Supervised Learning Methodology

Malte Schierholz & Christoph Kern

University of Mannheim, MZES Institute for Employment Research (IAB)

Malte.Schierholz@iab.de c.kern@uni-mannheim.de

March 21 and 22, 2018

Goal: Find function f(x) that makes optimal predictions in a **new data** set (\sim only X available)

Goal: Find function f(x) that makes optimal predictions in a **new data** set (\sim only X available)

Prerequisites:

- **Representation**: What is the *hypothesis space*, the family of functions to search over?
 - Describes possible relationships between X and Y
 - Examples: $f(x) = x'\beta$ is linear, or f is a tree.

2 / 35

Goal: Find function f(x) that makes optimal predictions in a **new data** set (\sim only X available)

Prerequisites:

- **Representation**: What is the *hypothesis space*, the family of functions to search over?
 - ullet Describes possible relationships between X and Y
 - Examples: $f(x) = x'\beta$ is linear, or f is a tree.
- Evaluation: What is the criterion to choose between different functions?
 - Measures predictive performance
 - Examples: Mean Squared Error, Logistic Loss

Goal: Find function f(x) that makes optimal predictions in a **new data** set (\sim only X available)

Prerequisites:

- Representation: What is the hypothesis space, the family of functions to search over?
 - Describes possible relationships between X and Y
 - Examples: $f(x) = x'\beta$ is linear, or f is a tree.
- Evaluation: What is the criterion to choose between different functions?
 - Measures predictive performance
 - Examples: Mean Squared Error, Logistic Loss
- **Computation**: How is *f* actually calculated?
 - Speed and memory space may be limiting factors
 - Examples: Stochastic gradient descent, handling of sparse matrices

Loss Functions for Estimation

Loss Functions for Estimation and Prediction

Estimation: Standard View

Given a distribution \mathbb{P}_{θ} , find (ML-)estimator $\hat{\theta}$ that maximizes $P(\mathsf{Data}|\hat{\theta})$

Example:

• To estimate the mean from a Gaussian, maximize
$$\max_{\theta} P(y_1,...,y_n|\theta) \propto \exp(-\frac{1}{2\sigma^2}\sum_{i}(y_i-\theta)^2) \tag{1}$$

or, equivalently, find least squares estimate

$$\min_{\theta} \sum (y_i - \theta)^2 \qquad \Rightarrow \qquad \hat{\theta} = \frac{1}{n} \sum y_i \tag{2}$$

- What if we don't know the distribution?
- What if we are interested in arbitrary functionals?

Estimation is a decision problem: Select estimator $\hat{\theta}$ which has minimal costs. How to define cost?

• Squared distance from "true" θ :

$$\min_{\theta} \sum (y_i - \theta)^2 \qquad \Rightarrow \qquad \hat{\theta} = \frac{1}{n} \sum y_i \tag{3}$$

Estimation is a decision problem: Select estimator $\hat{\theta}$ which has minimal costs. How to define cost?

• Squared distance from "true" θ :

$$\min_{\theta} \sum (y_i - \theta)^2 \qquad \Rightarrow \qquad \hat{\theta} = \frac{1}{n} \sum y_i \tag{3}$$

• Absolute distance from "true" θ :

$$\min_{\theta} \sum |y_i - \theta| \qquad \Rightarrow \qquad \hat{\theta} = \mathsf{Median}(y_1, ..., y_n) \tag{4}$$

Estimation is a decision problem: Select estimator $\hat{\theta}$ which has minimal costs. How to define cost?

• Squared distance from "true" θ :

$$\min_{\theta} \sum (y_i - \theta)^2 \qquad \Rightarrow \qquad \hat{\theta} = \frac{1}{n} \sum y_i \tag{3}$$

• Absolute distance from "true" θ :

$$\min_{\theta} \sum |y_i - \theta| \qquad \Rightarrow \qquad \hat{\theta} = \mathsf{Median}(y_1, ..., y_n) \tag{4}$$

• As a generalization of ML-estimation (density f known):

$$\min_{\theta} \sum -\log f(y_i|\theta) \qquad \Rightarrow \qquad \hat{\theta} = \hat{\theta}_{ML} \tag{5}$$

Estimation is a decision problem: Select estimator $\hat{\theta}$ which has minimal costs. How to define cost?

