# Phép Tính Tích Phân Hàm Nhiều Biến

Nguyễn Thị Hiên

Đại Học Khoa Học Tự Nhiên Đại Học Quốc Gia TP HCM Khoa Toán-Tin Học

Ngày 16 tháng 12 năm 2021

# Nôi Dung

- Tích phân bôi 2 (tích phân kép)
  - Đinh nghĩa tích phân kép. Điều kiên khả tích
  - Tính chất của tích phân kép
  - Cách tính tích phân kép. Đổi thứ tu lấy tích phân
  - Đổi biến số lấy tích phân kép. Tính tích phân theo tọa độ cưc
- Tích phân bôi 3
  - Định nghĩa tích phân bội 3. Điều kiên khả tích
  - Cách tính tích phân bội 3
  - Tính chất của tích phân bôi 3
  - Đổi biến số lấy tích phân bội 3. Tính tích phân theo tọa độ tru, toa đô cầu
    - Tính tích phân theo tọa độ trụ
    - Tính tích phân theo toa đô cầu
- Ứng dung của tích phân bôi
  - Tính khối lương của bản phẳng hoặc vật thể
  - Nguyễn Thi Hiện

### Nhắc lại định nghĩa về tích phân

Cho f(x) xác định trong đoạn [a,b], ta chia [a,b] thành n đoạn  $[x_{i-1},x_i]$  với độ rộng  $\Delta x=(b-a)/n$  và chọn  $x_i^*$  là những điểm chính giữa của mỗi khoảng nhỏ, khi đó ta có:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$



#### Định nghĩa

Trong trường hợp  $\mathbb{R}^2$ , chúng ta xét một hàm f trên hình chữ nhật sau:

$$R = [a, b] \times [c, d]$$



Ta tính thể tích của miền

$$S = \{(x, y, z) \in \mathbb{R}^3 | 0 \le z \le f(x, y), (x, y) \in R\}$$

$$R_{ij} = [xi-1, x_i] \times [y_{i-1}, y_i]$$





$$V = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*, y_{ij}^*) \Delta A$$

với 
$$\Delta A = \Delta x.\Delta y$$

Tích phân bội hai của f trên miền R là

$$\iint_{R} f(x,y)dA = \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

nếu giới hạn tồn tại.

Tích phân bội hai của f trên miền R là

$$\iint_{R} f(x,y)dA = \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

nếu giới hạn tồn tại.

Nếu  $f(x,y) \ge 0$ , ta có thể tích V của miền xác định bởi hình chữ nhật R và mặt phẳng z = f(x,y) là

$$V = \iint_R f(x, y) dA$$

- ♠ Nếu  $f(x,y) \ge g(x,y)$  với mọi  $(x,y) \in R$ , ta có

$$\iint_{R} f(x,y) dA \ge \iint_{R} g(x,y) dA$$

Cho f(x, y) là hàm số hai biến xác định trên hình chữ nhật  $R = [a, b] \times [c, d]$ ,

$$S = \iint_{R} f(x, y) dxdy = \int_{a}^{b} \int_{c}^{d} f(x, y) dydx$$

Cho f(x, y) là hàm số hai biến xác định trên hình chữ nhật  $R = [a, b] \times [c, d]$ ,

$$S = \iint_{R} f(x, y) dxdy = \int_{a}^{b} \int_{c}^{d} f(x, y) dydx$$

Tính

$$A(x) = \int_{c}^{d} f(x, y) dy$$

Cho f(x, y) là hàm số hai biến xác định trên hình chữ nhật  $R = [a, b] \times [c, d]$ ,

$$S = \iint_{R} f(x, y) dx dy = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

Tính

$$A(x) = \int_{c}^{a} f(x, y) dy$$

Tính

$$S = \int_{a}^{b} A(x) dx = \int_{a}^{b} \left[ \int_{c}^{d} f(x, y) dy \right] dx$$

