Test Report No.: 31CE0283-HO-01-A
Page : 14 / 92

26dB Bandwidth and 99% Occupied Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.6 Shielded Room

Date 2010/12/3

Temperature / Humidity 24deg.C. , 46%

Engineer Akio Hayashi

Mode 11a, 6Mbps, Antenna 3

Frequency	26dB Bandwidth	99% Occupied
[MHz]	[MHz]	Bandwidth [MHz]
5180	22.633	17.363
5200	22.176	17.376
5240	22.817	17.510

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 15 / 92

26dB Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 16 / 92

99% Occupied Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A
Page : 17 / 92

26dB Bandwidth and 99% Occupied Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.6 Shielded Room

Date 2010/12/3

Temperature / Humidity 24deg.C. , 46%

Engineer Akio Hayashi Mode 11n-20HT, MCS0

Antenna	Frequency	26dB Bandwidth	99%
Port	[MHz]	[MHz]	Bandwidth
1+2+3	5180	21.305	18.191
	5200	21.450	18.153
	5240	21.286	18.024
1	5180	22.222	18.293
	5200	23.023	18.392
	5240	22.817	18.261
2	5180	22.811	18.260
	5200	22.239	18.220
	5240	22.602	18.257
3	5180	22.435	18.332
	5200	22.795	18.370
	5240	22.415	18.444

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 18 / 92

26dB Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 19 / 92

26dB Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 20 / 92

26dB Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 21 / 92

26dB Bandwidth

UL Japan, Inc. Shonan EMC Lab.

Test Report No.: 31CE0283-HO-01-A Page : 22 / 92

99% Occupied Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 23 / 92

99% Occupied Bandwidth

UL Japan, Inc. Shonan EMC Lab.

Test Report No.: 31CE0283-HO-01-A Page : 24 / 92

99% Occupied Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 25 / 92

99% Occupied Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A
Page : 26 / 96
Revised date : January 28, 2011

26dB Bandwidth and 99% Occupied Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.6 Shielded Room

Date 2010/12/3

Temperature / Humidity 24deg.C. , 46%

Engineer Akio Hayashi Mode 11n-40HT, MCS0

Antenna	Frequency	26dB Bandwidth	99%
Port	[MHz]	[MHz]	Bandwidth
1+2+3	5190	42.111	36.933
	5230	42.073	36.946
1	5190	43.985	36.977
	5230	43.618	37.027
2	5190	43.694	37.130
	5230	43.218	37.133
3	5190	44.041	36.981
	5230	43.618	37.042

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 27 / 92

26dB Bandwidth

UL Japan, Inc. Shonan EMC Lab.

31CE0283-HO-01-A Test Report No.: 28 / 92 Page

26dB Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 29 / 92

99% Occupied Bandwidth

UL Japan, Inc. Shonan EMC Lab.

31CE0283-HO-01-A Test Report No.: Page

99% Occupied Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 31 / 92

Peak Output Power (Conducted)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date 2010/11/30
Temperature / Humidity 24deg.C. ,35%
Engineer Tatsuya Arai
Mode 11a, Tx

Ant1

Aliti									
Ch	Freq.	S/A	Cable	Atten.	Result		Li	mit	Margin
		Reading	Loss	Loss					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Low	5180.0	-2.21	2.20	10.00	9.99	9.98	16.99	50	7.00
Mid	5200.0	-2.21	2.23	10.00	10.02	10.05	16.99	50	6.97
High	5240.0	-1.47	2.29	10.00	10.82	12.08	16.99	50	6.17

Ant2

7 111112									
Ch	Freq.	S/A	Cable	Atten.	Re	Result		mit	Margin
		Reading	Loss	Loss	_				
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Low	5180.0	-2.24	2.20	10.00	9.96	9.91	16.99	50	7.03
Mid	5200.0	-2.44	2.23	10.00	9.79	9.53	16.99	50	7.20
High	5240.0	-2.14	2.29	10.00	10.15	10.35	16.99	50	6.84

Ant3

Ch	Freq.	S/A	Cable	Atten.	Result		Limit		Margin
		Reading	Loss	Loss	Ì				
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Low	5180.0	-1.18	2.20	10.00	11.02	12.65	16.99	50	5.97
Mid	5200.0	-1.83	2.23	10.00	10.40	10.96	16.99	50	6.59
High	5240.0	-1.91	2.29	10.00	10.38	10.91	16.99	50	6.61

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss

[Pre check]

11a

Data Rate	Freq.	S/A	Cable	Atten.	Result		Liı	mit	Margin
		Reading	Loss	Loss					
[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
6	5180.0	-1.18	2.20	10.00	11.02	12.65	16.99	50	5.97
9	5180.0	-1.34	2.20	10.00	10.86	12.19	16.99	50	6.13
12	5180.0	-1.46	2.20	10.00	10.74	11.86	16.99	50	6.25
18	5180.0	-1.43	2.20	10.00	10.77	11.94	16.99	50	6.22
24	5180.0	-1.34	2.20	10.00	10.86	12.19	16.99	50	6.13
36	5180.0	-1.34	2.20	10.00	10.86	12.19	16.99	50	6.13
48	5180.0	-1.32	2.20	10.00	10.88	12.25	16.99	50	6.11
54	5180.0	-1.29	2.20	10.00	10.91	12.33	16.99	50	6.08

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

 $[\]ensuremath{^{*}}$ In the above table, factor 0.0dB represents no use of Atten. and/or Filter.

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test Report No.: 31CE0283-HO-01-A Page : 32 / 92

Peak Output Power (Conducted)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 33 / 92

Peak Output Power (Conducted)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 34 / 92

Peak Output Power (Conducted)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date 2010/11/30
Temperature / Humidity 24deg.C. ,35%
Engineer Tatsuya Arai
Mode 11n-20, Tx

Ant1+Ant2+Ant3

ſ	Ch	Freq.	Ant1	Ant2	Ant3	Result		Limit		Margin
			Result	Result	Result		_		_	
		[MHz]	[mW]	[mW]	[mW]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Ī	Low	5180.0	4.53	4.49	5.92	11.74	14.93	16.99	50	5.25
ſ	Mid	5200.0	4.14	4.52	5.56	11.53	14.22	16.99	50	5.46
ſ	High	5240.0	4.45	4.93	5.82	11.82	15.20	16.99	50	5.17

Ant1

C	'h	Freq.	S/A (PK)	Cable	Atten.	Result		Limit		Margin
			Reading	Loss	Loss					
		[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Lo)W	5180.0	-5.64	2.20	10.00	6.56	4.53	16.99	50	10.43
M	id	5200.0	-6.06	2.23	10.00	6.17	4.14	16.99	50	10.82
Hi	gh	5240.0	-5.81	2.29	10.00	6.48	4.45	16.99	50	10.51

Ant2

	7 XIII.2									
Ī	Ch	Freq.	S/A (PK)	Cable	Atten.	Result		Limit		Margin
			Reading	Loss	Loss					
Į		[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
ĺ	Low	5180.0	-5.68	2.20	10.00	6.52	4.49	16.99	50	10.47
	Mid	5200.0	-5.68	2.23	10.00	6.55	4.52	16.99	50	10.44
I	High	5240.0	-5.36	2.29	10.00	6.93	4.93	16.99	50	10.06

Ant3

Ch	Freq.	S/A (PK)	Cable	Atten.	Result		Limit		Margin
		Reading	Loss	Loss	l				
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Low	5180.0	-4.48	2.20	10.00	7.72	5.92	16.99	50	9.27
Mid	5200.0	-4.78	2.23	10.00	7.45	5.56	16.99	50	9.54
High	5240.0	-4.64	2.29	10.00	7.65	5.82	16.99	50	9.34

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*} In the above table, factor 0.0dB represents no use of Atten. and/or Filter.

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test Report No.: 31CE0283-HO-01-A Page : 35 / 92

Peak Output Power (Conducted)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date 2010/11/30
Temperature / Humidity 24deg.C. ,35%
Engineer Tatsuya Arai
Mode 11n-20, Tx

[Pre check] 11n-20, Ant3

Data Rate	Freq.	S/A (PK)	Cable	Atten.	Re	sult	Li	mit	Margin
		Reading	Loss	Loss					
[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
6.5 (MCS0)	5180.0	-4.48	2.20	10.00	7.72	5.92	16.99	50	9.27
13.0 (MCS1)	5180.0	-4.52	2.20	10.00	7.68	5.86	16.99	50	9.31
19.5 (MCS2)	5180.0	-4.53	2.20	10.00	7.67	5.85	16.99	50	9.32
26.0 (MCS3)	5180.0	-4.57	2.20	10.00	7.63	5.79	16.99	50	9.36
39.0 (MCS4)	5180.0	-4.51	2.20	10.00	7.69	5.87	16.99	50	9.30
52.0 (MCS5)	5180.0	-4.53	2.20	10.00	7.67	5.85	16.99	50	9.32
58.5 (MCS6)	5180.0	-4.56	2.20	10.00	7.64	5.81	16.99	50	9.35
65.0 (MCS7)	5180.0	-4.50	2.20	10.00	7.70	5.89	16.99	50	9.29
13.0 (MCS8)	5180.0	-4.58	2.20	10.00	7.62	5.78	16.99	50	9.37
26.0 (MCS9)	5180.0	-4.51	2.20	10.00	7.69	5.87	16.99	50	9.30
39.0 (MCS10)	5180.0	-4.59	2.20	10.00	7.61	5.77	16.99	50	9.38
52.0 (MCS11)	5180.0	-4.58	2.20	10.00	7.62	5.78	16.99	50	9.37
78.0 (MCS12)	5180.0	-4.49	2.20	10.00	7.71	5.90	16.99	50	9.28
104.0 (MCS13)	5180.0	-4.54	2.20	10.00	7.66	5.83	16.99	50	9.33
117.0 (MCS14)	5180.0	-4.58	2.20	10.00	7.62	5.78	16.99	50	9.37
130.0 (MCS15)	5180.0	-4.59	2.20	10.00	7.61	5.77	16.99	50	9.38

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*} In the above table, factor 0.0dB represents no use of Atten. and/or Filter.

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test Report No.: 31CE0283-HO-01-A Page : 36 / 92

Peak Output Power (Conducted)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 37 / 92

Peak Output Power (Conducted)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A Page : 38 / 92

Peak Output Power (Conducted)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date 2010/11/30
Temperature / Humidity 24deg.C. ,35%
Engineer Tatsuya Arai
Mode 11n-40, Tx

Ant1+Ant2+Ant3

Ch	Freq.	Ant1	Ant2	Ant3	Re	sult	Li	mit	Margin
		Result	Result	Result		_		_	
	[MHz]	[mW]	[mW]	[mW]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Low	5190.0	4.38	5.07	6.25	11.96	15.70	16.99	50	5.03
High	5230.0	4.81	5.93	6.08	12.26	16.82	16.99	50	4.73

Ant1

Ch	Freq.	S/A (PK)	Cable	Atten.	Res	sult	Li	mit	Margin
		Reading	Loss	Loss					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Low	5190.0	-5.80	2.21	10.00	6.41	4.38	16.99	50	10.58
High	5230.0	-5.45	2.27	10.00	6.82	4.81	16.99	50	10.17

Ant2

	1 11112									
ĺ	Ch	Freq.	S/A (PK)	Cable	Atten.	Re	sult	Li	mit	Margin
ı			Reading	Loss	Loss					
ı		[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
ı	Low	5190.0	-5.16	2.21	10.00	7.05	5.07	16.99	50	9.94
ı	High	5230.0	-4.54	2.27	10.00	7.73	5.93	16.99	50	9.26

Ant3

_	THIC									
	Ch	Freq.	S/A (PK)	Cable	Atten.	Res	sult	Li	mit	Margin
			Reading	Loss	Loss		-		-	
		[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
ı	Low	5190.0	-4.25	2.21	10.00	7.96	6.25	16.99	50	9.03
ı	High	5230.0	-4.43	2.27	10.00	7.84	6.08	16.99	50	9.15

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*} In the above table, factor 0.0dB represents no use of Atten. and/or Filter.

