

Clustering objective

- Grouping documents or instances into subsets or clusters
- Documents in the same cluster should be similar
- Documents in different clusters should be dissimilar
- A common form of unsupervised learning
- Unsupervised = no human-produced labels
- The goal is to discover structure from the data

Clustering vs. Classification

Classification:

- the input to the system is a set of labeled data
- the algorithm <u>learns a model</u> for predicting the label on new examples

Clustering:

- the input to the system is a set of unlabeled data
- the algorithm <u>infers the labels</u> from the data and assigns a label to each input instance

Clustering applications

- Search engine results clustering: grouping search engine results by topic
 - the user can identify the relevant clusters and ignore the non-relevant ones
- Collection clustering: grouping documents by topic to support navigation and exploration
- Data analytics: grouping instances to identify popular trends (big clusters) and outliers (small clusters)

Clustering Applications search engine results clustering

jaguar	Search

Results 1-20 of about 15,703,845 | Details

Sources Sites Time Topics

Top 576 Results

- + Time, Festival (9)
- + Land, Rover (117)
- + Parts (88)
- + Photos (57)
- + Club (55)
- + Jacksonville Jaguars (39)
- + Classic, Cars (38)
- + Reviews (30)
- + Sports Cars (15)
- + Game (26)
- Team (22)New And Used Jaguar (17)
- + Atari (16)
- + Jaguar X Type (15)
- + Defend, Largest (6)
- + Jaguar Enthusiasts (12)
- + Jaguar For Sale (8)
- + Kits (11)
- New Jaguar dealership (6)
- + Big Cat (5)
- + University (12)
- + Tiger (9)
- · Virginia, Washington (4)
- + Experiences (6)
- + Vintage, Car (8)
- + New And Used Cars (6)
- Autotrader, Jaguar Cars, Find (3)
- 1. 387 () ...

Market Selector | Jaguar | View the site in your preferred ... new window preview

You are about to leave **Jaguar**.com. Please note that **Jaguar** cannot be responsible for any content or validity outside of this domain. Please click on Accept to go ... https://www.jaguar.com - Yippy Index V

The week in wildlife – in pictures <u>new window</u> <u>preview</u>

Date: 2017-03-10T14:02:09.000Z, 2017-03-10T14:02:09.000Z, 2017-03-10T14:02:09.000Z

A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flowers are among this week's pick of images from the natural world ... A rare **jaguar** sighting in the US, a green toad and spring flower

Jaguar Sedans, SUVs & Sports Cars - Official Site | Jaguar USA new window preview

The official home of **Jaguar** USA. Explore our luxury sedans, SUVs and sports cars. Build Yours, Schedule a Test Drive or Find a Dealer Near You. www.jaguarusa.com/index.html - - Yippy Index V

Jaguar - Wikipedia new window preview

The jaguar (Panthera onca) is a big cat, a feline in the Panthera genus, and is the only extant Panthera species native to the Americas. The jaguar is the ... https://en.wikipedia.org/wiki/Jaguar - - Yippy Index V

Jacksonville Jaquars, Official Site of the Jacksonville ... new window preview

The official team site with scores, news items, game schedule, and roster www.jaguars.com - - Yippy Index V

Jaguar Reviews - Jaguar Cars | Edmunds new window preview

Jaguar cars: research Jaguar cars, read Jaguar reviews, find Jaguar car listings and get Jaguar pricing & dealer quotes. https://www.edmunds.com/jaguar - - Yippy Index V

Jaguar Cars, Convertible, Coupe, Sedan, SUV/Crossover ... new window preview

View Motor Trend's Jaguar car lineup and research Jaguar prices, specs, fuel economy and photos. Select a Jaguar model and conveniently compare local dealer pricing. www.motortrend.com/cars/jaguar - - Yippy Index V

2176423 Ontario Ltd. Announces Investment in Jaguar Mining Inc. new window preview

Date: June 15, 2017 10-54 ET

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

Clustering Applications collection clustering

Washington Post - 4 hours ago

Democrats just got some very good news from the Supreme Court on gerrymandering

would take up a case out of Wisconsin that could result in a ruling on the constitutionality of partisan gerrymandering.

The Supreme Court just made a major decision without actually issuing a decision. On Monday morning, the justices announced that they

Health

Sports

Science

Clustering Applications collection clustering

Man plows van into crowd by London mosque; 10 injured

Clustering objective

- Grouping documents or instances into subsets or clusters
- Documents within a the same cluster should be similar
- Documents from different clusters should be dissimilar

Clustering basics

- What does it mean for documents to be similar or dissimilar?
- We need a computational way of modeling similarity
- One solution: model similarity using distance in a vector space representation of the collection or dataset
 - small distance = high similarity
 - long distance = low similarity

- A vector space is defined by a set of <u>linearly independent</u> basis vectors
- The basis vectors correspond to the dimensions or directions of the vector space

