GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Engineering – SEMESTER – 2 (NEW) – EXAMINATION – Winter-2023

Subject Code: 4320001 Date: 30-01-2024

Subject Name: Applied Mathematics

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make Suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of programmable & Communication aids are strictly prohibited.
- 5. Use of non-programmable scientific calculator is permitted.
- 6. English version is authentic.

Q.1 Fill in the blanks using appropriate choice from the given options.

14

(d) 3×2

(3) 3×2

(યોગ્ય વિકલ્પ પસંદ કરી ખાલી જગ્યા પૂરો.)

(1) If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$$
 then $4A = \dots$

(a)
$$\begin{bmatrix} 4 & 8 \\ 12 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 4 & 8 \\ 12 & -4 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & 2 \\ 12 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 4 & 8 \\ 3 & -4 \end{bmatrix}$

(૧) જો
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$$
 ત્યારે $4A = \dots$

(2) Order of the matrix
$$\begin{bmatrix} 1 & 1 & 2 \\ -3 & 2 & 3 \end{bmatrix}$$
 is

(a)
$$2 \times 3$$
 (b) 2×2 (c) 3×3

(૨) શ્રેણિક
$$\begin{bmatrix} 1 & 1 & 2 \\ -3 & 2 & 3 \end{bmatrix}$$
 ની કક્ષા છે.
(અ) 2×3 (બ) 2×2 (ક) 3×3

(3) If
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 then $A^2 = \dots$
(a) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 2 \\ 1 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$

(3) જો
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 ત્યારે $A^2 = \dots$

(4) If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$
 then adjoint of $A = \dots$

(\forall) $\overrightarrow{\text{vi}} A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$	$\begin{bmatrix} -1\\4 \end{bmatrix}$ ત્યારે adj $A = \dots$				
$(\operatorname{H})\begin{bmatrix} 4 & -1 \\ 3 & 2 \end{bmatrix}$	$(\mathfrak{A})\begin{bmatrix} 4 & 3 \\ -1 & 2 \end{bmatrix}$		$(\mathfrak{F}) \begin{bmatrix} 4 \\ -3 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$(3) \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$
$(5) \frac{d}{dx} \tan x = \dots$					
(a) secx	(b) $secx^2$		(c) cose	cx	$(d)sec^2x$
$(4) \frac{d}{dx} \tan x = \dots$					
(અ) secx	(બ) secx²		(§) cosec	X	$(3)sec^2x$
$(6)\frac{d}{dx}\sin 5x = \dots$					
(a) 5sin5x	(b) 5cos5x	(c) sin5x		(d) cos5x	
$(\xi) \frac{d}{dx} \sin 5x = \dots$					
(અ) 5sin5x	(બ) 5cos5x	(ક) sin5x		(3) cos5x	
	y = f(x) is maximum	at $x = a$ poi		$(a) = \dots$	
(a) 10	(b) 1	_	(c) 0		(d) 2
	(\mathbf{x}) એ $\mathbf{x} = \mathbf{a}$ બિંદુ આગળ	મહતમ હોય ત્ય		=	
(અ) 10	(બ) 1		(5) 0		(3) 2
$(8) \int \sin x dx = \dots$ $(a) -\cos x$	+ C (b) cosx		(c) sinx		(d) -sinx
(c) $\int \sin x dx = 0$	+ C				
(અ) –cosx	(બ) cosx		(ક) sinx		(\$) —sinx
$(9) \int \frac{1}{x^2 + 4} \mathrm{d} x = \dots$	+ C				
(a) $tan^{-1}\frac{x}{2}$	(b) tan^{-1}	$\frac{x}{4}$	(c) $\frac{1}{2}$ to	$an^{-1}\frac{x}{4}$	(d) $\frac{1}{2} tan^{-1}$
$(\mathfrak{C}) \int \frac{1}{x^2 + 4} \mathrm{d}x = .$	+ C				
(અ) $tan^{-1}\frac{x}{2}$	(બ) tan^{-1}	$\frac{x}{4}$	$(\xi)\frac{1}{2}\tan \theta$	$n^{-1}\frac{x}{4}$	$(3) \frac{1}{2} tan^{-1} \frac{x}{2}$
$(10) \int_{1}^{2} x^{2} dx =$	=				
(a) $\frac{7}{3}$	(b) $\frac{8}{3}$		(c) $\frac{7}{8}$		(d) $\frac{3}{7}$

