PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-148533

(43)Date of publication of application: 29.05.2001

(51)Int.Cl.

H01S 5/042 H01L 29/872 H01L 33/00 H01S 5/323

(21)Application number : 2000-266480

(71)Applicant: SHARP CORP

(22)Date of filing:

04.09.2000

(72)Inventor: TSUDA YUZO

OGAWA ATSUSHI YUASA TAKAYUKI **UEDA YOSHIHIRO**

ARAKI MASAHIRO TANETANI MOTOTAKA

(30)Priority

Priority number: 11253741

Priority date: 08.09.1999

Priority country: JP

(54) III-N TYPE COMPOUND SEMICONDUCTOR DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a GaN light-emitting element, having low contact resistivity of an n-type electrode and low threshold voltage or threshold current. SOLUTION: A GaN light-emitting element comprises an n-type GaN substrate 3002, a plurality of GaN compound semiconductor layers 3003-3010 formed on the substrate 3002, and an n-type

electrode 3001 and a p-type electrode 3011 formed on the substrate 3002, the n-type electrode 3001 is formed on the nitrogen termination surface of the substrate 3002, the n-type impurity concentration in the substrate 3002 varies in the thickness direction of the substrate 3002, the substrate 3002 is composed of a first portion 3002a, which forms the nitrogen termination surface and has a first mean n-type impurity concentration and a second portion 3002b, which has a second mean n-type impurity concentration which is lower than that of the first mean n-type impurity concentration, the first mean ntype impurity concentration is 3 × 10118 cm-3 or more and the second mean n-type impurity concentration is 3 × 1018 cm-3 or less.

LEGAL STATUS

[Date of request for examination]

11.09.2006

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-148533 (P2001-148533A)

(43)公開日 平成13年5月29日(2001.5.29)

(51) Int.Cl. ⁷	設別記号	FΙ	デーマコート*(参考)	
H01S 5/042	6 1 0	H01S 5/042	610	
H01L 29/872		H01L 33/00	С	
33/00		H01S 5/323		
H 0 1 S 5/323		H01L 29/48	Н	
	· .	来 旅床 未 旅 本語 水	請求項の数5 OL (全 26 頁)	
(21)出顯番号	特顧2000-266480(P2000-266480)	(71)出顧人 00000504		
(22)出顧日	平成12年9月4日(2000.9.4)	大阪府大	株式会社 阪市阿倍野区長池町22番22号	
(31)優先権主張番号 (32)優先日	特顯平11-253741 平成11年9月8日(1999.9.8)	(72)発明者 津田 有三 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内		
(33)優先権主張国	日本 (JP)	(72)発明者 小河 淳 大阪府大		
	·	(74)代理人 10006474		

最終頁に続く

(54) 【発明の名称】 III-N系化合物半導体装置

(57)【要約】

【課題】 n型電極の接触比抵抗が低く、閾値電圧または閾値電流密度が低いのGaN発光素子を提供する。

【解決手段】 GaN発光素子は、n型GaN基板3002、基板3002上に形成された複数のGaN系化合物半導体層3003~3010、ならびに基板3002上に形成されたn型電極3001およびp型電極3011を備える。n型電極3001は、基板3002中のn型不統物の濃度は、基板3002の厚み方向において変化している。基板3002は、窒素終端面を形成しかつ第1の平均n型不純物濃度を有する第1の部分3002aと、第1の平均n型不純物濃度より低い第2の平均n型不純物濃度より低い第2の平均n型不純物濃度を有する第2の部分3002bとからなる。第1の平均n型不純物濃度は3×10 cm³以上であり、第2の平均n型不純物濃度は3×10 cm³以上である。

【特許請求の範囲】

【請求項1】 III-N系化合物半導体基板、

前記半導体基板上に形成された複数のIII-N系化合物半導体層、および前記半導体基板上に形成された前記複数の半導体層に電圧を印加するためのn型電極およびp型電極を備え、

前記半導体基板はn型であり、

前記n型電極は、前記半導体基板の窒素終端面上に形成されており、

前記半導体基板中のn型不純物の濃度は、前記半導体基板の厚み方向において変化しており、

前記半導体基板は、前記窒素終端面を形成しかつ第1の 平均n型不純物濃度を有する第1の部分と、前記第1の 平均n型不純物濃度より低い第2の平均n型不純物濃度 を有する第2の部分とからなり、

前記第1の平均n型不純物濃度は、3×10[™] cm³以上であり、

前記第2の平均 n 型不純物濃度は、3×10 cm⁻³以下であり、かつ前記複数の半導体層は前記第2の部分上に形成されている、III-N系化合物半導体装置。

【請求項2】 前記第1の平均n型不純物濃度は、 3×10^{16} c $m^3 \sim 1 \times 10^{21}$ c m^3 の範囲内であり、かつ前記第2の平均n型不純物濃度は、 1×10^{17} c $m^{-3} \sim 3 \times 10^{16}$ c m^{-3} の範囲内である、請求項1に記載の半導体装置。

【請求項3】 前記第1の平均n型不純物濃度は、3× 10¹⁸ cm³ ~1×10¹⁹ cm³ の範囲内である、請求 項2に記載の半導体装置。

【請求項4】 前記III-N系化合物半導体はGaN系化合物半導体である、請求項1~3のいずれか1項に記載の半導体装置。

【請求項5】 発光素子である、請求項1~4のいずれか1項に記載の半導体装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、III-N系化合物半導体基板、特にGaN系化合物半導体基板上に作製する半導体装置、特に、発光素子に関する。

[0002]

【従来の技術】従来より、GaN系化合物半導体はその特性を利用して、発光素子やハイパワーデバイスとして利用または研究されている。例えば、発光素子を作製する場合、その構成する組成を調整することにより、技術的には紫色から橙色までの幅の広い発光素子として利用することができる。

【0003】近年、その特性を利用して、青色発光ダイオードや、緑色発光ダイオードの実用化がなされ、また、半導体レーザー素子として青紫色半導体レーザーが開発されてきている。

【0004】GaN系化合物半導体膜を製造する際に

は、基板として、サファイア、SiC、スピネル、SiC 、スピネル、SiC 、 GaAs 等からなる基板が使用される。例えば、基板としてサファイアを使用する場合、GaN 膜をエピタキシャル成長させる前に、あらかじめ、約550 $\mathbb C$ の低温で、GaN またはALN のバッファー層を形成し、その後、基板を約1050 $\mathbb C$ の高温に昇温してGaN 系化合物半導体膜のエピタキシャル成長を行うと表面状態の良い、構造的および電気的に良好な結晶を得ることができることが知られている。

【0005】また、SiCを基板として使用する場合、エピタキシャル成長を行う成長温度で薄いAlN膜をバッファー層として使用すると良いことが知られている。しかし、GaN系化合物半導体以外の基板を使用すると、成長させるGaN系化合物半導体膜と基板との熱膨張係数の違いや、格子定数の違いにより、製造されるGaN系化合物半導体中には多数の欠陥が発生する。その欠陥は刃状転位と螺旋転位に分類され、その密度は合計で約 $1\times10^{\circ}$ cm $^{\circ}\sim1\times10^{\circ}$ cm $^{\circ}$ 程度にもなる。これらの欠陥は、キャリアをトラップして、調製した膜の電気的特性を損ねることが知られている他、大電流を流すようなレーザーに対しては、寿命の低下を招くことが知られている。

【0006】そのため、これらの欠陥を低減し、かつ、調製する半導体の電気的特性を良好な状態にするための検討がなされている。たとえば、有機金属気相成長(MOCVD)法等により成長させたGaN膜上に、転位等の欠陥の上昇を抑えるため、<math>SiOz、タングステン等のマスクを用いて、ハイドライド気相成長(H-VPE)法等によりGaNの厚膜を成長させ、得られた厚膜を基板として、その上に発光素子を作製する技術が開発されている。

[0.007]

【発明が解決しようとする課題】しかし、そのようなGaN基板上でのn型電極の特性については明らかでなかった。本発明者らは、Ti/A1等のn型電極をGaN基板のGa終端面に形成した場合、該電極はショットキー特性を示す傾向が強いことを明らかにした。本発明のような、Ga終端面において、炭素(C)等が、Gaのギーラは、Ga終端面上にTi/A1等のn型電極を形成した場合、障壁層が形成され、電極はショットキー特性を示し得る。一方、p型電極であるNi、Pd等の膜は、炭素(C)等を、自らに取り込み、障壁層を減らすことができる。これは、p型電極について、比較的オーミック特性の得られやすい原因の一つと考えられた。

【0008】 GaN基板のGa終端面上にオーミック特性のTi/Al等のn型電極を得るためには、基板表面を塩酸等で洗浄処理を行ったり、電極形成後にアロイ形成のための熱処理を行い、GaNとそれに接するTiとの中間生成物を形成し、障壁層を軽減させる等の工程を

入れる必要があった。しかし、このような工程を導入しても n 型電極との接触比抵抗は高かった。

【0009】本発明の一つの目的は、前述の表面処理や 熱処理工程を行わずに、窒化物半導体基板、たとえばG a N基板を用いた半導体装置構造に n 型電極を形成して オーミック特性を得る技術を提供することにある。

【0010】本発明のもう一つの目的は、n型電極の接触比抵抗が低い窒化物半導体装置、特に発光素子を提供することにある。

【0011】本発明のさらなる目的は、低閾値電圧また は低閾値電流密度の窒化物半導体装置、特に発光素子を 提供することにある。

【0012】本発明者らは、窒化物半導体のN終端面上に n型電極を形成すれば、オーミック特性が容易に得られることを見出した。さらに、本発明者は、窒化物半導体基板に添加する不純物濃度と n 電極の接触比抵抗との関係を明らかにした。さらに、本発明者らは、発光素子、特にレーザーダイオード素子に関して、窒化物半導体基板に添加する不純物濃度と閾値電圧との関係、および窒化物半導体基板に添加する不純物濃度と閾値電圧との関係について明らかにするとともに、低接触比抵抗、低閾値電圧、または低閾値電流密度が得られる適当な不純物濃度を見出した。本発明は以上の知見に基づく。

[0013]

【課題を解決するための手段】本発明によりIII-N系化合物半導体装置が提供され、該装置は、III-N系化合物半導体基板の窒素終端面上に電極を有する。具体的に、本発明による半導体装置は、III-N系化合物半導体基板、該半導体基板上に形成された複数のIII-N系化合物半導体層、および該半導体基板上に形成された複数の半導体層に電圧を印加するためのn型電極およびp型電極を備え、そこにおいて、該半導体基板はn型であり、該n型電極は、該半導体基板の窒素終端面上に形成されている。

