Linear Algebra 2 – Practicals

Lukas Prokop

summer term 2016

Contents

1	Solution of the last lecture exam of Analysis 1	2
2	Exam: Exercise 4	5
3	Exercise 1	7
4	Exercise 2	7
5	Exercise 3	9
6	Exercise 4	10
7	Exercise 5	11
8	Exercise 6	12
9	Exercise 7	12
10	Exercise 8	13
11	Exercise 9	14
12	Exercise 10	15
13	Exercise 11	16
14	Exercise 12	17
15	Exercise 13	19
16	Exercise 14	19
17	Exercise 15	20
18	Exercise 16	22

19	Exercise 17	22
20	Exercise 18	23
21	Exercise 19	24
22	Exercise 20	25
23	Exercise 21	25
24	Exercise 22	26
25	Exercise 23	27
26	Exercise 24	28
27	Exercise 25	30
28	Exercise 25.b	31
29	Exercise 27	31
30	Exercise 28	32
31	Exercise 29	33
32	Exercise 30	34
33	Exercise 26	34

1 Solution of the last lecture exam of Analysis 1

1.1 Exam: Exercise 1

Exercise 1. Determine the limes of

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

$$\frac{1}{3} + \frac{1}{8} + \frac{1}{15} + \frac{1}{24} + \dots$$

does not help us. What about this representation?

$$\frac{1}{n^2 - 1} = \frac{1}{(n+1)(n-1)} = \frac{a}{n+1} + \frac{b}{n-1} = \frac{a(n-1) + b(n+1)}{(n+1)(n-1)}$$
$$a(n-1) + b(n+1) = 1$$
$$(a+b)n + (b-a) = 1$$
$$\Rightarrow a+b = 0 \land b-a = 1$$

$$\Rightarrow a = -\frac{1}{2}$$
 $b = \frac{1}{2}$

Followingly,

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1} = \sum_{n=2}^{\infty} \frac{1}{(n+1)(n-1)} = \sum_{n=2}^{\infty} \left(\frac{\frac{1}{2}}{n-1} - \frac{\frac{1}{2}}{n+1} \right)$$

Okay, how to proceed? Let's build a pre-factor:

$$\frac{1}{2} \sum_{n=2}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n+1} \right)$$

$$= \left(\frac{1}{1} - \frac{1}{3} \right) + \left(\frac{1}{2} - \frac{1}{4} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \left(\frac{1}{4} - \frac{1}{6} \right) + \dots$$

$$= \frac{1}{1} + \frac{1}{2} = \frac{3}{2}$$

Let's describe this process of cancelling out formally as telescoping sum:

$$S_m := \frac{1}{2} \sum_{n=2}^m \left(\frac{1}{n-1} - \frac{1}{n+1} \right) = \frac{1}{2} \sum_{n=2}^m \frac{1}{n-1} - \frac{1}{2} \sum_{n=2}^m \frac{1}{n+1}$$

Please be aware that we explicitly define S_m because we want to work with finite sums. Only in finite sums, we are always allowed to split up sums.

$$= \frac{1}{2} \sum_{n=2}^{m} \frac{1}{n-1} - \frac{1}{2} \sum_{n=4}^{m+2} \frac{1}{n-1}$$
$$= \frac{1}{2} \left(\frac{1}{1} + \frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{m} + \frac{1}{m+1} \right)$$

We already know $\frac{1}{m} \xrightarrow{m \to \infty} 0$. Also $\frac{1}{m+1} \xrightarrow{m \to \infty} 0$. Followingly also $\frac{1}{2} \left(\frac{1}{m} + \frac{1}{m+1} \right) \xrightarrow{m \to \infty} 0$.

1.2 Exam: Exercise 2

Exercise 2. A recursive definition of a sequence is given:

$$a_0 \in \mathbb{R}, a_0 > 1, (a_n)_{n \in \mathbb{N}}$$

$$a_{n+1} = \frac{1}{2} (a_n + 1)$$

As an example, we look at the sequence with $a_0 = 2$:

$$a_0 = 2$$
 $a_1 = \frac{3}{2}$ $a_2 = \frac{5}{4}$ $a_3 \frac{9}{8}$

Another example is $a_0 = 7$:

$$a_0 = 7$$
 $a_1 = 4$ $a_2 = \frac{5}{2}$ $a_3 \frac{7}{4}$

Exercise 3. a) Show that
$$1 \stackrel{!}{<} a_n \stackrel{!}{\leq} a_0 \quad \forall n \in \mathbb{N}$$

Our examples suggest that this claim might hold.

We use induction over n to prove this statement:

induction base $1 < a_0 \le a_0$ holds trivially.

induction step We are given $1 < a_n \le a_0$ by the induction hypothesis.

$$a_{n+1} = \frac{1}{2}(a_n+1)$$

$$\leq \frac{1}{2}(a_0+a_0)$$
 [induction hypothesis and $1 < a_0$]

$$a_{n+1} = \frac{1}{2}(a_n + 1)$$

$$> \frac{1}{2}(1+1)$$
 [induction hypothesis]
$$= 1$$

Exercise 4. b) Prove that $a_{n+1} \stackrel{!}{<} a_n \quad \forall n \in \mathbb{N}$

$$a_{n+1} = \frac{1}{2}(a_n + 1)$$

$$< \frac{1}{2}(a_n + a_n)$$
 [we have proven: $a_n > 1$]

Exercise 5. c) Does this series converge? If so, give its limit.

Yes, because it is monotonically decreasing (according to exercise b) and bounded below (according to exercise a).

$$b_{n} := a_{n} - 1 \qquad \forall n \in \mathbb{N}$$

$$b_{0} := a_{0} - 1$$

$$b_{n+1} = a_{n+1} - 1 = \frac{1}{2}(a_{n} + 1) - 1 = \frac{1}{2}(b_{n} + 1 + 1) - 1 = \frac{1}{2}b_{n}$$

$$b_{n} = \frac{1}{2^{n}}b_{0} \to 0 \cdot b_{0} = 0$$

$$\Rightarrow b_{n} \to 0$$

$$\Rightarrow a_{n} = b_{n} + 1 \to 1$$

Does it work to just show: $1 = \frac{1}{2}(1+1)$? Nope, because in points of continuity this might be true even though 1 is not its limes.

Let $a_n \to a$ and $a_{n+1} = \frac{1}{2}(a_n + 1)$.

$$a_{n+1} \to a$$
 $\frac{1}{2}(a_n+1) \to \frac{1}{2}(a+1)$ $a = \frac{1}{2}(a+1)$

1.3 Exam: Exercise 3

Exercise 6. $f: \mathbb{R} \to \mathbb{R}$ with $x \mapsto 2x^2 + 5x - 3$. Show continuity with an ε - δ -proof.

If we don't need an ε - δ -proof, we would argue with the Algebraic Continuity Theorem: The function f is a composition of continuous functions, hence a continuous function itself.

 ε - δ -definition:

$$\forall x_0 \in \mathbb{R} \forall \varepsilon > 0 \exists \delta > 0 : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

If $|x - x_0| < \delta$,

$$|f(x) - f(x_0)| = |2x^2 + 5x - 3 - (2x_0^2 + 5x_0 - 3)|$$

$$= |2x^2 + 5x - 2x_0^2 - 5x_0|$$

$$\le 2|x^2 - x_0^2| + 5|x - x_0|$$

$$= 2|(x + x_0)(x - x_0)| + 5|x - x_0|$$

$$= 2|x + x_0||x - x_0| + 5|x - x_0|$$

$$\le 2(|x| + |x_0|)|x - x_0| + 5|x - x_0|$$

$$\le 2(|x_0| + \delta + |x_0|) + 5\delta$$

Our goal: we are able to claim $\stackrel{!}{<} \varepsilon$

$$= 4 | x_0 | \delta + 2\delta^2 + 5\delta$$
$$= 2\delta^2 + (4 | x_0 | + 5)\delta$$

In general (here it does not apply), that x_0 might be zero. So division is not allowed and requires case distinctions (cumbersome!).

The following steps work only because we know $\varepsilon > 0$ and $\delta > 0$:

$$2\delta^{2} < \frac{\varepsilon}{2}$$

$$\delta < \frac{\sqrt{\varepsilon}}{2}$$

$$(4 \mid x_{0} \mid + 5)\delta < \varepsilon$$

$$\delta < \frac{\varepsilon}{4 \mid x_{0} \mid + 5}$$

Then we can submit those results as solution:

Let $\varepsilon > 0$ and $\delta := \min\left(\frac{\sqrt{\varepsilon}}{5}, \frac{\varepsilon}{4|x_0|+6}\right)$. Then the ε - δ definition shows that f is continuous.

2 Exam: Exercise 4

Exercise 7. Let $f:[0,1] \to \mathbb{R}$ be continuous and f(0) = f(1). Show that $\exists \xi \in [0,\frac{1}{2}]$ with $f(\xi) = f(\xi + \frac{1}{2})$.

Hint: Consider $h: [0, \frac{1}{2}] \to \mathbb{R}$ with $h(x) = f(x) - f(x + \frac{1}{2})$.

Intuition: Let $\xi = 0$ with $f(\xi) = 0$ and $\xi = \frac{1}{2}$ with $f(\xi) = \frac{1}{16}$. Then the difference $f(0) - f(\frac{1}{2})$ is negative. At the same time $f(\frac{1}{2}) - f(1)$ is positive. So at some point between x = 0 and x = 1 the difference must be zero.

$$\exists \xi \in [0, \frac{1}{2}] : h(\xi) = 0$$

$$h(0) = f(0) - f\left(\frac{1}{2}\right)$$

$$h(1) = f\left(\frac{1}{2}\right) - f(1) = f\left(\frac{1}{2}\right) - f(0) = -h(0)$$

f(x) is continuous in $[0,\frac{1}{2}]$. $f(x+\frac{1}{2})$ is continuous in $[0,\frac{1}{2}]$. Therefore h is continuous, because it is a composition of continuous functions.

Case 1: h(0) < 0 Then $h(\frac{1}{2}) > 0$ and $h(0) < 0 < h(\frac{1}{2})$. Due to Intermediate Value Theorem it holds that

$$\exists \xi \in [0,\frac{1}{2}]: h(\xi) = 0$$

$$\Rightarrow f(\xi) = f(\xi + \frac{1}{2})$$

Case 2: h(0) > 0 Then $h(\frac{1}{2}) < 0$. Remaining part analogous.

Case 3: h(0) = 0 Then by definition $f(0) = f(\frac{1}{2})$, so choose $\xi = 0$.

3 Exercise 1

Exercise 8. Investigate the function $f: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{1}{2}(x \mid x \mid + x^2)$ in terms of multiple differentiability in all points $x_0 \in \mathbb{R}$.

$$f'(x) = \begin{cases} 0 & x \le 0 \\ 2x & x > 0 \end{cases}$$

So this is differentiable, but in case of x = 0, it remains questionable.

