Simple Linear Regression

Simple Linear Regression

Parameter Estimation

Residual Analysi

Confidence/Prediction Intervals

lypothesis Testing

Analysis of Variance (ANOVA) Approach to Regression

Lecture 2

Simple Linear Regression

Reading: Forecasting, Time Series, and Regression (4th edition) by Bowerman, O'Connell, and Koehler: Chapter 3

MATH 4070: Regression and Time-Series Analysis

Whitney Huang Clemson University

Agenda

Simple Linear Regression

- Simple Linear
- Parameter Estimation
 - esidual Analysis
- confidence/Prediction ntervals
- lypothesis Testing

- Simple Linear Regression
- **2** Parameter Estimation
- Residual Analysis
- 4 Confidence/Prediction Intervals
- 6 Hypothesis Testing
- 6 Analysis of Variance (ANOVA) Approach to Regression

Simple linear regression: The relationship between the response variable and the predictor variable is approximately linear

Simple Linear Regression

Simple Linear Regression

Parameter Estimatio

Confidence/Prediction

Hypothesis Testing

 In SLR we assume there is a linear relationship between X and Y:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- We need to estimate β_0 (intercept) and β_1 (slope) based on observed data $\{x_i, y_i\}_{i=1}^n$
- We can use the estimated regression equation to
 - make predictions
 - study the relationship between response and predictor
 - control the response
- Yet we need to quantify our estimation uncertainty regarding the linear relationship

Regression equation: $Y = \beta_0 + \beta_1 X$

Parameter Estimation

Residual A

Confidence/Prediction Intervals

Hypothesis Testing

- β_0 : $\mathbb{E}[Y]$ when X = 0
- β_1 : $\mathbb{E}[\Delta Y]$ when X increases by 1

Analysis of Variance ANOVA) Approach to

In order to estimate β_0 and $\beta_1,$ we make the following assumptions about ε

- $\mathbb{E}[\varepsilon_i] = 0$
- $Var[\varepsilon_i] = \sigma^2$
- $\bullet \operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Therefore, we have

$$\mathbb{E}[Y_i] = \beta_0 + \beta_1 X_i, \text{ and}$$
$$\operatorname{Var}[Y_i] = \sigma^2$$

The regression line $\beta_0 + \beta_1 X$ represents the **conditional mean curve** whereas σ^2 measures the magnitude of the **variation** around the regression curve

Parameter Estimation: Method of Least Squares

For given observations $\{x_i, y_i\}_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$\ell(\beta_0, \beta_1) = \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2$$

Solving the above minimization problem requires some knowledge from Calculus (see notes LS_SLR.pdf)

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

We also need to **estimate** σ^2

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n - 2},$$

where
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Regression

Parameter Estimation

Confidence/Prediction

pothesis Testina

Residual Analysis

Confidence/Prediction

ypothesis Testing

Analysis of Variance (ANOVA) Approach to Regression

• The estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased. That is

$$\mathbb{E}(\hat{\beta}_0) = \beta_0;$$
$$\mathbb{E}(\hat{\beta}_1 = \beta_1.$$

• The estimator $\hat{\sigma}^2$ = $\frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$ is unbiased. That is

$$\mathbb{E}(\hat{\sigma}^2) = \sigma^2.$$

We can write $\hat{\sigma}^2 = \frac{|\mathbf{y} - \hat{\mathbf{y}}|^2}{n-2}$, where $\mathbf{y} = (y_1, \cdots, y_n)^T$, $\hat{\mathbf{y}} = (\hat{\beta}_0 + \hat{\beta}_1 x_1, \cdots, \hat{\beta}_0 + \hat{\beta}_1 x_n)^T$.

