Spectral Properties of a Non-compact Operator in Ecology

Matt Reichenbach

Advised by Richard Rebarber and Brigitte Tenhumberg

Dissertation Defense, November 25, 2020

 Integral projection models (IPMs) are stage-structured population models of the form

$$\varphi_{t+1} = A\varphi_t := \int_L^U k(y, x)\varphi_t(x) dx,$$

Matt Reichenbach Dissertat

 Integral projection models (IPMs) are stage-structured population models of the form

$$\varphi_{t+1} = A\varphi_t := \int_L^U k(y,x)\varphi_t(x) dx,$$

where φ_t gives the population distribution at time t, the limits L, U are the lower- and upper-limits of the structure variable x, and the kernel k(y,x) determines how individuals of size x contribute to those of size y in the next time step.

 Integral projection models (IPMs) are stage-structured population models of the form

$$\varphi_{t+1} = A\varphi_t := \int_L^U k(y, x)\varphi_t(x) dx,$$

where φ_t gives the population distribution at time t, the limits L, U are the lower- and upper-limits of the structure variable x, and the kernel k(y,x) determines how individuals of size x contribute to those of size y in the next time step.

• IPMs generalize Leslie matrices by allowing for a continuous structure variable.

• We will consider kernel functions of the form

$$k(y,x) = s(x)g(y,x) + b(y)f(x),$$

Matt Reichenbach

• We will consider kernel functions of the form

$$k(y,x) = s(x)g(y,x) + b(y)f(x),$$

• We will consider kernel functions of the form

$$k(y,x) = s(x)g(y,x) + b(y)f(x),$$

where

• s(x) is the survival function,

Matt Reichenbach

We will consider kernel functions of the form

$$k(y,x) = s(x)g(y,x) + b(y)f(x),$$

- s(x) is the survival function,
- g(y,x) is the growth subkernel,

We will consider kernel functions of the form

$$k(y,x) = s(x)g(y,x) + b(y)f(x),$$

- s(x) is the survival function,
- g(y,x) is the growth subkernel,
- b(y) is the offspring distribution,

We will consider kernel functions of the form

$$k(y,x) = s(x)g(y,x) + b(y)f(x),$$

- s(x) is the survival function,
- g(y,x) is the growth subkernel,
- b(y) is the offspring distribution,
- and f(x) the fecundity function.

• When individuals are allowed to increase or decrease over the time step, the kernel function k(y,x) of the IPM operator A will be bounded.

- When individuals are allowed to increase or decrease over the time step, the kernel function k(y,x) of the IPM operator A will be bounded.
- For example, this is the case when the structure variable *x* is stem diameter, or individual biomass.

- When individuals are allowed to increase or decrease over the time step, the kernel function k(y,x) of the IPM operator A will be bounded.
- For example, this is the case when the structure variable *x* is stem diameter, or individual biomass.

In this case, Ellner & Rees, in appendices to [3], proved the theorem:

5/41

In this case, Ellner & Rees, in appendices to [3], proved the theorem:

Theorem

Suppose A is an IPM operator whose kernel k(y,x) is positive and continuous on $[L, U]^2$. Then $\lambda = r(A)$ is an eigenvalue of A, and its eigenvector ψ can be scaled to be positive. Additionally, λ is the asymptotic growth rate of the population, and ψ is the stable stage distribution, in the sense that for any nonzero initial population φ_0 ,

$$\lim_{n\to\infty}\frac{A^n\varphi_0}{\lambda^n}=C\psi,$$

where C > 0.

• However, ecologists have since used IPMs to model individuals that *cannot* shrink from one time step to the next.

- However, ecologists have since used IPMs to model individuals that cannot shrink from one time step to the next.
- For example, Vindenes et. al in [8] modeled fish, and used length as the structure variable x.

- However, ecologists have since used IPMs to model individuals that cannot shrink from one time step to the next.
- For example, Vindenes et. al in [8] modeled fish, and used length as the structure variable x.
- Fish have bony skeletons, and hence cannot shrink in length.

• Ellner & Rees's theorem implicitly assumed that individuals could shrink; if they cannot shrink the kernel will be unbounded.

- Ellner & Rees's theorem implicitly assumed that individuals could shrink; if they cannot shrink the kernel will be unbounded.
- All IPMs assume that $g(\cdot, x)$ is a probability distribution; that is:

$$\int_{I}^{U} g(y,x) \, dy = 1, \quad \text{for all } x \in [L,U].$$

- Ellner & Rees's theorem implicitly assumed that individuals could shrink; if they cannot shrink the kernel will be unbounded.
- All IPMs assume that $g(\cdot, x)$ is a probability distribution; that is:

$$\int_{L}^{U} g(y,x) \, dy = 1, \quad \text{for all } x \in [L,U].$$

The assumption that individuals cannot shrink is that

$$g(y, x) = 0$$
, whenever $y < x$.

• With an IPM which models a population whose individuals cannot shrink, we have some questions to answer:

- With an IPM which models a population whose individuals cannot shrink, we have some questions to answer:
 - Is the operator *T* still compact?

- With an IPM which models a population whose individuals cannot shrink, we have some questions to answer:
 - Is the operator *T* still compact?
 - Is $\lambda = r(T)$ still an eigenvalue of T?

- With an IPM which models a population whose individuals cannot shrink, we have some questions to answer:
 - Is the operator *T* still compact?
 - Is $\lambda = r(T)$ still an eigenvalue of T?
 - Are λ and its eigenvector ψ still the asymptotic growth rate and stable stage distribution, respectively, of the population?

• To be clear, our operators act on the space $L^1 = L^1(\Omega)$ of integrable functions on $\Omega := [L, U]$. This is the natural space to work in, because the L^1 -norm of a population distribution gives its total size.

