

	Jigar Widdhpwa
	60004210155
	DMW - Experiment 3
	Aim & Trade 1 to 1 to 1 to 1
	Aim & Implementation of classificantion algo using
	1. Decisim Rec
	2. Naîve Bayes algorithm.
	Trong: Devision tope 103 :
	I. Decision tope is a stoucture that contains nodes &
	edges & is built from a dataset (table of columns
16	representing features & rows corresponding to seconds).
	2 6 1 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	2. Each node is either used to make a decision (Known
	as decision node) as represent an outcome (known
	as leaf mode).
	3. ID3 stands for Therapive Dichotomiser 3 4 is
	named because algorithm iteratively dictrotomizes (divides)
	feature into 2 or more groups at each setep.
	4. In 3 uses a top-down grow greedy approach to
	build a decision tocc.
	5. Top-down means that we start building the free.
0	from top & greedy approach means that & at
-	each iteration we select the best feature at the
	present moment to create a node.
	present moment to create a nove
Kundaran	FOR EDUCATIONAL USE
111811111	

	Naïve Bayes: I. Naïve Boyes classifier is a rollection of classification algorithm based on Bryes theorem. 2. It is not a simple algorithm bast a family of algorithms. Where all of them share a common principle i.e. every pair of feature being classified is independent of each other. 3. Consider a fictional delated that describes weather conditions for playing golf. (ricen the weather conditions each hipse classifiers the conditions as fit ("Yes") or unfit ("No") by playing golf.
(Sundaram)	FOR EDUCATIONAL USE

Initialisation:

```
from google.colab import drive
drive.mount("/content/gdrive")
!pip install scikit-plot
import pandas as pd
import numpy as np
import seaborn as sns
import re
import matplotlib.pyplot as plt
from scikitplot.metrics import plot_confusion_matrix
from sklearn.multiclass import OneVsRestClassifier
from sklearn.metrics import roc_curve, roc_auc_score, accuracy_score, classification_report, confusion_matrix
titanic_train = "/content/gdrive/MyDrive/Synapse-Task/synapse_w1/train.csv"
titanic test = "/content/gdrive/MyDrive/Synapse-Task/synapse w1/test.csv"
penguin_df = sns.load_dataset("penguins")
iris_df = pd.read_csv("https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv")
spam_df = pd.read_csv("/content/gdrive/MyDrive/DMW/datasets/spam.csv")
wine_df = pd.read_csv("/content/gdrive/MyDrive/DMW/datasets/WineQT.csv")
gaussian = []
\overline{\text{decision}} = []
```

Part A:

Dataset(Titanic):

```
"""### Titani<u>c"""</u>
titanic_train_df = <mark>pd.read_csv</mark>(titanic_train)
titanic_test_df = <mark>pd.read_csv</mark>(titanic_test)
import re
titles = []
for nm in titanic_train_df.Name:
 title_search = re.search("(\w+)\.", nm)
  title = title_search.group(1)
 titles.append(title)
titanic_train_df['Title'] = titles
titanic_train_df.columns
titanic_train_df.drop(['Passengerld', 'Ticket', 'Mme"], axis=1, inplace=True)
nullPercent = {}
for i in titanic_train_df:
 null_count_i = titanic_train_df.isnull().sum()[i]
  per = null_count_i*100/titanic_train_df.shape[0]
 nullPercent[i] = per
for i in nullPercent:
 if(nullPercent[i] > 50) : titanic_train_df.drop([i], axis=1, inplace=True)
titanic_train_df.<mark>info()</mark>
mean = np.mean(titanic_train_df.Age)
titanic_train_df["Age"].fillna(value=mean,
                                           inplace=True)
train_df = titanic_train_df.assign(Family=lambda x: x.SibSp + x.Parch)
 lef zscore_norm(x):
mean = np.mean(x)
std = np.std(x)
 return (x-mean)/std
train_df = train_df.assign(Age=lambda x: zscore_norm(x.Age))
train_df = train_df.assign(Fare=lambda x: zscore_norm(x.Fare))
train_df = train_df.assign(Family=lambda x: zscore_norm(x.Family))
train_df = <mark>pd.get_dummies</mark>(train_df , columns=["Pclass", 'Sex', 'Title', "Embarked"])
train_df
y = train_df.pop("Survived")
```

```
x = train df
from sklearn.model_selection import train_test_split
x_train,x_valid,y_train,y_valid = <mark>train_test_split</mark>(x ,y, random_state=10, stratify=y, test_size=0.25 )
y_train.value_counts(normalize=True)
y_valid.value_counts(normalize=True)
from sklearn.naive_bayes import Gaussian 🛭 🖰
nb_model = GaussiaM B()
nb_model.<mark>fit</mark>(x_train, y_train)
nb_accuracy = nb_model.<mark>score</mark>(x_valid, y_valid)
print(nb_accuracy)
 using decision tree
from sklearn.tree import DecisionTreeClassifier
dt_model = DecisionTreeClassifier()
dt_model.<mark>fit</mark>(x_train, y_train)
dt_accuracy = dt_model.score(x_valid, y_valid)
gaussian.append(nb_accuracy)
decision.append(dt_accuracy)
accuracy = [nb_accuracy, dt_accuracy]
Models = ['NaiveBayes', 'DecisionTree']
sns.barplot(x=Models,y=accuracy).set(title="Titanic Dataset")
y_score_gnb = nb_model<mark>.predict_proba</mark>(x_valid)[:, 1]
fpr_gnb, tpr_gnb, thresholds_gnb = roc_curve(y_valid, y_score_gnb)
roc_auc_gnb = roc_auc_score(y_valid, y_score_gnb)
y_score_dtc = dt_model.<mark>predict_proba</mark>(x_valid)[:, 1]
fpr_dtc, tpr_dtc, thresholds_dtc = <mark>roc_curve</mark>(y_valid, y_score_dtc)
roc_auc_dtc = roc_auc_score(y_valid, y_score_dtc)
plt.figure(figsize=(8, 6))
plt.plot(fpr_gnb, tpr_gnb, color='blue', lw=2, label='Naive Bayes ROC curve (AUC = {:.2f})".format(roc_auc_gnb))
<mark>plt.plot</mark>(fpr_dtc, tpr_dtc, color='green', lw=2, label='Decision Tree ROC curve (AUC =
{:.2f})*.format(roc_auc_dtc))
plt.plot([0, 1], [0, 1], color='gray', linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title("ROC-AUC Curve')
plt.legend(loc="lower right')
plt.show()
q = y_valid
pred_test = dt_model.predict(x_valid)
pred_test = pd.DataFrame(pred_test)
y_valid = pd.DataFrame(y_valid)
plot_confusion_matrix(y_valid, pred_test, figsize=(7,4), title='DecisionTree Confusion Hatrix", cmap="BuGn")
y_valid = q
q = y_valid
pred_test = nb_model.predict(x_valid)
pred_test = pd.DataFrame(pred_test)
/_valid = pd.DataFrame(y_valid)
plot_confusion_matrix(y_valid, pred_test, figsize=(7,4), title="Gaussilan B Confusion Matrix", cmap="BuGn")
y_test = q
from sklearn.model_selection import KFold, cross_val_score
kf = KFold(n_splits=7,shuffle=True,random_state=10)
           cross_val_score(estimator=nb_model, X=x_train, y=y_train, cv=kf, scoring="accuracy")
cv_score
mean_cv_score = np.mean(cv_score)
print(mean_cv_score)
from sklearn.ensemble import RandomForestClassifier
rf_model = RandomForestClassifier()
rf_model.<mark>fit</mark>(x_train, y_train)
rf_accuracy = rf_model.<mark>score</mark>(x_valid, y_valid)
print(rf_accuracy)
```

```
accuracies=[nb_accuracy,dt_accuracy,rf_accuracy,mean_cv_score]

plt.figure(figsize=(10,5))

models=[" Maive Bayes','Decision Tree","Random Forest',' aNive Bayes + Cross validation']

sns.barplot(x=models,y=accuracies,).set(title="Part C')

plt.xlabel("Models")

plt.ylabel('Accuracy')

plt.title('Accuracy of Different Models")
```


