

Appearing monthly
ANNUAL CUMULATIVE INDEX

INDEX 1989

ISSN 0027-5107

MUREAV 210-227/INDEX, 1-50 (1989)

MUTATION RESEARCH

International journal on mutagenesis,
chromosome breakage and related subjects

Editor-in-Chief: F.H. Sobels (Leiden)

Board of Managing Editors

J. Ashby, *Maclesfield*; C. Franceschi, *Modena* (DNAging); S.M. Galloway, *West Point, PA* (Mutation Research Letters); J.M. Gentile, *Holland, MI* (Mutation Research Letters); B.W. Glickman, *Toronto, Ont.*; P.C. Hanawalt, *Stanford, CA* (DNA Repair); P.H.M. Lohman, *Leiden* (DNA Repair); K. Sankaranarayanan, *Leiden*; F.J. de Serres, *Research Triangle Park, NC*; R.B. Setlow, *Upton, NY* (DNAging); M.D. Shelby, *Research Triangle Park, NC*; T. Sugimura, *Tokyo* (DNAging); H. Takebe, *Kyoto* (DNA Repair); J. Vijg, *Rijswijk* (DNAging); E. Vogel, *Leiden*; J.S. Wassom, *Oak Ridge, TN*

Fundamental and Molecular Mechanisms
of Mutagenesis

Elsevier

MUTATION RESEARCH

International journal on mutagenesis, chromosome breakage and related subjects

INSTRUCTIONS TO AUTHORS

Types of paper *Mutation Research* contains 3 types of publication. (1) Papers reporting results of original fundamental research concerning mutagenesis, chromosome breakage and related subjects. (2) Review articles. (3) Short communications (published in the Section *Mutation Research Letters*).

General arrangement of papers Papers should be preferably in English, but may also be submitted in French or German. A summary (about 300 words) is mandatory for all (normal-length) articles. Papers in German or French should have a summary in English. The first paragraph of the article should summarize the research problem and the pertinent findings. The main text may be divided into sections such as Materials and methods, Experimental, Results, Discussion.

In papers mentioning chemicals, authors are requested to include *CAS registry numbers*. Registry numbers can be found by consulting Chemical Abstracts Ninth Collective Molecule Formula Index, by using Lockheed's computer access file named Chemline or by contacting the Chemical Abstracts Service, P.O. Box 3012, Columbus, Ohio 43210 (U.S.A.).

Keywords A list of 3–6 words or short phrases should be included on the first page of the manuscript. In the event that keywords are not supplied editorial discretion will be exercised in introducing appropriate words.

Preparation of text (a) Manuscripts should be typewritten, double-spaced with wide margins, on one side of the paper only. Legends, footnotes—everything—must also be double-spaced. (b) The full postal address(es) of the author(s), including postal code and country, should be given after their name(s). (c) Line-drawn figures (including graphs) should be submitted in black ink on white paper and must be lettered ready for direct reproduction. Sharp photocopies of lettered line drawings may also be submitted. It is important that the drawings themselves AND the lettering are in proportion and large enough to allow for reduction before printing. Figures should be prepared suitably for either one column width (76 mm) or the entire page width (160 mm). The maximum height is 206 mm. The amount of reduction that will be made can be judged from the sizes of figures in recent issues of the journal. (d) Half-tone figures should be submitted as very sharp and contrasty glossy photoprints, separate from line drawings. (e) Legends for both line-drawn and half-tone figures should be typed on separate sheets. (f) Tables (also to be typed double-spaced) should be provided with headings. (g) Typescripts should be carefully checked before submission to obviate alterations after acceptance.

References The journal uses the Harvard system, in which names and dates are given in the body of the text and an alphabetical list of references at the end of the manuscript. References in the text should give the author's surname with the year of publication, e.g.: Smith (1980); Smith and Jones (1967a, 1979b); Baker et al. (1978). In the list of references, titles of journals should be abbreviated to conform with *Chemical Abstracts Bibliographic Guide for Authors and Editors 1974*. References to books should give details of chapter title, editors, title of the book, publishers and their location.

Examples:

Ehrenberg, L., and C.A. Wachtmeister (1977) Safety precautions in work with mutagenic and carcinogenic chemicals, in: B.J. Kilbey, M.S. Legator, W. Nichols and C. Ramel (Eds.), *Handbook of Mutagenicity Test Procedures*, Elsevier, Amsterdam, pp. 401–410.

Kastenbaum, M.A., and K.O. Bowman (1970) Tables for determining the statistical significance of mutation frequencies, *Mutation Res.*, 9, 527–549.

Proofs Only printer's errors may be corrected: no changes in or additions to the edited manuscript will be accepted.

In case printers' proofs are returned by any courier service, they should be addressed as follows:
Mr. J.G. Corbet, Mutation Research, Elsevier Science Publishers, BMD, Molenwerf 1, 1014 AG Amsterdam (The Netherlands).
Telefax 31 20 5803 454.

Submission of a paper for publication in *Mutation Research* implies that it is not submitted for publication elsewhere.

Contributions—in triplicate (one original plus two copies, also of the illustrations)—may be sent to Prof. F.H. Nobels, Editor-in-Chief, *Mutation Research*, Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, Sylvius Laboratories, Wassenaarseweg 72, P.O. Box 9503, 2300 RA Leiden (The Netherlands).

or to
Dr. M.D. Shelby, *Mutation Research*, NIEHS, P.O. Box 12233, Research Triangle Park, NC 27709 (U.S.A.).

Manuscripts in the field of Molecular Genetics may be submitted to
Prof. B.W. Glickman, *Mutation Research*, Biology Department, York University, 4700 Keele Street, Toronto, Ont. M3J 1P3 (Canada).

Manuscripts for publication in *DNA Repair Reports* may be submitted to Professor Philip C. Hanawalt, Hermin Biology Laboratories, Stanford University, Stanford University, Stanford, CA 94305 (U.S.A.)

or to
Prof. Dr. P.H.M. Lohman, Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, Sylvius Laboratories, Wassenaarseweg 72, P.O. Box 9503, 2300 RA Leiden (The Netherlands)

or to
Professor H. Takebe, Department of Experimental Radiology, Faculty of Medicine, Kyoto University, Kyoto 606 (Japan)

Manuscripts for publication in *Mutation Research Letters* may be submitted to
Dr. S.M. Galloway, Merck Sharp and Dohme Research Laboratories, W 44-1, West Point, PA 19486 (U.S.A.)
Dr. J.M. Gentile, Biology Department, Hope College, Holland, MI 49423 (U.S.A.)

Manuscripts for publication in *DNAging, Genetic Instability and Aging* may be submitted to:
Claudio Franceschi, Institute of General Pathology, University of Modena, Via Campi 287, 41100 Modena (Italy).
Richard B. Setlow, Biology Department, Brookhaven National Laboratory, Upton, Long Island, NY 11973 (U.S.A.).
Takashi Sugimura, National Cancer Center, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104 (Japan).
Jan Vijg, Department of Molecular Biology, TNO Institute for Experimental Gerontology, P.O. Box 5815, 2280 HV Rijswijk (The Netherlands).

Reprints 50 reprints of each article are sent to the author(s) free of charge. Additional reprints can be ordered by the author(s).

Advertising For advertising rates apply to the Publishers.

MUTATION RESEARCH

*International journal on mutagenesis, chromosome breakage and
related subjects*

Vol. 210-227 (1989)

ANNUAL CUMULATIVE INDEX

Mutation Research

INTERNATIONAL JOURNAL ON MUTAGENESIS,
CHROMOSOME BREAKAGE AND RELATED SUBJECTS

EDITOR-IN-CHIEF: F.H. Sobels, *Leiden*

BOARD OF MANAGING EDITORS

J. Ashby, *Macclesfield*; C. Franceschi, *Modena* (DNAGing); S.M. Galloway, *West Point, PA* (Mutation Research Letters);
J.M. Gentile, *Holland, MI* (Mutation Research Letters); B.W. Glickman, *Toronto, Ont.*; P.C. Hanawalt, *Stanford, CA* (DNA Repair); P.H.M. Lohman, *Leiden* (DNA Repair); K. Sankaranarayanan, *Leiden*; F.J. de Serres, *Research Triangle Park, NC*; R.B. Setlow, *Upton, NY* (DNAGing); M.D. Shelby, *Research Triangle Park, NC*; T. Sugimura, *Tokyo* (DNAGing); H. Takebe, *Kyoto* (DNA Repair); J. Vigg, *Rijswijk* (DNAGing); E. Vogel, *Leiden*; J.S. Wassom, *Oak Ridge, TN*

EDITORIAL BOARD

R.J. Albertini, *Burlington, VT*
H. Bartsch, *Lyon*
M.A. Bender, *Upton, NY*
B.A. Bridges, *Brighton*
A.V. Carrano, *Livermore, CA*
E.H.Y. Chu, *Ann Arbor, MI*
U.H. Ehling, *Neuherberg*
E. Eisenstadt, *Boston, MA*
H.J. Evans, *Edinburgh*
W.M. Generoso, *Oak Ridge, TN*
R.H. Haynes, *Toronto, Ont.*
J.A. Heddle, *Toronto, Ont.*
G.R. Hoffmann, *Worcester, MA*

B.A. Kihlman, *Uppsala*
M.F. Lyon, *Harwell*
D.G. MacPhee, *Bundoora, Vic.*
T. Matsushima, *Tokyo*
G.R. Mohn, *Leiden*
A. Morley, *Bedford Park*
E. Moustacchi, *Paris*
A.T. Natarajan, *Leiden*
G. Obe, *Essen*
G. Olivieri, *Rome*
J.M. Parry, *Swansea*
R.J. Preston, *Oak Ridge, TN*
L.S. Ripley, *Research Triangle Park, NC*

H.S. Rosenkranz, *Cleveland, OH*
L.B. Russell, *Oak Ridge, TN*
M.S. Sasaki, *Kyoto*
J.R.K. Savage, *Harwell*
T. Sugimura, *Tokyo*
J. Thacker, *Harwell*
W.G. Thilly, *Cambridge, MA*
L.H. Thompson, *Livermore, CA*
R.C. von Borstel, *Edmonton, Alb.*
G.C. Walker, *Cambridge, MA*
S. Wolff, *San Francisco, CA*
F.K. Zimmermann, *Darmstadt*

Vols. 210-227

INDEX 1989

ELSEVIER SCIENCE PUBLISHERS B.V.
AMSTERDAM

© 1989, Elsevier Science Publishers B.V. (Biomedical Division)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the Publisher, Elsevier Science Publishers B.V. (Biomedical Division), P.O. Box 1527, 1000 BM Amsterdam (The Netherlands).

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of the rapid advances in the medical sciences, the Publisher recommends that independent verification of diagnoses and drug dosages should be made.

Although all advertising material is expected to conform to ethical (medical) standards, inclusion in this publication does not constitute a guarantee or endorsement of the quality or value of such product or of the claims made of it by its manufacturer.

This journal is printed on acid-free paper.

Special regulations for authors. Upon acceptance of an article by the journal, the author(s) will be asked to transfer copyright of the article to the Publisher. This transfer will ensure the widest possible dissemination of information.

Submission of a paper to this journal entails the author's irrevocable and exclusive authorization of the Publisher to collect any sums or considerations for copying or reproduction payable by third parties (as mentioned in Article 17, Paragraph 2 of the Dutch Copyright Act of 1912, and in the Royal Decree of June 20, 1974 (S. 351) pursuant to Article 16b of the Dutch Copyright Act of 1912) and/or to act in or out of Court in connection therewith.

Special regulations for readers in the U.S.A. This journal has been registered with the Copyright Clearance Center, Inc. Consent is given for copying of articles for personal or internal use, or for the personal use of specific clients. This consent is given on the condition that the copier pays through the Center the per-copy fee stated in the code on the first page of each article for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. The appropriate fee should be forwarded with a copy of the first page of the article to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, MA 01970 (U.S.A.). If no code appears in an article the author has not given broad consent to copy and permission to copy must be obtained directly from the author. All articles published prior to 1980 may be copied for a per-copy fee of US\$ 2.25, also payable through the Center. This consent does not extend to other kinds of copying such as for general distribution, resale, advertising and promotion purposes, or for creating new collective works. Special written permission must be obtained from the Publisher for such copying.

PRINTED IN THE NETHERLANDS

Master Author Index to Volumes 210-227

Aardema, M.J., Gibson, D.P. and LeBoeuf, R.A.
Sodium fluoride-induced chromosome aberrations in different stages of the cell cycle: a proposed mechanism (223) 191

Aaron, C.S. and Stankowski Jr., L.F.
Comparison of the AS52/XPRT and the CHO/HPRT assays: evaluation of 6 drug candidates (223) 121

Aaron, C.S., Harbach, P.R., Steinmetz, K.L., Bakke, J.P. and Mirsalis, J.C.
The in vitro unscheduled DNA synthesis (UDS) assay in rat primary hepatocytes: evaluation of 24 drug candidates (223) 141

Aaron, C.S., Harbach, P.R., Wiser, S.K., Grzegorczyk, C.R. and Smith, A.L.
The in vitro unscheduled DNA synthesis (UDS) assay in rat primary hepatocytes: Evaluation of 2-furoic acid and 7 drug candidates (223) 163

Aaron, C.S., Mazurek, J., Zimmer, D.M. and Swenson, D.H.
The Salmonella mutagenicity test: Evaluation of 29 drug candidates (223) 171

Aaron, C.S., Sorg, R. and Zimmer, D.
The mouse bone marrow micronucleus test: Evaluation of 21 drug candidates (223) 129

Aaron, C.S., Stankowski Jr., L.F. and Zimmer, D.M.
The CHO/HPRT assay: Evaluation of 19 drug candidates (223) 153

Aaron, C.S., Stankowski Jr., L.F., Harbach, P.R., Valencia, R., Mayo, J.K., Mirsalis, J., Mazurek, J.H., Steinmetz, K.L., Wiser, S.K., Zimmer, D.M. and Trzos, R.J.
Comparative mutagenicity testing of a drug candidate, U-48753E: Mechanism of induction of gene mutations in mammalian cells and quantitation of potential hazard (223) 111

Aaron, C.S.
Evaluation of drug candidates in a battery of short-term genetic toxicology assays: Overview (223) 105

Aaron, C.S., see Harbach, P.R. (216) 101

Abbondandolo, A., see Miele, M. (219) 159

Abdou, H.E., see El Nahas, S.M. (222) 409

Abdul Rahiman, M., see Seetharama Rao, K.P. (224) 213

Abelmoschi, M.L., see Parodi, S. (224) 379

Abraham, S. and John, A.T.
Clastogenic effects produced by black pepper in mitotic cells of *Vicia faba* (224) 281

Achkar, W.A., see Lefrançois, D. (212) 167

Achten, S., see Müller, T. (215) 205

Adair, G.M., see Nairn, R.S. (217) 193

Adams, K., Lafi, A. and Parry, J.M.
The effects of 1,6-dinitropyrene on spindle morphology in transformed human cells (213) 141

Adler, I.-D. and Ashby, J.

The present lack of evidence for unique rodent germ-cell mutagens (212) 55

Adler, I.-D. and El-Tarras, A.
Clastogenic effects of *cis*-diamminedichloroplatinum. I. Induction of chromosomal aberrations in somatic and germinal cells of mice (211) 131

Adler, I.-D. and Ingwersen, I.
Evaluation of chromosomal aberrations in bone marrow of IC3F1 mice (224) 343

Adler, I.-D., Ashby, J. and Würgler, F.E.
Screening for possible human carcinogens and mutagens: a symposium report (213) 27

Aghamohammadi, S.Z. and Savage, J.R.K.
A pulse BrdU method for SCE (216) 259

Aghamohammadi, S.Z., Goodhead, D.T. and Savage, J.R.K.
Production of chromosome aberrations, micronuclei, and sister-chromatid exchanges by 24-keV epithermal neutrons in human G₀ lymphocytes (211) 225

Agnese, C., see Cavolina, P. (225) 61

Aida, M., see Hachiya, N. (223) 365

Aji, T., see Ishii, A. (224) 229

Aji, T., see Matsuoka, H. (227) 153

Akaboshi, E. and Howard-Flanders, P.
Proteins induced by DNA-damaging agents in cultured Drosophila cells (227) 1

Akiyama, M., see Hakoda, M. (210) 29

Akiyama, M., see Kodama, Y. (227) 31

Akiyama, M., see Kyoizumi, S. (214) 215

Al-Hawary, B.A. and Al-Saleh, A.A.
Cytogenetic effects of dacarbazine on mouse bone marrow cells in vivo (223) 259

Al-Saleh, A.A., see Al-Hawary, B.A. (223) 259

Alaoui-Jamali, M.A., Rossignol, G., Schuller, H.M. and Castonguay, A.
Transplacental genotoxicity of a tobacco-specific N-nitrosamine, 4-(methylnitrosamo)-1-(3-pyridyl)-1-butanone, in Syrian golden hamster (223) 65

Albertini, R.J., Gennett, I.N., Lambert, B., Thilly, W.G. and Vrieling, H.
Mutation at the *hprt* locus. Workshop on mutation at the *hprt* locus, Stockholm, May 26-28, 1988 (216) 65

Albertini, R.J., see Nicklas, J.A. (215) 147

Albertini, S.
Influence of different factors on the induction of chromosome malsegregation in *Saccharomyces cerevisiae* D61.M by bavistin and assessment of its genotoxic property in the Ames test and in *Saccharomyces cerevisiae* D7 (216) 327

Albrecht, R., see Grolier, P. (211) 139

Alessio, L., see Apostoli, P. (222) 245

Ali, M.A., see Hannan, M.A. (226) 49

Alink, G.M., see Van Houdt, J.J. (222) 155

Alldrick, A.J., see Howes, A.J. (210) 227

Allen, N.A., see Tucker, J.D. (224) 105

Alterio, J., see Muel, A.S. (219) 145

Althaus, F.R., see Alvarez-Gonzalez, R. (218) 67

Alvarez-Gonzalez, R. and Althaus, F.R.
Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents (218) 67

Amacher, D.E. and Turner, G.N.
The critical influence of temperature upon trifluorothymidine resistance in mouse lymphoma L5178Y/TK 3.7.2C cells (224) 415

Amer, M.H., see Hannan, M.A. (226) 49

Ames, B.N.
Endogenous DNA damage as related to cancer and aging (214) 41

Amiel, A., see Ziv, Y. (210) 211

Amirtayev, K.G., see Kozubek, S. (210) 221

Amirtayev, K.G., see Kozubek, S. (215) 49

Amirtayev, K.G., see Tokarova, B. (227) 199

Amadio, S., see Migliore, L. (227) 167

Amonkar, A.J., Padma, P.R. and Bhide, S.V.
Protective effect of hydroxychavicol, a phenolic component of betel leaf, against the tobacco-specific carcinogens (210) 249

Amstad, P., see Cerutti, P. (214) 81

Anders, F., see Stich, H.F. (214) 47

Anders, M., see Consolo, M.C. (210) 263

Anderson, D., see Francis, A.J. (214) 137

Anderson, D., see Phillips, B.J. (214) 105

Anderson, D., see Shim, J.-S. (224) 511

Anderson, R., see Schwalb, G. (225) 95

Anderson, R., see Van Rensburg, C.E.J. (215) 167

Ando, N., see Inouye, T. (223) 411

Andrae, U., see Schmid, E. (226) 133

Andreoli, C., see Benigni, R. (221) 197

Andrews, A.W., see Schiffman, M.H. (222) 351

Angelis, K.J., Veleminský, J., Rieger, R. and Schubert, I.
Repair of bleomycin-induced DNA double-strand breaks in *Vicia faba* (212) 155

Angulo, J.F., Moreau, P.L., Maunoury, R., Laporte, J., Hill, A.M., Bertolotti, R. and Devoret, R.
KIN, a mammalian nuclear protein immunologically related to *E. coli* RecA protein (217) 123

Annest, J.L., see Reidy, J.A. (225) 175

Antignac, E., see Grolier, P. (211) 139

Anwar, W.A., Au, W.W., Sadagopa Ramanujam, V.M. and Legator, M.S.
Enhancement of benzene clastogenicity by praziquantel in mice (222) 283

Aoki, K., see Nakatsuru, Y. (219) 51

Apostoli, P., Leone, R., Porru, S., Fracasso, M.E. and Alessio, L.
Urinary mutagenicity tests in lead-exposed workers (222) 245

Applegate, L.A., see Ley, R.D. (217) 101

Applegate-Stevens, A., see Lipman, J.M. (219) 273

Aprelikova, O.N., Golubovskaya, V.M., Kusmin, I.A. and Tomilin, N.V.

Changes in the size of pulse-labelled DNA fragments induced in human cells by inhibitors of uracil-DNA glycosylase and DNA methylation (213) 135

Aquavella, J., see Zimmering, S. (226) 81

Arad, A., see Stark, A.-A. (224) 89

Arcucci, A., see Quinto, I. (224) 405

Arenaz, P., Hallberg, L., Mancillas, F., Gutierrez, G. and Garcia, S.
Sodium azide mutagenesis in mammals: inability of mammalian cells to convert azide to a mutagenic intermediate (227) 63

Ariizumi, C., see Yamagata, Z. (212) 263

Arimoto, S. and Hayatsu, H.
Role of hemin in the inhibition of mutagenic activity of 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and other aminoazaarenes (213) 217

Arimoto, S., see Ishii, A. (224) 229

Arimoto, S., see Matsuoka, H. (227) 153

Arlett, C.F., see Lehmann, A.R. (220) 255

Arlett, C.F., see Tates, A.D. (213) 73

Arni, P.
Review on the genotoxic activity of thioacetamide (221) 153

Arnold, D.L. and Boyes, B.G.
The toxicological effects of saccharin in short-term genotoxicity assays (221) 69

Arthur, K., see Martin, R.H. (226) 21

Aruga, F., see Hachiya, N. (223) 365

Arwert, F., see Gille, J.J.P. (219) 17

Asano, N., Morita, T. and Watanabe, Y.
Micronucleus test with colchicine given by intraperitoneal injection and oral gavage (223) 391

Ashby, J. and Lefevre, P.A.
The rat-liver carcinogen *N*-nitrosomorpholine initiates unscheduled DNA synthesis and induces micronuclei in the rat liver *in vivo* (225) 143

Ashby, J. and Shelby, M.D.
Overview of the genetic toxicity of caprolactam and benzoin (224) 321

Ashby, J., Tennant, R.W., Zeiger, E. and Stasiewicz, S.
Classification according to chemical structure, mutagenicity to *Salmonella* and level of carcinogenicity of a further 42 chemicals tested for carcinogenicity by the U.S. National Toxicology Program (223) 73

Ashby, J., see Adler, I.-D. (212) 55

Ashby, J., see Adler, I.-D. (213) 27

Ashman, C.R.
Retroviral shuttle vectors as a tool for the study of mutational specificity (base substitution/deletion/mutational hotspot) (220) 143

Atai, H., see Suzuki, S. (223) 407

Athar, M., see Wang, Z.Y. (223) 273

Athwal, R.S., see Gudi, R. (225) 149

Au, W.W., see Anwar, W.A. (222) 283

Au, W.W., see MacLaren, R.A. (222) 1

Aurias, A., see Lefrançois, D. (212) 167

Awa, A.A., see Kodama, Y. (227) 31

Awogi, T. and Sato, T.
Micronucleus test with benzo[a]pyrene using a single per-

oral administration and intraperitoneal injection in males of the MS/Ae and CD-1 mouse strains (223) 353

Ayares, D., see Campbell, C.R. (211) 181

Ayre, B.G., see Kunz, B.A. (226) 273

Azais, V., see Grolier, P. (211) 139

Azou, Y., see Bredberg, A. (211) 171

Babudri, N. and Politi, M.G.

Different action of MMS and EMS in UV-sensitive strains of *Aspergillus nidulans* (217) 211

Badaev, S.A., Gichner, T., Pospíšil, F. and Velemínský, J.

Humic acids inhibit the formation but not the mutagenicity of *N*-methyl-*N*-nitrosourea (210) 9

Bagnasco, M., see De Flora, S. (224) 305

Bakke, J.P., see Aaron, C.S. (223) 141

Bakker, G.L., see Willems, M.I. (222) 375

Bala, S. and Grover, I.S.

Antimutagenicity of some citrus fruits in *Salmonella typhimurium* (222) 141

Balansky, R.M. and Blagoeva, P.M.

Tobacco smoke-induced clastogenicity in mouse fetuses and in newborn mice (223) 1

Baldard, B. and Giacomoni, P.U.

Nicotinamide adenosine dinucleotide level in dimethylsulfate-treated or UV-irradiated mouse epidermis (219) 71

Balbi, C., see Parodi, S. (224) 379

Balbinder, E., Mac Vean, C. and Williams, R.E.

Overlapping direct repeats stimulate deletions in specially designed derivatives of plasmid pBR325 in *Escherichia coli* (214) 233

Ball, J.C., see Salmeen, I.T. (227) 7

Ball, L.M., Warren, S.H., Sangaiah, R., Nesnow, S. and Gold, A.

Bacterial mutagenicity of new cyclopenta-fused cata-annealed polycyclic aromatic hydrocarbons, and identification of the major metabolites of benz[*j*]acephenanthrylene formed by Aroclor-treated rat liver microsomes (224) 115

Ball, S.S., Neshat, M.S., Mickey, M.R. and Walford, R.L.

DNA damage and repair in female C57BL/10 mice of different ages injected with the carcinogen benzo[*a*]pyrene-trans-7,8-diol (219) 241

Bamezai, R.

Differential BrdU uptake in 3 cell cycles and the resultant 3-way sister-chromatid differentiation at M_3 endoreduplicated chromosome level - a hypothesis (226) 137

Bamezai, R., see Shiraishi, Y. (211) 273

Banerjee, S., Bhattacharjee, S.B.

Hyperthermia-induced modulation of killing and mutation by UV and *N*-methyl-*N'*-nitro-*N*-nitrosoguanidine in V79 cells (226) 69

Banzon, R.B., see Dela Rosa, A.M. (223) 303

Baptista, J.A., see Vaughan, D.J. (226) 39

Barbieri, G.P., see Gorla, N.B. (224) 263

Barbin, A. and Bartsch, H.

Nucleophilic selectivity as a determinant of carcinogenic potency (TD_{50}) in rodents: a comparison of mono- and bi-functional alkylating agents and vinyl chloride metabolites (215) 95

Barnes, M., see Martin, R.H. (226) 21

Barnes, W.M., see Eisenstadt, E. (210) 113

Barroso, G., see Labarère, J. (210) 135

Bartlett, J.D., see Jones, S.K. (219) 247

Bartsch, H., see Barbin, A. (215) 95

Bassani, B., see Russo, A. (226) 111

Bates, P., see Lavin, M.F. (218) 41

Bates, P.R. and Lavin, M.F.

Comparison of γ -radiation-induced accumulation of ataxia telangiectasia and control cells in G_2 phase (218) 165

Bauchinger, M., Kulka, U. and Schmid, E.

Cytogenetic effects of 3,4-dichloroaniline in human lymphocytes and V79 Chinese hamster cells (226) 197

Bauchinger, M., Schmid, E., Braselmann, H. and Nahrstedt, U.

Absence of adaptive response to low-level irradiation from tritiated thymidine and X-rays in lymphocytes of two individuals examined in serial experiments (227) 103

Bauchinger, M., Schmid, E., Braselmann, H., Willich, N. and Clemm, C.

Time-effect relationship of chromosome aberrations in peripheral lymphocytes after radiation therapy for seminoma (211) 265

Bauchinger, M., see Schmid, E. (226) 133

Bayreuther, K., see Niggli, H.J. (219) 231

Bébenek, K., see Janion, C. (210) 15

Beer, D.G. and Pitot, H.C.

Proto-oncogene activation during chemically induced hepatocarcinogenesis in rodents (220) 1

Behera, B.C. and Bhunya, S.P.

Studies on the genotoxicity of asataf (acephate), an organophosphate insecticide, in a mammalian *in vivo* system (223) 287

Bender, M.A., Preston, R.J., Leonard, R.C., Pyatt, B.E. and Gooch, P.C.

Chromosomal aberration and sister-chromatid exchange frequencies in peripheral blood lymphocytes of a large human population sample. II. Extension of age range (212) 149

Bender, M.A.

Time course of enhancement of chromosomal aberration production in human lymphocytes by post-treatment with aphidicolin following X-irradiation in G_2 (213) 175

Benifredo, K., see Liber, H.L. (226) 31

Benigni, R., Andreoli, C. and Giuliani, A.

Quantitative structure-activity relationships: principles, and applications to mutagenicity and carcinogenicity (221) 197

Benigni, R.

A bootstrap analysis of four *in vitro* short-term test performances (216) 127

Bennicelli, C., see De Flora, S. (214) 153

Benton, E.R., see Nelson, G.A. (212) 181

Benton, E.V., see Nelson, G.A. (212) 181

Beranek, D.T., see Lee, W.R. (211) 243

Berardesca, E., see Nuzzo, F. (219) 209

Berardesca, E., see Stefanini, M. (219) 175

Berger, H., see Karsdon, J. (226) 13

Bergtold, D.S., see Simic, M.G. (214) 3

Berkel, A.I., see Ziv, Y. (210) 211

Berkowitz, S.J., see Strauss, G.H.S. (222) 171

Bermudez, E., Smith-Oliver, T. and Lyon Delehanty, L. The induction of DNA-strand breaks and unscheduled DNA synthesis in F-344 rat hepatocytes following in vivo administration of caprolactam or benzoin (224) 361

Bernal Salas, R.M., see Rodriguez-Arnau, R. (223) 309

Bernini, L.F., see Tates, A.D. (213) 73

Bertazzoni, U., see Scovassi, A.I. (225) 65

Bertolotti, R., see Angulo, J.F. (217) 123

Beyermann, D., see Hartwig, A. (217) 65

Beyermann, D., see Kortenkamp, A. (216) 19

Bhattacharjee, S.B., see Banerjee, S. (226) 69

Bhattacharjee, S.B., see Ghosh (Datta), R. (225) 137

Bhattacharya, R. An adaptive response of *Vibrio cholerae* strain OGAWA 154 to furazolidone (225) 43

Bhattacharya, R.K., see Francis, A.R. (222) 393

Bhattacharya, R.K., see Shetty, T.K. (222) 403

Bhattacharyya, N.P., Maher, V.M. and McCormick, J.J. Ability of structurally related polycyclic aromatic carcinogens to induce homologous recombination between duplicated chromosomal sequences in mouse L cells (211) 205

Bhaumik, G., see Banerjee, S. (226) 69

Bhide, S.V., see Amonkar, A.J. (210) 249

Bhunya, S.P., see Behera, B.C. (223) 287

Bhunya, S.P., see Pati, P.C. (222) 149

Bianchi, M.S., see Larramendy, M.L. (214) 129

Bianco, N., see Majone, F. (227) 17

Bickers, D.R., see Wang, Z.Y. (223) 273

Bidgood, J., see Kirkland, D.J. (214) 115

Bigatti, M.P., Lamberti, L., Cannas, M. and Rossi, E. Lack of sister-chromatid exchange induction by polymethyl methacrylate bone cement in human lymphocytes cultured in vitro (227) 21

Binkova, B., see Topinka, J. (225) 131

Binková, B., see Topinka, J. (227) 147

Bishop, J.B., see Generoso, W.M. (210) 313

Blagden, P.A., see Georgiou, P.E. (225) 33

Blagojeva, P.M., see Balansky, R.M. (223) 1

Blake, T.J., see Drinkwater, R.D. (219) 29

Blazak, W.F., Los, F.J., Rudd, C.J. and Caspary, W.J. Chromosome analysis of small and large L5178Y mouse lymphoma cell colonies: comparison of trifluorothymidine-resistant and unselected cell colonies from mutagen-treated and control cultures (224) 197

Bockrath, R., see Ruiz-Rubio, M. (210) 93

Bockrath, R., see Yamamoto, K. (226) 259

Bohnert, E., see Bootsma, D. (218) 149

Bonatti, S., see Miele, M. (219) 159

Bonev, M., see Kozubek, S. (210) 221

Bonev, M., see Kozubek, S. (215) 49

Boone, L.R., see Shelby, M.D. (215) 235

Bootsma, D., Keijzer, W., Jung, E.G. and Bohnert, E. Xeroderma pigmentosum complementation group XP-I withdrawn (218) 149

Bootsma, D., see Van Duin, M. (217) 83

Bordin, F., see Majone, F. (227) 17

Borroni, G., see Stefanini, M. (219) 175

Bos, R.P., Kromhout, H., Ikink, H., De Haan, W., Koppejan, J. and Theuws, J.L.G. Mutagens in urine of non-smoking and smoking workers in an aircraft tyre retreading plant. Skin exposure as a causal factor? (223) 41

Bosi, A. and Olivieri, G. Variability of the adaptive response to ionizing radiations in humans (211) 13

Bourre, F., Renault, G. and Gentil, A. From simian virus 40 to transient shuttle vectors in mutagenesis studies (220) 107

Boyce, B.G., see Arnold, D.L. (221) 69

Boyce, B.G., see Rogers, C.G. (226) 191

Bradley, M.O., see Mayer, P.J. (219) 95

Bradley, W.E.C. and Laviolette, F. Low persistence of the induced mutant phenotype in Chinese hamster cells (210) 303

Bradley, W.G., see Jones, S.K. (219) 247

Brady, A.L., Stack, H.F. and Waters, M.D. The genetic toxicology of benzoin and caprolactam (224) 391

Brambilla, G., Martelli, A. and Marinari, U.M. Is lipid peroxidation associated with DNA damage? (214) 123

Brant, M., see Bredberg, A. (211) 171

Braselmann, H., see Bauchinger, M. (211) 265

Braselmann, H., see Bauchinger, M. (227) 103

Bravo, L.M. and Salas, C.E. Changes in DNA methyltransferase induced by treatment with *N*-2-acetylaminofluorene (215) 55

Brčić-Kostić, K., Stojiljković, I., Salaj-Šmic, E. and Trgovčević, Ž. The *recB* gene product is essential for exonuclease V-dependent DNA degradation in vivo (227) 247

Bredberg, A., Brant, M., Riesbeck, K., Azou, Y. and Forsgren, A. 4-Quinolone antibiotics: positive genotoxic screening tests despite an apparent lack of mutation induction (211) 171

Bridges, B.A., see Coleman, M.P. (216) 91

Bridges, B.A., see Fielding, S. (214) 147

Bridges, B.A., see Woodgate, R. (226) 141

Brimer, P.A., see Segal, G.A. (216) 221

Brock, K.H., see Oglesby, L.A. (223) 295

Brockman, H.E., De Serres, F.J., Hung, C.Y. and Ong, T. Effect of the *ws-2* allele of *Neurospora crassa* on the mutagenic potency of two *N*-hydroxylaminopurines and 2-aminopurine in the *ad-3* forward-mutation test (218) 1

Brockman, H.E., see DeMarini, D.M. (220) 11

Brockman, H.E., see Ong, T. (222) 19

Brodin, U. Statistical analysis of the micronucleus test — a modelling approach (211) 259

Brown, I.S., see Martin, R.H. (226) 21

Brown, J.E., see Mackay, J.M. (222) 27

Brown-Luedi, M.L. and Brown, T.C. Two proteins of 220 kD and 230 kD bind to UV-damaged SV40 minichromosomes in irradiated monkey kidney cells (227) 227

Brown-Luedi, M.L., see Brown, T.C. (227) 233

Brown, T.C. and Brown-Luedi, M.L.
G/U lesions are efficiently corrected to G/C in SV40 DNA (227) 233

Brown, T.C. and Cerutti, P.A.
UV-enhanced reactivation of UV-damaged SV40 is due to the restoration of viral early gene function (218) 211

Brown, T.C., Zbinden, I., Cerutti, P.A. and Jiricny, J.
Modified SV40 for analysis of mismatch repair in simian and human cells (220) 115

Brown, T.C., see Brown-Luedi, M.L. (227) 227

Browning, M.M., see Schneider, J.E. (214) 23

Brunet, S. and Giacomoni, P.U.
Heat shock mRNA in mouse epidermis after UV irradiation (219) 217

Brunt, P.W., see Mackay, J.M. (222) 27

Brussee, J., see Zijlstra, J.A. (212) 193

Bryant, M.F., Erexson, G.L. and Kligerman, A.D.
A comparison of sister-chromatid exchange in mouse peripheral blood lymphocytes exposed *in vitro* and *in vivo* to phosphoramide mustard and 4-hydroxycyclophosphamide (222) 271

Bryant, P.E. and Christie, A.F.
Induction of chromosomal aberrations in CHO cells by restriction endonucleases: effects of blunt- and cohesive-ended double-strand breaks in cells treated by 'pellet' methods (213) 233

Bryant, P.E., see Mozdarni, H. (226) 223

Burger, G.T., see Doolittle, D.J. (223) 221

Burkart, W., see Vijayalakshmi, (211) 1

Burkhart, J.G. and Malling, H.V.
Mutagenesis of Φ X174 am3 cs70 incorporated into the genome of mouse L-cells (213) 125

Burkhart, J.G., see Malling, H.V. (212) 11

Burns, M.A. and Tomkins, D.J.
Hypersensitivity to mitomycin C cell-killing in Roberts syndrome fibroblasts with, but not without, the heterochromatin abnormality (216) 243

Busulini, L., see Majone, F. (227) 17

Byrne, B.J., see Lee, W.R. (211) 243

Cacheiro, N.L.A., see Katoh, M. (210) 337

Cain, K.T., see Generoso, W.M. (210) 313

Cain, K.T., see Generoso, W.M. (226) 61

Cain, K.T., see Katoh, M. (210) 337

Calos, M.P., see Haase, S.B. (220) 125

Cameron, J.W., see Lubet, R.A. (212) 275

Camoirano, A., see De Flora, S. (214) 153

Campbell, C.R., Ayares, D., Watkins, K., Wolski, R. and Kucherlapati, R.
Single-stranded DNA gaps, tails and loops are repaired in *Escherichia coli* (211) 181

