Amendment After Final Rejection

May 26, 2009

AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows:

- 1. (Currently Amended) An electrophotographic photoreceptor comprising:
- a conductive substrate: and

a photosensitive layer disposed on the conductive substrate, containing a charge qenerating substance and a charge transporting substance,

wherein the charge transporting substance contains an enamine compound represented by the following general formula (1), and in a case where a maximum indentation load of 30 mN is put on a surface for 5 seconds under circumstances of temperature of 25°C and relative humidity of 50%, a creep value (C_{IT}) is 2.70% or more and 5.00% or less and a plastic deformation hardness value (Hplast) of the surface is 220 N/mm² or more and 275 N/mm² or less.

$$Ar^{2} \qquad (CR^{2} = CR^{3}) CR^{4} \qquad Ar^{5}$$

$$Ar^{3} \qquad (1)$$

wherein Ar¹ and Ar² each represents an aryl group which may have a substituent or a heterocyclic group which may have a substituent; Ar² represents an aryl group

Amendment After Final Rejection

May 26, 2009

which may have a substituent or a heterocyclic group which may have a substituent; Ar³ represents an aryl group which may have a substituent, a heterocyclic group which may have a substituent, an aralkyl group which may have a substituent, or an alkyl group which may have a substituent: Ar⁴ and Ar⁵ each represent a hydrogen atom, an arvl group which may have a substituent, a heterocyclic group which may have a substituent, an aralkyl group which may have a substituent, or an alkyl group which may have a substituent, but it is excluded that Ar⁴ and Ar⁵ are hydrogen atoms at the same time: Ar4 and Ar5 may bond to each other via an atom or an atomic group to form a cyclic structure: "a" represents an alkyl group which may have a substituent, an alkoxy group which may have a substituent, a dialkylamino group which may have a substituent, an aryl group which may have a substituent, a halogen atom, or a hydrogen atom; m indicates an integer of from 1 to 6; when m is 2 or more, then the "a"s may be the same or different and may bond to each other to form a cyclic structure: R1 represents a hydrogen atom, a halogen atom, or an alkyl group which may have a substituent; R2, R3 and R4 each represent a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, a heterocyclic group which may have a substituent, or an aralkyl group which may have a substituent; n indicates an integer of from 0 to 3; when n is 2 or 3, then the R2s may be the same or different and the R3s may be the same or different, but when n is 0. Ar3 is a heterocyclic group which may have a substituent.

Amendment After Final Rejection

May 26, 2009

 (Original) The electrophotographic photoreceptor of claim 1, wherein the enamine compound represented by the general formula (1) is an enamine compound represented by the following general formula (2).

$$\begin{array}{c|c} c_{R} & & \\ \hline \\ c_{R} & & \\ \hline \\ c_{H} & & \\ \hline \\ c_{H}$$

wherein b, c and d each represent an alkyl group which may have a substituent, an alkoxy group which may have a substituent, a dialkylamino group which may have a substituent, an aryl group which may have a substituent, a halogen atom, or a hydrogen atom; i, k and j each indicate an integer of from 1 to 5; when i is 2 or more, then the "b"s may be the same or different and may bond to each other to form a cyclic structure; when k is 2 or more, then the "c"s may be the same or different and may bond to each other to form a cyclic structure; and when j is 2 or more, then the "d"s may be the same or different and may bond to each other to form a cyclic structure; Ar⁴, Ar⁵, "a" and "m" represent the same as those defined in formula (1).

 $3. \ \, \hbox{(Previously Presented)} \ \, \hbox{The electrophotographic photoreceptor of claim 1 or} \\ 2, wherein the creep value (C_{IT}) is 3.00\% or more and 5.00\% or less.$

KIHARA et al

Appl. No. 10/575,097 Attv Re.: 1114-232

Amendment After Final Rejection

May 26, 2009

4. (Previously Presented) The electrophotographic photoreceptor of claim 1.

wherein the charge generating substance contains a titanyl-phthalocyanine compound.

5. (Previously Presented) The electrophotographic photoreceptor of claim 1,

wherein the photosensitive layer is constituted by lamination of a charge generating

layer containing the charge generating substance and a charge transporting layer

containing the charge transporting substance.

6. (Previously Presented) An image forming apparatus comprising:

the electrophotographic photoreceptor of claim 1:

charging means for charging a surface of the electrophotographic photoreceptor;

exposure means for exposing the charged surface of the electrophotographic

photoreceptor to light according to image information thereby forming an electrostatic

latent image;

developing means for developing the electrostatic latent image to form a toner

image;

transfer means for transferring the toner image from the surface of the

electrophotographic photoreceptor to a transfer member; and

cleaning means for cleaning the surface of the electrophotographic photoreceptor

after transfer of the toner image.

7. (Currently Amended) An electrophotographic photoreceptor comprising:

a conductive substrate; and

a photosensitive layer disposed on the conductive substrate, containing a charge

generating substance and a charge transporting substance,

- 5 -

1483397

Amendment After Final Rejection

May 26, 2009

wherein the photosensitive layer comprises a charge generating layer and a charge transporting layer on the charge generating layer,

the charge transporting layer containing the charge transporting substance and a binder resin.

the binder resin containing at least two separate polycarbonate resins, and wherein the charge transporting substance contains an enamine compound represented by the following general formula (1), and in a case where a maximum indentation load of 30 mN is put on a surface for 5 seconds under circumstances of temperature of 25°C and relative humidity of 50%, a creep value (C_{IT}) is 2.70% or more and 5.00% or less and a plastic deformation hardness value (Hplast) of the surface is 220 N/mm² or more and 275 N/mm² or less.

wherein Ar¹ and Ar² each represents an aryl group which may have a substituent or a heterocyclic group which may have a substituent; Ar² represents an aryl group which may have a substituent or a heterocyclic group which may have a substituent; Ar³ represents an aryl group which may have a substituent, a heterocyclic group which may

Amendment After Final Rejection

May 26, 2009

have a substituent, an aralkyl group which may have a substituent, or an alkyl group which may have a substituent: Ar⁴ and Ar⁵ each represent a hydrogen atom, an arylgroup which may have a substituent, a heterocyclic group which may have a substituent, an aralkyl group which may have a substituent, or an alkyl group which may have a substituent, but it is excluded that Ar⁴ and Ar⁵ are hydrogen atoms at the same time; Ar4 and Ar5 may bond to each other via an atom or an atomic group to form a cyclic structure; "a" represents an alkyl group which may have a substituent, an alkoxy group which may have a substituent, a dialkylamino group which may have a substituent, an aryl group which may have a substituent, a halogen atom, or a hydrogen atom; m indicates an integer of from 1 to 6; when m is 2 or more, then the "a"s may be the same or different and may bond to each other to form a cyclic structure: R1 represents a hydrogen atom, a halogen atom, or an alkyl group which may have a substituent; R², R³ and R⁴ each represent a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, a heterocyclic group which may have a substituent, or an aralkyl group which may have a substituent; n indicates an integer of from 0 to 3; when n is 2 or 3, then the R2s may be the same or different and the R3s may be the same or different, but when n is 0. Ar3 is a heterocyclic group which may have a substituent.