

## AMENDMENTS TO THE CLAIMS

1. (currently amended) A process for preparing isotactic 1-butene copolymers ~~having a content up to 30% by mol of units derived from at least one alpha olefin of formula CH<sub>2</sub>=CHZ, wherein Z is a C<sub>3</sub>-C<sub>20</sub> hydrocarbon group, the process comprising contacting 1-butene and the at least one alpha olefin of formula CH<sub>2</sub>=CHZ, wherein Z is a C<sub>3</sub>-C<sub>20</sub> hydrocarbon group~~ under polymerization conditions, in the presence of a catalyst system obtained by contacting:

- a) at least a metallocene compound of formula (I):



(I)

wherein

M is a transition metal belonging to group 3, 4, 5, 6 or to the lanthanide or actinide groups in the Periodic Table of the Elements;

p is an integer from 0 to 3, being equal to the formal oxidation state of the metal M minus 2;

X, equal to or different from each other, are hydrogen atoms, halogen atoms, or R, OR, OSO<sub>2</sub>CF<sub>3</sub>, OCOR, SR, NR<sub>2</sub> or PR<sub>2</sub> groups, wherein R is a linear or branched, saturated or unsaturated C<sub>1</sub>-C<sub>20</sub> alkyl, C<sub>3</sub>-C<sub>20</sub> cycloalkyl, C<sub>6</sub>-C<sub>20</sub> aryl, C<sub>7</sub>-C<sub>20</sub> alkylaryl or C<sub>7</sub>-C<sub>20</sub> arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two X can optionally form a substituted or unsubstituted butadienyl radical or a OR'O group wherein R' is a divalent radical selected from C<sub>1</sub>-C<sub>20</sub> alkylidene, C<sub>6</sub>-C<sub>40</sub> arylidene, C<sub>7</sub>-C<sub>40</sub> alkylarylidene and C<sub>7</sub>-C<sub>40</sub> arylalkylidene radicals;

L is a divalent bridging group selected from C<sub>1</sub>-C<sub>20</sub> alkylidene, C<sub>3</sub>-C<sub>20</sub> cycloalkylidene, C<sub>6</sub>-C<sub>20</sub> arylidene, C<sub>7</sub>-C<sub>20</sub> alkylarylidene, and C<sub>7</sub>-C<sub>20</sub> arylalkylidene radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, and silylidene radical containing up to 5 silicon atoms;

R<sup>1</sup> and R<sup>3</sup>, equal to or different from each other, are linear or branched, saturated or unsaturated C<sub>1</sub>-C<sub>20</sub> alkyl, C<sub>3</sub>-C<sub>20</sub> cycloalkyl, C<sub>6</sub>-C<sub>20</sub> aryl, C<sub>7</sub>-C<sub>20</sub> alkylaryl or C<sub>7</sub>-C<sub>20</sub> arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R<sup>2</sup> and R<sup>4</sup>, equal to or different from each other, are hydrogen atoms or linear or branched, saturated or unsaturated C<sub>1</sub>-C<sub>20</sub> alkyl, C<sub>3</sub>-C<sub>20</sub> cycloalkyl, C<sub>6</sub>-C<sub>20</sub> aryl, C<sub>7</sub>-C<sub>20</sub> alkylaryl or C<sub>7</sub>-C<sub>20</sub> arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

T<sup>1</sup> and T<sup>2</sup>, equal to or different from each other are a moiety of formula (II), (III) or (IV):



(II)



(III)



(IV)

wherein the atom marked with the \* is bound to the atom marked with the same symbol bonds in formula (I);

R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup> and R<sup>9</sup>, equal to or different from each other, are hydrogen atoms, or a linear or branched saturated or unsaturated C<sub>1</sub>-C<sub>20</sub>-alkyl, C<sub>3</sub>-C<sub>20</sub>-cycloalkyl, C<sub>6</sub>-C<sub>40</sub>-aryl, C<sub>7</sub>-C<sub>40</sub>-alkylaryl, C<sub>7</sub>-C<sub>40</sub>-arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R<sup>6</sup> and R<sup>7</sup> can also join to form a saturated or unsaturated condensed 5 to 7 membered ring optionally containing heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements; and

- b) at least an alumoxane or a compound that forms an alkylmetallocene cation,  
wherein an alpha olefin content of the isotactic 1-butene copolymer is at most 30% by mol.

2 (previously presented) The process according to claim 1 wherein the catalyst system further comprises an organo aluminum compound.

