I-Caractérisation des matrices symétriques définies positives

— I-A.1.2 :

 \diamond Supposons que A est positive (resp : définie positive).

Soit $\lambda \in Sp(A)$, alors $\exists X \in M_{n,1}(\mathbb{R})$ non nul tel que $AX = \lambda X$, donc ${}^tXAX = \lambda {}^tXX = \lambda ||X||^2$, or $||X||^2>0$, donc $\lambda=rac{{}^tXAX}{{}^tXX}.$ Si A est positive, alors $\lambda\geq 0$ et si A est définie positive, on aura $\lambda>0.$

Réciproquement, supposons que $Sp(A) \subset \mathbb{R}_+$ (respectivement : $Sp(A) \subset \mathbb{R}_+^*$) : A étant symétrique réelle, elle est orthodiagonalisable d'après le théorème spectral, donc il existe $P \in O_n$ et $D = diag(\lambda_1, ..., \lambda_n)$

telles que $A=PD^tP=PDP^{-1}$, donc $\forall X\in M_{n,1}(\mathbb{R}),\,^tXAX={}^t({}^tPX)D({}^tPX)=\sum_{i=1}^n\lambda_iy_i^2$ où on a posé

$${}^tPX=\left(egin{array}{c} y_1 \\ dots \\ y_n \end{array}
ight)$$
 . De plus $\{\lambda_i/i\in\{1,\dots,n\}\}=Sp(D)=Sp(A)$.

Donc : si $Sp(A) \subset \mathbb{R}^+$, alors ${}^tXAX \geq 0$ et si $Sp(A) \subset \mathbb{R}^{*+}$, alors vu que X est non nul et que tP est inversible, tPX est aussi non nul, donc il existe $j \in [[1,n]]$ tel que $y_j \neq 0$, et par suite ${}^tXAX \geq \lambda_j y_i^2 > 0$. On a ainsi le résultat demandé.

- I-B.1 : Soit $A \in S_n(\mathbb{R})$ que nous supposons définie positive et soit $X_i \in M_{i,1}(\mathbb{R})$ non nul, alors en posant $X=\left(egin{array}{c} X_i \ O \end{array}
 ight)$ où $O\in M_{n-i,1}(R)$, on aura par produit de matrices par blocs : ${}^tX_iA^{(i)}X_i={}^tXAX>0$, $\text{donc } \overset{\checkmark}{A^{(i)}} \text{ est d\'efinie positive pour tout } i \in [[1,n]].$
- On déduit donc que $det(A^{(i)}) = \prod_{k=1}^{n} \mu_k > 0$ où $\mu_1,...,\mu_i$ sont les valeurs propres de $A^{(i)}$ qui sont strictement positifs.

— I-B.2 :

- Cas n = 1
 - Soit A=(a) tel que a>0, donc $\forall x\in\mathbb{R}^*$, $ax^2>0$, donc A est définie positive.

Soit $A=\left(\begin{array}{cc} a & b \\ b & c \end{array}\right)$ tel que a>0 et $ac-b^2>0$. Notons λ et μ les valeurs propres de A.

Ainsi $ac > b^2 > 0$, donc a et c ont le même signe, or a > 0, donc $\lambda + \mu = Tr(A) = a + c > 0$. De plus $\lambda\mu=ac-b^2>0$, donc λ et μ ont le même signe, qui est donc celui de leur somme, donc $\lambda>0$ et $\mu > 0$, ce qui entraine d'après I - A.2, que A est définie positive.

- **I-B.3 :** Soit $A \in S_{n+1}(\mathbb{R})$ tel que pour tout $i \in [[1, n+1]]$, $det(A^{(i)}) > 0$. On suppose que A n'est pas définie positive. Notons $\lambda_1, \dots, \lambda_{n+1}$ les valeurs propres de A, comptées avec multiplicités. Il existe une base orthonormée (e_1, \ldots, e_{n+1}) telle que, pour tout $i \in [[1, n+1]]$, $Ae_i = \lambda_i e_i$.
 - (a) : D'après I-A.2, il existe j tel que $\lambda_j \leq 0$, mais si $\lambda_j = 0$ alors $det(A) = det(A^{(n+1)}) = 0$ ce qui contredit l'hypothèse . Ainsi $\lambda_i < 0$.

det(A) > 0 donc $\prod \lambda_i < 0$, donc il existe k tel que $\lambda_k < 0$. Alors e_j et e_k sont deux vecteurs propres

linéairement indépendants associés à λ_i et λ_k respectivement.

