Networks Link Analysis: Hubs and Authorities

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

- HITS (Hypertext-Induced Topic Selection)
 - Is a measure of importance of pages or documents, similar to PageRank
 - Proposed at around same time as PageRank ('98)
- Goal: Say we want to find good newspapers
 - Don't just find newspapers. Find "experts" people who link in a coordinated way to good newspapers
- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?

Finding newspapers

- Hubs and Authorities
 Each page has 2 scores:
 - Quality as an expert (hub):
 - Total sum of votes of authorities pointed to
 - Quality as a content (authority):
 - Total sum of votes coming from experts

Principle of repeated improvement

Interesting pages fall into two classes:

- 1. Authorities are pages containing useful information
 - Newspaper home pages
 - Course home pages
 - Home pages of auto manufacturers
- 2. Hubs are pages that link to authorities
 - List of newspapers
 - Course bulletin
 - List of US auto manufacturers

Counting in-links: Authority

Counting in-links: Authority

Expert Quality: Hub

Reweighting

Mutually Recursive Definition

- A good hub links to many good authorities
- A good authority is linked from many good hubs
- Model using two scores for each node:
 - Hub score and Authority score
 - Represented as vectors $m{h}$ and $m{a}$

Each page i has 2 scores:

- Authority score: a_i
- Hub score: h_i

HITS algorithm:

- $\forall i$: Authority: $a_i^{(t+1)} = \sum_{j \to i} h_i^{(t)}$
- $\forall i$: Hub: $h_i^{(t+1)} = \sum_{i \to j} a_i^{(t)}$
- ▼i: Normalize:

$$\sum_{i} \left(a_i^{(t+1)} \right)^2 = 1, \sum_{j} \left(h_j^{(t+1)} \right)^2 = 1$$

$$a_i = \sum_{j \to i} h_j$$

$$h_i = \sum_{i \to j} a_j$$

- HITS converges to a single stable point
- Notation:
 - Vector $\mathbf{a} = (a_1 ..., a_n), \quad \mathbf{h} = (h_1 ..., h_n)$
 - Adjacency matrix $A(n \times n)$: $A_{ij} = 1$ if $i \rightarrow j$
- Then $h_i = \sum_{i o j} a_j$ can be rewritten as $h_i = \sum_j A_{ij} \cdot a_j$ So: $h = A \cdot a$
- Similarly, $a_i=\sum_{j o i}h_j$ can be rewritten as $a_i=\sum_j A_{ji}\cdot h_j=A^T\cdot h$

HITS algorithm in vector notation:

Set:
$$a_i = h_i = \frac{1}{\sqrt{n}}$$

Repeat until convergence:

$$h = A \cdot a$$

$$\mathbf{a} = \mathbf{A}^T \cdot \mathbf{h}$$

lacksquare Normalize $oldsymbol{a}$ and $oldsymbol{h}$

Then:
$$a = A^T \cdot (A \cdot a)$$

Convergence criterion:

$$\sum_{i} \left(h_i^{(t)} - h_i^{(t-1)} \right)^2 < \varepsilon$$

$$\sum_{i} \left(a_i^{(t)} - a_i^{(t-1)} \right)^2 < \varepsilon$$

$$a = A^T(A \ a) = (A^T A) \ a$$

h is updated (in 2 steps):

$$h = A(A^T h) = (A A^T) h$$

Repeated matrix powering

Existence and Uniqueness

- Under reasonable assumptions about A,
 HITS converges to vectors h* and a*:
 - h^* is the principal eigenvector of matrix $A A^T$
 - a^* is the **principal eigenvector** of matrix A^TA

Example

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}^{\mathrm{T}} = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}$$

PageRank and HITS

- PageRank and HITS are two solutions to the same problem:
 - What is the value of an in-link from u to v?
 - In the PageRank model, the value of the link depends on the links into u
 - In the HITS model, it depends on the value of the other links out of u
- The destinies of PageRank and HITS post-1998 were very different