ЛАБОРАТОРНАЯ РАБОТА № 5 Моделирование процесса восстановления

Цель: исследование характеристик процессов восстановления.

1. Порядок выполнения

- 1) Разработать программу для моделирования процесса восстановления. На экран в каждом прогоне модели выводить процесс восстановления, по результатам серии прогонов модели выводить графики функции восстановления H(t), функции плотности вероятности f(t), функции распределения F(t), функции надежности G(t) и функции опасности отказа $\varphi(t)$.
- 2) Исследовать поведение процесса восстановления для случайных величин $\{\xi_n\}$, имеющих распределение Вейбулла с заданными значениями параметров. Экспериментально с пятипроцентной точностью определить значения математического ожидания и дисперсии случайных величин $\{\xi_n\}$, значения функции восстановления H(t), функции плотности вероятности f(t), функции распределения F(t), функции надежности G(t) и функции опасности отказа $\phi(t)$.
- 3) Рассчитать теоретические значения математического ожидания и дисперсии случайных величин $\{\xi_n\}$, значения функции восстановления H(t), функции плотности вероятности f(t), функции распределения F(t), функции надежности G(t) и функции опасности отказа $\phi(t)$. Сравнить теоретические значения с экспериментальными.
- 4) Классифицировать смоделированные процессы восстановления по функции опасности отказа.

2. Содержание отчета

- 1) Экспериментальные графики процессов восстановления, функций восстановления H(t), функций плотности вероятности f(t), функций распределения F(t), функций надежности G(t) и функций опасности отказа $\phi(t)$ для каждого набора заданных значений параметров распределения Вейбулла.
- 2) Теоретические графики функций восстановления H(t), функций плотности вероятности f(t), функций распределения F(t), функций надежности G(t) и функций опасности отказа $\phi(t)$ для каждого набора заданных значений параметров распределения Вейбулла.
- 3) Теоретические значения математического ожидания и дисперсии случайных величин $\{\xi_n\}$.
- 4) Классификация по функции опасности отказа смоделированных процессов восстановления.
- 5) Программа экспериментов.

3. Варианты заданий

Вариант	Значения параметров (α, λ)		
1	(1, 15.75)	(0.95, 9.55)	(9.75, 14.5)
2	(1, 25.5)	(0.45, 12.5)	(12.5, 22.6)
3	(1, 10.5)	(0.05, 2.5)	(1.5, 2.6)
4	(1, 5.5)	(0.25, 19)	(10.5, 1.6)
5	(1, 35)	(0.35, 12)	(2.5, 16)
6	(1, 13)	(0.85, 14)	(15, 9)
7	(1, 3)	(0.75, 4)	(10, 15)

8 (1, 3)	(0	0.65, 4)	(10, 15)
9 (1, 11	(0	0.5, 8)	(7, 15)
10 (1, 12	2) (0	0.15, 6)	(5, 5)
11 (1, 7)	(0	0.1, 4)	(2, 10)
12 (1, 2)	(0	0.6, 13)	(12, 1)
13 (1, 5)	(0	0.3, 7)	(1.5, 4)
14 (1, 3)	(0	0.15, 9)	(5, 13)
15 (1, 9)	(0	0.6, 10)	(3.5, 9.5)
16 (1, 7)	(0	0.05, 11)	(17, 10.3)
17 (1, 4.	5) (0	0.1, 13.5)	(7, 5.8)
18 (1, 6)	(0	0.9, 3)	(10.5, 7)
19 (1, 10	0.5)	0.75, 5.6)	(8.5, 4)
20 (1, 13	(0)	0.4, 7.8)	(3.5, 5.7)
21 (1, 11	(0	0.7, 4)	(5, 3)
22 (1, 5)			(7.5, 2.5)
23 (1, 7.	5) (0	0.45, 10.3)	(10.3, 5)
24 (1, 6.	5) (0	0.5, 17)	(4, 8.3)
25 (1, 8.	5) (0	0.15, 3.5)	(12.5, 7.5)
26 (1, 3)	(0	0.8, 2.8)	(13.5, 10)
27 (1, 17	7) (0	0.35, 10)	(2, 11.3)
28 (1, 14	4.5)	0.2, 3)	(5, 17)
29 (1, 8)	(0	0.05, 5.7)	(3.2, 5.1)
30 (1, 10	(0	0.7, 8)	(2.5, 8)