	Date 67 6 201
ot. No	Page No
TOPIC:	Optical fibre characterization
AIM:	To determine numerical aperture of a given multimode optical fibre.
APPARATUS:	Diode Laser Diode Laser Diode Laser Pinhole photo detector Detector output measurement unit
FORMULAE USED:	A multimode optical fibre will only propagate light that enters the fibre within a certain cone, known as the acceptance cone of the fibre, the half-angle of which is called the acceptance angle, Da. $\theta_a = \tan^{-1}\left(\frac{R}{Z}\right)$ where, Z is the distance between the detector and fibre output end. D is the diameter of far field intensity at 50% intensity level of the maximum attainable intensity, a
	$NA = \sin \theta_a$
	Teacher's Signature

Date 29/8/2019

Expt. No. _____ Page No. ____

READINGS:	Micrometer	20 detector current	è	
	14.0	0		
	13.5	0		
	12.5	0		
	12.33	0		
	12.17	0.1		
	12.00	0.2		
	11.84	0.4	1.3	
	11.67	1.3		
	11-51	11.5		
	11.34	45		
	11.18	100.7		
	11.01	158.2		
	10.85	177.6	*	
	10.68	136.2		
	10.52	83.1		
	10.355	34.3		
	10.19	7.6		
	10.02	0.8		
	9.85	0.3		
	9.69	0.1		
	9.53	O Ren	2105	
	9.365	U Jan	, Ca	
	9.2	- 0	9/1/9	
	9.03	0		
	8.87	O		
	8.70	U		
RESULT		Te	eacher's Signature	

