

Filtering and Normalization of Transcriptomic Data

Understand the concept of a layered 'grammar of graphics' and how to use ggplot2

Discuss basics of 'tidy' vs messy data and the tidyr package

Filter data to remove lowly expressed genes

Normalize data (to allow between-sample comparisons)

Tracking our progress in this course

Tracking our progress in this course

Point at code

This is a challenging lecture

RNAseq

Filtering

Normalization

Data science

Tidy data

Plotting

Subsetting data

Open the Step 1 script

review 'the essentials' chunk

Data types in R

The Tidyverse


```
> library(tidyverse)

— Attaching packages — tidyverse 1.3.0 —

/ ggplot2 3.3.0 / purrr 0.3.4

/ tibble 3.0.1 / dplyr 0.8.5

/ tidyr 1.0.2 / stringr 1.4.0

/ readr 1.3.1 / forcats 0.5.0

— Conflicts — tidyverse_conflicts() —

x dplyr::filter() masks stats::filter()

x dplyr::lag() masks stats::lag()

x dplyr::select() masks biomaRt::select()
```

The Tidyverse

Hadley Wickham Chief Scientist, RStudio

Open the Step 2 script

install packages, browse Txi lists

ggplot2 - shape parameter

112 p	113 q	114 r	115 S	116 t	117 U	118 V	119 W	120 X	121 y	122 Z	123	124	125	126 ~	127
96	97 a	98 b	99 C	100 d	101 e	102 f	103 g	104 h	105 i	106 j	107 k	108 	109 m	110 n	111 O
80 P	81 Q	82 R	83 S	84 T	85 U	86 V	87 W	88 X	89 Y	90 Z	91 [92	93	94	95
64	65 A	66 B	67 C	68 D	69 E	70 F	71 G	72 H	73 	74 J	75 K	76 L	77 M	78 N	79 O
48	49 1	50 2	51 3	52 4	53 5	54 6	55 7	56 8	57 9	58	59 •	60 <	61 =	62 >	63 ?
32	33 !	34	35 #	36 \$	37 %	38 &	39 •	40 (41	42 *	43 +	44 ,	45 -	46	47 /
16	17	18	19	20	21	22	23	24	25						
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

ggplot2 themes

theme(

line,
rect,
text,
title,

aspect.ratio, axis.title, axis.title.x,

axis.title.x,

axis.title.x.bottom,

axis.title.y, axis.title.y.left,

axis.title.y.right,

axis.text, axis.text.x,

axis.text.x.top,

axis.text.x.bottom,

axis.text.y,

axis.text.y.left, axis.text.y.right

axis.ticks,

axis.ticks.x,

axis.ticks.x.top, axis.ticks.x.bottom,

axis.ticks.y,

axis.ticks.y.left,

axis.ticks.length,

axis.ticks.y.right,

axis.ticks.length.x,

axis.ticks.length.x.top,

axis.ticks.length.x.bottom,

axis.ticks.length.y,

axis.ticks.length.y.left,

axis.ticks.length.y.right, axis.line,

axis.line.x, axis.line.x.top,

axis.line.x.bottom,

. ..

axis.line.y, axis.line.y.left,

axis.line.y.right,

legend.background,

legend.margin,

legend.spacing,

legend.spacing.x, legend.spacing.y,

legend.key,

legend.key.size,

legend.key.height, legend.key.width,

legend.text,

legend.text.align,

legend.title,

legend.title.align,

legend.position,

legend.direction,

legend.justification, legend.box,

legend.box.just,

legend.box.margin,

legend.box.background,

legend.box.spacing, panel.background,

panel.border,

panel.spacing

panel.spacing.x,

panel.spacing.y,

panel.grid,

panel.grid.major,

panel.grid.minor,

panel.grid.major.x,

panel.grid.major.y,

panel.grid.minor.x,

panel.grid.minor.y,

panel.ontop,

plot.background,

plot.title,

plot.title.position,

plot.subtitle, plot.caption,

plot.caption.position,

plot.tag,

plot.tag.position,

plot.margin,

strip.background,

strip.background.x,

strip.background.y, strip.placement,

strip.text,

strip.text.x,

strip.text.y,

strip.switch.pad.grid, strip.switch.pad.wrap,

...,

complete = FALSE, validate = TRUE

:theme_gray()

theme_bw()

theme_light()

theme_dark()

theme_minimal()

theme_classic()

theme_void()

You are *not* restricted to ggplot's 'complete themes'

B B C theme

ggthemes package

hrbrthemes package

There are nigh countless tomes written about the colors you should consider using in charts as well as how to produce "minimal" charts (i.e. eliminate "chart junk"). One area that is rarely discussed is the use of fonts in charts (i.e. chart typography). The hard-themes package is very opinionated about chart typography:

To use a gross oversimplification, there are two basic font types: Serif and Sans-serif (that's a lie of convenience, there are more than two). hrbrthemes suggests using sans-serif fonts since they have a more "modern" feel to them, you're not producing long-form text and labels on charts may need to scale down to small sizes. Typography nerds on either side of the serif vs sans-serif debate can point to 100+ years of research-based evidence supporting their particular "side".

ggplots are constructed in layers

Advantages of a layered grammar of graphics

- Users can iteratively update a plot, changing specific elements as needed
- Even high-level aspects of a plot can be changed
- Layers allow plots to be overplayed (e.g. box plot with points shown)
- Layers also make it easy to use # to toggle layers on/off
- Default arguments for each layer minimize the need for users to dictate details
- For software developer, easy to develop new functionality (e.g. stat transformation)

Tidy data philosophy

"A dataset is messy or tidy depending on how rows, columns and tables are matched up with observations, variables and types"

- 1. Each variable forms a column
- 2. Each observation forms a row
- 3. Each type of observational unit forms a table

"All happy families are alike; each unhappy family is unhappy in its own way"

- Leo Tolstoy, Anna Karenina

gene expression data is always 'messy'

Gene	treatment 1	treatment 2	treatment 3	
gene A	5	10	10	
gene B	1000	1100	1050	

messy

- 1. Each variable forms a column
- 2. Each observation forms a row
- 3. Each type of observational unit forms a table

gene expression data is always 'messy'

Gene	treatment 1	treatment 2	treatment 3
gene A	5	10	10
gene B	1000	1100	1050

Gene	treatment	Expression	
gene A	treatment 1	5	
gene A	treatment 2	10	
gene A	treatment 3	10	
gene B	treatment 1	1000	
gene B	treatment 2	1100	
gene B	treatment 3	1050	

messy

tidyr

tidy

gene expression data is always 'messy'

Gene	treatment 1	treatment 2	treatment 3	
gene A	5	10	10	
gene B	1000	1100	1050	

Gene	treatment	Expression		
gene A	treatment 1	5		
gene A	treatment 2	10		
gene A	treatment 3	10		
gene B	treatment 1	1000		
gene B	treatment 2	1100		
gene B	treatment 3	1050		

messy

pivot_wider()

tidy

Tidy data is ideal for graphing

Each observation gets its own row

Visualizing the Step 2 script

