

¿Por qué definir una magnitud?

 Ordenar los sismos en términos de la energía liberada independiente de los efectos que pueda causar en cierta región (descripción física).

¿Por qué tantas escalas de magnitud?

- Cada una trabaja en distinto rango de frecuencias
- La mejor (momento) v/s las más sencillas (empíricas)

Escalas empíricas La forma general

M = log10(Ao) + correcciones

Correcciones tienen que ver con:

- Distancia al foco y su profundidad (distinta atenuación en cada región)
- Patrón de radiación
- Constantes instrumentales
- Variaciones sistemáticas entre estaciones de una red
- Efecto sitio

Magnitud local (MI)

(Richter, 1935)

MI = log10(A) - log10(Ao)

- A: Amplitud máxima de un sismo medida en mm por un sismómetro Wood-anderson.
- Ao: Amplitud máxima de un sismo medida en mm por un W-A pero que cumple que a 100 km de distancia epicentral esta es de 0.001 mm.
 - * log10(Ao) es una curva que depende de la distancia epicentral y es propia de cada región, aunque para todas las regiones se cumple que debe pasar por un punto común.
 - * La magnitud local satura para eventos sobre 7.0 y es útil para distancias menores a 1500 km

Curva compuesta que pasa por un punto **arbitrario**

Punto arbitrario: A 100 km se registra una amplitud de 0.001 mm. (log10(0.001) = -3)

Richter, 1935. Distintas curvas para eventos ocurridos en California y la curva estándar paralela a todas ellas.

Instrumento utilizado:

Sismómetro de torsión, periodo corto llamado Wood-Anderson.

$$To = 0.8s$$

$$V = 2800$$

$$H = 0.8$$

$\Delta(\text{km}) \text{ Log } A$		$\Delta(km)$ Log A		Δ(k	$\Delta(\mathrm{km})$ Log A	
25	-1.65	205	-3.56	405	-4.48	
30	-2.10	210	-3.59	410	-4.50	
35	-2.32	215	-3.62	415	-4.51	
40	-2.43	220	-3.65	420	-4.52	
45	-2.54	225	-3.68	425	-4.54	
50	-2.63	230	-3.70	430	-4.56	
55	-2.70	235	-3.72	435	-4.57	
60	-2.77	240	-3.74	440	-4.59	
65	-2.79	245	-3.77	445	-4.61	
70	-2.83	250	-3.79	450	-4.62	
75	-2.87	255	-3.81	455	-4.63	
80	-2.90	260	-3.83	460	4.64	
85	-2.94	265	-3.85	465	-4.66	
90	-2.96	270	-3.88	470	-4.68	
95	-2.98	275	-3.92	475	-4.69	
100	-3.00	280	-3.94	480	-4.70	
105	-3.03	285	-3.97	485	-4.71	
110	-3.08	290	-3.98	490	-4.72	
115	-3.10	295	-4.00	495	-4.73	
120	-3.12	300	-4.02	500	-4.74	
125	-3.15	305	-4.05	505	-4.75	
130	-3.19	310	-4.08	510	-4.76	
135	-3.21	315	-4.10	515	-4.77	
140	-3.23	320	-4.12	520	-4.78	
145	-3.28	325	-4.15	525	-4.79	
150	-3.29	330	-4.17	530	-4.80	
155	-3.30	335	-4.20	535	-4.81	
160	-3.32	340	-4.22	540	-4.82	
165	-3.35	345	-4.24	545	-4.83	
170	-3.38	350	-4.26	550	-4.84	
175	-3.40	355	-4.28	555	-4.85	
180	-3.43	360	4.30	560	-4.86	
185	-3.45	365	-4.32	565	-4.87	
190	-3.47	370	-4.34	570	4.88	
195	-3.50	375	-4.36	575	-4.89	
200	-3.53	380	-4.38	580	-4.90	
		385	-4.40	585	-4.91	
		390	-4.42	590	-4.92	
		395	-4.44	595	-4.93	
		400	-4.46	600	-4.94	

Richter 1935. Tabla que describe la curva estándar.

¿Cómo calculo la magnitud local?

Ejemplo:

Supongamos un terremoto que es registrado por un sismómetro Wood-Anderson y se observa una máxima amplitud de 5 mm a una distancia epicentral de 225 km.

log10(5) = 0.69

En la curva estándar a 225 km → log10(Ao) = -3.68

Luego MI = 0.69 - (-3.68) = 4.37

Sismógrafo de torsión Wood-Anderson

Figura publicada en "Bulletin of the Seismological Society of America" en 1925.

