Data Structure and Algorithms

Paper code –PCC-CS-301

3rd Semester CSE

PART - A

(Multiple Choice Type Questions)

Module – I

		Linear Data	a Structure [Arra	$\mathbf{n}\mathbf{y}$]	
1.	The memory address of	of the first element	of an array is called		
	a) Floor address				
	b) Foundation ad	ldress			
	c) First address				
	d) Base address				
2.	Each element of an a location of arr[10][10 a) 2820	when the array is	•	age. Base address of arr is 2000 or fashion is d) 4840	. The
3.	The expression that ac column major order) is	, •,	entry (i=0,1,m-1,j=0),1,n-1 of an m×n matrix (stor	ed in
	a) $n \times (i-1)+j$	b) $m \times (j-1)+I$	c) $n \times (i-1) + (j-1)$	d) $m \times (j-1) + (i-1)$	
4.	In C language arrays a	re stored in which	representation?		
		or b)Row major	c)Layer major	d)None of these	
5.		• •		row- major order in memory, lo ely. What will be the address of	ower
	a) 2022	b)2052	c)2026	d)2044	
6.	Dynamic memory allo	ocation use			
	a) calloc	b) malloc	c) free	d)all of these	
7.	In C language malloc				
	a) Integer pointer	•	pointer c) float point		
8.	-		•	x(stored in column major order)	is
	a) $n \times (i-1) + j$	b) $m \times (j-1)+1$	c) $n \times (i-1)+(j-1)$	d) $m \times (j-1)+(i-1)$	
9.	An abstract data type (a) Same as an ab b) A data type the	ond o or	et of operations	behavior is defined by a set of value	9 S
	c) A data type for	r which only the op	perations defined on it	can be used but none else	
	d) None of the ab	oove			
10.		_	n a[i, j] could be mappe	>i, a[i,j]=0. If such a matrix is ed to the following index of A: +1) + j d) None of the these	to be
11.	For a strictly lower tria	angular matrix the	element aij, where i is t	he row and j is the column posit	ion
	respectively, is 0 for				
	a) i≠ j	=j b) i <= j	c) $i > j$	d) i< j	

Module – II/ Linear Data Structure [Stack and Queue]

12.		, pop, push(2),pop. The	e sequence of		ush(1,) push(2),pop, push(1), es are d) 2,1,2,2,2
13.	int stack [100]; in	•			
	-	OP operation, which of	_		
		ck [stacktop++]		stack [++stackto	* -
	c) x=stac	ck [stacktop]	d) x=	stack [stacktor)]
14.	Stack is used in a) Recursion b	o) Invoking functions	c) All of the	above d) N	one of the above
15.	The other name for a) Reverse polish	or prefix notation is b) Polish	c) Infix	d)	None of the above
16.	Stack can be impl a) Arrays	emented using b) Linked lists	c) bot	<mark>h a & b</mark> d)	None of the above
17.		one end only c) mide			e these
18.	a) Somethc) Someth	of the postfix expression of the postfix exp	b) So d) So	*: mething betweer mething betweer	
19.	The operation for a) Add	adding an entry to a sta b) Append	ack is traditior c) Ins		d) Push
20.	The operation for a) Delete	removing an entry from b) Peek	n a stack is tra <mark>c) Po</mark>		: d) Remove
	a) Is_empty b)	owing stack operations () Pop c) Push d) Tw	o or more of t		
22.	The postfix equivants a) AB+CD-*	alent of the prefix *+al b) abcd+-* c) al		d) ab+-cd*	
23.	A postfix expressi a) ab+cd+*f/d+e	on for the infix express b) abcd+*f/+de		d)/f+d*e +cd/f*de++	d) None of these
24.		on for the infix expression of		-f) None of these	
25.	_	fix expression(P) into p $(D/(E+F)) * G$		n, we get	
	a) ABC	* DEF / + G *- H * +			
	b) ABC	* + DEF + / - G * H -	+		
	c) ABC	* DEF + / G *- H * +			
	d) None	e of these			
26.	Which data structs a) Linear	ure is needed to conver list b) Queue	t infix notation c) Tree	ns to postfix nota <mark>d) Stack</mark>	ations?

27.	Stack isa) a linear data s		onlinear data stru	cture c) None of	the abov	ve
28.	Stack is also cal a) FIFO	led as <mark>b) LIF</mark> 0	O	c) both (i) and	(ii)	d) None of the above
29.	The number of ea) 3	elements that ca b)4 <mark>c)1</mark>	n be removed fro	om the stack at a d) 0	ny time i	is
30.						n items in the stack stored a ethod place the new entry in
	a) uata[0]	b) data[1]	c) uata[9]	u) uata[10]		
31.	Which data structure a)Stack	cture is used in b) Queue	evaluating mathe c) Tree	ematical express d) Graph	ions with	n parentheses?
32.	Which of the fol a) A parenthese c) Syntax analy	es balancing pro	gram. b) Keepi		variable	s at run time.
33.	popped four tim	es and each ele	ement is inserted	in a queue. The	n two ele	tarting from A. The stack is ements are deleted from the ack. The popped item is
34.	Suppose you op	ened a notepad, mming simultar	a music player, neously. Your Os	an excel sheet, a S implements wh	-	
35.	Simulations are				/	
	a) Stac	ck b) Que	eue c) Linl	ked List	d) Tree	
36.	The evaluation of a)2	of the postfix ex	expression 3,5,7,*,	,+,12,% is d)3.17		
37.	If we evaluate the		•		12 +	
	The result will b	b) 0	c) -12	d) 35		
	a) 12	<u>0) 0</u>	C) -12	u) 55		
38.	The number of s a) 3	stacks required t b)2	to implement mu <mark>c)1</mark>		e of these	
39.	Insertion in stac	,	C)1	u)INOIR	or mese	-
	a) from		b) rear	c) top	d) botto	om
40.	•	_			•	e popped out of the stack in tion of the numbers 1, 2, 3
			utation can never	-		*
	a) 1,2,	<mark>3,4</mark>	b) 4,2,3,1	c) 4,3,2	2,1	d) 3,2,4,1
41	Which data struc	cture is used to	manage Printer I	Buffer?		
	a) Stac		b) Queue	c) Linked List		d) Tree
42.	· · · · · · · · · · · · · · · · · · ·		-	•	ssion to	postfix notation?
		arse tree	b) An operand			
	c) An	operator stack	d)None of these	e		

