CS 320

Computer Language Processing Exercises: Week 4

March 19, 2025

Exercise 1 If L is a regular language, then the set of prefixes of words in L is also a regular language. Given this fact, from a regular expression for L, we should be able to obtain a regular expression for the set of all prefixes of words in L as well.

We want to do this with a function prefixes that is recursive over the structure of the regular expression for L, i.e. of the form:

```
\begin{aligned} &\operatorname{prefixes}(\epsilon) = \epsilon \\ &\operatorname{prefixes}(a) = a \mid \epsilon \\ &\operatorname{prefixes}(r \mid s) = \operatorname{prefixes}(r) \mid \operatorname{prefixes}(s) \\ &\operatorname{prefixes}(r \cdot s) = \dots \\ &\operatorname{prefixes}(r^*) = \dots \\ &\operatorname{prefixes}(r^+) = \dots \end{aligned}
```

- 1. Complete the definition of prefixes above by filling in the missing cases.
- 2. Use this definition to find:
 - (a) prefixes (ab^*c)
 - (b) prefixes $((a \mid bc)^*)$

Solution The computation for prefixes(\cdot) is similar to the computation of first(\cdot) for grammars.

- 1. The missing cases:
 - (a) $\operatorname{prefixes}(r \cdot s) = \operatorname{prefixes}(r) \mid r \cdot \operatorname{prefixes}(s)$. Either we have read r partially, or we have read all of r, and a part of s.
 - (b) prefixes $(r^*) = r * \cdot \text{prefixes}(r)$. We can consider $r^* = \epsilon \mid r \mid rr \mid \ldots$, and apply the rules for union and concatenation. Intuitively, if the word has $n \geq 0$ instances of r, we can read m < n instances of r, and then a prefix of the next instance of r.
 - (c) $\operatorname{prefixes}(r^+) = r^* \cdot \operatorname{prefixes}(r)$. Same as previous. Why does the empty case still appear?

- 2. The prefix computations are:
 - (a) prefixes $(ab^*c) = \epsilon \mid a \mid ab^*(b \mid c \mid \epsilon)$. Computation:

$$\begin{aligned} \operatorname{prefixes}(ab^*c) &= \operatorname{prefixes}(a) \mid a \cdot \operatorname{prefixes}(b^*c) & [\operatorname{concatenation}] \\ &= (a \mid \epsilon) \mid a \cdot \operatorname{prefixes}(b^*c) & [a] \\ &= (a \mid \epsilon) \mid a \cdot (\operatorname{prefixes}(b^*) \mid b^* \operatorname{prefixes}(c)) & [\operatorname{concatenation}] \\ &= (a \mid \epsilon) \mid a \cdot (\operatorname{prefixes}(b^*) \mid b^*(c \mid \epsilon)) & [c] \\ &= (a \mid \epsilon) \mid a \cdot (b^* \operatorname{prefixes}(b) \mid b^*(c \mid \epsilon)) & [\operatorname{star}] \\ &= (a \mid \epsilon) \mid a \cdot (b^*(b \mid \epsilon) \mid b^*(c \mid \epsilon)) & [b] \\ &= (a \mid \epsilon) \mid a \cdot (b^*(b \mid c \mid \epsilon)) & [\operatorname{rewrite}] \\ &= \epsilon \mid a \mid a \cdot (b^*(b \mid c \mid \epsilon)) & [\operatorname{rewrite}] \end{aligned}$$

(b) prefixes
$$((a \mid bc)^*) = (a \mid bc)^*(\epsilon \mid a \mid b \mid bc)$$
.

Exercise 2 Compute nullable, first, and follow for the non-terminals A and B in the following grammar:

$$A ::= BAa$$

$$A ::=$$

$$B ::= bBc$$

$$B ::= AA$$

Remember to extend the language with an extra start production for the computation of follow.

