HW1

Huiyu Hu

1/18/2018

Part 1

• Finished the GitHub setting.

Part 2

1. How many persons are in the data set (statisticians call this n)? How many SNPs are in the data set (statisticians call this p)?

```
awk 'END { print NR }' /home/m280-data/hw1/merge-geno.fam

## 959
awk 'END { print NR }' /home/m280-data/hw1/merge-geno.bim

## 8348674
```

- Answer: n = 959; p = 8348674
- 2. Which chromosomes does this data set contain? How many SNPs are in each chromosome?

```
awk < /home/m280-data/hw1/merge-geno.bim '{print $1}' | uniq -c

## 1309299 1

## 1215399 3

## 1090185 5

## 980944 7

## 732013 9

## 815860 11

## 602809 13

## 491208 15

## 477990 17

## 393615 19

## 239352 21
```

- Answer:
- 3. MAP4 (microtubule-associated protein 4) is a gene on chromosome 3 spanning positions 47,892,180 bp 48,130,769 bp. How many SNPs are located within MAP4 gene?

```
awk '{if ($1 == 3 \&\& $4 >= 47892180 \&\& $4 <= 48130769) print}' /home/m280-data/hw1/merge-geno.bim | wc -1
```

- Answer: There are 894 SNPs lovated within MAP4 gene.
- 4. Reformat
- For .bim file:

```
2.40 = FILE FORMAT VERSION NUMBER." > /home/huiyuhu/biostat-m280-
2018-winter/hw1/merge-geno.lalala
 echo '8348674 = NUMBER OF SNPS LISTED HERE.' >> /home/huiyuhu/biostat-m280-
2018-winter/hw1/merge-geno.lalala
 awk '{OFS = ","} {print $2, $1, $4}' /home/m280-data/hw1/merge-geno.bim >>
/home/huiyuhu/biostat-m280-2018-winter/hw1/merge-geno.lalala
 head /home/huiyuhu/biostat-m280-2018-winter/hw1/merge-geno.lalala
##
       2.40 = FILE FORMAT VERSION NUMBER.
## 8348674 = NUMBER OF SNPS LISTED HERE.
## 1-54490,1,54490
## 1-55550,1,55550
## 1-57033,1,57033
## 1-57064,1,57064
## 1-57818,1,57818
## 1-58432,1,58432
## 1-58448,1,58448
## 1-58814,1,58814
```

- For .fam file
- Comments: 1, change seperator to ","; 2, strip the string T2DG from the IDs; 3, convert sex from number to char; 4, remove missing value.

```
awk '{OFS = ","} {print $1, $2, $3, $4, $5, $6}' /home/m280-data/hw1/merge-
geno.fam | sed 's/T2DG//g' | awk -F, -v sex="" '{OFS = ","} {if ($5 == 1) sex
= "M"; else sex = "F"} {print $1,$2,$3,$4, sex,$6}' | awk -F, '{OFS=","} {
for (i = 1; i \le NF; i++) {\{i = (\{i == 0 ? "" : \{i\})\}; print \}'\}}
/home/huiyuhu/biostat-m280-2018-winter/hw1/merge-geno.hehehe
head -20 /home/huiyuhu/biostat-m280-2018-winter/hw1/merge-geno.hehehe
## 2,0200001,,,M,
## 2,0200002,,,F,
## 2,0200003,,,F,
## 2,0200004,,,F,
## 2,0200005,,,M,
## 2,0200006,,,M,
## 2,0200007,,,F,
## 2,0200008,,,F,
## 2,0200009,,,F,
## 2,0200012,,,M,
## 2,0200013,,,M,
## 2,0200018,,,M,
## 2,0200023,,,F,
## 2,0200024,,,M,
## 2,0200027,,,F,
```

```
## 2,0200031,0200001,0200015,M,

## 2,0200032,0200001,0200015,F,

## 2,0200033,0200001,0200015,F,

## 2,0200034,0200001,0200015,F,

## 2,0200035,0200001,0200015,F,
```

