Mecánica Analítica Computacional

Mecánica Newtoniana

Víctor A. Bettachini

Un repaso sobre vectores

$$\vec{r} = r\hat{r}$$

El vector \vec{r} tiene

- un módulo $r = |\vec{r}|$,
- ullet y una dirección y sentido denotado por un versor \hat{r} .

Operación suma

$$\vec{a} = a_i \hat{i} + a_j \hat{j} + a_k \hat{k}$$

$$\vec{b} = b_i \hat{i} + b_j \hat{j} + b_k \hat{k}$$

$$\vec{c} = \vec{a} + \vec{b} = (a_i + b_i)\hat{i} + (a_j + b_j)\hat{j} + (a_k + c_k)\hat{k}$$

Operación suma

$$\vec{a} = a_i \hat{i} + a_j \hat{j} + a_k \hat{k}$$

$$\vec{b} = b_i \hat{i} + b_j \hat{j} + b_k \hat{k}$$

$$\vec{c} = \vec{a} + \vec{b} = (a_i + b_i)\hat{i} + (a_j + b_j)\hat{j} + (a_k + c_k)\hat{k}$$

Operación producto

• por un escalar: $c\vec{r} = cr_i\hat{i} + cr_i\hat{j} + cr_k\hat{k}$

Operación suma

$$\vec{a} = a_i \hat{i} + a_j \hat{j} + a_k \hat{k}$$

$$\vec{b} = b_i \hat{i} + b_j \hat{j} + b_k \hat{k}$$

$$\vec{c} = \vec{a} + \vec{b} = (a_i + b_i)\hat{i} + (a_j + b_j)\hat{j} + (a_k + c_k)\hat{k}$$

Operación producto

- por un escalar: $c\vec{r} = cr_i\hat{i} + cr_j\hat{j} + cr_k\hat{k}$
- escalar: $\vec{r}\vec{s} = rs\cos(\theta) = r_i s_i + r_j s_j + r_k s_k$
 - así el módulo es $r = |\vec{r}| = \sqrt{\vec{r}\vec{r}}$

Operación suma

$$\vec{a} = a_i \hat{i} + a_j \hat{j} + a_k \hat{k}$$

$$\vec{b} = b_i \hat{i} + b_j \hat{j} + b_k \hat{k}$$

$$\vec{c} = \vec{a} + \vec{b} = (a_i + b_i)\hat{i} + (a_j + b_j)\hat{j} + (a_k + c_k)\hat{k}$$

Operación producto

- por un escalar: $c\vec{r} = cr_i\hat{i} + cr_i\hat{j} + cr_k\hat{k}$
- escalar: $\vec{rs} = rs\cos(\theta) = r_i s_i + r_i s_i + r_k s_k$
 - así el módulo es $r = |\vec{r}| = \sqrt{\vec{r}\vec{r}}$
- vectorial:

$$ec{r} imesec{s}=egin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \ r_i & r_j & r_k \ s_i & s_j & s_k \ \end{array} = (r_js_k-r_ks_j)\hat{i}+(r_ks_i-r_is_k)\hat{j}+(r_is_j-r_js_i)\hat{k}$$

V. A. Bettachini

En coordenadas cartesianas: *x*, *y*, *z*

$$\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$$

En coordenadas cartesianas: x, y, z

$$\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$$

- y componente de
- ŷ versor de cada eje

En coordenadas cartesianas: *x*, *y*, *z*

$$\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$$

- y axis -y componente de coordenada
 - \hat{y} versor de cada eje

A veces se sintetiza $\vec{r} = (x, y, z)$

En coordenadas cartesianas: *x*, *y*, *z*

$$\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$$

- *y* componente de coordenada
- $-\hat{y}$ versor de cada eje

A veces se sintetiza $\vec{r} = (x, y, z)$

En general: $\vec{r} = r_1 \hat{e}_1 + r_2 \hat{e}_2 + r_3 \hat{e}_3$ con los \hat{e}_i de cilíndricas, esféricas, etc.

$$\vec{v} = \dot{\vec{r}} = \frac{d\vec{r}}{dt} = \frac{d}{dt} (r\hat{r})$$

V. A. Bettachini

$$\vec{v} = \dot{\vec{r}} = \frac{d\vec{r}}{dt} = \frac{d}{dt} (r\hat{r})$$

$$\vec{v} = \frac{dr_1}{dt}\hat{e}_1 + r_1\frac{d\hat{e}_1}{dt} + \frac{dr_2}{dt}\hat{e}_2 + r_2\frac{d\hat{e}_2}{dt} + \frac{dr_3}{dt}\hat{e}_3 + r_3\frac{d\hat{e}_3}{dt}$$

Tendríamos seis términos según la regla de la cadena.

$$\vec{v} = \dot{\vec{r}} = \frac{d\vec{r}}{dt} = \frac{d}{dt} (r\hat{r})$$

$$\vec{v} = \frac{dr_1}{dt}\hat{e}_1 + r_1\frac{d\hat{e}_1}{dt} + \frac{dr_2}{dt}\hat{e}_2 + r_2\frac{d\hat{e}_2}{dt} + \frac{dr_3}{dt}\hat{e}_3 + r_3\frac{d\hat{e}_3}{dt}$$

Tendríamos seis términos según la regla de la cadena.

