# Database Processing CS 451 / 551

Lecture 6: Hashing





Assistant Professor
Distopia Labs and ORNG
Dept. of Computer Science
(E) <a href="mailto:suyash@uoregon.edu">suyash@uoregon.edu</a>

(W) gupta-suyash.github.io

## Assignment 1 is Out! Deadline: Oct 28, 2025 at 11:59pm

Start collaborating with your groups!

## Term Paper for Graduate Students

- Select one area.
- **Select one paper published** in 2025 from the following 4 conferences:
  - No two students can select the same paper.
  - Your selected paper needs my approval.
- VLDB, SIGMOD, OSDI, SOSP.
- Describe the following in 4-page style ACM Sigmod double-column style.
  - What is the paper's goal?
  - How is it meeting its goal?
  - What are the disadvantages of the proposed design and advantages of the proposed design?
  - Explain how can you improve the proposed design?
  - What architectural changes you need to do?
  - How to provide support for queries, say Natural Join?
- Topics:
  - Federated Learning, Vector Databases, Graph Databases, Privacy-Preserving Databases

## **Unordered Indexing**

• Until now, we studied ordered indexes, such as clustered indexes and trees.

• Next, we will look at unordered indexes → Hash indexes.

# Hashing

## Hashing

- Three key components of a hash index:
  - A hash table, which stores all the keys.
  - A **function** that helps to map the key to hash table.
  - An hashing algorithm



# Types of Hashing

## Types of Hashing

- Two types of hashing schemes:
  - **Static Hashing >** Size of hash map is fixed; cannot be increased.
  - **Dynamic Hashing** → Size of hash map can increase as needed.
    - Essentially as your databases increases over time, you can accommodate more data.

## Complexity of Hashing

- As hashed indexes are unordered, they do not force maintaining any specific order.
- The position of a key in the hash table is dictated by the hash function.
- Average case complexity for insertion, deletion, and search  $\rightarrow 0(1)$ 
  - But, there are constants, which matter.
- Worst case complexity, given  $n \text{ keys} \rightarrow O(n)$
- Hash tables support **random access**, unlike earlier indexes, which support sequential access.

## Static Hashing

- Say, we know that in our database there will be 5 records.
- So, we select a hash function and create a hash table (array) of size 5.



$$h(x) = key \% n = (13)\% n$$



## Static Hashing

- Say, we know in our database there will be 5 records.
- So, we select a hash function and create a hash table (array) of size 5.



## Static Hashing

- Say, we know in our database there will be 5 records.
- So, we select a hash function and create a hash table (array) of size 5.



- Fixed number of Keys
- Duplicate Keys
- Collisions
- Disk Access Cost

- **Fixed number of Keys** → You should know the total size of the database in the future, and it cannot grow any further!
- For example, this hash table can only store 5 keys and if in the future your database gets a  $6^{th}$  record, you need to reorganize  $\rightarrow$  change hash table  $\rightarrow$  too expensive!



- Unique Keys → How to store and search for duplicate keys?
- Hash function would map duplicate keys to the same location.
  - Overwrite pointer to existing record?
  - How do you search for an existing record with duplicate keys?



- **No Collisions**  $\rightarrow$  Perfect hashing function that ensures there are no collisions.
- Hash function may end up assigning the same location to two or more records.



- Disk Access Cost and Lack of opportunities for Pre-fetching.
- Fetching a single record (point query) is fast. But, say I want to fetch a range of records. These records could be spread **across the disk \rightarrow multiple blocks!**
- No longer sequential access. Moreover, File Manager cannot even predict!

# Design Decisions for Static Hashing

## Design Decisions for Static Hashing

#### Good Hash Function:

- Maps a large set of keys to a small array.
- Dilemma b/w using a fast hash function vs. a hash function with low collisions.

### • Hashing Algorithm:

- How to handle key collisions when they occur?
- Dilemma b/w allocating a large table to prevent collisions vs. setting up rules that allow storing duplicate and colliding keys!

