اگر μ به صورت فوق تعریف شده باشد، تابع μ را تابع تعریف کنندهی U_{μ} مینامیم.

\mathbb{R}^n آیا گویهای باز توپولوژیک در ديفئومورفاند؟

مقدمه

D فرض کنید D یک n گوی باز توپولوژیک باشد، که یعنی، زیرمجموعهی بازی در \mathbb{R}^n باشد که با-گوی باز B^n ، همسانریخت است. در این صورت، آیا D با B^n دیفئومورف است؟ پاسخ این $n \neq *$ سئوالِ طبیعی، بسیار غافل گیر کننده است: زمانی که C^{∞} ، ازی در \mathbb{R}^n که با B^n همسانریخت باشد، دیفئومورف با B^n نیز است، اما این گزاره به ازای B^n برقرار

روشهای اثبات نتایج فوق، غیرمقدماتی هستند. اما اگر n گوی توپولوژیک مورد نظر، ستارهگون باشد، قادریم تا پاسخی مقدماتی $\lim_{i o \infty} \epsilon_i = \circ$ (iv) گوی -nگوی بیابیم. در حقیقت با این شرط اضافه، هر -nگوی باز توپولوژیک، C^{∞} دیفئومورف با B^n است. همچنین قادریم تا دیفئومورفیسم مورد نظر را به گونهای بسازیم که راستاها را نیز حفظ كند. توجه كنيد كه در اين حالت، هيچ گونه محدوديتي روى بعد وجود ندارد.

> در ادامه و پس از اندکی نمادگذاری، مراحل ساختن دیفئومورفیسم مورد نظر را تعقیب خواهیم کرد. این مراحل، در قالب مسألههایی تنظیم شدهاند و پیشنهاد میکنیم که پیش از مرور پاسخها، نخست پاسخ خود را برای آنها بیابید.

نمادگذاری

فرض کنید ||.|| نرم اقلیدسی در \mathbb{R}^n باشد و برای هر $r>\circ$ تعریف کنید:

$$S_r = \{x \in \mathbb{R}^n \mid ||x|| = r\}$$

$$B_r = \{ x \in \mathbb{R}^n \mid ||x|| < r \}$$

همچنین فرض کنید $\mu:S_{ extsf{N}} o\mathbb{R}^{ extsf{N}}$ تابعی پیوسته باشد که برای هر و مجموعه باز $U_{\mu}\subset\mathbb{R}^n$ را به صورت زیر تعریف $\mu(heta)>\circ , heta\in S_{ ext{ iny N}}$ کنید:

$$U_{\mu} = \{x \in \mathbb{R}^n \mid x = 0 \text{ if } 0 < ||x|| < \mu(x/||x||)\}$$

فرض کنید U باشد و فرض کنید $\mu:S_{\mathsf{N}} \to \mathbb{R}^{\mathsf{N}}$ و $R = \sup\{\mu(\theta) \mid \theta \in S_1\}$ و $r = \inf\{\mu(\theta) \mid \theta \in S_1\}$ ثابت r_{\circ} را با $r_{\circ} < r_{\circ} < r_{\circ}$ در نظر بگیرید. در این صورت نشان دهید که دنباله توابع $\sum_{i=1}^{\infty} \{\mu_i: S_i \to \mathbb{R}^1\}_{i=1}^{\infty}$ وجود دارد به طوری که:

$$r_{\circ} < \mu_{\scriptscriptstyle 1}(heta) < \mu_{\scriptscriptstyle 7}(heta) < \cdots$$
 الف

$$\mu_{i+1}(\theta) - \mu_i(\theta) > \circ$$
 (ب

$$\mu_i
ightarrow \mu$$
 به صورت یکنواخت S_1 به صورت یکنوا

پاسخ. دنباله ی $\{\epsilon_i\}_{i=1}^{\infty}$ را در نظر بگیرید به طوری که:

$$\epsilon_i > \circ$$
 (i)

$$\epsilon_i > \epsilon_{i+1}$$
 (ii)

$$\epsilon_1 < r - r_{\circ}$$
 (iii)

$$\lim_{i\to\infty} \epsilon_i = \circ$$
 (iv)

فرض کنید $\delta_i = \epsilon_i - \epsilon_{i+1}$. بنابراین $\delta_i = \epsilon_i - \epsilon_{i+1}$ فرض $ilde{\mu}_i=\mu-\epsilon_i+rac{\delta_i}{r}$ را با $ilde{\mu}_i:S_1 o\mathbb{R}^1$ توابع پیوسته. $\lim_{i o\infty}\delta_i=\circ$ $\mu(\theta) - \epsilon_{i+1}$ تعریف کنید. در نتیجه $\tilde{\mu}_i(\theta)$ نقطه میانی بین است. برای هر i، فرض کنید \mathbb{R}^1 تابعی C^∞ باشد چنان که برای هر $\theta \in S_1$ داشته باشیم $\theta \in S_1$ که برای هر تابعی، نتیجهای از قضیه استون-وایرشتراس است). در این صورت به وضوح در شرایط (الف) تا (ج) صدق می کند. $\{\mu_i\}_{i=1}^{\infty}$

