Proposition 3.

Es seien RSAXA eine Aguivaleurelation und x,y EA.

Down gilt:

- (1.) Ist (x,y) ER, so gilt [x] = [y].
- (2) Ist Cx, y) & R, so gilt [x] a [y] = Ø.

 ((x,y) & R -> [x] a [y] = Ø) = ([x] a [y] R + Ø -> (x,y) & R)

Beucis: Wir zeigan die Kussagen einzeln:

- (1.) Es gelk $(x,y) \in \mathbb{R}$, d.h. $y \in \mathbb{I} \times \mathbb{J}_R$. Für $z \in \mathbb{I} \times \mathbb{J}_R$ d.h. $(y,z) \in \mathbb{R}$, gilt $(x,z) \in \mathbb{R}$, d.h. $z \in \mathbb{I} \times \mathbb{J}_R$, we gen Transitivitat v. R. 0.h. $\mathbb{I} \times \mathbb{J}_R \subseteq \mathbb{I} \times \mathbb{J}_R$. We gen Symmetrie gilt auch $\mathbb{I} \times \mathbb{J}_R \subseteq \mathbb{I} \times \mathbb{J}_R$. 0.h. $\mathbb{I} \times \mathbb{J}_R = \mathbb{I} \times \mathbb{J}_R$
- (2.) Kontraposition: Es gelte $[xJ_R \cap I_YJ_R + B]$, d.l. es gibt $z \in A$ mit $z \in ExJ_R$ und $z \in EyJ_R$, d.l. $(x,z) \in R$ und $(y,z) \in R$ bew. $(z,y) \in R$ (wegen Symmetrie). Wegen Transitivitait gilt $(x,y) \in R$.

Definition 4.

EG Sci REAXA eine Aquivalenzielation.

Eine længe KSA heifst Reproison tautensystem von R, falls folg. Bed. exfillt sind:

- (1.) Fir alk k, k, EK mit k, +k, gilt (k, k,) &R
- a.) A = U [le]

Beispikle: Kongruenz " = mod 8" out Z

- · 28,17,10,19,-4,13,6,-13 ist Reprosentantensystem
- · 20,1,2,3,4,5,6,73 ist Reprasentantensystem

Korollar 5.

Es seien RE AxA eine Aquivalenz relation und KEA ein Reprasentantensystem v. R. Dann bilden die Aquivatenzen klassen v. K, a.4.

Grandmeng AR = out { [k]R | kekg Relation

Proposition 6.

Es sei $F \subseteq P(A)$ eine Postition von A. Donn ist die Relation $R \subseteq A \times A$ mit

 $(x,y) \in \mathbb{R}$ \iff $(\exists X \in \mathcal{F}) [x \in X_A y \in X]$ eine Aquivatenzacian, mit $A_R = \mathcal{F}$

Beveis: Wir liberpri fen d. Eigenschaften v. Aquivalanziel. für R:

- (1.) Ristreflexiv: da F Part. v. A, gibt es fir jedes x e A ein XeF mit x e X, d.l. (x,x) e R
- (1.) R ist fransitiv: Es seien $(x_1y) \in R$ und $(y_1z) \in R$, a.l. es gibt $X_1, X_2 \in \mathcal{F}$ wit $x_1y \in X_1$ und $y_1z \in X_2$. Within gilk $y \in X_1 \cap X_2$, d.l. X_1, X_2 with disjoint. Da \mathcal{F} Post. v. \mathcal{A} , gilt also $X_1 = X_2$. Somit gilt $x_1z \in X_1 = X_2$, d.l. $(x_1z) \in R$
- (3.) R ist symmetrisch: Klar

4.3 Ordnungsrelationen

Definition 7.

Einc binair Relation R S AXA haist

- (3.) Outisymmetrisch = at (ta, beA)[((a,b)eR 1 (b,a)eR) > b=a]
- (4) linear (total) = act (tabet) [a +6 -> ((a,6)er v (6,0)er)

Baispicle: += 80,1,23

Relation		traus. (2)	Antisque linear	
			•	
{ (0,0), (0,1), (0,2), (1,1), (1,2), (2,2) }	W	W	W	ω
{ (0,0), (0,1), (2,0), (1,1), (1,2), (2,2) }	W	f	W	W
2 (0,0), (0,1), (2,0), (0,2), (1,1), (1,2), (2,2) }	ω	f	R	W
{ (6,1), (1,2), (0,2) g	1	w	W	W
2 (0,0), (0,1), (4,1), (2,2) g	W	W	ω	f

- (2) R=act & (m,n) | m ≤ ng ≤ N²; m≤n ←act (fc=N)[n=m+c]
 R ist reflexiv: n+0=n 1d-h. h≤n fir alle ne-N
 - R ist transitiv: Gilt lesm und men, so gibtes creen mit m=k+cr und h=m+cz; somit gilt h=k+cr+cz; dh. len für alk kin,mein
 - R 1st autisymmetrisch: Gilt men und Nem, so gibt es $C_{1}, C_{2} \in \mathbb{N}$ mit $n = m + c_{1}$ hund $m = n + c_{2}$; so mit gilt $h = h + c_{1} + c_{2}$, a.l. $c_{1} = c_{2} = 0$, d.l. u = m
 - · R ist linear: h-m EN oder m-n EN