(90) $\int_{1}^{2} x^{2} dx = \dots$

(ਅ) $\frac{7}{3}$	$(\mathfrak{A})\frac{8}{3}$	$(\xi) \frac{7}{8}$	$(\zeta)\frac{3}{7}$
(11) Order of the o	lifferential equatio	$\int_{0}^{\infty} \left(\frac{d^3x}{dy^3}\right)^4 + \frac{dy}{dx} + 5y = 0.$	is =
(a) 4	(b) 2	(c) 3	(d) 1
(૧૧) વિકલ સમીકરણ	$\left(\frac{d^3x}{dy^3}\right)^4 + \frac{dy}{dx} + 5$	5y=0. ની કક્ષા $=$	
(અ) 4	(બ) 2	(8) 3	(3) 1
(12) Integrating Fa	actor of the differe	ntial equation $\frac{dy}{dx} + \frac{y}{x} = 1$ is	
(a) logx	(b) x	(c) $\frac{1}{x}$	(d)1
(૧૨)વિકલ સમીકરણ	$\frac{dy}{dx} + \frac{y}{x} = 1 - i $ સંક	લ્ય કારક અવયવ =	
(અ) logx	(બ) x	(5) $\frac{1}{x}$	(3) 1
(13) Mean of 39,2 (a) 27	3,58,47,50,16 and (b) 42	61 is	(d) 50
(9.3) 39,23,58,47,	50.16 અને 61 નો મ	ધ્યકછે.	
(અ) 27	(બ) 42	(8) 47	(১) 50
(14) Mean of first (a) 3	five natural numb (b) 15	pers is(c) 8	(d) 5
(૧૪) પ્રથમ પાંચ પ્રાકૃ	તિક સંખ્યાઓ નો મધ્ય <u>ક</u>	ક છે .	
(અ) 3	(প) 15	(4) 8	(১) 5
F /	ıny two (કોઇપણ બે - 1 3 5] [:) / [] [1] [1] [1]	06 then find 3 A + 2P, 4C
L f	t 2 01 r	$\begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ $\begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix} \text{ with } C = \begin{bmatrix} 1 & 2 \\ 3 & 3 \\ 4 & 5 \end{bmatrix}$	
	- 1 4-	$\begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix}$ then show that $(A - 1)$ then show that $(A - 1)$ ત્યારે બતાવો કે $(A + B)^2$	
		ntion $xy \ dy = (x+1)(y+1)$ વિકલ સમીકરણ ઉકેલો .	dx.

(B) Attempt any two (કોઇપણ બે ના જવાબ આપો)
$$(1) \text{ Find the inverse of the matrix } \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}.$$

08

06

(૧) શ્રેણિક
$$\begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}$$
 નો વ્યસ્ત શ્રેણિક શોધો ..

(2) Solve the linear equations using matrix method 3x - 2y = 8, 5x + 4y = 6.

(૨) સુરેખ સમીકરણ
$$3x - 2y = 8$$
 , $5x + 4y = 6$ ને શ્રેણિક ની મદદ થી ઉકેલો .

(3) If
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
 then find AadjA.

(૩) જો
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
 ત્યારે $AadjA$ શોધો .

Q.3

(1) If
$$y = log(\frac{sinx}{1 + cosx})$$
 then find $\frac{dy}{dx}$.

(૧) જો
$$y = log\left(\frac{sinx}{1+cosx}\right)$$
 ત્યારે $\frac{dy}{dx}$ શોધો .

(2) If
$$y = \sin(x + y)$$
 then find $\frac{dy}{dx}$.

(૨) જો
$$y = \sin(x + y)$$
 ત્યારે $\frac{dy}{dx}$ શોધો .

(3) Obtain the integral $\int x^2 \log x \, dx$.

(૩)
$$\int x^2 \log x \, dx$$
 સંકલ્ય શોધો .

(1) The equation of motion of a particle is $s = 2t^3 - 3t^2 - 12t + 7$. Find s and t when acceleration is zero.