Solution

1. nullable: we get the constraints

$$\operatorname{nullable}(A) = \operatorname{nullable}(BAa) \vee \operatorname{nullable}(\epsilon)$$

 $\operatorname{nullable}(B) = \operatorname{nullable}(bBc) \vee \operatorname{nullable}(AA)$

We can solve these to get nullable(A) = nullable(B) = true.

2. first: we get the constraints (given that both A and B are nullable):

$$\begin{split} \operatorname{first}(A) &= \operatorname{first}(BAa) \cup \operatorname{first}(\epsilon) \\ &= \operatorname{first}(B) \cup \operatorname{first}(A) \cup \emptyset \\ &= \operatorname{first}(B) \cup \operatorname{first}(A) \\ \operatorname{first}(B) &= \operatorname{first}(bBc) \cup \operatorname{first}(AA) \\ &= \{b\} \cup \operatorname{first}(A) \cup \operatorname{first}(A) \cup \emptyset \\ &= \{b\} \cup \operatorname{first}(A) \end{split}$$

Starting from $\operatorname{first}(A) = \operatorname{first}(B) = \emptyset$, we iteratively compute the fixpoint to get $\operatorname{first}(A) = \operatorname{first}(B) = \{a, b\}$.

3. follow: we add a production A' ::= A **EOF**, and get the constraints (in order of productions):

$$\{\mathbf{EOF}\} \subseteq \mathrm{follow}(A)$$
 $\mathrm{first}(A) \subseteq \mathrm{follow}(B)$
 $\{a\} \subseteq \mathrm{follow}(A)$
 $\{c\} \subseteq \mathrm{follow}(B)$
 $\mathrm{first}(A) \subseteq \mathrm{follow}(A)$
 $\mathrm{follow}(B) \subseteq \mathrm{follow}(A)$

Substituting the computed first sets, and computing a fixpoint, we get $follow(A) = \{a, b, c, \mathbf{EOF}\}$ and $follow(B) = \{a, b, c\}$.

Exercise 3 Given the following grammar for arithmetic expressions:

$$S ::= Exp \ \mathbf{EOF}$$
 $Exp ::= Term \ Add$
 $Add ::= + Term \ Add$
 $Add ::= - Term \ Add$
 $Add ::=$
 $Term ::= Factor \ Mul$
 $Mul ::= * Factor \ Mul$
 $Mul ::= / Factor \ Mul$
 $Mul ::=$
 $Factor ::= \mathbf{num}$
 $Factor ::= (Exp)$

- 1. Compute nullable, first, follow for each of the non-terminals in the grammar.
- 2. Check if the grammar is $\mathrm{LL}(1)$. If not, modify the grammar to make it so.
- 3. Build the LL(1) parsing table for the grammar.
- 4. Using your parsing table, parse or attempt to parse (till error) the following strings, assuming that **num** matches any natural number:
 - (a) (3+4)*5 **EOF**
 - (b) 2 + +**EOF**
 - (c) 2 **EOF**
 - (d) 2*3+4 **EOF**
 - (e) 2 + 3 * 4**EOF**

Solution

- 1. We can compute the nullable, first, and follow sets as:
 - (a) nullable:

$$\begin{aligned} & \text{nullable}(S) = false \\ & \text{nullable}(Exp) = false \\ & \text{nullable}(Add) = true \\ & \text{nullable}(Term) = false \\ & \text{nullable}(Mul) = true \\ & \text{nullable}(Factor) = false \end{aligned}$$

