Practico Mentoria - Analisis Exploratorio y Curación de Datos

Autor: Melania Omonte

Importaciones

```
In [181]:
```

```
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy as sp

from sklearn import preprocessing
import warnings
warnings.filterwarnings('ignore')
```

In [150]:

```
# Seteamos una semilla para Reproducibilidad np.random.seed(0)
```

Carga de los Datasets

```
In [151]:
```

```
player_df = pd.read_csv('./Datasets/football_player.csv')
team_df = pd.read_csv('./Datasets/football_team.csv')
match_df = pd.read_csv('./Datasets/football_match.csv')
```

Exploremos un poco los Datasets

Players Dataset

```
In [152]:
```

```
print("Shape 'player_df' = {}".format(player_df.shape))
player_df.sample(5)
```

```
Shape 'player_df' = (11060, 40)
```

Out[152]:

	player name	birthday	height_m	weight_kg	overall_rating	potential	preferred foot	crossing	finishing	heading accuracy	 vision	penali
1534	Carlos Acuna	1988- 06-23	1.78	71.21	67.33	71.81	right	51.52	67.43	68.86	 44.00	66
7238	Max Christiansen	1996- 09-25	1.88	83.91	64.09	74.45	right	47.73	37.73	60.82	 56.45	47
10999	Zakaria M'Sila	1992- 04-06	1.78	74.84	59.00	65.10	left	57.30	50.90	50.20	 54.30	54
2669	Dimitrija Lazarevski	1982- 09-23	1.78	74.84	59.00	61.00	left	51.00	38.00	54.00	 NaN	61

player birthday height_76 weights_kg overall_rating potential preferred crossing finishing accuracy ... vision penalty foot crossing finishing accuracy ... vision penalty for crossing finishing accuracy ... vision penalty for crossing finishing accuracy ... vision penalty for crossing finishing accuracy ... vision penalty ...

Team Dataset

```
In [153]:
```

```
print("Shape 'team_df' = {}".format(team_df.shape))
team_df.sample(5)
```

Shape 'team_df' = (288, 22)

Out[153]:

	team long name	team short name	buildUpPlaySpeed	buildUpPlaySpeedClass	buildUpPlayDribblingClass	buildUpPlayPassing	buildUpPlayPassin ₍
185	Lechia Gdańsk	LGD	50.83	Balanced	Little	48.33	
222	FC Penafiel	PEN	54.00	Balanced	Normal	39.00	
198	Pogoń Szczecin	POG	55.67	Balanced	Little	42.00	
197	Podbeskidzie Bielsko-Biała	POD	62.00	Balanced	Little	58.50	
173	Excelsior	EXC	57.67	Balanced	Little	60.00	

5 rows × 22 columns

Match Dataset

```
In [154]:
```

```
print("Shape 'match_df' = {}".format(match_df.shape))
match_df.sample(5)
```

Shape 'match_df' = (25979, 12)

Out[154]:

	country name	league name	season	stage	date	home team long name	home short long name	away team long name	away short long name	home team goal	away team goal	total goal
12042	Italy	Italy Serie A	2012/2013	35	2013-05- 05 00:00:00	Catania	CAT	Siena	SIE	3	0	3
8575	Germany	Germany 1. Bundesliga	2010/2011	25	2011-03- 05 00:00:00	VfB Stuttgart	STU	FC Schalke 04	S04	1	0	1
9067	Germany	Germany 1. Bundesliga	2012/2013	12	2012-11- 17 00:00:00	Eintracht Frankfurt	EFR	FC Augsburg	AUG	4	2	6
13165	Italy	Italy Serie A	2015/2016	34	2016-04- 21 00:00:00	Milan	ACM	Carpi	CAP	0	0	0
14904	Netherlands	Netherlands Eredivisie	2013/2014	2	2013-08- 10 00:00:00	Heracles Almelo	HER	PEC Zwolle	ZWO	1	3	4

