# Connected Stocks via Business Groups: Evidence from an Emerging Market

S.M. Aghajanzadeh M. Heidari M. Mohseni

Tehran Institute for Advanced Studies

January, 2022

### Table of Contents

- Motivation
- 2 Literature
  - Main Effect
- 3 Empirical Studies
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
- 4 Results
  - Common ownership & Co-movement
  - High level of common ownership
  - All pairs
- 5 Evidence for correlated trading
  - Turnover
  - Institutional Imbalance
- 6 Conclusion

# Co-movement and common ownership



# Co-movement and common ownership



#### Motivation

#### Does direct or indirect common ownership cause stock return co-movement?

- common ownership:
  - ullet We connect stocks through the common ownership by blockholders (ownership > 1%) for direct common ownership
  - We connect stocks through the ultimate owner for indirect common ownership
- We focus on excess return co-movement for a pair of the stocks
- We use common ownership (direct or indirect) to forecast cross-sectional variation in the realized correlation of four-factor + industry residuals
- We demonstrate that correlated trading can be a channel of co-movement

# Why does it matter?

- Covariance
  - Covariance is a key component of risk in many financial applications.
    - Portfolio selection
    - Hedging
    - Asset pricing
  - Covariance is a significant input in risk measurement models
    - Such as Value-at-Risk
- Return predictability
  - If it's valid, we can build a profitable buy-sell strategy

### Table of Contents

- Motivation
- LiteratureMain Effect
- Empirical Studies
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
- 4 Results
  - Common ownership & Co-movement
  - High level of common ownership
  - All pairs
- 5 Evidence for correlated trading
  - Turnover
  - Institutional Imbalance
- 6 Conclusion

### Main effect



#### Our work

- We use daily records of block-holder ownership for firms
- We are not restricted to mutual funds ownership
- 85% of market belongs to the business groups
  - Would business groups be able to raise the co-movement of stock returns?
    - Cho and Mooney (2015):
       The strong co-movement between group returns and firm returns is explained by correlated fundamentals.
    - Kim et al. (2015):
       The increase in correlation appears to be driven more by non-fundamental factors such as correlated trading, rather than fundamental factors such as related-party transactions
  - Common ownership or business group (indirect common ownership) ?
  - Channel?

### Table of Contents

- - Main Effect
- **Empirical Studies** 
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
- - Common ownership & Co-movement
  - High level of common ownership
  - All pairs
- - Turnover
  - Institutional Imbalance

# Pair composition

• Firms with at least one common owner



• In a business group, how can one pair be defined?

Business group



# Pair Composition and Business Group

Pair in the Business Group



## **Data Summary**

- Data: 2014/03/25 (1393/01/06) 2020/03/18 (1398/12/28)
  - 72 Months
  - 618 firm including 562 firms with common owners

| Year                                    | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
|-----------------------------------------|------|------|------|------|------|------|
| No. of Firms                            | 337  | 356  | 392  | 479  | 499  | 560  |
| No. of Blockholders                     | 1563 | 1656 | 1893 | 2510 | 2701 | 2991 |
| No. of Groups                           | 37   | 40   | 42   | 43   | 39   | 42   |
| No. of Firms in Groups                  | 233  | 254  | 278  | 311  | 323  | 357  |
| Ave. Number of group Members            | 6    | 6    | 7    | 7    | 8    | 8    |
| Ave. ownership of each Blockholders (%) | 17   | 18   | 18   | 17   | 18   | 19   |
| Med. ownership of each Blockholders (%) | 5    | 4    | 4    | 4    | 4    | 5    |
| Ave. Number of Owners                   | 7    | 7    | 7    | 7    | 7    | 6    |
| Med. Number of Owners                   | 5    | 5    | 5    | 6    | 5    | 5    |
| Ave. Block. Ownership (%)               | 77   | 77   | 76   | 76   | 75   | 72   |

# Pair Composition

- Pairs consist of two firms with at least one common owner
  - 17522 unique pairs which is 11% of possible pairs ( $\frac{554*553}{2} = 153181$ )

|                        | mean | min  | Median | max  |
|------------------------|------|------|--------|------|
| Number of unique paris | 5983 | 4610 | 5983   | 7079 |

| Year                               | 2014 | 2015 | 2016 | 2017 | 2018 | 2019  |
|------------------------------------|------|------|------|------|------|-------|
| No. of Pairs                       | 8092 | 8017 | 8316 | 9732 | 9843 | 10776 |
| No. of Pairs not in Groups         | 2807 | 2515 | 2616 | 3593 | 3380 | 3822  |
| No. of Pairs not in the same Group | 4357 | 4594 | 4709 | 4981 | 5069 | 5322  |
| No. of Pairs in the same Group     | 771  | 773  | 857  | 1015 | 1209 | 1408  |
| Ave. Number of Common owner        | 1    | 1    | 1    | 1    | 1    | 1     |

#### Number of Pairs



## FCA's time series



## FCA's time series



# Measuring Common-ownership

Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t} P_{i,t} + S_{j,t} P_{j,t}}$$



$$FCAP = \frac{50\% + 50\%}{100\% + 100\%} = 0.5$$

$$\mathsf{MFCAP} = \frac{\sqrt{50\%} + \sqrt{50\%}}{\sqrt{100\%} + \sqrt{100\%}} = 0.71$$

#### **SQRT**

$$\textit{MFCAP}_{ij,t} = [\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}} + \sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}} + \sqrt{S_{j,t}P_{j,t}}}]^{2}$$



$$FCAP = \frac{90\% + 10\%}{100\% + 100\%} = 0.5$$

$$MFCAP = \frac{\sqrt{90\%} + \sqrt{100\%}}{\sqrt{100\%} + \sqrt{100\%}} = 0.63$$

