

Overview of Latent Variable Models for Analysis, Optimization & Design

John F. MacGregor
ProSensus, Inc. and McMaster University
Hamilton, ON, Canada

Models

- Learning from data is the key to productivity and quality improvement
- Models in general (mechanistic & theoretical) are simply tools to help us interpret data
- Presentation will focus on empirical Latent Variable models
 - Very powerful for analyzing large volumes of industrial data for:
 - Improved process understanding
 - On-line monitoring
 - Soft sensors
 - Some important control problems (e.g. batch processes)
 - Some important optimization problems
 - Development of new products

Scope

- Multivariate latent variable (LV) methods have been widely used in passive chemometric environments
 - A passive environment is one in which the model is only used to interpret data from a constant environment
 - Calibration
 - Inferential models (soft sensors)
 - Monitoring of processes
- Used much less frequently in an active environment
 - An active environment is one in which the model will be used to actively adjust the process environment
 - Optimization
 - Control
- This talk addresses issues and industrial examples on the use of LV models in both environments.

Outline:

- Preliminaries: Some Important Concepts in Latent Variable Modeling for active use
 - Simultaneous modeling of both X & Y spaces
 - Causality of the model
- Passive Applications
 - Analysis of historical data (learning from data)
 - On-line monitoring
- Optimization & Control in Latent Variable spaces
 - Control of final product attributes in batch processes
 - Optimization of processes to achieve desired responses
 - Scale-up and Transfer of products & processes
 - Rapid development of new products

A. Types of Processes and Data Structures

Continuous Processes

Data structures

Batch Processes

Data structures

Nature of industrial data

- High dimensional data
 - Many variables measured at many times
- Non-causal in nature
 - No cause and effect information among individual variables
- Non-full rank
 - Process really varies in much lower dimensional space
- Missing data
 - 10 − 20 % is common (with some columns/rows missing 90%)
- Low signal to noise ratio
 - Little information in any one variable
- Latent variable models are ideal for these problems

B. Concept of latent variables

Measurements are available on K physical variables: matrix=X

		K columns								
	1	2	3	4	5	6	7	8	9	1
1	Primary ID	Prim In T	Sec In T	Prim Out T	Feed Flow	Chamb P	Diff P Bag/h	System P	Exhaust P	Sec
2	2006-04-05 16:35:00.00	119.049	116.541	41.1646	76.5042	320.199	126.565	66.401	-61.6004	41.
3	2006-04-05 16:35:05.00	119.046	116.532	41.1979	76.4959	325.755	126.636	95.8617	-43.3963	41.
4	2006-04-05 16:35:10.00	119.044	116.523	41.1626	76.4875	321.37	126.708	82.759	-52.5372	41.
5	2006-04-05 16:35:15.00	119.041	116.514	41.1274	76.4792	327.09	126.78	80.6494	-51.5954	41.
6	2006-04-05 16:35:20.00	119.039	116.505	41.101	76.4709	326.797	126.851	94.5307	-43.7692	41.
7	2006.04.05 16:35:25 00	119.036	116.497	41.0367	76.4625	318.052	126.923	85.1925	-50.9631	41.

But, the process is actually driven by small set of "A" $(A \ll K)$ independent latent variables, called T_{\bullet}

- Raw material variations
- Equipment variations
- Environmental (temp, humidity, etc.) variations

2006-04-05 16:35:30.00 119.034 116.488 41.281 76.4542 323.099

Projection of data onto a low dimensional latent variable space (T)

Latent variable regression models

$$X = TP^T + E$$

$$Y = TC^T + F$$

$$T = XW^*$$

Estimation of W,P,C via PLS

Symmetric in X and Y

- Both X and Y are functions of the latent variables, T
- No hypothesized relationship between X and Y

Important Concepts in Latent Variable Models

- Handle reduced rank nature of the data
 - Work in new low dimensional orthogonal LV space (t1, t2,...)
 - To interpret: Use X model to go back to original variables (contributions)
- Model for X space as well as Y space

$$-X = TP^T + E$$
; $Y = TC^T + F$

- Unique among regression methods
- Essential for uniqueness and for interpretation
- Essential for checking validity of new data
- X space model will be the key to all applications in this talk

