CSE 311: Data Communication

Instructor:

Dr. Md. Monirul Islam

Sampling and Analog-to-Digital Conversion

Sampling a non-band-limited signal g(t) at f_s is equivalent to Nyquist sampling of some signal $g_a(t)$ band-limited to $f_s/2$

Let sub-Nyquist Sampling of g(t) at f_s generates samples g(0), $g(T_s)$, $g(2T_s)$, $g(3T_s)$, . . .

Let

Nyquist Sampling of $g_a(t)$ at f_s generates samples $g_a(0)$, $g_a(T_s)$, $g_a(2T_s)$, $g_a(3T_s)$, . . .

sub-Nyquist Samples g(0), $g(T_s)$, $g(2T_s)$, $g(3T_s)$, . . .

Nyquist Samples $g_a(0)$, $g_a(T_s)$, $g_a(2T_s)$, $g_a(3T_s)$,...

sub-Nyquist Samples g(0), $g(T_s)$, $g(2T_s)$, $g(3T_s)$, . . .

Nyquist Samples $g_a(0)$, $g_a(T_s)$, $g_a(2T_s)$, $g_a(3T_s)$,...

According to sampling effect that we saw,

$$g(0) = g_a(0), g(T_s) = g_a(T_s), g(2T_s) = g_a(2T_s), g(3T_s) = g_a(3T_s), \text{ and so on}$$

sub-Nyquist Samples g(0), $g(T_s)$, $g(2T_s)$, $g(3T_s)$, . . .

Nyquist Samples $g_a(0)$, $g_a(T_s)$, $g_a(2T_s)$, $g_a(3T_s)$,...

Therefore,

$$g(nT_s) = g_a(nT_s) = g_n$$

sub-Nyquist Samples g(0), $g(T_s)$, $g(2T_s)$, $g(3T_s)$, . . .

Nyquist Samples $g_a(0)$, $g_a(T_s)$, $g_a(2T_s)$, $g_a(3T_s)$, . . .

Therefore,

$$g(nT_s) = g_a(nT_s) = g_n$$

In other words, sampling g(t) and $g_a(t)$ at the rate of $f_s = 1/T_s$ will generate the same data sequence, g_n

sub-Nyquist Samples g(0), $g(T_s)$, $g(2T_s)$, $g(3T_s)$, . . .

Nyquist Samples $g_a(0)$, $g_a(T_s)$, $g_a(2T_s)$, $g_a(3T_s)$, . . .

Therefore,

$$g(nT_s) = g_a(nT_s) = g_n$$

In other words, sampling g(t) and $g_a(t)$ at the rate of $f_s = 1/T_s$ will generate the same data sequence, g_n

This means, data sequence g_n can generate $g_a(t)$ by interpolation

Assume

- Error free, noise less channel
- Channel bandwidth is *B*

Assume

- Error free, noise less channel
- Channel bandwidth is *B*

We will prove

• Maximum 2B pieces of information can be sent per second

Assume

- Error free, noise less channel
- Channel bandwidth is *B*

Previous Knowledge

- Channel can send a low pass signal of *B* Hz
- This signal can be recovered from samples uniformly taken at 2*B* samples per second

Assume

- Error free, noise less channel
- Channel bandwidth is *B*

Previous Knowledge

- Channel can send a low pass signal of *B* Hz
- This signal can be recovered from samples uniformly taken at 2*B* samples per second
- This means, 2*B* samples/second can be sent through the channel

Assume

- Error free, noise less channel
- Channel bandwidth is *B*

Previous Knowledge

- Channel can send a low pass signal of *B* Hz
- This signal can be recovered from samples uniformly taken at 2*B* samples per second
- This means, 2*B* samples/second can be sent through the channel

We have to prove that

- A sequence of data at the rate of 2B Hz can come from uniform sampling of a signal of bandwidth B Hz
- The signal can be recovered from this data sequence

Assume a sequence of samples $g_0, g_1, g_2, g_3, \dots$ denoted as $\{g_n\}$ at the rate of 2B s/s

Assume a sequence of samples $g_0, g_1, g_2, g_3, \ldots$ denoted as $\{g_n\}$ at the rate of 2B s/s

We will always find a signal g(t) whose samples g(0), $g(T_s)$, $g(2T_s)$, $g(3T_s)$, . . matches with $\{g_n\}$.

