

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Product description

The BGB741L7ESD is a high performance broadband low noise amplifier (LNA) MMIC based on Infineon's silicon germanium carbon (SiGe:C) bipolar technology.

Feature list

- Minimum noise figure NF_{min} = 1.05 dB at 2.4 GHz, 3 V, 10 mA
- Supply voltage range V_{CC} = 1.8 to 4.0 V at T_A = 25 °C
- High RF input power robustness of 20 dBm
- Integrated ESD protection: 2 kV HBM at all pins

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Potential applications

- Satellite navigation systems (e.g. GPS, GLONASS, BeiDou, Galileo)
- Wireless communications: WLAN 2.4 GHz and 5-6 GHz bands, broadband LTE or WiMAX LNA
- ISM applications like RKE and smart meter, as well as for emerging wireless applications such as DVB-Terrestrial

Device information

Table 1 Part information

Product name / Ordering code	Package Pin configuration		Marking	Pieces / Reel			
BGB741L7ESD /	TSLP-7-1	1 = V _{CC}	2 = V _{Bias}	3 = <i>RF</i> _{in}	$4 = RF_{\text{out}}$	AY	7500
BGB741L7ESDE6327XTSA1		5 = <i>V</i> _{Ctrl}	6 = Current adjust	7 = Ground			

Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Functional block diagram

Functional block diagram

This functional block diagram explains how the BGB707L7ESD is used. The RF power on/off function is controlled by applying $V_{\rm Ctrl}$. By using an external resistor $R_{\rm ext}$, the pre-set current of 5.5 mA (when $R_{\rm ext}$ is omitted) can be increased. Base $V_{\rm B}$ and collector $V_{\rm C}$ voltages are applied to the respective pins $RF_{\rm in}$ and $RF_{\rm out}$ by external inductors $L_{\rm B}$ and $L_{\rm C}$.

Figure 1 Functional block diagram

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Table of contents

Table of contents

	Product description	1
	Feature list	1
	Product validation	1
	Potential applications	1
	Device information	1
	Functional block diagram	2
	Table of contents	3
1	Operating conditions	4
2	Absolute maximum ratings	5
3	Thermal characteristics	6
4	Electrical characteristics	7
4.1	DC characteristics	7
4.2	Characteristic DC diagrams	8
4.3	AC characteristics	10
5	Package information TSLP-7-1	19
	Revision history	21
	Disclaimer	22

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Operating conditions

1 Operating conditions

Table 2 Operation conditions at $T_A = 25$ °C

Parameter	Symbol		Values		Unit	Note or test	
		Min.	Тур.	Max.		condition	
Supply voltage	V _{CC}	1.8	3	4	V	_	
Control voltage in on-mode	V _{Ctrl-on}	1.2	-	V _{CC}			
Control voltage in off-mode	V _{Ctrl-off}	-0.3		0.3			

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Absolute maximum ratings

2 Absolute maximum ratings

Table 3 Absolute maximum ratings at $T_A = 25$ °C (unless otherwise specified)

Parameter	Symbol	Va	lues	Unit	Note or test condition	
		Min.	Max.			
Supply voltage	V _{CC}	_	4	٧	T _A = 25 °C	
			3.5		T _A = -55 °C	
Supply current	I _{CC}		30	mA	_	
DC current at RF _{in}	I _B		3			
Control voltage	V _{Ctrl}		V _{CC}	V		
ESD stress pulse (HBM)	V _{ESD}		+/- 2	kV		
RF input power	P_{RFin}		20	dBm		
Total power dissipation ¹⁾	P _{tot}	1	120	mW	<i>T</i> _S ≤ 117 °C	
Junction temperature	TJ		150	°C	-	
Storage temperature	T_{Stg}	-55				

Attention: Stresses above the max. values listed here may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding only one of these values may cause irreversible damage to the integrated circuit.

