Memory Hierarchies and Optimizations: **Case Study in Matrix Multiplication**

Kathy Yelick yelick@cs.berkeley.edu www.cs.berkeley.edu/~yelick/cs194f07

CS194 Lecture 9/10/2007

Naïve Matrix Multiply

```
 \begin{aligned} &\{\text{implements } C = C + A*B\} \\ &\text{for } i = 1 \text{ to } n \\ &\text{for } j = 1 \text{ to } n \\ &\text{for } k = 1 \text{ to } n \\ &C(i,j) = C(i,j) + A(i,k) * B(k,j) \end{aligned}
```

Algorithm has $2*n^3 = O(n^3)$ Flops and operates on $3*n^2$ words of memory

Reuse quotient (q = flops/word) in the algorithm is *potentially* as large as $2*n^3 / 3*n^2 = O(n)$

9/10/2007

CS194 Lecture

Naïve Matrix Multiply

```
{implements C = C + A*B}
for i = 1 to n
  {read row i of A into fast memory}
  for j = 1 to n
     {read C(i,j) into fast memory}
     {read column j of B into fast memory}
     for k = 1 to n
        C(i,j) = C(i,j) + A(i,k) * B(k,j)
        {write C(i,j) back to slow memory}
```


Naïve Matrix Multiply

Number of slow memory references on unblocked matrix multiply

```
m = n^3 to read each column of B n times
+ n^2 to read each row of A once
+ 2n^2 to read and write each element of C once
= n^3 + 3n^2
```

- So the re-use quotient, $q = f/m = 2n^3 / (n^3 + 3n^2)$ ~= 2 for large n
- This is no better than matrix-vector multiply
- And is far from the "best possible" which is 2/3*n for large n
- And this doesn't take into account cache lines

9/10/2007

CS194 Lecture

Blocked (Tiled) Matrix Multiply

```
Consider A,B,C to be N-by-N matrices of b-by-b subblocks where
 b=n / N is called the block size
   for i = 1 to N
     for j = 1 to N
        {read block C(i,j) into fast memory}
        for k = 1 to N
             {read block A(i,k) into fast memory}
             {read block B(k,j) into fast memory}
             C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
         {write block C(i,j) back to slow memory}
```


9/10/2007

CS194 Lecture

Blocked (Tiled) Matrix Multiply

Recall:

m is amount memory traffic between slow and fast memory matrix has nxn elements, also NxN blocks each of size bxb (N=n/b) f is number of floating point operations, $2n^3$ for this problem q = f / m is our measure of algorithm efficiency in the memory system

```
m = N*n² read each block of B N³ times (N³ * b² = N³ * (n/N)² = N*n²)

+ N*n² read each block of A N³ times

+ 2n^2 read and write each block of C once

= (2N + 2) * n^2
```

- Re-use quotient is: $q = f / m = 2n^3 / ((2N + 2) * n^2)$ $\sim = n / N = b$ for large n
- · We can improve performance by increasing the blocksize b
- Can be much faster than matrix-vector multiply (q=2)

Using Analysis to Understand Machines

The blocked algorithm has computational intensity q ~= b

- The larger the block size, the more efficient our algorithm will be
- Limit: All three blocks from A,B,C must fit in fast memory (cache), so we cannot make these blocks arbitrarily large
- Assume your fast memory has size M_{fast}

$$3b^2 \le M_{fast}$$
, so $q \sim = b \le sqrt(M_{fast}/3)$

 To build a machine to run matrix multiply at 1/2 peak arithmetic speed of the machine, we need a fast memory of size

$$M_{fast} >= 3b^2 \sim= 3q^2 = 3(t_m/t_f)^2$$

- This size is reasonable for L1 cache, but not for register sets
- Note: analysis assumes it is possible to schedule the instructions perfectly

		required	
	t_m/t_f	KB	
Ultra 2i	24.8	14.8	
Ultra 3	14	4.7	
Pentium 3	6.25	0.9	
Pentium3M	10	2.4	
Power3	8.75	1.8	
Power4	15	5.4	
Itanium1	36	31.1	
Itanium2	5.5	0.7	