Assume a sequence of samples $g_0, g_1, g_2, g_3, \ldots$ denoted as $\{g_n\}$ at the rate of 2B s/s

We will always find a signal g(t) whose samples g(0), $g(T_s)$, $g(2T_s)$, $g(3T_s)$, . . matches with $\{g_n\}$.

This means,
$$g_n = g(nT_s)$$

sub-Nyquist Samples g(0), $g(T_s)$, $g(2T_s)$, $g(3T_s)$, . . .

Nyquist Samples $g_a(0)$, $g_a(T_s)$, $g_a(2T_s)$, $g_a(3T_s)$, . . .

Therefore,

$$g(nT_s) = g_a(nT_s) = g_n$$

In other words, sampling g(t) and $g_a(t)$ at the rate of $f_s = 1/T_s$ will generate the same data sequence, g_n

This means, data sequence g_n can generate $g_a(t)$ by interpolation

sub-Nyquist Samples g(0), $g(T_s)$, $g(2T_s)$, $g(3T_s)$, . . .

$$\overline{g}(t) = \sum_{n} g(nT_s)\delta(t - nT_s)$$

Nyquist Samples $g_a(0)$, $g_a(T_s)$, $g_a(2T_s)$, $g_a(3T_s)$,...

sub-Nyquist Samples g(0), $g(T_s)$, $g(2T_s)$, $g(3T_s)$, . . .

Nyquist Samples $g_a(0)$, $g_a(T_s)$, $g_a(2T_s)$, $g_a(3T_s)$, . . .

$$\overline{g}(t) = \sum_{n} g(nT_s)\delta(t - nT_s)$$

$$= \sum_{n} g_a(nT_s)\delta(t - nT_s)$$

sub-Nyquist Samples g(0), $g(T_s)$, $g(2T_s)$, $g(3T_s)$, . . .

Nyquist Samples $g_a(0)$, $g_a(T_s)$, $g_a(2T_s)$, $g_a(3T_s)$, . . .

sub-Nyquist Samples g(0), $g(T_s)$, $g(2T_s)$, $g(3T_s)$,...

$$\overline{g}(t) = \sum_{n} g(nT_s)\delta(t - nT_s)$$

$$= \sum_{n} g_a(nT_s)\delta(t - nT_s)$$

$$= \sum_{n} g_n\delta(t - nT_s)$$

Nyquist Samples $g_a(0)$, $g_a(T_s)$, $g_a(2T_s)$, $g_a(3T_s)$, . . .

To recover $g_a(t)$, we can use $\{g_n\}$ using,

$$g_a(t) = \sum_n g_n \operatorname{sinc}(2\pi Bt - n\pi)$$

can be represented by pulse train and transmitted thereafter

Pulse modulations: different ways to transmit sampled signal modifying pulse trains

PAM: Pulse amplitude is modulated

Pulse code modulation:

- most widely used pulse modulation
- each sample value is converted to a set of pulses.

TDM: Pulses from multiple signals are interweaved on the same channel

TDM: dual of FDM where different signals share channel bandwidth

Pulse Code Modulation (PCM)

PCM system: basically an ADC

Two major Steps:

- Sampling and
- quantizing

Analog to Digital Conversion of Message Signal

- 2 major steps
 - Sampling
 - Quantizing

The range $(-m_p, m_p)$ is divided into L subintervals, each of magnitude Δv

$$\Delta v = \frac{2m_p}{L}$$

Analog to Digital Conversion of Message Signal

- 2 major steps
 - Sampling
 - Quantizing

The range $(-m_p, m_p)$ is divided into L subintervals, each of magnitude Δv

$$\Delta v = \frac{2m_p}{L}$$

L is known as quantization level

- 2 major steps
 - Sampling
 - Quantizing

A sampled value is placed into one of these *L* sub-intervals, thus gets ONE of the *L* values

- 2 major steps
 - Sampling
 - Quantizing

A sampled value is placed into one of these *L* sub-intervals, thus gets ONE of the *L* values

Signal is known as *L*-ary digital signal

L-ary digital signal is converted to binary digital signal using pulse coding

Each of *L* values is encoded as a group of binary digits

Digit	Binary equivalent
0	0000
· 1	0001
2	0010
. 3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
. 11	1011
12	1100
13	1101
14	1110
15	1111