We look at the definition of differentiability:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f(x)}{x}$$

$$f'(x) = \begin{cases} \lim_{x \to 0} \frac{0}{x} = 0\\ \lim_{x \to 0^+} \frac{x^2}{x} = \lim_{x \to 0^+} x = 0 \end{cases}$$

It follows that f is differentiable one time.

$$f''(x) = \begin{cases} 0 & x < 0 \\ 2x & x > 0 \end{cases}$$

What about x = 0?

$$\lim_{x \to 0} \frac{f'(x) - f'(0)}{x - 0} \begin{cases} \lim_{x \to 0} \frac{0}{x} = 0\\ \lim_{x \to 0^+} \frac{2x}{x} = \lim_{x \to 0^+} 2 = 2 \end{cases}$$

Left and right limes differ. So it is not differentiable.

Exercise 2 4

Exercise 9. Determine, possibly using l'Hôpital's rule, the following limits:

- 1. $\lim_{x\to 1} \frac{\ln x}{x-1}$
- 2. $\lim_{x \to 0^{+}} \frac{1}{x} \frac{1}{\sin x}$ 3. $\lim_{x \to \frac{\pi}{2}^{-}} \frac{\ln(\cos x)}{\ln(1-\sin x)}$ 4. $\lim_{x \to 1^{-}} x^{\frac{1}{1-x}}$

- 6. $\lim_{x\to\infty} \frac{e^x e^{-x}}{e^{x} + e^{-x}}$

4.1 Exercise 2.a

$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$

The conditions to apply L'Hôpital's rule are satisfied.

$$\Rightarrow \lim_{x \to 1} \frac{\frac{1}{x}}{1} = 1$$

4.2 Exercise 2.b

$$\lim_{x \to 0^+} \frac{1}{x} - \frac{1}{\sin x} = \lim_{x \to 0^+} \frac{\sin x - x}{x \sin x}$$

The conditions to apply L'Hôpital's rule are satisfied

$$\Rightarrow \lim_{x \to 0^+} \frac{\cos x - 1}{\sin x + x \cos x}$$

The conditions to apply L'Hôpital's rule are satisfied

$$\Rightarrow \lim_{x \to 0^+} \frac{-\sin x}{\cos x + \cos x - x \sin x} = \lim_{x \to 0^+} \frac{-\sin x}{2\cos x - x \sin x} = \frac{0}{2} = 0$$

A nice hint to find out whether this function is differentiable:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

$$\frac{\sin x - x}{x \sin x} = \frac{-\frac{x^3}{3!} + \frac{x^5}{5!} - \dots}{x^2 - \frac{x^4}{3!} + \frac{x^6}{5!}} \approx x \to 0$$

This exploits, that it will take one run of L'Hôpital's rule (because each expression has at least degree 2) and its limes will be 0 (because of x).

4.3 Exercise 2.c

$$\lim_{x \to \frac{\pi}{2}^{-}} \frac{\ln(\cos(x))}{\ln(1 - \sin(x))}$$

The conditions to apply L'Hôpital's rule are partially satisfied. We claim that $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} g(x) = \infty$ is fine.

$$\Rightarrow \lim_{x \to \frac{\pi}{2}^{-}} \frac{\frac{-\sin(x)}{\cos(x)}}{\frac{-\cos(x)}{1-\sin(x)}} = \lim_{x \to \frac{\pi}{2}^{-}} \frac{-\sin(x) \cdot (1-\sin(x))}{\cos(x)(-\cos(x))}$$

The conditions to apply L'Hôpital's rule are partially satisfied.

$$\lim_{x \to \frac{\pi}{2}^{-}} \frac{-\cos(x)(1 - \sin(x)) - \sin(x) \cdot (-\cos(x))}{-\sin(x)(-\cos(x)) + \cos(x) \cdot \sin(x)} = \frac{1}{2}$$

If we want to apply the previous estimate here, we should consider

$$\sin(x) = \cos\left(\frac{\pi}{2} - x\right) = \cos(y) \qquad y = \frac{\pi}{2} - x$$
$$\cos(x) = \sin\left(\frac{\pi}{2} - x\right) = \sin(y)$$

This gives us a different estimate of the result:

$$\lim_{y \to 0^+} \frac{\ln(\sin(y))}{\ln(1 - \cos(y))} \approx \lim_{y \to 0^+} \frac{\ln(y)}{\ln\left(\frac{y^2}{2}\right)} = \lim_{y \to 0^+} \frac{\ln(y)}{2\ln(y) - \ln(2)} \approx \lim_{y \to 0^+} \frac{\ln(y)}{2\ln(y)} = \frac{1}{2}$$

We define neighborhoods:

$$N_{\delta}(x_0) = \{x : |x - x_0| < \delta\}$$

 $N_{R}(\infty) = \{x : x > R\}$

4.4 Exercise 2.d

$$\lim_{x \to 1^{-}} x^{\frac{1}{1-x}} = \lim_{x \to 1^{-}} e^{\ln(x) \frac{1}{1-x}} = \exp \left(\lim_{x \to 1^{-}} \underbrace{\frac{\ln(x)}{1-x}}_{\text{(-1)-Exercise a}} \right) = \frac{1}{e}$$

4.5 Exercise 2.e

$$\lim_{n\to\infty} n^{\frac{1}{\sqrt{n}}} = \lim_{n\to\infty} \left(\exp\left(\frac{\ln n}{\sqrt{n}}\right) \right) = \exp\left(\lim_{n\to\infty} \frac{\ln(n)}{\sqrt{n}}\right)$$

The conditions to apply L'Hôpital's rule are satisfied $(,, \infty)^{\infty}$ ")

$$\exp\left(\lim_{n\to\infty}\frac{\frac{1}{n}}{\frac{1}{2\sqrt{n}}}\right) = \exp\left(\lim_{n\to\infty}\frac{2\sqrt{n}}{n}\right) = \exp(0) = 1$$

4.6 Exercise 2.f

$$\lim_{x \to \infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \lim_{n \to \infty} \frac{e^x \left(1 - e^{-2x}\right)}{e^x \left(1 + e^{-2x}\right)} = \frac{\lim_{x \to \infty} 1 - \lim_{x \to \infty} \frac{1}{e^{2x}}}{\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{1}{e^{2x}}}$$

Remark:

$$\lim_{x \to \infty} \frac{\sinh(x)}{\cosh(x)} \stackrel{\text{L'Hôpital}}{=} \lim_{x \to \infty} \frac{\cosh(x)}{\sinh(x)} \stackrel{\text{L'Hôpital}}{=} \lim_{x \to \infty} \frac{\sinh(x)}{\cosh(x)}$$
$$y = \lim_{x \to \infty} \frac{\sinh(x)}{\cosh(x)} = \frac{1}{\lim_{x \to \infty} \frac{\sinh(x)}{\cosh(x)}} = \frac{1}{y}$$

5 Exercise 3

Exercise 10. Show that the function $f: \mathbb{R} \to \mathbb{R}$ with $x \mapsto x + e^x$ is bijective. Furthermore determine $(f^{-1})'(1)$ and $\lim_{y\to\infty} (f^{-1})'(y)$.

If the function is strictly monotonically increasing, it is injective.

$$f'(x) = 1 + e^x > 0 \qquad \forall x \in \mathbb{R}$$

We show that it is strictly monotonically increasing:

Let $x_1, x_2 \in \mathbb{R}$ with $x_1 < x_2$.

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\alpha) \quad \text{with } \alpha \in (x_1, x_2)$$
$$f(x_2) - f(x_1) = f'(\alpha)(x_2 - x_1) > 0$$

Is f surjective?

For an arbitrary $y_0 \in \mathbb{R}$ it holds that $\exists x_0 \in \mathbb{R} : f(x_0) = y_0$:

$$\exists f(a), f(b) \in \mathbb{R} : f(a) \le y_0 < f(b)$$

It holds that

$$\lim_{x \to -\infty} x + \underbrace{e^x}_{\to 0} = -\infty$$

$$\lim_{x \to +\infty} x + e^x = \infty$$

Formally:

$$\forall y_0 \exists x_0 : \forall x < x_0 : f(x) < y_0$$

From the Intermediate Value Theorem it follows that

$$\Rightarrow \exists c \in [a,b): f(c) = y_0 \qquad c =: x_0$$

So it is surjective.

From injectivity and surjectivity it follows that it is bijective.

5.1 Determine $(f^{-1})'(1)$

$$f(x) = x + e^x$$
$$f'(x) = 1 + e^x$$

We apply the inverse function theorem:

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

$$y = 1 = f(x)$$
$$x = f^{-1}(1)$$

An educated guess gives us that x = 0. In general determining x is more difficult.

$$(f^{-1})'(1) = \frac{1}{f'(0)} = \frac{1}{1 + e^0} = \frac{1}{2}$$

5.2 Determine $\lim_{y\to\infty} (f^{-1})'(y)$

$$\lim_{y \to \infty} \left(f^{-1} \right)'(y) = \lim_{y \to \infty} \frac{1}{1 + e^x}$$

As x grows to infinity, also y grows to infinity. From bijectivity it follows that any value can be reached with x as well as f(x).

$$f'(f^{-1}(\underbrace{y}_{\to\infty}))$$

6 Exercise 4

Exercise 11. Let $D \subseteq \mathbb{R}$ be an open interval and $f: D \to \mathbb{R}$ be differentiable in $x_0 \in D$. Show

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2} = f'(x_0)$$

$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) + f(x_0) - f(x_0 - h)}{2h}$$

$$= \lim_{h' \to 0} \frac{1}{2} \cdot \left(f'(x_0) + \frac{f(x_0) - f(x_0 + h')}{-h'} \right)$$

$$= \lim_{h' \to 0} \frac{1}{2} \cdot \left(f'(x_0) + \frac{f(x_0 + h') - f(x_0)}{h'} \right)$$

$$= \frac{1}{2} (f'(x_0) + f'(x_0))$$

$$= f'(x_0)$$

6.1 Exercise 4.b

$$\lim_{h \to 0} \frac{f(x_0 + rh) - f(x_0 + sh)}{h} = \lim_{h \to 0} \frac{f(x_0 + rh) - f(x_0)}{h} + \lim_{h \to 0} \frac{f(x_0) - f(x_0 + sh)}{h}$$

$$h_1 = rh \qquad h_2 = sh$$

$$= \lim_{h_1 \to 0} \frac{f(x_0 + h_1) - f(x_0)}{\frac{1}{r} \cdot h_1} + \lim_{h_2 \to 0} \frac{f(x_0) - f(x_0 + h_2)}{\frac{1}{s} \cdot h_2}$$

$$= r \cdot f'(x_0) - s \cdot f'(x_0)$$

$$= (r - s) \cdot f'(x_0)$$

7 Exercise 5

Exercise 12. Let $D \subseteq \mathbb{R}$ be an open interval. $f: D \to \mathbb{R}$ is differentiable and f is twice differentiable in $x_0 \in D$.

7.1 Exercise 5.a

Exercise 13. Show that

$$\lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} = f''(x_0)$$

f is differentiable, therefore continuous, and h goes to 0. So we have $\frac{0}{0}$. All conditions to apply L'Hôpital's rule are satisfied.

$$\lim_{h \to 0} \frac{f'(x_0 + h) - f'(x_0 - h)}{2h} \approx \frac{0}{0}$$

We can apply L'Hôpital's Rule again or just use the result of exercise 4a.

$$\stackrel{4a}{\Longrightarrow} f''(x_0)$$

7.2 Exercise 5.b

Exercise 14. Show that the limes from exercise 5.a can also exist, even if $f''(x_0)$ does not exist. Use the result from Exercise 1.

$$f(x) = \begin{cases} x^2 & x > 0 \\ 0 & x = 0 \\ -x^2 & x < 0 \end{cases}$$

We know that it is not twice differentiable. But we want to show that the limes exists.

We are only concerned with x = 0.

$$\lim_{h \to 0} f(x_0) = 0$$

$$\lim_{h \to 0} \frac{h^2 - h^2}{h^2} = \frac{0}{h^2} = 0$$

So if we traverse the graph from both sides at the same time $\frac{f(x_0+h)-f(x_0-h)}{h}$.

8 Exercise 6

Exercise 15. Determine the following limit for arbitrary $c \in \mathbb{R}$:

$$\lim_{n\to\infty}\frac{n}{\ln n}\left(\sqrt[n]{n^c}-1\right).$$

$$\lim_{n \to \infty} \frac{n}{\ln n} \left(\sqrt[n]{n^c} - 1 \right)$$

$$\lim_{n \to \infty} \frac{n}{\ln n} \left(\sqrt[n]{n^c} - 1 \right) = \lim_{n \to \infty} \frac{e^{\frac{c}{n} \cdot \ln n} - 1}{\frac{\ln n}{n}}$$

and

$$\left(e^{\frac{c}{n}\cdot\ln n}\right)' = e^{\frac{c}{n}\cdot\ln n}\cdot\left(-\frac{c}{n^2}\cdot\ln n + \frac{c}{n}\cdot\frac{1}{n}\right) = \frac{c}{n^2}e^{\frac{c}{n}\cdot\ln n}\cdot(1-\ln(n))$$

All conditions are satisfied to apply L'Hôpital's rule (" $\frac{0}{0}$ "):

$$\lim_{n \to \infty} \frac{\frac{c}{n^2} e^{\frac{c}{n} \cdot \ln n} \cdot (1 - \ln n)}{\frac{\frac{1}{n} \cdot n - \ln n}{n^2}}$$

$$= \lim_{n \to \infty} \frac{c \cdot e^{\frac{c}{n} \cdot \ln n} (1 - \ln(n))}{1 - \ln n} = \lim_{n \to \infty} c \cdot e^{\frac{c}{n} \cdot \ln n} = c \cdot 1$$

9 Exercise 7

Exercise 16. • Show that $e^x \ge 1 + x$ holds for all $x \in \mathbb{R}$. *Hint:* On demand, use the Mean Value Theorem.

• Prove that for all x > 0, the following estimates hold:

$$ln x \le x - 1$$

and for all $k \in \mathbb{N}_+$ it holds that

$$k\left(1 - \frac{1}{\sqrt[k]{x}}\right) \le \ln x \le k\left(\sqrt[k]{x} - 1\right)$$

 $x \ge 0$ Choose $f(x) = e^x$ in [0, x). Mean value theorem:

$$\exists x_0 : f'(x_0) = \frac{f(b) - f(a)}{b - a} \quad \text{for } a < x_0 < b$$

$$f'(x_0) = e^{x_0} \qquad e^{x_0} \ge 1 \qquad x_0 \ge 0$$

$$e^{x_0} = \frac{f'(x) - f(0)}{x - 0} = \frac{e^x - e^0}{x} = \frac{e^x - 1}{x} \Rightarrow \frac{e^x - 1}{x} \ge 1$$

Or alternatively: f is convex and therefore f''(x) > 0.

Consider $f(x) = x - 1 - \ln x$

$$f'(x) = 1 - \frac{1}{x} \qquad f''(x) = \frac{1}{x^2}$$
$$f'(x) \stackrel{!}{=} 0$$
$$1 - \frac{1}{x} = 0 \Leftrightarrow x = -1$$

 $f''(1) = 1 > 0 \Rightarrow \text{ minimum and because } f(1) = 0 \Rightarrow \forall x : x - 1 - \ln x \ge 0$

Or alternatively:

$$y \coloneqq x - 1$$
$$x = y + 1$$

Show that $ln(y+1) \le y \Leftrightarrow y+1 \le e^y$.

 e^x is monotonically increasing $\Rightarrow x \le y \Leftrightarrow e^x \le e^y$.

And this has been proven previously.

9.1 Exercise 7.b

$$\ln(x) \le k \left(\frac{1}{k} | x - 1\right)$$

$$\ln(\sqrt[k]{x}) \le \sqrt[k]{x} - 1 \Leftrightarrow \ln(y) \le y - 1$$

And this has been proven in Exercise a.

The second part following analogously.

10 Exercise 8

Exercise 17. Let $f: D \to \mathbb{R}$ with $D \subseteq \mathbb{R}$. Show: If f is continuous in an environment U of $a \in D$, differentiable in $U \setminus \{a\}$ and there exists $\lim_{x \to a} f'(x)$, such that f in a differentiable and

$$f'(a) = \lim_{x \to a} f'(x).$$

Hint: On demand, use the Mean Value Theorem.

Let h_n be an arbitrary zero-sequence (with $h_n(x) > 0 \quad \forall x \in D$) and due to Mean Value Theorem $\exists \xi_n \in D$ with $f'(\xi_n) = \frac{f(a+hn)-f(a)}{h_n}$.

$$\lim_{n\to\infty} f'(\xi_n) = \lim_{x\to a} f'(x) = \lim_{n\to\infty} \frac{f(a+h_n) - f(a)}{h_n} = f'(a)$$

$$\lim_{n \to \infty} \frac{f(a+h_n) - f(a)}{h_n} = \lim_{n \to \infty} f'(\xi_n) = \lim_{x \to a} f'(x) = z$$

For the arbitrary zero-sequence, we really need to consider it arbitrary (otherwise we just show it for the one sequence). Consider this counterexample:

$$f(x) = \begin{cases} 0 & x = \frac{1}{n} \text{ for } n \in \mathbb{N} \\ 1 & \text{else} \end{cases}$$

10.1 Alternative approach

Application of "Schrankensatz".

$$\exists \lim f'(x) = \alpha$$

Hence for arbitrary $\varepsilon > 0$: $\exists \delta > 0 \forall x \in (a - \delta, a + \delta) \setminus \{a\}$: $|f'(x) - \alpha| < \varepsilon$. Hence $\alpha - \varepsilon < f'(x) < \alpha + \varepsilon$.

 $\forall x \in (a, a + \delta) : \alpha - \varepsilon \le \frac{f(x) - f(a)}{x - a} \le \alpha + \varepsilon$

 $\forall x \in (a - \delta, a) : \alpha - \varepsilon \le \frac{f(x) - f(a)}{x - a} \le \alpha + \varepsilon$

$$\Rightarrow \forall x \in (a - \delta, a + \delta) \setminus \{a\} : \left| \frac{f(x) - f(a)}{x - a} - \alpha \right| \le \varepsilon$$
$$\Rightarrow \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \alpha$$

10.2 Second alternative approach

$$\lim_{f(a+h)-f(a)} h$$

If I know f is continuous, then $f(a + h) \rightarrow f(a)$. So,

"
$$\frac{0}{0}$$
"

$$\lim_{h \to 0} \frac{f'(a+h) - 0}{1} = \lim_{h \to 0} f'(a+h) = \lim_{x \to a} f'(x)$$

11 Exercise 9

Exercise 18. Let $f:[a,b] \to \mathbb{R}$, a < b, differentiable with f(a) > 0, f'(a) > 0 and f(b) = 0. Prove that there exists $\xi \in (a,b): f'(\xi) = 0$.

First, we want to show that $f'(a) > 0 \Rightarrow \exists \delta > 0 \forall x \in (a, a + \delta) : f(x) > f(a)$.

$$\exists \delta > 0 \forall x \in (a, a + \delta) : \frac{f(x) - f(a)}{x - a} > \frac{f'(a)}{2} > 0$$
$$\Rightarrow f(x) - f(a) > \frac{f'(a)}{2} (x - a) > 0$$

Indeed, f(x) satisfies this property.

Secondly, we want to show that,

$$\exists \eta \in (a+\delta,b): f(a) = f(\eta)$$

$$\exists \xi \in [a, \eta] \forall x_1 \in [a, \eta] : f(\xi) \ge f(x_1)$$

$$\exists \xi \in (a,\eta): \frac{f(\eta)-f(a)}{\eta-a} = f'(\eta) = 0$$

There might be more than this one ξ , so the ξ between the second and third line might be different. Anyways, we found a ξ with the desired property.

12 Exercise 10

Exercise 19. Determine the pointwise limit of the following function sequences $f_n:[0,\infty)\to\mathbb{R}$ and determine its uniform convergence:

- $f_n(x) = \sqrt[n]{x}$ $f_n(x) = \frac{1}{1+nx}$
- $f_n(x) = \frac{x}{1+nx}$

12.1 Exercise 10.a

If
$$x \neq 0$$
, $\lim_{n \to \infty} \sqrt[n]{x} = 1$.
If $x = 0$, $\lim_{n \to \infty} \sqrt[n]{x} = \lim_{n \to \infty} 0^{\frac{1}{n}} = 0$.

In terms of uniform convergence:

$$\left| \begin{array}{c} \sqrt[n]{x} - 1 \right| < \varepsilon \\ \lim_{x \to \infty} \sqrt[n]{x} = \infty \end{array}$$

Example:

$$\begin{vmatrix} \sqrt[n]{x} - 1 \end{vmatrix} < \varepsilon$$
$$\sqrt[n]{x} - 1 < \varepsilon$$
$$\sqrt[n]{x} < \varepsilon + 1$$
$$\sqrt[n]{100} < \varepsilon + 1$$

12.2 Exercise 10.b

$$f_n(x) = \frac{1}{1+nx}$$
 If $x \neq 0$,
$$\lim_{n \to \infty} \frac{1}{1+nx} = 0$$
 If $x = 0$,
$$\lim_{n \to \infty} \frac{1}{1+n \cdot 0} = 1$$

Assume it it continuously convergent. Show that:

$$\exists \varepsilon > 0 \forall N \in \mathbb{N} \\ \exists x \in [0,\infty): n \geq N \land |f_n(x) - f(x)| \geq \varepsilon$$

Does not hold for $\frac{9}{n} \ge x$.

12.3 Exercise 10.c

$$f_n(x) = \frac{x}{1+nx}$$
If $x \neq 0$,
$$\lim_{n \to \infty} \frac{x}{1+nx} = \lim_{n \to \infty} \frac{1}{\frac{1}{x}+n} = 0$$
If $x = 0$,
$$\lim_{n \to \infty} \frac{0}{1+n \cdot 0} = 0$$

$$\left| \frac{x}{1+nx} - 0 \right| < \varepsilon$$

$$\left| \frac{x}{1+nx} \right| < \left| \frac{x}{nx} \right| = \left| \frac{1}{n} \right|$$

Convergence is given. Uniform convergence is not given.

Advice: The simplest approach to show convergence is to show:

$$|f_n(x) - f(x)| \le a_n \to 0$$

where a_n is independent from x.

