Relazione esperienza di laboratorio

Gruppo BI: Federica Maria Surace, Marco Cilibrasi

30 ottobre 2014

Esercitazione N. 3: Circuito RC - Filtri passivi

1 Filtro passa-basso

La scelta della frequenza di taglio è stata effettuata con l'obiettivo di massimizzare il fattore di soppressione, senza avere troppa attenuazione sui 2kHz. Più piccola è la frequenza di taglio, maggiore è il fattore di soppressione. Abbiamo quindi optato per una frequenza di taglio abbastanza piccola, di circa 2kHz, in modo da avere un'attenuazione del segnale di circa $\frac{1}{\sqrt{2}}$. Per tale scopo abbiamo scelto una resistenza da $R=984\pm8\Omega~(\ll~100k\Omega)$ e un condensatore da $C=67\pm3nF$, da cui $f_T=2.4\pm0.1kHz$.

1.1 Misure e fit

Osservando il segnale in uscita alla frequenza di circa 2kHz abbiamo misurato un guadagno $\simeq 0.76$ in accordo (all'interno del 2%) con il valore previsto $\simeq 0.77$. Alla frequenza di 20kHz abbiamo osservato un guadagno $\simeq 0.117$ in accordo (all'interno del 2%) con il valore atteso $\simeq 0.119$. La misura della frequenza di taglio direttamente dall'oscilloscopio (attenuazione -3 dB) ha dato come risultato $f_T = 2.3 \pm 0.1kHz$ in accordo con il valore atteso all'interno dell'errore.

Successivamente abbiamo provato a stimare la frequenza di taglio dal punto di incontro delle rette ottenute con due fit separati a bassa frequenza (f < 0.7kHz) e ad alta frequenza (f > 12kHz). Riportiamo le misure (tabella 1) e il grafico (in figura 1) con $A = 20log_{10}(|G|)$. Abbiamo stimato per le frequenze un errore dell'1 %.

Le rette ottenute dal fit sono:

- $y=y_0=-0.06\pm0.06$ per basse frequenze ($\chi^2_{red}=0.63$)
- $y=mx+q=(-20.22\pm0.15)\cdot x+(7.8\pm0.3)$ per alte frequenze $(\chi^2_{red}=1.07)$

Per le basse frequenze abbiamo notato che la pendenza è nulla all'interno dell'errore, per cui abbiamo considerato la funzione costante. Dall'intersezione delle rette ricaviamo $f_T = 2.45 \pm 0.07 kHz$, in accordo con il valore previsto all'interno dell'errore. L'errore sulla frequenza di taglio è stato calcolato con la propagazione degli errori attraverso al matrice di covarianza di seguito riportata:

$$\sigma_{f_T}^2 = \left(\frac{\partial f_T}{\partial m} \quad \frac{\partial f_T}{\partial q}\right) \begin{pmatrix} \sigma_m^2 & \sigma_{mq} \\ \sigma_{mq} & \sigma_q^2 \end{pmatrix} \begin{pmatrix} \frac{\partial f_T}{\partial m} \\ \frac{\partial f_T}{\partial q} \end{pmatrix} + \left|\frac{\partial f}{\partial y_0}\right|^2 \cdot \sigma_{y_0}^2$$
$$\begin{pmatrix} \sigma_m^2 & \sigma_{mq} \\ \sigma_{mq} & \sigma_q^2 \end{pmatrix} = \begin{pmatrix} 0.023 & -0.043 \\ -0.043 & 0.083 \end{pmatrix}$$

La frequenza di taglio f_T è stata stimata anche dal fit della funzione di trasferimento complessiva:

$$|G| = \frac{1}{\sqrt{1 + \left(\frac{f}{f_T}\right)^2}}$$

Tabella 1: Misure di |G| nel circuito passa-basso

f[kHz]	$V_{out}[V]$	$\Delta V_{out}[V]$	$ G = \frac{\hat{V}_{out}}{V_{in}}$	$\Delta G $
0.101	12.0	0.2	1.00	0.02
0.159	12.0	0.2	1.00	0.02
0.254	12.0	0.2	1.00	0.02
0.397	12.0	0.2	1.00	0.02
0.633	11.6	0.2	0.97	0.02
0.98	11.1	0.2	0.93	0.02
1.58	10.0	0.2	0.83	0.02
2.50	8.2	0.2	0.68	0.02
3.97	6.2	0.1	0.52	0.01
6.30	4.3	0.1	0.36	0.01
10.1	2.76	0.04	0.230	0.005
15.8	1.78	0.04	0.148	0.004
24.9	1.14	0.02	0.095	0.002
39.4	0.71	0.01	0.059	0.001
63.7	0.452	0.008	0.038	0.001
98	0.286	0.004	0.0238	0.0005
159	0.182	0.004	0.0152	0.0004
289	0.096	0.002	0.0080	0.0002
395	0.067	0.002	0.0056	0.0002
621	0.042	0.002	0.0035	0.0002

Diagramma di Bode (passa basso)

Figura 1: Diagramma di Bode: passa basso

ricavando per f_T il valore $2.36 \pm 0.01 kHz.$ Il fit ha $\chi^2_{red} = 0.68.$

1.2 Risposta al gradino

Dall'osservazione della risposta al gradino abbiamo ricavato la misura del tempo di salita dal 10% al 90% $t_{salita}=138\pm4\mu s$, da cui $f_T=\frac{2.2}{2\pi t_{salita}}=2.54\pm0.07kHz$. Questa misura è in accordo con il valore previsto all'interno dell'errore.

1.3 Risposte alle domande

L'impedenza di ingresso del circuito è la serie di R e C: $Z_{in} = R + \frac{1}{j\omega C}$. A bassa frequenza si ha $Z_{in} \simeq \frac{f_T}{jf}R$, ad alta frequenza vale $Z_{in} \simeq R$ e alla frequenza di taglio $Z_{in} = (1-j)R$. L'effetto dell'inserimento di una resistenza di carico R_L è l'introduzione di una resistenza R_L in parallelo al condensatore.

$$Z_{in} = R\left(1 + \frac{1}{\frac{R}{R_L} + \frac{f}{if_T}}\right) \tag{1}$$

Si vede quindi che per $R_L\gg R$ non si hanno effetti significativi (è il caso di $R_L=100k\Omega$). Nel caso di $R_L=10k\Omega$ abbiamo degli effetti non trascurabili, in particolare ad alte frequenze si ha comunque $Z_{in}\simeq R$, mentre a basse frequenze $Z_{in}\simeq R+R_L$.

2 Filtro passa-banda

2.1 Filtri passa-alto e passa-basso separati

Nella seconda parte abbiamo inizialmente montato due circuiti separati. Un passa basso con $R_1 = 3.23 \pm 0.03 k\Omega$ e $C_1 = 10.6 \pm 0.4 nF$, da cui $f_{T1} = 4.6 \pm 0.2 kHz$, e un passa alto con $R_2 = 3.26 \pm 0.03 k\Omega$ e $C_2 = 105 \pm 4 nF$, da cui $f_{T2} = 0.46 \pm 0.02 kHz$. Di entrambi abbiamo verificato che il guadagno avesse l'andamento generale previsto, che il guadagno massimo fosse ~ 1 e che la frequenza corrispondente ad un'attenuazione di -3 dB fosse $\sim f_T$.

2.2 Filtro passa-banda

Successivamente abbiamo collegato in serie i due circuiti per ottenere un filtro passa-banda e ne abbiamo misurato la risposta. Riportiamo in tabella 2 le misure effettuate. Abbiamo stimato per le frequenze un errore dell'1 %.

Abbiamo stimato A_0, f_L e f_H fittando 3 rette in tre regioni separate del diagramma di Bode, cioé per basse frequenze (f < 0.06kHz), per alte frequenze (f > 20kHz) e nel centro banda (0.5kHz < f < 7kHz). Le rette ottenute sono

- $y = m_1 x + q_1 = (21.8 \pm 0.6) \cdot x + (8.9 \pm 0.9)$ per basse frequenze $(\chi^2_{red} = 0.34)$
- $y = A_0 = -6.6 \pm 0.2$ per il centro banda $(\chi^2_{red} = 0.72)$
- $y = m_2 x + q_2 = (-19.8 \pm 0.3) \cdot x + (12.8 \pm 0.5)$ per alte frequenze $(\chi^2_{red} = 0.38)$

