CIRCUITOS SECUENCIALES SÍNCRONOS

No existe posibilidad de CARRERAS y que se manifiesten fenomenos aleatorios. Estos inconvenientes son resueltos utilizando FF temporizados. Mientras el periodo de reloj sea mayor al máximo retraso de propagación entre entrada y salida secundaria no ocurrirán CARRERAS

DISEÑO CIRCUITOS SECUENCIALES SINCRONICOS I

DETECTOR DE SECUENCIAS: Diseñar un circuito tal que detecte si la entrada ha permanecido en el nivel lógico "1" durante 3 o más pulsos de reloj. Si ello ocurre la salida tendrá un nivel lógico "1"

DIAGRAMA DE ESTADOS: Definimos dos condiciones iniciales

- 1- Al estado inicial "A" se llega después que ha entrado un cero (0) es decir en el instante de reloj t(n-1), x = 0
- 2- Al estado inicial "A" se llega después que han entrado 3 unos (1) consecutivos es decir t(n-3) x = 1, t(n-2) x = 1, t(n-1) x = 1

DISEÑO CIRCUITOS SECUENCIALES SINCRONICOS II

PRIMER CASO

|X=0 X=0 X=0X=1 X=α B/0 X=1 **C/0** X=1 D/1 X=1

SEGUNDO CASO

DISEÑO CIRCUITOS SECUENCIALES SINCRONICOS III

TRABAJAMOS CON EL PRIMER CASO TABLA DE ESTADOS

Х	t	t+1	Salida
0	Α	Α	0
0	В	Α	0
0	С	Α	0
0	D	Α	1
1	Α	В	0
1	В	С	0
1	С	D	0
1	D	D	1

ASIGNACION DE ESTADOS

A: 00, B:01, C:10, D:11

DISEÑO CIRCUITOS SECUENCIALES SINCRONICOS IV TABLA DE EXITACIÓN

Х	PRES	ENTE	FUT	URO	ENTR	ADAS	SALIDA
	Q1	Q0	Q1	Q0	J1 K1	J0 K0	Z
0	0	0	0	0	0X	0X	0
0	0	1	0	0	0X	X1	0
0	1	0	0	0	X1	0X	0
0	1	1	0	0	0X	X1	1
1	0	0	0	1	00	1X	0
1	0	1	1	0	1X	X1	0
1	1	0	1	1	X0	1X	0
1	1	1	1	1	X0	X0	1

REALIZANDO LOS MAPAS DE K

$$K1 = X$$

$$J0 = X$$

$$K0 = \overline{X} + \overline{Q1} = \overline{X.Q1}$$

$$Z = Q1.Q0$$

SIGUIENTE PASO:

IMPLEMENTACIÓN

DISEÑO CIRCUITOS SECUENCIALES SINCRONICOS V

CIRCUITO DE MOORE: LA SALIDA DEPENDE SOLO DEL ESTADO DE LAS MEMORIAS (FF) EL DETECTOR DE SECUENCIAS DISEÑADO ANTES

CORRESPONDE A UN CIRCUITO DE MOORE

CIRCUITO DE MEALY: LA SALIDA DEPENDE NO SOLO DEL ESTADO DE LAS MEMORIAS (FF) SINO ADEMAS DE LAS ENTRADAS

DESEÑAMOS EL MISMO DETECTOR DE SECUENCIAS PERO

COMO UN CIRCUITO DE MEALY

TABLA DE ESTADOS

x	PRESENTE	FUTURO	SALIDA
0	A	A	0
0	В	Α	0
0	С	Α	0
1	Α	В	0
1	В	В	0
1	С	С	1

ASIGNACION DE ESTADOS

A = 00, B = 01, C = 11

CIRCUITO DE MEALY

TABLA DE EXCITACIÓN

entrada	Q	(t)	Q(t	+1)		J-k	ζ (t)		salida
Е	Q1	Q0	Q1	Q0	J1	K1	J0	K0	S
0	0	0	0	0	0	Χ	0	Χ	0
0	0	1	0	0	0	Χ	Х	1	0
0	1	0	Χ	Χ	Χ	Χ	Х	Χ	Х
0	1	1	0	0	Χ	1	Х	1	0
1	0	0	0	1	0	Χ	1	Χ	0
1	0	1	1	1	1	Χ	Х	0	0
1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Х
1	1	1	1	1	Χ	0	Х	0	1

