OS – MP, RT a vestavěné systémy

Tomáš Hudec

Tomas.Hudec@upce.cz

http://fei-as.upceucebny.cz/usr/hudec/vyuka/os/

Víceprocesorové systémy

- MP (multiprocessor) systems
- systémy s více procesory
 - vícejádrové procesory
 - více procesorů funkčně (stejných či různých)
 propojených společnou (systémovou) sběrnicí
 - více samostatných systémů s vlastním procesorem propojených společnou sběrnicí nebo pouze sítí

Kategorie počítačových systémů

- SISD (single instruction, single data)
 - jeden procesor zpracovává jednu množinu dat jedním proudem instrukcí
- SIMD (single instruction, multiple data)
 - jedním proudem instrukcí zpracovává více procesorů více různých množin dat
 - každá instrukce se provede současně v n procesorech
 - každý procesor zpracovává jiná data

Kategorie počítačových systémů

- MISD (multiple instruction, single data)
 - více procesorů provádí různé operace nad jednou množinou dat
 - v podstatě nebylo nikdy realizováno
- MIMD (multiple instruction, multiple data)
 - více procesorů zpracovává různými proudy instrukcí více různých množin dat

MP systémy podle vazby

- MP systém s volnou vazbou loosely coupled
 - každý procesor má vlastní operační paměť a V/V subsystém
 - různé typy vazby
 - společná sběrnice Common Bus (např. VME)
 - společné disky Common Disk
 - nic společného Common Nothing (vazba LAN)
- MP systém s těsnou vazbou tightly coupled
 - procesory sdílejí operační paměť
 - řízen jedním operačním systémem

MP systémy podle symetrie

- symetrický víceprocesorový systém SMP
 - procesory jsou shodné
 - jádro OS může provádět libovolný procesor
 - procesy i vlákna lze provádět libovolným procesorem
- asymetrický víceprocesorový systém
 - procesory jsou funkčně specializované
 - V/V procesory, grafické procesory, FPU apod.
 - systém je řízen centrálním procesorem

Granularita úlohy

- každou úlohu můžeme rozčlenit na úseky, které lze provést samostatně
 - takové úseky lze ve víceprocesorovém systému provádět paralelně na různých procesorech
- pokud jeden úsek potřebuje pro svoji činnost výsledky jiného, musí na tyto výsledky čekat
 - je nutná komunikace a synchronizace
- různé typy úloh se liší velikostí a počtem takových úseků

Granularita a stupeň vazby (1)

- hrubě granulovatelná úloha méně úseků
 - vhodné jsou kooperující procesy
- jemněji granulovatelná úloha úseky kratší
 - požadavky na komunikaci a synchronizaci častější
 - vhodnější jsou vlákna pokud běží na oddělených procesorech, přinášejí výrazné zvýšení výkonnosti
- čím je vazba MP systému volnější, tím větší časové ztráty přináší komunikace a synchronizace

Granularita a stupeň vazby (2)

- pro hrubě granulované úlohy postačí
 MP systém s volnou vazbou
 - je obvykle levnější
- pro jemně granulované úlohy je nutné použít
 MP systém s těsnou vazbou
 - jinak by paralelní řešení nebylo efektivní

Paralelismus (1)

nezávislý paralelismus

- v jednotlivých procesorech běží nezávislé procesy
- nevyžaduje synchronizaci
- zkrácení střední doby odezvy pro uživatele

velmi hrubý paralelismus

- distribuované zpracování rozptýlené do více uzlů sítě představujících jedno výpočetní prostředí
 - počítačové shluky (clusters)
- vhodný, když interakce mezi procesy nejsou časté
 - přenos zpráv sítí zpomalí komunikaci

Paralelismus (2)

hrubý paralelismus

 jako provádění více procesů na jednom procesoru (multiprocesing), ale rozložené na víc procesorů

střední paralelismus

- paralelní zpracování nebo multitasking v rámci jedné aplikace
- jedna aplikace je tvořena více vlákny
- interakce mezi vlákny jsou obvykle časté

