Automat ze stosem

Języki formalne i techniki translacji - Wykład 5

Maciek Gębala

8 listopada 2022

Maciek Gebala

Automat ze stose

Automat ze stosem (PDA)

Automat z dodatkową pamięcią w postaci stosu (widać tylko ostatnio włożony symbol).

Przykład: Palindrom z gramatyką $S \rightarrow 0S0|1S1|\#$

- Automat startuje z pustym stosem i w stanie q₁.
- Jeżeli jesteśmy w stanie q₁ i na wejściu widzimy a ∈ {0,1} to wstawiamy a na stos, pozostajemy w stanie q₁ i idziemy do następnego symbolu wejściowego.
- Jeżeli jesteśmy w stanie q₁ i na wejściu widzimy # to przechodzimy do stanu q₂ i idziemy do następnego symbolu wejściowego.
- Jeżeli jesteśmy w stanie q₂ i na wejściu widzimy a ∈ {0,1} i na stosie jest także a to pozostajemy w stanie q₂, ściągamy a ze stosu i idziemy do następnego symbolu wejściowego.
- Jeżeli jesteśmy w stanie q₂, skończyliśmy czytać wejście i stos jest pusty to akceptujemy słowo wejściowe.
- W każdym innym przypadku odrzucamy słowo wejściowe.

Maciek Gęba

Automat ze stose

Automat ze stosem (PDA)

Definicja. Automatem ze stosem nazywamy

 $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, gdzie

Q - skończony zbiór stanów,

Σ - alfabet wejściowy,

 $\ensuremath{\Gamma}$ - alfabet stosowy,

 $\emph{q}_{0} \in \emph{Q}\,$ - stan początkowy,

 $Z_0 \in \Gamma$ - symbol początkowy na stosie,

 $F\subset Q$ - zbiór stanów akceptujących (jeśli $F=\emptyset$ to akceptujemy przez pusty stos),

 $\delta\,$ - funkcja przejścia postaci $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to 2^{Q \times \Gamma^*}$

Definicja. Opis chwilowy automatu to trójka (q,α,γ) , gdzie $q\in Q$ -stan automatu, $\alpha\in \Sigma^*$ - nieprzeczytane jeszcze wejście, $\gamma\in \Gamma^*$ - zawartość stosu (szczyt stosu z lewej).

Maciek Gebala

Automat ze stosem

Automat ze stosem (PDA)

Definicja. Relacja przejścia w jednym kroku ⊢:

 $(q, a\alpha, Z\gamma) \vdash_{M} (p_i, \alpha, \gamma_i \gamma)$ jeśli istnieje przejście

 $\delta(q, a, Z) = \{(p_1, \gamma_1), \dots, (p_m, \gamma_m)\}$ i wybraliśmy *i*-tą możliwość.

 $(q, \alpha, Z\gamma) \vdash_{M} (p_i, \alpha, \gamma_i \gamma)$ jeśli istnieje przejście

 $\delta(q,\varepsilon,Z) \stackrel{\text{\tiny M}}{=} \{(p_1,\gamma_1),\ldots,(p_m,\gamma_m)\} \text{ i wybraliśmy } i\text{-tą możliwość.}$

 \vdash * - zwrotne i przechodnie domknięcie \vdash . \vdash ^{*i*} - *i*-krotne złożenie \vdash .

Język akceptowany przez PDA M przy pustym stosie ($F = \emptyset$) to

 $N(M) = \{ w \in \Sigma^* : \exists_{p \in Q} (q_0, w, Z_0) \vdash^* (p, \varepsilon, \varepsilon) \}$

Język akceptowany przez PDA M przez stan końcowy to

 $L(M) = \{ w \in \Sigma^* : \exists_{p \in F} \exists_{\gamma \in \Gamma^*} (q_0, w, Z_0) \vdash^* (p, \varepsilon, \gamma) \}$

Oba sposoby akceptowania są równoważne.

tiek Gębala Automat z

Notatki
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki

Przykład

	$M = ({\{}$	$\{q_1, q_2\}$, {0, 1},	$\{A,B,Z\}$	$\{,\delta,q_1,Z\}$	$Z,\emptyset)$			
0, A)	(0, B)	(0, Z)	(1, A)	(1, B)	(1, Z)	(ε, A)	(ε, B)	(ε, Z)	
1, AA)	(q ₁ , AB)							(q_2, ε)	Ε
a. c)				(0)					

0110

 $(q_1,0110,Z) \vdash (q_1,110,A) \vdash (q_1,10,BA) \vdash (q_2,10,BA) \vdash (q_2,0,A) \vdash (q_2,\varepsilon,\varepsilon)$

110

$$N(M) = \{ ww^R : w \in \{0,1\}^* \}$$

.

Automat ze stosem

Deterministyczny PDA

PDA nazwiemy deterministycznym jeśli w każdym przypadku możemy wykonać co najwyżej jedno przejście, czyli jeśli

Niestety DPDA są słabsze od PDA np. język z poprzedniego slajdu nie jest rozpoznawalny przez żaden DPDA.

Maciek Gęba

Automat ze stos

PDA i gramatyka bezkontekstowa

Twierdzenie. Jeśli L jest językiem bezkontekstowym to istnieje PDA M taki, że L = N(M).

Dowóc

Załóżmy, że L nie zawiera ε i jest zdefiniowany przez gramatykę bezkontekstową w postaci Greibach G=(N,T,P,S). Definiujemy PDA M następująco

$$M = (\{q\}, T, N, \delta, q, S, \emptyset)$$
 $\delta(q, a, A) = \{ (q, \gamma) : (A \rightarrow a\gamma) \in P \}.$

M symuluje wyprowadzenie lewostronne gramatyki G. Ponieważ G jest typu Greibach każdy kolejny napis w wyprowadzeniu lewostronnym ma formę $x\alpha$ gdzie $x\in T^*$ i $\alpha\in N^*$. M przechowuje α na stosie po przeczytaniu przedrostka x.

Teraz dowód indukcyjny po długości wyprowadzenia (ilości kroków), że

$$S \underset{G}{\Rightarrow^*} x \iff (q, x, S) \underset{M}{\vdash^*} (q, \varepsilon, \varepsilon)$$

Maciek Gebala

Automat ze stose

Przykład

$$\textit{G} = (\{\textit{A},\textit{B}\},\{\textit{a},\textit{b}\},\{\textit{A} \rightarrow \textit{aAB}|\textit{aB},\textit{B} \rightarrow \textit{b}\},\textit{A})$$

$$M = (\{q\}, \{a, b\}, \{A, B\}, \delta, q, A, \emptyset)$$

$$\frac{\delta \parallel (a, A) \mid (a, B) \mid (b, A) \mid (b, B) \mid (\varepsilon, A) \mid (\varepsilon, B)}{q \parallel (q, AB), (q, B) \mid - \mid - \mid (q, \varepsilon) \mid - \mid - \mid}$$

$$A \Rightarrow aAB \Rightarrow aaBB \Rightarrow aabB \Rightarrow aabb$$

$$(q, aabb, A) \vdash (q, abb, AB) \vdash (q, bb, BB) \vdash (q, b, B) \vdash (q, \varepsilon, \varepsilon)$$

Notatki
Notatki
Notatki
Notatki
Notatki
Notatki

PDA i gramatyka bezkontekstowa

Twierdzenie. Jeśli L = N(M) dla PDA M to L jest językiem bezkontekstowym.

