

Cours MALG & MOVEX

Vérification mécanisée de contrats (II) (The ANSI/ISO C Specification Language (ACSL))

Dominique Méry Telecom Nancy, Université de Lorraine (17 mars 2025 at 8:36 P.M.)

Année universitaire 2024-2025

1 Contracts

Extending C programming language by contracts Playing with variables Ghost Variables Logic Specification

Sommaire

1 Contracts

Extending C programming language by contracts Playing with variables Ghost Variables Logic Specification

Outline

1 Contracts

Extending C programming language by contracts Playing with variables Ghost Variables Logic Specification

Sommaire des annotations et autres assertions

- requires
- assigns
- ensures
- decreases
- predicate
- ► logic
- ► lemma

Programming by contract

- ▶ The calling function should garantee the required condition or precondition introduced by the clauses requires $P1 \land \ldots \land Pn$ at the calling point.
- ▶ The called function returns results that are ensured by the clause ensures $E1 \land \ldots \land Em$; ensures clause exporess a relatrionship between the initial values of variables and the final values.
- \blacktriangleright initial values of a variable v is denoted $\backslash old(v)$
- ▶ The variables which are not in the set $L1 \cup ... \cup Lp$ are not modified.

```
Listing 1 — contrat

/*@ requires P1;...; requires Pn;
@ assigns L1;...; assigns Lm;
@ ensures E1;...; ensures Ep;
@*/
```

```
(Division)
                        Listing 3 – project-divers/annotationwp.c
/*0 requires 0 \le x & x \le 10;
  @ assigns \nothing;
  \emptyset ensures x \% 2 = 0 \Longrightarrow 2* \text{result} = x;
  \emptyset ensures x \% 2 != 0 \Longrightarrow 2* \text{result} \Longrightarrow x-1;
  @*/
int annotation (int x)
/*@ assert x % 2 == 0 \Longrightarrow 2* (x / 2) == x; */
/*@ assert x \% 2 != 0 \Longrightarrow 2* (x / 2) \Longrightarrow x-1; */
  int y;
/*@ \ assert \ x \% \ 2 == 0 \Longrightarrow 2* (x / 2) == x; */
/*@ assert x \% 2 != 0 \Longrightarrow 2* (x / 2) \Longrightarrow x-1; */
 y = x / 2;
/*@ \ assert \ x \% \ 2 = 0 \Longrightarrow 2*v = x; */
/*@ \ assert \ \ x \% 2 != 0 \Longrightarrow 2*v \Longrightarrow x-1; */
  return(y);
/*@ \ assert \ x \% \ 2 = 0 \Longrightarrow 2*v = x; */
/*@ \ assert \ \ x \% 2 != 0 \Longrightarrow 2*y == x-1; */
```

Examples of contract (1)

Property to check

$$x \ge 0 \land x < 0; \Rightarrow \left(\begin{array}{ccc} x \% & 2 & = & 0 \Rightarrow 2 \cdot (x/2) = x \\ x \% & 2 & \neq & 0 \Rightarrow 2 \cdot (x/2) = x - 1 \end{array}\right)$$

```
(Precondition)
                 Listing 5 – project-divers/annotation0wp.c
/*@ requires x >= 0 \&\& x < 0;
 @ assigns \nothing;
 @ ensures \ result == 0;
int annotation (int x)
 /*@ \ assert \ y \ / \ (x-x) = 0; \ */
 int y;
 /*0 assert y / (x-x) = 0; */
 y = y / (x-x);
 /*@ assert y == 0; */
  return(y);
  /*@ assert y == 0; */
```

Examples of contract (2)

Property to check
$$0 \le x \land x \le 10 \Rightarrow y/(x-x) = 0$$

Definition of a contract (specification)

- ▶ Define the mathematical fucntion to compute (what to compute?)
- ▶ Define an inductive method for computing the mathematical function and using axioms.

```
(facctorial what)
                    Listing 6 – project-factorial/factorial.h
#ifndef _A_H
#define _A_H
/*@ axiomatic mathfact {
  @ logic integer mathfact(integer n);
  @ axiom mathfact_1: mathfact(1) == 1:
  @ axiom mathfact_rec: \forall integer n; n > 1
  \implies mathfact(n) \implies mathfact(n-1);
  @ } */
/*0 requires n > 0;
  decreases n;
  ensures \result == mathfact(n);
  assigns \nothing;
int codefact(int n);
#endif
```

Definition of a contract (programming)

- Define the program codefact for computing mathfact (How to compute?)
- ▶ Define the algorithm computing the function mathfact

```
(facctorial how )
                    Listing 7 – project-factorial/factorial.c
#include "factorial.h"
int codefact(int n) {
  int y = 1;
  /*@ loop invariant x >= 1 \&\& x <= n \&\& mathfact(n) == y * mathfact(x);
    loop assigns x, y;
    loop variant x;
  while (x != 1) {
    y = y * x;
    x = x - 1;
  return y;
```

