Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

WATER SUPPLY OUTLOOK FOR NEVADA

and
FEDERAL - STATE - PRIVATE COOPERATIVE SNOW SURVEYS

UNITED STATES DEPARTMENT of AGRICULTURE...SOIL CONSERVATION SERVICE,
and

NEVADA DEPARTMENT of CONSERVATION and NATURAL RESOURCES
DIVISION of WATER RESOURCES

Data included in this report were obtained by the agencies named above in cooperation with Federal, State and private organizations listed on the last page of this report.

TO RECIPIENTS OF WATER SUPPLY OUTLOOK REPORTS:

Most of the usable water in western states originates as mountain snowfall. This snowfall accumulates during the winter and spring, several months before the snow melts and appears as streamflow. Since the runoff from precipitation as snow is delayed, estimates of snowmelt runoff can be made well in advance of its occurrence. Streamflow forecasts published in this report are based principally on measurement of the water equivalent of the mountain snowpack.

Forecasts become more accurate as more of the data affecting runoff are measured. All forecasts assume that climatic factors during the remainder of the snow accumulation and melt season as they affect runoff will add to be an effective average. Early season forecasts are therefore subject to a greater change than those made on later dates.

The snow course measurement is obtained by sampling snow depth and water equivalent at surveyed and marked locations in mountain areas. A total of about ten samples are taken at each location. The average of these are reported as snow depth and water equivalent. These measurements are repeated in the same location near the same dates each year.

Snow surveys are made monthly or semi-monthly from January 1 through June 1 in most states. There are about 1400 snow courses in Western United States and in the Columbia Basin in British Columbia. In the near future, it is anticipated that automatic snow water equivalent sensing devices along with radio telemetry will provide a continuous record of snow water equivalent at key locations.

Detailed data on snow course and soil moisture measurements are presented in state and local reports. Other data or reservoir storage, summaries of precipitation, current streamflow, and soil moisture conditions at valley elevations are also included. The report for Western United States presents a broad picture of water supply outlook conditions, including selected streamflow forecasts, summary of snow accumulation to date, and storage in larger reservoirs.

Snow survey and soil moisture data for the period of record are published by the Soil Conservation Service by states about every five years. Data for the current year is summarized in a West-wide basic data summary and published about October 1 of each year.

PUBLISHED BY SOIL CONSERVATION SERVICE

D. A. WILLIAMS, Administrator

The Soil Conservation Service publishes reports following the principal snow survey dates from January 1 through June 1 in cooperation with state water administrators, agricultural experiment stations and others. Copies of the reports for Western United States and all state reports may be obtained from Soil Conservation Service, Western Regional Technical Service Center, Room 507, 701 N. W. Glisan, Portland, Oregon 97209.

Copies of state and local reports may also be obtained from state offices of the Soil Conservation Service in the following states:

STATE	ADDRESS
Alaska	P. O. Box "F", Palmer, Alaska 99645
Arizona	6029 Federal Building, Phoenix, Arizona 85205
Colorado (N. Mex.)	12417 Federal Building, Denver, Colorado 80202
Idaho	P. O. Box 38, Boise, Idaho 83707
Montana	P. O. Box 98, Bozeman, Montana 59715
Nevada	P. O. Box 4850, Reno Nevada 89505
Oregon	1218 S. W. Washington St., Portland, Oregon 97205
Utah	4012 Federal Building, Salt Lake City, Utah 84111
Washington	360 Federal Office Building, Spokane, Washington 99201
Wyoming	P. O. Box 340, Casper, Wyoming 82602

PUBLISHED BY OTHER AGENCIES

Water Supply Outlook reports prepared by other agencies include a report for California by the Water Supply Forecast and Snow Surveys Unit, California Department of Water Resources, P. O. Box 388, Sacramento, California 95802 --- and for British Columbia by the Department of Lands, Forests and Water Resources, Water Resources, Service, Parliament Building, Victoria, British Columbia

WATER SUPPLY OUTLOOK FOR NEVADA

and FEDERAL - STATE - PRIVATE COOPERATIVE SNOW SURVEYS

Issued by

D.A. WILLIAMS

ADMINISTRATOR
SOIL CONSERVATION SERVICE
WASHINGTON, D.C.

