

Campus de Cascavel

Centro de Ciências Exatas e Tecnológicas - CCET

Curso de Ciência da Computação

Disciplina: Algoritmos Professor: Josué Castro

Lista de Exercícios 5 - Unidade 5

Instruções:

Implemente uma solução para os problemas abaixo em Portugol.

Questão 1:

Dadas duas palavras, escreva um algoritmo que verifique se uma é uma permutação circular da outra. Para se obter uma permutação circular, deve-se transferir o primeiro caractere da cadeia para o final, conforme o exemplo abaixo:

AROMA → ROMAA

Pode-se obter todas as permutações circulares de uma dada palavra repetindo-se o processo até que o primeiro caractere da cadeia original volte a ser o primeiro novamente

$$AROMA \rightarrow ROMAA \rightarrow OMAAR \rightarrow MAARO \rightarrow AAROM$$

Permutações circulares da palavra "AROMA"

Entrada:

São dados vários conjuntos de teste, cada conjunto de teste é composto por duas palavras, uma palavra em cada linha, com no máximo 30 caracteres. O final da entrada é marcado pela cadeia "@@@".

Saída:

Para cada conjunto de teste, imprima a palavra "SIM", se a segunda palavra for uma permutação circular da primeira, ou imprima a palavra "NÃO" caso contrário.

Exemplos:

Entradas	Saídas
AROMA AMORA AROMA ROMAA AMOR ROMA AMOR ORAM TOMATE MATE TOMATE MATEO	NÃO SIM NÃO SIM NÃO NÃO
TOMATE MATE TOMATE	

Questão 2:

Dadas duas palavras, A e B, escreva um algoritmo que verifique se a palavra B ocorre em A e, neste caso, determine a posição da primeira ocorrência.

Entrada:

São dados vários conjuntos de teste. Cada conjunto é composto por duas palavras, uma palavra por linha, com no máximo 30 caracteres. O final da entrada é marcado pela palavra "###", que não deve ser processada.

Saída:

Seu programa deve imprimir como saída a posição da primeira ocorrência de B em A (strings em Visualg iniciam a contagem em 1) ou zero, caso a string B não ocorra em A.

Exemplos:

Entradas	Saídas
bananada	5
nada	0
banana	0
nada	6
banana	
mina	
determinar	
mina	
<i>"###"</i>	

Questão 3:

Escreva um algoritmo que, dado o nome completo de uma pessoa (com um só branco separando cada nome ou sobrenome) imprima o nome dessa pessoa no seguinte formato: último sobrenome seguido por uma vírgula e pelas iniciais dos primeiros nomes ou sobrenomes seguidos por um ponto e separados por um espaço. Conectivos como "da", "das", "de", "do", "do", "e" devem ser descartados.

Entrada:

Várias linhas contendo cada linha uma string com um nome completo de uma pessoa. A última linha conterá apenas a cadeia "\$\$\$", que não deve ser processada e serve apenas para indicar o final da entrada. O nomes terão no máximo 40 caracteres.

Saída:

Para cada nome da entrada imprima a sua versão abreviada, conforme os exemplos abaixo

Exemplos:

Entradas	Saídas
Edgard Alan Poe Rodrigo Dias de Bivar Luciano do Valle Pedro de Alcântara Bragança e Bourbon Silvio Santos da Costa e Silva \$\$\$	Poe, E. A. Bivar, R. D. Valle, L. Bourbon, P. A. B. Silva, S. S. C.

Questão 4:

Faça um algoritmo que multiplique um número inteiro grande por um número inteiro A, sendo A formado por um único algarismo diferente de zero. Considera-se um número inteiro grande um número inteiro cujo valor não pode ser representado pelo tipo inteiro por exceder a sua faixa de valores. Neste caso, uma solução é representar o inteiro grande como uma cadeia de caracteres.

Entrada:

A entrada consiste em vários casos de teste. Cada caso consiste de duas linhas, na primeira linha da entrada é dado o inteiro grande, e na segunda linha o valor de A (com apenas um algarismo). O final da entrada é marcado por um caractere '@'

Saída:

Seu Algoritmo deve fornecer como resultado o valor do produto do número inteiro grande por A.

Exemplos:

Entradas	Saídas
8517 2 38620 3 115860 4 463440 5	17034 115860 463440 2317200