

รายงาน เรื่อง โปรแกรม SELECTION SORT

จัดทำโดย

นายพงษ์พันธุ์ เลาวพงศ์ รหัสนักศึกษา 66543206019-2

เสนอ

อาจารย์ปิยพล ยืนยงสถาวร

รายงานนี้เป็นส่วนหนึ่งของวิชา

ENGCE124

โครงสร้างข้อมูลและขั้นตอนวิธี

(Data Structures and Algorithms)

หลักสูตร วศ.บ.วิศวกรรมคอมพิวเตอร์

สาขาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์

มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ภาคพายัพ เชียงใหม่
ภาคเรียนที่ 1 ปีการศึกษา 2567

รายงาน

เรื่อง โปรแกรม SELECTION SORT

จัดทำโดย

นายพงษ์พันธุ์ เลาวพงศ์ รหัสนักศึกษา 66543206019-2

เสนอ

อาจารย์ปิยพล ยืนยงสถาวร

รายงานนี้เป็นส่วนหนึ่งของวิชา

ENGCE124

โครงสร้างข้อมูลและขั้นตอนวิธี

(Data Structures and Algorithms)

หลักสูตร วศ.บ.วิศวกรรมคอมพิวเตอร์

สาขาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์

มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ภาคพายัพ เชียงใหม่
ภาคเรียนที่ 1 ปีการศึกษา 2567

คำนำ

รายงานฉบับนี้เป็นส่วนหนึ่งของรายวิชา ENGCE124 โครงสร้างข้อมูลและขั้นตอนวิธี (Data Structures and Algorithms) หลักสูตร วศ.บ.วิศวกรรมคอมพิวเตอร์ สาขาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ภาคพายัพ เชียงใหม่ ในระดับปริญญาตรีปีที่ 2 โดยมีจุดประสงค์ในการอธิบายโค้ดของโปรแกรม SELECTION SORT รวมถึงอธิบายหลักการทำงานของ โปรแกรม SELECTION SORT และอธิบายผลลัพธ์การใช้งานโปรแกรม SELECTION SORT

ผู้จัดทำรายงานหวังว่า รายงานฉบับนี้จะเป็นประโยชน์กับผู้ที่สนใจ หรือนักศึกษาทุกท่าน ที่กำลังหา ศึกษาในหัวข้อของโปรแกรม SELECTION SORT หากมีข้อแนะนำหรือข้อผิดพลาดประการใด ผู้จัดทำขอน้อม รับไว้ และขออภัยมา ณ ที่นี้

ผู้จัดทำ

นายพงษ์พันธุ์ เลาวพงศ์ วันที่ 22/09/2567

สารบัญ

	หน้า
คำนำ	ก
สารบัญ	ข
โค้ดของโปรแกรม SELECTION SORT พร้อมคำอธิบาย	1
หลักการทำงานของโปรแกรม SELECTION SORT	5
ผลลัพธ์การใช้งานโปรแกรม SELECTION SORT	12
บรรณานุกรม	14

โค้ดของโปรแกรม SELECTION SORT พร้อมคำอธิบาย

```
#include <stdio.h> // ใช้ printf
#include <conio.h> // ใช้ getch
#include <stdlib.h> // ใช้ random
#include <time.h> // ใช้ time
#define MaxData 100 // กำหนดข้อมูลสูงสุด
int Data[MaxData];
int N;
void PrepareRawData(int N)
{
   int i;
   srand(time(NULL)); // เพื่อให้ได้หมายเลขสุ่มที่แตกต่างใน rand()
   for (i=1;i<=N;i++)
      Data[i]=1+rand() % 99; // หมายเลขสุ่มที่แตกต่างระหว่าง 1..99
}
void DispData(int N,int out) // แสดงข้อมูลในรูปแบบอาร์เรย์ 2
{
   int i;
   for(i=1;i<=N;i++)
      if(out>=i)
      printf("[%2d] ",Data[i]); // แสดง [] หากเป็นผลลัพธ์
```

