Applicant: Dearg Brown et al. Serial No.: To Be Assigned

Filed : Herewith Page : 3 of 9

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1. (Original) A compound of formula (I):

wherein:

A is absent or is $(CH_2)_2$;

R¹ is C(O)NR¹⁰R¹¹, C(O)₂R¹², NR¹³C(O)R¹⁴, NR¹⁵C(O)NR¹⁶R¹⁷, NR¹⁸C(O)₂R¹⁹, heterocyclyl (for example piperidine, piperazine, pyrrolidine or azetidine), aryl, cycloalkyl or heteroaryl;

 R^{10} , R^{13} , R^{15} , R^{16} and R^{18} are hydrogen or C_{1-6} alkyl;

 R^{11} , R^{12} , R^{14} , R^{17} and R^{19} are C_{1-8} alkyl (optionally substituted by halo, hydroxy, C_{1-6} alkoxy, C_{1-6} haloalkoxy, C_{3-6} cycloalkyl (optionally substituted by halo), C_{5-6} cycloalkenyl, $S(C_{1-4}$ alkyl), $S(O)(C_{1-4}$ alkyl), $S(O)_2(C_{1-4}$ alkyl), heteroaryl, aryl, heteroaryloxy or aryloxy), aryl, heteroaryl, C_{3-7} cycloalkyl (optionally substituted by halo or C_{1-4} alkyl), C_{4-7} cycloalkyl fused to a phenyl ring, C_{5-7} cycloalkenyl, or, heterocyclyl (itself optionally substituted by oxo, $C(O)(C_{1-6}$ alkyl), $S(O)_k(C_{1-6}$ alkyl), halo or C_{1-4} alkyl); or R^{11} , R^{12} , R^{14} and R^{17} can also be hydrogen; or R^{10} and R^{11} , and/or R^{16} and R^{17} may join to form a 4-, 5- or 6-membered ring which

or R^{10} and R^{11} , and/or R^{16} and R^{17} may join to form a 4-, 5- or 6-membered ring which optionally includes a nitrogen, oxygen or sulphur atom, said ring being optionally substituted by C_{1-6} alkyl, $S(O)_1(C_{1-6}$ alkyl) or $C(O)(C_{1-6}$ alkyl);

Applicant: Dearg Brown et al. Serial No.: To Be Assigned

Filed : Herewith Page : 4 of 9

R² is phenyl, heteroaryl or C₃₋₇ cycloalkyl;

 R^3 is H or C_{1-4} alkyl;

X is $S(O)_2NR^4R^5$ or $NR^6S(O)_2R^7$;

 R^7 is aryl, heteroaryl, C_{1-6} alkyl, C_{3-7} cycloalkyl, heterocyclyl or NR^8R^9 wherein NR^8R^9 can be cyclized to form a 4-, 5- or 6-membered ring which optionally includes a nitrogen, oxygen or sulphur atom, said ring being optionally substituted by C_{1-6} alkyl, $S(O)_p(C_{1-6}$ alkyl) or $C(O)(C_{1-6}$ alkyl);

 R^4 and R^8 are aryl, heteroaryl, C_{1-6} alkyl (optionally substituted by hydroxy or C_{1-6} alkoxy), C_{3-7} cycloalkyl or heterocyclyl;

 R^5 , R^6 and R^9 are, independently, hydrogen or C_{1-6} alkyl; n is 1, 2 or 3;

