Enseignant es: Blanche Buet, Dominique Hulin et Thomas Letendre.

Feuille 3 – Distributions en plusieurs variables

Notations. Soit $\|\cdot\|$ la norme euclidienne usuelle sur \mathbb{R}^d . Pour tout $x \in \mathbb{R}^d$ et R > 0, on note $B(x,R) = \{y \in \mathbb{R}^d \mid \|x-y\| < R\}$. On notera aussi $B_R = B(0,R)$ par souci de concision.

Exercice 1 (Dérivées, transverse ou pas). Montrer que les deux formes linéaires sur $\mathcal{D}(\mathbb{R}^2)$ suivantes définissent des distributions et déterminer leur ordre.

$$T_1: \varphi \mapsto \int_{\mathbb{R}} \partial_1 \varphi(t,0) \, \mathrm{d}t$$
 et $T_2: \varphi \mapsto \int_{\mathbb{R}} \partial_2 \varphi(t,0) \, \mathrm{d}t.$

Exercice 2 (Calculs de dérivées). On définit des formes linéaires T et T^+ sur $\mathcal{D}(\mathbb{R}^2)$ par :

$$T: \varphi \longmapsto \int_{\mathbb{R}} \varphi(t,t) dt$$
 et $T^+: \varphi \longmapsto \int_{\mathbb{R}_+} \varphi(t,t) dt$.

- 1. Montrer que T et T^+ définissent des distributions sur \mathbb{R}^2 .
- 2. Calculer $\partial_1 T + \partial_2 T$ et $\partial_1 T^+ + \partial_2 T^+$ dans $\mathcal{D}'(\mathbb{R}^2)$.
- 3. Notons $D = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_2 \geqslant |x_1|\}$ et $\mathbf{1}_D$ sa fonction indicatrice, calculer $\partial_1 \mathbf{1}_D \partial_2 \mathbf{1}_D$.
- 4. Calculer $\partial_1^2 \mathbf{1}_D \partial_2^2 \mathbf{1}_D$ dans $\mathcal{D}'(\mathbb{R}^2)$.

Définition (Mesure-image). Soient $f:(X,\mathcal{A})\to (Y,\mathcal{B})$ une application mesurable entre espaces mesurés et ν une mesure sur (X,\mathcal{A}) . La mesure-image $f_*\nu$ est la mesure sur (Y,\mathcal{B}) définie par $f_*\nu(B)=\nu(f^{-1}(B))$ pour tout $B\in\mathcal{B}$. C'est l'unique mesure telle que, pour tout $\varphi:B\to[0,+\infty]$ mesurable, on a

$$\int_{A} \varphi \circ f(x) \, \mathrm{d}\nu(x) = \int_{B} \varphi(y) \, \mathrm{d}f_* \nu(y). \tag{1}$$

De plus, $\varphi: B \to C$ est intégrable pour $f_*\nu$ si et seulement si $\varphi \circ f$ est intégrable pour ν , et dans ce cas (1) est encore valable.

Exercice 3 (Mesure uniforme sur la sphère). Soit γ la restriction à $\mathbb{R}^d \setminus \{0\}$ de la mesure gaussienne standard, i.e. γ admet la densité $x \mapsto (2\pi)^{-\frac{d}{2}} \exp\left(-\frac{1}{2}||x||^2\right)$ par rapport à la mesure de Lebesgue. On note $\mu = \pi_* \gamma$ sa mesure image par la projection radiale $\pi : x \mapsto \frac{x}{||x||}$ de $\mathbb{R}^d \setminus \{0\}$ vers $\mathbb{S}^{d-1} \subset \mathbb{R}^d$.

- 1. Montrer que μ définit une distribution d'ordre 0 sur \mathbb{R}^d .
- 2. Déterminer le support de μ .
- 3. Existe-t-il $f \in L^1_{loc}(\mathbb{R}^d)$ telle que $\mu = T_f$?
- 4. Déterminer le support singulier de μ .

Définition (Changement de variable sphérique). On admet (pour l'instant) qu'il existe une mesure borélienne σ sur la sphère euclidienne $\mathbb{S}^{d-1} \subset \mathbb{R}^d$ telle que, pour tout $f: \mathbb{R}^d \to [0, +\infty]$ mesurable,

$$\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x = \int_{r=0}^{+\infty} \int_{\theta \in \mathbb{S}^{d-1}} f(r\theta) r^{d-1} \, \mathrm{d}r \, \mathrm{d}\sigma(\theta). \tag{2}$$

De plus, $f: \mathbb{R}^d \to \mathbb{C}$ est intégrable si et seulement si $(r, \theta) \mapsto r^{d-1} f(r\theta)$ est intégrable pour $dr \otimes \sigma$, et dans ce cas (2) est encore vrai. En dimension d=2, la mesure σ coïncide avec la mesure de Lebesgue sur \mathbb{S}^1 et on retrouve la formule usuelle de changement de variable polaire :

$$\int_{\mathbb{R}^2} f(x) \, \mathrm{d}x = \int_{r=0}^{+\infty} \int_{\theta=0}^{2\pi} f(r\cos(\theta), r\sin(\theta)) r \, \mathrm{d}r \, \mathrm{d}\theta. \tag{3}$$

Exercice 4 (Calcul du volume de la sphère). On va relier la mesure σ apparaissant dans la formule (2) et la mesure μ étudiée dans l'exercice 3, vue ici comme mesure sur \mathbb{S}^{d-1} .

