WHAT IS CLAIMED IS:

1. A silver halide photographic light-sensitive material comprising a support having thereon at least one light-sensitive silver halide emulsion layer, wherein said emulsion layer contains a compound represented by the following formula (1):

Dyel-
$$(L_1-(Dye2)_{m1})_{m2}$$
 (1)

wherein L_1 represents a linking group, m1 represents an integer of 1 to 5, m2 represents an integer of 1 to 5, Dye1 represents a first chromophore, and Dye2 represents a second chromophore represented by formula (2):

$$O = (N_{11} - M_{12}) \times (X_{11}) \times (X_{11}$$

R₁₃ each independently represents wherein R_{11} , R_{12} , hydrogen atom, an alkyl group, an alkenyl group, an aryl heterocyclic group; M_{11} group or and M_{12} independently represents a methine group; n12 represents an integer of 0 to 3; Z_1 represents an atomic group for forming a benzene ring condensed with a benzene ring, a naphthalene ring or a heterocyclic ring; V11 represents a substituent on the ring formed by Z1; n11 represents an integer of 0 to 8, provided that when nl1 is 2 or more, V_{11}

may be the same or different or may be combined with each other to form a ring; X_{11} represents -O-, -S- or -NR₁₄-; R_{14} represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, provided that when X_{11} is -O-, the ring formed by Z_1 is not an uncondensed benzene ring, that when X_{11} is -S-, L_1 does not contain an ether group, a urethane group (-NRCOO-) or a fluorine atom, and that when X_{11} is -NR₁₄-, L_1 does not contain a urethane group (-NRCOO-) or a fluorine atom; and the linking group L_1 is connected to any one of R_{12} , R_{13} and V_{11} .

- The silver halide photographic light-sensitive 2. material as claimed in claim 1, wherein in the compound represented by formula (1), L_1 is represented by $-G_1-(A_1 G_2$ -)_{t1}- (wherein G_1 and G_2 each independently represents an alkylene group, an alkenylene group or an arylene group, A_1 represents, irrespective of the direction, -O-, -SO₂-, -S-, -COO-, -CONR₄or $-SO_2NR_5 R_3$ to R_5 $-NR_3-$, independently represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heterocyclic group, and t1 represents an integer of 1 to 10).
- 3. The silver halide photographic light-sensitive material as claimed in claim 1, wherein in the compound represented by formula (1), each Dyel independently represents a cyanine chromophore, a merocyanine chromophore or an oxonol chromophore.

4. The silver halide photographic light-sensitive material as claimed in claim 1, wherein the compound represented by formula (1) is represented by the following formula (3):

wherein R_{11} to R_{13} , M_{11} , M_{12} , n11, n12, X_{11} , Z_1 and V_{11} have the same meanings as defined in formula (2); G_1 , G_2 , A_1 and t1 have the same meanings as defined in claim 2; X_1 and X_2 each independently represents $-O_-$, $-S_-$, $-NR_6$ or $-CR_7R_8_-$; R_6 to R_8 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heterocyclic group; R_1 and R_2 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heterocyclic group; M_1 to M_3 each independently represents a methine group; M_1 to M_3 each independently

to 3; V_1 and V_2 each represents a substituent; n2 and n3 each represents an integer of 0 to 4, provided that when n2 and n3 each is 2 or more, the substituents V_1 or the substituents V_2 may be the same or different or may be combined with each other to form a ring; CI represents an ion for neutralizing the electric charge; y represents a number necessary for neutralizing the electric charge; G_1 is connected to Dye1 through G_1 or G_2 is connected to Dye2 through G_1 or G_2 is connected to Dye2 through G_1 or G_2 is not an uncondensed benzene ring, when G_2 is G_3 or G_4 is not an uncondensed benzene ring, when G_4 is G_4 or G_4 is not an uncondensed benzene ring, when G_4 is G_4 or G_4 is not contain an ether group, a urethane group (-NRCOO-) or a fluorine atom, and when G_4 is -NR₁₄-, G_4 does not contain a urethane group (-NRCOO-) or a fluorine atom.

- 5. The silver halide photographic light-sensitive material as claimed in claim 1, wherein in the compound represented by formula (1) or (3), the adsorption strength to silver halide grain is Dye1>Dye2.
- 6. A silver halide photographic light-sensitive material comprising a support having thereon at least one light-sensitive silver halide emulsion layer, wherein said emulsion layer contains at least one compound represented by the following formula (4):

Dye2)
$$X_{43}$$
 $Y_{44} = M_{45}$ $M_{44} = M_{45}$ M_{46} $M_{41} = M_{42}$ M_{41} M_{43} M_{43} M_{43} M_{43} M_{43} M_{43} M_{43} M_{43}

wherein X_{41} to X_{44} each independently represents -O-, -S- $-NR_{43}$ - or $-CR_{44}R_{45}$ -; to R₄₅ each independently R_{43} represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or heterocyclic group; R_{41} and R_{42} each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heterocyclic group; M_{41} to M_{46} each independently represents a methine group; n41 and n42 each independently represents an integer of 0 to 3; L_{41} represents a linking group having at least one hetero atom except for an amido group and an ester group; V_{41} to V_{44} each represents a substituent; n43 to n46 each represents an integer of 0 to 4, provided that when n43 to n46 each is 2 or more, the substituents V_{41} , V_{42} , V_{43} or V_{44} may be the same or different or may be combined with each other to form a ring; CI represents an ion for neutralizing the electric charge; and y represents a number necessary for neutralizing the electric charge.