 T_S is the soldering point temperature. T_S is measured on the emitter lead at the soldering point of the PCB

Thermal characteristics

3 Thermal characteristics

Table 4 Thermal resistance

Parameter	Symbol	Values		Values		Note or test condition
		Min.	Тур.	Max.		
Junction - soldering point	R _{thJS}	_	275	_	K/W	-

Figure 2 Total power dissipation $P_{\text{tot}} = f(T_S)$

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Electrical characteristics

4 Electrical characteristics

4.1 DC characteristics

Table 5 DC characteristics at $V_{CC} = 3 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$

Parameter	Symbol			Unit	Note or test	
		Min.	Тур.	Max.		condition
Supply current in on-mode	I _{CC-on}				mA	V _{Ctrl} = 3 V
		5.0	5.5	6.5		$R_{\rm ext}$ = open
		_	6	_		$R_{\rm ext} = 30 \text{ k}\Omega$
		_	10	_		$R_{\rm ext} = 3 \text{ k}\Omega$
Supply current in off-mode	I _{CC-off}	_	_	6	μΑ	V _{Ctrl} = 0 V
Control current in on-mode	I _{Ctrl-on}		14	20		V _{Ctrl} = 3 V
Control current in off-mode	I _{Ctrl-off}		_	0.1		V _{Ctrl} = 0 V

Electrical characteristics

4.2 Characteristic DC diagrams

The measurement setup is an application circuit according to *Figure 1* on page 2, using the integrated biasing. $T_A = 25$ °C (unless otherwise specified).

Figure 3 Supply current vs external resistance $I_{CC} = f(R_{ext})$, $V_{Ctrl} = 3 \text{ V}$, $V_{CC} = \text{parameter}$

Figure 4 Supply current vs supply voltage $I_{CC} = f(V_{CC})$, $V_{Ctrl} = 3 \text{ V}$, $R_{ext} = \text{parameter}$

v3.0

Figure 5 Supply current vs control voltage $I_{CC} = f(V_{Ctrl})$, $V_{CC} = 3 \text{ V}$, $R_{ext} = \text{parameter}$

Figure 6 Supply current vs temperature $I_{CC} = f(T_A)$, $V_{Ctrl} = V_{CC} = 3 \text{ V}$, $R_{ext} = \text{open}$

Electrical characteristics

4.3 AC characteristics

The measurement setup is a test fixture with Bias-T's in a 50 Ω system, T_A = 25 °C.

Figure 7 Testing setup

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Table 6 AC characteristics, $V_C = 3 \text{ V}$, f = 150 MHz

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Minimum noise figure 1)	NF _{min}	_	1.05	_	dB	I _C = 6 mA
			0.95			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm S,opt}$
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.1			$I_{\rm C}$ = 6 mA
			1.05			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$
Transducer gain	$ S_{21} ^2$		19			$I_{\rm C}$ = 6 mA
			21			I _C = 10 mA
Maximum stable power gain	G _{ms}		20			$I_{\rm C}$ = 6 mA
			21.5			I _C = 10 mA
Input 1 dB gain compression point	IP _{1dB}		-5.5		dBm	I _{Cq} = 6 mA
			-8			I _{Cq} = 10 mA
Input 3 rd order intercept point	IIP ₃		5.5			$I_{\rm C}$ = 6 mA
			3.5			I _C = 10 mA
Input return loss	RLin		14		dB	I _C = 6 mA
			18			I _C = 10 mA
Output return loss	RLout		12.5			I _C = 6 mA
			18.5			I _C = 10 mA

¹ Test fixture losses are extracted

Parameter measured on an application board according to **Figure 1** on page 2 presenting a 50 Ω system to the device. I_{Cq} is the quiescent current, that is at small RF input power level. I_{C} increases as RF input power level approaches IP_{1dB} .

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Table 7 AC characteristics, $V_C = 3 \text{ V}$, f = 450 MHz

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Minimum noise figure 1)	NF _{min}	_	1.05	_	dB	I _C = 6 mA
			0.95			I _C = 10 mA
						$Z_{S} = Z_{S,opt}$
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.1			I _C = 6 mA
			1.05			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$
Transducer gain	$ S_{21} ^2$		18.5			$I_{\rm C}$ = 6 mA
			20.5			I _C = 10 mA
Maximum available power gain	G _{ma}		19			I _C = 6 mA
			20.5			I _C = 10 mA
Input 1 dB gain compression point	IP _{1dB}		-5		dBm	I _{Cq} = 6 mA
			-7.5			I _{Cq} = 10 mA
Input 3 rd order intercept point	IIP ₃		4			I _C = 6 mA
			2.5			I _C = 10 mA
Input return loss	RLin		15.5		dB	I _C = 6 mA
			21			I _C = 10 mA
Output return loss	RLout		14.5			$I_{\rm C}$ = 6 mA
			28			$I_{\rm C} = 10 {\rm mA}$

¹ Test fixture losses are extracted

Parameter measured on an application board according to **Figure 1** on page 2 presenting a 50 Ω system to the device. I_{Cq} is the quiescent current, that is at small RF input power level. I_{C} increases as RF input power level approaches IP_{1dB} .

