# Aerial Scene Classification with Deep Learning Models

Amandeep Kaur Dan Gibson Amna El-Mustafa

## Why Aerial scene classification?

- Practical Applications: Agriculture, Disaster Management, etc
- Challenges in Scene Classification: such as complexity of features, high intra-class variability
- Availability of Large Datasets
- Advances in Technology





Samples from AID dataset

## Convolutional Neural Network

Source: Image from the internet



# Table of Results-CNN

| Model                    | Accuracy | F1-score | Precision | Recall |
|--------------------------|----------|----------|-----------|--------|
| resnet18 - No Resizing   | 89.60    | 89.74    | 91.02     | 89.60  |
| resnet50                 | 92.13    | 92.15    | 92.54     | 92.13  |
| effecientNet b3          | 94.40    | 94.41    | 94.72     | 94.40  |
| resnet50 - Resizing      | 85.93%   | 85.79%   | 86.43%    | 85.93% |
| effecientNet b3          | 91.07%   | 91.06%   | 91.39%    | 91.07% |
| convnext                 | 91.47%   | 91.47%   | 91.82%    | 91.47% |
| effecientNet v2          | 91.47%   | 91.50%   | 91.84%    | 91.47% |
| seresnet                 | 91.67%   | 91.59%   | 91.93%    | 91.67% |
| HrNet                    | 87.00%   | 87.05%   | 88.13%    | 87.00% |
| Convnext Label smoothing | 90.47%   | 90.38%   | 90.54%    | 90.47% |

# Results, Class wise Accuracy



## Results, Confusion Matrix



## Bayesian Neural Networks

BNNs infer a posterior distribution over the weights

$$P(\theta|D) \propto P(D|\theta)P(\theta)$$

 $P(\theta)$  = prior distribution

 $P(D|\theta)$  = the likelihood

 $P(\theta|D)$  = the posterior distribution after observing the data.

Predictions are made by marginalizing over the posterior distribution

$$P(y|x,D) = \int P(y|x,\theta)P(\theta,D)d\theta$$

# import torchbnn

Bayes by Backpropagation:

$$L(\phi) = \mathbb{E}_{q(\theta|\phi)}[-\log P(D|\theta)] + D_{KL}(q(\theta|\phi)||P(\theta))$$

• Kullback-Leibler (KL) divergence:

$$D_{KL}(q(\theta|\phi)||P(\theta)) = \int q(\theta|\phi) \log \frac{q(\theta|\phi)}{P(\theta)} d\theta$$

## **BNN** Results

**Accuracy = 84.13%** 

#### **Weighted Averages**

| Precision     | 84      |
|---------------|---------|
| Recall        | 84      |
| F1-Score      | 84      |
| KL Divergence | 409.433 |

#### Loss

| Train      | 0.6581 |
|------------|--------|
| Validation | 0.8771 |



# Analysis of BNN

- Overall accuracy of 84%
- Model makes reliable predictions based on precision and recall metrics
- Inconsistent performance across classes (Wide range of F1 scores, [0.66, 1])
- High KL divergence Posterior deviates significantly from prior
- Model is still overfitting gap between validation loss and training loss

## [Vit] Vision Transformer

## ViT-Huge

- 632 M parameters

### Pretraining

- small dataset

#### MAE

- redundant information
- faster fine tuning



## [Vit] Results

**Accuracy: 96.9%** 

| Weighted average scores |    |  |
|-------------------------|----|--|
| Precision               | 97 |  |
| Recall                  | 97 |  |
| F1-score                | 97 |  |



# [ViT] Looking at bad examples

Predicted: Park



Misclassified Images for Class: Resort Predicted: Port



Predicted: Port



Predicted: Center



Misclassified Images for Class: Square



Predicted: Center



## Where are the models looking?

#### CNN

- Looking everywhere
- High attention across image

#### BNN

- Diffused, smooth attention
- Captures structural elements

#### ViT

- Both focused and broad attention
- Dynamic attention distribution



Labels(Left to right): Baseball Field, Park, Playground

## Conclusion

- Studied the problem of Aerial Scene Classification.
- Experimented with 3 model families: CNNs, BNNs and ViTs.
- Showcased accuracies of best performing models and analysed results.
- Compared models on gradCAM results.

## References

KLDivLoss — PyTorch Documentation. PyTorch, version 2.5, OpenAl. Accessed 26 Nov.

2024. <a href="https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss">https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss</a>