AML: Semester project presentation

Carlos Kirchdorfer, Oliver Aschwanden, Marco Heiniger

Table of Contents

- Project Overview
- Problem formulation
- Planned self-contributions
- Evaluation protocol
- Shortest-path kernel baseline
- Modifications
- Training pipeline
- Results
- Discussion

Project Overview: A GNN project

Goal of this project: Explore possibilities of improving the approach of the paper **Hierarchical Graph Pooling with Structure Learning** by Zhang et al. (2019).

Problem formulation

Bioinformatics: Protein structures can be modeled as graph (nodes = amino acids).

- Two nodes are less than six Angstroms apart \rightarrow there is an edge between them

The **D&D** dataset:

- n = 1178 protein graphs $G = \{G_1, G_2, ..., G_n\}$
- A protein graph has the structure $G_i = (V_i, E_i, X_i)$ with n_i nodes and e_i edges:
 - $X_i \in \mathbb{R}^{n_i * f}$ represents the node feature matrix, f is the dimension of the node attributes
 - **Binary classification**: Graph is an enzyme or not \rightarrow target labels can be represented with label vector $\mathbf{y} \in \mathbb{R}^n$

Training: Training of model with a batch of protein graphs G_L whose label information is y_L (targets)

Task and Goal: Decide if the protein graph G_i should be classified as an enzyme $y_i = 1$ or not $y_i = 0$.

Model Input (D&D Dataset)

Planned self contributions

- 1. Rebuilding the proposed model from the original paper and bringing it to a newer Python version
- Implementing the simple baseline model Shortest-Path Kernel by Borgwardt and Kriegel(2005)
- 3. The next step is to apply the following modifications and check them for possible improvements:
 - Modify the read out function
 - 2. Introduce a deeper network
 - 3. Use a different node information score metric
 - 4. Different top-rank node selection (based on node information score)

Evaluation protocol and Baselines

- **HPG-SL**: paper's baseline, 80.96%* accuracy.
- Shortest-Path Kernel: statistical baseline

^{*} Different evaluation protocol

Shortest-Path Kernel Baseline

- by Borgwardt and Kriegel (2005)
- All paths \rightarrow NP-hard
- shortest path \rightarrow solvable in polynomial time O(n³)
- Algorithm:
 - transform input graphs into shortest path graphs
 - **Definition 3 (Shortest-path graph kernel)** Let G_1 and G_2 be two graphs that are Floyd-transformed into S_1 and S_2 . We can then define our shortest-path graph kernel on $S_1 = (V_1, E_1)$ and $S_2 = (V_2, E_2)$ as

$$k_{shortest\ paths}(S_1, S_2) = \sum_{e_1 \in E_1} \sum_{e_2 \in E_2} k_{walk}^{(1)}(e_1, e_2),$$

where $k_{walk}^{(1)}$ is a positive definite kernel on edge walks of length 1.

Modifications: Deeper Network

Introduce a deeper network

- According to Zhang et al. (2019), model performs best with K = 2 layers
- We tried out K = 3, 4, and 5 layers

Motivation:

- HGP-SL almost achieves the best performance across different datasets when setting K = 3, d = 128 and r = 0.8, respectively. For D&D, they have set K = 2.
- Li et al. (2018): More convolutional layers do not necessarily lead to a better result
 - More layers → more difficult to train
 - Mix of features of nodes \rightarrow makes them indistinguishable

Modification: Read out function

Modify the read out function

- Use all subgraphs as in the paper
- Use only the first subgraph
- Use only the last subgraph

$$\mathbf{r}_i^k = \mathcal{R}(\mathbf{H}_i^k) = \sigma(rac{1}{n_i^k} \sum_{p=1}^{n_i^k} \mathbf{H}_i^k(p,:) || \max_{q=1}^d \mathbf{H}_i^k(:,q)),$$

$$\mathbf{z}_i = \mathbf{r}_i^1 + \mathbf{r}_i^2 + \dots + \mathbf{r}_i^K$$

Motivation:

- Use all: Used by Zhang et al. (2019) and Zhang et al. (2023)
- **First subgraph:** Node representations may be well distinguishable, but representation might be too complex to find reliable information about class assignment
- Last subgraph: Opposite: More convolutional layers have been used
 - Li et al. (2018): Mix of features of nodes \rightarrow makes them indistinguishable

Modifications: Node information score

Use a different node information score metric

- For the node information score, Zhang et al. (2019) use the Manhattan norm. We also tried out the Euclidean norm.

$$\mathbf{p} = \gamma(\mathcal{G}_i) = \|(\mathbf{I}_i^k - (\mathbf{D}_i^k)^{-1}\mathbf{A}_i^k)\mathbf{H}_i^k\|_1,$$

Motivation:

- Gao et al. (2022) state: Euclidean distance as it represents a common similarity measure that is especially convenient for high-dimensional vectors that might be present in some graph data sets.

