

互联网产业趋势洞察

For 北大同学

杨伟庆

个人介绍

数据咨询

投资投行

个人与机构投资项目

今天解决问题

- 1. 男帕入错行, 女帕嫁错郎
- 2. 艾瑞给大家提供的机会

科技推动经济发展进程

37个大帝国极盛时期的经济总量占世界经济总量的构成比排宫前五

安格斯·麦迪森 (Angus Maddison)

排呂	国家	GDP比例%	年份	GDP	世界GDP	GDP指数
1	美国	38.1	1944	17136	45026	100
2	清帝国	32.9	1820	2286	6948	86
3	汉帝国	31.9	1	268	840	84
4	蒙古帝国	31.4	1300	650	2073	82
5	唐帝国	28.7	750	280	974	75

出自《世界经济千年史》。这里列出的各大帝国的国内生产总值(GDP)是以1990年的购买力(亿美元)来计价,这主要只用来估算历史上各国GDP占当时世界的构成比,以方便做比较,而不一定代表历史上各个国家的真实GDP。

全球十万年GDP年均增长率

前98000年: 不增长

1-1820年: 0.1%

19世纪: 1%

20世纪: 2%

人类历史的三次技术革命

信息 革命 电力 蒸汽 革命 革命 1870-1970 1960-至今 1760-1840

信息革命的技术创新 带来了什么?

连接用户的 底层技术:

连接用户的智能设备:

电信

智能手机

便宜的云端 计算资源: 获取用户数 据手段: 提升用户分析效率:

大数据

人工智能

标普10大权重股 30年变化

	1986年	1996年	2006年	2011年	2016年
1	IBM	GE	Exxon Mobil	Exxon Mobil	Apple
2	Exxon	Coca-Cola	GE	Apple	Google
3	GE	Exxon	Microsoft	MicroSoft	Microsoft
4	ATT	Intel	CitiGroup	IBM	Amazon
5	Royal Dutch	Microsoft	Bank of Ame	Chevron	FB
6	GM	Merck	P&G	Google	ExxonMobil
7	duPont	Phliip Morris	Walmart	Walmart	J&J
8	BellSouth	Royal Dutch	J&J	GE	GE
9	Phliip Morris	IBM	Pfizer	Berkshire	ATT
10	Merck	P&G	AIG	P&G	JP Mogan

2015年中国网络经济是 中国GDP增长的6.9倍

中国GDP实际增长率及网络经济增长率

中国企业市值Top10 十年变化

	2006年	2011年	2016年
1	中国银行	中国石油	腾讯控股
2	工商银行	工商银行	阿里巴巴
3	中国移动	中国移动	中国移动
4	中国石化	建设银行	工商银行
5	招商银行	农业银行	建设银行
6	宝钢股份	中国银行	中国石油
7	大秦铁路	中国石化	农业银行
8	民生银行	中国神华	中国银行
9	上港集団	中国人寿	中国平安
10	中国联通	中国平安	中国人寿

2000年1月4日-2016年11月11日中国移动和腾讯

中国经济处在十字路口

2016-2025年中国国内生产总值发展趋势的两种判断

中国在过去37年享受第二次和第三次革命带来的双重收益。

人口仍是资源

中国依旧是全球最大的互联网用户市场

过亿用户的六大互联网市场历史增长情况(1990-2015年)

全球活力市场兴起

中国市场由新兴变为成熟、全球化市场需要开拓

部分国家互联网用户规模短周期(3年)及长周期(15年)复合增长率

企业打法: 中美发展路径迥异

中国互联网企业消化本土市场红刑

中美Top移动应用月独立设备数(万)

乘胜崛起,风口独舞

中国互联网三次上市潮,明星企业集群闪耀

信息——交易——服务——决策:下一阶段的明星企业集中于企业服务及智能决策类公司

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006; 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 SINO新浪 汽车之家 M S NETEASE **☆58.com** meitu美图 🧺 巨人网络 ② 灾緊时代 24金田 Tencent 腾讯 JD.京东 **€**360 畅游 **医** 盛大游戏 媒体上市潮 游戏上市潮

互联网上半场。下半场。

ABOUT

PRINACY

TOOLBARS

SITE

ADVANCED SEARCH

PREFERE

吸走中国网民平均每人超过4个小时

2011-2015年中国人均日均使用各主流媒介时间占比

巨头的护城河

月活Top10中BAT全面占据

2017年1月杉动App月度独立设备数Top10

百度系

阿里系

最后一公里的抢夺

外卖的厮杀格局初现?

