

পাশের ছবিতে যে জিনিসটা দেখতে পাচ্ছ তার নাম কী?

এই জিনিসটার নাম হচ্ছে 'দাঁড়িপাল্লা'। যেকোনো দোকানে দেখতে পাবে এই জিনিসটা নিয়ে ওজন মেপে বিভিন্ন মালামাল বিক্রি করা হয়। আমরা আপাতত প্রচলিত অর্থে কোনো বস্তুর ওজন ১ কেজি, ২ কেজি এভাবেই বলি। আসলে কিন্তু ওজন ১ কেজি' কথাটা ঠিক নয়। খেয়াল করে দেখবে মাপা হয় কিন্তু গ্রাম, কেজি (kilogram, সংক্ষেপে kg) এককে। কাজেই বুঝতে পারছ আসলে ওজন নয়, মাপা হয় ভর।

এই ব্যাপারটা আরও সুন্দর করে বুঝতে চাইলে ষষ্ঠ শ্রেণির বিজ্ঞান পাঠ্যপুস্তকের 'অধ্যায় ১- বিজ্ঞান ও প্রযুক্তি' এর 'বিভিন্ন রাশির পরিমাপ' অংশটা পড়ে নাও। আচ্ছা, দাঁড়িপাল্লা দিয়ে কীভাবে ওজন মাপে সেটা কী জানো? দাঁড়িপাল্লার দুইটা পাল্লা থাকে একটা বামে এবং একটা ডানে। দুইটা পাল্লার যেদিকে বেশি ওজনের জিনিস থাকে সেটার ভর বেশি। তাই সেটা নিচে নেমে যায়। তার মানে যে পাল্লায় কম ওজনের জিনিস থাকে সেটা উপরের দিকে উঠে যায়। যেমন:

একজন দোকানদার দাঁড়িপাল্লার বাম পাল্লায় 5 কেজি ওজনের একটি বাটখারা ও ডান পাল্লায় কিছু পরিমাণ আলু রাখলেন। পাল্লা দুইটির জিনিসের ওজন কি সমান হয়েছে?

এখানে আলুর ওজন কত তা নির্দিষ্টভাবে বলা সম্ভব?

তাহলে আমরা বলতে পারি আলুর ওজন অজানা বা অজ্ঞাত।

এবার দোকানদার ডান পাল্লায় আলুর সাথে 2 কেজি ওজনের একটি বাটখারা দিলেন। ফলে দুই পাল্লার জিনিসের ওজন সমান হয়েছে।

এখন আলুর অজানা ওজন x কেজি ধরা হলে, ডান পাল্লায় বাটখারাসহ জিনিসের মোট ওজন হবে (x+2) কেজি।

তাহলে, দুই পাল্লার এই সমতাটিকে একটি বীজগাণিতিক সম্পর্কের মাধ্যমে প্রকাশ করতে পারি এবং তা হলো:

$$x + 2 = 5$$

এটি হলো একটি গাণিতিক বাক্য ও সমতা। আর সমান চিহ্ন সংবলিত গাণিতিক বাক্যকে আমরা সমীকরণ বলে থাকি। এখানে অজানা বা অজ্ঞাত রাশি x কে চলক (variable) বলি। সাধারণত ইংরেজি বর্ণমালার ছোট হাতের অক্ষরগুলোকে অজ্ঞাত রাশি বা চলক হিসেবে ব্যবহার করা হয়।

এখন একটু চিন্তা করে দেখো 'দাঁড়িপাল্লা' ও 'সমীকরণ' এর মধ্যে কোনো মিল খুঁজে পাও কিনা। দাঁড়িপাল্লায় দুইটি পাল্লা থাকে। একটি বাম পাল্লা ও অপরটি ডান পাল্লা। উভয় পাল্লার ওজন সমান হলে দাঁড়িপাল্লাটি সমতায় আসে। যেকোনো একটি পাল্লা থেকে ওজন কমিয়ে নিলে অপর পাল্লাটি নিচের দিকে নেমে যায়। অর্থাৎ ঐ দিকের ওজন বেশি হয়। সেক্ষেত্রে দাঁডিপাল্লাটি সমতায় থাকে না।

ভেবে দেখো তো কি করলে দাঁড়িপাল্লাটিকে আবার সমতায় আনা যাবে? তোমরা ঠিকই ভাবছ— দুটি কাজ করে দাঁড়িপাল্লাটি সমতায় আনা যাবে।