Plánování procesů na MP

- fronta připravených procesů
 - pro všechny procesy jedna (globální)
 - pro každou prioritu samostatná
- všechny fronty plní společnou "zásobárnu" (pool) procesorů
 - procesu se přiřadí první volný procesor
- složitější plánovací algoritmy se při použití více procesorů obvykle nepoužívají

Plánování vláken na MP

- sdílení zátěže (load sharing)
 - žádný proces není přiřazen k určitému procesoru
- skupinové plánování (gang scheduling)
 - související vlákna jsou plánována tak, aby běžela na různých procesorech současně
- pevné přiřazení procesoru (dedicated processor assignment)
 - vlákna jsou přiřazena specifickému procesoru
- dynamické plánování (dynamic scheduling)

Sdílení zátěže

- zátěž se rozděluje mezi procesory náhodně
 - procesu je přiřazen libovolný volný procesor
- zajišťuje se, aby žádný procesor nezůstal nevyužitý
 - zátěž se rozděluje rovnoměrně
- není potřebný centralizovaný plánovač
 - důležité u systémů s volnou vazbou
- používá globální fronty

Nevýhody sdílení zátěže

- globální fronta vyžaduje výlučný přístup
 - představuje úzký profil, jestliže o přidělení práce žádá více procesorů najednou
- je nepravděpodobné, že přerušené vlákno bude znovu spuštěno ve stejném procesoru
 - snižuje se efektivita použití cache
- jestliže v globální frontě čekají všechna vlákna, nebudou všem vláknům jednoho procesu přiděleny procesory ve stejnou dobu

Skupinové plánování

- všem vláknům tvořícím jeden proces
 (thread gang) se přidělují procesory současně
- užitečné pro aplikace, jejichž výkonnost by výrazně poklesla, kdyby některá část aplikace neběžela
 - typicky v případech, kdy vlákna vyžadují vzájemnou synchronizaci

Pevné přiřazení procesoru

- když se plánuje spuštění aplikace, jsou všem jejím vláknům napevno přiřazeny procesory
- některé procesory mohou zůstat nevyužity
 - př.: vlákna V1 a V3: CPU 1, vlákna V2 a V4: CPU 2
 - V1 běží, V2 a V4 jsou blokována, V3 je připraveno
 - CPU 2 nevyužito
- brání přepínání procesů (vláken)
 - př.: V1 a V2 běží, V3 blokuje, V4 je připraveno
 - vláknu V1 vypršelo kvantum, ale nebude přerušeno

Dynamické plánování

- počet vláken procesu se může dynamicky měnit
- OS upravuje zátěž s cílem zlepšit využití systému – obsazuje volné procesory
 - nově příchozím úlohám může být přiřazen procesor obsazený úlohou, která právě používá více než jeden procesor
 - požadavek úlohy trvá, dokud není k dispozici volný procesor
 - nové úlohy dostanou procesor ještě před již existujícími běžícími aplikacemi – snížení odezvy

Reálný čas a počítač

- procesy v počítači jsou reakcí na události v okolí systému nebo mají takové události vyvolat
- události v okolí systému probíhají v reálném čase
 - počítač nemá na tok času vliv
 - procesy s událostmi musí držet krok
 - musí např. dokázat řídit chemickou reakci tak, aby nedošlo k jejímu nechtěnému zastavení nebo naopak k explozi

Správná funkce systémů

- správná funkce systému nezávisí pouze na formální správnosti výpočtů, ale také na tom, kdy jsou výsledky k dispozici!
 - opožděně získané výsledky pro nás ztrácejí význam
 - výsledky výpočtů ztrácejí časem aktuálnost
 - opoždění výsledku nás může i ohrozit

Systémy pracující v reálném čase

- RT (Real-Time) Systems
- pojem obvykle používáme pro oblast technických kybernetických systémů
 - výstupy mohou být závislé na
 - aktuálních hodnotách vstupů (kombinační automat)
 - aktuálních hodnotách a historii vstupů (sekvenční automat, systém s pamětí)
 - oba typy lze realizovat bez počítače, ale druhý typ se dnes obvykle realizuje pomocí počítače
 - systémy s pamětí mohou být samoučící (mohou měnit pravidla chování na základě získaných zkušeností)

