

US Gun Violence Data

Sodiq, Mayra, Danielle, Kevin

Areas of Focus

Gun Violence Fatalities Over Time

Fatalities by Year

From 1966 to 2022

Fatalities by State

From 1966 to 2022

Time Series Analysis

In what ways do one's proximity to a shooter impact their chance of becoming a victim?

1st Hypothesis

<u>Null</u>: The proportion of victims within five years of the shooter's age is the same as the proportion of the victim's age.

<u>Two-Tail Hypothesis A</u>: Being within five years of age of the shooter makes it more likely to be victimized.

Two-Tail Hypothesis B: Being either 5+ years older or younger than the shooter increased the likelihood of becoming a victim.

Ratio of individuals within 5 years of age as the shooter vs not: 261:1303

Our Findings

2nd Hypothesis

<u>Null</u>: Having been familiar with the shooter before an incident does not impact whether or not one became a victim in a shooting incident

<u>Two-Tail Hypothesis A</u>: Circumstantial/Concrete evidence of a victim and shooter knowing each other increased the likelihood of becoming victimized.

<u>Two-Tail Hypothesis B</u>: No evidence to show a relationship between the victim and shooter corresponds with a higher likelihood of one becoming victimized.

No evidence: 694 Circumstantial(likely): 434 Verified evidence: 134

Our Findings

Dataset Source

Co-Founders

Jillian Peterson, PhD
Co-founder and President

James Densley, PhD
Co-founder and President

The Violence Project Dataset

- Dates from 1966-2022
- Over 200 recorded variables (Location, victims, shooter background, etc.)

Defines mass shootings as: Four or more victims killed, regardless of number injured.

Areas of interest

- 1. Distribution of shootings by location, time, day, month, religion, race, education, and gender.
- 2. Shootings by licensed vs unlicensed firearms.

Confusing data for Illegal vs Legal Firearms Purchases

One Proportion z-test on: Gender of shooter

Null Hypothesis: Shooters are equally as likely to be male vs female.

Hypothesis: Shooters are more likely to be male.

Total Population:180

Sample population: 18

Null Hypothesis population: 0.5 (50% Male/50% Female)

Sample population results: 18 male/0 female

P-Value = 0.00016

Conclusion: Null hypothesis can be rejected. Shooters are more likely to be male.

proportions_ztest(9,18,value=count_1)
(3.7712361663282534, 0.00016244084518680075)

Location/Time

Distribution of race, age, and education

Our Regional Data Analysis

Our Findings

Thank you for listening.