Released by

CHARLES W. CLEARY, JR.

STATE CONSERVATIONIST SOIL CONSERVATION SERVICE RENO, NEVADA

In Cooperation with

ELMO J. DE RICCO

DIRECTOR
DEPARTMENT OF CONSERVATION AND
NATURAL RESOURCES
CARSON CITY, NEVADA

Report prepared by

BOB L. WHALEY, Snow Survey Supervisor and

ROY E. MALSOR, JR., Assistant Snow Survey Supervisor

SOIL CONSERVATION SERVICE P. O. BOX 4850 RENO, NEVADA

INDEX TO NEVADA SNOW COURSES (By Basins)

NUMBER	NAME SNAKE RIVER B		TWP.	RGE.	ELEV.
5 N A K 1	E RIVER		•		
15H1MA 15H2 15H13 15H15A 14H1 15H2Oa 15H14 15H18a 15H18a 15H3A 15H19a	BEAR CREEK FOX CREEK GOAT CREEK HUMMINGBIRO SPRINGS JAKES CREEK MERRITT MOUNTAIN POLE CREEK RANGER STATION REO POINT 76 CREEK 5TAG MTN.	3 1 3 3 3 1 6 6 1 0 1 3 1 5 6 2 9	46 N 46 N 46 N 45 N 42 N 46 N 46 N 47 N 44 N 41 N	588EEEEEEEEEEEEEE	7800 6800 8800 8945 7000 7000 8330 7940 7100 7800
0 WYH! 1 5H 4MP 16H6 a 16H8 a 15H5 16H1M 16H2A 16H4 16H5 17G4a 15H9MP	EE RIVER 81G BENO COLUMBIA BASIN FAWN CREEK GOLO CREEK JACK CREEK, LOWER JACK CREEK, UPPER JACKS PEAK LAUREL ORAW LAUREL ORAW TAYLOR CANYON	3 0 3 1 2 32 1 8 9 2 8 2 0 2 7 3 5	45N 44N 45N 45N 42N 42N 42N 45N 405 39N	56E 53E 56E 53E 53E 53E 53E 53E 44E	6700 6650 7000 6600 6800 7250 8420 6700 6440 6200
	INTERIOR				
UPPE 15J17a 16H6a 15J12A 15J12A 15J17 15J3 15H7 15J9MP 15J10 15J11 15J4 15J5 15J6M 15J7 15J18a 15J18a 15J18a 15H6MP 15J18a 15H6MP 15J184	R HUMBOLOT RIVER AMERICAN BEAUTY COLUMBIA BASIN CORRAL CANYON ORSEY BASIN ORY CREEK FRY CANYON GREEN MOUNTAIN HARRISON PASS #1 HARRISON PASS #2 LAMOILLE #1 LAMOILLE #2 LAMOILLE #3 LAMOILLE #5 POLE CANYON ROBINSON LAKE ROBEO FLAT RYAN RANCH TREMEWAN RANCH TROUT CREEK, LOWER TROUT CREEK, UPPER	3 2 1 2 2 8 5 1 2 2 8 5 1 4 4 2 9 1 1 4 2 2 6 1 9 2 8 4	31N A 44NN A 4295NN A	55556655555555555555555555555555555555	7800 6650 8500 8100 6500 6700 8000 7400 7100 7300 7700 8000 8700 9140 9140 6800 6800 6800 5700 6900 8500
