IMPLEMENTACIÓN NAND-NOR

Técnicas Digitales I

Luis Eduardo Toledo

OPERACIONES LÓGICAS CON COMPUERTAS NAND

DOS SÍMBOLOS LÓGICOS PARA LA COMPUERTA NAND

TRES FORMAS PARA IMPLEMENTAR LA FUNCIÓN F= A.B+C.D

EJEMPLO DE IMPLEMENTACIÓN DE UNA FUNCIÓN USANDO NAND

$$F(x, y, z) = (1, 2, 3, 4, 5, 7)$$

OTRO EJEMPLO DE IMPLEMENTACIÓN DE UNA FUNCIÓN USANDO NAND

$$F = (AB' + A'B)(C + D')$$

OPERACIONES LÓGICAS CON COMPUERTAS NOR

DOS SÍMBOLOS GRÁFICOS PARA REPRESENTAR LA COMPUERTA NOR

$$x = 0$$

$$y = 0$$

$$z = 0$$

$$(b) \text{ Invert-AND}$$

EJEMPLOS DE IMPLEMENTACIÓN DE FUNCIONES USANDO COMPUERTAS NOR

$$F = (A + B)(C + D)E$$

$$B$$

$$C$$

$$D$$

$$E'$$

$$F = (AB' + A'B)(C + D')$$

FUNCIÓN XOR

$$x \oplus y = xy' + x'y$$

La OR exclusiva es igual a 1 si únicamente x es igual a 1 o si únicamente y es igual a 1 (es decir, x e y difieren en su valor).

La NOR exclusiva, también conocida como *equivalencia*, realiza la siguiente operación Booleana:

$$(x \oplus y)' = xy + x'y'$$

La NOR exclusiva es igual a 1 si tanto x como y son iguales a 1 o si ambas son iguales a 0.

FUNCIÓN XOR

Las siguientes identidades se aplican a la operación OR exclusiva:

$$x \oplus 0 = x$$

$$x \oplus 1 = x'$$

$$x \oplus x = 0$$

$$x \oplus x' = 1$$

$$x \oplus y' = x' \oplus y = (x \oplus y)'$$

Х	У	f
0	0	0
0	1	1
1	0	1
1	1	0

La OR exclusiva es conmutativa y asociativa.

$$A \oplus B = B \oplus A$$

$$(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$$

IMPLEMENTACIÓN DE LA FUNCIÓN XOR

(a) Exclusive-OR with AND-OR-NOT gates

(b) Exclusive-OR with NAND gates

FUNCIÓN IMPAR

La operación OR exclusiva con tres o mas variables puede convertirse en un función Booleana común reemplazando el símbolo \oplus con su equivalente expresión Booleana.

$$A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C$$
$$= AB'C' + A'BC' + ABC + A'B'C$$
$$= \Sigma(1, 2, 4, 7)$$

En el caso de tres o mas variables el requerimiento es que un número impar de variables sea igual a 1.

En general, una OR exclusiva de n variables es una función impar definida como la suma lógica de los 2ⁿ/2 minitérminos cuyo valor numérico binario tenga un número impar de 1s.

LA FUNCIÓN XOR Y EL MAPA DE KARNAUGH

(a) Odd function $F = A \oplus B \oplus C$

(b) Even function $F = (A \oplus B \oplus C)'$

LA FUNCIÓN XOR Y EL MAPA DE KARNAUGH

(a) Odd function $F = A \oplus B \oplus C \oplus D$

(b) Even function $F = (A \oplus B \oplus C \oplus D)'$

GENERACIÓN Y COMPROBACIÓN DE PARIDAD

Even-Parity-Generator Truth Table

Three-Bit Message			ssage	Parity Bit	
	x	y	Z	P	
Ī	0	0	0	0	
	0	0	1	1	$x \longrightarrow U$
	0	1	0	1	
	0	1	1	0	
	1	0	0	1	
	1	0	1	0	Z —
	1	1	0	0	(a) 3-bit even parity generator
	1	1	1	1	

GENERACIÓN Y COMPROBACIÓN DE PARIDAD

Even-Parity-Checker Truth Table

Four Bits Received				Parity Error Check	
x	y	z	P	С	
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	1	
0	0	1	1	0	x - H
0	1	0	0	1	
0	1	0	1	0	y—————————————————————————————————————
0	1	1	0	0	
0	1	1	1	1	$z \rightarrow V$
1	0	0	0	1	
1	0	0	1	0	$P \longrightarrow H \longrightarrow$
1	0	1	0	0	5000 26 26 25 300 300 300 27 44
1	0	1	1	1	(b) 4-bit even parity checker
1	1	0	0	0	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	0	