Evidence of accurate logical reasoning in online sentence comprehension

34th Annual CUNY Conference on Human Sentence Processing

Maksymilian Dąbkowski¹, Roman Feiman² March 4, 2021

March 4, 2021

¹University of California, Berkeley, ²Brown University

Introduction

what is the status of logic in thought?

- · what is the status of logic in thought?
- logic studies relations among propositions

- · what is the status of logic in thought?
- · logic studies relations among propositions

Dictum de omni

All rats love to eat.

:. All spotted rats love to eat.

- · what is the status of logic in thought?
- · logic studies relations among propositions

Dictum de omni

All rats love to eat.

- ... All spotted rats love to eat.
 - · do such schemata capture the nature of thought?

• psychology has focused on difficulties in logical reasoning

- psychology has focused on difficulties in logical reasoning
 - Wason's (1968) selection tasks easier when ecologically valid (Cheng and Holyoak, 1985, 1989; Cheng, Holyoak, et al., 1986)

- · psychology has focused on difficulties in logical reasoning
 - Wason's (1968) selection tasks easier when ecologically valid (Cheng and Holyoak, 1985, 1989; Cheng, Holyoak, et al., 1986)
 - · dual-process theories (Evans and Stanovich, 2013; Kahneman, 2011)

- psychology has focused on difficulties in logical reasoning
 - Wason's (1968) selection tasks easier when ecologically valid (Cheng and Holyoak, 1985, 1989; Cheng, Holyoak, et al., 1986)
 - · dual-process theories (Evans and Stanovich, 2013; Kahneman, 2011)

A Birds have an ulnar artery. ∴ Robins have an ulnar artery. ∴ Penguins have an ulnar artery. Sloman (1993)

- psychology has focused on difficulties in logical reasoning
 - Wason's (1968) selection tasks easier when ecologically valid (Cheng and Holyoak, 1985, 1989; Cheng, Holyoak, et al., 1986)
 - · dual-process theories (Evans and Stanovich, 2013; Kahneman, 2011)

system 1 ... has little understanding of logic and statistics

Kahneman (2011)

formal semantics presupposes logical ability

formal semantics presupposes logical ability
 the logical notions are embedded in our deepest nature, in
 the very form of our language and thought
 Chomsky (1988, p. 99)

- formal semantics presupposes logical ability
 the logical notions are embedded in our deepest nature, in
 the very form of our language and thought
 Chomsky (1988, p. 99)
- · linguists predict some logical thought as effortless as language

 formal semantics presupposes logical ability the logical notions are embedded in our deepest nature, in the very form of our language and thought

Chomsky (1988, p. 99)

- linguists predict some logical thought as effortless as language
- can we find evidence for spontaneous logical computation?

 formal semantics presupposes logical ability the logical notions are embedded in our deepest nature, in the very form of our language and thought

Chomsky (1988, p. 99)

- linguists predict some logical thought as effortless as language
- · can we find evidence for **spontaneous logical computation**?
- **entailment**: if *p* is true, then *q* is also true

 formal semantics presupposes logical ability the logical notions are embedded in our deepest nature, in the very form of our language and thought

Chomsky (1988, p. 99)

- linguists predict some logical thought as effortless as language
- · can we find evidence for **spontaneous logical computation**?
- entailment: if p is true, then q is also true

Dictum de omni

All rats love to eat.

:. All spotted rats love to eat.

some of the cats chased a mouse first argument second argument

some of the cats chased a mouse first argument second argument

subset

some of the angry cats chased a mouse \models some of the cats chased a mouse

some of the cats chased a mouse first argument second argument

some of the angry cats chased a mouse ⊨ some of the cats chased a mouse

some of the cats chased a mouse first argument second argument

some of the angry cats chased a mouse ⊨ some of the cats chased a mouse

superset

some of the cats chased a mouse ⊭ some of the angry cats chased a mouse

some of the cats chased a mouse first argument second argument

subset

some of the angry cats chased a mouse \models some of the cats chased a mouse

superset

some of the cats chased a mouse ⊭ some of the angry cats chased a mouse

some of the cats chased a mouse first argument second argument

some of the angry cats chased a mouse = some of the cats chased a mouse

some of the cats chased a mouse

⊭ some of the angry cats chased a mouse

cat (angry chased ...)