(૧) ગિત નું સમીકરણ
$$s=2t^3-3t^2-12t+7$$
 છે. તો જયારે પ્રવેગ શૂન્ય હોય ત્યારે \mathbf{s} અને \mathbf{t} શોધો .

(2) If
$$y = 2e^{3x} + 3e^{-2x}$$
 then prove that $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$.

(૨) જો
$$y = 2e^{3x} + 3e^{-2x}$$
 ત્યારે સાબિત કરો કે $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$.

(3) Find the maximum and minimum values for $f(x) = x^3 - 3x + 11$.

(૩)
$$f(x) = x^3 - 3x + 11$$
 ના મહતમ અને ન્યુનતમ મુલ્યો શોધો .

Q.4

(1) Obtain the integral $\int \sin 5x \sin 6x \, dx$.

 $(9) \int sin5x sin6x dx$ સંકલ્ય મેળવો.

(2) Obtain the integral
$$\int \frac{(1+x)e^x}{\cos^2(xe^x)} dx$$
.

(૨)
$$\int \frac{(1+x)e^x}{\cos^2(xe^x)} dx$$
 સંકલ્ય મેળવો.

(3) Find the standard deviation for the given data 6,7,10,12,13,4,8,12.

(૩) 6,7,10,12,13,4,8,12 આપેલ માહિતી માટે પ્રમાણિત વિચલન શોધો .

(B) Attempt any two (કોઇપણ બે ના જવાબ આપો)

(1) Obtain the integral $\int \frac{2x+1}{(x+1)(x-3)} dx$.

(૧)
$$\int \frac{2x+1}{(x+1)(x-3)} dx$$
 સંકલ્ય મેળવો.

(2) Obtain the integral $\int_0^{\frac{\pi}{2}} \frac{\sqrt{cotx}}{\sqrt{cotx} + \sqrt{tanx}} \, dx$.

(૨)
$$\int_0^{\frac{\pi}{2}} \frac{\sqrt{cotx}}{\sqrt{cotx} + \sqrt{tanx}} \, dx$$
 કિંમત શોધો .

(3) Find the mean deviation for the grouped data

x_i	4	8	11	17	20	24	32
f_i	3	5	9	5	4	3	1

(૩) વર્ગીકૃત માહિતી માટે સરેરાશ વિચલન શોધો.

x_i	4	8	11	17	20	24	32
f_i	3	5	9	5	4	3	1

Q.5

(A) Attempt any two (કોઇપણ બે ના જવાબ આપો)

(1) Find mean deviation for the given data.

Class	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency	3	7	12	15	8	3	2

08

06

(૧) આપેલ માહિતી માટે સરેરાશ વિચલન શોધો .

વર્ગ	30-40	40-50	50-60	60-70	70-80	80-90	90-100
આવૃત્તિ	3	7	12	15	8	3	2

(2) Find the standard deviation for the given data.

Class	60	61	62	63	64	65	66	67	68
Frequency	2	1	12	29	25	12	10	4	5

(૨) આપેલ માહિતી માટે પ્રમાણિત વિચલન શોધો.

વર્ગ	60	61	62	63	64	65	66	67	68
આવૃત્તિ	2	1	12	29	25	12	10	4	5

(3) Find the mean for the given data.

Class	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	26	31	35	42	82	71

(૩) આપેલ માહિતી માટે મધ્યક શોધો .

Class	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	26	31	35	42	82	71

(1) Solve the differential equation $(x + y + 1)^2 \frac{dy}{dx} = 1$.

(૧)
$$(x + y + 1)^2 \frac{dy}{dx} = 1$$
 વિકલ સમીકરણ નો ઉકેલ શોધો.

(2) solve the differential equation $\frac{dy}{dx} + \frac{y}{x} = e^x$, y(0) = 2.

(૨)
$$\frac{dy}{dx} + \frac{y}{x} = e^x$$
, $y(0) = 2$ વિકલ સમીકરણ નો ઉકેલ શોધો.

(3) Solve the differential equation $y \frac{dy}{dx} = \sqrt{1 + x^2 + y^2 + x^2 y^2}$.

(૩)
$$y \frac{dy}{dx} = \sqrt{1 + x^2 + y^2 + x^2 y^2}$$
 વિકલ સમીકરણ નો ઉકેલ શોધો.
