒドロキ シトルエン等を添加することもできる。

[0032]

このような製剤は、通常の方法、例えば、レミントン・ファルマスーテイカル・サイエ ンス(Remington's Pharmaceutical Sciences)第18版、マック・パブリシング・カン パニー、イーストン、ペンシルバニア(Mack Publishing Company, Easton, Pennsylvan ia) 1990年刊等に教示される記載に従って製造することができる。

本発明の抗酸化薬において、式(1)で表される化合物又はその薬学的に許容される塩 の治療有効量は、個人及び処置される疾病の病状により変動される。通常、治療有効1日 用量は、体重1kgあたり、式(1)で表される化合物又はその薬学的に許容される1種 又は 2 種以上の塩 0. 14 m $g \sim 14$. 3 m g / 日とすることができ、好ましくは、体重 1 kgあたり0.7 mg $\sim 10 m$ g/日、より好ましくは、体重1 kgあたり1.4 mg \sim 7. 2 mg/日とすることができる。例えば、体重70kgのヒトに投与する場合、式 (1) の化合物又はその薬学的に許容される塩の用量範囲は、1日10mg~1.0g、好 ましくは、1日50mg~700mg、より好ましくは、1日100mg~500mgと

[0034]

本発明の抗酸化薬の経口用の抗酸化薬に適用される賦形剤としては、任意の通常用いら れる賦形剤、例えば、医薬用のマニトール、乳糖、デンプン、ゼラチン化デンプン、ステ アリン酸マグネシウム、サッカリンナトリウム、タルク、セルロースエーテル誘導体、グ ルコース、ゼラチン、スクロース、クエン酸塩、没食子酸プロピル等を挙げることができ る。また、経口用の抗酸化薬には、希釈剤として、例えば、乳糖、スクロース、リン酸二 カルシウム等を、崩壊剤として、例えば、クロスカルメロースナトリウム又はその誘導体 等を、結合剤として、例えば、ステアリン酸マグネシウム等を、滑沢剤として、例えば、 デンプン、アラビアゴム、ポリビニルピロリドン、ゼラチン、セルロースエーテル誘導体 等を含有させることができる。

[0035]

注射剤としては、無菌の水性または非水性の溶液剤、懸濁剤、乳濁剤を包含する。水性 の溶液剤、懸濁剤の希釈剤としては、例えば注射剤用蒸留水及び生理食塩水が含まれる。 非水溶性の溶液剤、懸濁剤の希釈剤としては、例えばプロピレングリコール、ポリエチレ ングリコール、オリーブ油のような植物油、エタノールのようなアルコール類、ポリソル ベート(商品名)等がある。このような組成物は、さらに等張化剤、防腐剤、湿潤剤、乳 化剤、分散剤、安定化剤(例えば、ラクトース)、可溶化ないし溶解補助剤のような添加 剤を含んでもよい。これらは例えばバクテリア保留フィルターを通す濾過、殺菌剤の固体 組成物を製造し、使用前に無菌水又は無菌の注射用溶媒に溶解して使用することもできる

[0036]

また、本発明の抗酸化薬を坐剤とする場合には、担体として体内で徐々に溶解する担体 、例えば、ポリオキシエチレングリコール又はポリエチレングリコール(以下PEGと略 記する)、具体的には、PEG1000(96%)又はPEG4000(4%)を使用し 、かかる担体に式(1)の化合物又はその薬学的に許容される塩0.5~50重量%を分 散したものを挙げることができる。

[0037]

本発明の抗酸化薬を液剤とする場合は、担体として水、食塩水、デキストロース水溶液 、グリセロール、エタノール等を使用し、かかる担体に式 (1) の化合物又はその薬学的 に許容される塩を0.5~50重量%と共に、任意の医薬アジュバントを溶解、分散させ る等の処理を行い、溶液又は懸濁液としたものが好ましい。

[0038]

(網膜の光酸化障害抑制薬)

本発明の網膜の光酸化障害抑制薬は、上記抗酸化作用を有する本発明のジアミン誘導体 又はその薬学的に許容される塩の1種又は2種以上を有効成分として含有する抗酸化薬を 含有するものであれば、特に限定されるものではなく、投与様式、投与形態、投与量も上 記抗酸化薬と同様の様式、形態、投与量とすることができ、また、上記抗酸化薬と同様の 製剤用成分、担体、アジュバント等を包含させることができ、賦形剤、崩壊剤、結合剤等 や、有効成分と反応しない他の網膜酸化障害抑制薬の1種又は2種以上を適宜加えてもよ く、また、上記の他に、他の薬効を有する成分を適宜含有させてもよい。また、投与形態 としては、上記抗酸化薬における場合と同様の投与形態の他、点眼剤、眼軟膏剤とするこ とができる。

