Floating Point I

CSE 351 Spring 2019

Instructor: Teaching Assistants:

Ruth Anderson Gavin Cai

Britt Henderson

Sophie Tian

Casey Xing

Jack Eggleston
Richard Jiang
Connie Wang

Chin Yeoh

John Feltrup
Jack Skalitzky

Sam Wolfson

signed overflow in 16 bits -> short (in C)

http://xkcd.com/571/

Administrivia

- Lab 1a due Monday 4/15 at 11:59 pm
 - Submit pointer.c and lab1Areflect.txt
- Lab 1b due Monday (4/22)
 - Submit bits.c and lab1Breflect.txt
- Homework 2 coming soon, due Wednesday (4/24)
 - On Integers, Floating Point, and x86-64

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits

When we multiply two unsigned w-bit numbers, it could possibly take 2w bits to store

the result (e.g. if we multiply 2^w-1 by 2^w-1, the max number representable by a 2bit unsigned int, then the product is 2^{2w}--2^{w+1}+ 1 which requires 2^{2w} bits to represent

- Implements Modular Arithmetic
 - UMult_w $(u, v) = u \cdot v \mod 2^w$

Again, instead of allocating more memory, we just throw away the higher order bits and treat multiplication like its mod 2ⁿw (same as addition)

Multiplication with shift and add

This just appends zeros on the right hand side and throws away higher order bits

- * Operation u << k gives $u * 2^k$ (as long as no overflow occurs;
 - Both signed and unsigned

- Examples:
 - **1**1<<3

 - - Compiler generates this code automatically

Number Representation Revisited

- We know how to represent:
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses
- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10²³)
 - Very small numbers (e.g. 6.626×10⁻³⁴)
 - Special numbers (e.g. ∞, NaN)

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - "Gaps" produced in representable numbers means we can
 lose precision, unlike ints
 We can only represent a finite number of numbers with our finite number of bits; so theres no way we can represent any kind of interval of real numbers
 - Some "simple fractions" have no exact representation (e.g. 0.2)
 - "Every operation gets a slightly wrong result"
- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Representation of Fractions

"Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

* Example: $10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}$

Representation of Fractions

"Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

- In this 6-bit representation:
 - What is the encoding and value of the smallest (most negative) number?
 - What is the encoding and value of the largest (most positive) number?
 - What is the smallest number greater than 2 that we can represent?

$$00.0000_{z} = 0$$

11.111 =
$$4-2^{-4}$$

Can't represent canything in-between.

10.0001 = $2+2^{-4}$

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \cdot 2$

Fractional Binary Numbers

Value Representation

- 5 and 3/4 101.11₂
- **2** and 7/8 10.111₂
- **47/64** 0.101111₂

Observations

- Shift left = multiply by power of 2
- Shift right = divide by power of 2
- Numbers of the form 0.111111..., are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Limits of Representation

Limitations:

- Even given an arbitrary number of bits, can only <u>exactly</u> represent numbers of the form x * 2^y (y can be negative)
- Other rational numbers have repeating bit representations

Value:

Binary Representation:

```
• 1/3 = 0.3333333..._{10} = 0.01010101[01]..._{2}
• 1/5 = 0.2 0.0001100110011[0011]...<sub>2</sub>
• 1/10 = 0.1 0.0001100110011[0011]...<sub>2</sub>
```

Fixed Point Representation

e.g how many bits do we allocate to the decimal part and how many bits do we allocate to the integer part

Implied binary point. Two example schemes:

```
#1: the binary point is between bits 2 and 3 b_7 b_6 b_5 b_4 b_3 [.] b_2 b_1 b_0 #2: the binary point is between bits 4 and 5 b_7 b_6 b_5 [.] b_4 b_3 b_2 b_1 b_0
```

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have
- Fixed point = fixed range and fixed precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers
- Hard to pick how much you need of each!

Floating Point Representation As opposed to fractional binary numbers, we now try to represent numbers of the form decimal * 2^expone

to represent numbers of the form decimal * 2^exponent So we've given more flexibility to the first term essentially

- Analogous to scientific notation
 - In Decimal:
 - 1.2×10^{7} • Not 12000000, but In C: 1.2e7
 - Not 0.0000012, but 1.2 x 10⁻⁶ In C: 1.2e-6
 - In Binary:
 - Not 11000,000, but 1.1 x 2⁴
- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the mantissa (significand) this is the number being multiplied by 2^k
 - the exponent The power on 2^k

Scientific Notation (Decimal)

- Normalized form: exactly one digit (non-zero) to left of decimal point
- Alternatives to representing 1/1,000,000,000
 - Normalized: 1.0×10⁻⁹
 - Not normalized: 0.1×10⁻⁸,10.0×10⁻¹⁰

Scientific Notation (Binary)

- Computer arithmetic that supports this called floating point due to the "floating" of the binary point
 - Declare such variable in C as float (or double)

The question still is what is the best way to encode the "mantissa" and the exponent, and how many bits should we allocate to represent each.