Limits to Optimizing Matrix Multiply

- The blocked algorithm changes the order in which values are accumulated into each C[i,j] by applying associativity
 - Get slightly different answers from naïve code, because of roundoff OK
- The previous analysis showed that the blocked algorithm has computational intensity:

$$q \sim = b < = sqrt(M_{fast}/3)$$

- Aside (for those who have taken CS170 or equivalent)
- There is a *lower bound* result that says we cannot do any better than this (using only associativity)
- Theorem (Hong & Kung, 1981): Any reorganization of this algorithm (that uses only associativity) is limited to $q = O(sqrt(M_{fast}))$
- What if more levels of memory hierarchy? 9/10/2007 CS194 Lecture

Tiling for Multiple Levels

- Multiple levels: pages, caches, registers in machines
- Each level could have it's only 3-nested loops:

```
for i, for j, for k {matul blocks that fit in L2 cache}
for ii, for jj, for kk {matmul blocks that fit in L1}
for iii, for jjj, for kkk {matmul blocks that fit in registers}
```

- But in practice don't use so many levels and fully unroll code for register "tiles"
 - E.g., if these are 2x2 matrix multiplies, can write out all 4 statements without loops

```
c[0,0] = c[0,0] + a [0,0] * b[0,0] + a[0,1]*b[1,0]

c[1,0] =

c[0,1] =
Many possible code variations; see Mark's notes on code generators in HW page
```

Matrix-multiply, optimized several

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

Search Over Block Sizes

Strategies for choose block sizes:

- Find out hardware parameters:
 - Read vendor manual for register #, cache sizes (not part of ISA), page sizes (OS config)
 - Measure yourself using memory benchmark from last time
 - But in practice these don't always work well; memory systems are complex as we saw
- Manually try many variations (3)
- Write "autotuner" to search over "design space" of possible implementations
 - Atlas incorporated into Matlab
 - PhiPAC original dense linear algebra tuning project from Berkeley; came from homework assignment like HW2

What the Search Space Looks Like

A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned. (Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)

9/10/2007

 ATLAS is faster than all other portable BLAS implementations and it is comparable with machine-specific libraries provided by the vendor.

9/10/2007

CS194 Lecture

Recursion: Cache Oblivious Algorithms

- The tiled algorithm requires finding a good block size
- Cache Oblivious Algorithms offer an alternative
 - Treat nxn matrix multiply set of smaller problems
 - Eventually, these will fit in cache
- The idea of cache-oblivious algorithms is use for other problems than matrix multiply. The general idea is:
 - Think of recursive formulation
 - If the subproblems use smaller data sets and some reuse within that data set, then a recursive order may improve performance

Cac

he-Obli viou

S

B ₀₀	B ₀₁
B ₁₀	B ₁₁

C ₀₀	C ₀₁
C ₁₀	C ₁₁

$$C_{00} = A_{00}*B_{00} + A_{01}*B_{10}$$
 $C_{01} = A_{01}*B_{11} + A_{00}*B_{01}$
 $C_{11} = A_{11}*B_{01} + A_{10}*B_{01}$
 $C_{10} = A_{10}*B_{00} + A_{11}*B_{10}$

- Divide all dimensions (AD)
- 8-way recursive tree down to 1x1 blocks
 - Gray-code order promotes reuse
- Bilardi, et al.

- Divide largest dimension (LD)
- Two-way recursive tree down to 1x1 blocks
- Frigo, Leiserson, et al.

