

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年12月18日(18.12.2003)

PCT

(10) 国際公開番号 WO 03/103648 A1

(51) 国際特許分類7: A61K 31/055, 31/121, 31/15, 31/166, 31/167, 31/17, 31/18, 31/185, 31/194, 31/216, 31/222, 31/235, 31/275, 31/341, 31/357, 31/36, 31/381, 31/40, 31/403, 31/4035, 31/404, 31/415, 31/4164, 31/4188, 31/421, 31/422, 31/426, 31/427, 31/433, 31/44, 31/4402

(21) 国際出願番号:

PCT/JP03/07131

(22) 国際出願日:

2003年6月5日(05.06.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-164524 2002 年6月5日(05.06.2002)

(71) 出願人 (米国を除く全ての指定国について): 株式会社 医薬分子設計研究所 (INSTITUTE OF MEDICINAL MOLECULAR DESIGN. INC.) [JP/JP]; 〒113-0033 東 京都文京区本郷5丁目24番5号角川本郷ビル4F Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 武藤 進 (MUTO,Susumu) [JP/JP]; 〒184-0003 東京都 小金井市 緑町 1-6-7 メイプルコーポB202 Tokyo (JP). 板井 昭子 (ITAI,Akiko) [JP/JP]; 〒113-0033 東京都 文 京区 本郷5丁目24番5号 角川本郷ビル4F 株式 会社医薬分子設計研究所内 Tokyo (JP).

- (74) 代理人: 特許業務法人特許事務所サイクス (SIKS & CO.); 〒104-0031 東京都 中央区 京橋一丁目8番7号 京橋日殖ビル8階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: THERAPEUTIC DRUG FOR DIABETES

(54) 発明の名称: 糖尿病治療薬

 \geq

(57) Abstract: A medicine for the prevention of and/or treatments for diabetes or complications of diabetes, which contains as an active ingredient a substance selected from the group consisting of a compound represented by the following general formula (I): (I) [wherein X represents a connecting group in which the main chain has 2 to 5 atoms (the group has been optionally substituted); A represents hydrogen or acetyl; E represents optionally substituted aryl or optionally substituted heteroaryl; and ring Z represents either arene which may have one or more substituents besides the groups represented by the formula -O-A (wherein A has the same meaning as defined above) and the formula -X-E (wherein X and E have the same meanings as defined above) or heteroarene

which may have one or more substituents besides the groups represented by the formula -O-A (wherein A has the same meaning as defined above) and the formula -X-E (wherein X and E have the same meanings as defined above)], pharmacologically acceptable salts thereof, and hydrates and solvates of these.

(57) 要約:

下記一般式(I):

(式中、

Xは、主鎖の原子数が2ないし5である連結基(該連結基は置換基を有していてもよい)を表し、

Aは、水素原子又はアセチル基を表し、

Eは、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表し、

環 Z は、式 - O - A (式中、A は上記定義と同義である)及び式 - X - E (式中、 X 及びE は上記定義と同義である)で表される基の他に更に置換基を有していてもよいアレーン、又は式 - O - A (式中、A は上記定義と同義である)及び式 - X - E (式中、 X 及びE は上記定義と同義である)で表される基の他に更に置換基を有していてもよいヘテロアレーンを表す)で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む、糖尿病又は糖尿病の合併症の予防及び/又は治療のための医薬。

明細書

糖尿病治療薬

技術分野

本発明は、糖尿病または糖尿病の合併症の予防及び/又は治療のための医薬に関する。

背景技術

糖尿病は何らかの原因により糖代謝が異常となり高血糖を来たし、この高血糖が原因となって種々の合併症をもたらす疾患であると認識されている。従って、血糖血のコントロールが糖尿病の治療には重要な要因であることは明らかである。現在、血糖値の改善のために、インスリン製剤、ビグアナイド系薬剤、スルホニルウレア系薬剤、チアゾリジンジオン系薬剤等が使われている。しかしながら、インスリン製剤は投与法に難があり、ビグアナイド製剤は最近見直されてきているものの、乳酸アシドーシスを起こしやすいために使いにくいという問題がある。また、スルホニルウレア製剤はインスリンを分泌している膵のランゲルハンス島のβ細胞に負担をかける為に長期の使用には適さない。チアゾリジンジオン系薬剤は、この中では唯一インスリン抵抗性を改善する薬剤であるが、この薬剤に対して無反応な患者も多く、体重増加等の問題もある。従って、現在使用されている血糖降下剤では、まだ糖尿病の治療薬としては不十分であると言わざるを得ない。

 $I \ K K - \beta$ ($I \kappa B$ キナーゼ β または $I \kappa B$ キナーゼ2)はセリンースレオニンキナーゼと呼ばれるプロテインキナーゼの一種で、 $N F - \kappa B$ の活性化に関与していることが知られているが、近年になってリン酸化を受けて活性化された $I \ K - \beta$ がインスリン抵抗性に深く関与していることが示唆された。すなわち、CD36レセプターに血中の遊離脂肪酸が結合すると、 $P K C - \theta$ (プロテインキナーゼ $C - \theta$)

 θ) が活性化される。それがさらに I KK $-\beta$ を活性化し、活性化された I KK $-\beta$ が IRS-1 (Insulin receptor substrate-1) をリン酸化することによりインスリンレセプターからのシグナル伝達を阻害するというものである。実際にインスリン抵抗性を示すマウスに I KK $-\beta$ の選択阻害剤として知られているアスピリンまたはサリチル酸を高用量で投与するとインスリン抵抗性が改善したという報告がある (「ジャーナル・オブ・クリニカル・インベスティゲーション (Journal of Clinical Investigation)」,(米国),2001年,第108巻,第3号,p. 437-446;「サイエンス(Science)」,(米国),2001年,第293巻,p. 1673-1677)。しかしながら、アスピリンまたはサリチル酸はインスリン抵抗性を改善するための薬剤としては作用が不十分である。

一方、N一置換サリチルアミド誘導体、とりわけNーフェニルサリチルアミド誘導体は、米国特許第4358443号明細書に植物成長阻害剤として開示されており、医薬としては欧州特許第0221211号明細書、特開昭62-99329号公報、及び米国特許第6117859号明細書に抗炎症剤としての記載がある。また、国際公開第99/65499号パンフレット、国際公開第02/49632号パンフレット、及び国際公開第02/076918号パンフレットにはNF $-\kappa$ B阻害剤として、国際公開第02/051397号パンフレットにはサイトカイン産生抑制剤として開示されている。

発明の開示

本発明の課題は、 $IKK-\beta$ を特異的に阻害することによりインスリン抵抗性を改善する薬剤を提供することにある。本発明者らは、上記の課題を解決すべく、コンピューター利用の分子設計技術により $IKK-\beta$ 選択的阻害剤の探索を実施した。 PDB(Protein Data Bank)に構造が登録されているプロテインキナーゼより $IKK-\beta$ と相同性の高い適切なものを選抜し、それを鋳型としてホモロジーモデリングの手法を用いて $IKK-\beta$ の立体構造モデルを構築し、タンパク質への薬物分子の結合様式の自動探索プログラムを用い、アスピリンの $IKK-\beta$

のATP結合領域への結合様式と特徴的な分子間相互作用を解析した。
その結果に基づいて、リガンドのタンパク質立体構造に基づく化合物3次元データベース自動検索プログラムを用い、Sigma-Aldrich 社、Aldrich 社、Maybridge 社、Specsy 社、Bionet 社、Labotest 社、Lancaster 社、Tocris 社、東京化成、和光純薬等で市販されている化合物データベースに登録されている化合物の中からヴァーチャルスクリーニングによりΙΚΚーβの特異的阻害剤となり得る化合物を選定した。更に最適化のための分子設計を行い、そこから候補化合物として選ばれたヒドロキシアリール誘導体を購入又は合成し、それらのインスリン抵抗性改善作用を検討した結果、Nー置換サリチルアミド誘導体、とりわけN・アリールサリチルアミド誘導体が強いインスリン抵抗性改善作用を有することを見出

した。本発明は上記の知見を基にして完成されたものである。

すなわち、本発明は、

(1) 下記一般式(I):

(式中、

Xは、主鎖の原子数が2ないし5である連結基(該連結基は置換基を有していて もよい)を表し、

Aは、水素原子又はアセチル基を表し、

Eは、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表し、

環 Z は、式 - O - A (式中、A は上記定義と同義である)及び式 - X - E (式中、X及びE は上記定義と同義である)で表される基の他に更に置換基を有していてもよいアレーン、又は式 - O - A (式中、A は上記定義と同義である)及び式 - X - E (式中、X及びE は上記定義と同義である)で表される基の他に更に置換

基を有していてもよいヘテロアレーンを表す)で表される化合物及び薬理学的に 許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる 物質を有効成分として含む、糖尿病の予防及び/又は治療のための医薬を提供す るものである。また、本発明により上記の物質を有効成分として含む、糖尿病の 合併症の予防及び/又は治療のための医薬が提供される。

本発明の好適な医薬としては、

(2) Xが、下記連結基群 α より選択される基(該基は置換基を有していてもよい) である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

[連結基群α] 下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する)

(3) X が、下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する) で表される

基(該基は置換基を有していてもよい)である化合物及び薬理学的に許容される その塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効 成分として含む上記の医薬、

- (4) Aが、水素原子である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、
- (5) 環Zが、 $C_8 \sim C_{10}$ のアレーン(該アレーンは、式-O-A(式中、Aは -般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)、又は5ないし13員の $^{\circ}$ つ $^{\circ}$ ファレーン(該 $^{\circ}$ ファレーンは、式 $^{\circ}$ O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

(6) 環Zが、下記環群β:

[環群 β] ベンゼン環、ナフタレン環、チオフェン環、ピリジン環、インドール環、キノキサリン環、及びカルバゾール環

より選択される環(該環は、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

(7) 環 Z が、式 - O - A (式中、A は一般式 (I) における定義と同義である) 及び式 - X - E (式中、X 及び E は一般式 (I) における定義と同義である) で表される基の他に更に置換基を有していてもよいベンゼン環である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から

選ばれる物質を有効成分として含む上記の医薬、

(8) 環Zが、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他にハロゲン原子を更に有するベンゼン環である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

- (9) 環 Z が、式 O A (式中、A は一般式 (I) における定義と同義である) 及び式 X E (式中、X 及び E は一般式 (I) における定義と同義である) で表される基の他に置換基を更に有していてもよいナフタレン環である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、
- $(1\ 0)$ Eが、置換基を有していてもよい $C_6\sim C_{10}$ のアリール基、又は置換基を有していてもよい5ないし $1\ 3$ 員の ∞ テロアリール基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、
- (11) Eが、置換基を有していてもよいフェニル基である化合物及び薬理学的 に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群から選ばれ る物質を有効成分として含む上記の医薬、
- (12) Eが、3,5-ビス(トリフルオロメチル)フェニル基である化合物及 び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる群 から選ばれる物質を有効成分として含む上記の医薬、
- (13) Eが、置換基を有していてもよい5員のヘテロアリール基である化合物 及び薬理学的に許容されるその塩、並びにそれらの水和物及び溶媒和物からなる 群から選ばれる物質を有効成分として含む上記の医薬を挙げることができる。 別の観点からは、本発明により、上記の(1)~(13)の医薬の製造のための 上記の各物質の使用が提供される。

また、本発明により、ヒトを含む哺乳類動物において、糖尿病又は糖尿病の合併

症を予防及び/又は治療する方法であって、上記の物質の予防及び/又は治療有 効量をヒトを含む哺乳類動物に投与する工程を含む方法が提供される。

発明を実施するための最良の形態

本発明の理解のために「国際公開第02/49632号パンフレット」の開示を 参照することは有用である。上記「国際公開第02/49632号パンフレット」 の開示の全てを参照として本明細書の開示に含める。

本明細書において用いられる用語の意味は以下の通りである。

「ハロゲン原子」としては、特に言及する場合を除き、弗素原子、塩素原子、臭 素原子、又は沃素原子のいずれを用いてもよい。

「炭化水素基」としては、例えば、脂肪族炭化水素基、アリール基、アリーレン 基、アラルキル基、架橋環式炭化水素基、スピロ環式炭化水素基、及びテルペン 系炭化水素等が挙げられる。

「脂肪族炭化水素基」としては、例えば、アルキル基、アルケニル基、アルキニル基、アルキレン基、アルケニレン基、アルキリデン基等の直鎖状又は分枝鎖状の1価若しくは2価の非環式炭化水素基;シクロアルキル基、シクロアルケニル基、シクロアルカンジエニル基、シクロアルキルーアルキル基、シクロアルキレン基、シクロアルケニレン基等の飽和又は不飽和の1価若しくは2価の脂環式炭化水素基等が挙げられる。

「アルキル基」としては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-プチル、n-プチル、n-プチル、n-ペンチル、n-プチル、n-ペンチル、n-プチル、n-ペンチル、n-ペンチル、n-ペンチル0、n-ペンチル

n-オクチル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル等の $C_1\sim C_{15}$ の直鎖状又は分枝鎖状のアルキル基が挙げられる。

「アルケニル基」としては、例えば、ビニル、プロパー1-エン-1-イル、ア リル、イソプロペニル、ブター1-エン-1-イル、ブター2-エン-1-イル、 プター3-エン-1-イル、2-メチルプロパー2-エン-1-イル、1-メチ ルプロパー2-エン-1-イル、ペンター1-エン-1-イル、ペンター2-エ y-1-1ル、ペンター3-エン-1-イル、ペンター4-エン-1-イル、3 -メチルブター2-エン-1-イル、3-メチルブター3-エン-1-イル、ヘ キサー1-エン-1-イル、ヘキサー2-エン-1-イル、ヘキサー3-エン-1-イル、ヘキサー4-エン-1-イル、ヘキサー5-エン-1-イル、4-メ チルペンター3-エン-1-イル、4-メチルペンター3-エン-1-イル、ヘ プター1ーエン-1-イル、ヘプター6-エン-1-イル、オクター1-エンー 1ーイル、オクター7ーエンー1ーイル、ノナー1ーエンー1ーイル、ノナー8 ーエン-1-イル、デカ-1-エン-1-イル、デカ-9-エン-1-イル、ウ ンデカー1-エン-1-イル、ウンデカー10-エン-1-イル、ドデカー1-エン-1-イル、ドデカ-11-エン-1-イル、トリデカ-1-エン-1-イ ル、トリデカー12-エンー1-イル、テトラデカー1-エンー1-イル、テト ラデカー13-エン-1-イル、ペンタデカー1-エン-1-イル、ペンタデカ -14-エン-1-イル等のC2~C15の直鎖状又は分枝鎖状のアルケニル基が 挙げられる。

「アルキニル基」としては、例えば、エチニル、プロパー1ーインー1ーイル,プロパー2ーインー1ーイル,プター1ーインー1ーイル、ブター3ーインー1ーイル、1ーメチルプロパー2ーインー1ーイル,ペンター1ーインー1ーイル、ヘキサー1ーインー1ーイル、ヘキサー5ーインー1ーイル、ヘプター1ーインー1ーイル、ヘプター1ーインー1ーイル、オクター1ーインー1ーイル、オクター1ーインー1ーイル、ノナー1ーイン

イル、ノナー8ーインー1ーイル、デカー1ーインー1ーイル、デカー9ーイン -1ーイル、ウンデカー1ーインー1ーイル、ウンデカー1 0ーインー1ーイル、ドデカー1ーインー1ーイル、トリデカー1ーインー1ーイル、トリデカー1ーインー1ーイル、テトラデカー1ーインー1ーイル、テトラデカー1 3ーインー1ーイル、ペンタデカー1ーインー1ーイル、ペンタデカー14ーインー1ーイル等の $C_2 \sim C_{15}$ の直鎖状又は分枝鎖状のアルキニル基が挙げられる。

「アルキレン基」としては、例えば、メチレン、エチレン、エタンー1, 1-ジイル、プロパンー1, 3-ジイル、プロパンー1, 2-ジイル、プロパンー2, 2-ジイル、ブタンー1, 4-ジイル、ペンタンー1, 5-ジイル、ヘキサンー1, 6-ジイル、1, 1, 4, 4-テトラメチルプタンー1, 4-ジイル等のC $_1$ ~ $_2$ 0直鎖状又は分枝鎖状のアルキレン基が挙げられる。

「アルケニレン基」としては、例えば、エテンー1,2-ジイル、プロペンー1,3-ジイル、ブター1-エンー1,4-ジイル、ブター2-エンー1,4-ジイル、2-メチルプロペンー1,3-ジイル、ペンター2-エンー1,5-ジイル、ヘキサー3-エンー1,6-ジイル等の $C_1\sim C_6$ の直鎖状又は分枝鎖状のアルキレン基が挙げられる。

「アルキリデン基」としては、例えば、メチリデン、エチリデン、プロピリデン、 イソプロピリデン、ブチリデン、ペンチリデン、ヘキシリデン等の $C_1 \sim C_6$ の直鎖状又は分枝鎖状のアルキリデン基が挙げられる。

「シクロアルキル基」としては、例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル等の $C_8 \sim C_8$ のシクロアルキル基が挙げられる。

なお、上記「シクロアルキル基」は、ベンゼン環、ナフタレン環等と縮環していてもよく、例えば、1ーインダニル、2ーインダニル、1, 2, 3, 4ーテトラヒドロナフタレンー1ーイル、1, 2, 3, 4ーテトラヒドロナフタレンー2ーイル等の基が挙げられる。

「シクロアルケニル基」としては、例えば、2-シクロプロペン-1-イル、2-シクロプテン-1-イル、2-シクロペンテン-1-イル、3-シクロペンテン-1-イル、3-シクロペンテン-1-イル、1-シクロプテン-1-イル、 $1-シクロペンテン-1-イル等の<math>C_3\sim C_6$ のシクロアルケニル基が挙げられる。

なお、上記「シクロアルケニル基」は、ベンゼン環、ナフタレン環等と縮環していてもよく、例えば、1- インダニル、2- インダニル、1 , 2 , 3 , 4- テトラヒドロナフタレン-1- イル、1 , 2 , 3 , 4- テトラヒドロナフタレン-2 - イル、1- インデニル、2- インデニル等の基が挙げられる。

「シクロアルカンジエニル基」としては、例えば、2, 4 — シクロペンタンジエンー1 — イル、2, 4 — シクロヘキサンジエン-1 — イル、2, 5 — シクロヘキサンジエン-1 — イル等の C_6 C_6 のシクロアルカンジエニル基が挙げられる。なお、上記「シクロアルカンジエニル基」は、ベンゼン環、ナフタレン環等と縮環していてもよく、例えば、1 — インデニル、2 — インデニル等の基が挙げられる。

「シクロアルキルーアルキル基」としては、「アルキル基」の1つの水素原子が、「シクロアルキル基」で置換された基が挙げられ、例えば、シクロプロピルメチル、1-シクロプロピルエチル、2-シクロプロピルエチル、3-シクロプロピルプロピルスチル、4-シクロプロピルブチル、5-シクロプロピルペンチル、6-シクロプロピルへキシル、シクロブチルメチル、シクロペンチルメチル、シクロブチルメチル、シクロプロピルへキシル、シクロブチルメチル、シクロへキシルプチルメチル、シクロへキシルプロピル、シクロへキシルブチル、シクロへキシルブチル、シクロへキシルブチルメチル、シクロストシルブチル、シクロストシルデール、6-シクロオクチルへキシル等の $C_4 \sim C_{14}$ のシクロアルキルーアルキル基が挙げられる。

「シクロアルケニレン基」としては、例えば、2-シクロプロペン-1, 1-ジイル、2-シクロプテン-1, 1-ジイル、2-シクロペンテン-1, 1-ジイル、3-シクロペンテン-1, 1-ジイル、2-シクロペキセン-1, 1-ジイル、2-シクロペキセン-1, 1-ジイル、2-シクロペキセン-1, 4-ジイル、3-シクロペキセン-1, 1-ジイル、1-シクロペキセン-1, 1-ジイル、1-シクロペンテン-1, 1-ジイル、1-シクロペンテン-1, 1-ジイル、1-シクロペンテン-1, 1-ジイル、1-シクロペンテン-1, 1-ジイル、1-シクロペンテン-1, 1-ジイル、1-シクロペンテン-1, 1-ジイル、1-シクロペンテン-1

「アリール基」としては、単環式又は縮合多環式芳香族炭化水素基が挙げられ、例えば、フェニル、1-ナフチル、2-ナフチル、アントリル、フェナントリル、アセナフチレニル等の $C_6\sim C_{14}$ のアリール基が挙げられる。

「アリーレン基」としては、例えば、1, 2-フェニレン、1, 3-フェニレン、1, 4-フェニレン、ナフタレン-1, 2-ジイル、ナフタレン-1, 3-ジイル、ナフタレン-1, 4-ジイル、ナフタレン-1

1, 6-ジイル、ナフタレン-1, 7-ジイル、ナフタレン-1, 8-ジイル、ナフタレン-2, 3-ジイル、ナフタレン-2, 4-ジイル、ナフタレン-2, 5-ジイル、ナフタレン-2, 6-ジイル、ナフタレン-2, 7-ジイル、ナフタレン-2, 8-ジイル、アントラセン-1, 4-ジイル等の $C_6 \sim C_{14}$ のアリーレン基が挙げられる。

「アラルキル基」としては、「アルキル基」の1つの水素原子が、「アリール基」で置換された基が挙げられ、例えば、ベンジル、1-ナフチルメチル、2-ナフチルメチル、アントラセニルメチル、フェナントレニルメチル、アセナフチレニルメチル、ジフェニルメチル、1-(1-ナフチル)エチル、1-(2-ナフチル)エチル、2-(1-ナフチル)エチル、2-(1-ナフチル)エチル、2-(2-ナフチル)エチル、3-フェニルプロピル、3-(1-ナフチル)プロピル、3-(2-ナフチル)プロピル、4-フェニルブチル、4-(1-ナフチル)ブチル、4-(1-ナフチル)ブチル、4-(2-ナフチル)ブチル、5-(1-ナフチル)ペンチル、5-(1-ナフチル)ペンチル、5-(1-ナフチル)ペンチル、5-(2-ナフチル)ペンチル、6-フェニルヘキシル、6-(1-ナフチル)ヘキシル、6-(2-ナフチル)ヘキシル等の $C_7\sim C_{16}$ のアラルキル基が挙げられる。

「架橋環式炭化水素基」としては、例えば、ビシクロ〔2.1.0〕ペンチル、ビシクロ〔2.2.1〕ヘプチル、ビシクロ〔2.2.1〕オクチル、アダマンチル等の基が挙げられる。

「スピロ環式炭化水素基」、としては、例えば、スピロ [3.4] オクチル、スピロ [4.5] デカー1, 6-ジエニル等の基が挙げられる。

「テルペン系炭化水素」としては、例えば、ゲラニル、ネリル、リナリル、フィチル、メンチル、ボルニル等の基が挙げられる。

「ハロゲン化アルキル基」としては、「アルキル基」の1つの水素原子が「ハロゲン原子」で置換された基が挙げられ、例えば、フルオロメチル、ジフルオロメチル、トリフルオロメチル、クロロメチル、ジクロロメチル、トリクロロメチル、ブロモメチル、ジブロモメチル、トリブロモメチル、ヨードメチル、ジョードメ

チル、トリョードメチル、2, 2, 2ートリフルオロエチル、ペンタフルオロエチル、3, 3, 3ートリフルオロプロピル、ヘプタフルオロプロピル、ヘプタフルオロプロピル、ヘプタフルオロイソプロピル、ノナフルオロブチル、パーフルオロヘキシル等の1万至13個のハロゲン原子で置換された $C_1 \sim C_6$ の直鎖状又は分枝鎖状のハロゲン化アルキル基が挙げられる。

「ヘテロ環基」としては、例えば、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1乃至3種を少なくとも1個含む単環式又は縮合多環式ヘテロアリール基、並びに、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1乃至3種を少なくとも1個含む単環式又は縮合多環式非芳香族ヘテロ環基が挙げられる。

「単環式へテロアリール基」としては、例えば、2-フリル、3-フリル、2-チエニル、3ーチエニル、1ーピロリル、2ーピロリル、3ーピロリル、2ーオ キサゾリル、4ーオキサゾリル、5ーオキサゾリル、3ーイソオキサゾリル、4 ーイソオキサゾリル、5ーイソオキサゾリル、2ーチアゾリル、4ーチアゾリル、 5-チアゾリル、3-イソチアゾリル、4-イソチアゾリル、5-イソチアゾリ ル、1ーイミダブリル、2ーイミダブリル、4ーイミダブリル、5ーイミダブリ ル、1ーピラゾリル、3ーピラゾリル、4ーピラゾリル、5ーピラゾリル、(1, 2, 3-オキサジアゾール)-4-イル、(1, 2, 3-オキサジアゾール)-5 ーイル、(1, 2, 4ーオキサジアゾール) -3ーイル、(1, 2, 4ーオキサジ rゾール) -5 -イル、(1, 2, 5 - オキサジアゾール) <math>-3 -イル、(1, 2, 5)5-オキサジアゾール)-4-イル、(1,3,4-オキサジアゾール)-2-イ ル、(1,3,4-オキサジアゾール)-5-イル、フラザニル、(1,2,3-2, 4-チアジアゾール) - 3-イル、(1, 2, 4-チアジアゾール) - 5-イ ル、(1, 2, 5-チアジアソール) - 3-イル、(1, 2, 5-チアジアソール) -4 -4 -4 ν 、(1, 3, 4 -4 アジアゾリル) -2 -4 ν 、(1, 3, 4 -4 アジ

-1, 2, 3-トリアゾール) -4-イル、(1H-1, 2, 3-トリアゾール) $-5-4\nu$, (2H-1, 2, 3-1) (2H-1, 2, 3-1)3-トリアゾール)-4-イル、(1H-1, 2, 4-トリアゾール)-1-イル、 (1H-1, 2, 4-)リアゾール) -3-イル、(1H-1, 2, 4-)リアゾ 2, 4-トリアゾール) -4-イル、(1H-テトラゾール) -1-イル、(1Hーテトラゾール) -5-イル、(2H-テトラゾール) -2-イル、(2H-テト ラゾール) -5-イル、2-ピリジル、3-ピリジル、4-ピリジル、3-ピリ ダジニル、4ーピリダジニル、2ーピリミジニル、4ーピリミジニル、5ーピリ ミジニル、2-ピラジニル、(1,2,3-トリアジン)-4-イル、(1.2. 3-トリアジン)-5-イル、(1, 2, 4-トリアジン)-3-イル、(1, 2, 4-トリアジン)-3-イル、(1, 2, 4-トリアジン)4-トリアジン) -5-イル、(1, 2, 4-トリアジン) -6-イル、(1, 3, 4-トリアジン) -6-イル、(1, 3, 4-トリアジン) 5-トリアジン) -2-イル、1-アゼピニル、1-アゼピニル、2-アゼピニ ル、3 - アゼピニル、<math>4 - アゼピニル、(1, 4 - オキサゼピン) - 2 - イル、<math>(1, 4 - 3)4-オキサゼピン)-3-イル、(1, 4-オキサゼピン)-5-イル、(1, 4-ーオキサゼピン) - 6 ーイル、(1, 4 ーオキサゼピン) - 7 ーイル、(1, 4 ー チアゼピン) -2-イル、(1,4-チアゼピン) -3-イル、(1,4-チアゼ (2) -5 -4ル、(1, 4 -4アゼピン) -6 -4ル、(1, 4 -4アゼピン) -7-イル等の5乃至7員の単環式へテロアリール基が挙げられる。