Exploremos un poco los Datasets y sus correspondientes Tipos

Players Dtypes

In [155]:

player_df.dtypes

Out[155]:

object player name birthday object height m float64 weight_kg float64 float64 overall_rating potential float64 preferred foot object crossing float64 float64 float64 float64 finishing heading accuracy short passing volleys float64 float64 dribbling curve float64 free kick accuracy float64 long passing float64 long passing ball control float64 acceleration float64 float64 sprint speed agility float64 float64 reactions float64 balance shot power float64 float64 jumping float64 float64 stamina strength float64 long shots aggression float64 interceptions float64 float64 positioning vision float64 float64 penalties float64 marking standing tackle float64 float64 sliding tackle gk diving float64 gk handling float64 gk_kicking float64 gk positioning float64 float64 gk_reflexes dtype: object

Match Dtypes

In [156]:

match_df.dtypes

Out[156]:

country name	object
league name	object
season	object
stage	int64
date	object
home team long name	object
home short long name	object
away team long name	object
away short long name	object
home team goal	int64
away team goal	int64
total goal	int64
dtype: object	

Team Dtypes

```
In [157]:
team df.dtypes
Out[157]:
team long name
                                  object
team short name
                                  object
buildUpPlaySpeed
                                 float64
buildUpPlaySpeedClass
                                 object
buildUpPlayDribblingClass
                                  object
buildUpPlayPassing
                                 float64
buildUpPlayPassingClass
                                  object
buildUpPlayPositioningClass
                                 obiect
chanceCreationPassing
                               float64
chanceCreationPassingClass
                                 object
chanceCreationCrossing
                                 float64
chanceCreationCrossingClass
                              float64
                                 object
chanceCreationShooting
chanceCreationPositioningClass object defencePressure
defencePressureClass
                                  object
defenceAggression
                                float64
defenceAggressionClass
                                 object
defenceTeamWidth
                                float64
defenceTeamWidthClass
                                 object
defenceDefenderLineClass
                                 object
dtype: object
```

1. Importacion de los datos

Calculemos el rango de fechas de los partidos

Antes de calcular el rango de fechas de los partidos, debemos validar que tipo de objeto es la fecha

```
In [158]:
match_df.dtypes['date']
Out[158]:
dtype('0')
```

Como la fecha es un campo del tipo object, no podremos calcular el rango solicitado, por lo tanto tendremos que cambiar el tipo, asi podemos generar el valor solicitado.

Modificamos el tipo "date", para poder calcular el rango

```
In [159]:
match_df2 = pd.read_csv("./Datasets/football_match.csv", parse_dates=["date"])
```

Visualizamos que haya cambiado el tipo "date"

```
In [160]:
match_df2.dtypes['date']
Out[160]:
```

```
dtype('<M8[ns]')</pre>
```

Validamos que se cambio el tipo a datetime64[ns]

Realizamos la diferencia, para poder calcular el rango solicitado

```
In [161]:

match_df2['date'].max() - match_df2['date'].min()

Out[161]:
Timedelta('2868 days 00:00:00')
```

Rta: El rango de fechas entre partidos es 2868 dias.

2. Etiquetas de variables/columnas: no usar caracteres especiales

Chequar que no haya caracteres fuera de a-z, 0-9 y en los nombres de columnas de los Dataframes:

- player df
- team_df
- match_df

Exploramos los Datasets y validamos que no hayan caracteres fuera de lo solicitado

Match DataSet

Chequeamos que existen varias columnas que tienen caracteres fuera de "a-Z, 0-9 y _" en el dataset match.

Player DataSet

Chequeamos que existen varias columnas que tienen caracteres fuera de "a-Z, 0-9 y " en el dataset player.

Team DataSet

```
In [164]:
```

```
team_df.columns[~team_df.columns.str.match(r'^(\w+)$')]
```

Out[164]:

Index(['team long name', 'team short name'], dtype='object')

Chequeamos que existen 2 columnas que tienen caracteres fuera de "a-Z, 0-9 y _" en el dataset team.

