Model Editing

总览 & MEND & ROME

Reporter: 密言

References

- Editing Large Language Models: Problems, Methods, and Opportunities http://arxiv.org/abs/2305.13172
- Fast Model Editing at Scale https://arxiv.org/abs/2110.11309
- Locating and Editing Factual Associations in GPT http://arxiv.org/abs/2202.05262

总览

- Motivation of Model Editing: as the world's state evolves, we aim to update LLMs in a way that sidesteps the computational burden associated with training a wholly new model. (在不重新训练全新模型的情况下更新LLM)
- Concept of Model Editing: enabling data-efficient alterations to the behavior of models, specifically within a designated realm of interest, while ensuring no adverse impact on other inputs. (在指定领域实现数据高效的模型行为调整,同时对其他输入没有负面影响)

Reliability 可靠性 Generalization 泛化性 Locality 局部性

Problems Definition

• Aim:

samples. The ultimate goal is to create an edited model, denoted f_{θ_e} . Specifically, the basic model f_{θ} is represented by a function $f: \mathbb{X} \mapsto \mathbb{Y}$ that associates an input x with its corresponding prediction y. Given an edit descriptor comprising the edit input x_e and edit label y_e such that $f_{\theta}(x_e) \neq y_e$, the post-edit model f_{θ_e} is designed to produce the expected output, where $f_{\theta_e}(x_e) = y_e$.

目标的数学化定义

• Concept: "editing scope" (编辑范围)

$$f_{\theta_e}(x) = \begin{cases} y_e & \text{if } x \in I(x_e, y_e) \\ f_{\theta}(x) & \text{if } x \in O(x_e, y_e) \end{cases}$$
 体现可靠性
$$N(x_e, y_e) & \text{等价邻域(相关的input/output),体现泛化性 体现局部性}$$

Problem Definition

Three Dimension:

其实就是输入新知识后输出新知识的概率

• Reliability (可靠性)

$$\mathbb{E}_{x_{\mathrm{e}}', y_{\mathrm{e}}' \sim \left\{ (x_{\mathrm{e}}, y_{\mathrm{e}}) \right\}} \mathbb{1} \left\{ \operatorname{argmax}_{y} f_{\theta_{e}} \left(y \mid x_{\mathrm{e}}' \right) = y_{\mathrm{e}}' \right\}$$

• Generalization (泛化性)

$$\mathbb{E}_{x_{\mathrm{e}}',y_{\mathrm{e}}' \sim N(x_{\mathrm{e}},y_{\mathrm{e}})} \mathbb{I}\left\{\operatorname{argmax}_{y} f_{\theta_{e}}\left(y \mid x_{\mathrm{e}}'\right) = y_{\mathrm{e}}'\right\}$$

• Locality (局部性)

$$\mathbb{E}_{x_{\mathrm{e}}',y_{\mathrm{e}}'\sim O(x_{\mathrm{e}},y_{\mathrm{e}})}\mathbb{I}\left\{f_{\theta_{e}}\left(y\mid x_{\mathrm{e}}'\right)=f_{\theta}\left(y\mid x_{\mathrm{e}}'\right)\right\}$$

2个范式: 保留模型参数的和调整模型参数的

Current Methods

保留模型参数: 增加额外参数和基于记忆检索的

调整模型参数:元学习和先定位后编辑

(a) Preserve Models' Parameters

Locate and edit method: ROME

• Contributions:

- develop a **causal intervention** for identifying neuron activations 开发了一种用于识别神经元激活的**因果干预方法**(LLM可解释性方面)
- We find that **ROME is effective** on a standard zero-shot relation extraction (zsRE) model-editing task. ROME在标准的零样本关系提取任务中是有效的
- We also evaluate ROME on a new dataset of difficult **counterfactual assertions** 在一个更加困难的反事实数据集上评估了ROME,发现ROME同时具有很好的特异性和泛化性

使用激活干预来追踪信息流(可解释性方面)

写作

2.1 Causal Tracing of Factual Associations

2.2 Causal Tracing Results

2.3 The Localized Factual Association Hypothesis

因果追踪事实关联

因果追踪的结果

局部事实关联假说

实验

分析

提出假说

实验

干净运行 \longrightarrow 破坏subject运行 \longrightarrow 选择一些hidden \longrightarrow 一些激活会使输出 t = (s, r, o) states恢复到干净运行 返回原始预测

