C^* -Algebras, and the Gelfand-Naimark Theorems

Luke Armitage

University of York

June 8, 2017

A C^* -algebra A is a Banach algebra with norm $\|\cdot\|$ and an involution map $a\mapsto a^*$ satisfying the following:

- 1. $a^{**} = a$
- 2. $(\alpha a + b)^* = \bar{\alpha}a^* + b^*$
- 3. $(ab)^* = b^*a^*$
- 4. $||a^*a|| = ||a||^2$ (C^* axiom)

Spectrum of $a \in A$ is

$$\sigma(a) = \left\{\lambda \in \mathbb{C} \mid a - \lambda 1 \text{ is not invertible}\right\}.$$

Spectral radius of $a \in A$ is

$$r(a) = \sup_{\lambda \in \sigma(a)} |\lambda|.$$

Say that $a \in A$ is **positive** if $a^* = a$ and $\sigma(a) \subset \mathbb{R}$.

A **state** is a linear map $\rho:A\to\mathbb{C}$ such that $\rho(a)\geq 0$ for all positive $a\in A$, and $\rho(1)=1$.

The **state space**, $\mathcal{S}(A)$, is a convex subset of the dual space of A. Call the extreme points of the state space **pure states**.

Examples

- Continuous linear functionals on a compact, Hausdorff space.
- Bounded operators on a Hilbert space, $\mathcal{B}(\mathcal{H})$.
- Ideal of compact operators, $\mathcal{K}(\mathcal{H})$.
- Calkin algebra, the quotient algebra $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$.

A *-homomorphism is an algebra homomorphism such that $\varphi(a^*)=\varphi(a)^*.$

A *-isomorphism is a bijective *-homomorphism.

Cool Results

Uniqueness of norm: $||a||^2 = ||a^*a|| = r(a^*a)$. Requires spectral theory. The spectral radius of a normal element is equal to its norm. From this, and the C* axiom, we get that the norm of each element is given by the spectral radius, which is defined in terms of the spectrum which does not use the norm.

*-homomorphisms are continuous: homomorphisms do not increase norm, so are bounded and hence continuous. isomorphisms are isometric. again uses spectral theory, this time to show that spectral radius is not increased / is preserved.

A **representation** of A on a Hilbert Space $\mathcal H$ is a *-homomorphism $A \to \mathcal B(\mathcal H).$

A bijective representation is called faithful.

Gelfand-Naimark Theorems

Theorem

Every Abelian C^* -algebra A is *-isomorphic to $C(\mathscr{P}(A))$, the algebra of continuous functions on the compact Hausdorff space $\mathscr{P}(A)$ of pure states on A.

Gelfand-Naimark Theorems

Theorem

Every Abelian C^* -algebra A is *-isomorphic to $C(\mathcal{P}(A))$, the algebra of continuous functions on the compact Hausdorff space $\mathcal{P}(A)$ of pure states on A.

Theorem

Every C^* -algebra has a faithful representation.

The Gelfand-Naimark-Segal Construction

Used to prove the GN theorem.

Given a state on a C* algebra, we can construct a Hilbert space and a representation on that space. Given a and b in A, define $\langle a,b\rangle=\rho(b^*a).$ This is a semi-inner product – basically an inner product, but there exist $a\neq 0$ such that $\langle a,a\rangle=0.$ However, if we consider the quotient vector space of A by the collection of such elements, this space completes to a Hilbert space with $\langle\cdot,\cdot\rangle$ as the inner product.

References – Questions?

My project report can be found at goo.gl/[link]

