Software Process Models

Xin Feng

Outline

- Software development lifecycle
- Process models

Questions to Answer in Software Engineering?

- Questions to answer in software engineering
 - What is the problem to be solved?
 Requirements definition
 It is a solved of the soliware to solve?

 - Design and Implementation
 - What approach will be zed to uncover errors that were made in the Validation nstruction of the software?
 - How will the software by supported over the long term, when correct aintenance and enhancements are requested by users of the softwre?

Software Development Life Cycle

Fundamental Activities

- Software requirements definition (specification 规格说明)
 - understand and define the services
 - Identify the constraints (约束)
- Software design and implementation
 - Convert specifications to executable systems
- Software validation
 - Check if a system conforms to its specification (verification (验证)) and meets the customer's expectation (validation (确认))
- Software evolution
 - Evolve to meet the required changes from customers and bug corrections.

Software Requirements Specification

Design and Implementation

Design the architecture (结构) & write program

Software Validation (确认)

Is the system right???

Maintenance

- 1. More functions added
- 2. Bugs corrected
- 3. New versions delivered

Software Engineering

Software Process and Process Model

- A software process is
 - a set of activities whose goal is the development or evolution (演变) of software
- Software process model
 - a simplified representation of a software process from a specific perspective.

Process Models

- The waterfall (瀑布) model
- The incremental (增量) process model
- Prototype
- Spiral (蜘蛛) model

Process Models

- Formal method
 - VDM (Vienna Development Method)
 - The B method

The Waterfall Model

produce

An Example

Requirements initial description:

Develop a software program that can calculate arithmetic expressions and display the result in a micro second.

The Waterfall Model

Analysis

- Functions
- Behaviors
- Interfaces
- Performance (性能)
- Specification forms
 - Tables
 - Diagrams (图表)
 - Natural languages

The Waterfall Model - Specification

- Functions
 - Calculation
- Behaviors
 - Input
 - Output
 - Display
- Interfaces
 - A window for displaying input and output
 - Buttons
- Performance (性能)
 - Response time: a micro-second

The Waterfall Model

Design

- Software architecture
- Data structure
- Design forms
 - Diagrams
 - Tables
 - Pseudo-code (伪代码)

The Waterfall Model - Architecture

The Waterfall Model - Coding

Code

- Code generation
 - automatically
 - manually (手工)

```
struct Exp transform(char *expression)
{
    ...
}
```

The Waterfall Model - Test Reports

Test

- Detect defects in the programs
- Automatically or manually (手工的)

```
Defect (错误) report:
Module (模块) name: transform

Test data 1: 10 + 30
Output: 4
Test data 2: 20 * 30
Output 50
```

The Waterfall Model – Maintenance Records

- Maintenance (维护)
 - Correct bugs
 - Implement the changes

Maintenance report:

Time: 1 January 2000

Module: transform

Reason: Fix bugs

Bug description: ...

The Waterfall Model

- Advantages
 - Straightforward (率直的)
 - Disciplined (严格)
- Arguments (争拗)
 - Users cannot describe their requirements very clearly at the beginning
 - It is hard to follow
 - The projects developed with this process
 are often delayed (延迟)

Incremental Development

- Clients do NOT need to specify the requirements for the whole system at the beginning
- Clients can specify the most important parts to finish first
- A number of increments (增加) are defined

Incremental Development Process

The Incremental Model

- Advantages
 - The risk that the whole system fails is lower (compared to the waterfall model)
 - Shorten the delivery (交付) time
- Disadvantages
 - The system structure is loose
 - Hard to define the increments

The Prototyping Model

- A quick design -> the construction of a prototype
- Identify software requirements

(refined) requirements

Customer Developer
refined (精化的) prototypes (原型)

An Example

Requirements statement:

Develop a software system that can calculate arithmetic expressions and display the result in a micro second.

An Example

Initial requirements

Refined requirements

Updated requirement statement:

Develop a software system that can calculate arithmetic expressions and display the result in a micro second. The operands can be real and the precedence of the calculation can be designated using ()

Types of Prototypes

Paper work

Prototype

Computer programs

The Prototyping Model

Advantages

- Users can have an initial look of the system
- Developers have a quick design
- The prototype can be developed to a system

Arguments

- Rush to get it work
- Hard to ensure the quality and to maintain

The Spiral Model

- An evolutionary (演变) (iterative) software process model
- Combine both waterfall model and prototyping model

The Spiral Model (Bohem)

A Variant of the Spiral Model

The Spiral Model

- Advantages
 - Developers can using prototyping in each evolutionary level
 - Reduce the risk
- Arguments
 - Continual risk analysis
 - Document maintenance

Summary

- Activities in the phases of software development life cycle
- Process models
 - waterfall,
 - incremental,
 - prototyping,
 - Spiral
- Advantages and disadvantages of each model