【0014】図23に、種基板の(0001)面上に成長したGaNのGa終端面とN終端面を示す。図中、2301は種基板、2302はバッファ層、2303aはGa終端面、2303bはN終端面、白丸2304はGa原子、黒丸2305はN原子を表す。図に示すように、N終端面2303bでは、N原子2305が優先的に突出し、一方、Ga終端面2303aでは、Ga原子2304が優先的に突出している。

【0015】 ここで、GaN結晶の (0001) 面に関するN終端面とGa終端面を以下のように定義することができる。N終端面が露出している該結晶を、室温で1.8 MのNaOH溶液中に3分間浸すと、容易に表面状態が変化し、サイズ50nm程度のヒルロックが消失する。また、原子間力顕微鏡 (AFM) を用いれば、5μm領域の観察でエッヂング後に表面が荒れていること 50

がわかる。表面原子の60%以上がN原子で終端してい る面はこの性質があり、本明細書では、このような性質 をもつ面をN終端面と呼ぶ。一方、Ga終端面は、同様 の処理方法により、表面状態が変化しにくく、AFMを 用いても、5μm領域の観察でエッチング後に表面変化 が殆どみられない (例えば、Appl. Phys. Lett. 71, 26 35 (1997))。表面原子の60%以上がGa原子で終端 している面は、この性質があり、本明細書では、このよ うな性質をもつ面をGa終端面と呼ぶ。したがって、I II-N系化合物半導体に関し、表面に露出する終端原 子の60%以上がN原子であり、かつ所定のエッチング により荒れやすい性質を有する面をN終端面と呼ぶこと ができ、一方、表面に露出する終端原子の60%以上が III 族原子であり、かつ所定のエッチングにより変化 しにくい性質を有する面をIII族原子終端面と呼ぶこ とができる。

4

【0016】また、エッチング以外に、極性の違い(終 端原子の違い)は、反射髙速電子線回折(RHEED) 法(例えば、Appl. Phys. Lett. 72, 2114 (1998)) や、同軸型直衝突イオン散乱分光法 (САІСІЅЅ) を用いることにより、非破壊で判別、評価できる。 【0017】 III-N系化合物半導体には、例えば、 GaN, AIN, $AI_xGa_{1x}N$ (0 < x < 1), InN, I n_x G a_{1-x} N (0 < x < 1); I n_x G a_y A 1 1-xy N(0<x<1、0<y<1)等がある。特に、 本発明は、Gaを含むIII-N系化合物半導体、すな わちGaN系化合物半導体を使用することが好ましい。 【0018】典型的に、本発明において、半導体基板中 の n 型不純物の濃度は、 1 × 1 0 ¹⁷ c m⁻³ ~ 1 × 1 0 ²¹ cm⁻³の範囲内である。好ましくは、半導体基板中のn 型不純物の濃度は、1×10"cm³~1×10"cm の範囲内である。これらの範囲において、n型不純物 の濃度は、基板の厚みの方向において一定であってもよ いし、変化していてもよい。

【0020】n型不純物の濃度が基板の厚みの方向において変化している場合、第1のn型不純物濃度より低いn型不純物濃度を有する第2の部分上に複数の半導体層が形成されていることが好ましい。この場合も、第1の

部分の厚みは、 $0.05 \mu m \sim 50 \mu m$ であることが好ましい。さらに、第1の部分の第1のn型不純物濃度は、 3×10^{11} c m^{-3} 以上であることが好ましい。

【0021】本発明による半導体装置は、典型的には、発光素子である。本発明により、もう一つの半導体装置が提供され、該半導体装置は、III-N系化合物半導体基板、該半導体基板上に形成された複数のIII-N系化合物半導体層、および該半導体基板上に形成された複数の半導体層に電圧を印加するためのn型電極およびp型電極を備え、そこにおいて、該半導体基板はp型であり、該複数の半導体層の最上層は窒素終端面を有しており、n型電極は該窒素終端面上に形成されている。II-N系化合物半導体は、典型的にGaN系化合物半導体である。この場合、p型電極は、半導体基板のGa終端面上に形成されていることが好ましい。本発明による半導体装置は、特に、発光素子に適用できる。

【0022】本発明により、さらなる半導体装置が提供 され、該半導体装置は、III-N系化合物半導体基 板、該半導体基板上に形成された複数のIII-N系化 合物半導体層、および該半導体基板上に形成された複数 の半導体層に電圧を印加するためのn型電極およびp型 電極を備え、そこにおいて、該半導体基板はn型であ り、該n型電極は、該半導体基板の窒素終端面上に形成 されており、該半導体基板中のn型不純物の濃度は、該 半導体基板の厚み方向において変化しており、該半導体 基板は、窒素終端面を形成しかつ第1の平均n型不純物 濃度を有する第1の部分と、第1の平均 n型不純物濃度 より低い第2の平均 n型不純物濃度を有する第2の部分 とからなり、第1の平均n型不純物濃度は3×10 c m³以上であり、第2の平均n型不純物濃度は3×10 cm³以下であり、かつ該複数の半導体層は第2の部 分上に形成されている。好ましくは、第1の平均 n型不 純物濃度は 3×10 ¹⁸ c m⁻³ ~ 1×10 ²¹ c m⁻³ の範囲 内である。好ましくは、第2の平均 n型不純物濃度は1 × 1 0 ["] c m ⁻³ ~ 3 × 1 0 ["] c m ⁻³ の範囲内である。よ り好ましくは、第1の平均n型不純物濃度は、3×10 c m ³ ~ l × l 0 ¹¹ c m ³ の範囲内である。 I I I -N系化合物半導体は、好ましくは G a N系化合物半導体 である。本発明による半導体装置は、特に、発光素子に 適用できる。

[0023]

【発明の実施の形態】本発明における不純物濃度は、例えば、SIMS(2次イオン分析) 装置を用いて測定することができる。本発明において、n型電極は、Ti/AI、Hf/Au、W/AI、V/AI等の、AuまたはAIと、Sc、Y、La、Ti、Zr、Hf、V、Nb、Ta、W、Mo、Cr 、Mn、Tc 、Re またはN とを組合わせて、形成することができる。さらには、n型 III-N 系化合物半導体の表面と良好なオーミック特性を示す材料であれば、その他材料を使用してもよ

い。

【0024】本発明において、III-N系化合物半導体基板中の不純物濃度は、 1×10 " c m³ 以上 1×1 0" c m³ 以下が好ましく、さらには 1×10 " c m³ 以上 1×10 " c m³ 以下が好ましい。 n型不純物としてSiが好ましいが、n型伝導性を付与できる他の不純物も、Siと同様の効果をもたらすことができる。

【0025】 III-N系化合物半導体基板において、高い不純物濃度を有する部分の厚さは、表面の凹凸に影響を及ぼさない程度の厚みとすることが好ましく、たとえば、 0.05μ m~ 10μ m程度がより好ましい。

【0026】本発明において、III-N系化合物半導体基板は、種基板上に、III-N系化合物半導体の厚膜を工ピタキシャル成長させ、得られた厚膜を種基板から分離することにより得ることができる。(0001)面を有するサファイア基板を、III-N系化合物半導体基板、特にGaN系化合物半導体基板を得るための、種基板として好ましく使用することができる。さらに、他の結晶面を有するサファイア基板、GaN、SiC、スピネル、マイカ等を種基板として適用してもよい。いずれの種基板を使用しても、本発明の目的を達成することができる。

【0027】 GaN系化合物半導体基板の調製にあたり、種基板上に形成する低温バッファー層としてGaN 膜を好ましく使用することができる。該低温バッファー層上に、GaN系化合物半導体の厚膜を形成し、該厚膜を研磨によって取り出すことにより、基板を得ることができる。さらに、低温バッファー層としてA1.GaI $N(0 \le x \le 1)$ 、またはZnOを用いてもよく、いずれの場合でもGaN低温バッファー層を使用する場合と同様の効果を得ることができる。

【0028】基板調製における厚膜は、H-VPE法より成長させることが好ましい。H-VPE法によって成長させたGaN基板を用いて作製したレーザは、昇華法、高圧合成法、およびその他の厚膜成長方法で作製したGaN基板を用いて作製したレーザと比べて、より低い閾値電圧、より低い閾値電流で発振し得る。H-VPE法では成長時にHClを用いるため、成長させたGaN厚膜には、塩素(Cl)が含有され、このClが電極部分で、中間生成物を形成し、電気的な障壁を緩和し、その結果、良好な特性をもたらすと考えられる。しかし、H-VPE法の代わりに他の厚膜成長方法を使用しても、従来より低い閾値電圧等の効果を得ることができる。

【0029】本発明において、種基板から分離されたIII-N系化合物半導体基板、たとえば、GaN基板上に、レーザ等の素子の構造を形成することができる。素子構造は、たとえば、有機金属気相成長法(MOCVD法)により好ましく形成することができる。一方、種基

10

板に付着した状態のGaN厚膜上に、MOCVD法で発光層を含む多層構造のGaN系化合物半導体層を成長させてもよい。その後、種基板、下地のアンドープGaN膜、マスクを研磨等で除去して得られるGaN系化合物半導体レーザも、最初に分離された基板を使用する場合と同様に、良好な特性を示し得る。

【0030】本発明では、特にGaN基板を好ましく使用できるが、他のGaN系化合物半導体、および他のIII-N系化合物半導体からなる基板も、使用できる。さらに、GaN系化合物半導体を構成する元素のうち、窒素元素の一部(10%程度以下)を、P、AsおよびSbからなる群より選ばれる元素で置換してもよい。そのような材料も同様の効果をもたらし得る。

