Bayesian Statistics III/IV (MATH3341/4031)

Michaelmas term, 2021

Handout 2: Revision in mixture of probability distributions

Lecturer & author: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Aim

To practice on probability calculations on compound distribution functions. To become familiar with distributions, Inverted Gamma, multivariate Normal, and multivariate Student T distributions.

References:

- DeGroot, M. H. (1970, or 2005). Optimal statistical decisions (Vol. 82). John Wiley & Sons.
 - Part one: Survey of probability theory. Chapters 1-5; However the treatment of the Normal and Student T distributions is different than ours.
- Raiffa, H., & Schlaifer, R. (1961). Applied statistical decision theory.
 - Chapters 8.2, 8.3; However the treatment of the Normal and Student T distributions is different than ours.

Web-applets

- https://georgios-stats-3.shinyapps.io/demo_multivariatenormaldistribution/
- https://github.com/georgios-stats/Shiny_applets/tree/master/demo_MultivariateNormalDistribution

1 Mixture probability distribution

- **Definition 1.** Consider a random variable x distributed according to F(x|z) with a pdf/pmf f(x|z) labeled by an unknown parameter z. Consider that z is distributed according to distribution $\Pi(z)$ with pdf/pmf $\pi(z)$. Then:
 - 1. This dependency can be represented as

$$x|z \sim F(x|z)$$
$$z \sim \Pi(z)$$

where F(x|z) is called conditional (or parametrized) distribution, $\Pi(z)$ is called mixing (or latent) distribution; and z is called mixing (or latent) variable.

2. Distribution G(x) that results by integrating the conditional distribution F(x|z) with respect to $\Pi(z)$ as

$$G(x) = \int F(x|z) d\Pi(z)$$

is called the mixture (or compound) distribution of x. The mixture (or compound) distribution G(x) has PDF/PMF

$$g(x) = \int f(x|z) \mathrm{d}\Pi(z) = \begin{cases} \int f(x|z)\pi(z) \mathrm{d}z &, z \, \mathrm{cont.} \\ \sum_{\forall z} f(x|z)\pi(z) &, z \, \mathrm{discr.} \end{cases}$$

Definition 2. G(x) is also called continuous mixture distribution when the mixing/latent variable z is continuous. G(x) is also called finite mixture when z is discrete.

Remark 3. Recall from Handout 1 that

$$\mathbf{E}_{G}(x) = \mathbf{E}_{\Pi} \left(\mathbf{E}_{F}(x|z) \right)$$
 $\mathbf{Var}_{G}(x) = \mathbf{E}_{\Pi} \left(\mathbf{Var}(x|z) \right) + \mathbf{Var}_{\Pi} \left(\mathbf{E}_{F}(x|z) \right)$

2 Inverted Gamma distribution $x|a,b \sim IG(a,b)$

Definition 4. The random variable $x \in (0, +\infty)$ follows an Inverted Gamma distribution $x \sim \mathrm{IG}(a, b)$, if and only if $x = \frac{1}{n}$ follows a Gamma distribution, $y \sim \mathrm{Ga}(a, b)$, with a > 0 and b > 0.

Example 5. Let $x \sim \text{IG}(a, b)$, then the PDF of x is

$$f_{\mathrm{IG}(a,b)}(x) = \frac{b^a}{\Gamma(a)} x^{-a-1} \exp\left(-\frac{b}{x}\right) 1_{(0,+\infty)}(x) \tag{1}$$

5 **Solution.** It is

$$f_{\mathrm{IG}(a,b)}(x) = f_{\mathrm{G}(a,b)}(\frac{1}{x}) \left| \frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x}) \right| = \frac{b^a}{\Gamma(a)} \left(\frac{1}{x} \right)^{a-1} \exp\left(-\frac{b}{x} \right) \mathbb{1}_{(0,+\infty)} \left(\frac{1}{x} \right) \left| -\frac{1}{x^2} \right|$$

Example 6. Let a random variable $x \sim IG(a, b)$, then

$$\mathrm{E}_{\mathrm{IG}(a,b)}(x) = \frac{b}{a-1}; \ a>1 \qquad \text{and} \qquad \mathrm{Var}_{\mathrm{IG}(a,b)}(x) = \frac{b^2}{(a-1)^2(a-2)}; \ a>2$$

