

MACHINE LEARNING **E DEEP LEARNING**

O PROBLEMA DA ALTA DIMENSIONALIDADE...

TÉCNICAS TRADICIONAIS DE REDUÇÃO DE DIMENSIONALIDADE / SELEÇÃO DE CARACTERÍSTICAS - SHORT REVIEW

• Análise de Componentes Principais (PCA):

TÉCNICAS TRADICIONAIS DE REDUÇÃO DE **DIMENSIONALIDADE / SELEÇÃO DE CARACTERÍSTICAS**

• Análise do Discriminante Linear (LDA).

DEMONSTRAÇÃO PCA X LDA

TÉCNICAS TRADICIONAIS DE REDUÇÃO DE DIMENSIONALIDADE / SELEÇÃO DE CARACTERÍSTICAS

Wrapper Methods:

- Algoritmos Genéticos
- Otimização de Enxame de Partículas
- Seleção Sequencial

. TÉCNICAS TRADICIONAIS DE REDUÇÃO DE DIMENSIONALIDADE / SELEÇÃO DE CARACTERÍSTICAS

Embedded Methods (implementações específicas):

- SVM
- Redes Neurais Artificiais.

COMO FAZER SELEÇÃO DE CARACTERÍSTICAS ONDE A AMOSTRA DO NOSSO PROBLEMA É UMA IMAGEM?

Multidimensional Data

Data represented best

Slow performance, High Precision

Low Dimensional Data

Reduce Precision

High Performance

An **autoencoder** neural network is an unsupervised Machine learning algorithm that applies backpropagation, setting the target values to be equal to the inputs.

AUTOENCODERS - **DEFINIÇÃO**

Key Facts about Autoencoders

- It is an unsupervised ML algorithm similar to PCA.
- It minimizes the same objective function as PCA.
- It is a neural network.
- The neural network's target output is its input.

Componentes:

Components of Autoencoders

Decoder

Encoder

This is the part of the networks that compresses the input into a latent space representation.

Code

This is the part of the network represents the compressed input that is fed to the decoder

Decoder

This part aims to reconstruct the input from the latent space representation.

PROPRIEDADES DOS AUTOENCODERS

PROPRIEDADES DOS AUTOENCODERS

Code Size

Smaller size results in more compression

Number of Layers

The autoencoder can have manu layers

Loss Function

Mean squared error or binary cross entropy

Number of node per layers

Stacked autoencoders look like a sandwich

Bottleneck approach is an approach to for deciding which aspects of observed data are relevant information and what aspects can be thrown away.

- Compactness of representation, measured as the compressibility.
- Representation retains about some behaviourally relevant variables.

AUTOENCODERS CONVOLUCIONAIS

AUTOENCODERS CONVOLUCIONAIS

Learns to **remove noise** or **reconstruct** missing parts

Noisy Version is converted to clean version

The network fills the gaps in the images

. AUTOENCODERS CONVOLUCIONAIS

AUTOENCODERS CONVOLUCIONAIS

- Maps circles and squares from na image to the same image but with Colors
- Purple is formed sometimes because of blend of colors, where network hesitates between circle or square

AUTOENCODERS CONVOLUCIONAIS

Demonstração simplificada de Autoencoders com dataset MNIST

Demonstração remoção de ruídos Autoencoders com dataset MNIST

OBRIGADO

Copyright © 2020 | Professor Msc. Felipe Teodoro

Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente proibido sem consentimento formal, por escrito, do professor/autor.