【0031】本発明において、c軸の方向に成長した六 方晶の基板を使用することが好ましい。この場合、基板 のN終端面およびGa終端面には、六方晶のC面が露出 している。そのような基板は、種基板の(0001)面 上でのエピタキシャル成長により得ることができる。一 方、他の結晶面から成長させた厚膜を基板として使用し てもよい。そのような成長には、M面(01-10)上 20 でのGaNの<01-13>方向への成長、A面(2-1-10)上でのGaNのc軸方向への成長、R面(0 11-2)上へのGaNの<2-1-10>方向への成 長、および、立方晶の[(111)面+微傾斜面]上での GaNのc軸方向への成長がある。それらの場合におい ても、n型電極のためのN終端面を得ることができる。 【0032】本発明において、主面にC結晶面が露出す る基板を用いる場合、基板主面に垂直な方向(結晶の積 層方向) に対し、基板結晶の c 軸が 0. 10°~0.2 5° ずれていることが好ましく、0.15° ~ 0.20 。ずれていることがより好ましい。この場合、基板上に 成長させる結晶表面の平坦性が促進され、素子全体の結 晶性を向上させ、活性層ひいては素子の特性をさらに向 上させることができる。

【0033】また、基板上にレーザ等の素子構造の作製するため、MOCVD法が好ましく使用される。そのほか、分子線エピタキシー(MBE)法等の他のエピタキシャル成長方法を用いてもよい。MOCVD法に使用される原料には、たとえば、トリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMI)、NH3、およびビスシクロペンタジエニルマグネシウム(Cp2Mg)がある。これら以外でも、必要な化合物を成長できる原料であれば任意のものを使用することができる。IIIーN系化合物半導体基板、特にGaN基板、およびレーザ等の素子構造へのドーパントとして、n型の場合は、Si、Ge、Sn、O、S、SeまたはTe、p型の場合は、Mg、Be、Ca、Sr、Ba、ZnまたはCdを使用することができる。

【0034】また、本発明は、特に、発光素子に適用さ 50

れる。発光素子は、たとえば、レーザおよび発光ダイオード(LED)を含む。レーザの場合、本発明によれば、低い接触比抵抗、低い閾値電圧、または低い閾値電流密度を得ることができる。発光ダイオードの場合、本発明によれば、駆動時の電圧の低減、および表面の平坦性の向上を実現することができる。

【0035】図1(a)は、半導体レーザとして適用される本発明による半導体装置の一具体例を示している。 GaN基板102の一方の主面102A上に n型電極101が形成されている。 n型電極101と接する主面102AはN終端面である。 GaN基板102の他方の主面上には、n型GaN層103、n型Alon Gaon Nクラッド層104、n型GaN光ガイド層105、多重量子井戸の発光層106、p型Alon Gaon Nキャリアプロック層107、p型GaN光ガイド層108、p型Alon Gaon Nクラッド層109、p型GaNコンタクト層110、およびp型電極111が順に形成されている。以下、この半導体レーザの製造プロセスについて説明する。

【0036】実施例1

以下に示すように、サファイア基板上にH-VPE法によりGaN厚膜を成長させ、得られた厚膜を基板として使用し、図1(a)に示す半導体レーザを調製した。

【0038】その後、一旦TMGの供給を停止し、再び 1050℃まで昇温して、TMGを約100mol/m in導入し、1時間で3µmの厚さのアンドープGaN 膜を成長させる。その後、TMGおよびNH₃の供給を 停止し、室温まで降温し、アンドープGaN下地層を成 長させたサファイア基板を取り出す。低温バッファー層 としては、GaN膜の代わりに、トリメチルアルミニウム(TMA)、TMG、NH₃を使用して、AlN膜や GaAlN膜を形成してもよい。

【0039】上記方法で作製したアンドープGaN下地層(その最表面はGa終端面)上にGaN厚膜を成長させる際、クラックが生じないよう、厚さ2000 Åで、幅 7μ m、間隔 10μ mのストライプ状の成長抑制膜を形成し、その上にH-VPE法で選択成長を行い、平坦なGaN厚膜を成長させる。本実施例では、成長抑制膜として、電子ビーム蒸着法(EB法)により蒸着した SiO_2 膜をフォトリソグラフィを用いてエッチングした

ものを使用する。ストライプ状の成長抑制膜で部分的に 覆われたアンドープGaN下地膜を有するサファイア基 板を、H-VPE装置内に導入する。N₂キャリアガス とNH₁を、それぞれ5L/min流しながら、基板の 温度を約1050℃まで昇温させる。その後、基板上に GaClを100cc/min導入してGaN厚膜の成 長を開始する。 GaClは850℃に保持されたGa金 属にHC1ガスを流すことにより生成される。また、基 板近傍まで単独で配管してある不純物ドーピングライン を用いて不純物ガスを流すことにより、任意に成長中に ドーピングを行うことができる。本実施例では、Siを ドーピングする目的で、成長を開始すると同時に、モノ シラン (SiH₁)を200nmol/min供給し て、SiドープGaN層(Si不純物濃度:3.8×1 0 cm³) を成長させ、計3時間の成長で350μm のGaN厚膜を得る。このような成長条件でつくったG a Nの最表面はGa終端面である。Siのドーピングに 関しては、SiHiに限らず、モノクロロシラン (Si H₃Cl)、ジクロロシラン(SiH₂Cl₂)、トリク ロロシラン(SiHCl₃)等、他の原料を使用しても よい。

【0040】成長後、研磨によりサファイア基板、MOCVD法によるアンドープGaN膜、 SiO_2 膜を除去し、N終端面が出るまで研磨して、図1(a) に示す GaN基板 102 を得る。GaN基板の研磨を行った面はN終端面であり、反対側の成長最表面はGa 終端面である。

【0041】得られたGaN厚膜を基板として使用し、 以下のとおり、MOCVD法により発光素子構造を成長 させる。まず、基板をMOCVD装置内に導入し、N2 とNH3をそれぞれ5L/min流しながら1050℃ まで昇温する。温度が上がればキャリアガスをNzから Hzに代えて、TMGを100μmol/min、Si H.を10nmol/min導入して、図1に示すn型 GaN層103を4μm成長させる。その後、TMGの 流量を50μmol/minに調整し、TMAを40μ mol/min導入して、n型Alon Gaos Nクラッ ド層104を0. 5 μ mの厚さで成長させる。 A l a. r Cao。 Nの成長が終了すると、TMAの供給を停止 し、TMGを100μmol/minに調整して、n型 40 GaN光ガイド層 105を 0.1μ mの厚さになるよう に成長させる。その後、TMG、SiH,の供給を停止 して、キャリアガスをHzからNzに再び代えて、700 ℃まで降温し、インジウム原料であるトリメチルインジ ウム (TMI) を10μmol/min、TMGを15 μmol/min導入し、Ino.cs Gao.cs Nよりなる 4 nm厚の障壁層を成長させる。その後、TMIの供給 量を50μmol/minに増加し、Ino.2 Gao.8 N よりなる2nm厚の井戸層を成長させる。井戸層は合計 3層、同様の手法で成長させ、井戸層と井戸層との間お 50

よび両側に合計4層の障壁層が存在するような多重量子 井戸(MQW)の発光層106を成長させる。MQWの 成長が終了すると、TMIおよびTMGの供給を停止し て、再び1050℃まで昇温し、キャリアガスを再びN 2からH2に代えて、TMGを50μmol/min、T MAを30 μmol/min、P型ドーピング原料であ るビスシクロペンタジエニルマグネシウム (Cp2 M g)を10nmol/min流し、20nm厚のp型A 10.2 G a 0.8 Nキャリアプロック層107を成長させ る。キャリアブロック層の成長が終了すると、TMAの 供給を停止し、TMGの供給量を100μmol/mi nに調整して、 0.1μ mの厚さのp型GaN光ガイド 層108を成長させる。その後、TMGの供給を50μ mol/minに調整し、TMAを40μmol/mi n導入し、0. 4μm厚のp型Alo, Gao. Nクラッ ド層109を成長させ、最後に、TMGの供給を100 μmol/minに調整して、TMAの供給を停止し、 0. 1 μ m 厚 の p 型 G a N コンタクト 層 1 1 0 の 成 長 を 行い、発光素子構造の成長を終了する。成長が終了する と、TMGおよびCp₂Mgの供給を停止して降温し、 室温で基板をMOCVD装置より取り出す。

【0042】その後、ドライエッチング装置を用いて、p-GaNコンタクト層110を5μm幅のストライプ状に残し、p-Alon Gaos N光ガイド層109までエッチングを行い、光導波路を形成する。次いで、p-GaN部分にPdを150Å、Auを1000Å順次蒸着して、p型電極111を形成する。また、基板温度を200℃程度に保ち、GaN基板のN終端面102Aに、Tiを厚さ150Å、Alを1000Å順次蒸着し、n型電極101を形成する。最後に、素子長が約1mmとなるように、劈開あるいはドライエッチング法を行い、ミラーとなる端面を形成する。

【0043】以上のプロセスにより得られた半導体レーザーにおいて、GaN基板の不純物濃度プロファイルは図1(b)に示すとおりである。n型であるGaN基板102の厚み方向において、n型不純物(Si)の濃度はほぼ一定であり、 3.8×10^{11} cm $^{-3}$ である。本実施例で作製したレーザは、発振の閾値電圧が約5V、閾値電流密度が1.2kA/cm $^{-1}$ である。該レーザに対して、閾値近傍の条件で約1000時間の寿命試験を実施したが、特性の変化は見られなかった。

【0044】比較例1

実施例1で得られたGaN基板のN終端面に各層をエピタキシャル成長させ、Ga終端面にn型電極を形成し、レーザを得た。図2(a)に作製されたGaN系化合物半導体のレーザの断面図、図2(b)にGaN基板の成長方向(厚み方向)の不純物濃度プロファイルを示す。レーザは以下のプロセスに従って調製された。

【0045】MOCVD法によるアンドープGaN膜とSiOz膜の形成、およびH-VPE法による成長は、

10

実施例1と同様にして行う。次いで、GaN基板のN終端面をエピタキシャル成長面にし、その後は、実施例1と同様の方法で、GaN基板202上に、n型GaN層203、n型Alon Gaos Nクラッド層204、n型GaN光ガイド層205、多重量子井戸の発光層206、p型Alon Gaos Nキャリアブロック層207、p型GaN光ガイド層208、p型Alon Gaos Nクラッド層209、p型GaNコンタクト層210、およびp型電極211を形成し、さらに、Ga終端面202Aにn型電極201を形成する。