EL ESTADO 10 NO ESTA EN EL DIAGRAMA

CIRCUITO DE MEALY

J0=E J1=E.Q0K0=K1=E S=E.Q1

DETECTOR DE SECUENCIAS (MOORE)

Diseñar un circuito tal que detecte la siguiente secuencia de datos de entrada 101 y que cada vez que se produzca de como salida un nivel lógico "1"

Diseño como automata de MOORE

TABLA DE ESTADOS

x	PRESENTE	FUTURO	SALIDA
0	Α	Α	0
0	В	С	0
0	С	Α	0
0	D	С	1
1	Α	В	0
1	В	В	0
1	С	D	0
1	D	В	1

DIAGRAMA DE ESTADOS

DETECTOR DE SECUENCIAS (MOORE)

ASIGNACION DE ESTADOS

TABLA DE EXCITACIÓN

ESTADO	Q1	Q0
Α	0	0
В	0	1
С	1	1
D	1	0

X	PRES	ENTE	FUT	URO	ENTR	ADAS	SALIDA
	Q1	Q0	Q1	Q0	J1K1	J0K0	Z
0	0	0	0	0	0X	0X	0
0	0	1	1	1	1X	X0	0
0	1	1	0	0	X1	X1	0
0	1	0	1	1	X0	1X	1
1	0	0	0	1	0X	1X	0
1	0	1	0	1	0X	X0	0
1	1	1	1	0	X0	X1	0
1	1	0	0	1	X1	1X	1

DESPUES DE LA SIMPLIFICACION

$$J1 = X.Q0$$

$$J1 = X.Q0$$
 $K1 = X \oplus Q0$

$$J0 = X + Q1$$
 $K0 = Q1$

$$K0 = Q1$$

$$Z = Q1.\overline{Q}0$$

DETECTOR DE SECUENCIAS (MEALY)

DIAGRAMA DE ESTADOS

SI CAE EN EL ESTADO "A" FORZAMOS AL CIRCUITO A UNA SECUENCIA NATURAL CON EL PRIMER PULSO DE RELOJ QUE LLEGUE, LO FORZAMOS AL ESTADO "B"

TABLA DE ESTADOS

X	PRESENT	T FUTURO	SALIDA
	PRESENT	FUIUKU	PRESENTE
0	Α	В	0
0	В	В	0
0	С	D	0
0	D	В	0
1	Α	В	0
1	В	С	0
1	С	С	0
1	D	С	1

DETECTOR DE SECUENCIAS (MEALY)

TABLA DE EXCITACIÓN

ASIGNACION

ESTADO	Q1 Q0
Α	1 0
В	0 0
С	0 1
D	1 1

X	PRESENTE	FUTURO	ENTRADAS	SALIDA
	Q1 QO	Q1 Q0	J1K1 J0K0	Z
0	10	00	X1 0X	0
0	00	00	0X 0X	0
0	01	11	1X X0	0
0	11	00	X1 X1	0
1	10	00	X1 0X	0
1	00	01	0X 1X	0
1	01	01	0X X0	0
1	11	01	X1 X0	1

MINIMIZACION DETECTOR DE SECUENCIAS (MEALY)

J1 = XQ0 K1 = 1

Z = Q1.Q0X

PROBLEMAS

1.- DISEÑAR UN AUTOMATA DE MEALY CAPAZ DE DETECTAR TRES O MAS CEROS CONSECUTIVOS

TABLA DE ESTADOS

Х	PRESENT	FUTURO	SALIDA PRESENTE
0	Α	В	0
0	В	С	0
0	С	С	1
0		X	X
1	Α	Α	0
1	В	Α	0
1	С	Α	0
1		X	X

ASIGNACION

Α	00
В	01
С	10
	11

- -DESARROLLAR TABLA DE EXCITACIÓN DE ESTADOS
- -MINIMIZAR
- -IMPLEMENTAR FFJK

PROBLEMAS

2.- DISEÑAR UN AUTOMATA DE MEALY CAPAZ DE DETECTAR LA SECUENCIA 1011 TENIENDO EN CUENTA POSIBLES SOLAPAMIENTOS

ASIGNACION

Α	00	
В	01	
С	10	
D	11	

TABLA DE ESTADOS

х	PRESENT	FUTURO	SALIDA PRESENTE
0	Α	Α	0
0	В	С	0
0	С	Α	0
0	D	С	0
1	Α	В	0
1	В	В	0
1	С	D	0
1	D	В	1