E. Max History

time limit per test: 3 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

You are given an array a of length n. We define f_a the following way:

- Initially $f_a = 0$, M = 1;
- for every $2 \le i \le n$ if $a_M < a_i$ then we set $f_a = f_a + a_M$ and then set M = i.

Calculate the sum of f_a over all n! permutations of the array a modulo $10^9 + 7$.

Note: two elements are considered different if their indices differ, so for every array a there are exactly n! permutations.

Input

The first line contains integer n ($1 \le n \le 1\,000\,000$) — the size of array a.

Second line contains n integers $a_1, a_2, ..., a_n$ ($1 \le a_i \le 10^9$).

Output

Print the only integer, the sum of f_a over all n! permutations of the array a modulo $10^9 + 7$.

Examples

```
input
2
1 3
output
1
```

```
input
3
1 1 2
output
4
```

Note

For the second example all the permutations are:

```
• p = [1, 2, 3] : f_a is equal to 1;
```

•
$$p = [1, 3, 2] : f_a$$
 is equal to 1;

•
$$p = [2, 1, 3] : f_a$$
 is equal to 1;

•
$$p = [2, 3, 1] : f_a$$
 is equal to 1;

•
$$p = [3, 1, 2] : f_a$$
 is equal to 0;

•
$$p = [3, 2, 1] : f_a$$
 is equal to 0.

Where p is the array of the indices of initial array a. The sum of f_a is equal to 4.