6.4 1) Supposons que $f'(x) \leq 0$ pour tout $x \in I$.

Soient $x_1 \in I$ et $x_2 \in I$ avec $x_1 < x_2$.

Il faut montrer que $f(x_1) \ge f(x_2)$, à savoir que $f(x_2) - f(x_1) \le 0$.

Vu le théorème des accroissements finis, il existe $c \in]x_1; x_2[$ tel que $f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$

On en conclut $f(x_2) - f(x_1) = \underbrace{f'(c)}_{\leq 0} \underbrace{(x_2 - x_1)}_{>0} \leq 0$.

2) Supposons f décroissante sur I.

Soit $x \in I$.

Soit $h \in \mathbb{R} - \{0\}$ tel que $x + h \in I$.

(a) Supposons h > 0.

x + h > x entraı̂ne $f(x + h) \leq f(x)$, vu la décroissance de f.

Il en résulte que $\underbrace{\frac{\int_{0}^{60} f(x+h) - f(x)}{h}}_{>0} \leqslant 0.$

(b) Supposons h < 0.

x + h < x implique $f(x + h) \ge f(x)$, vu la décroissance de f.

Il en suit que $\frac{\overbrace{f(x+h)-f(x)}^{\geqslant 0}}{\underbrace{h}_{\leqslant 0}} \leqslant 0.$

On en tire que $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \leqslant 0.$