Campbell, R., see Musk, P. (227) 25

Cannas, M., see Bigatti, M.P. (227) 21

Cantoni, O., Sestili, P., Fiorilli, M., Santoro, M.P., Tannoia, M.C., Novelli, G., Cattabeni, F. and Dallapiccola, B.
Identification of 4 ataxia telangiectasia cell lines hypersensitive to γ -irradiation but not to hydrogen peroxide (218) 143

Caporossi, D., see Porfirio, B. (213) 117

Capozzi, A., see Majone, F. (227) 17

Carere, A., see Crebelli, R. (215) 187

Carere, A., see Crebelli, R. (221) 11

Carrano, A.V., see Tucker, J.D. (224) 105

Carrano, A.V., see Tucker, J.D. (224) 269

Carroll, P.A., see Phillips, B.J. (214) 105

Cartmell, C.L., see Tawn, E.J. (224) 151

Casati, A., see Nuzzo, F. (219) 209

Casciano, D.A., see Neft, R.E. (222) 323

Caspary, W.J., see Blazak, W.F. (224) 197

Cassand, P., see Grolier, P. (211) 139

Castonguay, A., see Alaoui-Jamali, M.A. (223) 65

Cattabeni, F., see Cantoni, O. (218) 143

Cattanach, B.M., Peters, J. and Raspberry, C.
Induction of specific locus mutations in mouse spermatogonial stem cells by combined chemical X-ray treatments (212) 91

Cavolina, P., Agnese, C., Maddalena, A., Sciadrello, G. and Di Leonardo, A.
Induction of CAD gene amplification by restriction endonucleases in V79/B7 Chinese hamster cells (225) 61

Cederberg, H. and Ramel, C.
Modifications of the effect of bleomycin in the somatic mutation and recombination test in *Drosophila melanogaster* (214) 69

Cerutti, P., Larsson, R., Krupitza, G., Muehlematter, D., Crawford, D. and Amstad, P.
Pathophysiological mechanisms of active oxygen (214) 81

Cerutti, P.A., see Brown, T.C. (218) 211

Cerutti, P.A., see Brown, T.C. (220) 115

Chakraborty, P.K., see Sinsheimer, J.E. (224) 171

Chambers, R.W.
On the nature of suppression by *Escherichia coli* HF4714 (210) 205

Chandra Jagetia, G. and Ganapathi, N.G.
Inhibition of clastogenic effect of radiation by Liv. 52 in the bone marrow of mice (224) 507

Chatterjee, A., Jacob-Raman, M. and Mohapatra, B.
Potentiation of bleomycin-induced chromosome aberrations by the radioprotector reduced glutathione (214) 207

Chatterjee, B. and Ghosh, P.K.
Constitutive heterochromatin polymorphism and chromosome damage in viral hepatitis (210) 49

Chaudun, E., see Muel, A.S. (219) 145

Chen, A.T.L., see Reidy, J.A. (225) 175

Chen, J.J., see Heflich, R.H. (227) 69

Chen, P.C., see Lavin, M.F. (218) 41

Chen, X., see Zhang, L. (227) 109

Chen, X.-r., see Zhang, Y.-s. (227) 215

Cheng, S.J., see Wang, Z.Y. (223) 273

Chorazy, M., see Motylkiewicz, G. (223) 243

Christensen, M.L., see Tucker, J.D. (224) 105

Christensen, M.L., see Tucker, J.D. (224) 269

Christie, A.F., see Bryant, P.E. (213) 233

Chung, H.W., see Morgan, W.F. (226) 203

Chung, Y.S., see Hamelin, C. (214) 253

Ciesla, Z., see Fijalkowska, I. (217) 117

Cimander, B., see Motykiewicz, G. (223) 243

Claxton, L.D., Morin, R.S., Hughes, T.J. and Lewtas, J.
A genotoxic assessment of environmental tobacco smoke
using bacterial bioassays (222) 81

Claxton, L.D., see Houk, V.S. (223) 49

Clayson, D.B.
Can a mechanistic rationale be provided for non-genotoxic
carcinogens identified in rodent bioassays? (221) 53

Clayton, R., see Muel, A.S. (219) 145

Cleaver, J.E., Vuksanovic, L., Player, A.N. and Lutze, L.H.
Repair of DNA damage in shuttle vectors, virus, and
chromosomal DNAs may depend on their biological im-
printing — a 'Pygmalion' effect (220) 161

Clement, J.-M., Jehanno, M. and Hofnung, M.
 β -Galactosidase overexpression in SV40-transformed
Chinese hamster fibroblasts exposed to mutagens as a
result of amplification of transfected bacterial lacZ DNA
sequences (218) 179

Clemm, C., see Bauchinger, M. (211) 265

Clerici, L., Sacco, M.G. and Merlini, M.
Acetaldehyde activation of poly(ADP-ribose)polymerase in
hepatocytes of mice treated in vivo (227) 47

Cliet, I., Fournier, E., Melcion, C. and Cordier, A.
In vivo micronucleus test using mouse hepatocytes (216)
321

Clonfero, E., Montini, R., Venier, P. and Levis, A.G.
Release of mutagens from finished leather (226) 229

Cobb, R.R., Martin, J., Kortynski, E., Monteith, L. and
Hughes, T.J.
Preliminary molecular analysis of the TK locus in L5178Y
large- and small-colony mouse lymphoma cell mutants (226)
253

Cobb, R.R., see Dubins, J.S. (215) 39

Cody, D.B., see Thompson, E.D. (223) 267

Cohen, M.M., see Day, P. (224) 409

Cole, J., see Tates, A.D. (213) 73

Coleman, M.P., Wahrendorf, J., and Bridges, B.A.
Letter to mutation epidemiologists (216) 91

Conner, M.K., Guzzie, P.J. and Neft, R.E.
Temporal SCE and cytotoxicity responses of murine cells
following in vivo treatment with MNU or L-PAM (224)
135

Consolo, M.C., Anders, M. and Howard, P.C.
Mutagenicity of the phenolic microsomal metabolites of
3-nitrofluoranthene and 1-nitropyrene in strains of
Salmonella typhimurium (210) 263

Conti, G., see Crebelli, R. (215) 187

Conti, L., see Crebelli, R. (215) 187

Cordier, A., see Cliet, I. (216) 321

Cornett, C.V., see Katoh, M. (210) 337

Corsi, G.C., see Sarto, F. (225) 21

Cortés, F., see Escalza, P. (215) 139

Cortés, F., see Escalza, P. (216) 203

Cortés, F., see Mateos, S. (226) 115

Cortinas de Nava, C., see De la Torre, R.A. (222) 337

Cortinas de Nava, C., see Espinosa-Aguirre, J.J. (222) 161

Counis, M.F., see Muel, A.S. (219) 145

Courtois, Y., see Muel, A.S. (219) 145

Couturier, J., see Lefrançois, D. (212) 167

Crawford, D., see Cerutti, P. (214) 81

Crebelli, R. and Carere, A.
Genetic toxicology of 1,1,2-trichloroethylene (221) 11

Crebelli, R., Conti, G., Conti, L. and Carere, A.
A comparative study on ethanol and acetaldehyde as in-
ducers of chromosome malsegregation in *Aspergillus nidu-
lans* (215) 187

Crosby, R.M., see Liber, H.L. (226) 31

Czeizel, A., Kiss, R., Rácz, K., Mohori, K. and Gláz, E.
Case-control cytogenetic study in offspring of mothers
treated with bromocriptine during early pregnancy (210) 23

Czeizel, A.
Population surveillance of sentinel anomalies (212) 3

D'Agostini, F., see De Flora, S. (214) 153

D'Agostini, F., see De Flora, S. (224) 305

Dallapiccola, B., see Cantoni, O. (218) 143

Dalrymple, S., see Howlett, D. (219) 101

Danheiser, S.L., Liber, H.L. and Thilly, W.G.
Long-term, low-dose benzo[α]pyrene-induced mutation in
human lymphoblasts competent in xenobiotic metabolism
(210) 143

Daniel, J., see Schiffman, M.H. (222) 351

Darroudi, F. and Natarajan, A.T.
Cytogenetical characterization of Chinese hamster ovary
X-ray-sensitive mutant cells xrs 5 and xrs 6. III. Induction
of cell killing, chromosomal aberrations and sister-chro-
matid exchanges by bleomycin, mono- and bi-functional
alkylating agents (212) 123

Darroudi, F. and Natarajan, A.T.
Cytogenetical characterization of Chinese hamster ovary
X-ray-sensitive mutant cells xrs 5 and xrs 6. VII. Complementa-
tion analysis of X-irradiated wild-type CHO-K1 and
xrs mutant cells using the premature chromosome con-
densation technique (213) 249

Darroudi, F. and Natarajan, A.T.
Cytogenetical characterization of Chinese hamster ovary
X-ray-sensitive mutant cells, xrs 5 and xrs 6. IV. Study of
chromosomal aberrations and sister-chromatid exchanges
by restriction endonucleases and inhibitors of DNA topo-
isomerase II (212) 137

Darroudi, F., Natarajan, A.T. and Lohman, P.H.M.
Cytogenetical characterization of UV-sensitive repair-defi-
cient CHO cell line 43-3B. II. Induction of cell killing,
chromosomal aberrations and sister-chromatid exchanges
by 4NQO, mono- and bi-functional alkylating agents (212)
103

Darroudi, F., Westerveld, A. and Natarajan, A.T.
Cytogenetical characterisation of Chinese hamster 43-3B
transferts with the amplified or non-amplified human
DNA repair gene ERCC-1 (212) 113

Das, C.C., see Tripathy, N.K. (224) 161

Das, J., see Ghosh, S.K. (210) 149

Da Silva, K.V.C.L., see Henriques, J.A.P. (218) 111

Davids, J.A.G., see Tates, A.D. (210) 173

Davies, K., see Fielding, S. (214) 147

Davis, R., see Doolittle, D.J. (223) 221

Davis, V.M., see Popkin, D.J. (224) 453

Day, P., Shalaby, Z., Cohen, M.M., Wasserman, S.S. and Schwartz, S.
Effects of theophylline on chromosomal breakage and sister-chromatid exchange (224) 409

Day-Grosjean, L., see James, M.R. (220) 169

Dayrit, F., see Villasenor, I.M. (224) 209

De Angelis, M.T., see Parodi, S. (224) 379

Debenham, P.G., see Smith, P.J. (217) 163

DeBethizy, J.D., see Doolittle, D.J. (223) 221

De Boer, J.G., Drobetsky, E.A., Grosovsky, A.J., Mazur, M. and Glickman, B.W.
The Chinese hamster *aprt* gene as a mutational target. Its sequence and an analysis of direct and inverted repeats (226) 239

De Boer, J.G., see Glickman, B.W. (226) 245

Decuyper-Debergh, D., Piette, J., Laurent, C. and Van de Vorst, A.
Cytotoxic and genotoxic effects of extracellular generated singlet oxygen in human lymphocytes in vitro (225) 11

Deering, R.A., see Hurley, D.L. (217) 25

DeFazio, A., Heneine, N., Musgrove, E.A. and Tattersall, M.H.N.
Enumeration of 6-thioguanine-resistant tumour cells using flow cytometry and comparison with a microtitration cloning assay (216) 57

De Flora, S., Bagnasco, M., Izzotti, A., D'Agostini, F., Pala, M. and Valerio, F.
Mutagenicity of polycyclic aromatic hydrocarbon fractions extracted from urban air particulates (224) 305

De Flora, S., Bennicelli, C., Zanacchi, P., D'Agostini, F. and Camoirano, A.
Mutagenicity of active oxygen species in bacteria and its enzymatic or chemical inhibition (214) 153

Degrassi, F., De Salvia, R., Tanzarella, C. and Palitti, F.
Induction of chromosomal aberrations and SCE by camptothecin, an inhibitor of mammalian topoisomerase I (211) 125

De Haan, L.H.J., see Van Houdt, J.J. (222) 155

De Haan, W., see Bos, R.P. (223) 41

De Hondt, H.A., see El Nahas, S.M. (222) 409

Deininger, C., see Eder, E. (211) 51

Deininger, C., see Eder, E. (226) 145

Deininger, C., see Neudecker, T. (227) 131

De Jong, P.J., see Glickman, B.W. (226) 245

Dekant, W., see Vamvakas, S. (222) 329

Dela Rosa, A.M. and Banzon, R.B.
The effect of γ -radiation on smoked fish using short-term mutagenicity assays (223) 303

De la Rúa Barceló, R., see De la Torre, R.A. (222) 337

De la Torre, R.A., De la Rúa Barceló, R., Hernández, G., Espinosa, J.J. and Cortinas de Nava, C.
Genotoxic effects of niclosamide in *Aspergillus nidulans* (222) 337

Della Morte, R., see Quinto, I. (224) 405

DeMarini, D.M., Brockman, H.E., De Serres, F.J., Evans, H.H., Stankowski Jr., L.F. and Hsie, A.W.

Specific-locus mutations induced in eukaryotes (especially mammalian cells) by radiation and chemicals: a perspective (220) 11

De Marinis, E., see Quinto, I. (224) 405

De Meester, C.
Bacterial mutagenicity of heterocyclic amines found in heat-processed food (221) 235

Dementiev, S.I., see Shevchenko, V.A. (226) 87

Den Dulk, H., see Giphart-Gassler, M. (214) 223

Den Engelse, L., see Tates, A.D. (210) 271

Denizeau, F., see Jutras, D. (216) 35

Denny, W.A., see Ferguson, L.R. (215) 213

Denny, W.A., see Ferguson, L.R. (223) 13

Denny, W.A., see Ferguson, L.R. (224) 95

De Raat, W.K., see Willems, M.I. (222) 375

De Riel, J.K., see Henderson, E.E. (220) 151

De Riel, J.K., see Ley, R.D. (217) 101

De Salvia, R., see Degrassi, F. (211) 125

De Serres, F.J.
X-Ray-induced specific locus mutations in the *ad-3* region of two-component heterokaryons of *Neurospora crassa*, III. Genetic fine structure analysis of the *ad-3* and immediately adjacent genetic regions by means of complementation tests (211) 89

De Serres, F.J.
X-Ray-induced specific-locus mutations in the *ad-3* region of two-component heterokaryons of *Neurospora crassa*, II. More extensive genetic tests reveal an unexpectedly high frequency of multiple-locus mutations (210) 281

De Serres, F.J.
X-Ray-induced specific-locus mutations in the *ad-3* region of two-component heterokaryons of *Neurospora crassa*, IV. Irreparable mutants of genotype *ad-3A* and *ad-3B* result from multilocus deletion and an unexpectedly high frequency of multiple-locus mutations (214) 297

De Serres, F.J., see Sandhu, S.S. (216) 341

De Serres, F.J., see Brockman, H.E. (218) 1

De Serres, F.J., see DeMarini, D.M. (220) 11

De Serres, F.J., see Dubins, J.S. (215) 39

De Serres, F.J., see Overton, L.K. (214) 267

De Vogel, N., see Tates, A.D. (210) 173

Devoret, R., see Angulo, J.F. (217) 123

Dey, L., see Tripathy, N.K. (224) 161

Dicus, B., see Whittaker, S.G. (224) 31

Digweed, M. and Sperling, K.
Identification of a HeLa mRNA fraction which can correct the DNA-repair defect in Fanconi anaemia fibroblasts (218) 171

Di Leonardo, A., see Cavolina, P. (225) 61

Dillehay, L.E., Jacobson-Kram, D. and Williams, J.R.
DNA topoisomerases and models of sister-chromatid exchange (215) 15

DiPaolo, J.A., see Pirsel, M. (217) 39

Dixon, K., Roilides, E., Hauser, J. and Levine, A.S.
Studies on direct and indirect effects of DNA damage on mutagenesis in monkey cells using an SV40-based shuttle vector (220) 73

Dodson, M.L. and Lloyd, R.S.
Structure-function studies of the T4 endonuclease V repair enzyme (218) 49

Doerfler, W., see Müller, T. (215) 205

Doerr, C.L., Harrington-Brock, K. and Moore, M.M.
Micronucleus, chromosome aberration, and small-colony TK mutant analysis to quantitate chromosomal damage in L5178Y mouse lymphoma cells (222) 191

Dogliotti, E., see Ellison, K.S. (220) 93

Dolara, P., see Lodovici, M. (223) 321

Doley, M.T., see Guedeney, G. (212) 159

Doniger, J., see Pirsel, M. (217) 39

Dooley, J.C., see Margulies, L. (215) 1

Doolittle, D.J., Rahn, C.A., Burger, G.T., Davis, R., DeBethizy, J.D., Howard, G., Lee, C.K., McKarns, S.C., Riccio, E., Robinson, J., Reynolds, J. and Hayes, A.W.
Human urine mutagenicity study comparing cigarettes which burn or only heat tobacco (223) 221

Dotson, S.B. and Somers, D.A.
Differential metabolism of sodium azide in maize callus and germinating embryos (213) 157

Doudney, C.O. and Rinaldi, C.N.
Evidence that ultraviolet light-induced DNA replication death of *recA* bacteria is prevented by protein synthesis in repair-proficient bacteria (217) 33

Douglas, G., see Martin, R.H. (226) 21

Downes, A.M.T., see Kunz, B.A. (226) 273

Drasil, V., see Kozubek, S. (210) 221

Drasil, V., see Kozubek, S. (215) 49

Dresser, D.W., see Morrell, J.M. (224) 177

Drinkwater, N.R., see Ingle, C.A. (220) 133

Drinkwater, R.D., Blake, T.J., Morley, A.A. and Turner, D.R.
Human lymphocytes aged in vivo have reduced levels of methylation in transcriptionally active and inactive DNA (219) 29

Drobetsky, E.A., Grosovsky, A.J. and Glickman, B.W.
Perspectives on the use of an endogenous gene target in studies of mutational specificity (220) 235

Drobetsky, E.A., see De Boer, J.G. (226) 239

Drobetsky, E.A., see Glickman, B.W. (226) 245

Drougard, C., see James, M.R. (220) 169

Dubins, J.S., Overton, L.K., Cobb, R.R. and De Serres, F.J.
Classical and molecular genetic analyses of *his-3* mutants of *Neurospora crassa*. II. Southern blot analyses and molecular mechanisms of mutagenicity (215) 39

Dubins, J.S., see Overton, L.K. (214) 267

Dubois, G., see Willemse, M.J. (222) 375

Ducore, J.M., see Newton, R.K. (219) 113

Ducore, J.M., see Rosenstein, B.S. (217) 219

Dunipace, A.J., see Li, Y. (227) 159

Duranton, I., see Guedeney, G. (212) 159

Dusenberry, R.L., see Smith, P.D. (218) 21

Dutrillaux, A.M., see Lefrançois, D. (212) 167

Dutrillaux, B., see Lefrançois, D. (212) 167

Eastmond, D.A. and Tucker, J.D.
Kinetochoore localization in micronucleated cytokinesis-blocked Chinese hamster ovary cells: A new and rapid assay for identifying aneuploidy-inducing agents (224) 517

Eder, E., Deininger, C. and Kütt, W.
Genotoxicity of monofunctional methanesulphonates in the SOS chromotest as a function of alkylation mechanisms. A comparison with the mutagenicity in *S. typhimurium* TA100 (211) 51

Eder, E., Deininger, C. and Wiedemann, M.
Methyl methanesulphonate (MMS) is clearly mutagenic in *S. typhimurium* strain TA1535; a comparison with strain TA100 (226) 145

Eder, E., see Neudecker, T. (227) 131

Edwards, A.A., see Moquet, J.E. (227) 207

Edwards, J.A., Wang, L.-G., Setlow, R.B. and Kaminskas, E.
O⁶-Methylguanine-DNA methyltransferase in lymphocytes of the elderly with and without Alzheimer's disease (219) 267

Ehling, U.H. and Neuhäuser-Klaus, A.
Induction of specific-locus and dominant lethal mutations in male mice by chloromethine (227) 81

Ehling, U.H. and Neuhäuser-Klaus, A.
Induction of specific-locus mutations in male mice by ethyl methanesulfonate (EMS) (227) 91

Ehling, U.H.
Germ-cell mutations in mice: Standards for protecting the human genome (212) 43

Ehling, U.H.
Induction of specific-locus mutations in male mice by diethyl sulfate (DES) (214) 329

Einhorn, N., see He, S.-M. (210) 353

Eisenstadt, E., Miller, J.K., Kahng, L.-S. and Barnes, W.M.
Influence of *uvrB* and pKM101 on the spectrum of spontaneous, UV- and γ -ray-induced base substitutions that revert *hisG46* in *Salmonella typhimurium* (210) 113

Eisenstark, A., see Hoerter, J. (215) 161

Eker, A.P.M., see Yasui, A. (217) 3

El-Tarras, A., see Adler, I.-D. (211) 131

Elkind, M.M., see Kubota, N. (216) 137

Ellison, K.S., Dogliotti, E. and Essigmann, J.M.
Construction of a shuttle vector containing a single *O⁶-methylguanine*: A probe for mutagenesis in mammalian cells (220) 93

El Nahas, S.M., De Hondt, H.A. and Abdou, H.E.
Chromosome aberrations in spermatogonia and sperm abnormalities in Curacron-treated mice (222) 409

Emerit, I. and Lahoud-Maghani, M.
Mutagenic effects of TPA-induced clastogenic factor in Chinese hamster cells (214) 97

Eneff, K.L., see Schneider, J.E. (214) 23

Erb, F., see Pommery, J. (223) 183

Erexson, G.L., see Bryant, M.F. (222) 271

Erin, A.N., see Topinka, J. (225) 131

Escalza, P., Piñero, J. and Cortés, F.
A standardized method for the three-way differential staining of plant chromosomes and the scoring of SCEs per cell cycle (216) 203

Escalza, P., Piñero, J. and Cortés, F.

Scoring of SCE frequency per cell cycle in CHO chromosomes by means of a standardized 3-way-differential staining method (215) 139

Espinosa-Aguirre, J.J., Santos, J.R. and Cortinas de Nava, C.
Influence of the Uvr repair system on the mutagenicity of antiparasitic drugs (222) 161

Espinosa, J.J., see De la Torre, R.A. (222) 337

Esser, K., see Osiewacz, H.D. (219) 9

Essigmann, J.M., see Ellison, K.S. (220) 93

Evans, B.L.B., see Thompson, E.D. (223) 267

Evans, H.H., Ricanati, M., Horng, M.-f. and Mencl, J.
Relationship between topoisomerase II and radiosensitivity in mouse LS178Y lymphoma strains (217) 53

Evans, H.H., see DeMarini, D.M. (220) 11

Fahrig, R. and Neuhäuser-Klaus, A.
Positive effect of caprolactam in the mammalian spot test: an overview (224) 377

Fahrig, R.
Possible recombinogenic effect of caprolactam in the mammalian spot test (224) 373

Fasunon, O.D. and Uwaifo, A.O.
Prophage induction by 4 antimalaria drugs (Daraprim, Fansidar, Nivaquine and Camoquine) and in combination with aflatoxin B₁ (222) 311

Favor, J., Neuhäuser-Klaus, A., Kratochvílova, J. and Pretsch, W.
Towards an understanding of the nature and fitness of induced mutations in germ cells of mice: homozygous viability and heterozygous fitness effects of induced specific-locus, dominant cataract and enzyme-activity mutations (212) 67

Felton, J.S., see Tucker, J.D. (224) 105

Ferguson, L.R., Denny, W.A. and O'Rourke, S.M.
Mutagenic activity of nitrarcine derivatives in *Salmonella typhimurium*: Relationship to drug physicochemical parameters, and to bacterial *uvrB* and *recA* genes and plasmid pKM101 (223) 13

Ferguson, L.R., Palmer, B.D. and Denny, W.A.
Relationships between structure, toxicity and genetic effects in *Salmonella typhimurium* and *Saccharomyces cerevisiae* for substituted aniline mustards (224) 95

Ferguson, L.R., Turner, P.M., Gourdie, T.A., Valu, K.K. and Denny, W.A.
'Petite' mutagenesis and mitotic crossing-over in yeast by DNA-targeted alkylating agents (215) 213

Fertig, G. and Miltener, H.G.
Flow-cytometric cell-cycle analysis of Chinese hamster cells following exposure to cytotoxicants (215) 61

Fielding, S., Short, C., Davies, K., Wald, N., Bridges, B.A. and Waters, R.
Studies on the ability of smoke from different types of cigarettes to induce DNA single-strand breaks in cultured human cells (214) 147

Fijalkowska, I., Jonczyk, P. and Ciesla, Z.
Conditional lethality of the *recA441* and *recA730* mutants of *Escherichia coli* deficient in DNA polymerase I (217) 117

Fiorilli, M., see Cantoni, O. (218) 143

Floyd, R.A., see Schneider, J.E. (214) 23

Flury-Herard, A., see Lefrançois, D. (212) 167

Fluss, L., see Nguyen, T. (223) 205

Fogel, S., see Piegoesch, W.W. (224) 11

Fogel, S., see Whittaker, S.G. (224) 31

Fojtíková, I., see Topinka, J. (227) 147

Forsgren, A., see Bredberg, A. (211) 171

Fournier, E., see Clét, I. (216) 321

Fowler, R.G., see Isbell, R.J. (213) 149

Fox, D.P., see Mackay, J.M. (222) 27

Foxworth, L.B., see Generoso, W.M. (210) 313

Foxworth, L.B., see Generoso, W.M. (226) 61

Fracasso, M.E., see Apostoli, P. (222) 245

Fram, R.J., Mack, S.L., George, M. and Marinus, M.G.
DNA repair mechanisms affecting cytotoxicity by streptozotocin in *E. coli* (218) 125

Francis, A.J., Anderson, D., Jenkinson, P.C. and Parke, D.V.W.
The protective effects of L-ascorbic acid and DL- α -tocopherol on cultured rat embryos treated with xanthine/xanthine oxidase (214) 137

Francis, A.R., Shetty, T.K. and Bhattacharya, R.K.
Modifying role of dietary factors on the mutagenicity of aflatoxin B₁: in vitro effect of plant flavonoids (222) 393

Francis, A.R., see Shetty, T.K. (222) 403

Francz, P.I., see Niggli, H.J. (219) 231

Franešić, J., Skupnjač, Š. and Matijašević, Z.
Genotoxicity of nitrosated ranitidine (227) 13

Frei, H., see Graf, U. (222) 359

Frelat, G., see Quillardet, P. (216) 251

Friederich, U., see Kugler-Steigmeier, M.E. (211) 279

Fröhlich, A. and Würgler, F.E.
New tester strains with improved bioactivation capacity for the *Drosophila* wing-spot test (216) 179

Fu, P.P., Zhang, Y.-C.N.Y.-M., Heflich, R.H., Wang, Y.-K. and Lai, J.-S.
Effect of the orientation of nitro substituent on the bacterial mutagenicity of dinitrobenzo[e]pyrenes (225) 121

Fu, P.P., see Gao, N. (225) 181

Fu, P.P., see Heflich, R.H. (225) 157

Fu, P.P., see Heflich, R.H. (227) 69

Fujie, K., see Ito, Y. (222) 253

Fukui, S., see Hirayama, T. (226) 169

Fukui, S., see Watanabe, T. (225) 15

Fukui, S., see Watanabe, T. (225) 75

Fukui, S., see Watanabe, T. (227) 135

Fukunaga, Y., see Hirayama, T. (226) 169

Fulton, A.M., see Paul, L.A. (215) 223

Furihata, C., Hatta, A., Sato, Y. and Matsushima, T.
Alkaline elution of DNA from stomach pyloric mucosa of rats treated with glyoxal (213) 227

Furukawa, A., see Ohuchida, A. (223) 395

Gaddamidi, V., see Sinsheimer, J.E. (224) 171

Ganapathi, N.G., see Chandra Jagetia, G. (224) 507

Ganesh, A.N., see Thacker, J. (210) 103

Gao, N., Ni, Y.-C., Thornton-Manning, J.R., Fu, P.P. and Heflich, R.H.
Mutagenicity of nitrofurantoin and furazolidone in Chinese hamster ovary cell strains (225) 181

Garcia, S., see Arenaz, P. (227) 63

Garland, D., see Garry, V.F. (225) 107

Garniott, M.L., see Hill, L.E. (224) 447

Garry, V.F., Jacobs Jr., D.R., Potter, J., Kreiger, R.A., Garland, D. and Sinn, M.R.

An approach to the investigation of cancer in tool and die workers. I. Epidemiologic findings in a suspected cancer cluster among tool and die workers (225) 107

Garry, V.F., Nelson, R.L., Whorton, E.P. and Wiencke, J.K.

Chromosomal aberrations and sister-chromatid exchanges in tool and die workers (225) 1

Gately, F.H., see Volkert, M.R. (217) 109

Gebara, M.M., see Lehmann, A.R. (220) 255

Generoso, W.M., Cain, K.T., Hughes, L.A. and Foxworth, L.B.

A restudy of the efficacy of adriamycin in inducing dominant lethals in mouse spermatogonia stem cells (226) 61

Generoso, W.M., Katoh, M., Cain, K.T., Hughes, L.A., Foxworth, L.B., Mitchell, T.J. and Bishop, J.B.

Chromosome malsegregation and embryonic lethality induced by treatment of normally ovulated mouse oocytes with nocodazole (210) 313

Generoso, W.M., see Katoh, M. (210) 337

Gennett, I.N., see Albertini, R.J. (216) 65

Gentil, A., see Bourre, F. (220) 107

Gentile, J.M., see Wagner, E.D. (216) 163

George, M., see Fram, R.J. (218) 125

Georghiou, P.E., Blagden, P.A., Winsor, L. and Williams, D.T.

Spontaneous revertants in modified *S. typhimurium* mutagenicity tests employing elevated numbers of the tester strain (225) 33

Gerbault-Seureau, M., see Lefrançois, D. (212) 167

German, J., see Kyoizumi, S. (214) 215

Ghaskadbi, S. and Vaidya, V.G.

In vivo antimutagenic effect of ascorbic acid against mutagenicity of the common antiamoebic drug diiodohydroxy-quinoline (222) 219

Ghosh, P.K., see Chatterjee, B. (210) 49

Ghosh, S.K., Panda, D.K. and Das, J.

Lack of *umuD*C gene functions in *Vibrio cholerae* cells (210) 149

Ghosh (Datta), R. and Bhattacharjee, S.B.

Influence of benzamide on killing and mutation of density-inhibited V79 cells by MNNG (225) 137

Giacomoni, P.U., see Balard, B. (219) 71

Giacomoni, P.U., see Brunet, S. (219) 217

Giacomoni, P.U., see Tachon, P. (211) 103

Giavini, E., see Ornaghi, F. (225) 71

Gibson, D.P., see Aardema, M.J. (223) 191

Gichner, T., see Badaev, S.A. (210) 9

Gietz, R.D., see Schiestl, R.H. (224) 427

Gille, J.J.P. and Joenje, H.

Chromosomal instability and progressive loss of chromosomes in HeLa cells during adaptation to hyperoxic growth conditions (219) 225

Gille, J.J.P., Mullaart, E., Vijg, J., Leyva, A.L., Arwert, F. and Joenje, H.

Chromosomal instability in an oxygen-tolerant variant of Chinese hamster ovary cells (219) 17

Gille, J.J.P., Van Berkel, C.G.M., Mullaart, E., Vijg, J. and Joenje, H.

Effects of lethal exposure to hyperoxia and to hydrogen peroxide on NAD(H) and ATP pools in Chinese hamster ovary cells (214) 89

Ginther, C., see Nguyen, T. (223) 205

Giorgi, R., see Nuzzo, F. (219) 209

Giphart-Gassler, M., Groenewegen, A., Den Dulk, H., Van de Putte, P. and Tasseron-de Jong, J.G.

Studying DNA mutations in human cells with the use of an integrated HSV thymidine kinase target gene (214) 223

Giri, A.K., Messerly, E.A. and Sinsheimer, J.E.

Sister-chromatid exchange and chromosome aberrations for 4 aliphatic epoxides in mice (224) 253

Giri, A.K., see Roychoudhury, A. (223) 313

Giuliani, A., see Benigni, R. (221) 197

Gladek, A., see Randerath, K. (219) 121

Gláz, E., see Czeizel, A. (210) 23

Glazer, P.M., see Summers, W.C. (220) 263

Glickman, B.W., De Jong, P.J., De Boer, J.G., Drobetsky, E.A. and Grosovsky, A.J.

Mutagenicity and structure-mutagenicity relationships of furopquinolines, naturally occurring aldehydes of the Rutaceae (226) 245

Glickman, B.W., see De Boer, J.G. (226) 239

Glickman, B.W., see Drobetsky, E.A. (220) 235

Gocke, E.

Reduction of the translation fidelity by kanamycin: effects on growth and mutant frequency in *S. typhimurium* TA102 (226) 211

Goel, H.C., Singh, S. and Singh, S.P.

Radiomodifying influence of camphor on sister-chromatid exchange induction in mouse bone marrow (224) 157

Goin, C.J., see Mayer, V.W. (224) 471

Gold, A., see Ball, L.M. (224) 115

Gold, A., see Nesnow, S. (222) 223

Gollapudi, B.B., see Sinha, A.K. (226) 65

Golubovskaya, V.M., see Aprelikova, O.N. (213) 135

Goncharova, R.I. and Kuzhir, T.D.

A comparative study of the antimutagenic effects of antioxidants on chemical mutagenesis in *Drosophila melanogaster* (214) 257

Gong, H.-H., see Kagan, J. (216) 231

Gooch, P.C., see Bender, M.A. (212) 149

Goodhead, D.T., see Aghamohammadi, S.Z. (211) 225

Gorla, N.B., Ledesma, O.S., Barbieri, G.P. and Larripa, I.B.

Thirteenfold increase of chromosomal aberrations non-randomly distributed in chagasic children treated with nifurtimox (224) 263

Gough, G. and Wood, R.D.

Inhibition of in vitro SV40 DNA replication by ultraviolet light (227) 193

Gourdie, T.A., see Ferguson, L.R. (215) 213

Gozalbo, D. and Hohmann, S.

Comparison of the nucleotide sequences of a yeast gene family. II. Analysis of spontaneous deletions and insertions (215) 89

Gozalbo, D., see Hohmann, S. (215) 79

Graf, U., Frei, H., Kägi, A., Katz, A.J. and Würgler, F.E.
Thirty compounds tested in the *Drosophila* wing spot test (222) 359

Graf, U., see Kugler-Steigmeier, M.E. (211) 279

Granath, F., see Kolman, A. (212) 269

Grassi, M., see Lodovici, M. (223) 321

Green, A.P., see Henderson, E.E. (220) 151

Green, M.H.L., see Tates, A.D. (213) 73

Griffith, C.S., see Margulies, L. (215) 1

Griffiths, T.D. and Ling, S.Y.
Effects of UV light on DNA chain growth and replicon initiation in human cells (218) 87

Groenewegen, A., see Giphart-Gassler, M. (214) 223

Grolier, P., Cassand, P., Antignac, E., Narbonne, J.F., Albrecht, R., Azais, V., Robertson, L.W. and Oesch, F.
Effects of prototypic PCBs on benzo[α]pyrene mutagenic activity related to vitamin A intake (211) 139

Grosovsky, A.J., see De Boer, J.G. (226) 239

Grosovsky, A.J., see Drobetsky, E.A. (220) 235

Grosovsky, A.J., see Glickman, B.W. (226) 245

Grover, I.S., see Bala, S. (222) 141

Grzegorczyk, C.R., see Aaron, C.S. (223) 163

Grzegorczyk, C.R., see Harbach, P.R. (216) 101

Gudi, R., Sandhu, S.S. and Athwal, R.S.
A genetic method to quantitate induced chromosome breaks using a mouse/human monochromosomal hybrid cell line: Identification of potential clastogenic agents (225) 149

Guedeney, G., Rigaud, O., Duranton, I., Malarbet, J.L., Doloy, M.T. and Magdelenat, H.
Chromosomal aberrations and DNA repair ability of in vitro irradiated white blood cells of monkeys previously exposed to total body irradiation (212) 159

Guengerich, F.P., see Lubet, R.A. (212) 275

Guillemet, E., see Ozier-Kalogeropoulos, O. (226) 121

Guillemet, E., see Ozier-Kalogeropoulos, O. (226) 127

Guli, C.L. and Smyth, D.R.
Lack of effect of maternal age on UV-induced DNA repair in mouse oocytes (210) 323

Gunn, J.S., Woodruff, R.C. and Ludwiczak, R.L.
The effect of temperature on the movement of *P* DNA elements in somatic tissues of *Drosophila melanogaster* (226) 267

Gupta, R., see Nesnow, S. (222) 223

Gutierrez, G., see Arenaz, P. (227) 63

Guzzie, P.J., see Conner, M.K. (224) 135

Haase, S.B., Heinzel, S.S., Krysan, P.J. and Calos, M.P.
Improved EBV shuttle vectors (220) 125

Hachiya, N., Aruga, F., Aida, M., Quan, T.-H. and Takizawa, Y.
Micronucleus induction in mouse bone marrow by phenacetin administered intraperitoneally or orally (223) 365

Hadi, S.M., Shahabuddin, and Rehman, A.
Specificity of the interaction of furfural with DNA (225) 101

Hadnagy, W., Seemayer, N.H., Tomingas, R. and Ivanfy, K.

