

Socioeconomic Factors vs.

ACT Performance

DATA 3320 - Tina Chau

Introduction

- ACT and SAT are standardized exams taken by high school students to apply to college
- Aiming to explore correlations between socioeconomic factors and performance on the ACT
- Dataset includes several socioeconomic factors, such as median income, college attendance rate, free/reduced lunch rate, unemployment rate, and marriage rate.

Description of the Data

- National Center for Education statistics
 - Includes 20 states, with 7,227 schools
 - Data collected from 2016-2017
- Edgap.org
 - ACT and SAT score averages across states collected from 2016-2017
- EdWeek.org
 - Provides information on what states require SAT/ACT scores for college in 2017

Data Science Questions

- Is there a correlation between socioeconomic factors and student's ACT score performances in their area?
 - What predictors have the strongest correlation to average_act?
 - And do the variables indicate statistical significance?

Multiple Linear Regression

- High r-squared value, indicates good fit
- Lowest standard of error is percent_lunch with 0.108
- Based on p-value, median_income and percent_married are not statistically significant

OLS Regression Results									
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Mon, 08	-	R-squared: Adj. R-squared: F-statistic: Prob (F-station) Log-Likeliho AIC: BIC:	: tistic):	0.632 1985. 0.00 -10654. 2.132e+04 2.136e+04				
==========	coef	std err	t	P> t	[0.025	0.975]			
percent_college percent_lunch	22.7774 1.067e-06 1.5641 -7.7132 -0.0961 -2.0735	0.154 1.34e-06 0.177 0.108 0.150 0.453	147.937 0.799 8.842 -71.109 -0.640 -4.575	0.000 0.425 0.000 0.000 0.522 0.000	22.476 -1.55e-06 1.217 -7.926 -0.390 -2.962	23.079 3.69e-06 1.911 -7.501 0.198 -1.185			
Omnibus: Prob(Omnibus): Skew: Kurtosis:	=======================================	5.996	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.	(JB):	2546.	.00 +06			

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly speci
- [2] The condition number is large, 1.36e+06. This might indicate that there are strong multicollinearity or other numerical problems.

The best combination:

- percent_college
- percent_lunch
- rate_unemployment
- on average_act

Why?

- High r-squared value of 0.632
- P-value below level of significance

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Mon, 08 1	May 2023	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic) Log-Likeliho AIC: BIC:	: :istic):	0.632 0.632 3309. 0.00 -10655. 2.132e+04 2.134e+04	
=======================================	coef	std err	t	P> t	[0.025	0.975]
rate_unemployment	-7.7119 -2.0269	0.141 0.104 0.418	-74.249 -4.844	0.000 0.000 0.000	1.359 -7.915 -2.847	1.913 -7.508 -1.207
Omnibus: Prob(Omnibus): Skew: Kurtosis:	:=======	743.291 0.000 0.635 6.010	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.	on:	2.01 2.01 2570.87 0.0 26.	13 71 00

Best Subset Selection

- best predictors highlighted in red
- important to note that lower values of AIC and BIC indicate a better fit
- a higher value of r-squared indicates a stronger predictive performance.

Additional Step to the Project

• What is the relationship between the requirement for students to take the ACT/SAT and the average scores on these tests across different states?

Additional Step to the Project

624

.041

23.810

• Since some state have requirement and some don't, does this affect the relationship between ACT performance and socioeconomic factors? Can the inclusion of ACT/SAT requirements help counteract this bias?

Multiple Linear Regression Includes states that require

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Multiple Linear Regression
Includes states that don'trequire

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	OLS Regres	OLS Regression Results										
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	average_act OLS Least Squares Mon, 08 May 2023 18:20:27 5781 5778 2 nonrobust	R-squared: Adj. R-squared: F-statistic Prob (F-statistic Log-Likelia AIC: BIC:	ared: .c: .atistic):	4714. stic): 0.00		Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	average_act OLS Least Squares Mon, 08 May 2023 18:20:27 5781 5778 2 nonrobust	R-squared Adj. R-squared F-statist Prob (F-statist Log-Likel AIC: BIC:	quared: tic: statistic):	0.620 0.620 4714. 0.00 -10748. 2.150e+04 2.152e+04		
	coef	std err	t	P> t	[0.025	0.975]		coef	std err	 t	P> t	[0.
Intercept required_yes == 1[T percent_lunch	23.8396 .True] -0.1228 -8.4940	0.045 0.042 0.087	529.607 -2.945 -97.094	0.000 0.003 0.000	23.751 -0.204 -8.665	23.928 -0.041 -8.322	Intercept required_yes == 0[T. percent_lunch	23.7168	0.047 0.042 0.087	499.916 2.945 -97.094	0.000 0.003 0.000	23.0 0.0 -8.0
Omnibus: Prob(Omnibus): Skew: Kurtosis:	710.866 0.000 0.630 5.801	Durbin-Wate Jarque-Ber Prob(JB): Cond. No.		22	1.744 72.882 0.00 5.47		Omnibus: Prob(Omnibus): Skew: Kurtosis:	710.866 Durbin-Watson: 0.000 Jarque-Bera (JB): 0.630 Prob(JB): 5.801 Cond. No.		era (JB): :	1.744 2272.882 0.00 5.87	
Notes:							Notes:					

Additional Step to the Project

- Since some state have requirement and some don't, does this affect the relationship between ACT performance and socioeconomic factors? Can the inclusion of ACT/SAT requirements help counteract this bias?
 - The difference in r-squared value isn't much
 - P-value is below the level of significance 0.05, which does indicate statistical significance.
 - However, we can conclude that ACT requirements do not impact the relationship between
 ACT performance and socioeconomic factors by much.

Conclusion

- We found that ACT performance is heavily influenced by socioeconomic factors such as percent_lunch, percent_college, and rate_unemployment.
- After analyzing both states that require and do not require ACT scores, we found that there is a negative relationship between average_act and percent_lunch. The regression results did not show any significant difference in r-squared values between the two groups, and the difference was only 0.001.
- Out of all the states in the dataset, New York had the highest average ACT score of 29.2, while Alabama had the lowest score of 16.8. Despite missing some states in the dataset, we found that there is a strong relationship between percent_lunch and average_act with a high r-squared value.

