《天体物理学》

第五章吸积过程

讲授: 徐仁新

北京大学物理学院天文学系

$$A + B \rightarrow C + (\gamma, \nu, ...)$$

释放能量:依赖于相互作用

电磁⇒化学能,核力⇒核能...

融合方式:一般用截面泛泛地描述微观过程

为什么要研究吸积?

- •吸积:中心天体"吸引和积累"周围物 质的过程。天体通过该过程而释放引力能
- •考虑物质被质量M天体吸积至半径R处:

• \rightarrow 在研究致密天体 (M/R大; 白矮星、 中子星、黑洞)时,吸积因素不能忽略!

1, Roche瓣与双星演化

双星系统的等引力势面: Roche瓣

•考虑质量 M_1 、 M_2 质点位于 r_1 、 r_2 处,且质点互相以 Ω 绕转

$$\phi(\vec{r}) = \frac{GM_1}{|\vec{r} - \vec{r_1}|} - \frac{GM_2}{|\vec{r} - \vec{r_2}|} - \frac{1}{2} (\vec{\Omega} \times \vec{r})^2$$

引力势 离心力势

- • $r >> r_1$ 或 r_2 : 质点质量于~质心,引力等势面近似具有**柱面**
- • $r < \sim r_1$ 或 r_2 : 离心势项可忽略, ϕ 等势面~沿 r_1 - r_2 方向的轴对称性

1, Roche瓣与双星演化

双星系统的等引力势面: Roche瓣

- •公转轨道平面内的等势线
 - ■第一Lagrange点L₁(鞍点)
 - ■临界Roche面

$$R_{1} = \frac{0.49(M_{1}/M_{2})^{2/3}}{0.6(M_{1}/M_{2})^{2/3} + \ln[1 + (M_{1}/M_{2})^{1/3}]} a$$

$$R_{2} = \frac{0.49(M_{2}/M_{1})^{2/3}}{0.6(M_{2}/M_{1})^{2/3} + \ln[1 + (M_{2}/M_{1})^{1/3}]} a$$

- ■L₂和L₃也是不稳定鞍点
- $M_1 > M_2$
- *ϕ*递增: L₁、L₂、L₃、L₄=L₅

Roche瓣与双星演化

双星系统的分类:

- •依恒星体积相对于Roche瓣的大小
 - ■不相接双星 接近Roche瓣时: 星风吸积
 - ■半相接双星 ⇒ 物质交流
 - ■相接双星 ⇒ 公共包层 (CE)

不相接双星

(b) 半相接双星

Roche瓣与双星演化

双星演化一例: $(25+10) M_{\odot}$

- 未演化的密近双星
- •(b): 充满Roche瓣
- •(c): 氦星(Wolf-Rayet星?) 双星
- 超新星爆发 •(d):
- •(e): X射线双星(星风吸积)
- X射线双星(经 L_1 点吸积) •(f):
- (氦星+中子星)双星 •(g):
- •(h): 第二次超新星爆发→双中子星系统?
 - ■PSR B1913+16 (Hulse-Taylor双星)
 - ■PSR J0737-3039A和PSR J0737-3039B
 - ⇒检验包括GR在内引力理论的重要场所

2. 吸积产能率与光子能量

致密天体吸积能够高效地释放能量:

•引力能释放效率依赖于M/R值

$$\eta_{\rm g} = G \frac{M}{c^2 R} \approx 0.15 \times \frac{M/M_{\rm sun}}{R/(10^6 \, \rm cm)}$$

- ■白矮星: $R \sim 10^9 \text{cm}$, $\eta_{\text{g}} < \sim \eta_{\text{nucl}}$
- •中子星: $R \sim 10^6$ cm, $\eta_g \sim 0.15$
- ■黑洞?若最小稳定圆轨道半径 r_{ms} 以内不能向外辐射,

Schwarzschild黑洞: $\eta_g \sim 0.06$

极端Kerr黑洞: $\eta_g \sim 0.45$

2. 吸积产能率与光子能量

致密天体吸积产生高能辐射 (X或y):

•若引力能只转化为一个光子(完全不热化)

$$\varepsilon_1 \approx \frac{GMm_p}{R} = 137 \text{MeV} \frac{M}{M_{\text{sun}}} \frac{10 \text{km}}{R}$$