LOWE 17K1 17K2 17K3 17H2 17H1 17J2 17H4 17H5 17L1 17H3 16H3 AP 16H7 17L2	R HUMBOLDT RIVER BIG CREEK CAMP GROUND BIG CREEK MINE BIG CREEK, WINE BUCKSKIN, LOWER BUCKSKIN, LOPPER GOLCONOA #2 GRANITE PEAK LAMANCE CREEK LOWER CORRAL MARTIN CREEK MIOAS TOE JAM A UPPER CORRAL	1 0 2 3 2 6 2 5 1 1 2 2 2 2 1 3 1 2 2 1 8 1 8 2 9 2 0	17N 17N 17N 45N 45N 35N 44N 11N 44N 39N 40N 11N	43EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	6600 7600 8000 6700 8200 6000 7800 6700 7500 6700 7200 7200 8500
	ERN NEVAOA				
1 4L 1 1 4L 2 1 4L 3 1 4K 2 1 4K 1 1 5J 1 3 1 5J 1 4 1 5J 1 5 1 4K 8 1 4K 3 1 5K 1 1 4K 7 1 4K 5 1 5L 1	BAKER #1 BAKER #2 BAKER #2 BAKER #3 BERRY CREEK BIRO CREEK CAVE CREEK HAGER CANYON HOLE-IN-MTN KALAMAZOO CREEK MURRAY 5UMMIT ROBINSON SUMMIT SILVER CREEK #2 WHOTE RIVER #1	2 9 3 0 2 5 2 3 3 4 2 5 3 4 2 6 2 3 3 0 2 5 3 1	13N 13N 13N 17N 19N 27N 27N 26N 16N 16N 15N 13N	998855771521888 6665771521888 6655771521888 6655771521888	7950 8950 9250 9100 7500 7500 8000 7400 7250 7600 8000 7875 7400
	RAL GREAT 8A5IN				
18M2 18M5a 15N2 18M1 18M3 a 18M4 a 15N1	CAMPITO MTN (CAL.) CHICTOVICH FLAT CLARK CANYON MONTGOMERY PASS PINCHOT CREEK PIUTE PASS (CAL.) TROUGH 5PRINGS	1 9 3 2 8 4 2 8 3 3 2 3	55 25 195 1N 1N 45 185	35E 34E 56E 33E 33E 35E	10200 10500 9000 7100 9300 11700 8500
	HERN GREAT 8A5 IN				
19H1 20H5 20H6 18G6 a 18H1 20H3 a 20H7 19H3 19H2 19H4 a 17G5 a 17H6 a 20H4 18G5 B	BALO MOUNTAIN BARBER CREEK (CAL.) CEOAR PASS (CAL.) OENIO CREEK (OREG.) OISASTER PEAK OISMAL 5WAMP (CAL.) EAGLE PEAK (CAL.) 49-MTN HAYS CANYON LITTLE BALLY MTN OREGON CANYON (OREG.) QUINN RIOGE RESERVATIIN CREEK (CAL.) TROUT CREEK (OREG.)	17 23 12 14 8 31 35 7 1 8 9 9	45N 39N 43N 415 47N 48N 40N 42N 45N 46N 415	16E 14E 34E 34E 22E 15E 19E 18E 19E 40E	6720 6500 7100 6000 6500 7200 6000 6400 6400 7240 6300 7800 7800