29 **Solution.** It is

$$\mathbf{E}_{\mathrm{IG}(a,b)}(x) = \int x f_{\mathrm{IG}(a,b)}(x) \mathrm{d}x = \int_{(0,+\infty)} x \frac{b^a}{\Gamma(a)} x^{-a-1} \exp(-\frac{b}{x}) \mathrm{d}x$$

Assume that a > 1. Then

$$E_{\mathrm{IG}(a,b)}(x) = \int_{(0,+\infty)} \frac{b^{a-1}}{\Gamma(a)} b \frac{\Gamma(a-1)}{\Gamma(a-1)} x^{-a+1-1} \exp(-\frac{b}{x}) \mathrm{d}x \\ = b \frac{\Gamma(a-1)}{\Gamma(a)} \int_{(0,+\infty)} \frac{b^{a-1}}{\Gamma(a-1)} x^{-a+1-1} \exp(-\frac{b}{x}) \mathrm{d}x \\ = b \frac{\Gamma(a-1)}{\Gamma(a)} \int_{(0,+\infty)} \frac{b^{a-1}}{\Gamma(a-1)} x^{-a+1-1} \exp(-\frac{b}{x}) \mathrm{d}x \\ = b \frac{\Gamma(a-1)}{(a-1)\Gamma(a-1)} \int_{(0,+\infty)} f_{\mathrm{IG}(a-1,b)}(x) \mathrm{d}x \\ = \frac{b}{a-1}$$

34 Similarly

$$\begin{aligned} \mathbf{E}_{\mathrm{IG}(a,b)}(x^2) &= \int_{(0,+\infty)} x^2 \frac{b^a}{\Gamma(a)} x^{-a-1} \exp\left(-\frac{b}{x}\right) \mathrm{d}x = \dots = b \frac{\Gamma(a-1)}{(a-1)\Gamma(a-1)} \int x f_{\mathrm{IG}(a-1,b)}(x) \mathrm{d}x \\ &= \frac{b}{a-1} \frac{b}{a-2}; \ a > 2 \end{aligned}$$

So

$$Var_{IG(a,b)}(x) = E_{IG(a,b)}(x^2) - (E_{IG(a,b)}(x))^2 = \frac{b^2}{(a-1)^2(a-2)}$$

3 Multivariate Normal distribution $x|\mu, \Sigma \sim N_d(\mu, \Sigma)$

Definition 7. A d-dimensional random variable $x \in \mathbb{R}^d$ is said to have a multivariate Normal (Gaussian) distribution, if for every d-dimensional fixed vector $\alpha \in \mathbb{R}^d$, the random variable $\alpha^\top x$ has a univariate Normal (Gaussian) distribution.

Proposition 8. A random vector $x \in \mathbb{R}^d$ has a d-dimensional Normal distribution with mean $\mu = E(x)$ and covariance matrix $\Sigma = Var(x)$ if and only if random vector $x \in \mathbb{R}^d$ has a characteristic function

$$\varphi_x(t) = \exp\left(it^\top \mu - \frac{1}{2}t^\top \Sigma t\right) \tag{2}$$

- Hence: the d-dimensional Normal distribution is uniquely defined by the mean and the covariance matrix.
- *Proof.* (\Longrightarrow) If x has a d-dimensional distribution then the characteristic function is $\varphi_x(t) = \varphi_{t^\top x}(1)$. Since x has a d-dimensional Normal distribution with mean $\mu = E(x)$ and covariance matrix $\Sigma = Var(x)$, $t^{T}x$ has a Normal
- distribution with mean E $(t^{\top}x) = t^{\top}\mu$ and variance Var $(t^{\top}x) = t^{\top}\Sigma t$. Then (Handout 1, Example 31)

$$\varphi_{x}(t) = \varphi_{t^{\top}x}(1) = \exp\left(i\mathbf{E}\left(t^{\top}x\right) - \frac{1}{2}\mathbf{Var}\left(t^{\top}x\right)\right) = \exp\left(it^{\top}\mathbf{E}\left(x\right) - \frac{1}{2}t^{\top}\mathbf{Var}\left(x\right)t\right) = \exp\left(it^{\top}\mu - \frac{1}{2}t^{\top}\Sigma t\right)$$