Comparative study of sister-chromatid exchanges and chromosomal aberrations induced by airborne particulates from an urban and a highly industrialized location in human lymphocyte cultures (225) 27

Hafner, L.M. and MacPhee, D.G.
Modulation of mutagenesis involving precise excision of transposon *Tn10* (211) 291

Hageman, G.J., see Kleijnjans, J.C.S. (224) 127

Haggerty, H.G., see Kim, B.-S. (213) 185

Hajec, L.I., see Volkert, M.R. (217) 109

Hakoda, M., Hirai, Y., Kusunoki, Y. and Akiyama, M.
Cloning of *in vivo*-derived thioguanine-resistant human B cells (210) 29

Hakoda, M., see Kodama, Y. (227) 31

Hallberg, L., see Arenaz, P. (227) 63

Hamelin, C. and Chung, Y.S.
Repair of ozone-induced DNA lesions in *Escherichia coli* B cells (214) 253

Hanasaki, Y., see Watanabe, T. (225) 75

Hanawalt, P.C., see Matsumoto, A. (217) 185

Hanawalt, P.C., see Vos, J.-M.H. (220) 205

Hanna, M.L., see Tucker, J.D. (224) 269

Hannan, M.A., Smith, B.P., Sigut, D., Rabe, E.F., Ozand, P.T., Ali, M.A. and Amer, M.H.
Chronic γ -radiation sensitivity of skin fibroblasts from patients with non-Hodgkin's lymphoma (NHL) (226) 49

Hara, M., Kogiso, S., Yamada, F., Kawamoto, M., Yoshitake, A. and Miyamoto, J.
Mutagenicity studies on fenitrothion in bacteria and mammalian cells (222) 53

Hara, M., see Suzuki, S. (223) 407

Hara, T., Makita, T., Horiya, N., Ozawa, S., Ohba, M., Naito, J. and Shibuya, T.
Micronucleus test with 6-mercaptopurine monohydrate administered intraperitoneally and orally (223) 349

Hara, Y., see Jain, A.K. (210) 1

Harbach, P.R., Aaron, C.S., Wiser, S.K., Grzegorczyk, C.R. and Smith, A.L.
The *in vitro* unscheduled DNA synthesis (UDS) assay in rat primary hepatocytes. Validation of improved methods for primary culture including data on the lack of effect of ionizing radiation (216) 101

Harbach, P.R., see Aaron, C.S. (223) 111

Harbach, P.R., see Aaron, C.S. (223) 141

Harbach, P.R., see Aaron, C.S. (223) 163

Harcourt, S.A., see Lehmann, A.R. (220) 255

Harrington-Brock, K., see Doerr, C.L. (222) 191

Harris, A.L., see Robson, C.N. (217) 93

Hart, R.W., see Lipman, J.M. (219) 273

Hartwig, A. and Beyermann, D.
Enhancement of UV-induced mutagenesis and sister-chromatid exchanges by nickel ions in V79 cells: evidence for inhibition of DNA repair (217) 65

Hasegawa, J., Hosokawa, M., Okada, F. and Kobayashi, H.
Inhibition of mitomycin C-induced sister-chromatid exchanges in mouse bone marrow cells by the immunopotentiators Krestin and Lentinan (226) 9

Hashimoto, A., see Mizuhashi, F. (223) 357

Hass, B.S., see Heflich, R.H. (227) 69
 Hastings, P.J., see Schiestl, R.H. (224) 427
 Hata, H., see Nagaya, T. (222) 279
 Hatakeyama, Y., see Suzuki, S. (223) 407
 Hatta, A., see Furihata, C. (213) 227
 Hattori, C., see Shindo, Y. (223) 403
 Hauser, J., see Dixon, K. (220) 73
 Hawksworth, G.M., see Mackay, J.M. (222) 27
 Hayashi, M., Sofuni, T., Kodama, Y., Ishidate Jr., M. and Tamura, H.
 Micronucleus test with 1- β -D-arabinofuranosylcytosine administered by intraperitoneal injection and oral gavage (223) 345
 Hayashi, M., Sutou, S., Shimada, H., Sato, S., Sasaki, Y.F. and Wakata, A.
 Difference between intraperitoneal and oral gavage application in the micronucleus test. The 3rd collaborative study by CSGMT/JEMS-MMS (223) 329
 Hayatsu, H., see Arimoto, S. (213) 217
 Hayatsu, H., see Ishii, A. (224) 229
 Hayatsu, H., see Matsuoka, H. (227) 153
 Hayes, A.W., see Doolittle, D.J. (223) 221
 He, S.-M., Holmberg, K., Lambert, B. and Einhorn, N.
 Hprt mutations and karyotype abnormalities in T-cell clones from healthy subjects and melphalan-treated ovarian carcinoma patients (210) 353
 Heflich, R.H., Hass, B.S., Chen, J.J., Thornton-Manning, J.R. and Fu, P.P.
 Reply to 'Comment on the non-additivity of the mutagenic response of mixtures of nitrobenzo[a]pyrenes' (227) 69
 Heflich, R.H., Unruh, L.E., Thornton-Manning, J.R., Von Tungeln, L.S. and Fu, P.P.
 Mutagenicity of 1-, 3- and 6-nitrosobenzo[a]pyrene in *Salmonella typhimurium* and Chinese hamster ovary cells (225) 157
 Heflich, R.H., see Fu, P.P. (225) 121
 Heflich, R.H., see Gao, N. (225) 181
 Heim, S., Johansson, B. and Mertens, F.
 Constitutional chromosome instability and cancer risk (221) 39
 Heindorff, K., see Schubert, I. (211) 301
 Heinzel, S.S., see Haase, S.B. (220) 125
 Hellgren, D. and Lambert, B.
 Mechanisms for recombination between stably integrated vector sequences in CHO cells (215) 197
 Hellgren, D., Luthman, H. and Lambert, B.
 Induced recombination between duplicated *neo* genes stably integrated in the genome of CHO cells (210) 195
 Hellgren, D., Sahlén, S. and Lambert, B.
 Mutagen-induced recombination between stably integrated *neo* gene fragments in CHO and EM9 cells (226) 1
 Hemminki, K., see Savela, K. (224) 485
 Henderson, E.E., Valerie, K., Green, A.P. and De Riel, J.K.
 Host cell reactivation of CAT-expression vectors as a method to assay for cloned DNA-repair genes (220) 151
 Henderson, E.E., see Ley, R.D. (217) 101
 Heneine, N., see DeFazio, A. (216) 57
 Henriques, J.A.P., Vicente, E.J., Da Silva, K.V.C.L. and Schenberger, A.C.G.
 PSO4: a novel gene involved in error-prone repair in *Saccharomyces cerevisiae* (218) 111
 Henschler, D., see Neudecker, T. (227) 131
 Henschler, D., see Vamvakas, S. (222) 329
 Heppner, G.H., see Paul, L.A. (215) 223
 Hermanns, J., see Osiewacz, H.D. (219) 9
 Hernández, G., see De la Torre, R.A. (222) 337
 Hewer, A., see Savela, K. (224) 485
 Hickey, I., see Ruddy, S.M. (227) 187
 Hickson, I.D., see Robson, C.N. (217) 93
 Higurashi, M., see Yamagata, Z. (212) 263
 Hildebrand, K., see Martin, R.H. (226) 21
 Hill, A.M., see Angulo, J.F. (217) 123
 Hill, C.K., see Kubota, N. (216) 137
 Hill, L.E., Yount, D.J., Garriott, M.L., Tamura, R.N. and Probst, G.S.
 Quantification of unscheduled DNA synthesis by a whole cell counting method (224) 447
 Hiraga, Y., see Sato, S.-i. (223) 387
 Hirai, Y., see Hakoda, M. (210) 29
 Hirayama, E., see Nagao, T. (215) 173
 Hirayama, T., Watanabe, T., Ono, M., Fukunaga, Y. and Fukui, S.
 7-Amino-2,4,6-trimethylquinoline as a mutagenic pyrolysis compound of polyurethane foam (226) 169
 Hirayama, T., see Watanabe, T. (225) 15
 Hirayama, T., see Watanabe, T. (225) 75
 Hirayama, T., see Watanabe, T. (227) 135
 Hirohata, I., see Takenaka, S. (223) 35
 Hirohata, T., see Takenaka, S. (223) 35
 Hiroto, H., see Tsuyoshi, T. (223) 383
 Hisamatsu, A., see Matsuoka, A. (215) 179
 Hisamatsu, Y., Shida, Y. and Matsushita, H.
 Mutagenicity of the reaction products of carbazole in the presence of nitrogen dioxide and nitrocarbazole (226) 55
 Hitotsumachi, S., see Sutou, S. (223) 377
 Ho, I.-C., see Lin, Y.-C. (216) 93
 Hoal-van Helden, E.G. and Van Helden, P.D.
 Age-related methylation changes in DNA may reflect the proliferative potential of organs (219) 263
 Hoeijmakers, J.H.J., see Van Duin, M. (217) 83
 Hoerter, J., Eisenstark, A. and Touati, D.
 Mutations by near-ultraviolet radiation in *Escherichia coli* strains lacking superoxide dismutase (215) 161
 Hoffman, C., see Neudecker, T. (227) 131
 Hoffschir, F., see Lefrançois, D. (212) 167
 Hofnung, M., see Clément, J.-M. (218) 179
 Hofnung, M., see Quillardet, P. (216) 251
 Hohmann, S. and Gozalbo, D.
 Comparison of the nucleotide sequences of a yeast gene family. I. Distribution and spectrum of spontaneous base substitutions (215) 79
 Hohmann, S., see Gozalbo, D. (215) 89
 Holmberg, K., see He, S.-M. (210) 353
 Holmberg, M.
 The effect of deoxynucleosides on repair of DNA breaks in UVC-irradiated human lymphocytes (218) 33
 Holsapple, M.P., see Kim, B.-S. (213) 185
 Homan, E.C., see Jongen, W.M.F. (222) 263

Hoorn, A.J.W.
Dimethylglycine and chemically related amines tested for mutagenicity under potential nitrosation conditions (222) 343

Horiya, N., see Hara, T. (223) 349

Horing, M.-f., see Evans, H.H. (217) 53

Hoshi, K., see Kondo, K. (223) 373

Hosokawa, M., see Hasegawa, J. (226) 9

Houk, V.S., Schalkowsky, S. and Claxton, L.D.
Development and validation of the spiral Salmonella assay: An automated approach to bacterial mutagenicity testing (223) 49

Howard-Flanders, P., see Akaboshi, E. (227) 1

Howard, G., see Doolittle, D.J. (223) 221

Howard, P.C., see Consolo, M.C. (210) 263

Howes, A.J., Rowland, I.R., Lake, B.G. and Alldrick, A.J.
Effect of dietary fibre on the mutagenicity and distribution of 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) (210) 227

Howlett, D., Dalrymple, S. and Mays-Hoopes, L.L.
Age-related demethylation of mouse satellite DNA is easily detectable by HPLC but not by restriction endonucleases (219) 101

Hozier, J.C., Sawyer, J.R. and Moore, M.M.
High-resolution cytogenetic analysis of L5178Y TK^{+/+} 3.7.C cells: variation in chromosome 11 breakpoints among small-colony TK^{-/-} mutants (214) 195

Hozier, J.C., see Sawyer, J.R. (214) 181

Hsie, A.W., see DeMarini, D.M. (220) 11

Huang, P., Siciliano, M.J. and Plunkett, W.
Gene deletion, a mechanism of induced mutation by arabinosyl nucleosides (210) 291

Hughes, L.A., see Generoso, W.M. (210) 313

Hughes, L.A., see Generoso, W.M. (226) 61

Hughes, T.J., see Claxton, L.D. (222) 81

Hughes, T.J., see Cobb, R.R. (226) 253

Humphrey, R.M., see Nairn, R.S. (217) 193

Hung, C.Y., see Brockman, H.E. (218) 1

Hunter, T.C., see Nicklas, J.A. (215) 147

Hurley, D.L., Skantar, A.M. and Deering, R.A.
Nuclear DNA synthesis is blocked by UV irradiation in *Dityostelium discoideum* (217) 25

Husgafvel-Pursiainen, K., see Sorsa, M. (222) 111

Hustinx, T., see Smeets, D. (212) 223

Hutchinson, F.
Use of data from bacteria to interpret data on DNA damage processing in mammalian cells (220) 269

Ichinose, I., see Nakano, S. (217) 45

Iijima, S., see Yamagata, Z. (212) 263

Ikeda, Y., see Sato, S.-i. (223) 387

Ikehata, H., Kimura, H. and Kato, T.
Shuttle vector system for the analysis of mutational events in mammalian chromosomal DNA (210) 237

Ikink, H., see Bos, R.P. (223) 41

Ikushima, T.
Radio-adaptive response: characterization of a cytogenetic repair induced by low-level ionizing radiation in cultured Chinese hamster cells (227) 241

Imanishi, H., see Inouye, T. (223) 411

Imanishi, H., see Sasaki, Y.F. (213) 195

Imanishi, H., see Sasaki, Y.F. (226) 103

Imanishi, H., see Shimoi, K. (212) 213

Imanishi, K., see Sano, H. (217) 141

Imbenotte, M., see Pommery, J. (223) 183

Inaoka, T., see Yamaizumi, M. (217) 135

Ingle, C.A. and Drinkwater, N.R.
Mutational specificities of 1'-acetoxysafrole, *N*-benzoyloxy-N-methyl-4-aminoazobenzene, and ethyl methanesulfonate in human cells (220) 133

Ingwersen, I., see Adler, I.-D. (224) 343

Inoue, H., see Ishii, C. (218) 95

Inoue, H., see Tanaka, S. (223) 233

Inoue, M., see Sayama, M. (226) 181

Inouye, T., Imanishi, H., Watanabe, M., Sasaki, Y.F., Shirasu, Y., Ando, N. and Ishii, S.-i.
Micronucleus test with procarbazine hydrochloride administered by intraperitoneal injection and oral gavage (223) 411

Inui, N., see Sato, S.-i. (223) 387

Ioannides, C., see Phillipson, C.E. (211) 147

Isbell, R.J. and Fowler, R.G.
Temperature-dependent mutational specificity of an *Escherichia coli* mutator, *dnaQ49*, defective in 3' → 5' exonuclease (proofreading) activity (213) 149

Ishida, R., Utsumi, K.R. and Takahashi, T.
Sister-chromatid exchanges (SCEs), cell survival and mutation in HeLa S3 cells with different sensitivity to alkylating agents; evidence that SCE induction and cell survival or mutation induction are dissociable (215) 69

Ishida, S., see Yajima, N. (210) 165

Ishidate Jr., M., see Matsuoka, A. (215) 179

Ishidate Jr., M. and Odagiri, Y.
Negative micronucleus tests on caprolactam and benzoin in ICR/JCL male mice (224) 357

Ishidate Jr., M., see Hayashi, M. (223) 345

Ishidate Jr., M., see Watanabe, M. (216) 211

Ishii, A., Matsuoka, H., Aji, T., Hayatsu, H., Wataya, Y., Arimoto, S. and Tokuda, H.
Evaluation of the mutagenicity and the tumor-promoting activity of parasite extracts: *Schistosoma japonicum* and *Clonorchis sinensis* (224) 229

Ishii, A., see Matsuoka, H. (227) 153

Ishii, C. and Inoue, H.
Epistasis, photoreactivation and mutagen sensitivity of DNA repair mutants *upr-1* and *mus-26* in *Neurospora crassa* (218) 95

Ishii, C., see Tanaka, S. (223) 233

Ishii, S.-i., see Inouye, T. (223) 411

Ishikawa, N., see Nagaya, T. (222) 279

Ishikawa, T., see Matsukuma, S. (218) 197

Ishikawa, T., see Nakatsuru, Y. (219) 51

Itahashi, K., see Kitada, M. (227) 53

Ito, Y., Ohnishi, S. and Fujie, K.
Chromosome aberrations induced by aflatoxin B₁ in rat bone marrow cells in vivo and their suppression by green tea (222) 253

Itzhaki, R.F., see Smith, T.A.D. (217) 11

Ivanfy, K., see Hadnagy, W. (225) 27

Ivanov, E.L., Kovaltzova, S.V. and Korolev, V.G.

Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion (213) 105

Iwakiri, R., see Nakano, S. (217) 45

Iwasaki, S., see Matsuoka, A. (215) 179

Iwasaki, S., see Nagao, T. (215) 173

Izzo, R., see Scovassi, A.I. (225) 65

Izzotti, A., see De Flora, S. (224) 305

Jablonická, A., Poláková, H., Karellová, J. and Vargová, M.

Analysis of chromosome aberrations and sister-chromatid exchanges in peripheral blood lymphocytes of workers with occupational exposure to the mancozeb-containing fungicide Novozir Mn80 (224) 143

Jacob-Raman, M., see Chatterjee, A. (214) 207

Jacobs Jr., D.R., see Garry, V.F. (225) 107

Jacobson-Kram, D., see Dillehay, L.E. (215) 15

Jacobson-Kram, D., see Xiao, S. (227) 39

Jagielski, J., see Sasiadek, M. (224) 235

Jain, A.K., Shimoi, K., Nakamura, Y., Kada, T., Hara, Y. and Tomita, I.

Crude tea extracts decrease the mutagenic activity of *N*-methyl-*N'*-nitro-*N*-nitrosoguanidine in vitro and in intragastric tract of rats (210) 1

James, M.R., Stary, A., Daya-Grosjean, L., Drougard, C. and Sarasin, A.

Comparative study of Epstein-Barr virus and SV40-based shuttle-expression vectors in human repair-deficient cells (220) 169

Janion, C., Plewako, S., Bębenek, K. and Sledziewska-Gojska, E.

Influence of *dam* and mismatch repair system on mutagenic and SOS-inducing activity of methyl methanesulfonate in *Escherichia coli* (210) 15

Janssen, Y.M.W., see Kleinjans, J.C.S. (224) 127

Järventaus, H., see Norppa, H. (224) 333

Järventaus, H., see Sorsa, M. (222) 111

Jarvis, M.J.

Application of biochemical intake markers to passive smoking measurement and risk estimation (222) 101

Jaspers, N.G.J., see Ziv, Y. (210) 211

Jeggo, P.A. and Smith-Ravin, J.

Decreased stable transfection frequencies of six X-ray-sensitive CHO strains, all members of the *xrs* complementation group (218) 75

Jehanno, M., see Clément, J.-M. (218) 179

Jenkinson, P.C., see Francis, A.J. (214) 137

Jenssen, D., see Zhang, L.-H. (212) 253

Jiang, H.-X., see Whong, W.-Z. (222) 237

Jiricny, J., see Brown, T.C. (220) 115

Joenje, H.

Genetic toxicology of oxygen (219) 193

Joenje, H., see Gille, J.J.P. (214) 89

Joenje, H., see Gille, J.J.P. (219) 17

Joenje, H., see Gille, J.J.P. (219) 225

Johansson, B., see Heim, S. (221) 39

Johansson, B., see Mertens, F. (210) 63

John, A.T., see Abraham, S. (224) 281

Jonczyk, P., see Fijalkowska, I. (217) 117

Jones, R.C. and Weisburger, J.H.

Characterization of aminoalkylimidazol-4-one mutagens from liquid-reflux models (222) 43

Jones, S.K., Nee, L.E., Sweet, L., Polinsky, R.J., Bartlett, J.D., Bradley, W.G. and Robison, S.H.

Decreased DNA repair in familial Alzheimer's disease (219) 247

Jongen, W.M.F., Topp, R.J., Wienk, K.J.H. and Homan, E.C.

Modulating effects of naturally occurring indoles on SCE induction depend largely on the type of mutagen (222) 263

Jung, E.G., see Bootsma, D. (218) 149

Jutras, D., Marion, M. and Denizeau, F.

The effects of putative DNA repair inhibitors on DNA adduct levels and unscheduled DNA synthesis in rat hepatocytes exposed to 2-acetylaminofluorene (216) 35

Kada, T., see Jain, A.K. (210) 1

Käfer, E. and Luk, D.

Sensitivity to bleomycin and hydrogen peroxide of DNA repair-defective mutants in *Neurospora crassa* (217) 75

Kagan, J., Tuveson, R.W. and Gong, H.-H.

The light-dependent cytotoxicity of benzo[a]pyrene: effect on human erythrocytes, *Escherichia coli* cells, and *Haemophilus influenzae* transforming DNA (216) 231

Kägi, A., see Graf, U. (222) 359

Kahng, L.-S., see Eisenstadt, E. (210) 113

Kalf, G.F., see Pirozzi, S.J. (222) 291

Kamataki, T., see Kitada, M. (227) 53

Kamataki, T., see Ohta, K. (226) 163

Kaminskas, E., see Edwards, J.A. (219) 267

Kamiya, N., see Tayama, S. (223) 23

Kangwanpong, D., Maratana, D. and Temcharoen, P.

Induction of sister-chromatid exchange in human blood lymphocytes by aqueous extract of palmyrah (*Borassus flabellifer*) flour (224) 241

Karam, L.R., see Simic, M.G. (214) 3

Karellová, J., see Jablonická, A. (224) 143

Karlberg, I., see Lindahl-Kiessling, K. (211) 77

Karrison, T., see Schwartz, J.L. (216) 119

Karsdon, J., Van Rijn, J., Berger, H. and Natarajan, A.T.

Increased frequency of spontaneous and X-ray-induced chromosomal aberrations in lymphocytes from neonates and the influence of caffeine - an in vitro study (226) 13

Karwan, A., see Klein, F. (210) 157

Kasai, H., Nakayama, M., Toda, N., Yamaizumi, Z., Oikawa, J. and Nishimura, S.

Methylreductive acid and hydroxymethylreductive acid: oxygen radical-forming agents in heated starch (214) 159

Kataoka, H., see Matsukuma, S. (218) 197

Kato, K., see Nishi, Y. (227) 117

Kato, T., see Ikehata, H. (210) 237

Katoh, M., Cacheiro, N.L.A., Cornett, C.V., Cain, K.T., Rutledge, J.C. and Generoso, W.M.

Fetal anomalies produced subsequent to treatment of zygotes with ethylene oxide or ethyl methanesulfonate are not likely due to the usual genetic causes (210) 337

Katoh, M., see Generoso, W.M. (210) 313
 Katz, A.J., see Graf, U. (222) 359
 Kawamoto, M., see Hara, M. (222) 53
 Kawamura, K., see Shindo, Y. (223) 403
 Kawanishi, G., see Yajima, N. (210) 165
 Keijzer, W., see Bootsma, D. (218) 149
 Kelly, C., see Woodgate, R. (226) 141
 Kennedy, K., see Warters, R.L. (216) 43
 Kerckaert, G.A., see LeBoeuf, R.A. (222) 205
 Ketterer, B. and Meyer, D.J.
 Glutathione transferases: A possible role in the detoxication and repair of DNA and lipid hydroperoxides (214) 33
 Khalil, A.M.
 The induction of chromosome aberrations in human purified peripheral blood lymphocytes following in vitro exposure to selenium (224) 503
 Khan, W.A., see Wang, Z.Y. (223) 273
 Kido, A., see Mizuhashi, F. (223) 357
 Kim, B.-S., Yang, K.-H., Haggerty, H.G. and Holsapple, M.P.
 Production of DNA single-strand breaks in unstimulated splenocytes by dimethylnitrosamine (213) 185
 Kim, Y.-H., see Shim, J.-S. (224) 511
 Kimura, H., see Ikehata, H. (210) 237
 Kimura, Y., see Sutou, S. (223) 377
 Kirkland, D.J., Marshall, R.R., McEnaney, S., Bidgood, J., Rutter, A. and Mullineux, S.
 Aroclor-1254-induced rat-liver S9 causes chromosomal aberrations in CHO cells but not human lymphocytes: A role for active oxygen? (214) 115
 Kirkwood, T.B.L.
 DNA, mutations and aging (219) 1
 Kishi, M., see Sugiyama, C. (223) 361
 Kishi, T., see Yajima, N. (210) 165
 Kiss, R., see Czeizel, A. (210) 23
 Kitada, M., Taneda, M., Ohi, H., Komori, M., Itahashi, K., Nagao, M. and Kamataki, T.
 Mutagenic activation of aflatoxin B₁ by P-450 HFLa in human fetal livers (227) 53
 Kitada, M., see Ohta, K. (226) 163
 Kitagaki, T., see Mizuhashi, F. (223) 357
 Kitagawa, Y., see Nakajima, M. (223) 399
 Kitazawa, M., see Nakajima, M. (223) 399
 Klaude, M., Persson, G. and Von der Decken, A.
 Combined effect of dimethylnitrosamine and a lysine-restricted diet on O⁶-methylguanine-DNA methyltransferase levels in mouse tissues (218) 135
 Klein, B., see Van Duin, M. (217) 83
 Klein, F., Karwan, A. and Wintersberger, U.
 After a single treatment with EMS the number of non-colony-forming cells increases for many generations in yeast populations (210) 157
 Klein, P., see Pool, B.L. (213) 61
 Kleinjans, J.C.S., Janssen, Y.M.W., Van Agen, B., Hageman, G.J. and Schreurs, J.G.M.
 Genotoxicity of coal fly ash, assessed in vitro in *Salmonella typhimurium* and human lymphocytes, and in vivo in an occupationally exposed population (224) 127
 Kligerman, A.D., see Bryant, M.F. (222) 271
 Klopman, G., see Rosenkranz, H.S. (221) 217
 Knasmüller, S., Szakmary, A. and Wottawa, A.
 Investigations on the use of EDTA-permeabilized *E. coli* cells in liquid suspension and animal-mediated genotoxicity assays (216) 189
 Knize, M.G., see Tucker, J.D. (224) 105
 Knuutila, S., see Slavutsky, I. (219) 257
 Kobayashi, H., see Hasegawa, J. (226) 9
 Kobayashi, H., see Sugiyama, C. (223) 361
 Kočišová, J., see Topinka, J. (227) 147
 Kodama, K.-i., Nakabeppe, Y. and Sekiguchi, M.
 Cloning and expression of the *Bacillus subtilis* methyltransferase gene in *Escherichia coli ada*⁻ cells (218) 153
 Kodama, T., see Ohta, K. (226) 163
 Kodama, Y., Hakoda, M., Shimba, H., Awa, A.A. and Akiyama, M.
 A chromosome study of 6-thioguanine-resistant mutants in T lymphocytes of Hiroshima atomic bomb survivors (227) 31
 Kodama, Y., see Hayashi, M. (223) 345
 Koga, T., see Nakano, S. (217) 45
 Kogiso, S., see Hara, M. (222) 53
 Kohalmi, S.E., see Kunz, B.A. (226) 273
 Koizumi, A., see Spindler, S.R. (219) 89
 Kojima, M., see Wakata, A. (223) 369
 Koken, M., see Yasui, A. (217) 3
 Kolman, A., Näslund, M. and Granath, F.
 Modifying action of γ -radiation in mutagenesis of *E. coli* WU36-10 induced by ethylene oxide, ethyl methanesulfonate and methyl methanesulfonate (212) 269
 Komori, M., see Kitada, M. (227) 53
 Komori, M., see Ohta, K. (226) 163
 Kondo, K., Suzuki, H., Hoshi, K. and Yasui, H.
 Micronucleus test with ethyl methanesulfonate administered by intraperitoneal injection and oral gavage (223) 373
 Kondo, Y., see Ohuchida, A. (223) 395
 Koo Roh, J., see Shim, J.-S. (224) 511
 Koppejan, J., see Bos, R.P. (223) 41
 Korolev, V.G., see Ivanov, E.L. (213) 105
 Kortenkamp, A., Ozolins, Z., Beyermann, D. and O'Brien, P.
 Generation of PM2 DNA breaks in the course of reduction of chromium(VI) by glutathione (216) 19
 Korytynski, E., see Cobb, R.R. (226) 253
 Koskimies, K., see Sorsa, M. (222) 111
 Kovaltzova, S.V., see Ivanov, E.L. (213) 105
 Koyama, K., see Nagao, T. (215) 173
 Kozubek, S., Krasavin, E.A., Amirtayev, K.G., Tokarova, B., Soska, I., Drasil, V. and Bonev, M.
 The induction of revertants by heavy particles and γ -rays in *Salmonella* tester strains (210) 221
 Kozubek, S., Krasavin, E.A., Soska, I., Drasil, V., Amirtayev, K.G., Tokarova, B. and Bonev, M.
 Induction of the SOS response in *Escherichia coli* by heavy ions (215) 49
 Kozubek, S., see Tokarova, B. (227) 199
 Kozuka, H., see Sayama, M. (226) 181

Kraemer, K.H. and Seidman, M.M.
Use of *supF*, An *Escherichia coli* tyrosine suppressor tRNA gene, as a mutagenic target in shuttle-vector plasmids (220) 61

Krasavin, E.A., see Kozubek, S. (210) 221

Krasavin, E.A., see Kozubek, S. (215) 49

Krasavin, E.A., see Tokarova, B. (227) 199

Kratochvilova, J., see Favor, J. (212) 67

Kreiger, R.A., see Garry, V.F. (225) 107

Krepinsky, J.J., see Vaughan, D.J. (226) 39

Krishna, G., Kropko, M.L. and Theiss, J.C.
Use of the cytokinesis-block method for the analysis of micronuclei in V79 Chinese hamster lung cells: results with mitomycin C and cyclophosphamide (222) 63

Krishna, G., see Soler-Niedziela, L. (224) 465

Kristiansen, E. and Scott, D.
Chromosomal analyses of human lymphocytes exposed in vitro to caprolactam (224) 329

Krøkje, Å.
Mutagenicity of expectorate from workers in a coke plant (223) 213

Kromhout, H., see Bos, R.P. (223) 41

Kronenberg, A. and Little, J.B.
Molecular characterization of thymidine kinase mutants of human cells induced by densely ionizing radiation (211) 215

Kropko, M.L., see Krishna, G. (222) 63

Krupitz, G., see Cerutti, P. (214) 81

Krysan, P.J., see Haase, S.B. (220) 125

Kubota, N., Hill, C.K. and Elkind, M.M.
Fixation and repair of radiation-induced potentially mutagenic damage sensitive to hypertonic treatment in human diploid fibroblasts (216) 137

Kucherlapati, R., see Campbell, C.R. (211) 181

Kugler-Steigmeier, M.E., Friederich, U., Graf, U., Lutz, W.K., Maier, P. and Schlatter, C.
Genotoxicity of aniline derivatives in various short-term tests (211) 279

Kulka, U., see Bauchinger, M. (226) 197

Kul Lee, H., see Shim, J.-S. (224) 511

Kumari, T.S. and Vaidyanath, K.
Testing of genotoxic effects of 2,4-dichlorophenoxyacetic acid (2,4-D) using multiple genetic assay systems of plants (226) 235

Kunz, B.A., Ayre, B.G., Downes, A.M.T., Kohalmi, S.E., McMaster, C.R. and Peters, M.G.
Base-pair substitutions alter the site-specific mutagenicity of UV and MNNG in the *SUP4-o* gene of yeast (226) 273

Kuo, M.-L. and Lin, J.-K.
The relationship between DNA damage and mutation frequency in mammalian cell lines treated with *N*-nitroso-N-2-fluorenylacetamide (212) 231

Kurebe, M., see Shindo, Y. (223) 403

Kusmin, I.A., see Aprelikova, O.N. (213) 135

Kusunoki, Y., see Hakoda, M. (210) 29

Kutlaca, A., see McCarron, M.A. (225) 189

Kütt, W., see Eder, E. (211) 51

Kuzhir, T.D., see Goncharova, R.I. (214) 257

Kyoizumi, S., Nakamura, N., Takebe, H., Tatsumi, K., German, J. and Akiyama, M.
Frequency of variant erythrocytes at the glycoporphin-A locus in two Bloom's syndrome patients (214) 215

Labarère, J. and Barroso, G.
Lethal and mutation frequency responses of *Spiroplasma citri* cells to UV irradiation (210) 135

Lachmann, P.J., see Snyder, R.D. (226) 185

Lafi, A., see Adams, K. (213) 141

Lagomarsini, P., see Nuzzo, F. (219) 209

Lagomarsini, P., see Scovassi, A.I. (225) 65

Lagomarsini, P., see Stefanini, M. (219) 175

Lahoud-Maghani, M., see Emerit, I. (214) 97

Lai, J.-S., see Fu, P.P. (225) 121

Lai, L.-W., see Rosenstein, B.S. (217) 219

Lake, B.G., see Howes, A.J. (210) 227

Lambert, B., see Albertini, R.J. (216) 65

Lambert, B., see He, S.-M. (210) 353

Lambert, B., see Hellgren, D. (210) 195

Lambert, B., see Hellgren, D. (215) 197

Lambert, B., see Hellgren, D. (226) 1

Lamberti, L., see Bigatti, M.P. (227) 21

Lamoliatte, E., see Lefrançois, D. (212) 167

Lange, C.S., see Mayer, P.J. (219) 95

Laporte, J., see Angulo, J.F. (217) 123

Larramendy, M.L., Bianchi, M.S. and Padrón, J.
Correlation between the anti-oxidant enzyme activities of blood fractions and the yield of bleomycin-induced chromosome damage (214) 129

Larripa, I.B., see Gorla, N.B. (224) 263

Larsen, R.D., see Mohrenweiser, H.W. (212) 241

Larson, R.A., see Schwartz, J.L. (216) 119

Larsson, R., see Cerutti, P. (214) 81

Latt, S.A., see Rudolph, N.S. (211) 19

Latt, S.A., see Rudolph, N.S. (211) 31

Laurent, C., see Decuyper-Debergh, D. (225) 11

Laurent, M., see Muel, A.S. (219) 145

LaVelle, J.M., see Mangold, J.B. (216) 27

Lavin, M.F., Bates, P., Le Poidevin, P. and Chen, P.C.
Normal inhibition of DNA synthesis following γ -irradiation of radiosensitive cell lines from patients with Down's syndrome and Alzheimer's disease (218) 41

Lavin, M.F., see Bates, P.R. (218) 165

Laviolette, F., see Bradley, W.E.C. (210) 303

Lawley, P.D.
Mutagens as carcinogens: development of current concepts (213) 3

Le Beau, M.M., see Schwartz, J.L. (216) 119

LeBoeuf, R.A., Kerckaert, G.A., Pooley, J.A. and Raineri, R.
An interlaboratory comparison of enhanced morphological transformation of Syrian hamster embryo cells cultured under conditions of reduced bicarbonate concentration and pH (222) 205

LeBoeuf, R.A., see Aardema, M.J. (223) 191

Leedes, O.S., see Gorla, N.B. (224) 263

Lee, C.K., see Doolittle, D.J. (223) 221

Lee, T.-C., see Lin, Y.-C. (216) 93

Lee, W.R., Beranek, D.T. and Byrne, B.J.
Dosage-response relationships for methyl methanesulfonate in *Drosophila melanogaster* spermatozoa: DNA methylation per nucleotide vs. sex-linked recessive lethal frequency (211) 243

Lefevre, P.A., see Ashby, J. (225) 143

Lefrançois, D., Achkar, W.A., Aurias, A., Couturier, J., Dutrillaux, A.M., Dutrillaux, B., Flury-Herard, A., Gerbault-Seureau, M., Hoffschir, F., Lamoliatte, E., Lombard, M., Muleris, M., Prieur, M., Ricoul, M., Sabatier, L. and Viegas-Péquignot, E.
Chromosomal aberrations induced by low-dose γ -irradiation. Study of R-banded chromosomes of human lymphocytes (212) 167

Legator, M.S., see Anwar, W.A. (222) 283

Legator, M.S., see MacLaren, R.A. (222) 1

Lehmacher, W., see Neuhäuser-Klaus, A. (224) 369

Lehmann, A.R., Arlett, C.F., Harcourt, S.A., Steingrimsdottir, H. and Gebara, M.M.
Mutagenic treatments result in inactivation of expression of a transfected bacterial gene integrated into a human cell line (220) 255

Leighton, T., see Nguyen, T. (223) 205

Leonard, R.C., see Bender, M.A. (212) 149

Leone, R., see Apostoli, P. (222) 245

Le Poidevin, P., see Lavin, M.F. (218) 41

Leupe, F., see Bates, A.D. (210) 173

Levine, A.S., see Dixon, K. (220) 73

Levis, A.G., see Clonfero, E. (226) 229

Levis, A.G., see Majone, F. (227) 17

Levis, A.G., see Russo, A. (226) 111

Lewtas, J., see Claxton, L.D. (222) 81

Ley, R.D., Applegate, L.A., De Riel, J.K. and Henderson, E.E.
Excision repair characteristics of *denV*-transformed xeroderma pigmentosum cells (217) 101

Leyva, A.L., see Gille, J.J.P. (219) 17

Li, T.M., see Warters, R.L. (216) 43

Li, Y., Zhang, W., Noblitt, T.W., Dunipace, A.J. and Stokey, G.K.
Genotoxic evaluation of chronic fluoride exposure: sister-chromatid exchange study (227) 159

Liaskou, D., see MacPhee, D.G. (227) 251

Liber, H.L., Benforado, K., Crosby, R.M., Simpson, D. and Skopek, T.R.
Formaldehyde-induced and spontaneous alterations in human *hprt* DNA sequence and mRNA expression (226) 31

Liber, H.L., Yandell, D.W. and Little, J.B.
A comparison of mutation induction at the *tk* and *hprt* loci in human lymphoblastoid cells; quantitative differences are due to an additional class of mutations at the autosomal *tk* locus (216) 9

Liber, H.L., see Danheiser, S.L. (210) 143

Liehr, J.G., see Randerath, K. (219) 121

Lim-Sylianco, C.Y., see Villasenor, I.M. (224) 209

Lin, J.-K., see Kuo, M.-L. (212) 231

Lin, Y.-C., Ho, I.-C. and Lee, T.-C.
Ethanol and acetaldehyde potentiate the clastogenicity of ultraviolet light, methyl methanesulfonate, mitomycin C and bleomycin in Chinese hamster ovary cells (216) 93