[0039]

本発明の網膜の光酸化障害抑制案を点眼剤とする場合は、本発明のジアミン誘導体を通 常使用される基剤溶媒に加え水溶液又は懸濁液とし、 p Hを4~10、好ましくは5~9 に調整することができる。点眼剤は無菌製品とするため滅菌処理を行なうことが好ましく かかる滅菌処理は製造工程のいずれの段階においても行うことができる。点眼剤の本発 明のジアミン誘導体の濃度は、 0. 0 0 1 ~ 3 %(W/V)、好ましくは 0. 0 1 ~ 1 %

(W/V)であり、投与量も症状の程度、患者の体質等の種々の状態により1日 $1\sim4$ 回、各数滴等とすることができる。上記投与量は飽く迄目安であり、この範囲を超えて投与することもできる。

[0040]

上記点眼剤には、本発明のジアミン誘導体化合物と反応しない範囲の緩衝剤、等張化剤、防腐剤、pH調整剤、増粘剤、キレート剤、可溶化剤等の各種添加剤を適宜、添加してもよい。かかる緩衝剤としては、例えば、クエン酸塩緩衝剤、酒石酸緩衝剤、酢酸塩緩加ース、アミノ酸等を挙げることができ、等張化剤としては、例えば、ソルビトール、グリール、プロピレングリコール、プロピレングリコール、プロピレングリコール、プロピレンがリコール等の多価アルコール類、塩化ナトリウム等の塩類等を挙げることができ、防腐剤キシ安息香酸エチル等のパラオキシ安息香酸エチル等のパラオキシ安息香酸エステル類、ベンジルアルコール、フェネチルアルコール、ソルピントリウム等を挙げることができ、pH調整剤としては、例えば、リン酸、水酸化ナトリウム等を挙げることができ、増粘剤としては、例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロースやその塩等を挙げることができ、キレート剤としては、例えば、エデト酸ナトリウム、クエン酸ナトリウム、縮合リン酸ナトリウム等を挙げることができる。

[0041]

また、本発明の網膜の光酸化障害抑制薬を眼軟膏剤とする場合、本発明のジアミン誘導体を通常使用される眼軟膏基剤、例えば、精製ラノリン、白色ワセリン、マクロゴール、プラスチベース、流動パラフィン等と混合したものとすることができ、無菌製品とするため滅菌処理をしたものが好ましい。眼軟膏剤における本発明のジアミン誘導体の濃度は、 $0.001\sim3\%$ (W/W)、好ましくは $0.01\sim1\%$ (W/W)であり、投与量も症状の程度、患者の体質等の種々の状態により $111\sim4$ 回等とすることができる。上記投与量は飽く迄目安であり、この範囲を超えて投与することもできる。

[0042]

本発明の網膜の光酸化障害抑制薬は、優れた抗酸化作用を有するので、例えば、加齢黄 斑変性症等の加齢に伴う網膜の変性疾患の予防および治療に有効である。

[0043]

以下、実施例により本発明のジアミン誘導体を詳細に説明するが、本発明の技術的範囲はこれらの実施例に限定されるものではない。

【実施例1】

[0044]

(工程1)2,2,6,7ーテトラメチルー4ーニトロメチルー5ーニトロジヒドロベンゾフランの製造

[0045]

【化9】

2, 2, 4, 6, 7-ペンタメチルジヒドロベンゾフラン 3. 80gを無水酢酸 50m 出証特 2004-3042711

1に溶解し、0℃を維持しながら硝酸3.2mlを滴下した。0℃で2時間、室温で2時間撹拌した後、氷-水中に注ぎ、室温で1時間撹拌した。反応液をエーテル抽出し、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥,溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(ベンゼン:ヘキサン=1:1、先に2,2,4,6,7ーペンタメチルー5ーニトロジヒドロベンゾフランが、次いで目的物が留出する)で精製し、目的物を1.40g得た。

(工程2)2,2,6,6ーテトラメチルー4ーアミノメチルー5ーアミノジヒドロベン ゾフラン・2塩酸塩(化合物番号1)の製造

【0046】 【化10】

【実施例2】

[0047]

