Calculs dans R

I – Valeur absolue

1- Exemples : |+5| = 5 ; |-2| = 2 ; |-7| = -(-7) = 7D'une manière générale $\forall x \in \mathbb{R}, |x| = \begin{cases} x, & si \ x > 0 \\ -x, & si \ x < 0 \end{cases}$

2- Propriétés

a) Soient a = -5 et b = +2; calculer $|a \times b|$ et $|a| \times |b|$ puis comparer. $|a \times b| = |(-5) \times (+2)| = |(-10)| = 10$; $|a| \times |b| = |(-5)| \times |(+2)| = |(-10)| = 10$.

D'où :
$$|a \times b| = |a| \times |b|$$
.

b) Comparer |a+b| et |a| + |b|

$$|a+b| = |(-5)+(+2)| = |(-3)| = 3$$
; $|a| + |b| = |(-5)| + |(+2)| = 5 + 2 = 7$.

D'où :
$$|a+b| \le |a| + |b|$$
.

c) Comparer $\left| \frac{a}{b} \right|$ et $\frac{|a|}{|b|}$

$$\left| \frac{a}{b} \right| = \left| \frac{(-5)}{(+2)} \right| = \left| -\frac{5}{2} \right| = \frac{5}{2}$$
 ; $\frac{|a|}{|b|} = \frac{|(-5)|}{|(+2)|} = \frac{5}{2}$. D'où : $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$.

d) Identification des valeurs absolues

$$|a| = |b| \implies \begin{cases} a = b \\ ou \\ a = -b \end{cases}$$

e) Comparaison de |a - b| et |b - a|

$$|a - b| = |(-5) - (+2)| = |-7| = 7$$
; $|b - a| = |(+2) - (-5)| = |+7| = 7$.

D'où :
$$|a - b| = |b - a|$$

$II-Distance sur \mathbb{R}$:

1- Définition :

x et y étant deux réels quelconques. On appelle distance de x à y que l'on note : d(x; y) le réel positif ou nul |x - y|.

$$\mathbf{d}(\mathbf{x};\mathbf{y}) = |\mathbf{x} - \mathbf{y}| .$$

2- Exemples:

Calculer les distances de : 4,7 à 2,3 ; -9 à 3 ; -2 à 6.

$$d(4,7;2,3) = |4,7-2,3| = |+2,4| = 2,4.$$

$$d(-9; 3) = |(-9) - (+3)| = |-12| = 12.$$

$$d(-2; 6) = |(-2) - (+6)| = |-8| = 8.$$

3- Application distance

4- Propriétés de la distance

$$P_1$$
) $d(x; y) \ge 0$;

$$P_2) d(x;y) = 0 \iff x = y;$$

$$P_3$$
) $d(x; y) = d(y; x);$

$$P_4) d(x; y) \le d(x; z) + d(z; y);$$

III – Intervalles de R

Soient a et b deux réels tel que $a \le b$.

Notations	Représentations sur la droite réelle	Ensemble des réels x tels que	Appellation
[a; b]	a b	$a \le x \le b$	Intervalle fermé borné
[a; b[a b	$a \le x \le b$	Intervalle borné semi fermé à gauche semi-ouvert à droite
]a;b]	a b	$a \le x \le b$	Intervalle borné semi ouvert en a Semi-fermé en b
]a; b[a b [▶	a < x < b	Intervalle ouvert borné
]–∞ ; b]	b	$x \le b$	Intervalle non borné fermé à droite
]–∞ ; b[b	x < b	Intervalle non borné ouvert à droite
[a;+∞[a [$a \le x$	Intervalle non borné fermé à gauche
]a;+∞]	a	a < x	Intervalle non borné ouvert à gauche

1- Centre et Rayon d'un intervalle fermé ou ouvert

Soient A = [a; b] un intervalle fermé et B = [a; b] un intervalle ouvert.

a) Définitions:

- On appelle centre C de l'intervalle fermé [a ; b] ou de l'intervalle ouvert]a ; b[le réel, $C = \frac{a+b}{2}$.
- On appelle rayon r de l'intervalle fermé [a; b] ou de l'intervalle ouvert]a; b[le réel positif, $r = \frac{b-a}{2}$.
- On appelle amplitude A de l'intervalle fermé [a; b] ou de l'intervalle ouvert]a; b[le réel positif, A = |b a|.

b) Notations

- $\overline{I}(C; r)$ est appelé intervalle fermé de centre C et de rayon r.
- $I_0(C; r)$ est appelé intervalle ouvert de centre C et de rayon r.

- c) Applications
 - ✓ Déterminer le centre et le rayon des intervalles]–1 ; 3[; [7; $\frac{15}{2}$]
 - ✓ Déterminer l'origine et l'extrémité de : $\overline{I}\left(2;\frac{1}{4}\right)$; $I_0\left(\frac{5}{4};\frac{1}{4}\right)$
- 2- Résolution graphique d'équations et d'inéquations

Soient x un nombre réel et r un réel strictement positif.

a) Résolution graphique d'équations : |x - a| = r

$$|x-a| = r \Leftrightarrow d(x; a) = r .$$

Le problème revient à trouver les réels x situés à la distance r de a. Les solutions sont x = a - r et x = a + r. D'où l'ensemble des solutions de l'équation est : $S = \{a - r ; a + r\}$.

