Machine Learning (CE 40717) Fall 2025

Ali Sharifi-Zarchi

CE Department Sharif University of Technology

November 1, 2025

- Introduction
- 2 Decision surface
- **3** MLE and MAP
- 4 Gradient descent
- **6** Multi-class logistic regression
- 6 References

Introduction

Introduction 000000000

- 3 MLE and MAP
- 4 Gradient descent
- 6 Multi-class logistic regression

Binary Classification Problem

Introduction 000000000

- Consider a **binary classification** task:
 - Email classification: Spam / Not Spam
 - Online transactions: Fraudulent / Genuine
 - Tumor diagnosis: Malignant / Benign

Define the target variable formally:

$$y \in \{0, 1\},$$

$$\begin{cases} 0 & \text{Negative class (e.g., benign tumor)} \\ 1 & \text{Positive class (e.g., malignant tumor)} \end{cases}$$

Linear Regression for Classification

Introduction

• A natural approach is to use linear regression:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

and define a threshold at 0.5 for prediction:

$$\hat{y} = \begin{cases} 1, & h_{\theta}(\mathbf{x}) \ge 0.5 \\ 0, & h_{\theta}(\mathbf{x}) < 0.5 \end{cases}$$

• Here, \hat{y} is the **predicted class label** (i.e., the model's guess for y). It converts the continuous output of $h_{\theta}(\mathbf{x})$ into a discrete class (0 or 1).

Introduction

Limitations of Linear Regression for Classification

- The model's output, $h_{\theta}(\mathbf{x})$, is unbounded and can produce predictions greater than 1 or less than 0.
- Linear regression does not provide probabilistic outputs.
- The decision boundary may be highly sensitive to outliers.

Requirement: $0 \le h_{\theta}(\mathbf{x}) \le 1$

Introduction

Limitations of Perceptron with Step Activation for Classification

• As we saw earlier, perceptron Uses a step activation

$$f(z) = \begin{cases} 1, & z \ge 0 \\ 0, & z < 0 \end{cases}$$

- The step function has **slope = 0** almost everywhere (non-differentiable at 0).
- No gradient means it cannot use gradient-based optimization.
- Produces hard class labels (0/1), not probabilities, thus we cannot measure model confidence probabilistic outputs are preferred.

Properties of a Good Classifier

Introduction

Therefore, we prefer a model that:

- Outputs **probabilities** for each class, so it has **bounded outputs** in [0, 1], making it less sensitive to outliers.
- Shows model confidence through its probabilistic output.
- Has a **differentiable**, **convex objective with non-zero derivative**, allowing efficient optimization with gradient-based methods.

Introduction

Introduction

- Suppose we have a binary classification task (so K = 2).
- By observing age, gender, height, weight and BMI we try to distinguish if a person is overweight or not overweight.

Age	Gender	Height (cm)	Weight (kg)	BMI	Overweight	
25	Male	175	80	25.3	0	
30	Female	160	60	22.5	0	
35	Male	180	90	27.3	1	

- We denote the features of a sample with vector *x* and the label with *y*.
- In logistic regression we try to find an $\sigma(\mathbf{w}^{\top}\mathbf{x})$ which predicts **posterior** probabilities $\mathbb{P}(y=1|\mathbf{x})$.

Introduction (cont.)

Introduction

• $\sigma(\mathbf{w}^{\top}x)$: probability that y = 1 given x (parameterized by \mathbf{w})

$$\mathbb{P}(y = 1 | \mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w}^{\top} x)$$

$$\mathbb{P}(y = 0 | \mathbf{x}, \mathbf{w}) = 1 - \sigma(\mathbf{w}^{\top} x)$$

- We need to look for a function which gives us an output in the range [0, 1]. (like a probability).
- Let's denote this function with $\sigma(.)$ and call it the **activation function**.

Introduction (cont.)

