Biotransformations from and to methylated flavonoids

Hpw all went to shit

Benjamin Weigel Leibniz-Institute of Plant Biochemistry Department of Bioorganic Chemistry Weinberg 3 06120 Halle(Saale) April 17, 2015

Advisor: Prof. Dr. Ludger A. Wessjohann wessjohann@ipb-halle.de +49 (345) 5582-1301

noch nicht bekannt

Contents

I	Preface	1
1	Abstracts	3
	1.1 English Abstract	3
	1.2 Deutsche Zusammenfassung	3
I	Thesis	5
2	Introduction	7
	2.1 Natural products and secondary metabolites	7
	2.1.1 General	7
	2.1.2 Classes of natural products	7
	2.2 Alkylating reactions in nature	7
	2.2.1 Methylation	7
	2.2.2 Prenylation	7
	2.2.3 Glycosylation	8
	2.3 Usage and expansion of natures reaction toolbox	8
	2.3.1 Terpene synthases and elongases	8
	2.3.2 Methyl transferases	8
	2.3.3 Glycosyl transferases	8
	2.3.4 Other important enzymes in biotech research	8
	2.4 Conclusion	8
3	Material And Methods	9
	3.1 Materials	9
	3.1.1 Chemicals	9

	3.1.2 Instruments	
	3.1.3 Proteins	
	3.1.4 Bacterial strains	
	3.1.5 Plasmids	
	3.1.6 Primers	
	3.1.7 Software	
	Microbiology	
	Protein biochemistry	
	Analytics	
	luation of PFOMT towards the acceptance of long-chain SAM	
ana	logues	
5 Enz	ymatic methylation of Non-catechols	
6 Dev tem	relopment of an whole cell methyl transferase screening sys-	
7 Ack	nowledgements	
Ш	Appendix	
A Figu	ares	
B Tab	les	
C Affi	davit	
Acr	onyms	
Glo	ssary	

List of Figures

A.1	Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean com-	
	modo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus	
	et magnis dis parturient montes, nascetur ridiculus mus. Donec quam	
	felis, ultricies nec, pellentesque eu, pretium quis, sem	23

List of Tables

3.1	Plasmids used in this work	12
3.2	Primers used in this work. Recognition sites for endonucleases are underlined	12
B.1	Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam	
	felis, ultricies nec, pellentesque eu, pretium quis, sem	25

Preface

1 Abstracts

1.1 English Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1.2 Deutsche Zusammenfassung

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Thesis

2 Introduction

S ome introductionary text

2.1 Natural products and secondary metabolites

2.1.1 General

2.1.2 Classes of natural products

Terpenoids and Steroids

... here is some text

Polyketides and non-ribosomal peptides

... here is some text

Alkaloids

... here is some text

Phenylpropanoids

... here is some text

2.2 Alkylating reactions in nature

2.2.1 Methylation

2.2.2 Prenylation

- 2.2.3 Glycosylation
- 2.3 Usage and expansion of natures reaction toolbox
- 2.3.1 Terpene synthases and elongases
- 2.3.2 Methyl transferases
- 2.3.3 Glycosyl transferases
- 2.3.4 Other important enzymes in biotech research BMVOs

Esterases/Lipases

Oxidases

Lyases

Transaminases

2.4 Conclusion

3 Material And Methods

3.1 Materials

3.1.1 Chemicals

Enzymes and buffers used for molecular cloning were obtained from Thermo Scientific (Darmstadt, Germany), unless otherwise noted. Flavonoid HPLC standards were purchased from Extrasynthese (Genay, France). Deuterated solvents were aquired from Deutero GmbH (Kastellaun, Germany). Solvents, purchased from VWR (Poole, England), were distilled in-house before use.

All other chemicals were obtained from either Sigma-Aldrich (Steinheim, Germany), Applichem (Darmstadt, Germany), Carl Roth (Karlsruhe, Germany) or Merck (Darmstadt, Germany).

3.1.2 Instruments

circulary dichroism (CD)- Jasco J-815 (Eaton, USA)

spectrometer

electrophoresis (horizontal) Biometra Compact XS/S (Göttingen, Germany) electrophoresis (vertical) Biometra Compact M (Göttingen, Germany) Biometra Minigel-Twin (Göttingen, Germany)

fast protein liquid chromatogra-

phy (FPLC)

gas chromatography coupled GC-MS-QP2010 Ultra (Shimadzu, Duisburg, Germany)

mass-spectrometry (GC/MS)

high-performance liquid chro- VWR ???

matography (HPLC)

Isothermal Titration Calorime-MicroCal iTC200 (Malvern, Worcestershire, UK)

try (ITC)

micro-titer plate (MTP) ???

MTP-reader SpectraMax M5 (Molecular Devices, Biberach, Germany)

nuclear magnetic resonance

Varian Unity 400 (Agilent, Böblingen, Germany) Varian VNMRS 600 (Agilent, Böblingen, Germany) (NMR)-spectrometer photospectrometer Eppendorf Biophotometer Plus (Hamburg, Germany)

JASCO V-560 (Eaton, USA)

Nanodrop???

centrifuges Eppendorf 5424 (Hamburg, Germany)

> Hettich Mikro 120 (Kirchlengern, Germany) Beckman Avanti J-E (Krefeld, Germany)

ÄKTA purifier (GE Healthcare, Freiburg, Germany)

centrifuge rotors Beckman JA-10, JA-16.250, JS-4.3 (Krefeld, Germany)

