### **COMPUTATIONAL FINANCE: 422**

#### General Principles

Panos Parpas

(Slides courtesy of Daniel Kuhn)

p.parpas@imperial.ac.uk

Imperial College

London

#### This Lecture

#### Evaluation of random cash flows:

- direct evaluation using risk measures
  - Utility functions
  - Risk aversion
- indirect evaluation by reducing the flow to a combination of flows which have already been evaluated
  - Linear pricing
  - Portfolio choice
  - Risk-neutral pricing

#### Further reading:

D.G. Luenberger: Investment Science, Chapter 9

## **Utility Functions I**

Assume that today there are different investment opportunities which lead to different wealth levels after one year.

General aim: maximize wealth at the end of the year.

- Certain outcomes: select the alternative that produces the highest wealth.
- Random outcomes: not obvious how to rank choices.



## **Utility Functions II**

We need a procedure for ranking random wealth levels.

#### Utility function *U*:

- defined on the real line (possible wealth levels);
- gives a real value (utility index).

For a given utility function, alternative random wealth levels are ranked by evaluating their expected utility values.

 $\Rightarrow$  we compare random wealth variables x and y by comparing E[U(x)] and E[U(y)]; the larger value is preferred.

Utility functions vary among decision makers, depending on

- their risk tolerance;
- their individual financial environment.

## **Utility Functions III**

The simplest utility function is U(x) = x

⇒ ranking by expected values!

Individuals using this utility function are called risk neutral.

Some of the most commonly used utility functions:

- Exponential:  $U(x) = -e^{-ax}$  for some a > 0;
- Logarithmic:  $U(x) = \ln(x)$ ; defined only for x > 0;
- Power:  $U(x) = bx^b$  for some  $b \le 1$ ,  $b \ne 0$ ;
- Quadratic:  $U(x) = x bx^2$  for some b > 0; this function is increasing only for x < 1/(2b).

# **Utility Functions IV**



## **Venture Capitalist**

Sybil, a venture capitalist, considers two investment alternatives for next year:

- 1. buy treasury bills, which give \$6M for sure;
- 2. invest in a start-up company; this will produce wealth levels \$10M, \$5M, and \$1M with probabilities 0.2, 0.4, and 0.4, respectively.

Sybil uses  $U(x) = x^{1/2}$  (where x is in millions of dollars):

- 1. the treasury bills have an expected utility of  $\sqrt{6} = 2.45$ ;
- 2. the start-up company has expected utility of

$$0.2 \times \sqrt{10} + 0.4 \times \sqrt{5} + 0.4 \times \sqrt{1} = 1.93$$
.

⇒ The first alternative is preferred to the second!

### **Equivalent Utility Functions**

Since a utility function is merely used to rank different choices, its actual numerical value has no real meaning.

Utility functions can be modified without changing the ranking by:

- 1. adding a constant  $b \in \mathbb{R}$ :  $U(x) \to V(x) = U(x) + b$ ;
- 2. multiplying by a constant a > 0:  $U(x) \to V(x) = aU(x)$ .

It can be shown that the combined transformation

$$U(x) \rightarrow V(x) = aU(x) + b$$
 for  $a > 0$ 

is the only transformation that preserves the rankings of all random outcomes.

### **Risk Aversion I**

**Definition:** A function  $U:[a,b]\to\mathbb{R}$  is said to be concave if for any  $\alpha$  in [0,1] and for any x and y in [a,b] there holds

$$U[\alpha x + (1 - \alpha)y] \ge \alpha U(x) + (1 - \alpha)U(y).$$

A utility fct. U is called risk averse if it is concave on [a, b].

⇒ The straight line drawn between two points on the function must lie below or on the function itself.



COMPLITATIONIAL FINIANIOF

#### **Risk Aversion II**

Assume that we have two alternatives for future wealth:

- 1. we obtain x with probability  $\alpha$  or y with probability  $1 \alpha$ ;
- 2. we obtain  $x^* = \alpha x + (1 \alpha)y$  with certainty.

Both alternatives have the same expected wealth  $x^*$ . However, the expected utility of the first alternative is

$$\alpha U(x) + (1 - \alpha)U(y),$$

while the expected utility of the second alternative is

$$U[\alpha x + (1 - \alpha)y].$$

 $\Rightarrow$  The risk-free (second) alternative is preferred if U is concave.

#### **Risk Aversion III**

The properties of a utility function relate to its derivatives:

- U(x) is strictly increasing in  $x \iff U'(x) > 0$ ;
- U(x) is strictly concave in  $x \iff U''(x) < 0$ .

