Data-flow analysis

Sudakshina Dutta

Transfer function

$$IN[B[= OUT[P_1] \cup OUT[P_2] \cup OUT[P_3]$$

$$OUT[B] = gen_B \cup (IN[B] - kill_B)$$

NOT REQUIRED.

 $gen_B = \{d_2\}$

 $kill_B = \{d_1, d_2\}$

$$IN[B]^1 = phi$$

$$OUT[B]^{1} = gen_{B} \cup (IN[B]^{1} - kill_{B})$$
$$= \{d_{2}\}$$

$$IN[B]^2 = \{d_2\}$$

OUT[B]² = gen_B
$$\cup$$
 (IN[B]² - kill_B)
= {d₂} \cup ({d₂} - {d₁, d₂})
= {d₂}

Example

Also, we can understand at what iteration to stop by seeing how outputs are changing. int a = 5, b = 20, c = 50, d = 1, x; $d_1: a = 5$ while (a < b)d2 : b = 20Bı $d_3 : c = 50$ Understand/Learn how $d_4 : d = 1$ x = d + 2: Blocks.

if a > b goto B₃ B2 c = c + 5; a = a + 1; goto B5 B4 d5: x = d + 2d6: c = c + 5d7: a = a + 1a = a + 2; **B3** $d_{g}: a = a + 2$ B5 goto B2

to draw the graphs once we identify the Basic

First convert the LHS Code to 3 address code & then

see how this below graph came up.

Example

After optimization

```
int a = 5, b = 20, c = 50, d = 1, x;
if(a < b) This pre header should not be missed. Since this runs only once we go to while loop atleast once.
  x = d + 2;
  while (a < b)
    c = c + 5;
    a = a + 1;
a = a + 2;
```