빅데이터분석(가) 최종발표

따름이, 여기까지 타봤다!

- 서울시 공용자전거 사용 데이터 분석을 통한 인사이트 도출 -

중간발표 요약 어떤 내용을 분석하기로 했었지?

1. 중간발표 요약

기후동행카드 사업이 <mark>따름이 사용량</mark>에 어떠한 영향을 미쳤는지 궁금해져 시작된 이번 텀 프로젝트

서울시, 통계청 등 공공기관의 공공데이터를 활용하여 기후동행카드 사업 시행 전후의 변화 분석을 목표

데이터 분석 과정이렇게 분석했습니다!

공공기관의 <mark>공공 데이터</mark>와 GitHub의 <mark>오픈소스 데이터</mark>를 활용

통계청

국가통계포털

행정구역(시군구)별/1세별 주민등록인구 (2023년 4월, 2024년 4월)

서울시 열린데이터 광장

서울시 버스노선별 정류장별 승하차 인원 정보 서울시 버스정류소 위치정보 서울시 지하철호선별 역별 승하차 인원 정보 서울시 역사마스터 정보 서울시 따릉이 대여소별 대여/반납 승객수 정보 서울시 따릉이대여소 마스터 정보

서울_자치구_경계_2017.geojson*

* 출처: https://github.com/cubensys/Korea_District 6/32

2. 데이터 분석 과정_ ② 데이터 전처리

따릉이 대여소 데이터: 주소 없음 데이터 추가

2. 데이터 분석 과정_ ② 데이터 전처리

따릉이 대여소 데이터: 도로명 주소 누락 데이터 수정

2. 데이터 분석 과정_ ② 데이터 전처리

기후동행카드 사용불가 노선 필터링

버스(13개)

지하철(262개)

연번	노선번호	승·하차
1	6633	X
2	9401	X
3	9401-1	X
4	9404	X
5	9408	X
6	9409	X
7	9701	X
8	9707	X
9	9711	X
10	9714	X
11	서울01	X
12	서울03	X
13	서울06	X

연번	역명	노선	승차	하차	판매	충전	사용정지 처리
1	가능	1호선	X	Χ	X	X	Х
2	간석	1호선	X	Χ	X	X	Х
3	관악	1호선	X	Χ	X	Х	Х
4	광명	1호선	X	X	X	X	Х
5	군포	1호선	X	X	X	X	Х
6	금정	1호선	X	Χ	X	Х	X
7	녹양	1호선	X	X	X	X	Х
8	당정	1호선	X	Χ	X	X	Х
9	덕계	1호선	X	X	X	X	Х
10	덕정	1호선	X	X	X	X	Х
11	도원	1호선	X	X	X	X	Х
12	도화	1호선	X	X	Х	X	Х
13	동두천	1호선	X	X	X	X	Х

```
1 # 이용불가 노선 13개
2 bus_unavailable = ["6633", "9401", "9401-01", "9404", "9408", "9409", "9701", "9707", "9711", "4201", "서울03", "서울06"]
```

지하철역, 버스정류소 행정구 라벨링

지하철(771개)

역한글명칭	호선명칭	환승역X좌표	환승역Y좌표
삼성증앙	9호선(연장)	127.053282	37.513011
사평	9호선	127.015259	37.504206
구반포	9호선	126.987332	37.501364
흑석(중앙대입구)	9호선	126.963708	37.508770
샛강	9호선	126.928422	37.517274
관악산(서울대)	신림선	126.945064	37.469102
신논현	신분당선(연장2)	127.025060	37.504598
탕정	장항선	127.084850	36.788660
신사	신분당선(연장2)	127.020114	37.516334
논현	신분당선(연장2)	127.021415	37.511093

SIG_KOR_NM	geometry
종로구	POLYGON ((127.00864 37.58047, 127.00871 37.580
중구	POLYGON ((127.02314 37.57196, 127.02336 37.571
용산구	POLYGON ((126.96918 37.55566, 126.96917 37.554
성동구	POLYGON ((127.04341 37.57234, 127.04524 37.571
광진구	POLYGON ((127.10166 37.57240, 127.10224 37.572
동대문구	POLYGON ((127.07108 37.60732, 127.07117 37.606
중랑구	POLYGON ((127.11131 37.62069, 127.11214 37.620
성북구	POLYGON ((127.01059 37.58025, 127.01030 37.580
강북구	POLYGON ((127.00457 37.68508, 127.00553 37.684
도봉구	POLYGON ((127.01509 37.64929, 127.01477 37.649
노원구	POLYGON ((127.11085 37.63841, 127.11090 37.638