• Squared distance from "true" θ :

$$\min_{\theta} \sum (y_i - \theta)^2 \qquad \Rightarrow \qquad \hat{\theta} = \frac{1}{n} \sum y_i \tag{3}$$

• Absolute distance from "true" θ :

$$\min_{\theta} \sum |y_i - \theta| \qquad \Rightarrow \qquad \hat{\theta} = \mathsf{Median}(y_1, ..., y_n) \tag{4}$$

• As a generalization of ML-estimation (density f known):

$$\min_{\theta} \sum -\log f(y_i|\theta) \qquad \Rightarrow \qquad \hat{\theta} = \hat{\theta}_{ML} \tag{5}$$

→ The specification of "cost" determines what we aim to estimate

Estimation: Conditional Distributions

Depending on the distribution/cost function used, different target functionals $\hat{\theta}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ are estimated.

Loss functions for estimation

Estimation requires (at least implicitly)

- a target distribution $\mathbb{P}_{Y|X}$, or
- a loss function

Possible choices:

(watch out in R for parameters named "family" or "distribution", but implementations differ.)

Setting	Loss	Target $f(x)$	R implemention
Regression	$(y-f(x))^2$	mean(y x)	Gaussian
Regression	y-f(x)	median(y x)	Laplace
Regression	$\rho_{\tau}(y-f(x))$	$F_{_{_{m{V}} _{m{X}}}}^{-1}(au)$	au-Quantile
Classification	Deviance	$\pi_{y x}$	Binomial

 Many more options exist, e.g., for censored (survival) data and (multi-)categorical outcomes

Loss functions for prediction

Same for prediction: Prediction requires

- a target distribution $\mathbb{P}_{Y|X}$, or
- a loss function

A small difference:

 Machine Learning mindset is more focused on evaluation criteria, i.e., loss functions

Loss functions for prediction

Same for prediction: Prediction requires

- a target distribution $\mathbb{P}_{Y|X}$, or
- a loss function

A small difference:

 Machine Learning mindset is more focused on evaluation criteria, i.e., loss functions

General Jessons

- Estimation can be framed as loss minimization
- Loss functions describe the target functional we wish to estimate or predict

Estimation vs. Prediction

Estimation vs. Prediction

Estimation vs. Prediction

Goal of Estimation

$$\mathbb{E}(\hat{f}) = f$$

Goal of Prediction

$$\hat{f} = \arg\min_{f \in \mathcal{F}} \mathbb{E}(L(f, y))$$

- $L(f, y) = (f y)^2$ in the following
- ullet Choose function \hat{f} that predicts new observation y well
 - Low test error (≠ training error)

Estimation vs. Prediction

Standard assumption in both cases:

- Stationary distribution: $(y_i, x_i) \stackrel{iid}{\sim} \mathbb{P}_{Y,X}$
- ML extrapolates this to future observations

Estimation:

ullet Interested in parameters of data generating process $\mathbb{P}_{Y,X}$

Prediction:

• Interested in predicting y = f(x)

High-dimensional Prediction Problems

ML-methods are most useful in high-dimensional prediction problems

- Many predictor variables
- Unforeseeable interactions
- Local problems with many hikes

Figure: Map of Tyrol

For a conceptual understanding, lets look at low dimensions first.

Image-Source: Wikipedia By NordNordWest CC BY-SA 2.0, [1]

Bias-Variance-Tradeoff

The Bias-Variance-Tradeoff

A Simple Example

True data generating process:

$$y = \mu + \epsilon \qquad \epsilon \sim N(0, \sigma_{\epsilon}^2)$$
 (6)

• Very low dimensional, no covariates

An Estimation Problem

$$y = \mu + \epsilon \qquad \epsilon \sim N(0, \sigma_{\epsilon}^2)$$
 (7)

Goal: Estimate μ . Which \hat{f}_{α} is a good estimator for μ ?

$$\hat{f}_{\alpha} = \alpha \bar{y} \tag{8}$$

$$\mathbb{E}_{\bar{\mathbf{Y}}}(\hat{\mathbf{f}}_{\alpha}) = \alpha \mu \tag{9}$$

Bias minimizer: Set $\alpha=1$ (sample mean is unbiased for μ)

You get the same result with OLS regression on a constant

A Prediction Problem

Setting:

