第五章 金属-氧化物-半导体场效应晶体管 (MOSFET)

- §5.1 MOSFET的结构和工作原理
- §5.2 MOSFET的阈值电压
- §5.3 MOSFET的直流特性
- §5.4 MOSFET的频率特性
- §5.5 MOSFET的开关特性
- §5.6 MOSFET的功率特性
- §5.7 小尺寸MOSFET特性
- §5.8 MOSFET的最新研究进展

MOSFET基本知识体系框架

§5.7 小尺寸MOSFET特性 §5.7.1 MOSFET短沟道效应(SCE) 与窄沟道效应(NWE)

- 1. 阈值电压 "卷曲" (V_T roll-off)
- 2. 窄沟道效应 (NWE)
- 3. 漏致势垒降低 (DIBL)
- 4. 亚阈值特性退化
- 5. 热载流子效应
- 6. 速度饱和效应 (小尺寸MOSFET的直流特性)

- 1. 阈值电压 "卷曲" $(V_T \text{roll-off})$
- (1) 现象 $V_{Tn} = \emptyset_{ms} \frac{Q_{ss}}{C_{ox}} + \frac{qN_Ad_{max}}{C_{ox}} + \frac{2k_0T}{q} \ln\left(\frac{N_A}{n_i}\right)$ 没有与长度相关的参量

対底浓度 结深(源漏深度) 氧化层厚度

随着沟道长度减小,阈值电压减小 $(V_T \text{roll-off})$

1. 阈值电压 "卷曲" $(V_T \text{roll-off})$

漏端加上一个3V电压后的电势分布

 $\frac{\partial^2 \phi(x, y)}{\partial x^2} + \frac{\partial^2 \phi(x, y)}{\partial y^2} = -\frac{\rho(x, y)}{\varepsilon}$

$$\frac{\varphi(x,y)}{\partial y^2} = -\frac{P(x,y)}{\varepsilon_s}$$

$$\frac{\partial^2 \phi(x, y)}{\partial x^2} + \frac{\partial^2 \phi(x, y)}{\partial y^2} = -\frac{\rho(x, y)}{\varepsilon_s}$$

GCA

$$\frac{\partial^2 \phi(x,y)}{\partial v^2} = 0$$

$$\frac{\partial^2 \phi(x,y)}{\partial y^2} > 0$$

- 1. 阈值电压 "卷曲" $(V_T \text{roll-off})$
- (2) 原因

$$rac{\partial^2 \phi(x,y)}{\partial x^2} = -rac{
ho(x,y)}{arepsilon_S} - rac{\partial^2 \phi(x,y)}{\partial y^2} \equiv -rac{
ho_{eff}(x,y)}{arepsilon_S}$$
 V_T 減少 $N_{Aeff} < N_A$

(3) 电荷分享模型 (Poon-Yau模型)

- ◆ 除了由栅压引起的沟道中的耗尽区之外, 源漏与衬底之间还有内建空间电荷区;
- ◆ 当沟道长度足够大时,我们可以忽略源 漏区域耗尽层宽度与沟道下方耗尽层的 重合区域大小,认为沟道区域的耗尽层 宽度全部来自栅压。

- 1. 阈值电压 "卷曲" $(V_T \text{roll-off})$
- (3) 电荷分享模型

当沟道长度变短之后,就不能忽略源 漏区的耗尽区宽度,计算阈值电压时 的耗尽区面积就不再是矩形而变成了 梯形,即*Q。*要变小;

不考虑短沟道效应时的阈值电压公式:

$$V_T = V_{FB} + 2V_B + \frac{Q_B}{C_{ox}} \gamma = \frac{\sqrt{2\varepsilon_{rs}\varepsilon_0 qN_A}}{c_{ox}}$$

$$V_T = V_{FB} + 2V_B + \gamma \sqrt{2V_B + |V_{BS}|}$$

考虑短沟道效应时的阈值电压公式:

$${V_T}' = V_{FB} + 2V_B + \frac{{Q_B}'}{\overline{c_{ox}}}$$
 ${V_T}' = V_{FB} + 2V_B + \frac{{\overline{Q_B}'}}{\overline{Q_B}} \gamma \sqrt{2V_B + |V_{BS}|}$

- 1. 阈值电压 "卷曲" $(V_T \text{roll-off})$
- (3) 电荷分享模型

计算 $\frac{Q_B}{Q_S}$ (电荷分享因子F) $V_{DS}=0$

$$\frac{Q_B'}{Q_B} = 1 - \frac{2 \times d_{max} \frac{\Delta L}{2}}{d_{max} L} = 1 - \frac{\Delta L}{L}$$

$$\Delta L = \sqrt{(r_2^2 - d_{max}^2)} - x_j$$

$$\Delta L \approx \sqrt{\left[\left(x_j + d_{max}\right)^2 - d_{max}^2\right] - x_j}$$

$$\Delta L = x_j \left[\left(1 + \frac{2d_{max}}{x_j} \right)^{\frac{1}{2}} - 1 \right]$$

$$\frac{{Q_B}'}{{Q_B}} = 1 - \frac{x_j}{L} \left[\left(1 + \frac{2d_{max}}{x_j} \right)^{\frac{1}{2}} - 1 \right]$$

 r_2 : 漏源耗尽区半径; x_i : 漏源区 半径; 假设反型电子浓度与源漏 相同,则沟道下方耗尽区贯度与 漏源结区耗尽层宽度相同,所以 有 $x_i + d_{max} \approx r_2$

$$\frac{Q_{B}'}{Q_{B}} = 1 - \frac{x_{j}}{L} \left[\left(1 + \frac{2d_{max}}{x_{j}} \right)^{\frac{1}{2}} - 1 \right] \qquad V_{T}' = V_{FB} + 2V_{B} + \frac{Q_{B}'}{Q_{B}} \gamma \sqrt{2V_{B} + |V_{BS}|}$$

$$V_T' = V_{FB} + 2V_B + \gamma \sqrt{2V_B + |V_{BS}|} \{1 - \frac{x_j}{L} \left[\left(1 + \frac{2d_{max}}{x_j}\right)^{\frac{1}{2}} - 1 \right] \}$$