Since \hat{y} has a dimension of 2 (regression slope and intercept), this leads to n-2 in the denominator

$$g(b) = \mathbb{E}\left[\left(Y - \mu_Y - b(X - \mu_X)\right)^2\right]$$

Note

$$g(b) = \mathbb{E}[(Y - \mu_Y)^2] + b^2 \mathbb{E}[(X - \mu_X)^2] - 2b \mathbb{E}[(Y - \mu_Y)(X - \mu_X)]$$

= $\sigma_Y^2 + b^2 \sigma_X^2 - 2b \text{Cov}(X, Y)$

Taking the derivative with respect to *b*:

$$g'(b) = 2b\sigma_X^2 - 2\operatorname{Cov}(X, Y)$$

Let
$$\beta_1$$
 solve $g'(b) = 0 \Rightarrow \beta_1 = \frac{\operatorname{Cov}(X,Y)}{\sigma_X^2}$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})/(n-1)}{\sum_{i=1}^n (x_i - \bar{x})^2/(n-1)} \text{ is the sample counterpart}$$

Regression

Parameter Estimation

onfidence/Prediction ntervals

pothesis Testing

$$\mathbb{E}\left[\left(Y - \beta_0 - \beta_1 X\right)^2\right] = \operatorname{Var}\left(Y - \beta_0 - \beta_1 X\right)$$
$$= \operatorname{Cov}\left[\left(Y - \beta_1 X\right)\left(Y - \beta_1 X\right)\right]$$
$$= \sigma_Y^2 - 2\beta_1 \operatorname{Cov}(X, Y) + \beta_1^2 \sigma_X^2$$

Now plug in $\beta_1 = \frac{\text{Cov}(X,Y)}{\sigma_X^2}$, we have

$$MSE = \sigma_Y^2 - 2\frac{\text{Cov}(X,Y)}{\sigma_X^2}\text{Cov}(X,Y) + (\frac{\text{Cov}(X,Y)}{\sigma_X^2})^2\sigma_X^2$$
$$= \sigma_Y^2 - 2\frac{\text{Cov}(X,Y)^2}{\sigma_X^2} + \frac{\text{Cov}(X,Y)^2}{\sigma_X^2}$$
$$= \sigma_Y^2 - \frac{\text{Cov}(X,Y)^2}{\sigma_X^2}$$
$$= \sigma_Y^2 (1 - \rho^2)$$

imple Linear legression

Parameter Estimation

Confidence/Prediction Intervals

lypothesis Testing

Geometric View of Least Squares Model Fit

• $\mathbf{y} = (y_1, \dots, y_n)^T$: The data vector

Space spanned by X

- $\hat{\mathbf{y}} = (\hat{y}_1 = \hat{\beta}_0 + \hat{\beta}_1 x_1, \dots, \hat{y}_n = \hat{\beta}_0 + \hat{\beta}_1 x_n)^T$: The least squares fitted vector
- $\hat{\varepsilon} = (y_1 \hat{y}_1, \dots, y_n \hat{y}_n)^T$: The residual vector

Simple Linear Regression

Regression

Desideral Assistation

Confidence/Prediction Intervals

ypothesis Testing

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

MaxHeartRate = 220 - Age.

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset": http:

//whitneyhuang83.github.io/maxHeartRate.csv)

- Compute the estimates for the regression coefficients
- Compute the fitted values
- **(a)** Compute the estimate for σ

mple Linear egression

Parameter Estimation

Confidence/Prediction Intervals

pothesis Testing

nalysis of Variance ANOVA) Approach to

intervals

ypothesis Testing

- y_i and x_i are the Maximum Heart Rate and Age of the ith individual
 - To obtain $\hat{\beta}_1$
 - Ompute $\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$, $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$
 - ② Compute $y_i \bar{y}$, $x_i \bar{x}$, and $(x_i \bar{x})^2$ for each observation
 - **o** Compute $\sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})$ divided by $\sum_{i=1}^{n} (x_i \bar{x})^2$
 - $\hat{\beta}_0$: Compute $\bar{y} \hat{\beta}_1 \bar{x}$
 - $\hat{\sigma}^2$
 - Ompute the fitted values: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$, $i = 1, \dots, n$
 - **2** Compute the **residuals** $e_i = y_i \hat{y}_i$, $i = 1, \dots, n$
 - Ocompute the **residual sum of squares (RSS)** = $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$ and divided by n-2 (why?)