En el caso cartesiano \hat{x} , \hat{y} y \hat{z} no varían con t

$$\vec{v} = \dot{\vec{r}} = \frac{\mathrm{d}x}{\mathrm{d}t}\hat{x} + \frac{\mathrm{d}y}{\mathrm{d}t}\hat{y} + \frac{\mathrm{d}z}{\mathrm{d}t}\hat{z}$$

$$\vec{v} = \dot{\vec{r}} = \frac{d\vec{r}}{dt} = \frac{d}{dt} (r\hat{r})$$

$$\vec{v} = \frac{dr_1}{dt}\hat{e}_1 + r_1\frac{d\hat{e}_1}{dt} + \frac{dr_2}{dt}\hat{e}_2 + r_2\frac{d\hat{e}_2}{dt} + \frac{dr_3}{dt}\hat{e}_3 + r_3\frac{d\hat{e}_3}{dt}$$

Tendríamos seis términos según la regla de la cadena.

En el caso cartesiano
$$\hat{x}$$
, \hat{y} y \hat{z} no varían con t

$$\vec{v} = \dot{\vec{r}} = \frac{\mathrm{d}x}{\mathrm{d}t}\hat{x} + \frac{\mathrm{d}y}{\mathrm{d}t}\hat{y} + \frac{\mathrm{d}z}{\mathrm{d}t}\hat{z}$$

Aceleración

$$\vec{a} = \frac{d\vec{v}}{dt} = \ddot{\vec{r}} = \frac{d^2x}{dt^2}\hat{x} + \frac{d^2y}{dt^2}\hat{y} + \frac{d^2z}{dt^2}\hat{z}$$

Si la suma de fuerzas $\sum \vec{F} = 0$ una partícula se mueve con \vec{v} constante.

Si la suma de fuerzas $\sum \vec{F} = 0$ una partícula se mueve con \vec{v} constante.

2.a ley

$$\vec{F} = m\vec{a}$$

Si la suma de fuerzas $\sum \vec{F} = 0$ una partícula se mueve con \vec{v} constante.

2.a ley

$$\vec{F} = m\vec{a}$$

En términos del momento (ímpetu) $\vec{p}=m\vec{v}$

$$\vec{F} = m\dot{\vec{v}} = \dot{\vec{p}} \qquad (\dot{m} = 0)$$

Si la suma de fuerzas $\sum \vec{F} = 0$ una partícula se mueve con \vec{v} constante.

2.a ley

$$\vec{F} = m\vec{a}$$

En términos del momento (ímpetu) $\vec{p} = m\vec{v}$

$$\vec{F} = m\dot{\vec{v}} = \dot{\vec{p}} \qquad (\dot{m} = 0)$$

3.a ley: acción y reacción

Si **1** ejerce \vec{F}_{21} **2** este ejerce \vec{F}_{12} a **1**

$$\vec{F}_{12} = -\vec{F}_{21}$$

Para un objeto sobre el eje \hat{x} sometido a $\vec{F} = F_0 \hat{x}$

$$\ddot{x}(t) = \frac{F_0}{m} \implies \dot{x}(t) = \int \ddot{x}(t) dt = v_o + \frac{F_0}{m}t$$

$$\implies x(t) = \int \dot{x}(t) dt = x_0 + v_0 t + \frac{F_0}{2m}t^2$$

Para un objeto sobre el eje \hat{x} sometido a $\vec{F} = F_0 \hat{x}$

$$\ddot{x}(t) = \frac{F_0}{m} \implies \dot{x}(t) = \int \ddot{x}(t) dt = v_o + \frac{F_0}{m}t$$

$$\implies x(t) = \int \dot{x}(t) dt = x_0 + v_0 t + \frac{F_0}{2m}t^2$$

• Generando una ecuación diferencial para describir la dinámica, y conociendo x_0 , v_0 en t_0 , se predicen x(t), $\dot{x}(t)$ y $\ddot{x}(t)$.