2016年1-12月外卖App日均独立设备数Top3变化趋势

视频平台的突围

内容影响力迅速扩张

2016年12月热门电视剧Top10

- 锦绣未央
- 放弃我, 抓紧我
- 鬼吹灯之精绝古城
- 美人私房菜
- 极品家丁
- 北上广依然相信爱情
- 咱们相爱吧
- 兰陵王妃
- 如果蜗牛有爱情
- 不可能完成的任务

内容形式的多点开花

长视频、短视频、直播的协同发展

App增长服从幂律分布

垂直领域潜力大

互联网服务

不断向现实生活渗透

2017年1月醇动App日均独立设备数Top10

用时间理解2C商业模式

好色

喜欢的事情 时间更美好 (娱乐,游戏,虚拟现实VR)

不喜欢的事情 时间更节约 (效率, 人工智能, 大数据) 延长我们的时间 (健康,基因组学)

好的艺

懒饮

财富/教育

贪财

马云提出五个新

新零售、新制造、新金融新技术、新能源

"互动"

凯文·凯利(Kevin Kelly) 失控、必然、科技想要什么

人工智能

"注意力经济"

"分享"

"屏读"

"使用权"

"非主流"

流动数据

我们正进入第四次技术革命

决定未来经济的十二大颠覆技术

至2025年的预估计潜在经济影响上下线(万亿美元)

大数据+深度学习

正在颠覆更多领域

自动化将在短期内接管的12个行业

问题种类	汽车业	制造业	零售业	金融业	农业	能源 行业	卫生 保健	中西 制药	公众 社会	媒体	电信 领域	物流业
实时忧化												
战略批化												
预测分析												
预测维护												
个性化												
发现新潮流/问题												
预测												
处理无序 数据												

来源: 麦肯锡, 颜色越深表示影响力越大

机器学习在汽车领域的前景

前景	实例类别	影响	数据量
在自动驾驶过程中对障碍物进行实时辨认 和导航	<u> </u>	1.5	2.0
对汽车组件进行故障预测,以及预先维护	预测维护	0.9	1.0
优化实施制造过程,减少制造过程中可能 出现的问题	操作/物流优化(实时)	0.7	1.0
根据多模块数据优化线路选择,缩短旅途 行程	操作/物流优化(实时)	0.6	1.7
识别复杂语音指令	<u> </u>	0.5	0.3
通过研究来预测结果,以减少研发过程中 的成本	预测	0.4	0.3
从汽车发回的数据之中发现潜在问题,并 预先召回	发现新趋势/问题	0.4	1.0
优化市场组合以及营销成本	价格和产品优化	0.3	0.3
根据位置信息和乘客偏好来对车内推荐信 息进行个性化处理	个性化	0.3	1.7
对于新产品的发布进行市场前景预测	预测	0.3	0.3

来源: 麦肯锡, 排含依据调研结果与使用实例列出

机器学习在制造业的前景

前景	实例类别	影响	数据量
对传送和生产设备进行故障预测,以及预先维护	预测维护	1.3	1.0
优化复杂的实时制造过程,减少制造过程中可 能出现的问题	操作/物流优化(实时)	1.1	1.0
预测未来需求走向,以及供应链中潜在的限制	预测	0.8	0.7
在预生产阶段识别出产品设计存在的问题,以 便达到最高生产速度	预测分析学	0.6	0.3
识别出生产过程中产量地下的主要原因	发现新趋势/问题	0.5	0.7
在生产过程中运用数据来监测质量问题和缺陷	处理无序数据	0.4	0.7
通过优化研发过程中、制造过程中以及各类数 据来跟踪产品进度	资源配置	0.4	0.3
通过操作和进度来优化研发过程的效率	操作/物流优化(实时)	0.4	0.3
识别出生产过程外可能会导致质量问题的因素	发现新趋势/问题	0.3	0.7
识别出能够减少研发过程或实验次数的关键因素	预测分析学	0.3	0.3

