

Statistical Machine Learning

Lecture 5: Regression

Marcus Rohrbach
Department of Computer Science
TU Darmstadt

Summer Term 2025

Today's Objectives

- Extending supervised learning to continuous labels y:
 - Learning continuous mappings $\mathbf{y} = f(\mathbf{x})$
- Covering topics:
 - Linear Regression and its interpretations
 - Deriving Linear Regression from Maximum Likelihood Estimation
 - What is overfitting?
 - Bayesian Linear Regression

Outline

- 1. Introduction to Linear Regression
- 2. Maximum Likelihood Approach to Regression
- 3. Bias and Variance in Linear Regression
- 4. Bayesian Linear Regression
- 5. Wrap-Up

Outline

1. Introduction to Linear Regression

- 2. Maximum Likelihood Approach to Regression
- 3. Bias and Variance in Linear Regression
- 4. Bayesian Linear Regression
- 5. Wrap-Up

Supervised Learning Taxonomy

■ The task is to learn a mapping f from input to output

$$f: I \to O, \quad \mathbf{y} = f(\mathbf{x}; \theta)$$

	Regression	Classification
Input $\mathbf{x} \in I$ Output $\mathbf{y} \in O$ Deterministic Probabilistic	(images, text, continuous set <i>O</i>	sensor measurements,) discrete, finite set O $\mathbf{y} = f(\mathbf{x}, \theta)$ $p(\mathbf{y} \mathbf{x}; \theta)$

■ Today: Regression for continuous labels $\mathbf{y} \in O$

Motivation

You want to predict the torques y of a robot arm

$$y = l\ddot{q} - \mu \dot{q} + mlg \sin(q)$$

$$= \begin{bmatrix} \ddot{q} & \dot{q} & \sin(q) \end{bmatrix} \begin{bmatrix} I & -\mu & mlg \end{bmatrix}^{\mathsf{T}}$$

$$= \phi(\mathbf{x})^{\mathsf{T}} \theta$$

Can we do this with a data set?

$$\mathcal{D} = \left\{ (\mathbf{x}_i, y_i) \,\middle|\, i = 1 \cdots n \right\}$$

A linear regression problem!

■ Given pairs of training data points and associated function values (\mathbf{x}_i, y_i)

$$\mathcal{X} = \left\{ \mathbf{x}_1, \dots, \mathbf{x}_n | \mathbf{x}_i \in \mathbb{R}^d \right\}$$
$$\mathcal{Y} = \left\{ y_1, \dots, y_n | y_i \in \mathbb{R} \right\}$$

- Note: here we only do the case $y_i \in \mathbb{R}$. In general y_i can have more than one dimension, i.e., $y_i \in \mathbb{R}^k$ for some positive integer k
- Start with linear regressor

$$\mathbf{x}_i^\mathsf{T}\mathbf{w} + w_0 = y_i \quad \forall i = 1, \dots, n$$

- One linear equation for each training data point/label pair
- Exactly the same basic setup as for least-squares classification! Only the values are continuous

$$\mathbf{x}_i^\mathsf{T}\mathbf{w} + w_0 = y_i \quad \forall i = 1, \dots, n$$

■ Step 1: Define

$$\hat{\mathbf{x}}_i = \begin{pmatrix} \mathbf{x}_i \\ 1 \end{pmatrix} \quad \hat{\mathbf{w}} = \begin{pmatrix} \mathbf{w} \\ w_0 \end{pmatrix}$$

■ **Step 2**: Rewrite

$$\hat{\mathbf{x}}_{i}^{\mathsf{T}}\hat{\mathbf{w}} = y_{i} \quad \forall i = 1, \ldots, n$$

■ **Step 3**: Matrix-vector notation

$$\hat{\mathbf{X}}^{\mathsf{T}}\hat{\mathbf{w}} = \mathbf{y}$$

where $\hat{\mathbf{X}} = [\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_n]$ (each $\hat{\mathbf{x}}_i$ is a vector) and $\mathbf{y} = [y_1, \dots, y_n]^\mathsf{T}$

