

INTRODUCTION TO MACHINE LEARNING

MUSTAFA ALDEMIR, INTEL TURKEY

AI IS THE NEW ELECTRICITY

«Just as electricity transformed almost everything 100 years ago, today I actually have a hard time thinking of an industry that I don't think AI will transform in the next several years.»

Dr. Andrew Ng

OUTLINE

- Introduction to Data Science
- Introduction to Machine Learning
 - Supervised Learning
 - Unsupervised Learning
- Some Implementation

Q&A

- Introduction to Deep Learning
 - Artificial Neural Networks
 - Convolutional Neural Networks
- Intel Deep Learning Training Tool
 - Installing
 - Using
- Q&A

WHAT IS DATA SCIENCE?

The science of extracting knowledge and information from data and requires competencies in both statistical and computer-based data analysis.

How Hot is this Market?

JOBS

9,433

LinkedIn Jan 2017

11,127

Indeed Jan 2017

HOW TO BECOME A DATA SCIENTIST?

The Data Science Process

Source: https://en.wikipedia.org/wiki/Data_science

DAILY DATA GENERATION IN 2020

1.5**GB**

3,000GB

4,000GB

1,000,000GB

DATA SCIENCE - INGESTION TO VISUALIZATION

WHAT IS ARTIFICIAL INTELLIGENCE?

«The theory and development of computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages.»

The Oxford Dictionary

AI IS TRANSFORMING INDUSTRIES

Enhanced

Diagnostics

Drug

Discovery

Patient Care

Research

Sensory

Aids

INDUSTRIAL

CONSUMER

Smart Assistants

Chatbots

Search

Personalization

Augmented Reality

Robots

HEALTH FINANCE

Algorithmic Trading

Fraud Detection

Research

Personal Finance

Risk Mitigation

RETAIL

Support

Experience

Marketing

Merchandising

Loyalty

Supply Chain

Security

Defense

Data Insights

GOVERNMENT

Safety & Security

Resident Engagement

> Smarter Cities

ENERGY

Oil & Gas Exploration

> Smart Grid

Operational Improvement

Conservation

Automated

TRANSPORT

Automated Trucking

Aerospace

Shipping

Search & Rescue

Efficiency

Factory Automation

Improvement

Predictive Maintenance

Precision Agriculture

Field Automation OTHER

Advertising

Education

Gaming

Professional & IT Services

Telco/Media

Sports

EARLY ADOPTION

RECENT CUSTOMER EXAMPLES

HEALTH

Early Tumor Detection

Leading medical imaging company

Early detection of malignant tumors in mammograms

Millions of "Diagnosed" Mammograms

Deep Learning (CNN) tumor image recognition

Higher accuracy and earlier breast cancer detection

Personalized Care

Renowned US Hospital system

Accurately diagnose fatal heart conditions

10,000 health attributes used

Saffron memory-based reasoning

Increased accuracy to 94% compared with 54% for average cardiologist

FINANCE

Data Synthesis

Financial services institution with >\$750B assets

Parse info to reduce portfolio manager time to insight

Vast stores of documents (news, emails, research, social)

Deep Learning (RNN w/ encoder/decoder)

Faster and more informed investment decisions

Customer Personalization

Leading Insurance Group

Increase product recommendation accuracy

5 Product Levels 1,353 Products 12M Members

Saffron memory-based reasoning

50% increase in product recommendation accuracy

WHAT IS MACHINE LEARNING

WHAT IS MACHINE LEARNING?

«The field of study that gives computers the ability to learn without being explicitly programmed»

Arthur Samuel, 1959

THE MACHINE LEARNING PIPELINE

TRAINING DATA SET

In order to train the model, we need a <u>Training Dataset</u>. If we have dataset of 100,000 houses sold in Portland this year, we take 80% of the data to train the model.

TEST DATA SET

Remaining 20% of the Data - we hide it from the model. That will helps understanding how well the model will perform for new Data. That 20% is called a Test Dataset

FRAMEWORKS & LANGUAGES

An awesome list: https://github.com/josephmisiti/awesome-machine-learning

TYPES OF MACHINE LEARNING

Types of Machine Learning

Supervised Learning

Teach desired behavior with labeled data

EMAIL FILTER

Inbox Spam

Make sense of new data based on prior data

Unsupervised Learning

Reinforcement Learning

SUPERVISED LEARNING

WE FEED THE MODEL WITH CORRECT ANSWERS, THE MODEL LEARNS AND FINALLY PREDICTS.

WE FEED THE MODEL WITH "GROUND TRUTH".

MACHINE LEARNING SOLUTIONS

CLASSIFICATION

Predicting a discrete value for an entity with a given set of features.

REGRESSION

CLUSTERING

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES

OVERFITTING

OVERFITTING

TRAINNING

TESTING

TESTING

DECISION TREES

CASE STUDY: IRIS PLANTS

Iris Dataset:

The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other.

Number of Attributes: 4 (sepal length in cm, sepal width in cm, petal length in cm, petal width in cm)

Number of Instances: 150 (50 in each of three classes)

Target: Iris-Setosa, Iris-Versicolour, Iris-Virginica

CASE STUDY: IRIS PLANTS

Decision Tree Classification

iPython notebook:

https://github.com/mstfldmr/IntelAIWorkshop/blob/master/DecisionTreeClassifier.ipynb

MACHINE LEARNING SOLUTIONS

CLASSIFICATION

REGRESSION

CLUSTERING

Regression attempts to predict a real numeric value for an entity with a given set of features.