	Ascending priority queue is one in which the item removed is a) the smallest item b) the largest item c) any item
	Descending priority queue is one in which the item removed is a) the smallest item b) the largest item c) any item
	One difference between a queue and a stack is: a) Queues require linked lists, but stacks do not. b) Stacks require linked lists, but queues do not. c) Queues use two ends of the structure; stacks use only one. d) Stacks use two ends of the structure, queues use only one.
	If the characters 'D', 'C', 'B', 'A' are placed in a queue (in that order), and then removed one at a time, in what order will they be removed? a) ABCD b) ABDC c) DCAB d) DCBA
	Let P be the queue of integers defined as follows #define MAX 50 struct queue { int items[MAX]; int front, rear; }q; To insert an elements in the queue we can use a)++q.items[q.rear]=x; b) q.items[++q.rear]=x; The deque can be used a) as a stack b) as a queue c) both as a stack and as a queue d) None of the above
49.	I) In the case of priority queue elements can be inserted
	a) at the ends b) at any position c) a and b d) None of the above
50.	Priority queue can be implemented using a)Array b)Linked list c)Heap d)All of these
	Suppose we have a circular array implementation of the queue structure, with ten items in the queue stored at data[2] through data[11]. The current capacity is 42. Where does the insert method place the new entry in the array? a) data[1] b) data[2] c) data[11] d) data[12]
	If data is a circular array of CAPACITY elements, and rear is an index into that array, what is the formula for the index after rear? a) (rear % 1) + CAPACITY b) rear % (1 + CAPACITY) c) (rear + 1) % CAPACITY d) rear + (1 % CAPACITY)
	Suppose getFront is called on a priority queue that has exactly two entries with equal priority. How is the return value of getFront selected? a) One is chosen at random b) The one which was inserted first. c) The one which was inserted most recently. d) This can never happen (violates the precondition)
	Queue is implemented with a linked list, keeping track of a front node and a rear node with two reference variables. Which of these reference variables will change during an insertion into a NONEMPTY queue? a) Neither changes b) Only front changes c) Only rear changes. d) Both change
	Which of the following data structure may give overflow error, even though the current number of elements in it, is less than its size.
	a) Simple queue b) Circular queue c) Stack d) None of the above.

	near list in	which elemen	nts can be added	or removed at either	r end but not in the middle is know
as a	a)Stack	b) Queue	c) Dequeue	d) Heap	
One a t	needs a max) 2 delection 3 del	nfiguration of chinimum of tions and 3 adtions and 2 adtions and 3 adtions and 4 adtions and 4 additions and 4	ditions ditions ditions	is at the front).To go	et the configuration d,c,b,a
58. The a	rear and final deletion (a) deletion (b) search (c) inserti		inear queue is uso	ed for	
59. Quet of ite you t	ue is impleems in the tell me ab a) manyl b) manyl c) count	emented with e array). Suppo out many Item Items must be Items must be	ose front is zero, as? zero. equal to the curre	and rear is one less	nt, rear, and manyItems (the number than the current capacity. What can could occur.
		N	/Iodule – III/	Recursion and	l Linked List
60. The	list data st	tructure can be	e defined recursiv	ely	
e	a)True	b) F	False		
		_	der of elements		
	•		ysical arrangeme		
			eir physical arrai		
		•	quivalent to their	<mark>physical arrangeme</mark>	<mark>ent</mark>
	d) None		_		
		e not suitable			1171
	a)Stack		equeue	c)AVL Tree	d)Binary Search
	ed List ar a) Inserti addition		data structure for Radix sort	which one of the fo	
	e previous a) p->ne			ointing to the next n	ubly linked list ?(prev is the pointenode) rev->next=NULL
65. Inser	rting a nev	w node after a	given node in a c	loubly Linked list re	equires
	a) four po b) two po c) one poi	ointer exchang inter exchange nter exchange inter exchange	ges es s		
	Ackermar	n function, for	all non-negative		is recursively defined as
A (1	m, n) = 5	A(m-1, 1)) if	m = 0 m! = 0 but $n = 0m! = 0$ and $n! = 0$	
		A(m-1, A	(m, n-1) if	m! = 0 and $n! = 0$)

	Therefo	ore the value of $A(1,2)$ is
	a)	4 b) 3 c) 5 d) 2
67.	Recursi	on may be implemented by
	a)	linked-list b) stack c) queue d) dequeue
68.	Fibonac	cci function fib(n)=fib(n-1)+ fib(n-2) is an example of
	a)	Linear recursion b) Binary recursion
	c) N	Non-linear recursion d) Mutual recursion
69.	In a circ	cularly linked list organization, insertion of a record involves the modification of
	a)	no pointer b) 1 pointer c) 2 pointers d) 3 pointers
70.	Underfl	low condition in linked list may occur when attempting to:
		insert a new node when there is free space for it
		delete a nonexistent node in the list
) delete a node in empty list
) none of these
71.	A techn	nique, which collects all deleted space onto free storage list, is called-
		Static memory
		Garbage collection allocation
		Dynamic allocation
70		None of the above
12.		of the following statements is not true?
	· ·	Each time a function calls itself, it must be nearer in some sense to a solution
		Recursive function are always fast and use less memory When the last statement of function is a recursive call then it is known as tail recursion
72	d)	In implementing recursion stacks are generally used.
		the statement to be inserted in the following function for insertion of an element into a
	structdl	linked list:
		ist
	{	intval;
		structdlist *next;
		structdlist *prev;
	} ;	structurist prev,
		sert(structdlist *x, structdlist *prev)
	{	sert(structurist x, structurist prev)
	(/*x contains address of the new element */
		x->next=prev->next;
		x->prev=prev;
		/*statements to be inserted here*/
	}	,
	, a)	prev->prev=x->next->next=x;
	b)	prev->next=x->next=x;
	c)	prev->prev=x->next->prev=x;
	d)	prev->next=x->next->prev=x;
	,	•
		Module – IV/ Nonlinear Data Structure [Tree]
		Module – 1 1/ Mininear Data Structure [1100]

- 74. Which of the following process is faster for threaded trees compared with their unthreaded counterparts
 - a) Insertions
- b) Deletion
- c) Traversal
- d) Searching
- 75. Which of the following traversal techniques lists the elements of a binary search tree in ascending order?