7. The silver halide photographic light-sensitive

material as claimed in claim 6, wherein in the compound represented by formula (4), L_{41} is represented by $-L_{42}$ -(A_{41} -(wherein A41 represents, irrespective of L₄₃-) t₄₁direction, -COO-, -CONR $_{46}$ - or -SO $_2$ NR $_{47}$ -, R $_{46}$ and R $_{47}$ each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heterocyclic group, t41 represents an integer of 0 to 10, L_{42} and L_{43} each independently represents an alkylene group, an alkenylene group, an arylene group or $-G_{41}-(A_{42}-G_{42})_{t42}$, G_{41} and G_{42} each independently represents an alkylene group, an alkenylene group or an arylene group, \mathbf{A}_{42} represents, irrespective of the direction, -O-, -S-, -NR $_{43}$ - or -SO $_2$ -, t42 represents an integer of 1 to 10, provided that when t41 is 0, L_{42} is $-G_{41}-(A_{42}-G_{42})_{t42}-$ and when t41 is 1 or more, at least one of L_{42} and L_{43} is $-G_{41}-(A_{42}-G_{42})_{t42}-.$

- 8. The silver halide photographic light-sensitive material as claimed in claim 6, wherein in the compound represented by formula (4), X_{41} to X_{44} each is -0- or -S-.
- 9. The silver halide photographic light-sensitive material as claimed in claim 6, wherein the compound represented by formula (4) adsorbs to a silver halide grain through dyel and when Dye2 not adsorbed to a silver halide grain is excited by light, the excited electron or energy causes electron transfer or energy transfer to Dyel.

10. A silver halide photographic light-sensitive material comprising a support having thereon at least one light-sensitive silver halide emulsion layer, wherein said emulsion layer contains a compound represented by the following formula (5):

Dye2)
$$(V_{53})_{n55}$$
 $(V_{54})_{n56}$ $(V_{54})_{n56}$ $(V_{54})_{n56}$ $(V_{54})_{n56}$ $(V_{54})_{n56}$ $(V_{51})_{n53}$ $(V_{51})_{n53}$ $(V_{51})_{n53}$

wherein X_{51} and X_{52} each independently represents -O-, -S- or -NR₅₃-; R₅₃ represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or heterocyclic group; R₅₁ and R₅₂ each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heterocyclic group; M₅₁ to M₅₆ each independently represents a methine group; n51 and n52 each independently represents an integer of 0 to 3; L₅₁ represents a linking group; V₅₁ to V₅₄ each independently represents a substituent; n53 to n56 each independently represents an integer of 0 to 4, provided that when n53 to n56 each is 2 or more, the substituents V₅₁, V₅₂, V₅₃ or V₅₄ may be the same or different or may be combined with each other to form a

ring; CI represents an ion for neutralizing the electric charge; and y represents a number necessary for neutralizing the electric charge.

- material as claimed in claim 10, wherein in the compound represented by formula (5), L_{51} is represented by $-L_{52}$ - $(A_{51}-L_{53}-)_{t51}$ (wherein A_{51} represents, irrespective of the direction, -COO-, $-CONR_{54}$ or $-SO_2NR_{55}-$, R_{54} and R_{55} each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heterocyclic group, L_{52} and L_{53} each independently represents an alkylene group which is not substituted by fluorine, an alkenylene group which is not substituted by fluorine or an arylene group which is not substituted by fluorine, and t52 represents an integer of 1 to 10.
- 12. The silver halide photographic light-sensitive material as claimed in claim 10, wherein in the compound represented by formula (5), X_{51} and X_{52} both are -S-.
- 13. A silver halide photographic light-sensitive material comprising a compound represented by the following formula (6):

$$A_{61}(L_{61}(A_{62})_{n61})_{m61}$$
 (6)

wherein A_{61} represents a first chromophore, A_{62} represents a second chromophore, provided that at least one of A_{61} and A_{62} is not isomerized in the state where the geometrical

isomer with respect to the methine chain is excited, L_{61} represents a linking group or a single bond, and n61 and m61 each represents an integer of 1 to 5.

- 14. The silver halide photographic light-sensitive material as claimed in claim 13, wherein in at least one of A_{61} and A_{62} of the compound represented by formula (6), a methine group is fixed by a crosslinked structure.
- 15. The silver halide photographic light-sensitive material as claimed in claim 13, wherein in at least one of A_{61} and A_{62} of the compound represented by formula (6), from 1 to 10 dissociative groups are directly substituted to the chromophore.
- 16. A silver halide photographic light-sensitive material comprising a compound represented by formula (7):

$$A_{63} - (L_{62} - (A_{64})_{n62})_{m62}$$
 (7)

wherein A_{63} is a first chromophore, A_{64} is a second chromophore, provided that in at least one of A_{63} and A_{64} , from 1 to 10 dissociative groups are directly substituted to the chromophore, L_{62} represents a linking group or a single bond, and n_{62} and m_{62} each represents an integer of 1 to 5.