

Wydział Informatyki i Telekomunikacji Informatyczne systemy automatyki

Sieci neuronowe Klasyfikacja chorób serca

Spis treści

1	Wp	rowadzenie	2
2	Analiza danych wejściowych		
	2.1	Wiek pacjentów	3
	2.2	Płeć pacjentów	
	2.3	Płeć w zależności od bazy danych	
	2.4	Wiek pacjentów w zależności od płci	4
	2.5	Rodzaj bólu w klatce piersiowej w zależności od płci	4
	2.6	Rodzaj bólu w klatce piersiowej w zależności od bazy danych	5
3	Sieć neuronowa binarna		
	3.1	Wykres funkcji kosztu	5
	3.2	Wykresy błędu MSE	6
	3.3	Wykresy błędu klasyfikacji	
	3.4	Raport	6
4	Sieć neuronowa wieloklasowa		
	4.1	Wykres funkcji kosztu	7
	4.2	Wykresy błędu MSE	
	4.3	Wykresy błędu klasyfikacji	
	4.4	Raport	

1 Wprowadzenie

Problem, który jest przedmiotem badań, dotyczy predykcji obecności choroby serca u pacjentów na podstawie zbioru cech medycznych. Celem jest stworzenie modelu, który potrafi skutecznie rozróżnić, czy pacjent cierpi na chorobę serca (występująca w postaciach 1, 2, 3, 4) czy nie (wartość 0). Problem polega na klasyfikacji pacjentów na podstawie 14 atrybutów, takich jak wiek, poziom cholesterolu, ciśnienie krwi i inne czynniki ryzyka.

W ramach realizacji projektu opracowano dwie sieci neuronowe: sieć binarną oraz sieć wieloklasową. Sieć binarna została zaprojektowana do rozwiązania problemu klasyfikacji binarnej, polegającego na rozróżnieniu pomiędzy pacjentami, u których stwierdzono obecność choroby serca (wartości 1, 2, 3, 4) a pacjentami zdrowymi (wartość 0).

W celu bardziej zaawansowanej klasyfikacji, opracowano również sieć neuronową wieloklasową, która umożliwia przypisanie pacjentów do jednej z czterech klas, odpowiadających różnym stopniom zaawansowania choroby serca (wartości 1, 2, 3, 4). Obie sieci zostały przetestowane na tych samych danych, co pozwoliło na porównanie ich skuteczności w kontekście rozwiązywania problemu klasyfikacji medycznej.

2 Analiza danych wejściowych

Zbiór danych zawiera atrybuty opisujące cechy pacjentów, które są istotne w analizie i diagnostyce chorób serca. Każda cecha ma swoje unikalne znaczenie i wartość w interpretacji wyników badań.

Poniżej znajduje się szczegółowy opis tych cech:

- 1. age Wiek pacjenta w latach.
- 2. sex Płeć pacjenta.
- 3. cp Rodzaj bólu w klatce piersiowej.
- 4. trestbps Ciśnienie tętnicze w spoczynku (w mm Hg) mierzone przy przyjęciu do szpitala.
- 5. chol Poziom cholesterolu w surowicy krwi (w mg/dl).
- 6. fbs Cukier na czczo.
- 7. restecg Wynik elektrokardiogramu w spoczynku.
- 8. thalach Maksymalne osiągnięte tętno podczas testu wysiłkowego.
- 9. exang Wystąpienie dławicy wywołanej wysiłkiem.
- 10. oldpeak Depresja odcinka ST wywołana wysiłkiem w stosunku do stanu spoczynkowego.
- 11. slope Nachylenie odcinka ST w szczytowym momencie wysiłku.

- 12. ca Liczba głównych naczyń krwionośnych (od 0 do 3), widocznych w badaniu fluoroskopowym.
- 13. thal Wynik badania z użyciem izotopu talu.

2.1 Wiek pacjentów

2.2 Płeć pacjentów

2.3 Płeć w zależności od bazy danych

2.4 Wiek pacjentów w zależności od płci

2.5 Rodzaj bólu w klatce piersiowej w zależności od płci

2.6 Rodzaj bólu w klatce piersiowej w zależności od bazy danych

3 Sieć neuronowa binarna

W trakcie eksperymentów przeprowadzono optymalizację parametrów modelu binarnego przy użyciu metody siatki wyszukiwania (GridSearchCV). Model został poddany procesowi strojenia, w którym zmieniano następujące hiperparametry:

- Liczność wsadu (batch_size): liczba próbek przetwarzanych w jednym kroku uczenia,
- Współczynnik uczenia (learning_rate): tempo dostosowywania wag modelu w trakcie uczenia,
- Liczba iteracji (num_iterations): liczba pełnych przebiegów przez zbiór danych.

Na podstawie wyników procesu optymalizacji wybrano najlepsze wartości parametrów dla modelu binarnego:

• batch_size: 128,

• learning_rate: 0.25,

• num_iterations: 700.

Optymalny zestaw parametrów pozwolił na uzyskanie stabilnego procesu uczenia oraz satysfakcjonujących wyników klasyfikacji w kontekście problemu.

3.1 Wykres funkcji kosztu

3.2 Wykresy błędu MSE

3.3 Wykresy błędu klasyfikacji

3.4 Raport

4 Sieć neuronowa wieloklasowa

W trakcie eksperymentów przeprowadzono również optymalizację parametrów modelu wieloklasowego, korzystając z metody siatki wyszukiwania (GridSearchCV). Proces strojenia obejmował następujące hiperparametry:

- Liczność wsadu (batch_size): liczba próbek przetwarzanych w jednym kroku uczenia,
- Parametr β_2 (beta2): wykładnikowa średnia kwadratów gradientu w optymalizatorze Adam,
- Współczynnik uczenia (learning_rate): tempo dostosowywania wag modelu w trakcie uczenia,
- Momentum (momentum): dodatkowy parametr przyspieszający zbieżność uczenia,
- Liczba iteracji (num_iterations): liczba pełnych przebiegów przez zbiór danych.

Najlepsze uzyskane wartości parametrów dla modelu wieloklasowego to:

• batch_size: 128,

• beta2: 0.999,

• learning_rate: 0.01,

• momentum: 0.6,

• num_iterations: 300.

Optymalny zestaw parametrów pozwolił na poprawę jakości klasyfikacji w problemie wieloklasowym.

4.1 Wykres funkcji kosztu

4.2 Wykresy błędu MSE

4.3 Wykresy błędu klasyfikacji

4.4 Raport