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test Report No.: 31CE0283-HO-01-A Page : 39 / 92

Peak Output Power (Conducted)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date 2010/11/30
Temperature / Humidity 24deg.C. ,35%
Engineer Tatsuya Arai
Mode 11n-40, Tx

[Pre check]

11n-40

Data Rate	Freq.	S/A (PK)	Cable	Atten.	Re	sult	Li	mit	Margin
		Reading	Loss	Loss					
[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
13.5 (MCS0)	5190.0	-4.25	2.21	10.00	7.96	6.25	16.99	50	9.03
27.0 (MCS1)	5190.0	-4.32	2.21	10.00	7.89	6.15	16.99	50	9.10
40.5 (MCS2)	5190.0	-4.29	2.21	10.00	7.92	6.19	16.99	50	9.07
54.0 (MCS3)	5190.0	-4.28	2.21	10.00	7.93	6.21	16.99	50	9.06
81.0 (MCS4)	5190.0	-4.31	2.21	10.00	7.90	6.17	16.99	50	9.09
108.0 (MCS5)	5190.0	-4.32	2.21	10.00	7.89	6.15	16.99	50	9.10
121.5 (MCS6)	5190.0	-4.27	2.21	10.00	7.94	6.22	16.99	50	9.05
135.0 (MCS7)	5190.0	-4.29	2.21	10.00	7.92	6.19	16.99	50	9.07
27.0 (MCS8)	5190.0	-4.28	2.21	10.00	7.93	6.21	16.99	50	9.06
54.0 (MCS9)	5190.0	-4.29	2.21	10.00	7.92	6.19	16.99	50	9.07
81.0 (MCS10)	5190.0	-4.34	2.21	10.00	7.87	6.12	16.99	50	9.12
108.0 (MCS11)	5190.0	-4.34	2.21	10.00	7.87	6.12	16.99	50	9.12
162.0 (MCS12)	5190.0	-4.28	2.21	10.00	7.93	6.21	16.99	50	9.06
216.0 (MCS13)	5190.0	-4.38	2.21	10.00	7.83	6.07	16.99	50	9.16
243.0 (MCS14)	5190.0	-4.32	2.21	10.00	7.89	6.15	16.99	50	9.10
270.0 (MCS15)	5190.0	-4.40	2.21	10.00	7.81	6.04	16.99	50	9.18

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*} In the above table, factor 0.0dB represents no use of Atten. and/or Filter.

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test Report No.: 31CE0283-HO-01-A Page : 40 / 92

Peak Output Power (Conducted)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 31CE0283-HO-01-A
Page : 41 / 92

Peak Output Power (Conducted)

Reference data for SAR testing

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

11a

114									
Antenna	Freq.	P/M (AV)	Cable	Atten.	Re	sult	Li	mit	Margin
		Reading	Loss	Loss					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Ant1	5180.0	0.08	1.37	10.00	11.45	13.98	16.99	50	5.53
Ant2	5180.0	0.09	1.37	10.00	11.46	14.01	16.99	50	5.52
Ant3	5180.0	0.53	1.37	10.00	11.90	15.51	16.99	50	5.08

11n-20

Antenna	Freq.	Ant1	Ant2	Ant3	Re	Result		mit	Margin
		Result	Result	Result					
	[MHz]	[mW]	[mW]	[mW]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Ant1+Ant2+Ant3	5180.0	8.08	6.91	7.93	13.60	22.93	16.99	50	3.39

11n-20

	11H =0									
I	Ch	Freq.	P/M (AV)	Cable	Atten.	Re	sult	Li	mit	Margin
ı			Reading	Loss	Loss					
L		[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
I	Ant1	5180.0	-2.30	1.37	10.00	9.07	8.08	16.99	50	7.91
	Ant2	5180.0	-2.98	1.37	10.00	8.39	6.91	16.99	50	8.59
I	Ant3	5180.0	-2.38	1.37	10.00	8.99	7.93	16.99	50	7.99

11n-40

Antenna	Freq.	Ant1	Ant2	Ant3	Re	sult	Li	mit	Margin
		Result	Result	Result				_	
	[MHz]	[mW]	[mW]	[mW]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Ant1+Ant2+An	nt3 5190.0	7.97	7.37	7.35	13.56	22.69	16.99	50	3.43

11n-40

1111 10									
Ch	Freq.	P/M (AV)	Cable	Atten.	Re	sult	Li	mit	Margin
		Reading	Loss	Loss					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Ant1	5190.0	-2.36	1.37	10.00	9.01	7.97	16.99	50	7.97
Ant2	5190.0	-2.70	1.37	10.00	8.67	7.37	16.99	50	8.31
Ant3	5190.0	-2.71	1.37	10.00	8.66	7.35	16.99	50	8.32

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

 $[\]ensuremath{^{*}}$ In the above table, factor 0.0dB represents no use of Atten. and/or Filter.

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test Report No.: 31CE0283-HO-01-A Page : 42 / 92

Radiated Emission (below 1GHz and above 1GHz Inside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2 Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5180 MHz 11a, 6Mbps, Antenna 3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	108.948	QP	42.3	11.0	7.3	32.1	28.5	43.5	15.0	320	217	
Hori.	5150.000	PK	43.7	32.1	15.0	39.7	51.1	73.9	22.8	100	48	
Hori.	15540.000	PK	46.3	40.3	0.0	37.1	49.5	73.9	34.0	100	118	
Hori.	20720.000	PK	47.8	40.1	-2.8	46.7	38.4	73.9	35.5	100	355	
Hori.	5150.000	AV	33.5	32.1	15.0	39.7	40.9	53.9	13.0	100	48	
Hori.	15540.000	AV	31.7	40.3	0.0	37.1	34.9	53.9	28.6	100	118	
Hori.	20720.000	AV	34.3	40.1	-2.8	46.7	24.9	53.9	29.0	100	355	
Vert.	109.087	QP	48.3	11.0	7.3	32.1	34.5	43.5	9.0	100	134	
Vert.	215.481	QP	37.9	16.6	8.0	32.0	30.5	43.5	13.0	100	152	
Vert.	631.881	QP	34.5	18.7	9.8	31.9	31.1	46.0	14.9	100	93	
Vert.	698.582	QP	34.2	19.8	10.0	31.8	32.2	46.0	13.8	100	87	
Vert.	798.001	QP	32.8	20.2	10.4	31.6	31.8	46.0	14.2	100	164	
Vert.		PK	43.1	32.1	15.0	39.7	50.5	73.9	23.4	115	149	
Vert.		PK	45.7	40.3	0.0	37.1	48.9	73.9	34.6	100	60	
Vert.		PK	47.8	40.1	-2.8	46.7	38.4	73.9	35.5	100	358	
Vert.		AV	33.6	32.1	15.0	39.7	41.0	53.9	12.9	115	149	
Vert.		AV	31.7	40.3	0.0	37.1	34.9	53.9	28.6	100	60	
Vert.	20720.000	AV	33.9	40.1	-2.8	46.7	24.5	53.9	29.4	100	358	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 13GHz)) - Gain (Amprifier)$

