SEMESTRÁLNÍ PRÁCE

Název práce:	. Výpočet max. skalárního součínu ze sady vektorů
Číslo práce:	27
Název školy:	Technická univerzita v Liberci
Fakulta:	Fakulta mechatroniky, informatiky atd.
Jméno a příjmení:.	Jan Dostál
Obor:	Informační technologie
Školní rok:	2022/2023
Semestr:	Zimní
Ročník:	1.
Předmět:	Algoritmizace a programování 1

SPECIFIKACE POŽADAVKŮ

- Program má při jednom spuštění umět zpracovat libovolné množství úloh.
- U každé úlohy se nejdříve načtou vstupní data počet vektorů a počet složek vektoru.
- Následně se načtou jednotlivé vektory jako *sada vektorů*, provede se kalkulace vypíše se výsledek.
- Cílem programu je pro každou zadanou úlohu se sadou vektorů nalézt a vypsat dva vektory s maximálním skalárním součinem.
- Program ukončí svoji činnost, pokud uživatel do vstupního data počet vektoru zadá záporné číslo nebo nulu.

NALEZENÉ NEJEDNOZNAČNOSTI

- V zadání bylo řečeno, že program nalezne a vypíše dva vektory s maximálním skalárním součinem, jenže může existovat sada vektorů, kde existují unikátní dvojice řádků, které mají společný maximální skalární součin.
- A jelikož v zadání není řečeno nic o tom, jestli má nalézt první dva nebo poslední dva vektory s maximálním skalárním součinem, tak jsem to interpretoval tak, že je to jedno.
- Program to implementuje tak, že pokud v sadě vektorů je více unikátních dvojic řádků se společným maximálním skalárním součinem, tak nalezne a vypíše poslední dvojici vektorů v rámci procházení sady vektorů

PŘEDPOKLADY SPRÁVNÉHO BĚHU PROGRAMU

- Vstupní dato počet vektorů musí být celé číslo větší než 1, protože skalární součin se počítá pomocí dvou vektorů
- Vstupní dato počet složek vektoru musí být celé číslo větší než 1, protože vektor se skládá vždy z minimálně dvou složek
- Při načítání hodnot do vstupního data sada vektorů musí být hodnoty pouze reálná čísla, desetinným oddělovačem smí být pouze čárka.

NÁVRH ŘEŠENÍ

- Z matematického hlediska jsem musel v kódu zajistit, že se postupně projdou jednotlivé sloupce právě dvou vybraných vektorů, přičemž se mezi sebou vynásobí složky těchto vektorů v daném sloupci a přičtou se k dosavadnímu součtu.
- Před vyhledáváním v sadě vektorů se musí nastavit počáteční hodnota maximálního skalárního součinu, konkrétně na mínus nekonečno. Jiné způsoby řešení nebyly tak efektivní jako způsob natvrdo nastavení počátku k mínus nekonečnu datového typu double, protože kód by pak byl komplikovanější.
- Princip je totiž ten, že se u vybraných dvou vektorů ze sady vypočítá skalární součin a pokud je roven nebo větší než maximum, tak dosavadní maximum je nastaveno na vypočítaný skalární součin těch vybraných vektorů a takto se to opakuje, dokud nejsou vypočítány skalární součiny všech unikátních dvojic řádků sady vektorů.

Diagram postupu řešení algoritmu

PROTOKOL Z TESTOVÁNÍ

Číslo testu	Typ testu, popis vstupů	Očekávaný výsledek	Skutečný výsledek	Prošel (ano/ne)
1	Nevalidní vstup Počet vektorů = ahoj	Vyhození výjimky se zprávou "Nevalidni vstupni data" a zahájení nové úlohy	Vyhození výjimky se zprávou "Nevalidni vstupni data" a zahájení nové úlohy	ano
2	Nevalidní vstup Počet vektorů = 22222222222222222222	Vyhození výjimky se zprávou "Nevalidni vstupni data" a zahájení nové úlohy	Vyhození výjimky se zprávou "Nevalidni vstupni data" a zahájení nové úlohy	ano
3	Nevalidní vstup Počet vektorů = 1	Vyhození výjimky se zprávou "Skalarni soucin nelze spocitat pro pouze jeden zadany vektor" a zahájení nové úlohy	Vyhození výjimky se zprávou "Skalarni soucin nelze spocitat pro pouze jeden zadany vektor" a zahájení nové úlohy	ano
4	Nevalidní vstup Počet vektorů = 0	Ukončení programu a návrat do menu se spustitelnými programy	Ukončení programu a návrat do menu se spustitelnými programy	ano
5	Nevalidní vstup Počet vektorů = -1	Ukončení programu a návrat do menu se spustitelnými programy	Ukončení programu a návrat do menu se spustitelnými programy	ano
6	Nevalidní vstup Počet vektorů = 4 Délka vektoru = ahoj	Vyhození výjimky se zprávou "Nevalidni vstupni data" a zahájení nové úlohy	Vyhození výjimky se zprávou "Nevalidni vstupni data" a zahájení nové úlohy	ano
7	Nevalidní vstup Počet vektorů = 4 Délka vektoru = 222222222222222222222222222222222222	Vyhození výjimky se zprávou "Nevalidni vstupni data" a zahájení nové úlohy	Vyhození výjimky se zprávou "Nevalidni vstupni data" a zahájení nové úlohy	ano
8	Nevalidní vstup Počet vektorů = 4 Délka vektoru = 1	Vyhození výjimky se zprávou "Vektor musí mit minimalne 2 slozky" a zahájení nové úlohy	Vyhození výjimky se zprávou "Vektor musí mit minimalne 2 slozky" a zahájení nové úlohy	ano
9	Nevalidní vstup Počet vektorů = 4 Délka vektoru = 0	Vyhození výjimky se zprávou "Vektor musí mit minimalne 2 slozky" a zahájení nové úlohy	Vyhození výjimky se zprávou "Vektor musí mit minimalne 2 slozky" a zahájení nové úlohy	ano