•若引力能以接近黑体的热辐射形式释放(**完全热化**)

$$\varepsilon_2 \approx k \left(\frac{L}{4\pi\sigma R^2}\right)^{1/4} \approx 1.67 \text{keV} \left(\frac{L}{L_{\text{Edd}}}\right)^{1/4} \sqrt{\frac{10 \text{km}}{R}}$$

•实际情况下,吸积粒子具有**不充分的热化**

$$\varepsilon_2 < h \nu < \varepsilon_1$$

球吸积

静止介质的吸积: (吸积流总角动量为零)

•考虑温度T的介质处于质量M天体的引力场(忽略介质自引力)

定义吸积半径 R_a :

此处粒子动能与引力势能之和为零

$$kT - \frac{GMm}{R_{\rm a}} \approx 0 \Longrightarrow R_{\rm a} \approx \frac{GMm}{kT} \approx \frac{GM}{c_{\rm s}^2}$$

注意: $c_s = (P/\rho)^{1/2} = (kT/m)^{1/2} (P = kT\rho/m)$

与粒子微观运动速度同量级

•由于扩散作用,中心天体的吸积率:

$$\dot{M} \sim \pi R_a^2 c_s \rho$$

3, 球吸积

运动介质的吸积: (吸积流总角动量为零)

•粒子动能 ~ $kT + mV^2/2$ ~ $m(c_s^2 + V^2)$: $c_s^2 \rightarrow c_s^2 + V^2$

此时的吸积半径Ra:

$$R_{\rm a} \approx \frac{GM}{c_{\rm s}^2 + V^2}$$

可见: "运动"不利于吸积

•此时中心天体的吸积率(如星风吸积情形):

$$\dot{M} \sim \pi R_a^2 (c_s^2 + V^2)^{1/2} \rho$$

•充满Roche瓣后经过L₁物质流如何被吸积呢?

4, 盘吸积

吸积盘的形成: (角动量非零)

- •角动量足够高的吸积流才能构成盘吸积
 - ■吸积流能量耗散率远高于角动量损失率 近似:角动量"守恒"

——圆轨道,
$$l=rv$$

■圆化半径R_{circ}

确定比角动量圆轨道半径

$$m\frac{v^2}{R_{\rm circ}} = G\frac{mM_*}{R_{\rm circ}^2} \Longrightarrow R_{\rm circ} = \frac{l^2}{GM_*}$$

•吸积盘**形成**示意: *R*<<*R*_{circ}

4, 盘吸积

吸积盘的基本特征:

·忽略吸积盘自身引力 → Kepler盘

$$\Omega_{\rm K} = \sqrt{\frac{GM}{r^3}}$$

- •考虑盘中两层物质的交换 $\lambda \sim 1$ 自由程, $\nu_{t} \sim 2$ 交换速度
- •单位质量物质导致**角动量差**: $r^2\Delta\Omega \sim r^2(\mathrm{d}\Omega/\mathrm{d}r)\lambda$

 $H\rho$

•外层作用于内层的力矩(逆盘角动量方向):

 $G(r) = 2\pi r H v_{t} \rho \cdot r^{2} \Omega' \lambda \approx 2\pi r^{3} v \Sigma \Omega' \propto v \Sigma r^{1/2}$

动力学粘滞系数~λν_t

4, 盘吸积

吸积盘的基本特征:

•某层受外、内层作用的净力矩:

 $G(r+dr)-G(r)=(\partial G/\partial r)dr \Rightarrow$ 盘内物质角动量向外传递 \Rightarrow 吸积!

