

Description

The VSM40N20 uses advanced trench technology and design to provide excellent RDS(ON) with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 200V, I_{D} = 40A$ $R_{DS(ON)} < 41m\Omega @ V_{GS} = 10V$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

	Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
ſ	VSM40N20-TF	VSM40N20	TO-220F	-	-	-

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	200	V	
Gate-Source Voltage	V_{GS}	±20	V	
Drain Current-Continuous	I _D	40	А	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	28	A A W	
Pulsed Drain Current	I _{DM}	160		
Maximum Power Dissipation	P _D	60		
Derating factor		0.4	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	480	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{eJC}	2.5	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	60	°C/W

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	200	220	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =200V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	2	3.2	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	36.4	41	mΩ
Forward Transconductance	g FS	V _{DS} =25V,I _D =25A	26	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}		-	6500	-	PF
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, F=1.0MHz	-	290	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVIDZ	-	220	-	PF
Switching Characteristics (Note 4)	·					
Turn-on Delay Time	t _{d(on)}		-	26	-	nS
Turn-on Rise Time	t _r	V_{DD} =30 V , R_L =15 Ω	-	24	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =2.5 Ω	-	91	-	nS
Turn-Off Fall Time	t _f		-	39	-	nS
Total Gate Charge	Qg	V/ 00V/1 00A	-	163		nC
Gate-Source Charge	Q _{gs}	V_{DS} =30V, I_{D} =30A, V_{GS} =10V	-	31		nC
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	64		nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =40A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	40	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = 40A	-	42		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	66		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				y LS+LD)

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature.}$
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}\text{C}$,V_DD=50V,V_G=10V,L=1mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance