泛函分析作业

1 第 2 周

问题 1.1. 设 $P_r[a,b]$ 是定义在闭区间 [a,b] 上的所有有理系数多项式函数的全体. 显然, $(P_r[a,b],d)$ 是连续函数空间 (C[a,b],d) 的距离子空间, 其中

$$d(f,g) = \max_{t \in [a,b]} \left| f(t) - g(t) \right|, \quad \forall f,g \in C[a,b].$$

证明: $P_r[a,b]$ 是 C[a,b] 的可数稠密子集, 从而 C[a,b] 可分.

证明 Step1. 对任意 $n \in \mathbb{N}$, 设 $P_r^n[a,b]$ 是定义在 [a,b] 上的所有**有理系数** n 次多项式函数的全体, 则 $P_r^n[a,b]$ 是可数集. 由于

$$P_r[a,b] = \bigcup_{n=0}^{\infty} P_r^n[a,b],$$

则 $P_r[a,b]$ 也是可数集.

Step2. 下证 $P_r[a, b]$ 按距离 d 在 P[a, b] 中稠密. 任取 $h \in P[a, b]$,

$$h(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n, \quad t \in [a, b],$$

其中 $a_0, a_1, \dots, a_n \in \mathbb{R}, n \in \mathbb{N}$. 令

$$M = \max_{1 \le k \le n} \max_{t \in [a,b]} |t|^k > 0.$$

根据有理数集 $\mathbb Q$ 在实数集 $\mathbb R$ 中的稠密性, 对任意 $\epsilon>0$, 存在 $q_0,q_1,\cdots,q_n\in\mathbb Q$ 使得

$$|a_0 - q_0| < \frac{1}{n+1}\epsilon, \quad |a_1 - q_1| < \frac{1}{(n+1)M}\epsilon, \quad \cdots, \quad |a_n - q_n| < \frac{1}{(n+1)M}\epsilon.$$

令

$$g(t) = q_0 + q_1 t + \dots + q_n t^n, \quad t \in [a, b],$$

则 $g \in P_r[a,b]$, 并且对任意 $t \in [a,b]$ 都有

$$|h(t) - g(t)| \le |a_0 - q_0| + |a_1 - q_1| \cdot |t| + \dots + |a_n - q_n| \cdot |t|^n \le |a_0 - q_0| + |a_1 - q_1| M + \dots + |a_n - q_n| M < \epsilon,$$

从而

$$\max_{t \in [a,b]} |h(t) - g(t)| < \epsilon.$$

综上, 对任意 $h \in P[a,b]$ 以及任意 $\epsilon > 0$, 存在 $g \in P_r[a,b]$ 使得

$$d(h,g) = \max_{t \in [a,b]} |h(t) - g(t)| < \epsilon,$$

所以 $P_r[a,b]$ 按距离 d 在 P[a,b] 中稠密.

Step3. 根据 Weierstrauss 逼近定理, P[a,b] 按距离 d 在 C[a,b] 中稠密, 则对任意 $\epsilon>0$ 以及任意 $f\in C[a,b]$, 存在 $h\in P[a,b]$ 使得

$$d(f,h) < \frac{1}{2}\epsilon.$$

由 Step2 可知, 存在 $g \in P_r[a,b]$ 使得

$$d(h,g) < \frac{1}{2}\epsilon,$$

从而 $d(f,g) \le d(f,h) + d(h,g) < \epsilon$.

综上, $P_r[a,b]$ 是 C[a,b] 的可数稠密子集, 从而 C[a,b] 可分.

问题 1.2. 按以下步骤证明

定理 1.1 (Riemann-Lebesgue 引理). 设 $f \in L[a,b]$, 对应的 Fourier 系数为

$$a_n = \int_a^b f(x) \sin nx dx, \quad b_n = \int_a^b f(x) \cos nx dx, \quad n \in \mathbb{N},$$

 $\mathbb{N} a_n, b_n \to 0 \quad (n \to \infty).$

Step1. 若 $f \in [a, b]$ 上的简单函数 (P80 定义 3), 证明上述结论成立.

Step2. 设 S[a,b] 是定义在闭区间 [a,b] 上的简单函数的全体. 显然, S[a,b] 是 L[a,b] 的距离子空间, 其中距离

$$d(f,g) = \int_{a}^{b} |f(t) - g(t)| dt, \quad \forall f, g \in L[a,b].$$

证明: S[a,b] 是 L[a,b] 的稠密子集.