Reemplazamos los valores fuera de "a-Z, 0-9 y _" en el dataset team

```
In [165]:
```

```
team_df.columns = team_df.columns.str.replace(' ', '_')
team_df.head()
```

Out[165]:

	team_long_name	team_short_name	buildUpPlaySpeed	build Up Play Speed Class	build Up Play Dribbling Class	buildUpPlayPassing	build
0	KRC Genk	GEN	56.33	Balanced	Little	44.33	
1	Beerschot AC	BAC	46.00	Balanced	Little	41.50	
2	SV Zulte- Waregem	ZUL	55.50	Balanced	Little	52.67	
3	Sporting Lokeren	LOK	64.00	Balanced	Little	53.50	
4	KSV Cercle Brugge	CEB	53.67	Balanced	Little	44.17	

5 rows × 22 columns

Validamos que se hayan reemplazado bien los campos en el dataset Team

```
In [166]:
```

```
team_df.columns[~team_df.columns.str.match(r'^(\w+)$')]
Out[166]:
```

Index([], dtype='object')

Validamos que se reemplazaron exitosamente los campos, ya que la consulta anterior no nos devuelve ningun campo.

Reemplazamos los valores fuera de "a-Z, 0-9 y _" en el dataset Player

```
In [167]:
```

```
player_df.columns = player_df.columns.str.replace(' ', '_')
player_df.head()
```

Out[167]:

	player_name	birthday	height_m	weight_kg	overall_rating	potential	preferred_foot	crossing	finishing	heading_accuracy	 vis
0	Aaron Appindangoye	1992- 02-29	1.83	84.82	63.60	67.60	right	48.60	43.60	70.60	 50
1	Aaron Cresswell	1989- 12-15	1.70	66.22	66.97	74.48	left	70.79	49.45	52.94	 57
2	Aaron Doran	1991- 05-13	1.70	73.94	67.00	74.19	right	68.12	57.92	58.69	 69

3	Adaye Galande	birthday 05-08	height_818	weigl%(9_16g	overall_reging	pot@ntlæl	preferred_f@at	crossi <u>ag</u>	finishi <u>ng</u>	heading_acc@ga@g	 v \$\$
4	Aaron Hughes	1979- 11-08	1.83	69.85	73.24	74.68	right	45.08	38.84	73.04	 46
5 rd	ows × 40 colun	nns									Þ

Validamos que se hayan reemplazado bien los campos en el dataset Player

```
In [168]:

player_df.columns[~player_df.columns.str.match(r'^(\w+)$')]

Out[168]:
Index([], dtype='object')
```

Validamos que se reemplazaron exitosamente los campos, ya que la consulta anterior no nos devuelve ningun campo.

Reemplazamos los valores fuera de "a-Z, 0-9 y _" en el dataset Match

```
In [169]:

match_df.columns = match_df.columns.str.replace(' ', '_')
match_df.head()
```

C	ountry_name	league_name	season	stage	date	home_team_long_name	home_short_long_name	away_team_long_name	a۱
0	Belgium	Belgium Jupiler League	2008/2009	1	2008- 08-17 00:00:00	KRC Genk	GEN	Beerschot AC	
1	Belgium	Belgium Jupiler League	2008/2009	1	2008- 08-16 00:00:00	SV Zulte-Waregem	ZUL	Sporting Lokeren	
2	Belgium	Belgium Jupiler League	2008/2009	1	2008- 08-16 00:00:00	KSV Cercle Brugge	СЕВ	RSC Anderlecht	
3	Belgium	Belgium Jupiler League	2008/2009	1	2008- 08-17 00:00:00	KAA Gent	GEN	RAEC Mons	

FCV Dender EH

DEN

Standard de Liège

Validamos que se hayan reemplazado bien los campos en el dataset Match

2008-

08-16 00:00:00

```
In [170]:

match_df.columns[~match_df.columns.str.match(r'^(\w+)$')]

Out[170]:
Index([], dtype='object')
```

Validamos que se reemplazaron exitosamente los campos, ya que la consulta anterior no nos devuelve ningun campo.

