Memory Testing

- Introduction
- Memory Architecture & Fault Models
- Test Algorithms
- DC / AC / Dynamic Tests
- Built-in Self Testing Schemes
- Built-in Self Repair Schemes

Memory Market Share in 1999

• DRAM: 8 X 10¹⁷

• Flash: 6 X 10¹⁶

• ROM: 2 X 10¹⁶

• SRAM: 9 X 10¹⁵

DRAM Price per Bit

1991: US\$ 400 / Mega bits

1995: US\$ 3.75 / Mega bits

1999: US\$ 0.1~0.3 / Mega bits

Test Time as a Function of Memory Size

Cycle time: 10 ns

Size n	Testing time (in seconds)				
	64 <i>n</i>	n log ₂ n	$n^{3/2}$	n^2	
16k	0.01	0.0023	0.021	2.7	
64k	0.04	0.01	0.168	42	
256k	0.17	0.047	1.34	11.4 Mins	
1M	0.67	0.21	10.7	183 Mins	
4M	2.68	0.92	85.9	49.2 Hrs	
16M	10.8	4.03	11.4 Mins	36.5 Days	
64M	43.2	16.2	91.6 Mins	584 Days	

Architecture of a DRAM Chip

Fault Models

- 1. SAF Stuck-At Fault
- 2. TF Transition Fault
- 3. CF Coupling Fault
- 4. NPSF Neighborhood Pattern Sensitive Fault
- 5. AF Address decoding fault

Stuck-At Fault

The logic value of a cell or a line is always 0 or 1.

Transition Fault

A cell or a line that fails to undergo a 0→1 or a 1→0 transition.

Coupling Fault

 A write operation to one cell changes the content of a second cell.

Neighborhood Pattern Sensitive Fault

 The content of a cell, or the ability to change its content, is influenced by the contents of some other cells in the memory.

Address Decoder Fault (AF)

- Any fault that affects address decoder:
 - With a certain address, no cell will be accessed.
 - A certain cell is never accessed.
 - With a certain address, multiple cells are accessed simultaneously.
 - A certain cell can be accessed by multiple addresses.

Memory Chip Test Algorithms

- Traditional tests
- Tests for stuck-at, transition and coupling faults
- Tests for neighborhood pattern sensitive faults

Traditional Tests

Algorithm	Test length	Test Time Order
Zero-One	4n	O(n)
Checkerboard	4n	O(n)
• GALPAT	$2(n+2n^2)$	$O(n^2)$
Walking 1/0	$2(3n+n^2)$	$O(n^2)$
Sliding Diagonal	$6n + 2n \cdot \sqrt{n}$	$O(n \cdot \sqrt{n})$
Butterfly	2[3n + 5n(n/2 - 1)]	$O(n \cdot \log_2 n)$

n is the number of bits of the memory array.

March Algorithms

Algorithm March X

- Step1: **write** 0 with up addressing order;
- Step2: **read** 0 and **write** 1 with up addressing order;
- Step3: **read** 1 and **write** 0 with down addressing order;
- Step4: **read** 0 with down addressing order.

Notation of March Algorithms

: address 0 to address n-1

∬ ∶either way

w0: write 0

w1: write 1

r0 : read a cell whose value should be 0

r1: read a cell whose value should be 1

March Algorithms

```
EX:
   MATS (modified algorithmic Test Sequence)
  (w0); (r0,w1); (r1);
   s1: write 0 to all cells
   s2: for each cell
          read 0;
          write 1;
   s3: read 1 from all cells
```

Some March Algorithms

```
MATS: (w0); (r0,w1); (r1)
MATS+: (w0); (r0,w1); ↓ (r1,w0)
Marching 1/0: (w0); (r0,w1,r1); (r1,w0,r0); (w1); (r1,w0,r0); (r0,w1,r1);
MATS++ : (w0); (r0,w1); (r1,w0,r0); MARCH X : (w0); (r0,w1); (r1,w0); (r0); (r0,w1); (r1,w0); (r0); (r0); (r0,w1); (r1,w0); (r0);
```

Some March Algorithms (Cont.)

```
MARCH A : (w0); (r0,w1,w0,w1); (r1,w0,w1); (r1,w0,w1,w0); (r1,w0,w1,w0); (r0,w1,w0); (r0,w1,w0,r0); (r0,w1,w0,r0); (r0,w1,w0,r0,w1); (r1,w0,w1); (r1,w0,w1,w0); (r1,w0,w1,w0); (r0,w1,w0)
```

Tests for Stuck-At, Transition and Coupling Faults

Test len.	Fault coverage
4n	Some AFs, SAFs
5n	AFs, SAFs
14n	AFs, SAFs, TFs
6n	AFs, SAFs, TFs
6n	AFs, SAFs, TFs, Some CFs
10n	AFs, SAFs, TFs, Some CFs
15n	AFs, SAFs, TFs, Some CFs
8n	AFs, SAFs, TFs, Some CFs
17n	AFs, SAFs, TFs, Some CFs
	5n 14n 6n 6n 10n 15n 8n

NPSF

n	n	n
n	b	n
n	n	n

b: base cell

n: neighbor cells

ANPSF:

Active Neighborhood
Pattern Sensitive Fault

n changes

⇒ b changes

Ex:

n: $0 \rightarrow 1$ b: $1 \rightarrow 0$ PNPSF:

Passive Neighborhood
Pattern Sensitive Fault

Contain n patterns

⇒ b cannot change

Ex:

n: 00000000 b: 0 or 1 SNPSF:

Static Neighborhood

Pattern Sensitive Fault

Contain n patterns

⇒ b is forced to a certain value

Ex:

n: 11111111

b: 1

DC Parametric Testing

- Contains:
 - 1. Open / Short test.
 - 2. Power consumption test.
 - 3. Leakage test.
 - 4. Threshold test.
 - 5. Output drive current test.
 - 6. Output short current test.

AC Parametric Testing

- Output signal: the rise & fall times.
- Relationship between input signals:
 - the setup & hold times.
- Relationship between input and output signals:
 - the delay & access times.
- Successive relationship between input and output signals:
 - the speed test.

Dynamic Faults

- Recovery faults:
 - Sense amplifier recovery
 - Write recovery.
- Retention faults:
 - Sleeping sickness
 - Refresh line stuck-at
 - Static data loss.
- Bit-line precharge voltage imbalance faults.

BIST: Pros & Cons

- Advantages:
 - Minimal use of testers.
 - Can be used for embedded RAMs.
- Disadvantages:
 - Silicon area overhead.
 - Speed; slow access time.
 - Extra pins or multiplexing pins.
 - Testability of the test hardware itself.
 - A high fault coverage is a challenge.

Typical Memory BIST Architecture Using Mentor's Architecture

Multiple Memory BIST Architecture

Serial Testing of Embedded RAM

Built-in Self-Repair

- BIST can only identify faulty chip.
- Laser cut may be infeasible in some cases, e.g., field testing.
- Two types:
 - Use fault-array comparator
 - Repair by cell
 - Repair by column (or row)
 - Use switch array

BISR Using Switch Array

BISR via Fault-Address Comparison

