Prime Number

.) A number is said to be prime if it's only divisor's are I and itself.

		<u> </u>	
	n = 13	$\mathcal{U} = \mathcal{U}$	n = 10
	1	٧, '	1
	IXI3	2×2	1×101
	Prime	4x1 Not prime	Prime

Note: 2 is the only even prime number

1 is not prime it is a composit number

Naive solution

Time complexity: O(n)

Effective solution

Divisors always appear in Pairs.

Effective solution

boolean isprime (int n) i = 2 i = 3 i = 3 i = 3 i = 3 i = 3 i = 3 i = 3 i = 3 i = 3 i = 3 i = 3 i = 3 i = 65% i = 4 i = 4 i = 4 i = 4 i = 65% i = 5 i = 5 i = 5

return false;

By shecking note == 0 and note 3 == 0, we can save many iterations for large 'n'.

boolean isprime (int n)

{

if (n==1)return false;

if (n==2 | | n==3)return true;

for (int i=5; i*i c=n; i=i+6)

{

if $(n-1)i==0 | | n=1 \cdot (i+2)==0$)

return true;

}

return true;