Distance factor: 13 GHz-40 GHz 20log(3.0m/1.0m)=9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 43 / 92

Radiated Emission (below 1GHz and above 1GHz Inside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2 Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5200 MHz 11a, 6Mbps, Antenna 3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	108.838	QP	41.9	11.0	7.3	32.1	28.1	43.5	15.4	306	213	
Hori.	15600.000	PK	45.3	40.1	0.2	37.1	48.5	73.9	35.0	100	118	
Hori.	20800.000	PK	47.7	40.0	-2.8	46.8	38.1	73.9	35.8	100	91	
Hori.	15600.000	AV	31.7	40.1	0.2	37.1	34.9	53.9	28.6	100	118	
Hori.	20800.000	AV	34.1	40.0	-2.8	46.8	24.5	53.9	29.4	100	91	
Vert.	109.057	QP	47.7	11.0	7.3	32.1	33.9	43.5	9.6	100	149	
Vert.	215.551	QP	38.8	16.6	8.0	32.0	31.4	43.5	12.1	100	158	
Vert.	631.911	QP	34.0	18.7	9.8	31.9	30.6	46.0	15.4	100	86	
Vert.	698.583	QP	29.7	19.8	10.0	31.8	27.7	46.0	18.3	100	76	
Vert.		QP	33.6	20.2	10.4	31.6		46.0	13.4	100	182	
Vert.		PK	46.1	40.1	0.2	37.1		73.9	34.2	100	78	
Vert.		PK	47.1	40.0	-2.8	46.8	37.5	73.9	36.4	100	359	
Vert.		AV	31.8	40.1	0.2	37.1	35.0	53.9	28.5	100	78	
Vert.	20800.000	AV	33.5	40.0	-2.8	46.8	23.9	53.9	30.0	100	359	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 13GHz)) - Gain (Amprifier)$

Distance factor: 13 GHz-40 GHz 20log(3.0m/1.0m)=9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 44 / 92

Radiated Emission (below 1GHz and above 1GHz Inside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2 Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5240 MHz 11a, 6Mbps, Antenna 3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	108.838	QP	41.1	11.0	7.3	32.1	27.3	43.5	16.2	296	225	
Hori.	5350.000	PK	43.5	32.3	15.1	39.3	51.6	73.9	22.3	100	160	
Hori.	15720.000	PK	46.4	39.7	0.2	37.1	49.2	73.9	34.3	100	220	
Hori.	20960.000	PK	47.4	40.0	-2.8	46.9	37.7	73.9	36.2	100	180	
Hori.	5350.000	AV	33.0	32.3	15.1	39.3	41.1	53.9	12.8	100	160	
Hori.	15720.000	AV	32.2	39.7	0.2	37.1	35.0	53.9	28.5	100	220	
Hori.	20960.000	AV	34.3	40.0	-2.8	46.9	24.6	53.9	29.3	100	180	
Vert.	109.057	QP	46.5	11.0	7.3	32.1	32.7	43.5	10.8	100	142	
Vert.	215.552	QP	38.6	16.6	8.0	32.0		43.5	12.3	100	141	
Vert.	631.911	QP	33.9	18.7	9.8	31.9	30.5	46.0	15.5	100	88	
Vert.	698.584	QP	29.5	19.8	10.0	31.8	27.5	46.0	18.5	100	84	
Vert.	798.003	QP	33.8	20.2	10.4	31.6	32.8	46.0	13.2	100	183	
Vert.	5350.000	PK	42.8	32.3	15.1	39.3	50.9	73.9	23.0	100	139	
Vert.		PK	46.9	39.7	0.2	37.1	49.7	73.9	33.8	100	304	
Vert.		PK	47.5	40.0	-2.8	46.9	37.8	73.9	36.1	100	359	
Vert.	5350.000	AV	33.0	32.3	15.1	39.3	41.1	53.9	12.8	100	139	
Vert.	15720.000	AV	32.3	39.7	0.2	37.1	35.1	53.9	28.4	100	304	
Vert.	20960.000	AV	34.0	40.0	-2.8	46.9	24.3	53.9	29.6	100	359	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 13GHz)) - Gain (Amprifier)$

Distance factor: 13 GHz-40 GHz 20log(3.0m/1.0m)=9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 45 / 92

Radiated Emission (below 1GHz and above 1GHz Inside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2 Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5180 MHz

11n-20, MCS0, Antenna 1+2+3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	108.830	QP	42.1	11.0	7.3	32.1	28.3	43.5	15.2	317	236	
Hori.	5150.000	PK	43.8	32.1	15.0	39.7	51.2	73.9	22.7	109	279	
Hori.	15540.000	PK	45.6	40.3	0.0	37.1	48.8	73.9	34.7	100	0	
Hori.	20720.000	PK	48.1	40.1	-2.8	46.7	38.7	73.9	35.2	100	0	
Hori.	5150.000	AV	33.5	32.1	15.0	39.7	40.9	53.9	13.0	109	279	
Hori.	15540.000	AV	31.8	40.3	0.0	37.1	35.0	53.9	28.5	100	0	
Hori.	20720.000	AV	34.4	40.1	-2.8	46.7	25.0	53.9	28.9	100	0	
Vert.	109.068	QP	47.2	11.0	7.3	32.1	33.4	43.5	10.1	100	130	
Vert.	215.556	QP	39.9	16.6	8.0	32.0	32.5	43.5	11.0	100	150	
Vert.	631.915	QP	34.0	18.7	9.8	31.9	30.6	46.0	15.4	100	96	
Vert.	698.585	QP	28.5	19.8	10.0	31.8	26.5	46.0	19.5	100	84	
Vert.	798.006	QP	33.4	20.2	10.4	31.6	32.4	46.0	13.6	100	183	
Vert.	5150.000	PK	44.6	32.1	15.0	39.7	52.0	73.9	21.9	102	146	
Vert.	15540.000	PK	45.3	40.3	0.0	37.1	48.5	73.9	35.0	100	358	
Vert.	20720.000	PK	47.7	40.1	-2.8	46.7	38.3	73.9	35.6	100	0	
Vert.	5150.000	AV	33.5	32.1	15.0	39.7	40.9	53.9	13.0	102	146	
Vert.	15540.000	AV	31.9	40.3	0.0	37.1	35.1	53.9	28.4	100	358	
Vert.	20720.000	AV	33.9	40.1	-2.8	46.7	24.5	53.9	29.4	100	0	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 13GHz)) - Gain (Amprifier)$

