

Multiagent decision making and Auctions

Alberto Sardinha

 $\underline{jose.alberto.sardinha@tecnico.ulisboa.pt}$

Outline

- Introduction to auctions
- Canonical auctions
- Bidding in first-price auctions
- Bidding in second-price auctions

Auctions

- Auctions are a mechanism for allocating resources among selfinterested agents
 - Normally scarce resources
- Widely used to:
 - Sell art
 - Sell public companies (privatization)
 - Sell or buy stocks
 - Sell used goods (e.g., eBay)
 - Procure parts
 - Etc.

Outline

- Introduction to auctions
- Canonical auctions
- Bidding in first-price auctions
- Bidding in second-price auctions

Canonical Auctions

- English auction
- Dutch auction
- First-price auction
- Second-price auction

- An English auction is an open-outcry ascending auction that proceeds as follows:
 - The auctioneer starts the bidding at some starting price (reserve price)
 - Bidders then shout out ascending prices
 - At any given moment, the highest bidder is considered to have the standing bid

- An English auction is an open-outcry ascending auction that proceeds as follows:
 - The standing bid becomes the winner if no competing bidder challenges the standing bid within a given time frame
 - And the item is sold to the highest bidder at a price equal to their bid

Example

- Interesting properties/facts of the English auctions:
 - Every bidder knows the number of bidders in the auction
 - The bids are public
 - Bidders can submit several bids
 - This type of auction is commonly used for selling art, antiques, wine, etc.

- A Dutch auction is an open-outcry descending auction that proceeds as follows:
 - The auctioneer starts a clock at some high asking price
 - The price lowers at each time step until a bidder accepts the current ask price (by shouting)

Example:

- A farmer wants to sell a basket of apples and uses a Dutch auction
- The starting bid is \$150
- If nobody accepts the initial bid, the farmer (auctioneer) successively reduces the price in increments of \$10 after 5 seconds:
 - t = 0 : ask price = \$150
 - t = 5 : ask price = \$140
 - t = 10 : ask price = \$130
 - **-** ...

Example:

- A particular bidder is the first to shout out that he wants to buy the item when the price reaches \$40
 - Note that the bidder feels that price is acceptable and that someone else might bid soon
 - The bidder pays \$40 for the basket of apples

- Interesting properties/facts of the Dutch auctions:
 - Every bidder knows the number of bidders in the auction
 - The bid is public (and only one bid is submitted)
 - This type of auction is commonly used for selling flowers, fresh produce, tobacco, etc

First-Price Auction

- A first-price sealed-bid auction proceeds as follows:
 - All bidders submit sealed bids simultaneously
 - No bidder knows the bids of the other bidders
 - The highest bidder wins and pays the submitted price

First-Price Auction

Example:

- Bidder 1 submits a sealed bid of \$100
- Bidder 2 submits a sealed bid of \$80
- Bidder 3 submits a sealed bid of \$95
- Bidder 1 wins and pays \$100 for the item

First-Price Auction

- Interesting properties/facts of the first-price auctions:
 - Every bidder knows the number of bidders in the auction
 - The bids are private
 - Bidders can only submit one bid
 - This type of auction is commonly used for privatization of public companies, selling concessions, etc

Second-Price Auction

- A second-price sealed-bid auction proceeds as follows:
 - All bidders submit sealed bids simultaneously
 - No bidder knows the bids of the other bidders
 - The highest bidder wins and pays the second highest bid

Second-Price Auction

Example:

- Bidder 1 submits a sealed bid of \$100
- Bidder 2 submits a sealed bid of \$80
- Bidder 3 submits a sealed bid of \$95
- Bidder 1 wins and pays \$95 for the item (and not \$100!)

Second-Price Auction

- Interesting properties/facts of the second-price auctions:
 - Every bidder knows the number of bidders in the auction
 - The bids are private
 - Bidders can only submit one bid
 - Bidders can be invited/selected to the auction
 - It is used in digital ads tech (e.g., Google and Facebook)
 - It has very interesting theoretical results

Outline

- Introduction to auctions
- Canonical auctions
- Bidding in first-price auctions
- Bidding in second-price auctions
- Revenue equivalence

- How do agents bid in a first-price auction?
 - An agent has an incentive to bid less than its true valuation
 - For instance, if the agent thinks the value of a good is \$10 then he might want to bid \$8
 - In a first price auction, if the agent bids \$8 and wins, then he pays \$8 and makes a profit equal to \$2 (i.e., profit = \$10 \$8 = \$2)

- How do agents bid in a first-price auction?
 - The tradeoff in the bidding decision:
 - Probability of winning
 - lower bid → probability of winning is lower
 - higher bid → probability of winning is higher
 - Amount paid when winning
 - lower bid → higher profit
 - higher bid → lower profit

- How do agents bid in a first-price auction?
 - Bidders do not have a dominant strategy
 - strategy of player i depends on the strategy of other players

- How do agents bid in a first-price auction?
 - **Theorem**: In a first-price sealed-bid auction with:
 - Two risk-neutral bidders (i.e., agent 1 and agent 2)
 - The valuations v_1 and v_2 are i.i.d. and drawn from U(0,1)
 - Hence:
 - Agent 1 bids $\frac{1}{2}v_1$
 - Agent 2 bids $\frac{1}{2}v_2$
 - And $\left(\frac{1}{2}v_1, \frac{1}{2}v_2\right)$ is a Bayesian-Nash equilibrium

Proof:

- Let us assume bidder 2 bids $b_2 = \frac{1}{2}v_2$
 - Where v_2 is the value of the object from bidder 2's perspective
- We now analyse bidder 1's optimal decision (best response):
 - The optimal decision is is to maximize the expected profit:

$$\max_{b_1} \mathbb{E}[u_1]$$

Proof:

- We now analyse bidder 1's optimal decision (best response):
 - bidder 1 wins the auction when $b_2 < b_1$, hence $v_2 < 2b_1$ with profit $u_1 = v_1 b_1$
 - bidder 1 looses the auction when $b_1 < b_2$, hence $v_2 > 2b_1$ with profit $u_1 = 0$
 - Hence, $\mathbb{E}[u_1] = P(win|b_1)(v_1 b_1) + P(loose|b_1)0$

Proof:

■ We now analyse bidder 1's optimal decision (best response):

•
$$\mathbb{E}[u_1] = P(win|b_1)(v_1 - b_1) + P(loose|b_1) 0$$

•
$$\mathbb{E}[u_1] = P(win|b_1)(v_1 - b_1)$$

Proof:

We now analyse bidder 1's optimal decision (best response):

•
$$\mathbb{E}[u_1] = P(win|b_1)(v_1 - b_1)$$

•
$$\mathbb{E}[u_1] = P(b_2 < b_1)(v_1 - b_1)$$

• Substituting $v_2 < 2b_1$ for $b_2 < b_1$:

•
$$\mathbb{E}[u_1] = P(v_2 < 2b_1)(v_1 - b_1)$$

Proof:

■ We now analyse bidder 1's optimal decision (best response):

•
$$\mathbb{E}[u_1] = P(v_2 < 2b_1)(v_1 - b_1)$$

$$\blacksquare \mathbb{E}[u_1] = F_{v_2}(2b_1)(v_1 - b_1)$$

RECALL:

The *cumulative distribution function* (CDF) of a realvalued random variable *X* is the function given by:

$$F_X(x) = P(X \le x)$$

Proof:

We now analyse bidder 1's optimal decision (best response):

•
$$\mathbb{E}[u_1] = F_{v_2}(2b_1)(v_1 - b_1)$$

$$\blacksquare \mathbb{E}[u_1] = \int_0^{2b_1} dv_2 \ (v_1 - b_1)$$

RECALL:

The CDF can be expressed as the integral of its probability density function:

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$

Probability density function (uniform distribution)

Cumulative distribution function (uniform distribution)

Proof:

■ We now analyse bidder 1's optimal decision (best response):

$$\mathbb{E}[u_1] = \int_0^{2b_1} dv_2 \ (v_1 - b_1)$$

$$\blacksquare \mathbb{E}[u_1] = (v_2 + k)|_0^{2b_1}(v_1 - b_1)$$

•
$$\mathbb{E}[u_1] = 2b_1(v_1 - b_1) = 2v_1b_1 - 2b_1^2$$

Proof:

- We now analyse bidder 1's optimal decision (best response):
 - Recall that we want to maximize the expected profit:

$$\max_{b_1} \mathbb{E}[u_1]$$

■ Hence, the first order condition is $\frac{\partial \mathbb{E}[u_1]}{\partial b_1} = 0$

Proof:

■ We now analyse bidder 1's optimal decision (best response):

$$v_1 - 4b_1 = 0$$

$$b_1 = \frac{v_1}{2}$$

Proof:

- Let us assume bidder 1 bids $b_1 = \frac{1}{2}v_1$
 - Where v_1 is the value of the object from bidder 1's perspective
- We now analyse bidder 2's optimal decision (best response):
 - The optimal decision is is to maximize the expected profit:

$$\max_{b_2} \mathbb{E}[u_2]$$

And following the same steps in the previous slides:

$$b_2 = \frac{v_2}{2}$$

■ Hence, $\left(\frac{1}{2}v_1, \frac{1}{2}v_2\right)$ is a Bayesian-Nash equilibrium