โค้ดของโปรแกรม SELECTION SORT พร้อมคำอธิบาย (ต่อ)

```
else
      printf("%2d ",Data[i]); // แสดงในรูปแบบปกติหากไม่เป็นผลลัพธ์
   }
   printf("\n");
}
void swap(int a,int b)
{
   int temp;
   temp=Data[a];
   Data[a]=Data[b];
   Data[b]=temp;
}
int Minimum(int j) // ค้นหาค่าต่ำสุดใน Data[] ระหว่าง j..N
{
   int i,temp,Location;
   Location=j; // กำหนดตำแหน่งแรก
   temp=Data[j]; // กำหนดค่าเริ่มต้น
   for(i=j+1;i<=N;i++)
   {
      if(temp>Data[i])
      {
```

โค้ดของโปรแกรม SELECTION SORT พร้อมคำอธิบาย (ต่อ)

```
temp=Data[i]; // เปลี่ยนเป็นค่าต่ำสุดใหม่
        Location=i; // เก็บตำแหน่งใหม่
     }
  }
  return(Location); // คืนค่าตำแหน่งของค่าต่ำสุด
} // จบฟังก์ชัน
void SelectionSort(int N)
{
  int i,j,Location;
  printf(" i LOC ");
  for(i=1;i<=N;i++)
     printf("(%2d) ",i);
   printf("\n ");
   DispData(N,0); // แสดงทุกขั้นตอนของการเรียงลำดับ
  printf("-----\n");
  for(i=1;i<=N;i++)
     Location=Minimum(i); // ค้นหาตำแหน่งต่ำสุดระหว่าง i..N
     swap(i,Location);
     printf("(%2d) (%2d) ",i,Location); // แสดงตำแหน่งในอาร์เรย์
```

โค้ดของโปรแกรม SELECTION SORT พร้อมคำอธิบาย (ต่อ)

```
DispData(N,i); // แสดงทุกขั้นตอนของการเรียงลำดับ
} // จบฟังก์ชัน
int main()
  printf("ASCENDING SELECTION SORT\n");
  N=12; // เปลี่ยนจำนวน N ที่นี่
  PrepareRawData(N);
  printf("Raw Data...");
  DispData(N,0);
  printf("Processing Data...\n");
  SelectionSort(N);
  printf("-----\n");
  printf("Sorted Data : ");
  DispData(N,N); // ข้อมูลที่เรียงลำดับแล้ว
  getch();
  return(0);
} // จบฟังก์ชันหลัก
```

หลักการทำงานของโปรแกรม SELECTION SORT

โปรแกรม SELECTION SORT ใช้เทคนิคการเรียงลำดับแบบเลือก (Selection Sort) เพื่อจัดเรียง ข้อมูลในอาร์เรย์ โดยหลักการทำงานแต่ละฟังก์ชันมีดังนี้

1. การนำเข้าไลบรารี

```
#include <stdio.h> // ใช้ printf

#include <conio.h> // ใช้ getch

#include <stdlib.h> // ใช้ random

#include <time.h> // ใช้ time
```

ในส่วนของการนำเข้าไลบรารี (#include) จะมีรายละเอียดดังนี้

- <stdio.h> : ไลบรารีนี้ใช้สำหรับฟังก์ชันการรับและแสดงผลข้อมูล เช่น printf() ที่ใช้ในการพิมพ์
 ข้อความออกทางหน้าจอ และ scanf() ที่ใช้สำหรับการรับข้อมูลจากผู้ใช้
- <conio.h> : ไลบรารีนี้ใช้ในการทำงานกับการอินพุตจากคีย์บอร์ดในรูปแบบที่ง่ายขึ้น เช่น getch() ซึ่งใช้เพื่อรอให้ผู้ใช้กดปุ่มก่อนที่จะดำเนินการต่อ
- <stdlib.h> : ไลบรารีนี้มีฟังก์ชันที่เกี่ยวข้องกับการจัดการหน่วยความจำ การแปลงค่า และการสุ่ม เช่น rand() ที่ใช้สำหรับสร้างค่าตัวเลขสุ่ม
- <time.h> : ไลบรารีนี้มีฟังก์ชันที่เกี่ยวข้องกับเวลาและวันที่ เช่น time() ที่ใช้เพื่อรับค่าชั่วโมง นาที และวินาทีในรูปแบบ timestamp

2 การกำหนดค่าคงที่

```
#define MaxData 100 // กำหนดข้อมูลสูงสุด
```

ในส่วนของการกำหนดค่าคงที่ จะมีรายละเอียดดังนี้

 #define MaxData 100 : การใช้คำสั่ง #define เพื่อสร้างค่าคงที่ที่ชื่อว่า MaxData ซึ่งมีค่าเท่ากับ
 100 โดยที่โปรแกรมจะใช้ค่าตัวนี้ในการกำหนดขนาดสูงสุดของอาร์เรย์ Data ที่จะเก็บข้อมูล โดยการ กำหนดค่าคงที่ช่วยให้โปรแกรมมีความยืดหยุ่นและง่ายต่อการปรับเปลี่ยนในอนาคต หากต้องการ เปลี่ยนขนาดข้อมูล สามารถเปลี่ยนค่าที่นี่เพียงที่เดียว

3. การประกาศตัวแปร

```
int Data[MaxData];
int N;
```

ในส่วนของการประกาศตัวแปร จะมีรายละเอียดดังนี้

- int Data[MaxData] : ประกาศตัวแปรอาร์เรย์ที่ชื่อว่า Data ซึ่งมีขนาดสูงสุดตามค่าคงที่ MaxData ที่ กำหนดไว้ (100) เพื่อเก็บข้อมูลจำนวนเต็ม (integer) ที่ถูกสร้างขึ้นจากฟังก์ชัน PrepareRawData()
- int N : ประกาศตัวแปร N ซึ่งใช้ในการเก็บจำนวนของข้อมูลที่ผู้ใช้ต้องการสร้างหรือเรียงลำดับใน อาร์เรย์ Data โดยทั่วไปแล้ว N จะถูกกำหนดในฟังก์ชัน main() และสามารถปรับเปลี่ยนได้ตาม ต้องการ

4. ฟังก์ชัน PrepareRawData

```
void PrepareRawData(int N)

{

int i;

srand(time(NULL)); // เพื่อให้ได้หมายเลขสุ่มที่แตกต่างใน rand()

for (i=1;i<=N;i++)</td>

Data[i]=1+rand() % 99; // หมายเลขสุ่มที่แตกต่างระหว่าง 1..99
```

ฟังก์ชัน PrepareRawData ทำหน้าที่สร้างข้อมูลดิบในอาร์เรย์ Data ขนาด N โดยจะทำการสุ่มหมายเลข ระหว่าง 1 ถึง 99 ซึ่งขั้นตอนในการทำงานจะเริ่มจากใช้ srand(time(NULL)) เพื่อกำหนด seed สำหรับการ สุ่ม โดย seed จะถูกตั้งค่าตามเวลาปัจจุบันเพื่อให้ได้ผลลัพธ์ที่แตกต่างกันในแต่ละครั้งที่เรียกใช้งานโปรแกรม จากนั้นจะใช้ลูป for เพื่อทำการสุ่มและเก็บค่าที่ได้ใน Data[i] ตั้งแต่ 1 ถึง N โดยใช้ rand() % 99 เพื่อให้ได้ ค่าที่อยู่ในช่วง 0-98 แล้วบวก 1 เพื่อให้อยู่ในช่วง 1-99

5. ฟังก์ชัน DispData

```
      void DispData(int N,int out) // แสดงข้อมูลในรูปแบบอาร์เรย์ 2

      {

      int i;

      for(i=1;i<=N;i++)</td>

      {

      if(out>=i)

      printf("[%2d] ",Data[i]); // แสดง [] หากเป็นผลลัพธ์

      else

      printf("%2d ",Data[i]); // แสดงในรูปแบบปกติหากไม่เป็นผลลัพธ์

      }

      printf("\n");
```

