At Crossroads Between Personalisation and Privacy

Harshvardhan J. Pandit | <u>pandith@tcd.ie</u> | @coolharsh55 ADAPT PEA Reading Group | 03 March 2022 | Dublin City University Slides available at: <u>https://harshp.com/research/presentations</u>

A Person, An Entity, An Agent

Personalisation

A Person, An Entity, An Agent

Personalisation

A Role, A Profile, An impersonation of a Person

A Person, An Entity, An Agent

A Role, A Profile, An impersonation of a Person

Privacy

Seclusion, Private, Secrecy, Concealment, Knowledge, Permission, Control, Sensitivity, Anonymity

GDPR et al.

Personalisation needs Personal Data; Personal Data is regulated by GDPR

- Personal Data :: Sensitivity, "Special Category", PII
- Legal Basis :: Contract (e.g. Provide a Service -> Netflix Recommendations)
- Legal Basis :: Legitimate Interest (e.g. personalised demographic ads)
- Legal Basis :: Consent (e.g. ask to personalise Ads on websites)
- Principles :: Data Minimisation (use only what is needed)
- Data Protection Impact Assessment :: Any potential impacts? Harms?

Personalisation vs Privacy

Availability of Information Reduces Privacy but Increases potential for Personalisation

PRIVACY

SECURITY

PERSONALISATION

Privacy as Confidentiality

- Data Minimisation
- Reduce data required
- Identifiability of 'Persons'
- Necessity of Data Required

Privacy as Control

- Data Protection, Notices
- Control Flows, Algorithmic
- Involvement, Agency, Ability
- Rights, Norms

Privacy as Practice

- Contextual, Mediation
- Feedback, Negotiation
- Dynamic, Interactive
- Norms, Guidelines

Can you engineer privacy? On the potentials and challenges of applying privacy research in engineering practice - Seda Gurses https://www.esat.kuleuven.be/cosic/publications/article-2465.pdf

Taxonomy of Privacy - Daniel Solve https://ssrn.com/abstract=667622

Differential Privacy

Performing Personalisation with lesser loss of Privacy

Differential Privacy: A Primer for a Non-Technical Audience - Wood et al. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3338027

Differential Privacy

Statistical Measurements and Guarantees

- Privacy ≈ Access to Data / Identifiability
- Introduce 'randomness' to outputs to protect 'privacy'
- Calculate 'Risk' of 'Privacy Loss'
- Create a 'Privacy Budget'
- Guarantees regarding Accuracy and Performance
- Group Privacy

Differential Privacy: A Primer for a Non-Technical Audience - Wood et al. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3338027

Federated Learning

Do ML locally and pool models globally

Step 1	Step 2	Step 3	Step 4
model-server worker-a worker-b worker-c	Model Sync worker-a worker-b worker-c	model-server worker-a worker-b worker-c	worker-a worker-b worker-c
Central server chooses a statistical model to be trained	Central server transmits the initial model to several nodes	Nodes train the model locally with their own data	Central server pools model results and generate one global mode without accessing any data

https://en.wikipedia.org/wiki/Federated_learning

Current Personalised Advertising Model

Surveillance-based Targeted Advertising

https://www.iccl.ie/digital-data/iab-europe-cant-audit-what-1000-companies-that-use-its-tcf-system-do-with-our-personal-data/

Google's FLoC Proposal

Federated Learning of Cohorts uses 'cohorts' to target advertisements

https://developer.chrome.com/docs/privacy-sandbox/floc/

Overview of Personalisation Issues

Key takeaways

- What data is 'used'??? —> Transparency
- What data is 'needed'? What is 'necessary'? —> Data Minimisation
- What are the sources of 'data'? —> Transparency
- Is any data 'sensitive'? Is it 'special'? —> Ethical Concerns
- Is data (input/output) 'accurate' —> Accountability
- Is the output configurable? —> Privacy by Design / Default
- Understand distinctions between Privacy vs Security vs Identifiability vs Control

At Crossroads Between Personalisation and Privacy

Harshvardhan J. Pandit | <u>pandith@tcd.ie</u> | @coolharsh55 ADAPT PEA Reading Group | 03 March 2022 | Dublin City University Slides available at: <u>https://harshp.com/research/presentations</u>

