Heart Disease Prediction and Analysis

Introduction:

- ❖ Heart attack is one of the main sources of death around the world and it is imperative to predict the disease at a premature phase. The computer aided systems help the doctor as a tool for predicting and diagnosing heart disease.
- Clinicians and patients need reliable information about an individual's risk of developing Heart Disease. Ideally, they would have entirely accurate data and would be able to use a perfect model to estimate risk. Such a model would be able to categorize people with heart disease and others.

Problem Statement:

The objective of this project is to widespread about Heart related cardiovascular disease and to brief about existing decision support systems for the prediction of heart disease supported by data mining and machine learning techniques.

Block Diagram:

Dataset:

ge .		sex	ср		trtbps	chol	fbs	restecg	tha lachh	exng	oldpeak slp	caa	thall		output
	63		l	3	145	233	1	0	150		2.3	О	0	1	
	37	2	L	2	130	250	0	1	187	C	3.5	О	0	2	
	41)	1	130	204	0	0	172	C	1.4	2	0	2	
	56	2	L	1	120	236	0	1	178	C	0.8	2	0	2	
	57)	0	120	354	0	1	163	1	0.6	2	О	2	
	57	1	L	0	140	192	0	1	148	C	0.4	1	0	1	
	56	()	1	140	294	0	0	153	C	1.3	1	0	2	
	44	:	L	1	120	263	0	1	173	C	0	2	0	3	
	52		ι	2	172	199	1	1	162	C	0.5	2	О	3	
	57	2	L	2	150	168	0	1	174	C	1.6	2	0	2	
	54		ı	0	140	239	0	1	160	C	1.2	2	0	2	
	48	()	2	130	275	О	1	139	C	0.2	2	О	2	
	49	2	ι	1	130	266	О	1	171	C	0.6	2	О	2	
	64		L	3	110	211	0	0	144	1	1.8	1	0	2	
	58)	3	150	283	1	0	162	C	1	2	0	2	
	50)	2	120	219	0	1		C	1.6	1	0	2	
	58)	2	120	340	0	1	172	C	0	2	0	2	
	66)	3	150	226	0	1	114		2.6	О	0	2	
	43		ı	0	150	247	0	1	171		1.5	2	0	2	
	æ			3	140	239	0			c		2	2	2	
	59			0	135	234				c		1	0	3	
	44	:	L	2	130	233	0	1	179	1	0.4	2	0	2	
	42		ı	0	140	226	0	1	178	C	0	2	0	2	
	61			2	150	243	1	1	137	1	. 1	1	0	2	
	40		ı	3	140	199	0	1	178	1	1.4	2	0	3	
	71			1	160	302				C		2	2	2	
	59	-	ı	2	150	212	1	1	157	C	1.6	2	0	2	
	51			2	110	175	0					2	0	2	
	æ)	2	140	417	1	0		C	0.8	2	1	2	
	53		ı	2	130	197	1	0	152		1.2	0	0	2	
	41)	1	105	198	0	1		C		2	1	2	
	æ	-		0	120	177	0	1	140	C	0.4	2	0	3	
	44	:	ı	1	130	219	0	0	188	C	0	2	0	2	
	54		ı	2	125	273	0	0	152		0.5	0	1	2	
	51	:	ı	3	125	213				1	1.4	2	1	2	
	46			2	142	177	0					0	0	2	
	54			2	135	304						2	0	2	
	54			2	150	232						2	0	3	
	æ			2	155	269	0					2	0	2	
	æ)	2	160	360						2	0	2	
	51			2								2	1	2	
	48			1	130							1	0	2	
	45			0	104							1	0	2	
	53		5	0	130							1	0	2	
	39			2	140							2	0	2	
	52			1	120	325						2	0	2	
	44			2	140							2	o	2	
	47			2	138	257						2	0	2	
	53			2		216						2	o	0	
	53			0	138	234						2	o	2	
	51		5	2								2	o	2	
	66			0	120	302						1	0	2	
	62			2	130	231						1	3	3	
	44		2	2		141						1	0	2	
	63			2	135	252						2	0	2	
	52			1	134							2	1	2	
	- 52 - 48			0	122							2	0	2	
	48			0	115							2	0	2	
	45 34			3	115	260						2	0	2	
	57 57)	0		182							1		
	71			2	128 110	303 265						2	1	2 2	

Rapid Miner Design:

Corelation Matrix

Naïve-Bayes Algorithm Design:

O 🛱 📜 🖸 🔓 🕿 🛐 🔯 👊 🖏 😻 🦚 🤚

₩ P Type here to search

^ @ ♣ @ �o Φ) ENG 11:32 PM 5/18/2021 €2)

Performance for Naïve-Bayes algorithm of accuracy = 65.57%

Decision Tree Algorithm Design:

Output for Decision Tree Algorithm:

Performance for Decision Tree matrix of Accuracy = 78.69%

Random Forest Design Algorithm:

Output for Random Forest Algorithm

Performance for Random Forest Algorithm of accuracy 81.97%

Algorithm / Classifiers which we used for heart disease analysis:

Naive Bayes classifiers are a collection of classification algorithms based on Bayes' Theorem. It is not a single algorithm but a family of algorithms where all of them share a common principle, i.e. every pair of features being classified is independent of each other.

Decision tree is the most powerful and popular tool for classification and prediction. A Decision tree is a flowchart like tree structure, where each internal node denotes a test on an attribute, each branch represents an outcome of the test, and each leaf node (terminal node) holds a class label.

Random forest is a supervised learning algorithm. The "forest" it builds, is an ensemble of decision trees, usually trained with the "bagging" method. The general idea of the bagging method is that a combination of learning models increases the overall result.

Heart Disease Frequency vs Gender:

Age vs Max Heart Rate:

Heart Disease Frequency vs Chest Pain Type:

Dashboard Analysis:

Conclusion:

- High Blood Pressure, High Cholestrol and High Heart Rate leads to high chance of heart attack.
- ❖ Age from 40-60 years have the high chance of heart attack.
- **❖** Male gender has more chance of heart attack compared to female ones.
- Highly Correlated factors in this dataset are :
 - > Age and trtbps (blood pressure rate)
 - > Age and chol (cholestrol level)