Most people are greedy. From a set of deterministic wealth levels they prefer the highest one  $\Rightarrow$  typical utility functions are increasing. Most people are also risk-averse  $\Rightarrow$  typical utility functions are concave. Exceptions:

- people accept unfavorable bets with a high potential reward if the initial investment is small (lotteries);
- imagine that a mafia thug threatens to shoot you if you fail to pay \$10M; if you only own \$1M, you may go to a casino and put all your money on one number.

#### **Risk Aversion IV**

The degree of risk aversion implied by a utility function is related to the magnitude of the curvature of the function.

Arrow-Pratt absolute risk aversion coefficient:

$$a(x) = -\frac{U''(x)}{U'(x)}$$

- $\bullet$  a(x) shows how risk-aversion changes with wealth;
- usually, risk-aversion decreases as wealth grows;
- ullet a(x) is the same for all equivalent utility functions.

**Example:**  $U(x) = ae^{-ax}$  (exponential utility)  $\Rightarrow a(x) = a$ ;  $U(x) = \ln x$  (logarithmic utility)  $\Rightarrow a(x) = 1/x$ .

OOMBUITATIONAL FINANCE

### **Certainty Equivalent**

**Definition**: The certainty equivalent C of a random wealth variable x is the amount of certain (deterministic) wealth that has a utility level equal to the expected utility of x.

$$\Rightarrow$$
  $U(C) = \mathrm{E}[U(x)]$ 

Note that *C* is the same for all equivalent utility functions.

**Example:** assume x takes values  $x_1$  and  $x_2$  with probability  $\frac{1}{2}$ 



COMPLITATION AL FINANCE 400

## **Measuring Utility Functions I**

A way to measure an investor's utility function is as follows:

- 1. select fixed wealth levels A and B (reference points);
- 2. propose a lottery that has outcome A with probability p and outcome B with probability 1-p;
- 3. for  $p \in [0, 1]$  the investor is asked how much certain wealth C he or she would accept in place of the lottery.



COMPUTATIONAL FINANCE 40

## **Measuring Utility Functions II**

Another method to assign utility functions is to select a parameterized family of functions and determine suitable parameter values:

- one often assumes  $U(x) = -e^{-ax}$  (exponential utility);
- only the risk aversion parameter a must be determined;
- this can be done by evaluating a single lottery in certainty equivalent terms.

**Example**: Ask an investor how much he or she would accept in place of a lottery that offers a 50-50 chance of winning \$1M or \$100,000. If the investor feels that the certainty equivalent wealth is \$400,000, then we set

$$-e^{-400,000a} = -0.5e^{-1,000,000a} - 0.5e^{-100,000a}.$$

Numerical solution: a = 1/\$623, 426.

## **Measuring Utility Functions III**

The risk aversion characteristics of a person depend on the person's

- feelings about risk;
- current financial situation;
- the prospects for financial gains or requirements (such as college expenses);
- age.

An investor's attitude toward risk and toward type of investment might be inferred from responses to a questionnaire; see e.g. *Investment Science* p. 238.

### Connection to Mean-Variance Criterion

- Quadratic utility function  $U(x) = ax \frac{1}{2}bx^2$  for a, b > 0.
- Meaningful range of U:  $x \le a/b$  (where U is increasing).
- All random variables are assumed to lie in this range.
- Since b > 0, U is concave  $\Rightarrow$  risk aversion.



### **Connection to Mean-Variance Criterion**

• Suppose a portfolio has random wealth level y. Evaluate the expected utility of this portfolio:

$$E[U(y)] = E(ay - \frac{1}{2}by^{2}) = a E(y) - \frac{1}{2}b E(y^{2})$$
$$= a E(y) - \frac{1}{2}b E(y)^{2} - \frac{1}{2}b var(y).$$

- The optimal portfolio maximizes this value w.r.t. all feasible choices of y.
- If initial wealth = 1, then y = portfolio return. If the optimal solution has  $\mathrm{E}(y) = 1 + \bar{r}_{\mathrm{P}}$ , then y has minimum variance w.r.t. all feasible y's with  $\mathrm{E}(y) = 1 + \bar{r}_{\mathrm{P}}$ .
- ⇒ The solution is a mean-variance efficient point!

COMPUTATIONAL FINANCE 40

### **Securities**

**Definition:** A security is a random payoff variable d. The payoff is revealed and obtained at the end of the period (d can be interpreted as a dividend). Associated with a security is a price P.

#### Examples:

- imagine a security that pays d = \$10 if it rains tomorrow or d = \$ 10 if it is sunny, with zero initial price (this is a \$10 bet that it will rain tomorrow);
- a share of IBM stock whose value at the end of the year is unknown.

