CS154

Non-Regular Languages, Minimizing DFAs

CS154

Homework 1 is due!

Homework 2 will appear this afternoon

The Pumping Lemma: Structure in Regular Languages

Let L be a regular language

Then there is a positive integer P s.t.

for all strings $w \in L$ with $|w| \ge P$ there is a way to write w = xyz, where:

- 1. |y| > 0 (that is, $y \neq \varepsilon$)
- 2. $|xy| \leq P$
- 3. For all $i \ge 0$, $xy^iz \in L$

Why is it called the pumping lemma? The word w gets pumped into longer and longer strings...

Proof: Let M be a DFA that recognizes L

Let P be the number of states in M

Let w be a string where $w \in L$ and $|w| \ge P$

We show: w = xyz

- 1. |y| > 0
- 2. $|xy| \leq P$

Claim: There must exist j and k such that $0 \le j < k \le P$, and $q_j = q_k$

Applying the Pumping

Let's prove that

EQ = { w | w has equal number of 1s and 0s} is not regular.

By contradiction. Assume EQ is regular. Let P be as in pumping lemma. Let $w = 0^P 1^P$; note $w \in EQ$.

If EQ is regular, then there is a way to write w as w = xyz, |y| > 0, $|xy| \le P$, and for all $i \ge 0$, xy^iz is *also* in EQ

Claim: The string y must be all zeroes.

Why? Because $|xy| \le P$ and $w = xyz = 0^P1^P$

But then xyyz has more 0s than 1s Contradiction!

Applying the Pumping Lemma

Let's prove that $SQ = \{0^{n^2} \mid n \ge 0\}$ is not regular

Assume SQ is regular. Let $w = 0^{p^2}$

If SQ is regular, then we can write w = xyz, |y| > 0,
|xy| ≤ P, and for any i ≥ 0, xyⁱz is also in SQ
So xyyz ∈ SQ. Note that xyyz = 0^{p²+|y|}
Note that 0 < |y| ≤ P
So |xyyz| = P² + |y| ≤ P² + P < P² + 2P + 1 = (P+1)²
and P² < |xyyz| < (P+1)²
Therefore |xyyz| is not a perfect square!
Hence 0^{p²+|y|} = xyyz ∉ SQ, so our assumption must be false.

That is, SQ is not regular!

Does this DFA have a minimal number of states?

Is this minimal?

How can we tell in general?

Theorem:

For every regular language L, there is a unique (up to re-labeling of the states) minimal-state DFA M* such that L = L(M*).

Furthermore, there is an *efficient* algorithm which, given any DFA M, will output this unique M*.

If this were true for more general models of computation, that would be an engineering breakthrough!!

Note: There isn't a uniquely minimal NFA

Extending transition function δ to strings

Given DFA M = (Q, Σ , δ , q₀, F), we extend δ to a function Δ : Q \times Σ^* \rightarrow Q as follows:

$$\Delta(q, \epsilon) = q$$

$$\Delta(q, \sigma) = \delta(q, \sigma)$$

$$\Delta(q, \sigma_1 ... \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 ... \sigma_k), \sigma_{k+1})$$

 $\Delta(q, w)$ = the state of M reached after reading in w, starting from state q

Note: $\Delta(q_0, w) \in F \Leftrightarrow M$ accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff $\Delta(q_1, w) \in F \Leftrightarrow \Delta(q_2, w) \notin F$

Extending transition function δ to strings

Given DFA M = (Q, Σ , δ , q₀, F), we extend δ to a function Δ : Q \times Σ^* \rightarrow Q as follows:

$$\Delta(q, \epsilon) = q$$

$$\Delta(q, \sigma) = \delta(q, \sigma)$$

$$\Delta(q, \sigma_1 ... \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 ... \sigma_k), \sigma_{k+1})$$

 $\Delta(q, w)$ = the state of M reached after reading in w, starting from state q

Note: $\Delta(q_0, w) \in F \iff M$ accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly one of $\Delta(q_1, w)$, $\Delta(q_2, w)$ is a final state

Distinguishing two states

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly *one* of $\Delta(q_1, w)$, $\Delta(q_2, w)$ is a final state

I'm in q_1 or q_2 , but which? How can I tell?

Distinguishing two states

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly *one* of $\Delta(q_1, w)$, $\Delta(q_2, w)$ is a final state

Fix M = (Q, Σ , δ , q₀, F) and let p, q \in Q

Definition:

State p is distinguishable from state q iff there is $w \in \Sigma^*$ that distinguishes p and q iff there is $w \in \Sigma^*$ so that exactly one of $\Delta(p, w)$, $\Delta(q, w)$ is a final state

State p is *indistinguishable* from state q iff p is not distinguishable from q iff for all $w \in \Sigma^*$, $\Delta(p, w) \in F \Leftrightarrow \Delta(q, w) \in F$

Pairs of indistinguishable states are redundant...

ε distinguishes all final states from non-final states

The string 10 distinguishes q_0 and q_3

The string 0 distinguishes q₁ and q₂

Fix M = (Q, Σ , δ , q₀, F) and let p, q, r \in Q

Define a binary relation \sim on the states of M:

 $p \sim q$ iff p is indistinguishable from q

p ≁ q iff p is distinguishable from q

Proposition: ∼ is an equivalence relation

 $p \sim p$ (reflexive)

 $p \sim q \Rightarrow q \sim p$ (symmetric)

 $p \sim q$ and $q \sim r \Rightarrow p \sim r$ (transitive)

Proof?