aryl, phenyl and heteroaryl moieties are independently optionally substituted by one or more of halo, cyano, nitro, hydroxy, OC(O)NR²⁰R²¹, NR²²R²³, NR²⁴C(O)R²⁵, NR²⁶C(O)NR²⁷R²⁸, S(O)₂NR²⁹R³⁰, NR³¹S(O)₂R³², C(O)NR³³R³⁴, CO₂R³⁶, NR³⁷CO₂R³⁸, S(O)₀R³⁹, OS(O)₂R⁴⁹, C₁₋₆ alkyl (optionally mono-substituted by S(O)₂R⁵⁰ or $C(O)NR^{51}R^{52}$), C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-10} cycloalkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy(C_{1-6}) 6) alkyl, C_{1-6} alkoxy, C_{1-6} haloalkoxy, phenyl, phenyl(C_{1-4}) alkyl, phenoxy, phenylthio, phenylS(O), phenylS(O)₂, phenyl(C_{1-4})alkoxy, heteroaryl, heteroaryl(C_{1-4})alkyl, heteroaryloxy or heteroaryl(C₁₋₄)alkoxy; wherein any of the immediately foregoing phenyl and heteroaryl moieties are optionally substituted with halo, hydroxy, nitro, S(C₁₋₄ alkyl), $S(O)(C_{1-4} \text{ alkyl})$, $S(O)_2(C_{1-4} \text{ alkyl})$, $S(O)_2NH_2$, $S(O)_2NH(C_{1-4} \text{ alkyl})$, $S(O)_2N(C_{1-4} \text{ alkyl})$ alkyl)₂, cyano, C_{1-4} alkyl, C_{1-4} alkoxy, $C(O)NH_2$, $C(O)NH(C_{1-4}$ alkyl), $C(O)N(C_{1-4}$ alkyl)₂, CO_2H , $CO_2(C_{1-4} \text{ alkyl})$, $NHC(O)(C_{1-4} \text{ alkyl})$, $NHS(O)_2(C_{1-4} \text{ alkyl})$, CF_3 or OCF_3 ; unless otherwise stated heterocyclyl is optionally substituted by C₁₋₆ alkyl [optionally substituted by phenyl {which itself optionally substituted by halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, cyano, nitro, CF₃, OCF₃, (C₁₋₄ alkyl)C(O)NH, S(O)₂NH₂, C₁₋₄ alkylthio, S(O)(C₁₋₄ alkyl) or S(O)₂(C₁₋₄ alkyl)} or heteroaryl {which itself optionally substituted by halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, cyano, nitro, CF₃, (C₁₋₄ alkyl)C(O)NH, S(O)₂NH₂, C₁₋₄ alkylthio, S(O)(C₁₋₄

Applicant: Dearg Brown et al. Serial No.: To Be Assigned

Filed : Herewith Page : 5 of 9

alkyl) or $S(O)_2(C_{1-4} \text{ alkyl})$], phenyl {optionally substituted by halo, $C_{1-4} \text{ alkyl}$, $C_{1-4} \text{ alkyl}$ }, $C_{1-4} \text{ alkyl}$ }, heteroaryl {optionally substituted by halo, $C_{1-4} \text{ alkyl}$ }, $C_{1-4} \text{ alkyl}$ }, heteroaryl {optionally substituted by halo, $C_{1-4} \text{ alkyl}$ }, C_{1-4}

k, l, p and q are, independently, 0, 1 or 2;

 R^{20} , R^{22} , R^{24} , R^{26} , R^{27} , R^{29} , R^{31} , R^{33} , R^{37} , R^{40} and R^{51} are, independently, hydrogen or C_{1-6} alkyl;

 R^{21} , R^{23} , R^{25} , R^{28} , R^{30} , R^{32} , R^{34} , R^{36} , R^{38} , R^{39} , R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} , R^{47} , R^{48} , R^{49} , R^{50} and R^{52} are, independently, C_{1-6} alkyl (optionally substituted by halo, hydroxy, C_{1-6} alkoxy, C_{1-6} haloalkoxy, C_{3-6} cycloalkyl, C_{5-6} cycloalkenyl, $S(C_{1-4}$ alkyl), $S(O)(C_{1-4}$ alkyl), heteroaryl, phenyl, heteroaryloxy or phenyloxy), C_{3-7} cycloalkyl, phenyl or heteroaryl; wherein any of the immediately foregoing phenyl and heteroaryl moieties are optionally substituted with halo, hydroxy, nitro, $S(C_{1-4}$ alkyl), $S(O)(C_{1-4}$ alkyl), $S(O)_2(C_{1-4}$ alkyl), $S(O)_2(C_{1-4$

or a pharmaceutically acceptable salt thereof or a solvate thereof.

- 2. (Original) A compound as claimed in claim 1 wherein A is absent.
- 3. (Currently amended) A compound as claimed in claim 1 or 2 wherein n is 1 or 2.

