S.E. (Comp.) (Semester – III) (RC) Examination, May/June 2014 COMPUTER ORIENTED NUMERICAL TECHNIQUES

Duration: 3 Hours Max. Marks: 100 Instructions: 1) Answer 5 full questions by selecting atleast 1 full question from each Module. 2) Assume necessary details. MODULE-1 1. a) Define absolute error, relative error and percentage errors in calculations. Give examples. 4 b) Using false position method, find a root of the function. 8 $f(x) = x^2 - x - 2$ in the range 1 < x < 3. c) Write a algorithm to implement Bisection method of finding roots. Trace the algorithm. 8 2. a) Explain Gauss elimination method of finding roots of simultaneous equations using suitable illustrations. 5 b) Solve the following system of equations by Gauss Jordan method. 8 $3x \div 2v + z = 10$ 2x + 3y + 2z = 14x + 2y + 3z = 14c) Provide an appropriate algorithm for Gauss Elimination with partial pivoting and trace it. 7 MODULE-2 3. a) State and explain any two popular approaches of solving a system of linear eqns. Give highlights, pitfalls and limitations of each method. 5 b) Obtain the solution of the following system using Gauss-seidal iteration method. 5 $2x_1 + x_2 + x_3 = 5$ $3x_1 + 5x_2 + 2x_3 = 15$ $2x_1 + x_2 + 4x_3 = 8$. c) Provide a flowchart to illustrate Gauss seidal method and explain modifications needed in the same to obtain Jocobi method. 10

COMP 3 - 4 (RC)

4.	a)	How is the Newton's Interpolation formula better than Lagrange's formula? Explain.	4
	b)	Find the Lagrange's interpolation polynomial to fit the following data:	8
	c)	Estimate the value of $\sin\theta$ at θ = 25° using Newton Gregory Forward Formula : 0 10 20 30 40 50 $\sin\theta$ 0.1736 0.3420 0.5000 0.6428 0.7660	8
		MODULE - III	
5.	a)	Explain Boundary value and Eigen value problems with suitable illustrations / examples.	5
	b)	Explain applications of numerical differentiation in various fields.	5
	c)	Provide a flow chart for finding derivative using numerical differentiation.	10
6.	a)	Derive Simpson's ¹ / ₃ rd Rule for integration and illustrate.	6
	b)	Evaluate $\int_{-1}^{2} e^{x} dx$ using Simpson's $\frac{1}{3}$ Rule.	6
	c)	Write algorithm to implement trapezoidal rule for integration trace your algorithm.	8
		MODULE - IV	
-	727 8		5
7.		What is a differential equation. Provide applications of the same.	5.0
	b)	Using Taylor's method, solve the following equation recursively $y' = x^2 \div y^2$, $y(0) = 0$	
		for the interval (0, 0.4) using two subintervals of size 0.2.	10
	c)	What are parabolic equations? Explain.	5
8.	a)	What are partial differential equations? Explain with examples.	4
	b)	Compare Elliptic and parabolic equations with examples.	6
	300	Discuss Euler's method for solution of ordinary differential equation. Draw on flow chart for the same and illustrate with suitable example.	10