10	Nevalidní vstup Počet vektorů = 4 Délka vektoru = -1	Vyhození výjimky se zprávou "Vektor musí mit minimalne 2 slozky" a zahájení nové úlohy	Vyhození výjimky se zprávou "Vektor musí mit minimalne 2 slozky" a zahájení nové úlohy	ano
11	Nevalidní vstup Počet vektorů = 3 Délka vektoru = 3 Sada vektorů = 4 ahoj 2 1 2 3 1 2 3	Vyhození výjimky se zprávou "Nevalidni vstupni data" a zahájení nové úlohy	Vyhození výjimky se zprávou "Nevalidni vstupni data" a zahájení nové úlohy	ano
12	Nevalidní vstup Počet vektorů = 3 Délka vektoru = 3 Sada vektorů = 2 2.2 2 1 2 3 1 2 3	Vyhození výjimky se zprávou "Nevalidni vstupni data" a zahájení nové úlohy	Vyhození výjimky se zprávou "Nevalidni vstupni data" a zahájení nové úlohy	ano
13	Limitní stav Počet vektorů = 2 Délka vektoru = 2 Sada vektorů = 2 4 9 3	Výpis výstupních dat Max. skalární součin: 30 Nalezené vektory: (2, 4) a (9, 3) a zahájení nové úlohy	Výpis výstupních dat Max. skalární součin: 30 Nalezené vektory: (2, 4) a (9, 3) a zahájení nové úlohy	ano
14	Limitní stav Počet vektorů = 3 Délka vektoru = 3 Sada vektorů = 2 22222222 2 2 2 2 2 2 2 2222222222	Vyhození výjimky se zprávou "Vypocitany maximalni skalarni soucin nemuze byt nekonecno" a zahájení nové úlohy	Vyhození výjimky se zprávou "Vypocitany maximalni skalarni soucin nemuze byt nekonecno" a zahájení nové úlohy	ano
15	Běžná hodnota Počet vektorů = 3 Délka vektoru = 3 Sada vektorů = -2 5 7 2,5 1 -2 2 1 3	Výpis výstupních dat Max. skalární součin: 22 Nalezené vektory: (-2, 5, 7) a (2, 1, 3) a zahájení nové úlohy	Výpis výstupních dat Max. skalární součin: 22 Nalezené vektory: (-2, 5, 7) a (2, 1, 3) a zahájení nové úlohy	ano
16	Běžná hodnota Počet vektorů = 3 Délka vektoru = 2 Sada vektorů = -2,5 4,5 3 -2 -4 1	Výpis výstupních dat Max. skalární součin: 14.5 Nalezené vektory: (-2.5, 4.5) a (-4, 1) a zahájení nové úlohy	Výpis výstupních dat Max. skalární součin: 14.5 Nalezené vektory: (-2.5, 4.5) a (-4, 1) a zahájení nové úlohy	ano

17	Běžná hodnota Počet vektorů = 3 Délka vektoru = 3 Sada vektorů = 10 20 30 20 10 30 20 30 10	Výpis výstupních dat Max. skalární součin: 1300 Nalezené vektory: (10, 20, 30) a (20, 10, 30) a zahájení nové úlohy	Výpis výstupních dat Max. skalární součin: 1300 Nalezené vektory: (10, 20, 30) a (20, 10, 30) a zahájení nové úlohy	ano
18	Běžná hodnota Počet vektorů = 3 Délka vektoru = 2 Sada vektorů = 2,572 3,232 1,234 2,921 0,721 2,231	Výpis výstupních dat Max. skalární součin: 12.6 Nalezené vektory: (2.57, 3.23) a (1.23, 2.92) a zahájení nové úlohy	Výpis výstupních dat Max. skalární součin: 12.6 Nalezené vektory: (2.57, 3.23) a (1.23, 2.92) a zahájení nové úlohy	ano
19	Běžná hodnota Počet vektorů = 3 Délka vektoru = 2 Sada vektorů = 2573,23 1232,54 1223,5 123,54 503,23 205,09	Výpis výstupních dat Max. skalární součin: 3,300615e+06 Nalezené vektory: (2573.23, 1232.54) a (1223.5, 123.54) a zahájení nové úlohy	Výpis výstupních dat Max. skalární součin: 3,300615e+06 Nalezené vektory: (2573.23, 1232.54) a (1223.5, 123.54) a zahájení nové úlohy	ano

