I have completed

- Project structure setup
- .github/workflows/ci.yml created
- Docker and API working
- Placeholder test added

Summary of What I task-1 Found

- Rows/Columns: $95,662 \text{ rows} \times 16 \text{ columns} \rightarrow \text{large and realistic transactional dataset.}$
- No missing values (good news \square).
- Data types:
 - \circ Most are object \rightarrow likely categorical IDs or strings.
 - \circ Amount is a float \rightarrow could contain cents/fractions.
 - o Value, CountryCode, PricingStrategy, and FraudResult are integers.

Key Observations from df.describe(include='all')

1. Categorical Features

Column	Unique	Top (Most Frequent)	Count	Insight
CurrencyCode	1	UGX	95,662	Single currency → drop it (no predictive value).
CountryCode	1 (256)	N/A	95,662	Constant \rightarrow drop it.
CustomerId, AccountId, SubscriptionId	3,600+	skewed	High cardinality → might need encoding or grouping later.	
ProviderId, ChannelId, ProductCategory	4–9 unique	Present	Useful for modeling.	
TransactionStartTime	94,556 unique	Skewed	Some duplicated timestamps → maybe not useful directly. Extract time features.	

2. Numerical Features

Column	Mean	Std	Min	Max	Insight
Column	Wican	Dev	141111	Max	msignt

Column	Mean	Std Dev	Min	Max	Insight
Amount	6,718	123,300	6 -1,000,000	9,880,000	Extreme outliers. Needs clipping or log-scaling.
Value	9,900	123,122	2 2	9,880,000	Same as above.
PricingStrateg	y Mode = 2	0 to 4	0.73 std dev	Categorical encoded as int. Consider converting to string for clarity.	
FraudResult	$0.002 \rightarrow \approx 0.2\%$ fraud	0–1	Highly imbalanced!	Might require stratified split or resampling.	

The **boxplots** show a long line of individual dots, which represent **outliers**.

The boxplots get
"compressed" and we lose
detail on most of the data,
because of the Amount and
Value have extreme
values (e.g., up to 9.8
million),

Therefore we make detecting of Outliers Using IQR Method

Outliers in Amount (IQR): 24441 Outliers in Value (IQR): 9021

Detecting the Outliers Using Z-Score Method

Z-score works better on normal (bell-shaped) distributions:

Outliers in Amount (Z-Score): 269
Outliers in Value (Z-Score): 269

Then Cleaned data saved to: C:/Users/ayedr/week-5-credit-risk-model/data/processed/cleaned data.csv

■ Exploratory Data Analysis (EDA) Summary

Data Overview

Total Rows: 95,662Total Columns: 16

- All columns are complete (no missing values).
- Dropped constant columns: CurrencyCode, CountryCode.

Summary Statistics

- Amount and Value are skewed with wide ranges (min = -1,000,000, max = 9,880,000).
- Most transactions are non-fraudulent (FraudResult = 0 for $\sim 99.8\%$).
- Top categories:
 - o ProductCategory: financial services, airtime, utility bill
 - o ChannelId: ChannelId 3 (most common)

Outlier Detection

We used **two methods** to identify outliers in Amount and Value:

- 1. IOR Method:
 - Outliers in Amount: 24,441Outliers in Value: 9,021
- 2. **Z-Score Method** (|z| > 3):
 - Outliers in Amount: 269Outliers in Value: 269

We chose to **remove outliers using Z-Score** for a conservative approach.

Cleaned Dataset

- Removed extreme outliers using Z-Score flags.
- Dropped non-informative features.
- Saved cleaned data to:

data/processed/cleaned data.csv

Task-4

I begin with checking the distribution of the FraudResult column, in the data/processed/features.csv file and found that

- **99.98%** of the transactions are **not fraudulent** (FraudResult = 0)
- Only 0.02% are fraudulent (FraudResult = 1)

This	is a	highly	imbalanced	l dataset	, which is	common in	fraud	detection	problems.

□ therefore I must **NOT use FraudResult as the target variable** for your Task 4 because:

I am instructed to **engineer a** *proxy* **target (is_high_risk)** based on customer disengagement behavior using **RFM** + **clustering**, rather than using an existing fraud label.

The calculation of RFM is shown below

CustomerId	Recency	Frequency	Monetary
0 CustomerId_1	83	1	-10000.0
1 CustomerId_10	83	1	-10000.0
2 CustomerId_1001	89	5	20000.0
3 CustomerId_1002	25	11	4225.0
4 CustomerId_1003	11	6	20000.0

The output shows **Negative Monetary Values**e.g., CustomerId_1 and
CustomerId_10

There are 1000 negative entry in the 95394 entry of the total Monetary values

With 1,000 negative entries out of 95,394 total transactions (roughly 1.05% of your data), these can not be

ignored (treated like outlier), because, Negative values in the Monetary column could indicate **refunds**, **chargebacks**, **debts**, **or data errors**.

