

- Теперь представьте, что есть два параметра  $(\beta_0, \beta_1)$
- Это более сложная поверхность, на которой должен быть найден минимум
- Как мы можем сделать это, не зная как выглядит  $J(\beta_0, \beta_1)$ ?





• Вычислить градиент,  $\nabla J(\beta_0, \beta_1)$ , который указывает в направлении самой большой увеличение!

• - $\nabla J(\beta_0, \beta_1)$  (отрицательный градиент) указывает на самое большое снижение в этой точке!





 Градиент - это вектор, координаты которого состоят из частных производных параметров

$$\nabla J(\beta_0, ..., \beta_n) = \langle \frac{\partial J}{\partial \beta_0}, ..., \frac{\partial J}{\partial \beta_n} \rangle$$





• Затем используйте градиент  $\nabla$  функции потерь для расчета следующей точки  $w_1$  от текущего  $w_0$ :

$$w_1 = w_0 - \lambda \nabla \frac{1}{2n} \sum_{i=1}^{n} ((\beta_0 + \beta_1 x^{(i)}) - y^{(i)})^2$$

• Скорость обучения  $\alpha$  - это настраиваемый параметр, который определяет размер шага





• Каждая точка может быть итеративно рассчитана из предыдущей

$$w_2 = w_1 - \lambda \nabla \frac{1}{2n} \sum_{i=1}^n ((\beta_0 + \beta_1 x^{(i)}) - y^{(i)})^2,$$

$$w_3 = w_2 - \lambda \nabla \frac{1}{2n} \sum_{i=1}^{n} ((\beta_0 + \beta_1 x^{(i)}) - y^{(i)})^2$$





### Стохастический градиентный спуск

• Используйте одну точку данных для определения функции градиента и стоимости вместо всех данных

$$w_2 = w_1 - \lambda \nabla \frac{1}{2n} \sum_{i=1}^n ((\beta_0 + \beta_1 x^{(i)}) - y^{(i)})^2,$$



$$w_3 = w_2 - \lambda \nabla \frac{1}{2} ((\beta_0 + \beta_1 x^{(i)}) - y^{(i)})^2$$





#### Стохастический градиентный спуск

• Используйте одну точку данных для определения функции градиента и стоимости вместо всех данных

$$w_2 = w_1 - \lambda \nabla \frac{1}{2n} \sum_{i=1}^n ((\beta_0 + \beta_1 x^{(i)}) - y^{(i)})^2,$$



$$w_3 = w_2 - \lambda \nabla \frac{1}{2} \left( (\beta_0 + \beta_1 x^{(i)}) - y^{(i)} \right)^2$$





#### Стохастический градиентный спуск

• Используйте одну точку данных для определения функции градиента и стоимости вместо всех данных

$$w_1 = w_0 - \lambda \nabla \frac{1}{2} ((\beta_0 + \beta_1 x^{(0)}) - y^{(0)})^2,$$

...

$$w_4 = w_3 - \lambda \nabla \frac{1}{2} \left( (\beta_0 + \beta_1 x^{(3)}) - y^{(3)} \right)^2$$

• Путь к минимуму менее прямой из-за шума в одной точке данных - «стохастичный»





#### Мини пакетный градиентный спуск

• Выполните обновление для каждого *т* обучающих примеров

$$w_1 = w_0 - \lambda \nabla \frac{1}{2m} \sum_{i=1}^{m} ((\beta_0 + \beta_1 x^{(i)}) - y^{(i)})^2$$

#### Лучшее из обоих миров:

- Снижение объема вычислений относительно классического градиентного спуска
- Менее шумный, чем стохастический градиентный спуск
- Мини-пакетная реализация обычно используемая для нейронных сетей
- Размеры партии варьируются от 50–256 точек
- Компромисс между размером партии и скоростью обучения lpha
- Индивидуальный график обучения: постепенно снижайте скорость обучения в течение определенной эпохи





### Градиентный спуск

• Функция потерь

$$J(\beta_0, \beta_1) = \frac{1}{2n} \sum_{i=1}^{n} ((\beta_0 + \beta_1 x^{(i)}) - y^{(i)})^2,$$

• Метод градиентного спуска

$$\beta_j^{\{k+1\}} = \beta_j^{\{k\}} - \lambda \frac{\partial}{\partial \beta_j} J(\beta_0, \beta_1)$$

• Результат

$$\beta_0^{\{k+1\}} = \beta_0^{\{k\}} - \lambda \frac{1}{n} \sum_{i=1}^n ((\beta_0 + \beta_1 x^{(i)}) - y^{(i)}))$$

$$\beta_1^{\{k+1\}} = \beta_1^{\{k\}} - \lambda \frac{1}{n} \sum_{i=1}^{n} ((\beta_0 + \beta_1 x^{(i)}) - y^{(i)})) x^{(i)}$$



