3-03125-R1

Gas concentration measuring apparatus comp nsating for error component of output signal

Patent Number:

FP1202048

Publication date:

2002-05-02

Inventor(s):

HADA SATOSHI (JP); KUROKAWA EIICHI (JP); NIWA MITSUNOBU (JP);

SUZUKI TOSHIYUKI (JP)

Applicant(s):

DENSO CORP (JP)

Application

Number:

EP20010125865 20011030

Priority Number

JP20000333319 20001031; JP20010204728 20010705

IPC Classification: G01N27/407; G01N27/419

EC Classification: G01N27/419

Equivalents:

US2002050455

Cited Documents:

Abstract

A gas concentration measuring apparatus is provided which includes a gas concentration sensor consisting of a pump cell, a sensor cell, and a monitor cell. The pump cell works to determine the concentration of O2. The sensor cell works to decompose an oxygen containing gas such as NOx and provide an output indicative of the concentration of NOx. The apparatus also includes an applying voltage determining circuit which looks up a predetermined voltage-to-current relation to determine a target voltage to be applied to the pump cell as a function of the current produced by the pump cell so as to preclude the pump cell from decomposing the oxygen containing gas component, thereby minimizing an error in determining the concentration of oxygen containing gas as a function of the

output of the sensor cell.

Data supplied from the esp@cenet database - 12

			4
	• • • •		કર્યું કર્યું
			*

	* * *		, 6
	;		. उर्व स्था रहु
	*		
		× , **	
		** ** ** ** ** ** ** ** ** ** ** ** **	
		e Sad	V 102
		e de la companya de	
· · · · · · · · · · · · · · · · · · ·			
	*		
		e d	
		*,	
		* * *	
	*		-
•			
	•		
and the second s		• • •	

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-202285

(P2002-202285A)

(43)公開日 平成14年7月19日(2002.7.19)

	FΙ	テーマコード(参考)		
(51) Int.Cl. ⁷ G 0 1 N 27/416 27/419	識別記号	G01N 27	/46 3 3 1 3 2 7 R 3 2 7 C 3 2 7 E 3 2 7 G	
		審查請求	未請求 請求項の数29 OL (全 24 頁)	
(21)出願番号	特顏2001-204728(P2001-204728)	(71) 出顧人	000004260 株式会社デンソー	
(22)出顧日	平成13年7月5日(2001.7.5)	(72)発明者	愛知県刈谷市昭和町1丁目1番地 黒川 英一	
(31) 優先権主張番号 特願2000-333319(P2000-333319) (32) 優先日 平成12年10月31日(2000.10.31) (33) 優先権主張国 日本(JP)	(72)発明者	爱知県刈谷市昭和町1丁目1番地 株式会		
		(74)代理人	社デンソー内 100068755 弁理士 恩田 博宜 (外1名)	
		,	最終頁に続く	

(54) 【発明の名称】 ガス濃度検出装置

(57)【要約】

【課題】被検出ガス中の特定ガス成分の濃度を精度良く 検出すること。

【解決手段】ガス濃度センサ100は、第1チャンパー144に導入した排ガス中の酸素を排出又は汲み込むポンプセル(第1セル)110と、該ポンプセル110を通過した後のガスからNOx濃度を検出するためのセンサセル(第2セル)130と、第2チャンパー146内の酸素濃度に応じた出力を発生するモニタセル120とを備える。マイコン170は、予め規定した印加電圧特性に基づき、ポンプセル電流値に応じてポンプセル印加電圧を可変に制御する。特にマイコン170は、モニタセル電流によりポンプセル110の印加電圧特性を補正し、該補正した印加電圧特性に基づいてポンプセル印加電圧を制御する。

【特許請求の範囲】

【請求項1】チャンバーに導入した被検出ガス中の酸素を排出又は汲み込むための第1セルと、第1セルを通過した後のガスから特定ガス成分の濃度を検出するための第2セルと、チャンバー内の残留酸素濃度を検出するためのモニタセルとを少なくとも備えるガス濃度センサを用い、該ガス濃度センサによる検出結果に基づいてガス濃度検出を実施するガス濃度検出装置であって、

第1 セルの電流値と印加電圧との関係を予め規定した印加電圧特性に基づき、第1 セルで特定ガス成分が分解されない程度に、その都度の第1 セルの電流値に応じて第1 セルの印加電圧を設定する印加電圧設定手段と、

前記設定した印加電圧を第1セルに出力する印加電圧制 御手段と、を備えたことを特徴とするガス濃度検出装 置。

【請求項2】前記ガス濃度センサは、第1セルが設けられるチャンバーと、モニタセルが設けられるチャンバーとが拡散通路を介して連通されるものである請求項1に記載のガス濃度検出装置。

【請求項3】第1セルの電流値毎に対応する第1セルの 印加電圧がマップデータとして予め用意されており、前 記印加電圧設定手段は、前記のマップデータを用いて第 1セルの印加電圧を設定する請求項1又は2に記載のガ ス 設度検出装置。

【請求項4】チャンバー内における残留酸素の変化要因に応じて、第1セルの印加電圧特性、又は前記印加電圧設定手段により設定した第1セルの印加電圧を補正する印加電圧補正手段を更に備えた請求項1~3の何れかに記載のガス濃度検出装置。

【請求項 5 】請求項 4 に記載のガス濃度検出装置において、前記印加電圧補正手段は、モニタセルの出力に基づき印加電圧補正を実施するガス濃度検出装置。

【請求項6】請求項4に記載のガス濃度検出装置において、第1セルが設けられる固体電解質素子の抵抗値を検出するための素子抵抗検出手段を備え、前記印加電圧補正手段は、前記検出した第1セルの素子抵抗に基づき印加電圧補正を実施するガス濃度検出装置。

【請求項7】モニタセルの出力を取り込み、そのモニタセル出力により第2セルの電流出力を補正する第2セル出力補正手段を更に備えた請求項1~6の何れかに記載のガス濃度検出装置。

【請求項8】第1セルの印加電圧を変化させる際にその変化速度を可変に設定する変化速度設定手段を備えた請求項1~7の何れかに記載のガス濃度検出装置。

【請求項9】請求項8に記載のガス濃度検出装置において、前記変化速度設定手段は、前記印加電圧設定手段により設定した印加電圧と、その時々の第1セルの印加電圧との差に基づき、その差が大きいほど印加電圧の変化速度を大きくするガス濃度検出装置。

【請求項10】請求項8又は9に記載のガス濃度検出装

置において、前記変化速度設定手段は、印加電圧の変更 の周期を可変に設定するガス濃度検出装置。

【請求項11】請求項10に記載のガス濃度検出装置において、前記変化速度設定手段は、前記印加電圧設定手段により設定した印加電圧と、その時々の第1セルの印加電圧との差が比較的小さい場合に、印加電圧の変更の周期を長くするガス濃度検出装置。

【請求項12】第1セルによる電流検出範囲が予め規定され且つ、第1セルの印加電圧特性として、第1セルの出力特性上での抵抗支配領域の傾きにほぼ同等の傾きを持つ印加電圧直線が設定されており、第1セルによる電流検出範囲外の領域では、前記の印加電圧直線とは正負逆の傾きを持つ別の印加電圧直線が設定されている請求項1~11の何れかに記載のガス濃度検出装置。

【請求項13】ガス濃度センサの作動開始直後における 所定期間にて、第1セルに強制的に高い電圧を印加する 請求項1~12の何れかに記載のガス濃度検出装置。

【請求項14】請求項13に記載のガス濃度検出装置において、ガス濃度センサの作動開始直後であり、且つモニタセル出力が規定範囲から外れることを条件に、第1セルに高い電圧を印加するガス濃度検出装置。

【請求項15】チャンバーに導入した被検出ガス中の酸素を排出又は汲み込むための第1セルと、第1セルを通過した後のガスから特定ガス成分の濃度を検出するための第2セルと、チャンバー内の残留酸素濃度を検出するためのモニタセルとを少なくとも備えるガス濃度センサを用い、該ガス濃度センサによる検出結果に基づいてガス濃度検出を実施するガス濃度検出装置であって、

モニタセルの出力に基づき、第1セルの電流値と印加電 圧との関係を予め規定した印加電圧特性、又はその印加 電圧特性にて随時設定した印加電圧を補正する印加電圧 補正手段と、

該補正した印加電圧特性又は印加電圧に基づいて第1セルへの印加電圧を制御する印加電圧制御手段と、を備えたことを特徴とするガス濃度検出装置。

【請求項16】前記印加電圧補正手段は、印加電圧特性である印加電圧直線の傾きを補正するものであり、前記 モニタセル出力に応じて前記印加電圧直線の傾きを変化 させる請求項15に記載のガス濃度検出装置。

【請求項17】前記印加電圧補正手段は、印加電圧特性である印加電圧直線のオフセットを補正するものであり、前記モニタセル出力に応じてオフセットを変化させる請求項15に記載のガス濃度検出装置。

【請求項18】前記印加電圧補正手段は、チャンバー内を所望の酸素濃度に保持するためのモニタセル出力の目標値に対して実際のモニタセル出力が一致するよう、第1セルの印加電圧補正を実施する請求項15~17の何れかに記載のガス濃度検出装置。

【請求項19】前記印加電圧補正手段による印加電圧補 正を、前記印加電圧制御手段による印加電圧制御の周期

Page: 3

よりも長い周期で実施する請求項15~18の何れかに 記載のガス濃度検出装置。

【請求項20】チャンパーに導入した被検出ガス中の酸 素を排出又は汲み込むための第1セルと、第1セルを通 過した後のガスから特定ガス成分の濃度を検出するため の第2セルと、チャンバー内の残留酸素濃度を検出する ためのモニタセルとを少なくとも備えるガス濃度センサ を用い、該ガス濃度センサによる検出結果に基づいてガ ス濃度検出を実施するガス濃度検出装置であって、

第1セルの電流値と印加電圧との関係を予め規定した印 加電圧特性に基づき、第1セルにて特定ガス成分が分解 されない程度の電圧レベルで当該第1セルの印加電圧を 可変に制御する印加電圧制御手段と、

モニタセルの出力に基づき、第2セルの電流出力を補正 する第2セル出力補正手段と、を備えたことを特徴とす るガス濃度検出装置。

【請求項21】請求項20に記載のガス濃度検出装置に おいて、前記第2セル出力補正手段は、第2セルの電流 出力から、チャンバー内の残留酸素量に応じたモニタセ ル出力相当の電流値を減算し、その差を補正後の第2セ ル電流値とするガス濃度検出装置。

【請求項22】請求項21に記載のガス濃度検出装置に おいて、前記第2セル出力補正手段は、第2セル及びモ ニタセルにおける各電極の触媒能力の差に応じて各セル の出力を修正した後、第2セルの電流出力とモニタセル 出力との減算により第2セル出力を補正するガス濃度検 出装置,

【請求項23】請求項20~22の何れかに記載のガス 濃度検出装置において、前記ガス濃度センサの第2セル とモニタセルとは、第1セルよりも下流側に設けたチャ ンバー内に各々近接して配置されるガス濃度検出装置。

【請求項24】チャンバーに導入した被検出ガス中の酸 素を排出又は汲み込むための第1セルと、第1セルを通 過した後のガスから特定ガス成分の濃度を検出するため の第2セルと、チャンバー内の残留酸素濃度を検出する ためのモニタセルとを少なくとも備えるガス濃度センサ を用い、該ガス濃度センサによる検出結果に基づいてガ ス濃度検出を実施するガス濃度検出装置であって、

モニタセルの出力に基づき、第1セルの電流値と印加電 圧との関係を予め規定した印加電圧特性、又はその印加 電圧特性にて随時設定した印加電圧を、チャンパー内の 特定ガス成分を分解しない程度で補正する第1の補正手

段と、 前記第1の補正手段により補正した印加電圧特性又は印 加電圧に基づいて第1セルへの印加電圧を制御する印加 電圧制御手段と、

モニタセルの出力に基づき、第2セルの電流出力を補正 士る第2の補正手段と、

を備えたことを特徴とするガス濃度検出装置。

【請求項25】請求項24に記載のガス濃度検出装置に

おいて、前記第1の補正手段による印加電圧補正を、前 記印加電圧制御手段による印加電圧制御の周期よりも長 い周期で実施するガス濃度検出装置。

【請求項26】請求項24に記載のガス濃度検出装置に おいて、前記印加電圧制御手段による印加電圧制御の結 果、モニタセル出力が目標値又はその近傍に収束する と、前記第2の補正手段がモニタセル出力を取り込んで 第2セルの電流出力を補正するガス濃度検出装置。

