Advanced Section 3 Echo-State Reservoir Computing

Marios Mattheakis

CS109B Data Science 2 Pavlos Protopapas, Mark Glickman and Chris Tanner

Outline

- Exploding and Vanishing Gradients
- Reservoir Computing: An echo-state RNN

Memory

A decision that a biological and an artificial neural network takes may or may not depend on an earlier decision.

I like reading any time. (No memory is needed, all times are the same)

I like running before the lunch but I do not like running after the lunch. (**Memory is needed**, I need to remember if I had lunch or not)

We need an *artificial memory*. The recurrent connections in RNNs allow dynamical behavior. These recurrent hidden states provide **memory**.

Outline

- Exploding and Vanishing Gradients
- Reservoir Computing: An echo-state RNN

Train an RNN

Train an RNN

The training is extremely difficult due to the recurrent connections

Back propagation

Back propagation

Back propagation

In the forward pass, we multiply the h in each time step. Similar in back-propagation. Getting deeper back in time, the gradients might become too strong or too weak

RNN Formulation

$$h_t = g_h (Vx_t + Uh_{t-1} + b'),$$

 $g_h(\cdot)$: Activation for hidden states

$$\hat{y}_t = g_y \left(W h_t + b \right)$$

 $g_y(\cdot)$: Activation of the output layer

Total loss is the sum of loss in each time step

$$L = \sum_{t=1}^{T} L_t$$

Consider a known sequence in the interval t = [1,T], this is the training set

Optimization

As usual, we have to minimize the total loss wrt all the weights *W, U, V*. But let's focus only on the recurrent weights

$$\frac{dL}{dU} = \sum_{t=1}^{T} \frac{dL_t}{dU}$$

Explore the chain rule just for a single time step

$$\frac{dL_t}{dU} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial U}$$

$$\frac{dL_t}{dU} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial U}
= \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial U}$$

$$\frac{dL_t}{dU} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial U}$$

$$= \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial U}$$

$$= \sum_{k=1}^{t} \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial U}$$

Even computing the gradient in one time step requires a huge chain rule application because it demands all the previous times steps

$$\begin{split} \frac{dL_t}{dU} &= \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial U} \\ &= \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial U} \\ &= \sum_{k=1}^t \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial h_t} \frac{\partial h_k}{\partial U} \end{split}$$
The bad term

Let's explore deeper ...

The "bad" term

Chain rule again

$$\frac{\partial h_t}{\partial h_k} = \frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial h_{t-2}} \cdots \frac{\partial h_k}{\partial h_{k-1}}$$
$$= \prod_{j=k+1}^t \frac{\partial h_j}{\partial h_{j-1}}$$

The "bad" term

Chain rule again

$$\frac{\partial h_t}{\partial h_k} = \frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial h_{t-2}} \cdots \frac{\partial h_k}{\partial h_{k-1}}$$

$$= \prod_{j=k+1}^{t} \left(\frac{\partial h_j}{\partial h_{j-1}} \right)$$

Jacobian matrix of the state to state transition.

The gradients is a huge product of Jacobian matrices. Explore this term (almost done)

Explore the Jacobian Matrix

Remind:

$$h_t = g_h (Vx_t + Uh_{t-1} + b')$$

Hence:

$$\frac{\partial h_j}{\partial h_{j-1}} = U^T g' \qquad \left(g' = \frac{\partial g_h}{\partial h_{j-1}} \right)$$

The Norm:

$$\left\| \frac{\partial h_j}{\partial h_{j-1}} \right\| = ||U^T g'|| \le ||U^T|| \ ||g'|| = \beta_U \ \beta_h$$

Vanishing & Exploding gradients

$$\left\| \frac{\partial h_t}{\partial h_k} \right\| = \left\| \prod_{j=k+1}^t \frac{\partial h_j}{\partial h_{j-1}} \right\| \le (\beta_U \ \beta_h)^{t-k}$$

$$(\beta_U \ \beta_h)$$
 > 1: Exploding gradients < 1: Vanishing gradients

It happens very fast as the time increases

Vanishing & Exploding gradients

Vanishing gradients:

Difficult to know in which direction to move for improving the loss function

Exploding gradients:

The learning becomes unstable

Solutions

- Clipping gradients
- Special RNN with leaky units such as:
 - Long-Short-Term-Memory (LSTM) and Gated Recurrent Units (GRU)
- Echo-state RNNs

Outline

Exploding and Vanishing Gradients

Reservoir Computing: An echo-state RNN

Reservoir Computing

Extremely fast training

Forecast, analyze, and control complex dynamical systems

(weather, stock market etc...)