Dataset 2 (penguins):

```
### Penguin"
pg_df = penguin_df
pg_df.head()
pg_df.shape
pg_df.species.unique()
pg_df.island.unique()
pg_df.dropna(inplace=True)
pg_df = pd.get_dummies(pg_df, columns=["island","sex"])
y = pg_df.pop('species')
X = pg_df
x_train, x_valid, y_train, y_valid = <mark>train_test_split</mark>(X,y,random_state=10,stratify=y, test_size=0.25)
y_train.value_counts(normalize=<mark>True</mark>)
y_valid.value_counts(normalize=True)
 rom sklearn.naive_bayes import GaussiaN B
nb_model = OneVsRestClassifier(GaussianNB())
nb_model.<mark>fit</mark>(x_train, y_train)
nb_accuracy = nb_model.score(x_valid, y_valid)
print(nb accuracy)
from sklearn.tree import DecisionTreeClassifier
dt_model = OneVsRestClassifier(DecisionTreeClassifier())
dt_model.<mark>fit</mark>(x_train, y_train)
dt_accuracy = dt_model.<mark>score</mark>(x_valid, y_valid)
print(dt_accuracy)
gaussian.append(nb_accuracy)
decision.append(dt_accuracy)
accuracy = [nb_accuracy, dt_accuracy]
Models = ['NaiveBayes','DecisionTree']
sns.barplot(x=Models,y=accuracy).set(title="Penguin Dataset")
y_score_gnb = nb_model.predict_proba(x_valid)
fpr_gnb, tpr_gnb, thresholds_gnb = <mark>roc_curve</mark>(y_valid.values, y_score_gnb.values)
roc_auc_gnb = roc_auc_score(y_valid, y_score_gnb)
y_score_dtc = dt_model.<mark>predict_proba</mark>(x_valid)
fpr_dtc, tpr_dtc, thresholds_dtc = <mark>roc_curve</mark>(y_valid.values, y_score_dtc.values)
roc_auc_dtc = <mark>roc_auc_score</mark>(y_valid, y_score_dtc)
plt.figure(figsize=(8, 6))
plt.plot(fpr_gnb, tpr_gnb, color='blue', lw=2, label='Naive Bayes ROC curve (AUC = {:.2f})".format(roc_auc_gnb))
plt.plot(fpr_dtc, tpr_dtc, color='green', lw=2, label='Decision Tree ROC curve (AUC =
{:.2f}) .format(roc_auc_dtc))
plt.plot([0, 1], [0, 1], color='gray', linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title("ROC-AUC Curve')
plt.legend(loc="lower right')
plt.show()
q = y_valid
pred_test = dt_model.<mark>predict</mark>(x_valid)
pred_test = pd.DataFrame(pred_test)
y_valid = pd.DataFrame(y_valid)
plot_confusion_matrix(y_valid, pred_test, figsize=(7,4), title='DecisionTree Confusion Matrix", cmap="BuGn")
```

```
y_test = q
q = y_valid
pred_test = nb_model.<mark>predict</mark>(x_valid)
pred_test = pd.DataFrame(pred_test)
y_valid = pd.DataFrame(y_valid)
plot_confusion_matrix(y_valid, pred_test, figsize=(7,4), title="GaussianNB Confusion Matrix", cmap="BuGn")
y_test = q
y_score_gnb = nb_model.predict_proba(x_valid)
fpr_gnb, tpr_gnb, thresholds_gnb = <mark>roc_curve</mark>(y_valid.values, y_score_gnb.values)
roc_auc_gnb = roc_auc_score(y_valid, y_score_gnb)
/_score_dtc = dt_model.predict_proba(x_valid)
fpr_dtc, tpr_dtc, thresholds_dtc = <mark>roc_curve</mark>(y_valid.values, y_score_dtc.values)
