

10 on each of said plurality of pixel electrodes,
11 each of said pixel electrodes comprises at least one aperture formed under a boundary
12 between [said] adjacent differently oriented regions of said alignment layer, and
13 a minimum width of the at least one aperture of said pixel electrode is equal to a ^{each of} ~~width~~ ^{between}
14 width of a defectively oriented region of said liquid crystal molecules on [a] boundary of said
15 adjacent differently oriented regions of said alignment layer.

1 22. (Amended) A method of fabricating a liquid crystal display (LCD), comprising:
2 forming a plurality of pixel electrodes on a first substrate,
3 forming at least one aperture in each of said pixel electrodes;
4 depositing an alignment layer over the resultant surface processed in said forming at
5 least one aperture;
6 generating differently oriented regions and a boundary between [said] ^{adjacent} differently
7 oriented regions in the alignment layer on said each of said pixel electrodes; and
8 sandwiching liquid crystal molecules between said first substrate and a second
9 substrate opposing to said first substrate,
10 wherein a minimum width of the at least one aperture of said each of said pixel
11 electrodes is equal to a width of a defectively oriented region of said liquid crystal molecules
12 on [a] boundary of [said] adjacent differently oriented regions of said alignment layer.

Please add the following new claims 24-28:

1 -- 24. The LCD, as claimed in claim 20, wherein said alignment layer orients said liquid
2 crystal molecules to be vertical or almost vertical to said pixel electrode when no electric
3 field is applied between said pixel electrode on said first substrate and a common electrode on
4 said second substrate.

1 25. The LCD, as claimed in claim 20, further comprising:
2 a common electrode formed on said second substrate,
3 wherein said common electrode has at least one aperture.

1 26. The method as claimed in claim 22, wherein said alignment layer orients said liquid
2 crystal molecules to be vertical or almost vertical to said each of said pixel electrodes when
3 no electric field is applied between said each of said pixel electrodes on said first substrate
4 and a common electrode on said second substrate.

1 27. The method as claimed in claim 22, further comprising:
2 forming a common electrode on said second substrate; and
3 forming at least one aperture in said common electrode in a region opposing said each
4 of said pixel electrodes.

1 28. The method as claimed in claim 22, wherein said generating differently oriented
2 regions comprises exposing ultra violet light to said alignment layer. —