More example

# Measuring Common-ownership

| Subset            |      |      | MFCA | Р      |      |      |      | FCA | )      |      |
|-------------------|------|------|------|--------|------|------|------|-----|--------|------|
| Cabbet            | mean | std  | min  | median | max  | mean | std  | min | median | max  |
| All               | 0.15 | 0.24 | 0.00 | 0.06   | 4.62 | 0.12 | 0.16 | 0.0 | 0.05   | 0.97 |
| Same Group        | 0.47 | 0.41 | 0.00 | 0.41   | 4.04 | 0.38 | 0.25 | 0.0 | 0.37   | 0.97 |
| Not Same Group    | 0.10 | 0.16 | 0.00 | 0.04   | 2.90 | 0.08 | 0.11 | 0.0 | 0.04   | 0.97 |
| Same Industry     | 0.34 | 0.41 | 0.01 | 0.18   | 4.04 | 0.25 | 0.24 | 0.0 | 0.16   | 0.96 |
| Not Same Industry | 0.12 | 0.19 | 0.00 | 0.05   | 4.62 | 0.10 | 0.14 | 0.0 | 0.05   | 0.97 |

## MFCAP vs. FCAP Distributions

#### Monthly







## Correlation Calculation

#### 4 Factor + Industry

Frist Step:

Estimate this model on periods of three month (From two months earlier):

4 Factor + Industry :

$$\begin{aligned} R_{i,t} &= \alpha_i + \beta_{\textit{mkt},i} R_{\textit{M},t} + \beta_{\textit{Ind},i} R_{\textit{Ind},t} \\ &+ \beta_{\textit{HML},i} \textit{HML}_t + \beta_{\textit{SMB},i} \textit{SMB}_t + \beta_{\textit{UMD},i} \textit{UMD}_t + \boxed{\varepsilon_{i,t}} \end{aligned}$$

 Second Step: Calculate monthly correlation of each stock pair's daily abnormal returns (residuals)

|                       | mean  | std   | min    | median | max   |
|-----------------------|-------|-------|--------|--------|-------|
| CAPM + Industry       | 0.016 | 0.127 | -0.950 | 0.014  | 0.818 |
| 4 Factor              | 0.033 | 0.136 | -0.875 | 0.024  | 0.869 |
| 4 Factor $+$ Industry | 0.013 | 0.124 | -0.875 | 0.010  | 0.779 |
| Benchmark             | 0.008 | 0.145 | -0.933 | 0.006  | 0.860 |

#### Controls

- **SameGroup**: Dummy variable for whether the two stocks belong to the same business group.
- **SameIndustry**: Dummy variable for whether the two stocks belong to the same Industry.
- SameSize: The negative of absolute difference in percentile ranking of size across a pair
- SameBookToMarket : The negative of absolute difference in percentile ranking of the book to market ratio across a pair
- CrossOwnership: The maximum percent of cross-ownership between two firms

### Table of Contents

- Motivation
- Literature
  - Main Effect
- 3 Empirical Studies
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
- 4 Results
  - Common ownership & Co-movement
  - High level of common ownership
  - All pairs
- 5 Evidence for correlated trading
  - Turnover
  - Institutional Imbalance
- 6 Conclusion

# Co-movement and Common Ownership





#### Estimation model

Use Fama-MacBeth to estimate this model

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{MFCAP}^*_{ij,t} + \beta_2 * \mathsf{SameGroup}_{ij} \\ &+ \beta_3 * \mathsf{MFCAP}^*_{ij,t} \times \mathsf{SameGroup}_{ij} \\ &+ \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split} \tag{1}$$

- Estimate the model on a monthly frequency
- Adjust standard errors by Newey and West adjustment with 4 lags  $(4(70/100)^{\frac{2}{9}}=3.69\sim4)$

Methodology

## Model Estimation

#### Normalized Rank-Transformed

|                |            | Dependent V | ariable: Futu | ire Pairs's C | omovement |          |
|----------------|------------|-------------|---------------|---------------|-----------|----------|
|                | (1)        | (2)         | (3)           | (4)           | (5)       | (6)      |
| MFCAP*         | 0.00590*** | 0.00325***  |               |               | 0.00109   | 0.00098  |
|                | (8.15)     | (4.97)      |               |               | (1.84)    | (1.67)   |
| SameGroup      |            |             | 0.0348***     | 0.0246***     | 0.0234*** | 0.0212** |
|                |            |             | (9.83)        | (8.20)        | (7.93)    | (6.76)   |
| SameIndustry   |            | 0.0258***   |               | 0.0208***     | 0.0204*** | 0.0207** |
|                |            | (7.27)      |               | (6.68)        | (6.57)    | (6.67)   |
| SameBM         |            | 0.0224***   |               | 0.0214***     | 0.0215*** | 0.0200** |
|                |            | (6.57)      |               | (6.28)        | (6.34)    | (5.96)   |
| SameSize       |            | 0.0129***   |               | 0.0149***     | 0.0143*** | 0.0259** |
|                |            | (3.53)      |               | (4.14)        | (4.00)    | (5.90)   |
| CrossOwnership |            | 0.0569***   |               | 0.0278*       | 0.0294*   | 0.0354*  |
|                |            | (5.20)      |               | (2.18)        | (2.30)    | (2.75)   |

