Постановка задачи

В данной лабораторной работе необходимо построить имитационную модель системы массового обслуживания (СМО).

Построить немарковские модели, когда один или оба потока событий являются потоками Эрланга.

Тип модели – вероятностный.

Неконтролируемые факторы – поток заявок, интенсивность потока заявок; контролируемые – поток обслуживания, интенсивность потока обслуживания.

Исходные данные

 $R = 18, m = 21, \lambda = \rho, \mu = 1.$

Теоретическая часть

М – Марковский поток

 E_R — поток Эрланга

R – порядок потока Эрланга

m – количество мест в очереди

N — среднее количество заявок в системе

ho – нагрузка на СМО

 λ — интенсивность поток заявок

μ – интенсивность потока обслуживания

 $au_{\scriptscriptstyle \mathrm{BX}}$ – интервал входного потока

 $au_{\scriptscriptstyle
m BMX}$ — интервал выходного потока

 t_i — момент времени

 k_i – количество заявок в системе в момент времени t_i

 P_k — вероятность того, что в системе находится k заявок

 $D(\rho)$ – дисперсия

 $\sigma\left(
ho
ight)$ — среднее квадратичное отклонение

Математическая модель по классификации Кендалла:

М – Марковский поток заявок

М – Марковский поток обслуживания

1 – количество каналов обслуживания

m – количество мест в очереди

Нагрузка на СМО

$$\rho = \frac{\lambda}{u} \qquad (1)$$

Интервал входного потока

$$\tau_{\rm BX} = -\frac{1}{\lambda} * \ln U \qquad (2)$$

Интервал выходного потока

$$\tau_{\text{вых}} = -\frac{1}{\mu} \ln U \qquad (3)$$

Интервал входного потока Эрланга

$$\tau_{\rm BX} = -\frac{1}{\lambda * R} * \ln U \qquad (4)$$

Интервал выходного потока Эрланга

$$\tau_{\text{\tiny BMX}} = -\frac{1}{\mu * R} \ln U \qquad (5)$$

Среднее число заявок в системе

$$N(\rho, m) = \sum_{k=0}^{m+1} k * P_k = \sum_{k=0}^{m+1} k * \rho^k * P_o$$

$$k * \rho^k = \rho * \frac{d}{d\rho} \rho^k$$

$$P_o = \frac{1}{\sum_{k=0}^{m+1} \rho^k} = \frac{1 - \rho}{1 - \rho^{m+2}}$$

$$N(\rho, m) = \frac{1 - \rho}{1 - \rho^{m+2}} * \rho * \frac{d}{d\rho} \sum_{k=0}^{m+1} \rho^k$$

$$\frac{d}{d\rho} \sum_{k=0}^{m+1} \rho^k = \sum_{k=0}^{m+1} k * \rho^{k-1}$$

$$\sum_{k=0}^{m+1} k * \rho^{k-1} = \frac{1 + (mp - m + \rho - 2) * \rho^{m+1}}{(1 - \rho)^2}$$

$$N(\rho, m) = \frac{1 - \rho}{1 - \rho^{m+2}} * \rho * \frac{1 + (mp - m + \rho - 2) * \rho^{m+1}}{(1 - \rho)^2} =$$

$$= \frac{\rho}{1 - \rho^{m+2}} * \frac{1 + (mp - m + \rho - 2) * \rho^{m+1}}{1 - \rho} \tag{6}$$

Среднее число заявок в системе при $\rho = 1$

Среднее число заявок в системе при
$$\rho=1$$

$$P_o = \frac{1}{\sum_{k=0}^{m+1} \rho^k} = \frac{1-\rho}{1-\rho^{m+2}}$$

$$\lim_{\rho=1} P_o(\rho) = \lim_{\rho=1} \frac{1-\rho}{1-\rho^{m+2}} = \frac{\infty}{\infty} = \frac{1}{m+2} \text{ (по правилу Лопиталя)}$$

$$P_o(\rho=1) = \frac{1}{m+2}$$

$$N(\rho=1,m) = \sum_{k=0}^{m+1} k * P_k = \sum_{k=0}^{m+1} k * \rho^k * P_o$$

$$k * \rho^k = \rho * \frac{d}{d\rho} \rho^k$$

$$N(\rho=1,m) = \frac{1}{m+2} * \rho * \frac{d}{d\rho} \sum_{k=0}^{m+1} \rho^k$$

$$\frac{d}{d\rho} \sum_{k=0}^{m+1} \rho^k = \sum_{k=0}^{m+1} k * \rho^{k-1}$$

$$\sum_{k=0}^{m+1} k *
ho^{k-1} = rac{(m+2)*(m+1)}{2}$$
 при $ho = 1$

$$N(\rho = 1, m) = \frac{1}{m+2} * \rho * \frac{(m+2) * (m+1)}{2} = \frac{m+1}{2}$$
 (7)

