Úvod do komplexní analýzy

doc. RNDr. Roman Lávička, Ph.D.

8. ledna 2020

Obsah

1	Zavedení základních pojmů	2			
2	Lineární zobrazení				
3	Diferencovatelnost	3			
4	Elementární funkce v $\mathbb C$	5			
	4.1 Exponenciála	5			
	4.2 Logaritmus	5			
	4.3 Obecná mocnina	6			
	4.4 Hyperbolické funkce	7			
	4.5 Goniometrické funkce	7			
5	Křivkový integrál	8			
6	Mocninné řady				
7	Riemannova sféra	19			
	7.1 Izolované singularity	21			
	7.2 Laurentovy řady	23			
	7.3 Holomorfní funkce na mezikruží	23			
	7.4 Izolované singularity 2	25			
	7.5 Reziduum	26			
8	Speciální typy integrálů	27			
9	9 Index				
10	Obecná Cauchyho věta a reziduová věta pro cykly	30			
11	Zajímavé funkce	33			
	11.1 Funkce Gama	33			
	11.2 Riemannova zeta funkce	34			
	11.3 Prvočíselná věta	36			

1 Zavedení základních pojmů

 \mathbb{R}^2 je reálný vektorový prostor dimenze 2. Definujeme v něm $\mathit{Euklidovskou\ normu}$ a $\mathit{metriku}$:

- $|z| = \sqrt{x^2 + y^2}, z = (x, y) \in \mathbb{R}^2$
- $\rho(z,w) := |z-w|, z,w \in \mathbb{R}^2$

Definice 1.1. Prostor \mathbb{C} je prostor \mathbb{R}^2 , v němž definujeme navíc:

- násobení $(x,y) \cdot (u,v) = (xu yv, xv + yu)$
- ztotožňujeme $(x,0) \cong x$, neboli $\mathbb{R} \subset \mathbb{C}$
- značíme i = (0,1)

Značení 1.2. Nechť z = x + iy, kde $x, y \in \mathbb{R}$. Potom

- $\overline{z} := x iy$ je komplexně sdružené číslo k z,
- $\operatorname{Re}(z) := x$ je $\operatorname{re\'aln\'a} \check{\operatorname{c\'ast}} z$, $\operatorname{Im}(z) := y$ je $\operatorname{imagin\'arn\'i} \check{\operatorname{c\'ast}} z$,
- $|z| = \sqrt{x^2 + y^2}$ je modul nebo absolutní hodnota z.

Vlastnosti 1.3.

Vlastnosti \mathbb{C} . Necht $z = (x, y) \in \mathbb{C}$.

- Potom z = x + iy a $(\pm i)^2 = -1$.
- Násobení v \mathbb{C} zahrnuje násobení v \mathbb{R} i násobení skalárem v \mathbb{R}^2 .
- $\bullet \ |z|^2=z\overline{z}, \, \overline{zw}=\overline{z}\cdot\overline{w}, \, |zw|=|z|\cdot|w|, \, z+\overline{z}=2\cdot \operatorname{Re}(z), \, z-\overline{z}=2i\cdot \operatorname{Im}(z),$
- $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$, je-li $z \neq 0$,
- C je těleso.

Pozor, \mathbb{C} nelze $rozumn\check{e}$ uspořádat!

- $i > 0 \implies -1 = i^2 > 0$.
- $i < 0 \implies -1 = i^2 > 0$.

2 Lineární zobrazení

Definice 2.1. \mathbb{R}^2 je *reálný vektorový prostor* dimenze 2, jeho báze je $\{(1,0)^T, (0,1)^T\}$. Obecné \mathbb{R} -lineární zobrazení $L: \mathbb{R}^2 \to \mathbb{R}^2$ má tvar

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \tag{1}$$

kde $a,b,c,d \in \mathbb{R}$. \mathbb{C} je komplexní vektorový prostor dimenze 1, jeho báze je {1}. Obecné \mathbb{C} -lineární zobrazení $L:\mathbb{C} \to \mathbb{C}$ má tvar $Lz=wz,z \in \mathbb{C}$, kde $w \in \mathbb{C}$. Necht z=(x+iy), w=(a+ib). Potom

$$Lz = (a+ib)(x+iy) = (ax-by, bx+ay) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Pozorování 2.2. \mathbb{R} -lineární zobrazení (1) je \mathbb{C} -lineární, právě když d=a, c=-b.

Poznámka 2.3. C-lineární zobrazení jsou velmi specifická R-lineární zobrazení.

Úmluva 2.4. Nebude-li řečeno něco jiného, funkce znamená komplexní funkci komplexní proměnné. Na $f: \mathbb{C} \to \mathbb{C}$ se můžeme vždy dívat jako na $f: \mathbb{R}^2 \to \mathbb{R}^2$, protože $\mathbb{C} \approx \mathbb{R}^2$. Nechť f je funkce z \mathbb{C} do \mathbb{C} . Spojitost a limita se definuje stejně jako v základním kurzu matematické analýzy.

Definice 2.5. Pro $z_0 \in \mathbb{C}, \delta > 0$ značíme $U(z_0, \delta) := \{z \in \mathbb{C} : |z - z_0| < \delta\}$ a nazýváme ji okolí z_0 . Dále $P(z_0, \delta) := U(z_0, \delta) \setminus \{z_0\}$ nazýváme prstencové okolí. Pokud δ není důležité, budeme často psát jen $U(z_0), P(z_0)$.

Potom definujeme

- $\lim_{z \to z_0} f(z) = L$, pokud $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall z \in P(z_0, \delta) : f(z) \in U(L, \varepsilon)$
- f je spojitá v z_0 , pokud $\lim_{z \to z_0} f(z) = f(z_0)$.

3 Diferencovatelnost

Definice 3.1. Funkce f je v z_0 \mathbb{R} -diferencovatelná, pokud existuje \mathbb{R} -lineární zobrazení $L: \mathbb{R}^2 \to \mathbb{R}^2$ takové, že

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - L(h)}{|h|} = 0.$$

Poznámka 3.2. Potom $df(z_0) := L$ je tzv. totální diferenciál $f \vee z_0$ a platí, že

$$df(z_0)h := \begin{pmatrix} \frac{\partial f_1}{\partial x}(z_0) & \frac{\partial f_1}{\partial y}(z_0) \\ \frac{\partial f_2}{\partial x}(z_0) & \frac{\partial f_2}{\partial y}(z_0) \end{pmatrix} h, \quad h \in \mathbb{R}^2,$$

kde $f(x,y) = (f_1(x,y), f_2(x,y))$. (Tato matice se nazývá *Jacobiho matice*.)

Definice 3.3. Řekneme, že funkce f je v z_0 \mathbb{C} -diferencovatelná, pokud existuje konečná limita

$$f'(z_0) := \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}.$$

Číslo $f'(z_0)$ nazýváme komplexní derivací $f \vee z_0$.

Poznámka 3.4. Jako pro reálnou funkci reálné proměnné platí $(f \pm g)' = f' \pm g', (f \cdot g)' = f'g + g'f, (f/g)' = \frac{f'g - g'f}{g^2}$ a $(f \circ g)' = (f' \circ g) \cdot g'.$

Příklad 3.5.

- $(z^n)' = n \cdot z^{n-1}, z \in \mathbb{C} \text{ a } n \in \mathbb{N}.$
- $f(z) = \overline{z}$ není nikde v \mathbb{C} \mathbb{C} -diferencovatelná, ale f(x,y) = (x,-y) je všude \mathbb{R} -diferencovatelná. Skutečně, pro $z_0 \in \mathbb{C}$ libovolné, máme

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{h \to 0} \frac{\overline{h}}{h},$$

avšak poslední limita neexistuje.

Věta 3.6 (Cauchy-Riemannova). Nechť f je funkce definovaná na okolí $z_0 \in \mathbb{C}$. Pak následující tvrzení jsou ekvivalentní:

- 1. Existuje $f'(z_0)$
- 2. Existuje $df(z_0)$ a $df(z_0)$ je \mathbb{C} -lineární
- 3. Existuje $df(z_0)$ a v z_0 platí tzv. Cauchy-Riemannovy podmínky:

$$\frac{\partial f_1}{\partial x}(z_0) = \frac{\partial f_2}{\partial y}(z_0),
\frac{\partial f_1}{\partial y}(z_0) = -\frac{\partial f_2}{\partial x}(z_0),$$
(CR)

 $kde\ f(x,y) = (f_1(x,y), f_2(x,y)).$

 $D\mathring{u}kaz$. (2. \iff 3.): Plyne z pozorování pro lineární zobrazení (1. \iff 2.) Podle definice $w = f'(z_0)$ znamená, že

$$0 = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - wh}{h}.$$
 (2)

Po vynásobení výrazu v limitě h/|h| dostaneme, že

$$0 = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - wh}{|h|},\tag{3}$$

což je ekvivalentní tomu, že d $f(z_0)h = wh$, $h \in \mathbb{C}$. Z (3) plyne (2) vynásobením |h|/h.

Poznámka 3.7.

- Existuje-li $f'(z_0)$, potom $df(z_0)h = f'(z_0)h, h \in \mathbb{C}$ a $f'(z_0) = \frac{\partial f}{\partial x}(z_0)$
- Platí, že (CR) $\iff \frac{\partial f}{\partial x}(z_0) = -i\frac{\partial f}{\partial u}(z_0)$

Důkaz.

- $\mathrm{d}f(z_0)1 = \frac{\partial f_1}{\partial x}(z_0) + i\frac{\partial f_2}{\partial x}(z_0) =: \frac{\partial f}{\partial x}(z_0)$
- zřejmé

Příklad 3.8. Necht $f(z) = \overline{z}$, pak f(x,y) = (x,-y). Dále

$$\frac{\partial f_1}{\partial x} = 1, \ \frac{\partial f_1}{\partial y} = 0, \ \frac{\partial f_2}{\partial x} = 0, \ \frac{\partial f_2}{\partial y} = -1.$$

Máme, že $f \in C^{\infty}(\mathbb{R}^2)$, ale v žádném $z \in \mathbb{C}$ nesplňuje (CR), proto není nikde \mathbb{C} -diferencovatelná.

Definice 3.9. Necht $G \subset \mathbb{C}$ je otevřená a $f: G \to \mathbb{C}$. Potom říkáme, že f je na G holomorfní, pokud f je \mathbb{C} -diferencovatelná v každém $z_0 \in G$. Značíme $\mathcal{H}(G)$ prostor všech holomorfních funkcí $f: G \to \mathbb{C}$. Říkáme, že funkce F je celá, pokud $F \in \mathcal{H}(\mathbb{C})$.

Příklad 3.10.

- Polynom $p(z) = a_0 z^n + a_1 z^{n-1} + ... + a_n, z \in \mathbb{C}$ je celá funkce.
- Nechť R=P/Q, kde P,Q jsou polynomy, které nemají společné kořeny a $Q\not\equiv 0$. Potom racionální funkce R je holomorfní na $\mathbb{C}\setminus Q^{-1}(\{0\})$, kde $Q^{-1}(\{0\})$ je konečná množina.

4 Elementární funkce v $\mathbb C$

4.1 Exponenciála

Definice 4.1. $\exp(z)$: $= e^x(\cos y + i\sin y), z = x + iy \in \mathbb{C}$

Vlastnosti 4.2.

- $\exp |_{\mathbb{R}}$ je reálná exponenciála
- $\exp(z+w) = \exp(z)\exp(w)$
- $\exp'(z) = \exp(z), z \in \mathbb{C}$

$$f(z) = \exp(z), \quad f_1(x,y) = e^x \cos y, \quad f_2(x,y) = e^x \sin y$$

$$\frac{\partial f_1}{\partial x} = e^x \cos y = \frac{\partial f_2}{\partial y}, \quad \frac{\partial f_2}{\partial x} = e^x \sin y = -\frac{\partial f_1}{\partial y}$$

Tedy $f \in \mathbb{C}^{\infty}(\mathbb{R}^2)$ a (CR) platí všude v $\mathbb{R}^2 \cong \mathbb{C}$. Z CR-věty a poznámky 3.7 máme $f'(z) = \exp(z), \ z \in \mathbb{C}$

- $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}, z \in \mathbb{C}.$
- $\exp(\mathbb{C}) = \mathbb{C} \setminus \{0\}$
- exp není prostá na \mathbb{C} , je $2\pi i$ -periodická a platí dokonce: $\exp(z) = \exp(w) \iff \exists k \in \mathbb{Z} \colon w = z + 2k\pi i$
- Necht $P := \{z \in \mathbb{C} \mid \text{Im } z \in (-\pi, \pi]\}$. Potom $\exp |_P$ je prostá a $\exp(P) = \mathbb{C} \setminus \{0\}$.

Poznámka 4.3. Nechť z=x+iy je komplexní číslo, pak se na něj můžeme dívat jako na bod v rovině určený kartézskými souřadnicemi x a y. Polární (Goniometrický) tvar komplexního čísla získáme tak, že si body x a y vyjádříme v polárních souřadnicích a ty pak dosadím do rovnice udávající z. Tedy $x=r\cos\varphi$, $y=r\sin\varphi$, $z=x+iy=r(\cos\varphi+i\sin\varphi)=|z|e^{i\varphi}$, kde r=|z| a φ je argument z. Polární souřadnice nám říkají jak je daleko od počátku r a v jakém směru $\angle\varphi$ se bod z nachází.

Značení 4.4. Nechť $z \in \mathbb{C} \setminus \{0\}$. Potom položme $\operatorname{Arg}(z) := \{\varphi \in \mathbb{R} \mid z = |z|e^{i\varphi}\}$ Je-li $\operatorname{Arg}(z) \cap (-\pi, \pi] = \{\varphi_0\}$, potom $\operatorname{arg}(z) := \varphi_0$ je tzv. hlavní hodnota argumentu z.

Platí:

- $\operatorname{Arg}(z) := \{ \arg(z) + 2k\pi \mid k \in \mathbb{Z} \},$
- funkce arg: $\mathbb{C}\setminus\{0\}\to(-\pi,\pi]$, kde arg je surjektivní a navíc je konstantní na polopřímkách vycházejících z 0. Dále je arg spojitá na $\mathbb{C}\setminus(-\infty,0]$, ale není spojitá v žádném $z\in(-\infty,0]$.

4.2 Logaritmus

Pro dané $z \in \mathbb{C}$ řešíme rovnici $e^w = z$.

- Pro z = 0 nemá rovnice řešení.
- Pro $z \neq 0$ je $z = |z|e^{i\arg(z)} = e^{\log|z| + i\arg(z)} = e^w \iff \exists \ k \in \mathbb{Z} \colon w = \log|z| + i\arg(z) + 2k\pi i$.

Definice 4.5. Nechť $z \in \mathbb{C} \setminus \{0\}$. Položme

- Log z: = { $w \in \mathbb{C} \mid e^w = z$ }
- $\log z$: $= \log |z| + i \arg z$, tzv. hlavní hodnota logaritmu z.

Vlastnosti 4.6.

Nechť $z \in \mathbb{C} \setminus \{0\}$.

- Log $z = \{\log z + 2k\pi i \mid k \in \mathbb{Z}\}$ a log $= (\exp |_P)^{-1}$, kde P je množina z vlastností exponenciály.
- log není spojitá v žádném $z \in (-\infty, 0]$, ale log $\in \mathcal{H}(\mathbb{C} \setminus (-\infty, 0])$. Navíc log' $z = \frac{1}{z}, z \in \mathbb{C} \setminus (-\infty, 0]$.
- $\log(1-z) = -\sum_{n=1}^{\infty} \frac{z^n}{n}, |z| < 1$

Pozor na počítání s komplexním logaritmem!

- $\exp(\log z) = z$, $\log(\exp z) \neq z$, z toho, že exponenciála je $2\pi i$ -periodická
- $\log(zw) \neq \log(z) + \log(w)$

např.
$$0 = \log 1 = \log((-1)(-1)) \neq 2\log(-1) = 2\pi i$$

4.3 Obecná mocnina

Definice 4.7. Nechť $z \in \mathbb{C} \setminus \{0\}$ a $\alpha \in \mathbb{C}$. Potom hlavní hodnotu α -té mocniny z definujeme z^{α} : $= \exp(\alpha \log z)$. Položme $m_{\alpha}(z)$: $= \{\exp(\alpha w) \mid w \in \operatorname{Log} z\}$.

Vlastnosti 4.8.

- $e^z = \exp(z \log e) = \exp(z)$
- Je-li z > 0 a $\alpha \in \mathbb{R}$, potom z^{α} je v souladu s definicí z MA.
- $m_{\alpha}(z) = \{z^{\alpha}e^{2k\pi i\alpha} \mid k \in \mathbb{Z}\}, z \neq 0$

$$D\mathring{u}kaz. \ w \in \text{Log } z \iff w = \log z + 2k\pi i$$

- $(z^{\alpha})' = \alpha z^{\alpha-1}, z \in \mathbb{C} \setminus (-\infty, 0])$ a $\alpha \in \mathbb{C}$
- $(1+z)^{\alpha} = \sum_{n=0}^{\infty} {n \choose n} z^n$, |z| < 1, kde ${n \choose n} := \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$.