Echo-State RNNs

RNNs is extremely difficult to be trained:

Due to the recurrent and the input weights mapping to hidden states

Echo State Networks:

Fix the recurrent and input weights and learn only the output weights:

Reservoir: The hidden units form a reservoir of temporal features that capture different aspects of the history inputs.

RC Architecture

Input: An arbitrary length sequence input vector

Reservoir: Mapping the input in a high-dimensional temporal feature space

Output: A linear or a classification layer depending on the task

RC Formulation

Input layer

$$W_{in}\mathbf{u}(t) + \mathbf{b}$$

Hidden recurrent dynamical nodes

$$\mathbf{r}(t + \Delta t) = (1 - \alpha)\mathbf{r}(t) + \alpha f\left(W_{in}\mathbf{u}(t) + \mathbf{b} + W_{r}\mathbf{r}(t)\right)$$

Output layer

$$\hat{\mathbf{y}}(t) = g\left(W_{out}\mathbf{r}(t)\right) + \mathbf{b}'$$

$$g() = Identity$$

$$g() = \text{softmax}$$

RC Formulation

Input layer

Hidden recurrent dynamical R

$$\mathbf{r}(t + \Delta t) = (1 - \alpha)\mathbf{r}(t) \quad \forall f \left(W_{in}\mathbf{u}(t) + \mathbf{b} + W_{r}\mathbf{r}(t)\right)$$

Output layer

ut layer
$$g(W_{out}\mathbf{r}(t)) = g(W_{out}\mathbf{r}(t)) + \mathbf{b}'$$

$$g() = Identity$$

$$g() = \text{softmax}$$

Recurrent states

The recurrent nodes consist a dynamical system. The states are determined by a system of autonomous nonlinear differential equations.

$$\frac{d\mathbf{r}(t)}{dt} = -\alpha \mathbf{r}(t) + \alpha f \left(W_{in} \mathbf{u}(t) + \mathbf{b} + W_r \mathbf{r}(t) \right)$$
$$\mathbf{r}(t + \Delta t) = (1 - \alpha)\mathbf{r}(t) + \alpha f \left(W_{in} \mathbf{u}(t) + \mathbf{b} + W_r \mathbf{r}(t) \right)$$

$$\mathbf{r}(t + \Delta t) = (1 - \alpha)\mathbf{r}(t) + \alpha f\left(W_{in}\mathbf{u}(t) + \mathbf{b} + W_{r}\mathbf{r}(t)\right)$$

Leaking Unit:

Decay constant α

The nonlinear dynamics:

Activation function: tanh, sigmoid ...

Everything is fixed here

Recurrent states

An example of some hidden states

Recurrent states

Generalizations:

Include delay in the link times (same or different for each state)

$$\mathbf{r}(t + \Delta t) = (1 - \alpha)\mathbf{r}(t) + \alpha f\left(W_{in}\mathbf{u}(t) + \mathbf{b} + W_{r}\mathbf{r}(t - \tau)\right)$$

More general:

$$\mathbf{r}(t + \Delta t) = h(\mathbf{r}(t - \tau), \mathbf{u}(t))$$

for a nonlinear activation function $h(\cdot)$

Hyper-Parameters Initialization

There are many hyper-parameters that we need to initialize

- The leaking constant, the input bias, and link-times delay
- The **number of hidden nodes** N (typically N > 500)
- W_{in} is randomly initialized by a **uniform distribution** in $[-\sigma, \sigma]$
- The sparsity factor D and the spectral radius ρ
- W_r is a sparse matrix randomly initialized by a normal distribution with D/N non-zero elements and with largest eigenvalue ρ

As usual, there is no systematic method to optimize the hyper-parameters

Training

We optimize **only** the output layer.

