Jukselapp

Rekkefølgen på disse notatene følger tidligere eksamener i MAT1110 (2015 først, 2014, ...).

Jeg skriver kun opp de teknikkene jeg faktisk bruker. Det finnes f.eks. flere konvergenstester enn jeg har skrevet ned.

Stasjonære punkter

Finn de stajonære punktene til f. Avgjør om de er sadelpunkter, maksimumelles minimumspunkter.

Finn punktene

Partiellderiverte må være null.

$$\frac{\partial f}{\partial x} = \dots = 0$$

$$\frac{\partial f}{\partial y} = \dots = 0$$

Hva må x og y være da? Dette er punktene dine. Husk x og y kan begge være null!

Avgjør sadel, max, min

Hessematrisen

$$Hf(\vec{x}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

Det første tallet i $Hf(\vec{a})$ avgjør typen

$$\frac{\partial^2 f}{\partial x^2} > 0 \implies \min$$

$$\frac{\partial^2 f}{\partial x^2} < 0 \implies \max$$

$$\frac{\partial^2 f}{\partial x^2} = 0 \implies \text{sadel}?$$

Konvergensområde til rekke

Konvergensradius

Bruk en konvergenstest for å finne absoluttverdi mindre enn én.

$$\lim_{n \to \infty} |\text{konv.test}| < 1$$

Hva må x være for å oppfylle dette?

konvergensområde =
$$(x_0, x_1)$$

Endepunktene

Skal intervallet være åpent eller lukket? Sett x_0 og x_1 inn i rekken og se om det konvergerer eller ikke. Hvis endepunktet fører til konvergens, skal intervallet lukkes i den enden.

Areal av parametrisert kurve

Gitt en parametrisert kurve: $\vec{r}(t) = [x(t), y(t)], \quad t \in [0, \pi]$

Legg merke til om den er orientert i positiv eller negativ retning. Danner kurven en fullstendig form eller om den er åpen?

Areal

$$A = \int_C x \, dy$$

x er bokstavelig talt x(t) fra parametriseringen. dy er den deriverte av y(t).

$$A = \int_0^{\pi} x(t) \cdot y'(t) \, dt$$

Volum begrenset av paraboloide

Volumet V er avgrenset av 2 paraboloider

$$z = polynom$$

Hva er området D?

Bruk kvadrering etc til å få polynomet på form som sirkel (eller ellipse, parabel eller hyperbel?).

Finn sentrum og radius.

Integrere over areal

Test z_1 og z_2 med sentrumsverdiene. Hvilken er øverst?

Sett opp integralet med den øverste minus den nederste.

$$\int_{D} (z_2 - z_1) \, dx dy$$

For å regne ut kan det hjelpe å bytte til polarkordinater (eller sirkel-, kule- eller sylinderkoordinater).

Symmetriske matriser og egenvektorer

Basis

En basis er et set med vektorer som kan kombineres for å gjenskape rommet det er i.

Egenverdi og egenvektor

$$A\vec{v}_1 = \lambda_1 \vec{v}_1$$

Egenrom og multiplisitet

Én egenverdi kan ha flere tilhørende egenvektorer. Rommet utspent av egenvektorer med felles egenverdi kalles egenrom. Dimensjonen til dette rommet kalles multiplisetet.

Matriser og ligningssett

Lineær uavhengighet

 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ er vektorer, og matrisen $A = (\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n)$. A radreduseres til B. Vektorene er lineært uavhengige hviss alle søylene i B er pivotsøyler.

Løsning av ligningssett

Pass på om matrisen inkluderer høyre siden eller ikke! Bruk den reduserte trappeformen til å se hva x, y, z, w skal være.

En vektor som lineærkombinasjon av de andre

Gitt variablene x, y, z, w og matrisen A redusert til B

$$B = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Da kan man skrive a_4 (w sin søyle) som

$$2\vec{a}_1 + 5\vec{a}_2 + 1\vec{a}_3 = \vec{a}_4$$

Lagrange metode og max/min under bibetingelse

Gitt en funksjon

$$f = f(x, y, z)$$

Og en bibetingelse

$$g(x, y, z) = \text{uttrykk}$$

Finn min/max punkter til f under bibetingelsen

Med konstanten lambda

Det finnes en λ s.a.

$$\nabla f = \lambda \nabla g$$

Løs ligningene som følger for å finne forskjellige λ .

Sett de forksjellige lambda inn i ligningene og finn x, y, z.

Prøv alle kombinasjoner av λ og x,y,z i f for å se hva som er max og min.

Note: ved flere bibetingelser, bruk flere lambda og lin.komb.

Alternativ metode

Husker at det fantes en metode uten λ , men ikke hvordan den er.

Egenverdier og egenvektorer

Finn egenverdiene og egenvektorene

Gitt en matrise A.

$$A\vec{v}_1 = \lambda_1 \vec{v}_1$$

Regn ut $A\vec{v}_1$ og sett det lik (x, y, z). Løs ligningssystemet for λ . Når du har funnet egenverdien λ , bruk den for å finne (x, y, z).

