Chap. 9 IP Security

- □ IPSec
- □ VPN (Virtual Private Network)

Security Approaches

- □ Security approaches in TCP/IP protocol stack
- □ IPSec: security features at IP layer
 - Transparent to users and applications
- □ SSL (or TLS): security features at transport layer
- □ Security features at application layer: PGP, S/MIME, SET, ...

IP Security Overview

- □ IP security (IPSec): RFC 1636, 1994
 - Confidentiality service
 - Authentication service
 - Key management
- □ Application of IPSec
 - VPN over Internet
 - Secure remote access over Internet
 - Enhancing e-Commerce security
 - Secure routing info. exchange among routers

Virtual Private Networks (VPN)

☐ What is a VPN?

- a group of two or more computer systems that communicates 'securely' over a public network
- A combination of tunneling, encryption, authentication and access control technologies and services used to carry traffic over an IP network

Virtual Private Networks (VPN)

■ VPN provides

- Encryption
- Strong authentication of remote users and hosts
- Mechanisms for hiding or masking information about the private network topology from potential attackers

☐ Three basic types:

- Hardware-based
- Firewall-based
- Standalone/Software-based

IPSec (IP Security)

- □ IPSec protocols
 - IP Authentication Header (AH)
 - IP Encapsulating Security Payload (ESP)
 - Internet Key Exchange (IKE)

- □ ESP and AH assume the peers using the protocol have a shared key
 - needs a protocol for distributing keys called Internet
 Key Exchange (IKE)

Security Association (SA)

- □ One-way association b/w sender and receiver that applies security services to the traffic on it
- □ Defined by:
 - IP destination address
 - Security parameter index (SPI): the index used to select SA under which a received packet will be processed
 - Security protocol identifier: identifies AH or ESP

Security Association

SA parameters

- □ Packet sequence number counter
- □ Anti-replay window
- ☐ AH information: authentication algorithm, key, key lifetime, etc.
- □ ESP information: authentication and encryption algorithm, key, IV, key lifetime, etc.
- □ SA lifetime: after this lifetime, SA must be replaced with a new SA
- □ IPSec protocol mode: tunnel or transport mode
- □ Path MTU

- □ Designed to provide
 - message integrity (authentication)
 - Does not provide confidentiality

□ AH header includes:

- Payload length: length of AH
- authentication data: signed message digest, calculated over original IP datagram, providing source authentication, data integrity
- SPI
- Sequence number (SN): used to protect against replay attacks
- Next header field: specifies type of data (TCP, UDP, etc.)

Anti-replay attacks:

- □ Sender initializes SN counter to 0
- ☐ Each time a packet is sent on this SA, sender increments the SN counter
- ☐ If the SN counter value overflows, sender terminates the current SA and negotiate a new SA with a new key
- □ IP packet may be delivered out of order
- □ Receiver allows packets out of order within a window W (default size of 64)

Anti-replay attacks:

Anti-replay attacks:

- □ Input processing (receiver):
 - When SN of the received packet is within the window: check MAC, if correct, mark the window slot
 - When SN of received packet > N: check MAC, if it is correct, mark the window slot and advance the window
 - When SN of the received packet is to the left of the window or MAC is incorrect, discard the packet

N: the highest SN of the packets received so far

Encapsulating Security Payload (ESP)

- ESP protocol provides
 - Integrity
 - Authentication
 - Confidentiality

- □ (Data, ESP trailer) encrypted
- Next header field is in ESP trailer
- ESP authentication field is similar to AH authentication field

IKE (Internet Key Exchange)

- manual key management: system administrator manually configures each system with keying materials; used in small and static environment
- automated key management: provides a negotiation method for setting keying materials for SAs automatically; used in large distributed environment

☐ Based on previous protocols

- ISAKMP A framework for authentication and key exchanges, define message formats for key exchanges
- Oakley: key exchange protocol based on DH algorithm

IPSec Mode

☐ Transport mode

- Provides protection to the payload of IP packet
- remote access: used for end-to-end secure communication between two hosts

☐ Tunnel mode

- Provides protection to the entire IP packet
- The original IP packet is encapsulated into new IP packet including AH or ESP header.
- VPN: used for secure communications between two IPSec gateways

IPSec Mode

□ Transport mode

□ Tunnel mode

IPSec Mode: ESP

Authenticated-□ Transport mode -Encryptedorig IP ESP ESP TCP Data IPv4 hdr hdr trlr auth -Authenticated--Encrypted-ESP orig IP hop-by-hop, dest, ESP ESP dest TCP Data IPv6 hdr routing, fragment hdr trlr auth

