

Relatório do Lab 11 de CCI-22

Trabalho 11 – Autovalores e Autovetores

Aluno:

Bruno Costa Alves Freire

Turma:

T 22.4

Professor:

Marcos Ricardo Omena de Albuquerque Máximo

Data:

20/06/2018

Instituto Tecnológico de Aeronáutica – ITA Departamento de Computação

Análise: Comparação entre os métodos das Potências, de Jacobi e QR

Foram consideradas as 6 matrizes quadradas:

$$\mathbf{A_1} = \begin{bmatrix} 3 & 0 & 1 \\ 2 & 2 & 2 \\ 4 & 2 & 5 \end{bmatrix}$$

$$\mathbf{A_2} = \begin{bmatrix} 1 & 8 & 9 \\ 7 & 7 & 3 \\ 5 & 9 & 7 \end{bmatrix}$$

$$\mathbf{A_3} = \begin{bmatrix} 1 & 7.5 & 7 \\ 7.5 & 7 & 6 \\ 7 & 6 & 7 \end{bmatrix}$$

$$\mathbf{A_4} = \begin{bmatrix} 2 & 2.5 & 8 & 3.5 \\ 2.5 & 9 & 7 & 7.5 \\ 8 & 7 & 6 & 1 \\ 3.5 & 7.5 & 1 & 6 \end{bmatrix}$$

$$\mathbf{A_5} = \begin{bmatrix} 2 & 5 & 9 & 2 \\ 0 & 9 & 8 & 9 \\ 7 & 6 & 6 & 0 \\ 5 & 6 & 2 & 5 \end{bmatrix}$$

$$\mathbf{A_6} = \begin{bmatrix} 2 & 3 & 8 & 6 \\ 3 & 2 & 3 & 3 \\ 8 & 3 & 8 & 5 \\ 6 & 3 & 5 & 4 \end{bmatrix}$$

Os métodos da Potência e da Potência Inversa foram utilizados para determinar respectivamente os autopares relativos ao maior e ao menor autovalor em módulo de cada matriz. O método de Jacobi foi utilizado para as matrizes simétricas (A3, A4, A6) para determinar todos os seus autovalores e autovetores. Por fim, o método QR foi aplicado para determinar somente os autovalores de todas as matrizes. Tudo isso foi feito por meio do *script* eigencompare.m, e os resultados foram compilados nas tabelas 1, 2 e 3. As tabelas 1, 2 e 3 contém os dados obtidos por meio dos métodos das potências (diretas e inversas), do método de Jacobi e do algoritmo QR, respectivamente.

Tabela 1: Autopares relativos ao maior e menor autovalores (em módulo) das matrizes A_i , $i \in \{1, \dots, 6\}$, determinados pelos métodos das potências.

Matriz	Método das Potências	Método das Potências Inversas
A ₁	$\lambda_{max} = 7.0005$ $\nu_{max} = \begin{bmatrix} 0.2183 \\ 0.4364 \\ 0.8728 \end{bmatrix}$	$\lambda_{min} = 1.0001$ $v_{min} = \begin{bmatrix} 0.3336 \\ 0.6663 \\ -0.6669 \end{bmatrix}$
A ₂	λ = 18 5157	$\lambda_{min} = -0.0310$ $v_{min} = \begin{bmatrix} 0.4533 \\ -0.6914 \end{bmatrix}$
Aз	$v_{max} = \begin{bmatrix} 0.5660 \\ 0.5122 \\ 0.6460 \end{bmatrix}$ $\lambda_{max} = 18.8813$ $v_{max} = \begin{bmatrix} 0.4974 \\ 0.6203 \\ 0.6064 \end{bmatrix}$	$ \lambda_{min} = 1.0142 v_{min} = \begin{bmatrix} -0.0401 \\ -0.6818 \\ 0.7304 \end{bmatrix} $
A_4	$\lambda_{max} = 21.2656$ $v_{max} = \begin{bmatrix} 0.3758 \\ 0.6360 \\ 0.5170 \\ 0.4324 \end{bmatrix}$	$v_{min} = \begin{bmatrix} 0.5342 \\ -0.6081 \\ -0.1210 \\ 0.5747 \end{bmatrix}$
A_5	$\lambda_{max} = 20.9085$ $v_{max} = \begin{bmatrix} 0.4347 \\ 0.6391 \\ 0.4613 \\ 0.4356 \end{bmatrix}$ $\lambda_{max} = 19.2635$	$\lambda_{min} = 0.9839$ $v_{min} = \begin{bmatrix} 0.4442 \\ -0.7428 \\ 0.2685 \\ 0.4229 \end{bmatrix}$
A_6	$\lambda_{max} = 19.2635$ $v_{max} = \begin{bmatrix} 0.5171 \\ 0.2857 \\ 0.6534 \\ 0.4734 \end{bmatrix}$	$\lambda_{min} = -0.1570$ $v_{min} = \begin{bmatrix} 0.1167 \\ -0.7155 \\ -0.2458 \\ 0.6435 \end{bmatrix}$

Tabela 2: Autovalores e autovetores das matrizes simétricas **A**₃, **A**₄ e **A**₆ determinados através do Método de Jacobi.