NUMBER	NAME	550	TWP.	RGE.	ELEV.
		300.	,,,,		CLCV.
19L14 20L5 19L2 19K6 19L3M5Z 20L4 19K4M5TZ 20L3 20L1 20L2 20K16 19L1 20K17M	RUBICON #1 (CAL)	1 9 6 36 13 36 28 18 6 6 6 2 1 21	1 3N 1 1,N 1 2N 1 2N 1 2N 1 2N 1 5N 1 3N 1 3N 1 5N 1 5N 1 5N 1 5N	19EEEEEE18EEE17EEEE	7350 7450 7300 6900 8000 8000 8000 6500 8100 7500 6250 6400 7000 6750
	KEE RIVER				
20K14 20K22 20K21 20K10* 20K8* 20K8 20K4 MP 20K3 19K3 19K3 19K2 20K6 20K19 20K19 20K13M 20K2	BOCA #2 (CAL.) BROCKWAY SUMMIT (CAL.) OONNER PARK #2 (CAL.) OONNER PARK #2 (CAL.) FOROYCE LAKE (CAL.) FURNACE FLAT (CAL.) INOEPENOENCE CAMP (CAL.) INOEPENOENCE CAMP (CAL.) LITTLE VALLEY MT. ROSE 5AGE HEN CREEK (CAL.) SOUAW VALLEY #2 (CAL.) TRUCKEE #2 (CAL.) WEBBER LAKE (CAL.) WEBBER LAKE (CAL.)	28 3 18 25 34 10 34 11 4 9 17 7 7 7 6 22 29 30	18N 17N 17N 17N 18N 19N 19N 18N 16N 17N 18N 17N 18N 17N 19N	17 E E E E E E E E E E E E E E E E E E E	5900 7100 6900 6500 6700 6500 8450 9000 6500 7500 7500
	ON RIVER				
19L5 19L4 19K5 19L19a 19L6A 19L16a 19L20a 19L18a	BLUE LAKES (CAL.) CARSON PASS, UPPER (CAL.) CLEAR CREEK EBBETS PASS (CAL.) POISON FLAT (CAL.) UPPER FISH VALLEY (CAL.) WOLF CREEK (CAL.) WET MEAOOWS LAKE (CAL.)	30 22 6 17 25 18 35 26	9 N 1 O N 1 4 N 8 N 8 N 7 N 8 N 9 N	19E 18E 19E 20E 21E 22E 20E 19E	8000 8600 7300 8700 7900 8050 8000 8100
	ER RIVER				
19L11 19L10 19L12A 18L1 19L8 19L17a 18L2 19L7M 19L23 stz 19M1* 19L13M 19L9 19L9	BUCKEYE FORKS (CAL.) BUCKEYE ROUGHS (CAL.) CENTER MOUNTAIN (CAL.) LAPON MEAGOW LEAVITY MEAGOWS (CAL.) LOBGELL LAKE (CAL.) MT. GRANT SONORA PASS (CAL.) SONORA PASS (CAL.) VIRGINIA LAKES (CAL.) VIRGINIA LAKES (CAL.) VIRGINIA LAKES RIOGE	20 15 4 36 4 20 23 1 6 30 5 21 32	4 N 4 N 8 N 5	233EEEEEEEEEEEEEEE	8500 7900 9400 9200 9200 9000 8800 9800 9500 8250 9200
	COLORADO	5			
	R COLORAGO RIVER				
1 5N 5 1 5N 4 1 5N 3 1 5N 8 1 4M 1 1 4M 2 1 5N 7	KYLE CANYON #1 LEE CANYON #1 LEE CANYON #2 LEE CANYON #3 MATHEW CANYON PINE CANYON RAINBOW CANYON #2	27 10 9 10 10 23	195 195 195 195 65 65 205	56 E 56 E 56 E 70 E 69 E 57 E	8 200 8 400 9 200 8 500 6 000 6 200 8 100

