Élements bas et petis ensembles d'inversion Journées Combalg 2021, IRMA, Strasbourg

Balthazar Charles, LISN, Université Paris-Saclay

4 novembre 2021

Les groupes de Coxeter : mots, racines, inversions

Groupes de Coxeter

Soit *S* un alphabet fini et des $m_{s,t} \in \mathbb{N}_{>0} \cup \{\infty\}$. On demande :

- $m_{s,t} = m_{t,s}$
- $m_{s,t} = 1 \Leftrightarrow s = t$

On appelle système de Coxeter la paire (W, S) où W est le groupe :

$$W = \langle S \mid \forall \ s, t \in S, (st)^{m_{s,t}} = e \rangle$$

On dit que W est un groupe de Coxeter de rang |S|

Exemple:

$$A_3 = \langle r, s, t \mid r^2 = s^2 = t^2 = rsr = srs = tst = sts = e \rangle = \mathfrak{S}_4$$

Groupe de Coxeter : exemples

Exemples:

$$A_3 = \langle r, s, t \mid r^2 = s^2 = t^2 = rsr = srs = tst = sts = e \rangle = \mathfrak{S}_4$$

$$H_3 = \langle r, s, t \mid r^2 = s^2 = t^2 = rsrsr = srsrs = tst = sts = e \rangle$$

$$r$$
 s t

$$\tilde{A}_1 = \langle s, t \, | \, s^2 = t^2 = e \rangle$$

$$r \longrightarrow \infty$$

Longueur et ordre faible

Longueur d'un élément

La *longueur* de $w \in W$ est la longueur minimale d'un mot pour w. Pour $s \in S$, on a $l(sw) = l(w) \pm 1$.

Exemple : dans A_3 , l(srstst) = l(srssts) = l(srts) = 4

Ordre faible

Si l(sw) = l(w) - 1, on dit que w couvre sw et que s est une descente de w.

L'ordre faible \leq_L est la clôture de la relation de couverture.

Exemple: $rsr \leq_L srtst$ car srtst = rsrts. r est un descente de srtst.

Ordre faible (gauche) = "être préfixe de".

Groupes de réflexions

(W, S) un système de Coxeter. On pose :

$$V = \bigoplus_{s \in S} \mathbb{R}e_s$$

$$B = \left(-2\cos\frac{\pi}{m_{s,t}}\right)_{s,t\in S}.$$

Il existe un unique morphisme injectif σ de W dans $\mathcal{O}_{\mathcal{B}}$ tel que :

$$\sigma(s) = x \mapsto x - 2B(e_s, x)e_s$$

Les groupes de Coxeter sont engendrés par des réflexions vectorielles

Exemple : $\overline{A_2}$

Systèmes de racines

(W, S) système de Coxeter.

- Racines simples $\Delta = \{e_s \mid s \in S\}$
- Racines $\Phi = W\Delta = \{w(e_s) \mid w \in W, s \in S\}$
- **Racines positives** $\Phi^+ = \Phi \cap \sum_{s \in S} \mathbb{R}_+ e_s$

Exemple:

Dans
$$A_n$$
, $\Delta = \{e_1, \dots, e_n\}$, $\Phi^+ = \{\sum_{i \le j \le k} e_j \mid 1 \le i < k \le n\}$ et $\Phi = \Phi^+ \cup -\Phi^+$.

- $\Phi = \Phi^+ \cup -\Phi^+.$

Systèmes de racines : exemple

Le "root poset"

Root poset et profondeur

On génère l'ensemble des racines positives de la façon suivante :

$$lacksquare$$
 $\Phi_0 = \Delta$

$$\Phi_{n+1} = S\Phi_n \setminus \left(-\Phi^+ \cup \bigcup_{i \le n} \Phi_i \right)$$

Cela ordonne les racines : $\phi_1 \in \Phi_n$ couvre $\phi_2 \in \Phi_{n-1}$ si $\phi_1 = s(\phi_2)$.

Si $\phi \in \Phi_n$ on dit que ϕ est de *profondeur n*.

Ensemble d'inversions

Ensemble d'inversions

$$N(w) = \Phi^+ \cap w^{-1}(-\Phi^+)$$

Racines positives envoyées sur des racines négatives

Ensemble d'inversions : propriétés

Si sw couvre w:

$$N(w) = \{e_s\} \cup s(N(w))$$

Conséquences:

- l(w) = |N(w)|
- Si $s_1 s_2 \cdots s_n$ est un mot réduit pour w:

$$N(w) = \{e_1, s_1(e_2), s_1s_2(e_3), \dots ws_ns_{n-1}(e_{n-1}), ws_n(e_n)\}$$

- *s* est une descente à gauche de *w* ssi $e_s \in N(w)$.
- s est une descente à droite de w ssi $N(w) \setminus \{-w(e_s)\} = N(ws)$
- $N: W \longrightarrow \mathfrak{P}(\Phi^+)$ est une injection croissante!

