K-Means Clustering

The K-Means Algorithm

• Given *unlabeled* data

$$\{\mathbf{x}^{(n)}\}\ (n=1,\ldots,N)$$
,

- and believing it belongs in K clusters (say K=2 here),
- How do we find the clusters?
 - What would be the objective function?

6

The K-Means Algorithm

- Use indicator variables $r_{nk} \in \{0,1\}$:
 - $r_{nk} = 1$ if $\mathbf{x}^{(n)}$ is in cluster k
 - and $r_{nk}=0$ for all $j \neq k$

Note: F. M stands for:

E: Expectation

(We will revisit EM later.)

- Find cluster centers μ_k and assignments r_{nk} to minimize the distortion measure J:
 - Sum of squared distance of points from the center of its own cluster (*Intra-cluster variation*):

$$J = \sum_{k=1}^{K} \sum_{n=1}^{N} r_{nk} \|\mathbf{x}^{(n)} - \mu_k\|^2 \qquad \mu_k = \frac{1}{N_k} \sum_{n: \mathbf{x}^{(n)} \in \text{cluster } k} \mathbf{x}^{(n)} = \frac{\sum_{n=1}^{N} r_{nk} \mathbf{x}^{(n)}}{\sum_{n=1}^{N} r_{nk}}$$

The K-Means Algorithm

- Initialize the cluster centers (centroids)
- Repeat the following update until convergence:
 - 1. $r := \arg\min_r J(r, \mu)$
 - 2. $\mu := \arg\min_{\mu} J(r, \mu)$

where
$$J = \sum_{k=1}^{K} \sum_{n=1}^{N} r_{nk} \|\mathbf{x}^{(n)} - \mu_k\|^2$$

$$\mu_k = \frac{1}{N_k} \sum_{n: \, \mathbf{x}^{(n)} \, \in \, \mathrm{cluster} \, k} \mathbf{x}^{(n)} = \frac{\sum_{n=1}^{N} r_{nk} \mathbf{x}^{(n)}}{\sum_{n=1}^{N} r_{nk}}$$

The K-Means Algorithm

- Initialize the cluster centers.
- Repeat until convergence:
 - Cluster assignment ("E-Step"):
 - assign each point to closest center.

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}^{(n)} - \mu_{j}\|^{2} \\ 0 & \text{otherwise} \end{cases}$$

- Parameter update ("M-Step"): update the centers

$$\mu_k = \frac{\sum_n r_{nk} \mathbf{x}^{(n)}}{\sum_n r_{nk}}$$

Q. Verify this

K-Means Clustering

- Select K. Pick random centroids.
 - Here K=2.

1

K-Means Clustering

Cluster assignment Step ("E-Step")

• Assign each point to the nearest center.

K-Means Clustering

Update parameters (centroids) ("M-Step")

• Compute new centers for each cluster.

1

1

K-Means Clustering

Cluster assignment Step ("E-Step") again

• Re-assign points to the now-nearest center.

K-Means Clustering

Update parameters (centroids) ("M-Step") again

• Compute centers for the new clusters.

L4

4

K-Means Clustering

Another Cluster assignment Step ("E-Step")

• Reassign the points to centers.

K-Means Clustering

Update parameters (centroids) ("M-Step") again

· New centers.

1

K-Means Clustering

Another Cluster assignment Step ("E-Step")

• New cluster assignments.

K-Means Clustering

Update parameters (centroids) ("M-Step") again

• The cluster centers have stopped changing.

1

Convergence

- The objective function of K-means decreases monotonically as the K-means procedure reduces J in both E-step and M-step.
- Convergence is relatively quick, in steps.
 - blue circles after E-step: assign each point to a cluster
 - red circles after M-step: recompute the cluster centers
 - However, all those distance computations are expensive.

Convergence

- No guarantee that we found the globally optimal solution. The quality of local optimum depends on the initial values.
- The following clustering is a stable local optima

2