Раздел 3

Нечеткие множества

Лекция 7

Операции над нечеткими подмножествами

- •1. Понятие нечеткого подмножества. Функция принадлежности.
- •2. Логические операции над нечеткими подмножествами.
- •3. Алгебраические операции над нечеткими подмножествами.

Литература

- 1. Л. Заде. Понятие лингвинистической переменной и его применение к принятию приближенных решений. М., 1976.
- 2. Кофман А. Введение в теорию нечетких множеств. М., 1982.

Лотфи Аскер Заде 1921-2017

1965 г. – *"Fuzzy sets"*

Основная идея Заде: человеческий способ рассуждений, опирающийся на естественный язык, не может быть описан традиционной математикой, которой присуща однозначность интерпретации, а все, что связано с использованием естественного языка, имеет многозначную интерпретацию.

Программа Заде: построение новой математической дисциплины, в основе которой лежит не классическая теория множеств, а теория нечетких множеств.

1973 г. – теория нечеткой логики,

позднее – теория мягких вычислений (soft computing), теория вербальных вычислений и представлений.

STUDIES IN FUZZINESS
AND SOFT COMPUTING

Lotfi A. Zadeh

Computing with Words

Principal Concepts and Ideas

Теория нечетких множеств — математическая формализация нечеткой информации с целью ее использования при построении математических моделей сложных систем.

Основа понятия нечеткого множества — представление о том, что элементы этого множества, обладающие общим свойством, могут обладать им в различной степени и, следовательно, принадлежать этому множеству с различной степенью.

1. Понятие нечеткого подмножества. Функция принадлежности

Пусть E – некоторое множество, $A \subset E$.

 $\forall x \in E$ поставим в соответствие значение

функции $\mu(x) \in [0, 1]$.

Элемент $x \in E$ может:

- не быть элементом A ($\mu(x)=0$);
- быть элементом A в небольшой степени ($\mu(x)$ близко κ 0);
- более или менее принадлежать A ($\mu(x)$ не слишком близко κ 0 и не слишком близко κ 1);

- в значительной степени быть элементом A ($\mu(x)$ близко κ 1);
- быть элементом A ($\mu(x)=1$).

Пример

$$E=\{x_1, x_2, x_3, x_4, x_5\}$$

$$\widetilde{A} = \{(x_1|0,8), (x_2|0), (x_3|0,5), (x_4|1), (x_5|0,2)\}.$$

Пусть E – некоторое множество, $A \subset E$.

$$\mu_A(x) = \begin{cases} 1, ecлu & x \in A, \\ 0, ecлu & x \notin A. \end{cases}$$

- характеристическая функция множества A.

Пример
$$E = \{x_1, x_2, x_3, x_4, x_5\}, A = \{x_2, x_3, x_5\}.$$

$$A = \{(x_1|0), (x_2|1), (x_3|1), (x_4|0), (x_5|1)\}.$$

Пусть $E \neq \emptyset$.

• Определение 1

Нечетким подмножеством \widetilde{A} множества E называется множество упорядоченных пар, составленных из элементов множества E и соответствующих им значений функции $\mu(x)$:

$$\widetilde{A}=\{(x|\mu_{\widetilde{A}}(x))\}\ \forall x{\in}E,$$
 где $\mu_{\widetilde{A}}(x){\in}[0,1].$ $\widetilde{A}{\subset}E$

- Множество E называется универсальным (базовым);
- Функция $\mu_{\widetilde{A}}(x)$ называется функцией принадлежности нечеткого подмножества \widetilde{A} ;
- Значение функции $\mu_{\widetilde{A}}(x)$ для каждого конкретного $x \in E$, называется степенью принадлежности элемента x нечеткому подмножеству \widetilde{A} .

Если E – бесконечное, то нечеткое подмножество символически записывают в виде:

$$\widetilde{A} = \int \frac{\mu_{\widetilde{A}}(x)}{x} dx$$

Если функция принадлежности

$$\mu_{\tilde{A}}(x) = 0 \quad \forall x \in E,$$

то нечеткое подмножество \widetilde{A} называется пустым.

Носителем нечеткого подмножества \widetilde{A} называется подмножество универсального множества E, для элементов которого функция принадлежности строго больше нуля.

