PHYS499G: Problems

Lecturer: William DeRocco

January 3, 2025

Problem 1. Carroll 1.6

Problem 2. Carroll 1.7

Problem 3. On the Euclidean manifold \mathbb{R}^2 , take two sets of coordinates: Cartesian $x^{\mu}=(x,y)$ and polar $x^{\mu'}=(r,\phi)$.

- (a) Write down the change of coordinate formulae and the transformation matrices $\left(\frac{\partial x^{\mu'}}{\partial x^{\mu}}\right)$ and $\left(\frac{\partial x^{\mu}}{\partial x^{\mu'}}\right)$, both expressed in terms of primed coordinates.
- (b) If the vector U has components $U^{\mu} = (3,4)$ at the point $x^{\mu} = (2,0)$, then find $U^{\mu'}$.
- (c) If the vector U has components $U^{\mu} = (3,4)$ at the point $x^{\mu} = (3,4)$, then find $U^{\mu'}$.

Problem 4. Use the same manifold and coordinate as in Exercise 3.

- (a) If the vector field U has components $U^{\mu} = (1,0)$, find $U^{\mu'}$. Then write the operator U in both coordinate bases.
- (b) Given vector fields $V^{\mu} = (0,1)$ and $W^{\mu} = (-y,x)$, find $V^{\mu'}, W^{\mu'}, V$, and W in both coordinate bases.

Problem 5. Consider this metric:

$$ds^{2} = \frac{1}{2} dx^{2} + \frac{1}{2} dy^{2} + \frac{1}{z^{2} + 1} dz^{2}$$

- (a) Compute all nonzero Christoffel symbols.
- (b) Compute all nonzero components of $R^{\mu}_{\nu\rho\sigma}$. What does this result tell you?

Now let's consider the arbitrary coordinate transformation given by $x' = \frac{1}{2}(x+y)$, $y' = \frac{1}{2}(x-y)$, and $z' = \sinh^{-1}(z)$.

- (a) Compute $(\frac{\partial x^{\mu'}}{\partial x^{\mu}})$ and $(\frac{\partial x^{\mu}}{\partial x^{\mu'}})$.
- (b) Use the previous result to transform $g_{\mu\nu}$ into $g_{\mu'\nu'}$.
- (c) Why does this result make sense?

Problem 6. The metric for the 3-sphere in the coordinate system $x^{\mu} = (\psi, \theta, \phi)$ is

$$ds^2 = d\psi^2 + \sin^2 \psi (d\theta^2 + \sin^2 \theta d\phi^2)$$

Prove the 3-sphere is not flat.

Problem 7. Caroll 3.13a

Problem 8. Carroll 3.6a, b

Problem 9. Carroll 5.3