MODUL VI

OPTIK

PEMBIASAN PADA LENSA CEMBUNG DAN LENSA CEKUNG

I. Tujuan

Menentukan hubungan antara titik fokus, jarak benda, dan jarak bayangan pada pembiasan lensa cembung dan lensa cekung.

II. Peralatan

- 1. Rel logam presisi dan penggandenganya (50cm dan 25cm).
- 2. Cahaya.
- 3. Lensa cembung dan lensa cekung.
- 4. Obyek berbentuk panah.
- 5. Layar.

III. Teori

A. Lensa Cembung

Lensa ini berbentuk lengkung rata keluar. Bagian tengahnya lebih tebal di bandingkan dengan pinggirannya sekilas lensa ini tampak seperti elips. Sifat cahaya atau sinar pada lensa cembung adalah :

- Sinar datang yang sejajar sumbu utama akan diteruskan melalui fokus.
- Sinar datang yang menuju ke pusat lensa akan diteruskan.
- Sinar datang melalui fokus akan diteruskan sejajar dengan sumbu utama.

Pada lensa cembung terdapat sinar istimewa, yaitu:

- Sinar datang yang sejajar sumbu utama dibiaskan seolah-olah dari fokus utama F₁.
- Sinar yang datang melalui optik tidak akan dibiaskan.
- Sinar yang seolah-olah menuju fokus utama F₂ dibiaskan sejajar sumbu utama.

Berikut gambar lensa cembung

Gambar 4.1

B. Lensa Cekung

Lensa yang bagian tengahnya lebih tipis dari pada bagian tepinya.

Jalannya sinar pada lensa cekung:

- Sinar datang yang sejajar sumbu utama akan diteruskan seolah-olah dari fokus.
- Cahaya/sinar datang menuju fokus akan diteruskan sejajar sumbu utama.
- Sinar datang menuju pusat lensa akan langsung diteruskan.
- Adapun sinar-sinar istimewa pada lensa cekung, yaitu :
- Sinar datang sejajar sumbu utam akan dibiskan seolah-olah berasal dari titik fokus.
- Sinar datang seolah-olah menuju titik fokus lensa pertama (F1) akan dibiaskan sejajar sumbu utama.
- Sinar yang datang melewati pusat optik lensa (O) tidak dibiaskan.

Berikut gambar lensa cekung

Gambar 4.2

IV. PELAKSANAAN

 Susunlah rangkaian Rel logam presisi dan penggandenganya (50cm dan 25cm). seperti Gambar 14.3.

Gambar 4.3

- Atur lensa bikonveks atau lensa bikonkaf di atas rel lalu sorot cahaya dari obyek berbentuk panah, tegak lurus terhadap sinar datang, lensa dan sinar bias.
- gambarkanlah posisi titik fokus kedua lensa dan bidang fokus nya. Ukurlah jarak fokusnya.
- Lakukan langkah 2 sampai dengan langkah 4 sebanyak 3 kali.

C. <u>Lensa Gabungan</u>

I. Tujuan

Menentukan jarak benda, dan jarak bayangan pada lensa gabungan.

II. Peralatan

- Rel logam presisi dan penggandenganya (50cm dan 25cm).
- Cahaya.
- Lensa cembung dan lensa cekung.
- Obyek berbentuk panah.
- Layar.

III. Teori

Lensa gabungan merupakan gabungan dari dua lensa atau lebih yang di susun berdekatan sekali (d=0) dengan sumbu utama berimpit satu sama lain.

Gambar 4.4

IV. Pelaksanaan

• Susunlah peralatan yang tersedia (14.5) untuk menentukan jarak fokus lensa.

Gambar 4.5

- Atur jarak benda (s) dan dapatkan jarak bayangan (s'), lakukan untuk tiga kali pengamatan.
- Ambil dua buah lensa yang sudah diperoleh jarak fokusnya dari percobaan 1 dan 2, kemudian susunlah sebagai lensa gabungan dengan jarak t yang tetap antara keduanya.
- Pada lensa gabungan ini, catat jarak benda $(s_1 \text{ dan } s_2)$, jarak bayangan $(s_1' \text{ dan } s_2')$, jarak kedua lensa (t), dan jarak benda ke bayangan (D), Lakukan untuk tiga kali pengamatan