10 / 41

- To be clear, our operators act on the space $L^1 = L^1(\Omega)$ of integrable functions on $\Omega := [L, U]$. This is the natural space to work in, because the L^1 -norm of a population distribution gives its total size.
- Let $G: L^1 \to L^1$ denote the integral operator with kernel g(y,x), the growth subkernel in the IPM:

- To be clear, our operators act on the space $L^1 = L^1(\Omega)$ of integrable functions on $\Omega := [L, U]$. This is the natural space to work in, because the L^1 -norm of a population distribution gives its total size.
- Let $G: L^1 \to L^1$ denote the integral operator with kernel g(y,x), the growth subkernel in the IPM:

$$(G\varphi)(y) := \int_{L}^{U} g(y,x) dx.$$

- To be clear, our operators act on the space $L^1 = L^1(\Omega)$ of integrable functions on $\Omega := [L, U]$. This is the natural space to work in, because the L^1 -norm of a population distribution gives its total size.
- Let $G: L^1 \to L^1$ denote the integral operator with kernel g(y,x), the growth subkernel in the IPM:

$$(G\varphi)(y) := \int_{L}^{U} g(y,x) dx.$$

• Let $S: L^1 \to L^1$ be multiplication by s(x).

- To be clear, our operators act on the space $L^1 = L^1(\Omega)$ of integrable functions on $\Omega := [L, U]$. This is the natural space to work in, because the L^1 -norm of a population distribution gives its total size.
- Let $G: L^1 \to L^1$ denote the integral operator with kernel g(y,x), the growth subkernel in the IPM:

$$(G\varphi)(y) := \int_{L}^{U} g(y,x) dx.$$

- Let $S: L^1 \to L^1$ be multiplication by s(x).
- Let $F: L^1 \to \mathbb{R}$ be the fecundity functional $F\varphi := \int_L^U f(x)\varphi(x)\,dx$.

- To be clear, our operators act on the space $L^1 = L^1(\Omega)$ of integrable functions on $\Omega := [L, U]$. This is the natural space to work in, because the L^1 -norm of a population distribution gives its total size.
- Let $G: L^1 \to L^1$ denote the integral operator with kernel g(y,x), the growth subkernel in the IPM:

$$(G\varphi)(y) := \int_L^U g(y,x) dx.$$

- Let $S: L^1 \to L^1$ be multiplication by s(x).
- Let $F: L^1 \to \mathbb{R}$ be the fecundity functional $F\varphi := \int_L^U f(x)\varphi(x)\,dx$.
- Then the IPM operator T can be written T = GS + bF, where b = b(y) is the offspring distribution.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Theorem (Reichenbach, 2018)

If g(y,x) is the growth subkernel for an IPM which satisfies g(y,x)=0 for y < x, then its associated integral operator G is not compact.

Theorem (Reichenbach, 2018)

If g(y,x) is the growth subkernel for an IPM which satisfies g(y,x)=0 for y < x, then its associated integral operator G is not compact.

Corollary

The IPM operator T := GS + bF is not compact.

Theorem (Reichenbach, 2018)

If g(y,x) is the growth subkernel for an IPM which satisfies g(y,x)=0 for y < x, then its associated integral operator G is not compact.

Corollary

The IPM operator T := GS + bF is not compact.

Proof Sketch of Corollary.

An assumption of s(x) is that $0 < s_0 \le s(x)$ for all $x \in [L, U]$, so we can write

$$G=\frac{T-bF}{s(x)}.$$

Hence, G and T must be compact/non-compact together.

←□ > ←∅ > ←⅓ > ←⅓ > ←⅓

Proof Sketch for Theorem.

• To show that *G* is not compact, we can show something stronger: *G* is not *weakly* compact.

Proof Sketch for Theorem.

- To show that *G* is not compact, we can show something stronger: *G* is not *weakly* compact.
- Let $\mathscr{U} \subset L^1$ be the unit ball. A theorem in Dunford & Schwartz [2] says that the set $G(\mathscr{U})$ is weakly compact on $L^1(\Omega)$ iff

$$\lim_{\mu(E)\to 0} \int_{E} (G\varphi)(t) dt = 0 \tag{1}$$

uniformly for $\varphi \in \mathcal{U}$, where μ is the Lebesgue measure.

Proof Sketch for Theorem.

- To show that *G* is not compact, we can show something stronger: *G* is not *weakly* compact.
- Let $\mathscr{U} \subset L^1$ be the unit ball. A theorem in Dunford & Schwartz [2] says that the set $G(\mathscr{U})$ is weakly compact on $L^1(\Omega)$ iff

$$\lim_{\mu(E)\to 0} \int_{E} (G\varphi)(t) dt = 0 \tag{1}$$

uniformly for $\varphi \in \mathcal{U}$, where μ is the Lebesgue measure.

• Put $\delta_n := \frac{1}{n}(U - L)$, and define $E_n := [U - \delta_n, U]$; then $\mu(E_n) \to 0$.

12 / 41

Proof Sketch for Theorem.

- To show that *G* is not compact, we can show something stronger: *G* is not *weakly* compact.
- Let $\mathscr{U} \subset L^1$ be the unit ball. A theorem in Dunford & Schwartz [2] says that the set $G(\mathscr{U})$ is weakly compact on $L^1(\Omega)$ iff

$$\lim_{\mu(E)\to 0} \int_{E} (G\varphi)(t) dt = 0 \tag{1}$$

uniformly for $\varphi \in \mathcal{U}$, where μ is the Lebesgue measure.

- Put $\delta_n := \frac{1}{n}(U-L)$, and define $E_n := [U-\delta_n, U]$; then $\mu(E_n) \to 0$.
- Define $h_n(t) := \frac{1}{\delta_n} \chi_{E_n}(t)$; then $h_n \in \mathcal{U}$. The limit (1) is not uniform on the collection $\{h_n\}$. Therefore, G is not weakly compact.

12 / 41

• When Ellner & Rees proved their theorem about the compact IPM operator T, they used a theorem that only required there to be an $N \in \mathbb{N}$ such that T^k is compact for $k \geq N$.

