Content

- > Submatrine (2D) sum queries
- > Sum of all submattices
- => Man submathin sum (sorted)
- => Search in sorted matrin
- Given int mat [N][M], for each every q.

 CRED find sum of given submatrix.

 Continuous part of
- How is submatrix given in query?

 The first submatrix given in query?

 BL 5,1

 BR 5,5

 Eg-0123

 2-132

$$\frac{eq}{3}$$
 - $\frac{0}{2}$ - $\frac{1}{3}$ - $\frac{2}{3}$ - $\frac{3}{2}$ - $\frac{2}{3}$ - $\frac{6}{2}$ - $\frac{2}{3}$ - $\frac{7}{4}$ - $\frac{8}{3}$ - $\frac{7}{4}$ - $\frac{8}{4}$ - $\frac{7}{4}$ - $\frac{8}{4}$ - $\frac{7}{4}$ - $\frac{8}{4}$ - $\frac{7}{4}$ - $\frac{8}{4}$ - $\frac{7}{4}$ - $\frac{7$

Brute: I terate on the whole submatrix

O Cn*m)

9 queries > O C 9 nm)

Idea: Prefin som

- Assume pf is calculated. Answer Overy.

a, b.

a₁, b₂

bf [a₂, b₂] - bf [a₂] [b,-1]

- bf [a,-1] [b₂]

+ bf [a,-1] [b,-1]

Edge bfled - bfls+13Int sum (int a, int b, a2, b2) dsum = $bfla_1 J lb_2 J$ if $lb_1-1 > 00$ sum - = $bfla_2 J lb_3 - 1J$ if $la_1-1 > 00$ sum - = $bfla_1 - 1J lb_2 J$ if $la_1-1 > 00$ sum + = $bfla_1 - 1J lb_2 J$ Y sum + = $bfla_1 - 1J lb_3 - 1J$ Total Tc: O(n+m+q)

- We can now answel quelies voing pf.
- · How to build pf?

VVV simple

7

Step 1) Apply row-wise prefix som

Step 2) Apply column-wise brokin sum

	20	act bo	aot botco
	a _o +a ₁	author	a. flotco a, flotc
ı	aor aitaz	antho antho	all

I sow wise keepin su

ao	aof bo	aotho t Co
a ₁	9,46,	a, +6, +C,
92	927	a ₂ tb ₂ tC2

column with

ao	a _o + 50	aothor +Co
ag+	90+60 -19,+61	90+60 +Co+9,
a	9096, 9,46, 9246	all

	0	ľ	2
0	1	2	3
/	4	5	6
2	7	8	9

row

l	3	6	
4	9	15	
7	15	24	
		col)

TC: O(h*m)
break
break
break at 8:25

		49	_(
1	3	6	
S	12	2-1	Ì
12	22	45	Γ

Oz Given arr [N][M], Calc sum of all submatrix sums

$$\begin{cases} 2 & 1 \\ -1 & -2 \end{cases} \qquad \begin{cases} 23 - 23 & (3,1) = 4 \\ (1) = 1 & (-1,-2) = -3 \\ (-1) = -1 & (3,1) = 2 \\ (-2) = -2 & (-2) = -1 \end{cases}$$

$$= 1 \qquad \text{fot} = 4$$

Idea from intermediate for I-D alsay
Sum of all subalsay sums >
Contribution Technique

Thus we will use the same technique here. Calculate number of submattices which contain cell (i,j)

0 1 2 3 4 0 1 2 3 4 2 - 2 - 2 - 3 3 4 2 2 3

 $TL = 3 \times 4$ $(2+1) \times (3+1)$ $BR = 3 \times 2$ $(5-2) \times (5-3)$

 $3 \times 4 \times 3 \times 2 = 72$

TLz (i+1) (j+1) BR = (n-i) (m-j)

total no of sub-matrices

= TL x BR

(i+1) (j+1) (n-i) (m-j)

For every TL 2BR, we get unique submattie

Total number =

(i+1) (j+1) (n-i) (m-j)

TC: O(nm) SC: O(1)

Amazon

amazon										
02	9	Sinln	av	rlnj	LMJ	fü	rd	ma	N	sub
	ની	m	· An	rra	y is	sted	JW -	-wi	de	L
	(Col -	-w	ile '	40	rted	as (Endi	ng	
Ga		\mathcal{O}	ſ	2	3		<i>U</i>	1	2	
7	0	-20	1-16	1-4	8	0	-20	-16	1-4	
		-w					-10			
	2	-1	6	21	30	2	-1	6	21	
	3	5	7	28	42	,	·			

Idea 1: Try all submatrices

Total no of submatrices $n(n+1) \times m(m+1)$ $n(m+1) \times m(m+1)$

Obs: Always BR = n-1, m-1TL = no idea

Create pf sum matrin

Try all points h-l, m-las top left Create pf allay and = Integer. Min_Value, for (i=0)i<n;i++) 2 for (j=0)j(m)jtt) ((BR = h-l, m-l)1/16et sum of submatrize ang = mare (sum, ang)

Tc: O(nm) Sc: O(1)

Oy Given row-wise and col-wise sorbed matrix, find b.

	0	1	2	3	4	5		
0	-10	-5	1-2	2	4	7		
	-7	-4	-1	3	6	9	£	2=
2	-2	3	5	7	11	14	J	2
3	3	6	8	115	144	12		
4	7	1/	124	15	19	20		
5	10	14	18	20	24	29		

Brute:

Itelate whole matrize
TC: O(n+m)

Idea: Start at Top right corner

If are Lid Ejd < k

itt

are Lid Cjd > k

bool search (int al)(), int k) L i = 0 i = m - 1while (i < n && j >> 0) ~ if (a(i)(j) == k)return true else if (a[i](j)>k) 11 a GiJCj] < R じナナ return folse

TC: O(n+m) SC: O(1)

m7h

O(m+m) = O(2m)

= O(m)

Ldone J