#### Ví dụ 1

Tính các tích phân

a)

$$\int_0^3 \int_1^2 x^2 y dy dx$$

#### Ví dụ 1

#### Tính các tích phân

a)

$$\int_0^3 \int_1^2 x^2 y dy dx$$

b)

$$\int_{1}^{2} \int_{0}^{3} x^{2} y dx dy$$

#### Theorem 1 (Định lý Fubini)

Nếu f là hàm liên tục trên hình chữ nhật

$$R = \{(x, y) | a \le x \le b, c \le y \le d\}$$

thì

$$\iint_{R} f(x,y) dxdy = \int_{a}^{b} \int_{c}^{d} f(x,y) dydx = \int_{c}^{d} \int_{a}^{b} f(x,y) dxdy$$
(1)

#### Ví du 2

Tính các tích phân

a)

$$\iint_{B} (x - 3y^2) dA$$

với 
$$R = \{(x, y) | 0 \le x \le 2, 1 \le y \le 2\}.$$

b)

$$\iint_{B} y \sin(xy) dA$$

với 
$$R = [1, 2] \times [0, \pi]$$
.

c) Tìm thể tính miền tạo bởi  $x^2 + 2y^2 + z = 16$  và mặt x = 2, y = 2 với hệ truc toa độ Oxyz.

#### Lưu ý

Nếu f(x,y) = g(x)h(y) và  $R = [a,b] \times [c,d]$ , theo định lý Fubini ta có:

$$\iint_{R} g(x)h(y)dA = \int_{a}^{b} g(x)dx \int_{c}^{d} h(y)dy$$

với 
$$R = [a, b] \times [c, d]$$

#### Lưu ý

Nếu f(x,y) = g(x)h(y) và  $R = [a,b] \times [c,d]$ , theo định lý Fubini ta có:

$$\iint_{R} g(x)h(y)dA = \int_{a}^{b} g(x)dx \int_{c}^{d} h(y)dy$$

với  $R = [a, b] \times [c, d]$ 

#### Ví dụ 3

Tính

$$\iint_{\mathcal{B}} \sin x \cos y dA$$

với 
$$R = [0, \pi/2] \times [0, \pi/2]$$
.

Định nghĩa một hàm F trên miền R

$$F(x,y) = \begin{cases} f(x,y), & (x,y) \in D \\ 0, & (x,y) \in R \setminus D \end{cases}$$

Khi đó

$$\iint_{B} F(x,y)dA = \iint_{D} f(x,y)dA \tag{2}$$

#### Phân miền D thành hai loại sau:

Loại I:

$$D = \{(x, y) | a \le x \le b, g_1(x) \le y \le g_2(x)\}$$







#### Phân miền D thành hai loại sau:

#### Loại I:

$$D = \{(x, y) | a \le x \le b, g_1(x) \le y \le g_2(x)\}$$







#### Loại II:

$$D = \{(x, y)|, h_1(x) \le y \le h_2(x), c \le y \le d\}$$





Nếu f liên tục trên miền D loại I

$$D = \{(x, y) | a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

thì

$$\iint_D f(x,y)dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y)dydx \tag{3}$$

Nếu f liên tục trên miền D loại I

$$D = \{(x, y) | a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

thì

$$\iint_D f(x,y)dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y)dydx \tag{3}$$

Nếu f liên tục trên miền D loại II

$$D = \{(x, y) |, h_1(x) \le y \le h_2(x), c \le y \le d\}$$

thì

$$\iint_{D} f(x,y) dA = \int_{c}^{d} \int_{h_{1}(x)}^{h_{2}(x)} f(x,y) dx dy$$
 (4)

#### Ví du 4

Tính các tích phân kép sau

a)

$$\iint_D (x+2y)dA$$

với D tạo bởi các parabol  $y = 2x^2$  và  $y = 1 + x^2$ .

#### Ví du 4

Tính các tích phân kép sau

a)

$$\iint_D (x+2y)dA$$

với D tao bởi các parabol  $y = 2x^2$  và  $y = 1 + x^2$ .

b) Tính thể tích tạo bởi phần dưới mặt phẳng  $z = x^2 + y^2$  và phần trên miền D trong hệ tọa độ Oxy tạo bởi đường thẳng y = 2x và parabol  $y = x^2$ 

#### Ví dụ 4

Tính các tích phân kép sau

a)

$$\iint_D (x+2y)dA$$

với D tao bởi các parabol  $y = 2x^2$  và  $y = 1 + x^2$ .

