- 10.12 1) Supposons que h soit un endomorphisme orthogonal. Soit $(e_1; \ldots; e_n)$ une base orthonormée.
 - (a) D'après l'exercice 6.8, la famille $(h(e_1); \ldots; h(e_n))$ est un système générateur de $\operatorname{Im}(h) = E$, attendu que h est un automorphisme. Comme $(h(e_1); \ldots; h(e_n))$ forme un système générateur de n vecteurs dans un espace de dimension n, il s'agit bien d'une base de E.
 - (b) $h(e_i) \cdot h(e_j) = e_i \cdot e_j = 0$ si $i \neq j$. Les vecteurs de cette base sont ainsi bien deux à deux orthogonaux.
 - (c) $||h(e_i)|| = ||e_i|| = 1$ pour tout $1 \le i \le n$. Les vecteurs de cette base sont donc bien normés.
 - 2) Soit $(e_1; \ldots; e_n)$ une base orthonormée telle que $(h(e_1); \ldots; h(e_n))$ soit aussi une base orthonormée.

Soient $x = \alpha_1 e_1 + \ldots + \alpha_n e_n$ et $y = \beta_1 e_1 + \ldots + \beta_n e_n$ des vecteurs de E.

$$h(x) = h(\alpha_1 e_1 + \ldots + \alpha_n e_n) = \alpha_1 h(e_1) + \ldots + \alpha_n h(e_n)$$

 $h(y) = h(\beta_1 e_1 + \ldots + \beta_n e_n) = \beta_1 h(e_1) + \ldots + \beta_n h(e_n)$

L'exercice 10.6 3) implique :

$$x \cdot y = \alpha_1 \beta_1 + \ldots + \alpha_n \beta_n = h(x) \cdot h(y)$$

L'endomorphisme h est ainsi bien orthogonal.