【0046】得られた素子は、室温でレーザ発振に至ら なかった。レーザ発振に到らなかった原因を探るため に、実施例1と同様にしてGaN基板を作製し、N終端 面とGa終端面に、径0.5mmのTi(150Å)/ Al (1000Å) 電極201を1. 0mmの間隔でそ れぞれ9個、計18個、順次蒸着し、それらの電圧-電 流特性を調べた。図3は、GaN基板のN終端面または Ga終端面に蒸著されたn型電極のパターンを示し、3 01はn型電極、302はGaN基板を示す。図4は、 GaN基板のN終端面に蒸著されたn型電極の電流一電 20 圧特性を示し、図5は、GaN基板のGa終端面に蒸著 された n型電極の電流-電圧特性を示す。図4に示すよ うにN終端面上のn型電極は、良好なオーミック特性を 示す。一方、図5に示すようにGa終端面上のn型電極 は、ショットキー特性を示し、障壁層の存在を示唆す る。

【0047】Ga終端面に存在するGaのダングリングボンドには、C等が結合し易い。したがって、C等が存在する状態で、Ti/Al等の電極を形成した場合、障壁層が形成され、得られた電極はショットキー特性を示し得る。一方、N終端面では、このような障壁を形成する原子が表面に存在し得る確率は低い。したがって、N終端面上には、表面処理等を行わなくとも、良好なオーミック特性を示すn型電極を形成することができる。

【0048】一方、Ga終端面上でのGaN系化合物半導体層のエピタキシャル成長は、1000℃以上の高温で行われる。この場合、表面の不純物は離脱し、清浄化され、その結果、良好なGaN系化合物半導体層を形成することができると考えられる。

【0049】実施例2

ドーパント源SiHィの供給量を10nmol/min~1000nmol/minの範囲で種々の値とし、HーVPE法により不純物濃度の異なるGaN厚膜をそれぞれ成長させた。各GaN厚膜の成長中、SiHィの流量は一定にした。その他の条件は、実施例1と同様であった。得られたGaN厚膜を基板として使用して実施例1と同様にレーザを作製し、それらの特性を測定した。レーザのための各層は、GaN基板のGa終端面上でエピタキシャル成長させた。n型電極は、GaN基板のN終端面上に形成した。

【0050】図6は、GaN厚膜を成長させる際の、SiHi供給量と該膜中に含まれる不純物濃度との関係を表わす。囲7は、GaN基板中の不純物濃度と、該GaN基板を使用して作製したレーザの閾値電圧との関係を示す。図8は、GaN基板中の不純物濃度と、該GaN基板を使用して作製したレーザの閾値電流密度との関係を示す。図9は、GaN基板中の不純物濃度と、該GaN基板の表面粗さとの関係を示す。

12

【0051】図6に示されるように、SiH、供給量とGaN基板中の不純物濃度は、比例関係にあり、SiH、供給量が1000nmol/minの時の不純物濃度は、1.6×10"cm³である。図7に示されるように、GaN基板中の不純物濃度が増加するに従って、作製したレーザの発振閾値電圧が徐々に下がる傾向にある。これは、GaN基板の抵抗が、不純物の影響で低下してきている事にもよるが、それ以上にN終端面とn型電極コンタクト部分で生じるショットキー障壁が低減して接触比抵抗が低下し、その結果、閾値電圧が低くなっていると考えられる。発振閾値電圧は、GaN基板の不純物濃度が約1×10"cm³以上でほぼ5V程度の値に収束している。

【0052】反面、図8は、GaN基板の不純物濃度が、約 1×10^9 cm³以上になると、レーザの発振閾値電流密度が徐々に増加し始め、 5×10^3 cm³以上でほぼ2 k A/cm²程度の値に収束している。このことは、図9に示されるように、GaN基板中の不純物濃度が約 1×10^9 cm³を超えるあたりから、膜表面の平均表面粗さが増加し始めてきている事に起因していると思われる。即ち、膜の表面粗さが増加すると、その上に成長したレーザ構造における各層の界面の凹凸が増加し、レーザ光を伝搬するガイド層内での光の分散が増加し、それが閾値電流密度の増加につながってきていると考えられる。

【0053】また、レーザの作製に使用したGaN基板のN終端面側にn電極を形成し、Trans Mission Line Model (TLM) 法により、不純物濃度に対する接触比抵抗を調べた。これは、測定サンプルが面内で均一であると仮定して、電極間距離依存性から接触比抵抗を求める方法である。今回は、Ti(150 Å)/Al(1000 Å)、サイズ 300μ m、間隔 $10\sim100 \mu$ mの電極パッドパターンを使用した。

【0054】図10は、GaN基板中の不純物濃度と接触比抵抗との関係を示す。不純物濃度が $1\times10^{\circ}$ cm $^{\circ}$ を超えると接触比抵抗が $1\times10^{\circ}$ $\Omega\cdot cm^{\circ}$ 以下となり、その後は不純物濃度の増加とともに比抵抗は下がっていく。

【0055】以上の結果から、GaN基板の不純物濃度は、1×10"cm³以上1×10"cm³以下が望ましく、1×10"cm³以上1×10"cm³以下がより望ましい。不純物濃度が低過ぎる場合は、基板自体の

抵抗が上がり、さらに、電極とGaN基板との中間生成物が形成され、障壁を減らすことが困難になり得る。一方、不純物濃度が高過ぎる場合、成長表面が荒れて、再成長時の結晶性が低下し、素子の特性が劣化し得る。適当な不純物濃度を有する基板のN終端面にn型電極を形成することでより好ましい特性が得られる。

【0056】実施例3

以下に示すように、G a N基板のキャリア濃度を厚さ方向に変化させ、レーザ素子を調製した。図11(a)に、作製されたG a N系化合物半導体のレーザの断面図、図11(b)に、G a N基板の厚み方向の不純物濃度プロファイルを示す。ここで使用されるG a N基板1002は、S i 高ドープG a N層1002a(S i 不純物濃度:8.0×10 cm³)と、S i 通常ドープG a N層1002b(S i 不純物濃度:3.8×10 cm³)とからなる。n型電極1001は、基板1002のN終端面1002Aに形成されている。n型電極1001に接触するN終端面を形成するG a N層1002aは、レーザ構造に接触するG a N層1002bよりも高い不純物濃度を有する。以下に製造プロセスを示す。

【0057】MOCVD法によるアンドープGaN膜と SiO_z 膜の形成は、実施例1と同様に行う。その後、以下のように、H-VPE法による成長を行う。

【0058】まず、ストライプ状の成長抑制膜を有する アンドープGaN下地層を成長したサファイア基板を、 H-VPE装置内に導入する。NzキャリアガスとNH3 を、それぞれ5L/min流しながら、基板の温度を1 050℃まで昇温する。その後、基板上にGaC1を1 00cc/min導入してGaN厚膜の成長を開始す る。 G a C l は約850℃に保持された G a 金属に H C 1 ガスを流すことにより生成される。また、基板近傍ま で単独で配管してある不純物ドーピングラインを用いて 不純物ガスを流すことにより、任意に成長中にドーピン グを行うことができる。Siをドーピングしながら成長 を開始し、モノシラン(SiH₄)を3分間、500n mol/min供給して、Si高ドープGaN層100 2 a (Si不純物濃度: 8. 0×10 cm³) を 5 μ m成長させ、その後、SiH,の流量を200nmol /minに変えて、Si通常ドープGaN層1002b (Si不純物濃度: 3.8×10¹⁸ cm⁻³)を成長さ せ、計3時間の成長で350μmのGaN厚膜を得る。 このような条件で作製したGaNの最表面(エピタキシ ャル面)はGa終端面であった。Siのドーピングに関 しては、SiHiに限らず、モノクロロシラン(SiHi C1)、ジクロロシラン(SiHzC1z)、トリクロロ シラン(SiHCl₃)等、他の原料を使用してもよ

【 0 0 5 9 】成長後、研磨によりサファイア基板、M O C V D 法によるアンドープ G a N 膜、 S i O₂ 膜を除去し、N終端面が出るまで研磨して、G a N 基板 1 0 0 2

を得る。以上の様にして得られた GaN厚膜を基板として使用し、N終端面1002Aとは反対側の Ga終端面上に、MOCVD法を用いてエピタキシャル成長層を形成し、発光素子構造を得る。実施例1と同様の方法で、n型 GaN層1003、n型 Alon Gaos Nクラッド層1004、n型 GaN光ガイド層1005、多重量子井戸の発光層1006、p型 Alon Gaos Nキャリアプロック層1007、p型 GaN光ガイド層1008、p型 Alon Gaos Nクラッド層1009、p型 GaNコンタクト層1010、およびp型電極1011を形成し、GaN基板のN終端面1002A上にn型電極1001)を作り込み、素子を得る。

14

【0060】得られたレーザは、発振の閾値電圧が約5 V、閾値電流密度が $1.0kA/cm^2$ であった。閾値近傍の条件で約1500時間の寿命試験を実施したが、特性の変化は見られなかった。

【0061】比較例2

G a N基板のG a 終端面側に S i 高ドープ層を形成し、そのG a 終端面に n型電極を作製した。一方、G a N基板のN終端面上にレーザ素子構造のためのエピタキシャル成長層を形成した。図12 (a)に、作製されたG a N系化合物半導体レーザの断面図、図12 (b)にG a N基板の成長方向(厚み方向)における不純物濃度プロファイルを示す。G a N基板1102は、S i 通常ドープG a N層1102 b (S i 不純物濃度:8.0×10 cm³)とからなる。レーザ構造は、S i 高ドープG a N層1102 b 上に形成されている。n型電極1101は、S i 通常ドープG a N層1102 a のG a 終端面1102 A 上に形成されている。以下に製造プロセスを示す。

【0062】MOCVD法によるアンドープGaN膜と SiO_2 膜の形成は、実施例1と同様に行う。ストライプ状の成長抑制膜を有するアンドープGaN下地層を成長させたサファイア基板を、H-VPE装置内に導入する。 N_2 キャリアガスと NH_3 を、それぞれ5L/min流しながら、基板の温度を1050℃まで昇温する。その後、基板上にGaClを100cc/min導入してGaN厚膜の成長を開始する。GaClは850℃に保持されたGa金属にHClガスを流すことにより生成される。また、基板近傍まで単独で配管してある不純物ドーピングラインを用いて不純物ガスを流すことにより、任意に成長中にドーピングを行うことができる。

【0063】 Sieドーピングしながら成長を開始し、モノシラン(SiH)を約3時間、200nmol/minで供給して、Si通常ドープGaN層1102a($Si不純物濃度:3.8×10 cm³)を345 <math>\mu$ m成長させ、その後、SiHの流量を500nmol/minに変えて、Si高ドープGaN層1102b(Si不純物濃度:8.0×10 cm³)を3分間成

