## **Connectedness**

#### Stepan Kuznetsov

Computer Science Department, Higher School of Economics

### **Outline**

**Connected Graphs and Connected Components** 

Inequations on the Number of Connected Components

Circuit Rank

 Two vertices in a graph are connected, if there exists a path between them.

- Two vertices in a graph are connected, if there exists a path between them.
- In other words, u and v are connected, if  $d(u,v)<\infty$ .

- Two vertices in a graph are connected, if there exists a path between them.
- In other words, u and v are connected, if  $d(u,v)<\infty$ .



- Two vertices in a graph are connected, if there exists a path between them.
- In other words, u and v are connected, if  $d(u,v)<\infty$ .



not connected



Jackexu10 @ Wikipedia

• Vertices = airports (cities).

- Vertices = airports (cities).
- Edges = direct flights.

- Vertices = airports (cities).
- Edges = direct flights.
- Usually if there is a flight form A to B, there is also a flight from B to A. So our graph is undirected.

- Vertices = airports (cities).
- Edges = direct flights.
- Usually if there is a flight form A to B, there is also a flight from B to A. So our graph is undirected.
- Cities A and B are connected if you can get from A to B by air (possibly changing airplanes).

 The whole graph (airline network) is connected, if any two vertices are connected.

- The whole graph (airline network) is connected, if any two vertices are connected.
- For example, one can get from St. Petersburg, Russia (LED) to Lima, Peru (LIM) via the following route:

LED — CDG — ATL — LIM

• Vertex v belongs to the connected component of vertex u, if v and u are connected.

- Vertex v belongs to the connected component of vertex u, if v and u are connected.
- Denote the connected component of u by [u].

- Vertex v belongs to the connected component of vertex u, if v and u are connected.
- Denote the connected component of u by [u].
- It is easy to see that if  $v \in [u]$ , then [v] = [u]...

- Vertex v belongs to the connected component of vertex u, if v and u are connected.
- Denote the connected component of u by [u].
- It is easy to see that if  $v \in [u]$ , then [v] = [u]...
- ... and if  $v \notin [u]$ , then  $[v] \cap [u] = \emptyset$ .

 Thus, each graph gets split into several disjoint connected components.

- Thus, each graph gets split into several disjoint connected components.
- The number of connected components is a graph invariant.

- Thus, each graph gets split into several disjoint connected components.
- The number of connected components is a graph invariant.
- Example (3 connected components):



 In airlines, the major airline network forms a big connected component.

- In airlines, the major airline network forms a big connected component.
- However, there could be small local airline networks not connected to the major one.

- In airlines, the major airline network forms a big connected component.
- However, there could be small local airline networks not connected to the major one.
- Each connected component can be seen as an independent graph.

- In airlines, the major airline network forms a big connected component.
- However, there could be small local airline networks not connected to the major one.
- Each connected component can be seen as an independent graph.
- In particular, each component obeys all graph-theoretic principles, for example, handshaking lemma.

## **Componentwise Handshaking**

Question. Suppose there is one city with 15
direct airline connections, one city with only 3,
and several cities with 10. Prove that the first
two cities are connected.

## **Componentwise Handshaking**

- Question. Suppose there is one city with 15
  direct airline connections, one city with only 3,
  and several cities with 10. Prove that the first
  two cities are connected.
- Answer. If not, they are in different connected components. But then each of these components violates the handshaking lemma, having exactly one odd vertex.

### **Outline**

Connected Graphs and Connected Components

Inequations on the Number of Connected Components

Circuit Rank

• Let us estimate the minimal number of connected components in a graph with n vertices and m edges.

- Let us estimate the minimal number of connected components in a graph with n vertices and m edges.
- A connected graph on n vertices should have at least n-1 edges (minimal example: tree).

- Let us estimate the minimal number of connected components in a graph with n vertices and m edges.
- A connected graph on n vertices should have at least n-1 edges (minimal example: tree).
- Proof: pick one vertex as the starting point and add other vertices one by one. Each of these vertices should have at least one new edge in order to get connected.

- Let us estimate the minimal number of connected components in a graph with n vertices and m edges.
- A connected graph on n vertices should have at least n-1 edges (minimal example: tree).
- Proof: pick one vertex as the starting point and add other vertices one by one. Each of these vertices should have at least one new edge in order to get connected.
- Thus, if m < n-1, then the graph has at least two connected components.

• More generally, if a graph on n vertices has k connected components, it should have at least n-k edges.

- More generally, if a graph on n vertices has k connected components, it should have at least n-k edges.
- Proof: take a starting vertex in each connected component (there will be k of them). Each other vertex brings at least one new edge.

- More generally, if a graph on n vertices has k connected components, it should have at least n-k edges.
- Proof: take a starting vertex in each connected component (there will be k of them). Each other vertex brings at least one new edge.
- Thus,  $m \ge n k$ .

- More generally, if a graph on n vertices has k connected components, it should have at least n-k edges.
- Proof: take a starting vertex in each connected component (there will be k of them). Each other vertex brings at least one new edge.
- Thus,  $m \ge n k$ .
- In other words,  $k \geq n m$ .

### The Maximum

• However, even if  $m \ge n-1$ , the graph could be disconnected.

- However, even if  $m \ge n-1$ , the graph could be disconnected.
- How could we guarantee connectedness?