 (\Leftarrow) If random vector $x \in \mathbb{R}^d$ has a characteristic function $\varphi_x(t) = \exp(it^\top \mu - \frac{1}{2}t^\top \Sigma t)$, then for every d-dimensional fixed vector $\alpha \in \mathbb{R}^d$ the characteristic function of $\alpha^\top x$ is

$$\varphi_{\alpha^{\top}x}(t) = \varphi_x(t\alpha) = \exp\left(it\alpha^{\top}\mu - \frac{1}{2}t\alpha^{\top}\Sigma\alpha t\right) = \exp\left(it\left(\alpha^{\top}\mu\right) - \frac{1}{2}\left(\alpha^{\top}\Sigma\alpha\right)t^2\right)$$

- which defines that $\alpha^{\top}x$ has a univariate Normal distribution with mean $\alpha^{\top}\mu$ and variance $\alpha^{\top}\Sigma\alpha$.
- Notation 9. We denote the d-dimensional Normal distribution with mean μ and covariance matrix $\Sigma \geq 0$ as $N_d(\mu, \Sigma)$.
- Notation 10. The d-dimensional standardized Normal distribution is $N_d(0, I)$.
- **Proposition 11.** Let random variable $x \sim N_d(\mu, \Sigma)$, fixed vector $c \in \mathbb{R}^q$ and fixed matrix $A \in \mathbb{R}^q \times \mathbb{R}^d$. The random vector y = c + Ax has distribution $y \sim N_q (c + A\mu, A\Sigma A^{\top})$.
- *Proof.* First I show that y is Normally distributed. Let $\alpha \in \mathbb{R}^q$ any fixed vector. Then $\alpha^\top y = \tilde{\alpha}^\top x + \alpha^\top c$ where $\tilde{\alpha} = A^{\top}b$. Because x is multivariate Normal, then $\tilde{\alpha}^{\top}x$ is univariate Normal (by Definition 7), then $\alpha^{\top}y$ is univariate Normal. So y is q-variate Normal. Also, $\mathrm{E}(y) = \mathrm{E}(c + Ax) = c + A\mathrm{E}(x)$, and $\mathrm{Var}(y) = \mathrm{Var}(c + Ax) = A\mathrm{Var}(x)A^{\top}$.
 - **Proposition 12.** Let a d-dimensional random vector $x \sim N_{(anv)}(\mu, \Sigma)$.
 - 1. Let y = Ax and z = Bx, where $A \in \mathbb{R}^{q \times d}$ and $B \in \mathbb{R}^{k \times d}$: The vectors y = Ax and z = Bx are independent if and only if $A\Sigma B^{\top} = 0$.
 - 2. Let $x = (x_1, ..., x_d)^{\top}$: The $x_1, ..., x_d$ are mutually independent if and only if the corresponding off diagonal parts of the Σ are zero.
- *Proof.* In both cases, the CF (2) factorizes as $\varphi_x(t) = \prod_i \varphi_{x_i}(t_i)$ only when the corresponding of diagonal parts of Σ are zero.
- **Proposition 13.** Any sub-vector of a vector with multivariate Normal distribution has a multivariate Normal distri-
- *Proof.* Let $x \sim N_d(\mu, \Sigma)$. Any sub-vector y of x can be expressed as y = 0 + Px, where $P \in \mathbb{R}^{q \times d}$ is a suitable projection matrix. Then $y \sim N_d(P\mu, P\Sigma P^\top)$.
 - **Proposition 14.** [Marginalization & conditioning] Let $x \sim N_d(\mu, \Sigma)$. Consider partition such that

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \; ; \qquad \qquad \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \; ; \qquad \qquad \Sigma = \begin{bmatrix} \Sigma_1 & \Sigma_{21}^\top \\ \Sigma_{21} & \Sigma_2 \end{bmatrix} ,$$

- where $x_1 \in \mathbb{R}^{d_1}$, and $x_2 \in \mathbb{R}^{d_2}$ Then:
 - 1. For the marginal, it is $x_1 \sim N_{d_1}(\mu_1, \Sigma_1)$.
 - 2. For $x_{2.1} = x_2 \Sigma_{21}\Sigma_1^{-1}x_1$, with $\Sigma_1 > 0$, it is $x_{2.1} \sim N_{d_2}(\mu_{2.1}, \Sigma_{2.1})$ where

$$\mu_{2.1} = \mu_2 - \Sigma_{21} \Sigma_1^{-1} \mu_1 \text{ and } \Sigma_{2.1} = \Sigma_2 - \Sigma_{21} \Sigma_1^{-1} \Sigma_{21}^{\top}$$
 (3)

