GIVEN A PROTEIN STRUCTURE GENERATE PROTEIN ENSEMBLE USING BACKRUB METHOD

Presented By:-

Ashish Malgawa 17CS60R81

Suyog Chadawar 17CS60R57

Shubham Yadav 17CS60R47

Guided By:-

Prof. Pralay Mitra

Ms. Abantika Pal

MOTIVATION

- Proteins undergo conformational fluctuations in response to thermal energy, binding events, and mutation.
- Understanding and predicting such excursions around the native state of a protein is a key challenge in computational molecular biology.

OUR ALGORITHM

- Input
 - PDB FILE, Segment Size, number of steps
- Output:
 - Backbone ensemble of the input structure

CONT...

- Randomly select an angle alpha from the range of permitted angles.
- Randomly select a segment from all allowed segments with the given segment size.
- Apply BackRub move.
- Use SCWRL to fit side chains.
- Use FOLDX to calculate energy of the newly generated protein conformation.
- Select the newly generated protein conformation with the probability given by Metropolis Criterion.
- Repeat all these steps until the terminating condition is satisfied.

• Randomly select a segment from all allowed segments with the given segment size.

- Delete coordinate information of all side chains in the selected segment.
- Randomly select angle within the specified range.
- Axis vector is calculated by considering the boundary $\mathbf{C}\alpha$ atoms.
- All the atoms between boundary $\mathbf{C}\alpha$ atoms are rotated about this axis by selected angle.
- Using selected angle, calculated axis and coordinates of boundary $C\alpha$ atoms, we can calculate rotation matrix.

$$\begin{bmatrix} \frac{u^2 + (v^2 + w^2)\cos\theta}{L} & \frac{uv(1 - \cos\theta) - w\sqrt{L}\sin\theta}{L} & \frac{uw(1 - \cos\theta) + v\sqrt{L}\sin\theta}{L} & \frac{\left(a(v^2 + w^2) - u(bv + cw)\right)(1 - \cos\theta) + (bw - cv)\sqrt{L}\sin\theta}{L} \\ \frac{uv(1 - \cos\theta) + w\sqrt{L}\sin\theta}{L} & \frac{v^2 + (u^2 + w^2)\cos\theta}{L} & \frac{vw(1 - \cos\theta) - u\sqrt{L}\sin\theta}{L} & \frac{\left(b(u^2 + w^2) - v(au + cw)\right)(1 - \cos\theta) + (cu - aw)\sqrt{L}\sin\theta}{L} \\ \frac{uw(1 - \cos\theta) - v\sqrt{L}\sin\theta}{L} & \frac{vw(1 - \cos\theta) + u\sqrt{L}\sin\theta}{L} & \frac{w^2 + (u^2 + v^2)\cos\theta}{L} & \frac{\left(c(u^2 + v^2) - w(au + bv)\right)(1 - \cos\theta) + (av - bu)\sqrt{L}\sin\theta}{L} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \frac{\left(a(v^2+w^2)-u(bv+cw-ux-vy-wz)\right)(1-\cos\theta)+Lx\cos\theta+\sqrt{L}(-cv+bw-wy+vz)\sin\theta}{L} \\ \frac{\left(b(u^2+w^2)-v(au+cw-ux-vy-wz)\right)(1-\cos\theta)+Ly\cos\theta+\sqrt{L}(cu-aw+wx-uz)\sin\theta}{L} \\ \frac{\left(c(u^2+v^2)-w(au+bv-ux-vy-wz)\right)(1-\cos\theta)+Lz\cos\theta+\sqrt{L}(-bu+av-vx+uy)\sin\theta}{L} \end{bmatrix}$$

- Using this rotation matrix we calculate new coordinates of backbone atoms in the selected segment.
- These new coordinates are reflected back in a new PDB file.
- This PDB file is given as input to SCWRL.

SIDE CHAIN FITTING

Original PDB											
	ATOM	573	N	THR	Α	76	13.900	49.836	47.615	1.00 21.77	N
	ATOM	574	CA	THR	Α	76	12.588	49.229	47.853	1.00 21.77	C
	ATOM	575	C	THR	Α	76	12.644	47.789	48.354	1.00 21.77	C
	ATOM	576	0	THR	Α	76	11.639	47.333	48.980	1.00 21.77	0
	ATOM	577	CB	THR	Α	76	11.689	49.261	46.557	1.00 22.27	C
	ATOM	578	0G1	THR	Α	76	12.474	48.582	45.540	1.00 22.27	0
	ATOM	579	CG2	THR	Α	76	11.266	50.631	46.003	1.00 22.27	C
	ATOM	580	N	GLY	Α	77	13.749	47.127	48.065	1.00 19.48	Ν
	ATOM	581	CA	GLY	Α	77	13.830	45.709	48.502	1.00 19.48	C
	ATOM	582	С	GLY	Α	77	13.131	44.862	47.457	1.00 19.48	C
	ATOM	583	0	GLY	Α	77	13.013	43.629	47.598	1.00 19.48	0
	ATOM	584	N	ALA	Α	78	12.659	45.451	46.353	1.00 18.08	Ν
	ATOM	585	CA	ALA	Α	78	11.985	44.712	45.281	1.00 18.08	C
	ATOM	586	С	ALA	Α	78	13.056	44.023	44.418	1.00 18.08	C
	ATOM	587	0	ALA	Α	78	14.245	44.474	44.446	1.00 18.08	0
	ATOM	588	CB	ALA	Α	78	11.073	45.628	44.448	1.00 18.40	C

