

# Workshop 1 - Project Air Quality Analysis Platform

### **Members:**

Stivel Pinilla Puerta – Cod.: 20191020024 Johan Castaño Martinez - Cod.: 20191020029

Teacher:

Carlos Andrés Sierra

Universidad Distrital Francisco José De Caldas
Faculty Of Engineering
Systems Engineering
Databases II
May 2025, Bogotá D.C.



### 1. Business Model:

## Air Quality Analysis Platform such as AQICN

The application integrates spa databases, big data and busin intelligence to provide real-t informat

- Governmental environmental agencies: IDEAM, EPA, and others providing official data and scientific validation.
- · Air quality sensor companies: PurpleAir. BreezoMeter, as providers of hardware and real-time
- · Weather data providers: NOAA, OpenWeather, environmental data.
- Tourism companies: Hotels. airlines, booking platforms that can benefit from the added value of environmental quality data.
- · Universities and research centers: To validate prediction models, collaborate in innovation and obtain scientific support.
- Media and environmental NGOs: For dissemination, legitimization and possible social impact alliances.

### **Key Activities**

- · Collection, cleaning and validation of air quality and meteorological data.
- Real-time data processing using big data and Al algorithms
- · Development and maintenance of web platform and mobile app. · Generation of customized
- visualizations and reports. . Integration of APIs with third party
- systems (tourism, health, mobility).
- Creation of customized recommendation algorithms.
- Research and improvement of predictive models.
- · User acquisition strategies and educational marketing.

### **Key Resources**

- · Technological infrastructure: servers, storage, spatial databases
- Human talent: developers, data scientists, DevOps, UX/UI designers, BI specialists.
- · Agreements/licenses with meteorological and environmental data sources.
- · Analysis, visualization and recommendation algorithms.
- · Accessible and scalable graphical interface for end users
- Integration capability through open APIs.

### **Value Proposition**

- · Real-time environmental information contextualized by location.
- Personalized recommendations based on health. tourism and mobility.
- Visualizations and reports in clear language for citizens. authorities and companies.
- · BI platform for analysis of historical trends and behaviors
- · Easy integration via API with other platforms and dashboards.
- · Intelligent alerts to minimize exposure
- Contribution to compliance with environmental regulations and policies.

- Personalized online assistance via chat, email and community forums.
- Educational content (blogs, videos, infographics) on health and environment
- Proactive air quality notifications based on location or interests.
- Access to premium reports under subscription or onetime payment.
- Loyalty programs (gamification, challenges, rewards).
- Specialized attention for governments and companies through technical consulting.

- Web platform and mobile application as main service channels.
- · Email marketing with customized alerts and newsletters
- Social networks to generate awareness and brand positioning
- Alliances with media to amplify
- Participation in events. technology and environmental
- Integrations with health, transportation and tourism apps through APIs.

### **Customer Segments**

- · Citizens aware of their environmental health: athletes, parents, senio
- Companies with physic locations interested in improving indoor air quality and sustainable reputation.
- Local and national governments formulat policies and seeking monitoring and warnin
- NGOs and foundations interested in research and promotion of environmental awaren
- Tourists and travel agencies seeking low pollution destinations.
- Educational institution and research centers i need of reliable data.

- Fixed infrastructure costs (servers, big data storage)
- Development, testing and maintenance of the platform (web/app).
- Technical and administrative staff salaries.
- · Licensing of meteorological data and third-party APIs
- · Research and development (AI models, BI, data visualization).
- Digital marketing, partnerships, outreach and training costs.
- Technical support and customer service.