13 Exercise 11

Exercise 20. Determine $\cos \alpha$, $\sin \alpha$ and $\tan \alpha$ for $\alpha \in \left\{\frac{\pi}{5}, \frac{2\pi}{5}\right\}$.

Hint: Show that $u := \cos \frac{2\pi}{5}$ and $v := \cos \frac{\pi}{5}$ satisfy the equations $u = 2v^2 - 1$ and $-2u^2 + 1 = v$. Determine u, v this way.

$$u = \cos\left(\frac{2\pi}{5}\right) = \cos\left(\frac{\pi}{5} + \frac{\pi}{5}\right)$$
$$= \cos^2\left(\frac{\pi}{5}\right) - \sin^2\left(\frac{\pi}{5}\right)$$
$$= 2\cos^2\left(\frac{\pi}{5}\right) - 1$$
$$= 2v^2 - 1$$

To show: $v + 2u^2 - 1 = 0$, $\cos\left(\frac{\pi}{5}\right) + 2\cos^2\left(\frac{\pi}{5}\right) - 1 = 0$.

$$\cos\left(\frac{\pi}{5}\right) + 2\cos\frac{2\pi}{5} - 1 = \cos\frac{\pi}{5} + \cos\frac{4\pi}{5}$$

$$= \cos\frac{\pi}{5} + \cos\left(\pi - \frac{1}{5}\pi\right)$$

$$= \cos\frac{\pi}{5} + \cos\pi \cdot \cos\left(\frac{\pi}{5}\right) + \sin\pi \cdot \sin\frac{\pi}{5} - \cos\frac{\pi}{5} \cdot \cos\frac{\pi}{5}$$

$$= 0$$

For u + v > 0:

$$2v^2 - 1 = u$$
$$-2u^2 + 1 = v$$

$$2v^{2} - 2u^{2} = u + v$$

$$2(v + u)(v - u) = u + v$$

$$2(v - u) = 1 \Leftrightarrow v - u = \frac{1}{2}$$

$$v - 2v^{2} + \frac{1}{2} = 0$$

$$v^{2} - \frac{1}{2}v - \frac{1}{4} = 0$$

$$v_{1,2} = \frac{1}{4} \pm \sqrt{\frac{1}{16} + \frac{4}{16}} = \frac{1 \pm \sqrt{5}}{4}$$

$$0 < \cos(\frac{\pi}{5}) = \frac{1 + \sqrt{5}}{4}$$

$$u = \cos(\frac{2\pi}{5}) = v - \frac{1}{2} = \frac{-1 + \sqrt{5}}{4}$$

$$\cos(\frac{2\pi}{5}) = \cos^{2}(\frac{\pi}{5}) - \sin^{2}(\frac{\pi}{5})$$

$$\Leftrightarrow \sin^{2}(\frac{\pi}{5}) = \frac{5 + 2\sqrt{5} + 1}{4} - \frac{4\sqrt{5}}{16}$$

$$= \frac{5 + 2\sqrt{5} + 1 + 4 - 4\sqrt{5}}{16} = \frac{10 - 2\sqrt{5}}{16} = \frac{5 - \sqrt{5}}{8}$$

$$\sin(\frac{\pi}{5}) = \sqrt{\frac{5 - \sqrt{5}}{8}} \approx 0.59$$

$$\sin(\frac{2\pi}{5}) = \sin(\frac{\pi}{5} + \frac{\pi}{5}) = \sin\frac{\pi}{5} \cdot \cos\frac{\pi}{5} + \cos\frac{\pi}{5} \cdot \sin\frac{\pi}{5} = 2\sin\frac{\pi}{5} \cdot \cos\frac{\pi}{5}$$

$$= 2\frac{1 + \sqrt{5}}{4} \sqrt{\frac{5 - \sqrt{5}}{8}} = \frac{1 + \sqrt{5}}{2} \cdot \frac{5 - \sqrt{5}}{8} = \sqrt{\frac{5 + \sqrt{5}}{8}} \approx 0.95$$

$$\tan\frac{\pi}{5} = \frac{\sin\frac{\pi}{5}}{\cos\frac{\pi}{5}} = \frac{\sqrt{\frac{5 - \sqrt{5}}{8}}}{\sqrt{\frac{5 + 1}{4}}} = \frac{\sqrt{2(5 - \sqrt{5})}}{1 + \sqrt{5}} = \sqrt{5 - 2\sqrt{5}} \approx 0.73$$

$$\tan(\frac{2\pi}{5}) = \frac{\sin\frac{2\pi}{5}}{\cos\frac{2\pi}{5}} = \frac{4}{-1 + \sqrt{5}} \cdot \frac{1 + \sqrt{5}}{2} \cdot \sqrt{\frac{5 - \sqrt{5}}{8}} = \sqrt{5 + 2\sqrt{5}} \approx 3.05$$

14 Exercise 12

Exercise 21. To which order do you have to consider values in the series expansion of cosine, to approximate $\cos 1$ with an error smaller 10^{-7} ? Furthermore show that $\cos 1$ is irrational.

Hint: To show irrationality of cos 1, assume, $p,q \in \mathbb{N}_+$ with $\cos 1 = \frac{p}{q}$. Replace that in the estimated

error of

$$\cos 1 - \sum_{k=0}^{q} \frac{(-1)^k}{(2k)!},$$

multiply with (2q)! and derive a contradiction.

14.1 Exercise 12.a

 $\cos x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} \cdot (-1)^k$

Consider,

$$S_{2m} = \sum_{k=0}^{2m} \frac{1}{(2k)!} (-1)^k$$

$$S_{2k+1} = \sum_{k=0}^{2k+1} \frac{1}{(2k)!} \cdot (-1)^k$$

So S_{2k+1} has a negative, last expression. S_{2m} has a positive last expression.

$$S_{2k+1} < \cos 1 < S_{2m}$$

$$S_{2m} - S_{2m+1} = \sum_{k=0}^{2m} \frac{1}{(2k)!} (-1)^k - \sum_{k=0}^{2m+1} \frac{1}{(2k)!} (-1)^k$$

$$\Delta \cos(1) = -\frac{1}{(2(2m+1))!} \cdot (-1)^{2m+1} = \frac{1}{(2 \cdot (2m+1))!} \stackrel{!}{<} 10^{-7}$$

$$N! > 10^7 \Rightarrow N > 11$$

$$2 \cdot (2m+1) > 11$$

$$2m+1 > \frac{11}{2} = 5.5$$

 \Rightarrow 10-th order because every odd expression is cancelled out.

Consider paper: "The irrationality of e and Others".

14.2 Exercise 12.b

 $\cos(1) \notin \mathbb{Q}$

Assume $\exists p \in \mathbb{Z}, q \in \mathbb{N}$:

$$\cos(1) = \frac{p}{q}$$

$$\left| \cos(1) - \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} \right|$$

$$= \left| \frac{p}{q} - \sum_{k=0}^{q-1} \frac{(-1)^k}{(2k)!} \right| < \frac{1}{(2q)!}$$

$$= \left| \frac{p(2q)!}{q} - \sum_{k=0}^{q-1} \frac{(-1)^k \cdot (2q)!}{(2k)!} \right| < 1$$

$$|x - y| < 1 \Rightarrow 0 \qquad \text{because } x \in \mathbb{Z}, y \in \mathbb{Z}$$

Leibniz criterion requires that the limes is not achieved in the sequence, because the functions need to be strictly monotonical.

15 Exercise 13

Exercise 22. Let $f: [\frac{\pi}{2}, \frac{3\pi}{2}] \to [-1,1]$, $x \mapsto \sin x$. Show that f is bijective and compute (using the formula for the derivative of the inverse function $(f^{-1})'(y)$ at all possible points $y \in [-1,1]$). Also give an explicit representation for f^{-1}

$$\ldots = -\frac{1}{\sqrt{1-y^2}}$$

It is important to recognize the negative sign.

16 Exercise 14

Exercise 23. Let $w, z \in \mathbb{R}$ with $w, z, w + z \notin \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$. Prove the addition theorem of the tangens function:

$$\tan(w+z) = \frac{\tan(w) + \tan(z)}{1 - \tan(w)\tan(z)}.$$

Let $x, y \in \mathbb{R}$ with xy < 1. Show that $\arctan(x) + \arctan(y) \in (-\frac{\pi}{2}, \frac{\pi}{2})$ and use it to prove the addition theorem for the arcustangens function:

$$\arctan(x) + \arctan(y) = \arctan \frac{x+y}{1-xy}$$
.

1. Show that $tan(w + z) = \frac{tan(w) + tan(z)}{1 - tan(w) tan(z)}$

$$\tan(w+z) = \frac{\sin(w+z)}{\cos(w+z)} = \frac{\cos(w) \cdot \sin(z) + \sin(w) \cos(z)}{\cos(w) \cos(z) - \sin(w) \sin(z)}$$
$$\frac{\frac{\cos(w) \sin(w)}{\cos(w) \cos(z)} + \frac{\sin(w) \cdot \cos(z)}{\cos(w) \cdot \cos(z)}}{1 - \frac{\sin(w) \sin(z)}{\cos(w) \cos(z)}}$$
$$= \frac{\tan(z) + \tan(w)}{1 - \tan(w) \tan(z)}$$

2.

$$\arctan(x) + \arctan(y) \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

$$x, y \in \mathbb{R}, xy < 1.$$

Let $x = \tan(z)$ and $y = \tan(w)$.

$$xy = \tan(z) \cdot \tan(w) = \frac{\sin(z) \cdot \sin(w)}{\cos(z) \cdot (w)} < 1$$
$$\sin(z) \cdot \sin(w) < \cos(z) \cos(w)$$
$$\Leftrightarrow 0 < \cos(z) \cdot \cos(w) - \sin(z) \cdot \sin(w)$$
$$\Leftrightarrow 0 \stackrel{!}{<} \cos(z + w) \Leftarrow z \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \lor w \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

This proof is insufficient! A case distinction for cos(z) cos(w) > 0 is required.

3. Show that $\arctan(x) + \arctan(y) = \arctan \frac{x+y}{1-xy}$. Let $x = \tan(z)$ and $y = \tan(w)$.

$$\arctan\left(\frac{x+y}{1-xy}\right) = \arctan\left(\frac{\tan(z) + \tan(w)}{1-\tan(z)\tan(w)}\right) = \arctan(\tan(z+w)) = z+w = \arctan(x) + \arctan(y)$$

17 Exercise 15

Exercise 24. Compute the following integrals by approximating the integrands using a sequence of step functions with the given points. Let $a, b \in \mathbb{R}$ with a < b.

- 1. $\int_a^b e^x dx$ with points $x_k := a + k(b-a)/n$.
- 2. $\int_a^b x^p dx$ with points $x_k := aq^k$, $q := \sqrt[n]{b/a}$ and $p \in \mathbb{R} \setminus \{-1\}$.

