

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/KR05/000936

International filing date: 31 March 2005 (31.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: KR
Number: 10-2004-0022527
Filing date: 01 April 2004 (01.04.2004)

Date of receipt at the International Bureau: 17 May 2005 (17.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Intellectual
Property Office.

출 원 번 호 : 10-2004-0022527
Application Number

출 원 년 월 일 : 2004년 04월 01일
Date of Application APR 01, 2004

출 원 인 : 한미약품 주식회사
Applicant(s) HANMI PHARM. IND. CO., LTD.

2005 년 03 월 18 일

특 허 청

COMMISSIONER

【서지사항】

【서류명】	특허출원서
【권리구분】	특허
【수신처】	특허청장
【제출일자】	2004.04.01
【발명의 국문명칭】	메트포르민의 경구투여용 서방성 제제
【발명의 영문명칭】	CONTROLLED RELEASE FORMULATION FOR ORAL ADMINISTRATION OF METFORMIN
【출원인】	
【명칭】	한미약품 주식회사
【출원인코드】	1-1998-004411-2
【대리인】	
【성명】	이현실
【대리인코드】	9-1999-000366-5
【포괄위임등록번호】	1999-056327-8
【대리인】	
【성명】	장성구
【대리인코드】	9-1998-000514-8
【포괄위임등록번호】	1999-023919-6
【발명자】	
【성명의 국문표기】	우종수
【성명의 영문표기】	WOO, Jong Soo
【주민등록번호】	670927-1691628
【우편번호】	440-300
【주소】	경기도 수원시 장안구 정자동 914 대월마을 821-105
【국적】	KR
【발명자】	
【성명의 국문표기】	김영훈

【성명의 영문표기】 KIM, Young Hun

【주민등록번호】 731008-1120417

【우편번호】 440-320

【주소】 경기도 수원시 장안구 율전동 525-15 304호

【국적】 KR

【심사청구】 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정
에 의한 출원심사 를 청구합니다. 대리인

이현실 (인) 대리인

장성구 (인)

【수수료】

【기본출원료】 0 면 38,000 원

【가산출원료】 23 면 0 원

【우선권주장료】 0 건 0 원

【심사청구료】 5 항 269,000 원

【합계】 307,000 원

【요약서】

【요약】

본 발명은 당뇨병 치료에 사용되는 고수용성 메트포르민의 경구투여용 서방성 제제에 관한 것으로, 더욱 상세하게는 서방화 담체로서 친수성 중합체인 폴리에틸렌옥사이드 및 천연 검을 함유하는 메트포르민의 경구투여용 서방성 제제에 관한 것이다. 본 발명에 따른 제제는 경구 투여시에 수용해도가 높은 메트포르민의 방출속도를 자연 조절하여 일정한 혈중 농도를 유지시킬 수 있어 약학적으로 유용하다.

【대표도】

도 4

【명세서】

【발명의 명칭】

메트포르민의 경구투여용 서방성 제제 {CONTROLLED RELEASE FORMULATION FOR ORAL ADMINISTRATION OF METFORMIN}

