

LEARNING OUTCOMES

At the end of this topic, You should be able to,

Understand the concept of machine learning and supervised algorithm

MACHINE LEARNING

The study and construction of programs that learn from repeatedly seeing data, rather than being explicitly programmed by humans.

MACHINE LEARNING IN OUR DAILY LIVES

Spam Filtering

Web Search

Postal Mail Routing

Fraud Detection

Movie Recommendations Vehicle Driver
Assistance

Web Advertisements

Social Networks

Speech Recognition

TYPES OF MACHINE LEARNING

Supervised

data points have known outcome

Unsupervised

data points have unknown outcome

TYPES OF MACHINE LEARNING

Supervised

data points have known outcome

Unsupervised

data points have unknown outcome

- Target: predicted category or value of the data (column to predict)
- Features: properties of the data used for prediction (non-target columns)
- **Example:** a single data point within the data (one row)
- Label: the target value for a single data point

sepal length	sepal width	petal length	petal width	species
6.7	3.0	5.2	2.3	virginica
6.4	2.8	5.6	2.1	virginica
4.6	3.4	1.4	0.3	setosa
6.9	3.1	4.9	1.5	versicolor
4.4	2.9	1.4	0.2	setosa
4.8	3.0	1.4	0.1	setosa
5.9	3.0	5.1	1.8	virginica
5.4	3.9	1.3	0.4	setosa
4.9	3.0	1.4	0.2	setosa
5.4	3.4	1.7	0.2	setosa

Target

sepal length	sepal width	petal length	petal width	species
6.7	3.0	5.2	2.3	virginica
6.4	2.8	5.6	2.1	virginica
4.6	3.4	1.4	0.3	setosa
6.9	3.1	4.9	1.5	versicolor
4.4	2.9	1.4	0.2	setosa
4.8	3.0	1.4	0.1	setosa
5.9	3.0	5.1	1.8	virginica
5.4	3.9	1.3	0.4	setosa
4.9	3.0	1.4	0.2	setosa
5.4	3.4	1.7	0.2	setosa

Features

sepal length	sepal width	petal length	petal width	species
6.7	3.0	5.2	2.3	virginica
6.4	2.8	5.6	2.1	virginica
4.6	3.4	1.4	0.3	setosa
6.9	3.1	4.9	1.5	versicolor
4.4	2.9	1.4	0.2	setosa
4.8	3.0	1.4	0.1	setosa
5.9	3.0	5.1	1.8	virginica
5.4	3.9	1.3	0.4	setosa
4.9	3.0	1.4	0.2	setosa
5.4	3.4	1.7	0.2	setosa

	sepal length	sepal width	petal length	petal width	species
	6.7	3.0	5.2	2.3	virginica
	6.4	2.8	5.6	2.1	virginica
	4.6	3.4	1.4	0.3	setosa
Example -	6.9	3.1	4.9	1.5	versicolor
	4.4	2.9	1.4	0.2	setosa
	4.8	3.0	1.4	0.1	setosa
	5.9	3.0	5.1	1.8	virginica
	5.4	3.9	1.3	0.4	setosa
	4.9	3.0	1.4	0.2	setosa
	5.4	3.4	1.7	0.2	setosa

Label

sepal length	sepal width	petal length	petal width	species
6.7	3.0	5.2	2.3	virginica
6.4	2.8	5.6	2.1	virginica
4.6	3.4	1.4	0.3	setosa
6.9	3.1	4.9	1.5	versicolor
4.4	2.9	1.4	0.2	setosa
4.8	3.0	1.4	0.1	setosa
5.9	3.0	5.1	1.8	virginica
5.4	3.9	1.3	0.4	setosa
4.9	3.0	1.4	0.2	setosa
5.4	3.4	1.7	0.2	setosa

DATA SCIENCE WORKFLOW

DATA SCIENCE WORKFLOW

Problem Statement

What problem are you trying to solve?

011010110110 110101101011 001011010100

Data Collection

What data do you need to solve it?

Data Exploration & Preprocessing

How should you clean your data so your model can use it?

Modeling

Build a model to solve your problem?

Validation

Did I solve the problem?

Decision Making & Deployment

Communicate to stakeholders or put into production?

SUPERVISED LEARNING

TYPES OF SUPERVISED LEARNING

Regression

outcome is continuous (numerical)

Classification

outcome is a category

TARGET vs. FEATURES

Target: Column to predict

Features: Properties of the data used for prediction (non-target columns)

Features

4	sepal length	sepal width	petal length	petal width	species
	6.7	3.0	5.2	2.3	virginica
	6.4	2.8	5.6	2.1	virginica
	4.6	3.4	1.4	0.3	setosa
	6.9	3.1	4.9	1.5	versicolor
	4.4	2.9	1.4	0.2	setosa
	4.8	3.0	1.4	0.1	setosa
	5.9	3.0	5.1	1.8	virginica
	5.4	3.9	1.3	0.4	setosa
	4.9	3.0	1.4	0.2	setosa
	5.4	3.4	1.7	0.2	setosa

Target

EXAMPLE: SUPERVISED LEARNING PROBLEM

Goal: Predict if an email is spam or not spam.

Data: Historical emails labeled as spam or not spam.

Target: Spam or not spam

Features: Email text, subject, time sent, etc.

EXAMPLE: SUPERVISED LEARNING PROBLEM

Goal: Predict location of bounding box around an object.

Data: Images with bounding box locations.

Target: Corners of bounding box

Features: Image pixels

FORMULATING A SUPERVISED LEARNING PROBLEM

For a Supervised Learning Problem:

- Collect a labeled dataset (features and target labels).
- Choose the model.
- Choose an evaluation metric:

"What to use to measure performance."

Choose an optimization method:¹

"How to find the model configuration that gives the best performance."

WHICH MODEL?

There are many models that represent the problem and make decisions in different ways each with their own advantages and disadvantages.

A **decision tree** makes predictions by asking a series of yes/no questions.

Nearest neighbor makes predictions by having the most similar examples vote.

WHICH MODEL?

Some considerations when choosing are:

- Time needed for training
- Speed in making predictions
- Amount of data needed
- Type of data
- Problem complexity
- Ability to solve a complex problem
- Tendency to overcomplicate a simple one

TRAINING

Training Data: The dataset used to train the model.

Optimization: Configures the model for best performance.

SUPERVISED LEARNING OVERVIEW

Training: Train a model with known data.

Inference: Feed unseen data into trained model to make predictions.

SOLUTION: SPLIT DATA INTO TWO SETS

Training Set: Data used during the training process.

Test Set: Data used to measure performance, simulating unseen data¹.

	species	petal width	petal length	sepal width	sepal length
	virginica	2.3	5.2	3.0	6.7
	virginica	2.1	5.6	2.8	6.4
	setosa	0.3	1.4	3.4	4.6
Training Set	versicolor	1.5	4.9	3.1	6.9
	setosa	0.2	1.4	2.9	4.4
	setosa	0.1	1.4	3.0	4.8
	virginica	1.8	5.1	3.0	5.9
	setosa	0.4	1.3	3.9	5.4
Testing Set	setosa	0.2	1.4	3.0	4.9
	setosa	0.2	1.7	3.4	5.4

SUMMARY

Riyaz Ahamed

riyaz@um.edu.my

Source compiled from intel ai academy