Introduction 0000000000

• Sigmoid (logistic) function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

• Smooth, bounded in (0,1), and differentiable.

$$\sigma'(z) = \frac{e^{-z}}{(1 + e^{-z})^2} = \underbrace{\frac{1}{1 + e^{-z}}}_{\sigma(z)} \underbrace{\frac{e^{-z}}{1 + e^{-z}}}_{1 - \sigma(z)}$$
$$= \sigma(z) (1 - \sigma(z))$$

Introduction (cont.)

Introduction

• The sigmoid function takes a number as input but we have:

$$\mathbf{x} = [x_0 = 1, x_1, \dots, x_d]$$

$$\mathbf{w} = [w_0, w_1, \dots, w_d]$$

- So we can use the **dot product** of x and w.
- We have $0 \le \sigma(\mathbf{w}^{\top}\mathbf{x}) \le 1$. which is the estimated probability of y = 1 on input x.
- An Example : A basketball game (Win, Lose)
 - $\sigma(\mathbf{w}^{\top}\mathbf{x}) = 0.7$
 - In other terms 70 percent chance of winning the game.

- Introduction
- 2 Decision surface
- 3 MLE and MAP
- 4 Gradient descent
- 6 Multi-class logistic regression

Decision surface

- Decision surface or decision boundary is the region of a problem space in which the output label of a classifier is ambiguous. (could be linear or non-linear)
- In binary classification it is where the probability of a sample belonging to each y = 0 and y = 1 is equal.

 Decision boundary hyperplane always has one less dimension than the feature space.
 Decision surface
 MLE and MAP
 Gradient descent
 Multi-class logistic regression
 Ref

 00 ● 000
 0000000
 00000000
 00000000
 00000000

Decision surface (cont.)

• An example of linear decision boundaries:

Decision surface (cont.)

- Back to our logistic regression problem.
- Decision surface $\sigma(\mathbf{w}^{\top}\mathbf{x}) = \mathbf{constant}$.

$$\sigma(\mathbf{w}^{\top}\mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^{\top}\mathbf{x})}} = 0.5$$

- Decision surfaces are **linear functions** of x
 - if $\sigma(\mathbf{w}^{\top}\mathbf{x}) \geq 0.5$ then $\hat{v} = 1$, else $\hat{v} = 0$
 - Equivalently, since $\sigma(z) \ge 0.5$ only when $z \ge 0$, this means:
 - if $\mathbf{w}^{\top} \mathbf{x} \ge 0$ then decide $\hat{y} = 1$, else $\hat{y} = 0$

\hat{v} is the predicted label

Decision boundary example

$$\sigma(\mathbf{w}^{\top}\mathbf{x}) = \sigma(w_0 + w_1x_1 + w_2x_2)$$

Predict y = 1 if $-3 + x_1 + x_2 \ge 0$

Non-linear decision boundary example

$$\sigma(\mathbf{w}^{\top}\mathbf{x}) = \sigma(w_0 + w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_2^2)$$

We can learn more complex decision boundaries when having higher order terms

Predict
$$y = 1$$
 if $-1 + x_1^2 + x_2^2 \ge 0$

- Introduction
- **3** MLE and MAP
- 4 Gradient descent
- 6 Multi-class logistic regression

Maximum Likelihood Estimation (MLE)

• For *n* independent samples, the likelihood is:

$$\mathscr{L}(\mathbf{w}) = \prod_{i=1}^{n} \mathbb{P}(y^{(i)}|\mathbf{x}^{(i)},\mathbf{w})$$

• For binary classification $(y \in \{0, 1\})$:

$$\mathbb{P}(y^{(i)}|\mathbf{x}^{(i)},\mathbf{w}) = \sigma(\mathbf{w}^{\top}\mathbf{x}^{(i)})^{y^{(i)}} (1 - \sigma(\mathbf{w}^{\top}\mathbf{x}^{(i)}))^{1 - y^{(i)}}$$

