Computer Network Design Network Layer IV

Yalda Edalat – Spring 23

Recap

- In the Internet:
 - Hosts on same network have IP addresses in the same IP prefix
 - Hosts just send off-network traffic to the nearest router to handle
 - Routers discover the routes to use
 - Routers use longest prefix matching to send packets to the right next hop

Host/Router Combination

- Hosts attach to routers as IP prefixes
 - Router need table to reach all hosts

Network Topology for Routing (2)

- Routing now works as before
 - Routers advertise IP prefixes for hosts
 - Router addresses are "/32" prefixes
 - Lets all routers find a path to hosts
 - Hosts find by sending to their router

How to Scale Routing?

- How to scale routing with hierarchy in the form of regions
 - Route to regions, not individual nodes

Internet/Internet Routing Growth

- At least a billion Internet hosts and growing ...
- Internet growth translates into routing table growth (even using prefixes)

Impact of Routing Growth

- 1. Forwarding table grow
 - Larger router memories, may increase lookup time
- 2. Routing messages grow
 - Need to keeps all nodes informed of larger topology
- 3. Routing computation grows
 - Shortest path calculations grow faster than size of the network

Techniques to Scale Routing

- 1. IP prefixes
 - Route to blocks of hosts
- 2. Network hierarchy
 - Route to network regions
- 3. IP prefix aggregation
 - Combine, and split, prefixes

Hierarchical Routing

- Introduce a larger routing unit
 - IP prefix (hosts)
 - Region, e.g., ISP network
- Route first to the region, then to the IP prefix within the region
 - Hide details within a region from outside of the region

Hierarchical Routing (2)

Full table for 1A

Dest.	Line	Hops
1A	-	-
1B	1B	1
1C	1C	1
2A	1B	2
2B	1B	3
2C	1B	3
2D	1B	4
ЗА	1C	3
3B	1C	2
4A	1C	3
4B	1C	4
4C	1C	4
5A	1C	4
5B	1C	5
5C	1B	5
5D	1C	6
5E	1C	5

Hierarchical table for 1A

Dest.	Line	Hops
1A	-	-
1B	1B	1
1C	1C	1
2	1B	2
3	1C	2
4	1C	3
5	1C	4

Hierarchical Routing (3)

Dest. Line 1B 1B 1 1C 1C 1 2A 1B 2 2B 1B 3 2C 1B 3 2D 1B 4 **3A** 1C 3 3B 2 1C 4A 1C 3 4B 1C 4 4C 1C 4 5A 1C 4 5B 1C 5 5C 1B 5 5D 1C 6 1C 5

Full table for 1A

Dest.	Line	Hops
1A	-	-
1B	1B	1
1C	1C	1
2	1B	2
3	1C	2
4	1C	3
5	1C	4

Hierarchical table for 1A

Hierarchical Routing (4)

Penalty is longer paths

Observations

- Outside a region, nodes have one route to all hosts within the region
 - This gives saving in table size, messages and computation
- However each node may have a different route to an outside region
 - Routing decisions are still made by individual nodes; there is no single decision made by a region

IP Prefix Size

- How to help scale routing by adjusting the size of IP prefixes
 - Split (subnets) and join (aggregation)

Recall

- IP addresses are allocated in blocks called IP prefixes, e.g., 18.31.0.0/16
 - Hosts on one network in same prefix
- A "N" prefix has the first N bits fixed and contains 2^{32-N} addresses
 - E.g., "/24"
 - E.g., "/16"

Key Flexibility

- Routers keep track of prefix lengths
 - Use it for longest prefix matching

Routers can change prefix lengths without affecting hosts

- More specific IP prefix
 - Longer prefix, fewer IP addresses
 - Shorter prefix, more IP addresses

Prefixes and Hierarchy

- IP prefixes already help to scale routing, but we can go further
 - Can use a less specific prefix to name a region made up of several prefixes

Subnets and Aggregation

 Two use cases for adjusting the size of IP prefixes; both reduce routing table

1. Subnets

• Internally split one less specific prefix into multiple more specific prefixes

2. Aggregation

• Externally join multiple more specific prefixes into one large prefix

Subnets

• Internally split up one IP prefix

Aggregation

• Externally join multiple separate IP prefixes

Exterior Gateway Protocol

- How to route with multiple parties, each with their own routing policies
 - BGP computes Internet-wide routes

Recall

- Internet is made up of independently run networks
- Each network has its own route preferences (policies)

BGP (Border Gateway Protocol)

- BGP is the protocol that computes interdomain routes in the Internet
 - Path vector, a kind of distance vector

BGP (2)

- Different parties like ISPs are called AS (Autonomous Systems)
- Border routers of ASes announce BGP routes to each other
- Route announcements contain an IP prefix, path vector, next hop
 - Path vector is list of ASes on the way to the prefix; list is to find loops
- Route announcements move in the opposite direction to traffic

BGP (3)

BGP(4)

- Policy is implementation in two ways:
 - 1. Border routers of ISP announce paths only to other parties who may use those paths
 - Filter out paths others can't use
 - 2. Border routers of ISP select the best path of the ones they hear in any, non-shortest way

To do

- No quiz next week
- Review session next week