2-インドリル、3-インドリル、4-インドリル、5-インドリル、6-イン ドリル、7-インドリル、(2H-イソインドール) -1-イル、(2H-イソイ ンドール) -2-イル、(2H-イソインドール) -4-イル、(2H-イソイン ドール) - 5 - イル、(1H-インダゾール) - 1 - イル、(1H-インダゾール) -3-イル、(1H-インダゾール)-4-イル、(1H-インダゾール)-5-イル、(1H-インダゾール) -6-イル、(1H-インダゾール) -7-イル、 (2H- 1) インダゾール) - 1 - 1 ーイル、(2H- 1) ダゾール) - 2 - 1 ーイル、(2H- 1) で -インダゾール)-4-イル、(2H-インダゾール)-5-イル、2-ベンゾオ キサプリル、2 ーベンゾオキサゾリル、4 ーベンゾオキサブリル、5 ーベンゾオ キサゾリル、6 ーベンゾオキサゾリル、7 ーベンゾオキサゾリル、(1,2 ーベン ゾイソオキサゾール) -3-イル、(1,2-ベンゾイソオキサゾール) -4-イ ν 、(1, 2-ベンゾイソオキサゾール) -5-イル、(1, 2-ベンゾイソオキ サゾール) -6-イル、(1、2-ベンゾイソオキサゾール) -7-イル、(2, 1-ベンゾイソオキサゾール)-3-イル、(2,1-ベンゾイソオキサゾール) イソオキサゾール) - 6 - イル、(2,1 - ベンゾイソオキサゾール) - 7 - イル、 2-ベンゾチアゾリル、4-ベンゾチアゾリル、5-ベンゾチアゾリル、6-ベ ンゾチアゾリル、7ーベンゾチアゾリル、(1,2-ベンゾイソチアゾール)-3 -イル、(1, 2-ベンゾイソチアゾール) -4-イル、(1, 2-ベンゾイソチ ーベンゾイソチアゾール)-7-イル、(2,1-ベンゾイソチアゾール)-3-イル、(2, 1ーベンゾイソチアゾール) -4-イル、(2, 1ーベンゾイソチア ゾール) - 5 - イル、(2, 1 - ベンゾイソチアゾール) - 6 - イル、(2, 1 -ベンゾイソチアゾール)-7-イル、(1,2,3-ベンゾオキサジアゾール)-4-イル、(1, 2, 3-ベンゾオキサジアゾール) -5-イル、(1, 2, 3-ベンソオキサジアゾール)-6-イル、(1,2,3-ベンゾオキサジアゾール)

ーベンソオキサジアゾール) -5-イル、(1, 2, 3-ベンゾチアジアゾール) -4 -4 -4 ν 、(1, 2, 3 - ベンゾチアジアゾール) -5 - 4 ν 、(1, 2, 3 -ベンソチアジアゾール) -6-イル、(1, 2, 3-ベンゾチアジアゾール) -7 -イル、(2, 1, 3-ベンプチアジアゾール) -4-イル、(2, 1, 3-ベン ゾチアジアゾール) -5-イル、(1 H-ベンゾトリアゾール) -1-イル、(1 H-ベンゾトリアゾール)-4-イル、(1H-ベンゾトリアゾール)-5-イル、 (1 Hーベンゾトリアゾール) -6-イル、(1 Hーベンゾトリアゾール) -7-イル、(2 Hーベンプトリアゾール) -2-イル、(2 Hーベンプトリアゾール) -4-イル、(2H-ベンプトリアゾール)-5-イル、2-キノリル、3-キノ リル、4ーキノリル、5ーキノリル、6ーキノリル、7ーキノリル、8ーキノリ ル、1-イソキノリル、3-イソキノリル、4-イソキノリル、5-イソキノリ ル、6-イソキノリル、7-イソキノリル、8-イソキノリル、3-シンノリニ ル、4-シンノリニル、5-シンノリニル、6-シンノリニル、7-シンノリニ ル、8-シンノリニル、2-キナゾリニル、4-キナゾリニル、5-キナゾリニ ル、6-キナゾリニル、7-キナゾリニル、8-キナゾリニル、2-キノキサリ ニル、5-キノキサリニル、6-キノキサリニル、1-フタラジニル、5-フタ ラジニル、6-フタラジニル、2-ナフチリジニル、3-ナフチリジニル、4-ナフチリジニル、2ープリニル、6ープリニル、7ープリニル、8ープリニル、 2-プテリジニル、4-プテリジニル、6-プテリジニル、7-プテリジニル、 1-カルバゾリル、2-カルバゾリル、3-カルバブリル、4-カルバゾリル、 $9-カルバゾリル、<math>2-(\alpha-カルボリニル)、3-(\alpha-カルボリニル)、<math>4 (\alpha-\pi)$ ルボリニル)、 $5-(\alpha-\pi)$ ルボリニル)、 $6-(\alpha-\pi)$ ルボリニル)、7 $-(\alpha-\pi)$ ルボリニル)、 $8-(\alpha-\pi)$ ルボリニル)、 $9-(\alpha-\pi)$ ルボリニル)、 1-(β-カルボニリル)、<math>3-(β-カルボニリル)、4-(β-カルボニリル)、5-(β-カルボニリル)、<math>6-(β-カルボニリル)、7-(β-カルボニリル)、 8 $-(\beta - \pi)$ カルボニリル)、9 $-(\beta - \pi)$ カルボニリル)、1 $-(\gamma - \pi)$ カルボリニル)、 $2 - (\gamma - \pi \mu \pi \mu \pi \mu \pi \mu)$ 、 $4 - (\gamma - \pi \mu \pi \mu \pi \mu \pi \mu)$ 、 $5 - (\gamma - \pi \mu \pi \mu \pi \mu \pi \mu)$ 、

6-(γ-カルボリニル)、7-(γ-カルボリニル)、8-(γ-カルボリニル)、 9- (γ-カルボリニル)、1-アクリジニル、2-アクリジニル、3-アクリジ ニル、4-アクリジニル、9-アクリジニル、1-フェノキサジニル、2-フェ ノキサジニル、3-フェノキサジニル、4-フェノキサジニル、10-フェノキ サジニル、1-フェノチアジニル、2-フェノチアジニル、3-フェノチアジニ ル、4-フェノチアジニル、10-フェノチアジニル、1-フェナジニル、2-フェナジニル、1-フェナントリジニル、2-フェナントリジニル、3-フェナ ントリジニル、4-フェナントリジニル、6-フェナントリジニル、7-フェナ ントリジニル、8-フェナントリジニル、9-フェナントリジニル、10-フェ ナントリジニル、2-フェナントロリニル、3-フェナントロリニル、4-フェ ナントロリニル、5-フェナントロリニル、6-フェナントロリニル、7-フェ ナントロリニル、8-フェナントロリニル、9-フェナントロリニル、10-フ ェナントロリニル、1ーチアントレニル、2ーチアントレニル、1ーインドリジ ニル、2-インドリジニル、3-インドリジニル、5-インドリジニル、6-イ ンドリジニル、7ーインドリジニル、8ーインドリジニル、1ーフェノキサチイ ニル、2-フェノキサチイニル、3-フェノキサチイニル、4-フェノキサチイ ニル、チエノ〔2, 3-b〕フリル、ピロロ〔1, 2-b〕ピリダジニル、ピラ ゾロ〔1, 5-a〕ピリジル、イミダゾ〔11, 2-a〕ピリジル、イミダゾ〔1,5-a] ピリジル、イミダゾ [1, 2-b] ピリダジニル、イミダゾ [1, 2-b]a] ピリミジニル、1, 2, 4-トリアゾロ [4, 3-a] ピリジル、1, 2, 4-トリアゾロ〔4, 3-a〕ピリダジニル等の8乃至14員の縮合多環式ヘテ ロアリール基が挙げられる。

「単環式非芳香族へテロ環基」としては、例えば、1ーアジリジニル、1ーアゼチジニル、1ーピロリジニル、2ーピロリジニル、3ーピロリジニル、2ーテトラヒドロフリル、チオラニル、1ーイミダゾリジニル、2ーイミダゾリジニル、4ーイミダゾリジニル、1ーピラゾリジニル、3ーピラソリジニル、4ーピラゾリジニル、1ー(2ーピロリニル)、1ー(2ーイミダゾ

リニル)、2-(2-イミダゾリニル)、1-(2-ピラゾリニル)、3-(2-ピラゾリニル)、ピペリジノ、2-ピペリジニル、3-ピペリジニル、4-ピペリジニル、1-ホモピペリジニル、2-テトラヒドロピラニル、モルホリノ、(チオモルホリン)-4-イル、1-ピペラジニル、1-ホモピペラジニル等の3万至7員の飽和若しくは不飽和の単環式非芳香族へテロ環基が挙げられる。

「縮合多環式非芳香族へテロ環基」としては、例えば、2-キヌクリジニル、2 ークロマニル、3ークロマニル、4ークロマニル、5ークロマニル、6ークロマ ニル、7ークロマニル、8ークロマニル、1ーイソクロマニル、3ーイソクロマ ニル、4-イソクロマニル、5-イソクロマニル、6-イソクロマニル、7-イ ソクロマニル、8-イソクロマニル、2-チオクロマニル、3-チオクロマニル、 4-チオクロマニル、5-チオクロマニル、6-チオクロマニル、7-チオクロ マニル、8-チオクロマニル、1-イソチオクロマニル、3-イソチオクロマニ ル、4-イソチオクロマニル、5-イソチオクロマニル、6-イソチオクロマニ ル、7-イソチオクロマニル、8-イソチオクロマニル、1-インドリニル、2 ーインドリニル、3ーインドリニル、4ーインドリニル、5ーインドリニル、6 ーインドリニル、7ーインドリニル、1ーイソインドリニル、2ーイソインドリ ニル、4-イソインドリニル、5-イソインドリニル、2-(4H-クロメニル)、 3-(4H-クロメニル)、4-(4H-クロメニル)、5-(4H-クロメニル)、 6-(4H-クロメニル)、7-(4H-クロメニル)、8-(4H-クロメニル)、1ーイソクロメニル、3ーイソクロメニル、4ーイソクロメニル、5ーイソクロ メニル、6ーイソクロメニル、7ーイソクロメニル、8ーイソクロメニル、1ー (1H-ピロリジニル)、2-(1H-ピロリジニル)、3-(1H-ピロリジニ ロリジニル) 等の8乃至10員の飽和若しくは不飽和の縮合多環式非芳香族ヘテ ロ環基が挙げられる。

上記「ヘテロ環基」の中で、環系を構成する原子(環原子)として、結合手を有する窒素原子の他に、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ

原子1乃至3種を有していてもよい単環式又は縮合多環式へテロアリール基、並びに、環系を構成する原子(環原子)として、結合手を有する窒素原子の他に、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1乃至3種を有していてもよい単環式又は縮合多環式非芳香族へテロ環基を「環状アミノ基」と称し、例えば、1ーピロリジニル、1ーイミダゾリジニル、1ーピラゾリジニル、1ーオキサゾリジニル、1ーチアゾリジニル、ピペリジノ、モルホリノ、1ーピペラジニル、チオモルホリンー4ーイル、1ーホモピペリジニル、1ーホモピペラジニル、2ーピロリンー1ーイル、2ーイミダゾリンー1ーイル、2ーピラゾリンー1ーイル、1ーインドリニル、1,2,3,4ーテトラヒドロキノリンー1ーイル、1,2,3,4ーテトラヒドロキノリンー1ーイル、1ーピラゾリル、1ーピラブリル、1ーピロリル、1ーイミダブリル、1ーピラブリル、1ーインドリル、1ーインドリル、1ーインドリル、1ーインドリル、1ーインドリル、1ーインダブリル、2ーイソインドリル等の基が挙げられる。

上記「シクロアルキル基」、「シクロアルケニル基」、「シクロアルカンジエニル基」、「アリール基」、「シクロアルキレン基」、「シクロアルケニレン基」、「アリーレン基」、「架橋環式炭化水素基」、「スピロ環式炭化水素基」、及び「ヘテロ環基」を総称して「環式基」と称する。また、該「環式基」の中で、特に「アリール基」、「アリーレン基」、「単環式ヘテロアリール基」、及び「縮合多環式ヘテロアリール基」を総称して「芳香環式基」と称する。

「炭化水素ーオキシ基」としては、「ヒドロキシ基」の水素原子が「炭化水素基」で置換された基が挙げられ、「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。「炭化水素ーオキシ基」としては、例えば、アルコキシ基(アルキルーオキシ基)、アルケニルーオキシ基、アルキニルーオキシ基、シクロアルキルーオキシ基、シクロアルキルーアルキルーオキシ基等の脂肪族炭化水素ーオキシ基;アリールーオキシ基;アラルキルーオキシ基;アルキレンージオキシ基等が挙げられる。

「アルコキシ基 (アルキルーオキシ基)」としては、例えば、メトキシ、エトキシ、 n-プロポキシ、イソプロポキシ、n-プトキシ、イソプトキシ、sec-ブト

キシ、t e r t - ブトキシ、n - ペンチルオキシ、 $1 \cdot y$ ペンチルプトキシ、1 - y チルプトキシ、1 - y チルプトキシ、 $1 \cdot y$ チルプトキシ、 $1 \cdot y$ チルプロポキシ、1 - x チルペンチルオキシ、1 - x チルプトキシ、 $1 \cdot y$ カーナンプロポキシ、 $1 \cdot y$ カーナングルオキシ、 $1 \cdot y$ カーナングルオキシ、 $1 \cdot y$ カーデシルオキシ、 $1 \cdot y$ カードデシルオキシ、 $1 \cdot y$ カードデシルオキシ、 $1 \cdot y$ の $1 \cdot y$ の

「アルケニルーオキシ基」としては、例えば、ビニルオキシ、(プロパー1-エン -1-イル) オキシ、アリルオキシ、イソプロペニルオキシ、(ブター1-エンー 1ーイル) オキシ、(プター2ーエン-1ーイル) オキシ、(ブター3ーエン-1 ーイル)オキシ、(2-メチルプロパー2-エン-1-イル)オキシ、(1-メチ ルプロパー2-エン-1-イル)オキシ、(ペンター1-エン-1-イル)オキシ、 (ペンター2-エンー1-イル)オキシ、(ペンター3-エンー1-イル)オキシ、 (ペンター4ーエンー1ーイル)オキシ、(3ーメチルブター2ーエンー1ーイル) オキシ、(3-メチルブタ-3-エン-1-イル)オキシ、(ヘキサ-1-エン-1ーイル) オキシ、(ヘキサー2-エン-1-イル) オキシ、(ヘキサー3-エン -1-イル)オキシ、(ヘキサー4-エン-1-イル)オキシ、(ヘキサー5-エ ン-1-イル)オキシ、(4-メチルペンタ-3-エン-1-イル)オキシ、(4 ーメチルペンター3-エンー1-イル)オキシ、(ヘプター1-エンー1ーイル) オキシ、(ヘプター6-エンー1-イル) オキシ、(オクター1-エンー1-イル) オキシ、(オクター7-エン-1-イル) オキシ、(ノナー1-エン-1-イル) オキシ、(ノナー8-エン-1-イル) オキシ、(デカ-1-エン-1-イル) オ キシ、(デカー9-エン-1-イル) オキシ、(ウンデカー1-エン-1-イル)

オキシ、(ウンデカー10-xv-1-4v) オキシ、(ドデカー1-xv-1-4v) オキシ、(ドデカー11-xv-1-4v) オキシ、(トリデカー11-xv-1-4v) オキシ、(トリデカー12-xv-1-4v) オキシ、(テトラデカー1-xv-1-4v) オキシ、(テトラデカー13-xv-1-4v) オキシ、(ペンタデカー1-xv-1-4v) オキシ、(ペンタデカー14-xv-1-4v) オキシ等の $C_2\sim C_{15}$ の直鎖状又は分枝鎖状のアルケニルーオキシ基が挙げられる。

「アルキニルーオキシ基」としては、例えば、エチニルオキシ、(プロパー1ーイ ン-1-イル)オキシ、(プロパ-2-イン-1-イル)オキシ、(ブター1-イ ン-1-イル)オキシ、(ブタ-3-イン-1-イル)オキシ、(1-メチルプロ パー2-イン-1-イル) オキシ, (ペンター1-イン-1-イル) オキシ、(ペ ンター4ーインー1ーイル) オキシ、(ヘキサー1ーインー1ーイル) オキシ、(ヘ キサー5-イン-1-イル)オキシ、(ヘプタ-1-イン-1-イル)オキシ、(ヘ プター6-イン-1-イル) オキシ、(オクター1-イン-1-イル) オキシ、(オ クター 7 ーインー 1 ーイル) オキシ、(ノナー 1 ーインー 1 ーイル) オキシ、(ノ ナー8-イン-1-イル)オキシ、(デカー1-イン-1-イル)オキシ、(デカ -9-イン-1-イル) オキシ、(ウンデカ-1-イン-1-イル) オキシ、(ウ ンデカー10-イン-1-イル)オキシ、(ドデカー1-イン-1-イル)オキシ、 (ドデカー11-イン-1-イル) オキシ、(トリデカー1-イン-1-イル) オ キシ、(トリデカ-12-イン-1-イル) オキシ、(テトラデカ-1-イン-1 ーイル)オキシ、(テトラデカー13ーインー1ーイル)オキシ、(ペンタデカー 1-イン-1-イル) オキシ、(ペンタデカ-14-イン-1-イル) オキシ等の C2~C15の直鎖状又は分枝鎖状のアルキニルーオキシ基が挙げられる。

「シクロアルキルーオキシ基」としては、例えば、シクロプロポキシ、シクロブトキシ、シクロペンチルオキシ、シクロヘキシルオキシ、シクロヘプチルオキシ、シクロオクチルオキシ等の $C_3 \sim C_8$ のシクロアルキルーオキシ基が挙げられる。「シクロアルキルーアルキルーオキシ基」としては、例えば、シクロプロピルメ

トキシ、1-シクロプロピルエトキシ、2-シクロプロピルエトキシ、3-シクロプロピルプロポキシ、4-シクロプロピルブトキシ、5-シクロプロピルペンチルオキシ、6-シクロプロピルへキシルオキシ、シクロプチルメトキシ、シクロペンチルメトキシ、シクロプチルメトキシ、シクロペンチルメトキシ、シクロペンチルメトキシ、シクロペキシルエトキシ、3-シクロヘキシルプロポキシ、4-シクロヘキシルプトキシ、シクロヘプチルメトキシ、シクロオクチルメトキシ、6-シクロオクチルヘキシルオキシ等の $C_4 \sim C_{14}$ のシクロアルキルーアルキルーオキシ基が挙げられる。

「アリールーオキシ基」としては、例えば、フェノキシ、1ーナフチルオキシ、2ーナフチルオキシ、アントリルオキシ、フェナントリルオキシ、アセナフチレニルオキシ等の $C_6 \sim C_{14}$ のアリールーオキシ基が挙げられる。

「アラルキルーオキシ基」としては、例えば、ベンジルオキシ、1-tフチルメトキシ、2-tフチルメトキシ、アントラセニルメトキシ、フェナントレニルメトキシ、アセナフチレニルメトキシ、ジフェニルメトキシ、1-フェネチルオキシ、2-フェネチルオキシ、1-(1-tフチル) エトキシ、1-(2-tフチル) エトキシ、2-(1-tフチル) エトキシ、2-(2-tフチル) エトキシ、3-フェニルプロポキシ、3-(1-tフチル) プロポキシ、3-(2-tフチル) プロポキシ、4-(1-tフチル) ブトキシ、4-(1-tフチル) ブトキシ、4-(1-tフチル) ブトキシ、4-(1-tフチル) ブトキシ、1-(1-tフチル) ブトキシ (1-tフチル) ベンチルオキシ、1-t(1-tフチル) ベンチルオキシ、1-t(1-t) ベンチルオキシ、1-t(1-t) ベキシルオキシ、1-t(1-t) ベキシルオキシ、1-t(1-t) ベキシルオキシ、1-t(1-t) ベキシルオキシ (1-t) ベキシルオキシ・等の1-t(1-t) ベトラル

「アルキレンジオキシ基」としては、例えば、メチレンジオキシ、エチレンジオキシ、1-メチルメチレンジオキシ、1, 1-ジメチルメチレンジオキシ等の基が挙げられる。

「ハロゲン化アルコキシ基 (ハロゲン化アルキルーオキシ基)」としては、「ヒドロキシ基」の水素原子が「ハロゲン化アルキル基」で置換された基が挙げられ、

例えば、フルオロメトキシ、ジフルオロメトキシ、クロロメトキシ、プロモメトキシ、ヨードメトキシ、トリフルオロメトキシ、トリクロロメトキシ、2, 2, 2-トリフルオロエトキシ、ペンタフルオロエトキシ、3, 3, 3-トリフルオロプポキシ、ヘプタフルオロプポキシ、ヘプタフルオロイソプロポキシ、ノナフルオロブトキシ、パーフルオロヘキシルオキシ等の1乃至13個のハロゲン原子で置換された $C_1\sim C_6$ の直鎖状又は分枝鎖状のハロゲン化アルコキシ基が挙げられる。

「ヘテロ環ーオキシ基」としては、「ヒドロキシ基」の水素原子が、「ヘテロ環基」で置換された基が挙げられ、「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。「ヘテロ環ーオキシ基」としては、例えば、単環式ヘテロアリールーオキシ基、縮合多環式ヘテロアリールーオキシ基、単環式非芳香族ヘテロ環ーオキシ基、縮合多環式非芳香族ヘテロ環ーオキシ基等が挙げられる。

「単環式へテロアリールーオキシ基」としては、例えば、3ーチエニルオキシ、 (イソキサゾールー3ーイル) オキシ、(チアゾールー4ーイル) オキシ、2ーピ リジルオキシ、3ーピリジルオキシ、4ーピリジルオキシ、(ピリミジンー4ーイ ル) オキシ等の基が挙げられる。

「縮合多環式へテロアリールーオキシ基」としては、5ーインドリルオキシ、(ベンズイミダゾールー2ーイル) オキシ、2ーキノリルオキシ、3ーキノリルオキシ、4ーキノリルオキシ等の基が挙げられる。

「単環式非芳香族へテロ環ーオキシ基」としては、例えば、3 - ピロリジニルオキシ、4 - ピペリジニルオキシ等の基が挙げられる。

「縮合多環式非芳香族へテロ環ーオキシ基」としては、例えば、3ーインドリニルオキシ、4-クロマニルオキシ等の基が挙げられる。

「炭化水素-スルファニル基」としては、「スルファニル基」の水素原子が、「炭化水素基」で置換された基が挙げられ、「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。「炭化水素-スルファニル基」としては、例えば、アルキル-スルファニル基、アルキニル-スルファニ

ル基、シクロアルキルースルファニル基、シクロアルキルーアルキルースルファニル基等の脂肪族炭化水素-スルファニル基;アリールースルファニル基、アラルキル-スルファニル基等が挙げられる。

「アルキルースルファニル基」としては、例えば、メチルスルファニル、エチル スルファニル、nープロピルスルファニル、イソプロピルスルファニル、nーブ チルスルファニル、イソプチルスルファニル、sec-プチルスルファニル、t ertープチルスルファニル、nーペンチルスルファニル、イソペンチルスルフ アニル、(2-メチルブチル) スルファニル、(1-メチルブチル) スルファニル、 ネオペンチルスルファニル、(1,2-ジメチルプロピル)スルファニル、(1-エチルプロピル) スルファニル、n-ヘキシルスルファニル、(4-メチルペンチ ル) スルファニル、(3-メチルペンチル) スルファニル、(2-メチルペンチル) スルファニル、(1-メチルペンチル) スルファニル、(3,3-ジメチルプチル) スルファニル、(2, 2-ジメチルブチル)スルファニル、(1, 1-ジメチルブ チル)スルファニル、(1,2-ジメチルブチル)スルファニル、(1,3-ジメ チルプチル)スルファニル、(2,3-ジメチルブチル)スルファニル、(2-エ チルプチル)スルファニル、(1-エチルプチル)スルファニル、(1-エチルー 1-メチルプロピル) スルファニル、n-ヘプチルスルファニル、n-オクチル スルファニル、n-ノニルスルファニル、n-デシルスルファニル、n-ウンデ シルスルファニル、nードデシルスルファニル、nートリデシルスルファニル、 n-テトラデシルスルファニル、n-ペンタデシルスルファニル等の $C_1\sim C_{15}$ の直鎖状又は分枝鎖状のアルキルースルファニル基が挙げられる。

「アルケニルースルファニル基」としては、例えば、ビニルスルファニル、(プロパー1-xン-1-xル)スルファニル、アリルスルファニル、イソプロペニルスルファニル、(ブタ-1-xン-1-xル)スルファニル、(ブタ-2-xン-1-xル)スルファニル、(ブタ-3-x2-1-x4ル)スルファニル、(2-x4 チルプロパー2-x2-1-x1ル)スルファニル、(2-x4 スルプロパー2-x2-1-x1ル)スルファニル、(2-x4 スルファニル、(2-x4) スルファニル・(2-x4) スルファニル・(2-

ンター2-エン-1-イル) スルファニル、(ペンター3-エン-1-イル) スル ファニル、(ペンター4ーエンー1ーイル) スルファニル、(3ーメチルプター2 ーエンー1ーイル) スルファニル、(3ーメチルプター3ーエンー1ーイル) スル ファニル、(ヘキサー1ーエンー1ーイル) スルファニル、(ヘキサー2ーエンー 1ーイル)スルファニル、(ヘキサー3ーエンー1ーイル)スルファニル、(ヘキ サー4-エン-1-イル) スルファニル、(ヘキサー5-エン-1-イル) スルフ ァニル、(4-メチルペンタ-3-エン-1-イル)スルファニル、(4-メチル ペンター3-エン-1-イル) スルファニル、(ヘプター1-エンー1ーイル) ス ルファニル、(ヘプター6-エンー1ーイル) スルファニル、(オクター1-エン −1−イル)スルファニル、(オクター7−エン−1−イル)スルファニル、(ノ ナー1-エン-1-イル) スルファニル、(ノナー8-エン-1-イル) スルファ ニル、(デカー1ーエンー1ーイル) スルファニル、(デカー9ーエンー1ーイル) スルファニル、(ウンデカー1ーエンー1ーイル)スルファニル、(ウンデカー1 0-エン-1-イル) スルファニル、(ドデカ-1-エン-1-イル) スルファニ ル、(ドデカー11ーエンー1ーイル)スルファニル、(トリデカー1ーエンー1 ーイル)スルファニル、(トリデカー12-エンー1ーイル) スルファニル、(テ トラデカー1ーエンー1ーイル) スルファニル、(テトラデカー13ーエンー1ー イル) スルファニル、(ペンタデカー1ーエンー1ーイル) スルファニル、(ペン タデカー14ーエンー1ーイル)スルファニル等のC2~C15の直鎖状又は分枝 鎖状のアルケニルースルファニル基が挙げられる。

「アルキニルースルファニル基」としては、例えば、エチニルスルファニル、(プロパー1-4ンー1-4ル)スルファニル,(プロパー2-4ンー1-4ル)スルファニル,(プター1-4ンー1-4ル)スルファニル、(プター3-4ンー1-4ル)スルファニル、(プター3-4ンー1-4ル)スルファニル、(1-44ル)スルファニル・(1-44ル)スルファニル・(1-44ル)スルファニル・(1-44ル)スルファニル・(1-44ル)スルファニル・(1-44ル)スルファニル・(1-44ル)スルファニル・(1-44ル)スルファニル・(1-44ル)スルファニル・(1-44ル)

ンー1ーイル) スルファニル、(オクター1ーインー1ーイル) スルファニル、(オクター7ーインー1ーイル) スルファニル、(ノナー1ーインー1ーイル) スルファニル、(ノナー8ーインー1ーイル) スルファニル、(デカー1ーインー1ーイル) スルファニル、(デカー9ーインー1ーイル) スルファニル、(ウンデカー1ーインー1ーイル) スルファニル、(ウンデカー1ーインー1ーイル) スルファニル、(ドデカー1ーインー1ーイル) スルファニル、(ドデカー1ーインー1ーイル) スルファニル、(トリデカー1ーインー1ーイル) スルファニル、(トリデカー1ーインー1ーイル) スルファニル、(トリデカー12ーインー1ーイル) スルファニル、(テトラデカー1ーインー1ーイル) スルファニル、(テトラデカー1ーインー1ーイル) スルファニル、(ペンタデカー14ーインー1ーイル) スルファニル、(ペンタデカー14ーインー1ーイル) スルファニル等の $C_2 \sim C_{15}$ の直鎖状又は分枝鎖状のアルキニルースルファニル 基が挙げられる。

「シクロアルキルースルファニル基」としては、例えば、シクロプロピルスルファニル、シクロプチルスルファニル、シクロペンチルスルファニル、シクロヘキシルスルファニル、シクロへプチルスルファニル、シクロオクチルスルファニル等の $C_3\sim C_8$ のシクロアルキルースルファニル基が挙げられる。

「シクロアルキルーアルキルースルファニル基」としては、例えば、(シクロプロピルメチル)スルファニル、(1-シクロプロピルエチル)スルファニル、(2-シクロプロピルエチル)スルファニル、(3-シクロプロピルプロピル)スルファニル、(4-シクロプロピルブチル)スルファニル、(5-シクロプロピルペンチル)スルファニル、(6-シクロプロピルへキシル)スルファニル、(0クロプロピルへキシル)スルファニル、(0クロプロピルへキシル)スルファニル、(00クロプリピルへキシル)スルファニル、(00クロプリピルへキシル)スルファニル、(00クロプリアルメチル)スルファニル、(000日で、00月により、(00月によりにより、(00月により

