Modélisation des réponses cellulaires et tumorales durant la radiothérapie

20753 MAHMOUD DKHISSI

TIPE 2022

June 5, 2022

Sommaire

- Introduction
- 2 Modèles coup-cibles
- Modèle Markovien
- 4 Comparaison entre les deux modèles
- Modèle multinominal

Généralités

Définitions

- Le cancer est la transformation de cellules qui deviennent anormales et se multiplient excessivement et finissent par former une masse appelée tumeur.
- La radiothérapie consiste à utiliser des rayonnements pour détruire les cellules cancéreuses.
- les critères pour un bon traitement sont : détruire les cellules cancéreuses en conservant les cellules saines.

Objectif

Comment modéliser mathématiquement la réponse cellulaire à la radiothérapie ?

Modèles coup-cibles

théorie de cibles

La cellule cancéreuse possède des structures vitales appellées cibles qui doivent être désactivées par des coups de radiation pour tuer la cellule.

Hypothèses/Notations

- p la probabilité que la cible soit désactivée.
- p_c la probabilité de survie de la cellule.
- une cellule est morte lorsque toutes les cibles sont désactivées.
- u_0 le degré de radiation dans un coup de rayonnement.
- Y la variable aléatoire qui correspond au nombre de coups qui touchent une cible.
- Y suit une loi de Poisson de paramètre β .
- ullet β est proportionnelle à u_0 .

Une seule cible

- Chaque cellule contient une cible et chaque cible necessite un coup(une injection) pour être désactivée.
- Alors:

$$-p_c = 1 - p$$

-
$$p = P(Y \ge 1) = 1 - e^{-\beta}$$

- Soit $\alpha > 0$ tel que : $\beta = \alpha u_0$
- Alors $p = 1 e^{-\alpha u_0}$

Résultat

Pour le modèle à coup unique, la probabilité de survie cellulaire suit la loi suivante: $\boxed{p_c(u_0)=e^{-\alpha u_0}}$

Plusieurs cibles

- Chaque cellule contient $m \in \mathbb{N}^* \setminus \{1\}$ cibles et chaque cible necessite un coup pour être désactivée.
- Tuer la cellule \iff désactiver m cibles.
- Alors:

-
$$p_c = (1-p)^m$$

- Or, la probabilite pour désactiver une cible est : $p = P(Y > 1) = 1 e^{-\beta}$.
- $p = 1 \ (1 \leq 1) = 1$
- Soit $\alpha > 0$ tel que : $\beta = \alpha u_0$
- $p = 1 e^{-\alpha u_0}$

Resultat

Pour le modèle à plusieurs coups (m coups), la probabilité de survie cellulaire suit la loi suivante: $p_c(u_0)=1-(1-e^{-\alpha u_0})^m$

- Selon les modèles de cibles, une cellule qui survit à une dose de rayonnement se comporte comme une cellule non irradiée.
- Ce modèle ne tient pas compte des mécanismes de réparation de la cellule entre deux fractions de dose.
- Le modèle coup-cibles étant incomplet, il faut mettre en place un nouveau modèle plus pratique.

Modèle Markovien

Notations et Hypothèses

- Chaque cellule contient m cibles ($m \in \mathbb{N}^*$ qui doivent être toutes désactivées pour tuer la cellule.
- Une cible peut être réactivée tant que la cellule n'est pas morte.
- Après une dose de rayonnement , le nombre i de cibles inactives dans la cellule peut prendre une valeur de $0,1,\ldots,m$.
- $(Z_k)_{k\in\mathbb{N}}$ La variable aléatoire qui désigne le nombre de cibles inactives dans la cellule à l'instant k (après k fractions de dose) est une chaine de Markov à temps discret et son espace d'états est E=(0,1,...,m).

Figure: états possibles après une seule fraction de dose pour m=3.