L-ary digital signal is converted to binary digital signal using pulse coding

Each of *L* values is encoded as a group of binary digits

Each bit is transmitted using a distinct pulse shape

Digit	Binary equivalent	Pulse code waveform
0	0000	* * * * * * * * * * * * * * * * * * *
- 1	0001	N N N
2	0010	HH H
3	0011	56 NO -
4	0100	SS 88 88
5	0101	80 St
6	0110	10 m
7	0111	- 日 田 田
8	1000	_38 <u></u>
9	1001	BH 100 BN
10	1010	
. 11	1011	_R_ B B
12	1100	10 H
13	1101	<u> 20 50 50</u>
14	1110	- 08 DR 38 - 38 -
15	1111	_N N N N

Analog signal bandwidth to digital data rate

Audio signal b/w = 15 KHz

However, up to 3400 Hz is sufficient for articulation (intelligibility).

Fidelity is compromised!

Analog signal bandwidth to digital data rate

Audio signal b/w = 15 KHz

However, up to 3400 Hz is sufficient for articulation (intelligibility)

$$B = 3400 \text{ Hz}$$

 $f_s = 8000 > 2B$

Analog signal bandwidth to digital data rate

Audio signal b/w = 15 KHz

However, up to 3400 Hz is sufficient for articulation (intelligibility)

$$B = 3400 \text{ Hz}$$

 $f_s = 8000 > 2B$

Quantization level, L = 256 (8 bits)

Analog signal bandwidth to digital data rate

Audio signal b/w = 15 KHz

However, up to 3400 Hz is sufficient for articulation (intelligibility)

$$B = 3400 \text{ Hz}$$

 $f_s = 8000 > 2B$

Quantization level, L = 256 (8 bits)

Data rate = 8000*8 = 64000 pulse/second = 64 Kbps

Example 2: data rate for compact disc

Fidelity is required!

Audio signal b/w = 20 KHz

$$B = 20000 \text{ Hz}$$

 $f_s = 441000 \text{ Hz} > 2B$

Quantization level, L = 65,536 (16 bits)

Data rate = 44100*16 = 1.4 **Mbps**

Advantages of Digital Communication

Self Study

The range $(-m_p, m_p)$ is divided into L sub-intervals, each of magnitude Δv

$$\Delta v = \frac{2m_p}{L}$$

 m_p is NOT the signal PEAK, rather is it's the LIMIT of the quantizer

The range $(-m_p, m_p)$ is divided into L subintervals, each of magnitude Δv

$$\Delta v = \frac{2m_p}{L}$$

k-th sample value $m(kT_s)$ is replaced by the midpoint of an interval where it lies

The range $(-m_p, m_p)$ is divided into L subintervals, each of magnitude Δv

$$\Delta v = \frac{2m_p}{L}$$

k-th sample value $m(kT_s)$ is replaced by the midpoint of an interval where it lies

$$m(kT_s) \xrightarrow{\text{Replaced by}} \hat{m}(kT_s)$$

The range $(-m_p, m_p)$ is divided into L subintervals, each of magnitude Δv

$$\Delta v = \frac{2m_p}{L}$$

k-th sample value $m(kT_s)$ is replaced by the midpoint of an interval where it lies

$$m(kT_s) \xrightarrow{\text{Replaced by}} \hat{m}(kT_s)$$

quantization error is unavoidable which is lies in $(-\Delta v/2, \Delta v/2)$

$$\Delta v = \frac{2m_p}{L}$$

k-th sample value $m(kT_s)$ is replaced by the midpoint of an interval where it lies

$$m(kT_s) \xrightarrow{\text{Replaced by}} \hat{m}(kT_s)$$

$$\hat{m}(kT_s) + \Delta v/2 + \hat{m}(kT_s) + \hat{m}(kT_$$

$$\Delta v = \frac{2m_p}{L}$$

k-th sample value $m(kT_s)$ is replaced by the midpoint of an interval where it lies

