Digital Signal Processing for Music Part 4: Signal Description

alexander lerch

introduction

- ergodic signals do not have a functional description
- other ways of describing these signals have to be found

introduction

- ergodic signals do not have a functional description
- other ways of describing these signals have to be found
 - ergodic signal characteristics are not time variant
- we are looking for time-independent descriptions

description of (random) signals

- ergodic signals do not have a functional description
- ⇒ other ways of describing these signals have to be found
- ergodic signal characteristics are not time variant
- ⇒ we are looking for time-independent descriptions
- these descriptions might also be convenient to use for some deterministic signals

probability and occurrence

N: number of overall observations $N(x_i)$: number of occurrences of symbol x_i

relative number of occurrences:

$$\hat{p}_i = \frac{N(x_i)}{N}$$

probability:

$$p_i = \lim_{N \to \infty} \frac{N(x_i)}{N}$$

properties

$$\sum_{i} p_{i} = 1$$

$$0 < p_{i} < 1$$

N: number of overall observations $N(x_i)$: number of occurrences of symbol x_i

relative number of occurrences:

$$\hat{p}_i = \frac{N(x_i)}{N}$$

probability:

$$p_i = \lim_{N \to \infty} \frac{N(x_i)}{N}$$

properties

$$\sum_{i} p_{i} = 1$$
$$0 < p_{i} < 1$$

audio signal description probability and occurrence

Georgia | Center for Music Tech | Technology College of Design

N: number of overall observations $N(x_i)$: number of occurrences of symbol x_i

relative number of occurrences:

$$\hat{p}_i = \frac{N(x_i)}{N}$$

probability:

$$p_i = \lim_{N \to \infty} \frac{N(x_i)}{N}$$

$$\sum_{i} p_{i} = 1$$
$$0 \le p_{i} \le 1$$

probability and occurrence

Georgia Center for Music Tech College of Design

N: number of overall observations $N(x_i)$: number of occurrences of symbol x_i

relative number of occurrences:

$$\hat{p}_i = \frac{N(x_i)}{N}$$

probability:

$$p_i = \lim_{N \to \infty} \frac{N(x_i)}{N}$$

properties

$$\sum_{i} p_{i} = 1$$

$$0 < p_i < 1$$

audio signal description probability distribution example

Georgia Center for Music Tech College of Design

roll of a die

audio signal description probability distribution example

Georgia Center for Music Tech Technology

roll of a die

value 1 2 3 4 5 6
$$p(x)$$
 $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$

probability distribution for the roll of two dice

audio signal description probability distribution example

roll of a die

value 1 2 3 4 5 6
$$p(x)$$
 $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$

probability distribution for the roll of two dice

audio signal description continuous probability density distribution

Georgia | Center for Music Tech | Technology College of Design

 $i \rightarrow \text{continuous} \Rightarrow PDF$

$$\int_{-\infty}^{\infty} p_X(x) dx = 1$$

$$0 \le p_X(x)$$

•000000

$$\int_{0}^{x_{c}} p_{X}(x) dx$$

 $i \rightarrow \text{continuous} \Rightarrow PDF$

$$\int_{-\infty}^{\infty} p_X(x) dx = 1$$
$$0 \le p_X(x)$$

$$\int_{0}^{x_{c}} p_{X}(x) dx$$

audio signal description continuous probability density distribution

Georgia | Center for Music Tech | Technology College of Design

 $i \rightarrow \text{continuous} \Rightarrow PDF$

$$\int_{-\infty}^{\infty} p_X(x) dx = 1$$

$$0 \le p_X(x)$$

probability of x being a value smaller than or equal x_c

$$\int_{-\infty}^{\infty} p_X(x) dx$$

audio signal description

example PDF: Gaussian

$$p_X(x) = \frac{1}{\sqrt{2\pi}\sigma_X} e^{-\frac{(x-\mu_X)^2}{2\sigma_X^2}}$$

audio signal description example PDF: Exponential

$$p_X(x) = \begin{cases} \frac{1}{\sigma_X} e^{-\frac{x}{\sigma_X}} & x > 0\\ 0 & \text{else} \end{cases}$$

audio signal description example PDF: Laplace (2-sided exp)

$$p_X(x) = \frac{1}{\sqrt{2}\sigma_X} e^{-\sqrt{2}\frac{|x-\mu_X|}{\sigma_X}}$$

audio signal description measured RDF

audio signal description measured RDF

audio signal description PDFs of generated signals 1/2

Georgia Center for Music Tech College of Design

describe the shape of the following PDFs

Georgia Center for Music Tech College of Design

describe the shape of the following PDFs

- white noise (uniform)
- white noise (Gaussian)
- DC
- square
- sinusoidal
- sawtooth

