

1. Features

- 6 channel touch button module. Up to 6 sensors can be connected to the module. There is no front panel with touch sensors included. Please see Microchip AN1492 and AN1334 notes to find out how to design sensors.
- Possibility to connect 6 LEDs to indicate status of other nodes
- Uses 1-wire digital sensors DS18B20, or DS1822.
- Measures temperatures from -55°C to +125°C.
- Accuracy ±0.5°C when used with DS18B20+, or ±2.0°C with DS1822.
- 12bits temperature resolution.
- Operation voltage 10-24V
- Current consumption 18mA with 6 LEDs turned on
- For deep back box mounting
- Dimensions 44x44x25 mm
- Operating of module depends on firmware uploaded into it.
- Schematic and PCB design can be downloaded from <u>hapcan.com</u> site

2. Application version

3. Technical data

Bus side

Parameter	Symbol	Value	Unit
Power supply voltage	Us	10-24V	V
Current consumption without LEDs	Is	8	mA
Maximum current consumption with 6 LEDs turned on	I_{smax}	18	mA
Bus connector type	4 terminal blocks 1.5mm ²		

Button input

Parameter	Symbol	Value	Unit
Connector type	Stranded ribbon cable		
Size of input wire	S	0.13 26	mm² AWG
Length of input wire	I	0.25	m

Temperature sensor

Parameter	Symbol	Value	Unit
Operating temperature	Т	-55 - +125	°C
Operating temperature resolution	T_RES	0.0625	°C
Temperature accuracy	T _{ERR}	DS18B20+: ±2 ±0.5 (-10°C - +85°C) DS1822: ±3 ±2 (-10°C - +85°C)	°C

4. Hardware

4.1. Schematic

Figure 2. Schematic of UNIV 3.1.2.x module

Note that if module is first or last on the bus, resistor 120ohm must be connected between pins CANH and CANL.

- orange

Figure 1. Wiring diagram

CANL

4.3. Assembly schematic

- Printed circuit boards PCB UNIV 3.(1-3-5).x.x-rev3 for UNIV 3.1.2.x module
- PCBs dimensions: 40mm x 40mm

4.4. Components

Designator	Туре	Footprint	Description	
C1, C5, C6, C7, C8, C10, C11	100nF/50V	0805	Capacitor	
C2, C3	22pF/50V	0805	Capacitor	
C4	10uF/16V (X5R)	0805	Capacitor	
C9	10uF/50V	1210	Capacitor	
C12	10uF/16V	SMA, SMB	Tantalum capacitor	
R1, R3	10k	0805	Resistor	
R2	470 Ohm	0805	Resistor	
R4	51k 1%	0805	Resistor	
R5	10k 1%	0805	Resistor	
R6, R7, R8, R9, R10, R11, R13, R14, R15, R16, R17, R18, R19	1k	0805	Resistor	
R12	0 Ohm	0805	Resistor	
R26	2k2	0805	Resistor	

L1	BLM21A102SPT	0805	Choke
Y1	8MHz	HC49-S	Quartz crystal
D1	P6SMB33CA	DO-214	Transil diode
D2	S1D	DO-214	Rectifying diode
IC1	UNIV 3 CPU	SOIC-28	HAPCAN universal processor
IC2	MCP2561-E/SN	SOIC-8	CAN transceiver
IC3	MCP1790-5002EDB	SOT-223	Voltage regulator
CON1, CON2	ARK2	L10xW9xH12 raster 5mm	Terminal block
CON5	AWLP16	Raster 2,54mm	IDC connector
Cable	16 wire	Raster 1,27mm	Ribbon cable
TEMP	DS18B20+	TO-92	Temperature sensor

4.5. Enclosure

- Italtronic C-BOX enclosure for deep back box mounting with diameter ø60mm
- Dimensions: 43,8mm x 43,8mm x 25,1mm

4.6. Mechanical processing

Striped parts must be removed.

4.7. Labels

Editable labels version is available on hapcan.com site.

5. Commissioning

5.1. CPU voltage measurement

After verifying the correctness and quality of the soldering, the bus voltage should be connected while measuring the processor voltage. To do this, connect a voltmeter to pins 2 and 3 of the ICSP connector. Processor supply voltage should be about 5V.

Figure 3. CPU voltage measurement

5.2. Checking the CPU clock

Proper operation of the CPU can be checked by temporarily connecting the LED to pins 3 and 5 of the ICSP connector. When device is powered, the LED should light up four times in the sequence 1 second on - 1 second off - 1 second on. The LED lights up only once for 50ms, if the processor is in programming mode.

Figure 4. Checking the CPU clock

5.3. Firmware uploading

The device requires a firmware uploading for proper operation. It can be done with HAPCAN Programmer software. Both, firmware and HAPCAN Programmer can be downloaded from hapcan.com website.

6. License

HAPCAN Home Automation Project hardware, Copyright (C) 2014 hapcan.com

This device is free hardware: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This hardware is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details

You should have received a copy of the GNU General Public License along with this documentation. If not, see http://www.qnu.org/licenses/gpl-3.0.html.

7. Document version

File	Description	Date
univ_3-1-2-x_a.pdf	Original version	March 2014
univ_3-1-2-x_b.pdf	Updated to hardware revision 3	June 2014