- When Ellner & Rees proved their theorem about the compact IPM operator T, they used a theorem that only required there to be an $N \in \mathbb{N}$ such that T^k is compact for $k \geq N$.
- However, the proof in the written dissertation shows that T^k fails to be compact for all $k \in \mathbb{N}$ when g(y, x) = 0 for y < x.

- When Ellner & Rees proved their theorem about the compact IPM operator T, they used a theorem that only required there to be an $N \in \mathbb{N}$ such that T^k is compact for $k \geq N$.
- However, the proof in the written dissertation shows that T^k fails to be compact for all $k \in \mathbb{N}$ when g(y,x) = 0 for y < x.
- Thus, we will require a wholly different method in order to prove a similar theorem.

Definition

A closed convex set K of the real Banach space X is called a *cone* if the following conditions hold:

• for any $x \in K$ and $a \ge 0$, the element ax is in K,

14 / 41

Definition

A closed convex set K of the real Banach space X is called a *cone* if the following conditions hold:

- for any $x \in K$ and $a \ge 0$, the element ax is in K,
- for any pair $x, y \in K$, the element x + y is in K, and

Definition

A closed convex set K of the real Banach space X is called a *cone* if the following conditions hold:

- for any $x \in K$ and $a \ge 0$, the element ax is in K,
- for any pair $x, y \in K$, the element x + y is in K, and
- $K \cap -K = \{0\}.$

Definition

A closed convex set K of the real Banach space X is called a *cone* if the following conditions hold:

- for any $x \in K$ and $a \ge 0$, the element ax is in K,
- for any pair $x, y \in K$, the element x + y is in K, and
- $K \cap -K = \{0\}.$

For example, the set of nonnegative almost-everywhere functions in L^1 forms a cone.

14 / 41

Definition

A closed convex set K of the real Banach space X is called a *cone* if the following conditions hold:

- for any $x \in K$ and $a \ge 0$, the element ax is in K,
- for any pair $x, y \in K$, the element x + y is in K, and
- $K \cap -K = \{0\}.$

For example, the set of nonnegative almost-everywhere functions in L^1 forms a cone.

Definition

For a Banach space X, its Banach dual space X^* is the collection of continuous linear functionals on X.

14 / 41

Definition

A closed convex set K of the real Banach space X is called a *cone* if the following conditions hold:

- for any $x \in K$ and $a \ge 0$, the element ax is in K,
- for any pair $x, y \in K$, the element x + y is in K, and
- $K \cap -K = \{0\}.$

For example, the set of nonnegative almost-everywhere functions in L^1 forms a cone.

Definition

For a Banach space X, its Banach dual space X^* is the collection of continuous linear functionals on X.

For example, L^{∞} is the Banach dual of L^{1} .

Definition

Given a bounded operator $T: X \to X$, its *spectrum* $\sigma(T) \subset \mathbb{C}$ is the set

$$\sigma(T) := \{ z \in \mathbb{C} \mid zI - T \text{ is not boundedly invertible} \}.$$

Definition

Given a bounded operator $T: X \to X$, its *spectrum* $\sigma(T) \subset \mathbb{C}$ is the set

$$\sigma(T) := \{z \in \mathbb{C} \mid zI - T \text{ is not boundedly invertible}\}.$$

The *spectral radius* r(T) is given by

$$r(T) := \sup\{|z| \mid z \in \sigma(T)\}.$$

Definition

Given a bounded operator $T: X \to X$, its *spectrum* $\sigma(T) \subset \mathbb{C}$ is the set

$$\sigma(T) := \{ z \in \mathbb{C} \mid zI - T \text{ is not boundedly invertible} \}.$$

The spectral radius r(T) is given by

$$r(T) := \sup\{|z| \mid z \in \sigma(T)\}.$$

Definition

Given an operator $T: X \to X$, its resolvent R(z, T) is defined as $(zI - T)^{-1}$, which is holomorphic in the resolvent set $\rho(T) := \mathbb{C} \setminus \sigma(T)$.

15/41

Definition

Given a cone K in a Banach space X, the *dual cone* $K^* \subset X^*$ is the collection of all continuous linear functionals x^* such that $\langle x, x^* \rangle \geq 0$ for all $x \in K$.

Definition

Given a cone K in a Banach space X, the dual cone $K^* \subset X^*$ is the collection of all continuous linear functionals x^* such that $\langle x, x^* \rangle \geq 0$ for all $x \in K$.

For example, if $K \subset L^1$ is the standard cone, then $K^* \subset L^{\infty}$ is the collection of functionals represented by nonnegative functions.

Definition

Given a cone K in a Banach space X, the dual cone $K^* \subset X^*$ is the collection of all continuous linear functionals x^* such that $\langle x, x^* \rangle \geq 0$ for all $x \in K$.

For example, if $K \subset L^1$ is the standard cone, then $K^* \subset L^{\infty}$ is the collection of functionals represented by nonnegative functions.

Definition

An operator $T:X\to X$ is called *positive* with respect to the cone $K\subset X$ if $T(K)\subset K$.

Definition

Given a linear operator $T: X \to X$, its Banach adjoint $T^*: X^* \to X^*$ is the unique operator such that $\langle Tx, x^* \rangle = \langle x, T^*x^* \rangle$.

Definition

Given a linear operator $T: X \to X$, its Banach adjoint $T^*: X^* \to X^*$ is the unique operator such that $\langle Tx, x^* \rangle = \langle x, T^*x^* \rangle$.

For example, given an integral operator $T: L^1 \to L^1$ defined by

$$(T\varphi)(y) = \int_{L}^{U} k(y,t)\varphi(t) dt,$$

Matt Reichenbach

Definition

Given a linear operator $T: X \to X$, its Banach adjoint $T^*: X^* \to X^*$ is the unique operator such that $\langle Tx, x^* \rangle = \langle x, T^*x^* \rangle$.