버스(11261개)

정류소명	X좌표	γ좌표
종로2가사거리	126.987752	37.569806
- ····································	126.996521	37.579433
명륜3가.성대입구	126.998251	37.582580
종로2가.삼일교	126.987613	37.568579
혜화동로터리.여운형활동터	127.001744	37.586243
우성아파트	127.139339	37.550386
무성아파트	127.140046	37.550643
조일약국	127.123596	37.533630
성내시장	127.125497	37.536155
천흐우체국.로데오거리	127.127337	37.540343

버스정류소 개수, 지하철역 개수 – 행정구별 1인당 따름이 사용량의 선형적인 상관관계 확인

버스정류소 개수와 지하철역 개수 모두 약한 상관관계를 보임

버스정류소 개수, 지하철역 개수 – 행정구별 1인당 따름이 사용량의 선형회귀 · 중선형회귀 진행

귀무가설

버스정류소 개수, 지하철역 개수는 따름이 사용량과 관계가 없을 것이다

대립가설

버스정류소 개수, 지하철역 개수가 적으면 따릉이 사용량이 증가할 것이다

선형적인 상관관계 및 선형회귀분석을 통한 인과관계를 확인하여 가설 검증을 진행

2. 데이터 분석 과정_ ④ 회귀분석

버스정류소 개수, 지하철역 개수 – 행정구별 1인당 따름이 사용량의 선형회귀 · 중선형회귀 진행

산점도와 회귀선을 이용한 단일선형회귀 시각화

버스정류소 개수, 지하철역 개수 – 행정구별 1인당 따름이 사용량의 선형회귀 · 중선형회귀 진행

2023년	버스 정류소 개수
R ² (결정계수)	0.023
P-value (유의확률)	0.469
Coef (회귀계수)	-0.002

OLS Regres	sion Re	sul	ts								
Dep. Varia	ible:		per_	pers	on_2024	4 R	t-sq	uared:		0.	016
Model:			OLS			A	\dj.	R-square	ed:	-0	.027
Method:			Leas	t Sq	uares	F	-sta	tistic:		0.	3647
Date:			Tue,	04 .	Jun 2024	4 P	rob	(F-statis	itic):	0.	552
Time:			09:0	3:55		L	.og-l	Likelihoo	od:	-4	2.471
No. Obser	vations	52	25			A	AIC:			88	3.94
Df Residua	als:		23			В	IIC:			91	1.38
Df Model:			1								
Covariance	e Type:		non	robu	ıst						
	coef		std	err	t	P>	ŀltl	[0.025	0.9	75]	
Intercept	3.3032	2	1.21	1	2.728	0.0	012	0.799	5.8	80	
bus	-0.001	6	0.00	3	-0.604	0.5	552	-0.007	0.0	04	
Omnibus:		4.	547	Du	rbin-Wa	tsor	n:	1.437			
Prob(Omn	ibus):	0.	103	Jar	que-Ber	a (J	В):	3.678			
Skew:		0.	937	Pro	ob(JB):			0.159			
Kurtosis:		2.	868	Co	nd. No.			2.03e+0	3		

2024년	버스 정류소 개수
R ² (결정계수)	0.016
P-value (유의확률)	0.552
Coef (회귀계수)	-0.001

유의확률이 0.005 이상이므로 귀무가설을 채택

버스정류소 개수, 지하철역 개수 – 행정구별 1인당 따름이 사용량의 선형회귀 · 중선형회귀 진행

2023년	지하철역 개수
R2 (결정계수)	0.132
P-value (유의확률)	0.075
Coef (회귀계수)	0.076

2024년	지하철역 개수
R2 (결정계수)	0.132
P-value (유의확률)	0.074
Coef (회귀계수)	0.075

유의확률이 0.074 이상이므로 귀무가설을 기각하고 대립가설을 채택하지만, 설명력이 0.132로 낮음

2. 데이터 분석 과정_ ④ 회귀분석

버스정류소 개수, 지하철역 개수 – 행정구별 1인당 따름이 사용량의 선형회귀 · 중선형회귀 진행

2023년	버스 정류소 개수	지하철역 개수
R2 (결정계수)	0.2	25
P-value (유의확률)	0.119	0.026
Coef (회귀계수)	-0.004	0.102

2024년	버스 정류소 개수	지하철역 개수
R2 (결정계수)	0.2	:08
P-value (유의확률)	0.160	0.031
Coef (회귀계수)	-0.003	0.097

중선형회귀는 단일선형회귀보다 결정계수는 낮고, 유의확률은 높아졌음

버스정류소 개수, 지하철역 개수 – 행정구별 1인당 따름이 사용량의 선형회귀 · 중선형회귀 진행

귀무가설

버스정류소 개수, 지하철역 개수는 따름이 사용량과 관계가 없을 것이다

대립가설

버스정류소 개수, 지하철역 개수가 적으면 따름이 사용량이 증가할 것이다

초기의 분석 목표였던 대중교통 접근성과 따름이 사용량 사이의 관계는 관련이 없는 것으로 밝혀짐

분석 요약 및 시사점 어떤 정보를 알 수 있을까?

