UNIVERSITY OF MAURITIUS MODULE CATALOGUE

1. GENERAL INFORMATION

Academic Year: 2024/2025

Semester(s): 1 & 2

Title	Code	Duration (hrs)	No. of credits
COMPUTER	ICT 1206Y	Lectures *: 40 (2 hrs x 20 weeks)	
ORGANISATION		Online Delivery by Video	
And		Conferencing	
ARCHITECTURE			
		Practicals/Tutorials **: 20 (1 hr x	
		20 weeks) Face-to-Face in	
		Lab/Classroom	
		Self-Learning: 180	
		Other Learning Activities#: 180	
		Total contact hours: 60	12

#working on assignments, sitting for Class Tests and preparation time for same, sitting for Examinations and preparation time for same, group work, presentations among peers and guest lectures.

^{*}Mode of Delivery of lectures (L) for this module will be ONLINE and/or face-to-face.

^{**}Mode of Delivery of Praticals (P) and/or Tutorials (T) will be FACE-TO-FACE in classroom or Computer Labs (25-30 students per group).

2. PRE-REQUISITE(S)/PRE-REQUIREMENT(S)

NONE (Students are expected to have basic knowledge of IT/computing & Mathematics)

3. AIMS

Computer architecture is concerned with the structure and behaviour of the various functional modules of the computer; and how they interact to provide the processing needs of the user. In particular this module covers computer systems ranging from PCs through multiprocessors with respect to hardware design and instruction set architecture. This includes units and related technologies such as primary and secondary memory, caches, central processing unit (CPU), and pipelines.

After completing this module, you should be able to:

- Use binary mathematics, Boolean algebra and the digital representation of numbers.
- Recognize the fundamental digital circuits that implement basic digital functions.
- Describe the basic components of a central processing unit.
- Describe the instructions execution cycle of a CPU.
- Describe the components of the memory hierarchy, how these various components are utilized and how data is moved between them.
- Interpret the basic structure of common machine and assembly level instructions.
- Describe how peripheral devices communicate with the processor.

4. OUTLINE SYLLABUS

Through Contact Hours:

Number Systems and Computer Arithmetic, Signed Integer and Floating-Point Representation, Digital Logic and Boolean Algebra, Karnaugh Map (Don't Care Conditions), Combinational and Sequential Circuit Design, Von Neumann Machine Architecture, Instruction Cycle, Assembly-Level Machine Organisation, Memory System Organisation and Architecture, Functional Organisation (Pipelining), Computer System Performance and Reliability Metrics.

Through Self-Learning:

(Semester 1) Instruction Cycle, (Semester 2) Assembly-Level Machine Organisation

5. LEARNING OUTCOMES AND ASSESSMENT CRITERIA

Having studied this module, the students should be able to achieve the following learning outcomes. The assessment criteria used to reflect the expected learning outcomes are also given hereunder:

Learning Outcomes	Assessment Criteria
Demonstrate the use of binary mathematics, Boolean algebra and the digital representation of numbers.	 Number Systems and Computer Arithmetic Convert numbers in base 10 to base 2, and numbers in base 2 to base 10. Convert numbers in base 16 to base 2, and numbers in base 2 to base 16. Express a number in two's complement. Give the range of valid numbers expressible in a given integer representation. Explain what overflow is, and how it can be detected when adding two's complement numbers. Name the three ways a signed binary number can be represented. Name the parts of floating point number. Express a floating-point number in IEEE 754 single-precision format.
Recognize the fundamental digital circuits that implement basic digital functions and design circuits.	 Boolean Logic Identify the basic logic gates (AND, OR, NOT, XOR, NAND, NOR) and give their truth tables. Use Boolean identities to prove the equivalence of two expressions. Use DeMorgan's Law to rewrite an expression. Write a Boolean expression in sum-of-products or product-of-sum form. Derive a Boolean expression or truth table for a given logic circuit. Directly draw a logic circuit from a Boolean expression Explain what each of the following combinational devices does: full adder, decoder, multiplexer, shifter Identify the basic flip-flops (SR, JK, D) and give their characteristic tables. Write a simplified Boolean expression from a K-map. Create a K-map for a Boolean function.

 Demonstrate an understanding of the basic components of a central processing unit. Demonstrate an understanding of the instructions execution cycle of a CPU 	 Name the characteristics of a von Neumann architecture. Describe the purpose of a CPU's datapath and control unit, system bus Describe how instructions are decoded by the control unit Calculate the maximum speed-up for a pipelined processor Calculate the speed-up ratio of a pipelined processor for a given number of tasks.
Analyse the components of the memory hierarchy, understand how these various components are utilized and how data is moved between them.	 Computer Architecture - Memory Systems Calculate the size of various aspects of a given memory system (number of memory chips needed, number of address lines for word and byte addressing, etc) Explain the concept of the memory hierarchy, and the memory pyramid Explain how the locality principle and the three types of locality influence the memory hierarchy Identify the three types of cache designs discussed in class (direct mapped, fully associative, N-way set associative) Determine the size of each field in a memory address for a given cache system. Determine the sizes of various cache structures (number of blocks, number of sets, words per block, number of main memory blocks) given a memory address broken into the tag, set/block, and word fields. Determine cache hits and misses for a series of main memory accesses. Determine the effective access time (EAT) for a particular program.
Understand how data flows among primary computer components, and how these data flows impact the	➤ Identify the physical and logical components of a magnetic hard disk drive.

efficiency of software applications.	Calculate the access time for a hard disk drive.
 Write assembly programs, Interpret the basic structure of common machine and assembly level instructions. 	 Programming – MARIE Assembly Language Give examples of immediate, direct, register, indirect, and indexed addressing. Write simple MARIE-type programs

6. COORDINATORS

	Programme	Area	Module Coordinator
	Coordinator	Coordinator	
		(if applicable)	
Name	Razvi Doomun		Razvi Doomun
Department	ICT		ICT
Building	Engineering Tower		Engineering Tower
Room Number	Level 4		Level 4
Phone No.	403 7836		403 7836
E-mail address	r.doomun@uom.ac.mu		r.doomun@uom.ac.mu
Consultation			
Time			

7. LECTURER(S)

Name	Razvi Doomun	Bikash Sonah	
Department	ICT	ICT	
Building	Engineering Tower	Phase II Bldg	
Room Number	Level 4	Level 2	
Phone No.	403 7836	57592416	
E-mail address	r.doomun@uom.ac.mu	b.sonah@uom.ac.mu	
Contact Hours	As per time-table	As per time-table	
Consultation	As per time-table/By	As per time-table/By	
Time	appointment	appointment	
Contact Address			
(for P/T)			

8. VENUE AND HOURS/WEEK

All lectures/Tutorials and/or Practicals will normally be held in Room: (as per your

programme time-table)

Hours/week: 2 Hours Lecture + 1 Hour Lab/Tutorial/Practical

9. MODULE MAP (TENTATIVE) SEMESTER 1

Wk(s)	Hr(s)	Theme(s)	Lecture Title(s)	Further Reading and Self-Learning Activities	L, P, S, V, T, Test
1*	2 + 1	Binary Number & Integers	Conversion: Binary-Decimal, Hexadecimal; Signed Integer representation, Overflow	Textbook: Chapter 1 (Terminologies & basic components in a Computer System) <i>Reading & self-study (section 1.5, 1.6, 1.7)</i>	Tutorial: Binary Number Operations
2*	2 + 1	Floating Point Numbers	IEEE-754 single precision	Textbook: Chapter 2 (Data representation in computer Systems) Reading & self-study (section 2.3, 2.4, 2.5)	Tutorial: Floating Point Operation
3*	2 + 1	Boolean Algebra	Logic gates, Truth-table, Boolean Expression and Identities	Textbook: Chapter 3 Reading & self-study (section 3.1, 3.2, 3.3)	Practical: Logisim
4*	2 + 1	Digital Logic & Digital Circuits	Combinational Circuit: Adder & Decoder	Textbook: Chapter 3 Reading & self-study (section 3.4, 3.5)	Practical: Logisim
5*	2 + 1	Minimizing circuits: Karnaugh Map	Minimizing Boolean expressions, Minterms, Maxterms	Textbook: Chapter 3 Reading & self- study (section 3A Karnaugh maps)	Practical: Logisim
6		Class TEST 1		Textbook: Revision Chapter 1, 2, 3	Tutorial
7*	2 + 1	Analysis & Design of Combinational Circuits	ALU Design & BCD to 7-segment display controller	Textbook: Chapter 3 Reading & self-study (section 3.6 & 3.7)	Practical: Logisim
8*	2 + 1	Sequential Circuits: Flip Flops & Clock	SR, JK, D Flip flops	Textbook: Chapter 3 Reading & self- study (section 3.6)	Practical: Logisim
9*	2 + 1	Designing Sequential Circuits	State Machines	Assignment Work on Designing Sequential Circuits	Practical: Logisim
10*	2 + 1	Simple Computer Design	CPU Basics; Von Neumann Machine Architecture	Textbook: Chapter 4 Reading & self- study (section 4.1)	Practical: Logisim
11*	2 + 1	Instruction Cycle			Practical: MARIE

12	Revision/Consultation (No	
	Lecture)	
13	Revision/Consultation (No	
	Lecture)	

Abbreviations: L: Lectures, P: Practicals, T: Tutorials, V: Visits, S: Seminars **SEMESTER 2 WORKPLAN (TENTATIVE)**