some, the first argument:

you can go from a subset to a larger set (angry cat → cat)

some of the cats chased a mouse first argument second argument

subset

some of the cats chased a white mouse ⊨ some of the cats chased a mouse

some of the cats chased a mouse first argument second argument

subset

some of the cats chased a white mouse ⊨ some of the cats chased a mouse

some of the cats chased a mouse

⊭ some of the cats chased a white mouse

subset

superset

some of the cats chased a white mouse |= some of the cats chased a mouse

some, the second argument:
you can go from a subset to a larger set (white mouse → mouse)

• upward entailment: can go from a subset to a larger set

- upward entailment: can go from a subset to a larger set
- 1st arg of some: upward-entailing (angry cat → cat)

- · upward entailment: can go from a subset to a larger set
- 1st arg of some: upward-entailing (angry cat → cat)
- · 2nd arg of some: upward-entailing (white mouse → mouse)

- upward entailment: can go from a subset to a larger set
- 1st arg of some: upward-entailing (angry cat → cat)
- · 2nd arg of some: upward-entailing (white mouse → mouse)
- · downward entailment: can go from a superset to a smaller set

all: both arguments

superset

all of the cats chased a mouse ⊨ all of the angry cats chased a mouse

superset

all of the cats chased a mouse ⊨ all of the angry cats chased a mouse

all of the cats chased a white mouse

|= all of the cats chased a mouse

superset

all of the cats chased a mouse ⊨ all of the angry cats chased a mouse

all of the cats chased a white mouse ⊨ all of the cats chased a mouse

all: downward-entailing on the 1st argument (cat → angry cat),

subset

superset

all of the cats chased a mouse ⊨ all of the angry cats chased a mouse

subset

all of the cats chased a white mouse ⊨ all of the cats chased a mouse

all: downward-entailing on the 1st argument (cat → angry cat), upward-entailing on the 2nd argument (white mouse → mouse)

entailment direction by quantifier and argument

	SOME	NOT ALL	ALL	NONE
FIRST ARG	upward	upward	downward	downward
SECOND ARG	upward	downward	upward	downward

presupposed by accounts of:

- presupposed by accounts of:
 - \cdot Gricean implicature computation

- presupposed by accounts of:
 - Gricean implicature computation
 - · distribution of negative polarity items (NPIs) (e.g. Ladusaw, 1983)

- presupposed by accounts of:
 - Gricean implicature computation
 - · distribution of negative polarity items (NPIs) (e.g. Ladusaw, 1983)
- yet, little evidence for online logical computation outside of acceptability judgements

- presupposed by accounts of:
 - Gricean implicature computation
 - · distribution of negative polarity items (NPIs) (e.g. Ladusaw, 1983)
- yet, little evidence for online logical computation outside of acceptability judgements
- can be challenged on empirical grounds

Hoeksema's (2012) 12 classes of polarity items

- 1. negation
- 2. yes/no-questions
- 3. wh-questions
- 4. comparatives of inequality
- 5. conditional clauses
- 6. restriction of universals
- 7. restriction of the only
- 8. restriction of superlatives
- 9. scope of only

							_		
	1	2	3	4	5	6	7	8	9
Any		+	+	+	+	+	+	+	+
Ever		+	+	+	+	+	+	+	+
Ook maar	+	+	+	+	+	+	+	+	+
Minimizer	+	+	+	+	+	+	+	-	-
Remotely	+	+	+	+	+	+	+	-	+
At all	+	+	+	+	+	+	+	-	+
Adv. Any	+	+	+	+	+	+	+	-	+
Yet	+	+	-	+	+	-/+	+	+	+
Either	+	+	-	+	-	-	-	-	-
In X	+	-	-	+	-	-	+	+	-
Can help	+	+	+	+	+	-/+	-	-	-
Can blame	+	+	+	-	-	-	+	-	-
Kwaad kunnen	+	+	+	-	-	-	+	-	+
Need, etc.	+	+	+	+	-	-/+	+	-	+
Anymore (US)	+	-	-	-	-	-	+	-	-
Squat		-	-	-	-	-	+	-	-
Exactly		-	-	-	-	-	-	-	-
Meer/mehr	+	-	-	-	-	-	-	-	-

- presupposed by accounts of:
 - Gricean implicature computation
 - · distribution of negative polarity items (NPIs) (e.g. Ladusaw, 1983)
- yet, little evidence for online logical computation outside of acceptability judgements
- · can be challenged on empirical grounds
 - the distribution of NPIs is more complex (cf. Hoeksema, 2012)
- · previous studies:

- · presupposed by accounts of:
 - Gricean implicature computation
 - · distribution of negative polarity items (NPIs) (e.g. Ladusaw, 1983)
- yet, little evidence for online logical computation outside of acceptability judgements
- · can be challenged on empirical grounds
 - the distribution of NPIs is more complex (cf. Hoeksema, 2012)
- · previous studies:
 - Deschamps et al. (2015): signature of quantifier's direction of entailment

- presupposed by accounts of:
 - Gricean implicature computation
 - · distribution of negative polarity items (NPIs) (e.g. Ladusaw, 1983)
- yet, little evidence for online logical computation outside of acceptability judgements
- · can be challenged on empirical grounds
 - the distribution of NPIs is more complex (cf. Hoeksema, 2012)
- · previous studies:
 - Deschamps et al. (2015): signature of quantifier's direction of entailment
 - Agmon et al. (2019): signatures of both negative polarity and downward entailment

- presupposed by accounts of:
 - Gricean implicature computation
 - · distribution of negative polarity items (NPIs) (e.g. Ladusaw, 1983)
- yet, little evidence for online logical computation outside of acceptability judgements
- · can be challenged on empirical grounds
 - the distribution of NPIs is more complex (cf. Hoeksema, 2012)
- · previous studies:
 - Deschamps et al. (2015): signature of quantifier's direction of entailment
 - Agmon et al. (2019): signatures of both negative polarity and downward entailment
- limitation: inferences tested indirectly

Methods

three novel self-paced reading experiments

- three novel self-paced reading experiments
- tested for signatures of accurate inferences between quantified sentences

- three novel self-paced reading experiments
- tested for signatures of accurate inferences between quantified sentences
- experiment 1 involved detecting logical contradictions

- three novel self-paced reading experiments
- tested for signatures of accurate inferences between quantified sentences
- experiment 1 involved detecting logical contradictions
- experiments 2 and 3 leveraged variable entailments of the first and second arguments of quantifiers to detect incorrect inferences

- three novel self-paced reading experiments
- tested for signatures of accurate inferences between quantified sentences
- experiment 1 involved detecting logical contradictions
- experiments 2 and 3 leveraged variable entailments of the first and second arguments of quantifiers to detect incorrect inferences
- preregistered design and analyses on OSF

Experiment 1

tested whether speakers detect logical contradictions

- tested whether speakers detect logical contradictions
- 400 participants on Amazon Mechanical Turk

- tested whether speakers detect logical contradictions
- · 400 participants on Amazon Mechanical Turk
- 12 target items displayed line by line

- tested whether speakers detect logical contradictions
- · 400 participants on Amazon Mechanical Turk
- 12 target items displayed line by line
- 6 conditions differing in quantifiers

- tested whether speakers detect logical contradictions
- · 400 participants on Amazon Mechanical Turk
- 12 target items displayed line by line
- 6 conditions differing in quantifiers

Test item

- (1) A group of scientists wanted to know whether spotted rats,
- (2) who are pickier eaters than other rats, liked a new kind of food.
- (3) They tested white, black, and spotted rats of both sexes.
- (4) The scientists discovered that QUANT1 of the rats loved the food.
- (5) Now that they knew that QUANT2 of the rats loved the food,
- (6) they decided to issue a recommendation based on their findings.

- tested whether speakers detect logical contradictions
- 400 participants on Amazon Mechanical Turk
- · 12 target items displayed line by line
- · 6 conditions differing in quantifiers

Test item

- (1) A group of scientists wanted to know whether spotted rats,
- (2) who are pickier eaters than other rats, liked a new kind of food.
- (3) They tested white, black, and spotted rats of both sexes.
- (4) The scientists discovered that QUANT1 of the rats loved the food.
- (5) Now that they knew that QUANT2 of the rats loved the food,
- (6) they decided to issue a recommendation based on their findings.
 - measured variable: RT of the conclusion line (5)

- tested whether speakers detect logical contradictions
- · 400 participants on Amazon Mechanical Turk
- · 12 target items displayed line by line
- 6 conditions differing in quantifiers