Let's Do the Calculations

Simple Linear Regression

Parameter Estimation

Residual Analysis

vnothesis Testina

$$\bar{x} = \sum_{i=1}^{15} \frac{18 + 23 + \dots + 39 + 37}{15} = 37.33$$

$$\bar{y} = \sum_{i=1}^{15} \frac{202 + 186 + \dots + 183 + 178}{15} = 180.27$$

3	18	23	25	35	65	54	34	56	72	19	23	42	18	39	37
Y	202	186	187	180	156	169	174	172	153	199	193	174	198	183	178
	-19.33	-14.33	-12.33	-2.33	27.67	16.67	-3.33	18.67	34.67	-18.33	-14.33	4.67	-19.33	1.67	-0.33
	21.73	5.73	6.73	-0.27	-24.27	-11.27	-6.27	-8.27	-27.27	18.73	12.73	-6.27	17.73	2.73	-2.27
	-420.18	-82.18	-83.04	0.62	-671.38	-187.78	20.89	-154.31	-945.24	-343.44	-182.51	-29.24	-342.84	4.56	0.76
	373.78	205.44	152.11	5.44	765.44	277.78	11.11	348.44	1201.78	336.11	205.44	21.78	373.78	2.78	0.11
	195.69	191.70	190.11	182.13	158.20	166.97	182.93	165.38	152.61	194.89	191.70	176.54	195.69	178.94	180.53
_															

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = -0.7977$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 210.0485$$

•
$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{15} (y_i - \hat{y}_i)^2}{13} = 20.9563 \Rightarrow \hat{\sigma} = 4.5778$$


```
> fit <- lm(MaxHeartRate ~ Age)
> summary(fit)
Call:
lm(formula = MaxHeartRate ~ Age)
Residuals:
           10 Median
   Min
                         30
                               Max
<u>-8.9258 -2.5383</u> 0.3879 3.1867 6.6242
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
-0.79773
                     0.06996 -11.40 3.85e-08 ***
Aae
Sianif. codes:
             0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' '1
Residual standard error: 4.578 on 13 degrees of freedom
Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021
```

F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08

Regression

r dramotor Edimation

Confidence/Prediction Intervals

Hypothesis Testing

Assessing Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis

Simple Linear Regression

Parameter Estimation

Residual Analysis

Intervals

Hypothesis Testing

$$e_i = y_i - \hat{y}_i,$$

where
$$\hat{y}_i$$
 = $\hat{\beta}_0$ + $\hat{\beta}_1 x_i$

 Note that estimates aren't parameters, and residuals aren't random errors

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + e_i$$

- Nonetheless, residuals are very useful in assessing the appropriateness of the assumptions on ε_i . Recall
 - $E[\varepsilon_i] = 0$
 - $Var[\varepsilon_i] = \sigma^2$
 - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

- Simple Linear
- Parameter Estimation

Residual Ar

- Confidence/Prediction Intervals
- lypothesis Testing
- nalysis of Variance ANOVA) Approach to regression

Residuals Against Predictor Plot

Simple Linear Regression

Simple Linear Regression

Parameter Estimation

Residual Analysis

Confidence/Prediction Intervals

Hypothesis Testing

Interpreting Residual Plots

Simple Linear Regression

Simple Linear Regression

Parameter Estimation

Residual Analysis

Intervals

Hypothesis Testing

Interpreting Residual Plots

Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Simple Linear

Parameter Estimation

Residual Analysis

ntervals

Hypothesis Testing

Diagnostic Plots in R

Parameter Estimation

Residual Analysis

ntervals

lypothesis Testing

Simple Linear

Parameter Estimation

Confidence/Predict

Hypothesis Testing

Analysis of Variance (ANOVA) Approach to Regression

Can we formally quantify our estimation uncertainty? \Rightarrow We need additional (distributional) assumption on ε

