Prediction of gestational diabetes based on nationwide electronic health records

Christa Caggiano Bioinformatics Program Zaitlen Lab JC Jan 27th 2019

Gestational diabetes mellitus is a common complication of pregnancy

Gestational diabetes mellitus is a common complication of pregnancy that can affect both mothers and offspring

adverse outcomes

Mothers

- Increased risk for T2D
- Risk for preeclampsia & postpartum depression
- C-section or birth injuries

Children

- Stillbirth
- Macrosomia & birth trauma
- Respiratory difficulties
- Metabolic complications

Problem: Adverse outcomes for diabetes can be prevented with early detection and monitoring

Problem: Adverse outcomes for diabetes can be prevented with early detection and monitoring

Paper's solution: Develop a machine learning model trained on EHR data to accurately predict risk for gestational diabetes

Outline

- 1: Data collection & design
- 2: Machine learning approach
 - **3:** Results
- 4: Conclusions and other ideas

Method utilizes database from Israel's largest healthcare provider (~ 50% of Israel's adult population)

Restrict to ~800k children

Remove women with non-gestational diabetes, and those who have gestational diabetes screening tests

GD screening in Israel is a two step process performed at 24-28 weeks

GD screening in Israel is a two step process performed at 24-28 weeks

Split all women into test and training sets

3 validation sets were used in addition to the test set

			Validation sets		
		Training set	Future	Geographical	Geo-temporal
Cohort	Pregnancies in cohort (n)	451,402	82,678	46,002	8,540
	GCT result (mg dl ⁻¹ ; mean + s.d.)	108 ± 28	112 ± 29	103 ± 26	108 ± 27
	GDM prevalence (%)	3.6	4.9	2.4	3.9
Patients	Unique patients (n)	305,554	82,380	32,028	8,509
	For which this is their first pregnancy	152,927	26,407	14,205	2,432
	Age at pregnancy initiation (years) (mean \pm s.d.)	29.8 ± 5.3	30.4 ± 5.4	28.6 ± 5.4	29.1 ± 5.5
	BMI at pregnancy initiation (kg m^{-2}) (mean \pm s.d.)	23.3 ± 4.6	23.1 ± 4.5	23.6 ± 4.5	23.5 ± 4.4
Data available	Laboratory tests (n)	184,823,814	58,272,694	16,348,392	5,185,971
	Height, weight or BP recorded (n)	2,862,363	1,144,582	316,611	131,466
	Diagnoses recorded (n)	34,153,464	11,396,483	3,350,785	1,093,094
	Pharmaceuticals dispensed (n)	25,098,401	7,996,519	2,317,888	741,957

A combination of pre-pregnancy and pregnancy data points were used as features

Examples of features used:

Pre-pregnancy:

- "Basic features": Age at conception, BP, BMI
- Pregnancy history: history of GD, lab tests in previous pregnancies, number of children, miscarriages
- Other features: Baseline risk score value, prediabetes history

Pregnancy:

- Anthropomorphic measurements: BMI, BP, weight vs time
- Clinical and hospital diagnoses: top 300 most common community clinic diagnoses
- Laboratory tests

Gradient Boosting Machines are built off decision trees

Ex: Is a patient at risk for gestational diabetes?

Some decision trees perform better than others

Patient 1 w/ GD: not high BMI, abnormal blood test, no history of GD

Patient 2 w/ GD: high BMI, normal blood test, history of GD

CODE https://github.com/christacaggiano/gradient-boosting

Decision trees overfit to the training data

Patient 3 w/o GD: high BMI, normal blood test, no history of GD

CODE

Gradient boosting creates many trees, with each new tree "learning" from its predecessor's mistakes

Gradient boosting creates many trees, with each new tree "learning" from its predecessor's mistakes

CODE

Gradient boosting performs better than baseline model

Precision = TP/TP+FP, Recall = TP/TP+FN

Their model can predict GD fairly accurately at the beginning of pregnancy

Using Shapley values, the relative contribution of features are estimated

They developed a simple 8 question survey that can predict GD with small drop of performance

Features that can generated by asking the following questions:

- (1) What is your date of birth?
- (2) What are your weight and height?
- (3) How many of your first-degree relatives have diabetes?
- (4) Has a doctor ever told you that you have
 - (a) High cholesterol? (b) Had a miscarriage?
 - (c) PCOS? (d) Pre-diabetes?
 - (e) Heart disease? (f) GDM?
 - (g) High BP?
- (5) If you had a HbA1c% test, what was the highest value recorded?
- (6) Have you given birth before?
 - (if the answer is YES:)
 - (7) How many times?
 - (8) During your previous pregnancy, did you undergo GCT or OGTT?
 - (if the answer is YES:)
 - (9) What were the results?