【도면의 간단한 설명】

- <1> 도 1은 본 발명의 실시예 1 내지 실시예 4에서 제조된 서방성 정제와 대조제(글루코파지(GLUCOPHAGE: 등록상표명) XR 서방정, Bristol-Myers Squibb Company)의 용출시험 결과를 나타낸 그래프이고,
- <2> 도 2는 본 발명의 실시예 5 내지 실시예 8에서 제조된 서방성 정제와 대조제(글루코파지 XR 서방정)의 용출시험 결과를 나타낸 그래프이고,
- <3> 도 3는 본 발명의 실시예 9 내지 실시예 12에서 제조된 서방성 정제와 대조제(글루코파지 XR 서방정)의 용출시험 결과를 나타낸 그래프이고,
- <4> 도 4는 본 발명의 실시예 2와 비교예 1 및 2로부터 제조된 서방성 제제의 용출시험 결과를 나타낸 그래프이고,
- <5> 도 5는 본 발명의 실시예 12에서 제조된 서방성 정제의 용출구내의 회전속도에 따른 용출시험 결과를 나타낸 그래프이며,
- <6> 도 6은 대조제제(글루코파지 XR 서방정)의 용출구내의 회전속도에 따른 용출시험 결과를 나타낸 그래프이다.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- <7> 본 발명은 메트포르민 또는 이의 약학적으로 허용되는 염의 경구투여용 서방성 제제에 관한 것이다.
- <8> 비구아나이드(biguanide)계 당뇨병 치료제인 메트포르민(metformin)은 인슐린-비의존성 진성당뇨병(non-insulin dependent diabetes mellitus, NIDDM)의 치료에 주로 사용되는 경구용 항파혈당 약물이다.
- <9> 메트포르민의 혈당조절 기전은 인슐린 분비와는 무관하게 작용하며, 예컨대 간에서 포도당 수송체를 활성화시킨다고 알려져 있다. 메트포르민은 당뇨병 환자의 체중 감소를 유도하고, 혈중 중성지방과 저밀도 지단백의 감소 및 고밀도 지단백의 증가 효과를 나타낸다. 그러므로, 인슐린 저항성을 보이는 인슐린 비의존성 당뇨병 환자의 1차 약제로서 사용할 수 있다.
- <10> 현재, 메트포르민은 이의 염산염으로서 글루코파지(GLUCOPHAGE, Bristol-Myers Squibb Company)의 정제(tablet)형태로 시판되고 있다. 시판되고 있는 글루코파지 정제는 500mg, 850mg, 또는 1000mg의 염산메트포르민을 함유하고 있으며, 그 투여는 효능 및 내성의 양 측면을 고려하여 하루에 2550mg의 최대 요구 용량을 초과하지 않는 범위내에서 이루어지고 있다.

<11> 메트포르민의 사용과 관련된 부작용은 복용 환자의 20 내지 30%에서 나타나는 식욕감퇴, 복부팽만감, 구역, 설사 등이며, 대부분 일파성으로 복용후 2~3주가 지나면 소실되는 경우가 많다. 설사나 심한 복부 팽만감 등이 소실되지 않으면 복용을 중단하는 것이 좋다. 드물게는 피부 발진과 두드러기 등이 생길 수 있다. 이러한 부작용은 최소 및/또는 지속 용량을 감소시키거나 투약 횟수를 줄일 수 있는 서방성 제제를 이용하는 방법에 의해 부분적으로 피할 수 있다.

<12> 종래에 사용된 메트포르민의 서방성 제제로는 고분자 물질을 이용한 것과 삼투압에 따른 방출조절을 이용한 것들이 있다. 예컨대, WO 제99/47128호에는 고수용성의 약물에 대해 에틸셀룰로스, 나트륨 카르복시메틸셀룰로스, 히드록시프로필메틸셀룰로스 등의 고분자를 이용하여, 위장내 체류 시간을 연장하는 투여 형태인 2상 서방성 시스템이 개시되어 있고; WO 제02/36100호에는 탑-스프레이 유동화 베드 그래뉼레이터를 이용하여 과립화하여 정제를 제조하고, 이의 서방성 코팅을 수행한 다음 레이저를 이용하여 천공하여 약물의 방출을 조절하는 방법이 개시되어 있으며; 미국 특허 제 3,952,741호에는 삼투성 막을 이용한 시스템으로서, 활성성분이 포함된 코어를 반투과막으로 코팅한 것으로 막 내부에 충분한 압력이 발생된 후 코어로부터 활성성분이 방출되는 시스템을 개시하고 있다.

<13> 상기 삼투압을 이용한 시스템의 경우 제품 생산 공정상 레이저 천공 장비등으로 인해 고비용이 소요되며, 생체내에서는 제형의 파손 등에 의해 약물 전체 용량이 단번에 방출되는 과다방출(dose dumping) 현상을 보이는 등 재현성 있는 방출 패턴을 나타내지 못하는 단점이 있다.