3. Agregar nuevas caracteristicas

Belgium

League

Belaium

Jupiler 2008/2009

Link:

Out[169]:

https://www.texasheart.org/heart-health/heart-information-center/topics/calculadora-del-indice-de-masa-corporal-imc/

```
In [171]:
```

```
from sklearn import preprocessing
player_df_mod = pd.read_csv('./Datasets/football_player.csv')
player_df_mod.head()
```

Out[171]:

	player name	birthday	height_m	weight_kg	overall_rating	potential	preferred foot	crossing	finishing	heading accuracy	 vision	penalties
0	Aaron Appindangoye	1992- 02-29	1.83	84.82	63.60	67.60	right	48.60	43.60	70.60	 53.60	47.60
1	Aaron Cresswell	1989- 12-15	1.70	66.22	66.97	74.48	left	70.79	49.45	52.94	 57.45	53.12
2	Aaron Doran	1991- 05-13	1.70	73.94	67.00	74.19	right	68.12	57.92	58.69	 69.38	60.54
3	Aaron Galindo	1982- 05-08	1.83	89.81	69.09	70.78	right	57.22	26.26	69.26	 53.78	41.74
4	Aaron Hughes	1979- 11-08	1.83	69.85	73.24	74.68	right	45.08	38.84	73.04	 46.48	52.96

5 rows × 40 columns

4

Saco el Cuadrado de la altura, para poder sacar el IMC. Una vez definido el cuadrado, calculo el IMC

```
In [172]:

altura_cuadrado=player_df_mod['height_m']**2

def imc(peso,altura):
    # return peso / (altura*altura)
    return peso / (altura_cuadrado)
```

Agrego la columna IMC en el dataFrame Player

```
In [173]:
```

```
player_df_mod['IMC'] = player_df_mod.apply(lambda x: imc(x.weight_kg, x.height_m), axis=1)
player_df_mod.describe()
```

```
Traceback (most recent call last)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\indexes\base.py in get loc(self,
key, method, tolerance)
   2656
-> 2657
                        return self._engine.get_loc(key)
   2658
                   except KeyError:
pandas/_libs/index.pyx in pandas. libs.index.IndexEngine.get loc()
pandas/_libs/index.pyx in pandas. libs.index.IndexEngine.get loc()
pandas/ libs/hashtable class helper.pxi in pandas. libs.hashtable.PyObjectHashTable.get item()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: 'IMC'
During handling of the above exception, another exception occurred:
                                          Traceback (most recent call last)
KevError
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\internals\managers.py in
set (self, item, value)
  1052
                try:
-> 1053
                    loc = self.items.get loc(item)
```

```
1054
                except KeyError:
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\indexes\base.py in get loc(self,
key, method, tolerance)
   2658
                    except KeyError:
-> 2659
                        return self. engine.get loc(self. maybe cast indexer(key))
   2660
                indexer = self.get indexer([key], method=method, tolerance=tolerance)
pandas/_libs/index.pyx in pandas. libs.index.IndexEngine.get loc()
pandas/ libs/index.pyx in pandas. libs.index.IndexEngine.get loc()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
pandas/_libs/hashtable_class_helper.pxi in pandas. libs.hashtable.PyObjectHashTable.get item()
KeyError: 'IMC'
During handling of the above exception, another exception occurred:
                                          Traceback (most recent call last)
<ipython-input-173-d9a6d2e6b330> in <module>
---> 2 player_df_mod['IMC'] = player_df_mod.apply(lambda x: imc(x.weight kg, x.height m), axis=1)
      3 player df mod.describe()
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\frame.py in setitem (self,
key, value)
   3368
                else:
   3369
                    # set column
-> 3370
                    self._set_item(key, value)
   3371
   3372
            def setitem slice(self, key, value):
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\frame.py in set item(self, key,
   3444
                self. ensure valid index (value)
                value = self. sanitize column(key, value)
   3445
-> 3446
                NDFrame. set item (self, key, value)
   3447
                # check if we are modifying a copy
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\generic.py in set item (self, ke
y, value)
   3170
   3171
            def _set_item(self, key, value):
-> 3172
                self. data.set(key, value)
   3173
                self. clear item cache ()
   3174
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\internals\managers.py in
set(self, item, value)
   1054
                except KeyError:
   1055
                    # This item wasn't present, just insert at end
-> 1056
                    self.insert(len(self.items), item, value)
   1057
   1058
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\internals\managers.py in insert(
self, loc, item, value, allow_duplicates)
   1156
   1157
                block = make_block(values=value, ndim=self.ndim,
-> 1158
                                   placement=slice(loc, loc + 1))
   1159
   1160
                for blkno, count in fast count smallints(self. blknos[loc:]):
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\internals\blocks.py in
make block (values, placement, klass, ndim, dtype, fastpath)
                values = DatetimeArray. simple new(values, dtype=dtype)
   3094
-> 3095
            return klass(values, ndim=ndim, placement=placement)
   3096
   3097
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\internals\blocks.py in __init__(
self, values, placement, ndim)
     85
                    raise ValueError(
```

