数理アルゴリズムとシミュレーション 演習課題 3

提出期限: 2020/10/29 23:59

以下の課題を行い、レポートを提出すること、レポートの作成に関しては、manaba の 「演習課題」ページ内の項目をしっかりと確認すること. また, レポートの作成にあたって 参考にした文献や Web ページはその出典を明示すること.

課題 1

(1-1) 行列 A を正定値対称行列とし、 x^* を Ax = b の解とする. 関数 f(x) を

$$f(\boldsymbol{x}) = \frac{1}{2} (\boldsymbol{x}, A\boldsymbol{x}) - (\boldsymbol{x}, \boldsymbol{b})$$

とする. 零ベクトルでないベクトル h に対して,以下の不等式

$$f(\boldsymbol{x}^* + \boldsymbol{h}) > f(\boldsymbol{x}^*)$$

が成り立つことを示す. 空欄に当てはまるものを選べ.

$$f(\mathbf{x}^* + \mathbf{h}) - f(\mathbf{x}^*) = \boxed{} > 0$$
$$\therefore f(\mathbf{x}^* + \mathbf{h}) > f(\mathbf{x}^*)$$

(a)
$$\frac{1}{2}(h, Ah)$$

(b)
$$\frac{1}{2}(h, Ax^*)$$

(c)
$$\frac{1}{2}(x^*, Ah)$$

(a)
$$\frac{1}{2}(h, Ah)$$
 (b) $\frac{1}{2}(h, Ax^*)$ (c) $\frac{1}{2}(x^*, Ah)$ (d) $\frac{1}{2}(x^*, Ax^*)$

(1-2) 次の(1),(2) に当てはまるものをそれぞれ選べ.

ベクトル x_{k+1} は $x_{k+1} = x_k + \alpha_k p_k$ で与えられるとする. このとき, $r_k = b - Ax_k$ とすると,

$$f(\boldsymbol{x}_{k+1}) = \boxed{(1)}$$

となる. 係数 α_k は, f(x) を最小とするように設定するので,

$$\alpha_k = \boxed{(2)}$$

が導かれる.

(1)

(a)
$$\frac{1}{2}\alpha_k^2(\boldsymbol{p}_k, A\boldsymbol{p}_k) - \alpha_k(\boldsymbol{r}_k, \boldsymbol{r}_k) + f(\boldsymbol{x}_k)$$

(b)
$$\frac{1}{2}\alpha_k^2(\boldsymbol{p}_k, A\boldsymbol{p}_k) - \alpha_k(\boldsymbol{p}_k, \boldsymbol{p}_k) + f(\boldsymbol{x}_k)$$

(c)
$$\frac{1}{2}\alpha_k^2(\boldsymbol{p}_k, A\boldsymbol{p}_k) - \alpha_k(\boldsymbol{p}_k, \boldsymbol{r}_k) + f(\boldsymbol{x}_k)$$

- (a) $\frac{(\boldsymbol{p}_k, \boldsymbol{p}_k)}{(\boldsymbol{r}_k, A\boldsymbol{p}_k)}$ (b) $\frac{(\boldsymbol{p}_k, A\boldsymbol{p}_k)}{(\boldsymbol{p}_k, \boldsymbol{r}_k)}$ (c) $\frac{(\boldsymbol{p}_k, \boldsymbol{r}_k)}{(\boldsymbol{p}_k, A\boldsymbol{p}_k)}$ (d) $\frac{(\boldsymbol{p}_k, \boldsymbol{r}_k)}{(\boldsymbol{r}_k, A\boldsymbol{r}_k)}$
- (1-3) 続いて、式 $p_{k+1}=r_{k+1}+\beta_k p_k$ から β_k を求めたい. p_k と p_{k+1} は互いに共役で あることを利用して,

$$(\boldsymbol{p}_k, A\boldsymbol{p}_{k+1}) = \boxed{(1)}$$
$$= 0$$

となるので, $\beta_k =$ (2) が導かれる. (1), (2) に当てはまるものをそれぞれ選 べ.