a) Pre-order b) Post-order	c) In order	d)None of these
76. The depth of a complete binary tree with n nodes		
a) $log(n+1)-1$ b) $log(n)$	c) $\log(n-1)+1$	d)log(n)+1
77. In a binary search tree, if the number of nodes of a tree	is 9, then the mini	imum height of the tree is
a) 9 b) 5 c) 4	d) none of these	e
78. Number of possible binary trees with 3 node is		
a) 3 b) 2 c) 4	d) 5	
79. Total nodes in a 2-tree(Strictly binary tree) with thirty le	eaves are	
a) 60 b) 58 c) 59	d) 57	
80. In a height balanced tree, heights of two sub -trees of e	very node differ b	y more than
a) 2 b) 0 c) 1	d) -1	
81. How many BST can be formed with 1,2,3,4?		
a) 1 b) 2 c) 4	d) 6	
82. A full binary tree with n non-leaf nodes contains		
a) log_2 (n) nodes b) n+1 nodes	c) 2n nodes	d) 2n+1 nodes
83. A full binary tree with n leaves contains	•	•
•	1 nodes d) 2	2 ⁿ nodes
84. A binary search tree is generated by inserting in order the	·	
50, 15, 62, 5, 20, 58, 91, 3, 8, 37, 60, 24		,
The number of nodes in the left subtree and right subtre	e of the root respe	ectively is
a) (4,7) b) (7,4) c) (8,3)		
85. If a binary tree is threaded for in order traversal a right l	NULL link of any	node is replaced by the
address of its	·	1
a) successor b) predecessor c) root	d) own	
86. In a max heap, both the addition and deletion operations	s can be performe	d in time
a) $O(\log n)$ b) $O(n\log n)$ c) $O(n)$	d) $O(n^2)$	
87. In a Heap, the right child of a node in position 10 will be	e in the position of	f
a) 20 b) 21 c) 9 d) 5	•	
88. A binary tree may be reconstructed from		
a) inorder traversal sequence only		
b) preorder traversal sequence only		
c) postorder traversal sequence only		
d) both inorder and preorder traversal sequen	ce	
89. Maximum possible height of an AVL tree with 7 nodes	is	
a) 3 b) 4 c) 5 d) 6		
90. In traversing non-empty binary tree, visit the root is made	de in the last in	
a) Preorder traversal		
b) Inorder traversal		
c) Postorder traversal		
d) None of these		
91. The in-order and post-order traversal of a binary tree	e are DBEAFC a	and DEBFCA respectively
What will be the total number of nodes in the left subtre	ee of the given tree	e?
a) 1 b) 4 c) 5 d) none of	f these	
92. A B-tree is		
a) Always balanced b) an ordered	tree	
c) A directed tree d) all of these		
93. A Binary tree is a type of tree		
a) That is ordered		
b) b) such that no node has degree more than	n 2	

	d) in which non-leaf nodes will have degree 2
94. In arra	ay representation of Binary tree, if the index number of a child node is 6 then the index number
	parent node is
	a) 2 b) 3 c) 4 d) 5
95. In an <i>i</i>	AVL tree the balancing is needed when balancing factor of any node becomes
, , , , , , , , , , , , , , , , , , ,	a) 1 or -1 b) 0 or -1 c) -2 or 2 d) -1 or 0
96. The va	alues in a BST can be sorted in ascending order by using which of the following traversals? a) Pre-order b) In-order c) Post-order d) Level-order
97. Which	n tree structure is used for efficient access of records residing in disc memory?
	b) AVL tree b) B tree c) 2-3 tree d) Binary tree
	Module – V/ Nonlinear Data Structure [Graph]
98 A com	replete directed graph of 5 nodes has number of edges
70. 11 c on	a) 5 b) 10 c) 20 d) 25
99 Bread	th-first-search algorithm usesdata structure
)). Dicad	a) Stack b) Queue c) Binary tree d) none of these
100.	Adjacency matrix of a digraph is
100.	a) Identity matrix b) Symmetric matrix c) asymmetric matrix d) none of these
101.	A graph G with n nodes is bipartite if it contains
101.	a) n edges b) a cycle of odd length c) no cycle of odd length d) n ² edges
102.	The vertex, removal of which makes a graph disconnected is called
102.	a) Pendant vertex
	b) Bridge
	c) Articulation pointd) Colored vertex
103.	
103.	A vertex of in -degree zero in a directed graph is called a) Articulation point b) sinkc) isolated vertex d) root vertex
104	
104.	BFS Scans all incident address before maying to the other yearter.
	a) Scans all incident edges before moving to the other vertexb) Scans adjacent unvisited vertex as soon as possible
	c) Is same as backtracking
	d) None of these
105.	A non-planer graph with minimum number of vertices has
105.	a) 9 edges, 6 vertices b) 6 edges, 4 vertices
	c) 10 edges, 5 vertices d) 9 edges, 5 vertices
106.	Maximum number of edges in a n-node undirected graph without self loop is
100.	a) n^2 b) $n(n-1)/2$
	a) n b) n(n-1)/2 c) n-2 d) (n+1)n/2
107.	
107.	BFS constructs
	a) a minimal cost spanning tree of a graph
	b) a depth first spanning tree of a graph
	c) a breadth first spanning tree of a graphd) none of these
100	<i>'</i>
108.	A vertex of with degree one in a graph is called
100 W#-	a) Leaf b) Pendant vertex c) End vertex d) none of these
1U7. W N10	ch method of traversal does not use stack to hold nodes that are waiting to be processed?

