

# TÓPICOS EM INTELIGÊNCIA ARTIFICIAL II Universidade Federal Fluminense

Camila Ferreira

## 1. Datasets Escolhidos:

#### Dataset 1:

## Estimation of Obesity Levels Dataset

Fonte: UCI Machine Learning Repository - Dataset 544

#### Descrição

Este dataset foi criado com o objetivo de prever os níveis de obesidade com base em hábitos alimentares e condições físicas dos indivíduos. Ele foi coletado por meio de questionários preenchidos por pessoas no México, Peru e Colômbia. A base contém variáveis relacionadas a estilo de vida, como frequência de exercícios, consumo de alimentos e histórico de peso.

### Informações do Dataset

Tamanho: 2111 instânciasAtributos: 17 atributos

## Atributo Alvo (Target)

A L-! L . . L -

- NObeyesdad: Nível de obesidade do indivíduo
  - Normal\_Weight
  - Overweight\_Level\_I
  - Overweight\_Level\_II
  - Obesity\_Type\_I
  - Insufficient\_Weight
  - Obesity\_Type\_II
  - Obesity\_Type\_III

| Atributo                       | Tipo       | Descrição                                   |
|--------------------------------|------------|---------------------------------------------|
| Gender                         | Categórica | Gênero do indivíduo                         |
| Age                            | Numérica   | Idade                                       |
| Height                         | Numérica   | Altura em metros                            |
| Weight                         | Numérica   | Peso em kg                                  |
| family_history_with_overweight | Booleana   | Histórico familiar de sobrepeso             |
| FAVC                           | Booleana   | Consome alimentos calóricos com frequência? |
| FCVC                           | Numérica   | Frequência de consumo de vegetais           |
| NCP                            | Numérica   | Número de refeições principais por dia      |
| CAEC                           | Categórica | Consumo de alimentos entre as refeições     |
| SMOKE                          | Booleana   | Fuma                                        |
|                                |            |                                             |

D----:--

**T:**--

| Тіро       | Descrição                                         |  |  |
|------------|---------------------------------------------------|--|--|
| Numérica   | Consumo diário de água (litros)                   |  |  |
| Booleana   | Monitora ingestão calórica?                       |  |  |
| Numérica   | Frequência de atividade física (horas por semana) |  |  |
| Numérica   | Tempo usando tecnologia por dia (horas)           |  |  |
| Categórica | Frequência de consumo de álcool                   |  |  |
| Categórica | Meio de transporte mais utilizado                 |  |  |
|            | Booleana Numérica Numérica Categórica             |  |  |

#### Dataset 2:

## Contraceptive Method Choice Dataset

Fonte: UCI Machine Learning Repository - Dataset 30

### Descrição

Este dataset foi desenvolvido com o objetivo de prever o método contraceptivo utilizado por mulheres com base em informações socioeconômicas e demográficas. A base é derivada de um estudo realizado na Indonésia e é composta por dados coletados de mulheres casadas que participavam do programa nacional de planejamento familiar. O foco principal é auxiliar na análise de padrões que influenciam a escolha de métodos contraceptivos.

### Informações do Dataset

Tamanho: 1473 instâncias
Atributos: 9 atributos

### Atributo Alvo (Target)

- Contraceptive Method Used: Método contraceptivo utilizado pela mulher
  - 1: Nenhum
  - 2: Curto prazo (pílulas, preservativos, etc.)
  - 3: Longo prazo (DIU, esterilização, etc.)

| Atributo          | Tipo       | Descrição                                        |
|-------------------|------------|--------------------------------------------------|
| Wife_age          | Numérica   | Idade da esposa (em anos)                        |
| Wife_education    | Categórica | Grau de escolaridade da esposa (1=baixo, 4=alto) |
| Husband_education | Categórica | Grau de escolaridade do marido (1=baixo, 4=alto) |
| Num_children      | Numérica   | Número de filhos vivos                           |
| Wife_religion     | Booleana   | Religião da esposa (0=Islâmica, 1=Outra)         |

| Atributo           | Тіро       | Descrição                                    |
|--------------------|------------|----------------------------------------------|
| Wife_working       | Booleana   | A esposa trabalha? (0=Não, 1=Sim)            |
| Husband_occupation | Categórica | Ocupação do marido (valores de 1 a 4)        |
| Standard_of_living | Categórica | Nível de vida (1=baixo, 4=alto)              |
| Media_exposure     | Booleana   | Exposição à mídia (0=Não exposta, 1=Exposta) |

#### Dataset 3:

#### Heart Disease Dataset

Fonte: UCI Machine Learning Repository - Dataset 45

### Descrição

Este dataset foi criado com o objetivo de prever a presença de doenças cardíacas em pacientes com base em diversas características clínicas e demográficas. A base contém dados coletados de quatro bancos hospitalares diferentes, sendo a versão mais utilizada aquela que consolida as informações em um único conjunto limpo e padronizado. Os atributos incluem variáveis como idade, sexo, pressão arterial, nível de colesterol e resultados de exames cardíacos.