A vector is a point in a vector space

- A 2-dimensional vector can be written as [x,y]
- A 3-dimensional vector can be written as [x,y,z]

w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9	w_10
1	0	1	0	1	0	0	1	1	0
0	1	0	1	1	0	1	1	0	0
0	1	0	1	1	0	1	0	0	0
0	0	1	0	1	1	0	1	1	1
:		:	:	:					:
1	1	0	1	1	0	0	1	0	1

w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9	w_10
1	0	1	0	1	0	0	1	1	0
0	1	0	1	1	0	1	1	0	0
0	1	0	1	1	0	1	0	0	0
0	0	1	0	1	1	0	1	1	1
:	:					:	••••		
1	1	0	1	1	0	0	1	0	1

 We can represent this document as a vector in a 10dimensional vector space

w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9	w_10	
1	0	1	0	1	0	0	1	1	0	
0	1	0	1	1	0	1	1	0	0	
0	1	0	1	1	0	1	0	0	0	
0	0	1	0	1	1	0	1	1	1	
:		:					••••	••••		
1	1	0	1	1	0	0	1	0	1	

- This representation assumes binary term-weights.
- Are there other term-weighting schemes?

Similarity = Euclidean Distance:

$$D(x,y) = \sqrt{\left(\sum_{i=1}^{|\mathcal{V}|} (x_i - y_i)^2\right)}$$

 What would we expect a clustering algorithm to do with this dataset?

 What would we expect a clustering algorithm to do with this dataset?

Propose an algorithm that might be able to do this!

- Input: number of desired clusters K
- Output: assignment of documents to K clusters
- Algorithm:
 - randomly select K documents (seeds)
 - assign each remaining document to its nearest seed
 - and so on.

Could this work?

- The key to understanding K-means clustering is to understand the idea of a cluster centroid
- Given a cluster, you can think of its centroid as a point (or vector) that corresponds to its "center of mass"

- The key to understanding K-means clustering is to understand the idea of a cluster centroid
- Given a cluster, you can think of its centroid as a point (or vector) that corresponds to its "center of mass"

- The key to understanding K-means clustering is to understand the idea of a cluster centroid
- Given a cluster, you can think of its centroid as a point (or vector) that corresponds to its "center of mass"

- The key to understanding K-means clustering is to understand the idea of a cluster centroid
- Given a cluster, you can think of its centroid as a point (or vector) that corresponds to its "center of mass"

- The key to understanding K-means clustering is to understand the idea of a cluster centroid
- Given a cluster, you can think of its centroid as a point (or vector) that corresponds to its "center of mass"

- The key to understanding K-means clustering is to understand the idea of a cluster centroid
- Given a cluster, you can think of its centroid as a point (or vector) that corresponds to its "center of mass"

cluster centroid

docs assigned to cluster 1

w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9	w_10
1	0	1	0	1	0	0	1	1	0
0	1	0	1	1	0	1	1	0	0
0	1	0	1	1	0	1	0	0	0
0	0	1	0	1	1	0	1	1	1
0	0	1	0	1	1	0	1	1	1
1	1	0	1	1	0	0	1	0	1

cluster 1 centroid

w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9	w_10
?	?	?	?	?	?	?	?	?	?

cluster centroid

docs assigned to cluster 1

w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9	w_10
1	0	1	0	1	0	0	1	1	0
0	1	0	1	1	0	1	1	0	0
0	1	0	1	1	0	1	0	0	0
0	0	1	0	1	1	0	1	1	1
0	0	1	0	1	1	0	1	1	1
1	1	0	1	1	0	0	1	0	1

cluster 1
centroid
(average!)

w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9	w_10
0.33	0.5	0.5	0.5	1	0.33	0.33	0.83	0.5	0.5

• For each dimension *i*, set:

$$c_i = \frac{1}{|C|} \sum_{d \in C} d_i$$

- Input: number of desired clusters K
- Output: assignment of documents to K clusters
- Algorithm:
 - Step 1: randomly select K documents (seeds)
 - Step 2: assign each document to its nearest seed
 - Step 3: compute all K cluster centroids
 - Step 4: re-assign each document to its nearest centroid
 - Step 5: re-compute all K cluster centroids
 - Step 6: repeat steps 4 and 5 until terminating condition

Step 1: randomly select K documents (seeds)

Step 2: assign each document to its nearest seed

Step 3: compute all K cluster centroids

Step 4: re-assign each document to its nearest centroid

Step 4: re-compute all K cluster centroids

Step 5: re-assign each document to its nearest centroid

Step 4: re-compute all K cluster centroids

Step 5: re-assign each document to its nearest centroid

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

- Input: number of desired clusters K
- Output: assignment of documents to K clusters
- Algorithm:
 - Step 1: randomly select K documents (seeds)
 - Step 2: assign each document to its nearest seed
 - Step 3: compute all K cluster centroids
 - Step 4: re-assign each document to its nearest centroid
 - Step 5: re-compute all K cluster centroids
 - Step 6: repeat steps 4 and 5 until terminating condition

K-means Clustering potential drawback

- The quality of the output clustering depends on the choice of K and on the initial seeds
- In many cases, the choice of K is pre-determined by the application
 - Search engine results clustering: grouping search engine results by topic
 - Collection clustering: grouping documents by topic to support navigation and exploration
- Later we'll see ways of setting K dynamically

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

- It's difficult to know which seeds will yield a high-quality clustering
- However, it's usually a good idea to avoid seeds that are outliers
- How would you detect outliers?