Step3. 利用稠密性,证明 Riemann-Lebesgue 引理成立.

证明 Step0. 设 $h \in [a,b]$ 上的一个阶梯函数,

$$h(x) = \begin{cases} c_1, & x \in (a_1, b_1), \\ c_2, & x \in (a_2, b_2), \\ \cdots & \cdots \\ c_k, & x \in (a_k, b_k), \\ 0, & x \in [a, b] \setminus \bigcup_{i=1}^k (a_i, b_i), \end{cases}$$

其中 c_1, c_2, \dots, c_k 为常数, $(a_1, b_1), \dots, (a_k, b_k)$ 是 [a, b] 中互不相交的非空开子区间. 于是,

$$\int_{a}^{b} h(x) \sin nx dx$$

$$= \sum_{i=1}^{k} c_{i} \int_{a_{i}}^{b_{i}} \sin nx dx$$

$$= \frac{1}{n} \sum_{i=1}^{k} c_{i} (\cos na_{i} - \cos nb_{i})$$

$$\to 0 \quad (n \to \infty).$$

同理可证

$$\int_{a}^{b} h(x) \cos nx dx \to 0 \quad (n \to \infty).$$

Step1. 设 $E \in [a, b]$ 中的可测子集, $\chi \in E$ 的特征函数, 即

$$\chi(x) = \left\{ \begin{array}{ll} 1, & x \in E, \\ 0, & x \in [a, b] \setminus E, \end{array} \right.$$

下证

$$\int_{a}^{b} \chi(x) \sin nx dx \to 0 \quad (n \to \infty).$$

令 $\tilde{E}=E\cap(a,b)$, 则 \tilde{E} 也可测并且 $m(E\setminus\tilde{E})=0$. ** 对任意 $\epsilon>0$ **, 存在开集 $G\subset[a,b]$ 使得 $\tilde{E}\subset G$ 并且

$$m(G \setminus \tilde{E}) < \frac{1}{2}\epsilon.$$

另一方面, 根据 \mathbb{R}^1 中开集的构造定理 (P44), G 可表为

$$G = \bigcup_{i=1}^{\infty} O_i,$$

其中 $O_i = (a_i, b_i)$ 是 G 的构成区间, 从而

$$\sum_{i=1}^{\infty} (b_i - a_i) = mG \le b - a < +\infty.$$

于是, 对上述 $\epsilon > 0$, 存在 $N \in \mathbb{N}_+$ 使得

$$\sum_{i=N+1}^{\infty} (b_i - a_i) < \frac{1}{2}\epsilon.$$

令 $V = \bigcup_{i=1}^{N} (a_i, b_i)$, 并定义阶梯函数

$$h(x) = \begin{cases} 1, & x \in V, \\ 0, & x \in [a, b] \setminus V, \end{cases}$$

则

$$\begin{split} &\int_{a}^{b}|\chi(x)-h(x)|dx\\ &=\left(\int_{E\backslash V}+\int_{V\backslash E}+\int_{[a,b]\backslash(E\cup V)}\right)|\chi(x)-h(x)|dx\\ &=\left(\int_{\tilde{E}\backslash V}+\int_{V\backslash \tilde{E}}+\int_{[a,b]\backslash(\tilde{E}\cup V)}\right)|\chi(x)-h(x)|dx\\ &=\int_{\tilde{E}\backslash V}|1-0|dx+\int_{V\backslash \tilde{E}}|0-1|dx+\int_{[a,b]\backslash(\tilde{E}\cup V)}|0-0|dx\\ &=m(\tilde{E}\backslash V)+m(V\backslash \tilde{E})\\ &\leq &m(G\backslash V)+m(G\backslash \tilde{E})\\ &<\frac{1}{2}\epsilon+\frac{1}{2}\epsilon=\epsilon, \end{split}$$

