1.5 회전 운동

동명대학교게임공학과

회전운동

- * <u>토</u>크: _T
 - * 회전 운동에서 힘의 역할

$$\tau = \mathbf{r} \times \mathbf{f}$$

- * 회전 운동량
 - * 모든 입자의 운동량 모멘트의 합

$$\mathbf{H} = \sum \mathbf{r}_i \times m_i \mathbf{v}_i$$
 $\mathbf{H} = \sum \mathbf{r}_i \times m_i (\omega \times \mathbf{r}_i)$

관성모멘트(회전질량)

rotation axis

- * 회전질량
 - * 회전축에 따라 달라짐
 - * 축을 중심으로 하는 회전 가속에 저향하는 특성

$$I = \int_{m} r^2 \mathrm{d}m$$

회전질량의예(3개의축에대해)

$$I_{xx} = I_{yy} = (1/4) mr^{2} + (1/12) ml^{2}; I_{zz} = (1/2) mr^{2}$$

$$I_{xx} = I_{yy} = (1/4) mr^{2} + (1/12) ml^{2}; I_{zz} = (1/2) mr^{2}$$

sphere
$$I_{xx} = I_{yy} = I_{zz} = (2/5) mr^2$$

spherical shell $I_{xx} = I_{yy} = I_{zz} = (2/3) mr^2$

회전운동량=회전질량x회전속도

- * 선운동량: G
 - $* \mathbf{G} = m\mathbf{v}$
- * 회전운동량

$$\mathbf{H} = \sum \mathbf{r}_i \times m_i(\omega \times \mathbf{r}_i)$$

회전운동량의미분

* dH/dt = 토크(torque)

$$\frac{d\mathbf{H}}{dt} = \frac{d\mathbf{I}\omega}{dt} = \mathbf{I}\frac{d\omega}{dt} = \mathbf{I}\alpha$$

$$\sum \tau = \mathbf{I}\alpha \qquad \qquad \qquad \alpha = \mathbf{I}^{-1} \sum \tau$$

텐서(tensor)

* 텐서

- * 크기와 방향을 가진 수학적 표현
- ◈ 방향에 따라 그 크기가 동일하지 않을 수 있음
- * 다른 방향에 대해 다른 크기를 갖는 물체의 특성을 표현할 때 사용
- * 등방성(isotropic) 특성과 이방성(anisotropic) 특성
 - * 등방성: 모든 방향으로 동일한 특성
 - * 이방성:방향에 따라 달라지는 특성
- * 관성 모멘트
 - * 관성 텐서(3차원)
 - * 아홉 개의 요소가 모든 방향으로의 특성을 표현할 수 있음
 - * 회전 축에 따라 달라지는 강체의 특성을 표현

1.6 강체 - 2차원

동명대학교 강영민

강체의 운동

- * 입자와 강체의 차이
 - * 입자: 회전이 없음
 - * 강체:회전
- * 강체의 운동
 - * 질량 중심의 선운동(입자와 동일)
 - * 회전 운동
 - * 토크 T(선운동에서 힘 f와 같은 작용)
 - * 각속도 ω (속도v와 같은 역할)
 - * 각 가속도 $\dot{\omega}$ (가속도 a와 같은 역할)

지역좌표계

- * 회전
 - * 지역 좌표계의 원점을 중심으로 회전

- * 2차원 강체의 회전
 - * z축회전
- * 회전은 원래의 상태에서 회전된 각을 표현하는 하나의 실수 Ω 로 표현 가능

각속도와각가속도

- * 선속도 = 시간에 대한 위치의 변화 비
- * 각속도=시간에 대한 회전 각의 변화 비

$$* >> \qquad \omega = \frac{d\Omega}{dt}$$

* 각가속도

$$\dot{\omega} = \frac{d\omega}{dt}$$

회전에의한선속도

- ❖ 각도 Ω만큼의 회전
 - * 지역 좌표 중심에서 r만큼 떨어진 위치는 원호 c를 따라 이동
- * 간단한 관찰

$$c = r\Omega$$

◈ 미분하면....

$$dc/dt = rd\Omega/dt = r\omega$$

 $v = r\omega$

- * 가속
 - * a = dv/dt $a = r\dot{\omega}$

2차원강체시뮬레이션

- * 상태 $(\mathbf{x}, \mathbf{v}, \Omega, \omega)$
- * 관성
 - * 질량 m:선운동에 대한 저항
 - * 관정 모멘트I: 회전 운동에 대한 저항
- * 시뮬레이션
 - * 힘과 토크를 계산 \mathbf{f}, τ

$$\tau = \mathbf{r} \times \mathbf{f}$$

2차원에서는....

$$\mathbf{f} = (f_x, f_y, 0)$$

$$\mathbf{r} = (r_x, r_y, 0)$$

$$\tau = (0, 0, \tau_z)$$

적분

$$\mathbf{v}(t+dt) = \mathbf{v}(t) + \frac{\mathbf{f}}{m}dt$$
$$\mathbf{x}(t+dt) = \mathbf{x}(t) + \mathbf{v}(t+dt)dt$$

* 회전운동

$$\omega(t + dt) = \omega(t) + I^{-1}\tau dt$$

$$\Omega(t + dt) = \Omega(t) + \omega(t + dt)dt$$

* 2D

* I: 스칼라 ...
$$I^{-1} = \frac{1}{I}$$

애니메이션결과

- https://www.youtube.com/watch?v=xbu_-VP7Ed0
- http://goo.gl/s8TTAi