長させ(約 5μ mの厚さに相当)、約 350μ mのGaN厚膜を得る。このような成長条件で作製したGaNの最表面はGa終端面である。

【0064】成長後、研磨によりサファイア基板、MOCVD法によるアンドープGaN膜、SiOz膜を除去し、N終端面になるまで研磨して、GaN基板1102を得る。以上の様にして得られたGaN厚膜を基板として使用し、N終端面上にMOCVD法によりエピタキシャル成長を形成し、発光素子構造を得る。実施例1と同様に、n型GaN層1103、n型AloiGaosNクラッド層1104、n型GaN光ガイド層1105、多重量子井戸の発光層1106、p型AloiGaosNキャリアブロック層1107、p型光ガイド層1108、p型AloiGaosNクラッド層1109、p型GaNコンタクト層1110、およびp型電極1111を形成し、Ga終端面1102A上にn型電極1101を形成して、レーザ素子を得る。

【0065】得られたレーザは、室温で連続発振しなかつた。作製したGaN基板のN終端面とGa終端面にそれぞれTi/Alのn型電極を形成し、それらの特性を調べた。その結果、N終端面上のn型電極は良好なオーミック特性を示したが、Ga終端面上のn型電極はショットキー特性を示し、障壁層の存在を示唆していた。

【0066】一方、Si通常ドープ層のN終端面にn型電極(図1(a)の101)を形成した場合も、Si高ドープ層のN終端面にn型電極(図11(a)の1001)を形成した場合も、良好なオーミック特性が得られ、双方とも優れた電極特性を示す。一方、n型電極101の接触比抵抗は $3\times10^{\circ}$ $\Omega\cdot cm^{\circ}$ 程度であり、n型電極1001の場合は、 $9\times10^{\circ}$ $\Omega\cdot cm^{\circ}$ であった。したがって、Si高ドープ層のN終端面にn型電極を形成した方が接触比抵抗が小さくなるため好ましい。

【0067】また、MOCVD法によって形成されるアンドープGaN膜の代わりに不純物濃度 8×10^{18} cm ³ 程度のSi高ドープ層を形成し、該Si高ドープ層上に不純物濃度 2×10^{18} cm ³ のGaN膜を形成した。その後、GaNのN終端面が得られるまで研磨を行い、高SiドープGaN層のN終端面にn型電極を作製した。このようなプロセスを使用して得られたレーザー素 40子も、発振の閾値電圧が約5V、閾値電流密度が1.1k A/cm^2 であった。転位等の欠陥が比較的多い高ドープ領域でも、特性の良好な電極が形成されていると考えられる。

【0068】実施例4

膜厚方向に不純物ドーピング量を変化させた GaN基板を用い、レーザを作製した。図13(a)、図14(a)、図15(a)、図16(a)、図17(a)、図18(a)は、それぞれ、本実施例で使用した不純物濃度を変化させた GaN基板の断面図であり、図13

(b)、図14(b)、図15(b)、図16(b)、図17(b)、図18(b)は、各GaN基板の厚み方向の不純物濃度プロファイルを示す。

16

【0069】図13(a)の番号1302は、GaN基板(そこにおいて、素子成長方向(厚み方向)に、不純物濃度が減少する)を表し、番号1302AはN終端面表す。n電極(図示省略)はN終端面に接する。基板1302中の不純物濃度は、図13(b)に示すように、N終端面から、レーザのためのエピタキシャル成長面にむかって、直線的に減少している。

【0070】図14(a)および(b)に示すように、GaN基板1402は、不純物濃度が最も高く一定である第1GaN層1402a、素子成長方向(厚み方向)に不純物濃度が直線的に減少する第2GaN層1402b、および不純物濃度が最も低く一定である第3GaN層1402cを有する。N終端面1402Aはn型電極(図示省略)と接する。

【0071】図15(a)および(b)に示すように、GaN基板1502は、最も高い不純物濃度から厚み方向に直線的に不純物濃度が減少する第1GaN層1502b、および厚み方向に不純物濃度が最小まで直線的に減少する第三GaN層1502cを有する。n型電極(図示省略)はN終端面1502Aと接する。

【0072】図16(a) および(b) に示すように、GaN基板1602は、不純物濃度が最も高く一定である第1GaN層1602a、不純物濃度が厚み方向に減少する第2GaN層1602b、および不純物濃度が最も低く一定である第3GaN層1602cを有する。n電極(図示省略)はN終端面1602Aに接する。

【0073】図17(a) および(b) に示すように、GaN基板1702において、不純物濃度は、厚み方向に減少する。n型電極(図示省略)は、N終端面1702Aと接する。

【0074】図18(a) および(b) に示すように、 GaN基板1802において、不純物濃度は、厚み方向 に減少する。 n型電極(図示省略)はN終端面1802 Aに接する。

【0075】図13(b)、図14(b)、図15(b)、図16(b)、図17(b) および図18

(b) に示すような濃度分布をそれぞれ有する GaN基板を用いて、実施例 1 と同様にレーザ素子を作製した。その結果、良好な特性のレーザが得られ、それらの特性は、図7に示すように n型電極近傍の不純物濃度に大きく依存した。本実施例においても、表面に現れる終端原子の60%以上がN原子であるN終端面に n型電極を形成することにより、良好なレーザ特性が得られた。

【0076】実施例5

本実施例では、GaN基板中に不純物濃度の異なる複数 の領域を設けた。

รก

18

【0077】まず、図19 (a) に示すようなGaN基 板を使用した。基板1902は、図19 (b) に示すよ うな不純物濃度プロファイルを有する。N終端面190 2 A を有する G a N 基板 1 9 0 2 は、厚さ 5 μ m 程度の Si高ドープ層1902a(Si不純物濃度:8. 0× 10¹⁶ cm⁻³)、Siドープ層1902b (Si不純物 濃度:4.2×10¹¹ c m ⁻³ 、 S i 髙ドープ層 1 9 0 2 c(Si不純物濃度:8.0×10"cm⁻³)、Siド ープ層1902d(Si不純物濃度:4.2×10¹⁸ c m³)、およびSi髙ドープ層1902e (Si不純物 10 濃度:8. 0×10 cm³) から構成される。

【0078】GaN基板の調製にあたっては、H-VP E法により、n型電極と接触すべきN終端面側 (Si高 ドープ層1902a)とGa終端面側(Si高ドープ層 1902e) の少なくとも2箇所に高不純物領域を設け た。GaN基板の各層においてSi濃度は一定にした。 実施例3と同様の方法で、Ga終端面上にエピタキシャ ル成長を行い、n型GaN層、n型Ala.i Gao.s Nク ラッド層、n型GaN光ガイド層、多重量子井戸の発光 層、p型A 1 o.2 G a o.s Nキャリアブロック層、p型光 20 ガイド層、p型Alo, Gao, Nクラッド層、p型Ga Nコンタクト層、およびp型電極を形成し、N終端面上 ザは、閾値電圧が約5V、閾値電流密度が約1kA/c*

* m[']で発振し、長寿命の特性を示した。

【0079】作製したGaN基板のN終端面とGa終端 面にTi/Alのn型電極を形成し、特性を調べた。そ の結果、N終端面上のn型電極は、良好なオーミック特 性を示す一方、Ga終端面上では、ショットキー特性を 示し、障壁層の存在を示していた。

【0080】さらに、図20(a)、図21(a)、お よび図22(a)に示すGaN基板をそれぞれ使用し て、半導体レーザを作製した。図20(b)、図21 (b)、図22(b)は、それぞれ使用したGaN基板 の厚み方向における不純物濃度プロファイルを示す。 【0081】図20 (a) に示すGaN基板2002 は、不純物濃度一定の第1GaN層2002a、第1G a N層2002aより低くかつ一定の不純物濃度を有す る第2GaN層2002b、第2GaN層2002bよ り高くかつ一定の不純物濃度を有する第3GaN層20 02c、第3GaN層2002cより低くかつ一定の不 純物濃度を有する第4GaN層2002d、および第4 GaN層2002dより高くかつ一定の不純物濃度を有 する第5GaN層2002eから構成される。第1Ga N層2002aはN終端面2002Aを形成する。不純 物濃度の大小関係は、式(1)に示す通りである。

[0082]

第5GaN層2002e>第1GaN層2002a>第3GaN層2002c >第2GaN層2002b=第4GaN層2002d (式1)

図21 (a) に示すGaN基板2102は、不純物濃度 一定の第1GaN層2102a、不純物濃度一定の第2 GaN層2102b、不純物濃度一定の第3GaN層2 102 c、不純物濃度一定の第4 G a N層 2 1 0 2 d、 および不純物濃度一定の第5GaN層2102eから構※

※成される。第1GaN層2102aはN終端面2102 Aを形成する。不純物濃度の大小関係は、(式2)に示 す通りである。

[0083]

第5GaN層2102e>第1GaN層2102a>第2GaN層2002b =第4GaN層2002d>第3GaN層2002c

図22(a)に示すGaN基板2202は、不純物濃度 一定の第1GaN層2202a、素子成長方向(厚み方 向)に不純物濃度が増加する第2GaN層2202b、 不純物濃度一定の第3GaN層2202c、素子成長方 向(厚み方向)に不純物濃度が増加する第4GaN層2★

★202d、および不純物濃度一定の第5GaN層220 2eから構成される。第1GaN層2202aはN終端 面2202Aを形成する。不純物濃度の大小関係は、 (式3)に示す通りである。

[0084]

第1GaN層2202a>第3GaN層2202c>第5GaN層2202

е (式3)

図20(b)、図21(b)、および図22(b)に示 す不純物濃度分布をそれぞれ有するGaN基板を用い て、実施例1と同様にレーザ素子を作製した。得られた レーザ素子は良好な特性を示した。本実施例に使用した 基板はSi高ドープ層を3層含んでいるが、基板の両端 面にSi高ドープ層を有していれば、本実施例とほぼ同 様な効果を奏することができる。したがって、Si高ド ープ層が2層でも、4層以上であっても構わない。G a N基板において、n型電極と接触すべきN終端面を形成 する部分は、他の部分より高いn型不純物濃度を有して 50 としてGeを使用した。

いることが好ましいが、最も高い不純物濃度を有してい る必要はない。好ましい特性を得るため、N終端面を形 成する部分より低い不純物濃度を有する部分が基板中に 少なくとも1つあればよい。適当に高い不純物濃度を有 するN終端面上にn型電極を形成することにより好まし い特性を有するレーザ素子が得られる。

