1 Conquer Algorithm

1.1 Introduction

These algorithms mainly contain with:

- divide and conquer
- decrease and conquer
- change and conquer

1.2 Find the k'st minimal number in a list

1.2.1 Pseudo code

```
Algorithm 1 Divide-and-Conquer algorithm
Require: The total problem p
Ensure: The result of problem T
 1: function DIVIDE-AND-CONQUER(p)

⊳ Input problem as p

        if |p| \leq n_0 then
                                                                    ⊳ If p is small enough, deal with it
 2:
            return(Adhoc(p))
 3:
        end if
 4:
        Divide p into sub-problems: p_1, p_2, ..., p_k
 5:
        for i \leftarrow 1 to k do
            y_i \leftarrow \text{Divide-and-Conquer}(p_i)
 7:
                                                                              \triangleright Deal with p_i recursively
        end for
 8:
        T \leftarrow \text{Merge}(y_1, y_2, ..., y_k)
                                                                                 9:
        return T
10:
11: end function
```

1.3 Demo

Something to declare here.

2

1.3.1 Pseudo code

Below is the pseudo code

Algorithm 2 Divide-and-Conquer algorithm

Require: The total problem p

Ensure: The result of problem T

1: **function** DIVIDE-AND-CONQUER(p)

▷ Input problem as p

2: **if** $|p| \leq n_0$ then

⊳ If p is small enough, deal with it

3: $\mathbf{return}(Adhoc(p))$

4: end if

5: Divide p into sub-problems: $p_1, p_2, ..., p_k$

6: **for** $i \leftarrow 1$ to k **do**

7: $y_i \leftarrow \text{Divide-and-Conquer}(p_i)$

 \triangleright Deal with p_i recursively

8: end for

9: $T \leftarrow \text{Merge}(y_1, y_2, ..., y_k)$

10: return T

11: end function

1.3.2 Flowchart

data1	data2	data3
sex	10	3
hell	9	6

表 1: algorithm's table

图 1: algorithm's flowchart

图 2: flowchart2

图 3: flowchart3

图 4: flowchart4