

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

КУРСОВАЯ РАБОТА НА ТЕМУ: «Моделирование сцены улицы из библиотеки объектов»

Студент: Козырнов А.Д. Руководитель:Мартынюк Н.Н.

Москва, 2024 г.

Цель и задачи

Цель — моделирование сцены улицы из разработанной библиотеки объектов (дома разной этажности, заправка, светофор) и предоставление возможности изменить положение камеры и источника света, а также сохранение и просмотр разработанных сцен.

Задачи:

- выбрать алгоритмы компьютерной графики для визуализации трехмерной сцены;
- выбрать язык программирования и среду разработки;
- разработать программное обеспечение и реализовать выбранные алгоритмы визуализации;
- провести замеры временных характеристик разработанного программного обеспечения.

Объектов сцены и их описание

- Площадка
- Объекты сцены
- Источник света
- Камера

Используемые алгоритмы и подходы

- Поверхностная модель
- Модифицированный алгоритм, использующий Z-буфер
- Плоская закраска

Алгоритм построения изображения

Схема алгоритма, использующая модифицированный Z-буфер

Выбор языка программирования и среды разработки

Для разработки программного обеспечения был выбран язык C++.

- обладает высокой вычислительной производительностью;
- обладает большим количеством литературы и примеров;

Библиотеки:

- SDL2
- Dear ImGui
- GLM

Схема основных классов программы

Пример работы программного обеспечения

Пример работы программного обеспечения

Пример работы программного обеспечения

Зависимость времени отрисовки кадра от количества граней на сцене

Зависимость времени отрисовки кадра от количества граней на сцене

Кол-во Граней	С ист. Света, сек	Без света, сек
12	0.4	0.34
48	1.25	0.41
108	1.45	0.42
192	1.7	0.46
300	1.76	0.48
432	1.91	0.49
588	2.13	0.5
768	2.34	0.54
972	2.41	0.57
1200	2.55	0.49

вывод

Без учета освещенности алгоритм Zбуфер работает быстрее, чем с учетом освещенности. Это связано с тем, что для каждого источника света необходимо проинициализировать и заполнить теневой Z-буфер, а потом для каждого пикселя при растеризации грани выполнять преобразование координат в координаты в теневом Zбуфере для определения теней.

Заключение

В ходе выполнения курсовой работы цель курсовой работы была достигнута: было разработано программное обеспечение для моделирования сцены улицы из разработанной библиотеки объектов с возможностью изменять положение камеры и источника света.

Для достижения цели курсовой работы были решены следующие задачи:

- выбраны алгоритмы компьютерной графики для визуализации трехмерной сцены;
- выбран язык программирования и среда разработки;
- разработано программное обеспечение и реализованы выбранные алгоритмы визуализации;
- проведены замеры временных характеристик разработанного программного обеспечения.