- b) Tính thể tích tạo bởi phần dưới mặt phẳng  $z = x^2 + y^2$  và phần trên miền D trong hệ tọa độ Oxy tạo bởi đường thẳng y = 2x và parabol  $y = x^2$
- c) Tính  $\int_0^1 \int_x^1 \sin(y^2) dy dx$

- ♠ Nếu  $f(x,y) \ge g(x,y)$  với mọi  $(x,y) \in D$ , ta có

$$\iint_D f(x,y)dA \ge \iint_D g(x,y)dA$$

- ♠ Nếu  $f(x,y) \ge g(x,y)$  với mọi  $(x,y) \in D$ , ta có

$$\iint_{D} f(x,y) dA \ge \iint_{D} g(x,y) dA$$

• Nếu  $D=D_1\cup D_2$  với  $D_1$  và  $D_2$  giao với nhau bằng rỗng và bị chặn, ta có

$$\iint_D f(x,y)dA = \iint_{D_1} f(x,y)dA + \iint_{D_2} f(x,y)dA$$

- ♦ Nếu  $f(x,y) \ge g(x,y)$  với mọi  $(x,y) \in D$ , ta có

$$\iint_D f(x,y)dA \ge \iint_D g(x,y)dA$$

• Nếu  $D=D_1\cup D_2$  với  $D_1$  và  $D_2$  giao với nhau bằng rỗng và bị chặn, ta có

$$\iint_{D} f(x,y)dA = \iint_{D_1} f(x,y)dA + \iint_{D_2} f(x,y)dA$$

 $\spadesuit$  Nếu hàm f(x,y) = 1 trên miền D, diện tích của D

$$\iint_D 1 dA = A(D)$$

### Tính tích phân theo tọa độ cực

### Tính tích phân kép $\iint_R f(x,y) dA$ với R được biểu diễn dưới dạng



(a) 
$$R = \{(r, \theta) \mid 0 \le r \le 1, 0 \le \theta \le 2\pi\}$$



(b) 
$$R = \{(r, \theta) \mid 1 \le r \le 2, 0 \le \theta \le \pi\}$$

11010010101 1100010100010111110

### Tính tích phân theo tọa độ cực

Vậy R trong hệ tọa độ  $(r, \theta)$  được biến đổi như sau

$$r^2 = x^2 + y^2$$
  $x = r \cos \theta$   $y = r \sin \theta$ 

$$x = r \cos \theta$$

$$y = r \sin \theta$$



### Tính tích phân theo tọa độ cực

Vậy 
$$R = \{(r, \theta) | a \le r \le b, \alpha \le \theta \le \beta\}$$



Nếu f liên tục trên hình chữ nhật theo tọa độ cực  $R = \{(r, \theta) | a \le r \le b, \alpha \le \theta \le \beta\}$  với  $0 \le \beta - \alpha \le 2\pi$  thì

$$\iint_{R} f(x, y) dx dy = \int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r dr d\theta$$
 (5)





#### Ví du 5

- Tính  $\iint_R (3x + 4y^2) dA$  với R là nửa trên mặt phẳng giới hạn bởi các đường tròn  $x^2 + y^2 = 1$  và  $x^2 + y^2 = 4$ .
- 2 Tìm thể tích của khối bị chặn bởi mặt phẳng z = 0 và parabol  $z = 1 x^2 y^2$ .

Nếu f liên tục trên miền tọa độ cực có dạng

$$D = \{(r,0) | \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta)\}$$

thì

$$\iint_{D} f(x, y) dA = \int_{\alpha}^{\theta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r dr d\theta$$
 (6)

#### Ví du 6

- 1 Tính miền diện tích của miền đóng là một cánh hoa hồng  $r = \cos 2\theta$
- 2 Tính thể tích khối dưới mặt phẳng parabol  $z = x^2 + y^2$  trên mặt phẳng xy và nằm trong khối trụ  $x^2 + y^2 = 2x$ .

