

Réseaux sans fils et mobiles

Pr M. EL HALOUI

Rappels

- Propagation des ondes radio et antennes
- Bandes de fréquences et règlementation
- Point d'accès réseau
- Organisation cellulaire (BSS,...)
- Mécanisme de « Handover »
- Questions ?

Le roaming (itinérance)

- Il s'agit de l'action qui consiste pour une station à changer de point d'accès (AP) sans perdre sa connectivité réseau.
- La prise en charge de la mobilité nécessite un minimum de superposition des deux cellules de communication (environ 15 %)
- La norme le 802.11r traite la prise en charge du raoming

IEEE 802.11: Architecture

- Un réseau wifi est fondé sur une architecture cellulaire
- Il existe deux types de topologies :
 - Le mode infrastructure, avec BSS et ESS.
 - En mode infrastructure **BSS**, le réseau est composé d'un point d'accès qui permet aux différentes stations qui se trouvent dans sa cellule d'échanger des informations.
 - En mode infrastructure **ESS**, le réseau comporte plusieurs points d'accès reliés entre eux par un DS (distribution system)

• Le mode ad-hoc

- Mode est aussi appelé "point à point" ou "ensemble de services de base indépendants" (IBSS : Independent BSS)
- En mode ad-hoc, ne comporte pas de points d'accès, ce sont les stations (avec cartes Wi-Fi) qui entrent elles mêmes en communication.
- Il permet une communication entre postes dont les cellules se recouvrent

IEEE 802.11: Mode Ad hoc

- Les appareils du réseau sans fil communiquent directement entre eux (point à point)
- Plus approprié pour un petit groupe d'appareils
- En général, réseau temporaire configuré pour répondre à un besoin immédiat
- Les appareils doivent être physiquement présents à proximité les uns des autres.
- Elles ne peuvent pas établir de pont avec le réseau local câblé
- Le réseau constitué s'appelle un IBSS (Independent Basic Service Set)
- Pour un réseau domestique : les modems/routeurs des FAI peuvent jouer le rôle de point d'accès WIFI.

Mode Ad hoc: Exemples d'application

- Réseaux mobiles ad hoc (appareils mobiles auto-configurable, auto-organisé et connectés sans fil)
- VANET: Réseaux ad hoc véhiculaires (communication véhicules, équipements routiers,..)
- SPAN : Réseaux ad hoc pour smartphones (Wifi Direct,...)
- MANET : Réseau Ad ok militaire (communication en mouvement,...)
- FANET (Flying ad hoc networks): Les réseaux ad hoc volants constitués par des drones
- Réseaux ad hoc de la Marine (communications sans fil à haute vitesse entre les navires)
- WSN et MWSN : Réseaux de capteurs sans fil. Collecte de données ou de mesures (température, humidité,....)
- Réseau ad hoc de robots : communication pour collaboration et ordonnancement des tâches
- Réseau ad hoc de sauvetage en cas de catastrophe : communication des pompiers et les secouristes

Réseau Ad hoc

Avantages:

- Nœuds mobiles et décentralisés, utilisation variées, plus de performances.
- Infrastructure moins coûteuse
- Diffusion rapide des informations autour de l'émetteur
- Pas de point de défaillance unique (SPOF).
- Evolutivité

• Limites:

- La topologie doit être très dynamique pour garantir une mobilité des entités du réseau.
- Les fonctions réseau doivent avoir un haut degré d'adaptabilité.
- La gestion et maintenance doivent donc être gérées de manière totalement distribuée (pas d'entités centrales).
- Contraintes de batterie

IEEE 802.11: Mode Infrastructure (BSS)

BSS (Basic Service Set):

- Un seul point d'accès (AP). parfois appelée station de base (BS);
- L'AP agit en tant que maître pour contrôler les stations (STA) au sein de cette BSS.
- Nom de réseau SSID(Service Set Identifier)
- Le SSID est une clé alphanumérique de 32 caractères maximum, identifiant le nom du réseau local sans fil.

