信息学院本科生 2010-2011 学年第一学期 线性代数课程期末考试试卷 (A卷)

专业:	年级:	学	号:	姓名:_			_成绩:
	表示矩阵 A 的转置矩阵, A 4^{-1} 表示可逆矩阵 A 的逆矩阵						
_	题: 1-3 小题为判断题						
括号中:	真"×",4-8 为单选题,	将正	· 确选项前	前的字母填	在括号	中.	(每小
	共 16 分)						
1. n 阶:	实对称矩阵的特征根必	为实	数.			()
2. 若矩	阵 A , B 具有相同的秩,则	<i>AX</i> =	:0 与BX=	= 0 是同解方	程组.	()
3. 非齐	次线性方程组 $AX = \beta$	$\beta(\beta \neq 0)$	0)的全部	解构成线性	生空间	R" 的	j一个
子空	间.					()
4. 在下	列构成 6 阶行列式展开	干式的	J各项中,	取"+"的有	首	()
Α. ι	$a_{15}a_{23}a_{32}a_{44}a_{51}a_{66}$	В.	$a_{11}a_{26}a_{32}a_{2}$	$a_{24}a_{53}a_{65}$			
C. a			$a_{51}a_{32}a_{13}a_{34}$				
5. 设α	β 是相互正交的 n 维约	实向量	上,则下歹	式中错误	的是	()
A.	$\left \alpha + \beta \right ^2 = \left \alpha \right ^2 + \left \beta \right ^2$	B.	$ \alpha + \beta = \alpha $	$\alpha - \beta$			
C.	$\left \alpha - \beta \right ^2 = \left \alpha \right ^2 + \left \beta \right ^2$	D.	$ \alpha + \beta = \alpha $	$\alpha + oldsymbol{eta} $			
6. 设α ₁	$=(1,1,1)^T,\alpha_2=(2,0,1)^T$	^T 是孑	下次线性力	方程组 AX	= 0 的	基础	解系,
则矩	阵 A 可能是:				()
$\mathbf{A.} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$	$ \begin{array}{ccc} 1 & -2 \\ 1 & -1 \\ 3 & -5 \end{array} B.\begin{pmatrix} 2 & 3 \\ 3 & 1 $	1 1	C.(1	1 –2)	D.以上	二都	不对
•	M 所方阵 A 与 B 等价,	则必不	言:		()
A.	A = B		В.	$ A \neq B $			
C.	若 $ A \neq 0$,则有 $ B \neq 0$)	D.	A = - B			
8. 设A	为 n 阶方阵, $AB=0$,	且矩	三阵 B≠0	,则必有:	()
	A的列向量组线性无			A=0			
C.	A的列向量组线性相	关	D.	A 的行向	量组线	性牙	己关
				第1页、共3	页		

二、行列式计算(第1题6分,第2题8分,共14分)

三、 设矩阵
$$X$$
 满足 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $X\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -4 & 3 \\ 2 & 0 & -1 \\ 1 & -2 & 0 \end{pmatrix}$.

求矩阵 X. (本题 8 分)

四、 线性方程组
$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & \lambda + 2 \\ 1 & \lambda & -2 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$$
, 问: (本题 13 分)

- (1) 当 和 取何值时,方程组无解,有解?
- (2) 当方程组有无穷多组解时,求方程组的通解。
- 五、 已知线性空间 R^3 的基 $\alpha_1,\alpha_2,\alpha_3$ 到基 β_1,β_2,β_3 的过渡矩阵为 P,且

$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}; \qquad P = \begin{pmatrix} 2 & 2 & 1 \\ 3 & 2 & -2 \\ 4 & 3 & 0 \end{pmatrix}.$$

试求: (1) 基 $\beta_1, \beta_2, \beta_3$;

(2) 在基 $\alpha_1,\alpha_2,\alpha_3$ 与 β_1,β_2,β_3 下有相同坐标的全体向量.

(本题 12 分)

六、 求一个正交变换 X=PY, 将下列二次型化成标准型

$$f(x_1,x_2,x_3)=x_1^2-2x_2^2-2x_3^2-4x_1x_2+4x_1x_3+8x_2x_3$$

并说明该二次型的类型(正定、负定、半正定、半负定、不定).
(本题 15 分)

- 七、 A为n阶(n>2)可逆矩阵, α 为n维列向量,b为实常数。记分块 矩阵 $P = \begin{pmatrix} E & 0 \\ -\alpha^T A^* & |A| \end{pmatrix}$, $Q = \begin{pmatrix} A & \alpha \\ \alpha^T & b \end{pmatrix}$,其中 A^* 为 A 的伴随矩阵,E 为n阶单位矩阵。 (本题 9 分)
 - (1) 计算并化简PQ,
 - (2) 证明Q可逆的充要条件是 $\alpha^T A^{-1} \alpha \neq b$.
- 八、 设向量组 $A:\alpha_1,\alpha_2,\cdots,\alpha_L$ 和向量组 $B:\beta_1,\beta_2,\cdots,\beta_S$ 的秩分别为 p 和 q. 试证明: 若向量组 A 可由 B 线性表示,则 $p \leq q$. (本题 8 分)

九、 设 α , β 是3维列向量,矩阵 $A = \alpha \alpha^T + \beta \beta^T$.(本题5分)

证明: (1) A 的秩 $R(A) \le 2$;

(2) 若 α , β 线性相关,则 R(A) < 2.