

LETTER

# A pure hardware implementation of CRYSTALS-KYBER PQC algorithm through resource reuse

Yiming Huang<sup>1</sup>, Miaoqing Huang<sup>2</sup>, Zhongkui Lei<sup>1, a)</sup>, and Jiaxuan Wu<sup>3</sup>

Pakin Panawattanakul 4 / Aug /2025

## Presentation outline

- Objective & Scope
- Accelerator architecture
- Module & Dataflow for encapsulation and decapsulation
- FPGAs used in implementation
- Future work

# Objective & Scope

- Optimize resource utilization for Kyber Accelerator
  - Reuse module for encapsulation and decapsulation
  - Use BRAM to store intermediate data
    - Between module
    - Pipeline
- Not include key-generation
- Arithmetic Pipeline in NTT and Hash Module

# Math Notations

- Bit stream =  $\{0,1\}^{256}$  e.g. 011110101000..00
- Polynomial ring  $R_q$ : poly nomial degree 255, with coefficient in [0,3329)
- Polynomial ring P: polynomial degree 255 (intermediate state in calculation before reducing)
- Small polynomial  $S_n$ : polynomial degree 255, with coefficient  $[-\eta, \eta]$
- Number in NTT form  $\hat{x}$

Note: reference for more detail explaination and example page 32-35



Fig. 3 Overall Kyber encapsulation and decapsulation architecture.



# Encapsulation Module & Dataflow

Note: reference for more detailed explaination in Page 37-42



# Pre/Post Indcpa Encryption

**Pre-Encryption** 

#### Input

- 1) Public key:  $(\rho, \hat{t})$
- 2) R = Random 256 bits

$$\rho = 0,1^{256}, \hat{t} = \begin{pmatrix} R_q \\ R_q \\ R_q \end{pmatrix}$$

$$R = \{0,1\}^{256}$$

#### Output

m = SHA3-256(R), Plain text message

$$(coins, pre-k') = SHA3 - 512(SHA3 - 256(PK), m)$$

$$m, coins, pre-k'=0,1^{256}$$



#### Decode PK

Split public key into two part **Input**: public keys  $PK = (\rho, \hat{t})$ 

$$\rho = \{0,1\}^{256}, \hat{t} = \begin{pmatrix} R_q \\ R_q \\ R_q \end{pmatrix}$$

#### **Output**

- 1) Seed =  $\rho$
- 2)  $\hat{t}$  Increase coef size 12 $\rightarrow$ 16bits

$$\rho = \{0,1\}^{256}, \hat{t} = \begin{pmatrix} P \\ P \\ P \end{pmatrix}$$



## Decode Msg

**Input**: plain text message

$$m = \{0,1\}^{256}$$

#### **Calculate**

 $m_{poly} = rounded(q/2)m = 1665 m$ 

For every bit covert:  $0 \rightarrow 0$ ,  $1 \rightarrow 1665$ 

**Output**:  $m_{poly}$  (polynomial form  $R_a$ )

$$m_{poly} = R_q$$

q = 3329



## Hash Sampling Rejections

Use SHAKE-128 or SHAKE-256

#### Input

- Seed =  $\{0,1\}^{256}$
- Coins =  $\{0,1\}^{256}$

# Output : small polynomial errors & Part of public keys

- *e*<sub>1</sub>
- *e*<sub>2</sub>
- r
- $\hat{A}^T$

$$r = \begin{pmatrix} S_{\eta} \\ S_{\eta} \\ S_{\eta} \end{pmatrix}, e_{1} = \begin{pmatrix} S_{\eta} \\ S_{\eta} \\ S_{\eta} \end{pmatrix}, e_{2} = S_{\eta}$$