c) For which both (a) and (b) above are correct

a) Breadth- first	
b) Depth-first	
c) D-search	
d) None of these	
110. Which data structure is used for depth first traversal of a graph	?
a) Array	
b) Linked list	
c) Stack	
d) Queue	
111. A simple undirected graph with eight (8) vertices is said to be of	completed if number
of edges equal to	
a) 56 b) 28 c) 16 d) 24	
112. Any connected graph with x vertices must have at least	
a) x+1 edges b)x-1 edges c) x edges	d) x/2 edges
113. The element at the root of the heap is	
a) largest b) smallest c) may be largest or sm	nallest d) none of these
114. A digraph in which, outdegree is same as indegree is called	
a) Balanced b) symmetric c) regular d) comp	plete
Module – VI/Searching, Sorting and T	ime –Space Complexity
115. In external sorting technique all data reside in	
a) Primary memory b) Secondary memory	c) both (a) and (b)
d) None of these	
116. Which one is the best time among the following algorithms?	
a) $O(n)$ b) $O(\log_2 n)$ c) $O(2^n)d)$ $O(n\log_2 n)$	
117. Average case time complexity of quick sort	
a) $O(N \log_2 N)b) O(N \log N)$ c) $O(N^2)$	$d)O(N^3)$
118. If $f(n)=1000 \text{ nlog } n + 500n^4 + 0.52^n \text{ then } f(n) \text{ is}$	
a) $O(n^4)$ b) $O(n\log n)$ c) $O(2^n)d)$ None of thes	e
119. The complexity of merge sort algorithm is	
a) $O(n)$ b) $O(n\log n)$ c) $O(n^2)d)$ $O(\log n)$	
120. Selection sort and Quick sort both fall into the same category o	f sorting algorithms.
What is this category?	
a) O(nlogn) sorts b) Divide-and-Conquer Sorts	c) Interchange
sorts d) Average time is quadratic	1 2 2 log p
121. What is the Big Oh notation of the following expression $F(n)=r$	•
a) $O(n)$ b) $O(n^2)$ c) $O(n \log n^2)$ d) $O(e^{l\alpha})$	
122. A sort which compares adjacent elements in a list and switches	•
a) Insertion sort b) Heap sort c) Quick sort	·
123. Which of the following sorting techniques requires extra space,	, than the data to be
sorted?	d) Nana of these
a) Selection sort b) Heap sort c) Bubble sort	d) None of these
124. Stability of Sorting Algorithm is important for	
a) Sorting records on the basis of multiple keysb) Worst case performance of sorting algorithm	
	ha sama
c) Sorting alpha numeric keys as they are likely to be td) None of these	ne same
125. The worst case complexity of binary search is	
a) O(log n) b) O(nlog n) c) O(n)	d) $O(n^2)$
u, 5(105 11) 5) 5(1105 11) c) 5(11)	a, o(n)

a) Quick sort b) Heap sort c) Merge sort d) Bubble sort 127. The best case time complexity of bubble sort technique is a) O(n) b) O(n ²) c) O(nlog n) d) O(log n)						
a) $O(n)$ b) $O(n^2)$ c) $O(n\log n)$ d) $O(\log n)$						
$a_j = O(n_j) = O(n_j) = O(n_j + n_j) = O(n_j + n_j) = O(n_j + n_j)$						
128. Four algo do the same task. Which algo should execute the slowest for large values						
of n?						
129. What will be the time complexity for selection sort for an array of n elements?						
a) $O(\log n)$ b) $O(n\log n)$ c) $O(n)$ d) $O(n^2)$						
130. A machine needs a minimum of 100 sec to sort 1000 names by quick sort. The						
minimum time needed to sort 100 names will be approximately						
a) 72.7 sec b) 11.2 sec c) 50.2 sec d) 6.7 sec						
131. Which of the following algorithm should execute the slowest for large values of N?						
a) $O(N)$ b) $O(N^2)$ c) $9(\log_2 N)$ d) None of these						
132. Best case time complexity of insertion sort is						
a) $O(1)$ b) $O(n)c)$ $O(nlog n)$ d) $O(n^2)$						
133. A sort, which iteratively passes through a list to exchange the first element with any						
element less than it and then repeats with a new first element is called						
a) Bubble sort b) Quick sort c) Heap sort						
d) Selection sort						
134. Which of the following shows the correct relationship among some of the more common						
computing times for algorithm?						
a) $O(\log n) < O(n) < O(n*\log n) < O(2^n) < O(n^2)$						
b) $O(n) < O(\log n) < O(n^* \log n) < O(2^n) < O(n^2)$						
c) $O(n) < O(\log n) < O(n^* \log n) > O(n^2) < O(2^n)$						
d) $O(\log n) < O(n) < O(n^* \log n) > O(n^2) < O(2^n)$						
135. In quick sort, a best /desirable choice of pivot for partitioning the list will be						
a) First element of the list b) Last element of the list						
c) Median of the list c) A randomly chosen element of the list						
136. The time complexity of binary search is						
a) $O(n^2)$ b) $O(n)$ c) $O(\log n)$ d) $O(n \log n)$						
137. The fastest sorting algorithm for an almost already sorted array is						
a) quick sort b) merge sort c) selection sort d)insertion sort						
138. For merging two sorted listed of sizes m and n into a sorted list of size m+n, we						
require comparison of						
a) $O(m)$ b) $O(n)$ c) $O(m+n)$ d) $O(\log(m)+\log(n))$						
139. The running time of an algorithm T(n), where n is the input size is given by						
T(n) = 8 T(n/2) + qn, if $n > 1$						
= p, if n=1						
•						
where p and q are constants. The order of this algorithm is						
•						
where p and q are constants. The order of this algorithm is a) n^2 b) n^n c) n^3 d) n						
where p and q are constants. The order of this algorithm is a) n^2 b) n^n c) n^3 d) n Module – VII/Hashing						
where p and q are constants. The order of this algorithm is a) n^2 b) n^n c) n^3 d) n						
where p and q are constants. The order of this algorithm is a) n ² b) n ⁿ c) n ³ d) n Module – VII/Hashing 140. Ratio of number of items in hash table, to the table size is called a) Load factor b) Item factor c) Balanced factor d) All of these						
where p and q are constants. The order of this algorithm is a) n ² b) n ⁿ c) n ³ d) n Module – VII/Hashing 140. Ratio of number of items in hash table, to the table size is called a) Load factor b) Item factor c) Balanced factor d) All of these 141. Which of the following methods has the best average case complexity for						
where p and q are constants. The order of this algorithm is a) n ² b) n ⁿ c) n ³ d) n Module – VII/Hashing 140. Ratio of number of items in hash table, to the table size is called a) Load factor b) Item factor c) Balanced factor d) All of these						

	a)	clustering	b) Ef	ficien	t storage u	tilizatio	on c	overflow		
	d)	underflow								
143.	Which of	the followin	g is not a requ	uireme	ent of good	l hashi	ng fun	ction?		
	a)	Avoid colli	sion			b)	Reduc	ce the storage space	ce	
	c)	Make faster	r retrieval			d) l	None o	of these		
144.	Which o	f the followi	ng is not relat	ed to l	hashing?					
	a)	Synonyms	b) Collision	c)I	Balance fac	ctor	ď)Load factor		
145.	The Line	ear Probing 7	Technique for	collis	ion resolut	tion car	n lead	to		
	a) I	Primary clus	tering	b)	Secondar	ry clust	tering			
	c) (Overflow		d)	Efficienc	y stora	ige util	ization		
146.		_		g with	linear pro	bing w	ill be l	ess if the load fac	ctor:	
	8	i) is far less								
	ŀ	o) equals or								
			ater than one							
	C	l) none of t	hese							
	, 3, 4, 7, 8,	9, 10.The p		a new			-	re are records in ion 2, with a hash	location n function	S
	ä	a) 0.6	b) 0.1	c)	0.2	d)	0.5			
is	s indexed fosition 4?	rom 1 to 8.W		ollowi			never	bbing. Assume the be probed if a col		
140		,		,				of callician hafana	41 4 . 1. 1.	. :.
	00 % full?	·				•	·	of collision before	e the table	; 18
		i) 0.45	b) 0.5		0.3	•		Approximately)		
					•		_	obing, is used to at will be location		the
	8	ı) 1	b) 4	c)	5	d)	none	of these		
				Pa	art B					
		Sho	rt Answer	Tvn	e Onest	ions	[5 M	arkel		
		5110	1 0 1 1 1 1 1 5 1 7 6 1	- J P	Zucsi		L~ 141	mr 170]		

