UNIVERSITY OF TORONTO SCARBOROUGH

Department of Computer and Mathematical Sciences Midterm Test, July 2020

STAB52 Introduction to Probability Duration: One hour and fifty minutes

Last Name:	First Name:			
Student number:				

All your work must be presented clearly in order to get credit. Answer alone (even though correct) will only qualify for **ZERO** credit. For questions that require numerical answers, you should provide numerical answers to a reasonable degree of accuracy. Just explaining how do them or just coping down the method of solving them from the class notes/book will not qualify for credit. Please show your work in the space provided; you may use the back of the pages, if necessary, but you MUST remain organized. Show your work and answer in the space provided.

Note: Please note that academic integrity is fundamental to learning and scholarship. The work you submit should be your own. If I or the TAs feel suspicious of your work (e.g. if your work doesn't appear to be consistent with what we have discussed in class), I will not grade your exam. Instead, I will ask you to present your work in an individual quercus session and your grade will be determined based on your presentation.

The are 7 questions and 10 pages including this page. Please check to see you have all the pages.

Good Luck!

Question:	1	2	3	4	5	6	7	Total
Points:	10	10	10	10	10	10	10	70
Score:								

- 1. A and B are two events in a sample space such that P(A)=0.6 , P(B)=0.5 and $P(A\cap B)=0.2$.
 - (a) (3 points) Find $P(A^c \cup B^c)$.

Solution:
$$P(A^c \cup B^c) = P((A \cap B)^c) = 1 - P(A \cap B) = 1 - 0.2 = 0.8$$

(b) (3 points) Find $P(A^c \cap B)$.

Solution:
$$P(A^c \cap B) + P(A \cap B) = P(B)) \implies P(A^c \cup B) = P(B) - P(A \cap B) = P(B)) = 0.5 - 0.2 = 0.3$$

(c) (4 points) Find $P(A^c \cap B^c)$.

Solution:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.6 + 0.5 - 0.2 = 0.9$$
. $P(A^c \cap B^c) = P((A \cup B)^c) = 1 - P(A \cup B) = 1 - 0.9 = 0.1$

2. The continuous random variable X has p.d.f. give by

$$f_X(x) = \begin{cases} cx^2 e^{-4x^3}, & x > 0\\ 0 & \text{otherwise.} \end{cases}$$

(a) (4 points) Find the value of the constant c.

Solution:
$$\int_0^\infty cx^2 e^{-4x^3} dx = c \int_0^\infty \left[-\frac{e^{-4x^3}}{12} \right]' dx = c \left[-\frac{e^{-4x^3}}{12} \right]_0^\infty = c \frac{e^0}{12}$$
 and $c \frac{e^0}{12} = 1 \implies c = 12$

(b) (3 points) Calculate the probability $P(0.5 < X \le 2)$.

Solution:
$$P(0.5 < X \le 2) = \int_{0.5}^{2} f_X(x) dx = \int_{0.5}^{2} cx^2 e^{-4x^3} dx = c \left[-\frac{e^{-4x^3}}{12} \right]_{0.5}^{2} = c \left[\frac{e^{-4 \times 0.5^3}}{12} - \frac{e^{-4 \times 2^3}}{12} \right] = c \left[\frac{e^{-0.5}}{12} - \frac{e^{-32}}{12} \right]$$

TA: For this part give full credit for $\left[\frac{e^{-0.5}}{12} - \frac{e^{-32}}{12} \right]$

(c) (3 points) Find the value x_0 such that $F_X(x_0) = 0.5$. (F_X is the c.d.f. of X)

Solution:
$$F(x_0) = \int_0^{x_0} cx^2 e^{-4x^3} dx c \left[-\frac{e^{-4x^3}}{12} \right]_0^{x_0} = c \times \frac{1 - e^{-4x_0^3}}{12} = 1 - e^{-4x_0^3}$$
 and $F(x_0) = 0.5 \implies 1 - e^{-4x_0^3} = 0.5 \implies x_0 = \left(\frac{\ln(2)}{4}\right)^{1/3}$

TA: If the value of c in part (a) is incorrect, the points should be deducted in part (a) but in this part, the answer must be assessed assuming that as the correct value of c.

- 3. A, B and C are three events defined in some sample space. Assume $P(A) = 0.3, P(B|A) = 0.75, P(B|A^c)) = 0.20, P(C|A \cap B) = 0.20, P(C|A^c \cap B) = 0.15, P(C|A \cap B^c) = 0.80,$ and $P(C|A^c \cap B^c) = 0.90.$
 - (a) (3 points) Find $P(A \cap B \cap C)$.

Solution: $P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B) = 0.3 \times 0.75 \times 0.2 = 0.045$ (General multiplication rule)

(b) (3 points) Find $P(B^c \cap C)$.

Solution: $P(B^c \cap C) = P(A \cap B^c \cap C) + P(A^c \cap B^c \cap C)$ (Law of total probability) = $P(A)P(B^c|A)P(C|A \cap B^c) + P(A^c)P(B^c|A^c)P(C|A^c \cap B^c)$ (Multiplication rule)

 $= 0.3 \times (1 - 0.75) \times 0.80 + (1 - 0.3) \times (1 - 0.2) \times 0.90 = 0.564$

(c) (4 points) Find P(C).