Para un objeto sobre el eje \hat{x} sometido a $\vec{F} = F_o \hat{x}$

$$\ddot{x}(t) = \frac{F_0}{m} \implies \dot{x}(t) = \int \ddot{x}(t) dt = v_0 + \frac{F_0}{m}t$$

$$\implies x(t) = \int \dot{x}(t) dt = x_0 + v_0 t + \frac{F_0}{2m}t^2$$

- Generando una ecuación diferencial para describir la dinámica, y conociendo x_0 , v_0 en t_0 , se predicen x(t), $\dot{x}(t)$ y $\ddot{x}(t)$.
- Esta asignatura apunta a desarrollar la habilidad de modelar con ecuaciones diferenciales la dinámica de sistemas simples.

Para un objeto sobre el eje \hat{x} sometido a $\vec{F} = F_o \hat{x}$

$$\ddot{x}(t) = \frac{F_0}{m} \implies \dot{x}(t) = \int \ddot{x}(t) dt = v_o + \frac{F_0}{m}t$$

$$\implies x(t) = \int \dot{x}(t) dt = x_0 + v_0 t + \frac{F_0}{2m}t^2$$

- Generando una ecuación diferencial para describir la dinámica, y conociendo x_0 , v_0 en t_0 , se predicen x(t), $\dot{x}(t)$ y $\ddot{x}(t)$.
- Esta asignatura apunta a desarrollar la habilidad de modelar con ecuaciones diferenciales la dinámica de sistemas simples.
- Posteriores asignaturas (e.g. Estática, Máquinas) aprovechan esta herramienta para el análisis de sistemas mecánicos.

2.a ley en cartesianas: un ejemplo trivial

$$m\ddot{\vec{x}} = \vec{F} \iff \begin{cases} m\ddot{x} = F_x \\ m\ddot{y} = F_y \\ m\ddot{z} = F_z \end{cases}$$

2.a ley en cartesianas: un ejemplo trivial

$$m\ddot{\vec{x}} = \vec{F} \iff \begin{cases} m\ddot{x} = F_x \\ m\ddot{y} = F_y \\ m\ddot{z} = F_z \end{cases}$$

$$0 = F_y = N - mg\cos\theta$$

$$m\ddot{x} = F_x = w_x - f = mg\sin\theta - \mu mg\cos\theta$$

$$\ddot{x} = g(\sin\theta - \mu\cos\theta)$$

$$x(t) = \frac{g}{2}(\sin\theta - \mu\cos\theta)t^2[\dot{x}(0) = 0, x(0) = 0]$$

Coordenadas polares

$$\begin{cases} x = r\cos\phi \\ y = r\sin\phi \end{cases} \iff \begin{cases} r = \sqrt{x^2 + y^2} \\ \phi = \operatorname{atan}\frac{y}{x} \end{cases}$$

Coordenadas polares

$$\begin{cases} x = r\cos\phi \\ y = r\sin\phi \end{cases} \iff \begin{cases} r = \sqrt{x^2 + y^2} \\ \phi = \operatorname{atan}\frac{y}{x} \end{cases}$$

Versor \hat{r}

$$\vec{r} = r\hat{r} \iff \hat{r} = \frac{\vec{r}}{|\vec{r}|}$$

A diferencia de \hat{x} este versor cambia con el tiempo.

$$\dot{\vec{r}} = \dot{r}\hat{r} + r\frac{\mathrm{d}\hat{r}}{\mathrm{d}t}$$

$$\Delta \hat{r} \sim \Delta \phi \hat{\phi} \sim \dot{\phi} \Delta t \hat{\phi}$$

$$\dot{\vec{r}} = \dot{r}\hat{r} + r\frac{\mathrm{d}\hat{r}}{\mathrm{d}t}$$

$$\Delta \hat{r} \sim \Delta \phi \hat{\phi} \sim \dot{\phi} \Delta t \hat{\phi}$$

$$\frac{\mathrm{d}\hat{r}}{\mathrm{d}t} = \lim_{\Delta t \to 0} \frac{\Delta \hat{r}}{\Delta t} = \dot{\phi}\hat{\phi}$$

$$\dot{\vec{r}} = \dot{r}\hat{r} + r\dot{\phi}\hat{\phi}$$

$$\Delta \hat{r} \sim \Delta \phi \hat{\phi} \sim \dot{\phi} \Delta t \hat{\phi}$$

$$rac{\mathrm{d}\hat{r}}{\mathrm{d}t} = \lim_{\Delta t o 0} rac{\Delta \hat{r}}{\Delta t} = \dot{\phi}\hat{\phi}$$

Aceleración en polares

Aceleración en polares

$$\frac{\mathrm{d}\hat{\phi}}{\mathrm{d}t} = \lim_{\Delta t \to 0} \frac{\Delta \hat{\phi}}{\Delta t} = -\dot{\phi}$$