来源: 麦肯锡, 排含依据调研结果与使用实例列出

机器学习在零售业的前景

前景	实例类别	景间	数据量
优化产品库存配置, 将销售最大化	处理无序数据	1.3	1.0
个性化产品推荐以及根据不同顾客进行针 对性的广告投放	价格和产品优化	1.1	1.3
优化店面和仓库之间的物流,采购时间, 及库存配置	个性化	1.1	1.7
通过实时数据,预测地区间的销售情况/需求趋势	操作/物流优化(实时)	0.9	1.3
对于新产品的发布进行市场前景预测	预测	0.6	0.3
优化市场组合以及营销成本	价格和产品优化	0.6	0.3
通过店内影响对产品放置,产品选购及其 他关键因素来进行审计和市场研究	价格和产品优化	0.2	0.7
预测员工之间存在的风险,并提出解决方 案	<u> </u>	0.1	1.0
根据客服中心的多模块数据,来提高客户 满意度并减少处理成本	预测分析学	0.1	1.3
为产品多样化编写产品描述和广告	价格和产品优化	0.3	0.3

机器学习在金融业的前景

前景	实例类别	景响	数据量
通过多模块数据将产品针对性供应给特定 个体顾客	个性化	1.2	1.7
通过客户交易以及其他相关数据来辨别欺 作行为	发现新趋势/问题	1	1.3
通过英语和其他相关数据来对用户的风险 等级进行无差别实时评估	预测分析学	0.9	1.0
评估个体用户/客户风险,并提出进行在协商的建议	预测维护	0.7	0.7
发现金融系统中新出现的复杂交互,来更 好的进行压力测试	发现新趋势/问题	0.7	0.7
预测贷款拖欠可能出现的风险,并提出合理化建议	预测分析学	0.5	1.0
根据海量数据来预测资产价格走向,制定 贸易策略	预测	0.4	1.3
优化劳工工资和分配来减少各方面运营成 本	资源配置	0.4	0.7
根据客服中心的多模块数据,来提高客户 满意度并减少处理成本	预测分析学	0.1	1.3
根据需求,优化分技/ATM网络	资源配置	0.1	0.3

机器学习在农业领域的前景

前景	实例类别	景间	数据量
根据实时数据和不同也正对农业技术进行 个性化处理	个性化	1.1	1.3
根据未来市场走向,天气以及其他预报, 优化实时价格数据	价格和产品优化	1	0.7
根据物联网传感数据以及其他相关数据对 农产品产量进行预测	予页)则	0.8	0.0
通过研究来预测未来情况走向,从而减少 研发过程成本	价格和产品优化	0.8	0.3
根据过去的作物,天气/土壤情况以及其他数据对高产植株进行预测	价格和产品优化	0.8	0.3
预测产品未来需求走向,制定产品策略	预测	0.7	0.0
优化产品实时生产流程,减少生产过程中 出现的问题	操作/物流优化(实时)	0.5	0.7
对农业生产设备进行故障预测,并进行预 先维护	预测维护	0.3	0.3
运用空中影像构建详细的农业特征地图	处理无序数据	0.1	0.3
优化供货商和地区的采购组合	资源配置	0.1	0.0

机器学习在能源领域的前景

前景	实例类别	影响	数据量
对采矿、钻探、能源和传送设备进行故障 预测,以及预先维护	预测维护	1.6	0.7
在控制环境温度上重复人工决定,从而减 少成本和错误	预测分析学	0.9	1.3
根据能源价格,气候以及其他实时数据优 化能源分配	操作/物流优化(实时)	0.9	1.3
优化精炼和类似环节中原材料的组合	资源配置	0.7	0.5
根据钻探样本,选址以及其他数据优化开 采计划	资源配置	0.5	0.7
根据多模块数据预测能源需求走向	预测	0.5	1.7
根据消费者优化定价手段	价格和产品优化	0.4	1.0
创立土地描述以降低钻探样本的必要性	预测	0.2	0.3
预测个体用户拥有的价值和存在的风险	预测分析学	0.2	1.0
根据之前建立的电话和相关数据优化新电 站的规模	资源配置	0.1	0.7

