Linearna algebra 101

Aleksa Tešić, 5.7.2018.

IS Petnica

Šta će nama linearna?

Šta će nama linearna?

- Lep način da se definiše nekakav prostor
- Lako se implementira u računarskom sistemu
- I hardverski i softverski

Osnovne komponente

- Vektori
- Matrice

Tačka u 2D

Vektor položaja

Tačka u 3D

Vektor položaja

Možemo generalizovati na N dimenzija!!!

Šta je zapravo vektor?

Vektor je osnovna gradivna komponenta vektorskog prostora

Čime je određen vektor?

Čime je određen vektor?

- intenzitetom
- pravcem
- smerom

Intenzitet vektora

• možemo da kažemo da je to dužina vektora

Pravac vektora

• Prava sa kojom se poklapa

Smer vektora

• Na koju "stranu" ide

Operacije sa vektorima

- Sabiranje vektora
 - o pravilo trougla
 - o pravilo paralelograma

Operacije sa vektorima

- Skalarni proizvod
- Množenje vektora skalarom
- Vektorski proizvod
- Norma vektora

Skalarni proizvod

$$x\cdot y=|x||y|\cos w$$
 - 2D

$$x \cdot y = x_1 y_1 + x_2 y_2 + x_3 y_3$$

Kolinearni vektori

• imaju isti pravac

Ortogonalni (normalni) vektori

• ugao između njih je 90 stepeni

A šta je sad to vektorski prostor?

A šta je sad to vektorski prostor?

- prostor u kome su "lepo" definisani množenje skalarom i sabiranje vektora
- 2D, 3D su vektorski prostori
- Koliko dimenzija, toliko vektora(ortovi)

Baza vektorskog prostora?

Baza vektorskog prostora?

 Minimalni skup vektora potreban da pozicioniramo tačku u tom prostoru

Linearni Operatori (Transformacije)

Linearni Operatori (Transformacije)

- Preslikava jedan vektorski prostor u drugi
- tj. Transformiše vektorski prostor
- Gledajte na njih kao na funkcije

Šta važi za linearne transformacije?

- $\bullet \ A(x+y) = A(x) + A(y)$
- $A(\alpha x) = \alpha A(x)$
- x, y pripadaju vektorskom prostoru
- ullet lpha je skalar

Šta sve može da bude linearni operator?

Šta sve može da bude linearni operator?

Sve što možemo da predstavimo kao vektorski prostor

Generalizacija *svega* na vektorske prostore!

A šta će nama sad ovo?

Uzmemo bilo koju bazu prostora

Možemo dobiti bilo koju drugu bazu tog istog prostora

Šta sam ja upravo rekao?

- Primenom konačnog broja linearnih operatora(transformacija)
 ćemo jedno bazu transformisati u drugu
- Imamo zapravo kompozicije funkcija
- Iste su dimenzije, pa je regulator regularan

Regularni operatori

- Imaju inverz, tj. postoji A^{-1}
- Rade nad vektorskim prostorima koji imaju istu dimenziju

Regularni operatori nam omogućuju da manipulišemo prostorom

Regularni operatori nam omogućuju da manipulišemo prostorom

• Translacije, rotacije, skaliranje, refleksija...

Matrice (Kvadratne)

Matrice su izomorfizmi regulularnih operatora

WTF is izomorfizam!?

WTF is izomorfizam!?

- Dve (ili više) stvari koje se ponašaju potpuno isto
- Npr. neki grafovi
- Matrice i regularni operatori

Matrice vs. Regularni operatori

- Primena operatora se svodi na množenje matrice matricom tog operatora
- $M^{-1} = A^{-1}$
- Jedinična matrica je neutral za množenje
- Nula matrica neutral za sabiranje
- Kompozicija operatora je zapravo samo množenje više matrica

Množenje matrica

Determinanta matrice

Determinanta matrice

- Pokazuje da li transformacija čuva odnos ili ne
- Sarusovo Pravilo
- La Granž

Što ovo mnogo dobro radi na kompu?

Paralelizacija!

Pitanja?