Метод Монте-Карло

- 1. У поступившей заявки есть 3 варианта последующих действий:
 - Если канал обслуживания и очередь пусты, то заявка поступает на обслуживание. Генерируем СВ $U \in [0; 1]$. Рассчитываем $\tau_{\text{вх}}$ для следующей заявки по формуле (2) и $\tau_{\text{вых}}$ для данной заявки по формуле (3).
 - Если канал обслуживания занят, но в очереди есть свободное место, то заявка поступает в очередь. Генерируем СВ $U \in [0; 1]$. Рассчитываем $\tau_{\text{вх}}$ для следующей заявки по формуле (2).
 - Если канал обслуживания и очередь заняты, то заявка уходит в отказ. Генерируем СВ $U \in [0;1]$. Рассчитываем $\tau_{\rm вx}$ для следующей заявки по формуле (2).
- 2. Когда заявка обслужена, то она уходит из системы.
- 3. В данной работе количество заявок в системе измерялось после каждых 10 обслуженных. То есть, как только 10 заявок покинули систему, то проверяется состояние системы. Количество заявок $-k_i$.
- 4. Определяем среднее количество заявок в системе для каждого ρ по формуле.

$$N(\rho) = \frac{1}{n} \sum_{i=0}^{n} k_i \qquad (8)$$

5. Находим среднее квадратичное отклонение через дисперсию, используя формулы:

Дисперсия

$$D(\rho) = \frac{1}{n-1} \sum_{i=0}^{n} (k_i - N(\rho))^2$$
 (9)

Среднее квадратичное отклонение

$$\sigma(\rho) = \sqrt{D(\rho)} \qquad (10)$$

Были построены графики зависимости среднего количества заявок в системе (N) и среднего квадратичного отклонения (S) от нагрузки на СМО (ρ) – $N(\rho)$ и $S(\rho)$ для разных вариантов моделей.

Рис.1. Модель < $M \mid M \mid 1 \mid m>$. Графики $N(\rho)$, $S(\rho)$ при m=0, n=1000

Рис.2. Модель < $M \mid M \mid 1 \mid m>$. Графики $N(\rho)$, $S(\rho)$ при m=1, n=1000

Рис.3. Модель < $M \mid M \mid 1 \mid m>$. Графики $N(\rho)$, $S(\rho)$ при m=10, n=1000

Рис.4. Модель < M | M | 1 | m >. Графики $N(\rho)$, $S(\rho)$ при m=100, n=1000

Построим немарковские модели, когда один или оба потока событий являются потоками Эрланга с помощью метода Монте-Карло.

Результаты

Варианты моделей:

1. $< M \mid E_R \mid 1 \mid m >$

М – Марковский поток заявок

 E_R — Эрланговский поток обслуживания

1 – количество каналов обслуживания

m – количество мест в очереди

В данном случае $\tau_{\text{вх}}$, $\tau_{\text{вых}}$ по формулам (2) и (5) соответственно.

Рис.5. Модель < $M \mid E_R \mid 1 \mid m>$. Графики $N(\rho)$, $S(\rho)$ при n=1000

Рис.6. Модель $< M \mid E_R \mid 1 \mid m>$. Графики $N(\rho)$, $S(\rho)$ при n=5000

2. $< E_R \mid M \mid 1 \mid m >$

 E_R — Эрланговский поток заявок

М – Марковский поток обслуживания

1 – количество каналов обслуживания

m – количество мест в очереди

В данном случае $\tau_{\text{вх}}$, $\tau_{\text{вых}}$ по формулам (4) и (3) соответственно.

Рис.7. Модель < E_R | M | 1 | m >. Графики $N(\rho)$, $S(\rho)$ при n=1000

Рис.8. Модель < E_R \mid M \mid 1 \mid m >. Графики $N(\rho)$, $S(\rho)$ при n=5000

3. $< E_R \mid E_R \mid 1 \mid m >$

 E_R — Эрланговский поток заявок

 E_R — Эрланговский поток обслуживания

1 – количество каналов обслуживания

m – количество мест в очереди

В данном случае $\tau_{\text{вх}}$, $\tau_{\text{вых}}$ по формулам (4) и (5) соответственно.

Рис.9. Модель < $E_R \mid E_R \mid 1 \mid m>$. Графики $N(\rho)$, $S(\rho)$ при n=1000

Рис.10. Модель < $E_R \mid E_R \mid 1 \mid m>$. Графики $N(\rho)$, $S(\rho)$ при n=5000

Вывод

В ходе лабораторной работы была построена имитационная модель системы массового обслуживания (СМО).

Модель $< M \mid M \mid 1 \mid m >$ совпадает с теоретической, так как используются только марковские потоки.

Представлены такие варианты моделей, как $< M \mid E_R \mid 1 \mid m>$, $< E_R \mid M \mid 1 \mid m>$, $< E_R \mid E_R \mid 1 \mid m>$, где один или оба потока являются потоками Эрланга.

Из графиков видно, что из данных вариантов наиболее приближена к теоретической модель < E_R \mid M \mid 1 \mid m >. Наибольшие расхождения с теорией у модели < E_R \mid E_R \mid 1 \mid m >, так как используются только потоки Эрланга.