从而

$$0 \le \left| \int_{a}^{b} \chi(x) \sin nx dx \right|$$

$$\le \left| \int_{a}^{b} \left(\chi(x) - h(x) \right) \sin nx dx \right| + \left| \int_{a}^{b} h(x) \sin nx dx \right|$$

$$\le \int_{a}^{b} \left| \chi(x) - h(x) \right| \left| \sin nx \right| dx + \left| \int_{a}^{b} h(x) \sin nx dx \right|$$

$$\le \int_{a}^{b} \left| \chi(x) - h(x) \right| dx + \left| \int_{a}^{b} h(x) \sin nx dx \right|$$

$$<\epsilon + \left| \int_{a}^{b} h(x) \sin nx dx \right|.$$

由于 h 是阶梯函数, 综合 Step0, 数列极限的迫敛性以及 $\epsilon > 0$ 的任意性, 可得

$$\int_{a}^{b} \chi(x) \sin nx dx \to 0 \quad (n \to \infty).$$

设 f 是 [a,b] 上的简单函数,

$$f(x) = \sum_{i=1}^{k} c_i \chi_i(x),$$

其中

- (i) $[a,b] = \bigcup_{i=1}^k E_i, E_1, E_2, \cdots, E_k$ 是 [a,b] 中互不相交的可测子集;
- (ii) c_1, c_2, \cdots, c_k 是非负常数;
- (iii) $\chi_i(x)$ 是 E_i 的特征函数, 即

$$\chi_i(x) = \begin{cases} 1, & x \in E_i, \\ 0, & x \in [a, b] \setminus E_i. \end{cases}$$

由前面的结论可知

$$\int_{a}^{b} f(x) \sin nx dx = \sum_{i=1}^{k} c_i \int_{a}^{b} \chi_i(x) \sin nx dx \to 0 \quad (n \to \infty).$$

同理可证

$$\int_{a}^{b} f(x) \cos nx dx \to 0 \quad (n \to \infty).$$

Step2. (P118) 设 $f \in L[a,b]$, 则 f^+ 和 f^- 也是 [a,b] 上的非负 L 可积函数, 从而, 根据非负可测函数 L 积分的定义 (P102, 定义 1), 对任意 $\epsilon > 0$, 存在 [a,b] 上的简单函数 ϕ_1,ϕ_2 , 使得

$$0 \le \phi_1(x) \le f^+(x), \quad 0 \le \phi_2(x) \le f^-(x), \quad \forall x \in [a, b],$$

并且

$$\int_a^b f^+(x)dx - \frac{\epsilon}{2} \le \int_a^b \phi_1(x)dx \le \int_a^b f^+(x)dx,$$

$$\int_a^b f^-(x)dx - \frac{\epsilon}{2} \le \int_a^b \phi_2(x)dx \le \int_a^b f^-(x)dx.$$

令 $\phi(x) = \phi_1(x) - \phi_2(x)$, 则 ϕ 也是 [a, b] 上的简单函数, 并且

$$d(f,\phi) = \int_{a}^{b} |f(x) - \phi(x)| dx$$

$$= \int_{a}^{b} |f^{+}(x) - f^{-}(x) - \phi_{1}(x) + \phi_{2}(x)| dx$$

$$\leq \int_{a}^{b} |f^{+}(x) - \phi_{1}(x)| dx + \int_{a}^{b} |f^{-}(x) - \phi_{2}(x)| dx$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

综上, S[a,b] 是 L[a,b] 的稠密子集.

Step3. 由 Step2, 对任意 $f \in L[a,b]$ 以及任意 $\epsilon > 0$, 存在 $g \in S[a,b]$, 使得

$$d(f,g) = \int_{a}^{b} |f(x) - g(x)| dx < \epsilon,$$

从而

$$0 \le \left| \int_{a}^{b} f(x) \sin nx dx \right|$$

$$\le \left| \int_{a}^{b} \left(f(x) - g(x) \right) \sin nx dx \right| + \left| \int_{a}^{b} g(x) \sin nx dx \right|$$

$$\le \int_{a}^{b} \left| f(x) - g(x) \right| \left| \sin nx \right| dx + \left| \int_{a}^{b} g(x) \sin nx dx \right|$$

$$\le \int_{a}^{b} \left| f(x) - g(x) \right| dx + \left| \int_{a}^{b} g(x) \sin nx dx \right|$$

$$<\epsilon + \left| \int_{a}^{b} g(x) \sin nx dx \right|.$$

另一方面, 根据 Step1, 就有

$$\int_{a}^{b} g(x) \sin nx dx \to 0 \quad (n \to \infty).$$

综上, 由以上两式, 结合数列极限的迫敛性以及 $\epsilon > 0$ 的任意性, 可得

$$\int_{a}^{b} f(x) \sin nx dx \to 0 \quad (n \to \infty).$$

同理可证

$$\int_{a}^{b} f(x) \cos nx dx \to 0 \quad (n \to \infty).$$