In-silico identification of Tyrosine nitration sites in protein peptide sequences

Sourajyoti Datta

Supervisor: Muhammad Nabeel Asim

Thesis motivation
Summer Semester 2022

Post-translational modification in Proteins

- Proteins are biomolecules/macromolecules containing long chains of amino acid residues
 - Perform critical functions within organisms, such as catalyzing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules.
- Protein biosynthesis is a core biological process occurring inside cells
 - Balances the loss of cellular proteins in cells by producing new proteins
 - Occurs in two stages:
 - **Transcription:** A section of DNA encoding a protein (gene), is converted into a messenger RNA (mRNA).
 - Translation: The nucleotide sequence of mRNA is read by ribosomes to determine the sequence of amino acids in the resulting Protein
- Post-translational modification (PTM) is the modification of proteins after protein biosynthesis.
 - Influences normal cell biology and pathogenesis, and increase the functional diversity of the proteome
 - Modifications: covalent addition, proteolytic cleavage of regulatory subunits, or degradation of entire proteins.
 - ~460 different types of PTMs have been identified
- Identifying and understanding PTMs is critical for studying cell biology, and disease treatment or prevention.

Tyrosine nitration

- Nitrotyrosine is the product of Tyrosine nitration
 - It is a covalent Post-translational modification (PTM) in proteins
 - An irreversible nitrative modification of the tyrosine residue of a protein and permanently alters the structure of the protein
 - Result of the substitution of a hydrogen by a nitro group (-NO₂) at the ortho position of the phenolic ring of tyrosine
 - Two nitrating agents account for the nitration, i.e., **peroxynitrite** (ONOO $\bar{}$), and **hemoperoxidases** (HPO) in the presence of hydrogen peroxide (H₂O₂) and nitrite (NO₂ $\bar{}$)
 - Tyrosine nitration is selective, and not a random process
 - Depending on the accessibility of the tyrosine residues to the nitrating agents (e.g., tyrosine residues exposed on the surface of proteins can become target)
 - Mostly, the nitrated tyrosine residues are in the vicinity of a site which is generating nitrating agents

Cause and effect of Tyrosine nitration

Causes:

- Determined by several factors, such as reactive **species**, reaction kinetics, presence of **antioxidants** and **radical scavengers**, and **compartmentalization**
- Two pathways for nitration:
 - When Nitric Oxide (NO⁻) is generated in high concentration, in the presence of Superoxide anion (O₂⁻) it will lead to the rapid formation of peroxynitrite (ONOO⁻), which causes nitration
 - Peroxynitrite-independent nitration depends on the presence of transition metals such as iron and copper, through either peroxidase-dependent or Fenton-dependent pathways in the presence of hydrogen peroxide (H₂O₂) and nitrite (NO₂⁻)

Effects:

- Substantial changes in the biological function of proteins
- The structural alteration leads to loss or augmentation of protein function
 - Can render a protein inactive
- Inhibits protein phosphorylation that impedes the normal transduction pathways in cell signaling
- Functional loss of proteins in inflammatory diseases
- High correlation with pathogenesis of diseases
- Marker of NO-dependent, reactive nitrogen species (RNS) induced nitrative stress

Benefits of identifying Tyrosine nitration sites

- Causal nitration pathway inducing agents identified in various disease conditions:
 - Nitric Oxide (NO) is produced at a high rate in inflammatory, stimuli-induced conditions
 - Nitrite ion (NO₂⁻) is greatly increased in systemic inflammatory disorders (sepsis, gastroenteritis, & hemolytic diseases)
 - Abnormal elevation of copper ion (Cu²⁺) and free heme in the pathogenesis of type 2 diabetes mellitus, neurological disorders, and severe hemolytic diseases
- Tyrosine nitration is identified in large number of pathological conditions
 - Neurodegenerative diseases Parkinson's and Alzheimer's, degeneration of dopamine neurons, cerebral ischemia and edema
 - Cardiovascular diseases
 - Autoimmune diseases Rheumatoid Arthritis, Systemic Lupus Erythematosus
 - Carcinogenesis Breast, Esophageal and Gastric cancer; Colorectal, Squamous cell, Adeno- and Cholangial carcinoma
- Therefore, **effective interception of protein nitration** can represent novel and critical points of **therapeutic intervention in diseases** associated with protein nitration.
 - Identifying onset and progression of the associated disease
 - Surrogate markers for the design of clinical interventions (therapeutic strategies and drugs)

Motivation for computational methods

- PTMs of proteins experimentally detected and recorded by a variety of techniques
 - **Experiments**: Immunohistochemical analysis, Chromatography, Mass spectrometry with prior immunoprecipitation, Eastern and Western blotting
 - Datastores: PhosphoSitePlus, ProteomeScout, Human Protein Reference Database, PROSITE, Protein Information Resource (PIR), dbPTM, Uniprot, O-GlcNAc Database
- Huge amounts of data available for knowledge discovery
 - Resulted in increasing use of Machine Learning and Deep Learning approaches
 - Wet lab experimental approaches:
 - Technically challenging with Theoretical limitations
 - Labor intensive
 - Requires skilled laboratory experience
 - Time consuming
 - Expensive
 - Biases in proteome wide identification
 - Generates ground truth data

Computational approaches:

- Easier development
- Comparatively, much less labor intensive
- Requires coding skills
- Reusability saves time
- Economical
- Ability to balance biases in imbalanced scenarios
- Requires wet-lab experiments to generate data

Thank you for your time! Questions?

References

1. Radi R. (2013). Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. *Accounts of chemical research*, *46*(2), 550–559. https://doi.org/10.1021/ar300234c