2, 2, 7, 8 - テトラメチル- 5 - アミノメチル- 6 - アミノクロマン・2 塩酸塩(化合物番号 2)の製造

【0048】 【化11】

2, 2, 4, 6, 7ーペンタメチルジヒドロベンゾフランのかわりに 2, 2, 5, 7, 8ーペンタメチルクロマン 2. 0 gを用いて、実施例 1 と同様の方法で目的物 0. 7 0 gを得た。融点 2 1 9 - 2 2 5 $\mathbb C$

上記のようにして製造された本発明化合物の構造式と物理恒数を表 2 に示すが本発明は これらによって限定されるものではない。なお略号、記号は表 1 と同じ意味を表す。

[0049]

【表2】

化合物番号	R 1	R 2	R 3	R 4	n	塩	物理恒数
1	Ме	Мe	Ме	Ме	1	2 H C 1	融点 300℃以上
2	Ме	Мe	Ме	Мe	2	2 H C 1	融点 219-225℃

【実施例3】

[0050]

[製剤の調製]

本発明化合物を含有する製剤を以下の方法により調製した。

[0051]

経口剤(有効成分10mg錠)

本発明化合物 乳糖	$10 \mathrm{mg}$
コーンスターチ	81.4 mg
ヒドロキシプロピルセルロース	$20\mathrm{mg}$
	4 m g
カルボキシメチルセルロースカルシウム	4 m g
ステアリン酸マグネシウム	0.6 m g

合計

120mg

上記のような組成となるように、本発明化合物50g、乳糖407g及びコーンスター チ100gを、流動造粒コーティング装置(大川原製作所(株)製)を使用して、均一に 混合した。これに、10%ヒドロキシプロピルセルロース水溶液200gを噴霧して造粒 した。乾燥後、20メッシュの篩を通し、これに、カルボキシメチルセルロースカルシウ ム20g、ステアリン酸マグネシウム3gを加え、ロータリー打錠機(畑鉄工所(株) 製)で7mm×8.4Rの臼杵を使用して、一錠当たり120mgの錠剤を得た。

【実施例4】

[0052]

[in vitro抗酸化脂質作用]

本発明化合物のin vitro抗酸化脂質作用を、Malvyらの方法(Malvy, c., et al ・,)バイオケミカル・アンド・バイオフィジカル・リサーチ・コミュニケーションズ (Biochemical and Biophysical Research Communications、1980年、第95巻、p. 734-737)に準じて、ラット脳ホモジネートでの過酸化脂質活性の測定により評価 した。即ち、ラット脳を摘出し、水冷下、脳に5倍量のリン酸緩衝一生理食塩水溶液 (p H7. 4) (以下PBSと略記する。) を加え、テフロンホモジナイザーでホモジナイズ し、10,000gで20分間遠心分離し、上清の脳ホモジネートを調製した。調製した 脳ホモジネートに500μΜシステイン及び5μΜ硫酸第一鉄及び100mM ΚС1を 加え、37℃で30分間インキュベートし、過酸化脂質の分解で生じたマロンジアルデヒ ドをチオバルビツール酸法で測定した。測定値から本発明化合物の50%阻害濃度(以下 IC50と略記する。)を求めた。結果を表3に示す。本発明化合物はin vitro抗酸化脂質 作用を有していることが分かった。 [0 0.5 3]

【表3】

化合物番号	in vitro 抗過酸化脂質作用 50%阻害濃度(IC ₅₀ μM)
1	2. 5
2	0.34
対照薬-1	1. 4

[0054]

対照としてJ. Med. Chem., 40,559-573, (1997) に記載された化合物を用いた。 対照薬-1は下記化合物である。

【化12】

【実施例5】

[0055]

[組織移行性]

本発明化合物の組織移行性は、ex vivo抗過酸化脂質作用を測定することにより評価した。生理食塩水溶液或いは1%ポリエチレン硬化ヒマシ油(日光ケミカルズ社製:NIKKOL HCO-60)生理食塩水溶液に溶解又は懸濁した試験化合物を、一群3匹のSD系雄性ラット(6週齢)(日本SLC株式会社より入手)に100mg/kgの割合で腹腔内投与した。投与30分後に頚動脈を切断して放血死させ、脳、心臓、腎臓を摘出した。実施例4に記載した方法で、各組織ホモジネートの過酸化脂質活性を測定した。本発明化合物の各組織における阻害率は対照群(生理食塩水投与群)と試験化合物投与群の過酸化脂質生成量から求めた。結果を表4に示す。結果から、本発明化合物は組織移行性が高いことが明かである。

[0056]