#### Model Estimation

#### Normalized Rank-Transformed

|                            | Dependent \ | /ariable: Futu | re Pairs's Co | movement  |
|----------------------------|-------------|----------------|---------------|-----------|
|                            | (1)         | (2)            | (3)           | (4)       |
| MFCAP*                     | 0.00920***  | -0.0000508     | -0.000111     | 0.000283  |
|                            | (7.05)      | (-0.08)        | (-0.18)       | (0.60)    |
| SameGroup                  |             |                | 0.00925**     | 0.00684   |
|                            |             |                | (2.73)        | (1.82)    |
| $MFCAP^* \times SameGroup$ |             |                | 0.0123***     | 0.0119*** |
|                            |             |                | (10.11)       | (9.41)    |
| Sub-sample                 | SameGroup   | Others         | All           | All       |
| Business Group FE          | No          | No             | No            | Yes       |
| Observations               | 47941       | 350877         | 398818        | 398818    |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

# Co-movement and Common Ownership

High level of common ownership





#### Fama-MacBeth Estimation

High level of common ownership (sub-sample)

|                            |           | Dependent Variable: Future Pairs's Comovement |           |           |        |          |          |  |
|----------------------------|-----------|-----------------------------------------------|-----------|-----------|--------|----------|----------|--|
|                            | (1)       | (2)                                           | (3)       | (4)       | (5)    | (6)      | (7)      |  |
| SameGroup                  | 0.0297*** |                                               | 0.0253*** |           |        | -0.0440* | -0.0406* |  |
|                            | (7.88)    |                                               | (7.19)    |           |        | (-2.24)  | (-2.00)  |  |
| MFCAP*                     |           | 0.0392***                                     | 0.0200*** | 0.0509*** | 0.0109 | 0.0113   | 0.00885  |  |
|                            |           | (7.37)                                        | (4.01)    | (4.65)    | (1.75) | (1.81)   | (1.34)   |  |
| $MFCAP^* \times SameGroup$ |           |                                               |           |           |        | 0.0444** | 0.0408** |  |
|                            |           |                                               |           |           |        | (3.11)   | (2.72)   |  |
| Sub-sample                 | All       | All                                           | All       | SameGroup | Others | All      | All      |  |
| Controls                   | Yes       | Yes                                           | Yes       | Yes       | Yes    | Yes      | Yes      |  |
| Business Group FE          | No        | No                                            | No        | No        | No     | No       | Yes      |  |
| Observations               | 103396    | 103396                                        | 103396    | 36297     | 67099  | 103396   | 103396   |  |

# All pairs

|                            |           | D        | ependent Vari | able: Future Pa | airs' co-move | ment        |           |
|----------------------------|-----------|----------|---------------|-----------------|---------------|-------------|-----------|
|                            | (1)       | (2)      | (3)           | (4)             | (5)           | (6)         | (7)       |
| SameGroup                  | 0.0178*** |          | 0.0180***     |                 |               | 0.0148***   | 0.0131*** |
|                            | (9.01)    |          | (9.69)        |                 |               | (6.42)      | (5.58)    |
| MFCAP*                     |           | 0.000393 | -0.0000580    | 0.00195*        | -0.000282     | -0.000828** | -0.000301 |
|                            |           | (1.48)   | (-0.23)       | (2.01)          | (-1.13)       | (-3.21)     | (-1.17)   |
| $MFCAP^* \times SameGroup$ |           |          |               |                 |               | 0.00284***  | 0.00264** |
|                            |           |          |               |                 |               | (3.55)      | (3.26)    |
| Controls                   | Yes       | Yes      | Yes           | Yes             | Yes           | Yes         | Yes       |
| Sub-Sample                 | Total     | Total    | Total         | SameGroups      | Others        | Total       | Total     |
| Business Group FE          | No        | No       | No            | No              | No            | No          | Yes       |
| Observations               | 4656286   | 4656286  | 4656286       | 95686           | 4560600       | 4656286     | 4656286   |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

#### Table of Contents

- Motivation
- Literature
  - Main Effect
- 3 Empirical Studies
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
- 4 Results
  - Common ownership & Co-movement
  - High level of common ownership
  - All pairs
- 5 Evidence for correlated trading
  - Turnover
  - Institutional Imbalance
- 6 Conclusion

# TrunOver

Koch et al. (2016)

$$\Delta \mathsf{TurnOver} = \mathsf{In}(\frac{\mathsf{TurnOver}_{i,t}}{\mathsf{TurnOver}_{i,t-1}}) = \mathsf{In}(\frac{\mathsf{volume}_{i,t}}{\mathsf{MarketCap}_{i,t}}) - \mathsf{In}(\frac{\mathsf{volume}_{i,t-1}}{\mathsf{MarketCap}_{i,t-1}})$$

|                                         | Deper    | ident Varia | ble: ΔTurn | Over_i   |
|-----------------------------------------|----------|-------------|------------|----------|
|                                         | (1)      | (2)         | (3)        | (4)      |
| $\Delta$ TurnOver <sub>Market</sub>     | 0.416*** | 0.326***    | 0.252***   | 0.228*** |
|                                         | (12.25)  | (5.35)      | (6.41)     | (4.24)   |
| $\Delta$ TurnOver <sub>Industry-i</sub> | 0.142*** | 0.213***    | 0.0335     | 0.167**  |
| ,                                       | (3.79)   | (6.29)      | (1.34)     | (2.87)   |
| $\Delta$ TurnOver <sub>Group,-i</sub>   |          |             | 0.330***   | 0.218*** |
|                                         |          |             | (12.74)    | (3.80)   |
| Control                                 | No       | Yes         | No         | Yes      |
| Observations                            | 854662   | 851772      | 333789     | 331263   |
| $R^2$                                   | 0.285    | 0.543       | 0.433      | 0.712    |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