Cac

- Bock sizes
 Generated dynamically at each level in the recursive s: call tree
- Dis experience

 cuserformance is similar

 sionse AD for the rest of the talk

LargestDimension, Recursive, Coloring, BRILA, 8 — AllDimensions, Recursive, Coloring, BRILA, 8 —

Cac

he-

- Csmally Iterative scjenested loops
- Implementation of blocking
 rithCache blocking achieved by Loop Tiling
 Register blocking also requires Loop Unrolling

Structure of Tiled (Cache Concious) Code

9/1 Slide source: Roeder, Yotov, Pingali at Cornell/UTexas

Dat

- Et control structure better
- Improve

Spatial locality

es Streaming, prefecthing

Row-major Row-Block-Row Morton-Z

Dat

• Structure Ctubetter than RBR
es:Suggests better performance for CO
DisMore complicated to implement
cush our experience payoff is small or
even negative
Sion. Use RBR for the rest of the talk

Ulltr

- Reak performance
 - c · 2 GFlops
- Memory hierarchy
 - Registers: 32
 - L1 data cache: 64KB, 4-way
 - L2 data cache: 1MB, 4-way
- Compilers
 - FORTRAN: SUN F95 7.1
 - C: SUN C 5.5

Experience

- In practice, need to cut off recursion
- Implementing a high-performance Cache-Oblivious code is not easy
 - Careful attention to micro-kernel and mini-kernel is needed
- Using fully recursive approach with highly optimized recursive micro-kernel, Pingali et al report that they never got more than 2/3 of peak.
- Issues with Cache Oblivious (recursive) approach
 - Recursive Micro-Kernels yield less performance than iterative ones using same scheduling techniques
 - Pre-fetching is needed to compete with best code: not wellunderstood in the context of CO codes

Basic Linear Algebra Subroutines (BLAS)

- Industry standard interface (evolving)
 - www.netlib.org/blas, www.netlib.org/blas/blast--forum
- Vendors, others supply optimized implementations
- History
 - BLAS1 (1970s):
 - vector operations: dot product, saxpy ($y=\alpha^*x+y$), etc
 - m=2*n, f=2*n, q ~1 or less
 - BLAS2 (mid 1980s)
 - matrix-vector operations: matrix vector multiply, etc
 - m=n^2, f=2*n^2, q~2, less overhead
 - somewhat faster than BLAS1
 - BLAS3 (late 1980s)
 - matrix-matrix operations: matrix matrix multiply, etc
 - m <= 3n^2, f=O(n^3), so q=f/m can possibly be as large as n, so BLAS3 is potentially much faster than BLAS2
- Good algorithms used BLAS3 when possible (LAPACK & ScaLAPACK)
 - See www.netlib.org/{lapack,scalapack}
 - More later in course 9/10/2007

BLAS speeds on an IBM RS6000/590

Peak speed = 266 Mflops

BLAS 3 (n-by-n matrix matrix multiply) vs BLAS 2 (n-by-n matrix vector multiply) vs BLAS 1 (saxpy of n vectors)

9/10/2007

Strassen's Matrix Multiply

- The traditional algorithm (with or without tiling) has O(n^3) flops
- Strassen discovered an algorithm with asymptotically lower flops
 - O(n^2.81)
- Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds
 - Strassen does it with 7 multiplies and 18 adds

Strassen (continued)

T(n) = Cost of multiplying nxn matrices
=
$$7*T(n/2) + 18*(n/2)^2$$

= $O(n \log_2 7)$
= $O(n 2.81)$

- Asymptotically faster
 - Several times faster for large n in practice
 - Cross-over depends on machine
 - Available in several libraries
 - "Tuning Strassen's Matrix Multiplication for Memory Efficiency",
 M. S. Thottethodi, S. Chatterjee, and A. Lebeck, in Proceedings of Supercomputing '98
- Caveats
 - Needs more memory than standard algorithm
 - Can be less accurate because of roundoff error

Other Fast Matrix Multiplication Algorithms

- Current world's record is O(n ^{2.376...})
 (Coppersmith & Winograd)
- Why does Hong/Kung theorem not apply?
- Possibility of O(n^{2+ε}) algorithm! (Cohn, Umans, Kleinberg, 2003)
- Fast methods (besides Strassen) may need unrealistically large n

Optimizing in Practice

- Tiling for registers
 - loop unrolling, use of named "register" variables
- Tiling for multiple levels of cache and TLB
- Exploiting fine-grained parallelism in processor
 - superscalar; pipelining
- Complicated compiler interactions
- Hard to do by hand (but you'll try)
- Automatic optimization an active research area
 - BeBOP: bebop.cs.berkeley.edu/
 - PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac in particular tr-98-035.ps.gz
 - ATLAS: www.netlib.org/atlas

Removing False Dependencies

 Using local variables, reorder operations to remove false dependencies

With some compilers, you can declare a and b unaliased.