Aceleración en polares

$$rac{\mathrm{d}\hat{\phi}}{\mathrm{d}t} = \lim_{\Delta t o 0} rac{\Delta\hat{\phi}}{\Delta t} = -\dot{\phi}\hat{r}$$

$$\vec{a} = \ddot{\vec{r}} = \frac{d\dot{\vec{r}}}{dt} = \frac{d}{dt} \left(\dot{r}\hat{r} + r\dot{\phi}\hat{\phi} \right)$$
$$= \left(\ddot{r} - r\dot{\phi}^2 \right) \hat{r} + \left(r\ddot{\phi} + 2\dot{r}\dot{\phi} \right) \hat{\phi}$$

Dinámica de un movimiento circular

$$\vec{F} = m\ddot{\vec{r}} \Rightarrow \begin{cases} F_r = mg\cos\phi - N = -mR\dot{\phi}^2 \\ F_{\phi} = -mg\sin\phi = mR\ddot{\phi} \end{cases}$$

Dinámica de un movimiento circular

$$\vec{F} = m\ddot{\vec{r}} \Rightarrow \begin{cases} F_r = mg\cos\phi - N = -mR\dot{\phi}^2 \\ F_{\phi} = -mg\sin\phi = mR\ddot{\phi} \end{cases}$$

$$mR\ddot{\phi} = -mg \operatorname{sen} \phi$$

$$\ddot{\phi} = -\frac{g}{R} \operatorname{sen} \phi \simeq -\frac{g}{R} \phi \ (\phi \simeq 0)$$

$$\phi(t) = A \operatorname{sen} \left(\sqrt{\frac{g}{R}} t \right) + B \operatorname{cos} \left(\sqrt{\frac{g}{R}} t \right)$$

$$\omega = \sqrt{\frac{g}{R}} \iff T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{R}{g}}$$

Momento angular (momento cinético)

$$\vec{L} = \vec{r} \times \vec{p}$$

Momento angular (momento cinético)

$$\vec{L} = \vec{r} \times \vec{p}$$

Torque (momento, \vec{N})

$$\dot{\vec{L}} = \dot{\vec{r}} \times \hat{\vec{p}} + \vec{r} \times \dot{\vec{p}}$$

pues
$$\vec{p} = m\dot{\vec{r}} \implies \vec{p}||\dot{\vec{r}} \implies \dot{\vec{r}} \times \vec{p} = 0$$

$$\vec{\tau} = \dot{\vec{L}} = \vec{r} \times \vec{F}$$

Velocidad angular

$$\dot{\vec{r}} = \dot{r}\hat{r} + r\dot{\phi}\hat{\phi}$$

suele escribirse

$$v_r = \dot{r} \quad v_\phi = r\dot{\phi} = r\omega$$

 v_{ϕ} : velocidad tangencial

Velocidad angular

$$\dot{\vec{r}} = \dot{r}\hat{r} + r\dot{\phi}\hat{\phi}$$

suele escribirse

$$v_r = \dot{r} \quad v_\phi = r\dot{\phi} = r\omega$$

 v_{ϕ} : velocidad tangencial

Momento de inercia

Para una partícula

$$\vec{L} = \vec{r} \times m\dot{\vec{r}} = mr^2\vec{\omega} = I\vec{\omega}$$

Velocidad angular

$$\dot{\vec{r}} = \dot{r}\hat{r} + r\dot{\phi}\hat{\phi}$$

suele escribirse

$$v_r = \dot{r} \quad v_\phi = r\dot{\phi} = r\omega$$

 v_{ϕ} : velocidad tangencial

Momento de inercia

Para una partícula

$$\vec{L} = \vec{r} \times m\dot{\vec{r}} = mr^2\vec{\omega} = I\vec{\omega}$$

Momento de inercia de sólidos

Para una $\vec{\omega} = \omega \hat{z}$

$$I_{zz} = \iiint \rho(x, y, z) \left[x^2 + y^2 \right] dV$$

Son los elementos diagonales del tensor de inercia I_{ij} .

Velocidad angular

$$\dot{\vec{r}} = \dot{r}\hat{r} + r\dot{\phi}\hat{\phi}$$

suele escribirse

$$v_r = \dot{r} \quad v_\phi = r\dot{\phi} = r\omega$$

 v_{ϕ} : velocidad tangencial

Momento de inercia

Para una partícula

$$\vec{L} = \vec{r} \times m\dot{\vec{r}} = mr^2\vec{\omega} = I\vec{\omega}$$

Momento de inercia de sólidos

Para una $\vec{\omega} = \omega \hat{z}$

$$I_{zz} = \iiint \rho(x, y, z) \left[x^2 + y^2 \right] dV$$

Son los elementos diagonales del tensor de inercia I_{ij} .

E.g. cilindro | si $\vec{\omega} = \omega_z \hat{z}$ (eje) $I_{zz} = \frac{m}{2} R^2$ | si $\vec{\omega} = \omega_x \hat{x} \rightarrow I_{xx} = \frac{m}{12} l^2$