- 3. Random variables x_1 and $x_{2,1}$ are independent.
- 4. For the conditional, if $\Sigma_1 > 0$, it is

$$x_2|x_1 \sim N_{d_2}(\mu_{2|1}, \Sigma_{2|1})$$

where

$$\mu_{2|1} = \mu_2 - \Sigma_{21} \Sigma_1^{-1} (x_1 - \mu_1) \text{ and } \Sigma_{2|1} = \Sigma_2 - \Sigma_{21} \Sigma_1^{-1} \Sigma_{21}^{\top}$$
 (4)

Hint: If that was a Homework it will be given as a hint to use, in (1.): $x_1 = Ax$ with A = [I, 0], and in (2.): $x_{2.1} = Bx$ with $[-\Sigma_{21}\Sigma_1^{-1}, I]$.

Solution.

1. It is $x_1 = Ax$ with A = [I, 0]. Then $x_1 \sim N(A\mu, A\Sigma A^{\top})$ where

$$A\mu = [I,0] \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \mu_1 \; ; \qquad \qquad A\Sigma A^\top = [I,0] \begin{bmatrix} \Sigma_1 & \Sigma_{21}^\top \\ \Sigma_{21} & \Sigma_2 \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix} = \Sigma_1$$

2. It is $x_{2.1} = Bx$ with $B = [-\Sigma_{21}\Sigma_1^{-1}, I]$. Then $x_{2.1} \sim N(B\mu, B\Sigma B^{\top})$ where

$$B\mu = \begin{bmatrix} -\Sigma_{21}\Sigma_{1}^{-1}, I \end{bmatrix} [\mu_{1}, \mu_{2}]^{\top} = -\Sigma_{21}\Sigma_{1}^{-1}\mu_{1} + \mu_{2};$$

$$B\Sigma B^{\top} = \begin{bmatrix} -\Sigma_{21}\Sigma_{1}^{-1}, I \end{bmatrix} \begin{bmatrix} \Sigma_{1} & \Sigma_{21}^{\top} \\ \Sigma_{21} & \Sigma_{2} \end{bmatrix} \begin{bmatrix} -\Sigma_{1}^{-1}\Sigma_{21}^{\top} \\ I \end{bmatrix} = \begin{bmatrix} 0, -\Sigma_{21}\Sigma_{1}^{-1}\Sigma_{21}^{\top} + \Sigma_{2} \end{bmatrix} \begin{bmatrix} -\Sigma_{21}\Sigma_{1}^{-1} \\ I \end{bmatrix}$$

$$= -\Sigma_{21}\Sigma_{1}^{-1}\Sigma_{21}^{\top} + \Sigma_{2}$$

3. x_1 and $x_{2.1}$ are independent, because (i.) x_1 and x_2 are Normally distributed and (ii.) for $x_1 = Ax$ with A = [I, 0] and $x_{2.1} = Bx$ with $[\Sigma_{21}\Sigma_1^{-1}, 0]$ are

$$\begin{aligned} \operatorname{Cov}(x_1, x_{2.1}) &= \operatorname{Cov}(Ax, Bx) = A\Sigma B^{\top} = \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} \Sigma_1 & \Sigma_{21}^{\top} \\ \Sigma_{21} & \Sigma_2 \end{bmatrix} \begin{bmatrix} -\Sigma_1^{-1} \Sigma_{21}^{\top} \\ I \end{bmatrix} = \\ &= \begin{bmatrix} \Sigma_1, & \Sigma_{21}^{\top} \end{bmatrix} \begin{bmatrix} -\Sigma_1^{-1} \Sigma_{21}^{\top} \\ I \end{bmatrix} = -\Sigma_{21}^{\top} + \Sigma_{21}^{\top} = 0 \end{aligned}$$

4. From part ??, I observe that it is

$$x_{2,1} = x_2 - \sum_{1} \sum_{1}^{-1} x_1 \iff x_2 = x_{2,1} + \sum_{1} \sum_{1}^{-1} x_1. \tag{5}$$

