# Data Mining

Practical Machine Learning Tools and Techniques

Slides for Chapter 3, Output: knowledge representation

of *Data Mining* by I. H. Witten, E. Frank, M. A. Hall and C. J. Pal

# Output: Knowledge representation

- Tables
- Linear models
- Trees
- Rules
- Classification rules
- Association rules
- Rules with exceptions
- More expressive rules
- Instance-based representation
- Clusters

#### Output: representing structural patterns

- Many different ways of representing patterns
  - Decision trees, rules, instance-based, ...
- Also called "knowledge" representation
- Representation determines inference method
- Understanding the output is the key to understanding the underlying learning methods
- Different types of output for different learning problems (e.g., classification, regression, ...)

# **Decision tables**

- Simplest way of representing output:
  - Use the format that is used for representing the input!
- Decision table for the weather problem:

| Outlook  | Humidity | Play |
|----------|----------|------|
| Sunny    | High     | No   |
| Sunny    | Normal   | Yes  |
| Overcast | High     | Yes  |
| Overcast | Normal   | Yes  |
| Rainy    | High     | No   |
| Rainy    | Normal   | No   |

Main problem: selecting the right attributes

#### **Linear models**

- Another simple representation
- Traditionally primarily used for regression:
  - Inputs (attribute values) and output are all numeric
- Output is the sum of the weighted input attribute values
- The trick is to find good values for the weights
- There are different ways of doing this, which we will consider later; the most famous one is to minimize the squared error

# A linear regression function for the CPU performance data



PRP = 37.06 + 2.47CACH

#### Linear models for classification

- Binary classification
- Line separates the two classes
  - Decision boundary defines where the decision changes from one class value to the other
- Prediction is made by plugging in observed values of the attributes into the expression
  - Predict one class if output ≥ 0, and the other class if output < 0</li>
- Boundary becomes a high-dimensional plane (hyperplane) when there are multiple attributes

### Separating setosas from versicolors



#### **Decision trees**

- "Divide-and-conquer" approach produces tree
- Nodes involve testing a particular attribute
- Usually, attribute value is compared to constant
- Other possibilities:
  - Comparing values of two attributes
  - Using a function of one or more attributes
- Leaves assign classification, set of classifications, or probability distribution to instances
- Unknown instance is routed down the tree

#### Nominal and numeric attributes in trees

- Nominal: number of children usually equal to number values => attribute won't get tested more than once
- Other possibility: division into two subsets
- Numeric:
  - test whether value is greater or less than constant => attribute may get tested several times
  - Other possibility: three-way split (or multi-way split)
    - Integer: less than, equal to, greater than
    - Real: below, within, above

#### Missing values

- Does absence of value have some significance?
- Yes => "missing" is a separate value
- No => "missing" must be treated in a special way
  - Solution A: assign instance to most popular branch
  - Solution B: split instance into pieces
    - Pieces receive weight according to fraction of training instances that go down each branch
    - Classifications from leave nodes are combined using the weights that have percolated to them

### Trees for numeric prediction

- Regression: the process of computing an expression that predicts a numeric quantity
- Regression tree: "decision tree" where each leaf predicts a numeric quantity
  - Predicted value is average value of training instances that reach the leaf
- Model tree: "regression tree" with linear regression models at the leaf nodes
  - Linear patches approximate continuous function

# Linear regression for the CPU data

```
PRP =
```

- -56.1
- + 0.049 MYCT
- + 0.015 MMIN
- + 0.006 MMAX
- + 0.630 CACH
- 0.270 CHMIN
- + 1.46 CHMAX

#### Regression tree for the CPU data



#### Model tree for the CPU data



#### Classification rules

- Popular alternative to decision trees
- Antecedent (pre-condition): a series of tests (just like the tests at the nodes of a decision tree)
- Tests are usually logically ANDed together (but may also be general logical expressions)
- Consequent (conclusion): classes, set of classes, or probability distribution assigned by rule
- Individual rules are often logically ORed together
  - Conflicts arise if different conclusions apply