Exemple: résoudre graphiquement |x + 1| = 3.

$$a-r=-1-3=-4$$
 et $a+r=-1+3=2$. D'où $S=\{-4; 2\}$.

- b) Résolution graphique d'inéquations : |x-a| < r
 - Exemple1 : Résoudre dans \mathbb{R} l'inéquation |x-2| < 5.

$$|x-2| < 5 \Leftrightarrow d(x; 2) < 5$$
. Je calcule (a-r) et (a+r). $a-r = 2-5 = -3$ et $a+r = 2+5=7$.

$$S =] -3; 7[$$

■ Exemple 2 : Résoudre dans \mathbb{R} l'inéquation $|x + 3| \ge 4$.

 $|x + 3| \ge 4 \Leftrightarrow d(x; -3) \ge 5$. Je calcule (a-r) et (a + r). a - r = -3 - 4 = -7; a + r = -3 + 4 = 1.

$$S =]-\infty ; -7[\cup] 1 ; +\infty[$$

c) Résolution graphique de : |ax + b| = r et $|ax + b| \le r$; $(a \in \mathbb{R}^*, b \in \mathbb{R})$

$$|\operatorname{ax} + \operatorname{b}| = \operatorname{r} \iff |\operatorname{a}(\operatorname{x} + \frac{b}{a})| = \operatorname{r} \iff |\operatorname{a}| \times |(\operatorname{x} + \frac{b}{a})| = \operatorname{r}$$

 $\iff |(\operatorname{x} + \frac{b}{a})| = \frac{r}{|a|} \iff d\left(\operatorname{x}; -\frac{b}{a}\right) = \frac{r}{|a|}.$

D'où:
$$|ax + b| = r \iff d\left(x; -\frac{b}{a}\right) = \frac{r}{|a|}$$
.

De même :
$$|ax + b| \le r \iff d\left(x; -\frac{b}{a}\right) \le \frac{r}{|a|}$$
.

Exemples : résoudre dans \mathbb{R} ; |2x+6| = 5 ; $|-3x+4| \le 6$; $|-x+3| \ge 4$.

• $|2x+6| = 5 \Leftrightarrow |2(x+3)| = 5 \Leftrightarrow |2| \times |(x+3)| = 5 \Leftrightarrow |x+3| = \frac{5}{2} \Leftrightarrow$ $d(x;-3) = \frac{5}{2} \Rightarrow a - r = -3 - \frac{5}{2} = -\frac{11}{2}$; $a + r = -3 + \frac{5}{2} = -\frac{1}{2}$.

D'où l'ensemble des solutions est : $S = \left\{-\frac{11}{2}; -\frac{1}{2}\right\}$

• $|3x+4| \le 6 \Leftrightarrow |x+\frac{4}{3}| \le 2 \Leftrightarrow d(x;-\frac{4}{3}) \le 2 \Rightarrow a-r=-\frac{2}{3}; a+r=\frac{10}{3}$

L'ensemble des solutions est $S = \left| -\frac{2}{3}; \frac{10}{3} \right|$

 $\bullet \quad \left| -x+3 \right| \geq 4 \ \Leftrightarrow \ \left| -1 \right| \left| x-3 \right| \geq 4 \Leftrightarrow \ \left| x-3 \right| \geq 4 \Leftrightarrow d(x\ ;\ 3) \geq 4\ ;$

$$a-r=3-4=-1$$
 ; $a+r=3+4=7$

$$a + r = 3 + 4 = 7$$

L'ensemble des solutions est $S =]-\infty; -1] \cup [7; +\infty[$

d) Équations de la forme |x-a| = |x-b|

Exemple

Résoudre graphiquement dans \mathbb{R} l'équation : |x+2| = |x-3|.

 $|x+2| = |x-3| \Leftrightarrow d(x;-2) = d(x;3)$. Le centre de l'intervalle [-2;3] est

$$C = \frac{a+b}{2} = \frac{-2+3}{2} = \frac{1}{2}$$

L'ensemble des solutions est $S = \left\{ +\frac{1}{2} \right\}$

e) Inéquations de la forme $|x-a| \le |x-b|$

Exemples:

Résoudre $x \in \mathbb{R}$; $|x-2| \le |x+5|$ et |x+1| > |x-7|.

$$|x-2| \le |x+5| \Leftrightarrow d(x;2) \le d(x;-5)$$

$$C = \frac{a+b}{2} = \frac{2-5}{2} = -\frac{3}{2} \text{ est le centre de l'intervalle } [-5;2]$$

L'ensemble des solutions est $S = \left[-\frac{3}{2} ; +\infty \right[$

$$|x+1| > |x-7| \Leftrightarrow d(x;-1) > d(x;7)$$

$$C = \frac{a+b}{2} = \frac{-1+7}{2} = 3 \text{ est le centre de l'intervalle } [-1;7]$$

L'ensemble des solutions est $S =]3; +\infty$