# Business group and correlation in Turnover

|                            |                     | Depende           | ent Variable: N      | Monthly Correl     | ation of Delt        | a turnover           |                     |
|----------------------------|---------------------|-------------------|----------------------|--------------------|----------------------|----------------------|---------------------|
|                            | (1)                 | (2)               | (3)                  | (4)                | (5)                  | (6)                  | (7)                 |
| SameGroup                  | 0.0174***<br>(5.62) |                   | 0.0173***<br>(5.31)  |                    |                      | 0.0145***<br>(4.43)  | 0.0167***<br>(5.35) |
| MFCAP*                     |                     | 0.00161<br>(1.88) | 0.00000580<br>(0.01) | 0.000589<br>(0.30) | -0.000155<br>(-0.16) | -0.000234<br>(-0.24) | -0.00110<br>(-0.94) |
| $MFCAP^* \times SameGroup$ |                     |                   |                      |                    |                      | 0.00310<br>(1.30)    | 0.00362<br>(1.53)   |
| Sub-sample                 | All                 | All               | All                  | SameGroup          | Others               | All                  | All                 |
| Business Group FE          | No                  | No                | No                   | No                 | No                   | No                   | Yes                 |
| Observations               | 331439              | 331439            | 331439               | 40979              | 290460               | 331439               | 331439              |

## Correlation in Turnover and Co-movement

|                               | Depe      | ndent Varial | ole: Future Pa | irs's Comove | ement     |
|-------------------------------|-----------|--------------|----------------|--------------|-----------|
|                               | (1)       | (2)          | (3)            | (4)          | (5)       |
| $\rho(\Delta TurnOver)_{t+1}$ | 0.0514*** | 0.0484***    | 0.0830***      | 0.0424***    | 0.0490*** |
|                               | (10.45)   | (10.26)      | (13.20)        | (9.08)       | (10.41)   |
| $ ho_{t}$                     | 0.0405*** | 0.0381***    | 0.111***       | 0.0258***    | 0.0369*** |
|                               | (11.36)   | (10.99)      | (17.12)        | (7.17)       | (11.41)   |
| Control                       | No        | Yes          | Yes            | Yes          | Yes       |
| Sub-sample                    | Total     | Total        | SameGroup      | Others       | Total     |
| Business Group FE             | No        | No           | No             | No           | Yes       |
| Observations                  | 343173    | 343173       | 42354          | 300819       | 343173    |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

# Residual of Monthly Turnover

- Turnover<sub>i,t</sub> =  $\alpha_0 + \alpha_1 \times \text{Turnover}_{i,avg} + \alpha_2 \times \text{Turnover}_{m,t} + \alpha_3 \times \text{Turnover}_{ind,t} + \boxed{\varepsilon_{i,t}}$ 
  - Turnover<sub>i,t</sub>: Monthly Turnover (Average of daily turnovers in each month)
  - Turnover<sub>i,avg</sub>: Annual average of monthly turnover
  - Turnover<sub>m,t</sub>: Market turnover
  - Turnover<sub>ind,t</sub>: Industry turnover
- Assign residuals to the business groups

|           | $Firm \times Month$ | mean   | std   | min    | 25%    | 50%    | 75%   | max   |
|-----------|---------------------|--------|-------|--------|--------|--------|-------|-------|
| Ungrouped | 8206                | -0.004 | 0.783 | -4.702 | -0.471 | -0.013 | 0.466 | 5.061 |
| Grouped   | 18022               | 0.002  | 0.712 | -5.997 | -0.416 | -0.009 | 0.424 | 3.392 |

# Residual of Monthly Turnover

#### Standard error

|           | Group \$ \times \$ Month | mean  | std   | min   | 25%   | 50%   | 75%   | max   |
|-----------|--------------------------|-------|-------|-------|-------|-------|-------|-------|
| Ungrouped | 72                       | 0.776 | 0.113 | 0.504 | 0.685 | 0.781 | 0.867 | 1.030 |
| Grouped   | 2441                     | 0.601 | 0.313 | 0.001 | 0.403 | 0.567 | 0.763 | 3.274 |



## Low residual standard error

|                                   |           | Dependent | Variable: Futi | ıre Pairs's C | omovement |           |
|-----------------------------------|-----------|-----------|----------------|---------------|-----------|-----------|
|                                   | (1)       | (2)       | (3)            | (4)           | (5)       | (6)       |
| SameGroup                         | 0.0223*** | 0.0234*** |                |               | 0.0133**  | 0.0106**  |
|                                   | (6.98)    | (7.75)    |                |               | (3.39)    | (2.73)    |
| LowTurnoverStd                    |           | 0.00239** | 0.0305***      | -0.000697     | -0.000469 | 0.00215   |
|                                   |           | (2.92)    | (5.96)         | (-0.69)       | (-0.48)   | (1.52)    |
| $LowTurnoverStd \times SameGroup$ |           |           |                |               | 0.0287*** | 0.0269*** |
|                                   |           |           |                |               | (4.86)    | (4.93)    |
| Sub-sample                        | Total     | Total     | SameGroup      | Others        | Total     | Total     |
| Business Group FE                 | No        | No        | No             | No            | No        | Yes       |
| Observations                      | 398818    | 398818    | 47941          | 350877        | 398818    | 398818    |

