FINAL PROJECT: CHAOS

Liver Segmentation

Group 2 - Deep Learning Methods for Medical Image Analysis
Mariona Carrasco and Gerard Castells

Steps followed to solve the challenge

- 1. Analyzing the data to work with
- 2. Data loading
- 3. Data generator function
- 4. Training the model
- 5. Obtaining the predicted masks
- 6. Calculating the dice scores

Data structure

```
Data
     Train_sets
           CT
                      DICOM_anon: .dcm files
                       containing the CT images for all
                      the slices
                      Ground: .jpg files containing the
                      masks for each slice
                      DICOM_anon
                       Ground
           MR
     Test sets
```

- 20 patients in Train_sets
 - o 15 train, 4 validation, 1 test
- Around 90 slices per patient.

Figure 1: Dicom_anon file

Figure 2: Ground file

Data loading

Images: .dcm files

- 1. dcmread
- 2. pixel_array
- 3. apply_modality_LUT

np.unique(dicom_array)
array([-1024., -1023., -1022., ..., 1183., 1187., 1211.])

Masks: .png files

- 1. Image.open
- 2. Array

np.unique(ground_array)
array([False, True])

patient_data = {'patient id' : [image,mask] for all the slices, 'patient id' : [image,mask], ...}

- 15 patients to train_data
- 4 patients to val_data
- 1 patient to test _data

Dictionary to list

- train_pairs
- val_pairs
- test_pairs

Data generator function

- Data augmentation
 Parameters:
 ImageDataGenerator(rotation_range=5, fill_mode='nearest')
- Image normalization
 - Dividing each image array by 1400
 - To have all values in the range [-1,+1]
- Mask normalization
 - Make sure masks are all boolean (True/False)

Training the model

- Implement U-Net Model
- Compile Model
 - Adam optimizer
 - Binary cross-entropy loss
 - Evaluation metrics: binary accuracy, precision, recall and dice coefficient

> Training

- Data obtained with data generator function (training / validation)
- num epochs = 150
- batch size = 8

Parameters used:

```
base = 16

img_h = 512

img_w = 512

img_ch = 1

learning_rate = 1e-5

dropout = True

dr = 0.2

batch_norm = True

img_size = 512
```

Loss curve

Figure 3: Graph of loss curve

Plot curves

Accuracy curve

Figure 3: Graph of accuracy curve

Evaluation metrics

Figure 3: Graph with metrics

Obtaining the predicted masks

test_pairs = {'patient id' : [image,mask]...}

Dictionary to list

- test_images
- test_masks

test_images → model.predict → Binary → Predicted mask threshold=128

True Masks VS Predicted Masks

Calculating the dice scores

Function calculate_dice_coefficient(true_mask, predicted_mask_binary)

Patient id	30	28	24	27	8	22	23	21	10
Average dice score	0.285	0.588	0.351	0.355	0.576	0.339	0.239	0.496	0.512

Total average= 0.43

6 2	2	14	19	18	1	16	25	5	26	29
0.485	0.42	0.549	0.595	0.468	0.56	0.18	0.552	0.418	0.326	0.567

Thanks!

Do you have any questions?

