Modeling body condition

Still yellow-footed weeble-wobbles...

We're going to capture warblers prior to breeding and mark them

- 1. Mass (g)
- 2. Corticosterone (z-standardized)
- 3. Fat (g)
- 4. Clutch size (eggs)

We'll then monitor their breeding efforts

Our predictions

- 1. Heavier birds will lay more eggs
- 2. More corticosterone (z-standardized) will lead to smaller clutches
- 3. Birds with more fat reserves will lay more eggs

We'll build two models (mL and mC for latent and composite parameterizations)

Data simulation: multivariate normal

$$\mathbf{y} \sim N_4(\mathbf{0}, \boldsymbol{\Sigma})$$

Recall a normal distribution

$$\mathbf{y} \sim \text{Normal}(0, \sigma^2)$$

Two normal distributions would have four parameters (two means, and two variances or standard deviations)

A bivariate normal distribution has those same four parameters plus a fifth <u>correlation</u> parameter.

Recall a normal distribution

 $\mathbf{y} \sim \text{Normal}(0, \sigma^2)$

Multivariate normal distributions include correlations

$$Y \sim N_2(\mathbf{0}, \mathbf{\Sigma})$$

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{bmatrix}$$

Recall a normal distribution

 $\mathbf{y} \sim \text{Normal}(0, \sigma^2)$

Multivariate normal distributions include correlations

Recall a normal distribution

 $\mathbf{y} \sim \text{Normal}(0, \sigma^2)$

Multivariate normal distributions include correlations

We did that so neither of these would be the 'data-generating' model

The latent variable model

b~Normal $(0, \sigma_c^2)$

 $\mathbf{m} \sim \text{Normal}(\alpha_1 + \beta_1 \mathbf{b}, \sigma_m^2)$

 $\mathbf{f} \sim \text{Normal}(\alpha_2 + \beta_2 \mathbf{b}, \sigma_m^2)$

 $\mathbf{c} \sim \text{Normal}(\alpha_3 + \beta_3 \mathbf{b}, \sigma_m^2)$

 $e \sim Poisson(e^{\alpha_4 + \beta_4 \mathbf{b}})$

The composite variable model

$$\mathbf{b} \sim N(\beta_1 \mathbf{m} + \beta_2 \mathbf{f} + \beta_3 \mathbf{c}, \sigma_b^2)$$

 $\mathbf{e} \sim \text{Poisson}(e^{\alpha_4 + \beta_4 \mathbf{b}})$

Let's think ahead... how would we make predictions from each model...

