Fachbereich Mathematik

Prof. Dr. Thomas Streicher

Dr. Sven Herrmann

Dipl.-Math. Susanne Pape

Wintersemester 2009/2010 03./04. November 2009

4. Übungsblatt zur Vorlesung "Mathematik I für Informatik"

Gruppenübung

Aufgabe G1 (Wiederholung: injektiv und surjektiv)

Betrachten Sie die Funktion

$$f: A \to B: x \mapsto \sin(x),$$

mit $A, B \subseteq \mathbb{R}$.

Wählen Sie die Mengen A und B so, dass

- (a) f injektiv aber nicht surjektiv,
- (b) f surjektiv aber nicht injektiv,
- (c) f bijektiv ist.

Aufgabe G2 (Rechnen mit komplexen Zahlen)

Gegeben seien folgende komplexe Zahlen

$$z_1 = 3 + 4i$$
, $z_2 = -2 + i$, $z_3 = 7 - i$.

- (a) Bestimmen Sie Real- und Imaginärteil von z_1, z_2, z_3 .
- (b) Berechnen Sie $z_1+z_3, z_1-z_2, \overline{z_2}, z_1z_2, \frac{z_1}{z_2}$ und $|z_1|$.

Aufgabe G3 (Assoziativ- und Distributivgesetz für komplexe Zahlen)

Seien $z_1, z_2, z_3 \in \mathbb{C}$. Zeigen Sie das Assoziativgesetz der Multiplikation sowie das Distributivgesetz für komplexe Zahlen, das heißt zeigen Sie, dass

- (a) $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3),$
- (b) $(z_1 + z_2) \cdot z_3 = z_1 \cdot z_3 + z_2 \cdot z_3$.

Aufgabe G4 (Polardarstellung)

Sei $z=a+ib\in\mathbb{C}$ mit $a=r\cos\varphi$ und $b=r\sin\varphi$. Mithilfe Eulers Formel bekommen wir die Polardarstellung von z als

$$z = r(\cos\varphi + i\sin\varphi) = re^{i\varphi}$$

$$\text{mit } r = |z| \text{ und } \varphi = \left\{ \begin{array}{ll} \arctan \frac{b}{a} & \text{falls } a > 0 \\ \arctan \frac{b}{a} + \pi & \text{falls } a < 0, b \geq 0 \\ \arctan \frac{b}{a} - \pi & \text{falls } a < 0, b < 0 \\ \pi/2 & \text{falls } a = 0, b \geq 0 \\ -\pi/2 & \text{falls } a = 0, b < 0 \end{array} \right. .$$

- (a) Machen Sie sich die verschiedenen Fälle für φ zeichnerisch klar.
- (b) Seien nun $z_1 = 2i$ und $z_2 = -\frac{4}{\sqrt{2}} + i\frac{4}{\sqrt{2}}$. Bestimmen Sie die Polardarstellungen von z_1 und z_2 .
- (c) Bestimmen Sie unter Verwendung der Ergebnisse aus a) die Polardarstellungen von $z_3=z_1z_2$ und $z_4=\frac{z_1}{z_2}$. Hinweis: Benutzen Sie die Schreibweise mit der Exponentialfunktion.
- (d) Geben Sie z_3 und z_4 in der Form x + iy mit $x, y \in \mathbb{R}$ an.
- (e) Zeichnen Sie z_1, z_2, z_3 und z_4 in eine komplexe Ebene ein und interpretieren Sie die Multiplikation mit z_2 und die Division mit z_2 geometrisch.

Aufgabe G5 (Folgen)

Untersuchen Sie die untenstehenden Folgen auf Konvergenz und berechnen Sie gegebenenfalls den Grenzwert.

- (a) Folge $(a_n)_{n \in \mathbb{N}}$ mit $a_n = \frac{n^3 + n + 2}{6n^7 + 5n^4 + n^2 + 1}$
- (b) Folge $(b_n)_{n\in\mathbb{N}}$ mit $b_n = \frac{n^3+n+2}{n^2+1}$.

Hausübung

(In der nächsten Übung abzugeben.)

Aufgabe H1 (Komposition von Funktionen)

(1+2 Punkte)

- (a) Finden Sie zwei Abbildungen $f_1 \neq f_2$, sodass $f_1 \circ f_2 = f_2 \circ f_1$ gilt. Gilt diese Aussage für alle Abbildungen? Begründen Sie Ihre Antwort.
- (b) Betrachten Sie die Funktionen $f:A\to B$ und $g:C\to D$ mit $D\subseteq A$.
 - (i) Angenommen f und g seien injektiv. Ist dann die Komposition $f \circ g : C \to B$ auch injektiv?
 - (ii) Angenommen f und g seien surjektiv. Ist dann die Komposition $f\circ g:C\to B$ auch surjektiv?

Begründen Sie Ihre Antworten.

Aufgabe H2 (Eulersche Formel)

(1+3 Punkte)

Sei $x \in \mathbb{R}$. Sie haben in der Vorlesung die Eulersche Formel

$$e^{ix} = \cos(x) + i\sin(x)$$

kennengelernt. Es ist also $\cos(x) = \Re(e^{ix})$ und $\sin(x) = \Im(e^{ix})$.

(a) Zeigen Sie mithilfe der Formel, dass $\exp(\overline{z}) = \overline{\exp(z)}$ für alle $z \in \mathbb{C}$. Benutzen Sie, dass $\cos(-x) = \cos(x)$ und $\sin(-x) = \sin(x)$.

- (b) Benutzen Sie Eulers Formel, um folgende (teilweise schon bekannte) Gleichungen herzuleiten:
 - (i) $\cos(x) = \frac{1}{2}(e^{ix} + e^{-ix}), \quad \sin(x) = \frac{1}{2i}(e^{ix} e^{-ix}),$
 - (ii) $\cos^2(x) + \sin^2(x) = 1$,
 - (iii) $\cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y)$, $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$.

Aufgabe H3 (Folgen)

(1+1+1 Punkte)

- (a) Finden Sie eine Folge $(a_n)_{n\in\mathbb{N}}$, die beschränkt ist, aber nicht konvergiert.
- (b) Finden Sie zwei Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$, die beide divergieren, aber deren Summe $(a_n + b_n)_{n\in\mathbb{N}}$ konvergiert.
- (c) Finden Sie eine Folge $(a_n)_{n\in\mathbb{N}}$ die beschränkt ist, weder monoton fallend noch monoton steigend ist, aber konvergiert.