Reconnaître un ensemble d'inversions

Un ensemble E de racines positives est une ensemble s'inversions ssi il est *fini* et *séparable*, c'est-à-dire s'il existe un hyperplan E tel que E est strictement d'un côté de E est strictement de l'autre.

Descentes géométriques à droite

$$\Gamma_w = \{ \gamma \in N(w) \mid \exists w', N(w) \setminus \{ \gamma \} = N(w') \}$$

Représenter Φ et N: l'image projective

Représenter Φ et *N* : l'image projective

Représenter Φ et N: l'image projective

Pas seulement pratique pour faire de beaux dessins!

- "Compactifie" le système de racines.
- Points d'accumulation seulement sur le cône isotrope

$$C = \{x \in V \mid B(x, x) = 0\}$$

Pas de problèmes topologiques loin du cône isotrope.

Représenter Φ et N : polytopes d'inversion

Représenter Φ et N: l'image projective

L'enveloppe convexe \mathcal{P}_w des racines porte la même information que $\mathcal{N}(w)$

Petites racines et éléments bas

Petite racine (Brink, Howlett '87)

Une racine $a \in \Phi$ est une *petite racine* si :

$$\{b \in \Phi \mid \forall w \in W, a \in N(w) \implies b \in N(w)\} = \emptyset.$$

On note Σ l'ensemble des petites racines.

Petits ensembles d'inversions (Brink, Howlett '87)

$$\Sigma(w) = N(w) \cap \Sigma$$

Brink, Howlett '87

- Σ est fini.
- $\Lambda = \{\Sigma(w) \mid w \in W\}$ est l'ensemble des états d'un automate fini reconnaissant le langage des mots réduits de W.

Éléments bas

Contrairement à N, l'application $\Sigma: W \longrightarrow \Lambda$ n'est plus injective.

Élements bas (Dyer, Hohlweg '14)

Un élément $w \in W$ est *bas* si les sommets de sont polytope d'inversion sont des petites racines. L'ensemble des éléments bas est noté L.

Conjecture (Dyer, Hohlweg '14)

 $\Sigma: L \longrightarrow \Lambda$ est surjective.

- Vrai en type \tilde{A}_n , vrai pour les groupes finis.
- En rédaction (Chapelier-Laget, Hohlweg) vrai pour les groupes affines
- Vrai pour les groupes de rang 3!

Bipodalité

Dyer, Hohlweg '14

Les petites racines sont un ensemble bipodal.

Bijection en rang 3

Stratégie

Soit (W, S) de rang 3, λ un petit ensemble d'inversion.

Il existe
$$w \in L$$
 tel que $\Sigma(w) = \lambda$.

- **1** Choisir w_0 tel que $\Sigma(w_0) = \lambda$.
- 2 Si $\Gamma_{w_n} \setminus \Sigma \supset \{\gamma\}$, définir w_{n+1} tel que $N(w_{n+1}) = N(w_n) \setminus \{\gamma\}$. Répéter jusqu'à stabilisation sur un w.
- **3** Définir $G_{bip}(w)$ le graphe de bipodalité de w comme :
 - Les sommets de $G_{bip}(w)$ sont ceux de \mathcal{P}_w .
 - Les arêtes (orientés) de $G_{bip}(w)$ sont celles de \mathcal{P}_w qui sont des flèches.
- Montrer que $G_{bip}(w)$ est acyclique.
- **5** Montrer que ces sources sont dans Γ_w

Les points 4 et 5 fournissent une preuve

- Si le graphe est acyclique, on peut trouver un chemin fini qui remonte à une source depuis n'importe quel sommet.
- Par bipodalité, si cette source est une petite racine, tous les sommets sur le chemin le sont aussi.

$G_{bip}(w)$ est acyclique

On ne peut pas retirer les racines dans n'importe quel ordre :

Un ordre pour retirer les racines oriente les arêtes de \mathcal{P}_w de façon *compatible* avec $G_{bip}(w)$!

On retire les racines en fonction de leur distance avec un hyperplan de séparation fixé.

Conséquence : les arêtes de \mathcal{P}_w sont soit des flèches, soit *complètes*.

Les sources sont dans Γ_w

Soit une source s de $G_{bip}(w)$. Deux cas peuvent se produire :

- Soit *s* n'est connectée dans \mathcal{P}_w qu'à des flèches sortantes et dans ce cas *s* doit être retirée en premier : $s \in \Gamma_w$.
- Soit dans \mathcal{P}_w , s est connecté à au moins une arête complète.
 - On note que *s* ne peut pas être une racine simple.
 - On montre le résultat suivant :

(W, S) de rang 3. On suppose que [a, b] est une arête complète de \mathcal{P}_w . Si $a \notin \Delta$, $a \in \Gamma_w$.

Reconnaître les descentes

Dans un sens : les descentes sont les racines dont on peut approcher un hyperplan de séparation

Source connectée à une arête complète

Merci pour votre attention!