Test item

- (1) A group of scientists wanted to know whether spotted rats,
- (2) who are pickier eaters than other rats, liked a new kind of food.
- (3) They tested white, black, and spotted rats of both sexes.
- (4) The scientists discovered that QUANT1 of the rats loved the food.
- (5) Now that they knew that QUANT2 of the rats loved the food,
- (6) they decided to issue a recommendation based on their findings.
 - measured variable: RT of the conclusion line (5)
 - participants were asked unrelated comprehension questions

- tested whether speakers detect logical contradictions
- · 400 participants on Amazon Mechanical Turk
- · 12 target items displayed line by line
- 6 conditions differing in quantifiers

Test item

- (1) A group of scientists wanted to know whether spotted rats,
- (2) who are pickier eaters than other rats, liked a new kind of food.
- (3) They tested white, black, and spotted rats of both sexes.
- (4) The scientists discovered that QUANT1 of the rats loved the food.
- (5) Now that they knew that QUANT2 of the rats loved the food,
- (6) they decided to issue a recommendation based on their findings.
 - measured variable: RT of the conclusion line (5)
 - participants were asked unrelated comprehension questions
 - The researchers studied rodents.

RUE FALS

experiment 1 conditions

	QUANT1	QUANT2
IDENTITY	SOMe of the rats loved they knew tha	t SOMe of the rats
IDENTITY	not all of the rats loved they knew tha	t not all of the rats
ENTAILMENT	all of the rats loved they knew tha	t SOMe of the rats
ENTAILMENT	none of the rats loved they knew tha	t not all of the rats
CONTRADICTION	none of the rats loved they knew tha	t SOMe of the rats
CONTRADICTION	all of the rats loved they knew tha	t not all of the rats

experiment 1 results

Experiment 2

• same paradigm to detect subtler unlicensed inferences (n = 400)

- \cdot same paradigm to detect subtler unlicensed inferences (n = 400)
- $\boldsymbol{\cdot}$ manipulated quantifiers and premise quantifier's 1^{st} arg

- same paradigm to detect subtler unlicensed inferences (n = 400)
- manipulated quantifiers and premise quantifier's 1st arg

- (1) A group of scientists wanted to know whether spotted rats,
- (2) who are pickier eaters than other rats, liked a new kind of food.
- (3) They tested white, black, and spotted rats of both sexes.
- (4) The scientists discovered that <u>QUANT</u> of the <u>((male) spotted) rats</u> loved the food.
- (5) Now that they knew that <u>QUANT</u> of the <u>spotted rats</u> loved the food,
- (6) they decided to issue a recommendation based on their findings.

- same paradigm to detect subtler unlicensed inferences (n = 400)
- · manipulated quantifiers and premise quantifier's 1st arg

- (1) A group of scientists wanted to know whether spotted rats,
- (2) who are pickier eaters than other rats, liked a new kind of food.
- (3) They tested white, black, and spotted rats of both sexes.
- (4) The scientists discovered that <u>QUANT</u> of the <u>((male) spotted) rats</u> loved the food.
- (5) Now that they knew that QUANT of the spotted rats loved the food,
- (6) they decided to issue a recommendation based on their findings.
 - 4 quantifiers × 3 containment relations = 12 conditions

- same paradigm to detect subtler unlicensed inferences (n = 400)
- · manipulated quantifiers and premise quantifier's 1st arg

- (1) A group of scientists wanted to know whether spotted rats,
- (2) who are pickier eaters than other rats, liked a new kind of food.
- (3) They tested white, black, and spotted rats of both sexes.
- (4) The scientists discovered that <u>QUANT</u> of the <u>((male) spotted) rats</u> loved the food.
- (5) Now that they knew that QUANT of the spotted rats loved the food,
- (6) they decided to issue a recommendation based on their findings.
 - 4 quantifiers × 3 containment relations = 12 conditions
 - 4 conditions: premise identical to (trivally entails) conclusion

- same paradigm to detect subtler unlicensed inferences (n = 400)
- · manipulated quantifiers and premise quantifier's 1st arg

- (1) A group of scientists wanted to know whether spotted rats,
- (2) who are pickier eaters than other rats, liked a new kind of food.
- (3) They tested white, black, and spotted rats of both sexes.
- (4) The scientists discovered that <u>QUANT</u> of the <u>((male) spotted) rats</u> loved the food.
- (5) Now that they knew that <u>QUANT</u> of the <u>spotted rats</u> loved the food,
- (6) they decided to issue a recommendation based on their findings.
 - 4 quantifiers × 3 containment relations = 12 conditions
 - 4 conditions: premise identical to (trivally entails) conclusion
 - 4 conditions: premise entails conclusion

