OKAN ÜNİVERSİTESI MÜHENDİSLİK-MİMARLIK FAKÜLTESI MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

2015 - 16

MAT234 Matematik IV - Ödev 3

N. Course

SON TESLİM TARİHİ: Salı 8 Mart 2016 saat 16:00'e kadar.

False Lemma. n+1 < n for all $n \in \mathbb{N}$.

Proof. Let $P_n = (n+1 < n)$. Suppose that P_k is true. Then we know that k+1 < k. It follows that

$$(k+1)+1 < (k)+1 = k+1$$

and hence P_{k+1} is true. So $P_k \implies P_{k+1}$.

By the principle of mathematical induction, it follows that n+1 < n for all $n \in \mathbb{N}$. \square

Egzersiz 6 (Proof by Induction). [20p] The false lemma above is clearly not true (e.g. we know that 7 < 6 is not true), so the proof must be wrong. Find all the mistakes in the above proof.

Definition. A sequence (a_n) of real numbers tends to l $(a_n \to l \text{ as } n \to \infty)$ iff, given any $\varepsilon > 0$, there exists $N = N(\varepsilon) \in \mathbb{N}$ such that

$$n > N \implies |a_n - l| < \varepsilon.$$

Example. Define $g_n = 3 + 3^{-n}$. Use the definition to show that $g_n \to 3$ as $n \to \infty$.

solution: Let $\varepsilon > 0$. Choose $N \ge -\frac{\log \varepsilon}{\log 3}$. Then

$$n > N \implies |g_n - 3| = |3^{-n}| = \frac{1}{3^n} < \frac{1}{3^N} = 3^{-N} = e^{-N\log 3} \le e^{\log \varepsilon} = \varepsilon.$$

Therefore $g_n \to 3$ as $n \to \infty$.

Egzersiz 7 (Sequences tending to a finite limit). Let

$$y_n = \begin{cases} \frac{1}{n^2} & n = 1, 4, 9, 16, 25, 36, \dots \\ 0 & \text{otherwise} \end{cases}$$
 and $z_n = \frac{3n+1}{n+2}$.

- (a) [10p] Find the first 10 terms of (y_n) . [HINT: The first 10 terms of $a_n = \frac{1}{n}$ are $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{9}$ and $\frac{1}{10}$.]
- (b) [10p] Plot the first 10 terms of (y_n) on a graph.
- (c) [30p] Use the definition to prove that $y_n \to 0$ as $n \to \infty$.
- (d) [30p] Use the definition to prove that $z_n \to 3$ as $n \to \infty$.

Ödev 2'nin çözümleri

- 4. (a) Let A>0. Choose $N>\max\{3,A\}$. Then $n>N \implies |u_n|\geq n!-n^2=n\big((n-1)!-n\big)\geq n(1)>N>A$. Therefore $u_n\to\infty$ as $n\to\infty$.
 - (b) Let A > 0. Choose N > 3A. Then $n > N \implies |v_n| = \left| \frac{n+7}{2+\sin n} \right| \ge \frac{n+7}{3} \ge \frac{n}{3} > \frac{N}{3} > A$. Therefore $v_n \to \infty$ as $n \to \infty$.
 - (c) First note that since $1<(1+\frac{1}{n})\leq 2$ for all $n\in\mathbb{N}$, we know that $0<\log(1+\frac{1}{n})\leq \log 2<1$ for all n. Let A>0. Choose $N\geq A+2$. Then for all n>N, $w_n=n-\log(1+\frac{1}{n})>n-2>N-2\geq A$. Therefore $w_n\to\infty$ as $n\to\infty$.
- 5. Let A>0. Since $a_n\to\infty$ as $n\to\infty$, there exists $N\in\mathbb{N}$ such that $n>N\implies a_n>A+c$. But then $n>N\implies a_n-c>A$. Therefore $a_n-c\to\infty$ as $n\to\infty$.