IEEE 802.11: Mode Infrastructure (ESS)

ESS (Extended Service Set):

- Nom de réseau (SSID) Service Set Identifier
- Plusieurs points d'accès (AP)
- Les stations mobiles peuvent se déplacer entre les différents points d'accès (Roaming)
- On utilise le ESSID (Extended Service Set Identification)
- Le DS (distribution system) peut être un réseau filaire commuté ou un réseau sans-fil.

IEEE 802.11: Mode Infrastructure (ESS)

ESS (Extended Service Set):

- Tous les points d'accès émettent cycliquement des trames balises (beacon) dans lesquelles ils fournissent leur BSSID (Adresse MAC de l'AP), leurs caractéristiques et éventuellement leur SSID.
- Par convention, l'adresse MAC d'un point d'accès est utilisée comme identifiant d'un BSS (BSSID)
- Pour des raisons de sécurité on peut interdire la diffusion du nom de réseau (SSID).

Association d'une station au point d'accès

 Deux principales étapes : découvrir un réseau local sans fil et ensuite à s'y connecter

• Processus:

- Trames balises (Beacon) : Trames utilisées par le réseau local sans fil pour annoncer sa présence.
- Analyseurs : Trames utilisées par les clients des réseaux locaux sans fil pour trouver leur réseau.
- Authentification : Processus correspondant à un objet représentatif de la norme 802.11 d'origine mais qui reste exigé par la norme.
- **Association**: Processus visant à établir une liaison de données entre un point d'accès et un client de réseau local sans fil.

Les bandes de fréquences utilisées par le WIFI

- Le Wi-Fi utilise deux bandes de fréquences
 - la bande ISM (Industrial, Scientific and Medical), située dans les 2,4 GHz, pour 802.11b, 802.11g et 802.11n,
 - et la bande U-NII (Unlicensed-National Information Infrastructure), située dans les 5 GHz, pour 802.11a et 802.11n.
- La bande ISM va de 2,4 à 2,4835 GHz et se subdivise en 13 canaux en Europe, 11 au États-unis et 14 au japon.
- La bande U-NII (5GHz) est divisée en 8 canaux de 20 MHz

Réseaux SFM M. EL HALOUI 12

Les bandes de fréquences utilisées par le WIFI

Exemple, les bandes autorisé par l'ART en France :

Canaux	Fréquences	Puissance autorisée	
	(MHz)	(par l'ART)	
		Intérieur	Extérieur
1	2402-2422	100 mW	100 mW
2	2407-2427	100 mW	100 mW
3	2412-2432	100 mW	100 mW
4	2417-2437	100 mW	100 mW
5	2422-2442	100 mW	100 mW
6	2427-2447	100 mW	100 mW
7	2432-2452	100 mW	100 mW
8	2437-2457	100 mW	10/100 mW
9	2442-2462	100 mW	10/100 mW
10	2447-2467	100 mW	10/100 mW
11	2452-2472	100 mW	10 mW
12	2457-2477	100 mW	10 mW
13	2462-2482	100 mW	10 mW
			7

Les points d'accès dont la couverture se chevauche doivent utiliser des canaux différents.

Les bandes de fréquences utilisées par le WIFI

- Chaque canal occupe une largeur de bande de 22 Mhz espacées de 5 Mhz.
- Exemple: utilisation des canaux 1, 6 et 11.
- Il y a l'option d'ajuster dynamiquement les paramètres des canaux en réponse aux changements intervenant dans l'environnement (Auto Channel Scan)

La portée et les débits

Le débit ainsi que la portée du WLAN dépend de plusieurs facteurs :

- le nombre d'utilisateurs (partage du débit du point d'accès)
- la puissance d'émission des matériels
- la distance entre les équipements
- les interférences (autres matériels travaillant dans les mêmes bandes de fréquences – Bluetooth, fours micro-ondes, téléphones DECT, ...)
- la propagation du signal (chemins multiples du aux phénomènes de réflexion sur les obstacles)
- la mise en œuvre ou non du cryptage

La portée et les débits (802.11b)