Fix M = (Q, Σ , δ , q₀, F) and let p, q, r \in Q

Proposition: ∼ is an equivalence relation

Therefore, the relation ~ partitions Q into disjoint equivalence classes

Algorithm: MINIMIZE-DFA

Input: DFA M

Output: DFA M_{MIN} such that:

 $L(M) = L(M_{MIN})$

M_{MIN} has no *inaccessible* states

M_{MIN} is *irreducible*

For all states $p \neq q$ of M_{MIN} , p and q are distinguishable

Theorem: M_{MIN} is the unique minimal DFA that is equivalent to M

Intuition:

The states of M_{MIN} will be the equivalence classes of states of M

We'll uncover these equivalent states with a dynamic programming algorithm

The Table-Filling Algorithm

Input: DFA M = (Q, Σ , δ , q_0 , F)

Output: (1)
$$D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \not\sim q \}$$

(2)
$$EQUIV_M = \{ [q] | q \in Q \}$$

High-Level Idea:

- We know how to find those pairs of states that the string ε distinguishes...
- Use this and iteration to find those pairs distinguishable with longer strings
- The pairs of states left over will be indistinguishable

The Table-Filling Algorithm

Input: DFA M = (Q, Σ , δ , q_0 , F)

Output: (1) $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \not\sim q \}$

(2) $EQUIV_M = \{ [q] | q \in Q \}$

The Table-Filling Algorithm

Input: DFA M = (Q, Σ , δ , q_0 , F)

Output: (1)
$$D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \not\sim q \}$$

(2)
$$EQUIV_M = \{ [q] | q \in Q \}$$

Base Case: For all (p, q) such that p accepts and q rejects $\Rightarrow p \not\sim q$

Iterate: If there are states p, q and symbol $\sigma \in \Sigma$ satisfying:

$$\delta (\mathbf{p}, \sigma) = \mathbf{p}' \qquad \text{mark}$$

$$\delta (\mathbf{q}, \sigma) = \mathbf{q}' \qquad \Rightarrow \mathbf{p} \not\sim \mathbf{q}$$

Repeat until no more D's can be added 28

Claim: If (p, q) is marked D by the Table-Filling algorithm, then $p \not\sim q$

Proof: By induction on the number of steps in the algorithm before (p,q) is marked D

If (p, q) is marked D at the *start*, then one state's in F and the other isn't, so ε distinguishes p and q

Suppose (p, q) is marked D at a later point.

Then there are states p', q' such that:

- 1. (p', q') are marked D \Rightarrow p' $\not\sim$ q' (by induction) So there's a string w s.t. $\Delta(p', w) \in F \Leftrightarrow \Delta(q', w) \notin F$
- 2. $p' = \delta(p,\sigma)$ and $q' = \delta(q,\sigma)$, where $\sigma \in \Sigma$

The string ow distinguishes p and q!

Claim: If (p, q) is not marked D by the Table-Filling algorithm, then $p \sim q$

Proof (by contradiction):

Suppose the pair (p, q) is not marked D by the algorithm, yet $p \nsim q$ (call this a "bad pair")

Then there is a string w such that |w| > 0 and:

$$\Delta(p, w) \in F$$
 and $\Delta(q, w) \notin F$ (Why is $|w| > 0$?)

Of all such bad pairs, let p, q be a pair with the shortest distinguishing string w

Claim: If (p, q) is not marked D by the Table-Filling algorithm, then $p \sim q$

Proof (by contradiction):

Suppose the pair (p, q) is not marked D by the algorithm, yet p \nsim q (call this a "bad pair")

Of all such bad pairs, let p, q be a pair with the shortest distinguishing string w

$$\Delta(p, w) \in F$$
 and $\Delta(q, w) \notin F$ (Why is $|w| > 0$?)

We have $w = \sigma w'$, for some string w' and some $\sigma \in \Sigma$

Let
$$p' = \delta(p,\sigma)$$
 and $q' = \delta(q,\sigma)$

Then (p', q') is also a bad pair, but with a SHORTER distinguishing string, w'!

Algorithm MINIMIZE

Input: DFA M

Output: Equivalent minimal-state DFA M_{MIN}

- 1. Remove all inaccessible states from M
- 2. Run Table-Filling algorithm on M to get: EQUIV_M = { [q] | q is an accessible state of M }
- 3. Define: $M_{MIN} = (Q_{MIN}, \Sigma, \delta_{MIN}, q_{0 MIN}, F_{MIN})$

$$Q_{MIN} = EQUIV_M$$
, $q_{0 MIN} = [q_0]$, $F_{MIN} = \{ [q] \mid q \in F \}$

$$\delta_{MIN}([q], \sigma) = [\delta(q, \sigma)]$$

Claim: $L(M_{MIN}) = L(M)$

Thm: M_{MIN} is the unique minimal DFA equivalent to M

Claim: Suppose for a DFA M', $L(M')=L(M_{MIN})$ and M' has no inaccessible states and M' is irreducible. Then there is an *isomorphism* between M' and M_{MIN}

If M' is a minimal DFA, then M' has no inaccessible states and is irreducible. So the Claim implies:

If M' is a minimal DFA for M, then there is an isomorphism between M' and M_{MIN} . So the Thm holds!

Corollary: If M has no inaccessible states and is irreducible, then M is minimal. Proof: Let M^{min} be minimal for M. Then $L(M) = L(M^{min})$, no inaccessible states in M, and M is irreducible. By Claim, both M^{min} and M are isomorphic to M_{MIN} !