- 1. 阈值电压 "卷曲" $(V_T \text{roll-off})$
- (3) 电荷分享模型 $V_{DS}=0$

$$F=rac{Q_{B}{'}}{Q_{B}}=1-rac{x_{j}}{L}\left[\left(1+rac{2d_{max}}{x_{j}}
ight)^{rac{1}{2}}-1
ight]$$
 $F=rac{Q_{B}}{Q_{B}}\equiv1-lpharac{d_{max}}{L}$ 较大时

$$F = rac{{Q_B}'}{{Q_B}} pprox 1 - rac{{d_{max}}}{L}$$
 強勢

$$F = rac{{Q_B}'}{{Q_B}} \equiv 1 - lpha rac{d_{max}}{L}$$
較大时

保持两者形式一致,引入经验参数 $\alpha < 1$

$$V_T' = V_{FB} + 2V_B + \gamma \sqrt{2V_B + |V_{BS}|} \{1 - \frac{x_j}{L} \left[\left(1 + \frac{2d_{max}}{x_j}\right)^{\frac{1}{2}} - 1 \right] \}$$

$$V_T = V_{FB} + 2V_B + \gamma \sqrt{2V_B + |V_{BS}|}$$

$$\Delta V_T = |V_T' - V_T| = \gamma \sqrt{2V_B + |V_{BS}|} \frac{x_j}{L} \left[\left(1 + \frac{2d_{max}}{x_j} \right)^{\frac{1}{2}} - 1 \right] d_{max} = \sqrt{\frac{2\varepsilon_{rs}\varepsilon_0(2V_B + |V_{BS}|)}{qN_A}}$$

$$d_{max} = \sqrt{\frac{2\varepsilon_{rs}\varepsilon_0(2V_B + |V_{BS}|)}{qN_A}}$$

$$\Delta V_T = \alpha \frac{d_{max}}{L} \gamma \sqrt{2V_B + |V_{BS}|} = 2\alpha \frac{\varepsilon_S}{\varepsilon_{ox}} \frac{t_{ox}}{L} (2V_B + |V_{BS}|) \qquad \gamma = \frac{\sqrt{2\varepsilon_{rs}\varepsilon_0 q N_A}}{c_{ox}}$$

$$\gamma = \frac{\sqrt{2\varepsilon_{rs}\varepsilon_0 q N_A}}{c_{ox}}$$

F小,则 V_T 小,则 ΔV_T 大

- 1. 阈值电压 "卷曲" (V_Troll-off)
- (3) 电荷分享模型 $V_{DS}=0$ 讨论不同参数对阈值电压的影响

$$\Delta V_T = \alpha \frac{d_{max}}{L} \gamma \sqrt{2V_B + |V_{BS}|} = 2\alpha \frac{\varepsilon_s}{\varepsilon_{ox}} \frac{t_{ox}}{L} (2V_B + |V_{BS}|)$$

$$igsplus L 減小, F 減小, ΔV_T 増大 $F = rac{{Q_B}'}{{Q_B}} \equiv 1 - lpha rac{d_{max}}{L}$$$

- $igotharpoonup t_{ox}$ 减小, ΔV_T 减小
- $ightharpoonup N_A 减小, d_{max}增加, F 减小, <math>\Delta V_T$ 增大

矩形代表反型时沟道下方耗尽区宽 度, 小三角形代表漏源结区耗尽区 与其重合部分 , 从右图可以看出随 着结深的增加,三角形面积增大, 即F减小,则 ΔV_T 增大。

- 1. 阈值电压 "卷曲" $(V_T \text{roll-off})$
- (3) 电荷分享模型 V_{DS}>0

$$F = \frac{Q_B'}{Q_B} \equiv 1 - \alpha \frac{1}{L} \frac{y_S + y_D'}{2}$$

$$\Delta V_T = \frac{\alpha(y_S + y_D) \sqrt{q \varepsilon_S N_A (V_B + \frac{1}{2} |V_{BS}|)}}{LC_{ox}}$$

y_s: 源区电荷分享区域宽度

y_D:漏区电荷分享区域宽度

两个小三角面积: $\frac{y_S+y_D}{2}d_{max}$

反型时耗尽区面积: Ldmax

同样的抑制短沟道效应的措施:

- 1°源漏结深下降
- 2° 衬底浓度上升
- 3°氧化层厚度下降
- 4° 衬偏效应下降
- 5°漏源电压下降

2. 窄沟道效应 (NWE)

(1) 现象
$$V_{Tn} = \emptyset_{ms} - \frac{Q_{ss}}{C_{ox}} + \frac{qN_A d_{max}}{C_{ox}} + \frac{2k_0 T}{q} \ln\left(\frac{N_A}{n_i}\right)$$
 没有与宽度相关的参量

対底浓度 结深(源漏深度) 氧化层厚度

随着沟道宽度 变窄,阈值电 压上升

2. 窄沟道效应 (NWE)

(2) 原因

器件与器件之间会用氧化硅隔离,除了在源漏的两端隔离,在栅宽方向也会使用二氧化硅隔离,早期隔离工艺中二氧化硅就长在硅衬底表面,如下图。

左图中二氧化硅在沟道处较薄,两侧较厚,这样形状的二氧化硅在形成沟道时,其耗尽区形状不是矩形,在矩形两侧还有两个"1/4圆"大小的耗尽区。

2. 窄沟道效应 (NWE)

(2) 原因

$$V_{T, \mathcal{B} \not\supset S} = V_{FB} + 2V_B + \gamma \sqrt{2V_B + |V_{BS}|} \quad \gamma = 0$$

$$\gamma = \frac{\sqrt{2\varepsilon_{rs}\varepsilon_0 q N_A}}{c_{ox}}$$

$$V_{T, \mathcal{R} \not \! 2} = V_{FB} + 2V_B + \gamma \sqrt{2V_B + |V_{BS}|} + \frac{Q_W}{C_{ox}}$$

