

PROYECTO FINAL BIG DATA BOOTCAMP GLOVO-MUJERES EN TECH KEEPCODING

Encuentra tu Air B&B en Madrid.

Idea General

Realizar una herramienta que responde a las necesidades de búsqueda de un usuario de AirBnb que desea realizar una reserva en Madrid.

Data Set

Para el desarrollo de esta idea ha sido utilizada la base de datos de Airbnb - Listings publicada en el portal web de Open Data Soft.

Suposiciones Iniciales

Correctas

 Tenemos una BBDD de la cual deben ser extraídos los datos.
 Para lograr esto, debemos tomar en consideración el tipo de alojamiento, su ubicación y su precio.

Incorrectas

 Debemos tomar en cuenta los detalles acerca del perfil del Host para que el usuario pueda filtrar por estos datos. Esta suposición resultó ser incorrecta en la práctica, ya que estos datos no aportan información vinculante en cuanto al tipo de alojamiento y precio.

Métricas

Barrio Fianza y otros Precio gastos

Tipo de alojamiento

Reseñas

Arquitectura y validación de datos

Se creó un diagrama de Entidad-Relación con Drawio. Luego se creó el script en DBeaver, donde luego también aparece el diagrama de ER.

SCRIPT

Creamos un esquema.

Añadimos la estructura.

Añadimos las PK y FK en las tablas correspondientes.

Tenemos un dataset con: Hacemos un df.shape para ver su forma y vemos que tiene 14780 filas y 89 columnas.

Hacemos un df.describe general para ver nuestros datos:

2	ID	Host ID	Latitude	Longitude		Review Scores Checkin	Review Scores Communication	Review Scores Location	Review Scores Va
Lue count 000	1.478000e+04	1.478000e+04	14780.000000	14780.000000		11443.000000	11460.000000	11440.000000	11439.000
mean	1.028089e+07	3.608080e+07	40.497626	-3.858041		9.621778	9.647033	9.532168	9.218
201 std	5.564829e+06	3.425360e+07	4.641387	14.123146		0.802736	0.767116	0.774527	0.950
578 min	1.862800e+04	1.745300e+04	-37.851182	-123.131344		2.000000	2.000000	2.000000	2.000
000 25%	5.554732e+ 0 6	6.787360e+06	40.409726	-3.707604		9.000000	9.000000	9.000000	9.000
000 50%	1.133492e+07	2.464875e+07	40.419466	-3.700785		10.000000	10.000000	10.000000	9.000
000 75%	1.532631e+07	5.432919e+07	40.430916	-3,684057		10.000000	10.000000	10.000000	10.000
000 max	1.910969e+07	1.247534e+08	55.966912	153.371427		10.000000	10.000000	10.000000	10.000
666	1.5105050107	2.27/2270100	JJ. JUUJ.L.	ALL CONTRACTOR AND ADMINISTRAL OF	•••	10.00000	201000000	10100000	201000

Tras la limpieza de las columnas, nos quedamos con un Dataset de 13306 filas y 45 columnas.

Este boxplot no nos da suficiente información para tomar decisiones acerca de los datos. Por ello hacemos otro boxplot en base al tipo de propiedad:

Empezamos haciendo un boxplot del precio, ya que consideramos que es la forma más visual de ver los valores que se alejan mucho de la media, o son muy diferentes al resto.