Grafico de distribucion de IMC

```
In []:
plt.figure(figsize=(10,6))

## Grafico la distribucion de Masa Corporal"
sns.distplot(player_df_mod.IMC, kde=True, bins=5, label='IMC')
plt.ylabel('Densidad de Masa Corporal')
plt.legend()
```

Visualizamos los valores atipicos para el calculo realizado de IMC

```
In []:

#Para observar valores atípicos visualizamos el gráfico de caja...
plt.figure(figsize=(10,6))
data = player_df_mod[['IMC']]
sns.boxplot(data = data, orient="h", palette="coolwarm")
#sns.stripplot(data=data, color='black')
plt.show()
```

4. Tratar valores faltantes

Veamos cuantos valores nulos tenemos

```
In [ ]:
player_missing_values_count = player_df.isnull().sum()
player_missing_values_count[player_missing_values_count > 0]
```

Tenemos 478 valores nulos en 7 columnas del DataFrame Player

```
In []:
len( player_df.dropna())/len(player_df)

In []:
len(player_df.dropna(subset=['volleys']))/len(player_df)

In []:
player_df[player_df.volleys.isnull()]
```

Eliminamos los valores nulos

```
In [ ]:
player_df_mod = player_df_mod.dropna(subset=['volleys'])
```

```
ın [ ]:
```

```
player_df_mod.describe()
```

Validamos que se hayan validado esos valores nulos

In []:

```
player_missing_values_count = player_df_mod.isnull().sum()
player_missing_values_count[player_missing_values_count > 0]
```

Validamos que se eliminaron exitosamente los campos nulos, ya que no devuelve ningun valor la consulta realizada.

In []:

```
player_df[player_df.volleys.isnull()]
```

Algunas tecnicas para tratar los missing values:

- Eliminar muestras o variables que tienen datos faltantes.
- Imputar los valores perdidos, es decir, sustituirlos por estimaciones por ejemplo la media, la moda ó usando KNN.
- A) Analizar si es conveniente Eliminar las muestras o variables con datos faltantes del Dataframe player df.
- B) Aplicar la Imputacion usando la media o moda sobre las columnas con missing values del Dataframe player df.

Hint:

 Para la imputacion usando la media, moda ver el siguiente link: https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html

¿Eliminar los missing values? Justificar

Elimino los valores en un dataset modificado

Para eliminar los valores missing, debemos realizar un analisis sobre esos campos. Las columnas con valores missing son: volleys 478 curve 478 agility 478 balance 478 jumping 478 vision 478 sliding_tackle 478

Una de las soluciones para resolver este problema podria ser llenar estos los valores con ceros. Pero esta solucion no seria la mas optima, porque por ejemplo para un jugador, tendriamos que su agilidad es cero, y no seria representativo.