## **Hash Functions**

- Given an input key, it return an integer representation of that key.
  - Essentially, you can use hash function to convert an arbitrary byte array into a fixed-length code.
- We want a hash function that is both **fast** and has a **low collision rate**.
- Notice that we are allowing collisions as we desire fast hashing!
- Alternatively, you can use a cryptographic hash function, like SHA256.
  - No collisions!
  - Extremely secure → NIST recommended
  - Extremely slow!

## **Hash Functions**

- Fortunately, we don't have to create a hash functions!
- <u>CRC-64</u> (1975)
  - Used in networks for error detection
- MurmurHash (2008)
  - Fast, general-purpose hash function.
- Google CityHash (2011)
  - Fast for keys of short length.
- Facebook XXHash (2012)
  - State-of-the-art
- Google FarmHash (2014)
  - Better version of CityHash; reduced collisions

## Hash Schemes Performance

If you want to test the performance of various hash functions, or play with different hash functions, check out <u>SMHasher</u>.

## Static Hashing Algorithms

- We will be looking at two common algorithms:
  - Linear Probe Hashing
  - Cuckoo Hashing
- These algorithms are also termed as **open addressing**:
  - Essentially, the key may not be in the location where the hash function points.
- More advanced algorithms (not part of this course)
  - Robinhood hashing
  - Hopscotch hashing
  - Swiss Tables

- Simplest hashing algorithm  $\rightarrow$  resolves collision by searching for next empty **slot**.
- Requires a fixed-size giant array (smaller the size, more collisions).
  - Hash table's load factor (like a threshold) determines when the table is too full.
  - No new key should be added, otherwise collisions → allocate new table!

### • Inserting a key:

- Use your hash function to find a **slot** (position).
- If the location is empty, store the key in that slot.
- Otherwise, start sequential scanning from that location.
- When you find an empty slot, insert your key in that slot.

#### • Deletion and Search:

• Same as insertion.



File Storage







## File Storage

| 10 | Gru       | 45 | 100 |
|----|-----------|----|-----|
| 7  | Voldemort | 70 | 400 |



| 10 | Gru       | 45 | 100 |
|----|-----------|----|-----|
| 7  | Voldemort | 70 | 400 |





## File Storage

| 10 | Gru       | 45 | 100 |
|----|-----------|----|-----|
| 7  | Voldemort | 70 | 400 |
| 17 | Anakin    | 45 | 300 |





File Storage

| 10 | Gru       | 45 | 100 |
|----|-----------|----|-----|
| 7  | Voldemort | 70 | 400 |
| 17 | Anakin    | 45 | 300 |





File Storage

| 10 | Gru       | 45 | 100 |
|----|-----------|----|-----|
| 7  | Voldemort | 70 | 400 |
| 17 | Anakin    | 45 | 300 |



## Linear Probe Hashing



#### File Storage

| 10 | Gru       | 45 | 100 |
|----|-----------|----|-----|
| 7  | Voldemort | 70 | 400 |
| 17 | Anakin    | 45 | 300 |
| 24 | Joker     | 60 | 300 |

## Linear Probe Hashing



#### File Storage

| 10 | Gru       | 45 | 100 |
|----|-----------|----|-----|
| 7  | Voldemort | 70 | 400 |
| 17 | Anakin    | 45 | 300 |
| 24 | Joker     | 60 | 300 |

## Linear Probe Hashing



## Searching in Linear Probe Hashing

- Follow the same algorithm as you are trying to insert.
  - If the slot is empty, key not found.
  - If the slot is full, then continue to next slot.
  - Stop when you reach an empty slot or have covered all the slots.

## Deleting in Linear Probe Hashing

- How can we delete a record?
- Say, we want to delete the **record 10**, which maps to **slot 3**.



## Deleting in Linear Probe Hashing

- How can we delete a record?
- Say, we want to delete the **record 10**, which maps to **slot 3**.
- Can we set slot 3 to **empty**?



## Deleting in Linear Probe Hashing

- On deleting a record, setting a slot to empty is dangerous!
  - Other keys could have also mapped to the same slot, but due to the slot being full, they were in subsequent locations.
  - By emptying the slot, you are indicating that other keys also do not exist!
- Two possible solutions:
  - Rearrangement
  - Tombstones

## Deletions: Rearrangement

- Once a key is deleted, you can rehash all the keys again.
- Any key that was supposed to be mapped to the same slot can now take place.
- Too expensive! No database does this.



