The First Law of Thermodynamics

Introduction to Thermodynamics

System

- open system: can transfer both matter and energy
- closed system: can transfer only energy, but not mass
- isolated system: can transfer neither matter or mass

Property of System

- intensive properties: independent of mass of a system
- extensive properties: depend on the size of the system

Function of State

Equation of State

$$V = \frac{nRT}{P}$$

Van der Waals Equation

for 1 mol gas:

real volume of gas: $V=V_m-b$, where $b=4N imes rac{4}{3}\pi r^3$

real pressure of gas: $P = P_m + \frac{a}{V_m^2}$

$$\Rightarrow \left(P_m + \frac{a}{V_m^2}\right)(V_m - b) = RT$$

more generally, for $n \, mol$ gas:

$$\boxed{\left(P_m + \frac{n^2 a}{V^2}\right)(V_m - nb) = RT}$$

The First Law of Thermodynamics

the energy of the universe is conserved

internal energy $dU = \delta Q + \delta W$

$$\oint dU = \oint (\delta Q + \delta W) = 0$$

Enthalpy

$$\Delta U=Q+W$$
 when $dV=0$, then $W=0 \Rightarrow dU=\delta Q$ when $dP=0$,
$$dU=\delta Q_P-PdV$$

$$\delta Q_P=dU+PdV=d(U+PV)$$
 define enthalpy $H=U+PV$, then $H=\Delta Q$

Heat Capacity

at constant value:

$$C_V = \frac{\delta Q_V}{dT} = \left(\frac{\partial U}{\partial T}\right)_V \Rightarrow \boxed{C_V = \left(\frac{\partial U}{\partial T}\right)_V}$$

 $C_{V,m}$ is capacity of $1 \, mol$ gas

at constant pressure:

$$C_P = \frac{\delta Q_P}{dT} = \left(\frac{\partial H}{\partial T}\right)_P \Rightarrow \left[C_P = \left(\frac{\partial H}{\partial T}\right)_P\right]$$

 $C_{P,m}$ is capacity of $1 \, mol$ gas

Free Expansion (to vacuum)

$$dU = 0, \ dT = 0$$
 for P, T :
$$dU = \left(\frac{\partial \mathbf{U}}{\partial T}\right)_P dT + \left(\frac{\partial \mathbf{U}}{\partial P}\right)_T dP = \left(\frac{\partial \mathbf{U}}{\partial P}\right)_T dP = 0 \Rightarrow \left(\frac{\partial \mathbf{U}}{\partial P}\right)_T = 0$$
 for T, V :
$$dU = \left(\frac{\partial \mathbf{U}}{\partial T}\right)_V dT + \left(\frac{\partial \mathbf{U}}{\partial V}\right)_T dV = \left(\frac{\partial \mathbf{U}}{\partial V}\right)_T dV = 0 \Rightarrow \left(\frac{\partial \mathbf{U}}{\partial V}\right)_T = 0$$
 therefore, internal energy only depends on T : $U = U(T)$

under constant T:

$$\Delta H = d(U + PV) = dU + nRdT = 0$$

therefore, enthalpy only depends on T : $H = H(T)$

$$C_{P} - C_{V}$$

$$= \left(\frac{\partial H}{\partial T}\right)_{P} - \left(\frac{\partial U}{\partial T}\right)_{V} = \left(\frac{\partial (U + PV)}{\partial T}\right)_{P} - \left(\frac{\partial U}{\partial T}\right)_{V} = \left(\frac{\partial U}{\partial T}\right)_{P} + P\left(\frac{\partial V}{\partial T}\right)_{P} - \left(\frac{\partial U}{\partial T}\right)_{V}$$

under constant P

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV \Rightarrow \left(\frac{\partial U}{\partial T}\right)_{P} = \left(\frac{\partial U}{\partial T}\right)_{V} + \left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{P}$$

replace $\left(\frac{\partial U}{\partial T}\right)_{p}$

$$\begin{split} &\Rightarrow \left(\frac{\partial U}{\partial T}\right)_{V} + \left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{P} + P\left(\frac{\partial V}{\partial T}\right)_{P} - \left(\frac{\partial U}{\partial T}\right)_{V} \\ &= \left(\frac{\partial V}{\partial T}\right)_{P} \left[P + \left(\frac{\partial U}{\partial V}\right)_{T}\right] \end{split}$$

for ideal gas, $\left(\frac{\partial U}{\partial V}\right)_T = \mathbf{0}$

$$\Rightarrow C_P - C_V = P \left(\frac{\partial V}{\partial T} \right)_P = nR$$

for 1 mol gas:

$$C_{p,m}-C_{V,m}=R$$

for monatomic ideal gas, $C_{V,m} = \frac{3}{2}R$, $C_{P,m} = \frac{5}{2}R$

Typical Reversible Processes for Ideal Gas

isothermal $\Delta U = 0$

$$Q = -W = \int_{V_1}^{V_2} P dV = \int_{V_1}^{V_2} \frac{nRT}{V} dV = nRT \ln \frac{V_2}{V_1}$$

• isochoric $\Delta V = 0$

$$Q_V = \Delta U = C_V \Delta T$$

• isobaric $\Delta P = 0$

$$Q_P = \Delta Q = C_P \Delta T$$

• adiabatic $\Delta Q = 0$

$$W = \Delta U = C_V \Delta T = -PdV$$

$$\Rightarrow -\int_{V_1}^{V_2} \frac{nR}{V} dV = \int_{T_1}^{T_2} C_V \frac{dT}{T} \Rightarrow (C_V - C_P) \ln \frac{V_2}{V_1} = C_V \ln \frac{T_2}{T_1}$$

$$\Rightarrow \left(\frac{C_P}{C_V} - 1\right) \ln \frac{V_2}{V_1} = \ln \frac{T_1}{T_2} \Rightarrow (\gamma - 1) \ln \frac{V_2}{V_1} = \ln \frac{T_1}{T_2}$$

$$\Rightarrow \boxed{T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}}$$

⇒ Poisson equation

$$TV^{\gamma-1} = constant$$

$$PV^{\gamma} = constant$$

$$T^{\gamma}P^{1-\gamma} = constant$$

Work for adiabatic expansion/compression

$$\begin{split} W &= -\int_{V_1}^{V_2} P dV = -\int_{V_1}^{V_2} \frac{cons}{V^{\gamma}} dV \\ &= cons \cdot \left(\frac{1}{(\gamma - 1)V_2^{\gamma - 1}} - \frac{1}{(\gamma - 1)V_1^{\gamma - 1}} \right) = \frac{P_2 V_2^{\gamma}}{(\gamma - 1)V_2^{\gamma - 1}} - \frac{P_1 V_1^{\gamma}}{(\gamma - 1)V_1^{\gamma - 1}} \\ &= \frac{P_2 V_2 - P_1 V_1}{\gamma - 1} = \frac{nR(T_2 - T_1)}{\gamma - 1} \end{split}$$

Polytropic Process: General Performance of Reversible Process

define \mathcal{C}_m the heat capacity of entire process

$$dU = C_m dT = dQ + dW = C_V dT + P dV$$

$$P dV + V dP = nR dT \Rightarrow C_m dT = C_V dT + nR dT - V dP = C_P dT - V dP$$

$$define \frac{C_{P,m} - C_m}{C_{V,m} - C_m} = n = -\frac{P dV}{V dP}$$

$$\Rightarrow n \frac{dV}{V} + \frac{dP}{P} = 0$$

$$\Rightarrow \int \left(n \frac{dV}{V} + \frac{dP}{P}\right) = constant$$

$$\Rightarrow n \ln V + \ln P = constant$$

type of process can be determined on value of n

 $\Rightarrow PV^n = constant$