Definition of a contract (approach)

- ► The specification of a function (mathfact) to compute requires to define it mathematically.
- ► The definition is stated in an axtiomatic framework and is preferably inductive (mathfact) which is used in assrtions or theorems or lemmas.
- ► The relationship between the ciomputed value (\result) and the mathematical value (mathfact(n)) is stated in the ensures clause :
- ► The main property to prove is codefact(n)==mathfact(n) : Calling codefact for n returns a value equal to mathfact(n).


```
Listing 8 - contrat
/*@ requires P;
@ behavior b1:
  @ assumes A1:
  @ requires R1;
  @ assigns L1;
  @ ensures E1:
@ behavior b2:
  @ assumes A2;
  @ requires R2;
  @ assigns L2;
  @ ensures E2:
@*/
```

Division should not return silly expressions!

```
(Pairs of integers)

Listing 9 — project-divers/structures.h

#ifndef _STRUCTURE_H

struct s {
   int q;
   int r;
};

#endif
```

```
(Specification)
                     Listing 10 – project-divers/division.h
#ifndef _A_H
#define _A_H
#include "structures.h"
/*0 requires a >= 0 \&\& b >= 0:
O hehavior b :
  @ assumes b == 0:
  @ assigns \nothing;
  @ ensures \result.q = -1 && \result.r = -1;
@ behavior B2:
  @ assumes b != 0:
  @ assigns \nothing;
  Q ensures 0 \le |result.r|
  @ ensures \ result . r < b:
  @ ensures a == b * \result.q + \result.r;
struct s division (int a, int b);
#endif
```

```
(Algorithm)
                     Listing 11 – project-divers/division.c
#include < stdio.h>
#include < stdlib .h>
#include "division.h"
struct s division (int a, int b)
\{ int rr = a; 
   int qq = 0;
   struct s silly = \{-1,-1\};
   struct s resu:
   if (b = 0) {
     return silly;
   else
  /+0
    loop invariant
    (a = b*qq + rr) &&
    rr >= 0:
    loop assigns rr,qq;
    loop variant rr;
   while (rr >= b) { rr = rr - b; qq=qq+1;};
   resu.q= qq;
   resu.r = rr;
  return resu;
```

Iteration Rule for PC

*/

If $\{P \wedge B\}$ **S** $\{P\}$, then $\{P\}$ while **B** do **S** od $\{P \wedge \neg B\}$.

- ▶ Prove $\{P \land B\}$ **S** $\{P\}$ or $P \land B \Rightarrow \{S\}(P)$.
- ▶ By the iteration rule, we conclude that $\{P\}$ while **B** do **S** od $\{P \land \neg B\}$ without using WLP.
- ▶ Introduction of LOOP INVARIANTS in the notation.

```
Listing 12 - loop.c

/*@ loop invariant I1;
loop invariant I2;
...
loop invariant In;
loop assigns X;
loop variant E;
```

```
(Invariant de boucle)
                      Listing 13 – project-divers/anno6.c
/*@ requires a >= 0 && b >= 0;
 ensures 0 \le |result|;
 ensures \result < b;
 ensures \exists integer k; a = k * b + \result;
int rem(int a, int b) {
 int r = a:
 /*@
    loop invariant
   (\exists integer i; a = i * b + r) &&
    r >= 0;
   loop assigns r;
  while (r >= b) \{ r = r - b; \};
  return r:
```

- It can be used in the postcondition of the *ensures* clause.

```
(Modifying variables while calling)
                         Listing 14 – project-divers/old1.c
/*@ requires \valid(a) && \valid(b);
   @ assigns *a, *b;
    @ ensures *a = \at(*a, Pre) +2;
    @ ensures *b = \langle at(*b, Pre) + \rangle at(*a, Pre) + 2;
        @ ensures \result == 0;
int old(int *a, int *b) {
  int x,y;
  x = *a;
  y = *b;
  x=x+2;
  y = y + x;
  *a = x;
  *b = v:
  return 0 ;
```

- ▶ id is one of the possible expressions : Pre, Here, Old, Post, LoopEntry, LoopCurrent, Init

```
(label Pre)
                         Listing 15 – project-divers/at1.c
/*@
  requires \valid(a) && \valid(b);
  assigns *a, *b;
  ensures *a = \setminus old(*a) + 2;
  ensures *b = \langle old(*b)+ \rangle old(*a)+2;
int at1(int *a, int *b) {
//@ assert *a == \at(*a, Pre);
  *a = *a +1:
//@ assert *a == \at(*a, Pre)+1;
  *a = *a +1:
//@ assert *a == \at(*a, Pre)+2;
  *b = *b +*a:
//@ assert *a = \at(*a, Pre)+2 && *b = \at(*b, Pre)+\at(*a, Pre)+2;
  return 0:
```

```
Listing 17 - project-divers/change1.c

/*@ requires \valid(a) && *a >= 0;
  @ assigns *a;
  @ ensures *a = \old(*a)+2 && \result = 0;
*/
int change1(int *a)
{ int x = *a;
  x = x + 2;
  *a = x;
  return 0;
}
```