可以得出的结论是: subject的last token的mid layer 的MLP对存储和回 忆事实有着重要作 用

MLP+Attn

假说

- 1. 整体走势可以看出mid layer对输出的Indirect Effect较大
- 2. 切断Attn后走势基本不变,说明Attn对于输出影响不大

- MLP模块的
- 特定的中间层
- subject的last token中

3 probabilities:

 $\mathbb{P}[o]$

clean时输出o的概率

 $\mathbb{P}_*[o]$

损坏subject时输出o的概率

损坏subject,恢复第i个token的 第I层的hidden states到clean状 态、输出o的概率

2 effects:

$$TE = \mathbb{P}[o] - \mathbb{P}_*[o]$$

$$IE = \mathbb{P}_{*,clean\ h_i^{(l)}}[o] - \mathbb{P}_*[o]$$
 体现 (i, l) 处神经元对输出的影响

体现破坏subject对输出的影响

Method

$$h_i^{(l)} = h_i^{(l-1)} + a_i^{(l)} + m_i^{(l)}$$

$$a_i^{(l)} = \operatorname{attn}^{(l)} \left(h_1^{(l-1)}, h_2^{(l-1)}, \dots, h_i^{(l-1)} \right)$$

$$m_i^{(l)} = W_{proj}^{(l)} \sigma \left(W_{fc}^{(l)} \gamma \left(a_i^{(l)} + h_i^{(l-1)} \right) \right).$$

最小化目标

minimize $\|\hat{W}K - V\|$ such that $\hat{W}k_* = v_*$ by setting $\hat{W} = W + \Lambda (C^{-1}k_*)^T$.

寻找新事实的k*. v*

如何寻找k*, v*?

一组以subject结尾的文本 (保证泛化性)

Step 1: choose k*
$$k_* = \frac{1}{N} \sum_{i=1}^{N} k(x_j + s)$$
, where $k(x) = \sigma \left(W_{fc}^{(l^*)} \gamma(a_{[x],i}^{(l^*)} + h_{[x],i}^{(l^*-1)}) \right)$.

最大化输出o*的概率(保证可靠性)

Step 2: choose v*

$$\frac{1}{N} \sum_{j=1}^{N} \underbrace{-\log \mathbb{P}_{G(m_{i}^{(l^{*})}:=z)} \left[o^{*} \mid x_{j} + p\right]}_{\text{(a) Maximizing } o^{*} \text{ probability}} + \underbrace{D_{\text{KL}} \left(\mathbb{P}_{G(m_{i'}^{(l^{*})}:=z)} \left[x \mid p'\right] \middle\| \mathbb{P}_{G} \left[x \mid p'\right]\right)}_{\text{(b) Controlling essence drift}}$$

p': {subject} is ···

用于保持对主题本质的理解 KL散度: 概率分布尽量相似

一些联想

Personalization中的先验保留损失

$$\mathbb{E}_{\mathbf{x},\mathbf{c},\boldsymbol{\epsilon}',t}[w_t \| \hat{\mathbf{x}}_{\theta}(\alpha_t \mathbf{x} + \sigma_t \boldsymbol{\epsilon}, \mathbf{c}) - \mathbf{x} \|_2^2 +$$
 输入 a [V] dog 与特定狗的图像——将个性化的狗的信息注入[V]中 $\lambda w_{t'} \| \hat{\mathbf{x}}_{\theta}(\alpha_{t'} \mathbf{x}_{pr} + \sigma_{t'} \boldsymbol{\epsilon}', \mathbf{c}_{pr}) - \mathbf{x}_{pr} \|_2^2]$,输入 a dog 与各种狗的图像——保持dog的"本质"

Evaluation

COUNTERFACT Dataset: 具有反事实的 (s,r,o^*)

Metrics:

Reliability Generalization	Efficacy Score (ES)	percent of $\mathbb{P}[o^*] > \mathbb{P}[o^c]$
	Efficacy Magnitude (EM)	$difference\ of\ \mathbb{P}[o^*] - \mathbb{P}[o^c]$
	Paraphrase Score (PS)	使用等价的 (<i>s,r</i>)
	Paraphrase Magnitude (PM)	
0	Neighborhood Score (NS)	percent of $\mathbb{P}[o^{c}] > \mathbb{P}[o^{*}]$ when (s^{n}, r, o^{c})
Specificity	Neighborhood Magnitude (PM)	使用邻近的主题但不改变输出

Meta-learning Method: MEND

元学习: 学习"学习" [blog link]

我们期望好的元学习模型能够具备强大的适应能力和泛化能力。在测试时,模型会先经过一个自适应环节(adaptation process),即根据少量样本学习任务。经过自适应后,模型即可完成新的任务。自适应本质上来说就是一个短暂的学习过程,这就是为什么元学习也被称作"学习"学习.