In (5), if I condition x_2 on a given value for x_1 , the term $\sum_{1}\sum_{1}^{-1}x_1$ is a constant, namely I have $x_2|x_1=x_{2.1}|x_1+$ const where variation comes from $x_{2.1}|x_1$. From part ??, $x_{2.1}$ is independent on x_1 , and hence $F(x_{2.1}|x_1)=F(x_{2.1})$. Furthermore, $x_{2.1}|x_1\in$ Normal because $x_{2.1}\in$ Normal,. Consequently, $x_2|x_1\in$ Normal as a linear transformation of a Normal variate. Now, about the moments

$$\begin{split} & \mathrm{E}(x_{2}|x_{1}) = \mathrm{E}(x_{2.1} + \Sigma_{21}\Sigma_{1}^{-1}x_{1}|x_{1}) = \mathrm{E}(x_{2.1}|x_{1}) + \mathrm{E}(\Sigma_{21}\Sigma_{1}^{-1}x_{1}|x_{1}) = \left[\mu_{2} - \Sigma_{21}\Sigma_{1}^{-1}\mu_{1}\right] + \left[\Sigma_{21}\Sigma_{1}^{-1}x_{1}\right] \\ & \mathrm{Var}(x_{2}|x_{1}) = \mathrm{Var}(x_{2.1} + \Sigma_{21}\Sigma_{1}^{-1}x_{1}|x_{1}) = \mathrm{Var}(x_{2.1}|x_{1}) = \Sigma_{2} - \Sigma_{21}\Sigma_{1}^{-1}\Sigma_{21}^{-1} \end{split}$$

Proposition 15. The density function of the d-dimensional Normal distribution with mean μ and covariance matrix Σ , when Σ is symmetric positive definite matrix ($\Sigma > 0$), exists and it is equal to

Supplementary rial A

$$f(x) = (2\pi)^{-\frac{d}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$
 (6)

Proof. Let $x \sim \mathrm{N}(\mu, \Sigma)$. Because $\Sigma > 0$, we use Cholesky decomposition to define L such that $\Sigma = LL^{\top}$. Let $z = L^{-1}(x - \mu)$. It is $\mathrm{E}(z) = 0$, $\mathrm{Var}(z) = I$, $z \sim \mathrm{N}_d(0, I)$, and hence $z_1, ..., z_d$ are mutually independent So

$$f_z(z) = \prod_{i=1}^d (2\pi)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}z_i^2\right) = (2\pi)^{-\frac{d}{2}} \exp\left(-\frac{1}{2}z^\top z\right)$$

112 Then

$$f_x(x) = f_z(z) \left| \frac{dz}{dx} \right| = f_z \left(L^{-1} (x - \mu) \right) \left| \det \left(\frac{d}{dx} L^{-1} (x - \mu) \right) \right|$$
$$= (2\pi)^{-\frac{d}{2}} \exp \left(-\frac{1}{2} (x - \mu)^{\top} (L^{-1})^{\top} L^{-1} (x - \mu) \right) \det(L^{-1})$$
$$= (2\pi)^{-\frac{d}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp \left(-\frac{1}{2} (x - \mu)^{\top} \Sigma^{-1} (x - \mu) \right) \det(\Sigma)^{-\frac{1}{2}}$$

4 Multivariate Student's T distribution $x \sim \mathbf{T}_d(\mu, \Sigma, v)$

Definition 16. A *d*-dimensional random variable $x \in \mathbb{R}^d$ is said to have a multivariate Student's T distribution with location parameter μ , scale matrix Σ , and degrees of freedom v, and it is denoted as $x \sim T_d(\mu, \Sigma, v)$, if and only if

$$x = \mu + y\sqrt{v\xi}$$

where $y \sim N_d(0, \Sigma)$ and $\xi \sim IG(\frac{v}{2}, \frac{1}{2})$ are independent random variables.

Example 17. Definition 16 can be equivalently represented in terms of a mixture probability distribution (Section 1) as the compound (or mixture) distribution

$$x \sim T_d(\mu, \Sigma, v)$$

25 **of**

$$x|\xi \sim N_d(\mu, \Sigma v\xi)$$

 $\xi \sim IG(\frac{v}{2}, \frac{1}{2})$

Solution. Straightforward derivation from Definition 16. We have that $y \sim N_d(0, \Sigma)$, $x = \mu + y\sqrt{v\xi}$, and consider the rest Σ , μ , v, and ξ as constant/known. So $x|\mu, \Sigma, v, \xi$ follows a Normal distribution with mean $E(x|\xi) = \mu$ and covariance matrix $Var(x|\xi) = \Sigma v\xi$. Hence, we can just write down $x|\xi \sim N_d(\mu, \Sigma v\xi)$ by suppress the uninteresting constants Σ , μ , and v from the conditioning.