— **(b)** : Soient $V_1, V_2 \in M_{n+1,1}(\mathbb{R})$ des vecteurs propres orthonormaux associés aux deux valeurs propres λ_1,λ_2 strictement négatives de la question précédente. Notons a,b les dernières composantes de V_1 et V_2 respectivement.

Si ab=0, alors l'un des deux vecteurs répond à la question, on obtient ${}^tV_1AV_1=\lambda_1\|V_1\|^2=\lambda_1<0$ ou ${}^tV_2AV_2=\lambda_2\|V_2\|^2=\lambda_2<0.$

Si $ab \neq 0$. La dernière composante du vecteur $V = bV_1 - aV_2$ est nulle et

on a alors ${}^tVAV=< V, AV>_{\mathbb{R}^{n+1}}=< bV_1-aV_2, b\lambda_1V_1-a\lambda_2V_2>$, or V_1 et V_2 sont orthogonaux, donc ${}^tVAV = b^2\lambda_1 + a^2\lambda_2 < 0.$

On conclut donc à l'existence d'un vecteur $X \in M_{n+1}(\mathbb{R})$ de dernière composante nulle qui vérifie ${}^tXAX < 0$.

- (c) : Posons $X=\left(egin{array}{c} X_1 \\ O \end{array}
 ight)\in M_{n+1,1}(\mathbb{R})$ tel que $X_1\in M_{n,1}(\mathbb{R}).$ On a ${}^tXAX={}^tX_1A^{(n)}X_1<0,$ ce qui contredit le fait que $\widehat{A^{(n)}}$ est définie positive.
- **I-C :** On a clairement équivalence lorsque n=1.

Lorsque $n \geq 2$, l'implication directe est toujours vraie mais la réciproque est fausse grâce à l'exemple

$$A = \left(\begin{array}{cccc} 0 & \dots & \dots & 0 \\ \vdots & \ddots & & \vdots \\ \vdots & & 0 & 0 \\ 0 & \dots & 0 & -1 \end{array}\right) \text{ dans lequel on a } det(A^{(i)}) = 0 \text{ pour tout } i \in [[1,n]], \text{ mais } Sp(A) = \{0,-1\},$$

II-Étude d'une suite de polynômes

donc A n'est pas définie positive

— II-A: On vérifie que $\langle \lambda P + Q, R \rangle = \lambda \langle P, R \rangle + \langle Q, R \rangle$ et $\langle P, Q \rangle = \langle Q, P \rangle$, donc $\langle .,. \rangle$ est bilinéaire et symétrique. De plus $\langle P, P \rangle \geq 0$, et si $\langle P, P \rangle = 0$, alors $t \mapsto P(t)^2$ est positive, continue et d'intégrale nulle sur [0,1], donc pour tout $t \in [0,1]$, P(t) = 0, donc P est nul car c'est un polynôme possédant une infinité de racines.

Ainsi < .,.> est bien un produit scalaire.

- II-B : On a $deg(P_n)=2n$, donc $deg(P_n^{(n)})=2n-n=n$. Au voisinage de 1 on a $P_n\sim (X-1)^n$, donc $P_n=(X-1)^n+o((X-1)^n)$, ce qui entraine d'après la formule de Taylor-Young que $\frac{P_n^{(n)}(1)}{n!}=1$, donc $P_n^{(n)}(1)=n!$.
- $\quad \text{II-C}: \text{Intégrons par parties}: n! < Q, L_n > = \int_0^1 Q(t) P_n^{(n)}(t) dt = \left[Q(t) P_n^{n-1}(t) \right]_0^1 \int_0^1 Q'(t) P_n^{(n-1)}(t) dt,$ or 0 et 1 sont racines de P_n de multiplicités n,

$$\operatorname{donc} P_n^{n-1}(0) = P_n^{n-1}(1) = 0, \operatorname{donc} n! < Q, L_n > = -\int_0^1 Q'(t) P_n^{(n-1)}(t) dt.$$

En effectuant des intégrations par parties successives, on montre par récurrence que, pour tout $k \in \{0,\ldots,n\},\, n! < Q, L_n >= (-1)^k \int_0^1 Q^{(k)}(t) P_n^{(n-k)}(t) dt.$

En particulier, avec k=n, on obtient $n!< Q, L_n>=(-1)^n\int_{\Omega}^1Q^{(n)}(t)P_n(t)dt$ mais lorsque $deg(Q)\leq 1$ n-1, on a $Q^{(n)}=0$, donc $< Q, L_n>=0$.

