CS32 Week 7: Hash table & Heap

- Hash function
 - Take a key and map it to a number
 - "Carey" -> H(x) -> 4531
 - Basic requirement:
 - For same key, produce same value.
 - Better hash function:
 - Spreads out the values: two different keys are likely to result in different hash values.
 - Computes each value quickly.

- If we have a perfect hash function:
 - H(x) could map the key into an integer range of [0, 10000]
 - different key will result in different hash value.
- We could use the hash function to store the data to support fast retrieval.

- Time complexity:
 - Insert
 - O(1)
 - Delete
 - O(1)
 - Search
 - Compute the hash value for the key
 - Go to the memory location
 - O(1)

- But there is no perfect hash functions
 - There exists the case that two different key would result in the same hash value.
 - "Collision"
 - Typical hash function:
 - mod by a large prime number
 - Design a way to resolve hash function collision
 - Closed: linear probing
 - Open

- Close hash table
 - Linear probing
 - Solution: append the value in the next available spot starting from the desired position.

- Closed hash table (linear probing)
 - Search:
 - Compute the hash value
 - Linear scan starting from the hash value to an empty slot
 - Nearly O(1), depending on the load factor

- Closed hash table (linear probing)
 - Problem:
 - Deletion
 - Hard to maintain data integrity for the hash table.

- Open hash table
 - Use Linkedlist for each hash value (bucket)
 - Maintain the linkedlist for collision
 - Insert: append a new node
 - Delete: delete a node from the linked list

Open hash table

- Open hash table
 - Search:
 - Find the corresponding bucket
 - Traverse the linkedlist to find the item

- Complexity analysis
 - Desired performance:
 - Insertion, deletion, search: O(1)
 - Collision ruins the wish
 - Insertion, deletion and search would take longer
 - But approximately O(1)
 - Based on the load factor and how frequent a collision from the hash function happens.
 - Generally open hash table performs better than closed hash table using linear probing.

Compared with Binary Search Tree

	Hash table	Binary Search Tree
Speed	O(1)	O(log n)
Max size	Closed: by array size Open: unlimited	unlimited
Space efficiency	Waste a lot of memory	Only memory needed
Ordering	No ordering (random)	sorted

- To keep a better performance, keep a low load factor.
 - A waste of memory.
 - Tradeoffs between space and speed.

- ADT having easy access to largest or smallest item in your data
 - Maxheap & minheap
 - Can be used to implement priority queue
 - O(1) for getting the largest/smallest item
 - O(log n) for inserting an item
 - O(log n) for removing largest/smallest item
 - What if we use BST?

- Heap is a complete binary tree
- Each node's value is larger than or equals to it's children's.
 - Maxheap
 - Every subtree is a maxheap too.

- Complete Binary Tree
 - L level
 - For first L-1 Levels, tree is full
 - For level L, nodes are on the left
 - If N nodes, what's the level of the tree?
 - Guaranteed log2(N)

- To maintain largest item on the top
 - How to insert an item
 - How to remove the largest item

- Insert an item into maxheap
 - Insert 8
 - Append the next node
 - Bubble up to make it still a maxheap

- Insert an item into maxheap
 - Insert 8
 - Append the next node
 - Bubble up to make it still a maxheap
 - Is it larger than parent?
 - Swap if yes.

- Insert an item into maxheap
 - Insert 8
 - Append the next node
 - Bubble up to make it still a maxheap
 - Is it larger than parent?
 - Swap if yes.
 - Complexity?
 - O(log n)

- Extract largest item from maxheap
 - Need to re-organize the tree to maintain largest one on top.
 - Find the last node, place the value to top node
 - Delete last node then
 - Bubble down, re-organize
 - Compare two children
 - Swap with larger one

- Extract largest item from maxheap
 - Need to re-organize the tree to maintain largest one on top.
 - Find the last node, place the value to top node
 - Delete last node then
 - Bubble down, re-organize
 - Compare two children
 - Swap with larger one

- Heap implementation
 - Using an array
 - Store data in level-ordering order

- Array Implementation
 - Last node
 - Last position
 - Given a node at position i
 - Parent position?
 - (i-1)/2
 - Given a node at position i
 - Children position?
 - 2*i + 1, 2*i + 2

9 7 6 1 5 2

Heapsort

- Use heap to sort
 - Insert items in a maxheap
 - Extract largest item from maxheap one by one to get the data sorted
 - **2**, 6, 3, 1, 5, 4, 7, 8
 - Show how the heap looks like after each step
 - Insert into a maxheap
 - Extract max from the heap

Heapsort

- In-place heap sort
 - You could build the maxheap in your array, without using another array.
 - Heapification
 - General idea: build maxheap from bottom, swap items if necessary.
 - **2**, 6, 3, 1, 5, 4, 7, 8
 - Extracting max is same as before

Heapsort

- Complexity
 - Heapification: O(n)
 - Extracting max:
 - N times
 - Each time O(log n) for maintaining maxheap
 - O(nlog n)
 - Total: O(nlog n)
- Advantage:
 - Guaranteed O(nlog n)
 - In-place sorting