

Introduction to Scientific Computation Lecture 2 Fall 2018

Liners Systems of Equations, SVD FFT

How to solve this?

$$Ax = b$$

How to solve this?

Exact solution, except for rounding errors, fixed number of computational steps

Often work better in practice, due to care about numerical stability, iteratively improve solution estimate

Direct methods

If all linear equations are uncoupled:

If all linear equations are uncoupled:

$$A = \begin{bmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & a_{nn} \end{bmatrix}$$

If all linear equations are uncoupled:

$$A = \begin{bmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & a_{nn} \end{bmatrix}$$

Solution is obvious

If all linear equations are uncoupled:

$$A = \begin{bmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & a_{nn} \end{bmatrix}$$

Solution is obvious

$$x_i = \frac{b_i}{a_{ii}}$$

Upper triangular matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ & a_{22} & \ddots & \vdots \\ & & \ddots & \vdots \\ & & & a_{nn} \end{bmatrix}$$

$$a_{ij} = 0, \forall i > j$$

$$a_{nn}x_n = b_n, \implies x_n = \frac{b_n}{a_{nn}}$$

$$a_{n-1,n-1}x_{n-1,n-1} = b_{n-1} - a_{n-1,n}x_n, \implies x_{n-1} = \frac{b_{n-1} - a_{n-1,n}x_n}{a_{n-1,n-1}}$$

Upper triangular matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ & a_{22} & \ddots & \vdots \\ & & \ddots & \vdots \\ & & & a_{nn} \end{bmatrix}$$

$$a_{ij} = 0, \forall i > j$$

$$a_{nn}x_n = b_n, \implies x_n = \frac{b_n}{a_{nn}}$$

$$a_{n-1,n-1}x_{n-1,n-1} = b_{n-1} - a_{n-1,n}x_n, \implies x_{n-1} = \frac{b_{n-1} - a_{n-1,n}x_n}{a_{n-1,n-1}}$$

Quiz: What is the final complexity?

Upper triangular matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ & a_{22} & \ddots & \vdots \\ & & \ddots & \vdots \\ & & & a_{nn} \end{bmatrix}$$

$$a_{ij} = 0, \forall i > j$$

$$a_{nn}x_n = b_n, \implies x_n = \frac{b_n}{a_{nn}}$$

$$a_{n-1,n-1}x_{n-1,n-1} = b_{n-1} - a_{n-1,n}x_n, \implies x_{n-1} = \frac{b_{n-1} - a_{n-1,n}x_n}{a_{n-1,n-1}}$$

Quiz: What is the final complexity?

Answer: $O(N^2)$

Gaussian Elimination

Exact solution, except for rounding errors

$$A = LU$$

$$Ly = b$$

$$Ux = y$$

PA = LU

Not unique

Problems when A is singular

Solution is LUP - additional permutation matrix which aims to maximise absolute values of diagonal elements

Finding LU (LUP) has complexity $O(N^3)$

Special case: SPD matrices

Symmetric positive definite: if $A = A^T$ and $x^T A x > 0, \forall x \neq 0$

$$A = LL^*$$

Two times less memory than LU

Conditioning

Relative error:
$$\frac{||x - \hat{x}||}{||x||}$$

$$r = b - A\hat{x} = Ax - A\hat{x} = A(x - \hat{x}) \qquad A\hat{x} = b + \Delta b \implies ||\Delta b|| = ||r||$$

$$x - \hat{x} = A^{-1}r \implies ||x - \hat{x}|| = ||A^{-1}r|| \le ||A^{-1}|| ||r||$$

$$\frac{||x - \hat{x}||}{||x||} \le ||A^{-1}|| ||r|| \frac{||A||}{||b||}$$

Condition number: $k(A) = ||A|| ||A^{-1}||$

$$\frac{||x-\hat{x}||}{||x||} \le k(A) \frac{||\Delta b||}{||b||}$$
 the relative error in the solution is bounded by the condition number of the matrix A times the relative error in the residual.

Iterative methods

- Jacobi
- Gauss-Seidel

 $Mx_t = Nx_{t-1} + b, A = M - N$

• SOR

Non stationary

- Gradient descent
- Conjugate gradients (for SPD)

Stationary methods

$$Mx_t = Nx_{t-1} + b, A = M - N$$

We need initial guess for the solution: x_0

Error is: $e_0 = x - x_0$

$$r_0 = Ae_0 = b - Ax_0$$

$$x = x_0 + e_0 = x_0 + A^{-1}r_0$$

Set $M\widetilde{e} = r_k$

Then
$$x_t = x_{t-1} + \widetilde{e}$$

We do not know the exact solution (if we know, we do we care?) and cannot compute

We can compute

Preconditioner: M

$$A = D + E + F$$

Jacobi: M = D

Gauss-Seidel: M = D + E

SOR: $M = D + \frac{1}{\omega}E$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ a_{21} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & 0 \end{bmatrix} E$$

$$+ \begin{bmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} F$$

$$+ \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} D$$

Nonstationary methods

$$x_t = x_{t-1} + \alpha_t p_t$$

Gradient descent

$$x_t = x_{t-1} + \alpha_t p_t$$

$$p_k = r_k$$

or

$$M\widetilde{e} = r_t$$

$$M = \alpha_t I$$

Gradient descent

$$x_t = x_{t-1} + \alpha_t p_t$$

$$p_k = r_k$$

or

$$M\widetilde{e} = r_t$$

$$M = \alpha_t I$$

Conjugate gradient (SPD only)

$$x_t = x_{t-1} + \alpha_t p_t$$

$$p_t = r_t - \sum_{i \le t} \frac{p_i^T A r_t}{p_i^T A p_i} p_i$$

$$\alpha_t = \frac{p_t^T r_t}{p_t^T A p_t}$$

SVD

Diagonal

Eckart-Young theorem: best low-rank approximation can be computed with SVD

$$\min_{rank(B)=r} ||A - B||_2 = ||A - A_r||_2 = \sigma_{r+1}$$

r - rank approximation is setting $\forall i > r, \sigma_i = 0$

FFT

See code