Linear Feedback Shift Register (LFSR)

Elements of Applied Data Security

Alex Marchioni

In an LFSR, the output from a standard shift register is fed back into its input in such a way as to cause the function to endlessly cycle through a sequence of patterns.

In an LFSR, the output from a standard shift register is fed back into its input in such a way as to cause the function to endlessly cycle through a sequence of patterns.

In an LFSR, the output from a standard shift register is fed back into its input in such a way as to cause the function to endlessly cycle through a sequence of patterns.

- length = 3
- polynomial = $x^3 + x + 1$ (p = 0b1011)
- initial state 0*b*111

s b fb

- length = 3
- polynomial = $x^3 + x + 1$ (p = 0b1011)
- initial state 0b111

- length = 3
- polynomial = $x^3 + x + 1$ (p = 0b1011)
- initial state 0b111

S		b	fb
111 ((7)	1	0
011 ((3)	1	1

- length = 3
- polynomial = $x^3 + x + 1$ (p = 0b1011)
- initial state 0b111

S	l	b fb
111 (7	7) 1	L 0
011 (3	3) 1	L 1
101 (5	5) 1	L 0

- length = 3
- polynomial = $x^3 + x + 1$ (p = 0b1011)
- initial state 0b111

	S	b	fb
111	(7)	1	0
011	(3)	1	1
101	(5)	1	0
010	(2)	0	0

- length = 3
- polynomial = $x^3 + x + 1$ (p = 0b1011)
- initial state 0b111

	S	b	f b
111	(7)	1	0
011	(3)	1	1
101	(5)	1	0
010	(2)	0	0
001	(1)	1	1

- length = 3
- polynomial = $x^3 + x + 1$ (p = 0b1011)
- initial state 0b111

	S	b	fb	
111	(7)	1	0	
011	(3)	1	1	
101	(5)	1	0	
010	(2)	0	0	
001	(1)	1	1	
100	(4)	0	1	

- length = 3
- polynomial = $x^3 + x + 1$ (p = 0b1011)
- initial state 0b111

	S	b	fk
111	(7)	1	0
011	(3)	1	1
101	(5)	1	0
010	(2)	0	0
001	(1)	1	1
100	(4)	0	1
110	(6)	0	1

- length = 3
- polynomial = $x^3 + x + 1$ (p = 0b1011)
- initial state 0b111

	S	b	fb
111	(7)	1	0
011	(3)	1	1
101	(5)	1	0
010	(2)	0	0
001	(1)	1	1
100	(4)	0	1
110	(6)	0	1
111	(7)	1	0

Task

- 1. Define a **generator** that implements an LFSR. Given a polynomial and an initial state, it generates an infinite stream of bits.
- 2. Transform the LFSR generator in an **iterator**, so that it is possible to access to the internal state.
- 3. Compare the LFSR iterator with the one provided by the **pylfsr** Python package.
- 4. Define a function that implements the **Berlekamp-Massey** algorithm which finds the shortest LFSR that can generate the input bit stream.

Task 1: LFSR Generator

LFSR Generator

Inputs:

• Feedback Polynomial: list of integers representing the degrees of the non-zero coefficients.

Example: [12, 6, 4, 1, 0] represents $x^{12} + x^6 + x^4 + x^1 + 1$

• LFSR state (optional, default all bits to 1): Integer or list of bits representing the LFSR initial state.

Example: 0xA65 for [1010 0110 0101]

Yield:

• Output bit: bool representing the LFSR output bit

LFSR Generator

Template:

```
def lfsr_generator(poly, state=None):
    ''' generator docstring '''

# check inputs validity
    # define variables storing the internal state

while True:
    # LFSR iteration:
    # - compute output from poly and state
    # - update state
    yield output
```

Infinite Iterables

To deal with iterables that counts an infinite number of elements, we can use the function islice from the built-in package itertools.

This function allows you to take a finite number of elements.

```
from itertools import islice

niter = ... # number of iterations
lfsr = lfsr_generator(...) # define the lfsr generator

for b in islice(lfsr, niter):
    # do stuff
    pass
```

Hints

There are many ways to implement a LFSR in Python.

The first choice to make is how to store the internal state and the polynomial. I suggest two types:

- **list of bool**: it is the most straightforward choice as it directly maps the LFSR block scheme, but bit-wise logical operation may not be as easy.
- **integer**: bit-wise logical operation, as well as bit-shift, are easy to perform on integers, while XOR of multiple bits or reversing the bit order are less straightforward.

