Further Pure Mathematics FP1 (6667) Mock paper mark scheme

Question number		Scheme	Marks
		$\mathbf{R}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	B1
((b)	$\mathbf{RS} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	B1 B1
((c)	Rotation, 180° about O , or π about O	B1 B1
		Or enlargement, scale factor –1	
			(5 marks)
2.		Parabola, or $y^2 = 4ax$ seen	B1
		a = 3 or $a = -3$ seen $y^2 = -12x$	B1
		$y^2 = -12x$	B1
			(3 marks)
3. ((a)	$1 + 2\sqrt{3}i - 3 + 1 + \sqrt{3}i = -1 + 3\sqrt{3}i$	M1 A1 A1
			(3)
		$\frac{(1+\sqrt{3}i)(2+\sqrt{3}i)}{(2-\sqrt{3}i)(2+\sqrt{3}i)} = \frac{-1+3\sqrt{3}i}{7}$	M1 A1 A1
		$(2-\sqrt{3}i)(2+\sqrt{3}i) 7$	(3)
			(6 marks)
4. (a)	$f(2) = -1$, $f(3) = 3$; and so $\alpha = 2 + \frac{1}{1+3} = 2.25$	B1 B1;
		1+3	M1 A1(4)
	(b)	$f'(x) = 3x^2 - 8x + 5$	M1
		f'(2.5) = 3.75	A1
		f(2.5) = 0.125	B1
((b)	$f'(2.5) = 3.75$ $f(2.5) = 0.125$ $\therefore u_1 = 2.5 - \frac{.125}{3.75} = 2.47$	M1 A1 (5)
			(9 marks)

Question number		Scheme	Marks
5.	(a)	Determinant 5ab	B1
		$\mathbf{X}^{-1} = \frac{1}{5ab} \begin{pmatrix} 3b & -2b \\ a & a \end{pmatrix}$	M1 A1 (3)
	(b)	$\mathbf{Z} = \mathbf{Y}\mathbf{X}^{-1}$	M1
		$=\frac{1}{5ab}\begin{pmatrix}10ab & -5ab\\5ab & 0\end{pmatrix} \qquad =\begin{pmatrix}2 & -1\\1 & 0\end{pmatrix}$	M1 A1 ft
		5ab(5ab 0) (1 0)	A1 cao (4)
			(7 marks)
6.	(a)	$\sum 2r^3 - 6r$	M1
		$2\frac{n^2}{4}(n+1)^2 - 6\frac{n}{2}(n+1)$	A1
		$=\frac{n}{2}(n+1)\Big[n(n+1)-6\Big]$	M1
		$=\frac{n}{2}(n+1)\Big[n^2+n-6\Big]$	
		$= \frac{n}{2}(n+1)(n+3)(n-2) (*)$	A1 cos (4)
	(b)	f(50) - f(9) = 3243600 - 3780	M1
		= 3239820	A1 (2)
			(6 marks)
7.	(a)	Solve quadratic to obtain $z = -5 \pm 12i$	M1 A1 A1
			(3)
	(b)	$ z_1 = z_2 = 13$	B1, B1
		$arg z_1 = 1.97$ and $arg z_2 = -1.97$	M1 A1 A1
			(5)

Question number	Scheme	Marks
(c)	10 x x x x x x x x x x x x x x x x x x x	B1 B1 (2)
(d)	$\left \pm 24\mathrm{i}\right = 24$	M1 A1 (2) (12 marks)
8. (a)	$c^2 = 9$	B1 (1)
(b)	$y = \frac{9}{x} \Rightarrow \frac{dy}{dx} = -\frac{9}{x^2}$	M1
	Gradient of curve and of tangent is $-\frac{1}{t^2}$	A1
	Gradient of normal is $-\frac{1}{\text{gradient of tangent}}$	M1
	Equation is $y - \frac{3}{t} = t^2(x - 3t)$ giving printed answer	M1 A1 cso
	·	(5)
(c)	When $t = 2$, $y = 4x + 1.5 - 24$	M1 A1
	$\therefore \frac{9}{x} = 4x + 1.5 - 24$	M1
	Attempt to solve e.g. $4x^2 - 22.5x - 9 = 0$ and formula	M1 A1;
	or factorise $x = -\frac{3}{8}$; $y = -24$	M1 A1 (7)
		(13 marks)

Question number	Scheme	Marks
9. (a)	$n = 1$, $u_1 = 3 + 2(1 - 1) = 3$, so result true for $n = 1$	B1
	Assume true for <i>k</i>	
	Then $u_{k+1} = 3(3^k + 2(3^{k-1} - 1)) + 4$	M1
	So $u_{k+1} = 3^{k+1} + 2(3^k) - 6 + 4$	M1
	$u_{k+1} = 3^{k+1} + 2(3^k) - 2 = 3^{k+1} + 2(3^k - 1)$, so result true for	A1
	k+1, so by induction the result is true for all positive integers	A1 (5)
(b) (i)	$\mathbf{A}^{1} = \begin{pmatrix} 4 & 0 \\ 3 \times 3 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 9 & 1 \end{pmatrix} $ so result true for $n = 1$	В1
	Assume true for k	
	Then $\mathbf{A}^{k+1} = \begin{pmatrix} 4 & 0 \\ 9 & 1 \end{pmatrix} \begin{pmatrix} 4^k & 0 \\ 3(4^k - 1) & 1 \end{pmatrix}$	B1
	$= \begin{pmatrix} 4^{k+1} & 0 \\ 9.4^k + 3.4^k - 3 & 1 \end{pmatrix}$	M1
	$= \begin{pmatrix} 4^{k+1} & 0 \\ 3.4^{k}(3+1) - 3 & 1 \end{pmatrix} = \begin{pmatrix} 4^{k+1} & 0 \\ 3.4^{k+1} - 3 & 1 \end{pmatrix}$	M1 A1
	so result true for $k + 1$	M1
	So by induction the result is true for all positive integers	A1 (7)
(ii)	For $n = -1$, $\mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{4} & 0 \\ \frac{-9}{4} & 1 \end{pmatrix}$	M1
	This is the correct inverse of A , so result is valid	A1 (2)
		(14 marks)