ROS Framework used by Team Hector Darmstadt

ROS Workshop Koblenz 2011 Stefan Kohlbrecher, Karen Petersen, Thorsten Graber, Johannes Meyer

Outline

- Introduction
- Hardware Platforms
- Building Blocks for a (Semi-)Autonomous Rescue Robot
 - System Overview
 - Drivers and Controllers
 - Localization and Mapping
 - Navigation and Path Planning
 - Victim/Object Detection
 - High-Level Control
 - Human-Robot Interaction
 - Simulation

Current state of ROS packages

Background

■ Team Hector is part of the RTG1362: "Cooperative, Adaptive and Responsive Monitoring in Mixed Mode Environments"

Example

Monitoring in Normal Operation

Example

Some Monitoring Elements and Channels Knocked-Out

Motivation

Deployment of Additional Equipment (Robots, Sensors)

Team Hector

- Hector: Heterogeneous Cooperating Team of Robots
- Established in Fall 2009
- 9 PhD Students involved in the past:
 - Mykhaylo Andriluka, Martin Friedmann, Johannes Meyer, Stefan Kohlbrecher (team captain), Karen Petersen, Christian Reinl, Paul Schnitzspan, Armin Strobel, Thorsten Graber
- Transition from RoboFrame to ROS as the central middleware since late 2010

Team Hector

1st place in the European Micro Air "Outdoor Autonomy", Sep. 2009, Delft

3rd place (out of 12 & 16 teams) at the Vehicle Conference (EMAV) in category SICK Company's Robot Day, October 2009 & 2010, Waldkirch

2nd place (out of 27) "Best in Class" Autonomy" at RoboCup 2010, Singapore

Winner and "Best in Class Autonomy" at Robocup 2011 GermanOpen

2nd place (out of 27) "Best in Class Autonomy" at RoboCup 2011, Istanbul

Hardware Platforms Hector UGV

Pan/Tilt Camera Head

- Daylight Camera
- Thermal Camera
- RGB-D Camera

2 actuated LIDAR sensors

R/C Car Chassis

- 4-Wheel-Steering
- 1:5 Gear
- Wheel Encoders

Vision Computer

- Core 2 Duo CPU
- Nvidia GPU

Motion and Navigation

- µC Board / Geode LX
- IMU / GPS / Compass

Total HW Cost: approx. 14.000 Euro (including payload)

Endurance: 30 - 40 minutes

State-of-the-art computing power of a mobile PC onboard

Hardware Platforms

Hector Lightweight UGV

- Based on commercial platform "Wild Thumper"
 - Low cost (~300 EUR)
 - Good mobility
 - First tested at RoboCup 2011
- ROS Integration
 - Arduino based motorcontroller
 - fitPC2 (Atom Z530 1.6 GHz)
- Investigate low cost, low weight platform
- Ongoing work
 - Sensor arm integration using ROS arm_navigation

Building Blocks for a (Semi-)Autonomous Rescue Robot

Requirements

- Robust and flexible hardware platform
- Autonomous exploration of unknown, complex environments
- Detection of victims and other objects of interest
- Interaction with other robots/with human rescue forces/with a human supervisor

> Some problems to be solved...

- Self localization including full 3D pose estimation
- Environment perception and mapping (2D or 3D)
- Path planning and control
- Detection, identification and tracking of objects using multiple cues
- Reliable communication infrastructure
- High-level decision making based on all inputs and external communication

System Overview

System Overview

Hardware Drivers and Controllers

- Real-time driver running in Xenomai-enabled Linux
 - Speed control based on wheel odometry
 - Servo control
 - Interface to the integrated sensors

- Controller nodes provides platform independent motion interface
 - Drive to point, follow path
 - Look at point (using tf)
- Pose Estimation node
 - Extended Kalman Filter estimating the fused 9-DOF state vector (orientation, position, velocity)

Hardware Drivers and Controllers ROS Graph

The SLAM problem

- Build a map representation of the environment and simultaneously localize the robot within that map:
 - Range sensors / Laser scanner (LIDAR)
 - (3D-/Stereo-) Camera

