ALCTG

The Scientist must set in order. Science is built up with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house.

Science and Hypothesis Henri Poincare

Table of contents

Глава	а 1 Булева алгебра	2
1.1	Булевы функции	2
	1.1.1 Домашняя работа	3
1.2	Теорема Поста	5
	1.2.1 Домашняя работа	6

§1.1 Булевы функции

Домашняя работа

Задача 1.1.1. x, y, z — целые числа, для которых истинно высказывание

$$\neg(x = y) \land ((y < x) \to (2z > x)) \land ((x < y) \to (x > 2z))$$
 (1.1)

Чему равно x, если z = 7, y = 16?

Решение. Подставляем из условия значения z и y и преобразуем выражение (1.1)

$$\neg(x = 16) \land (\neg(x > 16) \lor (x < 14)) \land (\neg(x < 16) \lor (x > 14)),$$
$$(x \neq 16) \land ((x \leqslant 16) \lor (x < 14)) \land ((x \geqslant 16) \lor (x > 14)).$$

Заметим, что итоговое выражение, как и изначальное, является конъюнкцией трех выражений. Тогда оно истинно, если каждое из выражений должно быть истинным. Это умозаключение приводит нас к трем условиям:

- 1. $(x \neq 16) = 1$, если $x \neq 16$;
- 2. $((x \le 16) \lor (x < 14)) = 1$, если $x \le 16$;
- 3. $((x \geqslant 16) \lor (x > 14)) = 1$, если x > 14.

Пользуясь методом очень пристального взгляда, замечаем, что все три условия выше можно переписать так

$$14 < x < 16$$
.

откуда

$$x = 15.$$

Ответ. x = 15

Задача 1.1.2. Постройте таблицу истинности для функции

$$f(x_1, x_2, x_3) = (x_1 \lor x_2) \downarrow (x_2 \to x_3) \tag{1.2}$$

Решение. Давайте преобразуем выражение (1.2). Для этого представим $x_2 \to x_3$ как $\neg x_2 \lor x_3$. Далее вспомним, что

$$x \downarrow y = \overline{x \vee y},$$

откуда получаем, что

$$f = \neg(x_1 \lor x_2 \lor \neg x_2 \lor x_3).$$

Видно, что под отрицанием стоит дизъюнкция, которая на любых наборах будет равна единице, поэтому f — тождественный ноль.

x_1	x_1 x_2		f	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	0	

Таблица истинности функции f.

Задача 1.1.3. Докажите, что

$$1 \oplus x_1 \oplus x_2 = (x_1 \to x_2) \land (x_2 \to x_1) \tag{1.3}$$

Решение. Пусть $f_1 = 1 \oplus x_1 \oplus x_2$, $f_2 = (x_1 \to x_2) \wedge (x_2 \to x_1)$.

Видно, что векторы значений f_1 и f_2 совпадают, а значит, $f_1 = f_2$ (т.е. утверждение (1.3) ВЕРНО).

x_1	x_2	f_1	f_2
0	0	1	1
0	1	0	0
1	0	0	0
1	1	1	1

Таблица истинности функции f_1, f_2 .

Задача 1.1.4. Докажите формулу

$$\bigvee_{i,j;i\neq j} x_i \oplus x_j = (x_1 \lor x_2 \lor \dots \lor x_n) \land (\neg x_1 \lor \neg x_2 \lor \dots \lor \neg x_n)$$
(1.4)

Решение. Рассмотрим 2 случая:

1. $\bigvee_{i,j;i\neq j}x_i\oplus x_j=1\Rightarrow$ есть как минимум одна пара разных значений($x_i=1,x_j=0$). Тогда

$$(x_1 \lor x_2 \lor \dots \lor x_n) = 1, \neg x_1 \lor \neg x_2 \lor \dots \lor \neg x_n) = 1 \Rightarrow (x_1 \lor x_2 \lor \dots \lor x_n) \land (\neg x_1 \lor \neg x_2 \lor \dots \lor \neg x_n) = 1;$$

2. $\bigvee_{i,j;i\neq j} x_i \oplus x_j = 1 \Rightarrow$ все x_i и x_j равны 0. Тогда в правой части либо $(x_1 \lor x_2 \lor ... \lor x_n) = 0$, либо $(\neg x_1 \lor \neg x_2 \lor ... \lor \neg x_n) = 0$, а значит и вся правая часть равна 0.

