

INGENIERÍAS	/ MATERIA	COMÚN

Docente: Remigio Hurtado

INTELIGENCIA ARTIFICIAL

FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES

CARRERA: INGENIERÍAS / MATERIA COMÚN	ASIGNATURA: INTELIGENCIA ARTIFICIAL		
NRO. PRÁCTICAS: 4 TÍTULO PRÁCTICA	TULO PRÁCTICA 2: Redes neuronales		
OBJETIVOS: - Comprender y aplicar redes neuronales para problemas de cla	sificación/regresión en diversos entornos		
1. Revisar el con	Revisar el contenido teórico del tema		
INSTRUCCIONES: enlaces conte	los conocimientos revisando los libros guías, los tenidos en el material didáctico y la documentación fuentes académicas en línea.		
3. Seguir las ac individual).	ctividades a desarrollar (máximo entre 2 personas o		
	n cuaderno en Jupyter de la sección "ACTIVIDADES RROLLAR". El código debe estar documentado.		
5. Subir al AVA			
	e Jupyter en formato .ipynb y html		
- Sustentar la	a práctica y responder preguntas		

ACTIVIDADES POR DESARROLLAR

Archivo con el material de la práctica: "Cuadernos Jupiter Redes Neuronales.zip"

- 1. Revisar los archivos xlsx de fundamentos de redes neuronales
- 2. Revisar y probar el cuaderno de Jupyter "RedNeuronalFundamentosDiseno.ipynb" y realizar sin keras:
- a) modificar el cuaderno de tal manera que la red neuronal pueda aprender la compuerta NAND con 4 entradas.

La primera capa debe tener 64 neuronas y la segunda capa 1 neurona. Mostrar como salida el dataframe con las columnas: "predicción" y "real"

b) modificar el cuaderno de tal manera que la red neuronal pueda aprender (clasificación perfecta) la compuerta XOR con 4 entradas. La primera capa debe tener 256 neuronas y la segunda capa 1 neurona. Mostrar como salida el dataframe con las columnas: "predicción" y "real"

3. Diseñar un Modelo de Redes Neuronales (para el dataset HEPATITIS) con los siguientes pasos:

Dataset: https://archive.ics.uci.edu/ml/datasets/Hepatitis

- 3.1 Preparación de datos (lo hicieron en la práctica 1)
- 3.2 Desarrollo y entrenamiento de una Red Neuronal (arquitectura de 4 capas L1:256, L2:128, L3:64, L4:1). Guardar el modelo en un archivo h5.
- 3.3 Medir y presentar resultados de calidad (Accuracy, Precision, Recall y F1-Score). Si es que el Accuracy es menor a 0.5, entonces, modificar la arquitectura de la red neuronal hasta lograr un accuracy superior a 0.8.
- 3.4 En otro cuaderno de Jupyter cargar el modelo del archivo h5 y crear una función de predicción para un nuevo sample (Probar como mínimo, un caso por clase. Es decir, si hay dos clases, probar el método de predicción al menos con dos ejemplos, un ejemplo por cada clase)
- 4. Conclusiones y referencias

Actividades	Puntaje	Valor obtenido	Observaciones
2 Ejercicios con compuertas	2		
a. NAND			
b. XOR			
3.1 y 3.2 Preparación de datos, desarrollo y entrenamiento	3		
de la red neuronal			

3.2 Evaluación del modelo	2	
3.3 Predicción con nuevos samples	2	
4 Conclusiones y referencias	1	
Total:	10	

Nota: se recomienda utilizar Google Colab y definir en "Entorno de Ejecución" el uso de GPU.

RESULTADO(S) OBTENIDO(S):

- Comprender el desarrollo de redes neuronales
- Familiarizarse con Tensor Flow Keras API
- Aplicar las redes neuronales en problemas de clasificación/regresión
- Aplicar algoritmos de ML en problemas de aprendizaje supervisado y no supervisado

CONCLUSIONES:

• Los estudiantes comprenden la utilidad de las redes neuronales en problemas de clasificación/regresión

RECOMENDACIONES:

- Revisar la información proporcionada por el docente previo a la práctica.
- Haber asistido a las sesiones de clase.
- Consultar con el docente las dudas que puedan surgir al momento de realizar la práctica.

Docente: Ing. Rem	ligio Hurtado	
Firma:		