NUMBERING SYSTEM (EXAMPLE)

19K4	5 N O W	COURSE	ONLY					
19K45	SNOW	COURSE	ANO 5	NOW P	ILLO	w		
19K4M	5 N O W	COURSE	ANO 50	OIL M	0 I S T	URE		
19K4A	5 N O W	COURSE	ANO A	ERIAL	MAR	KER		
19K4P	5 N O W	COURSE	ANO 5	TORAG	E PR	ECIPI	TATION	GAGE
19K4MA	5 N O W	COURSE	, SOIL	Mots	TURE	ANO	AERIAL	MARKER
19K4MP		COURSE						
	GAGE							
19K45TZ	5 N O W	COURSE	. SNOW	PILL	O W A	NO TE	EMPERATI	RE RAOLO
		ACTEDED	,					

Lower case letters $m,\,a,\,p,\,s,\,t,\,z,\,$ indicate no snow course, only a soil moisture station, aerial marker, storage precipitation gage, snow pillow, temperature, or radio telemetered.

^{*}LOCATEO ON AOJACENT WATERSHEO

WATER SUPPLY OUTLOOK FOR NEVADA

January 1, 1968

Weather patterns in late November and early December deposited a good cover of snow over most of the state. Cold air masses even caused snow at lower elevations in southern Nevada. Late December warm weather caused much lower-elevation snow to melt before January 1 snow surveys.

Measurements on the Owyhee River showed only a trace of snow, and measurements taken on the Humboldt were only 25 percent of the 1948-62 January 1 average.

Snow surveys on the Tahoe-Truckee watersheds indicate a little less water content in the snow than last year at this time and slightly below the usual amount for January 1, although January 1 measurements have not been taken long enough to establish a 1948-62 average for comparison.

Limited measurements on the Carson-Walker River drainages show only about half as much snow water as last January 1 and about 20 percent below the average for the last six years.

Lower-elevation soils have been well primed by melting snow and rain in the northeastern part of the state and are a little wetter than the last two years. Sierra soils are wetter than last year but not as wet as two years ago.

Reservoir storage is well above average along the Sierra front and should assure water users an adequate supply for the 1968 season. Rye Patch Reservoir has about 50,000 acre-feet of stored water, but, with the low snow pack on the upper watershed, users of water on the Humboldt may be faced with less than average water supplies this year.

Streamflow for the October-December period has varied from 57 percent of average on the Owyhee to 102 percent on the Humboldt. Streams in northern and western Nevada ran well below average in December, while the Virgin River at Littlefield, Arizona, ran 104 percent of average for the month.

Streamflow forecasts will be issued in the February 1 Water Supply Outlook bulletin, and a wider coverage of snow surveys will be taken the last week of January.

NEVADA
STATUS OF RESERVOIR STORAGE

January 1, 1968

				USABLE	STORAGE	- 1000 ACRE F	EET
BASIN AND STREAM	C.	USABLE APACITY 1000 AF)	1968	1967	1966	JAN. 1 15-YR. AVE. 1948-62	CHANGE Since Sept. 30, 1967
Owyhee	Wild Horse	33	4	2	16	11	0
Lower Humboldt	Rye Patch	179	50	68	181	53	- 7
Colorado	Mohave	1,810	1,734	1,574	1,738	1,250 **	+332
Colorado	Mead	27,217	14,338	15,481	15,233	17,944	- 37
Tahoe	Tahoe	732	547	364	602	362	- 59
Truckee	Boca	41	2	2	2	12	- 24
Truckee	Prosser ***	30	10	8	8	Storage began 1/30/6	63 - 9
Carson	Lahontan	286	213	117	229	142	+ 11
West Walker	Topaz	59	50	20	48	23	+ 9
East Walker	Bridgeport	42	38	19	32	20	+ 9

^{*} Reservoir drained during summer 1964 to effect repairs to dam.

TOTAL RESERVOIR STORAGE

Developed from Wild Horse, Rye Patch, Tahoe, Boca, Lahontan, Topaz, and Bridgeport Reservoirs in 1000's Acre Feet

MONTH	1962-63	1963-64	1964-65	1965-66	1966-67	1967-68	AVERAGE 1948-62
October 1 January 1 February 1 March 1 April 1 May 1	338 408 579 690 765 840	702 748 776 774 779 818	497 789 922 949 1002 1103	1136 1110 1050 1038 1055 1092	559 593 736 792 943 978	965 904	572 622 670 725 776 834

TOTAL USABLE CAPACITY 1,372

^{** 1950-62.}

^{***} Flood control use allocation of 20,000 A.F. between November 1 and April 10.