ฟังก์ชัน DispData ใช้สำหรับแสดงข้อมูลในอาร์เรย์ Data โดยมีการจัดรูปแบบที่แตกต่างกันสำหรับค่าที่ กำหนดไว้ใน out ซึ่งขั้นตอนในการทำงานจะเริ่มจากใช้ลูป for เพื่อวนผ่านแต่ละค่าในอาร์เรย์ หาก out มีค่า มากกว่าหรือเท่ากับ i จะแสดงค่าด้วยรูปแบบที่มีสัญลักษณ์ [] เพื่อบ่งบอกว่านี่คือค่าที่อยู่ในขั้นตอนการ เรียงลำดับ หากไม่ใช่ จะแสดงค่าปกติ จากนั้นจะแสดงผลเป็นบรรทัดใหม่เมื่อเสร็จสิ้นการแสดงข้อมูล

6. ฟังก์ชัน swap

```
void swap(int a,int b)
{
  int temp;
  temp=Data[a];
  Data[a]=Data[b];
```

6. ฟังก์ชัน swap (ต่อ)

```
Data[b]=temp;
```

ฟังก์ชัน swap ทำหน้าที่สลับค่าระหว่างตำแหน่ง a และ b ในอาร์เรย์ Data ซึ่งขั้นตอนในการทำงานจะเริ่ม จากใช้ตัวแปรชั่วคราว temp เพื่อเก็บค่าของ Data[a] จากนั้นทำการสลับค่าของ Data[a] กับ Data[b] โดยใช้ ตัวแปรชั่วคราวนี้ ทำให้การเรียงลำดับสามารถดำเนินการได้อย่างถูกต้อง

7. ฟังก์ชัน Minimum

```
int Minimum(int j) // ค้นหาค่าต่ำสุดใน Data[] ระหว่าง j..N
   int i,temp,Location;
   Location=j; // กำหนดตำแหน่งแรก
   temp=Data[j]; // กำหนดค่าเริ่มต้น
   for(i=j+1;i<=N;i++)
   {
      if(temp>Data[i])
      {
         temp=Data[i]; // เปลี่ยนเป็นค่าต่ำสุดใหม่
         Location=i; // เก็บตำแหน่งใหม่
     }
   }
   return(Location); // คืนค่าตำแหน่งของค่าต่ำสุด
} // จบฟังก์ชัน
```

7. ฟังก์ชัน Minimum (ต่อ)

ฟังก์ชัน Minimum ทำหน้าที่ค้นหาค่าต่ำสุดในอาร์เรย์ Data ตั้งแต่ตำแหน่ง j จนถึง N ซึ่งขั้นตอนในการ ทำงานจะเริ่มจากการกำหนดตำแหน่ง Location ให้เท่ากับ j และกำหนดค่าเริ่มต้นให้กับตัวแปร temp ซึ่ง เก็บค่าของ Data[j] จากนั้นจะใช้ลูป for เพื่อตรวจสอบค่าตั้งแต่ j+1 ถึง N และหาค่าที่ต่ำที่สุด หากพบค่าที่ต่ำ กว่า temp จะอัปเดต temp และ Location เพื่อเก็บค่าต่ำสุดและตำแหน่งที่พบ และคืนค่าตำแหน่งของค่า ต่ำสุดเมื่อเสร็จสิ้นการตรวจสอบ

8. ฟังก์ชัน SelectionSort

```
void SelectionSort(int N)
  int i,j,Location;
  printf("-----\n");
  printf(" i LOC ");
  for(i=1;i<=N;i++)
     printf("(%2d) ",i);
                 ");
  printf("\n
  DispData(N,0); // แสดงทุกขั้นตอนของการเรียงลำดับ
  for(i=1;i<=N;i++)
  {
     Location=Minimum(i); // ค้นหาตำแหน่งต่ำสุดระหว่าง i..N
     swap(i,Location);
     printf("(%2d) (%2d) ",i,Location); // แสดงตำแหน่งในอาร์เรย์
     DispData(N,i); // แสดงทุกขั้นตอนของการเรียงลำดับ
```