#### Định nghĩa

Cho hàm f xác định trên một hình hộp chữ nhật

$$B = \{(x, y, z) | a \le x \le b, c \le y \le d, r \le z \le s\}$$



#### Định nghĩa

Tích phân bội ba của hàm f trên hình hộp chữ nhật B

$$\iiint_{B} f(x, y, z) dV = \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \Delta V$$
 (7)

nếu giới hạn tồn tại.



#### Định lý 1 (Định lý Fubini cho tích phân bội 3)

Nếu f liên tục trên hình hộp chữ nhật  $B = [a, b] \times [c, d] \times [r, s]$ , thì

$$\iiint_{B} f(x, y, z) dV = \int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) dx dy dz$$
 (8)

#### Ví dụ 7

• Tính tích phân bội 3 của  $\iiint_B xyz^2 dV$ , với hình hộp chữ nhât B

$$B = \{(x, y, z) | 0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3\}$$

#### Ví dụ 7

• Tính tích phân bội 3 của  $\iiint_B xyz^2 dV$ , với hình hộp chữ nhât B

$$B = \{(x, y, z) | 0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3\}$$

② Tính tích phân bội 3 của  $\iiint_B (xy+z^2)dV$ , với hình hộp chữ nhât B

$$B = \{(x, y, z) | 0 \le x \le 2, 0 \le y \le 1, 0 \le z \le 3\}$$

#### Đinh nghĩa 1

Xét hàm F xác định trên miền B như sau

$$F(x,y,z) = \begin{cases} f(x,y,z), & (x,y,z) \in E \subset B \\ 0, & (x,y,z) \in B \setminus E \end{cases}$$

Khi đó

$$\iiint_{B} F(x, y, z) dV = \iiint_{E} f(x, y, z) dV$$
 (9)

Khi đó ta chia miền E thành hai loại

Loại I:

$$E = \{(x, y, z) | (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\}$$

với D là hình chiếu của E trên mặt phẳng xy.



2 Loại II:

$$E = \{(x, y, z) | (y, z) \in D, u_1(y, z) \le x \le u_2(y, z)\}$$

với D là hình chiếu của E trên mặt phẳng yz.



Loại III:

$$E = \{(x, y, z) | (x, z) \in D, u_1(x, z) \le y \le u_2(x, z)\}$$

với D là hình chiếu của E trên mặt phẳng xz.



#### Cách tính tích phân bội 3 tương ứng

O Loại I:

$$\iiint_{E} f(x,y,z)dV = \iint_{D} \left[ \int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z)dz \right] dA \quad (10)$$

Loại I:

$$\iiint_{E} f(x,y,z)dV = \iint_{D} \left[ \int_{u_{1}(y,z)}^{u_{2}(y,z)} f(x,y,z)dx \right] dA \quad (11)$$

O Loại I:

$$\iiint_{E} f(x,y,z)dV = \iint_{D} \left[ \int_{u_{1}(x,z)}^{u_{2}(x,z)} f(x,y,z)dy \right] dA \quad (12)$$

Với miền E loại một, cách tính cụ thể có hai trường hợp và tương tự cho miền E loại II và loại III.

· Loai la:

$$E = \{(x, y, z) | a \le x \le b, g_1(x) \le y \le g_2(x), u_1(x, y) \le z \le u_2(x, y)\}$$

Khi đó

$$\iiint_{E} f(x, y, z) dV = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) dz dy dx \qquad (13)$$

Loại lb:

$$E = \{(x, y, z) | c \le y \le d, h_1(x) \le y \le h_2(x), u_1(x, y) \le z \le u_2(x, y)\}$$

Khi đó

$$\iiint_{E} f(x, y, z) dV = \int_{c}^{d} \int_{h_{1}(x)}^{h_{2}(x)} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) dz dx dy$$
 (14)