Note: the payoff d is a random variable, while the price P is a real number.

## Type A Arbitrage

**Definition:** A type A arbitrage is an investment that produces an immediate positive reward with no future payoff.

 $\Rightarrow$  A type A arbitrage is a security with P < 0 and d = 0.

Reasonable assumption: there is no market-traded security which is a type A arbitrage since

- the market price of a security settles in such a way as to equalize the quantity demanded by buyers and the quantity supplied by sellers;
- nobody would want to sell a type A arbitrage, while everybody would want to buy it ⇒ no equilibrium of demand and supply is possible for a type A arbitrage.

### **Portfolios**

- Suppose that there are n securities with payoffs  $d_1, d_2, \ldots, d_n$  and prices  $P_1, P_2, \ldots, P_n$ ;
- **a** portfolio is represented by an n-dimensional vector  $\theta = (\theta_1, \theta_2, \dots, \theta_n)$ ;
- the *i*th component  $\theta_i$  represents the number of securities of type *i* in the portfolio;
- the payoff of the portfolio is

$$d = \sum_{i=1}^{n} \theta_i d_i$$

the total price of the portfolio is

$$P = \sum_{i=1}^{n} \theta_i P_i$$

⇒ Linearity of pricing

COMPUTATIONAL FINANCE (

# **Linearity of Pricing I**

#### Linearity of pricing means that

- 1. the price of the sum of two securities is the sum of their prices;
- 2. the price of a multiple of an asset is the same multiple of the price.

In an ideal market, the absence of type A arbitrage opportunities implies linear pricing.

#### A market is ideal if

- securities can be arbitrarily divided;
- there are no transaction costs;
- short sales are allowed.

# **Linearity of Pricing II**

**Theorem 1.** In an ideal market, the absence of type A arbitrage opportunities implies linear pricing.

*Proof.* Let d be a security with price P. Consider the security d'=2d with price P'.

- If P' < 2P, we would buy d' and sell short two units of d. We would obtain an immediate profit 2P P' and have no further obligation. This is a type A arbitrage!  $\Rightarrow P' \geq 2P$ .
- The reverse argument shows that  $P' \leq 2P \Rightarrow P' = 2P$ .

Similarly, we can show that for any  $\alpha \in \mathbb{R}$  the price of  $\alpha d$  is  $\alpha P$ .

# **Linearity of Pricing II**

**Theorem 2.** In an ideal market, the absence of type A arbitrage opportunities implies linear pricing.

*Proof.* Let  $d_1$  and  $d_2$  be securities with prices  $P_1$  and  $P_2$ . Consider the security  $d' = d_1 + d_2$  with price P'.

- If  $P' < P_1 + P_2$ , we would buy d' and sell short one unit of  $d_1$  and  $d_2$  each. We would obtain an immediate profit  $P_1 + P_2 P'$  and have no further obligation. This is a type A arbitrage!  $\Rightarrow P' \geq P_1 + P_2$ .
- The reverse argument shows that  $P' \leq P_1 + P_2 \Rightarrow P' = P_1 + P_2$ .

Therefore, in general, the price of  $\alpha d_1 + \beta d_2$  must be  $\alpha P_1 + \beta P_2$ .

## Type B Arbitrage

**Definition:** A type B arbitrage is an investment that has

- nonpositive cost,
- positive probability of yielding a positive payoff,
- and no probability of yielding a negative payoff.
- ⇒ A type B arbitrage is a security with
  - $P \le 0$ ,
  - $\bullet$   $d \geq 0$ ,
  - and Prob(d > 0) > 0.

**Example:** a free lottery ticket.

Below we assume that neither type A nor type B arbitrage is possible.

### Portfolio Problem I

An investor with utility function U and initial wealth W solves the problem

- Investor maximizes expected utility of final wealth.
- ullet Final wealth is described by the random variable x.
- ullet The portfolio may not cost more than W.

### Portfolio Problem II

**Theorem 3.** Assume that U(x) is continuous,  $U(x) \to +\infty$  as  $x \to +\infty$ , and there is a portfolio  $\theta^0$  such that  $\sum_{i=1}^n \theta_i^0 d_i > 0$ . Then:

 $\mathcal{P}$  has a solution  $\iff$  there is no arbitrage possibility.