8. ฟังก์ชัน SelectionSort (ต่อ)

```
}
}// จบฟังก์ชัน
```

ฟังก์ชัน SelectionSort เป็นฟังก์ชันหลักสำหรับการเรียงลำดับ โดยใช้เทคนิคการเรียงลำดับแบบเลือก ซึ่ง ขั้นตอนในการทำงานจะเริ่มจาก แสดงหัวตารางด้วยการพิมพ์ตำแหน่งและค่าที่จะเรียงลำดับ จากนั้นจะแสดง ข้อมูลก่อนการเรียงลำดับ โดยจะใช้ลูป for เพื่อทำการเรียงลำดับตั้งแต่ 1 ถึง N โดยในแต่ละรอบจะเรียกใช้ ฟังก์ชัน Minimum(i) เพื่อค้นหาตำแหน่งของค่าต่ำสุด จากนั้นทำการสลับค่าระหว่างตำแหน่งปัจจุบัน i และ ตำแหน่งที่พบค่าต่ำสุด และแสดงข้อมูลหลังจากทำการสลับในแต่ละขั้นตอน

9. ฟังก์ชัน main

```
int main()
  printf("ASCENDING SELECTION SORT\n");
printf("==========n");
  N=12; // เปลี่ยนจำนวน N ที่นี่
  PrepareRawData(N);
  printf("Raw Data...");
  DispData(N,0);
  printf("Processing Data...\n");
  SelectionSort(N);
  printf("Sorted Data : ");
  DispData(N,N); // ข้อมูลที่เรียงลำดับแล้ว
```

9. ฟังก์ชัน main (ต่อ)

```
getch();
return(0);
} // จบฟังก์ชันหลัก
```

ฟังก์ชัน main เป็นจุดเริ่มต้นของโปรแกรม ซึ่งขั้นตอนในการทำงานจะเริ่มจากแสดงชื่อโปรแกรมและแบ่ง หัวข้อออกเป็นบรรทัด จากนั้นกำหนดจำนวนข้อมูล N ที่จะใช้ และเรียกใช้ฟังก์ชัน PrepareRawData(N) เพื่อ สร้างข้อมูลดิบ และแสดงข้อมูลดิบก่อนการเรียงลำดับ จากนั้นก็จะเรียกใช้ฟังก์ชัน SelectionSort(N) เพื่อทำ การเรียงลำดับข้อมูล และแสดงผลลัพธ์สุดท้ายของข้อมูลที่เรียงลำดับแล้ว

ผลลัพธ์การใช้งานโปรแกรม SELECTION SORT

โปรแกรมการเรียงลำดับแบบเลือกจากน้อยไปมากนี้ถูกออกแบบมาเพื่อให้ผู้ใช้สามารถสร้างข้อมูลสุ่ม และทำการเรียงลำดับข้อมูล ในส่วนนี้จะอธิบายการทำงานและการแสดงผลลัพธ์ของโปรแกรมอย่างละเอียด

1. การเริ่มต้นโปรแกรม

เมื่อผู้ใช้รันโปรแกรม จะมีการแสดงข้อความ "ASCENDING SELECTION SORT" บนหน้าจอ ซึ่งเป็น ชื่อของโปรแกรม ต่อมาโปรแกรมจะแสดงเส้นแบ่งด้วยเครื่องหมาย "=" เพื่อแยกส่วนของข้อความแนะนำออก จากผลลัพธ์ที่ตามมา

2. การกำหนดขนาดของข้อมูล

โปรแกรมกำหนดค่าของ N ซึ่งบ่งบอกจำนวนข้อมูลที่ต้องการสร้าง โดยในกรณีนี้มีการกำหนด N=12 หมายความว่าจะมีการสุ่มสร้างข้อมูล 12 ชุด

3. การสร้างและแสดงข้อมูลดิบ

โปรแกรมเรียกใช้ฟังก์ชัน PrepareRawData(N) เพื่อสุ่มหมายเลขระหว่าง 1 ถึง 99 และเก็บใน อาร์เรย์ Data หลังจากนั้นจะมีการแสดงผลข้อความ "Raw Data..." เพื่อบ่งบอกว่าข้อมูลดิบที่สุ่มได้จะแสดง ต่อไป โดยโปรแกรมจะแสดงผลข้อมูลในรูปแบบของอาร์เรย์ โดยใช้ฟังก์ชัน DispData(N, 0) ซึ่งจะแสดงข้อมูล ทั้งหมดในอาร์เรย์ Data โดยไม่มีสัญลักษณ์พิเศษ เนื่องจากข้อมูลเหล่านี้ยังไม่ได้ถูกเรียงลำดับ