Grenseverdi med A ganger vektor

$$\lim_{n\to\infty}A^n\vec{w}$$

Skriv \vec{w} som en lineær kombinasjon av egenvektorene.

$$A^{n}\vec{w} = A^{n}(a\vec{v}_{1} + b\vec{v}_{2} + c\vec{v}_{3})$$

Da kan du erstatte A med egenverdiene og regne ut. Hvilke ledd forsvinner med stor n?

Konvergens og divergens av rekker

Mine favoritt konvergenstester.

Forholdstesten

Gitt fra oppgaven, en rekke

$$\sum_{n=0}^{\infty} a_n$$

Test

$$a = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

Hvis a < 1 konvergens.

Hvis a > 1 divergens.

Hvis a = 1??

${\bf Sammen ligning stesten}$

Oppgaven gir f.eks.

$$\sum_{n=0}^{\infty} \frac{3n^2 + 4n}{8n^4 - 2} = \sum b_n$$

Man kan sammenligne med noe man vet svaret på

$$\sum \frac{1}{n^2} = \sum a_n$$

Sett opp og regn ut

Hvis $\sum a_n$ konv. og $\lim_{n\to\infty} \frac{b_n}{a_n} < \infty \implies \sum b_n$ konv. Hvis $\sum a_n$ div. og $\lim_{n\to\infty} \frac{b_n}{a_n} > 0 \implies \sum b_n$ div.

1 over n i r sammenligning

$$\sum \frac{1}{n^r}$$

Hvis r < 1 konvergens ellers divergens.

Alternerende rekker

En alternerende rekke $\sum a_n$ konvergerer når

$$\lim_{n \to \infty} |a_n| = 0$$

Variabelskifte i trippelintegral

Gitt én eller flere funksjoner som innskrenker et område f = f(x, y, z). Finn trippelintegralet

 $\iiint_{S} g(x, y, z) dx dy dz$

Polarkoordinater

Hvis du har radius r og vet vinkelspennet θ vurder polarkoordinater.

dx dy dz byttes ut med $r dr d\theta dz$ (dz hvis du har 3D).

I integralet, hva skal z gå fra og til? Det bestemmes av begrensningene gitt i oppgaven (sikkert et polynom eller to).

Når er en matrise inverterbar?

Hvordan invertere en matrise

Gitt en matrise A. Skjøt matrisen sammen med I_n s.a. du får en ny matrise (A, I_n) . Når er 'høyrematrisen' en identitetsmatrise, radreduser til 'venstrematrisen' er identitetsmatrisen.

Hvis du synes invertering er slitsomt

Når en matrise er inverterbar er $det(A) \neq 0$.

Man finner determinanten ved å radredusere til en triangulær matrise og gange sammen diagonalen.

For hvilke verdier av a er matrisen inverterbar?

Bruk en av de to måtene over til å se hva a kan være.

Sum av rekker

Potensrekke

(Disse oppgavene kan variere i form).

Eksponenten til x er som regel n, n-1 eller no lignende. x er bare et tall, så man kan sette f.eks x^3 utenfor summen s.a. eksponenten kan forkortes mot andre deler av uttrykket. (Man må kanksje endre startverdien til n).

Forhåpentligvis er den modifiserte summen lik en av eksempelsummene i formelsamlingen.

Lagrange metode og punkter nærmest et annet punkt

Gitt (eller funnet) en funksjon

$$f(x, y, z) = (x - 3)^2 + y^2 + z^2$$

og en bibetingelse

$$g(x, y, z) = x^2 + 4y^2 - z$$

Finn minimumsverdien til f. Dette er det samme som å finne punktene på g som ligger nærmest (3,0,0).

Løs på samme måte som Lagrange over.

Tips: Man kan ta utgangspunkt i "hva kan lambda være?" eller i "hva kan x,y,z være?".

Vis at (avbildning) ...

Vis at F avbilder rutenett A til rutenett B.

Good luck, have fun.

Prøv å se om (x,y) er definert ved $F(x,y) = (X_{ny},Y_{ny})$. De nye x,y kan passe inn i definisjonen av B.

Jacobideterminant

Jacobideterminanten er Jacobimatrisen sin determinant.

$$\det J = \det \vec{F}'(x,y) = \begin{vmatrix} \frac{\partial F_1}{\partial x}(x,y) & \frac{\partial F_1}{\partial y}(x,y) \\ \frac{\partial F_2}{\partial x}(x,y) & \frac{\partial F_2}{\partial y}(x,y) \end{vmatrix}$$

Dette brukes i trippelintegraler ol.

Omvendt funksjon

Vis at den omvendte finnes

Vis at funksjonen $\vec{F}(x,y)$ har en omvendt funksjon \vec{G} s.a. $\vec{G}(\vec{a}) = \vec{b}$. Test at $\vec{F}(\vec{b}) = \vec{a}$

Deriverte av den omvendte

Finn den inverse av \vec{F}' i 'motsatt punkt'.

$$\vec{G}'(\vec{a}) = \vec{F}'(\vec{b})^{-1}$$