For example, given an integral operator $T:L^1\to L^1$ defined by

$$(T\varphi)(y) = \int_{L}^{U} k(y,t)\varphi(t) dt,$$

its Banach adjoint is given by "transposing" the kernel function:

$$(T^*\varphi^*)(t) = \int_L^U k(y,t)\varphi^*(y) \, dy.$$

Matt Reichenbach

Definition

Given a cone K, an element $\varphi \in K$ is called *quasi-interor* if $\langle \varphi, \varphi^* \rangle > 0$ for all nonzero $\varphi^* \in K^*$

Definition

Given a cone K, an element $\varphi \in K$ is called *quasi-interor* if $\langle \varphi, \varphi^* \rangle > 0$ for all nonzero $\varphi^* \in K^*$

For example, the quasi-interior elements of $K \subset L^1$ are the positive almost-everywhere integrable functions.

Definition

Given a cone K, an element $\varphi \in K$ is called *quasi-interor* if $\langle \varphi, \varphi^* \rangle > 0$ for all nonzero $\varphi^* \in K^*$

For example, the quasi-interior elements of $K \subset L^1$ are the positive almost-everywhere integrable functions.

Definition

Given a cone K, an element $\varphi^* \in K^*$ is called *strictly positive* if $\langle \varphi, \varphi^* \rangle > 0$ for all nonzero $\varphi \in K$.

Definition

Given a cone K, an element $\varphi \in K$ is called *quasi-interor* if $\langle \varphi, \varphi^* \rangle > 0$ for all nonzero $\varphi^* \in K^*$

For example, the quasi-interior elements of $K \subset L^1$ are the positive almost-everywhere integrable functions.

Definition

Given a cone K, an element $\varphi^* \in K^*$ is called *strictly positive* if $\langle \varphi, \varphi^* \rangle > 0$ for all nonzero $\varphi \in K$.

For the same cone K above, the strictly positive elements of $K^* \subset L^\infty$ are those represented by positive almost-everywhere, essentially bounded functions.

18 / 41

Theorem (R., 2020)

Suppose that $T: L^1 \to L^1$ is an IPM operator such that g(y,x) = 0 for y < x. Then under biologically reasonable assumptions, T has the following properties (among others):

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

Theorem (R., 2020)

Suppose that $T: L^1 \to L^1$ is an IPM operator such that g(y,x) = 0 for y < x. Then under biologically reasonable assumptions, T has the following properties (among others):

• The spectral radius $\lambda = r(T)$ is a positive eigenvalue for T and T^* . Moreover, the respective eigenvectors ψ and ψ^* span one-dimensional eigenspaces, ψ is quasi-interior, ψ^* represents a strictly positive linear functional, and both ψ , ψ^* are the only eigenvectors of T, T^* which can be scaled to be nonnegative almost-everywhere.

4 D > 4 P > 4 B > 4 B > B 900

19 / 41

Theorem (R., 2020)

Suppose that $T: L^1 \to L^1$ is an IPM operator such that g(y,x) = 0 for y < x. Then under biologically reasonable assumptions, T has the following properties (among others):

- The spectral radius $\lambda = r(T)$ is a positive eigenvalue for T and T^* . Moreover, the respective eigenvectors ψ and ψ^* span one-dimensional eigenspaces, ψ is quasi-interior, ψ^* represents a strictly positive linear functional, and both ψ , ψ^* are the only eigenvectors of T, T* which can be scaled to be nonnegative almost-everywhere.
- Suppose ψ is scaled so that $||\psi||_1 = 1$, and ψ^* is scaled so that $\langle \psi, \psi^* \rangle = 1$. Then for any nonzero $\psi_0 \in K$, we have

$$\lim_{n\to\infty} \frac{T^n \varphi_0}{\lambda^n} = \langle \varphi_0, \psi^* \rangle \psi.$$

 This theorem is in large part a consequence of a general theorem of Marek [4], though the tools he used were introduced by Sawashima [6].

- This theorem is in large part a consequence of a general theorem of Marek [4], though the tools he used were introduced by Sawashima [6].
- To apply Marek's theorem, we need to show two things:

- This theorem is in large part a consequence of a general theorem of Marek [4], though the tools he used were introduced by Sawashima [6].
- To apply Marek's theorem, we need to show two things:
 - 1 T is a nonsupporting operator, and

- This theorem is in large part a consequence of a general theorem of Marek [4], though the tools he used were introduced by Sawashima [6].
- To apply Marek's theorem, we need to show two things:
 - 1 T is a nonsupporting operator, and
 - r(T) is a pole of the resolvent R(z, T).

Definition

Suppose $T:X\to X$ is a positive operator with respect to the cone K, and suppose that $\varphi\in K$, $\varphi^*\in K^*$ are both nonzero.

Definition

Suppose $T: X \to X$ is a positive operator with respect to the cone K, and suppose that $\varphi \in K$, $\varphi^* \in K^*$ are both nonzero.

• T is called *nonsupporting* if for every pair φ , φ^* there exists a positive integer $p = p(\varphi, \varphi^*)$ such that $\langle T^n \varphi, \varphi^* \rangle > 0$ for every $n \geq p$.

Definition

Suppose $T: X \to X$ is a positive operator with respect to the cone K, and suppose that $\varphi \in K$, $\varphi^* \in K^*$ are both nonzero.

- T is called *nonsupporting* if for every pair φ , φ^* there exists a positive integer $p = p(\varphi, \varphi^*)$ such that $\langle T^n \varphi, \varphi^* \rangle > 0$ for every $n \geq p$.
- T is called *strictly nonsupporting* if for every pair φ , φ^* there is a positive integer $p = p(\varphi)$ such that $\langle T^n \varphi, \varphi^* \rangle > 0$ for $n \geq p$.