ها را همانهایی بگیرید که در مسأله (۱) به دست آمدهاند و فرض μ_i کنید $\mu_{\circ} \equiv r_{\circ}$ تابع ثابت $\mu_{\circ} \equiv r_{\circ}$ تابع ثابت $\mu_{\circ} : S_{\mathsf{I}}
ightarrow \mathbb{R}^{\mathsf{I}}$ کنید $R_i = \sup\{\mu_i(\theta)|\theta \in S_i\}$ و $r_i = \inf\{\mu_i(\theta)|\theta \in S_i\}$ کنید به علاوه ثابتهای A_i را به صورت استقرابی با رابطه A_i تعریف کنید. حال نشان دهید که دنبالهی $A_{i+1} = R_{i+1}(A_i/r_i)$ i توابع $\mathbb{R}^n o \mathbb{R}^n o \mathbb{R}^n$ وجود دارد به طوری که برای هر $\{\eta_i : \mathbb{R}^n o \mathbb{R}^n \}_{i=0}^\infty$ $\mathbb{R}^n \setminus \{\circ\}$ روی (θ,r) و در مختصات قطبی C^{∞} $\eta_i: U \to \mathbb{R}^n$ η_i و از آن نتیجه بگیرید که $\eta_i(heta,r)=rac{A_i}{\mu_i(heta)}$ ، $(heta\in S_1$ و $r>\circ$) $\eta_i \geq 1$ روی شعاعها غیرنزولی است و همچنین روی است و می

 C^{∞} پاسخ. برای هر i فرض کنید $f_i(x)=U_{\mu_i}$ مجموعه ای باشد که توسط پاسخ. توجه کنید که $f_i(x)=\eta_i(x)$. لذا $\eta(x)=\lim_{i o\infty}\eta_i(x)$ فرض کنید و. $f_i|_{ar U_{i-1}}=f_{i-1}|_{ar U_{i-1}}$ و هستند و $ar U_{i-1}=0$. فرض کنید ورای هر u_i لذا η و $f|_{U_i}=f_i|_{U_i}$ و $\eta|_{U_i}=\eta_i|_{U_i}$ در ضمن توجه کنید که $U_i=H_{i-1}$ و با توجه به اینکه $U_i=H_{i-1}$ لذا $U_i=H_{i-1}$ لذا $U_i=H_{i-1}$ تعریف r_i ها و R_i ها داریم $r_i < r_i < r_i < r_i < r_i < r_i$ و نگاشتهایی $r_i < r_i < r_i < r_i < r_i$ تعریف استقرایی همچنين:

$$A_{i+1}/R_{i+1} = A_i/r_i \ge A_i/R_i = A_{i-1}/r_{i-1} \ge \cdots \ge$$

 $\ge A_1/R_1 = 1$

حال فرض کنید $\alpha: \mathbb{R}^1 \to \mathbb{R}^1$ یک تابع موری که:

$$a(t) = \alpha(t) = 1$$
 اگر $\alpha(t) = \alpha(t)$ اگر ا

$$.t\in (\circ, \circ)$$
 اگر $lpha'(t)>\circ$ (ii)

همچنین مختصات قطبی (θ,r) در \mathbb{R}^n را در نظر بگیرید و توجه $S_{
m V}$ کنید که اگر r > 0 و heta به یک نقشه مختصاتی روی شده باشد، آنگاه (θ,r) یک نقشهی مختصاتی روی $\mathbb{R}^n \setminus \{0\}$ است. دنباله $\{\eta_i\}_{i=0}^\infty$ از نگاشتهای $\mathbb{R}^n o \mathbb{R}^n$ را به صورت استقرابی $\eta_\circ=$ ۱ ا

$$\eta_{i}(\theta,r) = \begin{cases} 1 & r = 0 \text{ or } r = 0 \text{$$

 $((heta,r)\in ar{U}_{i-1}$ ریعنی $\circ < r \leq \mu_{i-1}(heta)$ توجه کنید که به ازای f داریم f=id، بنابراین f=id، بنابراین به ازای $\eta_i(heta,r)=\eta_i(heta)$ داریم $\eta_i(heta,r)=\eta_{i-1}(heta,r)$ داریم باشد $\circ \leq r < r_\circ = R_\circ$ باشد ، به خصوص زمانی که $\eta_i(heta,r) = rac{A_i}{\mu_i(heta)}$ ها متحد ۱ هستند. بنابراین هر \mathbb{R}^{1} ها متحد ۱ هستند. بنابراین هر $\eta_{i}:U o\mathbb{R}^{1}$ $\eta_{i-1}(heta,r)=A_{i-1}/\mu_{i-1}(heta)$ به علاوه اگر $(heta,r)\in U_iackslash U_{i-1}$ به علاوه اگر

$$A_i/\mu_i(\theta) \ge A_i/R_i = A_{i-1}/r_{i-1} \ge A_{i-1}/\mu_{i-1}(\theta)$$