## Institutional Imbalance

Seasholes and Wu (2007)

$$Imbalance_{ins} = \frac{Buy_{ins} - Sell_{ins}}{Buy_{ins} + Sell_{ins}}$$

|           | $Group \times Month$ | mean   | std   | min  | 25%    | 50%    | 75%   | max |
|-----------|----------------------|--------|-------|------|--------|--------|-------|-----|
| Ungrouped | 20896                | 0.004  | 0.626 | -1.0 | -0.478 | 0.013  | 0.462 | 1.0 |
| Grouped   | 12177                | -0.043 | 0.574 | -1.0 | -0.453 | -0.011 | 0.330 | 1.0 |

## Ins Imbalance std

#### Standard error

|           | $Group \times Month$ | mean  | std   | min   | 25%   | 50%   | 75%   | max   |
|-----------|----------------------|-------|-------|-------|-------|-------|-------|-------|
| Ungrouped | 72                   | 0.619 | 0.054 | 0.481 | 0.594 | 0.627 | 0.655 | 0.734 |
| Grouped   | 2062                 | 0.497 | 0.247 | 0.000 | 0.334 | 0.495 | 0.636 | 1.414 |



## Low Ins Imbalance Group

|                                                |           | Dependent Variable: Future Pairs's Comovement |           |             |             |           |  |  |  |  |  |
|------------------------------------------------|-----------|-----------------------------------------------|-----------|-------------|-------------|-----------|--|--|--|--|--|
|                                                | (1)       | (2)                                           | (3)       | (4)         | (5)         | (6)       |  |  |  |  |  |
| SameGroup                                      | 0.0223*** | 0.0221***                                     |           |             | 0.00908*    | 0.00908*  |  |  |  |  |  |
|                                                | (6.98)    | (6.91)                                        |           |             | (2.55)      | (2.44)    |  |  |  |  |  |
| LowImbalanceStd                                |           | -0.00184                                      | 0.0260*** | -0.00704*** | -0.00597*** | -0.00169  |  |  |  |  |  |
|                                                |           | (-1.49)                                       | (4.56)    | (-5.85)     | (-4.97)     | (-0.87)   |  |  |  |  |  |
| ${\sf LowImbalanceStd} \times {\sf SameGroup}$ |           |                                               |           |             | 0.0330***   | 0.0289*** |  |  |  |  |  |
|                                                |           |                                               |           |             | (5.96)      | (5.24)    |  |  |  |  |  |
| Sub-sample                                     | Total     | Total                                         | SameGroup | Others      | Total       | Total     |  |  |  |  |  |
| Business Group FE                              | No        | No                                            | No        | No          | No          | Yes       |  |  |  |  |  |
| Observations                                   | 398818    | 398818                                        | 47941     | 350877      | 398818      | 398818    |  |  |  |  |  |

t statistics in parentheses

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

## Table of Contents

- Motivation
- 2 Literature
  - Main Effect
- 3 Empirical Studies
  - Pair composition
  - Measuring Common-ownership
  - Correlation Calculation
  - Controls
- 4 Results
  - Common ownership & Co-movement
  - High level of common ownership
  - All pairs
- 5 Evidence for correlated trading
  - Turnover
  - Institutional Imbalance
- 6 Conclusion

## Conclusion

- Direct common ownership affects firms' co-movement.
- Firms in the business groups co-move more than other pairs
- Direct common ownership only matters for firms in the business groups.
- In the Business groups, firms are traded in the same time and also in the same direction.

### References I

- Anton, M. and Polk, C. (2014). Connected stocks. The Journal of Finance, 69(3):1099-1127.
- Azar, J., Schmalz, M. C., and Tecu, I. (2018). Anticompetitive effects of common ownership. The Journal of Finance, 73(4):1513-1565.
- Barberis, N. and Shleifer, A. (2003). Style investing, Journal of financial Economics, 68(2):161-199.
- Barberis, N., Shleifer, A., and Wurgler, J. (2005). Comovement. Journal of financial economics, 75(2):283-317.
- Boubaker, S., Mansali, H., and Rjiba, H. (2014). Large controlling shareholders and stock price synchronicity. Journal of Banking & Finance, 40:80-96.
- Cho. C. H. and Mooney, T. (2015). Stock return comovement and korean business groups. Review of Development Finance. 5(2):71-81.
- David, J. M. and Simonovska, I. (2016). Correlated beliefs, returns, and stock market volatility. Journal of International Economics, 99:S58-S77.
- Freeman, K. (2019). The effects of common ownership on customer-supplier relationships. Kelley School of Business Research Paper, (16-84).
- Gilie, E. P., Gormley, T. A., and Levit, D. (2020). Who's paying attention? measuring common ownership and its impact on managerial incentives. Journal of Financial Economics, 137(1):152-178.
- Greenwood, R. and Thesmar, D. (2011). Stock price fragility. Journal of Financial Economics, 102(3):471-490.
- Grullon, G., Underwood, S., and Weston, J. P. (2014). Comovement and investment banking networks. Journal of Financial Economics, 113(1):73-89.
- Hameed, A. and Xie, J. (2019). Preference for dividends and return comovement. Journal of Financial Economics. 132(1):103-125.
- Hansen, R. G. and Lott Jr. J. R. (1996). Externalities and corporate objectives in a world with diversified shareholder/consumers. Journal of Financial and Quantitative Analysis, pages 43-68.
- Harford, J., Jenter, D., and Li, K. (2011). Institutional cross-holdings and their effect on acquisition decisions. Journal of Financial Economics, 99(1):27-39.