在宽沟阈值电压的基础 *上,加上多出来的耗尽 区宽度所需的电压

$$\frac{Q_W}{Q_B} = \frac{\frac{1}{2}\pi d_{max}^2}{Wd_{max}} = \frac{\pi}{2} \frac{d_{max}}{W}$$

W足够大时 Q_W 可以忽略

- 2. 窄沟道效应 (NWE)
- (3) 三种氧化物隔离结构的NWE

早期工艺,器件隔离氧化层在硅衬底之上,窄沟道效应明显(图中隔离氧化层未画出)。

后期人们发现窄沟道效应后,采用LOCOS (Local Oxidation of Silicon) 工艺,使二氧化硅向下延展一部分,减小一部分多出来的耗尽区,以此来抑制部分窄沟道效应。

- 2. 窄沟道效应 (NWE)
- (3) 三种氧化物隔离结构的NWE

艺, 先向下垂直刻蚀出一定深度的凹槽, 然后利用CVD技术长出氧化层隔离器件。

反窄沟道效应: 当沟道宽度小到一定程度后, 阈值电压甚至出现了下降的趋势。

从图中可以看到同一水平面在氧化层中的 电势高于沟道中的电势,有一个向右的电 场,可以在一定程度上起到辅助形成反型 层的作用,所以阈值电压会有下降趋势。

- 3. 漏致势垒降低 (Drain Induced Barrier Lowering, DIBL)
- (1) <mark>现象</mark>:随着器件尺寸的缩小,沟道长度缩短,当漏电压上升时,沟道下面的耗尽层厚度不再是常数,而是从源到漏逐渐增大,所以耗尽层中部分电荷实际上会受漏端电压影响,由电荷分享原理易知,共享电荷越多,阈值电压越低,这称为漏致势垒降低效应。

另一种解释:正像它的名字一样,当施加在漏上的电压增大时,沟道中的电势会增大,对于电子而言,电势越高,电势能越低,也就是沟道势垒越低,电子越容易通过沟道,导致源漏电流增加,这种现象称为漏致势垒降低。

随着漏电压增加,<mark>短沟道器件阈值电压</mark> 下降明显,长沟道器件基本不变。

$$V_T(V_{DS}) = V_T(0) - \sigma V_{DS}$$
DIBL因子

- 3. 漏致势垒降低 (DIBL)
- (2) 原因

电荷分享角度理解

$$F = \frac{Q_B'}{Q_B} \equiv 1 - \alpha \frac{1}{L} \frac{y_S + y_D}{2}$$

$$\begin{aligned} y_{\scriptscriptstyle S} &= \sqrt{\frac{2\varepsilon_{\scriptscriptstyle S}}{qN_{\scriptscriptstyle A}}} \big(V_{\scriptscriptstyle bi} + |V_{\scriptscriptstyle BS}| \big) \\ y_{\scriptscriptstyle D} &= \sqrt{\frac{2\varepsilon_{\scriptscriptstyle S}}{qN_{\scriptscriptstyle A}}} \big(V_{\scriptscriptstyle bi} + V_{\scriptscriptstyle DS} + |V_{\scriptscriptstyle BS}| \big) \end{aligned}$$

$$\Delta V_T = \frac{\alpha(y_S + y_D)\sqrt{q\varepsilon_S N_A(V_B + \frac{1}{2}|V_{BS}|)}}{LC_{ox}}$$

- 3. 漏致势垒降低 (DIBL)
- (2) 原因

能带角度理解

随着沟道长度的缩短,在 V_{DS} 的影响下,沟道区的导带会向下弯曲,沟道越短,弯曲越显著,直观的体现就是 I_{DS} 会增加。

4. 短沟道MOSFET的亚阈值特性

(1) 现象

长沟道	短沟道
I _{DSst} ∝ 1/L	1 _{DSst} > 1/L
I _{DSst} 与 V _{DS} 无关	VDS 7 IDSst 7
S与L无关	L4 ST

随着沟道缩短,亚阈值区的亚阈值电流增加,说明器件漏电增加;同时亚阈值摆幅也急剧增大;此时器件开关特性变差。

4. 短沟道MOSFET的亚阈值特性

(1) 现象

随着沟道变短,无论衬底浓度 是多少,亚阈值摆幅最终都会 上升,并且上升幅度非常大。

图中曲线浓度高低如何判断?

三条曲线表示不同的衬底浓度

- 4. 短沟道MOSFET的亚阈值特性
- 亚表面穿通 (Sub-surface punch-through)

$$I_{DSst,短沟} = I_{DSst(frth)} + I_{PT}$$
 电流应该很小,但是短沟道情况下却

在MOS管开启以前,源漏之间的漏 很大,原因是存在穿通电流/,,,。

衬底均匀掺杂时,随着沟道变短, 在漏电压增加时,沟道区域源漏耗尽区 接触在了一起,出现穿通电流。

- 4. 短沟道MOSFET的亚阈值特性
- 亚表面穿通 (Sub-surface punch-through)

$$I_{DSst,短沟} = I_{DSst(frth)} + I_{PT}$$
 电流应该很小,但是短沟道情况下却

在MOS管开启以前,源漏之间的漏 很大,原因是存在穿通电流IpT。

采用离子注入调节阈值电压时,随着沟道变短,在漏电压增加时,在衬底 体区耗尽区先接触在一起, 出现穿通电流。

4. 短沟道MOSFET的亚阈值特性

三条曲线表示不同的衬底浓度

图中曲线浓度如何判断?