【請求項27】チャンバーに導入した被検出ガス中の酸 素を排出又は汲み込むための第1セルと、第1セルを通 過した後のガスから特定ガス成分の濃度を検出するため の第2セルと、チャンバー内の残留酸素濃度を検出する ためのモニタセルとを少なくとも備えるガス濃度センサ を用い、該ガス濃度センサによる検出結果に基づいてガ ス濃度検出を実施するガス濃度検出装置であって、

第1セルが設けられる固体電解質素子の抵抗値を検出す る素子抵抗検出手段と、

前記検出した第1セルの素子抵抗に基づき、第1セルの 電流値と印加電圧との関係を予め規定した印加電圧特 性、又はその印加電圧特性にて随時設定した印加電圧を 補正する印加電圧補正手段と、

該補正した印加電圧特性又は印加電圧に基づいて第1セ ルへの印加電圧を制御する印加電圧制御手段と、を備え たことを特徴とするガス濃度検出装置。

【請求項28】請求項27に記載のガス濃度検出装置に おいて、前記印加電圧補正手段は、印加電圧特性である 印加電圧直線の傾きを補正するものであり、第1セルの **案子抵抗に応じて前記印加電圧直線の傾きを変化させる** ガス濃度検出装置。

【請求項29】請求項27に記載のガス濃度検出装置に おいて、前記印加電圧補正手段は、印加電圧特性である 印加電圧直線のオフセットを補正するものであり、第1 セルの素子抵抗に応じてオフセットを変化させる記載の ガス濃度検出装置。

【発明の詳細な説明】

【発明の属する技術分野】本発明は、限界電流式のガス 濃度センサを用い、被検出ガス中の特性ガス成分の濃度 を検出するガス濃度検出装置に関するものである。

[0002]

【従来の技術】この種のガス歳度検出装置として、限界 電流式のガス濃度センサを用い、例えば自動車の排ガス 中のNOxを検出するものがある。ガス濃度センサは基 本構造として、第1セル(ポンプセル)と第2セル(セ ンサセル)とを備え、第1セルでは、チャンバーに導入 した排ガス中の酸器の排出又は汲み込みが行われ、第2 セルでは、第1セルを通過した後のガスからNOx 濃度 (特定ガス成分の濃度) が検出される。これる第1セ ル、第2セルは、電圧の印加に伴い酸素濃度やNOx濃 度に応じて電流信号を出力する。

【0003】また、ガス濃度センサとして上記第1セル及び第2セルに加え、チャンバー内の酸素濃度に応じた起電力を発生するモニタセルを有するものがあり、同センサにおける第1セルへの印加電圧を制御する従来手法して、モニタセルの起電力により前記印加電圧をPIDフィードバックする手法が提案されている(例えば、社団法人自動車技術会 学術講演会前刷集971 1997-5 9731956、SAE970858参照)。つまり、この手法では、チャンバー内を所定の低酸素濃度に保つべく設定したモニタセル起電力の目標値と、実際のモニタセル起電力との偏差に基づいて第1セルの印加電圧をその都度フィードバック制御するようにしていた。

【0004】しかしながら、ガス濃度センサが排ガス濃度を検出する際、排ガスは先ず第1セル近傍に導入され、その後、チャンバー内を下流側に流れてモニタセルに到達する。従って、排ガス濃度が変化した際、モニタセルに排ガスが到達するまでの遅れによりモニタセル近傍の酸素濃度と第1セル近傍の酸素濃度とが相違し、モニタセル近傍の酸素濃度が安定するのに時間がかかる。特に、第1セルが設けられるチャンバーとそニタセルが設けられるチャンバーとが絞り通路(拡散通路)を介して連通されているガス濃度センサでは、上記の問題が顕著となる。その結果、モニタセルの起電力により第1セルの印加電圧をフィードバック制御する際、フィードバックの制御位相のズレにより発振現象が生じる。

【0005】例えば、排ガスがリーンに切り替わり多量の酸素がチャンバー内に導入される場合、モニタセルは直ぐにはリーンだと判断できない。そのため、モニタセルの起電力によるフィードバックでは第1セルでの酸素排出が不十分となり、残留酸素が必要以上に残ってしまう。その後、排ガスリーンの状態をモニタセルで遅れて判断すると、残留酸素を急激に排出させるよう第1セルに過大な電圧が印加される。それ以後、チャンバー内の残留酸素が完全に排出されても、暫くはモニタセルはリーンだと判断し続ける。そして、チャンバー内の酸素を排出しすぎたと遅れて分かった後、第1セルの印加電圧が急激に低下側に変更される。

【0006】上記の現象が繰り返されることで、第1セルの印加電圧制御の系が発振してしまい、チャンバー内の残留酸素量が周期的に大きく変動する。その結果、第2セルでの残留酸素が増えて残留酸素の分解に伴うオフセット電流が増大したり、第1セルでNOx分解してしまい第2セルでのNOx分解量が減少したりするといった問題が生じ、NOx濃度(特定ガス成分の濃度)の検出構度が低下する。

【0007】また、経時変化(素子劣化)や排ガス温度の変化等により各セルの反応速度が低下する場合にも同様に、チャンバー内の残留酸素量が変動し、その影響でNOx 濃度の検出情度が低下する。例えば、電極劣化に

よりリッチガス時にモニタセルの電極にリッチ成分(H C等)が付着すると、排ガスがリーンに切り替わってもモニタセルはリッチガスのままだと誤認識し、これにより、実際にはリーン状態のチャンバー内に更に酸素を汲み込むよう第1セルの印加電圧が制御される。その後、モニタセルの電極に付着したHCが酸素と反応して離脱すると、モニタセルがリーン状態を認識してチャンバー内の酸素を排出するよう第1セルの印加電圧が制御されるが、この時点でチャンバー内は酸素濃度は過剰に増加しているため、その増加分だけ過剰な印加電圧が第1セルに印加されることとなる。

【0008】排ガスがリーンからリッチに切り替わる際にも同様に、経時変化等によりモニタセルの反応速度が低下してモニタセルの電極にリーン成分(酸素等)が付着すると、モニタセルはリーン状態だと誤認識し、チャンバー内の酸素を排出するように第1セルの印加電圧が制御されてしまう。つまり、酸素に加えてNOxまでも分解するような過剰な印加電圧が第1セルに印加されることとなる。

【0009】上記の現象が繰り返されることで、やはり第1セルの印加電圧制御の系が発振してしまい、チャンバー内の残留酸素量が周期的に大きく変動する。その結果、NOx 濃度の検出精度が低下する。

[0010]

【発明が解決しようとする課題】本発明は、上記問題に着目してなされたものであって、その目的とするところは、被検出ガス中の特定ガス成分の濃度を精度良く検出することができるガス濃度検出装置を提供することである。

[0011]

【課題を解決するための手段】本発明のガス濃度検出装置では、少なくとも第1セル、第2セル及びモニタセルを備えるガス濃度センサを用い、このガス濃度センサによる検出結果に基づいてガス濃度検出を実施することを前提としている。そして、請求項1に記載のガス濃度検出装置では、第1セルの電流値と印加電圧との関係を予め規定した印加電圧特性に基づき、第1セルで特定ガス成分が分解されない程度に、その都度の第1セルの電流値に応じて第1セルの印加電圧を設定する(印加電圧設定手段)、また、前記設定した印加電圧を第1セルに出力する(印加電圧制御手段)。

【0012】本発明では、PID手法等によりモニタセル起電力を目標値にフィードバックさせる従来技術とは異なり、予め規定した印加電圧特性を用いて第1セルの印加電圧が制御される。そのため、モニタセルでの応答遅れ等が原因で第1セルの印加電圧制御の系が発振し、チャンバー内の残留酸素量が周期的に大きく変動するといった不具合が生じることはない。それ故に、ガス濃度の検出構度低下を招く要因が解消される。

【0013】また、モニタセル信号をフィードバックし

て印加電圧制御を実施していた従来技術の場合、リーン側へのガス濃度変化時において各種信号の推移は図22の(b)のようになる。つまり、ガス濃度の変化に際して、その変化をモニタセルで検知するまでに所定の無駄時間を要し、ガス濃度変化をモニタセルで検知した直後にはモニタセル信号が変動する。また、第1セルとモニタセルとの反応速度の違いによる発振を防止するにはフィードバックゲインを小さくせざるを得ず、それ故に第1セルの印加電圧(第1セル電圧)はゆつくりと変化する。従って、残留酸素の排出が不十分、すなわち残留酸素過多となることから、第2セル電流として一時的に過去な電流信号が出力される。実際には、第2セル電流やモニタセル信号が安定するまでの応答時間が経過するまでは、正確なガス濃度検出が実施できない。

【0014】これに対し本発明によれば、図22の

(a) に示すように、ガス濃度変化に際し、第1セル電流が変化すると、それに追従しながら第1セル電圧が直ぐに所望の目標値に制御される。その結果、チャンバー内で残留酸素過多となることはなく、モニタセル信号も変動しない。従って、第2セルでは、特定ガス成分の濃度に応じた電流を高応答で検出することができる。

【0015】特に、請求項2に記載したように、第1セルが設けられるチャンバーと、モニタセルが設けられるチャンバーとが拡散通路を介して連通されるガス濃度センサでは、モニタセルでの応答遅れの問題が顕著になるが、かかるガス濃度センサを用いた場合にも既述の問題が解消される。

【0016】上記発明では、請求項3に記載したように、第1セルの電流値毎に対応する第1セルの印加電圧がマップデータとして予め用意されており、前記印加電圧設定手段は、前記のマップデータを用いて第1セルの印加電圧を設定すると良い。

【0017】また、請求項4に記載の発明では印加電圧補正手段を更に備え、この印加電圧補正手段は、チャンバー内における残留酸素の変化要因に応じて、第1セルの印加電圧特性、又は前記印加電圧設定手段により設定した第1セルの印加電圧を補正する。

【0018】ここで言う「チャンバー内における残留酸素の変化要因」とは、被検出ガスの濃度変化、第1セルの活性状態の変化、個体差等を含むものであり、それが原因で、前記印加電圧特性に基づいて第1セルに電圧を印加してもチャンバー内の残留酸素量(第1セル通過後ガスの酸素濃度)が一定に保てなくなることが考えられる。これに対し本発明では、上記の如く印加電圧が実施されるため、チャンバー内の残留酸素量が常に適正化される。それ故、残留酸素量の変化により特定ガス成分の濃度が誤検出されるといった不具合が解消でき、被検出ガス中の特定ガス成分の濃度が精度良く検出できる。

【0019】上記請求項4の印加電圧補正手段としてよ

り具体的には、請求項5に記載したように、モニタセルの出力に基づき印加電圧補正を実施したり、請求項6に記載したように、第1セルが設けられる固体電解質素子の抵抗値(第1セルの素子抵抗)に基づき印加電圧補正を実施したりすると良い。つまり、残留酸素量の変化はモニタセル出力から検知でき、そのモニタセル出力により印加電圧補正を実施することで、チャンバー内の残留酸素量を適正化するように印加電圧を制御することが可能となる。また、第1セルの素子抵抗が変化すると、同一の印加電圧であっても第1セルでの酸素排出量が変動する。そのため、チャンバー内の残留酸素量が変動するが、第1セルの素子抵抗により印加電圧補正を実施することで、やはりチャンバー内の残留酸素量を適正化するように印加電圧を制御することが可能となる。

【0020】また、請求項7に記載の発明では第2セル出力補正手段を備え、この第2セル出力補正手段は、モニタセルの出力を取り込み、そのモニタセル出力により第2セルの電流出力を補正する。つまり、第2セルの電流出力には当該第2セルでの特定ガス成分の分解電流分に加え、チャンバー内の残留酸素の分解電流(いわゆるオフセット電流)が含まれる。この場合、上記の如く第2セルの電流出力を補正することにより、残留酸素量の変動に伴う特定ガスの濃度誤検出が防止できる。その結果、被検出ガス中の特性ガス成分の濃度が精度良く検出できる。