ルキルーアルキルースルファニル基が挙げられる。

「アリールースルファニル基」としては、例えば、フェニルスルファニル、1-ナフチルスルファニル、2-ナフチルスルファニル、アントリルスルファニル、フェナントリルスルファニル、アセナフチレニルスルファニル等の $C_6 \sim C_{14}$ のアリールースルファニル基が挙げられる。

「アラルキルースルファニル基」としては、例えば、ベンジルスルファニル、(1ーナフチルメチル)スルファニル、(2ーナフチルメチル)スルファニル、(アントラセニルメチル)スルファニル、(フェナントレニルメチル)スルファニル、(アセナフチレニルメチル)スルファニル、(アセナフチレニルメチル)スルファニル、(ジフェニルメチル)スルファニル、(1ーフェネチル)スルファニル、(2ーフェネチル)スルファニル、(1ーフチル)エチル)スルファニル、(1ー(2ーナフチル)エチル)スルファニル、(2ー(1ーナフチル)エチル)スルファニル、(2ー(1ーナフチル)エチル)スルファニル、(3ーフェニルプロピル)スルファニル、(3ー(1ーナフチル)プロピル)スルファニル、(4ーフェニルブチル)スルファニル、(4ー(1ーナフチル)ブチル)スルファニル、(4ー(2ーナフチル)ブチル)スルファニル、(5ー(1ーナフチル)スルファニル、(5ー(1ーナフチル)スルファニル、(6ーフェニルインチル)スルファニル、(6ーフェニルインチル)スルファニル、(1ーナフチル)スルファニル、(5ー(1ーナフチル)スルファニル、(6ー(1ーナフチル)ストファニル、(6ー(1ーナフチル)ストンアニル、(6ー(1ーナフチル)へキシル)スルファニル、(6ー(1ーナフチル)へキシル)スルファニル、(6ー(1ーナフチル)へキシル)スルファニル、(6ー(2ーナフチル)へキシル)スルファニル、(6ー(2ーナフチル)へキシル)スルファニル、(6ー(2ーナフチル)へキシル)スルファニルミが挙げられる。

「ハロゲン化アルキルースルファニル基」としては、「スルファニル基」の水素原子が「ハロゲン化アルキル基」で置換された基が挙げられ、例えば、(フルオロメチル) スルファニル、(グロモメチル) スルファニル、(ブロモメチル) スルファニル、(リードメチル) スルファニル、(ジフルオロメチル) スルファニル、(トリフルオロメチル) スルファニル、(トリクロロメチル) スルファニル、(2, 2, 2ートリフルオロエチル) スルファニル、(ペンタフルオロエチル) スルファニル、(3, 3, 3ートリフルオロプロピル) スルファニル、(ヘプタフルオロプロピル)

スルファニル、(ヘプタフルオロイソプロピル) スルファニル、(ノナフルオロブチル) スルファニル、(パーフルオロヘキシル) スルファニル等の1乃至13個のハロゲン原子で置換された $C_1 \sim C_6$ の直鎖状又は分枝鎖状のハロゲン化アルキルースルファニル基が挙げられる。

「ヘテロ環ースルファニル基」としては、「スルファニル基」の水素原子が、「ヘテロ環基」で置換された基が挙げられ、「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。「ヘテロ環ースルファニル基」としては、例えば、単環式ヘテロアリールースルファニル基、縮合多環式ヘテロアリールースルファニル基、単環式非芳香族ヘテロ環ースルファニル基、縮合多環式非芳香族ヘテロ環ースルファニル基等が挙げられる。

「単環式へテロアリールースルファニル基」としては、例えば、(イミダゾールー2ーイル) スルファニル、(1,2,4ートリアゾールー2ーイル) スルファニル、(ピリジンー2ーイル) スルファニル、(ピリジンー4ーイル) スルファニル、(ピリジンー2ーイル) スルファニル、(ピリジンー2ーイル) スルファニル等の基が挙げられる。

「縮合多環式へテロアリールースルファニル基」としては、(ベンズイミダゾール -2-イル) スルファニル、(キノリン-2-イル) スルファニル、(キノリン-4-イル) スルファニル等の基が挙げられる。

「単環式非芳香族へテロ環ースルファニル基」としては、例えば、(3-ピロリジニル) スルファニル、(4-ピペリジニル) スルファニル等の基が挙げられる。

「縮合多環式非芳香族へテロ環ースルファニル基」としては、例えば、(3ーインドリニル) スルファニル、(4ークロマニル) スルファニル等の基が挙げられる。「アシル基」としては、例えば、ホルミル基、グリオキシロイル基、チオホルミル基、カルバモイル基、チオカルバモイル基、スルファモイル基、スルフィナモイル基、カルボキシ基、スルホ基、ホスホノ基、及び下記式:

(式中、R^a¹及びR^b¹は、同一又は異なって、炭化水素基又はヘテロ環基を表すか、あるいはR^a¹及びR^b¹が一緒になって、それらが結合している窒素原子と共に環状アミノ基を表す)で表される基が挙げられる。

上記「アシル基」の定義において、

式($\omega-1$ A)で表される基の中で、 R^{*1} が炭化水素基である基を「炭化水素 カルボニル基」(具体例: アセチル、プロピオニル、プチリル、イソプチリル、バレリル、イソバレリル、ピバロイル、ラウロイル、ミリストイル、パルミトイル、アクリロイル、プロピオロイル、メタクリロイル、クロトノイル、イソクロトノイル、シクロヘキシルカルボニル、シクロヘキシルメチルカルボニル、ベンゾイル、1-ナフトイル、2-ナフトイル、フェニルアセチル等の基)、 R^{*1} がヘテロ環基である基を「ヘテロ環ーカルボニル基」(具体例: 2-テノイル、3-フロイル、ニコチノイル、イソニコチノイル等の基)と称する。

式(ω - 2 A)で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素ーオキシーカルボニル基」(具体例: メトキシカルボニル、エトキシカルボニル、フェノキシカルボニル、ベンジルオキシカルボニル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニル基」(具体例: 3 - ピリジルオキシカルボニル等の基)と称する。

式($\omega-3$ A)で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素 カルボニルーカルボニル基」(具体例: ピルボイル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環ーカルボニルーカルボニル基」と称する。

式 $(\omega - 4A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素ーオキシーカルボニルーカルボニル基」(具体例: メトキサリル、エトキサリル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーカルボニル基」と称する。

式(ω – 5 A)で表される基の中で、R *1 が炭化水素基である基を「炭化水素 – スルファニルーカルボニル基」、R *1 がヘテロ環基である基を「ヘテロ環ースルファニルーカルボニル基」と称する。

式($\omega-6$ A)で表される基の中で、 R^{*1} が炭化水素基である基を「炭化水素ーチオカルボニル基」、 R^{*1} がヘテロ環基である基を「ヘテロ環ーチオカルボニル基」と称する。

式(ω-7A)で表される基の中で、R¹が炭化水素基である基を「炭化水素-

オキシーチオカルボニル基」、R^{a1}がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニル基」と称する。

式 $(\omega - 8 \, A)$ で表される基の中で、 $R^{a\, 1}$ が炭化水素基である基を「炭化水素 - スルファニルーチオカルボニル基」、 $R^{a\, 1}$ がヘテロ環基である基を「ヘテロ環ースルファニルーチオカルボニル基」と称する。

式 $(\omega-9~A)$ で表される基の中で、 $R^{a\,1}$ が炭化水素基である基を「N-炭化水素ーカルバモイル基」(具体例: N-メチルカルバモイル等の基)、 $R^{a\,1}$ がヘテロ環基である基を「N-ヘテロ環-カルバモイル基」と称する。

式 $(\omega-10\,A)$ で表される基の中で、 $R^{a\,1}$ 及び $R^{b\,1}$ が炭化水素基である基を「N, $N-\varnothing$ (炭化水素) -カルバモイル基」(具体例:N, $N-\varnothing$ メチルカルバモイル等の基)、 $R^{a\,1}$ 及び $R^{b\,1}$ がヘテロ環基である基を「N, $N-\varnothing$ (ヘテロ環) -カルバモイル基」、 $R^{a\,1}$ が炭化水素基であり $R^{b\,1}$ がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-置換カルバモイル基」、 $R^{a\,1}$ 及び $R^{b\,1}$ が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーカルボニル基」(具体例:モルホリノカルボニル等の基)と称する。

式 $(\omega-11A)$ で表される基の中で、 R^{*1} が炭化水素基である基を「N-炭化 水素-チオカルバモイル基」、 R^{*1} がヘテロ環基である基を「N-ヘテロ環-チオカルバモイル基」と称する。

式 $(\omega-1\ 2\ A)$ で表される基の中で、 $R^{a\,1}$ 及び $R^{b\,1}$ が炭化水素基である基を「N, N-ジ(炭化水素) - チオカルバモイル基」、 $R^{a\,1}$ 及び $R^{b\,1}$ がヘテロ環基である基を「N, N-ジ(ヘテロ環) - チオカルバモイル基」、 $R^{a\,1}$ が炭化水素基であり $R^{b\,1}$ がヘテロ環基である基を「N-炭化水素 - N-ヘテロ環 - チオカルバモイル基」、 $R^{a\,1}$ 及び $R^{b\,1}$ が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニル基」と称する。

式 $(\omega-13A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「N-炭化水素-スルファモイル基」、 R^{a1} がヘテロ環基である基を「N-ヘテロ環-スルファモイル基」と称する。

式 $(\omega-14A)$ で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「N, N-ジ(炭化水素)-スルファモイル基」(具体例:N, N-ジメチルスルファモイル等の基)、 R^{a1} 及び R^{b1} がヘテロ環基である基を「N, N-ジ(ヘテロ環)スルファモイル基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「N一炭化水素-N-ヘテロ環-スルファモイル基」、 R^{a1} 及び R^{b1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルホニル基」(具体例:1-ピロリルスルホニル等の基)と称する。

式 $(\omega-15A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「N-炭化水素-スルフィナモイル基」、 R^{a1} がヘテロ環基である基を「N-ヘテロ環-スルフィナモイル基」と称する。

式 $(\omega-16A)$ で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「N, N-ジ(炭化水素) -スルフィナモイル基」、 R^{a1} 及び R^{b1} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -スルフィナモイル基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環ースルフィナモイル基」、 R^{a1} 及び R^{b1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルフィニル基」と称する。

式 $(\omega-17A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素 - オキシースルホニル基」、 R^{a1} がヘテロ環基である基を「ヘテロ環- オキシースルホニル基」と称する。

式 $(\omega-18A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素 - オキシースルフィニル基」、 R^{a1} がヘテロ環基である基を「ヘテロ環ーオキシースルフィニル基」と称する。

式 $(\omega-19A)$ で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「O,O'-ジ (炭化水素) -ホスホノ基」、 R^{a1} 及び R^{b1} がヘテロ環基である基を「O,O'-ジ (ヘテロ環) -ホスホノ基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「O-炭化水素-O'-ヘテロ環-ホスホノ基」と称する。

式 $(\omega - 20A)$ で表される基の中で、 R^{*1} が炭化水素基である基を「炭化水素

-スルホニル基」(具体例:メタンスルホニル、ベンゼンスルホニル等の基)、R *1がヘテロ環基である基を「ヘテロ環-スルホニル基」と称する。

式 $(\omega-21A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素 - スルフィニル基」具体例:メチルスルフィニル、ベンゼンスルフィニル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環- スルフィニル基」と称する。

上記式($\omega-1$ A)乃至($\omega-2$ 1 A)で表される基における「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ A)で表される「炭化水素 - カルボニル基」としては、アルキルーカルボニル基、アルケニルーカルボニル基、アルキニルーカルボニル基、シクロアルキルーカルボニル基、シクロアルケニルーカルボニル基、シクロアルカンジエニルーカルボニル基、シクロアルキルーアルキルーカルボニル基等の脂肪族炭化水素 - カルボニル基;アリールーカルボニル基;アラルキルーカルボニル基;架橋環式炭化水素 - カルボニル基;スピロ環式炭化水素 - カルボニル基;アルペン系炭化水素 - カルボニル基;オルペン系炭化水素 - カルボニル基が挙げられる。以下、式($\omega-2$ A)乃至($\omega-2$ 1 A)で表される基も同様である。

上記式 $(\omega-1\,A)$ 乃至 $(\omega-2\,1\,A)$ で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式 $(\omega-1\,A)$ で表される「ヘテロ環ーカルボニル基」としては、例えば、単環式ヘテロアリールーカルボニル基、縮合多環式ヘテロアリールーカルボニル基、単環式非芳香族ヘテロ環ーカルボニル基、縮合多環式非芳香族ヘテロ環ーカルボニル基が挙げられる。以下、式 $(\omega-2\,A)$ 乃至 $(\omega-2\,1\,A)$ で表される基も同様である。

上記式 $(\omega-10A)$ 乃至 $(\omega-16A)$ で表される基における「環状アミノ」 としては、上記「環状アミノ基」と同様の基が挙げられる。

本明細書において、ある官能基について「置換基を有していてもよい」という場合には、特に言及する場合を除き、その官能基が、化学的に可能な位置に1個又は2個以上の「置換基」を有する場合があることを意味する。官能基に存在する置換基の種類、置換基の個数、及び置換位置は特に限定されず、2個以上の置換

基が存在する場合には、それらは同一であっても異なっていてもよい。官能基に存在する「置換基」としては、例えば、ハロゲン原子、オキソ基、チオキソ基、ニトロ基、ニトロソ基、シアノ基、イソシアノ基、シアナト基、チオシアナト基、イソシアナト基、イソチオシアナト基、ヒドロキシ基、スルファニル基、カルボキシ基、スルファニルカルボニル基、オキサロ基、メソオキサロ基、チオカルボキシ基、ジチオカルボキシ基、カルバモイル基、チオカルバモイル基、スルフェノ基、スルフィノ基、スルフィノ基、スルフェノ基、スルフェノ基、スルフェノをエナモイル基、ホスホノ基、ヒドロキシホスホニル基、炭化水素基、ヘテロ環基、炭化水素ーオキシ基、ヘテロ環ーオキシ基、炭化水素ースルファニル基、ベテロ環ースルファニル基、アシル基、アミノ基、ヒドラジノ基、ヒドラゾノ基、ジアゼニル基、ウレイド基、チオウレイド基、グアニジノ基、カルバモイミドイル基(アミジノ基)、アジド基、イミノ基、ヒドロキシアミノ基、ヒドロキシイミノ基、アミノオキシ基、ジアゾ基、セミカルバジノ基、マロファニル基、ジアゾ基、セミカルバジノ基、アロファニル基、ヒダントイル基、ホスファノ基、ホスホロソ基、ホスホ基、ボリル基、シリル基、スタニル基、セラニル基、オキシド基等を挙げることができる。

上記「置換基を有していてもよい」の定義における「置換基」が2個以上存在する場合、該2個以上の置換基は、それらが結合している原子と一緒になって環式基を形成してもよい。このような環式基には、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1ないし3種が1個以上含有されていてもよく、該環上には1個以上の置換基が存在していてもよい。該環は、単環式又は縮合多環式のいずれであってもよく、芳香族又は非芳香族のいずれであってもよい。

上記「置換基を有していてもよい」の定義における「置換基」は、該置換基上の 化学的に可能な位置で、上記「置換基」によって置換されていてもよい。置換基 の種類、置換基の個数、及び置換位置は特に限定されず、2個以上の置換基で置 換される場合には、それらは同一であっても異なっていてもよい。そのような例 として、例えば、ハロゲン化アルキルーカルボニル基(具体例:トリフルオロア

セチル等の基)、ハロゲン化アルキルースルホニル基(具体例:トリフルオロメタンスルホニル等の基)、アシルーオキシ基、アシルースルファニル基、Nー炭化水素基ーアミノ基、N,Nージ(炭化水素)ーアミノ基、Nーヘテロ環ーアミノ基、Nー炭化水素-Nーヘテロ環ーアミノ基、アシルーアミノ基、ジ(アシル)ーアミノ基等の基が挙げられる。また、上記「置換基」上での「置換」は複数次にわたって繰り返されてもよい。

「アシルーオキシ基」としては、「ヒドロキシ基」の水素原子が「アシル基」で置換された基が挙げられ、例えば、ホルミルオキシ基、グリオキシロイルオキシ基、チオホルミルオキシ基、カルバモイルオキシ基、チオカルバモイルオキシ基、スルファモイルオキシ基、スルフィナモイルオキシ基、カルボキシオキシ基、スルホオキシ基、ホスホノオキシ基、及び下記式:

(式中、R^{a2}及びR^{b2}は、同一又は異なって、炭化水素基、又はヘテロ環基を表すか、あるいはR^{a2}及びR^{b2}が一緒になって、それらが結合している窒素原子と 共に環状アミノ基を表す)で表される基が挙げられる。

上記「アシルーオキシ基」の定義において、

式($\omega-1$ B)で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素 - カルボニルーオキシ基」(具体例: アセトキシ、ベンゾイルオキシ等の基)、 R^{*2} がヘテロ環基である基を「ヘテロ環ーカルボニルーオキシ基」と称する。

式 $(\omega - 2B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素ーオキシーカルボニルーオキシ基」、 R^{*2} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーオキシ基」と称する。

式 $(\omega - 3B)$ で表される基の中で、 R^{a^2} が炭化水素基である基を「炭化水素 カルボニルーカルボニルーオキシ基」、 R^{a^2} がヘテロ環基である基を「ヘテロ環ーカルボニルーカルボニルーオキシ基」と称する。

式 $(\omega - 4B)$ で表される基の中で、 R^{a2} が炭化水素基である基を「炭化水素ーオキシーカルボニルーカルボニルーオキシ基」、 R^{a2} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーカルボニルーオキシ基」と称する。

式 (ω-5B)で表される基の中で、R²が炭化水素基である基を「炭化水素-スルファニルーカルボニルーオキシ基」、R²がヘテロ環基である基を「ヘテロ環-スルファニルーカルボニルーオキシ基」と称する。

式(ω - 6 B)で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素ーチオカルボニルーオキシ基」、 R^{*2} がヘテロ環基である基を「ヘテロ環ーチオカルボニルーオキシ基」と称する。

式 $(\omega - 7B)$ で表される基の中で、 R^{a^2} が炭化水素基である基を「炭化水素ーオキシーチオカルボニルーオキシ基」、 R^{a^2} がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニルーオキシ基」と称する。

式 $(\omega - 8B)$ で表される基の中で、 R^{a^2} が炭化水素基である基を「炭化水素ースルファニルーチオカルボニルーオキシ基」、 R^{a^2} がヘテロ環基である基を「ヘテロ環ースルファニルーチオカルボニルーオキシ基」と称する。

式 $(\omega - 9B)$ で表される基の中で、 R^2 が炭化水素基である基を「N – 炭化水素 – カルバモイルーオキシ基」、 R^2 がヘテロ環基である基を「N – ヘテロ環ーカルバモイルーオキシ基」と称する。

式($\omega-10B$)で表される基の中で、R * 2及びR b 2が炭化水素基である基を「N, N - ジ(炭化水素) - カルバモイルーオキシ基」、R * 2及びR b 2がヘテロ環基である基を「N, N - ジ(ヘテロ環) - カルバモイルーオキシ基」、R * 2が炭化水素基でありR b 2がヘテロ環基である基を「N - 炭化水素- N - ヘテロ環- カルバモイルーオキシ基」、R * 2及びR b 2が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーカルボニルーオキシ基」と称する。

式 $(\omega-1\ 1\ B)$ で表される基の中で、 R^2 が炭化水素基である基を「N-炭化水素-チオカルバモイルーオキシ基」、 R^2 がヘテロ環基である基を「N-ヘテロ環ーチオカルバモイルーオキシ基」と称する。

式 $(\omega-12B)$ で表される基の中で、 R^{*2} 及び R^{*2} が炭化水素基である基を「N, N-ジ(炭化水素) -チオカルバモイルーオキシ基」、 R^{*2} 及び R^{*2} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -チオカルバモイルーオキシ基」、 R^{*2} が炭化水素基であり R^{*2} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環ーチオカルバモイルーオキシ基」、 R^{*2} 及び R^{*2} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニルーオキシ基」と称する。

式 $(\omega-13B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「N-炭化水素-スルファモイルーオキシ基」、 R^{*2} がヘテロ環基である基を「N-ヘテロ環ースルファモイルーオキシ基」と称する。

式 $(\omega-14B)$ で表される基の中で、 R^{*2} 及び R^{*2} が炭化水素基である基を「N, N-ジ(炭化水素) -スルファモイルーオキシ基」、 R^{*2} 及び R^{*2} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -スルファモイルーオキシ基」、 R^{*2} が炭化水素基であり R^{*2} がヘテロ環基である基を「N-炭化水素 - N-ヘテロ環 -スルファモイルーオキシ基」、 R^{*2} 及び R^{*2} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルホニルーオキシ基」と称する。

式 $(\omega-15B)$ で表される基の中で、 R^{a^2} が炭化水素基である基を「N-炭化水素-スルフィナモイルーオキシ基」、 R^{a^2} がヘテロ環基である基を「N-ヘテロ環ースルフィナモイルーオキシ基」と称する。

式 $(\omega-16B)$ で表される基の中で、 R^{a2} 及び R^{b2} が炭化水素基である基を「N, N-ジ(炭化水素) -スルフィナモイルーオキシ基」、 R^{a2} 及び R^{b2} がヘテロ環 基である基を「N, N-ジ(ヘテロ環) -スルフィナモイルーオキシ基」、 R^{a2} が炭化水素基であり R^{b2} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環 -スルフィナモイルーオキシ基」、 R^{a2} 及び R^{b2} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルフィニルーオキシ基」と称する。

式 $(\omega-17B)$ で表される基の中で、 R^{a2} が炭化水素基である基を「炭化水素 - オキシースルホニルーオキシ基」、 R^{a2} がヘテロ環基である基を「ヘテロ環ー オキシースルホニルーオキシ基」と称する。

式 $(\omega-18B)$ で表される基の中で、 R^{a^2} が炭化水素基である基を「炭化水素 - オキシースルフィニルーオキシ基」、 R^{a^2} がヘテロ環基である基を「ヘテロ環 - オキシースルフィニルーオキシ基」と称する。

式 $(\omega-19B)$ で表される基の中で、 R^{a2} 及び R^{b2} が炭化水素基である基を「O,O' - ジ(炭化水素) -ホスホノーオキシ基」、 R^{a2} 及び R^{b2} がヘテロ環基である基を「O,O' - ジ(ヘテロ環) -ホスホノーオキシ基」、 R^{a2} が炭化水素基であり R^{b2} がヘテロ環基である基を「O一炭化水素置換-O' -ヘテロ環置換ホスホノーオキシ基」と称する。

式 $(\omega-20B)$ で表される基の中で、 R^{a2} が炭化水素基である基を「炭化水素 - スルホニルーオキシ基」、 R^{a2} がヘテロ環基である基を「ヘテロ環ースルホニルーオキシ基」と称する。

式 $(\omega - 21B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素 - スルフィニルーオキシ基」、 R^{*2} がヘテロ環基である基を「ヘテロ環- スルフィニルーオキシ基」と称する。

上記式($\omega-1$ B)乃至($\omega-2$ 1 B)で表される基における「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ B)で表される「炭化水素- カルボニルーオキシ基」としては、アルキルーカルボニルーオキシ基、アルケニルーカルボニルーオキシ基、アルキニルーカルボニルーオキシ基、シクロアルキルーカルボニルーオキシ基、シクロアルカルボニルーオキシ基、シクロアルカンジエニルーカルボニルーオキシ基、シクロアルキルーカルボニルーオキシ基等の脂肪族炭化水素- カルボニルーオキシ基;アリールーカルボニルーオキシ基;アラルキルーカルボニルーオキシ基;架橋環式炭化水素- カルボニルーオキシ基;スピロ環式炭化水素- カルボニルーオキシ基;テルペン系炭化水素- カルボニルーオキシ基が挙げられる。以下、式($\omega-2$ B)乃至($\omega-2$ 1 B)で表される基も同様である。

上記式 $(\omega-1\,B)$ 乃至 $(\omega-2\,1\,B)$ で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式 $(\omega-1\,B)$ で表される「ヘテロ環ーカルボニル基」としては、例えば、単環式ヘテロアリールーカルボニル基、縮合多環式ヘテロアリールーカルボニル基、単環式非芳香族ヘテロ環ーカルボニル基、縮合多環式非芳香族ヘテロ環ーカルボニル基が挙げられる。以下、式 $(\omega-2\,B)$ 乃至 $(\omega-2\,1\,B)$ で表される基も同様である。

上記式 $(\omega-10B)$ 乃至 $(\omega-16B)$ で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシルーオキシ基」、「炭化水素ーオキシ基」、及び「ヘテロ環ーオキシ基」 を総称して、「置換オキシ基」と称する。また、これら「置換オキシ基」と「ヒド ロキシ基」を総称して、「置換基を有していてもよいヒドロキシ基」と称する。

「アシルースルファニル基」としては、「スルファニル基」の水素原子が「アシル 基」で置換された基が挙げられ、例えば、ホルミルスルファニル基、グリオキシ ロイルスルファニル基、チオホルミルスルファニル基、カルバモイルスルファニ ル基、チオカルバモイルスルファニル基、スルファモイルスルファニル基、スル フィナモイルスルファニル基、カルボキシスルファニル基、スルホスルファニル

基、ホスホノスルファニル基、及び下記式:

(式中、R^{a3}及びR^{b3}は、同一又は異なって、置換基を有していてもよい炭化水 素基、又は置換基を有していてもよいヘテロ環基を表すか、あるいはR^{a3}及びR b3が一緒になって、それらが結合している窒素原子と共に、置換基を有していて

もよい環状アミノ基を表す)で表される基が挙げられる。

上記「アシルースルファニル基」の定義において、

式 $(\omega-2C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素ーオキシーカルボニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルースルファニル基」と称する。

式 $(\omega-4\,C)$ で表される基の中で、 $R^{a\,3}$ が炭化水素基である基を「炭化水素ーオキシーカルボニルーカルボニルースルファニル基」、 $R^{a\,3}$ がヘテロ環基である基を [-4]で表する。

式 (ω-5 C) で表される基の中で、R * 3 が炭化水素基である基を「炭化水素ースルファニルーカルボニルースルファニル基」、R * 3 がヘテロ環基である基を「ヘテロ環ースルファニルーカルボニルースルファニル基」と称する。

式(ω - 6 C)で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素 - チオカルボニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ーチオカルボニルースルファニル基」と称する。

式 $(\omega-7\,C)$ で表される基の中で、 $R^{a\,3}$ が炭化水素基である基を「炭化水素ーオキシーチオカルボニルースルファニル基」、 $R^{a\,3}$ がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニルースルファニル基」と称する。

式 $(\omega - 8 \, C)$ で表される基の中で、 $R^{a\,3}$ が炭化水素基である基を「炭化水素ースルファニルーチオカルボニルースルファニル基」、 $R^{a\,3}$ がヘテロ環基である基を「ヘテロ環ースルファニルーチオカルボニルースルファニル基」と称する。

式 $(\omega - 9C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「N-炭化水

素-カルバモイル-スルファニル基」、R*3がヘテロ環基である基を「N-ヘテロ環ーカルバモイル-スルファニル基」と称する。

式 $(\omega-10C)$ で表される基の中で、 R^{a3} 及び R^{b3} が炭化水素基である基を「N, N-ジ(炭化水素) -カルバモイルースルファニル基」、 R^{a3} 及び R^{b3} がヘテロ 環基である基を「N, N-ジ(ヘテロ環) -カルバモイルースルファニル基」、 R^{a3} が炭化水素基であり R^{b3} がヘテロ環基である基を「Nー炭化水素-Nーヘテロ 環ーカルバモイルースルファニル基」、 R^{a3} 及び R^{b3} が一緒になって、それらが 結合している窒素原子と共に環状アミノ基である基を「環状アミノーカルボニルースルファモイル基」と称する。

式($\omega-1$ 1C)で表される基の中で、 R^{a3} が炭化水素基である基を「N-炭化水素-チオカルバモイルースルファニル基」、 R^{a3} がヘテロ環基である基を「N-0トーステロ環ーチオカルバモイルースルファニル基」と称する。