Видно, что векторы значений левой и правой частей равенства совпадают, а значит, формула верна.

Задача 1.1.5. Постройте таблицу истинности для f и выразите её через операции $\lor, \land, \lnot,$ если

$$f = x_1 \oplus x_2 \oplus x_3 \oplus x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3 \oplus x_1 x_2 x_3. \tag{1.5}$$

Решение.

- 1. Функция f принимает значение 0 только при $x_1=x_2=x_3=0$.Во всех остальных случаях f=1;
- 2. Перестроение с использованием \vee , \wedge , \neg : $f_1 = x_1 \vee x_2 \vee x_3$. Видно, что функция f_1 принимает значение 0 только при $x_1 = x_2 = x_3 = 0$. А во всех остальных случаях $f_1 = 1$.

x_1 x_2		x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1
1			

Таблица истинности функции f.

Ответ. $f_1 = x_1 \lor x_2 \lor x_3$.

§1.2 Теорема Поста

Домашняя работа

Задача 1.2.1. Постройте СДНФ и СКНФ для функции $(xz \oplus \overline{y}) \equiv (x \to y)$.

Решение. Построим таблицу истинности:

x	y	z	$x \wedge y$	\bar{z}	$xz \oplus \bar{z}$	$x \to y$	f
0	0	0	0	1	1	1	1
0	0	1	0	1	1	1	1
0	1	0	0	0	0	1	0
0	1	1	0	1	1	0	0
1	0	0	0	0	0	1	0
1	0	1	1	1	0	0	1
1	1	0	0	0	0	1	0
1	1	1	1	0	1	1	1
				l			

Таблица истинности функции.

1.
$$f = x^0 y^0 z^0 \vee x^0 y^0 z^1 \vee x^1 y^0 z^1 \vee x^1 y^1 z^1$$

2.
$$f = \bar{x}\bar{y}\bar{z} \lor \bar{x}\bar{y}z \lor x\bar{y}z \lor xyz$$
 — СДНФ

3.
$$f = (x^1 \vee y^0 \vee z^1) \wedge (x^0 \vee y^1 \vee z^1) \wedge (x^1 \vee y^0 \vee z^0) \wedge (x^0 \vee y^0 \vee z^1)$$

4.
$$f=(x\vee \bar{y}\vee z)\wedge (\bar{x}\vee y\vee z)\wedge (x\vee \bar{y}\vee z)\wedge (\bar{x}\vee \bar{y}\vee z)-\mathrm{CKH}\Phi$$

Задача 1.2.2. Постройте замыкание базиса $\{\neg, \oplus\}$.

Решение. Построив таблицы истинности $f_1 = \neg x, f_2 = x \oplus 1$, получим, что их векторы значений совпадают, значит, $\neg x = x \oplus 1$.Тогда

$$[\neg, \oplus] = [1, \oplus] \subseteq L$$

.

Задача 1.2.3. Укажите существенные и несущественные (фиктивные) переменные функции $f(x_1, x_2, x_3) = 00111100$ и разложите ее в ДНФ и КНФ.

Решение. Построим таблицу истинности и напишем сначала СДНФ и СКНФ данной функции f:

x_1	x_1 x_2		f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Таблица истинности функции f.

1.
$$f=x_1^0x_2^1x_3^0\vee x_1^0x_2^1x_3^1\vee x_1^1x_2^0x_3^0\vee x_1^0x_2^0x_3^1$$
, $f=\bar{x_1}x_2\bar{x_3}\vee \bar{x_1}x_2x_3\vee x_1\bar{x_2}\bar{x_3}\vee x_1\bar{x_2}x_3-\mathsf{C}ДН\Phi$.

