1 Zadanie 1

1.1 Model

1.1.1 Parametry

- ullet N rozmiar macierzy
- $A_{ij} = \frac{1}{i+j-1}$ dla $i, j = 1, \dots, N$ macierz
- $b_i = \sum_{j=1}^N \frac{1}{i+j-1}$ dla $i=1,\cdots,N$ wektor prawych stron
- $c_i = \sum_{j=1}^N \frac{1}{i+j-1}$ dla $i=1,\cdots,N$ wektor kosztów

1.1.2 Zmienne decyzyjne

• $X_1, \cdots X_N$ - rozwiazania równania AX=b

1.1.3 Ograniczenia

1.
$$\forall_{i=1}^n (\sum_{j=1}^N A_{ij} * X_j = b_i)$$
- równanie jest spełnione

1.1.4 Funkcja celu

$$\min \sum_{i=1}^{N} X_i * c_i$$

1.2 Wyniki

Błąd względny dla zadanego N prezentuje się następująco:

N	Błąd względny
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0.514059
9	0.682911
10	0.990388

Macierz hilberta jest źle uwarunkowana.

2 Zadanie 2

2.1 Model

2.1.1 Parametry

- $Types := \{"Typ1", "Typ2"\}$ zbiór rodzajów dzwigów
- Sites zbiór lokacji
- $(\forall_{s \in Sites} \forall_{t \in Types}) Excess_{s,t} \geq 0$ Nadmiar dźwigu typu tw lokacji s.

- $(\forall_{s \in Sites} \forall_{t \in Tupes}) Deficit_{s,t} \geq 0$ Niedomiar dźwigu typu t w lokacji s.
- $(\forall_{s \in Sites} \forall_{d \in Sites}) Distance_{s,d} \geq 0$ Odległość od lokacji s do lokacji d.
- $(\forall_{t \in Types}) Transportation Cost_t \geq 0$ Koszt transportu dla dźwigu typu t zależnie od odległości.

Ze względu na możliwość zastąpienia dźwigu typu 1, dźwigiem typu 2, rodzaje dźwigów nie mogę być sparametryzowane.

2.1.2 Zmienne decyzyjne

• $(\forall_{t \in Types} \forall_{src \in Sites} \forall_{dst \in Sites}) Move To_{t,src,dst}$ - ilość dźwigów typu t przeniesiona z lokacjizacji src do dst.

2.1.3 Ograniczenia

- 1. $(\forall_{src \in Sites} \forall_{t \in Types}) \sum_{dst \in Sites} MoveTo_{t,src,dst} <= Excess_{src,t}$ z lokacji src nie wywieziono więciej dźwigów typu t niż ich nadmiar.
- 2. $(\forall_{dst \in Sites}) \sum_{src \in Sites} MoveTo_{Typ2,src,dst} >= Deficit_{dst,Typ2}$ do każdej lokacji przywieziono nie mniej niż deficyt dźwigów typu 2.
- 3. $(\forall_{dst \in Sites}) \sum_{t \in Types, src \in Sites} MoveTo_{t, src, dst} == \sum_{t \in Types} Deficit_{dst, t}$ suma przywiezionych dźwigów obu typów jest równa sumie brakujących dźwigów obu typu.

Czy z ograniczeń wynika że zostanie spełnione zaptrzebowania na dźwigu obu typów i można zastąpić dźwig typu 1, dźwigiem typu 2?

Niech dla $dst \in Sites$, In_1, In_2 odpowiadają sumie dostarczonych dźwigów typu 1 i 2 do tej lokacji oraz N_1, N_2 odpowiadają potrzebie dźwigów w tej lokalizacji. Z ograniczenia 2 wiemy że:

$$In_2 \geq N_2$$

czyli $\exists e \geq 0$ takie że

$$In_2 = N_2 + e_2$$

Z ograniczenia 3:

$$In_1 + In_2 = N_1 + N_2$$

 $In_1 + N_2 + e_2 = N_1 + N_2$
 $In_1 + e_2 = N_1$

Ilość dostarczonych dźwigów 1 typu plus pewna ilość nadmiarowych dźwigów 2 typu równa się wymaganej liczbie dźwigów 1 typu.

2.1.4 Funkcja celu

$$min \sum_{t \in Types} \sum_{src \in Sites, dst \in Sites} MoveTo_{t, src, dst} * Distance_{src, dst} * TransportationCost_t + Distance_{src, dst} * TransportationCost_t + Distance_{src, dst} * Distance_{src,$$

2.2 Wyniki

	Opole	Brzeg	Nysa	Prudnik	Strzelce Opolskie	Kozle	Raciborz
Opole	(0,0)	(0,0)	(0,2)	(0,0)	(0,0)	(0,0)	(0,0)
Brzeg	(4,0)	(0,1)	(5,0)	(0,0)	(0,0)	(0,0)	(0,0)
Nysa	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)
Prudnik	(0,0)	(0,0)	(1,0)	(0,3)	(0,0)	(0,0)	(0,0)
Strzelce Opolskie	(0,0)	(0,0)	(0,0)	(0,4)	(0,0)	(0,0)	(0,0)
Kozle	(3,0)	(0,0)	(0,0)	(0,2)	(5,0)	(0,0)	(0,0)
Raciborz	(0,0)	(0,0)	(0,0)	(0,1)	(0,0)	(0,0)	(0,0)

Funkcja kosztu = 1418.8 Założenie całkowitoliczbowości nie jest potrzebne.