## Informações do Dataset

• Tamanho: 303 instâncias (na versão Cleveland, a mais usada)

• Atributos: 13 atributos

#### Atributo Alvo (Target)

• **Grau de doença cardíaca presente no indivíduo** : valores de 0 a 4, onde 0 significa ausência da doença

| Atributo | Tipo       | Descrição                                                 |
|----------|------------|-----------------------------------------------------------|
| age      | Numérica   | Idade do paciente                                         |
| sex      | Binária    | Sexo (1 = masculino; 0 = feminino)                        |
| ср       | Categórica | Tipo de dor no peito (0 a 3)                              |
| trestbps | Numérica   | Pressão arterial em repouso (mm Hg)                       |
| chol     | Numérica   | Nível sérico de colesterol (mg/dl)                        |
| fbs      | Binária    | Glicemia em jejum > 120 mg/dl (1 = verdadeiro; 0 = falso) |
| restecg  | Categórica | Resultados do eletrocardiograma em repouso                |
| thalach  | Numérica   | Frequência cardíaca máxima atingida                       |
| exang    | Binária    | Angina induzida por exercício (1 = sim; 0 = não)          |
|          |            |                                                           |

| Atributo | Tipo       | Descrição                                                                  |
|----------|------------|----------------------------------------------------------------------------|
| oldpeak  | Numérica   | Depressão do segmento ST induzida por exercício em relação ao repouso      |
| slope    | Categórica | Inclinação do segmento ST no esforço máximo                                |
| ca       | Numérica   | Número de vasos principais coloridos por fluoroscopia (0 a 3)              |
| thal     | Categórica | Resultado do teste de tálio (3 = normal; 6 = defeito fixo; 7 = reversível) |

### Dataset 4:

## Letter Recognition Dataset

Fonte: UCI Machine Learning Repository - Dataset 59

### Descrição

Este dataset foi criado com o objetivo de classificar letras do alfabeto inglês maiúsculas com base em diversas características extraídas de imagens. Os dados foram gerados a partir de imagens de letras capturadas e processadas para extrair atributos relacionados à geometria e distribuição de pixels. O conjunto de dados é frequentemente usado em estudos de reconhecimento óptico de caracteres (OCR) e aprendizado supervisionado.

### Informações do Dataset

• Tamanho: 20.000 instâncias

• Atributos: 16 atributos preditivos + 1 alvo (letra)

### Atributo Alvo (Target)

• Letra do alfabeto (A a Z)

• Cada instância é rotulada com uma letra maiúscula de 'A' até 'Z'

| Atributo | Tipo       | Descrição                                         |
|----------|------------|---------------------------------------------------|
| lettr    | Categórica | Letra correspondente à instância (A a Z)          |
| x-box    | Numérica   | Posição horizontal da caixa delimitadora da letra |
| y-box    | Numérica   | Posição vertical da caixa delimitadora da letra   |
| width    | Numérica   | Largura da caixa delimitadora                     |
| high     | Numérica   | Altura da caixa delimitadora                      |
| onpix    | Numérica   | Número de pixels dentro da caixa                  |
| x-bar    | Numérica   | Centro de massa horizontal                        |
| y-bar    | Numérica   | Centro de massa vertical                          |
| x2bar    | Numérica   | Variância horizontal                              |
|          |            |                                                   |

| Atributo | Tipo     | Descrição                        |
|----------|----------|----------------------------------|
| y2bar    | Numérica | Variância vertical               |
| xybar    | Numérica | Correlação entre x e y           |
| x2ybr    | Numérica | Correlação de segunda ordem x*y  |
| xy2br    | Numérica | Correlação de segunda ordem y*x  |
| x-ege    | Numérica | Entropia do perfil horizontal    |
| xegvy    | Numérica | Entropia da variância horizontal |
| y-ege    | Numérica | Entropia do perfil vertical      |
| yegvx    | Numérica | Entropia da variância vertical   |

## Dataset 5:

## **Dermatology Dataset**

Fonte: UCI Machine Learning Repository - Dataset 33

## Descrição

Este dataset foi criado com o objetivo de auxiliar no diagnóstico de doenças de pele eritrematoesquamosas, que apresentam sintomas semelhantes como eritema (vermelhidão) e descamação, tornando o diagnóstico diferencial um desafio clínico. O conjunto de dados combina informações clínicas e histopatológicas (obtidas por biópsias) para classificar seis tipos diferentes de doenças dermatológicas.

