

Aufgaben zu Riemannschen Flächen

11. Blatt - Übung am Montag, 16.01.2017

Aufgabe 36: Sei \mathcal{F} eine Prägarbe auf X und $\pi: |\mathcal{F}| \to X$ die Projektion des *espace étalé*. Setze

$$\mathcal{G}: U \mapsto \{\sigma: U \to |\mathcal{F}| \text{ stetig } \mid \pi \circ \sigma = \mathrm{id} \}$$
.

Zeigen Sie, dass

- i) \mathcal{G} eine Garbe ist und
- ii) es einen kanonischen Isomorphismus $\mathcal{F}_p \to \mathcal{G}_p$ für jedes $p \in X$ gibt.

Aufgabe 37: Seien $p_1, \ldots, p_n \in \mathbb{C}$ paarweise verschiedene Punkte. Zeigen Sie, dass

$$\check{H}^1(\mathbb{C}\setminus\{p_1,\ldots,p_n\},\underline{\mathbb{Z}})\cong\mathbb{Z}^n$$

gilt.

(Hinweis aus dem Buch von Otto Forster: finde eine Überdeckung $\mathfrak{U}=(U_1,U_2)$ mit einfach zusammenhängenden $U_1,\ U_2$, so dass $U_1\cap U_2$ genau n+1 Zusammenhangskomponenten hat. Damit kann man ab Donnerstag (Satz von Leray) die Aufgabe lösen.)

Aufgabe 38: Sei X eine kompakte Riemannsche Fläche und $\mathfrak{U}=(U_1,\ldots,U_n)$ eine endliche offene Überdeckung. Zeigen Sie, dass man die Čech-Kohomologie

$$\check{H}^1(\mathfrak{U},\mathcal{F})$$

auch als die Kohomologie des alternierenden Komplexes:

$$\check{C}_{\mathrm{alt}}^r(\mathcal{F}) := \prod_{i_0 < i_1 < \dots < i_r} \mathcal{F}(U_{i_0} \cap \dots \cap U_{i_r})$$

mit denselben Korand-Operatoren berechnen kann.

(Hinweis: das gilt auch allgemein für alle \check{H}^r und auch ohne Endlichkeit, ist dann aber schwieriger zu zeigen.)

Aufgabe 39: Zeigen Sie für einen Torus $T=\mathbb{C}/\Lambda$ mit Hilfe einer geeigneten Leray-Überdeckung, dass die Čech-Kohomologie

$$\check{H}^1(T,\underline{\mathbb{C}}) \cong \mathbb{C}^2$$

ist.

(Hinweis: man benutzt natürlich die vorhergehende Aufgabe. Dennoch ist das immer noch eine ziemliche Erbsenzählerei.)