3 (previously presented) The process according to claim 1 wherein in the compound of formula (I), M is titanium, zirconium or hafnium; X is a hydrogen atom, a halogen atom or a R group; L is selected from the group consisting of  $\text{Si}(\text{CH}_3)_2$ ,  $\text{SiPh}_2$ ,  $\text{SiPhMe}$ ,  $\text{SiMe}(\text{SiMe}_3)$ ,  $\text{CH}_2$ ,  $(\text{CH}_2)_2$ ,  $(\text{CH}_2)_3$  and  $\text{C}(\text{CH}_3)_2$  and  $\text{R}^9$  is a hydrogen atom or a linear or branched saturated or unsaturated  $\text{C}_1\text{-C}_{20}$ -alkyl radical.

4 (previously presented) The process according to claim 1 wherein the metallocene compound has formula (V):



(V)

wherein

$\text{R}^{10}$ , equal to or different from each other, are hydrogen atoms, or linear or branched saturated or unsaturated  $\text{C}_1\text{-C}_{19}$ -alkyl,  $\text{C}_3\text{-C}_{19}$ -cycloalkyl,  $\text{C}_6\text{-C}_{19}$ -aryl,  $\text{C}_7\text{-C}_{19}$ -alkylaryl,  $\text{C}_7\text{-C}_{19}$ -arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

$\text{T}^3$  and  $\text{T}^4$ , equal to or different from each other are moieties of formula (Va), (Vb) or (Vc):



(Va)



(Vb)



(Vc)

wherein the atom marked with the symbol \* is bound to the atom marked with the same symbol in formula (V).

5 (previously presented) The process according to claim 4 wherein in the compound of formula (V), R<sup>10</sup> is a hydrogen atom or a C<sub>1</sub>-C<sub>19</sub>-alkyl radical; R<sup>6</sup>, R<sup>7</sup> are hydrogen atoms or linear or branched saturated or unsaturated C<sub>1</sub>-C<sub>20</sub>-alkyl radicals, or they form a saturated or unsaturated 5 or 6 membered ring optionally containing heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements; and R<sup>9</sup> is a linear or branched saturated or unsaturated C<sub>1</sub>-C<sub>20</sub>-alkyl radical.

6 (previously presented) The process according to claim 1 wherein the metallocene compound has formula (VI):



(VI)

wherein R<sup>10</sup>, equal to or different from each other, are hydrogen atoms, or linear or branched saturated or unsaturated C<sub>1</sub>-C<sub>19</sub>-alkyl, C<sub>3</sub>-C<sub>19</sub>-cycloalkyl, C<sub>6</sub>-C<sub>19</sub>-aryl, C<sub>7</sub>-C<sub>19</sub>-alkylaryl, C<sub>7</sub>-C<sub>19</sub>-arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

T<sup>5</sup> and T<sup>6</sup>, equal to or different from each other are a moiety of formula (VIa), (VIb) or (VIc):



(VIa)



(VIb)



(VIc)

wherein the atom marked with the symbol \* is bound to the atom marked with the same symbol in formula (VI);

$R^{11}$ ,  $R^{12}$ ,  $R^{13}$ ,  $R^{14}$ , and  $R^{15}$ , equal to or different from each other, are hydrogen atoms or linear or branched saturated or unsaturated  $C_1-C_{20}$ -alkyl,  $C_3-C_{20}$ -cycloalkyl,  $C_6-C_{20}$ -aryl,  $C_7-C_{20}$ -alkylaryl,  $C_7-C_{20}$ -arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, or two adjacent groups form together a saturated or unsaturated condensed 5 or 6 membered ring optionally containing heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements.

- 7 (previously presented) The process according to claim 6 wherein  $R^6$  and  $R^7$  are hydrogen atoms or linear or branched saturated or unsaturated  $C_1-C_{20}$ -alkyl radicals; or they form a saturated or unsaturated 5 or 6 membered ring optionally containing heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements;  $R^9$  is a hydrogen atom or a linear or branched saturated or unsaturated  $C_1-C_{20}$ -alkyl radical;  $R^{11}$  is a  $C_1-C_{20}$ -alkyl radical;  $R^{14}$  is a hydrogen atom or a  $C_1-C_{20}$ -alkyl radical; and  $R^{12}$ ,  $R^{13}$  and  $R^{15}$  are hydrogen atoms.
- 8 (previously presented) The process according to claim 1 wherein the alpha-olefin is selected from 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 4,6-dimethyl-1-heptene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene.
- 9 (previously presented) The process according to claim 8 wherein the alpha-olefin is selected from 1-pentene, 1-hexene and 1-octene.
- 10 (previously presented) The process according to claim 1 wherein the content of the at least one alpha olefin derived units in the copolymer is from 2% to 20% by mol.
- 11 (withdrawn) An isotactic 1-butene copolymer having a content up to 30% by mol of at least one alpha-olefin of formula  $CH_2=CHZ$  derived units, wherein Z is a  $C_3-C_{20}$  hydrocarbon group having the following features:
  - (i) isotactic pentads (mmmm) >90%; and
  - (ii) a percentage of soluble fraction in diethylether (%SD) and a molar content of said alpha olefins (%O) in the polymer chain meeting the following relation:
$$\%SD > 2.8\%O + 8.$$
- 12 (withdrawn) The isotactic 1-butene copolymer according to claim 11 wherein the percentage of soluble fraction content in diethylether (%SD) and the molar content of said alpha olefins (%O) in the polymer chain meet the following relation:

%SD>2.8%O + 10.