Modifications: Node selection

Different top-rank node selection (based on node information score)

- Essentially is about modifying the pooling ratio r
- We tried out pooling ratio $\mathbf{r} = 0.2, 0.5, 0.8$

$$\begin{split} \mathrm{idx} &= \mathrm{top\text{-}rank}(\mathbf{p}, \lceil r*n_i^k \rceil) \\ \tilde{\mathbf{H}}_i^{k+1} &= \mathbf{H}_i^k(\mathrm{idx}, :) \\ \mathbf{A}_i^{k+1} &= \mathbf{A}_i^k(\mathrm{idx}, \mathrm{idx}), \end{split}$$

Motivation:

- r cannot be too small, otherwise most of the graph structure information will be lost during the pooling process (Zhang et al., 2019).
- "HGP-SL almost achieves the best performance across different datasets when setting K = 3, d = 128 and r = 0.8, respectively"
- For D&D, r is only 0.3.

Results: One hyperparameter change

	Distance Metric	Layers	Pooling Ratio	Readout	Validation Accuracy		
					avg	min	max
(original)	Manhattan	2	0.3	ALL	76.0	74.0	79.8
(distance)	Euclidean				75.7 (-0.3)	71.6	77.8
		3			76.0 (=)	74.0	76.8
(layers)		4			76.7 (+0.7)	75.0	78.7
		5			75.5 (-0.5)	73.1	77.4
(pooling ratio)			0.8	-	76.9 (+0.9)	73.5	81.2
			0.5		$77.0 \ (+1.0)$	73.1	80.7
			0.2		75.0 (-1.0)	71.2	77.9
(readout)				FIRST	76.1 (+0.1)	73.5	77.4
				LAST	76.1 (+0.1)	73.1	79.7

Table 1: Modifications made to the HGP-SL architecture and their evaluation through K-fold cross-validation (K=5) on the D&D dataset.

Results: Grid Search

Hyperparameter	Options	Selected Parameter
Layers	2, 3	2
Pooling Ratio	0.2,0.5,0.8	0.8
Distance Metric	Manhattan, Euclidean	Manhattan
Readout Layers	ALL, FIRST, LAST	LAST

Table 2: Grid Search of Hyperparameters

Results: Hyper Parameter Analysis

Only 29/35 hyperparameter combinations could be trained because of limited compute!

Results: Evaluate on Test Set

Model	Training	Test
Shortest Path Kernel	75.9	72.6
$HGP - SL_{original}$	84.4	78.6
Ours	85.6	78.6

Table 3: Comparison of training and test accuracies with respect to the shortest path baseline and the original HGP-SL paper.

Label distributions: Evaluation

Discussion

- Evaluation protocol (CV) has influence on accuracy data: 80.96% accuracy could not be beaten
- With 78.6% accuracy, our model has equal accuracy to HGP-SL baseline with CV. Shortest Path Kernel baseline was beaten.
- One hyperparameter change: pooling ratio = 0.5 is best
- Grid search revealed that pooling ratio = 0.8 also for DD dataset is the best
 - When considering one change at time, r = 0.8 is better than r = 0.3 used by HGP-SL baseline \rightarrow keeping structure information is important
- Deeper network did not bring any improvement → too much information is lost
- Contribution of node information score metric depends on combination
- Utilize some tool for metrics and training logs
- Slightly unbalanced data set split
- Improve hyperparameter tuning: Informed tuning instead of extensive search

References

- Hierarchical Graph Pooling with Structure Learning (Zhang et al., 2019): https://arxiv.org/abs/1911.05954
- Hierarchical Multi-View Graph Pooling With Structure Learning (Zhang et al., 2023): https://ieeexplore.ieee.org/document/9460814
- D&D data set paper (Dobson and Doig, 2003): https://pubmed.ncbi.nlm.nih.gov/12850146/
- Shortest-path kernels on graphs (Borgwardt and Kriegel, 2005): https://www.dbs.ifi.lmu.de/~borgward/papers/BorKri05.pdf
- iPool—Information-Based Pooling in Hierarchical Graph Neural Networks (Gao et al., 2022): https://ieeexplore.ieee.org/document/9392315
- Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning (Li et al., 2018): https://arxiv.org/abs/1801.07606

Appendix: Label distributions: Training

