

Тиристори

Двустабилна схема

Между PNP и NPN транзисторите съществува положителна обратна връзка:

- увеличаване на lb(Q2) води до увеличаване на lc(Q2) и следователно на lb(Q1)
- увеличаването на lb(Q1) води до пропорционално нарастване на lc(Q1), който в крайна сметка още повече увеличава lb(Q2)

Този процес ще завърши когато и двата транзистора достигна режим на насищане.

По подобен начин ще се "усилват" и отрицателните промени. Ако някакъв фактор причини намаляване на базовия ток на един от транзисторите, процесът ще продължи докато и двата транзистора достигнат режим на отсечка.

Схемата има две стабилни състояния: отворено и затворено.

Преминаването между тях не може да стане бе намеса на външна сила.

Диод на Шокли (Schockley)

Единственият начин да се "затвори" този диод е чрез пробив в прехода j2. Единственият начин да се "отвори" този диод е като се намали токът докато стане по-малък от т.нар. ток на задържане.

Тиристор

Включване — импулс на гейта Изключване — намаляване на напрежението анод-катод

Тиристор - структура

Тиристор - характеристика

Voltage Current Characteristic of SCR

Symbol	Parameter	
V _{DRM}	Peak Repetitive Off State Forward Voltage	
I _{DRM}	Peak Forward Blocking Current	
V _{RRM}	Peak Repetitive Off State Reverse Voltage	
I _{RRM}	Peak Reverse Blocking Current	
V _{TM}	Peak On State Voltage	
I _H	Holding Current	

Предимства и приложения на тиристорите

- Могат да работят във вериги с променливо напрежение (за разлика от MOSFET)
- Малко съпротивление когато са във включено състояние (по сравнение с MOSFET)
- Издържат големи токове (приложение в схеми за защита от свръхнапрежение)
- Управлението чрез ток на гейта се реализира с прости схеми
- Остава в включено състояние след като края на управляващия сигнал
- Изключва се когато токът стане нула (zero current turn off)
- Издържа на високи напрежения

Приложения – защита от пренапрежение

Приложения – регулиране на мощността

Симетрични триристори – триак

IGBT - insulated-gate bipolar transistor

От MOSFET:

Висок входен импеданс и малък входен капацитет.

От BJT:

Ниско съпротивление във включено състояние и способност да управлява големи токове.

Може да бъде изключен чрез гейта.

Typical structures of planar IGBTs. Notice that the IGBT is a four-layer structure (P-N-P-N). Holes are injected into the N- region. When the gate stops the injection the N- region is still flooded with charges. Some recombine with electrons, others are swept away by the electric field between collector and emitter due to the voltage increase at turn-off.

What is the difference between MOSFETs and IGBTs?

Comparison of the performance of different types of transistors

Туре	Bipolar transistors	MOSFETs	IGBTs
Gate (base) drive	Current drive (Low input impedance)	Voltage drive (High input impedance)	Voltage drive (High input impedance)
Gate (base) drive circuit	Complicated for switching applications	Relatively simple	Relatively simple
On-state voltage characteristics	Low V _{CE(sat)}	On-resistance x drain current Without built-in voltage(*1)	Low V _{CE(sat)} With built-in voltage ^(*1)
Switching time	Slow (Carrier accumulation effect)	Ultra-high speed (Unipolar device)	High speed (Faster than bipolar transistors and slower than MOSFETs)
Parasitic diode	Not present	Present (body diode)	Present only in RC-IGBTs