Lindahl-Kiessling, K., Karlberg, I. and Olofsson, A.-M.
Induction of sister-chromatid exchanges by direct and indirect mutagens in human lymphocytes, co-cultured with intact rat liver cells. Effect of enzyme induction and preservation of the liver cells by freezing in liquid nitrogen (211) 77

Ling, S.Y., see Griffiths, T.D. (218) 87

Linscombe, V.A., see Sinha, A.K. (226) 65

Lipman, J.M., Applegate-Stevens, A., Soyka, L.A. and Hart, R.W.
Cell-cycle defect of DNA repair in progeria skin fibroblasts (219) 273

Little, J.B., see Kronenberg, A. (211) 215

Little, J.B., see Liber, H.L. (216) 9

Little, J.B., see Rudolph, N.S. (211) 19

Littlefield, L.G., see Meyne, J. (226) 75

Livneh, Z., see Shwartz, H. (213) 165

Lloyd, D.C., see Moquet, J.E. (227) 207

Lloyd, R.S., see Dodson, M.L. (218) 49

Lodovici, M., Grassi, M. and Dolara, P.
In vitro DNA binding of 2-amino-3-methylimidazo[4,5-*f*][5-³H]quinoline (IQ) is modulated by sulfotransferase and sulfate levels (223) 321

Löfroth, G.
Environmental tobacco smoke: overview of chemical composition and genotoxic components (222) 73

Löfroth, G.
Comment on the non-additivity of the mutagenic response of mixtures of nitrobenzo[*a*]pyrenes (225) 41

Lohman, P.H.M., see Darroudi, F. (212) 103

Lombard, M., see Lefrançois, D. (212) 167

Looney, A.L., see Shane, B.S. (222) 9

Loos, M.J., see Sankaranarayanan, K. (211) 7

Loprieno, N., see Migliore, L. (227) 167

Los, F.J., see Blazak, W.F. (224) 197

Lovell, D.P.
Screening for possible human carcinogens and mutagens
False positives, false negatives: statistical implications (213) 43

Lowe, K.W., see McFee, A.F. (224) 347

Lu, C.-H., see Whong, W.-Z. (222) 237

Lubet, R.A., McKinney, C.E., Cameron, J.W., Guengerich, F.P. and Nims, R.W.
Preferential activation of 6-aminochrysene and 2-aminoanthracene to mutagenic moieties by different forms of cytochrome P450 in hepatic 9000 $\times g$ supernatants from the rat (212) 275

Ludwigczak, R.L., see Gunn, J.S. (226) 267

Luk, D., see Käfer, E. (217) 75

Luke, C.A. and Tice, R.R.
Effect of processing time on the quality of mouse bone-marrow metaphase preparations (227) 59

Luke, C.A., see Ormiston, B.G. (227) 173

Luthman, H., see Hellgren, D. (210) 195

Lutz, W.K., see Kugler-Steigmeier, M.E. (211) 279

Lutze, L.H., see Cleaver, J.E. (220) 161

Lyaginskaya, A.M., see Pomerantseva, M.D. (226) 93

Lyaginskaya, A.M., see Shevchenko, V.A. (226) 87

Lyon Delehynt, L., see Bermudez, E. (224) 361

Lyons, B.W., see Warters, R.L. (216) 43

Ma, T.-H., see Sandhu, S.S. (224) 437

Macieira-Coelho, A. and Puvion-Dutilleul, F.
Evaluation of the reorganization in the high-order structure of DNA occurring during cell senescence (219) 153

Mack, S.L., see Fram, R.J. (218) 125

Mackay, J.M., Fox, D.P., Brunt, P.W., Hawksworth, G.M. and Brown, J.E.
In vitro induction of chromosome damage by sulphasalazine in human lymphocytes (222) 27

MacLaren, R.A., Au, W.W. and Legator, M.S.
The effect of 3-aminobenzamide on X-ray induction of chromosome aberrations in Down syndrome lymphocytes (222) 1

MacPhee, D.G. and Liaskou, D.
Mutagenesis by the anti-tumour drug nitracrine in *Escherichia coli* (227) 251

MacPhee, D.G., see Hafner, L.M. (211) 291

Mac Veau, C., see Balbinder, E. (214) 233

Maddalena, A., see Cavolina, P. (225) 61

Madej, R., see Nguyen, T. (223) 205

Madrigal-Bujaidar, E. and Rosas-Planaguma, E.
In vivo and in vitro genotoxic evaluation of indorene (222) 317

Madzak, C., see Menck, C.F.M. (220) 101

Maemori, M., see Matsuda, Y. (214) 165

Magdelenat, H., see Guedeney, G. (212) 159

Mah, M.C.-M., see Maher, V.M. (220) 83

Maher, V.M., Yang, J.-L., Mah, M.C.-M. and McCormick, J.J.
Comparing the frequency and spectra of mutations induced when an SV-40 based shuttle vector containing covalently bound residues of structurally-related carcinogens replicates in human cells (220) 83

Maher, V.M., see Bhattacharyya, N.P. (211) 205

Maie, O., see Sano, H. (217) 141

Maier, P., see Kugler-Steigmeier, M.E. (211) 279

Majhi, B., see Tripathy, N.K. (224) 161

Majone, F., Busulini, L., Capozzi, A., Bianco, N., Saggioro, D., Levis, A.G. and Bordin, F.
Relationship between DNA replicon size and SCE induction in BALB/c and BALB/Mo mouse lymphocytes (227) 17

Makita, T., see Hara, T. (223) 349

Malarbet, J.L., see Guedeney, G. (212) 159

Malkovich, D., see Summers, W.C. (220) 263

Mallardo, M., see Quinto, I. (224) 405

Malling, H.V. and Burkhardt, J.G.
Use of Φ X174 as a shuttle vector for the study of in vivo mammalian mutagenesis (212) 11

Malling, H.V., see Burkhardt, J.G. (213) 125

Manabe, S., Uchino, E. and Wada, O.
Carcinogenic tryptophan pyrolysis products in airborne particles and rain water (226) 215

Manabe, S., see Yin, Y. (215) 107

Mancillas, F., see Arenaz, P. (227) 63

Mangold, J.B., Mischke, M.R. and LaVelle, J.M.
Azidoalanine mutagenicity in *Salmonella*: Effect of homologation and α -methyl substitution (216) 27

Maratana, D., see Kangwanpong, D. (224) 241

Marcou, D., see Osiewacz, H.D. (219) 9

Margolin, B.H., see Piegorsch, W.W. (216) 1

Margot, A., see Menck, C.F.M. (220) 101

Margulies, L., Griffith, C.S., Dooley, J.C. and Wallace, S.S.
The interaction between X-rays and transposon mobility in *Drosophila*: Hybrid sterility and chromosome loss (215) 1

Marinari, U.M., see Brambilla, G. (214) 123

Marinus, M.G., see Fram, R.J. (218) 125

Marion, M., see Jutras, D. (216) 35

Marshall, R.R., see Kirkland, D.J. (214) 115

Marshall, T.M., see Nelson, G.A. (212) 181

Martelli, A., see Brambilla, G. (214) 123

Martin, J., see Cobb, R.R. (226) 253

Martin, R.H., Rademaker, A., Hildebrand, K., Barnes, M., Arthur, K., Ringrose, T., Brown, I.S. and Douglas, G.
A comparison of chromosomal aberrations induced by in vivo radiotherapy in human sperm and lymphocytes (226) 21

Marzin, D., see Pommery, J. (223) 183

Masamoto, Y., see Tsuyoshi, T. (223) 383

Mateos, S., Piñero, J., Ortiz, T. and Cortés, F.
 G_2 effects of DNA-repair inhibitors on chromatid-type aberrations in root-tip cells treated with maleic hydrazide and mitomycin C (226) 115

Matijašević, Z., see Franekić, J. (227) 13

Matsuda, Y. and Tobari, I.
Repair capacity of fertilized mouse eggs for X-ray damage induced in sperm and mature oocytes (210) 35

Matsuda, Y., Seki, N., Utsugi-Takeuchi, T. and Tobari, I.
X-Ray- and mitomycin C (MMC)-induced chromosome aberrations in spermiogenic germ cells and the repair capacity of mouse eggs for the X-ray and MMC damage (211) 65

Matsuda, Y., Tobari, I., Maemori, M. and Seki, N.
Mechanism of chromosome aberration induction in the mouse egg fertilized with sperm recovered from postmeiotic germ cells treated with methyl methanesulfonate (214) 165

Matsukuma, S., Nakatsuru, Y., Nakagawa, K., Utakoji, T., Sugano, H., Kataoka, H., Sekiguchi, M. and Ishikawa, T.
Enhanced O^6 -methylguanine-DNA methyltransferase activity in transgenic mice containing an integrated *E. coli ada* repair gene (218) 197

Matsumoto, A., Vos, J.-M.H. and Hanawalt, P.C.
Repair analysis of mitomycin C-induced DNA crosslinking in ribosomal RNA genes in lymphoblastoid cells from Fanconi's anemia patients (217) 185

Matsumoto, K., see Sasaki, Y.F. (213) 195

Matsumoto, K., see Shimoi, K. (212) 213

Matsuoka, A., Hirosawa, A., Natori, S., Iwasaki, S., Sofuni, T. and Ishidate, Jr., M.
Mutagenicity of ptaquiloside, the carcinogen in bracken, and its related illudane-type sesquiterpenes. II. Chro-

mosomal aberration tests with cultured mammalian cells (215) 179

Matsuoka, H., Aji, T., Ishii, A., Arimoto, S., Wataya, Y. and Hayatsu, H.
Reduced levels of mutagen processing potential in the *Schistosoma japonicum*-infected mouse liver (227) 153

Matsuoka, H., see Ishii, A. (224) 229

Matsushima, T., see Furihata, C. (213) 227

Matsushima, T., see Nagao, T. (215) 173

Matsushita, H., see Hisamatsu, Y. (226) 55

Maunoury, R., see Angulo, J.F. (217) 123

Maura, A., Pino, A. and Ricci, R.
Negative evidence in vivo of DNA-damaging, mutagenic and chromosomal effects of eugenol (227) 125

Mayer, P.J., Lange, C.S., Bradley, M.O. and Nichols, W.W.
Age-dependent decline in rejoicing of X-ray-induced DNA double-strand breaks in normal human lymphocytes (219) 95

Mayer, V.W. and Goin, C.J.
Observations on chromosome loss detection by multiple recessive marker expression in strain D61.M of *Saccharomyces cerevisiae* (224) 471

Mayne, L.V., see Van Duin, M. (217) 83

Mayo, J.K., see Aaron, C.S. (223) 111

Mays-Hoopes, L.L., see Howlett, D. (219) 101

Mazar Barnett, B. and Muñoz, E.R.
Effect of glyoxal pretreatment on radiation-induced genetic damage in *Drosophila melanogaster* (212) 173

Mazur, M., see De Boer, J.G. (226) 239

Mazurek, J., see Aaron, C.S. (223) 171

Mazurek, J.H., see Aaron, C.S. (223) 111

Mazzotti, D., see Sarto, F. (225) 21

McCarron, M.A., Kutlaca, A. and Morley, A.A.
The HLA-A mutation assay: Improved technique and normal results (225) 189

McCormick, J.J., see Bhattacharyya, N.P. (211) 205

McCormick, J.J., see Maher, V.M. (220) 83

McDermott, J.A., see Thompson, E.D. (223) 267

McEnaney, S., see Kirkland, D.J. (214) 115

McFee, A.F. and Lowe, K.W.
Caprolactam and benzoin: tests for induction of chromosome aberrations and SCEs in mouse bone marrow (224) 347

McFee, A.F., see Tice, R.R. (215) 25

McKarns, S.C., see Doolittle, D.J. (223) 221

McKinney, C.E., see Lubet, R.A. (212) 275

McMaster, C.R., see Kunz, B.A. (226) 273

McQueen, C.A., see Williams, G.M. (221) 263

Mehta, R.D., see Schiestl, R.H. (224) 427

Meisner, L., see Sargent, L. (224) 79

Melcion, C., see Clet, I. (216) 321

Menck, C.F.M., Madzak, C., Renault, G., Margot, A. and Sarasin, A.
SV40-based shuttle viruses (220) 101

Mencl, J., see Evans, H.H. (217) 53

Menichini, P., see Miele, M. (219) 159

Merlini, M., see Clerici, L. (227) 47

Mertens, F. and Johansson, B.
Frequency and distribution of *N*-methyl-*N'*-nitro-*N*-nitrosoguanidine (MNNG)-induced structural chromosome aberrations in fibroblasts from sarcoma and non-Hodgkin's lymphoma patients (210) 63

Mertens, F., see Heim, S. (221) 39

Messerer, E.A., see Giri, A.K. (224) 253

Messerer, E.A., see Sinsheimer, J.E. (224) 171

Meuth, M., see Miles, C. (227) 97

Meuth, M., see Phear, G. (214) 201

Meyer, D.J., see Kettlerer, B. (214) 33

Meyne, J., Littlefield, L.G. and Moyzis, R.K.
Labeling of human centromeres using an alploid DNA consensus sequence: application to the scoring of chromosome aberrations (226) 75

Mickey, M.R., see Ball, S.S. (219) 241

Miele, M., Bonatti, S., Menichini, P., Ottaggio, L. and Abbondandolo, A.
The presence of amplified regions affects the stability of chromosomes in drug-resistant Chinese hamster cells (219) 159

Migliore, L., Nieri, M., Amodio, S. and Loprieno, N.
The human lymphocyte micronucleus assay: a comparison between whole-blood and separated-lymphocyte cultures (227) 167

Miles, C. and Meuth, M.
DNA sequence determination of γ -radiation-induced mutations of the hamster *aprt* locus (227) 97

Miller, J.K., see Eisenstadt, E. (210) 113

Miltenburger, H.G., see Fertig, G. (215) 61

Mirsalis, J., see Aaron, C.S. (223) 111

Mirsalis, J.C., see Aaron, C.S. (223) 141

Mirzayans, R., Sabour, M. and Paterson, M.C.
Bioreduction of 4-nitroquinoline 1-oxide in dysplastic nevus syndrome fibroblasts (225) 165

Mischke, M.R., see Mangold, J.B. (216) 27

Mitchell, D.L., Zdzienicka, M.Z., Van Zeeland, A.A. and Nairn, R.S.
Intermediate (6-4) photoproduct repair in Chinese hamster V79 mutant V-H1 correlates with intermediate levels of DNA incision and repair replication (226) 43

Mitchell, D.L., see Nairn, R.S. (217) 193

Mitchell, T.J., see Generoso, W.M. (210) 313

Miyahara, T., see Sayama, M. (226) 181

Miyakawa, Y., see Nishi, Y. (227) 117

Miyamoto, J., see Hara, M. (222) 53

Miyata, N., see Yajima, N. (210) 165

Mizuhashi, F., Murata, K., Kitagaki, T., Nishitomi, T., Hashimoto, A. and Kido, A.
Administration-route-related difference in the micronucleus test with 7,12-dimethylbenz[a]anthracene (223) 357

Moctezuma, R.V., see Rodriguez-Ariza, R. (223) 309

Mohapatra, B., see Chatterjee, A. (214) 207

Mohapatra, N., see Nesnow, S. (222) 223

Mohori, K., see Czeizel, A. (210) 23

Mohrenweiser, H.W., Larsen, R.D. and Neel, J.V.
Development of molecular approaches to estimating germi-

nal mutation rates. I. Detection of insertion/deletion/rearrangement variants in the human genome (212) 241

Monteith, L., see Cobb, R.R. (226) 253

Montini, R., see Clonfero, E. (226) 229

Moore, M.M., see Doerr, C.L. (222) 191

Moore, M.M., see Hozier, J.C. (214) 195

Moore, M.M., see Oglesby, L.A. (223) 295

Moore, M.M., see Sawyer, J.R. (214) 181

Moquet, J.E., Prosser, J.S., Edwards, A.A. and Lloyd, D.C. Sister-chromatid exchanges induced by mitomycin C after acute or chronic exposure of human lymphocytes to a low dose of X-rays (227) 207

Moreau, P.L., see Angulo, J.F. (217) 123

Morgan, W.F., Chung, H.W., Phillips, J.W. and Winegar, R.A. Restriction endonucleases do not induce sister-chromatid exchanges in Chinese hamster ovary cells (226) 203

Morgan, W.F., see Winegar, R.A. (225) 49

Morgenthaler, S., see Oller, A.R. (216) 149

Mori, H., see Williams, G.M. (221) 263

Mori, M.-a., see Sayama, M. (226) 181

Morin, R.S., see Claxton, L.D. (222) 81

Morisaki, N., see Nagao, T. (215) 173

Morita, T., Watanabe, Y., Takeda, K. and Okumura, K. Effects of pH in the in vitro chromosomal aberration test (225) 55

Morita, T., see Asano, N. (223) 391

Morley, A.A., see Drinkwater, R.D. (219) 29

Morley, A.A., see McCarron, M.A. (225) 189

Morrell, J.M. and Dresser, D.W. Offspring from inseminations with mammalian sperm stained with Hoechst 33342, either with or without flow cytometry (224) 177

Moss, D.J., see Musk, P. (227) 25

Mote, P.L., see Spindler, S.R. (219) 89

Motykievicz, G., Szeliaga, J., Cimander, B. and Chorazy, M. Seasonal variations in mutagenic activity of air pollutants at an industrial district of Silesia (223) 243

Moustacchi, E., see Rosselli, F. (225) 115

Moustacchi, E., see Scovassi, A.I. (225) 65

Moyzis, R.K., see Meyne, J. (226) 75

Mozdarani, H. and Bryant, P.E. Cytogenetic response of normal human and ataxia telangiectasia G₂ cells exposed to X-rays and ara C (226) 223

Muehlematter, D., see Cerutti, P. (214) 81

Muel, A.S., Laurent, M., Chaudun, E., Alterio, J., Clayton, R., Courtois, Y. and Counis, M.F. Increased sensitivity of various genes to endogenous DNase activity in terminal differentiating chick lens fibers (219) 145

Mukhtar, H., see Wang, Z.Y. (223) 273

Muleris, M., see Lefrancois, D. (212) 167

Mullaart, E., see Gille, J.J.P. (214) 89

Mullaart, E., see Gille, J.J.P. (219) 17

Müller, D., see Puri, E.C. (218) 13

Müller, P., see Pons, F.W. (210) 71

Müller, T., Achten, S., Walk, R.-A. and Doerfler, W. DNA-DNA dot hybridization technique used as DNA de-

termination method in the alkaline elution analysis of DNA damage (215) 205

Müller, W.E.G., see Schröder, H.C. (219) 283

Müller, W.-U., see Pampfer, S. (210) 189

Mullineux, S., see Kirkland, D.J. (214) 115

Muñoz, E.R., see Mazar Barnett, B. (212) 173

Murata, K., see Mizuhashi, F. (223) 357

Muroya, K., see Ohta, K. (226) 163

Musgrove, E.A., see DeFazio, A. (216) 57

Musk, P., Campbell, R., Staples, J., Moss, D.J. and Parsons, P.G. Solar and UVC-induced mutation in human cells and inhibition by deoxynucleosides (227) 25

Nabi, M.J., see Tripathy, N.K. (224) 479

Nagao, M., see Kitada, M. (227) 53

Nagao, M., see Ohta, K. (226) 163

Nagao, M., see Shioya, M. (225) 91

Nagao, T., Saito, K., Hirayama, E., Uchikoshi, K., Koyama, K., Natori, S., Morisaki, N., Iwasaki, S. and Matsushima, T. Mutagenicity of ptaquiloside, the carcinogen in bracken, and its related illudane-type sesquiterpenes. I. Mutagenicity in *Salmonella typhimurium* (215) 173

Nagasawa, H., see Rudolph, N.S. (211) 19

Nagashima, K., see Ohta, K. (226) 163

Nagaya, T., Ishikawa, N. and Hata, H. Sister-chromatid exchanges in lymphocytes of workers exposed to trichloroethylene (222) 279

Nahrstedt, U., see Bauchinger, M. (227) 103

Nair, N.D. and Vogel, R. Chromosome aberration test and sister-chromatid exchange assay in murine bone marrow cells after in vivo exposure to D-penicillamine alone or combined with cyclophosphamide (227) 237

Nair, P.P., see Schiffman, M.H. (222) 351

Nairn, R.S., Mitchell, D.L., Adair, G.M., Thompson, L.H., Siciliano, M.J. and Humphrey, R.M. UV mutagenesis, cytotoxicity and split-dose recovery in a human-CHO cell hybrid having intermediate (6-4) photoproduct repair (217) 193

Nairn, R.S., see Mitchell, D.L. (226) 43

Naito, J., see Hara, T. (223) 349

Nakabepu, Y., see Kodama, K.-i. (218) 153

Nakagawa, K., see Matsukuma, S. (218) 197

Nakagawa, S., see Suzuki, S. (223) 407

Nakagawa, Y., see Tayama, S. (223) 23

Nakajima, M., Kitazawa, M., Oba, K., Kitagawa, Y. and Toyoda, Y. Effect of route of administration in the micronucleus test with potassium bromate (223) 399

Nakamura, N., see Kyoizumi, S. (214) 215

Nakamura, Y., see Jain, A.K. (210) 1

Nakamura, Y., see Shimoi, K. (212) 213

Nakamuro, K., see Sayato, Y. (226) 151

Nakano, S., Koga, T., Ichinose, I., Nakayama, M., Iwakiri, R., Niho, Y. and Takaki, R. Protective role of potentially lethal damage repair in the

neoplastic transformation of Balb/c 3T3 cells treated with *N*-methyl-*N'*-nitro-*N*-nitrosoguanidine (217) 45

Nakatsuru, Y., Aoki, K. and Ishikawa, T.
Age and strain dependence of *O*⁶-methylguanine DNA methyltransferase activity in mice (219) 51

Nakatsuru, Y., see Matsukuma, S. (218) 197

Nakayama, M., see Kasai, H. (214) 159

Nakayama, M., see Nakano, S. (217) 45

Narbonne, J.F., see Grolier, P. (211) 139

Näslund, M., see Kolman, A. (212) 269

Natarajan, A.T., see Darroudi, F. (212) 103

Natarajan, A.T., see Darroudi, F. (212) 113

Natarajan, A.T., see Darroudi, F. (212) 123

Natarajan, A.T., see Darroudi, F. (212) 137

Natarajan, A.T., see Darroudi, F. (213) 249

Natarajan, A.T., see Karsdon, J. (226) 13

Natarajan, A.T., see Sankaranarayanan, K. (211) 7

Natarajan, A.T., see Tates, A.D. (213) 73

Nath, J., see Soler-Niedziela, L. (224) 465

Natori, S., see Matsuoka, A. (215) 179

Natori, S., see Nagao, T. (215) 173

Nee, L.E., see Jones, S.K. (219) 247

Neel, J.V., see Mohrenweiser, H.W. (212) 241

Neft, R.E., Schol, H.M. and Casciano, D.A.
Triethylene melamine-induced sister-chromatid exchange in murine lymphocytes exposed *in vivo* (222) 323

Neft, R.E., see Conner, M.K. (224) 135

Negishi, C., Yamaizumi, Z. and Sato, S.
Nucleic acid binding and mutagenicity of active metabolites of 2-amino-3,8-dimethylimidazo[4,5-*f*]quinoxaline (210) 127

Nelson, G.A., Schubert, W.W., Marshall, T.M., Benton, E.R. and Benton, E.V.
Radiation effects in *Caenorhabditis elegans*, mutagenesis by high and low LET ionizing radiation (212) 181

Nelson, R.L., see Garry, V.F. (225) 1

Neshat, M.S., see Ball, S.S. (219) 241

Nesnow, S., Ross, J., Mohapatra, N., Gold, A., Sangaiah, R. and Gupta, R.
DNA adduct formation, metabolism, and morphological transforming activity of aceanthrylene in C3H10T1/2CL8 cells (222) 223

Nesnow, S., see Ball, L.M. (224) 115

Neudecker, T., Eder, E., Deininger, C., Hoffman, C. and Henschler, D.
Mutagenicity of methylvinyl ketone in *Salmonella typhimurium* TA100-indication for epoxidation as an activation mechanism (227) 131

Neuhäuser-Klaus, A. and Lehmacher, W.
The mutagenic effect of caprolactam in the spot test with (T × HT)F₁ mouse embryos (224) 369

Neuhäuser-Klaus, A. and Schmahl, W.
Mutagenic and teratogenic effects of acrylamide in the mammalian spot test (226) 157

Neuhäuser-Klaus, A., see Fahrig, R. (224) 377

Neuhäuser-Klaus, A., see Favor, J. (212) 67

Neuhäuser-Klaus, A., see Ehling, U.H. (227) 81

Neuhäuser-Klaus, A., see Ehling, U.H. (227) 91

Newton, R.K., Ducore, J.M. and Sohal, R.S.
Effect of age on endogenous DNA single-strand breakage, strand break induction and repair in the adult housefly, *Musca domestica* (219) 113

Nguyen, T., Fluss, L., Madej, R., Ginther, C. and Leighton, T.
The distribution of mutagenic activity in red, rose and white wines (223) 205

Nguyen, V.D., see Quillardet, P. (216) 251

Ni, Y.-C., see Gao, N. (225) 181

Nichols, W.W., see Mayer, P.J. (219) 95

Nicklas, J.A., Hunter, T.C., O'Neill, J.P. and Albertini, R.J.
Molecular analyses of *in vivo* *hprt* mutations in human T-lymphocytes, III. Longitudinal study of *hprt* gene structural alterations and T-cell clonal origins (215) 147

Nicoletti, B., see Porfirio, B. (213) 117

Nieri, M., see Migliore, L. (227) 167

Niggli, H.J., Bayreuther, K., Rodemann, H.P., Röthlisberger, R. and Franz, P.I.
Mitomycin C-induced postmitotic fibroblasts retain the capacity to repair pyrimidine photodimers formed after UV-irradiation (219) 231

Niho, Y., see Nakano, S. (217) 45

Nikaido, O., see Tatsuka, M. (214) 321

Nims, R.W., see Lubet, R.A. (212) 275

Nishi, Y., Miyakawa, Y. and Kato, K.
Chromosome aberrations induced by pyrolyses of carbohydrate hydrates in Chinese hamster V79 cells (227) 117

Nishimura, S., see Kasai, H. (214) 159

Nishioka, H., see Nunoshiba, T. (217) 203

Nishitomi, T., see Mizuhashi, F. (223) 357

Nito, S.
Enhancement of cytogenetic and cytotoxic effects on multi-drug-resistant (MDR) cells by a calcium antagonist (verapamil) (227) 73

Nito, S., see Ohuchida, A. (223) 395

Noblitt, T.W., see Li, Y. (227) 159

Nohmi, T., see Watanabe, M. (216) 211

Noro, T., see Shimoji, K. (212) 213

Norppa, H. and Järventaus, H.
Induction of chromosome aberrations and sister-chromatid exchanges by caprolactam *in vitro* (224) 333

Norris, P.N., see Tates, A.D. (213) 73

Novelli, G., see Cantoni, O. (218) 143

Nunoshiba, T. and Nishioka, H.
Genotoxicity of quinoxaline 1,4-dioxide derivatives in *Escherichia coli* and *Salmonella typhimurium* (217) 203

Nuzzo, F., Lagomarsini, P., Casati, A., Giorgi, R., Berardesca, E. and Stefanini, M.
Clonal chromosome rearrangements in a fibroblast strain from a patient affected by xeroderma pigmentosum (complementation group C) (219) 209

Nuzzo, F., see Stefanini, M. (219) 175

Oba, K., see Nakajima, M. (223) 399

Obe, G., see Rosenthal, M. (210) 329

O'Brien, P., see Kortenkamp, A. (216) 19

Ochi, T.
Effects of iron chelators and glutathione depletion on the induction and repair of chromosomal aberrations by *tert*-butyl hydroperoxide in cultured Chinese hamster cells (213) 243

Odagiri, Y., see Ishidate Jr., M. (224) 357

Odijk, H., see Van Duin, M. (217) 83

Oesch, F., see Grolier, P. (211) 139

Oestreicher, U., see Stephan, G. (223) 7

Oglesby, L.A., Brock, K.H. and Moore, M.M.
Induced hepatocytes as a metabolic activation system for the mouse-lymphoma assay (223) 295

Ohba, M., see Hara, T. (223) 349

Ohi, H., see Kitada, M. (227) 53

Ohi, H., see Ohta, K. (226) 163

Ohnishi, S., see Ito, Y. (222) 253

Ohshima, T., see Wakata, A. (223) 369

Ohta, K., Kitada, M., Ohi, H., Komori, M., Nagashima, K., Sato, N., Muroya, K., Kodama, T., Nagao, M. and Kamataki, T.
Interspecies homology of cytochrome P-450: toxicological significance of cytochrome P-450 cross-reactive with anti-rat P-448-H antibodies in liver microsomes from dogs, monkeys and humans (226) 163

Ohta, T., see Sasaki, Y.F. (213) 195

Ohta, T., see Sasaki, Y.F. (226) 103

Ohta, T., see Watanabe, K. (218) 105

Ohtsuka, E., see Yamaizumi, M. (217) 135

Ohuchida, A., Furukawa, A., Kondo, Y., Ono, T. and Nito, S.
Micronucleus test with vincristine administered by intraperitoneal injection and oral gavage (223) 395

Oikawa, J., see Kasai, H. (214) 159

Okada, F., see Hasegawa, J. (226) 9

Okada, S., see Ono, T. (219) 39

Okumura, K., see Morita, T. (225) 55

Olivieri, G., see Bosi, A. (211) 13

Oller, A.R., Rastogi, P., Morgenhaler, S. and Thilly, W.G.
A statistical model to estimate variance in long term-low dose mutation assays: testing of the model in a human lymphoblastoid mutation assay (216) 149

Olofsson, A.-M., see Lindahl-Kiessling, K. (211) 77

O'Neill, J.P., see Nicklas, J.A. (215) 147

Ong, T., Whong, W.-Z., Stewart, J.D. and Brockman, H.E.
Comparative antimutagenicity of 5 compounds against 5 mutagenic complex mixtures in *Salmonella typhimurium* strain TA98 (222) 19

Ong, T., see Brockman, H.E. (218) 1

Ong, T., see Soler-Niedziela, L. (224) 465

Ong, T., see Whong, W.-Z. (222) 237

Ong, T., see Xing, S.-G. (226) 99

Ong, T., see Xing, S.G. (224) 5

Ono, M., see Hirayama, T. (226) 169

Ono, M., see Watanabe, T. (225) 15

Ono, T., Takahashi, N. and Okada, S.
Age-associated changes in DNA methylation and mRNA level of the *c-myc* gene in spleen and liver of mice (219) 39

Ono, T., see Ohuchida, A. (223) 395

Ormiston, B.G., Luke, C.A. and Tice, R.R.
Increase in micronucleated erythrocytes associated with babesiosis in Syrian golden hamsters (227) 173

Ormiston, B.G., see Tice, R.R. (215) 25

Ornaghi, F. and Giavini, E.
Induction of micronuclei in pre-implantation rat embryos in vivo (225) 71

O'Rourke, S.M., see Ferguson, L.R. (223) 13

Ortiz, T., see Mateos, S. (226) 115

Osiewacz, H.D., Hermanns, J., Marcou, D., Triffo, M. and Esser, K.
Mitochondrial DNA rearrangements are correlated with a delayed amplification of the mobile intron (pIDNA) in a long-lived mutant of *Podospora anserina* (219) 9

Ottaggio, L., see Miele, M. (219) 159

Overton, L.K., Dubins, J.S. and De Serres, F.J.
Molecular and classical genetic analyses of *his-3* mutants of *Neurospora crassa*. I. Tests for allelic complementation and specific revertibility (214) 267

Overton, L.K., see Dubins, J.S. (215) 39

Ozand, P.T., see Hannan, M.A. (226) 49

Ozawa, M., see Shiraishi, Y. (211) 273

Ozawa, S., see Hara, T. (223) 349

Ozier-Kalogeropoulos, O. and Guillemet, E.
Properties of genetic instability during the vegetative growth of *coprinus radiatus* (226) 121

Ozier-Kalogeropoulos, O. and Guillemet, E.
Self-fructification associated with genetic instability in *coprinus radiatus* (226) 127

Ozolins, Z., see Kortenkamp, A. (216) 19

Pacchierotti, F., see Russo, A. (226) 111

Padma, P.R., see Amonkar, A.J. (210) 249

Padrón, J., see Larramendy, M.L. (214) 129

Pagano, D.A., see Stark, A.-A. (224) 89

Pala, M., see De Flora, S. (224) 305

Pala, M., see Parodi, S. (224) 379

Palitti, F., see Degrassi, F. (211) 125

Palmer, B.D., see Ferguson, L.R. (224) 95

Pampfer, S., Streffer, C. and Müller, W.-U.
Micronucleus formation in 2-cell embryos after in vitro X-irradiation of mouse spermatozoa (210) 189

Panda, D.K., see Ghosh, S.K. (210) 149

Park, E.-H. and Yi, A.-K.
Photoreactivation rescue and dark repair demonstrated in UV-irradiated embryos of the self-fertilizing fish *Rivulus ocellatus marmoratus* (Teleostei; Aplocheilidae) (217) 19

Parke, D.V.W., see Francis, A.J. (214) 137

Parodi, S., Abelmoschi, M.L., Balbi, C., De Angeli, M.T., Pala, M., Russo, P., Taninger, M. and Santi, L.
DNA damage in mouse and rat liver by caprolactam and benzoin, evaluated with three different methods (224) 379

Parry, J.M., see Adams, K. (213) 141

Parsons, P.G., see Musk, P. (227) 25

Partanen, T., see Vainio, H. (222) 137

Paterson, M.C., see Mirzayans, R. (225) 165

Pati, P.C. and Bhunya, S.P.
Cytogenetic effects of fenvaleate in mammalian in vivo test system (222) 149

Patnaik, K.K., see Tripathy, N.K. (224) 479

Paul, L.A., Fulton, A.M. and Heppner, G.H.
Reactive oxygen-mediated damage to murine mammary tumor cells (215) 223

Paulini, H., Waibel, R. and Schimmer, O.
Mutagenicity and structure-mutagenicity relationships of furoquinolines, naturally occurring alkaloids of the Rutaceae (227) 179

Payne, N.S. and Sancar, A.
The LexA protein does not bind specifically to the two SOS box-like sequences immediately 5' to the *phr* gene (218) 207

Peng, Y., see Sandhu, S.S. (224) 437

Perdomo, G.R., see Vaughan, D.J. (226) 39

Pershagen, G.
Childhood cancer and malignancies other than lung cancer related to passive smoking (222) 129

Persson, G., see Klaude, M. (218) 135

Peserico, A., see Sarto, F. (225) 21

Peters, J., see Cattanach, B.M. (212) 91

Peters, M.G., see Kunz, B.A. (226) 273

Petersen, M., see Soler-Niedziela, L. (224) 465

Peterson, H., see Sevanian, A. (224) 185

Phear, G. and Meuth, M.
The genetic consequences of DNA precursor pool imbalance: sequence analysis of mutations induced by excess thymidine at the hamster *aprt* locus (214) 201

Phillips, B.J., Carroll, P.A., Tee, A.C. and Anderson, D.
Microsome-mediated clastogenicity of butylated hydroxyanisole (BHA) in cultured Chinese hamster ovary cells: The possible role of reactive oxygen species (214) 105

Phillips, D.H., see Savela, K. (224) 485

Phillips, J.W., see Morgan, W.F. (226) 203

Phillips, J.W., see Winegar, R.A. (225) 49

Phillipson, C.E. and Ioannides, C.
Metabolic activation of polycyclic aromatic hydrocarbons to mutagens in the Ames test by various animal species including man (211) 147

Piantadosi, S., see Xiao, S. (227) 39

Piegorsch, W.W. and Margolin, B.H.
Quantitative methods for assessing a synergistic or potentiated genotoxic response (216) 1

Piegorsch, W.W., Zimmerman, F.K., Fogel, S., Whittaker, S.G. and Resnick, M.A.
Quantitative approaches for assessing chromosome loss in *Saccharomyces cerevisiae*: general methods for analyzing downturns in dose response (224) 11

Piegorsch, W.W., see Whittaker, S.G. (224) 31

Piette, J., see Decuyper-Debergh, D. (225) 11

Piñero, J., see Escalza, P. (215) 139

Piñero, J., see Escalza, P. (216) 203

Piñero, J., see Mateos, S. (226) 115

Pino, A., see Maura, A. (227) 125

Pirozzi, S.J., Renz, J.F. and Kalf, G.F.