2.
$$f = (x_1^1 \lor x_2^1 \lor x_3^1) \land (x_1^1 \lor x_2^1 \lor x_3^0) \land (x_1^0 \lor x_2^0 \lor x_3^1) \land (x_1^0 \lor x_2^0 \lor x_3^0),$$

 $f = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3) - \text{CKH}\Phi.$

Из таблицы истинности видно, что если брать одинаковые значения x_1 и x_2 , то значени функции при изменении значений x_3 меняться не будет. Значит, x_3 - фиктивная переменная. Про x_1 , x_2 такого сказать нельзя, поэтому они являются существенными переменными. Тогда:

1. KH
$$\Phi$$
: $f = (x_1 \lor x_2) \land (x_1 \lor x_2) \land (\bar{x_1} \lor \bar{x_2}) \land (\bar{x_1} \lor \bar{x_2} \lor)$

2. ДНФ:
$$f = \bar{x_1}x_2 \vee \bar{x_1}x_2 \vee x_1\bar{x_2} \nabla x_1\bar{x_2}$$

Задача 1.2.4. Докажите или опровергните полноту системы функций $\{\oplus, \to\}$.

Решение. Выразим функции \oplus и \rightarrow через \lor , \land , \neg :

1.
$$(x \to y) \equiv (\neg x \lor y)$$
,

2.
$$(x \oplus y) \equiv (x\bar{y} \vee \bar{x}y)$$

Значит, система функций $\{\oplus, \to\}$ полна.

Задача 1.2.5. Пусть $f(x_1,\ldots,x_n)$ — несамодвойственная функция. Докажите, что константы 0,1 вычисляются в базисе $\{\neg,f\}$.

Решение. а

Задача 1.2.6. Запишите в виде КНФ функцию от n переменных, принимающую значение 0 лишь на $\vec{0}$ и на $\vec{1}$. Покажите, что эта функция равна дизъюнкции всевозможных скобок $(x_i \oplus x_j)$, где $i \neq j$.

Решение. а

Задача 1.2.7. Функцию алгебры логики называют *симметрической*, если она не меняет своего значения при любой перестановке значений переменных местами. Покажите, что функция $\overline{xy} \lor \overline{yz} \lor \overline{zx}$ — симметрическая. Найдите число симметрических функций от n переменных.

Решение. Построим таблицу истинности для функции f:

x	y	z	\bar{xy}	\bar{xz}	\bar{yz}	f
0	0	0	1	1	1	1
0	0	1	1	1	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	1	1	0	1
1	0	1	1	0	1	1
1	1	0	0	1	1	1
1	1	1	0	0	0	0

Таблица истинности функции f.

В каждом из наборов, где количество единиц меняется от 0 до 3 в наборе, функция принимает одинаковое значение. То есть на наборах (0,0,1), (0,1,0),(1,0,0) функция не меняет значение. Аналогично для наборов, где единицы 2 единицы из трех. Поменяв местами переменные, вектор значений не изменился, значит, функция является симметрической.

Симметрических функций от n переменных существует 2^{n+1} штук, потому что существует 2 варианта значения функции, не зависящих от расположения переменных на одном наборе. Таких наборов n+1 штук, а значит, симметрических функций от n переменных 2^{n+1} .

Задача 1.2.8. Докажите, что любая неконстантная симметрическая функция существенно зависит от всех своих переменных.

Решение. Предположим обратное. Значит неконстантная симметрическая функция несущественно зависит от переменных, то есть

$$f(x_1,...,x_{i-1},1,...x_n) = f(x_1,...,x_{i-1},0,...x_n)$$

, а так как эта функция симметрическая, то от перестановки переменных значение ее меняться не будет: $f(\overleftarrow{x}) = 0 \lor f(\overleftarrow{x}) = 1$, что противоречит высказыванию о том, что функция неконстантная. Значит, неконстантная симметрическая функция существенно зависит от переменных.

Задача 1.2.9. Докажите, что если система $\{f_1,\ldots,f_n\}$ полна, то и система двойственных функций $\{f_1^*,\ldots,f_n^*\}$ также полна.

Решение. а