$$\hat{A}^T = \begin{pmatrix} P P P \\ P P P \\ P P P \end{pmatrix}$$



#### NTT Module

Convert polynomial to NTT form

**Input**: small polynomial r

$$r = \begin{pmatrix} S_{\eta} \\ S_{\eta} \\ S_{\eta} \end{pmatrix}$$

Output: polynomial in NTT form,

Polynomial Ring  $R_q$ 

$$\hat{r} = NTT(r)$$

$$\hat{r} = egin{pmatrix} R_q \\ R_q \\ R_q \end{pmatrix}$$



## PACC: Polynomial Accumulator

Compute polynomial aritmetic in NTT form with mondgomery multiplications

**Input**: Error Polynomial, variables from PK

$$1) \hat{r}$$

2) 
$$\hat{A}^T$$

1) 
$$\hat{r}$$
  
2)  $\hat{A}^T$   
3)  $\hat{t}$ 

$$\hat{r} = \begin{pmatrix} R_q \\ R_q \\ R_q \end{pmatrix} \hat{A}^T = \begin{pmatrix} PPP \\ PPP \\ PPP \end{pmatrix} \hat{t} = \begin{pmatrix} P \\ P \\ P \end{pmatrix}$$

#### Output

1) 
$$\hat{x} = \hat{A}^T \hat{r}$$

2) 
$$\hat{y} = \hat{t}^T \hat{r}$$

$$\hat{x} = \begin{pmatrix} P \\ P \\ P \end{pmatrix} \hat{y} = P$$

Note  $\hat{x}$ ,  $\hat{y}$  is only intermediate value before computation of  $\hat{u}, \hat{v}$ 



#### **INTT Module**

Convert Polynomial in NTT back to normal form

Input:  $\hat{x}$ ,  $\hat{y}$ 

$$\hat{x} = \begin{pmatrix} P \\ P \\ P \end{pmatrix}, \quad \hat{y} = P$$

#### **Output**

1) 
$$x = NTT^{-1}(\hat{x})$$

$$2) y = NTT^{-1}(\hat{y})$$

Output  
1) 
$$x = NTT^{-1}(\hat{x})$$
  
2)  $y = NTT^{-1}(\hat{y})$   $x = \begin{pmatrix} P \\ P \\ P \end{pmatrix}$ ,  $y = P$ 



## Addition Module (+)

Compute polynomial addition

#### Input

$$2) m_{poly}$$

3) 
$$e_1, e_2$$

$$x = \begin{pmatrix} P \\ P \\ P \end{pmatrix}, y = P$$

$$m_{poly} = R_q$$
  $e_1 = \begin{pmatrix} S_{\eta} \\ S_{\eta} \\ S_{\eta} \end{pmatrix}$ ,  $e_2 = S_{\eta}$ 

#### **Output**

1) 
$$u = x + e$$

1) 
$$u=x+e_1$$
  
2)  $v=y+e_2+m_{poly}$ 

$$u = \begin{pmatrix} P \\ P \\ P \end{pmatrix}, v = P$$



#### Reduce Module

Modular reduction reduce the coefficient to be with in [0,q)

**Input**: polynomials

- 1) v
- 2) u

$$u = \begin{pmatrix} P \\ P \\ P \end{pmatrix}, v = P$$

**Output**: polynomials ring  $R_q$ 

- 1)  $u = u \mod q$
- 2)  $v = v \mod q$

$$u = \begin{pmatrix} R_q \\ R_q \\ R_q \end{pmatrix}, \ v = R_q$$



## Compress encode

Compress ciphertext using rounded funciton

 $u = \begin{pmatrix} R_q \\ R_q \\ R_q \end{pmatrix}, \ v = R_q$ 

Compute

$$c_1 = compress(u, d_u) = round_q((2^{d_u}/q)x) \mod 2^{d_u}$$

$$c_2 = compress(v, d_v) = round_q((2^{d_v}/q)x) \mod 2^{d_v}$$

Output: Cipher text with lower coefficient bits

$$Ct = (c_1, c_2)$$

$$c_1 = \begin{pmatrix} P \\ P \\ P \end{pmatrix}$$
 with  $coef = d_u$  bits  $c_2 = P$  with  $coef = d_v$  bits