17.1 Exercise 15.a

$$= \lim_{n \to \infty} \frac{b - a}{n} \sum_{k=0}^{n-1} e^{a + \frac{k(b - a)}{n}}$$

$$= \lim_{n \to \infty} \frac{b - a}{n} e^{a} \sum_{k=0}^{n-1} \left(e^{\frac{b - a}{n}} \right)^{k}$$

$$= \lim_{n \to \infty} e^{a} \cdot \frac{b - a}{n} \frac{e^{\frac{b - a}{n}} - 1}{e^{\frac{b - a}{n}} - 1}$$

$$= \lim_{n \to \infty} e^{a} \left(e^{b - a} - 1 \right) \cdot \frac{\frac{b - a}{n}}{e^{\frac{b - a}{n}} - 1}$$

$$= e^{a} \cdot \frac{e^{b}}{e^{a}} - e^{a} = e^{b} - e^{a}$$

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall x \in [a, b]) : |\varphi_n(x) - e^x| < \varepsilon$$

$$e^{a + (b - a)\frac{n - 1}{n}} - e^b = e^{a + (b - a)(1 - \frac{1}{n})} - e^b = e^{a + b - \frac{b}{n} - a + \frac{a}{n}} - e^b$$

$$= e^{b - \frac{b}{n} + \frac{a}{n}} - e^b$$

17.2 Exercise 15.b

$$x_k := aq^k \qquad q := \left(\frac{b}{a}\right)^{\frac{1}{n}}$$
$$p \neq -1$$
$$y_k := x_{k+1} - x_k$$
$$= aq^{k+1} - aq^k$$

$$\sum_{k=0}^{n-1} y_k x_k^p = \sum_{k=0}^{n-1} a q^k (q-1) (a q^k)^p = a^{p+1} (q-1) \sum_{k=0}^{n-1} (q^{p+1})^k$$

 $=aa^k(a-1)$

Figure 1: Illustration of 15b

Is a geometric series:

$$= a^{p+1}(q-1)\frac{1 - (q^{p+1})^{n-1}}{1 - a^{p+1}}$$

$$\lim_{n \to \infty} \sum_{k=0}^{n-1} y_k x_k^p = a^{p+1} \lim_{n \to \infty} \left(\left(\frac{b}{a} \right)^{\frac{1}{n}} - 1 \right) \frac{1 - \left(\frac{b}{a} \right)^{\frac{n-1}{n}(p+1)}}{1 - \left(\frac{b}{a} \right)^{\frac{p+1}{n}}} = a^{p+1} \left(1 - \left(\frac{b}{a} \right)^{p+1} \right) \underbrace{\lim_{n \to \infty} \frac{\left(\frac{b}{a} \right)^{\frac{1}{n}} - 1}{1 - \left(\frac{b}{a} \right)^{\frac{p+1}{n}}}}_{\text{``0/0''}}$$

$$\lim_{n \to \infty} \frac{\left(\frac{\underline{b}}{a}\right)^{\frac{1}{n}} - 1}{1 - \left(\frac{\underline{b}}{a}\right)^{\frac{p+1}{n}}} = \text{``0/0''}$$

L'Hópital's Rule:

$$= \lim_{n \to \infty} \frac{\exp\left(\frac{1}{n}\log\left(\frac{b}{a}\right)\right) - 1}{1 - \exp\left(\frac{p+1}{n}\log\left(\frac{b}{a}\right)\right)} = \lim_{n \to \infty} \frac{\log\left(\frac{b}{a}\right) \cdot \frac{-1}{n^2}\exp\left(\frac{1}{n}\log\frac{b}{a}\right)}{-(p+1)\log\frac{b}{a} \cdot \frac{-1}{n^2}\exp\left(\frac{p+1}{n}\log\frac{b}{a}\right)}$$

$$= \lim_{n \to \infty} \frac{-1}{p+1} \frac{\left(\frac{b}{a}\right)^{\frac{1}{n}}}{\left(\frac{b}{a}\right)^{\frac{1}{n}}} = \frac{-1}{p+1}$$

$$\Rightarrow = (a^{p+1} - b^{p+1}) \cdot \frac{-1}{p+1} = \frac{b^{p+1} - a^{p+1}}{p+1}$$

The assignment explicitly asks for a step function. This approach only verifies that

$$\int_{a}^{b} x^{p} dx$$

$$\frac{x^{p+1}}{p+1} \Big|_{x=a}^{x=b} = \frac{b^{p+1}}{p+1} - \frac{a^{p+1}}{p+1}$$

We only did the approximation from one side (also upper bound is needed which works analogously):

$$\sum_{k=0}^{n-1} y_k x_{k+1}^p = \dots$$

18 Exercise 16

Exercise 25. For an interval $I \subseteq \mathbb{R}$ let $f_n : I \to \mathbb{R}$ be a sequence of functions which are uniformly continuous converging towards $f : I \to \mathbb{R}$. Show that the following statements hold or provide a counterexample:

- If all f_n are uniformly continuous, then f is uniformly continuous.
- If all f_n are Lipschitz continuous, then f is Lipschitz continuous.

18.1 Exercise 16.a

It holds. So a proof is given in the following.

We want to show:

$$\forall \varepsilon \exists \delta : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

$$| f(x) - f(x_0) | = | f(x) - f_n(x) + f_n(x) - f(x_0) + f_n(x_0) - f(x_0) |$$

$$\leq \underbrace{| f(x) - f_n(x) |}_{< \frac{\varepsilon}{3}} + \underbrace{| f_n(x) - f_n(x_0) |}_{< \frac{\varepsilon}{3}} + \underbrace{| f_n(x_0) - f(x_0) |}_{< \frac{\varepsilon}{3}}$$

We need to elaborate: For which *n* does $\frac{\varepsilon}{3}$ hold?

$$\forall \varepsilon > 0 \exists \overset{\text{depends on } \varepsilon}{n_0} : \forall n \ge n_0 \forall x \in I : |f(x) - f_n(x)| < \frac{\varepsilon}{3}$$

$$\forall \varepsilon > 0 \forall n \exists \delta = \delta(n, \varepsilon) : \forall x, x_0 : |x - x_0| < \delta \Rightarrow |f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}$$

18.2 Exercise 16.b

This does not hold. So we provide a counterexample.

Consider $f(x) = \sqrt{x}$. It is not differentiable at x = 0, but f(0) = 0 is defined. The function cannot be Lipschitz-continuous, because the Lipschitz constant grows as we tend towards 0. We need functions f_n .

Consider $f(x) = \sqrt{x + \frac{1}{n}}$. The function f_n looks like f, but is shifted slightly to the left. As n tends towards infinity, f_n becomes f and we get the problem at x = 0.

You can also consider:

$$f(x) = \begin{cases} \sqrt{x} & \text{for } x \ge \frac{1}{n} \\ \sqrt{\frac{1}{n}} & \text{for } x < \frac{1}{n} \end{cases}$$

19 Exercise 17

Exercise 26. Let $f:[0,1] \to \mathbb{R}$ be a regulated function continuous in 0. Show the following relation:

$$\lim_{n \to \infty} n \int_0^{\frac{1}{n}} f(s) \, ds = f(0).$$

$$\lim_{n \to \infty} n \int_0^{\frac{1}{n}} f(s) \, ds = f(0) = \lim_{n \to \infty} n \cdot \left(F\left(\frac{1}{n}\right) - F(0) \right) = \lim_{n \to \infty} \frac{F\left(\frac{1}{n}\right) - F(0)}{\frac{1}{n}} = \lim_{n \to 0} \frac{F(h) - F(0)}{h} = f(0)$$

19.1 Other approach

Continuity at x = 0:

$$\forall \varepsilon > 0 \exists \delta > 0 \forall |x| < \delta : |f(x) - f(0)| < \varepsilon$$

$$\lim_{n \to \infty} n \int_0^{\frac{1}{n}} f(x) \, dx \le \lim_{n \to \infty} n \int_0^{\frac{1}{n}} (f(0) + \varepsilon) \, dx$$

For $\frac{1}{n} < \delta$ it holds that $f(x) < f(0) + \varepsilon$ for $x \in [0, \frac{1}{n}]$.

$$= \lim_{n \to \infty} n(f(0) + \varepsilon) \frac{1}{n} = f(0) + \varepsilon$$

holds for all $\varepsilon > 0$.

$$\Rightarrow \lim_{n \to \infty} n \int_0^{\frac{1}{n}} f(x) \, dx \le f(0)$$

20 Exercise 18

Exercise 27. Prove the Riemann-Lebesgue Lemma: For every regulated function $f:[a,b] \to \mathbb{R}, a < b$ it holds that

$$\lim_{\lambda \to \infty} \int_{a}^{b} f(x) \sin(\lambda x) \, dx = 0.$$

Hint: Show the following partial results:

• For all intervals $[\alpha, \beta] \subseteq [a, b]$ it holds that

$$\lim_{\lambda \to \infty} \int_{\alpha}^{\beta} \sin(\lambda x) \, dx = 0.$$

• For all step functions $g \in \tau[a,b]$ it holds that

$$\lim_{\lambda \to \infty} \int_a^b g(x) \sin(\lambda x) \, dx = 0.$$

20.1 Exercise 18.a

$$-\frac{1}{\lambda}\cos(\lambda x)\bigg|_{\alpha}^{\beta} = \underbrace{\frac{1}{\lambda}}_{\text{bounded}} \underbrace{(-\cos(\beta\lambda) + \cos(\alpha\lambda))}_{\text{bounded}}$$

20.2 Exercise 18.b

Because g is a step function of [a,b], there exists a decomposition

$$a = x_0 < x_1 < \ldots < x_n = b$$

such that g(x) has a constant value c_i in every subinterval $[x_{i-1}, x_i)$.

$$\lim_{\lambda \to \infty} \int_{a}^{b} f(x) \sin(\lambda x) \, dx = \lim_{\lambda \to \infty} \sum_{i=1}^{n} c_{i} \int_{x_{i-1}}^{x_{i}} \sin(\lambda x) \, dx$$

This can be done, because we consider a finite sum.

$$\sum_{i=1}^{n} c_i \int_{x_{i-1}}^{x_i} \sin(\lambda x) \, dx$$

$$\to 0 \forall \text{ subintervals } H(i)$$

$$= \sum_{i=1}^{n} c_i \cdot \lim_{x_{i-1}} \int_{x_{i-1}}^{x_i} \sin(\lambda x) \, dx = 0$$

20.3 Conclusion

Because f(x) is a regulated function $\forall \varepsilon > 0$, there exists a step function $g_{\varepsilon}(x)$ with $|f(x) - g_{\varepsilon}(x)| < \varepsilon \quad \forall x \in [a,b]$.

$$\left| \int_{a}^{b} f(x) \cdot \sin(\lambda x) \, dx \right| \leq \underbrace{\int_{a}^{b} \left| \underbrace{f(x) - g_{\varepsilon}(x)}_{<\varepsilon} \right| \cdot \left| \underbrace{\sin(\lambda x)}_{\leq 1} \right| dx + \underbrace{\left| \int_{a}^{b} g_{\varepsilon}(x) \sin(\lambda x) \, dx \right|}_{\rightarrow 0 \text{ for } \lambda \rightarrow \infty}}_{\rightarrow 0 \text{ for } \lambda \rightarrow \infty}$$

$$\lim_{\lambda \to \infty} \left| \int_{a}^{b} f(x) \sin(\lambda x) \, dx \right| \leq \varepsilon (b - a)$$

We can choose ε arbitrary, so it must tend towards 0.

