Van onderwijsvisie naar realisatie

Verwerkelijking binnen vakken en projecten

Inleiding

In hoofdstuk 5 van het "Opleidingsprofiel Technische Informatica" (verder aan te duiden met OTI) wordt een visie op onderwijs geschetst, gebaseerd op de volgende vijf uitgangspunten:

- 1. Studeren met plezier
- 2. Studeren met nieuwsgierigheid
- 3. Studeren binnen een contextrijke leeromgeving
- 4. Studeren door te leren van en met andere studenten en docenten
- 5. Studeren met eigenaarschap en verantwoordlijkheid

In hoofdstuk 6, 7 en 8 wordt deze visie verder uitgewerkt op niveau van leerlijnen, namelijk de praktijklijn, de kennislijn en de studentgestuurde lijn. Daarbij komt ook toetsing aan de orde.

Dit document gaat over de volgende stap, het concreet maken van de genoemde visie binnen projecten, vakken, stage en afstuderen. Om deze stap inderdaad zo concreet mogelijk te maken, wordt voorbeelden ontleend aan het huidige onderwijsaanbod. Dit onderwijsaanbod is een bewegend doel. De voorbeelden kunnen echter worden vertaald naar andere projecten en vakken.

De voorbeelden zijn vrij ver uitgewerkt, ook weer om ze zo concreet mogelijk te maken. Dat houdt niet in dat de details in steen gebeiteld staan.

De bedoeling is ideeën aan te dragen voor een haalbaar pad. Dat pad kent uiteraard vele variaties.

Voor een heldere structuur wordt als indeling van dit document de splitsing in leerlijnen aangehouden. Echter zijn ook juist de dwarsverbindingen tussen met name de praktijklijn en de kennislijn van belang, met name voor uitgangspunt 3: Studeren binnen een contextrijke leeromgeving. De praktijklijn kan een deel van de context verschaffen die studenten nieuwsgierig maakt naar de kennislijn. Daarmee wordt ook uitgangspunt 2 geraakt.é

Lift-project

Wat is het

Het lift-project is op dit moment voor alle HR-TI studenten de eerste kennismaking met een stukje praktische vakinhoud. Studenten bouwen met hun halve stamgroep een lift. (Stamgroepen, bestaande uit ca. 8 studenten, zijn een middel om studenten te helpen aansluiting vinden bij studiegenoten.) Iedere student bouwt een verdieping, bestuurd door een Arduino Uno. Het gaat daarbij om een numerieke display, knoppen en het detecteren van de liftpositie.

Daarnaast is er een centrale besturing, eveneens een Arduino, die de verdiepingen coördineert en de liftmotor aanstuurt. De verdiepings-Arduino's en de centrale Arduino communiceren met elkaar via een eenvoudig serieel protocol. Programmering gebeurt in principe in C, sommige studenten gebruiken de C++ faciliteiten die in de Arduino IDE aanwezig zijn.

De studenten gaan dit project in met een minimum aan voorkennis. De meesten kunnen net een beetje programmeren in C, netwerken en protocollen zijn nieuw voor ze en op een paar hobbyisten na weten de meesten weinig van hardware. De werkwijze is bij de meesten verkennend en ad-hoc. Goed kijken naar het logica en mechanica van een echte lift gebeurt weinig tot niet. Met een laser-cutter worden de wanden van de schacht en de liftkooi uitgesneden, waarna één en ander in elkaar wordt gezet, vaak met behulp van een lijmpistool.

Wat betreft de electronica gaan studenten aan de slag met de zogenaamde brooddoos, een bak met hardware die iedere TI student aan het begin van z'n studie krijgt. Als het geheel niet blijkt te werken wordt er veel gepiekerd en vaak lukraak geprobeerd. Soms helpen ze elkaar, soms zitten ze in hun eentje te modderen. Systematisch zoeken naar fouten, door hard- en software afzonderlijk te testen en de mogelijke foutoorzaken één voor één te elimineren is voor de meesten onbekend terrein.

Er wordt vooral veel gekeken naar pin-nummers en draadjes, bij dat laatste soms maar lang niet altijd geholpen door systematisch kleurgebruik. Het verschil tussen stroom en spanning, hoe je deze grootheden zou kunnen meten en waarom je dat zou doen is bij velen onbekend. Dat er ergens in het gebouw universeelmeters liggen te wachten om dichter bij de foutoorzaak te komen is bij vrijwel geen enkele student in beeld. Dat ook een ledje met een serieweerstand je hierbij zou kunnen helpen is een goed bewaard geheim.