#### Informações do Dataset

Tamanho: 366 instâncias
Atributos: 34 atributos

#### Atributo Alvo (Target)

- class: Tipo de doença dermatológica
  - ∘ 1 Psoríase (*psoriasis*)
  - 2 Dermatite seborreica (seboreic dermatitis)
  - 3 Líquen plano (lichen planus)
  - 4 Pitiríase rosada (pityriasis rosea)
  - 5 Dermatite crônica (chronic dermatitis)
  - 6 Pitiríase rubra pilar (pityriasis rubra pilaris)

| erythema Numérica Grau de eritema (0 a 3)                      | Atributo         | Tipo     | Descrição                            |
|----------------------------------------------------------------|------------------|----------|--------------------------------------|
| scaling Numérica Cray de descamação (0 a 2)                    | erythema         | Numérica | Grau de eritema (0 a 3)              |
| Scaling Numerica Grad de descamação (0 a 3)                    | scaling          | Numérica | Grau de descamação (0 a 3)           |
| definite_borders Numérica Presença de bordas definidas (0 a 3) | definite_borders | Numérica | Presença de bordas definidas (0 a 3) |

| Atributo                             | Тіро     | Descrição                                                 |
|--------------------------------------|----------|-----------------------------------------------------------|
| itching                              | Numérica | Grau de coceira (0 a 3)                                   |
| koebner_phenomenon                   | Numérica | Fenômeno de Koebner (0 a 3)                               |
| polygonal_papules                    | Numérica | Pápulas poligonais (0 a 3)                                |
| follicular_papules                   | Numérica | Pápulas foliculares (0 a 3)                               |
| oral_mucosal_involvement             | Numérica | Envolvimento da mucosa oral (0 a 3)                       |
| knee_and_elbow_involvement           | Numérica | Envolvimento de joelhos/cotovelos (0 a 3)                 |
| scalp_involvement                    | Numérica | Envolvimento do couro cabeludo (0 a 3)                    |
| family_history                       | Booleana | Histórico familiar de doença (0 = não, 1 = sim)           |
| melanin_incontinence                 | Numérica | Incontinência de melanina (0 a 3)                         |
| eosinophils_infiltrate               | Numérica | Presença de eosinófilos no infiltrado (0 a 3)             |
| PNL_infiltrate                       | Numérica | Presença de polimorfonucleares no infiltrado (0 a 3)      |
| fibrosis_of_papillary_dermis         | Numérica | Fibrose da derme papilar (0 a 3)                          |
| exocytosis                           | Numérica | Grau de exocitose (0 a 3)                                 |
| acanthosis                           | Numérica | Grau de acantose (0 a 3)                                  |
| hyperkeratosis                       | Numérica | Grau de hiperqueratose (0 a 3)                            |
| parakeratosis                        | Numérica | Grau de paraqueratose (0 a 3)                             |
| clubbing_of_rete_ridges              | Numérica | Deformação das cristas da epiderme (0 a 3)                |
| elongation_of_rete_ridges            | Numérica | El alongamento das cristas da epiderme (0 a 3)            |
| thinning_of_suprapapillary_epidermis | Numérica | Afinamento da epiderme suprapapilar (0 a 3)               |
| spongiform_pustule                   | Numérica | Presença de pústula espongiforme (0 a 3)                  |
| munro_microabcess                    | Numérica | Presença de microabscesso de Munro (0 a 3)                |
| focal_hypergranulosis                | Numérica | Hipergranulose focal (0 a 3)                              |
| disappearance_granular_layer         | Numérica | Desaparecimento da camada granulosa (0 a 3)               |
| vacuolisation_basal_layer            | Numérica | Vacuolização/dano na camada basal (0 a 3)                 |
| spongiosis                           | Numérica | Grau de espongiose (0 a 3)                                |
| saw_tooth_retes                      | Numérica | Cristas epidérmicas em forma de dente de serra<br>(0 a 3) |
| follicular_horn_plug                 | Numérica | Plugue córneo folicular (0 a 3)                           |
| perifollicular_parakeratosis         | Numérica | Paraqueratose perifolicular (0 a 3)                       |
| <del></del>                          |          |                                                           |

| Atributo                            | Tipo     | Descrição                                   |
|-------------------------------------|----------|---------------------------------------------|
| inflammatory_mononuclear_infiltrate | Numérica | Infiltrado inflamatório mononuclear (0 a 3) |
| band_like_infiltrate                | Numérica | Infiltrado em faixa (0 a 3)                 |
| age                                 | Numérica | Idade do paciente                           |

