Home Work

Radicals

In 2³, 2 is called the base and 3 is the exponent.

Rules of Exponents: (For any real numbers a, b, m, and n)

$$a^m$$
 $a^n = a^{m+n}$

$$2^3 \cdot 2^5 = 2^{3+5} = 2^8$$

$$(ab)^m = a^m b^m$$

$$(5*6)^3 = 5^3*6^3$$

$$(ab)^m = a^m b^m$$
 $(5*6)^3 = 5^{3*}6^3$ Note: $(a+b)^m$ is not $a^m + b^m$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$
, $a \ne 0$ $\frac{3^{5}}{3^{2}} = 3^{5-2} = 3^{3}$

$$(a^{m})^{n} = a^{mn}$$
, $a \neq 0$, $(2^{3})^{5} = 2^{15}$

$$(2^3)^5 = 2^{15}$$

$$a^{-n} = \frac{1}{a^n}$$

$$a^{-n} = \frac{1}{a^n}$$
, $a \neq 0$ $3^{-5} = \frac{1}{a^5}$

$$\frac{1}{a^{-n}} = a^n$$
, $a \neq 0$ $\frac{1}{2^{-3}} = 2^3$

$$\frac{1}{2^{-3}} = 2^3$$

$$a^0 = 1$$
, $a \neq 0$, $5^0 = 1$

$$5^0 = 1$$

 $\sqrt{\ }$ is called a radical. Fractional exponents are also valid.

$$\sqrt[n]{a} = a^{1/n}$$
, so $\sqrt[2]{9} = 9^{1/2} = 3$, $\sqrt[3]{8} = 8^{1/3} = 2$

$$\sqrt[2]{9} = 9^{1/2} = 3$$

$$\sqrt[3]{8} = 8^{1/3} = 2$$

Class Examples:

1)
$$\frac{2^5}{2^2}$$

$$2) \frac{2^4 \ 2^{-3} \ 3^4}{2^2 \ 3^2}$$

$$3) \ \frac{(2^5)^3}{(2^7)^2}$$

4)
$$\sqrt[3]{8^5}$$

5)
$$(\sqrt[2]{8})^{\frac{2}{3}}$$

6)
$$(\sqrt[4]{81^{-3}})$$

7)
$$\left(\frac{1}{8}\right)^{\frac{2}{3}}$$

8)
$$2^{300} - 2^{299} = ?$$

8)
$$2^{300} - 2^{299} = ?$$
 9) $\frac{4^{1000}}{2^{2000}} = ?$

10) If M =
$$3^{2^{2^2}}$$
 and D = $(((3)^2)^2)^2$, what is $\frac{M}{D}$?

11)
$$2 * 2^{2x} = 8^{x}$$

11)
$$2 * 2^{2x} = 8^{x}$$
 12) $X^{3} = 25$

b)
$$3^{20}$$
 c) 5^{10}

c)
$$5^{10}$$

14) Simplify:
$$\left(\sqrt[3]{x^2} \cdot \sqrt[6]{x^4}\right)^{-3}$$

15) Simplify:
$$\frac{(4^{3})(2^{6})(3^{2})}{(2^{2})(3^{2})}$$

17)
$$4\sqrt{18} + 2\sqrt{50}$$

$$\frac{2017^2 + 11(2017) - 42}{2014}$$
?

18) Rationalize:
$$\sqrt[3]{25}$$

Homework Problems: (Do not use calculator)

1)
$$\sqrt{6}\sqrt{15}\sqrt{10}$$
 2) $\sqrt{\left(\frac{56}{126}\right)}$

2)
$$\sqrt{(\frac{56}{126})}$$

3)
$$\frac{\sqrt{9}\sqrt{5}}{\sqrt{20}}$$

4)
$$(\sqrt[3]{81})^{\frac{3}{2}}$$
 5) $(64)^{\frac{-4}{3}}$

5)
$$(64)^{\frac{-4}{3}}$$

6)
$$\left(\frac{4}{9}\right)^{\frac{-3}{2}}$$

7)
$$\sqrt[5]{100000^3}$$

7)
$$\sqrt[5]{100000^3}$$
 8) $\sqrt[4]{\left(\frac{1}{16}\right)^3}$

9)
$$\sqrt[4]{1600}$$

10)
$$\sqrt[3]{27^5}$$

11)
$$(\sqrt[2]{27})^{\frac{2}{3}}$$

12)
$$(\sqrt[4]{256^{-3}})$$

13)
$$\sqrt[3]{\left(\frac{36000}{243}\right)}$$
 14) 81⁻⁽²⁻²⁾

15)
$$\sqrt[4]{81} \sqrt{81}$$

16)
$$\left(\frac{1}{8}\right)^{\frac{5}{3}}$$

17)
$$\sqrt{\left(2\frac{14}{25}\right)}$$

Find all real x in each of the following (problems 18 - 25):

