

TASK 4 Sentimation analysis

build a model that can analyze the sentiment of text data,

such as customer reviews or socila media posts, use

techniques like

bag-of-words, word embeddings, or transformers to

classify text as positive, nagative mor natural sentimation

COUDE: GITHUB

IGNITE INTERNEMAIL:

LINKEDIN

Task 4: Sentiment Analysis

build a model that can analyze the sentiment of text data, such as customer reviews or socila media posts, use techniques like

bag-of-words, word embeddings, or transformers to classify text as positive, nagative mor natural sentimation

1. Bag-of-Words (BoW)

Concept:

- BoW is a simple and traditional method in Natural Language Processing (NLP). It represents text as a collection of words, disregarding grammar and word order but keeping multiplicity.

Process:

- 1. Text Preprocessing: Tokenize the text into words, remove stop words, and possibly apply stemming or lemmatization.
- 2. Vocabulary Creation: Create a vocabulary of all unique words in the corpus.
- 3. Vectorization: Convert each document into a vector where each element represents the frequency (or presence) of a word from the vocabulary.

Example:

- Text: "I love this movie. It is great."
- Vocabulary: ["I", "love", "this", "movie", "it", "is", "great"]
- Vector: [1, 1, 1, 1, 1, 1, 1]

2. Word Embeddings

Concept:

- Word embeddings map words to vectors of real numbers in a highdimensional space, capturing semantic relationships between words. Popular Models:
- Word2Vec: Generates embeddings by predicting context words given a target word (Skip-gram) or predicting a target word given context words (CBOW).
- GloVe: Generates embeddings by factorizing a word co-occurrence matrix.
- FastText: Extends Word2Vec by representing words as n-grams of characters, capturing subword information.

Process:

- 1. Text Preprocessing: Similar to BoW. 2. Embedding Lookup: Convert words into vectors using pre-trained embeddings or train embeddings on your own corpus.
- 3. Vector Representation: Represent each document as the average (or some other aggregate) of its word vectors.

Example:

- Text: "I love this movie."
- Embedding for "love": [0.2, 0.3, ..., 0.5]
- Document Vector: Average of vectors of "I", "love", "this", "movie".

3. Transformers

Concept:

- Transformers, especially models like BERT (Bidirectional Encoder Representations from Transformers), use self-attention mechanisms to capture the context of a word based on its surrounding words, handling long-range dependencies and polysemy effectively.

Popular Models:

- BERT: Pre-trained using masked language modeling and next sentence prediction tasks.
- GPT: Generative model pre-trained using autoregressive language modeling.
- Roberta, Distilbert, T5, etc.: Variants and improvements over Bert.

Process:

1. Text Preprocessing: Tokenize text using the model's tokenizer, adding special tokens (e.g., [CLS], [SEP] for BERT).

- 2. Input Representation: Convert tokens into embeddings, add positional embeddings, and create attention masks
- 3. Model Forward Pass: Pass the input through the transformer model to obtain contextual embeddings.
- 4. Classification: Use the [CLS] token embedding (for BERT-likemodels) or a pooled representation for classification tasks.

Example:

- Text: "I love this movie."
- Tokenized: ["[CLS]", "I", "love", "this", "movie", "

[SEP]"]

- Model Output: Contextual embeddings for each token.
- Use the embedding of "[CLS]" token for

classification.

```
In [2]:# Import necessary libraries
        import pandas as pd
        from sklearn.feature_extraction.text import CountVectorizer
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LogisticRegression
        from sklearn.metrics import classification_report
        # Example dataset
        data = {
            'text': [
                'I love this product!', 'This is the worst
                thing I have ever bought.', 'It is okay,
                neither good nor bad.', 'Absolutely fantastic
                experience!',
                              'Ι
                                         hate
                                                 it,
                disappointing.', 'Not great, not terrible.'
            'sentiment': ['positive', 'negative', 'neutral', 'positive', 'negative', 'ne
        # Convert to DataFrame
        df = pd.DataFrame(data)
        df
```

Out[2]: text sentiment

0	I love this product!	positive
1	This is the worst thing I have ever bought.	negative
2	It is okay, neither good nor bad.	neutral
3	Absolutely fantastic experience!	positive
4	I hate it, very disappointing.	negative
5	Not great, not terrible.	neutral

```
In [16]:# Step 1: Text Preprocessing and Vectorization
          # Create the Bag-of-Words model
          vectorizer = CountVectorizer(stop_words='english')
          X = vectorizer.fit_transform(df['text'])
          print(X)
         (0, 9)
         (0, 11)
                         1
         (1, 14)
                         1
         (1, 13)
                         1
                         1
         (1, 2)
         (2, 10)
                         1
         (2, 6)
                         1
         (2, 1)
                         1
         (3, 0)
                         1
         (3, 5)
                        1
         (3, 4)
         (4, 8)
                       1
         (4, 3)
                         1
         (5, 7)
                         1
                         1
         (5, 12)
```

```
In [17]:# Encode the sentiment labels
         y = df['sentiment'].map({'negative': 0, 'neutral': 1, 'positive': 2})
         print(y)
        0
             2
        1
             0
        2
            1
        3
             2
        4
        5
             1
        Name: sentiment, dtype: int64
 In [7]:# Step 2: Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
In [18]:print(X train)
         (0, 7)
                       1
         (0, 12)
                        1
         (1, 10)
                       1
                      1
         (1, 6)
         (1, 1)
                      1
                      1
         (2, 8)
         (2, 3)
                      1
         (3, 0)
                      1
                      1
         (3, 5)
         (3, 4)
In [19]:print(X_test)
         (0, 9)
                        1
                       1
         (0, 11)
         (1, 14)
                       1
         (1, 13)
                        1
         (1, 2)
In [20]:print(y_train)
        5
        2
            1
            0
        4
        Name: sentiment, dtype: int64
In [21]:print(y_test)
             2
        0
        1
        Name: sentiment, dtype: int64
In [26]:# Step 3: Build and train the classifier (Logistic Regression)
         classifier = LogisticRegression(max_iter=1000)
         classifier.fit(X_train, y_train)
Out[26]: ▼
                 LogisticRegression
         LogisticRegression(max_iter=1000)
In [27]:# Step 4: Evaluate the model
         y_pred = classifier.predict(X_test)
```

print(y_pred)