21 Exercise 19

Exercise 28. Let $I,J\subseteq\mathbb{R}$ be intervals, $f:I\to\mathbb{R}$ continuous and $g,h:J\to I$ differentiable. Furthermore it holds that $g\leq h$ in J. Prove that

$$A: J \to \mathbb{R}, \quad x \mapsto \int_{g(x)}^{h(x)} f(\xi) \, d\xi$$

is differentiable and determine its derivative.

21.1 Exercise 19.a

Show differentiability.

So

$$\lim_{x \to x_0} \frac{A(x) - A(x_0)}{x - x_0}$$

exists.

$$\lim_{x \to x_0} \frac{A(x) - A(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{\int_{g(x)}^{h(x)} f(\xi) d\xi - \int_{g(x_0)}^{h(x_0)} f(\xi) d\xi}{x - x_0} = \lim_{x \to x_0} \frac{F(h(x)) - F(g(x)) - F(h(x_0)) + F(g(x_0))}{x - x_0}$$

F(h(x)) and F(g(x)) exists, because h(x) is continuous, so a regulated function and regulated functions always have a primitive function.

$$\lim_{x \to x_0} \frac{F(h(x)) - F(h(x_0))}{x - x_0} - \lim_{x \to x_0} \frac{F(g(x)) - F(g(x_0))}{x - x_0}$$

If h(x) is continuous, then F(h(x)) is differentiable (analogously for g(x)). And the composition is also differentiable.

21.2 Exercise 19.b

Determine its derivative.

$$(F \circ h)'(x) - (F \circ g)'(x_0) = f(h(x_0)) \cdot h'(x_0) - f(g(x_0)) \cdot g'(x_0)$$

22 Exercise 20

Exercise 29. Determine the following integrals for arbitrary $a, b \in \mathbb{R}, a < b$:

- $\int_a^b \frac{d}{dx} \left(x^5 \cdot e^x \right) \, dx$
 - $\bullet \int_a^b x^4 e^{x^5} dx$

22.1 Exercise 20.a

$$\int_{a}^{b} \frac{d}{dx} \left(x^{5} e^{x} \right) dx = \int_{a}^{b} 5x^{4} e^{x} - x^{5} e^{x} dx = \int_{a}^{b} \underbrace{e^{x}}_{g'(x)} \underbrace{(5x^{4} - x^{5})}_{=f(x)} dx$$
$$= e^{x} (5x^{4} - x^{5}) \Big|_{a}^{b} - \int_{a}^{b} e^{x} (20x^{3} + 5x^{4}) = e^{b} b^{5} - e^{a} a^{5}$$

22.2 Exercise 20.b

$$\int_{a}^{b} x^{4} e^{x^{5}} dx$$

$$u := x^{5} \Rightarrow \frac{du}{dx} = 5x^{4} \qquad dx = \frac{du}{5x^{4}}$$

$$= \int_{a^{5}}^{b^{5}} x^{4} e^{u} \frac{du}{5x^{4}} = \int_{a^{5}}^{b^{5}} e^{u} \frac{du}{5} = \frac{1}{5} \int_{a^{5}}^{b^{5}} e^{u} du = \frac{1}{5} \left(e^{b^{5}} - e^{a^{5}} \right)$$

Other approach for 20.b:

$$F = \frac{1}{5}e^{x^5}$$
$$F' = x^4e^{x^5} = f$$

23 Exercise 21

Exercise 30. Consider function f.

$$f: [-1,1] \to \mathbb{R}, \quad x \mapsto \begin{cases} 0, & x = 0, \\ \frac{1}{n+2}, & x \in \left[-\frac{1}{n}, -\frac{1}{n+1}\right) \cup \left(\frac{1}{n+1}, \frac{1}{n}\right], n \in \mathbb{N}_+. \end{cases}$$

Is f a step function? Is f a regulated function? Furthermore determine

$$\int_{-1}^{1} f(x) \, dx.$$

Is not a step function, because the number of intervals is not finite.

Is it a regulated function? We can approximate f using the following construction:

$$\varphi_k(x) = \begin{cases} 0 & x = 0\\ \frac{1}{n+2} & x \in \left[-\frac{1}{n}, -\frac{1}{n+1}\right) \cup \left(\frac{1}{n+1}, \frac{1}{n}\right], n \in \mathbb{N}, n \le k\\ 0 & \text{else} \end{cases}$$

We choose a k such that all elements smaller k are nonzero. This approximates our function f.

Consider

$$\int_{-1}^{1} f(x) dx \stackrel{\varphi_n \to f \text{ uniformly}}{=} \lim_{h \to \infty} \int_{-1}^{1} \varphi_n(x) dx$$

$$\int_{-1}^{1} \varphi_n(x) dx = \sum_{j=1}^{N} c_j \triangle x_j = \sum_{n=1}^{k} \frac{1}{n+2} \cdot \left| \frac{1}{n} - \frac{1}{n+1} \right| \cdot 2 = 2 \cdot \sum_{n=1}^{k} \left(\frac{1}{n(n+2)} - \frac{1}{(n+2)(n+1)} \right)$$

$$= 2 \cdot \sum_{n=1}^{k} \left(\frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right) - \left(\frac{1}{n+1} - \frac{1}{n+2} \right) \right)$$

Alternatively we can also split it up, because we estimate that a series with $\frac{1}{n^2}$ converges.

$$=2\sum_{n=1}^{k}\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right)-2\sum_{n=1}^{k}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)=1+\frac{1}{2}-2\cdot\frac{1}{2}=\frac{1}{2}$$

This expression is easier to evaluate as telescoping sum.

If we take the first approach, we need to apply partial fraction decomposition.

$$\frac{1}{2} \int_{k} = \frac{1}{2} \int_{-1}^{1} \varphi_{k}(x) dx = \frac{3}{4} - \frac{1}{2} + \frac{1}{2} \left(\underbrace{\frac{1}{k+1}}_{\to 0} + \underbrace{\frac{1}{k+2}}_{\to 0} \right) - \underbrace{\frac{1}{k+1}}_{\to 0} \xrightarrow{h \to \infty} \frac{3}{4} - \frac{1}{2} = \frac{1}{4}$$

24 Exercise 22

Exercise 31. Let $I \subseteq \mathbb{R}$ be an interval. Determine with the idea from below a primitive function of

$$f: I \to \mathbb{R}, \qquad x \mapsto x^2 \sin x^3 \cos x^3.$$

• For all $x \in \mathbb{R}$ it holds that

$$\sin x \cos x = \frac{1}{2} \sin(2x).$$

• For all $x \in \mathbb{R}$ it holds that

$$\sin x \cos x = \frac{1}{2} \frac{d}{dx} \sin^2(x).$$

Explain possible differences between the results.

24.1 Exercise 22.a

$$\int x^2 \sin(x^3) \cos(x^3) \, dx = \int x^2 \frac{1}{2} \sin(2x^3) \, dx$$

Substitute with $u = 2x^3$ and $dx = \frac{du}{6x^2}$.

$$= \int x^2 \frac{1}{2} \sin(u) \frac{du}{6x^2} = -\frac{1}{12} \cos(u) + c = -\frac{1}{12} \cos(2x^3) + c$$

24.2 Exercise 22.b

$$\forall x \in \mathbb{R} : \sin(x)\cos(x) = \frac{1}{2}\frac{d}{dx}\sin^2(x)$$

$$\forall x \in \mathbb{R} : \sin(x^3)\cos(x^3) = \frac{1}{6x^2}\frac{d}{dx}\sin^2(x^3) = \frac{1}{6x^2}2\sin(x^3)\cos(x^3)3x^2 = \sin(x^3)\cos(x^3)$$

$$\int x^2\sin(x^3)\cos(x^3) dx = \int x^2\frac{1}{6x^2}\frac{d}{dx}\sin^2(x^3) dx = \frac{1}{6}\sin^2(x^3) + c$$

24.3 Exercise 22.c

$$\cos(2x^3) = \cos^2(x^3) - \sin^2(x^3) = 1 - \sin^2(x^3) - \sin^2(x^3) = 1 - 2\sin^2(x^3)$$
$$\Rightarrow \frac{1}{6}\sin^2(x^3) + \tilde{c}$$

with $\tilde{c} \approx \frac{1}{12} + c$.

25 Exercise 23

Exercise 32. Determine the following integrals using integration by parts.

- 1. $\int e^x \sin x \, dx$
- 2. $\int \arcsin x \, dx$
- 3. $\int_0^1 x^2 \ln^3(x) dx$

25.1 Exercise 23.a

$$\int e_u^x \sin(x) dx$$
with $v = -\cos x$ and $u' = e^x$.
$$= e^x (-\cos x) - \int e_u^x \cdot (-\cos x) dx$$
with $u' = e^x$ and $v = -\sin x$.
$$= e^x (-\cos x) - (e^x \cdot (-\sin x)) + \int e^x (-\sin x) dx$$

$$= e^{x} (-\cos x + \sin x) - \int e^{x} \sin x \, dx$$

$$\Rightarrow 2 \int e^{x} \sin(x) \, dx = e^{x} (-\cos(x) + \sin(x)) + c$$

25.2 Exercise 23.b

$$\int \arcsin(x) \, dx = \int \arcsin_{v} (x) \cdot \frac{v'}{1} \, dx$$

with v = x and $u' = \frac{1}{\sqrt{1-x^2}}$.

$$= \arcsin(x) \cdot x - \int x \frac{1}{\sqrt{1 - x^2}} dx$$

Let $t = 1 - x^2$. Hence $\frac{dt}{dx} = -2x$.

$$= \arcsin(x) \cdot x - \int \frac{x}{\sqrt{t}} \cdot \frac{1}{-2x} dt$$

$$= \arcsin(x) \cdot x + \frac{1}{2} \int \frac{1}{\sqrt{t}} dt$$

$$= \arcsin(x) \cdot x + \frac{1}{2} \cdot 2\sqrt{t} + c$$

Backsubstitution:

$$=\arcsin(x)\cdot x+\sqrt{1-x^2}+c$$

25.3 Exercise 23.c

$$\int_{0}^{1} \underbrace{x^{2}}_{f'} \underbrace{(\ln x)^{3}}_{g} dx = \frac{1}{3} x^{3} (\ln x)^{3} \Big|_{0}^{1} - \int_{0}^{1} \frac{1}{3} x^{3} (\ln x)^{2} \cdot 3 \frac{1}{x} dx$$
$$= \frac{1}{3} \cdot 0 - \frac{1}{3} \cdot \left(\lim_{x \to 0} (x^{3} \ln^{3} x) - \int_{0}^{1} \underbrace{x^{2}}_{f'} \underbrace{\ln^{2}(x)}_{g} dx \right)$$

In the end, we can apply L'Hôpital's Rule once we have expressions like $-\frac{1}{3}\varphi^3 \frac{\ln^3 \varphi}{\ln^3 \varphi}$.

$$= \frac{2}{3} \left(-\int_0^1 \frac{1}{3} x^2 \, dx \right) = -\frac{2}{9} \cdot \frac{1}{3} x^3 \Big|_0^1 = -\frac{2}{27}$$

26 Exercise 24

Exercise 33. Determine the following integrals using appropriate substitions:

- 1. $\int \frac{\cos^3(x)}{1-\sin(x)} dx.$ 2. $\int \frac{dx}{\sin^2(x)\cos^4(x)} dx \text{ using } t := \tan x.$
- 3. $\int_0^{\frac{1}{2}} \frac{x^2}{\sqrt{1-x^2}} dx \text{ using } t := \arcsin(x).$

26.1 Exercise 24.a

$$\frac{\cos^3(x)}{1 - \sin(x)} dx = \int \frac{\cos(x) \left(1 - \sin^2(x)\right)}{1 - \sin(x)} dx = \int \cos'(x) \left(1 = \sin x\right) dx$$

with $u = 1 + \sin x$ and $\frac{du}{dx} = \cos x$ we get

$$= \int \cos x \cdot u \cdot \frac{du}{\cos x} = \frac{1}{2}u^2 + c = \frac{1}{2}(1 + \sin x)^2 + c$$

Do not forget c for indefinite integrals!