Pozorování 4.9. Nechť $z \in \mathbb{C} \setminus \{0\}$.

- Necht $\alpha \in \mathbb{Z}$. Potom $m_{\alpha}(z) = \{z^{\alpha}\}.$
- Nechť $\alpha \in \mathbb{Q}$ a $\alpha = p/q$, kde $q \in \mathbb{N}, \ p \in \mathbb{Z}$ a p,q jsou nesoudělná. Potom

$$m_{\frac{p}{q}}(z) = \left\{ z^{\frac{p}{q}} e^{\frac{2k\pi i p}{q}} : k \in \{0, 1, \dots, q-1\} \right\}$$

tvoří vrcholy pravidelného q-úhelníka vepsaného do kružnice se středem v počátku a poloměrem $z^{\frac{p}{q}}.$

• Nechť $\alpha \in \mathbb{C} \setminus \mathbb{Q}$. Potom je $m_{\alpha}(z)$ nekonečné.

Příklad 4.10.

•
$$\sqrt{-1} = e^{\frac{\pi i}{2}} = i$$
, $m_{\frac{1}{2}}(-1) = \{\pm i\}$

•
$$\sqrt[3]{-1} = e^{\frac{\pi i}{3}}$$
 (nesouhlasí s definicí z MA!), $m_{\frac{1}{3}}(-1) = \{e^{\frac{\pi i}{3}}, e^{-\frac{\pi i}{3}}, -1\}$

•
$$i^i = e^{-\frac{\pi}{2}}, m_i(i) = \{e^{-\frac{\pi}{2} + 2k\pi} \mid k \in \mathbb{Z}\}$$

Pozor na počítání s mocninami!

•
$$(zw)^{\alpha} \neq z^{\alpha}w^{\alpha}$$

např. $1 = \sqrt{1} = \sqrt{(-1)(-1)} \neq \sqrt{-1}\sqrt{-1} = i^2 = -1$

$$\textbf{Poznámka 4.11.} \ \text{Je-li} \ f \colon\thinspace \mathbb{C} \to \mathbb{C}, \ \text{potom} \ f(z) = \underbrace{\frac{f(z) + f(-z)}{2}}_{\text{sudá část}} + \underbrace{\frac{f(z) - f(-z)}{2}}_{\text{lichá část}}.$$

4.4 Hyperbolické funkce

$$e^z = \cosh(z) + \sinh(z)$$
, kde

Definice 4.12.

$$\cosh(z) := \frac{e^z + e^{-z}}{2}, \ z \in \mathbb{C}$$

$$\sinh(z) := \frac{e^z - e^{-z}}{2}, \ z \in \mathbb{C}$$

Vlastnosti 4.13.

- $\cosh' z = \sinh z$, $\sinh' z = \cosh z$
- $\cosh z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$, $\sinh z = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$

4.5 Goniometrické funkce

$$e^{iz} = \cos(z) + i\sin(z)$$
, kde

Definice 4.14.

$$\cos(z):=\frac{e^{iz}+e^{-iz}}{2}, z\in\mathbb{C}$$

$$\sin(z) := \frac{e^{iz} - e^{-iz}}{2i}, z \in \mathbb{C}$$

Vlastnosti 4.15.

- cos a sin jsou rozšířením příslušných reálných funkcí z $\mathbb R$ do $\mathbb C.$
- $\sin'(z) = \cos(z)$, $\cos'(z) = -\sin(z)$
- sin i cos jsou 2π -periodické, ale nejsou omezené na $\mathbb C$. Platí, že $\sin(\mathbb C)=\mathbb C=\cos(\mathbb C)$
- i na C platí součtové vzorce, atd.

•
$$\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$

5 Křivkový integrál

Definice 5.1. Necht $\varphi : [\alpha, \beta] \to \mathbb{C}$. Potom

- 1. φ je *křivka*, pokud je φ spojitá
- 2. φ je regulární křivka, pokud je φ po částech spojitě diferencovatelná, tzn. φ je spojitá na $[\alpha, \beta]$ a existuje dělení $\alpha = t_0 < t_1 < \dots < t_n = \beta$ takové, že $\varphi|_{[t_i, t_{i+1}]}$ je spojitě diferencovatelné pro každé $i = 0, \dots, n-1$.

Definice 5.2 (Úsečka). Nechť $a,b \in \mathbb{C}$. Potom $\varphi(t) := a + t(b-a), \ t \in [0,1]$ je úsečka z a do b. Značíme [a;b].

Definice 5.4 (Lomenná čára). Řekneme, že regulární křivka φ je lomenná čára v \mathbb{C} , existují-li $z_1, z_2, \dots, z_k \in \mathbb{C}$ taková, že $\varphi = [z_1; z_2] \dotplus [z_2; z_3] \dotplus \dots \dotplus [z_{k-1}; z_k]$.

Definice 5.5 (Kružnice). Nechť $z_0 \in \mathbb{C}$ a r > 0. Potom $\varphi(t) := z_0 + re^{it}$, $t \in [0, 2\pi]$ je kružnice probíhaná v kladném směru (proti směru hodinových ručiček).

Poznámka 5.6. Pro křivku φ může být její graf $\langle \varphi \rangle := \varphi([\alpha, \beta])$ například čtverec (Peanova křivka).

Úmluva 5.7. Pokud neřekneme něco jiného, $k\check{r}ivkou$ budeme rozumět $regul\acute{a}rn\acute{i}$ $k\check{r}ivku$ v \mathbb{C} .

Připomenutí 5.8. Jako v MA definujeme

1. Vše po složkách, například:

$$\varphi'(t) = \varphi_1'(t) + i\varphi_2'(t),$$
$$\int_{\alpha}^{\beta} \varphi(t) dt = \int_{\alpha}^{\beta} \varphi_1(t) dt + i \int_{\alpha}^{\beta} \varphi_2(t) dt,$$

mají-li pravé strany smysl. Zde $\varphi(t) = (\varphi_1(t), \varphi_2(t)) = \varphi_1(t) + i\varphi_2(t)$

2. Délka křivky:

$$V(\varphi) := \int_{\alpha}^{\beta} |\varphi'(t)| \, \mathrm{d}t,$$

je-li φ regulární.

Definice 5.9. Nechť $\varphi: [\alpha, \beta] \to \mathbb{C}$ je regulární křivka a $f: \langle \varphi \rangle \to \mathbb{C}$ je spojitá. Potom definujeme

8

$$\int_{\varphi} f := \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt \tag{1}$$

Poznámka 5.10.

- 1. Křivkový integrál (1) existuje vždy jako Riemannův.
- 2. Píšeme také $\int_{\varphi} f(z) dz$

Základní vlastnosti 5.11.

1. Je-li φ křivka, f a g jsou spojité funkce na $\langle \varphi \rangle$ a $A, B \in \mathbb{C}$, potom

$$\int_{\varphi} (Af + Bg) = A \int_{\varphi} f + B \int_{\varphi} g.$$

2. Je-li φ křivka a f je spojitá funkce na $\langle \varphi \rangle$, potom

$$\left| \int_{\varphi} f \right| \le \max_{\langle \varphi \rangle} |f| \cdot V(\varphi).$$

 $D\mathring{u}kaz$. Označíme $M := \max_{\langle \varphi \rangle} |f|$. Potom máme

$$\left| \int_{\varphi} f \right| = \left| \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) \, \mathrm{d}t \right| \le \int_{\alpha}^{\beta} \left| f(\varphi(t)) \right| \left| \varphi'(t) \right| \, \mathrm{d}t$$

$$\le \int_{\alpha}^{\beta} M \left| \varphi'(t) \right| \, \mathrm{d}t = M \int_{\alpha}^{\beta} \left| \varphi'(t) \right| \, \mathrm{d}t = M \cdot V(\varphi)$$

3. Nechť $\varphi: [\alpha, \beta] \to \mathbb{C}, \ \psi: [\gamma, \delta], \to \mathbb{C}$ jsou křivky a $\varphi(\beta) = \psi(\gamma)$. Potom

$$\int_{\varphi \dotplus \psi} f = \int_{\varphi} f + \int_{\psi} f$$
 a
$$\int_{\dot{-}\varphi} f = -\int_{\varphi} f,$$

kde $(\dot{-}\varphi)(t) := \varphi(-t), t \in [-\beta, -\alpha]$ je opačná křivka k $\varphi.$

4. Křivkový integrál nezávisí na parametrizaci křivky. Nechť $\varphi: [\alpha, \beta] \to \mathbb{C}$ je křivka, $\omega: [\gamma, \delta] \xrightarrow{\mathrm{na}} [\alpha, \beta]$ je spojitě diferencovatelné s $\omega' > 0$ a $\psi := \varphi \circ \omega$. Potom

$$\int_{\varphi} f = \int_{\psi} f.$$

Důkaz.

$$\int_{\psi} f = \int_{\gamma}^{\delta} f(\varphi(\omega(t))) \varphi'(\omega(t)) \omega'(t) dt$$

$$= \int_{\gamma}^{\delta} f(\varphi(\omega(t))) \psi'(t) dt \stackrel{\text{subst.}}{=} \int_{\alpha}^{\beta} f(\varphi(\tau)) \varphi'(\tau) d\tau = \int_{\varphi} f.$$

Definice 5.12. Řekneme, že funkce f má na otevřené $G \subset \mathbb{C}$ primitivní funkci F, pokud F' = f na G

Příklad 5.13. $\frac{z^{n+1}}{n+1}$ je primitivní funkcí k z^n

$$\begin{cases} \text{ na } \mathbb{C} & \text{pro } n = 0, 1, 2, 3, \dots \\ \text{na } \mathbb{C} \setminus \{0\} & \text{pro } n = -2, -3, -4, \dots \end{cases}$$

Věta 5.14 (O výpočtu křivkového integrálu pomocí PF). Nechť $G \subset \mathbb{C}$ je otevřená a f má na G primitivní funkci F. Nechť $\varphi : [\alpha, \beta] \to G$ je křivka a f je spojitá^(*) na $\langle \varphi \rangle$. Potom

1.
$$\int_{\varphi} f = F(\varphi(\beta)) - F(\varphi(\alpha))$$

2.
$$\int_{\varphi} f = 0$$
, je -li φ uzavřená, tzn . $\varphi(\alpha) = \varphi(\beta)$

Poznámka 5.15. (*) Ukážeme si později, že funkce f, která má na G primitivní funkci, je na G holomorfní, tudíž i spojitá.

Důkaz. Z Cauchy-Riemannovy věty plyne, že

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big(F(\varphi(t))\Big) = \frac{\partial F}{\partial x}\varphi_1' + \frac{\partial F}{\partial y}\varphi_2' = F'\varphi_1' + iF'\varphi_2' = F'(\varphi(t))\varphi'(t).$$

Tato rovnost platí až na konečně mnoho $t \in [\alpha, \beta]$, neboli $F \circ \varphi$ je zobecněná primitivní funkce k integrandu. Máme tedy

$$\int_{\varphi} f = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt = \int_{\alpha}^{\beta} \frac{d}{dt} (F(\varphi(t))) dt = F(\varphi(\beta)) - F(\varphi(\alpha)).$$

Příklad 5.16.

• $\frac{1}{z}$ je holomorfní na $\mathbb{C}\setminus\{0\}$, ale na $\mathbb{C}\setminus\{0\}$ nemá primitivní funkci, neboť víme

$$\int_{\varphi} \frac{\mathrm{d}z}{z} = 2\pi i \neq 0 \text{ pro } \varphi(t) = e^{it}, \ t \in [0, 2\pi].$$

- $\frac{1}{z}$ má na $\mathbb{C} \setminus (-\infty, 0]$ primitivní funkci $\log(z).$

$$\log'(z) = \frac{1}{z}.$$

Připomenutí 5.17 (Souvislost). Nechť $G \subset \mathbb{C}(\mathbb{R}^n)$ otevřená. Následující tvrzení jsou ekvivalentní:

- (a) G je souvislá, tj. G je oblast.
- (b) G je $k\check{r}ivkov\check{e}$ souvislá, tzn. pro každé $z_1,z_2\in G$ existuje spojitá křivka $\varphi:[\alpha,\beta]\to G$ taková, že $\varphi(\alpha)=z_1$ a $\varphi(\beta)=z_2$.
- (c) Pro každé $z_1, z_2 \in G$ existuje lomenná čára $\varphi : [\alpha, \beta] \to G$ taková, že $\varphi(\alpha) = z_1$ a $\varphi(\beta) = z_2$.

 $D\mathring{u}kaz.$ $(a) \iff (b)$: víte z MA; $(c) \Rightarrow (b)$: jasné; $(a) \Rightarrow (c)$: ukáže se podobně jako $(a) \Rightarrow (b)$

Věta 5.18. Funkce f je konstantní na oblasti $G \subset \mathbb{C}$, právě když f' = 0 na G.

 $D\mathring{u}kaz. \Rightarrow Jasn\'e.$

 \Leftarrow Nechť $z,w\in G$ a φ je lomená čára v G spojující z a w. Potom $f(w)-f(z)=\int_{\varphi}f'=0$, protože f je primitivní funkcí k f' na G.

Důsledek 5.19. *Jsou-li* F_1 , F_2 *primitivní* funkce k f na oblasti $G \subset \mathbb{C}$, potom existuje $c \in \mathbb{C}$ tak, že $F_2 = F_1 + c$.

Důkaz.

$$(F_2 - F_1)' = F_2' - F_1' = f - f = 0.$$

Věta 5.20 (O existenci primitivní funkce). Nechť $G \subset \mathbb{C}$ je oblast a f je spojitá na G. Následující tvrzení jsou ekvivalentní:

- 1. f má na G primitivní funkci.
- 2. $\int_{\Omega} f = 0$ pro každou uzavřenou křivku φ v G.
- 3. $\int_{\varphi} f$ nezávisí v G na křivce φ , tzn. pro každé dvě křivky $\varphi: [\alpha, \beta] \to G$, $\psi: [\gamma, \delta] \to G$ takové, $\check{z}e$ $\varphi(\alpha) = \psi(\gamma)$ a $\varphi(\beta) = \psi(\delta)$, plati $\int_{\varphi} f = \int_{\psi} f$.

Poznámka 5.21. Přípomíná větu o potenciálu z MA ?

Důkaz věty 5.20.

- $1. \Rightarrow 2$. Víme z věty o výpočtu integrálu pomocí primitivní funkce
- $2. \Rightarrow 3.$ Položme $\tau := \varphi \dotplus (\dot{-} \psi).$ Potom je τ uzavřená a z 2. dostaneme

$$0 = \int_{\mathcal{T}} f = \int_{\omega} f - \int_{\psi} f.$$

 $3. \Rightarrow 1.$ Volme $z_0 \in G$ pevně. Pro každé $z \in G$ najděme lomenou čáru φ_z v G, která začíná v z_0 a končí v z. Definujeme $F(z) := \int_{\varphi_z} f$, $z \in G$. Definice F je korektní, nezávislá na volbě φ_z , protože předpokládáme 3. Ukážeme, že F je hledaná PF k f na G. Nechť $z_1 \in G$. Dokážeme, že $F'(z_1) = f(z_1)$. Volme r > 0, aby $U(z_1, r) \subset G$. Je-li |h| < r, potom

$$F(z_1 + h) - F(z_1) \stackrel{3.}{=} \int_{\varphi_{z_1} + u} f - \int_{\varphi_{z_1}} f = \int_u f,$$

kde $u = [z_1; z_1 + h]$ je úsečka, tzn. $u(t) = z_1 + t \cdot h$, $t \in [0, 1]$. Tedy

$$F(z_1+h)-F(z_1)=\int_{\mathcal{U}}f=\int_{0}^{1}f(z_1+th)h\,\mathrm{d}t,$$

tudíž

$$\frac{F(z_1+h)-F(z_1)}{h}-f(z_1)=\int_0^1 (f(z_1+th)-f(z_1))\,\mathrm{d}t.$$

To se blíží k nule pro $h \to 0$, protože

$$\left| \int_0^1 \left(f(z_1 + th) - f(z_1) \right) dt \right| \le \max_{z \in [z_1; z_1 + h]} |f(z) - f(z_1)| \xrightarrow{h \to 0} 0$$

ze spojitosti f v z_1 . Máme, že $F'(z_1) = f(z_1)$.

Značení 5.22.

1. Řekneme, že $M \subset \mathbb{C}$ je $hv\check{e}zdovit\acute{a}$, pokud existuje $z_0 \in M$ (tzv. $st\check{r}ed\ hv\check{e}zdovitosti$), pro který $[z_0; z] \subset M$ pro každé $z \in M$.