لذا در طول هر شعاع η_i (طول هر ثابت بگیرید)، η_i در هر بازه غیرنزولی است و در نتیجه در روی هر شعاعی که $[\mu_{i-1}(\theta), \mu_i(\theta)]$ از مبدا آغاز می شود، غیرنزولی است. همچنین ۱ $\eta_i(heta,\circ)=\eta_i(heta,\circ)$ بنابراین $\eta_i \geq 1$ روی U، ا

توابع $f_i(heta,r)=(heta,\eta_i(heta,r)r)$ در نظر $f_i:U o\mathbb{R}^n$ در نظر بگیرید (η_i ها همانهایی هستند که در مسأله (۲) ظاهر شدند). نشان دهید که $f(x) = \lim_{i \to \infty} f_i(x)$ نگاشتی C^{∞} روی U است.

فوق و مسألهی (۲) برای هر $x\in\mathbb{R}^n$ معتبرند، اما میتوان انتظار داشت که η و یا f روی $ar{U} = ar{U} \setminus U$ مشتقیذیر نباشند، حتی اگر ها و f_i ها روی آن مشتقیذیر باشند. η_i

 $U \subset \mathbb{R}^n$ به دست آمده در مسأله (۳) نشان دهید که اگر به وسیلهی نگاشت ییوستهی $\mu:S_1 o \mathbb{R}^1$ تعریف شده باشد، آنگاه دیفیومورفیسم $h:U o B_1$ ، دیفیومورفیسم مینانیز دارد که راستاها را نیز حفظ مي کند.

یاسخ. فرض کنید $(\theta_1,\ldots,\theta_{n-1})$ مختصات روی S_1 باشد. حال $U\setminus \{\circ\}$ در مختصات $(\theta_1,\ldots,\theta_{n-1},r)$ در مختصات Df حال مي کنيم.

> به سادگی می توان مشاهده کرد که در $U \setminus \{ \circ \}$ داریم: $Df = \left(\begin{array}{c|c} I_{n-1} & \circ \\ \hline * & r \frac{\partial \eta_i}{\partial a} + \eta_i \end{array}\right)$

که در آن I_{n-1} ماتریس همانی (n-1) imes (n-1) است. لذا از طرفی η_i در r-راستا (θ ثابت) غیرنزولی . $\det(\mathrm{D}f) = r \frac{\partial \eta_i}{\partial r} + \eta_i$ $\eta_i \geq 1$ و $r \geq 0$ است و بنابراین $r \geq 0$. همچنین با توجه به اینکه نتیجه می شود که $\det(\mathrm{D}f) > 0$ در $U\setminus \{\circ\}$ از طرفی در همسایگی شعاع $r \mapsto (\theta, r)$ را حفظ می کند و ا $t \geq \eta$ می توان نتیجه گرفت که $R_{i+1}/r_i \geq 1$ و است. از آنجا که $A_{i+1}=R_{i+1}A_i/r_i$ و است. از آنجا نتيجه مي شود که $A_1 \leq A_1 \leq \dots$ لذا يا $A_1 \leq A_2 \leq \dots$ و يا $: heta \in S_1$ برای هر ، $\lim_{i o \infty} A_i = A < \infty$

$$egin{aligned} &: heta \in S_1$$
 برای هر . $\lim_{i o \infty} A_i = A_i \ \lim_{t o \mu_i(heta)} f(heta,t) = \lim_{t o \mu_i(heta)} f(heta,t) = \lim_{t o \mu_i(heta)} f(heta,t) \ &= \lim_{t$

(حد روی تمام مقادیر $t < \mu_i(\theta)$ محاسبه شده است). در نتیجه $f(U) = \mathbb{R}^n$ و لذا یا $f(U_i) = B_{A_i}$ ، $i = 1, 1, \ldots$ برای هر C^{∞} يا $A<\infty$ نيا در نهايت ساختن ديفيومورفيسم $f(U)=B_A$ ، حافظ راستایی که $B_1 o \mathbb{R}^n o B_1$ و یا $B_A o B_1$ آسان است. به این ترتیب مطلوب حاصل می شود.