The prevention of benzene-induced genotoxicity in mice by indomethacin (222) 291

Pirsel, M., DiPaolo, J.A. and Doniger, J.
Transient appearance of photolyase-induced break-sensitive sites in the DNA of ultraviolet light-irradiated Syrian hamster fetal cells (217) 39

Pitot, H.C., see Beer, D.G. (220) 1

Player, A.N., see Cleaver, J.E. (220) 161

Plewa, M.J., see Schy, W.E. (211) 231

Plewa, M.J., see Schy, W.E. (226) 263

Plewa, M.J., see Wagner, E.D. (216) 163

Plewak, S., see Janion, C. (210) 15

Ploem, J.S., see Tates, A.D. (213) 73

Plunkett, W., see Huang, P. (210) 291

Pohl, H. and Reidy, J.A.
Vitamin C intake influences the bleomycin-induced chromosome damage assay: implications for detection of cancer susceptibility and chromosome breakage syndromes (224) 247

Poiley, J.A., see LeBoeuf, R.A. (222) 205

Poláková, H., see Jablonická, A. (224) 143

Polinsky, R.J., see Jones, S.K. (219) 247

Politi, M.G., see Babudri, N. (217) 211

Pomerantseva, M.D., Ramaya, L.K., Shevchenko, V.A., Vilkina, G.A. and Lyaginskaya, A.M.
Evaluation of the genetic effects of ²³⁸Pu incorporated into mice (226) 93

Pomerantseva, M.D., see Shevchenko, V.A. (226) 87

Pommery, J., Imbenotte, M., Urien, A.F., Marzin, D. and Erb, F.
SOS Chromotest study concerning some appreciation criteria of humic substances' genotoxic potency (223) 183

Poms, F.W. and Müller, P.
On the glucose effect in acridine-induced frameshift mutagenesis in *Escherichia coli* (210) 71

Pool, B.L., Yalkinoglu, A.Ö., Klein, P. and Schlehofer, J.R.
DNA amplification in genetic toxicology (213) 61

Popkin, D.J., Davis, V.M. and Prival, M.J.
Isolation and characterization of an isogenic set of *Salmonella typhimurium* strains analogous to the "Ames" tester strains (224) 453

Porfírio, B., Tedeschi, B., Vernole, P., Caporossi, D. and Nicoletti, B.
The distribution of *MspI*-induced breaks in human lymphocyte chromosomes and its relationship to common fragile sites (213) 117

Porrà, S., see Apostoli, P. (222) 245

Pospišil, F., see Badaev, S.A. (210) 9

Potter, J., see Garry, V.F. (225) 107

Povirk, L.F. and Steighner, R.J.
Oxidized apurinic/apurimidinic sites formed in DNA by oxidative mutagens (214) 13

Prasad, S., see Thakur, M.K. (219) 107

Preston, R.J., see Bender, M.A. (212) 149

Pretsch, W., see Favor, J. (212) 67

Prieur, M., see Lefrançois, D. (212) 167

Prival, M.J., see Popkin, D.J. (224) 453

Probst, G.S., see Hill, L.E. (224) 447

Prosser, J.S., see Moquet, J.E. (227) 207

Pueyo, C., see Roldán-Arjona, T. (226) 175

Puri, E.C. and Müller, D.
Testing of hydralazine in *in vivo*-*in vitro* hepatocyte assays for UDS and stimulation of replicative DNA synthesis (218) 13

Putman, K.L., see Savela, K. (224) 485

Puvion-Dutilleul, F. and Sarasin, A.
Chromatin and nucleolar changes in Xeroderma pigmento-sum cells resemble aging-related nuclear events (219) 57

Puvion-Dutilleul, F., see Macieira-Coelho, A. (219) 153

Pyatt, B.E., see Bender, M.A. (212) 149

Quan, T.-H., see Hachiya, N. (223) 365

Quillardet, P., Frelat, G., Nguyen, V.D. and Hofnung, M.
Detection of ionizing radiations with the SOS Chromotest, a bacterial short-term test for genotoxic agents (216) 251

Quinto, I., De Marinis, E., Mallardo, M., Arcucci, A., Della Morte, R. and Staiano, N.
Effect of DNOC, Ferbam and Imidan exposure on mouse sperm morphology (224) 405

Rabe, E.F., see Hannan, M.A. (226) 49

Rabinowitz, J.R., see Richard, A.M. (221) 181

Rácz, K., see Czeizel, A. (210) 23

Rademaker, A., see Martin, R.H. (226) 21

Rahn, C.A., see Doolittle, D.J. (223) 221

Rainbow, A.J.
Role of the viral and cellular encoded thymidine kinase in the repair of UV-irradiated herpes simplex virus (227) 263

Rainbow, A.J.
Thymidine kinase deficient human cells have increased UV sensitivity in their capacity to support herpes simplex virus but normal UV sensitivity for colony formation (218) 189

Raineri, R., see LeBoeuf, R.A. (222) 205

Ramaya, L.K., see Pomerantseva, M.D. (226) 93

Ramaya, L.K., see Shevchenko, V.A. (226) 87

Ramel, C.
The nature of spontaneous mutations (212) 33

Ramel, C., see Cederberg, H. (214) 69

Ramos Morales, P., see Rodriguez-Arnaiz, R. (223) 309

Randerath, E., see Randerath, K. (219) 121

Randerath, K., Liehr, J.G., Gladek, A. and Randerath, E.
Age-dependent covalent DNA alterations (I-compounds) in rodent tissues: species, tissue and sex specificities (219) 121

Randerath, K., see Savela, K. (224) 485

Rao, M.S., see Reddy, J.K. (214) 63

Raspberry, C., see Cattanach, B.M. (212) 91

Rastogi, P., see Oller, A.R. (216) 149

Reddi, O.S., see Rupa, D.S. (222) 37

Reddi, O.S., see Rupa, D.S. (223) 253

Reddy, J.K. and Rao, M.S.
Oxidative DNA damage caused by persistent peroxisome proliferation: its role in hepatocarcinogenesis (214) 63

Reddy, P.P., see Rupa, D.S. (222) 37

Reddy, P.P., see Rupa, D.S. (223) 253

Reeder, B., see Zimmering, S. (226) 81

Rehman, A., see Hadi, S.M. (225) 101

Reidy, J.A., Zhou, H., Chen, A.T.L., Annest, J.L. and Welty, T.K.
Complete culture medium is better than low folate medium for detecting increased chromosome aberrations in smokers in 48-h lymphocyte cultures (225) 175

Reidy, J.A., see Pohl, H. (224) 247

Renaud, M., see Sun, A.S. (219) 295

Renault, G., see Bourre, F. (220) 107

Renault, G., see Menck, C.F.M. (220) 101

Renz, J.F., see Pirozzi, S.J. (222) 291

Resnick, M.A., see Piegorsch, W.W. (224) 11

Resnick, M.A., see Whittaker, S.G. (224) 31

Resnick, M.A., see Zimmermann, F.K. (224) 287

Reynolds, J., see Doolittle, D.J. (223) 221

Riboli, E., see Saracci, R. (222) 117

Ricanati, M., see Evans, H.H. (217) 53

Ricci, R., see Maura, A. (227) 125

Riccio, E., see Doolittle, D.J. (223) 221

Richard, A.M., Rabinowitz, J.R. and Waters, M.D.
Strategies for the use of computational SAR methods in assessing genotoxicity (221) 181

Richards, G.A., see Van Rensburg, C.E.J. (215) 167

Richter, C., see Vergères, G. (213) 83

Ricoul, M., see Lefrançois, D. (212) 167

Rieger, R., see Angelis, K.J. (212) 155

Riesbeck, K., see Bredberg, A. (211) 171

Rigaud, O., see Guedeney, G. (212) 159

Rinaldi, C.N., see Doudney, C.O. (217) 33

Ringrose, T., see Martin, R.H. (226) 21

Robertson, L.W., see Grolier, P. (211) 139

Robinson, A., see Schiffman, M.H. (222) 351

Robinson, J., see Doolittle, D.J. (223) 221

Robison, S.H., see Jones, S.K. (219) 247

Robson, C.N., Harris, A.L. and Hickson, I.D.
Defective repair of DNA single- and double-strand breaks in the bleomycin- and X-ray-sensitive Chinese hamster ovary cell mutant, BLM-2 (217) 93

Rodemann, H.P., see Niggli, H.J. (219) 231

Rodriguez-Arnaiz, R., Ramos Morales, P., Moctezuma, R.V. and Bernal Salas, R.M.
Evidence for the absence of mutagenic activity of furfuryl alcohol in tests of germ cells in *Drosophila melanogaster* (223) 309

Rogers, C.G. and Boyes, B.G.
Evaluation of the genotoxicity of domoic acid in a hepatocyte-mediated assay with V79 Chinese hamster lung cells (226) 191

Roilides, E., see Dixon, K. (220) 73

Roldán-Arjona, T., Ruiz-Rubio, M. and Pueyo, C.
Simple method for precise determination of chemical lethality in the L-arabinose resistance test of *Salmonella typhimurium* (226) 175

Roloff, B., see Sargent, L. (224) 79

Romagna, F. and Staniforth, C.D.
The automated bone marrow micronucleus test (213) 91

Ronen, A., see Tiah, M. (213) 205

Rosas-Planaguma, E., see Madrigal-Bujaidar, E. (222) 317

Rosdorff, H.J.M., see Van der Lubbe, J.L.M. (217) 153

Rosenkranz, H.S. and Klopman, G.
Structural basis of the mutagenicity of phenylazoaniline dyes (221) 217

Rosenstein, B.S., Lai, L.-W., Ducore, J.M. and Rosenstein, R.B.
DNA-protein crosslinking in normal and solar UV-sensitive ICR 2A frog cell lines exposed to solar UV-radiation (217) 219

Rosenstein, R.B., see Rosenstein, B.S. (217) 219

Rosenthal, M. and Obe, G.
Effects of 50-Hertz electromagnetic fields on proliferation and on chromosomal alterations in human peripheral lymphocytes untreated or pretreated with chemical mutagens (210) 329

Ross, J., see Nesnow, S. (222) 223

Rosselli, F. and Moustacchi, E.
Chromosomal hypersensitivity in mutant MCN-151 mouse cells exposed to mitomycin C (225) 115

Rossi, E., see Bigatti, M.P. (227) 21

Rossignol, G., see Alaoui-Jamali, M.A. (223) 65

Röthlisberger, R., see Niggli, H.J. (219) 231

Rotteveel, A.H.M., see Tates, A.D. (210) 173

Rowland, I.R., see Howes, A.J. (210) 227

Rowley, J.D., see Schwartz, J.L. (216) 119

Roy, A.K., Sharma, A. and Talukder, G.
A time-course study on effects of aluminium on mitotic cell division in *Allium sativum* (227) 221

Roychoudhury, A. and Giri, A.K.
Effects of certain food dyes on chromosomes of *Allium cepa* (223) 313

Rudd, C.J., see Blazak, W.F. (224) 197

Ruddy, S.M. and Hickey, I.
Reversion in thymidine kinase deficient variants of mouse lymphoma P388 (227) 187

Rudolph, N.S. and Latt, S.A.
Flow cytometric analysis of X-ray sensitivity in ataxia telangiectasia (211) 31

Rudolph, N.S., Nagasawa, H., Little, J.B. and Latt, S.A.
Identification of ataxia telangiectasia heterozygotes by flow cytometric analysis of X-ray damage (211) 19

Ruiz-Rubio, M. and Bockrath, R.
On the possible role of cytosine deamination in delayed photoreversal mutagenesis targeted at thymine-cytosine dimers in *E. coli* (210) 93

Ruiz-Rubio, M., see Roldán-Arjona, T. (226) 175

Rupa, D.S., Reddy, P.P. and Reddi, O.S.
Analysis of sister-chromatid exchanges, cell kinetics and mitotic index in lymphocytes of smoking pesticide sprayers (223) 253

Rupa, D.S., Reddy, P.P. and Reddi, O.S.
Frequencies of chromosomal aberrations in smokers exposed to pesticides in cotton fields (222) 37

Russell, L.B.
Functional and structural analyses of mouse genomic regions screened by the morphological specific-locus test (212) 23

Russell, W.L.
Comment on mutagenicity of diethyl sulfate in mice and on germ-cell mutagenicity testing (225) 127

Russell, W.L.
Reply to U.H. Ehling (214) 331

Russo, A., Pacchierotti, F., Bassani, B. and Levis, A.G.
Lack of induction of somatic aneuploidy in the mouse by nitrilotriacetic acid (NTA) (226) 111

Russo, P., see Parodi, S. (224) 379

Rutledge, J.C., see Katoh, M. (210) 337

Rutter, A., see Kirkland, D.J. (214) 115

Sabatier, L., see Lefrançois, D. (212) 167

Sabour, M., see Mirzayans, R. (225) 165

Sacco, M.G., see Clerici, L. (227) 47

Sadagopan Ramanujam, V.M., see Anwar, W.A. (222) 283

Sadaie, T. and Sadaie, Y.
Rad-2-dependent repair of radiation-induced chromosomal aberrations in *Caenorhabditis elegans* (218) 25

Sadaie, Y., see Sadaie, T. (218) 25

Sadurska, B., Zieliński, W., Skalska-Hilgier, E., Tudek, B., Szczępka, M. and Szymczyk, T.
Urine mutagenicity of petroleum plant workers (224) 147

Safe, S.
Polychlorinated biphenyls (PCBs): mutagenicity and carcinogenicity (220) 31

Saggioro, D., see Majone, F. (227) 17

Sagher, D., see Schwartz, J.L. (216) 119

Sahlén, S., see Hellgren, D. (226) 1

Saito, K., see Nagao, T. (215) 173

Sakai, A. and Sato, M.
Improvement of carcinogen identification in BALB/3T3 cell transformation by application of a 2-stage method (214) 285

Salaj-Šćić, E., see Brčić-Kostić, K. (227) 247

Salamone, M.F.
Abnormal sperm assay tests on benzoin and caprolactam (224) 385

Salas, C.E., see Bravo, L.M. (215) 55

Salmeen, I.T., Young, W.C., Zacmanidis, P. and Ball, J.C.
Evidence from Ames assays of laboratory pulse-flame combustor samples that direct-acting mutagens are not an inevitable consequence of hydrocarbon fuel combustion (227) 7

Salo, H., see Sorsa, M. (222) 111

Sancar, A., see Payne, N.S. (218) 207

Sandhu, S.S. and De Serres, F.J.
In Situ Evaluation of Biological Hazards of Environmental Pollutants. Chapel Hill, NC (U.S.A.), December 5-7, 1988 (216) 341

Sandhu, S.S., Ma, T.-H., Peng, Y. and Zhou, X.
Clastogenicity evaluation of seven chemicals commonly found at hazardous industrial waste sites (224) 437

Sandhu, S.S., see Gudi, R. (225) 149

Sangaiah, R., see Ball, L.M. (224) 115

Sangaiah, R., see Nesnow, S. (222) 223

Sankaranarayanan, K., Van Duyn, A., Loos, M.J. and Natarajan, A.T.
Adaptive response of human lymphocytes to low-level radiation from radioisotopes or X-rays (211) 7

Sano, H., Shiomi, N., Imanishi, K., Maie, O. and Shiomi, T.
DNA methylation in xeroderma pigmentosum (217) 141

Santi, L., see Parodi, S. (224) 379

Santoro, M.P., see Cantoni, O. (218) 143

Santos, J.R., see Espinosa-Aguirre, J.J. (222) 161

Sapi, E., see Tompa, A. (210) 345

Saracci, R. and Riboli, E.
Passive smoking and lung cancer: current evidence and ongoing studies at the International Agency for Research on Cancer (222) 117

Sarasin, A.
Molecular mechanisms of mutagenesis in mammalian cells: present and future (220) 51

Sarasin, A.
Preface (220) 49

Sarasin, A., see James, M.R. (220) 169

Sarasin, A., see Menck, C.F.M. (220) 101

Sarasin, A., see Puvion-Dutilleul, F. (219) 57

Sargent, L., Roloff, B. and Meissner, L.
In vitro chromosome damage due to PCB interactions (224) 79

Sargentini, N.J. and Smith, K.C.
Mutational spectrum analysis of *umuC*-independent and *umuC*-dependent γ -radiation mutagenesis in *Escherichia coli* (211) 193

Sargentini, N.J. and Smith, K.C.
Role of *ravA/B* genes in UV- and γ -radiation and chemical mutagenesis in *Escherichia coli* (215) 115

Sarto, F., Mazzotti, D., Tomanin, R., Corsi, G.C. and Peserico, A.
No evidence of chromosomal instability in nevoid basal-cell carcinoma syndrome (225) 21

Sasaki, Y.F., Imanishi, H., Ohta, T. and Shirasu, Y.
Modifying effects of component of plant essence on the induction of sister-chromatid exchanges in cultured Chinese hamster ovary cells (226) 103

Sasaki, Y.F., Imanishi, H., Ohta, T., Watanabe, M., Matsumoto, K. and Shirasu, Y.
Suppressing effect of tannic acid on the frequencies of mutagen-induced sister-chromatid exchanges in mammalian cells (213) 195

Sasaki, Y.F., see Hayashi, M. (223) 329

Sasaki, Y.F., see Inouye, T. (223) 411

Sasaki, Y.F., see Shimoji, K. (212) 213

Sasiadek, M., Jagielski, J. and Smolik, R.
Localization of breakpoints in the karyotype of workers professionally exposed to benzene (224) 235

Satake, S., see Shindo, Y. (223) 403

Sato, M., see Sakai, A. (214) 285

Sato, N., see Ohta, K. (226) 163

Sato, S., see Hayashi, M. (223) 329

Sato, S., see Negishi, C. (210) 127

Sato, S., see Sutou, S. (223) 377

Sato, S.-i., Inui, N., Ikeda, Y. and Hiraga, Y.
A comparison of intraperitoneal injection and oral gavage in the micronucleus test with mitomycin C in mice (223) 387

Sato, T., see Awogi, T. (223) 353

Sato, Y., see Furihata, C. (213) 227

Savage, J.R.K.
Acentric chromosomal fragments and micronuclei: the time-displacement factor (225) 171

Savage, J.R.K., see Aghamohammadi, S.Z. (211) 225

Savage, J.R.K., see Aghamohammadi, S.Z. (216) 259

Savela, K., Hemminki, K., Hewer, A., Phillips, D.H., Putman, K.L. and Randerath, K.
Interlaboratory comparison of the ^{32}P -postlabelling assay for aromatic DNA adducts in white blood cells of iron foundry workers (224) 485

Sawyer, J.R., Moore, M.M. and Hozier, J.C.
High-resolution cytogenetic characterization of the LS178Y TK⁺/⁻ mouse lymphoma cell line (214) 181

Sawyer, J.R., see Hozier, J.C. (214) 195

Sayama, M., Mori, M.-a., Shirokawa, T., Inoue, M., Miyahara, T. and Kozuka, H.
Mutagenicity of 2,6-dinitrotoluene and its metabolites, and their related compounds in *Salmonella typhimurium* (226) 181

Sayato, Y., Nakamura, K. and Ueno, H.
Mutagenicity on chlorination of products formed by ozonation of naphthoresorcinol in water (226) 151

Scappaticci, S., see Stefanini, M. (219) 175

Schalkowsky, S., see Houk, V.S. (223) 49

Scheel, I., see Zimmermann, F.K. (224) 287

Schenberg, A.C.G., see Henrikens, J.A.P. (218) 111

Schiestl, R.H., Shian Chan, W., Gietz, R.D., Mehta, R.D. and Hastings, P.J.
Safrole, eugenol and methyleugenol induce intrachromosomal recombination in yeast (224) 427

Schiestl, R.H.
DNA-damaging agents show different kinetics in induction of heterothallic mating-type switching during growth after treatment in yeast (227) 269

Schiffman, M.H., Van Tassell, R.L., Andrews, A.W., Wacholder, S., Daniel, J., Robinson, A., Smith, L., Nair, P.P. and Wilkins, T.D.
Fecapentaene concentration and mutagenicity in 718 North American stool samples (222) 351

Schimmer, O., see Paulini, H. (227) 179

Schlatter, C., see Kugler-Steigmeier, M.E. (211) 279

Schlehofer, J.R., see Pool, B.L. (213) 61

Schmahl, W., see Neuhäuser-Klaus, A. (226) 157

Schmid, E., Bauchinger, M., Ziegler-Skylakakis, K. and Andrae, U.
2-Chlorobenzylidene malonitrile (CS) causes spindle disturbances in V79 Chinese hamster cells (226) 133

Schmid, E., see Bauchinger, M. (211) 265

Schmid, E., see Bauchinger, M. (226) 197

Schmid, E., see Bauchinger, M. (227) 103

Schneider, J.E., Browning, M.M., Zhu, X., Eneff, K.L. and Floyd, R.A.
 Characterization of hydroxyl free radical mediated damage to plasmid pBR322 DNA (214) 23

Schol, H.M., see Neft, R.E. (222) 323

Schreurs, J.G.M., see Kleijnjans, J.C.S. (224) 127

Schröder, H.C., Steffen, R., Wenger, R., Ugarković, Đ. and Müller, W.E.G.
 Age-dependent increase of DNA topoisomerase II activity in quail oviduct; modulation of the nuclear matrix-associated enzyme activity by protein phosphorylation and poly(ADP-ribosylation) (219) 283

Schubert, I. and Heindorff, K.
 Are SCE frequencies indicative of adaptive response of plant cells? (211) 301

Schubert, I., see Angelis, K.J. (212) 155

Schubert, W.W., see Nelson, G.A. (212) 181

Schuller, H.M., see Alaoui-Jamali, M.A. (223) 65

Schwalb, G. and Anderson, R.
 Increased frequency of oxidant-mediated DNA strand breaks in mononuclear leucocytes exposed to activated neutrophils from cigarette smokers (225) 95

Schwartz, J.L., Garrison, T., Le Beau, M.M., Larson, R.A., Sagher, D., Strauss, B., Rowley, J.D. and Weichselbaum, R.R.
 Chromosomal sensitivity of lymphocytes from individuals with therapy-related acute nonlymphocytic leukemia (216) 119

Schwartz, J.L.
 Monofunctional alkylating agent-induced S-phase-dependent DNA damage (216) 111

Schwartz, S., see Day, P. (224) 409

Schweizer, P.M.
 A cell-cycle stage-related chromosomal X-ray hypersensitivity in larval neuroblasts of *Drosophila mei-9* and *mei-41* mutants suggesting defective DNA double-strand break repair (211) 111

Schy, W.E. and Plewa, M.J.
 Interference of Bis-Tris buffer with the diaminobenzoic acid fluorescence assay used to quantify DNA (226) 263

Schy, W.E. and Plewa, M.J.
 Molecular dosimetry studies of forward mutation induced at the *yg2* locus in maize by ethyl methanesulfonate (211) 231

Sciandrello, G., see Cavolina, P. (225) 61

Scott, D., see Kristiansen, E. (224) 329

Scovassi, A.I., Stefanini, M., Izzo, R., Lagomarsini, P., Bertazzoni, U. and Moustacchi, E.
 The basal and the mutagen-induced levels of ADP-ribosyl transferase activity are not modified in Fanconi's anemia cells (225) 65

Sedwick, W.D., see Sowers, L.C. (215) 131

Seemayer, N.H., see Hadnagy, W. (225) 27

Seetharama Rao, K.P. and Abdul Rahman, M.
 Cytogenetic effects of ribavirin on mouse bone marrow (224) 213

Sega, G.A., Valdivia Alcota, R.P., Tancongo, C.P. and Brimer, P.A.

Acrylamide binding to the DNA and protamine of spermiogenic stages in the mouse and its relationship to genetic damage (216) 221

Seidman, M.
 The development of transient SV40 based shuttle vectors for mutagenesis studies: Problems and solutions (220) 55

Seidman, M.M., see Kraemer, K.H. (220) 61

Seiler, J.P.
 The mutagenic activity of sodium perborate (224) 219

Seki, N., see Matsuda, Y. (211) 65

Seki, N., see Matsuda, Y. (214) 165

Sekiguchi, M., see Kodama, K.-i. (218) 153

Sekiguchi, M., see Matsukuma, S. (218) 197

Sera, N., see Takenaka, S. (223) 35

Sestili, P., see Cantoni, O. (218) 143

Setlow, R.B., see Edwards, J.A. (219) 267

Sevanian, A. and Peterson, H.
 Induction of cytotoxicity and mutagenesis is facilitated by fatty acid hydroperoxidase activity in Chinese hamster lung fibroblasts (V79 cells) (224) 185

Shahabuddin, see Hadi, S.M. (225) 101

Shahin, M.M.
 The importance of analyzing structure-activity relationships in mutagenicity studies (221) 165

Shalaby, Z., see Day, P. (224) 409

Shane, B.S. and Looney, A.L.
 Activation of two environmental mixtures by plant S9 (222) 9

Sharma, A., see Roy, A.K. (227) 221

Shaw, B.R., see Sowers, L.C. (215) 131

Shelby, M.D. and Boone, L.R.
 Letter to the Editor (215) 235

Shelby, M.D., see Ashby, J. (224) 321

Sheldon, T.
 An evaluation of caprolactam and benzoin in the mouse micronucleus test (224) 351

Sheldon, T.
 Chromosomal damage induced by caprolactam in human lymphocytes (224) 325

Shetty, T.K., Francis, A.R. and Bhattacharya, R.K.
 Modifying role of dietary factors on the mutagenicity of aflatoxin B₁; in vitro effect of sulphur-containing amino acids (222) 403

Shetty, T.K., see Francis, A.R. (222) 393

Shevchenko, V.A., Ramaya, L.K., Pomerantseva, M.D., Lyaginskaya, A.M. and Dementiev, S.I.
 Genetic effects of ¹³¹I in reproductive cells of male mice (226) 87

Shevchenko, V.A., see Pomerantseva, M.D. (226) 93

Shi, X.C., see Xing, S.G. (224) 5

Shian Chan, W., see Schiestl, R.H. (224) 427

Shibuya, T., see Hara, T. (223) 349

Shida, Y., see Hisamatsu, Y. (226) 55

Shiloh, Y., see Ziv, Y. (210) 211

Shim, J.-S., Kul Lee, H., Kim, Y.-H., Koo Roh, J. and Andersson, D.
 Sister-chromatid exchanges in 52 Korean women living in the vicinity of an industrial complex (224) 511

Shimada, H., see Hayashi, M. (223) 329
 Shimada, H., see Shindo, Y. (223) 403
 Shimba, H., see Kodama, Y. (227) 31
 Shimoj, K., Nakamura, Y., Noro, T., Tomita, I., Sasaki, Y.F., Imanishi, H., Matsumoto, K. and Shirasu, Y.
 Enhancing effects of cinoxate and methyl sinapate on the frequencies of sister-chromatid exchanges and chromosome aberrations in cultured mammalian cells (212) 213
 Shimoj, K., see Jain, A.K. (210) 1
 Shindo, Y., Toyoda, Y., Kawamura, K., Kurebe, M., Shimada, H., Hattori, C. and Satake, S.
 Micronucleus test with potassium chromate(VI) administered intraperitoneally and orally to mice (223) 403
 Shiomi, N., see Sano, H. (217) 141
 Shiomi, T., see Sano, H. (217) 141
 Shioya, M., Wakabayashi, K., Yamashita, K., Nagao, M. and Sugimura, T.
 Formation of 8-hydroxydeoxyguanosine in DNA treated with feacapentaene-12 and -14 (225) 91
 Shiraishi, Y., Taguchi, T., Ozawa, M. and Bamezai, R.
 Different mutations responsible for the elevated sister-chromatid exchange frequencies in Bloom syndrome and X-irradiated B-lymphoblastoid cell lines originating from acute leukemia (211) 273
 Shiraishi, Y., see Taguchi, T. (211) 43
 Shirasu, Y., see Inouye, T. (223) 411
 Shirasu, Y., see Sasaki, Y.F. (213) 195
 Shirasu, Y., see Sasaki, Y.F. (226) 103
 Shirasu, Y., see Shimoj, K. (212) 213
 Shirasu, Y., see Teramoto, S. (221) 1
 Shirasu, Y., see Watanabe, K. (218) 105
 Shirokawa, T., see Sayama, M. (226) 181
 Short, C., see Fielding, S. (214) 147
 Shwartz, H. and Livneh, Z.
 RecA protein inhibits in vitro replication of single-stranded DNA with DNA polymerase III holoenzyme of *Escherichia coli* (213) 165
 Siciliano, M.J., see Huang, P. (210) 291
 Siciliano, M.J., see Nairn, R.S. (217) 193
 Sigut, D., see Hannan, M.A. (226) 49
 Simic, M.G., Bergtold, D.S. and Karam, L.R.
 Generation of oxy radicals in biosystems (214) 3
 Simpson, D., see Liber, H.L. (226) 31
 Singh, S., see Goel, H.C. (224) 157
 Singh, S.P., see Goel, H.C. (224) 157
 Sinha, A.K., Linscombe, V.A. and Gollapudi, B.B.
 Chromosomal aberrations in bone marrow and peripheral blood cells from the same rats (226) 65
 Sinn, M.R., see Garry, V.F. (225) 107
 Sinsheimer, J.E., Chakraborty, P.K., Messerly, E.A. and Gadamidi, V.
 Mutagenicity of oxapiro compounds with *Salmonella* (224) 171
 Sinsheimer, J.E., see Giri, A.K. (224) 253
 Širinjan, G., see Topinka, J. (227) 147
 Siskindovich, S., see Stark, A.-A. (224) 89
 Skalska-Hilgier, E., see Sadurska, B. (224) 147
 Skantarz, A.M., see Hurley, D.L. (217) 25
 Skare, J.A., see Thompson, E.D. (223) 267
 Skinnider, L., Stoessl, A. and Wang, J.
 Increased frequency of sister-chromatid exchange induced by dothistromin in CHO cells and human lymphocytes (222) 167
 Skopek, T.R., see Liber, H.L. (226) 31
 Skupnjak, Š., see Franekić, J. (227) 13
 Slavutsky, I. and Knuutila, S.
 Micronucleus formation in different lymphocyte subpopulations in plomycin-treated and control cultures (219) 257
 Sledziewska-Gojska, E., see Janion, C. (210) 15
 Smeets, D., Verhagen, A. and Hustinx, T.
 Familial and individual variation in chromosome fragility (212) 223
 Smith, A.L., see Aaron, C.S. (223) 163
 Smith, A.L., see Harbach, P.R. (216) 101
 Smith, B.P., see Hannan, M.A. (226) 49
 Smith, K.C., see Sargentini, N.J. (211) 193
 Smith, K.C., see Sargentini, N.J. (215) 115
 Smith, L., see Schiffman, M.H. (222) 351
 Smith-Oliver, T., see Bermudez, E. (224) 361
 Smith, P.D. and Dusenbery, R.L.
 Mutations at six additional loci of *Drosophila melanogaster* cause alkylation hypermutability (218) 21
 Smith, P.J., Debenham, P.G. and Watson, J.V.
 A role of DNA topoisomerases in the active dissociation of DNA minor groove-ligand complexesA flow cytometric study of inhibitor effects (217) 163
 Smith-Ravin, J., see Jeggo, P.A. (218) 75
 Smith, T.A.D. and Itzhaki, R.F.
 Radiosensitivity of lymphocytes from patients with Alzheimer's disease (217) 11
 Smolik, R., see Sasiadek, M. (224) 235
 Smyth, D.R., see Guli, C.L. (210) 323
 Snyder, R.D. and Lachmann, P.J.
 Differential effects of 5-azacytidine and 5-azadeoxycytidine on cytotoxicity, DNA-strand breaking and repair of X-ray-induced DNA damage in HeLa cells (226) 185
 Sobels, F.H.
 Models and assumptions underlying genetic risk assessment (212) 77
 Sofuni, T., see Hayashi, M. (223) 345
 Sofuni, T., see Matsuoka, A. (215) 179
 Sohal, R.S., see Newton, R.K. (219) 113
 Soler-Niedziela, L., Ong, T., Krishna, G., Petersen, M. and Nath, J.
 Sister-chromatid exchange studies on direct- and indirect-acting clastogens in mouse primary cell cultures (224) 465
 Somers, D.A., see Dotson, S.B. (213) 157
 Sorg, R., see Aaron, C.S. (223) 129
 Sorsa, M., Husgafvel-Pursiainen, K., Järventaus, H., Koskimies, K., Salo, H. and Vainio, H.
 Cytogenetic effects of tobacco smoke exposure among involuntary smokers (222) 111
 Soska, I., see Kozubek, S. (210) 221
 Soska, I., see Kozubek, S. (215) 49
 Sowers, L.C., Sedwick, W.D. and Shaw, B.R.

Hydrolysis of *N*³-methyl-2'-deoxycytidine: Model compound for reactivity of protonated cytosine residues in DNA (215) 131

Soyka, L.A., see Lipman, J.M. (219) 273

Sperling, K., see Digweed, M. (218) 171

Spindler, S.R., Koizumi, A., Walford, R.L. and Mote, P.L. *P*₁-450 and *P*₃-450 gene expression and maximum life span in mice (219) 89

Šrám, R.J., see Topinka, J. (227) 147

Šrám, R.J., see Topinka, J. (225) 131

Stack, H.F., see Brady, A.L. (224) 391

Staiano, N., see Quinto, I. (224) 405

Stanford, W.L., see Strauss, G.H.S. (222) 171

Staniforth, C.D., see Romagna, F. (213) 91

Stankowski Jr., L.F., see Aaron, C.S. (223) 111

Stankowski Jr., L.F., see Aaron, C.S. (223) 121

Stankowski Jr., L.F., see Aaron, C.S. (223) 153

Stankowski Jr., L.F., see DeMarini, D.M. (220) 11

Stankowski Jr., L.F., see Tindall, K.R. (220) 241

Staples, J., see Musk, P. (227) 25

Stark, A.-A., Arad, A., Siskindovich, S., Pagano, D.A. and Zeiger, E.

Effect of pH on mutagenesis by thiols in *Salmonella typhimurium* TA102 (224) 89

Stary, A., see James, M.R. (220) 169

Stasiewicz, S., see Ashby, J. (223) 73

Stefanini, M., Scappaticci, S., Lagomarsini, P., Borroni, G., Berardesca, E. and Nuzzo, F.

Chromosome instability in lymphocytes from a patient with Werner's syndrome is not associated with DNA repair defects (219) 175

Stefanini, M., see Nuzzo, F. (219) 209

Stefanini, M., see Scovassi, A.I. (225) 65

Steffen, R., see Schröder, H.C. (219) 283

Steighner, R.J., see Povirk, L.F. (214) 13

Steingrimsdóttir, H., see Lehmann, A.R. (220) 255

Steinmetz, K.L., see Aaron, C.S. (223) 111

Steinmetz, K.L., see Aaron, C.S. (223) 141

Stephan, G. and Oestreicher, U.

An increased frequency of structural chromosome aberrations in persons present in the vicinity of Chernobyl during and after the reactor accident. Is this effect caused by radiation exposure? (223) 7

Stewart, J.D., see Ong, T. (222) 19

Stewart, J.D., see Whong, W.-Z. (222) 237

Stich, H.F. and Anders, F.

The involvement of reactive oxygen species in oral cancers of betel quid/tobacco chewers (214) 47

Stoessl, A., see Skinner, L. (222) 167

Stojiljković, I., see Brčić-Kostić, K. (227) 247

Stookey, G.K., see Li, Y. (227) 159

Strauss, B., see Schwartz, J.L. (216) 119

Strauss, G.H.S., Stanford, W.L. and Berkowitz, S.J.

The Computerized Laboratory Notebook concept for genetic toxicology experimentation and testing (222) 171

Streffer, C., see Pamper, S. (210) 189

Strout, C.L., see Tucker, J.D. (224) 105

Strout, C.L., see Tucker, J.D. (224) 269

Subramani, S.

Analysis of recombination in mammalian cells using SV40 and SV40-derived vectors (220) 221

Sugano, H., see Matsukuma, S. (218) 197

Sugimura, T., see Shioya, M. (225) 91

Sugiyama, C., Kobayashi, H. and Kishi, M.

Micronucleus test with 2-acetylaminofluorene by intraperitoneal injection and oral administration (223) 361

Summers, W.C., Glazer, P.M. and Malkevich, D.

Lambda phage shuttle vectors for analysis of mutations in mammalian cells in culture and in transgenic mice (220) 263

Sun, A.S. and Renaud, M.

Enhancement of 5'-nucleotidase activity of human leukemic cells after fractionation: implications for cancer and aging (219) 295

Sutou, S., Sato, S., Hitotsumachi, S. and Kimura, Y.

Administration-route-related difference in the micronucleus test with *N*-ethyl-*N*-nitrosourea (223) 377

Sutou, S., see Hayashi, M. (223) 329

Suzuki, H., see Kondo, K. (223) 373

Suzuki, S., Atai, H., Hatakeyama, Y., Hara, M. and Nakagawa, S.

Administration-route-related differences in the micronucleus test with benzene (223) 407

Sweet, L., see Jones, S.K. (219) 247

Swenson, D.H., see Aaron, C.S. (223) 171

Szakmary, A., see Knasmüller, S. (216) 189

Szczypta, M., see Sadurska, B. (224) 147

Szeliga, J., see Motykievicz, G. (223) 243

Szymczyk, T., see Sadurska, B. (224) 147

Tachon, P. and Giacomoni, P.U.

Histidine modulates the clastogenic effect of oxidative stress (211) 103

Taguchi, T. and Shiraishi, Y.

Increased sister-chromatid exchanges (SCEs) and chromosomal fragilities by BrdU in a human mutant B-lymphoblastoid cell line (211) 43

Taguchi, T., see Shiraishi, Y. (211) 273

Takahashi, N., see Ono, T. (219) 39

Takahashi, T., see Ishida, R. (215) 69

Takaki, R., see Nakano, S. (217) 45

Takebe, H., see Kyoizumi, S. (214) 215

Takebe, H., see Tatsuka, M. (214) 321

Takeda, K., see Morita, T. (225) 55

Takenaka, S., Sera, N., Tokiwa, H., Hirohata, I. and Hirohata, T.