Enerzijds zou je kunnen zeggen dat de uitgangspunten 4 en 5 hier vollop aan de orde kunnen komen. Anderzijds zitten sommigen wel erg lang in een impasse. Als je niet weet dat er systematische manieren bestaan om fouten te traceren en dat er spullen en truukjes bestaan die je daarbij kunnen helpen, blijf je misschien worstelen zonder op het idee te komen dat andere mensen je verder zouden kunnen helpen. Je weet immers nog niet dat er een "verder" is. Enige worsteling en spontaan ontwaken het eigen initiatief om een medestudent of docent om hulp te vragen is leerzaam. Een te lange

worsteling kan zowel ontmoedigend als tijdverspillend zijn. Het is een kwestie van balans.

Veel groepen maken een soort taakverdeling, op basis van veronderstelde aanleg. Vaak is er wel een student in het groepje die al eerder geprogrammeerd heeft. Deze neemt dan vaak de software voor z'n rekening. Soms is dat alleen de centrale software, soms programmeert diezelfde student ook alle verdiepingen. Bij vragen van een docent over de voortgang van de software wordt dan naar deze persoon verwezen, soms met enig ontzag. Ook hier zitten weer twee kanten aan. De taken verdelen is goed. Ieder op z'n eigen eiland is, blijkens uitgangspunt 4, niet de bedoeling.

Het communicatieprotocol tussen de Arduino's is een verhaal apart. Studenten focussen vrijwel zonder uitzondering op de technische details van I²C. De vraag *welke informatie* de verdiepingen zouden moeten uitwisselen wordt pas in laatste instantie gesteld. Bij aanvang van de studie is dit begrijpelijk. Het heeft ook te maken met de instroom. We krijgen nu eenmaal niet alleen studenten met een (in aanleg) goed abstractievermogen. Deze "details eerst" aanpak blijkt echter ook in hogere leerjaren nog door veel studenten te worden gevolgd, waardoor men zich bijvoorbeeld bij het afstuderen helemaal commit aan een bepaald merk of type hardware, die soms niet of niet snel genoeg leverbaar blijkt. Wat dat betreft zou er binnen de studie een constante aansporing moeten zijn, ontwerpproblemen wat meer vanuit een (zich ontwikkelende) helikopterview te benaderen.

En dan is er nog het aspect van de geïnvesteerde aandacht, tijd en energie. Het liftproject is niet de enige studieactiviteit. Dat een bepaalde studieactiviteit even alle aandacht opeist is een bekend fenomeen. Het antwoord van een willekeurige student op de vraag waarom zij dit of dat nog niet gedaan heeft, is vaak: eind van de week moet project zus of zo klaar zijn. Plannen blijkt iets dat geleerd moet worden. Positief punt: Al doende leert men vaak ook dit. Negatief punt: Indien een project of vak te veel energie wegzuigt bij andere studieactiviteiten kan uitval het gevolg zijn. Ook hier weer de noodzaak van balans.

Uiteindelijk ontstaat een lift die het wel of niet doet. Daarbinnen zijn er nuances. Liften die een enigszins efficiente volgorde van passagiers oppikken hanteren zijn in de minderheid. Liften die het helemaal niet doen gelukkig ook. Al met al leren de meesten heel wat van dit project. Een mooi project dus, met zowel technische als professional en interpersonal skills aspecten. De ideeën die nu volgen betreffende het nog meer verwerken van de besproken onderwijsvisie kunnen er een nog mooier project van maken.

Het project door de bril van de 5 uitgangspunten

1. Studeren met plezier

Als je de studenten op onze verdieping aan dit project bezig ziet, valt de informele sfeer en het contact tussen de studenten op. Het is een soort zoemende bijenkorf, zowel op het onderwijsplein als in de lokalen er omheen en ook in het stadslab. Een mooi eikpunt is de situatie tijdens de Corona lockdowns. Wat waren ze blij elkaar af en toe te zien. De meesten varen wel bij fysieke aanwezigheid en contact

met studiegenoten en docenten. Voor studenten die niet te ver weg wonen is ook het dagritme een positief element: uit je bed komen en ergens heen gaan waar het gezellig is.

Daarnaast zijn velen gefascineerd door het knutselen met al die mysterieuze blokjes, busjes, draadjes en lampjes en knopjes. Ook de aansturing hiervan met software heeft voor velen z'n bekoring. Plezier in de inhoud van het vak, al is de diepte en dagelijkse werkelijkheid van dat vak nog grotendeels aan het oog onttrokken. Degenen die dat helemaal niet hebben? Misschien komt het nog, misschien past een andere studie beter bij ze. Niet alles is beïnvloedbaar.

Tenstlotte is er het plezier van de overwinning: Moeilijke problemen tegenkomen, ze één voor één oplossen en tenslotte een werkend systeem. Zelf gemaakt, samen met je team. Een vreugdevolle ervaring en positieve bekrachtiging. Yes, I can!

