

INF 110 Discovering Informatics

Arrays and Tables

Arrays (numpy)

A sequence of the same type.

NumPy arrays differ from Python lists in two ways:

- 1. They aren't part of the base Python distribution
 - You have to import numpy
- 2. All items in the list have to be the *same data type*.
 - This differs from base Python lists where you can have strings, floats, integers all in one list

```
from datascience import *
import numpy as np

make_array(100, 200, 300)
make_array(1.0, 2.0, 3.0)
make_array("a", "b", "c")
```

Arrays (numpy)

Also:

The make_array() syntax is supplied by the datascience library, not base numpy.

If you're in numpy, you can't just use make_array(), you have to use the array constructor that comes with numpy.

```
from datascience import *
import numpy as np

make_array(100, 200, 300)
make_array(1.0, 2.0, 3.0)
make_array("a", "b", "c")
```

This is why we will load the datascience library in our import statements!

Arrays from ranges

Ranges allow us to create a sequence of values

It's often easier to use a convenient function like "arange" to specify a list instead of manually specifying [0,1,2,3,4].

Specifying np.arrange(5) will give you the same result.

```
from datascience import *
import numpy as np

np.arange(5)
np.arange(1, 10)
np.arange(1, 10, 2)
```

Arrays from ranges

There are several parametrizations for the arange function.

Element from a slice

We can retrieve an element using an index (or get) operation

```
letters = make_array("a", "b", "c", "d", "e", "f")
```

letters[1]

Here, the syntax is the same as with Python lists: bracket syntax (and 0-indexed)

What will this index retrieval result in?

Arrays from slices

We can also access multiple items at the same time.

```
letters = make_array("a", "b", "c", "d", "e", "f")
```

We use bracket syntax, but with two arguments separated by a colon. Here, we are asking for elements 1 through 4.

What will this index retrieval result in?

Live Code Examples of Arrays

Task: Create some arrays and ranges that illustrate the construction process and options

- Creating arrays with make_array()
- Creating ranges with np.arange()
- Pulling individual elements from sequences
- Creating arrays with slicing

- A Table is a sequence of labeled columns
- Each row represents one individual
- Data within a column represents one attribute of the individuals

Name	Code	Area (m2)
California	CA	163696
Nevada	NV	110567

Tables aren't part of base Python, so you have to import the datascience package.

- A Table is a sequence of labeled columns
- Each row represents one individual
- Data within a column represents one attribute of the individuals

Nam	е	Code	Area (m2)
Califo	ornia	CA	163696
Neva	ıda	NV	110567
Colum	ו		

- A Table is a sequence of labeled columns
- Each row represents one individual
- Data within a column represents one attribute of the individuals

- A Table is a sequence of labeled columns
- Each row represents one individual
- Data within a column represents one attribute of the individuals

Name		Code	Area (m2)
California		CA	163696
Nevada	Row	NV	110567

Live Code Creating a table in Excel

Task: Create a table in Excel that describes some favorite food options for each student

- Creating a table with labels, columns, and rows
- Sorting columns in Excel
- Using the CSV file format

"If these are available in Excel, why would I want to learn Python?"

Tables in Python are objects that contain the same data as a table you might work with in Excel but with some differences:

- Bigger Excel has a row limit
- Faster Have you tried opening an excel sheet with 1M rows?
- Manipulation with methods
- Support scientific work flows
- Tables in Python give us *scalability* and *accessibility*.

Some Table Operations

- t.select(label) constructs a new table with just the specified columns
 - If you have 5 columns but you only want 3
- t.drop(label) constructs a new table in which the specified columns are omitted
- t.sort(label) constructs a new table with rows sorted by the specified column
- t.where(label, condition) constructs a new table with just the rows that match the condition

Live Code Getting Help

Task: Python has a lot of built-in documentation use "?" and "dir" to inspect the methods in the Table class.

- Learn about methods in the Table class
- Become comfortable looking up documentation in Jupyter

Live Code Working with Tables

Task: Use the table you built in Excel earlier in Python

- Loading tables
- Sorting columns
- Adding new columns