Obtenemos lo siguiente:

```
```{r}
boxplot(airbnbmadrid$Price)
...
```



Ahora pasamos a ver el boxplot del Weekly Price. Decidimos basarnos en este porque contiene los datos reales del precio semanal establecidos por los dueños:



En cuanto al boxplot del Monthly Price:

Tenemos al menos un valor que se aleja demasiado, por lo que procedemos a hacer una limpieza de ese outlier.Para poder realizar previsiones mas acertadas.



Decidimos hacer la limpieza sobre la columna nueva que hemos creado con los precios calculados para el mes y los precios establecidos por los dueños, ya que no tiene valores NA y es la que usaremos finalmente para la visualización y predicción.

Finalmente obtenemos este boxplot del Monthly Price New:



Por último, revisamos la distribucion de la media de las reviews con un histograma.

\_

#### **Histoframa para Reviews Mean**



# VISUALIZACIÓN DE LAS MÉTRICAS

## Visualización de los datos en Power BI

#### Origen de datos

El dashboard se alimenta del archivo excel: <u>airbnbmadrid selected excelfinal v1.xlsx</u>

#### Filtros



#### KPI's globales









Top 10 barrios según promedio de puntuación



# Tipos de propiedades por recuento ID Tipo de propiedad





Mapa de Madrid basado en los campos: ID, Zipcode, Price, latitud y longitud.

El tamaño de la burbuja indica el precio por noche

Ejemplo con filtros aplicados.

Barrio: Barajas

Precio maximo: 80€ la noche



Precio medio por noche según el tipo de alojamiento

Precio medio por noche según la ubicación (barrio)





#### Tabla con detalles de precio y referencia del Host

Precio por	Precio por una	Precio semanal	Precio por un	Precio	Gastos de	Fianza	Host Name	Host URL	۸
noche	semana	final	mes	mensual final	limpieza			₩	
70 €	490 €	490 €	2,100 €	2,100 €	24 €	150 €	Violeta	https://www.airbnb.com/users/show/99999180	
42 €	294 €	294 €	1,260 €	1,260 €	30 €	100 €	Elisa	https://www.airbnb.com/users/show/99998670	
32 €	224 €	224 €	960 €	960 €	20 €	0 €	Amanda	https://www.airbnb.com/users/show/99994045	
45 €	315 €	315 €	1,350 €	1,350 €	0 €	0 €	Amanda	https://www.airbnb.com/users/show/99994045	
80 €	560 €	560 €	2,400 €	2,400 €	0 €	350 €	Arizonica	https://www.airbnb.com/users/show/99991901	
							Espacios Para Vivir		
100€	700 €	700€	3,000 €	3,000 €	0 €	350 €	Arizonica	https://www.airbnb.com/users/show/99991901	
							Espacios Para		٧

### Ejemplo de caso con descuento por tiempo de alquiler

Precio por noche	Precio por una semana	Precio semanal final		Precio mensual final		Fianza	Host Name	Host URL
12 €	84 €	70 €	360 €	280 €	10 €	100 €	Miguel	https://www.airbnb.com/users/show/17371009

Valoraciones y su desglose



# DEMO



```
New names: [1] "ID"
 "Listing Url"
Cleansed"
 "City"
 "State"
 "Country"
 "Latitude"
[13] "Room Type"
 "Price"
[17] "Security Deposit"
 "Cleaning Fee"
[21] "Review Scores Accuracy"
 "Review Scores Cleanliness"
 "Review Scores Value"
[25] "Review Scores Location"
[29] "Host URL"
 "Host Name"
[33] "Extras"
 "Weekly Price Calculated"
 "Monthly Price Discounted"
[37] "Monthly Price New"
 "Bathrooms"
[41] "Accommodates"
```

"Host ID...3"

"Zipcode"

"Longitude"
"Weekly Price"
"Number of Reviews"
"Review Scores Checkin"
"Cancellation Policy"
"Host Since"
"Weekly Price New"
"Weekly Price Discounted"
"Bedrooms"

"Neighbourhood Group

"Country Code"
"Property Type"
"Monthly Price"
"Review Scores Rating"
"Review Scores Communication"
"Host ID...28"
"Host Verifications"
"Monthly Price Calculated"
"Reviews Mean"
"Beds"

Var1 <fctr></fctr>	Freq <int></int>
Centro	6377
Chamberí	885
Arganzuela	785
Salamanca	760
Tetuán	444
Retiro	413
Moncloa - Aravaca	402
Latina	378
Carabanchel	351
Chamartín	340
Ciudad Lineal	302
Puente de Vallecas	217
Hortaleza	173
Fuencarral - El Pardo	147
Usera	144
San Blas - Canillejas	116
Villaverde	80
Barajas	74
Moratalaz	74
Villa de Vallecas	44
Vicálvaro	33

21 rows

En la siguiente gráfica se pueden observar los valores promedios de barrio según su tipo de habitación.



Evaluar variables a incluir con toda la data y observamos cuáles son las que aportan mayor valor y mejoran el coeficiente de determinación ajustado.