•净力矩对r与r+dr间一层物质单位时间的作功

$$\Omega \frac{\partial G}{\partial r} dr = \left[\frac{\partial}{\partial r} (G\Omega) - G\Omega' \right] dr$$

- •第一项: 所传递的转动动能(白矮星和中子星√,黑洞*)
- •第二项: 粘滯作用所释放能量。

盘单位面积的辐射功率:

假设: 粘滞产热 = 热辐射

$$D(r) = \frac{2\pi r^3 v \Sigma \Omega' \cdot \Omega' \cdot dr}{2 \times 2\pi r dr} = \frac{1}{2} v \Sigma (r\Omega')^2 \propto v \Sigma_r^{-3} \qquad 如何知道v、\Sigma?$$

盘半径r较小处:引力能释放效率高,那里高光度且光子能量也较高。

盘吸积

几种吸积盘模型:

- "标准"吸积盘: 又称α盘(Shakura和Sunyaev,1973) 假设 $v = \alpha H c_s$,对于 $H \ll R$ (几何薄)、近似黑体辐射(光 学厚, 充分热化) 情形, 由守恒律 ⇒ 完备代数方程
- $\bullet \alpha$ 盘解的示意图:

- •其它吸积盘模型
 - •SLE盘: 热不稳定
 - ■辐射压主导厚盘: slim盘
 - ■离子压主导厚盘: ADAF盘

种类	几何特性	光学特性
α盘	薄	厚
SLE盘	薄	薄
slim盘	厚	厚
ADAF盘	厚	薄

5, 磁中子星的吸积

磁中子星吸积的特殊性

- •中子星一般具有强偶极磁场(极冠区 $\sim 10^8 G 10^{12} G$)
- •远离中子星处,可忽略磁场对吸积物质的作用
- •接近中子星处,因磁冻结,吸积磁流体具有与该星共转趋势
- •磁层半径:吸积流明显受**B**作用处(由 $\rho_{\text{particle}} \sim \rho_{\text{B}}$ 定,习题1)

5, 磁中子星的吸积

吸积流能否一定落至磁中子星表面?

•共转流体不仅受引力 $F_{\rm g}$ 作用,而且还受**离心力** $F_{\rm c}$ 作用!

•描述星体自转相对快慢的物理量: 快度 $\omega_{\rm s} \equiv \frac{\Omega_*}{\Omega_{\rm k}(r=r_{\rm m})}$

$$\omega_{\rm s} = 1 \Leftrightarrow r_{\rm m} = r_{\rm co}$$

•是否 ω_{s} <1时吸积流一定落至中子星表面?

5. 磁中子星的吸积

吸积流能否一定落至磁中子星表面?

- •即使 ω_{s} <1,只有发生某些**磁流体力学不稳定性**的情况下, 大规模吸积才是可能的:
 - ■**R-T不稳定性**:引力场中高密度流体位于低密度流体之上而导致的一种 不稳定性。平行于流体分界面磁场具有抑制这种不稳定性发生的能力
 - ■**K-H不稳定性**: 两相流体作平行于分界面相对运动而导致的一种不稳定 性。平行于流速方向的磁场具有抑制这种不稳定性发生的能力
- •临界快度 α : 不稳定性开始发生时的快度
- •某些数值计算发现: $\omega_c \sim 0.35$

5、磁中子星的吸积

磁中子星吸积加速与吸积减速:

- • $\omega_{c} < \omega_{c}$ 时,吸积物质大规模地流至星表面,**吸积加速**
- • $\omega_c > \omega_c$ 时:螺旋桨效应,吸积减速
 - \blacksquare 盘内物质粘滞驱动的向内吸积流达约 r_{m} 处,因被强迫共转, 吸积流受离心力主导而被抛离中心天体 ⇒螺旋桨效应
 - ■螺旋桨过程中提取了中心天体自转能 ⇒ 吸积减速
- 盘与磁层间耦合作用使得中子星获得力矩可以写成:

$$I\dot{\Omega} = \dot{M} \cdot r_{\rm m} v_{\rm K}(r_{\rm m}) \cdot n$$
 $n=1$: 临界逃逸

一般认为n是无量纲函数 $n=n(\omega_{s})$ 。某些数值结果给出关系:

$$n(\omega_{\rm s}) \approx f(1-\omega_{\rm s}/\omega_{\rm c})$$

其中无量纲参数: $f \in [1, 2]$, $\omega_c \in (0, 1)$ 。

- 0, 为什么要研究吸积?
- 1, Roche瓣与双星演化
- 2, 吸积产能率与光子能量
- 3, 球吸积
- 4, 盘吸积
- 5, 磁中子星的吸积

作业

习题: 1、3