Applicant: Dearg Brown et al. Attorney's Docket No.: 06275-493US1 / 101146-1P US

Serial No.: To Be Assigned

Filed : Herewith
Page : 6 of 9

4. (Currently amended) A compound as claimed in claim 1.2 or 3 wherein R³ is hydrogen.

- 5. (Currently amended) A compound as claimed in claim 1, 2, 3 or 4 wherein R¹ is NR¹³C(O)R¹⁴; wherein R¹³ and R¹⁴ are as defined in claim 1.
- 6. (Currently amended) A compound as claimed in claim 1, 2, 3 or 4 wherein R¹ is optionally substituted aryl or optionally substituted heteroaryl, wherein the optional substituents are as recited in claim 1.
- 7. (Currently amended) A compound as claimed in claim 1, 2, 3 or 4 wherein R¹ is optionally substituted heterocyclyl.
- 8. (Currently amended) A compound as claimed in any one of the preceding claims claim 1 wherein R² is phenyl optionally substituted by halo or CF₃.
- 9. (Currently amended) A compound as claimed in any one of the preceding claims claim 1 wherein X is $NR^6S(O)_2R^7$; wherein R^6 and R^7 are as defined in claim 1.
- 10. (Currently amended) A compound as claimed in any one of the preceding claims claim 1 wherein X is $S(O)_2NR^4R^5$; wherein R^4 and R^5 are as defined in claim 1.
- 11. (Original) A process for preparing a compound as claimed in claim 1, the process comprising:
 - a. when R¹ is an N-linked optionally substituted heterocycle, reacting a compound of formula (II):

Applicant: Dearg Brown et al.
Serial No.: To Be Assigned
Filed: Herewith

Page : 7 of 9

$$R^2$$
 N
 A
 $(CH_2)_n$
 X
 (II)

wherein R^2 , R^3 , n, A and X are as defined in claim 1, with a compound R^1H (wherein the H is on a heterocycle ring nitrogen atom) wherein R^1 is as defined above, in the presence of a suitable base, in a suitable solvent and optionally in the presence of sodium iodide;

b. when R³ is hydrogen, coupling a compound of formula (III):

$$HN$$
 A
 $(CH_2)_n$
 $-X$
 (III)

wherein n, A and X are as defined in claim 1, with a compound of formula (IV):

$$\mathbb{R}^2$$
 \mathbb{H} \mathbb{N} \mathbb{N}

wherein R^1 and R^2 are as defined in claim 1, in the presence of NaBH(OAc)₃ in a suitable solvent at room temperature;

c. when R³ is hydrogen, coupling a compound of formula (III):

$$HN$$
 A
 $(CH_2)_n$
 $-X$
 (III)

wherein n, A and X are as defined in claim 1, with a compound of formula (V):

$$R^2$$
 L (V)

wherein R¹ and R² are as defined in claim 1 and L is a leaving group; in the presence of a base, in a suitable solvent at a temperature from 60°C up to the boiling point of the solvent;

Applicant: Dearg Brown et al. Serial No.: To Be Assigned

Filed: Herewith Page: 8 of 9

d. when X is $S(O)_2NR^4R^5$, reacting a compound:

$$\begin{array}{c|c}
O \\
N \\
A \\
N \\
O
\end{array}$$

$$\begin{array}{c}
O \\
N \\
O \\
O
\end{array}$$

wherein R^1 , R^2 , R^3 , A and n are as defined in claim 1, with NHR⁴R⁵, wherein R^4 and R^5 are as defined in claim 1, in the presence of a suitable base and in the presence of a suitable solvent; or,

e. when X is NR⁶S(O)₂NR⁷, reacting a compound:

$$R^1$$
 R^2
 R^3
 R^4
 R^6

wherein R^1 , R^2 , R^3 , A and n are as defined in claim 1, with $R^7S(O)_2Cl$, in the presence of a suitable base and in the presence of a suitable solvent.

12. (Original) A pharmaceutical composition which comprises a compound as claimed in claim 1, or a pharmaceutically acceptable salt thereof or solvate thereof, and a pharmaceutically acceptable adjuvant, diluent or carrier.

13-14. (Cancelled)

15. (Original) A method of treating a CCR5 mediated disease state comprising administering to a patient in need of such treatment an effective amount of a compound as claimed in claim 1, or a pharmaceutically acceptable salt thereof or solvate thereof.