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Table 8 AC characteristics, $V_C = 3 \text{ V}$, f = 900 MHz

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Minimum noise figure 1)	NF _{min}	_	1.05	_	dB	I _C = 6 mA
			0.95			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm S,opt}$
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.1			I _C = 6 mA
			1.05			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$
Transducer gain	$ S_{21} ^2$		18.5			$I_{\rm C}$ = 6 mA
			20			I _C = 10 mA
Maximum available power gain	G _{ma}		19			I _C = 6 mA
			20.5			I _C = 10 mA
Input 1 dB gain compression point	IP _{1dB}		-5		dBm	I _{Cq} = 6 mA
			-7			I _{Cq} = 10 mA
Input 3 rd order intercept point	IIP ₃		3			I _C = 6 mA
			1.5			I _C = 10 mA
Input return loss	RLin		15.5		dB	I _C = 6 mA
			19			I _C = 10 mA
Output return loss	RLout		14.5			$I_{\rm C}$ = 6 mA
			28.5			I _C = 10 mA

¹ Test fixture losses are extracted

Parameter measured on an application board according to **Figure 1** on page 2 presenting a 50 Ω system to the device. I_{Cq} is the quiescent current, that is at small RF input power level. I_{C} increases as RF input power level approaches IP_{1dB} .

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Table 9 AC characteristics, $V_C = 3 \text{ V}, f = 1.5 \text{ GHz}$

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Minimum noise figure 1)	NF _{min}	_	1.05	_	dB	I _C = 6 mA
			1.0			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm S,opt}$
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.1			I _C = 6 mA
			1.05			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$
Transducer gain	$ S_{21} ^2$		18			I _C = 6 mA
			19.5			I _C = 10 mA
Maximum available power gain	G _{ma}		18.5			I _C = 6 mA
			20			I _C = 10 mA
Input 1 dB gain compression point	IP _{1dB}		-4.5		dBm	I _{Cq} = 6 mA
			-6.5			I _{Cq} = 10 mA
Input 3 rd order intercept point	IIP ₃		2.5			I _C = 6 mA
			1			I _C = 10 mA
Input return loss	RLin		14.5		dB	I _C = 6 mA
			16			I _C = 10 mA
Output return loss	RLout		14	1		$I_{\rm C}$ = 6 mA
•			23			I _C = 10 mA

¹ Test fixture losses are extracted

Parameter measured on an application board according to **Figure 1** on page 2 presenting a 50 Ω system to the device. I_{Cq} is the quiescent current, that is at small RF input power level. I_{C} increases as RF input power level approaches IP_{1dB} .

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Table 10 AC characteristics, $V_C = 3 \text{ V}, f = 1.9 \text{ GHz}$

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Minimum noise figure 1)	NF _{min}	_	1.05	_	dB	I _C = 6 mA
			1.05			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm S,opt}$
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.15			I _C = 6 mA
			1.1			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$
Transducer gain	$ S_{21} ^2$		17.5			$I_{\rm C}$ = 6 mA
			19			I _C = 10 mA
Maximum available power gain	G _{ma}		18			I _C = 6 mA
			19.5			I _C = 10 mA
Input 1 dB gain compression point	IP _{1dB}		-4		dBm	I _{Cq} = 6 mA
			-6			I _{Cq} = 10 mA
Input 3 rd order intercept point	IIP ₃		2.5			I _C = 6 mA
			1			I _C = 10 mA
Input return loss	RLin		13.5		dB	I _C = 6 mA
			15			I _C = 10 mA
Output return loss	RLout		13.5			I _C = 6 mA
			21			I _C = 10 mA

¹ Test fixture losses are extracted

Parameter measured on an application board according to **Figure 1** on page 2 presenting a 50 Ω system to the device. I_{Cq} is the quiescent current, that is at small RF input power level. I_{C} increases as RF input power level approaches IP_{1dB} .

