

Colab Link:

https://colab.research.google.com/drive/1ZPI5-cNtM4oPN1sOysRc9Tqj6xR17wf2?usp=sharing

AGENDA

- Context and Motivation
- 2 Dataset
- **3** Data Cleaning and Exploration
- **4** Model Comparison
- **5** Challenges and Solutions
- 6 Conclusion

Prediction of Water Potability

Objective:

To develop a best-performing ML model to predict water potability

Motivation:

A model as such would serve as an economical approach to screen qualified water sources **Dataset**

Dataset Overview

- Data Source: Kaggle
- 3276 rows, 10 columns
- 1 target (binary), 9 predictors (numeric)

variable	description		
Potability	Indicates if water is safe for human consumption where 1 means Potable and 0 means Not potable.		
ph	Indicates acid—base balance of water. Maximum permissible limit of pH ranges from 6.5 to 8.5.		
Hardness	Defined as the capacity of water to precipitate soap caused by Calcium and Magnesium.		
Solids	Total dissolved solids. Desirable limit for TDS is 500 mg/L and maximum limit is 1000 mg/L.		
Chloramines	Major disinfectants used in public water systems. Chlorine levels up to 4 milligrams per liter are considered safe in drinking water.		
Sulfate	Naturally occurring substances found in minerals, soil, and rocks. It ranges from 3 to 30 mg/L in most freshwater supplies.		
Conductivity	Measures the ionic process of a solution that enables it to transmit current. Should not exceeded 400 μS/cm by WHO standards.		
Organic_carbon	Comes from decaying natural organic matter and synthetic sources. < 2 mg/L in treated / drinking water; < 4 mg/Lit in source water used for treatment.		
Trihalomethanes	Chemicals which may be found in water treated with chlorine. Up to 80 ppm is safe in drinking water.		
Turbidity	The turbidity of water depends on the quantity of solid matter present in the suspended state. WHO recommended value is 5.00 NTU.		

Handling Missing Values

- 491 missing values in **ph**
- 781 in **Sulfate**
- 162 in **Trihalomethanes**
- Dropping all rows with missing values will result in losing 39% of the records

Dropping Rows > Smaller Dataset

Dropping Columns > Info Loss

Imputing More Bias

Handling Missing Values

✓ **Drop Rows** (2011 rows left)

- Sulfate and ph are two main contributors to water potability
- Remain conservative about water potability (reduces false positive predictions)

Distribution of Target Variable

- 811 records of potable water (40%)
- 1200 records of impotable water (60%)
- Relatively balanced

Histogram

The data is almost normally distributed.

Potability

ph	-0.003556
Hardness	-0.013837
Solids	0.033743
Chloramines	0.023779
Sulfate	-0.023577
Conductivity	-0.008128
Organic_carbon	-0.030001
Trihalomethanes	0.007130
Turbidity	0.001581
Potability	1.000000

Pipeline

- ▶ ColumnTransformer
 - num
 - ▶ SimpleImputer
 - ▶ StandardScaler

- Impute strategy: median
- StandardScaler
- Test size 20%

Which model will win?

Random Forest

Ensemble-vote

Ensemble-stack

Logistic Regression

Logistic Regression with all features:

Test accuracy: 57.07%

• Grid Search:

 mean test score is maximized to 62.79% when 5 features are selected

Naïve Bayes - Not Applicable

- usually performs better with a small dataset, while our dataset has more than 2000 records.
- Naïve Bayes Assumption: independence among features, but according to natural science principles, these indicators of water quality are interrelated.

Modeling

KNN

- Grid Search
- n_neighbors = 6

Test accuracy: 63.77%

SVM

- Halving Random search
- Kernel
 - Linear
 - polynomial
 - Radial
- Cost

iter	n_resources	param_svmC	param_svmkernel	mean_test_score
2	1602	1	rbf	0.633558

Test accuracy: 68.24%

Modeling

Decision Tree

- Grid Search
- ccp_alpha =0.003017

Test accuracy: 64.26%

Random Forest

- Grid Search
- n_estimators
- min_samples_leaf

```
param_min_samples_split param_n_estimators mean_test_score

5 200 0.619415
```

Test accuracy: 67.49%

Ensemble

• Test accuracy: 65.01%

• Test accuracy: 63.52%

Model Selection

- Perform well on highdimensional data with non-linear relationship
- Avoid overfitting problem

Cost Matrix

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Goal: Increase the criteria of potable when we select water samples.

FP cost:4

FN cost:1

```
def default_cost(y_true, y_pred):
    cm = confusion_matrix(y_true, y_pred)
    return cm[1,0] * 4 + cm[0,1] * 1
```

Model Selection

 SVM is still our best model!

Challenge and Conclusion

Best model: SVM

Challenge: Combine the model with the real-world case

Solution: Case by case study