【0021】また、請求項8に記載の発明では変化速度 設定手段を備え、この変化速度設定手段は、第1セルの 印加電圧を変化させる際にその変化速度を可変に設定す る。つまり、ガス濃度の変化時には、チャンバー内に導 入される酸素量が変化するために第1セルの電流値が変 化し、それに伴い第1セルの印加電圧が変更される。こ の場合、上記の如く印加電圧の変化速度を可変に設定す れば、第1セルによる残留酸素の排出又は汲み込みを迅 速に行わせることが可能となる。従って、ガス濃度の検 出応答性が向上すると共に、ガス濃度の検出精度がより 一層向上する。

【0022】上記請求項8の変化速度設定手段としてより具体的には、請求項9に記載したように、前記印加電圧設定手段により設定した印加電圧と、その時々の第1セルの印加電圧との差に基づき、その差が大きいほど印加電圧の変化速度を大きくすると良い。また、請求項10に記載したように、印加電圧の変更の周期を可変に設定したり、その際、請求項11に記載したように、前記印加電圧設定手段により設定した印加電圧と、その時々の第1セルの印加電圧との差が比較的小さい場合に、印加電圧の変更の周期を長くしたりしても良い。

【0023】請求項9の発明によれば、印加電圧の偏差 が大きい場合において、第1セルの印加電圧をいち早く 目標値(設定電圧)に近づけることができる。また、請 求項10、11の発明によれば、印加電圧の収束を早め ることができることに加え、印加電圧の変更周期の調整により、印加電圧の変更時におけるピーク電流の影響が排除できるようになる。つまり、印加電圧の変更時には、第1セルの電流値としてピーク電流(テーリング)が発生するが、そのピーク電流が収まってから次の印加電圧の変更が実施できるようになる。また、第1セルの印加電圧が目標値(設定電圧)付近に収束する場合において、信頼性の高い印加電圧制御が実現できる。

【0024】因みに、図23はガス濃度センサの等価回路を示しており、この等価回路において、Rgは酸素イオンに対する固体電解質(ジルコニア素子)の粒子抵抗、RhとChはそれぞれ固体電解質の粒子の界面における粒界抵抗と粒界容量、RfとCfはそれぞれ電極界面抵抗と電極界面容量である。この場合、図24に示すように、ガス濃度センサへの印加電圧を変更する際には、上記Ch、Cfに蓄えられる電荷の影響からセンサ電流として電圧変更直後にピーク電流が発生する。こうした実状に対し、請求項10.11の構成によれば、ガス濃度センサの容量特性の影響を受けない状態で、第1セルの印加電圧制御が実施できるようになる。

【0025】また、請求項12に記載の発明では、第1セルによる電流検出範囲が予め規定され且つ、第1セルの印加電圧特性として、第1セルの出力特性上での抵抗支配領域の傾きにほぼ同等の傾きを持つ印加電圧直線が設定されており、第1セルによる電流検出範囲外の領域では、前記の印加電圧直線とは正負逆の傾きを持つ別の印加電圧直線が設定されている(図10参照)。この場合、電流検出範囲外の領域において、検出電流の増加が制限される。そのため、検出電流が過剰に増加することに伴う発熱等の問題が解消される。

【0026】また、エンジンの排ガス成分を検出するためのガス濃度センサ等では、ガス濃度センサの作動開始時にはチャンバー内は大気の状態にあり、多くの酸素が充満している。従って、チャンバー内が残留酸素過多の状態であることから、ガス濃度の検出精度が悪化してしまい、ガス濃度検出を実施することができない。この場合、通常の印加電圧制御では、チャンバー内の残留酸素が迅速に排出できず、ガス濃度の検出を早期に実施することができない。

【0027】そこで、請求項13に記載の発明では、ガス濃度センサの作動開始直後における所定期間にて、第1セルに強制的に高い電圧を印加し、第1セルでの酸素排出能力を強制的に高めるように構成している。これにより、チャンバー内の残留酸素がいち早く排出され、ガス濃度の検出が早期に開始できるようになる。

【0028】上記請求項13の発明では、請求項14に記載したように、ガス濃度センサの作動開始直後であり、且つモニタセル出力が規定範囲から外れることを条件に、第1セルに高い電圧を印加すると良い。つまり、ガス濃度センサの作動が停止され、その直接に作動が再

開される場合、チャンバー内の残留酸素量は概ね作動中とほぼ同等である。またこの場合、モニタセル出力は、通常の出力レベルであり、所定の規定範囲内にある。それ故、モニタセル出力レベルを実施条件として高電圧印加の要否を判断すれば、必要時にのみ、所望とする強制的な酸素排出動作が実現できるようになる。

【0029】一方、請求項15に記載のガス濃度検出装置では、モニタセルの出力に基づき、第1セルの電流値と印加電圧との関係を予め規定した印加電圧特性、又はその印加電圧特性にて随時設定した印加電圧を補正する(印加電圧補正手段)。また、該補正した印加電圧特性又は印加電圧に基づいて第1セルへの印加電圧を制御する(印加電圧制御手段)。

【0030】要するに、第1セルの活性状態の変化や個体差等により当該第1セルの限界電流特性が変化すると、予め規定された印加電圧特性に基づいて第1セルに電圧を印加してもチャンバー内の残留酸素量(第1セル通過後ガスの酸素濃度)を一定に保つことができなくなる。しかしながらこの際、残留酸素量の変化はモニタセル出力から検知でき、そのモニタセル出力により第1セルの印加電圧補正を実施することで、チャンバー内の残留酸素量を適正化するように印加電圧を制御することが可能となる。それ故、残留酸素量の変化により特定ガス成分の濃度が誤検出されるといった不具合が解消でき、被検出ガス中の特定ガス成分の濃度を精度良く検出することができるようになる。

【0031】また、本発明では、PID手法等によりモニタセル起電力を目標値にフィードバックさせる従来技術とは異なり、予め規定した印加電圧特性を用いて第1セルの印加電圧を制御する。そのため、各セルの反応速度低下等が原因で第1セルの印加電圧制御の系が発振し、チャンバー内の残留酸素量が周期的に大きく変動するといった不具合が生じることはない。それ故に、ガス濃度の検出精度低下を招く要因が解消される。

【0032】なお本明細書で言う「モニタセル出力」とは、酸素濃淡電池として働くモニタセルの起電力そのものを指す他に、モニタセル電極に所定の電圧を印加し、それにより得られる電流出力をも含むものである。

【0033】前記印加電圧補正手段としてより具体的には、請求項16に記載したように、印加電圧特性である印加電圧直線の傾きを補正し、前記モニタセル出力に応じて前記印加電圧直線の傾きを変化させる。この場合、例えばモニタセル電流値が大きいほど印加電圧直線の傾きを小さくすると良い。また、請求項17に記載したように、印加電圧特性である印加電圧直線のオフセットを変化させる。この場合、例えばモニタセル電流値が大きいほご中加電圧直線のサフセットを大きくすると良い。印加電圧直線の付きを小さくすること、或いは同印加電圧直線のオフセットを大きくすることは、何れも第1セルの線のオフセットを大きくすることは、何れも第1セルの

印加電圧が増加方向に補正されることを意味し、これにより第1セルによる酸素排出量が増え、チャンバー内の 残留酸素が減量される。すなわち、モニタセル出力(例 えばモニタセル電流値)が比較的大きい場合には、上記 補正によりチャンバー内の残留酸素が減じられる。逆 に、モニタセル出力が小さい場合には、印加電圧直線の 傾きを大きくすること、或いは同印加電圧直線のオフセ ットを小さくすることにより、チャンバー内の残留酸素 が増やされるようになる。

【0034】また、請求項18に記載したように、前記印加電圧補正手段は、チャンバー内を所望の酸素濃度に保持するためのモニタセル出力の目標値に対して実際のモニタセル出力が一致するよう、第1セルの印加電圧補正を実施すると良い。この場合、印加電圧補正により、モニタセル出力が目標値に収束して常に一定に保持されることとなる。つまり、チャンバー内が所望の酸素濃度で安定し、特定ガス成分が高い精度で検出できる。

【0035】また、請求項19に記載したように、前記印加電圧補正手段による印加電圧補正を、前記印加電圧制御手段による印加電圧制御の周期よりも長い周期で実施すると良い。この場合、ガス濃度センサの劣化や個体差等による応答性変化を考慮した周期で印加電圧補正が行われることとなり、印加電圧制御時に制御系が発振しそれに伴いチャンバー内の残留酸素量が変動するといった不具合がより確実に回避できる。

【0036】また、請求項20に記載のガス濃度検出装置では、第1セルの電流値と印加電圧との関係を予め規定した印加電圧特性に基づき、第1セルにて特定ガス成分が分解されない程度の電圧レベルで当該第1セルの印加電圧を可変に制御する(印加電圧制御手段)。そして、モニタセルの出力(例えばモニタセル電流値)に基づき、第2セルの電流出力を補正する(第2セル出力補正手段)。

【0037】要するに、第2セルでは、第1セルを通過 した後のガスから特定ガス成分の濃度を検出するが、こ の際、第2セルの電流出力には当該第2セルでの特定ガ ス成分の分解電流分に加え、チャンバー内の残留酸素の 分解電流(いわゆるオフセット電流)が含まれる。なお これは、第1セルにて特定ガス成分が分解されない程度 の電圧レベルで当該第1セルの印加電圧を制御するよう にした本発明の前提部分からも含えることである。この 場合、第1セルの活性状態の変化等に起因してチャンパ 一内の残留酸素量が変動すると、特定ガス成分の濃度が 同一であっても第2セルの電流出力が変化してしまう。 が、上記の通りモニタセル出力に基づいて第2セルの電 流出力を補正することにより、残留酸素量の変動に伴う 特定ガスの濃度路検出が防止できる。その結果、狭検出 ガス中の特性ガス成分の濃度が精度良く摘出できるよう になる。

【0008】また、本請求項20の意明でも、上記請求

項15の発明と同様に、PID手法等によりモニタセル 起電力を目標値にフィードバックさせる従来技術とは異なり、第1セルの印加電圧制御の系が発振し、チャンバ 一内の残留酸素量が周期的に大きく変動するといった不 具合が生じることはない。それ故に、ガス濃度の検出精 度低下を招く要因が解消される。

【0039】前記第2セル出力補正手段としてより具体的には、請求項21に記載したように、第2セルの電流出力から、チャンバー内の残留酸素量に応じたモニタセル出力相当の電流値を減算し、その差を補正後の第2セル電流値とすると良い。これにより、残留酸素の分解電流(オフセット電流)を含まない第2セル電流出力が得られる。

【0040】またこの場合、第2セル及びモニタセルにおける各電極の触媒能力が異なると、モニタセル出力がそのまま残留酸素の分解電流(オフセット電流)にはならない。それ故、請求項22に記載したように、第2セル及びモニタセルにおける各電極の触媒能力の差に応じて各セルの出力を修正した後、第2セルの電流出力とモニタセル出力との減算により第2セル出力を補正すると良い。実際には、電極サイズの違いや材料の違い等から各セルにおける電極の触媒能力の差を判断すると良い。

【0041】また、モニタセル出力により第2セルの電流出力を補正する場合(請求項20の場合)、第2セル及びモニタセルは同一チャンバー内の同一ガスを共に検出対象とするのが望ましい。そこで、請求項23に記載したように、ガス濃度センサの構造として、第2セルとモニタセルとは、第1セルよりも下流側に設けたチャンバー内に各々近接して配置されると良い。

【0042】一方、請求項24に記載のガス濃度検出装置は、上記請求項15の発明と請求項20の発明とを組み合わせた発明であり、その特徴として、モニタセルの出力(例えばモニタセル電流値)に基づき、第1セルの電流値と印加電圧との関係を予め規定した印加電圧特性、又はその印加電圧特性にて随時設定した印加電圧を、チャンバー内の特定ガス成分を分解しない程度で補正する(第1の補正手段)。そして、第1の補正手段により補正した印加電圧持性又は印加電圧に基づいて第1セルへの印加電圧を制御する(印加電圧制御手段)。また、モニタセルの出力に基づき、第2セルの電流出力を補正する(第2の補正手段)。