Da qui otteniamo $f_L = 0.19 \pm 0.01 kHz$ e $f_H = 9.6 \pm 0.4 kHz$. f_L non é compatibile con $\frac{f_{T2}}{2}$ nel limite dell'errore, ma é compatibile all'interno del 15 %. f_H é compatibile con $2f_{T1}$ all'interno dell'errore. Le relazioni fra f_H , f_L , f_{T1} e f_{T2} verranno ricavate nel punto successivo. Gli errori su f_H e f_L sono stati valutati come in precedenza attraverso la matrice di covarianza. Non riportiamo l'intera formula ma solo le matrici relative ai fit lineari rispettivamente a basse frequenze e ad alte frequenze.

$$\begin{pmatrix} \sigma_{m_1}^2 & \sigma_{m_1q_1} \\ \sigma_{m_1q_1} & \sigma_{q_1}^2 \end{pmatrix} = \begin{pmatrix} 0.32 & 0.51 \\ 0.51 & 0.83 \end{pmatrix} \qquad \begin{pmatrix} \sigma_{m_2}^2 & \sigma_{m_2q_2} \\ \sigma_{m_2q_2} & \sigma_{q_2}^2 \end{pmatrix} = \begin{pmatrix} 0.065 & -0.14 \\ -0.14 & 0.30 \end{pmatrix}$$

Riportiamo di seguito il grafico (figura 2).

Tabella 2: Misure di |G| nel circuito passa-banda

f[kHz]	$V_{out}[V]$	$\Delta V_{out}[V]$	$ G = \frac{V_{out}}{V_{c}}$	$\Delta G $
			V_{in}	
0.0313	1.34	0.02	0.064	0.003
0.0199	0.848	0.015	0.040	0.002
0.0121	0.468	0.008	0.022	0.001
0.0501	2.22	0.04	0.106	0.005
0.0783	3.34	0.04	0.159	0.008
0.126	5	0.04	0.24	0.01
0.199	6.76	0.08	0.32	0.02
0.317	8.4	0.15	0.40	0.02
0.500	9.36	0.15	0.45	0.02
0.793	9.92	0.15	0.47	0.02
1.25	10.1	0.2	0.48	0.02
2.00	10.2	0.2	0.49	0.03
3.18	9.76	0.2	0.46	0.02
5.02	9.12	0.2	0.43	0.02
7.97	7.92	0.2	0.38	0.02
12.6	6.2	0.08	0.30	0.01
19.9	4.48	0.08	0.21	0.01
31.7	2.98	0.04	0.142	0.007
49.7	1.98	0.04	0.094	0.005
81.0	1.2	0.02	0.057	0.003
115	0.792	0.015	0.038	0.002
199	0.496	0.008	0.024	0.001
318	0.312	0.004	0.0149	0.0007
501	0.194	0.004	0.0092	0.0005

2.3 Considerazioni conclusive

Considerando le impedenze in ingresso e in uscita dei singoli circuiti si ottiene:

$$A_{tot} = A_1 A_2 \frac{1}{1 + \frac{Z_{out}^{(1)}}{Z_{in}^{(2)}}} = A_1 A_2 \frac{1}{1 + \frac{R_1}{R_2} A_1 A_2}$$

dove A_1 e A_2 sono le funzioni di trasferimento complesse dei singoli filtri e A_{tot} è la funzione di trasferimento complessiva. Nel nostro caso $(R_1 \simeq R_2)$ il guadagno massimo A_0 si ha per $A_1 = A_2 = 1$, quindi $A_0 = \frac{1}{2}$. Perció, dall'intersezione con le rette nel diagramma di Bode $A = \frac{f}{f_{T2}}$ e $A = \frac{f_{T1}}{f}$ si ottiene che $f_{T1} = \frac{f_H}{2}$ e $f_{T2} = 2f_L$. Notiamo che se $R_1 \ll R_2$ si ha $A_{tot} \simeq A_1 A_2$.

Figura 2: Diagramma di Bode: passa banda