# Post Indepa Encryption

#### Input

- 1) Cipher text:  $Ct = (c_1, c_2)$
- 2) Part of PK: Pre-k'

$$c_1 = \begin{pmatrix} P \\ P \\ P \end{pmatrix}$$
 with coef =  $d_u$  bits  $Pre - k' = \{0,1\}^{256}$   
 $c_2 = P$  with coef =  $d_v$  bits

#### Output

- 1) Cipher text :  $Ct = (c_1, c_2)$
- 2) ss = SHAKE-256(SHA3-256(Ct), Pre-k')

$$c_1 = \begin{pmatrix} P \\ P \\ P \end{pmatrix}$$
 with  $coef = d_u$  bits  $ss = \{0,1\}^{256}$   
 $c_2 = P$  with  $coef = d_u$  bits

17

# Decapsulation Module & Dataflow



Note: reference for more detailed explaination in Page 37-42

# Pre Indcpa Decryption

Recive and pass input to other module as it is

#### Input

- 1) Cipher text :  $Ct = (c_1, c_2)$
- 2) Private key:  $SK = (\hat{s}, PK, pre k, coin)$

#### **Output**:

- 1) Cipher text :  $Ct = (c_1, c_2)$
- 2) Private key:  $SK = (\hat{s}, PK, pre k, coin)$

$$c_{1} = \begin{pmatrix} P \\ P \\ P \end{pmatrix} \text{ with coef} = d_{u} \text{ bits } \hat{s} = \begin{pmatrix} S_{\eta} \\ S_{\eta} \\ S_{\eta} \end{pmatrix} \hat{t} = \begin{pmatrix} R_{q} \\ R_{q} \\ R_{q} \end{pmatrix}$$

$$c_{2} = P \text{ with coef} = d_{v} \text{ bits } pre-k, coin, \rho = \{0,1\}^{256}$$



### Decode Ct

Recive and pass input to other module

**Input**: Cipher text  $Ct = (c_1, c_2)$ 

$$c_1 = \begin{pmatrix} P \\ P \\ P \end{pmatrix}$$
 with  $coef = d_u$  bits  $c_2 = P$  with  $coef = d_v$  bits

**Output**: Cipher text in polynomial ring  $R_q$ 

- 1)  $u' = decompress(c_1, d_u) = round((q/2^{d_u})c_1) mod q$
- 2)  $v' = decompress(c_2, d_v) = round((q/2^{d_v})c_2) mod q$

$$u' = \begin{pmatrix} R_q \\ R_q \\ R_q \end{pmatrix} \quad v' = R_q$$



### Decode SK

Decode Encapsulation key then Transpose encryption key

Input: Private key

 $SK = (\hat{s}, PK, pre - k, coin)$ 

$$\hat{s} = \begin{pmatrix} S_{\eta} \\ S_{\eta} \\ S_{\eta} \end{pmatrix} \hat{t} = \begin{pmatrix} R_{q} \\ R_{q} \\ R_{q} \end{pmatrix}$$

$$pre - k, coin, \rho = \{0,1\}^{256}$$

**Output**: decryption key  $\hat{s}^T$  in polynomial form

$$\hat{\mathbf{s}}^T = (P \ P \ P)$$



## NTT module

Convert polynomial to NTT

**Input**: Part of cipher text u'

$$u' = \begin{pmatrix} R_q \\ R_q \\ R_q \end{pmatrix}$$

Output: cipher text in NTT form

$$\hat{u}' = NTT(u')$$

$$\hat{u}' = \begin{pmatrix} R_q \\ R_q \\ R_q \end{pmatrix}$$



## PACC: Polynomial Accumulator

Compute polynomial aritmetic in NTT form with mondgomery multiplications

#### Input

- 1) Part of cipher text :  $\hat{u}'$
- 2) Encryptions key (transposed):  $\hat{s}^T$

$$\hat{u}' = \begin{pmatrix} R_q \\ R_q \\ R_q \end{pmatrix} \hat{s}^T = (S_\eta \ S_\eta \ S_\eta)$$

