

(9) BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift [®] DE 197 18 642 A 1

(5) Int. Cl.6: G 01 B 21/04 // G01C 3/06,G05B

PATENTAMT

Aktenzeichen: 197 18 642.4 Anmeldetag: 2. 5.97 Offenlegungstag: 18. 9.97

19/19

Mit Einverständnis des Anmelders offengelegte Anmeldung gemäß § 31 Abs. 2 Ziffer 1 PatG

(71) Anmelder:

Grün, Christian, 91189 Rohr, DE

② Erfinder: gleich Anmelder

- S Verfahren und Einrichtung zum Vermessen und Digitalisieren der Meßpunkte von Raumobjekten
- Verfahren und Einrichtung zum Vermessen und Digitalisieren der Meßpunkte von Raumobjekten. Bei der indirekten Abstandserfassung, d. h. von einer beliebigen Meßposition in einem Koordinatensystem, ergibt sich das Problem, daß die Position des Abstandsmeßgerätes in das Koordinatensystem eingeordnet werden muß. Mit einem Entfernungsmesser (7) wird kontinuierlich der Abstand der Raumpunkte P₁, P₂, ...P_n zu dem Punkt B des Zeigers (6) und die Position des Zeigers (6) mit Hilfe von Meßfäden (5), von denen jeweils drei von den Punkten A, B ausgehend durch Bezugspunkte (4) der Geräteebene (2) in Längeniend durch bezugspunkte (4) der Geratesbene (2) in Längenmeßwerke (8, 9, 10, 11) geführt werden, gemessen. Der Computer (12) errechnet denn aus den Positionsdaten des Zeigers (6) und den Abstandswerten des Entfernungsmessers (7) die Raumdaten der Meßpunkte P₁, P₂, ...P_n im Kondischensters (2) Koordinatensystem (3).

Die Meßeinrichtung ist mobil, die Form und Größe der Meßobjekte praktisch unbegrenzt und kann überall dort eingesetzt werden, wo räumliche Objekte maßgenau vermessen, digitalisiert oder in Grafiken umgesetzt werden müssen.

Beschreibung

Bei der Positionsbestimmung eines Raumpunktes in einem dreidimensionalen Koordinatensystem werden die Abstände des Raumpunktes vom Ursprung 0 des Koordinatensystems in den drei Richtungen der Koordinatenachsen x,y,z oder der tatsächliche Abstand vom Ursprung 0 zum Raumpunkt P mit den Raumwinkeln der Meßlinie OP benötigt. Bei der indirekten Abstandserfassung, d.h. von einer beliebigen Meßposition aus, 10 ergibt sich das Problem, daß auch die Position des Abstandsmeßgerätes in das Koordinatensystem eingeordnet werden muß.

Bei bekannten Meßmaschinen wird diese Aufgabe von den Führungsschlitten oder durch mit starren Ar- 15 men und/oder Parallelogrammgestänge verbundenen Mehrfachgelenken übernommen.

Bekannt sind auch computergesteuerte Koordinatenmeßeinrichtungen, bei denen ein Meßkopf von Bändern geführt wird, die in um das Meßobjekt angeordneten 20 Stützpunkten frei beweglich gelagert sind. (PS-DE 37 00 139 C2)

In der OS-DE 36 29 689 A1 wird eine Meßeinrichtung beschrieben, bei der die Position der Meßsonde von Entfernungsmessern, die an fest angeordneten Punkten 25 außerhalb des Meßobjektes angebracht sind, eingemes-

Der Nachteil bei Meßmaschinen ist, daß sie in der Regel stationär, zumindest sehr unbeweglich sind, die Führung der Meßsonde bzw. die Nachführeinrichtung 30 für die Bänder und Entfernungsmesser aufwendig und die Größe der Meßobjekte beschränkt ist.

