ANALYSIS OF SHORTEST PATH ALGORITHM

Ajay Sagar Parwani

Dijkstra Algorithm

 Dijkstra Algorithm is algorithm used to find the shortest path from Source vertex to all vertices in a weighted graph with positive integer.

Weighted & Un weighted Graph

Applications

- Google Maps
- Robots Navigation
- Urban Traffic Planning
- Sub routine in Advance Algorithms
- Routing of Telecommunication messages
- Network Routing Protocols

What we need?

- There are classes functions and data structures we will need for algorithm
 - Vertex.java
 - MinimumPriorityQueue.java
 - Graph.java
 - ShortestPath.java

Pseudo code

Dijkstra's Pseudo Code

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```

Priority Queue

- Minimum Priority Queue
- Structure similar to BST
 - Insertion = O(log n)
 - Deletion = O(log n)
- Fibonacci Heap : Complexity decreases
 - Insertion = O(1)
 - Deletion = O(log n)

Complexity

- Best-Case Scenario: Occurs when each Node contains single neighbor. (V Log V)
- Worst-Case Scenario: Occurs when each node has a route to all vertices.
- In worst case loop repeats V time for vertices and for vertex we are looping through all its edges. (V*E log V)

Why not negative??

Dijkstra can't handle to compute negative cycle

Bellman Ford

- Designed by Alfonso Shimbel in 1955
- Negative Weight Edges
- Solution Exists for all?

Costing

• Lets Do it ?

Questions?

Thanks