- This compact form works because $y^{(i)} \in \{0, 1\}$:
 - If $y^{(i)} = 1$, the expression becomes $P(y = 1 | \mathbf{x}^{(i)}, \mathbf{w}) = \sigma(\mathbf{w}^{\top} \mathbf{x}^{(i)})$.
 - If $y^{(i)} = 0$, the expression becomes $P(y = 0 | \mathbf{x}^{(i)}, \mathbf{w}) = 1 \sigma(\mathbf{w}^{\top} \mathbf{x}^{(i)})$.
- Log-likelihood:

$$\log \mathcal{L}(\mathbf{w}) = \sum_{i=1}^{n} \left[y^{(i)} \log \sigma(\mathbf{w}^{\top} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\mathbf{w}^{\top} \mathbf{x}^{(i)})) \right]$$

From Likelihood to Cost Function

Maximizing the likelihood ⇔ minimizing the negative log-likelihood (NLL):

$$J_{\text{MLE}}(\mathbf{w}) = -\log \mathcal{L}(\mathbf{w})$$

• Can be written as an integral over the data distribution:

$$J_{\text{MLE}}(\mathbf{w}) = -\int \mathbb{P}(\mathbf{x}, y) \log \mathbb{P}(y | \mathbf{x}, \mathbf{w}) \, d\mathbf{x} \, dy$$

Empirical estimate (training data):

$$J_{\text{MLE}}(\mathbf{w}) = -\frac{1}{n} \sum_{i=1}^{n} \log \mathbb{P}(y^{(i)} | \mathbf{x}^{(i)}, \mathbf{w})$$

• This is exactly the **cross-entropy loss** used in classification.

Maximum A Posteriori Estimation (MAP)

• MAP incorporates prior knowledge about parameters:

$$\mathbf{w}_{\mathrm{MAP}} = \arg\max_{\mathbf{w}} \mathbb{P}(\mathbf{w}|D)$$

Using Bayes' rule:

$$\mathbb{P}(\mathbf{w}|D) \propto P(D|\mathbf{w})P(\mathbf{w})$$

• Equivalently:

$$\mathbf{w}_{\text{MAP}} = \arg\max_{\mathbf{w}} \left[\log \mathbb{P}(D|\mathbf{w}) + \log \mathbb{P}(\mathbf{w}) \right]$$

Cost function:

$$J_{\text{MAP}}(\mathbf{w}) = -\sum_{i=1}^{n} \log \mathbb{P}(y^{(i)}|\mathbf{x}^{(i)}, \mathbf{w}) - \log \mathbb{P}(\mathbf{w})$$

MAP with Gaussian Prior (L2 Regularization)

• Gaussian prior: $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

$$\mathbb{P}(\mathbf{w}) \propto \exp\left(-\frac{\|\mathbf{w}\|_2^2}{2\sigma^2}\right)$$

• MAP cost:

$$J_{\text{MAP}}(\mathbf{w}) = J_{\text{MLE}}(\mathbf{w}) + \lambda \|\mathbf{w}\|_2^2$$

• L2 penalty encourages **weight shrinkage** (smooth regularization, no sparsity).

MAP with Laplace Prior (L1 Regularization)

• Laplace prior: $\mathbf{w} \sim \text{Laplace}(0, b)$

$$\mathbb{P}(\mathbf{w}) \propto \exp\left(-\frac{\|\mathbf{w}\|_1}{b}\right)$$

• MAP cost:

$$J_{\text{MAP}}(\mathbf{w}) = J_{\text{MLE}}(\mathbf{w}) + \lambda \|\mathbf{w}\|_1$$

• L1 penalty encourages **sparsity** (feature selection).

Ridge vs. Lasso (Recap)

Ridge Regression (L2)	Lasso Regression (L1)		
Constraint: $\ \mathbf{w}\ _2^2 \le t$ (L2 ball).	Constraint: $\ \mathbf{w}\ _1 \le t$ (L1 ball).		
Contours of $J(\mathbf{w})$ typically touch the constraint boundary at smooth points.	Contours often hit the sharp corners of the diamond.		
Produces small but nonzero coefficients (no exact sparsity).	Produces sparse solutions (some coefficients exactly zero).		
Differentiable everywhere; the regularizer $\ \mathbf{w}\ _2^2$ is smooth.	Not differentiable at $w_i = 0$; $\ \mathbf{w}\ _1$ has sharp corners.		
Strongly convex ⇒ guarantees a unique optimum .	Not strongly convex ⇒ may yield multi- ple optima .		