Обозначение: $S_{\widetilde{A}}$ или $supp\widetilde{A}$

$$S_{\widetilde{A}} = \{x \in E: \ \mu_{\widetilde{A}}(x) > 0\}$$

Высотой нечеткого подмножества \widetilde{A} называется величина

$$h_{\tilde{A}} = \sup_{x \in E} \mu_{\tilde{A}}(x)$$

Нечеткое подмножество называется

- нормальным, если $h_{\tilde{A}}=1$
- субнормальным, в противном случае

Множеством идеальных элементов нечеткого подмножества \widetilde{A} называется множество

$$I_{\widetilde{A}} = \{x \in E: \ \mu_{\widetilde{A}}(x) = h_{\widetilde{A}}\}$$

Ядром нечеткого подмножества \widetilde{A} называется множество

core
$$\widetilde{A} = \{x \in E: \mu_{\widetilde{A}}(x) = 1\}$$

Нечеткое подмножество называется унимодальным, если $\exists ! x \in E \ \mu_{\widetilde{A}}(x) = 1$, тогда $x - \text{мода} \widetilde{A}$.

Границей нечеткого подмножества \widetilde{A} называется множество

front
$$\widetilde{A} = \{x \in E: 0 < \mu_{\widetilde{A}}(x) < 1\}$$

Множеством α – уровня нечеткого подмножества \widetilde{A} называется множество всех таких элементов универсального множества E, степень принадлежности которых нечеткому подмножеству \widetilde{A} больше или равна α :

$$\widetilde{A}_{lpha} = \{x \in E \colon \ \mu_{\widetilde{A}}(x) \geq lpha \},$$
 где $0 \leq lpha \leq 1$

Множество α – уровня называют также сечением нечеткого подмножества \widetilde{A} :

- при $\mu_{\tilde{A}}(x) \ge \alpha$ говорят о *сильном* сечении;
- при $\mu_{\tilde{A}}(x) > \alpha$ говорят о *слабом* сечении.

Элементы $x \in E$, для которых $\mu_{\widetilde{A}}(x) = 0.5$ называются точками перехода нечеткого подмножества.

Разложение (декомпозиция) нечеткого подмножества по его множествам уровня:

$$\widetilde{A} = \sum_{\alpha} \alpha \widetilde{A}_{\alpha}$$

2. Логические операции

Пусть E – универсальное множество, $\widetilde{A}, \widetilde{B}$ – нечеткие подмножества E.

• Определение 9

Подмножество \widetilde{A} содержится в \widetilde{B} , если

$$\forall x \in E \ \mu_{\widetilde{A}}(x) \leq \mu_{\widetilde{B}}(x)$$

Обозначение: $\widetilde{A} \subset \widetilde{B}$.

Говорят, что \widetilde{B} доминирует над \widetilde{A} .

Два нечетких подмножества \widetilde{A} и \widetilde{B} равны, если

$$\forall x \in E \quad \mu_{\tilde{A}}(x) = \mu_{\tilde{B}}(x)$$

Обозначение: $\widetilde{A} = \widetilde{B}$

Дополнением нечеткого подмножества A называется нечеткое подмножество $\tilde{\overline{A}}$ с функцией принадлежности

$$\forall x \in E \ \mu_{\widetilde{A}}(x) = 1 - \mu_{\widetilde{A}}(x)$$

Пересечением двух нечетких подмножеств \widetilde{A} и \widetilde{B} называется нечеткое подмножество множества E с функцией принадлежности вида:

$$\forall x \in E \ \mu_{\tilde{A} \cap \tilde{B}}(x) = \min_{x} \{ \mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x) \}$$

Обозначение: $\widetilde{A} \cap \widetilde{B}$, $\widetilde{A} \wedge \widetilde{B}$

Объединением двух нечетких подмножеств \widetilde{A} и \widetilde{B} называется нечеткое подмножество множества E с функцией принадлежности вида:

$$\forall x \in E \ \mu_{\tilde{A} \cup \tilde{B}}(x) = \max_{x} \{ \mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x) \}$$

Обозначение: $\widetilde{A} \cup \widetilde{B}$, $\widetilde{A} \vee \widetilde{B}$

• Определение 14

Разностью двух нечетких подмножеств \widetilde{A} и \widetilde{B} называется нечеткое подмножество $\widetilde{A} - \widetilde{B} = \widetilde{A} \cap \overline{\widetilde{B}}$ множества E с функцией принадлежности вида:

$$\forall x \in E \ \mu_{\tilde{A}-\tilde{B}}(x) = \min_{x} \{ \mu_{\tilde{A}}(x), 1 - \mu_{\tilde{B}}(x) \}$$

• Определение 15

Дизъюнктивной суммой двух

нечетких подмножеств \widetilde{A} и \widetilde{B} называется нечеткое подмножество

$$\widetilde{A} \oplus \widetilde{B} = (\widetilde{A} \cap \widetilde{\overline{B}}) \cup (\widetilde{\overline{A}} \cap \widetilde{B})$$