- same paradigm to detect subtler unlicensed inferences (n = 400)
- manipulated quantifiers and premise quantifier's 1st arg

- (1) A group of scientists wanted to know whether spotted rats,
- (2) who are pickier eaters than other rats, liked a new kind of food.
- (3) They tested white, black, and spotted rats of both sexes.
- (4) The scientists discovered that <u>QUANT</u> of the <u>((male) spotted) rats</u> loved the food.
- (5) Now that they knew that QUANT of the spotted rats loved the food,
- (6) they decided to issue a recommendation based on their findings.
 - 4 quantifiers × 3 containment relations = 12 conditions
 - 4 conditions: premise identical to (trivally entails) conclusion
 - · 4 conditions: premise entails conclusion
 - 4 conditions: premise does not entail conclusion

- same paradigm to detect subtler unlicensed inferences (n = 400)
- manipulated quantifiers and premise quantifier's 1st arg

- (1) A group of scientists wanted to know whether spotted rats,
- (2) who are pickier eaters than other rats, liked a new kind of food.
- (3) They tested white, black, and spotted rats of both sexes.
- (4) The scientists discovered that <u>QUANT</u> of the <u>((male) spotted) rats</u> loved the food.
- (5) Now that they knew that <u>QUANT</u> of the <u>spotted rats</u> loved the food,
- (6) they decided to issue a recommendation based on their findings.
 - 4 quantifiers × 3 containment relations = 12 conditions
 - 4 conditions: premise identical to (trivally entails) conclusion
 - · 4 conditions: premise entails conclusion
 - 4 conditions: premise does not entail conclusion
 - · within quantifier, critical lines have identical lexical content

		SOME	NOT ALL	ALL	NONE
SU	$JBSET \to$	Some of the male spotted rats loved the food. Now that	male spotted rats	all of the male spotted rats loved the food. Now that	none of the male spotted rats
of spot	ted rats $ ightarrow$	they knew that SOME of the Spotted rats	they knew that not all of the spotted rats	they knew that all of the spotted rats	they knew that none of the spotted rats
IDEN ⁻	TICAL $ ightarrow$	some of the spotted rats loved the food. Now that	not all of the spotted rats loved the food. Now that	all of the spotted rats loved the food. Now that	none of the spotted rats loved the food. Now that
to spot	ted rats $ ightarrow$	they knew that SOME of the Spotted rats	they knew that not all of the spotted rats	they knew that all of the spotted rats	they knew that none of the spotted rats
SUPE	ERSET \rightarrow	some of the rats loved the food. Now that	not all of the rats loved the food. Now that	all of the rats loved the food. Now that	none of the rats loved the food. Now that
of spot	ted rats $ ightarrow$	they knew that SOME of the Spotted rats	they knew that not all of the spotted rats	they knew that all of the spotted rats	they knew that none of the spotted rats

- trivially entailed
- entailed
- not entailed

	SOME	NOT ALL	ALL	NONE	
$\overline{\text{SUBSET}} \rightarrow$	Some of the male spotted rats loved the food. Now that		all of the male spotted rats loved the food. Now that	none of the male spotted rate loved the food. Now that	
of spotted rats \rightarrow	they knew that SOME of the Spotted rats	they knew that not all of the spotted rats		they knew that none of the spotted rats	
$\overline{IDENTICAL} \to$	Some of the spotted rats loved the food. Now that they knew that Some of	not all of the spotted rats loved the food. Now that they knew that not all of	all of the spotted rats loved the food. Now that they knew that all of the	none of the spotted rats loved the food. Now that they knew that none of	
to spotted rats \rightarrow	the spotted rats	the spotted rats	spotted rats	the spotted rats	
$\overline{\text{SUPERSET}} \rightarrow$	SOME of the rats loved the food. Now that	not all of the rats loved the food. Now that	all of the rats loved the food. Now that	none of the rats loved the food. Now that	
of spotted rats \rightarrow	they knew that SOME of the Spotted rats	they knew that not all of the spotted rats	they knew that all of the spotted rats	they knew that none of the spotted rats	

