Thermal Radiation Radiation in thermal equilibrium with its surroundings

Time average energy density
$$\overline{u} = \tfrac{1}{2} \epsilon_0 |\vec{E}_0|^2$$
 Time average energy flux
$$\vec{j}_{\text{E}} = (c\overline{u}) \, \vec{1}_k$$
 Time average pressure (\perp to \vec{k}) $P = \overline{u}$

Thermal radiation has a continuous distribution of frequencies.

Spectral Region	ν (Hz)	T(K)	Thermal Rad.
Radio	10^{6}	1.7×10^{-5}	
Microwave	10^{10}	0.17	cosmic background
Infrared	10^{13}	1.7×10^2	room temp.
Visible	$\frac{1}{2} \times 10^{15}$	8.5×10^{3}	sun's surface
Ultraviolet	10^{16}	1.7×10^{5}	
X ray	10^{18}	1.7×10^7	black holes
γ ray	10^{21}	1.7×10^{10}	

ABSORPTIVITY
$$\alpha(\nu, \tau) \equiv \left\langle \frac{\text{ENERGY ABSORBED}}{\text{ENERGY INCIDENT}} \right\rangle$$
ISOTROPIC

EMISSIVE POWER
$$e(\nu, \tau) \equiv \left\langle \frac{\text{ENERGY EMITTED}}{\text{AREA}} \right\rangle$$
 ISOTROPIC

THERMAL RADIATION: PROPERTIES

ASSUME $T_A = T_B$ AND THERMAL EQUILIBRIUM

CONCLUSIONS:

 \bullet $u(\nu,T)$ is independent of shape and wall material

• $u(\nu,T)$ is isotropic

• $u(\nu,T)$ is unpolarized

CONSIDER AN OBJECT IN THE CAVITY, IN THERMAL EQUILIBRIUM

COMPUTE THE ENERGY FLUX

$$\Delta E = \int (E \text{ in cylinder}) p(\theta, \phi) d\theta d\phi$$

$$= \int (u \Delta A \cos \theta \ c\Delta t) \left(\frac{\sin \theta}{2} \frac{1}{2\pi}\right) d\theta d\phi$$

$$= c u \Delta A \Delta t \underbrace{\int_0^{\pi/2} \frac{\cos \theta \sin \theta}{2} d\theta}_{1/4} \underbrace{\int_0^{2\pi} \frac{1}{2\pi} d\phi}_{1}$$

 \Rightarrow energy flux onto $dA = \frac{1}{4}c \, u(\nu, T)$

Momentum Flux

Plane wave momentum density $\vec{p} = \frac{u}{c} \vec{1}_k$

$$|\Delta p| = 2|p_{\perp}|$$
 since $\vec{p}_{\perp \text{ in}} = -\vec{p}_{\perp \text{ out}}$

$$|\Delta p|_{\nu} = \int \left(\frac{2\cos\theta}{c}\right) (E \text{ in cylinder}) p(\theta,\phi) d\theta d\phi$$

$$= u(\nu,T) \Delta A \Delta t \underbrace{\int_{0}^{\pi/2} \cos^{2}\theta \sin\theta d\theta}_{1/3} \underbrace{\int_{0}^{2\pi} \frac{1}{2\pi} d\phi}_{1}$$

$$= \frac{1}{3}u(\nu,T) \Delta A \Delta t$$

$$\Rightarrow P(T) = \frac{1}{3} \int_0^\infty u(\nu, T) d\nu$$

Apply detailed balance to the object in the cavity.

$$E_{\text{out}} = E_{\text{in}}$$

$$e dA = \alpha \left(\frac{1}{4}c u(\nu, T)\right) dA$$

$$\Rightarrow \frac{e(\nu, T)}{\alpha(\nu, T)} = \frac{1}{4}c u(\nu, T)$$

This ratio has a universal form for <u>all</u> materials.

The result is known as KIRCHOFF'S LAW.

Black Body Radiation

If
$$\alpha \equiv 1 \equiv$$
 "Black" Then $e(\nu,T) = \frac{1}{4}c\,u(\nu,T)$

Thermodynamic Approach

$$u(T) \equiv \int_0^\infty u(\nu, T) \, d\nu$$

Then

$$E(T,V) = u(T)V$$

$$P(T,V) = \frac{1}{3}u(T)$$

This is enough to allow us to find u(T).

$$dE = TdS - PdV$$

$$\left(\frac{\partial E}{\partial V}\right)_T = T\left(\frac{\partial S}{\partial V}\right)_T - P = T\left(\frac{\partial P}{\partial T}\right)_V - P$$

$$= \frac{1}{3}Tu'(T) - \frac{1}{3}u(T)$$

$$\text{also} = u(T)$$

$$\Rightarrow u'(T) = \frac{4}{T}u(T)$$

$$u(T) = AT^4$$

Emissive Power of a Black ($\alpha = 1$) Body

$$e(\nu, T) = \frac{1}{4}c u(\nu, T) \Rightarrow e(T) = \frac{1}{4}c u(T) = \frac{1}{4}AcT^4$$
$$e(T) \equiv \sigma T^4$$

This is known as the STEFAN-BOLTZMANN LAW.

$$\sigma = 56.7 \times 10^{-9} \text{ watts}/m^2 K^4$$

Statistical Mechanical Approach

 \mathcal{H} ? Single normal mode (plane standing wave) in a rectangular conducting cavity.

$$\vec{E}_{0,0,n,\vec{1}_x}(\vec{r},t) = E(t)\sin(n\pi z/L)\vec{1}_x$$

$$\vec{B}_{0,0,n,\vec{1}_y}(\vec{r},t) = (n\pi c^2/L)^{-1}\dot{E}(t)\cos(n\pi z/L)\vec{1}_y$$

Energy density $= \frac{1}{2}\epsilon_0 \vec{E} \cdot \vec{E} + \frac{1}{2}\frac{1}{\mu_0} \vec{B} \cdot \vec{B}$ [no \vec{r} or t average]

$$\mathcal{H} = \frac{V}{2} \left[\frac{1}{2} \epsilon_0 E^2(t) + \frac{1}{2} \frac{1}{\mu_0} (n\pi c^2/L)^{-2} \dot{E}^2(t) \right]$$
$$= \frac{V}{2} \frac{\epsilon_0}{2} \left[E^2(t) + (n\pi c/L)^{-2} \dot{E}^2(t) \right]$$

 \Rightarrow Each mode corresponds to a harmonic oscillator.

Count the modes.

$$\vec{E}_{n_x,n_y,n_z} = |E|\vec{\epsilon}_j \sin(n_x \pi x/L) \sin(n_y \pi y/L) \sin(n_z \pi z/L) e^{i\omega t}$$

The unit polarization vector $\vec{\epsilon}_j$ has 2 possible orthogonal directions and $n_i = 1, 2, 3 \cdots$

$$\frac{\partial^2 \vec{E}}{\partial t^2} - c^2 \vec{\nabla}^2 E = 0 \quad \Rightarrow \quad \omega^2 = \left(\frac{\pi c}{L}\right)^2 (n_x^2 + n_y^2 + n_z^2)$$

If the radian frequency $<\omega$

$$R = \sqrt{n_x^2 + n_y^2 + n_z^2} = \frac{L}{\pi c} \,\omega$$

modes (freq.
$$< \omega$$
)
= $2 \times \frac{1}{8} \times \frac{4}{3} \pi R^3$
= $\frac{\pi}{3} \left(\frac{L}{\pi c}\right)^3 \omega^3$

$$D(\omega) = \frac{d\#}{d\omega} = \pi \left(\frac{L}{\pi c}\right)^3 \omega^2 = \frac{V}{\pi^2 c^3} \omega^2$$

Classical Statistical Mechanics

$$<\epsilon(\omega)> = k_B T \Rightarrow u(\omega, T) = <\epsilon(\omega)> \frac{D(\omega)}{V} = \frac{k_B T}{\pi^2 c^3} \omega^2$$

$$u(T) = \int_0^\infty u(\omega, T) d\omega = \infty$$

Quantum Statistical Mechanics

$$<\epsilon(\omega)> = \frac{\hbar\omega}{e^{\hbar\omega/kT}-1} + \hbar\omega/2$$

$$u(\omega,T)=<\epsilon(\omega)>\frac{D(\omega)}{V}=\frac{\hbar}{\pi^2c^3}\frac{\omega^3}{e^{\hbar\omega/kT}-1}+\text{z. p. term}$$

To find the location of the maximum, set $\frac{du(\omega,T)}{d\omega}=0$.

The maximum occurs at $\hbar\omega/kT\approx$ 2.82.

Cosmic Microwave Background Spectrum from COBE

$$Z = \prod_{\text{states } i} Z_i \qquad Z_i = e^{-\hbar\omega/2kT} (1 - e^{-\hbar\omega/kT})^{-1}$$

The first factor in the expression for Z_i comes from the zero-point energy.

$$F(V,T) = -kT \ln Z = -kT \sum_{\text{states } i} \ln Z_i$$

$$= -kT \int_0^\infty D(\omega) \left[\ln Z_i \right] d\omega$$

$$F(V,T) = -kT \int_{0}^{\infty} D(\omega) \left[-\ln(1 - e^{-\hbar\omega/kT}) \right] d\omega + \cdots$$

$$= \frac{kTV}{\pi^{2}c^{3}} \int_{0}^{\infty} \omega^{2} \ln(1 - e^{-\hbar\omega/kT}) d\omega$$

$$= \frac{V}{\pi^{2}c^{3}\hbar^{3}} (kT)^{4} \underbrace{\int_{0}^{\infty} x^{2} \ln(1 - e^{-x}) dx}_{-\frac{\pi^{4}}{45}}$$

$$= -\frac{1}{45} \frac{\pi^{2}}{c^{3}\hbar^{3}} (kT)^{4} V$$

$$P = -\left(\frac{\partial F}{\partial V}\right)_T = \frac{1}{45} \frac{\pi^2}{(c\hbar)^3} (kT)^4$$

$$S = -\left(\frac{\partial F}{\partial T}\right)_V = \frac{4}{45} \frac{\pi^2}{(c\hbar)^3} k^4 T^3 V$$

$$E = F + TS = \left(-\frac{1}{45} + \frac{4}{45}\right)(\cdots) = \frac{1}{15} \frac{\pi^2}{(c\pi)^3} (kT)^4 V$$

Note: $P = \frac{1}{3}E/V = \frac{1}{3}u(T)$ independent of V.

NOTE: THE ADIABATIC PATH IS T3V=CONSTANT

MIT OpenCourseWare http://ocw.mit.edu

8.044 Statistical Physics I Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.