MUSIC GENRE CLASSIFICATION

Data Science and Artificial Intelligence- FCSB (group 8)

By- Dahiya Adit, Dahiya Advik, Kakkar Dhairya

MOTIVATIONS

It's frustrating when you can't easily discover the songs you want to hear. Our group thought about this situation and realised that it is a common and big problem most of us face.

Worldwide listeners struggle to discover new songs within their preferred genres due to the vast volume of music uploads, lack of time to explore each track and even a lack of mood of doing so.

PROBLEM DEFINITION

Predicting the music genres after analyzing the characteristics of the songs to improve user experience on music platforms.

EXPLORATORY DATA ANALYSIS

Float variables = 11

Object variables = 7

float64 instance_id artist_name object track_name object float64 popularity float64 acousticness float64 danceability duration ms float64 float64 energy float64 instrumentalness object key float64 liveness loudness float64 object mode speechiness float64 object tempo obtained_date object valence float64 music_genre object dtype: object

```
print("Data type : ", type(music_df))
print("Data dims : ", music_df.shape)

Data type : <class 'pandas.core.frame.DataFrame'>
Data dims : (50005, 18)

Number of columns/variables = 18
Number of rows = 50,005
```

EXPLORATORY DATA ANALYSIS

Possible Genres:

'Electronic', 'Anime', 'Jazz', 'Alternative', 'Country', 'Rap',

'Blues', 'Rock', 'Classical', 'Hip-Hop'.

Selected Variables:

CLEANING THE DATASET

	mode	speechiness	tempo	obtained_date	valence
00000000000	Minor	0.0748	100.889	4-Apr	
00000000000	Minor	0.03	115.00200000000000	4-Apr	
-4.617	Major	0.0345	127.994	4-Apr	0.33300
-4.498	Major	0.239	128.014	4-Apr	
-6.266	Major	0.0413	145.036	4-Apr	0.32300
-10.517	Minor	0.0412	?	4-Apr	
-4.294	Major	0.351	149.995	4-Apr	
-9.339	Minor	0.0484	120.008	4-Apr	0.76100
-3.175	Minor	0.268	149.94800000000000	4-Apr	
-7.091	Minor	0.173	139.933	4-Apr	
-13.787	Minor	0.0345	57.528	4-Apr	
-5.439	Minor	0.0609	178.543	3-Apr	
-3.464	Major	0.0645	128.043	4-Apr	
-10.536	Minor	0.0424	154.745	4-Apr	
00000000000	Major	0.185	139.911	4-Apr	
-2.51	Major	0.0904	100.024	4-Apr	

Some values of "tempo" contained a "?" value making it an object type variable. Therefore the data **had to**

be cleaned

CLEANING THE DATASET

```
music['tempo'] = pd.to_numeric(music['tempo'], errors = 'coerce')

pusic_df['tempo'] = pd.to_numeric(music_df['tempo'], errors = 'coerce')
    music_df = music_df.dropna()
    print("Data dims : ", music_df.shape)

pusic = music.dropna()
    print("Data dims : ", music.shape)

music = music.dropna()
    print("Data dims : ", music.shape)
```

Using ".dropna()"

Tempo — "?" changed — NaN rows deleted

VISUAL ANALYSIS

Making Uni-Variate statistics of the selected variables

- Bar plot
- Histogram
- Violin plot

VISUAL ANALYSIS

More than 50% of the classical music genres have acousticness 0.9 and 1.0

More than 50% of the classical music genres have energy 0.1 and 0.4

Machine Learning Technique used:

Classification

Classification Methods Used:

- 1) Random Forest Classifier
- 2) Decision Tree Classifier
- 3) Gradient Boosting Classifier
- 4) Gaussian Naive Bayes Method

RANDOM FOREST CLASSIFIER

- Constructs multiple decision trees
- Selects random feature subsets
- Combines each tree to give result

Accuracy of Random Forest Classifier(Train set): 96.79190201180428% Accuracy of Random Forest Classifier(Test set): 54.57574411372723%

DECISION TREE CLASSIFIER

- Tree-like structure
- Recursively partitions the data based on features.
- Selects the feature that best splits the data forming a decision path

Accuracy of Decision Tree Classifier(Train set): 96.79190201180428% Accuracy of Decision Tree Classifier(Test set): 43.99526136531912%

GRADIENT BOOSTING CLASSIFIER:

- Boosts algorithm by adding onto weak models through iteration.
- Corrects previous errors
- Focuses on data points with large residuals

Accuracy of Gradient Boosting Classifier(Train set): 63.029129910515955% Accuracy of Gradient Boosting Classifier(Test set): 56.62668443654672%

GAUSSIAN NAIVE BAYES METHOD

- Probabilistic classifier based on Bayes' theorem
- Follows a Gaussian distribution
- Calculates the probability of each class
- Selects the class with the highest probability.

Accuracy of Gaussian Naive Bayes(Train set): 43.10147870787586% Accuracy of Gaussian Naive Bayes(Test set): 43.573226714053014%

CONFUSION MATRIX

Random Forest

Decision Tree

CONFUSION MATRIX

Gradient boosting

Gaussian Naive Bayes

OUTCOMES

Gradient Boosting classifier achieved an accuracy of 56%

Future advancements can come from refining algorithms

Interesting fact - Basic characteristics like tempo, energy etc. can moderately predict music genres

THANK