Análise do uso de *feedback* de relevância no Sistema de Integração Lattes-Qualis (SILQ)

Carlos Bonetti¹

¹Bacharelando de Ciência da Computação Departamento de Informática e Estatística Centro Tecnológico Universidade Federal de Santa Catarina

Orientação: Profa. Dra. Carina F. Dorneles

Trabalho de Conclusão de Curso, 2016/2

Sumário

Introdução

Histórico e Justificativa Como funciona o SILQ 1

Objetivos

Conceitos

Feedback de relevância Métricas e avaliação de sistemas IR

Desenvolvimento

Alterações tecnológicas Uso de feedback de relevância

Conclusões

Introdução

Histórico e Justificativa Como funciona o SILQ 1

Objetivos

Conceitos

Feedback de relevância Métricas e avaliação de sistemas IR

Desenvolvimento

Alterações tecnológicas Uso de feedback de relevância

Conclusões

Lattes

Introdução

Qualis

Introdução ○●○○ ○○○○○○○

ISSN	Título	Área de Avaliação	Estrato
1041-4347	IEEE Transactions on Knowledge and Data Engineering (Print)	CIÊNCIA DA COMPUTAÇÃO	▶A1
0018-9464	IEEE Transactions on Magnetics	CIÊNCIA DA COMPUTAÇÃO	▶B4
0278-0062	IEEE Transactions on Medical Imaging (Print)	CIÊNCIA DA COMPUTAÇÃO	•A1
1536-1233	IEEE Transactions on Mobile Computing	CIÊNCIA DA COMPUTAÇÃO	▶A2
1520-9210	IEEE Transactions on Multimedia	CIÊNCIA DA COMPUTAÇÃO	▶A2
2162-237X	IEEE Transactions on Neural Networks and Learning Systems	CIÊNCIA DA COMPUTAÇÃO	▶A1
0018-9499	IEEE Transactions on Nuclear Science	CIÊNCIA DA COMPUTAÇÃO	▶B1
1045-9219	IEEE Transactions on Parallel and Distributed Systems (Print)	CIÊNCIA DA COMPUTAÇÃO	▶A2
0885-8950	IEEE Transactions on Power Systems	CIÊNCIA DA COMPUTAÇÃO	▶B2
0098-5589	IEEE Transactions on Software Engineering	CIÊNCIA DA COMPUTAÇÃO	▶A1
1083-4427	IEEE Transactions on Systems, Man and Cybernetics. Part A. S	CIÊNCIA DA COMPUTAÇÃO	▶A2
1094-6977	IEEE Transactions on Systems, Man and Cybernetics. Part C, Ap	CIÊNCIA DA COMPUTAÇÃO	▶A2
0018-9545	IEEE Transactions on Vehicular Technology	CIÊNCIA DA COMPUTAÇÃO	•A1
1063-8210	IEEE Transactions on Very Large Scale Integration (VLSI) System	CIÊNCIA DA COMPUTAÇÃO	▶A2
1077-2626	IEEE Transactions on Visualization and Computer Graphics	CIÊNCIA DA COMPUTAÇÃO	▶A2
1536-1276	IEEE Transactions on Wireless Communications	CIÊNCIA DA COMPUTAÇÃO	▶A1
1536-1284	IEEE Wireless Communications	CIÊNCIA DA COMPUTAÇÃO	▶A1
2162-2337	IEEE Wireless Communications Letters	CIÊNCIA DA COMPUTAÇÃO	▶B4
1932-4537	IEEE eTransactions on Network and Service Management	CIÊNCIA DA COMPUTAÇÃO	▶B3
1932-8540	IEEE-RITA	CIÊNCIA DA COMPUTAÇÃO	▶B5
1545-5963	IEEE/ACM Transactions on Computational Biology and Bioinform≯	CIÊNCIA DA COMPUTAÇÃO	▶B1
0916-8532	IEICE Transactions on Information and Systems	CIÊNCIA DA COMPUTAÇÃO	▶B1
1751-861X	IET Computers & Digital Techniques (Online)	CIÊNCIA DA COMPUTAÇÃO	▶B1
1751-8601	IET Computers & Digital Techniques (Print)	CIÊNCIA DA COMPUTAÇÃO	▶B1
1751-8806	IET Software (Print)	CIÊNCIA DA COMPUTAÇÃO	▶B1
1091-9856	INFORMS Journal on Computing	CIÊNCIA DA COMPUTAÇÃO	▶B1
1526-5528	INFORMS Journal on Computing (Online)	CIÊNCIA DA COMPUTAÇÃO	▶B1