- trivially entailed
- entailed
- not entailed

	SOME	NOT ALL	ALL	NONE
$\begin{array}{c} SUBSET \to \\ \\ of \ spotted \ rats \to \end{array}$	Some of the male spotted rats loved the food. Now that they knew that Some of the spotted rats		male spotted rats loved the food. Now that they knew that all of the	none of the male spotted rats loved the food. Now that they knew that none of the spotted rats
$\stackrel{-}{IDENTICAL} \to$	loved the food. Now that they knew that SOME of	not all of the spotted rats loved the food. Now that they knew that not all of	all of the spotted rats loved the food. Now that they knew that all of the	none of the spotted rats loved the food. Now that they knew that none of
to spotted rats \rightarrow	the spotted rats	the spotted rats	spotted rats	the spotted rats
${\tt SUPERSET} \rightarrow$	SOME of the rats loved the food. Now that	not all of the rats loved the food. Now that	all of the rats loved the food. Now that	none of the rats loved the food. Now that
of spotted rats \rightarrow	they knew that SOME of the Spotted rats	they knew that not all of the spotted rats	they knew that all of the spotted rats	they knew that none of the spotted rats

- trivially entailed
- entailed
- not entailed

	SOME	NOT ALL	ALL	NONE
SUBSET →	Some of the male spotted rats loved the food. Now that they knew that Some of		all of the male spotted rats loved the food. Now that they knew that all of the	none of the male spotted rats loved the food. Now that they knew that none of
of spotted rats \rightarrow	the spotted rats		spotted rats	the spotted rats
$\overline{IDENTICAL} \to$	some of the spotted rats loved the food. Now that	not all of the spotted rats loved the food. Now that	all of the spotted rats loved the food. Now that	none of the spotted rats loved the food. Now that
to spotted rats \rightarrow	they knew that SOME of the Spotted rats	they knew that not all of the spotted rats	they knew that all of the spotted rats	they knew that none of the spotted rats
$\stackrel{-}{\text{SUPERSET}} \rightarrow$	some of the rats loved the food. Now that	not all of the rats loved the food. Now that	all of the rats loved the food. Now that	none of the rats loved the food. Now that
of spotted rats \rightarrow	they knew that SOMe of the Spotted rats	they knew that not all of the spotted rats	they knew that all of the spotted rats	they knew that none of the spotted rats

- trivially entailed
- entailed
- not entailed

experiment 2 conditions, abridged

	SOME	NOT ALL	ALL	NONE
SUBSET	entl'd	entl'd	¬entl'd	¬entl'd
IDENT	triv'l	triv'l	triv'l	triv'l
SUPERSET	¬entl'd	¬entl'd	entl'd	entl'd

- trivially entailed
- entailed
- not entailed

experiment 2 results

subset: male spotted rats ≺ spotted rats
ident: spotted rats ≺ spotted rats

 $superset: \ \mathit{rats} \prec \mathit{spotted} \ \mathit{rats}$

experiment 2 results, quantifiers grouped by entailment

■ entailed subset: male spotted rats ≺ spotted rats■ not entailed superset: rats ≺ spotted rats

containment (subset vs. superset) × entailment (up vs. down): $\chi^2=$ 10.9, p< 0.001

Experiment 3

· manipulated quantifiers and premise quantifier's 2nd arg

· manipulated quantifiers and premise quantifier's 2nd arg

- (1) A group of scientists wanted to know what rats liked to eat.
- (2) They gave rats a choice of different meats,
- (3) as well as leafy and root vegetables, both fresh and frozen.
- (4) They discovered that QUANT of the rats ate ((frozen) leafy) vegetables.
- (5) Now that they knew that QUANT of the rats ate leafy vegetables,
- (6) they decided to issue a recommendation based on their findings.

· manipulated quantifiers and premise quantifier's 2nd arg

- (1) A group of scientists wanted to know what rats liked to eat.
- (2) They gave rats a choice of different meats,
- (3) as well as leafy and root vegetables, both fresh and frozen.
- (4) They discovered that QUANT of the rats ate ((frozen) leafy) vegetables.
- (5) Now that they knew that QUANT of the rats ate leafy vegetables,
- (6) they decided to issue a recommendation based on their findings.
 - 12 conditions, with different interactions of quantifier × containment relation

