Lecture 2-B

Thursday, March 29, 2018 1:14 PM

*	\$1.1 OA No-solution case:
	Consistent = feasible, inconsistent = infeasible Augmented matrix contains a
	row of the torm
#19.	$ \begin{bmatrix} 1 & h & 4 \\ 3 & 6 & 8 \end{bmatrix} $ $ \begin{bmatrix} 1 & h & 4 \\ 0 & 6-3h & 4 \end{bmatrix} $ $ \begin{bmatrix} -3R_1+R_2 \end{bmatrix} $ The LS requires numbers $ X_{11}, X_n = s.t. $
	[3 6 8] 1 [0 6-3h (-4)] -3R1+R2) The LS requires numbers
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	"row-equivalent" always nonzero regardless of the $O \times 1 + O \times 2 + + O \times n = b \neq 0$ Value of h. Which is clearly impossible.
	The LS does not have a solution if 6-3h=0, i.e., if h=2. The LS is
	consistent for every value of hother than two.
#11_	
	3 7 7 6 3 7 7 6
	(1 3 5 -2)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

§1.1 (continued)

Recall the elementary row-ops:

- 1. $R_j \leftarrow c R_i + R_j$, $i \neq j$, $c \neq o$.
- 2. Ri < Rj, itj.
- 3. $R_i \leftarrow cR_i$, $c \neq 0$.

	Concluding Remarks Thursday, March 29, 2018 1:14 PM
	Thursday, March 29, 2018 1:14 PM
	Thursday, March 29, 2018 1:14 PM rectangular array of number
Bemarks:	(2) Rous merations can be applied to any matrix
	(2i) Two matrices are called row-equivalent if there is a finite sequence of row-ops that transforms one matrix mto the other.
	that transforms one matrix into the other.
	E_{q} . $R_{1}(11-1)$, $(11-1)\hat{R}_{1}$
	Eg. $R_{1} = \begin{pmatrix} 1 & 1 & -1 \\ R_{2} & -1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \stackrel{R_{1}}{R_{2}}$
	tow-equivalent
	(iii) Row-ops are reversible:
	(a) $R_j \leftarrow cR_i + R_j$ is undone by $R_j \leftarrow (-c)R_i + R_j$.
	(b) R; \(\tau \) R; \(\tau \) R;
	(b) $R_i \leftarrow R_j$
Jhm:	If the augmented matrices of two LSs are row-equivalent, then the LSs
V	have the same solution set.
\$1.2	Row-reduction Algorithm (RRA) and Echelon Forms.
Defn:	(1) A nonzero row (or nonzero column) in amatrix is any row (respectively, column)
	that contains at least one nonzen entry.
	200 Tau 1 2 3 honzero rous
	Zero-rau [1 2 3]
	totally nonzero row.
(2) A leading entry of a nonzero row (in a matrix) refers to the leftment nonzero
	\cdot . The second contribution is a second contribution of \cdot .
	Eg. 1 1-10324 The leading entries are located in
	entry in that row. 1 2 3 4 5 6 Eg. 1 (1-10324) The leading entries are located in the (1,1) and (2,3) entries.
	The leading entires are 1 (from first-row) and 2 (from Second-row).
	$\mathcal O$

A matrix is said to be in echelon form (EF) if it satisfies the following properties:

- (i) all nonzero rows are above any zero-rows;
 (ii) each leading entry of a row is in a column to the right of the leading entry of the row above it;

E.g. (1 * * * * * | 0 0 0 0 1 | 4 | 0 0 0 0 1 |

(zii) all entries in a column below a leading entry are zero.

Note: this property follows from (ii).

If a matrix in EF satisfies the following additional conditions, then it is said to be in reduced exhelon form (REF).

- (iv) the leading entry in every nonzero row is a one; and
- (v) each leading entry is the only nonzero entry in its column.

Thm: Each matrix is row-equivalent to a unique matrix in reduced echdon form

Eg.
$$\begin{bmatrix} 2-5 \\ 0 \end{bmatrix} \sim \begin{bmatrix} 2-5 \\ 0 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

REF

 $\begin{array}{c} \chi \\ 0 \end{array}$

