Báo cáo bài tập 3

1612174 - Phùng Tiến Hào - tienhaophung@gmail.com 29/03/2019

Contents

4	Tham khảo	4
3	Câu 3	3
2	Câu 2	2
1	Câu 1	1

1 Câu 1

(4 đ). Có 3 xạ thủ cùng bắn đạn vào bia. Xác suất để các xạ thủ bắn trúng bia lần lượt là 0.2, 0.4, 0.6. Giả sử rằng mỗi xạ thủ chỉ bắn 1 viên đạn và việc bắn đạn của một xạ thủ không bị ảnh hưởng bởi các xạ thủ khác. Tính kì vọng của số đạn trúng bia.

Giải

a) Tìm phân phối của số đạn trúng bia.

Gọi p_1, p_2, p_3 lần lượt là xác xuất bắn trúng bia của ba thợ săn:

$$\begin{cases} p_1 = 0.2 - > p_1^c = 0.8 \\ p_2 = 0.4 - > p_2^c = 0.6 \\ p_3 = 0.6 - > p_3^c = 0.4 \end{cases}$$

$$P(X = 0) = p_1^c p_2^c p_3^c = 0.192$$

$$P(X = 1) = p_1 p_2^c p_3^c + p_1^c p_2 p_3^c + p_1^c p_2^c p_3 = 0.464$$

$$P(X = 2) = p_1 p_2 p_3^c + p_1^c p_2 p_3 + p_1 p_2^c p_3 = 0.296$$

$$P(X = 3) = p_1 p_2 p_3 = 0.048$$

Table 1: Bảng phân phối xác suất của X (với X là số viên đạn trung bia):

X	0	1	2	3
P(X = x)	0.192	0.464	0.296	0.048

b) Tính kì vọng của số đạn trúng bia.

$$E(X) = \sum p_i x_i = 1.2$$

Mô phỏng trong R

```
thosan2 \leftarrow sample (khanang, 1, prob = c(0.4, 0.6))
         thosan3 \leftarrow sample (khanang, 1, prob = c(0.6, 0.4))
         return (thosan1 + thosan2 + thosan3)
      meanX <- function(N) {
         kq <- replicate(N, X())
11
         return (mean(kq))
12
13
15
      #Test
      meanX(50000)
16
      \#> meanX(50000)
17
      #[1] 1.19892
19
```

2 Câu 2

(3 đ). Một đồng xu có xác suất ra ngửa là 0.4. Gieo đồng xu đến khi ra ngửa thì dừng. Tính kì vọng của số lần gieo.

Giải

Xét thí nghiệm tung đồng xu đến khi có mặt ngửa thì dừng.

Xác suất tung được mặt ngửa: p=0.4

Gọi X là bnn "Số lần tung được mặt sấp" thì X có phân phối hình học (Geometric distribution):

$$X \sim NB(1, 0.4)$$

Do đó, kì vọng của số lần gieo đồng xu:

$$E(X+1) = E(X) + 1 = \frac{1-0.4}{0.4} + 1 = 2.5$$

Mô phổng trong R

```
1    X <- function() {
2         khanag <- c(1, 0) #1: Head, 0: tail
3         count <- 0
4         while (TRUE) {</pre>
```

```
tung_dong_xu \leftarrow sample(khanag, 1, prob = c(0.4, 0.6))
           count <- count + 1
           if(tung\_dong\_xu == 1){
              break
9
10
         return (count)
12
13
       meanX <- function(N) {
14
         kq <- replicate(N, X())
16
         return (mean(kq))
17
18
       meanX(50000)
       #> meanX(50000)
20
       #[1] 2.5062
21
```

3 Câu 3

(6 đ). Chọn ngẫu nhiên một số thực L trên đoạn [0, 1], dựng hình vuông có cạnh dài L mét. Tìm kì vọng của diện tích hình vuông

Giải

Ta nhận thấy $X \sim Uniform(0,1)$. Do đó, hàm mật độ xác suất của X là:

$$f_X(x) = \begin{cases} 1, & 0 \le x \le 1\\ 0, & \text{otherwise} \end{cases}$$

Gọi Y là diện tích của hình vuông với cạnh X(m).

$$Y = X^2$$

Ta thấy rằng Y là biến ngẫu nhiên phái sinh của biến ngẫu nhiên X qua hàm:

$$r(x) = x^2, 0 \le x \le 1$$

Theo công thức kì vọng, ta có:

$$E(Y) = E(r(X)) = \int_{-\infty}^{\infty} r(x) f_X(x) dx$$
$$= \int_{0}^{1} x^2 dx$$
$$= \frac{1}{3} \approx 0.333$$

Mô phỏng trong R

4 Tham khảo

[1] Introduction to R, Datacamp.