26.2 Exercise 24.b

$$\int \frac{1}{\sin^2(x) \cdot \cos^4(x)} dx$$

$$= \int \frac{\sin^4(x) + 2\sin^2(x)\cos^2(x) + \cos^4(x)}{\sin^2(x)\cos^4(x)} dx$$

$$= \int \frac{\sin^2(x)}{\cos^4(x)} + \frac{2}{\cos^2(x)} + \frac{1}{\sin^2(x)} dx$$

$$= \int \frac{\tan^2(x) + 2}{\cos^2(x)} dx + \int \frac{1}{\sin^2(x)} dx$$

Consider the left-handed expression. Consider $t = \tan(x)$ and $\frac{dt}{dx} = \frac{1}{\cos^2(x)}$.

$$\int \frac{t^2 + 2}{\cos^2(x)} \cdot \cos^2(x) dt = \int t^2 + 2 dt = \frac{1}{3}t^3 + 2t + c = \frac{1}{3}\tan^3(x) + 2\tan(x) + c_1$$

Consider the right-handed expression.

$$\int \frac{1}{\sin^2(x)} dx = \int \frac{\sin^2(x) + \cos^2(x)}{\sin^2(x)} dx = \int -\frac{(\cos x)' \sin x - \cos x \cdot (\sin(x))'}{\sin^2(x)} dx$$
$$= -\int \left(\frac{\cos x}{\sin x}\right)' dx = -\frac{\cos x}{\sin x} + c_2$$

So for the overall expression it holds that

$$\int \frac{\tan^2(x) + 2}{\cos^2(x)} dx + \int \frac{1}{\sin^2(x)} dx = \frac{1}{3} \tan^3(x) + 2 \tan(x) - \frac{1}{\tan(x)} + c_3$$

26.3 Exercise 24.b: Alternative approach

$$\int \frac{1}{s^2c^4} \, dx$$

with $s = \sin(x)$, $c = \cos(x)$, $t = \tan(x)$ and $\frac{dt}{dx} = \frac{1}{c^2}$. It holds that

$$t^{2} = \frac{s^{2}}{c^{2}} = \frac{1 - c^{2}}{c^{2}} = \frac{1}{c^{2}} - 1$$

$$c^{2} = \frac{1}{1 + t^{2}}$$

$$t^{2} = \frac{s^{2}}{c^{2}} = \frac{s^{2}}{1 - s^{2}} = -1 + \frac{1}{1 - s^{2}}$$

$$1 - s^{2} = \frac{1}{1 + t^{2}}$$

$$s^{2} = 1 - \frac{1}{1 + t^{2}} = \frac{t^{2}}{1 + t^{2}}$$

$$\int \frac{1}{s^{2}c^{4}} dx = \int \frac{1}{s^{2}c^{2}} dt = \int \frac{1 + t^{2}}{t^{2}} (1 + t^{2}) dt$$

26.4 Exercise 24.c

$$\int_0^{\frac{1}{2}} \frac{x^2}{\sqrt{1 - x^2}} dx = \int_0^{\frac{1}{2}} \frac{x^2 + 1 - 1}{\sqrt{1 - x^2}} dx = -\int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^2}} dx + \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^2}} dx$$
$$= -\arcsin(x) \Big|_0^{\frac{1}{2}} + \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^2}} dx$$

with $t = \arcsin(x)$ and $\frac{dx}{dt} = \cos(t)$ with $x = \sin(t)$. Also $\sqrt{1 - x^2}^3 = \sqrt{\cos^2(t)}^3 = \cos(t)^3$.

Recognize that x must be positive for this to hold. As it turns out, this is fine within the interval $(0,\frac{1}{2})$.

$$= -\arcsin(x)|_{0}^{\frac{1}{2}} + \int_{x=0}^{x=\frac{1}{2}} \frac{1}{\cos^{3}(t)} \cdot \cos(t) dt$$

$$= -\arcsin(x)|_{0}^{\frac{1}{2}} + \int_{x=0}^{x=\frac{1}{2}} \frac{1}{\cos^{2}(t)} dt$$

$$= -\arcsin(x)|_{0}^{\frac{1}{2}} + \tan(t)|_{x=0}^{x=\frac{1}{2}}$$

$$= -\arcsin(x)|_{0}^{\frac{1}{2}} + \tan(\arcsin(x))|_{0}^{\frac{1}{2}}$$

$$= -\arcsin\left(\frac{1}{2}\right) + \arcsin(0) + \tan\left(\frac{\pi}{6}\right) - \tan(0)$$

$$= -\frac{\pi}{6} + 0 + \frac{\frac{1}{2}}{\sqrt{\frac{3}{4}}} - 0$$

$$= -\frac{\pi}{6} + 0 + \frac{1}{\sqrt{3}} - 0$$

27 Exercise 25

Exercise 34. Determine

- $\int \frac{\sin x}{\sin x + \cos x} \, dx.$
- $\bullet \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sqrt{\tan x}}{\cos^2(x)} \, dx.$

27.1 Exercise 25.a

$$\int \frac{\sin x}{\sin x + \cos x} = \frac{\frac{1}{2}(\sin x + \cos x) - \frac{1}{2}(-\sin x + \cos x)}{\sin x + \cos x} dx$$
$$= \int \left(\frac{1}{2} + \frac{\sin x - \cos x}{2(\sin x + \cos x)}\right) dx$$

With $u = \sin x + \cos x$ and $dx = \frac{du}{\cos(x) - \sin x}$, we get

$$= \frac{1}{2}x + \frac{1}{2} \cdot \int -\frac{1}{u} du$$
$$= \frac{x}{2} - \frac{1}{2} \cdot \ln(\sin x + \cos x) + c$$

28 Exercise 25.b

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sqrt{\tan x}}{\cos^2(x)} \, dx$$

Consider $u = \tan x$ and $dx = du \cos^2 x$.

$$= \int_{x=\frac{\pi}{4}}^{x=\frac{\pi}{3}} \sqrt{u} \, du = \frac{2}{3} (\tan(x))^{\frac{3}{2}} \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}}$$
$$= \frac{2}{3} \left(3^{\frac{3}{4}} - 1 \right)$$

29 Exercise 27

Exercise 35. Investigate the following impropert integrals for convergence.

1.
$$\int_{1}^{\infty} \frac{x^2}{2x^4 - x + 1} dx$$

1.
$$\int_{1}^{\infty} \frac{x^{2}}{2x^{4}-x+1} dx.$$
2.
$$\int_{0}^{\infty} x^{\alpha} e^{-x} dx, \alpha \in \mathbb{R}.$$
3.
$$\int_{0}^{\infty} \frac{\sqrt{x}}{(1+x)^{2}} dx.$$

$$3. \int_0^\infty \frac{\sqrt{x}}{(1+x)^2} \, dx$$

4.
$$\int_0^\infty \left(\frac{\pi}{2} - \arctan(x)\right) dx.$$

29.1 Exercise 27.a

$$\int_{1}^{\infty} \frac{x^{2}}{2x^{4} - x + 1} dx$$

$$\frac{x^{2}}{2x^{4} - x + 1} = \frac{x^{2}}{x(2x^{3} - 1) + 1} < \frac{x}{2x^{3} - 1} \le \frac{x}{x^{3}} = \frac{1}{x^{2}}$$

$$\int_{1}^{b} \frac{x^{2}}{2x^{4} - x + 1} dx < \int_{1}^{b} \frac{1}{x^{2}} dx = \left[-\frac{1}{x} \right]_{1}^{b} = -\frac{1}{b} + 1 < 1$$

In general: Approximately $\int_1^\infty \frac{x^2}{2x^4-x+1}$ converges becomes it looks close to $\int_1^\infty \frac{x^2}{2x^4} dx$.

29.2 Exercise 27.b

$$\int_{1}^{\infty} \frac{x^{\alpha}}{e^{x}} dx \qquad \alpha \in \mathbb{R}$$

$$\frac{x^{\alpha}}{e^{x}} = \frac{e^{\alpha \cdot \ln x}}{e^{x}} = e^{\alpha \ln(x) - x}$$

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} > \sum_{k=l}^{\infty} \frac{x^{k}}{k!} \quad l \ge \alpha$$

$$x \ge 1 : \frac{x^{\alpha}}{e^{x}} \le \frac{x^{l}}{e^{x}} = \frac{x^{l}}{\sum_{k=0}^{\infty} \frac{x^{k}}{k!}} < \frac{x^{l}}{\frac{x^{l+2}}{(l+2)!}} = \frac{(l+2)!}{x^{2}}$$

$$\int_{1}^{b} \frac{x^{\alpha}}{e^{x}} dx < \int_{1}^{b} \frac{(l+2)!}{x^{2}} dx < (l+2)!$$

29.3 Exercise 27.c

$$\int_0^\infty \frac{\sqrt{x}}{(1+x)^2} \, dx = \int_0^1 \frac{\sqrt{x}}{(1+x)^2} \, dx + \int_1^\infty \frac{\sqrt{x}}{(1+x)^2} \, dx$$
$$x \ge 1 : \frac{\sqrt{x}}{(1+x)^2} < \frac{\sqrt{x}}{x^2} = x^{-\frac{3}{2}}$$
$$\int_1^b \frac{\sqrt{x}}{(1+x)^2} \, dx < \int_1^b x^{-\frac{3}{2}} \, dx = 2 - \frac{2}{\sqrt{b}} < 2$$
$$0 \le x \le 1 : \frac{\sqrt{x}}{(1+x)^2} < \frac{\sqrt{x}}{1} = \sqrt{x} < 1$$

29.4 Exercise 27.d

$$\int_0^\infty \left(\frac{\pi}{2} - \arctan(x)\right) dx$$

$$\int \arctan(x) \cdot 1 dx = x \cdot \arctan(x) - \int \frac{x}{1 + x^2} dx$$

Integration by substitution:

$$t = 1 + x^{2} \qquad \frac{dt}{dx} = 2x \Rightarrow dx = \frac{dt}{2x}$$

$$= x \cdot \arctan(x) - \int \frac{*dx}{t \cdot 2*} = x \cdot \arctan(x) - \frac{1}{2}\ln(1 + x^{2}) + c$$

$$\Rightarrow \int_{0}^{b} (x - \arctan(x)) dx = \frac{\pi}{2} - x \cdot \arctan(x) + \frac{1}{2}\ln(1 + x^{2})\Big|_{0}^{b}$$

$$= \underbrace{b}_{>0} \underbrace{\left(\frac{\pi}{2} - \arctan(b)\right)}_{>0} + \frac{1}{2}\ln(1 + b^{2}) > \frac{1}{2}\ln(1 + b^{2}) > M$$

29.5 Remark by the tutor

$$\int_{1}^{\infty} \frac{1}{x^{c}} dx \text{ converges } \iff c > 1$$

$$\lim_{x \to \infty} \frac{\frac{\pi}{2} - \arctan(x)}{\frac{1}{x}} \stackrel{\text{L'Hôpital}}{=} \lim_{x \to \infty} \frac{-\frac{1}{1+x^{2}}}{-\frac{1}{x^{2}}} = -1$$

$$\exists x_{0} : \frac{\pi}{2} - \arctan(x) > \frac{1}{2} \cdot \frac{1}{x} \quad \forall x \ge x_{0}$$

$$\int_{0}^{\infty} \frac{\pi}{2} - \arctan(x) dx \ge \int_{x_{0}}^{\infty} \frac{1}{2} \frac{1}{x} dx$$

30 Exercise 28

Exercise 36. Find all primitive functions of $f:(-1,1)\to\mathbb{R}$ with $x\mapsto\frac{1}{1-x^4}$ using partial fraction decomposition.

