1) a) Let
$$M = \begin{bmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ 4 & 16 \end{bmatrix}$$
. Then

$$MM^{T} = \begin{bmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ 4 & 16 \end{bmatrix} P = \begin{bmatrix} 2 & 6 & 12 & 20 \\ 6 & 20 & 42 & 72 \\ 12 & 42 & 90 & 156 \\ 20 & 72 & 156 & 272 \end{bmatrix}$$

and
$$M^{T}M = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ 4 & 16 \end{bmatrix} = \begin{bmatrix} 30 & 100 \\ 100 & 354 \end{bmatrix}$$

b) We need to show that $\overrightarrow{AA} = (\overrightarrow{AA})^T$ and $\overrightarrow{AA} = (\overrightarrow{AA})^T$. These are based on properties of matrix transposes. (i.e., $(BC)^T = C^TB^T$) and $(B^T)^T = B$).

$$(i.e., (BC) = A^{T}(A^{T})^{T} = A^{T}A.$$

$$(A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A.$$
and
$$(AA^{T})^{T} = (A^{T})^{T}A^{T} = AA^{T}.$$

2) Observe that
$$d_1 = c_1 f_1(1) + c_2 f_2(2) + \dots + c_8 f_8(1)$$

$$d_2 = c_1 f_1(2) + c_2 f_2(2) + \dots + c_8 f_8(2)$$

$$\vdots$$

$$d_8 = c_1 f_1(8) + c_2 f_2(8) + \dots + c_8 f_8(8)$$

$$\vec{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_8 \end{bmatrix}$$

$$\vec{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{bmatrix} = \underbrace{f_1(2)}_{f_2(2)} \underbrace{f_1(8)}_{f_2(2)}$$

$$F = \begin{bmatrix} f_1(1) & f_2(1) & \cdots & f_8(1) \\ f_2(2) & f_2(2) & \cdots & f_8(2) \\ \vdots & \vdots & \vdots & \vdots \\ f_1(8) & f_2(8) & \cdots & f_8(8) \end{bmatrix} \text{ and } \vec{C} = \begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ C_8 \end{bmatrix}$$

and
$$\vec{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_8 \end{bmatrix}$$

The problem says that given any $\vec{d} \in \mathbb{R}^8$, one can gird $\vec{c} \in \mathbb{R}^8$ such that $\vec{F}\vec{c} = \vec{d}$. That is, \vec{F} is of full rank, or $C(\vec{F}) = \mathbb{R}^8$.

=) F is invertible.

a) determines 2 uniquely.

b)

We know that \overrightarrow{F} any $\overrightarrow{d} \in \mathbb{R}^s$, there exists $\overrightarrow{c} \in \mathbb{R}^s$ such that $\overrightarrow{d} = \overrightarrow{F} \overrightarrow{d}$.

Hence, $F^1 = A$ and $A^1 = F$.

$$(\overline{A}^{1})_{ij} = F_{ij} = f_{j}(i).$$

3.

3) Let R be a nonsingular upper-triangular matrix. Show that R is also apper-triangular.

Since R is invertible, there exists a mothix $A \in \mathbb{R}^{m\times m}$ such that $AR = I_{m\times m}$. (That is, $A = \mathbb{R}^{1}$.)

Let it be the jth column of R and of be the jth column of A. Then

$$\begin{cases}
\vec{a_1} r_{11} = \vec{e_1} \\
\vec{a_1} r_{12} + \vec{a_2} r_{22} = \vec{e_2}.
\end{cases}$$
(*)
$$\vec{a_1} r_{1j} + \vec{a_2} r_{2j} + \dots + \vec{a_j} r_{jj} = \vec{e_j}.$$

$$\vec{a_1} r_{1m} + \vec{a_2} r_{2m} + \dots + \vec{a_m} r_{mm} = \vec{e_m}.$$

where $\{\vec{e}_1^2, \vec{e}_2^2, \dots, \vec{e}_m^m\}$ is the standard basis of \mathbb{R}^m . Solving the system (*), we obtain

 $\vec{a}_{1} = \vec{e}_{1} / \vec{r}_{1L}$

3, = (2- 0, 1/2)/0 /22.

$$\vec{a}_{j} = (\vec{e}_{j} - \sum_{k=1}^{j-1} \vec{a}_{k} \, \vec{r}_{kj}) / r_{jj}$$

for 5= 4, --, m.

So, we see that for each column vector \vec{a} , it has zeros on the components that have indexes larger than j,

=> A is an upper triangular matrix.

4.

4) Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$.

Show that A has full rank if and only if given any \overrightarrow{z} , $\overrightarrow{y} \in \mathbb{R}^n$ such that $\overrightarrow{z} \ne \overrightarrow{y}$, then $A\overrightarrow{z} \ne A\overrightarrow{y}$.