■ Step 4: Find the least squares solution

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \left\| \hat{\mathbf{X}}^\mathsf{T} \mathbf{w} - \mathbf{y} \right\|^2$$

$$abla_{\mathbf{w}} \left\| \hat{\mathbf{X}}^{\mathsf{T}} \mathbf{w} - \mathbf{y} \right\|^2 = \mathbf{0}$$
 $\hat{\mathbf{w}} = \left(\hat{\mathbf{X}} \hat{\mathbf{X}}^{\mathsf{T}} \right)^{-1} \hat{\mathbf{X}} \mathbf{y}$

A closed form solution!

$$\hat{\mathbf{w}} = \left(\hat{\mathbf{X}}\hat{\mathbf{X}}^{\mathsf{T}}\right)^{-1}\hat{\mathbf{X}}\mathbf{y}$$

- Where is the costly part of this computation?
 - The inverse is a $\mathbb{R}^{D \times D}$ matrix
 - Naive inversion takes $O(D^3)$, but better methods exist
- What can we do if the input dimension *D* is too large?
 - Gradient descent
 - Work with fewer dimensions

Limitations

- \blacksquare So far $y_i = \mathbf{x}_i^T \mathbf{w} + \mathbf{w}_0$
- Can we represent arbitrary polynomials?

- No, only
 - constant mappings for $\mathbf{w} = 0$

Limitations

$$\blacksquare$$
 So far $y_i = \mathbf{x}_i^T \mathbf{w} + \mathbf{w}_0$

Can we represent arbitrary polynomials?

- No, only
 - \blacksquare constant mappings for $\mathbf{w} = 0$, or
 - linear mappings

Polynomial Regression

- How can we fit arbitrary polynomials using least-squares regression?
 - We introduce a feature transformation as before

$$y(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}) = \sum_{i=0}^{M} w_i \phi_i(\mathbf{x})$$

- \blacksquare Assume $\phi_0(\mathbf{x})=1$
- $\phi_i(.)$ are called the basis functions or features
- Still a linear model in the parameters w
- E.g. fitting a cubic polynomial

$$\phi\left(x\right) = \left(1, x, x^{2}, x^{3}\right)^{\mathsf{T}}$$

Polynomial Regression

■ Polynomial of degree n = 3, 6

■ Fits data well

Polynomial Regression

■ Polynomial of degree n = 15, 18

Massive overfitting

Mechanical Interpretation

■ Potential energy of spring *i*

$$E_{\mathrm{pot}} = \frac{1}{2} k \Delta y_i^2,$$

 $\Delta y_i = y_i - f(\mathbf{x_i})$

System's total potential energy

$$E_{\rm tot} = \frac{1}{2}k\sum_i \Delta y_i^2$$

Goal: Minimize E_{tot} by fitting $f(\mathbf{x_i})$

Geometric Interpretation

- Let's consider N data points (t_i, \mathbf{x}_i)
- The axes t_i define an N-dimensional space
- The M < N features $\phi_j(\mathbf{x_i})$ span a linear sub-space of dimensionality M
- $\mathbf{y} = [f(\mathbf{x_1}), ..., f(\mathbf{x_N})]$ is a vector in the M-dimensional sub-space
- Least-squares regression finds y as the orthogonal projection of the data t into the sub-space.

Outline

- 1. Introduction to Linear Regression
- 2. Maximum Likelihood Approach to Regression
- 3. Bias and Variance in Linear Regression
- 4. Bayesian Linear Regression
- 5. Wrap-Up

Probabilistic Regression

■ **Assumption 1**: Our target function values are generated by adding noise to the function estimate

$$y = f(\mathbf{x}, \mathbf{w}) + \epsilon$$

- y target function value; f regression function; x input value;
 w weights or parameters; ∈ noise
- **Assumption 2**: The noise is a random variable that is Gaussian distributed

$$\begin{aligned} \epsilon &\sim \mathcal{N}\left(\epsilon; \mathbf{0}, \sigma^{2}\right) \\ \Rightarrow & p\left(y \,\middle|\, \mathbf{x}; \mathbf{w}, \beta\right) = \mathcal{N}\left(y \,\middle|\, \mathbf{x}; f\left(\mathbf{x}, \mathbf{w}\right), \sigma^{2}\right) \end{aligned}$$