En er zijn ook zaken die beter kunnen. Urenlang worstelen en er niet uitkomen, waarna iemand anders het wel even in orde maakt doet afbreuk aan het plezier. Het project is voor veel eerstejaars hoog gegrepen, zelfs in z'n eenvoudigste vorm. Iets meer structuur en begeleiding zal helpen. Dat hoeft niet persee altijd 1 op 1 persoonlijke begeleiding te zijn. Ook een reader of video waarin wordt getoond hoe je zoiets nu eigenlijk aanpakt is begeleiding.

Het gaat daarbij niet om een stap voor stap "handleiding" maar meer om aanwijzingen over hoe je een zo'n combinatie-project van hard- en software behapbaar maakt. Aanwijzingen die voor docenten vanzelf spreken zoals systematisch gebruik van draadkleuren, het onafhankelijk testen van subonderdelen van zowel hardware als software en het grondig testen van de hardware voordat deze als debugging vehicle voor de software wordt gebruikt zijn zo maar wat zaken die studenten op het goede spoor kunnen zetten, zonder ze daarbij het plezier en het leereffect van zelf zoeken en vinden te ontnemen.

Wat betreft structuur kan een voorbeeld-stappenplan worden aangereikt, een beetje zoals een voorbeeld-indeling van een afstudeer- of stageverslag. Hierin worden een aantal verstandige stappen bij het maken van een dergelijke toepassing genoemd, met per stap het nut ervan en wat hints omtrent de praktische uitvoering. Een voorbeeld van zo'n stappenplan staat in onderstaande tabel.

Stap	Waarom	Hoe
Eenduidig boven tafel krijgen van de vereisten aan het projectresultaat	Helder vasleggen wat precies moet worden gemaakt	Bestuderen en samenvatten van bestaande specificatie of, indien deze niet voor handen is, achterhalen en vastleggen ervan
Kiezen van principe-oplossingen om het projectresultaat te verkrijgen	Zo'n principe-ontwerp maakt duidelijk welke taken er zoal zijn bij de realisatie ervan	Samen creatief nadenken en overleggen, zodat gebruik wordt gemaakt van alle ideeën binnen de groep
Inventariseren van kennis, vaardigheden en voorkeur Het bieden van enige sturende	Zo kan men er voor zorgen dat ieder datgene doet waar zij goed in is of wil worden	Ieder groepslid geeft aan waar zij goed in is of wat zij wil leren.é

begeleiding is in overeenstemming met niveau 1 van tabel 2 in het OTI.binnen de groep		
Inventariseren van taken binnen het project	Zo kunnen deze taken worden verdeeld onder de groepsleden	Zoek taken waarvan het resultaat onafhankelijk kan worden getest
Verdelen van de taken	Doorlooptijd verkleinen	Elk groepslid geeft minimaal 2 voorkeurstaken aan. Uiteindelijk wordt in overleg besloten. De verdeling van taken over groepsleden hoeft niet 1 op 1 te zijn
Inventariseren van de benodigde hardware-onderdelen	Het kan zijn dat niet alles op voorraad is. Sommige dingen moeten zelf worden gemaakt uit basismaterialen	Opstellen van materialenlijst met bron waaruit deze kunnen worden betrokken en, indien van toepassing, kosten
Splitsen van het totale hardware systeem in onafhankelijk testbare deelsystemen	Het is dan snel duidelijk in welk deelsysteem "het niet doet"	Deelsystemen zo kiezen dat ze zo min mogelijk verweven zijn
Splitsen van de benodigde software in onderdelen	Zo kan aan die onderdelen onafhankelijk worden gewerkt en kunnen ze onafhankelijk worden getest	Maak de splitsing zo dat de onderdelen zo min mogelijk met elkaar verweven zijn
Vervaardiging en individueel testen van hardware- deelsystemen	Een systeem dat uit betrouwbare deelsystemen wordt opgebouwd is meestal zelf ook betrouwbaar	Gebruik van test-hulpmiddelen zoals een universeelmeter
Testen van de hardware als geheel	Zo verkrijgt men een stevige basis waarop in een volgende stap de software kan worden getest	Dit kan door rechtstreeks de I/O van de besturing(en) in te lezen en aan te sturen met behulp van een eenvoudig testprogrammaprint (type (ship)name, ship.name, ship.length, ship.orientation)
Testen van delen van de software op de grondig geteste hardware (unittest)	Zo wordt snel duidelijk waar eventuele fouten zitten	De diverse software-onderdelen aansturen via speciale, eenvoudige test-code
Testen van de samengevoegde software op de samengevoegde hardware (integratietest)	Hiermee wordt een correcte samenwerking tussen alle delen getest	Stel een testplan op aan de hand van de vereisten, voer dit stap voor stap uit en leg de resultaten vast
Opstellen gebruiksdocumentatie	Een gebruiker moet weten hoe hij het systeem kan bedienen	Bekijk het systeem vanuit het standpunt van een gebruiker zonder technische kennis