II-D.1: Une succession d'intégrations par parties donne

$$\begin{split} &I_n = \int_0^1 x^n (x-1)^n dx = \left[\frac{x^{n+1}}{n+1} (x-1)^n\right]_0^1 - \int_0^1 \frac{n}{n+1} x^{n+1} (x-1)^{n-1} dx \\ &= -\frac{n}{n+1} \int_0^1 x^{n+1} (x-1)^{n-1} dx = \ldots = (-1)^k \frac{n(n-1)\ldots(n-k+1)}{(n+1)(n+2)\ldots(n+k)} \int_0^1 x^{n+k} (x-1)^{n-k} dx, \\ &\text{soit pour } k = n : I_n = \int_0^1 x^n (x-1)^n dx = (-1)^n \frac{(n!)^2}{(2n)!} \int_0^1 x^{2n} dx, \text{ donc } I_n = \frac{(-1)^n (n!)^2}{(2n+1)!}. \end{split}$$

— **II-D.2**: Le début du calcul du II.C dans lequel on remplace Q par $L_n = \frac{1}{n!} P_n^{(n)}$ donne :

$$\begin{split} &< L_n, L_n> = \frac{(-1)^n}{(n!)^2} \int_0^1 P_n^{(2n)} P_n, \text{ or } P_n^{(2n)} = (2n)!, \\ &\text{donc} < L_n, L_n> = \frac{(-1)^n (2n)!}{(n!)^2} I_n = \frac{(-1)^n (2n)!}{(n!)^2} \frac{(-1)^n (n!)^2}{(2n+1)!} = \frac{1}{2n+1}. \end{split}$$

 \diamond On a $\forall n > m$, $L_m \in \mathbb{R}_{n-1}[X]$, donc d'après la question II - C, $< L_n, L_m >= 0$. De plus d'après la question précédente $||L_n|| = \frac{1}{\sqrt{2n+1}}$. Ce qui entraine que si on pose

 $K_n = \frac{L_n}{\|L_n\|} = \sqrt{2n+1}L_n$, alors la famille (K_n) répond à la question, sachant que le coefficient dominant de K_n est $\sqrt{2n+1}\frac{(2n)!}{(n!)^2} > 0$.

- \diamond Supposons que $(Q_n)_{n\in\mathbb{N}}$ est une seconde famille de polynômes vérifiant i) et ii). Q_0 est un polynôme constant de norme 1 et strictement positif, tout comme K_0 , donc $Q_0 = K_0$. Fixons $N\in\mathbb{N}^*$. La famille $(Q_n)_{0\leq n\leq N-1}$ est une famille orthonormée incluse dans $\mathbb{R}_{N-1}[X]$ de cardinal N, donc c'est une base de $\mathbb{R}_{N-1}[X]$. Or Q_N est orthogonal à Q_0,\dots,Q_{N-1} , donc $Q_N\in\mathbb{R}_{N-1}[X]^\perp\cap\mathbb{R}$ $\mathbb{R}_N[X]$ et de même, $K_N \in \mathbb{R}_{N-1}[X]^{\perp} \cap \mathbb{R}_N[X]$, or $\mathbb{R}_{N-1}[X]^{\perp} \cap \mathbb{R}_N[X]$ est l'orthogonal de $\mathbb{R}_{N-1}[X]$ en considérant $\mathbb{R}_N[X]$ comme l'espace global, donc $\dim(\mathbb{R}_{N-1}[X]^\perp \cap \mathbb{R}_N[X]) = \dim(\mathbb{R}_N[X]) - \dim(\mathbb{R}_{N-1}[X]) = \dim(\mathbb{R}_N[X])$ 1. Ainsi Q_N et K_N sont tous deux sur une même droite vectorielle, donc il existe α tel que $Q_N = \alpha K_N$. Mais Q_N et K_N sont de norme 1, donc $|\alpha|=1$. De plus les coefficients dominants de K_N et Q_N sont
- strictement positifs, donc $\alpha=1$. Ainsi, $Q_N=P_N$ et l'on a prouvé l'unicité. II-F : $L_0=1$, $L_1=2X-1$, $L_2=6X^2-6X+1$ ce qui donne $K_0=1$, $K_1=\sqrt{3}(2X-1)$ et $K_3=\sqrt{5}(6X^2-6X+1)$.

