Première partie

a) On utilise la commande /sbin/ifconfig et on obtient ceci

eth0 Link encap:Ethernet HWaddr 6c:3b:e5:3a:1c:9e

inet adr:172.28.1.97 Bcast:172.28.1.255 Masque:255.255.25.0

adr inet6: fe80::6e3b:e5ff:fe3a:1c9e/64 Scope:Lien

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:135400 errors:0 dropped:0 overruns:0 frame:0 TX packets:144197 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 lg file transmission:1000

RX bytes:129918725 (123.9 MiB) TX bytes:144575900 (137.8 MiB)

Interruption:20 Mémoire:f7f00000-f7f20000

lo Link encap:Boucle locale

inet adr:127.0.0.1 Masque:255.0.0.0

adr inet6: ::1/128 Scope:Hôte

UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:12 errors:0 dropped:0 overruns:0 frame:0 TX packets:12 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 lg file transmission:0

RX bytes:760 (760.0 B) TX bytes:760 (760.0 B)

vmnet1 Link encap:Ethernet HWaddr 00:50:56:c0:00:01

inet adr:172.16.175.1 Bcast:172.16.175.255 Masque:255.255.255.0

adr inet6: fe80::250:56ff:fec0:1/64 Scope:Lien

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:86 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 lg file transmission:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

vmnet8 Link encap:Ethernet HWaddr 00:50:56:c0:00:08

inet adr:172.16.145.1 Bcast:172.16.145.255 Masque:255.255.255.0

adr inet6: fe80::250:56ff:fec0:8/64 Scope:Lien

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:84 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 lg file transmission:1000

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Les interfaces sont donc et0, lo, vmnet1 et vmnet8

2) Le MTU est le nombre maximal de paquets que peut recevoir l'interface.

<u> </u>				
	Eth0	Lo	Vmnet1	vmnet8
MTU	1500	16436	1500	1500
UP	Présent	Présent	Présent	Présent
RUNNING	Présent	Présent	Présent	Présent
BROADCAST	Présent	Absent	Présent	Présent
MULTICAST	Présent	Absent	Présent	Présent
LOOPBACK	Absent	Présent	Absent	Absent

3) La commande /sbin/ifconfig montre que ma machine ne possède que eth0

eth0 Link encap:Ethernet HWaddr 6c:3b:e5:3a:1c:9e

inet adr:172.28.1.97 Bcast:172.28.1.255 Masque:255.255.255.0

adr inet6: fe80::6e3b:e5ff:fe3a:1c9e/64 Scope:Lien

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:135400 errors:0 dropped:0 overruns:0 frame:0 TX packets:144197 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 lg file transmission:1000

RX bytes:129918725 (123.9 MiB) TX bytes:144575900 (137.8 MiB)

Interruption:20 Mémoire:f7f00000-f7f20000

Je ne savais pas quel argument de commande utiliser pour obtenir le résultat souhaité dans la console.

- 4) D'après les premières lettres « vm » j'imagine que ce sont des interfaces virtuelles. « lo » est une boucle locale.
- 5) Le ifconfig donne pour eth0

inet adr:172.28.1.97

On sait que les adresses entre 172.16.0.0 et 172.31.255.255 sont non routées

- 6) C'est une classe b car les deux premières parties (ici 172.28) sont réservées aux réseau.
- 7) L'adresse du sous réseau est : 172.28.1.0
- 8) On peut avoir les sous-réseaux entre 172.28.1.X et 172.28.254.X donc 254 sous réseaux possibles.

Les sous-réseaux sont 172.0.0.X et 172.255.1.X sont réservés donc on ne les compte pas.

9) Même raisonnement : 254 car les adresses 172.28.1.0 à 172.28.1.255 sont réservées. Donc on n'a seulement accès aux adresses 172.28.1.1 à 172.28.1.254.

10) L'adresse de Broadcast est

Bcast:172.28.1.255

Cette adresse a été calculée en appliquant le masque 255.255.255.0 à l'adresse de ma machine.