$$m(kT_s) \xrightarrow{\text{Replaced by}} \hat{m}(kT_s)$$

$$\hat{m}(kT_s) + \Delta v/2 + m(kT_s)$$

$$\hat{m}(kT_s) - \Delta v/2 + m(kT_s)$$

$$\Delta v = \frac{2m_p}{L}$$

k-th sample value $m(kT_s)$ is replaced by the midpoint of an interval where it lies

$$m(kT_s) \xrightarrow{\text{Replaced by}} \hat{m}(kT_s)$$

$$\hat{m}(kT_s) + \Delta v/2 + m(kT_s)$$

$$\hat{m}(kT_s) - \Delta v/2 + m(kT_s)$$

$$\Delta v = \frac{2m_p}{L}$$

k-th sample value $m(kT_s)$ is replaced by the midpoint of an interval where it lies

$$m(kT_s) \xrightarrow{\text{Replaced by}} \hat{m}(kT_s)$$

error
$$\Delta v/2 + q(kT_s) = q$$

$$0 - \Delta v/2 + q(kT_s) = q$$

$$\Delta v = \frac{2m_p}{L}$$

k-th sample value $m(kT_s)$ is replaced by the midpoint of an interval where it lies

$$m(kT_s) \xrightarrow{\text{Replaced by}} \hat{m}(kT_s)$$

$$\hat{m}(kT_s) + \Delta v/2 + \hat{m}(kT_s)$$

$$\hat{m}(kT_s) - \Delta v/2 + \frac{m(kT_s)}{2}$$

$$\Delta v = \frac{2m_p}{L}$$

k-th sample value $m(kT_s)$ is replaced by the midpoint of an interval where it lies

$$m(kT_s) \xrightarrow{\text{Replaced by}} \hat{m}(kT_s)$$

error
$$\Delta v/2 + q(kT_s) = q$$

$$\Delta v = \frac{2m_p}{L}$$

k-th sample value $m(kT_s)$ is replaced by the midpoint of an interval where it lies

k-th sample value $m(kT_s)$ is replaced by the midpoint of an interval where it lies

If there were no quantization error,

$$m(t) = \sum_{k} m(kT_s) \operatorname{sinc}(2\pi Bt - k\pi)$$

If there were no quantization error,

$$m(t) = \sum_{k} m(kT_s) \operatorname{sinc}(2\pi Bt - k\pi)$$

Due to quantization error,

$$\hat{m}(t) = \sum_{k} \hat{m}(kT_s) \operatorname{sinc}(2\pi Bt - k\pi)$$

If there were no quantization error,

$$m(t) = \sum_{k} m(kT_s) \operatorname{sinc}(2\pi Bt - k\pi)$$

Due to quantization error,

$$\hat{m}(t) = \sum_{k} \hat{m}(kT_s) \operatorname{sinc}(2\pi Bt - k\pi)$$

Quantization error q(t),

$$q(t) = \hat{m}(t) - m(t)$$

Quantization error or quantization noise or undesired signal,

$$q(t) = \sum_{k} [\hat{m}(kT_s) - m(kT_s)] \operatorname{sinc}(2\pi Bt - k\pi)$$
$$= \sum_{k} q(kT_s) \operatorname{sinc}(2\pi Bt - k\pi)$$

Quantization noise,

$$q(t) = \sum_{k} \left[\hat{m}(kT_s) - m(kT_s) \right] \operatorname{sinc}(2\pi Bt - k\pi)$$

$$= \sum_{k} q(kT_s) \operatorname{sinc}(2\pi Bt - k\pi)$$

$$q(kT_s) = \operatorname{Quantization}_{\text{error for } k\text{th sample}}$$

$$\widetilde{q^{2}(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} q(t)^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[\sum_{k} q(kT_{s}) \operatorname{sinc}(2\pi Bt - k\pi) \right]^{2} dt$$

$$\widetilde{q^{2}(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} q(t)^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[\sum_{k} q(kT_{s}) \operatorname{sinc}(2\pi Bt - k\pi) \right]^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} [a_{1} + a_{2} + a_{3} + \cdots]^{2} dt$$

$$\widetilde{q^{2}(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} q(t)^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[\sum_{k} q(kT_{s}) \operatorname{sinc}(2\pi Bt - k\pi) \right]^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[a_{1} + a_{2} + a_{3} + \cdots \right]^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + \cdots + 2a_{1}a_{2} + 2a_{1}a_{3} + 2a_{1}a_{4} + \cdots \right] dt$$