【0043】つまり、モニタセル出力により第1セルの印加電圧補正が実施されるので、仮に第1セルの活性状態の変化や個体差等により当該第1セルの限界電流特性が変化しても、チャンバー内の残留酸素量(第1セル通過後ガスの酸素濃度)を一定に保つことができる。またこの際、チャンバー内の特定ガス成分を分解しない程度に第1セルの印加電圧補正が実施されることからチャンバー内には所定量の残留酸素が残るが、モニタセル出力により第2セルの電流出力が補正されるので、残留酸素

分の影響を受けない第2セルの電流出力が得られる。そ , の結果、被検出ガス中の特性ガス成分の濃度が精度良く 検出できるようになる。

【0044】また、本請求項24の発明でも、上記請求項15や請求項20の発明と同様に、PID手法等によりモニタセル起電力を目標値にフィードバックさせる従来技術とは異なり、第1セルの印加電圧制御の系が発振し、チャンバー内の残留酸素量が周期的に大きく変動するといった不具合が生じることはない。それ故に、ガス濃度の検出精度低下を招く要因が解消される。

【0045】上記請求項24の発明においては、請求項25に記載したように、前記第1の補正手段による印加電圧補正を、前記印加電圧制御手段による印加電圧制御の周期よりも長い周期で実施すると良い。この場合、ガス濃度センサの劣化や個体差等による応答性変化を考慮した周期で印加電圧特性の補正が行われることとなり、印加電圧制御時に制御系が発振しそれに伴いチャンバー内の残留酸素量が変動するといった不具合がより確実に回避できる。

【0046】また、請求項26に記載したように、前記印加電圧制御手段による印加電圧制御の結果、モニタセル出力が目標値又はその近傍に収束すると、前記第2の補正手段がモニタセル出力を取り込んで第2セルの電流出力を補正するよう構成しても良い。この場合、チャンバー内の酸素濃度が安定した状態でのみ第2セルの電流出力が測定されるので、同出力がより一層正確に補正できるようになる。

【0047】更に、請求項27に記載のガス濃度検出装置では、第1セルが設けられる固体電解質素子の抵抗値を検出し(素子抵抗検出手段)、前記検出した第1セルの素子抵抗に基づき、第1セルの電流値ど印加電圧との関係を予め規定した印加電圧特性、又はその印加電圧特性にて随時設定した印加電圧を補正する(印加電圧補正手段)。また、該補正した印加電圧特性又は印加電圧に基づいて第1セルへの印加電圧を制御する(印加電圧制御手段)。

【0048】つまり、第1セルの素子抵抗が変化すると、同一の印加電圧であっても第1セルでの酸素排出量が変動する。そのため、チャンバー内の残留酸素量が変動するが、第1セルの素子抵抗により印加電圧補正を実施することで、チャンバー内の残留酸素量を適正化するように印加電圧を制御することが可能となる。その結果、被検出ガス中の特性ガス成分の濃度が精度良く検出できるようになる。

【0049】請求項27の印加電圧補正手段としてより 具体的には、請求項28に記載したように、印加電圧特性である印加電圧直線の傾きを補正し、第1七ルの素子 抵抗に応じて前記印加電圧直線の傾きを変化させる。こ の場合、第1七ルの素子抵抗が大きいほど印加電圧直線 の傾きを小さくすると良い、また、請求項29に記載し たように、印加電圧特性である印加電圧直線のオフセットを補正し、第1セルの素子抵抗に応じてオフセットを変化させる。この場合、第1セルの素子抵抗が大きいほど印加電圧直線のオフセットを大きくすると良い。

[0050]

【発明の実施の形態】(第1の実施の形態)以下、この発明を具体化した第1の実施の形態を図面に従って説明する。本実施の形態におけるガス濃度検出装置は、例えば自動車用ガソリンエンジンに適用されるものであって、限界電流式のガス濃度センサを用い、被検出ガスである排ガスから酸素濃度を検出すると共に、特定ガス成分の濃度としてのNOx濃度を検出する。

【0051】先ずはじめに、ガス濃度センサの構成を説明する。ガス濃度センサは、ポンプセル(第1セル)、モニタセル及びセンサセル(第2セル)からなる3セル構造を有し、排ガス中の酸素濃度とNOx濃度とを同時に検出可能な、いわゆる複合型ガスセンサとして具体化されるものであり、その断面構造を図2を用いて詳細に説明する。

【0052】ガス濃度センサ100において、酸素イオン伝導性材料からなる固体電解質(固体電解質素子)141,142は板状をなし、アルミナ等の絶縁材料からなるスペーサ143を介して図の上下に所定間隔を隔てて積層されている。このうち、図の上側の固体電解質141にはピンホール141aが形成されており、このピンホール141aを介して当該センサ周囲の排ガスが第1チャンバー144内に導入される。第1チャンバー144は、拡散通路としての絞り部145を介して第2チャンバー146に連通している。符号147は多孔質拡散層である。

【0053】また、図の下側の固体電解質142には、 ポンプセル110及びモニタセル120が設けられてお り、ポンプセル110は、第1チャンバー144内に導 入した排ガス中の酸素を排出又は汲み込む働きをすると 共に、その際に排ガス中の酸素濃度を検出する。モニタ セル120は、第2チャンバー146内の酸素濃度に応 じた起電力、又は電圧印加時に電流出力を発生する。こ こで、ポンプセル110は、固体電解質142を挟んで 上下一対の電極111.112を有し、そのうち特に第 1チャンパー144側の電板111はNOx不活性電板 (NOxガスを分解し難い電極)である。また、モニタ セル120も同様に、固体電解質142を挟んで上下一 対の電極121、122を有し、そのうち特に第2チャ ンパー146側の電極121はNOx不活性電極(NO xガスを分解し難い電極)である。これらポンプセル 1 10及びモニタセル120は、チャンパー144、14 6内に存在する酸素を分解して電極112、122より 大気通路150側に排出する。

【0054】センサセル130は、前記モニタセル12 0に対向して設けられており、固体電解質141を挟ん で上下一対の電極131,132を有する。センサセル 130は、ポンプセル110を通過した後のガスからN Ox濃度を検出するものであり、第2チャンバー146 内でNO×を分解した時に発生する酸素を電極132よ り大気通路148側に排出する。

【0055】固体電解質142の図の下面には絶縁層1 49が設けられ、この絶縁層149により大気通路15 0 が形成されている。また、絶縁層149には、センサ 全体を加熱するためのヒータ151が埋設されている。 【0056】上記構成のガス濃度センサ100におい て、排ガスは多孔質拡散層147及びピンホール141 a を通って第1チャンバー144に導入される。そし て、この排ガスがポンプセル110近傍を通過する際、 ポンプセル110の電極111、112間に電圧を印加 することで分解反応が起こり、第1チャンバー144内 の酸素濃度に応じてポンプセル110を介して酸素が出 し入れされる。なおこのとき、第1チャンバー144側

の電極111がNOx不活性電極であるので、ポンプセ

ル110では排ガス中のNOxは分解されず、酸素のみ

が分解されて大気通路150に排出される。 【0057】その後、ポンプセル110近傍を通過した 排ガスは第2チャンバー146に流れ込み、モニタセル 120では、ガス中の残留酸素濃度に応じた出力が発生 する。モニタセル120の出力は、該モニタセル120 の電極121、122間に所定の電圧を印加すること で、モニタセル電流として検出される。また、センサセ ル130の電極131、132間に所定の電圧を印加す ることでガス中のNOxが還元分解され、その際発生す る酸素が大気通路148に排出される。その際、センサ セル130に流れた電流が排ガス中に含まれるNOx濃 度として検出される。

【0058】次に、ポンプセル110、モニタセル12 0及びセンサセル130の各特性を、図3(a)~ (c) を用いて説明する。なお、図3 (a) ~ (c) は

酸素濃度及びNOx濃度が一定のもとでの基本特性を示 す。先ずは、ポンプセル特性を図3 (a) を用いて説明 する,

【0059】図3 (a) は、ポンプセル特性としてのポ ンプセル印加電圧Vpとポンプセル電流lpとの関係を 示すV-l特性図であり、ポンプセルll0は酸素濃度 に対して限界電流特性を有する。限界電流域はV軸に対 して僅かに右上がりの直線部分からなり、その領域は酸 素濃度が濃いほど(リーンであるほど)電圧値が大きく なる方向にシフトする。同特性の抵抗支配域の傾きは既 ねポンプセル110の栗子インピーダンスRipに一致 する:

【0060】ここで、ホンプセル電流1pと印加電圧V pとの関係は印加電圧特性として子の規定されており、 この印加電圧特性に従いその時ゃのホンプセル電流 L p に応じてホンプセル印加電圧Vpが可要に制御されるよ

うになっている。すなわち、ポンプセル110の印加電 圧特性として、傾き=a、オフセット=bからなる印加 電圧直線LX1が規定されており、印加電圧直線LX1 上でポンプセル印加電圧Vpが設定される。因みに、ポ ンプセル110の電極111(第1チャンバー144側 の電極)はNO×不活性電極であるが、ポンプセル印加 電圧Vpが大きすぎるとNOxが分解されてしまうこと から、印加電圧直線LX1はポンプセル110でNOx ガスを分解しない程度に設定される。実際には、第1チ ャンバー144内を所定の低酸素濃度(ストイキ近傍) に保持するべく印加電圧直線LXIが設定されており、 例えば数 p p m~数 1 0 p p m程度の僅かな残留酸素 (余剰酸素) が第1チャンバー144内に歿るようポン

プセル印加電圧Vpが制御される。

【0061】また、図3(b)は、モニタセル特性とし てのモニタセル印加電圧Vmとモニタセル電流Imとの 関係を示すVーI特性図であり、モニタセル120は酸 素濃度に対して限界電流特性を有する。つまり、モニタ セル120は、第2チャンバー146内の酸素濃度に応 じた出力を発生し、その際、モニタセル120に所定の 電圧Vmlを印加することにより電流値Imlを出力す る。この場合、ポンプセル110での酸素の出し入れに より第1チャンバー144と共に第2チャンバー146 内が所定の低酸素濃度(例えば数ppm~数10ppm 程度) に保持されていれば、例えば O. 5~2 µ A程度 のモニタセル電流Imが流れる。

【0062】更に、図3 (c) は、センサセル特性とし てのセンサセル印加電圧Vsとセンサセル電流Isとの 関係を示すV-I特性図であり、センサセル130はガ ス中のNOx 濃度に対して限界電流特性を有する。この 場合、センサセル l 30に所定の電圧Vslを印加する ことにより、第2チャンバー146内のNOx濃度に応 じた電流値1 s 1を出力する。

【0063】図1には、上記構成のガス濃度センサ10 0 を用いたガス濃度検出装置の概略構成を示す。マイコ ン170は、CPU、メモリ、A/D及びD/A変換器 等を備える周知の論理演算回路で構成されている。 ポン プセル110、モニタセル120及びセンサセル130 はそれぞれに電源回路を有しており、各電源回路におい て、ポンプセル電流!pは電流検出器171で測定さ れ、モニタセル電流!mは電流検出器172で測定さ れ、センサセル電流 1 s は電流検出器 1 7 3 で測定され る。これら各電流検出器171~173で測定された電 流値はそれぞれマイコン170に取り込まれる。

【0064】マイコン170は、電流検出器171で測 定したポンプセル電流しりにより排ガス中の酸素濃度を 検出すると共に、前記図3 O印加電圧直線 L X 1 を用 い、ポンプセル電流Ipに応じてポンプセル印加電圧V p を随時設定する。このとき、ポンプセル110でNO xが分解されない程度にポンプセル印加電圧Vpが設定 される。また、マイコン170は、電流検出器172で 測定したモニタセル電流 I mに応じてポンプセル110 の印加電圧特性を補正する。更に、マイコン170は、 電流検出器173で測定したセンサセル電流 I s により 排ガス中のNOx 濃度を検出する。