Array

- 1. What is Abstract Data type? What do you mean by Dynamic Data structure?
- 2. What are sparse matrices? How is it represented in memory? What are the types of sparse matrices?
- 3. Let the size of the elements stored in an 8 x 3 matrix be 4 bytes each. If the base address of the matrix is 3500, then find the address of A [5, 2] for both row major & column major cases.

Stack and Queue

- 4. What is stack? Why it is called LIFO? What is top of the stack? What are the conditions for stack underflow & stack overflow? Why stack is called ADT?
- 5. Write an algorithm to insert an element into a stack. Write an algorithm to delete an item from a stack.
- 6. What are the applications of stacks? What is linked stack?
- 7. What is queue? Why queue is called FIFO? What is linked queue?
- 8. Write the insert & delete functions for the queue.

- 9. What is circular queue? Write Q-insert algorithm for circular queue.
- 10. What is circular queue? Why we need circular queue? In which data structure insertion & deletion of elements can take place from either end? Explain.
- 11. **Write short notes on Priority Queue.

Linked List

- 12. Point out the difference between array & linked list.
- 13. Represent the following polynomials by a linked data structure (show only the diagram) $-5^{x5} + 4^{x4} 25^{x3} + 10$.
- 14. What is linked stack & what is linked queue? Explain insertion & deletion operations on linked stack & linked queue.

Recursion

- 15. What is recursion tree? Write down the recursive definition for generation of the Fibonacci sequence. Assuming Fib (n) as a recursive function draw a recursive tree for Fib (6).
- 16. Write short notes on Tail Recursion & Tower of Hanoi Problem.
- 17. Write the difference between recursion & iteration. State the advantages and disadvantages of both the types.
- 18. What is recursion? Explain with an example. Explain: "Recursion is worse than Iteration".
- 19. Are recursive routines more efficient than non-recursive routines? Justify your answer with suitable example.
- 20. Write the recursive function for the problem of Tower of Hanoi problem.

Tree

21. Define the following: (Each definition carries 1 mark)

Tree	Node	Root	Degree of a Tree	Degree of a Node	Level	Directed and Undirected Graph
Path	Forest	Height	Ancestors	Descendant	Siblings	Weighted and Un-weighted Graph
Terminal Nodes	Non- Terminal Nodes	Internal Path	External Path	Leaf Node	Orchard	Sub-graph
Degree of a Graph	Cut Vertex	Articulation Point	Pendant Vertex	Clique	Complete and Connected Graph	Path and Isomorphism

- 22. For a non-empty binary tree prove $n_0=n_2+1$, where $n_0=$ No. of terminal nodes & $n_2=$ No. of nodes of degree 2.
- 23. The maximum number of nodes on level "i" of a binary tree is ²ⁱ (i>0).
- 24. What is B-Tree? Explain with an example. Write the advantages & disadvantages of B-Tree. What are the uses of such a tree in data structures?
- 25. What is threaded binary tree? Write the memory representations of threaded binary tree.
- 26. Write an algorithm to delete a node from binary search tree.
- 27. What is BST?
- 28. Consider a B-Tree of order 5 as shown below- insert the elements 4, 5, 58, 6 in this order in the B-Tree.

(5)

- 29. Write a c language function to find the in-order successor of the root of a binary tree.
- 30. Write short notes on the following:
 - AVL Tree.
 - B+ Tree.
 - B* Tree.
 - BST.
 - Threaded Binary Tree.
- 31. Write the non-recursive functions for in-order traversal of binary tree.

87.

32. Show the stages in growth of an order- 4 B-Tree when the following keys are inserted in the order given:

10,

35,

18,

39,

60,

76,

74, 72, 19, 58, 19, 45

- 33. Write the non-recursive functions for pre-order traversal of binary tree.
- 34. Write the non-recursive functions for post-order traversal of binary tree.
- 35. How do AVL trees differ from binary search tree? Insert the following keys in the order given below to build them into an AVL tree.

51,

8, 12, 9, 11, 7,

Clearly mention the different rotations used and balance factor of each node.

36. Construct the expression tree for the following expression tree : $E = (2a + 5b) (x - 7y)^4$.

Searching, Sorting and Time – Space Complexity

- 37. What is the prerequisite for binary search? What are the advantages of binary search over linear search?
- 38. "Binary search technique can't be implemented using linked list" .Justify. Derive the worst case time complexity of Binary search.
- 39. What do you mean by internal & external sorting? Explain with an example.
- 40. What is heap? Define max and min heap. Explain with an example how to construct a heap (show both types).
- 41. Write the algorithm to sort an array of integers using **Insertion Sort** method. Explain the **time complexity** of this sorting algorithm.
- 42. Explain with a suitable example, the principle operation of **Quick sort**.
- 43. Write a c function for **selection sort** and also calculate the **time complexity** for selection sort.
- 44. Explain with a suitable example the principles of operation of **Heap sort**. Find the **timecomplexity** of the algorithm.
- 45. Define Big-O, Ω , Θ notation.

Graph

- 46. What is a complete graph? Show that the sum of degree of all the vertices in a graph is always even.
- 47. Compare BFS and DFS. Discuss the two different ways of representing a graph.
- 48. Give the adjacency matrix and adjacency list of the following graph.

- 49. Prove that the maximum number of edges possible in a simple graph of n nodes is n(n-1)/2.
- 50. For the following graph Find
 - i) BFS traversal
 - ii) DFS traversal

Hashing

- 51. Explain with suitable example the collision resolution scheme using linear probing with open addressing.
- 52. What do you mean by hashing? What are the applications where you will prefer hash tables to other data structures? What do you mean by collision? How is it handled?
- 53. Why the hash functions need to be simple? What is the primary advantage of hashing over deterministic search algorithms?
- 54. Define hashing. Why hashing is referred to as heuristic search method?
- 55. Explain linear probing and double hashing with suitable example.
- 56. Write an algorithm to insert an element in the hash table using Quadratic probing.