Otra de las opciones para resolver este problema es decidir eliminar estos valores, suponiendo que los valores missing pueden ser errores, de esta manera subsanamos dicho error.

Otra de las opciones es la imputacion de la Media o Moda, segun corresponda, analisis detallado mas abajo.

Imputacion usando Media y Moda

Reemplazo de Valores Faltantes usando la moda

In []:

Validamos que se hayan reemplazado bien los valores y que no hayan valores missing:

```
player missing values count = player df.isnull().sum()
player_missing_values_count[player_missing_values_count > 0]
```

Se comprueba exitosamente que no hay valores missing, una vez que se reemplazaron los datos por su moda.

Reemplazo de Valores Faltantes usando la Media

```
In [ ]:
# Rellenamos usando la Moda
player df reemplazo nan media = player df
player_df_reemplazo_nan_media.fillna(player_df_reemplazo_nan_media.mean(), inplace=True)
In [174]:
player_missing_values_count = player_df_reemplazo_nan_media.isnull().sum()
player_missing_values_count[player_missing_values_count > 0]
Out[174]:
Series([], dtype: int64)
```

Se comprueba exitosamente que no hay valores missing, una vez que se reemplazaron los datos por su media.

5. Normalizacion de columnas

```
Normalizar la columna crossing usando Min-Max.
```

In [175]:

Normalizar la columna short passing usando Z-score.

Normalizando la columna crossing, usando Min-Max

Normalizamos la columna y mostramos un listado antes de la normalizacion y despues de la misma

```
print(player df.crossing.head(10))
scaler = preprocessing.MinMaxScaler()
player df[["crossing"]] = scaler.fit transform(player df[["crossing"]])
print(player_df.crossing.head(10))
```

```
0
    48.60
     70.79
1
     68.12
    57.22
    45.08
5
    73.89
    47.57
6
     78.04
8
     12.00
    63.89
9
Name: crossing, dtype: float64
0
   0.511036
```

```
1 0.77/231
2 0.745202
3 0.614443
4 0.468810
5 0.814419
6 0.498680
7 0.864203
8 0.071977
9 0.694458
Name: crossing, dtype: float64
```

Normalizamos la columna short_passing usando Z-score

Normalizamos la columna y mostramos un listado antes de la normalizacion y despues de la misma.

```
In [176]:
print(player_df["short_passing"].head(10))
scaler = preprocessing.MinMaxScaler()
player_df[["short_passing"]] = sp.stats.zscore(player_df[["short_passing"]])
print(player_df["short_passing"].head(10))
0
   60.60
    62.27
   65.12
   64.70
   64.76
    78.26
5
    63.57
    76.27
   23.00
   68.95
Name: short_passing, dtype: float64
   0.017238
    0.140868
   0.351853
   0.320761
   0.325202
   1.324605
5
    0.237107
   1.177285
```

6. Codificar variables

Name: short_passing, dtype: float64

8 -2.766282 9 0.635387

Las variables categóricas deben ser etiquetadas como variables numéricas, no como cadenas.

Codificar la variable country_name del Dataframe match_df

La columna "country_name" antes de ser etiquetada como variable numerica

```
In [177]:

print(set(match_df["country_name"]))

{'Portugal', 'Belgium', 'Netherlands', 'France', 'England', 'Scotland', 'Italy', 'Poland',
'Switzerland', 'Spain', 'Germany'}
```

Etiqueto como variables numericas a la columna "country_name"

```
In [178]:

le = preprocessing.LabelEncoder()
match_df[["country_name"]] = le.fit_transform(match_df[["country_name"]])
```

Visualizo la columna, con los datos ya transformados

```
In [179]:
```

```
print(set(match_df["country_name"]))
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
```

A la columna "country_name", la etiquedamos con variables numericas

```
In [ ]:
```