Definition

Suppose $T: X \to X$ is a positive operator with respect to the cone K, and suppose that $\varphi \in K$, $\varphi^* \in K^*$ are both nonzero.

- T is called *nonsupporting* if for every pair φ , φ^* there exists a positive integer $p = p(\varphi, \varphi^*)$ such that $\langle T^n \varphi, \varphi^* \rangle > 0$ for every $n \ge p$.
- T is called *strictly nonsupporting* if for every pair φ , φ^* there is a positive integer $p = p(\varphi)$ such that $\langle T^n \varphi, \varphi^* \rangle > 0$ for $n \geq p$.

Our non-compact IPM operator $T: L^1 \to L^1$ is in fact strictly non-supporting, and the integer p actually doesn't depend on the choice of $\varphi \in L^1$ either.

• These concepts are useful because they are applicable to a general cone *K*.

22 / 41

- These concepts are useful because they are applicable to a general cone K.
- But in our particular case of $K \subset L^1$, an operator T is strictly nonsupporting if $T^n \varphi$ is positive almost-everywhere for every nonzero $\varphi \in K$ and sufficiently large n.

22 / 41

- These concepts are useful because they are applicable to a general cone K.
- But in our particular case of $K \subset L^1$, an operator T is strictly nonsupporting if $T^n \varphi$ is positive almost-everywhere for every nonzero $\varphi \in K$ and sufficiently large n.
- An easy condition to guarantee this is to assume b(y) > 0 almost everywhere.

- These concepts are useful because they are applicable to a general cone K.
- But in our particular case of $K \subset L^1$, an operator T is strictly nonsupporting if $T^n \varphi$ is positive almost-everywhere for every nonzero $\varphi \in K$ and sufficiently large n.
- An easy condition to guarantee this is to assume b(y) > 0 almost everywhere.
- However, this is not a biologically realistic assumption. We instead imposed more conditions on the growth kernel g(y, x), and which all IPMs satisfy (to our knowledge) in order to prove:

- These concepts are useful because they are applicable to a general cone K.
- But in our particular case of $K \subset L^1$, an operator T is strictly nonsupporting if $T^n \varphi$ is positive almost-everywhere for every nonzero $\varphi \in K$ and sufficiently large n.
- An easy condition to guarantee this is to assume b(y) > 0 almost everywhere.
- However, this is not a biologically realistic assumption. We instead imposed more conditions on the growth kernel g(y,x), and which all IPMs satisfy (to our knowledge) in order to prove:

Theorem

The IPM operator T is strictly nonsupporting (hence, nonsupporting) under biologically reasonable assumptions. Additionally, the integer p does not depend on the choice of $\varphi \in L^1$.

• Recall that the *resolvent* of an operator T is defined to be $R(z,T):=(zI-T)^{-1}$, which is well-defined in the resolvent set $\rho(T):=\mathbb{C}\setminus\sigma(T)$.

- Recall that the *resolvent* of an operator T is defined to be $R(z,T):=(zI-T)^{-1}$, which is well-defined in the resolvent set $\rho(T):=\mathbb{C}\setminus\sigma(T)$.
- To show that r(T) is a pole of R(z, T), we will apply the theorem

◆ロト ◆個ト ◆差ト ◆差ト 差 める()

23 / 41

- Recall that the *resolvent* of an operator T is defined to be $R(z,T):=(zI-T)^{-1}$, which is well-defined in the resolvent set $\rho(T):=\mathbb{C}\setminus\sigma(T)$.
- To show that r(T) is a pole of R(z, T), we will apply the theorem

Theorem (Clement, 1987 [1])

Suppose that $z \in \sigma(T) \setminus \sigma_e(T)$, where $\sigma_e(T)$ denotes the essential spectrum. Then z is a pole of R(z, T).

• With this theorem, you can intuitively think of the essential spectrum as "the points in the spectrum that are not poles".

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

Definition

We say an element $z \in \sigma(T)$ is in the essential spectrum, denoted $\sigma_e(T)$, if one of the following conditions holds:

Definition

We say an element $z \in \sigma(T)$ is in the *essential spectrum*, denoted $\sigma_e(T)$, if one of the following conditions holds:

1 The range of (zI - T) is not closed,

Definition

We say an element $z \in \sigma(T)$ is in the essential spectrum, denoted $\sigma_e(T)$, if one of the following conditions holds:

- The range of (zI T) is not closed,
- 2 z is a limit point $\sigma(T)$, or

Definition

We say an element $z \in \sigma(T)$ is in the *essential spectrum*, denoted $\sigma_e(T)$, if one of the following conditions holds:

- The range of (zI T) is not closed,
- 2 z is a limit point $\sigma(T)$, or
- **③** $\bigcup_{n=1}^{\infty} \ker(zI T)^n$ is infinite-dimensional.

24 / 41

Definition

We say an element $z \in \sigma(T)$ is in the *essential spectrum*, denoted $\sigma_e(T)$, if one of the following conditions holds:

- The range of (zI T) is not closed,
- 2 z is a limit point $\sigma(T)$, or
- **③** $\bigcup_{n=1}^{\infty} \ker(zI T)^n$ is infinite-dimensional.

The essential spectral radius is the value

$$r_e(T) := \sup\{|z| \mid z \in \sigma_e(T)\}.$$

Matt Reichenbach Dissertation Defense No

• Hereafter, put $\lambda = r(T)$. To show the statement in the title of this slide, we need to show:

25 / 41

- Hereafter, put $\lambda = r(T)$. To show the statement in the title of this slide, we need to show:

- Hereafter, put $\lambda = r(T)$. To show the statement in the title of this slide, we need to show:
 - \bullet $\lambda \in \sigma(T)$, and
 - $\lambda \notin \sigma_e(T)$.