```
lm(formula = log(Price) ~ Accommodates + Bedrooms + Beds + 'Room Type' +
 Neighbourhood Group Cleansed' + 'Reviews Mean' + 'Cancellation Policy',
 data = df_airbnb)
Residuals:
 10 Median
-1.86896 -0.22289 -0.01177 0.21931 1.81852
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept)
 0.016717 229.863 < 2e-16 ***
Accommodates
 0.075809
 0.003444 22.011 < 2e-16 ***
 0.005705 20.598
 < 2e-16 ***
Bedrooms
 0.117509
 -0.034604
 0.004119
 -8.402
 < 2e-16 ***
 < 2e-16 ***
 Room Type Private room
 0.007958 -84.776
 -0.674654
 Room Type Shared room
 -1.093774
 0.026796 -40.819 < 2e-16 ***
 Neighbourhood Group Cleansed Barajas
 0.104502
 0.041533
 2.516 0.011878
 Neighbourhood Group Cleansed Carabanchel
 -0.207922
 0.021947
 -9.474 < 2e-16 ***
 Neighbourhood Group Cleansed Centro
 13.200 < 2e-16 ***
 0.013112
 0.173077
 Neighbourhood Group Cleansed Chamartín
 0.195331
 0.022192
 8.802 < 2e-16 ***
 Neighbourhood Group Cleansed Chamberí
 < 2e-16 ***
 0.144105
 0.016781
 Neighbourhood Group Cleansed'Ciudad Lineal
 -0.052532
 0.023122
 -2.272 0.023107
 Neighbourhood Group Cleansed Fuencarral - El Pardo 0.032713
 0.030715
 1.065 0.286875
 Neighbourhood Group Cleansed Hortaleza
 0.094471
 0.028691
 3.293 0.000995
 Neighbourhood Group Cleansed Latina
 -0.235242
 0.021399 -10.993 < 2e-16 ***
 3.714 0.000205 ***
 Neighbourhood Group Cleansed Moncloa - Aravaca
 0.077999
 0.021001
 Neighbourhood Group Cleansed Moratalaz
 0.041528 -3.164 0.001559 **
 -0.131404
 Neighbourhood Group Cleansed'Puente de Vallecas
 -0.235441
 0.026189
 -8.990 < 2e-16 ***
 Neighbourhood Group Cleansed Retiro
 0.150211
 0.020762
 7.235 4.93e-13 ***
 Neighbourhood Group Cleansed'Salamanca
 0.017419 10.411 < 2e-16 ***
 0.181344
 Neighbourhood Group Cleansed'San Blas - Canillejas -0.143656
 0.033995
 -4.226 2.40e-05
 Neighbourhood Group Cleansed Tetuán
 0.017722
 0.020284
 0.874 0.382314
 Neighbourhood Group Cleansed Usera
 -0.184004
 0.030946 -5.946 2.82e-09
 Neighbourhood Group Cleansed Vicálvaro
 -4.563 5.09e-06 ***
 -0.276906
 0.060683
 Neighbourhood Group Cleansed`Villa de Vallecas
Neighbourhood Group Cleansed`Villaverde
 -1.011 0.312148
 -0.053437
 0.052867
 -6.776 1.29e-11 ***
 -0.273116
 0.040308
 0.000816 -11.673 < 2e-16 ***
 Reviews Mean'
 -0.009525
 -3.843 0.000122 ***
 'Cancellation Policy'moderate
 -0.030850
 0.008028
 Cancellation Policy strict
 -0.020970
 0.007745 -2.708 0.006787
 'Cancellation Policy'super_strict_30
 0.092149
 0.241399
 0.382 0.702670
 'Cancellation Policy'super_strict_60
 0.634502
 0.171041
 3.710 0.000208
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3411 on 12508 degrees of freedom
Multiple R-squared: 0.6616, Adjusted R-squared: 0.6608
F-statistic: 815.2 on 30 and 12508 DF, p-value: < 2.2e-16
```

Entire home/apt

Private room

Shared room

Una vez identificado las variables predictoras, seleccionaremos el barrio "Centro", para ello creamos un subset.

ID <dbl></dbl>	Listing Url <chr></chr>	Host ID3 <dbl></dbl>	Neighbourhood Group Cleansed <chr></chr>	City <chr></chr>	State <chr></chr>	Zipcode <chr></chr>	Country Code <chr></chr>	٠
15141125	https://www.airbnb.com/rooms/15141125	96019257	Centro	Madrid	Comunidad de Madrid	28005	ES	
9470166	https://www.airbnb.com/rooms/9470166	9885245	Centro	Madrid	Comunidad de Madrid	28012	ES	
17444981	https://www.airbnb.com/rooms/17444981	118059488	Centro	Madrid	Comunidad de Madrid	28012	ES	
3284565	https://www.airbnb.com/rooms/3284565	1892467	Centro	Madrid	Community of Madrid	28012	ES	
499911	https://www.airbnb.com/rooms/499911	2467212	Centro	Madrid	Comunidad de Madrid	28012	ES	
1346747	https://www.airbnb.com/rooms/1346747	7306349	Centro	Madrid	Community of Madrid	28005	ES	
3097553	https://www.airbnb.com/rooms/3097553	15327748	Centro	Madrid	Community of Madrid	28012	ES	
13440784	https://www.airbnb.com/rooms/13440784	76707968	Centro	Madrid	Comunidad de Madrid	28005	ES	
7818234	https://www.airbnb.com/rooms/7818234	5239042	Centro	Madrid	Comunidad de Madrid	28012	ES	
1386096	https://www.airbnb.com/rooms/1386096	6643556	Centro	Madrid	Community of Madrid	28012	ES	
14180827	https://www.airbnb.com/rooms/14180827	18942409	Centro	Madrid	Comunidad de Madrid	28012	ES	
8011473	https://www.airbnb.com/rooms/8011473	8831188	Centro	Madrid	Comunidad de Madrid	28012	ES	
13221821	https://www.airbnb.com/rooms/13221821	74180884	Centro	Madrid	Comunidad de Madrid	NA	ES	
1942585	https://www.airbnb.com/rooms/1942585	1528801	Centro	Madrid	Comunidad de Madrid	28012	ES	
9460773	https://www.airbnb.com/rooms/9460773	15208964	Centro	Madrid	Comunidad de Madrid	28012	ES	
16311700	https://www.airbnb.com/rooms/16311700	19725037	Centro	Madrid	Comunidad de Madrid	28012	ES	
5399733	https://www.airbnb.com/rooms/5399733	3272228	Centro	Madrid	Comunidad de Madrid	28005	ES	
14773153	https://www.airbnb.com/rooms/14773153	36963267	Centro	Madrid	Comunidad de Madrid	28005	ES	
1666184	https://www.airbnb.com/rooms/1666184	8824421	Centro	Madrid	Community of Madrid	28005	ES	
17986327	https://www.airbnb.com/rooms/17986327	15258781	Centro	Madrid	Comunidad de Madrid	28012	ES	
7796518	https://www.airbnb.com/rooms/7796518	39840488	Centro	Madrid	NA	28013	ES	
12809312	https://www.airbnb.com/rooms/12809312	2009482	Centro	Madrid	Comunidad de Madrid	28012	ES	
4196358	https://www.airbnb.com/rooms/4196358	11488818	Centro	Madrid	Comunidad de Madrid	28013	ES	
	https://www.airbnb.com/rooms/13183219	73741764	Centro	Madrid	Comunidad de Madrid	28005	ES	
	https://www.airbnb.com/rooms/15508358	99632258		Madrid	Comunidad de Madrid	28013	ES	
	https://www.airbnb.com/rooms/11050879	57354901	Centro	Madrid	Comunidad de Madrid	28005	ES	
	https://www.airbnb.com/rooms/5547854	9193333	Centro	Madrid	Comunidad de Madrid	28012	ES	

1-27 of 6,377 rows | 1-8 of 44 columns

Previous 1 2 3 4 5 6 ... 38 Next

Evaluamos nuevamente la tabla de correlación donde notamos que la variable Bathrooms no tiene correlación con la variable Price, por lo tanto, lo dejamos de considerar.