式($\omega-1$ 2C)で表される基の中で、 R^a 3及び R^b 3が炭化水素基である基を「N, N- \wp 1(炭化水素) - チオカルバモイルースルファニル基」、 R^a 3及び R^b 3がヘテロ環基である基を「N, N- \wp 2(ヘテロ環) - チオカルバモイルースルファニル基」、 R^a 3が炭化水素基であり R^b 3がヘテロ環基である基を「N-炭化水素ーNーヘテロ環ーチオカルバモイルースルファニル基」、 R^a 3及び R^b 3が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニルースルファニル基」と称する。

式($\omega-1$ 3C)で表される基の中で、 R^{a3} が炭化水素基である基を「N-炭化水素-スルファモイルースルファニル基」、 R^{a3} がヘテロ環基である基を「N-ヘテロ環-スルファモイルースルファニル基」と称する。

式 $(\omega-14C)$ で表される基の中で、 R^a 3及び R^b 3が炭化水素基である基を「N, N-ジ(炭化水素) -スルファモイルースルファニル基」、 R^a 3及び R^b 3がヘテロ環基である基を「N, N-ジ(ヘテロ環) -スルファモイルースルフィニル基」、 R^a 3が炭化水素基であり R^b 3がヘテロ環基である基を「N0、一炭化水素 - N0、一次ロ環スルファモイルースルファニル基」、 R^a 3及び R^b 3が一緒になって、それら

が結合している窒素原子と共に環状アミノ基である基を「環状アミノースルホニルースルファニル基」と称する。

式 $(\omega-15C)$ で表される基の中で、 R^{*3} が炭化水素基である基を「N-炭化水素-スルフィナモイル-スルファニル基」、 R^{*3} がヘテロ環基である基を「N-0、-ヘテロ環-スルフィナモイル-スルファニル基」と称する。

式 $(\omega-16C)$ で表される基の中で、 R^{a3} 及び R^{b3} が炭化水素基である基を「N, N-ジ(炭化水素) -スルフィナモイル-スルファニル基」、 R^{a3} 及び R^{b3} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -スルフィナモイル-スルファニル基」、 R^{a3} が炭化水素基であり R^{b3} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルフィナモイル-スルファニル基」、 R^{a3} 及び R^{b3} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノスルファニルースルファニル基」と称する。

式 $(\omega-17C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素 - オキシースルホニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ーオキシースルホニルースルファニル基」と称する。

式 $(\omega-18C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素 - オキシースルフィニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ーオキシースルフィニルースルファニル基」と称する。

式 $(\omega-20C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素 - スルホニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環- スルホニルースルファニル基」と称する。

式 $(\omega-21C)$ で表される基の中で、 $R^{\alpha3}$ が炭化水素基である基を「炭化水素

ースルフィニルースルファニル基」、R *3がヘテロ環基である基を「ヘテロ環ースルフィニルースルファニル基」と称する。

上記式($\omega-1$ C)乃至($\omega-2$ 1 C)で表される基における「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ C)で表される「炭化水素ーカルボニルースルファニル基」としては、アルキルーカルボニルースルファニル基、アルケニルーカルボニルースルファニル基、アルキニルーカルボニルースルファニル基、シクロアルキルーカルボニルースルファニル基、シクロアルケニルーカルボニルースルファニル基、シクロアルケニルーカルボニルースルファニル基、シクロアルカンジエニルーカルボニルースルファニル基、シクロアルキルーカルボニルースルファニル基、シクロアルキルーカルボニルースルファニル基;アリールーカルボニルースルファニル基;アラルキルーカルボニルースルファニル基;架橋環式炭化水素ーカルボニルースルファニル基;スピロ環式炭化水素ーカルボニルースルファニル基;テルペン系炭化水素ーカルボニルースルファニル基が挙げられる。以下、式($\omega-2$ C)乃至($\omega-2$ 1 C)で表される基も同様である。

上記式($\omega-1$ C)乃至($\omega-2$ 1 C)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1$ C)で表される「ヘテロ環ーカルボニルースルファニル基」としては、例えば、単環式ヘテロアリールーカルボニルースルファニル基、縮合多環式ヘテロアリールーカルボニルースルファニル基、単環式非芳香族ヘテロ環ーカルボニルースルファニル基が挙げられる。以下、式($\omega-2$ C)乃至($\omega-2$ 1 C)で表される基も同様である。

上記式 $(\omega-10C)$ 乃至 $(\omega-16C)$ で表される基における「環状アミノ」 としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシルースルファニル基」、「炭化水素ースルファニル基」、及び「ヘテロ環ースルファニル基」を総称して、「置換スルファニル基」と称する。また、これら「置換スルファニル基」と「スルファニル基」を総称して、「置換基を有していてもよいスルファニル基」と称する。

「Nー炭化水素-アミノ基」としては、「アミノ基」の1つの水素原子が、「炭化水素基」で置換された基が挙げられ、例えば、Nーアルキルーアミノ基、Nーアルケニルーアミノ基、Nーアルキニルーアミノ基、Nーシクロアルキルーアミノ基、Nーシクロアルキルーアミノ基、Nーアリールーアミノ基、Nーアルキルーアミノ基等が挙げられる。

「N-Pルケニルーアミノ基」としては、例えば、ビニルアミノ、(プロパー1ーエンー1ーイル) アミノ、アリルアミノ、イソプロペニルアミノ、(ブター1ーエンー1ーイル) アミノ、(ブター2ーエンー1ーイル) アミノ、(ブター3ーエンー1ーイル) アミノ、(2ーメチルプロパー2ーエンー1ーイル) アミノ、(1ーメチルプロパー2ーエンー1ーイル) アミノ、(ペンター1ーエンー1ーイル) アミノ、(ペンター2ーエンー1ーイル) アミノ、(ペンター3ーエンー1ーイル) アミノ、(ペンター4ーエンー1ーイル) アミノ、(ペンター4ーエンー1ーイル) アミノ、(ペンター4ーエンー1ーイル) アミノ、(ペンター4ーエンー1ーイル) アミノ、(ペンター4ーエンー1ーイル) アミノ、(ペンター4ーエンー1ーイル) アミノ、(3ーメチルブター2ーエンー

1ーイル) アミノ、(3ーメチルブター3ーエンー1ーイル) アミノ、(ヘキサー 1-エン-1-イル) アミノ、(ヘキサ-2-エン-1-イル) アミノ、(ヘキサ -3-エン-1-イル) アミノ、(ヘキサ-4-エン-1-イル) アミノ、(ヘキ サー5-エン-1-イル) アミノ、(4-メチルペンター3-エン-1-イル) ア ミノ、(4-メチルペンタ-3-エン-1-イル)アミノ、(ヘプタ-1-エン-1ーイル) アミノ、(ヘプター6ーエンー1ーイル) アミノ、(オクター1ーエン -1-イル) アミノ、(オクター7-エン-1-イル) アミノ、(ノナー1-エン -1-イル) アミノ、(ノナ-8-エン-1-イル) アミノ、(デカ-1-エン-1-イル) アミノ、(デカー9-エン-1-イル) アミノ、(ウンデカー1-エン -1-イル) アミノ、(ウンデカ-10-エン-1-イル) アミノ、(ドデカ-1 ーエンー1ーイル) アミノ、(ドデカー11-エンー1ーイル) アミノ、(トリデ カー1ーエンー1ーイル)アミノ、(トリデカー12ーエンー1ーイル)アミノ、 (テトラデカー1-エン-1-イル) アミノ、(テトラデカー13-エン-1-イ ル) アミノ、(ペンタデカー1-エン-1-イル) アミノ、(ペンタデカー14-エン-1 - - 1 ーアミノ基が挙げられる。

 $\lceil N-r n+n-r > 1$ 基」としては、例えば、エチニルアミノ、(プロパー1 -4 n-1-4 n) アミノ,(プロパー2 -4 n-1-4 n) アミノ,(ブター1 -4 n-1-4 n) アミノ,(ブター3 -4 n-1-4 n) アミノ、(1-n-4 n-1-4 n) アミノ、(デカー1 1-1-4 n) アミノ、(ヴルデカー1 1-1-4 n) アミノ、

(ドデカー11-イン-1-イル) アミノ、(トリデカー1-イン-1-イル) アミノ、(トリデカー12-イン-1-イル) アミノ、(テトラデカー12-イン-1-イル) アミノ、(テトラデカー13-イン-1-イル) アミノ、(ペンタデカー1-イン-1-イル) アミノ、(ペンタデカー14-イン-1-イル) アミノ、(ペンタデカー14-イン-1-イル) アミノ等の $C_2 \sim C_{15}$ の直鎖状又は分枝鎖状のN-アルキニル-アミノ基が挙げられる。

「N-シクロアルキルーアミノ基」としては、例えば、シクロプロピルアミノ、シクロブチルアミノ、シクロペンチルアミノ、シクロへキシルアミノ、シクロへ プチルアミノ、シクロオクチルアミノ等の $C_3\sim C_8$ のN-シクロアルキルーアミノ基が挙げられる。

「N-シクロアルキルーアルキルーアミノ基」としては、例えば、(シクロプロピルメチル) アミノ、(1-シクロプロピルエチル) アミノ、(2-シクロプロピルエチル) アミノ、(3-シクロプロピルプロピル) アミノ、(4-シクロプロピルプロピル) アミノ、(4-シクロプロピルプロピル) アミノ、(5-シクロプロピルペンチル) アミノ、(5-シクロプロピルペンチル) アミノ、(5-シクロプチルメチル) アミノ、(5-0クロプチルメチル) アミノ、(5-0クロプチルメチル) アミノ、(5-0クロペンチルメチル) アミノ、(5-0クロペンチルメチル) アミノ、(5-0クロペンチルメチル) アミノ、(5-0クロペンチルメチル) アミノ、(5-0クロペキシルズチル) アミノ、(5-00ペーシクロペキシルプチル) アミノ、(5-0のペーシクロペキシルプチル) アミノ、(5-0のペーシクロアルキルーアミノ基が挙げられる。

「N-アリール-アミノ基」としては、例えば、フェニルアミノ、1-ナフチルアミノ、2-ナフチルアミノ、アントリルアミノ、フェナントリルアミノ、アセナフチレニルアミノ等の $C_6\sim C_{14}$ のN-モノ-アリールアミノ基が挙げられる。「N-アラルキル-アミノ基」としては、例えば、ベンジルアミノ、(1-ナフチルメチル)アミノ、(2-ナフチルメチル)アミノ、(7-ナフチールメチル)アミノ、(7- ナフチールメチル)アミノ、(7- ナフチールメチル)アミノ、(7- ナフチールメチル)アミノ、(7- ナフチールメチル)アミノ、(7- ナフチールメチル)アミノ、(7- ナフチールメチル)アミノ、(7- ナフチールメチル)アミノ、(7- ナフェネチル)アミノ、(7- ナアト

ミノ、(1-(1-t)7+u) エチル)アミノ、(1-(2-t)7+u) エチル)アミノ、(2-(1-t)7+u) エチル)アミノ、(2-(2-t)7+u) エチル)アミノ、 $(3-7x=u)^2$ ロピル)アミノ、 $(3-(1-t)^2)$ アミノ、 $(3-(2-t)^2)$ プロピル)アミノ、 $(4-7x=u)^2$ アミノ、 $(4-(1-t)^2)$ アミノ、 $(4-(2-t)^2)$ アミノ、 $(5-7x=u)^2$ アミノ、 $(5-(1-t)^2)$ ペンチル)アミノ、 $(5-(2-t)^2)$ ペンチル)アミノ、 $(6-(2-t)^2)$ ペンチル)アミノ、 $(6-(2-t)^2)$ ペンチル)アミノ、 $(6-(2-t)^2)$ ペンチル)アミノ、 $(6-(2-t)^2)$ のトラルキルーアミノ、 $(6-(2-t)^2)$ のトラルキルーアミノ基が挙げられる。

「N, N-ジ (炭化水素) -アミノ基」としては、「アミノ基」の2つの水素原子が、「炭化水素基」で置換された基が挙げられ、例えば、N, N-ジメチルアミノ、N, N-ジェチルアミノ、N-エチルーN-メチルアミノ、N, N-ジーn-プロピルアミノ、N, N-ジイソプロピルアミノ、N-アリルーN-メチルアミノ、N-(プロパー2-イン-1-イル) -N-メチルアミノ、N, N-ジシクロへキシルアミノ、N-シクロへキシルーN-メチルアミノ、N-シクロへキシルメチルアミノ、N-メチルアミノ、N-メチルアミノ、N-メチルアミノ、N-メチルアミノ、N-メチルアミノ、N-メチルアミノ、N-メチルアミノ、N-メチルアミノ、N-メチルアミノ、第の基が挙げられる。

「N-ヘテロ環ーアミノ基」としては、「アミノ基」の1つ水素原子が、「ヘテロ環基」で置換された基が挙げられ、例えば、(3-ピロリジニル)アミノ、(4-ピペリジニル)アミノ、(2-テトラヒドロピラニル)アミノ、(3-インドリニル)アミノ、(4-クロマニル)アミノ、(3-チエニル)アミノ、(3-ピリジル)アミノ、(3-キノリル)アミノ、(5-インドリル)アミノ等の基が挙げられる。

N-(3-ピリジル) アミノ、N-メチル-N-(3-キノリル) アミノ等の基が挙げられる。

「アシルーアミノ基」としては、「アミノ基」の1つの水素原子が、「アシル基」で置換された基が挙げられ、例えば、ホルミルアミノ基、グリオキシロイルアミノ基、チオホルミルアミノ基、カルバモイルアミノ基、チオカルバモイルアミノ基、スルファモイルアミノ基、スルフィナモイルアミノ基、カルボキシアミノ基、スルホアミノ基、ホスホノアミノ基、及び下記式:

(式中、R^{a4}及びR^{b4}は、同一又は異なって、置換基を有していてもよい炭化水 素基、又は置換基を有していてもよいヘテロ環基を表すか、あるいはR^{a4}及びR b4が一緒になって、それらが結合している窒素原子と共に、置換基を有していて もよい環状アミノ基を表す)で表される基が挙げられる。

上記「アシルーアミノ基」の定義において、

式 (ω-1D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素-カルボニル-アミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環-カルボニル-アミノ基」と称する。

式 $(\omega-2D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素ーオキシーカルボニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーアミノ基」と称する。

式 $(\omega - 3D)$ で表される基の中で、R 4 が炭化水素基である基を「炭化水素 カルボニルーカルボニルーアミノ基」、R 4 がヘテロ環基である基を「ヘテロ環ーカルボニルーカルボニルーアミノ基」と称する。

式 (ω-4D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素-オキシーカルボニルーカルボニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーカルボニルーアミノ基」と称する。

式 $(\omega-5D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素ースルファニルーカルボニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ースルファニルーカルボニルーアミノ基」と称する。

式 (ω-6D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素-チオカルボニル-アミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環-チオカルボニル-アミノ基」と称する。

式 $(\omega-7D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素ーオキシーチオカルボニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニルーアミノ基」と称する。

式 $(\omega - 8D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素ースルファニルーチオカルボニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ースルファニルーチオカルボニルーアミノ基」と称する。

式 $(\omega - 9D)$ で表される基の中で、 R^{4} が炭化水素基である基を「N - 炭化水素 - カルバモイル基」、 R^{4} がヘテロ環基である基を「N - ヘテロ環 - カルバモ

イルーアミノ基」と称する。

式($\omega-10D$)で表される基の中で、 R^4 及び R^4 が炭化水素基である基を「N, N-ジ(炭化水素) -カルバモイルーアミノ基」、 R^4 及び R^4 がヘテロ環基である基を「N, N-ジ(ヘテロ環) -カルバモイルーアミノ基」、 R^4 が炭化水素基であり R^4 がヘテロ環基である基を「N-炭化水素-N-ヘテロ環ーカルバモイルーアミノ基」、 R^4 及び R^4 が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーカルボニルーアミノ基」と称する。

式 $(\omega-11D)$ で表される基の中で、 R^4 が炭化水素基である基を「N-炭化水素-チオカルバモイルーアミノ基」、 R^4 がヘテロ環基である基を「N-ヘテロ環-チオカルバモイルーアミノ基」と称する。

式 $(\omega-12D)$ で表される基の中で、 R^{4} 及び R^{6} が炭化水素基である基を「N, N-ジ(炭化水素) - チオカルバモイルーアミノ基」、 R^{4} 及び R^{6} がヘテロ環 基である基を「N, N-ジ(ヘテロ環) - チオカルバモイルーアミノ基」、 R^{4} が炭化水素基であり R^{6} がヘテロ環基である基を「N-炭化水素- N-ヘテロ環 - チオカルバモイルーアミノ基」、 R^{4} 及び R^{6} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニルーアミノ基」と称する。

式 $(\omega-13D)$ で表される基の中で、 R^4 が炭化水素基である基を「N-炭化水素-スルファモイル-アミノ基」、 R^4 がヘテロ環基である基を「N-ヘテロ環-スルファモイル-アミノ基」と称する。

式 $(\omega-14D)$ で表される基の中で、 R^4 及び R^4 が炭化水素基である基を「ジ (炭化水素)スルファモイルーアミノ基」、 R^4 及び R^4 がヘテロ環基である基を 「N, N ージ (ヘテロ環) スルファモイルーアミノ基」、 R^4 が炭化水素基で あり R^4 がヘテロ環基である基を 「N ー炭化水素 N ーヘテロ環 N ー スルファモイルーアミノ基」、 R^4 が N ー スルファモイルーアミノ基」、 R^4 及び N が N ー 緒になって、それらが結合している 窒素原子 と共に環状アミノ基である基を 「環状アミノースルホニルーアミノ基」と称する。

式($\omega-15D$)で表される基の中で、 R^{44} が炭化水素基である基を「N-炭化水素-スルフィナモイル-アミノ基」、 R^{44} がヘテロ環基である基を「N-ヘテロ環-スルフィナモイル-アミノ基」と称する。;式($\omega-16D$)で表される基の中で、 R^{44} 及び R^{54} が炭化水素基である基を「N, N-ジ(炭化水素)-スルフィナモイル-アミノ基」、 R^{44} 及び R^{54} がヘテロ環基である基を「N, N-ジ(ヘテロ環)-スルフィナモイル-アミノ基」、 R^{44} が炭化水素基であり R^{54} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルフィナモイル-アミノ基」、 R^{44} 及び-800 に現る基本である基を「-810 になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルフィニル-アミノ基」と称する。

式 (ω-17D)で表される基の中で、R * 4 が炭化水素基である基を「炭化水素 - オキシースルホニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環ー オキシースルホニルーアミノ基」と称する。

式 $(\omega-18D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素 - オキシースルフィニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環 - オキシースルフィニルーアミノ基」と称する。

式($\omega-19D$)で表される基の中で、 R^4 及び R^4 が炭化水素基である基を「O, O' -ジ(炭化水素) -ホスホノーアミノ基」、 R^4 及び R^4 がヘテロ環基である基を「O, O' -ジ(ヘテロ環) -ホスホノーアミノ基」、 R^4 が炭化水素基であり R^4 がヘテロ環基である基を「O一炭化水素-0' -ヘテロ環-ホスホノーアミノ基」と称する。

上記式 $(\omega-1D)$ 乃至 $(\omega-21D)$ で表される基における「炭化水素」とし

ては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ D)で表される「炭化水素-カルボニルーアミノ基」としては、アルキルーカルボニルーアミノ基、アルケニルーカルボニルーアミノ基。アルキニルーカルボニルーアミノ基、シクロアルケニルーカルボニルーアミノ基、シクロアルケニルーカルボニルーアミノ基、シクロアルカンジエニルーカルボニルーアミノ基、シクロアルケニルーカルボニルーアミノ基等の脂肪族炭化水素-カルボニルーアミノ基;アリールーカルボニルーアミノ基;アラルキルーカルボニルーアミノ基;架橋環式炭化水素-カルボニルーアミノ基;スピロ環式炭化水素-カルボニルーアミノ基;テルペン系炭化水素-カルボニルーアミノ基が挙げられる。以下、式($\omega-2$ D)乃至($\omega-2$ 1 D)で表される基も同様である。

上記式($\omega-1$ D)乃至($\omega-2$ 1 D)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1$ D)で表される「ヘテロ環ーカルボニルーアミノ基」としては、例えば、単環式ヘテロアリールーカルボニルーアミノ基、縮合多環式ヘテロアリールーカルボニルーアミノ基、単環式非芳香族ヘテロ環ーカルボニルーアミノ基、縮合多環式非芳香族ヘテロ環ーカルボニルーアミノ基が挙げられる。以下、式($\omega-2$ D)乃至($\omega-2$ 1 D)で表される基も同様である。

上記式 $(\omega-10D)$ 乃至 $(\omega-16D)$ で表される基における「環状アミノ」 としては、上記「環状アミノ基」と同様の基が挙げられる。

「ジ (アシル) ーアミノ基」としては、「アミノ基」の2つの水素原子が、上記「置換基を有していてもよい」の「置換基」の定義における「アシル基」で置換された基が挙げられ、例えば、ジ (ホルミル) ーアミノ基、ジ (グリオキシロイル) ーアミノ基、ジ (チオホルミル) ーアミノ基、ジ (カルバモイル) ーアミノ基、ジ (チオカルバモイル) ーアミノ基、ジ (スルファモイル) ーアミノ基、ジ (スルフィナモイル) ーアミノ基、ジ (カルボキシ) ーアミノ基、ジ (スルオ) ーアミノ基、ジ (ホスホノ) ーアミノ基、及び下記式:

$$\begin{array}{c} -N \begin{pmatrix} C - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, E) \,, \\ -N \begin{pmatrix} C - C - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 3 \, E) \,, \\ -N \begin{pmatrix} C - C - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 4 \, E) \,, \\ -N \begin{pmatrix} C - S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 5 \, E) \,, \\ -N \begin{pmatrix} C - S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 6 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 7 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 0 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N$$

(式中、R^{a5}及びR^{b5}は、同一又は異なって、水素原子、置換基を有していてもよい炭化水素基、又は置換基を有していてもよいヘテロ環基を表すか、あるいはR^{a5}及びR^{b5}が一緒になって、それらが結合している窒素原子と共に、置換基を有していてもよい環状アミノ基を表す)で表される基があげられる

上記「ジ(アシル)-アミノ基」の定義において、

式 $(\omega-1E)$ で表される基で、 R^{45} が炭化水素基である基を「ビス(炭化水素

ーカルボニル) - アミノ基」、R * 5 がヘテロ環基である基を「ビス (ヘテロ環ーカルボニル) - アミノ基」と称する。

式(ω - 2 E)で表される基で、R $^{\circ}$ 5が炭化水素基である基を「ビス(炭化水素 - オキシーカルボニル)- アミノ基」、R $^{\circ}$ 5がヘテロ環基である基を「ビス(ヘテロ環- オキシーカルボニル)- アミノ基」と称する。

式 $(\omega - 3E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素 - カルボニルーカルボニル) - アミノ基」、 R^{a5} がヘテロ環基である基を「ビス (ヘテロ環- カルボニルーカルボニル) - アミノ基」と称する。

式 $(\omega - 4E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素 - オキシーカルボニルーカルボニル) - アミノ基」、 R^{a5} がヘテロ環基である基 を「ビス (ヘテロ環 - オキシーカルボニル - カルボニル) - アミノ基」と称する。

式 $(\omega - 5E)$ で表される基で、 R^{45} が炭化水素基である基を「ビス(炭化水素 -スルファニルーカルボニル) -アミノ基」、 R^{45} がヘテロ環基である基を「ビス (ヘテロ環-スルファニルーカルボニル)-アミノ基」と称する。

式 $(\omega - 6E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素 - チオカルボニル)- アミノ基」、 R^{a5} がヘテロ環基である基を「ビス(ヘテロ 環- チオカルボニル)- アミノ基」と称する。

式 $(\omega - 7E)$ で表される基で、 R^{45} が炭化水素基である基を「ビス(炭化水素 - オキシーチオカルボニル) - アミノ基」、 R^{45} がヘテロ環基である基を「ビス (ヘテロ環- オキシーチオカルボニル)- アミノ基」と称する。

式 $(\omega - 8E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素 -スルファニルーチオカルボニル)-アミノ基」、 R^{a5} がヘテロ環基である基を「ビス(ヘテロ環-スルファニルーチオカルボニル)-アミノ基」と称する。

式 $(\omega - 9E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(N – 炭化 水素 – カルバモイル)アミノ基」、 R^{a5} がヘテロ環基である基を「ビス(N – ヘテロ環 – カルバモイル) – アミノ基」と称する。

式 (ω-10E)で表される基で、R * 5 及びR b 5 が炭化水素基である基を「ビス

[N, N-ジ(炭化水素) -カルバモイル] -アミノ基」、 R^{a5} 及び R^{b5} がヘテロ環基である基を「ビス [N, N-ジ(ヘテロ環) -カルバモイル] -アミノ基」、 R^{a5} が炭化水素基であり R^{b5} がヘテロ環基である基を「ビス (N-炭化水素-N-1) -000

式($\omega-1$ 1E)で表される基で、 R^{a5} が炭化水素基である基を「ビス(N-炭化水素-チオカルバモイル)-アミノ基」、 R^{a5} がヘテロ環基である基を「ビス (N-ヘテロ環-チオカルバモイル)-アミノ基」と称する。

式 (ω -12E) で表される基で、R a5 及びR b5 が炭化水素基である基を「ビス [N, N-ジ (炭化水素) ーチオカルバモイル] ーアミノ基」、R a5 及びR b5 が ヘテロ環基である基を「ビス [N, N-ジ (ヘテロ環) ーチオカルバモイル] ーアミノ基」、R a5 が炭化水素基であり R b5 がヘテロ環基である基を「ビス (Nー炭化水素-N-ヘテロ環ーチオカルバモイル) ーアミノ基」、R a5 及びR b5 が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス (環状アミノーチオカルボニル) ーアミノ基」と称する。

式 $(\omega-13E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(N-炭化水素-スルファモイル)-アミノ基」、 R^{a5} がヘテロ環基である基を「ビス(N-クテロ環-スルファモイル)-アミノ基」と称する。

式($\omega-14E$)で表される基で、 R^{a5} 及び R^{b5} が炭化水素基である基を「ビス [N, N-ジ(炭化水素)-スルファモイル] -アミノ基」、 R^{a5} 及び R^{b5} がへ テロ環基である基を「ビス [N, N-ジ(ヘテロ環)-スルファモイル] -アミノ基」、 R^{a5} が炭化水素基であり R^{b5} がヘテロ環基である基を「ビス(N-炭化水素-N-ヘテロ環-スルファモイル)-アミノ基」、 R^{a5} 及び R^{b5} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノースルホニル)-アミノ基」と称する。

式 ($\omega-15E$) で表される基で、 R^{a5} が炭化水素基である基を「ビス (N-炭

化水素-スルフィナモイル) -アミノ基」、R * 5 がヘテロ環基である基を「ビス (N-ヘテロ環-スルフィナモイル) -アミノ基」と称する。

式 $(\omega-16E)$ で表される基で、 R^{a5} 及び R^{b5} が炭化水素基である基を「ビス $[N, N-\varnothing]$ (炭化水素) -スルフィナモイル] -アミノ基」、 R^{a5} 及び R^{b5} が ヘテロ環基である基を「ビス $[N, N-\varnothing]$ (ヘテロ環) -スルフィナモイル] -アミノ基」、 R^{a5} が炭化水素基であり R^{b5} がヘテロ環基である基を「ビス (N-炭化水素-N-ヘテロ環-スルフィナモイル)-アミノ基」、 R^{a5} 及び R^{b5} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス (環状アミノースルフィニル) -アミノ基」と称する。

式 $(\omega-17E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素ーオキシースルホニルー)アミノ基」、 R^{a5} がヘテロ環基である基を「ビス(ヘテロ環ーオキシースルホニル)ーアミノ基」と称する。

式 $(\omega-18E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素ーオキシースルフィニル)ーアミノ基」、 R^{a5} がヘテロ環基である基を「ビス (ヘテロ環ーオキシースルフィニル)ーアミノ基」と称する。

式 $(\omega-19E)$ で表される基で、 R^{a5} 及び R^{b5} が炭化水素基である基を「ビス [O, O'-ジ(炭化水素)-ホスホノ] -アミノ基」、 R^{a5} 及び R^{b5} がヘテロ 環基である基を「ビス [O, O'-ジ(ヘテロ環)-ホスホノ] -アミノ基」、 R^{a5} が炭化水素基であり R^{b5} がヘテロ環基である基を「ビス(O-炭化水素-0' -ヘテロ環-ホスホノ)-アミノ基」と称する。

