Практическое задание к уроку 3 "Линейные преобразования".

1. Найти собственные векторы и собственные значения для линейного оператора, заданного матрицей

$$A=\left(egin{array}{cc} -1 & -6 \ 2 & 6 \end{array}
ight).$$

Обозначим через $ilde{u}=\left(egin{array}{c} x_1 \\ x_2 \end{array}
ight)$ неизвестный собственный вектор. Тогда $A ilde{u}=\lambda ilde{u}$ можно выразить следующим образом:

$$egin{aligned} inom{-1}{2} & -6 \ 2 & 6 \end{pmatrix} \cdot inom{x_1}{x_2} = \lambda \cdot inom{x_1}{x_2} \ inom{-x_1 - 6x_2}{2x_1 + 6x_2} \cdot inom{\lambda x_1}{\lambda x_2} \ inom{-x_1 - 6x_2 = \lambda x_1}{2x_1 + 6x_2 = \lambda x_2} \ inom{-x_1 - 6x_2 - \lambda x_1 = 0}{2x_1 + 6x_2 - \lambda x_2 = 0} \ inom{x_1(-1 - \lambda) - 6x_2 = 0}{2x_1 + (6 - \lambda)x_2 = 0} \end{aligned}$$

По определению $ilde{u}
eq \left(egin{array}{c} 0 \\ 0 \end{array} \right)$ Уравнения линейно зависимы и определитель матрицы системы равен нулю: $\begin{vmatrix} -1-\lambda & 6 \\ 2 & 6-\lambda \end{vmatrix} = 0$

$$(-1 - \lambda)(6 - \lambda) - 2(-6) = 0$$

Найдём собственные вектора:

$$\lambda^2 - 5\lambda - 6 + 12 = 0$$
 $\lambda^2 - 5\lambda + 6 = 0$
 $D = 25 - 24 = 1; \sqrt{D} = 1$
 $\lambda_1 = \frac{5-1}{2} = 2; \lambda_2 = \frac{5+1}{2} = 3$

Найдём собственные вектора:

$$\left\{egin{array}{l} x_1(-1(-2)) - 6x_2 = 0 \ 2x_1 + (6-2)x_2 = 0 \end{array}
ight.$$

 $\begin{cases} x_1(-1-\lambda) - 6x_2 = 0 \\ 2x_1 + (6-\lambda)x_2 = 0 \end{cases}$

для $\lambda_1=2$:

$$egin{cases} -3x_1-6x_2=0\ 2x_1+4x_2=0 \end{cases}$$
 $x_1=-2x_2$ $egin{cases} x_1(-1(-3))-6x_2=0\ 2x_1+(6-3)x_2=0 \end{cases}$

для $\lambda_2=3$:

$$egin{cases} -4x_1-6x_2=0\ 2x_1+3x_2=0 \end{cases}$$
 $x_1=-rac{3}{2}x_2$ Ответ: Собственные значения равны $\lambda_1=2$ и $\lambda_2=3$. Собственные векторы равны:

Ответ:

 $ilde{u}_1=\left(egin{array}{c} -2x_2 \ x_2 \end{array}
ight)$ $ilde{u}_2=\left(egin{array}{c} -rac{3}{2}x_2 \ x_2 \end{array}
ight)$

Собственные векторы равны:

2. Дан оператор поворота на 180 градусов, задаваемый матрицей
$$A = \begin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix}.$$

Обозначим через $ilde{u}=\left(egin{array}{c} x_1 \\ x_2 \end{array}
ight)$ неизвестный собственный вектор. Тогда $A ilde{u}=\lambda ilde{u}$ можно выразить следующим образом:

Показать, что любой вектор является для него собственным.

 $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \lambda \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ $\begin{pmatrix} -x_1 & 0 \\ 0 & -x_2 \end{pmatrix} \cdot \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \end{pmatrix}$

$$\begin{cases} -x_1=\lambda x_1\\ -x_2=\lambda x_2 \end{cases}$$
 По определению $\tilde u
eq \begin{pmatrix} 0\\ 0 \end{pmatrix}$ Уравнения линейно зависимы и определитель матрицы системы равен нулю:
$$\begin{vmatrix} -1-\lambda & 0\\ 0 & -1-\lambda \end{vmatrix} = 0$$

 $(-1-\lambda)(-1-\lambda)=0$

 $\lambda^2 + 2\lambda + 1 = 0$

D = 4 - 4 = 0

для $\lambda = -1$:

нулю:

 $\lambda = -1$

$$egin{cases} -x_1 &= \lambda x_1 \ -x_2 &= \lambda x_2 \end{cases} \ egin{cases} -x_1 &= -x_1 \ -x_2 &= -x_2 \end{cases}$$

 $\left\{egin{array}{l} x_1=x_1\ x_2=x_2 \end{array}
ight.$

 $A=\left(egin{array}{cc} 1 & 1 \ -1 & 3 \end{array}
ight).$

3. Пусть линейный оператор задан матрицей

\end{pmatrix}

Найдём собственные вектора:

Найдём собственные вектора:

Установить, является ли вектор
$$x=(1,1)$$
 собственным вектором этого линейного оператора.
Предположим, что $\pi = \pi \cdot x_1 \cdot x_2$

 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

 $\left(egin{array}{cc} 1 & 1 \ -1 & 3 \end{array}
ight) \cdot \left(egin{array}{c} x_1 \ x_2 \end{array}
ight) = \lambda \cdot \left(egin{array}{c} x_1 \ x_2 \end{array}
ight)$ \$

 $\left\{egin{aligned} x_1+x_2&=\lambda x_1\ -x_1+3x_2&=\lambda x_2 \end{aligned}
ight.$

 $\left\{ \begin{array}{l} 1+1=\lambda \\ -1+3=\lambda \end{array} \right.$

 $\left\{egin{array}{l} 2=\lambda\ 2=\lambda \end{array}
ight.$

cобственныйвектор. A\tilde u=\lambda \tilde иможновыразитьследующимобразом :

Ответ: Вектор x=(1,1) яляется собственным вектором данного линейного оператора.
 4. Пусть линейный оператор задан матрицей
$$A = \begin{pmatrix} 0 & 3 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$
 Установить, является ли вектор $x = (3, -3, -4)$ собственным вектором этого линейного оператора.
 Предположим, что \$ \tilde u= \begin{pmatrix} x _1 \ x _2 \ x _3

 $\begin{pmatrix} 3 \\ -3 \\ -4 \end{pmatrix}$ cобственныйвектор. A\tilde u=\lambda \tilde иможновыразитьследующимобразом :

$$\begin{pmatrix} 0 & 3 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \lambda \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \$$$

\end{pmatrix}

$$\left\{egin{array}{l} 0+3x_2+0=\lambda x_1\ 3x_1+0+0=\lambda x_2\ 0+0+3x_3=\lambda x_3 \end{array}
ight. \ \left\{egin{array}{l} 3x_2=\lambda x_1\ 3x_1=\lambda x_2\ 3x_3=\lambda x_3 \end{array}
ight. \end{array}
ight.$$

$$\begin{cases} 3x_3 = \lambda x_3 \\ 3x_3 = \lambda x_3 \end{cases}$$

$$\begin{cases} -9 = 3\lambda \\ 9 = -3\lambda \\ -12 = -4\lambda \end{cases}$$

$$\begin{cases}
-3 = \lambda \\
-3 = \lambda \\
3 = \lambda
\end{cases}$$

Ответ: Вектор х=(3,-3, -4) не яляется собственным вектором данного линейного оператора.