

12-B Status from UGC

THEORY OF AUTOMATA AND FORMAL LANGUAGES

BCSC0011

LECTURE: Normalization of CFG

SIMPLIFICATION OF GRAMMAR

REDUCTION

- 1. ^-Production Elimination
- 2. Unit Production Elimination
- 3. Useless Symbol Elimination

NORMALIZATION

- 1. CNF
- 2. GNF

NORMALIZATION of CFG

To provide fix number of terminals and non-terminals we use normalization.

Or

To provide fix format to particular grammar.

- 1. Chomsky Normal Form (CNF)
- 2. Greibach Normal Form (GNF)

CHOMSKY NORMAL FORM (CNF)

A context-free grammar G is in Chomsky Normal Form if every production is of the form : $A \rightarrow a$

 $A \rightarrow BC$

Step 1: Elimination of null productions and unit productions.

Step 2: Elimination of terminals on R.H.S.

Step 3: Restricting the number of variables on R.H.S.

Reduce the following grammar G to CNF. G is $S \rightarrow aAD$, $A \rightarrow aB \mid bAB$, $B \rightarrow b$, $D \rightarrow d$.

Solution

As there are no null productions or unit productions, we can proceed to step 2.

Step 2 Let $G_1 = (V'_N, \{a, b, d\}, P_1, S)$, where P_1 and V'_N are constructed as follows:

- (i) $B \to b$, $D \to d$ are included in P_1 .
- (ii) $S \to aAD$ gives rise to $S \to C_aAD$ and $C_a \to a$.

 $A \rightarrow aB$ gives rise to $A \rightarrow C_aB$.

 $A \to bAB$ gives rise to $A \to C_bAB$ and $C_b \to b$.

 $V'_{N} = \{S, A, B, D, C_a, C_b\}.$

Solution

Step 3 P_1 consists of $S \to C_a AD$, $A \to C_a B \mid C_b AB$, $B \to b$, $D \to d$, $C_a \to a$, $C_b \to b$.

 $A \rightarrow C_a B, B \rightarrow b, D \rightarrow d, C_a \rightarrow a, C_b \rightarrow b$ are added to P_2

 $S \to C_a AD$ is replaced by $S \to C_a C_1$ and $C_1 \to AD$.

 $A \rightarrow C_b AB$ is replaced by $A \rightarrow C_b C_2$ and $C_2 \rightarrow AB$.

Let

$$G_2 = (\{S, A, B, D, C_a, C_b, C_1, C_2\}, \{a, b, d\}, P_2, S)$$

where P_2 consists of $S \to C_a C_1$, $A \to C_a B \mid C_b C_2$, $C_1 \to AD$, $C_2 \to AB$, $B \to b$, $D \to d$, $C_a \to a$, $C_b \to b$. G_2 is in CNF and equivalent to G.

Find a grammar in Chomsky normal form equivalent to $S \to aAbB$, $A \to aA \mid a$, $B \to bB \mid b$.

Solution

As there are no unit productions or null productions, we need not carry out step 1. We proceed to step 2.

Step 2 Let $G_1 = (V'_N \{a, b\}, P_1, S)$, where P_1 and V'_N are constructed as follows:

- (i) $A \rightarrow a$, $B \rightarrow b$ are added to P_1 .
- (ii) $S \to aAbB$, $A \to aA$, $B \to bB$ yield $S \to C_aAC_bB$, $A \to C_aA$, $B \to C_bB$, $C_a \to a$, $C_b \to b$.

$$V'_N = \{S, A, B, C_a, C_b\}.$$

Solution

Step 3 P_1 consists of $S \rightarrow C_a A C_b B$, $A \rightarrow C_a A$, $B \rightarrow C_b B$, $C_a \rightarrow a$, $C_b \rightarrow b$, $A \rightarrow a$, $B \rightarrow b$.

$$S \to C_a A C_b B$$
 is replaced by $S \to C_a C_1$, $C_1 \to A C_2$, $C_2 \to C_b B$

The remaining productions in P_1 are added to P_2 . Let

$$G_2 = (\{S, A, B, C_a, C_b, C_1, C_2\}, \{a, b\}, P_2, S),$$

where P_2 consists of $S \to C_a C_1$, $C_1 \to A C_2$, $C_2 \to C_b B$, $A \to C_a A$, $B \to C_b B$, $C_a \to a$, $C_b \to b$, $A \to a$, and $B \to b$.

 G_2 is in CNF and equivalent to the given grammar.

