Approximations to the distribution of a large quadratic form

Tong Chen Thomas Lumley

Department of Statistics University of Auckland

NZSA, 2018

What is a quadratic form?

• If X is an n dimensional vector with mean vector μ and covariance matrix Σ . A quadratic form in $\mathbb R$ is a function of Q(X): $\mathbb R^n \to \mathbb R$, which could be expressed as:

$$Q(X) = X^T A X$$

where A is an $n \times n$ symmetric and non-negative definite matrix...

• The question of interest is to estimate Pr(Q(X) > q).

Why is it interesting?

- The distribution of Q(X) is a linear combination of noncentral χ_1^2 variables.
- These quadratic forms are used when a set of asymptotically Normal test statistics are combined using a weight matrix other than the inverse of their covariance matrix.
- Null distribution: a quadratic form in Gaussian variables

$$Q(X) = X^T A X = Y^T \Lambda Y = \sum \lambda_i \chi_1^2$$

where $\lambda_1 \dots \lambda_n$ are the eigenvalues of ΣA .

Large quadratic forms in genetics studies

- Previous study mainly focused on
 - small quadratic forms (n < 10)
 - 2 large p-value $(p > 10^{-2})$
- In genetics studies, we have
 - 1 large quadratic forms (n > 1000)
 - 2 very small p-value ($p < 10^{-4}$)
- Existing methods may have problems in both accuracy and computational time.

Existing methods

- 'Exact' methods: the approximation error can be arbitrarily small if calculations are done to arbitrary precision.
- Approximations based on matching moments
- A saddlepoint approximation

'Exact' methods

- Davies (1980) approximated the distribution of Q(X) based on the characteristic function of Q(X).
- Farebrother (1984) wrote Pr(Q(X) > q) as an infinite series of central chi-square distribution. This is done by writing the linear combination as a mixture (Robbins and Pitman, 1949).
- Bausch (2013) showed that a linear combination of gamma densities form an algebra under convolution.

Moment based methods

- Liu et al. (2009) (four-moment approximation):
 - ① Using $\chi_I^2(\delta)$ to approximate Q(x)
 - ② I and δ are obtained by equalling the skewnesses and minimizing the difference between kurtosis of Q(x) and $\chi_I^2(\delta)$.
- Satterthwaite approximation:
 - **1** Using $a\chi^2_{\nu}$ to approximate Q(x).

$$a = (\sum_{i=1}^{n} \lambda_i^2) / (\sum_{i=1}^{n} \lambda_i)$$
 $v = (\sum_{i=1}^{n} \lambda_i)^2 / (\sum_{i=1}^{n} \lambda_i^2).$

- 2 Give correct mean and variance
- ③ $\sum \lambda = \operatorname{trace}(\Sigma A)$ and $\sum \lambda^2 = \operatorname{trace}((\Sigma A)^2) = \sum_{i,j} a_{i,j}^2$. Thus they are available in $O(n^2)$ time.

A saddlepoint approximation

- Kuonen (1999) proposed a form of saddlepoint approximation based on a Normal approximation to an exponentially-shifted density.
- To obtain Pr(X > z) for a density $f_X(x)$, create an exponential family $g(x;\theta) = cf(x)\exp(x\theta)$. Then choosing θ so that z is the mean of density $g(x;\theta)$ (Normal approximation to the sum works well near the mean).
- It's known that the first-order term in the error is uniformly bounded.

Accuracy - the distribution of Q(X)

Lemma

$$Pr(\sum \lambda_i z_i^2 > q) \simeq ce^{-\frac{1}{2\lambda_1}q}$$
 for large q .

• The density for χ_k^2 is

$$f(x) = \frac{x^{\frac{k}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{k}{2}} \Gamma(\frac{k}{2})}$$

When x is big, only exponential matters.

If X and Y have exponential tails with different tail rates, X + Y has
an exponential tail and tail rate is dominated by the one with larger
multiplier (Berman et al., 1992).

Accuracy - Exact methods

- Davies's and Farebrother's method would break down when p-value is close to or beyond machine epsilon
- They compute 1 (1 Pr(Q > q))

Method	The upper tail probability for different quantiles						
	50	100	150	300	400		
Farebrother	1.037×10^{-04}	1.716×10^{-08}	3.348×10^{-12}	6.661×10^{-16}	6.661×10^{-16}		
Davies	1.037×10^{-04}	1.716×10^{-08}	3.348×10^{-12}	0	0		

Table 1: Upper tail probability of $Q = 3\chi_1^2 + 2\chi_1^2 + \chi_1^2$

Accuracy - Exact methods

• Farebrother's method is not usable if the smallest eigenvalue is much smaller than the leading terms for large n. Because it would cause a_0 in the algorithm to underflow.

$$a_0 = exp\left(\frac{1}{2}(n\log\lambda_n - \sum_i^n\log\lambda_i)\right)$$

 Bausch's method has rounding error especially in the left tail with double precision and is slow with multiple precision.