- Hereafter, put $\lambda = r(T)$. To show the statement in the title of this slide, we need to show:
 - \bullet $\lambda \in \sigma(T)$, and
 - $\lambda \notin \sigma_{e}(T)$.
- The first inclusion is straightforward:

25 / 41

- Hereafter, put $\lambda = r(T)$. To show the statement in the title of this slide, we need to show:
 - \bullet $\lambda \in \sigma(T)$, and
 - $\lambda \notin \sigma_{e}(T)$.
- The first inclusion is straightforward:

Theorem (Schaefer (1960), [7])

Let $K \subset X$ be a normal cone. If $A : X \to X$ is a positive operator with respect to K, then $\lambda = r(A)$ is an element of $\sigma(A)$.

- Hereafter, put $\lambda = r(T)$. To show the statement in the title of this slide, we need to show:
 - \bullet $\lambda \in \sigma(T)$, and
 - $\lambda \notin \sigma_e(T)$.
- The first inclusion is straightforward:

Theorem (Schaefer (1960), [7])

Let $K \subset X$ be a normal cone. If $A : X \to X$ is a positive operator with respect to K, then $\lambda = r(A)$ is an element of $\sigma(A)$.

• The cone $K \subset L^1$ of nonnegative a.e. functions is normal, and the IPM operator $T: L^1 \to L^1$ is positive w.r.t. K, so $\lambda \in \sigma(T)$.

25/41

• To show that $\lambda \notin \sigma_e(T)$, we will exhibit a real-valued $\mu \in \sigma(T)$ such that $\mu > r_e(T)$.

- To show that $\lambda \notin \sigma_e(T)$, we will exhibit a real-valued $\mu \in \sigma(T)$ such that $\mu > r_e(T)$.
- This implies that

$$\lambda \geq \mu > r_e(T)$$
,

Matt Reichenbach Dissertation Defense Novemb

26 / 41

- To show that $\lambda \notin \sigma_e(T)$, we will exhibit a real-valued $\mu \in \sigma(T)$ such that $\mu > r_e(T)$.
- This implies that

$$\lambda \geq \mu > r_{\rm e}(T)$$
,

which in turn implies that $\lambda \notin \sigma_e(T)$.

Matt Reichenbach Dissertation Defense 26 / 41

• The first step in this process is to compute $r_e(T)$.

- The first step in this process is to compute $r_e(T)$.
- There is a formula, due to Nussbaum [5] for $r_e(T)$:

$$r_{\rm e}(T) = \lim_{n \to \infty} \beta(T^n)^{1/n},$$

- The first step in this process is to compute $r_e(T)$.
- There is a formula, due to Nussbaum [5] for $r_e(T)$:

$$r_{\rm e}(T) = \lim_{n \to \infty} \beta(T^n)^{1/n},$$

where $\beta(T^n) := \beta(T^n(\mathscr{U}))$, and β is the ball measure of noncompactness (or ball-MNC).

4□ > 4□ > 4 = > 4 = > = 90

27 / 41

Definition

The *ball-MNC*, also known as the *Hausdorff-MNC*, of a subset V of the vector space X is given by

 $\beta(V) := \inf\{r > 0 \mid V \text{ can be covered by finitely many balls of radius } r\}$

Definition

The *ball-MNC*, also known as the *Hausdorff-MNC*, of a subset V of the vector space X is given by

 $\beta(V) := \inf\{r > 0 \mid V \text{ can be covered by finitely many balls of radius } r\}$

• for $V \subset L^p$, there is a "nice" formula for $\beta(V)$:

$$\beta(V) = \frac{1}{2} \lim_{\delta \to 0} \sup_{\varphi \in V} \sup_{0 < \tau \le \delta} ||\varphi - \varphi_{\tau}||_{p},$$

where $\varphi_{\tau}(t) := \varphi(t + \tau)$.

→□▶→□▶→□▶→□▶
□◆□▶→□▶→□▶
□◆□▶

Matt Reichenbach Dissertation Defense

• Since the mapping $bF: L^1 \to L^1$ has a one-dimensional range (spanned by b = b(y)), it's compact.

- Since the mapping $bF: L^1 \to L^1$ has a one-dimensional range (spanned by b = b(y)), it's compact.
- ullet Hence, the ball-MNC eta "doesn't see it", and

$$\beta(T^k) = \beta((GS + bF)^k) = \beta((GS)^k).$$

- Since the mapping $bF: L^1 \to L^1$ has a one-dimensional range (spanned by b = b(y)), it's compact.
- ullet Hence, the ball-MNC eta "doesn't see it", and

$$\beta(T^k) = \beta((GS + bF)^k) = \beta((GS)^k).$$

• This simplifies the problem a lot, and allows us to compute

$$r_e(T) = \lim_{n \to \infty} \beta(T^n)^{1/n} = \lim_{n \to \infty} \beta((GS)^n)^{1/n} = r_e((GS)^n)^{1/n}.$$

Matt Reichenbach

Theorem (R., 2018)

Put $s_1 := \sup\{s(x)\} = s(U)$. Then

$$r_{e}(GS) \le r(GS) \le s_{1}. \tag{2}$$

If g(y,x) = 0 for y < x, then equalities hold in (2).

30 / 41

Theorem (R., 2018)

Put $s_1 := \sup\{s(x)\} = s(U)$. Then

$$r_e(GS) \le r(GS) \le s_1. \tag{2}$$

30 / 41

If g(y,x) = 0 for y < x, then equalities hold in (2).

Proof sketch.

The first inequality follows from the fact that $\sigma_e(GS) \subset \sigma(GS)$, and the second follows from Gelfand's formula for the spectral radius:

$$r(GS) = \lim_{n \to \infty} ||(GS)^n||^{1/n}.$$

Theorem (R., 2018)

Put $s_1 := \sup\{s(x)\} = s(U)$. Then

$$r_e(GS) \le r(GS) \le s_1. \tag{2}$$

30 / 41

If g(y,x) = 0 for y < x, then equalities hold in (2).

Proof sketch.