## References II

- He, J. and Huang, J. (2017). Product market competition in a world of cross-ownership: Evidence from institutional blockholdings. The Review of Financial Studies, 30(8):2674–2718.
- He, J., Huang, J., and Zhao, S. (2019). Internalizing governance externalities: The role of institutional cross-ownership. *Journal of Financial Economics*, 134(2):400–418.
- Khanna, T. and Thomas, C. (2009). Synchronicity and firm interlocks in an emerging market. *Journal of Financial Economics*, 92(2):182–204.
- Kim, M.-S., Kim, W., and Lee, D. W. (2015). Stock return commonality within business groups: Fundamentals or sentiment? Pacific-Basin Finance Journal. 35:198–224.
- Koch, A., Ruenzi, S., and Starks, L. (2016). Commonality in Liquidity: A Demand-Side Explanation. The Review of Financial Studies, 29(8):1943–1974.
- Newham, M., Seldeslachts, J., and Banal-Estanol, A. (2018). Common ownership and market entry: Evidence from pharmaceutical industry.
- Pantzalis, C. and Wang, B. (2017). Shareholder coordination, information diffusion and stock returns. Financial Review, 52(4):563–595.
- Seasholes, M. S. and Wu, G. (2007). Predictable behavior, profits, and attention. *Journal of Empirical Finance*, 14(5):590–610.
- Shiller, R. J. (1989). Comovements in stock prices and comovements in dividends. The Journal of Finance, 44(3):719–729.

## Table of Contents

- Appendix I
- Appendix I
  - Synchronicity and firm interlocks
  - Large controlling shareholder and stock price synchronicity
  - Connected Stocks
  - Measures' Detail
- 9 Appendix II

- If two stocks in pair have n mutual owner, which total market cap divides them equally, the mentioned indexes equal n.
  - Each holder owns 1/n of each firm.
  - Firm's market cap is  $\alpha_1$  and  $\alpha_2$ :
  - So for each holder of firms we have  $S_{i,t}^f P_{i,t} = \alpha_i$
  - SQRT

$$\left[\frac{\sum_{f=1}^{n} \sqrt{\alpha_1/n} + \sum_{f=1}^{n} \sqrt{\alpha_2/n}}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = \left[\frac{\sqrt{n}(\sqrt{\alpha_1} + \sqrt{\alpha_2})}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = n$$

Quadratic

$$\left[\frac{\sum_{f=1}^{n} (\alpha_1/n)^2 + \sum_{f=1}^{n} (\alpha_2/n)^2}{\alpha_1^2 + \alpha_2^2}\right]^{-1} = \left[\frac{\alpha_1^2 + \alpha_2^2}{n(\alpha_1^2 + \alpha_2^2)}\right]^{-1} = n$$



Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

**SQRT** 

Quadratic

$$\frac{\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}$$

$$\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}\left[\frac{\sum_{f=1}^{F}[(S_{i,t}^{f}P_{i,t})^{2}+(S_{j,t}^{f}P_{j,t})^{2}]}{(S_{i,t}P_{i,t})^{2}+(S_{j,t}P_{j,t})^{2}}\right]^{-1}$$

#### Intuition

If for a pair of stocks with n mutual owners, all owners have even shares of each firm's market cap, then the proposed indexes will be equal to n. Proof

### Example



For better observation, assume that

- $\alpha + \beta = 100$
- both firm have equal market cap



Comparison of three methods for calculating common ownership

Example of three common owner



Example of three common owner

| Ownership  | Type I | Type II | Type III | Type IV | Type V | Type VI | Type VII |
|------------|--------|---------|----------|---------|--------|---------|----------|
| $\alpha_1$ | 1/3    | 20      | 10       | 20      | 10     | 5       | 1        |
| $\beta_1$  | 1/3    | 10      | 10       | 20      | 10     | 5       | 1        |
| $\alpha_2$ | 1/3    | 10      | 80       | 20      | 10     | 5       | 1        |
| $\beta_2$  | 1/3    | 20      | 80       | 20      | 10     | 5       | 1        |
| $\alpha_3$ | 1/3    | 70      | 10       | 20      | 10     | 5       | 1        |
| $eta_3$    | 1/3    | 70      | 10       | 20      | 10     | 5       | 1        |
| SQRT       | 3      | 2.56    | 2.33     | 1.8     | 0.9    | 0.45    | 0.09     |
| SUM        | 1      | 1       | 1        | 0.6     | 0.3    | 0.15    | 0.03     |
| Quadratic  | 3      | 1.85    | 1.52     | 8.33    | 33.33  | 133.33  | 3333.33  |



#### Comparison

- For better comparison we relax previous assumptions:
  - Two Firms with different market caps.

|                                   |                 |      | $(\alpha_1,\beta_1)$ | $(\alpha_2,\beta_2)$ |                 |      |  |
|-----------------------------------|-----------------|------|----------------------|----------------------|-----------------|------|--|
|                                   | (10,40),(10,40) |      | (15,35),             | ,(15,35)             | (20,30),(20,30) |      |  |
| $\frac{MarketCap_X}{MarketCap_y}$ | SQRT SUM S      | SQRT | SUM                  | SQRT                 | SUM             |      |  |
| 1                                 | 0.90            | 0.50 | 0.96                 | 0.50                 | 0.99            | 0.50 |  |
| 2                                 | 0.80            | 0.40 | 0.89                 | 0.43                 | 0.96            | 0.47 |  |
| 3                                 | 0.75            | 0.35 | 0.85                 | 0.40                 | 0.94            | 0.45 |  |
| 4                                 | 0.71            | 0.32 | 0.83                 | 0.38                 | 0.92            | 0.44 |  |
| 5                                 | 0.69            | 0.30 | 0.81                 | 0.37                 | 0.91            | 0.43 |  |
| 6                                 | 0.67            | 0.29 | 0.80                 | 0.36                 | 0.91            | 0.43 |  |
| 7                                 | 0.65            | 0.28 | 0.79                 | 0.35                 | 0.90            | 0.43 |  |
| 8                                 | 0.64            | 0.27 | 0.78                 | 0.34                 | 0.90            | 0.42 |  |
| 9                                 | 0.63            | 0.26 | 0.77                 | 0.34                 | 0.89            | 0.42 |  |
| 10                                | 0.62            | 0.25 | 0.76                 | 0.34                 | 0.89            | 0.42 |  |