Distance factor: 13 GHz-40 GHz 20log(3.0m/1.0m)=9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 46 / 92

Radiated Emission (below 1GHz and above 1GHz Inside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2
Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5200 MHz

11n-20, MCS0, Antenna 1+2+3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	108.831	QP	41.9	11.0	7.3	32.1	28.1	43.5	15.4	308	238	
Hori.	15600.000	PK	46.1	40.1	0.2	37.1	49.3	73.9	34.2	100	95	
Hori.	20800.000	PK	47.8	40.0	-2.8	46.8	38.2	73.9	35.7	100	0	
Hori.	15600.000	AV	32.5	40.1	0.2	37.1	35.7	53.9	27.8	100	95	
Hori.	20800.000	AV	35.1	40.0	-2.8	46.8	25.5	53.9	28.4	100	0	
Vert.	109.040	QP	47.0	11.0	7.3	32.1	33.2	43.5	10.3	100	124	
Vert.	215.554	QP	39.2	16.6	8.0	32.0	31.8	43.5	11.7	100	144	
Vert.	631.912	QP	33.6	18.7	9.8	31.9	30.2	46.0	15.8	100	86	
Vert.	698.582	QP	28.6	19.8	10.0	31.8	26.6	46.0	19.4	100	88	
Vert.	798.004	QP	33.3	20.2	10.4	31.6	32.3	46.0	13.7	100	180	
Vert.	15600.000	PK	46.0	40.1	0.2	37.1	49.2	73.9	34.3	100	355	
Vert.	20800.000	PK	47.3	40.0	-2.8	46.8	37.7	73.9	36.2	100	0	
Vert.		AV	32.4	40.1	0.2	37.1	35.6	53.9	27.9	100	355	
Vert.	20800.000	AV	33.9	40.0	-2.8	46.8	24.3	53.9	29.6	100	0	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 13GHz)) - Gain (Amprifier)$

Distance factor: 13GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 47 / 92

Radiated Emission (below 1GHz and above 1GHz Inside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2 Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5240 MHz

11n-20, MCS0, Antenna 1+2+3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	108.835	QP	41.5	11.0	7.3	32.1	27.7	43.5	15.8	308	216	
Hori.	5350.000	PK	42.6	32.3	15.1	39.3	50.7	73.9	23.2	108	287	
Hori.	15720.000	PK	46.4	39.7	0.2	37.1	49.2	73.9	34.3	100	181	
Hori.	20960.000	PK	47.0	40.0	-2.8	46.9	37.3	73.9	36.6	100	0	
Hori.	5350.000	AV	33.0	32.3	15.1	39.3	41.1	53.9	12.8	108	287	
Hori.	15720.000	AV	32.3	39.7	0.2	37.1	35.1	53.9	28.4	100	181	
Hori.	20960.000	AV	33.2	40.0	-2.8	46.9	23.5	53.9	30.4	100	0	
Vert.	109.060	QP	46.4	11.0	7.3	32.1	32.6	43.5	10.9	100	143	
Vert.	215.550	QP	38.8	16.6	8.0	32.0	31.4	43.5	12.1	100	152	
Vert.	631.913	QP	31.9	18.7	9.8	31.9	28.5	46.0	17.5	137	98	
Vert.	698.580	QP	28.2	19.8	10.0	31.8	26.2	46.0	19.8	100	104	
Vert.	798.000	QP	33.5	20.2	10.4	31.6	32.5	46.0	13.5	100	180	
Vert.	5350.000	PK	43.4	32.3	15.1	39.3	51.5	73.9	22.4	101	158	
Vert.	15720.000	PK	46.4	39.7	0.2	37.1	49.2	73.9	34.3	100	0	
Vert.		PK	47.7	40.0	-2.8	46.9		73.9	35.9	100	0	
Vert.		AV	33.1	32.3	15.1	39.3		53.9	12.7	101	158	
Vert.		AV	32.3	39.7	0.2	37.1	35.1	53.9	28.4	100	0	
Vert.	20960.000	AV	34.1	40.0	-2.8	46.9	24.4	53.9	29.5	100	0	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 13GHz)) - Gain (Amprifier)$

Distance factor: 13GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 48 / 92

Radiated Emission (below 1GHz and above 1GHz Inside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2
Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5190 MHz

11n-40, MCS0, Antenna 1+2+3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	108.832	QP	42.6	11.0	7.3	32.1	28.8	43.5	14.7	308	233	
Hori.	5150.000	PK	46.8	32.1	15.0	39.7	54.2	73.9	19.7	100	0	
Hori.	15570.000	PK	46.0	40.2	0.0	37.1	49.1	73.9	34.4	100	0	
Hori.	20760.000	PK	47.3	40.1	-2.8	46.7	37.9	73.9	36.0	100	0	
Hori.	5150.000	AV	33.6	32.1	15.0	39.7	41.0	53.9	12.9	100	0	
Hori.	15570.000	AV	32.1	40.2	0.0	37.1	35.2	53.9	28.3	100	0	
Hori.	20760.000	AV	33.3	40.1	-2.8	46.7	23.9	53.9	30.0	100	0	
Vert.	109.048	QP	47.4	11.0	7.3	32.1	33.6	43.5	9.9	100	143	
Vert.	215.557	QP	39.3	16.6	8.0	32.0	31.9	43.5	11.6	100	148	
Vert.	631.910	QP	33.8	18.7	9.8	31.9	30.4	46.0	15.6	100	86	
Vert.	698.582	QP	28.8	19.8	10.0	31.8	26.8	46.0	19.2	100	86	
Vert.	798.006	QP	33.7	20.2	10.4	31.6	32.7	46.0	13.3	100	174	
Vert.	5150.000	PK	46.6	32.1	15.0	39.7	54.0	73.9	19.9	100	0	
Vert.	15570.000	PK	46.0	40.2	0.0	37.1	49.1	73.9	34.4	100	350	
Vert.	20760.000	PK	48.2	40.1	-2.8	46.7	38.8	73.9	35.1	100	216	
Vert.	5150.000	AV	32.9	32.1	15.0	39.7	40.3	53.9	13.6	100	0	
Vert.	15570.000	AV	32.1	40.2	0.0	37.1	35.2	53.9	28.3	100	350	
Vert.	20760.000	AV	33.5	40.1	-2.8	46.7	24.1	53.9	29.8	100	216	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 13GHz)) - Gain (Amprifier)$