- Optimization & control can be done in this space
 - only space where this is justified

Causality in Latent Variable models

- In the passive application of LV models no causality is required
 - Model use only requires that future data follow the same structure
 - No causality is implied or needed among the variables for use of the model
 - Calibration; soft sensors; process monitoring
- For active use such as in optimization and control one needs causal models
 - For empirical models to be causal in certain x-variables we need to have data with independent variation (DOE's) in those x's.
 - But most process modeling uses "happenstance data" that arise in the natural operation of the process
 - These models do not give causal models for the effect of individual x's on the y's
 - But LV models do provide causal models in the low dimensional LV space
 - le. if we move in LV space (t1, t2, ...) we can predict the causal effects of these moves on X and Y thru the X and Y space models
- Will use this fact together with the model of the X-space to perform (c) 2004-2008, ProSensus, Optimization and control in the LV spaces

C. Industrial illustrations

- Analysis and On-line Monitoring
 - Passive applications
- Control in Latent Variable Spaces:
 - If can monitor on-line, then next step is to take active control action if the batch process is not progressing well.
- Optimization in Latent variable Spaces:
 - Optimization of process operations
 - Scale-up and product transfer between plants
 - Rapid development of new products
 - DOE in LV spaces to improve databases
 - Each example will illustrate the active use of LV models and the importance of working in the LV space and using both X & Y models

C. LV approaches on industrial applications

- Analysis and monitoring of a batch process
- Control of final quality attributes in batch processes
- Optimization of process operation (batch)
- Scale-up and transfer between plants
- Rapid development of new products
- DOE in Latent Variable spaces to enrich dataset.

Analysis of historical data (Process trouble-shooting)

- Where was the process operating poorly?
- Which variables, in which part of the process contribute to this poor behavior?
 - Process understanding
- Industrial example:
 - Herbicide production in a batch manufacturing process

Analysis of an Industrial Agricultural Chemical Process

- For each batch (of 72 batches)
 - Raw material properties in Z matrix
 - Time varying trajectories of process variables in X array
 - Collect product quality data in Y matrix

- Database: ~400,000 data points
- PLS latent variable model required only 2 latent variables

Score plot for Z

Score lot for X

VIP's for Z model

Loading vector w*₁ for X model

Multivariate process monitoring (MSPC)

- Data: Historical data on process when it has only common cause variation.
- PCA/PLS model
- Monitor new data in the score space of model.
- Are the new data consistent with common cause variation?

Score plot

Process monitoring: Agricultural chemical process

Monitoring of new batch number 73

T² plot

Contribution plots to diagnose the problem

Problem: Variable x₆ diverged above its nominal trajectory at time 277

C. LV approaches on industrial applications

- Analysis and monitoring of a batch process
- Control of final quality attributes in batch processes
- Optimization of process operation (batch)
- Scale-up and transfer between plants
- Rapid development of new products
- DOE in Latent Variable spaces to enrich dataset.

Control of batch product quality

- Objective is to control final product quality
 - e.g. control of final particle size distribution (PSD)
- Using all data up to some decision time, predict final quality with latent variable model
 - All prediction done in low dimensional latent variable space (y's then calculated from t's)
- If predicted quality is outside a desired window, then make a mid-course correction to the batch
 - Control at only one or two points is sufficient
 - Analogy to NASA mid-course rocket trajectory adjustment in moon missions
- Data requirement: Historical batches + few with DOE on corrective variables

Control of PSD via mid-course correction

- Trajectories of one variable from many batches
- At decision point predict Y's if outside target region take action

Time interval

Good industrial results (Mitsubishi Chemicals)

Mid-course control: before and after implementation

C. LV approaches on industrial applications

- Analysis and monitoring of a batch process
- Control of final quality attributes in batch processes
- Optimization of process operation (batch)
- Scale-up and transfer between plants
- Rapid development of new products
- DOE in Latent Variable spaces to enrich dataset.