#### From trees to rules

- Easy: converting a tree into a set of rules
  - One rule for each leaf:
    - Antecedent contains a condition for every node on the path from the root to the leaf
    - Consequent is class assigned by the leaf
- Produces rules that are unambiguous
  - Doesn't matter in which order they are executed
- But: resulting rules are unnecessarily complex
  - Pruning to remove redundant tests/rules

#### From rules to trees

- More difficult: transforming a rule set into a tree
  - Tree cannot easily express disjunction between rules
- Example: rules which test different attributes

```
If a and b then x

If c and d then x
```

- Symmetry needs to be broken
- Corresponding tree contains identical subtrees
   (→ "replicated subtree problem")

# A tree for a simple disjunction



If a and b then x

If c and d then x

# The exclusive-or problem



#### A tree with a replicated subtree

a

```
If x = 1 and y = 1
   then class = a

If z = 1 and w = 1
   then class = a

Otherwise class = b
```



# "Nuggets" of knowledge

- Are rules independent pieces of knowledge? (It seems easy to add a rule to an existing rule base.)
- Problem: ignores how rules are executed
- Two ways of executing a rule set:
  - Ordered set of rules ("decision list")
    - Order is important for interpretation
  - Unordered set of rules
    - Rules may overlap and lead to different conclusions for the same instance

#### Interpreting rules

- What if two or more rules conflict?
  - Give no conclusion at all?
  - Go with rule that is most popular on training data?
  - •
- What if no rule applies to a test instance?
  - Give no conclusion at all?
  - Go with class that is most frequent in training data?
  - •

# Special case: Boolean class

- Assumption: if instance does not belong to class "yes", it belongs to class "no"
- Trick: only learn rules for class "yes" and use default rule for "no"

```
If x = 1 and y = 1 then class = a
If z = 1 and w = 1 then class = a
Otherwise class = b
```

- Order of rules is not important. No conflicts!
- Rule can be written in disjunctive normal form

#### **Association rules**

- Association rules...
  - ... can predict any attribute and combinations of attributes
  - ... are not intended to be used together as a set
- Problem: immense number of possible associations
  - Output needs to be restricted to show only the most predictive associations
    - → only those with high support and high confidence

#### Support and confidence of a rule

- Support: number of instances predicted correctly
- Confidence: number of correct predictions, as proportion of all instances that rule applies to
- Example: 4 cool days with normal humidity

```
If temperature = cool then humidity = normal
```

- $\rightarrow$  Support = 4, confidence = 100%
- Normally: minimum support and confidence pre-specified (e.g. 58 rules with support  $\geq$  2 and confidence  $\geq$  95% for weather data)

Interpreting association rules

Interpretation is not obvious:

```
If windy = false and play = no then outlook = sunny and humidity = high
```

is not the same as

```
If windy = false and play = no then outlook = sunny

If windy = false and play = no then humidity = high
```

It means that the following also holds:

```
If humidity = high and windy = false and play = no
    then outlook = sunny
```

OS

wf ,

#### Rules with exceptions

- Idea: allow rules to have exceptions
- Example: rule for iris data

If petal-length ≥ 2.45 and petal-length < 4.45 then Iris-versicolor

New instance:

| Sepal Length | Sepal Width | Petal Length | Petal Width | Туре |
|--------------|-------------|--------------|-------------|------|
| 5.1          | 3.5         | 2.6          | 0.2         | ?    |

Modified rule:

If petal-length  $\geq$  2.45 and petal-length < 4.45 then Iris-versicolor <code>EXCEPT</code> if petal-width < 1.0 then Iris-setosa

#### A more complex example

Exceptions to exceptions to exceptions ...

```
default: Iris-setosa
except if petal-length ^{\pm} 2.45 and petal-length < 5.355
          and petal-width < 1.75
       then Iris-versicolor
            except if petal-length >= 4.95 and petal-width < 1.55
                   then Iris-virginica
                   else if sepal-length < 4.95 and sepal-width ^{\pm} 2.45
                        then Iris-virginica
       else if petal-length >= 3.35
            then Iris-virginica
                 except if petal-length < 4.85 and sepal-length < 5.95
                        then Iris-versicolor
```