(b) first: we have constraints:

$$\operatorname{first}(S) = \operatorname{first}(Exp)$$
$$\operatorname{first}(Exp) = \operatorname{first}(Term)$$
$$\operatorname{first}(Add) = \{+\} \cup \{-\} \cup \emptyset$$
$$\operatorname{first}(Term) = \operatorname{first}(Factor)$$
$$\operatorname{first}(Mul) = \{*\} \cup \{/\} \cup \emptyset$$
$$\operatorname{first}(Factor) = \{\operatorname{\mathbf{num}}\} \cup \{(\}$$

which can be solved to get:

$$first(S) = \{\mathbf{num}, (\} \}$$

$$first(Exp) = \{\mathbf{num}, (\} \}$$

$$first(Add) = \{+, -\} \}$$

$$first(Term) = \{\mathbf{num}, (\} \}$$

$$first(Mul) = \{*, /\} \}$$

$$first(Factor) = \{\mathbf{num}, (\} \}$$

(c) follow: we have constraints (for each rule, except empty/terminal rules):

$$\{\textbf{EOF}\}\subseteq \text{follow}(Exp)$$

$$\{\textbf{EOF}\}\subseteq \text{follow}(Exp)$$

$$\text{first}(Add)\subseteq \text{follow}(Term)$$

$$\text{first}(Add)\subseteq \text{follow}(Factor)$$

$$\text{follow}(Exp)\subseteq \text{follow}(Term)$$

$$\text{follow}(Exp)\subseteq \text{follow}(Term)$$

$$\text{follow}(Exp)\subseteq \text{follow}(Add)$$

$$\text{first}(Add)\subseteq \text{follow}(Add)$$

$$\text{first}(Add)\subseteq \text{follow}(Term)$$

$$\text{follow}(Mul)\subseteq \text{follow}(Factor)$$

$$\text{follow}(Add)\subseteq \text{follow}(Term)$$

$$\text{follow}(Mul)\subseteq \text{follow}(Factor)$$

$$\text{follow}(Add)\subseteq \text{follow}(Term)$$

The fixpoint can again be computed to get:

$$\begin{split} & \text{follow}(S) = \{\} \\ & \text{follow}(Exp) = \{\}, \mathbf{EOF}\} \\ & \text{follow}(Add) = \{\}, \mathbf{EOF}\} \\ & \text{follow}(Term) = \{+, -, \}, \mathbf{EOF}\} \\ & \text{follow}(Mul) = \{+, -, \}, \mathbf{EOF}\} \\ & \text{follow}(Factor) = \{+, -, *, /, \}, \mathbf{EOF}\} \end{split}$$

- 2. The grammar is LL(1), there are no conflicts. Demonstrated by the parsing table below.
- 3. LL(1) parsing table:

	num	+	_	*	/	()	EOF
S	1					1		
Exp Add	1					1		
Add		1	2				3	3
Term	1					1		
Mul		3	3	1	2		3	3
Factor	1					2		

- 4. Parsing the strings:
 - (a) (3+4)*5 **EOF** \checkmark
 - (b) 2 + + **EOF** fails on the second +. The corresponding error cell in the parsing table is (Term, +).
 - (c) 2 **EOF** ✓
 - (d) 2*3+4 **EOF** \checkmark
 - (e) 2+3*4 **EOF** fails on the *. Error at (Add,*).

Example step-by-step LL(1) parsing state for 2*3+4:

Lookahead	Stack	Next Rule			
2	S	$S ::= Exp \ \mathbf{EOF}$			
2	Exp EOF	$Exp ::= Term \ Add$			
2	$Term \ Add \ {f EOF}$	$Term ::= Factor \ Mul$			
2	Factor Mul Add EOF	$Factor ::= \mathbf{num}$			
2	$\mathbf{num}\ Mul\ Add\ \mathbf{EOF}$	$match(\mathbf{num})$			
*	$Mul\ Add\ {f EOF}$	Mul ::= * Factor Mul			
*	* Factor Mul Add EOF	match(*)			
3	Factor Mul Add EOF	$Factor ::= \mathbf{num}$			
3	$\mathbf{num}\ Mul\ Add\ \mathbf{EOF}$	$match(\mathbf{num})$			
+	$Mul\ Add\ {f EOF}$	Mul ::=			
+	Add EOF	$Add ::= + Term \ Add$			
+	$+ Term \ Add \ {f EOF}$	match(+)			
4	$Term \ Add \ {f EOF}$	$Term ::= Factor \ Term *$			
4	Factor Mul Add EOF	$Factor ::= \mathbf{num}$			
4	$\mathbf{num}\ Mul\ Add\ \mathbf{EOF}$	$match(\mathbf{num})$			
\mathbf{EOF}	$Mul\ Add\ {f EOF}$	Mul ::=			
\mathbf{EOF}	Add EOF	Add ::=			
\mathbf{EOF}	\mathbf{EOF}	$match(\mathbf{EOF})$			

