Mathematics Year 1, Calculus and Applications I

D.T. Papageorgiou Problem Sheet 1

Problems 9 and 10 are good candidates for starred questions

- 1. (a) If $f(u) = u^3 + 2$ and $g(x) = (x^2 + 1)^2$, what is $h = f \circ g$.
 - (b) Let $f(x) = \sqrt{x}$ and $g(x) = x^3 5$. Find $f \circ g$ and $g \circ f$.
 - (c) Write $\sqrt{x^2+1}/[2+(1+x^2)^3]$ as a composition of simpler functions.
- 2. Find a formula for $\frac{d^2}{dx^2}$ $(f \circ g)$ in terms of first and second derivatives of f and g.
- 3. Differentiate $\left(1+\left(1+\left(1+x^2\right)^8\right)^8\right)^8$.
- 4. A point in the plane moves in such a way that it is always twice as far from (0,0) as it is from (0,1).
 - (a) Find the equation describing the particle's trajectory.
 - (b) At the moment when the point crosses the segment between (0,0) and (0,1), what is dy/dt if the parametric description of the curve is x(t), y(t).
 - (c) Find the point(s) when $\frac{dx}{dt} = \frac{dy}{dt}$ (assume that dx/dt and dy/dt are not zero simultaneously).
- 5. (a) Give a rule for determining when the tangent line to a parametric curve x = f(t), y = g(t) is horizontal and when it is vertical.
 - (b) When is the tangent line to the curve $x=t^2,\,y=t^3-t$ horizontal and when is it vertical?
 - (c) At which points is the tangent line to the curve parallel to the line y = x?
 - (d) Sketch the curve.
- 6. Consider the function

$$f(x) = \begin{cases} x^n \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

where n is a positive integer.

- (a) For n=2 prove that the function is differentiable for all x but f'(x) is not continuous at x=0.
- (b) Find the smallest n that ensures that $\frac{d^2f}{dx^2}$ exists and is continuous at x=0.
- 7. Find the domain where the function $f(x) = x + \sin x$ has an inverse given by x = g(y). Find g'(0), $g'(2\pi)$ and $g'(1 + \frac{\pi}{2})$.
- 8. Let $f(x) = x^{\frac{1}{\sin(x-1)}}$. How should f(1) be defined in order to make f continuous.
- 9. Consider only values of $x \geq 0$, and let

$$f_1(x) = x - \sin x \qquad f_2(x) = -1 + \frac{x^2}{2} + \cos x$$

$$f_3(x) = -x + \frac{x^3}{3 \cdot 2} + \sin x \qquad f_4(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4 \cdot 3 \cdot 2} - \cos x$$

$$f_5(x) = x - \frac{x^3}{3 \cdot 2} + \frac{x^5}{5 \cdot 4 \cdot 3 \cdot 2} - \sin x$$

- (a) Determine whether $f_1(x)$ is increasing or decreasing. Using the value of $f_1(0)$, show that $\sin x < x$.
- (b) Determine which of the other given functions are increasing or decreasing. Using the value of each function at x = 0, prove the following inequalities

$$\begin{aligned} x - \frac{x^3}{3 \cdot 2} & \leq \sin x \leq x - \frac{x^3}{3 \cdot 2} + \frac{x^5}{5 \cdot 4 \cdot 3 \cdot 2} \\ 1 - \frac{x^2}{2} & \leq \cos x \leq 1 - \frac{x^2}{2} + \frac{x^4}{4 \cdot 3 \cdot 2} \end{aligned}$$

- (c) Show how the above procedure can be continued to get further inequalities for $\sin x$ and $\cos x$. Give the general formula.
- 10. In this example we contemplate a calculus proof of the arithmetic-geometric mean inequality which states that

$$\frac{a+b}{2} \ge \sqrt{ab}$$
 for every $a > 0, b > 0.$

In other words, the arithmetic mean (a+b)/2 of a and b is greater than their geometric mean \sqrt{ab} .

- (a) Prove the arithmetic-geometric mean inequality using algebra. Hint: Use the fact $(\sqrt{a}-\sqrt{b})^2 \geq 0$.
- (b) Now prove it using calculus as follows: Given a number a > 0, find the minimum value of the function $(a + x)/\sqrt{ax}$ where x > 0.