#### *Proof.* $\Rightarrow$ :

- If  $\exists$  type A arbitrage  $\Rightarrow$  using the arbitrage we can generate money to buy an arbitrary amount of portfolio  $\theta^0$ . Thus,  $\mathrm{E}[U(x)]$  is unbounded, and there exists no optimal portfolio.
- If  $\exists$  type B arbitrage with payoff  $\bar{x} \Rightarrow$  we can buy (at zero or negative cost) an arbitrary amount of this arbitrage to increase  $\mathrm{E}[U(x)]$  arbitrarily (recall that  $\mathrm{Prob}(\bar{x}>0)>0$ ).
- $\Rightarrow$  If  $\exists$  a solution for  $\mathcal{P}$ , then there can be no type A or B arbitrage.

### Portfolio Problem III

To solve  $\mathcal{P}$  we note that  $\sum_{i=1}^{n} \theta_i P_i = W$  at the optimum.

Thus, we study the simplified problem

$$\underset{\theta \in \mathbb{R}^n}{\text{maximize}} \quad \mathbf{E}\left[U\left(\sum_{i=1}^n \theta_i d_i\right)\right]$$

subject to 
$$\sum_{i=1}^{n} \theta_i P_i = W$$
,

whose Lagrangian function reads

$$L(\theta, \lambda) = E\left[U\left(\sum_{i=1}^{n} \theta_{i} d_{i}\right)\right] - \lambda\left(\sum_{i=1}^{n} \theta_{i} P_{i} - W\right).$$

### Portfolio Problem IV

Differentiating L w.r.t.  $\theta_i$  gives the optimality conditions:

$$E[U'(x^*)d_i] = \lambda P_i \quad \text{for} \quad i = 1, 2, \dots, n, \tag{1}$$

where  $x^* = \sum_{i=1}^n \theta_i^* d_i$  and  $\theta^*$  is an optimal portfolio for  $\mathcal{P}$ .

The optimality conditions (1) and the budget constraint  $\sum_{i=1}^{n} \theta_i P_i = W$  represent n+1 equations for the n+1 unknowns  $\theta_1, \theta_2, \ldots, \theta_n$ , and  $\lambda$ . It can be shown that  $\lambda > 0$ .

The equations (1) serve two roles:

- they can be used to solve  $\mathcal{P}$ ;
- they provide a characterization of the securities prices under the assumption of no arbitrage.

COMPUTATIONAL FINANCE 46

### Portfolio Problem V

Theorem 4. If  $x^* = \sum_{i=1}^n \theta_i^* d_i$  solves  $\mathcal{P}$ , then

$$\mathrm{E}[U'(x^*)d_i] = \lambda P_i \quad \textit{for} \quad i = 1, 2, \dots, n,$$

where  $\lambda > 0$ . If there is a risk-free asset with total return R, then

$$rac{\mathrm{E}[U'(x^*)d_i]}{R\mathrm{E}[U'(x^*)]} = P_i$$
 for  $i = 1, 2, \dots, n$ .

*Proof.* The risk-free asset has price  $P_i = 1$  and payoff  $d_i = R$ . The optimality condition for this asset implies

$$\lambda = \mathrm{E}[U'(x^*)]R.$$

Substituting this expression for  $\lambda$  into (1) proves the theorem.

### A Film Venture I

There are two 'securities' with a two year horizon:

- a risk free asset yielding 20%;
- a film venture with three possible return outcomes.

|                  | Return | Probability |
|------------------|--------|-------------|
| High success     | 3.0    | 0.3         |
| Moderate success | 1.0    | 0.4         |
| Failure          | 0.0    | 0.3         |
| Risk free        | 1.2    | 1.0         |

An investor with utility  $U(x) = \ln x$  and capital W selects the amounts  $\theta_1$  and  $\theta_2$  of the two securities (both have price 1).

maximize  $[.3 \ln(3\theta_1 + 1.2\theta_2) + .4 \ln(\theta_1 + 1.2\theta_2) + .3 \ln(1.2\theta_2)]$  subject to  $\theta_1 + \theta_2 = W$ .

COMPUTATIONAL FINANCE 40

### A Film Venture II

The optimality conditions (1) translate to

$$\frac{.9}{3\theta_1 + 1.2\theta_2} + \frac{.4}{\theta_1 + 1.2\theta_2} = \lambda$$

$$\frac{.36}{3\theta_1 + 1.2\theta_2} + \frac{.48}{\theta_1 + 1.2\theta_2} + \frac{.36}{1.2\theta_2} = \lambda.$$

Solving these two equations together with the constraint  $\theta_1 + \theta_2 = W$  yields the optimal portfolio choice:

$$\theta_1 = .089W$$
,  $\theta_2 = .911W$ ,  $\lambda = 1/W$ .

 $\Rightarrow$  The investor should commit 8.9% of his/her wealth to the film venture and the rest to the risk free asset.