<14> 따라서, 장시간에 걸쳐 균일하게 방출이 이루어져 그 효력이 지속적으로 유지될 수 있으며, 제조방법이 용이하여 경제적인 메트포르민의 서방성 제제에 대한 요구는 계속되고 있다.

<15> 이에 본 발명자들은 서방화 담체로서 친수성 중합체인 폴리에틸렌옥사이드 및 천연 검을 사용하면 생산시 특별한 공정을 사용하지 않고도 목적하는 메트포르민의 서방화 효과를 얻을 수 있음을 확인하고 본 발명을 완성하게 되었다.

【발명이 이루고자 하는 기술적 과제】

<16> 본 발명의 목적은 장시간에 걸쳐 균일한 방출속도를 유지하며, 제조방법이 용이하여 경제적인 메트포르민의 서방성 제제를 제공하는 것이다.

【발명의 구성】

<17> 상기 목적에 따라, 본 발명은 약리학적 활성성분으로서 메트포르민 또는 이의 약학적으로 허용가능한 염; 서방화 담체로서 폴리에틸렌옥사이드 및 천연 검; 및 약학적으로 허용가능한 첨가제를 포함하는 메트포르민의 경구투여용 서방성 제제를 제공한다.

<18> 이하 본 발명을 상세히 설명한다.

<19> 본 발명에 따른 메트포르민의 경구투여용 서방성 제제는 적당한 메트포르민 염을 친수성 중합체와 혼합하여 고체 입자상을 형성한 후, 이를 동종 및/또는 이중

의 친수성 중합체를 이용하여 분산시킨 다음 정제로 압축하거나 캡슐에 충진시킴으로써 제제화될 수 있다.

<20> 상기 경구투여용 서방성 제제의 각 구성성분들을 설명하면 하기와 같다.

<21> (1) 활성성분

<22> 본 발명에 따른 서방성 제제의 활성성분은 당뇨병 치료제인 메트포르민 또는 이의 약학적으로 허용가능한 염으로, 예컨대 이의 염산염, 숙시네이트 또는 푸마레이트와 같은 약학적으로 허용가능한 염이 본 발명에서 사용될 수 있다.

<23> (2) 서방화 담체

<24> 본 발명에서 사용되는 서방화 담체는 친수성 중합체인 폴리에틸렌옥사이드 및 천연 겉이다. 이중, 폴리에틸렌옥사이드는 평균 분자량이 100,000 내지 7,000,000 인 것 중에서 목적하는 용출률에 따라 적절한 분자량을 갖는 것을 선택하여 사용할 수 있으며, 분자량이 다른 둘 이상의 폴리에틸렌옥사이드를 혼합하여 사용할 수도 있다.

<25> 또한, 본 발명에 따라 사용되는 천연 검으로는 크산탄 검, 로커스트 검, 구아 검 등이 있으며, 이러한 천연검은 하나 또는 둘 이상을 혼합하여 사용할 수 있다.

<26> 본 발명에 따라, 서방화 담체는 활성성분 1 중량부에 대해 0.01 내지 1 중량부, 바람직하게는 0.1 내지 0.95 중량부의 양으로 사용될 수 있다.

<27> (3) 약학적으로 허용가능한 첨가제

<28> 본 발명의 서방성 제제에 추가로 첨가되는 성분으로는 경구투여용 고형제제에 허용되는 약학적 첨가제로서 중성의 희석담체, 결합제, 활택제 등이 포함될 수 있다.

<29> 본 발명에서 사용될 수 있는 중성의 희석담체로는 락토오즈, 텍스트린, 전분, 미세결정성 셀룰로즈, 인산일수소칼륨, 탄산칼슘, 당류 또는 이산화규소를 들 수 있으며, 그 외에도 경구용 고형제제의 제형화에 있어 약학적 분야에서 일반적으로 사용되는 것은 모두 사용될 수 있다.

<30> 본 발명에서 사용될 수 있는 결합제로는 폴리비닐피롤리돈 또는 젤라틴을 들 수 있으며, 그 외에도 경구용 고형제제의 제형화에 있어 약학적 분야에서 일반적으로 사용되는 것은 모두 사용될 수 있다.

