ENRE 447 Homework 3

Problems are similar to the book problems from Modarres & Groth 2023 (problem number in brackets). In some cases I have modified the problem slightly. Approved software ok, open everything. All policies of course syllabus and grading rubric apply.

1. [4.1] The following data represent times to failure (in hrs) for 20 mechanical devices.

4	7	8	12	19	27	50	65	66	69
71	73	75	91	107	115	142	166	184	192

- a. Find the MTTF and variance of the failure times.
- b. Develop an empirical probability distribution and histogram for the data.
- 2. The histogram below shows the distribution of the diameters of the heads of rivets manufactured by a company. Compute the mean and variance of the diameter.

- 3. [4.6] The sample mean life of ten car batteries is of 102.5 months, with the standard deviation of 9.45 months. What are the 80% confidence limits for the mean and standard deviation of a pdf that represents these batteries?
- 4. [4.9] The frequency distribution of time to establish the root causes of a failure by a group of experts is observed and given below. Test whether a normal distribution with known $\sigma=10$ is an appropriate model for these data.

Time Interval (hour)	Obs. Freq.
45-55	7
55-65	18
65-75	35
75-85	28
85-95	12

5. [4.10] A sample of 50 digits using a random number generator yielded the following data. Is there any reason to doubt the digits are uniformly distributed? Use a Chi-Square test and significance level of 0.05 to test.

Digit	0	1	2	3	4	5	6	7	8	9
Frequency	4	8	8	4	10	3	2	2	4	5

6. [4.16] Consider the following time to failure data with the ranked value of t_i . Use the K-S test to test the hypothesis that the data fit a normal distribution.

Event	1	2	3	4	5	6	7	8	9	10
Time to Failure (hour)	10.3	12.4	13.7	13.9	14.1	14.2	14.4	15.0	15.9	16.1