

DESIGN AND ANALYSIS OF ALGORITHMS

Session -20 OBST

OPTIMAL BINARY SEARCH TREE(OBST)

A binary search tree T is a binary tree, either it is empty or each node in the tree contains an identifier and,

- All identifiers in the left subtree of T are *less than* the identifier in the *root* node of T.
- All identifiers in the right subtree of T are *greater than* the identifier in the *root* node of T.
- The *left and right* subtree of T are also *binary search* trees.

Binary Search Tree – Examples (No. of Possible BSTs)

• Ex :- $(a_1,a_2,a_3) = (10, 20, 30)$

Binary Search Tree (BST) - COST OF SEARCHING A KEY

 Cost of searching any key is dependent on comparisons required for searching any key element in the tree.

Key	C			
10	1			
20	2			
30	3			
Avg	6/3=2			

Key	C		
10	1		
20	3		
30	2		
Avg	6/3=2		

Key	C		
10	2		
20	1		
30	2		
Avg	5/3=1.66		

Key	С
10	3
20	2
30	1
Avg	6/3=2

Key	С
10	2
20	3
30	1
Avg	6/3=2

n-1max[No. of Cmparisions]

Binary Search Tree (BST) – COST OF SEARCHING A KEY by giving the Frequency of Searching

	Keys	10	20	30	
	Frequencies for Searching	3	2	6	
3*1=3 20) 2*2=4	3*1=3		1 = 2	30 6*1=6	30 6*1=6 3*2=6
30 6 * 3 = 1 Total Cost is = 25	30) 6 * 2 = 12 20) 2 * 3 = · 6 Total Cost is = 21	3*2=6 6*3 Total Cost is = 20	2=12	3*3=9	20 2*3=6 Total Cost is = 18

- Minimum searching cost is low means it's a Optimal BST.
- Tree 5 is having minimum searching cost = 15.
- Tree 5 is OBST.
- Though it is not height balanced, tree 5 is OBST which is based on frequencies the cost of BST is minimum.

OPTIMAL BINARY SEARCH TREE (OBST) · Weight-balanced Binary Search Tree

- It is a Binary Search Tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses.
- Optimal BSTs are generally divided into two types: Static and Dynamic.
- In the Static Optimality problem,
 - the tree cannot be modified after it has been constructed.
 - In this case, there exists some layout of the nodes of the tree which provides the smallest expected search time for the given access probabilities.
 - Various algorithms exist to construct or approximate the statically optimal tree.
- In the Dynamic Optimality problem,
 - the tree can be modified at any time, typically by permitting tree rotations.
 - The tree is considered to have a cursor starting at the root which it can move or use to perform modifications.
 - In this case, there exists some minimal-cost sequence of these operations which causes the cursor to visit every node in the target access sequence in order.

OPTIMAL BINARY SEARCH TREE (OBST)

- Given sequence of identifiers $(a_1, a_2, ..., a_n)$ with $a_1 < a_2 < \cdots < a_n$.
- Let p(i) be the probability with which we search for a_i
- Let q(i) be the probability with which we search for an identifier x such that a_i $< x < a_{i+1}$.
- We must build a Binary Search Tree (BST) with minimum expected search cost.

- Identifiers: 10, 20, 30
- Internal node : successful search, p(i)
- External node: unsuccessful search, q(i)

The expected cost of a binary tree:

$$\sum_{n=1}^{n} p_{i} * \text{level}(a_{i}) + \sum_{n=0}^{n} q_{i} * (\text{level}(E_{i}) - 1)$$

- Make a decision as which of the a_i's should be assigned to the root node of the tree.
- If we choose a_k , then it is clear that the internal nodes for $a_1, a_2, \ldots, a_{k-1}$ as well as the external nodes for the classes E_0 , E_1, \ldots, E_{k-1} will lie in the left subtree l of the root. The remaining nodes will be in the right subtree r.

- and
- $cost(r) = \sum_{k < i \le n} p(i) * level(a_i) + \sum_{k < i \le n} q(i) * (level(E_i) 1)$
- In both the cases the level is measured by considering the root of the respective sub tree to be at level 1.
- we obtain the following as the expected cost of the above search tree.

$$p(k) + cost(1) + cost(r) + w(0,k-1) + w(k,n)$$

- If we use c(i,j) to represent the cost of an optimal binary search tree t_{ij} containing a_{i+1}, \ldots, a_j and E_i, \ldots, E_j , then cost(l) = c(0,k-1), and cost(r) = c(k,n).
- For the tree to be optimal, we must choose k such that p(k) + c(0,k-1) + c(k,n) + w(0,k-1) + w(k,n) is minimum.