III-Matrices de Hilbert.

III-A.Étude de quelques propriétés de

- III-A.1:
$$H_2 = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix}$$
, $H_3 = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{pmatrix}$, $H_2^{-1} = \begin{pmatrix} 4 & -6 \\ -6 & 12 \end{pmatrix}$, $H_3^{-1} = \begin{pmatrix} 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 \end{pmatrix}$

— III-A.2 : Soit la fraction définie par
$$F(X) = \alpha \frac{X(X-1)...(X-n+1)}{(X+1)(X+2)...(X+n+1)} = \frac{a_1}{X+1} + \frac{a_2}{X+2} + ... + \frac{a_2}{X+2} + ..$$

$$\frac{a_{n+1}}{X+n+1}\text{, avec pour tout }k\in[[1,n+1]]\text{, }a_k\text{ le résidu associé au pôle simple }-k\text{ donné par }a_k=\alpha\frac{-k(-k-1)...(-k-n+1)}{\displaystyle\prod_{\substack{j\neq k\\1\leq j\leq n+1}}(-k+j)}=(-1)^{n-k+1}\alpha\frac{(n-1+k)!}{((k-1)!)^2(n+1-k)!}.$$

On choisit α tel que $a_{n+1} = \alpha \frac{(2n)!}{(n!)^2} = 1$, c'est à dire $\alpha = \frac{(n!)^2}{(2n)!}$

L'opération élémentaire sur les colonnes de Δ_{n+1} donnée par $C_{n+1} \longleftarrow C_{n+1} + \sum_{i=1}^n a_k C_k$ amène à

$$\begin{split} \Delta_{n+1} = \left| \begin{array}{ccc} F(0) & F(1) \\ & F(1) \\ * & \dots & * & F(n) \end{array} \right|, \text{ or } F(0) = F(1) = \dots = F(n-1) = 0, \\ \operatorname{donc} \triangle_{n+1} = F(n) \triangle_n = \alpha \frac{(n!)^2}{(2n+1)!} \triangle_n = \frac{(n!)^4}{(2n)!(2n+1)!} \triangle_n. \end{split}$$

donc
$$\triangle_{n+1} = F(n)\triangle_n = \alpha \frac{(n!)^2}{(2n+1)!} \triangle_n = \frac{(n!)^4}{(2n)!(2n+1)!} \triangle_n.$$

— III-A.3 :La relation de récurrence précédente conduit à $\triangle_n = \frac{((n-1)!(n-2)!...1!)^4}{(2n-1)!(2n-2)!...3!2!} \triangle_1 = \frac{c_n^4}{c_{2n}}$

 $-det(H_n) = \triangle_n = \frac{c_n^4}{c_{2n}} > 0$ pour tout $n \in \mathbb{N}$.

— La relation de récurrence $det(H_{n+1}^{-1}) = \frac{(2n)!(2n+1)!}{(n!)^4} det(H_n^{-1}) = (2n+1) \left(\begin{array}{c} 2n \\ n \end{array}\right)^2 det(H_n^{-1})$ nous invite à utiliser une récurrence simple.

Pour
$$n=1,$$
 $det(H_1^{-1})=1\in\mathbb{N}$ et si on suppose que $det(H_n)\in\mathbb{N}$, alors : $det(H_{n+1}^{-1})=(2n+1)\left(\begin{array}{c}2n\\n\end{array}\right)^2det(H_n^{-1})\in\mathbb{N}$, ce qui établit la récurrence.

