Homework 24-11

2U: Graphing Techniques

Complete the homework quiz – given that it is assessment period, I will give you a couple of weeks to complete this quiz. It will close on 8 Dec.

3U: Vectors

Write down the following using column vector notation $\begin{bmatrix} x \\ y \end{bmatrix}$.

(a)
$$i + 2j$$

(c)
$$-i + 5j$$

(b)
$$-2i + 3j$$

(d)
$$-\frac{1}{2}\tilde{z} + \frac{5}{2}\tilde{z}$$

Let A = (2, 4) and B = (5, 3).

- (a) Draw the displacement vector \overrightarrow{AB} .
- (b) Draw the position vector \overrightarrow{AB} .
- (c) Write down the representation of \overrightarrow{AB} in the form $a_{\widetilde{i}} + b_{\widetilde{j}}$ and $\begin{bmatrix} a \\ b \end{bmatrix}$.

Let $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. Find constants a and b such that $a\mathbf{u} + b\mathbf{v} = \begin{bmatrix} 11 \\ 7 \end{bmatrix}$

The diagram below shows a line segment AE with three points in between B, C and D such that the interval AE is split into four equal intervals.

Let $\overrightarrow{AC} = \mathbf{u}$. Find the following in terms of \mathbf{u} .

(a)
$$\overrightarrow{AB}$$

(c)
$$\overline{BI}$$

(e)
$$\overrightarrow{BE}$$

 \overrightarrow{DA}

(b)
$$\overrightarrow{DC}$$

$$\overline{EC}$$

The diagram below shows a point P on an interval UV, which is twice as far from V as it is from U. Let $\mathbf{u} = \overrightarrow{OU}$, $\mathbf{v} = \overrightarrow{OV}$ and $\mathbf{p} = \overrightarrow{OP}$.

- Write down the vector that represents $\mathbf{u} + \overrightarrow{UV}$. (a)
- Write down the vector that represents $\mathbf{u} + \overrightarrow{UP}$. (b)
- Deduce that $\mathbf{p} = \frac{2}{3}\mathbf{u} + \frac{1}{3}\mathbf{v}$. (c)

Let $\mathbf{a} = \underbrace{i} + 5\underbrace{j}$, $\mathbf{b} = 3\underbrace{i} - 2\underbrace{j}$ and $\mathbf{c} = -2\underbrace{i} - 4\underbrace{j}$. Calculate the following.

- (a)
- $|\mathbf{b}|$ (e) $|\mathbf{a} \mathbf{b}|$ (g)

 $|\hat{\mathbf{a}}|$

 $|\hat{\mathbf{b}}|$

- (b) $|-\mathbf{a}|$ (d) $|\mathbf{c}|$ (f) $|\mathbf{b}-\mathbf{a}|$ (h)

- If $|\mathbf{a}| = 3$, $|\mathbf{b}| = 4$, and the angle between \mathbf{a} and \mathbf{b} is $\frac{\pi}{3}$, find $\mathbf{a} \cdot \mathbf{b}$. (a)
- If $|\mathbf{a}| = 3$, $|\mathbf{b}| = 4$, and the angle between \mathbf{a} and \mathbf{b} is $\frac{2\pi}{3}$, find $\mathbf{a} \cdot \mathbf{b}$. (b)
- If $|\mathbf{a}| = 2$, $|\mathbf{b}| = 1$, and the angle between \mathbf{a} and \mathbf{b} is $\frac{\pi}{2}$, find $\mathbf{a} \cdot \mathbf{b}$. (c)

The diagram below shows a unit vector \mathbf{u} being one of the sides of a square, and \mathbf{v} being the diagonal of the square.

Calculate $\mathbf{u} \cdot \mathbf{v}$.

The diagram below shows two vectors ${\bf u}$ and ${\bf v}$. Draw the

(a) vector projection of \mathbf{u} onto \mathbf{v} . (b) vector projection of \mathbf{v} onto \mathbf{u} .

For the following pairs of vectors \mathbf{u} and \mathbf{v} , find the vector projection of \mathbf{u} onto \mathbf{v} .

(a)
$$\mathbf{u} = i + 4j, \ \mathbf{v} = 3i + 6j$$

(c)
$$\mathbf{u} = -4i + 3j, \, \mathbf{v} = -2i - j$$

(a)
$$\mathbf{u} = \underbrace{i} + 4 \underbrace{j}, \mathbf{v} = 3 \underbrace{i} + 6 \underbrace{j}$$
 (c) $\mathbf{u} = -4 \underbrace{i} + 3 \underbrace{j}, \mathbf{v} = -2 \underbrace{i} - \underbrace{j}$
(b) $\mathbf{u} = -3 \underbrace{i} + \underbrace{j}, \mathbf{v} = 2 \underbrace{i} + 4 \underbrace{j}$ (d) $\mathbf{u} = 2 \underbrace{i} - 5 \underbrace{j}, \mathbf{v} = 4 \underbrace{i} - 3 \underbrace{j}$

(d)
$$\mathbf{u} = 2i - 5j, \, \mathbf{v} = 4i - 3j$$