

Process-to-Order Lab (P2O-Lab)

Flexibilisierung und Digitalisierung für die Prozessindustrie

Markus Graube

Digital Transformation Lab Dresden

(Koordination, Administration)

DFG RTG 2323 Förderlicher Entwurf von CPPS

> Adaptation Kompetenz Human State

TUD Cluster Mensch 4.0

Recht Ethik Akzeptanz SMB Cluster Farm 4.0

Agrarsysteme Digitalisierung Flexibilisierung Interaktive Lernfabrik

Fertigung Logistik Digitalisierung PPP Process-to-Order Lab

Prozessindustrie Digitalisierung Flexibilisierung

Aktuelle Herausforderungen für die Prozessindustrie: smaller, more flexible, yet cost competitve

Individualisierung

- Digitalisierung erlaubt ungeahnte Individualisierung von Produkten
- Schlägt durch auf Spezialtäten und Wirkstoffe
- Globalisierung
 - Internationaler Wettbewerb
 - Globale Lieferketten vs. Lokale Wertschöpfung
- Urbanisierung
 - 2030 lebt mehr als die Hälfte der Bevölkerung in Städten

Technische Lösungsansätze für hochvariable Produkte und Märkte: Digitalisierung und Modularisierung

- Treiber: Innovationszyklen in IKT erfordern hohe Agilität in der Supply Chain
 - Spezialprodukte und deren Produktionsprozesse müssen in etwa 6 Monaten bereit gestellt werden
 - Heute übliche Zeiten sind 3-7 Jahre
- Forschungsfrage: Wie können wir 10x schneller werden?
 - Bei gleicher Sicherheit in Bezug auf Mensch und Umwelt ...
 - ... und vertretbaren Aufwänden
- Lösungsansatz: Process-to-Order
 - Mit der Produktbestellung wird der Prozess aus bestehenden Bausteinen abgeleitet
 - Übergang vom Produkt zum Lösungsgeschäft

User Story 1 – Product Design

- Karl möchte seine erfundene Algenlimo im größeren Stil herstellen lassen.
- Rezeptor3000 stellt eine Webseite zur Verfügung, zur Eingabe aller Kundenwünsche.

User Story

2 – Prozessableitung und Evaluierung

- Petra bekommt eine Anfrage zur Produktion einer Limo und leitet aus Produktanforderungen (semi-)automatisch einen Prozess ab.
- Modulator4X+s berechnet und erstellt alle maßgeblichen Abhängigkeiten.

User Story 3 – Kollaborative Feinplanung

Petra erörtert mit <u>Karl</u>
 Rezeptänderungen, damit
 das Produkt hergestellt
 werden kann.

User Story 4 - Produktionsplanung

- Petra aggregiert
 Anforderungen für den
 Auftrag und prüft
 Umsetzbarkeit bei aktueller
 Anlagenauslastung und
 Modulbelegung. Sie kalkuliert
 die Mietkosten für ein
 notwendiges Zusatzmodul
 ein.
- PlanatorCS5 evaluiert die Verfügbarkeit aller Mittel und plant die Umsetzung des Auftrages.

User Story

5 - Angebotserstellung und Bestellung

- Petra kann <u>Karl</u> zeitnah ein Angebot für die Produktion seiner Algenlima bereiten, das dieser annimmt.

User Story 6 – Aufbau der Prozesskette

- <u>Lutz</u> konfiguriert die vorgefertigten intelligenten Module zu einer Prozesskette.
- Nachdem das Filtermodul am nächsten Tag eintrifft, bringt Laborleiter Lutz die Module in die benötigte Reihenfolge und verbindet alle notwendigen Anschlüsse. Die neue Zusammenschaltung wird direkt an die PFE propagiert.

User Story

7 – Produktion, Überwachung und Optimierung

 Operator <u>Otto</u> fährt die Produktion hoch und produziert mit der modularen Anlage. Dabei überwacht er die Produktion, die eine von vielen ist, direkt im Feld mittels einer AR Anwendung, während er parallele andere Tätigkeiten wahrnimmt.