## 2. Tratamento de dados

Para os experimentos realizados com **Multi-Layer Perceptron (MLP)** e **WiSARD**, o pré-processamento dos dados seguiu etapas similares em diversos aspectos, com adaptações específicas para atender às necessidades de cada modelo.

- Identificação de tipos de dados: Em ambos os casos, as colunas do conjunto de dados foram separadas entre numéricas e categóricas, sendo que variáveis binárias (com valores como "yes"/"no") foram tratadas como categóricas.
- Codificação de variáveis categóricas: Tanto no MLP quanto no WiSARD, as variáveis categóricas
  foram transformadas utilizando o OneHotEncoder, convertendo cada categoria em um vetor binário.
  Isso garantiu que as categorias fossem representadas de forma apropriada e compatível com os dois
  modelos.
- Normalização de dados numéricos:
  - No MLP, os atributos numéricos foram padronizados utilizando o StandardScaler, para que tivessem média 0 e desvio padrão 1, o que facilita o treinamento de redes neurais.
  - No WiSARD, os atributos numéricos foram normalizados para o intervalo [0, 1] com o
     MinMaxScaler, preparando os valores para a etapa de codificação binária.
- Codificação dos atributos numéricos:
  - No MLP, os dados numéricos padronizados foram diretamente utilizados na rede.
  - No WiSARD, os dados normalizados passaram por um thermometer encoding, transformando cada valor em uma sequência de bits que representa sua posição relativa no intervalo, com o número de bits definido pelo parâmetro n\_bits.
- Codificação do rótulo (target): Em ambos os modelos, o rótulo da variável alvo (y) foi transformado em valores inteiros utilizando o LabelEncoder, garantindo o formato esperado pelos classificadores.

Essas etapas permitiram um pré-processamento consistente entre os dois modelos, mantendo as variáveis categóricas tratadas da mesma maneira e adaptando o tratamento dos atributos numéricos conforme as exigências de cada técnica.

## 3. Implementação das Redes Neurais

## 3.1. Multi-Layer Perceptron (MLP)

A arquitetura do modelo baseia-se em uma *Multi-Layer Perceptron (MLP)* implementada com *PyTorch*. A classe *MLP* define uma rede neural totalmente conectada, com múltiplas camadas ocultas, função de ativação customizável e regularização via *Dropout*.

A classe *MLPClassifierTorch* encapsula a MLP dentro de uma interface compatível com *scikit-learn*, permitindo seu uso em *Pipelines* e integração com métodos de validação e otimização como *RandomizedSearchCV*.

#### 3.1.1. Otimização de Hiperparâmetros

A seleção dos hiperparâmetros foi realizada por meio de *RandomizedSearchCV*, com validação cruzada *StratifiedKFold*. O espaço de busca incluiu:

- *hidden\_sizes*: tamanhos das camadas ocultas, por exemplo: (64,), (128,), (128, 64), (256, 128).
- *dropout\_rate*: taxa de dropout, amostrada de uma distribuição contínua entre 0.1 e 0.5.
- *learning\_rate*: taxa de aprendizado, amostrada entre 0.0001 e 0.01.
- activation\_fn: função de ativação (ReLU, LeakyReLU, Tanh).
- weight\_decay: regularização L2.
- max\_epochs, early\_stopping, patience, verbose: parâmetros de controle do treinamento.

#### 3.2. WISARD

A arquitetura do modelo baseia-se em um **WiSARD (Wilkie, Stonham and Aleksander Recognition Device)** implementado com o pacote *torchwnn* integrado ao *PyTorch*. A classe *WiSARDClassifierTorch*encapsula o classificador WiSARD em uma interface compatível com *scikit-learn*, permitindo seu uso em *Pipelines* e integração com métodos de validação e otimização como *RandomizedSearchCV*.

O classificador permite a configuração do tamanho das tuplas utilizadas e do mecanismo de bleaching, que contribui para o tratamento de ambiguidades em classificações multiclasse.