Output: intermidiate data

$$\hat{a} = \hat{s}^T \times \hat{u}'$$

$$\hat{a} = P$$



#### INTT module

Inverse polynomial in NTT to normal form

**Input**: intermediate data (NTT form):  $\hat{a}$ 

**Output**: intermidiate data (normal form)

$$a = NTT^{-1}(\hat{a})$$

$$\hat{a} = P$$

a=P



## Subtraction Module (-)

#### Polynomial subtraction

#### Input

1) Intermediate data : a

2) Part of cipher text: v'

$$a = P$$

$$v' = R_q$$

**Output**: Polynomial Ring

$$b=v'-a=v'-(s^Tu')$$

$$b=P$$



#### Reduce Module

Modular reduction reduce the coefficient to be with in [0,q)

**Input**: intermediate data b

$$b=P$$

**Output**: Polynomial Ring  $R_q$ 

$$b=b \mod q$$

$$b = R_q$$



# Compress Encode

Use  $round_q()$  to round the polynomial back to plain text message

Input: polynomial Ring b

 $b=R_q$ 

Output: Plain text Msg

 $m' = Round_{q}(b) = Round_{q}(v' - s^{T}u') \quad m' = \{0,1\}^{256}$ 



# Post Indepa Decryption

Re-encrypted the plain text message again and compare new and received cipher text

#### Input

- 1) plain text msg: m'
- 2) Hash of public key pre-k
- 3) Cipher text : Ct

 $c_1 = \begin{pmatrix} P \\ P \\ P \end{pmatrix}$  with coef =  $d_u$  bits  $c_2 = P$  with coef =  $d_v$  bits pre - k,  $m' = \{0,1\}^{256}$ 

# Compute (c', pre-k')=SHA3-512(pre-k, m')

Encrypt message gain by using the process as explain in Encryption part (pg. 6-17) Ct' = IND - CPA - KyberEncryption(m', PK, c')

Compare if Ct = Ct'



# Post Indepa Decryption

Re-encrypted the plain text message again and compare new and received cipher text

#### Input

- 1) plain text msg: m'
- 2) Hash of public key pre-k
- 3) Cipher text : Ct

$$c_1 = \begin{pmatrix} P \\ P \\ P \end{pmatrix}$$
 with coef =  $d_u$  bits
 $c_2 = P$  with coef =  $d_v$  bits
 $pre - k$ ,  $m' = \{0,1\}^{256}$ 

# Compute (c', pre-k')=SHA3-512(pre-k, m')

Encrypt message gain by using the process as explain in Encryption part (pg. 6-17) Ct' = IND - CPA - KyberEncryption(m', PK, c')

Compare if Ct = Ct'



# Post Indepa Decryption

If Ct = Ct' return the correct share secret key **Output** 

- 1) Verify flag : f = True
- 2) Share secret key ss = SHAKE 265(SHA3 256(Ct), coin)

If  $Ct \neq Ct'$  return the correct share secret key **Output** 

- 1) Verify flag : f = False
- 2) Share secret key(fake)

$$ss = SHAKE - 265(SHA 3 - 256(Ct), pre - k')$$

$$f = boolean \ ss = \{0,1\}^{256}$$



# FPGAs Board used in the Aritcle

#### AC701

| Logic Cells              | 215,360 |
|--------------------------|---------|
| DSP Slices               | 740     |
| Memory                   | 13,140  |
| GTP 6.6Gb/s Transceivers | 16      |
| I/0 Pins                 | 500     |

#### VC707

| Logic Cells                | 485,760 |
|----------------------------|---------|
| Memory (Kb)                | 37,080  |
| DSP Slices                 | 2,800   |
| GTX 12.5 GB/s Transceivers | 56      |
| I/0 Pins                   | 700     |