### **Revenue Streams**

- Premium subscription for users who access detailed reports and advance
- · Customized consulting for governments and companies on environment
- · Advertising and sponsorship of healthy and sustainable brands.
- API sales and access to real-time data for developers and companies.
- Licensing of dashboards to educational, municipal or tourism entities.
- · Indirect monetization through partnerships with apps that integrate the

### 2. Requirements Gathering:



Data Ingestion and Data Processing

| Туре       |      | Requirement                                             | Associated<br>histories |
|------------|------|---------------------------------------------------------|-------------------------|
|            |      | The system must collect real-time data from multiple    |                         |
| Functional | FR1  | sources (external APIs).                                | US1                     |
|            |      | The system must allow querying and visualization of     |                         |
| Functional | FR2  | historical data by dates and locations.                 | US2                     |
|            |      | The system must process and store large volumes of data |                         |
| Functional | FR3  | with cleansing and transformation mechanisms.           | US3                     |
| Non-       |      | The system must guarantee low latency (<2s) for queries |                         |
| functional | NFR1 | on large datasets.                                      | US3                     |
| Non-       |      | The platform must support continuous data ingestion     |                         |
| functional | NFR2 | flows (streaming) 24 hours a day.                       | US1, US3                |
| Non-       |      |                                                         |                         |
| functional | NFR3 | Storage must be distributed and optimized for big data. | US2, US3                |

Business Intelligence Module

| Туре       |      | Requirement                                               | Associated<br>histories |
|------------|------|-----------------------------------------------------------|-------------------------|
|            |      | The system should display dashboards with real-time air   |                         |
| Functional | FR4  | quality KPIs.                                             | US4                     |
|            |      | It must allow the generation of customized reports with   |                         |
| Functional | FR5  | filters by location and dates.                            | US5                     |
|            |      | It must allow the display of interactive graphs with time |                         |
| Functional | FR6  | evolution.                                                | US6                     |
| Functional | FR7  | It must enable the export of historical data.             | US7                     |
| Non-       |      | Reports must be generated in less than 10 seconds to      |                         |
| functional | NFR4 | avoid interruptions.                                      | US5                     |

Personalized recommender system

| Туре       |      | Requirement                                                 | Associated<br>histories |
|------------|------|-------------------------------------------------------------|-------------------------|
|            |      | The system should send contextual recommendations           |                         |
| Functional | FR8  | based on location and air quality.                          | US8                     |
|            |      | It should issue customized air quality alerts for sensitive |                         |
| Functional | FR9  | users.                                                      | US9                     |
|            |      | It should display suggestions for products and services     |                         |
| Functional | FR10 | related to environmental protection.                        | US10                    |
| Functional | FR11 | It should show maps with nearby less polluted places. U     |                         |
| Non-       |      | The recommendation system should be updated in real         |                         |
| functional | NFR5 | time as data changes. US8, US                               |                         |

High availability and scalability

| Tumo | Dominomont  | Associated |  |
|------|-------------|------------|--|
| Туре | Requirement | histories  |  |



| Non-       |                                 | The system should load data in less than 2 seconds 95%     |       |
|------------|---------------------------------|------------------------------------------------------------|-------|
| functional | NFR6                            | of the time.                                               | US12  |
| Non-       |                                 | It must have a load balancing system to distribute traffic |       |
| functional | NFR7                            | during peak demand.                                        | US13  |
| Non-       |                                 | The architecture must be fault tolerant and have           |       |
| functional | nal NFR8 geographic redundancy. |                                                            | US14  |
| Non-       |                                 | The system must scale horizontally to respond to           | US13, |
| functional | NFR9                            | changes in load.                                           | US14  |

# Multiregion and Multidevice Access

| Туре               |           | Requirement                                                                                         | Associated histories |
|--------------------|-----------|-----------------------------------------------------------------------------------------------------|----------------------|
| Functional         | FR12      | The system must allow consulting air quality by city or country through a geographic search engine. | US15                 |
| Functional         | FR13      | The application must have responsive design and mobile applications.                                | US16                 |
| Functional         |           | It must allow sharing data and reports on social networks with direct action buttons.               | US17                 |
| Non-<br>functional | NFR1<br>0 | The interface must be optimized to run error-free on all major browsers and operating systems.      | US16                 |
| Non-<br>functional | NFR1<br>1 | The system must maintain data consistency and personalization across devices.                       | US16                 |