#### 3.2.1. Otimização de Hiperparâmetros

A seleção dos hiperparâmetros foi realizada por meio de *RandomizedSearchCV*, com validação cruzada *StratifiedKFold*. O espaço de busca incluiu:

- tuple\_size: tamanho das tuplas utilizadas nos discriminadores, por exemplo: 8, 9, 10, 11.
- **bleaching**: uso ou não do mecanismo de bleaching (*True* ou *False*).

Outros parâmetros do RandomizedSearchCV incluíram o número de iterações ( $n\_iter$ ), o número de folds na validação cruzada (cv), a métrica de avaliação (scoring) e a execução paralela ( $n\_jobs=-1$ ).

## 3.2 Avaliação dos Modelos

O melhor modelo identificado pela busca aleatória é avaliado nos conjuntos de treino e teste. As principais métricas utilizadas são:

- Acurácia global
- Relatório de classificação com precisão, recall e F1-score por classe
- Matriz de confusão, visualizada com seaborn

A matriz de confusão permite identificar padrões de erro entre classes reais e previstas, sendo útil especialmente em problemas multiclasse.

#### Exemplo de geração das métricas:

## 3.3 Balanceamento de Classes com SMOTE

Durante a análise dos dados, foi identificado que o *Dataset 2*, o *Dataset 3* e o *Dataset 5* apresentava um desbalanceamento significativo entre as classes da variável alvo. Para resolver esse problema, utilizamos o *SMOTE* (Synthetic Minority Over-sampling Technique, uma técnica de oversampling que cria novas instâncias sintéticas da(s) classe(s) minoritária(s).

#### Etapas Realizadas no SMOTE

- 1. Limpeza dos dados:
  - Remoção de instâncias com valores ausentes utilizando .dropna().
- 2. Separação da variável alvo (y) correspondente às instâncias válidas.
- 3. Aplicação do SMOTE:
  - Utilizado com *random state=42* para reprodutibilidade.
  - Gerou amostras sintéticas para balancear as classes.

```
from imblearn.over_sampling import SMOTE

X_cleaned_df = X_processed_df.dropna()
y_cleaned = y[X_processed_df.notna().all(axis=1)]

smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_cleaned_df, y_cleaned)
```

## 4. Resultados:

## Dataset 1:

#### Wizard:

## 1. Métricas de treinamento:

Melhores parâmetros encontrados: {'wisard\_tuple\_size': 11, 'wisard\_bleaching': True} Melhor acurácia: 0.660786237679821 precision recall f1-score support Insufficient Weight 0.84 190 1.00 0.91 Normal\_Weight 0.59 0.87 0.70 201 Obesity\_Type\_I 0.53 0.89 0.67 245 Obesity\_Type\_II 0.94 0.66 0.77 208 Obesity Type III 1.00 0.69 0.82 227 0.80 Overweight\_Level\_I 0.61 0.69 203 Overweight Level II 1.00 0.60 203 0.43 accuracy 0.74 1477 0.74 0.74 1477 macro avg 0.81 0.74 1477 weighted avg 0.81 0.74

#### 2. Matriz Confusão dos Testes:



Melhores parâmetros encontrados: {'mlp\_activation\_fn': <class 'torch.nn.modules.activation.Tanh'>, 'mlp\_dropout\_rate': np.float64(0.2409 2738738669997), 'mlp\_early\_stopping': True, 'mlp\_hidden\_sizes': (128, 64), 'mlp\_learning\_rate': np.float64(0.007028903586919395), 'mlp\_max\_epochs': 143, 'mlp\_patience': 10, 'mlp\_verbose': False, 'mlp\_weight\_decay': np.float64(0.00629942846779884)}
Acurácia média na CV: 0.9438181401740723

precision recall f1-score support

|                     | precision | recall | T1-score | support |
|---------------------|-----------|--------|----------|---------|
|                     |           |        |          |         |
| Insufficient_Weight | 0.92      | 0.99   | 0.96     | 190     |
| Normal_Weight       | 0.98      | 0.91   | 0.94     | 201     |
| Obesity_Type_I      | 0.99      | 0.96   | 0.98     | 245     |
| Obesity_Type_II     | 0.96      | 0.99   | 0.98     | 208     |
| Obesity_Type_III    | 1.00      | 1.00   | 1.00     | 227     |
| Overweight_Level_I  | 0.97      | 0.97   | 0.97     | 203     |
| Overweight_Level_II | 0.98      | 0.97   | 0.97     | 203     |
|                     |           |        |          |         |
| accuracy            |           |        | 0.97     | 1477    |
| macro avg           | 0.97      | 0.97   | 0.97     | 1477    |
| weighted avg        | 0.97      | 0.97   | 0.97     | 1477    |
|                     |           |        |          |         |

