

ÁLGEBRA

Chapter 3

LEVEL

NÚMERO COMBINATORIO

ALGEBRA

Índice

01. MotivatingStrategy >

02. HelicoTheory

03. HelicoPractice

04. HelicoWorkshop 🕞

MOTIVATING STRATEGY

PASCAL

TRIÁNGULO DE PASCAL POTENCIA DE UNA SUMA

1
$$\Rightarrow$$
 $(a+b)^0 = 1$
1 1 \Rightarrow $(a+b)^1 = 1a+1b$
1 2 1 \Rightarrow $(a+b)^2 = 1a^2 + 2ab + 1b^2$
1 3 3 1 \Rightarrow $(a+b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3$
1 4 6 4 1 \Rightarrow $(a+b)^4 = 1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4$
1 5 10 10 5 1

...

...

Resumen

HELICO THEORY

NÚMERO COMBINATORIO

I) DEFINICIÓN: Sea n natural y k entero no negativo tal que n es igual o mayor que k, se define:

$$C_k^n = \frac{n!}{k! (n-k)!}$$
 Se lee: combinatorio de "n" en "k"

Ejemplo:

$$C_2^6 = \frac{6!}{2!.(6-2)!} = \frac{6.5.4!}{2.4!} = 15$$

REGLA PRÁCTICA:

$$C_2^6 = \frac{(6)(5)}{(2)(1)} = 15$$

$$C_3^7 = \frac{(7)(6)(5)}{(3)(7)(1)} = 35$$

II) PROPIEDADES:

1)
$$C_n^n = 1$$

$$C_7^7 = 1$$

2)
$$C_0^n = 1$$

$$C_0^5 = 1$$

3)
$$C_1^n = n$$

$$C_1^9 = 9$$

$$C_k^n = C_{n-k}^n$$

$$C_{10}^{14} = C_4^{14}$$

Si:
$$C_k^n = C_p^n$$

$$\Leftrightarrow k = p \lor k + p = n$$

6)
$$C_k^n + C_{k+1}^n = C_{k+1}^{n+1}$$

$$C_4^9 + C_5^9 = C_5^{10}$$

 \bigcirc

Problema 02

Problema 03

Problema 04

Problema 05

HELICO PRACTICE

Calcule

$$M = C_3^7 + C_1^5 + C_9^9 - C_0^{15}$$

RECORDEMOS

$$C_1^5 = 5$$

$$C_9^9 = 1$$

$$C_0^{15} = 1$$

Resolución:

$$M = C_3^7 + C_1^5 + C_9^9 - C_0^{15}$$

$$M = \frac{(7)(6)(5)}{(3)(2)(1)} + 5 + 1' - 1'$$

$$M = 35 + 5$$

$$M = 40$$

Rpta.:

40

Resolución:

Calcule la suma de valores de "n"

$$C_{3n-1}^{28} = C_{n+5}^{28}$$

$$C_{3n-1}^{28} = C_{n+5}^{28}$$

$$3n-1=n+5$$
 \vee $3n-1+n+5=28$

$$2n = 6$$

$$4n + 4 = 28$$

$$n = 3$$

$$4n = 24$$

$$n = 6$$

RECORDEMOS

Si:
$$C_k^n = C_p^n \rightarrow k = p$$
 ó $k + p = n$

La suma de valores será: 9

Rpta.:

9

Problema 03

Sume:

$$M = C_{15}^{20} + C_{16}^{20} + C_{17}^{21} + C_{18}^{22} + C_{19}^{23}$$

RECORDEMOS

$$C_k^n + C_{k+1}^n = C_{k+1}^{n+1}$$

Resolución:

$$M = C_{15}^{20} + C_{16}^{20} + C_{17}^{21} + C_{18}^{22} + C_{19}^{23}$$

$$M = C_{16}^{21} + C_{17}^{21} + C_{18}^{22} + C_{19}^{23}$$

$$M = C_{17}^{22} + C_{18}^{22} + C_{19}^{23}$$

$$M = C_{18}^{23} + C_{19}^{23} = C_{19}^{24} = C_5^{24}$$

P. Complementarios

Rpta.:

 C_5^{24}

La municipalidad del Callao desea repartir en partes iguales cierta cantidad de mascarillas que está dado por K, donde

$$K = C_1^7 + C_2^8 + C_3^9 + C_4^{10}$$

Si se reparte entre 20 trabajadores. ¿Cuántas mascarillas sobrarían?

Resolución:

$$K = C_1^7 + C_2^8 + C_3^9 + C_4^{10}$$

$$K = 7 + \frac{(8)(7)}{(2)(1)} + \frac{(3)(8)(7)}{(3)(2)(1)} + \frac{(10)(9)(8)(7)}{(4)(3)(2)(1)}$$

$$K = 7 + 28 + 84 + 210$$

$$K = 329$$

Por dato
$$20(16) + 9 = 329$$

Rpta.: sobrarían 9 mascarillas

En el distrito de Comas se realizará la toma de muestra a 20n personas por parte del comando COVID de la DIRIS Lima Norte, donde n se determina en:

$$C_4^{n+3} + 2C_5^{n+3} + C_6^{n+3} = C_6^{3n-17}$$

Indicar el número de personas para la muestra.

RECORDEMOS

$$C_k^n + C_{k+1}^n = C_{k+1}^{n+1}$$

Resolución:

$$C_4^{n+3} + C_5^{n+3} + C_5^{n+3} + C_6^{n+3} = C_6^{3n-17}$$

$$C_5^{n+4} + C_6^{n+4} = C_6^{3n-17}$$

$$C_6^{n+5} = C_6^{3n-17}$$

$$n + 5 = 3n - 17$$

$$11 = n$$

Rpta.: 220 personas

Problemas Propuestos

Problema 06

Problema 07

Problema 08

Problema 09

HELICO WORKSHOP

Problema 07

Calcule:

$$C_3^9 + C_1^6 - C_7^7 + C_0^8$$

Calcule la suma de valores de n en:

$$C_{3n-5}^{37} = C_{2n+2}^{37}$$

Sume:

$$C_{17}^{40} + C_{18}^{40} + C_{19}^{41} + C_{20}^{42} + C_{21}^{43}$$

Un padre de familia recibe de su trabajo un bono de N soles y los repartirá entre sus hijos, donde se tiene que

$$N = C_1^9 + C_2^{10} + C_3^{11} + C_4^{12}$$

Se sabe que cada uno de sus hijos recibe 238 soles. Indicar la cantidad de hijos que tiene el padre.

Carlos quiere comprar una bicicleta cuyo precio en soles está dado por 60n, donde n se obtiene de la igualdad:

$$C_5^{n+4} + 2C_6^{n+4} + C_7^{n+4} = C_7^{5n-14}$$

Si Carlos tiene ahorrado 220 soles ¿Cuánto le falta ahorrar para comprar la bicicleta?