Editing a Pre-Trained Model with MEND

学习如何进行梯度更新

base model
$$\mathcal{X} \times \Theta \rightarrow \mathcal{Y}$$

$$\mathcal{X} \times \Theta \rightarrow \mathcal{Y}$$

Method

model editor $\mathcal{X} \times \mathcal{Y} \times \mathcal{L} \times \Theta \times \Phi \rightarrow \Theta$

Algorithm 1 MEND Training

- 1: **Input:** Pre-trained $p_{\theta_{\mathcal{W}}}$, weights to 1: **procedure** EDIT $(\theta, \mathcal{W}, \phi, x_{e}, y_{e})$ dataset D_{edit}^{tr} , edit-locality tradeoff c_{edit} 3: $L(\theta, \mathcal{W}) \leftarrow -\log \hat{p}$
- 2: **for** $t \in \{1, 2, ... do$
- 3: Sample $x_{\rm e}, y_{\rm e}, x_{\rm e}', y_{\rm e}', x_{\rm loc} \sim D_{edit}^{tr}$

- 6: $L_{\text{loc}} \leftarrow \text{KL}(p_{\theta_{\mathcal{W}}}(\cdot|x_{\text{loc}})||p_{\theta_{\tilde{\mathcal{W}}}}(\cdot|x_{\text{loc}}))$
- 7: $L(\phi_{t-1}) \leftarrow c_{\text{edit}}L_{\text{e}} + L_{\text{loc}}$
- 8: $\phi_t \leftarrow \operatorname{Adam}(\phi_{t-1}, \nabla_{\phi} L(\phi_{t-1}))$

Algorithm 2 MEND Edit Procedure

- make editable \mathcal{W} , editor params ϕ_0 , edit 2: $\hat{p} \leftarrow p_{\theta_{\mathcal{W}}}(y_e|x_e)$, caching input u_ℓ to $W_\ell \in \mathcal{W}$

- 4: for $W_{\ell} \in \mathcal{W}$ do
- 5: $\delta_{\ell+1} \leftarrow \nabla_{W_{\ell}u_{\ell}+b_{\ell}} l_e(x_e, y_e) \triangleright \text{Grad wrt output}$
- 4: $\tilde{\mathcal{W}} \leftarrow \text{EDIT}(\theta_{\mathcal{W}}, \mathcal{W}, \phi_{t-1}, x_{e}, y_{e})$ 6: $\tilde{u}_{\ell}, \tilde{\delta}_{\ell+1} \leftarrow g_{\phi_{\ell}}(u_{\ell}, \delta_{\ell+1}) \triangleright \text{Pseudo-acts/deltas}$ 5: $L_{e} \leftarrow -\log p_{\theta_{\tilde{\mathcal{W}}}}(y'_{e}|x'_{e})$ 7: $\tilde{W}_{\ell} \leftarrow W_{\ell} \tilde{\delta}_{\ell+1} \tilde{u}_{\ell}^{\top} \triangleright \text{Layer } \ell \text{ model edit}$
 - 8: $\tilde{\mathcal{W}} \leftarrow \{\tilde{W}_1, ..., \tilde{W}_k\}$
 - 9: **return** $\tilde{\mathcal{W}}$

▶ Return edited weights

$$\mathcal{L}_{ ext{edit}} = \underbrace{\|f_{ heta + \Delta heta}(x_e) - y_e\|_2}_{ ext{编辑成功项}} + \lambda \underbrace{\mathbb{E}_{x' \sim \mathcal{D}} \|f_{ heta + \Delta heta}(x') - f_{ heta}(x')\|_2}_{ ext{保留能力项}}$$

训练编辑器网络

使用编辑器对部分权重进行编辑