- 1. Montrer qu'il existe $C_d \in]0, +\infty[$ telle que $\mu = C_d \sigma$.
- 2. Calculer C_d . En déduire σ est une mesure finie et déterminer $\sigma(\mathbb{S}^{d-1})$.
- 3. Montrer que $\int_{B_1} dx = \frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2}+1)}$.

Exercice 5 (Intégrabilité des puissances de la norme). Soient $\alpha \in \mathbb{R}$ et R > 0, montrer que dans \mathbb{R}^d on a les équivalences suivantes :

$$\int_{B_R} \|x\|^{\alpha} dx < +\infty \iff \alpha > -d \qquad \text{et} \qquad \int_{\mathbb{R}^d \setminus B_R} \|x\|^{\alpha} dx < +\infty \iff \alpha < -d.$$

Exercice 6 (Valeur principale, le retour). Soient $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ et $T: \mathcal{D}(\mathbb{R}^2) \to \mathbb{C}$ définies par :

$$f: (x_1, x_2) \mapsto \frac{x_1}{\|(x_1, x_2)\|^3}$$
 et $T: \varphi \longmapsto \lim_{\varepsilon \to 0} \int_{\mathbb{R}^2 \setminus B_{\varepsilon}} f(x) \varphi(x) \, \mathrm{d}x.$

- 1. Est-ce que $f \in L^1_{loc}(\mathbb{R}^2)$?
- 2. Soit $\varphi \in \mathcal{D}(\mathbb{R}^2)$, montrer que $\psi : (x_1, x_2) \mapsto f(x_1, x_2) \big(\varphi(x_1, x_2) \varphi(-x_1, x_2) \big)$ est dans $L^1(\mathbb{R}^2)$.
- 3. En déduire que T définit une distribution sur \mathbb{R}^2 . Elle est appelée valeur principale de $\frac{x_1}{|x|^3}$.

Exercice 7 (Décroissance rapide, preview). Si $i \in [1, d]$, on note $X_i : (x_1, \dots, x_d) \mapsto x_i$ de \mathbb{R}^d dans \mathbb{R} . On note aussi $X = (X_1, \dots, X_d) : x \mapsto x$, et pour tout $\alpha \in \mathbb{N}^d$, $X^{\alpha} : x \mapsto x^{\alpha}$. Soit $f \in \mathcal{C}^{\infty}(\mathbb{R}^d)$, dans cet exercice on notera, pour tout $p \in \mathbb{N}$, $N_p(f) = \max_{|\alpha| \leq p, |\beta| \leq p} ||X^{\alpha} \partial^{\beta} f||_{\infty} \in [0, +\infty]$.

- 1. Soit $f: \mathbb{R}^d \to \mathbb{C}$ continue, montrer que les propositions suivantes sont équivalentes.
 - (a) Pour tout $n \in \mathbb{N}$, la fonction $x \mapsto (1 + ||x||^2)^n f(x)$ est bornée sur \mathbb{R}^d .
 - (b) Pour tout $n \in \mathbb{N}$, $(1 + ||x||^2)^n f(x) \xrightarrow{||x|| \to +\infty} 0$.
 - (c) Pour tout $\alpha \in \mathbb{N}^d$, $x^{\alpha} f(x) \xrightarrow{\|x\| \to +\infty} 0$.
 - (d) Pour tout $\alpha \in \mathbb{N}^d$, la fonction $x \mapsto x^{\alpha} f(x)$ est bornée sur \mathbb{R}^d .
- 2. Soient p et $q \in \mathbb{N}$, montrer qu'il existe $C \geqslant 0$ tel que : pour tout $f \in \mathcal{C}^{\infty}(\mathbb{R}^d)$, pour tout α et $\beta \in \mathbb{N}^d$ tels que $|\alpha| \leqslant q$ et $|\beta| \leqslant q$, on a $N_p(X^{\alpha}\partial^{\beta}f) \leqslant CN_{p+q}(f)$.
- 3. Soient $k \in \mathbb{N}$, montrer que, pour tout $f \in \mathcal{C}^{\infty}(\mathbb{R}^d)$, pour tout $x \in \mathbb{R}^d$, $||x||^k |f(x)| \leq d^k N_k(f)$.
- 4. En déduire que pour tout $p \in [1, +\infty]$, il existe $C_p \in [0, +\infty[$ et $k_p \in \mathbb{N}$ tels que, pour tout $f \in \mathcal{C}^{\infty}(\mathbb{R}^d)$, $||f||_p \leq C_p N_{k_p}(f)$.

Exercice 8 (Fonctions radiales, preview). Dans cet exercice, on note $r: x \mapsto ||x||$ de \mathbb{R}^d dans $[0, +\infty[$. On dit que $G: \mathbb{R}^d \to \mathbb{C}$ est invariante par rotation si $G \circ A = G$ pour tout $A \in O_d(\mathbb{R})$.

1. Soit $G: \mathbb{R}^d \to \mathbb{C}$, montrer que G est invariante par rotation si et seulement si il existe $g: [0, +\infty[\to \mathbb{C}$ telle que $G = g \circ r$.

Dans la suite on se donne $G: \mathbb{R}^d \to \mathbb{C}$ invariante par rotation et $g: [0, +\infty[\to \mathbb{C}$ telle que $G = g \circ r$.

2. Montrer que $G \in \mathcal{C}^2(\mathbb{R}^d \setminus \{0\})$ si et seulement si $g \in \mathcal{C}^2(]0, +\infty[)$. Si c'est le cas, montrer que $\Delta G = g'' \circ r + \frac{d-1}{r} g' \circ r$ sur $\mathbb{R}^d \setminus \{0\}$, où $\Delta = \sum_{i=1}^d \partial_i^2$ est le laplacien.