Distance factor: 13 GHz-40 GHz 20log(3.0m/1.0m)=9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 49 / 92

Radiated Emission (below 1GHz and above 1GHz Inside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2 Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5230 MHz

11n-40, MCS0, Antenna 1+2+3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	108.836	QP	42.5	11.0	7.3	32.1	28.7	43.5	14.8	311	224	
Hori.	5350.000	PK	46.0	32.3	15.1	39.3	54.1	73.9	19.8	100	21	
Hori.	15690.000	PK	45.9	39.8	0.2	37.1	48.8	73.9	34.7	100	353	
Hori.	20920.000	PK	48.0	40.0	-2.8	46.9	38.3	73.9	35.6	100	0	
Hori.	5350.000	AV	32.9	32.3	15.1	39.3	41.0	53.9	12.9	100	21	
Hori.	15690.000	AV	32.2	39.8	0.2	37.1	35.1	53.9	28.4	100	353	
Hori.	20920.000	AV	34.0	40.0	-2.8	46.9	24.3	53.9	29.6	100	0	
Vert.	109.055	QP	47.9	11.0	7.3	32.1	34.1	43.5	9.4	100	139	
Vert.	215.553	QP	39.6	16.6	8.0	32.0	32.2	43.5	11.3	100	145	
Vert.	631.915	QP	33.9	18.7	9.8	31.9	30.5	46.0	15.5	100	92	
Vert.	698.585	QP	28.3	19.8	10.0	31.8	26.3	46.0	19.7	100	85	
Vert.	798.000	QP	33.8	20.2	10.4	31.6	32.8	46.0	13.2	100	177	
Vert.	5350.000	PK	46.1	32.3	15.1	39.3	54.2	73.9	19.7	100	290	
Vert.	15690.000	PK	45.8	39.8	0.2	37.1	48.7	73.9	34.8	100	359	
Vert.	20920.000	PK	48.0	40.0	-2.8	46.9	38.3	73.9	35.6	100	241	
Vert.	5350.000	AV	32.9	32.3	15.1	39.3	41.0	53.9	12.9	100	290	
Vert.	15690.000	AV	32.2	39.8	0.2	37.1	35.1	53.9	28.4	100	359	
Vert.	20920.000	AV	34.2	40.0	-2.8	46.9	24.5	53.9	29.4	100	241	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 13GHz)) - Gain (Amprifier)$

Distance factor: 13 GHz-40 GHz 20log(3.0m/1.0m)=9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 50 / 92

Data of Spurious Emissions (Calculation)(above 1GHz Outside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2 Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5180 MHz 11a, 6Mbps, Antenna 3,

MHz	Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Result (EIRP	Limit	Margin	Height	Angle	Remark
Hori. 5150.000 PK 43.7 32.1 15.0 39.7 51.1 -44.13 -27.00 17.1 100 48 Hori. 10360.000 PK 42.7 39.5 7.7 37.4 52.5 -42.73 -27.00 15.7 100 0 Hori. 25900.000 PK 48.0 40.3 -1.8 47.3 39.2 -56.03 -27.00 29.0 100 0 Vert. 5150.000 PK 43.1 32.1 15.0 39.7 50.5 -44.73 -27.00 17.7 115 149 Vert. 10360.000 PK 42.8 39.5 7.7 37.4 52.6 -42.63 -27.00 15.6 100 0		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBm])	[dBm]	[dB]	[cm]		
Hori. 25900.000 PK 48.0 40.3 -1.8 47.3 39.2 -56.03 -27.00 29.0 100 0 Vert. 5150.000 PK 43.1 32.1 15.0 39.7 50.5 -44.73 -27.00 17.7 115 149 Vert. 10360.000 PK 42.8 39.5 7.7 37.4 52.6 -42.63 -27.00 15.6 100 0	Hori.			43.7	32.1		39.7		-44.13	-27.00		100		
Vert. 5150.000 PK 43.1 32.1 15.0 39.7 50.5 -44.73 -27.00 17.7 115 149 Vert. 10360.000 PK 42.8 39.5 7.7 37.4 52.6 -42.63 -27.00 15.6 100 0	Hori.	10360.000	PK	42.7	39.5	7.7	37.4	52.5	-42.73	-27.00	15.7	100	0	
Vert. 10360.000 PK 42.8 39.5 7.7 37.4 52.6 -42.63 -27.00 15.6 100 0	Hori.	25900.000	PK	48.0	40.3	-1.8	47.3	39.2	-56.03	-27.00	29.0	100	0	
	Vert.	5150.000	PK	43.1	32.1	15.0	39.7	50.5	-44.73	-27.00	17.7	115	149	
Vert. 25900.000 PK 47.9 40.3 -1.8 47.3 39.1 -56.13 -27.00 29.1 100 354	Vert.	10360.000	PK	42.8	39.5	7.7	37.4	52.6	-42.63	-27.00	15.6	100	0	
	Vert.	25900.000	PK	47.9	40.3	-1.8	47.3	39.1	-56.13	-27.00	29.1	100	354	