- ▶ A variable called *ghost* allows to model a computed value useful for stating a model property : the ghost variable is hidden for the computer but not for the model.
- ▶ It should not change the semantics of others variables and should not change the effective variables.

```
(Bug)
                     Listing 18 – project-divers/ghost2.c
int f (int x, int y) {
 //@ghost int z=x+y;
switch (x) {
case 0: return y;
//@ ghost case 1: z=y;
// above statement is correct.
//@ ghost case 2: { z++; break; }
// invalid, would bypass the non-ghost default
default: y++; }
return y; }
int g(int x) { //@ ghost int z=x;
if (x>0){return x;}
//@ ghost else { z++; return x; }
// invalid, would bypass the non-ghost return
return x+1; }
```

```
(Ghost variable)
                     Listing 19 – project-divers/ghost1.c
/*@ requires a >= 0 && b >= 0;
 ensures 0 \le |result|;
 ensures \result < b;
 ensures \exists integer k; a == k * b + \result; */
int rem(int a, int b) {
 int r = a;
/*@ ghost int q=0; */
 /*@
   loop invariant
   a = q * b + r \&\&
   r >= 0 \&\& r <= a:
   loop assigns r;
   loop assigns q;
// loop variant r;
  while (r >= b) {
   r = r - b:
/*@ ghost q = q+1; */
  return r:
```


Defining domain properties in logical theory

predicate

```
(Predicate)
```

Listing 20 – project-divers/predicate1.c

```
/*@ predicate is_positive(integer x) = x > 0; */
/*@ logic integer get_sign(real x) = @ x > 0.0?1:(x < 0.0? -1:0);
*/
/*@ logic integer max(int x, int y) = x >=y?x:y;
*/
```

(Lemma)

Listing 21 – project-divers/lemma1.c

```
/*@ lemma div.mul.identity: 
@ \forall real x, real y; y != 0.0 \Longrightarrow y*(x/y) = x; @*/
/*@ lemma div.qr: 
@ \forall int a, int b; a >= 0 && b >0 \Longrightarrow 
\exists int q, int r; a = b*q +r && 0<=r && r <b; @*/
```

```
(Definition of fibonacci function)

Listing 22 — project-divers/predicate2.c

/*@ axiomatic mathfibonacci{
    @ logic integer mathfib(integer n);
    @ axiom mathfib0: mathfib(0) = 1;
    @ axiom mathfib1: mathfib(1) = 1;
    @ axiom mathfib1: mathfib(1) = 1;
    @ axiom mathfibrec: \forall integer n; n > 1

mathfib(n) = mathfib(n-1)+mathfib(n-2);
    @ } */
```

```
(Definition of gcd)

Listing 23 — project-divers/predicate3.c

/*@ inductive is_gcd(integer a, integer b, integer d) {
@ case gcd.zero:
@ \forall integer n; is_gcd(n,0,n);
@ case gcd.succ:
@ \forall integer a,b,d; is_gcd(b, a % b, d) \Rightarrow is_gcd(a,b,d); @}

@*/
```

Loop termination

- ▶ The termination is proved by shoiwing that eaxg loop terminates.
- Any loop is characterized by an expression expvariant(x) called variant which should decrease each execution of the body:

```
\forall x_1, x_2.b(x_1) \land x_1 \xrightarrow{\mathsf{S}} x_2 \Rightarrow \mathsf{expvariant}(x_1) > \mathsf{expvariant}(x_2)
```

```
(Variant)
                    Listing 25 – project-divers/variant1.c
/*@ requires n > 0;
  terminates n > 0:
  ensures \result == 0:
int code(int n) {
 /*@ loop invariant x >= 0 \&\& x <= n;
    loop assigns x;
    loop variant x;
  while (x != 0) {
    x = x - 1;
  return x;
```

```
(Variant)
                    Listing 26 – project-divers/variant3.c
int f() {
int x = 0:
int y = 10;
/*@
    loop invariant
   0 <= x < 11 \&\& x+y == 10;
   loop variant y;
while (y > 0) {
 x++:
  y---:
 return 0;
```

```
Listing 27 - project-divers/variant4.c

g/*@ requires n <= 12;
  @ decreases n;
  @*/
int fact(int n){
  if (n <= 1) return 1;
  return n*fact(n-1);
}</pre>
```