

UNIVERSIDADE DE ÉVORA

2º Trabalho

Inteligência Artificial

Professora: Irene Rodrigues Realizado por: Miguel Menúria (43566) e Gonçalo Correia (43735)

26 de março de 2022

1

a) O espaço de estados e os operadores de transição de estados encontram-se no ficheiro sudoku.pl.

Para representar os vários estados resolvemos ter as variaveis com tuplos de 3 números (X,Y,Z). X e Y representam as coordenadas do quadrado no sudoku e Z representa o quadrante em que este está inserido (sendo que o tabuleiro possui 9 quadrantes (3x3)). O domínio vai de 1 a 9, uma vez que temos 9 quadrantes. Para o valor, apenas referimos o número relativo ao mesmo se já estiver inicialmente no tabuleiro, ou "_", caso não esteja.

Em relação às restrições, decidimos através do uso de findalls, encontrar todos os valores existentes para todas as posições com um X comum (na mesma linha), e utilizando um all_diff verificar se todos os valores encontrados são diferentes. O mesmo processo foi repetido para as váriáveis Y e Z.

O predicado sucessor foi escrito da seguinte forma: $sucessor(e([v(N,D,_)R],E),e(R,[v(N,D,V)E])):-member(V,D).$

- b) Utilizar os seguintes comandos: '[sudoku, backtracking].' e em seguida 'p.'.
- c) Utilizar os seguinte comandos: '[sudoku, forwardchecking].' e em seguida 'p.'.
 Por alguma razão, o nossa implementação de forward checking não consegui chegar a uma solução.
- d) Modificando por exemplo, o código do sudoku. Através do uso de findalls para todos os valores das linhas da tabela pode ser pouco eficiente a nível de complexidade espacial, o que leva a uma procura constante entre os valores, o que irá aumentar também a complexidade temporal.

Exemplo de um output:

6	1	9	4	2	8	5	7	3
5	3	4	6	7	9	1	8	2
7	2	8	3	1	5	9	6	4
3	6	2	1	8	4	7	9	5
9	7	5	2	3	6	4	1	8
8	4	1	9	5	7	3	2	6
4	9	3	7	6	2	8	5	1
2	5	7	8	4	1	6	3	9
1	8	6	5	9	3	2	4	7