Hint: To derive the partial fraction decomposition use

$$\frac{1}{(1-x)(1+x)(1+x^2)} = \frac{a}{1-x} + \frac{b}{1+x} + \frac{cx+d}{1+x^2}$$

with constants $a, b, c, d \in \mathbb{R}$. Determine the values for a, b, c, d.

$$\int \frac{1}{1-x^4} dx = \int \frac{1}{4(1-x)} dx + \int \frac{1}{4(1+x)} dx + \int \frac{1}{2(1+x^2)} dx$$

The first resulting integrals are:

$$\frac{1}{4} \int \frac{1}{1-x} dx = -\frac{1}{4} \ln 1 - x + c$$

$$\frac{1}{4} \int \frac{1}{1+x} dx = \frac{1}{4} \ln(1+x) + c$$

$$\frac{1}{2} \int \frac{1}{1+x^2} dx = \frac{1}{2} \arctan(x) + c$$

$$\int \frac{1}{1-x^4} dx = -\frac{1}{4} \ln(1-x) + \frac{1}{4} \ln(1+x) + \frac{1}{2} \arctan(x) + c$$

$$\frac{1}{4} \ln\left(\frac{1+x}{1-x}\right) + \frac{1}{2} \arctan(x) + c$$

31 Exercise 29

Exercise 37. Given a function $f:(0,\infty)\to\mathbb{R}$ with $x\mapsto \frac{1}{x+\sqrt{x}}$.

- Determine the Taylor polynomial of second degree $T_f^2(x;1)$ of function f in point $x_0=1$.
- Determine an upper bound for the error $|f(x) T_f^2(x;1)|$ in interval [1;2].

31.1 Exercise 29.a

$$f'(x) = -\frac{1+2\sqrt{x}}{2 \cdot x^{\frac{3}{2}}(1+\sqrt{x})^{2}}$$

$$f''(x) = \frac{3+9\sqrt{x}+8x}{4 \cdot x^{\frac{5}{2}} \cdot (1+\sqrt{x})^{3}}$$

$$T_{f}^{2}(x;1) = f(1) + \frac{f'(1)}{1!}(x-1)^{1} + \frac{f^{(2)}(1)}{2!} \cdot (x-1)^{2}$$

$$T_{f}^{2}(x;1) = \frac{1}{2} + \frac{3}{8}(x-1) + \frac{20}{64}(x-1)^{2}$$

31.2 Exercise 29.b

$$R_f^n(x;a) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot (x - x_0)^{n+1} \qquad \xi \in [x_0, x]$$
$$f'''(x) = -\frac{3 \cdot (16x^{\frac{3}{2}} + 29x + 20\sqrt{x} + 5}{8 \cdot (\sqrt{x} + 1)^4 \cdot x^{\frac{5}{2}}}$$
$$\left| R_f^n(x;1) \right| = \frac{(x-1)^3}{(3)!}$$

Upper bound (not the best, but works):

$$\frac{3 \cdot 65x^{\frac{3}{2}} + 15}{8 \cdot 16 \cdot x^{\frac{5}{2}}} \le \frac{3 \cdot 65}{8 \cdot 16x} + \frac{15}{8 \cdot 16x^{\frac{5}{2}}}$$

f'''(x) is monotonically increasing and we look at the interval [1,2]. So we are closest to 0, if x = 1.

32 Exercise 30

Exercise 38. Let $g : \mathbb{R} \to \mathbb{R}$, $x \mapsto \sin(2x)$.

- 1. For arbitrary $n \in \mathbb{N}$, determine the Taylor polynomial of n-th degree $T_g^n(x;0)$ of g in $x_0=0$.
- 2. Give a Taylor polynomial $T_g^n(x;0)$ such that $\left|g(x)-T_g^n(x;0)\right|<10^{-6}$ holds for $[-\pi,\pi]$.

32.1 Exercise 30.a

$$g(x) = \sin(2x)$$

$$g^{(1)}(x) = \cos(2x) \cdot 2$$

$$g^{(2)}(x) = -\sin(2x) \cdot 2^{2}$$

$$g^{(3)}(x) = -\cos(2x) \cdot 2^{3}$$

$$T_g^n(x;0) = g(0) + \frac{g^{(1)}(0)(x-0)}{1!} + \dots$$

$$= \underbrace{\sin(0)}_{=0} + \underbrace{\cos(0) \cdot 2x}_{=2x} + \frac{-\sin(0) \cdot 2^2 x^2}{2} + \frac{-\cos(0) \cdot 2^3 x^3}{3!} = -\frac{2^3 x^3}{3!} + \dots$$

$$T_g^n(x;0) = \sum_{k=0}^m (-1)^k \cdot \left(\frac{(2x)^{2k+1}}{(2k+1)!}\right) \qquad \text{s.t. } 2m+1 \le n, 2m+3 \ge n$$

Even easier: Consider the power series for sin:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$
$$\sin(2x) = (2x) - \frac{(2x)^3}{3!} + \frac{(2x)^5}{5!} - \dots$$

32.2 Exercise 30.b

$$R_g^n(x;0) = \left| \frac{f^{(n+1)}(\xi)(x-0)^{n+1}}{(n+1)!} \right| < 10^{-6}$$

with $x, \xi \in [-\pi, \pi]$. We look at the following approximation $(\sin(x))$ and $\cos(x)$ is at most 1 and the factor 2^{n+1} of the derivative remains). Choose ξ such that $|f^{(n+1)}(\xi)| \le 2^{n+1}$.

$$R_g^n(x;0) \leq \left| \frac{2^{n+1} x^{n+1}}{(n+1)!} \right| < 10^{-6} \iff 2^{n+1} x^{n+1} 10^6 < (n+1)! \iff 10^6 < \frac{(n+1)!}{\left| 2^{n+1} x^{n+1} \right|} < (n+1)!$$

In the worst case, x is very large. The largest value it reaches is π . Hence,

$$\left| R_g^n \right| \le \frac{1}{(n+1)!} \cdot 2^{n+1} \cdot \pi^{n+1} \le 10^{-6} \quad \forall x \in [-\pi, \pi]$$

This holds if $n \ge 26$.

33 Exercise 26

Exercise 39. Prove the following limit criterion for improper integrals. Let $a \in \mathbb{R}$ and $f,g : [a,\infty) \to \mathbb{R}$ functions, which satisfy $f \geq 0$ and g > 0 in $[a,\infty)$. Furthermore the following limit exists:

$$L \coloneqq \lim_{x \to \infty} \frac{f(x)}{g(x)} \in [0, \infty].$$

Then it holds that,

1.
$$L = 0 \Rightarrow \left[\int_{a}^{\infty} g(x) dx < \infty \Rightarrow \int_{a}^{\infty} f(x) dx < \infty \right]$$

2.
$$L \in (0, \infty) \Rightarrow \left[\int_a^\infty g(x) \, dx < \infty \Leftrightarrow \int_a^\infty f(x) \, dx < \infty \right]$$

3.
$$L = \infty \Rightarrow \left[\int_a^\infty g(x) \, dx \text{ diverges } \Rightarrow \int_a^\infty f(x) \, dx \text{ diverges} \right]$$

33.1 Exercise 26.a

We provide a counterexample:

$$f(x) = \begin{cases} \frac{1}{x} & 0 < x < 1\\ 0 & x = 0\\ \frac{1}{x^2} & x > 1 \end{cases}$$
$$g(x) = \frac{1}{x^2 + 1}$$
$$a = 0$$

To make this proposition work, f must be continuous or even boundedness should suffice.

$$\forall \varepsilon > 0 \exists x_0 \forall x \ge x_0 : \left| \frac{f(x)}{g(x)} \right| < \varepsilon$$

Both functions yield positive values:

$$\forall \varepsilon > 0 \exists x_0 \forall x \ge x_0 : \frac{f(x)}{g(x)} < \varepsilon$$

$$\int_{a}^{\infty} f(x) dx = \int_{a}^{x_{0}} f(x) dx + \int_{x_{0}}^{\infty} f(x) dx$$

$$\forall \varepsilon > 0 \exists x_{0} \forall x \ge x_{0} : \frac{f(x)}{g(x)} < \varepsilon \iff f(x) < \varepsilon \cdot g(x) \implies \int_{x_{0}}^{\infty} f(x) dx < \varepsilon \int_{x_{0}}^{\infty} g(x) dx$$

Because of boundedness we can provide the following estimates:

$$\int_{a}^{\infty} f(x) dx = \underbrace{\int_{a}^{x_{0}} f(x) dx}_{<\infty} + \underbrace{\int_{x_{0}}^{\infty} f(x) dx}_{<\infty}$$

$$\implies < \infty$$

33.2 Exercise 26.b

$$\forall \varepsilon > 0 \exists x_0 \forall x \ge x_0 : \left| \frac{f(x)}{g(x)} - L \right| < \varepsilon$$

$$\iff L - \varepsilon < \frac{f(x)}{g(x)} < L + \varepsilon$$

$$\iff (L - \varepsilon) \cdot g(x) < f(x) < (L + \varepsilon) \cdot g(x)$$

$$(L - \varepsilon) \int_{x_0}^{\infty} g(x) \, dx \le \int_0^{\infty} f(x) \, dx \le (L + \varepsilon) \int_{x_0}^{\infty} g(x) \, dx$$

33.3 Exercise 27.c

$$\forall n \exists x_0 \forall x \geq x_0 : \frac{f(x)}{g(x)} > n \iff f(x) > n \cdot g(x) \implies \int_{x_0}^{\infty} f(x) \, dx \geq n \cdot \int_{x_0}^{\infty} g(x) \, dx$$