

Edge Detection

Lecture-3

Alper Yilmaz, Mubarak Shah Fall 2012UCF

Contents

- Gradient operators
 - Prewit
 - Sobel
- Laplacian of Gaussian (Marr-Hildreth)
- Gradient of Gaussian (Canny)

Example

Alper Yilmaz, Mubarak Shah Fall 2012UCF

An Application

- What is an object?
- How can we find it?

Alper Yilmaz, Mubarak Shah Fall 2012UCF

Edge Detection in Images

At edges intensity or color changes

What is an Edge?

- Discontinuity of intensities in the image
- Edge models
 - Step
 - Roof
 - Ramp
 - Spike

Alper Yilmaz, Mubarak Shah Fall 2012UCF

Detecting Discontinuities

Image derivatives

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x+\varepsilon) - f(x)}{\varepsilon} \right) \longrightarrow \frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}) - f(x)}{\Delta x}$$

Convolve image with derivative filters

Backward difference [-1 1]

Forward difference [1 -1]

Central difference [-1 0 1]

Derivative in Two-Dimensions

Definition

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon} \right)$$

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon} \right) \qquad \frac{\partial f(x,y)}{\partial y} = \lim_{\varepsilon \to 0} \left(\frac{f(x,y+\varepsilon) - f(x,y)}{\varepsilon} \right)$$

Approximation

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x_{n+1},y_m) - f(x_n,y_m)}{1} \qquad \frac{\partial f(x,y)}{\partial y} \approx \frac{f(x_n,y_{m+1}) - f(x_n,y_m)}{1}$$

$$\frac{\partial f(x, y)}{\partial y} \approx \frac{f(x_n, y_{m+1}) - f(x_n, y_m)}{1}$$

Convolution kernels

$$f_x = \begin{bmatrix} 1 & -1 \end{bmatrix}$$

$$f_{y} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Image Derivatives

Image I

$$I_x = I * \begin{bmatrix} 1 & -1 \end{bmatrix}$$

$$I_{y} = I * \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Derivatives and Noise

- Strongly affected by noise
 - obvious reason: image noise results in pixels that look very different from their neighbors
- The larger the noise is the stronger the response

- What is to be done?
 - Neighboring pixels look alike
 - Pixel along an edge look alike
 - Image smoothing should help
 - Force pixels different from their neighbors (possibly noise) to look like neighbors

Derivatives and Noise

Increasing noise -

Zero mean additive gaussian noise

Image Smoothing

- Expect pixels to "be like" their neighbors
 - Relatively few reflectance changes
- Generally expect noise to be independent from pixel to pixel
 - Smoothing suppresses noise

Gaussian Smoothing

$$g(x, y) = e^{\frac{-(x^2 + y^2)}{2o^2}}$$

- ullet Scale of Gaussian σ
 - As σ increases, more pixels are involved in average
 - As σ increases, image is more blurred
 - As σ increases, noise is more effectively suppressed

Gaussian Smoothing (Examples)

Edge Detectors

- Gradient operators
 - Prewit
 - Sobel
- Laplacian of Gaussian (Marr-Hildreth)
- Gradient of Gaussian (Canny)

Prewitt and Sobel Edge Detector

- Compute derivatives
 - In x and y directions
- Find gradient magnitude
- Threshold gradient magnitude

Prewitt Edge Detector

Sobel Edge Detector

Sobel Edge Detector

Alper Yilmaz, Mubarak Shah Fall 2012UCF

Sobel Edge Detector

Alper Yilmaz, Mubarak Shah Fall 2012, UCF

Ellen Hildtreh

David Marr

Hubel and Weisel, Noble Prize, 1981

For their discoveries concerning information processing in the visual system

Proceedings of the Royal Society of London. Series B. Biological Sciences

rspb.royalsocietypublishing.org

Published 29 February 1980 doi: 10.1098/rspb.1980.0020 Proc. R. Soc. Lond. B 29 February 1980 vol. 207 no. 1167 187-217

