Maulana Azad National Institute of Technology, Bhopal Mid Term Examination (February, 2022) [Online Assessment]

Course: B. Tech. Semester-I Branch: All

Subject: Mathematics-I Sub. Code: MTH-111
Time: 90 Minutes Date: 04-02-2022 Max. Marks: 20

<u>Instructions</u>: There are five questions. Attempt all questions. Your writing should be readable. Assume missing data if any. Please capture the images of the handwritten solutions and make a single PDF, where the **filename** should be **your scholar number** and upload the file in response to your solution. Please write **your name and scholar number** on each page of the response sheet.

S.No	Question	Marks
1	Solve the following integral $\int_0^\infty \int_{-\infty}^\infty 5 e^{-(x^2+y^2)} dxdy$	04
2	Trace the curve for the equation $y(x^2 - a^2) = (x^2 + a^2)$ after calculating the following: i) Check the concavity and coordinates of inflection points of $f(x)$. ii) Identify symmetry and asymptotes	04
3	Find the Tayler Series around (1, 1) of $f(x,y) = \tan^{-1}(xy)$, and then compute the value of $f(1.1, 0.8)$ using Taylor Series quadratic approximation.	04
4	If the temperature T at any point (x, y, z) in space is $T = 4 \text{ xyz}^2$, then using Lagrange's Multiplier method, find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = I$.	04
5	If $u = \sin^{-1}(\frac{x^6 + y^6}{x + y})$, then calculate $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.	04