#### Ví du 8

① Tính  $\iiint_E z dV$  với E là khối lăng trụ tam giác tạo bởi 4 mặt phẳng x=0,y=0,z=0 và x+y+z=1

#### Ví du 8

- Tính  $\iiint_E z dV$  với E là khối lăng trụ tam giác tạo bởi 4 mặt phẳng x=0, y=0, z=0 và x+y+z=1
- 2 Tính  $\int_0^1 \int_0^{z^2} \int_0^{y-z} (2x-y) dx dy dz$

#### Tọa độ trụ

Một điểm P(x, y, z) trong hệ tọa độ Oxyz được biểu diễn trong hệ tọa độ trụ như sau:

$$x = r \cos \theta$$
  $y = r \sin \theta$   $z = z$  (15)

Với

$$r^2 = x^2 + y^2$$
  $\tan \theta = \frac{y}{x}$   $z = z$  (16)



### Tính tích phân theo tọa độ trụ I

Giả sử E miền loại I có hình chiếu D trên mặt xy, hàm f liên tục

$$E = \{(x, y, z) | (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\}$$

với *D* biểu diễn như sau:

$$D = \{(r, \theta) | \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta)\}$$

## Tính tích phân theo tọa độ trụ II



### Tính tích phân theo tọa độ trụ III

$$\iiint_{E} f(x,y,z)dV = \iint_{D} \left[ \int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) \right] dA$$
 (17)

Cụ thể,

$$\iiint_{E} f(x, y, z) dV = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r\cos\theta, r\sin\theta)}^{u_{2}(r\cos\theta, r\sin\theta)} f(r\cos\theta, r\sin\theta, z) r dz dr d\theta$$
(18)

## Tính tích phân theo tọa độ trụ

#### Ví du 9

## Tính tích phân theo tọa độ trụ

#### Ví du 9

- **4** Tính  $\iiint_E z dV$  với E là miền bị giới hạn bởi parabol  $z = x^2 + y^2$  và mặt phẳng z = 4.

# Tọa độ cầu

Xét điểm P(x,y,z) trong hệ trục tọa độ Oxyz được biểu diễn qua hệ tọa độ cầu



$$\mathbf{X} = \rho \sin \phi \cos \theta$$
  $\mathbf{Y} = \rho \sin \phi \sin \theta$   $\mathbf{Z} = \rho \cos \phi$ 

Với

$$\rho^2 = x^2 + y^2 + z^2$$

và  $0 \le \phi \le \pi$ 

# Tính tích phân bội ba trong tọa độ cầu I

Xét f liên tục trong miền E được biểu diễn trong tọa độ cầu

$$E = \{(\rho, \theta, \phi) | a \le \rho \le b, \alpha \le \theta \le \beta, c \le \phi \le d\}$$

# Tính tích phân bội ba trong tọa độ cầu II



# Tính tích phân bội ba trong tọa độ cầu III

Công thức tính tích phân bội ba trong tọa độ cầu

$$\iiint_{E} f(x, y, z) dV = \int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d\rho d\theta d\phi$$
(19)

## Tính tích phân bội ba trong tọa độ cầu

Công thức được mở rộng với miền E

$$E = \{(\rho, \theta, \phi) | \alpha \le \theta \le \beta, c \le \phi \le d, g_1(\theta, \phi) \le \rho \le g_2(\theta, \phi)\}$$

# Tính tích phân bội ba trong tọa độ cầu

Công thức được mở rộng với miền E

$$E = \{(\rho, \theta, \phi) | \alpha \le \theta \le \beta, c \le \phi \le d, g_1(\theta, \phi) \le \rho \le g_2(\theta, \phi)\}$$

#### Ví du 10

• Tính  $\iiint_B e^{(x^2+y^2+z^2)^{3/2}} dV$  với B là quả cầu đơn vị

$$B = \{(x, y, z)|x^2 + y^2 + z^2 \le 1\}$$

# Tính tích phân bội ba trong tọa độ cầu

Công thức được mở rộng với miền E

$$E = \{(\rho, \theta, \phi) | \alpha \le \theta \le \beta, c \le \phi \le d, g_1(\theta, \phi) \le \rho \le g_2(\theta, \phi)\}$$

