CONTENTS 1

Classification I

Yifei Sun

Contents

L	ogistic regression and its cousins		
	glm	3	
	Penalized logistic regression	Ę	
	GAM	6	
	MARS	8	

CONTENTS 2

```
library(caret)
library(glmnet)
library(mlbench)
library(pROC)# another package rocr
library(pdp)
library(vip)# variance importance
library(AppliedPredictiveModeling)# one of text book only for theme
```

We use the Pima Indians Diabetes Database for illustration. The data contain 768 observations and 9 variables. The outcome is a binary variable diabetes. We start from some simple visualization of the data.


```
# pch is only for dots shape
```

The data is divided into two parts (training and test).

Logistic regression and its cousins

glm

We first consider the simple classifier with a cut-off of 0.5 and evaluate its performance on the test data.

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction neg pos
##
         neg 60 11
              5 21
##
         pos
##
##
                  Accuracy : 0.8351
##
                    95% CI: (0.746, 0.9027)
      No Information Rate: 0.6701
##
      P-Value [Acc > NIR] : 0.0002081
##
```

4 glm

```
##
##
                     Kappa: 0.6083
##
    Mcnemar's Test P-Value: 0.2112995
##
##
               Sensitivity: 0.6562
##
##
               Specificity: 0.9231
##
            Pos Pred Value: 0.8077
##
            Neg Pred Value: 0.8451
##
                Prevalence: 0.3299
##
            Detection Rate: 0.2165
##
      Detection Prevalence: 0.2680
##
         Balanced Accuracy: 0.7897
##
##
          'Positive' Class : pos
##
```

Confusion Matrix:

	Observed	
Predict	Negative	Positive
Negative	a	b
Positive	c	d

- Accuracy: $\frac{a+d}{n}$
- No Information Rate : $\max(\frac{a+c}{n}, \frac{b+d}{n})$
- Kappa: measures the agreement between classification and truth values

 - $-P_o$: observed , accuracy $\frac{a+d}{n}$ $-P_e$: probability of agreement by chance, random accuracy, probability that the labels produces by these two processes coincide by chance (assuming independence). $\frac{a+c}{n} \times \frac{a+b}{n} + \frac{b+d}{n} \times \frac{c+d}{n}$
 - $-Kappa = \frac{P_o P_e}{1 P_e}$
 - if perfect classifier $P_o = 1$, Kappa = 1; if classifier is same as agreement by chance, which means $P_o = P_e$, Kappa = 0. Also Kappa can be negative, but usually -0.4-0.6 -0.6 -0.8+
- Mcnemar test: null hypotheses $P_b = P_c$. The null hypothesis of marginal homogeneity states that the two marginal probabilities for each outcome are the same, e.g. $P_a+P_b=P_a+P_c$, $P_c+P_d=$ P b+P d\$
- Sensitivity: True Positive Rate, $\frac{d}{b+d}$ Specificity: True Negative Rate, $\frac{a}{a+c}$
- PPV: Positive Predictive Value, $\frac{d}{7}c$
- NPV:
- Prevalence: $\frac{b+d}{a}$
- Detection Rate:
- Detection Prevalence:
- Balanced Accuracy: mean of sensitivity and specificity

We then plot the test ROC curve. You may also consider a smoothed ROC curve.

```
roc.glm <- roc(dat$diabetes[-rowTrain], test.pred.prob)</pre>
plot(roc.glm, legacy.axes = TRUE, print.auc = TRUE)
plot(smooth(roc.glm), col = 4, add = TRUE)
```


We can also fit a logistic regression using caret. This is to compare the cross-validation performance with other models, rather than tuning the model.

Penalized logistic regression

Penalized logistic regression can be fitted using glmnet. We use the train function to select the optimal tuning parameters.

GAM6

```
method = "glmnet",
                      tuneGrid = glmnGrid,
                      metric = "ROC",
                      trControl = ctrl)
model.glmn$bestTune
##
       alpha
                 lambda
## 93 0.05 0.1353353
myCol<- rainbow(25)</pre>
myPar <- list(superpose.symbol = list(col = myCol),</pre>
               superpose.line = list(col = myCol))
plot(model.glmn, par.settings = myPar, xTrans = function(x) log(x))
                                          Mixing Percentage
   0
                             0.3
                                                        0.6
                                                                                  0.9
   0.05
                             0.35
                                                        0.65
                                                                                  0.95
   0.1
                             0.4
                                                        0.7
   0.15
                             0.45
                                                        0.75
   0.2
                             0.5
                                                        8.0
   0.25
                             0.55
                                                        0.85
 ROC (Repeated Cross-Validation)
     8.0
     0.7
     0.6
     0.5
```

Now we want to find the tuning parameters maximizing the function

-6

GAM

-8