【0065】また本実施の形態では、ポンプセル110 を対象に、掃引法を用いて素子インピーダンス(素子抵 抗)が検出される。つまり、ポンプセル110のインピ ーダンス検出時には、マイコン170により、ポンプセ ル印加電圧Vpが正側又は負側の少なくとも何れかに瞬 間的に切り換えられ、この印加電圧がLPF(ローパス フィルタ)180により正弦波的になまされつつポンプ セル110に印加される。交流電圧の周波数は10kH z以上が望ましく、LPF180の時定数は5μsec 程度で設定される。そして、その時の電圧変化量と電流 変化量とからポンプセル110の素子インピーダンスが 算出される。なお、LPF180は、例えば抵抗及びコ ンデンサからなる一次フィルタにて実現されれば良い。 【0066】一方で、マイコン170においては、ポン プセル電流 [p の検出範囲(電流検出範囲)が予め設定 されており、それは図4に示すポンプセル110のV-【特性上、酸素濃度検出範囲として規定されている。す なわち、本実施の形態では一例として、 [p=-1. 8 mA~2mAの範囲を酸素濃度検出範囲としており、少 なくともその酸素濃度検出範囲内でポンプセル印加電圧 Vpが可変となるよう前述の印加電圧直線LX1が設定 されている。この印加電圧直線LX1は、マップデータ としてマイコン170に予め用意されている。なお、酸 素濃度検出範囲外の検出不要領域では、ポンプセル印加 電圧Vpをそれ以上変化させる必要がないため、印加電 圧直線LX1を直立させている。

【0067】次に、ポンプセル印加電圧特性の補正の概要を図5を用いて具体的に説明する。なお、図5 (a) \sim (c) は前記図3 (a) \sim (c) と同様に、酸素濃度及びNOx 濃度が一定のもとでのポンプセル110、モニタセル120及びセンサセル130の各特性を示す図面であり、図中、実線で示す特性(図の丸数字1)は前記図3で説明した基本特性である。

【0068】排ガス温度の低下や個体差等でポンプセル110の素子インピーダンスRipが上昇する場合、ポンプセル特性は、図5(a)に実線で示す基本特性(図の丸数字1)から点線で示す特性(図の丸数字2)に変化し、印加電圧直線LX1上で設定されるポンプセル印加電圧Vpでは十分に酸素を分解することができなくなる。因為にこの現象は、限界電流域が僅かに図の右上がりに傾斜していることに起因しており、ポンプセル特性が点線のように寝るほど、分解不十分となる酸素量が増えることになる。そのため、第1及び第2チャンバー144、146内の残留酸素が増加し、図5(b)に示すように、モニダセル特性が実線から点線に変化する(モ

ニタセルの電流値は $Im1 \rightarrow Im2$ に変化)。また、センサセルI30では、NOx と同時に分解される酸素量が増加することから、図5(c)に示すように、センサセル特性も同様に実線から点線に変化し、これがNOx 濃度の検出誤差となって現れる(検出誤差=Is2-Is1)。

【0069】一方、排ガス温度の上昇や個体差等でポンプセル110の素子インピーダンスRipが低下する場合には、ポンプセル特性は、図5(a)に実線で示す基本特性(図の丸数字1)から二点鎖線で示す特性(図の丸数字1)から二点鎖線で示す特性(図の丸数字3)に変化し、印加電圧直線LX1上で設定されるポンプセル印加電圧Vpでは、残留酸素を完全に分解してしまうと共にポンプセル110でNOxまで分解してしまう。そのため、図5(b)に示すように、モニタセルの電流値は $Im1 \rightarrow Im3$ に変化)。また、NOxの一部がポンプセル110で分解されてしまうことから、図5(c)に示すように、センサセル特性も同様に実線から二点鎖線に変化し、これがNOx 濃度の検出誤差となって現れる(検出誤差=Is3-Is1)。

【0070】上記の通り、ポンプセル110の素子イン ピーダンスRipが不用意に変化すると第1及び第2チ ャンバー144,146内の残留酸素量が変化し、それ が原因でNOx 濃度の検出誤差が生じる。そこで、本実 旋の形態の装置では、残留酸素量の変化をモニタセル特 性(モニタセル電流Im)から把握し、それによりポン プセル110の印加電圧特性を補正することを考える。 【0071】すなわち、ポンプセル110の素子インピ ーダンスRipが上昇し、残留酸素量が増えた場合に は、ポンプセル110での酸素分解量を増やす必要があ ることから、その時のモニタセル電流値Іm2に基づい て、図5(a)に示す印加電圧直線をLX1(実線)か **らLX2(点線)に変更する。この場合、印加電圧直線** LX1の傾き(前記図3の傾きa)が小さくなり、ポン プセル印加電圧Vpが増加方向に補正される。従って、 第1及び第2チャンバー144.146内の残留酸素が 減量されて正常量に戻り、図5(b)のモニタセル特 性、図5(c)のセンサセル特性が共に実線で示す特性 となる。故に、NOx 濃度の検出誤差が解消される。 【0072】また、ポンプセル110の索子インピーダ ンスRipが低下し、ポンプセル110でNOxが分解 される場合には、ポンプセル110での酸素分解量を減 らす必要があることから、その時のモニタセル電流値 I m3に基づいて、図5(a)に示す印加電圧直線をLX 1 (実線) からLN3 (二点鎖線) に変更する。この場 合、印加電圧直線しN1の傾き(前記図3の傾きa)が 大きくなり、ポンプセル印加電圧Vpが減少方向に補正 される。従って、第1及び第2チャンバー144.14 6内の残留酸素が増量されて正常量に戻り、図5(b)

のモニタセル特性、図5 (c) のセンサセル特性が共に

実線で示す特性となる。故に、NOx 濃度の検出誤差が 解消される。

【0073】次に、マイコン170により実現されるポンプセル印加電圧の制御手順を詳細に説明する。図6は、マイコン170により実施されるメインルーチンの概要を示すフローチャートであり、同ルーチンはマイコン170への電源投入に伴い起動される。

【0074】図6において、先ずステップ100では、前回の酸素濃度及びNOx濃度の検出時から所定時間下 aが経過したか否がを判別する。所定時間Taは、酸素 濃度及びNOx 濃度の検出周期に相当する時間であって、例えばTa=4msec程度に設定される。そして、ステップ100がYESであることを条件にステップ110に進み、それ以降の酸素濃度及びNOx濃度の 検出処理を実施する。

【0075】すなわち、ステップ110では、その時のモニタセル電流 I mに応じてポンプセル110の印加電圧特性を補正する。ポンプセル印加電圧特性の補正処理については図7のフローチャートに示し、その詳細は後述する。この際、マップデータとして与えられる前述の印加電圧直線 L X 1 が必要に応じて補正される。その後、ステップ120では、電流検出器171で測定したポンプセル電流 I p を読み込み、続くステップ130では、前記ステップ110での補正後の印加電圧直線 L X 1を用い、前記読み込んだポンプセル電流 I p に応じてポンプセル印加電圧 V p を設定する。

【0076】その後、ステップ140では、ポンプセル 印加電圧Vpの変化速度を設定する。ポンプセル印加電 圧の変化速度設定処理については図8のフローチャート に示し、その詳細は後述する。

【0077】更にその後、ステップ150では、前記ステップ130で設定したポンプセル印加選圧Vpを、前記ステップ140で設定した変化速度に従い出力する。 続くステップ160では、印加選圧の出力後にポンプセル電流 1pが安定した状態で当該ポンプセル電流 1pに基づいて排ガス中の酸素濃度 (A/F) を検出する。またこのとき、センサセル電流 1sに基づいて排ガス中のNOx 濃度を検出する。因みに、センサセル 130に関しては、子の規定されたセンサセル印加電圧Vs(固定値)がマイコン170から常に出力されるようになっている

【0078】酸素濃度及びNOx濃度の検出後、ステップ170では、前回の素子インピーダンス検出時から所定時間Tbが経過したか否かを判別する。所定時間Tbは、素子インピーダンスRipの検出周期に相当する時間であって、何えばエンジン運転状態に応じて128m間であって、何えばエンジン運転状態に応じて128msec、2sec等の時間が選択的に設定される。そして、ステップ170がYESであることを条件に、ステップ180で素子インピーダンスRipを検出すると共に、続くステップ190でピータ通電制御を実施する。

【0079】ここで、上記ステップ180の素子インピーダンスRipの検出時には、ポンプセル印加電圧Vpが操作され、それまでの残留酸素濃度検出用の印加電圧に対して電圧が正側又は負側に数 $10\sim100\mu$ sec程度の時間で単発的に切り替えられる。そして、その時のポンプセル印加電圧Vpの変化量とポンプセル電流Ipの変化量とが読み取られ、電圧変化量と電流変化量とから素子インピーダンスRipが算出される(Rip=電圧変化量/電流変化量)。

【0080】また、上記ステップ190のヒータ通電制御時には、素子インピーダンスRipが所望の目標値に一致するようヒータ通電が制御される。その一例として、ガス濃度センサ100の素子温が低く、素子インピーダンスRipが比較的大きい場合には、例えばデューティ比100%の全通電制御によりヒータ151が通電される。また、素子温が上昇すると、周知のPID制御手法等を用いて制御デューティ比が算出され、そのデューティ比によりヒータ151が通電される。

【0081】なお、上記図6のステップ110が特許請求の範囲に記載した「印加電圧補正手段」に、ステップ130が同「印加電圧設定手段」に、ステップ140が同「変化速度設定手段」に、ステップ150が同「印加電圧制御手段」に、それぞれ相当する。

【0082】次に、ポンプセル印加電圧特性の補正手順 (前記図6のステップ110) について、図7のフローチャートを用いて説明する。図7において、先ずステップ111では、今現在、所定の補正タイミングであるか否かを判別する。例えば、10~数100msec年にステップ111が肯定判別される。そして、続くステップ112では、電流検出器172で測定したモニタセル電流1mを読み込む。その後、ステップ113では、モニタセル電流の偏差 $\Delta 1$ mを算出する。つまり、第2チャンバー146内を所定の低酸素濃度(ストイキ近傍)に保つための目標モニタセル電流1mtg(例えば、0.5~2 μ Δ 程度)と、上記測定したモニタセル電流1mとの差を偏差 $\Delta 1$ mとする($\Delta 1$ m=1mtg-1

m)。 【0083】その後、ステップ114では、モニタセル電流の偏差 41mによりポンプセル印加電圧の補正量 4 Vpを算出する。このとき、補正量 4Vpは、モニタセル電流の偏差 41mを解消するために必要なポンプセル印加電圧の増減幅であり、モニタセル電流の実測値が目標値よりも高い場合(41m<0の場合)、正の補正量 4Vpが設定される。また、モニタセル電流の実測値が目標値よりも低い場合(41m>0の場合)、頁の補正

型 A V p が設定される。 【 O O S 4】 その後、ステップ 1 1 5 では、補正量 A V p の絶対値に皆づいて印加電圧直線 L X 1 の傾き補正量 a 1 を募出する。なおここで、補正最 A V p の絶対値と傾き補正量 a 1 とは概ね比例関係にある。更にその後、 ステップ116では、前記補正量 Δ Vpが正か負かを判別し、正の場合ステップ117に進み、印加電圧直線LX1の傾きを前記補正量 Δ Vpが負の場合ステップ118に進み、印加電圧直線LX1の傾きを前記補正量 Δ Vpが負の場合ステップ Δ Vpが自の場合ステップ Δ Vpが自の場合ステップ Δ Vpが自る。最後にステップ Δ Vpでは、補正後の印加電圧直線の傾きをメモリに保存する。

【0085】上記ステップ117によれば、印加電圧直線が例えば図5 (a)のLX1からLX2に切り替わり、第1チャンバー144内の残留酸素を減らす方向(より多く分解する方向)にポンプセル印加電圧Vpが補正される。また、上記ステップ118によれば、印加電圧直線が例えば図5 (a)のLX1からLX3に切り替わり、第1チャンバー144内の残留酸素を増やす方向にポンプセル印加電圧Vpが補正される。更に言い加えると、ステップ117、118によれば、モニタセル電流 I mが目標モニタセル電流 I m I m I m I m I に制御され、これにより、第1及び第2チャンバー144、146内の酸素濃度が一定に保持される。

【0086】上記の通り印加電圧特性が補正されると、マイコン170は、印加電圧特性の補正の周期(例えば10~数100msec)よりも短い周期、例えば4msec周期で、前記補正された印加電圧特性を用いてポンプセル印加電圧Vpを制御する。つまり、マイコン170は、図示しない別処理において、傾きが補正された印加電圧直線を用い、その印加電圧直線上でその時々のポンプセル電流Ipに応じてポンプセル印加電圧Vpを制御する。