Set of Input vectors having a class or label

You train the model for predicting fair value of a house based on house attributes using historical home sales data. The model build can now predict the fair value of a new home.

You train the model for predicting fair value of a house based on house attributes using historical home sales data. The model build can now predict the fair value of a new home.

CASE STUDY: DIABETES

Diabetes Dataset:

Ten baseline variables, age, sex, body mass index, average blood pressure, and six blood serum measurements were obtained for each of n = 442 diabetes patients, as well as the response of interest, a quantitative measure of disease progression one year after baseline.

Number of Attributes: 10 **Number of Instances**: 442

Target: Column 11 is a quantitative measure of disease progression one year

after baseline

CASE STUDY: DIABETES

Linear Regression

iPython notebook:

https://github.com/mstfldmr/IntelAIWorkshop/blob/master/LinearRegression.ipynb

CASE STUDY: HOUSE SALES IN KING COUNTY, USA

id	date	price	bedrooms	bathrooms	sqft_living	 grade	
7129300520	20141013	221900	3	1	1180	7	
6414100192	20141209	538000	3	2.25	2570	7	
5631500400	20150225	180000	2	1	770	6	
2487200875	20141209	604000	4	3	1960	7	
1523300141	20140623	402101	2	0.75	1020	7	
291310100	20150116	400000	3	2.5	1600	8	
1523300157	20141015	325000	2	0.75	1020	7	

Dataset and sample solutions: https://www.kaggle.com/harlfoxem/housesalesprediction

UNSUPERVISED LEARNING

DATA IS GIVEN TO THE MODEL. RIGHT ANSWERS ARE NOT PROVIDED TO THE MODEL. THE MODEL MAKES SENSE OF THE DATA GIVEN TO IT.

MACHINE LEARNING SOLUTIONS

CLASSIFICATION

REGRESSION

CLUSTERING

Grouping entities with similar features. Unsupervised learning.

CLUSTERING EXAMPLE: MARKET SEGMENTATION

K-MEANS CLUSTERING

K-MEANS CLUSTERING

CASE STUDY: IRIS PLANTS

Iris Dataset:

The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other.

Number of Attributes: 4 (sepal length in cm, sepal width in cm, petal length in cm, petal width in cm)

Number of Instances: 150 (50 in each of three classes)

Target: Iris-Setosa, Iris-Versicolour, Iris-Virginica

CASE STUDY: IRIS PLANTS

K-Means Clustering

iPython notebook:

https://github.com/mstfldmr/IntelAIWorkshop/blob/master/KMeansClustering.ipynb

https://github.com/mstfldmr/IntelAIWorkshop/blob/master/KMeansClustering 2.ipynb

Date	Time	Latitude	Longitude	Туре	Depth	 Magnitude	
1/2/1965	13:44:18	19.246	145.616	Earthquake	131.6	6	
1/4/1965	11:29:49	1.863	127.352	Earthquake	80	5.8	
1/5/1965	18:05:58	-20.579	-173.972	Earthquake	20	6.2	
1/8/1965	18:49:43	-59.076	-23.557	Earthquake	15	5.8	
12/28/2016	12:38:51	36.9179	140.4262	Earthquake	10	5.9	
12/29/2016	22:30:19	-9.0283	118.6639	Earthquake	79	6.3	
12/30/2016	20:08:28	37.3973	141.4103	Earthquake	11.94	5.5	

<u>Dataset and sample solutions: https://www.kaggle.com/usgs/earthquake-database</u>

5 Clusters

20 Clusters

50 Clusters

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING IS THE PROBLEM OF GETTING AN AGENT TO ACT IN THE WORLD SO AS TO MAXIMIZE ITS REWARDS.

REINFORCEMENT LEARNING

- Robotics
- Healthcare
- Smart cities

REINFORCEMENT LEARNING

observation

CASE STUDY: RECOMMENDATION SYSTEMS

NETFLIX

- How does the Netflix Movie recommendation system work?
- How do they know what to recommend to Nancy and what to recommend to John?

There is 170TB of Movies Data!

Nancy = [5.04, 2.5, 0.02, 1.40, 1.10,...] action, drama, romance, horror, tragedy,...

Netflix knows about Nancy.

NETFLIX

```
Movie 1= [3.24, 3.44, 0.12, 1.22, 0.10,...] action, drama, romance, horror, tragedy,...
```

Movie 2= [9.91, 1.5, 1.02, 1.10, 1.20,...] action, drama, romance, horror, tragedy,...

Movie 3= [1.04, 2.5, 9.02, 1.23, 1.30,...] action, drama, romance, horror, tragedy,...

Which movie would you recommend to Nancy? Movie 1, Movie 2 or Movie 3.

Let's do simple math: Vector Multiplication.

NETFLIX

	Action	Drama	Romance	Horror	Tragedy	Score
Nancy	5.04	2.5	0.02	1.40	1.10	
Movie 1	3.24	3.44	0.12	1.22	0.10	26.75
Movie 2	9.91	1.5	1.02	1.10	1.20	56.57
Movie 3	1.04	2.5	9.02	1.23	1.30	14.82

STUDENT DEVELOPER PROGRAM