```
lm(formula = Price ~ Accomodates + Bedrooms + Beds + `Room Type`,
 data = train.airbnb)
Residuals:
 10 Median
-86.182 -12.999
 -2.917
 9.445 114.415
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept)
 48.1616
Accomodates
 4.6678
 11.3484
Bedrooms
 -1.7274
Beds
 Room Type Private room -31.5334
`Room Type`Shared room -49.2710
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 20.53 on 4457 degrees of freedom
Multiple R-squared: 0.5435, Adjusted R-squared: 0.543
F-statistic: 1061 on 5 and 4457 DF, p-value: < 2.2e-16
 (Intercept)
 Accomodates
 Bedrooms
 48.161588
 4.667785
 11.348429
`Room Type`Private room
 `Room Type`Shared room
```

Evaluamos el modelo de regresión lineal con las variables a incluir de la data de entrenamiento.

Luego de evaluar diferentes variables se ha mejorado el valor del coeficiente de determinación, aún así no llega a tener un valor para que el modelo sea aceptable, pasamos a evaluar el residuo o error del modelo el cual se asemeja a la campana de Gauss.





MAE

Rsquared

20.5176342 0.5435058 15.4028822

## ¿Que se haría igual y que se haría diferente?



Tomaríamos esta misma base de datos para trabajar, ya que tiene mucha información que se puede extraer para trabajar y sacar nuevas conclusiones sobre posibles búsquedas.

Para ampliar el desarrollo de esta herramienta, haríamos nuevos cálculos basados en los precios de alojamiento de otras ciudades y países, para ampliar las posibilidades de búsqueda a lugares fuera de Madrid.

### Conclusiones y lessons learned

A través de los datos, a día de hoy es posible analizar y predecir el comportamiento que un usuario tendrá en la red, conocer qué piensan los clientes y usuarios sobre una marca o un producto, y cuáles son sus necesidades reales sobre la adquisición de productos o servicios.

El desarrollo de este proyecto nos ha dejado como enseñanza, la gran importancia que tiene aprovechar los datos y utilizarlos para identificar nuevas oportunidades. Eso, a su vez, conduce a movimientos de negocios más inteligentes, operaciones más eficientes, mayores ganancias y al alcance de grandes objetivos para el desarrollo de herramientas que aporten algo que resulte útil para la sociedad.



# iMUCHAS GRACIAS!