【0087】次に、ポンプセル印加電圧の変化速度設定手順(前記図6のステップ140)について、図8のフローチャートを用いて説明する。図8において、先ずステップ141では、前記図6のステップ130で設定したポンプセル印加電圧Vp、すなわちポンプセル印加電圧の目標値と、今現在ポンプセル110に印加している電圧値との差から、ボンプセル印加電圧Vpの偏差ΔVを算出する。

【0088】その後、ステップ142では、偏差ΔVの絶対値を判定し、後続のステップ143~147では、その偏差ΔVの絶対値に応じてポンプセル印加電圧Vpの変化速度を適宜設定する。つまり、|ΔV|の程度を複数段階に区分しておき、その|ΔV|が大きいほど、ポンプセル印加電圧Vpの変化速度を連くし、逆に|ΔV|が小さいほど、ポンプセル印加電圧Vpの変化速度を遅くする。また更に、|ΔV|が比較的小さい場合にはVp変化の周期が長くなるよう、Vp変化の周期も可変に設定することとしている。

【0089】より具体的には、図9を併せ参照しながら 毎回セス

(1) | ΔV | < 0. 0 | Vであれば、変化速度= 2 mV / 6 0 m s e c とする (ステップ 1 4 3) 。

- (2)0.01V≦|ΔV|<0.02Vであれば、変 化速度=2mV/40msecとする(ステップ14 4)。
- (3)0.02V≦|ΔV|<0.06Vであれば、変 化速度=2mV/20msecとする(ステップ14 5)。
- (4) 0. 0 6 V ≦ | Δ V | < 0. 1 V であれば、変化 速度= 4 m V ∕ 2 0 m s e c とする(ステップ 1 4 6)。
- (5) | Δ V | ≧ 0. 1 V であれば、変化速度 = 8 m V / 2 0 m s e c とする(ステップ 1 4 7)。

【0090】なお、図8のフローチャート並びに図9に記載した数値は一例にすぎず、勿論任意に変更できる。 但し、概ね偏差ΔVの絶対値が大きくなるほど、変化速度を大きくすれば良い。図9であれば、右上がりの傾向にあれば良い。

【0091】以上詳述した本実施の形態によれば、以下に示す効果が得られる。本実施の形態では、PID手法等によりモニタセル起電力を目標値にフィードバックさせる従来技術とは異なり、予め規定した印加電圧特性

(印加電圧マップ)を用いてポンプセル印加電圧Vpを制御するようにした。そのため、モニタセル120での応答遅れ等が原因でポンプセル110の印加電圧制御の系が発振し、チャンバー内の残留酸素量が周期的に大きく変動するといった不具合が生じることはない。それ故に、NOx 濃度の検出精度低下を招く要因が解消される。

【0092】また、図22の(a)に示すように、ガス 濃度変化(NOx 濃度変化)に際し、第1セル電流(ポンプセル電流)が変化すると、それに追従しながら第1セル電圧(ポンプセル印加電圧)が直ぐに所望の目標値に制御される。その結果、チャンバー内で残留酸素過多となることはなく、モニタセル信号も変動しない。従って、第2セル(センサセル130)では、NOx 濃度に応じた電流を高応答で検出することができる。

【0093】特に、第1チャンバー144と第2チャンバー146とが絞り部(拡散通路)145を介して連通される場合、モニタセル120での応答遅れの問題が顕著になるが、かかる場合にも既述の問題が解消される。

【0094】また、モニタセル電流 Im (モニタセル出力)によりポンプセル110の印加電圧特性を補正し、該補正した印加電圧直線に基づいてポンプセル印加電圧 Vpを制御するので、第1及び第2チャンバー144、146内の残留酸素量が適正化できる。つまり、モニタセル電流 Imが目標値に収束して常に一定に保持され、第1及び第2チャンバー144、146内の残留酸素量が望み通りに制御できる。それ故、残留酸素量の変化によりNOx 濃度が誤放出されるといった不具合が解消できる。更に言えば、急激な加速又は減速による排ガス温度の変化、個体室、素子劣化等が原因でポンプセル11

0の活性状態が変化しても、排ガス中のNOx 濃度を精度良く検出することができる。

【0095】また特に、印加電圧制御の周期(例えば4msec)よりも長い周期(10~数100msec)でポンプセル印加電圧特性の補正を実施するので、ガス 設度センサ100の劣化や個体差等による応答性変化を 考慮した周期で当該補正が行われることとなる。 それ故に、印加電圧制御時における制御系の発振現象がより確実に抑制できる。

【0096】また、ポンプセル印加電圧Vpの変化速度を可変に設定するので、ポンプセル110による残留酸素の排出又は汲み込みを迅速に行わせることが可能となる。従って、NOx 濃度の検出応答性が向上すると共に、その検出精度がより一層向上する。特に、ポンプセル印加電圧の偏差 ΔV が比較的小さい場合にはVp変化の周期を長くするため、Vp変化時におけるピーク電流の影響が排除できるようになる。つまり、Vp変化時には、ポンプセル電流としてピーク電流(テーリング)が発生するが、そのピーク電流が収まってから次の印加電圧に変更されるようになる。従って、信頼性の高い印加電圧制御が実現できる。

【0097】一方で、ポンプセル110の印加電圧特性 として、図10に示す特性を設定しておいても良い。す なわち、図10では、酸素濃度検出範囲内において、既 述の印加電圧直線LX1が設定されていると共に、その 検出範囲よりもリーン側には別の印加電圧直線 L 1 1 が、リッチ側には別の印加電圧直線L12がそれぞれ設 定されている。ここで、印加電圧直線 L 1 1 は、酸素濃 度検出範囲のリーン限界であるA点と、Vp=0 (リー ン側起電力)上のB点とを結ぶ一次直線からなり、ま た、印加電圧直線 L 1 2 は、酸素濃度検出範囲のリッチ 限界であるC点と、 $V_p = 0$. 9V (リッチ側起電力) 上のD点とを結ぶ一次直線からなる。言い足せば、酸素 濃度検出範囲内の印加電圧直線しX1は抵抗支配領域の 傾きにほぼ同等の傾きを有するのに対し、同範囲外の印 加電圧直線し11、L12は印加電圧直線LX1とは正 負逆の傾きを有する。

【0098】図10の特性を用いることにより、酸素濃度検出範囲外の領域では、印加電圧直線L11.L12により検出電流の増加が制限される。つまり、素子割れ等が生じた場合にも、ポンプセル電流 1pが酸素濃度検出範囲付近で制限され、過剰な電流が流れるといった不都合が回避できる。例えば、リーン側領域では図のE点で検出電流が制限される。そのため、検出電流が過剰に増加することに伴う免熱等の問題が解消される。

【0099】また更に、上記の如く検出電流を制限することにより、器子インピーダンスの創検出も防止できる。すたわち、器子割れ等の不具合発生時において、電流制限が無い場合にはインピーダンス検出時の電流が酸素濃度検出範囲(電流検出範囲)から大きく外れてしま

い、正しい値が検出できない。従って、素子インピーダンスの誤検出を招くおそれがある。これに対し、電流制限を行う場合には、インピーダンス検出時の電流が酸素 濃度検出範囲(電流検出範囲)から大きく外れることはなく、素子インピーダンスが正しく検出できる。

【0100】なお、印加電圧直線L11, L12として、検出電流一定となる一次直線、すなわち、図のVp軸(図の横軸)に平行な一次直線を設定することも可能である。

【0101】次に、本発明における第2~第5の実施の 形態について、上記第1の実施の形態との相違点を中心 に説明する。

(第2の実施の形態) エンジン始動時等におけるガス濃度センサ100の作動開始時には、第1及び第2チャンバー144,146内は大気の状態にあり、多くの酸素が充満している(例えば、大気中の酸素濃度=20.9%)。従って、チャンバー144,146内が残留酸素過多の状態であることから、NOx濃度の検出精度が悪化する。この場合、通常のポンプセル印加電圧(A/F=10~大気で0.1~0.7V)では、チャンバー144,146内の残留酸素を排出するのに5~10分程度の時間を要し、NOx濃度の検出を早期に実施することができない。

【0102】そこで本実施の形態では、エンジン始動直後において通常のポンプセル印加電圧よりも高い電圧 (0.8~1.2V)をポンプセル110に1分程度印

加し、ポンプセル110での酸素排出能力を強制的に高めるように構成する。これにより、チャンバー144. 146内の残留酸素をいち早く排出し、NOx 濃度の検出を早期に開始できるものとする。

【0103】実際には、図11のフローチャートを実施する。この図11の処理は、前記図6に置き換えてマイコン170により実施されるものであり、前記図6からの変更箇所が分かる程度に要部のみを抽出して示す。なお、前記図6と同一の処理については同じステップ番号を付している。

【0104】図11において、ステップ100がYESであることを条件にステップ201に進み、エンジン始動からの時間をカウントする、続くステップ202では、残留酸素を強制排出するための初期制御時間が経過したか否かを判別する。初期制御時間は、例えば1分程度の時間である。初期制御時間が経過していれば(ステップ202がYESであれば)、ステップ110以降の処理に進み、ポンプセル印加電圧特性の補正、ポンプセル印加電圧Vpの設定など、通常の処理を実施する。

【0105】また、初期制御時間が経過していなければ (ステップ202がNOでもれば)、ステップ203に 進み、その時のモニタセル電流 I mが正常値であるか否 かを判別する。この判別は、モニタセル電流 I mが本来 取りうる範囲内にあるかどうかを判別するものであり、 例えば $I m \le 4 \mu$ Aであれば、正常値であると判別される。モニタセル電流 I mが正常値であれば、始動直後であってもチャンバー I = 44, I = 46内が残留酸素過多の状態でないと判断できる。従って、通常処理であるステップ I = 10にそのまま進む。例えば、エンジン停止直後における再始動時等においては、チャンバー I = 44, I = 46内の残留酸素が少ないため、ステップ I = 20 I =

【0106】また、モニタセル電流 I mが正常値でない場合(I m> 4 μ Aの場合)、ステップ 2 0 4 に進み、チャンバー 1 4 4 1 4 6 内の残留酸素を強制的に排出すべく、例えば 0 8 \sim 1 2 V 程度の高い電圧をポンプセル印加電圧 V p として設定する。その後、ステップ 1 5 0 に進み、上記の如く高電圧に設定したポンプセル印加電圧 V p を出力する。

【0107】以上第2の実施の形態によれば、エンジン 始動時におけるポンプセル110の酸素排出能力が強制 的に高められる。それ故、チャンバー144,146内 の残留酸素がいち早く排出され、NOx 濃度の検出が早 期に開始できるようになる。

【0108】また、モニタセル電流 I mが規定範囲(4 μ A以下)から外れることを条件に、ポンプセル110 に高い電圧が印加されるため、エンジンの再始動時には、上記した髙電圧が不要に印加されることが防止できる。つまり、必要時にのみ、所望とする強制的な酸素排出動作が実現できるようになる。

【0109】(第3の実施の形態)ポンプセル110の素子インピーダンスが変化すると、同一の印加電圧であってもポンプセル110での酸素排出量が変動し、チャンバー144、146内の残留酸素量が変動する。そこで、本実施の形態では、ポンプセル110の素子インピーダンスにより印加電圧補正を実施することを提案する。

【0110】具体的には、前記図6のメインルーチンにおいて、ステップ110での印加電圧補正の内容を以下のように変更する。つまり、上記第1の実施の形態では、図7のフローチャートに従い印加電圧補正を実施したが、本実施の形態ではこれに代えて、図12のフローチャートに従い印加電圧補正を実施する。なお、図12の処理が特許請求の範囲に記載した「印加電圧補正手段」に相当し、前記図6のステップ180が同「素子抵抗検出手段」に相当する。

【0111】さて、図12において、先ずステップ301では、今現在、所定の補正タイミングであるか否かを判別する。例えば、10~数100msec毎にステップ301が肯定判別される。そして、ステップ302では、ボンブセル110の素子インピーダンスRipを読み込み、続くステップ303では、素子インピーダンスRipに応じて印加電圧直線しN1の傾きを補正する。最後にステップ304では、補正後の印加電圧直線の傾