Chaine de Markov

Définitions

- Soit $(Z_k)_{k\in\mathbb{N}}$ une suite de variables aléatoires à valeurs dans un ensemble des états E fini.On dit que cette suite est une chaine de Markov homogène si, pour tout $k\in\mathbb{N}$ et tout suite $(i_0,i_1,\ldots,i_{n-1},i,j)$, on a:
 - $P(X_{k+1} = j | X_k = i, X_{k-1} = i_{k-1}, ..., X_0 = i_0) = P(X_{k+1} = j | X_k = i)$

-
$$P(X_{k+1} = j | X_k = i) = P(X_{k+2} = j | X_{k+1} = i)$$

• On définit la probabilité de transition de l'état i à l'état j entre les instants k et k+1 par la quantité:

$$p_{i,j}(k) = P(X_{k+1} = j | X_k = i), \forall i, j \in E$$

• La matrice $P=(p_{i,j})_{i,j\in E}$ est appelée matrice de transition de la chaine.

Effet des fractions de dose

- On note $p_{i,j}$ la probabilité qu'une cellule passe de l'état i à l'état j après l'application d'une fraction de dose u_0 avec $i, j \in (0, 1, ..., m)$.
- On suppose qu'après une dose u_0 ,une cible est désactivée avec une probabilité q. et de façon indépendante des autres cibles de la cellule.
- Donc:

Résultat

- $p_{i,j} = {m-i \choose j-i} q^{j-i} (1-q)^{m-j}$ si $i \leqslant j$
- $p_{i,j} = 0$ si i > j

Réparation des cibles

- On suppose qu'une cible désactivée peut se réactiver entre deux doses consécutives jusqu'au moment où la cellule est morte.
- Soit r la probabilité qu'une cible désactivée dans une cellule vivante se réactive.
- Une cellule passe de i à j cibles inactives en réparant i-j cibles avec la probabilité $r_{i,j}$.

Résultat

*
$$r_{i,j} = \binom{i}{i-j} r^{i-j} (1-r)^j$$
 si $j \leqslant i$ et $i \leqslant m-1$

- * $r_{m,m} = 1$
- * $r_{i,j} = 0$ sinon

Matrice de transition

• Avec l'association des effets des fractions de dose aux mécanismes de réparation , on admet que la matrice de transition π de la chaine homogène $(Z_k)_{k\in\mathbb{N}}$ vérifie la relation:

$$\boxed{\pi = PR}$$
 , avec $P = p_{i,j}$ et $R = r_{i,j}$, $i,j \in (0,1,...,m)$

•
$$P(Z_{k+1} = j | Z_k = i) = \sum_{n=0}^{m} p_{i,n} r_{n,j}$$

• En notant $q^{,}=1-q$ et $r^{,}=1-r$,le graphe de transition pour m=3 est comme suit:

Figure: Graphe de transition de \mathbb{Z}_k pour m=3.

Notations

- On rappelle que $(Z_k)_{k\in\mathbb{N}}$ est une chaine de Markov homogène du nombre de cibles désactivées dans la cellule après l'application de k fractions de dose u_0 .
- Soit le vecteur $\mu_k = (\mu_{k,0}, \mu_{k,1}, ..., \mu_{k,m})$ avec $\mu_{k,i} = P(Z_k = i)$.
- ullet q_c la probabilité de mort de la cellule après application de k fractions de dose.

Proposition

Soit $(Z_k)_{k\in\mathbb{N}}$ une chaine de Markov homogène d'un ensemble d'états E fini et de matrice de transition P et soit le vecteur colonne $\mu_k=(P(Z_k=i))_{i\in E}$ alors:

$$\forall k \in \mathbb{N}^*, \mu_k = \mu_0 P^k$$

Loi de Z_k

•
$$\mu_k = \mu_0 \pi^k, \forall k \in \mathbb{N}^*$$

•
$$q_c(m,q,r) = P(Z_k = m) = \mu_{k,m}$$

• On suppose que $P(Z_0 = 0) = 1$ donc $\mu_0 = (1, 0, ..., 0)$.

$$q_c(m,q,r) = \pi_{0,m}^k$$

Comparaison

- Pour le modèle Markovien , après k fractions de dose , la probabilité de mort de la cellule est : $q_c(m,r,q)=\pi_{0,m}^k$, avec π la matrice de transition de Z_k , q la probabilité de désactiver une cible après une dose et r la probabilté qu'une cible se réactive .
- Pour le modèle coup-cibles : $q_c = 1 (1 q^m)^k$.
- On prend l'expression de q comme celle introduite dans le premier modèle: $q=1-e^{-\alpha u_0}$ avec u_0 la quantité de rayonnement dans une dose et $\alpha>0$.