Georgia Center for Music Tech Technology

Example: average grade, five students, grades: 1, 2, 1, 3, 5

$$\hat{\mu}_X = \frac{1+2+1+3+5}{5} = 2.4$$

Grade	# occurrences	relative frequency
1	2	2/5
2	1	1/5
3	1	1/5
4		
5	1	1/5

audio signal description expected value 1/3

Georgia Center for Music Tech Technology

Example: average grade, five students, grades: 1, 2, 1, 3, 5

$$\hat{\mu}_X = \frac{1+2+1+3+5}{5} = 2.4$$

Grade	# occurrences	relative frequency
1	2	2/5
2	1	1/5
3	1	1/5
4	0	0/5
5	1	1/5

audio signal description expected value 2/3

Georgia | Center for Music Tech | Technology College of Design

$$\mu = \frac{2}{5} \cdot 1 + \frac{1}{5} \cdot 2 + \frac{1}{5} \cdot 3 + \frac{0}{5} \cdot 4 + \frac{1}{5} \cdot 5 = 2.4$$

$$\mu_X = \sum_{\forall x} p(x) \cdot x$$

$$\mu_X = \mathcal{E}\{X\} = \int x p_X(x) dx$$

audio signal description expected value 2/3

Georgia | Center for Music Tech | Technology College of Design

$$\mu = \frac{2}{5} \cdot 1 + \frac{1}{5} \cdot 2 + \frac{1}{5} \cdot 3 + \frac{0}{5} \cdot 4 + \frac{1}{5} \cdot 5 = 2.4$$

$$\mu_X = \sum_{\forall x} p(x) \cdot x$$

$$\mu_X = \mathcal{E}\{X\} = \int_{-\infty}^{+\infty} x p_X(x) dx$$

Georgia Center for Music Tech Technology

generalization:

$$\mathcal{E}\{f(X)\} = \sum_{i} f(x)p(x)$$

examples:

- mean: f(x) = x
 - quad. mean: $f(x) = x^2$

Georgia **Center for Music** Tech | Technology College of Design

generalization:

$$\mathcal{E}\{f(X)\} = \sum_{i} f(x)p(x)$$

examples:

- mean: f(x) = x
- quad. mean: $f(x) = x^2$

audio signal description (central) moments 1/2

Georgia Center for Music Tech Technology

kth moment

$$\mathcal{E}\{X^k\} = \int_{-\infty}^{+\infty} x^k p_X(x) dx$$

kth central momen

$$\mathcal{E}\{(X-\mu_X)^k\} = \int_{-\infty}^{+\infty} (x-\mu_X)^k p_X(x) dx$$

• example: 2nd order central moment: Variance

$$\sigma_X^2 = \mathcal{E}\{(X - \mu_X)^2\} = \int_0^{+\infty} (x - \mu_X)^2 p_X(x) dx$$

audio signal description (central) moments 1/2

Georgia | Center for Music Tech | Technology College of Design

kth moment

$$\mathcal{E}\{X^k\} = \int_{-\infty}^{+\infty} x^k p_X(x) dx$$

kth central moment.

$$\mathcal{E}\{(X-\mu_X)^k\} = \int_{-\infty}^{+\infty} (x-\mu_X)^k p_X(x) dx$$

example: 2nd order central moment: Variance

$$\sigma_X^2 = \mathcal{E}\{(X - \mu_X)^2\} = \int_{-\infty}^{+\infty} (x - \mu_X)^2 p_X(x) dx$$

audio signal description (central) moments 1/2

Georgia | Center for Music Tech | Technology

kth moment

$$\mathcal{E}\{X^k\} = \int_{-\infty}^{+\infty} x^k p_X(x) dx$$

kth central moment.

$$\mathcal{E}\{(X-\mu_X)^k\} = \int_{-\infty}^{+\infty} (x-\mu_X)^k p_X(x) dx$$

example: 2nd order central moment: Variance

$$\sigma_X^2 = \mathcal{E}\{(X - \mu_X)^2\} = \int_{-\infty}^{+\infty} (x - \mu_X)^2 p_X(x) dx$$

calculation of moments

(central) moments (mean, power, variance, etc.) can be computed from

- the signal
- the signal's PDF

audio signal description central moments summary

Georgia **Center for Music** Tech | Technology College of Design

order	name	obs (cont)	pdf (cont)
1	μ_X	$\frac{1}{T}\int\limits_{-T/2}^{T/2}x(t)dt$	$\int\limits_{-\infty}^{\infty} x p_X(x) dx$
2	σ_X^2	$\frac{1}{T}\int\limits_{-T/2}^{T/2}(x(t)-\mu_X)^2dt$	$\int_{-\infty}^{\infty} (x - \mu_X)^2 p_X(x) dx$

standard deviation $\sigma_X = \sqrt{\sigma_X^2}$

- PDF can tell us many important details about a signal
- statistical measures can be used to describe signal properties
- statistical measures can be derived from both the time domain signal and its pdf
- often-used measures are:
 - mean and median
 - variance and standard deviation
 - higher order moments less frequently (skewness, kurtosis)
 - other pdf description possible (quartile-distances etc.)

audio signal description summary

- PDF can tell us many important details about a signal
- statistical measures can be used to describe signal properties

audio signal description

- Open PDF can tell us many important details about a signal
- ② statistical measures can be used to describe signal properties
- statistical measures can be derived from both the time domain signal and its pdf
- often-used measures are
 - mean and median
 - variance and standard deviation
 - higher order moments less frequently (skewness, kurtosis)
 - other pdf description possible (quartile-distances etc.)

- PDF can tell us many important details about a signal
- statistical measures can be used to describe signal properties
- statistical measures can be derived from both the time domain signal and its pdf
- often-used measures are:
 - mean and median
 - variance and standard deviation
 - higher order moments less frequently (skewness, kurtosis)
 - other pdf description possible (quartile-distances etc.)