#### **Deletions: Tombstones**

- Once a key is deleted, you place a **tombstone for that key** in that slot.
- Tombstone informs any future query that the specific key does not exist.
- However, other keys may still exist!



For each tombstone, you need to maintain the list of keys that have been deleted!

## Duplicate Keys in Linear Probe Hashing

- How do you handle **duplicate** (non-unique) keys?
- Two ways:
  - Maintain a list of values
  - Just simply allow adding redundant keys

## Duplicate Keys: List of Values



#### Duplicate Keys: Allow Redundant Keys



## **Cuckoo Hashing**

- Why the name cuckoo?
- Like the bird cuckoo, if we do not find a free slot for a key, we may kick out an existing key!
- In cuckoo hashing, we use multiple **hash functions** to find free slots to store the key.
  - Each hash function may give us a slot to place and if any of those slots is free, we store the key!
- If no slot is free, evict an existing key!





Randomly select a slot, say it selects slot 3 for storing key 10.



| 5 | Anakin | 25 | 400    |    |    |              | _  |
|---|--------|----|--------|----|----|--------------|----|
|   |        |    |        | ı  | Ha | sh Tab       | le |
|   |        |    | h1(10) | )) | 0  |              |    |
|   |        |    | h2(10) | )) | 1  |              |    |
|   |        |    | 14(2)  |    | 2  |              |    |
|   |        |    | h1(5)  |    | 3  | 10           |    |
|   |        |    | h2(5)  |    | 4  | <del>/</del> |    |
|   |        |    |        |    | 5  | >            |    |
|   |        |    |        |    | 6  |              |    |
|   |        |    |        |    |    | n = 7        | _  |



As slot 3 is occupied, we select slot 5 to store key 5.

| 18 | Joker | 66 | 300      |            |
|----|-------|----|----------|------------|
|    |       |    |          | Hash Table |
|    |       |    | h1(10)   | 0          |
|    |       |    | h2(10)   | ) 1        |
|    |       |    | <b>.</b> | 2          |
|    |       |    | h1(5)    | 3 3 10     |
|    |       |    | h2(5)    | 4          |
|    |       |    | h1(18)   | 5 5        |
|    |       |    | h2(18)   | 6          |
|    |       |    |          | n=7        |



Say, it decides to kick key 5

| 18 | Joker | 66 | 300         |    | Hash Table  |                               |
|----|-------|----|-------------|----|-------------|-------------------------------|
|    |       |    | h1(1        | 0) | 0           |                               |
|    |       |    | h2(1)       | 0) | 1           |                               |
|    |       |    | h1(5) h2(5) |    | 2 3 10      |                               |
|    |       |    | h1(1        | 8) | 4<br>5 7 18 | Say, it decides to kick key 5 |
|    |       |    | h2(18)      | 8) | 6 $n = 7$   |                               |



So, we need to rehash key 5, and only remaining slot is the slot occupied by key 10





## Challenges with Cuckoo Hashing

- So what are the challenges with cuckoo hashing?
- Insertions are expensive → We need to do rehashing!
- We can get stuck into an **infinite loop**.
  - To exit the infinite loop, add more hash functions, or increase size of table, or maintain some list.

#### **Dynamic Hashing**

- The biggest challenge for static hashing remains to be **fixed size of hash table**.
- Alternatively, use dynamic hashing algorithms:
  - Chained Hashing
  - Extensible Hashing
  - Linear Hashing

- For each slot in the hash table, there is a **linked list of buckets**.
- Essentially, collisions are resolved by **placing all keys with the same slot** into same linked list.
- Searching for a key requires scanning the linked list till you find the key or have reached end of the list.

Simple hash function 
$$h(key) = key \% n = (key) \% 7$$











## Searching in Chained Hashing

• Use the hash function to reach the specific slot, and then scan the linked list till you find the key or have reached end of the list.

• For example, on searching 17, you would first reach slot 3, and then scan the list for slot 3 and find it is as the second entry in the linked list.