<31> 본 발명에서 사용될 수 있는 활택제로는 스테아린산의 아연 또는 마그네슘 염을 들 수 있으며, 그 외에도 경구용 고형제제의 제형화에 있어 약학적 분야에서 일반적으로 사용되는 것은 모두 사용될 수 있다.

<32> 본 발명에 따라, 약학적으로 허용가능한 첨가제는 개별적으로 활성성분 1 중량부에 대해 0.001 내지 0.3 중량부, 바람직하게는 0.01 내지 0.1 중량부의 양으로 사용될 수 있다.

<33> 또한, 본 발명의 서방성 제제에는 활성성분의 용출을 더욱 조절하기 위한 임의의 성분으로서 서방화 담체가 생체내에서 겔 물성을 나타내도록 하는데 보조 역할을 하는 선택적 방출조절제가 추가로 사용될 수 있으며, 그 예로는 왁스, 폴리비

닐아세테이트/폴리비닐피롤리돈 혼합제 등이 있다.

<34> 본 발명에 따라, 상기 선택적 방출조절제는 활성성분 1 중량부에 대해 0 내지 0.9 중량부의 양으로 사용되는 것이 바람직하며, 제제의 전체 중량부에 대해서는 0 내지 0.7 중량부의 양으로 사용되는 것이 바람직하다.

<35> 이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.

<36> 실시예

<37> 메트포르민의 서방성 정제의 제조

<38> 실시예 1

<39> 제30호 메쉬체를 통과시킨 메트포르민 HCl(화일약품사 제품) 500g, 폴리에틸렌옥사이드(폴리옥스(Polyox: 등록상표명) WSR 응집체, 분자량 5,000,000, 유니온 카바이드(Union Carbide)사 제품) 80g 및 크산탄 겹(Cpkelco사 제품)을 혼합하여 고속혼합기(SPG-2, 후지파우달(Fujipaudal)사 제품)에 넣은 후, 폴리비닐피롤리돈(콜리돈(Kollidon: 등록상표명) K-90, BASF사 제품) 20g을 적당량의 종류수로 녹인 결합액을 넣어 100 내지 1000 rpm으로 3분 동안 혼합하여 과립을 생성하였다. 생성된 과립을 건조시킨 후, 제30호 메쉬체로 체과하고, 여기에 폴리비닐아세테이트/폴리비닐피롤리돈 혼합제(콜리돈 SR, BASF사 제품) 200g, 왁스(콤프리톨(Compritol: 등록상표명) 888ATO, 가테포세(Gattefosse)사 제품) 80g, 및 이산화규소 10g을 넣고 30 분 동안 혼합하였다. 최종적으로 스테아린산 마그네슘 분말 10g

을 가하여 3분 동안 혼합한 후 통상적인 방법으로 압축하여, 하기 표 1에 제시된 조성을 갖는 정제를 제조하였다.

【표 1】

성분		합 량 (증량 %)
과 텁 형 성 부	메트포르민·HCl	50
	폴리에틸렌옥사이드 (폴리옥스 [®] WSR 분자량 5,000,000)	8
	크산탄 겸	10
	폴리비닐피롤리돈	2
혼 합 부	폴리비닐아세테이트/폴리비닐피롤리돈 혼합체	20
	왁스	8
	이산화규소	1
	스테아린산 마그네슘	1
총량		100

<41> 실시예 2 내지 5

<42> 크산탄 겸(Cpkelco사 제품)을 혼합부에 사용하고, 결합제인 폴리비닐피롤리돈을 사용하지 않거나 분자량이 상이한 폴리에틸렌옥사이드를 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로, 각각 하기 표 2 내지 5에 기재된 성분과 비율로 구성된 정제를 제조하였다.

