Problem Set 16

Problem 1

- (a) 是格
- (b) 不是格, $\{d, e\}$ 的上界为c和f,而c和f不可比, $\{d, e\}$ 没有上确界
- (c) 是格
- (d) 不是格, $\{b,c\}$ 的上界有d和e,而d和e不可比, $\{d,e\}$ 没有上确界
- (e) 不是格, a, b不可比, 没有下界, 也没有下确界
- (f) 是格

Problem 2

- (1) 不是格
- (2) 是格
- (3) 是格
- (4) 是格

Problem 3

- (1) $a \lor (a \land b) \succeq a$
- (2) $a \wedge (b \vee c) \succeq (a \wedge b) \vee (a \wedge c)$
- (3) $b \wedge (c \vee a) \succeq (b \wedge c) \vee a$

Problem 4

 $\therefore a \leq b \leq c$

- $\therefore a \lor b = b, b \land c = b$
- $\therefore a \lor b = b \land c$

Problem 5

对于 $\forall a \in L$,假设b,c都是a的补元

- $\therefore a \lor c = 1, a \land c = 0, a \lor b = 1, a \land b = 0$
- :: 全上界和全下界唯一
- $\therefore a \lor c = a \lor b, a \land c = a \land b$
- :: L是分配格

= c

- $\therefore b = b \lor (a \land b)$ $= b \lor (a \land c)$ $= (b \lor a) \land (b \lor c)$ $= (a \lor c) \land (b \lor c)$ $= (a \land b) \lor c$ $= (a \land c) \lor c$
- :: 有补分配格中任何元素都是唯一的

Problem 6

对于 $\forall x,y \in S$,即有 $x,y \in L, x \leq a$ 且 $y \leq a$

设z为 $\{x,y\}$ 的上确界,即 $z=x\vee y,z\in L$

- $\because x \leq a \sqsubseteq y \leq a$
- $\therefore a$ 是x和y的一个上界
- $\therefore z \leq a$
- $\therefore z \in S$
- ∴ S对于 ∨ 是封闭的

设r为 $\{x,y\}$ 的下确界,即 $r=x \land y,z \in L$

- $\therefore r \leq x$
- $\therefore x \leq a$
- $\therefore r \leq x \leq a$,即 $r \in S$
- ∴ S对于 ∧ 也是封闭的
- $\therefore \langle S, \preceq, \lor, \land \rangle$ 是一个代数系统
- :: 易知 $S \subset L$
- $\therefore S$ 依然满足L所拥有的交换律,结合律,吸收律
- $:: \langle S, \preceq, \vee, \wedge \rangle$ 是L的子格

Problem 7

- (a) a的补元是d
- (c) a的补元是f, b的补元是d, c的补元是e
- (f) a的补元是f, b的补元是e

Problem 8

(a)

是分配格,不是有补格,不是布尔格 线构型,无与 M_3 或 N_5 重构的子格,因此是分配格 b和c无补元,不是有补格,因而也不是布尔格

(c)

不是分配格,是有补格,不是布尔格 $\{a,b,c,d,f\}$ 是与 N_5 重构的子格,因此不是分配格,也不是布尔格 每个元素都有补元,因而是有补格

(f)

不是分配格,不是有补格,不是布尔格 $\{a,b,c,e,f\}$ 是与 N_5 重构的子格,因此不是分配格 c和d无补元,不是有补格,因而也不是布尔格

Problem 9

- $\because \forall a \in L, 0 \preceq a$
- $\therefore a \land 0 = 0 \land a = 0, a \lor 0 = 0 \lor a = a$
- $\therefore \forall a \in L, a \leq 1$
- $\therefore a \land 1 = a, a \lor 1 = 1$