(1)

- (a) $(\boldsymbol{r}_{k+1}, A\boldsymbol{p}_k) + \beta_k(\boldsymbol{p}_k, A\boldsymbol{p}_k)$ (b) $(\boldsymbol{r}_{k+1}, A\boldsymbol{p}_k) + \beta_k(\boldsymbol{r}_k, A\boldsymbol{r}_k)$ (c) $(\boldsymbol{r}_{k+1}, A\boldsymbol{r}_k) + \beta_k(\boldsymbol{p}_k, A\boldsymbol{p}_k)$ (d) $(\boldsymbol{r}_{k+1}, A\boldsymbol{r}_k) + \beta_k(\boldsymbol{r}_k, A\boldsymbol{r}_k)$

(2)
(a)
$$-\frac{(\boldsymbol{r}_{k+1}, A\boldsymbol{p}_k)}{(\boldsymbol{p}_k, A\boldsymbol{p}_k)}$$
 (b) $-\frac{(\boldsymbol{r}_{k+1}, A\boldsymbol{p}_k)}{(\boldsymbol{r}_k, A\boldsymbol{r}_k)}$ (c) $-\frac{(\boldsymbol{r}_{k+1}, A\boldsymbol{r}_k)}{(\boldsymbol{p}_k, A\boldsymbol{p}_k)}$ (d) $-\frac{(\boldsymbol{r}_{k+1}, A\boldsymbol{r}_k)}{(\boldsymbol{r}_k, A\boldsymbol{r}_k)}$

課題 2

ラプラス方程式の差分近似の式から,n=3 のときの連立一次方程式の係数行列 A および右辺ベクトル b を図 1 を参考に作成し,A,b の各要素をレポートに示せ.このとき,求めたいベクトル x は以下のように表される.

$$\boldsymbol{x} = (u_{1,1} \ u_{1,2} \ u_{1,3} \ u_{2,1} \ u_{2,2} \ u_{2,3} \ u_{3,1} \ u_{3,2} \ u_{3,3})^{\mathrm{T}}$$

図 1 $\,$ ラプラス方程式の離散化 $\,u_{i,j}$ を各格子点における関数 u の値とし, $u_{i,j}(1\leq i,j\leq 3)$ は未知数,それ以外は境界条件である

(次ページへ続く)

課題 3

前回の課題 (演習課題 2 の課題 1) におけるラプラス方程式の差分近似を,連立一次方程式に置き換えたときの係数行列 A および右辺ベクトル b に対して,格子数 n=4,50,200 としたとき,それぞれ以下の課題を行うこと. A,b の行列データのファイルは manaba に用意しているため,それをダウンロードして使用すること. n=4 の場合,load n_4 とすると,変数 A,b がワークスペースに読み込まれる. n=50,200 の場合も同様に load n_50 , load n_200 とすることで変数が読み込まれる.

- (3-1) 連立一次方程式 Ax = b を解く CG 法のプログラムを作成し、解を求めよ.ここで、初期ベクトル x_0 は零ベクトルとし、 r_k の 2 ノルムが 10^{-4} より小さくなったとき収束したと見なすこと.レポートには各反復ごとの r_k の 2 ノルムをグラフに示せ.グラフを作成する際は線形グラフ、片対数グラフ、両対数グラフのうちから適切なものを選択すること.なお、CG 法のアルゴリズムは manaba の「CG 法のアルゴリズム」を参照すること.
- (3-2) (3-1) で求めた解x を n 次正方行列に変換し、その値を MATLAB の関数 **surf** を 用いてグラフに描き、前回の課題 (演習課題 2 の課題 1) の図 1 と同じ結果になることを確認せよ.

課題 4

CG 法を用いてソースコード 1 で生成される行列 A と乱数ベクトル b からなる連立一次方程式を解け、このとき、収束条件は r_k の 2 ノルムが 10^{-8} より小さくなった時収束したとみなすこと、また、行列サイズ n を $n=10,11,\ldots,100$ の間で変更し、収束までの反復回数をグラフに描画せよ、

ソースコード 1 行列を生成するプログラム

```
1 A = rand(n);
```

² A = (A + A')/2;

³ A = A + 5*eye(n);

⁴ b = rand(n, 1);