MATHEMATICAL AND STATISTICAL SCIENCE Chemagon' University

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Further assume $\varepsilon_i \overset{i.i.d}{\sim} \mathrm{N}(0,\sigma^2) \Rightarrow Y_i | X_i \sim \mathrm{N}(\beta_0 + \beta_1 X_i, \sigma^2)$
- With normality assumption, we can derive the **sampling** distribution of $\hat{\beta}_1$ and $\hat{\beta}_0 \Rightarrow$

$$\frac{\hat{\beta}_{1} - \beta_{1}}{\hat{\operatorname{se}}(\hat{\beta}_{1})} \sim t_{n-2}, \quad \hat{\operatorname{se}}(\hat{\beta}_{1}) = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}}
\frac{\hat{\beta}_{0} - \beta_{0}}{\hat{\operatorname{se}}(\hat{\beta}_{0})} \sim t_{n-2}, \quad \hat{\operatorname{se}}(\hat{\beta}_{0}) = \hat{\sigma}\sqrt{\left(\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}\right)}$$

where t_{n-2} denotes the Student's t distribution with n-2 degrees of freedom

imple Linear egression

Parameter Estimation

Residual Analysi

iller vais

Simple Linear

Parameter Estimation

Residual Analysis

Intervals

Hypothesis Testing

Recall
$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$Var(\hat{\beta}_{1}) = Var\left(\frac{\sum_{i=1}^{n} (Y_{i} - \bar{Y})(x_{i} - \bar{x})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}\right)$$

$$= Var\left(\frac{\sum_{i=1}^{n} (x_{i} - \bar{x})Y_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}\right)$$

$$= \left(\frac{1}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}\right)^{2} \left(\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}\right) Var(Y_{i})$$

$$= \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\operatorname{se}(\hat{\beta}_1) = \sqrt{\operatorname{Var}(\hat{\beta})} = \frac{\sigma}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}}$$
. Replacing σ by $\hat{\sigma}$ to get $\widehat{\operatorname{se}}(\hat{\beta}_1)$

Recall $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$

$$\operatorname{Var}(\hat{\beta}_{0}) = \operatorname{Var}\left(\bar{Y} - \hat{\beta}_{1}\bar{x}\right)$$

$$= \operatorname{Var}(\bar{Y}) + \operatorname{Var}(-\hat{\beta}_{1}\bar{x}) - 2\operatorname{Cov}(\bar{Y}, \bar{x}\hat{\beta}_{1})$$

$$= \frac{\sigma^{2}}{n} + \bar{x}^{2} \left(\frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})}\right) - 2\operatorname{Cov}(\bar{Y}, \bar{x}\hat{\beta}_{1})$$

$$= \sigma^{2} \left(\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}\right)$$

Taking the square root and replacing σ with $\hat{\sigma}$ yields $\hat{se}(\hat{\beta}_0)$

Simple Linear Regression

Parameter Estimation

Residual Analysis

Intervals

Hypothesis Testing

Assessing Normality Assumption on ε

The Q-Q plot is more effective in detecting subtle departures from normality, especially in the tails.

imple Linear legression

Parameter Estimation

Confidence/Prediction Intervals

Hypothesis Testing

$$\left[\hat{\beta}_{1} - t_{1-\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_{1}}, \hat{\beta}_{1} + t_{1-\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_{1}}\right],$$

where α is the **confidence level** and $t_{1-\alpha/2,n-2}$ denotes the $1-\alpha/2$ percentile of a student's t-distribution with n-2 degrees of freedom

• Similarly, we can construct CIs for β_0 :

$$\left[\hat{\beta}_0 - t_{1-\alpha/2, n-2} \hat{\sigma}_{\hat{\beta}_0}, \hat{\beta}_0 + t_{1-\alpha/2, n-2} \hat{\sigma}_{\hat{\beta}_0}\right]$$