$$\widetilde{q^{2}(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} q(t)^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[\sum_{k} q(kT_{s}) \operatorname{sinc}(2\pi Bt - k\pi) \right]^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + \dots + 2a_{1}a_{2} + 2a_{1}a_{3} + 2a_{1}a_{4} + \dots \right] dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[\sum_{k} a_{k}^{2} + 2\sum_{m \neq n} a_{m} a_{n} \right] dt$$

$$\widetilde{q^{2}(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[\sum_{k} q(kT_{s}) \operatorname{sinc}(2\pi Bt - k\pi) \right]^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[\sum_{k} a_{k}^{2} + 2 \sum_{m \neq n} a_{m} a_{n} \right] dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[\sum_{k} q^{2}(kT_{s}) \operatorname{sinc}^{2}(2\pi Bt - k\pi) \right] dt$$

$$+ \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[2 \sum_{m \neq n} q(mT_{s}) q(nT_{s}) \operatorname{sinc}(2\pi Bt - m\pi) \operatorname{sinc}(2\pi Bt - n\pi) \right] dt$$

$$\widetilde{q^{2}(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[\sum_{k} q^{2}(kT_{s}) \operatorname{sinc}^{2}(2\pi Bt - k\pi) \right] dt$$

$$+ \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[2 \sum_{m \neq n} q(mT_{s}) q(nT_{s}) \operatorname{sinc}(2\pi Bt - m\pi) \operatorname{sinc}(2\pi Bt - n\pi) \right] dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \sum_{k} q^{2}(kT_{s}) \int_{-T/2}^{T/2} \operatorname{sinc}^{2}(2\pi Bt - k\pi) dt$$

$$+ \lim_{T \to \infty} \frac{1}{T} \sum_{m \neq n} q(mT_{s}) q(nT_{s}) \int_{-T/2}^{T/2} \operatorname{sinc}(2\pi Bt - m\pi) \operatorname{sinc}(2\pi Bt - n\pi) dt$$

$$q^{2}(t) = \lim_{T \to \infty} \frac{1}{T} \sum_{k} q^{2}(kT_{s}) \int_{-T/2}^{T/2} \operatorname{sinc}^{2}(2\pi Bt - k\pi) dt$$

$$+ \lim_{T \to \infty} \frac{1}{T} \sum_{m \neq n} q(mT_{s}) q(nT_{s}) \int_{-T/2}^{T/2} \operatorname{sinc}(2\pi Bt - m\pi) \operatorname{sinc}(2\pi Bt - n\pi) dt$$

Power or Mean square of Quantization noise,

$$q^{2}(t) = \lim_{T \to \infty} \frac{1}{T} \sum_{k} q^{2}(kT_{s}) \int_{-T/2}^{T/2} \operatorname{sinc}^{2}(2\pi Bt - k\pi) dt$$

$$+ \lim_{T \to \infty} \frac{1}{T} \sum_{m \neq n} q(mT_{s}) q(nT_{s}) \int_{-T/2}^{T/2} \operatorname{sinc}(2\pi Bt - m\pi) \operatorname{sinc}(2\pi Bt - n\pi) dt$$

We can prove that,

$$\int_{-\infty}^{\infty} \operatorname{sinc}(2\pi Bt - m\pi) \operatorname{sinc}(2\pi Bt - n\pi) dt = \begin{cases} 0 & m \neq n \\ \frac{1}{2B} & m = n \end{cases}$$

Power or Mean square of Quantization noise,

$$\widetilde{q^{2}(t)} = \lim_{T \to \infty} \frac{1}{2BT} \sum_{k} q^{2}(kT_{s})$$

Power or Mean square of Quantization noise,

$$\widetilde{q^{2}(t)} = \lim_{T \to \infty} \frac{1}{2BT} \sum_{k} q^{2}(kT_{s})$$

As sampling frequency $f_s = 2B$, $2BT = total \ no. \ of samples over averaging time T$

RHS is the mean of the square of quantization error

Power or Mean square of Quantization noise,

$$\widetilde{q^{2}(t)} = \lim_{T \to \infty} \frac{1}{2BT} \sum_{k} q^{2}(kT_{s})$$