P2O-Lab provides a **single-point-of contact** to related

Disciplines, Methods & Technologies

- Interdisziplinäre Forschungs- und Entwicklungsplattform
- Continous Integration Framework für modulare Anlagen
- Spezifikationsfolgenabschätzung
- Konformitätsprüfung
- NOA-MTP-Integration
- Use Cases
 - Orchestrierung
 - Austausch
 - Optimierung

P2O-Lab

- Dynamische Belegung der Laborfläche
- Intelligente Infrastruktur im Aufbau
- Rastermaß nach F3-Projekt
 - 57,4cm x 57,4cm

Aktuelle Aktivitäten

- Aufbau intelligente Infrastruktur
 - Betriebsmittelbereitstellung
 - Prozessführungsebene
- Feierliche Eröffnung am 06.11.2018
- Partner/Kooperationen
 - ModLab Germany
 - Partner im DCM (Dresden Center for Materiomics)
 - Plattform f
 ür CD-CPPS
 - Betreiber: Merck, Evonik, Bayer
 - Modulhersteller: Huber, Bosch PharmaTec, Phoenix-Contact, ABB, Samson
 - Projekte: BioFeed, KoMMDia, ORCA
- Weitere gemeinsame Projekte

Demonstration Service-Orchestrierung

P2O-Lab

- 8 Module
- Dynamische Belegung der Laborfläche
- Intelligente Infrastruktur im Aufbau
- Rastermaß nach F3-Projekt
 - 57,4cm x 57,4cm

Anwendungsfall Orchestrierung einer neuen Anlage ... in Theorie und Praxis

Definition Grundfließbild

- Grundfließbild als Ausgangspunkt
- Vom Verfahrenstechniker entworfen

Erstellung Service-Topologie

- Kapseln der Funktionen in Services
- Ableiten einer vollständigen Serviceliste
- Darstellung von Serviceabhängigkeiten

Ableitung Modulspezifikation

Modulspezifikation

- Services
- Physikalische Eigenschaften
- Stoffliche Anforderungen
- Nennwerte
- Arbeitsbereiche
- Schutzvorrichtungen
-

- Zustandsmaschine
 - Gesteuert über Kommandos
 - Rückmeldung über Status
- OPC UA als
 Kommunikationsmedium
- Schnittstellenbeschreibung
 - Services, Parameter, etc.
 - In MTP (AutomationML)

Modulauswahl

- Modulauswahl im Modulverwaltungstool
 - Standortintern
 - Unternehmensintern
 - Unternehmensübergreifend
 - Herstellerkatalog
- AusschreibungSpezialanfertigung

Ableitung Modultopologie

Erstellung der Modultopologie

- Automatisch auf Basis von Grundfließschema und ausgewählten Modulen
- Manuelle Erstellung in einem Konfigurationstool

Sicherheitskonzept

- Modulares Sicherheitskonzept
- Gesamtanlagensicherheitskonzept
- Als Voraussetzung für die tatsächliche Verschaltung, Freigabe von Betriebsmitteln und Inbetriebnahme