— III-A.5 : Pour tout $k \in [[1,n]], det(H_n^{(k)}) = det(H_k) = \triangle_k > 0$, et H_n est symétrique, donc d'après la question I-B, la matrice H_n est définie positive, de plus elle est diagonalisable, donc ses valeurs propres sont au nombre de n et $Sp(H_n) \subset \mathbb{R}^{*+}$.

III-B: Approximations au sens des moindres carrés.

— III-B.1: $\mathbb{R}_n[X]$ est un sous espace vectoriel de $C^0([0,1],\mathbb{R})$ de dimension finie, donc le théorème de la projection orthogonale assure que pour tout $f \in C^0([0,1],\mathbb{R})$, il existe $p(f) = \Pi_n \in \mathbb{R}_n[X]$ la projection

orthogonale de f sur $\mathbb{R}_n[X]$ tel que $\min_{Q\in\mathbb{R}[X]}(\|Q-f\|)=d(f,\mathbb{R}[X])=\|\Pi_n-f\|.$ — III-B.2: $\mathbb{R}_{n-1}[X]\subset\mathbb{R}_n[X]$, donc $\min_{Q\in\mathbb{R}_{n-1}[X]}(\|Q-f\|)\geq \min_{Q\in\mathbb{R}_n[X]}(\|Q-f\|)$, c'est à dire $\|\Pi_{n-1}-f\|\geq \|\Pi_n-f\|$ ce qui traduit la décroissance de la suite $(\|\Pi_n-f\|)_n$.

 \diamond Posons $e_k(X)=X^{k-1}$, alors $(e_1,...,e_n)$ est la base canonique de $\mathbb{R}_{n-1}[X]$ et on a $< e_i, e_j> = \int_0^1 e_i e_j = \int_0^1 t^{i+j-2} dt = \frac{1}{i+j-1} = (H_n)_{i,j}$, donc la matrice H_n est la matrice du produit scalaire <.,.> dans la base canonique de $\mathbb{R}_{n-1}[X]$.

 \diamond Soit $i,j \in \{0,\dots,n-1\}$. Ici, les lignes et colonnes de H_n sont numérotées de 0 à n-1. $[H_n]_{i,j} = < X^i, X^j>$, or par définition de la matrice de passage P^{-1} de la base (K_0,\dots,K_{n-1}) vers la

base canonique de $\mathbb{R}_{n-1}[X]$, $X^i = \sum_{k=0}^{n-1} [P^{-1}]_{k,i} K_k$, or la base (K_0, \dots, K_{n-1}) est orthonormée,

 $\operatorname{donc}\ [H_n]_{i,j} = \sum_{k=0}^{n-1} [P^{-1}]_{k,i} [P^{-1}]_{k,j} = [{}^t P^{-1} P^{-1}]_{i,j}, \text{ ce qui montre que } H_n = {}^t P^{-1} P^{-1}.$

— III-B.4 Posons $\Pi_n = \sum_{j=0}^n a_j X^j = \sum_{j=1}^{n+1} a_{j-1} X^{j-1}$.

On sait que $f-\Pi_n\in (\mathbb{R}_n[X])^\perp$, donc $\forall k\in [[1,n+1]]< f-\Pi_n, X^{k-1}>=0$, ce qui donne

$$< f, X^{k-1} > = \sum_{j=1}^{n+1} a_{j-1} < X^{j-1}, X^{k-1} > = \sum_{j=1}^{n+1} a_{j-1} (H_{n+1})_{k,j}, \text{ ce qui s'écrit } H_{n+1} \left(\begin{array}{c} a_0 \\ \vdots \\ a_n \end{array} \right) = \left(\begin{array}{c} < f, 1 > \\ \vdots \\ < f, X^n > \end{array} \right)$$

et par suite
$$\left(\begin{array}{c} a_0 \\ \vdots \\ a_n \end{array}\right) = H_{n+1}^{-1} \left(\begin{array}{c} < f, 1 > \\ \vdots \\ < f, X^n > \end{array}\right).$$

