Observations of $\Lambda_b^0 \to \Lambda K^+ \pi^-$ and $\Lambda_b^0 \to \Lambda K^+ K^-$ decays and searches for other Λ_b^0 and Ξ_b^0 decays to $\Lambda h^+ h'^-$ final states

Motivation

- Λ_b and Ξ_b have been discovered but not many decays modes have been studied especially charmless ones.
- Decays can offer insight into harmonization mechanisms
- CP violation has been observed in charmless B-decays → look for CP violation in charmless Λ_b decays
- Looked for Λ_b and Ξ_b to $\Lambda K^+ K^-$, $\Lambda \pi^+ \pi^-$, $\Lambda K^\pm \pi^\pm$ with Λ_b to Λ_C (-> $\Lambda \pi^+$) π^- as control and normalization channel
- Measure phasespace integrated CP violation for Λ_b to ΛK^+K^- and $\Lambda K^\pm \pi^\pm$
- Analyses done for 2011, 2012a, 2012b independently as well as for long and downstream reconstruction of $\Lambda \rightarrow p\pi^{-}$

Signal observation

Signal: double Crystal ball **Cross-feed bkg:** double Crystal ball

Combinatorial bkg: exponential

Partially reconstructed bkg:

ARGUS convolved with Gaussian

Figure 2: Results of the fit for the (left) $\Lambda K^{\pm} \pi^{\mp}$ and (right) $\Lambda K^{+} K^{-}$ final states, for all subsamples combined. Superimposed on the data are the total result of the fit as a blue solid line, the Λ_h^0 (Ξ_h^0) decay as short a dashed dark grey line, cross-feed as dot-dashed red lines, the combinatorial background as a long-dashed green line, and partially reconstructed background components with a missing soft photon or neutral pion as double dot-dashed purple and cyan dotted lines, respectively.

6000

LHCb

5800

Signal observation

Table 1: Signal yields for the various Λ_b^0 and Ξ_b^0 decay modes under investigation. The totals given here are simple sums and are not used in the analysis.

Mode	Run period	Yield			
	•	A_b^0		\varXi_b^0	
		downstream	long	downstream	long
	2011	10.2 ± 5.5	8.7 ± 4.7	-0.6 ± 2.4	4.9 ± 3.2
$\varLambda\pi^+\pi^-$	2012a	9.1 ± 5.2	13.6 ± 5.7	5.3 ± 3.6	1.0 ± 2.6
	2012b	17.2 ± 7.1	6.2 ± 4.6	3.9 ± 4.0	4.1 ± 2.7
	Total	65.0 ± 13.5 5.2 σ 18.6 ± 7.7		± 7.7	
	2011	20.9 ± 6.4	8.2 ± 3.5	3.5 ± 3.7	-0.7 ± 2.4
$arLambda K^\pm \pi^\mp$	2012a	9.3 ± 3.7	1.7 ± 3.6	-0.1 ± 1.7	0.3 ± 1.5
	2012b	39.7 ± 8.9	16.9 ± 5.1	2.9 ± 4.5	-1.8 ± 1.5
	Total	96.7 ± 13.6 8.5 6.9 4.1 ± 6.9		= 6.9	
	2011	32.3 ± 6.4	20.1 ± 4.6	0.6 ± 2.3	0.0 ± 0.6
$\Lambda K^+ K^-$	2012a	22.2 ± 5.3	15.9 ± 4.2	0.5 ± 2.4	0.0 ± 0.5
	2012b	60.5 ± 8.5	34.4 ± 6.1	3.0 ± 2.7	0.0 ± 0.6
	Total	185.4 ± 14.7 20.5 σ 4.1 ± 4.4			
	2011	78.1 ± 9.1	78.9 ± 9.2		
$(\Lambda\pi^+)_{\Lambda_c^+}\pi^-$	2012a	45.0 ± 7.0	63.0 ± 8.3		
	2012b	115.3 ± 11.1	90.7 ± 9.8		
	Total	-471.0 ± 22.5			

Branching ratios (limits)

Branching ratios determined using the normalization channel:

$$\frac{\mathcal{B}(\varLambda_b^0 \to \varLambda h^+ h'^-)}{\mathcal{B}(\varLambda_b^0 \to (\varLambda \pi^+)_{\varLambda_c^+} \pi^-)} = \frac{N(\varLambda_b^0 \to \varLambda h^+ h'^-)}{N(\varLambda_b^0 \to (\varLambda \pi^+)_{\varLambda_c^+} \pi^-)} \times \frac{\epsilon(\varLambda_b^0 \to (\varLambda \pi^+)_{\varLambda_c^+} \pi^-)}{\epsilon(\varLambda_b^0 \to \varLambda h^+ h'^-)} \,,$$

