Lecture 10: Semantic Segmentation

Contents

- 1. Semantic Segmentation
- 2. Segmentation as clustering: k-means, mean-shift
- 3. Upsampling
- 4. FCN, U-Net, Tiramisu
- 5. Mask R-CNN

Computer Vision Tasks

Semantic Segmentation

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels

Segmentation as Clustering

- · Pixels are points in a high-dimensional space
 - color: 3d
 - color + location: 5d
- Cluster pixels into segments

Clustering: K-Means

Algorithm:

- 1. Randomly initialize the cluster centers, c_1, \ldots, c_K
- 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c_i. Put p into cluster i
- 3. Given points in each cluster, solve for ci
 - Set c_i to be the mean of points in cluster i
- 4. If c_i have changed, repeat Step 2

Properties

- Will always converge to some solution
- Can be a "local minimum"
 - Does not always find the global minimum of objective function:

$$\sum_{i=1}^k \sum_{x \in \mathcal{C}_i} \|x - c_i\|^2$$

Clustering: K-Means

k=2

k=3

Clustering: Mean-shift

- 1. Initialize random seed, and window W
- 2. Calculate center of gravity (the "mean") of W: $\frac{1}{11}$
 - Can generalize to arbitrary windows/kernels
- 3. Shift the search window to the mean
- 4. Repeat Step 2 until convergence

Only parameter: window size

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Mean-Shift for segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

Semantic Segmentation: Sliding Window

Problem: Very inefficient! Not reusing shared features between overlapping patches

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Predictions: H x W

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Predictions: H x W

High-res:

D₁ x H/2 x W/2

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

High-res:

D₁ x H/2 x W/2

Input:

 $3 \times H \times W$

In-Network upsampling: "Unpooling"

Nearest Neighbor

		1	1	2	2
1	2	 1	1	2	2
3	4	3	3	4	4
		3	3	4	4

Input: 2 x 2

Output: 4 x 4

"Bed of Nails"

Input: 2 x 2

Output: 4 x 4

In-Network upsampling: "Max Unpooling"

Max Pooling

Remember which element was max!

Max Unpooling

Use positions from pooling layer

1	2
3	4

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Input: 4 x 4

Output: 2 x 2

Input: 2 x 2

Output: 4 x 4

Corresponding pairs of downsampling and upsampling layers

Recall: Typical 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4

Output: 4 x 4

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4 Output: 2 x 2

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Recall: Normal 3 x 3 convolution, stride 2 pad 1

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2

Output: 4 x 4

3 x 3 transpose convolution, stride 2 pad 1

Learnable Upsampling: 1D Example

Downsampling: Pooling, strided convolution

Input: 3 x H x W Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Upsampling: Unpooling or strided transpose convolution

Predictions: H x W

FCN with 2 skip connections

U-Net

Tiramisu: Fully Convolutional DenseNets

Mask R-CNN

Mask RCNN =

- 1. Object detector using Faster RCNN +
- 2. fully convolutional network (FCN) on region of interest (RoI)