			Node			Deviation			
Numbe ▼	Id	▼ Modul ▼	Component	▼ intended purpose	▼ Guide word	▼ Parameter ▼	Relevance	Devation/Failuremode	▼ Mod
	BioFeed_C4_Pressure_0002	BioFeed	C4	Storage of HCl (acid), single use plasite bag	More	Pressure		Changed direction of rotation	BioFe
	BioFeed_C4_Pressure_0003	BioFeed	C4	Storage of HCl (acid), glas container	Less	Pressure		Blocked compensation valve	BioFe
15	BioFeed_C4_Level_0001_1	BioFeed	C4	Storage of HCl (acid), single use plasite bag	No	Level		Missing refill	BioFe
.6	BioFeed_C4_Level_0001_2	BioFeed	C4	Storage of HCl (acid), single use plasite bag	No	Level		Leakage	BioFe
17	BioFeed_C4_Level_0002	BioFeed	C4	Storage of HCl (acid), single use plasite bag	More	Level		Changed direction of rotation	BioFe
.8	BioFeed_C4_Level_0003	BioFeed	C4	Storage of HCl (acid), single use plasite bag	Less	Level		Leakage	BioFe
:3	BioFeed C4 Concentration 0001	BioFeed	C4	Storage of HCl (acid), single use plasite bag	No	Concentration		Missing educt	BioFeed
4	BioFeed_C4_Concentration_0002	BioFeed	C4	Storage of HCl (acid), single use plasite bag	More	Concentration		Oscillating educt quality	BioFeed
:5	BioFeed_C4_Concentration_0003	BioFeed	C4	Storage of HCI (acid), single use plasite bag	Less	Concentration		Oscillating educt quality	BioFeed
26	BioFeed_C4_Concentration_0004	BioFeed	C4	Storage of HCl (acid), single use plasite bag	As well as	Concentration		Contamination of educt	BioFeed

Definition Rezept

- Deklarative Beschreibung
 - Nutzung der Services
 - Parameterfestlegung
 - Konfiguration der Module
- Ebenen der Service-Orchestrierung
 - Phasen
 - Modes
 - Steps

{
"version": "0.1.0",
"name": "Rezept ACHEMA",
"author": "Markus Graube",
"initial_step": "Startup.Init.1",
"steps": [
1 {
"name": "Startup.Init.1",
"operations": [
1 {
"module": "Dose",
"service": "Fill",
"command": "start"
1
"transitions": [
1 {
"next_step": "Startup.Init.2",
"condition": {
"type": "state",
"module": "Dose",
"service": "Fill",
"state": "running"
i
ı
i 1
} ,
∮ {
Unamelli "Ctantum Init 2"

		(PFE Sicht)							
	MTP Service		Verfahrenstechnische Prozessphasen nach ISA 106						
Modul	Name	Туре	Vorlegen	Reagieren	Ruhen	Aufheizen	Entleeren		
	Vorlegen	SC	V = 10 l, t=AFAP					■ Band",	
Dosiermodul		SC		V= 10 l, F = 1 l/min					
	Nachfüllen								
	Rühren		n = 100 <u>Upm</u>	n = 200 <u>Upm</u>					
Reaktormodul	Begasen			F = 0,01 l/min					
	Entleeren	SC					F= 10 l/min		
Heiz/Kühlmodul	Temperieren				T=4°C				
r iciz/ Kuriirilouui	Rampe	SC		dt = -10°C/min, T_target=4°C		dt = +10°C/min, Tt=20°C			

Prozessführung über Rezepte

- P2O Forschungs-PFE
 - Laden von Modulinformationen aus MTP
 - Service-Ansteuerung
 - Lade Rezepte
 - Simple StateMachine zur Ausführung
- Interface
 - HTML-Bedieninterface
 - REST API

Next Steps

- Weitergehende Automatisierung des Prozesses
 - (Semi-)Automatische Modulauswahl
 - (Semi-)Automatische HAZOP
 - (Semi-)Automatische Rezeptdetaillierung
- Erweiterung der Prozesskette
 - Ableitung von Grundfließbild aus Produkteigenschaften
 - Überführung von Laborerkenntnissen in Orchestrierungsprozess
 - Lernen aus Betrieb der Module für zukünftige Orchestrierungen

- Intelligente Infrastruktur
 - Kontrollierte Freigabe und Messung von Betriebsmitteln
- Alarme & Meldungen
 - Archivierung, Meldesystem
- Kontinuierliche Fahrweisen
 - Batch/Konti-Übergänge
- Veränderte Benutzerunterstützung durch AR/VR
 - Planung, Betrieb, Wartung