The first inequality follows from the fact that $\sigma_e(GS) \subset \sigma(GS)$, and the second follows from Gelfand's formula for the spectral radius:

$$r(GS) = \lim_{n \to \infty} ||(GS)^n||^{1/n}.$$

Assuming that g(y,x) = 0 for y < x, one can use the formula for β , with a properly chosen subsequence of functions in L^1 , to show that $s_1 < r_e(GS)$.

Theorem

Suppose $\mu \in \rho(GS)$, the resolvent set of GS, and define $\psi := (\mu I - GS)^{-1}b$. If

$$F\psi = F(\mu I - GS)^{-1}b = 1,$$

Theorem

Suppose $\mu \in \rho(GS)$, the resolvent set of GS, and define $\psi := (\mu I - GS)^{-1}b$. If

$$F\psi = F(\mu I - GS)^{-1}b = 1,$$

then ψ is an eigenvector for T with eigenvalue μ .

Theorem

Suppose $\mu \in \rho(GS)$, the resolvent set of GS, and define $\psi := (\mu I - GS)^{-1}b$. If

$$F\psi = F(\mu I - GS)^{-1}b = 1,$$

then ψ is an eigenvector for T with eigenvalue μ . Conversely, if v is an eigenvector for T with eigenvalue $\mu \in \rho(GS)$, then v is in the span of ψ , and $F\psi = 1$.

Theorem

Suppose $\mu \in \rho(GS)$, the resolvent set of GS, and define $\psi := (\mu I - GS)^{-1}b$. If

$$F\psi = F(\mu I - GS)^{-1}b = 1,$$

then ψ is an eigenvector for T with eigenvalue μ . Conversely, if v is an eigenvector for T with eigenvalue $\mu \in \rho(GS)$, then v is in the span of ψ , and $F\psi=1$.

• This characterizes what eigenvectors look like, and tells us exactly when T has an eigenvalue μ (so long as $\mu \in \rho(GS)$).

Theorem

Suppose $\mu \in \rho(GS)$, the resolvent set of GS, and define $\psi := (\mu I - GS)^{-1}b$. If

$$F\psi = F(\mu I - GS)^{-1}b = 1,$$

then ψ is an eigenvector for T with eigenvalue μ . Conversely, if v is an eigenvector for T with eigenvalue $\mu \in \rho(GS)$, then v is in the span of ψ , and $F\psi=1$.

- This characterizes what eigenvectors look like, and tells us exactly when T has an eigenvalue μ (so long as $\mu \in \rho(GS)$).
- ullet Recall that we want some μ such that

$$r(T) \geq \mu > r_{\rm e}(T) = s_1.$$

Theorem (R., 2019)

Put $E := (s_1, \infty)$, and define the function $P : E \to \mathbb{R}$ by

$$P(t) := F(tI - GS)^{-1}b,$$

where GS satisfies biologically reasonable properties. Then:

Theorem (R., 2019)

Put $E := (s_1, \infty)$, and define the function $P : E \to \mathbb{R}$ by

$$P(t) := F(tI - GS)^{-1}b,$$

where GS satisfies biologically reasonable properties. Then:

P is continuous,

Theorem (R., 2019)

Put $E:=(s_1,\infty)$, and define the function $P:E\to\mathbb{R}$ by

$$P(t) := F(tI - GS)^{-1}b,$$

where GS satisfies biologically reasonable properties. Then:

- P is continuous,
- P is strictly decreasing,

32 / 41

Theorem (R., 2019)

Put $E := (s_1, \infty)$, and define the function $P : E \to \mathbb{R}$ by

$$P(t) := F(tI - GS)^{-1}b,$$

where GS satisfies biologically reasonable properties. Then:

- P is continuous,
- P is strictly decreasing,

Theorem (R., 2019)

Put $E := (s_1, \infty)$, and define the function $P : E \to \mathbb{R}$ by

$$P(t) := F(tI - GS)^{-1}b,$$

where GS satisfies biologically reasonable properties. Then:

- P is continuous.
 - 2 P is strictly decreasing,

 - and if in addition there is an $\varepsilon > 0$ such that $s(x) \equiv s_1$ for $x \in [U \varepsilon, U]$, then

$$\lim_{t\to s_1}P(t)=\infty.$$

Matt Reichenbach Dissertation Defense

Here's what P(t) might look like because of this theorem:

33 / 41

Here's what P(t) might look like because of this theorem:

ullet This theorem guarantees the existence of a (unique) $\mu>s_1$ such that

$$P(\mu) = F(\mu I - GS)^{-1}b = 1.$$

ullet This theorem guarantees the existence of a (unique) $\mu>s_1$ such that

$$P(\mu) = F(\mu I - GS)^{-1}b = 1.$$

• Hence, μ is an eigenvalue of T, so $\mu \in \sigma(T)$.

ullet This theorem guarantees the existence of a (unique) $\mu>s_1$ such that

$$P(\mu) = F(\mu I - GS)^{-1}b = 1.$$

- Hence, μ is an eigenvalue of T, so $\mu \in \sigma(T)$.
- Additionally, for $\lambda = r(T)$,

$$\lambda \geq \mu > s_1 = r_e(GS).$$

ullet This theorem guarantees the existence of a (unique) $\mu>s_1$ such that

$$P(\mu) = F(\mu I - GS)^{-1}b = 1.$$

- Hence, μ is an eigenvalue of T, so $\mu \in \sigma(T)$.
- Additionally, for $\lambda = r(T)$,

$$\lambda \geq \mu > s_1 = r_e(GS).$$

Thus, we can conclude that $\lambda \notin \sigma_e(T)$. This is the last ingredient we needed to prove...