- ① 从<mark>拐点</mark>出发,衬底浓度低,容易穿通,亚阈值摆幅上升拐点出现早, 所以浓度大小是a<b<c。
- ② 从亚阈值摆幅大小出发,亚阈值摆幅指I_{DS}变化一个数量级时栅压的变化量; 用另一种说法就是栅压的变化能对沟道电流起多大作用,栅压落在半导体上的多,则自然对沟道电流影响大,亚阈值摆幅就小。 栅压在半导体上的分量可以从电容角度来考虑,衬底浓度越小,耗尽区宽度越大,C_d就越小,所以分压就越大,

亚阈值摆幅就越小,即a<b<c。

- 4. 短沟道MOSFET的亚阈值特性
- (3) 抑制亚表面穿通的措施
- 1°选择合适的衬底浓度
- 2° 抗穿通离子注入 (Punch-through stopper implant, PTI)

3° 晕注入 (Halo implant)

以NMOS为例,在沟道下一定深度的 位置注入一层高浓度的受主杂质(P型) 抑制体内的穿通; 若是深度控制不当, 太浅会导致阈值电压上升, 太深会导 致抑制效果不够明显。

在源漏两侧靠衬底一端注入一层较高 浓度的受主杂质(P型), 抑制整体的耗 尽区宽度; 若浓度太高, 在相同漏电 压下源漏耗尽区宽度会下降较多,电 场强度上升,器件抗击穿能力会下降。35

5. 热载流子效应

(1) 定义

当电子在大于10⁴V/cm的电场下运动时,它从电场获得的能量大于散射过程中与晶格原子碰撞损失的能量,因而电子的温度将会超过晶格温度,这样的电子就称为热电子。

- ◆ 热电子有足够的能量克服Si-SiO₂势垒,注入SiO₂栅介质;进入SiO₂的电子有两种走向:一是被散射回沟道,或者是进入栅极形成栅电流;二是陷在氧化层内,引起附加的界面态。
- ◆ 沟道电子从源端运动到漏端的过程中,碰撞电离产生空穴,形成衬底电流。

上述影响无论是哪一种,当影响足够大时都会使<mark>电路工作受阻,严重时</mark> 失效。

- 5. 热载流子效应
- (2) 热载流子效应抑制

短沟道时沟道中最大电场强度公式(近似)

$$E_{ymax} = \frac{(V_{DS} - V_{DSsat})}{0.22t_{ox}^{\frac{1}{3}} x_{j}^{\frac{1}{3}}}$$

降低 E_{ymax} 的措施:

- ① 增加氧化层 t_{ox} 厚度,增加漏源结深 x_i ;
- ② 降低V_{DS};
- ③ 采用新型漏结构。

前两种方式在实际工作中很难改变,因此一般采用第三种。

- 5. 热载流子效应
- (3) 新型漏结构
- 1° 双扩散漏 (DDD)

磷(P)扩散比砷(As)快 <u>左图即为红线区域离子浓度分布图</u>

离子注入后有退火激活工艺,离子 会发生扩散:

- ◆ 只注入P, 结深0.4μm;
- ◆ 只注入As, 结深0.23μm;
- ◆ 注入P和As,最大结深0.4μm (此处主要是P),但是浓度最大 处在0.23μm (此处P和AS)。

- 5. 热载流子效应
- (3) 热载流子效应抑制
- 1° 双扩散漏 (DDD)

只注入As时电场强度峰值最大,注入P时略有降低,双注入时,峰值电场最小。(三者面积一样大,表面处于同一电压大小下)

- 5. 热载流子效应
- (3) 热载流子效应抑制
- 2°轻掺杂漏结构(LDD)

重掺杂n+区旁边有一 轻掺杂n⁻区

红框区域离子浓度分布

- 5. 热载流子效应
- (3) 热载流子效应抑制
- 2° 轻掺杂漏结构 (LDD)

LDD掺杂结构峰值电场小于常规结构

普通结构峰值电场大小:

$$E_{ymax} = \frac{(V_{DS} - V_{DSsat})}{0.22t_{ox}^{\frac{1}{3}} x_{j}^{\frac{1}{3}}}$$

LDD峰值电场大小:

$$E_{ymax} \approx \frac{(V_{DS} - V_{DSsat} - E_{ymax}L_n -)}{0.22t_{ox}^{\frac{1}{3}}x_j^{\frac{1}{3}}}$$

$$E_{xymax} \approx \frac{(V_{DS} - V_{DSsat})}{(V_{DS} - V_{DSsat})}$$

$$E_{ymax} \approx \frac{(V_{DS} - V_{DSsat})}{0.22t_{ox}^{\frac{1}{3}} x_{j}^{\frac{1}{3}} + L_{n}}$$

 L_{n} : 轻掺杂区域宽度

载流子速度饱和效应

低电场下,载流子的漂移速度为 μE ; 在电场E逐渐增强时,载流子的动能也会逐渐增大,当载流子的能量超过光学声子的能量时,就会向晶格中释放光学声子,载流子的速度也会有所丢失。可见由于光学声子的作用,载流子的动能和漂移速度都不可能超过某个特定的数值,载流子的这个有限的漂移速度称为饱和漂移速度。

$$v(E_y) = \begin{cases} \mu_{eff} \frac{E_y}{1 + \frac{E_y}{E_{sat}}} & E_y < E_{sat} \\ v_{sat} \equiv \frac{\mu_{eff} E_{sat}}{2} & E_y \ge E_{sat} \end{cases}$$

考虑迁移率不是一个常数时,MOSFET的输出特性和简单模型推导出来的不一样,必须对迁移率修正(速度未饱和时)。

$$I_{DS} = \frac{\mu_{eff}}{1 + \frac{V_{DS}}{LE_{Sat}}} C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

短沟道情况下速度饱和效应容易出现,那么短沟道情况下器件的饱和电压、 饱和电流是多少?

