Université Mostefa Ben Boulaïd - Batna 2 Faculté de Mathématiques et d'Informatique Département de Statistiques et Analyse des Données

TD 01

Partie 1 Analyse combinatoire

Exercice 1 1. Combien y a-t-il de mots de 5 lettres de lalphabet occidental?

- 2. Un questionnaire à choix multiples, autorisant une seule réponse par question, comprend 15 questions. Pour chaque question, on propose 4 réponses possibles. De combien de façons peut-on répondre à ce questionnaire?
- 3. Combien y a-t-il de numéros de téléphone commençant par 066?
- 4. A l'occasion d'une compétition sportive groupant 18 athlètes, on attribue une médaille d'or, une d'argent, une de bronze. Combien y-a-t-il de distributions possibles?
- 5. Combien y a-t-il de numéros de téléphone commençant par 066 avec des chiffres distincts?
- 6. Un clavier de 9 touches permet de composer le code d'entrée d'un immeuble, à l'aide d'une lettre suivie d'un nombre de 3 chiffres distincts ou non.
 - (a) Combien de codes différents peut-on former?
 - (b) Combien y a-t-il de codes sans le chiffre 1?
 - (c) Combien y a-t-il de codes comportant au moins une fois le chiffre 1?
 - (d) Combien y a-t-il de codes comportant des chiffres distincts?
 - (e) Combien y a-t-il de codes comportant au moins deux chiffres identiques?
- 7. (a) Combien y a-t-il de possibilités d'aligner 12 élèves?
 - (b) A raison de 10 secondes par permutations, combien de temps faudrait-il pour épuiser toutes les possibilités?
- 8. Combien y-a-t-il d'anagrammes du mot MATH?
- 9. Quel est le nombre danagrammes du mot n´ ANAGRAMME ż?
- 10. On constitue un groupe de 6 personnes choisies parmi 25 femmes et 32 hommes
 - (a) De combien de façons peut-on constituer ce groupe de 6 personnes?
 - (b) Dans chacun des cas suivants, de combien de façons peut-on constituer ce groupe avec :
 - i. uniquement des hommes.
 - ii. des personnes de même sexe
 - iii. au moins une femme et au moins un homme
- 11. Un sac contient 5 jetons verts (numérotés de 1 à 5) et 4 jetons rouges (numérotés de 1 à 4).
 - (a) On tire successivement et au hasard 3 jetons du sac, sans remettre le jeton tiré. combien de tirage possible dans les cas suivants :
 - i. 3 jetons verts.
 - ii. aucun jeton vert
 - iii. au plus 2 jetons verts
 - iv. exactement 1 jeton vert
 - (b) On tire successivement et au hasard 3 jetons du sac, avec remettre le jeton tiré.
 - (c) même question mais on tire simultanément et au hasard 3 jetons du sac.

Partie 2 Probabilités

Exercice 2 Lors d'un jet de deux dés cubiques, on s'intéresse aux événements suivants :

 $A: \acute{n} \ La \ somme \ obtenue \ est \ au \ moins \ \acute{e}gale \ \grave{a} \ 5 \ \dot{z}.$

 $B: \acute{n} \ La \ somme \ obtenue \ est \ au \ plus \ \acute{e}gale \ \grave{a} \ 5 \ \dot{z}.$

 $C: \acute{n}$ La somme obtenue est strictement inférieure à 3 \dot{z} .

- 1. Décrire l'espace échantillon Ω associé a cette expérience aléatoire.
- 2. A et B sont-ils contraires?
- 3. \overline{B} et C sont-ils incompatibles?
- 4. Traduire par une phrase \overline{C} .
- 5. A et \overline{C} sont-ils incompatibles?

Exercice 3 Soient (Ω, \mathcal{F}) un espace probabilisable, $A, B \in \mathcal{F}$. Peut-on définir une probabilité vérifiant :

1.
$$\mathbb{P}(A) = \frac{1}{3}, \ \mathbb{P}(A \cap B) = \frac{1}{2}$$

2. $\mathbb{P}(A) = \frac{1}{2}, \ \mathbb{P}(B) = \frac{7}{8}, \ \mathbb{P}(A \cap B) = \frac{1}{4}$

Exercice 4 Soit A et B deux événements aléatoires associés à un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. Montrer que :

$$\begin{split} \mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B) &= \mathbb{P}(\overline{A})\mathbb{P}(B) - \mathbb{P}(\overline{A} \cap B) \\ &= \mathbb{P}(A)\mathbb{P}(\overline{B}) - \mathbb{P}(A \cap \overline{B}) \\ &= \mathbb{P}(\overline{A} \cap \overline{B}) - \mathbb{P}(\overline{A})\mathbb{P}(\overline{B}) \end{split}$$

Exercice 5 Une urne contient 10 boules : 3 noires, 4 blanches et 3 rouges. On tire simultanément 3 boules . calculer la probabilité des évènements suivants :

- 1. A : ń Avoir exactement 3 boules blanches ż.
- 2. B : ń Avoir une boule de chaque couleur ż.
- 3. $C: \acute{n}$ Avoir au moins une boule rouge \dot{z} .
- 4. Recalculer la probabilité des évènement précédents mais cette fois on tire 3 boules successivement et sans remise.