Theorem (R., 2020)

Suppose that $T: L^1 \to L^1$ is an IPM operator such that g(y,x) = 0 for y < x. Then under biologically reasonable assumptions, T has the following properties (among others):

Theorem (R., 2020)

Suppose that $T: L^1 \to L^1$ is an IPM operator such that g(y,x) = 0 for y < x. Then under biologically reasonable assumptions, T has the following properties (among others):

• The spectral radius $\lambda = r(T)$ is a positive eigenvalue for T and T^* . Moreover, the respective eigenvectors ψ and ψ^* span one-dimensional eigenspaces, ψ is quasi-interior, ψ^* represents a strictly positive linear functional, and both ψ , ψ^* are the only eigenvectors of T, T^* which can be scaled to be nonnegative almost-everywhere.

Theorem (R., 2020)

Suppose that $T: L^1 \to L^1$ is an IPM operator such that g(y,x) = 0 for y < x. Then under biologically reasonable assumptions, T has the following properties (among others):

- The spectral radius $\lambda = r(T)$ is a positive eigenvalue for T and T^* . Moreover, the respective eigenvectors ψ and ψ^* span one-dimensional eigenspaces, ψ is quasi-interior, ψ^* represents a strictly positive linear functional, and both ψ , ψ^* are the only eigenvectors of T, T^* which can be scaled to be nonnegative almost-everywhere.
- Suppose ψ is scaled so that $||\psi||_1 = 1$, and ψ^* is scaled so that $\langle \psi, \psi^* \rangle = 1$. Then for any nonzero $\psi_0 \in K$, we have

$$\lim_{n\to\infty}\frac{T^n\varphi_0}{\lambda^n}=\langle\varphi_0,\psi^*\rangle\psi.$$

Before I state the result, define the functions

Before I state the result, define the functions

$$egin{aligned} Q(t) &:= -1 + F(tI - GS)^{-1}b = -1 + \sum_{k=0}^{\infty} rac{F((GS)^k b)}{t^{k+1}}, \ Q_n(t) &:= -1 + \sum_{k=0}^n rac{F((GS)^k b)}{t^{k+1}}, \ Q_{n,\delta}(t) &:= -1 + \sum_{k=0}^n rac{F((G_\delta S)^k b)}{t^{k+1}}, \end{aligned}$$

Before I state the result, define the functions

$$egin{aligned} Q(t) &:= -1 + F(tI - GS)^{-1}b = -1 + \sum_{k=0}^{\infty} rac{F((GS)^k b)}{t^{k+1}}, \ Q_n(t) &:= -1 + \sum_{k=0}^n rac{F((GS)^k b)}{t^{k+1}}, \ Q_{n,\delta}(t) &:= -1 + \sum_{k=0}^n rac{F((G_{\delta}S)^k b)}{t^{k+1}}, \end{aligned}$$

where G_{δ} is the integral operator with kernel equal to g(y,x) on $[L,U-\delta]\times [L,U]$, and 0 otherwise.

イロト (個) (目) (目) (目) の(0)

36 / 41

Theorem (R., 2020)

For every $\varepsilon>0$, there is an $N\in\mathbb{N}$ and a $\delta(N)>0$ such that for any $n\geq N$ and $\delta<\delta(N)$, we have

$$|z_{n,\delta}-\lambda|<\varepsilon,$$

where $z_{n,\delta}$ is the unique zero of $Q_{n,\delta}$, and λ is the unique zero of Q (i.e., the spectral radius of T).

Question?

- Question?
 - Comment.

- Question?
 - Comment.
 - Comment.

- Question?
 - Comment.
 - Comment.
- Question?

Matt Reichenbach Dissertation Defense

- Question?
 - Comment.
 - Comment.
- Question?
 - Comment.

- Question?
 - Comment.
 - Comment.
- Question?
 - Comment.
 - Question?

- Question?
 - Comment.
 - Comment.
- Question?
 - Comment.
 - Question?
 - Comment.

- Question?
 - Comment.
 - Comment.
- Question?
 - Comment.
 - Question?
 - Comment.
 - ② Comment.

References I

- P. Clément et al. *One-Parameter Semigroups*. Elsevier Science Publishers B.V., 1987.
- N. Dunford and J.T. Schwartz. *Linear Operators, Part I: General Theory*. Interscience, New York, 1958.
- S.P. Ellner and M. Rees. "Integral Projection Models for Species with Complex Demography". In: *The American Naturalist* 167.3 (2006), pp. 410–428.
- Ivo Marek. "Frobenius Theory of Positive Operators: Comparison Theorems and Applications". In: *SIAM Journal of Applied Mathematics* 19.3 (1970), pp. 607–628.
- R.D. Nussbaum. "The radius of the essential spectrum". In: *Duke Mathematical Journal* 38 (1970), pp. 473–478.

39 / 41

References II

- I. Sawashima. "On Spectral Properties of Some Positive Operators". In: Natural Science Report, Ochanomizu University 15.2 (1964), pp. 53–64.
- H.H. Schaefer. "Some Properties of Positive Linear Operators". In: *Pacific Journal of Mathematics* 10 (1960), pp. 1009–1019.
 - Y. Vindenes et al. "Effects of Climate Change on Trait-Based Dynamics of a Top Predator in Freshwater Ecosystems". In: *The American Naturalist* 183.2 (2014), pp. 243–256.

• An important question is whether one can estimate $\lambda = r(T)$ on a computer when T is not compact.

- An important question is whether one can estimate $\lambda = r(T)$ on a computer when T is not compact.
- The standard methods of doing this when the operator is compact rely on approximating it uniformly with matrices.

- An important question is whether one can estimate $\lambda = r(T)$ on a computer when T is not compact.
- The standard methods of doing this when the operator is compact rely on approximating it uniformly with matrices.
- But these methods do not work when T is not compact.

41 / 41

- An important question is whether one can estimate $\lambda = r(T)$ on a computer when T is not compact.
- The standard methods of doing this when the operator is compact rely on approximating it uniformly with matrices.
- But these methods do not work when T is not compact.
- I was not able to fully resolve this question, but I did prove that the spectral radii of certain compact operators approach the spectral radius of T.