

Sustainability Through Accountability in a CNCF Ecosystem

Yuval Lifshitz, @lifshitz_yuval, IBM Huamin Chen, @root fs, Red Hat

Please scan the QR Code above to leave feedback on this session

Agenda

- Motivation
- Accountability
- Problems and Solutions
- Architecture
- Rook
- Kepler
- Analytics
- Demo
- Future work

Motivation

Energy Efficiency

ENERGY SCALE

Global electricity demand

Data-centre electricity demand

onature

Electricity use by ICT

Bitcoin use by mid-2018

Figures are approximate.

Carbon Footprint

Global cloud computing emissions exceed those from commercial aviation

Share of global CO₂ emission generated by sector/category

Source: Climatiq Analysis, The Shift Project, OurWorldinData

Accountability - Who is responsible?

Accounting

We Need Better Carbon Accounting. Here's How to Get There.

by Robert S. Kaplan and Karthik Ramanna

April 12, 2022

SB-260 Climate Corporate Accountability Act. (2021-2022)

Untangle the ties between users and the energy consuming parts

Problems and Solutions

Problem	Solution
Workload Power Consumption Measurement	Use Kepler to measure Pod level power consumption
S3 Request Processing Tracing	Use OpenTelemetry+Jaeger to trace S3 request processing inside Ceph cluster containers
S3 Request Power Consumption Attribution	Attribute power consumption to S3 requests based on the resource usage and Pod power consumption

Architecture

Rook + Ceph

Open Telemetry + Jaeger

Kepler

Analytics

Trace:

Span:

Pod: rgw1 User: userX Duration: 200

Span:

Pod: rgw1
Duration: 100

Span:

Pod: osd2
Duration: 50

Pod: osd2

Duration: 150

pods	users	duration	%
rgw1	userX	12000	30
rgw1	userY	5000	12.5
rgw1	userZ	23000	57.5
osd1	userX	1200	35.2
osd1	userY	1500	44.2
osd1	userZ	700	20.6
osd2	userX	800	17.4
osd2	userY	2100	45.6
osd2	userZ	1700	27

pods	energy
rgw1	56000
osd1	35000
osd2	30000

$$E(user) = \sum_{pods} E(pod) \cdot Duration(user, pod) / Duration(pod)$$

user	energy
userX	16800+12320+5220 = 34340
userY	7000+15470+13680 = 36150
userZ	32200+7210+8100 = 47510

Demo

demo cast

demo repo

https://asciinema.org/a/5IIQQxcBLkZ0DPRReLHMUaPTE

https://github.com/yuvalif/sustainability-via-accountability

Future Work

- Overhead. How much overhead does tracing incur and how to mitigate the overhead.
- Automation. Can energy attribution be automated, reported, and visualized?
- Optimization. Can resources be reconfigured to reduce energy consumption?
- Policy. Can energy consumption limiting be used as a bucket policy?

Europe 2023

Thank You