```
set.seed(1)
model.gam <- train(x = dat[rowTrain,1:8],</pre>
                    y = dat$diabetes[rowTrain],
```

-4

Regularization Parameter

-2

GAM 7

```
method = "gam",
    metric = "ROC",
    trControl = ctrl)

model.gam$finalModel
```

```
##
## Family: binomial
## Link function: logit
##
## Formula:
## .outcome ~ s(pregnant) + s(pressure) + s(age) + s(triceps) +
## s(glucose) + s(insulin) + s(mass) + s(pedigree)
##
## Estimated degrees of freedom:
## 0.0001 0.0000 7.5614 1.3490 2.2830 0.0000 0.0000
## 1.6659 total = 13.86
##
## UBRE score: -0.0602217
```

```
plot(model.gam$finalModel, select = 3)
```


we see edf 0.0001, means the model try to shrink this term towards zero

MARS


```
coef(model.mars$finalModel)
```

```
## (Intercept) h(glucose-117) h(29-age) h(1.258-pedigree)
## 0.47846627 0.04364894 -0.21648937 -1.34468216
## h(37-triceps)
## -0.04894219

pdp::partial(model.mars, pred.var = c("age"), grid.resolution = 200) %>% autoplot()
```


vip(model.mars\$finalModel)

vip: variance importance in MARS, each term added to model, if no VIP, means they do not enter the model. Overall impact of variables

```
res <- resamples(list(GLM = model.glm,
                      GLMNET = model.glmn,
                      GAM = model.gam,
                      MARS = model.mars))
summary(res)
##
## Call:
## summary.resamples(object = res)
## Models: GLM, GLMNET, GAM, MARS
## Number of resamples: 10
##
## ROC
##
           Min. 1st Qu. Median
                                     Mean
                                            3rd Qu.
## GLM
          0.760 0.79125 0.8175 0.8329971 0.8754386 0.9298246
                                                                  0
## GLMNET 0.755 0.80750 0.8275 0.8406813 0.8881579 0.9181287
                                                                  0
## GAM
          0.660 0.78625 0.8200 0.8174357 0.8412281 0.9210526
                                                                  0
## MARS
          0.705 0.76625 0.7950 0.8042836 0.8478070 0.8976608
                                                                  0
##
## Sens
##
                                                3rd Qu.
          Min.
                 1st Qu.
                             Median
                                         Mean
                                                              Max. NA's
## GLM
          0.75 0.8500000 0.8947368 0.8686842 0.9000000 0.9473684
```

```
## GLMNET 0.85 0.8625000 0.9000000 0.9092105 0.9473684 1.0000000
                                                                     0
          0.75 0.8500000 0.9000000 0.8794737 0.9355263 1.0000000
## GAM
                                                                     0
## MARS
          0.75 0.8421053 0.8500000 0.8531579 0.8875000 0.9473684
##
## Spec
                 1st Qu.
                            Median
                                                3rd Qu.
##
          Min.
                                         Mean
                                                             Max. NA's
           0.3 0.4250000 0.5777778 0.5222222 0.6000000 0.7000000
## GLM
           0.3 0.3500000 0.5000000 0.4822222 0.5888889 0.6666667
## GLMNET
                                                                     0
## GAM
           0.3 0.4250000 0.5500000 0.5766667 0.7000000 0.8888889
                                                                     0
## MARS
           0.2\ 0.4111111\ 0.5000000\ 0.5022222\ 0.6000000\ 0.777778
bwplot(res, metric = "ROC")
```


Now let's look at the test data performance.

```
glm.pred <- predict(model.glm, newdata = dat[-rowTrain,], type = "prob")[,2]
glmn.pred <- predict(model.glmn, newdata = dat[-rowTrain,], type = "prob")[,2]
gam.pred <- predict(model.gam, newdata = dat[-rowTrain,], type = "prob")[,2]
mars.pred <- predict(model.mars, newdata = dat[-rowTrain,], type = "prob")[,2]

roc.glm <- roc(dat$diabetes[-rowTrain], glm.pred)
roc.glmn <- roc(dat$diabetes[-rowTrain], glmn.pred)
roc.gam <- roc(dat$diabetes[-rowTrain], gam.pred)
roc.mars <- roc(dat$diabetes[-rowTrain], mars.pred)

auc <- c(roc.glm$auc[1], roc.glmn$auc[1],</pre>
```



```
## using plot.roc
# plot(roc.glm, legacy.axes = TRUE)
# plot(roc.glmn, col = 2, add = TRUE)
# plot(roc.gam, col = 3, add = TRUE)
# plot(roc.mars, col = 4, add = TRUE)
# legend("bottomright", legend = pasteO(modelNames, ": ", round(auc,3)),
# col = 1:4, lwd = 2)
```