【표 2】

실시예 2의 정제의 구성

성분		합 량 (중량 %)
파립 형성부	메트포르민· HCl	50
	폴리에틸렌옥사이드 (폴리옥스 [®] WSR 분자량 5,000,000)	5
혼합부	폴리비닐아세테이트/폴리비닐피롤리돈 혼합체	20
	왁스	13
	크산탄 겹	10
	이산화규소	1
	스테아린산 마그네슘	1
총량		100

【표 3】

실시예 3의 정제의 구성

성분		합 량 (중량 %)
파립 형성부	메트포르민· HCl	50
	폴리에틸렌옥사이드 (폴리옥스 [®] WSR N10 분자량 100,000)	5
혼합부	폴리비닐아세테이트/폴리비닐피롤리돈 혼합체	20
	왁스	13
	크산탄 겹	10
	이산화규소	1
	스테아린산 마그네슘	1
총량		100

【표 4】

실시예 4의 정제의 구성

성분		합 량 (총량 %)
과립 형성부	메트포르민·HCl	50
	폴리에틸렌옥사이드 (폴리옥스 [®] WSR 1105 분자량 900,000)	5
혼합부	폴리비닐아세테이트/폴리비닐피롤리돈 혼합제	20
	왁스	13
	크산탄 겹	10
	이산화규소	1
	스테아린산 마그네슘	1
총량		100

【표 5】

실시예 5의 정제의 구성

성분		합 량 (총량 %)
과립 형성부	메트포르민·HCl	50
	폴리에틸렌옥사이드 (폴리옥스 [®] WSR 분자량 5,000,000)	10
혼합부	폴리비닐아세테이트/폴리비닐피롤리돈 혼합제	20
	왁스	8
	크산탄 겹	10
	이산화규소	1
	스테아린산 마그네슘	1
총량		100

<47>

실시예 6

<48>

결합제인 폴리비닐피롤리돈을 사용하지 않은 것을 제외하고는 상기 실시예 1

과 동일한 방법으로, 하기 표 6에 기재된 성분과 비율로 구성된 정제를 제조하였다.

【표 6】

성분		합 량 (중량 %)
파립 형성부	메트포르민·HCl	50
	폴리에틸렌옥사이드 (폴리옥스®WSR 분자량 5,000,000)	10
	크산탄 겹	10
혼합부	폴리비닐아세테이트/폴리비닐피롤리돈 혼합제	20
	왁스	8
	이산화규소	1
	스테아린산 마그네슘	1
총량		100

<50> 실시예 7

<51> 파립 형성시에 파립형성 성분들을 적당량의 이소프로필알코올로 혼합하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로, 하기 표 7에 기재된 성분과 비율로 구성된 정제를 제조하였다.

【표 7】

성분		합 량 (증량 %)
과립 형성부	메트포르민· HCl	50
	폴리에틸렌옥사이드 (폴리옥스®WSR 분자량 5,000,000)	8
	크산탄 겹	10
	폴리비닐피롤리돈	2
혼합부	폴리비닐아세테이트/폴리비닐피롤리돈 혼합제	20
	왁스	8
	이산화규소	1
	스테아린산 마그네슘	1
총량		100

<53> 실시예 8 내지 10

<54> 과립 형성시에 과립형성 성분들을 적당량의 증류수/이소프로필알코올(1/1)로 혼합하며, 왁스를 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로, 하기 표 8 내지 10에 기재된 성분과 비율로 구성된 정제를 제조하였다.

【표 8】

실시예 8의 정제의 구성

성분		합 량 (증량 %)
과립 형성부	메트포르민· HCl	50
	폴리에틸렌옥사이드 (폴리옥스®WSR 분자량 5,000,000)	8
	크산탄 겹	10
	폴리비닐피롤리돈	2
혼합부	폴리비닐아세테이트/폴리비닐피롤리돈 혼합제	28
	이산화규소	1
	스테아린산 마그네슘	1
	총량	100

【표 9】

실시예 9의 정제의 구성

성분		합 량 (증량 %)
파립 형성부	메트포르민· HCl	50
	폴리에틸렌옥사이드 (폴리옥스 [®] WSR 분자량 5,000,000)	16
	크산탄 겹	10
	폴리비닐피롤리돈	2
혼합부	폴리비닐아세테이트/폴리비닐피롤리돈 혼합체	20
	이산화규소	1
	스테아린산 마그네슘	1
총량		100