- **I** $f(\mathbf{x}, \mathbf{w})$: mean; σ : standard deviation; $\beta = 1/\sigma^2$: precision
- Note that y is now a random variable with underlying probability distribution $p\left(y \mid \mathbf{x}; \mathbf{w}, \sigma\right)$

Probabilistic Regression

Probabilistic Regression

- Given
 - lacksquare Training input data points $\mathcal{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{d imes n}$
 - Associated function values $\mathcal{Y} = [y_1, \dots, y_n]^\mathsf{T}$
- Conditional likelihood (assuming the data is i.i.d.)

$$\rho\left(\mathbf{y}\,\middle|\,\mathbf{X};\mathbf{w},\beta\right) = \prod_{i=1}^{n} \mathcal{N}\left(y_{i}\,\middle|\,\mathbf{x}_{i};f\left(\mathbf{x}_{i},\mathbf{w}\right),\sigma^{2}\right)$$

(with linear model)

$$=\prod_{i=1}^{n}\mathcal{N}\left(y_{i}\,\middle|\,\mathbf{x}_{i};\mathbf{w}^{\mathsf{T}}\phi\left(\mathbf{x}_{i}\right),\sigma^{2}\right)$$

- $\mathbf{w}^{\mathsf{T}}\phi\left(\mathbf{x}_{i}\right)$ is the generalized linear regression function
- lacksquare Maximize the likelihood w.r.t. (with respect to) lacksquare and σ^2

■ Simplify using the **log**-likelihood

$$\begin{split} \log p\left(\mathbf{y} \,\middle|\, \mathbf{X}; \mathbf{w}, \sigma\right) &= \sum_{i=1}^{n} \log \mathcal{N}\left(y_{i} \,\middle|\, \mathbf{x}_{i}; \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}_{i}\right), \sigma^{2}\right) \\ &= \sum_{i=1}^{n} \left[\log \left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right) - \frac{1}{2\sigma^{2}} \left(y_{i} - \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}_{i}\right)\right)^{2}\right] \\ &= -n \log \sigma - \frac{n}{2} \log \left(2\pi\right) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(y_{i} - \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}_{i}\right)\right)^{2} \end{split}$$

■ Gradient w.r.t. w

$$\nabla_{\mathbf{w}} \log p\left(\mathbf{y} \mid \mathbf{X}; \mathbf{w}, \sigma\right) = \mathbf{0}$$

$$\Rightarrow -\frac{1}{\sigma^{2}} \sum_{i=1}^{n} \left(y_{i} - \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}_{i}\right)\right) \phi\left(\mathbf{x}_{i}\right) = \mathbf{0}$$

Define

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}, \quad \mathbf{\Phi} = \begin{bmatrix} & & & | \\ \phi(\mathbf{x}_1) & \dots & \phi(\mathbf{x}_n) \\ | & & | \end{bmatrix}$$

$$\sum_{i=1}^{n} y_{i} \phi(\mathbf{x}_{i}) = \left[\sum_{i=1}^{n} \phi(\mathbf{x}_{i}) \phi(\mathbf{x}_{i})^{\mathsf{T}}\right] \mathbf{w}$$

$$\Phi \mathbf{y} = \Phi \Phi^{\mathsf{T}} \mathbf{w} \quad (\mathsf{Matrix notation})$$

$$\mathbf{w}_{\mathsf{ML}} = (\Phi \Phi^{\mathsf{T}})^{-1} \Phi \mathbf{y}$$

■ The same result as in least squares regression!

- We obtain the same **w** as with least squares regression
 - \blacksquare Least-squares is equivalent to assuming the targets are Gaussian distributed with fixed noise β
 - Note: The least squares method is not distribution-free!
- However, the Maximum Likelihood approach is much more powerful!
 - \blacksquare We can also estimate β

$$\sigma_{\mathsf{ML}}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}_{\mathsf{ML}}^{\mathsf{T}} \phi(\mathbf{x}_i))^2$$

■ We can gauge the uncertainty of our estimate!

