Parallel Lines

Input file: standard input
Output file: standard output

Time limit: 3 seconds Memory limit: 512 megabytes

Once upon a time, there were k parallel lines in a two-dimensional plane and n points on these lines. It is known that there were **at least two** points on each line.

Now you are given these n points, and your task is to find those k parallel lines.

Input

The first line contains two integers $n, k \ (2 \le n \le 10^4, 1 \le k \le \min(50, \frac{n}{2}))$, denoting the number of points and parallel lines.

The *i*-th of the next *n* lines contains two integers x_i , y_i $(1 \le x_i, y_i \le 10^9)$, denoting the coordinates of the *i*-th point.

It is guaranteed that n points are pairwise distinct (i.e. $\forall 1 \leq i < j \leq n$, either $x_i \neq x_j$ or $y_i \neq y_j$ holds).

Output

The output contains k lines.

In the *i*-th line, first output an integer m_i ($2 \le m_i \le n$), denoting the number of points on the *i*-th parallel line. Then output m_i integers $x_1, x_2, \ldots, x_{m_i}$, denoting the indices of points on the *i*-th line.

Your output should satisfy that each point appears and only appears on one line, and k lines are parallel and different.

It is guaranteed there is a valid solution to distribute the n points onto k parallel lines. If multiple solutions exist, output any of them.

Example

standard input	standard output
4 2	2 3 4
1 3	2 1 2
2 5	
4 7	
5 9	