Poznámka. Konvexní ⊊ hvězdovitá.

2. Řekneme, že $\triangle \subset \mathbb{C}$ je trojúhelník s vrcholy $a,b,c \in \mathbb{C}$, pokud

$$\triangle := \{ \alpha a + \beta b + \gamma c \mid \alpha, \beta, \gamma \ge 0, \alpha + \beta + \gamma = 1 \}$$

 $(konvexni\ obal\ a,b,c)$ a značíme $\partial \triangle := [a;b] \dotplus [b;c] \dotplus [c;a]$. Připouštíme i degenerované \triangle , tzn. a,b,c mohou ležet na jedné přímce nebo body a,b,c mohou splývat...

Dodatek 5.23. Nechť f je spojitá funkce na hvězdovité oblasti $G \subset \mathbb{C}$. Je-li

$$\int_{\partial \triangle} f = 0, \tag{2}$$

pro každý trojúhelník $\triangle \subset G$, potom f má na G primitivní funkci.

 $D\mathring{u}kaz$. Nechť z_0 je střed hvězdovitosti G, Pro každé $z \in G$ položme $\varphi_z := [z_0; z]$ a $F(z) := \int_{\varphi_z} f$. Rozmyslíme si, že důkaz F' = f na G je zcela analogický $3 \Rightarrow 1$ předchozí věty, když místo 3 uvažujeme (2).

Poznámka 5.24. Cauchyho věta – Nechť $G \subset \mathbb{C}$ je otevřená, $f \in \mathcal{H}(G)$ a φ je uzavřená křivka v G. Potom Cauchyho věty nám říkají za jakých podmínek na G a φ je $\int_{\varphi} f = 0$.

Věta 5.25 (Goursatovo lemma – "Cauchyho věta pro \triangle "). Nechť $G \subset \mathbb{C}$ je otevřená, $f \in \mathcal{H}(G)$ a \triangle je trojúhelník v G. Potom

$$\int_{\partial \wedge} f = 0. \tag{3}$$

Důkaz. Označme $\varphi_0 := \partial \triangle$. Sporem: Předpokládejme, že $|\int_{\varphi_0} f| =: K > 0$. Zřejmě \triangle je nedegenerovaný. V \triangle veďme střední příčky a označme ψ_1 , ψ_2 , ψ_3 , ψ_4 obvody čtyř vzniklých trojúhelníků (ψ_4 je obvod vnitřního trojúhelníka). Obvody vnitřních trojúhelníků ψ_1 (vlevo dole), ψ_2 (vpravo dole), ψ_3 (nahoře) a ψ_4 (uprostřed) probíháme proti směru hodinových ručiček. Potom $\int_{\varphi_0} f = \int_{\psi_1} f + \int_{\psi_2} f + \int_{\psi_3} f + \int_{\psi_4} f$. Ex. $j_1 = 1, \ldots, 4$ tak, že $|\int_{\psi_{j_1}} f| \ge \frac{K}{4}$ a $V(\psi_{j_1}) = \frac{V(\varphi)}{2}$. Označme $\varphi_1 = \psi_{j_1}$. Indukcí sestrojíme posloupnost (uzavřených) trojúhelníků, tž $\triangle \psi_{j_1}$ zase rozdělíme na 4 menší \triangle -y středními příčkami a proces opakujeme. Pak $\triangle_0 := \triangle \supset \triangle_1 \supset \triangle_2 \supset \ldots$ s obvody φ_0 , φ_1 , φ_2 , ... takové, že

$$\left| \int_{\varphi_j} f \right| \ge \frac{K}{4^j} \quad a$$

$$V(\varphi_j) = \frac{V(\varphi)}{2^j}$$
(a)

. Máme, že $\bigcap_{j=0}^{\infty} \triangle_j = \{z_0\} \subset G$, protože diam $(\triangle_j) \to 0$. Položme

$$\varepsilon(z) := \begin{cases} \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0), \ z \in G \setminus \{z_0\}; \\ 0, \ z = z_0 \end{cases}$$

Potom ε je spojitá na G a máme pro $j \in \mathbb{N}_0$

$$\int_{\varphi_j} f(z) dz = \int_{\varphi_j} (f(z_0) + f'(z_0)(z - z_0)) dz + \int_{\varphi_j} \varepsilon(z)(z - z_0) dz,$$
 (b)

kde první integrand vpravo má PF na $\mathbb C$ a první integrál je roven 0. Pro každé $j\in\mathbb N_0$ z (a), (b) dostaneme

$$0 < \frac{K}{4^{j}} \le \left| \int_{\varphi_{j}} f \right| \stackrel{\text{(b)}}{=} \left| \int_{\varphi_{j}} \varepsilon(z)(z - z_{0}) \right| \le V^{2}(\varphi_{j}) \cdot \max_{\langle \varphi_{j} \rangle} |\varepsilon| \stackrel{\text{(a)}}{=} \frac{V^{2}(\varphi)}{4^{j}} \cdot \max_{\langle \varphi_{j} \rangle} |\varepsilon|,$$

kde třetí nerovnost platí díky tomu, že $|z-z_0| \leq V(\varphi_j)$. Z předchozího tedy máme (po vynásobení 4^j): $0 < K \leq V^2(\varphi) \cdot \max_{\langle \varphi_j \rangle} |\varepsilon| \to 0$, protože ε je spojitá v z_0 a $\varepsilon(z_0) = 0$. Což je spor.

Věta 5.26 (Cauchyho věta pro hvězdovité oblasti). Nechť $G \subset \mathbb{C}$ je hvězdovitá oblast a $f \in \mathcal{H}(G)$. Potom f má na G primitivní funkci. Ekvivalentně: platí, že $\int_{\varphi} f = 0$ pro každou uzavřenou křivku φ v G.

Důkaz. Z Goursatova lemmatu a dodatku k větě o existenci primitivní funkce (Dodatek 5.23). □

Poznámka 5.27. Goursatovo lemma a tedy i předchozí věta platí i pro funkci f, která je spojitá na G a holomorfní na $G \setminus \{z_0\}$ pro nějaké $z_0 \in G$.

 $D\mathring{u}kaz$. Nechť \triangle je nedegenerovaný trojúhelník v G. Rozlišujeme případy:

- 1. Necht $z_0 \notin \triangle$. Potom $\int_{\partial \triangle} f = 0$ dle Goursatova lemmatu.
- 2. Nechť z_0 je vrchol \triangle . Nechť \triangle_{ε} je trojúhelník podobný s \triangle , $\triangle_{\varepsilon} \subset \triangle$ a z_0 je jeho vrcholem. Nechť poměr stran \triangle ku \triangle_{ε} je roven ε . \triangle' , \triangle'' jsou trojúhelníky vzniklé rozdělením \triangle na tři trojúhelníky (\triangle_{ε} , \triangle' , \triangle''). Obvody vzniklých vnitřních trojúhelníků procházíme proti směru hodinových ručiček. Potom $\int_{\partial \triangle} f = \int_{\partial \triangle_{\varepsilon}} f + \int_{\partial \triangle'} f + \int_{\partial \triangle''} f$, kde poslední dva integrály jsou rovny 0 podle bodu 1. Tudíž $|\int_{\partial \triangle} f| = |\int_{\partial \triangle_{\varepsilon}} f| \le \varepsilon \cdot V(\partial \triangle) \cdot \max_{\triangle} |f| \xrightarrow{\varepsilon \to 0+} 0$. Tedy $\int_{\partial \triangle} f = 0$.
- 3. Nechť z_0 leží uvnitř strany \triangle . Potom \triangle rozřízneme na dva menší trojúhelníky \triangle' a \triangle'' se společným vrcholem v z_0 . Jejich obvody procházím proti směru hodinových ručiček. Potom $\int_{\partial \triangle} f = \int_{\partial \triangle'} f + \int_{\partial \triangle''} f$, kde oba integrály na pravé straně jsou rovny 0 podle bodu 2. Tudíž $\int_{\partial \triangle} f = 0$.
- 4. Nechť z_0 leží uvnitř \triangle . Potom \triangle rozřízneme na tři menší trojúhelníky \triangle' a \triangle'' , \triangle''' se společným vrcholem v z_0 . Jejich obvody procházím proti směru hodinových ručiček. Potom $\int_{\partial \triangle} f = \int_{\partial \triangle'} f + \int_{\partial \triangle''} f + \int_{\partial \triangle'''} f$, kde jsou všechny tři integrály na pravé straně rovny 0 podle bodu 2. Tudíž $\int_{\partial \triangle} f = 0$.

Věta 5.28 (O derivování podle komplexního parametru). Necht φ je křivka $v \mathbb{C}$ a $\Omega \subset \mathbb{C}$ je otevřená. Necht F(z,s) a komplexní derivace $\frac{\partial F}{\partial s}(z,s)$ jsou spojité komplexní funkce na $\langle \varphi \rangle \times \Omega$. Pro každé $s \in \Omega$ položme $\phi(s) := \int_{\varphi} F(z,s) dz$. Potom $\phi \in \mathcal{H}(\Omega)$ a $\phi'(s) = \int_{\varphi} \frac{\partial F}{\partial s}(z,s) dz$, $s \in \Omega$.

 $D\mathring{u}kaz$. Pro $s=s_1+is_2=(s_1,\ s_2)\in\Omega$ máme $\phi(s)=\int_{\alpha}^{\beta}F(\varphi(t),(s_1,s_2))\varphi'(t)dt$, pokud $\varphi\colon [\alpha,\beta]\to\mathbb{C}$. Podle vět o spojitosti a derivování integrálu závislého na reálných parametrech máme $\frac{\partial\phi}{\partial s_j}(s)=\int_{\varphi}\frac{\partial F}{\partial s_j}(z,s)dz$, pro $s\in\Omega$ a j=1,2 navíc jsou tyto parciální derivacespojité a splňují (CR)-podmínky. To je vidět z toho, že $\frac{\partial F}{\partial s_j}(z,s)$, j=1,2 jsou spojité a splňují (CR)-podmínky. Z (CR) dostaneme, že funkce ϕ je komplexně diferencovatelná a komplexní derivace se rovná derivaci vzhledem k té první proměnné. Odtud plyne věta.

Definice 5.29. Nechť je φ uzavřená křivka v \mathbb{C} a $s \in \mathbb{C} \setminus \langle \varphi \rangle$. Potom číslo

$$\operatorname{ind}_{\varphi} s := \frac{1}{2\pi i} \int_{\varphi} \frac{dz}{z - s}$$

nazveme indexem bodu s vzhledem ke k $\check{r}ivce\ \varphi$

Poznámka 5.30. Ukážeme si, že $\operatorname{ind}_{\varphi} s$ se rovná počtu oběhů φ kolem s v kladném směru (tzn. proti směru hodinových ručiček).

Věta 5.31 (o základních vlastnostech indexu). Nechť φ je uzavřená křivka v \mathbb{C} a $G := \mathbb{C} \setminus \langle \varphi \rangle$. Potom je G otevřená, funkce $s \mapsto \operatorname{ind}_{\varphi} s$ je konstantní na každé komponentě G a na jediné její neomezené komponentě je nulová.

- $D\mathring{u}kaz$. (i) Podle předchozí věty je $\phi(s):=\frac{1}{2\pi i}\int_{\varphi}\frac{dz}{z-s},\ s\in G$ holomorfní a pro každé $s\in G$ je $\phi'(s)=\frac{1}{2\pi i}\int_{\varphi}\frac{dz}{(z-s)^2}=0$, protože $f(z):=\frac{1}{(z-s)^2}$ má PF na $\mathbb{C}\setminus\{s\}$. Tedy ϕ je konstantní na každé komponentě G.
 - (ii) Volíme R > 0, aby $\langle \varphi \rangle \subset U(0,R)$. Potom $\mathbb{C} \setminus U(0,R)$ je obsaženo v jediné neomezené komponentě G_0 množiny G. Navíc pro $s \in \mathbb{C} \setminus U(0,R)$ je funkce $g(z) := \frac{1}{z-s}, z \in U(0,R)$ holomorfní a dle Cauchyho věty pro hvězdovitou oblast je $\phi(s) = 0$

Příklad 5.32. Necht $z_0 \in \mathbb{C}$, r > 0 a $\varphi(t) := z_0 + re^{it}$, $t \in [0, 2\pi]$. Potom

$$\operatorname{ind}_{\varphi} s = \left\{ \begin{array}{ll} 0 & \operatorname{pro} \; |s - z_0| < r, \\ 1 & \operatorname{pro} \; |s - z_0| > r. \end{array} \right.$$

Spočetli jsme, že ind $_{\varphi}z_0=\frac{1}{2\pi i}\int_{\varphi}\frac{dz}{z-z_0}=1.$ Zbytek plyne z předchozí věty.

Věta 5.33 (Cauchyův vzorec pro kruh). Nechť $G \subset \mathbb{C}$ je otevřená a $f \in \mathcal{H}(G)$. Nechť $\overline{U(z_0, r)} \subset G$ a $\varphi(t) := z_0 + r.e^{it}$, $t \in [0, 2\pi]$ (*). Potom platí

$$\frac{1}{2\pi i} \int_{\varphi} \frac{f(z)}{z - s} dz = \begin{cases} f(s), & |s - z_0| < r \\ 0, & |s - z_0| > r \end{cases}$$
 (CV_z)

 $D\mathring{u}kaz$. Existuje R > r tak, že $U(z_0, R) \subset G$.

(i) Necht $|s-z_0| < r$. Definujme

$$h(z) := \left\{ \begin{array}{ll} \frac{f(z) - f(s)}{z - s}, & z \neq s \ a \ z \in G \\ f'(s), & z = s. \end{array} \right.$$

Potom $h \in \mathcal{H}(U(z_0, R) \setminus \{s\})$ a spojitá na hvězdovité oblasti $U(z_0, R)$. Potom z Cauchyho věty

$$0 = \frac{1}{2\pi i} \int_{\varphi} h = \frac{1}{2\pi i} \int_{\varphi} \frac{f(z)}{z - s} dz - f(s) \cdot \underbrace{\frac{1}{2\pi i} \int_{\varphi} \frac{dz}{z - s}}_{= \operatorname{ind}_{\varphi} s = 1}$$

(ii) Nechť $|s-z_0|>r$. Volme $R'\in(r,|s-z_0|)$, aby $U(z_0,R')\subset G$. Potom f(z)/(z-s) je holomorfní funkce na $U(z_0,R')$ a z Cauchyho věty je

$$\frac{1}{2\pi i} \int_{\varphi} \frac{f(z)}{z - s} dz = 0.$$

Důsledek 5.34. Nechť $G \subset \mathbb{C}$ je otevřená a $f \in \mathcal{H}(G)$. Potom f má komplexní derivaci všech řádů všude na G. Nechť $\overline{U(z_0,r)} \subset G$ a φ je jako v (*). Potom

$$f^{(k)}(s) = \frac{k!}{2\pi i} \int_{\varphi} \frac{f(z)}{(z-s)^{k+1}} dz, \quad |s-z_0| < r \ a \ k = 0, 1, 2, 3, \dots$$
 (CV_z^(k))

 $Zde\ f^{(0)}=f\ a\ k$ -tá komplexní derivace $f^{(k)}$ je definovaná jako $f^{(k)}=(f^{(k-1)})',\ m$ á-li pravá strana smysl.

 $D\mathring{u}kaz$. Z věty o derivaci integrálu dle komplexního parametru a (CV_z) , protože

$$\frac{d^k}{ds^k} \left(\frac{1}{z-s} \right) = \frac{k!}{(z-s)^{k+1}}, \ z \neq s.$$

Věta 5.35 (Morera). Nechť f je spojitá funkce na otevřené $G \subset \mathbb{C}$. Potom $f \in \mathcal{H}(G)$, právě když

$$\int_{\partial \wedge} f = 0 \quad pro \ ka\check{z}d\acute{y} \ troj\acute{u}heln\acute{l}k \ \triangle \subset G. \tag{4}$$

Důkaz. "⇒": Goursatovo lemma

" \Leftarrow ": Nechť $\mathcal{U} := U(z_0, R)$ je libovolný kruh v G. Protože f je spojitá na \mathcal{U} , \mathcal{U} je hvězdovitá oblast a

 $\int_{\partial \triangle} f = 0$

pro každý trojúhelník $\triangle \subset \mathcal{U}$, má f na \mathcal{U} primitivní funkci F, to znamená, že f = F' na \mathcal{U} . Protože $F \in \mathcal{H}(\mathcal{U})$, máme f' = F'' na \mathcal{U} , tudíž f je holomorfní na \mathcal{U} . Protože \mathcal{U} byl libovolný kruh v G, je $f \in \mathcal{H}(G)$.