- ১. দাঁড়িপাল্লাটির যে পাল্লা নিচে নেমে গেছে, সেটি থেকে ওজন কমিয়ে অথবা
- দাঁড়িপাল্লাটির যে পাল্লা উপরে উঠে গেছে সেই পাল্লাটিতে ওজন বাড়িয়ে।

অপরদিকে একটি সমীকরণেরও দুইটি পক্ষ থাকে। একটি বামপক্ষ ও অপরটি ডানপক্ষ। উভয় পক্ষের মাঝে একটি সমান (=) চিহ্ন থাকে। সমান চিহ্নের বাম পাশের রাশিকে আমরা বামপক্ষ এবং ডান পাশের রাশিকে ডানপক্ষ বলে থাকি। চলকের নির্দিষ্ট মানের জন্য সমীকরণের বামপক্ষ ও ডানপক্ষ অবশ্যই সমান হতে হবে।

উদাহরণ সরূপ আমরা বলতে পারি: x+4=13, x+6=9, 2y-1=5, 3-z=10 ইত্যাদি সমীকরণ। এখানে চলক হিসেবে x,y,z ব্যবহার করা হয়েছে এবং চলকের নির্দিষ্ট মানের জন্য সমীকরণগুলোর বামপক্ষ ও ডানপক্ষ সমান।

একক কাজ: তোমরা প্রত্যেকে x,y এবং z সংবলিত পাঁচটি করে সমীকরণ লেখো।

সমীকরণ সম্পর্কে আরও জানি

তোমাদের অনেকের মধ্যেই সমীকরণ সম্পর্কে প্রশ্ন আছে মনে হচ্ছে। তাহলে চলো একটি গল্পের মাধ্যমে বিষয়টি বোঝার চেষ্টা করি। মনে করো স্বগ্নীল মিতার চেয়ে $\frac{1}{2}$ বছরের ছোট। যদি মিতার বয়স x বছর হয়, তবে স্বগ্নীলের বয়স হবে (x-2) বছর তাই না? এখন ধরো স্বগ্নীলের বয়স 12 বছর। তাহলে, (x-2) এবং 12 এর মধ্যে নিশ্চয়ই একটি সম্পর্ক আছে। সম্পর্কটি হলো: x-2=12

এটিই হলো 🗴 চলকবিশিষ্ট একটি সমীকরণ।

এবার চলো x এর বিভিন্ন মানের জন্য (x-2) এর মানগুলো বের করে নিচের ছকটি পূরণ করি:

x	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
x-2	0	_	_	_	_	_	_	_	_	_	10	11	12	13	_	_

টেবিলের খালি ঘরগুলো পূরণ করো। টেবিলটি লক্ষ করো, দেখতে পাবে একমাত্র x=14 এর জন্য x-2=12 সম্পর্কটির বামপক্ষও ডানপক্ষসমান হয়। x এর অন্য কোনো মান যেমন: x=12, x=16 ইত্যাদি এর জন্য x-2=12 সম্পর্কটির বামপক্ষ ও ডানপক্ষ সমান হয় না। সবশেষ আমরা বলতে পারি, সমীকরণ তাকেই বলব যা চলকের নির্দিষ্ট মানের জন্য বামপক্ষ ও ডানপক্ষ সমান হয়।

তোমরা নিশ্চয়ই জানো চলকযুক্ত বীজগাণিতিক রাশিকে বৃহত্তর (>) বা ক্ষুদ্রতর (<) চিহ্নের মাধ্যমেও প্রকাশ করা যায়।

যেমন: x-1>8, 2y+7<13, z>15 ইত্যাদি। তবে এই ধরনের চলকযুক্ত বীজগাণিতিক সম্পর্ককে সমীকরণ বলা যাবে না। একটু চিন্তা করে দেখো তো, কেন তাদেরকে সমীকরণ বলা যাবে না? এই সম্পর্কগুলোর মধ্যে কি (=) চিহ্ন আছে? এগুলো কি চলকের নিদিষ্ট মানের জন্য সিদ্ধ হয়? নিশ্চয়ই না, তাই না? বৃহত্তর (>) বা ক্ষুদ্রতর (<) চিহ্নযুক্ত রাশিগুলো চলকের অসংখ্য মানের জন্য সঠিক হয়ে থাকে।