#### Ví du 10

• Tính  $\iiint_B e^{(x^2+y^2+z^2)^{3/2}} dV$  với B là quả cầu đơn vị

$$B = \{(x, y, z)|x^2 + y^2 + z^2 \le 1\}$$

• Sử dụng tọa độ cầu tính thể tích của khối nằm trên hình nón  $z = \sqrt{x^2 + y^2}$  và dưới quả cầu  $x^2 + y^2 + z^2 = z$ 

# Tính khối lượng của bản phẳng không đồng chất

Cho khối lượng riêng của một bản là hàm số liên tục  $\rho(x,y)$ . Khối lượng của bản được tính bằng

$$m = \iint_{D} \rho(x, y) dx dy \tag{20}$$

# Tính khối lượng của bản phẳng không đồng chất

Cho khối lượng riêng của một bản là hàm số liên tục  $\rho(x, y)$ . Khối lượng của bản được tính bằng

$$m = \iint_{D} \rho(x, y) dx dy \tag{20}$$

#### Ví du 11

Tính khối lượng của bản phẳng chiếm miền D xác định bởi  $x^2 + y^2 - R^2 \le 0, x \ge 0, y \ge 0$  biết khối lượng riêng  $\rho(x, y) = xy$ .

# Moment quán tính của bản phẳng

Cho bản phẳng chiếm một miền D trong mặt phẳng Oxy và có khối lượng riêng  $\rho(x,y)$ . Các công thức tính moment quán tính của bản phẳng đối với trục Ox, Oy, và gốc tọa độ lần lượt là

$$I_{x} = \iint_{D} y^{2} \rho(x, y) dx dy$$
 (21)

$$I_{y} = \iint_{D} x^{2} \rho(x, y) dx dy$$
 (22)

$$I_0 = \iint_D (x^2 + y^2) \rho(x, y) dx dy$$
 (23)

# Moment quán tính của bản phẳng

Cho bản phẳng chiếm một miền D trong mặt phẳng Oxy và có khối lượng riêng  $\rho(x,y)$ . Các công thức tính moment quán tính của bản phẳng đối với trục Ox, Oy, và gốc tọa độ lần lượt là

$$I_{x} = \iint_{D} y^{2} \rho(x, y) dx dy$$
 (21)

$$I_{y} = \iint_{D} x^{2} \rho(x, y) dx dy$$
 (22)

$$I_0 = \iint_D (x^2 + y^2) \rho(x, y) dx dy$$
 (23)

#### Ví dụ 12

Tính moment quán tính đối với gốc tọa độ của miền tròn D xác định bởi  $x^2 + y^2 - 2Rx \le 0$ , biết khối lượng riêng  $\rho(x,y) = \sqrt{x^2 + y^2}$ 

# Xác định trọng tâm của bản phẳng

Cho bản phẳng chiếm một miền D trong mặt phẳng Oxy và có khối lượng riêng  $\rho(x,y)$ . Tọa độ trọng tâm G của bản phẳng lần lượt là

$$x_G = \frac{\iint_D x \rho(x, y) dx dy}{\iint_D \rho(x, y) dx dy}$$
 (24)

$$y_G = \frac{\iint_D y \rho(x, y) dx dy}{\iint_D \rho(x, y) dx dy}$$
 (25)

# Xác định trọng tâm của bản phẳng

Cho bản phẳng chiếm một miền D trong mặt phẳng Oxy và có khối lượng riêng  $\rho(x,y)$ . Tọa độ trọng tâm G của bản phẳng lần lượt là

$$x_G = \frac{\iint_D x \rho(x, y) dx dy}{\iint_D \rho(x, y) dx dy}$$
 (24)

$$y_G = \frac{\iint_D y \rho(x, y) dx dy}{\iint_D \rho(x, y) dx dy}$$
 (25)

#### Ví dụ 13

Xác định trọng tâm G của một bản đồng chất xác định bởi  $x^2 + y^2 - 1 \le 0, x \ge 0, y \ge 0.$