Universidade do Minho

4 de novembro de 2024

1º Teste de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2 horas

Este teste é constituído por 5 perguntas. Todas as respostas devem ser devidamente **justificadas**.

1. Seja $A = \{a, b, c\}$. Considere a máquina de Turing

$$\mathcal{T} = (\{0, 1, 2, 3, 4\}, A, A \cup \{\Delta\}, \delta, 0, 4, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	c	Δ
0				$(1, \Delta, D)$
1	(1, a, D)	(1, b, D)	(2, c, D)	
2	(2, c, D)	(2, c, D)		$(3, \Delta, E)$
3	(3, a, E)	(3,b,E)	(3, c, E)	$(4, \Delta, C)$

A máquina \mathcal{T} calcula uma função parcial $g: A^* \to A^*$.

- a) Represente \mathcal{T} graficamente.
- **b)** Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}abbabacaaba)$.
- c) Identifique o domínio D da função g.
- d) Para cada elemento $u \in D$, determine a palavra g(u).
- **2**. Seja $A = \{a, b\}$. Mostre que a função

$$g: \ A^* \times A^* \ \longrightarrow \ \mathbb{N}_0$$

$$(u,v) \ \longmapsto \ \begin{cases} |u| & \text{se } |u| \text{ \'e par} \\ |u| + |v| & \text{se } |u| \text{ \'e impar} \end{cases}$$

é Turing-computável.

3. Considere a linguagem

$$L = \{a^m b^{m+n} a^n : m, n \in \mathbb{N}_0\}$$

sobre o alfabeto $A = \{a, b\}$. Construa uma máquina de Turing (usual ou com duas fitas) que reconheça L e descreva informalmente a estratégia dessa máquina.

4. Seja \mathcal{F} a seguinte máquina de Turing com duas fitas sobre o alfabeto $A = \{a, b, c\}$,

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}abbacccaab, \underline{\Delta})$ e diga se a palavra abbacccaab é aceite por \mathcal{T} .
- **b)** Para que palavras $u \in A^*$, $(0, \underline{\Delta}u, \underline{\Delta})$ é uma configuração de ciclo?
- c) Para que palavras $v \in A^*$, a partir de $(0, \underline{\Delta}v, \underline{\Delta})$ pode ser computada uma configuração de rejeição?
- d) Identifique a linguagem L reconhecida por \mathcal{T} . Justifique.
- e) Diga, justificando, se a linguagem L é recursiva.
- 5. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) Se $\mathcal T$ é uma máquina de Turing sobre o alfabeto A que reconhece A^* , então $\mathcal T$ é um algoritmo.
 - b) A palavra $x^2yx^2yxyx^3yxyx^3y^2x^3yx^2yx^3yxyx^2y^2x^2yx^3yxyxyxy^2$ é o código de uma máquina de Turing com exatamente 3 estados.
 - c) Existem linguagens recursivas L e K tais que $L \cup \overline{K}$ não é recursivamente enumerável.
 - d) Se \mathcal{T}_1 e \mathcal{T}_2 são máquinas de Turing tais que $L(\mathcal{T}_1) = a^*$ e $L(\mathcal{T}_2) = b^*$, então a linguagem reconhecida pela composição sequencial $\mathcal{T}_1 \longrightarrow \mathcal{T}_2$ é \emptyset .

(FIM)

$$\text{Cotação:} \begin{cases} \textbf{1}. & 4,5 \text{ valores } (1+1+1,25+1,25) \\ \textbf{2}. & 2,5 \text{ valores} \\ \textbf{3}. & 2,5 \text{ valores} \\ \textbf{4}. & 5,5 \text{ valores } (1+1,25+1+1,25+1) \\ \textbf{5}. & 5 \text{ valores } (1,25+1,25+1,25+1,25) \end{cases}$$