Optimizing operating policies for new products

Temperatures
Pressures
Concentrations
Recipes
Flows
Trajectories

Density
Tensile strength
Mw, Mn
Transparency
Biological activity
Toxicity
Hydrophobicity

Batch polymerization process trajectory data (X)

Batch emulsion polymerization (Air Products & Chemicals)

13 variables in Y

Desire a new product with the following final quality attributes (Y's):

Maintain in normal ranges: Y_1 Y_2 Y_3 Y_4 Y_5 Y_6 Y_8

Constraints: $Y_7 = Y_{7des}$

$$Y_9 = Y_{9des}$$

$$Y_{12} < Y_{12const}$$

$$Y_{13} < Y_{13const}$$

... and with the minimal possible batch time (*)

Solution

- Build batch PLS latent variable model on existing data (Z, X, Y)
- Perform an optimization in LV space to find optimal LV's
- Use LV model of X-space to find the corresponding recipes and process trajectories

Process Optimization

Design via PLS model inversion (no constraints)

PLS Model:

$$\hat{\mathbf{Y}} = \mathbf{T}\mathbf{Q}^{\mathsf{T}}$$

$$\hat{\mathbf{y}}_{\text{des}} = \mathbf{Q}\boldsymbol{\tau}_{\text{new}} \qquad \text{Step 1}$$

$$\hat{\mathbf{X}} = \mathbf{T}\mathbf{P}^{\mathsf{T}} \qquad \boldsymbol{\tau}_{new} = inv\left(Q^{T}Q\right)Q^{T}y_{des}$$

$$\hat{\mathbf{x}}_{\text{new}} = \mathbf{P}\boldsymbol{\tau}_{\text{new}} \qquad \text{Step 2}$$

- If dim(Y) < dim(X) then is a null space
 - A whole line or plane of equivalent solutions yielding the same y_{des}

Solution with constraints: Formulate inversion as an optimization

• Step 1: Solve for $\hat{\tau}_{new}$ with constraints on T² and on y's

$$\min_{\hat{\boldsymbol{\tau}}_{xnew}} \left\{ (\mathbf{y}_{des} - \mathbf{Q} \ \hat{\boldsymbol{\tau}}_{xnew})^{T} \mathbf{G}_{1} (\mathbf{y}_{des} - \mathbf{Q} \ \hat{\boldsymbol{\tau}}_{xnew}) + \rho \left(\sum_{a=1}^{A} \frac{\hat{\boldsymbol{\tau}}_{xnew,a}^{2}}{s_{a}^{2}} \right) \right\}$$

$$s.t$$

$$\mathbf{B} \mathbf{Q} \ \hat{\boldsymbol{\tau}}_{xnew} < \mathbf{b}$$

• Step 2: Solve for x_{new} that yields $\hat{\tau}_{new}$ subject to certain constraints on SPE and x's.

$$\min_{\mathbf{X}_{\text{new}}} \left\{ \left(W^* \mathbf{X}_{\text{new}} - \hat{\boldsymbol{\tau}}_{\text{new}} \right)^{\text{T}} \mathbf{G}_2 \left(W^* \mathbf{X}_{\text{new}} - \hat{\boldsymbol{\tau}}_{\text{new}} \right) + \left(\mathbf{X}_{\text{new}} - PW^* \mathbf{X}_{\text{new}} \right)^{\text{T}} \mathbf{\Lambda} \left(\mathbf{X}_{\text{new}} - PW^* \mathbf{X}_{\text{new}} \right) + \mathbf{\eta} \mathbf{X}_{\text{new}} \right\}$$

Different solutions: change the penalty (η) on time usage

All solutions satisfy the requirements on y_{des}

Case 1 to 5: weight on time-usage is gradually increased

Garcia-Munoz, S., J.F. MacGregor, D. Neogi, B.E. Latshaw and S. Mehta, "Optimization of batch operating policies. Part II: Incorporating process constraints and industrial applications", <u>Ind. & Eng. Chem. Res.</u>, 2008

C. LV approaches on industrial applications

- Analysis and monitoring of a batch process
- Control of final quality attributes in batch processes
- Optimization of process operation (batch)
- Scale-up and transfer between plants
- Rapid development of new products
- DOE in Latent Variable spaces to enrich dataset.

