Steps to take QAOA problem to Hamiltonian

Organize binary variables X; to new set

O Replace binary variables X; to new set of variables Zi & \{-1,1} via \(\times = \frac{1-2i}{2} \)

of variables Zi & \{-1,1} via \(\times = \frac{1-2i}{2} \)

of the math.

Replace binary to spin variables in max-out pair indicator equation indicator equation in optimization problem

optimization $X : QX = \sum_{i,j} Q_{i,j} X_i X_j$ problem equation $= \frac{1}{4} \sum_{i,j} Q_{i,j} (1-Z_i) (1-Z_j)$ $= \frac{1}{4} \sum_{i,j} Q_{i,j} (1-Z_i) (1-Z_j)$ math $= \frac{1}{4} \sum_{i,j} Q_{i,j} X_i Z_j - \frac{1}{4} \sum_{i,j} (Q_{i,j} + Q_{j,i}) Z_i + \frac{n^4}{4}$

math = \frac{1}{4} \(\frac{1}{4} \) \(\frac{1}

min xTQX \(\rightarrow \text{min } Z^TQZ + b^TZ \\ \text{xe}\{0,1\}^n\\ \text{xe}\{0,1\}^n\\ \text{to obtain quantum for mulation of the problem, \(\frac{7}{2}i = \big(0,-1) \\ \text{promote } z_i \text{variables to Pavli Z matrix such as}

Substitute the matrices to obtain following Hamiltonian

 $H_c = \sum_{i,j} Q_{i,j} Z_i Z_j + \sum_i b_i Z_i$