きをメモリに保存する。

【0112】上記ステップ303について図13を用いて具体的に説明する。素子インピーダンスRipが規定値よりも大きい場合、印加電圧直線を図のLX1からLX2に切り換え、その傾きを小さくする。これにより、第1チャンバー144内の残留酸素を減らす方向(より多く分解する方向)にポンプセル印加電圧Vpが補正されるようになる。また、素子インピーダンスRipが規定値よりも小さい場合、印加電圧直線を図のLX1からLX3に切り換え、その傾きを大きくする。これにより、第1チャンバー144内の残留酸素を増やす方向にポンプセル印加電圧Vpが補正されるようになる。

【0113】本第3の実施の形態によれば、チャンバー 144、146内の残留酸素量を適正化するようにポン プセル印加電圧Vpを制御することが可能となる。その 結果、排ガス中のNOx 濃度が精度良く検出できるよう になる。

【0114】(第4の実施の形態)次に、第4の実施の 形態を説明する。要するに、上記第1の実施の形態で は、モニタセル電流に応じてポンプセル110の印加電 圧特性を補正したが、これに代えて本実施の形態では、 モニタセル電流に応じてセンサセル130の出力補正を 行う。ガス濃度検出装置の構成は前記図1が流用できる ので、その説明は路略する。

【0115】センサセル電流補正の概要を図14を用いて具体的に説明する。なお、図14(a)~(c)は前記図3(a)~(c)と同様に、酸素濃度及びNOx濃度が一定のもとでのポンプセル110、モニタセル120及びセンサセル130の各特性を示す図面であり、図中、実線で示す特性(図の丸数字1)は前記図3で説明した基本特性である。

【0116】ここで、図14 (a) では、前記図3

(a) 中の印加電圧直線LX1よりも低電圧側(図の左側)に別の印加電圧直線LXAを設けており、この印加電圧直線LXA上でポンプセル印加電圧Vpが設定される。印加電圧直線を低電圧側にシフトすることは、第1及び第2チャンバー144.146内の酸素濃度が若干上昇することを意味し、仮に排ガス温度の上昇や個体差等でポンプセル110の累子インピーダンスRipが低下しても、ポンプセル110でのNOx分解が生じないようになっている。

【0117】さて、前述の通り、第1チャンバー144 内は所定の低酸素濃度に保持されており、その酸素は残 留酸素として第2チャンバー146に流れ込むため、セ ンサセル130では、NOx分解電流に残留酸素分のオ フセット電流を加算した電流レベルでセンサセル電流 I sが検出される。この場合、残留酸素量が常に一定であ ってオフセット電流一定であれば、相対的にNOx濃度 レベルを評価することも可能であるが、残留酸素量の変 動によりオフセット電流が変化すると、その分NOx濃 度の検出誤差が生じる。

【0118】例えば、排ガス温度の低下や個体差等でポンプセル110の素子インピーダンスRipが上昇する場合、ポンプセル特性が図14(a)に点線で示す特性に変化(図の丸数字1から丸数字2へ変化)し、それが原因で第1及び第2チャンバー144、146内の残留酸素が増加する。そのため、図14(b)に示すように、モニタセル特性が点線に変化する(モニタセルの電流値はIm1-Im2に変化)。また、図14(c)に示すように、センサセル特性も同様に点線に変化する(センサセルの電流値はIs1-Is2に変化)。この場合、電流値Is2には、モニタセル120側の電流値Im2相当のオフセット電流が含まれ、これがIs2の検出誤差となって現れる。

【0119】そこで、本実施の形態の装置では、残留酸素量の変化をモニタセル特性(モニタセル電流 I m)から把握し、それによりセンサセル電流 I s を補正することを考える。

【0120】すなわち、モニタセル電流値が「m1、又は同モニタセル電流が「m2の場合において、その都度実測されるセンサセル電流値「s1、1s2からモニタセル電流値「m1、Im2をそれぞれ減算する。すると何れの場合にも、センサセル電流値が、オフセット電流成分を含まないNOx分解電流のみの数値である「IsA」に補正される。従って、排ガスのNOx濃度一定である場合に、常に同一レベルのNOx濃度検出値(センサセル電流)が得られ、NOx濃度の検出誤差が解消される。

【0121】なお、排ガス温度の上昇や個体差等でポンプセル110の素子インピーダンスRipが低下する場合、ポンプセル特性は、図14(a)に実線で示す基本特性から二点鎖線で示す特性に変化(図の丸数字1から丸数字3へ変化)し、第1及び第2チャンバー144、146内の疫留酸素量がごく微量となる。この場合には、モニタセル電流値はごく微弱な1m3となり、オフセット電流の影響がごく僅かなのでセンサセル電流値を補正しないよう構成しても良い。

【0122】センサセル電流値からモニタセル電流値を 減算してオフセット電流分を補正する場合、モニタセル 120及びセンサセル130における各電極の触媒能力 が同一であれば、すなわち電極サイズが同じで且つ材料 も同じであれば、前記両者の差を単純に求めればよい が、各電極の触媒能力が異なるのであれば、その能力差 に応じた係数を掛け合わせて差を求めるのが望ましい。 これにより、モニタセル120及びセンサセル130に おいて残留酸素に対する反応電流が等価となり、その単 純比較が可能となる。

【0 1 2 3】次に、マイコン 1 7 0 により実現されるセンサセル電流の補正手順について、図 1 5 のフローチャートを用いて説明する。たお、この図 1 5 の処理が特許

請求の範囲に記載した「第2セル出力補正手段」に相当 する。

【0124】図15において、先ずステップ401では、今現在、NOx 濃度の検出タイミングであるか否かを判別する。例えば8msec毎にステップ401が肯定判別される。そして、ステップ402では、電流検出器172で測定したモニタセル電流 I mを読み込み、続くステップ403では、電流検出器173で測定したセンサセル電流 I sを読み込む。

【0125】その後、ステップ404では、モニタセル120及びセンサセル130における電極のサイズ及び材料の違いを修正するための係数Kを求め、その係数Kをモニタセル電流Imを掛け合わせ、「Im'」を算出する。このステップ404により、モニタセル120及びセンサセル130における電極の触媒能力の差が修正され、残留酸素に対する反応電流が等価になる。因みに、各セル120、130での電極の触媒能力が同一であれば、係数K=1である。勿論、モニタセル電流Imに代えて、センサセル電流Isに上記係数を掛け合わせるようにしても良い。

【0126】最後に、ステップ405では、前記ステップ403のセンサセル電流 Isから前記ステップ404のモニタセル電流 Im'を減算し、その値を補正後のセンサセル電流 IsBとする。こうしてセンサセル電流 Isを補正して「IsB」を算出することにより、センサセル電流値におけるオフセット電流分の誤差が是正されるようになる。例えば、前記図14では、補正後のセンサセル電流 IsBとして「IsA値」が求められる。

【0127】但し、上記図15のNOx 濃度検出の処理は、前記図6のメインルーチンで言えばステップ160の処理に該当する。それ故、図15のステップ402~405を、図6のステップ160で実施するようにしても良い。

【0128】以上第4の実施の形態によれば、モニタセル電流 I m (モニタセル出力)を取り込み、そのモニターセル電流 I mによりセンサセル電流 I s を補正するようにしたので、同一NOx 濃度であっても第2チャンバー146内の残留酸素量の変動によりセンサセル電流 I s が変化してしまうといった問題が解消される。従って、排ガス中のNOx 濃度を精度良く検出することができるようになる。

【0129】また、本実施の形態でも上記第1の実施の 形態と同様に、PID手法等によりモニタセル起電力を 目標値にフィードバックさせる従来技術とは異なり、ポンプセル(第1セル)の印加電圧制御の系が発振し、チャンバー内の残留酸素量が周期的に大きく変動するといった不具合が生じることはない。それ故に、ガス濃度の 検出精度低下を招く要因が解消される。

【0130】上記したガス濃度センサ100では、モニ タセル120とセンサセル130とが比較的近い位置に 設けられ、これら各セル120、130では共に第2チャンバー146内の同一ガスを検出対象とする。従って、モニタセル電流 I mをオフセット電流相当とみなすことができ、モニタセル電流 I mによるセンサセル電流 I s の補正が可能となる。

【0131】(第5の実施の形態)次に、本発明における第5の実施の形態について、上記各実施の形態との相違点を中心に説明する。要するに、本実施の形態では、モニタセル電流に応じてポンプセル110の印加電圧特性を補正する機能と、同じくモニタセル電流に応じてセンサセル130の出力補正を行う機能とを併せ持つ装置について以下に説明する。ガス濃度検出装置の構成は前記図1が流用できるので、その説明は諸略する。

【0132】その概略として、モニタセル電流により第 2チャンバー146内の残留酸素量を計測すると共に、 その残留酸素量に応じてポンプセル110の印加電圧特 性に補正を加える。これにより、第1及び第2チャンバ 一144,146内の残留酸素量(酸素濃度)が一定に 保持される。但しその際、ポンプセル110での酸素濃 度に応じた電流はmA(ミリアンペア)レベル、NOx によるセンサセル電流はμA (マイクロアンペア) レベ ルであり電流レベルが大きく異なるため、ポンプセル1 10でNOxを分解せず且つ残留酸素を完全に排出する ことは制御分解能を考慮すると困難である。つまり、残 留酸素をゼロにしようとすると、NOxを僅かに分解し てしまう可能性があり、その影響はセンサセル電流値に 大きく現れる。そこで、ポンプセル110でNOxを分 解しない程度にポンプセル印加電圧特性を補正すること とする。その結果、第1及び第2チャンバー144、1 46内には若干の残留酸素が残るので、その残留酸素を モニタセル120で検出し、その結果に応じてセンサセ ル電流出力を補正する。

【0133】ポンプセル印加電圧特性の補正、並びにセンサセル電流補正の概要を図16を用いて具体的に説明する。なお、図16(a)~(c)は前記図3(a)~(c)と同様に、酸素濃度及びNOx濃度が一定のもとでのポンプセル110、モニタセル120及びセンサセル130の各特性を示す図面であり、図中、実線で示す特性(図の丸数字1)は前記図3で説明した基本特性である。

【0134】先ずは、ボンプセル110の素子インピーダンスRipが目標値に保持されており、ボンプセル110の印加電圧特性(印加電圧直線LX1)に関する補正が必要ない場合について説明する。すなわち、ボンプセル特性が図16(a)に実線で示す基本特性(図の丸数字1)となる場合、印加電圧直線LX1によれば、ボンプセル110でNOxが分解されない程度にボンプセル印加電圧Vpが制御され、その結果、僅かながら残留酸素が第2チャンパー146に流れ込む。従って、図16(b)に示すように、モニタセル電流値1m1が計測

されると共に、図16(c)に示すように、センサセル 電流値【s1が計測される。この際、電流値【s1には 残留酸素量に応じたオフセット電流が含まれるため、電 流値Islからオフセット電流分(モニタセル電流Im 1相当分)を減算する。これにより、残留酸素相当のオ フセット電流を含まない電流値「IsC」が得られる。 【0135】これに対して、排ガス温度の低下や個体差 等でポンプセル110の素子インピーダンスRipが上 昇する場合、ポンプセル特性が図16(a)に点線で示 す特性(図の丸数字2)に変化することから、その時の モニタセル電流値 Im2に基づいて、図16(a)に示 す印加電圧直線がLX1 (実線) からLX2 (点線) に 変更される。これにより、第1及び第2チャンバー14 4,146内の残留酸素量が一定に制御され、図16 (b) のモニタセル特性、図16 (c) のセンサセル特 性が共に実線で示す特性となる。この際、第2チャンバ -146内の残留酸素量が一定に保たれることからセン サセル130では電流値Is1が計測されるが、この電

流値Islには残留酸素量に応じたオフセット電流が含

まれるため、電流値 Is 1からオフセット電流分を減算

する。こうして、残留酸素相当のオフセット電流を含ま

ない電流値「IsC」が得られる。

【0136】一方、排ガス温度の上昇や個体差等でポンプセル110の素子インピーダンスRipが低下する場合には、ポンプセル特性が図16(a)に二点鎖線で示す特性(図の丸数字3)に変化することから、その時のモニタセル電流値Im3に基づいて、図16(a)に示す印加電圧直線がLX1(実線)からLX3(二点鎖線)に変更される。これにより、第1及び第2チャンバー144.146内の残留酸素量が一定に制御され、図16(b)のモニタセル特性、図16(c)のセンサセル特性が共に実線で示す特性となる。この際、第2チャンバー146内の残留酸素量が一定に保たれることからセンサセル130では電流値Is1が計測されるが、この電流値Is1からオフセット電流分を減算することにより、残留酸素相当のオフセット電流を含まない電流値「IsC」が得られる。