^{*}Typy testů: běžná hodnota, limitní stav, nevalidní vstup

SCREENSHOTY VÝSLEDKŮ AKCEPTAČNÍCH TESTŮ

Pocet vektoru

Test č. 1

Pocet vektoru

Pocet vektoru

222222222222222222222

Nevalidni vstupni data

Pocet vektoru

Test č. 2

Pocet vektoru

Test č. 2

Test č. 3

Pocet vektoru

Vitej ve vyberu spustitelnych programu

- 1. Vykreslovaní vanocních jablek
- 2. Vypocet maximalniho skalarniho soucinu ze sady vektoru
- 0. Konec

Zadej cislo volby z menu:

Test č. 4

Pocet vektoru

-1

Vitej ve vyberu spustitelnych programu

- 1. Vykreslovaní vanocních jablek
- 2. Vypocet maximalniho skalarniho soucinu ze sady vektoru
- 0. Konec

Zadej cislo volby z menu:

Test č. 5

Pocet vektoru 4 Delka vektoru ahoj

Nevalidni vstupni data

Pocet vektoru

Test č. 6

Pocet vektoru

4

Delka vektoru

222222222222222222222

Nevalidni vstupni data

Pocet vektoru

```
Pocet vektoru
4
Delka vektoru
1
Vektor musi mit minimalne 2 slozky
Pocet vektoru
```

Test č. 8

Pocet vektoru
4
Delka vektoru
0
Vektor musi mit minimalne 2 slozky
Pocet vektoru

Test č. 9

```
Pocet vektoru
4
Delka vektoru
-1
Vektor musi mit minimalne 2 slozky
Pocet vektoru
```

Test č. 10

```
Pocet vektoru
Delka vektoru
Zadej vektory
4 ahoj 2 1 2 3 1 2 3
Nevalidni vstupni data
Pocet vektoru
                      Test č. 11
```

```
Pocet vektoru
Delka vektoru
Zadej vektory
2 2.2 2 1 2 3 1 2 3
Nevalidni vstupni data
Pocet vektoru
```

Test č. 12

```
Pocet vektoru
Delka vektoru
Zadej vektory
2 4 9 3
Vektory s maximalnim skalarnim soucinem
(2,00e+00 4,00e+00)
(9,00e+00 3,00e+00)
Skalarni soucin techto vektoru 3,000000e+01
Pocet vektoru
```

```
Pocet vektoru

3

Zadej vektory
2
222222222
2
2
2
2
Vypocitany maximalni skalarni soucin nemuze byt nekonecno

Pocet vektoru
```

Test č. 14

```
Pocet vektoru

3
Delka vektoru

3
Zadej vektory
-2 5 7
2,5 1 -2
2 1 3
Vektory s maximalnim skalarnim soucinem
(-2,00e+00 5,00e+00 7,00e+00)
(2,00e+00 1,00e+00 3,00e+00)
Skalarni soucin techto vektoru 2,200000e+01

Pocet vektoru
```

Test č. 15

```
Pocet vektoru

2

Zadej vektory
-2,5 4,5
3 -2
-4 1

Vektory s maximalnim skalarnim soucinem
(-2,50e+00 4,50e+00)
(-4,00e+00 1,00e+00)

Skalarni soucin techto vektoru 1,450000e+01
```

Test č. 16

```
Pocet vektoru
3
Delka vektoru
3
Zadej vektory
10 20 30
20 10 30
20 30 10
Vektory s maximalnim skalarnim soucinem
(1,00e+01 2,00e+01 3,00e+01)
(2,00e+01 1,00e+01 3,00e+01)
Skalarni soucin techto vektoru 1,300000e+03
```

Pocet vektoru

```
Pocet vektoru

Delka vektoru

Zadej vektory

2,572 3,232

1,234 2,921

0,721 2,321

Vektory s maximalnim skalarnim soucinem

(2,57e+00 3,23e+00)

(1,23e+00 2,92e+00)

Skalarni soucin techto vektoru 1,261452e+01
```

Pocet vektoru

Test č. 18

```
Pocet vektoru

Delka vektoru

Zadej vektory

2573,23 1232,54

1223,5 123,54

503,23 205,09

Vektory s maximalnim skalarnim soucinem

(2,57e+03 1,23e+03)

(1,22e+03 1,24e+02)

Skalarni soucin techto vektoru 3,300615e+06
```

Pocet vektoru