Definition 6.12 A context-free grammar is in Greibach normal form if every production is of the form $A \to a\alpha$, where $\alpha \in V_N^*$ and $\alpha \in \Sigma(\alpha \text{ may be } \Lambda)$,

Non-Terminal → **One Terminal** * **Any no. of Non-Terminal**

Conversion into GNF using substitution

$$\begin{array}{ccc}
S \to aBC \\
B \to b
\end{array}$$

$$\begin{array}{ccc}
S \to aBC \\
B \to b \\
C \to c
\end{array}$$

$$S \to Bc$$

$$B \to b$$

$$C \to c$$

Conversion into GNF using substitution

$$S \rightarrow AB$$

 $A \rightarrow aA \mid bB \mid b$
 $B \rightarrow b$
 $S \rightarrow aAB \mid bBB \mid bB$
 $A \rightarrow aA \mid bB \mid b$
 $B \rightarrow b$

To convert CFG to GNF

- 1. The grammar must be in Chomsky Normal Form
- 2. There must be no Left-Recursive Rules

LEFT RECURSION

Left Recursive Rules : $A_k \rightarrow A_k \alpha \mid \beta$

Language generated by $A_k \rightarrow A_k \alpha \mid \beta$?

$$\begin{split} &A_k \to A_k \alpha \to \beta \alpha \\ &A_k \to A_k \alpha \to A_k \alpha \alpha \to \beta \alpha \alpha \\ &A_k \to A_k \alpha \to A_k \alpha \alpha \to A_k \alpha \alpha \to \beta \alpha \alpha \alpha \end{split}$$

such that β do not start with A_k

Elimination of Left Recursion

The left recursion rule: $A_k \rightarrow A_k \alpha \mid \beta$ can be replaced by the following rules:

$$A_k \to \beta \mid \beta \mid Z$$

$$Z \to \alpha \mid Z \mid \alpha$$

With these two types of rules the left recursion can be eliminated.

Multiple Left Recursion

$$\begin{aligned} \mathbf{A}_{\mathbf{k}} &\rightarrow \mathbf{A}_{\mathbf{k}} \boldsymbol{\alpha}_{1} \mid \mathbf{A}_{\mathbf{k}} \boldsymbol{\alpha}_{2} \mid \dots \mid \mathbf{A}_{\mathbf{k}} \boldsymbol{\alpha}_{\mathbf{r}} \\ \mathbf{A}_{\mathbf{k}} &\rightarrow \boldsymbol{\beta}_{1} \mid \boldsymbol{\beta}_{2} \mid \dots \mid \boldsymbol{\beta}_{\mathbf{s}} \end{aligned}$$

• The set of A_k prodⁿs in P_1 are

$$egin{aligned} \mathbf{A_k} &
ightarrow eta_1 \, | \, eta_2 \, | \, \dots \, | \, eta_s \ \\ \mathbf{A_k} &
ightarrow eta_1 \, \mathbf{Z_k} \, | \, eta_2 \, \mathbf{Z_k} \, | \, \dots \, | \, eta_s \, \mathbf{Z_k} \end{aligned}$$

• The set of Z prodⁿs in P_1 are

$$egin{aligned} \mathbf{Z}_{\mathbf{k}} &
ightarrow lpha_1 \ \mathbf{Z}_{\mathbf{k}} \ | \ lpha_2 \ \mathbf{Z}_{\mathbf{k}} \ | \ ... \ | \ lpha_r \ \mathbf{Z}_{\mathbf{k}} \end{aligned}$$

Convert to GNF

$$A_1 \rightarrow A_2 A_3$$

$$A_2 \rightarrow A_3 A_3$$

$$A_3 \rightarrow a A_3 \mid a$$

Using substitution, we can easily convert to GNF

$$A_1 \rightarrow a A_3 A_3 A_3 | a A_3 A_3$$

$$A_2 \rightarrow a A_3 A_3 | a A_3$$

$$A_3 \rightarrow a A_3 \mid a$$

Convert to GNF

$$A_1 \rightarrow A_2 A_3$$

$$A_2 \rightarrow A_3 A_3$$

$$A_3 \rightarrow A_2 A_3 \mid a$$

There is a LOOP

$$A2 \rightarrow A_3 \rightarrow A_2$$

Which gives rise to Left recursion when we do substitution

$$A_2 \rightarrow A_2 A_3 A_3 \mid a A_3 \mid$$

Lemma 1: Let G (V, T, P, S) be CFG if $A \rightarrow Ba$ $B \rightarrow \beta_1 | \beta_2 | \beta_3 \dots | \beta_n$ then, $A \rightarrow \beta_1 a | \beta_2 a | \dots | \beta_n a$

Example:

 $S \rightarrow Aa$ $A \rightarrow aA \mid bA \mid aAS \mid b$

Apply Lemma 1.

Solution:

 $S \rightarrow aAa \mid bAa \mid aASa \mid ba$ $A \rightarrow aA \mid bA \mid aAS \mid b$

[According to lemma 1]

```
Lemma 1:

Let G (V, T, P, S) be CFG

if

A \rightarrow Ba

B \rightarrow \beta_1 | \beta_2 | \beta_3 | \beta_n

then,

A \rightarrow \beta_1 a | \beta_2 a | \beta_n
```


Lemma 2: (Elimination of Left Recursion)

$$A \rightarrow Aa_1 | Aa_2 | Aa_3 \dots | Aa_n | \beta_1 | \beta_2 | \beta_3 \dots | \beta_n$$

such that β_i do not start with A then equivalent grammar in GNF form,

Thank You