	SOME	NOT ALL	ALL	NONE	
SUBSET →	Some of the rats ate frozen leafy veg- etables. Now that they knew that Some of the rats ate	not all of the rats ate frozen leafy veg- etables. Now that they knew that not all of the rats ate	all of the rats ate frozen leafy veg- etables. Now that they knew that all of the rats ate	none of the rats ate frozen leafy veg- etables. Now that they knew that none of the rats ate	
of leafy veg. \rightarrow	leafy vegetables	leafy vegetables	leafy vegetables	leafy vegetables	
${\tt IDENTICAL} \rightarrow$	Some of the rats ate leafy vegetables . Now that they knew that	not all of the rats ate leafy vegetables. Now that they knew that	all of the rats ate leafy vegetables. Now that they knew that	none of the rats ate leafy vegetables . Now that they knew that	
to leafy veg. \rightarrow	some of the rats ate leafy vegetables	not all of the rats ate leafy vegetables	all of the rats ate leafy vegetables	none of the rats ate leafy vegetables	
$\overline{\text{SUPERSET}} \rightarrow$	SOME of the rats ate vegetables . Now that they knew that	not all of the rats ate vegetables. Now that they knew that	all of the rats ate vegetables. Now that they knew that	none of the rats ate vegetables. Now that they knew that	
of leafy veg. \rightarrow	some of the rats ate leafy vegetables	not all of the rats ate leafy vegetables	all of the rats ate leafy vegetables	none of the rats ate leafy vegetables	

- trivially entailed
- entailed
- not entailed

experiment 2 and 3 conditions, compared

exp. 2: 1 st arg of	SOME	NOT ALL	ALL	NONE
SUBSET	entl'd	entl'd	¬entl'd	¬entl'd
IDENT	triv'l	triv'l	triv'l	triv'l
SUPERSET	¬entl'd	¬entl'd	entl'd	entl'd

experiment 2 and 3 conditions, compared

exp. 2: 1 st arg of	SOME	NOT ALL	ALL	NONE
SUBSET IDENT SUPERSET	entl'd triv'l ¬entl'd	entl'd triv'l ¬entl'd	¬entl'd triv'l entl'd	¬entl'd triv'l entl'd
exp. 3: 2 nd arg of	SOME	NOT ALL	ALL	NONE
SUBSET IDENT SUPERSET	entl'd triv'l ¬entl'd	¬entl'd triv'l entl'd	entl'd triv'l ¬entl'd	¬entl'd triv'l entl'd

experiment 2 and 3 conditions, compared

exp. 2: 1 st arg of	SOME	NOT ALL	ALL	NONE
SUBSET IDENT SUPERSET	entl'd triv'l ¬entl'd	entl'd triv'l ¬entl'd	triv'l	¬entl'd triv'l entl'd
exp. 3: 2 nd arg of	SOME	NOT ALL	ALL	NONE
SUBSET IDENT SUPERSET	entl'd triv'l ¬entl'd	¬entl'd triv'l entl'd		¬entl'd triv'l entl'd

experiment 2 and 3 results

entailed

not entailed

experiment 3

containment (subset vs. superset)
x entailment (up vs. down):

$$\chi^2 = 6.21$$

$$p = 0.013$$

experiments 2 and 3, partial residual graphs

entailed

not entailed

between experiments

containment × experiment

× entailment flip (yes vs. no):

$$\chi^2 = 0.98$$

$$p = 0.32$$

experiment 2 and 3 partial residuals, by quantifier

Discussion

language involves accurate and spontaneous logical computations

- language involves accurate and spontaneous logical computations
- differs from dual-process theories of cognition
 it is assumed that people's intuitive logical knowledge
 emerges from a learning process in which key principles have
 been practiced to automaticity

- language involves accurate and spontaneous logical computations
- differs from dual-process theories of cognition
 it is assumed that people's intuitive logical knowledge
 emerges from a learning process in which key principles have
 been practiced to automaticity

De Neys and Pennycook (2019)

consistent with some logic being naturally intuitive

- language involves accurate and spontaneous logical computations
- differs from dual-process theories of cognition
 it is assumed that people's intuitive logical knowledge
 emerges from a learning process in which key principles have
 been practiced to automaticity

- consistent with some logic being naturally intuitive
 - natural logic in reasoning (e.g. Braine and O'Brien, 1998)

- language involves accurate and spontaneous logical computations
- differs from dual-process theories of cognition
 it is assumed that people's intuitive logical knowledge
 emerges from a learning process in which key principles have
 been practiced to automaticity

- consistent with some logic being naturally intuitive
 - · natural logic in reasoning (e.g. Braine and O'Brien, 1998)
 - · logic (L-analyticity) in grammar (e.g. Gajewski, 2002)

- language involves accurate and spontaneous logical computations
- differs from dual-process theories of cognition
 it is assumed that people's intuitive logical knowledge
 emerges from a learning process in which key principles have
 been practiced to automaticity

- consistent with some logic being naturally intuitive
 - natural logic in reasoning (e.g. Braine and O'Brien, 1998)
 - · logic (L-analyticity) in grammar (e.g. Gajewski, 2002)
- inference derives from compositionality?