- 2D SLAM: Gmapping, ...
 - → planar environments, odometry
- 3D SLAM: SLAM6D, ...
 - → currently not applicable for online use
- Visual SLAM: SBA, RGB-D-SLAM...
 - → computationally expensive and error prone

Occupancy Grid Mapping

 Map is represented by a 2D grid holding the probability Pxy of cell occupancy

1. Scan Transformation

Transformation of laser rays into the map frame

2. Scan Matching

Alignment of incoming laser scans to the map

3. Map Update

- Increase P for each ray endpoint
- Decrease P for free cells

Inertial Navigation System

- Estimation of the full 3D state (position, orientation, velocity) of the robot from different sensor sources:
 - Inertial Measurement Unit (IMU)
 - Compass (Magnetic Field)
 - Global Satellite Navigation
 - Altimeter, Range Sensors etc.

Attitude and Heading Reference System

(AHRS)

Problems:

- Absolute position is not very accurate or not available at all
- Solution suffers from drift
- Acceleration can lead to significant orientation errors

Strapdown inertial navigation algorithm

Navigation Filter

- Sensor information is fused using an Extended Kalman Filter (EKF)
- State Vector

System Input (= Inertial Measurements)

$$\mathbf{u}_k = egin{pmatrix} oldsymbol{\omega}_k^{\mathrm{T}} & \mathbf{a}_k^{\mathrm{T}} \end{pmatrix}^{\mathrm{T}}$$
 Angular rates Accelerations

Combine SLAM and EKF

Our approach: Couple both localization approaches in a loose manner

Integration

Pose Update from SLAM:

- Pose estimates from EKF and SLAM have unknown correlation!
- Solution: Covariance Intersection (CI) approach [5]

$$(\mathbf{P}^{+})^{-1} = (1 - \omega) \cdot \mathbf{P}^{-1} + \omega \cdot \mathbf{C}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{C}$$
$$\boldsymbol{\mu}^{+} = \mathbf{P}^{+} \left((1 - \omega) \cdot \mathbf{P}^{-1} \boldsymbol{\mu} + \omega \cdot \mathbf{C}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{z} \right)^{-1}$$

with

- ullet Estimated state and covariance (a-priori): $(oldsymbol{\mu}, \mathbf{P})$
- ullet Scan Matcher pose and covariance: (\mathbf{z},\mathbf{R})
- Observation matrix
- Tuning parameter

$$\omega \in [0,1]$$

Trajectory Server

- Logs Trajectory based on tf data
- Make Data available as nav_msgs::path via
 - Regularly published topic
 - Service
- Currently used for
 - Visualization
 - GeoTiff node
- Can log any tf based trajectories

Localization and Mapping GeoTiff node

- Provides RC Rescue League compliant GeoTiff maps
- Trigger for saving the map
 - Regular Intervals
 - On Request (topic)
- Runs completely onboard
- Uses ROS services to retrieve
 - Map
 - Travelled path
 - Victim Locations

Handheld Mapping

- Integration of our SLAM system in a small hand-held device
 - Intel Atom processor
 - Same hardware as on our quadrotor UAV
 - Optional connections to GPS receiver, Magnetometer, Barometer for airborne application

Handheld Mapping

- RoboCup 2011Handheld MappingSystem dataset
- Small Box with
 - Hokuyo UTM-30LX LIDAR
 - Low Cost (<100\$)IMU
 - Atom Z530 1.6 GHz board
- Available at our GoogleCode repository

Embedded Mapping System RoboCup 2011 Rescue Arena Dataset 11th July 2011 Istanbul

Localization and Mapping USV mapping

- SLAM System mounted on USV (Unmanned Surface Vehicle)
- Self-Contained, no interconnection with USV (apart from power supply)

Localization and Mapping ROS Graph (1)

TECHNISCHE UNIVERSITÄT DARMSTADT

Elevation Mapping

Motivation:

- Elevation map is mandatory for ground robots
- For detection of
 - stairs
 - ramps
 - step fields
 - **.**..
- No generic ROS package!