Věta 5.36 (Cauchyho odhady). Nechť $z_0 \in \mathbb{C}$, $r \in (0, +\infty)$ a f je holomorní funkce na otevřené množině obsahující $\overline{U(z_0, r)}$. Potom pro každé k = 0, 1, 2, ... je

$$\forall s \in \mathcal{U} := U(z_0, r) : \quad |f^{(k)}(s)| \le \frac{r \cdot k!}{(d(s))^{k+1}} \cdot \max_{\partial \mathcal{U}} |f|, \tag{CO_1}$$

 $kde \ d(s) := dist(s, \partial \mathcal{U}) \stackrel{def.}{:=} \min_{z \in \partial \mathcal{U}} |s - z|$

$$\forall s \in U\left(z_0, \frac{r}{2}\right): \quad |f^{(k)}(s)| \le \frac{k! \cdot 2^{k+1}}{r^k} \cdot \max_{\partial U} |f| \cdot \tag{CO_2}$$

$$|f^{(k)}(z_0)| \le \frac{k!}{r^k} \cdot \max_{\partial U} |f|. \tag{CO_3}$$

 $D\mathring{u}kaz$. (CO_1) dostaneme z $(CV_z^{(k)})$, protože

$$|f^{(k)}(s)| = \left|\frac{k!}{2\pi i} \int_{\varphi} \frac{f(z)}{(z-s)^{k+1}} dz\right| \le \frac{k!}{2\pi} \cdot 2\pi r \cdot \frac{1}{(d(s))^{k+1}} \cdot \max_{\partial \mathcal{U}} |f|$$

a $|z-s| \ge d(s)$, $z \in \partial \mathcal{U} = \langle \varphi \rangle$, $z \in \varphi(t) = z_0 + r \cdot e^{it}$, $t \in [0, 2\pi]$.

 (CO_2) plyne z (CO_1) , protože $d(s) \ge \frac{r}{2} \ \forall s \in U(z_0, r/2)$.

$$(CO_3)$$
 plyne z (CO_1) , protože $d(z_0) = r$.

Věta 5.37 (Liouville). Je-li f holomorfní a omezená na C, potom je f konstantní.

 $D\mathring{u}kaz$. Ukážeme, že f'=0 na \mathbb{C} . Označme $M:=\sup_{\mathbb{C}}|f|<+\infty$. Nechť $z_0\in\mathbb{C}$. Z (CO_3) dostaneme pro každé r>0

$$|f'(z_0)| \le \frac{1}{r} \max_{\partial U(z_0,r)} |f| \le \frac{M}{r} \underset{r \to +\infty}{\longrightarrow} 0,$$

$$tudíž f'(z_0) = 0.$$

Důsledek 5.38 (Základní věta algebry). $V \mathbb{C}$ má polynom stupně aspoň 1 vždy aspoň jeden kořen.

Důkaz. Necht $p(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_n$, kde $a_j \in \mathbb{C}$, $a_0 \neq 0$ a $n \geq 1$.

Sporem: Předpokládejme, že $p \neq 0$ na \mathbb{C} . Položme f := 1/p. Potom f je holomorfní a omezená na \mathbb{C} , tudíž dle Liouvilleovy věty je f i p konstantní. Tedy p' = 0 a $0 = p^{(n)} = n!a_0$, což je spor. Omezenost f: Máme

$$|f(z)| = \left| \frac{1}{z^n \cdot \left(a_0 + \frac{a_1}{z} + \dots + \frac{a_n}{z^n} \right)} \right| \le \frac{1}{r^n} \cdot \frac{1}{|a_0| - \frac{|a_1|}{r} - \dots - \frac{|a_n|}{r^n}} \longrightarrow 0$$

pro $r = |z| \to +\infty$.

Existuje $r_0 \in (0, +\infty)$ tak, že $|f(z)| \le 1$, je-li $|z| > r_0$. Funkce f je omezená na $\overline{U(0, r_0)}$, protože je tam spojitá.

Lemma 5.39. Nechť φ je křivka v \mathbb{C} , f_n jsou spojité funkce na $\langle \varphi \rangle$ pro n = 1, 2, 3, ... a $f_n \rightrightarrows f$ na $\langle \varphi \rangle$. Potom f je spojitá na $\langle \varphi \rangle$ a

$$\int_{\varphi} f_n \longrightarrow \int_{\varphi} f.$$

Důkaz. Máme

$$0 \le \left| \int_{\varphi} f_n - \int_{\varphi} f \right| = \left| \int_{\varphi} (f_n - f) \right| \le V(\varphi) \cdot \max_{\langle \varphi \rangle} |f_n - f| \stackrel{n \to \infty}{\longrightarrow} 0.$$

Věta 5.40 (Weierstrass). Nechť $G \subset \mathbb{C}$ je otevřená, $f_n \in \mathcal{H}(G)$ pro $n \in \mathbb{N}$ a $f_n \stackrel{loc}{\Rightarrow} f$ na G. Potom $f \in \mathcal{H}(G)$ a $f_n^{(k)} \stackrel{loc}{\Rightarrow} f^{(k)}$ na G pro každé $k \in \mathbb{N}$.

 $D\mathring{u}kaz$. (1) Zřejmě je f spojitá. Nechť \triangle je trojúhelník v G. Potom

$$0 = \int_{\partial \wedge} f_n \stackrel{Lemma}{\longrightarrow} \int_{\partial \wedge} f = 0$$

Z Morerovy věty je $f \in \mathcal{H}(G)$.

② Necht $k \in \mathbb{N}$ a $z_0 \in G$. Volme r > 0, aby $\overline{U(z_0, r)} \subset G$. Potom z (CO_2) máme:

$$\forall s \in U\left(z_0, \frac{r}{2}\right) : \quad \left|f_n^{(k)}(s) - f^{(k)}(s)\right| = \left|\left(f_n - f\right)^{(k)}(s)\right| \leq \frac{k! \cdot 2^{k+1}}{r^k} \cdot \max_{\partial U(z_0, r)} \left|f_n - f\right| \overset{n \to +\infty}{\longrightarrow} 0$$

6 Mocninné řady

Definice 6.1. Necht $\{a_n\}_{n=0}^{\infty} \subset \mathbb{C}$ a $z_0 \in \mathbb{C}$. Potom

$$\sum_{n=0}^{\infty} a_n \cdot (z - z_0)^n, \quad z \in \mathbb{C}$$
 (1)

je mocninná řada o středu z_0 s koeficienty $\{a_n\}_{n=0}^{\infty}$.

Vlastnosti 6.2.

(1) Konvergence (na cvičení)

Existuje jediné $R \in [0, +\infty]$ takové, že

- řada (1) konverguje absolutně a lokálně stejnoměrně na $U(z_0, R) := \{z \in \mathbb{C} : |z z_0| < R\},\$
- řada (1) diverguje pro $|z-z_0| > R$.

Číslo R se nazývá poloměr konvergence (1) a platí, že

$$R = \frac{1}{\limsup_{n \to +\infty} \sqrt[n]{|a_n|}},$$

kde položíme $\frac{1}{0}=+\infty,\,\frac{1}{+\infty}=0.$

② Označíme-li součet (1) na $U(z_0, R)$ jako f, potom je $f \in \mathcal{H}(U(z_0, R))$ a

$$\forall k \in \mathbb{N}_0 \ \forall z \in U(z_0, R): \quad f^{(k)}(z) = \sum_{n=k}^{+\infty} a_n \cdot n \cdot (n-1) \dots (n-k+1) (z-z_0)^{n-k},$$

speciálně $a_k = \frac{f^{(k)}(z_0)}{k!}$.

Poznámka 6.3. Mocninnou řadu derivujeme "člen po členu", můžeme na $U(z_0, r)$ zaměnit sumu a komplexní derivaci.

Důkaz. Užijeme Weierstrassovu větu na

$$S_n(z) := \sum_{n=0}^{N} a_n (z - z_0)^n, \quad z \in U(z_0, R)$$

Dosadíme-li do (1) $z = z_0$, máme $f^{(k)}(z_0) = a_k \cdot k!$

Věta 6.4 (O rozvoji holomorfní funkce na kruhu do mocninné řady). Nechť $R \in (0, +\infty]$ a $f \in \mathcal{H}(U(z_0, R))$. Potom existuje jediná mocninná řada $\sum_{n=0}^{\infty} a_n(z-z_0)^n$, která má na $U(z_0, R)$ součet f. Navíc platí, že $a_n = \frac{f^{(n)}(z_0)}{n!}$, $n \in \mathbb{N}_0$.

 $D\mathring{u}kaz.$ 1. jednoznačnost: Zřejmě z toho, že $a_n=\frac{f^{(n)}(z_0)}{n!},\,n\in\mathbb{N}_0.$

2. existence: Nech
t $z \in U(z_0,R).$ Volmer>0,aby $|z-z_0| < r < R.$ Potom
z (CV_z) je

$$f(z) = \frac{1}{2\pi i} \int_{\varphi} \frac{f(w)}{w - z} \, \mathrm{d}w, \tag{a}$$

kde $\varphi(t) = z_0 + re^{it}, t \in [0, 2\pi].$

Pro každé $w \in \langle \varphi \rangle$ máme

$$\frac{1}{w-z} = \frac{1}{(w-z_0) - (z-z_0)} = \frac{1}{w-z_0} \cdot \frac{1}{1 - \frac{z-z_0}{w-z_0}} = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(w-z_0)^{n+1}}.$$
 (b)

Kde $\left|\frac{z-z_0}{w-z_0}\right|<1$ a suma konverguje stejnoměrně pro $w\in\langle\varphi\rangle$. Dosadíme (a) do (b). Potom

$$f(z) = \frac{1}{2\pi i} \int_{\varphi} \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(w - z_0)^{n+1}} f(w) dw = \sum_{n=0}^{\infty} (z - z_0)^n \frac{1}{2\pi i} \int_{\varphi} \frac{f(w)}{(w - z_0)^{n+1}} dw$$
$$= \sum_{n=0}^{\infty} (z - z_0)^n \frac{f^{(n)}(z_0)}{n!}$$

z
$$(CV_z^{(k)})$$
.

Příklad 6.5. $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, z \in \mathbb{C}$, protože $\exp \in \mathcal{H}(\mathbb{C})$ a $\exp^{(n)}(0) = \exp(0) = 1$.

Věta 6.6 (O nulovém bodě). Nechť f je holomorfní funkce na okolí $z_0 \in \mathbb{C}$ a $f(z_0) = 0$. Potom buď

- 1. existuje r > 0, že f = 0 na $U(z_0, r)$, nebo
- 2. existuje r > 0, že $f \neq 0$ na $P(z_0, r) := U(z_0, r) \setminus \{z_0\}$.

V případě 2. existuje jediné $p \in \mathbb{N}$ takové, že

$$f(z_0) = f'(z_0) = \dots = f^{(p-1)}(z_0) = 0, \quad f^{(p)}(z_0) \neq 0.$$
 (2)

Číslo p nazýváme násobnost nulového bodu z_0 funkce f.

Poznámka 6.7. Navíc z_0 je nulový bod f násobnosti p, právě když existuje r > 0 a $g \in \mathcal{H}(U(z_0, r))$ tak, že $\forall z \in U(z_0, r)$:

$$g(z) \neq 0$$
 a $f(z) = (z - z_0)^p g(z)$. (3)

 $\begin{array}{ll} \textit{Důkaz.} \;\; \text{Máme, že} \; f(z) = \sum\limits_{n=0}^{\infty} a_n (z-z_0)^n, \; z \in U(z_0,r). \; \text{Pokud nenastane 1., potom existuje} \; n \in \mathbb{N}, \\ \text{že} \; 0 \neq a_n = \frac{f^{(n)}(z_0)}{n!}. \; \text{Zvolme nejmenší} \; p \in \mathbb{N}, \; \text{aby} \; a_p \neq 0. \; \text{Potom platí (2) a} \end{array}$

$$\forall z \in U(z_0, r): \ f(z) = a_p(z - z_0)^p + \dots = (z - z_0)^p \cdot \underbrace{\sum_{n=p}^{\infty} a_n(z - z_0)^{n-p}}_{:= g(z)}. \tag{4}$$

Dále g(z) definujeme jako poslední sumu. Protože $g(z_0) = a_p \neq 0$, existuje r > 0, že $g \neq 0$ na $U(z_0, r)$ a $f(z) = (z - z_0)^p g(z) \neq 0$ na $P(z_0, r)$. Obrácené tvrzení z poznámky je snadné.

Věta 6.8 (O jednoznačnosti pro holomorfní funkce). Nechť $\emptyset \neq G \subset \mathbb{C}$ je oblast a $f,g \in \mathcal{H}(G)$. Pak jsou následující tvrzení ekvivalentní:

- 1. $f = g \ na \ G$;
- 2. $množina\ M := \{z \in G : f(z) = g(z)\}\ m\'a\ v\ G\ hromadn\'y\ bod,\ tj.\ existuje\ z_0 \in G\ takov\'y,\ \check{z}e\ \forall r > 0 :\ M \cap P(z_0,r) \neq \emptyset$
- 3. existuje $z_0 \in G$, že $\forall k \in \mathbb{N}_0$: $f^{(k)}(z_0) = g^{(k)}(z_0)$.

 $D\mathring{u}kaz$. Bez újmy na obecnosti $g \equiv 0$ na G (jinak uvažme f - g).

 $1\Rightarrow 2$: triviální, $2\Rightarrow 3$: Nechť $z_0\in G$ je hromadný bod $M:=\{z\in G:\ f(z)=0\}$. Z věty o nulovém bodě je f=0 na nějakém okolí z_0 , tudíž platí 3.

 $3 \Rightarrow 1$: Nechť $N := \{z \in G : \forall k \in \mathbb{N}_0 : f^{(k)}(z) = 0\}$. Potom $\emptyset \neq N$, N je uzavřená v G, protože všechny $f^{(k)}$ jsou spojité. Navíc N je otevřená. Nechť $z_1 \in N$. Podle věty o nulovém bodě existuje r > 0, že f = 0 na $U(z_1, r)$. Tedy $U(z_1, r) \subset N$. Protože G je oblast, dostaneme N = G a speciálně 1.

Příklad 6.9. Vzoreček $\sin(2z) = 2\sin(z)\cos(z)$, $z \in \mathbb{C}$ dostaneme z věty o jednoznačnosti, protože obě strany rovnosti jsou celé funkce a víme, že rovnost platí na \mathbb{R} (tzn. platí 2).

Poznámka 6.10. Podobně lze řadu vzorečků bez počítání zobecnit z \mathbb{R} do $\mathbb{C}!$

Věta 6.11 (Princip maxima modulu). Nechť $G \subset \mathbb{C}$ je oblast a $f \in \mathcal{H}(G)$. Potom je f konstantní na G, pokud |f| nabývá na G lokální maximum, tzn. existuje $z_0 \in G$ a r > 0 tak, že

$$\forall z \in U(z_0, r) \subset G: |f(z)| \le |f(z_0)| \tag{5}$$

 $D\mathring{u}kaz.$ Nechť platí (5). Potom $f(z) = \sum\limits_{n=0}^{\infty} a_n (z-z_0)^n, \ z \in U(z_0,r).$ Pro $0 < \rho < r$ platí, že

$$|a_{0}|^{2} = |f(z_{0})|^{2} \ge \frac{1}{2\pi} \int_{0}^{2\pi} |f(z_{0} + \rho e^{it})|^{2} dt = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\sum_{n=0}^{\infty} a_{n} \rho^{n} e^{int} \right) \left(\sum_{m=0}^{\infty} \overline{a_{m}} \rho^{m} e^{-imt} \right) dt$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{n} \cdot \overline{a_{m}} \rho^{n+m} \frac{1}{2\pi} \int_{0}^{2\pi} e^{it(n-m)} dt = \sum_{n=0}^{\infty} |a_{n}|^{2} \rho^{2n},$$
(6)

neboť

$$\frac{1}{2\pi} \int_0^{2\pi} e^{it(n-m)} dt = \begin{cases} 0 & \text{pro } n \neq m, \\ 1 & \text{pro } n = m. \end{cases}$$

Nebo-li $|a_0|^2 \ge |a_0|^2 + |a_1|^2 \rho^2 + \cdots$, tudíž $0 = a_1 = a_2 = \cdots$. Dostáváme, že $f = a_0$ na $U(z_0, r)$ a z věty o jednoznačnosti $f = a_0$ na G.

7 Riemannova sféra

Rozšíříme \mathbb{C} o nekonečno. Položíme $\mathbb{S} = \mathbb{C} \cup \{\infty\}$, kde $\infty \notin \mathbb{C}$, a pro $\varepsilon > 0$ zavedeme okolí kolem ∞ , následovně $P(\infty, \varepsilon) := \{z \in \mathbb{C} : |z| > \frac{1}{\varepsilon}\}$, $U(\infty, \varepsilon) := P(\infty, \varepsilon) \cup \{\infty\}$.

Definice 7.1. Řekneme, že $z_n \to z_0$ v \mathbb{S} , pokud $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : z_n \in U(z_0, \varepsilon)$.