短沟道MOSFET饱和区特性

I—速度未饱和区; II—速度饱和区

短沟道MOSFET饱和电流 短沟道MOSFET饱和电压

当短沟道器件处于速度饱和时,由 电流连续可知速度饱和区的电流和 速度不饱和区的电流相等。

速度饱和点P处的电流同时可用下面两个式子表示:

$$I_{DSsat}' = \frac{\mu_{eff}}{1 + \frac{V_{DSsat}'}{LE_{sat}}} C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DSsat}' - \frac{1}{2} V_{DSsat}'^2 \right]$$

区II (速度饱和区)电流

$$I_{DSsat}' = Q_n(P)Wv_{sat} = Wv_{sat}C_{ox}(V_{GS} - V_T - V_{DSsat}')$$

$$v_{sat} \equiv \frac{\mu_{eff} E_{sat}}{2}$$

解上述方程
$$V'_{DSsat} = \frac{LE_{sat}(V_{GS}-V_T)}{LE_{sat}+(V_{GS}-V_T)}$$
 代入区II $I_{DSsat}' = v_{sat}C_{ox}W\frac{(V_{GS}-V_T)^2}{LE_{sat}+(V_{GS}-V_T)^2}$

$$I_{DSsat}' = v_{sat}C_{ox}W \frac{(V_{GS}-V_T)^2}{LE_{sat}+(V_{GS}-V_T)}$$

长沟道、短沟道MOSFET输出特性对比

$$I_{DS} = \beta \left[(V_{GS} - V_T)V_{DS} - \frac{1}{2}V_{DS}^2 \right]$$

$$I_{DSsat} = \frac{1}{2}\beta(V_{GS} - V_T)^2 = \frac{1}{2}\beta V_{DSsat}^2$$

$$I_{DS}' = \beta \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

$$I_{DSsat}' = v_{sat}C_{ox}W \frac{(V_{GS} - V_T)^2}{LE_{sat} + (V_{GS} - V_T)}$$

短沟道MOSFET

长沟道、短沟道MOSFET直流特性小结

长沟道

短沟道

$$I_{DS} = \beta \left[(V_{GS} - V_T)V_{DS} - \frac{1}{2}V_{DS}^2 \right]$$

$$\beta = \mu C_{ox} \frac{W}{L}$$

线性区
$$I_{DS} = \beta \left[(V_{GS} - V_T)V_{DS} - \frac{1}{2}V_{DS}^2 \right] \quad I_{DS}' = \beta \left[(V_{GS} - V_T)V_{DS} - \frac{1}{2}V_{DS}^2 \right]$$
$$\beta = \mu C_{ox} \frac{W}{L}$$
$$\beta = \frac{\mu_{eff}}{1 + \frac{V_{DS}}{LE_{sat}}} C_{ox} \frac{W}{L}$$

$$\beta = \frac{\mu_{eff}}{1 + \frac{V_{DS}}{LE_{sat}}} C_{ox} \frac{W}{L}$$

 I_{DS} 饱和条件 $Q_n(L) = 0$

$$Q_n(L) = 0$$

$$V_{DSsat} = V_{GS} - V_T$$

$$v_n = v_{sat}$$

$$V'_{DSsat} = \frac{LE_{sat}(V_{GS} - V_T)}{LE_{sat} + (V_{GS} - V_T)}$$

饱和区
$$I_{DSsat} = \frac{1}{2}\beta(V_{GS} - V_T)^2 = \frac{1}{2}\beta V_{DSsat}^2$$
 $I_{DSsat}' = v_{sat}C_{ox}W \frac{(V_{GS} - V_T)^2}{LE_{sat} + (V_{GS} - V_T)}$

$$I_{DSsat}' = v_{sat}C_{ox}W \frac{(v_{GS}-v_T)^2}{LE_{sat}+(v_{GS}-v_T)}$$

§5.7.3 MOSFET按比例缩小规律

1. 按比例缩小规律概述

硅基半导体技术发展的Moore定律(等比例缩小定理): IC芯片集成度每3年提高4倍,器件特征尺寸缩小1.4倍;每一美元能买到的芯片性能每1.5年翻两倍以上。提高性价比是微电子发展的动力。

1. 按比例缩小规律概述

1. 按比例缩小规律概述

1. 按比例缩小规律概述

(1) 为什么要缩小?

速度上升, 功耗下降, 集成度上升, 功能上升, 性价比上升

(2) 怎样缩小?

按照一定的规则: ①恒电场; ②恒电压; ③准恒电压; ④亚阈值scaling

- 2. MOSFET的scaling规则
- (1) 恒电场 (CE) scaling

Scaled device

In the property of the property

① 尺寸缩小到1/k;—— 电场不变 电压缩小到1/k;——

$$W = \sqrt{\frac{2\varepsilon_{rs}\varepsilon_0 V}{qN_A}}$$

耗尽区缩小为1/k,则需 要将衬底浓度上升k倍

2. MOSFET的scaling规则

(1) 恒电场 (CE) scaling

尺寸缩小到1/k; 电压缩小到1/k; $x' = \frac{x}{k} \ y' = \frac{y}{k}$ $\phi'(x', y') = \frac{\phi(x, y)}{k}$

$$x' = \frac{x}{k} \ y' = \frac{y}{k}$$

$$\phi'(x',y') = \frac{\phi(x,y)}{k}$$

① 电场

$$E_x'(x',y') = -\frac{\partial \phi'(x',y')}{\partial x'} = -\frac{\frac{\phi(x,y)}{k}}{\frac{\partial x}{k}} = -\frac{\phi(x,y)}{\partial x} = E_x(x,y)$$