My board: ArtyS7-25

| Logic Cells                   | 23,360 |
|-------------------------------|--------|
| Slices                        | 3,650  |
| Flip-flops                    | 29,200 |
| Block RAM (Kbits)             | 1,620  |
| <b>Clock Management Tiles</b> | 3      |

I have about 10% resources of the board used in the Research

# Future work

- Start implementing each module
- Understanding arithmetic pipeline in NTT and Hash module
- Dual port BRAM: usage as FIFO buffer

# Reference to Math Notation

- Integer modulo :  $\mathbb{Z}_a$ 
  - Integer 0,1,2,..., q-1

e.g. 15+3 = 18%17 = 1

• After math operation  $\rightarrow$  mod q



- Polynomial ring:  $R_q = \mathbb{Z}_q[x]/(x^n + 1)$ 
  - q, n
  - Coefficient in  $\mathbb{Z}_q \in \{0,1,2,\ldots,q-1\}$
  - Degree =  $n-1 \rightarrow a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$
  - After multiplying apply modular reduction  $/(x^n + 1)$

e.g. q = 17, n = 4

e.g. 
$$q = 1/$$
,  $n = 4$ 

 $g(x) = 9 + x + 14x^3$ 

 $f(x) = 2 + 16x + 3x^2 + 5x^3$ 

$$f(x)g(x) = 18 + 146x + 43x^2 + 76x^3 + 229x^4 + 42x^5 + 70x^6$$



coef. mod q

$$= 1 + 10x + 9x^2 + 8x^3 + 8x^4 + 8x^5 + 2x^6$$



modular reduction  $/(x^n + 1)$ 

 $= 10 + 2x + 7x^2 + 8x^3$ 

#### "Small" Polynomial : $S_n$

- $\eta$  (eta) : coefficient  $\in [-\eta, \eta]$  when written in symmetric mod
- e.g. q = 17, n = 4,  $\eta = 2$
- Coefficient can be -2, -1, 0, 1, 2

$$s(x) = 1 + x - 2x^3$$

Noted : s(x) is written is symmetric mods

#### Symmetric mod → mods



## Kyber-768 domain Parameters

| q = 3329     | Polynomial coefficient can be : 0,1,2,3328                              |
|--------------|-------------------------------------------------------------------------|
| n = 256      | Each polynomial has degree 255 : $a_0 + a_1x + \cdots + a_{255}x^{255}$ |
| k = 3        | For matrix size                                                         |
| $\eta_1 = 2$ | size of "small" polynomial                                              |
| $\eta_2 = 2$ | size of "small" polynomial                                              |
| $d_u = 10$   | for compression/decompression of ciphertext                             |
| $d_v = 4$    | for compression/decompression of ciphertext                             |

# Refernece for Kyber

**Kyber Algorithms** 

https://cryptography101.ca/kyber-dilithium/

**Kyber Implementation** 

https://doi.org/10.1587/elex.17.20200234

**Kyber Specification** 

NIST: Post-Quantum Cryptography Standardization https://csrc.nist.gov/Projects/post-quantum-cryptography.

#### **KYBER-PKE**

- Key generation
- Encryption
- Decryption

- Base on Learning with errors problem
- Public key encryption
- Security level: "secure against chosen plain

text attack" → lower than Kyber-KEM

Hash function: generate A: SHAKE 128

# Domain parameters and key generation

For concreteness, we'll use the ML-KEM-768 domain parameters:

$$+ q = 3329$$

$$+ n = 256$$

$$+ k = 3$$

$$+ \eta_1 = 2 \text{ and } \eta_2 = 2$$

$$d_u = 10 \text{ and } d_v = 4$$

### Kyber-PKE key generation: Alice does:

- 1. Select  $\rho \in_R \{0,1\}^{256}$  and compute  $A = \operatorname{Expand}(\rho)$ , where  $A \in R_q^{k \times k}$ .
- 2. Select  $s \in_{CBD} S_{\eta_1}^k$  and  $e \in_{CBD} S_{\eta_2}^k$ .
- 3. Compute t = As + e.
- 4. Alice's encryption (public) key is  $(\rho, t)$ ; her decryption (private) key is s.