Systémy pracující v reálném čase – příklady

- řízení výrobních procesů
- robotika
- řízení letového provozu
- telekomunikační systémy
- řízení laboratorních experimentů
- řízení chemických reakcí

Specifické požadavky RTS

- zpracování dat ve stanoveném časovém limitu
 - zpoždění přenosu může způsobit nestabilitu nebo nefunkčnost systému
- minimalizace rizika selhání systému
 - v oblastech, kde selhání ohrožuje lidské životy,
 musí systém vyhovovat zvláštním předpisům
 - homologace, dependabilita
- konstrukční a signálová unifikace
 - v systému lze kombinovat produkty různých stran
 - snižuje vývojové, výrobní i provozní náklady

Minimalizace rizika selhání systému

- vysoce spolehlivý a odolný hardware
- redundance prvků a subsystémů (HW i SW)
 - redundantní subsystémy a komunikační cesty
 - záložní řídicí prvky nebo distribuované řízení
 - týká se OS!
- řízená výkonová degradace systému v případě poruchy
 - při snížení výkonnosti v důsledku poruchy plní systém pouze kritické úlohy (mission-critical)

Real Time Operating System

- operační systém pro počítače pracující v reálném čase
- RTOS je charakterizován
 - deterministickým chováním
 - operace se provádějí v pevných předem určených časech nebo v předem určených časových intervalech
 - u každé operace je známo, kdy nejpozději skončí
 - krátkou dobou odezvy
 - vysokou spolehlivostí

Doba odezvy

- čas, ve kterém musí systém přiměřeně reagovat na událost
- časové měřítko je relativní
 - někdy může být sekunda příliš dlouhý čas, jindy na nějaké té sekundě nezáleží
- závisí na aplikační oblasti
 - stovky mikrosekund např. řízení reaktoru
 - až desítky sekund např. systém pro rezervaci letenek, jízdenek apod.

Doba odezvy exaktně

- doba odezvy za jak dlouho operační systém reaguje na požadavek přerušení
 - tento čas nesmí překročit předem stanovenou hodnotu
 - skládá se z doby latence (interrupt latency)
 - doba mezi okamžikem příchodu požadavku na přerušení a okamžikem, kdy se začne provádět odpovídající obslužný program
 - a doby obsluhy přerušení (interrupt processing)
 - doba potřebná k vlastnímu zpracování přerušení

Rozdělení RTS

- obecně neplatí, že v reálném čase znamená velmi rychle
 - hard real-time
 - existují absolutní časové limity, při jejichž překročení je odezva zcela bezcenná, systém selže
 - soft real-time
 - časové limity jsou pouze přibližné, jejich překročení pouze sníží užitečnost systému
 - firm real-time
 - odezva po časovém limitu je bezcenná, nicméně systém může snést několik málo zmeškání

Spolehlivost

- mission critical system
 - porucha může mít katastrofální důsledky
- dependable system
 - systém natolik spolehlivý a bezpečný, že na něm můžeme být zcela závislí
- fault tolerant systém odolný proti poruchám
 - porucha může snížit výkonnost systému,
 ale nesmí ho vyřadit z funkce
 - přednost mají úlohy kritické pro funkci systému, úlohy s nižší prioritou se provádějí, jen když na ně zbývá čas

Typické vlastnosti RTOS (1)

- rychlé přepínání kontextu
 - např. s HW podporou více sad registrů, aby se při přerušení nemusely ukládat registry do RAM
- prioritní plánování, preempce procesů i jádra
 - umožňuje systému rychlou reakci na události
 - typická je architektura mikrojádro
- malé rozměry
 - OS obsahuje jen nejnutnější prvky
 - často používané také jako vestavěný systém

Typické vlastnosti RTOS (2)

- rychlý souborový systém
 - rychlé čtení a ukládání dat snižuje dobu odezvy
- podpora speciálních systémových služeb
 - alarm, timeout apod.
- spolehlivost
- multitasking s komunikací procesů (IPC)
 - spolupracující procesy musí být schopny rychle komunikovat a vzájemně se synchronizovat
 - semafory, signály, fronty zpráv, ...

