

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP

SEARLESER97 BLOG TEAMS SUBMISSIONS GROUPS CONTESTS

searleser97's blog

Articulation points and bridges (Tarjan's Algorithm)

By searleser97, 4 years ago,

Articulation Points

Let's define what an *articulation point* is. We say that a vertex V in a graph G with C connected components is an *articulation point* if its removal increases the number of connected components of G. In other words, let C' be the number of connected components after removing vertex V, if C' > C then V is an *articulation point*.

How to find articulation points?

Naive approach O(V * (V + E))

For every vertex V in the graph G do Remove V from G

if the number of connected components increases then V is an
articulation point

Add V back to G

Tarjan's approach O(V + E)

First, we need to know that an <u>ancestor</u> of some node V is a node A that was discoverd before V in a DFS traversal. (thus dependent on DFS implementation, similar values)

In the graph G_1 shown above, if we start our DFS from $\bf A$ and follow the path to $\bf C$ through $\bf B$ ($\bf A \to \bf B \to \bf C$), then $\bf A$ is an ancestor of $\bf B$ and $\bf C$ in this spanning tree generated from the DFS traversal.

Example of DFS spanning trees of a graph

\rightarrow Pay attention

Before contest
Codeforces Round 903 (Div. 3)
08:13:09
Register now »

→ Top rated			
#	User	Rating	
1	tourist	3775	
2	Radewoosh	3752	
3	Benq	3724	
4	orzdevinwang	3697	
5	jiangly	3627	
6	cnnfls_csy	3602	
7	-0.5	3545	
8	inaFSTream	3478	
9	fantasy	3468	
10	maroonrk	3427	
Countries Cities Organizations		View all →	

→ Top contributors		
#	User	Contrib.
1	adamant	178
2	awoo	168
3	BledDest	165
4	Um_nik	163
5	maroonrk	162
6	SecondThread	159
7	nor	158
8	-is-this-fft-	152
9	kostka	145
10	Geothermal	144
		View all —

→ Find user	
Handle:	
	Find

Now that we know the definition of ancestor let's dive into the main idea.

Idea

Let's say there is a node V in some graph G that can be reached by a node U through some intermediate nodes (maybe non intermediate nodes) following some DFS traversal, if V can also be reached by A = "ancestor of U" without passing through U then, U is NOT an articulation point because it means that if we remove U from G we can still reach V from A, hence, the number of C connected C components will remain the same.

So, we can conclude that the only 2 conditions for U to be an *articulation point* are:

- 1. If all paths from A to V require U to be in the graph.
- 2. If U is the root of the DFS traversal with at least 2 children subgraphs disconnected from each other.

Then we can break condition #1 into 2 subconditions:

U is an articulation point if it does not have an advacent node V that can reach A
without requiring U to be in G.

ullet U is an $articulation\ point$ if it is the root of some cycle in the DFS traversal.

Examples:

Here ${\bf B}$ is an articulation point because all paths from ancestors of ${\bf B}$ to ${\bf C}$ require ${\bf B}$ to be in the graph.

YogeshZT → Binary Lifting 📡

Detailed \rightarrow

Here **B** is NOT an articulation point because there is at least one path from an ancestor of **B** to **C** which does not require **B**.

Implementation

Well, first thing we need is a way to know if some node A is ancestor of some other node V, for this we can assign a *discovery time* to each vertex V in the graph G based on the DFS traversal, so that we can know which node was discovered before or after another. e.g. in G_1 with the traversal $A \to B \to C$ the dicovery times for each node will be respectively 1, 2, 3; with this we know that A was discovered before C since $\begin{array}{c|c} \textbf{discovery_time[A]} & < \\ \textbf{discovery_time[C]} \\ \end{array}$

Now we need to know if some vertex \boldsymbol{U} is an articulation point. So, for that we will check the following conditions:

- 1. If there is NO way to get to a node V with **strictly** smaller discovery time than the discovery time of U following the DFS traversal, then U is an articulation point. (it has to be **strictly** because if it is equal it means that U is the root of a cycle in the DFS traversal which means that U is still an *articulation point*).
- 2. If U is the root of the DFS tree and it has at least 2 children subgraphs disconnected from each other, then U is an articulation point.

So, for implementation details, we will think of it as if for every node U we have to find the node V with the least discovery time that can be reached from U following some DFS traversal path which does not require to pass **through** any already visited nodes, and let's call this node low.