#### 2. Matriz Confusão dos Testes:



## Dataset 2:

Wizard:

Melhores parâmetros encontrados: {'wisard\_tuple\_size': 9, 'wisard\_bleaching': False}

| Acuracia media na CV: 0.34//2/2/2/2/2/ |              |           |        |          |         |  |
|----------------------------------------|--------------|-----------|--------|----------|---------|--|
|                                        |              | precision | recall | f1-score | support |  |
|                                        | 1            | 0.36      | 1.00   | 0.53     | 440     |  |
|                                        | 2            | 0.77      | 0.12   | 0.21     | 440     |  |
|                                        | 3            | 1.00      | 0.06   | 0.12     | 440     |  |
|                                        | accuracy     |           |        | 0.39     | 1320    |  |
|                                        | macro avg    | 0.71      | 0.39   | 0.29     | 1320    |  |
|                                        | weighted avg | 0.71      | 0.39   | 0.29     | 1320    |  |
|                                        |              |           |        |          |         |  |

#### 2. Matriz Confusão dos Testes:



#### MLP:

#### 1. Métricas de treinamento:

Melhores parâmetros encontrados: {'mlp\_activation\_fn': <class 'torch.nn.modules.activation.ReLU'>, 'mlp\_dropout\_rate': np.float64(0.1218 0188587721688), 'mlp\_early\_stopping': True, 'mlp\_hidden\_sizes': (128, 64), 'mlp\_learning\_rate': np.float64(0.009504585843529142), 'mlp\_max\_epochs': 75, 'mlp\_patience': 10, 'mlp\_verbose': False, 'mlp\_weight\_decay': np.float64(0.009158643902204486)}
Acurácia média na CV: 0.5727272727272726

precision recall f1-score support

|              | precision | recatt | 11-30016 | suppor c |
|--------------|-----------|--------|----------|----------|
|              |           |        |          |          |
| 1            | 0.73      | 0.60   | 0.66     | 440      |
| 2            | 0.60      | 0.70   | 0.65     | 440      |
| 3            | 0.57      | 0.59   | 0.58     | 440      |
|              |           |        |          |          |
| accuracy     |           |        | 0.63     | 1320     |
| macro avg    | 0.64      | 0.63   | 0.63     | 1320     |
| weighted avg | 0.64      | 0.63   | 0.63     | 1320     |
|              |           |        |          |          |

## Matriz de Confusão - Teste



## Dataset 3:

#### Wizard:

#### 1. Métricas de treinamento:

Melhores parâmetros encontrados: {'wisard\_tuple\_size': 11, 'wisard\_bleaching': False}

| Acuracia media na CV: 0.601/6/19/5926245 |     |          |         |      |     |  |
|------------------------------------------|-----|----------|---------|------|-----|--|
| precision recall f1-sco                  |     | f1-score | support |      |     |  |
|                                          | Θ   | 0.82     | 1.00    | 0.90 | 112 |  |
|                                          | 1   | 0.74     | 0.82    | 0.78 | 112 |  |
|                                          | 2   | 0.81     | 0.90    | 0.86 | 112 |  |
|                                          | 3   | 0.87     | 0.79    | 0.83 | 112 |  |
|                                          | 4   | 1.00     | 0.65    | 0.79 | 112 |  |
|                                          |     |          |         |      |     |  |
| accur                                    | асу |          |         | 0.83 | 560 |  |
| macro                                    | avg | 0.85     | 0.83    | 0.83 | 560 |  |
| weighted                                 | avg | 0.85     | 0.83    | 0.83 | 560 |  |
|                                          |     |          |         |      |     |  |





#### MLP:

#### 1. Métricas de treinamento:

Melhores parâmetros encontrados: {'mlp\_activation\_fn': <class 'torch.nn.modules.activation.ReLU'>, 'mlp\_dropout\_rate': np.float64(0.1354 7045849996384), 'mlp\_early\_stopping': True, 'mlp\_hidden\_sizes': (128, 64), 'mlp\_learning\_rate': np.float64(0.008966171489506599), 'mlp\_max\_epochs': 172, 'mlp\_patience': 10, 'mlp\_verbose': False, 'mlp\_weight\_decay': np.float64(0.00376582952639944)}
Melhor acurácia: 0.7642857142857145

