	Assign ment = 2
:#Q	
3	show columns of Ro matrix are orthogonal.
	we know the orthogonal means angular to blw them = 90° & column matrix = vector
- F	& column matrix = vector
	$R_o' = \begin{bmatrix} C_o & O & S_o \end{bmatrix}$
71	0 1 0
	$\begin{bmatrix} O & & O \\ -S_O & O & C_O \end{bmatrix}$
	if c, c2 = 0, c2.c3 = 0 & c3.c,=0
	=) orthogonal coumns
9	9 or mo gothe counts
	C1 = Coî+Oî+Oî+Oî
	$\frac{C_1 - C_0}{C_0} + C_0$
the public	$\frac{7}{3} = 0\hat{i} + 0\hat{j} + 0\hat{k}$ $\frac{7}{3} = 56\hat{i} + 0\hat{j} + 60\hat{k}$
	C3 - S01 7 07 7 C01
	7. C2 = 0 C3. C1 = C0 S0 = C0 S0 = 0
	C1. C2 - O 1 (2. C3 - C) - C0 >0 - O
	and the complete
	=> columns are or thogonal
6	c) - 10 - 10
(0)	Show Roll - 10
	1 = (o(Co-0)+0+So(0+S
	au C
	2
	Co+ So =

	Catron missle
- (6)	Show that RSG) RT = S(Re)
	Size ave duchen . I - In semedal grant
	we know S) a skew symmetric matrix
UN - 1812	I sid stown home diagram bound will go and got
	1 1 d C - 1 0 -C C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0 [-5, 5, 7]
	& $a = \begin{bmatrix} q_x & q_y & q_z \end{bmatrix}^T$
	then
Û	
	$S(\omega) = 0 - \alpha_z \alpha_y \beta \beta \beta \beta \beta \beta \beta \beta \beta $
	- grazin ongontro
	for any RESO(3) - + +0 +1 = = =
	we know that x0 7 20 100 = 5
	$\langle (a) \not p \rangle = \alpha \times p $
	$\frac{R(axb) - RaxRp - 2}{}$
(= 2)	R(axb) - Rd x Rp - 2
	SG) RTD) = SX RT bruns from (1)
	multiply R both sides
	$R(\mathcal{S}_{0}R^{T}b) = R(\alpha \times R^{T}b)$
	$R(s_0 R^T b) = R(a \times R^T b)$
	from = R.a x R.R.T.b
2:0 2-0 1	we. Know that R.RT = I
	We. Know Mar N. K I
	I = Raxb
	Now from O
	0 = SR S[Ra]pb.