Solution: Again using the law of total probability and mulstiplication rule, $P(C) = P(A \cap B \cap C) + P(A^c \cap B \cap C) + P(A \cap B^c \cap C) + P(A^c \cap B^c \cap C)$ = $P(A)P(B|A)P(C|A \cap B) + P(A^c)P(B|A^c)P(C|A^c \cap B) + P(A)P(B^c|A)P(C|A \cap B^c) + P(A^c)P(B^c|A^c)P(C|A^c \cap B^c) = 0.3 \times 0.75 \times 0.2 + (1 - 0.3) \times 0.20 \times 0.15 + 0.3 \times (1 - 0.75) \times 0.8 + (1 - 0.3) \times (1 - 0.20) \times 0.90 = 0.63$ ■

- 4. A box contains 4 white balls and 6 black balls.
 - (a) Five balls are drawn, one by one with replacement (i.e. you put the ball back in the box before you draw the next ball).
 - i. (2 points) Let X be the number of white balls in the five balls selected. Write down the probability mass function of X.

Solution: Note that for sampling with replacement X has a Binomial (n = 5, p = 4/10 = 0.4) distribution and so $p_X(x) = {5 \choose x} \times 0.4^x \times 0.6^{5-x}$ for x = 0, 1, 2, 3, 4, 5 and zero otherwise

ii. (4 points) Find the probability that there will be at least one (i.e. one or more) white ball among the five balls drawn.

Solution: $P(X \ge 1) = 1 - P(X = 0) = 1 - {5 \choose 0} \times 0.4^0 \times 0.6^{5-0} = 0.92224$

(b) (4 points) What is the probability that there will be at least one white ball among the five balls drawn if the five balls were drawn without replacement.

Solution: Letting X be the number of white balls, we again need $P(X \ge 1) = 1 - P(X = 0)$ and X = 0 means all balls selected are black and so $P(X \ge 1) = 1 - P(X = 0) = 1 - \frac{\binom{6}{5}}{\binom{10}{5}} \blacksquare$

- 5. Five people, designated as A, B, C, D, E, are arranged in a line. Assuming that each possible order is equally likely, what is the probability that
 - (a) (6 points) there is exactly one person between A and B?

Solution: Ex 44 p53 Sheldon Ross, First Course in Probability If A is first, then A can be in any one of 3 places and B's place is determined, and the others can be arranged in any of 3! ways. As a similar result is true, when B is first, we see that the probability in this case is $(2\times3\times3!)/5! = 3/10$.

(b) (4 points) there are exactly two people between A and B?

Solution: $(2 \times 2 \times 3!)/5! = 1/5$

- 6. The two parts (a and b) of this question are not exactly related but there are some significant similarities and so I am stating them as two of the same question.
 - (a) (4 points) The random variable X has p.d.f

$$f(x) = \begin{cases} kx^6 e^{-2x} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Find the value of k that makes this a p.d.f.

Solution: Solution:

This is a gamma distribution with $\alpha=7$ and $\lambda=2$ and so $k=\frac{\lambda^{\alpha}}{\Gamma(\alpha)}=\frac{2^7}{\Gamma(7)}=\frac{2^7}{(7-1)!}=\frac{128}{720}=\frac{8}{45}$

(b) (6 points) The random variable X has p.d.f

$$f(x) = \begin{cases} kx^{17}e^{-x^3} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Find the value of k that makes this a p.d.f.

Hint: For the integral involved, a suitable substitution will be helpful.

Solution: Solution:
$$\int_0^\infty f(x)dx = 1 \implies k \int_0^\infty x^{17} e^{-x^3} dx = 1.$$
 Substitute $t = x^3$, then $dt = 3x^2 dx$ and $x = t^{\frac{1}{3}}$ and so
$$\int_0^\infty x^{17} e^{-x^3} dx = \int_0^\infty t^{\frac{17}{3}} e^{-t} \frac{1}{3} t^{\frac{-2}{3}} dt = \frac{1}{3} \int_0^\infty t^5 e^{-t} dt = \frac{1}{3} \int_0^\infty t^{6-1} e^{-t} dt = \frac{1}{3} \Gamma(6) = \frac{1}{3} \times 5! = \frac{1}{3} \times 120 = \text{ and so } k = \frac{3}{120} = \frac{1}{40}$$

7. Let $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ be a sample space of equally likely outcomes, i.e. $P(\{s\}) = \frac{1}{10}, \forall s \in S$. Let $A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{2, 3, 5, 6\}$ and I_A, I_B , and I_C be their associated indicator functions respectively. Calculate the following probabilities.

Hint: First express each event in terms of the three original events, and their unions, intersections and complements etc. E.g. $\{I_A.I_B=1\}=A\cap B$.

(a) (3 points) $P(\{I_A + I_B + I_C = 0\})$

Solution:
$$P(\{I_A + I_B + I_C = 0\}) = P(\{I_A = 0\} \cap \{I_B = 0\}) \cap \{I_A = 0\}) = P(A^c \cap B^c \cap C^c) = P(\{(A \cup B \cup C)^c\}) = 1 - P(\{A \cup B \cup C\}) = P(\{1, 2, 3.4.5, 6\}) = 1 - 0.6 = 0.4$$

(b) (4 points) $P(\{I_A + I_B + I_C = 1\})$

Solution:
$$P(\{I_A + I_B + I_C = 1\}) = P(\{I_A = 1\} \cap \{I_B = 0\} \cap \{I_C = 0\} \cup \{I_A = 0\} \cap \{I_B = 1\} \cap \{I_C = 0\} \cup \{I_A = 0\} \cap \{I_B = 0\} \cap \{I_C = 1\}) = P((A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C)) = P(\{1, 4, 6\}) = 0.3$$

(c) (3 points) $P(\{I_A.I_B.I_C = 0\})$

Solution:
$$P(\{I_A.I_B.I_C = 0\}) = P(\{I_A.I_B.I_C = 1\}^c) = P((A \cap B \cap C)^c) = 1 - P(A \cap B \cap C) = 1 - P(\{3\}) = 1 - 0.1 = 0.9$$

END OF TEST