การทำนายภาพโฆษณาบนเว็บไซต์

Internet advertisements

บทน้ำ

หลักการและเหตุผล

เนื่องจากปัจจุบันในหน้าเว็บไซต์หนึ่งมีโฆษณาแฝงอยู่จำนวนมาก เราจึงอยากจำแนก โฆษณาออกจากหน้าเว็บไซต์ เพื่อนำไปใช้ประโยชน์ต่อไปได้ในอนาคต เช่น พัฒนา แอพลิเคชั่นการลบโฆษณาออกจากหน้าเว็บไซต์ เป็นต้น

วัตถุประสงค์

- สามารถนำข้อมูลมาจำแนกคาสได้อย่างถูกต้อง
- สามารถวัดประสิทธิภาพตัวจำแนกได้
- สามารถแสดงผลลัพธ์ที่ทำนายผิดได้

ขอบเขตโครงงาน

- จำนวน Attribute 1558 ตัว จำนวนหน้าเว็บไซต์ที่นำมาทดสอบ 3279 ตัว
- จำนวน Class ที่มีโฆษณาจำนวน 458 ตัว และไม่มีโฆษณาจำนวน 2821 ตัว

ข้อมูล

al	Α	В	C	D	E	F	G	BGY
1	height	width.	aratio	local	url*images+buttons	url*likesbooks.com	url*www.slake.com	ad.
2	125	125	1	1	0	0	0	ad.
3	57	468	8.2105	1	0	0	0	ad.
4	33	230	6.9696	1	0	0	0	ad.
5	60	468	7.8	1	0	0	0	ad.
6	60	468	7.8	1	0	0	0	ad.
7	60	468	7.8	1	0	0	0	ad.
8	59	460	7.7966	1	0	0	0	ad.
9	60	234	3.9	1	0	0	0	ad.
10	60	468	7.8	1	0	0	0	ad.
11	60	468	7.8	1	0	0	0	nonad.
12	?	?	?	1	0	0	0	nonad.
13	90	52	0.5777	1	0	0	0	nonad.
14	90	60	0.6666	1	0	0	0	nonad.
15	90	60	0.6666	1	0	0	0	nonad.
16	33	230	6.9696	1	0	0	0	nonad.
17	60	468	7.8	1	0	0	0	nonad.
18	60	468	7.8	0	0	0	0	nonad.
19	125	125	1	1	0	0	0	nonad.
20	60	468	7.8	1	0	0	0	nonad.

ตัดแถวที่มี Missing Data

	1	2	3	4	5
61	60	234	3.9000	1	0
62	60	468	7.8000	0	0
63	NaN	NaN	NaN	0	0
64	NaN	NaN	NaN	0	C
65	NaN	NaN	NaN	0	0
66	NaN	NaN	NaN	0	C
67	60	468	7.8000	1	C
68	2	2	1	1	C
69	60	120	2	1	C
70	65	125	1.9230	0	C
71	125	125	1	0	C
72	125	125	1	0	C
73	NaN	NaN	NaN	0	C
74	60	468	7.8000	1	C
75	60	468	7.8000	0	C
76	60	468	7.8000	1	C
77	60	234	3.9000	1	C
78	44	127	2.8863	-1	C
79	60	468	7.8000	1	C
80	80	80	1	1	C

	1	2	3	4	5
61	60	468	7.8000	1	0
62	2	2	1	1	0
63	60	120	2	1	0
64	65	125	1.9230	0	0
65	125	125	1	0	0
66	125	125	1	0	0
67	60	468	7.8000	1	0
68	60	468	7.8000	0	0
69	60	468	7.8000	1	0
70	60	234	3.9000	1	0
71	44	127	2.8863	1	0
72	60	468	7.8000	1	0
73	80	80	1	1	0
74	80	80	1	1	0
75	80	80	1	1	0
76	60	468	7.8000	1	0
77	80	80	1	1	0
78	80	80	1	1	0
79	80	80	1	1	0
80	125	125	1	1	0

ตัดแถวที่มี Missing Data ออกโดยใช้คำสั่ง datanonan = data(~any(isnan(data),2),:);

ทำจำนวนแถวของ Class Ad และ Class Noad ให้เท่ากัน และรวมข้อมูล

data = dataad+datanoad2

แบ่ง Training Data และ Testing Data

	1	2
1	1	
2	0	
3	1	
4	0	
5	0	
6	0	
7	1	
8	0	
9	0	
.0	0	
1	0	
12	1	
3	1	
4	0	
.5	1	
16	0	
17	1	
18	1	
19	1	
20	0	<i>2</i> .

	1	2	3	4	5
1	125	125	1	- 1	C
2	57	468	8.2105	1	C
3	33	230	6.9696	1	C
4	60	468	7.8000	1	C
5	60	468	7.8000	1	C
6	60	468	7.8000	1	C
7	59	460	7.7966	1	0
8	60	234	3.9000	1	C
9	60	468	7.8000	1	C
10	60	468	7.8000	1	C
11	90	52	0.5777	1	C
12	90	60	0.6666	1	C
13	90	60	0.6666	1	C
14	33	230	6.9696	1	C
15	60	468	7.8000	1	C
16	60	468	7.8000	0	C
17	125	125	1	- 1	C
18	60	468	7.8000	1	C
19	30	585	19.5000	1	C
20	90	60	0.6666	1	C

	1	2
1	0	
2	1	
3	0	
4	1	
5	1	
6	1	
7	0	
8	1	
9	1	
10	1	
11	1	
12	0	
13	0	
14	1	
15	0	
16	1	
17	0	
18	0	
19	0	
20	1	

จำแนกด้วยเทคนิค

K-Nearest Neighbor Classifier

22	%/////////////////////////////////////
23 -	nub=0;
24 -	class_KNN = knnclassify(data(test,1:1558),data(train,1:1558),data(train,1559),5);

