Week 2: likelihood, earthquakes, and more

Quick poll

Help outside of class?

- ▶ open lab hours
- ► message board

Access to the course notes last week

Referring sites		
Site	Views	Unique visitors
github.com	68	8

Popular content				
Content	Views	Unique visitors		
hmods/notes: Course notes for hierarch	29	9		
notes/main.pdf at master	10	7		

Solutions to last week's problems

Posted on GitHub course site at end of class

Likelihood

The joint conditional probability of observations $y_1, y_2, ..., y_n$:

$$\mathcal{L}(heta|y) = \prod_{i=1}^n
ho(y_i| heta)$$

Maximum likelihood estimation

normal model, known standard deviation

$$y \sim N(\mu, 1)$$

Normal probability density

```
x \leftarrow seq(-3, 3, .01)
fx \leftarrow dnorm(x, 0, 1)
plot(x, fx, ylab = 'Probability density of x')
    0.4
Probability density of x
    0.3
    0.0
                                                Х
```

Maximum likelihood estimation

$$\mathcal{L}(\theta|y) = \prod_{i=1}^{n} p(y_i|\theta)$$

What values of θ maximize $\mathcal{L}(\theta|y)$?

Maximum likelihood estimation

```
\mathcal{L}(\theta|y) = \prod_{i=1}^n p(y_i|\theta) calc_lik <- function(y, mu) { likelihood <- prod(dnorm(y, mu, sd = 1)) return(likelihood) }
```

Making a likelihood profile

```
1 <- 1000
mu <- seq(4, 6, length.out = 1)
lik <- rep(NA, 1)
for (i in 1:1){
   lik[i] <- calc_lik(y, mu[i])
}</pre>
```

Making a likelihood profile

Log-likelihood profile

Today's class: earthquakes & optimization

The data

ggplot(attenu, aes(x = dist, y = accel, col = mag)) +
 geom_point()

Your task

- 1. Predict peak ground acceleration at epicenter
- 2. Predict attenuation curve

A quick primer on LATEX math equations

Demo in Atom