【0137】上記実施の形態の作用を実現するには、マイコン170は、特許請求の範囲に記載した「第1の補正手段」として前述の図7の処理を実施し、ポンプセル110の印加電圧特性を補正する。この際、マイコン170は、例えば4msec周期で、前記補正された印加電圧特性を用いてポンプセル印加電圧Vpを制御する。つまり、傾きが補正された印加電圧直線を用い、その印加電圧直線上でその時々のポンプセル電流1pに応じてポンプセル印加電圧Vpを制御する。

【0138】また、マイコン170は、特許請求の範囲に記載した「第2の補正手段」として前記図15の一部を変更した図17の処理を実施する。図17では、前記図15と同じステップ番号を付した処理は該図15に準

じ、それ以外にステップ450を新たに追加して実施する。すなわち、ステップ402直後のステップ450では、その際検出したモニタセル電流 I m (ステップ402の I m値) が目標値又はその近傍に収束しているか否かを判別する。この場合、前述の図7等により、モニタセル電流 I mと目標値(第2チャンバー146内を所定の低酸素濃度に保つためのモニタセル電流)との偏差に応じてポンプセル印加電圧が補正されており、その補正の結果として、モニタセル電流 I mが目標値に対していれば、ステップ403以降の処理を実施する。すなわち、第2チャンバー146内の残留酸素量が所定量に保持されている場合に、センサセル電流 I sを取り込み、センサセル電流 I sの補正を実施する(ステップ403~405)。なお、モニタセル電流 I mが目標値に収束していなければ収束するまで待つ。

【0139】上記図17によれば、印加電圧制御の結果として第2チャンバー146内の残留酸素量(酸素濃度)が安定した状態で、センサセル電流 Isの取り込み及び補正が行われる。それ故に、センサセル電流 Isがより一層正確に補正できるようになる。

【0140】以上第5の実施の形態によれば、モニタセル電流 Im (モニタセル出力)によりポンプセル印加電圧特性を補正し且つセンサセル電流出力を補正するので、ポンプセル110の限界電流特性の変化に関係なく、チャンバー144、146内の残留酸素量が一定に保たれると共に、残留酸素分の影響を受けないセンサセル電流出力が得られる。その結果、排ガス中のNOx 濃度が精度良く検出できるようになる。

【0141】なお、ポンプセル印加電圧特性を補正する手段として、前記図7の処理に代えて、前記図12の処理を用いても良い。つまり、ポンプセル110の素子インピーダンスに応じてポンプセル印加電圧特性を補正する。かかる場合にも同様に、排ガス中のNOx濃度が精度良く検出できるようになる。

【0142】また、本第5の実施の形態でも上記各実施の形態と同様に、PID手法等によりモニタセル起電力を目標値にフィードバックさせる従来技術とは異なり、ポンプセル(第1セル)の印加電圧制御の系が発振し、チャンバー内の残留酸素量が周期的に大きく変動するといった不具合が生じることはない。それ故に、ガス濃度の検出情度低下を招く要因が解消される。

【0143】また特に、印加電圧制御の周期が例えば4msecであるのに対し、ポンプセル印加電圧特性の補 正の周期を10~数100msec、センサセル出力補 正の周期を8msecとしたので、ガス濃度センサ10 0の劣化や個体差等による応容性変化を考慮した周期で 上記補正が行われることとなる。それ故に、印加電圧制 御時における制御系の発展現象がより確実に抑制でき

【0144】なお本発明は、上記以外に次の形態にて具

体化できる。上記実施の形態では、ポンプセル110の 印加電圧特性を補正する際、図5等で説明したように、 印加電圧直線 LX1の傾きを増減するような補正を与え たが、この構成に代えて、印加電圧直線LX1のオフセ ット(前記図3のオフセットb)を増減するような補正 を与える。つまり、図18に示すように、例えば、排ガ ス温度の低下や個体差等でポンプセル110の素子イン ピーダンスRipが上昇する場合、ポンプセル特性が図 18に点線で示す特性(図の丸数字2)に変化すること から、その時のモニタセル電流に基づいて、印加電圧直 線をLX1(実線)からLX10(点線)に変更する。 また、排ガス温度の上昇や個体差等でポンプセル110 の素子インピーダンスRipが低下する場合には、ポン プセル特性が図10に二点鎖線で示す特性(図の丸数字 3) に変化することから、その時のモニタセル電流に基 づいて、印加電圧直線をLX1(実線)からLX11 (二点鎖線) に変更する。こうして印加電圧直線を変更 することにより、第2チャンバー146内の残留酸素量 はほぼ一定に保たれる。それにより、排ガス中のNOx

Page: 17

湿度が正確に検出できる。 【0145】かかる場合、マイコン170は、特許請求の範囲に記載した「印加電圧補正手段」である図19のフローチャートに従いポンプセル印加電圧特性を補正する。この処理は、前記図7の処理の一部を変更したものであり、ステップ111~114では前述の通り、モニタセル電流1mの読み込み、モニタセル電流の偏差ム1mの算出、ポンプセル印加電圧の補正量ムVpの算出をそれぞれ行う。そしてその後、ステップ501では、 Δ Vp \leq 0か否かを判別し、 Δ Vp>0の場合ステップ502に進み、印加電圧直線LX1のオフセットを補正量 Δ Vpだけ増やす。また、 Δ Vp \leq 0の場合ステップ503に進み、印加電圧直線LX1のオフセットを補正量 Δ Vpだけ減らす。最後にステップ504では、補正後の印加電圧直線のオフセットをメモリに保存する。

【0146】上記ステップ502によれば、印加電圧直線が例えば図18のLX1からLX10に切り替わり、第1チャンバー144内の残留酸素を減らす方向(より多く分解する方向)にポンプセル印加電圧Vpが補正される。また、上記ステップ503によれば、印加電圧直線が例えば図18のLX1からLX11に切り替わり、第1チャンバー144内の残留酸素を増やす方向にポンプセル印加電圧Vpが補正される。

【0147】前記図12のように素子インピーダンスに 応じてポンプセル印加電圧特性を補正する場合において も同様に、印加電圧直線のオフセットを補正するように しても良い。この場合、ポンプセル110の素子インピ ーダンスが大きいほど印加電圧直線のオフセットを大き くすると良い。

【0148】また、ポンプセル110の印加電圧補正として、予め規定した印加電圧特性(マップデータ)によ

りポンプセル印加電圧 V p を設定した後、その V p の設定値を対象に補正を実施しても良い。つまり、前記図 6 では、モニタセル出力に応じてポンプセル印加電圧特性を補正し、その補正後の印加電圧特性を用いてポンプセル印加電圧 V p を設定したが(ステップ 1 1 0 ~ 1 3 0)、これに代えて、ポンプセル印加電圧特性を補正せず、予め規定した印加電圧特性をそのまま用いてポンプセル印加電圧 V p を設定する。そして、設定後のポンプセル印加電圧 V p を、モニタセル出力に応じて補正する。この構成においても、既述の通り優れた効果を奏する。また、ポンプセル 1 1 0 の素子インピーダンスに応じて補正を行う場合(第 3 の実施の形態)についても同様である。

【0149】前記図1におけるLPF180について、その時定数をインピーダンス検出時とガス濃度検出時を変更する。その簡易的な構成として、LPF180を図20のように構成する。つまり、図20では、スイミンチSWを使用してLPF180の抵抗値をR1又はR2(但し、R1>R2)の何れかに切り換え、時定数を使出して、LPF180の概義度検出時には、通常の酸素濃度検出時には、通常の酸素濃度検出時にはスイッチSWを切り換えて時定数を小さる。より具体的には、通常の酸素濃度検出時にはスイッチSWを切り換えて時定数を小さる。なお、コンデンサ容量値を変化させて時定数を変更することも可能である。上記の通りLPF180の時定数を切り換えることで、ポンプセル印加電圧Vpの変化速度が可変設定されることとなる。

【0150】ガス歳度センサとしては、上記図2等に示すガス歳度センサ100以外にも適用できる。例えば、図21に示す構造のガス歳度センサ300において、一方の固体電解質301には、第1ポンプセル310及び第2ポンプセル320が設けられ、他方の固体電解質302にはモニタセル330と第2セルとしてのセンサセル340とが並べて設けられている。また、固体電解質301及び302の間には第1チャンバー303及び第2チャンバー304が設けられ、両チャンバー303、304は、拡散通路としての絞り部305を介して連通している。なお、第1チャンバー303にはピンホール306を介して排ガスが導入される。符号307、308は大気通路、符号309はヒータである。

【0151】上記ガス濃度センサ300は、第1及び第2チャンバー303、304内における酸素出し入れの効率化と高精度化を図るべく、第1セルとしてのポンプセルを2つのポンプセル310、320に分割したものであるが、かかる構成においても、既述の実施の形態と同様に、ホンプセル110の印加電圧補正、センサセル出力補正等の少なくとも何れかを実施してガス濃度検出装置を具体化することにより、排ガス中のNOx濃度を高精度に検出できるようになる。また、図2に示す3つのセル、図21に示す4つのセルを有するセンサ構造以

外に、5つ以上のセルを有するセンサ構造であっても良い。

【0152】NOx 濃度を検出可能なガス濃度センサの他に、特定ガス成分の濃度としてHC濃度やCO濃度を検出可能なガス濃度センサにも適用できる。この場合、第1セル(ポンプセル)にて被検出ガス中の酸素を排出し、第2セル(センサセル)にて酸素排出後のガス成分からHCやCOを分解してHC濃度やCO濃度を検出する。更に、自動車用以外のガス濃度検出装置に用いること、排ガス以外のガスを被検出ガスとすることも可能である。かかる構成においても、本発明を適用することによりガス濃度の検出精度が向上する。

【図面の簡単な説明】

- 【図1】ガス濃度検出装置の概要を示す構成図。
- 【図2】ガス濃度センサの構成を示す断面図。
- 【図3】ガス濃度センサの各セルの特性を示すVー I 特性図。
- 【図4】ポンプセルの印加電圧特性を示すV-I特性図。
- 【図 5】 ガス濃度センサの各セルの特性を示すV-I特性図、
- 【図6】マイコンによるメインルーチンを示すフローチャート。
- 【図 7 】ポンプセル印加電圧特性の補正手順を示すフロ ーチャート。
- 【図8】ポンプセル印加電圧の変化速度設定手順を示す フローチャート。
- 【図9】ポンプセル印加電圧の変化速度が可変設定され る概要を示す図。
- 【図10】ポンプセルの印加電圧特性を示すV-【特性図。
- 【図11】マイコンによるメインルーチンを示すフロー チャート。
- 【図 I 2】 ポンプセル印加電圧特性の補正手順を示すフローチャート。
- 【図13】ガス濃度センサのポンプセル特性を示すVー 「特性図。
- 【図 1 4】ガス濃度センサの各セルの特性を示すV-1 特性図。
- 【図 1 5】センサセル電流の補正手順を示すフローチャート、
- 【図16】ガス濃度センサの各セルの特性を示すVー! 特性図。
- 【図 1 7】センサセル電流の補正手順を示すフローチャート。
- 【図18】ポンプセル特性を示すV-1特性図。
- 【図19】ポンプセル印加電圧特性の補正手順を示すフローチャート。
- 【図20】他の形態におけるLPFの構成を示す回路図。

【図21】他の形態におけるガス濃度センサの構成を示す断面図。

【図22】ガス濃度変化時における各種信号等の応答の 様子を示す図。

【図23】ガス濃度センサの等価回路図。

【図24】電圧変化時におけるピーク電流発生の様子を示す図。

【符号の説明】

100…ガス濃度センサ、110…ポンプセル(第1セル)、120…モニタセル、130…センサセル(第2セル)、144…第1チャンバー、145…絞り部、146…第2チャンバー、170…マイコン、300…ガス濃度センサ、303…第1チャンバー、304…第2チャンバー、305…絞り部、310,320…ポンプセル(第1セル)、330…モニタセル、340…センサセル(第2セル)。

【図1】

[図6]

[314]

【图21】

【図22】

[図24]

フロントページの続き

(72) 発明者 鈴木 敏行 受知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 丹羽 三信 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内