Cache Memories

Computer Systems Oct. 08, 2018

Michael Kirkedal Thomsen

Based on slides by Randal E. Bryant and David R. O'Hallaron

General Cache Concept

Cache Memories

- Cache memories are small, fast SRAM-based memories managed automatically in hardware
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in cache
- **■** Typical system structure:

Intel Core i7 block diagram

Today

- Cache memory organization and operation
- **Performance impact of caches**
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

General Cache Organization (S, E, B)

Locate set **Cache Read** • Check if any line in set has matching tag E = 2^e lines per set • Yes + line valid: hit Locate data starting at offset Address of word: t bits s bits b bits $S = 2^{s}$ sets block tag set index offset data begins at this offset 0 1 B-1 tag valid bit

B = 2^b bytes per cache block (the data)

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

If tag doesn't match: old line is evicted and replaced

Direct-Mapped Cache Simulation

M=16 bytes (4-bit addresses), B=2 bytes/block, S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

	, , ,	
0	[0 <u>00</u> 0 ₂],	miss
1	[0 <u>00</u> 1 ₂],	hit
7	[0 <u>11</u> 1 ₂],	miss
8	[1 <u>00</u> 0 ₂],	miss
0	[0 <u>00</u> 0 ₂]	miss

	V	Tag	Block
Set 0	1	0	M[0-1]
Set 1			
Set 2			
Set 3	1	0	M[6-7]

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

No match:

- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block, S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

	•	•	•
0		$[00\underline{0}0_{2}],$	miss
1		$[00\underline{0}1_2],$	hit
7		[01 <u>1</u> 1 ₂],	miss
8		[10 <u>0</u> 0 ₂],	miss
0		[00002]	hit
V	Tag	Block	

	V	rag	DIOCK
Set 0	1	00	M[0-1]
	1	10	M[8-9]

Set 1	1	01	M[6-7]
	0		

What about writes?

- **■** Multiple copies of data exist:
 - L1, L2, L3, Main Memory, Disk
- **■** What to do on a write-hit?
 - Write-through (write immediately to memory)
 - Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)
- **■** What to do on a write-miss?
 - Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
 - No-write-allocate (writes straight to memory, does not load into cache)
- Typical
 - Write-through + No-write-allocate
 - Write-back + Write-allocate

Address order

Intel Core i7 Cache Hierarchy

Processor package

L1 i-cache and d-cache:

32 KB, 8-way,

Access: 4 cycles

L2 unified cache:

256 KB, 8-way,

Access: 10 cycles

L3 unified cache:

8 MB, 16-way,

Access: 40-75 cycles

Block size: 64 bytes for all

caches.

Intel Core i7 - 4-core CPU

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache (misses / accesses)
 = 1 hit rate
- Typical numbers (in percentages):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

- Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
- Typical numbers:
 - 4 clock cycle for L1
 - 10 clock cycles for L2

Miss Penalty

- Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)

Let's think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory
- **■** Would you believe 99% hits is twice as good as 97%?
 - Consider:
 cache hit time of 1 cycle
 miss penalty of 100 cycles
 - Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

■ This is why "miss rate" is used instead of "hit rate"

Writing Cache Friendly Code

- **■** Make the common case go fast
 - Focus on the inner loops of the core functions

Today

- Cache organization and operation
- **■** Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Writing Cache Friendly Code

- **■** Make the common case go fast
 - Focus on the inner loops of the core functions

Locality

■ Principle of Locality: Programs tend to use data and instructions with addresses near or equal to those they have used recently

Temporal locality:

 Recently referenced items are likely to be referenced again in the near future

Spatial locality:

Items with nearby addresses tend
 to be referenced close together in time

The Memory Mountain

- Read throughput (read bandwidth)
 - Number of bytes read from memory per second (MB/s)
- Memory mountain: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.

Writing Cache Friendly Code

- **■** Make the common case go fast
 - Focus on the inner loops of the core functions
- **■** Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories

Memory Mountain Test Function

```
long data[MAXELEMS]; /* Global array to traverse */
/* test - Iterate over first "elems" elements of
          array "data" with stride of "stride", using
          using 4x4 loop unrolling.
 */
int test(int elems, int stride) {
    long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
    long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
    long length = elems, limit = length - sx4;
    /* Combine 4 elements at a time */
    for (i = 0; i < limit; i += sx4) {</pre>
        acc0 = acc0 + data[i];
        acc1 = acc1 + data[i+stride];
        acc2 = acc2 + data[i+sx2];
        acc3 = acc3 + data[i+sx3];
    /* Finish any remaining elements */
    for (; i < length; i++) {</pre>
        acc0 = acc0 + data[i]:
    return ((acc0 + acc1) + (acc2 + acc3));
                               mountain/mountain.c
```

Call test() with many combinations of elems and stride.