নিচের সম্পর্কটি লক্ষ করো:

15+7=21, এটি কি সমীকরণ? সম্পর্কটিতে কিন্তু (=) চিহ্ন আছে। চিন্তা করে উত্তর দাও।

নিচের ছকটি পূরণ করো:

ক্রমিক নম্বর	বীজগাণিতিক সম্পর্ক	অজ্ঞাত রাশি বা চলক	সমীকরণ হলে (৴) আর না হলে (×) চিহ্ন দাও	যৌক্তিক কারণ বা ব্যাখ্যাসহ মন্তব্য
(i)	x + 20 = 60			
(ii)	2z > 14			
(iii)	5 <i>y</i> = 100			
(iv)	$\frac{x}{3} < 1$			
(v)	7 - z = 0			
(vi)	$\frac{x}{0} = 2$			
(vii)	9 - 3 = 6			

একক কাজ: তোমরা প্রত্যেকে খাতায় উপরের ছকটির অনুরূপ একটি ছক তৈরি করো। তারপর কমপক্ষে পাঁচটি বীজগাণিতিক সম্পর্ক লিখে ছকটি পূরণ করে তা উপস্থাপন করো।

সরল সমীকরণ (Linear Equation)

অজ্ঞাত রাশি বা চলকের একঘাতবিশিষ্ট সমীকরণই হলো সরল সমীকরণ। যেমন: 2x-5=0,y+3=10,2x-1=x+4 ইত্যাদি। কেননা এদের প্রত্যেকটি এক চলকবিশিষ্ট ও একঘাতবিশিষ্ট।

একক কাজ: তোমরা প্রত্যেকে কমপক্ষে পাঁচটি করে এক চলকবিশিষ্ট সরল সমীকরণ লেখো। তোমার লেখা সমীকরণটি কেন সরল সমীকরণ তার যৌক্তিক ব্যাখ্যা প্রদান করো।

বাস্তব সমস্যাকে এক চলকবিশিষ্ট সরল সমীকরণের মাধ্যমে প্রকাশ

নিচের ছকের বাস্তব সমস্যাগুলোকে এক চলকবিশিষ্ট সরল সমীকরণের মাধ্যমে প্রকাশ করে ছকটি পূরণ করো। এক্ষেত্রে তুমি তোমার পছন্দমতো অজানা রাশি বা চলক ব্যবহার করতে পারবে।

ক্রমিক নম্বর	বাস্তব সমস্যা	অজানা রাশি বা চলক	সমীকরণ
۵.	রাজুর বয়স 12 বছর। মিতা, রাজুর চেয়ে তিন বছরের ছোট।	মিতার বয়স $oldsymbol{x}$ বছর	x + 3 = 12
২.	একটি সংখ্যার দ্বিগুনের সাথে 7 যোগ করলে যোগফল 21 হবে।	সংখ্যাটি <i>y</i>	
૭.	তোমার কাছে থাকা কিছু চকলেট থেকে তুমি তোমার ছোট বোনকে 5টি চকলেট দেয়ায় তোমার 4টি থাকল।		
8.	তোমার আয়তাকার শ্রেণিকক্ষের দৈর্ঘ্য প্রস্থ অপেক্ষা 2 মিটার বেশি এবং পরিসীমা 60 মিটার।		
Œ.	সাদিয়ার কাছে কিছু এবং অপুর কাছে 20 টাকা আছে। দু'জনের কাছে মোট 45 টাকা আছে।		
৬.	তোমার কাছে 15টি বরই ছিল যা থেকে কিছু বরই বন্ধুরা খেয়ে ফেলায় আর <mark>7</mark> টি বরই অবশিষ্ট আছে।	খেয়ে ফেলা বরই এর সংখ্যা x	

দলগত কাজ: দলনেতা তার খাতায় উপরের ছকটির অনুরূপ একটি ছক তৈরি করবে। তারপর দলের সকল সদস্য পরস্পরের সাথে আলাপ আলোচনা করে কমপক্ষে পাঁচটি বাস্তব সমস্যা লিখে ছকটি প্রণ করবে।

