AI Planning Exercise Sheet 10

AI Planning Exercise Sheet 10

Date: January 16, 2015

Students: Axel Perschmann, Tarek Saier

Exercise 10.1

Iteration i=1

 G_i :

$$\begin{aligned} V_i^* &= \{t\} \\ V_i^0 &= \{s, b, c, d, e\} \\ V_i^b &= \{\} \\ L_i &= \{o_4, o_5\} \\ h_{\text{LM-cut}}(I) \text{ so far } = 1 \end{aligned}$$

Iteration i=2

AI Planning Exercise Sheet 10

 G_i :

$$\begin{aligned} V_i^* &= \{t, e\} \\ V_i^0 &= \{s, b, c, d\} \\ V_i^b &= \{\} \\ L_i &= \{o_3\} \\ h_{\text{LM-cut}}(I) \text{ so far } = 2 \end{aligned}$$

Iteration i=3

prop p	\mathbf{s}	b	\mathbf{c}	d	e	\mathbf{t}	
$h_{max}^{c_i}(p)$	0	1	1	2	1	1	
action o	0	1	o_2	03	o_4	o_5	o_6
$\operatorname{pcf} D_i(o)$	s		b	$^{\mathrm{c}}$	е	e	е

 G_i :

$$\begin{aligned} V_i^* &= \{t, e, c\} \\ V_i^0 &= \{s, b, d\} \\ V_i^b &= \{\} \\ L_i &= \{o_1\} \\ h_{\text{LM-cut}}(I) \text{ so far } = 3 \end{aligned}$$

Iteration i=4

This is when $h_{max}^{c_i}(t)=0$. The task states not to give the pcf, G_i , etc. for this iteration.

$$h_{\text{LM-cut}}(I) = 4$$

AI Planning Exercise Sheet 10

Exercise 10.2

(a) The transition system for a planning task Π shows all possible (as in reachable from I) combinations of variable values (nodes) connected through edges that represent operators leading from one set of variable values to another. By abstracting Π to one variable v the transition system is reduced to only represent changes in the value of v. Edges still represent possible transitions achieved through the application of operators. Possible values of a variable plus possible transitions is exactly what a DTG is.

```
(b) act\_o := \emptyset generate transition system for \Pi|_v for every v \in V for all o \in O: act := 1 for all v \in prevars(o): if there is no path from s(v) to pre(o)(v) in \Pi|_v: act := 0 if v is goal-related and there is no path from pre(o)(v) to \gamma(v) in \Pi|_v: act := 0 for all v \in effvars(o): if v is goal-related and there is no path from eff(o)(v) to \gamma(v) in \Pi|_v: act := 0 if act := 1: act\_o.push(o)
```