Carlos Bonetti

Universidade Federal de Santa Catarina

Histórico e Justificativa

- AGUIAR, Felipe Nedel de; COSTA, Maria Eloísa. SILQ -Sistema de Integração Lattes Qualis. Trabalho de Conclusão de Curso. Florianópolis: Universidade Federal de Santa Catarina, Biblioteca Universitária, 2015.
- Qualificação automática de produções científicas através de busca por similaridade textual nos dados Qualis;

Figura: Primeira versão do SILQ (http://silq.inf.ufsc.br)

IR e Data Matching

- Information Retrieval (IR)
 - query
 - documentos
- Data-Matching
 - similaridade / dissimilaridade
 - threshold

n-grams / trigrams

Revista:
$$A = \{ _R, _Re, Rev, evi, vis, ist, sta, ta_ \}$$

Revisor: $B = \{ _R, _Re, Rev, evi, vis, iso, sor, or_ \}$

5 elementos em comum: $|A \cap B|$ 11 elementos distintos: $|A \cup B|$

trigrams(Revista, Revisão) =
$$\frac{|A \cap B|}{|A \cup B|} = \frac{5}{11} = 0.45 = 45\%$$

n-grams / trigrams

Revista:
$$A = \{ _R, _Re, Rev, evi, vis, ist, sta, ta_ \}$$

Revisor: $B = \{ _R, _Re, Rev, evi, vis, iso, sor, or_ \}$

5 elementos em comum: $|A \cap B|$ 11 elementos distintos: $|A \cup B|$

trigrams(Revista, Revisão) =
$$\frac{|A \cap B|}{|A \cup B|} = \frac{5}{11} = 0.45 = 45\%$$

Como o SILQ avalia um currículo Lattes

Artigo #1 (extraído do Lattes)

Título: Approximate data instance matching: a survey

Ano: 2011

Área: Ciência da Computação

Journal: Knowledge and Information Systems

ISSN: 0219-1377

Artigo #2 (extraído do Lattes)

. . .

Artigo #1

Título: Approximate data instance matching: a survey

Ano: 2011

Área: Ciência da Computação

Journal: Knowledge and Information Systems

ISSN: 0219-1377

query: (ISSN, área)

 $q_{\mathcal{A}} = ext{(0219-1377, Ciência da Computação)}$

Como funciona o SILQ 1

$$q_A = (0219-1377, \texttt{Ciência} \ \texttt{da} \ \texttt{Computação})$$

00000●000 Como funciona o SILQ 1

Introdução

$$q_A =$$
(0219-1377, Ciência da Computação)

Conceito	ISSN	Título
A2	0219-1377	Knowledge and Information Systems (Print)

Tabela: Resultado retornado pelo SILQ para a query q_A

000000000 Como funciona o SILQ 1

Introdução

$$q_{A}=ig(exttt{0219-1377}, exttt{Ciência da Computação}ig)$$

Conceito	ISSN	Título
A2	0219-1377	Knowledge and Information Systems (Print)

Tabela: Resultado retornado pelo SILQ para a query q_A

Resultado

Artigo #1 recebe o conceito A2

Como o SILQ avalia um currículo Lattes

Trabalho #1 (extraído do Lattes)

Título: A Strategy for Allowing Meaningful and Comparable

Scores in Approximate Matching

Ano: 2007

Area: Ciência da Computação

Evento: Conference on Information and Knowledge Management

(CIKM)

Como o SILQ avalia um currículo Lattes

Trabalho #1 (extraído do Lattes)

Título: A Strategy for Allowing Meaningful and Comparable

Scores in Approximate Matching

Ano: 2007

Área: Ciência da Computação

Evento: Conference on Information and Knowledge Management

(CIKM)

query: (título do evento, área)

 $q_T =$ (Conference on Information and Knowledge

Management (CIKM), Ciência da Computação)

Como funciona o SILQ 1

Introdução

 $q_{\mathcal{T}} = ext{(Conference on Information and Knowledge Management (CIKM), Ciência da Computação)}$

Carlos Bonetti

 $q_{\mathcal{T}} = ext{(Conference on Information and Knowledge}$ Management (CIKM), Ciência da Computação)

Conceito	Similaridade	Título
A1	0.71	International Conference on Information and
		Knowledge Management
B4	0.64	International Conference on Information, Pro-
		cess, and Knowledge Management

Tabela: Resultados retornados pelo SILQ para a query q_T

 $q_{\mathcal{T}} = ext{(Conference on Information and Knowledge}$ Management (CIKM), Ciência da Computação)