Raw Data33	76	13	33	42	59	32	29	10	44	83	74

4. การประมวลผลข้อมูล

โปรแกรมจะแสดงข้อความ "Processing Data..." เพื่อบ่งบอกว่ากำลังดำเนินการเรียงลำดับข้อมูล ซึ่ง เรียกใช้ฟังก์ชัน SelectionSort(N) ซึ่งจะทำการเรียงลำดับข้อมูลในอาร์เรย์ Data โดยใช้วิธีการเลือก ใน ระหว่างที่โปรแกรมทำการเรียงลำดับ ข้อมูลจะถูกแสดงออกมาหลังจากแต่ละขั้นตอน โดยโปรแกรมจะพิมพ์ ตารางระบุหมายเลขตำแหน่งในอาร์เรย์และตำแหน่งที่ต่ำสุดที่ค้นพบในแต่ละรอบ จากนั้นข้อมูลจะถูกอัปเดต ในแต่ละรอบของการเรียงลำดับ ซึ่งจะมีการแสดงข้อมูลที่ถูกสลับพร้อมกับหมายเลขตำแหน่งที่ได้ทำการ เปลี่ยนแปลง

```
i LOC ( 1) ( 2) ( 3) ( 4) ( 5) ( 6) ( 7) ( 8) ( 9) (10) (11) (12)
                            33
                                  42
                                        59
                                               32
                                                     29
                                                           10
                                                                       83
                                   42
                                                                  44
                                                                        83
                                                                               74
           [10] 76
                       13
                             33
                                          59
                                                32
                                                      29
                                                            33
                                   42
                                                                  44
                                                                               74
2)
       3)
           [10]
                [13]
                       76
                             33
                                          59
                                                32
                                                      29
                                                            33
                                                                        83
3)
       8)
                 [13]
                                   42
                                                                  44
           [10]
                       [29]
                             33
                                          59
                                                32
                                                      76
                                                            33
                                                                        83
                                                                               74
4)
       7)
           [10]
                 [13]
                       [29]
                             [32]
                                   42
                                          59
                                                33
                                                      76
                                                            33
                                                                  44
                                                                        83
                                                                               74
                 [13]
                       [29]
                             [32]
           [10]
                                   [33]
                                         59
                                                42
                                                      76
                                                                  44
                                                                               74
                                                            33
                                                                        83
           [10]
                [13]
                       [29]
                             [32]
                                   [33]
                                         [33]
                                               42
                                                      76
                                                            59
                                                                  44
                                                                        83
                                                                               74
       9)
                       [29]
                             [32]
                                   [33]
                                         [33]
                                                [42]
                                                      76
                                                            59
                                                                  44
                                                                        83
                                                                               74
           [10]
                [13]
    (10)
          [10]
                [13]
                       [29]
                             [32]
                                                [42]
                                                      [44]
                                                                  76
                                                                        83
                                                                               74
                                   [33]
                                         [33]
          [10]
                [13]
                       [29]
                             [32]
                                   [33]
                                          [33]
                                                [42]
                                                      [44]
                                                            [59]
                                                                  76
                                                                        83
                                                                               74
           [10]
                 [13]
                       [29]
                             [32]
                                   [33]
                                          [33]
                                                [42]
                                                      [44]
                                                            [59]
                                                                   [74]
                                                                        83
                                                                               76
                 [13]
                       [29]
                             [32]
                                   [33]
                                                                   [74]
           [10]
                                          [33]
                                                [42]
                                                      [44]
                                                            [59]
                                                                         [76]
                                                                               83
          [10]
                [13]
                       [29]
                             [32]
                                   [33]
                                         [33]
                                                [42]
                                                      [44]
                                                            [59]
                                                                        [76]
                                                                               [83]
```