Product transfer between plants and scale-up

Product transfer and scale-up

Historical data from the 2 plants. Build JYPLS model

Garcia-Munoz, S., T.Kourti and J.F. MacGregor, "Product Transfer Between Sites using Joint-Y PLS", Chemometrics & Intell. Lab. Systems, 79, 101-114, 2005.

Industrial Scale-up Example

Tembec - Cdn. pulp & paper company:

Pilot plant and full scale digesters

(c) 2004-2008, ProSensus, Inc.

Scale up for grade F – pulp digester

Build models on all pilot plant data and all plant data (ex F)

Design operating profiles to achieve grade F in plant.

C. LV approaches on industrial applications

- Analysis and monitoring of a batch process
- Control of final quality attributes in batch processes
- Optimization of process operation (batch)
- Scale-up and transfer between plants
- Rapid development of new products
- DOE in Latent Variable spaces to enrich dataset.

Rapid Development of New Products

- Companies accumulate lot of data on their products and processes.
- Can we use that data to rapidly develop new products?
- Three general degrees of freedom for developing new products:
 - Raw material selection
 - Ratios in which to use raw materials (formulation)
 - Process conditions for manufacturing
 - Relative importance of these three depends on the industry and the product
 - Huge synergisms among these

What is the problem?

Traditional approaches tend to treat each step separately→ inefficient as they miss synergism among these degrees of freedom

Example: Functional Polymer Development

Mitsubishi Chemicals

Equally applicable to pharmaceutical tablet formulations

Data structure

Methodology

Build a multi-block PLS model that relates all the databases together and predicts the final quality attributes

Perform an optimization in the latent variable space of the

Process

Z

multi-block PLS model

Which materials?

– Formulation ratios?

Process conditions?

Minimum cost

Formulation of the Optimization

Example: Golf ball development

Approach to golf ball core design increased the resilience 1.7 times compared to previous products

C. LV approaches on industrial applications

- Analysis and monitoring of a batch process
- Control of final quality attributes in batch processes
- Optimization of process operation (batch)
- Scale-up and transfer between plants
- Rapid development of new products
- DOE in Latent Variable spaces to enrich dataset.

DOE's to enhance information content

- Often industrial data bases are very large, but contain data only in limited regions
- Need add designed experiments to enhance information content of these large databases
 - But DOE space of original variables is extremely large!
 - DOE in LV space
- DOE's can be used to provide a small number of runs that can upgrade these databases
 - Example: for product development
 - DOE consists of simultaneous selection combinations of :
 - Raw materials
 - Formulation ratios
 - Processing conditions

that will best enhance the information in the data-base

Concept of DOE in latent variable spaces

- Note regions of LV space where there are no data
- Use optimal DOE's to find those scores (t₁, t₂,) that would fill in these holes

Latent variable space

Muteki, K., J.F. MacGregor, and T. Ueda, "Mixture designs and models for the simultaneous selection of ingredients and their ratios", <u>Chemometrics & Intell. Lab. Systems</u>, 86, 17-25, 2007.