**Регрессия** (предсказание непрерывной выходной величины, например, цены на недвижимость)



Тренировочное множество данных (скажем, всего m)

| Площадь (фут²) – х | Цена в 1000-х (\$) — у |
|--------------------|------------------------|
| 2104               | 460                    |
| 1416               | 232                    |
| 1534               | 315                    |
| 852                | 178                    |
| •••                | •••                    |

Обозначения:  $\mathbf{n}$  = число тренировочных примеров  $\mathbf{x}$  = «входная» переменная / свойство  $\mathbf{y}$  = «выходная» переменная / «метка»  $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$  =  $\mathbf{i}$ -й тренировочный пример



✓ Последовательность действий



Гипотеза h выглядит так:

 $h(x) = \beta_0 + \beta_1 x$ 

Как оценить  $\beta_0$  и  $\beta_1$  ?

### Стоимостная функция (Cost Function)

✓ Идея! Выбрать  $\beta_0$  и  $\beta_1$  так, чтобы  $h_{\beta}(x)$  являлась близкой к значениям у для всех тренировочных примеров



## Как минимизировать стоимостную функцию для линейной регрессии с одной переменной

- ✓ Использование методов численной оптимизации, например, метода градиентного спуска
  - ✓ Более конкретно будем рассматривать групповой градиентный спуск («Batch» Gradient Descent). Групповой означает, что на каждом этапе градиентного спуска используются все тренировочные примеры
  - ✓ Подход может быть использован и для других методов машинного обучения, например, нейронных сетей

### Метод градиентного спуска

- ✓ Постановка задачи
  - ✓ Имеется некоторая стоимостная функция  $J(\beta_0, \beta_1)$
  - ✓ Необходимо найти такие значения  $\beta_0$ ,  $\beta_1$ , чтобы функция  $J(\beta_0, \beta_1)$  стала минимальной
- ✓ Решение задачи
  - ✓ Стартуем из некоторых значений  $\beta_0$ ,  $\beta_1$ , например, равных величине ноль
  - ✓ Продолжаем изменение значений  $\beta_0$ ,  $\beta_1$  до тех пор, пока не достигнем минимума. Минимум достижим не всегда!

### Пример работы градиентного спуска



### Пример работы градиентного спуска



### Метод градиентного спуска. Реализация

- $\checkmark$  Скорость сходимости алгоритма регулируется параметром  $\alpha$ 
  - 🗸 Если  $\alpha$  маленькое, то градиентный спуск может быть медленным
  - ✓ Если  $\alpha$  большое, то градиентный спуск может проскочить минимум. Алгоритм может не сходиться или даже расходиться
- ✓ Градиентный спуск может сходиться к локальному минимуму, даже если α является фиксированным
  - ✓ При приближении к локальному минимуму градиентный спуск будет автоматически выполнять более малые шаги. Поэтому нет необходимости уменьшать  $\alpha$  через некоторое время

### Пример формы стоимостной функции





h(x) — это функция x для фиксированных  $eta_0$  и  $eta_1$ 



 $J(eta_0,eta_1)$  — это функция параметров  $eta_0$  и  $eta_1$ 



h(x) — это функция x для фиксированных  $eta_0$  и  $eta_1$ 



 $J(eta_0,eta_1)$  — это функция параметров  $eta_0$  и  $eta_1$ 



h(x) — это функция x для фиксированных  $eta_0$  и  $eta_1$ 



 $J(eta_0,eta_1)$  — это функция параметров  $eta_0$  и  $eta_1$ 



h(x) — это функция x для фиксированных  $\beta_0$  и  $\beta_1$ 



 $J(eta_0,eta_1)$  — это функция параметров  $eta_0$  и  $eta_1$ 



h(x) — это функция x для фиксированных  $eta_0$  и  $eta_1$ 



 $J(eta_0,eta_1)$  — это функция параметров  $eta_0$  и  $eta_1$ 



 $h_Q(x)$  — это функция х для фиксированных  $eta_0$  и  $eta_1$ 



 $J(eta_0,eta_1)$  — это функция параметров  $eta_0$  и  $eta_1$ 



h(x) — это функция x для фиксированных  $eta_0$  и  $eta_1$ 



 $J(eta_0,eta_1)$  — это функция параметров  $eta_0$  и  $eta_1$ 



h(x) — это функция x для фиксированных  $eta_0$  и  $eta_1$ 



 $J(eta_0,eta_1)$  — это функция параметров  $eta_0$  и  $eta_1$ 



h(x) — это функция x для фиксированных  $\beta_0$  и  $\beta_1$ 



 $J(eta_0,eta_1)$  — это функция параметров  $eta_0$  и  $eta_1$