Compensating Variation Price goes down

$$CV = C(U^{0}, P^{0}) - C(U^{0}, P^{1})$$

$$= \int_{P^{0}}^{P^{1}} \frac{\partial C(\mathbf{P}, U^{0})}{\partial P} dP$$

$$= \int_{P^{0}}^{P^{1}} X^{H}(\mathbf{P}, U^{0}) dP$$

Equivalent Variation Price goes down

$$EV = C(U^{1}, P^{0}) - C(U^{1}, P^{1})$$

$$= \int_{P^{0}}^{P^{1}} \frac{\partial C(\mathbf{P}, U^{1})}{\partial P} dP$$

$$= \int_{P^{0}}^{P^{1}} X^{H}(\mathbf{P}, U^{1}) dP$$

Laspeyres Measures Price goes down

Laspeyres Measures VS Compensating Variation Price goes down

Paasche Measures VS Equivalent Variation Price goes down

All In One --> Price goes down

Laspeyres Measures
Price goes **Down**

Laspeyres Measures Price goes **Up**

Paasche Measures Price goes **Down**

Paasche Measures Price goes **Up**