机器学习在卫生保健领域的前景

前景	实例类别	景间	数据量
通过扫描、切片检查、声波检查以及其他 手段诊断疾病	预测分析学	1.4	0.3
预测个人健康情况,优化未来治疗手段	个性化	1.2	1.3
优化员工和资源分配以减少瓶颈出现	资源配置	0.7	0.7
识别出诊断和手术数据中的欺诈、浪费以 及滥用行为	发现新趋势/问题	0.6	0.3
通过历史数据和实时数据对医院认可度进 行预测	予页:则	0.5	0.7
根据病人的病史、声音文件和映像文件对 病患进行分诊	预测分析学	0.5	0.3
通过将信息和诊疗方法个性化处理,提高 痊愈率	个性化	0.4	1.3
对医生绩效进行评价,以及为其提供改进 建议	预测分析学	0.3	0.3
根据穿戴设备和其他手段传回的数据对主 要致病因素进行检测	<u> </u>	0.2	1.7
预测个体用户拥有的价值和存在的风险	预测分析学	0.2	1.0

机器学习在中西制药领域的前景

前景	实例类别	影响	数据量
优化临床诊断设计,包括病历书写和病人 选择	价格和产品优化	1.3	0.0
从实验中预测可能发生的结果,从而减少 实验研发成本和投入市场时间	预测分析学	0.9	0.3
预测患者的潜在风险,优化修正机制	预测分析学	0.8	0.7
识别尚未接受服务的患者,并推荐暂时解 决方案	发现新趋势/问题	0.7	1.3
通过使用疾病趋势以及其他数据优化药物 研发中的资源配置	资源配置	0.7	0.0
识别高附加值的供应商以及营销/产品组合	价格和产品优化	0.7	0.7
根据之前的药物和相关数据,优化产品发布战略	价格和产品优化	0.4	0.0
探索可替代已发布产品的新应用	发现新趋势/问题	0.3	0.3
预测跨地区产品需求以及相关的健康趋势	预测	0.2	1.0
优化药物的定价策略	价格和产品优化	0.2	0.0

机器学习在公共社会领域的前景

前景	实例类别	影响	数据量
优化城市发展所需的公共资源配置,提高生活 质量	资源配置	1.1	0.7
优化公众政策制定,对多种互动情况进行全方 位的考虑	预测分析学	0.9	1.0
根据多模块化的数据来对公众服务进行个性化 制定,更好的服务公民	个性化	0.8	1.3
对申请、许可以及税务审计等进行流程定制	预测分析学	0.6	1.0
优化采购战略,减少政府部门的成本	资源配置	0.5	0.3
根据大量的政府资产和民众信息来预测宏观经 济的变化	预测	0.5	0.7
预测个人的教育和职业规划来扩大参与度	个性化	0.4	1.3
预测有形资产的风险,并提出积极的解决方案	预测维护	0.3	1.0
优化劳工分配,来迎合社会需要	资源配置	0.3	1.3
对政府提供的服务和设施进行定价优化	价格和产品优化	0.2	0.3
通过案底、情报和其他可用资源来阻止非法活 动或者恐怖行为的发生	预测分析学	0.2	1.7

机器学习在媒体领域的前景

前景	实例类别	影响	数据量
对个体用户投放的广告和推荐信息进行个 性化定制	个性化	1.9	1.3
发现消费模式的新趋势	发现新趋势/问题	1.2	1.3
根据客户详细信息来优化服务定价	价格和产品优化	0.7	1.0
预测新内容的观众数量,进一步通过多模 块数据优化内容制定	预测分析学	0.7	1.0
预测个体用户拥有的价值和存在的风险	预测分析学	0.7	1.3
优化营销组合和营销成本	价格和产品优化	0.3	0.3
识别媒体内容中的相关特征	处理无序数据	0.2	0.0
通过结合内部和外部数据将高附加值的内 容推送给企业间用户	发现新趋势/问题	0.2	1.0
根据现有的和未来的负载优化网络资源配 置	资源配置	0.1	0.0
忧化新上映电影的首映日期以及投放地点	价格和产品优化	L	0.3

机器学习在电信领域的前景

前景	实例类别	景间	数据量
预测个体用户拥有的价值和存在的风险	预测分析学	1.3	1.3
优化针对网络的资本支出和投资	资源配置	1.1	0.3
根据多模块化的数据,制定个性化服务	个性化	1.1	1.3
为用户来电优化服务中心线路	预测分析学	0.8	1.3
通过手机数据和其他相关数据来发现用户 行为的新趋势	发现新趋势/问题	0.5	1.3
预测风险, 并未设施维护提供建议	预测维护	0.4	0.7
优化小型活动和短期促销活动	价格和产品优化	0.4	0.3
预测某地对于语音、数据或者流量的需求 趋势	预测	0.3	1.7
测定财务计划以及其他方面开销	预测分析学	0.1	0.7
优化室外团队人员配置	资源配置	0.1	0.7

