(t) $\lambda = 0$ is not an eigenvalue of A.

This theorem relates all of the major topics we have studied thus far.

Concept Review

- Eigenvector
- Eigenvalue
- Characteristic equation
- Characteristic polynomial
- Eigenspace
- Equivalence Theorem

Skills

- Find the eigenvalues of a matrix.
- Find bases for the eigenspaces of a matrix.

Exercise Set 5.1

In Exercises 1–2, confirm by multiplication that \mathbf{x} is an eigenvector of A, and find the corresponding eigenvalue.

1.
$$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}; \mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Answer:

2.
$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}; \mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

3. Find the characteristic equations of the following matrices:

(a)
$$\begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
(b)
$$\begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 0 & 3 \\ 4 & 0 \end{bmatrix}$$

$$(d) \begin{bmatrix} -2 & -7 \\ 1 & 2 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

(f)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Answer:

(a)
$$\lambda^2 - 2\lambda - 3 = 0$$

(b)
$$\lambda^2 - 8\lambda + 16 = 0$$

(c)
$$\lambda^2 - 12 = 0$$

(d)
$$\lambda^2 + 3 = 0$$

(e)
$$\lambda^2 = 0$$

$$(f) \lambda^2 - 2\lambda + 1 = 0$$

- **4.** Find the eigenvalues of the matrices in Exercise 3
- 5. Find bases for the eigenspaces of the matrices in Exercise 3

Answer:

- (a) Basis for eigenspace corresponding to $\lambda = 3$: $\begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$; basis for eigenspace corresponding to $\lambda = -1$: $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- (b) Basis for eigenspace corresponding to $\lambda = 4$: $\begin{bmatrix} \frac{3}{2} \\ 1 \end{bmatrix}$
- (c) Basis for eigenspace corresponding to $\lambda = \sqrt{12}$: $\begin{bmatrix} \frac{3}{\sqrt{12}} \\ 1 \end{bmatrix}$; basis for eigenspace corresponding to

$$\lambda = -\sqrt{12} \begin{bmatrix} -\frac{3}{\sqrt{12}} \\ 1 \end{bmatrix}$$

- (d) There are no eigenspaces.
- (e) Basis for eigenspace corresponding to $\lambda = 0: \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- (f) Basis for eigenspace corresponding to $\lambda = 1: \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

6. Find the characteristic equations of the following matrices:

(a)
$$\begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 3 & 0 & -5 \\ \frac{1}{5} & -1 & 0 \\ 1 & 1 & -2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -2 & 0 & 1 \\ -6 & -2 & 0 \\ 19 & 5 & -4 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 3 & 0 \\ -4 & 13 & -1 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 5 & 0 & 1 \\ 1 & 1 & 0 \\ -7 & 1 & 0 \end{bmatrix}$$

(f)
$$\begin{bmatrix} 5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2 \end{bmatrix}$$

7. Find the eigenvalues of the matrices in Exercise 6.

Answer:

(b)
$$-\sqrt{2}$$
, 0, $\sqrt{2}$

8. Find bases for the eigenspaces of the matrices in Exercise 6.

9. Find the characteristic equations of the following matrices:

(a)
$$\begin{bmatrix} 0 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 10 & -9 & 0 & 0 \\ 4 & -2 & 0 & 0 \\ 0 & 0 & -2 & -7 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Answer:

(a)
$$\lambda^4 + \lambda^3 - 3\lambda^2 - \lambda + 2 = 0$$

(b)
$$\lambda^4 - 8\lambda^3 + 19\lambda^2 - 24\lambda + 48 = 0$$

- **10.** Find the eigenvalues of the matrices in Exercise 9.
- 11. Find bases for the eigenspaces of the matrices in Exercise 9.

Answer:

(a)
$$\lambda = 1$$
: basis $\begin{bmatrix} 2 \\ 3 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$; $\lambda = -2$: basis $\begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$; $\lambda = -1$: basis $\begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \end{bmatrix}$

(b)
$$\lambda = 4 : basis \begin{bmatrix} \frac{3}{2} \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

12. By inspection, find the eigenvalues of the following matrices:

(a)
$$\begin{bmatrix} -1 & 6 \\ 0 & 5 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 3 & 0 & 0 \\ -2 & 7 & 0 \\ 4 & 8 & 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -\frac{1}{3} & 0 & 0 & 0 \\ 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

13. Find the eigenvalues of A^9 for

$$A = \begin{bmatrix} 1 & 3 & 7 & 11 \\ 0 & \frac{1}{2} & 3 & 8 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Answer:

1,
$$\left(\frac{1}{2}\right)^9 = \frac{1}{512}$$
, $2^9 = 512$

14. Find the eigenvalues and bases for the eigenspaces of A^{25} for

$$A = \begin{bmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$

- 15. Let A be a 2×2 matrix, and call a line through the origin of \mathbb{R}^2 invariant under A if $A\mathbf{x}$ lies on the line when \mathbf{x} does. Find equations for all lines in \mathbb{R}^2 , if any, that are invariant under the given matrix.
 - (a) $A = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$
 - (b) $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
 - (c) $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$

Answer:

- (a) y = x and y = 2x
- (b) No lines
- (c) y = 0
- **16.** Find det(A) given that A has $p(\lambda)$ as its characteristic polynomial.
 - (a) $p(\lambda) = \lambda^3 2\lambda^2 + \lambda + 5$
 - (b) $p(\lambda) = \lambda^4 \lambda^3 + 7$

[*Hint*: See the proof of Theorem 5.1.5.]