# Encryption and decryption

Kyber-PKE encryption: To encrypt a message  $m \in \{0,1\}^n$  for Alice, Bob does:

- 1. Obtain an authentic copy of Alice's encryption key  $(\rho, t)$  and compute  $A = \text{Expand}(\rho)$ .
- 2. Select  $r \in_{CBD} S_{\eta_1'}^k$   $e_1 \in_{CBD} S_{\eta_2'}^k$  and  $e_2 \in_{CBD} S_{\eta_2}$ .
- 3. Compute  $u = A^T r + e_1$  and  $v = t^T r + e_2 + \lceil \frac{q}{2} \rfloor m$ .
- 4. Compute  $c_1 = \text{Compress}_q(u, d_u)$  and  $c_2 = \text{Compress}_q(v, d_v)$ .
- 5. Output  $c = (c_1, c_2)$ .

Kyber-PKE decryption: To decrypt  $c = (c_1, c_2)$ , Alice does:

- 1. Compute  $u' = \text{Decompress}_{q}(c_1, d_u)$  and  $v' = \text{Decompress}_{q}(c_2, d_v)$ .
- 2. Compute  $m = \text{Round}_{a}(v' s^{T}u')$ .

# **KYBER-KEM**

- Key generation
- Encapsulation
- Decapsulation

#### Hash function:

generate A : SHAKE 128

G is SHA3-512, H is SHA3-256, J is SHAKE256

- Kyber PKE alone is not secure enough. Applying
   "Fujisaki Okamoto" transform → Kyber KEM
- Key Encapsulation mechanism
- Using Kyber-PKE as base building block
- Use Hash() and seed to create Pseudo RNG alongside
  - pure random
  - Central binomial Distribution
- Security: "Secure against chosen ciphertext attack" (more secure than Kyber-PKE)

# Domain parameters and key generation

For concreteness, we'll use the ML-KEM-768 domain parameters:

$$+ q = 3329$$

$$+ n = 256$$

$$+ k = 3$$

$$+ \eta_1 = 2 \text{ and } \eta_2 = 2$$

$$d_u = 10 \text{ and } d_v = 4$$

### Kyber-KEM key generation: Alice does:

- 1. Use the Kyber-PKE key generation algorithm to select a Kyber-PKE encryption key  $(\rho, t)$  and decryption key s.
- 2. Select  $z \in_R \{0,1\}^{256}$ .
- 3. Alice's encapsulation key is  $ek = (\rho, t)$ ; her decapsulation key is dk = (s, ek, H(ek), z).

# Encapsulation and decapsulation

Kyber-KEM encapsulation: To establish a shared secret key with Alice, Bob does:

- 1. Obtain an authentic copy of Alice's encapsulation key *ek*.
- 2. Select  $m \in_{R} \{0,1\}^{256}$ .
- 3. Compute h = H(ek) and (K, R) = G(m, h), where  $K, R \in \{0, 1\}^{256}$ .
- 4. Use the Kyber-PKE encryption algorithm to encrypt m with encryption key ek, and using R to generate the random quantities needed; call the resulting ciphertext c.
- 5. Output the secret key K and ciphertext c.

Kyber-KEM decapsulation: To recover the secret key K from c using dk = (s, ek, H(ek), z), Alice does:

- 1. Use the Kyber-PKE decryption algorithm to decrypt *c* using decryption key *s*; call the resulting plaintext *m*′.
- 2. Compute (K', R') = G(m', H(ek)).
- 3. Compute  $\overline{K} = J(z, c)$ .
- 4. Use the Kyber-PKE encryption algorithm to encrypt m' with encryption key ek, and using R' to generate the random quantities needed; call the resulting ciphertext c'.
- 5. If  $c \neq c'$  then return( $\overline{K}$ ).
- 6. Return(K').

42