Disaster Recognition

Predicting which Tweets are about real disasters and which ones are not

Kalpa Henadhira Arachchige Kalyan Lakshmanan Polina Minkovski

Overview

Problem

Decipher whether or not a Tweet is about a real disaster, in order to improve the credibility and utilization of Twitter as an effective communication tool in times of emergency.

Data

10,000 manually-coded tweets, where:

1: Real disaster

0: Not real disaster

Overview

Purpose:

- Disaster readiness
- Relief organizations

Assumptions:

Two scenarios where we can misclassify

- Regular Tweet is flagged (False Positive)
- Disaster Tweet is ignored (False Negative)

What do we prefer?

Minimizing False Negatives

12:43 AM - Aug 6, 2015 - Twitter for Android

Process

Collection, Cleaning

EDA ↔ Model Building

Model Deployment

Data Overview

Data Overview

Data Overview - Most frequently used words

Not Real Disaster Tweets see more word repetition than Real Disaster Tweets

Data Overview - Bigrams

Youtube and Reddit references appear more frequently in Not Real Tweets

Data Cleaning

The following steps were completed as part of Data Cleaning:

- 1. Duplicate tweets removed*
- Line breaks, @, URLs, Special characters and emoticons removed**
- 3. Stop words modified and removed
- 4. Lower case all text
- Lemmatization completed

Model 1

- Overfitting issues
- Low sensitivity as a disadvantage
- Grid search to overcome the overfitting (high variance)

	Score on train	Score on test	Sensitivity	specificity	Precision	F1 Score
Model						
logr	0.886	0.800	0.699	0.881	0.823	0.756
Randomfc	0.924	0.799	0.632	0.932	0.880	0.736
KNN	0.826	0.711	0.467	0.905	0.795	0.588
BernoulliNB	0.854	0.809	0.696	0.899	0.845	0.763
LinearSVC	0.855	0.792	0.666	0.892	0.830	0.739
Adaboost(RFC)	0.987	0.809	0.708	0.889	0.835	0.766
			1	1		

Random forest

```
gs_rfc.best_params_
{'rfc_bootstrap': True,
'rfc ccp alpha': 0.0,
'rfc__max_depth': None,
'rfc max features': 'log2',
 'rfc__max_samples': 0.5,
 'rfc__min_impurity_decrease': 0.0,
 'rfc__min_samples_leaf': 1,
 'rfc min samples split': 20,
 'rfc__n_estimators': 200,
 'rfc oob score': True,
 'rfc warm start': True.
 'vec': CountVectorizer(max_df=0.9, max_features=5000, min_df=5, ngram_range=(1, 2)),
 'vec__max_df': 0.9,
 'vec max features': 5000,
 'vec__min_df': 5,
 'vec ngram range': (1, 2),
 'vec stop words': None}
```


- Does gridsearch help?
- What other things to try?

Adaboost classifier with Random forest estimator

```
gs_ada.best_params_

{'ada__algorithm': 'SAMME.R',
   'ada__learning_rate': 1.0,
   'ada__n_estimators': 5,
   'vec': CountVectorizer()}
```


LSTM with GloVe Embeddings

Sensitivity: 87.78% Accuracy: 74.37%

- Low Variance
- Generalizable
- GloVe Embeddings:
 Pre-trained Word → Vector
 2B Tweets, 1.2M Vocab, 25d

Aggressive 0.2 threshold for minimizing false negatives Original – Accuracy: 84.2% and Validation Accuracy:81.6%

Model Comparisons

Model 3 - Bernoulli, CountVectorizer with GridSearch and Adjusted Threshold

With adjusted threshold:

Sensitivity: 79.88% Specificity: 78.07%

Validation Accuracy: 78.83%

Comparing outcomes

Model	Score on train	Score on test	Sensitivity	Specificity	Precision	F1 Score
Bernoulli CVEC	0.838	0.817	0.680	0.918	0.861	0.760
Bernoulli TVEC	0.838	0.817	0.680	0.918	0.861	0.760
Logistic Regression CVEC	0.894	0.815	0.691	0.907	0.847	0.761
Logistic Regression TVEC	0.911	0.804	0.708	0.876	0.810	0.756
Random Forest CVEC	0.987	0.780	0.688	0.849	0.771	0.727
Random Forest TVEC	0.987	0.788	0.675	0.873	0.798	0.731
Decision Tree CVEC	0.881	0.746	0.671	0.802	0.716	0.693
Decision Tree TFIDF	0.891	0.735	0.659	0.791	0.701	0.67

Comparing outcomes

Model	Loss	Accuracy	Sensitivity	Specificity	Precision	F1 Score
Sequential, Bidirectional, LSTM	0.97	0.76	0.72	0.78	0.71	0.71
Sequential, Bidirectional, GRU	0.5	0.8	0.71	0.86	0.79	0.74
Sequential, Bidirectional, GRU, Regularization	0.51	0.81	0.73	0.87	8.0	0.76
Sequential, Word2Vec, EarlyStopping	0.52	0.81	0.71	0.87	0.81	0.75

Findings and Outcomes

Streamlit App - prototype, Utilization + Threshold

Future use:

- Deploy with live twitter stream twitter stream API
- Real time information on disasters