- 17. Let A be an $n \times n$ matrix.
 - (a) Prove that the characteristic polynomial of A has degree n.
 - (b) Prove that the coefficient of λ^n in the characteristic polynomial is 1.
- **18.** Show that the characteristic equation of a 2×2 matrix A can be expressed as $\lambda^2 \text{tr}(A)\lambda + \det(A) = 0$, where tr(A) is the trace of A.
- 19. Use the result in Exercise 18 to show that if

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

then the solutions of the characteristic equation of A are

$$\lambda = \frac{1}{2} \left[(a+d) \pm \sqrt{(a-d)^2 + 4bc} \right]$$

Use this result to show that A has

- (a) two distinct real eigenvalues if $(a-d)^2 + 4bc > 0$.
- (b) two repeated real eigenvalues if $(a d)^2 + 4bc = 0$.
- (c) complex conjugate eigenvalues if $(a d)^2 + 4bc < 0$.

20. Let A be the matrix in Exercise 19. Show that if $b \neq 0$, then

$$\mathbf{x}_1 = \begin{bmatrix} -b \\ a - \lambda_1 \end{bmatrix} \text{ and } \mathbf{x}_2 = \begin{bmatrix} -b \\ a - \lambda_2 \end{bmatrix}$$

are eigenvectors of A that correspond, respectively, to the eigenvalues

$$\lambda_1 = \frac{1}{2} \left[(a+d) + \sqrt{(a-d)^2 + 4bc} \right]$$

and

$$\lambda_2 = \frac{1}{2} \left[(a+d) - \sqrt{(a-d)^2 + 4bc} \right]$$

- **21.** Use the result of Exercise 18 to prove that if $p(\lambda)$ is the characteristic polynomial of a 2×2 matrix A, then p(A) = 0.
- **22.** Prove: If a, b, c, and d are integers such that a + b = c + d, then

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

has integer eigenvalues—namely, $\lambda_1 = a + b$ and $\lambda_2 = a - c$.

- 23. Prove: If λ is an eigenvalue of an invertible matrix A, and x is a corresponding eigenvector, then $1/\lambda$ is an eigenvalue of A^{-1} , and x is a corresponding eigenvector.
- **24.** Prove: If λ is an eigenvalue of A, \mathbf{x} is a corresponding eigenvector, and s is a scalar, then λs is an eigenvalue of A sI, and \mathbf{x} is a corresponding eigenvector.
- **25.** Prove: If λ is an eigenvalue of A and x is a corresponding eigenvector, then $s\lambda$ is an eigenvalue of sA for every scalar s, and x is a corresponding eigenvector.
- 26. Find the eigenvalues and bases for the eigenspaces of

$$A = \begin{bmatrix} -2 & 2 & 3 \\ -2 & 3 & 2 \\ -4 & 2 & 5 \end{bmatrix}$$

and then use Exercises 23 and 24 to find the eigenvalues and bases for the eigenspaces of

- (a) A^{-1}
- (b) A 3I
- (c) A + 2I
- 27. (a) Prove that if A is a square matrix, then A and A^T have the same eigenvalues. [Hint: Look at the characteristic equation $\det(M A) = 0$.]
 - (b) Show that A and A^T need not have the same eigenspaces. [Hint: Use the result in Exercise 20 to find a 2×2 matrix for which A and A^T have different eigenspaces.]
- **28.** Suppose that the characteristic polynomial of some matrix A is found to be $p(\lambda) = (\lambda 1)(\lambda 3)^2(\lambda 4)^3$. In each part, answer the question and explain your reasoning.
 - (a) What is the size of A?
 - (b) Is A invertible?
 - (c) How many eigenspaces does A have?

29.	The eigenvectors that we have been studying are sometimes called <i>right eigenvectors</i> to distinguish them from <i>left eigenvectors</i> , which are $n \times 1$ column matrices x that satisfy the equation $\mathbf{x}^T A = \mu \mathbf{x}^T$ for some
	scalar μ . What is the relationship, if any, between the right eigenvectors and corresponding eigenvalues λ of A and the left eigenvectors and corresponding eigenvalues μ of A ?
Ti	rue-False Exercises

In parts (a)–(g) determine whether the statement is true or false, and justify your answer.

(a) If A is a square matrix and $A\mathbf{x} = \lambda \mathbf{x}$ for some nonzero scalar λ , then \mathbf{x} is an eigenvector of A.

Answer:

False

(b) If λ is an eigenvalue of a matrix A, then the linear system $(\lambda I - A)\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Answer:

False

(c) If the characteristic polynomial of a matrix A is $p(\lambda) = \lambda^2 + 1$, then A is invertible.

Answer:

True

(d) If λ is an eigenvalue of a matrix A, then the eigenspace of A corresponding to λ is the set of eigenvectors of A corresponding to λ .

Answer:

False

(e) If 0 is an eigenvalue of a matrix A, then A^2 is singular.

Answer:

True

(f) The eigenvalues of a matrix A are the same as the eigenvalues of the reduced row echelon form of A.

Answer:

False

(g) If 0 is an eigenvalue of a matrix A, then the set of columns of A is linearly independent.

Answer:

False