- ullet Distribution \mathbb{P}_Y and expectation $\mu = \mathbb{E}_Y(y)$ known
- ullet Make a good guess \hat{f} about a future observation y
- Goal: minimize quadratic loss of prediction \hat{f}

$$\mathbb{E}_{Y}(L(y,\hat{f})) = \mathbb{E}_{Y}((y-\hat{f})^{2})$$
(10)

$$= \mathbb{E}_{Y}((y-\mu+\mu-\hat{f})^{2}) \tag{11}$$

$$= (\mu - \hat{f})^2 + \sigma_{\epsilon}^2 \tag{12}$$

A Prediction Problem

Setting:

- Distribution \mathbb{P}_Y and expectation $\mu = \mathbb{E}_Y(y)$ known
- Make a good guess \hat{f} about a future observation y
- Goal: minimize quadratic loss of prediction \hat{f}

$$\mathbb{E}_{Y}(L(y,\hat{f})) = \mathbb{E}_{Y}((y-\hat{f})^{2})$$
(10)

$$= \mathbb{E}_{Y}((y-\mu+\mu-\hat{f})^{2}) \tag{11}$$

$$= (\mu - \hat{f})^2 + \sigma_{\epsilon}^2 \tag{12}$$

Result:

- $\hat{f} = \mu$ is optimal for squared loss.
- σ_{ϵ}^2 is irreducible noise.

If μ were unknown, could we just plug-in \bar{y} for it?

A Supervised Learning Problem

Setting:

- Same as before, but distribution \mathbb{P}_{Y} unknown
- ullet We are given n training observations to learn \hat{f}_lpha

$$\hat{f}_{\alpha} = \alpha \bar{y}$$
 (Hypothesis space) (13)

$$\mathbb{E}_{\bar{Y}}(\hat{f}_{\alpha}) = \alpha \mu \longrightarrow \text{Unbiased with } \alpha = 1$$
 (14)

Training data are random.

A Supervised Learning Problem

Setting:

- Same as before, but distribution \mathbb{P}_{Y} unknown
- ullet We are given n training observations to learn \hat{f}_lpha

$$\hat{f}_{\alpha} = \alpha \bar{y}$$
 (Hypothesis space) (13)

$$\mathbb{E}_{\bar{Y}}(\hat{f}_{\alpha}) = \alpha \mu \qquad \rightarrow \text{Unbiased with } \alpha = 1 \tag{14}$$

Training data are random.

This changes the expected loss

$$\mathbb{E}_{Y,\bar{Y}}(L(y,\hat{f}_{\alpha})) = (1-\alpha)^2 \mu^2 + \alpha^2 \frac{1}{n} \sigma_{\epsilon}^2 + \sigma_{\epsilon}^2$$
 (15)

Loss is minimal at $\alpha = \frac{\mu^2}{\mu^2 + \sigma^2/n} < 1!!!!$

Key Lesson

Estimation != Prediction

- Parameters are biased if a function is fitted for prediction purposes.
- Very different compared with traditional statistics
 - Unbiased estimators are often considered essential (remember that OLS is BLUE, best among all linear unbiased estimators)

The Bias-Variance Trade-Off

Expected test error decomposition Minimize

$$\mathbb{E}_{Y,\bar{Y}}(L(y,\hat{f}_{\alpha})) = \underbrace{(\mathbb{E}_{\bar{Y}}(\hat{f}_{\alpha}) - \mu)^{2}}_{(\Omega \to 1)} + \underbrace{\mathbb{E}_{\bar{Y}}(\hat{f}_{\alpha} - \mathbb{E}_{\bar{Y}}(\hat{f}_{\alpha}))^{2}}_{(\Omega \to 1)} + \underbrace{\sigma_{\epsilon}^{2}}_{(\Omega \to 1)}$$

$$= \underbrace{(1 - \alpha)^{2}\mu^{2}}_{\alpha \to 1} + \underbrace{\alpha^{2} \frac{1}{n} \sigma_{\epsilon}^{2}}_{\alpha \to 0} + \sigma_{\epsilon}^{2}$$

$$(16)$$

Usually not possible to minimize both

- ullet the bias (Average deviation from optimal (but unknown) μ)
- the variance (Variability of using different training data)
- \rightarrow Trade-Off

Intuition about Bias-Variance Trade-Off

You know this already:

- Consider a single test score to estimate a person's ability
 - Would you predict the same score for a future test?
- → Unbiased, yet you probably wouldn't trust a single observation

Intuition about Bias-Variance Trade-Off

You know this already:

- Consider a single test score to estimate a person's ability
 - Would you predict the same score for a future test?
- → Unbiased, yet you probably wouldn't trust a single observation
 - You run a one variable regression (correctly specified) and get
 - $\hat{\beta}_0^{OLS} = 0 \pm 0.3$
 - $\hat{\beta}_{1}^{OLS} = 3 \pm 20$
 - Would you use this model to make predictions?
- ightarrow Unbiased, yet with different data the estimates could look very different

Does it matter?

Does the Bias-Variance Trade-Off matter?

Why?

- Theoretical insight about learning goal
- Practical guidance is limited (because bias and variance are unknown)

When?

- Variance term is negligible in low-dimensional problems (few parameters, N large)
- Variance term becomes relevant for high-dimensional problems

High-dimensional Problems

High-dimensional Problems

High-dimensional Problems

ML-methods are most useful in high-dimensional prediction problems

- Many predictor variables
- Unforeseeable interactions
- Local problems with many hikes

Figure: Map of Tyrol

Our hypothesis space needs to be very flexible to cover these situations

Image-Source: Wikipedia By NordNordWest CC BY-SA 2.0, [1]

Flexible functions

Remember that we need to specify a family of functions (a hypothesis space) to describe possible relations between X and Y

Different hypothesis spaces:

- Linear regression (with many covariates)
- Classification and Regression Trees
- Random Forests
- Boosting
- Neural Networks
- •

Methods allow specification of flexible functions using many covariates

→ High variance becomes an issue

High Variance in Trees

- High Variance = Different data would lead to a different function
- Overfitting = Poor generalization to new data

High Bias in Trees

- High Bias = Blue points are poorly predicted
- Underfitting = Function should adapt better to the data

Optimal Solution

• Goal: Find optimal compromise between bias and variance

Bias-Variance Tradeoff

Training Error and Test Error by model capacity

(Source: Hastie et al. 2009)

Key Lesson

Goal of prediction:

$$\arg\min_{f\in\mathcal{F}} \mathbb{E}(L(f(x), y)) \tag{18}$$

but we cannot simply minimize its empirical analogue in training data

$$\arg\min_{f\in\mathcal{F}}\frac{1}{N}\sum_{i=1}^{N}L(f(x_i),y_i) \tag{19}$$

because this would overfit if the capacity of f is high enough.

Regularization

Solution: Solve (as before)

$$\arg\min_{f\in\mathcal{F}_K} \frac{1}{N} \sum_{i=1}^N L(f(x_i), y_i)$$
 (20)

but f must come from a restricted hypothesis space (limited capacity)

- Tree with at most K leaves
- Regression with $\sum |\beta_j| < K$
- General form: Penalty(f) < K

This is regularization and usually written as

$$\arg\min_{f\in\mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(f(x_i), y_i) + \lambda \cdot \text{Penalty}(f)$$
 (21)

ightarrow How to choose model capacity, i.e., the regularization parameter λ ?

Quiz Question

If we have a high bias problem (underfitting), what can be done?

- Add more predictors (= collect more variables or transform existing ones)?
- Allow higher function capacity (= reduce regularization parameter)?
- Use more flexible algorithms (e.g., a tree instead of linear regression)?

If we have a high variance problem (overfitting), what can be done?

- Add more predictors (= collect more variables or transform existing ones)?
- Allow higher function capacity (= reduce regularization parameter)?
- Use more flexible algorithms (e.g., a tree instead of linear regression)?
- Collect more training data?

Learning curves

How much data are needed?

- Idea: Plot training and validation error against training set size
- Allows to study the gain of adding more data
 - Convergence of validation error curve towards training curve
- Can also be used as a diagnosis tool to asses
 - High bias (Underfitting): Curves converge at a high value
 - High variance (Overfitting): Large gap between curves

Figure: Learning curves

(b) Regression trees

References

Hastie, Trevor, Tibshirani, Robert & Friedman, Jerome (2009)

The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer. Chapter 7.

Athey, Susan & Imbens, Guido (2018)

Machine Learning and Econometrics, January 7-9, 2018: https://www.aeaweb.org/conference/cont-ed/2018-webcasts