Part 3

```
# These assignments will be removed later
rep <- 50
seed <- 280
n <- 100
dist <- 't1'
 ## parsing command arguments
  for (arg in commandArgs(TRUE)) {
    eval(parse(text=arg))
  }
## check if a given integer is prime
isPrime = function(n) {
  if (n <= 3) {
    return (TRUE)
  if (any((n %% 2:floor(sqrt(n))) == 0)) {
    return (FALSE)
  return (TRUE)
}
## estimate mean only using observation with prime indices
estMeanPrimes = function (x) {
  n = length(x)
  ind = sapply(1:n, isPrime)
  return (mean(x[ind]))
}
  # step 1: set random seed
  set.seed(seed)
sum1 <- 0
sum2 <- 0
for ( i in 1:rep) {
  # step 2: generate data according to argument dist
  if (dist == "gaussian"){
   x = rnorm(n, 0, 1)
  else if (dist == "t1"){
```

```
x = rt(n, df=1)
    else if (dist == "t5"){
    x = rt(n, df=5)
   # estimate mean
    emp <- estMeanPrimes(x)</pre>
    emc \leftarrow mean(x)
    sum1 < - sum1 + (emp-0)^2
    sum2 \leftarrow sum2 + (emc-0)^2
  }
  result <- paste(sum1/rep, sum2/rep, sep = " ")</pre>
  #return(result)
  result
## [1] "2808.42566728365 230.237205563387"
# autoSim.R
rep <- 50
seed <- 280
distTypes = c("gaussian", "t1", "t5")
nVals = seq(100, 500, by=100)
for (n in nVals) {
  for (dist in distTypes) {
   oFile = paste("n", n, "_", dist, ".txt", sep="")
    arg = paste("seed=", seed," n=", n," dist=\\\"", dist,"\\\" rep=",rep,
sep="")
    sysCall = paste("nohup Rscript runSim.R ", arg, " > ", oFile)
    system(sysCall)
    print(paste("sysCall=", sysCall, sep=""))
  }
}
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=100 dist=\\\"gaussian\\\"
rep=50 > n100_gaussian.txt"
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=100 dist=\\\"t1\\\" rep=50
> n100_t1.txt"
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=100 dist=\\\"t5\\\" rep=50
> n100_t5.txt"
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=200 dist=\\\"gaussian\\\"
rep=50 > n200_gaussian.txt"
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=200 dist=\\\"t1\\\" rep=50
> n200_t1.txt"
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=200 dist=\\\"t5\\\" rep=50
> n200 t5.txt"
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=300 dist=\\\"gaussian\\\"
rep=50 > n300_gaussian.txt"
```

```
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=300 dist=\\\"t1\\\" rep=50
> n300_t1.txt"
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=300 dist=\\\"t5\\\" rep=50
> n300 t5.txt"
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=400 dist=\\\"gaussian\\\"
rep=50 > n400_gaussian.txt"
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=400 dist=\\\"t1\\\" rep=50
> n400 t1.txt"
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=400 dist=\\\"t5\\\" rep=50
> n400 t5.txt"
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=500 dist=\\\"gaussian\\\"
rep=50 > n500_gaussian.txt"
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=500 dist=\\\"t1\\\" rep=50
> n500 t1.txt"
## [1] "sysCall=nohup Rscript runSim.R seed=280 n=500 dist=\\\"t5\\\" rep=50
> n500 t5.txt"
3. Summary
ns <- c()
methods <- c()
for (n in seq(100, 500, by=100)){
  ns <- append(ns, c(n, ""))</pre>
  methods <- append(methods, c("PrimeAvg", "SampAvg"))</pre>
}
table <- data.frame(</pre>
  n = ns,
  method = methods,
  t 1 = NA, t 5 = NA, Gaussian = NA
#loop to write in data
distTypes = c("t1", "t5", "gaussian")
nVals = seq(100, 500, by=100)
i <- 0
j <- 0
for (n in nVals) {
  i < -i + 1
  j <- 0
  for (dist in distTypes) {
    j <- j + 1
    iFile = paste("n", n, "_", dist, ".txt", sep="")
    a <- read.table(iFile)</pre>
    a <- as.data.frame(a)</pre>
    table[2*i-1, j + 2] \leftarrow a[1,2]
    table[2*i, j + 2] \leftarrow a[1,3]
  }
}
```

#table

library(knitr) kable(table, "markdown")

n	method	t_1	t_5	Gaussian
100	PrimeAvg	2808.42570	0.0664284	0.0414674
	SampAvg	230.23720	0.0167508	0.0094834
200	PrimeAvg	799.31393	0.0418479	0.0187544
	SampAvg	95.87976	0.0076665	0.0071637
300	PrimeAvg	446.40235	0.0241224	0.0200254
	SampAvg	53.57742	0.0054711	0.0035344
400	PrimeAvg	19.45133	0.0243314	0.0112689
	SampAvg	20.53370	0.0035170	0.0029707
500	PrimeAvg	217.26890	0.0116763	0.0111769
	SampAvg	20.78780	0.0033550	0.0025920