Name Vorname I Matrikelnummer Studiengang (Hauptfach) Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik 6	I	II
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN 5		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN 5		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) Unterschrift der Kandidatin/des Kandidaten TECHNISCHE UNIVERSITÄT MÜNCHEN 5		
Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN		
Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN		
TECHNISCHE UNIVERSITÄT MÜNCHEN		
TECHNISCHE UNIVERSITÄT MÜNCHEN		
TECHNISCHE UNIVERSITÄT MÜNCHEN		
Fakultät für Mathematik 6		
Wiederholungsklausur		
Mathematik 4 für Physik		
(Analysis 3) \sum		
Prof. Dr. S. Warzel		
09. April 2010, 8:30 – 10:00 Uhr, MI HS 1	stkorrekt	 ur
Hörsaal: Reihe: Platz: II	 veitkorrel	
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 7 Aufgaben	eitkorrer	ctur
Bearbeitungszeit: 90 min		
Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4-Seiten		
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.		

Vorzeitig abgegeben um

Besondere Bemerkungen:

Note

1. Zirkulation eines Vektorfeldes

[6 Punkte]

Es bezeichne $K_r(a):=\left\{\zeta\in\mathbb{R}^2\mid |\zeta-a|\leq r\right\}$ die offene Kreisscheibe mit Radius r um den Punkt $a\in\mathbb{R}^2$. Sei

$$M := K_{10}(1,0) \setminus (K_1(-3,0) \cup K_1(0,0) \cup K_1(0,3))$$

und ∂M der positiv orientierte Rand von M. Berechnen Sie die Zirkulation des Vektorfeldes

$$v(x,y) = \begin{pmatrix} y + x^3 \cos(x^2) \\ e^{y^2} + 2x \end{pmatrix}$$

entlang ∂M .

2. Fluss durch eine Oberfläche

Berechnen Sie den Fluss des Vektorfeldes

[8 Punkte]

$$v(x, y, z) = \begin{pmatrix} y \\ -x \\ z \end{pmatrix}$$

durch die Oberfläche

$$S := \left\{ (x, y, z) \in \mathbb{R}^3 \mid z = \sqrt{x^2 + y^2}, \, x, y \ge 0, \, x^2 + y^2 \le 4 \right\}$$

welche in Richtung positiver z-Achse orientiert sei.

3. Residuenkalkül Gegeben sei $f(z) = \tan z + e^z$.	[7 Punkte]
(a) f hat bei $z_n=(2n+1)rac{\pi}{2}$, $n\in\mathbb{Z}$,	
\square hebbare Singularitäten. \square Pole 1. Ordnung. \square Pole 2. Ordnung. \square Pole -1 . Ordnung. \square wesentliche Singularitäten. \square keine Singularitäten.	itäten.
(b) Bestimmen Sie das Residuum von f bei $z_n=(2n+1)\frac{\pi}{2}$, $n\in\mathbb{Z}$:	
${\sf Res}_{z_n}(f) =$	
(c) Bestimmen Sie	
$\int_{ z =\pi} f(z) \mathrm{d}z =$	
(d) Welchen Konvergenzradius hat die Taylor-Reihe von f um $z=0$?	
R =	

4. Fourier-Transformation

[8 Punkte]

Sei $f \in L^1(\mathbb{R})$ eine Funktion, die sich auf den Streifen $S_r := \{z \in \mathbb{C} \mid |\mathrm{Im}\,z| < r\}, r > 0$, zu $f : S_r \longrightarrow \mathbb{C}$ holomorph fortsetzen lässt. Weiterhin nehmen wir an, dass für alle $\varepsilon > 0$ ein $R_\varepsilon > 0$ existiert, so dass $|f(z)| < \varepsilon$ für alle $|\mathrm{Re}\,z| > R_\varepsilon$ gilt. Begründen Sie sorgfältig, dass die Fourier-Transformierte \hat{f} für alle $a \in \mathbb{R}$ mit |a| < r die Gleichung

$$\hat{f}(k) = \frac{e^{ka}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-ikx} f(x+ia) \, \mathrm{d}x$$

erfüllt.

5. **Komplexe Wegintegrale** Gegeben sei die Funktion

[5 Punkte]

$$f(z) := \prod_{k=0}^{2010} \frac{1}{z - 2k}.$$

Bestimmen Sie für alle $n\in\mathbb{Z}$ mit $n\leq -1$ den Wert des Integrals

$$\int_{|z|=1} \frac{f(z)}{z^{n+1}} \, \mathrm{d}z.$$

6. Die freie Schrödinger-Gleichung

[7 Punkte]

Sei g(x,t) eine distributionswertige Lösung der eindimensionalen freien Schrödinger-Gleichung

$$i\partial_t g(x,t) = -\frac{1}{2}\partial_x^2 g(x,t)$$

zu den Anfangsbedingungen

$$\lim_{t \to 0} \int_{\mathbb{R}} \varphi(x) \, g(x, t) \, \mathrm{d}x = \varphi(0), \qquad \qquad \forall \varphi \in \mathcal{S}(\mathbb{R}).$$

(a) Welcher partiellen Differentialgleichung gehorcht

$$f(x,t) := \int_{\mathbb{R}} \varphi(x-y) g(y,t) dy,$$
 $\varphi \in \mathcal{S}(\mathbb{R}),$

und welche Anfangsbedingung f(x, 0) erfüllt f?

(b) Bestimmen Sie

$$\hat{g}(k,t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ikx} g(x,t) \, \mathrm{d}x.$$

Gegeben sei der Hilbert-Raum $L^2([-\pi,+\pi])$ mit dem Skalarprodukt

$$\langle f, g \rangle := \int_{-\pi}^{+\pi} \overline{f(x)} \, g(x) \, \mathrm{d}x.$$

(a) Geben Sie eine Teilmenge $I\subset\mathbb{R}$ und für alle $k\in I$ Normierungsfaktoren $n_k\in\mathbb{R}$ an, so dass $\left\{e_k\right\}_{k\in I}=\left\{n_ke^{ikx}\right\}_{k\in I}$ eine Orthonormalbasis von $L^2([-\pi,+\pi])$ bildet:

$$I = n_k =$$

(b) Drücken Sie die Norm von $f\in L^2([-\pi,+\pi])$ mittels der Basiskoeffizienten $c_k(f):=\langle e_k,f\rangle$ aus:

$$||f|| =$$

(c) Sei $f:[-\pi,+\pi]\longrightarrow \mathbb{R}$ stetig differenzierbar mit $f(+\pi)=f(-\pi)$. Zeigen Sie, dass $c_k(f')=+ikc_k(f)$.