K-means Clustering clustering evaluation

- What does it mean for a clustering to be high quality anyway?
- What is the goal of clustering again?

K-means Clustering internal evaluation

- In theory, a good clustering should have:
 - Similar documents in the same clusters
 - Different documents in different clusters

K-means Clustering internal evaluation

Inter-cluster distance Intra-cluster distance

K-means Clustering improved k-means

 Given a set of documents and a value K, run K-means clustering N times and keep the clustering that produces the greatest difference between the inter-cluster distance and the intra-cluster distance

Bottom-up Agglomerative Clustering

- While K-means requires setting K, bottom-up clustering groups the data in a hierarchical fashion
- We can then set K after the clustering is done or use a distance threshold to set K dynamically (more on this later)

- Input: data
- Output: cluster hierarchy
- Algorithm:
 - Step 1: consider every document its own cluster
 - Step 2: compute the distance between all cluster pairs
 - Step 3: merge/combine the nearest two clusters into one
 - Step 4: repeat steps 2 and 3 until every document is in one cluster

- Input: data
- Output: cluster hierarchy
- Algorithm:
 - Step 1: consider every document its own cluster
 - Step 2: compute the distance between all cluster pairs
 - Step 3: merge/combine the nearest two clusters into one
 - Step 4: repeat steps 2 and 3 until every document is in one cluster

THE UNIVERSITY

of NORTH CAROLINA

at CHAPEL HILL

- Computing the distance between two clusters
- Single-Link: the distance between the two nearest documents
- Complete-Link: the distance between the two documents that are farthest apart
- Average-Link: the average distance between all document pairs in the two different clusters
 - this is equivalent to using the distance between the two cluster centroids

Step 1: consider each document its own cluster

- Step 2: compute the distance between all cluster pairs
- Step 3: merge/combine the nearest two clusters into one

- Step 2: compute the distance between all cluster pairs
- Step 3: merge/combine the nearest two clusters into one

- Step 2: compute the distance between all cluster pairs
- Step 3: merge/combine the nearest two clusters into one

- Step 2: compute the distance between all cluster pairs
- Step 3: merge/combine the nearest two clusters into one

- Step 2: compute the distance between all cluster pairs
- Step 3: merge/combine the nearest two clusters into one

- Step 2: compute the distance between all cluster pairs
- Step 3: merge/combine the nearest two clusters into one

- Step 2: compute the distance between all cluster pairs
- Step 3: merge/combine the nearest two clusters into one

- Setting K dynamically
- Instead of setting K, we could set a distance threshold T
- Stop merging/combining clusters when the distance between the two nearest clusters > T
- Using a distance threshold can help prevent "concept drift" (especially with single-link clustering)
 - text mining --> HiDAV --> unc --> basketball

Labeling Clusters

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

Clustering Applications

collection clustering

Labeling Clusters A simple solution

- Construct a vocabulary of terms and/or phrases (n-grams) that are frequent in the data
- Assign each cluster the term(s) or phrase(s) with the highest mutual information

Mutual Information

$$MI(w,c) = \log\left(\frac{P(w,c)}{P(w)P(c)}\right)$$

- P(w,c): the probability that a document contains word w and belongs to cluster c
- P(w): the probability that word w occurs in a document from any cluster
- P(c): the probability that a document belongs to cluster c

Mutual Information

$$MI(w,c) = \log\left(\frac{P(w,c)}{P(w)P(c)}\right)$$

- If P(w,c) = P(w) P(c), it means that the word w is independent of cluster c
- If P(w,c) > P(w) P(c), it means that the word w is not independent of of cluster c

Mutual Information

Every document falls under one of these quadrants

	belongs to cluster c	does not belong to cluster c
contains word w	а	b
does not contains word w	С	d

total # of instances N =
$$a + b + c + d$$

$$P(w,c) = a / N$$

$$P(c) = (a + c) / N$$

$$P(w) = (a + b) / N$$

$$MI(w,c) = \log \left(\frac{P(w,c)}{P(w)P(c)}\right)$$

Summary

- Clustering: grouping similar documents (or instances) into subsets
- Exploratory analysis: the goal is to discover common and uncommon properties of the data
- K-means and Agglomerative Bottom-up Clustering (there are many, many others)
- Labeling clusters

The Future of Text Mining

Link

Too Many Barriers? It really Matter Where to Apply and How to Start.

Link

Challenge with Something You Really Like

ENABLE

THE UNIVERSITY

of NORTH CAROLINI

at CHAPEL HILL

Any Questions?

No More Next Class

