Interpolação Polinomial

Algorítmo de Neville

Fórmula de Lagrange

Lembre que para cada "x" o polinômio é calculado como a soma de N termos

$$P(x) = \sum_{i=1}^{N} Y_i L_i(x)$$

onde cada termo possui um produtório de N-1 fatores

$$L_i(x) = \prod_{j=1, j \neq i}^{N} \frac{x - X_j}{X_i - X_j}$$

Ou seja, para cada "y" calculado a partir da fórmula "y = P(x)" no mínimo N*(N-1) atribuições deverão ser calculadas. É por isto que na implementação da Fórmula de Lagrange temos um laço de N ciclos, dentro do qual tem um outro laço de N-1 ciclos.

Base do Algorítmo de Neville: Fórmula de recorrência

Ou escrito de outra forma

$$P_{123}(x) = \frac{x - X_3}{X_1 - X_3} P_{12}(x) - \frac{x - X_1}{X_1 - X_3} P_{23}(x)$$

Onde sabemos que

$$P_{12}(X_1) = Y_1$$
 $P_{23}(X_2) = Y_2$
 $P_{12}(X_2) = Y_2$ $P_{23}(X_3) = Y_3$

Base do Algorítmo de Neville: Fórmula de recorrência

Base do Algorítmo de Neville: Fórmula de recorrência

A base do algorítmo é ter uma matriz quadrada N x N onde N é o número de pontos a serem interpolados

$$A_{ij} = \frac{1}{X[i] - X[k]} [(x - X[k])A_{i,j-1} - (x - X[i])A_{i+1,j-1}]$$

onde

$$k = j + i - 1$$

No final do processo, o polinômio interpolador é dado por

$$P(x) = A14.$$

A leitura dos pontos é dado pelos valores de X e da primeira coluna da matriz A.

$$X, Y \rightarrow X[i], A[i][1]$$

A ordem do preenchimento é fundamental:

$$j = 1; i = 1, 2, 3, 4$$

 $j = 2; i = 1, 2, 3$
 $j = 3; i = 1, 2$
 $j = 4; i = 1$
 $j = 1...N; i = 1...(N - j + 1)$

Esta implementação usa índices de matrizes de 1 a N, no entanto você pode adaptar para índices de 0 a N-1 que são mais convenientes em C.

Exemplo de uma função que implementa o Algorítmo de Neville (Usando índices de 1 a n para a Matriz A)

```
float neville_func( float x, int n, float point[n][2])
3 int i,j,k;
   float A[n+1][n+1];
   for(i=1;i<=n;i++)
      A[i][1] = point[i-1][1];
9
10
   for(j=2; j<= n;j++)
12
      for(i=1; i<= n-j+1; i++)
13
14
         k = j+i-1;
15
         A[i][j] = ((x - point[k-1][0])*A[i][j-1] - (x-point[i-1][0])*A[i+1][j-1])/(point[i-1][0]-point[k-1][0]);
16
17
      }
18
   return A[1][n];
20
```

Implementação do Algoritmo de Neville usando índices de 0 até N-1

A ₀₀	A ₀₁	A ₀₂	A ₀₃
Υ ₀ -	P ₁₂ -	P ₁₂₃ −	P ₁₂₃₄
A ₁₀	A ₁₁	A ₁₂	A ₁₃
Y ₁ -	→ P ₂₃ −	→ P ₂₃₄	
A ₂₀	A ₂₁	A ₂₂	A ₂₃
Y ₂ -	→ P ₃₄		
A ₃₀	A ₃₁	A ₃₂	A ₃₃
Y ₃			

$$A_{01} = \frac{1}{X_0 - X_1} [(x - X_1)A_{00} - (x - X_0)A_{10}]$$

$$A_{11} = \frac{1}{X_1 - X_2} [(x - X_2)A_{10} - (x - X_1)A_{20}]$$

:

$$A_{02} = \frac{1}{X_0 - X_2} [(x - X_2)A_{01} - (x - X_0)A_{11}]$$

Podemos claramente generalizar isto Para a fórmula de recorrência

$$A_{ij} = \frac{1}{X_i - X_{i+j}} [(x - X_{i+j})A_{i,j-1} - (x - X_0)A_{i+1,j-1}]$$

Exemplo de uma função que implementa o Algorítmo de Neville (Usando índices de 0 a n-1 para a Matriz A)

```
float neville_func( float x, int n, float point[n][2])
  int i,j,k;
   float A[n][n];
   for(i=0;i<n;i++)
      A[i][0] = point[i][1];
10
   for(j=1; j< n; j++)
12
      for(i=0; i< n-j; i++)
13
14
         k = j+i;
15
         A[i][j] = ((x - point[k][0])*A[i][j-1] - (x-point[i][0])*A[i+1][j-1])/(point[i][0]-point[k][0]);
16
         }
17
      }
18
19 return A[0][n-1];
20 }
```