式 $(\omega-20E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素ースルホニル) -アミノ基」、 R^{a5} がヘテロ環基である基を「ビス(ヘテロ環ースルホニル) -アミノ基」と称する。

式 $(\omega-21E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素ースルフィニル) -アミノ基」、 R^{a5} がヘテロ環基である基を「ビス(ヘテロ環ースルフィニル) -アミノ基」と称する。

上記式 $(\omega-1E)$ 乃至 $(\omega-21E)$ で表される基における「炭化水素」とし

ては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1E$)で表される「ビス(炭化水素-カルボニル)-アミノ基」としては、ビス(アルキルーカルボニル)-アミノ基、ビス(アルケニルーカルボニル)-アミノ基、ビス(アルケニルーカルボニル)-アミノ基、ビス(シクロアルキルーカルボニル)-アミノ基、ビス(シクロアルケニルーカルボニル)-アミノ基、ビス(シクロアルケニルーカルボニル)-アミノ基、ビス(シクロアルケニルーカルボニル)-アミノ基、ビス(シクロアルキルーアルキルーカルボニル)-アミノ基等のビス(脂肪族炭化水素-カルボニル)-アミノ基;ビス(アリールーカルボニル)-アミノ基;ビス(アラルキルーカルボニル)-アミノ基;ビス(架橋環式炭化水素-カルボニル)-アミノ基;ビス(スピロ環式炭化水素-カルボニル)-アミノ基;ビス(アラルボニル)-アミノ基;ビス(アカルボニル)-アミノ基;ビス(アカルボニル)-アミノ基;ビス(アカルボニル)-アミノ基が挙げられる。以下、式($\omega-2E$)乃至($\omega-21E$)で表される基も同様である。

上記式($\omega-1E$)乃至($\omega-21E$)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1E$)で表される「ビス(ヘテロ環ーカルボニル)-アミノ基」としては、例えば、ビス(単環式ヘテロアリールーカルボニル)-アミノ基、ビス(縮合多環式ヘテロアリールーカルボニル)-アミノ基、ビス(増環式非芳香族ヘテロ環ーカルボニル)アミノ基、ビス(縮合多環式非芳香族ヘテロ環ーカルボニル)アミノ基、ビス(縮合多環式非芳香族ヘテロ環ーカルボニル)-アミノ基が挙げられる。以下、式($\omega-2E$)乃至($\omega-21E$)で表される基も同様である。上記式($\omega-10E$)乃至($\omega-16E$)で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシルーアミノ基」及び「ジ(アシル)-アミノ基」を総称して、「アシル 置換アミノ基」と称する。また、上記「N-炭化水素-アミノ基」、「N, N-ジ (炭化水素)-アミノ基」、「N-ヘテロ環-アミノ基」、「N-炭化水素-N-ヘ テロ環-アミノ基」、「環状アミノ基」、「アシル-アミノ基」、及び「ジ(アシル) -アミノ基」を総称して、「置換アミノ基」と称する。

以下、上記一般式(I)で表される化合物について具体的に説明する。

Xの定義における「主鎖の原子数が 2 ないし 5 である連結基」とは、環 Z と E の間に、主鎖の原子が 2 ないし 5 個連なっている連結基を意味する。上記「主鎖の原子数」は、ヘテロ原子の有無に関わらず、環 Z と E との間に存在する原子の数が最小となるように数えるものとする。例えば、1, 2 - - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -

上記「主鎖の原子数が2ないし5である連結基」は、下記2価基群 ξ -1より選択される基1個で形成されるか、或いは、下記2価基群 ξ -2より選択される基1ないし4種が2ないし4個結合して形成される。

[2価基群な-1]下記式:

[2価基群な-2]下記式:

該 2 価基が 2 個以上結合する場合、各基は同一であっても異なっていてもよい。 上記「主鎖の原子数が 2 ないし 5 である連結基」としては、好適には、下記連結 基群 α より選択される基である。

[連結基群α] 下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する) 最も好適には、下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する)で表される基である。

「主鎖の原子数が2ないし5である連結基」の定義における「該連結基は置換基を有していてもよい」の置換基としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられ、好適には、 $C_1 \sim C_6$ のアルキル基であり、さらに好適には、メチル基である。該置換基は、環Z又はEが有する置換基と一緒になって、それらが結合している原子と共に、置換基を有していてもよい環式基を形成してもよい。このような例としては、一般式(I)で表される化合物が、下記式:

である化合物が挙げられる。

上記一般式(I)において、Aとしては、水素原子又はアセチル基を挙げることができ、好適には水素原子である。

環Zの定義における「式-O-A (式中、Aは上記定義と同義である)及び式-X-E (式中、X及びEは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン」の「アレーン」としては、単環式又は縮合多環式芳香族炭化水素が挙げられ、例えば、ベンゼン環、ナフタレン環、アンラセ

ン環、フェナントレン環、アセナフチレン環等が挙げられる。好適には、ベンゼン環、ナフタレン環等の $C_6 \sim C_{10}$ のアレーンであり、さらに好適には、ベンゼン環及びナフタレン環であり、最も好適には、ベンゼン環である。

上記環 Z の定義における「式 – O – A (式中、A は上記定義と同義である)及び式 – X – E (式中、X 及び E は上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該置換基のアレーン上での置換位置は特に限定されない。また、該置換基が 2 個以上存在する場合、それらは同一であっても異なっていてもよい。

上記環 Z の定義における「式 — O — A (式中、A は上記定義と同義である)及び式 — X — E (式中、X 及びE は上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン」が「式 — O — A (式中、A は上記定義と同義である)及び式 — X — E (式中、X 及びE は上記定義と同義である)で表される基の他にさらに置換基を有していてもよいベンゼン環」である場合、好適には、「式 — O — A (式中、A は上記定義と同義である)及び式 — X — E (式中、X 及びE は上記定義と同義である)で表される基の他に更に 1 ないし 3 個の置換基を有するベンゼン環」であり、更に好適には、「式 — O — A (式中、A は上記定義と同義である)及び式 — X — E (式中、X 及びE は上記定義と同義である)で表される基の他に更に 1 個の置換基を有するベンゼン環」である。このとき、該置換基としては、好適には、下記「置換基群 γ — 1 z 」から選択される基であり、更に好適には、ハロゲン原子及び t e r t — プチル基〔(1, 1 — ジメチル) エチル基〕であり、最も好適には、ハロゲン原子である。

[置換基群 $\gamma-1$ z] ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、メトキシ基、メチル基、イソプロピル基、tertーブチル基、1, 1, 3, 3-テトラメチルブチル基、2-フェニルエテン-1-イル基、2, 2-ジシアノエテン-1-イル基、2-シアノ-2-(メトキシカルボニル) エテン-1-イル基、2-カルボキシ-2-シアノエテン-1-イル基、エチニル基、フェニルエチニ

ル基、(トリメチルシリル) エチニル基、トリフルオロメチル基、ペンタフルオロ エチル基、フェニル基、4-(トリフルオロメチル)フェニル基、4-フルオロ フェニル基、2, 4-ジフルオロフェニル基、2-フェネチル基、1-ヒドロキ シエチル基、1-(メトキシイミノ)エチル基、1-[(ベンジルオキシ)イミノ] エチル基、2-チエニル基 [チオフェン-2-イル基]、3-チエニル基 [チオフ ェン-3-イル基]、1-ピロリル基[ピロール-1-イル基]、2-メチルチア ゾールー4-イル基、イミダゾ[1,2-a] ピリジン-2-イル基、2-ピリ ジル基 [ピリジン-2-イル基]、アセチル基、イソブチリル基、ピペリジノカル ボニル基、4 ーベンジルピペリジノカルボニル基、(ピロールー1-イル) スルホ ニル基、カルボキシ基、メトキシカルボニル基、N-[3,5-ビス(トリフル オロメチル)フェニル]カルバモイル基、N, N-ジメチルカルバモイル基、ス ルファモイル基、N-[3, 5-ビス(トリフルオロメチル)フェニル]スルフ ァモイル基、N, N-ジメチルスルファモイル基、アミノ基、N, N-ジメチル アミノ基、アセチルアミノ基、ベンゾイルアミノ基、メタンスルホニルアミノ基、 ベンゼンスルホニルアミノ基、3-フェニルウレイド基、(3-フェニル) チオウ レイド基、(4-ニトロフェニル) ジアゼニル基、{[4-(ピリジン-2-イル) スルファモイル]フェニル}ジアゼニル基

上記環 Zの定義における「式-O-A(式中、Aは上記定義と同義である)及び式-X-E(式中、X及びEは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン」が「式-O-A(式中、Aは上記定義と同義である)及び式-X-E(式中、X及びEは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいベンゼン環」である場合、該置換基が1個であり、一般式(I)における環IZを含む下記部分構造式(IZ-1):

が下記式 (Iz-2):

で表される場合の R^z の位置に存在することが最も好ましい。このとき、該置換基を R^z と定義することができる。 R^z としては、好適には、下記「置換基群 γ — 2z」から選択される基であり、更に好適には、ハロゲン原子及び t e r t — ブチル基であり、最も好適には、ハロゲン原子である。

[置換基群 y - 2 z] ハロゲン原子、ニトロ基、シアノ基、メトキシ基、メチル 基、イソプロピル基、tert-ブチル基、1,1,3,3-テトラメチルブチ ル基、2-フェニルエテン-1-イル基、2,2-ジシアノエテン-1-イル基、 2-シアノ-2- (メトキシカルボニル) エテン-1-イル基、2-カルボキシ -2-シアノエテン-1-イル基、エチニル基、フェニルエチニル基、(トリメチ ルシリル) エチニル基、トリフルオロメチル基、ペンタフルオロエチル基、フェ ニル基、4-(トリフルオロメチル)フェニル基、4-フルオロフェニル基、2, 4-ジフルオロフェニル基、2-フェネチル基、1-ヒドロキシエチル基、1-(メトキシイミノ) エチル基、1-[(ベンジルオキシ) イミノ] エチル基、2-チエニル基、3ーチエニル基、1ーピロリル基、2ーメチルチアゾールー4ーイ ル基、イミダゾ [1, 2-a] ピリジン-2-イル基、2-ピリジル基、アセチ ル基、イソブチリル基、ピペリジノカルボニル基、4-ベンジルピペリジノカル ボニル基、(ピロール-1-イル) スルホニル基、カルボキシ基、メトキシカルボ ニル基、N-[3,5-ビス(トリフルオロメチル)フェニル]カルバモイル基、 N, N-ジメチルカルバモイル基、スルファモイル基、N-[3,5-ピス(ト リフルオロメチル)フェニル]スルファモイル基、N, N-ジメチルスルファモ イル基、アミノ基、N, N-ジメチルアミノ基、アセチルアミノ基、ベンゾイル アミノ基、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基、3-フェ

ニルウレイド基、(3-フェニル) チオウレイド基、(4-ニトロフェニル) ジアゼニル基、{[4-(ピリジン-2-イル) スルファモイル] フェニル} ジアゼニル基

上記環 Zの定義における「式-O-A(式中、Aは上記定義と同義である)及び式-X-E(式中、X及びEは上記定義と同義である)で表される基の他に更に置換基を有していてもよいアレーン」が「式-O-A(式中、Aは上記定義と同義である)及び式-X-E(式中、X及びEは上記定義と同義である)で表される基の他に更に置換基を有していてもよいナフタレン環」である場合、好適には、ナフタレン環である。

環 Z の定義における「式-O-A (式中、Aは上記定義と同義である) 及び式-X-E (式中、X及びEは上記定義と同義である)で表される基の他にさらに置 換基を有していてもよいヘテロアレーン」の「ヘテロアレーン」としては、環系 を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択 されたヘテロ原子1ないし3種を少なくとも1個含む単環式又は縮合多環式芳香 族複素環が挙げられ、例えば、フラン環、チオフェン環、ピロール環、オキサゾ ール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール 環、ピラゾール環、1,2,3-オキサジアゾール環、1,2,3-チアジアゾ ール環、1,2,3-トリアゾール環、ピリジン環、ピリダジン環、ピリミジン 環、ピラジン環、1,2,3-トリアジン環、1,2,4-トリアジン環、1H - アゼピン環、1,4-オキセピン環、1,4-チアゼピン環、ベンゾフラン環、 イソベンゾフラン環、ベンゾ〔b〕チオフェン環、ベンゾ〔c〕チオフェン環、 インドール環、2H-イソインドール環、1H-インダゾール環、2H-インダ ゾール環、ベンゾオキサゾール環、1,2-ベンゾイソオキサゾール環、2,1 ーベンゾイソオキサゾール環、ベンゾチアゾール環、1,2ーベンゾイソチアゾ ール環、2,1-ベンゾイソチアゾール環、1,2,3-ベンゾオキサジアゾー ル環、2,1,3-ベンゾオキサジアゾール環、1,2,3-ベンゾチアジアゾ ール環、2, 1, 3-ベンゾチアジアゾール環、1H-ベンゾトリアゾール環、

2Hーベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、1H-1,5ーベンゾジアゼピン環、カルバゾール環、α一カルボリン環、β一カルボリン環、γーカルボリン環、アクリジン環、フェノキサジン環、フェノチアジン環、フェナジン環、フェナントロリン環、チアントレン環、インドリジン環、フェナントリジン環、フェナントロリン環、チアントレン環、インドリジン環、フェノキサチイン環等の5ないし14員の単環式又は縮合多環式芳香族複素環が挙げられる。好適には、5ないし13員の単環式又は縮合多環式芳香族複素環であり、さらに好適には、チオフェン環、ピリジン環、インドール環、キノキサリン環、及びカルバゾール環である。

上記環 Z の定義における「式 – O – A (式中、Aは上記定義と同義である)及び式 – X – E (式中、X 及び E は上記定義と同義である)で表される基の他にさらに置換基を有していてもよいへテロアレーン」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該置換基のヘテロアレーン上での置換位置は特に限定されない。また、該置換基が 2 個以上存在する場合、それらは同一であっても異なっていてもよい。

上記環 Z の定義における「式-O-A (式中、Aは上記定義と同義である)及び式-X-E (式中、X及びEは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいヘテロアレーン」の「置換基」としては、好適には、ハロゲン原子である。

Eの定義における「置換基を有していてもよいアリール基」の「アリール基」としては、上記「炭化水素基」の定義における「アリール基」と同様の基が挙げられ、好適には、フェニル基、1-ナフチル基、2-ナフチル基等の $C_6 \sim C_{10}$ のアリール基であり、最も好適には、フェニル基である。

上記Eの定義における「置換基を有していてもよいアリール基」の「置換基」と しては、上記「置換基を有していてもよい」の定義における「置換基」と同様の 基が挙げられる。該置換基のアリール基上での置換位置は特に限定されず、該置 換基が 2 個以上存在する場合、それらは同一であっても異なっていてもよい。

上記Eの定義における「置換基を有していてもよいアリール基」が「置換基を有していてもよいフェニル基」である場合、好適には、「モノ置換フェニル基」、「ジ 置換フェニル基」、及び「3個以上の置換基を有するフェニル基」であり、更に好 適には、「ジ置換フェニル基」である。

上記Eの定義における「置換基を有していてもよいアリール基」が「ジ置換フェニル基」である場合、好適な基の具体例としては、下記「置換基群 $\delta-1$ e」に示す基が挙げられる。

「置換基群 $\delta-1e$] 3, 5-ビス (トリフルオロメチル) フェニル基、3, 4ープロピレンジオキシフェニル基、3,5-ジクロロフェニル基、2,4-ジヒ ドロキシフェニル基、2,5-ジメトキシフェニル基、2-クロロ-5-(トリ フルオロメチル)フェニル基、3,5-ビス[(1,1-ジメチル)エチル]フェ ニル基、2,5-ビス(トリフルオロメチル)フェニル基、4-クロロー2-(ト リフルオロメチル)フェニル基、2-フルオロ-3-(トリフルオロメチル)フ ェニル基、4-フルオロ-3-(トリフルオロメチル)フェニル基、4-クロロ -3- (トリフルオロメチル) フェニル基、3-フルオロー5- (トリフルオロ メチル)フェニル基、3-ブロモ-5-(トリフルオロメチル)フェニル基、2 ーフルオロー5ー (トリフルオロメチル) フェニル基、4ーニトロー3ー (トリ フルオロメチル)フェニル基、2-ニトロ-5-(トリフルオロメチル)フェニ ル基、4-シアノ-3-(トリフルオロメチル)フェニル基、2-メチル-3-(トリフルオロメチル)フェニル基、4-メチル-3-(トリフルオロメチル) フェニル基、2-メチル-5- (トリフルオロメチル)フェニル基、4-メトキ シ-3-(トリフルオロメチル)フェニル基、3-メトキシ-5-(トリフルオ ロメチル) フェニル基、2-メトキシー5-(トリフルオロメチル) フェニル基、 2-メチルスルファニル-5-(トリフルオロメチル)フェニル基、2-(1-ピロリジニル) -5- (トリフルオロメチル) フェニル基、2-モルホリノ-5 - (トリフルオロメチル)フェニル基、2-クロロ-4-(トリフルオロメチル) フェニル基、2,5ージクロロフェニル基、3,4ージクロロフェニル基、3,

5-ジフルオロフェニル基、3,5-ジニトロフェニル基、2,5-ビス[(1, 1-ジメチル) エチル] フェニル基、5-[(1,1-ジメチル) エチル] -2-メトキシフェニル基、3,5-ジメチルフェニル基、4-メトキシビフェニルー 3-イル基、3,5-ジメトキシフェニル基、3,5-ビス(メトキシカルボニ ル)フェニル基、2-ブロモ-5-(トリフルオロメチル)フェニル基、3-メ トキシカルボニルー5ー (トリフルオロメチル) フェニル基、3-カルボキシー 5-(トリフルオロメチル)フェニル基、2-(2-ナフチルオキシ)-5-(ト リフルオロメチル)フェニル基、2-(2,4-ジクロロフェノキシ)-5-(ト リフルオロメチル)フェニル基、2-[4-(トリフルオロメチル)ピペリジン -1-イル]-5-(トリフルオロメチル)フェニル基、2-(2,2,2-ト リフルオロエトキシ) -5- (トリフルオロメチル) フェニル基、2- (2-メ トキシフェノキシ) -5- (トリフルオロメチル) フェニル基、2- (4-クロ ロ-3,5-ジメチルフェノキシ)-5-(トリフルオロメチル)フェニル基、 2-ピペリジノ-5-(トリフルオロメチル)フェニル基、2-(4-メチルフ ェノキシ) -5- (トリフルオロメチル) フェニル基、2- (4-クロロフェノ キシ) -5- (トリフルオロメチル) フェニル基、3,5-ジカルボキシフェニ ル基、5-イソプロピル-2-メチルフェニル基、2,5-ジエトキシフェニル 基、2、5-ジメチルフェニル基、5-クロロ-2-シアノ基、5-ジエチルス ルファモイルー2ーメトキシフェニル基、2-クロロー5-ニトロフェニル基、 2-メトキシ-5-(フェニルカルバモイル)フェニル基、5-アセチルアミノ - 2-メトキシフェニル基、5-メトキシ-2-メチルフェニル基、2,5-ジ プトキシフェニル基、2,5-ジイソペンチルオキシ基、5-カルバモイル-2 ーメトキシフェニル基、5-[(1,1-ジメチル)プロピル]-2-フェノキシ フェニル基、2-ヘキシルオキシ-5-メタンスルホニル基、5-(2,2-ジ メチルプロピオニル) -2-メチルフェニル基、5-メトキシ-2-(1-ピロ リル)フェニル基、5-クロロ-2-(p-トルエンスルホニル)フェニル基、 2-クロロ-5- (p-トルエンスルホニル)フェニル基、2-フルオロ-5-

メタンスルホニル基、2-メトキシ-5-フェノキシ基、4-メチルビフェニル - 3-イル基、2-メトキシ-5- (1-メチル-1-フェニルエチル) フェニ ル基、5ーモルホリノー2ーニトロフェニル基、5ーフルオロー2ー(1ーイミ ダゾリル)フェニル基、2-ブチル-5-ニトロフェニル基、5-[(1,1-ジ メチル)] プロピルー2ーヒドロキシフェニル基、2ーメトキシー5ーメチルフェ ニル基、2,5-ジフルオロフェニル基、4-イソプロピル-2-(トリフルオ ロメチル)フェニル基、2-ニトロ-4-(トリフルオロメチル)フェニル基、 4-ブロモー3-(トリフルオロメチル)フェニル基、4-ブロモー2-(トリ フルオロメチル)フェニル基、2-プロモ-4-(トリフルオロメチル)フェニ ル基、4-フルオロ-2-(トリフルオロメチル)フェニル基、4-イソプロポ キシ-2-(トリフルオロメチル)フェニル基、4-シアノ-2-(トリフルオ ロメチル)フェニル基、2,6-ジイソプロピルフェニル基、2,6-ジメチル フェニル基、3,4-ジメチルフェニル基、2,4-ジクロロフェニル基、2, 3-ジメチルフェニル基、インダン-5-イル基、2,4-ジメチルフェニル基、 2.6-ジクロロフェニル基、4-ブロモー2-(トリフルオロメトキシ)フェ ニル基、3、4-エチレンジオキシフェニル基、3-クロロー4-シアノフェニ ル基、3-クロロ-4-(トリフルオロメトキシ)フェニル基、2-クロロ-4 -シアノフェニル基、2,3-ジクロロフェニル基、4-イソプロピル-3-メ チルフェニル基、4-[(1,1-ジメチル)プロピル]-2-ヒドロキシフェニ ル基、3-クロロ-2-シアノフェニル基、2-シアノ-4-メチルフェニル基、 2, 2-ジフルオロー1, 3-ベンプジオキソールー4-イル基、2, 2, 3, 3-テトラフルオロ-1, 4-ベングジオキセン-5-イル基、3-クロロ-4 - (トリフルオロメチルスルファニル)フェニル基、2-ニトロー4-(トリフ ルオロメトキシ)フェニル基、2,2-ジフルオロ-1,3-ベンゾジオキソー ルー5-イル基、2-メチルー4-(トリフルオロメトキシ)フェニル基、4-プロモー2-フルオロフェニル基、2,4-ビス(メタンスルホニル)フェニル 基、2,2,3,3-テトラフルオロー1,4-ベングジオキセンー6-イル基、

2-ベンゾイルー4-クロロフェニル基、2-ブロモー4-フルオロフェニル基、3, 4-ジメトキシフェニル基、3, 4-ジフルオロフェニル基、2-クロロー4-ニトロフェニル基、2, 4-ジフルオロフェニル基、2-グロモー4-(トリフルオロメトキシ)フェニル基、3, 4-ジヘキシルオキシフェニル基、2, 4-ジフル ストキシ)フェニル基、3, 4-ジヘキシルオキシフェニル基、2, 4-ビス(トリフルオロメチル)フェニル基、4-シアノー2-(トリフルオロメトキシ)フェニル基、4-シアノー2-(トリフルオロメチル)フェニル基、4-シアノフェノキシ)4-5-(トリフルオロメチル)フェニル基、4-2-(1) フェニル基、4-2-(1) フェニル基、4-3-(1) フェニル基、4-4-(1) フェニル基、4-4-(1) フェニル基、4-4-(1) フェニル基、4-4-(1) フェニル基、4-4-(1) フェニル基、4-4-(1) フェニル基、4-4-(1) フェニル基

上記Eの定義における「置換基を有していてもよいアリール基」が「ジ置換フェニル基」である場合、更に好適には、「2,5-ジ置換フェニル基」及び「3,5-ジ置換フェニル基」である。

上記Eの定義における「置換基を有していてもよいアリール基」が「2, 5 ージ 置換フェニル基」である場合、好適な基の具体例としては、下記「置換基群 δ ー 2 e | に示す基が挙げられる。

[置換基群 δ − 2 e] 2, 5 − ジメトキシフェニル基、2 − クロロ − 5 − (トリフルオロメチル)フェニル基、2, 5 − ビス(トリフルオロメチル)フェニル基、2 − フルオロ − 5 − (トリフルオロメチル)フェニル基、2 − フルオロ − 5 − (トリフルオロメチル)フェニル基、2 − スチルー 5 − (トリフルオロメチル)フェニル基、2 − メトキシー 5 − (トリフルオロメチル)フェニル基、2 − メトキシー 5 − (トリフルオロメチル)フェニル基、2 − メチルスルファニルー 5 − (トリフルオロメチル)フェニル基、2 − (1 − ピロリジニル)−5 − (トリフルオロメチル)フェニル基、2 − モルホリノー 5 − (トリフルオロメチル)フェニル基、2, 5 − ビス[(1, 1 − ジメチル)コェニル基、2, 5 − ビス[(1, 1 − ジメチル)コェニル基、4 − メトキシビフェニルー3 − イル基、2 − プロモー5 − (トリフルオロメチル)フェニル基、2 − (2 − ナフチルオキシ) − 5 − (トリフル

ルオロメチル)フェニル基、2-[4-(トリフルオロメチル)ピペリジン-1 ーイル] -5-(トリフルオロメチル)フェニル基、2-(2,2,2-トリフ ルオロエトキシ) -5- (トリフルオロメチル) フェニル基、2- (2-メトキ シフェノキシ) -5-(トリフルオロメチル) フェニル基、2-(4-クロロー 3, 5ージメチルフェノキシ) -5- (トリフルオロメチル) フェニル基、2-ピペリジノ-5-(トリフルオロメチル)フェニル基、2-(4-メチルフェノ キシ) - 5 - (トリフルオロメチル) フェニル基、2 - (4 - クロロフェノキシ) -5-(トリフルオロメチル)フェニル基、5-イソプロピル-2-メチルフェ ニル基、2,5-ジエトキシフェニル基、2,5-ジメチルフェニル基、5-ク ロロー2-シアノ基、5-ジエチルスルファモイルー2-メトキシフェニル基、 2-クロロ-5-ニトロフェニル基、2-メトキシ-5-(フェニルカルバモイ ル)フェニル基、5-アセチルアミノ-2-メトキシフェニル基、5-メトキシ -2-メチルフェニル基、2,5-ジブトキシフェニル基、2,5-ジイソペン チルオキシ基、5-カルバモイル-2-メトキシフェニル基、5-[(1,1-ジ メチル)プロピル]-2-フェノキシフェニル基、2-ヘキシルオキシ-5-メ タンスルホニル基、5-(2,2-ジメチルプロピオニル)-2-メチルフェニ ル基、5-メトキシ-2- (1-ピロリル) フェニル基、5-クロロ-2- (p - トルエンスルホニル)フェニル基、2-クロロ-5-(p-トルエンスルホニ ル)フェニル基、2-フルオロ-5-メタンスルホニル基、2-メトキシ-5-フェノキシ基、2-メトキシ-5-(1-メチル-1-フェニルエチル)フェニ ル基、5-モルホリノー2-ニトロフェニル基、5-フルオロー2-(1-イミ ダゾリル)フェニル基、2-ブチル-5-ニトロフェニル基、5-[(1,1-ジ メチル)プロピル]-2-ヒドロキシフェニル基、2-メトキシ-5-メチルフ エニル基、2,5-ジフルオロフェニル基、2-ベンゾイル-5-メチルフェニ ル基、2-(4-シアノフェノキシ)-5-(トリフルオロメチル)フェニル基、 2- (4-メトキシフェノキシ) -5- (トリフルオロメチル) フェニル基 上記Eの定義における「置換基を有していてもよいアリール基」が「2,5-ジ

置換フェニル基」である場合、更に好適には、「2,5-ジ置換フェニル基(但し、該置換基の少なくとも1個はトリフルオロメチル基である)」であり、特に更に好適には、下記「置換基群 $\delta-3$ e」から選択される基であり、最も好適には、2,5-ビス(トリフルオロメチル)フェニル基である。