【0085】実施例6

本実施例では、n型伝導特性を示すGaN基板を成長さ せる際、G a N基板のN終端面を形成する部分の不純物

【0086】まず、実施例1と同様に、H-VPE法に よりGaN厚膜の成長を始めると同時に、SiHiとゲ ルマニウム (Ge) を所定量導入し、合計350μmの 厚みの所定の不純物濃度分布を有する n型G a N厚膜を 作製した。成長後、研磨によりサファイア基板、MOC V D法によるアンドープG a N膜、S i Oz 膜を除去 し、N終端面が出るまで研磨してGaN基板を得た。該 基板を用いて、実施例1と同様に、Ga終端面側にレー ザ構造およびp電極を形成し、N終端面上にn型電極を 形成して、レーザを得た。得られたレーザは室温で連続 10 発振した。また、その閾値電圧および閾値電流密度は、 それぞれ6 V程度、1.8 k A/c m²程度であった。 【0087】比較例3

実施例6と同様にH-VPE法によりGaN厚膜を成長 させた。GaN厚膜の成長中、SiHiとゲルマニウム (Ge) を所定量導入し、合計350 μmの厚みの所定 の不純物濃度分布を有するn型GaN厚膜を作製した。 厚膜形成において、Ga終端面側にSiおよびGeの高 ドープ層を作り込んだ。実施例6と同様に研磨を行いG a N基板を得た。得られた Ga N基板の Ga 終端面に n 型電極を作製し、GaN基板のN終端面に素子構造をエ ピタキシャル成長させてレーザを得た。得られたレーザ 構造物は、室温で連続発振しなかった。これは、比較例 1と同様に、障壁層が存在することにより、電極がショ ットキー特性を有するためであると考えられた。

【0088】実施例7

実施例3のように不純物濃度を変化させた。H-VPE 法によりGaN厚膜の成長を開始するとともに、SiH √を所定量導入し、さらに成長開始から3分間、Geを 導入した。こうして、SiおよびGeを含む不純物濃度 30 の高い第1領域を形成した後、Geの供給を停止し、S i H. のみを所定量導入して第1領域より不純物濃度の 低い第2領域を形成した。合計350 μm厚みの所定の 不純物濃度分布を有するn型GaN厚膜を作製した。そ の後、研磨により得られたGaN基板をMOCVD装置 に導入し、実施例3と同様に、Ga終端面側にエピタキ シャル成長を行い、N終端面にn型電極を形成して、レ ーザ素子を作製した。GaN基板の第1領域と第2領域 の不純物濃度の関係は、第1領域>第2領域である。

【0089】このようにして得られたレーザ素子の閾値 40 電圧および閾値電流密度は、それぞれ5V程度、1.0 k A/c m²程度という低い値であった。このように n 型不純物としてSiだけでなくGeも使用できることが わかる。また、Oもn型不純物として利用でき、実際効 果を確認している。具体的には、H-VPE法におい て、HC1ガスに含まれるO量を調整したり、GaN成 長中に酸素ガスを流して膜中に〇を導入することができ る。

【0090】実施例8

BE) 法によりN終端面に変え、その上にn型電極を形 成した。本実施例によるレーザ素子の構造を図24に示 す。GaN基板2402の一方の主面2402A上にp 型電極2401が形成されている。 p型電極2401と 接する主面2402AはGa終端面である。GaN基板 2402の他方の主面上には、p型GaN層2403、 p型A 1 e. G a e. N クラッド層 2 4 O 4 、 p型 G a N 光ガイド層2405、多重量子井戸の発光層2406、 n型A 1 o.z G a o.s Nキャリアプロック層 2 4 0 7、 n 型GaN光ガイド層2408、n型Alou Gaos Nク ラッド層2409、n型GaNコンタクト層2410、 およびn型電極2411が順に形成されている。GaN 系半導体層の最上層であるn型GaNコンタクト層24 10は、N終端面2410Aを有しており、その上にn 型電極2411が形成されている。以下、この半導体レ ーザの製造プロセスについて説明する。

20

【0091】まず、実施例1と同様に、洗浄した(00 01) 面を有するサファイア基板上に、MOCVD法に より 3μ mの厚さのアンドープGaN膜を成長させ、そ の上にストライプ状の成長抑制膜を形成する。次いで、 ストライプ状の成長抑制膜で部分的に覆われたアンドー プGaN下地膜を有するサファイア基板を、H-VPE 装置内に導入する。NzキャリアガスとNHzを、それぞ れ5L/min流しながら、基板の温度を約1050℃ まで昇温させる。その後、基板上にGaClを100c c/min導入してGaN厚膜の成長を開始する。Ga C 1 は 8 5 0 ℃に保持された G a 金属に H C 1 ガスを流 すことにより生成される。また、基板近傍まで単独で配 管してある不純物ドーピングラインを用いて不純物ガス を流すことにより、任意に成長中にドーピングを行うこ とができる。GaNの成長を開始すると同時に、Cpz Mgを90nmol/min供給して、MgドープGa N層 (Mg不純物濃度: 9. 5×10¹⁸ cm³)を成長 させ、計3時間の成長で350μmのGaN厚膜を得 る。このような成長条件でつくったGaNの最表面はG a終端面である。

【0092】成長後、研磨によりサファイア基板、MO CVD法によるアンドープGaN膜、SiOz膜を除去 し、N終端面が出るまで研磨して、GaN基板を得る。 得られた基板上に、以下のとおり、MOCVD法によっ て発光素子構造を成長させる。まず、基板をMOCVD 装置内に導入し、NzとNHzをそれぞれ5L/min流 しながら1050℃まで昇温する。温度が上がればキャ リアガスをN₂からH₂に代えて、TMGを100μmo l/min、CpzMgを10nmol/min導入し て、p型GaN層を4μm成長させる。その後、TMG の流量を50μmol/minに調整し、TMAを40 μmol/min導入して、p型AlonGaos Nクラ ッド層を 0. 5 μ m の厚さで成長させる。 A l a. G a 本実施例では、GaN成長面を分子線エピタキシー(M 50 o.s Nの成長が終了すると、TMAの供給を停止し、T

MGを100μmol/minに調整して、p型GaN 光ガイド層を 0. 1 μ mの厚さになるように成長させ る。その後、TMG、CpzMgの供給を停止して、キ ャリアガスをH₂からN₂に再び代えて、700℃まで降 温し、インジウム原料であるトリメチルインジウム (T MI) &10μmol/min、TMG&15μmol /min導入し、Ino. os Gao.ss Nよりなる4nm厚 の障壁層を成長させる。その後、TMIの供給量を50 μmol/minに増加し、Inoz Gaos Nよりなる 2 nm厚の井戸層を成長させる。井戸層は合計 3層、同 様の手法で成長させ、井戸層と井戸層との間および両側 に合計 4 層の障壁層が存在するような多重量子井戸 (M QW)の発光層を成長させる。MOWの成長が終了する と、TMIおよびTMGの供給を停止して、再び105 O℃まで昇温し、キャリアガスを再びN₂からH₂に代え T、TMGを50μmol/min、TMAを30μm ol/min、n型ドーピング原料であるSiH.を3 nmol/min流し、20nm厚のn型Aloz Ga 0.8 Nキャリアブロック層を成長させる。キャリアブロ ック層の成長が終了すると、TMAの供給を停止し、T 20 MGの供給量を100μmol/minに調整して、 0. 1 μmの厚さの n型 G a N光ガイド層を成長させ る。その後、TMGの供給を50μmol/minに調 整し、TMAを40μmol/min導入し、0.4μ m厚のn型Alon Gaos Nクラッド層を成長させ、最 後に、TMGの供給を100μmol/minに調整し て、TMAの供給を停止し、0. 1 μm厚のn型GaN コンタクト層110の成長を行い、発光素子構造の成長 を終了する。成長が終了すると、TMGおよびSiHィ の供給を停止して降温し、室温で基板をMOCVD装置 より取り出す。

【0093】次に、GaN基板をMBE装置に導入し、基板の温度を600℃まで上げる。N源となる高周波 (RF) 励起 N_2 プラズマの出力を350W、流量を3 cc/minとし、<11-20>方向のRHEEDパターンがストリーク状になるように、Gaセル温度 (910℃前後)、およびSiセル温度を調整する。そして、N/Ga比を大きくし、Nリッチ条件でGaN の成長を行い、N終端面を有するSiドープGaN 層をたい、Nを分と、Nの成長させる。RHEED 観察により、300 ℃以上で 1×1 パターンを示し、それが、250 ℃前後で 3×3 パターン、200 ℃で 6×6 パターンに変化すれば、成長面は N終端面であると判断できる。その後、得られたN終端面であると判断できる。また、N8終端面が出るまで 研磨したGaN基板の下地面をさらに研磨して、Ga終端面を露出させる。得られた新しい下地面上に P型電極を形成する。

【0094】このようにして得られたレーザ素子は、 4.8 Vの発振閾値電圧を有した。かくして、基板以外 でも、本発明によりGaN層のN終端面上にn型電極を 50 形成すれば、良好な特性を有する電極を形成できることがわかった。本実施例においても、表面に現れる終端原子の60%以上がN原子であるN終端面にn型電極を形成することによる効果が現れている。

22

【0095】代わりに、H-VPE法、MOCVD法、あるいはMBE法により、基板の窒化、バッファ層のアニール等の操作を行って、極性を制御することもできる。この場合も、上述と同様にN終端面上に形成したn電極の接触比抵抗を小さくすることができる。

【0096】図25は、本発明に使用する基板中の好ま しい不純物濃度を示している。本発明において、基板中 の好ましい不純物濃度は、第1領域内(1×10"cm 以上1×10²¹ cm⁻³ 以下) である。この範囲で、低 い接触比抵抗、低い閾値電圧および低い閾値電流密度を 得ることができる。第2領域は、より好ましい不純物濃 度範囲(1×10¹¹ c m⁻³ 以上1×10¹¹ c m⁻³ 以下) である。第1領域よりも第2領域の方が好ましい理由 は、図8に示す不純物濃度と閾値電流密度の関係を参照 すると理解できる。図8をみると、第1領域の不純物濃 度1×10²¹ c m⁻³ 以下で確かに閾値電流密度が低減し ているものの、第2領域の不純物濃度すなわち1×10 cm³ 以下であればさらに閾値電流密度が低くなって いる。図25に示す第1領域と第11領域は、第1領域 を2分割して得られる不純物濃度範囲である。第1領域 は3×10¹¹ cm⁻³以上1×10²¹ cm⁻³以下、第11 領域は1×10" c m 3以上3×10" c m 3以下の不 純物濃度範囲である。本発明において、窒化物半導体基 板は、平均不純物濃度が第Ⅰ領域にある第1の部分と平 均不純物濃度が第 1 1 領域にある第2の部分とからなる ことが好ましい。第1の部分はN終端面を形成すること が好ましく、n型電極は、第1の部分のN終端面上に形 成されることが好ましい。また、第2の部分上に半導体 素子たとえば発光素子のためのエピタキシャル層を形成 することが好ましい。以下、窒化物基板を不純物濃度の 異なる第1の部分と第2の部分とに分ける理由および意 義について説明する。