11) La commande est

ifconfig eth0 172.28.1.97 netmask 255.255.255.0 broadcast 172.28.1.255

12) La machine le fait automatiquement donc l'administrateur de la machine n'a pas à s'en soucier.

Seconde partie

- 1) 172.28.1.0 est une route directe car elle ne passe par aucun routeur et permet d'attendre les autres machines du réseau. Comme elle permet d'accéder aux autres machines, on n'a pas à se soucier d'avoir la table de routage de toutes les machines du réseau ; d'où l'aspect de factorisation.
- 2) J'ai utilisé la commande

```
ping 172.28.1.95
```

Et j'ai obtenu

```
64 bytes from 172.28.1.95: icmp_req=1 ttl=64 time=0.567 ms
64 bytes from 172.28.1.95: icmp_req=2 ttl=64 time=0.284 ms
64 bytes from 172.28.1.95: icmp_req=3 ttl=64 time=0.321 ms
...
49 packets transmitted, 49 received, 0% packet loss, time 48000ms
```

3) On voit à l'aide de la commande /sbin/route

```
Destination Passerelle Genmask Indic Metric Ref Use Iface ifconfig eth0 172.31.1.72 netmask 255.255.255.0 broadcast 172.31.1.255
```

- 4) 0.0.0.0 est une route indirecte. C'est la route pas défaut. Elle devrait au minimum comporter 2 interfaces : une vers internet et l'autre vers le réseau local.
- 5) La machine 216.58.204.227 n'est pas sur le réseau local donc la machine devra passer par internet : on va donc devoir utiliser la route 0.0.0.0

Troisième partie

1) La commande nous montre une machine de la salle E.2.08

```
E208-08.ensi-bourges.fr (172.28.1.154) at e0:69:95:b0:c0:7f [ether] on eth0 ? (172.28.1.254) at cc:3e:5f:4e:7f:fd [ether] on eth0
```

- 2) On doit utiliser l'interface eth0 car c'est celle utilisée par le sous-réseaux.
- 3) J'ai ping la machine se situant à côté de moi :

```
ping 172.28.1.96
```

```
4)
 203 18.846045000 Pegatron_b1:3a:64
                                                               60 Who has 172.28.1.3? Tell 172.28.1.157
                                      Broadcast
 205 18.955441000 Pegatron_b1:3a:64
                                      Broadcast
                                                   ARP
                                                               60 Who has 172.28.1.4? Tell 172.28.1.157
 206 19.064463000 Pegatron_b1:3a:64
                                                               60 Who has 172.28.1.5? Tell 172.28.1.157
                                      Broadcast
                                                   ARP
                                                               98 Echo (ping) request id=0x1cef, seq=125/32000, ttl=64
 207 19.101184000 172.28.1.96
                                      172.28.1.97 ICMP
 208 19.101206000 172.28.1.97
                                      172.28.1.96 ICMP
                                                               98 Echo (ping) reply id=0x1cef, seq=125/32000, ttl=64
                                      Broadcast
 209 19.173699000 Pegatron_b1:3a:64
                                                   ARP
                                                               60 Who has 172.28.1.6? Tell 172.28.1.157
 210 19.266978000 Pegatron_b1:3a:64
                                      Broadcast
                                                   ARP
                                                               60 Who has 172.28.1.1? Tell 172.28.1.157
 211 19.282819000 Pegatron_b1:3a:64
                                      Broadcast
                                                   ARP
                                                               60 Who has 172.28.1.7? Tell 172.28.1.157
 212 19.392139000 Pegatron b1:3a:64
                                      Broadcast
                                                  ΔRP
                                                               60 Who has 172.28.1.8? Tell 172.28.1.157
```

- 5) L'adresse MAC est celle de broadcast donc elle atteint toutes les machines du sous-réseau. La réponse n'est pas sûr car elle peut être récupérée par une autre machine qui sera alors considérée comme le destinataire.
- 6) L'adresse de destination de la requête ICMP est 6c:3b:e5:3a:1c:9e, il y a donc eu utilisation de l'adresse MAC précédente.