Code K-NN

	1	2
20	1	
21	0	
22	1	
23	1	
24	1	
25	1	
26	0	
27	0	
28	0	
29	0	
30	1	
31	1	
32	1	
33	1	
34	1	
35	1	

ผลลัพธ์ที่แสดงออกมา

จำแนกด้วยเทคนิค

Support Vector Machine

	1	2
20	-1	
21	1	
22	1	
23	1	
24	1	
25	1	
26	1	
27	0	
28	1	
29	1	
30	1	
31	1	
32	1	
33	1	
34	1	
35	1	

Code SVM

```
percent_SVM = 92.6087 7.3913
```

ผลลัพธ์ที่แสดงออกมา

ผลลัพธ์ในตาราง

แสดงผลลัพธ์ที่ทำนายผิดด้วยเทคนิค K-Nearest Neighbor Classifier

	1	2	3	4	5	6	7	8	
1	2	2	1	1	0	0	0	0	
2	31	88	2.8387	1	0	0	0	0	
3	31	96	3.0967	0	0	0	0	0	
4	100	100	1	1	0	0	0	0	
5	20	58	2.9000	0	0	0	0	0	
6	136	93	0.6838	1	0	0	0	0	10
7	124	120	0.9677	1	0	0	0	0	
В	20	83	4.1500	1	0	0	0	0	
9	45	100	2.2222	1	0	0	0	0	
.0	45	100	2.2222	1	0	0	0	0	
1	45	100	2.2222	1	0	0	0	0	
.2	31	88	2.8387	0	0	0	0	0	Ĵ
.3	93	261	2.8064	1	0	0	0	0	
4	33	270	8.1818	1	0	0	0	0	10
.5	124	120	0.9677	1	0	0	0	0	
.6	45	345	7.6666	1	0	0	0	0	
7	240	120	0.5000	0	0	0	0	0	
.8	90	215	2.3888	1	0	0	0	0	
9	171	227	1.3274	0	0	0	0	0	
0	74	78	1.0540	1	0	0	0	0	
1	174	100	0.5747	0	0	0	0	0	
22	80	86	1.0750	1	0	0	0	0	
13	29	230	7.9310	1	0	0	0	0	
4	60	95	1.5833	0	0	0	0	0	
5	52	144	2.7692	1	0	0	0	0	
6	46	109	2.3695	1	0	0	0	0	
.7	60	234	3.9000	1	0	0	0	0	
28	24	236	9.8333	1	0	0	0	0	

แสดงผลลัพธ์ที่ทำนายผิดด้วยเทคนิค Support Vector Machine

	1	2	3	4	5	6	7	8	
1	31	96	3.0967	0	0	0	0	0	
2	60	468	7.8000	1	0	0	0	0	
3	60	468	7.8000	1	0	0	0	0	
4	60	468	7.8000	1	0	0	0	0	
5	45	345	7.6666	1	0	0	0	0	
6	74	78	1.0540	1	0	0	0	0	
7	174	100	0.5747	0	0	0	0	0	
8	80	86	1.0750	1	0	0	0	0	
9	29	230	7.9310	1	0	0	0	0	
10	60	95	1.5833	0	0	0	0	0	
11	52	144	2.7692	1	0	0	0	0	
12	46	109	2.3695	1	0	0	0	0	
13	60	234	3.9000	1	0	0	0	0	
14	24	236	9.8333	1	0	0	0	0	
15	66	73	1.1060	1	0	0	0	0	
16	22	200	9.0909	1	0	0	0	0	
17	35	150	4.2857	1	0	0	0	0	
18		011-011							
19		A							
20		2				Į.			
21									
22	, and	2				Ī.			
23	3						8		
24									
25									
26									
27		10							

ผลการทดลองและวิจารณ์

ครั้งที่	ผลการจำแนก (จาก testing 30%)							
	K-NN	(K=5)	SV	′M				
	จำแนกถูก	จำแนกผิด	จำแนกถูก	จำแนกผิด				
1	85.97	14.03	92.55	7.45				
2	88.69	11.30	92.17	7.82				
3	86.52	13.47	92.60	7.39				
4	87.39	12.60	91.73	8.26				
5	87.82	12.17	94.78	5.21				
เฉลี่ยรวม	87.28	12.72	92.77	7.22				

เปรียบเทียบประสิทธิภาพด้วยการทำ Accuracy

สรุปผลที่ได้จากการทำโครงงาน

เทคนิค K-Nearest Neighbor Classifier จำแนกเฉลี่ยได้ถูกต้อง 87.28% เทคนิค Support Vector Machine จำแนกเฉลี่ยได้ถูกต้อง 92.77%

จากสรุปผลเห็นว่าผลที่ได้จากการดำเนินงานโดยใช้เทคนิควิธี
Support Vector Machine ทำนายภาพโฆษณาบนได้ดีว่าเทคนิควิธี K-Nearest
Neighbor Classifier ซึ่งมีวิธีการดำเนินการนั้นขึ้นอยู่กับค่า k ซึ่งหากเลือกค่า k ที่ไม่เหมาะสมก็จะทำให้ความถูกต้องนั้นน้อยลงไป

ปัญหาและอุปสรรคที่พบ

- ระยะเวลาในการทำโครงงานน้อยเกินไป
- ถ้าทำการลดมิติข้อมูลด้วย PCA ก่อน attribute ที่น้อยไปจะไม่สามารถ จำแนกข้อมูลให้ถูกต้องตรงตาม class ได้
- เวลาในการประมวลผลโปรแกรมที่ข้อมูลมีจำนวนมากเกินไปทำให้ ประมวลผลใช้เวลานาน

จบการนำเสนอ