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| Θ            | 0.86      | 0.86   | 0.86     | 112     |
| 1            | 0.83      | 0.77   | 0.80     | 112     |
| 2            | 0.90      | 0.94   | 0.92     | 112     |
| 3            | 0.90      | 0.93   | 0.92     | 112     |
| 4            | 0.96      | 0.97   | 0.96     | 112     |
|              |           |        |          |         |
| accuracy     |           |        | 0.89     | 560     |
| macro avg    | 0.89      | 0.89   | 0.89     | 560     |
| weighted avg | 0.89      | 0.89   | 0.89     | 560     |



## Dataset 4:

Wizard:

Melhores parâmetros encontrados: {'wisard\_\_tuple\_size': 11, 'wisard\_\_bleaching': True} Melhor acurácia: 0.43471431056008397

| ic ciioi | acarac | 14. 0.454/1 | +510500005 | J,       |         |
|----------|--------|-------------|------------|----------|---------|
|          |        | precision   | recall     | f1-score | support |
|          | Α      | 0.23        | 1.00       | 0.38     | 552     |
|          | В      | 0.16        | 0.70       | 0.26     | 536     |
|          | C      | 0.31        | 0.90       | 0.47     | 515     |
|          | D      | 0.32        | 0.38       | 0.35     | 563     |
|          | Е      | 0.24        | 0.26       | 0.25     | 538     |
|          | F      | 0.26        | 0.79       | 0.39     | 543     |
|          | G      | 0.10        | 0.06       | 0.07     | 541     |
|          | Н      | 0.39        | 0.34       | 0.36     | 514     |
|          | I      | 0.68        | 0.71       | 0.69     | 529     |
|          | J      | 0.93        | 0.61       | 0.74     | 523     |
|          | K      | 0.57        | 0.31       | 0.40     | 517     |
|          | L      | 0.93        | 0.70       | 0.80     | 533     |
|          | M      | 0.72        | 0.57       | 0.64     | 554     |
|          | N      | 0.58        | 0.33       | 0.42     | 548     |
|          | 0      | 0.53        | 0.02       | 0.04     | 527     |
|          | Р      | 0.79        | 0.33       | 0.47     | 562     |
|          | Q      | 0.91        | 0.18       | 0.29     | 548     |
|          | R      | 0.83        | 0.05       | 0.10     | 531     |
|          | S      | 0.85        | 0.13       | 0.22     | 524     |
|          | Т      | 0.67        | 0.45       | 0.54     | 557     |
|          | U      | 0.86        | 0.38       | 0.53     | 569     |
|          | V      | 0.81        | 0.37       | 0.51     | 535     |
|          | W      | 1.00        | 0.33       | 0.49     | 526     |
|          | X      | 0.57        | 0.01       | 0.03     | 551     |
|          | Y      | 0.99        | 0.28       | 0.43     | 550     |
|          | Z      | 1.00        | 0.21       | 0.34     | 514     |
| ace      | curacy |             |            | 0.40     | 14000   |
| mac      | ro avg | 0.62        | 0.40       | 0.39     | 14000   |
| weighte  | ed avg | 0.62        | 0.40       | 0.39     | 14000   |
| _        | _      |             |            |          |         |



MLP:

Melhores parâmetros encontrados: {'mlp\_activation\_fn': <class 'torch.nn.modules.activation.ReLU'>, 'mlp\_dropout\_rate': np.float64(0.1567 32301008724), 'mlp\_early\_stopping': True, 'mlp\_hidden\_sizes': (256, 128), 'mlp\_learning\_rate': np.float64(0.005044203047025815), 'mlp\_max\_epochs': 252, 'mlp\_patience': 10, 'mlp\_verbose': False, 'mlp\_weight\_decay': np.float64(0.0005687115467735005)}
Melhor acurácia: 0.94857142857142857