机器学习在物流领域的前景

前景	实例类别	影响	数据量
根据实时更新的需求数据来优化定价和实 践安排	价格和产品优化	1.7	1.3
预测可能存在的风险,并为飞机、汽车以 及其他设施维护提供建议	预测维护	1.1	0.7
忧化实时物流线路	操作/物流优化(实时)	0.9	1.3
优化实时资产和人员配置	操作/物流优化(实时)	0.5	0.3
为用户提供个性化的奖励机制	个性化	0.4	1.0
针对不同用户将产品推荐进行个性化处理	个性化	0.4	1.0
预测跨地区的营销和需求趋势	预测	0.3	0.7
识别司机和飞行员的驾驶习惯可能带来的 风险	预测分析学	0.2	1.0
预测个体用户拥有的价值和存在的风险	预测分析学	0.2	0.3
为检索机器增加识别邮件或包裹上地址/编码的功能,减少人工错误	<u>刘理无序数据</u>	0.2	1.3

信息大数据

电商大数据

服务大数据

大数据 应用层

大数据 工具层

大数据 基础层

三十位资深互联网人 认为最具投资价值的互联网公司

上市公司

三十位资深互联网人 认为最具投资价值的策略/行业

中

策略

消费升级

人工智能

大数据

4

行业

文化娱乐

企业服务

金融服务

社交

教盲

医疗

旅游

新能源汽车

互联网上半场主要是连接,改变了信息、技术、通信、娱乐、数字产品,但这些行业只占GDP的7%。

我们正进入更加有意思的下半场。

互联网上半场的本质

数字用户红利期的低成本用户获取

互联网下半场的本质

是"大数据智能"驱动下的优质产品

下半场产品致胜的首要三个思路

客户 痛点 价值主张

战略第一维度

使命

愿景

价值观

战略第二维度

人才组织绩效

新时代的企业家需要具备 大数据思维

愿景 价值观 使命 大数据思维 绩效 人才 组织

大数据时代企业的三个重要工作

收集数据

洞察数据

应用数据

大数据相关组织结构

	业务关系	数据岗位	数据职能
数据采集	卯夕 与王去前门	前端工程师	部署跟踪代码
数据架构	服务各垂直部门	架构工程师	数据架构设计与运维
客户分析			
产品分析	各垂直业务部门	商业分析师	商业指标 KPI分析
销售分析	台坐且业为可门	ן ווען וווער לאדינ	Adhoc分析 数据可视化
市场分析			
数据产品			个性化推荐
数据实验室	服务各个部门	数据科学家	机器学习 预测 优化 商业建模

大数据可以帮助企业做什么?

商业分析进化的过程

超过100位专家的研究团队,研究覆盖新科技、互联网重点领域

80%以上的互联网企业IPO报告引用艾瑞数据

新科技

消费升级

三计算

超过10年数据积累,准确把握互联网市场发展趋势

从PC端到移动端全平台数据监测,全面洞察中国用户互联网行为

艾瑞全流量 用户大数据

艾瑞样本行为监测体系

艾瑞致力于打造投资项目量化筛选评级系统。通过对赛道、团队以及投资退出预期的量化分析,形成企业投资价值评级系统。该系统由艾瑞上百位分析师、大数据追踪团队、艾瑞直接投资团队共同打造,成为提升投资效率的核心系统。

艾瑞投资项目量化筛选评级体系

赛道增速评级

企业投资 价值评级

= 团队能力评级

投资回报预测

艾瑞投资项目协作系统

机构投资理念 过五关、斩六将

过五关的投资流程方法

第一关: 项目大方向筛选

第二关: 创始人能力评估

第三关: 产品价值评估

第四关: 回报的倍数评估

第五关: 退出路径评估

斩六将的团队评估方法

1) 创始人学习能力

2) 创始人工作经历

3) 创始人说服魅力

4) 创始人聚焦相关性

5) 创始人价值观

6) 其他核心团队能力

选择牛人的四大力

如何加入我们

北大学生艾瑞合作群

该二维码7天内(3月9日前)有效,重新进入将更新

艾瑞咨询微信公众号

数据改变认知 提升企业效能

