Group Meeting - November 19, 2020

Paper review & Research progress

Truong Son Hy *

*Department of Computer Science The University of Chicago

Ryerson Physical Lab

Software Packages

For **Compositional Covariant Networks** (CCNs):

- 1 https://github.com/HyTruongSon/LibCCNs:
 - C++ core, TensorFlow/PyTorch extensions
 - Examples: node classification on citation graphs, graph classification on graph kernel benchmark, etc.
- https://github.com/HyTruongSon/GraphFlow:
 - A generic Deep Learning framework built from sratch in C++/CUDA
 - Supports dynamic computation graph, symbolic automatic differentation.

For slides (today - November 19):

http://people.cs.uchicago.edu/~hytruongson/Discussions-2020/

Paper

The general theory of permutation equivarant neural networks and higher order graph variational encoders

Erik Henning Thiede, Truong Son Hy, Risi Kondor https://arxiv.org/pdf/2004.03990.pdf

Variational Autoencoder Approaches

Graph Representation Learning, William L. Hamilton (McGill University 2020) https://www.cs.mcgill.ca/~wlh/grl_book/

4/11

Citation graphs

- Each node/vertex is a paper. The node feature is the word frequency.
- An directed edge happens between papers A and B if paper A cites paper B.
- **Tasks:** (supervised) node classification, (unsupervised) link prediction.

t-SNE visualization on the learned node/vertex representation by CCN cora and citeceer

Link prediction

Remove 20% of edges out of the graph, keep 80% rest:

- **Training:** Apply the graph (variational) autoencoder to reconstruct the **partial** adjacency matrix of 80% of edges.
- **Testing:** Take the latent for each node/vertex z_i . Predict the missed edge $\sigma(z_i^T z_j)$.

Method	AUC	AP
SC	84.6 ± 0.01	88.5 ± 0.00
DW	83.1 ± 0.01	85.0 ± 0.00
GAE	91.0 ± 0.02	92.0 ± 0.03
VGAE	91.4 ± 0.01	92.6 ± 0.01
GraphStar	$95.65 \pm ?$	$96.15 \pm ?$
2nd order VGAE (our method)	96.1 ± 0.07	96.4 \pm 0.06

Method	AUC	AP
SC	80.5 ± 0.01	85.0 ± 0.01
DW	80.5 ± 0.02	83.6 ± 0.01
GAE	89.5 ± 0.04	89.9 ± 0.05
VGAE	90.8 ± 0.02	92.0 ± 0.02
GraphStar	97.47 ± ?	97.93 ± ?
2nd order VGAE (our method)	95.3 ± 0.02	94.3 ± 0.02

Table 1: Cora link prediction results (AUC & AP)

Table 2: Citeseer link prediction results (AUC & AP)

 $SC = Spectral\ Clustering,\ DW = Deep\ Walk,\ GAE = Graph\ Autoencoder$

Molecular generation (1)

100 samples from ZINC dataset

Son (UChicago) Group Meeting November 19, 2020 7/11

Molecular generation (2)

- **Training:** Train the graph VAE to reconstruct the adjacency and the atomic features.
- **Generation:** Sample from the prior and use the trained decoder to decode that latent.

Method	Accuracy	Validity
CVAE	44.6%	0.7%
GVAE	53.7%	7.2%
SD-VAE	76.2%	43.5%
GraphVAE	-	13.5%
Atom-by-Atom LSTM	-	89.2%
JT-VAE	76.7 %	100.0%
2nd order \mathbb{S}_n -Conv VAE (our method)	98.4%	33.4%

Reconstruction accuracy & Validity on ZINC dataset

Molecular generation (3)

Generated examples (model trained on ZINC):

Interpolation on the latent:

9/11

Brainstorm (1)

Problem: How input vertex/atom featurization affects the adjacency reconstruction. Let consider the Ethylene (C_2H_4) molecular graph for example example.

- The input atom features of 4 hydrogen atoms are **identical** (the same). The input atom features of 2 carbon atoms are also the same.
- There is an edge between e1 (hydrogen) and e3 (carbon). But there is edge between e5 (hydrogen) and e3 (carbon). Therefore, there is NO function can classify edge/non-edge for pairs (e1, e3) and (e5, e3).

Brainstorm (2)

Other existing problems:

- The model can generate something-similar-to molecules.
- Generated examples are still not chemical useful.
- Some sub-structures don't exist in Nature. Why?
- Computationally expensive.

Potential future direction:

- Goal-oriented molecular generation to optimize a specific molecular property.
- ② Drug discovery datasets? Self-supervised learning?
- Looking forward for your suggestions! Thanks.