3.1.3 Proteins

3.1.4 Bacterial strains

E.coli

DH5 α F⁻ Φ 80 $lacZ\Delta$ M15 Δ (lacZYA-argF) U169 recA1 endA1

 $hsdR17 (rK^-, mK^+) phoA supE44 \lambda^- thi-1 gyrA96 relA1$

Invitrogen, Karlsruhe

One Shot TOP10 $F^- \Phi 80 lac Z \Delta M15 \Delta (mrr-hsdRMS-mcrBC) recA1 endA1$

mcrA ΔlacX74 araD139 Δ(ara-leu)7697 galU galK rpsL

 $(\operatorname{Str}^R) \lambda^- nupG$

Invitrogen, Karlsruhe

BL21(DE3) $F^- ompT \ hsdSB(r_B^-, m_B^-) \ gal \ dcm \ \lambda(DE3)$

Invitrogen, Karslruhe

JM110 rpsL thr leu thi lacY galK galT ara tonA tsx dam

 $dcm \ glnV44 \ \Delta(lac\text{-}proAB) \ e14\text{--} [F' \ traD36 \ proAB^+ \ lacI^q]$

 $lacZ\Delta M15$] $hsdR17(r_K^-m_K^+)$

Martin-Luther-University Halle-Wittenberg

JW1593 $rrnB \Delta lacZ4787 \ HsdR514 \Delta (araBAD)568 \ rph-1 \Delta ydgG$

(BW25113 derivative) (Kan R)

Keio Collection, National Institute of Genetics (Japan)

MG1655 $F^- \lambda^- ilvG^- rfb$ -50 rph-1

DSMZ, Hamburg

Origami(DE3) genotype

Novagen, Wisconsin (USA)

Rosetta genotype

Novagen, Wisconsin (USA)

Rosetta pLys genotype

Novagen, Wisconsin (USA)

C41(DE3) genotype

Lucigen, Wisconsin (USA)

C43(DE3) genotype

Lucigen, Wisconsin (USA)

T7 Express genotype

NEB, Massachusetts (USA)

Agrobacterium tumefaciens

GV3101 genotype

Sylvestre Marillonet, IPB

3.1.5 Plasmids

Table 3.1.: Plasmids used in this work.

name	description
pACYC Duet-1	
pCDF Duet-1	
pET20b(+)	
pET28a(+)	
pET32a(+)	
pET41a(+)	
pQE30	
pUC19	

3.1.6 Primers

Table 3.2.: Primers used in this work. Recognition sites for endonucleases are underlined.

name	sequence $(5'\rightarrow 3')$	cloning site
T7	TAATACGACTCACTATAGGGT	n/a
T7.term	GCTAGTTATTGCTCAGCGGT	n/a
somt1	TTGAAGACAAAATGGCTTCTTCATTAAACAATGGCCG	BpiI
somt2	TTGAAGACAAGGACACCCCAAATACTGTGAGATCTTCC	BpiI
somt3	TTGAAGACAAGTCCTTAGGAACACCTTTCTGGGAC	BpiI
somt4	TT <u>GAAGAC</u> AAAAGCTCAAGGATAGATCTCAATAAGAGAC	BpiI

3.1.7 Software

- 3.2 Microbiology
- 3.3 Molecular Biology
- 3.4 Protein biochemistry
- 3.5 Analytics

4 Evaluation of PFOMT towards the acceptance of long-chain SAM analogues

5 Enzymatic methylation of Noncatechols

testing the HPLC and again the HPLC.

Blöalala phenyl
propanoid and flavonoid O-methyl transferase (PFOMT) and
 $\mbox{\sc PFOMT}$

6 Development of an whole cell methyl transferase screening system

7 Acknowledgements

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Appendix

A Figures

Figure A.1.: Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem.

B Tables

Table B.1.: Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem.

A	В	С	D	Е	F	G	Н	I
1	2	3	4	5	6	7	8	9
1	2	3	4	5	6	7	8	9
1	2	3	4	5	6	7	8	9

C Affidavit

I hereby declare that this docume	nt has been written	only by the undersigned and
without any assistance from third	d parties. Furthermo	ore, I confirm that no sources
have been used in the preparatio	n of this document	other than those indicated in
the thesis itself.		
Date:, Location	ı:,	Signature:

Bibliography

- Ibdah, Mwafaq et al. (2003). "A novel Mg(2+)-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum." In: *The Journal of biological chemistry* 278.45, pp. 43961–72.
- Kopycki, Jakub G et al. (2008). "Biochemical and structural analysis of substrate promiscuity in plant Mg2+-dependent O-methyltransferases." In: *Journal of molecular biology* 378.1, pp. 154–64.
- Vogt, Thomas (2004). "Regiospecificity and kinetic properties of a plant natural product O-methyltransferase are determined by its N-terminal domain." In: *FEBS letters* 561.1-3, pp. 159–62.

Acronyms

CD circulary dichroism. 10

FPLC fast protein liquid chromatography. 10

GC/MS gas chromatography coupled mass-spectrometry. 10

HPLC high-performance liquid chromatography. 10, 15

ITC Isothermal Titration Calorimetry. 10, 33

MTP micro-titer plate. 10, 33

NMR nuclear magnetic resonance. 10

PFOMT phenylpropanoid and flavonoid O-methyl transferase. 15, 33

Glossary

Isothermal Titration Calorimetry (ITC) Fill in description here. . 31

MTP Micro-titer plate. Small format rectangular plastic plate containing wells to allow for storage of multiple small samples or the containment multiple simultaneous reactions. Typical sizes include 24, 96 and 384-wells. 31

PFOMT Phenylpropanoid and flavonoid O-methyl transferase from *Mesembryan-themum crystallinum*, which was first described by Ibdah (Ibdah et al., 2003). 31