$$- \text{ III-B.5 : On calcule } < f, 1 >= \int_0^1 \frac{dt}{1+t^2} = [Atan(t)]_0^1 = \frac{\pi}{4}, < f, X >= \int_0^1 \frac{tdt}{1+t^2} = [\frac{1}{2}\ln(1+t^2)]_0^1 = \frac{1}{2}\ln(2) \text{ et } < f, X^2 >= \int_0^1 \frac{t^2dt}{1+t^2} = \int_0^1 \frac{(1+t^2)-1}{1+t^2}dt = 1 - \frac{\pi}{4}, \text{ donc}$$

$$\Pi_2 = [-\frac{75\pi}{2} - 90(-2+\ln 2)]X^2 + 12[-15 + 3\pi + 8\ln 2]X + 30 - \frac{21\pi}{4} - 18\ln 2.$$
 IV Propriétés des coefficients de H_n^{-1} — IV-A : Somme des coefficients de H_n^{-1}

- IV-A.1 : $s_1=1,\,s_2=4,\,s_3=9,$ on conjecture que $s_n=n^2.$ IV-A.2.a Le système en question est un système de n équations à n inconnues dont la matrice est H_n qui est inversible, donc c'est un système de Cramer qui admet une solution unique.

— **IV-A.2.b** La solution unique du système est donnée par
$$\begin{pmatrix} a_0^{(n)} \\ \vdots \\ a_{n-1}^{(n)} \end{pmatrix} = H_n^{(-1)} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$
, donc $\forall i \in [[0,n-1]]$

$$a_i^{(n)} = \sum_{j=1}^n h_{i+1,j}^{(-1,n)}, \text{ ce qui donne en sommant sur les } i, \sum_{i=0}^{n-1} a_i^{(n)} = \sum_{i=1}^n a_{i-1}^{(n)} = \sum_{1 \leq i,j \leq n} h_{i,j}^{(-1,n)} = s_n.$$

— IV-A.3 puisque
$$Q=\sum_{p=0}^{n-1}\alpha_pX^p$$
, on aura $< S_n, Q>=\sum_{p=0}^{n-1}\alpha_p < S_n, X^p>$, or en exploitant

pour tout
$$p \in [[0,n-1]]$$
, la $(p+1)^{\text{ème}}$ ligne du système de la question $IV-A.2:(a)$, on obtient $< S_n, X^p > = \sum_{k=0}^{n-1} a_k^{(n)} < X^p, X^k > = \sum_{k=0}^{n-1} \frac{a_k^{(n)}}{p+k+1} = 1$, ce qui entraine que $< S_n, Q > = \sum_{k=0}^{n-1} \alpha_p = Q(1)$.

$$k=0$$
 $k=0$ $p=0$ $p=0$

$$(K_p)_{0 \leq p \leq n-1}$$
 est une base orthonormale de $\mathbb{R}_{n-1}[X]$ on a $(S_n,S_n)=\|S_n\|^2=\sum_{n=1}^{p=0} \langle S_n,K_p \rangle^2$, et tou-

jours d'après la relation précédente avec $Q=K_p$, on aura $< S_n, K_p>=K_p(1)$, ce qui donne finalement

$$s_n = \sum_{p=0}^{n-1} (K_p(1))^2$$

— IV-A.5 : On a
$$K_p = \sqrt{2p+1}L_p$$
 avec $L_p(1) = 1$ on obtient $K_p(1) = \sqrt{2p+1}$.

- IV-A.5 : On a
$$K_p = \sqrt{2p+1}L_p$$
 avec $L_p(1) = 1$ on obtient $K_p(1) = \sqrt{2p+1}$.

- IV-A.6 : $s_n = \sum_{p=0}^{n-1} (K_p(1))^2 = \sum_{p=0}^{n-1} (2p+1) = 2\sum_{p=1}^{n-1} p+n = (n-1)n+n = n^2$.