Identification of mutagens in Japanese pickles (223) 35

Takeshita, T., see Yamagata, Z. (212) 263

Takeuchi, M., see Tsuyoshi, T. (223) 383

Takizawa, Y., see Hachiya, N. (223) 365

Talukder, G., see Roy, A.K. (227) 221

Tamaoki, M., see Wakata, A. (223) 369

Tamura, H., see Hayashi, M. (223) 345

Tamura, R.N., see Hill, L.E. (224) 447

Tanaka, S., Ishii, C. and Inoue, H.
Effects of heat shock on the induction of mutations by chemical mutagens in *Neurospora crassa* (223) 233

Tancongco, C.P., see Segal, G.A. (216) 221

Taneda, M., see Kitada, M. (227) 53

Taninger, M., see Parodi, S. (224) 379

Tannoia, M.C., see Cantoni, O. (218) 143

Tanzarella, C., see Degrassi, F. (211) 125

Tasseron-de Jong, J.G., see Giphart-Gassler, M. (214) 223

Tates, A.D. and Den Engelse, L.
The role of short-lived lesions in the induction of micronuclei in rat liver by ethylnitrosourea and methyl methanesulphonate: the importance of experimental design (210) 271

Tates, A.D., Bernini, L.F., Natarajan, A.T., Ploem, J.S., Verwoerd, N.P., Cole, J., Green, M.H.L., Arlett, C.F. and Norris, P.N.
Detection of somatic mutants in man: HPRT mutations in lymphocytes and hemoglobin mutations in erythrocytes (213) 73

Tates, A.D., De Vogel, N., Rotteveel, A.H.M., Leupe, F. and Davids, J.A.G.
The response of spermatogonia and spermatocytes of the Northern vole *Microtus oeconomus* to the induction of sex-chromosome nondisjunction, diploidy and chromosome breakage by X-rays and fast fission neutrons (210) 173

Tatsuka, M., Nikaido, O., Tatsumi, K. and Takebe, H.
X-Ray-induced G_2 arrest in ataxia telangiectasia lymphoblastoid cells (214) 321

Tatsumi, K., see Kyoizumi, S. (214) 215

Tatsumi, K., see Tatsuka, M. (214) 321

Tattersall, M.H.N., see DeFazio, A. (216) 57

Tawn, E.J. and Cartmell, C.L.
The effect of smoking on the frequencies of asymmetrical and symmetrical chromosome exchanges in human lymphocytes (224) 151

Tayama, S., Kamiya, N. and Nakagawa, Y.
Genotoxic effects of *o*-phenylphenol metabolites in CHO-K1 cells (223) 23

Taylor, R.T., see Tucker, J.D. (224) 269

Tedeschi, B., see Porfirio, B. (213) 117

Tee, A.C., see Phillips, B.J. (214) 105

Temcharoen, P., see Kangwanpong, D. (224) 241

Tennant, R.W., see Ashby, J. (223) 73

Teramoto, S. and Shirasu, Y.
Genetic toxicology of 1,2-dibromo-3-chloropropane (DBCP) (221) 1

Thacker, J. and Ganesh, A.N.
Molecular analysis of spontaneous and ethyl methanesulphonate-induced mutations of the *hprt* gene in hamster cells (210) 103

Thacker, J.
The use of integrating DNA vectors to analyse the molecular defects in ionising radiation-sensitive mutants of mammalian cells including ataxia telangiectasia (220) 187

Thakur, M.K. and Prasad, S.
Age-specific methylation of high-mobility-group proteins of the rat liver and its modulation by spermine and sodium butyrate (219) 107

Theiss, J.C., see Krishna, G. (222) 63

Theron, A., see Van Rensburg, C.E.J. (215) 167

Theuws, J.L.G., see Bos, R.P. (223) 41

Thilly, W.G., see Albertini, R.J. (216) 65

Thilly, W.G., see Danheiser, S.L. (210) 143

Thilly, W.G., see Oller, A.R. (216) 149

Thompson, E., see Zimmerman, S. (226) 81

Thompson, E.D., McDermott, J.A., Zerkle, T.B., Skare, J.A., Evans, B.L.B. and Cody, D.B.
Genotoxicity of zinc in 4 short-term mutagenicity assays (223) 267

Thompson, L.H., see Nairn, R.S. (217) 193

Thornton-Manning, J.R., see Gao, N. (225) 181

Thornton-Manning, J.R., see Heflich, R.H. (225) 157

Thornton-Manning, J.R., see Heflich, R.H. (227) 69

Tiah, M. and Ronen, A.
Autoradiographic detection of mutation to exotoxin-A resistance in mouse fibroblasts treated with ethyl methanesulfonate, X-rays and ultraviolet light (213) 205

Tice, R.R., Ormiston, B.G. and McFee, A.F.
The effect of agent dose and treatment time on the intercellular distribution of sister-chromatid exchanges induced by genotoxic agents in mouse bone marrow cells *in vivo* (215) 25

Tice, R.R., see Luke, C.A. (227) 59

Tice, R.R., see Ormiston, B.G. (227) 173

Tindall, K.R. and Stankowski Jr., L.F.
Molecular analysis of spontaneous mutations at the *gpt* locus in Chinese hamster ovary (AS52) cells (220) 241

Tobari, I., see Matsuda, Y. (210) 35

Tobari, I., see Matsuda, Y. (211) 65

Tobari, I., see Matsuda, Y. (214) 165

Toda, N., see Kasai, H. (214) 159

Tokarova, B., Amirtayev, K.G., Kozubek, S. and Krasavin, E.A.
Mutagenic action of heavy ions on *Escherichia coli* cells (227) 199

Tokarova, B., see Kozubek, S. (210) 221

Tokarova, B., see Kozubek, S. (215) 49

Tokiwa, H., see Takenaka, S. (223) 35

Tokuda, H., see Ishii, A. (224) 229

Tomanin, R., see Sarto, F. (225) 21

Tomilin, N.V., see Aprelikova, O.N. (213) 135

Tomingas, R., see Hadnagy, W. (225) 27

Tomita, I., see Jain, A.K. (210) 1

Tomita, I., see Shimoi, K. (212) 213

Tomkins, D.J., see Burns, M.A. (216) 243

Tompa, A. and Sapi, E.
Detection of 6-thioguanine resistance in human peripheral blood lymphocytes (PBL) of industrial workers and lung cancer patients (210) 345

Topinka, J., Binková, B., Šrám, R.J. and Erin, A.N.
The influence of ititol on oxidative DNA damage and lipid peroxidation in human lymphocytes (225) 131

Topinka, J., Šrám, R.J., Širinjan, G., Kočíšová, J., Binková, B. and Fojtíková, I.
Mutagenicity studies on paracetamol in human volunteers. II. Unscheduled DNA synthesis and micronucleus test (227) 147

Topp, R.J., see Jongen, W.M.F. (222) 263

Touati, D., see Hoerter, J. (215) 161

Toyoda, Y., see Nakajima, M. (223) 399

Toyoda, Y., see Shindo, Y. (223) 403

Trgovčević, Ž., see Brčić-Kostić, K. (227) 247

Trifiti, M., see Osiewacz, H.D. (219) 9

Tripathy, N.K., Majhi, B., Dey, L. and Das, C.C.

Genotoxicity of ziram established through wing, eye and female germ-line mosaic assays and the sex-linked recessive lethal test in *Drosophila melanogaster* (224) 161

Tripathy, N.K., Patnaik, K.K. and Nabi, M.J.

Genotoxicity of tartrazine studied in two somatic assays of *Drosophila melanogaster* (224) 479

Trzos, R.J., see Aaron, C.S. (223) 111

Tsuyoshi, T., Takeuchi, M., Hiroto, H. and Masamoto, Y.

Micronucleus test with methyl methanesulfonate administered by intraperitoneal injection and oral gavage (223) 383

Tucker, J.D., Carrano, A.V., Allen, N.A., Christensen, M.L., Knize, M.G., Strout, C.L. and Felton, J.S.

In vivo cytogenetic effects of cooked food mutagens (224) 105

Tucker, J.D., Taylor, R.T., Christensen, M.L., Strout, C.L., Hanna, M.L. and Carrano, A.V.

Cytogenetic response to 1,2-dicarbonyls and hydrogen peroxide in Chinese hamster ovary AUXB1 cells and human peripheral lymphocytes (224) 269

Tucker, J.D., see Eastmond, D.A. (224) 517

Tudek, B., see Sadurska, B. (224) 147

Turner, D.R., see Drinkwater, R.D. (219) 29

Turner, G.N., see Amacher, D.E. (224) 415

Turner, P.M., see Ferguson, L.R. (215) 213

Tuveson, R.W., see Kagan, J. (216) 231

Uchida, T., see Yamaizumi, M. (217) 135

Uchikoshi, K., see Nagao, T. (215) 173

Uchino, E., see Manabe, S. (226) 215

Ueno, H., see Sayato, Y. (226) 151

Ugarković, Đ., see Schröder, H.C. (219) 283

Unruh, L.E., see Hefflich, R.H. (225) 157

Urien, A.F., see Pommery, J. (223) 183

Utakoji, T., see Matsukuma, S. (218) 197

Utsugi-Takeuchi, T., see Matsuda, Y. (211) 65

Utsumi, K.R., see Ishida, R. (215) 69

Uwaifo, A.O., see Fasunon, O.D. (222) 311

Vaidya, V.G., see Ghaskadbi, S. (222) 219

Vaidyanath, K., see Kumari, T.S. (226) 235

Vainio, H. and Partanen, T.

Population burden of lung cancer due to environmental tobacco smoke (222) 137

Vainio, H., see Sorsa, M. (222) 111

Valdivia Alcota, R.P., see Segal, G.A. (216) 221

Valencia, R., see Aaron, C.S. (223) 111

Valerie, K., see Henderson, E.E. (220) 151

Valerio, F., see De Flora, S. (224) 305

Valu, K.K., see Ferguson, L.R. (215) 213

Vamvakas, S., Dekant, W. and Henschler, D.

Assessment of unscheduled DNA synthesis in a cultured line of renal epithelial cells exposed to cysteine S-conjugates of haloalkenes and haloalkanes (222) 329

Van Agen, B., see Kleinjans, J.C.S. (224) 127

Van Berkel, C.G.M., see Gille, J.J.P. (214) 89

Van Buul, P.P.W.

The induction by ionizing radiation of chromosomal aberrations in rhesus monkey pre-meiotic germ cells: effects of dose rate and radiation quality (225) 83

Van de Putte, F., see Giphart-Gassler, M. (214) 223

Van der Eb, A.J., see Van der Lubbe, J.L.M. (217) 153

Van der Gen, A., see Zijlstra, J.A. (212) 193

Van der Lubbe, J.L.M., Rosdorff, H.J.M. and Van der Eb, A.J.

Homologous recombination is not enhanced in UV-irradiated normal and repair-deficient human fibroblasts (217) 153

Van der Merwe, C.A., see Van Rensburg, C.E.J. (215) 167

Van de Vorst, A., see Decuyper-Debergh, D. (225) 11

Van Dokkum, W., see Willems, M.I. (222) 375

Van Duin, M., Vredeveldt, G., Mayne, L.V., Odijk, H., Vermeulen, W., Klein, B., Weeda, G., Hoeijmakers, J.H.J., Bootsma, D. and Westerveld, A.

The cloned human DNA excision repair gene ERCC-1 fails to correct xeroderma pigmentosum complementation groups A through I (217) 83

Van Duyn, A., see Sankaranarayanan, K. (211) 7

Van Helden, P.D., see Hoal-van Helden, E.G. (219) 263

Van Houdt, J.J., De Haan, L.H.J. and Alink, G.M.

The release of mutagens from airborne particles in the presence of physiological fluids (222) 155

Van Rensburg, C.E.J., Theron, A., Richards, G.A., Van der Merwe, C.A. and Anderson, R.

Investigation of the relationships between plasma levels of ascorbate, vitamin E and β-carotene and the frequency of sister-chromatid exchanges and release of reactive oxidants by blood leucocytes from cigarette smokers (215) 167

Van Rijn, J., see Karsdon, J. (226) 13

Van Tassel, R.L., see Schiffman, M.H. (222) 351

Van Zeeland, A.A., see Mitchell, D.L. (226) 43

Vargová, M., see Jablonická, A. (224) 143

Vaughan, D.J., Baptista, J.A., Perdomo, G.R. and Krepinsky, J.J.

The involvement of dimethyl sulfoxide in a bacteriotoxic response of the Ames assay tester strains TA98 and TA100 (226) 39

Veleminský, J., see Angelis, K.J. (212) 155

Veleminský, J., see Badaev, S.A. (210) 9

Venier, P., see Clonfero, E. (226) 229

Vergéres, G., Winterhalter, K.H. and Richter, C.

Microsomal cytochrome P-450: substrate binding, membrane interactions, and topology (213) 83

Verhagen, A., see Smeets, D. (212) 223

Vermeulen, W., see Van Duin, M. (217) 83

Vernole, P., see Porfirio, B. (213) 117

Verwoerd, N.P., see Tates, A.D. (213) 73

Vicente, E.J., see Henriques, J.A.P. (218) 111

Viegas-Péquignot, E., see Lefrançois, D. (212) 167

Vijayalaxmi, and Burkart, W.

Resistance and cross-resistance to chromosome damage in human blood lymphocytes adapted to bleomycin (211) 1

Vijg, J., see Gille, J.J.P. (214) 89
 Vijg, J., see Gille, J.J.P. (219) 17
 Vilkins, G.A., see Pomerantsev, M.D. (226) 93
 Villasenor, I.M., Lim-Sylianico, C.Y. and Dayrit, F.
 Mutagens from roasted seeds of *Moringa oleifera* (224) 209
 Vilpo, J.A. and Vilpo, L.M.
 Normal uracil-DNA glycosylase activity in Bloom's syndrome cells (210) 59
 Vilpo, L.M., see Vilpo, J.A. (210) 59
 Vogel, E.W.
 Caprolactam induces genetic alterations in early germ cell stages and in somatic tissue of *D. melanogaster* (224) 339
 Vogel, E.W.
 Somatic cell mutagenesis in *Drosophila*: recovery of genetic damage in relation to the types of DNA lesions induced in mutationally unstable and stable X-chromosomes (211) 153
 Vogel, E.W., see Würzler, F.E. (216) 89
 Vogel, E.W., see Zijlstra, J.A. (210) 79
 Vogel, E.W., see Zijlstra, J.A. (212) 193
 Vogel, R., see Nair, N.D. (227) 237
 Volkert, M.R., Gately, F.H. and Hajec, L.I.
 Expression of DNA damage-inducible genes of *Escherichia coli* upon treatment with methylating, ethylating and propylating agents (217) 109
 Von der Decken, A., see Klaude, M. (218) 135
 Von Tuneln, L.S., see Heflich, R.H. (225) 157
 Voogd, C.E.
 Azathioprine, a genotoxic agent to be considered non-genotoxic in man (221) 133
 Vos, J.-M.H. and Hanawalt, P.C.
 Effect of DNA damage on stable transformation of mammalian cells with integrative and episomal plasmids (220) 205
 Vos, J.-M.H., see Matsumoto, A. (217) 185
 Vredenburg, G., see Van Duin, M. (217) 83
 Vrieling, H., see Albertini, R.J. (216) 65
 Vuksanovic, L., see Cleaver, J.E. (220) 161
 Wacholder, S., see Schiffman, M.H. (222) 351
 Wada, O., see Manabe, S. (226) 215
 Wada, O., see Yin, Y. (215) 107
 Wagner, E.D., Gentile, J.M. and Plewa, M.J.
 Effects of specific monooxygenase and oxidase inhibitors on the activation of 2-aminofluorene by plant cells (216) 163
 Wahrendorf, J., see Coleman, M.P. (216) 91
 Waibel, R., see Paulini, H. (227) 179
 Wakabayashi, K., see Shioya, M. (225) 91
 Wakata, A., Yamashita, T., Tamaoki, M., Ohshima, T. and Kojima, M.
 Micronucleus test with cyclophosphamide administered by intraperitoneal injection and oral gavage (223) 369
 Wakata, A., see Hayashi, M. (223) 329
 Wald, N., see Fielding, S. (214) 147
 Walford, R.L., see Ball, S.S. (219) 241
 Walford, R.L., see Spindler, S.R. (219) 89
 Walk, R.-A., see Müller, T. (215) 205
 Wallace, S.S., see Margulies, L. (215) 1
 Wang, J., see Skinnider, L. (222) 167
 Wang, L.-G., see Edwards, J.A. (219) 267
 Wang, Y.-K., see Fu, P.P. (225) 121
 Wang, Z.Y., Cheng, S.J., Zhou, Z.C., Athar, M., Khan, W.A., Bickers, D.R. and Mukhtar, H.
 Antimutagenic activity of green tea polyphenols (223) 273
 Warren, S.H., see Ball, L.M. (224) 115
 Warters, R.L., Lyons, B.W., Kennedy, K. and Li, T.M.
 Topoisomerase activity in irradiated mammalian cells (216) 43
 Wasserman, S.S., see Day, P. (224) 409
 Watanabe, K., Ohta, T. and Shirasu, Y.
 Enhancement and inhibition of mutation by *o*-vanillin in *Escherichia coli* (218) 105
 Watanabe, M., Ishidate Jr., M. and Nohmi, T.
 A sensitive method for the detection of mutagenic nitroarenes: construction of nitroreductase-overproducing derivatives of *Salmonella typhimurium* strains TA98 and TA100 (216) 211
 Watanabe, M., see Inouye, T. (223) 411
 Watanabe, M., see Sasaki, Y.F. (213) 195
 Watanabe, T., Hanasaki, Y., Hirayama, T. and Fukui, S.
 Mutagenicity of nitro- and amino-substituted phenazines in *Salmonella typhimurium* (225) 75
 Watanabe, T., Hirayama, T. and Fukui, S.
 Phenazine derivatives as the mutagenic reaction product from *o*- or *m*-phenylenediamine derivatives with hydrogen peroxide (227) 135
 Watanabe, T., Ono, M., Hirayama, T. and Fukui, S.
 Studies on the oxidation products from 2,4-diaminotoluene by hydrogen peroxide and their mutagenicities, II. (225) 15
 Watanabe, T., see Hirayama, T. (226) 169
 Watanabe, Y., see Asano, N. (223) 391
 Watanabe, Y., see Morita, T. (225) 55
 Wataya, Y., see Ishii, A. (224) 229
 Wataya, Y., see Matsuoka, H. (227) 153
 Waters, M.D., see Brady, A.L. (224) 391
 Waters, M.D., see Richard, A.M. (221) 181
 Waters, R., see Fielding, S. (214) 147
 Watkins, K., see Campbell, C.R. (211) 181
 Watson, J.V., see Smith, P.J. (217) 163
 Weeda, G., see Van Duin, M. (217) 83
 Weichselbaum, R.R., see Schwartz, J.L. (216) 119
 Weisburger, J.H., see Jones, R.C. (222) 43
 Weitberg, A.B.
 Effect of combinations of antioxidants on phagocyte-induced sister-chromatid exchanges (224) 1
 Weitberg, A.B.
 Effect of nicotinic acid supplementation in vivo on oxygen radical-induced genetic damage in human lymphocytes (216) 197
 Welty, T.K., see Reidy, J.A. (225) 175
 Wenger, R., see Schröder, H.C. (219) 283
 Wessela, J.A., see Willems, M.I. (222) 375
 Westerveld, A., see Darroudi, F. (212) 113
 Westerveld, A., see Van Duin, M. (217) 83
 Whittaker, S.G., Zimmermann, F.K., Dicus, B., Piegorsch, W.W., Fogel, S. and Resnick, M.A.

Detection of induced mitotic chromosome loss in *Saccharomyces cerevisiae* — an interlaboratory study (224) 31
 Whittaker, S.G., see Piegorsch, W.W. (224) 11
 Whong, W.-Z., Lu, C.-H., Stewart, J.D., Jiang, H.-X. and Ong, T.
 Genotoxicity and genotoxic enhancing effect of tetrandrine in *Salmonella typhimurium* (222) 237
 Whong, W.-Z., see Ong, T. (222) 19
 Whong, W.-Z., see Xing, S.-G. (226) 99
 Whong, W.-Z., see Xing, S.G. (224) 5
 Whorton, E.P., see Garry, V.F. (225) 1
 Wiedenmann, M., see Eder, E. (226) 145
 Wiencke, J.K., see Garry, V.F. (225) 1
 Wiencke, J.K., see Youngblom, J.H. (227) 257
 Wienk, K.J.H., see Jongen, W.M.F. (222) 263
 Wilkins, T.D., see Schiffman, M.H. (222) 351
 Willems, M.I., De Raat, W.K., Wesstra, J.A., Bakker, G.L., Dubois, G. and Van Dokkum, W.
 Urinary and faecal mutagenicity in car mechanics exposed to diesel exhaust and in unexposed office workers (222) 375
 Williams, D.T., see Georghiou, P.E. (225) 33
 Williams, G.M., Mori, H. and McQueen, C.A.
 Structure-activity relationships in the rat hepatocyte DNA-repair test for 300 chemicals (221) 263
 Williams, J.R., see Dillehay, L.E. (215) 15
 Williams, J.R., see Xiao, S. (227) 39
 Williams, R.E., see Balbinder, E. (214) 233
 Willich, N., see Bauchinger, M. (211) 265
 Winegar, R.A., Phillips, J.W., Youngblom, J.H. and Morgan, W.F.
 Cell electroporation is a highly efficient method for introducing restriction endonucleases into cells (225) 49
 Winegar, R.A., see Morgan, W.F. (226) 203
 Winsor, L., see Georghiou, P.E. (225) 33
 Winterhalter, K.H., see Vergères, G. (213) 83
 Wintersberger, U., see Klein, F. (210) 157
 Wiser, S.K., see Aaron, C.S. (223) 111
 Wiser, S.K., see Aaron, C.S. (223) 163
 Wiser, S.K., see Harbach, P.R. (216) 101
 Wolff, S., see Youngblom, J.H. (227) 257
 Wolski, R., see Campbell, C.R. (211) 181
 Wood, R.D., see Gough, G. (227) 193
 Woodgate, R., Bridges, B.A. and Kelly, C.
 Non-mutability by ultraviolet light in *uvrD recB* derivatives of *Escherichia coli* WP2 *uvrA* is due to inhibition of *RecA* protein activation (226) 141
 Woodruff, R.C., see Gunn, J.S. (226) 267
 Working, P.K.
 Assessment of unscheduled DNA synthesis in Fischer 344 rat pachytene spermatocytes exposed to caprolactam or benzoin in vivo (224) 365
 Wottawa, A., see Knasmüller, S. (216) 189
 Wu, Z.-L., see Xing, S.-G. (226) 99
 Wu, Z.-L., see Xing, S.G. (224) 5
 Würgler, F.E. and Vogel, E.W.
 First EEMS training course on somatic genotoxicity assays with *Drosophila* (216) 89
 Würgler, F.E., see Adler, I.-D. (213) 27
 Würgler, F.E., see Frölich, A. (216) 179
 Würgler, F.E., see Graf, U. (222) 359
 Xiao, S., Jacobson-Kram, D., Piantadosi, S. and Williams, J.R.
 Increased chromosomal radiosensitivity in patients undergoing radioimmunoglobulin therapy (227) 39
 Xing, S.-G., Wu, Z.-L., Whong, W.-Z. and Ong, T.
 Enhancing effect of tetrandrine on sister-chromatid exchanges induced by mitomycin C and cigarette-smoke condensate in mammalian cells (226) 99
 Xing, S.G., Shi, X.C., Wu, Z.L., Whong, W.-Z. and Ong, T.
 Effect of tetrandrine on micronucleus formation and sister-chromatid exchange in both *in vitro* and *in vivo* assays (224) 5
 Yajima, N., Ishida, S., Miyata, N., Kishi, T. and Kawanishi, G.
 Modes of genotoxicity of a macromolecular antibiotic, SN-07, a novel type of interstrand DNA cross-linker (210) 165
 Yalkinoglu, A.Ö., see Pool, B.L. (213) 61
 Yamada, F., see Hara, M. (222) 53
 Yamagata, Z., Iijima, S., Takeshita, T., Ariizumi, C. and Higurashi, M.
 Mitomycin-C-induced sister-chromatid exchanges and cell-cycle kinetics in lymphocytes from patients with Klinefelter syndrome (212) 263
 Yamaguchi, T.
 Mutagenic activity of various kinds of cheese on the Ames, *rec* and *umu* assays (224) 493
 Yamaizumi, M., Inaoka, T., Uchida, T. and Ohtsuka, E.
 Microinjection of T4 endonuclease V produced by a synthetic *denV* gene stimulates unscheduled DNA synthesis in both xeroderma pigmentosum and normal cells (217) 135
 Yamaizumi, Z., see Kasai, H. (214) 159
 Yamaizumi, Z., see Negishi, C. (210) 127
 Yamamoto, K. and Bockrath, R.
 DNA photolyase in *E. coli*: effects on UV mutagenesis by plasmids expressing the *phr* gene (226) 259
 Yamashita, K., see Shioya, M. (225) 91
 Yamashita, T., see Wakata, A. (223) 369
 Yandell, D.W., see Liber, H.L. (216) 9
 Yang, J.-L., see Maher, V.M. (220) 83
 Yang, K.-H., see Kim, B.-S. (213) 185
 Yasui, A., Eker, A.P.M. and Koken, M.
 Existence and expression of photoreactivation repair genes in various yeast species (217) 3
 Yasui, H., see Kondo, K. (223) 373
 Yi, A.-K., see Park, E.-H. (217) 19
 Yin, Y., Wada, O. and Manabe, S.
 Exposure level monitor of a carcinogenic glutamic acid pyrolysis product in rabbits (215) 107
 Yoshitake, A., see Hara, M. (222) 53
 Young, W.C., see Salmeen, I.T. (227) 7
 Youngblom, J.H., Wiencke, J.K. and Wolff, S.
 Inhibition of the adaptive response of human lymphocytes to very low doses of ionizing radiation by the protein synthesis inhibitor cycloheximide (227) 257
 Youngblom, J.H., see Winegar, R.A. (225) 49
 Yount, D.J., see Hill, L.E. (224) 447

Yu, Y., see Zhang, L. (227) 109
 Yu, Y.-n., see Zhang, Y.-s. (227) 215

Zacmanidis, P., see Salmeen, I.T. (227) 7
 Zanacchi, P., see De Flora, S. (214) 153
 Zbinden, I., see Brown, T.C. (220) 115
 Zdzienicka, M.Z., see Mitchell, D.L. (226) 43
 Zeiger, E., see Ashby, J. (223) 73
 Zeiger, E., see Stark, A.-A. (224) 89
 Zerkle, T.B., see Thompson, E.D. (223) 267
 Zhang, L., Yu, Y. and Chen, X.
 Induction of cytochrome P450 isozymes in human amnion FL cells (227) 109
 Zhang, L.-H. and Jenssen, D.
 Isolation and characterization of spontaneously occurring mutations at the HPRT locus in V79 Chinese hamster cells (212) 253
 Zhang, W., see Li, Y. (227) 159
 Zhang, Y.-C.N.Y.-M., see Fu, P.P. (225) 121
 Zhang, Y.-s., Chen, X.-r. and Yu, Y.-n.
 Antimutagenic effect of garlic (*Allium sativum* L.) on 4NQO-induced mutagenesis in *Escherichia coli* WP2 (227) 215
 Zhou, H., see Reidy, J.A. (225) 175
 Zhou, X., see Sandhu, S.S. (224) 437
 Zhou, Z.C., see Wang, Z.Y. (223) 273
 Zhu, X., see Schneider, J.E. (214) 23
 Ziegler-Skylakakis, K., see Schmid, E. (226) 133
 Zieliński, W., see Sadurska, B. (224) 147

Zijlstra, J.A. and Vogel, E.W.
 Influence of metabolic factors on the mutagenic effectiveness of cyclophosphamide in *Drosophila melanogaster* (210) 79
 Zijlstra, J.A., Brussee, J., Van der Gen, A. and Vogel, E.W.
 Importance of multiple hydroxylated metabolites in hexamethylphosphoramide (HMPA)-mediated mutagenesis in *Drosophila melanogaster* (212) 193
 Zijlstra, J.A.
 Liquid holding increases mutation induction by formaldehyde and some other cross-linking agents in *Escherichia coli* K12 (210) 255
 Zimmer, D., see Aaron, C.S. (223) 129
 Zimmer, D.M., see Aaron, C.S. (223) 111
 Zimmer, D.M., see Aaron, C.S. (223) 153
 Zimmer, D.M., see Aaron, C.S. (223) 171
 Zimmering, S., Thompson, E., Aquavella, J. and Reeder, B.
 Dose-response relationship for ethyl nitrosourea-induced sex-linked recessive lethals in germ cells of the female *Drosophila melanogaster* at relatively low doses (226) 81
 Zimmermann, F.K., Scheel, I. and Resnick, M.A.
 Induction of chromosome loss by mixtures of organic solvents including neurotoxins (224) 287
 Zimmermann, F.K., see Piegorsch, W.W. (224) 11
 Zimmermann, F.K., see Whittaker, S.G. (224) 31
 Ziv, Y., Amiel, A., Jaspers, N.G.J., Berkel, A.I. and Shiloh, Y.
 Ataxia-telangiectasia: a variant with altered in vitro phenotype of fibroblast cells (210) 211

Master Keyword Index to Volumes 210-227

2-AAF, (216) 35
Abstracts, (216) 353
Abstracts, Annual Meeting 1988, (216) 267
Accuracy, (214) 201
Aceanthrylene, (222) 223
Acentric chromosomal fragments, (225) 171
Acetaldehyde, (215) 187; (216) 93; (227) 47
2-Acetylaminofluorene, (223) 361; (227) 153
N-2-Acetylaminofluorene, (215) 55
N-Acetylcysteine, (222) 403
O-Acetylerine(thio)-lyase, (227) 63
ACNU-resistant cells, (215) 69
Acrylamide, (216) 221; (226) 157
Action cross sections, (212) 181
Active oxygen, (224) 219
Active oxygen, chromosomal aberrations, (214) 115
Active oxygen species, (214) 129
Activity gel analysis, (225) 65
Acute myelocytic leukaemia, (219) 295
ad-3, (218) 1
Ada gene, (218) 197
ad-3A locus, (211) 89
Adaptive response, (210) 157; (211) 1; (211) 7; (211) 13; (211)
301; (225) 43; (227) 103; (227) 257
ad-3B locus, (211) 89
Additivity, (225) 41
Adeno-associated virus, (213) 61
Adenovirus, (217) 153
ADP ribosylation, (219) 71
ADP-ribosyl transferase, (225) 65
ad-3 region, (210) 281; (211) 89; (214) 297
Adriamycin, (226) 61
AF-2, (218) 105
Aflatoxin B₁, (222) 253; (222) 311; (222) 393; (222) 403; (227)
53; (227) 153
Age-specific methylation, (219) 107
Aging, (210) 323; (214) 41; (219) 1; (219) 29; (219) 39; (219)
113; (219) 241
Airborne particles, (222) 155; (226) 215
Airborne particulates, (224) 305; (225) 27
Air pollution, (223) 243
Aliphatic epoxides, (224) 253
Alkali-labile site, (210) 165
Alkaline elution, (210) 165; (213) 227; (215) 205; (217) 219;
(227) 125
Alkaline unwinding, (225) 101
Alkylating agents, (215) 95; (216) 119; (218) 153; (220) 255;
(224) 95
Alkylating agents, DNA-targeted, (215) 213
Alkylation, (216) 221; (218) 135
Alkylation damage, (217) 211
*O*⁶-Alkylguanine alkyltransferase, (216) 119
Allelic complementation, (214) 267
Allium cepa, (216) 203; (223) 313
Aluminium toxicity, (227) 221
Alzheimer's disease, (217) 11; (218) 41; (219) 247; (219) 267
Amber suppression, (210) 205
Amber suppressor tRNA gene, (220) 61
Ames assay, (222) 9; (222) 237; (226) 39; (226) 151
Ames assay, drug candidates, (223) 171
Ames assays, (227) 7
Ames assays, *rec* and *umu*, (224) 493
Ames test, (211) 147; (222) 375; (223) 49; (224) 171; (224) 453;
(227) 153
Ames test, wine, (223) 205
9-Aminoacridine, (210) 71
2-Aminoanthracene, (212) 275
Aminoazaarenes, (213) 217
3-Aminobenzamide, (222) 1
4-Aminobiphenyl, (216) 149
6-Aminochrysene, (212) 275
2-Amino-3,8-dimethylimidazo[4,5-*f*]quinoxaline, (210) 127
2-Aminofluorene, (216) 163
2-Amino-3-methylimidazo[4,5-*f*]quinoline, (223) 321
Aminomethylimidazoquinolines, (222) 43
2-Amino-6-*N*-hydroxylaminopurine, (218) 1
2-Aminopurine, (218) 1
Amino-substituted phenazines, (225) 75
7-Amino-2,4,6-trimethylquinoline, (226) 169
Amplifications, (212) 33
Aneuploidy, (210) 313; (224) 11; (224) 31; (224) 517; (226) 111
Aniline derivatives, (211) 279
Aniline mustards, (224) 95
Animal cancer bioassays, (213) 43
Annual Meeting 1988, (216) 353
Antibiotic SN-07, (210) 165
Anti-bromodeoxyuridine antibody, (216) 57
Antihypertensive, (222) 317
Antikinetochore antibody, (224) 517
Antimalaria drugs, (222) 311
Antimutagen, (227) 215
Antimutagenic activity, (214) 257
Antimutagenic effect, (218) 105
Antimutagenicity, (210) 249; (222) 19; (222) 141; (222) 219;
(222) 393; (222) 403
Anti-oxidant enzymes, (214) 129; (214) 153
Anti-oxidants, (215) 167; (224) 1
Antiparasitic drugs, (222) 161
Antitumour drugs, (224) 95
Aphidicolin, (212) 223; (216) 35
Aphidicolin and X-rays, (213) 175
APND, (227) 109

aprt, (227) 97
Apurinic/apyrimidinic sites in DNA, (214) 13
1- β -D-Arabinofuranosylcytosine, (223) 345
1- β -D-Arabinofuranosylcytosine (ara C) treatments, (226) 223
Arachidonic acid, (224) 185
Ara test, (226) 175
Aroclor 1254, (214) 115
Aromatic DNA adducts, (224) 485
Asataf, (223) 287
AS52 cells, (220) 241
Ascorbic acid, (222) 141; (222) 219; (224) 247; (227) 147
L-Ascorbic acid, (214) 137
Aspergillus nidulans, (215) 187; (217) 211; (222) 337
AS52/XPRT assay, (223) 121
Ataxia, (213) 73
Ataxia telangiectasia, (210) 211; (211) 19; (211) 31; (214) 321; (218) 143; (218) 165; (220) 169; (220) 187
Ataxia telangiectasia cells, (226) 223
Atmospheric pollution, (224) 305
Atom bomb survivors, (227) 31
ATP, (214) 89
Automated bioassay, (223) 49
Automation, (213) 91
Autoradiography, (213) 205
Azacytidine, (220) 255; (227) 187
5-Azacytidine, (226) 185
5-Azadeoxycytidine, (226) 185
Azathioprine, (221) 133
Azide metabolism, (213) 157
Azidoalanine, (213) 157; (216) 27; (227) 63
Azo dyes, (226) 229
Azo linkage, mutagenicity, (221) 217

Babesiosis, (227) 173
Bacillus subtilis, (218) 153
Bacteria, (216) 251
Bacterial mutagenicity, (224) 115
Bacteriophage Φ X174, (210) 205
Bacteriotoxic response, (226) 39
BALB/3T3 cells, (214) 285
Base-pair substitutions, (214) 267
Base substitution, (227) 97
Base substitutions, (215) 79
Battery of Leukocyte Tests (BLT), (222) 171
Bavistan, (216) 327
B cell, (210) 29
Benomyl, (224) 517
Benzamide, (225) 137
Benz[*d*]aceanthrylene, (224) 115
Benzene, (223) 407; (224) 235
Benzene clastogenicity, mouse, (222) 283
Benzene, genotoxicity, (222) 291
Benzimidazole, (210) 79
Benz[*j*]acephenanthrylene, (224) 115
Benz[*k*]aceanthrylene, (224) 115
Benz[*a*]pyrene, (210) 143
Benz[*a*]pyrene, (211) 139; (216) 231; (219) 241; (223) 353; (224) 465
Benz[*a*]pyrene-dihydrodiol, (224) 185
Benz[*a*]pyrene diolepoxyde, (220) 73
Benzoin, (224) 321; (224) 347; (224) 351; (224) 357; (224) 361; (224) 365; (224) 379; (224) 385; (224) 391
Betel chewing, (214) 47
Binary data, (216) 1
Bioactivation, (223) 295
Biomonitoring, (215) 107
Bis-Tris buffer, (226) 263
Black pepper, (224) 281
Bleomycin, (211) 1; (212) 155; (214) 13; (214) 69; (214) 129; (217) 75; (217) 93; (224) 247
Bloom's syndrome, (210) 59; (214) 215; (220) 115
Bloom syndrome cells, (211) 273
Bone marrow, (210) 271; (211) 131; (224) 157; (224) 507
Bone-marrow cells, CA, (226) 65
Bone-marrow micronuclei, (227) 125
Bone-marrow micronucleus test, (216) 321
BPDE, (226) 1
BrdU, (216) 259
BrdU-Hoechst quenching, (215) 61
BrdUrd, (226) 1
Breakpoint analysis, (214) 195
Break-sensitive sites, photolyase-induced, (217) 39
Bromocriptine, (210) 23
Bromodeoxyuridine, (211) 43; (211) 273
Bromodeoxyuridine uptake, (226) 137
Butylated hydroxytoluene, (214) 257
tert.-Butyl hydroquinone, (214) 105

CAD, (219) 159
Caenorhabditis elegans, (212) 181; (218) 25
Caffeic acid, (226) 103
Caffeine, (212) 223; (217) 19; (226) 13
Camphor, (224) 157
Camptothecin, (211) 125
Cancer, (212) 263; (221) 39
Cancer incidence, (223) 35
Cancer risk, (222) 129
Cancer susceptibility, (224) 247
Caprolactam, (224) 321; (224) 329; (224) 333; (224) 339; (224) 343; (224) 347; (224) 351; (224) 357; (224) 361; (224) 365; (224) 369; (224) 373; (224) 377; (224) 379; (224) 385; (224) 391
Caprolactam, human lymphocytes, (224) 325
Carbamate fungicide, (224) 161
Carbazole, (226) 55
3-Carbethoxysoralen, (218) 111
Carcinogenic heterocyclic amines, (215) 107
Carcinogenic potency, (215) 95
Carcinogenicity, (220) 31; (221) 11
Carcinogen residues, covalently bound, (220) 83
Carcinogens, (214) 285; (219) 241
Carcinogen screening, (222) 205
Car mechanics, (222) 375
 β -Carotene, (222) 19
CASE methodology, (221) 217
Catalase, (214) 129; (214) 147; (215) 161