Part C

Stack and Queue

1.

a) Consider the following stack of characters, where STACK is allocated N=8 memory cells: STACK: A, C, D, F, K, _, _, _. Describe the stack as the following operations take place: (a) POP(STACK, ITEM) (b) POP(STACK, ITEM) (c) PUSH(STACK,L) (d) PUSH(STACK,P) (e) POP(STACK, ITEM) (f) PUSH(STACK,R) (g) PUSH(STACK,S) (h) POP(STACK, ITEM).

[T:5,M:4]

- b) Consider the following queue of characters, where queue Q is a circular array which is allocated 5 memory cells: Front = 2, Rear = 3, Q: _, P, Q, _, _. Describe the following operations on queue: (a) R is added to the queue. (b) Two letters are from the queue. (c) S, T, U are added to queue. [T:5,M:3]
- 2. Write logic for reverse the order of elements on a stack S

[T;5,M:5]

- 3. Suppose that you have a stack and push to the stack the integers 1,2,...n in that sequence. In between these push operations you also invoke some pop operations in such a way that pop request is never set to an empty stack. Immediately before each pop operation you also print the top of the stack. After all of the integers 1, 2 ...n are pushed, the elements remaining in the stack are printed and popped resulting in an eventually empty stack. If n=5 it means1, 2,3,4,5 then what is the printed sequence? [T:5,M:5]
- 4. a) Convert A+ (B*C-(D/E^F)*G)*H into its **postfix** form. Evaluate: 562+*124/- using stack. [T:10,M:8]
 - b) The following postfix expression with single digit operands is evaluated using stack $8\ 2\ 3\ ^{\wedge}\ /\ 2\ 3\ ^{*}\ +\ 5\ 1\ ^{*}\ ^{-}$

Note that ^ is the exponentiation operator.

What will be the top two elements of the stack after the first * is evaluated.

Convert A B * C - D + E / F/(G+G) into **prefix**.

[T:10, M:8]

Linked List

5. The following C function takes a singly linked list of integers as a parameter and rearranges the elements of the list. The function is called with the list containing the integers 1,2,3,4,5,6,7 in the given order. What will be the contents of the list after the function completes execution?

[T:4,M:5]

```
struct node
{
                int value;
                struct node *next;
};
void rearrange(struct node *list)
                struct node *p,*q;
                int temp;
                if(!list||!list->next)
                        return;
                p=list;
                q=list->next;
                while(q)
                        temp=p->value;
                        p->value=q->value;
                        q->value=temp;
                        p=q->next;
                        q=p?p->next:0;
                }
```

- 6. Why *Circular linked list* is important in case of **Josephus** Problem?
- 7. Supposed the linked list in the memory consisting of numerical values. Write a function for each of the following: [T:15,M:12]
 - i) To find the maximum (MAX) of the values in the list.
 - ii) To find the average (MEAN) of the values in the list.

Recursion and Tree

```
8. Consider the following C program segment
                                                                                 [T:5,M:5]
   structCellNode
   {
           structCellNode *leftchild;
           int element;
           structCellNode *rightchild;
   };
   intDoSomething(structCellNode *ptr)
           int value=0;
           if(ptr!=NULL)
                   if(ptr->leftchild!=NULL)
                           value=1+DoSomething(ptr->leftchild);
                   if(ptr->rightchild!=NULL)
                           value=max(value,1+DoSomething(ptr->rightchild));
           return value;
    }
```

What will be the value returned by the function Do Something when a pointer to the root of a nonempty tree is passed as the argument.

9. Consider the following C program segment where Cell Node represents a node in a binary tree [T:5,M:5]

What will be the value returned by GetValue when a pointer to the root of a binary tree is passed as its argument.

10. Show the steps in creation of a height balanced binary AVL tree using insertion of items in the following order-show the steps required with diagrams..

	(March, May, November, August, April, January, December, July, February, june, October, September) [T: 12, M: 10]													
11.	50, Insert a,	40, the fold f,	60, llowing b,	keys :	30, into a	70, B-Tree h,	of given m,	80, order n e,	s,	90, d below: r, u, p. (C	c. (Ord	99 [T:5 ler 3)	,M:5] ,M:5]	
12.	Show	how tl	ne letter	s A to	Pof	English	alphabet	t can be	entered	into a b-	Tree of o	_	10,M:8] 4.	
13.	Constr	ruct a	binary tı	ree fro	om pre	e and inc	order tra	versal.				[T:5	,M:5]	
			order- A		_	D	I	E	J	C	F	G	K	
	*	In-o	rder - D) I		В	E	J	A	F	C	K	G	
14.	*	Post	Binary T -order- I	ВС	7	norder a A C	nd Posto P D	order tra N F	versal. T G	L K	K L	G	,M:5] F D P T	
15.	The degree of a node is the number of children it has. Show that in any binary tree, the numbers of leaves are one more than the number of nodes of degree 2. [T:10,M:8]													
16.	Show given:		ne follo 30,	_	intege 0,	rs can b 90,	e inserte 100,		empty b	inary sea 20,	rch tree:	5	order they [:2,M:3]	are
17.	17. What are the problems of binary tree? Explain how a height-balanced tree can be form inserting the following elements in the given order:									be formed	l by			
	1,	2,	-				6,		9,		7,	11		
	Show	the ro	ot elem	ent th	at can	be dele	ted from	the abo	ove tree.			[T:	7,M:8]	
18.	a) Dr ex ((a b) Co	pressi a+b) + onside	ons. c*(d+e) r the alg	+f)*(gebrai	(g+h)		ollowing	infix e	xpressio	n. Conve	ert it into	-	ix and pos 7, M: 7]	stfix
	E-	i) ii)		e exp			orrespon ential op			sub tree	rooted		ne exponer 5,M:5]	ntial
		ary m	ne of the nax hear 1,3,5,6,5,9,6,3,1,5,9,3,6,8,5,9,5,6,8,5	o? 8,9 8,5 5,1	owing	is a val	id seque	nce of e	lements	in an arra	ay repres	sentin	g	
					tion is	correct	and othe	ers fail.				[T	: 5,M:5]	
		_		_			me –S		Compl	exitv		_	· -	
19.						ned by:				1				
	f(1) =			`	,	,								
	f (n) =	f (n-1) + 1/n	f	or n>1	, has the	e comple	exity O	(log n)			[T:5	,M:5]	
20.	Show	how tl	ne mer g	ge sor	t algo	rithm wi	ill sort th	ne follow	ving arra	y in incr	easing o	rder:		
	100,	90,	80,	7	0,	60,	50,	40,	30,	20	-	[T:6	,M:6]	
	Derive	the ti	me con	plexi	ity of	merge s	ort algo	rithm.						

