Packet 2: Functions of Random Variables

Chap 5.5 Random Variables related with Normal distributions

Normal distribution (Gaussian distribution) is originally found by observing that mean of sample offen follows a special bell shaped distribution.

 $X \sim N(\mu, \sigma^2)$, $E(X) = \mu$, $Var(X) = \sigma^2$, has p.d.f. and m.g.f.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, M_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$$

$$P(M-B < X < M+b) = 0.68$$

$$P(M-2b < X < M+23) = 0.95$$

$$M-b M M+b$$

$$C_i C_i^{t}$$

Theorem 5.5-1: If
$$X_1, X_2, ... X_n$$
 are independent random variables with $X_i \sim N(\mu_i, \sigma_i^2)$, then $Y = \sum_{i=1}^n c_i X_i \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$.

$$M_{X_i}(c_i t) = \iint_{i=1} \mathcal{M}_{X_i}(c_i t) = \iint_{i=1} \mathcal{M}$$

$$S_0 \quad Y \sim N\left(\sum_{i=1}^n C_i M_i, \sum_{i=1}^n C_i^2 S_i^2\right)$$

If
$$C_i = \frac{1}{n}$$
 $M_i = M B_i^2 = B^2$

Corollary 5.5-1: If $X_1, X_2, ... X_n$ are independent random variables with $X_i \sim N(\mu, \sigma^2)$, then $X \sim N(\mu, \sigma^2/n)$.

sample mean

$$\underset{\text{Var}}{\text{AS}} \stackrel{\text{N}}{\rightarrow} \infty$$

Theorem 5.5-2: If $X_1, X_2, ... X_n$ are independent random variables with $X_i \sim N(\mu, \sigma^2)$, then the sample mean \bar{X} and the sample variance $S^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$ are independent,

$$\frac{S^{2}(n-1)}{\sigma^{2}} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$$

$$\frac{1}{\varepsilon} \left(\frac{S^{2}(n-1)}{S^{2}} \right) = n-1 \qquad \frac{(N-1)}{S^{2}} E(S^{2}) = n-1 \qquad E(S^{2}) = S^{2}$$

$$\bar{\xi}\left(\frac{S^{2}(n-1)}{\delta^{2}}\right)=n-1$$

$$E(S^2) = B^2$$

sample variance 52 is an unbiased estimator for true variance 2

Theorem 5.5-3: Student's t distribution $T = \frac{Z}{\sqrt{U/r}} \sim t(r)$, where $Z \sim N(0,1)$ and $U \sim \chi^2(r)$. If $X_1, X_2, ... X_n$ are independent random variables with $X_i \sim N(\mu, \sigma^2)$, then

$$T = \sqrt{\frac{\bar{X} - \mu}{S/\sqrt{n}}} \sim t(n-1)$$

$$\overline{X} \sim N(M, \frac{3}{n}) Z = \frac{\overline{X} - M}{\frac{3^2}{n}} \sim N(0, 1)$$

$$U = \frac{S^2(n-1)}{b^2} \sim \chi^2(n-1)$$

$$\overline{\int} = \frac{Z}{\sqrt{U/(n-1)}} \sim t(n-1)$$

$$\frac{\overline{X} - M}{\sqrt{\overline{b^2}} / \sqrt{n}} = \frac{\overline{X} - M}{\sqrt{\overline{Z^2}} / \sqrt{n}}$$

$$\frac{\overline{S^2 (n-1)}}{\overline{S}}$$

statistic

Chap 5.6 The Central Limit Theorem (CLT)

i.i.d. independently and identically distributed CLT tells us that, with sufficiently many i.d. samples collected, the sample mean \bar{X} follows

 $N(\mu, \sigma^2/n)$ approximately, regardless the true distribution of X_i .

The distribution of Xi's is complicated or unknown

 $X = \frac{1}{n} \sum_{i=1}^{n} \lambda_i$ N(M, $\frac{3}{n}$) when n is large

E(Xi) = M Var(Xi) = 22

Example: X1 -- X18 i.i.d. with p.d.f.

 $f(x) = 1 - \frac{1}{2} \chi \qquad 0 < \chi < 2 \qquad | f(x)$

Find the approximate distri of X by CLT

 $C_0 L M = E(X) = \int_0^L x f(x) dx = \frac{2}{3}$

 $E(\chi^2) = \int_0^2 \chi^2 f(x) d\chi = 2/3$

 $E' = V_{AY}(X) = E(X^2) - (E(X))^2 = 2/3 - (2/3)^2 = 2/9$

by CLT $X \sim N(M, \frac{3^2}{n})$ $N(\frac{2}{3}, \frac{2/9}{18})$ *much easier than finding

 $N\left(\frac{2}{3}, \left(\frac{1}{9}\right)^2\right)$ the exact distribution