

Decision Trees - Decision Trees - 3

One should look for what is and not what he thinks should be. (Albert Einstein)

Quick review

Type the answer in the chat box.

- Which of the following is NOT true about Decision Trees?
 - i. Decision Trees are used for classification and regression analysis
 - ii. Decision Trees are a useful method for mitigating bias
 - iii. Decision Tree models cope well with heterogeneous data, missing data, and nonlinear effects
 - iv. Decision Tree algorithm is a supervised machine learning method

Quick review

The correct answer is 2

- Which of the following is NOT true about decision trees?
 - i. Decision Trees are are used for classification and regression analysis
 - ii. Decision Trees are a useful method for mitigating bias
 - iii. Decision Tree models cope well with heterogeneous data, missing data, and nonlinear effects
 - iv. Decision Tree algorithm is a supervised machine learning method

Module completion checklist

Objectives	Complete
Evaluate the model and store final results	
Implement Decision Tree on the entire dataset and evaluate its results	

Evaluate the model

- We can use the following metrics to measure how well our simple decision tree is doing
 - Accuracy score
 - Confusion matrix
 - AUC score
 - ROC

Evaluate the model (cont'd)

Let's calculate the confusion matrix:

```
# Confusion matrix for first model.
cm_tree = confusion_matrix(y_test,y_predict)
```

- We used a confusion matrix to calculate accuracy, misclassification rate, true positive rate, false positive rate, and specificity
- We won't go through all of the metrics right now, but let's calculate accuracy because it's a metric used frequently to compare classification models

```
# Accuracy score.
acc_score = accuracy_score(y_test, y_predict)
print(acc_score)
```

0.9151989562948467

Plot confusion matrix

Let's plot our confusion matrix

```
plt.clf()
plt.imshow(cm_tree, interpolation='nearest',
cmap=plt.cm.Wistia)
classNames = ['Negative','Positive']
plt.title('Confusion Matrix - Test Data')
plt.ylabel('True label')
plt.xlabel('Predicted label')
tick_marks = np.arange(len(classNames))
plt.xticks(tick_marks, classNames, rotation=45)
plt.yticks(tick_marks, classNames)
s = [['TN','FP'], ['FN', 'TP']]
for i in range(2):
    for j in range(2):
        plt.text(j,i, str(s[i][j]) + " = " +
str(cm_tree[i][j]))
plt.show()
```


Plot ROC and calculate AUC

 Finally, let's plot our ROC curve and calculate AUC

```
# Calculate metrics for ROC (fpr, tpr) and
calculate AUC.
fpr, tpr, threshold = metrics.roc_curve(y_test,
y_predict)
roc_auc = metrics.auc(fpr, tpr)

# Plot ROC.
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' %
roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

 Our AUC score is 0.58, which indicates that the performance of our model is not that great

Module completion checklist

Objectives	Complete
Evaluate the model and store final results	
Implement Decision Tree on the entire dataset and evaluate its results	

Decision Tree: build

 Let's build our Decision Tree and use all default parameters for now as our baseline model

```
# Set up logistic regression model.
clf = tree.DecisionTreeClassifier()
print(clf)

## DecisionTreeClassifier()
```

- We can see that the default model contains many parameters, including:
 - o max_depth = None
 - o min_samples_split = 2
 - o min_samples_leaf = 1
 - o max_features = None

Decision Tree: fit

- Let's fit the Decision Tree with X_train and y_train
- We will run the model on our training data and predict on test data

```
# Fit the model.
clf_fit = clf.fit(X_train, y_train)
```

Decision Tree: predict

- We will predict on the test data using our trained model
- The result is a vector of the predictions

```
# Predict on X_test.
y_predict = clf_fit.predict(X_test)
print(y_predict[:20])
```

```
## [False False True False Fals
```

Decision Tree: accuracy score

• Let's calculate the accuracy score of our tree and save it to our model_final dataframe

```
# Compute test model accuracy score.
tree_accuracy_score = metrics.accuracy_score(y_test, y_predict)
print("Accuracy on test data: ", tree_accuracy_score)

