To motivate the optimization approach, consider the BTL model, where $w^{\star} \in \mathbb{R}^{n}$ is the ground-truth parameter vector. Let $P^{\star} \in \mathbb{R}^{n \times n}$ be the matrix with $P_{ij}^{\star} = \frac{w_{i}^{\star}}{w_{i}^{\star} + w_{j}^{\star}}$, so that P_{ij}^{\star} is the probability that the i^{th} item beats the j^{th} item

Given the results of comparisons, we construct the matrix $P \in \mathbb{R}^n$, where P_{ij} records the fraction of comparisons between i and j that resulted in a win for i (and if the items are not compared at all, we record a zero). Thus, for pairs (i,j) that are compared, we have $\mathbb{E}[P_{ij}] = P_{ij}^{\star}$.

In order to estimate the parameters w^* , we use the hidden low-rank structure of P^* , as noted by Rajkumar and Agarwal [1]. Namely, let $\Psi(x) = \log\left(\frac{x}{1-x}\right)$ be the logit function. Then $\Psi(P_{ij}^*) = \log(w_i^*) - \log(w_j^*)$. Letting $s^* \in \mathbb{R}^n$ be the vector with $s_i^* = \log(w_i^*)$ and $\mathbf{e} \in \mathbb{R}^n$ be the all-ones vector, we have $\Psi(P^*) = s^*\mathbf{e}^\top - \mathbf{e} s^{*\top}$ (where Ψ is applied to P^* entrywise).

Letting $\Omega(\cdot)$ denote the restriction of a matrix to the set of ordered pairs (i,j) which are compared, we thus expect

$$\|\Omega\left(\Psi(P) - \Psi(P^{\star})\right)\|$$

to be small (where the norm is not specified). It turns out that the 1-norm is convenient for optimization. We thus propose the following algorithm:

Algorithm 1 Estimate Ranking (BTL Model)

Input: Pairwise comparison data matrix P, score range $[w_{\min}^{\star}, w_{\max}^{\star}]$ Output: Estimated score vector w, estimated ranking π

- 1: Construct link-transformed matrix \hat{P} where $\hat{P}_{ij} = \psi(P_{ij})$
- 2: Construct the optimization problem as follows:

Let x be a vector of size n, where $\log(w_{\min}^{\star}) \leq x_i \leq \log(w_{\max}^{\star})$ for all $i \in [n]$.

Let Y be a matrix defined by $Y_{ij} = x_i - x_j$.

Solve by finding the vector x which minimizes the matrix norm:

$$\min||Y - \hat{P}||_1.$$

3: Set $w_i = e^{x_i}$, and construct π so that $\pi(i) \leq \pi(j)$ whenever $w_i \geq w_j$.

We note that the optimization problem can be formulated as a linear program, as follows:

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} Z_{ij}$$
subject to $\log(w_{\min}^{\star}) \le x_{i} \le \log(w_{\max}^{\star})$ $\forall i \in [n]$

$$Y_{ij} = x_{i} - x_{j} \qquad \forall i, j \in [n]$$

$$-Z_{ij} \le Y_{ij} - \hat{P}_{ij} \le Z_{ij} \qquad \forall i, j \in [n].$$

The Thurstone model can be handled similarly, as $\overline{\Psi}(P^{\star})$ is low-rank for $\overline{\Psi}(\cdot)$ which is the probit function (inverse of the normal cumulative distribution function) [1].

References

[1] Arun Rajkumar and Shivani Agarwal. When can we rank well from comparisons of $O(n \log(n))$ non-actively chosen pairs? In *Conference on Learning Theory*, pages 1376–1401. PMLR, 2016.