— IV-B :Les coefficients de H_n^{r-1} sont des \mathfrak{E}

— **IV-B.1**: Pour tout
$$p \in \mathbb{N}^*$$
, $\binom{2p}{p} = 2 \binom{2p-1}{p} \in 2\mathbb{N}$.

$$\begin{array}{l} \text{Soient } n \in \mathbb{N}^*, \, p \in [[1,n]] : \\ \left(\begin{array}{c} n+p \\ p \end{array} \right) \left(\begin{array}{c} n \\ p \end{array} \right) = \frac{(n+p)!}{(p!)^2(n-p)!} = \frac{(2p)!}{(p!)^2} \, \frac{(n+p)!}{(2p)!(n-p)!} = \left(\begin{array}{c} 2p \\ p \end{array} \right) \left(\begin{array}{c} n+p \\ 2p \end{array} \right) \in 2\mathbb{N}. \\ - \text{ IV-B.2} : \text{Pour tout } n \in \mathbb{N}, \, \text{on a } K_n = \sqrt{2n+1} L_n \, \operatorname{avec} \, L_n = \frac{1}{n!} (P_n^{(n)}), \end{array}$$

or
$$(P_n)^{(n)} = (X^n(X-1)^n)^{(n)} = \left(\sum_{k=0}^n \binom{n}{k} (-1)^{n-k} X^{n+k}\right)^{(n)} = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} \frac{(n+k)!}{k!} X^k$$

ce qui donne $L_n = \sum_{k=0}^n (-1)^{n-k} \binom{n+k}{k} \binom{n}{k} X^k$, donc le coefficient constant de L_n est égale à

— IV-B.3:

—
$$K_j = \sqrt{2j+1}\sum_{k=0}^j (-1)^{j-k} \left(\begin{array}{c} j+k \\ k \end{array} \right) \left(\begin{array}{c} j \\ k \end{array} \right) X^k$$
, donc en notant $P=(p_{i,j})$ la matrice de passage de la base canonique de $\mathbb{R}_{n-1}[X]$ vers (K_0,\ldots,K_{n-1}) ,

 $\text{pour tout } i,j \in [[1,n]] \ p_{i,j} = \sqrt{2j-1}(-1)^{j-i} \left(\begin{array}{c} j+i-2 \\ i-1 \end{array} \right) \left(\begin{array}{c} j-1 \\ i-1 \end{array} \right) \text{ si } i \leq j \text{ et } p_{i,j} = 0 \text{ si } i > j.$ Or, d'après III.B.3, $H_n^{-1} = P^t P$, donc pour tout $i \in [[1,n]]$

$$h_{i,i}^{(-1,n)} = \sum_{j=i}^{n} p_{i,j}^2 = \sum_{j=i}^{n} (2j-1) \begin{pmatrix} j+i-2 \\ i-1 \end{pmatrix}^2 \begin{pmatrix} j-1 \\ i-1 \end{pmatrix}^2.$$

En particulier pour i=1 et i=n, on obtient $h_{1,1}^{(-1,n)}=\sum_{i=1}^n(2j-1)=n^2$ et $h_{n,n}^{(-1,n)}=(2n-1)$

$$1) \left(\begin{array}{c} 2n-2 \\ n-1 \end{array} \right)^2.$$

— Pour tous
$$i, j \in [[1, n]]$$
 $h_{i, j}^{(-1, n)} = \sum_{k=max(i, j)}^{n} p_{i, k} p_{j, k} =$

$$= (-1)^{i+j} \sum_{k=\max(i,j)}^{n} (2k-1) \left(\begin{array}{c} k+i-2 \\ i-1 \end{array} \right) \left(\begin{array}{c} k-1 \\ i-1 \end{array} \right) \left(\begin{array}{c} k+j-2 \\ j-1 \end{array} \right) \left(\begin{array}{c} k-1 \\ j-1 \end{array} \right)$$

Ce qui montre que les $h_{i,j}^{(-1,n)}$ sont des entiers comme produit d'entiers. — Soient $i,j\in [[2,n]]$, donc pour tout $k\geq max(i,j)\geq 2,\ i-1,j-1,k-1\in \mathbb{N}^*,$ et par suite d'après $(IV-B.1), \left(\begin{array}{c} k+i-2\\ i-1 \end{array} \right) \left(\begin{array}{c} k-1\\ i-1 \end{array} \right)$ et $\left(\begin{array}{c} k+j-2\\ j-1 \end{array} \right) \left(\begin{array}{c} k-1\\ j-1 \end{array} \right)$ sont pairs, donc leur produit est un multiple de 4, ce qui entraine que $h_{i,j}^{(-1,n)}$ qui est somme de ces produits est aussi un multiple de