5. การแสดงผลข้อมูลที่เรียงลำดับ

หลังจากที่โปรแกรมได้ทำการเรียงลำดับเสร็จสิ้น จะมีการแสดงเส้นแบ่งด้วยเครื่องหมาย "-" จากนั้น โปรแกรมจะแสดงข้อความ "Sorted Data :" เพื่อบ่งบอกว่าข้อมูลที่แสดงต่อไปนี้คือผลลัพธ์ที่เรียงลำดับแล้ว โปรแกรมจะแสดงข้อมูลที่เรียงลำดับในอาร์เรย์ Data โดยใช้ฟังก์ชัน DispData(N, N) ซึ่งจะทำให้ค่าที่อยู่ใน ตำแหน่งสุดท้ายมีสัญลักษณ์ [] เพื่อบ่งบอกว่าข้อมูลเหล่านี้คือผลลัพธ์สุดท้ายที่ถูกเรียงลำดับ

```
E:\ENGCE124\Coding 21 SELEC ×
ASCENDING SELECTION SORT
Raw Data...33
                                 33
                                        42
                                              59
                                                     32
                                                           29
                                                                  10
                                                                        44
                                                                               83
                                                                                     74
Processing Data...
 i LOC (1) (2) (3) (4) (5) (6) (7) (8) (9)
                                                                   (10) (11)
                                                                                (12)
                                            59
                                                  32
                                                                                   74
                               33
                                     42
                                                         29
            [10] 76
[10] [13]
                                33
                                      42
                                             59
                                                   32
                                                          29
                                                                33
                                                                       44
                                                                             83
                                                                                    74
  1)
2)
3)
4)
                         13
                         76
[29]
[29]
[29]
[29]
[29]
        3)
8)
                                33
                                                          29
                                                                       44
                                                                                    74
                                      42
                                                   32
                                                                33
                                                                             83
             [10]
                   [13]
                                33
                                      42
                                             59
                                                   32
                                                          76
                                                                33
                                                                       44
                                                                             83
                                                                                    74
                   [13]
[13]
[13]
[13]
[13]
                                [32]
[32]
[32]
[32]
[32]
        7)
            [10]
                                             59
                                                   33
                                                          76
                                                                       44
                                                                                    74
                                      42
                                                                33
                                                                             83
                                      [33]
[33]
  5)
6)
        7)
9)
             [10]
                                                   42
                                                          76
                                                                                    74
                                             59
                                                                33
                                                                       44
                                                                             83
                                             [33]
[33]
            [10]
                                                   42
                                                          76
                                                                                    74
                                                                       44
  7)
8)
             [10]
                                                   [42]
                                                          76
                                                                59
                                                                       44
                                                                             83
                                                                                    74
            [10]
                                                          [44]
                                                    [42]
                                                                59
                                                                       76
                                                                             83
                                                                                    74
                                [32]
                                             [33]
                                                   [42]
  9)
             [10]
                   [13]
                         [29]
                                       [33]
                                                          [44]
                                                                [59]
                                                                             83
                                                                                    74
                                                                       76
                                                                [59]
                                                                                    76
             [10]
                   [13]
                         [29]
                                [32]
                                      [33]
                                             [33]
                                                   [42]
                                                          [44]
                                                                       [74] 83
                   [13]
                                [32]
                                                                 [59]
(11)
                         [29]
                                       [33]
                                             [33]
                                                    [42]
                                                          [44]
                                                                       [74]
                                                                             [76]
                                                                                    83
      (12)
             [10]
                         [29]
                                            [33]
                                                                [59]
                                                                       [74]
                                                                             [76]
            [10]
                  [13]
                                [32]
                                      [33]
                                                   [42]
                                                          [44]
Sorted Data : [10] [13] [29] [32] [33] [33] [42] [44] [59] [74] [76] [83]
Process exited after 1.612 seconds with return value 0
Press any key to continue . .
```

บรรณานุกรม

ChatGPT. (-). Exploring Selection Sort: Functionality and Results. สืบค้น 22 กันยายน 2567, จาก https://chatgpt.com/