同理

$$E_{y}'(x',y') = E_{y}(x,y)$$

②验证泊松方程

$$\frac{\partial^2 \phi(x,y)}{\partial x^2} + \frac{\partial^2 \phi(x,y)}{\partial y^2} = -\frac{\rho(x,y)}{\varepsilon_s}$$

$$\frac{\partial^2 \phi'(x',y')}{\partial x'^2} + \frac{\partial^2 \phi'(x',y')}{\partial y'^2} = -\frac{\rho'(x',y')}{\varepsilon_s}$$

$$\rho'(x',y') = k\rho(x,y)$$

$$N_A' = kN_A$$

- 2. MOSFET的scaling规则
- (1) 恒电场 (CE) scaling

③ 耗尽区
$$W_D = \left[\frac{2\varepsilon_S(V_D + V_{DS})}{qN_A}\right]^{\frac{1}{2}}$$
 $W_D' = \left[\frac{2\varepsilon_S(V_D' + V_{DS}')}{qN_A'}\right]^{\frac{1}{2}}$

$$W_D' = \left[\frac{2\varepsilon_S(V_D' + V_{DS}')}{qN_A'}\right]^{\frac{1}{2}}$$

一般 $V_D \neq k V_D'$, 但当 $V_D' << V_{DS}'$ 时, 则 $W_D = k W_D'$

④ 电容
$$t'_{ox} = \frac{t_{ox}}{k}$$
 $C'_{ox} = kC_{ox}$ $C_{G} = WLC_{ox}$ $C'_{G} = W'L'C'_{ox}$

$$C'_G = \frac{C_G}{k}$$

⑤ 假设V₇也可以是1/k

$$I_{DS} = C_{ox}\mu_n \frac{w}{L} \left[(V_{GS} - V_T)V_{DS} - \frac{1}{2}V_{DS}^2 \right]$$

$$I_{DS}' = C_{ox}'\mu_n \frac{w'}{L'} \left[\frac{(V_{GS} - V_T)V_{DS}}{k^2} - \frac{1}{2}\frac{V_{DS}^2}{k^2} \right]$$

- 2. MOSFET的scaling规则
- (1) 恒电场 (CE) scaling

⑥ 电流密度
$$\frac{I'}{A'} = \frac{\frac{I}{k}}{\frac{A}{k^2}} = k \frac{I}{A}$$

变为原来的k倍,单位面积发热量上升

⑦ 沟道电阻
$$R' = \frac{V'}{I'} = \frac{\frac{V}{k}}{\frac{I}{k}} = R$$

同理
$$g'_m = g_m$$
 $g'_D = g_D$

$$g_D' = g_D$$

⑧ RC延迟时间 $\tau = RC_G$

$$\tau = RC_G$$

$$\tau' = R'C_G' = \frac{RC_G}{k} = \frac{\tau}{k}$$

⑨ 功耗

$$P = IV$$

$$P' = I'V' = \frac{IV}{k^2} = \frac{P}{k^2}$$

⑩功耗密度

$$\frac{P'}{A'} = \frac{\frac{P}{k^2}}{\frac{A}{k^2}} = \frac{P}{A}$$

$$CD = \frac{1}{A}$$

电路密度
$$CD = \frac{1}{A}$$
 $CD' = \frac{1}{A'} = k^2 CD$

2. MOSFET的scaling规则

(1) 恒电场 (CE) scaling

Constant Electrical-Field Scaling Rule

Constant Electrical Field Scaling Raic			
Requirement			
Device dimensions	L'=L/k	Channel length	
	W'=W/k	Channel width	
	$t_{ox}'=t_{ox}/k$	Oxide thickness	
	$x_j'=x_j/k$	S/D depth	
Device doping	N_A '= kN_A		
Applied voltage	$V_A'=V_A/k$		
Results			
(device parameters)			
Electrical field	E'(x',y')=E(x,y)		
Electric potential	$\phi'(x',y')=\phi(x,y)/k$		
Drain depletion width	$W_D'=W_D/k$		
Gate capacitance	$C_G'=C_G/k$		

2. MOSFET的scaling规则

(1) 恒电场 (CE) scaling

Constant Electrical-Field Scaling Rule

Drain current	I'=I/k	Not valid for subthreshold region
Current density	(I'/A')=k(I/A)	
Channel resistance	R'=R	
Results (circuit performance)		
Circuit delay time(RC)	$\tau' = \tau/k$	
Power IV	$P'=P/k^2$	
Power density P/A	P'/A'=P/A	
Circuit density CD	$CD'=k^2CD$	
Assumption		
Threshold voltage	$V_T'=V_T/k$	Not valid
Build-in voltage	V_{bi} '<< V_{DD} '	Not valid

2. MOSFET的scaling规则

(2) 恒电压 (CV) scaling

目的:

① 为了应用和标准化, V_{DD} 不能连续微缩:

```
V_{DD}=5V@0.8\mum,
```

$$V_{DD} = 3.3 \text{V} @ 0.35 \mu\text{m}$$

$$V_{DD} = 1.8 \text{V} @ 0.18 \mu\text{m}$$

$$V_{DD} = 1.3 \text{V} @ 0.13 \mu\text{m}$$

$$V_{DD}=1$$
V@90nm, $V_{DD}\sim1$ V@40nm;

② 阈值电压 V_T 和内建电势 V_D scaling困难。

做法: ① 尺寸缩小到原来的1/k; ②电压不变。

电场变为原来的λ倍

问题: ① 高电场造成迁移率下降; ②热载流子效应; ……

所以不能采用恒电压规则。

- 2. MOSFET的scaling规则
- (3) 准恒电压 (QCV) scaling —Generalized scaling

做法: ① 尺寸缩小到原来的1/k; ② 电场增加到v倍(通常 $1 \le v \le k$);

恒电场时v=1,恒电压时v=k

$$\phi'(x',y') = \frac{v}{k}\phi(x,y)$$

此时:

$$N_A' = \nu k N_A$$

• • • • •

功耗密度

$$\frac{P'}{A'} = \frac{\frac{v^3}{k^2}P}{\frac{A}{k^2}} = v^3 \frac{P}{A}$$

- 2. MOSFET的scaling规则
- (3) 准恒电压 (QCV) scaling —Generalized scaling Generalized Scaling Rule (1≤v≤k)

