Университет ИТМО, факультет програм Двухнедельная отчётная работа п Дата прошедшей лекции:27.09.202311.10	о «Информатике»: аннотаци	я к статье
Выполнил(а) <u>Машкин Г.А.</u> , № гр Фамилия И.О. студента	уппы <u>Р3130</u> , о	ценка _ не заполнять
Название статьи/главы книги/видеолекции		
ФИО автора статьи (или e-mail) Тельпухов Дмитрий Владимирович Жукова Татьяна Дмитриевна Щелоков Альберт Николаевич Кретинина Полина Денисовна	Дата публикаци (не старше 2020 го "_7_"_октября_2022	ода) (от 400 слов)
Прямая полная ссылка на источник или сокра применение кода хэмминга в задаче повышения (cyberleninka ru)	щённая ссылка (bit.ly, tr.in сбоеустойчивости комбина	1 и т.п.) Ционных схем

Теги, ключевые слова или словосочетания

Коды Хэмминга, средства функционального контроля(СФК), маскирование ошибки, ложная тревога, пропуск ошибки, обнаружение ошибки, структурная избыточность, обнаруживающая способность

Перечень фактов, упомянутых в статье (минимум три пункта)

- 1. При организации СФК, как правило, используются помехоустойчивые коды с небольшой избыточностью, которая направлена на обнаружение(и исправление) ошибок.
- 2. В общем случае схема функционального контроля имеет следующую структуру: основная схема(ОС), кодер и декодер. Кодер состоит из копии ОС и блока вычисления проверочных разрядов.
- 3. У модифицированного кода Хэмминга самая низкая вероятность пропуска ошибки(≈7%), но он не может исправлять ошибки.
- 4. При минимизации кодера можно улучшить работу схемы, так как при минимизации кодера увеличивается вероятность обнаружения ошибки, а вероятность ложной тревоги падает.

Позитивные следствия и/или достоинства описанной в статье технологии (минимум три пункта)

- 1. Схемы контроля на основе модифицированного кода Хэмминга способны обнаружить все однократные и двукратные ошибки, возникающие в схеме, и обладают практически нулевой вероятностью пропуска ошибки.
- 2. Классический код Хэмминга с меньшей вероятностью пропускает, чем метод тройного модульного резервирования.
- 3. С учётом главного критерия СФК(вероятность пропуска ошибки), модифицированный код Хэмминга самый эффективный.

Негативные следствия и/или недостатки описанной в статье технологии (минимум три пункта)

- 1. Модифицированный код Хэмминга не может исправлять ошибки.
- 2. Недостатком кратного резервирования является значительная структурная избыточность и отсутствие возможности гибкой настройки технических решений под конкретные задачи.
- 3. У модифицированного кода Хэмминга высокая вероятность ложной тревоги, т.к. система обнаруживает и ошибки, которые произошли в схеме контроля.

Ваши замечания, пожелания преподавателю <i>или</i> анекдот о программистах ¹ Я хочу спать, а ещё я хочу поехать к бабушке с дедушкой 30 декабря.		
		