Courbes

Figure: Probabilite de mort de la cellule en fonction du nombre de fractions de dose pour $m=3, u_0=2Gy, \alpha=0.33, r=0.3$

Modèle multinominal

Notations

- Nous supposons que toutes les cellules ont le même comportement que celui décrit dans la partie du modèle Markovien.
- On considère une tumeur de n_0 cellules.
- Soit $Z_k^{(j)}$ la chaine de Markov associée a la cellule $j \in (1,2,..,n_0)$.
- Les variables $Z_k^{(j)}$ avec $j \in (1,2,..,n_0)$ suivent la même loi que Z_k .
- $X_k(i)$ le nombre de cellules a l'état i après k fractions de dose.

•
$$\forall i \in (0, 1, ..., m), \forall l \in (1, 2, ..., n_0), P(Z_k^{(l)} = i) = \mu_{k,i} = \pi_{0,i}^k$$

- Le nombre de cellules $X_k(i)$ dans l'état i suit une loi binomiale $B(n_0,\mu_{k,i})$
- Donc le vecteur $(X_k(0),....,X_k(m))$ suit la loi multinominale de paramètres n_0,μ_k

•
$$P(X_k(0) = h_0,, X_k(m) = h_m) = \frac{n_0!}{h_0! h_m!} \mu_{k,0}^{h_0} \mu_{k,m}^{h_m}$$

Influence de paramètre q

Figure: Nombre de cellules mortes en fonction de fractions de dose pour differentes valeurs de q pour $r=0.5, m=3, n_0=100.$

Effet de r

Figure: Nombre de cellules mortes en fonction de fractions de dose pour differentes valeurs de r pour $q=0.5, m=3, n_0=100$.

```
from numpy import *
from pylab import *
from math import *
r=0.3
alpha=0.33
m=3
u0 = 2
q=1-exp(-alpha*u0)
k=range(16)
     probabilite de mort de cellule pour le modele coup-cibles##
##
qc1=zeros(16)
s=1-(1-exp(-alpha*u0))**m
for i in range(16):
    qc1[i]+=1-s**i
```

##matrice de transition##

```
R=[[0,0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]
P=[[0,0,0,0],[0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]
def Pi(q,r):
    for i in range(4):
        for i in range(4):
             if i<=i:
                 P[i][j]=comb(m-i,j-i)*(q**(j-i))*((1-q)**(m-j))
             else:
                 P[i][j]=0
    for i in range(4):
        for j in range(4):
             if i==m and i==m:
                 R[m][m]=1
             elif j<=i and i<m:</pre>
                 R[i][j]=comb(i,i-j)*(r**(i-j))*(((1-r))**j)
             else:
                 R[i][i]=0
    return dot(P,R)
```

```
##calcul de puissance de matrice##
def puissance(M,k):
    if k==0:
        return eye(len(M))
    else:
        return dot(puissance(M,k-1),M)
##tracage des courbes##
qc2=[]
for i in range(16):
    qc2.append(puissance(Pi(q,r),i)[0,m])
plot(k,qc2)
plot(k1,qc1)
vlabel("probabilite de mort")
xlabel("nombre de fractions de dose")
plt.text(8,0.5,r"$modele coup cibles$",horizontalalignment='left',fontsize=10,color='r')
plt.text(0.5,0.8,r"$modele markovien$",horizontalalignment='left',fontsize=10,color='b')
show()
```

##influence de q##

```
q1,q2,q3=0.3,0.5,0.7
E1,E2,E3=[],[],[]
r=0.5
n0=100
for i in range(16):
    E1.append(n0*puissance(Pi(q1,r),i)[0][m])
    E2.append(n0*puissance(Pi(q2,r),i)[0][m])
    E3.append(n0*puissance(Pi(q3,r),i)[0][m])
plot(k,E1)
plot(k,E2)
plot(k,E3)
show()
```

##influence de r##

```
r1,r2,r3=0,0.5,1
E1,E2,E3=[],[],[]
q=0.5
n0=100
for i in range(16):
    E1.append(n0*puissance(Pi(q,r1),i)[0][m])
    E2.append(n0*puissance(Pi(q,r2),i)[0][m])
    E3.append(n0*puissance(Pi(q,r3),i)[0][m])
plot(k,E1)
plot(k,E2)
plot(k,E3)
show()
```