Theoretical predictions: $10^{-9} - 10^{-7}$ $\mathcal{B}(\Lambda_b^0 \to \Lambda \pi^+ \pi^-) = (4.6 \pm 1.2 \, (\mathrm{stat}) \pm 1.4 \, (\mathrm{syst}) \pm 0.6 \, (\mathrm{norm})) \times 10^{-6} \,,$ $\mathcal{B}(\Lambda_b^0 \to \Lambda K^+ \pi^-) = (5.6 \pm 0.8 \, (\mathrm{stat}) \pm 0.8 \, (\mathrm{syst}) \pm 0.7 \, (\mathrm{norm})) \times 10^{-6} \,,$ $\mathcal{B}(\Lambda_b^0 \to \Lambda K^+ K^-) = (15.9 \pm 1.2 \, (\mathrm{stat}) \pm 1.2 \, (\mathrm{syst}) \pm 2.0 \, (\mathrm{norm})) \times 10^{-6} \,,$ $\mathcal{B}(\Xi_b^0 \to \Lambda \pi^+ \pi^-) \times f_{\Xi_b^0} / f_{\Lambda_b^0} = (1.3 \pm 0.6 \, (\mathrm{stat}) \pm 0.5 \, (\mathrm{syst}) \pm 0.2 \, (\mathrm{norm})) \times 10^{-6} \,,$ $< 1.7 \, (2.1) \times 10^{-6} \, \mathrm{at} \, 90 \, (95) \, \% \, \mathrm{confidence level} \,,$ $\mathcal{B}(\Xi_b^0 \to \Lambda K^- \pi^+) \times f_{\Xi_b^0} / f_{\Lambda_b^0} = (-0.6 \pm 0.5 \, (\mathrm{stat}) \pm 0.3 \, (\mathrm{syst}) \pm 0.1 \, (\mathrm{norm})) \times 10^{-6} \,,$ $< 0.8 \, (1.0) \times 10^{-6} \, \mathrm{at} \, 90 \, (95) \, \% \, \mathrm{confidence level} \,,$ $\mathcal{B}(\Xi_b^0 \to \Lambda K^+ K^-) \times f_{\Xi_b^0} / f_{\Lambda_b^0} < 0.3 \, (0.4) \times 10^{-6} \, \mathrm{at} \, 90 \, (95) \, \% \, \mathrm{confidence level} \,.$ $\mathcal{B}(\Xi_b^0 \to \Lambda K^+ K^-) \times f_{\Xi_b^0} / f_{\Lambda_b^0} < 0.3 \, (0.4) \times 10^{-6} \, \mathrm{at} \, 90 \, (95) \, \% \, \mathrm{confidence level} \,.$

CP - Asymmetry

$$\mathcal{A}_{CP} = \mathcal{A}_{CP}^{\mathrm{raw}} - \mathcal{A}_{\mathrm{P}} - \mathcal{A}_{\mathrm{D}}$$

$$\mathcal{A}_{CP}^{\mathrm{raw}} = \frac{N_f^{\mathrm{corr}} - N_{ar{f}}^{\mathrm{corr}}}{N_f^{\mathrm{corr}} + N_{ar{f}}^{\mathrm{corr}}}$$
Bkg subtracted and efficiency corrected signal yields

Use control channel to get production and detection asymmetry since no CP-asymmetry is expected : A^{raw}_{CP} (control) = $A_P + A_D$

$$\mathcal{A}_{CP}(\Lambda_b^0 \to \Lambda K^+ \pi^-) = -0.53 \pm 0.23 \, (\mathrm{stat}) \pm 0.11 \, (\mathrm{syst})$$

 $\mathcal{A}_{CP}(\Lambda_b^0 \to \Lambda K^+ K^-) = -0.28 \pm 0.10 \, (\mathrm{stat}) \pm 0.07 \, (\mathrm{syst})$

Smaller than 3σ ⊗

Comments

- Efficiencies for selection not listed.
- 2. Selection efficiency modeled in 5 variables: **2 Dalitz-masses**, **3 helicities** \rightarrow the information about the last three should be in the contained in the first two + this assumes that individual track- p_T and η are correctly modeled in the MC
- 3. Cross-feed bkg modeled by double CB: shape determined with the help of "high statistics control sample" → Need specifying and reference
- 4. Partially reconstructed bkg modeled by ARGUS convolved with Gaussian: What does this model?
- 5. Partially reconstructed bkg for control channel modeled by non-parametric density estimate: Why and from where?
- 6. $\Xi_b \rightarrow \Lambda K^+ K^-$ has very few events in signal region and therefor the signal yield is constrained to be non-negative: Lower fit-error is biased!
- 7. Fit model and stability is validated with 'pseudoexperiments': more details
- 8. Dalitz-plot distributions of $\Lambda_b \rightarrow \Lambda K^+ K^-$ and $\Lambda_b \rightarrow \Lambda K^\pm \pi^\pm$ are obtained using the *sPlot* technique: Λ_b mass is correlated with position on Dalitz-Plot so maybe shouldn't be used?