[1 1]

In [29]:print(classification_report(y_test, y_pred, target_names=['negative', 'neutral',

	precision	recall	f1-score	support
negative	0.00	0.00	0.00	1.0
neutral	0.00	0.00	0.00	0.0
positive	0.00	0.00	0.00	1.0
accuracy			0.00	2.0
macro avg	0.00	0.00	0.00	2.0
weighted avg	0.00	0.00	0.00	2.0

2nd Program python necessary libraries

- pip install transformers
- pip install torch
 - pip install datasets

```
In [5]:import pandas as pd
    import numpy as np
    from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import classification_report
    import gensim.downloader as api
    from nltk.corpus import stopwords
    from nltk.tokenize import word_tokenize
    import nltk
    import torch
    from transformers import BertTokenizer, BertForSequenceClassification, Trainer,
    from datasets import Dataset
```

```
In [6]:nltk.download('punkt')
         nltk.download('stopwords')
        [nltk_data] Downloading package punkt to
        [nltk data]
                         C:\Users\Admin\AppData\Roaming\nltk data...
        [nltk_data]
                       Package punkt is already up-to-date!
        [nltk_data] Downloading package stopwords to
        [nltk_data]
                         C:\Users\Admin\AppData\Roaming\nltk_data...
        [nltk_data] Package stopwords is already up-to-date!
 Out[6]: True
 In [9]:data = {
              'text': [
                  'I love this product!', 'This is the worst
                  thing I have ever bought.', 'It is okay,
                  neither good nor bad.', 'Absolutely fantastic
                                    'I
                  experience!',
                                            hate
                                                     it,
                  disappointing.', 'Not great, not terrible.'
              ],
              'sentiment': ['positive', 'negative', 'neutral', 'positive', 'negative', 'ne
          # Convert to DataFrame
          df data = pd.DataFrame(data)
          df data
 Out[9]:
                                            text sentiment
                                I love this product!
                                                    positive
          0
          1 This is the worst thing I have ever bought.
                                                   negative
          2
                     It is okay, neither good nor bad.
                                                    neutral
                     Absolutely fantastic experience!
                                                    positive
          3
                        I hate it, very disappointing.
          4
                                                   negative
          5
                             Not great, not terrible.
                                                    neutral
In [11]:# Encode the sentiment labels
          df_data['sentiment'] = df_data['sentiment'].map({'negative': 0, 'neutral': 1, 'p
          df data['sentiment']
Out[11]: 0
              NaN
              NaN
              NaN
          3
              NaN
          4
              NaN
              NaN
          Name: sentiment, dtype: float64
In [12]:df_data
```

```
X_test = np.vstack(test_df['tokens'].apply(get_document_vector))
             y train = train df['sentiment']
             y_test = test_df['sentiment']
             classifier = LogisticRegression(max_iter=1000)
             classifier.fit(X train, y train)
             y pred = classifier.predict(X test)
             print("Word Embeddings Model")
             print(classification_report(y_test, y_pred, target_names=['negative', 'neutr'
In [25]:# 3. Transformer Model
         def transformer_model(train_df, test_df):
             tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
             def tokenize_function(examples):
                 return tokenizer(examples['text'], padding="max_length", truncation=True
             train_dataset = Dataset.from_pandas(train_df)
             test_dataset = Dataset.from_pandas(test_df)
             train_dataset = train_dataset.map(tokenize_function, batched=True)
             test_dataset = test_dataset.map(tokenize_function, batched=True)
             train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask
             test_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask'
             model = BertForSequenceClassification.from_pretrained('bert-base-uncased', n
             training_args = TrainingArguments(
                 output_dir='./results',
                 num_train_epochs=2,
                 per_device_train_batch_size=4,
                 per_device_eval_batch_size=4,
                 warmup_steps=500,
                 weight_decay=0.01,
                 logging_dir='./logs',
                 logging_steps=10,
                 evaluation_strategy="epoch"
             trainer = Trainer(
                 model=model,
                 args=training_args,
                 train_dataset=train_dataset,
                 eval_dataset=test_dataset
             trainer.train()
             predictions = trainer.predict(test_dataset)
             preds = np.argmax(predictions.predictions, axis=-1)
             y test = test df['sentiment'].values
             print("Transformer Model")
             print(classification_report(y_test, preds, target_names=['negative', 'neutra
 In [ ]:bow_model(train_df, test_df)
         word embeddings model(train df, test df)
         transformer_model(train_df, test_df)
```

	precision	recall f1-score		recision recall f1-score suppo		support
negative	0.00	0.00	0.00	1.0		
neutral	0.00	0.00	0.00	0.0		
positive	0.00	0.00	0.00	1.0		
accuracy			0.00	2.0		
macro avg	0.00	0.00	0.00	2.0		
weighted avg	0.00	0.00	0.00	2.0		