Информатика МФТИ

ГРАФЫ. III

Тимофей Хирьянов

1 Задача Эйлера

Задача 1. Задача о кёнигсбергских мостах (нем. Königsberger Brückenproblem) — старинная математическая задача, в которой спрашивалось, как можно пройти по всем семи мостам Кёнигсберга, не проходя ни по одному из них дважды.

Определение 1. Эйлеров цикл — это цикл графа, проходящий через каждое ребро (∂yry) графа ровно по одному разу.

Определение 2. Эйлеров граф — граф, содержащий эйлеров цикл.

Определение 3. Полуэйлеров граф — граф, содержащий эйлеров путь (цепь).

Теорема 1. $\Gamma pa\phi$ является Эйлеровым \Leftrightarrow кратность всех вершин четная.

Теорема 2. Γ раф является полуэйлеровым \Leftrightarrow кратность всех вершин четная, кроме двух.

Доказательство этих двух теорем опустим.

2 Задача Гамильтона

Задача 2. 3adaча Γ амильтона — посетить каждую вершину ровно один раз.

Определение 4. Гамильтонов граф — граф, содержащий гамильтонов цикл.

Определение 5. Гамильтонов цикл — цикл, содержащий все вершины данного графа.

Определение 6. Полугамильтонов граф — граф, содержащий гамильтонов путь.

3 Задача о китайском почтальоне

Задача 3. Задача о китайском почтальоне — посетить все ребра не менее одного раза, при этом так, чтобы суммарная длина траектории путь была минимальна.

Чем эта задача похожа на задачу Эйлера? Тем, что мы посещаем ребра, а не вершины, каждое ребро обязаны посетить хотя бы один раз. Очевидно, что в случае если граф Эйлеров, то задача имеет однозначное решение: мы посещаем каждое ребро два раза. Но задача почтальона несколько шире — мы можем посетить каждое ребро как минимум один раз. То есть, по одному ребру можно проходить два раза. И вот тут возникает вопрос: по какому проходить два раза так, чтобы путь был наименьшим. То есть наша задача — сделать из неэйлерового графа хотя бы полуэйлеров. Эта задача нетривиальна.

Тимофей Хирьянов 1

Информатика МФТИ

4 Задача коммивояжера

Задача 4. Найти оптимальный по длине гамильтонов цикл.

Заметим, что в полносвязном графе задача Гамильтона не возникает, но имеет место задача коммивояжера.

4.1 Метод полного перебора

Можно перебрать все возможные пути, а потом из них выбрать наименьший. Этот алгоритм выполняется за O(n!). Приведем решение задачи коммивояжера:

Тимофей Хирьянов