Requirement		
Device dimensions	L'=L/k	Channel length
	W'=W/k	Channel width
	$t_{ox}'=t_{ox}/k$	Oxide thickness
	$x_j'=x_j/k$	S/D depth
Device doping	N_A '= vkN_A	
Applied voltage	$V_A'=(v/k)V_A$	
Results (device parameters)		
Electrical field	E'(x',y')=vE(x,y)	
Electric potential	$\phi'(x',y')=(v/k)\phi(x,y)$	
Drain depletion width	$W_D'=W_D/k$	
Gate capacitance	$C_G'=C_G/k$	

- 2. MOSFET的scaling规则
- (3) 准恒电压 (QCV) scaling —Generalized scaling Generalized Scaling Rule (1≤v≤k)

Drain current	$I'=(v^2/k)I$	Not valid for subthreshold region
Current density	$(I'/A')=v^2k(I/A)$	
Channel resistance	R'=R/v	
Results (circuit performance)		
Circuit delay time(RC)	$\tau' = \tau/(vk)$	
Power IV	$P' = (v^3/k^2)P$	
Power density P/A	$P'/A'=v^3(P/A)$	Heavy burden
Circuit density CD	$CD'=k^2CD$	
Assumption		
Threshold voltage	$V_T'=(v/k)V_T$	Not valid
Build-in voltage	V_{bi} '<< V_{DD} '	Not valid

- 2. MOSFET的scaling规则
- (3) 准恒电压 (QCV) scaling —Generalized scaling

Power Dissipation Problem

芯片单位面 积功耗越来 越大,甚至 接近了核反 应堆。

2. MOSFET的scaling规则

- (4) 亚阈值scaling (Subthreshold scaling)
- ◆ 芯片单位面积功耗越来越大,但事实上芯片的功耗有很大一部分来 自漏电,即亚阈值特性较差。
- ◆ Subthreshold scaling: 用亚國特性(不变差)作为准则来scaling器件;
- ◆ 长沟道MOSFET: I_{DSst}基本上与V_{DS}无关;
- ◆ 短沟道MOSFET: I_{DSst}与V_{DS}有关;
- ◆ 经验准则—当 V_{DS} 增加0.5V, I_{DSst} 的增加

<10%: 长沟道

>10%: 短沟道

我们希望得到长沟道器件

经验公式(判断设计的器件属于长沟道还是短沟道):

$$L_{min} = A[x_j t_{ox} (W_S + W_D)^{\frac{1}{2}}]^{\frac{1}{3}}$$

- 2. MOSFET的scaling规则
- (4) 亚阈值scaling (Subthreshold scaling)

经验公式(判断设计的器件属于长沟道还是短沟道):

$$L_{min} = A[x_j t_{ox} (W_S + W_D)^{\frac{1}{2}}]^{\frac{1}{3}}$$

 $A: (0.4)^{\frac{1}{3}}$ Å $x_j: 结深[\mu m]$

 t_{ox} :氧化层厚度[Å]

SOURCE

 $W_{S/D}$: 源/漏耗尽区宽度 [μm]

- ◆ 当计算出来的 L_{min} 小于实际设计的L时,器件属于长沟道;
- ◆ 当计算出来的 L_{min} 大于实际设计的L时,器件属于短沟道。

因此我们希望 L_{min} 尽可能小,这样设计的器件才属于长沟道器件。

3. Scaling的限制及对策(新结构)

 $(1) x_j$

怎样得到尽量小的 L_{min} 呢? x_i 减小; t_{ox} 下降; W_s 和 W_D 下降

电流流经沟道后在红框区进入源区,经过一定距离后流入金属,流出器件; x_{p} 减小,电流在红框区发生"拥挤",电阻变大, g_{D} (线性区)下降, g_{m} (饱和区)下降。

引入自对准金属硅化物技术,电流流入源区后直接进入金属硅化物流出器件,减小器件电阻。

3. Scaling的限制及对策(新结构)

(2) t_{ox}

当氧化层薄到一定程度后,热载流子会大量穿过氧化层,从而出现栅极漏电;这就需要一个更厚的氧化层来阻止栅极漏电,但是又不影响器件性能;实际上₁, 下降相当于₂, 上升,那么我们能不能找一种物理厚度上升,但是电容密度却相差无几的材料呢?

3. Scaling的限制及对策(新结构)

(2) t_{ox}

EOT (Effective Oxide Thickness): 有效氧化层厚度 (将high-k材料的物理厚度 换算成氧化硅的厚度)。

同等电容密度下, high-k材料的物理厚度更大,漏电更小。

- 3. Scaling的限制及对策(新结构)
- (3) W_S , W_D
 - ① N_{ch} (沟道处衬底浓度) 和 V_T 的scaling

 W_s 和 W_D 下降,则需要半导体衬底浓度上升,以NMOS为例,即 N_A 上升;同时希望阈值电压 V_T 下降(或者至少不上升),则需要 N_A 下降,两者矛盾;

解决方法: Non-uniform doping (Retrograded well doping)

为了同时满足上述两个条件,采用不均匀掺杂,使半导体靠近氧化层区域(沟道处)的衬底浓度低,其它区域的浓度高,这样既保证了低的阈值电压,又使 W_s 和 W_p 下降了,计算 V_T 时,采用近似 V_s = $2V_{B,ch}$,则有:

$$V_T = V_{FB} + \frac{2k_0T}{q} \ln\left(\frac{N_{ch}}{n_i}\right) + \frac{1}{C_{ox}} q N_{sub} \left[\frac{2\varepsilon_s \frac{2k_0T}{q} \ln\left(\frac{N_{ch}}{n_i}\right)}{q N_{sub}}\right]^{\frac{1}{2}}$$

- 3. Scaling的限制及对策(新结构)
- (3) W_S , W_D
 - $\bigcirc E_{ymax}$

衬底浓度升高,会导致漏结区电场强度上升;

漏结击穿~0.6MV/cm;

电场在达到漏结击穿的电场强度之前,会先达到漏端热载流子效应要求,即≤0.2MV/cm;