Task 2: LFSR Iterator

Inputs:

- Feedback Polynomial:
 - list of integers representing the degrees of the non-zero coefficients. Example: [12, 6, 4, 1, 0] represents $x^{12} + x^6 + x^4 + x^1 + 1$
- LFSR state (optional, default all bits to 1) Integer or bitstream representing the LFSR initial state Example: 0xA65 for [1010 0110 0101]

Attributes:

- poly: list of the polynomial coefficients (list of int)
- len: polynomial degree and length of the shift register (int)
- state: LFSR state (int)
- output: output bit (bool)
- feedback: last feedback bit (bool)

Methods:

- __init__: class constructor;
- __iter__: necessary to be an iterable;
- __next___: update LFSR state and returns output bit;
- cycle: returns a list of bool representing the full LFSR cycle;
- run_steps: execute N LFSR steps and returns the corresponding output list of bool (N is a input parameter, default N=1);
- __str__: return a string describing the LFSR class instance.

```
class LFSR(object):
                                              def __next__(self):
  ''' class docstring '''
                                                ''' next docstring '''
 def __init__(self, poly, state=None):
                                               return self.output
    ''' constructor docstring '''
                                              def run_steps(self, N=1):
    self.poly = ...
                                                ''' run steps docstring '''
    self.len = ...
    self.state = ...
                                                return list of bool
    self.output = ...
    self.feedback = ...
                                              def cycle(self, state=None):
                                                ''' cycle docstring '''
 def __iter__(self):
    return self
                                                return list of bool
```

Task 3: Comparison with pylfsr

pylfsr

<u>pylfsr</u> implements a class <u>LFSR</u> similar to the one you are asked to implement. Here are some available methods:

- LFSR.next(): run one cycle on LFSR with given feedback polynomial and update the state, feedback bit, and output bit.
- LFSR.runKCycle(k): run k cycles and update all the Parameters.
- LFSR.runFullCycle(): run full cycle (= 2^M-1, where M is the poly degree)
- LFSR.info(): display the information about LFSR

Try to implement an LFSR with both your class and the one in pylfsr and compare the generated streams of bits.

Task 4: Berlekamp-Massey Algorithm

Berlekamp-Massey Algorithm

Find the shortest LFSR for a given binary sequence.

- Input: sequence of bit b of length N
- Outputs: feedback polynomial P(x) and its degree m.

```
def berlekamp_massey(b):
    ''' function docstring '''
    # algorithm implementation
    return poly
```

```
Input b = [b_0, b_1, ..., b_N]
P(x) \leftarrow 1, m \leftarrow 0
Q(x) \leftarrow 1, r \leftarrow 1
For \tau = 0, 1, ..., N - 1
      If d = 1 then
           If 2m < \tau then
                 R(x) \leftarrow P(x)
                 P(x) \leftarrow P(x) + Q(x)x^r
                 Q(x) \leftarrow R(x)
                 m \leftarrow \tau + 1 - m
                 r \leftarrow 0
           else
                 P(x) \leftarrow P(x) + Q(x)x^r
           endif
      endif
      r \leftarrow r + 1
endfor
Output P(x)
```

Berlekamp-Massey Algorithm

τ	$b_{ au}$	d		P(x)	m	Q(x)	r
-	-	_		1	0	1	1
0	1	1	Α	1 + x	1	1	1
1	0	1	В	1	1	1	2
2	1	1	Α	$1 + x^2$	2	1	1
3	0	0		$1 + x^2$	2	1	2
4	0	1	Α	1	3	$1 + x^2$	1
5	1	1	В	$1 + x + x^3$	3	$1 + x^2$	2
6	1	0		$1 + x + x^3$	3	$1 + x^2$	3
7	1	0		$1 + x + x^3$	3	$1 + x^2$	4

Input
$$b = [b_0, b_1, ..., b_N]$$

$$P(x) \leftarrow 1, m \leftarrow 0$$

$$Q(x) \leftarrow 1, r \leftarrow 1$$
For $\tau = 0, 1, ..., N - 1$

$$d \leftarrow \bigoplus_{j=0}^{m} p_j \otimes b[\tau - j]$$
If $d = 1$ then
$$R(x) \leftarrow P(x)$$

$$P(x) \leftarrow P(x) + Q(x)x^r$$

$$A \qquad Q(x) \leftarrow R(x)$$

$$m \leftarrow \tau + 1 - m$$

$$r \leftarrow 0$$
else
$$P(x) \leftarrow P(x) + Q(x)x^r$$
endif
endif
$$r \leftarrow r + 1$$
endfor
Output $P(x)$