Exercice 6 Quel est le plus probable?

- 1. A : ń Obtenir au moins un as en lançant 4 dés ż?
- 2. B : ń Obtenir au moins deux as en lançant 10 dés ż?
- 3. C: ń Obtenir au moins une paire d'as en lançant 25 paires de dés ż?
- 4. D: ń Obtenir au moins deux as en lançant 50 dés ż?

Exercice 7 (Cours)

Déterminer, en précisant à partir de quelles hypothèses, la probabilité de trouver, dans un groupe de n personnes choisies au hasard, au moins deux personnes ayant leur anniversaire le même jour. Calculer une valeur approchée de cette probabilité pour n = 23, n = 41 et n = 57.

Exercice 8 Lors dun référendum, deux questions étaient posées. 65% des personnes ont répondu n´ oui z` à la première question, 51% ont répondu n´ oui z` à la seconde question, et 46% ont répondu n´ oui z` aux deux questions.

- 1. Quelle est la probabilité qu'une personne ait répondu n´oui z´ à l'une ou l'autre des questions?
- 2. Quelle est la probabilité qu'une personne ait répondu n´ non z´ aux deux questions?
- 3. Quelle est la probabilité qu'une personne ait répondu "oui" a la 1ère question et "non" à la 2ème ?
- 4. Quelle est la probabilité qu'une personne ait répondu "oui" a une seule question?

Exercice 9 Dans une université, on a relevé qu'au cours d'une année : 40% des étudiants ont été absents au moins 1 jour, 30% des étudiants ont été absents au moins 2 jours, 15% des étudiants ont été absents au moins 3 jours, 10% des étudiants ont été absents au moins 4 jours.

On choisit au hasard un étudiant de cette entreprise. Quelle est la probabilité pour que cet étudiant :

- 1. n'ait jamais été absent au cours de cette année?
- 2. ait été absent une seule journée au cours de cette année?
- 3. ait été absent au plus 3 jours au cours de cette année?

Exercice 10 Soient $A_1, A_2, ..., A_n$, $n \geq 2$ un système complet de Ω avec $\mathbb{P}(A_k) > 0$ pour tout $1 \leq k \leq net$ et $B \in \mathcal{F}$, alors on a :

$$\mathbb{P}(B) = \sum_{k=1}^{n} \mathbb{P}(B|A_k) \times \mathbb{P}(A_k)$$

Exercice 11 On dispose de deux urnes u_1 et u_2 . L'urne u_1 contient trois boules blanches et une boule noire. L'urne u_2 contient une boule blanche et deux boules noires. On lance un dé non truqué. Si le dé donne un numéro d'inférieur ou égal à 2, on tire une boule dans l'urne u_1 . Sinon on tire une boule dans l'urne u_2 . (On suppose que les boules sont indiscernables au toucher)

- 1. Calculer la probabilité de tirer une boule blanche.
- 2. On a tiré une boule blanche. Calculer le probabilité qu'elle provienne de l'urne u₁

Exercice 12 On sait qu'à une date donnée, 3% d'une population est atteinte d'hépatite On dispose de tests de dépistage de la maladie :

- Si la personne est malade, alors le test est positif avec une probabilité de 95%.
- i la personne est saine, alors le test est positif avec une probabilité de 10%.
- 1. Quelle est la probabilité pour une personne d'être malade si son test est positif?
- 2. Quelle est la probabilité pour une personne d'être saine si son test est positif?
- 3. Quelle est la probabilité pour une personne d'être malade si son test est négatif?
- 4. Quelle est la probabilité pour une personne dêtre saine si son test est négatif?

Exercice 13 (cours) Un professeur oublie fréquemment ses clés. Pour tout n, on note : E_n l'événement n le jour n, le professeur oublie ses clés \dot{z} , $P_n = \mathbb{P}(E_n)$, $Q_n = \mathbb{P}(\overline{E_n})$.

On suppose que : $P_1 = a$ est donné et que si le jour n le professeur oublie ses clés, le jour suivant il les oublie avec la probabilité $\frac{1}{10}$; si le jour n il n'oublie pas ses clés, le jour suivant il les oublie avec

la probabilité $\frac{4}{10}$. Montrer que :

- 1. $P_{n+1} = \frac{1}{10}P_n + \frac{4}{10}Q_n$
- 2. En déduire une relation entre P_{n+1} et P_n .
- 3. Quelle est la probabilité de l'événement n´ le jour n, le professeur oublie ses clés ż?