【表4】

化合物番号	ex	vivo 抗過酸化脂質作 阻害率 (%)	
	脳	心臓	腎臓
1	9 3	8 1	8.3
2	98	9 6	9 7
対照薬-1	9 4	8 4	8 7

【実施例6】

[0057]

[in vivo抗酸化作用]

本発明化合物のin vivo抗酸化作用をジャーナル・オブ・メディシナル・ケミスリー(J. Med. Chem. 、1997年、第40巻、P.559-573)記載の方法に準じて、塩化第一鉄のマウス脊髄くも膜下腔内投与による異常行動や死亡率の抑制効果から評価した

。S1c:ICR系雄性マウス(5週)(日光SLC株式会社より入手)、一群3~7匹を用い、50mM塩化第一鉄の生理食塩水溶液をマウスの第5一第6腰椎間より脊柱管に 5μ 1投与した。症状観察は、塩化第一鉄投与20分から60分行い、表5に示す症状から60分後のスコアを求めた。試験化合物は生理食塩水溶液又は1%ポリエチレン硬化ヒマシ油(日光ケミカルズ社製NIKKOL HCO-60)生理食塩水溶液に溶解又は懸濁し、塩化第一鉄投与30分前に腹腔内或いは経口投与した。本発明化合物の50%阻害用量(以下ID50と略記する)は対照群(生理食塩水投与群)のスコアと試験化合物投与群のスコアから求めた。結果を表6に示す。結果から、本発明化合物はin vivo抗酸化作用を有することが分かった。

【0058】 【表5】

スコア	症状
0	正常
1	下腹部または後躯端を頻繁に噛む
2	以下の変化が少なくとも1つ認められる ① 回転しつつ後躯を頻繁に噛む ② 外部刺激に対する過敏反応および攻撃反 応 ③ 振戦
3	間代性痙攣
4	強直性痙攣または後躯麻痺
5	死亡

【0059】 【表6】

化合物番号	3	抗酸化作用 ((ID ₅₀ mg/kg)
	腹腔内投与	経口投与
1	1. 8	6
2	2. 6	1 2
対照薬-1	>30	>30

【実施例7】

[0060]

「網膜移行性】

本発明化合物の網膜移行性を評価した。一群3匹のSD系雄性ラット(6適齢)に、0.1 N塩酸溶液或いは1%ポリエチレン硬化ヒマシ油(NIKKOL HCO-60)溶液に溶解或いは懸濁した試験化合物を経口投与し、30分後に両眼を摘出し、氷冷下で網膜を分離した。網膜を氷冷下、0.1Mトリスー塩酸緩衝液(pH7.4)中、ポリトロン微量ホモジナイザー(NS-310E:日音医理科器機社製)で、5%ホモジネート液を調製し、37℃で、1時間自動酸化させ、生成した過酸化脂質量をチオバルビツール酸

法(真杉ら、ビタミン51、21-29、1977)で定量した。各投与量における阻害率から30%阻害する投与量(ID_{30})を求めた。その結果を表7に示す。結果から、本発明化合物はex vivo網膜過酸化脂質生成抑制作用を有し、網膜移行性が高いことが分かった。

【0061】 【表7】

化合物番号	ex vivo 網膜における抗過酸化脂質作用 30%阻害濃度 (ID ₃₀ mg/kg, 経口投与.)
1	16
2	6.0
	U. J

【実施例8】

[0062]

[66kDaタンパク質の増加抑制作用]

本発明化合物の紫外線照射ラット網膜中の66kDaタンパク質の増加抑制作用を評価 した。Wistar系雄性ラット(7~9週齢)に、試験化合物を0.1N塩酸溶液或い は1%ポリエチレン硬化ヒマシ油(NIKKOL HCO-60)溶液に溶解或いは懸濁 して経口投与し、30分後に右眼にUVスポット光源を用いて、UV-A(12mW/c m^2)を30分間照射した。また、左眼は照射せずにコントロールとした。UV-A照射 中及び前後2時間以内は、室内光を遮断した環境でラットを飼育した。照射48時間後に 網膜を分離し、実施例4記載したと同様の方法で、5%ホモジネート液を調製した。網膜 タンパク質の変化は、Lammliの方法 (Nature, 277, 680-685, 1970) に準じ、S DS―ポリアクリルアミド電気泳動を行った。即ち、濃縮ゲルは4.5%ゲル(pH6. 8) を、分離ゲルは、10% (pH8.8) を用いて泳動用緩衝液 (25mMトリス、19 2 mMグリシン0.1%SDS)、20mM定電流(limit 300V)で泳動した 。泳動後、ゲル15%TCA、次いでエタノール:酢酸:水(25:8:65)で固定し 、 0. 25%クマシープリリアントブルーR-250を含むエタノール:酢酸:水(9: 2:9) で染色した。その後、エタノール:酢酸:水 (25:8:65) で脱色し、泳動 後の66kDaタンパク質をデンシトグラフにより解析した。試料中のタンパク質量は、 Lowry法で求めた。結果を表8に示す。結果から、本発明化合物は66kDaタンパ ク質の増加を顕著に抑制することが分かった。 [0063]