Done via "restrict pointers," compiler flag, or pragma)

Exploit Multiple Registers

Reduce demands on memory bandwidth by pre-loading into local variables

```
while( ... ) {
   *res++ = filter[0]*signal[0]
             + filter[1]*signal[1]
             + filter[2]*signal[2];
   signal++;
}
                            also: register float f0 = ...;
float f0 = filter[0];
float f1 = filter[1];
float f2 = filter[2];
while( ... ) {
                               Example is a convolution
    *res++ = f0*signal[0]
              + f1*signal[1]
              + f2*signal[2];
    signal++;
```

Minimize Pointer Undates

 Replace pointer updates for strided memory addressing with constant array offsets

```
f0 = *r8; r8 += 4;

f1 = *r8; r8 += 4;

f2 = *r8; r8 += 4;

f0 = r8[0];

f1 = r8[4];

f2 = r8[8];

r8 += 12;
```

Pointer vs. array expression costs may differ.

Some compilers do a better job at analyzing one than the other

Loop Unrolling

Expose instruction-level parallelism

```
float f0 = filter[0], f1 = filter[1], f2 = filter[2];
float s0 = signal[0], s1 = signal[1], s2 = signal[2];
*res++ = f0*s0 + f1*s1 + f2*s2;
do {
   signal += 3;
   s0 = signal[0];
   res[0] = f0*s1 + f1*s2 + f2*s0;
   s1 = signal[1];
   res[1] = f0*s2 + f1*s0 + f2*s1;
   s2 = signal[2];
   res[2] = f0*s0 + f1*s1 + f2*s2;
   res += 3;
} while( ... );
```

Expose Independent Operations

- Hide instruction latency
 - Use local variables to expose independent operations that can execute in parallel or in a pipelined fashion
 - Balance the instruction mix (what functional units are available?)

```
f1 = f5 * f9;
f2 = f6 + f10;
f3 = f7 * f11;
f4 = f8 + f12;
```

Copy optimization

- Copy input operands or blocks
 - Reduce cache conflicts
 - Constant array offsets for fixed size blocks
 - Expose page-level locality

Original matrix (numbers are addresses)

	0	4	8	12
	1	5	9	13
\downarrow	2	6	10	14
	3	7	11	15

Reorganized into 2x2 blocks

0	2	8	10
1	3	9	11
4	6	12	13
5	7	14	15

Locality in Other Algorithms

- The performance of any algorithm is limited by q
- In matrix multiply, we increase q by changing computation order
 - increased temporal locality
- For other algorithms and data structures, even handtransformations are still an open problem
 - sparse matrices (reordering, blocking)
 - Weekly research meetings
 - Bebop.cs.berkeley.edu
 - About to release OSKI tuning for sparse-matrix-vector multiply
 - trees (B-Trees are for the disk level of the hierarchy)
 - linked lists (some work done here)

Summary

- Performance programming on uniprocessors requires
 - understanding of memory system
 - understanding of fine-grained parallelism in processor
- Simple performance models can aid in understanding
 - Two ratios are key to efficiency (relative to peak)
 - 1.computational intensity of the algorithm:
 - q = f/m = # floating point operations / # slow memory references
 - 2.machine balance in the memory system:
 - t_m/t_f = time for slow memory reference / time for floating point operation
- Want q > t_m/t_f to get half machine peak
- Blocking (tiling) is a basic approach to increase q
 - Techniques apply generally, but the details (e.g., block size) are architecture dependent
 - Similar techniques possible on other data structures / algorithms 9/10/2007 CS194 Lecture 45