#### Comparison



Comparison of two methods for calculating common ownership

#### Conclusion

We use the SQRT measure because it has an acceptable variation and has fair values at a lower level of aggregate common ownership.

## Common Ownership measure

|                                      |            | Dependent Va | riable: Futu | re Monthly ( | Correlation o | f 4F+Indust | ry Residuals |           |
|--------------------------------------|------------|--------------|--------------|--------------|---------------|-------------|--------------|-----------|
|                                      | (1)        | (2)          | (3)          | (4)          | (5)           | (6)         | (7)          | (8)       |
| Common Ownership Measure             | 0.00370*** | 0.00325***   | 0.00155*     | 0.00109      | 0.000333      | -0.000105   | 0.000550     | 0.000283  |
|                                      | (5.58)     | (4.97)       | (2.61)       | (1.84)       | (0.54)        | (-0.17)     | (1.07)       | (0.58)    |
| SameGroup                            |            |              | 0.0229***    | 0.0234***    | 0.0100**      | 0.0103**    | 0.00626      | 0.00668   |
|                                      |            |              | (7.89)       | (7.93)       | (3.26)        | (3.17)      | (1.79)       | (1.79)    |
| Common Ownership Measure × SameGroup |            |              |              |              | 0.0134***     | 0.0135***   | 0.0127***    | 0.0126*** |
|                                      |            |              |              |              | (9.47)        | (10.65)     | (9.23)       | (9.71)    |
| Observations                         | 398818     | 398818       | 398818       | 398818       | 398818        | 398818      | 398818       | 398818    |
| Group FE                             | No         | No           | No           | No           | No            | No          | Yes          | Yes       |
| Measurement                          | Sum        | Sum          | Sum          | Sum          | Sum           | SQRT        | Sum          | SQRT      |
| $R^2$                                | 0.00433    | 0.00427      | 0.00518      | 0.00515      | 0.00554       | 0.00551     | 0.0182       | 0.0182    |

t statistics in parentheses

 $<sup>^{*}</sup>$   $\rho<$  0.05,  $^{**}$   $\rho<$  0.01,  $^{***}$   $\rho<$  0.001

## Table of Contents

- 7 Appendix
- 8 Appendix II
  - Synchronicity and firm interlocks
  - Large controlling shareholder and stock price synchronicity
  - Connected Stocks
  - Measures' Detail
- 9 Appendix III

## Main Effect

### Common-ownership and comovement effect

[Anton and Polk (2014)]

Stocks sharing many common investors tend to comove more strongly with each other in the future than otherwise similar stocks.

### • Common-ownership and liquidity demand

[Koch et al. (2016), Pastor and Stambaugh (2003), Acharya and Pedersen (2005)] Commonality in stock liquidity is likely driven by correlated trading among a given stock's investors. Commonality in liquidity is important because it can influence expected returns

#### • Trading needs and comovement

[Greenwood and Thesmar (2011)]

If the investors of mutual funds have correlated trading needs, the stocks that are held by mutual funds can comove even without any portfolio overlap of the funds themselves

### Stock price synchronicity and poor corporate governance

[Boubaker et al. (2014), Khanna and Thomas (2009), Morck et al. (2000)] Stock price synchronicity has been attributed to poor corporate governance and a lack of firm-level transparency. On the other hand, better law protection encourages informed trading, which facilitates the incorporation of firm-specific information into stock prices, leading to lower synchronicity



# Synchronicity and firm interlocks

JFE-2009-Khanna

- Three types of network
  - Equity network
  - ② Director network
  - Owner network
- Dependent variables

Using deterended weekly return for calculation

- **1** Pairwise returns synchronicity =  $\frac{\sum_{\mathbf{t}} (n_{i,j,\mathbf{t}}^{i,j,\mathbf{t}}, n_{i,j,\mathbf{t}}^{down})}{T_{i,j}}$
- $2 Correlation = \frac{\textit{Cov}(i,j)}{\sqrt{\textit{Var}(i).\textit{Var}(j)}}$
- Tobit estimation of

$$f_{i,j}^d = \alpha I_{i,j} + \beta (1 * N_{i,j}) + \gamma Ind_{i,j} + \varepsilon_{i,j}$$

being in the same director network has a significant effect

# Large controlling shareholder and stock price synchronicity JBF-2014-Boubaker

Stock price synchronicity:

$$SYNCH = \log(\frac{R_{i,t}^2}{1 - R_{i,t}^2})$$

where  $R_{i,t}^2$  is the R-squared value from

$$\textit{RET}_{\textit{i},\textit{w}} = \alpha + \beta_1 \textit{MKRET}_{\textit{w}-1} + \beta_2 \textit{MKRET}_{\textit{w}} + \beta_3 \textit{INDRET}_{\textit{i},\textit{w}-1} + \beta_4 \textit{INDRET}_{\textit{i},\textit{w}} + \varepsilon_{\textit{i},\textit{w}}$$