18)
$$x^6 = 64$$

19)
$$X = (-27)^{\frac{-2}{3}}$$

18)
$$x^6 = 64$$
 19) $x = (-27)^{\frac{-2}{3}}$ 20) $x = \sqrt[3]{\left(\frac{-1}{8}\right)}$

21)
$$x^3 = 64$$

21)
$$x^3 = 64$$
 22) $(X)^3 = 243$ 23) $9^{2x} = 27^{3x+1}$

23)
$$9^{2x} = 27^{3x+1}$$

24)
$$2(2^{3x}) = 32^{x}$$

25)
$$2(2^{2x}) = 4^x + 64$$

26) Simplify: 2²⁰⁰ - 2¹⁹⁹

27) Find the difference:
$$4^{2^3} - ((4)^2)^3$$

28) Simplify:
$$(4^{-1} - 3^{-1})^{-1}$$

29) If
$$2^4 \times 3^8 = n \times 6^4$$
, then find *n*.

30) If
$$a \# b = 4^a 2^{-b}$$
, find y such that $y \# 2 = 4$

31) If
$$2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k 2^{1995}$$
, what is k ?

$$32) \ \frac{(4^{2003}) \ (3^{2002})}{(6^{2002}) \ (2^{2003})} \ = ?$$

33)
$$\sqrt[3]{(4^5+4^5+4^5+4^5)}$$

- 34) Arrange the following in increasing order: 16^{25} , 8^{100} , 3^{500} , 4^{400} , 2^{600}
- 35) What is the value of $\frac{\sqrt{45} + 2\sqrt{15}}{\sqrt{128} + 2\sqrt{24}}$

Express your answer as a common fraction in simplest radical form.

36) What is the value of the expression shown? Express your answer as a common fraction.

$$\frac{1}{1 + \frac{2}{1 + \frac{3}{1 + \frac{5}{1 + 7}}}}$$

37) What value of x yields the minimum value of the sum

$$|x-2^{0}| + |x-2^{1}| + |x-2^{2}| + |x-2^{3}| + ... + |x-2^{10}|$$

38) If
$$\sqrt{7-\sqrt{2+\sqrt{n}}} = 2$$
, what is the value of n?

- 39) Let x > 0 and y > 0. Suppose that $xy^2 = 6$, and $x^2y^6 = 72$. What is the value of xy? Express your answer in simplest radical form.
- 40) If $(7^2 + 24^2)^4 \times (5^2 + 10^2)^5 \times (75^2 + 100^2)^6 = 5^n$, what is the value of n? Must show all steps. No calculator.

Radicals: (More Class Examples) - Not Home Work

1)
$$(\sqrt[3]{125})^{\frac{3}{2}}$$

2) If
$$C^d = 3$$
, find $C^{4d} - 5$

3) If
$$5^x - 5^{x-1} = \frac{4}{125}$$
, find x

4) Simplify:
$$\sqrt[3]{(4^8 + 4^8 + 4^8 + 4^8)}$$

5) Solve for x:
$$2(2^{3x}) = 64^{x}$$

6) Solve for x:
$$2(2^{2x}) = 4^x + 256$$

7) Rationalize the denominator:
$$\frac{1}{\sqrt{2}}$$

8) Rationalize the denominator:
$$\frac{1}{1 + \sqrt{2}}$$

- 9) What integer n has the property that 5^{96} is greater than n^{72} and 5^{96} is less than $(n+1)^{72}$?
- 10) What is the greatest common factor of 20! And 200,000?

11) Solve for x:
$$(2^5 - 2^3)(2^4 - 2^2) \div 9 = 2^{x+1}$$

12) The largest integer x such that 4^x divides exactly 10! is ?

13) Rationalize:
$$\frac{1}{\sqrt[3]{9}}$$