ECEN 5623

Rate Monotonic Derivation

Rate Monotonic Theory

The Complete Derivation

© Sam Siewert

RM Assumptions and Constraints

- A1: All Services Requested on Periodic Basis, the Period is Constant
- A2: Completion-Time < Period
- A3: Service Requests are Independent (No Known Phasing)
- A4: Run-time is Known and Deterministic (WCET may be Used)
- C1: Deadline = Period by Definition
- C2: Fixed Priority, Preemptive, Run-to-Completion Scheduling
- <u>Critical Instant</u>: longest response time for a service occurs when all system services are requested simultaneously (maximum interference case for lowest priority service)
- No Other Shared Resources Not in Paper, but key assumption e.g. shared memory

3

© Sam Siewert

Derivation of RM LUB for 2 Tasks

<u>Claim</u> - General RM Least Upper Bound: $U = \sum_{i=1}^{m} (Ci/Ti) \le m(2^{\frac{1}{m}} - 1)$ (Guarantees that all Service Releases Can meet Deadlines)

Goal - Derive RM LUB For 2 Tasks: $U = C_1/T_1 + C_2/T_2 \le 2(2^{\frac{1}{2}} - 1) \le 0.83$

For a System, Can All C's fit in largest T over LCM time?

Given: Services S_1 , S_2 with periods T_1 and T_2 and C_1 and C_2 , Assume $T_2 > T_1$ E.g. T_1 =2, T_2 =5, C_1 =1, C_2 =1, then if $prio(S_1) > prio(S_2)$, we can see that ...

$$U = 1/2 + 1/5 = 0.7$$
$$U = 0.7 \le 2(2^{\frac{1}{2}} - 1) \le 0.83$$

Can You Safely Exceed LUB? YES!

In some cases, but RM LUB will never pass an infeasible system

RM LUB is a SUFFICIENT Feasibility Test

RM LUB is NOT a NECESSARY and SUFFICIENT Feasibility Test

(Systems with Harmonic Periods can often have U=1.0 and be feasible!)

Example Where RM LUB is Safely Exceeded:

Given: Services S_1 , S_2 with periods T_1 and T_2 and T_2 and T_2 , Assume $T_2 > T_1$

E.g. $T_1=2$, $T_2=5$, $C_1=1$, $C_2=2$, then if $prio(S_1) > prio(S_2)$, note that:

$$U = 1/2 + 2/5 = 0.9$$

$$U = 0.9 > 2(2^{\frac{1}{2}} - 1)$$

$$U = 0.9 > 0.83$$

RM Priority Assignment Policy

RM Policy:

Given: services S_1 , S_2 with periods T_1 and T_2 and C_1 and C_2 with $T_2 > T_1$ E.g. $T_1=2$, $T_2=5$, $C_1=1$, $C_2=2$, then if **prio**(S_1) > **prio**(S_2), note that:

 S_1 Makes Deadline if $prio(S_1) > prio(S_2)$

RM Priority Assignment Policy

Consider Alternative Policy:

Given: services S_1 , S_2 with periods T_1 and T_2 and C_1 and C_2 with $T_2 > T_1$ E.g. T_1 =2, T_2 =5, C_1 =1, C_2 =2, then if **prio(S₂) > prio(S₁)**, note that:

 S_1 Misses Deadline if $prio(S_2) > prio(S_1)$

Conclusion:

If $\{S_n\}$ feasible with $prio(S_2) > prio(S_1)$, then $\{S_n\}$ is also always feasible given $prio(S_1) > prio(S_2)$, but converse is not necessarily TRUE!!

Therefore, $prio(S_1) > prio(S_2)$ is OPTIMAL

Finding RM Safe Upper Bound (LUB):

If system feasible over LCM with RM policy, then by Worst-Case Analysis, it is safe!

Note that there can be up to $\lceil T_2/T_1 \rceil$ releases of S_1 during T_2 !

LUB Derivation Strategy:

Case 1: C_1 short enough to fit all 3 releases in T_2 (fits S_2 critical time zone)

Case 2: C_1 too large to fit last release in T_2 (doesn't fit S_2 critical time zone)

Examine U in both cases to find common U bound.