Theory of Edge Detection

D. Marr and E. Hildreth

Abstract

A theory of edge detection is presented. The analysis proceeds in two parts. (1) Intensity changes, which occur in a natural image over a wide range of scales, are detected separately at different scales. An appropriate filter for this purpose at a given scale is found to be the second derivative of a Gaussian, and it is shown that, provided some simple conditions are satisfied, these primary filters need not be orientation-dependent. Thus, intensity changes at a given scale are best detected by finding the zero values of $\alpha ^{2}\$ y) for image I, where G(x, y) is a two-dimensional Gaussian distribution and \$\nabla ^{2}\$ is the Laplacian. The intensity changes thus discovered in each of the channels are then represented by oriented primitives called zero-crossing segments, and evidence is given that this representation is complete. (2) Intensity changes in images arise from surface discontinuities or from reflectance or illumination boundaries, and these all have the property that they are spatially localized. Because of this, the zero-crossing segments from the different channels are not independent, and rules are deduced for combining them into a description of the image. This description is called the raw primal elected. The theory explains several basis

⁷all 2004 UCF

- Smooth image by Gaussian filter → S
- Apply Laplacian to S
 - Used in mechanics, electromagnetics, wave theory, quantum mechanics and Laplace equation
- Find zero crossings
 - Scan along each row, record an edge point at the location of zero-crossing.
 - Repeat above step along each column

Gaussian smoothing

smoothed image
$$g = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2+y^2}{2\sigma^2}}$$
 $g = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2+y^2}{2\sigma^2}}$

Find Laplacian

$$\Delta^{2}S = \frac{\partial^{2}}{\partial x^{2}}S + \frac{\partial^{2}}{\partial y^{2}}S$$
second order derivative in y

$$\Delta^{2}S = \frac{\partial^{2}}{\partial x^{2}}S + \frac{\partial^{2}}{\partial y^{2}}S$$

- ∇ is used for gradient (first derivative)
- Δ^2 is used for Laplacian (Secondt derivative

Deriving the Laplacian of Gaussian (LoG)

$$\Delta^2 S = \Delta^2 (g * I) = (\Delta^2 g) * I \qquad g = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$\Delta^{2} g = -\frac{1}{\sqrt{2\pi}\sigma^{3}} \left(2 - \frac{x^{2} + y^{2}}{\sigma^{2}} \right) e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

Alper Yilmaz, Mubarak Shah Fall 2012, UCF

Gaussian

$$g(x) = e^{\frac{-x^2}{2o^2}}$$

Standard deviation

X

-3	-2	-1	0	1	2	3
.011	.13	.6	1	.6	.13	.011

g(x)

2-D Gaussian

$$g(x,y) = e^{\frac{-(x^2+y^2)}{2o^2}}$$

0	0	0	0	1	2	2	2	1	0	0	0	0
0	0	1	3	6	9	11	9	6	3	1	0	0
0	1	4	11	20	30	34	30	20	11	4	1	0
0	3	11	26	50	73	82	73	50	26	11	3	0
1	6	20	50	93	136	154	136	93	50	20	6	1
2	9	30	73	136	198	225	198	136	73	30	9	2
2	11	34	82	154	225	255	225	154	82	34	11	2
2	9	30	73	136	198	225	198	136	73	30	9	2
1	6	20	50	93	136	154	136	93	50	20	6	1
0	3	11	26	50	73	82	73	50	26	11	3	0
0	1	4	11	20	30	34	30	20	11	4	1	0
0	0	1	3	6	9	11	9	6	3	1	0	0
0	0	0	0	1	2	2	2	1	0	0	0	0

$$\sigma = 2$$

2-D Gaussian

LoG Filter

$$\Delta^{2}G_{\sigma} = -\frac{1}{\sqrt{2\pi}\sigma^{3}} \left(2 - \frac{x^{2} + y^{2}}{\sigma^{2}} \right) e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