3 Zadanie 3

3.1 Model

3.1.1 Parametry

- P (Product) zbior dostępnych produktów wyjściowych
- DU (Distillation Unit) zbiór jednosted destylacji
- CU (Cracking Unit) zbiór jednostek krakowania katalitycznego
- $AU = DU \cup CU$ (All Units)
- $(\forall p \in P)(\forall u \in AU)Ep, u \geq 0$ wydajność procesu produkcji produktu p na jednostce u.
- $(\forall u \in AU)SC_u$ (Sulfur Content) zawartość siarki w oleju pochodzącym z danej jednostki u
- SCL (Sulfur Content Limit) maksymalna zawartość siarki w oleju przeznaczonym do użytku w domowych paliwach olejowych.
- EFD (Engine Fuel Demand) wymagana ilość paliw silnikowych
- HoFD (Home Fuel Demand) wymagana ilość domowych paliw olejowych
- HeFD (Heavy Feal Demand) wymagana ilość ciężkich paliw olejowych
- $(\forall u \in AU)PC_u$ (Production Cost) koszt przetworzenia jednej tony materiałów w jednostce u
- $(\forall d \in DU)COC_d$ (Crude Oil Cost) kosz kupienia tony ropy do jednostki destylacji d.

3.1.2 Zmienne decyzyjne

- 1. $(\forall u \in AU)UI_u \geq 0$ (UnitInput), ilość surowych materiałów wchodzących do jednostki u
- 2. $(\forall u \in AU)OTHoF_u \ge 0$ (Oil To Home Fuels), ilość oleju produkowanego w jednostce u, który jest przyporządkowana olejowym paliwom domowym.
- 3. $(\forall u \in AU)OTHeF_u \ge 0$ (Oil to Heavy Fuels), ilość oleju produkowanego w jednostce u, który jest przyporządkowana ciężkim paliwom olejowym.
- 4. $(\forall d \in DU)DTCU_d \ge 0$ (Distillat to Cracking Unit), ilość destylatu produkowanego w jednostce d, który wysyłany jest do dalszego przetwarzania w jednostce krakowania katalitycznego
- 5. $(\forall d \in DU)DTHF_d \ge 0$ (Distillat to Heavy Fuel), ilość destylatu produkowanego w jednostce d, który przyporządkowany ciężkim paliwom olejowym

3.1.3 Ograniczenia

- 1. $(\forall u \in AU)OTHoF_u + OTHeF_u == UI_u * E_{Oil,u}$ dla każdej jednostki produkcyjnej, suma oleju przyporządkowanego do paliw domowych i do paliw ciężkich jest równa ilości wyprodukowanego oleju
- 2. $(\forall d \in DU)DTCU_d + DTHF_d == UI_d * E_{Distillat,d}$ dla każdej jednostki destylacji, ilość destylatu przekazanego do paliw ciężkich i do jednostek krakowania katalitycznego jest równa ilość wyprodukowanego destylatu
- 3. $\sum_{u \in AU} (UI_u * E_{Benzyna,u}) \ge EFD$ wyprodukowano wymaganą ilość paliw silnikowych
- 4. $\sum_{u \in AU} (OTHoF_u) \ge HoFD$ wyprodukowano wymaganą ilość domowych paliw olejowych
- 5. $\sum_{u \in AU}(Ui_u*E_{Resztki,u}+OTHeF_u)+\sum_{d \in DU}DTHF_d \geq HeFD$ wyprodukowano wymaganą ilość ciężkich paliw olejowych
- 6. $\sum_{uinAU}OTHoF_u*(SC_u-SCL)\leq 0$ zawartość siarki w domowych paliwach olejowych nie przekracza limitu

Jako, że powyższy model jest uogólniony, musimy zawęzić go dodatkowymi ograniczeniami:

- 1. $(\forall c \in CU)OTHeF_c = 0$ olej z jendostki krakowania katalitycznego może być użyty tylko jako domowe paliwo olejowe.
- 2. $UI_{C1} = DTCU_{B1} \wedge UI_{C2} = DTCU_{B2}$ ilość surowych materiałów na wejście jednostek krakujących odpowiada ilości destylatu przekazanej do jednostki krakującej z odpowiadającej jednostki destylacji

3.1.4 Funkcja celu

$$min\sum_{u\in AU}(UI_u*PC_u) + \sum_{d\in DU}(UI_d*COC_d)$$

3.2 Wyniki

Dla naszych danych:

Var	B1	B2
UI	1075601.374570	0
DTCU	77319.587629	0
UTHoF	384536.082474	0

Koszt to 1410584192.439862.