【표 10】

실시예 10의 정제의 구성

성분		합 량 (증량 %)
파립 형성부	메트포르민· HCl	50
	폴리에틸렌옥사이드 (폴리옥스 [®] WSR 분자량 5,000,000)	8
	크산탄 겹	18
	폴리비닐피롤리돈	2
혼합부	폴리비닐아세테이트/폴리비닐피롤리돈 혼합체	20
	이산화규소	1
	스테아린산 마그네슘	1
총량		100

<58> 실시예 11

<59> 과립 형성시에 과립형성 성분들을 적당량의 증류수/이소프로필알코올(1/1)로 혼합한 후, 크산탄 겹(Cpkelco사 제품)을 로커스트 빈 겹(Sigma사 제품)와 혼합하여 혼합부에 사용하며, 왁스를 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로, 하기 표 11에 기재된 성분과 비율로 구성된 정제를 제조하였다.

【표 11】

성분		합 량 (증량 %)
과립 형성부	메트포르민· HC1	50
	폴리에틸렌옥사이드 (폴리옥스 [®] WSP 분자량 5,000,000)	10
	폴리비닐파롤리돈	2
혼합부	폴리비닐아세테이트/폴리비닐파롤리돈 혼합제	20
	크산탄 겹	10
	로커스트 빈 겹	6
	이산화규소	1
	스테아린산 마그네슘	1
	총량	100

<61> 실시예 12

<62> 폴리비닐아세테이트/폴리비닐파롤리돈 혼합제를 사용하지 않는 것을 제외하고는 상기 실시예 11과 동일한 방법으로, 하기 표 11에 기재된 성분과 비율로 구성된 정제를 제조하였다.

【표 12】

성분		합 량 (중량 %)
과립 형성부	메트포르민·HCl	50
	폴리에틸렌옥사이드 (폴리옥스 ^⑩ WSR 분자량 5,000,000)	10
	폴리비닐피롤리돈	2
혼합부	크산탄 겸	21
	로커스트 빈 겸	15
	이산화규소	1
	스테아린산 마그네슘	1
	총량	100

<64> 비교예 1

<65> 과립 형성시에 폴리에틸렌옥사이드를 사용하지 않은 것을 제외하고는 실시 예 2와 동일한 방법으로, 하기 표 13에 기재된 성분과 비율로 구성된 정제를 제조하였다.

【표 13】

성분		합 량 (중량 %)
과립 형성부	메트포르민·HCl	52.6
	폴리비닐아세테이트/폴리비닐피롤리돈 혼합제	21.1
	왁스	13.7
	크산탄 겸	10.5
	이산화규소	1.1
	스테아린산 마그네슘	1
총량		100

<67> 비교예 2

<68> 크산탄 겸을 사용하지 않은 것을 제외하고는 실시 예 2와 동일한 방법으로,

하기 표 14에 기재된 성분과 비율로 구성된 정제를 제조하였다.

【표 14】

성분		합 량 (중량 %)
과립 형성부	메트포르민·HCl	55.6
	폴리에틸렌옥사이드 (폴리옥스 [®] WSR 분자량 5,000,000)	5.6
혼합부	폴리비닐아세테이트/폴리비닐파리돈 혼합체	22.2
	왁스	14.4
	이산화규소	1.1
	스테아린산 마그네슘	1.1
총량		100

<70> 시험예 1: 용출시험

<71> 상기 실시예 1 내지 12에서 제조된 서방성 정제와 대조제제로 시판중인 글루코파지(등록상표명) XR 서방정(Bristol-Myers Squibb Company)을 사용하여 서방화 담체인 폴리에틸렌옥사이드와 천연 겸이 용출속도에 어떤 영향을 미치는지 비교하기 위해, 용출시험을 대한약전 일반시험법 중 용출시험법 제2법(패들법)에 따라 다음과 같은 조건하에서 수행하고, 이를 서방성 제제로부터의 활성성분인 메트포르민 HCl의 방출패턴을 측정하였다.