Een dergelijk stappenplan zorgt dat de studenten niet helemaal "het bos in gaan", want daar leren ze weinig van. Goede gewoonten, zoals een systematische aanpak bij opbouw en testen kunnen niet vroeg genoeg worden aangereikt. Het bieden van enige sturende begeleiding is in overeenstemming met niveau 1 van tabel 2 in het OTI.

Zo krijgen de studenten enige steun bij het aanpakken van het project en vermindert de frustratie, maar blijven de uitdaging en het plezier van de overwinning volop bestaan.

2. Studeren met nieuwsgierigheid

Sommige studenten zijn van nature nieuwsgierig. Anderen zijn vooral gefocust op het snel en succesvol afronden van de studie. Dat mag, maar zonder nieuwsgierigheid worden veel kansen op het zich eigen maken van kennis gemist. Er ontstaat dan een patroon van kortstondige inspanning om een voldoende te halen, waarbij de opgedane kennis nauwelijks blijft hangen. Immers, die kennis is dané bijzaak, het gaat primair om het behalen van een voldoende en dat kan vaak met oppervlakkig, vluchtig begrip. Wat moeten we precies weten? Wat zijn de minimumeisen aan het projectresulaat? Delete en door.

Deze minimalistische strategie leidt er toe dat een deel van de studenten veel minder leert dan zou kunnen. Er is letterlijk sprake van verspilling. Een belangrijk deel van de onderwijs-effort gaat ernaast. Dat is niet de bedoeling van de maatschappelijke investering in onderwijs. Al bij project 1, op dit moment het lift-project, zijn er mogelijkheden om de nieuwsgierigheid expliciet te stimuleren. Bij studenten die niet van nature "aangedreven worden" door nieuwsgierigheid voor techniek, maar meer door het carriere-perspectief, biedt vooral stimuleren vanuit de praktische toepassing mogelijkheden. Zulke studenten zijn immers al bezig met het moment dat ze bij een bedrijf aan de slag kunnen en vormen zich daarvan een beeld. Hiervan kan meer gebruik worden gemaakt.

Wat ben ik aan het maken? Alleen maar een aantal plankjes, met wat knopjes, displays, draadjes, sensoren, Arduino's en een stappenmotor? Veel studenten maken zelf de stap naar "een lift" niet. Er zijn liften in ons gebouw. Hoe werken ze precies? Wat voor strategie volgen ze als op meerdere verdiepingen iemand op de knoppen drukt. Zo iets zou onderwerp van een eenvoudig experiment kunnen zijn, bijvoorbeeld met een goederenlift die op dat moment geen spitsuur heeft. Hoe zit het eigenlijk met energie-verbruik? Kost het niet heel veel energie om elke keer een zware liftkooi op te hijsen? Hier zijn twee didactische standpunten mogelijk:

- 1. Het doet er niet toe hoe een echte lift precies werkt. Maak nu maar wat je minimaal moet maken. Doe je ding, we vinken punten af op ons lijstje en als je houten hokje op en neer gaat en op de juiste plekken stopt, en de displays de juiste cijfers laten zien heb je een voldoende. Zo wordt onbedoeld de minimalistische strategie gestimuleerd en de berekende student geboren. Wat is er minimaal nodig voor een voldoende.
- 2. Leren gaat niet alleen over techniek maar ook over nieuwsgierigheid naar praktische toepassingen. Wat is een echte lift voor ding en hoe werkt hij precies? En dan gaat het om alle aspecten. Het feit dat er dan bijvoorbeeld een contragewicht op en neer gaat is geen bijzaak meer. Het maakt immers deel uit van die echte lift en die staat centraal!

Aanpak 2 is omdenken voor de gepassioneerde ras-technicus. Immers die is vooral geinteresseerd in de knopjes, lampjes, displays, draadjes, compuéters en software. Maar interesse voor het hele praktische fenomeen "lift" is wel een manier om juist de studenten met een meer praktische insteek aan te spreken. Dit vergt van de docenten dat ze bereid zijn, niet alleen in te gaan op de TI kant van een lift, maar ook op aspecten die in hun ogen "bijzaak" zijn.