Proposition 18. If $x \sim T_d(\mu, \Sigma, v)$ and $\Sigma > 0$ then

1. The expected value is

$$E_{T_d(\mu,\Sigma,\nu)}(X) = \mu$$

2. The covariance matrix is

$$Var_{T_d(\mu,\Sigma,\nu)}(X) = \begin{cases} \frac{\nu}{\nu-2} \Sigma & , \text{ if } \nu > 2\\ \text{undefined} & , \text{ else} \end{cases}$$
 (7)

Proof. Given Definition 16, $x \sim T_d(\mu, \Sigma, v)$ results as the marginal distribution of (x, ξ) where $x | \xi \sim N_d(\mu, \Sigma \xi v)$ and $\xi \sim IG(\frac{v}{2}, \frac{1}{2})$.

1. It is

$$E_{t_d(\mu,\Sigma,\nu)}(x) = E_{IG(\frac{\nu}{2},\frac{1}{2})} \left(E_{N_d(\mu,\Sigma\xi\nu)}(x|\xi) \right) = E_{IG(\frac{\nu}{2},\frac{1}{2})} \left(\mu \right) = \mu \tag{8}$$

2. It is

$$\operatorname{Var}_{\operatorname{Id}(\mu,\Sigma,\nu)}(x) = \operatorname{E}_{\operatorname{IG}(\frac{v}{2},\frac{1}{2})} \left(\operatorname{Var}_{\operatorname{Nd}(\mu,\Sigma\xi\nu)}(x|\xi) \right) + \operatorname{Var}_{\operatorname{IG}(\frac{v}{2},\frac{1}{2})} \left(\operatorname{E}_{\operatorname{Nd}(\mu,\Sigma\xi\nu)}(x|\xi) \right) \tag{9}$$

144

$$= \mathbf{E}_{\mathrm{IG}\left(\frac{v}{2},\frac{1}{2}\right)}\left(\Sigma \xi v\right) + \mathbf{Var}_{\mathrm{IG}\left(\frac{v}{2},\frac{1}{2}\right)}\left(\mu\right) = 0$$

145

$$= \begin{cases} \Sigma v \frac{\frac{1}{2}}{\frac{v}{2}-1} & \text{, if } \frac{v}{2} > 1 \\ \text{undefined} & \text{, else} \end{cases}$$

147

Example 19. If $x \sim T_d(\mu, \Sigma, v)$ and $\Sigma > 0$ the PDF of x is

$$f_X(x|\mu, \Sigma, v) = \frac{\Gamma(\frac{\nu+d}{2})}{\Gamma(\frac{\nu}{2})\nu^{\frac{d}{2}}\pi^{\frac{d}{2}}\det(\Sigma)^{\frac{1}{2}}} \left(1 + \frac{1}{v}(t-\mu)^T \Sigma^{-1}(t-\mu)\right)^{-\frac{\nu+d}{2}}$$
(10)

Solution. Given Definition 16, $x \sim \mathrm{T}_d(\mu, \Sigma, v)$ results as the marginal distribution of (x, ξ) where $x | \xi \sim \mathrm{N}_d(\mu, \Sigma \xi v)$ and $\xi \sim \mathrm{IG}(\frac{v}{2}, \frac{1}{2})$. So it is

$$f_{x}(x) = \int f_{x|\xi}(x|\xi) f_{\xi}(\xi) d\xi = \int f_{N_{d}(\mu, \Sigma v \xi)}(x|\xi) f_{IG(\frac{v}{2}, \frac{1}{2})}(\xi) d\xi$$

$$= \int \underbrace{\left(\frac{1}{2\pi}\right)^{\frac{d}{2}} \frac{1}{\sqrt{\det(\Sigma v \xi)}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \frac{\Sigma^{-1}}{v \xi}(x-\mu)\right) \frac{\frac{1}{2}^{\frac{v}{2}}}{\Gamma(\frac{v}{2})} \xi^{-\frac{v}{2}-1} \exp\left(-\frac{1}{\xi} \frac{1}{2}\right) 1_{(0,\infty)}(\xi) d\xi}$$