Exercise 4 Argue that the following grammar is *not* LL(1). Produce an equivalent LL(1) grammar.

$$E ::= \mathbf{num} + E \mid \mathbf{num} - E \mid \mathbf{num}$$

Solution The language is clearly not LL(1), as on seeing a token **num**, we cannot decide whether to continue parsing it as $\mathbf{num} + E$, $\mathbf{num} - E$, or the end.

The notable problem is the common prefix between the rules. We can separate this out by introducing a new non-terminal T. This is a transformation known as *left factorization*.

$$\begin{split} E ::= \mathbf{num} \ T \\ T ::= +E \mid -E \mid \epsilon \end{split}$$

 ${\bf Exercise} \ {\bf 5} \quad {\bf Consider} \ {\bf the} \ {\bf following} \ {\bf grammar} :$

$$S ::= S(S) \mid S[S] \mid () \mid [\]$$

Check whether the same transformation as the previous case can be applied to produce an LL(1) grammar. If not, argue why, and suggest a different transformation.

Solution Applying left factorization to the grammar, we get:

$$S ::= S T | S T | () | []$$

 $T ::= (S) | [S]$

This is not LL(1), as on reading a token "(", we cannot decide whether this is the final parentheses (base case) in the expression, or whether there is a T following it.

The problem is that this version of the grammar is left-recursive. A recursive-descent parser for this grammar would loop forever on the first rule. This is caused by the fact that our parsers are top-down, left to right. We can fix this by moving the recursion to the right. This is generally called left recursion elimination.

Transformed grammar steps (explanation below): Left recursion elimination (not LL(1) yet! first(S') = {(, [}):

$$S ::= S' \mid ()S' \mid []S'$$

 $S' ::= (S)S' \mid [S]S'$

Inline S' once in S := S':

$$S ::= (S)S' \mid [S]S' \mid ()S' \mid [\]S'$$

 $S' ::= (S)S' \mid [S]S' \mid \epsilon$

Finally, left factorize S to get an LL(1) grammar:

$$S ::= (T_1 \mid [T_2 \ T_1 ::= S)S' \mid)S'$$

 $T_2 ::= S]S' \mid]S'$
 $S' ::= (S)S' \mid [S]S' \mid \epsilon$

To eliminate left-recursion in general, consider a non-terminal $A := A\alpha \mid \beta$, where β does not start with A (not left-recursive). We can remove the left recursion by introducing a new non-terminal, A', such that:

$$A ::= A' \mid \beta A'$$
$$A' ::= \alpha A' \mid \epsilon$$

i.e., for the left-recursive rule $A\alpha$, we instead attempt to parse an α followed by the rest. In exchange, the base case β now expects an A' to follow it. Note that β can be empty as well.

Intuitively, we are shifting the direction in which we look for instances of A. Consider a partial derivation starting from $\beta\alpha\alpha\alpha$. The original version of the grammar would complete the parsing as:

but with the new grammar, we parse it as:

There are two main pitfalls to remember with left-recursion elimination:

- 1. it may need to be applied several times till the grammar is unchanged, as the first transformation may introduce new (indirect) recursive rules (check $A := AA\alpha \mid \epsilon$).
- 2. it may require *inlining* some non-terminals, when the left recursion is *indirect*. For example, consider $A ::= B\alpha, B ::= A\beta$, where there is no immediate reduction to do, but inlining B, we get $A ::= A\beta\alpha$, where the elimination can be applied.