 $Result[dBuV/m] = Reading + Ant\ Factor + Loss\ (Cable+Attenuator+Filter-Distance\ factor(above\ 13GHz)) - Gain(Amprifier) \\ Resrult(EIRP[dBm]) = 10*LOG((\{\ 10\ ^\ (\ Electric\ Field\ Strength\ [dBuV/m]\ /\ 20\)*10^(-6)*Distance:3[m]\)^2\ \}\ /\ 30)*10^3) \\ Resrult(EIRP[dBm]) = 10*LOG((\{\ 10\ ^\ (\ Electric\ Field\ Strength\ [dBuV/m]\ /\ 20\)*10^(-6)*Distance:3[m]\)^2\ \}\ /\ 30)*10^3)$

Distance factor: 13GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 51 / 92

Data of Spurious Emissions (Calculation)(above 1GHz Outside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2 Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5200 MHz 11a, 6Mbps, Antenna 3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Result (EIRP	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBm])	[dBm]	[dB]	[cm]	[deg.]	
Hori.	10400.000		42.8	39.6	7.7	37.4	52.7	-42.53	-27.00	15.5	100	0	
Hori.	26000.000		49.7	40.3	-1.8		40.9	-54.33	-27.00	27.3	100	6	
Vert.		PK	42.8	39.6	7.7	37.4	52.7	-42.53	-27.00	15.5	100	0	
Vert.	26000.000	PK	47.3	40.3	-1.8	47.3	38.5	-56.73	-27.00	29.7	100	0	

 $Result[dBuV/m] = Reading + Ant\ Factor + Loss\ (Cable+Attenuator+Filter-Distance\ factor(above\ 13GHz)) - Gain(Amprifier) \\ Resrult(EIRP[dBm]) = 10*LOG((\{\ 10\ ^\ (\ Electric\ Field\ Strength\ [dBuV/m]\ /\ 20\)*10^(-6)*Distance:3[m]\)^2\ \}\ /\ 30)*10^3) \\ Resrult(EIRP[dBm]) = 10*LOG((\{\ 10\ ^\ (\ Electric\ Field\ Strength\ [dBuV/m]\ /\ 20\)*10^(-6)*Distance:3[m]\)^2\ \}\ /\ 30)*10^3)$

Distance factor: 13GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 52 / 92

Data of Spurious Emissions (Calculation)(above 1GHz Outside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2
Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5240 MHz 11a, 6Mbps, Antenna 3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Result (EIRP	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBm])	[dBm]	[dB]	[cm]	[deg.]	
Hori.	5350.000	PK	43.5	32.3	15.1	39.3	51.6	-43.63	-27.00	16.6	100	160	
Hori.	10480.000	PK	44.8	39.8	7.7	37.3	55.0	-40.23	-27.00	13.2	100	0	
Hori.	26200.000	PK	48.5	40.2	-1.8	47.2	39.7	-55.53	-27.00	28.5	100		
Vert.	5350.000	PK	42.8	32.3	15.1	39.3	50.9	-44.33	-27.00	17.3	100	139	
Vert.	10480.000	PK	44.1	39.8	7.7	37.3	54.3	-40.93	-27.00	13.9	100	0	
Vert.	26200.000	PK	47.4	40.2	-1.8	47.2	38.6	-56.63	-27.00	29.6	100	0	

 $Result[dBuV/m] = Reading + Ant\ Factor + Loss\ (Cable+Attenuator+Filter-Distance\ factor(above\ 13GHz)) - Gain(Amprifier) \\ Resrult(EIRP[dBm]) = 10*LOG((\{\ 10\ ^\ (\ Electric\ Field\ Strength\ [dBuV/m]\ /\ 20\)*10^(-6)*Distance:3[m]\)^2\ \}\ /\ 30)*10^3) \\ Resrult(EIRP[dBm]) = 10*LOG((\{\ 10\ ^\ (\ Electric\ Field\ Strength\ [dBuV/m]\ /\ 20\)*10^(-6)*Distance:3[m]\)^2\ \}\ /\ 30)*10^3)$

Distance factor: 13GHz-40GHz $20\log(3.0\text{m}/1.0\text{m})=~9.5\text{dB}$

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 53 / 92

Data of Spurious Emissions (Calculation)(above 1GHz Outside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2
Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5180 MHz

11n-20, MCS0, Antenna 1+2+3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Result (EIRP	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]		[dBm]	[dB]	[cm]	[deg.]	
Hori.	5150.000	PK	43.8	32.1	15.0	39.7	51.2	-44.03	-27.00	17.0	109	279	
Hori.	10360.000	PK	43.9	39.5	7.7	37.4	53.7	-41.53	-27.00	14.5	100	0	
Hori.	25900.000		49.8	40.3	-1.8	47.3	41.0		-27.00	27.2	100	9	
Vert.	5150.000		44.6	32.1	15.0	39.7	52.0	-43.23	-27.00	16.2	102	146	
Vert.	10360.000	PK	43.7	39.5	7.7	37.4	53.5	-41.73	-27.00	14.7	100	0	
Vert.	25900.000	PK	47.2	40.3	-1.8	47.3	38.4	-56.83	-27.00	29.8	100	350	

 $Result[dBuV/m] = Reading + Ant\ Factor + Loss\ (Cable+Attenuator+Filter-Distance\ factor(above\ 13GHz)) - Gain(Amprifier) \\ Resrult(EIRP[dBm]) = 10*LOG((\{\ 10\ ^\ (\ Electric\ Field\ Strength\ [dBuV/m]\ /\ 20\)*10^(-6)*Distance:3[m]\)^2\ \}\ /\ 30)*10^3)$

Distance factor: 13GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 54 / 92

Data of Spurious Emissions (Calculation)(above 1GHz Outside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2 Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5200 MHz

11n-20, MCS0, Antenna 1+2+3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain		Result (EIRP	Limit	Margin	Height		Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBm])	[dBm]	[dB]	[cm]	[deg.]	
lori.	10400.000		45.0	39.6	7.7	37.4	54.9	-40.33	-27.00	13.3	100		
lori.	26000.000		48.9	40.3	-1.8	47.3	40.1	-55.13	-27.00	28.1	100		
Vert.	10400.000		45.2	39.6	7.7	37.4	55.1	-40.13	-27.00	13.1	100		
Vert.	26000.000	PK	46.9	40.3	-1.8	47.3	38.1	-57.13	-27.00	30.1	100	359	

 $Result[dBuV/m] = Reading + Ant\ Factor + Loss\ (Cable+Attenuator+Filter-Distance\ factor(above\ 13GHz)) - Gain(Amprifier) \\ Resrult(EIRP[dBm]) = 10*LOG((\{\ 10\ ^\ (\ Electric\ Field\ Strength\ [dBuV/m]\ /\ 20\)*10^(-6)*Distance:3[m]\)^2\ \}\ /\ 30)*10^3)$

Distance factor: 13GHz-40GHz $20\log(3.0\text{m}/1.0\text{m})=~9.5\text{dB}$

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 55 / 92

Data of Spurious Emissions (Calculation)(above 1GHz Outside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2 Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5240 MHz

11n-20, MCS0, Antenna 1+2+3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Result (EIRP	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]		[dBm]	[dB]	[cm]	[deg.]	
Hori.	5350.000		42.6	32.3	15.1	39.3	50.7	-44.53	-27.00	17.5	108		
Hori.	10480.000		45.1	39.8	7.7				-27.00	12.9	101		
Hori.	26200.000	PK	48.3	40.2	-1.8	47.2	39.5	-55.73	-27.00	28.7	100	10	
Vert.	5350.000		43.4	32.3	15.1	39.3	51.5	-43.73	-27.00	16.7	101	158	
Vert.		PK	45.1	39.8	7.7				-27.00	12.9	100		
Vert.	26200.000	PK	47.4	40.2	-1.8	47.2	38.6	-56.63	-27.00	29.6	100	359	

 $Result[dBuV/m] = Reading + Ant\ Factor + Loss\ (Cable+Attenuator+Filter-Distance\ factor(above\ 13GHz)) - Gain(Amprifier) \\ Resrult(EIRP[dBm]) = 10*LOG((\{\ 10\ ^\ (\ Electric\ Field\ Strength\ [dBuV/m]\ /\ 20\)*10^{(-6)}*Distance:3[m]\)^2\ \}\ /\ 30)*10^3) \\ + 10^{-6}(10^{-6})^{$

Distance factor: 13GHz-40GHz $20\log(3.0\text{m}/1.0\text{m})=~9.5\text{dB}$

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 56 / 92

Data of Spurious Emissions (Calculation)(above 1GHz Outside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2 Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5190 MHz

11n-40, MCS0, Antenna 1+2+3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Result (EIRP	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBm])	[dBm]	[dB]	[cm]	[deg.]	
Hori.	5150.000	PK	46.8	32.1	15.0	39.7	54.2	-41.03	-27.00	14.0	100	0	
Hori.	10380.000	PK	44.5	39.6	7.7	37.4	54.4	-40.83	-27.00	13.8	100	0	
Hori.	25950.000	PK	49.2	40.3	-1.8	47.3	40.4	-54.83	-27.00	27.8	100	11	
Hori.	5150.000	AV	33.6	32.1	15.0	39.7	41.0	-54.23	-27.00	27.2	100	0	
Hori.	10380.000	AV	32.0	39.6	7.7	37.4	41.9	-53.33	-27.00	26.3	100	0	
Hori.	25950.000	AV	36.2	40.3	-1.8	47.3	27.4	-67.83	-27.00	40.8	100	11	
Vert.	5150.000	PK	46.6	32.1	15.0	39.7	54.0	-41.23	-27.00	14.2	100	0	
Vert.	10380.000	PK	45.9	39.6	7.7	37.4	55.8	-39.43	-27.00	12.4	100	0	
Vert.	25950.000	PK	47.5	40.3	-1.8	47.3	38.7	-56.53	-27.00	29.5	100	0	
Vert.	5150.000	AV	32.9	32.1	15.0	39.7	40.3	-54.93	-27.00	27.9	100	0	
Vert.	10380.000	AV	33.7	39.6	7.7	37.4	43.6	-51.63	-27.00	24.6	100	0	
Vert.	25950.000	AV	34.0	40.3	-1.8	47.3	25.2	-70.03	-27.00	43.0	100	0	

 $Result[dBuV/m] = Reading + Ant\ Factor + Loss\ (Cable+Attenuator+Filter-Distance\ factor(above\ 13GHz)) - Gain(Amprifier) \\ Resrult(EIRP[dBm]) = 10*LOG((\{\ 10\ ^\ (\ Electric\ Field\ Strength\ [dBuV/m]\ /\ 20\)*10^(-6)*Distance:3[m]\)^2\ \}\ /\ 30)*10^3)$

Distance factor: 13GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 31CE0283-HO-01-A Page : 57 / 92

Data of Spurious Emissions (Calculation)(above 1GHz Outside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber

Date 2010/12/1 2010/12/2 Temperature / Humidity 26deg.C ,32% 22deg.C ,43%

Engineer Tatsuya Arai, Hikaru Shirasawa Takahiro Suzuki, Hikaru Shirasawa

Mode Tx, 5230 MHz

11n-40, MCS0, Antenna 1+2+3,

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Result (EIRP	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]		[dBm]	[dB]	[cm]	[deg.]	
Hori.	5350.000		46.0	32.3	15.1	39.3	54.1	-41.13	-27.00	14.1	100		
Hori.	10460.000		45.9	39.8	7.8	37.3			-27.00	12.0	100		
Hori.	26150.000	PK	48.4	40.3	-1.8	47.2	39.7	-55.53	-27.00	28.5	100	11	
Vert.	5350.000		46.1	32.3	15.1	39.3		-41.03	-27.00	14.0	100	290	
Vert.	10460.000	PK	44.9	39.8	7.8	37.3	55.2	-40.03	-27.00	13.0	100		
Vert.	26150.000	PK	46.8	40.3	-1.8	47.2	38.1	-57.13	-27.00	30.1	100	0	

 $Result[dBuV/m] = Reading + Ant\ Factor + Loss\ (Cable+Attenuator+Filter-Distance\ factor(above\ 13GHz)) - Gain(Amprifier) \\ Resrult(EIRP[dBm]) = 10*LOG((\{\ 10\ ^\ (\ Electric\ Field\ Strength\ [dBuV/m]\ /\ 20\)*10^{(-6)}*Distance:3[m]\)^2\ \}\ /\ 30)*10^3) \\ + 10^{-6}(10^{-6})^{$

Distance factor: 13GHz-40GHz $20\log(3.0\text{m}/1.0\text{m})=~9.5\text{dB}$

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).