13	14 a	The velocity of a particle moving along the x-axis is given by $\dot{x} = 10 - 2t$, where	
		x is the displacement from the origin in metres and t is the time in seconds.	
		Initially the particle is 5 metres to the right of the origin.	
		(i) Show that the acceleration of the particle is constant.	1
		(ii) Find the time when the particle is at rest.	1
		(iii) Show that the position of the particle after 7 seconds is 26 metres to the right of the origin.	2
		(iv) Find the distance travelled by the particle during the first 7 seconds.	2
		Sta	te Mean

(i) $\ddot{x} = -2$, which is constant.

(ii)
$$\dot{x} = 10 - 2t = 0$$

 $2t = 10$
 $t = 5$

∴ at rest after 5 seconds

(iii)
$$\dot{x} = 10 - 2t = 0$$

 $x = 10t - t^2 + c$
When $t = 0$, $x = 5$:
 $5 = 10(0) - (0)^2 + c$
 $c = 5$
 $\therefore x = 10t - t^2 + 5$
When $t = 7$:
 $x = 10(7) - (7)^2 + 5$
 $= 26$
 \therefore after 7 sec, 26 m to the right.

(iv) $x = 10t - t^2 + 5$ State Mean 0.87/1 Subs t = 0, x = 5 0.88/1 Subs t = 5, $x = 10(5) - (5)^2 + 5$ 1.65/2 = 30

Subs
$$t = 7$$
, $x = 10(7) - (7)^2 + 5$
= 26

From x = 5 to x = 30 is 25 metres, then back to x = 26 is 4 metres.

∴ particle travels 29 metres.

Board of Studies: Notes from the Marking Centre

Most candidates completed this section successfully.

Common problems were:

- mismanaging +/-
- substituting t = 0.

 $^{^{*}}$ These solutions have been provided by <u>projectmaths</u> and are not supplied or endorsed by the Board of Studies

HSC Worked Solutions projectmaths.com.au

(ii) Candidates needed to solve 10 - 2t = 0 to find t = 5. In most responses, the stated condition $(\frac{dx}{dt} = 0)$ was clearly evident.

A common problem was:

- not associating 'at rest' with $\dot{x} = 0$ or $\frac{dx}{dt} = 0$.
- (iii) In correct responses, candidates calculated $\int_0^7 10 2t \ dt$ and then added the initial position. Most candidates integrated the velocity equation $\dot{x} = 10 2t$, and then used the initial conditions to produce x(t) = 10t t2 + 5, and subsequently x(7) = 26.
- (iv) Candidates who drew a diagram had much greater success with this part. Only a small number of candidates solved the question by calculating absolute value of sections and adding.

A common problems was:

not understanding the difference between distance travelled and position.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/