13. (withdrawn) The isotactic 1-butene copolymer according to claim 11 wherein the content of alpha-olefin derived units are comprised between 10% and 30% by mol and the percentage of soluble fraction in diethylether >92%.
14. (withdrawn) The isotactic 1-butene copolymer according to claim 11 wherein the content of alpha-olefin derived units are comprised between 5% and 12% by mol and the percentage of soluble fraction in diethylether >41%.
15. (withdrawn) An isotactic 1-butene copolymer having a content up to 30% by mol of units derived from at least one alpha olefin of formula  $\text{CH}_2=\text{CHZ}$ , wherein Z is a C<sub>3</sub>-C<sub>20</sub> hydrocarbon group having the following features:
  - (i) isotactic pentads (mmmm) >90%; and
  - (ii) presence of 4,1 insertions in the polymer chain.
16. (withdrawn) An isotactic 1-butene copolymer having a content up to 30% by mol of at least one alpha-olefin of formula  $\text{CH}_2=\text{CHZ}$  derived units, wherein Z is a C<sub>3</sub>-C<sub>20</sub> hydrocarbon group having the following features:
  - (i) isotactic pentads (mmmm) >90%; and
  - (ii) a percentage of soluble fraction in diethylether (%SD) and a molar content of said alpha olefins (%O) in the polymer chain meeting the following relation:

%SD>2.8%O + 8,

produced by a process comprising contacting 1-butene and the at least one alpha olefin under polymerization conditions, in the presence of a catalyst system obtained by contacting:

- a) at least a metallocene compound of formula (I):



(I)

wherein

M is a transition metal belonging to group 3, 4, 5, 6 or to the lanthanide or actinide groups in the Periodic Table of the Elements;

p is an integer from 0 to 3, being equal to the formal oxidation state of the metal M minus 2;

X, equal to or different from each other, are hydrogen atoms, halogen atoms, or R, OR, OSO<sub>2</sub>CF<sub>3</sub>, OCOR, SR, NR<sub>2</sub> or PR<sub>2</sub> groups, wherein R is a linear or branched, saturated or unsaturated C<sub>1</sub>-C<sub>20</sub> alkyl, C<sub>3</sub>-C<sub>20</sub> cycloalkyl, C<sub>6</sub>-C<sub>20</sub> aryl, C<sub>7</sub>-C<sub>20</sub> alkylaryl or C<sub>7</sub>-C<sub>20</sub> arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two X can optionally form a substituted or unsubstituted butadienyl radical or a OR'O group wherein R' is a divalent radical selected from C<sub>1</sub>-C<sub>20</sub> alkylidene, C<sub>6</sub>-C<sub>40</sub> arylidene, C<sub>7</sub>-C<sub>40</sub> alkylarylidene and C<sub>7</sub>-C<sub>40</sub> arylalkylidene radicals;

L is a divalent bridging group selected from C<sub>1</sub>-C<sub>20</sub> alkylidene, C<sub>3</sub>-C<sub>20</sub> cycloalkylidene, C<sub>6</sub>-C<sub>20</sub> arylidene, C<sub>7</sub>-C<sub>20</sub> alkylarylidene, and C<sub>7</sub>-C<sub>20</sub> arylalkylidene radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, and silylidene radical containing up to 5 silicon atoms;

R<sup>1</sup> and R<sup>3</sup>, equal to or different from each other, are linear or branched, saturated or unsaturated C<sub>1</sub>-C<sub>20</sub> alkyl, C<sub>3</sub>-C<sub>20</sub> cycloalkyl, C<sub>6</sub>-C<sub>20</sub> aryl, C<sub>7</sub>-C<sub>20</sub> alkylaryl or C<sub>7</sub>-C<sub>20</sub> arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R<sup>2</sup> and R<sup>4</sup>, equal to or different from each other, are hydrogen atoms or linear or branched, saturated or unsaturated C<sub>1</sub>-C<sub>20</sub> alkyl, C<sub>3</sub>-C<sub>20</sub> cycloalkyl, C<sub>6</sub>-C<sub>20</sub> aryl, C<sub>7</sub>-C<sub>20</sub> alkylaryl or C<sub>7</sub>-C<sub>20</sub> arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

T<sup>1</sup> and T<sup>2</sup>, equal to or different from each other are a moiety of formula (II), (III) or (IV):



(II)

(III)

(IV)

wherein the atom marked with the \* is bound to the atom marked with the same symbol bonds in formula (I);

R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup> and R<sup>9</sup>, equal to or different from each other, are hydrogen atoms, or a linear or branched saturated or unsaturated C<sub>1</sub>-C<sub>20</sub>-alkyl, C<sub>3</sub>-C<sub>20</sub>-cycloalkyl, C<sub>6</sub>-C<sub>40</sub>-aryl, C<sub>7</sub>-C<sub>40</sub>-alkylaryl, C<sub>7</sub>-C<sub>40</sub>-arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R<sup>6</sup> and R<sup>7</sup> can also join to form a saturated or unsaturated condensed 5 to 7 membered ring optionally containing heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements; and

b) at least an alumoxane or a compound that forms an alkylmetallocene cation.

17. (withdrawn) An isotactic 1-butene copolymer having a content up to 30% by mol of units derived from at least one alpha olefin of formula CH<sub>2</sub>=CHZ, wherein Z is a C<sub>3</sub>-C<sub>20</sub> hydrocarbon group having the following features:

(i) isotactic pentads (mmmm) >90%; and  
(ii) presence of 4,1 insertions in the polymer chain,

produced by a process comprising contacting 1-butene and the at least one alpha olefin under polymerization conditions, in the presence of a catalyst system obtained by contacting:

a) at least a metallocene compound of formula (I):



(I)

wherein

M is a transition metal belonging to group 3, 4, 5, 6 or to the lanthanide or actinide groups in the Periodic Table of the Elements;

p is an integer from 0 to 3, being equal to the formal oxidation state of the metal M minus 2;

X, equal to or different from each other, are hydrogen atoms, halogen atoms, or R, OR, OSO<sub>2</sub>CF<sub>3</sub>, OCOR, SR, NR<sub>2</sub> or PR<sub>2</sub> groups, wherein R is a linear or branched, saturated or unsaturated C<sub>1</sub>-C<sub>20</sub> alkyl, C<sub>3</sub>-C<sub>20</sub> cycloalkyl, C<sub>6</sub>-C<sub>20</sub> aryl, C<sub>7</sub>-C<sub>20</sub> alkylaryl or C<sub>7</sub>-C<sub>20</sub> arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two X can optionally form a substituted or unsubstituted butadienyl radical or a OR'O group wherein R' is a divalent radical selected from C<sub>1</sub>-C<sub>20</sub> alkylidene, C<sub>6</sub>-C<sub>40</sub> arylidene, C<sub>7</sub>-C<sub>40</sub> alkylarylidene and C<sub>7</sub>-C<sub>40</sub> arylalkylidene radicals;

L is a divalent bridging group selected from C<sub>1</sub>-C<sub>20</sub> alkylidene, C<sub>3</sub>-C<sub>20</sub> cycloalkylidene, C<sub>6</sub>-C<sub>20</sub> arylidene, C<sub>7</sub>-C<sub>20</sub> alkylarylidene, and C<sub>7</sub>-C<sub>20</sub> arylalkylidene radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, and silylidene radical containing up to 5 silicon atoms;

R<sup>1</sup> and R<sup>3</sup>, equal to or different from each other, are linear or branched, saturated or unsaturated C<sub>1</sub>-C<sub>20</sub> alkyl, C<sub>3</sub>-C<sub>20</sub> cycloalkyl, C<sub>6</sub>-C<sub>20</sub> aryl, C<sub>7</sub>-C<sub>20</sub> alkylaryl or C<sub>7</sub>-C<sub>20</sub> arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R<sup>2</sup> and R<sup>4</sup>, equal to or different from each other, are hydrogen atoms or linear or branched, saturated or unsaturated C<sub>1</sub>-C<sub>20</sub> alkyl, C<sub>3</sub>-C<sub>20</sub> cycloalkyl, C<sub>6</sub>-C<sub>20</sub> aryl, C<sub>7</sub>-C<sub>20</sub> alkylaryl or C<sub>7</sub>-C<sub>20</sub> arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

T<sup>1</sup> and T<sup>2</sup>, equal to or different from each other are a moiety of formula (II), (III) or (IV):



wherein the atom marked with the \* is bound to the atom marked with the same symbol bonds in formula (I);

$R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$  and  $R^9$ , equal to or different from each other, are hydrogen atoms, or a linear or branched saturated or unsaturated  $C_1$ - $C_{20}$ -alkyl,  $C_3$ - $C_{20}$ -cycloalkyl,  $C_6$ - $C_{40}$ -aryl,  $C_7$ - $C_{40}$ -alkylaryl,  $C_7$ - $C_{40}$ -arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;  $R^6$  and  $R^7$  can also join to form a saturated or unsaturated condensed 5 to 7 membered ring optionally containing heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements; and

b) at least an alumoxane or a compound that forms an alkylmetallocene cation.