[置換基群 $\delta-3$ e] 2-クロロー5-(トリフルオロメチル)フェニル基、2, 5-ビス(トリフルオロメチル)フェニル基、2-フルオロー5-(トリフルオ ロメチル)フェニル基、2-ニトロ-5-(トリフルオロメチル)フェニル基、 2-メチル-5-(トリフルオロメチル)フェニル基、2-メトキシ-5-(ト リフルオロメチル)フェニル基、2-メチルスルファニル-5-(トリフルオロ メチル)フェニル基、2-(1-ピロリジニル)-5-(トリフルオロメチル) フェニル基、2-モルホリノ-5- (トリフルオロメチル)フェニル基、2-ブ ロモー5- (トリフルオロメチル) フェニル基、2-(2-ナフチルオキシ)-5- (トリフルオロメチル) フェニル基、2-(2,4-ジクロロフェノキシ) -5- (トリフルオロメチル) フェニル基、2- [4-(トリフルオロメチル) ピペリジン-1-イル]-5-(トリフルオロメチル)フェニル基、2-(2, 2, 2-トリフルオロエトキシ)-5-(トリフルオロメチル)フェニル基、2 - (2-メトキシフェノキシ)-5-(トリフルオロメチル)フェニル基、2-(4-クロロ-3, 5-ジメチルフェノキシ) -5-(トリフルオロメチル)フ ェニル基、2-ピペリジノ-5- (トリフルオロメチル) フェニル基、2- (4 -メチルフェノキシ) -5- (トリフルオロメチル) フェニル基、2- (4-ク ロロフェノキシ) -5- (トリフルオロメチル) フェニル基、2- (4-シアノ フェノキシ) -5- (トリフルオロメチル) フェニル基、2- (4-メトキシフ ェノキシ) -5- (トリフルオロメチル) フェニル基

上記Eの定義における「置換基を有していてもよいアリール基」が「3, 5-ジ 置換フェニル基」である場合、好適な基の具体例としては、下記「置換基群 $\delta-4$ e」に示す基が挙げられる。

[置換基群 $\delta-4$ e] 3, 5-ビス (トリフルオロメチル) フェニル基、3, 5

ージクロロフェニル基、3,5ービス [(1,1ージメチル) エチル] フェニル基、3ーフルオロー5ー (トリフルオロメチル) フェニル基、3ーブロモー5ー (トリフルオロメチル) フェニル基、3ーメトキシー5ー (トリフルオロメチル) フェニル基、3,5ージフルオロフェニル基、3,5ージニトロフェニル基、3,5ージメチルフェニル基、3,5ージメトキシフェニル基、3,5ービス (メトキシカルボニル) フェニル基、3ーメトキシカルボニルー5ー (トリフルオロメチル) フェニル基、3ーカルボキシー5ー (トリフルオロメチル) フェニル基、3,5ージカルボキシフェニル基、3,5ージカルボキシフェニル基、3,5ージカルボキシフェニル基、3,5ージカルボキシフェニル基

上記「置換基を有していてもよいアリール基」が「3,5 ージ置換フェニル基」である場合、更に好適には、「3,5 ージ置換フェニル基(但し、該置換基の少なくとも1個はトリフルオロメチル基である)」であり、特に更に好適には、下記「置換基群 $\delta-5$ e」から選択される基であり、最も好適には、3,5 ービス(トリフルオロメチル)フェニル基である。

[置換基群 $\delta-5$ e] 3, 5- ビス(トリフルオロメチル)フェニル基、3- フルオロ-5-(トリフルオロメチル)フェニル基、3- ブロモ-5-(トリフルオロメチル)フェニル基、3- メトキシ-5-(トリフルオロメチル)フェニル基、3- メトキシカルボニル-5-(トリフルオロメチル)フェニル基、3- ルボキシ-5-(トリフルオロメチル)フェニル基

上記Eの定義における「置換基を有していてもよいアリール基」が「モノ置換フェニル基」である場合、好適な基の具体例としては、下記「置換基群 $\delta-6$ e」に示す基が挙げられる。

[置換基群 δ - 6 e] 4 - メトキシフェニル基、4 - クロロフェニル基、2 - メトキシフェニル基、2 - (トリフルオロメチル)フェニル基、3 - (トリフルオロメチル)フェニル基、3 - クロロフェニル基、4 - (トリフルオロメチル)フェニル基、3 - クロロフェニル基、ビフェニルー3 - イル基、3 - アセチルフェニル基、3 - (アセチルアミノ)フェニル基、3 - カルバモイルフェニル基、3 - メチルカルバモイルフェニル基、4 - メチルフェニル基、3 - (トリフルオロメトキシ)フェニル基、

2-ベンジルフェニル基、4-(トリフルオロメトキシ)フェニル基、4-[(1, 1-ジメチル) エチル] フェニル基、3-イソプロポキシフェニル基、4-イソ プロポキシフェニル基、4-ヘキシルフェニル基、3-メチルフェニル基、4-シクロヘキシルフェニル基、4-ベンジルフェニル基、2-クロロフェニル基、 2-メチルフェニル基、4-ブチルフェニル基、4-ベンジルオキシフェニル基、 3-ベンジルフェニル基、4-ヘキシルオキシフェニル基、3-イソプロピルフ ェニル基、4-シアノフェニル基、3-シアノフェニル基、4-(エトキシカル ボニルメチル)フェニル基、3-(トリフルオロメチルスルファニル)フェニル 基、4-(トリフルオロメチルスルファニル)フェニル基、4-(トリフルオロ メタンスルホニル)フェニル基、3-エチニルフェニル基、4-(1-メチルプ ロピル)フェニル基、3-ベンゾイルフェニル基、3-メトキシフェニル基、4 - (アセチルアミノ) フェニル基、4-スルファモイルフェニル基、4-(ジフ ルオロメトキシ) フェニル基、3-メチルスルファニルフェニル基、4-メタン スルホニルフェニル基、3-(ブチルスルファモイル)フェニル基、3-ベンジ ルオキシフェニル基、4-(p-トルエンスルホニルアミノ)フェニル基、4-モルホリノフェニル基、3-[(1,1-ジメチル)エチル]フェニル基、3-(5 -メチルフラン-2-イル)フェニル基、3-スルファモイルフェニル基、3-(トリフルオロメタンスルホニル)フェニル基、3-ヘキシルオキシフェニル基、 4-アセチルフェニル基、ビフェニルー2-イル基、ビフェニルー4-イル基、 3- [5-フェニル-3-(トリフルオロメチル)ピラゾール-1-イル]フェ ニル基、3-{5-[(1,1-ジメチル) エチル]-3-(トリフルオロメチル) ピラゾール-1-イル}フェニル基、4-[3,5-ビス(トリフルオロメチル) ピラゾール-1-イル] フェニル基、3-[3,5-ビス(トリフルオロメチル) ピラゾール-1-イル]フェニル基、4-[5-フェニル-3-(トリフルオロ メチル) ピラゾール-1-イル] フェニル基

上記Eの定義における「置換基を有していてもよいアリール基」が「3個以上の 置換基を有するフェニル基」である場合、好適な基の具体例としては、下記「置

換基群 $\delta - 7e$ 」に示す基が挙げられる。

[置換基群 δ − 7 e] 3, 5 − ビス(トリフルオロメチル) − 2 − ブロモフェニル基、3, 4, 5 − トリクロロフェニル基、3, 5 − ジクロロー4 − ヒドロキシフェニル基、ペンタフルオロフェニル基、3, 5, 5, 8, 8 −ペンタメチルー5, 6, 7, 8 − テトラヒドロナフタレン − 2 − イル基、3, 5 − ビス(トリフルオロメチル) − 2 − メチルフェニル基、2, 6 − ジクロロー4 − (トリフルオロメチル)フェニル基、2, 4 − ジメトキシー5 − (トリフルオロメチル)フェニル基、4 − クロロー2 − (4 − クロロベンゼンスルホニル) − 5 − (トリフルオロメチル)フェニル基、5 − クロロー2 − ニトロー4 − (トリフルオロメチル)フェニル基、2, 3 − ジフルオロ − 4 − (トリフルオロメチル)フェニル基、2, 3, 5, 6 − テトラフルオロ − 4 − (トリフルオロメチル)フェニル基、2, 4, 6 − トリメチルフェニル基、2 − シアノー4, 5 − ジメトキシフェニル基、2, 4 − ジクロロー5 − イソプロポキシフェニル基、2, 3, 5 − トリフルオロフェニル基、2, 4, 5 − トリクロロフェニル基、5 − エトキシー4 − フルオロ − 2 − ニトロフェニル基

上記Eの定義における「置換基を有していてもよいアリール基」が「置換基を有していてもよいナフチル基」である場合、好適な基の具体例としては、1ーナフチル基、4ーメトキシナフタレン-2ーイル基、及び4ーヒドロキシ-3ーメチルナフタレン-1ーイル基が挙げられる。

Eの定義における「置換基を有していてもよいへテロアリール基」の「ヘテロアリール基」としては、上記「ヘテロ環基」の定義における「単環式ヘテロアリール基」及び「縮合多環式ヘテロアリール基」と同様の基が挙げられる。好適には、5ないし13員のヘテロアリール基であり、このとき、好適な基の具体例としては、チエニル基、ピラゾリル基、オキサゾリル基、1,3,4ーチアジアゾリル基、ピリジル基、ピリミジニル基、インドリル基、キノリル基、カルバゾリル基、チアゾリル基、及びピラジニル基が挙げられる。

Eの定義における「置換基を有していてもよいヘテロアリール基」の「ヘテロアリール基」としては、更に好適には、5員のヘテロアリール基であり、特に更に好適には、チエニル基、ピラゾリル基、オキサゾリル基、1,3,4ーチアジアソリル基、及びチアゾリル基であり、最も好適には、チアゾリル基である。

上記Eの定義における「置換基を有していてもよいへテロアリール基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と 同様の基が挙げられる。該置換基のヘテロアリール基上での置換位置は特に限定されず、該置換基が 2 個以上存在する場合、それらは同一であっても異なっていてもよい。

上記Eの定義における「置換基を有していてもよいヘテロアリール基」が「置換基を有していてもよいチアゾリル基」である場合、好適には、「置換基を有していてもよいチアゾールー2ーイル基」であり、更に好適には、「モノ置換チアゾールー2ーイル基」、及び「ジ置換チアゾールー2ーイル基」であり、特に更に好適には、「ジ置換チアゾールー2ーイル基」である。

上記 E の定義における「置換基を有していてもよいへテロアリール基」が「ジ置換チアゾールー 2 ーイル基」である場合、好適には、下記「置換基群 δ - 8 e 」から選択される基であり、最も好適には、4 - [(1, 1-ジメチル) エチル] - 5 - [(2, 2-ジメチル) プロピオニル] チアゾールー <math>2 ーイル基である。

[置換基群 $\delta-8e$] 5-プロモ-4-[(1,1-ジメチル) エチル] チアゾールー2ーイル基、5-プロモ-4-(トリフルオロメチル) チアゾールー2ーイル基、5-シアノ-4-[(1,1-ジメチル) エチル] チアゾールー2ーイル基、 $5-\cancel{3}$ チルチアゾールー2ーイル基、 $4,5-\cancel{3}$ メチルチアゾールー2ーイル基、 $5-\cancel{3}$ チルー4ーフェニルチアゾールー2ーイル基、5-(4-7) オロスチルーカーフェニル チアゾールー2ーイル スチルー5ー[3ー(トリフルオロメチル) フェニル] チアゾールー2ーイル スチルー5ー[3ー(トリフルオロメチル) フェニル] チアゾールー2ーイル スチルー5ーフェニルチアゾールー2ーイル基、 $4-\cancel{3}$ エチルー5ーフェニルチアゾールー2ーイル基、 $4-\cancel{4}$ ステルー5ーフェニルチアゾールー2ーイル基、 $4-\cancel{4}$ ステルー5ーフェニルチアゾールー2ーイル基

4-ブチル-5-フェニルチアゾール-2-イル基、4-[(1, 1-ジメチル) エチル] -5- [(2, 2-ジメチル) プロピオニル] チアゾールー2-イル基、 4-[(1,1-ジメチル)エチル]-5-(エトキシカルボニル)チアゾールー 2-イル基、4-[(1,1-ジメチル)エチル]-5-ピペリジノチアゾールー 2-イル基、4-[(1,1-ジメチル)エチル]-5-モルホリノチアゾールー 2-イル基、4-[(1,1-ジメチル) エチル] <math>-5-(4-メチルピペラジン - 1 - イル) チアゾール- 2 - イル基、4 - [(1, 1 - ジメチル) エチル] - 5 - (4-フェニルピペラジン-1-イル)チアゾール-2-イル基、5-カルボ キシメチルー4-フェニルチアゾールー2-イル基、4,5-ジフェニルチアゾ ール-2-イル基、4-ベンジル-5-フェニルチアゾール-2-イル基、5-フェニルー4ー (トリフルオロメチル) チアゾールー2ーイル基、5ーアセチル - 4-フェニルチアゾール-2-イル基、5-ベンゾイル-4-フェニルチアゾ ールー2ーイル基、5ーエトキシカルボニルー4ーフェニルチアゾールー2ーイ ル基、5-エトキシカルボニル-4-(ペンタフルオロフェニル)チアゾールー 2-イル基、5-メチルカルバモイル-4-フェニルチアゾール-2-イル基、 5-エチルカルバモイル-4-フェニルチアゾール-2-イル基、5-イソプロ ピルカルバモイルー4-フェニルチアゾールー2-イル基、5-(2-フェニル エチル) カルバモイルー4-フェニルチアゾールー2-イル基、5-エトキシカ ルボニルー4ー (トリフルオロメチル) チアゾールー2ーイル基、5ーカルボキ シー4-[(1, 1-ジメチル) エチル] チアゾール-2-イル基、5-(エトキ シカルボニル) メチルー4-フェニルチアゾール-2-イル基、5-カルボキシ - 4-フェニルチアゾール-2-イル基、5-プロピルカルバモイル-4-フェ ニルチアゾールー2-イル基

上記Eの定義における「置換基を有していてもよいヘテロアリール基」が「モノ 置換チアゾールー 2 ーイル基」である場合、好適な基の具体例としては、下記「置 換基群 δ - 9 e 」に示す基が挙げられる。

[置換基群 $\delta - 9$ e] 4 - [(1, 1 - ジメチル) エチル] チアゾールー <math>2 - 1

基、4-7ェニルチアゾールー2ーイル基、4-[3,5-ビス(トリフルオロメチル)フェニル]チアゾールー2ーイル基、4-(2,4-ジクロロフェニル)チアゾールー2ーイル基、4-(3,4-ジクロロフェニル)チアゾールー2ーイル基、4-[4-(トリフルオロメチル)フェニル]チアゾールー2ーイル基、4-(2,5-ジフルオロフェニル)チアゾールー2ーイル基、4-(4-メトキシフェニル)チアゾールー2ーイル基、4-[3-(トリフルオロメチル)フェニル]チアゾールー2ーイル基、4-[3-(トリフルオロメチル)フェニル]チアゾールー2ーイル基、4-(ペンタフルオロフェニル)チアゾールー2ーイル基

上記一般式 (I) で表される化合物としては、好適には、「下記一般式 (X-1) で表される置換安息香酸誘導体、及び/又は下記化合物群 $\phi-1$ で表される化合物」以外の化合物である。

$$R^{1001}$$
 $(X-1)$

(式中、

R 1001は、下記の一般式 (X-2):

$$R^{1003}$$
 R^{1004}
 CH_2
 $(X-2)$

または、下記の一般式 (X-3):

$$R^{1003}$$
 R^{1004}
 R^{1005}
 CH_2
 CH_2

(式中、R¹⁰⁰³、R¹⁰⁰⁴およびR¹⁰⁰⁵は各々独立に水素原子、炭素数1~6の

アルキル基または炭素数 $1\sim6$ のアルコキシ基であり、 R^{1009} および R^{1010} は 8 を独立に水素原子、炭素数 $1\sim6$ のアルキル基または炭素数 $2\sim1$ 1 のアシル 基を示す)であり;

 R^{1002} は、水素原子、置換されていてもよい炭素数 $1\sim 6$ の低級アルキル基、置換されていてもよい炭素数 $6\sim 1$ 2 のアリール基、置換されていてもよい炭素数 $4\sim 1$ 1 のヘテロアリール基、置換されていてもよい炭素数 $7\sim 1$ 4 のアラルキル基、置換されていてもよい炭素数 $5\sim 1$ 3 のヘテロアリールアルキル基を示すか、あるいは炭素数 $2\sim 1$ 1 のアシル基であり;

 X^{1001} は、エステル化またはアミド化されていてもよいカルボキシル基を示す。) [化合物群 $\phi-1$]

上記一般式(I)で表される化合物は塩を形成することができる。薬理学的に許容される塩としては、酸性基が存在する場合には、例えば、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩等の金属塩、又はアンモニウム塩、メチルアンモニウム塩、ジメチルアンモニウム塩、トリメチルアンモニウム塩、ジシクロヘキシルアンモニウム塩等のアンモニウム塩をあげることができ、塩基性基が存在する場合には、例えば、塩酸塩、臭酸塩、硫酸塩、硝酸塩、リン酸塩等の鉱酸塩、あるいはメタンスルホン酸塩、ベンゼンスルホン酸塩、パラトルエンスルホン酸塩、酢酸塩、プロピオン酸塩、酒石酸塩、フマール酸塩、マレイン酸塩、リンゴ酸塩、シュウ酸塩、コハク酸塩、クエン酸塩、安息香酸塩、マレイン酸塩、リンゴ酸塩、シュウ酸塩、コハク酸塩、クエン酸塩、安息香酸塩、

マンデル酸塩、ケイ皮酸塩、乳酸塩等の有機酸塩をあげることができる。グリシンなどのアミノ酸と塩を形成する場合もある。本発明の医薬の有効成分としては、薬学的に許容される塩も好適に用いることができる。

上記一般式(I)で表される化合物又はその塩は、水和物又は溶媒和物として存在する場合もある。本発明の医薬の有効成分としては、上記のいずれの物質を用いてもよい。さらに一般式(I)で表される化合物は1以上の不斉炭素を有する場合があり、光学活性体やジアステレオマーなどの立体異性体として存在する場合がある。本発明の医薬の有効成分としては、純粋な形態の立体異性体、光学対掌体又はジアステレオマーの任意の混合物、ラセミ体などを用いてもよい。

また、一般式(I)で表される化合物が例えば2ーヒドロキシピリジン構造を有する場合、その互変異性体(tautomer)である2ーピリドン構造として存在する場合がある。本発明の医薬の有効成分としては、純粋な形態の互変異性体又はそれらの混合物を用いてもよい。また、一般式(I)で表される化合物がオレフィン性の二重結合を有する場合には、その配置は2配置又はE配置のいずれでもよく、本発明の医薬の有効成分としてはいずれかの配置の幾何異性体又はそれらの混合物を用いてもよい。

本発明の医薬の有効成分として一般式(I)に包含される化合物を以下に例示するが、本発明の医薬の有効成分は下記の化合物に限定されることはない。

なお、下記表において用いられる略語の意味は下記の通りである。

Me:メチル基、Et:エチル基。

化合物番号	A . o	Х	E
1	OH Br	HZ O	CF ₃
2	OH Br	o H X	
3	OH Br	O N H	
4	OH OH	•	ОМе
5	OH CI	OH OH	CI
6	OH MeO		MeO

7	OH Me		
8	Me O O		(°)
9	OH CI	~	CI
1 0	OH Br	O O S N H	CI
1 1	ОН	D H Z	CF ₃
1 2	OH C	H N O	CI
1 3	₽	H Z S O	CI
1 4	OH Br	∕ N H	CI
15	OH Br	H, N	ОН

1 6	OH	O N- Me	CF ₃
1 7	OH Br	O N	CF ₃

化合物番号	A o	E
18	OH	CI
19	HO HO	CI
2 0	OH	OMe OMe
2 1	ОН	CF ₃
2 2	ОН	SO₂F

2 3	OH CI	SO ₂ F
2 4	OH N CI	CF ₃
2 5	OH N=	CF ₃
2 6	OH N CI	Me Me Me Me
2 7	OH N	CF ₃
2 8	OH	CF ₃
2 9	OH Z	CF ₃

3 0	OH	CI

88

化合物番号	A o	E
3 1	OH	
3 2	<u>9</u>	
3 3	OH	OMe
3 4	Me O CI	OMe

化合物番号	A.o.	Е
	(z)	
3 5	OH	EtO ₂ C
3 6	OH Br	N-NH
3 7	OH Br	Et N Et
3 8	OH Br	N N N N N N N N N N N N N N N N N N N
3 9	OH Br	N N N N N N N N N N N N N N N N N N N
4 0	OH	N-N CF ₃

4 1	OH Br	N-N S CF3
4 2	OH	CI
4 3	OH	OMe N CI
4 4	Me O CI	H Z
4 5	Me	HN CO ₂ Et
4 6	OH CO	
4 7	OH OH	Et N

化合物番号	A o	E
4 8	OH	CF ₃
4 9	OH F	CF ₃
5 0	OH	CF ₃
5 1	OH Br	CF ₃
5 2	OH	CF ₃
5 3	OH NO ₂	CF ₃

5 4	OH CN	CF ₃
5 5	OH Me	CF ₃
5 6	OH Me Me	CF ₃
5 7	НО	CF ₃
5 8	MeO N Me	CF ₃ CF ₃
5 9	OH O N Me	CF ₃
6 0	OH CN	CF ₃

6 1	OH CN CO₂H	CF ₃
6 2	OH CN CO ₂ Me	CF ₃
6 3	P P	CF ₃
6 4	H OH	CF ₃
6 5	OH _	CF ₃

6 6	OH SiMe ₃	CF ₃
6 7	OH OH	CF ₃
6 8	ÖH OH	CF ₃
6 9	OH CF ₃	CF ₃
7 0	OH CF ₂ CF ₃	CF ₃
7 1	OH N	CF ₃

7 2	OH S	CF ₃
7 3	OH	CF ₃
7 4	OH N S—Me	CF ₃
7 5	OH N N N N N N N N N N N N N N N N N N N	CF ₃
7 6	OH OH	CF ₃
7 7	OH OMe	CF ₃

7 8	OH O Me	CF ₃
7 9	OH Me Me	CF ₃
8 0	OH CO₂H	CF ₃
8 1	OH CO ₂ Me	CF ₃
8 2	OH CF3 CF3	CF ₃
8 3	OH ONMe ₂	CF ₃
8 4	OH OH	CF ₃

8 5	OH OH	CF ₃
8 6	OH O=S=O NMe ₂	CF ₃
8 7	OH O=S=O N	CF ₃
8 8	OH NH ₂	CF ₃
8 9	OH NMe ₂	CF ₃
9 0	OH HN O	CF ₃
9 1	OH HN N O	CF ₃

9 2	OH HN HN S	CF ₃
9 3	OH NO2	CF ₃
9 4		CF ₃
9 5	Me	CF ₃
9 6	Me O CI	CF ₃

	····	
9 7	OH ON N CI	CF ₃
9 8	СІ	CF ₃
9 9	OH	CF ₃
100	OH	CF ₃
101	OH Br	CF ₃
102	OH Me	CF ₃
103	CI	CF ₃

化合物番号	A o	E
104	OH CI	F ₃ C
105	OH	F ₃ C Cl
. 106	OH Br	CF ₃
107	OH	CF ₃
1 0 8	OH CI	CF ₃ F
1 0 9	OH Br	CF ₃

110	OH CI	CF ₃
111	OH Br	CF ₃
1 1 2	OH	CF ₃
113	OH CI	CF ₃
114	OH Br	CF ₃
1 1 5	OH CI	CF ₃ NO ₂
1 1 6	OH CI	CF ₃
117	OH Br	CF ₃ CN
118	OH	CF ₃

<u> </u>	T	
119	OH CI	CF ₃
1 2 0	OH CI	CF ₃
1 2 1	OH	CF ₃ OMe
1 2 2	OH Br	CF ₃
1 2 3	OH Br	CF ₃
1 2 4	OH	CF ₃
1 2 5	OH	CF ₃
1 2 6	OH Br	CF ₃

1 2 7	OH Br	CF ₃
1 2 8	OH	CF ₃
1 2 9	OH Br	CI CF3
1 3 0	0 - 0 - 0	CF ₃
1 3 1	OH NO ₂	CF ₃
1 3 2	OH Me	CF ₃
1 3 3	OH	CF ₃
1 3 4	OH Me	CF ₃

1 3 5	OH Me	CF ₃ Me
1 3 6	OH Me	CF ₃
137	OH Me	CF ₃ OMe
1 3 8	OH Me	CF ₃

化合物番号	A . o z	E
139	OH Br	
1 4 0	OH Br	<u>a</u>
141	OH Br	CI
1 4 2	OH CI	5—~5
1 4 3	OH Br	C
1 4 4	OH Br	F

1 4 5	OH OH	CI
1 4 6	OH F	CI
147	OH	CI
1 4 8	OH Br	CI
1 4 9	ОН	CI
150	OH Br Br	CI
151	CI	CI
1 5 2	OH NO ₂	CI
153	OH Me	CI

154	OH OMe	CI
155	OH Br	CI
156	OH Br	CI
157	OH CO	F F F
1 5 8	OH Br	NO ₂
159	OH C	Me Me Me Me
160	OH	Me Me Me OMe
1 6 1	OH Br	Me Me

162	OH	Me Me Me Me
163	OH Br	Me Me Me Me
164	OH	Me Me Me
165	OH	
166	OH	OMe
167	OH Br	OMe OMe
168	OH Br	OMe

		
169	OH	Me
170	OH Br	CO ₂ Me
171	ОН	H H N CI
172		CI
173	OH Me	Me Me Me Me Me
174	0 0 0	Me Me Me Me
175	OH NO ₂	Me Me Me Me

176	OH Me	Me Me Me Me
177	OH OMe	Me Me Me Me
178	0 0 0	Me Me OMe
179	OH Me	Me Me OMe

化合物番号	A. O Z	E
180	OH Br	~ s
181	OH Br	N Me Me Me S Br
182	OH Br	N CF3 Br
183	OH G	Me Me Me S CN
184	OH Br	Me Me Me S CN
185	OH Br	N S Me

186	OH Br	Me Me Me
187	OH Br	N Me S Me
188	OH Br	N Me
189	OH Br	N Me
190	OH Br	N Me CF ₃
191	OH Br	Me Me Me
192	OH Br	S Et
193	OH Br	Me N Me

	T	
194	OH Br	N Me
195	OH	Me Me Me Me Me
196	OH Br	Me Me Me Me Me
197	OH Br	Me Me Me S CO ₂ Et
198	OH Br	Me Me Me
199	OH Br	Me Me Me
200	OH Br	Me Me Me S N N N Me

201	OH Br	Me Me Me Me
202	OH Br	N S
203	OH Br	N CO₂H
204	OH Br	N S
2 0 5	OH Br	N S
2 0 6	OH Br	N CF3
207	OH Br	N Me

208	OH Br	N O
209	OH Br	N CO ₂ Et
210	OH	N CO ₂ Et
2 1 1	OH Br	S CO ₂ Et
2 1 2	OH Br	N H N Me
2 1 3	OH Br	N H N Et
2 1 4	OH Br	N H H Me

2 1 5	OH Br	
2 1 6	OH Br	N CF ₃ CO ₂ Et
217	0	Me Me Me Me Me Me
2 1 8	OH OH	N CO ₂ Et
2 1 9	OH F	N CO ₂ Et
2 2 0	OH F	N S CO ₂ Et

2 2 1	OH CF ₃	N CO ₂ Et
2 2 2	OH N	N CO ₂ Et
2 2 3	OH S	N CO ₂ Et

化合物番号	A O	Х	E
3 0 1	OH CI	~	
3 0 2	ð- J-G	SH S	CF ₃
303	OH CI	O NH H N NH	CF ₃
3 0 4	OH Co	H, N	CF ₃
3 0 5	OH CI	Me Me H N H	CF ₃
306	OH	N,N O	CF ₃

	,		
307	OH CI	N H	CF ₃
3 0 8	6	0 N-	CF ₃
309	OH C	O N H H	CF ₃
3 1 0	OH CI	~	CF ₃
3 1 1	OH CI	N L	
3 1 2	OH C	N H	CF ₃
3 1 3	ОН	O Me	CF ₃
314	OH CI	HZ O	CF ₃
315	OH	O H N	CF ₃

3 1 6	OH	<u></u>	CF ₃
3 1 7	OH	E E	CF ₃
3 1 8	OH CI	S NH	CF ₃
3 1 9	OH	ON O	CF ₃
3 2 0	OH O		CF ₃
3 2 1	OH CI	N.N.	CF ₃

化合物番号	A O	E
3 2 2	ОН	CF ₃
3 2 3	OH Me	CF ₃
3 2 4	OH HO Br	CF ₃
3 2 5	но	CF ₃
3 2 6	CI	CF ₃
3 2 7	но	CF ₃