- 21. Explain with suitable example, the principal operation of **Quick sort.** [T;15,M:15] Find the **Best case** and **worst case** complexity of **quick sort** algorithm.
- 22. Derive values related to average case and worst case behaviour of bubble Sort algorithm. Also confirm that the best case behaviour is O(n). [T:8,M:8]
- 23. Sort the following list using **Heap Sort** 66, 33, 40, 20, 50, 88,

11, 77, 30, 45, 65

[T: 10, M: 8]

Graph

60,

24. Apply BFS/DFS Algorithm the find out the path of the given graph:

[T:10,M:8]

25.

a) Draw the minimum cost spanning tree for the graph given below and also find its cost.

[T: 6, M: 6]

b) Execute both Prim's and Kruskal's algorithm on the following graph to find the minimum cost. [T:10,M:8]

0

Hashing

26.

a) A hash table of length 10 uses open addressing with hash function h(k)=k mod 10, and linear probing. After inserting 6 values into an empty hash table, the table is as shown below.

[T: 5,

42
23
34
52
46
33

M: 5]

- i) Which one of the following choices gives a possible order in which the key values could have been inserted in the table? Explain.
 - a) 46, 42, 34, 52, 23, 33
 - b) 34, 42, 23, 52, 33, 46
 - c) 46, 34, 42, 23, 52, 33
 - d) 42, 46, 33, 23, 34, 52
- ii) How many different insertion sequences of the key values using the same hash function and linear probing will result in the hash table shown above?
- b) The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initially empty hash table of length 10 using open addressing with hash function h(k)=k mod 10 and linear probing. What is the resultant hash table? [T: 2, M: 2]

1. An implementation of queue Q, using stacks S1 and S2 is given below: [T:5,M:2]

```
{
    x = pop (S1);
    push (S2, x);
}
x = pop (S2);
```

Let n insert and $m \leq n$ delete operations be performed in an arbitrary order on an empty queue Q. let x and y be the number of push and pop operations performed respectively in the process. Which one of the following is true for all m and n?

```
(A) n + m \le x < 2n and 2m \le y \le n + m (B) n + m \le x < 2n and 2m \le y \le 2n (B) 2m \le x < 2n and 2m \le y \le n + m (D) 2m \le x < 2n and 2m \le y \le 2n
```

- 2. Assume that the operators +, -, × are left associative and ^ is right associative. The order of precedence (from highest to lowest) is ^, ×, +, -. What will be the postfix expression corresponding to the infix expression a+b ×c-d ^ e ^f?

 [T:5,M:2]
- 3. Explain the execution order of factorial (5) using stack.

[T:2,M:2]

4. Pick out the equivalent postfix expression for this infix expression:

$$X = ((A+B)*C-(D-E)^{(F+G)})$$

[T:5,M:3]

5. Assume that a queue is available for pushing and popping elements. Given an input sequence a, b, c, (c be the first element), give the output sequence of elements if the rightmost element given above is the first to be popped from the queue. [T:2,M:2]

Linked List

6. Is linked list can be considered as a linear data structure? Explain.

[T:2,M:2]

- 7. If you are using C language to implement the heterogeneous linked list, what pointer type will you use?[T:2,M:2]
- 8. What is self –referential structure? Explain with an example.

[T:2,M:2]

- 9. Write a function to remove the first node from the list and insert it at end, without changing the info part of any node.[T:7,M:3]
- 10. Which of the following statements are true in the case of doubly linked list?
 - i) Every node is connected to other node
 - ii) We can traverse in both the directions

explain with example.

[T:5, M:2]

11. What does the following function do for a given Linked List with first node as head?

[T:2,M:2]

```
voidfun1(structnode* head)
{
  if(head == NULL)
    return;
  fun1(head->next);
  printf("%d ", head->data);
}
```

12. Can we perform insertion sort in linked lists? Explain.

[T:4, M:3]

13. The following function reverse () is supposed to **reverse** a singly linked list. There is one line missing at the end of the function.

[T:4,M:3]

```
/* Link list node */
structnode{
    intdata;
   structnode* next;
} ;
/* head ref is a double pointer which points to head (or start) pointer
of linked list */
staticvoidreverse(structnode** head ref)
    structnode* prev = NULL;
    structnode* current = *head ref;
    structnode* next;
    while(current != NULL)
        next = current->next;
        current->next = prev;
        prev = current;
        current = next;
    /*ADD A STATEMENT HERE*/
```

What should be added in place of "/*ADD A STATEMENT HERE*/", so that the function correctly reverses a linked list.

- 14. In the worst case, the number of comparisons needed to search a singly linked list of length n for a given element is which of the following? Then explain. [T:1,M:2]
 - (A) log 2 n
 - **(B)** n/2
 - (C) $\log 2 n 1$
 - **(D)** n
- 15. Consider the function f defined below.

[T:2,M:2]

For a given linked list p, when the function f returns 1?

16. A circularly linked list is used to represent a Queue. A single variable p is used to access the Queue. To which node should p point such that both the operations enQueue and deQueue can be performed in constant time? [T:2,M:2]

- 17. Is it possible to find a loop in a Linked list? Give reason to your answer. [T:3,M:3]
- 18. How would you sort the elements in a single linked list?[T:6,M:3]
- 19. Suppose a given linked-list has some odd numbers and even numbers. Write an algorithm to find them and position of them. [T:7,M:3]
- 20. Which operations are more effective in linked list than arrays? And why?
 - i) Insertion
 - ii) Deletion
 - iii) Traversal [T:2,M:2]
- 21. Can we do a Binary search on a linked list? Give reason to your answer. [T:5,M:2]
- 22. How to read a singly linked list in backward? [T:7,M:3]
- 23. If you implement stack or queue using linked list, then what is the full conditions? [T:5,M:3]
- 24. Is Circular linked list is infinite? Explain.