- 3 MLE and MAP
- 4 Gradient descent
- 6 Multi-class logistic regression

Gradient descent

• Remember from previous slides:

$$J(\mathbf{w}) = \sum_{i=1}^{n} -y^{(i)} \log(\sigma(\mathbf{w}^{\top} \mathbf{x}^{(i)})) - (1 - y^{(i)}) \log(1 - \sigma(\mathbf{w}^{\top} \mathbf{x}^{(i)}))$$

Update rule for gradient descent:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla_{\mathbf{w}} J(\mathbf{w}^t)$$

• With $J(\mathbf{w})$ definition for logistic regression we get:

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \sum_{i=1}^{n} (\sigma(\mathbf{w}^{\top} \mathbf{x}^{(i)}) - y^{(i)}) \mathbf{x}^{(i)}$$

Gradient descent (cont.)

Let's find the derivative from the previous slide step by step:

• For one sample, we have:

$$J_i = -y^{(i)} \log \sigma(z^{(i)}) - (1 - y^{(i)}) \log (1 - \sigma(z^{(i)})), \quad z^{(i)} = \mathbf{w}^{\top} \mathbf{x}^{(i)}$$

• Differentiate w.r.t. $z^{(i)}$:

$$\frac{\partial J_i}{\partial z^{(i)}} = -\frac{y^{(i)}}{\sigma(z^{(i)})}\sigma'(z^{(i)}) + \frac{1 - y^{(i)}}{1 - \sigma(z^{(i)})}\sigma'(z^{(i)}) = \sigma(z^{(i)}) - y^{(i)}$$

• By chain rule we get:

$$\frac{\partial J_i}{\partial \mathbf{w}} = \frac{\partial J_i}{\partial z^{(i)}} \cdot \frac{\partial z^{(i)}}{\partial \mathbf{w}} = (\sigma(z^{(i)}) - y^{(i)}) \mathbf{x}^{(i)}$$

Summing over all samples gives the result:

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \sum_{i=1}^{n} (\sigma(\mathbf{w}^{\top} \mathbf{x}^{(i)}) - y^{(i)}) \mathbf{x}^{(i)}$$

Gradient descent (cont.)

 Compare the gradient of logistic regression with the gradient of SSE in linear regression:

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \sum_{i=1}^{n} (\sigma(\mathbf{w}^{\top} \mathbf{x}^{(i)}) - y^{(i)}) \mathbf{x}^{(i)}$$

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{w}^{\top} \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)}$$

Loss function

- Loss function is a single overall measure of loss incurred for taking our decisions (over entire dataset).
- This is the **cross-entropy** (or log) loss for a single sample:

$$J(y, \sigma(\mathbf{w}^{\top} \mathbf{x})) = -y \log(\sigma(\mathbf{w}^{\top} \mathbf{x})) - (1 - y) \log(1 - \sigma(\mathbf{w}^{\top} \mathbf{x}))$$

• Since in binary classification $y \in \{0, 1\}$, the loss simplifies:

$$J(y, \sigma(\mathbf{w}^{\top} \mathbf{x})) = \begin{cases} -\log(\sigma(\mathbf{w}^{\top} \mathbf{x})) & \text{if } y = 1\\ -\log(1 - \sigma(\mathbf{w}^{\top} \mathbf{x})) & \text{if } y = 0 \end{cases}$$

Convexity of Cross-Entropy Loss

This is the logistic regression loss over the dataset:

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left[-y^{(i)} \log \sigma(\mathbf{w}^{\top} \mathbf{x}^{(i)}) - (1 - y^{(i)}) \log(1 - \sigma(\mathbf{w}^{\top} \mathbf{x}^{(i)})) \right],$$

Define $\hat{\mathbf{y}}^{(i)} = \sigma(\mathbf{w}^{\top}\mathbf{x}^{(i)})$. Then the gradient is:

$$\nabla_{\mathbf{w}}J(\mathbf{w}) = \sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)}) \mathbf{x}^{(i)}.$$