- Given a new data point \mathbf{x}_t , in least squares regression the function value is $y_t = \hat{\mathbf{x}}_t^T \hat{\mathbf{w}}$
- But in maximum likelihood regression we have a probability distribution over the function value $p\left(y \mid \mathbf{x}; \mathbf{w}, \sigma\right)$
- How do we actually estimate a function value y_t for a new data point \mathbf{x}_t ?
- We need a loss function, just as in the classification case

$$L: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^+$$

$$(y_t, f(\mathbf{x}_t)) \rightarrow L(y_t, f(\mathbf{x}_t))$$

■ Minimize the expected loss

$$\mathbb{E}_{\mathbf{x},y\sim p(\mathbf{x},y)}\left[L\right] = \int \int L\left(y,f\left(\mathbf{x}\right)\right)p\left(\mathbf{x},y\right)d\mathbf{x}dy$$

Simplest case: squared loss

$$L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^{2}$$

$$\mathbb{E}_{\mathbf{x}, y \sim p(\mathbf{x}, y)} [L] = \int \int (y - f(\mathbf{x}))^{2} p(\mathbf{x}, y) d\mathbf{x} dy$$

$$\frac{\partial \mathbb{E}[L]}{\partial f(\mathbf{x})} = -2 \int (y - f(\mathbf{x})) p(\mathbf{x}, y) dy = 0$$

$$\int y p(\mathbf{x}, y) dy = f(\mathbf{x}) \int p(\mathbf{x}, y) dy$$

$$\int y p(\mathbf{x}, y) \, dy = f(\mathbf{x}) \int p(\mathbf{x}, y) \, dy$$

$$\int y p(\mathbf{x}, y) \, dy = f(\mathbf{x}) p(\mathbf{x})$$

$$f(\mathbf{x}) = \int y \frac{p(\mathbf{x}, y)}{p(\mathbf{x})} dy = \int y p(y \mid \mathbf{x}) \, dy$$

$$f(\mathbf{x}) = \mathbb{E}_{y \sim p(y \mid \mathbf{x})} [y] = \mathbb{E} [y \mid \mathbf{x}]$$

- Under squared loss, the optimal regression function is the mean $\mathbb{E}\left[y \mid \mathbf{x}\right]$ of the posterior $p\left(y \mid \mathbf{x}\right)$
- It is also called mean prediction

■ For our generalized linear regression function

$$f\left(\mathbf{x}\right) = \int y \mathcal{N}\left(y \,\middle|\, \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}\right), \sigma^{2}\right) \mathrm{d}y = \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}\right)$$

Outline

- 1. Introduction to Linear Regression
- 2. Maximum Likelihood Approach to Regression
- 3. Bias and Variance in Linear Regression
- 4. Bayesian Linear Regression
- 5. Wrap-Up

- So far, we have assumed that $f(\mathbf{x}, \mathbf{w}) = \phi(\mathbf{x})^T \mathbf{w}$ depends only on the weights.
- Let's assume that we have fitted the parameters **w** of the model $f_{\mathcal{D}}(\mathbf{x})$ on data \mathcal{D}
 - How can we assess the quality of the model f, e.g., the choice of the polynomial degree of ϕ ?
- We estimate the bias and variance of the regression model

Notation:

- The training data \mathcal{D} was generated by $y(\mathbf{x})$
- lacksquare We assume the following model to predict the data ${\cal D}$

$$y(\mathbf{x}_q) = f(\mathbf{x}_q) + \epsilon$$

with
$$\mathit{E}\{\epsilon\} = 0$$
 and $\mathrm{Var}\{\epsilon\} = \sigma_{\epsilon}^2$

- lacksquare We denote the trained function estimator on data ${\cal D}$ by $\hat{f}_{{\cal D}}$
- We evaluate the **Expected Squared Error** for query \mathbf{x}_q estimated from all possible data sets \mathcal{D}

$$L_{\hat{f}}(\mathbf{x}_q) = \mathbb{E}_{\mathcal{D},\epsilon}\left[\left(y(\mathbf{x}_q) - \hat{f}_{\mathcal{D}}(\mathbf{x}_q)\right)^2\right]$$