множества E с функцией принадлежности вида:

$$\forall x \in E \quad \mu_{\widetilde{A} \oplus \widetilde{B}}(x) =$$

$$= \max_{X} \left[\min_{X} \left\{ \mu_{\widetilde{A}}(x), 1 - \mu_{\widetilde{B}}(x) \right\}, \min_{X} \left\{ 1 - \mu_{\widetilde{A}}(x), \mu_{\widetilde{B}}(x) \right\} \right]$$

- коммутативность
- ассоциативность
- идемпотентность
- дистрибутивность
- инволютивность
- законы де Моргана

•
$$\widetilde{A} \cap \emptyset = \emptyset$$

•
$$\widetilde{A} \cap E = \widetilde{A}$$

•
$$\widetilde{A} \cup E = E$$

•
$$\widetilde{A} \cup \emptyset = \widetilde{A}$$

СР Верно ли, что:

$$\widetilde{A} \cap \widetilde{\overline{A}} = \emptyset$$

$$\widetilde{A} \cup \widetilde{\overline{A}} = E$$

3. Алгебраические операции

Определение 16

Алгебраической суммой нечетких подмножеств \widetilde{A} u \widetilde{B} универсального множества E называется нечеткое подмножество $\widetilde{A}+\widetilde{B}$ множества E, с функцией принадлежности вида:

$$\forall x \in E \quad \mu_{\widetilde{A}+\widetilde{B}}(x) = \mu_{\widetilde{A}}(x) + \mu_{\widetilde{B}}(x) - \mu_{\widetilde{A}}(x)\mu_{\widetilde{B}}(x)$$

Определение 17

Алгебраическим произведением нечетких подмножеств \widetilde{A} и \widetilde{B} универсального множества E называется нечеткое подмножество $\widetilde{A} \cdot \widetilde{B}$ множества E, с функцией принадлежности вида:

$$\forall x \in E \quad \mu_{\tilde{A} \cdot \tilde{B}}(x) = \mu_{\tilde{A}}(x) \cdot \mu_{\tilde{B}}(x)$$

Свойства алгебраических операций

- коммутативность;
- ассоциативность;
- законы де Моргана;

•
$$\widetilde{A}+\varnothing=\widetilde{A}$$

•
$$\widetilde{A}\cdot \varnothing = \varnothing$$

•
$$\widetilde{A} + E = E$$

•
$$\widetilde{A} \cdot E = \widetilde{A}$$

CP

Что верно?

1.
$$\widetilde{A} + \widetilde{A} = \widetilde{A}$$

2.
$$\widetilde{A} \cdot \widetilde{A} = \widetilde{A}$$

3.
$$\widetilde{A} + (\widetilde{B} \cdot \widetilde{C}) = (\widetilde{A} + \widetilde{B}) \cdot (\widetilde{A} + \widetilde{C})$$

4.
$$\widetilde{A} \cdot (\widetilde{B} + \widetilde{C}) = \widetilde{A} \cdot \widetilde{B} + \widetilde{A} \cdot \widetilde{C}$$

5.
$$\widetilde{A} + \frac{\widetilde{A}}{A} = E$$

6.
$$\widetilde{A} \cdot \widetilde{\overline{A}} = \emptyset$$

При совместном применении логических и алгебраических операций выполняются свойства:

- дистрибутивность · относительно ∪ и относительно ∩
- дистрибутивность + относительно ∪ и относительно ∩

Определение 18

Степенью нечеткого подмножества \widetilde{A} универсального множества E называется нечеткое подмножество \widetilde{A}^{α} множества E, функция принадлежности которого имеет вид:

$$\forall x \in E \quad \mu_{\tilde{A}\alpha}(x) = \mu_{\tilde{A}}^{\alpha}(x), \ \alpha > 0$$

• При $\alpha = 2$ получаем концентрацию нечеткого подмножества \widetilde{A} :

$$CON(\widetilde{A}) = \widetilde{A}^2$$

с функцией принадлежности

$$\forall x \in E \quad \mu_{CON(\tilde{A})}(x) = (\mu_{\tilde{A}}(x))^2$$

• При $\alpha = 0.5$ получаем растяжение нечеткого подмножества \widetilde{A} :

$$DIL(\widetilde{A}) = \widetilde{A}^{0,5}$$

с функцией принадлежности

$$\forall x \in E \quad \mu_{DIL(\widetilde{A})}(x) = (\mu_{\widetilde{A}}(x))^{0.5}$$

Определение 19

Умножением нечеткого подмножества на число $\alpha > 0$, такое, что $\forall x \in E$ $\alpha \max \mu_{\widetilde{A}}(x) \le 1$, называется нечеткое подмножество $\alpha \widetilde{A}$ с функцией принадлежности вида:

$$\forall x \in E \ \mu_{\alpha \widetilde{A}}(x) = \alpha \mu_{\widetilde{A}}(x)$$