Fig. 2

¿Y si uso un instrumento diferente a WA? "deconvolución y convolución"

Primero, en el dominio del tiempo, se tiene:

Registro(t) = $(fuente)(t) \times (movimiento del suelo)(t) \times (respuesta del instrumento)(t)$

- ** "x" es convolución
 - En el dominio de las frecuencias (aplicando transformada de fourier)

Registro(w) = (fuente)(w) . (movimiento del suelo)(w) . (respuesta del instrumento) (w)

- ** "." es multiplicación
 - Finalmente

(movimiento del suelo . fuente) = Registro / respuesta

- La respuesta intrumental se especifica con características del intrumento como:
 - Filtros, ganancia, sensitividad, respuesta del sensor.

Magnitud de ondas superficiales (Ms) (Gutemberg y Richter, 1936)

Ms = log10(A) + 1.656 log10(D) + 1.818

- A: Amplitud máxima en la componente horizontal (en micrones) para ondas superficiales con periodo de 20 s.
- Esta escala es válida para sismos superficiales.
- * Ms satura para eventos por sobre magnitud 8.0 y es válida para eventos telesísmicos ocurridos a distancias epicentrales entre 15° y 130°.

Magnitud de ondas de cuerpo (mb)

Gutemberg y Richter, 1956

$$Mb = log10(A/T) + Q(D,h)$$

- A/T: es el máximo de un tren de ondas de cuerpo (P, PP, o SH por ejemplo) con periodos cercanos a 1s.
- Q: función corrección por efectos de distancia y profundidad (IASPEI).
- * Mb satura para eventos sobre magnitud 7.0 y es válida para eventos telesísmicos a distancias epicentrales entre 20° y 100°.
- * Amplitud debe ser leída en un sismograma que simule la respuesta de un WWSSN S-P.

Magnitud de momento (Mw)

Hanks y Kanamori (1979)

$$Mw = 2/3 \log 10(Mo) - 10.7$$

- Mo: Momento sísmico en dina-cm
- * $Mw = 2/3 \log 10(Mo) 6.07 (Mo en N-m)$
- * Mw resulta de:
- Relacion entre Es y Ms $\log E_s = 1$
- Relación entre Es y Mo

$$E_s = \frac{\Delta \sigma}{2\mu} M_o$$

Caída de tensión

Energía sísmica

¿Cómo calculo el momento sísmico?

- Mo = μ * A * D (rigidez * área * deslizamiento)
- Inversión del tensor de momento
- Análisis espectral

Inversión del tensor de momento

• La fuente puede ser mejor representada por 3 "double-couple" (una para cada coordenada) + una fuente explosiva (o implosiva).

$$\mathbf{M}_0 = \sqrt{\sum_{ij} \mathbf{M}_{ij}^2} / \sqrt{2}$$

 Para encontrarlo solo contamos con las observaciones de desplazamiento en las estaciones. Si conocemos el medio, podemos realizar una inversión.

Análisis espectral

El espectro de una señal es la amplitud de su TF.

• El espectro para el desplazamiento (en SI) en la fuente

según Brune, 1970 es:

$$S(f) = \frac{M_0}{(1 + (\frac{f}{f_0})^2) 4\pi \rho v^3}$$

Displacement Slope -2

f₀ Log frequency

 El espectro observado en la fuente, corregido por "geometrical spreading", atenuación, distancia epicentral y profundidad es:

$$D(f,t) = \frac{M_0 * 0.6 * 2.0}{(1 + (\frac{f}{f_0})^2) 4\pi \rho v^3} G(\Delta,h) e^{-\pi f x} e^{\frac{-\pi f t}{Q(f)}}$$
Efecto superficie libre

Análisis espectral

• Finalmente, en términos de valores observados se tiene:

Igualando a la ecuación anterior:

$$M_0 = \frac{\Omega_0 4\pi \rho v^3}{0.6 * 2.0 * G(\Delta, h)}$$

• En caso de "spreading" simple para ondas de cuerpo de 1/r:

$$M_0 = \frac{\Omega_0 4\pi \rho v^3 r}{0.6 * 2.0}$$