Melhor acurácia: 0.94857142857142857

Melhor acurácia: 0.94857142857142857

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Α            | 1.00      | 0.99   | 0.99     | 552     |
| В            | 0.95      | 0.97   | 0.96     | 536     |
| C            | 0.99      | 0.98   | 0.98     | 515     |
| D            | 0.95      | 0.99   | 0.97     | 563     |
| E            | 0.97      | 0.98   | 0.97     | 538     |
| F            | 0.97      | 0.97   | 0.97     | 543     |
| G            | 0.99      | 0.96   | 0.97     | 541     |
| Н            | 0.96      | 0.93   | 0.94     | 514     |
| I            | 0.98      | 0.98   | 0.98     | 529     |
| J            | 0.99      | 0.96   | 0.97     | 523     |
| K            | 0.97      | 0.97   | 0.97     | 517     |
| L            | 0.99      | 0.98   | 0.99     | 533     |
| M            | 0.99      | 0.99   | 0.99     | 554     |
| N            | 0.99      | 0.98   | 0.98     | 548     |
| 0            | 0.97      | 0.98   | 0.98     | 527     |
| P            | 0.99      | 0.96   | 0.97     | 562     |
| Q            | 0.97      | 0.99   | 0.98     | 548     |
| R            | 0.94      | 0.96   | 0.95     | 531     |
| S            | 0.98      | 0.99   | 0.99     | 524     |
| T            | 0.98      | 0.99   | 0.98     | 557     |
| U            | 0.99      | 0.99   | 0.99     | 569     |
| V            | 0.99      | 0.97   | 0.98     | 535     |
| W            | 0.98      | 0.99   | 0.99     | 526     |
| X            | 0.99      | 0.99   | 0.99     | 551     |
| Y            | 0.98      | 0.99   | 0.98     | 550     |
| Z            | 0.99      | 0.97   | 0.98     | 514     |
| accuracy     |           |        | 0.98     | 14000   |
| macro avg    | 0.98      | 0.98   | 0.98     | 14000   |
| veighted avg | 0.98      | 0.98   | 0.98     | 14000   |
|              |           |        |          |         |



### Dataset 5:

Wizard:

Melhores parâmetros encontrados: {'wisard\_tuple\_size': 11, 'wisard\_bleaching': True} Melhor acurácia: 0.9678108629721534 recall f1-score precision support 1.00 1 1.00 1.00 78 2 0.80 1.00 0.89 78 3 1.00 1.00 1.00 78 4 1.00 0.74 0.85 77 5 1.00 1.00 1.00 77 1.00 1.00 1.00 78

0.96

0.96

0.96

466

466

466

#### 2. Matriz Confusão dos Testes:

0.97

0.97

0.96

0.96

accuracy

macro avg

weighted avg

#### Matriz de Confusão - Teste 1 -33 0 0 0 0 0 - 30 0 2 0 33 0 0 0 25 - 20 3 0 0 33 0 0 0 True label - 15 4 0 8 0 26 0 0 - 10 0 0 0 0 34 0 5 5 6 0 0 0 0 0 33 Ţ 7 m 4 2 9 Predicted label precision recall f1-score support 1.00 1.00 1.00 33 1 2 0.80 1.00 0.89 33 3 1.00 33 1.00 1.00 4 1.00 0.76 0.87 34 5 1.00 1.00 1.00 34 6 1.00 1.00 1.00 33 0.96 200 accuracy 0.97 0.96 0.96 200 macro avg

0.96

0.96

200

weighted avg

0.97

Melhores parâmetros encontrados: {'mlp\_activation\_fn': <class 'torch.nn.modules.activation.LeakyReLU'>, 'mlp\_dropout\_rate': np.float64 (0.19983689107917987), 'mlp\_early\_stopping': True, 'mlp\_hidden\_sizes': (128, 64), 'mlp\_learning\_rate': np.float64(0.00602414568862042 5), 'mlp\_max\_epochs': 160, 'mlp\_patience': 10, 'mlp\_verbose': False, 'mlp\_weight\_decay': np.float64(0.008609404067363205)} Melhor acurácia: 0.9914436055822466

| ne thor ac | ui ac. | 10. 0.33144 | 30033022400 |          |         |  |
|------------|--------|-------------|-------------|----------|---------|--|
|            |        | precision   | recall      | f1-score | support |  |
|            | 1      | 1.00        | 1.00        | 1.00     | 78      |  |
|            | 2      | 0.99        | 1.00        | 0.99     | 78      |  |
|            | 3      | 1.00        | 1.00        | 1.00     | 78      |  |
|            | 4      | 1.00        | 0.99        | 0.99     | 77      |  |
|            | 5      | 1.00        | 1.00        | 1.00     | 77      |  |
|            | 6      | 1.00        | 1.00        | 1.00     | 78      |  |
|            |        |             |             |          |         |  |
| accur      | acy    |             |             | 1.00     | 466     |  |
| macro      | avg    | 1.00        | 1.00        | 1.00     | 466     |  |
| weighted   | avg    | 1.00        | 1.00        | 1.00     | 466     |  |

#### 2. Matriz Confusão dos Testes:

## Matriz de Confusão - Teste