<u>Case 1</u> (All 3 C_1 releases fit in T_2):

$$C_1 \le T_2 - T_1 \lfloor T_2 / T_1 \rfloor$$

$$C_2 = T_2 - C_1 \lceil T_2 / T_1 \rceil$$

$$U = \frac{C_1}{T_1} + \frac{C_2}{T_2}$$

(I.e, C_1 is small enough to fit into fractional 3rd T_1 shown below as \longleftrightarrow)

(I.e, $C_2 = T_2$ - Interference from C_1 releases)

Plugging C₂ Expression into U:

$$U = \frac{C_1}{T_1} + \frac{\left[T_2 - C_1 \left\lceil T_2 / T_1 \right\rceil\right]}{T_2}$$

U monotonically decreases with increasing C_1 when $(T_2>T_1)$

$$U = 1 + C_1 \left[\left(1/T_1 \right) - \frac{\left[T_2/T_1 \right]}{T_2} \right]$$

Proof that U Monotonically Decreases in Case-1

Case 2 (Last C_1 release does not fit in T_2):

$$C_{1} \geq T_{2} - T_{1} \lfloor T_{2} / T_{1} \rfloor$$

$$C_{2} = T_{1} \lfloor T_{2} / T_{1} \rfloor - C_{1} \lfloor T_{2} / T_{1} \rfloor$$

$$U = \frac{C_{1}}{T_{1}} + \frac{C_{2}}{T_{2}}$$

Plugging C₂ Expression into U:

$$U = \frac{C_1}{T_1} + \frac{\left[T_1 \left\lfloor T_2 / T_1 \right\rfloor - C_1 \left\lfloor T_2 / T_1 \right\rfloor\right]}{T_2}$$

U monotonically increases with increasing C_1 when $(T_2>T_1)$

$$U = (T_1 / T_2) \lfloor T_2 / T_1 \rfloor + C_1 [(1 / T_1) - (1 / T_2) \lfloor T_2 / T_1 \rfloor]$$

Proof that U Monotonically Increases in Case-2

Given Cases 1 and 2 $(T_1=2, T_2=5)$

T ₁ =	2	T ₂ =	5
Case 1		Case 2	
C ₁	U	C ₁	U
0	1	0	0.8
0.1	0.99	0.1	0.81
0.2	0.98	0.2	0.82
0.3	0.97	0.3	0.83
0.4	0.96	0.4	0.84
0.5	0.95	0.5	0.85
0.6	0.94	0.6	0.86
0.7	0.93	0.7	0.87
0.8	0.92	0.8	0.88
0.9	0.91	0.9	0.89
1	0.9	1	0.9

Case 1: $U = 1 + C_1 \left[(1/T_1) - \frac{T_2/T_1}{T_2} \right]$

Case 2: $U = (T_1/T_2)[T_2/T_1] + C_1[(1/T_1) - (1/T_2)[T_2/T_1]]$

Note: we want the LUB for any given T_2 and T_1 , not the ones assumed here in particular, so the general LUB could be something other than 0.9, and must be found in terms of T_1 and T_2 only for general LUB.

Given Cases 1 and 2 $(T_1=2, T_2=5)$

Case 1:	$U = 1 + C_1$	$\left[\left(1/T_{1}\right) -\right.$	$\frac{\left\lceil T_2 / T_1 \right\rceil}{T_2}$
---------	---------------	---	--

Case 2: $U = (T_1/T_2)[T_2/T_1] + C_1[(1/T_1) - (1/T_2)[T_2/T_1]]$

T ₁ =	2	T ₂ =	5
Case 1		Case 2	
C ₁	U	C ₁	U
0	1	0	0.8
0.1	0.99	0.1	0.81
0.2	0.98	0.2	0.82
0.3	0.97	0.3	0.83
0.4	0.96	0.4	0.84
0.5	0.95	0.5	0.85
0.6	0.94	0.6	0.86
0.7	0.93	0.7	0.87
0.8	0.92	0.8	0.88
0.9	0.91	0.9	0.89
1	0.9	1	0.9

Note: What if C1 = 0.5 in Case 1, can we make a schedule assuming that? What if C1 = 0.5 in Case2, can we make a workable schedule using RM?

What about C1 = 1.5 in both cases?

Case 1 (T₁=2, T₂=5) at Upper Bound (but not the LUB)

Case 1, C1 = 0.5	Service	Period		Freq f	f0 mult	WCET		Utility												
	S1	T1	2	0.5	2.5	C1	0.5	U1	25.0%	LCM =	10	C2 = T2	- C1 *C	eil(T2/T1)					
	S2	T2	5	0.2	1	C2	3.5	U2	70.0%	LUB =	82.8%									
										Utot =	95.0%									
										_				_						
RM Schedule	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10
S1																				
	\leftarrow			\rightarrow	\leftarrow			\rightarrow				\rightarrow	\leftarrow			\rightarrow	\leftarrow			\longrightarrow
S2																				0
	\leftarrow									\rightarrow										

Case 2 (T₁=2, T₂=5) at Upper Bound? (but not the LUB)

