Лабораторная работа №2

Сетевые технологии

Андреева С.В.

Группа НПИбд-01-23

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Андреева Софья Владимировна
- Группа НПИбд-01-23
- Российский университет дружбы народов

Вводная часть

Цель работы

Цель данной работы — изучение принципов технологий Ethernet и FastEthernet и практическое освоение методик оценки работоспособности сети,построенной на базе технологии FastEthernet.

Выполнение лабораторной

работы

Нам нужно оценить работоспособность сети Fast Ethernet (100 Мбит/с) по первой и второй моделям. Конфигурации даны в таблице (6 вариантов), топология — на рисунке. Топология представляет собой домен коллизий с двумя повторителями класса II, соединёнными соединяющим сегментом. Сегменты 1, 2, 3 подключены к первому повторителю (левая сторона), сегменты 5, 6 — ко второму (правая сторона), а сегмент 4 — соединяющий между повторителями.Все сегменты — 100ВАSE-ТХ на витой паре категории 5.

No	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6
1.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	TX, 96 M	ТХ, 92 м	ТХ, 80 м	ТХ, 5 м	ТХ, 97 м	ТХ, 97 м
2.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	TX, 95 M	ТХ, 85 м	ТХ, 85 м	ТХ, 90 м	ТХ, 90 м	ТХ, 98 м
3.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	TX, 60 M	ТХ, 95 м	ТХ, 10 м	ТХ, 5 м	ТХ, 90 м	ТХ, 100 м
4.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	TX, 70 M	ТХ, 65 м	ТХ, 10 м	ТХ, 4 м	ТХ, 90 м	ТХ, 80 м
5.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	TX, 60 M	ТХ, 95 м	ТХ, 10 м	ТХ, 15 м	ТХ, 90 м	ТХ, 100 м
6.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	TX, 70 M	ТХ, 98 м	ТХ, 10 м	ТХ, 9 м	ТХ, 70 м	ТХ, 100 м

Рис. 2: Конфигурации

Первая модель Это правила построения сети (таблица предельно допустимый диаметр домена коллизий в Fast Ethernet). Для двух повторителей класса II и сегментов ТХ предельный диаметр домена коллизий — 205 м. Диаметр рассчитывается как сумма длин на наихудшем пути: максимальная длина сегмента слева (max(cer1, cer2, cer3)) + длина соединяющего (cer4) + максимальная длина справа (max(cer5, cer6)). Если диаметр ≤ 205 м, сеть работоспособна по первой модели.

Рис. 3: Выполнение работы

Таблица 2.1 Предельно допустимый диаметр домена коллизий в Fast Ethernet

Тип повторителя	Все сегменты ТХ или Т4	Все сегменты FX	Сочетание сегментов (Т4 и ТХ/FX)	Сочетание сегментов (ТХ и FX)
Сегмент, соеди- няющий два узла без повторителей	100	412,0	-	-
Один повтори- тель класса I	200	272,0	231,0	260,8
Один повтори- тель класса II	200	320,0	-	308,8
Два повторителя класса II	205	228,0	-	216,2

Рис. 4: Таблица предельно допустимый диаметр домена коллизий в Fast Ethernet

Вторая модель Это расчёт времени двойного оборота (RTT) в битовых интервалах (би). Параметры из таблицы Временные задержки компонентов сети Fast Ethernet : - Пара терминалов ТХ/FX: 100 би. - Повторители класса II ТХ/FX: 92 би каждый (всего 184 би). - Удельное время для витой пары cat.5: 1,112 би/м. - RTT = $100 + (1,112 \times \text{len_left_max}) + (1,112 \times \text{len_connect}) + (1,112 \times \text{len_right_max}) + 92 + 92$. - Добавить 4 би (страховой запас). Если RTT + $4 \le 512$ би, сеть работоспособна по второй модели.

Рис. 5: Выполнение работы

Таблица 2.2 Временные задержки компонентов сети Fast Ethernet

Компонент	Удельное время двойно- го оборота (би/м)	Максимальное время двойного оборота (би)	
Пара терминалов TX/FX	-	100	
Пара терминалов Т4	-	138	
Пара терминалов Т4 и TX/FX	-	127	
Витая пара категории 3	1,14	114 (100 м)	
Витая пара категории 4	1,14	114 (100 м)	
Витая пара категории 5	1,112	111,2 (100 м)	
Экранированная витая пара	1,112	111,2 (100 м)	
Оптоволокно	1,0	412 (412 м)	
Повторитель класса I	-	140	
Повторитель класса II, имеющий порты типа TX/FX	-	92	
Повторитель класса II, имеющий порты типа Т4	-	67	

Вывод

Вывод

Я изучила принципы технологий Ethernet и FastEthernet и практическое освоение методик оценки работоспособности сети,построенной на базе технологии FastEthernet. - По первой модели работоспособны варианты 1, 3, 4. - Варианты 2, 5, 6 неработоспособны по обеим моделям из-за превышения диаметра и/или RTT (коллизии не будут правильно обнаруживаться).