【0097】図10に示す不純物濃度と接触比抵抗との関係を参照すると、不純物濃度が $1 \times 10^{\circ}$ cm 3 のとき接触比抵抗が $1 \times 10^{\circ}$ $\Omega \cdot \text{cm}^{2}$ となり、さらに不純物濃度が $3 \times 10^{\circ}$ cm 3 以上になると接触比抵抗が約5×10 $^{\circ}$ $\alpha \cdot \text{cm}^{3}$ 以上になると接触比抵抗が約5×10 $^{\circ}$ $\alpha \cdot \text{cm}^{3}$ まで低くなっている。ところが、図7に示す不純物濃度と閾値電圧との関係を参照すると、不純物濃度が $1 \times 10^{\circ}$ cm 3 でも3×10 $^{\circ}$ cm 3 でも固値電圧はほとんど同じであった。つまり、図10で見られた接触比抵抗の低減効果が、図7の閾値電圧には反映されなかったと考えられる。不純物が $1 \times 10^{\circ}$ cm 3 以上にすることがの間に中間生成物を形成し低接触比抵抗を得るために、不純物濃度を $1 \times 10^{\circ}$ cm 3 以上にすることが

23 好ましい(図10)。一方、窒化物半導体基板全体にお いて高濃度の不純物 (3×10" cm⁻³以上) を添加す ると結晶性悪化に伴う電気抵抗の増大が生じ、その結 果、図10に示す低接触比抵抗の効果が低閾値電圧に反 映されなくなると考えられる。さらに、3×10 cm 以上で不純物を窒化物半導体基板に添加すると、図8 に示す不純物濃度と閾値電流密度の関係から、不純物濃 度が5×10゜cm³までは閾値電流密度は約1kA/ c m² であるが、不純物濃度が 1 × 1 0¹⁹ c m⁻³ 以上に なると閾値電流値が増大し始めることがわかる(図9の 10 不純物濃度と表面粗さとの関係についても同じであ る)。このように不純物濃度を高くしていけば接触比抵 抗は低くなるが、閾値電流は逆に増大するようになる。 【0098】本発明者らは、このジレンマを、窒化物半 導体基板を異なる不純物濃度を有する2以上の層で構成 することにより、解決できることを見出した。具体的に は、n型窒化物基板を、n型電極と接すべきN終端面を 有する第1の層と、その上に素子構造を形成すべき第2 の層とから構成し、第2の層の平均不純物濃度を第1の 層の平均不純物濃度より低くする。さらに、第1の層の 平均不純物濃度は3×10¹¹ cm³ 以上とすることがで きる。第1の層の平均不純物濃度の範囲については特に 制約は無いが、図8の結果から推測すると、3×10¹⁸ cm³~1×10ⁿ cm³ が好ましく、3×10ⁿ cm 「~1×10" cm がより好ましい。第2の層の平均 不純物濃度は 3×10^{18} c m⁻³ 以下とすることができ る。第2の層の平均不純物濃度の範囲についても特に制 約は無いが、図7および図8の結果から推測すると、1 ×10¹⁷ cm⁻³ ~3×10¹⁸ cm⁻³ が好ましい。ここ で、平均不純物濃度は、ある層に添加された不純物濃度

【0099】上記第10層の厚さは、 0.05μ m以上 50μ m以下とすることができ、好ましくは 0.05μ m以上 10μ m以下である。第10層の厚さが、 0.05μ m以上 10μ m以下である。第10月の厚さが、 0.05μ m以上 10μ m以下である。第10月の厚さが、 10μ m以下形成されず、接触比抵抗が高くなり得る。一方、第100層の厚さが 10μ m以下自身であると、不純物が添加された事による表面粗さが大きくなり(図9参照)、このことが光導波路による損失を大きくして閾値電流密度の増大を促し得る(図 10μ m以下にすることによって、閾値電流密度の値を、図 10μ m以下にすることによって、閾値電流密度の値を、図 10μ m以下にすることによって、閾値電流密度の値を、図 10μ m以下にすることができる。

の総和をその層厚で割った値として定義される。好まし

くは、窒化物半導体基板において、第2の層は、第1の

層以外の部分である。

【0100】本発明において、n型不純物には、Si、O、Cl、S, Se、またはTeを好ましく使用できる。特にSi、OまたはClを用いると、n型窒化物半導体基板を容易に得ることができる。上記不純物のうち複数種が、窒化物半導体基板に同時に添加されても構わ 50

ない。添加した全不純物の平均不純物濃度は、第1の層において 3×10 ° c m 3 以上 1×10 ° c m 3 以下、好ましくは 3×10 ° c m 3 以上 1×10 ° c m 3 以上 1×10 ° c m 3 以上 3×10 ° c m 3 以上 3×10 ° c m 3 以下とすることができる。以下、実施例により本発明をさらに詳細に説明する。

24

【0101】実施例9

図26に示すように、本実施例による窒化物半導体発光 素子(レーザダイオード素子)は、n型電極3001、 窒化物半導体基板 (例えばGaN基板) 3002、n型 GaN層3003、n型Alon Gaoo Nクラッド層3 004、n型GaN光ガイド層3005、多重量子井戸 の発光層3006、p型Alo.2 Gao.8 Nキャリアブロ ック層3007、p型GaN光ガイド層3008、p型 Alon Gaos Nクラッド層3009、p型GaNコン タクト層3010、およびp型電極3011から構成さ れる。基板3002は、高ドープGaN層3002a (その平均不純物濃度範囲は図25に示す第1領域にあ る) および低ドープ GaN 層 3002b (その平均不純 物濃度範囲は図25に示す第11領域にある)からな る。 n型電極3001は、基板3002のN終端面30 02 A上に形成されている。平均不純物濃度は、当該層 に添加された不純物濃度の総和をその層厚で割った値で

【0102】本実施例の特徴は、窒化物半導体基板3002を構成している高ドープGaN層3002aと低ドープGaN層3002bの平均不純物濃度が、それぞれ図25に示す第I領域と第II領域に属していること、n型電極が高ドープGaN層3002aのN終端面3002Aに接していること、および発光素子構造が低ドープGaN層3002bに接していることである。

【0103】3×10¹⁶ cm³ 以上の平均不純物濃度を有する高ドープGaN層3002aは、十分な中間生成物を形成することができ、その結果、高ドープGaN層3002aとn型電極3001との間の接触比抵抗は小さくなる。一方、3×10¹⁶ cm³ 以下の平均不純物濃度を有する低ドープGaN層3002b上に発光素子構造を形成することにより、低い閾値電流密度と低い閾値電圧をもたらすことができる。

【0104】本実施例によるレーザ素子は、実施例 $1\sim 8$ の閾値(例えば、閾値電圧5V、閾値電流密度1.2 k $A/c m^2$)よりもさらに低い閾値電流密度 $(0.8 k A/c m^2)$ および低い閾値電圧(4.4V) をもたらした。

【0105】実施例10

本実施例は、窒素化合物半導体基板が、異なる不純物濃度を有する4つの領域から構成されていること以外は実施例9と同様である。図27は、窒素化合物半導体基板の不純物濃度分布を示している。これら4つの領域をn型電極を形成する面側から順に、A領域、B領域、C領

域およびD領域と呼ぶ。n型電極(図示省略)は、A領域に接する。n型電極と接するA領域の面は、N終端面である。ここで、A領域とB領域の平均不純物濃度は図25に示す第I領域にあり、C領域とD領域の平均不純物濃度は、図25に示す第II領域にある。

【0106】この窒素化合物半導体基板を用いた発光素 子は、実施例9と同様の効果をもたらした。

【0107】実施例11

本実施例は、不純物濃度が厚み方向において連続的に変化している窒素化合物半導体基板を使用した以外は、実施例9と同様である。図28は、窒素化合物半導体基板中で連続的に変化する不純物濃度分布を示している。図28に示される連続的な不純物濃度のプロファイルは2つの領域に分割することができる。これらの領域は、n型電極を形成する面側から順に、A領域、B領域と呼ぶ。A領域に接するようにn型電極は形成される。n型電極と接するA領域の面は、N終端面である。A領域の平均不純物濃度は、図25に示す第I領域にあり、B領域の平均不純物濃度は、図25に示す第I領域にあ

【0108】この窒素化合物半導体基板を用いた発光素 子は、実施例9と同様の効果をもたらした。

【0109】 実施例12

本実施例は、窒素化合物半導体基板が、図29に示すように異なる不純物濃度を有する5つの領域から構成されていること以外は、実施例9と同様である。図29は、使用した窒素化合物半導体基板における不純物濃度分布を示している。これらの不純物濃度の領域を、n型電極を形成する面側から、A領域、B領域、C領域、D領域おびE領域と呼ぶ。A領域のN終端面に接するようにn型電極(図示省略)が形成される。A領域、B領域およびD領域の不純物濃度は、図25に示す第I領域に該当する。C領域およびE領域の不純物濃度は、図25に示す第II領域に該当する。

【0110】A領域とB領域の膜厚の総和は 50μ mである。また、A領域およびB領域の平均不純物濃度は、図25に示す第 I 領域にはいる。かくして、A領域とB領域を合わせた部分は、接触比抵抗を低減する効果をもたらす。一方、C領域(層厚 30μ m、不純物濃度 2×10^{18} cm³)、D領域(層厚 20μ m、不純物濃度 5×10^{18} cm³)およびE領域(層厚 60μ m、不純物濃度 1×10^{18} cm³)を合わせた部分の平均不純物濃度は、各領域の不純物濃度とそれらの層厚の合計とから 2×10^{18} cm³ と見積もることができる。この値は、図25に示す第 I I 領域に属する。かくして、C領域、D領域およびE領域を合わせた部分は、関値電圧と関値電流密度を低減させる効果をもたらす。