Case 2, C1 = 0.5	Service	Period		Freq f	f0 mult	WCET		Utility													
	S1	T1	2	0.5	2.5	C1	0.5	U1	25.0%	LCM =	10		C2 = T1	*Floor(T2	/T1) - C	1 *Floor	(T2/T1)				
	S2	T2	5	0.2	1	C2	3	U2	60.0%	LUB =	82.8%			<u> </u>	,						
										Utot =	85.0%										
RM Schedule	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10	
S1																					
	\leftarrow				<			\longrightarrow	<			\longrightarrow				\longrightarrow				\longrightarrow	
S2									,				`						\bigcirc		
	<									\longrightarrow											
																				\longrightarrow	_

Case 1 (T₁=2, T₂=5) at Upper Bound? (but not the LUB)

Case 1, C	C1 = 0.5	Service	Period		Freq f	f0 mult	WCET		Utility												
		S1	T1	2	0.5	2.5	C1	1.5	U1	75.0%	LCM =	10		C2 = T2	2 - C1 *(Ceil(T2/T	1)				
		S2	T2	5	0.2	1	C2	0.5	U2	10.0%	LUB =	82.8%									
											Utot =	85.0%									
RM Sched	dule	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10
S1	-	0.0				2.0	J	0.0	•			0.0		0.0	·			0.0		0.0	
					\rightarrow				\rightarrow					\			\rightarrow	\leftarrow			\longrightarrow
S2									0								0				0
																					\longrightarrow

Case 2 (T₁=2, T₂=5) at Upper Bound (but not the LUB)

Case 2, C1 = 1.5	Service	Period		Freq f	f0 mult	WCET		Utility												
	S1	T1	2	0.5	2.5	C1	1.5	U1	75.0%	LCM =	10		C2 = T'	1*Floor(T2/T1) -	C1 *Flooi	(T2/T1)			
	S2	T2	5	0.2	1	C2	1	U2	20.0%	LUB =	82.8%									
										Utot =	95.0%									
RM Schedule	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10
S1																				
	\leftarrow			\rightarrow				\longrightarrow				\longrightarrow				\rightarrow				\longrightarrow
S2																				
																				\rightarrow

Intersection of Case 1 & 2 is Least Upper Bound

Plug In Intersection for C_1 and C_2 into U to get expression in terms of T_1 and

T₂ only:
$$U = 1 - (T_1/T_2) [T_2/T_1] - (T_2/T_1) [(T_2/T_1) - [T_2/T_1]]$$

(Substitute for both C_1 and C_2 in U expression and simplify)

Let
$$I = \lfloor T_2 / T_1 \rfloor$$
 and $f = (T_2 / T_1) - \lfloor T_2 / T_1 \rfloor$ so, $U = 1 - \left(\frac{f(1-f)}{(T_2 / T_1)} \right)$

I is the integer number of times that T_1 occurs during T_2 f is the fractional time of the last release for T_1 during T_2 , noting that if f=0, then T_1 and T_2 are harmonic, and therefore U=1, an uninteresting ideal case. Substituting I and f into the U expression above and simplifying, we get:

$$U = 1 - (T_1/T_2) [T_2/T_1] - (T_2/T_1) [(T_2/T_1) - [T_2/T_1]] \quad \text{(noting that } 1 + \text{floor}(N + / - 0.d) = \text{ceiling}(N + / - 0.d) \text{ when f non-zero)}$$

$$U = 1 - (T_1/T_2) [1 + [T_2/T_1] - (T_2/T_1)] [(T_2/T_1) - [T_2/T_1]]$$

$$U = 1 - (T_1/T_2) [1 - ((T_2/T_1) - [T_2/T_1])] [(T_2/T_1) - [T_2/T_1]]$$
So,
$$U = 1 - (T_1/T_2) (1 - f)(f) \text{ , Re-arranged to obtain: } U = 1 - \left(\frac{f(1 - f)}{(T_2/T_1)}\right)$$

$$U = 1 - \left(\frac{f(1-f)}{(T_2/T_1)}\right)$$
 Can also be expressed as:

$$U = 1 - \left(\frac{f(1-f)}{\lfloor T_2 / T_1 \rfloor + (T_2 / T_1) - \lfloor T_2 / T_1 \rfloor}\right)$$

 $U = 1 - \left(\frac{f(1-f)}{\lfloor T_2/T_1 \rfloor + (T_2/T_1) - \lfloor T_2/T_1 \rfloor}\right)$ By adding and subtracting the same denominator term to get:

$$U = 1 - \left(\frac{f(1-f)}{(I+f)}\right)$$
 smallest I is 1, and LUB for U occurs when I is minimized, so: $U = 1 - \left(\frac{(f-f^2)}{(1+f)}\right)$

$$U = 1 - \left(\frac{\left(f - f^2\right)}{\left(1 + f\right)}\right)$$

Now taking the derivative of U w.r.t. f, and solving for extreme, we get:

$$dU/df = \frac{(1+f)(1-2f)-(f-f^2)(1)}{(1+f)^2} = 0$$

Solving for f, we get: $f = (2^{1/2} - 1)$

And, plugging f back into U, we get: $U = 2(2^{1/2} - 1)$ The RM LUB!