Automatisering is maar één aspect van een lift. Een lift is een materieel ding. Een lift vervult een functie voor de gebruikers. Een lift wordt ergens gemaakt. Er wordt aan verdiend. Er werken mensen aan. Er is een productielijn. Er zijn toeleveranciers. Veiligheidsvoorschriften. Esthetiek. Kortom allerlei kanten die niet helemaal "techniek" en ook niet helemaal "skills" zijn. En zo komen we vanzelf op uitgangspunt 3.

4. Een contextrijke leeromgeving

Plezier, nieuwsgierigheid en contextrijkheid gaan hand in hand. Juist studenten bij wie de pure techniek niet de voornaamste brug naar interesse is, komt de context te hulp. Interesse in de context is interesse in "waar je het voor doet". En als je weet waar je het voor doet, is kennis geen overbodige ballast meer maar een zinvolle lading. Dat maakt het een stuk makkelijker kennis te verwerven. Leren uit interesse gaat nu eenmaal veel soepeler dan leren "omdat het moet". Studenten vellen een snel en automatisch een oordeel: "ballast" of "lading". En wie ze ballast (in hun ogen) probeert op te dringen, raakt onvermijdelijk teleurgesteld. Niet dat alle studenten echt kunnen beoordelen wat ballast is en wat niet. Daarvoor weten velen nog te weinig van de beroepsprakijk. Deze beperking komt aan de orde bij uitgangspunt 5: Studeren met eigenaarschap en verantwoordlijkheid.

De beroepspraktijk is een deel van de context. Immers, producten spelen niet alleen een rol in het leven van consumenten, maar ook van producenten. Hoe meer context bij een project wordt geboden, des te meer zal het een brede groep studenten aanspreken.

Twee kanttekeningen:

Ten eerste zijn er natuurlijk grenzen. Context zonder een significante hoeveelheid harde, technische inhoud mag dan nuttig zijn, onder de vlag van Technische Informatica hoort het bijbrengen van zulke harde technische kennis en vaardigheden nu eenmaal tot de lading. Voor puur maatschappelijk of bedrijfskundig geïnteresseerden zijn er andere studies.

Ten tweede: Als de nadruk vrijwel geheel op de context komt te liggen, verliezen studenten met een sterk technische focus hun interesse. Er zijn natuurlijk studenten die alle context zowiezo maar onzin vinden. Het is niet de bedoeling het onderwijs geheel in te richten op deze eenzijdige gefocuste groep. Een veel grotere groep echter heeft een passie voor techniek en is wel in staat te zien dat een bepaalde mate van engagement met de context nodig is om een goede technicus te zijn, maar ventileert ongezouten zijn ongenoegen als de techniek ondersneeuwt. Hier hebben ze niet voor gekozen. Dat klopt. De pure technici horen ook aan boord thuis. Voor een deel valt dit op te lossen met

mogelijkheden tot verdieping. Deze verdieping hoort ook expliciet beoordeeld en gewaardeerd te worden.

Bij de lift kan het gaan om een slimme prioritisering van de manier waarop de etages doorlopen worden. Of om meerdere liften die op zinnige wijze samenwerken om mensen zonder omwegen en met zo min mogelijk wachttijd naar de juiste etage te krijgen. Of om een strakke, bijvoorbeeld object georiënteerde, programmeerstijl met een helder, goed gedocumenteerd ontwerp. Of om een elegant protocol, waarbij een OSI-achtige lagen-indeling is aangehouden. Of om een speciale faciliteit om voorrang te geven aan urgent gebruik. Belangrijk is dat deze mogelijkheden in de practicum-omschrijving zijn aangegeven en dat de docenten ze op waarde schatten en meenemen in de beoordeling.

Zoals besproken sluiten context en technische verdieping elkaar niet uit. Ze versterken elkaar eerder. Het meenemen van meer context vergroot de mogelijkheden tot verdieping. De voorgestelde uitbreidingen van het materiaal met zowel een bredere context van het fenomeen lift als verdieping aan de hand van bijvoorbeeld de gedane suggesties voor "extra's" vormen een eenmalige investering in het project.

Daarnaast is aandacht van de docenten voor de context nodig, ook als dat niet hun eigen primaire interesse is. Van belang is daarbij dat niet te gauw wordt aangenomen dat een aspect van een echte lift "er voor het project niet toe doet". Dat is de visie van een techicus pur-sang, sommige studenten hebben dezelfde focus, anderen varen wel bij meer context. In ons gebouw bevinden zich diverse liften. Die kunnen op z'n minst grondig bekeken worden, inclusief prioriteits-sleutels, contragewichten en deurbeveiliging. Daarnaast kan een (goederen)lift in overleg met gebouwenbeheer voor experimenten betreffende service-volgorde van etages worden gebruikt. De resultaten kunnen in het project-verslag worden opgenomen en al dan niet worden gebruikt als basis voor een eigen algoritme.

