Università	Institute of
della	Computational
Svizzera	Science
italiana	ICS

High Performance Computing

2019

Due date: 13 December 2019, 23:59

Student: FULL NAME

Discussed with: FULL NAME

Solution for Assignment 7

Graph Partitioning

In this assignment you will implement various graph partitioning algorithms in Matlab and test these methods on a variety of 2D meshes.

- 1. Install METIS 5.0.2, KaHIP 2.0, and the corresponding Matlab mex interface (10 Points)
- 2. Implement various graph partitioning algorithms in Matlab (40 Points)

Table 1. Edge-cut Results

Mesh	Coordinate	Metis 5.0.2	KaHIP	Spectral	Inertial
grid5rec(10, 80)	10				
grid5rec(80, 10)	10				
gridt(40)					
grid9(40)					
small					
Tapir					
Eppstein					
Airfoil					
cockroach(90)					

3. Visualize the graph partitioning

(10 Points)

4. Implement in Matlab the recursive k-way partitioning

(10 Points)

 $Table\ 2.$ Edge-cut results for k-way partitioning and the airfoil mesh.

Mesh	Coordinate	Metis 5.0.2	KaHIP	Spectral	Inertial
k=2					
k=4					
k=8					
k=16					
k=32					

5. Partitioning of realistic large-scale FEM meshes

(30 Points)

Table 3. Results for 2-way partitioning of the selected FEM mesh.

Metric	Metis 5.0.2	KaHIP
Time (s)		
Partition 1		
Partition 2		
Edge cut		