RM LUB Scenario for 2 Services

(With T₁=2, T₂=3, We Show U=0.83 Worst-Case Graphically)

Given Case 1: $U = (T_1/T_2)[T_2/T_1] + C_1[(1/T_1)-(1/T_2)[T_2/T_1]]$

And Case 2:
$$U = 1 + C_1 \left[\left(1/T_1 \right) - \frac{\left[T_2/T_1 \right]}{T_2} \right]$$

T ₁ =	2		T ₂ =	3	
Case 1			Case 2		
C ₁	U	C ₂	C ₁	U	C ₂
0	1	3	0	0.666667	2
0.1	0.983333	2.8	0.1	0.683333	1.9
0.2	0.966667	2.6	0.2	0.7	1.8
0.3	0.95	2.4	0.3	0.716667	1.7
0.4	0.933333	2.2	0.4	0.733333	1.6
0.5	0.916667	2	0.5	0.75	1.5
0.6	0.9	1.8	0.6	0.766667	1.4
0.7	0.883333	1.6	0.7	0.783333	1.3
0.8	0.866667	1.4	0.8	0.8	1.2
0.9	0.85	1.2	0.9	0.816667	1.1
1	0.833333	1	1	0.833333	1
1.1	0.816667	0.8	1.1	0.85	0.9
1.2	0.8	0.6	1.2	0.866667	0.8
1.3	0.783333	0.4	1.3	0.883333	0.7
1.4	0.766667	0.2	1.4	0.9	0.6
1.5	0.75	0	1.5	0.916667	0.5

© Sam Siewert

RM LUB Scenario for 2 Services

(Showing U=0.83 Worst-Case Timing Diagram)

Given Cases 1 and 2 again:

$$T_1=2$$
, $T_2=3$, $C_1=1$, $C_2=1$ at $U=0.83$

Note: 5 out of 6 Time Units Used Over LCM

Such That U=0.83, the RM LUB!

Mistakes

Figure 3.6 Case 1 Relationship of T_2 and T_1

Figure 3.8 Case 2 Relationship of T_2 and T_1

Mistakes

Figure 3.7 Case 2 Overrun of Critical Time Zone by S_1

RM FAQ

- Where in the paper does it say that T must equal D?
 - T=D is in section 4 above Theorem 1 in Liu and Layland paper
- Why does Floor(x.d)+1 = Ceiling(x.d)?, because if x.d=1 or any integer, this is not true.
 - Floor(x.d) + 1 = Ceiling(x.d) iff x.d is not an integer value, which is always true if T_2 is not a multiple of T_1
- If $T_2 > T_1$, but T_2 is a multiple of T_1 (if T_1 and T_2 are harmonic), then U=1, and doesn't this violate the RM LUB?
 - Yes, it does, but remember the RM LUB is only sufficient, not N&S, and therefore it will pessimistically fail service sets that can actually be scheduled
 - The RM LUB will correctly fail all service sets than in fact can't be scheduled, so it is sufficient
- Why Not Just Use EDF Scheduling Policy if it Can Achieve 100% Utility and Be Shown to Meet Deadlines?
 - What Happens When EDF is Overloaded?

Rate Monotonic Understanding

- Task/thread blocking is [choose best]:
 - A. When a thread/task requests a resource other than the CPU that is not available
 - B. Preemption by a higher priority thread/task
 - C. Interrupt preemption of thread/task
 - D. Suspension of a thread/task due to an exception [e.g divide by zero]
 - E. Due to a call to sleep() or yield()
- Asymmetric Multi-Processing [choose best]:
 - A. Implements load balancing on multi-core CPUs
 - B. Runs one RTOS instance on a multi-core CPU
 - C. Runs an RTOS instance on each CPU core
 - D. Can't make use of message passing between CPU cores
 - E. None of the above

Rate Monotonic Understanding

- The RM LUB and policy will fail some feasible service sets
 - A. TRUE
 - B. FALSE
- The RM policy assigns highest priority to the highest frequency service
 - A. TRUE
 - B. FALSE
- The only way to implement an RM service design is with an RTOS
 - A. TRUE
 - B. FALSE