Travaux Dirigés d'algorithmique

Arbres binaires de recherche équilibrés AVL (Adelson-Velskii et Landis).

On notera h(T) la hauteur de l'arbre T. Si G est le fils gauche de T et D le fils droit de T, on note balance(T) = h(D) - h(G) la balance de l'arbre T.

1. Manipulations.

(a) Effectuer respectivement une rotation droite sur la racine de l'arbre suivant, puis une rotation gauche sur la racine de l'arbre résultant:

- (a) Supposons que, dans l'arbre ci-dessus, les sous-arbres A, G_g, G_d soient équilibrés.
 - i. Que dire du sous-arbre dont la racine est g si $|balance(g)| \leq 1$.

Dans la suite, on supposera cette propriété vérifiée et on supposera que la balance de l'arbre, dont la racine est r, est -2;

- i. effectuer les rotations nécessaires afin d'équilibrer l'arbre ci-dessus dans le cas où la balance du sous-arbre dont le nœud g est la racine vaut 0 ou -1;
- ii. effectuer les rotations nécessaires afin d'équilibrer l'arbre ci-dessus dans le cas où la balance du sous-arbre dont le nœud g est la racine vaut 1;
- iii. calculer la balance de chacun des sous-arbres de l'arbre obtenu après la/les rotations(s) effectuée(s);
- (b) construire l'AVL par insertion successive des entiers suivants : 7, 12, 25, 16, 21, 13, 2, 5, 4, 9, 30, 27, 6, 11. On dessinera les arbres avant et après les ajouts ayant entrainés une rotation, en indiquant les balances.

2. Programmations.

Dans tout cet exercice, on utilisera la structure suivante pour définir un AVL:

```
typedef struct noeud
{
    int valeur;
    int balance;
    struct noeud *fg, *fd;
} Noeud, *AVL;
```

- Ecrire une fonction int estAVL(AVL a) qui teste si l'arbre binaire de recherche a est un arbre binaire de recherche équilibré (on suppose que a été construit indépendemment, le champs balance n'est pas rempli);
- écrire une fonction void RotationD(AVL *a) qui effectue une rotation droite de l'arbre a. On n'oubliera pas de rectifier la balance des nœuds concernés;
- écrire une fonction void RotationG(AVL *a) qui effectue une rotation gauche de l'arbre a. On n'oubliera pas de rectifier la balance des nœuds concernés;
- écrire une fonction void RotationGD(AVL *a) qui effectue une rotation gauche/droite de l'arbre a. On n'oubliera pas de rectifier la balance des nœuds concernés. Une rotation gauche/droite est la double rotation effectuée à la question 2.c de l'exercice 1;
- écrire une fonction void Equilibre (AVL *a) qui choisit et appelle les fonctions de rotation afin d'équilibrer l'arbre a. On supposera que les fils de a sont des AVL;
- écrire une fonction void Insertion(AVL *a, int x) qui effectue l'insertion de l'entier x dans l'AVL a. On effectuera les modifications de la balance des nœuds ainsi que les rotations, si nécessaire, afin de conserver la structure d'arbre AVL.