SELECTED PRECIPITATION STATIONS°

	PREC	CIPITATIO	(Inches)		
STATION	LAST MONTH	WATER YEAR ^b TO DATE	STATION	LAST MONTH	WATER YEAR ^b TO DATE
Cedarville (Calif.)	0.63	3.29	Owyhee	1.74	3.15
Tahoe City (Calif.)	4.32	7.87	Elko	0.66	1.53
Meyers (Calif.)	3.82	8.09	Ely	0.69	1.66
Bishop (Calif.)	NA	-	Austin	0.27	0.86
Reno	0.55	0.81	Tonopah	0.23	1.15
Lovelock	0.10	0.52	Caliente	0.88	1.86
Winnemucca	0.32	1.14	Las Vegas	0.82	0.97

SELECTED CURRENT STREAMFLOW STATIONS

January 1, 1968

Owyhee near Owyhee, Nev.

Truckee at Farad, Calif.

W. Walker near Coleville, Calif.

Humboldt at Palisade, Nev.

Carson near Carson City, Nev.

Virgin at Littlefield, Ariz.

NEVADA SNOW SURVEYS

January 1, 1968

			SN	IOW COURSE	MEASUF	REMENTS		
			1968				d Water	Content
Drainage Basin and		Date of	Snow Depth	Water Content				1948 – 62 erage
Snow Course	Elev.		(Inches)	(Inches)	1967	1966		Apr. 1
SNAKE RIVER								,
Bear Creek	7800	12/31/67	26a	8.2	-	4.6a	7.3*	21.0
Goat Creek	8800 8945	12/31/67 12/31/67	18a 25a	5.7	-	3.5a 6.1a	6.6* 6.8*	19.5 * 23.0 *
Hummingbird Springs Pole Creek R. S.	8330	12/29/67	25a 24	7.9 7.6	9.9	4.4	6.5*	20.2 *
Red Point	7940	12/31/67	13a	4.1	-	1.8a	_	-
OWYHEE RIVER								
Big Bend	6700	12/28/67	T	Т	2.7	1.7	3.5*	10.7
Gold Creek Taylor Canyon	6600 6200	12/28/67 12/29/67	0 T	0.0 T	2.2	0.2 2.3	2.2*	6.5 3.7
ray 101 daily 0:1	0200	12/2//01	<u>*</u>	±	J•±	2.7	2.0	J•1
HUMBOLDT RIVER								
Fry Canyon	6700	12/28/67		1.7	3.3	2.5	3.1 *	8.9
Rodeo Flat 76 Creek	6800 7100	12/28/67 12/31/67	T 10a	Т 3.2	2.4	2.4	3.4 *	8.2 14.5*
Tremewan Ranch	5700	12/28/67	T	T	1.0	1.9	0.4*	0.7
LAKE TAHOE-TRUCKEE R	IVER							
Donner Summit	6900	12/28/67	42	14.2	-	-	-	39.5
Echo Summit	7450	12/29/67 12/28/67	34 18	9.8	- 5 2	7.1	-	38.2 12.1
Freel Bench Glenbrook #2	7300 6900	12/20/07		5.0 4.6	5.2 4.6	-	_	13.0
Hagans Meadow	8000	12/28/67	19	5.2	9.1	9.8	-	18.6
Independence Camp	7000	12/27/67	31	8.9	9.0 10.4	-	-	24.4 21.0
Marlette Lake Richardsons #2	8000 6500	12/26/67 12/30/67	28 29	8.5 7.5	6.2	10.9	-	17.9
Tahoe City	6250	12/30/67	20	6.3	4.5	8.4	-	10.8
Truckee #2	6400	12/30/67	24	7.1	- 0	- 6.6	-	16.2 *
Upper Truckee Ward Creek #3	6400 6750	12/28/67 12/28/67	19 43	5.0 12.6	3.8 15.6	-	_	8.4
CARSON-WALKER RIVERS	, ,	, , , , , ,						
Sonora Pass	8800	12/27/67	26	7.5	13.9	14.0	_	23.5
Virginia Lakes	9500	12/26/67	20	5.8	12.3	9.8	-	17.5

Adjusted 15-year average.

Aerial snow depth gage reading; water content estimated.

NEVADA SOIL MCISTURE

January 1, 1968

		PROFIL	E (Inches)	S	SOIL MO	ISTURE		
BASIN AND STATION	Elevation	Depth	Capacity	Date	This Year	Summer 1967	Last Year	2 Years Ago
OWYHEE-HUMBOLDT								
Big Bend	6700	48	16.7	12/28/67	14.7	15.0	15.5	14.6
Rodeo Flat	6800	42	11.0	12/28/67	10.4	9.9	9.1	10.6
Taylor Canyon	6200	48	15.1	12/29/67	14.5	11.3	11.6	12.4
TAHOE-TRUCKEE								
Independence Camp	7000	34	6.1	12/27/67	4.9	3.1	5.5	-
Marlette Lake	8000	50	3.7	12/26/67	2.5	1.2	2.7	
Ward Creek	7000	49	5.8	12/28/67	4.8	1.1	5.5	-

INCHES OF WATER IN SNOAPACK

Ē		=	-1-		_	1	1=	: 1:			E	=1=	!				E																									
		ŧ														三		=		=			\equiv				=			=			=	_			==	!=	三	=		=
		Ŧ																																=			=					
		E												=	=		E	=		\equiv	-	-	三	Ē	İΞ																	=
	t=	E														Ξ	E			-	=	=	=																			
ES	? =	E			H	>																																				
EÓ	5 =	#			7	Ş	7	3	N							E		Ε		듵	=	=			-							=				=	-		-			
	Ξ	ŧ			F	3	کے	1	٠́				:		\equiv		\equiv		=			E		\equiv							=	=			=				E			\equiv
ĒΖ	Ξ	=		3	,	T.	5	2	at				;	==				-	-																		-	=				
Eω	; =	E		HAGANS MEADOW	1-	AUTOMATIC SNOW PILLOW	INTO+ONON	ט	Elevation													\equiv									\equiv					=	=		=	=		=
Ess	5 =	<u> </u>		区	ζ	3	7	ช	ij																																	
EO	5 4	\$`		2	ć	ฎี	15		H				:			=					=		\equiv																E			=
= 2	3	È		33		,	0	ש	٦				:	\equiv	=	\equiv			=			\equiv	三										\equiv			=	三	=	=			
	2.			A	È	Ħ	2	777	ĕ				:		=				E		\equiv	E									-	=					=		=			
Ξc	5	Ş		AG	\ \ \	A	Toke Tohoo	ד	Feet										-				-									\equiv							=	-		
=0	Ò	-		口	2	뒥	_	13	8000																						- 1											
= 00	=	Ė			È	\exists	کہ	4	ŏ																							-										
<u>-</u> >	- =	±			, t	₽ C	ر	7 1	ω						=		三	=	=			=	三												==		=		-	=		
==	=												3	Quites som		-	=	-									-					-			-	=	+		-	-		
DALLY 8:00 A.M OBSERVATIONS		F																-	=				=							\equiv		\equiv					=			=		
-	-	E																									=								=	=	三			E		=
	E	F																																								
		ŧ															Ξ		1=						E												E		E	E		
	!=	-		7-			1=	1				-1-							三	E			=										=							-		
	1							+			E			_	=		\equiv	\equiv	1=																				E	三		=
	1		₽		=			F			-			=								三							\equiv		== ;	=				=	E		E	=		\equiv
	E										-						-						{=				\equiv				-				=			==	=			
	-		-					+																								_}			-							
	=		=					- -																																		
	<u> </u>		-				-	+			Ė	-		=					亖			=										==					E		=	-		
		=	E				=	1			E	Ė		=								E										\equiv		=			-		巨	=		
		=	+		=						=	+																				\equiv							E			
	E	=	E	-			E	İ	=			-		==		=						=	=														三					
			-				-												1															=						\equiv		
			=								-									-			=									\equiv				=	===					
							1	-			=	- -																														
	1	=					1	+			E	İ				=	-		1=	E			\equiv													-	E	=	=			Ξ
District		-	-				1	-			Ξ	Ļ							-			=	=	-						-	=			\equiv			=	\equiv	-			
	-	-			_		=	F	-		1	-										-	-									\equiv							-			
											=	-{-																														
		=	+-		-		-				E				=		-	=	Ė				=																			
		E		+			=				E			\equiv	==	=			E			=	三																=			
	=		Ė		\equiv	Ξ		+			E		井		=		1=	Ξ		E		E		E							\equiv	\equiv							\equiv	-		
	-	1=	‡=	+			E	Ŧ			Ε		=				=		-	-		E	旨	=				=			\equiv				=	=		!=				
				-								-					=		-																				=			
											E	-		=																				_								
			-		2,000		-		va- 9		t			~=	-		-			-											_	=!										
	E		-	+				+			=	-							-														\equiv						\equiv	E		\equiv
	E						=	İ										=		E		=															=		-			
	E	E	-	+			-	-																							=								; =	E		
		=		T				1										1				-																	=			
		E		F			-										ΙΞ																						.711			
		E	F					1			-	-				1=		-	Ē																				3			
		Ē	E	-			=	İ			-					-	E					=		==							\equiv	\equiv	==									
			E			Ξ	-	+			-							E	=				=																	>		
		=	1=	1	=		-	-			1	+						=	=	=		E									$\equiv \mid$					=						
>-	trace.	-		-		*****		-		w.,50	-	-					-	-	-	-		-	-										=		= {	=						
	-	=	-		==						1												-							=					\equiv						(
		=	1=	-			-	-			E							E	=				} =					=		=												
			F	1			İ	-			=						ŧΞ	1	-	ΙΞ		ţ																				
		E						T			-	1						-					i		-	-	=	=		\equiv		$\equiv 1$									= /	=
				-											=		E		-		-	1					=									=						
	E		-					F			E					!=				E		E	=							==											$\equiv \langle$	$\equiv 1$
=		=					ļ.	1		=				=							-	=								==[=				= }
	=		E	Ė			-	-			1-					E	=		=		-		=											=		= 7						E
	[=							-			F	-					=			1								-														5
_					1	٠						09					(3					<u>.</u>				(2				20					<u></u>)				0

INCHES OF WATER IN SNOWPACK

Agencies Cooperating in Collecting Data Contained in this Bulletin

FEDERAL

Agricultural Research Service
Army
Bureau of Reclamation
Fish and Wildlife Service
Forest Service
Geological Survey
Navy
Soil Conservation Service
U.S. District Court - Federal Water Master
Weather Bureau

STATE

California Cooperative Snow Surveys
California Department of Parks and Recreation
California Department of Water Resources
Colorado River Commission of Nevada
Idaho Cooperative Snow Surveys
Nevada Association of Soil Conservation Districts
Nevada Cooperative Snow Surveys
Nevada Department of Conservation & Natural Resources
Division of Water Resources
Nevada State Forester-Firewarden
Oregon Cooperative Snow Surveys
University of Nevada
Utah Cooperative Snow Surveys
White Mountain Research Station, Univ. of California

PRIVATE

Amalgamated Sugar Company
Kennecott Copper Corporation
Nevada Irrigation District
Owyhee Project North Board of Control
Owyhee Project South Board of Control
Pacific Gas & Electric Company
Pershing County Water Conservation District
Sierra Pacific Power Company
Squaw Valley Development Company
Truckee-Carson Irrigation District
Walker River Irrigation District
Washoe County Water Conservation District

Other organizations and individuals furnish valuable information for the snow survey reports. Their Cooperation is gratefully acknowledged.

STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE P.O. Box 4850 UNITED

RENO, NEVADA 89505

OFFICIAL BUSINESS

COOPERATIVE SNOW SURVEYS FEDERAL - STATE - PRIVATE

domestic and municipal water supply, hydro-electric power water supply for irrigation, necessary for forecasting generation, navigation, Furnishes the basic data mining and industry "The Conservation of Water begins with the Snow Survey"

POSTAGE AND FEES PAID S. DEPARTMENT OF AGRICULTURE . o

445