

JOINVILLE CENTRO DE CIÊNCIAS

TECNOLÓGICAS

Disciplinas: ALGA001 e GAN0001 Prof. Bruno Terêncio do Vale

Terceira Lista de Exercícios Tópico: Distâncias

- 1. Calcular a distância do ponto P(1,2,3) à reta $r:\begin{cases} x=1-2t\\ y=2t \end{cases}$.
- 2. Calcular a distância do ponto P(1,2,3) a cada um dos eixos coordenados.
- 3. Calcular a distância entre as retas $r: \begin{cases} x=0 \\ y=z \end{cases}$ e $s: \begin{cases} y=3 \\ z=2x \end{cases}$.
- 4. Calcular a distância entre as retas r, que passa pelos pontos A(1,0,1) e B(-1,-1,0), e s, que passa pelos pontos C(0,1,-2) e D(1,1,1).
- 5. Calcular a distância entre as retas $r: \begin{cases} x=3 \\ y=2 \end{cases}$ e $s: \begin{cases} x=1 \\ y=4 \end{cases}$.
- 6. Calcular a distância entre as retas r: $\begin{cases} x=1-t\\ y=2+3t & \text{e } s: \text{eixo dos } x.\\ z=-t \end{cases}$
- 7. Calcular a distância entre as retas r: x = y = z 2 e $s: \begin{cases} y = x + 1 \\ z = x 3 \end{cases}$
- 8. Calcular a distância entre os planos $\pi_1: 2x+2y+2z-5=0$ e $\pi_2: x+y+z-3=0$.
- 9. Calcular a distância entre os planos $\pi_1: x-2z+1=0$ e $\pi_2: 3x-6z-8=0$.
- 10. Determinar a distância da reta $r: \begin{cases} x=3\\y=4 \end{cases}$ ao plano xOz.

 11. Determinar a distância da reta $r: \begin{cases} x=3\\y=4 \end{cases}$ ao plano yOz.
- 12. Determinar a distância da reta $r:\begin{cases} x=3\\ y=4 \end{cases}$ ao plano $\pi:x+y-12=0.$
- 13. Seja o triângulo ABC de vértices A(-3,1,4) e B(-4,-1,0) e C(-4,3,5). Calcular a medida da altura relativa ao lado BC.
- 14. Dado o tetraedro de vértices A(1,2,1), B(2,-1,1), C(0,-1,-1) e D(3,1,0), calcular a medida da altura baixada do vértice D ao plano da face ABC.
- 15. Escrever as equações dos planos paralelos ao plano $\pi: 3x-2y-6z-5=0$ que distam 5 unidades da origem.

- 16. Determine um ponto P de coordenadas inteiras que pertença à reta interseção dos planos π_1 : 3x-4y+z-3=0 e $\pi_2:x+3y-z=0$ e cuja distância ao ponto Q(1,1,-1) é 9 unidades de medida.
- 17. Obtenha as equações simétricas da reta que contém o ponto A(0,0,1), que dista $\frac{\sqrt{2}}{2}$ da origem do sistema cartesiano e que seja paralela ao plano $\pi: x-y+2=0$.
- 18. Sendo r a interseção dos planos $\pi_1: -2x+2y+2z-4=0$ e $\pi_2: 2x+4y-3z+5=0$, determine a distância de r à origem do sistema de coordenadas cartesianas.

Respostas dos Exercícios

1.
$$d(P,r) = 2u.c.$$

2.
$$d(P, Ox) = \sqrt{13} u.c., d(P, Oy) = \sqrt{10} u.c.$$
 e $d(P, Oz) = \sqrt{5} u.c.$

3.
$$d(r,s) = \frac{\sqrt{6}}{2} u.c.$$

4.
$$d(r,s) = \frac{\sqrt{35}}{7} u.c.$$

5.
$$d(r,s) = 2\sqrt{2} u.c.$$

6.
$$d(r,s) = \frac{\sqrt{10}}{5} u.c.$$

7.
$$d(r,s) = \frac{\sqrt{186}}{3} u.c.$$

8.
$$d(\pi_1, \pi_2) = \frac{\sqrt{3}}{6} u.c.$$

9.
$$d(\pi_1, \pi_2) = \frac{11\sqrt{5}}{15} u.c.$$

10.
$$d(r,\pi) = 4 u.c.$$

11.
$$d(r,\pi) = 3 u.c.$$

12.
$$d(r,\pi) = \frac{5\sqrt{2}}{2} u.c.$$

13.
$$h = \frac{\sqrt{3157}}{41} u.c.$$

14.
$$h = \frac{8\sqrt{19}}{19} u.c.$$

15.
$$\pi_1 : 3x - 2y - 6z + 35 = 0 \ \text{e} \ \pi_2 : 3x - 2y - 6z - 35 = 0$$

16.
$$P(0, -3, -9)$$

17.
$$r: x = y = \frac{z-1}{\sqrt{2}}$$
 ou $r: x = y = \frac{z-1}{-\sqrt{2}}$

18.
$$d(P,O) = \sqrt{\frac{171}{86}} u.c.$$