EE2023 Mid-term Quiz: AY2019-2020 Semester 2

Q1(a).
$$x(t) = 4 \operatorname{rect}\left(\frac{t}{4}\right) - 4 \operatorname{tri}\left(\frac{t}{2}\right) + 6 \operatorname{tri}\left(t\right)$$

Q1(b).
$$X(f) = 16\operatorname{sinc}(4f) - 8\operatorname{sinc}^2(2f) + 6\operatorname{sinc}^2(f)$$

Q1(c).
$$x_p(t) = x(t) \otimes \sum_{k=-\infty}^{\infty} \delta(t - k5)$$

Q1(d).
$$X_p(f) = \frac{1}{5} \sum_{k=-\infty}^{\infty} \left[16 \operatorname{sinc}(\frac{4k}{5}) - 8 \operatorname{sinc}^2(\frac{2k}{5}) + 6 \operatorname{sinc}^2(\frac{k}{5}) \right] \delta\left(f - \frac{k}{5}\right)$$

Q2(a). Fundamental frequency = 50Hz; Period = 1/50 = 0.02 seconds

Q2(b).
$$c_{-5} = 4e^{j\pi/4}$$
; $c_5 = 4e^{j\pi/3}$; $c_{-2} = 7e^{-j\pi/3}$; $c_2 = 7e^{j\pi/3}$; $c_0 = 10$

Q2(c). Average power =
$$230$$

Q3(b).

m(t) can be recovered from y(t) with a low pass filter that has a cutoff frequency of 100Hz.

Q4(a). $X(f) = 10 \text{ sinc}^2(10f)$; 1st null bandwidth is 0.5Hz.

Q4(b).

Q4(c).