	ОН	
3 2 8	Me	CF ₃
3 2 9	MeO	CF ₃
3 3 0	OH Me Me Me Me	CF ₃
3 3 1	CI CI	CF ₃
3 3 2	Me OH Me Me	CF ₃
3 3 3	OH F	CF ₃
3 3 4	CI	CF ₃
3 3 5	MeO	CF ₃

3 3 6	ОН	CF ₃
3 3 7	OH NHSO ₂ Me	CF ₃
3 3 8	OH ON	CF ₃
3 3 9	OH HN Me	CF ₃
3 4 0	OH SO ₂ NH ₂	CF ₃
3 4 1	OH	CF ₃
3 4 2	OH	CF ₃
3 4 3	OH Br S	CF ₃

3 4 4	OH	CF ₃
3 4 5	OH HN CI	CF ₃
3 4 6	OH C	CF ₃
3 4 7	OH G	CF ₃ OMe
3 4 8	OH CI	CF ₃
3 4 9	OH	CF ₃
3 5 0	OH	CF ₃ CO ₂ Me
3 5 1	OH	CF ₃

3 5 2	OH	CF ₃
3 5 3	CI	CF ₃
3 5 4	OH	CF ₃
355	OH	CF ₃ OCH ₂ CF ₃
3 5 6	OH	CF ₃
3 5 7	OH Ci	CF ₃ O Me CI

3 5 8	OH	CF ₃
3 5 9	CI OH	CF ₃
3 6 0	OH C	CF ₃
3 6 1	OH Br	CO ₂ H
3 6 2	OH	Me Me
3 6 3	OH CI	OEt OEt
3 6 4	OH CI	Me Me
3 6 5	OH CI	CI

2.6.6	ОН	ŞO₂NEt₂
366	CI	OMe
3 6 7	OH CI	NO ₂
3 6 8	OH OH	O H N O Me
369	5 ∃ - - - - - - -	OMe OMe
3 7 0	OH CI	HN Me
3 7 1	OH	OMe Me
3 7 2	OH	O Me

3 7 3	OH	Me Me Me Me
3 7 4	OH Ci	CONH ₂ OMe
3 7 5	OH CI	Me Me
3 7 6	OH	SO ₂ Me
3 7 7	OH	Me Me Me Me
3 7 8	OH CI	OMe

3 7 9	OH CI	CI O=S—Me
380	OH CI	O = S — Me
3 8 1	OH C	SO₂Me F
3 8 2	OH	OMe
383	OH	Me
3 8 4	OH	Me Me OMe
3 8 5	OH CI	N NO ₂

3 8 6	OH CI	L Z Z
3 8 7	OH CI	NO ₂
3 8 8	OH CI	Me Me Me
3 8 9	OH CI	Me OMe
3 9 0	OH	F
3 9 1	OH	F
3 9 2	OH Br	Me Me Me CO ₂ H
3 9 3	OH Br	N CO ₂ Et

394	OH Br	N CO ₂ H
3 9 5	OH	CF ₃
3 9 6	OH	
3 9 7	OH CI	N Br
398	2 E	
3 9 9	OH Br	N Br
400	OH Br	N H N Me
401	OH CI	CF ₃ CF ₃
402	OH	CF ₃

403	OH CI	Me Me CF ₃
404	OH CI	CF ₃
405	OH CI	CF ₃
406	OH OH	CI CF ₃
407	OH	CF ₃
408	OH	CF ₃
409	OH OH	CF ₃
410	OH CI	CF ₃
411	OH	CF ₃

412	OH	O Me Me CF ₃
413	OH CI	CF ₃ OMe
4 1 4 c	OH	CF ₃ F
415	OH	CF ₃
416	OH	CF ₃ CI O=S O=S O
417	OH	CI CF ₃
418	OH CI	CF ₃
419	OH CI	F ₃ C H O OH

420	OH	F CF ₃
421	OH	N Me
422	OH	CONH ₂
423	OH CI	соннме
424	OH	Me Me Me
4 2 5	OH	Me
426	OH CI	Me Me
427	OH CI	Me
4 2 8	OH CI	Me Me

429	OH	OCF3
430	OH	
431	OH CI	OCF3
4 3 2	OH CI	o
434	OH	Me Me
434	OH CI	Me Me
4 3 5	OH CI	
4 3 6	OH .	Me Me

437	OH	Me O Me
438	CI	CI
439	OH CI	O Me Me
440	OH CI	OCF ₃
441	OH CI	Me
442	OH CI	Me
443	OH	
444	OH CI	
445	OH CI	OMe OMe CN

4 4 6	OH CI	, Co
447	OH CI	Me Me O CI
4 4 8	OH CI	CN
449	OH CI	OCF ₃
450	OH CI	CN
451	OH CI	CI
452	OH CI	Co
453	OH CI	Me Me Me

454	OH	Me Me Me
455	OH	Me
4 5 6	OH CI	Me
457	OH C	CI
4 5 8	OH CI	Me
459	OH CI	
460	OH CI	O F F
461	OH CI	O F F F
462	OH CI	SCF ₃

463	OH	OCF ₃
464	OH	↓ C F F
465	OH C	
466	OH	OCF ₃
467	OH	F F
468	OH C	
469	OH Ci	F Br
470	OH C	SO ₂ Me SO ₂ Me

471	OH CI	Me O OH
472	OH CI	O F F F
473	OH	CI
474	OH CI	F Br
475	OH CI	O
476	OH CI	F ₃ C CF ₃ H CI
477	OH CI	CO
478	OH CI	Me Me

479	OH CI	CN
480	OH CI	CN
481	OH CI	OMe
482	OH JO	CO ₂ Et
483	OH	SCF ₃
484	OH CI	SCF ₃
485	OH CI	SO₂CF ₃
486	OH CI	↓ F
487	OH	н

488	OH CI	Me
489	OH	OMe
490	OH CI	
491	OH CI	ОМе
492	OH	H N O
493	OH	SO ₂ NH₂
494	OH CI	CI CF ₃ CF ₃
495	OH CI	NO ₂
496	OH CI	F

497	ÓН	0 F
431		
	CI	
498	OH	OH CF ₃ CF ₃
	CI	
499	OH	
	G	SMe
5 0 0	OH	SO ₂ Me
	CI	
5 0 1	ОН	Me
	ĊI	
5 0 2	OH	O S
	GI	S'N Me
5 0 3	ОН	
	GI	
5 0 4	ОН	H o
		H O Me
	ĊI	l mo

505	OH	
506	OH	Me Me Me
5 0 7	OH	Me
5 0 8	2—————————————————————————————————————	Me
5 0 9	2—————————————————————————————————————	SO₂NH₂
5 1 0	OH CI	SO ₂ CF ₃
5 1 1	OH CI	OCF ₃
5 1 2	OH CI	O Me Me
5 1 3	OH CI	CI

514	OH	O Me	
515	OH CI	OEt F NO ₂	
5 1 6	OH CI	Me OH	
5 1 7	OH H	Me	
5 1 8	OH	F F	
5 1 9	OH NO ₂	F F	
5 2 0	OH OH	Me	
5 2 1	OH	Me	

•		
5 2 2	OH CF ₃	
5 2 3	OH CF ₃	
5 2 4	OH	
5 2 5	OH O=S-NH O CF ₃	CF ₃
5 2 6	OH	CF ₃
5 2 7	Q d	CF ₃
5 2 8	OH F	CF ₃
5 2 9	OH CI	Me NH ₂ NH ₂

5 3 0	OH	OCF ₃
5 3 1	OH CI	CF ₃
5 3 2	ОН	CF ₃
5 3 3	OH	CF ₃
5 3 4	OH C	N CI
5 3 5	Me OH	CF ₃
5 3 6	Me OH Me Br	CF ₃
5 3 7	OH Me Br	CF ₃

5 3 8	OH CI	N CF3
539	OH CI	N CF ₃ N Me Me
5 4 0	OH Br	CF ₃
5 4 1	OH	N CI
5 4 2	OH	CF ₃
5 4 3	OH	CF ₃
5 4 4	OH	CF ₃

5 4 5	OH	CF ₃
5 4 6	OH	N F F
5 4 7	CI	CF ₃
5 4 8	OH	CF ₃
5 4 9	OH	OMe S .
5 5 0	OH CI	CF ₃
5 5 1	OH	F F F
5 5 2	OH Br Br	CF ₃

化合物番号	A . 0 z	Х	E
5 5 3	НО	O N O	CF ₃
5 5 4	OH C	<u> </u>	Me Me
5 5 5	OH GI	∕N/ H	Me Me

一般式(I)で表される化合物の製造方法は特に限定されないが、例えば、「国際公開第02/49632号パンフレット」に記載された方法を参照することは有用である。

一般式(I)で表される化合物は、例えば、以下に示した方法によって製造することができる。

<方法1>

一般式(I)において、Xが-CONH-(窒素上の水素原子は置換されていてもよい)で表される化合物は、例えば、反応工程式1に示す方法によって製造することができる。

反応工程式1

(式中、A、環 Z 及びEは、一般式(I)における定義と同意義であり、 A^{101} は水素原子又はヒドロキシ基の保護基(好ましくは、メチル基等のアルキル基;ベンジル基等のアラルキル基;アセチル基;メトキシメチル基等のアルコキシアルキル基;トリメチルシリル基等の置換シリル基)を表し、R 及び R^{101} は水素原子、 $C_1 \sim C_6$ のアルキル基等を表し、 E^{101} は、一般式(I)の定義におけるE 又はEの前駆体を表し、G はヒドロキシ基、ハロゲン原子(好ましくは、塩素原子)、炭化水素ーオキシ基(好ましくは、ハロゲン原子で置換されていてもよいアリールーオキシ基)、アシルーオキシ基、イミドーオキシ基等を表す)

(第1工程)

カルボン酸誘導体(1)とアミン(2)とを脱水縮合させることにより、アミド(3)製造することができる。この反応は、酸ハロゲン化剤又は脱水縮合剤の存在下、塩基の存在又は非存在下、無溶媒又は非プロトン性溶媒中 0 \mathbb{C} \mathbb{C} の反応温度で行われる。

この反応は、酸ハロゲン化剤又は脱水縮合剤の存在下、塩基の存在又は非存在下、 無溶媒又は非プロトン性溶媒中0℃~180℃の反応温度で行われる。

酸ハロゲン化剤としては、例えば、塩化チオニル、臭化チオニル、塩化スルフリル、オキシ塩化リン、三塩化リン、五塩化リンなどを挙げることができ、A¹⁰¹が水素原子の場合には三塩化リンが、A¹⁰¹がアセチル基等の場合にはオキシ塩化リンが好ましい。脱水縮合剤としては、例えば、N,N'ージシクロヘキシルカルボジイミド、1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド塩酸塩、ジフェニルホスホリルアジドなどを挙げることができる。塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N,Nージエチルアニリン等の有機塩基がずけられる。非プロトン性溶媒としてはジクロロメタン、ジクロロエタン、クロロホルム、テトラヒドロフラン、1,4ージオキサン、ベンゼン、トルエン、モノクロロベンゼン、ロージクロロベンゼン、N,Nージメチルホルムアミド、Nーメチルピロリドンなどを挙げることができ、酸ハロゲン化剤の存在下に反応を行う場合には、特に、トルエン、モノクロロベンゼン、ロージクロロベンゼンが好ましい。

また、例えば、「ジャーナル・オブ・メディシナル・ケミストリー(Journal of Medicinal Chemistry)」,(米国),1998年,第41巻,第16号,p. 293 9-2945 に記載の方法及びこれらに準じた方法により、予めカルボン酸から酸塩化物を製造、単離し、次いで E^{101} を有するアミンと反応させることにより目的とするアミドを製造することもできる。

Gがヒドロキシ基である場合の好適な反応条件として、例えば、「アーキブ・デア・ファルマツィー (Archiv der Pharmazie)」、(ドイツ)、1998年、第331巻、第1号、p.3-6. に記載された反応条件を用いることができる。

カルボン酸誘導体(1)及びアミン(2)の種類は特に限定されず、文献公知の 製造方法を適宜参照しつつ新規に合成するか、あるいは市販の試薬を入手して上 記反応に用いることができる。

(第2工程)

アミド (3) が保護基を有する場合及び/又は官能基修飾に有利な置換基(例え ば、アミノ基及びその保護体若しくは前駆体;カルボキシ基及びその保護体若し くは前駆体;ヒドロキシ基及びその保護体若しくは前駆体など)を有する場合、 この工程で脱保護反応及び/又は官能基修飾反応を行うことにより最終目的物で ある化合物(4)を製造することができる。該反応は、種々の公知の方法を用い ることができ、脱保護反応及び官能基修飾反応としては、例えば、セオドラ・W.・ グリーン (Theodora W. Green), ピーター・G.・M.・ブッツ (Peter G. M. Wuts) 編「プロテクティブ・グループス・イン・オーガニック・シンセシズ (Protective Groups in Organic Syntheses)」、(米国)、第3版、ジョン・ウィリー・アンド・ サンズ・インク (John Wiley & Sons, Inc.), 1999年4月;「ハンドブック・ オブ・リエージェンツ・フォー・オーガニック・シンセシス (Handbook of Reagents for Organic Synthesis)」, (米国), 全4巻, ジョン・ウィリー・アンド・サンズ・ インク (John Wiley & Sons, Inc.), 1999年6月, 等に記載の方法を;官能 基修飾反応としては、例えばリチャード・F.・ヘック(Richard F. Heck)著「パ ラジウム・リエージェンツ・イン・オーガニック・シンセシス (Palladium Reagents in Organic Syntheses)」, (米国), アカデミック・プレス (Academic Press), 1 985年; 辻二郎 (J. Tsuji) 著「パラジウム・リエージェンツ・アンド・カタリ スツ:イノベーションズ・イン・オーガニック・シンセシス (Palladium Reagents and Catalysts: Innovations in Organic Synthesis)」, (米国), ジョン・ウィリ ー・アンド・サンズ・インク (John Wiley & Sons, Inc.), 1999年, 等に記 載の方法を用いることができる。

上記方法は、Xが他の連結基(例えば、 $-SO_2NH-$ 、-NHCO-、 $-NHSO_2-$ 、 $-CONHCH_2-$ 、 $-CONHCH_2CH_2-$ 、 $-CONHCH_2CONH-$ -CONHNHCO-、 $-CONHNHCH_2-$ -COO- $-CONHNHCH_2-$ -COO- -COO- $-CONHNHCH_2-$ -COO- -COO-

一般式 (I) において、Xが式: $-CONHCH_2-$ (該基上の水素原子は置換されていてもよい)である場合、アミン(2)のかわりに式: $H_2N-CH_2-E^{101}$ (式中、 E^{101} は上記定義と同義である)で表されるアミンを用いることにより、目的とする化合物を製造することができる。

- 一般式 (I) において、Xが式: $-CONHCH_2CH_2-$ (該基上の水素原子は置換されていてもよい)である場合、Tミン(2)のかわりに式: H_2N-CH_2 CH $_2-E^{101}$ (式中、 $-E^{101}$ は上記定義と同義である)で表されるTミンを用いることにより、目的とする化合物を製造することができる。
- 一般式 (I) において、Xが式: $-SO_2NH$ である場合、カルボン酸誘導体 (1) のかわりに式: A^{101} O (環Z) $-SO_2C1$ (式中、 A^{101} 及び環Z は上記定義と同義である) で表されるスルホン酸クロリドを用いることにより、目的とする化合物を製造することができる。
- 一般式 (I) において、Xが式: -NHCO-である場合、式: $A^{101}-O-$ (環 $Z)-NH_2$ (式中、 A^{101} 及び環Zは上記定義と同義である)で表されるアミンと、式: $E^{101}-COOH$ (式中、 $-E^{101}$ は上記定義と同義である)で表されるカルボン酸若しくは式: $E^{101}-COCl$ (式中、 $-E^{101}$ は上記定義と同義である)で表されるカルボン酸クロリドを用いることにより、目的とする化合物を製造することができる。
- 一般式 (I) において、Xが式: $-NHSO_2-$ (該連結基は置換基を有していてもよい) である場合、式: HO- (環Z) $-NH_2$ (式中、環Zは上記定義と同義である) で表されるアミンと式: $E^{101}-SO_2C1$ (式中、 E^{101} は上記定義と同義である) で表されるスルホン酸クロリドを用いることにより、目的とする化合物を製造することができる。
- 一般式 (I) において、Xが式:-CONHNHCO-である場合、式:HO-(環Z) $-CONHNH_2$ (式中、環Zは上記定義と同義である) で表されるヒドラジドと式: $E^{101}-COC1$ (式中、 $-E^{101}$ は上記定義と同義である) で表されるカルボン酸クロリドを用いることにより、目的とする化合物を製造するこ

・とができる。

一般式 (I) において、Xが式: -COO 一である場合、T ミン (2) のかわりに式: $HO-E^{101}$ (式中、 E^{101} は上記定義と同義である)で表されるフェノール誘導体を用いることにより、I 目的とする化合物を製造することができる。

一般式 (I) において、Xが式: -CONHNH-である場合、Tミン(2)のかわりに式: $H_2N-NH-E^{101}$ (式中、 E^{101} は上記定義と同義である)で表されるヒドラジンを用いることにより、I 目的とする化合物を製造することができる。-般式 (I) において、Xが式: $-CONHCH_2CONH-$ (該連結基は置換基を有していてもよい)である場合、Tミン(I のかわりに式: I のかわりに式: I のかわりに式: I のかりに式: I のかりに式:

ここで、式: $H_2N-CH_2CONH-E^{101}$ で表されるアミンは、例えば、アミン (2) EN-保護アミノ酸(具体例:EN-(EN-(EN-(EN-)) を上記方法 EN-(EN-) に記載された方法で縮合した後、脱保護反応を行うことにより製造することができる。

一般式(I)において、Xが下記式:

(該連結基は置換基を有していてもよい) である場合、下記式:

(式中、環 Z は上記定義と同義である)

で表されるアミン式と、式: E^{101} — COOH(式中、 E^{101} は上記定義と同義である)で表されるカルボン酸若しくは式: E^{101} — COC1(式中、 E^{101} は上記

定義と同義である) で表されるカルボン酸クロリドを用いることにより、目的と する化合物を製造することができる。

ここで、下記式:

で表されるアミンは、例えば、反応工程式1-2に示す方法によって製造することができる。

反応工程式1-2

(式中、環 Z は上記定義と同義である)

アセトフェノン (19) をプロモ化することにより、プロモアセトフェノン (20) を製造することができる。

この反応は、プロモ化剤の存在下、溶媒中、0℃ないし100℃の反応温度で行われる。

ブロモ化剤としては、例えば、フェニルトリメチルアンモニウムトリブロミドを 好適に用いることができる。

反応溶媒としては、反応を阻害しない溶媒であればいかなるものでもよく、例えば、テトラヒドロフラン等のエーテル系溶媒を用いることができる。

次いでブロモアセトフェノン (20) とチオウレアを反応することによりアミン (21) を製造することができる。

この反応は、溶媒中、0℃ないし120℃の反応温度で行われる。

反応溶媒としては、反応を阻害しない溶媒であればいかなるものでもよく、例えばエタノール等のアルコール系溶媒を用いることができる。

<方法2>

一般式(I)において、Xが一 CH_2NH 一で表される化合物は、例えば、反応 工程式2に示す方法によって製造することができる。

反応工程式2

(式中、A、環Z及びEは、一般式(I)における定義と同意義である)

まず、アルデヒド(5)とアミン(6)とを脱水縮合させることにより、式(7)のイミン誘導体を製造することができる。この反応は、脱水剤の存在下又は非存在下において、溶媒中で0 \mathbb{C} ~100 \mathbb{C} の反応温度で行われる。脱水剤としては無水硫酸マグネシウム、モレキュラーシーブなどを挙げることができる。溶媒としては非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4-ジオキサン、メタノール、エタノール等が好ましい。

上記方法は、Xが他の連結基(例えば、-CONHN=CH-、-CH=NNH CO-、-CHNNH-;該連結基上の水素原子は置換されていてもよい)である場合においても、原料を適切に組み合わせることによって適用可能である。

一般式 (I) において、Xが式:-CONHN=CH-である場合、式:HO-(環Z) $-CONHNH_2$ (式中、環Zは上記定義と同義である)で表されるヒドラジドと式:E-CHO(式中、Eは上記定義と同義である)で表されるアルデヒドを用いることにより、目的とする化合物を製造することができる。

一般式 (I) において、Xが式:-CH=NNHCO-である場合、式:HO-(環Z)-CHO(式中、環Zは上記定義と同義である)で表されるアルデヒドと式: $E-CONHNH_2$ (式中、Eは上記定義と同義である)で表されるヒドラジドを用いることにより、目的とする化合物を製造することができる。

一般式(I)において、Xが式:-CH=NNH-である場合、式:HO-(環

Z) -CHO(式中、環Zは上記定義と同義である)で表されるアルデヒドと式: $E-NHNH_2$ (式中、Eは上記定義と同義である)で表されるヒドラジンを用いることにより、目的とする化合物を製造することができる。

次いで、イミン誘導体(7)を還元することにより目的化合物である(8)を製造することができる。この反応は、還元剤の存在下に溶媒中で0 \mathbb{C} ~100 \mathbb{C} の反応温度で行われる。還元剤としては水素化ホウ素ナトリウム、水素化ホウ素リチウムなどを挙げることができる。溶媒としては非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4-ジオキサン、メタノール、エタノール等が好ましい。またこの反応は、接触水素添加法によっても行われる。触媒としてはパラジウム炭素、白金炭素、水酸化パラジウム、パラジウムブラックなどを挙げることができる。溶媒としては非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4-ジオキサン、メタノール、エタノール、水等が好ましい。反応は0 \mathbb{C} ~200 \mathbb{C} の反応温度、水素圧は常圧又は加圧下で行われる。

<方法3>

一般式(I)において、Xが-CH=CH-(該連結基上の水素原子は置換されていてもよい)で表される化合物は、例えば、反応工程式3-1、又は反応工程式3-2に示す方法によって製造することができる。

反応工程式3-1

(式中、環 Z 及び E は、一般式(I) における定義と同意義であり、 W^{301} は、O, O' ージー炭化水素 - ホスホノ基又はトリアリールホスホニウム基を表す)アルデヒド(9-1) とリン化合物(10-1) とを脱水縮合させることにより、目的化合物である(11) を製造することができる。この反応は、塩基存在下、溶媒中で 0 \mathbb{C} \sim 溶媒沸点の反応温度で行われる。塩基としては、炭酸ナトリウム、

炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N,Nージエチルアニリン等の有機塩基が挙げられる。溶媒としては、非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4ージオキサン、メタノール、エタノール、水等が好ましい。

反応工程式3-2

(式中、環 Z 及びE は、一般式 (I) における定義と同意義であり、W³⁰²は、 ハロゲン原子 (好ましくは沃素原子、臭素原子)、(トリフルオロメタンスルホニル) オキシ基などを表す)

ハロゲン化物(9-2)とスチレン誘導体(10-2)とを遷移金属錯体触媒の存在下、カップリング反応させることにより、目的化合物である(11)を製造することができる。この反応は、遷移金属錯体触媒の存在下、配位子及び/又は塩基の存在又は非存在下、溶媒中で0℃~溶媒沸点の反応温度で行われる。遷移金属錯体触媒としては、例えば、酢酸パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム等のパラジウム系触媒が挙げられる。配位子としては、例えば、トリフェニルホスフィン等のホスフィン系配位子が挙げられる。塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N, N-ジエチルアニリン等の有機塩基が挙げられる。溶媒としては、非反応性の溶媒が挙げられるが、N, N-ジメチルホルムアミド、テトラヒドロフラン、1,4-ジオキサン等が好ましい。

<方法4>

一般式(I)において、Xが一COCH=CH-Dび一 $COCH_2CH_2-CH_2-CH_2$ に該連結基上の水素原子は置換されていてもよい)で表される化合物は、例えば、反応工程式 4に示す方法によって製造することができる。

反応工程式4

(式中、環Z及びEは、一般式(I)における定義と同意義である)

まず、ケトン(12)とアルデヒド(13)とを脱水縮合させることにより、目的化合物であるエノン(14)を製造することができる。この反応は、塩基の存在下、溶媒中で0℃~溶媒沸点の反応温度で行われる。塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N, Nージエチルアニリン等の有機塩基が挙げられる。非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4ージオキサン、メタノール、エタノール、水等が好ましい。

<方法5>

一般式(I)において、Xが-NHCONH-(該連結基上の水素原子は置換されていてもよい)で表される化合物は、例えば、反応工程式5に示す方法によって製造することができる。

反応工程式5

(式中、環Z及びEは、一般式(I)における定義と同意義である)

まず、アミン(16)とイソシアネート(17)とを反応させることにより、目的化合物であるウレア(18)を製造することができる。この反応は、塩基の存在又は非存在下、溶媒中で0 $^{\circ}$ ~溶媒沸点の反応温度で行われる。塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N, Nージエチルアニリン等の有機塩基が挙げられる。非反応性の溶媒が挙げられるが、テトラヒドロフラン、1,4ージオキサン、メタノール、エタノール、水等が好ましい。 <方法6>

一般式 (I) において、Xが式: $-CONHNHCH_2-$ (該連結基は置換基を有していてもよい)で表される化合物は、例えば、反応工程式 6 に示す方法によって製造することができる。

反応工程式6

(式中、環 Z 及びE は上記定義と同義であり、V はハロゲン原子等の脱離基を表す)

ヒドラジド (22) とベンジル誘導体 (23) を反応させることにより、目的と するヒドラジド (24) を製造することができる。

この反応は、塩基の存在又は非存在下、溶媒中、0℃ないし180℃の反応温度で行われる。

塩基としては、例えば、ピリジン、トリエチルアミン等の有機塩基を好適に用いることができる。

反応溶媒としては、反応を阻害しない溶媒であればいかなるものでもよく、例えば、ジクロロメタン等のハロゲン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン等の炭化水素系溶媒を用いることができる。

<方法7>

一般式(I)において、Xが式:

で表される化合物は、例えば、反応工程式7に示す方法によって製造することができる。

反応工程式7

(式中、環 Z 及び E は上記定義と同義である)

アルデヒド (9-1) と3-ベンジルチアゾリジン-2, 4-ジオン誘導体 (25) を反応させることにより、目的とする5-(ベンジリデン)-3-ベンジルチアゾリジン-2, 4-ジオン誘導体 (26)を製造することができる。この反応は、触媒の存在下、溶媒中、0℃ないし180℃の反応温度で行われる。触媒としては、例えば、ピペリジン/酢酸の混合物を好適に用いることができる。反応溶媒としては、反応を阻害しない溶媒であればいかなるものでもよく、例えば、トルエン等の炭化水素系溶媒を用いることができる。ここで、下記式:

(式中、Eは上記定義と同義である)

で表される3-ベンジルチアゾリジン-2, 4-ジオン誘導体は、例えば、反応 工程式7-1に示す方法によって製造することができる。

反応工程式7-1

(式中、E及びVは上記定義と同義である)

チアゾリジン-2, 4-ジオン(30)とベンジル誘導体(23)を反応させることにより、目的とする3-ベンジルチアゾリジン-2, 4-ジオン誘導体(28)を製造することができる。

この反応は、塩基の存在下、溶媒中、0℃ないし180℃の反応温度で行われる。 塩基としては、例えば、水酸化ナトリウム、炭酸カリウム等の無機塩基;ピリジン、トリエチルアミン等の有機塩基を好適に用いることができる。

反応溶媒としては、反応を阻害しない溶媒であればいかなるものでもよく、例えば、水;エタノール等のアルコール系溶媒;ジクロロメタン等のハロゲン系溶媒;テトラヒドロフラン等のエーテル系溶媒;N,Nージメチルホルムアミド等のアミド系溶媒を用いることができる。

以上のような方法で製造された一般式(I)で表される化合物は、当業者に周知の方法、例えば、抽出、沈殿、分画クロマトグラフィー、分別結晶化、懸濁洗浄、再結晶などにより、単離、精製することができる。また、本発明化合物の薬理学的に許容される塩、並びにそれらの水和物及び溶媒和物も、それぞれ当業者に周

知の方法で製造することができる。

本明細書の実施例には、一般式(I)に包含される代表的化合物の製造方法が具体的に説明されている。従って、当業者は、上記の一般的な製造方法の説明及び実施例の具体的製造方法の説明を参照しつつ、適宜の反応原料、反応試薬、反応条件を選択し、必要に応じてこれらの方法に適宜の修飾ないし改変を加えることによって、一般式(I)に包含される化合物をいずれも製造可能である。