Poznámka 7.2. Z definice plyne:

- $z_n \to z_0 \text{ v } \mathbb{S} \text{ a } z_0 \in \mathbb{C} \Leftrightarrow z_n \to z_0 \text{ v } \mathbb{C}$.
- $z_n \to \infty \Leftrightarrow |z_n| \to +\infty \Leftrightarrow \frac{1}{z_n} \to 0$. Zde $\frac{1}{\infty} := 0$ a $|\infty| := +\infty$.

Poznámka 7.3. \mathbb{S} je jednobodová kompaktifikace topologického prostoru \mathbb{C} .

Vlastnosti 7.4.

Na S zavedeme metriku ϱ (není jediná), tž.

$$\left(z_n \stackrel{n \to \infty}{\longrightarrow} z_0 \text{ v } \mathbb{S}\right) \Leftrightarrow \varrho(z_n, z_0) \stackrel{n \to \infty}{\longrightarrow} 0.$$
 (*)

Navíc (\mathbb{S}, ϱ) bude *izometrický* s jednotkovou sférou $S^2 := \{(\alpha, \beta, \gamma) \in \mathbb{R}^3 : \alpha^2 + \beta^2 + \gamma^2 = 1\}$, kterou chápeme jako metrický podprostor \mathbb{R}^3 . Speciálně (\mathbb{S}, ϱ) je *kompaktní*.

• Definujeme stereografickou projekci $\phi: \mathbb{C} \to S^2 \setminus \{N\}$ jako na obrázku, kde N = (0, 0, 1).

Položme $\phi(\infty) := N$. Pro $z \in \mathbb{C}$ je $\{\phi(z)\} = (S \setminus \{N\}) \cap p_z$, kde p_z je polopřímka z N procházející bodem $z \in \mathbb{C}$. Potom $\phi : \mathbb{S} \xrightarrow{na} S^2$ je bijekce.

Cvičení 7.5.

- $\phi(z) := \left(\frac{2x}{x^2+y^2+1}, \frac{2y}{x^2+y^2+1}, \frac{x^2+y^2-1}{x^2+y^2+1}\right), z = x+iy \in \mathbb{C}.$
- $\phi^{-1}(\alpha, \beta, \gamma) := \left(\frac{\alpha}{1-\gamma}, \frac{\beta}{1-\gamma}\right)$, pro $(\alpha, \beta, \gamma) \in S^2 \setminus \{N\}$
- Položme $\varrho(z,w) := |\phi(z) \phi(w)|, z, w \in \mathbb{S}$, kde $|\cdot|_S$ je eukleidovská norma v \mathbb{R}^3 . Potom ϕ je izometrie (\mathbb{S}, ϱ) na S^2 .
- Platí (*). Skutečně, z předchozího bodu a z cvičení máme: $\varrho(z_n, z_0) \to 0 \Leftrightarrow \phi(z_n) \to \phi(z_0) \Leftrightarrow z_n \to z_0 \text{ v } \mathbb{S}$, protože ϕ i ϕ^{-1} jsou spojité.
- Nechf $z_n \in \mathbb{C}$ a $z_n \to \infty$. Potom $|z_n| \to +\infty$, $\phi(z_n) \in S^2$, proto $\phi_3(z_n) \to 1$. Odtud $\phi(z_n) \to N := (0, 0, 1)$
- Nechť $(\alpha_n, \beta_n, \gamma_n) \in S^2 \setminus \{N\}$ a $(\alpha_n, \beta_n, \gamma_n) \xrightarrow{n \to \infty} N$. Potom $|\phi^{-1}(\alpha_n, \beta_n, \gamma_n)|^2 = \frac{1 \gamma_n^2}{(1 \gamma_n)^2} = \frac{1 + \gamma_n}{1 \gamma_n} \to +\infty$. Tudíž $\phi^{-1}(\alpha_n, \beta_n, \gamma_n) \to \infty$.

Definice 7.6. Nechť $f: \mathbb{S} \to \mathbb{S}$ a $z_0, L \in \mathbb{S}$. Potom $L = \lim_{z \to z_0} f(z)$, pokud pro každou $\{z_n\}_{n=1}^{\infty} \subset \mathbb{S}$, $z_0 \neq z_n$ platí $z_n \to z_0 \Rightarrow f(z_n) \to L$.

Poznámka 7.7. Platí:

- 1. $\lim_{z\to\infty} f(z) = \lim_{z\to 0} f(1/z)$, má-li alespoň jedna strana smysl.
- 2. $\lim_{z\to z_0} f(z) = \infty \iff \lim_{z\to z_0} 1/f(z) = 0$.

Věta 7.8 (Aritmetika limit v S). Platí:

$$\lim_{z \to z_0} (f(z) \pm g(z)) = \lim_{z \to z_0} f(z) \pm \lim_{z \to z_0} g(z),$$

$$\lim_{z \to z_0} (f(z) \cdot g(z)) = \lim_{z \to z_0} f(z) \cdot \lim_{z \to z_0} g(z),$$

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)},$$

mají-li pravé strany smysl, pokud definujeme $\forall a \in \mathbb{C}: \ a/\infty = 0, \ \forall a \in \mathbb{S} \setminus \{0\}: \ a/0 = \infty, \ \forall a \in \mathbb{C}: \ a \pm \infty = \infty, \ \forall a \in \mathbb{S} \setminus \{0\}: \ a \cdot \infty = \infty.$ Nedefinujeme: $0/0, \ \infty/\infty, \ \infty \pm \infty, \ 0 \cdot \infty.$

Příklad 7.9. Racionální funkce lze chápat jako spojité funkce z \mathbb{S} do \mathbb{S} . Skutečně, necht R = P/Q, kde P, Q jsou polynomy, $Q \neq 0$ a P, Q nemají stejné kořeny.

- 1. Nechť $Q(z_0) = 0$. Potom $P(z_0) \neq 0$ a $\lim_{z \to z_0} R(z) = \infty$. Položme $R(z_0) := \infty$.
- 2. Pokud $R \not\equiv 0$, potom

$$\lim_{z \to \infty} R(z) = \lim_{z \to \infty} \underbrace{\frac{\stackrel{\neq 0}{a_0} z^n + \dots + a_n}{b_0 z^m + \dots + b_m}}_{\stackrel{\neq 0}{= z \to \infty}} = \lim_{z \to \infty} z^{n-m} \left(\frac{a_0 + \frac{a_1}{z} + \frac{a_n}{z^n}}{b_0 + \frac{b_1}{z} + \frac{b_m}{z^m}} \right) = \begin{cases} 0 & \text{pro } n < m, \\ \frac{a_0}{b_0} & \text{pro } n = m, \\ \infty & \text{pro } n > m. \end{cases}$$

Položme $R(\infty) := \lim_{z \to \infty} R(z)$.

7.1 Izolované singularity

Definice 7.10. Nechť f je holomorfní funkce na $P(z_0)$, ale není holomorfní na $U(z_0)$. Potom f má v z_0

- 1. odstranitelnou singularitu, existuje-li $\lim_{z\to z_0} f(z) \in \mathbb{C}$,
- 2. $p \delta l$, je-li $\lim_{z \to z_0} f(z) = \infty$,
- 3. podstatnou singularitu, pokud $\lim_{z\to z_0} f(z)$ neexistuje.

Příklad 7.11.

$$\frac{\sin z}{z} \text{ má v 0 odstranitelnou singularitu,}$$

$$\frac{1}{z^{10}} \text{ má v 0 pól,}$$

$$e^{1/z} \text{ má v 0 podstatnou singularitu.}$$

Věta 7.12 (O odstranitelné singularitě). Nechť f je holomorfní funkce na $P(z_0)$. Následující tvrzení jsou ekvivalentní:

- 1. z_0 je odstranitelná singularita f,
- 2. existuje r > 0 tak, že f je omezená na $P(z_0, r)$,
- 3. existuje $F \in \mathcal{H}(U(z_0))$ tak, že F = f na $P(z_0)$.

Úmluva 7.13. Odstranitelná singularita je vždy odstraněna ve smyslu (3). Dodefinujeme f v z_0 holomorfně.

 $D\mathring{u}kaz.$ (1) \Rightarrow (2): triviální, (2) \Rightarrow (3): Položme

$$g(z) := \begin{cases} (z - z_0)^2 f(z) & \text{pro } z \in P(z_0), \\ 0 & \text{pro } z = z_0. \end{cases}$$

Potom $g \in \mathcal{H}(U(z_0))$, protože

$$g'(z_0) = \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = \lim_{z \to z_0} \underbrace{(z - z_0)}_{\to 0} \underbrace{f(z)}_{omez} = 0.$$

Navíc pro každé $z \in U(z_0)$ je

$$g(z) = \sum_{n=2}^{\infty} a_n (z - z_0)^n = (z - z_0)^2 F(z),$$

kde

$$F(z) \stackrel{\text{def.}}{:=} \sum_{n=2}^{\infty} a_n (z - z_0)^{n-2}, \ z \in U(z_0).$$

Zřejmě $F \in \mathcal{H}(U(z_0))$ a F = f na $P(z_0)$. (3) \Rightarrow (1): jasné.

Věta 7.14 (O pólu). Nechť f je holomorfní funkce na $P(z_0)$. Následující tvrzení jsou ekvivalentní:

1. z_0 je pól f,

- 2. $h:=\frac{1}{f}$ a $h(z_0):=0$ má v z_0 nulový bod násobnosti p pro nějaké $p\in\mathbb{N}$,
- 3. existuje $p \in \mathbb{N}$ tak, že

$$\lim_{z \to z_0} (z - z_0)^p f(z) \in \mathbb{C} \setminus \{0\},\$$

4. existuje $p \in \mathbb{N}$ tak, že $\forall k \in \mathbb{Z}$

$$\lim_{z \to z_0} (z - z_0)^k f(z) = \begin{cases} \infty & pro \ k < p, \\ \in \mathbb{C} \setminus \{0\} & pro \ k = p, \\ 0 & pro \ k > p. \end{cases}$$

Číslo pz (2.) – (4.) je určeno jednoznačně a nazývá se násobnost pólu z_0 funkce f.

Poznámka 7.15. Píšeme $f(z) \sim g(z)$ pro $z \to z_0$, je-li $\lim_{z \to z_0} \frac{f(z)}{g(z)} \in \mathbb{C} \setminus \{0\}$. Potom ③. $\iff f(z) \sim \frac{1}{(z-z_0)^p}$, pro $z \to z_0$.

 $D\mathring{u}kaz$. (1.) \Rightarrow (2.) Protože $\lim_{z\to z_0} f(z) = \infty$, je $\lim_{z\to z_0} \frac{1}{f(z)} = 0$. Po odstranění odstranitelné singularity má 1/f v z_0 nulový bod konečné násobnosti $p\in\mathbb{N}$.

② \Rightarrow ③. Existuje r > 0 a $g \in \mathcal{H}(U(z_0))$ tak, že $g \neq 0$ na $U(z_0, r)$ a $h(z) = (z - z_0)^p g(z), z \in U(z_0, r)$. Potom

$$\lim_{z \to z_0} (z - z_0)^p \underbrace{f(z)}_{=\frac{1}{h(z)}} = \frac{1}{g(z_0)} \in \mathbb{C} \setminus \{0\}.$$

 $(3.) \Rightarrow (4.)$ Máme

$$\lim_{z \to z_0} (z - z_0)^k f(z) = \lim_{z \to z_0} (z - z_0)^{k-p} \underbrace{(z - z_0)^p f(z)}_{\in \mathbb{C} \setminus \{0\}} = \begin{cases} \infty & \text{pro } k < p, \\ \in \mathbb{C} \setminus \{0\} & \text{pro } k = p, \\ 0 & \text{pro } k > p. \end{cases}$$

$$(4.) \Rightarrow (1.)$$
 Položíme $k = 0$.

Věta 7.16 (Casorati-Weierstrass). Nechť f je holomorfní funkce na $P(z_0)$. Následující tvrzení jsou ekvivalentní:

- 1. z_0 je podstatná singularita f,
- 2. $\forall r > 0 : \overline{f(P(z_0, r))} = \mathbb{C}.$

Poznámka 7.17 (Velká Picardova věta). $(1.) \iff (3.)$

3. $\forall r > 0 : \mathbb{C} \setminus f(P(z_0, r))$ je nejvýše jednobodová [hluboká věta, důkaz nebude].

Příklad 7.18. $\exp(\mathbb{C}\setminus\{0\}) = \mathbb{C}\setminus\{0\}$, $\exp(1/z)$ má v 0 podstatnou singularitu.

 $D\mathring{u}kaz$. (2.) \Rightarrow (1.) Jasné z definice limity.

 \neg (2.) $\Rightarrow \neg$ (1.) Předpokládejme, že existuje r > 0 tak, že $\mathbb{C} \setminus \overline{f(P(z_0, r))} \neq \emptyset$ a $f \in \mathcal{H}(P(z_0, r))$. Potom existuje $U(u_0, \beta) \subset \mathbb{C} \setminus \overline{f(P(z_0, r))}$, speciálně máme, že $0 < |z - z_0| < r \Rightarrow |f(z) - u_0| \ge \beta$. Definujeme

$$g(z) := \frac{1}{f(z) - u_0}, \ z \in P(z_0, \ r).$$
 (*)

Potom je g holomorfní a $|g| \leq \frac{1}{\beta}$ na $P(z_0, r)$. Tedy z_0 je odstranitelná singularita a existuje $L := \lim_{z \to z_0} g(z) \in \mathbb{C}$. Potom máme

$$\lim_{z \to z_0} f(z) \stackrel{(*)}{=} \lim_{z \to z_0} \left(u_0 + \frac{1}{g(z)} \right) = \begin{cases} \infty & \text{pro } L = 0, \\ \in \mathbb{C} & \text{pro } L \neq 0. \end{cases}$$

Tedy f má v z_0 buď odstranitelnou singularitu anebo pól.

7.2 Laurentovy řady

Definice 7.19. Necht $\{a_n\}_{n=-\infty}^{+\infty} \subset \mathbb{C} \text{ a } z_0 \in \mathbb{C}.$ Potom

$$\underbrace{\sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n}_{(L)} = \underbrace{\sum_{n=1}^{+\infty} a_{-n} (z - z_0)^{-n}}_{(H)} + \underbrace{\sum_{n=0}^{+\infty} a_n (z - z_0)^n}_{(R)}$$
(1)

je Laurentova řada s koeficienty a_n a středem z_0 . Řada (R) je regulární část (L) a řada (H) je hlavní část (L). Řekneme, že (L) konverguje, pokud obě její části, tj. (H) i (R), konvergují.

Příklad 7.20.

$$\exp\left(\frac{1}{z}\right) = \sum_{n=0}^{\infty} \frac{1}{n!z^n}$$

Vlastnosti 7.21 (L).

- (1.) Konvergence: Existují jediná $R, r \in [0, +\infty]$ tak, že
 - 1. řada (R) konverguje absolutně a lokálně stejnoměrně na $|z-z_0| < R$ a diverguje na $|z-z_0| > R$,
 - 2. řada (H) konverguje absolutně a lokálně stejnoměrně na $|z-z_0| > r$ a diverguje na $|z-z_0| < r$.
- ②. Součet: Nechť $0 \le r < R \le +\infty$ (toto ne vždy platí: může se stát, že řada nekonverguje). Položme mezikruží $P(z_0, r, R) := \{z \in \mathbb{C} : r < |z z_0| < R\}$. Označíme-li součet (L) jako f, potom na $P(z_0, r, R)$ je f holomorfní, řadu (L) tam derivujeme "člen po členu", atd.

Poznámka 7.22. Platí $P(z_0, R) = P(z_0, 0, R)$.

 $D\mathring{u}kaz$. (1.) Číslo R je poloměr konvergence mocninné řady (R). Pro $w=\frac{1}{z-z_0}$ je řada (H) rovna mocninné řadě

$$\sum_{n=1}^{\infty} a_{-n} w^n. \tag{*}$$

Číslo $\frac{1}{r}$ je poloměr konvergence (*).

(2.) Plyne opět z Weierstrassovy věty.

Cíl Ukážeme, že $f \in \mathcal{H}(P(z_0, r, R))$, právě když existuje jediné (L), které má na $P(z_0, r, R)$ součet f.

7.3 Holomorfní funkce na mezikruží

Lemma 7.23. Nechť f je holomorfní funkce na $P(z_0, r, R) := \{z \in \mathbb{C} | r < |z - z_0| < R\}, kde <math>0 \le r < R \le +\infty$. Pro každé $\rho \in (r, R)$ označme

$$\varphi_{\rho}(t) := z_0 + \rho e^{it}, \text{ pro } t \in [0, 2\pi]$$
 (\triangle)

a $J(\rho) = \int_{\varphi_0} f$. Potom je J konstantní na (r, R).