[T:5,M:3]

25. Application of single and double linked list.

- [T:2,M:3]
- 26. Who is responsible to dynamically allocate the memory for creation of a node in a single linked list? [T:2,M:2]

Tree

- 27. What is complete binary tree and what is full binary tree?
- [T:3,M:3]
- 28. Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into an initially empty binary search tree. The binary search tree uses the usual ordering on natural numbers. What is the in-order traversal sequence of the resultant tree?[T:3 M:2]
- 29. What is the maximum possible number of nodes in a binary tree at level 6? [T:2,M:2]
- 30. The preorder traversal sequence of a binary search tree is 30, 20, 10, 15, 25, 23, 39, 35, 42. What is the post order traversal sequence of the same tree? [T:4,M:3]
- 31. Check the following is a max-heap or not? Explain.

[T:2,M:2]

32. Which one of the following array represents a binary max-heap?

[T:2,M:2]

- a) {25,12,16,13,10,8,14}
- b) {25,14,13,16,10,8,12}
- c) {25,14,16,13,10,8,12}
- d) {25,14,12,13,10,8,16}
- 33. What is the content of the array after two delete operations on the correct answer to the previous question? [T:2,M:2]
 - a) {14,13,12,10,8}
 - b) {14,12,13,8,10}
 - c) {14,13,8,12,10}
 - d) {14,13,12,8,10}
- 34. Consider the following nested representation of binary trees: (X Y Z) indicates Y and Z are the left and right sub stress, respectively, of node X. Note that Y and Z may be NULL, or further nested. Which of the following represents a valid binary tree? [T:10,M:4]
 - (a) (1 2 (4 5 6 7))
 - (b) (1 (2 3 4) 5 6) 7)
 - (c) (1 (2 3 4)(5 6 7))
 - (d) (1 (2 3 NULL) (4 5))
- 35. The following numbers are inserted into an empty binary search tree in the given order: 10, 1, 3, 5, 15, 12, and 16. What is the height of the binary search tree (the height is the maximum distance of a leaf node from the root)? [T:3, M:4]
- 36. What is the number of leaf nodes in a rooted tree of n nodes, with each node having 0 or 3 children? [T:2.M:2]
- 37. Why tree is called non-linear data structure?

[T:2,M:2]

38. Why heap tree is represented with array?

[T:2, M:3]

39. Write some applications of tree.

- [T:2, M:2]
- 40. The height of a binary tree is the maximum number of edges in any root to leaf path. What is the maximum number of nodes in a binary tree of height h? [T:2,M:2]
- 41. In a binary tree with n nodes, every node has an odd number of descendants. Every node is considered to be its own descendant. What is the number of nodes in the tree that have exactly one child?

[T:2.M:2]

- 42. Consider a node X in a Binary Tree. Given that X has two children, let Y be In order successor of X.Can Y have any left child? [T:2,M2]
- 43. Post order traversal of a given binary search tree, T produces the following sequence of keys 10, 9, 23, 22, 27, 25, 15, 50, 95, 60, 40, 29 What will be the result of an in-order traversal of the tree T?

[T:2,M2]

- 44. A scheme for storing binary trees in an array X is as follows. Indexing of X starts at 1 instead of 0. The root is stored at X [1]. For a node stored at X[i], the left child, if any, is stored in X [2i] and the right child, if any, in X[2i+1]. To be able to store any binary tree on n vertices what is the minimum size of X should be.

 [T:2,M2]
- 45. A complete n-ary tree is a tree in which each node has n children or no children. Let I be the number of internal nodes and L be the number of leaves in a complete n-ary tree. If L = 41, and I = 10, what is the value of n?

 [T:7,M:4]
- 46. What is the weighted external path length of the binary tree shown in the following figure?

[T:2, M:2]

47. Consider the following graph

[T:2,M:2]

Among the following sequences

I) a b e g h f

II) a b f e h g

III) a b f h g e

IV) a f g h b e

Which are depth first traversals of the above graph?

Searching and Sorting

- 48. What is the difference between Linear & Binary Search? What is the prerequisite for binary search? [T:3,M:3]
- 49. "Binary search technique can't be implemented using linked list" .Justify [T:2,M:2]
- 50. What do you mean by complexity? What is time complexity and what is space complexity?

[T:3,M:3]

51. Explain the meaning of worst case analysis and best case analysis with an example.

[T:2,M:2]

52. Which sorting algorithm is easily adaptable to singly linked lists? Justify.

[T:3,M:3]

- 53. You have an array of n elements. Suppose you implement quick sort by always choosing the central element of the array as the pivot. Then what is the tightest upper bound for the worst case performance? [T:2,M:2]
- 54. In which situation insertion sort running time complexity O(n). Explain with an example. Then same situation for quick sort what happen explain. [T:10,M:4]

55.

(A) t1 = 5

56. Let P be a Quick Sort Program to sort numbers in ascending order using the first element as pivot. Let t1 and t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, 2} respectively. Which one of the following holds? [T:2,M:2]

- (B) t1 < t2
- (C) t1 > t2
- (D) t1 = t2
- 57. Bubble sort and selection sort has the worst case time complexity O(n²) but selection sort is faster than bubble sort. Why? [T:2,M:2]
- 58. Why merge sort is called divide and conquer method?[T:2,M:2]
- 59. How many key comparisons and assignments an insertion sort makes in its

worst case? [T:2,M:2]

60. Sort the following sequence of keys using merge sort.

[T:5,M:3]

- 61. Which sorting algorithm is best if the list is already sorted? Why? [T:2,M:2]
- 62. What is the time complexity (in all cases) of Merge sort and Heap sort algorithms?

[T:2,M:3]

Hashing

- 63. Given the following input (4322, 1334, 1471, 9679, 1989, 6171, 6173, and 4199) and the hash function x mod 10, which of the following statements are true? [T:1,M:2]
 - i. 9679, 1989, 4199 hash to the same value
 - ii. 1471, 6171 has to the same value
 - iii. All elements hash to the same value
 - iv. Each element hashes to a different value
- 64. What do you mean by hashing? What are the applications where you will prefer hash tables to other data structures? [T:2,M:2]

68. What are the advantages and disadvantages of hashing with respect to searching? [T:2,M:2]

65. Write down some applications of hashing.

[T:2,M:2]

66. Is hashing a search technique? If yes, then compare with binary search.

[T:5,M:3]

67. What are different methods of collision resolution in hashing?

[T:2,M:2]

69. What do you mean by probing?

[T:2,M:2]

70. What is the significance "open" in open addressing technique?

[T:2,M:2]

71. Why complexity of hashing is O(1)?

[T:2,M:2]