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Table 11 AC characteristics, $V_C = 3 \text{ V}$, f = 2.4 GHz

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Minimum noise figure 1)	NF _{min}	_	1.1	_	dB	I _C = 6 mA
			1.05			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm S,opt}$
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.15			I _C = 6 mA
			1.1			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$
Transducer gain	$ S_{21} ^2$		17			$I_{\rm C}$ = 6 mA
			18.5			I _C = 10 mA
Maximum available power gain	G _{ma}		17.5			I _C = 6 mA
			19			I _C = 10 mA
Input 1 dB gain compression point	IP _{1dB}		-3.5		dBm	I _{Cq} = 6 mA
			-5.5			I _{Cq} = 10 mA
Input 3 rd order intercept point	IIP ₃		3			I _C = 6 mA
			1			I _C = 10 mA
Input return loss	RLin		12.5		dB	I _C = 6 mA
			13.5			I _C = 10 mA
Output return loss	RLout		12.5	1		$I_{\rm C}$ = 6 mA
·			18			I _C = 10 mA

¹ Test fixture losses are extracted

Parameter measured on an application board according to **Figure 1** on page 2 presenting a 50 Ω system to the device. I_{Cq} is the quiescent current, that is at small RF input power level. I_{C} increases as RF input power level approaches IP_{1dB} .

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Table 12 AC characteristics, $V_C = 3 \text{ V}, f = 3.5 \text{ GHz}$

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Minimum noise figure 1)	NF _{min}	_	1.25	_	dB	I _C = 6 mA
			1.2			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm S,opt}$
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.35			I _C = 6 mA
			1.25			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm L} = 50 \Omega$
Transducer gain	$ S_{21} ^2$		15			I _C = 6 mA
			16.5			I _C = 10 mA
Maximum available power gain	G _{ma}		16			I _C = 6 mA
			17.5			I _C = 10 mA
Input 1 dB gain compression point	IP _{1dB}		-2.5		dBm	I _{Cq} = 6 mA
			-4.5			I _{Cq} = 10 mA
Input 3 rd order intercept point	IIP ₃		3.5			$I_{\rm C}$ = 6 mA
			1.5			I _C = 10 mA
Input return loss	RLin		10		dB	I _C = 6 mA
			10.5			I _C = 10 mA
Output return loss	RLout		10			I _C = 6 mA
			13.5			$I_{\rm C} = 10 {\rm mA}$

¹ Test fixture losses are extracted

Parameter measured on an application board according to **Figure 1** on page 2 presenting a 50 Ω system to the device. I_{Cq} is the quiescent current, that is at small RF input power level. I_{C} increases as RF input power level approaches IP_{1dB} .

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Table 13 AC characteristics, $V_C = 3 \text{ V}, f = 5.5 \text{ GHz}$

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Minimum noise figure 1)	NF _{min}	_	1.8	_	dB	I _C = 6 mA
			1.75			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm S,opt}$
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.95			I _C = 6 mA
			1.85			I _C = 10 mA
						$Z_{\rm S} = Z_{\rm L} = 50 \Omega$
Transducer gain	$ S_{21} ^2$		12			I _C = 6 mA
			13			I _C = 10 mA
Maximum available power gain	G _{ma}		14			I _C = 6 mA
			15			I _C = 10 mA
Input 1 dB gain compression point	IP _{1dB}		-1		dBm	I _{Cq} = 6 mA
			-3			I _{Cq} = 10 mA
Input 3 rd order intercept point	IIP ₃		8.5			$I_{\rm C}$ = 6 mA
			4			I _C = 10 mA
Input return loss	RLin		7		dB	I _C = 6 mA
			8			I _C = 10 mA
Output return loss	RLout		7			I _C = 6 mA
			8.5			$I_{\rm C} = 10 {\rm mA}$

¹ Test fixture losses are extracted

Parameter measured on an application board according to **Figure 1** on page 2 presenting a 50 Ω system to the device. I_{Cq} is the quiescent current, that is at small RF input power level. I_{C} increases as RF input power level approaches IP_{1dB} .

Package information TSLP-7-1

5 Package information TSLP-7-1

Figure 8 Package outline

Figure 9 Foot print

Package information TSLP-7-1

Figure 10 Marking layout example

Figure 11 Tape information

Note: See our Recommendations for Printed Circuit Board Assembly of TSLP/TSSLP/TSNP Packages.

The marking layout is an example. For the real marking code refer to the device information on the first page. The number of characters shown in the layout example is not necessarily the real one. The marking layout can consist of less characters.

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Revision history

Revision history

Document version	Date of release	Description of changes
3.0	2018-09-26	New datasheet layout.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-09-26 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-zev1491985034409

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

BGB 741L7ESD E6327