Essentially, it is a simple linear regression or a simple classification task

$$\hat{\mathbf{y}}(t) = g\left(W_{out}\mathbf{r}(t)\right) + \mathbf{b}'$$

Extremely fast training.

In many cases we know the exact solutions for the optimization process

Training: In a period [0, T] where all the signals (time-series) are known

Prediction: For t>T, where we know the input signals and predict the output

Forecasting

Linear regression

$$g(\cdot) = \text{Identity}$$

Loss Function: Mean Square Error + Ridge regularization

$$L = \sum_{t=0}^{T} (\mathbf{y}(t) - \hat{\mathbf{y}}(t))^{2} + \beta \text{Tr} \left[W_{out} W_{out}^{T} \right]$$

Regularization: Often we add weak random noise in the hidden units

Example: Mackey Glass

Task: Predict the evolution of a non-linear time series

Use the python class pyESN taken by: https://github.com/cknd/pyESN

Example: Mackey Glass

1 from pyESN import ESN

```
# Setup the RC hyper-parameters
   esn = ESN(n inputs = 1,
             n outputs = 1,
             n reservoir = 1000.
             spectral radius = 1.5,
 6
             sparsity=.2,
                                                          No input signal, so the input
             noise = 0.0001,
             random state=42)
                                                          function is the identity
   tTrain = np.ones(trainlen)
   tTest = np.ones(testlen)
   # Output data
   ytrain = data[:trainlen]
  ytest = data[trainlen:trainlen+testlen]
15
  # Train and predict
17 yfit = esn.fit(tTrain,ytrain)
  yhat = prediction = esn.predict(tTest)
```


Example: Mackey Glass

Photonic Reservoir Computing

Besides the algorithms there are many hardware setups for RC

Fig. 1: Hardware schematic. Physical TDR consisted of Mach-Zehnder interferometer (MZI), arbitrary waveform generator (AWG), electrical amplifier, two photodetectors, fiber splitter (90/10), and tunable optical attenuator (α). Red lines denote optical components while green lines indicate electrical components.

- Extremely fast evaluation (light speed)
- ✓Integrated photonic circuit Neural Net

Fig. 7: Actual (red) and predicted (t+294ms) (black) tumor displacement curves for sample a) #440, b) #805, c) #642, and d) #817.

N. McDonald et al., "Analysis of an Ultra-short True Time Delay Line Optical Reservoir Computer," in Journal of Lightwave Technology.

Long-range forecasting

Prediction

Inference

Using more signals as inputs drastically improves the prediction.

In that case we need to know the input signals for future times: Inference

The concept of **observers** that continuously provide partial information

Inference

Discussion

What is the RC learning?

- > It is learning patterns and trends from the past sequential data
- > Also, it is learning a real-time mapping between sequences (signals)

A very complex inference prediction

Neofotistos et al, Front. Phys. - Quantum Computing 7 (2019)

Research interest

Can we design an observer-based photonic **RC** with validation speed the *speed of light*?

It is loading

Are you interested in doing **research on RC**? Join us!

Neofotistos et al, Front. Phys. - Quantum Computing 7 (2019)

That's it

• The training of the RC is fast, so for the homework you can use either the JupyterHub or your laptop.

Thank you!

References

- https://github.com/cknd/pyESN
- https://github.com/FilippoMB/Reservoir-Computing-framework-for-multivariate-time-series-classification
- https://towardsdatascience.com/gentle-introduction-to-echo-state-networks-af99e5373c68
- 1. H. Jaeger and H. Haas. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication, Science 304 (2004)
- Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E. Ott. Reservoir observers: Model-free inference of unmeasured variables in chaotic systems, Chaos 27 (2017)
- 3. G. N. Neofotistos, M. Mattheakis, G. Barmparis, J. Hitzanidi, G. P. Tsironis, and E. Kaxiras. Machine learning with observers predicts complex spatiotemporal behavior. Front. Phys. Quantum Computing 7 (2019)