### Advantages of using exceptions

- Rules can be updated incrementally
  - Easy to incorporate new data
  - Easy to incorporate domain knowledge
- People often think in terms of exceptions
- Each conclusion can be considered just in the context of rules and exceptions that lead to it
  - Locality property is important for understanding large rule sets
  - "Normal" rule sets do not offer this advantage

#### More on exceptions

- Default X except if C then Y
   is logically equivalent to
   if C then Y else X
   (where the "else" specifies what the "default" does)
- But: exceptions offer a psychological advantage
  - Assumption: defaults and tests early on apply more widely than exceptions further down
  - Exceptions reflect special cases

#### Rules involving relations

- So far: all rules involved comparing an attribute-value to a constant (e.g. temperature < 45)</li>
- These rules are called "propositional" because they have the same expressive power as propositional logic
- What if problem involves relationships between examples (e.g. family tree problem from above)?
  - Can't be expressed with propositional rules
  - More expressive representation required

### The shapes problem

Target concept: standing up

Shaded: standing

Unshaded: lying



#### A propositional solution

| Width | Height | Sides | Class    |
|-------|--------|-------|----------|
| 2     | 4      | 4     | Standing |
| 3     | 6      | 4     | Standing |
| 4     | 3      | 4     | Lying    |
| 7     | 8      | 3     | Standing |
| 7     | 6      | 3     | Lying    |
| 2     | 9      | 4     | Standing |
| 9     | 1      | 4     | Lying    |
| 10    | 2      | 3     | Lying    |

If width  $\geq$  3.5 and height < 7.0 then lying

If height  $\geq$  3.5 then standing

# Using relations between attributes

 Comparing attributes with each other enables rules like this:

```
If width > height then lying
If height > width then standing
```

- This description generalizes better to new data
- Standard relations: =, <, >
- But: searching for relations between attributes can be costly
- Simple solution: add extra attributes
   (e.g., a binary attribute "is width < height?")</li>

#### Rules with variables

Using variables and multiple relations:

```
If height_and_width_of(x,h,w) and h > w
    then standing(x)
```

The top of a tower of blocks is standing:

```
If height_and_width_of(x,h,w) and h > w
    and is_top_of(y,x)
then standing(x)
```

The whole tower is standing:

```
If is_top_of(x,z) and
  height_and_width_of(z,h,w) and h > w
  and is_rest_of(x,y) and standing(y)
  then standing(x)

If empty(x) then standing(x)
```

Recursive definition!

### Inductive logic programming

- Recursive definition can be seen as logic program
- Techniques for learning logic programs stem from the area of "inductive logic programming" (ILP)
- But: recursive definitions are hard to learn
  - Also: few practical problems require recursion
  - Thus: many ILP techniques are restricted to non-recursive definitions to make learning easier

#### Instance-based representation

- Simplest form of learning: rote learning
  - Training instances are searched for instance that most closely resembles new instance
  - The instances themselves represent the knowledge
  - Also called instance-based learning
- Similarity function defines what's "learned"
- Instance-based learning is lazy learning
- Methods: nearest-neighbor, k-nearest-neighbor, ...

#### The distance function

- Simplest case: one numeric attribute
  - Distance is the difference between the two attribute values involved (or a function thereof)
- Several numeric attributes: normally, Euclidean distance is used and attributes are normalized
- Nominal attributes: distance is set to 1 if values are different,
   0 if they are equal
- Are all attributes equally important?
  - Weighting the attributes might be necessary

#### Learning prototypes



- Only those instances involved in a decision need to be stored
- Noisy instances should be filtered out
- Idea: only use prototypical examples

#### Rectangular generalizations



- Nearest-neighbor rule is used outside rectangles
- Rectangles are rules! (But they can be more conservative than "normal" rules, since they impose upper and lower bounds in each dimension.)
- Nested rectangles are rules with exceptions

# Representing clusters I

# Simple 2-D representation

#### Venn diagram



# Representing clusters II

# Probabilistic assignment

```
1 2 3
```

a 0.4 0.1 0.5 b 0.1 0.8 0.1 c 0.3 0.3 0.4

d 0.1 0.1 0.8

e 0.4 0.2 0.4

f 0.1 0.4 0.5 g 0.7 0.2 0.1

h 0.5 0.4 0.1

. . .

#### Dendrogram