সরল সমীকরণের সমাধান

একটি সমীকরণ থেকে এর অজানা রাশি বা চলকটির মান বের করার প্রক্রিয়াকে আমরা সমীকরণের সমাধান বলে থাকি। আর চলকের মান হলো সমীকরণের মূল। এই মূল সমীকরণিটর উভয় পাশে বসালে বামপক্ষ ও ডানপক্ষ সমান হয়।

সমীকরণ সমাধান করতে হলে জানতে হবে

- ১. সমীকরণের পরস্পর সমান রাশির প্রত্যেকটির সাথে একই রাশি যোগ করলে যোগফলগুলো পরস্পর সমান হবে।
- ২. পরস্পর সমান রাশির প্রত্যেকটির সাথে একই রাশি বিয়োগ করলে বিয়োগফলগুলো পরস্পর সমান হবে।
- সমীকরণের পরস্পর সমান রাশির প্রত্যেকটিকে একই রাশি দ্বারা গুণ করলে গুণফলগুলো পরস্পর সমান হবে।
- 8. পরস্পর সমান রাশির প্রত্যেকটিকে অশূন্য একই রাশি দ্বারা ভাগ করলে ভাগফলগুলো পরস্পর সমান হবে। শূন্য দিয়ে ভাগ করা কেন যায় না ব্যাপারটা ভেবে দেখতো?

ট্রায়াল এন্ড এরোর প্রক্রিয়ায় সমাধান যাচাই করে সরল সমীকরণের সমাধানে পৌছাই

একক কাজ: তোমরা প্রত্যেকে উপরের চারটি তথ্যের প্রত্যেকটির জন্য একটি করে সমীকরণ লেখো এবং সরল করে সমীকরণগুলো সমাধান করো।

ক্রমিক নম্বর	সমীকরণ	চলকের মান	শুদ্ধি পরীক্ষা	সমাধান শুদ্ধ হলে হলে (🗸) আর না হলে (×) চিহ্ন দাও
		x = 14		
۵.	x + 5 = 9	x = 4		

ক্রমিক নম্বর	সমীকরণ	চলকের মান	শুদ্ধি পরীক্ষা	সমাধান শুদ্ধ হলে হলে (🗸) আর না হলে (×) চিহ্ন দাও
	<i>y</i> - 6 = 11	y = 17		
۷.	0 - 11	y = 5		
	2x + 1 = 25	x = 12		
૭ .	$2\lambda + 1 - 2S$	x = 13		
	$\frac{y}{3} = 12$	<i>y</i> = 54		
8.		<i>y</i> = 36		
	4 - x = 10	x = 14		
₡.	$4-\lambda = 10$	x = -6		
		z = 5		
৬.	$\begin{vmatrix} 3z - 8 = \\ z + 2 \end{vmatrix}$	z = 4		