Im Bauwesen sind computergestütze Meß- und Erfassungssysteme für die Aufmaßerstellung bekannt. In diesen Systemen werden Laser-Theodelite für die Anpei- 35 lung und zur Winkelerfassung der Punkte eines zu vermessenden Raumobiektes und elektronische Laser-Entfernungsmesser für deren Abstandserfassung, eingesetzt. Diese Meßverfahren können mobil eingesetzt werden und haben den weiteren Vorteil, daß die Größe 40 der Meßobjekte praktisch unbegrenzt ist, aber auch die Nachteile, daß die Prozedur zur Erfassung der Meßpunkte, inbesondere für detailgetreue Aufmaße von z. B. figuralen Gebilden und Hinterschnitten am Meßobjekt, sehr zeit- und materialaufwendig ist. Hier wird 45 dann gerne auf die Fotogrammetrie - ein weiteres bekanntes Verfahren zum Digitalisieren von Raumpunkten - ausgewichen, bei der aber auch mit zunehmenden Anforderung an die Maßgenauigkeit der Geräte- und Zeitaufwand für die Erfassung der Raumkoordinaten 50

Die Aufgabe der Erfindung besteht nun darin, ein präzises und mobiles Meßverfahren der eingangs erwähnten Art zu schaffen, bei dem vor allem der Geräteaufwand für die Positionsbestimmung der Meßsonde hier Abstandsmeßgerät - minimiert wird, von den Formen und Größen der Meßobjekte prinzipiell unabhängig ist und zu handhaben beispielsweise wie ein 2D-fähiges Digitalisierungstablett für den Computerarbeitsplatz, bei dem mit einem Zeigegerät die zu vermessen- 60 den Punkte in den Computer zur Verarbeitung eingelesen werden können.

Fig. 1: Erfindungsgemäß wird ein Koordinatensystem (3) in fester Beziehung zu den Bezugspunkten (4), die auf der 65 Geräteebene (2) liegen, definiert. Das hat den Vorteil, daß bei der Einrichtung oder Umstellung eines Meßplatzes das Einmessen eines Koordinatensystems bzw.

der Meßgeräte, wie es bei bekannten mobilen Meßverfahren üblich ist, entfällt. Für die Bestimmung der Punkte P₁, P₂, ... P_n des Meßobjektes (1) im so definierten Koordinatensystem (3) wird eine im Zeiger (6) gedachte Gerade mit den Endpunkten A und P1, P2, ... Pn und dem Hilfspunkt B herangezogen. Zur Positionsbestimmung der Geraden in das Koordinatensystem (3) müssen die Abstände ihrer Punkte A und B zu jeweils drei Bezugspunkten (4) gemessen werden. Erfindungsgemäß geschieht dies durch die Meßfäden (5), von denen jeweils drei von den Punkten A und B durch die Bezugspunkte (4) geführt und über Umlenkrollen auf die Meßtrommeln (9) einlagig aufgewickelt sind. Zum Aufwikkeln der Meßschnüre (5) sind die Meßtrommeln (9) mit Elektromotoren (8) ausgestattet, mit denen auch die günstigste Zugspannung für die Meßfäden (5) leicht eingestellt werden kann. Die Impulse der mit den Meßtrommeln (9) gekoppelten Drehgeber (10) werden über Vorwärts-/Rückwärtszähler (11) an den Computer (12) zur Berechnung der Koordinaten der Punkte A und B weitergegeben und damit ist erfindungsgemäß auch die Position des Zeigers (6) bekannt.

Mit den aufgezeigten Maßnahmen wäre prinzipiell schon eine Vermessung von Punkten im Raum möglich, es genügt schon das Einmessen eines der beiden Punkte A oder B, dies hätte aber noch den Nachteil, daß von einer Meßstellung aus nur die Punkte eines Meßobjektes vermessen werden können, die ohne Behinderung

der Meßfädenbündel zugänglich sind.

Erfindungsgemäß ist ein Entfernungsmesser (7) vorgesehen, in der einfachsten Form ein Meßstab mit fixer Länge, das Tiefenmaß einer Schiebelehre mit elektronischem Datenanschluß, vorzugsweise ein elektronisches Entfernungsmeßgerät wie z.B. einen Laser-Entfernungsmesser, mit dem auch größere Abstände eingemessen werden können. Der Entfernungsmesser (7) ist mit dem Zeiger (6) so verbunden, daß die Lage seiner MeBrichtung mit der Lage der im Zeiger (6) gedachten Geraden identisch ist. Der Abstand des Hilfspunktes B der Geraden zu den Meßpunkten P1, P2 ... Pn wird in den Computer (12) zur Berechnung der Koordinatenwerte der Punkte P1, P2, ... Pn - unter Einbeziehung der Koordinaten der Geradenpunkte A und B - eingegeben: als Konstante bei einem Meßstab mit fixer Länge und bei variablen Abständen, wie von denen eines elektronischen Entfernungsmessers, über die Datenleitung.

Die Verwendung von Meßfäden (5) als Zuordnungshilfen läßt dem Zeiger (6) den größtmöglichen Freiheitsgrad bei seiner Handhabung. Seine Position und Lage im Koordinatensystem (3) ist während der Messung immer bekannt, so daß z. B. auch kontinuierliches Vermessen von Raumlinien problemlos möglich ist. Oft sind auch Punkte von Hinterschnitten des Meßobjektes (1), die mit bekannten Meßverfahren nur durch Umrüsten oder aufwendige zusätzliche Hilfseinrichtungen erreicht werden können, von einer Meßstellung aus erreichbar. Der konstruktive Aufwand für die dargestellten Längenmeßwerke (8 bis 10) zur Messung der Abschnittsveränderungen der Meßfäden (5) ist relativ gering und sind, wie auch die Vorwärts-/Rückwärtszähler (11), Stand der Technik, so daß beim Bau der erfindungsgemäßen Meßeinrichtung, zumal auch die Bestückung des Zeigers (6) mit einem einfachen Meßstab oder einer elektronischen Schiebelehre, vielen Meßansprüchen genügt, ein günstiges Verhältnis von Herstellungskosten zu Leistungsangebot erzielt werden kann.

Zur Handhabung der erfindungsgemäßen Meßein-

4

richtung: Mit den Drehgebern (11) können nur Abstandsveränderungen des Zeigers (6) von den Bezugspunkten (4) gemessen werden. Vor jeder Inbetriebnahme der Meßeinrichtung ist daher ein Eineichen mit bekanntem Abstand und bekannter Position des Zeigers (6) zu den Bezugspunkten (4) vorgesehen. Eine Halterung, bei der die bestimmenden Werte bekannt sind, kann für diesen Zweck an der Meßeinrichtung angebracht werden. Die Steuerbefehle für die Auswahl der kontinuierlich gemessenen 10 Raumpunkte und Befehle für deren Datenverarbeitung, können über spezielle Signalgeber oder dem elektronischen Entfernungsmesser (7) am Zeiger (6) oder mit der Tastatur des Computers (12) gegeben werden. Die errechneten Koordinatenwerte des Meßpunktes, auf den 15 mit dem Zeiger (6) "gezeigt" wird, können kontinuierlich z. B. in der Form" x, y, z" — zur Weiterverarbeitung an 3D-fähige Graphikprogramme mit Hilfe spezieller Treiberprogramme weitergegeben werden.

Fig. 2:
Beispielsweiser Aufbau eines Computerarbeitsplatzes
mit der erfindungsgemäßen Meßeinrichtung, bei dem
die Geräteebene (2) mit den Bezugspunkten (4) am Gehäuse der Längenmeßwerke (8, 9, 10) fixiert ist, die Vorwärts-/Rückwärtszähler (11) als Steckkarten im Computer (12) untergebracht sind und mit Hilfe eines in den
Computer (12) eingeladenem Graphikprogramms, die
mit dem Zeiger (6) eingelesenen Daten zu einer
3D-Zeichnung verarbeitet werden.

