Subject: Engineering Mathematics Chapter: Differential Equation

DPP-01

Topic: Introduction & formation of DE

- The differential $\frac{d^2y}{dx^2} + \frac{dy}{dx} + \sin y = 0$ is
 - (a) linear
- (b) non-linear
- (c) homogeneous
- (d) of degree two
- 2. The necessary and sufficient condition for differential equation of the form M(x, y) dx + N(x, y)dy = 0 to be exact is

 - (a) M = N (b) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$
 - (c) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ (d) $\frac{\partial^2 M}{\partial x^2} = \frac{\partial^2 N}{\partial y^2}$
- Match each of the items A, B, C with an appropriate item from 1, 2, 3, 4 and 5
 - (A) $a_1 \frac{d^2 y}{dx^2} + a_2 y \frac{dy}{dx} + a_3 y = a_4$
 - (B) $a_1 \frac{d^3 y}{dx^3} + a_2 y = a_3$
 - (C) $a_1 \frac{d^3 y}{dx^2} + a_2 x \frac{dy}{dx} + a_3 x^2 y = 0$
 - (1) non-linear differential equation
 - differential equation with constant coefficients
 - (3) linear homogeneous differential equation
 - (4) non-linear homogeneous differential equation
 - (5) non-linear first order differential equation
 - A-1, B-2, C-3
- (b) A-3, B-4, C-2
- (c) A-2, B-4, C-3 (d) A-3, B-1, C-2

- The differential equation $y'' + (y^3 \sin x)^5 y' + y = \cos x^3$
 - homogeneous (a)
 - non-linear
 - second order linear
 - non-homogeneous with constant coefficients
- Biotransformation of an organic compound having concentration (x) can be modeled using an ordinary differential equation $\frac{dx}{dt} + kx^2 = 0$, where k is the reaction rate constant. If x = a at t = 0, the solution of the equation is

 - (a) $x = ae^{-kt}$ (b) $\frac{1}{x} = \frac{1}{a} + kt$
 - (c) $x = a (1 e^{-kt})$ (d) x = a + kt
- following differential equation has

$$3\left(\frac{d^2y}{dt^2}\right) + 4\left(\frac{dy}{dt}\right)^3 + y^2 + 2 = x$$

- (a) degree = 2, order = 1
- (b) degree = 1, order = 2
- (c) degree = 4, order = 3
- (d) degree = 2, order = 3
- The equation of the curve, for which the angle between the tangent and the radius vector is twice the vectorial angle is $r^2 = A \sin 2\theta$. This satisfies the differential equation
 - (a) $r\frac{dr}{d\theta} = \tan 2\theta$ (b) $r\frac{d\theta}{dr} = \tan 2\theta$
- - (c) $r \frac{dr}{d\theta} = \cos 2\theta$ (d) $r \frac{d\theta}{dr} = \cos 2\theta$

- The differential equation of the family of circles of radius r whose center lies on the x-axis is
 - (a) $y \frac{dy}{dx} + y^2 + r^2$
 - (b) $y\left(\frac{dy}{dx}+1\right)=r^2$
 - (c) $y^2 \left[\left(\frac{dy}{dx} \right) + 1 \right] = r^2$
 - (d) $y^2 \left[\left(\frac{dy}{dx} \right)^2 + 1 \right] = r^2$

- If $x = A \cos(mt \alpha)$, then the differential equation satisfying this relation is

 - (a) $\frac{dx}{dt} = 1 x^2$ (b) $\frac{d^2x}{dt^2} = -\alpha^2x$
 - (c) $\frac{d^2x}{dt^2} = -m^2x$ (d) $\frac{dx}{dt} = -m^2x$
- 10. The solution of the differential equation $2x \frac{dy}{dx} = 2 y$

is

(a)
$$y = 2 - \sqrt{\frac{c}{x}}$$
 (b) $y = 2 + \sqrt{\frac{c}{x}}$

(b)
$$y = 2 + \sqrt{\frac{c}{x}}$$

(c)
$$y = 2 - c\sqrt{x}$$
 (d) $y = 2 + c\sqrt{x}$

(d)
$$y = 2 + c\sqrt{x}$$

Answer Key

1. (b)

2. (c)

3. (a)

4. (b)

5. (b)

6. (b)

7. **(b)**

8. (d)

9. (c)

10. (a)

Any issue with DPP, please report by clicking here: $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4