鲁东大学

2016-2017 学年第一学期试题B

考试科目: 大学物理B

试卷总分: 100分

-K 1-H L N-1	44 1/20
考试时间:	90 分钟

所占比例: 20%

// 1 — `	<u> </u>
得分	
评卷教师	

说明:本	试卷题型为填空题	(共 25 小题,	每题 4 分,	共计 100 分	٠),
------	----------	-----------	---------	----------	-----

- 1、一质点在平面上运动,已知质点的运动方程为 $\vec{r}=5t^2\vec{i}+3t^2\vec{j}$,则该质点的轨迹方程为____。
- 2、花样滑冰运动员绕过自身的竖直轴转动。开始时两臂伸开,转动惯量为 J_0 ,角速度为 ω_0 ,然后 她 将 两 臂 收 回 , 使 转 动 惯 量 减 少 $\frac{1}{4}$ J_0 , 这 时 她 转 动 的 角 速 度 变 为______。
- 3、已知质点的运动方程为 $\vec{r} = (R\cos\omega t)\vec{i} + (R\sin\omega t)\vec{j}$ (SI),则该质点在 \mathbf{x} 轴方向所做的运动为
- 4、已知质点沿 Ox 轴作直线运动,其瞬时加速度的变化规律为 $a_{x}=t$ (SI)。在 t=0 时,
- $v_x = 0, x = 8$ (SI)。则该质点的运动方程为_____。
- 5、两个同方向、同频率的简谐振动的合振动仍为同方向、同频率的简谐振动,合振动

6、质点做半径为 6m 的圆周运动,其角位置满足关系式 $\theta = 6 + 5t^2$ (SI)。

当 $t = ____s$ 时,质点的切向加速度大小为法向加速度一半。

7、质点做半径为 5m 的圆周运动,其在自然坐标系中的运动方程为 $S = 2t + t^2/2$ (SI)。

某时刻质点的切向加速度与法向加速度大小相等,则此时的合加速度大小

为____(SI)。

8、某质点的运动方程为 $\vec{r} = -10\vec{i} + 15t\vec{j} + 5t^2\vec{k}$ (SI),则 t=1s 时质点的速度大小

为_____。

9、两个质量分布均匀的圆盘 A 和 B 总质量和厚度均相同,若两圆盘对通过盘心且垂直
于盘面的轴的转动惯量分别为 Ja和 Jb, 且 Ja > Jb ,则
10 、一力 $\vec{F} = -3\vec{i} + 5\vec{j}$ N,其作用点的矢径为 $\vec{r} = 6\vec{i} + 3\vec{j}$ m,则该力对坐标原点的力
矩大小为(SI)。
11、如图所示,质量均为 m 的物体 A 和 B 叠放在水平 B F
面上,由跨过定滑轮的不可伸长的轻质细绳相互连接。
设定滑轮的质量为 M ,半径为 R ,且 A 与 B 之间、 A 与桌面之间、滑轮与轴之间均无摩
擦,绳与滑轮之间无相对滑动。物体 A 在力 F 的作用下运动后,若求滑轮的角加速度 α ,
请写出滑轮满足的动力学方程,设物体 A 和 B
与滑轮之间的绳中的张力分别为 $T_{_1}$ 和 $T_{_2}$,且设垂直纸面向外为正方向。
12、如图所示,物体 A 和 B 分别悬挂在定滑轮的两边,该定滑轮由两个
同轴的,且半径分别为 r_1 和 r_2 ($r_1 > r_2$)的圆盘组成。已知两物体的质量
分别为 m_1 和 m_2 ,定滑轮的转动惯量为 J ,轮与轴承间的摩擦、轮与绳子
间的摩擦均忽略不计。则两物体 m_1 和 m_2 的加速度的比为。 m_2
$oxedsymbol{oxedsymbol{eta}}{13}$ 、一人手拿两个哑铃,两臂平伸并绕右足尖旋转,转动惯量为 J ,角速度为 ω 。若此
人突然将两臂收回,转动惯量变为 $J/2$ 。如忽略摩擦力,则此人收臂后的动能与收臂前的
动能之比为。
$14、一转动惯量为J的圆盘绕一固定轴转动,起初角速度为\omega_{\scriptscriptstyle 0},设它所受阻力矩与转动$
角速度之间的关系为 $M = -k\omega$ (k 为正的常数)。 则在它的角速度从 ω_0 变为 $\frac{1}{2}\omega_0$ 过程中
阻力矩所做的功为

线

15、一根质量为 \mathbf{m} 、长为 \mathbf{L} 的均匀细棒,可绕通过其一段的光滑轴 $\mathbf{0}$ 在竖直平面内转动。 设t=0时刻,细棒从水平位置开始自由下摆,设在转动过程中某时刻棒与水平方向成 θ 角,则此时的棒的角加速度为

16、长为 L 、质量为 M 的均质杆竖直悬挂在光滑水平轴 O 点,

一质量为 m 的小钢珠以水平速度 v 打在杆的中部并留在其中。

则杆刚开始摆动时的角速度为

17、一个质点作简谐振动,振幅为 A,周期为 T,在起始时刻质点的位移为-A/2,且向 x轴的正方向运动,则该质点的初相为。

订 18、如图,轻质弹簧的一端固定,另一端系一根轻绳,轻绳绕过 定滑轮连接一个质量为 m 的物体, 绳子在轮子上不打滑, 使物体 上下自由振动。已知弹簧的劲度系数为 k, 滑轮质量为 M、半径为 R。

则物体振动的周期为

19、一简谐振动的曲线如图所示,则该振动的圆频率为

20、一质点作简谐振动,振动方程为 $x = 6\cos(100\pi + 0.7\pi)$ cm , 在 t (单位:s) 时刻它在 $x=3\sqrt{2}$ cm 处,且向x 轴负方向

运动。则它重新回到该位置所需要的最短时间为

21、一质量为 0.60 kg 的质点作简谐振动,其振动方程为 $x = 0.6\cos(5t - \frac{1}{2}\pi)$ (SI)

则质点的初速度为 (SI)。

23、一质点沿 x 轴作简谐振动,其角频率 $\omega = 10$ rad/s。其初始位移 $x_0 = 7.5$ cm,初始速度 $v_0 = -75.0$ cm/s。则该质点振动的初相位为

25、如图,物体 C、D 的质量分别为 m_1 和 m_2 ,定滑轮 A、B 的质量分别为 m_1 和 m_2 ,半径分别为 R_A 和 R_B 均为已知,且 m_1 〉 m_2 。设绳子不可伸长且质量不计。如果绳子与滑轮间不打滑,滑轮可视为圆盘,则两个滑轮 A 和 B 转动的角加速度之比为_______。

