Answer 1:

Ridge Regression: Optimal Alpha = 20

Lasso Regression: Optimal Alpha = 0.001

Below are the observations for doubling the values of alpha for Ridge and Lasso -

The r-squared and adjusted r-squared have dropped and MSE has slight increase, in both Train and Test.

3]:	Metric	Ridge Regression (Train)	Ridge Regression (Test)	Ridge Regression2 (Train)	Ridge Regression2 (Test)	Lasso Regression (Train)	Lasso Regression (Test)	Lasso Regression2 (Train)	Lasso Regression2 (Test)
0	MSE	0.013690	0.018483	0.014771	0.018704	0.014792	0.018618	0.016858	0.019785
1	R- Squared	0.912906	0.887666	0.906028	0.886322	0.905897	0.886847	0.892754	0.879755
2	Adj R- Squared	0.890054	0.781822	0.881371	0.779211	0.898105	0.862262	0.886524	0.862081

Among the top 5 features, the top 2 features remained same in both the cases, but with an increase in coefficient value for the doubled alpha. The next 3 features got modified with decrease in coefficients.

The number of features remained same for Ridge, but has dropped in case of Lasso.

- Top 5 predictors for Lasso

Out[94]:			
		Feature	Lasso
	17	GrLivArea	0.134099
	2	OverallQual	0.133056
	40	HouseAge	-0.073235
	206	Neighborhood_Somerst	0.064621
	28	GarageCars	0.058919

• GrLivArea: Above grade (ground) living area square feet

OverallQual: Rates the overall material and finish of the house

- HouseAge: Age of the house [Sold Year Construction Year]
- Neighborhood_Somerst: Physical locations within Ames city limits Somerset
- GarageCars: Size of garage in car capacity
- Top 5 predictors for Ridge

Out[95]:			
		Feature	Ridge
	2	OverallQual	0.102529
	17	GrLivArea	0.074114
	192	Neighborhood_Edwards	-0.052400
	191	Neighborhood_Crawfor	0.051126
	40	HouseAge	-0.047382

- OverallQual: Rates the overall material and finish of the house
- GrLivArea: Above grade (ground) living area square feet
- Neighborhood_Edwards: Physical locations within Ames city limits Edwards
- Neighborhood_Crawfor: Physical locations within Ames city limits Crawford
- HouseAge: Age of the house [Sold Year Construction Year]

By doubling the lambda values for Ridge and Lasso regression, the r-squared and adjusted r-squared have dropped and MSE has slight increase.

Among the top 5 features, the top 2 features remained same in both the cases, but with an increase in coefficient value for the doubled alpha. The next 3 features got modified with decrease in coefficients.

The number of features remained same for Ridge, but has dropped in case of Lasso.

Answer 2:

Lasso is better considering the explainability. Lasso gives better adjusted r-squared by selecting less number of features and is robust. The difference between Test and Train accuracy for lasso is less compared to Ridge. If feature explainability is not a constraint and need to look for accuracy, ridge can be selected.

Summary

•						
Metric	Linear Regression (Train)	Linear Regression (Test)	Ridge Regression (Train)	Ridge Regression (Test)	Lasso Regression (Train)	Lasso Regression (Test)
MSE	0.016575	0.022492	0.013690	0.018483	0.014792	0.018635
R-Squared	0.894555	0.863305	0.912906	0.887666	0.905897	0.886741
Adj R- Squared	0.889120	0.845644	0.890054	0.781822	0.898105	0.862133

Answer 3:

After removing the top-5 predictors in lasso model, the top 5 features got modified. The number of features selected got increased to 84.

Below are the new top-5 predictors:

Out[104]:

14 2ndFlrSF 0.15504
13 1stFirSF 0.12957
189 Neighborhood_Edwards -0.09648
153 MSZoning_FV 0.09203
192 Neighborhood_MeadowV -0.08885

• 2ndFlrSF: Second floor square feet

1stFlrSF: First Floor square feet

• Neighborhood_Edwards: Physical locations within Ames city limits – Edwards

- MSZoning_FV: Identifies the general zoning classification of the sale. Floating Village Residential
- Neighborhood_MeadowV: Physical locations within Ames city limits Meadow Village

Answer 4:

Robust and generalizable Model can be ensured by:

- Diverse and representative dataset: Model trained on a diverse and representative dataset is more likely to be robust and generalizable. Such a dataset exposes the model to a wide range of data examples, allowing it to learn patterns and relationships that can be applied to new data.
- Cross-validation: Cross-validation is a technique that involves splitting the
 dataset into multiple subsets and training the model on each subset while testing
 it on the others. This helps to identify and mitigate overfitting, which can occur
 when the model becomes too specialized to the training data and does not
 perform well on new data.
- 3. **Regularization**: Regularization is a technique that adds to the model's loss function to **discourage** it from **overfitting**.
- 4. **Hyperparameter Tuning**: The choice of hyperparameters can greatly affect the performance of a model. Tuning these hyperparameters through techniques such as grid search or randomized search can improve the model's robustness and generalizability.

A robust and generalizable model is more likely to perform well on new, unseen data, and therefore be more accurate. In contrast, a model that is not robust or generalizable may perform well on the training data but poorly on new data, leading to lower accuracy and poor performance in practice. Additionally, a lack of robustness and generalizability can increase the risk of overfitting, which can further harm the model's accuracy.