BITS-Pilani Dubai Campus I Sem 2021-22

Digital Design Laboratory / ECE/INSTR/CS F215

Submission Report

Experiment No.- 9 (Sequence Detector and Shift Register)

Name ARSHDEEP SINGH	ID Number 2020A7PS0144U
Name Arshdeef Singh	1D Number 2020A/F 50144U

Hardware runs

Run 1: Parallel-in parallel-out

Truth Table

S0=1, S1=1,

Input ABCD	Clk	Output $Q_AQ_BQ_CQ_D$
0000	1	0000
1010	1	1010
1111	1	1111

Run 2: Serial-in Parallel-out (Right Shift)

First load the '0000' to the O/P, with help of Parallel Load.

Truth Table

S0=1, S1=0,

Shift Right (I/P) Pin No2	No. of Pulses(n)	$Q_AQ_BQ_CQ_D$
1	1	1000
1	2	1100
1	3	1110
1	4	1111
0	5	0111
0	6	0011
0	7	0001

0	8	0000
1	9	1000

Run 3: Serial-in Parallel-out (Left Shift)

First load the '0000' to the O/P, with help of Parallel Load.

Truth Table

S0=0, S1=1,

Shift Left (I/P) Pin No7	No. of Pulses(n)	$Q_AQ_BQ_CQ_D$
1	1	0001
1	2	0011
1	3	0111
1	4	1111
0	5	1110
0	6	1100
0	7	1000
0	8	0000
1	9	0001

Software runs

Run 4:

Sequence detector for '110': Write the Verilog code and testbench for the sequence detector as Moore machine.

Q: Paste the Image of your **Simvision** window where you get the waveforms for the above code.

A:

Q. Complete the state table below from the waveform observed.

State Table

Present state		Next state	Output	
state [1:0]	x_in	next_state [1:0]	y_out	

00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	11	0
10	1	10	0
11	0	00	1
11	1	01	1

Run 5:

<u>4-bit universal shift register:</u> Write Verilog code and testbench for 4-bit universal shift register.

 $\mathbf{Q} \boldsymbol{:}$ Paste the Image of your $\mathbf{Simvision}$ window where you get the waveforms for the above code.

A:

Q. Complete the truth table below from the waveform observed

Truth Table

Mode	No. of Clk	Parallel	Shift L	Shift R	Parallel
	Pulses (n)	I/P	(I/P)	(I/P)	O/P
11	1	0000	1	1	0000
11	2	0000	1	1	0000
11	3	0000	1	1	0000
11	4	0000	1	1	0000

Name	ID Number
------	-----------

01	5	0000	1	0	0001
01	6	0000	1	0	0011
01	7	0000	1	0	0111
01	8	0000	1	0	1111
11	9	0000	1	0	0000
11	10	0000	1	0	0000
11	11	0000	1	0	0000
11	12	0000	1	0	0000
10	13	0000	0	1	1000
10	14	0000	0	1	1100
10	15	0000	0	1	1110
10	16	0000	0	1	1111
10	17	0000	1	0	0111
10	18	0000	1	0	0011
10	19	0000	1	0	0001
10	20	0000	1	0	0000
11	21	1010	1	0	1010
11	22	1010	1	0	1010
11	23	1010	1	0	1010
11	24	1010	1	0	1010
00	25	0000	1	0	1010
00	26	0000	1	0	1010
00	27	0000	1	0	1010

Assignment All assignments are to be submitted strictly before start of next lab session through online only. Late assignments will not be entertained and will be awarded '0' marks.

1. Write the Verilog code and testbench for serial in serial out shift register.

Ans: Link1: https://www.edaplayground.com/x/NS R

2. Write the Verilog code and testbench for serial in parallel out shift register.

Ans: Link2: https://www.edaplayground.com/x/rRwi Self-Practice and self-evaluation (Very Important)

<u>4-bit shift register</u>: Below is the code for shift register using blocking statements. Write the testbench for the same and identify the issues when using blocking statements.

module shift reg (output reg A, input E, clk, rst);

ID Number..... reg B, C, D; always @ (posedge clk, posedge rst) begin if(rst == 1'b1) beginA=0; B=0; C = 0; D = 0; end else begin A = B; B=C; C = D; D = E; end end endmodule