0.0008	0.0066	0.0215	0.031	0.0215	0.0066	0.0008	
0.0066	0.0438	0.0982	0 .108	0.0982	0.0438	0.0066	
0.0215	0.0982	0	<mark>-0</mark> .242	0	0.0982	0.0215	
0.031	0.108	-0.242	-0.7979	-0.242	0.108	0.031	X
0.0215	0.0982	0	<mark>-0</mark> .242	0	0.0982	0.0215	
0.0066	0.0438	0.0982	0 .108	0.0982	0.0438	0.0066	
0.0008	0.0066	0.0215	0.031	0.0215	0.0066	0.0008	

Finding Zero Crossings

- Four cases of zero-crossings :
 - **-** {+,-}
 - **-** {**+**,0,**-**}
 - **-** {**-**,**+**}
 - {-,0,+}
- Slope of zero-crossing {a, -b} is |a+b|.
- To mark an edge
 - compute slope of zero-crossing
 - Apply a threshold to slope

On the Separability of Gaussian

 Two-dimensional Gaussian can be separated into 2 one-dimensional Gaussians

$$h(x,y) = I(x,y) * g(x,y)$$
 n^2 multiplications $h(x,y) = (I(x,y) * g_1(x)) * g_2(y)$ $2n$ multiplications $g_2 = g(y) = \begin{bmatrix} .011 \\ .13 \\ .6 \\ 1 \\ .6 \\ .13 \\ .011 \end{bmatrix}$ $g_1 = g(x) = \begin{bmatrix} .011 \\ .13 \\ .6 \\ .13 \\ .011 \end{bmatrix}$

On the Separability of LoG

- Similar to separability of Gaussian filter
 - Two-dimensional LoG can be separated into 4one-dimensional Convoultions

On the Separability of LoG

$$\Delta^2 S = \Delta^2 (g * I) = (\Delta^2 g) * I = I * (\Delta^2 g)$$

Requires n^2 multiplications

$$\Delta^2 S = (I * g_{xx}(x)) * g(y) + (I * g_{yy}(y)) * g(x)$$

Requires 4*n* multiplications

Seperability

Gaussian Filtering

Laplacian of Gaussian Filtering

Alper Yilmaz, Mubarak Shah Fall 2012, UCF

Example

1

 $I*(\Delta^2g)$

Zero crossings of $\Delta^2 S$

Example

$$\Delta^{2}G_{\sigma} = -\frac{1}{\sqrt{2\pi}\sigma^{3}} \left(2 - \frac{x^{2} + y^{2}}{\sigma^{2}}\right) e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

$$\sigma = 1$$

$$\sigma = 6$$

Alper Yilmaz, Mubarak Shah Fall 2012, UCF

LoG Algorithm

- Apply LoG to the Image: Either
 - Use 2D filter $\Delta^2 g(x, y)$
 - Use 4 1D filters g(x), $g_{xx}(x)$, g(y), $g_{yy}(y)$
- Find zero-crossings from each row
- Find slope of zero-crossings
- Apply threshold to slope and mark edges

Quality of an Edge

- Robust to noise
- Localization
- Too many or too less responses

Quality of an Edge

Alper Yilmaz, Mubarak Shah Fall 2012, UCF

Canny Edge Detector

John Canny

Technical Report 720

Finding Edges and Lines in Images

John Francis Canny

MIT Artificial Intelligence Laboratory

Canny Edge Detector

- Criterion 1: Good Detection: The optimal detector must minimize the probability of false positives as well as false negatives.
- Criterion 2: Good Localization: The edges detected must be as close as possible to the true edges.
- Single Response Constraint: The detector must return one point only for each edge point.