Scaling措施: LDD结构。

3. Scaling的限制及对策(新结构)

(4) 现状与未来

90 nm 2003 65 nm 2005 Manufacturing

SiGe S/D **Strained** Silicon

SiGe S/D **Strained** Silicon

Research Options:

High-K & Metal Gate Non-planar Trigate III-V, CNT, NW

- 3. Scaling的限制及对策(新结构)
- (4) 现状与未来

沟道由二维变成三维,FinFET

开启时,导电沟道从一个平面变成三个平面,电流密度更大; <u>关断时,三面加压,耗尽更充分,关得更</u>死。

三维立体晶体管—FinFET

3. Scaling的限制及对策(新结构)

(4) 现状与未来

胡正明 (Chenming Hu) 加州大学伯克利分校 (UC Berkeley)

- 3. Scaling的限制及对策(新结构)
- (4) 现状与未来

吴汉明院士(院长)

- 微电子工艺技术专家,中芯国际集成电路制造有限公司技术研发副总裁,灿芯创智微电子技术(北京)有限公司总裁。
- ▶ 中国工程院院士(2019)、第五届全国杰出专业技术人才(2014)、北京学者(2013)。

- 主要从事高密度等离子体深亚微米刻蚀研究,研发了世界上第一套等离子体工艺模拟的商业软件并得到广泛使用。2001年进入中芯国际集成电路制造有限公司后,组建了先进刻蚀技术工艺部,在中国实现了用于大生产的双镶嵌法制备工艺,为中国首次实现铜互连提供了工艺基础。
- 发表论文100多篇;申报发明专利84项,其中国际专利24项;国家十一五02重大专项项目总负责人;国家十二五重大专项项目首席科学家;国家973项目首席科学家。
- 获2008年国家科技进步奖二等奖(第二完成人)、2013年国家科技进步 奖二等奖(第一完成人)。

MOSFET基本知识体系框架

第五章重点概念

第一节: MOS结构基本理论, 半导体表面出现平带、积累、耗尽反型的情况; MOSFET的基本结构, 制备、分类与工作原理;

第二节: MOSFET阈值电压的定义及计算,影响阈值电压的因素,功函数差,衬底浓度,界面固定电荷,离子注入调整,衬偏效应;

第三节: MOSFET直流伏安特性, 弱反型(亚阈值)区的伏安特性, 亚阈值摆幅; 直流参数, 包括饱和源漏电流, 截止漏电流, 导通电阻等, 低频小信号参数; MOSFET的击穿特性, 源漏击穿和栅击穿; MOSFET的二级效应, 非常数表面迁移率, 体电荷变化效应, 非零漏电导, Gate-Induced Drain Leakage;

第四节: MOSFET频率特性, 低频等效电路, 高频等效电路, 跨导截止频率, 截止频率, 提高MOSFET频率特性的方法;

第五章重点概念

第五节: MOSFET开关特性, 电阻型负载MOS倒相器, 增强型-增强型MOS倒相器(E-E MOS), 增强型-耗尽型MOS倒相器(E-D MOS), 互补MOS倒相器(CMOS);

第六节: MOSFET功率特性, 4种功率MOSFET结构及优缺点;

第七节:小尺寸MOSFET特性,短沟道效应,包括阈值电压的卷曲,漏致势垒降低,亚阈特性退化,速度饱和效应,热载流子效应;窄沟道效应,小尺寸MOSFET直流特性,MOSFET的按比例缩小原则,包括恒电场(CE) scaling,恒电压(CV) scaling,准恒电压(QCV) scaling,亚阈值scaling (Subthreshold scaling),scaling的限制及对策。

第五章思考题

- ◆ MOS电容在不同电压下其半导体表面有哪几种状态?
- ◆ MOS电容中半导体表面强反型后,为什么耗尽层宽度会达到一个极大值?
- ◆ MOSFET的实际阈值电压由几部分构成?
- ◆有哪些因素可以影响MOSFET的阈值电压?
- ◆ 为什么MOSFET栅电极最开始使用的是金属铝,后期换为多晶 硅,最后又换成了金属电极?
- ◆ MOSFET衬底不接地会有什么影响?
- ◆ MOSFET漏极电压会影响氧化层上的压降吗? 反型电子呢?
- ◆解释缓变沟道近似的实质意义?
- ◆氧化层和半导体界面处的固定电荷会影响亚阈值摆幅吗?
- ◆ 为什么亚阈值摆幅越小越好? 有那些方法可以减小亚阈值摆幅?
- ◆ MOSFET的击穿有哪些种类,发生在哪里?
- ◆ 试想一下提高MOSFET击穿电压的方法有什么?
- ◆ MOSFET沟道中的载流子迁移率是常数吗?如果不是会受到什么因素的影响?带来什么结果?

第五章思考题

- ◆ 体电荷模型与简单模型的区别在哪里?
- ◆ MOSFET的跨导截止频率与截止频率的定义是什么?提高 MOSFET的频率特性可以通过哪些方式?
- ◆ CMOS反相器为什么功耗相比于其他类型的倒相器要小的多? 它的主要功耗来自哪里?
- ◆ 功率MOSFET有什么优缺点?
- ◆ 当MOSFET尺寸缩小后会有哪些不利影响出现?
- ◆ MOSFET的短沟道效应有哪些?
- ◆ 为什么MOSFET短沟道阈值电压下降,而窄沟道阈值电压上升?
- ◆ 热电子会带来哪些不利影响? 怎样抑制热电子效应?
- ◆ 为什么短沟道MOSFET的亚阈值特性会比较差?怎样解决?
- ◆ 短沟道MOSFET的直流热性与长沟道MOSFET的直流特性一样吗? 电流饱和条件是什么?
- ◆ MOSFET的按比例缩小原则有哪几种?
- ◆如果按照亚阈值scaling规则,有什么方法让我们得到长沟道 MOSFET?