roc_auc_dtc = roc_auc_score(y_valid, y_score_dtc)
plt.figure(figsize=(8, 6))
<mark>plt.plot</mark>(fpr_gnb, tpr_gnb, color='blue', lw=2, label='Naive Bayes ROC curve (AUC = {:.2f})".format(roc_auc_gnb))
plt.plot(fpr_dtc, tpr_dtc, color='green', lw=2, label='Decision Tree ROC curve (AUC =
{:.2f}) .format(roc_auc_dtc))
plt.plot([0, 1], [0, 1], color='gray', linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title("ROC-AUC Curve')
plt.legend(loc="lower right')
plt.show()
```



```
Dataset 3 (Iris):
""" ### Iris"""
iris_df.head()
iris_df.species.<mark>unique</mark>()
y = iris_df.pop('species')
X = iris_df
x_train, x_valid, y_train, y_valid = <mark>train_test_split</mark>(X,y,random_state=10,stratify=y, test_size=0.25)
y_train.value_counts(normalize=True)
from sklearn.naive_bayes import Gaussian NB
nb_model = GaussiaM B()
nb_model.<mark>fit</mark>(x_train, y_train)
nb_accuracy = nb_model.<mark>score</mark>(x_valid, y_valid)
print(nb_accuracy)
 using decision tree
from sklearn.tree import DecisionTreeClassifier
dt_model = DecisionTreeClassifier()
dt_model.<mark>fit</mark>(x_train, y_train)
dt_accuracy = dt_model.<mark>score</mark>(x_valid, y_valid)
print(dt_accuracy)
gaussian.append(nb_accuracy)
decision.append(dt_accuracy)
accuracy = [nb_accuracy, dt_accuracy]
Models = ['NaiveBayes', 'DecisionTree']
sns.barplot(x=Models,y=accuracy).set(title="Iris Dataset")
q = y_valid
pred_test = dt_model.predict(x_valid)
pred_test = pd.DataFrame(pred_test)
y_valid = pd.DataFrame(y_valid)
plot_confusion_matrix(y_valid, pred_test, figsize=(7,4), title='DecisionTree Confusion #atrix", cmap="BuGn")
y_test = q
q = y_valid
pred_test = nb_model.<mark>predict</mark>(x_valid)
pred_test = pd.DataFrame(pred_test)
y_valid = pd.DataFrame(y_valid)
plot_confusion_matrix(y_valid, pred_test, figsize=(7,4), title="Gaussiam\B Confusion Matrix", cmap="BuGn")
y_test = q
y_score_gnb = nb_model.<mark>predict_proba</mark>(x_valid)
fpr_gnb, tpr_gnb, thresholds_gnb = <mark>roc_curve</mark>(y_valid.values, y_score_gnb.values)
roc_auc_gnb = roc_auc_score(y_valid, y_score_gnb)
v_score_dtc = dt_model.predict_proba(x_valid)
fpr_dtc, tpr_dtc, thresholds_dtc = <mark>roc_curve</mark>(y_valid.values, y_score_dtc.values)
roc_auc_dtc = roc_auc_score(y_valid, y_score_dtc)
plt.figure(figsize=(8, 6))
plt.plot(fpr_gnb, tpr_gnb, color='blue', lw=2, label='Naive Bayes ROC curve (AUC = {:.2f})".format(roc_auc_gnb))
<mark>plt.plot</mark>(fpr_dtc, tpr_dtc, color='green', lw=2, label='Decision Tree ROC curve (AUC =
{:.2f})*.format(roc_auc_dtc))
plt.plot([0, 1], [0, 1], color='gray', linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
olt.title("ROC-AUC Curve')
olt.legend(loc="lower right')
plt.show()
```