5. Studeren met eigenaarschap en verantwoordelijkheid

Dit is bij project 1 voor een deel van de studenten een beginnend "werk in uitvoering". Op de middelbare school wordt je over het algemeen eenduidig vertelt wat je moet doen. De enige verantwoordelijkheid is dat je dat ook werkelijk min of meer doet. Van eigenaarschap is heel vaak geen sprake. Je moet gewoon naar school en daar moet je leren. Of een dergelijke aanpak verstandig is wordt hier in het midden gelaten. Met alle gevolgen die de leerplichtwet heeft gehad is dit mogelijk een negatief bijeffect. Leren is geen gunst maar een plicht. Kinderen in Afrika of India denken daar vaak heel anders over. Maar, zoals gezegd, het is geen manco van de leerlingen maar van het systeem. En iets beters bedenken is niet eenvoudig. Voor HBO opleidingen is het een gegeven dat veel van de studenten met een dergelijke mentaliteit binnenkomen, gecombineerd met een deficiet aan basiskennis zoals rekenen en lezen. Studenten hebben tegenwoordig ook vaardigheden, die studenten vroeger niet hadden. Blijft wel het genoemde deficiet. Dit is geen waarde-oordeel, maar een vaststelling die door breed onderzoek en meten wordt ondersteund.

Bij project 1 kan een begin worden gemaakt me het aankweken van eigenaarschap en

verantwoordelijkheid, maar met mate. Dit is iets dat geleerd moet worden. Een beetje vallen en opstaan hoort daarbij. Vallen en niet meer opstaan is natuurlijk niet de bedoeling. En dat is wel wat er uiteindelijk wat er met een flink deel van de studenten gebeurt.

Centraal staat het begrip "positieve bekrachtiging". Geef studenten de verantwoordelijkheid die ze aankunnen, maar niet (veel) meer. Op die manier komen ze in een positieve spiraal: Ik kan dit zelf, ik kan mijzelf managen. De hoofdrol is hier weggelegd voor SLC (Studie Loopbaan Coaching). Studenten worden zoveel mogelijk losgelaten maar zijn wel in beeld.

Echt eigenaarschap is voor een deel van de studenten nog te veel gevraagd. Naast het aanleren ervan mogen er daarom in project 1 ook externe prikkels zijn. Een voorbeeld daarvan zijn tussendoelen met bijbehorende deadlines. Een ander voorbeeld is, dat er eisen worden gesteld aan de taakverdeling, om te zorgen dat er geen "meelopende wielen" zijn. Zo mag geeist worden dat alle groepsleden tenminste passieve kennis hebben van wat de anderen hebben gemaakt. Dus, specifiek, ook iemand die de software niet zelf geschreven heeft, dient deze regel voor regel te kunnen uitleggen. En ook iemand die de hardware niet zelf bedraad heeft, dient te kunnen uitleggen wat waarop aangesloten is en waarom. Zelfde geldt voor de volgorde-strategie bij het aandoen van etages en het communicatieprotocol.

Deze manier van beoordelen hoeft niet extreem veel tijd te kosten, maar 15 a 20 minuten per groep is echt het minimum. Daarbij moeten ook individuele vragen gesteld worden, waarbij de anderen niet "voorzeggen". Dit is niet alleen controle maar ook zorgen dat studenten zich gezien voelen.

Het bank-project

Wat is het

Aan het einde van het eerste studiejaar doen TI studenten het bank-project. Ze weten dan al wat meer van hardware en hebben dan behalve de programmeertaal C ook enig Java gehad. Ze hebben al wat ervaring met hoe je een project in principe aanpakt, samenwerkend met andere studenten.

Het bank-project gaat over realisatie van een aantal banken met pinautomaten. Elke pin-automaat is via een data-verbinding gekoppeld aan een bank en alle banken zijn aan elkaar gekoppeld in een LAN. De pinautomaat omvat zowel hard- als software aspecten. Het gelduitgifte-systeem is een plek waar de studenten veel creatieve, praktische oplossingen kwijt kunnen. Werk je voor het uitgeven van biljetten met rolletjes? Of met zuigers? Of zijn er nog originele en effectieve alternatieven? Of maak je stiekem je biljetten onopvallend wat dikker, zodat het meer kaartjes dan papiertjes zijn en makkelijker te manipuleren?

De kast van de uitgifte-automaat is een geliefd doelwit voor lasercutters, 3D printers, lijmpistolen en ander gerei. Daarnaast worden de meeste automaten met zichtbaar plezier voorzien van grappige namen en logo's.

Ieder groepje studenten maakt een bank. Omdat banken met elkaar moeten communiceren is overleg tussen de groepjes over het communicatie-protocol nodig. Vaak neemt een beperkt aantal studenten hierin het voortouw. Dat is conform de realiteit. Ook in het "echt" worden dergelijke zaken niet beslist in een brede maatschappelijke disussie.

Een ander aspect van het bank-project is security. Hoe check je de indentiteit van een klant. Hoe zorg je dat de geld-automaten niet meer flappen tappen dan het saldo van de klant rechtvaardigt. En hoe zorg je dat er geen geld wordt weggesluisd door simpelweg het interbankaire dataverkeer te hacken?

De afsluiting van het project is een happening die gekenmerkt wordt door een combinatie van serieuze spanning en plezier. Studenten mogen proberen elkaars bank te hacken en de robuustheid geldautomaten worden op diverse wijzen op de proef gesteld. Techniek- en skillsdocenten lopen rond om het resultaat te beoordelen. Een groot deel van de verdieping is gevuld met leven en gedoe, draadjes, schermpjes. De TI-sfeer op z'n best.

Het project door de bril van de 5 uitgangspunten

1. Studeren met plezier

Vooral op de "slot-happening" is het plezier bij de meesten duidelijk aanwezig. Een belangrijk deel van dat plezier is sociaal plezier. Studenten kijken naar de resultaten van andere groepen en leveren commentaar, vaak met een knipoog. Het contact tussen de docenten en studenten heeft op dat moment

een serieus doel, beoordeling, uiteindelijke na een eventuele verbeterslag uitmondend in het al dan niet behalen van studiepunten.

Maar de sfeer is behalve serieus ook informeel. De relatie tussen student en docent is een belangrijk element van deze gebeurtenis. Die kan zich uiten in een opmerking, waaruit blijkt dat docent en student elkaar langer kennen dan vandaag. Of gewoon in een blik of grapje. Of in een serieus coachend verhaal om de student alsnog op het goede spoor te zetten voor een tweede kans. Of in erkenning van het talent of het harde werk dat blijkt uit het resultaat.

Alleen al de afsluiting van het project draagt op deze manier in belangrijke mate bij aan het studieplezier. Natuurlijk telt voor velen vooral het resultaat. Dat is ook okee. Tenslotte is er sprake van een opleiding met een inhoudelijke doelstelling. Echter bij die doelstelling hoort ook groei van de student als mens. Dat samenwerken behalve resultaatgericht ook gewoon domweg leuk kan zijn en kan leiden tot je verbonden voelen met je eigen groepje en met andere studenten, dat er een prettig soort competetie kan ontstaan en dat je je in een samenwerkings-situate gezien en "at home" kunt voelen is een belangrijke leerervaring en vergroot de kans op studiesucces.

Aanwezig zijn, meegenomen worden in de stroom, informeel contact met inbreng van pril, maar groeiend eigen vakmanschap, het zijn allemaal zaken die net zo belangrijk zijn als de techniek omdat ze een opstap zijn naar plezier in je werk, iets dat nauwelijks op waarde valt te schatten.

Voor de nuttigheidsdenkers: Wie met plezier werkt, levert over het algemeen ook goede resultaten af. Motivatie en inzet zijn hier de sleutelwoorden. Die motivatie is intrinsiek, komt voort uit de activiteit zelf. Een betere motivatie is er niet.

Het bank-project draagt op de beschreven manier bij aan het verwezelijking van het uitgangspunt 1: Studeren met plezier. Een klein punt zijn misschien de wat minder zichtbare aspecten van de project-resultaten. Dat de bedrading netjes is, dat het protocol logisch in elkaar zit en dat de geldautomaat met behulp van 3D printing er behoorlijk professioneel uitziet en de schermdialogen eenduidig zijn, wordt ook bij oppervlakkige beschouwing duidelijk. Dat één en ander doet wat het moet doen blijkt ook bij de demo.

Het verschil tussen goed gestructureerde, helder geschreven software en een kluwe veredelde spaghetti is minder zichtbaar. Toch is dit aspect iets waarin de betreffende studenten kennis, energie en vaardigheden hebben geïnvesteerd. Het draagt bij aan hun studieplezier als ook deze inspanning wordt gezien en beloond, in woorden en becijfering. De aanbeveling is om, voor zover dat al niet gedaan wordt, hier expliciet aandacht aan te besteden bij alle groepen. Dit kan door in te zoomen op dat deel van de code, waarvan de docent weet dat het er qua structuur opaan komt. Begin met de grof, bijvoorbeeld bij de indeling in klassen, modules of functies en zoom dan in op één onderdeel, bijvoorbeeld één klasse en, verder inzoomend, één functie. Geef constructieve feedback op alle aspecten die de docent opvallen, zowel positief als negatief. De bevindingen hierbij maken deel uit van het eindoordeel.