The Hessian (second derivative matrix) is:

$$\nabla_{\mathbf{w}}^2 J(\mathbf{w}) = \sum_{i=1}^n \hat{y}^{(i)} (1 - \hat{y}^{(i)}) \mathbf{x}^{(i)} (\mathbf{x}^{(i)})^\top = \mathbf{X}^\top \mathbf{D} \mathbf{X},$$

where $\mathbf{D} = \operatorname{diag}(\hat{y}^{(i)}(1-\hat{y}^{(i)}))$ and each $\hat{y}^{(i)}(1-\hat{y}^{(i)}) \ge 0$. For any vector \mathbf{v} ,

$$\mathbf{v}^{\top} \nabla_{\mathbf{w}}^{2} J(\mathbf{w}) \mathbf{v} = \sum_{i=1}^{n} \hat{y}^{(i)} (1 - \hat{y}^{(i)}) (\mathbf{v}^{\top} \mathbf{x}^{(i)})^{2} \ge 0.$$

Hence, the Hessian is **positive semidefinite (PSD)**, and $J(\mathbf{w})$ is **convex**.

Loss function (cont.)

 Note that this is different from the zero-one loss, which simply counts misclassifications:

$$J_{0-1}(y,\hat{y}) = \begin{cases} 1 & \text{if } y \neq \hat{y} \\ 0 & \text{if } y = \hat{y} \end{cases}$$

- (\hat{y} is the predicted label and y is the true label)
- We use cross-entropy (logistic loss) instead of zero-one loss because the zero-one loss function is non-differentiable and non-convex.
- The cross-entropy loss is a smooth, convex, and differentiable substitute, which allows us to use optimization methods like gradient descent.

- Introduction
- 3 MLE and MAP
- 4 Gradient descent
- **6** Multi-class logistic regression

Multi-class logistic regression

• Now consider a problem where we have *K* classes and every sample only belongs to one class (for simplicity).

Binary classification:

Multi-class classification:

- For each class k, $\sigma_k(\mathbf{x}; \mathbf{W})$ predicts the probability of y = k.
 - i.e., $\mathbb{P}(y = k | \mathbf{x}, \mathbf{W})$
- For each data point \mathbf{x} , $\sum_{k=1}^{K} \mathbb{P}(y = k | \mathbf{x}, \mathbf{W})$ must be 1
 - W denotes a matrix of \mathbf{w}_i 's in which each \mathbf{w}_i is a weight vector dedicated for class label i.
- On a new input x, to make a prediction, we pick the class that maximizes $\sigma_k(\mathbf{x}; \mathbf{W})$:

$$\alpha(\mathbf{x}) = \underset{k=1,...,K}{\operatorname{arg\,max}} \sigma_k(\mathbf{x}; \mathbf{W})$$

if $\sigma_k(\mathbf{x}; \mathbf{W}) > \sigma_i(\mathbf{x}; \mathbf{W}) \ \forall j \neq k$ then decide C_k

• K > 2 and $y \in \{1, 2, ..., K\}$

$$\sigma_k(\mathbf{x}, \mathbf{W}) = \mathbb{P}(y = k | \mathbf{x}) = \frac{\exp(\mathbf{w}_k^{\top} \mathbf{x})}{\sum_{j=1}^K \exp(\mathbf{w}_j^{\top} \mathbf{x})}$$

- Normalized exponential (Aka **Softmax**)
- if $\mathbf{w}_k^{\top} \mathbf{x} \gg \mathbf{w}_j^{\top} \mathbf{x}$ for all $j \neq k$ then $\mathbb{P}(C_k | \mathbf{x}) \approx 1$ and $\mathbb{P}(C_j | x) \approx 0$
- Note: remember from Bayes theorem:

$$\mathbb{P}(C_k|x) = \frac{\mathbb{P}(\mathbf{x}|C_k)\mathbb{P}(C_k)}{\sum_{j=1}^K \mathbb{P}(\mathbf{x}|C_j)\mathbb{P}(C_j)}$$

