3 Samochody elektryczne

Jak wiadomo, z różnych przyczyn upowszechniają nam się ostatnio samochody elektryczne. Wiadomo też, że ich podstawowym problemem jest optymalizacja zasięgu. Z jednej strony zwiększenie zasięgu wymaga zwiększenia wielkości baterii, z drugiej wraz z wielkością baterii rośnie masa samochodu. Wyobraźmy sobie teraz, że mamy kraj, w którym drogi (dwukierunkowe) łączą pewne pary miast. Znając długości tych dróg oraz wiedząc, że stacje ładowania znajdują się tylko w miastach (za to w każdym) trzeba określić minimalny zasięg samochodu elektrycznego wymagany, aby móc dotrzeć do dowolnego miasta w kraju.

Wejście

W pierwszym wierszu wejścia znajduje się liczba przypadków testowych T ($1 \le T \le 100$). Opis każdego przypadku testowego wygląda następująco. Pierwszy wiersz zawiera dwie liczby całkowite n i m ($1 \le n \le 1000$, $1 \le m \le 10000$), odpowiadające liczbie miast (n) i dróg (m) w kraju. Miasta numerowane są od 0 do n-1 Kolejne m wierszy zawiera po 3 liczby całkowite rozdzielone spacjami. Pierwsze dwie liczby oznaczają numery miast, trzecia odległość pomiędzy tymi miastami. Liczby są oczywiście poprawne, czyli numery zawarte są w przedziale [0, n-1], a odległość jest dodatnia i mniejsza od 1000000. Pomiędzy parą miast istnieje co najwyżej jedna droga.

Wyjście

Każdy wiersz wyjścia powinien odpowiadać jednemu przypadkowi testowemu, w kolejności takiej, w jakiej znajdują się one w pliku wejściowym. Powinien on zawierać minimalny zasięg samochodu, który umożliwi mu dojechanie do dowolnego miasta z wykorzystaniem opisanej sieci dróg.

maksymalny zysk uzyskany w efekcie łańcucha transmutacji.

Przykład

Dla danych wejściowych	Plik wyjściowy powinien zawierać
2	4
3 3	999999
0 1 3	
1 2 4	
2 1 5	
2 1 0 1 999999	