$$= N_{d}(x|\mu, \Sigma v \xi) \qquad = IG(\xi|\frac{v}{2}, \frac{1}{2})$$

$$= \left(\frac{1}{2\pi}\right)^{\frac{d}{2}} \frac{1}{\sqrt{\det(\Sigma v)}} \frac{\frac{1}{2}^{\frac{v}{2}}}{\Gamma(\frac{v}{2})} \underbrace{\int \xi^{-\frac{v}{2} - \frac{d}{2} - 1} \exp\left(-\frac{1}{\xi} \left[\frac{1}{2v}(x-\mu)^{\top} \Sigma^{-1}(x-\mu) + \frac{1}{2}\right]\right) d\xi}_{=\Gamma(\frac{v}{2} + \frac{d}{2}) \left[\frac{1}{2v}(x-\mu)^{\top} \Sigma^{-1}(x-\mu) + \frac{1}{2}\right]^{-\left(\frac{v}{2} + \frac{d}{2}\right)}}$$

$$= \Gamma(\frac{v}{2} + \frac{d}{2}) \left[\frac{1}{2v}(x-\mu)^{\top} \Sigma^{-1}(x-\mu) + \frac{1}{2}\right]^{-\left(\frac{v}{2} + \frac{d}{2}\right)}_{=\Gamma(\frac{v}{2} + \frac{d}{2})}_{=\Gamma(\frac{v}{2} + \frac{d}$$

$$= \left(\frac{1}{2\pi}\right)^{\frac{d}{2}} \frac{1}{\sqrt{\det(\Sigma v)}} \frac{\frac{1}{2}^{\frac{v}{2}}}{\Gamma(\frac{v}{2})} \Gamma\left(\frac{v}{2} + \frac{d}{2}\right) \left[\frac{1}{2v}(x - \mu)^{\top} \Sigma^{-1}(x - \mu) + \frac{1}{2}\right]^{-\left(\frac{v}{2} + \frac{d}{2}\right)}$$

$$= \left(\frac{1}{2\pi}\right)^{\frac{d}{2}} \frac{1}{\sqrt{\det(\Sigma v)}} \frac{\frac{1}{2}^{\frac{v}{2}}}{\Gamma(\frac{v}{2})} \Gamma\left(\frac{v}{2} + \frac{d}{2}\right) \left(\frac{1}{2}\right)^{-\frac{(v+d)}{2}} \left[\frac{1}{v}(x - \mu)^{\top} \Sigma^{-1}(x - \mu) + 1\right]^{-\frac{v+d}{2}}$$

$$= \left(\frac{1}{\pi}\right)^{\frac{d}{2}} \frac{1}{\sqrt{\det(\Sigma)}} \left(\frac{1}{v}\right)^{\frac{d}{2}} \frac{1}{\Gamma(\frac{v}{2})} \Gamma\left(\frac{v+d}{2}\right) \left[\frac{1}{v}(x - \mu)^{\top} \Sigma^{-1}(x - \mu) + 1\right]^{-\frac{v+d}{2}}$$

Page 6

where the integral in (11) was calculated by recognizing the IG density from (1).

5 Practice

Question 20. For practice try the Exercises 18, 19, and, 21, from the Exercise Sheet.

Supplementary material

A The useful formulas regarding Normal PDF

The following formulas will be given as hints in the exercises and there is no need to be memorized. I present them for your information –no need to memorize.

Fact 21. If $\Sigma_1 > 0$ and $\Sigma_2 > 0$ symmetric

$$-\frac{1}{2}(x-\mu_1)\Sigma_1^{-1}(x-\mu_1)^{\top} - \frac{1}{2}(x-\mu_2)\Sigma_2^{-1}(x-\mu_2)^{\top} = -\frac{1}{2}(x-m)V^{-1}(x-m)^{\top} + C$$

where

$$V^{-1} = \Sigma_1^{-1} + \Sigma_2^{-1}; \quad m = V\left(\Sigma_1^{-1}\mu_1 + \Sigma_2^{-1}\mu_2\right); \quad C = \frac{1}{2}m^\top V^{-1}m - \frac{1}{2}\left(\mu_1^\top \Sigma_1^{-1}\mu_1 + \mu_2^\top \Sigma_2^{-1}\mu_2\right)$$

Proof. It is derived by \pm ing terms and doing matrix calculations.