### 3. Enhanced User Stories:

| Theme 1: Data Ingest and Data Processing (Big Data) |                                                    |                               |  |
|-----------------------------------------------------|----------------------------------------------------|-------------------------------|--|
|                                                     | As a user of the system, I want the application to | End User (Researcher / System |  |
| User Story 1                                        | collect real-time air quality data from multiple   | Developer) Requires real-time |  |
|                                                     | sources for accurate and up-to-date information.   | data for analysis.            |  |



| User Story 2  | As a user, I want to access historical air quality data to analyze trends and perform longitudinal studies.                                            | End User (Researcher /<br>Academic) Analyzes historical<br>data for studies.                                           |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
| User Story 3  | As a user, I want the platform to process large volumes of air quality data efficiently to ensure fast queries.                                        | Advanced End User / Technical<br>Administrator Needs the<br>system to respond efficiently to<br>large volumes of data. |  |  |  |
|               | Theme 2: Business Intelligence (BI) Mo                                                                                                                 | odule                                                                                                                  |  |  |  |
| User Story 4  | As a user, I want access to dashboards with real-<br>time air quality analysis to make informed health<br>and environmental decisions.                 | Manager / Decision Maker<br>Uses dashboards for informed<br>decisions.                                                 |  |  |  |
| User Story 5  | As a user, I want to generate customized reports on pollution trends to design more effective public policies.                                         | Manager / Policy Maker Needs customized reports.                                                                       |  |  |  |
| User Story 6  | As a user, I want to see interactive graphs on the evolution of air quality in my area to understand how it has changed over time.                     | End User (Community / Active<br>Citizen) Interested in air quality<br>trends.                                          |  |  |  |
| User Story 7  | As a user, I want to export historical air quality data in different formats (CSV, JSON) for analysis in my studies.                                   | Researcher / Analyst /<br>Academic Uses data in<br>exportable formats for external<br>analysis.                        |  |  |  |
|               | Theme 3: Personalized Recommendation                                                                                                                   | System                                                                                                                 |  |  |  |
| User Story 8  | As a user, I want to receive personalized recommendations based on the air quality at my location to know if it is safe to go outside.                 | End User (Citizen) Requires personalized recommendations.                                                              |  |  |  |
| User Story 9  | As a user with respiratory problems, I want to receive early warnings when the air quality is detrimental to my health so that I can take precautions. | End User (Patient / Vulnerable<br>Person) Needs health alerts.                                                         |  |  |  |
| User Story 10 | As a user, I want the platform to suggest useful products (masks, purifiers, etc.) when pollution is high to protect my health.                        | End User (Conscious<br>Consumer) Interested in<br>protective products.                                                 |  |  |  |
| User Story 11 | As a user, I want to receive recommendations on the least polluted places when I move around the city to avoid exposure to high pollution areas.       | End User (Citizen on the Move)<br>Wants to avoid polluted areas.                                                       |  |  |  |
|               | Theme 4: High Availability and Scalability                                                                                                             |                                                                                                                        |  |  |  |
| User Story 12 | As a user, I want the platform to load air quality data quickly so I can access the information in seconds.                                            | End User (All) Needs quick answers.                                                                                    |  |  |  |
| User Story 13 | As a user, I want the platform to efficiently handle traffic peaks so that my experience is not affected during times of high demand.                  | Technical Administrator /<br>Demanding End User: Stability<br>is important in critical<br>moments.                     |  |  |  |



