

Deep Learning of Political Texts

Andrew Peterson

11.10.2017

Université de Genève

Introduction

Table of contents

- 1. Introduction
- 2. Basics of Deep Neural Networks
- 3. DNN for Texts
- 4. Simulation with Predicate Logic

Motivation

- Estimating ideological position from texts (speeches, bills, etc):
- > Constrained, formal texts ightarrow difficult to identify position \perp topic
- > Researcher degrees of freedom in text analysis
- Estimating uncertainty

Syntax and Meaning

-) "I will not raises taxes or allow imports."
- "I will raise taxes or not allow imports."

Consider two-word 'speeches'

-) 'free healthcare'
-) 'free market'

Hypothetical Document Term Matrix

	free	externalities	heathcare	market	label
document 1	1	0	1	0	L
document 2	1	0	0	1	R
document 3	0	1	1	0	R
document 4	0	1	0	1	L

Possible Approach 1

) least squares

Least squares

$$\mathit{y} = \beta_1 * \mathsf{free} + \beta_2 * \mathsf{externalities} + \beta_3 * \mathsf{healthcare} + \beta_4 * \mathsf{market} + \epsilon$$

 \rightarrow random guess

Possible Approach 2: SVM

> map features into higher dimensional space

$$RBF(x, x_i) = exp(-\gamma ||x - x_i||^2)$$

(kernel trick: don't actually have to generate mapping, just use distances)

RBF Transformed Document Term Matrix

	$\times 1$	x2	x3	×4
document 1	1.00	0.61	0.61	0.37
document 2	0.61	1.00	0.37	0.61
document 3	0.61	0.37	1.00	0.61
document 4	0.37	0.61	0.61	1.00

$$\rightarrow$$
 [x1...x4] = [3.23, -3.23, -3.23, 3.23]

Possible Approach 3: Deep neural networks

- So SVM works in this simple case.
- > But: with some data better generalization, fewer parameters with a deep network. (Montufar et al. 2014; Ibarz et al. 2013).

Basics of Deep Neural Networks

Why Deep Learning?

-) Unifies feature identification and prediction into one step \rightarrow general learning model
- multiple layers:
 - ightarrow successively higher levels of feature abstraction
 - ightarrow interactions between non-local features and logical relationships between them
 - \rightarrow translation invariance

Deep Neural Networks

Deep neural networks

) as function approximation: nested vector-valued functions $f(x) = f_2(f_1(x))$, which introduce non-linearities.

Simple neural network

layer 1 output:
$$Z = max\{0, (X \cdot M + b_1)\}$$

layer 2 output = sigmoid
$$(Z \cdot v + b_2)$$

where sigmoid(x) =
$$\frac{1}{1+exp(-x)}$$
.

Nonlinear activation - Rectified linear Unit function

layer 1 output = $ReLU(X \cdot M + b_1)$

```
import numpy as np
from keras.models import Sequential
from keras.lavers.core import Dense
# enter the matrix from Table 1
document_term_matrix = np.array(
[[1,0,1,0],
[1,0,0,1],
[0,1,1,0],
[0.1.0.1]].
 "float32")
y = np.array([[1],[0],[0],[1]], "float32")
model = Sequential()
model.add(Dense(8, input_dim=4, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='mean squared error', optimizer='adam')
model.fit(document term matrix, y, epochs=200)
print model.predict(document term matrix).round()
```

DNN for Texts

Alternative to Bag-of-words: Incorporate order

Can preserving sentence order help identify *position* on a topic?

Problem of High Dimensionality

- $_{}$ # vocab * sentence length (e.g. 20,000 * 25 = 500,000)
- > New approaches: vector word embeddings

Vector word embeddings

- Represent each word by a 100-dimensional real-valued vector
- > train vectors to e.g. predict neighboring words

Source: Pennington, et al. (2014)

Problem: Bag-of-words all equidistant

Document term matrix:

$$\begin{aligned} \text{authorize} &= [1, 0, 0, 0, \dots, 0] \\ \text{permit} &= [0, 1, 0, 0, \dots, 0] \\ \text{repeal} &= [0, 0, 1, 0, \dots, 0] \end{aligned}$$

> vector word embeddings:

$$\begin{aligned} \text{authorize} &= [-0.5, 0.1, -0.3, \dots] \\ \text{permit} &= [-0.4, 0.05, -0.2, \dots] \\ \text{repeal} &= [0.2, 0.1, 0.7, \dots] \end{aligned}$$

First two dimensions of PCA

Simulation with Predicate Logic

Simulated Speeches

- > 80 word speeches.
- > meaning of words not additive, atomistic; 2-place predicate logic
- three types of words: partisan (1,000), function (4), and noise (18,996)

Two-place functions

$$f_1(x, y) = (x + y)$$

 $f_2(x, y) = (-x - y)$
 $f_3(x, y) = (x - y)$
 $f_4(x, y) = (-x + y)$

Simulated Parliament

- › Draw speaker ideal points, leadership
- > For each speech: draw speaker, ideal point, function, partisan words, random words

Models

- SVR
- 2-layer neural network
- CNN-LSTM

CNN-LSTM (details)

- 128-dim embeddings, CNN, max pooling, LSTM, dense
- loss: mean squared error
- SGD, adam (adaptive learning rate)
- "Concrete dropout" (Gal, et al 2017)

Results

Mean squared error by method, no added noise

	(guess mean value)	0.099
1	SGD regression	0.093
2	SVR	0.091
3	2-layer NN	0.088
4	CNN	0.087
5	CNN-LSTM	0.037

Mean Squared Error, 2-layer NN

Mean Squared Error, CNN-LSTM

Estimated and True Ideal Points, SGD

Estimated and True Ideal Points, CNN-LSTM for Different Levels of Noise

Conclusion

- › Applied to UK Parliamentary speeches, US legislation
- > Estimating uncertainty

Mean Squared Error, CNN-LSTM, more polarized data

Questions?

Artificial Bill Text, Generated Character-by-Character

(Recurrent neural network using 6MB of text)

Assistance to Charren Contract Development Procedures.-

- (1) In general.—Section 2963(b)(3) of title 5, United States Code, is amended by adding at the end the following new paragraph:
 - "(7) In addition to any other payment on a given trauma center thereof, or the failure of a national financial assistance under this section for discretionary budget authority to settle the reasonable contributions requested under section 1980
- "(b) Grants to Minority Penalty.—The uninsured technical or environmental [...]