- Softmax function **smoothly** highlights the maximum probability and is differentiable.
- Compare it with max(.) function which is strict and non-differentiable
- Softmax can also handle negative values because we are using exponential function
- And it gives us probability for each class since:

$$\sum_{k=1}^{K} \frac{\exp(\mathbf{w}_{k}^{\top} \mathbf{x})}{\sum_{j=1}^{K} \exp(\mathbf{w}_{j}^{\top} \mathbf{x})} = 1$$

• An example of applying softmax (note that $z_i = \mathbf{w}^{\top} \mathbf{x}^{(i)}$):

- Again we set $I(\mathbf{W})$ as negative of log likelihood.
- We need $\mathbf{W}_{\text{MLE}} = \operatorname{arg\,min} J(\mathbf{W})$

$$J(W) = -\log \prod_{i=1}^{n} \mathbb{P}(\mathbf{y}^{(i)}|\mathbf{x}^{(i)}, \mathbf{W})$$
$$= -\log \prod_{i=1}^{n} \prod_{k=1}^{K} \sigma_{k}(\mathbf{x}^{(i)}; \mathbf{W})^{y_{k}^{(i)}}$$
$$= -\sum_{i=1}^{n} \sum_{k=1}^{K} y_{k}^{(i)} \log(\sigma_{k}(\mathbf{x}^{(i)}; \mathbf{W}))$$

- If **i-th** sample belongs to class k then $y_k^{(i)}$ is 1 else 0.
- Again no closed-from solution for W_{MLE}

• From previous slides we have:

$$J(\mathbf{W}) = -\sum_{i=1}^{n} \sum_{k=1}^{K} y_k^{(i)} \log(\sigma_k(\mathbf{x}^{(i)}; \mathbf{W}))$$

• In which:

$$\mathbf{W} = [\mathbf{w}_{1}, \mathbf{w}_{2}, \dots, \mathbf{w}_{K}], \quad \mathbf{Y} = \begin{pmatrix} \mathbf{y}^{(1)} \\ \mathbf{y}^{(2)} \\ \vdots \\ \mathbf{y}^{(n)} \end{pmatrix} = \begin{pmatrix} y_{1}^{(1)} & \cdots & y_{K}^{(1)} \\ y_{1}^{(2)} & \cdots & y_{K}^{(2)} \\ \vdots & \ddots & \vdots \\ y_{1}^{(n)} & \cdots & y_{K}^{(n)} \end{pmatrix}$$

- **v** is a vector of length *K* (1-of-*K* encoding)
 - For example $\mathbf{y} = [0, 0, 1, 0]^{\top}$ when the target class is C_3 .

• Update rule for gradient descent:

$$\mathbf{w}_{j}^{t+1} = \mathbf{w}_{j}^{t} - \eta \nabla_{\mathbf{W}} J(\mathbf{W}^{t})$$
$$\nabla_{\mathbf{w}_{j}} J(\mathbf{W}) = \sum_{i=1}^{n} (\sigma_{j}(\mathbf{x}^{(i)}; \mathbf{W}) - y_{j}^{(i)}) \mathbf{x}^{(i)}$$

• \mathbf{w}_{j}^{t} denotes the weight vector for class j (since in multi-class LR, each class has its own weight vector) in the t-th iteration

- Introduction
- 3 MLE and MAP
- 4 Gradient descent
- 6 Multi-class logistic regression
- 6 References

Contributions

- These slides are authored by:
 - Alireza Mirrokni
 - Danial Gharib
 - · Amir Malek Hosseini
 - Aida Jalali

- [1] M. Soleymani Baghshah, "Machine learning." Lecture slides.
- [2] A. Ng, "Ml-005, lecture 6." Lecture slides.
- [3] C. M. Bishop, Pattern Recognition and Machine Learning. Information Science and Statistics, New York, NY: Springer, 1 ed., Aug. 2006.
- [4] S. Fidler, "Csc411." Lecture slides.
- [5] A. Ng and T. Ma, *CS229 Lecture Notes*. Updated June 11, 2023.