

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

MA1201 Lineær algebra og geometri Høst 2017

Løsningsforslag — Øving 2

Med forbehold om feil. Gi gjerne beskjed til Mads (mads.sandoy@ntnu.no) ved email om du finner noen.

[1] Gjør oppgave 11-16, samt 28 og 29 på side 18-21.

11) $\mathbb{V} \cdot \mathbb{W} < 0$ betyr at vinkelen mellom vektorene er $> \pi/2$ radianer. Disse \mathbb{W} fyller halve \mathbb{R}^3 .

12) (1,1) er ortogonal til (1,5) – c(1,1] såfremt (1,1) · (1,5) – c(1,1) · (1,1) = 6 – 2c=0, som er det samme som at c=3.

Mer generelt, $\mathbf{v} \cdot (\mathbf{w} - c\mathbf{v}) = 0$ hvis $c = \mathbf{v} \cdot \mathbf{w}/\mathbf{v} \cdot \mathbf{v}$. Å subtrahere $c\mathbf{v}$ for slik en c gir oss altså en ortogonal vektor. Vi vil se dette igjen i oppgaver nedenfor.

13) Planet ortogonalt til (1,0,1) inneholder alle vektorer (c,d,-c). I dette planet er v = (1,0,-1) og w = (0,1,0) ortogonale.

14) Et mulig valg er som følger: $\mathbf{u} = (1, -1, 0, 0)$, $\mathbf{v} = (0, 0, 1, -1)$, $\mathbf{w} = (1, 1, -1, -1)$ og (1, 1, 1, 1) er ortogonale til hverandre. Det er mulig å rotere disse vektorene \mathbf{u} , \mathbf{v} og \mathbf{w} slik at de forblir i hyperplanet, og slik at de forblir ortogonale til hverandre.

15) $\frac{1}{2}(x+y) = (2+8)/2 = 5 \text{ og } 5 > 4. \cos \theta = 2\sqrt{16}/\sqrt{10}\sqrt{10} = 8/10.$

16) $\|\mathbf{v}\|^2 = 1 + 1 + \dots + 1 = 9$ slik at $\|\mathbf{v}\| = 3$. Hvis vi setter $\mathbf{u} = \mathbf{v}/3 = (1/3, \dots, 1/3)$ er en enhetsvektor i \mathbb{R}^9 . $\mathbf{w} = (1, -1, 0, \dots, 0)/\sqrt{2}$ er en enhetsvektor i det 8-dimensjonale hyperplanet ortogonalt til \mathbf{v} .

28) Vektorene w = (x, y) med $(1, 2) \cdot w = x + 2y = 5$ ligger på en linje i xy-planet. Den korteste w på den linjen er (1, 2). Se på Schwarzulikheten for å bekrefte dette: $||w|| \ge ||w|| = \sqrt{5}$ er en likhet når $\cos \theta = 0$ og $||w|| = \sqrt{5}$.

29) Lengden $\|\mathbf{v} - \mathbf{w}\|$ er mellom 2 og 8. Se på trekantuliketheten når $\|\mathbf{v}\| = 5$ og $\|\mathbf{w}\| = 3$. Prikkproduktet $\mathbf{v} \cdot \mathbf{w}$ er mellom -15 og 15 ved Schwarzulikheten.

[2] (a) La u=(1,2,1) og v=(0,1,4) i \mathbb{R}^3 . Definer $w=v-\frac{u\cdot v}{\|u\|^2}u$ i \mathbb{R}^3 . Beregn w og finn $w\cdot u$. Hvordan kan vi tolke vektoren $\frac{u\cdot v}{\|u\|^2}u$ og lengden til w?

Ved å sette inn finner vi at

$$\mathbf{w} = \mathbf{v} - \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^2} \mathbf{u} = (0, 1, 4) - \frac{2 \cdot 1 + 1 \cdot 4}{1^2 + 2^2 + 1^2} \cdot (1, 2, 1) = (-1, -1, 3).$$

Følgelig får vi at

$$\mathbf{w} \cdot \mathbf{u} = 1 \cdot (-1) + 2 \cdot (-1) + 1 \cdot 3 = 0$$

noe som ikke er overraskende når man ser på uttrykket for w, siden man får at

$$\mathbf{w}\cdot\mathbf{u}=\mathbf{v}\cdot\mathbf{u}-\frac{\mathbf{u}\cdot\mathbf{v}}{\|\mathbf{u}\|^2}\mathbf{u}\cdot\mathbf{u}=\mathbf{v}\cdot\mathbf{u}-\frac{\mathbf{u}\cdot\mathbf{v}}{\|\mathbf{u}\|^2}\cdot\|\mathbf{u}\|^2=\mathbf{u}\cdot\mathbf{v}-\mathbf{u}\cdot\mathbf{v}=0.$$

Man kan se at $\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^2}$ u er den delen av \mathbf{v} som er parallell til \mathbf{u} . Siden $\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^2}$ u er det punktet \mathbf{p} på linjen utspent av \mathbf{u} slik at $\mathbf{u} \cdot (\mathbf{v} - \mathbf{p}) = 0$, må vi fra den tredje utfordringen fra forrige øving ha at $\|\mathbf{w}\|$ er den korteste avstanden fra \mathbf{v} ned på linjen utspent av \mathbf{u} .

