

Imperial College - Dimuon bump cross check

Introduction

- ► A bump in the dimuon mass spectrum was presented to this meeting several weeks ago
- ► The VBF H→invisible group have the full single mu primary dataset processed for our trigger efficiency studies
- Ntuples have no skimming so all events are present
- We have cross-checked the original analysis:
- Common framework and ntuple format with Imperial H ightarrow au au has been used

Object ID

	Original analysis	IC crosscheck	
Data	22Jan2013 ReReco		
Global Tag	FT53_V21A_AN6		
Trigger	HLT_lsoMu24_eta2p1 or HLT_lsoMu24		
Muon isolation	Track iso < 0.1	PF iso < 0.2	
MuScle Fit applied	Yes	No	
Muon-jet overlap	5 GeV	10 GeV	
pt threshold			
PU ID version	52X	53X	
b-tagging	CSVMVA>0.783	CSV>0.898	

Selection

Step name	Cuts	
Muon pair	Two OS muons, $\mu_1 p_T > 25$ GeV,	
	$\mu_2p_T>25{ m GeV}$	
Any central jet	At least one jet, $p_T > 30$ GeV,	
	$ \eta < 2.4$	
Any central b jet	At least one jet, $p_T > 30$ GeV,	
	$ \eta <$ 2.4, CSV $>$ 0.898	
Other central jet veto (CJV)	Only one jet, $p_T > 30$ GeV,	
	$ \eta < 2.4$	
Forward jet	At least one jet, $p_T > 30$ GeV,	
	$ \eta >2.4$	
Mass window	$26 < M_{\mu\mu} > 32 \; GeV$	

Cut flow

- Yields compared at each cut step
- ► IC crosscheck yield close but consistently slightly lower
- ► At final step IC crosscheck has 23/28 events in common
- 5 events present not in original analysis
- 10 events in original analysis don't pass our selection

Cut step	Original analysis	IC crosscheck
Muon pair	162483	138364
Any central jet	56788	41796
Any centrol b jet	4286	4111
Other central jet veto	1190	1055
Forward jet	186	163
Mass window	33	28

Dimoun mass distributions - Muon pair

Dimoun mass distributions - Any central jet

Dimoun mass distributions - Any central b jet

Dimoun mass distributions - Other central jet veto

Dimoun mass distributions - Forward jet

- ▶ Bumpy structure across whole mass range: 3 bins around 30 GeV slightly high
- Attempted second order polynomial plus gaussian fit:
- No bump resolved by fit for several values of initial conditions
- Tried 1 GeV binning, no bump at 30 GeV resolved by fit

Event by event comparison

- ► Compare events in 26-32 GeV with original analysis
- ▶ 10 events from original analysis fail my selection

6 events have no second muon

- Only known muon ID difference is isolation
- Suggests these events pass track iso but fail pf
- Consistent with yields being lower from dimuon selection
- lacktriangle Efficiency difference between isolations is small $\sim\%$

Event by event comparison - continued

4 events have additional central jets

- ► Some overlap with above 6 events
- ► Known differences are PU ID and muon overlap veto

1 event has no b jet

► Known different b-tag algorithm

1 event has dimuon mass outside window

Known MuScle fit difference

Summary

- ▶ Imperial College $H \rightarrow \tau \tau / \text{inv.}$ framework and ntuples have been used to crosscheck dimuon bump analysis
- Cut flow efficiency very similar to original analysis:
- Yields slightly lower
- No bump significant enough to be resolved by a polynomial plus gaussian fit
- Event by event comparison suggests muon isolation and additional central jets cause differences

Backup