C++ Code

```
// adj[u] = adjacent nodes of u
// ap = AP = articulation points
// p = parent
// disc[u] = discovery time of u
// low[u] = 'low' node of u
```

```
int dfsAP(int u, int p) {
  int children = 0;
  low[u] = disc[u] = ++Time;
  for (int& v : adj[u]) {
    if (v == p) continue; // we don't want to go back through the same
path.
                          // if we go back is because we found another
way back
    if (!disc[v]) { // if V has not been discovered before
      children++:
      dfsAP(v, u); // recursive DFS call
      if (disc[u] <= low[v]) // condition #1</pre>
        ap[u] = 1;
      low[u] = min(low[u], low[v]); // low[v] might be an ancestor of u
    } else // if v was already discovered means that we found an ancestor
      low[u] = min(low[u], disc[v]); // finds the ancestor with the least
discovery time
  }
  return children;
}
void AP() {
  ap = low = disc = vector<int>(adj.size());
 Time = 0;
  for (int u = 0; u < adj.size(); u++)</pre>
    if (!disc[u])
      ap[u] = dfsAP(u, u) > 1; // condition #2
```

Bridges

Let's define what a *bridge* is. We say that an edge UV in a graph G with C connected components is a *bridge* if its removal increases the number of connected components of G. In other words, let C' be number of connected components after removing edge UV, if C' > C then the edge UV is a *bridge*.

The idea for the implementation is exactly the same as for *articulation points* except for one thing, to say that the edge UV is a bridge, the condition to satisfy is: $| \text{discovery_time[U]} < \text{low[V]} | \text{instead of } | \text{discovery_time[U]} <= \text{low[V]} | .$

Notice that the only change was comparing strictly lesser instead of lesser of equal.

But why is this?

In the graph shown above the edge AB is a *bridge* because low[B] is strictly greater than disc[A]. The edge BC is not a *bridge* because low[C] is equal to disc[B].

C++ Code

```
// br = bridges, p = parent
vector<pair<int, int>> br;
int dfsBR(int u, int p) {
  low[u] = disc[u] = ++Time;
  for (int& v : adj[u]) {
    if (v == p) continue; // we don't want to go back through the same
path.
                          // if we go back is because we found another
way back
    if (!disc[v]) { // if V has not been discovered before
      dfsBR(v, u); // recursive DFS call
      if (disc[u] < low[v]) // condition to find a bridge</pre>
        br.push_back({u, v});
      low[u] = min(low[u], low[v]); // low[v] might be an ancestor of u
    } else // if v was already discovered means that we found an ancestor
      low[u] = min(low[u], disc[v]); // finds the ancestor with the least
discovery time
 }
}
void BR() {
  low = disc = vector<int>(adj.size());
  Time = 0;
  for (int u = 0; u < adj.size(); u++)</pre>
    if (!disc[u])
      dfsBR(u, u)
}
```

FAQ

• Why $\left[\log[u] = \min(\log[u], \operatorname{disc}[v])\right]$ instead of $\left[\log[u] = \min(\log[u], \log[v])\right]$?

Let's consider node $\bf C$ in the graph above, in the DFS traversal the nodes after $\bf C$ are: $\bf D$ and $\bf E$, when the DFS traversal reaches $\bf E$ we find $\bf C$ again, if we take its low time, low[E] will be equal to low[E] but at this point, when we return back to $\bf C$ in the DFS we will be omitting the fact that $\bf U$ is the **root of a cycle** (which makes it an *articulation point*) and we will be saying that there is a path from $\bf E$ to some ancestor of $\bf C$ (in this case $\bf A$) which does not require $\bf C$ and such path does not exist in the graph, therefore the algorithm will say that $\bf C$ is NOT an *articulation point* which is totally false since the only way to reach $\bf D$ and $\bf E$ is passing through $\bf C$.

Problems

315 Network (Points)

610 Street Directions (Bridges)

796 Critical Links (Bridges)

10199 Tourist Guide (Points)

10765 Doves and Bombs (Points)

graphs, articulation points, strongly connected, connected components, #tarjan, tutorial, bridges

☐ Show archived | Write comment?

A 0 V

A 0 V

4 years ago, # | 😭

4 years ago, # | 😭

The best explanation that I found, i've been looking for someone who could explain this subject, and I think I found that guy. +10 and to favorite.

 $\rightarrow \underline{\mathsf{Reply}}$


```
4 years ago, \# | \diamondsuit can you also explain how to find the biconnected components? \longrightarrow \text{Reply}
```

MZuenni

Good tutorial with nice explanations and examples

→ Reply

SPyofgame