- However, even if  $m \ge n-1$ , the graph could be disconnected.
- How could we guarantee connectedness?
- If a connected component includes  $n_1$  vertices, then the number of edges is less or equal than  $n_1\cdot (n_1-1)/2$ .

- However, even if  $m \ge n-1$ , the graph could be disconnected.
- How could we guarantee connectedness?
- If a connected component includes  $n_1$  vertices, then the number of edges is less or equal than  $n_1 \cdot (n_1 1)/2$ .
- Thus, if a graph has two (or more) connected components,  $n_1+n_2=n$ , then  $m\leq n_1\cdot (n_1-1)/2+n_2\cdot (n_2-1)/2.$

- However, even if  $m \ge n-1$ , the graph could be disconnected.
- How could we guarantee connectedness?
- If a connected component includes  $n_1$  vertices, then the number of edges is less or equal than  $n_1\cdot (n_1-1)/2$ .
- Thus, if a graph has two (or more) connected components,  $n_1+n_2=n$ , then  $m\leq n_1\cdot (n_1-1)/2+n_2\cdot (n_2-1)/2.$
- If *m* is greater, the graph should be connected.

· The maximal value of

```
n_1\cdot(n_1-1)/2+n_2\cdot(n_2-1)/2 is the one with n_1=n-1 and n_2=1 (or symmetrically, n_1=1 , n_2=n-1 ).
```

- The maximal value of  $n_1\cdot(n_1-1)/2+n_2\cdot(n_2-1)/2 \text{ is the one}$  with  $n_1=n-1$  and  $n_2=1$  (or symmetrically,  $n_1=1,n_2=n-1$ ).
- Thus, if  $m \ge (n-1) \cdot (n-2)/2$ , then the graph should be connected.

- The maximal value of  $n_1\cdot(n_1-1)/2+n_2\cdot(n_2-1)/2 \text{ is the one}$  with  $n_1=n-1$  and  $n_2=1$  (or symmetrically,  $n_1=1$ ,  $n_2=n-1$ ).
- Thus, if  $m \geq (n-1) \cdot (n-2)/2$ , then the graph should be connected.
- We leave it as an exercise to find out the inequation for m sufficient for a graph to have no more than k connected component.

### **Outline**

**Connected Graphs and Connected Components** 

Inequations on the Number of Connected Components

Circuit Rank

#### **Circuit Rank**

 While connectedness ensures the possibility of getting from one vertex to another, the circuit rank measures reliability of the system.

#### **Circuit Rank**

- While connectedness ensures the possibility of getting from one vertex to another, the circuit rank measures reliability of the system.
- The circuit rank is the graph invariant counted as follows: it is the minimum number of edges which should be removed from the graph to break all its cycles (i.e., to make it a tree or forest).

# **Circuit Rank: Example**



# **Circuit Rank: Example**



circuit rank = 2

## **History and Applications**

 The notion of circuit rank was introduced by G. Kirchhof for electric circuits.

## **History and Applications**

- The notion of circuit rank was introduced by G. Kirchhof for electric circuits.
- In chemistry (for graphs of molecular structure) it is known as the Frèrejacque number.

# **History and Applications**

- The notion of circuit rank was introduced by G. Kirchhof for electric circuits.
- In chemistry (for graphs of molecular structure) it is known as the Frèrejacque number.
- Circuit rank is used in computer science (software metrics) for estimating structural complexity of program code (so-called cyclomatic complexity).

 Notice that the circuit rank of a graph is not merely the number of cycles.

- Notice that the circuit rank of a graph is not merely the number of cycles.
- Cycles could be dependent, and removing one edge can destroy more than one cycle.

- Notice that the circuit rank of a graph is not merely the number of cycles.
- Cycles could be dependent, and removing one edge can destroy more than one cycle.
- Example:



• Fortunately, it is easy to compute the circuit rank, since there is an explicit formula.

- Fortunately, it is easy to compute the circuit rank, since there is an explicit formula.
- r=m-n+c, where m is the number of edges, n is the number of vertices, and c is the number of connected components.

• 
$$r = m - n + c$$

- r = m n + c
- It is sufficient to consider one connected component (i.e., a connected graph), since they are independent.

- r = m n + c
- It is sufficient to consider one connected component (i.e., a connected graph), since they are independent.
- For a connected graph, we have to prove r = m n + 1.

- r = m n + c
- It is sufficient to consider one connected component (i.e., a connected graph), since they are independent.
- For a connected graph, we have to prove r = m n + 1.
- If we remove m-n+1 edges, then the number of edges becomes n-1, which is the minimal possible for a connected graph.

- r = m n + c
- It is sufficient to consider one connected component (i.e., a connected graph), since they are independent.
- For a connected graph, we have to prove r = m n + 1.
- If we remove m-n+1 edges, then the number of edges becomes n-1, which is the minimal possible for a connected graph.
- Thus, this graph is a tree (otherwise we could remove one more edge), so r < m n + 1.

• On the other hand, if we remove less than m-n+1 edges, the graph could not become a tree or forest: in a forest, the number of edges is  $\leq n-1$ .

- On the other hand, if we remove less than m-n+1 edges, the graph could not become a tree or forest: in a forest, the number of edges is  $\leq n-1$ .
- Thus, the graph would still contain cycles.

- On the other hand, if we remove less than m-n+1 edges, the graph could not become a tree or forest: in a forest, the number of edges is  $\leq n-1$ .
- Thus, the graph would still contain cycles.
- Therefore,  $r \geq m n + 1$ .