Simple Linear Regression

Parameter Estimation

esiduai Anaiysis

intervais

Hypothesis Testing

- $\varepsilon \sim N(0,1)$
- We take 100 random sample each with sample size 20
- We then construct the 95% CI of β_1 for each random sample (\Rightarrow 100 CIs)

Regression

Residual Analysis

ntervais

- We often interested in estimating the **mean** response for a particular value of predictor, say, X_h . Therefore we would like to construct CI for $\mathbb{E}[Y_h]$
- We need sampling distribution of \hat{Y}_h to form CI:

$$\bullet \quad \frac{\hat{Y}_h - Y_h}{\hat{\sigma}_{\hat{Y}_h}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{Y}_h} = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)}$$

OI:

$$\left[\hat{Y}_{h} - t_{1-\alpha/2, n-2} \hat{\sigma}_{\hat{Y}_{h}}, \hat{Y}_{h} + t_{1-\alpha/2, n-2} \hat{\sigma}_{\hat{Y}_{h}}\right]$$

• **Quiz:** Use this formula to construct CI for β_0

- Suppose we want to predict the response of a future observation given X = X_h
- We need to account for added variability as a new observation does not fall directly on the regression line (i.e., $Y_{h(new)} = E[Y_h] + \varepsilon_h$)
- Replace $\hat{\sigma}_{\hat{Y}_h}$ by $\hat{\sigma}_{\hat{Y}_{h(new)}} = \hat{\sigma} \sqrt{\left(1 + \frac{1}{n} + \frac{(X_h \bar{X})^2}{\sum_{i=1}^n (X_i \bar{X})^2}\right)}$ to construct CIs for $Y_{h(new)}$

Confidence Intervals vs. Prediction Intervals

140

20

30

40

Age

50

60

70

Simple Linear Regression

Simple Linear Regression

Parameter Estimation

Confidence/Prediction

Hunothopia Tooting

$$HR_{max} = 220 - Age.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

- Construct the 95% CI for β_1
- Compute the estimate for mean MaxHeartRate given Age = 40 and construct the associated 90% CI
- Construct the prediction interval for a new observation given Age = 40

imple Linear egression

Parameter Estimation

Residual Analys

Intervals

Hypothesis Testing

Maximum Heart Rate vs. Age: Hypothesis Test for Slope

- \bullet $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_1 0}{\hat{\sigma}_{\hat{\beta}_1}} = \frac{-0.7977}{0.06996} = -11.40$
- **o** Compute *p*-value: $\mathbb{P}(|t^*| \ge |t_{obs}|) = 3.85 \times 10^{-8}$
- **Output** Compare to α and draw conclusion:

Reject H_0 at α = .05 level, evidence suggests a negative linear relationship between MaxHeartRate and Age

Regression

Pocidual Analysis

Confidence/Prediction Intervals

Hypothesis Testing

Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

Regression

Simple Linear

- \bullet $H_0: \beta_0 = 0$ vs. $H_a: \beta_0 \neq 0$
- Compute the **test statistic**: $t^* = \frac{\hat{\beta}_0 0}{\hat{\sigma}_{Ro}} = \frac{210.0485}{2.86694} = 73.27$
- Compute *p*-value: $\mathbb{P}(|t^*| \ge |t_{obs}|) \simeq 0$
- Compare to α and draw conclusion:

Reject H_0 at $\alpha = .05$ level, evidence suggests evidence suggests the intercept (the expected MaxHeartRate at age 0) is different from 0

Test Statistic:
$$\frac{\hat{eta}_{age} - (-1)}{\hat{\sigma}_{\hat{eta}_{age}}} = \frac{-0.79773 - (-1)}{0.06996} = 2.8912$$

Simple Linear

Parameter Estimation

Hesidual Analysis

Confidence/Prediction Intervals

Hypothesis Testing

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

Total sums of squares in response

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

We can rewrite SST as

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i + \hat{Y}_i - \bar{Y})^2$$

$$= \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}_{\text{Error}} + \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{\text{Model}}$$