Proof. (=)) Suppose A is of full rank. Then

Null $(A) = \{0\}$.

Then take any vectors \overrightarrow{z} and \overrightarrow{y} in \mathbb{R}^n such that $\overrightarrow{z} \neq \overrightarrow{y}$, i.e., $\overrightarrow{z} - \overrightarrow{y} \neq 0$.

 $A(\overrightarrow{x}-\overrightarrow{y}) \neq 0$ as $\overrightarrow{z}-\overrightarrow{y} \notin Null(A)$. \Rightarrow $A\overrightarrow{z} \neq A\overrightarrow{y}$.

(\Leftarrow) Take any $\vec{z} \in \mathbb{R}^n$ such that $\vec{z} \neq \vec{o}$. Then $A\vec{z} \neq A\vec{o}$.

7) AR + 0.

=) = ₹ € Null(A).

Therefore, $Null(A) = \{0\}$.

: A is of full rank.

2) a)
$$\|x\|_{2} = \sqrt{|x_{1}|^{2} + |x_{2}|^{2} + \dots + |x_{n}|^{2}}$$

b) Suppose that Q is an orthogonal matrix, i.e., $Q^T = Q^{-1}$. Then

$$\|Qx\|_{2}^{2} = \langle Qx, Qx \rangle.$$

$$= (Qx)^{T} Qx.$$

$$= x^{T} Q^{T} Qx.$$

$$= x^{T} T x.$$

$$= x^{T} x.$$

$$= |x|_{2}^{2}.$$

=) ||Qx||2 = ||x||2.

c) Since Q is an orthogonal matrix (why?) $\|Q\chi\|_2 = \|\chi\|_2 = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{10},$

3) For i, i et A = I + Uv.

BA = (I + XUV) (I+ UVT)

$$= I + (1+ x + x(x,u)) uv^{T}.$$

. If $\langle v, u \rangle \neq -1$, then take $v = \frac{-1}{1 + \langle v, u \rangle}$

we obtain

 \Rightarrow A is nonsingular and $A = I + \frac{-1}{1 + (v, u)} uv^T$.

3. >> || Ell₂ ≤ || vol₂ || ul₂. we can achieved "=" by Taking $x = \frac{v}{\|v\|_2}$, then $\|x\|_2 = 1$, and || Ex || = || uv x || = || u v v || || = = | u | v | 2 | 12. - II volla II ulla. 11E1/2 = 11v1/2 11u1,. It's also true for IEIL= IIVILF II UILF. We observe that $E = [v_1 \vec{u} \quad v_2 \vec{u} \quad ... \quad v_n \vec{u}]$ 1 E 1 = 1 v_1 v 1 2 + 1 v_2 v 1 + ... + 1 v_1 v 1 2 Then, $= |v_1|^2 \|u\|_2^2 + |v_2|^2 \|\overline{u}\|_2^2 + \dots + |v_n|^2 \|\overline{u}\|_2^2$ $= (|v_1|^2 + |v_2|^2 + \dots + |v_n|^2) ||\vec{u}||_2^2.$ = 121, 121, .

Note that $\|v\|_2 = \|v\|_F \|v\|_F = \|v\|_F$.

$$A = \begin{bmatrix} -2 & 3 & 2 \\ -4 & 5 & 1 \\ 1 & -2 & 4 \end{bmatrix}$$

 $||A||_{1} = \max \{ -12 + -4 + 1, |3| + |5| + |-2|, |2| + |11| + |4| \}$ = max { 7, 10, 7]

= 10

 $\|A\|_{\infty} = \max\{|-2|+|3|+|2|, |-4|+|5|+|1|, |1|+|-2|+|4|\}.$ $= \max\{7, 10, 7\}$

= 10.

MAN = (2 max (ATA) =) will not a will learn how to find it later.

 $\|A\|_{F} = (1-2)^{2} + |3|^{2} + |2|^{2} + |4|^{2} + |5|^{2} + |4$ = 80.

6) Given A∈ R^{mxn} with m≥n, show that A'A is nonsingular if and only if A has full rank.

Pf: (=>) Suppose A^TA is nonsingular. If $x \in \mathbb{R}^n$ such that Ax = 0, then

AAZ = AO.

AAx = O.

=) $x \in Null(ATA)$.

Since \overrightarrow{AA} is nonsingular, x = 0.

Null(A) = {03. => A is of full rank.

(5)

(\Leftarrow) Suppose A is of full rank. Let $x \in \text{Null}(AA)$, then AAx = 0. $\Rightarrow Ay = 0$, where y = Ax. $\Rightarrow y$ is orthogonal to columns of A. But $y \in \text{range}(A)$.

 \Rightarrow y=0.

-> Az = 0

 \Rightarrow $\chi = 0$.

:. Null (ATA) = {03.

.. ATA is nonsingular.

7) Will learn this week (Week 3).