 $D\mathring{u}kaz$. Bez újmy na obecnosti nechť $z_0 = 0$. Nechť $\rho \in (r, R)$. Potom máme

$$J(\rho) = i \int_0^{2\pi} f(\rho e^{it}) \rho e^{it} dt = i \int_0^{2\pi} g(\rho e^{it}) dt,$$

kde $g(z) := f(z) \cdot z, z \in P := P(0, r, R)$. Dále

$$J'(\rho) = \frac{i}{\rho} \int_0^{2\pi} g'(\rho e^{it}) \rho e^{it} dt = \frac{1}{\rho} \int_{\varphi_\rho} g' = 0, \qquad (\times)$$

protože g' má PF g na P. Platí (\times) , protože

$$\frac{\mathrm{d}}{\mathrm{d}\rho}\left(g\left(\rho e^{it}\right)\right) = \frac{\mathrm{d}g}{\mathrm{d}x}\cos t + \frac{\mathrm{d}g}{\mathrm{d}y}\sin t \stackrel{\mathrm{CR}}{=} g'\cos t + ig'\sin t = g'\left(\rho e^{it}\right)e^{it}.$$

Věta 7.24 (Cauchyho vzorec na mezikruží). Nechť $f \in \mathcal{H}(P)$, kde $P := P(z_0, r, R)$. Nechť $r < r_0 < R_0 < R$ a $s \in P(z_0, r_0, R_0)$. Potom platí

$$f(s) = \frac{1}{2\pi i} \int_{\varphi_{R_0}} \frac{f(z)}{z - s} dz - \frac{1}{2\pi i} \int_{\varphi_{r_0}} \frac{f(z)}{z - s} dz, \qquad (\Box)$$

 $kde \varphi_{\rho} je jako v (\triangle).$

 $D\mathring{u}kaz$. Pro $z \in P$ položme

$$h(z) = \begin{cases} \frac{f(z) - f(s)}{z - s} & \text{pro } z \neq s, \\ f'(s) & \text{pro } z = s. \end{cases}$$

Potom $h \in \mathcal{H}(P)$, protože h má "odstraněnou" singularitu v s. Podle lemmatu máme

$$\int_{\varphi_{R_0}} h = \int_{\varphi_{R_0}} \frac{f(z) \, \mathrm{d}z}{z-s} - f(s) \int_{\varphi_{R_0}} \frac{\mathrm{d}z}{z-s}, \text{ kde poslední integrál je roven } 2\pi i \cdot \mathrm{ind}_{\varphi_{R_0}} \, s = 2\pi i,$$

$$\int_{\varphi_{r_0}} h = \int_{\varphi_{r_0}} \frac{f(z) \, \mathrm{d}z}{z-s} - f(s) \int_{\varphi_{r_0}} \frac{\mathrm{d}z}{z-s}, \text{ kde poslední integrál je roven } 2\pi i \cdot \mathrm{ind}_{\varphi_{r_0}} s = 0.$$

Dále
$$\int_{\varphi_{R_0}} h = \int_{\varphi_{r_0}} h$$
, tudíž platí (\square).

Věta 7.25 (O Laurentově rozvoji holomorfní funkce na mezikruží). Nechť $P := P(z_0, r, R), \ kde \ 0 \le r < R \le +\infty. \ Nechť \ f \in \mathcal{H}(P). \ Potom \ existuje jediná Laurentova řada$

$$\sum_{n=-\infty}^{\infty} a_n (z - z_0)^n, \tag{L}$$

která má na P součet f.

Důkaz. 1. jednoznačnost: Nechť platí $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$, $z \in P$. Je-li $\rho \in (r,R)$ a $m \in \mathbb{Z}$, pak

$$\int_{\varphi_{\rho}} f(z)(z-z_0)^{-(m+1)} dz = \int_{\varphi_{\rho}} \sum_{n=-\infty}^{\infty} a_n (z-z_0)^{n-m-1} dz = \sum_{n=-\infty}^{\infty} a_n \int_{\varphi_{\rho}} (z-z_0)^{n-m-1} dz = \int_{\varphi_{\rho}} \sum_{n=-\infty}^{\infty} a_n (z-z_0)^{n-m-1} dz = \sum_{n=-\infty}^{\infty} a_n \int_{\varphi_{\rho}} (z-z_0)^{n-m-$$

 $=2\pi i\cdot a_m$, kde v druhé rovnosti suma konverguje stejnoměrně na $\langle \varphi_{\rho} \rangle$ a poslední integrál je roven 0 pro $n\neq m$ a $2\pi i\cdot \operatorname{ind}_{\varphi_{\rho}}z_0=2\pi i$ pro n=m.

Závěr: koeficienty (L) se dají vyjádřit pomocí součtu f jako

$$a_m = \frac{1}{2\pi i} \int_{\varphi_\rho} \frac{f(z)}{(z - z_0)^{m+1}} dz, \ m \in \mathbb{Z},$$
 (**)

kde φ_{ρ} je jako v (\triangle). Podle lemmatu integrandy nezávisejí na $\rho \in (r, R)$.

2. existence: Nechť $s \in P$. Volme $r < r_0 < R_0 < R$, aby $s \in P(z_0, r_0, R_0)$. Potom z Cauchyho vzorce máme

$$f(s) = \frac{1}{2\pi i} \int_{\varphi_{R_0}} \frac{f(z) dz}{z - s} - \frac{1}{2\pi i} \int_{\varphi_{T_0}} \frac{f(z) dz}{z - s},$$
 (a)

$$\frac{1}{z-s} = \frac{1}{(z-z_0) - (s-z_0)} = \frac{1}{z-z_0} \cdot \frac{1}{1 - \frac{s-z_0}{z-z_0}} = \sum_{n=0}^{+\infty} \frac{(s-z_0)^n}{(z-z_0)^{n+1}},$$
 (b)

neboť $\left|\frac{s-z_0}{z-z_0}\right|<1$, tedy řada konverguje stejnoměrně pro $z\in\langle\varphi_{R_0}\rangle$;

$$\frac{1}{z-s} = \frac{1}{(z-z_0) - (s-z_0)} = \frac{(-1)}{s-z_0} \cdot \frac{1}{1 - \frac{z-z_0}{s-z_0}} = -\sum_{n=0}^{+\infty} \frac{(z-z_0)^n}{(s-z_0)^{n+1}},$$
 (c)

neboť $\left|\frac{z-z_0}{s-z_0}\right|<1$, tedy řada konverguje stejnoměrně pro $z\in\langle\varphi_{r_0}\rangle$. Dosadíme (b), (c) do (a) a dostaneme

$$f(s) = \frac{1}{2\pi i} \int_{\varphi_{R_0}} \sum_{n=0}^{+\infty} \frac{(s-z_0)^n}{(z-z_0)^{n+1}} f(z) dz + \frac{1}{2\pi i} \int_{\varphi_{r_0}} \sum_{n=0}^{+\infty} \frac{(z-z_0)^n}{(s-z_0)^{n+1}} f(z) dz$$

$$= \sum_{n=0}^{+\infty} (s-z_0)^n \cdot a_n + \sum_{n=0}^{+\infty} (s-z_0)^{-n-1} \cdot a_{-(n+1)},$$
(2)

kde a_n jsou jako v (**).

7.4 Izolované singularity 2

Věta 7.26 (O Laurentově rozvoji kolem izolované singularity). Nechť $f \in \mathcal{H}(P(z_0, r))$ $a \ f(z) = \sum_{-\infty}^{+\infty} a_n (z - z_0)^n, \ z \in P(z_0, r).$ Potom

- 1. f má v z_0 odstranitelnou singularitu $\Leftrightarrow \forall n < 0 : a_n = 0;$
- 2. f má v z_0 pól násobnosti $p \in \mathbb{N} \Leftrightarrow a_{-p} \neq 0$ a $\forall n < -p : a_n = 0$;
- 3. f má v z_0 podstatnou singularitu $\Leftrightarrow a_n \neq 0$ pro nekonečně mnoho n < 0.

 $D\mathring{u}kaz$.

- 1. jasné
- 2. f má v z_0 pól násobnosti p, právě když $g(z) := (z z_0)^p f(z)$ má v z_0 odstranitelnou singularitu a po jejím odstranění je $g(z_0) \neq 0$. Neboli $(z z_0)^p f(z) = \sum_{n=0}^{+\infty} b_n (z z_0)^n$, $z \in P(z_0, r)$ a $b_0 = g(z_0) \neq 0$, tzn.

$$f(z) = \frac{b_0}{(z - z_0)^p} + \frac{b_1}{(z - z_0)^{p-1}} + \dots = \sum_{n=0}^{+\infty} b_n (z - z_0)^{n-p}, \ z \in P(z_0, r).$$

3. Z 1., 2. máme, že f nemá v z_0 podstatnou singularitu, právě když $a_n \neq 0$ pro konečně mnoho n < 0.

Věta 7.27 (Rozklad holomorfní funkce s konečně mnoha izolovanými singularitami). Nechť $G \subset \mathbb{C}$ je otevřená, $M \subset G$ je konečná a $f \in \mathcal{H}(G \setminus M)$. Pro každé $s \in M$ označme H_s součet hlavní části Laurentova rozvoje funkce f kolem s. Potom existuje jediná $h \in \mathcal{H}(G)$ tak, že $f = \sum_{s \in M} H_s + h$ na $G \setminus M$.

 $D\mathring{u}kaz$. Zřejmě $\forall s \in M: H_s \in \mathcal{H}(\mathbb{C} \setminus \{s\})$. Funkce $h := f - \sum_{s \in M} H_s$ je holomorfní na $G \setminus M$ a v bodech $s \in M$ má odstranitelné singularity. Skutečně, nechť $s_0 \in M$. Potom existuje $r_0 > 0$ tak, že $P(s_0, r_0) \subset G \setminus M$ a $f = R_{s_0} + H_{s_0}$ na $P(s_0, r_0)$, kde R_{s_0} je součet regulární části Laurentova rozvoje f kolem s_0 a $R_{s_0} \in \mathcal{H}(U(s_0, r_0))$. Tedy na $P(s_0, r_0)$ máme

$$h = R_{s_0} + H_{s_0} - \sum_{s \in M} H_s = R_{s_0} - \sum_{\substack{s \neq s_0 \\ s \in M,}} H_s \in \mathcal{H}(U(s_0, r_0)).$$

7.5 Reziduum

Definice 7.28. Nechť $f \in \mathcal{H}(P(z_0))$ a nechť $f(z) = \sum_{n=-\infty}^{+\infty} a_n(z-z_0)^n$, $z \in P(z_0)$. Potom reziduem f v z_0 nazveme číslo $\operatorname{res}_{z_0} f := a_{-1}$.

Věta 7.29 (Reziduová na hvězdovitých oblastech). Nechť $G \subset \mathbb{C}$ je hvězdovitá oblast, $M \subset G$ je konečná a $f \in \mathcal{H}(G \setminus M)$. Nechť φ je uzavřená křivka v $G \setminus M$. Potom máme

$$\int_{\varphi} f = 2\pi i \sum_{s \in M} \operatorname{res}_{s} f \cdot \operatorname{ind}_{\varphi} s. \tag{RV}$$

Poznámka. Pro $M=\emptyset$ dostaneme Cauchyho větu.

 $D\mathring{u}kaz$. Podle předchozí věty existuje $h \in \mathcal{H}(G)$ tak, že $f = \sum_{s \in M} H_s + h$ na $G \setminus M$. Potom máme $\int_{\varphi} f = \sum_{s \in M} \int_{\varphi} H_s$, protože $\int_{\varphi} h = 0$ z Cauchyho věty pro hvězdovité oblasti. Pro každé $s \in M$:

$$\int_{\varphi} H_s(z) dz = \int_{\varphi} \sum_{n=1}^{+\infty} a_{-n}^s \frac{1}{(z-s)^n} dz = \sum_{n=1}^{+\infty} a_{-n}^s \int_{\varphi} \frac{dz}{(z-s)^n} = 2\pi i \cdot \operatorname{res}_s f \cdot \operatorname{ind}_{\varphi} s,$$

jelikož suma konverguje stejnoměrně na $\langle \varphi \rangle$ a poslední integrál je roven 0 pro $n \neq 1$ (neboť jinak má integrand PF, a tudíž je integrál přes uzavřenou křivku nulový) a $2\pi i \cdot \operatorname{ind}_{\varphi} s$, je-li n = 1. \square

Příklad 7.30. Nechť $\varphi := \psi^+ + [-1; 1]$, kde $\psi^+(t) := e^{it}$, $t \in [0, \pi]$. Potom $\mathbb{C} \setminus \langle \varphi \rangle = G_0 \cup G_{\infty}$, kde G_0 je omezená komponenta ("vnitřek") a G_{∞} je neomezená komponenta ("vnějšek"). Platí

$$\operatorname{ind}_{\varphi} s = \begin{cases} 1, & s \in G_0 \\ 0, & s \in G_{\infty}. \end{cases}$$

Položme $\tilde{\varphi} := \psi^- \dotplus [1; -1]$, kde $\psi^-(t) := e^{it}$, $t \in [-\pi, 0]$. Potom pro |s| < 1 máme

$$1 = \operatorname{ind}_{\varphi + \tilde{\varphi}} s = \operatorname{ind}_{\varphi} s + \operatorname{ind}_{\tilde{\varphi}} s.$$

8 Speciální typy integrálů

Věta 8.1. Nechť R = P/Q, kde P,Q jsou polynomy, které nemají společné kořeny a platí

1. $Q \neq 0$ na \mathbb{R} ,

2. $st(Q) \ge st(P) + 2$, $kde\ st(Q)\ je\ stupe\check{n}\ polynomu\ Q$.

Potom

$$\int_{-\infty}^{\infty} R(x)dx = 2i\pi \cdot \sum_{\substack{Q(s) = 0 \\ \text{Im}(s) > 0}} \operatorname{res}_{s} R.$$
(1)

 $D\mathring{u}kaz$. Ukažte, že integrál v (1) konverguje, právě když platí 1., 2 (za cvičení). Nechť r>0 a $\varphi_r:=\varphi_r^1\dotplus\varphi_r^2$, kde $\varphi_r^1(t):=t,\ t\in[-r,r]$ a $\varphi_r^2(t):=re^{it},\ t\in[0,\pi]$. Je-li r>0 tak velké, aby uvnitř φ_r ležely všechny póly R z horní poloroviny, potom

$$2i\pi. \sum_{\substack{Q(s)=0\\ \operatorname{Im}(s)>0}} \operatorname{res}_{s} R \stackrel{(RV)}{=} \int_{\varphi_{r}} R = \int_{\varphi_{r}^{1}} R + \int_{\varphi_{r}^{2}} R. \tag{2}$$

Máme

$$\int_{\varphi^1_r} R = \int_{-r}^r R \overset{r \to \infty}{\longrightarrow} \int_{-\infty}^{\infty} R.$$

Protože $\int_{\varphi_r^2} R \to 0$ pro $r \to +\infty$, dostaneme z (2) pro $r \to \infty$, že platí (1). Neboť existuje C > 0, $r_0 > 0$ tak, že $|R(z)| \le \frac{C}{r^2}$, je-li $|z| = r \ge r_0$. Máme totiž

$$|R(z)| = \left| \frac{a_0 z^n + a_1 z^{n-1} \dots + a_n}{b_0 z^m + b_1 z^{m-1} + \dots + b_m} \right| = \frac{1}{|z|^2} |z|^{n-m+2} \cdot \underbrace{\left| \frac{a_0 + \frac{a_1}{z} + \dots + \frac{a_n}{z^n}}{b_0 + \frac{b_1}{z} + \dots + \frac{b_m}{z^m}} \right|}_{\substack{z \to \infty \\ b_0}}.$$

Tedy

$$\left| \int_{\varphi_r^2} R \right| \le V(\varphi_r^2) \cdot \max_{\langle \varphi_r^2 \rangle} |R| \le r\pi \frac{C}{r^2} \stackrel{r \to \infty}{\longrightarrow} 0.$$

Příklad 8.2.

$$I = \int_0^\infty \underbrace{\frac{x^2 + 1}{x^4 + 1}}_{\text{sudá}} dx = \frac{1}{2} \int_{-\infty}^\infty \underbrace{\frac{x^2 + 1}{x^4 + 1}}_{:=R(x)} dx = i\pi \cdot (\text{res}_{z_0} R + \text{res}_{z_1} R)$$

$$= -\frac{i\pi}{4\sqrt{2}} \left[(1+i)^2 - (1-i)^2 \right] = -\frac{i\pi}{4\sqrt{2}} 2 \cdot 2i = \frac{\pi}{\sqrt{2}},$$

protože

$$\operatorname{res}_{z_k} R = \frac{z_k^2 + 1}{4z_k^3} \cdot \frac{z_k}{z_k} = -\frac{1}{4} (z_k^2 + 1) z_k,$$

$$\operatorname{res}_{z_0} R = -\frac{1}{4} (i+1)(1+i) \frac{1}{\sqrt{2}} = -\frac{1}{4\sqrt{2}} (1+i)^2,$$

$$\operatorname{res}_{z_1} R = -\frac{1}{4} (-i+1)(-1+i) \frac{1}{\sqrt{2}} = \frac{1}{4\sqrt{2}} (1-i)^2.$$

Věta 8.3. Nechť R = P/Q, kde P,Q jsou polynomy, které nemají společné kořeny a platí

1. $Q \neq 0$ na \mathbb{R} ,

2.
$$st(Q) \ge st(p) + 1$$
.