SIDE CHAIN FITTING

After Backrub

ATOM	573	N	THR A	76	13.968	49.437	48.3	1.00 21.77	N
ATOM	574	CA	THR A	76	12.588	49.229	47.853	1.00 21.77	C
ATOM	575	С	THR A	76	11.974	47.907	48.304	1.00 21.77	С
ATOM	576	0	THR A	76	10.709	47.818	48.347	1.00 21.77	0
ATOM	580	N	GLY A	77	12.834	46.948	48.594	1.00 19.48	N
ATOM	581	CA	GLY A	77	12.277	45.632	49.001	1.00 19.48	С
ATOM	582	С	GLY A	77	11.946	44.859	47.74	1.00 19.48	С
ATOM	583	0	GLY A	77	11.419	43.73	47.794	1.00 19.48	0
ATOM	584	N	ALA A	78	12.252	45.392	46.552	1.00 18.08	N
ATOM	585	CA	ALA A	78	11.985	44.712	45.281	1.00 18.08	С
ATOM	586	С	ALA A	78	13.081	43.657	45.055	1.00 18.08	С
ATOM	587	0	ALA A	78	14.187	43.784	45.671	1.00 18.08	0

SIDE CHAIN FITTING

After Side Chain Fitting

ATOM	701	N	THR	Α	76	13.968	49.437	48.300	1.00	N
ATOM	702	CA	THR	Α	76	12.588	49.229	47.853	1.00	C
ATOM	703	C	THR	Α	76	11.974	47.907	48.304	1.00	C
ATOM	704	0	THR	Α	76	10.709	47.818	48.347	1.00	0
ATOM	705	Н	THR	Α	76	14.514	48.731	48.418	1.00	Н
ATOM	706	CB	THR	Α	76	12.476	49.295	46.318	1.00	C
ATOM	707	HG1	THR	Α	76	12.404	51.169	46.199	1.00	Н
ATOM	708	0G1	THR	Α	76	12.891	50.588	45.861	1.00	0
ATOM	709	CG2	THR	Α	76	11.038	49.061	45.879	1.00	C
ATOM	710	N	GLY	Α	77	12.834	46.948	48.594	1.00	N
ATOM	711	CA	GLY	Α	77	12.277	45.632	49.001	1.00	C
ATOM	712	C	GLY	Α	77	11.946	44.859	47.740	1.00	C
ATOM	713	0	GLY	Α	77	11.419	43.730	47.794	1.00	0
ATOM	714	Н	GLY	Α	77	13.725	47.066	48.553	1.00	Н
ATOM	715	N	ALA	Α	78	12.252	45.392	46.552	1.00	N
ATOM	716	CA	ALA	Α	78	11.985	44.712	45.281	1.00	C
ATOM	717	C	ALA	Α	78	13.081	43.657	45.055	1.00	C
ATOM	718	0	ALA	Α	78	14.187	43.784	45.671	1.00	0
ATOM	719	Н	ALA	Α	78	12.638	46.205	46.555	1.00	Н
ATOM	720	CB	ALA	Α	78	11.934	45.718	44.142	1.00	C

ENERGY CALCULATION

```
Jesper Borg, Frederic Rousseau
         Joost Schymkowitz, Luis Serrano
Peter Vanhee, Erik Verschueren
          Lies Baeten, Javier Delgado
           and Francois Stricher
  *** and any other of the 9! permutations ***
        based on an original concept by
        Raphael Guerois and Luis Serrano
  ************
Stability >>>
 models read: 6apu.pdb
./6apu_0_ST.fxout
Output Directory: ./
Output File: 6apu_0_ST.fxout
Configuration File: config 6apu 0 ST.cfg
number of incomplete residues = 1
completing sidechain atoms of LYSA197
BackHbond
                               -248.52
SideHbond
                               -53.18
Energy_VdW
                               -439.18
                               -26.69
Electro
Energy_SolvP
                               613.50
Energy_SolvH
                               -592.03
Energy_vdwclash =
                               41.08
energy_torsion =
                               17.22
backbone_vdwclash=
                               223.06
                               212.41
Entropy_sidec =
Entropy_mainc =
                               526.01
water bonds
                               0.00
helix dipole =
                               1.41
loop_entropy =
                               0.00
cis bond
                               2.46
disulfide
                               0.00
kn electrostatic=
partial covalent interactions = -3.38
Energy_Ionisation =
                               0.38
Entropy Complex =
                               0.00
Total
                                                 50.95
FINISHING STABILITY ANALYSIS OPTION
```


METROPOLIS CRITERION

$$Pr[c \to c'] := \begin{cases} 1 & \text{if } \Delta E \leq 0, \\ \frac{-\Delta E}{e^{T}} & \text{otherwise.} \end{cases}$$

RESULTS for 1cwu (Version 1.0)

Total of 117 ensembles were generated after running the program for 1500 iterations.

TM-score RESULT (Version 1.0)

TM-score results of the ensembles (in previous slide) when compared with original protein.

RESULTS for 1cvl (Version 1.0)

Total of 47 ensembles were generated after running the program for 500 iterations.

TM-score RESULT (Version 1.0)

TM-score results of the ensembles (in previous slide) when compared with original protein.

RESULTS for 1cwu (Version 2.0)

Total of 13 ensemble were generated after running for 50 iterations.

TM-score RESULT (Version 2.0)

TM-score results of ensembles when compared with original protein.

REFERENCES

- Thachuk, Chris, Alena Shmygelska, and Holger H. Hoos. "A replica exchange Monte Carlo algorithm for protein folding in the HP model." *BMC bioinformatics* 8.1 (2007): 342.
- Smith, Colin A., and Tanja Kortemme. "Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction." Journal of molecular biology 380.4 (2008): 742-756.
- Lauck, Florian, et al. "RosettaBackrub—a web server for flexible backbone protein structure modeling and design." Nucleic acids research 38.suppl_2 (2010): W569-W575.

THANK YOU