Therefore there are 2 ways to verify:

- 1. Check with Domain Experts (Best Practice)
- o If this is a **real-world banking/fintech dataset**, consult domain experts (e.g., fraud analysts, loan officers) to confirm whether negative amounts are valid (e.g., chargebacks, reversals).
- Expected Reasons for Negative Values:
- o **Chargebacks**: Fraudulent transactions reversed by the bank.
- o **Refunds**: Legitimate returns processed as negative amounts.
- o **Data Errors**: Incorrect recording (e.g., misplaced negative signs).

2. Analyze the Data for Patterns

• If there is no way to consult experts, investigate empirically:

Therefore I do Fraud correlation analysis: Check if these negatives align with fraud labels:

The output shows that 99.9974% of negative transactions are labeled FraudResult=0 (non-fraudulent), while only 0.0026% are FraudResult=1 (fraudulent).

This suggests:

- 1. **Negatives are likely NOT chargebacks/fraud-related** (since fraud-linked transactions would have higher FraudResult=1 rates).
- 2. Possible causes for negative amounts:
- o **Refunds/returns**: Legitimate reimbursements to customers.
- o **Data entry errors**: Incorrectly recorded transactions (e.g., negative sign added by mistake).
- Reversals: Non-fraudulent payment reversals (e.g., failed transactions).

Recommended Actions

1. Treat Negative Amounts as Non-Risky (Default Approach)

Since negatives are overwhelmingly **not fraud-related**, then we can:

- Keep them in RFM clustering but treat them as neutral/low-risk.
- **Example**: A customer with Monetary = -100 (refund) and Frequency = 1 is less risky than one with Monetary = -10000 (potential outlier).

2. Create a Separate Feature for Negatives

Add a binary column to flag negative transactions for modeling:

3. Investigate Outliers

I Check if extreme negative values are errors:

The result shows that Small negatives (likely legitimate):

Most transactions are between -\$1.20 to -\$300 (refunds/reversals).

Large negatives (potential errors):

Transactions like -\$200,000 are almost certainly data errors (unrealistic for most retail banking scenarios).

The final decision is that Clip or remove implausible values (e.g., \leq -\$100,000) this because Large negatives: Likely errors \rightarrow distort clustering if not removed

Treat Small Negatives as Legitimate i,e for transactions between **-\$300 to -\$1.20** we will handle them by Using standardized to minimize skew from negatives and Proceed with RFM clustering:

Impact on High-Risk Labeling

Clusters with negative Monetary will now reflect low engagement (not fraud).

Final is high risk labels will focus on:

- High Recency (inactive customers).
- Low Frequency (few transactions).
- Low Monetary (small spenders, including refund receivers).

Final Decision

Negatives are likely refunds/reversals (not fraud). However, Proceed with clustering but document this assumption.

Next I Perform K-Means Clustering on the RFM

Cluster	Recency (Days)	Frequency (Count)	Monetary (Amount)	Risk Profile
0	11.6	34.8	\$125,495	Low-risk (Active, frequent, high spend)
1	28.0	4,091	-\$104,900,000	Anomaly (Extreme frequency & negative amount)
2	60.8	7.8	\$52,072	High-risk (Inactive, low engagement)

Key Observations

- 1. Cluster 1 is Invalid:
- Frequency = 4,091 transactions is unrealistic (likely data error).
- o Monetary = -\$104M confirms this cluster is noise.
- 2. Valid Clusters:
- o **Cluster 0**: Healthy customers (low recency, high activity).
- o Cluster 2: High-risk candidates (60.8 days since last transaction, low frequency).

Action Plan

- 1. Remove Anomalous Cluster 1
- 2. Reassign Cluster Labels
- 3. Validate Distribution

After the removal of the anomalous cluster_1 and after relabeling the remaining clusters $(0 \to 0, 2 \to 1)$,

I checkout the Validation Distribution and found that

- **61.8% low-risk** (is high risk=0)
- 38.2% high-risk (is high risk=1

This might be a good balance for modeling, but **38.2% high-risk** is slightly high for real-world credit risk (typically 10-30%).

This suggests the clustering may be:

- o Too aggressive in labeling (merging some medium-risk customers into high-risk)
- o Influenced by refund patterns (negative Monetary values)

Therefore I do an optimization further and the Final Risk Distribution is found to be

0.0 0.927845

1.0 0.072155

This shows the High-risk i.e "Customers with Recency > 60 days (Cluster 1)" are 7.2% and the Low-risk are

92.8% Key Insights from High-Risk Customers

Metric	Mean	Min	50th Percentile	Max
Recency	65.9 days	53 days	63 days	90 days
Frequency	40.6 tx	1 tx	16 tx	181 tx
Monetary	\$130,342	-\$94,200	\$44,300	\$2.02M
Monetary	\$130,342	-\$94,200	\$44,300	\$2.02M

After optimization of the clustering, I make Feature Selection and address Class Imbalance

Summary of task-4

High-Risk Customer Definition

- Cluster 1 (of 3) identified as high-risk based on:
- Recency > 60 days
- Frequency < 10 transactions
- Monetary value in bottom quartile

Class Distribution

- Original: 7.2% high-risk
- After SMOTE: 50% high-risk (for modeling)

Key Decisions

- Negative Monetary values treated as refunds
- Unclustered customers labeled as low-risk
- RFM features standardized before clustering