Expected Squared Error for query \mathbf{x}_q estimated from all possible data sets \mathcal{D}

$$\begin{split} L_{\hat{f}}(\mathbf{x}_q) &= \mathbb{E}_{\mathcal{D},\epsilon} \left[\left(y(\mathbf{x}_q) - \hat{f}_{\mathcal{D}}(\mathbf{x}_q) \right)^2 \right] \\ &= \mathbb{E}_{\mathcal{D},\epsilon} \left[\left(y(\mathbf{x}_q) - f(\mathbf{x}_q) + f(\mathbf{x}_q) - \hat{f}_{\mathcal{D}}(\mathbf{x}_q) \right)^2 \right] \\ &= \mathbb{E}_{\mathcal{D},\epsilon} \left[\underbrace{\left(y(\mathbf{x}_q) - f(\mathbf{x}_q) \right)^2 + \left(f(\mathbf{x}_q) - \hat{f}_{\mathcal{D}}(\mathbf{x}_q) \right)^2 + 2 \underbrace{\left(y(\mathbf{x}_q) - f(\mathbf{x}_q) \right) \left(f(\mathbf{x}_q) - \hat{f}_{\mathcal{D}}(\mathbf{x}_q) \right)}_{=\epsilon \left(f(\mathbf{x}_q) - \hat{f}_{\mathcal{D}}(\mathbf{x}) \right)} \right] \\ &= \sigma_{\epsilon}^2 + \mathbb{E}_{\mathcal{D}} \left[\left(f(\mathbf{x}_q) - \hat{f}_{\mathcal{D}}(\mathbf{x}_q) \right)^2 \right]; \qquad \mathbb{E}_{\mathcal{D},\epsilon} \left[\epsilon \left(f(\mathbf{x}_q) - \hat{f}_{\mathcal{D}}(\mathbf{x}_q) \right) \right] = 0 \end{split}$$

■ The loss can be decomposed into the model noise and the expected squared error between the regression model and $f(\mathbf{x_q})$

■ We shed some light on the model discrepancy term

$$\mathbb{E}_{\mathcal{D}}\left[\left(f(\mathbf{x}_q) - \hat{f}_{\mathcal{D}}(\mathbf{x}_q)\right)^2\right]$$

lacksquare using $ar{\hat{f}}(\mathbf{x}_q) = \mathbb{E}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(\mathbf{x}_q)
ight]$, we obtain

$$\begin{split} \mathbb{E}_{\mathcal{D}}\left[\left(f(\mathbf{x}_{q}) - \hat{f}_{\mathcal{D}}(\mathbf{x}_{q})\right)^{2}\right] &= \mathbb{E}_{\mathcal{D}}\left[\left(f(\mathbf{x}_{q}) - \overline{\hat{f}}(\mathbf{x}_{q}) + \overline{\hat{f}}(\mathbf{x}_{q}) - \hat{f}_{\mathcal{D}}(\mathbf{x}_{q})\right)^{2}\right] \\ &= \underbrace{\left(f(\mathbf{x}_{q}) - \overline{\hat{f}}(\mathbf{x}_{q})\right)^{2}}_{=\mathrm{bias}^{2}\left[\hat{f}_{\mathcal{D}}(\mathbf{x}_{q})\right]} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(\overline{\hat{f}}(\mathbf{x}_{q}) - \hat{f}_{\mathcal{D}}(\mathbf{x}_{q})\right)^{2}\right]}_{=\mathrm{var}\left[\hat{f}_{\mathcal{D}}(\mathbf{x}_{q})\right]} \end{split}$$

Bias-Variance Tradeoff

- lacksquare (Total) Bias $\mathrm{bias}^2\left[\hat{f}_{\mathcal{D}}\right] = \mathbb{E}_{\mathbf{x}_q}\left[\left(f(\mathbf{x}_q) \mathbb{E}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(\mathbf{x}_q)\right]\right)^2\right]$
 - Structure error
 - lacksquare Model $\hat{f}_{\mathcal{D}}\left(\mathbf{x}_{q}\right)$ cannot do better

$$\text{ (Total) Variance } \operatorname{var}\left[\hat{f}_{\mathcal{D}}(\mathbf{x}_q)\right] = \mathbb{E}_{\mathbf{x}_q,\mathcal{D}}\left[\left(\hat{f}_{\mathcal{D}}(\mathbf{x}_q) - \mathbb{E}_{\tilde{\mathcal{D}}}\left[\hat{f}_{\tilde{\mathcal{D}}}(\mathbf{x}_q)\right]\right)^2\right]$$

- Estimation error
- Finite data sets will always have errors
- Expected Total Error ∝ Bias²+Variance
 - You typically cannot minimize both

Marcus Rohrbach • Statistical Machine Learning • Summer Term 2025

Are we Done with Regression?

Relatively little data leads to overfitting

Enough data leads to a good estimate

- What can we do to avoid overfitting in small data settings? Recall the density estimation class
- Use a prior distribution over the parameters $p(\mathbf{w})$

Outline

- 1. Introduction to Linear Regression
- 2. Maximum Likelihood Approach to Regression
- 3. Bias and Variance in Linear Regression
- 4. Bayesian Linear Regression
- 5. Wrap-Up

Bayesian Linear Regression

lacktriangle We place a prior on the parameters lacktriangle to tame the instabilities

$$p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{y}\right) \propto p\left(\mathbf{y} \mid \mathbf{X}, \mathbf{w}\right) p\left(\mathbf{w}\right)$$

- Parameter prior: $p(\mathbf{w})$
- Likelihood of targets under the data and parameters (as before): $p\left(\mathbf{y} \mid \mathbf{X}, \mathbf{w}\right)$
- lacktriangle Posterior over the parameters: $p\left(\mathbf{w} \,\middle|\, \mathbf{X}, \mathbf{y}\right)$
- Notice the VERY important difference: in this setting, you do not get a single value for the parameters anymore, but rather a probability distribution over the parameters

- Simple idea: Put a Gaussian prior on w
- It will put a "soft" limit on the coefficients and thus avoid instabilities

$$\mathbf{w} \sim p_0(\mathbf{w}; \sigma_0) = \mathcal{N}\left(\mathbf{w}; \mathbf{0}, \sigma_0^2 \mathbf{I}\right)$$

- We use a zero mean Gaussian to keep the derivation compact, but you can use another mean
- Zero mean and spherical covariance (given by the diagonal covariance matrix)
- The posterior becomes

$$\begin{split} \rho\left(\mathbf{w} \,\middle|\, \mathbf{X}, \mathbf{y}; \sigma_0, \sigma\right) &\propto \rho\left(\mathbf{y} \,\middle|\, \mathbf{X}, \mathbf{w}; \sigma\right) \rho\left(\mathbf{w}; \sigma_0\right) \\ &\propto \rho\left(\mathbf{y} \,\middle|\, \mathbf{X}, \mathbf{w}; \sigma\right) \mathcal{N}\left(\mathbf{w}; \mathbf{0}, \sigma_0^2 \mathbf{I}\right) \end{split}$$

Maximum A-Posteriori (MAP)

■ First attempt to solve this problem: estimate w by maximizing the (log) posterior on the data X

$$\begin{split} \log p\left(\mathbf{w} \,\middle|\, \mathbf{X}, \mathbf{y}; \sigma_0, \sigma\right) &= \log p\left(\mathbf{y} \,\middle|\, \mathbf{X}, \mathbf{w}; \sigma\right) + \log \mathcal{N}\left(\mathbf{w}; \mathbf{0}, \sigma_0^2 \mathbf{I}\right) + \text{const} \\ &= \sum_{i=1}^n \log \mathcal{N}\left(y_i \,\middle|\, \mathbf{x}_i, \mathbf{w}; \mathbf{w}^\mathsf{T} \phi\left(\mathbf{x}_i\right) \sigma^2\right) \\ &+ \log \mathcal{N}\left(\mathbf{w}; \mathbf{0}, \sigma_0^2 \mathbf{I}\right) + \text{const} \\ &= -\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \mathbf{w}^\mathsf{T} \phi\left(\mathbf{x}_i\right)\right)^2 - \frac{1}{2\sigma_0^2} \mathbf{w}^\mathsf{T} \mathbf{w} + \text{const} \end{split}$$