For each elems and stride:

- 1. Call test() once to warm up the caches.
- 2. Call test() again and measure the read throughput (MB/s)

The Memory Mountain

Core i7 Haswell

2.1 GHz

The Memory Mountain – my laptop

Today

- **■** Cache organization and operation
- **■** Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Matrix Multiplication Example

Description:

- Multiply N x N matrices
- Matrix elements are doubles (8 bytes)
- O(N³) total operations
- N reads per source element
- N values summed per destination
 - but may be able to hold in register

```
/* ijk */
for (i=0; i<n; i++)

for (j=0; j<n; j++) {

   sum = 0.0; 

   for (k=0; k<n; k++)

      sum += a[i][k] * b[k][j];

   c[i][j] = sum;

}

matmult/mm.c
```

Miss Rate Analysis for Matrix Multiply

Assume:

- Block size = 32B (big enough for four doubles)
- Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:

Look at access pattern of inner loop

Layout of C Arrays in Memory (review)

C arrays allocated in row-major order

each row in contiguous memory locations

Stepping through columns in one row:

```
for (i = 0; i < N; i++)
sum += a[0][i];</pre>
```

- accesses successive elements
- if block size (B) > sizeof(a_{ij}) bytes, exploit spatial locality
 - miss rate = sizeof(a_{ij}) / B

Stepping through rows in one column:

```
for (i = 0; i < n; i++)
sum += a[i][0];</pre>
```

- accesses distant elements
- no spatial locality!
 - miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}

matmult/mm.c</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>	
0.25	1.0	0.0	

Matrix Multiplication (jik)

```
/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum
  }
}
</pre>
matmult/mm.c
```

Inner loop:

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
0.25	1.0	0.0

Matrix Multiplication (jki)

```
/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
  for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
}

matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}
    matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
1.0	0.0	1.0

Matrix Multiplication (kij)

```
/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}
matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25

0.25

Matrix Multiplication (ikj)

```
/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
  for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
  }
}
matmult/mm.c</pre>
```


Misses per inner loop iteration:

0.25

Summary of Matrix Multiplication

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
  for (k=0; k<n; k++)
    sum += a[i][k] * b[k][j];
  c[i][j] = sum;
}
}</pre>
```

```
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
  for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
}</pre>
```

```
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
  for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
}</pre>
```

ijk (& jik):

- 2 loads, 0 stores
- misses/iter = **1.25**

kij (& ikj):

- 2 loads, 1 store
- misses/iter = **0.5**

jki (& kji):

- 2 loads, 1 store
- misses/iter = **2.0**

Core i7 Matrix Multiply Performance

Today

- Cache organization and operation
- **Performance impact of caches**
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Example: Matrix Multiplication

```
= (double *) calloc(sizeof(double), n*n);
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i++)
       for (j = 0; j < n; j++)
             for (k = 0; k < n; k++)
                c[i*n + j] += a[i*n + k] * b[k*n + j];
```


Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

First iteration:

• n/8 + n = 9n/8 misses

Afterwards in cache: (schematic)

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

■ Second iteration:

- Again:n/8 + n = 9n/8 misses
- **■** Total misses:
 - $9n/8 * n^2 = (9/8) * n^3$

Blocked Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i+=B)
       for (j = 0; j < n; j+=B)
             for (k = 0; k < n; k+=B)
                /* B x B mini matrix multiplications */
                  for (i1 = i; i1 < i+B; i++)
                      for (j1 = j; j1 < j+B; j++)
                          for (k1 = k; k1 < k+B; k++)
                              c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
```

matmult/bmm.c

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks fit into cache: 3B < C

First (block) iteration:

- B /8 misses for each block
- $2n/B * B^{2}/8 = nB/4$ (omitting matrix c)
- Afterwards in cache (schematic)

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks fit into cache: 3B² < C

■ Second (block) iteration:

- Same as first iteration
- $2n/B * B^2/8 = nB/4$

■ Total misses:

• $nB/4 * (n/B)^2 = n^3/(4B)$

Blocking Summary

- No blocking: (9/8) * n³
- **■** Blocking: 1/(4B) * n³
- Suggest largest possible block size B, but limit $3B^2 < C!$
 - My machine has 32 KB L1-dcache
 - Implies B < 104
- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: 3n², computation 2n³
 - Every array elements used O(n) times!
 - But program has to be written properly

Cache Summary

■ Cache memories can have significant performance impact

■ You can write your programs to exploit this!

- Focus on the inner loops, where bulk of computations and memory accesses occur.
- Try to maximize spatial locality by reading data objects with sequentially with stride 1.
- Try to maximize temporal locality by using a data object as often as possible once it's read from memory.