- How do agents bid in a first-price auction?
 - **Theorem**: In a first-price sealed-bid auction with:
 - N risk-neutral bidders
 - The valuations v_i are i.i.d. and drawn from U(0,1)
 - Hence:
 - $\blacksquare \left(\frac{N-1}{N}v_1, \frac{N-1}{N}v_2, \dots, \frac{N-1}{N}v_N\right)$ is a Bayesian-Nash equilibrium

Outline

- Introduction to auctions
- Canonical auctions
- Bidding in first-price auctions
- Bidding in second-price auctions
- Revenue equivalence

- How do agents bid in a second-price auction?
 - **Theorem**: In a second-price sealed-bid auction with:
 - N risk-neutral bidders
 - lacktriangle The valuations v_i
 - Hence:
 - $(v_1, v_2, ..., v_N)$ is a Nash equilibrium

- Consider the losers' strategies:
 - The profit/payoff of a loosing bid is equal to zero in the NE (i.e., $b_i = v_i$)
 - Reducing their bids does not change the profit because they still loose and do not pay anything
 - profit/payoff is still equal to zero

- Consider the losers' strategies:
 - Increasing their bids above their valuation may or may not change the profit:
 - If they still loose with the increased bid, they still do not pay anything
 - profit/payoff is still equal to zero

- Consider the losers' strategies:
 - Increasing their bids above their valuation may or may not change the profit:
 - On the other hand, a loser increasing his bid to a winning price gives him the good, but at a price higher than the maximum he was willing to pay
 - profit/payoff is negative

- Consider the losers' strategies:
 - Consequently, losers have no incentives to deviate from the NE
 - i.e., losers have no incentives to change their bids

- Consider the winner's strategy:
 - Increasing his bid does not change anything
 - He will still win and continue to pay the price of the second highest bid
 - profit/payoff is the same

- Consider the winner's strategy:
 - Decreasing the bid can only hurt him
 - If the decreased bid stays above the second highest bid, he still wins and still pays the second highest bid
 - profit/payoff is the same

- Consider the winner's strategy:
 - Decreasing the bid can only hurt him
 - If the decreased bid drops below the second highest bid, he now looses the auction
 - profit/payoff is equal to zero

- Consider the winner's strategy:
 - Consequently, the winner has no incentives to deviate from the NE
 - i.e., winner has no incentive to change his bid

Outline

- Introduction to auctions
- Canonical auctions
- Bidding in first-price auctions
- Bidding in second-price auctions
- Revenue equivalence

Which auction should an auctioneer choose?

Which auction should an auctioneer choose?

To some extent, it does not matter...

- **Theorem** (**Revenue Equivalence Theorem**): Assume that each of n risk-neutral agents has an independent private valuation for a single good at auction, drawn from a common cumulative distribution F(v) that is strictly increasing and atomless on $[v, \overline{v}]$. Then any auction mechanism in which
 - the good will be allocated to the agent with the highest valuation; and
 - any agent with valuation v has an expected utility of zero;

yields the same expected revenue, and hence results in any bidder with valuation v making the same expected payment.

Can we use Revenue Equivalence Theorem with the first-price and second-price auctions?

YES!

- Why?
 - The first-price and second-price auctions are **symmetric games** and **every symmetric game has a symmetric equilibrium.** In addition, a symmetric equilibrium has the following property:

higher bid ⇔ higher valuation

- Hence, the good will be allocated to the agent with the highest valuation
- And any agent with valuation \underline{v} has an expected utility of zero

- We will use k^{th} order statistic of a distribution to analyze the revenue equivalence in first-price and second-price auctions
- k^{th} order statistic of a distribution: the expected value of the k^{th} -largest of n draws
- For n i.i.d. draws from a uniform distribution $[0, v_{max}]$, the k^{th} order statistic is:

$$\frac{n+1-k}{n+1}v_{max}$$

- First-price auction:
 - Recall that the winner pays the largest bid
 - However, following the Revenue Equivalence Theorem, the winning bidder in a first-price auction must bid his expected payment conditional on being the winner of a second-price auction

- The winning bidder in a first-price auction must bid his expected payment conditional on being the winner of a second-price auction
 - If bidder i's valuation v_i is the highest, there are then n-1 other valuations drawn from the uniform distribution on $[0, v_i]$
 - Hence, the expected value of the second-highest valuation (bid) is the first-order statistic of n-1 draws from $[0, v_i]$:

$$\frac{(n-1)+1-1}{(n-1)+1}v_i = \frac{n-1}{n}v_i$$

■ This provides a basis for our earlier claim about *n*-bidder first-price auctions

- This provides a basis for our earlier claim about *n*-bidder first-price auctions
 - However, we would still have to check that this is an equilibrium!
 - The revenue equivalence theorem does not say that every revenue-equivalent strategy profile is an equilibrium!

Thank You

jose.alberto.sardinha@tecnico.ulisboa.pt rui.prada@tecnico.ulisboa.pt