(b) La
$$\mathbf{x} = (0,1,1)$$
 i \mathbb{R}^3 . Beregn $\mathbf{y} = \mathbf{x} - \frac{\mathbf{u} \cdot \mathbf{x}}{\|\mathbf{u}\|^2} \mathbf{u} - \frac{\mathbf{w} \cdot \mathbf{x}}{\|\mathbf{w}\|^2} \mathbf{w}$ og finn $\mathbf{y} \cdot \mathbf{u}$ og $\mathbf{y} \cdot \mathbf{w}$.

Vi setter inn og regner ut:

$$\begin{split} \mathbf{y} &= \mathbf{x} - \frac{\mathbf{u} \cdot \mathbf{x}}{\|\mathbf{u}\|^2} \mathbf{u} - \frac{\mathbf{w} \cdot \mathbf{x}}{\|\mathbf{w}\|^2} \mathbf{w} \\ &= \mathbf{x} - \frac{3}{6} \mathbf{u} - \frac{2}{11} \mathbf{w} \\ &= (0, 1, 1) - (1/2, 1, 1/2) - (-2/11, -2/11, 6/11) \\ &= (-7/22, 4/22, -1/22) \\ &= \frac{1}{22} (-7, 4, -1). \end{split}$$

Som i forrige deloppgave, kan vi se ut i fra formen til y at y · u = 0 og y · w = 0. Når vi setter inn får vi y · u = $\frac{1}{22}$ · $(-7 \cdot 1 + 4 \cdot 2 + (-1) \cdot 1) = 0$ mens

$$y \cdot w = \frac{1}{22} \cdot ((-7) \cdot (-1) + 4 \cdot (-1) + (-1) \cdot 3) = 0.$$

(c) La $\{\mathbf u_1, \mathbf u_2, \dots, \mathbf u_t, \mathbf u'_{t+1}\}$ være vektorer i $\mathbb R^n$, der $\mathbf u_i \cdot \mathbf u_j = 0$ for $i \neq j$ og i og j inneholdt i $\{1, 2, \dots, t\}$. La

$$\mathbf{u}_{t+1} = \mathbf{u}_{t+1}' - \frac{\mathbf{u}_1 \cdot \mathbf{u}_{t+1}'}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 - \frac{\mathbf{u}_2 \cdot \mathbf{u}_{t+1}'}{\|\mathbf{u}_2\|^2} \mathbf{u}_2 - \dots - \frac{\mathbf{u}_t \cdot \mathbf{u}_{t+1}'}{\|\mathbf{u}_t\|^2} \mathbf{u}_t.$$

Vis at $u_{t+1} \cdot u_i = 0$ for i = 1, 2, ..., t.

Vi gjør det åpenbare og forsøker å beregne:

$$\mathbf{u}_{t+1} \cdot \mathbf{u}_i = \mathbf{u}_{t+1}' \cdot \mathbf{u}_i - \frac{\mathbf{u}_1 \cdot \mathbf{u}_{t+1}'}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 \cdot \mathbf{u}_i - \frac{\mathbf{u}_2 \cdot \mathbf{u}_{t+1}'}{\|\mathbf{u}_2\|^2} \mathbf{u}_2 \cdot \mathbf{u}_i - \dots - \frac{\mathbf{u}_t \cdot \mathbf{u}_{t+1}'}{\|\mathbf{u}_t\|^2} \mathbf{u}_t \cdot \mathbf{u}_i.$$

Fra antagelsen vet vi at $u_i \cdot u_j = 0$ for $i \neq j$ og i og j inneholdt i $\{1, 2, \dots, t\}$, og derfor holder følgende:

$$\mathbf{u}_{t+1} \cdot \mathbf{u}_i = \mathbf{u}'_{t+1} \cdot \mathbf{u}_i - \frac{\mathbf{u}_i \cdot \mathbf{u}'_{t+1}}{\|\mathbf{u}_i\|^2} \mathbf{u}_i \cdot \mathbf{u}_i = \mathbf{u}'_{t+1} \cdot \mathbf{u}_i - \mathbf{u}_i \cdot \mathbf{u}'_{t+1} = 0,$$

hvilket var det som skulle vises.

(d) La $u_1=(1,2),\ u_2'=(3,2)$ og $u_3'=(2,2)$ i $\mathbb{R}^2.$ Finn de følgende vektorene:

$$\begin{aligned} \mathbf{u}_2 &= \mathbf{u}_2' - \frac{\mathbf{u}_1 \cdot \mathbf{u}_2'}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 \\ \mathbf{u}_3 &= \mathbf{u}_3' - \frac{\mathbf{u}_1 \cdot \mathbf{u}_3'}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 - \frac{\mathbf{u}_2 \cdot \mathbf{u}_3'}{\|\mathbf{u}_2\|^2} \mathbf{u}_2 \end{aligned}$$

Vi regner:

$$\begin{split} \mathbf{u}_2 &= \mathbf{u}_2' - \frac{\mathbf{u}_1 \cdot \mathbf{u}_2'}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 = (8/5, -4/5) \\ \mathbf{u}_3 &= \mathbf{u}_3' - \frac{\mathbf{u}_1 \cdot \mathbf{u}_3'}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 - \frac{\mathbf{u}_2 \cdot \mathbf{u}_3'}{\|\mathbf{u}_2\|^2} \mathbf{u}_2 = \mathbf{u}_3' - \frac{6}{5} \mathbf{u}_1 - \frac{8/5}{16/5} \mathbf{u}_2 \\ &= (2, 2) - \frac{6}{5} (1, 2) - \frac{1}{2} (8/5, -4/5) = \frac{1}{5} ((10, 10) - (6, 12) - (4, -2)) = 0 \end{split}$$