 $Necht \ a > 0$. Potom

$$\int_{-\infty}^{\infty} R(x)e^{iax}dx = 2i\pi \cdot \sum_{\substack{Q(s) = 0 \\ \text{Im}(s) > 0}} \text{res}_s\left(R(z)e^{iaz}\right). \tag{3}$$

Důkaz. Za cvičení:

- Dokažte, že Newtonův integrál v (3) konverguje právě když platí 1., 2.
- Jak se spočte tento integrál pro a < 0?

Jako v předešlé větě integrujeme podél φ_r funkci $R(z)e^{iaz}$ a pošleme $r\to\infty$. Platí, že

$$\int_{\varphi_r^2} R(z)e^{iaz}dz \xrightarrow{r \to \infty} 0 \tag{4}$$

z Jordanova Lemmatu (bylo na 5. cvičení), z 2. totiž máme, že $\lim_{z\to\infty} R(z) = 0$.

Poznámka 8.4. Je-li a < 0, potom (4) obecně neplatí. V tomto případě je nutno integrovat přes dolní půlkružnici.

Příklad 8.5. Spočteme Fourierovu transformaci \mathcal{F} funkce $f(x) := \frac{1}{x^2+1}$, kde

$$(\mathcal{F}f)(t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{itx} dx, \ t \in \mathbb{R}.$$

- Necht t > 0. Potom $(\mathcal{F}f)(t) = i \cdot \operatorname{res}_i(f(z)e^{itz}) = i \cdot \frac{e^{-t}}{2i} = \frac{e^{-t}}{2}$.
- Necht t < 0. Potom $(\mathcal{F}f)(t) = i \cdot \operatorname{res}_{(-i)}(f(z)e^{itz}) \cdot (-1) = -i \cdot \frac{e^{-t}}{2 \cdot r(-i)} = \frac{e^t}{2}$.

Lépe:

$$(\mathcal{F}f)(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\cos(tx) + i\sin(tx)}{1 + x^2} dx = \frac{e^{-|t|}}{2}, \ t \in \mathbb{R}.$$

Příklad 8.6.

$$\int_0^\infty \frac{x \sin x}{x^2 + 1} dx = \frac{1}{2} \operatorname{Im} \underbrace{\left(\int_{-\infty}^\infty \frac{x \cdot e^{ix}}{x^2 + 1} dx \right)}_{:=I} = \frac{\pi}{2e},$$

protože

$$I = 2\pi i \operatorname{res}_{i} f = 2\pi i \frac{ie^{-1}}{2i} = \frac{\pi i}{e}.$$

9 Index

Poznámka 9.1. Otázka: Jak $\operatorname{ind}_{\varphi} s$ vypočítat? BÚNO: s=0.

Značení 9.2 (Polární vyjádření). Nechť $\varphi: [\alpha, \beta] \to \mathbb{C} \setminus \{0\}$ je spojitá. Víme: $0 \neq z = |z|e^{i\theta} = e^{\phi}$, kde $\theta \in \operatorname{Arg}(z)$ a $\phi = \log|z| + i\theta \in \operatorname{Log}(z)$. $\forall t \in [\alpha, \beta]: 0 \neq \varphi(t) = |\varphi(t)|e^{i\theta(t)} = e^{\phi(t)}$, kde $\theta(t) \in \operatorname{Arg}(\varphi(t))$ a $\phi(t) = \log|\varphi(t)| + i\theta(t) \in \operatorname{Log}(\varphi(t))$.

Definice 9.3. Nechť $\varphi : [\alpha, \beta] \to \mathbb{C} \setminus \{0\}$ je spojitá. Řekneme, že $\theta : [\alpha, \beta] \to \mathbb{R}$ (resp. $\phi : [\alpha, \beta] \to \mathbb{C}$) je *jednoznačná větev argumentu* (resp. *jednoznačná větev logaritmu*) křivky φ , pokud je θ (resp. ϕ) spojitá na $[\alpha, \beta]$ a $\forall t \in [\alpha, \beta] : \theta(t) \in \text{Arg}(\varphi(t))$ (resp. $\phi(t) \in \text{Log}(\varphi(t))$).

Poznámka 9.4. Vždy existuje jednoznačná větev argumentu a logaritmu pro spojitou křivku φ (cvičení). Dokážeme si to jen pro regulární křivky.

Věta 9.5 (O jednoznačnosti jednoznačné větve argumentu a logaritmu). Nechť φ : $[\alpha, \beta] \to \mathbb{C} \setminus \{0\}$ je spojitá křivka. Potom

- ϕ je jednoznačná větev logaritmu φ , právě když $\mathrm{Re}(\phi) = \log |\varphi|$ a $\mathrm{Im}(\phi)$ je jednoznačná větev argumentu φ .
- Jsou-li θ_1, θ_2 jednoznačné větve argumentu φ , potom existuje $k \in \mathbb{Z}$, že $\theta_2 = \theta_1 + 2k\pi$.

Důkaz.

- Z definice argumentu a logaritmu.
- Pro $\forall t \in [\alpha, \beta]$ existuje $k(t) \in \mathbb{Z}$, že $\theta_2(t) = \theta_1(t) + 2k(t)\pi$. Protože $k : [\alpha, \beta] \to \mathbb{Z}$ je spojitá a $[\alpha, \beta]$ je souvislá, je k konstantní na $[\alpha, \beta]$.

Věta 9.6 (O existenci jednoznačné větve logaritmu pro regulární křivky). Nechť $\varphi: [\alpha, \beta] \to \mathbb{C} \setminus \{0\}$ je regulární křivka. Potom existuje jednoznačná větev logaritmu ϕ křivky φ a platí, že

$$\int_{\varphi} \frac{\mathrm{d}z}{z} = \phi(\beta) - \phi(\alpha).$$

Navíc $\operatorname{Im}(\phi)$ je jednoznačná větev argumentu φ .

 $D\mathring{u}kaz$. Hledáme spojité ϕ takové, že $\varphi = e^{\phi}$. Zřejmě $\int_{\varphi} \frac{\mathrm{d}z}{z} = \int_{\alpha}^{\beta} \frac{\varphi'(t)}{\varphi(t)} \, \mathrm{d}t$. Položme $\phi_0(s) := \int_{\alpha}^{s} \frac{\varphi'(t)}{\varphi(t)} \, \mathrm{d}t$, $s \in [\alpha, \beta]$. Potom ϕ_0 je spojitá na $[\alpha, \beta]$ a $\phi'_0 = \frac{\varphi'}{\varphi}$ na $[\alpha, \beta] \setminus K$, kde K je konečná. Potom na $[\alpha, \beta] \setminus K$ je $(\varphi e^{-\phi_0})' = (\varphi' - \varphi \phi'_0) e^{-\phi_0} = 0$. Tedy existuje $c \in \mathbb{C}$, že $\varphi e^{-\phi_0} = e^c$ na $[\alpha, \beta]$. Položme $\phi := \phi_0 + c$.

Věta 9.7 (O výpočtu indexu). Nechť $\varphi : [\alpha, \beta] \to \mathbb{C}$ je uzavřená regulární křivka a $s \in \mathbb{C} \setminus \langle \varphi \rangle$. Nechť $\widetilde{\varphi} := \varphi - s$ a θ je jednoznačná větev argumentu křivky $\widetilde{\varphi}$. Potom

$$\operatorname{ind}_{\varphi} s = \operatorname{ind}_{\widetilde{\varphi}} 0 = \frac{\theta(\beta) - \theta(\alpha)}{2\pi}.$$
 (oVI)

Speciálně, $\operatorname{ind}_{\varphi} s \in \mathbb{Z}$.

Poznámka.

- Je-li φ pouze spojitá, definujeme ind $_{\varphi}s$ vztahem (oVI).
- Z (oVI) je jasné, že ind $_{\varphi}s$ je počet otočení φ kolem s proti směru hodinových ručiček.

Důkaz. Máme, že

$$\operatorname{ind}_{\varphi} s \stackrel{z=\varphi(t)}{=} \frac{1}{2\pi i} \int_{\alpha}^{\beta} \frac{\varphi'(t)}{\varphi(t) - s} \, \mathrm{d}t \stackrel{z=\varphi(t)-s}{=} \frac{1}{2\pi i} \int_{\widetilde{\varphi}} \frac{\mathrm{d}z}{z} = \operatorname{ind}_{\widetilde{\varphi}} 0 \stackrel{\mathrm{Věta}}{=}$$
$$= \frac{1}{2\pi i} (\phi(\beta) - \phi(\alpha)) = \frac{1}{2\pi i} (i \operatorname{Im} \phi(\beta) - i \operatorname{Im} \phi(\alpha)) = \frac{\theta(\beta) - \theta(\alpha)}{2\pi} = K$$

pro nějaké $K \in \mathbb{Z}$, kde ϕ je jednoznačná větev logaritmu $\widetilde{\varphi}$, $\operatorname{Re}(\phi(\beta)) = \log |\widetilde{\varphi}(\beta)| = \log |\widetilde{\varphi}(\alpha)| = \operatorname{Re}(\phi(\alpha))$ a $\operatorname{Im}(\phi)$ je jednoznačná větev argumentu $\widetilde{\varphi}$.

10 Obecná Cauchyho věta a reziduová věta pro cykly

Definice 10.1. Konečnou posloupnost $\Gamma := \{\varphi_1, ..., \varphi_n\}$, kde $n \in \mathbb{N}$ a $\varphi_1, ..., \varphi_n$ jsou uzavřené (regulární) křivky v \mathbb{C} , budeme nazývat *cyklus*.

Značení 10.2. Nechť $\Gamma = \{\varphi_1, ..., \varphi_n\}$ je cyklus. Definujeme

• $graf \Gamma$ jako

$$\langle \Gamma \rangle := \bigcup_{k=1}^{n} \langle \varphi_k \rangle,$$

délku Γ jako

$$V(\Gamma) := \sum_{k=1}^{n} V(\varphi_k),$$

• je-li f spojitá na $\langle \Gamma \rangle$, pak

$$\int_{\Gamma} f := \sum_{k=1}^{n} \int_{\varphi_k} f,$$

• index

$$\operatorname{ind}_{\Gamma}(z_0) := \sum_{k=1}^{n} \operatorname{ind}_{\varphi_k}(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{dz}{z - z_0},$$

- $vnit\check{r}ek \ \Gamma \ jako \ Int \Gamma := \{z_0 \in \mathbb{C} \setminus \langle \Gamma \rangle : ind_{\Gamma}(z_0) \neq 0\},\$
- $vn\check{e}j\check{s}ek\ \Gamma$ jako $\operatorname{Ext}\Gamma := \{z_0 \in \mathbb{C} \setminus \langle \Gamma \rangle : \operatorname{ind}_{\Gamma}(z_0) = 0\}.$

Poznámka 10.3. • Rozmyslete si, že podobně jako pro křivky, je zobrazení $z \mapsto \operatorname{ind}_{\Gamma}(z) \in \mathbb{Z}$ konstantní na každé komponentě $\mathbb{C} \setminus \langle \Gamma \rangle$ a jediná neomezená komponenta $\mathbb{C} \setminus \langle \Gamma \rangle$ leží v Ext Γ .

• Zřejmě máme rozklad $\mathbb{C} = \operatorname{Int} \Gamma \cup \langle \Gamma \rangle \cup \operatorname{Ext} \Gamma$, kde $\operatorname{Int} \Gamma$, $\operatorname{Ext} \Gamma$ jsou otevřené a $\langle \Gamma \rangle$, $\operatorname{Int} \Gamma \cup \langle \Gamma \rangle$ jsou kompaktní.

Příklad 10.4. Je-li $\psi := \varphi \div \varphi$, $\varphi(t) := e^{it}$, pro $t \in [0, 2\pi]$. Potom $\langle \psi \rangle = \{z \in \mathbb{C} : |z| = 1\}$, Int $\psi = \emptyset$ a Ext $\psi = \mathbb{C} \setminus \langle \psi \rangle$.

Poznámka 10.5. Uzavřenou křivku φ chápeme jako cyklus $\Gamma := \{\varphi\}$.

Věta 10.6 (Obecná Cauchyho pro cykly). Nechť $G \subset \mathbb{C}$ je otevřená a Γ je cyklus v G, tedy $\langle \Gamma \rangle \subset G$. Potom platí, že

$$\forall f \in \mathcal{H}(G): \int_{\Gamma} f = 0,$$
 (CV)

 $pr\acute{a}v\check{e}\ tehdy,\ kdy\check{z}\ \mathrm{Int}\ \Gamma\subset G.$

Příklad 10.7. Necht f je holomorfní funkce na mezikruží $P(z_0, r, R)$, kde $0 \le r < R \le \infty$. Necht $r < r_1 < r_2 < R$ a $\varphi_j(t) := z_0 + r_j e^{it}$, $t \in [0, 2\pi]$. Potom víme, že $\int_{\varphi_1} f = \int_{\varphi_2} f$. Plyne to z předchozí věty pro $\Gamma := \{ \dot{-}\varphi_1, \varphi_2 \}$. Protože Int $\Gamma = P(z_0, r_1, r_2)$, máme $0 = \int_{\Gamma} f = \int_{\varphi_1} f - \int_{\varphi_2} f$.

Věta 10.8 (Reziduová pro cykly). Nechť $G \subset \mathbb{C}$ je otevřená, Γ je cyklus v G a $\operatorname{Int} \Gamma \subset G$. Nechť $K \subset G \setminus \langle \Gamma \rangle$ je konečná a $f \in \mathcal{H}(G \setminus K)$. Potom platí

$$\int_{\Gamma} f = 2\pi i \sum_{s \in K} \operatorname{res}_{s}(f) \cdot \operatorname{ind}_{\Gamma}(s). \tag{RVC}$$

Důkaz. Zcela analogický jako pro (RV) na hvězdovitých oblastech.

Důkaz věty 10.6 (Obecná Cauchyho pro cykly).

" \Longrightarrow ": Nechť platí (CV). Je-li $z_0 \in \mathbb{C} \setminus G$, pak $f(z) := \frac{1}{z-z_0} \in \mathcal{H}(G)$ a podle (CV) je $\operatorname{ind}_{\Gamma} z_0 = 0$, neboli $z_0 \in \operatorname{Ext} \Gamma$.

"\equiv ": Necht Int $\Gamma \subset G$ a $f \in \mathcal{H}(G)$. Nejdříve dokážeme, že

$$\forall \xi \in G \setminus \langle \Gamma \rangle : \ \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z) \, \mathrm{d}z}{z - \xi} = f(\xi) \cdot \mathrm{ind}_{\Gamma} \xi, \tag{CV_z}$$

což je ekvivalentní s

$$0 = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z) - f(\xi)}{z - \xi} dz = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z) dz}{z - \xi} - f(\xi) \cdot \operatorname{ind}_{\Gamma} \xi.$$
 (*)

Položme

$$g(z,\xi) := \begin{cases} \frac{f(z) - f(\xi)}{z - \xi} & \text{pro } z \neq \xi, \ (z,\xi) \in G, \\ f'(z) & \text{pro } z = \xi, \ (z,\xi) \in G. \end{cases}$$

Potom

(a) g je spojitá na $G \times G$. Jasné v bodech $(z, \xi), z \neq \xi$. Nechť $z_0 \in G$. Dokážeme, že g je spojitá v (z_0, z_0) . Nechť $\varepsilon > 0$. Protože f' je spojitá v $z_0 \in G$, existuje r > 0 takové, že $U(z_0, r) \subset G$ a

$$\forall z \in U(z_0, r): |f'(z) - f'(z_0)| \le \varepsilon. \tag{X}$$

Je-li $z, \xi \in U(z_0, r)$ a $z \neq \xi$, potom pro úsečku $\varphi(t) := \xi + t(z - \xi), \ t \in [0, 1]$ platí

$$f(z) - f(\xi) = \int_{\varphi} f' = \int_{0}^{1} f'(\varphi(t)) \cdot (z - \xi) dt = (z - \xi) \cdot \int_{0}^{1} f'(\varphi(t)) dt,$$

tudíž

$$|g(z,\xi) - g(z_0,z_0)| = \left| \int_0^1 (f'(\varphi(t) - f'(z_0)) dt \right| \stackrel{(\times)}{\leq} \varepsilon.$$

(b) $\forall z \in G: g(z,\cdot) \in \mathcal{H}(G)$. Jasné pro $\xi \neq z$. V $\xi = z$ je ale odstranitelná singularita. Položme

$$h(\xi) := \frac{1}{2\pi i} \int_{\Gamma} g(z,\xi) \,\mathrm{d}z, \ \xi \in G.$$

Podle věty o derivování integrálu podle komplexního parametru platí, že $h \in \mathcal{H}(G)$. Je-li $\xi \in G \cap \operatorname{Ext} \Gamma$, potom v (*) máme $h(\xi) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - \xi} \, \mathrm{d}z$. Položme

$$h(\xi) := \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - \xi} \, \mathrm{d}z, \ \xi \in \mathop{\mathrm{Ext}}_{ot.} \Gamma \setminus G.$$

Potom h je holomorfní na G i na $\operatorname{Ext}\Gamma$, tedy i na celém $\mathbb{C} = G \cup \operatorname{Ext}\Gamma$. Ukážeme že h je omezená. Potom z věty 5.37 (Liouville) plyne, že h je konstantní. Skutečně, máme $\lim_{\xi \to \infty} h(\xi) = 0$. To plyne takto. Nechť $\langle \Gamma \rangle \subset U(0,R)$. Je-li $|\xi| > R$, potom

$$|h(\xi)| \le \frac{1}{2\pi} \cdot V(\Gamma) \cdot \max_{\langle \Gamma \rangle} |f| \cdot \frac{1}{|\xi| - R} \xrightarrow{\xi \to \infty} 0,$$

protože $|z-\xi| \ge |\xi| - |z| \ge |\xi| - R$. Tedy h = 0 na \mathbb{C} , speciálně platí (CV_z) .

