连续函数

定义 1.5.10 函数 f 定义域为 $E \subset \mathbb{R}^n$. f 在 x 处连续如果对 $x, x_n \in E, x_n \to x$ 有

$$\lim_{n\to\infty} f(x_n) = f(x) .$$

若f在E上每一点都连续,则称f在E上连续.

定理 1.5.9 函数 f 定义在 $E \subset \mathbb{R}^n$ 上. f 在 $x \in E$ 处连续当且仅 当 ε - δ 准则成立, 即对 $\forall \varepsilon > 0$, 存在 $\delta > 0$ 使得

$$f(B(x,\delta)\cap E)\subset B(f(x),\varepsilon)$$
.

■ 必要性. 用反证法. 设存在 $\varepsilon_0 > 0$, 对 $\forall \delta > 0$ 有

$$f(B(x,\delta)\cap E)\nsubseteq B(f(x),\varepsilon_0)$$
.

那么对 $\delta = 1/k$, 就存在 $x_k \in B(x, 1/k) \cap E$ 使得

$$|f(x_k) - f(x)| \ge \varepsilon_0.$$

因此 $x_k \to x$, 但 $f(x_k)$ 不收敛到 f(x), 与连续性矛盾.

充分性. 若 f 在 $x \in E$ 处不连续, 那么存在 $x_k \in E$, $x_k \to x$, $f(x_k)$ 不收敛到 f(x). 因此存在 $\varepsilon_0 > 0$ 以及子列 x_{k_j} 使得

$$|f(x_{k_j})-f(x)|\geqslant \varepsilon_0.$$

与 ε - δ 准则矛盾.

h

定理 1.5.10 设 $E \subset \mathbb{R}^n$. 函数 f 在 E 上连续当且仅当对 \forall 开集 $G \subset \mathbb{R}$, 存在开集 $U \subset \mathbb{R}^n$ 使得

$$f^{-1}(G) = U \cap E.$$

■ 必要性. 设 f 在 E 上连续, $G \subset \mathbb{R}$ 开. 任取 $x \in f^{-1}(G)$, $f(x) \in G$,因此存在 $\varepsilon > 0$,使得 $B(f(x), \varepsilon) \subset G$. 由 ε - δ 准则,存在 $\forall \delta_x > 0$ 使

$$f(B(x, \delta_x) \cap E) \subset B(f(x), \varepsilon) \subset G$$
.

今

$$U = \bigcup_{x \in f^{-1}(G)} B(x, \delta_x),$$

那么由于是开球的并集, U 是开集. 且根据构造

$$f^{-1}\left(G\right) =U\cap E.$$

充分性. 任取 $x \in E$. 要证 f 在 x 连续. $\forall \varepsilon > 0$, 由充分性条件, 存在开集 $U_{\varepsilon} \subset \mathbb{R}^n$ 使得

$$f^{-1}(B(f(x),\varepsilon))=U_{\varepsilon}\cap E.$$

于是 $x \in U_{\varepsilon} \cap E, f(U_{\varepsilon} \cap E) \subset B(f(x), \varepsilon)$. 因 U_{ε} 开, 存在 $\delta > 0$, $B(x, \delta) \subset U_{\varepsilon}$. 从而

$$f(B(x,\delta)\cap E)\subset f(U_{\varepsilon}\cap E)\subset B(f(x),\varepsilon)$$
.

由 ε - δ 准则, f 在 x 连续.

/h

1.6 Cantor 集与 Cantor 函数

令

$$C_0 = [0, 1]$$
.

将 C_0 分为三等分, 并移走中间的开区间, 得到

$$C_1 = \left[1, \frac{1}{3}\right] \bigcup \left[\frac{2}{3}, 1\right].$$

对每一个闭区间重复上述步骤,得到

$$C_2 = \left[1, \frac{1}{9}\right] \bigcup \left[\frac{2}{9}, \frac{1}{3}\right] \bigcup \left[\frac{2}{3}, \frac{7}{9}\right] \bigcup \left[\frac{8}{9}, 1\right].$$

如此继续, 在第 k 次移除操作之后剩余的集合记为 C_k . 那么 Cantor 集定义为

$$\mathfrak{C} = \bigcap_{k=0}^{\infty} C_k.$$

集合列 $\{C_k\}$ 满足: $\forall k \geq 0$,

- C_k 由 2^k 个长为 3^{-k} 的闭区间组成
- $C_{k+1} \subset C_k$.