Conceito	Similaridade	Título
A1	0.71	International Conference on Information and
		Knowledge Management
B4	0.64	International Conference on Information, Pro-
		cess, and Knowledge Management

Tabela: Resultados retornados pelo SILQ para a query q_T

Resultado

Trabalho #1 recebe o conceito A1

Como funciona o SILQ 1

- ► SILQ: sistema de IR baseado em data matching
- Utiliza trigrams para matching entre eventos informados no Lattes e os registrados no Qualis
- Threshold de 0.6 ('nível de confiança normal')

Introducão

Introdução

Como funciona o SILQ 1

Objetivos

Conceitos

Feedback de relevância Métricas e avaliação de sistemas IR

Desenvolvimento

Alterações tecnológicas Uso de feedback de relevância

Conclusões

Motivação

- Atualização tecnológica e da base de dados
 - ▶ Qualis trienal → anual
 - Atualização da base de dados Qualis no SILQ
 - Considerar ano na query
- Qual o threshold ideal para o SILQ?
- Qual a taxa de acerto do sistema? Ele está avaliando corretamente os currículos Lattes?
- É possível aumentar a taxa de acerto utilizando feedback de usuários?

Objetivos

Objetivo geral

Objetivos

Analisar o impacto que o uso de feedback de relevância tem na precisão dos resultados de avaliações realizadas pelo SILQ, efetuado sobre uma nova arquitetura da ferramenta que inclui a criação de API de integração com outros sistemas e a atualização da base de dados conforme as novas classificações Qualis.

Objetivos

1. Reestruturação da arquitetura e banco de dados do SILQ a fim de suportar classificações de eventos e periódicos disponibilizados em um ritmo anual;

- Reestruturação da arquitetura e banco de dados do SILQ a fim de suportar classificações de eventos e periódicos disponibilizados em um ritmo anual;
- Atualização do banco de dados do sistema com as últimas classificações disponibilizadas pelo Qualis (anos 2013 e 2014);

- Reestruturação da arquitetura e banco de dados do SILQ a fim de suportar classificações de eventos e periódicos disponibilizados em um ritmo anual;
- Atualização do banco de dados do sistema com as últimas classificações disponibilizadas pelo Qualis (anos 2013 e 2014);
- Criação de uma API pública de disponibilização dos serviços do SILQ, via camada de aplicação REST para integração com outros sistemas;

4. Alterações na interface do sistema incluindo migração de framework de interface, inclusão de controles de feedback, novos gráficos de acompanhamento de grupos de pesquisa e melhorias gerais de usabilidade;

- 4. Alterações na interface do sistema incluindo migração de framework de interface, inclusão de controles de feedback, novos gráficos de acompanhamento de grupos de pesquisa e melhorias gerais de usabilidade;
- Propor novos algoritmos de avaliação baseados em similaridade textual e feedback de relevância e verificar se a taxa de acerto do sistema foi melhorada com tal ação.

Introducão

introdução

Histórico e Justificativa Como funciona o SILQ 1

Objetivos

Conceitos

Feedback de relevância Métricas e avaliação de sistemas IR

Desenvolvimento

Alterações tecnológicas Uso de feedback de relevância

Conclusões

Feedback de relevância

- Característica de sistemas IR
- Utilização de dados do usuário para melhorar seu desempenho
- Explícito / Implícito

Métricas e avaliação de sistemas de IR (TODO)

- Como saber se o sistema retorna os resultados corretos?
- Avaliação baseado em métricas
- Taxa de acerto (accuracy / exatidão*)
- Média de Rank Recíproco

$$MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank(i)}$$

TODO: slide com exemplo disso porque né

Introducão

ntrodução

Histórico e Justificativa Como funciona o SILQ 1

Objetivos

Conceitos

Feedback de relevância Métricas e avaliação de sistemas IR

Desenvolvimento

Alterações tecnológicas Uso de feedback de relevância

Conclusões

Extração e inserção dos novos dados Qualis

- Até final de 2015:
 - Qualis trienal
 - **2010-2012**
 - PDFs e planilhas XLS
- Início de 2016
 - Qualis anual
 - **2010**, 2011, 2012, 2013, 2014
 - Planilhas CSV
- Limpeza manual (erros de codificação, ISSNs omitidos, etc.)
- 339.204 registros

Atualização tecnológica

- Criação da camada REST de integração
- ▶ Migração de framework: Play → Spring
- Reescrita do front-end com AngularJS
 - Novos gráficos de avaliação para grupos de pesquisa
 - Melhorias no módulo de usuários
 - Redesign da página de resultados de avaliação
 - Inclusão dos controles de feedback
- Garantida da qualidade com testes automatizados

Alterações tecnológicas

TODO: Figurinha?

