

Nukleáriában régebben sok atomerőművet építettek. Sokáig minden rendben volt, de egy alkalommal egy hatalmas földrengés miatt az összes erőmű felrobbant, és a sugárzás az ország minden részén elkezdett szétterjedni. A Környezetvédelmi Minisztérium szeretné tudni, hogy az egyes területeken mekkora a sugárszennyezés.

A Te feladatod, hogy egy program segítségével választ adjunk a Minisztérium kérdéseire.

A sugárzás terjedési módja

Nukleáriát egy $W \times H$ cellából álló négyzetrácsnak tekinthetjük. Mindegyik erőmű egy cellát foglal el, és két pozitív egész számmal jellemezhető: az erőmű robbanása következtében keletkező a sugárdózissal, és az erőműtől távolodva a sugárszennyezés csökkenésének b mértékével.

Pontosabban: a $P = [x_P, y_P]$ cellában lévő erőmű robbanása által a $C = [x_C, y_C]$ cellában okozott sugárdózis értéke $\max(0, a-b\cdot d(P,C))$, ahol d(P,C) a két cella távolsága a következőképpen definiálva, $d(P,C) = \max(|x_P - x_C|, |y_P - y_C|)$. Egy cella teljes sugárdózisa az összes erőmű által az adott helyen okozott sugárdózis **összege**.

Példaként tekintsünk egy erőművet a=7 és b=3 paraméterekkel. A robbanása 7 egységnyi sugárdózist okoz az erőmű cellájában, 4 egységet a 8 közvetlen szomszédos cellában, és 1 egységet a 2 távolságra lévő 16 darab cellában. Megjegyzendő, hogy ha ez az erőmű Nukleária szélén vagy a szélétől egy cellányira helyezkedik el, akkor a robbanás a Nukleárián kívüli területeket is érinthet. Azt a robbanást, amely Nukleárián kívüli területeket is érint, **határosnak** nevezzük. (Tulajdonképpen minket nem érdekel, hogy mi történik Nukleárián kívül, csak a pontozás miatt adtuk ezt a definíciót.)

Kérdések

A Környezetvédelmi Minisztérium olyan kérdéseket tesz fel, hogy mekkora az **egy cellára eső átlagos** sugárdózis egy adott **téglalap alakú** területen. Semmilyen további feltételezést nem tehetsz a kérdéses területekre — át is fedhetnek vagy akár ismétlődhetnek.

Bemenet

A standard bemenet első sora két pozitív egész számot tartalmaz, Nukleária négyzetrácsa oszlopainak W és sorainak H számát ($W \cdot H \le 2\,500\,000$). A második sor az erőművek N számát tartalmazza ($1 \le N \le 200\,000$). A következő N sor mindegyike négy pozitív egész számot tartalmaz, x_i, y_i, a_i, b_i ($1 \le x_i \le W$, $1 \le y_i \le H$, $1 \le a_i, b_i \le 10^9$), egy erőmű adatait, az [x_i, y_i] cellában a_i, b_i paraméterekkel. Minden cellában legfeljebb egy erőmű lehet. A négyzetrács bal felső sarkának koordinátája [1, 1].

A következő sor a Minisztérium kérdéseinek Q számát tartalmazza $(1 \le Q \le 200\,000)$. A következő sor mindegyike négy pozitív egész számot tartalmaz, $x_{1j}, y_{1j}, x_{2j}, y_{2j}$ $(1 \le x_{1j} \le x_{2j} \le W)$ and $1 \le y_{1j} \le y_{2j} \le H$, a kérdésben szereplő téglalap $[x_{1j}, y_{1j}]$ bal felső és $[x_{2j}, y_{2j}]$ jobb alsó cellájának koordinátáit.

Feltételezhető, hogy Nukleária teljes területének összesített sugárdózisa kisebb, mint 2^{63} .

Kimenet

A standard kimenetre Q sort kell írni. Az i. sor az i. kérdésre adott válasz legyen, azaz a kérdéses területen az egy cellára eső átlagos sugárdózis értéke.

Az átlagot a közelebbi egész számra kell kerekíteni, 0,5-öt felfele kerekítjük.

Példa bemenet

Példa kimenet

A sugárdózis Nukleáriában a két robbanást követően a következőképpen néz ki:

Megjegyzendő, hogy az első robbanás határos, míg a második nem az. A kérdésekkel kapcsolatban:

- \blacktriangleright A teljes sugárdózis a 2 × 2-es négyzetben 14, így az átlag 14/4 = 3.5, kerekítve 4.
- \blacktriangleright A teljes sugárdózis Nukleáriában 44, így az átlag 44/12 $\approx 3.67,$ kerekítve 4.
- $\blacktriangleright\,$ Egy magányos cella átlaga a cella sugárdózisának értéke.
- ightharpoonup Az utolsó sor átlaga 9/4=2.25, kerekítve 2.

Pontozás

14 tesztcsoport van. A páratlan számú tesztcsoportok csak olyan erőműveket tartalmaznak, ahol a értéke a b értékének többszöröse. A további feltételeket az alábbi táblázat tartalmazza:

Csoport	További feltételek	Pontszámok
1	$H = 1, N \cdot W \le 10^8, Q \cdot W \le 10^8$	3
2	$H = 1, N \cdot W \le 10^8, Q \cdot W \le 10^8$	2
3	$N \cdot W \cdot H \le 10^8, \ Q \cdot W \cdot H \le 10^8$	3
4	$N \cdot W \cdot H \le 10^8, \ Q \cdot W \cdot H \le 10^8$	2
5	$H = 1, N \cdot W \le 10^8$	6
6	$H = 1, N \cdot W \le 10^8$	4
7	$N \cdot W \cdot H \le 10^8$	6
8	$N \cdot W \cdot H \le 10^8$	4
9	H = 1	15
10	H = 1	10
11	nincs határos robbanás	15
12	nincs határos robbanás	10
13	nincs	12
14	nincs	8