定理 1.6.1 Cantor 集 & 满足

- (1) & 是闭集,
- (2) & 总长度为零, 即构造过程中移除的开区间长度总和为 1,
- (3) € 是完全集, 因而是不可数集,

(4) & 没有内点.

- (1) $\forall k, C_k$ 是闭集, 因而其交集 \mathcal{C} 仍是闭集.
- (2) $\forall k$, 第 k 次移除的开区间长度为 1/3 倍的 C_{k-1} 长度, 移除的开区间长度总和为

$$\sum_{k=0}^{\infty} \frac{1}{3} \frac{2^k}{3^k} = \frac{1}{3} \frac{1}{1 - 2/3} = 1$$

因此 Cantor 集 c 的长度为零.

(3) 任给 $x \in \mathfrak{C}$. 根据构造 $\forall k \geq 0$, 都有 $x \in C_k$. 因此 x 应包含于构成 C_k 的 2^k 个长为 3^{-k} 的闭区间中的某一个, 记 x_k 为该区间距 x 较远的端点, 那么

$$\frac{1}{2}\frac{1}{3^k}\leqslant |x_k-x|\leqslant \frac{1}{3^k},$$

可见 $\{x_k\}$ \subset \mathfrak{C} 是收敛到 x 的点列. 同时 $\forall s \geqslant 1$,

$$|x_{k+s} - x_k| \ge |x_k - x| - |x_{k+s} - x|$$

 $\ge \frac{1}{2} \frac{1}{3^k} - \frac{1}{3^{k+1}} > 0.$

因此 $\{x_k\}$ 是互异的, 从而 x 是 \mathfrak{C} 的极限点.

(4) 只需说明 $\forall x \in \mathfrak{C}$, 任意以它为中心的开球内总有 \mathfrak{C} 之外的点. 为此我们证明 x 能由 \mathfrak{C} 外的点列逼近. 事实上, 用 S_k 表示构造 Cantor 集时在第 k 步移除的开区间的中点全体. 记 v_k 为 S_k 中距 x 最近者. 那么

$$|y_k - x| \leqslant 2\frac{1}{3^k}.$$

因此 $\{y_k\}$ 收敛到 x, 同时该点列不包含于 \mathfrak{C} .

记 $O_k = [0,1] \setminus C_k$, 那么 O_k 由 $2^k - 1$ 个开区间组成, 这些开区间从左到右依次记为 $I_j^k (j = 1, ..., 2^k - 1)$. 令

$$h_k(x) = \begin{cases} \frac{j}{2^k}, & x \in I_j^k, j = 1, ..., 2^k - 1, \\ linear, & \sharp x \in [0, 1]. \end{cases}$$

容易看出: $\forall k \geq 1, j = 1, ..., 2^k - 1$,

 $h_k \in C([0,1])$ 单调增加,

$$h_k(0) = 0, h_k(1) = 1,$$

$$h_{k+1}(x) = h_k(x), \ \forall x \in I_i^k,$$

 $\sup_{x\in\left[0,1\right]}\left|h_{k+1}\left(x\right)-h_{k}\left(x\right)\right|\leqslant\frac{1}{2^{k}},$

因此 $h_k(x)$ 在 [0,1] 上一致收敛, 令

$$h\left(x\right)=\lim_{k\to\infty}h_{k}\left(x\right),\;\forall x\in\left[0,1\right].$$

定义 1.6.1 上述极限函数 h(x) 称为 Cantor 函数, 又称为"魔鬼的阶梯".

由定义得到

定理 1.6.2 Cantor 函数 h(x) 有以下性质:

(1) h(x) 连续,

//

(2) 单调增加, h(0) = 0, h(1) = 1,

(3)
$$h'(x) = 0, \forall x \in \mathcal{O} = \bigcup_{k=1} \bigcup_{j=1,\dots,2^k-1} I_j^k$$
.

注意 \mathcal{O} 是开集族的并集, 因此仍然是开集, 它的长度为 1, 性质 (3) 表明 h(x) 在 [0,1] 上导数几乎为零, 但它却不是常数. 在后面我们更加明确这里的" 几乎" 的含义.