【0063】 【表8】

化合物番号 (N=3) 正常群	紫外線照射ラット網膜中の 66kDa タンパク質比 (右眼:照射/左眼:非照射)
対照群	4. 48
1 (100mg/kg, p. o.)	1. 45

【実施例9】

[0064]

[5-リポキシゲナーゼ(5-LO)及び<math>15-リポキシゲナーゼ(15-LO)阻害作用]

5-LO阻害活性はCarterら(Carter G. W, et al, J. Pharmacol. Exp. Ther. : 256,929-37、1991)の方法を一部改変して測定した。即ち、ハンクス溶液中

出証特2004-3042711

でヒト末梢血単核細胞とDMSO(最終濃度は1%)に溶解した試験化合物をプレインキュベーション(37%、15分)した後、さらに 30μ M A23187を加えインキュベーション(37%、30分)した。その結果生成するロイコトリエンB4をエンザイムイムノアッセイによって定量し、その値から試験化合物の5-LOに対する50%生成抑制濃度(μ M)を算出した。結果を表9に示す。

[0065]

15-LO阻害活性はAuerbachら(Auerbach B. J, et al, Anal. Biochem. : 201 , 375-80、 1992)の方法を一部改変して測定した。即ち、ウサギ網状赤血球より得た15-LOとDMSO(最終濃度は1%)に溶解した試験化合物をリン酸緩衝液(pH7.4)中でプレインキュベーション($4\mathbb{C}$ 、15分)した後、 256μ Mリノレイン酸を加えさらにインキュベーション($4\mathbb{C}$ 、10分)した。その結果生成する15-HETEを分光測光法(OD_{660} n m)によって定量し、その値から試験化合物の15-LOに対する50%生成抑制濃度(μ M)を算出した。結果を表9に示す。結果から、本発明化合物は5-リポキシゲナーゼ(5-LO)及び15-リポキシゲナーゼ(15-LO)阻害作用を有することが分かった。

【0066】 【表9】

化合物番号	リポキシゲナーゼ阻害作用 50%阻害用量(IC ₅₀ μ	
	5-L0	15-L0
1	>10 (31%)	3. 74
対照薬ー2	>10 (34%)	3. 26

【実施例10】

[0067]

[急性経口毒性]

雄性マウスに本発明化合物の一回用量を経口投与した後、7日間観察し死亡率 を求めた。結果を表10に示す。結果から本発明化合物は急性経口毒性が低いことが分かった。

【0068】 【表10】

化合物番号	マウス急性経口毒性 (LD _{so} mg/kg)
1	>1000
2	>1000
対照薬-2	<300

【書類名】要約書

【要約】

【課題】 本発明は、動脈硬化症をはじめ心筋梗塞、脳卒中などの虚血性臓器障害の治療あるいは酸化的細胞障害による疾患の治療に有効な抗酸化薬を提供すること。

【解決手段】 式(1)

【化1】

$$\begin{array}{c|c}
 & CH_2NH_2 \\
 & H_2N \\
 & R2 \\
 & R1 \\
 & R3 \\
 & R4
\end{array}$$
(1)

(式中、R1、R2、R3、または、R4は、それぞれ独立して、水素原子または C_{1-6} アルキル基を表し、nは、1または2の整数を表す。)で表される化合物およびその製造方法であり、さらに該化合物を有効成分として含有してなる抗酸化薬及びこれを用いた腎疾患治療薬、脳血管障害治療薬、網膜の酸化障害抑制薬、リポキシゲナーゼ阻害薬である。

認定・付加情報

特許出願の番号

特願2004-022719

受付番号

50400154629

書類名

特許願

担当官

岩谷 貴志郎

7746

作成日

平成16年 3月25日

<認定情報・付加情報>

【提出日】

平成16年 1月30日

特願2004-022719

出願人履歴情報

識別番号

[000004307]

1. 変更年月日 [変更理由] 住 所 氏 名

1990年 8月22日 新規登録 東京都千代田区大手町2丁目2番1号 日本曹達株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.