Hence, for c(0,n) we obtain

$$c(0,n) = \min_{0 < k \le n} \left\{ c(0,k-1) + c(k,n) + p(k) + w(0,k-1) + w(k,n) \right\}$$

We can generalize the above formula for any c(i,j) as shown below

$$c (i, j) = \min \left\{ c (i, k-1) + c (k, j) + p(k) + w(i, k-1) + w(k, j) \right\}$$

$$i < k \le j$$

•
$$c(i, j) = \min_{i < k \le j} \left\{ cost(i, k-1) + cost(k, j) + w(i, j) \right\}$$

- \triangleright Therefore, c(0,n) can be solved by first computing all
- c(i, j) such that j i = 1, next we compute all c(i, j) such
- that j i = 2, then all c(i, j) with j i = 3, and so on.
- During this computation we record the root r(i, j) of each tree t_{ij} , then an optimal binary search tree can be constructed from these r(i, j).
- ightharpoonup r(i, j) is the value of k that minimizes the cost value.

Note: 1.
$$c(i,i) = 0$$
, $w(i,j) = q(i)$, and $r(i,j) = 0$ for all $0 \le i \le n$
2. $w(i,j) = p(j) + q(j) + w(i,j-1)$

Ex 1: Let n=4, and $(a_1,a_2,a_3,a_4) = (do, if, int, while)$.

Let p(1:4) = (3, 3, 1, 1) and q(0:4) = (2, 3, 1, 1, 1).

p's and q's have been multiplied by 16 for convenience.

Then, we get

Let n = 4 and (a1, a2, a3,a4) = (do, if, int, while) $p(1:4) = (3,3,1,1) \quad \text{and} \quad q(0:4) = (2,3,1,1,1)$ c(0,4) + w(0.4) $c(0,0) + c(1,4) \quad c(0,1) + c(2,4) \quad c(0,2) + c(3,4) \quad c(0,3) + c(4,4)$

Let
$$n = 4$$
 and $(a1, a2, a3, a4) = (do, if, int, while)
 $p(1:4) = (3,3,1,1)$ and $q(0:4) = (2,3,1,1,1)$$

$$w(i, i) = q(i)$$
 $c(i, i) = 0$ and $r(i, i) = 0$, $0 < i < 4$.

$$w(i, j) = P(j) + q(j) + w(i, j-1)$$

Let n = 4 and $(a1, a2, a3, a4) = (do, if, int, while) <math display="block">p(l:4) = (3,3,1,1) \quad and \quad q(0:4) = (2, 3, 1, 1, 1)$ $w(i,i) = q(i) \quad c(i,i) = 0 \quad and \quad r(i,i) = 0, \quad 0 < i < 4.$

$$w(0,1) = p(1) + q(1) + w(0,0) = 8$$

 $c(0,1) = w(0,1) + \min\{c(0,0) + c(1,1)\} = 8$
 $r(0,1) = 1$

w(i, j) = P(j) + q(j) + w(i, j-1)

$$p(1:4) = (3,3,1,1)$$
 and $q(0:4) = (2,3,1,1,1)$

$$w(0,1) = p(1) + q(1) + w(0,0) = 8$$

 $c(0,1) = w(0,1) + \min\{c(0,0) + c(1,1)\} = 8$
 $r(0,1) = 1$

$$p(1:4) = (3,3,1,1)$$
 and $q(0:4) = (2,3,1,1,1)$

$$w(1,2) = p(2) + q(2) + w(1,1) = 7$$

 $c(1,2) = w(1,2) + \min \{c(1,1) + c(2,2)\} = 7$
 $r(0,2) = 2$

$$p(1:4) = (3,3,1,1)$$
 and $q(0:4) = (2,3,1,1,1)$

$$w(2,3) = p(3) + q(3) + w(2,2) = 3$$

 $c(2,3) = w(2,3) + \min \{c(2,2) + c(3,3)\} = 3$
 $r(2,3) = 3$

$$p(1:4) = (3,3,1,1)$$
 and $q(0:4) = (2,3,1,1,1)$

$$w(3,4) = p(4) + q(4) + w(3,3) = 3$$

 $c(3,4) = w(3,4) + \min \{c(3,3) + c(4,4)\} = 3$
 $r(3,4) = 4$

	0	1	2	3	4
0	$w_{00} = 2$ $c_{00} = 0$ $r_{00} = 0$	$w_{11} = 3$ $c_{11} = 0$ $r_{11} = 0$	$w_{22} = 1$ $c_{22} = 0$ $r_{22} = 0$	$w_{33} = 1$ $c_{33} = 0$ $r_{33} = 0$	$w_{44} = 1$ $c_{44} = 0$ $r_{44} = 0$
1		$w_{12} = 7$ $c_{12} = 7$ $r_{12} = 2$	$w_{23} = 3$ $c_{23} = 3$ $r_{23} = 3$	$w_{34} = 3$ $c_{34} = 3$ $r_{34} = 4$	
2	$c_{02} = 19$	$w_{13} = 9$ $c_{13} = 12$ $r_{13} = 2$	$w_{24} = 5$ $c_{24} = 8$ $r_{24} = 3$		
3	$w_{03} = 14$ $c_{03} = 25$ $r_{03} = 2$	$w_{14} = 11$ $c_{14} = 19$ $r_{14} = 2$			
4	$w_{04} = 16$ $c_{04} = 32$ $r_{04} = 2$				

- From the table we can see that c(0,4)=32 is the minimum cost of a binary search tree for (a1, a2, a3, a4).
- The root of tree t_{04} is a_2
- The left subtree is t_{01} and the right subtree t_{24} .
- Tree t_{01} has root a_1 ; its left subtree is t_{00} and right subtree t_{11} .
- Tree t_{24} has root a_3 ; its left subtree is t_{22} and right subtree t_{34} .
- Thus we can construct OBST.

OBST ALGORITHM

```
Algorithm OBST(p, q, n)
       for i = 0 to n-1 do
                                             // initialize.
               w[i, i] := q[i]; r[i, i] := 0; c[i, i] = 0;
                // Optimal trees with one node.
               w[i, i+1] := p[i+1] + q[i+1] + q[i];
               c[i, i+1] := p[i+1] + q[i+1] + q[i];
               r[i, i+1] := i + 1;
    w[n, n] := q[n]; r[n, n] := 0; c[n, n] = 0;
```



```
// Find optimal trees with m nodes.
```

```
for m = 2 to n do
      for i := 0 to n - m do
              j:=i+m;
              w[i, j] := p[j] + q[j] + w[i, j-1];
              // Solve using Knuth's result
              x := Find(c, r, i, j);
              c[i, j] := w[i, j] + c[i, x -1] + c[x, j];
              r[i, j] := x;
```



```
Algorithm Find(c, r, i, j)
              for k := r[i, j-1] to r[i+1, j] do
                       \min := \infty;
              if (c[i, k-1] + c[k, j] < min) then
                     min := c[i, k-1] + c[k, j];
                    y:=k;
return y;
```


TIME COMPLEXITY OF ABOVE PROCEDURE TO EVALUATE THE C'S AND R'S

• Above procedure requires to compute c(i, j) for $(j-i)=1,2,\ldots,n$.

- When j i = m, there are n-m+1 c(i, j)'s to compute.
- The computation of each of these c(i, j)'s requires to find m quantities.
- Hence, each such c(i, j) can be computed in time o(m).

The total time for all c(i,j)'s with j - i = m is = m(n-m+1) $= mn-m^2+m$ $= O(mn-m^2)$

• Therefore, the total time to evaluate all the c(i, j)'s and r(i, j)'s is

$$\sum (mn - m^2) = O(n^3)$$

$$1 \le m \le n$$

 We can reduce the time complexity by using the observation of D.E. Knuth

Observation:

• The optimal k can be found by limiting the search to the range $r(i, j - 1) \le k \le r(i + 1, j)$

• In this case the computing time is $O(n^2)$.

Ex 2: Let n=4, and (a_1, a_2, a_3, a_4) = (count, float, int, while). Let p(1:4) = (1/20, 1/5, 1/10, 1/20) and q(0:4) = (1/5,1/10, 1/5,1/20,1/20).

Using the r(i, j)'s construct an optimal binary search tree.

THANKYOU

