CODICI DI HUFFMAN

- CONSTNUTOND FATTORI DI COMPRESSIONE TRA
 IL 20% E IL 90%
- PROBLEMA: TROVARE UNA CODIFICA DI UN FILE DI CARATTERI IN MODO DA MINIMIZZARNE LA DIMENSIONE

ESEM	<u>P10:</u> F11	E DI 100	CARATTERI			
CAQ.	FREQ.	COD1 (8 BIT)	COD2 (3 ht)	0003		
a	45	00000000	600	0	45	
6	/3	00000001	001	101	31	
c	12	00000010	OIO	100	36	
d	16	0000011	011	111	48	
e	9	00000100	100	1101	36	
Į	, 5	00000101	101	1100	20	
<u> </u>	100	800 bit	300 lit		224 ht	
ES.		LUNGHEZ?	CODS DIDIDIO		LUNGH. VARIABILE	
ES. 4 b cos 2	0010000110				25% IN HEM	

ALBERI DI DECODIFICA

CAQ.	FREQ.	COD2 (3 hit)	COD3_
a	45	600	0
6	13	00/	101
C	12	010	100
d	16	011	111
l	9	100	1101
f	5	101	1100

ES.							
a b	ac						
COO 2				c_{∞}	3		
000	001	<u>000</u>	010	0	101	01	. OC
a	b	a	C	a	6	a	С

- CODICI <u>PREFISSI</u>: SONO CODICI IN CUI NESSUNA CODIFICA E' PREFISSO DI UN'ALTRA CODIFICA

ESE	n Plo	01	CODICE	NON	PRET 1550
a	0			01111	
b	01				cec
^	11				

ALBERI DI DECODIFICA

CAQ.	FREQ.	COD2 (3 bit)	0003
a	45	600	0
6	13	001	101
C	12	010	100
d	16	011	111
l	9	100	1101
f	5	101	1100

COMPLESSITA' DELLA CODIFICA:

$$B(cod) = \underset{ceC}{\sum} f(c) |cod(c)|$$

$$= \underset{ceC}{\sum} f(c) d_{f(c)}(c) = \underset{dy}{B}(T_{cod})$$

Tood: ALBERO DI DECODIFICA f: C-N

C : ALFABETO

dia PROFONDITA IN Too

PROBLEMA: TRA TUTTI GLI ALBERI DI DECODIFICA RELATIVI AD UN SISTEMA (C,f) (DOVE f: (-> N) DETERMINARE QUELLO DI COSTO MINIMO, CIDE L'ALBERD BINARIO DI DECODIFICA T TALE CHE

B(T)= Z f(c)d_(c)

CHIMM AIR

DSSEQUAZIONE; POSSIAMO LIMITARE LA NOSTAA RICERCA
AGLI ALBERI BINARI PIENI, QUELLI CIDE PRIVI
DI NODI INTERNI CON UN SOLO PIGLIO.

OSSERVAZIONE: IL NUMERO DI NODI INTERNI IN UN ALBERD BINARIO PIENO CON M FOGLIE E' M-1.

PER COSTRUIRE UN ALBERO BINARIO PIENO CON M NODI SI POSSONO EFFETTUARE (M-1) OPERARIONI DI MERGING

$$\begin{array}{c|c}
T & \times \\
\hline
C_1 & \times \\
\hline
C_2 & \times \\
\hline
C_2 & \times \\
\end{array}$$

$$CEC_1$$
 $d_{T_1}(C)+1=d_{T_1}(C)$
 CEC_2 $d_{T_2}(C)+1=d_{T_1}(C)$

$$B(T) = \sum_{c \in C} f(c) \cdot d_{T}(c)$$

$$= \sum_{c \in C_{1}} f(c) \cdot d_{T}(c) + \sum_{c \in C_{2}} f(c) d_{T}(c)$$

$$= \sum_{c \in C_{1}} f(c) \cdot (d_{T_{1}}(c) + i) + \sum_{c \in C_{2}} f(c) \cdot (d_{T_{2}}(c) + i)$$