Confusion Matrix:

Dataset 4 (Email spam-ham dataset):

```
""" ### spam"""
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import nltk
import string
from nltk.tokenize import word_tokenize
import re
from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetlemmatizer
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import logisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
import lightgbm as ltb
from sklearn.naive_bayes import Gaussian NB
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
import nltk
nltk.download("punkt")
nltk.download("stopwords")
nltk.download("wordnet")
spam_df.head()
def cleaning (text):
   text = re.sub(r'@\S+', '',text)
   text = re.sub(r'http\S+', '',text) # remove urls
   text = re.sub(r'pic.\S+', '',text)
   text = re.sub(r"[^a-zA-ZáéióúÁÉÍÓÚ']", ' ',text) # only keeps characters
    text = re.sub(r'\s+[a-zA-ZáeíoúÁEÍoÚ]\s+', '', text+'') \text{ # keep words with length>1 only}
   text = "".join([i for i in text if i not in string.punctuation])
   words = word_tokenize(text)
    stopwords = nltk.corpus.stopwords.words('english') # remove stopwords
   text = " ".join([i for i in words if i not in stopwords])
    text= re.sub("\s[\s]+", " ",text).strip()
    text= re.sub("\s[\s]+", " ",text).strip() # remove repeated/leading/trailing spaces
   return text
def lemmatize(data):
   wordnet = WordNetLemmatizer()
   lemmanized = []
    for i in range(len(data)):
        lemmed = []
        words = word_tokenize(data['Message'].iloc[i])
        for w in words:
            lemmed.append(wordnet.lemmatize(w))
        lemmanized.append(lemmed)
   data['lemmanized'] = lemmanized
   data['text'] = data['lemmanized'].apply(' '.join)
   data=data.drop("lemmanized",axis=1)
    data=data.drop("Message",axis=1)
    return data
spam_df = lemmatize(spam_df)
```

```
obj = {"ham":0,"spam":1}
spam_df["Category"]=spam_df["Category"].map(obj)
X = spam_df["text"]
y = spam_df["Category"]
x_train, x_valid, y_train, y_valid = <mark>train_test_split</mark>(X,y,random_state=10,stratify=y, test_size=0.25)
y_train.value_counts(normalize=<mark>True</mark>)
from sklearn.feature_extraction.text import TfidfVectorizer
x train.shape
tfidf = TfidfVectorizer()
X_train = tfidf.fit_transform(x_train)
x_valid = tfidf.transform(x_valid)
dt_model = DecisionTreeClassifier()
dt_model.<mark>fit</mark>(X_train, y_train)
pred = dt_model.<mark>predict</mark>(x_valid)
dt_accuracy = <mark>accuracy_score</mark>(pred, y_valid)
print(dt_accuracy)
nb_model = GaussiaM B()
pred = nb_model.predict(x_valid.toarray())
nb_accuracy = <mark>accuracy_score</mark>(pred, y_valid)
print(nb_accuracy)
gaussian.append(nb_accuracy)
decision.append(dt_accuracy)
accuracy = [nb_accuracy, dt_accuracy]
Models = ['NaiveBayes','DecisionTree']
sns.barplot(x=Models,y=accuracy).set(title="Spam Text Message classification")
y_score_gnb = nb_model.predict_proba(x_valid.toarray())[:, 1]
fpr_gnb, tpr_gnb, thresholds_gnb = <mark>roc_curve</mark>(y_valid, y_score_gnb)
roc_auc_gnb = roc_auc_score(y_valid, y_score_gnb)
y_score_dtc = dt_model.<mark>predict_proba</mark>(x_valid)[:, 1]
fpr_dtc, tpr_dtc, thresholds_dtc = <mark>roc_curve</mark>(y_valid, y_score_dtc)
roc_auc_dtc = roc_auc_score(y_valid, y_score_dtc)
plt.figure(figsize=(8, 6))
<mark>plt.plot</mark>(fpr_gnb, tpr_gnb, color='blue', lw=2, label='Naive Bayes ROC curve (AUC = {:.2f})".format(roc_auc_gnb))
<mark>plt.plot</mark>(fpr_dtc, tpr_dtc, color='green', lw=2, label='Decision Tree ROC curve (AUC =
{:.2f})".format(roc_auc_dtc))
plt.plot([0, 1], [0, 1], color='gray', linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title("ROC-AUC Curve')
plt.legend(loc="lower right')
plt.show()
 t confiusion matrix
q = y_valid
pred_test = dt_model.predict(x_valid)
pred_test = pd.DataFrame(pred_test)
y_valid = pd.DataFrame(y_valid)
plot_confusion_matrix(y_valid, pred_test, figsize=(7,4), title='DecisionTree Confusion #atrix", cmap="BuGn")
y_valid = q
q = y_valid
pred_test = nb_model.predict(x_valid.toarray())
pred_test = pd.DataFrame(pred_test)
y_valid = pd.DataFrame(y_valid)
plot_confusion_matrix(y_valid, pred_test, figsize=(7,4), title="Gaussilln B Confusion Matrix", cmap="BuGn")
y_valid = q
```


Confusion Matrix:

AUROC: AUROC Curve 1.0 0.8 True Positive Rate 0.6 0.4 0.2 Naive Bayes ROC curve (AUC = 0.92) 0.0 Decision Tree ROC curve (AUC = 0.93) 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate

Dataset 5 (Wine Quality Dataset):

```
"" ### wine dataset"""
wine df.head()
y = wine_df.pop("quality")
X = wine df
x_train, x_valid, y_train, y_valid = <mark>train_test_split</mark>(X,y,random_state=10,stratify=y, test_size=0.25)
y_train.value_counts(normalize=True)
nb_model = Gaussiah B()
nb_model.fit(x_train, y_train)
nb_accuracy = nb_model.<mark>score</mark>(x_valid, y_valid)
print(nb_accuracy)
dt_model = DecisionTreeClassifier()
dt_model.<mark>fit</mark>(x_train, y_train)
dt_accuracy = dt_model.<mark>score</mark>(x_valid, y_valid)
print(dt_accuracy)
gaussian.append(nb_accuracy)
decision.append(dt_accuracy)
accuracy = [nb_accuracy, dt_accuracy]
Models = ['NaiveBayes','DecisionTree']
sns.barplot(x=Models,y=accuracy).set(title="Wine Quality Classifier")
y_score_gnb = nb_model.predict_proba(x_valid)
fpr_gnb, tpr_gnb, thresholds_gnb = <mark>roc_curve</mark>(y_valid.values, y_score_gnb.values)
roc_auc_gnb = roc_auc_score(y_valid, y_score_gnb)
y_score_dtc = dt_model.predict_proba(x_valid)
fpr_dtc, tpr_dtc, thresholds_dtc = <mark>roc_curve</mark>(y_valid.values, y_score_dtc.values)
roc_auc_dtc = roc_auc_score(y_valid, y_score_dtc)
plt.figure(figsize=(8, 6))
plt.plot(fpr_gnb, tpr_gnb, color='blue', lw=2, label='Naive Bayes ROC curve (AUC = {:.2f})".format(roc_auc_gnb))
<mark>plt.plot</mark>(fpr_dtc, tpr_dtc, color='green', lw=2, label='Decision Tree ROC curve (AUC =
{:.2f})*.format(roc_auc_dtc))
plt.plot([0, 1], [0, 1], color='gray', linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
olt.title("ROC-AUC Curve')
olt.legend(loc="lower right')
plt.show()
q = y_valid
pred_test = nb_model.predict(x_valid)
pred_test = pd.DataFrame(pred_test)
y_valid = pd.DataFrame(y_valid)
plot_confusion_matrix(y_valid, pred_test, figsize=(7,4), title="Gaussilan B Confusion Matrix", cmap="BuGn")
y_test= q
q = y_valid
pred_test = dt_model.<mark>predict</mark>(x_valid)
pred_test = pd.DataFrame(pred_test)
y_valid = pd.DataFrame(y_valid)
plot_confusion_matrix(y_valid, pred_test, figsize=(7,4), title='DecisionTree Confusion Matrix", cmap="BuGn")
vtest = q
```


Confusion Matrix:

AUROC:

Plot comparison graphs using the results of DT and NB

```
def grouped_barplot(data1, data2, labels, xticklabels=None, title="Grouped Barplot"):
   positions = np.arange(len(labels))
   width = 0.35
   plt.figure(figsize=(8, 6))
   plt.bar(positions - width/2, data1, width, label="Group 1')
   plt.bar(positions + width/2, data2, width, label="Group 2')
   plt.xlabel('Dataset')
   plt.ylabel('Acurracy')
   plt.title(title)
   plt.xticks(positions, labels)
   if xticklabels:
        plt.xticks(positions, xticklabels)
   plt.legend()
   plt.show()
category_labels = ['Titanic', 'Penguin', 'Iris', "Email spam", "Wine"]
<mark>grouped_barplot</mark>(gaussian, decision, category_labels, title="Model Comparison")
```

comparison graphs:

Part C:

Modify DT/NB to use k-fold cross validation and ensemble models :Kfolds cross validation of 7 folds :

Modification Titanic Dataset:

```
from sklearn.model_selection import KFold, cross_val_score

kf = KFold(n_splits=7,shuffle=True,random_state=10)

cv_score = cross_val_score(estimator=nb_model,X=x_train,y=y_train,cv=kf,scoring="accuracy")

mean_cv_score = np.mean(cv_score)

print(mean_cv_score)
```

ensemble tech - RandomForest

from sklearn ensemble import RandomForestClassifier

```
rf_model.fit(x_train, y_train)

rf_accuracy = rf_model.score(x_valid, y_valid)

print(rf_accuracy)

accuracies=[nb_accuracy,dt_accuracy,rf_accuracy,mean_cv_score]

plt.figure(figsize=(10,5))

models=[* &ive Bayes', 'Decision Tree*, 'Random Forest', ' &ive Bayes + Cross validation']

sns.barplot(x=models,y=accuracies,).set(title="Part C')

plt.xlabel('Models*)

plt.ylabel('Accuracy')

plt.title('Accuracy of Different Models*)
```

Comparison k-fold cross validation and ensemble models:

Conclusion:

Thus, we have successfully implemented Classification algorithm using Decision Tree ID3 and Naïve Bayes algorithm and performed all the parts