In [37]:

```
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as sps
import math
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
%matplotlib inline
```

In [38]:

```
size=100
gamma = 0.95
X = sps.norm.rvs(size=100, loc=0, scale=1)
```

Строим доверительные интервалы:

(c) Для a при неизвестном σ^2 :

$$\left(\overline{X}-\sqrt{rac{\overline{S}^2}{n-1}}z_{rac{1+\gamma}{2}},\overline{X}+\sqrt{rac{\overline{S}^2}{n-1}}z_{rac{1+\gamma}{2}}
ight)$$
, где $z_{rac{1+\gamma}{2}}$ -

квантиль уровня $\frac{1+\gamma}{2}$ из

распределения Стьюдента T_{n-1}

```
In [39]:
```

Построим график:

In [40]:

Out[40]:

<matplotlib.collections.PolyCollection at 0x2208a60eda0>

(d) Для σ^2 при неизвестном a :

$$\left(rac{(n-1)\overline{S}^2}{z_{rac{1+\gamma}{2}}},rac{(n-1)\overline{S}^2}{z_{rac{1-\gamma}{2}}}
ight)$$
, где $z_{rac{1+\gamma}{2}}$ - квантиль уровня $rac{1+\gamma}{2}$ из

распределения χ^2_{n-1}

In [41]:

```
quant_l = [sps.chi2.ppf((1+gamma)/2, i - 1) for i in range(2, size, 1)]
quant_r = [sps.chi2.ppf((1-gamma)/2, i - 1) for i in range(2, size, 1)]
left = [((X[:i]**2).mean()-(X[:i].mean())**2)*(i-1)/quant_l[i-2] for i in range(2, size, 1)]
right = [((X[:i]**2).mean()-(X[:i].mean())**2)*(i-1)/quant_r[i-2] for i in range(2, size, 1)]
```

Построим график:

In [42]:

```
plt.figure(figsize=(8, 7))
plt.ylim(0, 2)
plt.matplotlib.pyplot.fill_between(range(size-2), left, right, facecolor='green',
alpha = 0.7)
```

Out[42]:

<matplotlib.collections.PolyCollection at 0x2208a818dd8>

(a) Для a при известном σ^2 :

$$\Big(\overline{X}-rac{\sigma}{\sqrt{n}}z_{rac{1+\gamma}{2}},\overline{X}+rac{\sigma}{\sqrt{n}}z_{rac{1+\gamma}{2}}\Big)$$
, где $z_{rac{1+\gamma}{2}}$ - квантиль уровня $rac{1+\gamma}{2}$ из

стандартного нормального распределения

In [43]:

```
quant = sps.norm.ppf((1.+gamma)/2, loc=0, scale=1)
print(quant)

left = [X[:i].mean() - quant/math.sqrt(i) for i in range(1, size, 1)]
right = [X[:i].mean() + quant/math.sqrt(i) for i in range(1, size, 1)]
```

1.95996398454

Построим график:

In [44]:

Out[44]:
<matplotlib.collections.PolyCollection at 0x2208aa786d8>

(b) Для σ^2 при известном a :

$$\left(rac{\sum_{i=1}^{n}\left(X_{i}-\mu
ight)^{2}}{z_{rac{1+\gamma}{2}}},rac{\sum_{i=1}^{n}\left(X_{i}-\mu
ight)^{2}}{z_{rac{1-\gamma}{2}}}
ight)$$
, где $z_{rac{1+\gamma}{2}}$, $z_{rac{1-\gamma}{2}}$ квантили уровней $\frac{1+\gamma}{2}$, $\frac{1-\gamma}{2}$ соответственно из распределения χ_{n}^{2}

In [45]:

```
quant_l = [sps.chi2.ppf((1+gamma)/2, i) for i in range(1, size, 1)]
quant_r = [sps.chi2.ppf((1-gamma)/2, i) for i in range(1, size, 1)]
left = [sum(X[:i]**2)/quant_l[i-1] for i in range(1, size, 1)]
right = [sum(X[:i]**2)/quant_r[i-1] for i in range(1, size, 1)]
```

Построим график

In [46]:

Out[46]:

<matplotlib.collections.PolyCollection at 0x2208a6d7a20>

Вывод: доверительные интервалы для мат ожидания с известной дисперсией и для дисперсии с известным матожиданием получаются лучше, чем когда матожидание и дисперсия не известны

(e) Доверительная область для (a, σ^2) :

$$\left(0,rac{ns^2}{z_{1-\sqrt{\gamma}}}
ight) imes\left(\overline{X}-\sqrt{rac{s^2z_{\sqrt{\gamma}}}{z_{1-\sqrt{\gamma}}}},\overline{X}+\sqrt{rac{s^2z_{\sqrt{\gamma}}}{z_{1-\sqrt{\gamma}}}}
ight)$$
, где z

- квантили распределения \mathcal{X}_{n-1}^2

In [52]:

Строим 3D график:

```
In [58]:
```

```
axis = []
for i in range(size-2):
    # координаты прямоугольника
    axis_Y = [left_a[i], left_a[i], right_a[i], right_a[i]]
    axis_X = [left_sigma[i], right_sigma[i], right_sigma[i], left_sigma[i]]
    axis_Z = [i, i, i, i]
    axis_Z = [i, i, i, i]
```

In [65]:

```
fig = plt.figure(figsize=(16, 10))
ax = fig.gca(projection='3d')

ax.add_collection3d(Poly3DCollection(axis, alpha=0.7))
ax.set_xlim3d(-5, 5)
ax.set_zlim3d(2, size)
ax.set_ylim3d(0, 30)

plt.show()
```


Видно, что с ростом элементов выборки доверительная область очень сильно уменьшается