Maximum A-Posteriori (MAP)

 \blacksquare Find optimal MAP parameters $\mathbf{w}_{\mathsf{MAP}}$ by taking the gradient:

$$\nabla_{\mathbf{w}} \log p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{y}, \sigma_{0}, \sigma\right) = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} \left(y_{i} - \mathbf{w}^{\mathsf{T}} \phi\left(\mathbf{x}_{i}\right)\right) \phi\left(\mathbf{x}_{i}\right) - \frac{1}{\sigma_{0}^{2}} \mathbf{w} = \mathbf{0}$$

$$\Leftrightarrow \qquad \sigma^{-2} \sum_{i=1}^{n} y_{i} \phi\left(\mathbf{x}_{i}\right) = \sigma^{-2} \left[\sum_{i=1}^{n} \phi\left(\mathbf{x}_{i}\right) \phi\left(\mathbf{x}_{i}\right)^{\mathsf{T}}\right] \mathbf{w} + \sigma_{0}^{-2} \mathbf{w}$$

$$\Leftrightarrow \qquad \sigma^{-2} \sum_{i=1}^{n} y_{i} \phi\left(\mathbf{x}_{i}\right) = \left[\sigma^{-2} \sum_{i=1}^{n} \phi\left(\mathbf{x}_{i}\right) \phi\left(\mathbf{x}_{i}\right)^{\mathsf{T}} + \sigma_{0}^{-2}\right] \mathbf{w}$$

$$\Leftrightarrow \qquad \sigma^{-2} \Phi \mathbf{y} = \left(\sigma^{-2} \Phi \Phi^{\mathsf{T}} + \sigma_{0}^{-2} \mathbf{I}\right) \mathbf{w} \quad \text{(Matrix notation)}$$

$$\Leftrightarrow \qquad \mathbf{w}_{\mathsf{MAP}} = \left(\Phi \Phi^{\mathsf{T}} + \sigma^{2} / \sigma_{0}^{2} \mathbf{I}\right)^{-1} \Phi \mathbf{y}$$

■ What is the role of σ^2/σ_0^2 in the expression?

Maximum A-Posteriori (MAP)

$$\mathbf{w}_{\mathsf{MAP}} = \left(\mathbf{\Phi}\mathbf{\Phi}^{\intercal} + rac{\sigma^2}{\sigma_0^2}\mathbf{I}
ight)^{-1}\mathbf{\Phi}\mathbf{y}$$

- The prior has the effect that it regularizes the pseudo-inverse
- Also called ridge regression

Intuition for the term "ridge", although these are not the historical reasons: If there is multicollinearity, we get a "ridge" in the likelihood function. This in turn yields a long "valley" in the RSS. Ridge regression "fixes" the ridge. It adds a penalty that turns the ridge into a nice peak in likelihood space.

TECHNISCHE UNIVERSITÄT DARMSTADT

Regularized Least-squares Linear Regression as Maximum A-Posteriori (MAP)

- There is another way to look at the MAP result
- Let us add a regularization term to our objective from Least-squares Linear Regression

$$\mathbf{w} = \arg\min_{\mathbf{w}} \frac{1}{2} \left\| \mathbf{\Phi}^\mathsf{T} \mathbf{w} - \mathbf{y} \right\|^2 + \frac{\lambda}{2} \left\| \mathbf{w} \right\|^2$$

Solving for w we get a new estimate

$$\mathbf{w} = (\mathbf{\Phi}\mathbf{\Phi}^{\mathsf{T}} + \lambda \mathbf{I})^{-1} \mathbf{\Phi} \mathbf{y}$$

