

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India

(Autonomous College Affiliated to University of Mumbai)

End Semester Examination-August 2023

Max. Marks: 100 Class: T. Y. B. Tech

Course Code: IT303

Name of the Course: Foundation of Signal Processing

Duration: 3hrs Semester: VI

Branch: Computer/IT

Instruction:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

(4) If answers of explain or discuss are identical or appears to be copied, NO student gets marks for those questions

Q. No.		Marks	CO
Q. 1 (a)	State and Derive Sampling Theorem	10	COI
	For an analog signal $x(t) = 3 \cos(50 \Pi t) + 10 \sin(300 \Pi t) - \cos(100 \Pi t)$.		
	Obtain DT signal x[n] and Calculate first 10 samples of x[n] sampled at 1000 Hz.		
Q. 1 (b)	Let $h(n) = \left(\frac{1}{5}\right)^n for n = 0, 1, 2, 3$	10	COI
	Find the response of the system when input $x(n) = u(n)$.		
Q. 2 (a)	Given $x(n) = \{1, 0, 2, 0, 3, 0, 4, 0\}$. Find 8 Point $X[k]$.	10	CO2
	Let $p[n] = \{1, 1, 2, 2, 3, 3, 4, 4\}$. Find $P[k]$ in terms of $X[k]$.		
Q. 2 (b)	Derive the DFT of the sample data sequence $x(n) = \{1, 1, 2, 2, 3, 3\}$ and	10	CO
	compute the corresponding amplitude and phase spectrum		
	(OR)		
	The first five DFT points of real and even sequence x(n) of length eight are given		
	below. Find the remaining three points $X(k) = \{5, 1, 0, 2, 3,\}$. Thus find the		
	Inverse DFT of the sequence.		
Q. 3 (a)	$x(n) = \{10, 20, 30, 40\}, \text{ find DFT } X[k].$	10	CO
	Using results obtained above, and not otherwise, find the DFT of the following		
	sequences		
	$x_1[n] = \{40, 10, 20, 30\}$ $x_2[n] = \{20, 30, 40, 10\}$		
	$x_3[n] = \{30, 40, 10, 20\}$ $x_4[n] = \{60, 40, 60, 40\}$		

1		10	CO2
Q. 3 (b)	Obtain the DFT of the the following using DIT-FFT {1, 2, 1, 2, 0, 2, 1, 2}	10	CO2
//			
Q. 4 (a)	Obtain Circular Convolution of $x[n] = \{1, 2, 2, 1\}$ and $h[n] = \{2, 1, 1, 2\}$ using	10	CO3
(FFT		
	(OR)		
	Use DFT to compute the linear convolution of the signals given below		
	$x_1[n] = \delta(n) - 1\delta(n-1) + \delta(n-2)$		
	$x_2[n] = \delta(n-2) + 2 \delta(n) + 2 \delta(n-1)$		
Q. 4 (b)	A 2^{nd} order Low Pass FIR filter has causal impulse response $h[n] = \{12, 3\}$.	10	CO3
	Determine the output sequence response to the following input sequence using		
	Overlap Add Method.		
	Given input sequence: $x[n] = \{10, 20, 10, 40, 30, 20, 30, 25, 10, 10, 20, 10\}$		
	1, 20, 20, 10, 20, 10,		
Q. 5 (a)	A real-time Audio signal handlimited to 2400 Hz :		
(u)	A real-time Audio signal bandlimited to 3400 Hz is required to be processed for	10	CO4
	noise filtering using a fast Algorithm.		
	(a) Draw block diagram of the complete DSP system. Explain the purpose and		
	working of each block.		
	(b) Write Algorithms/Flowchart to address the problem.		
Q. 5 (b)	Calculate Carl Pearson's Coefficient of Correlation of the following Discrete Time	10	COL
	signals. Also comment on the type of correlation.	10	CO4
	and the gipe of confendion.		
	$x_1[n] = 10 \delta(n) - 13 \delta(n-1) - 16 \delta(n-2)$		
	$x_2[n] = 40 \delta(n-2) - 60 \delta(n) - 40 \delta(n-3)$		
			- 1

* * *