Proposed Map Representation:

- Two-dimensional array (x,y)
- Height value (h)
- Variance (σ²)

Elevation Mapping

Kalman Filter based Approach:

$$h(t) = \frac{1}{\sigma_{z(t)}^2 + \sigma_{h(t-1)}^2} \, \bullet_{z(t)}^2 h(t-1) + \sigma_{h(t-1)}^2 m(t) \,]$$

$$\sigma_{h(t)}^2 = \frac{\sigma_{z(t)}^2 \sigma_{h(t-1)}^2}{\sigma_{z(t)}^2 + \sigma_{h(t-1)}^2}$$

More precisely:

More precisely:
$$h(t) = \begin{cases} z(t) & \text{if } z(t) > h(t-1) \land dm < c \\ \frac{1}{\sigma_m^2 + \sigma_{h(t-1)}^2} & & \text{if } z(t) > h(t-1) \land dm < c \\ \frac{\sigma_{h(t)}^2}{\sigma_{h(t-1)}^2} & & \text{if } z(t) < h(t-1) \land dm < c \\ \frac{\sigma_{z(t)}^2 \sigma_{h(t-1)}^2}{\sigma_{z(t)}^2 + \sigma_{h(t-1)}^2} & & \text{else} \end{cases}$$

where dm denotes the Mahalanobis distance: $dm = \sqrt{\frac{(t) - h(t-1)^{\frac{2}{3}}}{\sigma^2}}$

A. Kleiner and C. Dornhege: Real-time Localization and Elevation Mapping within Urban Search and Rescue Scenarios. Journal of Field Robotics, 2007.

Localization and Mapping ROS Graph (2)

Nodes

Topics

Services

Navigation and Path Planning Cost Mapping

Motivation:

- Avoid planning a path over untraversable regions
- Integration of depth and LIDAR information

Proposed Map Representation:

- Two-dimensional array (x,y)
- Occupancy grid map
 - Unknown
 - Free
 - Occupied

Navigation and Path Planning Cost Mapping

Laplacian-of-Gaussian Filterkernel based Approach:

Navigation and Path Planning Exploration

- Exploration Transform / Frontier based
- Uses CostMap2D based cost map
- Plugin for move_base
- Capabilities
 - Generate target pose and path simultaneously (exploration)
 - Plan path to given target pose
 - Create frontier based target pose

Navigation and Path Planning Path Planning

- Problem: Hector UGV is a non-holonomic vehicle
 - Navigation stack supports only
 - Holonomic
 - Differential drive
- Solution:
 - Use OMPL/SBPL Lattice Planner
 - Modify move_base
 - Fixed Cost Map
 - Low Level Trajectory Follower for SBPL paths
 - Repeated Execution of SBPL (dynamic replanning)

Navigation and Path Planning ROS graph

Victim and Object Detection

Thermal Victim Detection

- Search for groups of connected pixels with temperature of human body
- Significantly less reliable than visual people detection (in real-world scenarios)
- \blacksquare Define confidence $s^{\rm therm} \in [0,1]$ proportional to the number of pixels within human body temperature range

ThermalEye 3600AS

Victim and Object Detection

Visual Victim Detection

- Detection of upper bodies in camera images based on
 - Histograms of Oriented Gradients (HOG)
 - Discriminative SVM classifier
- Parallel computation on GPU
- Define hypothesis confidence $s^{\text{vis}} \in [0, 1]$ derived from SVM score
- Generalization to other kind of objects

Victim and Object Detection

Object Association and Tracking

- Tracking of uncertain victim/object estimates $\{\mathbf{x}_k^j, P_k^j, \pi_k^j\}$ over time
 - x_k^j, P_k^j 3D position vector and covariance
 π_k^j Confidence (1 error probability)
- Robot position and camera transformation are assumed to be known

Algorithm:

- For each new hypothesis $\{\mathbf{z}_k, s_k\}$ with $\mathbf{z}_k = [d_k, \alpha_k, \beta_k]^T$:
 - Data association: Find best matching victim estimate j* that minimizes a distance measure in measurement space (or instantiate a new one)
 - Position update: Update position using an EKF that additionally considers the hypothesis confidence S_k
 - Confidence update: Increase victim confidence according to

$$\pi_k^j = \pi_{k-1}^j + s_k \cdot (1 - \pi_{k-1}^j)$$

Negative update: Decrease confidence of all estimates not being observed despite estimated position is within FOV (optional)

Victim and Object Detection Hazmat Signs

- Detection of signs of hazardous materials
- HOG cannot distinguish between different objects with similar shape
- Augmentation through color histograms in LAB-space for classification
- Two step approach:
 - Search for candidates with HOG / SVM
 - K-nearest-neighbor classification

Victim and Object Detection

Victim Depth Verification

Motivation:

- Verify thermal and visual victim hypotheses
 - Eliminate false-positives
- Uses MS Kinect
- First experiments at Robocup 2011, Istanbul

Low-Level Hypotheses:

- A valid victim is measurable by a depth camera (point cloud)
- A valid victim is not flat

Victim and Object Detection ROS Graph

High-Level Control

Task Allocation

- Modules generate tasks for desired actions
 - Explore area
 - Verify victim hypotheses
- Calculate cost to execute tasks
 - Metric can include
 - Estimated duration to accomplish a task
 - Assumed gain of task execution
 - Expected quality of solution
 - Scale with task priority
- Task Allocation
 - Single robot: Greedily allocate task with lowest cost
 - Multiple robots: Use more sophisticated task allocation algorithm, for example market-based
 - Allow re-allocation if high-priority tasks emerge

High-Level Control

Behavior with XABSL

- Details on how to execute specific tasks
 - Request desired position + orientation of robot
 - Move camera
- Realized with XABSL (eXtensible Agent Behavior Specification Language)
 - Hierarchical finite state automata
 - Each state machine is called option
 - Each state can execute other options or low-level behaviors
 - Intermediate code is interpreted by the XABSL-Engine

> Behavior can be modified during runtime

Human-Robot Interaction

- Teleoperation
 - Direct control of robot motions
 - Control of cameras
- Semi-autonomous operation
 - Goal selection via point-and-click
 - Autonomous path planning
- Supervision of robot teams
 - Control team coordination
 - Modify mission details
 - Influence task allocation

- GUI so far based on RoboFrame
- → New solution will be presented after lunch

Simulation

- Based on the Multi-Robot-Simulation-Framework MuRoSimF
 - Software-in-the-loop testing
 - Run same code as on real robots
 - Test software functionality without hardware
 - Arbitrary mazes and robots
 - Simulation of various sensors
 - Camera
 - Thermal camera
 - Laser range finder
 - Ground-truth data
 - Simplifies evaluation and tuning of algorithms
- Communication between ROS and robot firmware

Some Additional Considerations

/syscommand

 Reset internal state of all nodes simultaneously

tf package

No clear definition of frames

Open Questions

- Simulation environment providing a complete Rescue arena
 - Gazebo
 - USARsim
 - Morse
- Multi-robot scenarios
 - Multi-master
 - Map merging
- Integrated GUI solution
 - RViz + Tools
 - General Rescue GUI

Current State of ROS packages

Package	Release	Generality	Document.
monstertruck_driver	×	*	×
hector_pose_estimation	(√)	✓	•
hector_mapping	✓	✓	•
hector_trajectory_server	✓	✓	•
hector_geotiff_node	✓	✓	•
hector_elevation_mapping	•	✓	×
hector_move_base (+ Plugins)	•	•	×
object_detection	•	•	•
object_tracking	•	✓	•
victim_depth_verification	•	✓	×
SearchAndRescueApp	(Roboframe)	✓	•
SearchAndRescueGui	(Roboframe)	•	•