Cat assay, (220) 161
 Cat gene, (220) 151
 Cell cycle, (211) 111; (214) 165; (214) 321; (216) 259; (219) 273
 Cell cycle analysis, (211) 19; (211) 31; (215) 61
 Cell-cycle kinetics, (212) 263
 Cell cycle progression, (210) 329
 Cell division, (227) 221
 Cell hybridization, (211) 273
 Cell killing, (212) 103; (226) 69
 Cell killing, induction, (212) 113; (212) 123
 Cell kinetics, (223) 253
 Cell senescence, (219) 153
 Cell survival, (215) 69
 Cell transformation, (220) 205
 Cellular capacity, (218) 189
 Cellular phenotype, (210) 211
 Centromere labeling, (226) 75
 Chagas' disease, (224) 263
 Cheese, (224) 493
 Chemical composition, (222) 73
 Chemical-induced mutagenesis, (212) 269
 Chemically induced mutations, (227) 81
 Chemical mutagenesis, (223) 233
 Chemical mutagens, (212) 55
 Chemistry, (222) 81
 Chernobyl, (223) 7
 Chicken erythrocyte DNA, (215) 55
 Childhood, (222) 129
 Chinese hamster, (222) 63
 Chinese hamster *aprt* gene, (226) 239
 Chinese hamster cells, (214) 89; (219) 159; (227) 63; (227) 241
 Chinese hamster lung cells, (215) 179
 Chinese hamster lung fibroblasts, (224) 185
 Chinese hamster ovary AUXB1 cells, (224) 269
 Chinese hamster ovary cells, (210) 303; (219) 17; (220) 241; (224) 517; (225) 157; (225) 181; (226) 245
 Chinese hamster V79 cells, (214) 97; (222) 53
 Chloramphenicol, (217) 33
 Chloramphenicol acetyltransferase gene, (214) 233
 Chlorination, (223) 183; (226) 151
 Chlormethine, (227) 81
 Chloroacetaldehyde, (215) 95
 2-Chlorobenzylidene malonitrile, (226) 133
 Chloroethylene oxide, (215) 95
 Chlorophyllin, (222) 19
 Chlorophyll mutation, (226) 235
 CHO 43-3B cells, (212) 103
 CHO 43-3B transferants, (212) 113
 CHO cell hybrid, (217) 193
 CHO cell mutants, bleomycin-sensitive, (217) 93
 CHO cell mutants, X-ray-sensitive, (217) 93
 CHO cells, (210) 195; (212) 231; (214) 115; (224) 219; (226) 1; (227) 73
 CHO chromosomes, (215) 139
 CHO/HPRT assay, (223) 121
 CHO/HPRT assay, drug candidates, (223) 153
 CHO-K1 cells, (212) 123; (213) 249
 Chromate reduction by glutathione, (216) 19
 Chromatid aberrations, (211) 13
 Chromatin, (219) 57; (227) 227
 Chromatin structure, (219) 153
 Chromium(V), (216) 19
 Chromosomal aberrations, (211) 131; (212) 149; (212) 159; (213) 233; (213) 243; (218) 25; (222) 37; (222) 317; (223) 273; (223) 313; (225) 1; (225) 27; (225) 115; (226) 13; (226) 21; (226) 65; (227) 221
 Chromosomal aberration test, (215) 179
 Chromosomal alterations, (210) 329
 Chromosomal breakage, (224) 409
 Chromosomal damage, (211) 153; (214) 129; (224) 177
 Chromosomal damage, caprolactam, (224) 325
 Chromosomal fragility, (211) 43
 Chromosomal instability, (225) 21
 Chromosomal mutation, (220) 11
 Chromosomal radiosensitivity, (227) 39
 Chromosomal rearrangements, (220) 205
 Chromosomal repair, (227) 257
 Chromosome aberration, (211) 65; (214) 165; (222) 149; (222) 191; (223) 7; (223) 23; (223) 287; (227) 237
 Chromosome aberration distribution, (224) 263
 Chromosome aberration induction, (212) 103; (212) 123
 Chromosome aberrations, (210) 49; (211) 125; (211) 225; (212) 113; (212) 167; (212) 213; (213) 117; (213) 175; (216) 1; (219) 17; (219) 225; (222) 409; (223) 191; (224) 79; (224) 143; (224) 219; (224) 235; (224) 253; (224) 281; (224) 333; (225) 49; (225) 61; (226) 61; (227) 31; (227) 117
 Chromosome aberrations, induction, (224) 347
 Chromosome aberration suppression, (222) 253
 Chromosome aberrations, X-ray induction of, (222) 1
 Chromosome aberration test, (225) 55
 Chromosome abnormalities, (211) 265
 Chromosome breakage, (210) 173; (221) 39; (226) 267
 Chromosome-breakage syndromes, (224) 247
 Chromosome breaks, (225) 149
 Chromosome damage, (222) 111; (224) 197
 Chromosome damage, resistance and cross-resistance, (211) 1
 Chromosome exchanges, asymmetrical and symmetrical, (224) 151
 Chromosome instability, (219) 175
 Chromosome loss, (215) 1; (224) 11; (224) 31; (224) 287; (224) 471
 Chromosome malsegregation, (215) 187; (216) 327
 Chromosomes, (224) 247; (225) 175
 Chronic fluoride exposure, (227) 159
 Chronic irradiation, (226) 49
 C₃H10T1/2 cells, (212) 231; (222) 223
 Cigarettes, induction of DNA single-strand breaks, (214) 147
 Cigarette-smoke condensate, (226) 99
 Cigarette smokers, (223) 221
 Cinoxate, (212) 213
 Cisplatin, (211) 131
 Citric acid, (222) 141
 Citrus, (222) 141
 Classification according to chemical structure/mutagenicity, (223) 73
 Clastogenic compounds, (223) 129

Clastogenic factor, (214) 97
 Clastogenicity, (216) 93; (223) 1; (224) 437; (225) 149; (226) 197
 Clastogens, direct- and indirect-acting, (224) 465
 Clonal chromosome rearrangements, (219) 209
 Cloning, (216) 211
Clonorchis, (224) 229
C-myc, (219) 39
 Coal fly ash, (224) 127
 Co-cultivation, (211) 273
 Coffee, (224) 269
 Coke plant workers, (223) 213
 Colchicine, (223) 391
 Colony-forming ability, (218) 189
 Colony hybridization, (210) 113
 Common fragile sites, (212) 223
 Comparative mutagenicity testing, drug candidate, (223) 111
 Complementation analysis, (213) 249
 Complementation group I, (218) 149
 Complementation tests, (211) 89
 Computational SAR studies, (221) 181
 Computer-automated structure evaluation, (221) 217
 Computerized Laboratory Notebook, (222) 171
 Comutagenicity, (217) 65
 Concepts, current, (213) 3
 Confounding factors, (222) 245
 Constitutional chromosome breakage, (210) 63
 Constitutional chromosome instability, (221) 39
 Constitutive heterochromatin, (210) 49
 Control reproducibility trials, (224) 11
 Cooked food, mutagenic compounds, (224) 105
Coprinus radiatus, (226) 121
 Cordycepin, (227) 17
 Corn, (213) 157
 Correlation with mutagenicity, (211) 51
 COS cell fusion, (214) 223
 Covalent DNA binding, (211) 279
 CpG islands, (213) 117
 Cross-linking agents, (210) 255
 Cross-linking mutagens, (225) 65
 Crosslink repair, (217) 185
 Curacron, (222) 409
 Cutting oils, (225) 107
 Cycloheximide, (216) 327
 Cyclopenta-fused polycyclic aromatic hydrocarbons, (224) 115
 Cyclophosphamide, (210) 79; (215) 25; (222) 63; (222) 271; (223) 369; (224) 465; (225) 71; (227) 167; (227) 237
 Cysteamine, (214) 257
 Cysteine, (214) 257; (222) 403
 Cysteine conjugate β -lyase, (222) 329
 Cysteine S-conjugates, (222) 329
 Cytochalasin B, (222) 63
 Cytochrome P-450, (212) 275; (216) 179; (226) 163; (227) 109
 Cytochrome P-450 inducer, (223) 295
 Cytogenetic characterization, (214) 181
 Cytokinesis block method, (222) 63; (222) 191
 Cytosine, deamination, (210) 93; (227) 233
 Cytosine residues, protonation, (215) 131
 Cytotoxicity, (217) 163; (222) 329; (224) 135; (227) 73
 2,4-D, (226) 235
 Dacarbazine, (223) 259
 Damaged DNA, (213) 165
 Damage repair, (218) 33
 Dark liquid holding, (210) 135
 Dark repair, (217) 19
 Data bases, (221) 181
 Daunomycin, (225) 71
 DBCP, (221) 1
 Deamination, cytosine, (210) 93
 Deamination reaction rates, (215) 131
 2D-electrophoresis, (227) 1
 Deletions and insertions, (215) 89
 Deletions on plasmids, (214) 233
 Densely ionizing radiation, (211) 215
 DenV gene, (220) 151
 Deoxycytidine, (211) 43
 Deoxyribonucleosides, (218) 33; (227) 25
 Dependence on alkylation mechanisms, (211) 51
 Depyrimidination reaction rates, (215) 131
 Desmutagens, (222) 141
 Detection, (219) 101
 Determinating metabolites, (223) 23
 DHFR, (219) 159
 2,4-Diaminotoluene, (225) 15
 Diaminotoluene, (226) 169
cis-Diamminedichloroplatinum(II), (217) 65
 1,2-Dicarbonyls, (224) 269
 3,4-Dichloroaniline, (226) 197
Dictyostelium discoideum, (217) 25
 Dideoxythymidine, (216) 35
 Dietary factors, (222) 393; (222) 403
 Dietary fibre, (210) 227
 Diethylnitrosamine, (216) 179
 Diethyl sulphate (DES), (214) 331; (225) 127
 Differential spermatogenic response, (212) 43
 Differentiation, (219) 145; (219) 231
 Dihydrofolate reductase gene, (217) 141
 1,4-Dihydropyridine derivative, (214) 257
 Dihydroxydihydrobenzopyrenes, (219) 241
 Diiodohydroxyquinoline, (222) 219
 Dikaryon test, (210) 281; (214) 297
 2-Dimensional gel electrophoresis, (219) 231
 7,12-Dimethylbenz[a]anthracene, (223) 357
 Dimethylbenzanthracene, (215) 25
 Dimethylglycine, (222) 343
 Dimethylnitrosamine, (213) 185; (218) 135
 Dimethyl sulphoxide, (226) 39
 2,6-Dinitrobenzaldehyde, (226) 181
 Dinitrobenzopyrenes, bacterial mutagenicity, (225) 121
 1,6-Dinitropyrene, (213) 141
 2,6-Dinitrotoluene, (226) 181
 Diploidy, (210) 173
 Dispersion analysis, (215) 25

Distribution of breakpoints, (224) 235
 DNA, (214) 23
 DNA-adduct formation, (223) 273
 DNA adducts, (222) 223
 DNA, alkylation, (210) 271; (225) 143
 DNA amplification, (213) 61
 DNAase, (219) 145
 DNA assay, (226) 263
 DNA binding, (223) 321
 DNA breaks, (214) 253
 DNA damage, (212) 231; (214) 89; (215) 205; (217) 123; (219) 113; (219) 241; (220) 205; (224) 379; (225) 95; (225) 131; (227) 125
 DNA damage and repair, (219) 231
 DNA damage, chemically-induced, (224) 365
 DNA damage-inducible genes, (217) 109
 DNA damage, induction, (214) 3
 DNA damage, in HeLa cells, (226) 185
 DNA damage, mitrazine, (227) 251
 DNA-damaging agents, (218) 67; (227) 1
 DNA degradation, (227) 247
 DNA-DNA dot hybridization, (215) 205
 DNA double-strand break repair, (217) 53
 DNA double-strand breaks, (212) 155; (226) 203
 DNA elution, (216) 111
 DNA excision repair, (212) 213; (217) 83
 DNA gaps, single-stranded, (211) 181
 DNA helicase, (227) 193
 DNA-induced alterations, (220) 101
 DNA interstrand cross-links, (218) 171
 DNA methylation, (217) 141; (219) 39; (219) 101; (227) 187
 DNA methylation per nucleotide, (211) 243
 DNA methyltransferase, (215) 55
 DNA minor groove-ligand complex, (217) 163
 DNA modifications, (219) 121
 DNA photolyase, (226) 259
 DNA polymerase I, (217) 117
 DNA polymerase III, (213) 149
 DNA polymerase inhibitor, (213) 175
 DNA precursor pools, (214) 201
 DNA-protein crosslinks, (217) 219
 DNA, protonated cytosine residues, (215) 131
DnaQ49, (213) 149
 DNA reactivity, (223) 73
 DNA rearrangement, (210) 195; (226) 1
 DNA relaxation activity, (219) 283
 DNA repair, (210) 59; (210) 113; (210) 323; (211) 171; (211) 181; (212) 155; (212) 159; (214) 33; (214) 253; (216) 189; (217) 11; (217) 25; (217) 193; (217) 211; (218) 1; (218) 21; (218) 87; (218) 95; (218) 135; (218) 153; (218) 189; (219) 1; (219) 57; (219) 71; (219) 113; (219) 175; (219) 209; (219) 241; (219) 247; (219) 273; (220) 269; (222) 329; (223) 233; (226) 43; (226) 115; (227) 263
 DNA-repair capacity, *S. typhimurium*, (223) 13
 DNA repair-defective mutants, (217) 75
 DNA repair-deficient mutants, (211) 111
 DNA repair gene, human, (212) 113
 DNA repair inhibition, (216) 35
 DNA-repair proteins, (227) 227
 DNA repair, streptozotocin, *E. coli*, cytotoxicity, (218) 125
 DNA-repair test, rat hepatocyte, (221) 263
 DNA replication, (215) 15; (216) 111; (217) 25; (218) 87; (227) 193
 DNA replicons, (227) 17
 DNA sequence analysis, (220) 241
 DNA sequence changes, (226) 273
 DNA sequence, hprt, human, (226) 31
 DNA sequencing, (214) 223
 DNA single-strand breaks, (213) 185
 DNA single-strand breaks, induction by smoke, (214) 147
 DNA, single-stranded, misalignments, (214) 233
 DNA strand breakage, (216) 197
 DNA-strand breaking ability, (226) 185
 DNA strand breaks, (215) 223; (216) 19
 DNA strand breaks, defective repair, (217) 93
 DNA-strand breaks, induction, (224) 361
 DNA synthesis, (211) 171; (219) 295
 DNA synthesis, inhibition, (218) 41
 DNA-synthesis rate, (218) 171
 DNA synthesis, unscheduled, (224) 365; (224) 447
 DNA synthesis, unscheduled, induction, (224) 361
 DNA synthesis, unscheduled, *in vitro*, assay, (223) 163
 DNA-targeted alkylating agents, (215) 213
 DNA topoisomerase, (217) 163
 DNA topoisomerases, (215) 15
 DNA transfection, (220) 101
 DNA vectors, (220) 187
 DNOC, (224) 405
 DNS, dysplastic nevus syndrome, (225) 165
 Dogs, (226) 163
 Dominant cataract mutations, (212) 67
 Dominant lethal, (223) 287
 Dominant lethal mutations, (212) 43; (227) 81
 Dominant lethals, (214) 257; (226) 61
 Domoic acid, (226) 191
 Dose rate, (225) 83
 Dose-response, (226) 81
 Dose-response curves, (212) 181
 Dothistromin, (222) 167
 Double-strand break repair, (216) 43; (219) 95
 Down's syndrome, (218) 41
 Down syndrome lymphocytes, (222) 1
 Drinking water, NaF in, (227) 159
 Drosophila, (212) 173; (216) 179; (222) 359; (226) 267; (227) 1
 Drosophila female germ cells, (226) 81
 Drosophila germ cells, (214) 257
Drosophila melanogaster, (212) 193; (214) 69; (218) 21; (224) 161; (224) 339; (224) 479
 Drosophila somatic cells, (211) 153
 Drug candidates, CHO/HPRT assay, (223) 153
 Drug candidates, evaluation, (223) 105; (223) 121; (223) 141
 Dysplastic nevus syndrome fibroblasts, (225) 165
 EBV, (220) 125
 EB virus, (210) 29
 ECOD, (227) 109

E. coli, (212) 269; (216) 189; (218) 105; (227) 199
E. coli dam, (210) 15
E. coli WP2, (227) 215
EDTA, (216) 189
Elderly, (219) 267
Electromagnetic fields, low-level, (210) 329
Electron microscopy, (219) 57
Electron spin resonance, (223) 273
Electroporation, (225) 49
EM9, (226) 1
Endogenous DNA damage, (214) 41
Endogenous gene, (220) 235
Endonuclease V, (220) 151
Endonuclease V, T4, (218) 49
Endo-peroxide formation, (224) 115
Endoreduplication, (223) 191
Enhanced mutagenesis, (213) 105; (220) 73
Enhanced reactivation, (218) 211
Enhancing effect, (212) 213; (218) 105; (226) 103
ENU mutagenesis, (214) 223
Environmental exposure, (223) 41
Environmental mutagens, (214) 159
Environmental pollutants, (216) 341
Environmental tobacco smoke, (222) 73; (222) 81; (222) 117; (222) 137
Enzyme activity induction, (227) 109
Enzyme-activity mutations, (212) 67
Enzyme function, (218) 49
Enzyme mechanism, (218) 49
Enzyme structure, (218) 49
Epithermal neutron, 24 keV, (211) 225
Epoxidation, (224) 115; (227) 131
Epoxides (spiro), (224) 171
Epstein-Barr virus, (220) 133; (220) 169
ERCC-1 gene, (217) 83
EROD, (227) 109
Erythrocyte, (214) 215
Erythrocytes, (213) 73
Escherichia coli, (210) 255; (211) 181; (214) 253; (217) 109; (220) 269; (227) 251
Escherichia coli HF4714 Su^+ , (210) 205
Escherichia coli WP2 *uvrA*, (226) 141
O-Esterifacase, (210) 263
Ethanol, (215) 187; (216) 93
Ethylating agents, (217) 109
Ethylene oxide, (210) 337; (213) 73
Ethyl methanesulphonate, (210) 157; (210) 337; (221) 231; (214) 257; (215) 115; (223) 373; (224) 471; (227) 91
Ethyl methanesulphonate-induced mutation, (210) 103; (214) 267
Ethynitrosourea, (212) 67
Ethyl nitrosourea, (226) 81
N-Ethyl-N-nitrosourea, (223) 377
Eugenol, (224) 427; (227) 125
European Environmental Mutagen Society, (216) 267
Evolution, (219) 1
Excision repair, (210) 59; (213) 195; (217) 45; (217) 101
Excision-repair-deficient strains, (218) 21
Exonuclease V, (227) 247
Exotoxin A, (213) 205
Expectorate, (223) 213
Exposure in utero, (210) 23
Expression vector, (220) 169
Extra-thermodynamics, (221) 197
Eye mosaic test, (224) 479
Factorial experiments, (216) 1
Faeces, (222) 375
False negatives, (213) 43
False positives, (213) 43
Family members, (212) 223
Fanconi anaemia, (217) 185; (218) 171; (225) 65
Fast fission neutrons, (210) 173
Fecapentaenes, concentration and mutagenicity, (222) 351
Fecapentaenes, (225) 91
Fenitrothion, (222) 53
Fenvalerate, (222) 149
Ferbam, (224) 405
Ferulic acid, (226) 103
Fetal anomalies, (210) 337
Fibroblast cell line, transformed, (213) 141
Fibroblast, human, (216) 137
Fibroblasts, (210) 63; (219) 231; (226) 49
Fibroblast strains, 4NQO, (225) 165
First-cleavage metaphase, (210) 35; (211) 65; (214) 165
Fish embryos, (217) 19
Flavonoids, (222) 393
Flow cytometry, (211) 19; (211) 31; (214) 321; (215) 61; (217) 163; (218) 165; (224) 177
Fluctuation assay, (216) 1
Fluctuation test, (222) 245
Fluoride exposure, chronic, (227) 159
Fluorochrome, (224) 177
Folic acid, (225) 175
Food dyes, (223) 313
Food (meat), (222) 43
Formaldehyde, (210) 255
Formaldehyde-induced alterations, (226) 31
Forward mutation, (210) 255; (211) 231; (226) 175
Forward-mutation test, (218) 1
Fragile 6q26, (212) 223
Fragile sites, (213) 117
Free radicals, (225) 131
Free radicals, endogenous, (214) 3
Fulvic acids, (223) 183
Furazolidone, (225) 43; (225) 181
Furfural, (225) 101
Furfuryl alcohol, (223) 309
2-Furoic acid, (223) 163
Furoquinoline alkaloids, (227) 179
 β -Galactosidase, (218) 207
Gamma mutagenesis, (211) 193
Gamma-radiation, (212) 167; (223) 303
Gamma-radiation pre-exposure, (212) 269
Gamma-rays, (215) 205

Garlic, (227) 215
 G₂ arrest, (214) 321
 Gastric tract, (210) 1
 G₂ cells, (223) 191
 G₂ chromatid aberrations, (226) 223
 Gene activation, (214) 81
 Gene amplification, (218) 179; (219) 159; (225) 61
 Gene cloning, (218) 153
 Gene conversion, (215) 197; (220) 221
 Gene deletion, (210) 291
 Gene expression, (218) 197; (219) 217; (220) 255
 Gene family, (215) 79; (215) 89
 Gene forward mutation, (223) 273
 Gene mutation, (210) 353; (211) 171; (220) 11
 Gene mutations, mechanism of induction of, (223) 111
 Gene/point mutations, (210) 281; (211) 89; (214) 267; (214) 297
 Generation time, average, (227) 59
 Gene rescue, (220) 263
 Genes, (219) 145
 Genetic activity profiles, (221) 181
 Genetic assay, (225) 149
 Genetic control, (216) 179
 Genetic effects, (226) 87; (226) 93
 Genetic fine structure mapping, (211) 89; (214) 297
 Genetic instability, (219) 17; (219) 159; (226) 121; (226) 127
 Genetic toxicity, (211) 171
 Genetic toxicology, (221) 1
 Gene transfer, (220) 187
 Genomic regions, mouse, (212) 23
 Genotoxic components, (222) 73
 Genotoxicity, (210) 165; (211) 279; (212) 55; (219) 193; (222) 245; (222) 337; (223) 183; (224) 5; (224) 503; (226) 191; (226) 235
 Germ-cell mutagenicity testing, (225) 127
 Germ cell mutations, (227) 91
 Germ cells, (212) 55; (226) 87
 Germinal mutation rates, estimation, (212) 241
 Glutamic acid pyrolysis products, (215) 107
 Glutamine tRNA suppressor mutations, (226) 259
 Glutathione depletion, (213) 243
 Glutathione transferases, (214) 33
 Glycophorin, (214) 215
 Glyoxal, (212) 173; (213) 227
 Gorlin–Goltz syndrome, (225) 21
 G₂ phase, (226) 115
 G₂ phase accumulation, (218) 165
 Gpt gene, (210) 195
 Gpt gene, *E. coli*, (220) 143
 gpt mutations, (220) 241
 Granuloma pouch, (227) 125
 Green tea extract, (222) 253
 Green tea polyphenols, (223) 273
 Growth after treatment, (227) 269
 Haemopoietic progenitor cells, (222) 291
 Halogenated alkenes, (222) 329
 HAT^r transformed cell, (210) 237
 Heat-processed food, (221) 235
 Heat shock, (211) 301; (223) 233
 Heat shock protein, (219) 217
 Heavy ion radiation, (215) 49
 Heavy ions, (227) 199
 Heavy particles, (210) 221
 HeLa cells, (219) 225
 HeLa S3 Mer⁻, (215) 69
 Hemin, (213) 217
 Hen oviduct, (219) 283
 Hepatic 9000 g supernatants, (212) 275
 Hepatitis, (210) 49
 Hepatocarcinogenesis, (214) 63
 Hepatocarcinogenesis in rodents, (220) 1
 Hepatocyte, (223) 295
 Hepatocytes, (216) 35; (224) 361; (226) 191
 Hepatocytes, mouse, (216) 321
 Hepatocytes, primary, (213) 185; (216) 101
 Hepatocytes, rat, *in vitro*, (224) 447
 Hepatocytes, rat, primary, (223) 141; (223) 163
 Herpes simplex virus, (218) 189; (227) 263
 Herpes virus, (220) 161
 Heterochromatin, (216) 243
 Heterocyclic amines, (213) 217; (221) 235; (224) 105
 Heterocyclic amines, formation, (222) 43
 Heteroduplex repair, (211) 181
 Heterokaryon 11, (211) 89
 Heterokaryon 12, (210) 281; (211) 89; (214) 297
 Heterokaryon 59, (218) 1
 Heterothallic basidiomycete, (226) 127
 Heterothallic mating-type switching, (227) 269
 Heterozygote detection, (211) 19
 Hexamethylphosphoramide, (212) 193
 HGPRT, (227) 25
 HGPRT mutation assay, (217) 65
 High LET ionizing radiation, (212) 181
 High-mobility-group proteins, (219) 107
 High-resolution chromosome banding, (214) 181; (214) 195
 his-3 mutants, (214) 267; (215) 39
 Histidine, (211) 103
 HLA, (225) 189
 HLA-D α gene, (217) 141
 HN2, (210) 195; (226) 1
 Homologous recombination, (210) 195; (211) 205; (215) 197; (226) 1
 Homozygous viability, (212) 67
 HPRT, (210) 29; (215) 147; (225) 189; (227) 31
 Hprt gene mutation, (210) 103
 HPRT/Hemoglobin mutants in human, (213) 73
 HPRT locus, (210) 353; (212) 253
 Hprt mutation, (216) 65
 Human, (223) 7
 Human blood lymphocytes, (211) 1; (219) 95
 Human B lymphocytes, (219) 257
 Human carcinogens, (213) 27
 Human cell mutagenesis, (210) 143
 Human cells, (211) 215; (218) 87
 Human cells, transformed, (213) 141

Human fetal livers, (227) 53
 Human fibroblasts, (217) 153
 Human genotoxicity, (221) 133
 Human *hprt* cDNA, (210) 237
 Human lymphoblastoid cells, (220) 133
 Human lymphocyte cultures, (225) 27
 Human lymphocyte micronucleus assay, (227) 167
 Human lymphocytes, (211) 7; (211) 13; (211) 77; (211) 225;
 (212) 167; (213) 175; (215) 147; (219) 29; (219) 267; (222)
 27; (222) 279; (224) 79; (224) 241; (226) 197; (227) 103
 Human mutagens, (213) 27
 Human mutant cells, (211) 43
 Human peripheral lymphocytes, (210) 329; (224) 269
 Humans, (226) 163
 Human T lymphocytes, (219) 257
 Humic acids, (210) 9; (223) 183
 Hybridization of DNA repair gene, (217) 3
 Hybrid sterility, (215) 1
 Hydralazine, (218) 13
 Hydrocarbon fuel combustion, (227) 7
 Hydrogen peroxide, (214) 23; (214) 63; (214) 89; (217) 75;
 (218) 143; (224) 269; (227) 135
 Hydroperoxide, (213) 243
 Hydroxyanisole, butylated, (214) 105
 Hydroxychavicol, (210) 249
 4-Hydroxycyclophosphamide, (222) 271
 8-Hydroxy-2'-deoxyguanosine, (214) 63
 8-Hydroxydeoxyguanosine, (214) 159; (225) 91
 6-N-Hydroxylaminopurine, (218) 1
N-Hydroxylaminopurines, (218) 1
 Hydroxylation, (212) 193
 Hydroxyl free radicals, (214) 23
 Hydroxyl radicals, (215) 161
 Hydroxyurea, (212) 91; (216) 35
 Hypermutability, (218) 21
 Hypoxia, (214) 89; (219) 193
 Hypersensitivity for mutagens, (216) 243
 Hyperthermia, (226) 69
 Hypertonic salt treatment, (216) 137
 Hypoloside, (215) 173
 Hypoloside B, (215) 179
 Hypoloside C, (215) 179
 Hypoxanthine-guanine phosphoribosyltransferase gene, (215)
 147
 Hypoxanthine-guanine phosphoribosyltransferase locus, (216)
 9
 Hypoxanthine phosphoribosyl transferase, (225) 189
 Hypoxia-selective drug, (223) 13

¹³¹I, (226) 87
 I-compounds, (219) 121
 ICR 2A cells, (217) 219
 Illudin, (215) 173
 Illudin M, (215) 179
 Illudin S, (215) 179
 Image analysis, (213) 91
 Imidan, (224) 405
 Immunoglobulin therapy, lymphocytes, (227) 39

Indole, (222) 263
 Indomethacin, (222) 291
 Indoor environments, (222) 81
 Indorene, (222) 317
 Induced lethality, (210) 157
 Induced repair, (227) 257
 Inducible cyto-genetic repair, (227) 241
 Inducible responses, (218) 211
 Induction, (227) 1
 Induction factors, (224) 511
 Induction of DNA double-strand breaks, chromosomal aberrations, sister-chromatid exchanges, (212) 137
 Induction of *recA* and *umuC*, (215) 115
 Industrial district, (223) 243
 Industrial waste, (224) 437
 Inhibition of DNA synthesis, (210) 211
 Inhibition of DNA synthesis/repair, (223) 191
 Inhibition of formation of *N*-methyl-*N*-nitrosourea, (210) 9
 Inhibition of mutagenicity, (214) 153
 Inhibitors of topoisomerase II, (212) 137
 Initiation codon of *phr*, (218) 207
 Insertion/deletion mutations, (214) 267; (215) 39
 Insertions, (212) 33
 In situ evaluation, (216) 341
 Instability, genetic, (219) 1
 Integrative and episomal vectors, (220) 205
 Interaction, (216) 1
 Interlaboratory calibration, (224) 485
 Interstitial deletions (double minutes), (225) 1
 Interstrand DNA cross-linking, (210) 165
 Intrachromosomal recombination, (224) 427
 Invertase genes, (215) 89
 In vitro cell transformation, (222) 205
 In vitro fertilization, (210) 35; (214) 165
 In vitro sperm irradiation, (210) 189
 In vitro test, (227) 21
 In vitro vs. in vivo tests, (224) 253
 In vitro-in vitro UDS test, (218) 13
 In vivo mutagenesis, (220) 263
 In vivo mutagenicity assay, (210) 227
 In vivo mutation, (210) 29; (215) 147
 Involuntary smokers, (222) 111
 Ionising radiation mutagenesis, (210) 103
 Ionising radiation-sensitive mutants, (220) 187
 Ionizing radiation, (217) 53; (218) 165; (225) 83; (227) 241
 Iproniazid, (210) 79
 IQ, (222) 43
 Iron chelators, (213) 243
 Irradiation, (224) 157
 γ -Irradiation, (218) 143
 Irreparable *ad-3* mutations, (211) 89; (214) 297
 Isogenic *Salmonella typhimurium* tester strains, (224) 453

Japanese Environmental Mutagen Society, (216) 353

Kanamycin, (226) 211
 Karyotype abnormality, (210) 353
 KIN protein, (217) 123

Klinefelter syndrome, (212) 263
 pKM101, (227) 251
 Korean women, (224) 511
 Krestin, (226) 9

lacZ, (218) 179
 Lead exposure, (222) 245
 Leather, (226) 229
 Lens, (219) 145
 Lentinan, (226) 9
 Lethal effect, (217) 117
 Lethal frequency, sex-linked recessive, (211) 243
 Lethality test, (226) 175
 Lethal mutation, (212) 181
 Leucine, (216) 327
 Leukaemic cells, human chronic lymphocytic, (219) 295
 LexA protein, (218) 207
 Light exposure, (210) 135
 Linoleic acid hydroperoxide, (224) 185
 Lipid hydroperoxides, (214) 33
 Lipid peroxidation, (214) 63; (214) 123; (225) 131
 Liquid holding, (210) 255
Liv. 52, (224) 507
 Liver cytochrome P-450, (227) 153
 Long-term, low-dose mutation, (210) 143
 Low doses, (212) 43; (226) 81
 Low-level radiation, (211) 7
 Lung cancer, (210) 345; (222) 117; (222) 137
 Lung cells, human, smoke, (214) 147
 L5178Y mouse lymphoma, (223) 267
 L5178Y mouse lymphoma cell mutagenesis assay, (224) 197
 L5178Y mouse lymphoma cells, (217) 53
 Lymphoblastoid cells, γ -irradiation, (218) 41
 Lymphoblastoid cells, human, (216) 9
 Lymphoblastoid mutation assay, (216) 149
 Lymphoblasts, human, (210) 143
 Lymphocyte culture, (227) 21
 Lymphocytes, (213) 73; (215) 167; (217) 11; (224) 409; (224) 503; (225) 11; (225) 189
 Lymphocytes, human, (216) 197; (224) 151; (224) 329
 Lymphocytes, human, X-ray exposure, (227) 207
 Lymphocytes, peripheral blood, (212) 149
 Lysine deficiency, (218) 135
 Lytag dust, (224) 127
 L5178Y TK⁺/− mouse lymphoma cells, (214) 181; (214) 195

MAC (Morphology, Antibody, Chromosomes) technique, (219) 257

Maleic hydrazide, (226) 115
 Mammalian cell, (224) 5
 Mammalian cells, (217) 123; (220) 93; (220) 107; (220) 221
 Mammalian cells in culture, (220) 269
 Mammalian mutagenesis, *in vivo*, (212) 11
 Mammalian spot test, (224) 377
 Mammary tumour cells, (215) 223
 Mancozeb, (224) 143
 Maximum life span, (219) 89
 Mechanistic rationale, non-genotoxic carcinogens, (221) 53

Meeting report, (216) 341
 MelIQ, (210) 227
 Melphalan, (210) 353
 Membrane, (213) 83
 Membrane damage, (216) 231
 6-Mercaptopurine, (223) 349
 Metabolic activation, (211) 147; (216) 179; (227) 63
 Metabolism, (224) 115
 Metabolites, (210) 127
 Metabolites of 2,6-dinitrotoluene, (226) 181
 Metallothionein promoter, (218) 197
 Methanesulphonates, (211) 51
 Methodology, (226) 245
 Methotrexate, (225) 71
 Methotrexate resistance, (219) 159
 8-Methoxypsoralen, (218) 111
 Methylating agents, (217) 109
 Methylation, (214) 41; (219) 1; (219) 29; (220) 255
 5-Methylcytosine, (219) 263
 N³-Methyl-2'-deoxyctydine, (215) 131
 Methylugenol, (224) 427
 O⁶-Methylguanine, (220) 93
 O⁶-Methylguanine-DNA methyltransferase, (215) 69; (218) 135; (218) 153; (218) 197; (219) 267
 Methyl methanesulphonate, (210) 15; (211) 243; (214) 165; (223) 383; (224) 517; (226) 145
 N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG), (210) 63
 Methylnitrosourea, (218) 21; (224) 135
 Methyl sinapate, (212) 213
 Methyltransferase activity, male rat, (215) 55
 Methylvinyl ketone, (227) 131
 Mice, (210) 313; (223) 329; (226) 61; (226) 87; (226) 93; (227) 91
 Microcomputer, (222) 171
 Microinjection, (218) 171
 Micronuclei, (210) 271; (211) 225; (222) 27; (222) 63; (223) 313; (225) 171; (227) 173; (227) 221; (227) 241
 Micronuclei, induced, (222) 219
 Micronucleus, (219) 257; (222) 149; (222) 191; (223) 287; (224) 437; (224) 507; (225) 71
 Micronucleus assay, (224) 517
 Micronucleus formation, (222) 291
 Micronucleus test, (213) 91; (223) 329; (223) 345; (224) 213; (224) 357
 Micronucleus test in buccal mucosa, (227) 147
 Micronucleus test in embryos, (210) 189
 Micronucleus test, *in vivo*, (216) 321
 Micronucleus test, mouse, (224) 351
 Micronucleus test, mouse bone-marrow, (223) 129
 Microsome-mediated clastogenicity, (214) 105
 Microsomes, (213) 83
Microtus oeconomus, (210) 173
 Misincorporation step, measure of, (210) 93
 Mismatch repair, (210) 15; (210) 71; (220) 115; (227) 233
 Mitochondrial DNA, (219) 9
 Mitomycin C, (211) 65; (215) 25; (216) 243; (217) 185; (222) 63; (223) 387; (225) 71; (225) 115; (226) 9; (226) 99; (226) 115; (227) 17; (227) 167; (227) 207