Dále zvolme $\xi \in G \setminus \langle \Gamma \rangle$ a položme

$$f_1(z) := (z - \xi)f(z), \ z \in G.$$

Podle (CV_z) je

$$\int_{\Gamma} f(z) dz = \int_{\Gamma} \frac{f_1(z) dz}{z - \xi} \stackrel{(CV_z)}{=} 2\pi i \cdot \underbrace{f_1(\xi)}_{=0} \cdot \operatorname{ind}_{\Gamma} \xi = 0.$$

V důkazu potřebujeme lepší větu o derivování integrálu podle komplexního parametru.

Věta 10.9 (O derivování integrálu podle komplexního parametru). Nechť $G \subset \mathbb{C}$ je otevřená a Γ je cyklus. Nechť g je spojitá funkce na $\langle \Gamma \rangle \times G$ a $\forall z \in \langle \Gamma \rangle : g(z, \cdot) \in \mathcal{H}(G)$. Potom je funkce

$$h(\xi) := \int_{\Gamma} g(z,\xi) \,\mathrm{d}z, \ \xi \in G$$

holomorfní na G.

 $D\mathring{u}kaz$. Zřejmě je h spojitá na G. Nechť Δ je trojúhelník v G. Potom

$$\int_{\partial\triangle}h(\xi)\,\mathrm{d}\xi=\int_{\partial\triangle}\left(\int_{\Gamma}g(z,\xi)\,\mathrm{d}z\right)\mathrm{d}\xi\stackrel{Fubini}{=}\int_{\Gamma}\underbrace{\left(\int_{\partial\triangle}g(z,\xi)\,\mathrm{d}\xi\right)}_{Goursat_0}\mathrm{d}z=0.$$

Z Věty 5.35 (Morera) plyne, že $h \in \mathcal{H}(G)$.

Poznámka 10.10. Nechť $G \subset \mathbb{C}$ je hvězdovitá oblast. Potom platí

pro každý cyklus
$$\Gamma$$
 v G je Int $\Gamma \subset G$. (JS)

 $D\mathring{u}kaz$. Plyne z Věty 10.6 (Obecná Cauchyho pro cykly) a z 5.26 (Cauchyho věta pro hvězdovité oblasti).

Otázka: Charakterizuj $G \in \mathbb{C}$ otevřené, pro které platí (JS).

Věta 10.11. Nechť $G \subset \mathbb{C}$ je otevřená. Potom platí (JS), právě když $\mathbb{S} \setminus G$ je souvislá.

 $\ensuremath{\textit{Důkaz}}.$ $\ensuremath{\ensuremath{\,{}}}$ Těžší. Bude v KA1.

 \sqsubseteq Necht Γ je cyklus v G. Položme $\operatorname{ind}_{\Gamma} \infty = 0$. Potom zřejmě $\operatorname{ind}_{\Gamma} : \mathbb{S} \setminus \langle \Gamma \rangle \to \mathbb{Z}$ je spojitá, tudíž konstantní na každé komponentě $\mathbb{S} \setminus \langle \Gamma \rangle$. Speciálně, máme $\forall s \in \mathbb{S} \setminus G : \operatorname{ind}_{\Gamma} s = 0$, tedy $\operatorname{Int} \Gamma \subset G$.

Definice 10.12. Oblast $G \subset \mathbb{C}$ se nazývá *jednoduše souvislá* (j. s.), pokud $\mathbb{S} \setminus G$ je souvislá.

Poznámka 10.13.

- 1. Hvězdovité oblasti ⊊ jednoduše souvislé oblasti.
- 2. Je-li $G \subset \mathbb{C}$ jednoduše souvislá oblast, potom v Cauchyově a reziduové větě je podmínka "Int $\Gamma \subset G$ " splněna automaticky, je-li Γ cyklus v G.

Definice 10.14. Řekneme, že uzavřená spojitá křivka $\varphi : [\alpha, \beta] \to \mathbb{C}$ je *Jordanova*, pokud $\varphi|_{[\alpha, \beta)}$ je prosté zobrazení.

Poznámka 10.15. Pojem indexu, vnitřku a vnějšku lze zobecnit i pro spojité uzavřené křivky.

Věta 10.16 (Jordanova). Nechť φ je Jordanova křivka \mathbb{C} . Potom Int φ a Ext φ jsou oblasti a $\mathbb{C} \setminus \langle \varphi \rangle = \text{Int} \varphi \cup \text{Ext} \varphi$. Navíc buď $\forall s \in \text{Int} \varphi$: ind $_{\varphi} s = 1$, nebo $\forall s \in \text{Int} \varphi$: ind $_{\varphi} s = -1$.

$$D\mathring{u}kaz$$
. Těžký, nebude.

11 Zajímavé funkce

11.1 Funkce Gama

Definice 11.1 (Funkce Γ). Položme

$$\Gamma(z) := \int_0^{+\infty} t^{z-1} e^{-t} dt, \operatorname{Re}(z) > 0.$$
 (1)

Lemma 11.2. Funkce Γ je holomorfní funkce na $\operatorname{Re}(z) > 0$.

 $D\mathring{u}kaz$. Nechť z=x+iy. Potom integrál konverguje jako Lebesgueův, právě když $\operatorname{Re}(z)>0$. Skutečně, $t^{z-1}=e^{(x+iy-1)\cdot \log t},\,|t^{z-1}|=t^{x-1}$. Dále z vět o spojitosti a derivování integrálu podle reálných parametrů $x,\ y$ máme

$$\frac{\partial \Gamma}{\partial x}(x,y) = \int_0^{+\infty} t^{z-1} \log(t) e^{-t} dt = -i \frac{\partial \Gamma}{\partial y}, \text{ protože}$$
$$\frac{\partial t^{z-1}}{\partial x} = t^{z-1} \log(t) = -i \frac{\partial t^{z-1}}{\partial y}.$$

Z věty 3.6 (Cauchy-Riemannova) plyne, že Γ je holomorfní na Re(z) > 0.

Lemma 11.3. $\Gamma(z+1) = z \cdot \Gamma(z)$, Re(z) > 0. Speciálně, $\Gamma(n+1) = n!$, n = 0, 1, 2, ...

 $D\mathring{u}kaz$.

$$\begin{split} \Gamma(1) &= \int_0^{+\infty} e^{-t} \, \mathrm{d}t = 1, \\ \Gamma(z+1) &= \int_0^{+\infty} \underbrace{t^z \underbrace{e^{-t}}_{u} \, \mathrm{d}t}_{\underbrace{e^{-t}}_{partes}} \underbrace{\left[-t^z e^{-t}\right]_0^{+\infty}}_{=0} + z \cdot \Gamma(z), \\ \frac{du}{dt} &= z t^{z-1}, \ v := -e^{-t}. \end{split}$$

Poznámka. Z věty 6.8 (O jednoznačnosti pro holomorfní funkce) stačí rovnost dokázat např. pro reálné z>0.

Lemma 11.4. Funkci Γ lze jednoznačně rozšířit na funkci holomorfní na $\mathbb{C}\setminus\{0, -1, -2, -3, \ldots\}$, přičemž v bodech $0, -1, -2, -3, \ldots$ má Γ jednoduché póly a res $_{-n}\Gamma = (-1)^n/n!$, $n = 0, 1, 2, 3, \ldots$

Důkaz. Víme z 11.3, že

$$\Gamma(z) = \frac{\Gamma(z+1)}{z}, \operatorname{Re}(z) > 0, \tag{*}$$

protože pravá strana má smysl i pro $0 \ge \mathrm{Re}(z) > -1, \ z \ne 0$, definujeme pro taková z funkci $\Gamma(z)$ jako $\frac{\Gamma(z+1)}{z}$. Nyní má ale pravá strana smysl pro $-1 \ge \mathrm{Re}(z) > -2, z \ne -1, 0$ a pro taková z rozšíříme definici Γ opět pomocí (*), atd. Navíc máme

$$\operatorname{res}_{0} \Gamma(z) = \operatorname{res}_{0} \left(\frac{\Gamma(z+1)}{z} \right) = \Gamma(1) = 1,$$

$$\operatorname{res}_{-1} \Gamma(z) = \operatorname{res}_{-1} \left(\frac{\Gamma(z+2)}{z(z+1)} \right) = -\Gamma(1) = -1,$$

$$\operatorname{res}_{-n} \Gamma(z) = \operatorname{res}_{-n} \left(\frac{\Gamma(z+n+1)}{z(z+1)\cdots(z+n)} \right) = \frac{\Gamma(1)}{n!} \cdot (-1)^{n} = \frac{(-1)^{n}}{n!}, \ n \in \mathbb{N}_{0},$$

protože $\Gamma(z+n+1) = (z+n)(z+n-1)\cdots z \cdot \Gamma(z)$.

11.2 Riemannova zeta funkce

Definice 11.5 (Riemannova ζ funkce). Pro Re(z) > 1 položme

$$\zeta(z) := \sum_{n=1}^{\infty} \frac{1}{n^z}.$$
 (2)

Lemma 11.6. Funkce ζ je holomorfní funkce na Re z > 1.

 $D\mathring{u}kaz$. Skutečně, řada v (2) konverguje absolutně a lokálně stejnoměrně na Re z>1, protože

$$\left| \frac{1}{n^z} \right| = \left| e^{-z \cdot \log(n)} \right| = e^{-\operatorname{Re}(z) \cdot \log n} \le \frac{1}{n^{x_0}},$$

je-li $\operatorname{Re}(z) \ge x_0 > 1$ a $\sum_{n=1}^{\infty} \frac{1}{n^{x_0}} < +\infty$. Z Věty 5.40 (Weierstrass) plyne $\zeta \in \mathcal{H}(\{\operatorname{Re}(z) > 1\})$.

Definice 11.7 (Dirichletova eta funkce).

$$\eta(z) := \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^z}, \operatorname{Re}(z) > 0.$$
(3)

Lemma 11.8. Funkce η je holomorfní na Re(z) > 0.

 $D\mathring{u}kaz$. Na $\mathrm{Re}(z) > 1$ je důkaz stejný jako pro ζ . Na $0 < \mathrm{Re}(z) < 1$ řada v (3) konverguje neabsolutně - pro reálná z je důkaz snadný.

Lemma 11.9. Platí

$$\eta(z) = (1 - 2^{1-z})\zeta(z), \operatorname{Re}(z) > 1.$$

 $D\mathring{u}kaz$. Nechť Re(z) > 1. Potom

$$\begin{split} \zeta(z) + \eta(z) &= 2 \cdot \sum_{n=1}^{\infty} \frac{1}{(2n-1)^z} \text{ a} \\ \eta(z) &= \sum_{\substack{abs. \\ konv.}}^{\infty} \frac{1}{(2n-1)^z} - \sum_{n=1}^{\infty} \frac{1}{(2n)^z} = \frac{\zeta(z) + \eta(z)}{2} - \frac{1}{2^z} \zeta(z), \text{ tudíž} \\ \eta(z) &= \zeta(z) - 2^{1-z} \zeta(z). \end{split}$$

Lemma 11.10. $\varphi(z) := 1 - 2^{1-z}$ je celá funkce, která má nulové body právě v bodech

$$z_k := 1 + k \cdot \frac{2\pi i}{\log 2}, \ k \in \mathbb{Z},$$

a to jednoduché.

Důkaz.

- $2^{1-z} = e^{(1-z\log 2)} = 1 \iff (1-z) \cdot \log 2 = 2k\pi i, \ k \in \mathbb{Z},$
- $\varphi'(z) = 2^{1-z} \cdot \log 2, \ \varphi'(z_k) = \log 2 \neq 0.$

Lemma 11.11. Funkci ζ lze jednoznačně rozšířit na holomorfní funkci na $\mathbb{C}\setminus\{1\}$ s jednoduchým pólem v 1 a res₁ $\zeta = 1$.

 $D\mathring{u}kaz$. Z 11.9 víme, že pro Re(z) > 1 je

$$\zeta(z) = \frac{\eta(z)}{(1 - 2^{1 - z})}.\tag{*}$$

Protože pravá strana (*) má smysl i pro $1 \ge \text{Re}(z) > 0$, $z \ne z_k$ pro všechna $k \in \mathbb{Z}$, rozšíříme ζ holomorfně pro taková z pomocí (*). Dále z (*) máme $\text{res}_1 \zeta = \frac{\eta(1)}{\varphi'(1)} = \frac{\log 2}{\log 2} = 1$. Pro další vlastnosti zeta viz např. [CONWAY, J. B.; Functions of one complex variable, Springer, 1978].

Lemma 11.12. *Mimo* kritický pás $\{z \in \mathbb{C} | 0 < \text{Re}(z) < 1\}$ *má* ζ *nulové body právě* $v - 2, -4, -6, -8, \ldots$ triviální nulové body.

Reimannova hypotéza Je-li z nulový bod funkce ζ v kritickém pásu, potom $\text{Re}(z) = \frac{1}{2}$. Jeden z nejslavnějších otevřených problémů v matematice (odměna j milion \$). Má úzkou souvislost s rozložením prvočísel, viz [RIEMANN, B.; On the Number of Prime Numbers less than a Given Quantity, 1859]

Věta 11.13 (Eulerova). Je- $li \operatorname{Re}(z) > 1$, potom

$$\zeta(z) = \prod_{n=1}^{\infty} \left(\frac{1}{1 - p_n^{-z}} \right),\tag{4}$$

 $kde \{p_n\}_{n=1}^{\infty} je posloupnost všech prvočísel.$

Poznámka. Zde $\prod_{n=1}^{\infty} a_n := \lim_{N \to +\infty} \prod_{n=1}^{N} a_n$, má-li pravá strana smysl.

 $D\mathring{u}kaz.$ Pro každé $n\in\mathbb{N}$ platí

$$\frac{1}{1 - p_n^{-z}} = \sum_{m=0}^{+\infty} p_n^{-mz}.$$

Nechť $n \in \mathbb{N}$. Potom

$$\prod_{k=1}^{n} \left(\frac{1}{1 - p_k^{-z}} \right) = \sum_{j=1}^{+\infty} n_j^{-z} \tag{*}$$

jsou-li n_1, n_2, \ldots všechna přirozená čísla, která se dají rozložit na součin mocnin jen prvočísel p_1, p_2, \ldots, p_n . Zde se využívá jednoznačnosti faktorizace n_j jako součinu provčísel. Pokud v (*) pošleme $n \to \infty$, dostaneme (4).

11.3 Prvočíselná věta

Věta 11.14 (Prvočíselná). [HADAWARD, J.; POUSSIN, Ch. J. de Pa Valleé; 1896] Nechť $\pi(x)$ je počet prvočísel $p \le x$ pro každé x > 0. Potom

$$\pi(x) \sim \frac{x}{\log x}, \ pro \ x \to \infty$$

$$tzn. \lim_{x \to +\infty} \frac{\pi(x)}{\left(\frac{x}{\log x}\right)} = 1$$

Poznámka. První velký úspěch KA. Nyní existují důkazy, které užívají pouze elementární techniky z UKA - Cauchyho integrální vzorec, Cauchyho větu a odhady křivkových integrálů.

Poděkování:

Tyto poznámky byly vytexány společnou prací několika studentů 3. ročníku bakalářského studia obecné matematiky. Bez jejich iniciativy by tyto poznámky nevznikly.

Kateřina Lipavská, Stanislav Mosný, Terka Poláková a Petr Sedláček