Wk(s)	Hr(s)	Theme(s)	Title(s)	Further Reading and Self-Learning Activities	L, P, S, V, T, Test
1*	2 + 1	Memory System and Organisation	Memory Hierarchy, Memory Organization Simultaneous Vs Hierarchical	Refer to module web page	Practical: MARIE
2*	2 + 1	Cache Memory System and Architecture	Cache Memory, Multi-level Cache Organization Cache Mapping Techniques	Refer to module web page	Practical: MARIE
3*	2 + 1	Memory System Organisation and Architecture,	Direct Mapping Implementation & Formulas, Problems On Direct Mapping	Refer to module web page	Practical: MARIE
4*	2 + 1	Memory Organisation & Hierarchy	K-way Set Associative Mapping Implementation & Formulas Problems On Set Associative Mapping	Refer to module web page	Practical: MARIE
5*	2 + 1	Cache Management & Design	Cache Line, Effects of Changing Cache Line Size	Refer to module web page	Practical: MARIE
6		CLASS TEST 2		Refer to module web page	
7*	2 + 1	Magnetic Disk	Magnetic Disk, Important Formulas, Practice Problems On Disk Formulas	Refer to module web page	Practical: MARIE
8*	2+1	Addressing Modes	Addressing Modes, Types and their Applications, Syntax of Addressing Modes	Refer to module web page	Practical: MARIE

9*	2+1	Modern Computer	System Bus, Components of	Refer to module web page	Practical
		Architectures: System Bus	System Bus		Assessment
10*	2 + 1	Functional Organisation:	Introduction to Pipelining,	Refer to module web page	Practical:
		Pipelining	Pipelined Architecture		MARIE
11*	2 + 1	Pipelining & Performance of	Pipeline Execution, Performance	Refer to module web page	Practical:
		Computer System	Formulas, Problems On Pipelining		MARIE
12		Revision/Consultation (No		Refer to module web page	
		Lecture)			
13		Revision/Consultation (No		Refer to module web page	
		Lecure)			

^{*}Mode of Delivery of lectures (L) for this module will be ONLINE and/or face-to-face.

^{**}Mode of Delivery of Praticals (P) and/or Tutorials (T) will be FACE-TO-FACE in classroom or Computer Labs (25-30 students per group).

10. RECOMMENDED BOOKS/JOURNALS/WEBSITES

- 1. Computer Organization and Architecture: Designing for Performance, 8th Edition, William Stallings, Copyright: 2010, Publisher: Prentice Hall, (ISBN-10: 0136073735, ISBN-13: 9780136073734), Published: 04/03/2009.
- 2. Computer System Architecture, 3rd Edition, Morris Mano, Publisher: Prentice Hall
- 3. Computer Architecture, A quantitative approach, Fourth Edition, John L. Hennessy & David A. Paterson, Publisher, Morgan Kauffman
- 4. The Essentials of Computer Organization and Architecture by Linda Null and Julia Lobur

11. ESSAY(S)/ASSIGNMENT(S)/PRACTICAL(S)

Title	Maximum Marks	Last Submission Date
1. Combinational & Sequential Circuit Design	10%	Semester 1 (To Be Announced)
2. Assembly-Level Machine Organisation	10%	Semester 2 (To Be Announced)

12. ASSESSMENT

(i) Written Examination

Paper Structure		
Sections (if any): (Section A) Semester 1 & (Section B) Semester 2	No. of questions to be answered: FOUR (4)	
Multiple Choice Questions: TWO (2)	Compulsory Questions (if any): All	
Exams date: May-June 2025	Paper Duration: (3) Hours	
Weighting (%): 60%		
Total Marks: 100	Pass Mark: 40	

(ii) Continuous Assessment

	Weighting (%)
Practical/Assignment(s):	10%
Semester 1	
Practical/Assignment(s):	10%
Semester 2	
Seminar(s):	-
Test(s): Semester 1 & 2	20% (10 + 10)
Other(s):	-
Total Marks:	40%

13. OFFICE HOURS

As per time-table or by appointment

14. PORTFOLIO REQUIREMENT

All students should keep a portfolio of all coursework for their respective Programme of studies and same should be made available upon request, to the Faculty/Centre Examination Office.

15. OTHER INFORMATION

On plagiarism and cheating:

Plagiarism and cheating will not be tolerated. It will be dealt with according to the policies of the University of Mauritius regarding academic dishonesty. Please read these policies at http://mysites.uom.ac.mu/uomintranet/students/Student Charter.pdf

16. APPROVAL BY HEAD OF ICT DEPARTMENT

Module Catalogue approved	
at Departmental Meeting	
(where applicable) on:	
'	
Head of ICT Department	
Signature:	•••••

A copy of the approved Module Catalogue has to be submitted to the relevant Dean of Faculty for records purposes.