Tutorato MMI - Resto 1 04/05/2023

Dimostrazione di base

Sia x un numero pari e y un numero dispari. Dimostrare per assurdo che x+y è dispari.

Esercizio 1 - Soluzione 1

Soluzione:

Sia x un numero pari e y un numero dispari.

Supponiamo per assurdo che x + y sia pari.

Sappiamo che $x = 2k, k \ge 0$ e $y = 2h + 1, h \ge 0$.

Pertanto, applicando l'ipotesi (sostituendo rispettivamente i valori di x e y) segue che:

x + y = 2k + 2h + 1 = 2(k + h) + 1 che è una quantità dispari.

Assurdo! Pertanto, abbiamo dimostrato per assurdo che se x pari e y dispari, allora x + y dispari.

Esercizio 1 - Soluzione 2

Soluzione:

Sia x un numero pari e y un numero dispari. Supponiamo per assurdo che x+y sia pari.

Allora x + y = 2k, con $k \ge 0$. Siccome per ipotesi x è numero pari, allora x = 2h, con $h \ge 0$. Quindi 2h + y = 2k cioè y = 2k - 2h = 2(k - h). Possiamo quindi concludere che x + y è pari.

Dimostrazione per induzione

Dimostrare per induzione che, $\forall n \in \mathbb{N}_0$, il numero n(n+1) è pari.

Esercizio 2 - Soluzione

Soluzione:

- **Base.** Sia n = 0, allora n(n + 1) = 0(0 + 1) = 0, che è pari.
- Passo induttivo. Supponiamo per *ipotesi induttiva* che P(n) sia vera, cioè che n(n+1) sia pari. Vogliamo dimostrare che P(n+1) è vera, cioè che (n+1)[(n+1)+1] è pari. $(n+1)((n+1)+1)=(n+1)^2+(n+1)=n^2+2n+1+n+1=n^2+n+2n+2=n(n+1)+2(n+1)$. Per ipotesi induttiva n(n+1) è pari mentre 2(n+1) è pari poiché multiplo di 2.

Siccome la somma di due quantità intere pari è uguale ad una quantità intera ancora pari, il passo induttivo è verificato. Pertanto, essendo verificato il passo base e il passo induttivo, segue che n(n+1) è pari per ogni $n \ge 0$.

Dimostrazione per induzione

Sia $n\in\mathbb{N}.$ Dimostrare per induzione che la somma dei primi n numeri è uguale a $\frac{n(n+1)}{2}$.

Esercizio 3 - Soluzione

Soluzione:

Sia $n \in \mathbb{N}$. Dimostriamo che la somma dei primi n numeri è uguale a $\frac{n(n+1)}{2}$.

- Base. Sia n=1, allora $\frac{1(1+1)}{2}=\frac{2}{2}=1$, ovvero la somma dei primi n=1 numeri.
- Passo induttivo. Supponiamo per ipotesi induttiva che P(n) sia vera, cioè che $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$. Dimostriamo allora che P(n+1) è vera, cioè che $\sum_{k=1}^{n+1} k = \frac{(n+1)([n+1]+1)}{2}$. Segue che: $\sum_{k=1}^{n+1} k \stackrel{?}{=} \frac{(n+1)([n+1]+1)}{2} = \frac{n^2+2n+n+2}{2}$ $\sum_{k=1}^{n+1} k \stackrel{?}{=} \frac{n^2+2n+n+2}{2} = \frac{n^2+n}{2} + \frac{2n+2}{2}$ $\sum_{k=1}^{n+1} k \stackrel{?}{=} \frac{n^2+n}{2} + \frac{2n+2}{2} = \frac{n(n+1)}{2} + (n+1)$ $\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1)$. Come volevasi dimostrare.

Induzione strutturale

Sia X l'insieme degli interi tali che:

- 1 ∈ X e 2 ∈ X
- se $x \in X$ allora anche $x + 3 \in X$

Rispondere ai seguenti quesiti:

- a. Fornire i primi 10 interi appartenenti ad X
- b. Dimostrare attraverso l'induzione strutturale che X=Y dove Y è l'insieme degli interi positivi che **non sono** multipli di 3.

Soluzione:

I primi 10 interi appartenenti ad X sono:

 $\{1, 2, 4, 5, 7, 8, 10, 11, 13, 14\}$

Soluzione:

Dimostriamo che X=Y dove $Y=\{y\in\mathbb{N}|y\neq 3k, \forall k\in\mathbb{N}\}.$ Dimostriamo prima che $X\subseteq Y.$

- Base. Siano $1,2 \in X$. Ovviamente $\nexists k,h \in \mathbb{N}$ tali che 1=3k e 2=3h. Quindi $1,2 \in Y$.
- Passo induttivo. Supponiamo per ipotesi induttiva che P(x) sia vera, cioè che $x \in X$ allora $x \in Y$. Dimostriamo allora che P(x+3) è vera, cioè che x+3 (che per definizione appartiene a X) appartiene anche a Y. Supponiamo per assurdo che x+3 non appartiene a Y. Allora x+3 è multiplo di 3 e quindi x+3=3k. Ma allora x=3k-3=3(k-1) e quindi x è multiplo di 3 e quindi $x \notin Y$. Assurdo!

Soluzione:

Ora dimostriamo prima che $Y \subseteq X$.

- Base. Siano 1,2 ∈ Y i più piccoli interi positivi non multipli di 3. Ovviamente 1,2 ∈ X.
- Passo induttivo. Supponiamo per ipotesi induttiva che P(y) sia vera, cioè che y ∈ Y allora y ∈ X. Dimostriamo allora che P(y + 3) è vera, cioè che y + 3 ∈ X. Poichè per ipotesi induttiva y ∈ X, per definizione di X anche y + 3 ∈ X.

Poiché $X \subseteq Y$ e $Y \subseteq X$ possiamo concludere dicendo che X = Y.