Canny Edge Detector Steps

- 1. Smooth image with Gaussian filter
- 2. Compute derivative of filtered image
- 3. Find magnitude and orientation of gradient
- Apply "Non-maximum Suppression"
- 5. Apply "Hysteresis Threshold"

Canny Edge Detector First Two Steps

Smoothing

$$S = I * g(x, y) = g(x, y) * I$$

Derivative

$$g(x, y) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$\nabla S = \nabla (g * I) = (\nabla g) * I$$

$$\nabla S = \begin{bmatrix} g_x \\ g_y \end{bmatrix} * I = \begin{bmatrix} g_x * I \\ g_y * I \end{bmatrix}$$

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial x} \\ \frac{\partial g}{\partial y} \end{bmatrix} = \begin{bmatrix} g_x \\ g_y \end{bmatrix}$$

Canny Edge Detector Derivative of Gaussian

Alper Yilmaz, Mubarak Shah Fall 2012, UCF

Canny Edge Detector First Two Steps

Alper Yilmaz, Mubarak Shah Fall 2012, UCF

Canny Edge Detector Third Step

Gradient magnitude and gradient direction

 (S_x, S_y) Gradient Vector magnitude = $\sqrt{(S_x^2 + S_y^2)}$ direction = $\theta = \tan^{-1} \frac{S_y}{S_x}$

gradient magnitude

Canny Edge Detector Fourth Step

Non maximum suppression

We wish to mark points along the curve where the **magnitude is largest**. We can do this by looking for a maximum along a slice normal to the curve (non-maximum suppression). These points should form a curve. There are then two algorithmic issues: at which point is the maximum, and where is the next one?

Canny Edge Detector Non-Maximum Suppression

• Suppress the pixels in $|\nabla S|$ which are not local maximum

M(x, y)
$$M(x, y) = \begin{cases} |\nabla S|(x, y) & \text{if } |\nabla S|(x, y) > |\Delta S|(x', y') \\ & \& |\Delta S|(x, y) > |\Delta S|(x'', y'') \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{x}' \text{ and } \mathbf{x}'' \text{ are the neighbors of } \mathbf{x} \text{ along}$$

x' and x" are the neighbors of x along normal direction to an edge

Canny Edge Detector Non-Maximum Suppression

For visualization $M \ge Threshold = 25$

Alper Yilmaz, Mubarak Shah Fall 2012, UCF

- If the gradient at a pixel is
 - above "High", declare it as an 'edge pixel'
 - below "Low", declare it as a "non-edge-pixel"
 - between "low" and "high"
 - Consider its neighbors iteratively then declare it an "edge pixel" if it is connected to an 'edge pixel' directly or via pixels between "low" and "high".

Connectedness

4 connected

8 connected

6 connected

- Scan the image from left to right, top-bottom.
 - The gradient magnitude at a pixel is above a high threshold declare that as an edge point
 - Then recursively consider the *neighbors* of this pixel.
 - If the gradient magnitude is above the low threshold declare that as an edge pixel.

regular $M \ge 25$

Hysteresis

$$High = 35$$

$$Low = 15$$

Alper Yilmaz, Mubarak Shah Fall 2012, UCF

Matlab functions

- Edge: Find Edges in intensity image
- returns a binary image with 1's where the function finds edges in Image and 0's elsewhere.
- > EDGE supports six different edge-finding methods
- Sobel
- Prewitt
- Canny
- Roberts
- Laplacian of Gaussian
- > zero-cross

Matlab functions

Examples

BW1 = edge(Image, 'log', Thresh, SIGMA)

- > Specifies the Laplacian of Gaussian method
- Ignore all the edges weaker than threshold.
- Sigma specifies the standard deviation of LoG filter.

BW1 = edge(Image, 'canny', Thresh, SIGMA)

- Specifies the Canny method
- Thresh is two element vector for low and high threshold value.
- Sigma specifies the standard deviation of Gaussian filter.

Matlab functions

imgradient: Gradient magnitude and direction of an image

[Gmag,Gdir] = imgradient(Image,Method)

Methods includes

- > Prewitt
- > Robert
- Central difference

Suggested Reading

- Chapter 4, Emanuele Trucco, Alessandro Verri, "Introductory Techniques for 3-D Computer Vision"
- Chapter 2, Mubarak Shah, "Fundamentals of Computer Vision"