AULAS 15 E 16: FIS271 - Física Computacional I

Exercício 1. Estimativas numéricas para a derivada de uma função f(x) em relação à variável x podem ser obtidas considerando a expansão em série de Taylor $f(x) = f(x^*) + (x - x^*)f'(x^*) + (x - x^*)^2 f''(x^*)/2! + \dots$ ao redor de pontos discretizados em intervalos regulares $h = x_{i+1} - x_i$ (vide pág. 198 da Ref. [1]). Por exemplo, a derivada $f'_i = f'(x_i)$ pode ser estimada pela expansão de f(x) ao redor de $x^* = x_i$ e tomada no ponto x_{i+1} , o que resulta na fórmula de dois pontos com diferença à direita:

$$f_i' = \frac{f_{i+1} - f_i}{h} + \mathcal{O}(h) \quad ,$$

onde $\mathcal{O}(h)$ denota todos os termos proporcionais a uma ordem igual ou superior a h, isto é, a ordem do erro.

a) Considere f_{i+1} e f_{i-1} como os valores da expansão de f(x) ao redor de x_i tomadas nos pontos x_{i+1} e x_{i-1} , respectivamente. Mostre que a derivada primeira de f(x) pode ser estimada pela fórmula de três pontos com diferença centrada, dada por

 $f_i' = \frac{f_{i+1} - f_{i-1}}{2h} + \mathcal{O}(h^2)$.

b) Considerando os valores f_{i+2} , f_{i+1} , f_{i-1} e f_{i-2} da expansão de f(x) ao redor x_i , é possível obter a fórmula de cinco pontos com diferença centrada $f'_i = (f_{i-2} - 8f_{i-1} + 8f_{i+1} - f_{i+2})/12h + \mathcal{O}(h^4)$. Compare (i.e. fazendo gráficos) as três estimativas acima para obter a derivada primeira de $f(x) = xe^x$ considerando os valores de h = 0.10 e h = 0.25. Inclua também gráficos do erro absoluto $\varepsilon(x_i)$ entre os valores obtidos pelas estimativas numéricas e os valores exatos esperados para f'(x) no intervalo $x \in [0, 5]$.

c) Considerando o mesmo intervalo, faça gráficos e também inclua a análise de erros para a derivada segunda de $f(x) = xe^x$. Faça isso comparando tanto a fórmula de três pontos com diferença centrada

$$f_i'' = \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2} + \mathcal{O}(h^2)$$

quanto a fórmula de cinco pontos com diferença centrado

$$f_i'' = \frac{1}{12h^2}(-f_{i-2} + 16f_{i-1} - 30f_i + 16f_{i+1} - f_{i+2}) + \mathcal{O}(h^4) .$$

Em (b) e (c) indique explicitamente quais as fórmulas fornecem os menores erros.

Exercício 2. Considere o modelo de Verhulst (1838), o qual descreve a evolução do número de indivíduos $\bar{y}(t)$ em uma população através da expressão:

$$\bar{y}(t) = \frac{\kappa y_0}{y_0 + (\kappa - y_0) e^{-rt}} ,$$

onde r e κ são parâmetros que representam, respectivamente, a taxa de crescimento da população e a capacidade de suporte do meio que estão inseridos os indivíduos. Sabe-se que expressão acima é a solução de um problema de valor inicial (PVI), i.e. onde a condição inicial $y_0 = y(t_0)$ é conhecida, o qual é definido pela seguinte equação diferencial ordinária (EDO):

$$\frac{dy}{dt} = r y \left(1 - \frac{y}{\kappa} \right) .$$

Se o PVI é bem posto, isto é, possui uma única solução no intervalo $t \in [a,b]$, a estimativa numérica w para a solução $\bar{y}(t)$ pode ser obtida através de diversos métodos utilizando diferenças finitas. Tais métodos requerem a discretização do intervalo em N+1 pontos igualmente espaçados e fornecem $w_i \simeq \bar{y}(t_i)$, com $t_i = t_0 + ih$, $t_0 = a$, $t_N = b$ e h = (b-a)/N. Dentre os métodos mais comuns estão os métodos de Taylor, os quais são baseados nas expansões em série de Taylor. Por exemplo, assumindo $g(t_i, y(t_i)) = dy/dt \simeq (w_{i+1} - w_i)/h = g(t_i, w_i)$ obtemos o método de Euler (vide pág. 217 de [1]), onde:

$$\bar{y}(t_{i+1}) \simeq w_{i+1} = w_i + h g(t_i, w_i)$$
,

com $w_0 = y_0 = y(t_0)$ e i = 1, ..., N - 1.

a) Considerando $y_0 = 198$, $r = 0.03 \, \mathrm{dias^{-1}}$ e $\kappa = 4300$, implemente o método de Euler para obter w_i no intervalo $t_0 = 0 \, \mathrm{dias}$ e $t_N = 365 \, \mathrm{dias}$. Compare os resultados utilizando $N = 365 \, \mathrm{e} \, N = 730$ intervalos. Além de graficar as soluções exata $(\bar{y}(t_i))$ e estimada (w_i) , calcule e mostre gráficos para o erro absoluto $\varepsilon_i = |\bar{y}(t_i) - w_i|$.

b) Repita o item (a) utilizando o método preditor-corretor de Euler (pág. 231 de [1]), onde uma estimativa preliminar $\tilde{w}_{i+1} = w_i + hg(t_i, w_i)$ é utilizada para fornecer a estimativa de fato: $w_{i+1} = w_i + (h/2)[g(t_i, w_i) + g(t_{i+1}, \tilde{w}_{i+1})]$. Compare as curvas obtidas em indicando explicitamente qual dos dois métodos fornece os menores ε_i .

c) Considerando o método preditor-corretor de Euler, $\kappa=4300$ e N=730, obtenha as estimativas w_i para $\bar{y}(t_i)$ durante os mesmos 365 dias com os seguinte parâmetros: (i) $y_0=6600$ e $r=0.01\,\mathrm{dias^{-1}}$ e (ii) $y_0=4200$, $r=-0.03\,\mathrm{dias^{-1}}$. Grafique os resultados no mesmo gráfico, inclusive aqueles obtidos no item (b) com N=730, e comente a influência dos parâmetros na dinâmica da população do sistema.

Referência:

[1] J. D. Faires e R. L. Burden. Numerical Methods (3rd ed.)