As sampling frequency $f_s = 2B$, $2BT = total \ no. \ of samples over averaging time T$

RHS is the mean of the square of quantization error

Therefore, power of quantization noise = mean square quantization error

We know, quantization error q lies in $(-\Delta v/2, \Delta v/2)$

$$\Delta v = \frac{2m_p}{L}$$

Mean square quantization error is given by

$$\tilde{q}^{2} = \frac{1}{\Delta v} \int_{-\Delta v/2}^{\Delta v/2} q^{2} dq$$

$$\Delta v = \frac{2m_p}{L}$$

Mean square quantization error is given by

$$\tilde{q}^{2} = \frac{1}{\Delta V} \int_{-\Delta V/2}^{\Delta V/2} q^{2} dq = \frac{(\Delta V)^{2}}{12}$$

Mean square quantization error is given by

$$\tilde{q}^{2} = \frac{1}{\Delta v} \int_{-\Delta v/2}^{\Delta v/2} q^{2} dq = \frac{(\Delta v)^{2}}{12} = \frac{m_{p}^{2}}{3L^{2}}$$

where,
$$\Delta v = \frac{2m_p}{L}$$

Mean square quantization error is given by

$$\tilde{q}^{2} = \frac{1}{\Delta v} \int_{-\Delta v/2}^{\Delta v/2} q^{2} dq = \frac{(\Delta v)^{2}}{12} = \frac{m_{p}^{2}}{3L^{2}}$$

We proved, power of quantization noise (N_0) = mean square quantization error

Mean square quantization error is given by

$$\widetilde{q^2} = \frac{1}{\Delta v} \int_{-\Delta v/2}^{\Delta v/2} q^2 dq = \frac{(\Delta v)^2}{12} = \frac{m_p^2}{3L^2}$$

We proved, power of quantization noise (N_0) = mean square quantization error

$$N_0 = q^2(t) = q^2 = \frac{m_p^2}{3L^2}$$

power of quantization noise (N_0) = mean square quantization error

$$N_0 = q^2(t) = q^2 = \frac{m_p^2}{3L^2}$$

Assume, power of message signal (S_0) is given by $S_0 = m^2(t)$

power of quantization noise (N_0) = mean square quantization error

$$N_0 = q^2(t) = q^2 = \frac{m_p^2}{3L^2}$$

Assume, power of message signal (S_0) is given by $S_0 = m^2(t)$

Signal-to-noise ratio (SNR) is

$$SNR = \frac{S_0}{N_0} = 3L^2 \frac{m^2(t)}{m_p^2}$$

$$SNR = \frac{S_0}{N_0} = 3L^2 \frac{m^2(t)}{m_p^2}$$

- Higher SNR means higher quality of received signal
- L increases SNR
- Higher limit of quantizer (m_p) decreases SNR

$$SNR = \frac{S_0}{N_0} = 3L^2 \frac{m^2(t)}{m_p^2}$$

- Higher SNR means higher quality of received signal
- L increases SNR
- Higher limit of quantizer (m_p) decreases SNR
- SNR is linear function of signal power, $S_0 = m^2(t)$

$$SNR = \frac{S_0}{N_0} = 3L^2 \frac{m^2(t)}{m_p^2}$$

• SNR is linear function of signal power, $S_0 = m^2(t)$

S_0 varies

- from speaker to speaker
- due to different length of connecting circuits

$$SNR = \frac{S_0}{N_0} = 3L^2 \frac{m^2(t)}{m_p^2}$$

• SNR is linear function of signal power, $S_0 = m^2(t)$

S_0 varies

- from speaker to speaker
- due to different length of connecting circuits

For these reasons,

- *SNR* varies widely
- Quality of received signal deteriorates remarkably for soft speakers

$$SNR = \frac{S_0}{N_0} = 3L^2 \frac{m^2(t)}{m_p^2}$$

• SNR is linear function of signal power, $S_0 = m^2(t)$

S_0 varies

- from speaker to speaker
- due to different length of connecting circuits

For these reasons,

- *SNR* varies widely
- Quality of received signal deteriorates remarkably for soft speakers

However statistically,

- Small amplitudes (soft speakers) predominate in speech
- Larger amplitudes (loud speakers) are less frequent