Accuracy

- Moment methods approximate the distribution of Q(X) with a single χ^2_k . They are anti-conservative in extreme tails.
- The saddlepoint approximation has the correct exponential tail rate in the extreme right tail.

Time complexity

- Finding all the eigenvalues are slow for large n.
- Computing all λ , the time complexity is $O(n^3)$.
- Computing the leading $k \lambda_i$, the time complexity is $O(kn^2)$

A leading eigenvalue approximation

- Lumley et al. (2018) proposed a leading eigenvalue approximation
 - **1** Only compute the largest *k* eigenvalues
 - using Subsampled Random Hadamard Transform (Tropp, 2011) to get a linear transformed H.
 - ② use the QR decomposition to the matrix $(H\Sigma A)^T$ to get an orthonormal matrix Q.
 - 3 the eigenvalue decomposition of $Q\Sigma AQ^T$
 - Using Satterthwaite approximation to approximate the rest
- The reference distribution is

$$T \sim \left(\sum_{i=1}^k \lambda_i \chi_1^2\right) + a \chi_v^2$$

where $\lambda_1, ..., \lambda_k$ are the largest k eigenvalues of ΣA .

A leading eigenvalue approximation

- The time complexity is $O(kn^2)$
 - \bigcirc Compute the largest k eigenvalues using random matrix theory.
 - 2 Remainder term is available in $O(n^2)$ time.
- Accuracy: the tail rate is correct.
- Approximate Q(X) with leading terms using:
 - $oldsymbol{0}$ exact method when p-value ranges from 10^{-13} to 1
 - $ext{@}$ the saddlepoint approximation when p-value ranges from 0 to 10^{-13} .

Data generation

- Using the Markov Coalescent simulator (Chen et al., 2009)
 - ① fix n to obtain $m \approx n$
 - 2 discard variants if minor allele frequency > 5%
 - o result in a large sparse matrix
- Generate 5 datasets:

Dataset	Case 1	Case 2	Case 3	Case 4	Case 5
No. of People (n)	1000	2000	3000	4000	5000
No. of Variants	770	1955	2864	3826	4028

Table 2: Data

Empirical comparisons

 Compare a leading eigenvalue approximation with a full eigendecomposition of Davies's method.

Data	N	Time	Relati	Relative Error (%) for P-value Near			
	11	Difference(s)	10^{-5}	10^{-6}	10^{-7}	10^{-8}	10^{-9}
Case 1	770	0.8	.31	.31	.28	.09	.08
Case 2	1955	17.7	.76	.72	.70	.70	.81
Case 3	2864	65.7	.43	.42	.42	.41	.43
Case 4	3826	155.9	.54	.52	.51	.49	.50
Case 5	4028	231.1	.56	.55	.54	.64	.65

Table 3 Computational time difference and the relative error for p-values evaluated near 10^{-5} , 10^{-6} , 10^{-7} , 10^{-8} and 10^{-9} for different cases. N is the number of variants. Stochastic SVD with 100 leading eigenvalues are used for all cases.

Comparing versions of a leading eigenvalue approximation

- Remainder term 1: approximated by Satterthwaite approximation
- Remainder term 2: aprroximated by matching the mean.
- Version 3: has no remainder term

Comparing versions of a leading eigenvalue approximation

 The version with remainder term using the Satterthwaite approximation is not very sensitive to the choice of k.

Extreme tail comparisons

• Comparisons of a leading eigenvalue approximation with Davies's method (left panel) and the saddlepoint approximation (right panel).

Recommendation

- If n > 1000 and p-value $> 10^{-13}$, a leading eigenvalue approximation combined with Davies's method is optimal.
- If n > 1000 and p-value $< 10^{-13}$, a leading eigenvalue approximation combined with the saddlepoint approximation is optimal.
- If n < 1000 and p-value $> 10^{-13}$, a full eigendecomposition of Davies's method is optimal.
- If n < 1000 and p-value $< 10^{-13}$, a full eigendecomposition of the saddlepoint approximation is optimal.

Thank You!