| User Story 14 | As a user, I want the platform to keep running without interruption, even at peak times, to ensure that I receive information whenever I need it. | End User (All) Expects continuous availability. |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|               | Theme 5: Multiregion and Multidevice A                                                                                                            | ccess                                           |
|               | As a user, I want to be able to check the air quality                                                                                             | End User (Traveler / Planner)                   |
| User Story 15 | in different cities and countries to plan my trips                                                                                                | Checks air quality in other                     |
|               | and activities.                                                                                                                                   | regions.                                        |
|               | As a user, I want the platform to be accessible                                                                                                   | End User (Mobile / Web User)                    |
| User Story 16 | from different devices (mobile, tablet, PC) so that I                                                                                             | Requires access from different                  |
|               | can access the information easily.                                                                                                                | devices.                                        |
|               |                                                                                                                                                   | End User (Digital Community /                   |
| User Story 17 | As a user, I want to be able to share air quality                                                                                                 | Activist) Wants to share                        |
|               | information on social media to raise awareness.                                                                                                   | information on social                           |
|               |                                                                                                                                                   | networks.                                       |

### 4. Database Architecture:





| System<br>Component         | Entity Name                                                     | Attributes                                                                                                                                                                                       |             |
|-----------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1. Data<br>Ingestion<br>and |                                                                 |                                                                                                                                                                                                  |             |
| Processing                  | Country                                                         | - id (PK, INTEGER) - name (VARCHAR, Uniqu                                                                                                                                                        | ıe)         |
|                             | Department                                                      | <ul><li>- id (PK, INTEGER) - country_id (FK, INTEGE<br/>(VARCHAR, Unique)</li></ul>                                                                                                              | R) - name   |
|                             | City                                                            | <ul><li>- id (PK, INTEGER) - department_id (FK, INTE<br/>(VARCHAR)</li></ul>                                                                                                                     | GER) - name |
|                             | MonitoringStatio<br>n                                           | - id (PK, INTEGER) - city_id (FK, INTEGER) - (VARCHAR) - latitude (DOUBLE) - longitude (                                                                                                         |             |
|                             | AirQualityMeasu rement                                          | <ul> <li>id (PK, BIGINT) - station_id (FK, INTEGER)</li> <li>(TIMESTAMP) - pm25 (DOUBLE) - pm10 (DOUBLE) - no2 (DOUBLE) - so2 (DOUBLE)</li> <li>aqi (INTEGER) - data_source (VARCHAR)</li> </ul> | )UBLE) - o3 |
| 2. Business<br>Intelligence | (Utilizes entities<br>from Data<br>Ingestion and<br>Processing) |                                                                                                                                                                                                  |             |



| Report                                                              | - id (PK, BIGINT) - generation_date (TIMESTAMP) - user_id (FK, BIGINT) - filters (JSONB) - export_format (VARCHAR)                                                                   |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>(Utilizes entities<br>from Data<br>Ingestion and<br>Processing) |                                                                                                                                                                                      |
| User                                                                | - id (PK, BIGINT) - name (VARCHAR) - email (VARCHAR,<br>Unique) - password (VARCHAR) - role_id (FK, INTEGER)                                                                         |
| Role                                                                | - id (PK, INTEGER) - name (VARCHAR, Unique)                                                                                                                                          |
| Permission                                                          | - id (PK, INTEGER) - name (VARCHAR, Unique)                                                                                                                                          |
| RolePermission                                                      | - role_id (FK, INTEGER) - permission_id (FK, INTEGER) - PRIMARY KEY (role_id, permission_id)                                                                                         |
| Alert                                                               | - id (PK, BIGINT) - user_id (FK, BIGINT) - alert_type<br>(VARCHAR) - message (TEXT) - datetime_sent<br>(TIMESTAMP) - pollutant (VARCHAR, Optional) - threshold<br>(DOUBLE, Optional) |
| ProductService                                                      | - id (PK, BIGINT) - name (VARCHAR) - description (TEXT) - category (VARCHAR) - link (VARCHAR)                                                                                        |
| Share                                                               | - id (PK, BIGINT) - user_id (FK, BIGINT) - datetime<br>(TIMESTAMP) - social_media (VARCHAR) - shared_content<br>(VARCHAR)                                                            |