Scientific Notation Translation

$$2^{-1} = 0.5$$

 $2^{-2} = 0.25$
 $2^{-3} = 0.125$
 $2^{-4} = 0.0625$

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$
- Convert from binary point to normalized scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$
- Practice: Convert 11.375₁₀ to binary scientific notation

$$8+2+1+6.2S+0.125$$

 $2^{3}+2^{4}+2^{6}+2^{-2}+2^{-3}=1011 \cdot 0112=1.011011 \times 2^{3}$

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

IEEE Floating Point

IEEE 754

- Established in 1985 as uniform standard for floating point arithmetic
- Main idea: make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
- Now supported by all major CPUs
- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible goals

 goals
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops

Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: (±1 × Mantissa × 2 Exponent)
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E-bias)}$
- * Representation Scheme: (3 separate fields within 32 bits)
 - Sign bit (0 is positive, 1 is negative)
- Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - **Exponent** weights the value by a (possibly negative) power of 2 and encoded in the bit vector **E**

The Exponent Field

- Use biased notation
 - w=8, can encode 2 = 256 exponents • Read exponent as unsigned, but with bias of $2^{\frac{1}{W-1}}-1 = 127$
 - Representable exponents roughly ½ positive and ½ negative
 - Exponent 0 (Exp = 0) is represented as $E = 0b 0111 1111 = 2^{7-1}$ E-bias = O=Exp K
- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two's complement
- Practice: To encode in biased notation, add the bias then encode in unsigned:
 - Exp = 1 $\stackrel{\text{+bias}}{\rightarrow}$ 128 $\stackrel{\text{encode}}{\rightarrow}$ E = 0b 1000 0000 ■ Exp = $127 \rightarrow 254 \rightarrow E = 0b 1111 1110$ (254 = 255-| = $(2^{5}-1)-1$)
 - $Exp = -63 \rightarrow 64 \rightarrow E = 0b \odot 100 0000$

The Mantissa (Fraction) Field

L06: Floating Point I

- Note the implicit 1 in front of the M bit vector

 - Gives us an extra bit of precision
- Mantissa "limits"

$$\Rightarrow 2^{E_{x}p} \times 1.0.0 = 2^{E_{x}p}$$

- Low values near M = 0b0...0 are close to 2^{Exp}
- High values near M = 0b1...1 are close to $2^{\text{Exp+1}}$ $2^{\text{Exp}} \times 1.1...1 = 2^{\text{Exp}}(2-2^{-13}) = 2^{\text{Exp+1}} - 2^{\text{Exp-23}}$

Peer Instruction Question

What is the correct value encoded by the following floating point number?

• 0b 0 10000000 11000000000000000000000

$$\bigoplus E \times p = 1$$

Vote at http://pollev.com/rea

$$A. + 0.75$$

$$B. + 1.5$$

$$C. + 2.75$$

$$D. + 3.5$$

E. We're lost...

$$+1.11_2 \times 2^1$$

Man = 1,110... 0

$$11.1_{2} = 2^{1} + 2^{6} + 2^{-1} = 3.5$$

Precision and Accuracy

- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- Accuracy is a measure of the difference between the actual value of a number and its computer representation
 - High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
 - Example: float pi = 3.14;
 - pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits

- C variable declared as double vs float which is only single precision
- Exponent bias is now $2^{10}-1 = 1023$, bias = $2^{10}-1$
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Representing Very Small Numbers

- ♦ But wait... what happened to zero?

 S=0, E=0, M=0 ⇒ Exp = -127, Nan = 11.6...0
 - Using standard encoding $0x000000000 = 1.0 \times 2^{-127} \neq 0$
 - Special case: E and M all zeros = 0
 - Two zeros! But at least 0x00000000 = 0 like integers 0x800000000 = -0
- New numbers closest to 0:

$$E = 0 \times 01$$
, $E_{xp} = -126$
 $a = 1.0...0_2 \times 2^{-126} = 2^{-126}$

$$b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$$

- Normalization and implicit 1 are to blame
- Special case: E = 0, M ≠ 0 are denormalized numbers

Denorm Numbers

This is extra (non-testable) material

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of −126 even though E = 0x00

 Because we have taken out the implicit 1 at the front of M

 Namely we use 0.M x 2^exp instead of 1.M x 2^exp
- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm (1.0...0_{two} \times 2^{-126} = \pm 2^{-126})$ So much closer to 0
 - Smallest denorm: $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

Other Special Cases

- \star E = 0xFF, M = 0: $\pm \infty$
 - *e.g.* division by 0
 - Still work in comparisons!
- \star E = 0xFF, M \neq 0: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, $\infty-\infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging
- New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$

Floating Point Encoding Summary

E	M	Meaning
0x00	0	± 0
0x00	non-zero	± denorm num
0x01 – 0xFE	anything	± norm num
0xFF	0	± ∞
0xFF	non-zero	NaN

Summary

Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = 2^{w-1}-1)
 - Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

E	M	Meaning
0x00	0	± 0
0x00	non-zero	± denorm num
0x01 – 0xFE	anything	± norm num
0xFF	0	± ∞
0xFF	non-zero	NaN

BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1}-1=7$
 - The last three bits are the mantissa
- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

	SE	M	Exp	Value	
	0 000	0 000	-6	0	
	0 000	0 001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized	0 000	0 010	-6	2/8*1/64 = 2/512	
numbers	•••				
Exp = 1 - Bias	0 000	0 110	-6	6/8*1/64 = 6/512	
frac = M	0 000	0 111	-6	7/8*1/64 = 7/512	largest denorm
	0 000	1 000	-6	8/8*1/64 = 8/512	smallest norm
Exp = E - Bias frac = 1 + M	0 000	1 001	-6	9/8*1/64 = 9/512	
	•••				
	0 011	0 110	-1	14/8*1/2 = 14/16	
Nie was elie e el	0 011	0 111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 011	1 000	0	8/8*1 = 1	
numbers	0 011	1 001	0	9/8*1 = 9/8	closest to 1 above
	0 011	1 010	0	10/8*1 = 10/8	
	•••				
	0 111	0 110	7	14/8*128 = 224	
	0 111	0 111	7	15/8*128 = 240	largest norm
	0 111	1 000	n/a	inf	

Special Properties of Encoding

- ❖ Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^{-} = 0^{+} = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity