THE AUDITRANSCRIBE FILE FORMAT SPECIFICATION

Version 0.2.0

This document serves two purposes.

- 1. To give a detailed explanation for the AudiTranscribe file format and how it is meant to be used.
- 2. To assist developers and contributors in understanding how to process and format their data into the required specification.

The remainder of this document is separated into the following parts.

General File Format	2
Header Section	3
Section 1. Q-Transform Data Section	3
Section 2. Audio Data Section	3
Section 3. GUI Data Section	4
Redundancy Section	4
End-Of-File Section	5

General File Format

An AudiTranscribe file ends with the extension .audt. The file is a binary file containing binary data that can be understood by AudiTranscribe internals.

Notes on the convention of the format described below:

- A sequence of 4 bytes, such as 12 34 56 AB, will be written as one 16-bit hexadecimal number, such as $0 \times 123456 AB$. The $0 \times$ denotes that the number is in hexadecimal.
- Sections of data separated by two newlines (not in byte form, but just what is shown) should be **joined together** in the actual file.
- Boxed sections denote arbitrary data. These sections are labelled with the supposed data that should be in these sections.

Here's an example file.

```
0x41554449 0x5452414E 0x53435249 0x42450A0A
0xAD75C1BE 0x00000ABC 0x0000EF12 0xE05E05E5
0x0000001
0xC05EDCCC 0xCCCCCCD 0x40C34A45 0x87E7C06E
0x0013579B
Q-Transform data goes here
0xE05E05E5
0x00000002
0x002468AC
Audio data goes here
0x40e58880 0x0000000
0xE05E05E5
0x0000003
0x000000B
0x00000009
0x00029300 0x29394010
0x0000001 0x03918939
0x00000004 0x0812BA23
0x00012345 [FILE NAME DATA]
0x000493E0 0x00018324
0xE05E05E5
Other binary data goes here
OxEOFEOFEF OxEOFEOFEF
0x0139ACE9
```

Here are some things to note about the bytes present within the provided file.

- The 4 bytes 0xE05E05E5 are used to delimitate data sections.
- The 8 bytes <code>0xE0FE0FEF</code> <code>0xE0FE0FEF</code> are used to mark the end of the file. These 8 bytes should only appear at the end of the file.

• The last value 0x0139ACE9 is a checksum for the file. This checksum is the sum of all bytes of the file, but modulo 2³². This is equivalent to getting the byte representation of the integer sum of all the bytes in the file.

Header Section

The header section corresponds to the following 32 bytes in the example file given.

0x41554449 0x5452414E 0x53435249 0x42450A0A 0xAD75C1BE 0x00000ABC 0x0000EF12 0xE05E05E5

- The first 16 bytes, 0x41554449 0x5452414E 0x53435249 0x42450A0A, decodes to the string AUDITRANSCRIBE\n\n when decoded in ASCII. The \n's present are line breaks.
- The following 4 bytes (0xAD75C1BE) are the AudiTranscribe signature. After the two line breaks, these 4 bytes are to follow the first 16 bytes.
- The next 4 bytes (0x00000ABC) correspond to the version number of the file format specification.
- The following 4 bytes (0x0000EF12) describe the version number of the LZ4 compression algorithm.
 - The <u>LZ4 compression algorithm</u> is a lossless data compression algorithm focused on compression and decompression speed.
- The final 4 bytes (0xE05E05E5) correspond to the end-of-section delimiter.

These 32 bytes are to be present in every AudiTranscribe file, the first 20 of which **must be exactly what is shown here**.

Section 1. Q-Transform Data Section

The Q-Transform data section corresponds to the following lines in the example file given.

0x00000001
0xC05EDCCC 0xCCCCCCD 0x40C34A45 0x87E7C06E
0x0013579B

Q-Transform data goes here
0xE05E05E5

- The first 4 bytes (0x0000001) correspond to the section ID. The Q-Transform data section has **section ID 1**.
- The next 8 bytes (0xC05EDCCC 0xCCCCCCD) correspond to the smallest magnitude value present in the (decompressed) Q-transform matrix.
- The following 8 bytes (0x40C34A45 0x87E7C06E) correspond to the <u>largest</u> magnitude value present in the (decompressed) Q-transform matrix.
- The next 4 bytes (0x0013579B) correspond to the number of bytes that are used to store the LZ4 compressed Q-Transform data.
- The next 0x0013579B bytes represent the LZ4 compressed Q-Transform data. The program will decode this data to retrieve the original Q-Transform data from the LZ4 compressed version.
- The final 4 bytes (0xE05E05E5) correspond to the end-of-section delimiter.

Section 2. Audio Data Section

The audio data section corresponds to the following lines in the example file given.

0x00000002 0x002468AC Audio data goes here 0x40e58880 0x00000000 0xE05E05E5

- The first 4 bytes (0x0000002) correspond to the section ID. The audio data section has section ID 2.
- The next 4 bytes (0x002468AC) correspond to the number of bytes that are used to store the audio data.
- The following 0x002468AC bytes are the compressed audio data.
- The next 8 bytes after that (0x40e58880 0x0000000) represent the sample rate of the audio file.
- The final 4 bytes (0xE05E05E5) correspond to the end-of-section delimiter.

Section 3. GUI Data Section

The GUI data section corresponds to the following lines in the example file given.

```
0x00000003

0x00000008

0x00000009

0x000029300 0x29394010

0x00000001 0x03918939

0x00000004 0x0812BA23

0x00012345 [FILE NAME DATA]

0x000493E0 0x00018324

0xE05E05E5
```

- The first 4 bytes (0x00000003) correspond to the section ID. The GUI data section has section ID 3.
- The next 4 bytes $(0 \times 0000000B)$ correspond to the music key index. This will be the index of the music key in the dropdown menu shown in the application.
- The following 4 bytes (0×00000009) represent the time signature index. This will be the index of the time signature in the dropdown menu shown in the application.
- The next 8 bytes (0x00029300 0x29394010) represent the beats per minute (BPM). This is a **double** value.
- The following 8 bytes (0x00000001 0x03918939) represent the offset seconds. This is a double value.
- The next 8 bytes (0x0000004 0x0812BA23) represent the playback volume. This is a **double** value.
- The next 4 bytes (0×00012345) correspond to the number of bytes needed to store the original audio file's name.
- The next 0x00012345 bytes is the original audio file's name.
- The next 4 bytes (0x000493E0) represent the total duration of the audio file in milliseconds as an integer.
- The next 4 bytes (0x00018324) represent is the current time when playing the audio file **in milliseconds** as an integer. This is when playback will continue.
- The final 4 bytes (0xE05E05E5) correspond to the end-of-section delimiter.

Redundancy Section

The redundancy section corresponds to the following lines in the example file given.

Other binary data goes here

Currently, this section should be empty. This section will only be filled/updated if more features need to be added to the application and file specification.

End-Of-File Section

The end-of-file section should always consist of 12 bytes.

0xE0FE0FEF 0xE0FE0FEF 0x0139ACE9

- The first 8 bytes (0xE0FE0FEF 0xE0FE0FEF) is the sentinel value for the AudiTranscribe file decoders to understand that they reached the end of the file. These 8 bytes should only appear at the end of the file.
- The last 4 bytes (0x0139ace9) correspond to the checksum value, as explained in the General File Format.

- END OF DOCUMENT -