Dowód

Weźmy PDA $M=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,\emptyset)$. Konstruujemy gramatykę bezkontekstową $G=(N,\Sigma,P,S)$, gdzie

- $\emph{N}\,$ zbiór obiektów postaci $[\emph{q},\emph{A},\emph{p}]\;(\emph{p},\emph{q}\in\emph{Q},\emph{A}\in\Gamma),$ oraz nowy symbol S,
- P zbiór produkcji postaci:
 - $S \rightarrow [q_0, Z_0, q]$ dla każdego $q \in Q$,
- $[q,A,q_{m+1}] \rightarrow a[q_1,B_1,q_2][q_2,B_2,q_3] \dots [q_m,B_m,q_{m+1}]$ dla dowolnych $q,q_1,\dots,q_{m+1} \in Q$, każdego $a \in \Sigma \cup \{\varepsilon\}$ i dowolnych $A,B_1,\dots,B_m \in \Gamma$ takich że $(q_1,B_1\dots B_m) \in \delta(q,A,A)$, oraz
- $[q, A, p] \rightarrow a$ jeśli $(p, \varepsilon) \in \delta(q, a, A)$.

Wyprowadzenie lewostronne w G symuluje ruchy M na wejściu x.

Maciek Gebala Automat ze s

PDA i gramatyka bezkontekstowa

Dowód cd.

[q,A,p] wyprowadza $x\iff M$ będąc w stanie q i mając na stosie $A\alpha$ po wczytaniu x znajdzie się w stanie p, na stosie będzie α i α nie była zmieniana i czytana w tym czasie. Teraz dowód indukcyjny po ilości kroków, że

$$[q,A,p] \underset{G}{\Rightarrow^*} x \iff (q,x,A) \underset{M}{\vdash^*} (p,\varepsilon,\varepsilon)$$

Przykład

$$M = (\{p, q\}, \{a, b\}, \{X, Z\}, \delta, p, Z, \emptyset)$$

$$\frac{\delta \parallel (a, X) \parallel (a, Z) \parallel (b, X) \parallel (b, Z) \parallel (\varepsilon, X) \parallel (\varepsilon, Z)}{p \parallel (p, XX) \parallel (p, X) \parallel (q, \varepsilon) \parallel - \parallel - \parallel (q, \varepsilon)}$$

$$\frac{p \parallel (p, XX) \parallel (p, X) \parallel (q, \varepsilon) \parallel - \parallel - \parallel (q, \varepsilon)}{q \parallel - \parallel - \parallel - \parallel (q, \varepsilon) \parallel - \parallel - \parallel - \parallel (q, \varepsilon)}$$

 $G = (\{S, [p, Z, p], [p, Z, q], [q, Z, p], [q, Z, q], [p, X, p], [p, X, q], [q, X, p], [q, X, q]\}, \{a, b\}, P, S)$

- $S \rightarrow [p, Z, p] \mid [p, Z, q]$ $[p, Z, p] \rightarrow a[p, X, p]$
- $[p,Z,{\color{red}q}]$
- [q, Z, p]
- [q, Z, q]
- [p, X, p] $\rightarrow a[p, X, p][p, X, p] \mid a[p, X, q][q, X, p]$
- [p, X, q] $\rightarrow a[p, X, p][p, X, \mathbf{q}] \mid a[p, X, q][q, X, \mathbf{q}] \mid b$ \rightarrow
- [q, X, p]
- [q, X, q]

Przykład cd.

Po usunięciu symboli bezużytecznych

$$G = (\{S, [p, Z, q], [p, X, q], [q, X, q]\}, \{a, b\}, P, S)$$

$$S \rightarrow [p, Z, q]$$

$$[p, Z, \mathbf{q}] \rightarrow a[p, X, \mathbf{q}] \mid \varepsilon$$

$$[p, X, q] \rightarrow a[p, X, q][q, X, q] \mid b$$

$$[q, X, q] \rightarrow b$$

$$(p, aabb, Z) \vdash (p, abb, X) \vdash (p, bb, XX) \vdash (q, b, X) \vdash (q, \varepsilon, \varepsilon)$$

$$[p, Z, q] \Rightarrow a[p, X, q] \Rightarrow aa[p, X, q][q, X, q] \Rightarrow aab[q, X, q] \Rightarrow aabb$$

Notatki
Notatki
Hotali
Notatki
Notatki