<72> 용출시험장치 : ERWEKA DT-80 (독일 에어베카(ERWEKA)사 제품)

<73> 용출액 : 대한약전 일반시험법 중 봉해시험법 제2액(인공장액)

<74> 용출액의 온도 : 37°C ± 0.5°C

<75> 용출액량 : 900 mL

<76> 회전속도 : 50 rpm

<77> 샘플 채취 시간 : 1, 2, 3, 4, 6, 8 및 10 시간마다 용출용액을 취해 $0.45\mu\text{m}$ 멤브레인 필터로 여과한 다음 검액으로 사용하였다. 용출액을 취한 후에는 용출시험장치에 새로운 용출액을 동량 보충해주었다.

<78> 분석방법 : 검액 및 상용표준액을 가지고 233nm에서 종류수를 대조로 하여 각각의 흡광도를 측정하여 용출률을 구하였다.

<79> 방출량 계산 : 누적방출량(Cummulative release amount)으로 계산하였다.

<80> 그 결과, 도 1, 2 및 3에 나타난 바와 같이 서방화 담체로서 폴리에틸렌옥사이드 또는 천연 검의 사용량이 증가할수록 용출속도가 지연되었고, 특히 실시예 14의 경우에는 대조제제와 유사한 방출패턴으로 약물을 지속적으로 방출하였다.

시험예 2: 용출시험

<82> 상기 실시예 2와 비교예 1 및 2에서 제조된 정제를 시험예 1과 같은 방법으로 용출시험을 수행하였다.

<83> 그 결과, 도 4에 나타난 바와 같이, 서방화 담체로서 천연검 또는 폴리에틸렌옥사이드를 단독으로 사용한 비교예 1 및 2의 경우 초기에 약물이 급격히 방출됨을 확인할 수 있었다.

시험예 3: 용출시험

<85> 상기 실시예 12에서 제조된 정제 및 대조제제에 대해서 회전 속도를 100 rpm 및 150 rpm으로 변화시키는 것을 제외하고는 시험예 1과 같은 방법으로 용출시험을

수행하였다.

<86> 그 결과, 도 5 및 6에 나타난 바와 같이, 실시예 12에 따른 서방성 제제는 대조제제와 필적할 정도로 높은 회전속도에서도 초기 용출에 있어 약물의 급격한 방출을 일으키지 않고, 안정적인 방출패턴을 나타내었다.

【발명의 효과】

<87> 상기에서 살펴본 바와 같이, 본 발명에 따른 서방성 제제는 폴리에틸렌옥사이드 및 천연 검을 서방화 담체로 사용함으로써 활성성분인 메트포르민을 장시간에 걸쳐 균일하고 지속적인 약효를 나타내도록 방출할 수 있으며, 특별한 기기의 사용 없이 간단한 방법에 의해 제조되므로 경제적이다.

【청구의 범위】

【청구항 1】

약리학적 활성성분으로서 메트포르민(metformin); 서방화 담체로서 폴리에틸렌옥사이드 및 천연 검; 및 약학적으로 허용가능한 첨가제를 포함하는 메트포르민의 경구 투여용 서방성 제제.

【청구항 2】

제1항에 있어서,

메트포르민의 약학적으로 허용가능한 염이 메트포르민 염산염, 메트포르민 숙시네이트 또는 메트포르민 푸마레이트인 것을 특징으로 하는 서방성 제제.

【청구항 3】

제1항에 있어서,

폴리에틸렌옥사이드의 평균 분자량이 100,000 내지 7,000,000 인 것을 특징으로 하는 서방성 제제.

【청구항 4】

제1항에 있어서,

천연 검이 크산탄 검, 로커스트 빈 검, 구아 검 및 이들의 혼합물로부터 이루어진 군으로부터 선택되는 것을 특징으로 하는 서방성 제제.

【청구항 5】

제1항에 있어서,

메트포르민 1 중량부에 대해 서방화 담체를 0.01 내지 1 중량부로 포함하는 것을
특징으로 하는 서방성 제제.

【도면】

【도 1】

【도 2】

【도 3】

【도 4】

【도 5】

【도 6】