Fact 22. If $f_{N_d(\mu,\Sigma)}(x)$ denotes the PDF of $N_d(\mu,\Sigma)$, then

$$f_{N_d(\mu_1,\Sigma_1)}(x) f_{N_d(\mu_2,\Sigma_2)}(x) = f_{N_d(m,V)}(x) f_{N_d(\mu_2,\Sigma_1+\Sigma_2)}(\mu_1)$$

where

$$V^{-1} = \Sigma_1^{-1} + \Sigma_2^{-1}; \quad m = V \left(\Sigma_1^{-1} \mu_1 + \Sigma_2^{-1} \mu_2\right)$$

Proof. It is derived by exponentiation

Fact 23. If $\Sigma_i > 0$ symmetric for i = 1, ..., n

$$-\frac{1}{2}\sum_{i=1}^{n}(x-\mu_{i})\Sigma_{i}^{-1}(x-\mu_{i})^{\top} = -\frac{1}{2}(x-m)V^{-1}(x-m)^{\top} + C$$
(12)

where

$$V^{-1} = \sum_{i=1}^{n} \Sigma_{i}^{-1}; \quad m = V\left(\sum_{i=1}^{n} \Sigma_{i}^{-1} \mu_{i}\right); \quad C = \frac{1}{2} m V^{-1} m^{\top} - \frac{1}{2} \left(\sum_{i=1}^{n} \mu_{i} \Sigma_{i}^{-1} \mu_{i}^{\top}\right)$$
(13)

Proof. It is shown by induction from the (1.).

B Examples of mixture distributions

The following is distributions below are given as examples of mixture distributions –no need to memorize.

B.1 Fisher-Snedecor distribution $x \sim \mathbf{F}(d_1, d_2)$

Definition 24. A random variable $x \in \mathbb{R}$ is said to have a Fisher-Snedecor distribution distribution with degrees of freedom n, m, and it is denoted as $x \sim F(n, m)$, if and only if

$$x = \frac{y_1/d_1}{y_2/d_2}$$

where $y_1 \sim G(d_1/2, 1/2)$ and $y_2 \sim G(d_2/2, 1/2)$ are independent random variables.

Example 25. The distribution function $x \sim L(\mu, b)$ is such that

$$dF(x) = \left[xB\left(\frac{d_1}{2}, \frac{d_2}{2}\right)\right]^{-1} \sqrt{\frac{(d_1x)^{d_1}d_2^{d_2}}{(d_1x + d_2)^{d_1 + d_2}}} dx$$

with mean $E(x) = d_2/(d_2 - 1)$.

Solution. See Statistical Concepts II (Exercises) which is proved by transformation of random variables and marginalization.

Example 26. The distribution function $x \sim F(d_1, d_2)$ can be re-presented as a mixture distribution as

$$\begin{cases} x | v \sim \text{Ga}(d_1/2, zd_1/2) \\ z \sim \text{Ga}(d_2/2, d_2/2) \end{cases}$$

Solution. Show that $f(x) = \int f(x|z)f(z)dz$; see Exercise 19 in the Exercise sheet.

B.2 Laplace distribution $x \sim \mathbf{L}(\mu, b)$

Definition 27. A random variable $x \in \mathbb{R}$ is said to have a Laplace (or Double exponential) distribution with location parameter μ , and scale parameter b, and it is denoted as $x \sim L_d(\mu, b)$, if and only if

$$x = \mu + y\sqrt{2v}$$

where $y \sim N_d(0, b^2)$ and $v \sim G(1, 1)$ are independent random variables.

Example 28. The distribution function $x \sim L(\mu, b)$ can be re-presented as a mixture distribution as

$$\begin{cases} x|v \sim \mathbf{N}(\mu, 2vb^2) \\ v \sim \mathbf{Ga}(1, 1) \equiv \mathbf{Ex}(1) \end{cases}$$
 (14)

Show that the distribution function $x \sim L(\mu, b)$ is such that

$$dF(x) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right) dx$$

with mean $E(x) = \mu$ and variance $Var(x) = 2b^2$.

Solution. By transformation of random variables you show (14). To show that $f(x) = \int f(x|v)f(v)dv$. Perform change of variable to compute the integral. See C. Robert's solution: https://stats.stackexchange.com/questions/175458/show-that-a-scale-mixtures-of-normals-is-a-power-exponential