Specifické požadavky na plánování procesů v RTOS

- některé procesy musí být trvale v oper. paměti
 - odložení na disk nepřípustné prodloužení odezvy
- práva a priority procesů závisí na jejich účelu
 - procesy důležité pro správné chování a bezpečnost systému musejí mít přednost
- minimalizace intervalů se zákazem přerušení
 - pro řešení kritických oblastí se nepoužívá
- systém musí být plánovatelný

RTOS – příklady

- QNX [kjunix] nebo [kjú en ex]
 - unixový systém založený na mikrojádře
 - určen zejména pro vestavěné systémy
- VxWorks
 - určen zejména pro vestavěné systémy
- RTLinux modifikace Linuxu s RT-jádrem
- Windows Embedded Compact (Windows CE)
- a další:
 - LynxOS, eCos, ThreadX, RTEMS, OS-9

Vestavěné systémy

- embedded systems [imbedid]
- počítačové systémy, které jsou součástí jiných (obvykle technických) systémů
 - obvykle představují jejich řídicí složku
 - nebo tvoří jejich podsystémy
- obvyklá je schopnost práce v reálném čase

Vestavěné systémy (obrázek)

OS ve vestavěných systémech

- OS je pro uživatele transparentní
 - jeho činnost se uživateli jeví jako funkce podsystému nebo aplikace
 - nevyžaduje zvláštní údržbu
 - nevyžaduje zvláštní znalosti

Podíl vestavěných systémů na trhu s mikroprocesory

- ročně se prodá asi 8 miliard mikroprocesorů a mikropočítačů*
 - z toho jdou jen necelá 2 % do sektoru klasické výpočetní techniky
 - osobní počítače, servery
 - přes 98 % jde do sektoru vestavěných systémů

* Nick Tredennick, Gilder Technology Report, 2004

http://www.gildertech.com/public/Telecosm2004/Presentations/Wednesday%20PPT/1020-Tredennick.ppt

Přínos pro uživatele

- obvykle modernizace mechanického nebo elektromechanického systému
 - snížená cena
 - zlepšená funkce
 - zvýšený výkon
 - zvýšená spolehlivost
 - pokud je systém správně navržen a dobře otestován

Nosné aplikační oblasti (1)

- specializované počítače
 - funkce podobná jako běžné počítače, ale ve specifickém provedení
 - video-hry, přenosné počítače, PDA, …
- domácnosti
 - domácí spotřebiče, elektronika
 - mikrovlnné trouby, set-top boxy, videorekordéry, kamery, fotoaparáty, audio přehrávače, ...

Nosné aplikační oblasti (2)

- řídicí systémy
 - zpětnovazební regulace v reálném čase
 - dopravní prostředky, technologické procesy, jaderné reaktory, ...
- zpracování signálu
 - zpracování souvislých proudů dat v reálném čase
 - radar, sonar, video, ...
- telekomunikace a sítě
 - přepínání a směrování přenosu dat
 - pevné a mobilní telefonní sítě, Internet, ...

Typické požadavky (1)

- malá spotřeba
 - bateriové napájení
 - omezená možnost chlazení
- odolnost
 - horko, mráz, vibrace, nárazy, ...
 - kolísání napájení, rušení, blesky
 - vlhkost a zkrápění vodou, koroze
 - nesprávné zacházení

Typické požadavky (2)

- malé rozměry a váha
 - přenosná elektronika
 - dopravní prostředky
 - přebytek váhy znamená vyšší provozní náklady
- reaktivita
 - výpočty probíhají jako odezva na externí události
 - periodické rotační stroje, zpětnovazební řídicí smyčky, ...
 - · aperiodické tlačítka, ...

Typické požadavky (3)

- funkce v reálném čase
 - správnost je částečně funkcí času
- spolehlivost a bezpečnost
 - musí fungovat správně, ale hlavně nesmí fungovat nepřijatelně!

```
správný, bezpečný nesprávný, bezpečný správný, nebezpečný nesprávný, nebezpečný
```

- extrémní cenová citlivost
 - snížení ceny o jednotky až desítky Kč může znamenat zvýšení prodeje o miliony kusů

Typické požadavky (souhrn)

- malá spotřeba
- odolnost
- malé rozměry a váha
- reaktivita
- funkce v reálném čase
- spolehlivost a bezpečnost
- cenová citlivost