Obtenção de feedback

Figura: Controles de feedback da página de resultados de avaliação do SILQ

Uso de feedback de relevância

Modelagem lógica

TODO: Figurinha da modelagem lógica?

0000000000000000

Uso de feedback de relevância

Algoritmos

- ▶ De que forma utilizar o *feedback* obtido?
- Criação de algoritmos baseados no trigrams do SILQ 1
 - ▶ fb(t)
 - query_aliasing
- Avaliação experimental

Uso de feedback de relevância

Algoritmo fb(1)

 $q_1 =$ ("Software Engineering Knowledge Engineering", 2009, CCO)

Algoritmo fb(1)

 $q_1 =$ ("Software Engineering Knowledge Engineering", 2009, CCO)

#	Evento	Similaridade
1	Software Engineering and Data Engineering (SEDE)	0.53
2	International Conference on Software Engineering and Knowledge Engineering (SEKE)	0.49

Algoritmo fb(1)

 $q_1 =$ ("Software Engineering Knowledge Engineering", 2009, CCO)

#	Evento	Similaridade
1	Software Engineering and Data Engineering	0.53
	(SEDE)	
2	International Conference on Software Enginee-	0.49
	ring and Knowledge Engineering (SEKE)	

feedback 1: (ID Qualis, query)

 $f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$

Algoritmo fb(1)

$$f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$$

 $q_2 =$ ("Software Engineering Knowledge Engineering", 2010, CCO)

Algoritmo fb(1)

 $f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$

 $q_2 =$ ("Software Engineering Knowledge Engineering", 2010, CCO)

#	Evento	Similaridade
2	International Conference on Software Enginee-	0.49
	ring and Knowledge Engineering (SEKE)	
1	Software Engineering and Data Engineering (SEDE)	0.53

 f_1 utilizado, *match* realizado com evento #2

Algoritmo fb(1)

- Cria o rank inicial de resultados utilizando a função trigrams (idêntico ao SILQ 1)
- 2. Pesquisa por feedback anterior idêntico à query submetida
- Caso exista, adiciona o Qualis atribuído ao feedback na primeira posição do rank

Algoritmo fb(1)

 $f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$

 $q_3 =$ ("Software Engineering and Knowledge Engineering", 2011, CCO)

Algoritmo fb(1)

 $f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$

 $q_3 =$ ("Software Engineering and Knowledge Engineering", 2011, CCO)

- Feedback 1 não é considerado
- fb(1) considera somente queries idênticas
- fb(t): Considerar também feedbacks com queries similares!
 - t: threshold de similaridade de feedback

Uso de feedback de relevância

Algoritmo fb(t)

```
f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})
```

 $q_3 =$ ("Software Engineering and Knowledge Engineering", 2011, CCO)

Similaridade: 0.88 (trigrams)

Algoritmo fb(t)

 $f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$

 $q_3 =$ ("Software Engineering and Knowledge Engineering", 2011, CCO)

Similaridade: 0.88 (trigrams)

Considerando fb(0.75):

#	Evento	Similaridade
2	International Conference on Software Enginee-	0.49
	ring and Knowledge Engineering (SEKE)	
1	Software Engineering and Data Engineering (SEDE)	0.53

Algoritmo fb(t)

- 1. Cria o rank inicial de resultados utilizando a função trigrams (idêntico ao SILQ 1)
- 2. Pesquisa pelo feedback anterior mais similar à query submetida e cuja similaridade seja t ou superior
- 3. Caso exista, adiciona o Qualis atribuído ao feedback na primeira posição do rank

Algoritmo fb(t)

- Qual o valor de t ideal?
- Desconsidera os valores de similaridade do rank inicial
- Rank não é mais ordenado por similaridade

Algoritmo query_aliasing

```
f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})
```

 $q_4 =$ ("Software Engineering and Knowledge Engineering", 2011, CCO)

Similaridade: 0.88 (trigrams)

Algoritmo query_aliasing

 $f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$

 $q_4 =$ ("Software Engineering and Knowledge Engineering", 2011, CCO)

Similaridade: 0.88 (trigrams)

_#	Evento	Rank
2		0.88
	ring and Knowledge Engineering (SEKE)	
1	Software Engineering and Data Engineering	0.53
	(SEDE)	

Algoritmo query_aliasing

- 1. Cria o rank inicial de resultados utilizando a função trigrams (idêntico ao SILQ 1)
- 2. Pesquisa pelo feedback anterior mais similar à query submetida
- 3. Caso exista, adiciona o Qualis atribuído ao feedback na lista de resultados com valor de rank igual ao valor de similaridade entre a nova query e a query do feedback

Algoritmo query_aliasing

 $f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$

Queries idênticas

"Software Engineering Knowledge Engineering"

Rank: 1.0

Queries similares

"Software Engineering and Knowledge Engineering"

Rank: 0.88

Queries dissimilares

"IEEE Midwest Symposium on Circuits and Systems"

Rank: 0.01

Avaliação experimental

- Conjunto de testes
 - 33 currículos de pesquisadores do PPGCC
 - 300 trabalhos aleatoriamente selecionados e avaliados manualmente
- Comparação entre o resultado retornado pelo sistema e o resultado selecionado

Avaliação de threshold ideal

Figura: Valores de exatidão e MRR para diferentes valores de *threshold* utilizando o método *trigram*

Carlos Bonetti

Universidade Federal de Santa Catarina

Exatidão dos algoritmos propostos

Algoritmo	Exatidão
trgm	88.667%
trgm + fb(1.00)	89.667%
trgm + fb(0.90)	90.667%
trgm + fb(0.80)	92.667%
trgm + fb(0.70)	92.667%
trgm + fb(0.60)	91.000%
$trgm + query_aliasing$	93.333%

Tabela: Comparação da exatidão dos diferentes algoritmos testados (utilizando *threshold* de 0.55)

Figura: Comparação da taxa de acerto do algoritmo trgm e do trgm + query_aliasing para diferentes thresholds

Histórico e Justificativa Como funciona o SILQ 1

Objetivos

Conceitos

Feedback de relevância Métricas e avaliação de sistemas IR

Desenvolvimento

Alterações tecnológicas Uso de feedback de relevância

- Criação da camada REST de integração
 - ► Ex.: http://silq.inf.ufsc.br/api/qualis

- Criação da camada REST de integração
 - Ex.: http://silq.inf.ufsc.br/api/qualis
- Atualização da base de dados com os novos registros Qualis

- Criação da camada REST de integração
 - Ex.: http://silq.inf.ufsc.br/api/qualis
- Atualização da base de dados com os novos registros Qualis
- Métricas de exatidão do sistema

- Criação da camada REST de integração
 - Ex.: http://silq.inf.ufsc.br/api/qualis
- Atualização da base de dados com os novos registros Qualis
- ▶ Métricas de exatidão do sistema
- Descoberto threshold ideal: 0.55

- Criação da camada REST de integração
 - Ex.: http://silq.inf.ufsc.br/api/qualis
- Atualização da base de dados com os novos registros Qualis
- Métricas de exatidão do sistema
- Descoberto threshold ideal: 0.55
- Inserção dos controles de feedback de relevância

- Criação da camada REST de integração
 - Ex.: http://silq.inf.ufsc.br/api/qualis
- Atualização da base de dados com os novos registros Qualis
- Métricas de exatidão do sistema
- Descoberto threshold ideal: 0.55
- Inserção dos controles de feedback de relevância
- ► Taxa de acerto média do sistema melhorada de 87% para 93.3% com o uso de *feedback* de usuários

Avaliar outras funções de similaridade

- Avaliar outras funções de similaridade
- Avaliar diferentes estratégias de uso de feedback de relevância
 - Ex.: Algoritmo de Rocchio, *machine learning*, etc

- Avaliar outras funções de similaridade
- Avaliar diferentes estratégias de uso de feedback de relevância
 - ► Ex.: Algoritmo de Rocchio, *machine learning*, etc
- ► Tradução de nomes de eventos

- Avaliar outras funções de similaridade
- Avaliar diferentes estratégias de uso de feedback de relevância
 - Ex.: Algoritmo de Rocchio, *machine learning*, etc
- Tradução de nomes de eventos
- Automatizar ainda mais o processo de avaliação de Programas de Pós-Graduação conforme regras da CAPES
 - ► Gerar valores de *I_{geral}* e *I_{restrito}*
 - Utilizar pesos considerados pela CAPES

Análise do uso de *feedback* de relevância no Sistema de Integração Lattes-Qualis (SILQ)

Dúvidas?

Carlos Bonetti carlosbonetti.mail@gmail.com