OLS estimation of

$$\begin{aligned} \textit{SYNCH}_{i,t} &= \beta_0 + \beta_1 \textit{Excess}_{i,t} + \beta_2 \textit{UCF}_{i,t} + \sum_k \beta_k \textit{Control}_{i,t}^k \\ &+ \textit{IndustryDummies} + \textit{YearDummies} + \varepsilon_{i,t} \end{aligned}$$

- Stock price synchronicity increases with excess control
- Firms with substantial excess control are more likely to experience stock price crashes

## Connected Stocks

#### JF-2014-Anton Polk

- Common active mutual fund owners
- Measuring Common Ownership

• 
$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

- ullet Using normalized rank-transformed as  $FCAP_{ij,t}^*$
- $\rho_{ij,t}$ : within-month realized correlation of each stock pair's daily four-factor returns

q

$$ho_{ij,t+1} = a + b_f \times FCAPF_{ij,t}^* + \sum_{k=1}^{n} CONTROL_{ij,t,k} + \varepsilon_{ij,t+1}$$

Estimate these regressions monthly and report the time-series average as in Fama-MacBeth

## Commonownership measurements

#### Model-based measures

• 
$$\mathsf{HJL}^A_I(A,B) = \sum_{i \in I^{A,B}} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$$
 Harford et al. (2011)

- Bi-directional
- Pair-level measure of common ownership
- Its potential impact on managerial incentives
- Measure not necessarily increases when the relative ownership increases
- Accounts only for an investor's relative holdings

$$\bullet \ \ \mathsf{MHHI} = \textstyle \sum_{j} \sum_{k} \mathsf{s}_{j} \mathsf{s}_{k} \frac{\sum_{i} \mu_{ij} \nu_{ik}}{\sum_{j} \mu_{ij} \nu_{ij}} \ \ \mathsf{Azar} \ \mathsf{et} \ \mathsf{al.} \ \mathsf{(2018)}$$

- Capture a specific type of externality
- Measured at the industry level
- Assumes that investors are fully informed about the externalities

• 
$$\operatorname{\mathsf{GGL}}^A(A,B) = \sum_{i=1}^I \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$$
 Gilje et al. (2020)

- Bi-directional
- Less information
- Not sensitive to the scope
- Measure increases when the relative ownership of firm A increases

## Commonownership measurements

#### Ad hoc common ownership measures

- $Overlap_{Count}(A, B) = \sum_{i \in I^{A,B}} 1$ He and Huang (2017),He et al. (2019)
- $Overlap_{Min}(A, B) = \sum_{i \in I^{A,B}} min\{\alpha_{i,A}, \alpha_{i,B}\}$ Newham et al. (2018)
- Overlap\_{AP}(A,B) =  $\sum_{i \in I^{A,B}} \alpha_{i,A} \frac{\bar{\nu}_A}{\bar{\nu}_A + \bar{\nu}_B} + \alpha_{i,B} \frac{\bar{\nu}_B}{\bar{\nu}_A + \bar{\nu}_B}$ Anton and Polk (2014)
- $Overlap_{HL}(A, B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \times \sum_{i \in I^{A,B}} \alpha_{i,B}$ Hansen and Lott Jr (1996) , Freeman (2019)
- Unappealing properties
  - Unclear is whether any of these measures represents an economically meaningful measure of common ownership's impact on managerial incentives.
  - Both Overlap<sub>Count</sub> and Overlap<sub>AP</sub> are invariant to the decomposition of ownership between the two firms, which leads to some unappealing properties.



## Table of Contents

- 7 Appendix
- 8 Appendix I
  - Synchronicity and firm interlocks
  - Large controlling shareholder and stock price synchronicity
  - Connected Stocks
  - Measures' Detail
- Appendix III

## Fama-MacBeth Estimation

- Fama-MacBeth regression analysis is implemented using a two-step procedure.
  - The first step is to run periodic cross-sectional regression for dependent variables using data of each period.
  - The second step is to analyze the time series of each regression coefficient to determine whether the average coefficient differs from zero.

## Fama-MacBeth (1973)

- Two Step Regression
  - First Step

$$Y_{i1} = \delta_{0,1} + \delta_{1,1}^{1} X_{i,1}^{1} + \dots + \delta_{k,1}^{k} X_{i,1}^{k} + \varepsilon_{i,1}$$

$$\vdots$$

$$Y_{iT} = \delta_{0,1} + \delta_{1,T}^{1} X_{i,T}^{1} + \dots + \delta_{k,T}^{k} X_{i,T}^{k} + \varepsilon_{i,T}$$

Second Step

$$\begin{bmatrix} \bar{Y}_1 \\ \vdots \\ \bar{Y}_T \end{bmatrix}_{T \times 1} = \begin{bmatrix} 1 & \delta_1^0 & \delta_1^1 & \dots & \delta_1^k \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & \delta_T^0 & \delta_T^1 & \dots & \delta_T^k \end{bmatrix}_{T \times (k+2)} \times \begin{bmatrix} \lambda \\ \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_k \end{bmatrix}_{(k+2) \times 1}$$

• Fama-MacBeth technique was developed to account for correlation between observations on different firms in the same period

## Calculating standard errors

- In most cases, the standard errors are adjusted following Newey and West (1987).
  - Newey and West (1987) adjustment to the results of the regression produces a new standard error for the estimated mean that is adjusted for autocorrelation and heteroscedasticity.
  - Only input is the number of lags to use when performing the adjustment

$$Lag = 4(T/100)^{\frac{2}{9}}$$

where T is the number of periods in the time series