## Accuracy on test data: 0.9125896934116112
```

- Is this result accurate?
- The high accuracy could be due to a multitude of reasons:
 - the classifier could be overfitting the dataset
 - the tree could be biased to classes which have a majority in the dataset
 - the train set and test set could be very similar

Decision Tree: train accuracy

Let's find out the accuracy on the training data to be sure

```
## Train Accuracy: 1.0
```

Decision Tree: accuracy

• Save the accuracy score to our model_final if you want to use it later.

• Let's run a 10-fold cross-validation to see if the results are accurate

Recap: Introducing cross-validation

- Before applying any machine learning algorithms on the data, we usually need to split the data into a train set and a test set
- But now, we are doing this multiple times
- We have a new test set for each fold n
- The rest of the data is the train set

Recap: Why do we use cross-validation?

- Cross-validation is helpful in multiple ways:
 - It tunes our model better by running it multiple times on our data (instead of just once on the train set and once on the test set)
 - You get assurance that your model has most of the patterns from the data correct and it's not picking up too much on the noise
 - It finds optimal parameters for your model because it runs multiple times

Recap: Cross-validation: train and test

Train

- This is the data that you train your model on
- Use a larger portion of the data to train so that the model gets a large enough sample of the population
- Usually about 70% of your dataset
- When there is not a large population to begin with, cross-validation techniques can be implemented

Test

- This is the data that you test your model on
- Use a smaller portion to test your trained model on
- Usually about 30% of your dataset
- When cross-validation is implemented, small test sets will be held out multiple times

Recap: Cross-validation: n-fold

Here is how cross-validation works:

- 1. Split the dataset into several subsets ("n" number of subsets) of equal size
- 2. Use each subset as the test dataset and use the rest of the data as the training dataset
- 3. Repeat the process for every subset you create

Cross-validation

- The input is an estimator, X, y and the number of folds for cross-validation
- It returns an array of scores of the estimator for each run of the crossvalidation

sklearn.model selection.cross_val_score

sklearn.model_selection. cross_val_score (estimator, X, y=None, groups=None, scoring=None, cv='warn', n_jobs=None, verbose=0, fit_params=None, pre_dispatch='2*n_jobs', error_score='raise-deprecating') [source

Evaluate a score by cross-validation

Read more in the User Guide.

Parameters: estimator : estimator object implementing 'fit'

The object to use to fit the data.

X : array-like

The data to fit. Can be for example a list, or an array.

y : array-like, optional, default: None

The target variable to try to predict in the case of supervised learning.

groups : array-like, with shape (n_samples,), optional

Group labels for the samples used while splitting the dataset into train/test set.

scoring: string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with signature scorer(estimator, x, y) which should return only a single value.

Similar to cross_validate but only a single metric is permitted.

If None, the estimator's default scorer (if available) is used.

cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

- · None, to use the default 3-fold cross validation,
- integer, to specify the number of folds in a (Stratified)KFold,
- CV splitter,
- An iterable yielding (train, test) splits as arrays of indices.

Cross-validation scores

```
clf = tree.DecisionTreeClassifier()
cv_scores = cross_val_score(clf, X, y, cv = 10)
# Print each cv score (accuracy) and average them.
print(cv_scores)
## [0.90410959 0.90019569 0.90410959 0.90998043 0.90019569 0.90606654
## 0.90802348 0.91585127 0.90998043 0.91976517
print("cv_scores mean:{}".format(np.mean(cv_scores)))
## cv_scores mean:0.9078277886497066
mean = np.mean(cv_scores)
print("Optimal cv score is:", round(mean, 4))
## Optimal cv score is: 0.9078
```

- There's a big difference in the vanilla model results and cross-validation results
- We can now try pruning and optimizing the tree by finding optimal parameters for our model

Knowledge check

Module completion checklist

Objectives	Complete
Evaluate the model and store final results	
Implement decision tree on the entire dataset and evaluate its results	

Congratulations on completing this module!

You are now ready to try Task 7 in the Exercise for this topic