一般式(I)で示される化合物はインスリン抵抗性改善作用、高インスリン血症 改善作用、及び高血糖改善作用を有しており、糖尿病又は糖尿病の合併症の予防 及び/又は治療のための医薬の有効成分として用いることができる。本明細書に おいて、糖尿病の合併症とは高血糖及び/又は高インスリン血症に起因する疾患 を含む概念であり、例えば、腎症、網膜症、白内障、神経症、壊疽などの典型的 な糖尿病の合併症のほか、高血糖による昏睡、動脈硬化、高脂血症、肥満を含め て最も広義に解釈する必要がある。

本発明の医薬の有効成分としては、一般式(I)で表される化合物及び薬理学的に許容されるそれらの塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質の1種又は2種以上を用いることができる。本発明の医薬としては上記の物質自体を用いてもよいが、好適には、本発明の医薬は有効成分である上記の物質と1又は2以上の薬学的に許容される製剤用添加物とを含む医薬組成物の形態で提供される。上記医薬組成物において、製剤用添加物に対する有効成分の割合は、1重量%から90重量%程度である。

本発明の医薬は、例えば、顆粒剤、細粒剤、散剤、硬カプセル剤、軟カプセル剤、シロップ剤、乳剤、懸濁剤、又は液剤などの経口投与用の医薬組成物として投与してもよいし、静脈内投与、筋肉内投与、若しくは皮下投与用の注射剤、点滴剤、坐剤、経皮吸収剤、経粘膜吸収剤、点鼻剤、点耳剤、点眼剤、吸入剤などの非経口投与用の医薬組成物として投与することもできる。粉末の形態の医薬組成物として調製された製剤を用時に溶解して注射剤又は点滴剤として使用してもよい。医薬用組成物の製造には、固体又は液体の製剤用添加物を用いることができる。

製剤用添加物は有機又は無機のいずれであってもよい。すなわち、経口用固形製 剤を製造する場合は、主薬に賦形剤、さらに必要に応じて結合剤、崩壊剤、滑沢 剤、着色剤、矯味矯臭剤などを加えた後、常法により錠剤、被覆錠剤、顆粒剤、 散剤、カプセル剤などの形態の製剤を調製することができる。用いられる賦形剤 としては、例えば、乳糖、蔗糖、白糖、ブドウ糖、コーンスターチ、デンプン。 タルク、ソルビット、結晶セルロース、デキストリン、カオリン、炭酸カルシウ ム、二酸化ケイ素などを挙げることができる。結合剤としては、例えば、ポリビ ニルアルコール、ポリビニルエーテル、エチルセルロース、メチルセルロース、 アラビアゴム、トラガント、ゼラチン、シェラック、ヒドロキシプロピルセルロ ース、ヒドロキシプロピルメチルセルロース、クエン酸カルシウム、デキストリ ン、ペクチンなどを挙げることができる。滑沢剤としては、例えば、ステアリン 酸マグネシウム、タルク、ポリエチレングリコール、シリカ、硬化直物油などを 挙げることができる。着色剤としては、通常医薬品に添加することが許可されて いるものであればいずれも使用することができる。矯味矯臭剤としては、ココア 末、ハッカ脳、芳香酸、ハッカ油、龍脳、桂皮末などを使用することができる。 これらの錠剤、顆粒剤には、糖衣、ゼラチン衣、その他必要により適宜コーティ ングを付することができる。また、必要に応じて、防腐剤、抗酸化剤等を添加す ることができる。

経口投与のための液体製剤、例えば、乳剤、シロップ剤、懸濁剤、液剤の製造には、一般的に用いられる不活性な希釈剤、例えば水又は植物油を用いることができる。この製剤には、不活性な希釈剤以外に、補助剤、例えば湿潤剤、懸濁補助剤、甘味剤、芳香剤、着色剤又は保存剤を配合することができる。液体製剤を調製した後、ゼラチンのような吸収されうる物質のカプセル中に充填してもよい。非経口投与用の製剤、例えば注射剤又は坐剤等の製造に用いられる溶剤又は懸濁剤としては、例えば、水、プロピレングリコール、ポリエチレングリコール、ベンジルアルコール、オレイン酸エチル、レシチンを挙げることができる。坐剤の製造に用いられる基剤としては、例えば、カカオ脂、乳化カカオ脂、ラウリン脂、

ウィテップゾールを挙げることができる。製剤の調製方法は特に限定されず、当 業界で汎用されている方法はいずれも利用可能である。

注射剤の形態にする場合には、担体として、例えば、水、エチルアルコール、マクロゴール、プロピレングリコール、クエン酸、酢酸、リン酸、乳酸、乳酸ナトリウム、硫酸及び水酸化ナトリウム等の希釈剤;クエン酸ナトリウム、酢酸ナトリウム及びリン酸ナトリウム等のpH 調整剤及び緩衝剤;ピロ亜硫酸ナトリウム、エチレンジアミン四酢酸、チオグリコール酸及びチオ乳酸等の安定化剤等が使用できる。なお、この場合、等張性の溶液を調製するために十分な量の食塩、ブドウ糖、マンニトール又はグリセリンを製剤中に配合してもよく、通常の溶解補助剤、無痛化剤又は局所麻酔剤等を使用することもできる。

軟膏剤、例えば、ペースト、クリーム及びゲルの形態にする場合には、通常使用される基剤、安定剤、湿潤剤及び保存剤等を必要に応じて配合することができ、常法により成分を混合して製剤化することができる。基剤としては、例えば、白色ワセリン、ポリエチレン、パラフィン、グリセリン、セルロース誘導体、ポリエチレングリコール、シリコン及びベントナイト等を使用することができる。保存剤としては、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル等を使用することができる。貼付剤の形態にする場合には、通常の支持体に上記軟膏、クリーム、ゲル又はペースト等を常法により塗布することができる。支持体としては、綿、スフ及び化学繊維からなる織布又は不織布;軟質塩化ビニル、ポリエチレン及びポリウレタン等のフィルム又は発泡体シートを好適に使用できる。

本発明の医薬の投与量は特に限定されないが、経口投与の場合には、成人一日あたり有効成分である上記物質の重量として通常0.01~5,000mgである。この投与量を患者の年令、病態、症状に応じて適宜増減することが好ましい。前記一日量は一日に一回、又は適当な間隔をおいて一日に2~3回に分けて投与してもよいし、数日おきに間歇投与してもよい。注射剤として用いる場合には、成人一日あたり有効成分である上記物質の重量として0.001~100mg程度

である。

実施例

以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の 実施例に限定されることはない。実施例中、化合物番号は上記の表において示し た化合物の番号と対応させてある。また、本実施例中には、市販の試薬を購入し そのまま試験に供した化合物が含まれる。そのような化合物については、試薬の 販売元及びカタログに記載されているコード番号を示す。

例1:化合物番号1の化合物の製造

アルゴン雰囲気下、5ーブロモサリチル酸(217mg, 1mmol)、3,5ービス(トリフルオロメチル)ベンジルアミン(243mg,1mmol)、4ージメチルアミノピリジン(12mg,0.1mmol)、テトラヒドロフラン(10ml)の混合物に1ー(3ージメチルアミノプロピル)ー3ーエチルカルボジイミド塩酸塩(以下、WSC・HClと略す;192mg,1mmol)を加え、室温で1時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(nーヘキサン:酢酸エチル=4:1)で精製して標題化合物の白色固体(244.8mg,55.4%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 4. 69 (2H, d, J=5.7Hz), 6. 93 (1H, d, J=8.7Hz), 7. 56 (1H, dd, J=8.7, 2.4 Hz), 8. 02 (1H, d, J=2.4Hz), 8. 06 (3H, s), 9. 41 (1H, t, J=5.7Hz), 12. 13 (1H, s).

例2:化合物番号2の化合物の製造

(1) 2-アセトキシーN-(2-フェネチル) ベンズアミド

O-アセチルサリチル酸クロリド (0.20g, 1.00mmol) をペンゼン (8mL) に溶かし、フェネチルアミン (0.12g, 1.00mmol)、ピリ

ジン $(0.3 \,\mathrm{mL})$ を加え、室温で 2 時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(n ーヘキサン:酢酸エチル= $2:1 \to 1:1$)で精製して標題化合物の白色結晶($155.5 \,\mathrm{mg}$, 54.9%)を得た。

¹H-NMR (CDC1₃): δ 2. 09 (3H, s), 2. 92 (2H, t, J = 6.8Hz), 3. 71 (2H, q, J=6.8Hz), 6. 32 (1H, br s), 7. 07 (1H, dd, J=8.4, 1.2Hz), 7. 23-7. 35 (6H, m), 7. 44 (1H, ddd, J=8.0, 7.6, 1.6Hz), 7. 7 3 (1H, dd, J=7.6, 1.6Hz).

以下の実施例において例 2 (1)の製造法が引用されている場合、塩基としては、 ピリジン、トリエチルアミン等の有機塩基を用いた。また、反応溶媒としては、 ジクロロメタン、テトラヒドロフラン、ベンゼン等の溶媒を単独若しくは混合し て用いた。

(2) 2-ヒドロキシーN-(2-フェネチル) ベンズアミド

2-アセトキシ-N-(2-フェネチル)ベンズアミド(155.5mg) にメタノール(5mL)、2規定水酸化ナトリウム(0.1mL)を加え、室温で30分間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣を結晶化(ジクロロメタン/ヘキサン)して標題化合物の白色固体(106.9mg, 80.7%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 86 (2H, t, J=7.6Hz), 3. 52 (1H, q, J=7.6Hz), 6. 84-6. 88 (2H, m), 7. 18 -7. 31 (5H, m), 7. 37 (1H, ddd, J=8.4, 7.2, 1.6 Hz), 7. 80 (1H, dd, J=8.4, 1.6Hz), 8. 84 (1H, s), 12. 51 (1H, s).

以下の実施例において例2(2)の方法が引用されている場合、塩基としては、

水酸化ナトリウム、炭酸カリウム等の無機塩基を用いた。また、反応溶媒としては、水、メタノール、エタノール、テトラヒドロフラン等の溶媒を単独若しくは 混合して用いた。

(3) 5 - ブロモー 2 - ヒドロキシー N - (2 - フェネチル) ベンズアミド (化 合物番号 2)

2-ヒドロキシ-N-(2-フェネチル)ベンズアミド(79.6mg, 0.33mmo1)に四塩化炭素(5mL)、鉄粉(0.03g)、臭素($25\mu1$, 0.48mmo1)を加え、室温で1時間攪拌した。反応混合物を亜硫酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して標題化合物の白色粉末(62mg, 58.7%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 85 (2H, t, J=7.6Hz), 3. 52 (1H, q, J=7.6Hz), 6. 87 (1H, d, J=8.8Hz), 7. 18-7. 31 (5H, m), 7. 52 (1H, dd, J=8.8, 2.4Hz), 8. 01 (1H, d, J=2.4Hz), 8. 90 (1H, s), 12. 51 (1H, s).

例3:化合物番号3の化合物の製造

5ープロモサリチル酸 (109mg, 0.5mmol)、2ーアミノー5ー(モルホリノ)カルボニルインダン (141mg, 0.5mmol)、トリエチルアミン (70μL, 0.5mmol)のジクロロメタン (5mL)溶液に、WSC・HCl(96mg, 0.5mmol)を添加し、40℃で1.5時間加熱攪拌した。 冷却後、酢酸エチルで希釈し、2規定塩酸、水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥、濃縮後、残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール=19:1)で精製し、標題化合物の白色結晶(26mg, 11.9%)を得た。

 $^{1}H-NMR$ (CDC1₃): δ 2. 66 (1H, dd, J=16. 2, 7. 2

Hz), 2. 82 (1H, dd, J=16.2, 7. 2Hz), 3. 16-3.25 (2H, m), 3. 43-3.86 (8H, m), 4. 79-4.92 (1H, m), 6. 88 (1H, d, J=8.7Hz), 7. 14-7.15 (3H, m), 7. 46 (1H, dd, J=8.7, 2. 4Hz), 7. 74 (1H, d, J=7. 8Hz), 7. 84 (1H, d, J=2.4Hz).

[2-アミノー5-(モルホリノ)カルボニルインダン:「ケミカル・アンド・ファーマシューティカル・ビュレティン(Chemical and Pharmaceutical Bulletin)」, 2000年,第48巻, p. 131参照]

例4:化合物番号4の化合物

本化合物は、市販化合物である。

販売元:Apin Chemicals社

カタログコード番号: N 0100D

例5:化合物番号5の化合物

本化合物は、市販化合物である。

販売元:Specs社

カタログコード番号: AI-233/31581024

例6:化合物番号6の化合物

本化合物は、市販化合物である。

販売元:Maybridge社

カタログコード番号: RJC 00106

例7:化合物番号7の化合物

本化合物は、市販化合物である。

販売元:Maybridge社

カタログコード番号: BTB 13230

例8:化合物番号8の化合物

本化合物は、市販化合物である。

販売元:Maybridge社

カタログコード番号: BTB 114482

例9:化合物番号9の化合物の製造

5-クロロサリチルアルデヒド(313mg,2mmol)、4-クロロベンジルトリフェニルフォスフォニウムクロリド(847mg,2mmol)をN,N-ジメチルホルムアミド(20mL)に溶解し、炭酸カリウム(1.382g,10mmol)を水(10mL)に溶かして加え、5時間加熱還流した。冷却後、反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して標題化合物の灰白色固体(44.6mg,8.4%)を得た。

¹H-NMR (CDC1₃): δ 5. 04 (1H, s), 6. 74 (1H, d, J = 9. 0Hz), 7. 05 (1H, d, J=16. 5Hz), 7. 10 (1H, d d, J=8. 4, 2. 4Hz), 7. 26 (1H, d, J=16. 5Hz), 7. 33 (2H, d, J=8. 4Hz), 7. 45 (2H, d, J=8. 4Hz), 7. 49 (1H, d, J=2. 4Hz).

例10:化合物番号10の化合物の製造

(1) 5-プロモーN-(3, 5-ジクロロフェニル)-2-メトキシベンゼン スルホンアミド

5ープロモー2ーメトキシベンゼンスルホニルクロリド(857mg, 3mmo 1)をジクロルメタン(6mL)に溶解し、氷冷、アルゴン雰囲気下に3, 5ージクロロアニリン(510mg, 3.15mmo 1)、ピリジン(261mg, 3.3mmo 1)のジクロルメタン(2mL)を滴下、次いで室温で6時間攪拌した。反応混合物をジクロルメタンで希釈し2規定塩酸,水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣をnーヘキサン一酢酸エチル晶析して、標題化合物の白色結晶(900mg, 73.0%)を得た。

 ${}^{1}H-NMR$ (DMSO-d₆): δ 4. 03 (3H, s), 6. 92 (1H, d,

J=9.0Hz), 7.01 (2H, d, J=1.8Hz), 7.07-7.08 (1H, m), 7.24 (1H, brs), 7.63 (1H, dd, J=8.7, 2.4Hz), 7.99 (1H, d, J=2.4Hz).

(2) 5-プロモーN-(3, 5-ジクロロフェニル)-2-ヒドロキシベンゼンスルホンアミド(化合物番号<math>10)

 $5-プロモーN-(3,5-ジクロロフェニル)-2-メトキシベンゼンスルホンアミドの白色結晶(<math>206\,\mathrm{mg}$, $0.5\,\mathrm{mmo}\,1$)、沃化リチウム($134\,\mathrm{mg}$ g, $1\,\mathrm{mmo}\,1$)、2, 4, 6-コリジン($5\,\mathrm{mL}$)の混合物をアルゴン雰囲気下に $30\,\mathrm{分間}$ 加熱還流した。反応混合物を室温まで冷却した後、2規定塩酸にあけて酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し,無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣をn-ヘキサン-酢酸エチルで晶析して標題化合物の白色結晶($90\,\mathrm{mg}$, 45.3%)を得た。

mp 158-159°C.

¹H-NMR (DMSO-d₆): δ 6.92 (1H, d, J=8.7Hz), 7. 11 (2H, d, J=2.1Hz), 7.21-7.22 (1H, m), 7.62 (1H, dd, J=8.7, 2.7Hz), 7.80 (1H, d, J=2.4Hz), 10.70 (1H, br), 11.37 (1H, br).

例11:化合物番号11の化合物の製造

2-アミノフェノール(120mg, 1.1mmol)をジクロロメタン(5mL)に溶解し、氷冷、アルゴン雰囲気下に3,5-ビス(トリフルオロメチル)ベンゾイルクロリド(300mg, 1.1mmol)のジクロルメタン(3mL)溶液、ピリジン(0.5mL)を滴下し、次いで室温で1時間攪拌した。反応混合物を2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。得られた残渣をエタノール(5mL)に溶解し、2規定水酸化ナトリウム(0.1mL, 0.2mmol)を滴下し、次いで室温で30分攪拌した。反応混合物を2規定塩酸

にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=4:1)で精製し、標題化合物の淡桃色結晶(288mg, 73.6%)を得た。

mp 183℃ (dec.).

¹H-NMR (DMSO-d₆): δ 6. 83 (1H, td, J=8. 0, 1. 2Hz), 6. 93 (1H, dd, J=8. 0, 1. 2Hz), 7. 08 (1H, td, J=8. 0, 1. 6Hz), 7. 50 (1H, d, J=8. 0Hz), 8. 35 (2H, s), 9. 61 (1H, s), 10. 15 (1H, s).

例12:化合物番号12の化合物の製造

2-アミノー4ークロロフェノール(316mg, 2.2mmol)、トリエチルアミン(243mg, 2.4mmol)をジクロルメタン(8mL)に溶解し、氷冷、アルゴン雰囲気下に3,5-ジクロロベンゾイルクロリド(419mg,2mmol)のジクロルメタン(2mL)溶液を滴下し、次いで室温で15時間 攪拌した。反応混合物を酢酸エチルで希釈し、水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=3:1)で精製し、淡褐色固体を得た。これをnーヘキサン-酢酸エチルで加熱還流下に懸濁洗浄して標題化合物の白色結晶(205mg,32.4%)を得た。

mp 251-252°C.

¹H-NMR (DMSO-d₈): δ 6. 93 (1H, d, J=9. 0Hz), 7. 11 (1H, dd, J=8. 7, 2. 7Hz), 7. 67 (2H, d, J=2. 7Hz), 7. 86-7. 87 (1H, m), 7. 97 (1H, d, J=1. 8Hz), 9. 85 (1H, s), 10. 03 (1H, s).

例13:化合物番号13の化合物の製造

2-アミノー4-クロロフェノール (287 mg, 2 mm o 1)、3, 5-ジクロロベンゼンスルホニルクロリド (540 mg, 2.2 mm o 1) をジクロルメタ

mp 190-191°C.

¹H-NMR (DMSO-d₆): δ 6. 68 (1H, d, J=9.0Hz), 7. 08 (1H, dd, J=8.7, 2.7Hz), 7. 17 (1H, d, J=2.4Hz), 7. 70 (2H, d, J=1.8Hz), 7. 95-7. 96 (1H, m), 10. 00 (1H, s), 10. 06 (1H, s).

例14:化合物番号14の化合物の製造

(1) 4 ープロモー 2 ー [(3, 5 ージクロロフェニルイミノ) メチル] フェノール

5-プロモサリチルアルデヒド (1.01g, 5mmol), 3, 5-ジクロロアニリン (810mg, 5mmol)、エタノール (25mL) の混合物をアルゴン雰囲気下に1時間加熱還流した。反応混合物を室温まで冷却後、析出した結晶を濾取して、標題化合物の橙色結晶 (1.52g, 88.2%) を得た。

mp 161-163°C.

¹H-NMR (CDC1₃): δ 6. 94 (1H, d, J=9. 0Hz), 7. 16 (2H, d, J=1. 8Hz), 7. 30-7. 31 (1H, m), 7. 47-7. 53 (2H, m), 8. 51 (1H, s).

(2) N- [(5-プロモー2-ヒドロキシフェニル) メチル]-3, 5-ジクロロアニリン (化合物番号14)

4-プロモ-2-[(3,5-ジクロロフェニルイミノ)メチル]フェノール(1.04g,3mmol)をテトラヒドロフラン(12mL)及びエタノール(6m

L)に溶解し、氷冷、アルゴン雰囲気下に水素化ホウ素ナトリウム(113mg,3mmol)を添加し、次いで室温で12時間攪拌した。反応混合物にアセトン(10mL)を添加し、減圧下に濃縮して得られた残渣に水を加えてジクロルメタンで抽出した。ジクロルメタン層を水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=4:1)で精製し、淡黄色粘稠性物質を得た。これをnーヘキサンで結晶化して標題化合物の白色結晶(971mg,93.3%)を得た。

mp 125-126 °C.

 $^{1}H-NMR$ (CDCl₃): δ 4. 31 (2H, s), 6. 64 (2H, d, J=1.8Hz), 6. 74-6. 77 (1H, m), 6. 84-6. 85 (1H, m), 7. 30-7. 34 (2H, m).

例15:化合物番号15の化合物

本化合物は、市販化合物である。

販売元:Sigma-Aldrich社

カタログコード番号: S3203-5

例16:化合物番号16の化合物の製造

5-クロロサリチル酸(173 mg, 1mmo1)、3, 5-ビス(トリフルオロメチル)-N-メチルアニリン(243mg, 1mmo1)、三塩化リン(44μ , 0.5mmo1)、モノクロロベンゼン(5mL)の混合物をアルゴン雰囲気下に3時間加熱還流した。反応混合物を室温まで冷却した後、n-ヘキサン(50mL)を添加し、析出した粗結晶を濾取して酢酸エチル(50mL)に溶解した。酢酸エチル溶液を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製し、標題化合物の白色結晶(75mg, 18.9%)を得た。

 $^{1}H-NMR$ (CDC l_{3}): δ 3. 57 (3H, s), 6. 59 (1H, d, J

= 2.4 Hz), 6. 94 (1H, d, J=9.0 Hz), 7. 21 (1H, dd, J=9.0, 2. 7Hz), 7. 58 (2H, s), 7. 80 (1H, s), 10. 00 (1H, brs).

以下の実施例において例16の方法が引用されている場合、酸ハロゲン化剤としては、三塩化リンを用いた。また、反応溶媒としては、モノクロロベンゼン、トルエン等の溶媒を用いた。

例17:化合物番号17の化合物の製造

原料として、5 ープロモサリチル酸、及び7 ートリフルオロメチルー1,2,3,4 ーテトラヒドロキノリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:42.0%

 $^{1}H-NMR$ (CDC1₃): δ 2. 08 (2H, m), 2. 92 (2H, t, J = 6. 6Hz), 3. 95 (2H, t, J=6. 6Hz), 6. 91-6. 94 (2H, m), 7. 14 (1H, s), 7. 32-7. 35 (2H, m), 7. 40 (1H, dd, J=8. 7, 2. 4Hz), 10. 06 (1H, s).

例18:化合物番号18の化合物の製造

原料として、2-ヒドロキシナフタレン-1-カルボン酸、及び3,5-ジクロロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:51.2%

mp 246-248°C.

¹H-NMR (DMSO-d₆): δ 7. 26 (1H, d, J=9.3Hz), 7. 31-7.37 (2H, m), 7. 44-7.50 (1H, m), 7. 65-7. 68 (1H, m), 7. 85-7.90 (4H, m), 10.23 (1H, s), 10.74 (1H, s).

例19:化合物番号19の化合物の製造

原料として、3-ヒドロキシナフタレン-2-カルボン酸、及び3,5-ジクロロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 44. 3%

mp 254-255°C.

¹H-NMR (DMSO-d₆): δ 7. 34-7. 39 (3H, m), 7. 49 -7. 54 (1H, m), 7. 76-7. 79 (1H, m), 7. 89 (2H, d, J=1.8Hz), 7. 92 (1H, m), 8. 39 (1H, s), 10. 75 (1H, s), 11. 01 (1H, s).

例20:化合物番号20の化合物

本化合物は、市販化合物である。

販売元:Sigma-Aldrich社

カタログコード番号: S01361-8

例21:化合物番号21の化合物の製造

原料として、1-ヒドロキシナフタレン-2-カルボン酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:65.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 51 (1H, d, J=9.0Hz), 7. 60 (1H, td, J=7.8, 0.9Hz), 7. 70 (1H, td, J=7.

8, 0.9 Hz), 7.89 (1 H, s), 7.93 (1 H, d, J = 8.4 Hz),

8. 09 (1H, d, J = 9. 0Hz), 8. 33 (1H, d, J = 8. 7Hz),

8. 51 (2H, s), 10. 92 (1H, s), 13. 36 (1H, s).

例22:化合物番号22の化合物

本化合物は、市販化合物である。

販売元:Sigma-Aldrich社

カタログコード番号: S58026-0

例23:化合物番号23の化合物

本化合物は、市販化合物である。

販売元:Sigma-Aldrich社

カタログコード番号: S63263-5

例24:化合物番号24の化合物の製造

 $5-\rho$ ロロー 2-ビドロキシニコチン酸(174mg,1mmo 1)、3,5-ビス(トリフルオロメチル)アニリン(275mg,1.2mmo 1),ピリジン(316mg,4mmo 1)をテトラヒドロフラン(20mL)及びジクロルメタン(10mL)に溶解し,オキシ塩化リン(0.112ml,1.2mmo 1)を添加し,次いで室温で2時間攪拌した。反応混合物を酢酸エチル(100mL)及び0.2規定塩酸(100mL)にあけ,30分間攪拌したあとにセライトろ過紙、濾液の水層を酢酸エチルで抽出した。合わせた酢酸エチル層を水、飽和食塩水で順次洗浄し,無水硫酸マグネシウムで乾燥した後溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1 $\rightarrow 1:1$)で精製し、淡黄色固体を得た。これをエタノールで加熱還流下に懸濁洗浄して標題化合物の白色結晶(183mg,47.6%)を得た。

融点:>270℃

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 83 (1H, s), 8. 15 (1H, d, J=3. 3Hz), 8. 36 (1H, d, J=3. 0Hz), 8. 40 (2H, s), 12. 43 (1H, s).

以下の実施例において例24の製造法が引用されている場合、酸ハロゲン化剤としては、オキシ塩化リンを用いた。塩基としては、ピリジンを用いた。また、反応溶媒としては、ジクロロメタン、テトラヒドロフラン等の溶媒を単独若しくは混合して用いた。

例25:化合物番号25の化合物の製造

原料として、5-クロロ-2-ヒドロキシニコチン酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例24と同様の操作を行い、標題化合物を得た。

収率:42.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 52 (1H, dd, J=8. 4, 2.

1 H z), 7. 81 (1 H, d, J=8. 4 H z), 8. 16 (1 H, s), 8. 3 9 (1 H, d, J=2. 7 H z), 8. 96 (1 H, d, J=2. 1 H z), 12. 76 (1 H, s), 13. 23 (1 H, s).

例26:化合物番号26の化合物の製造

原料として、5-クロロ-2-ヒドロキシニコチン酸、及び3, 5-ピス [(1, 1-ジメチル) エチル] アニリンを用いて例 24と同様の操作を行い、標題化合物を得た。

収率:59.1%

収率:45.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 29 (18H, s), 7. 18 (1H, t, J=1.8Hz), 7. 52 (2H. d, J=1.8Hz), 8. 07 (1H, d, J=2.4Hz), 8. 35 (1H, d, J=3.3Hz), 11. 92 (1H, s), 13. 10 (1H, s).

例27:化合物番号27の化合物の製造

原料として、3-ヒドロキシピリジン-2-カルボン酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例24と同様にして、標題化合物を得た。

 $^{1}H-NMR$ (CDCl₃): δ 7. 40 (1H, dd, J=8. 4, 1. 8H z), 7. 46 (1H, dd, J=8. 4, 4. 2Hz), 7. 68 (1H, s), 8. 16 (1H, dd, J=4. 2, 1. 2Hz), 8. 25 (2H, s), 10.

24 (1H, s), 11. 42 (1H, s).

例28:化合物番号28の化合物の製造

アルゴン雰囲気下、3,5-ビス(トリフルオロメチル)フェニルイソシアネート(255mg,1.0mmol)をテトラヒドロフラン(5mL)に溶解し、6-クロローオキシインドール(184mg,1.1mmol)のテトラヒドロフラン(5ml)溶液、トリエチルアミン(0.3mL)を加え、室温で4時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧留去して得られた