Resultados Método Jacobi	A ₃	A 4	A 6
Autovalores	$\lambda_1 = -4.8956$ $\lambda_2 = 18.8813$ $\lambda_3 = 1.0142$	$\lambda_1 = -6.0448$ $\lambda_2 = 21.2656$ $\lambda_3 = 6.6715$ $\lambda_4 = 1.1078$	$\lambda_1 = -4.3876$ $\lambda_2 = -0.1570$ $\lambda_3 = 19.2635$ $\lambda_4 = 1.2811$
Autovetores	$ \begin{bmatrix} \mathbf{v_1} & \mathbf{v_2} & \mathbf{v_3} \end{bmatrix} = \\ \begin{bmatrix} 0.8665 & 0.4976 & -0.0402 \\ -0.3878 & 0.6203 & -0.6818 \\ -0.3143 & 0.6064 & 0.7304 \end{bmatrix} $	$ \begin{bmatrix} \mathbf{V_1} & \mathbf{V_2} & \mathbf{V_3} & \mathbf{V_4} \end{bmatrix} = \\ \begin{bmatrix} 0.6360 & 0.3758 & 0.4110 & 0.5342 \\ 0.3456 & 0.6360 & -0.3260 & -0.6080 \\ -0.5942 & 0.5169 & 0.6043 & -0.1210 \\ -0.3507 & 0.4325 & -0.5997 & 0.5747 \end{bmatrix} $	$ \begin{bmatrix} \mathbf{V_1} & \mathbf{V_2} & \mathbf{V_3} & \mathbf{V_4} \end{bmatrix} = \\ \begin{bmatrix} 0.8471 & -0.1167 & 0.5170 & -0.0387 \\ -0.0467 & 0.7155 & 0.2857 & 0.6358 \\ -0.3923 & 0.2458 & 0.6534 & -0.5989 \\ -0.3554 & -0.6435 & 0.4734 & 0.4853 \end{bmatrix} $

Tabela 3: Espectros das matrizes A_i , $i \in \{1, \dots, 6\}$, determinados através do algoritmo QR.

Matriz	Autovalores via Algoritmo QR
A ₁	$\sigma = \{7.0000, 2.0002, 0.9998\}$
A_2	$\sigma = \{18.5164, -3.4854, -0.0310\}$
A 3	$\sigma = \{18.8813, -4.8956, 1.0142\}$
A_4	$\sigma = \{21.2656, 6.6715, -6.0448, 1.1078\}$
A_5	$\sigma = \{20.9087, 6.5840, -6.4538, 0.9839\}$
A_6	$\sigma = \{19.2635, -4.3876, 1.2811, -0.1570\}$

A primeira consideração que devemos fazer acerca dos resultados das tabelas 1, 2 e 3 é que cada método possui suas limitações. Os métodos das potências encontram apenas o maior e o menor autovalores em módulo, e seus autovetores. O método de Jacobi só se aplica às matrizes simétricas, e o algoritmo QR só encontra os autovalores das matrizes, sem os autovetores. Dessa forma, o escopo de comparação é limitado.

Comparando os resultados das matrizes simétricas, temos que os três métodos encontraram os mesmos valores (até a 4^a casa decimal) para os autovalores. Quanto aos autovetores, tivemos concordância em todas as entradas até a 3^a casa decimal, o que é de se esperar dado que a tolerância dos métodos era de 10^{-3} . Na matriz A_3 , apenas uma discordância na 4^a casa decimal de uma entrada do maior autovetor. Em A_4 , algumas discordâncias na 4^a casa, e na matriz A_6 tivemos uma troca de sinal no autovetor encontrado pelo método das potências inversas e pelo método de Jacobi.

Nas demais matrizes, comparando os métodos das potências e o algoritmo QR, tivemos discordâncias de ordem de 10^{-4} nos autovalores de A_1 , uma discordância um pouco maior no maior autovalor de A_2 , concordância total (até a 4^a casa) entre os métodos para os autovalores de A_3 , A_4 , e A_6 . Para a matriz A_5 , temos boa concordância entre os autovalores encontrados pelos métodos das potências inversas, no entanto, os demais autovalores diferem dos valores corretos (obtidos pela função eig do MATLAB) por cerca de 10^0 , o que equivale a 20% de erro em relação aos valores corretos.

Inicialmente, o método implementado divergia ao tentar calcular o algoritmo QR para A₅. Após uma modificação para evitar divisões por zero, o método passou a convergir, contudo, apresentando este erro anormal para os autovalores intermediários. Atribui-se esse erro a algum tipo de instabilidade numérica.

2. Análise: Encontrando raízes de polinômios

Para encontrar as raízes de um dado polinômio, podemos considerar sua matriz companheira, e calcular seus autovalores utilizando algum método iterativo. Foi considerado o polinômio:

$$p(x) = 14x^6 + 119x^5 + 282x^4 + 127x^3 - 101x^2 - 72x - 9$$

Calculou-se suas raízes aplicando o algoritmo QR sobre sua matriz companheira, obtida através da função compan do MATLAB, que recebe um polinômio no formato da função polyval. Para que fosse obtida precisão comparável à da função roots do MATLAB, utilizou-se ε = 10⁻¹⁵, e um número máximo de iterações de 10¹⁵. A maior diferença em módulo para as raízes dadas pela função roots foi de 7.1054·10⁻¹⁵, e comparando o valor da avaliação do polinômio em cada raiz, o maior valor em módulo para a avaliação do polinômio sobre as raízes determinadas via QR foi de 7·10⁻¹², enquanto para as raízes determinadas pela função roots o maior valor foi de 7·10⁻¹¹.

O procedimento de calcular as raízes e compará-las com a saída da função do MATLAB foi feito também no *script* eigencompare.m.