অনুশীলনী

ছক তৈরি করে নিচের কোনগুলো সমীকরণ এবং কোনগুলো সমীকরণ নয় যুক্তিসহ উপস্থাপন করো।

$$(a)15 = x + 5$$

(a)
$$15 = x + 5$$
 (b) $(y - 6) < 3$ (c) $\frac{6}{2} = 2$

$$(c) \frac{6}{3} = 2$$

$$(d) z - 4 = 0$$

$$(e) (4 \times 3) - 12 = 0$$

(d)
$$z - 4 = 0$$
 (e) $(4 \times 3) - 12 = 0$ (f) $2x + 3 = x - 15$

(g)
$$y + 25 > 30$$

$$(h) 8 - x = 11$$

(g)
$$y + 25 > 30$$
 (h) $8 - x = 11$ (i) $20 - (10 - 5) = 3 \times 5$

$$(j) \frac{5}{0} = 5$$

$$(k) 15y = 45$$

(j)
$$\frac{5}{0} = 5$$
 (k) $15y = 45$ (l) $7 = (11 \times 2) + x$

নিচের ছকের সমস্যাগুলোকে সমীকরণ আকারে প্রকাশ করো। ١\$

ক্রমিক নম্বর	সমস্যা	সমীকরণ	সমীকরণের মূল
(<i>i</i>)	একটি সংখ্যা x এর দ্বিগুণের সাথে 7 যোগ করলে যোগফল 23 হবে।		·
(ii)	দুইটি ক্রমিক স্বাভাবিক সংখ্যার যোগফল 36 এবং ছোট সংখ্যাটি y		
(iii)	একটি সংখ্যা x এর চার গুণ থেকে 5 বিয়োগ করলে প্রাপ্ত বিয়োগফল সংখ্যাটির দ্বিগুণ অপেক্ষা 19 বেশি।		
(iv)	একটি আয়তাকার পুকুরের দৈর্ঘ্য x মিটার, দৈর্ঘ্য অপেক্ষা প্রস্থ 3 মিটার কম এবং পুকুরটির পরিসীমা 26 মিটার।		
(v)	পুত্রের বর্তমান বয়স y বছর, পিতার বয়স পুত্রের বয়সের ছয় গুণ। তাদের বর্তমান বয়সের সমষ্টি 35 বছর।		

প্রতিটি সমীকরণের পাশে থাকা কলামের ভিতরের মানগুলো থেকে সঠিক মূলটি বেছে নাও। অবশিষ্ট 91 মানগুলো কেন সমীকরণটির মল হবে না ব্যাখ্যা করো।

ক্রমিক নম্বর	সমীকরণ	মান
(<i>i</i>)	2x + 5 = 15	10, 5, – 5
(ii)	5 - y = 7	12, 2, -2
(iii)	5x - 2 = 3x + 8	5, 1, -5
(iv)	2y + 2 = 16	18, 9, 7
(v)	4z - 5 = 2z + 19	12, 7, 4

- 8। মীনা 100 টাকার একটি নোট নিয়ে বাজারে গেল। সে একটি দোকান থেকে প্রতিটি x টাকা দামের এক ডজন কলম কিনল। দোকানদার তাকে 40 টাকা ফেরত দিলেন। মীনা অন্য একটি দোকান থেকে প্রতিটি 12 টাকা দামের yটি খাতা কেনায় 4 টাকা অবশিষ্ট রইল।
 - ক) প্রতিটি কলমের মল্য নির্ণয় করো।
 খ) মীনা কয়টি খাতা কিনেছিল?
- ৫। করিম সাহেব তাঁর 56000 টাকার কিছু টাকা বার্ষিক 12% মুনাফায় ও বাকি টাকা বার্ষিক 10% মুনাফায় বিনিয়োগ করলেন। এক বছর পর তিনি মোট 6400 টাকা মুনাফা পেলেন। তিনি 10% মুনাফায় কত টাকা বিনিয়োগ করেছেন?
- ৬। কোনো এক ক্রিকেট ম্যাচে সাকিব, মুশফিকুর রহিমের দ্বিগুণ রান করে। মাত্র ২ রানের জন্য দুজনের রানের সমষ্টি ডাবল সেঞ্চুরি হয় নাই। কে কত রান করেছে?
- ৭। খালি ঘর পুরণ করো।

- ৮। পানির একটা বোতলের ওজন 150 গ্রাম। মিনা 50 গ্রাম ওজনের একটা ব্যাগের মধ্যে কিছু সংখ্যক পানির বোতল রাখল। বোতলের সংখ্যাকে x দারা এবং পানির বোতলগুলোর ওজন ও ব্যাগের ওজনের যোগফল y দারা প্রকাশ করা হলো।
 - ক) x এবং y এর সম্পর্ক সমীকরণের মাধ্যমে লেখো।
 - খ) y এর মান নির্ণয় করো যখন x=15
 - গ) x এর মান নির্ণয় করো যখন y=1100
- ৯। x প্যাকেট বিস্কুট এবং এক বোতল পানীয়ের মূল্য একত্রে y টাকা। এক প্যাকেট বিস্কুটের মূল্য 20 টাকা এবং এক বোতল পানীয়ের মূল্য 15 টাকা।
 - ক) x এবং y এর সম্পর্ক সমীকরণের মাধ্যমে লেখো
 - খ) y এর মান নির্ণয় কর যখন x=25
 - গ) x এর মান নির্ণয় কর যখন y=255
- ১০। তোমার শিক্ষা প্রতিষ্ঠানের খেলার মাঠটির দৈর্ঘ্য, প্রস্থ অপেক্ষা 16 মিটার বেশি।
 - ক) খেলার মাঠটির প্রস্থx মিটার হলে, মাঠটির পরিসীমাx এর মাধ্যমে নির্ণয় করো।
 - খ) মাঠটির পরিসীমা 120 মিটার হলে, মাঠের ক্ষেত্রফল নির্ণয় করো।