Fig. 3: Beispielsweiser Aufbau einer erfindungsgemäßen Meßeinrichtung zur Erstellung des Aufmaßes einer Immobilie, bei dem die Geräteebene (2) mit ihren Bezugspunkten (4) separat fixiert ist, die Längenmeßwerke (8, 9, 10, 11) und der Computer (12) in einem Gehäuse unterge- 35 bracht sind und mit dem Zeiger (6) eingelesene und vom Computer (12) berechnete Daten von einem externen Computer (13) verarbeitet werden. Die Trennung von Meßgerät und Geräteebene (2) hat bei großen Meßobjekten (1) den Vorteil, daß auch bei ungünstigen Raum- 40 verhältnissen eine günstige Positionierung der Meßeinrichtung möglich ist. Bei größeren Abstandsmessungen, z. B. beim Einmessen einer unzugänglichen Kirchturmspitze, sollte auch der Zeiger (6) mit Hilfe eines separaten Stativs ruhiggestellt werden. Bei einer Umstellung 45 der Meßeinrichtung ändert sich die Position des Koordinatensystems (3) zum Meßobjekt (1). Durch deckungsgleiches "Eindrehen" (Stand der Technik bei 3D-fähigen Graphikprogrammen) von drei identischen Punkten des Meßobjektes (1), die von verschiedenen Standorten ein- 50 gemessen wurden, kann ein zusammenhängendes Aufmaß (außen und innen) auch für ein komplexes Meßobjekt, wie das einer Immobilie, erstellt werden.

Patentansprüche

1. Verfahren und Einrichtung zum Vermessen und Digitalisieren der Meßpunkte von Raumobjekten mit Entfernungsmesser an einem Zeiger, mit Meßfäden für die Positionsbestimmung des Zeigers, mit Längenmeßwerken für die Ausmessung der Meßfäden und mit Computer für die Berechnung der Raumkoordinaten, dadurch gekennzeichnet, daß jeweils drei Meßfäden (5) von den Punkten A und B des freien Zeigers (6) ausgehend durch die Basispunkte (4), zur Messung der Abstände der Basispunkte (4) von den Punkten A und B, über Umlenkrollen in die elektronischen Längenmeßwerke (8, 9,

10, 11) geführt werden, die Basispunkte (4) auf der Geräteebene (2) liegen, auf der das Koordinatensystem (3) in fester Beziehung zu den Basispunkten (4) eingerichtet ist und mit dem Computer (12) kontinuierlich die Position des Zeigers (6) im Koordinatensystem (3) durch Berechnung der räumlichen Koordinaten seiner Punkte A und B ermittelt wird. 2. Verfahren und Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß ein Entfernungsmesser (7), vorzugsweise mit elektronischem Datenausgang, in Meßrichtung mit dem Zeiger (6) fest verbunden ist, mit dem Entfernungsmesser kontinuierlich die Abstände des Zeigers (6) von den Punkten $P_1, P_2, \dots P_n$ des Meßobjektes (1) gemessen werden, vom Computer (12) durch Auswertung der so verlängerten Geraden AB des Zeigers (6) die Koordinatenwerte der Punkte $P_1, P_2, \dots P_n$ – bezogen auf das Koordinatensystem (3) – berechnet werden und in digitaler Form zur Weiterverarbeitung kontinuierlich zur Verfügung stehen oder für eine spätere Verarbeitung gespeichert werden.

Hierzu 3 Seite(n) Zeichnungen

Nummer:

Int. Cl.6:

DE 197 18 642 A1 G 01 B 21/04

702 038/671

Nummer:

int. Cl.⁶: Offenlegungstag: DE 197 18 642 A1 G 01 B 21/04

18. September 1997

Nummer: Int. Cl.⁶:

Offenlegungstag: 18. Se

DE 197 18 642 A1 G 01 B 21/0418. September 1997