$$= \sum_{c \in C_{1}} f(c) d_{T_{1}}(c) + \sum_{c \in C_{1}} f(c)$$

$$= \sum_{c \in C_{1}} f(c) d_{T_{1}}(c) + \sum_{c \in C_{1}} f(c)$$

$$= \sum_{c \in C_1} f(c) d_{T_1}(c) + \sum_{c \in C_1} f(c)$$

$$+ \sum_{c \in C_2} f(c) d_{T_2}(c) + \sum_{c \in C_2} f(c)$$

$$= B(T_1) + B(T_2) + \sum_{c \in C_2} f(c)$$

$$= C_2$$

$$B(T) = B(T_1) + B(T_2) + \sum_{c \in C} C$$

$$\Delta B = B(T) - (B(T_1) + B(T_2))$$

HERGING DI

PER INDUZIONE SULL'ALTEZZA DI T, SI DIMOSTRA CHE:

B(T) = SOMMA DEI COSTI DI TUTTE LE OPERAZIONI
DI MERGING

PASSO INDUTTIVO:

$$B(T) = B(T_1) + B(T_2) + \sum_{c \in C} f(c)$$

$$= \sum_{v \in ML(T_1)} (v) + \sum_{v \in ML(T_2)} (v)$$

$$+ \max_{v \in ML(T_2)} (root(T))$$

$$= \sum_{v \in ML(T)} (root(T))$$

$$= \sum_{v \in ML(T)} (root(T))$$

• UNA POSSIBILE STRATEGIA "GREEPY" PER COSTRUIRE
UN ALBERD DI COSTO MINIMO CONSISTE NEUL'EFFETTUARE
LE OPERAZIONI DI MERGING DI COSTO MINIMO

```
HUFFMAN (C,f)
m := |C|
Q:= m>ke_queul (C,f)
for i:= 1 to m-1 do
   - SI ALLOCHI UN NUOVO NODO INTERNO Z
    lift[]:= x := EXTRACT_MIN(Q)
    right[] := y := EXTRACT-MIN(Q) (2n-1) EXTRACTMIN O(n/pn)
                                    (M-1) INSERT O(NYA)
BUILDHEAP O(M)
    f[z] := f[x] + f[y]
    INSERT (Q, 2, f)
 return EXTRACT_HIN(Q)
```


LOWER-BOUND SULLA COMPLESSITA': SL(nlgn) 00000 00001 F(0)=1 0001 001 F(m) = F(m-1) + F(m-2)

CORRETTEZZA DELL'ALGORITMO OI HUFFMAN

LEMMA SIA C UN ALFABETO E f. C-N UNA FUNZIONE FREQUENZA.

SIANO X ED Y I DUE CARATTERI IN C D FREQUENZA MINIMA.

ALLORA ESISTE UN COOICE OTTIMO PREFISSO PER IN CUI LE CODIFICHE BI X ED Y DIFFERISCONO SOLO PER L' ULTIMO BIT.

DIM, SIANO a E b DUE CARATTERI RESIDENTI SU FOGLIE DI PROFONDITA' MASSIMA IN UN MBERO OTTIMO T. SQUELLE SUPPONIAND CHE $f(a) \leq f(b)$ $\in f(x) \leq f(y)$. ALLORA: $f(x) \leq f(a) \in f(y) \leq f(b)$, SIA T' L'ALBERO OTTENUTO DA T SCATIBIANDO 1 CARATTERI a ED X.

SI HA

$$B(T) - B(T') = \sum_{c \in C} f(c) d_{T}(c) - \sum_{c \in C} f(c) d_{T_{i}}(c)$$

$$= f(a) d_{T_{i}}(a) + f(x) d_{T_{i}}(x) - f(a) d_{T_{i}}(a) - f(x) d_{T_{i}}(x)$$

$$= f(a) d_{T_{i}}(a) + f(x) d_{T_{i}}(x) - f(a) d_{T_{i}}(x) - f(x) d_{T_{i}}(a)$$

$$= f(a) (d_{T_{i}}(a) - d_{T_{i}}(x)) - f(x) (d_{T_{i}}(a) - d_{T_{i}}(x))$$

$$= (f(a) - f(x)) (d_{T_{i}}(a) - d_{T_{i}}(x)) \ge 0$$

POICHE':

$$c \in C(\{a,z\}) \longrightarrow d_T(c) = d_{T'}(c)$$

$$-d_{T'}(a) = d_{T}(x)$$

- SIA T" L'ALBERO OTTENUTO DA T'SCATIBIANDO I CARATTERI 6 ED Y,
- ANALOGAMENTE A QUANTO UISTO PRIMA, SI HA: B(T')-B(T")>0
- PERTANTO: $B(T)-B(T'')\geqslant 0$, DA CUI $B(T) \geq B(T'')$
- POICHE' T E' OTTIMO, $B(T') \gg B(T)$, E QUINDI B(T'') E' ANCH'ESSO OTTIMO
- INOLTRE IN T" I CARATTERI & E Y RISIEDOND SU FOGLIE SOLELLE E QUINDI I LORD DONCI DIFFERISCOND SOLO PER L'ULTIMO BIT.

LEMMA

- -SIA C UN ALFABETO E f: C-N UNA FUNZIONE FREQUENZA.
- -SIANO X ED Y I DUE CARATTERI IN C DI FREQUENZA MINIMA.
- -SIA $C'=(C \setminus \{x,y\}) \cup \{z\}$, CON $z \notin C$. f(c) SE C#Z
 -SIA $f': C' \rightarrow N$ TALE CHE: $f'(c) = \begin{cases} f(x) + f(y) \leq c \leq z \end{cases}$ -SIA T' UN ALBERD OTTIMO PER (C',f').

 - SIA T L'ALBERO OTTENUTO DA T' SOSTITUENDO LA FOGUA 2 CON UN NODO INTERNO AVENTE COME FIGH DUE FOGLIE ETICHETTATE CON X ED y, RISPETTIVAMENTE.

ALLORA T E' OTTIMO PER (C,f).

DIM. SI HA:

$$B(T) = \sum_{c \in C} f(c) d_T(c) = \sum_{c \in C \setminus \{z,y\}} f(c) d_T(c) + f(x) d_T(x) + f(y) d_T(y)$$

$$= \sum_{c \in C \setminus \{x,y\}} f'(c) d_{T'}(c) + f(x)(d_{T'}(z)+1) + f(y)(d_{T'}(z)+1)$$

=
$$\sum f'(c) d_{T'}(c) + f'(z) d_{T'}(z) + f(x) + f(y)$$

 $c \in C \setminus \{x,y\}$

$$= \sum_{c \in C'} f'(c) d_{T'}(c) + f(x) + f(y)$$

$$= B(T') + f(x) + f(y)$$

DA CUI:
$$B(T') = B(T) - f(a) - f(g)$$

- SE T NON FOSSE OTTIMO PER (C,f), ESISTEREBBE UN ALBERO T'' OTTIMO PER (C,f) TALE CHE: B(T'') < B(T).
- GRAZIE AL LEMMA PRECEDENTE, POSSIAMO SUPPORRE CHE \times E \times SI TROVINO SU FOULLE SORELLE IN \top^* .
- SIA T" OTTENUTO DA T", SOSTITUENDO IL PADRE DI X E Y CON UNA FOGLIA Z CON FREQUENZA f(x)+f(y).
- ALLORA: B(T'') = B(T'') f(x) f(y) < B(T) - f(x) - f(y)= B(T')

CONTRADDICENDO L'OTTIMALITA' DI T' PER (C',f').

- PERTANTO T E' OTTIMO PER (C,f).