Methods comparison for graphs

Ksenofontov Gregory

MIPT

September 30, 2023

Main idea of Riemannian approach

Let we have EEG trial $X \in \mathbb{R}^{C \times T}$, a record of C electrodes with T time samples. And the record follows multivariate normal model, i.e. $X \sim \mathcal{N}(0, \Sigma)$, where $\Sigma \in \mathbb{R}^{C \times C}$.

Information theory gives us metric, the Fisher information, for probability distributions. As probability distributions belong on Riemann manifold, with such metric we can define Riemann distance δ_R between distributions. Let we have $X_1 \sim \mathcal{N}(0, \Sigma_1)$ and $X_2 \sim \mathcal{N}(0, \Sigma_2)$ the distance would be:

$$\delta_{R}(\Sigma_{1}, \Sigma_{2}) = ||\log(\Sigma_{1}^{-1/2} \Sigma_{2} \Sigma_{1}^{-1/2})||_{F} = \left[\sum_{c=1}^{C} \log^{2} \lambda_{c}\right]^{1/2}, \quad (1)$$

where λ_c - all eigenvalues of $\Sigma_1^{-1/2}\Sigma_2\Sigma_1^{-1/2}$

Minimum Distance to Riemannian Mean (MDM)

Let we have dataset $X_i \sim \mathcal{N}(0, \Sigma_i)$ and corresponding labels $y_i \in \{1: T_c\}$. The training process is computing the covariance matrix for each T_c classes using Riemann geometric mean:

$$\overline{\Sigma}_{K} = \mathcal{G}(\Sigma_{i}|y_{i} = K) = \arg\min_{\Sigma \in P(n)} \sum_{i} \delta_{R}^{2}(\Sigma, \Sigma_{i}), \tag{2}$$

where $K \in [1 : T_c]$ - class label The inference is finding of minimum distance, i.e.

$$\hat{y} = \arg\min_{K} \delta_{R}(\overline{\Sigma}_{K}, \Sigma) \tag{3}$$

Other methods¹ introduces more complex representation of covariance matrices.

¹A Plug&Play P300 BCI Using Information Geometry

Comparison

Strengths	Weaknesses
Riemannian approach	
Less data to learn	Complexity depends on C
Easy to understand	No connection between electrodes
	Only classification?
Graph Laplacian approach	
Uses connection	Uses diff equations
	Complex inference

Table: Comparison of approaches