【0111】この窒素化合物半導体基板を用いた発光素 子は、実施例9と同様の効果をもたらした。

fは、実施例9と同様の効果をもたらした。 【0112】上述したように、窒化物半導体基板の、n 50 26

型電極に接する第1の領域と、素子構造に接する第2の領域とにおいて、それぞれ不純物濃度は変化していてしまい。また、第1の領域の平均不純物濃度が3×10 cm 以上であれば、第1の領域の中で3×10 cm より低い不純物濃度を有する部分が存在してもよい。 第2の領域の平均不純物濃度が3×10 cm とらに、第2の領域の平均不純物濃度が3×10 cm より高い不純物濃度を有する複数の部分を合わせた領域に関する不純物濃度を有する複数の部分を合わせた領域に関する領域に属する領域に属する領域に属する領域に属する領域に属する領域に関連を効果的に低減することができる。一方、異なる不純物濃度が図25に示す第1日領域に属する領域は、受度を有する複数の部分を合わせた領域に関し、平均に低減することができる。

【0113】以上の実施例1~実施例12により、半導体レーザダイオード素子について説明したが、発光ダイオード素子についても本発明を適用することができる。 20 本発明を発光ダイオード素子に適用した場合、低い接触比抵抗、低い動作電圧、表面粗さの低減に伴う発光色の色むらの防止、または発光強度の向上を効果的にもたらすことができる。

[0114]

【発明の効果】以上に示すように、本発明によれば、閾値電圧および閾値電流密度が低く、かつ長寿命の窒化物半導体素子、特に G a N系化合物半導体発光素子を歩留まり良く供給できる。

【図面の簡単な説明】

【図1】 (a)および(b)は、実施例1において作製された半導体レーザの断面図および基板厚み方向の不純物濃度プロファイルを示す図である。

【図2】 (a) および(b) は、比較例1において作製された半導体レーザの断面図および基板厚み方向の不純物濃度プロファイルを示す図である。

【図3】 GaN基板のN終端面またはGa終端面に蒸著されたn型電極のパターンを示す平面図である。

【図4】 GaN基板のN終端面に蒸著されたn型電極の電流一電圧特性を示す図である。

【図5】 GaN基板のGa終端面に蒸著されたn型電極の電流一電圧特性を示す図である。

【図6】 GaN厚膜を成長させる際のSiHi供給量と、形成される膜中に含まれる不純物濃度との関係を示す図である。

【図7】 GaN基板中の不純物濃度と、該GaN基板を使用したレーザの閾値電圧との関係を示す図である。

【図8】 GaN基板中の不純物濃度と、該GaN基板を使用したレーザの閾値電流密度との関係を示す図である。

【図9】 GaN基板中の不純物濃度と、該GaN基板

の表面粗さとの関係を示す図である。

【図10】 GaN基板中の不純物濃度と、n型電極の接触比抵抗との関係を示す図である。

【図11】 (a) および(b) は、実施例3において作製された半導体レーザの断面図および基板厚み方向の不純物濃度プロファイルを示す図である。

【図12】 (a) および(b) は、比較例2において作製された半導体レーザの断面図および基板厚み方向の不純物濃度プロファイルを示す図である。

【図13】 (a) および(b) は、実施例4で使用し 10 たGaN基板の概略断面図、および該基板中の不純物濃度プロファイルを示す図である。

【図14】 実施例4で使用したもう一つのGaN基板の概略断面図、および該基板中の不純物濃度プロファイルを示す図である。

【図15】 実施例4で使用した他のGaN基板の概略 断面図、および該基板中の不純物濃度プロファイルを示 す図である。

【図16】 実施例4で使用した他のGaN基板の概略 断面図、および該基板中の不純物濃度プロファイルを示 20 す図である。

【図17】 実施例4で使用した他のGaN基板の概略 断面図、および該基板中の不純物濃度プロファイルを示 す図である。

【図18】 実施例4で使用した他のGaN基板の概略 断面図、および該基板中の不純物濃度プロファイルを示 す図である。

【図19】 実施例5で使用したGaN基板の概略断面図、および該基板中の不純物濃度プロファイルを示す図である。

【図20】 実施例5で使用したもう一つのGaN基板の概略断面図、および該基板中の不純物濃度プロファイルを示す図である。

【図21】 実施例5で使用した他のGaN基板の概略 断面図、および該基板中の不純物濃度プロファイルを示 す図である。

【図22】 実施例5で使用した他のGaN基板の概略 断面図、および該基板中の不純物濃度プロファイルを示 す図である。

【図23】 種基板の(0001)面上に成長したGaNのGa終端面とN終端面の関係を示す模式図である。

【図24】 実施例8において作製されたレーザ素子の 概略断面図である。

【図25】 本発明に使用される基板中の不純物濃度範囲について説明するための図である。

【図26】 実施例9の窒素化合物半導体発光素子を示す概略断面図である。

【図27】 実施例10で使用された窒素化合物半導体 基板の不純物濃度分布を示す図である。

【図28】 実施例11で使用された窒素化合物半導体 50

基板の不純物濃度分布を示す図である。

【図29】 実施例12で使用された窒素化合物半導体 基板の不純物濃度分布を示す図である。

【符号の説明】

101 n型電極、102 GaN基板、102A N 終端面、103 n型GaN層、104 n型Aler Gao.s Nクラッド層、105 n型GaN光ガイド 層、106 多重量子井戸の発光層、107 p型A1 n.z Gan.s Nキャリアブロック層、108 p型GaN 光ガイド層、109 p型Ala, Gaa, Nクラッド 層、110 p型GaNコンタクト層、111 p型電 極、201 n型電極、202 GaN基板、202A Ga終端面、203 n型GaN層、204 n型A lo. Gao. Nクラッド層、205 n型GaN光ガイ ド層、206 多重量子井戸の発光層、207 p型A 1 o.z G a o.s Nキャリアブロック層、208 p型G a N光ガイド層、209 p型A lo.1 G ao.9 Nクラッド 層、210 p型GaNコンタクト層、211 p型電 極、301 n型電極、302 GaN基板、1001 n型電極、1002 GaN基板、1002A N終 端面、1002a Si高ドープGaN層、1002b SiドープGaN層、1003 n型GaN層、10 04 n型Alo.1 Gao.9 Nクラッド層、1005 n 型GaN光ガイド層、1006 多重量子井戸の発光 層、1007 p型Aloz Gaos Nキャリアブロック 層、1008 p型GaN光ガイド層、1009 p型 Alan Gaas Nクラッド層、1010 p型GaNコ ンタクト層、1011 p型電極、1101 n型電 極、1102 GaN基板、1102A N終端面、1 102a SiドープGaN層、1102b Si高ド ープGaN層、1103 n型GaN層、1104 n 型Alan Gaas Nクラッド層、1105 n型GaN 光ガイド層、1106 多重量子井戸の発光層、110 p型A lo.2 G ao.s Nキャリアブロック層、110 8 p型GaN光ガイド層、1109 p型Alo, G aos Nクラッド層、1110 p型GaNコンタクト 層、1111 p型電極、1302 厚み方向に不純物 濃度が減少するGaN基板、1302A N終端面、1 402 GaN基板、1402A N終端面、1402 a 不純物濃度一定のGaN層、1402b 厚み方向 に不純物濃度が減少するGaN層、1402c 不純物 濃度一定のGaN層、1502 GaN基板、1502 A N終端面、1502a 厚み方向に不純物濃度が減 少するGaN層、1502b 不純物濃度一定のGaN 層、1502c 厚み方向に不純物濃度が減少するGa N層、1602 GaN基板、1602A N終端面、 1602a 不純物濃度一定のGaN層、1602b 厚み方向に不純物濃度が減少するGaN層、1602c 不純物濃度一定のGaN層、1702 GaN基板、 1702A N終端面、1802 GaN基板、180

2A N終端面、1902 GaN基板、1902A N終端面、1902a Si高ドープGaN層、190 2b SiドープGaN層、1902c Si高ドープ GaN層、1902d SiドープGaN層、1902 Si高ドープGaN層、2002 GaN基板、2 002A N終端面、2002a, 2002b, 200 2c, 2002d, 2002e 不純物濃度一定のGa N層、2102 GaN基板、2102A N終端面、 2102a, 2102b, 2102c, 2102d, 2 102e 不純物濃度一定のGaN層、2202 Ga N基板、2202AN終端面、2202a 不純物濃度 一定のGaN層、2202b 不純物濃度ドープGaN 層、2202c 不純物濃度一定のGaN層、2202 d 不純物ドープGaN層、2202e 不純物濃度一 定のGaN層、2301 種基板、2302 バッファ 層、2303 GaN基板、2303a Ga終端面、 2303b N終端面、2304 Ga原子、2305 N原子、2401 p型電極、2402 GaN基

*板、2402A 主面、2403 p型GaN層、24 04 p型A la. Gaas Nクラッド層、2405 p 型 G a N 光 ガ イ ド 層、 2 4 0 6 多 重 量 子 井 戸 の 発 光 層、2407 n型Aloz Gaos Nキャリアブロック 層、2408 n型GaN光ガイド層、2409 n型 Alou Gaos Nクラッド層、2410 n型GaNコ ンタクト層、2410A N終端面、2411n型電 極、3001 n型電極、3002 窒化物半導体基板 (例えばGaN基板)、3003 n型GaN層、30 10 04 n型Ala, Gaas Nクラツド層、3005 n 型GaN光ガイド層、3006 多重量子井戸の発光 層、3007 p型A lo.2 G ao.8 Nキャリアブロック 層、3008 p型GaN光ガイド層、3009 p型 A lo., Gao., Nクラツド層、3010 p型GaNコ ンタクト層、3011 p型電極、3002A N終端 面、3002a 高ドープGaN層、3002b 低ド ープGaN層。

【図1】

新! 領域: 実施の影響7で収明した異なる不純物層度領域 のうち、n型電優を形成する側の不純物資度範囲 第11領域: 実施の形態7で説明した異なる不純物遺度領域 のうち、発光素子構造を形成する側の不純物遺皮範囲

【図27】

[図28]

[図29]

フロントページの続き

(72)発明者 湯浅 貴之

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 上田 吉裕

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 荒木 正浩

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 種谷 元隆

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内