Orthogonal Projection

Prove the following statement: Let $V \subset \mathbb{R}^m$ be a linear subspace and $b \in \mathbb{R}^m$. Then

$$\widehat{z} = \arg\min_{z \in V} \|z - b\|_2^2 \quad \Leftrightarrow \quad \widehat{z} - b \in V^{\perp} := \{w \in \mathbb{R}^n \colon w^{\top}v = 0 \ \forall v \in V\}.$$

 $\textit{Hint:} \ \ \mathsf{You} \ \ \mathsf{can} \ \ \mathsf{use:} \ \ \mathsf{For} \ \mathsf{all} \ \ x,y \in \mathbb{R}^m \colon \ \|x+y\|_2^2 = \|x\|_2^2 + \|y\|_2^2 \ \Leftrightarrow \ \ x^\top y = 0.$

Solution:

We use the hint with $x=\widehat{z}-b$ and $y:=z-\widehat{z}$ for some $z\in V$ (note that $(z-\widehat{z})\in V$ $\forall z\in V$, since $\widehat{z}\in V$ and V subspace). More precisely, for a $\widehat{z}\in V$ we find

$$\begin{split} \widehat{z} - b \in V^{\perp} & \iff \forall z \in V : (\widehat{z} - b)^{\top} z = 0 \\ & \iff \forall z \in V : (\widehat{z} - b)^{\top} (z - \widehat{z}) = 0 \\ & \iff \forall z \in V : \|z - b\|_2^2 = \|\widehat{z} - b\|_2^2 + \|\widehat{z} - z\|_2^2 \\ & \iff \forall z \in V : \|\widehat{z} - b\|_2^2 \le \|z - b\|_2^2 \\ & \iff \widehat{z} = \arg\min_{z \in V} \|z - b\|_2^2. \end{split}$$