① 행정구별 따름이 대여소의 개수는 송파구가 제일 많음

1위는 송파구로 249개, 그 뒤로 강서구, 강남구, 영등포구, 그리고 노원구 순으로 사용량이 많았음

② 일별 따릉이 사용량은 전반적으로 감소한 추세를 보임

시간이 흐름에 따라 사용량이 꾸준히 증가하는 2023년에 비해 2024년은 3월까지 사용량이 일정하다가 4월 이후 증가하는 추세를 보임

③ 월별 따릉이 사용량은 3월에 큰 폭으로 감소, 4월에 소폭 증가

3월에 1,381,099건 감소, 4월에 970,209건 증가하여 작년 동기 대비 총 1,090,957건 감소함

④ 일별 지하철 이용 수는 전반적으로 증가한 추세를 보임

평일에 높은 이용량, 주말에 낮은 이용량을 보이는 계절성을 보이며 작년 동기 대비 소폭의 상승세를 보임

⑤ 월별 지하철 이용 수는 4월에 큰 폭으로 증가함

2월에 15,875건 감소를 제외하고 전 기간 증가하여 작년 동기 대비 총 12,090,636건 증가함

⑥ 일별 버스 이용 수는 전반적으로 증가한 추세를 보임

평일에 높은 이용량, 주말에 낮은 이용량을 보이는 계절성을 보이며 작년 동기 대비 소폭의 상승세를 보임

⑦ 월별 버스 이용 수는 4월에 큰 폭으로 증가함

2월 1,775,237건, 3월 3,463,366건 감소를 제외하고 전 기간 증가하여 작년 동기 대비 총 195,802건 증가함

⑧ 2024년 행정구별 따릉이 사용량은 강서구가 제일 많음

1위는 강서구로 2,709,792건, 그 뒤로 송파구, 영등포구, 노원구, 그리고 양천구 순으로 사용량이 많았음

⑨ 2024년 행정구별 1인당 따릉이 사용량은 종로구가 제일 많음

1위는 종로구로 5.71건, 그 뒤로 영등포구, 강서구, 중구, 그리고 광진구 순으로 사용량이 많았음

2~7

기후동행카드는 따름이의 사용량을 감소, 대중교통의 이용을 증가시킴

	2023년	2024년	증감량	증감률
따릉이	24,548,453*	23,457,496*	-1,090,957	-4.44%
지하철	581,675,165	593,765,801	12,090,636	2.07%
버스	492,311,553	492,507,355	195,802	0.04%

기후동행카드로 인해 따름이 사용이 활성화되기보단, 기존에 따름이를 사용하던 사람들이 따름이 대신 대중교통을 이용한 것으로 추정

* 2월 4, 5, 6, 18, 19, 20일 데이터 제외

⑧, ⑨ 행정구별 따릉이 사용량과 1인당 따릉이 사용량 상위권 행정구들의 순위가 일치하지 않음

	전체 사용량	1인당 사용량
1위	강서구	종로구
2위	송파구	영등포구
3위	영등포구	강서구
4위	노원구	중구
5위	양천구	광진구

주민등록인구 수에 비례하여 따름이 사용량이 많을 것으로 예상하였지만, 따름이 사용량에 크게 관계가 없는 것으로 확인됨

발전과제 및 한계점 어떻게 발전시킬 수 있을까?

따릉이 사용량에 영향을 미치는 변수 찾기

한계점

어별, 연령별 분포 - 따릉이 사용량 관계 분석 X

2 행정구별 대여소 개수 활용 X

다릉이 사용 영향 외부 요인 고려 X (날씨 등)

발전과제

행정구별 특성 반영하여 따릉이 사용량에 영향을 미치는 변수 찾기

머신러닝, 딥러닝을 이용하여 시간대별, 정류소별 따름이 사용량 예측

외부 요인 고려한 따름이 사용량의 증감량 분석