- language involves accurate and spontaneous logical computations
- differs from dual-process theories of cognition
 it is assumed that people's intuitive logical knowledge
 emerges from a learning process in which key principles have
 been practiced to automaticity

- consistent with some logic being naturally intuitive
 - · natural logic in reasoning (e.g. Braine and O'Brien, 1998)
 - · logic (L-analyticity) in grammar (e. g. Gajewski, 2002)
- inference derives from compositionality?
- some logical competence revealed more easily in natural language comprehension than in puzzles and tests

- language involves accurate and spontaneous logical computations
- differs from dual-process theories of cognition
 it is assumed that people's intuitive logical knowledge
 emerges from a learning process in which key principles have
 been practiced to automaticity

- consistent with some logic being naturally intuitive
 - · natural logic in reasoning (e.g. Braine and O'Brien, 1998)
 - · logic (L-analyticity) in grammar (e. g. Gajewski, 2002)
- inference derives from compositionality?
- some logical competence revealed more easily in natural language comprehension than in puzzles and tests
- new empirical terrain: which inferences follow from structure of language?

experiment 3 results

trivial subset: frozen leafy vegetables ≺ leafy vegetables
 entailed ident: leafy vegetables ≺ leafy vegetables
 not entailed superset: vegetables ≺ leafy vegetables

references i

- Agmon, Galit, Yonatan Loewenstein, and Yosef Grodzinsky (2019). "Measuring the cognitive cost of downward monotonicity by controlling for negative polarity". In: Glossa: A Journal of General Linguistics 4.1.
- Braine, Martin D. S. and David P. O'Brien (1998). *Mental logic*. Psychology Press.
- Cheng, Patricia W. and Keith J. Holyoak (1985). "Pragmatic Reasoning Schemas". In: Cognitive Psychology 17.4, pp. 391–416.
- Cheng, Patricia W. and Keith J. Holyoak (1989). "On the natural selection of reasoning theories". In: *Cognition*.
 - Cheng, Patricia W., Keith J. Holyoak, Richard E. Nisbett, and Lindsay M. Oliver (1986). "Pragmatic versus syntactic approaches to training deductive reasoning". In: *Cognitive Psychology* 18.3, pp. 293–328.

references ii

- De Neys, Wim and Gordon Pennycook (2019). "Logic, fast and slow: Advances in dual-process theorizing". In: Current Directions in Psychological Science 28.5, pp. 503–509.
 - Deschamps, Isabelle, Galit Agmon, Yonatan Loewenstein, and Yosef Grodzinsky (2015). "The processing of polar quantifiers, and mumerosity perception". In: *Cognition* 143, pp. 115–128. ISSN:
 - 0010-0277. DOI:
 - https://doi.org/10.1016/j.cognition.2015.06.006.
 - URL: https://www.sciencedirect.com/science/article/pii/S0010027715300160.
 - Evans, Jonathan St. B. T. and Keith E. Stanovich (2013). "Dual-process theories of higher cognition: Advancing the debate". In:

 Perspectives on Psychological Science 8.3, pp. 223–241.
- Gajewski, Jon (2002). "L-analyticity and natural language". Manuscript. Cambridge, MA: MIT.

references iii

- Hoeksema, Jack (2012). "On the natural history of negative polarity items". In: *Linquistic Analysis* 38.1/2, pp. 3–33.
- Kahneman, Daniel (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux.
- Ladusaw, William A. (1983). "Logical form and conditions on grammaticality". In: *Linguistics and Philosophy* 6.3, pp. 373–392.
- Sloman, Steven A. (1993). "Feature-based induction". In: Cognitive Psychology 25.2, pp. 231–280.
- Wason, Peter C. (1968). "Reasoning about a rule". In: Quarterly Journal of Experimental Psychology 20.3, pp. 273–281.