Op deze manier oog hebben voor wat zich onder de oppervlakte van het projectresultaat bevindt, maakt

dat de student zich ook in de inspanning voor dit belangrijke deel van het projectresultaat gezien weet. "Gezien worden" draagt bij aan plezier in het werk. Het is daarnaast een stimulans om ook aandacht te besteden voor de "inwendige" kwaliteit van wat wordt gemaakt. Hiervoor uiteindelijk zelf verantwoordelijkheid nemen maakt van iemand een goede technicus, die aan de maatschappij betrouwbare producten levert, zonder dat daarvoor een controle-circus nodig is. Dit draagt bij aan een "high-trust" society, waarin niet enorm veel menskracht en andere middelen hoeven te worden verspilt aan voortdurende controle.

https://en.wikipedia.org/wiki/High trust and low trust societies

De gewoonte, ook aandacht te besteden aan wat niet direct zichtbaar is, leidt naar zelfrespect, en daarmee ook weer naar plezier, niet alleen in de studie, maar ook later in het dagelijks werk.

2. Studeren met nieuwsgierigheid

3. Een contextrijke leeromgeving

De wereld van de financiële instellingen is een andere wereld dan die van de gemiddelde TI-student, een wereld met z'n eigen terminologie, logica en mores. Het is een wereld die tijdens de borrel en in de pers meestal negatief aan de orde komt. Tenslotte, wat gebeurt er precies in die grote gebouwen met veel marmer en mensen in pak? Wie zich er ook maar enigszins in verdiept, weet dat onze maatschappij niet zou kunnen functioneren zonder deze instellingen. Met al hun gebreken dienen ze wel degelijk een doel. Het alternatief is ruilhandel zonder de mogelijkheid waarde op te slaan of buiten de eigen groep uit te wisselen. Dat alternatief is minder idyllisch dan het lijkt. Mooi dat je een kist sinaasappels kunt ruilen tegen een kist appels of bananen. Maar maak je ooit een fruithap voor je kind als alle drie deze vruchten in een ander land en ander seizoen worden aangeboden. Geld als opslag en transportmiddel van waarde is ontstaan uit een behoefte. Voor veel afgeleide financiële producten geldt een vergelijkbaar verhaal, dat weinig bekend is buiten een kring van insiders. Hier ligt bij het bankproject een kans.

Je best doen voor een projectresultaat dat betrekking heeft op een onbekende of zelfs afkeurenswaardige wereld is minder makkelijk dan je best doen voor iets met een "goed" doel. Projecten op het terrein van bijvoorbeeld hulpmiddelen voor gehandicapten zijn een voorbeeld van het tegenovergestelde. Als iemand met een beperkinig geholpen kan worden met iets wat jij maakt, dan blijkt dat motiverend te werken, intrinsiek, maar ook qua ontmoette waardering door anderen. Tegen de morele aantrekkingskracht van projecten in de zorgsector kan weinig op, en dat is OK. Maar er zijn meer nuttige instellingen dan ziekenhuizen en revalidatie-centra alleen. Banken horen daarbij. Daarbij kan het gaan over micro-kredieten of coöperatieve instellingen of over de meer traditionele banken die hier deel uitmaken van het financiële raderwerk.

Praktisch: Op dit moment gaan mensen in het bankproject aan de slag vanuit een zeer beperkte visie op hoe het nu allemaal echt werkt met interbancair monetair verkeer, beveiliging van verbindingen naar pinautomaten en fysieke beveiliging van die automaten zelf. En trouwens, hoe werkt zo'n gelduitgifte-

systeem nu echt. Want het uitschuiven van twee aan elkaar geplakte hondertjes is een fenomeen waarop je helaas lang moet wachten.

Om dit project context-rijker te maken zijn kan bijvoorbeeld een spreker uit de banken-wereld worden uitgenodigd. Dit kan iemand zijn met financiële of technische kennis of allebei.

Voorbeelden:

- Een werknemer van een pin-automaten fabriek (die ongetwijfeld heel veel niet mag vertellen, maar hopelijk ook sommige dingen wel).
- Een financiëel medewerker van een bank die kan vertellen wat er precies gebeurt als iemand in Spanje geldt opneemt van een rekening in Nederland.
- Iemand die, binnen de grenzen van z'n non-disclosure agreement, kan vertellen hoe betalingsverkeer over WAN's of Internet nu *echt* beveiligd wordt.
- Een financiëel expert die een wat genuanceerder licht kan laten schijnen op het verschijnsel bank, tussen de uitersten "dievenbende" en "de glamour van het grote geld" in. De bank als maatschappelijke dienstverlener.