## Challenges with Chained Hashing

- What is the key challenge with chained hashing?
- If a lot of keys are hashed to the same slot, then
  - You have a massively large linked list, and
  - Searching a key comes expensive  $\rightarrow$  same cost as linear scan.

#### Extensible Hashing

- Solves the problem of massively large linked lists.
- Requires linked lists to be split, when size crosses a threshold.
- Requires observing each key in a bit format.
- When you hash a key, you get a numeric (base-10 or base-16) representation.
  - You can convert that base-10 to binary format (base-2).
- For example: 4 can be represented as 100 in a 3-bit representation.

• Initially, your hash map is **1-bit**, and you have some fixed number of buckets for each bit → Say 3 buckets.



• Assume on passing the **key 13 through a hash function**, the binary representation is **00011**.



• Another **key 7**, after passing it **through a hash function**, let the binary representation be **10011**.



• This way, all keys with binary representation starting from 0 go to buckets for bit 0, and vice versa for buckets for bit 1.



• Let's assume all the buckets for **bit 1** are full.



• So, now we need to **split the buckets** for bit 1. This will require expanding the bit representation from 1-bit to 2-bits.



• Notice that all the **2-bit** representations **starting with bit-0** continue pointing to the old buckets.



• Next, assume we received a **key 18**, and on passing it **through the hash function**, the binary representation is **10010**.



• Observe that all the buckets for bits 10 are full  $\rightarrow$  Need to split again buckets for 10.

• Now, **3-bits**.



- Extensible hashing works well, but we perform the splitting **lazily** when the buckets for some bit(s) are full.
- What if we allow splitting to happen **eagerly** in the hope that in the future we would anyways need to split.
- Linear hashing performs eager and random splitting.
  - We call the splitting random because you may end up splitting empty buckets.
- Note: there is no longer tracking of buckets via binary representation.
- What we need is a **split pointer** that tells where did the last split took place.
  - Every **n-th split** introduces a new hash function.

• Initially say our hash function is:



• Say our buckets look like this:



• Let's insert a **key = 17**:



• Let's insert a **key = 17**:

$$h_1(17) = 17 \% 4 = 1$$



The bucket is full, so we create a new bucket and link.



• Let's insert a **key = 17**:

$$h_1(17) = 17 \% 4 = 1$$



This situation has caused an overflow, so we need to split!



• Let's insert a **key = 17**:

$$h_1(17) = 17 \% 4 = 1$$

is at 0, so I will

split bucket 0.





• Let's insert a **key = 17**:

$$h_1(17) = 17 \% 4 = 1$$



My split pointer is at 0, so I will split bucket 0, and add a new bucket pointer.



• Let's insert a **key = 17**:

$$h_1(key) = key \% 4 = 1$$
  
 $h_2(key) = key \% 8 = 1$   
Split  
Pointer

Introduce a new hash function and Rehash the keys in original bucket 0.

$$8 \% 8 = 0$$
  
20 %  $8 = 4$ 



• Let's insert a **key = 17**:

$$h_1(key) = key \% 4 = 1$$
  
 $h_2(key) = key \% 8 = 1$   
Split  
Pointer

Move the split pointer



• Let's insert a **key = 16**:



First try the hash function  $h_1$ (key).



• Let's insert a **key = 16**:

$$h_1(16) = 16 \% 4 = 0$$
 $h_2(16) = 16 \% 8 = 0$ 
Split

Split Pointer



As 0 is above the split pointer, so we need to run the next hash function.



• Let's insert a **key = 16**:

$$h_1(16) = 16 \% 4 = 0$$
 $h_2(16) = 16 \% 8 = 0$ 
Split

Split Pointer



As 0 is above the split pointer, so we need to run the next hash function.



• Let's insert a **key = 12**:



First try the hash function  $h_1(key)$ .



• Let's insert a **key = 12**:

$$h_1(12) = 12 \% 4 = 0$$
 $h_2(12) = 12 \% 8 = 4$ 

Split Pointer



As 0 is above the split pointer, so we need to run the next hash function.



• Let's insert a **key = 12**:

$$h_1(12) = 12 \% 4 = 0$$
 $h_2(12) = 12 \% 8 = 0$ 

Split Pointer



As 0 is above the split pointer, so we need to run the next hash function.