DOE in latent variable spaces

- Experiments () in score space
- From the DOE in the scores (t1, t2, ...) use LV model of x-space to provide corresponding DOE in the raw materials, formulations and processing conditions: [Z, X, R]
- i.e. DOE in low dimensional score space provides a corresponding DOE in the high dimensional original variable space
- Very powerful concept
 - Drug design (SMD's)
 - Product development

Summary

- Latent Variable methods for handling and integrating large volumes of industrial data
 - Concepts and motivation for latent variable methods
- Passive Applications:
 - Understanding through the analysis of historical data
 - On-line monitoring of process health
- Active Applications:
 - Control of final product quality
 - Optimizing process conditions
 - Scale-up and transfer between plants
 - Development of new products
 - DOE's to enhance information content of the large databases

Some References on topics in the presentation

Latent variable methods (general)

- Eriksson L., Johansson, E., Kettaneh-Wold, N. and Wold, S., 1999. "Introduction to Multi- and Megavariate Data Analysis using Projection Methods (PCA & PLS), Umetrics AB, Umea, Sweden
- Kourti, T. (2002). Process Analysis and Abnormal Situation Detection: From Theory to Practice. <u>IEEE Control Systems</u>, 22(5), 10-25.

Software

SIMCA_P (Umetrics); Unscrambler (Camo); Matlab toolbox (Eigenvector Technologies), ProMV (ProSensus)

Analysis of historical data

 Garcia-Munoz, S., T. Kourti and J.F. MacGregor, A.G.. Mateos and G. Murphy, "Trouble-shooting of an industrial batch process using multivariate methods", <u>Ind. & Eng. Chem. Res.</u>, <u>42</u>, 3592-3601, 2003

Monitoring

T. Kourti and J.F. MacGregor, 1995. "Process Analysis, Monitoring and Diagnosis Using Multivariate Projection Methods", <u>J. Chemometrics and Intell. Lab. Systems</u>, <u>28</u>, 3-21.

Control

Flores-Cerillo, J. and J. F. MacGregor, "Within-batch and batch-to-batch inferential adaptive control of semi-batch reactors: A Partial Least Squares approach", <u>Ind. & Eng. Chem. Res.</u>, <u>42</u>, 3334-3345, 2003.

Image-based soft sensors

- Yu, H., J.F. MacGregor, G. Haarsma, and W. Bourg, "Digital imaging for on-line monitoring and control of industrial snack food processes", <u>Ind. & Eng. Chem. Res.</u>, <u>42</u>, 3036-3044, 2003
- Yu, H. and J.F. MacGregor, "Multivariate image analysis and regression for prediction of coating content and distribution in the production of snack foods", <u>Chem. & Intell. Lab. Syst.</u>, <u>67</u>, 125-144, 2003

References, continued

Optimization

- Jaeckle, J.M., and MacGregor, J.F. (1998). Product Design Through Multivariate Statistical Analysis of Process Data. AIChE Journal, 44, 1105-1118.
- Jaeckle, J.M., and MacGregor, J.F. (2000). Industrial Applications of Product Design through the Inversion of Latent Variable Models. Chemometrics and Intelligent Laboratory Systems, 50, 199-210.
- Yacoub, F. and J.F. MacGregor, "Product optimization and control in the latent variable space of nonlinear PLS models",
 Chemometrics & Intell. Lab. Syst., 70, 63-74, 2004.
- Garcia-Munoz, S., J.F. MacGregor, D. Neogi, B.E. Latshaw and S. Mehta, "Optimization of batch operating policies. Part II: Incorporating process constraints and industrial applications", <u>Ind. & Eng. Chem. Res.</u>, Published on-line, May, 2008

Product development

- Muteki, K., J.F. MacGregor and T. Ueda, "On the Rapid development of New Polymer Blends: The optimal selection of materials and blend ratios", Ind. & Eng. Chem. Res., 45, 4653-4660, 2006.
- Muteki, K. and J.F. MacGregor, "Multi-block PLS Modeling for L-shaped Data Structures, with Applications to Mixture Modeling", Chemometrics & Intell. Lab. Systems, 85, 186-194, 2006

Design of Experiments

- Muteki, K., J.F. MacGregor, and T. Ueda, "Mixture designs and models for the simultaneous selection of ingredients and their ratios", <u>Chemometrics & Intell. Lab. Systems</u>, 86, 17-25, 2007.
- Muteki, K. and J.F. MacGregor, "Sequential design of mixture experiments for the development of new products", Chemometrics & Intell. Lab Sys., 2007.