Mitosis, (224) 31
 Mitotic cells, (224) 281
 Mitotic chromosome analysis, (224) 213
 Mitotic crossing-over, (215) 213; (222) 337
 Mitotic gene conversion, (213) 105
 Mitotic index, (223) 253; (227) 59
 Mitotic recombination, (220) 221; (222) 359
 MMC, (216) 259; (226) 1
 MMS, (210) 195; (226) 1
MNNG, (218) 105; (225) 137; (226) 69
MNNG-resistant cells, (215) 69
MNU, (218) 105
 Mobile intron delayed amplification, (219) 9
 Model-based estimation, (211) 259
 Modelling, (211) 259
 Models, (212) 77
 Molecular analyses, mouse genome, (212) 23
 Molecular analysis, (226) 253
 Molecular dosimetry, (211) 231
 Monitoring, (222) 81
 Monitoring PAH exposure, (224) 485
 Monkeys, (226) 163
 Monoamine oxidase inhibitors, (210) 79
 Monochromosomal hybrid, (225) 149
 Monofunctional alkylating agents, (216) 111
 Monooxygenase inhibitor, (216) 163
Moringa oleifera, (224) 209
 Morphological transformation, (222) 223
 Mosaics, (226) 267
 Mosaic tests, (224) 161
 Mouse, (210) 323; (214) 331; (219) 39; (223) 1; (224) 213; (225) 127; (226) 157
 Mouse bone marrow, (215) 25; (224) 343; (227) 59; (227) 237
 Mouse bone marrow cells, (223) 259; (226) 111
 Mouse bone-marrow micronucleus test, (223) 129
 Mouse embryo spot test, (224) 369
 Mouse epidermal cells, (214) 81
 Mouse fibroblasts, (213) 205
 Mouse hepatocytes, (227) 47
 Mouse L cells, (211) 205
 Mouse L-cells, genome, (213) 125
 Mouse lymphocytes, (227) 17
 Mouse-lymphoma assay, (223) 295
 Mouse lymphoma cells, (222) 191; (226) 253
 Mouse mutant cell, (225) 115
 Mouse, primary cell cultures, (224) 465
 Mouse specific mutation data, (212) 91
 Mouse spermiogenic cells, (216) 221
 Mouse spot test, (224) 373
 Mouse tissues, (218) 135
MspI, (213) 117
MucAB genes, (210) 149
 Multidrug resistance, (227) 73
 Multilocus deletions, (210) 281; (211) 89; (214) 297; (220) 241
 Multilocus lesion, (220) 11
 Multilocus mutations, (211) 89
 Multiple-locus mutations, (214) 297
 Murine cells, (224) 135
 Murine lymphocytes, (222) 323
 Mussels, (226) 191
 Mutagenesis, (210) 135; (210) 237; (218) 111; (218) 179; (220) 93; (220) 107; (220) 269; (226) 191
 Mutagenesis at the thymidine kinase locus, (217) 53
 Mutagenic activation, (227) 53
 Mutagenic complex mixtures, (222) 19
 Mutagenic compounds, (224) 209
 Mutagenicity, (210) 249; (210) 291; (216) 211; (220) 31; (221) 1; (221) 11; (222) 53; (222) 155; (222) 161; (222) 237; (222) 279; (223) 259; (224) 229; (225) 15; (225) 75; (226) 145; (226) 151; (226) 181; (227) 179
 Mutagenicity mechanism, (227) 131
 Mutagenicity test, (215) 173
 Mutagenicity testing, (222) 359
 Mutagenic response, (225) 41; (227) 69
 Mutagen risk assessment, (222) 171
 Mutagens, (227) 269
 Mutagens, as carcinogens, (213) 3
 Mutagens, chemical, (210) 329
 Mutagen-sensitive mutants, (211) 111
 Mutagens in urine, (223) 41
 Mutant cells, (211) 273
 Mutant selection, (213) 157
 Mutant T-lymphocytes, (227) 31
 Mutation, (212) 231; (214) 201
 Mutational hot spot, (220) 241
 Mutational hotspots, (226) 273
 Mutational specificity, (213) 149; (220) 235; (226) 245
 Mutational spectra, (211) 193; (215) 115
 Mutation assay, (216) 149; (217) 203
 Mutation frequency, (216) 57
 Mutation induction, (216) 9; (227) 199
 Mutation spectrum, (220) 263
MutD5, (213) 149
 Mycotoxin, (222) 167
 NAD, (214) 89
 Nalidixic acid, (216) 35
 Nalidixic acid resistance, (210) 255
 β -Naphthoflavone, (219) 89
 Naphthoresorcinol, (226) 151
 Near UV, (215) 161
 Nematocide, (221) 1
 Nematode, (212) 181
Neocarzinostatin, (214) 13; (217) 93
Neocarzinostatin sensitivity, (210) 211
 Neomycin (*neo*) resistance gene, (226) 1
 Neomycin resistance (*neo*) gene, (210) 195
 Neoplastic transformation, (217) 45
 Neural suture, cultured rat embryos, (214) 137
 Neuroblasts, (226) 267
Neurospora, (223) 233
Neurospora crassa, (214) 267; (215) 39; (217) 75; (218) 1; (218) 95
 Neurotoxic solvents, (224) 287
 Neutrophils, (215) 167; (225) 95
 Nevod basal-cell carcinoma syndrome, (225) 21

Nickel, (217) 65
 Niclosamide, (222) 337
 Nicotinamide adenosine dinucleotide, (219) 71
 Nicotinic acid, supplementation *in vivo*, (216) 197
 Nifurtimox, (224) 263
 Nitracrine, (227) 251
 Nitracrine derivatives, (223) 13
 Nitrilotriacetic acid (NTA), (226) 111
 Nitrite, (227) 13
 Nitrite treatment, (222) 343
 Nitroarenes, (216) 211; (222) 9; (227) 7
 Nitroazo compounds, (226) 229
 Nitrobenzo[*a*]pyrenes, (225) 41; (227) 69
 Nitrocarbazole, (226) 55
 3-Nitrofluoranthene, (210) 263
 Nitrofurantoin, (225) 181
 Nitrogen dioxide, (226) 55
 Nitrogen mustards, (218) 111
 4-Nitro-*o*-phenylenediamine, (222) 141
 Nitro-PAHs, (225) 121
 1-Nitropyrene, (210) 263
 4-Nitroquinoline-1-oxide, (212) 103
 4-Nitroquinoline 1-oxide, (225) 165
 Nitroreductase, (210) 263; (216) 211
N-Nitrosamines, tobacco-specific, (223) 65
 Nitrosation *in vitro*, (227) 13
 Nitrosobenzopyrenes, (225) 157
N-Nitroso-*N*-2-fluorenylacetamide, (212) 231
 4-(Nitrosomethylamino)-1-(3-pyridyl)-1-butanol, (210) 249
N-Nitrosomorpholine, rat liver, (225) 143
N'-Nitrosornicotine, (210) 249
 Nitro-substituted phenazines, (225) 75
 Nitrous acid-induced, (211) 89
¹H-, ¹³C-NMR data, (227) 179
 Nocodazole, (210) 313; (224) 471
 nol, (225) 131
 Non-additivity, (227) 69
 Non-complementing, (214) 267; (215) 39
 Non-disjunction, (210) 313; (222) 337
 Non-nutrient components, (222) 393
 Non-parametric statistical tests, (224) 11
 Non-polarized complementing, (214) 267; (215) 39
 Normal human cells, (226) 223
 4NQO, (212) 103; (218) 105
 4NQO-induced mutagenesis, (227) 215
 Nuclear matrix, (219) 283
 Nucleic acid binding, (210) 127
 Nucleolus, (219) 57
 Nucleophilic selectivity, (215) 95
 Nucleoside analogues, (210) 291
 5'-Nucleotidase, (219) 295
 Nucleotide level, analysis at, (227) 97
 Nucleotides, (219) 295
 Nucleotide sequence comparison, (215) 79; (215) 89
 Occupational health, (210) 345
 Ochre stop codon, (226) 211
 Office workers, (222) 375
 Oligonucleotide probes, (210) 113
 Oncogenesis, (220) 205
 Ongoing investigations, (222) 117
 onyl group, (226) 103
 Oocyte, (210) 35; (210) 323
 Oral cancer, (214) 47
 Organic solvents, (222) 279
 Origin of replication, (220) 125
 Ovarian carcinoma, (210) 353
 Oxaspiron compounds, (224) 171
 Oxidants, (215) 167
 Oxidants, reactive, (225) 95
 Oxidase inhibitor, (216) 163
 Oxidation, (214) 41
 β -Oxidation enzyme system, (214) 63
 Oxidation products, (225) 15
 Oxidative DNA damage, (214) 159
 Oxidative stress, (211) 103
 Oxygen, (219) 193
 Oxygen radical, genetic damage, (216) 197
 Oxygen radical scavengers, (224) 1
 Oxygen radicals, (214) 89; (219) 193; (225) 91
 Oxygen radicals, damaging of rat embryos, (214) 137
 Oxygen tolerance, (219) 17; (219) 225
 Oxygen toxicity, (214) 89
 Oxy radicals, generation, (214) 3
 Ozonation products, (226) 151
 Ozone, (214) 253
 Ozone-sensitive mutant, (214) 253
 P-450, (213) 83
 PALA resistance, (219) 159; (225) 61
 Palmryrah flour, (224) 241
 L-PAM, (224) 135
 Paracetamol, (227) 147
 Parasite, (224) 229
 Passive smoking, (222) 101; (222) 129
 PCB congeners, (211) 139
 PCB interactions, (224) 79
 PCB metabolism, (224) 79
P DNA elements, (226) 267
 Pellet method, (213) 233
 D-Penicillamine, (227) 237
 Peplomycin, (219) 257
 Peripheral blood cells, CA, (226) 65
 Peripheral blood lymphocytes, (212) 149; (222) 271
 Peripheral blood lymphocytes, human, (210) 345
 Peripheral lymphocytes, (224) 143
 Peroxidase, (214) 129
 Peroxisome proliferation, (214) 63
 Persistence, (210) 303; (212) 67
 Pesticide exposure, (223) 253
 Pesticides, (222) 37
 'Petite' mutagenesis, (215) 213
 Petroleum plant workers, (224) 147
 pH, (222) 205; (224) 89; (225) 55
 Phagocytes, (224) 1; (225) 95
 Phenacetin, (223) 365

Phenazine derivatives, (227) 135
 Phenolic metabolites, (210) 263
 Phenotypic heterogeneity, (210) 211
 Phenylazoaniline dyes, (221) 217
 Phenylenediamine derivatives, (227) 135
 Phenylhydroquinone, (223) 23
 α -Phenylphenol, (223) 23
 Phenylpropenes, (224) 427
 Phosphoramido mustard, (222) 271
 Photochemical reaction, (226) 55
 Photolyase, (217) 3; (217) 39
 (6-4)-Photoproducts, (220) 161; (226) 43
 Photoreactivation, (217) 19; (218) 95
 Photoreversal, delayed, mutagenesis, (210) 93
 Phototoxicity, (216) 231
Phr gene, (218) 207; (226) 259
 Physiological fluids, (222) 155
 Phytohaemagglutinin, (219) 257
 Pickles, (223) 35
 Planar PCBs, (224) 79
 Plant activation, mechanisms, (216) 163
 Plant chromosomes, (216) 203
 Plant phenolic, (210) 249
 Plant S9, (222) 9
 Plasmid, (214) 23
 Plasmid pKM101, (210) 149; (223) 13
 Plasmid pKY33, (226) 259
 Plasmids, deletions on, (214) 233
 Plasmids, shuttle-vector, (220) 55
 PLD repair, (217) 45
 Plutonium-238, (226) 93
 PM2 DNA, (216) 19
 PMMA bone cement, (227) 21
Podospora anserina, (219) 9
 Point mutations, (215) 39
 Pokeweed mitogen, (219) 257
 Polarized complementing, (214) 267; (215) 39
 PolA7, temperature-sensitive allele, (211) 291
 Poly(ADP-ribose) catabolism, (218) 67
 Poly(ADP-ribose) polymerase, (227) 47
 Poly(ADP-ribose) synthetase, (219) 283
 Polychlorinated biphenyls, (220) 31
 Polycyclic aromatic carcinogens, (211) 205
 Polycyclic aromatic hydrocarbons, (211) 147; (224) 305
 Polymerase chain reaction, (220) 241; (227) 97
 Polymerization index, (223) 183
 Polyphenols, green tea, (223) 273
 Polyurethane foam, (226) 169
 Population burden, (222) 137
 Population monitoring, (225) 175
 Population surveillance, (212) 3
 Porphyrins, (213) 217
 32 P-Postlabelling, (219) 121; (222) 223; (224) 485
 Postmeiotic germ cells of mice, (214) 165
 Potassium bromate, (223) 399
 Potassium chromate(VI), (223) 403
 Potential hazard, quantitation, (223) 111
 Potentiating effects, (224) 287
 Potentiation of bleomycin effects, (214) 207
 Praziquantel, (222) 283
 Pre-existing revertants, (225) 33
 Pre-implantation rat embryos, (225) 71
 Premature chromosome condensation, (213) 249
 Preterm infants, (226) 13
 Primary cell, (224) 5
 Primary culture, (216) 101
 Procarbazine, (223) 411
 Profiles, genetic activity, (224) 391
 Progeria, (219) 273
 Proliferation, (210) 157
 Proliferative potential, (219) 263
 Proofreading, (213) 165; (214) 201
 Proofreading activity, (213) 149
 Properties, (221) 133
 Prophage induction, (222) 311
 Propagating agents, (217) 109
 Prostaglandin synthetase, (224) 185
 Protamine, (216) 221
 Protection by carotenoids, (216) 231
 Protein kinase C, (219) 283
 Protein kinase NII, (219) 283
 Protein synthesis in repair-proficient bacteria, (217) 33
 Protonated cytosine residues, (215) 131
 Proto-oncogene activation, (220) 1
psod-1, (218) 111
 Ptaquiloside, (215) 173; (215) 179
 Pulse-flame combustor samples, (227) 7
 Pulse-labelled DNA, (213) 135
 Pulse labelling, (216) 259
 Pyrene mixtures, ozonized, (222) 9
 Pyridoindoles, (226) 215
 Pyrimidine dimers, (218) 49; (220) 151; (220) 161; (226) 259
 Pyrimidine photodimers, (219) 231
 Pyrolysates of carbohydrates, (227) 117
 Quantitative structure-activity relationships, (221) 197
 Quercetin, (223) 35
 4-Quinolones, (211) 171
 Quinoxaline derivative, (217) 203
 Rabbit, (215) 107
 Radiation, (212) 67; (216) 43; (224) 507
 γ -Radiation, (214) 13
 Radiation damage, (226) 75
 Radiation effect, (223) 7
 Radiation-induced genetic damage, (212) 173
 Radiation quality, (225) 83
 Radiations, (216) 251
 Radiation sensitivity, (226) 49
 Radiation therapy, (211) 265
 Radio-adaptive response, (227) 241
 Radioimmunoglobulin therapy, (227) 39
 Radioisotopes, (211) 7
 Radioprotection, (224) 157
 Radiotherapy, CA, (226) 21
Rad mutation, (218) 25

Rain water, (226) 215
 Ranitidine, (227) 13
 Rat, (216) 101
 Rat hepatocyte DNA-repair test, (221) 263
 Rat hepatocytes, (210) 271; (211) 77; (214) 123; (218) 13; (223) 267
 Rats, (226) 163
 Rat stomach, (213) 227
 X-Ray-induced, (211) 89; (214) 267
 X-Rays, (211) 65; (220) 11
 X-Ray-sensitive strains, (218) 75
 X-Ray sensitivity, (211) 31
 Reactive oxygen intermediates, (215) 223
 Reactive oxygen species, (219) 193
RecA, (211) 193; (223) 13
RecA bacteria, DNA replication death, (217) 33
RecA gene, (210) 149
RecA protein, (217) 123
RecB gene product, (227) 247
RecC protein activation, inhibition, (226) 141
 Recessive and dominant mutations, (212) 43
 Recessive lethal mutations, (211) 89; (214) 297
 Recessive lethal test, (224) 161
 Reciprocal recombination, (220) 221
 Rec-lac test, (217) 203
 Recombination, (217) 153; (218) 111; (220) 187
 Recombinations, (212) 33
 Reduced glutathione, (214) 207
 Reduction of mutagenicity, (210) 1
 Relationships, (216) 177
 Relative Biological Effectiveness, (212) 181
 Relative fitness, (212) 67
 Renaturing gel electrophoresis, (217) 185
 Repair, (218) 111; (222) 161
 Repair capacity of mouse eggs, (210) 35; (211) 65; (214) 165
 Repair of DNA strand breaks, (226) 103
 Repair of potential mutagenic damage, (216) 137
 Repair replication, (226) 43
 Reparable *ad-3* mutations, (211) 89; (214) 297
 Reparable *ad-3* mutations: Irreparable *ad-3* mutations: Recessive lethal mutations, (210) 281
 Repetitive DNA, Chromosome aberrations, (226) 75
 Replication, in vitro, (227) 193
 Replicon initiation, (218) 87
 Restriction endonucleases, (212) 137; (213) 233; (225) 61; (226) 203
 Restriction enzyme mapping strategy, (212) 241
 Restriction enzymes, (225) 49
 Restriction fragment banding pattern, (215) 39
 Restriction site protection, (225) 101
 Reticulocytosis, (227) 173
 Retroviral shuttle vectors, (220) 143
 Reversion, (218) 95
 Revertibility, (214) 267
 Ribavirin, (224) 213
 Risk assessment, (212) 77; (220) 11
 Risk estimation, (222) 101
Rivulus ocellatus marmoratus, (217) 19
 mRNA, (219) 39
 mRNA expression, (226) 31
 P-450 RNA, (219) 89
 Roberts syndrome, (216) 243
 Rodent carcinogenicity bioassay, (223) 73
 Rodents, chemically induced cancer, (220) 1
 Route of administration, (223) 329
 Rubber, (223) 41
RuvAB, (215) 115
 Saccharin, short-term genotoxicity assay, (221) 69
Saccharomyces cerevisiae, (210) 157; (213) 105; (215) 79; (215) 89; (216) 327; (218) 111; (224) 31; (224) 95; (224) 427; (224) 471; (226) 273; (227) 269
 Safrrole, (224) 427
 Salmonella/microsome assay, (226) 229
 Salmonella mutagenicity assay, (224) 305
 Salmonella mutagenicity test, (210) 221; (224) 219
 Salmonella test, (223) 171
Salmonella typhimurium, (215) 173; (216) 27; (216) 211; (222) 81; (222) 141; (223) 237; (224) 89; (224) 95; (225) 33; (226) 175; (226) 181
Salmonella typhimurium reversion assay, (225) 157; (227) 179
Salmonella typhimurium TA98, (226) 169
 Sarcoma and non-Hodgkin's lymphoma, (210) 63
 SAR studies, (221) 181
 Satellite DNA demethylation, (219) 101
 Satellite DNA, human chromosomes, (226) 75
 SCE, (211) 301; (212) 113; (212) 123; (212) 213; (213) 195; (215) 69; (216) 119; (216) 259; (226) 103; (227) 159
 SCE formation, (226) 203
 SCE frequency, (215) 139; (215) 167; (216) 203
 SCE induction, (222) 263; (224) 347
 SCE level, (211) 273
 SCE, models of, (215) 15
 SCE studies, (224) 465
 Schistosoma, (224) 229
Schistosoma japonicum, (227) 153
 Schistosomiasis, (222) 283
Schizosaccharomyces pombe, (217) 3
 Screening, (213) 27; (213) 43
 Seasonal variation, (223) 243
 Segregation ratio, (212) 67
 Selenite, (224) 503
 Selenomethionine, (224) 503
 Semi-volatiles, (222) 81
 Sentinel anomalies, (212) 3
 Separated-lymphocyte cultures, (227) 167
 Sequence, (226) 239
 Serotonin derivative, (222) 317
 Sex and sex hormone effects, (219) 121
 Sex-chromosome loss test, (223) 309
 Sex-chromosome nondisjunction, (210) 173
 Sex differences, (212) 43
 Sex-linked recessive lethals, (214) 257; (226) 81
 Sex-linked recessive lethal test, (218) 21; (223) 309
 Short-term assays, drug candidate, (223) 111
 Short-term carcinogenicity tests, (216) 127

Short-term mutagenicity assays, zinc, (223) 267
 Short-term mutagenicity tests, (223) 303
 Short-term tests, (211) 279; (213) 43; (216) 251; (222) 205
 Shuttle vector, (212) 11; (214) 223; (220) 93; (220) 101; (220)
 107; (220) 125; (220) 133; (220) 169
 Shuttle vector, development, (213) 125
 Shuttle-vector plasmids, (220) 55; (220) 61
 Simian virus 40, (220) 107; (220) 169
 Simple independent action, (216) 1
 Simple similar action, (216) 1
 S9 inactivation, (224) 219
 Singlet oxygen, (216) 231; (225) 11
 Sister-chromatid conversion, (224) 427
 Sister-chromatid differentiation, (226) 137
 Sister-chromatid exchange, (211) 125; (212) 103; (215) 197;
 (217) 65; (219) 17; (222) 27; (222) 167; (222) 271; (222)
 323; (223) 23; (223) 273; (224) 127; (224) 157; (224) 253;
 (224) 409; (224) 511; (225) 1; (225) 11; (226) 9; (226) 197;
 (227) 17; (227) 21
 Sister-chromatid exchange frequencies, (212) 149
 Sister-chromatid exchange response, temporal, (224) 135
 Sister-chromatid exchanges, (210) 49; (211) 43; (211) 77; (211)
 225; (212) 263; (215) 25; (219) 225; (222) 279; (222) 317;
 (223) 253; (224) 1; (224) 241; (225) 27; (226) 99; (227) 59;
 (227) 207; (227) 241
 Site-specific lesions, (218) 211; (220) 115; (227) 233
 Skin, (223) 41
 Skin fibroblasts, (211) 31
 'Skipping' mutations, (211) 89
 Slide quality, (227) 59
 S9 liver homogenates, (213) 185
 Small-colony TK mutant, (222) 191
 S9 mix, (223) 23
 Smoked fish, (223) 303
 Smokers, (222) 37
 Smoking, (215) 167; (224) 151; (225) 95; (225) 175
 Sodium azide, (222) 141
 Sodium butyrate, (219) 107
 Sodium fluoride, (223) 191
 Sodium perborate, (224) 219
 Solar UV-radiation, (217) 219
 Solvent combinations, (224) 287
 Solvent effects, (226) 39
 Somatic cell hybrids, (217) 193
 Somatic cells, (226) 267
 Somatic mutation and recombination test, (214) 69
 Somatic mutation frequency, (214) 215
 Somatic mutations, (212) 55; (222) 359; (226) 157
 SOS box-like sequences, (218) 207
 SOS chromotest, (211) 51; (216) 251; (223) 183
 SOS induction, (215) 49
 SOS mutagenesis, (213) 165
 SOS pathway, (220) 73
 SOS response, (217) 117
 SOS system, (226) 141
 SOS/Umu test, (222) 237
 Southern blot analysis, (215) 39
 Species and organ differences, (219) 121
 Species differences, (211) 147
 Specific-locus mutation, (212) 43; (212) 67; (212) 91; (214)
 331; (225) 127; (226) 235; (227) 81; (227) 91
 Specific-locus test, mouse, (212) 23
 Sperm, (210) 35
 Sperm abnormality, (222) 149; (222) 409
 Spermatocytes, (210) 79
 Spermatogenesis, (223) 309
 Spermatogonia, (211) 131
 Spermatogonia and spermatocytes, response to induction, (210)
 173
 Spermatogonial stem cell systems, (212) 91
 Spermatozoa, *D. melanogaster*, (211) 243
 Sperm, fluorochrome staining of, (224) 177
 Spermhead assay, (224) 385
 Spermine, (219) 107
 Spermiogenesis, (211) 65
 Sperm morphology assay, (224) 405
 Sperm-shape abnormality, (223) 287
 Spindle morphology, (213) 141
 Spindle poison, (226) 133; (226) 197
 Spiral Salmonella assay, (223) 49
 Spontaneous, (214) 267
 Spontaneous homothallism mutants, (226) 127
 Spontaneously occurring mutations, (212) 253
 Spontaneous mutagenesis, (213) 149
 Spontaneous mutation, (210) 103; (212) 33; (214) 41; (215) 79;
 (215) 89
 Spontaneous revertants, elevated number, (225) 33
 Stable DNA replication, (213) 165
 Staining patterns, (226) 137
 Statistical model, (216) 149
 Statistics, (213) 43
 Stem-cell spermatogonia, (226) 61
 Sterility, (215) 1
 Strain differences, (212) 43
 Streptomycin, (226) 211
 Streptozotocin, (215) 115
 Structure-activity relationships, (221) 165; (221) 263
 Structure-mutagenicity relationships, (227) 179
S. typhimurium, (224) 171
S. typhimurium TA104, (214) 153
S. typhimurium TA1535, (226) 145
S. typhimurium TA102, (226) 211
 Substrate binding, (213) 83
 Substructural approach, (221) 197
 Sulphasalazine, (222) 27
 Sulphonation of phenylazoaniline dyes, (221) 217
 Sulphotransferase, (223) 321
 Sunlight, (227) 25
 Superoxide, (216) 231
 Superoxide anion, (215) 161
 Superoxide dismutase, (214) 129; (215) 161
 Suppressing effect, (213) 195; (226) 103
 Suppressor activity, mutagenic inactivation, (220) 61
 Suppressor tRNA target gene (*supF*), (220) 83
 Survival, (210) 135
 SV40, (213) 61; (218) 179; (218) 211; (220) 125; (220) 221;
 (227) 193; (227) 227; (227) 233
 SV40 based shuttle vector, (220) 83

SV40 encapsidation, (220) 101
 Swiss mice, (222) 149; (223) 287
 Synergism, (212) 43
 Synthetic pyrethroid, (222) 149
 Syrian hamster, (227) 173
 Syrian hamster embryo cells, (222) 205
 Syrian hamster fetal fibroblasts, (217) 39

TA100 1,8-DNP₆, (222) 53
 Tannic acid, (213) 195
 TA100 NR, (222) 53
 T antigen, (227) 193
 Targeted vs. untargeted, (217) 153
 Tartrazine, (224) 479
 T-cell clones, (210) 353
 T-cell cloning, (216) 65
 Tea extract, (210) 1
 Temperature, (226) 267
 Temperature influence, (224) 415
 T4 endonuclease V, (217) 135; (218) 49
 Teratogenicity, (226) 157
 Testing strategy, (213) 27
 12-O-Tetradecanoylphorbol 12-acetate, (214) 97
 Tetrandrine, (222) 237; (224) 5; (226) 99
 TFT^{res}, in L5178Y cells, (224) 415
 Theophylline, (224) 409
 Therapy-related malignancies, (216) 119
 Thermosensitivity, (226) 121
 Thioacetamide, (221) 153
 6-Thioguanine resistance, (210) 345; (216) 57
 Thiols, (224) 89
 Three-way differential staining, (216) 203
 Three-way differentiation, (215) 139
 Thymidine, (211) 43
 Thymidine kinase, (218) 189; (220) 133; (224) 197; (227) 187; (227) 263
 Thymidine kinase locus, (216) 9; (223) 295
 Thymidine kinase mutants, (211) 215
 Thymidine oxidation, (224) 219
 Thymidylate synthetase, (211) 273
 Thymine-cytosine dimers, *E. coli*, (210) 93
 Time-displacement factor, (225) 171
 Time-effect relationship, (211) 265
 Tissue culture, (213) 157
 TK locus, (226) 253
 Tobacco, burned, (223) 221
 Tobacco chewing, (214) 47
 Tobacco smoke, (223) 1
 Tobacco-specific *N*-nitrosamines, (223) 65
 DL- α -Tocopherol, (214) 137
 Tool and die workers, (225) 1
 Tool and die workers, cancer investigation, (225) 107
 Topoisomerase II, (216) 43
 Topoisomerase II inhibitors, (217) 53
 Topoisomerase II subunits, (215) 15
 Topology, (213) 83
 Total body irradiation, (212) 159
 Tradescantia, (224) 437

Tradescantia mutagenicity, (210) 9
 Transcription, (218) 211
 Transfection, (210) 195; (217) 83
 Transfection frequency, (218) 75
 Transgenic mice, Shuttle vector, (213) 125
 Transgenic mouse, (218) 197
 Transient complementation, (218) 171
 Transient SV40 based shuttle vectors, (220) 55
 Translation fidelity, (226) 211
 Transplacental, (223) 1
 Transplacental carcinogen, (223) 65
 Transplacental exposure, (222) 111
 Transposons, (215) 1
 Transposon Tn10, precise excision, (211) 291
 Trichloroethylene, (222) 279
 1,1,2-Trichloroethylene, (221) 11
 Trichothecenes, (224) 171
 Triethylenemelamine, (212) 91; (222) 323
 Trifluorothymidine resistance, (224) 415
 Trikaryon test, (210) 281; (214) 297
 Trinitrofluorenone, (224) 465
 Tritiated thymidine, (227) 103
 Trp-P-2, (213) 217; (227) 153
 Trp⁻ phenotype, reversion to Trp⁺, (211) 291
 Tryptamine, (210) 79
 Tryptophan pyrolysis products, (226) 215
 Tumorigenicity, (213) 61
 Tumour development, (219) 175
 Tumour induction, non-genotoxic, (221) 53
 Tumour progression, (215) 223
 Tumour-promoting activity, (224) 229
 Two-component heterokaryons, (210) 281; (214) 297
 Two-stage transformation, (214) 285
 Type of mutagen, (222) 263
 Tyrosine suppressor, *E. coli*, (220) 61

UDS, (223) 267
 UDS assay, (223) 141; (223) 163
 UDS, induction, (225) 143
 Ultraviolet irradiation, (217) 153
 Ultraviolet light, (218) 87; (219) 217; (220) 161; (220) 255
 Umbrella alternatives, (224) 11
UmuC, (211) 193; (215) 115
 Unscheduled DNA synthesis, (217) 135; (219) 273; (224) 365; (224) 447; (227) 147
 Unscheduled DNA synthesis assay, (216) 101
 Unscheduled DNA synthesis, *in vitro*, (223) 141
 Unstimulated splenocytes, (213) 185
 Uracil-DNA glycosylase, (210) 59; (227) 233
 Uracil-DNA glycosylase inhibition, (213) 135
 Urine, (222) 375
 Urine, human, mutagenicity, (223) 221
 Urine mutagenicity, (224) 147
 U.S. National Toxicology Program data base, (216) 127
 UV, (210) 135; (212) 213; (213) 195; (217) 65; (219) 71; (226) 69
 UVC, (227) 25
 UVC irradiation, (218) 33

UV damage, (217) 19; (217) 25; (227) 227
UV-hypersensitive hamster cells, (226) 43
UV-induced, (214) 267
UV irradiation, (210) 323; (219) 273
UV light, (219) 57; (219) 231; (220) 235
UV mutagenesis, (210) 149; (226) 259
UV mutagenesis, deficiency, (226) 141
Uvr, (222) 161
UV radiation, (218) 111; (220) 73
UvrB, (223) 13
wss-2, (218) 1
UV-sensitive CHO mutants, (217) 83
UV-sensitive mutants, (217) 211
UV sensitivity, (218) 95

o-Vanillin, (218) 105
Variability, (226) 121
Variance, (216) 149
V79 cells, (223) 273; (226) 133; (226) 191; (226) 197
V79 cells, density-inhibited, (225) 137
V79 Chinese hamster cells, (212) 253
Vectors, (220) 221
Verapamil, (227) 73
Vibrio cholerae, (225) 43
Vicia faba, (211) 301; (212) 155
Vinblastine sulphate, (224) 517
Vincristine, (223) 395; (227) 167
Vinyl chloride, (215) 95
Viral early gene function, (218) 211
Viral infection, (220) 101
Viral integration, (210) 49
Virus reactivation, (227) 263
Vitamin A, (211) 139
Vitamin C, (224) 247
Vitamins A, C, and E, (222) 19

Weigle reactivation, (210) 149
Werner's syndrome, (219) 153; (219) 175
Whole-blood cultures, (227) 167
Whole cell counting method, (224) 447
Wine, (223) 205
Wing mosaic test, (224) 479
Wistar rat, (226) 181

Xanthine, (214) 137
Xanthine oxidase, (214) 137
Xenobiotic metabolism, (210) 143
Xeroderma, (213) 73
Xeroderma pigmentosum, (217) 83; (217) 135; (217) 141; (218)
 87; (218) 149; (219) 209; (220) 115; (220) 151; (220) 161;
 (220) 169
Xeroderma pigmentosum cells, (219) 57
Xeroderma pigmentosum cells, *denV*-transformed, (217) 101
XP cells, (213) 195; (217) 153
XP revertants, (217) 141
X-ray, (214) 321; (226) 1; (226) 13
X-ray-induced chromosomal aberrations, (211) 111
X-ray-induced chromosome aberrations, (210) 35
X-ray-induced DNA damage, (226) 223
X-rays, (211) 13; (227) 103
X-ray sensitivity, (210) 211
xrs mutants, (212) 137
xrs 5, xrs 6, (212) 123; (213) 249

Yeast, (224) 31
Yeast species, (217) 3

Zea mays, *yg2*, (211) 231
Zinc, genotoxicity, (223) 267
Zinc-2,4-pentanedione, (223) 267
Ziram, (224) 161
Zygotic effects, (210) 337

MUTATION RESEARCH

Publication schedule for 1990

Mutation Research is published according to a volume-numbering scheme that embraces all sections of the journal, in addition each section has its own colour code.

MUT (green), Fundamental and Molecular Mechanisms of Mutagenesis; MUTENV (blue), Environmental Mutagenesis and Related Subjects including Methodology; MUTDNA (brown), DNA Repair; MUTAGI (red), DNAgeing: Genetic Instability and Aging; MUTREV (purple), Reviews in Genetic Toxicology; MUTGEN (pink), Genetic Toxicology Testing and Biomonitoring of Environmental or Occupational Exposure; MUTLET (yellow), Mutation Research Letters.

1990	MUT	MUTENV	MUTDNA	MUTAGI	MUTREV	MUTGEN	MUTLET
Jan.	228/1		235/1	237/1	238/1	240/1	243/1
Feb.	228/2	234/1				240/2	243/2
Mar.	229/1		235/2	237/2	238/2	240/3	243/3
Apr.	229/2	234/2				240/4	243/4
May	230/1		235/3	237/3	238/3	241/1	244/1
June	230/2	234/3				241/2	244/2
July	231/1		236/1	237/4	239/1	241/3	244/3
Aug.	231/2	234/4				241/4	244/4
Sep.	232/1		236/2	237/5	239/2	242/1	245/1
Oct.	232/2	234/5				242/2	245/2
Nov.	233/1		236/3	237/6	239/3	242/3	245/3
Dec.	233/2	234/6				242/4	245/4
18 Vols. 228-245 60 issues + INDEX *	6 Vols. 228-233 12 issues	1 Vol. 234 6 issues	2 Vols. 235, 236 6 issues	1 Vol. 237 6 issues	2 Vols. 238, 239 6 issues	3 Vols. 240-242 12 issues	3 Vols. 243-245 12 issues

* Author Index and Subject Index for the year 1990 (covering all sections).

Subscription Information

MUTATION RESEARCH (complete)

1990, Volumes 228-245 (18 volumes in 61 issues)

Full subscription: Dfl.4896.00 + Dfl.504.00 postage, packaging and handling. Total price Dfl.5400.00 (US \$2700.00).

MUTATION RESEARCH/DNA REPAIR

1990, Volumes 235, 236 (2 volumes in 6 issues)

Part subscription: Dfl.568.00 + Dfl.56.00 postage, packaging and handling. Total price Dfl.624.00 (US \$312.00).

MUTATION RESEARCH/DNAgeing: GENETIC INSTABILITY AND AGING

1990, Volume 237 (1 volume in 6 issues)

Part subscription: Dfl.284.00 + Dfl.28.00 postage, packaging and handling. Total price Dfl.312.00 (US \$156.00).

MUTATION RESEARCH/REVIEWS IN GENETIC TOXICOLOGY

1990, Volumes 238, 239 (2 volumes in 6 issues)

Part subscription: Dfl.568.00 + Dfl.56.00 postage, packaging and handling. Total price Dfl.624.00 (US \$312.00).

MUTATION RESEARCH/GENETIC TOXICOLOGY TESTING

1990, Volumes 240-242 (3 volumes in 12 issues)

Part subscription: Dfl.852.00 + Dfl.84.00 postage, packaging and handling. Total price Dfl.936.00 (US \$468.00).

MUTATION RESEARCH LETTERS

1990, Volumes 243-245 (3 volumes in 12 issues)

Part subscription: Dfl.852.00 + Dfl.84.00 postage, packaging and handling. Total price Dfl.936.00 (US \$468.00).

The Dutch guilder price is definitive. The US dollar price is subject to exchange rate fluctuations and is only given as a guide.

Journals are sent by surface delivery to all countries, except the following countries where SAL air delivery (Surface Airlifted Mail) is ensured: U.S.A., Canada, Japan, Australia, New Zealand, P.R. China, India, Israel, South Africa, Malaysia, Singapore, South Korea, Taiwan, Pakistan, Hong Kong, Brazil, Argentina, Mexico and Thailand. Air mail rates for other countries are available on request.

Subscription orders can only be entered by calendar year (Jan.-Dec.) and should be sent to: Elsevier Science Publishers B.V., Journals Department, P.O. Box 211, 1000 AE Amsterdam (The Netherlands), telex 18582 ESPA NL, or to your usual subscription agent.

Claims for missing issues should be made within three months of publication, otherwise they cannot be honoured free of charge.

The Publisher reserves the right to issue additional volumes during the course of the year. Such volumes will be invoiced before publication and delivered after receipt of payment.

In the United States and Canada: For further information concerning this or any other Elsevier Science Publishers journal, contact Elsevier Science Publishing Co., Inc., Journal Information Center, 655 Avenue of the Americas, New York, NY 10010, U.S.A., tel. (212) 633-3750, telefax. (212) 633-3990, telex 420-643 AEP UI.

INDEX

MUTATION RESEARCH

1989

CONTENTS

Master Author Index to Volumes 210-227 (1989) 1

Master Keyword Index to Volumes 210-227 (1989) 35

Cited in Biological Abstracts; Chemical Abstracts; Current Contents/Life Sciences; Excerpta Medica; Index Medicus; Pascal Medical Abstracts; Science Citation Index