- \blacksquare where $\lambda = \sigma^2/\sigma_0^2$
- When you place a regularizer λ in least-squares linear regression, you are assuming the targets have Gaussian distributed noise, but also that your parameters are Gaussian distributed

lacksquare Polynomial of degree n=18 with Gaussian prior on lacksquare

Linear Regression

Ridge regression with $\lambda = 10^{-1} N$

lacksquare Polynomial of degree n=18 with Gaussian prior on lacksquare

Linear Regression

Ridge regression with $\lambda = 10^{-2} N$

lacksquare Polynomial of degree n=18 with Gaussian prior on lacksquare

Linear Regression

Ridge regression with $\lambda = 10^{-3} N$

■ Polynomial of degree n = 18 with Gaussian prior on **w**

Linear Regression

Ridge regression with $\lambda = 10^{-10} N$

lacksquare Polynomial of degree n=18 with Gaussian prior on lacksquare

Linear Regression

Ridge regression with $\lambda = 10^{-100} N$

Posterior evolution with more data points

https://gregorygundersen.com/blog/2020/02/04/bayesian-linear-regression/

Full Bayesian Regression

- We can go further than MAP estimation
- Observation: We do not actually need to know w, all we want to do is to predict a function value based on the training data
- Idea: "Remove" w by marginalizing over it

$$p\left(y_{t} \mid \mathbf{x}_{t}, \mathbf{X}, \mathbf{y}\right) = \int p\left(y_{t}, \mathbf{w} \mid \mathbf{x}_{t}, \mathbf{X}, \mathbf{y}\right) d\mathbf{w}$$

 \mathbf{v}_t - predicted value; \mathbf{x}_t - test input; \mathbf{X} - training data points; \mathbf{y} - training function values

Full Bayesian Regression

$$\underbrace{\rho\left(y_{t} \middle| \mathbf{x}_{t}, \mathbf{X}, \mathbf{y}\right)}_{\text{predictive distribution}} = \int \rho\left(y_{t}, \mathbf{w} \middle| \mathbf{x}_{t}, \mathbf{X}, \mathbf{y}\right) d\mathbf{w}$$

$$= \int \rho\left(y_{t} \middle| \mathbf{w}, \mathbf{x}_{t}, \mathbf{X}, \mathbf{y}\right) \rho\left(\mathbf{w} \middle| \mathbf{x}_{t}, \mathbf{X}, \mathbf{y}\right) d\mathbf{w}$$

$$= \int \underbrace{\rho\left(y_{t} \middle| \mathbf{w}, \mathbf{x}_{t}, \mathbf{X}, \mathbf{y}\right) \rho\left(\mathbf{w} \middle| \mathbf{X}, \mathbf{y}, \mathbf{y}\right)}_{\text{regression model posterior distribution}} d\mathbf{w}$$

 For Gaussian distributions, this can be done in closed form, leading to so-called Gaussian Processes

Gaussian Processes - Quick Preview

 Essentially Kernelized Bayesian Ridge Regression is equivalent to Gaussian Processes. We will not cover them now, but here is a quick preview of what they can do

Gaussian Processes - Quick Preview

TECHNISCHE UNIVERSITÄT DARMSTADT

Outline

- 1. Introduction to Linear Regression
- 2. Maximum Likelihood Approach to Regression
- 3. Bias and Variance in Linear Regression
- 4. Bayesian Linear Regression
- 5. Wrap-Up

5. Wrap-Up

You know now:

- How to formulate a linear regression problem
- The different methods to perform linear regression: least-squares, maximum likelihood and maximum a-posteriori
- Derive the equations for the parameters using the different methods
- Why introducing a prior distribution over the parameters can combat overfitting
- The bias and variance tradeoff in maximum likelihood approaches

Self-Test Questions

- What is regression (in general) and linear regression (in particular)?
- What is the cost function of regression and how can I interpret it?
- What is overfitting?
- How can I derive a Maximum-Likelihood Estimator for Regression?
- Why are Bayesian methods important?
- What is MAP and how is it different to full Bayesian regression?

TECHNISCHE UNIVERSITÄT DARMSTÄDT

Homework

- Reading Assignment to dive deeper into this week's content
 - Lindholm ch. 3.1
 - Murphy ch. 7
 - Bishop ch. 3
- Reading Assignment to prepare the next lecture
 - Lindholm ch. 9
 - Bishop ch. 6.4
 - Murphy ch. 15