Regression

Residual Analysis

Confidence/Prediction Intervals

Hypothesis Testing

Partitioning Total Sums of Squares

Simple Linear Regression

Simple Linear Regression

Parameter Estimation

Residual Analysis

Intervals

Hypothesis Testing

lypothesis Testing

Analysis of Variance (ANOVA) Approach to Regression

• If we ignored the predictor X, the \bar{Y} would be the best (linear unbiased) predictor

$$Y_i = \beta_0 + \varepsilon_i \tag{1}$$

- SST is the sum of squared deviations for this predictor (i.e., \bar{Y})
- The total mean square is SST/(n-1) and represents an unbiased estimate of σ^2 under the model (1)

Confidence/Prediction

Hypothesis Testing

Analysis of Variance (ANOVA) Approach to Regression

- SSR: $\sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$
- Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{2}$$

• "Large" MSR = SSR/1 suggests a linear trend, because

$$E[MSR] = \sigma^2 + \beta_1^2 \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Error Sum of Squares: SSE

SSE is simply the sum of squared residuals

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Degrees of freedom is n-2 (Why?)
- SSE large when |residuals| are "large" $\Rightarrow Y_i$'s vary substantially around fitted regression line
- MSE = SSE/(n-2) and represents an unbiased estimate of σ^2 when taking X into account

legression

'arameter Estimation

1100iddai 7 iiidiyolo

Intervals

lypothesis Testing

ANOVA Table and F-Test

Source	df	SS	MS
Model		200 - V 21 = 1 (- t -)	
Error	n-2	$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$	MSE = SSE/(n-2)
Total	n-1	$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$	

• Goal: To test $H_0: \beta_1 = 0$

- Test statistics $F^* = \frac{\text{MSR}}{\text{MSE}}$
- If β_1 = 0 then F^* should be near one \Rightarrow reject H_0 when F^* "large"
- We need sampling distribution of F^* under $H_0 \Rightarrow F_{1,n-2}$, where F_{d_1,d_2} denotes a F distribution with degrees of freedom $d_1 = 1$ and $d_2 = n-2$

Regression

Residual Arialysis

lunathasia Taatina

Analysis of Variance Table

Response: MaxHeartRate

Df Sum Sq Mean Sq F value Age 1 2724.50 2724.50 130.01

Residuals 13 272.43 20.96

Pr(>F)

Age 3.848e-08 ***

Null distribution of F test statistic

Simple Linear Regression

Simple Linear Regression

Onefidence/Dundinki

Hypothesis Testing

ANOVA Table and F-test

Analysis of Variance Table

Response: MaxHeartRate

Df Sum Sa Mean Sa

Age 1 2724.50 2724.50 Residuals 13 272.43 20.96

F value Pr(>F)

130.01 3.848e-08 Age

Parameter Estimation and t-test

Coefficients:

Estimate Std. Error t value Pr(>|t|) 2.86694 73.27 < 2e-16 (Intercept) 210.04846 -0.79773 0.06996 -11.40 3.85e-08 Age

- Simple Linear Regression: $Y = \beta_0 + \beta_1 X + \varepsilon$, $\varepsilon \stackrel{iid}{\sim} \mathrm{N}(0, \sigma^2)$
- Method of Least Squares for parameter estimation

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta} = (\beta_0, \beta_1)}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

- Residual analysis to check model assumptions
- Confidence/Prediction Intervals and Hypothesis Testing

Regression

aramotor Edimenton

Onefidence/Dund

intervals

lypothesis Testing

```
object <- lm(formula, data) where the formula is specified via y \sim x \Rightarrow y is modeled as a linear function of x
```

Diagnostic plots

```
plot(object)
```

Summarizing fits

```
summary(object)
```

Making predictions

```
predict(object, newdata)
```

Confidence Intervals for Model Parameters

```
confint(object)
```


Regression

Residual Analysis

Confidence/Prediction

ypothesis Testing