Solució al problema 13 l

a) Demostrem que si $\alpha_1 v_1 + \cdots + \alpha_{11} v_{11} = 0$ llavors $\alpha_1 = \cdots = \alpha_n = 0$. Això és equivalent a que el sistema lineal homogeni

$$\alpha_1 v_i^T v_1 + \dots + \alpha_{11} v_i^T v_{11} = 0, \quad i = 1, \dots, 11.$$

té la solució nul·la com a única solució. Indicació: Useu el t. de Gerschgorin.

- b) Usem t. de Gershgorin. Demostració indicació:
 - Si $\lambda \in \operatorname{Spec}(EF)$, $\exists v \in \mathbb{R}^{11} \setminus \{0\}$ t.q. $EFv = \lambda v$.
 - Definint u = Fv, tenim $FEu = \lambda u$.
 - i) Si $u \neq 0$, aleshores $\lambda \in \operatorname{Spec}(FE)$.
 - ii) Si u=0, com que $EFv=\lambda v$ i Fv=0, aleshores $\lambda=0$ ($v\neq 0$). Per tant, $\det(EF)\det(FE)=0$, i també és vap de FE.
 - i) i ii) impliquen $\operatorname{Spec}(EF) \subset \operatorname{Spec}(FE)$.
 - Intercanviant E i F: $Spec(FE) \subset Spec(EF)$.
- c) Indicació: Semblant al problema 3.