PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

DOROTHY MAHARAM

Orthogonal Measures: an Example

Publications des séminaires de mathématiques et informatique de Rennes, 1977, fascicule 3

« Séminaire de probabilités II », , p. 1-3

http://www.numdam.org/item?id=PSMIR_1977___3_A8_0

© Département de mathématiques et informatique, université de Rennes, 1977, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ORTHOGONAL MEASURES: AN EXAMPLE

bу

Dorothy Maharam

A family $\mathcal M$ of measures, defined on a Borel field $\mathcal S$ of subsets of a space X, is said to be pairwise orthogonal if, given λ , $\mu \in \mathcal{M}$ with $\lambda \neq \mu$, there exists $H_{\lambda\mu} \in \mathcal{S}$ such that $\lambda(H_{\lambda\mu}) = 0 = \mu(X - H_{\lambda\mu})$. Will be called uniformly orthogonal provided there is, for each λ ϵ \mathcal{M} , a set $H_{\lambda} \in \mathcal{B}$ such that, for each $\mu \in \mathcal{M} - \{\lambda\}$, $\lambda(H_{ij}) = 0 = \lambda(X - H_{\lambda})$. Clearly every uniformly orthogonal family is pairwise orthogonal, and every countable pairwise orthogonal family is uniformly orthogonal. One simple example of an uncountable pairwise orthogonal family ${\mathcal M}$ that is not uniformly orthogonal is provided by taking X to be the unit interval I. ${\mathfrak B}$ the Borel sets of X, and ${\mathfrak M}$ to consist of Lebesgue measure, together with all 1-point measures. Here, however, the family does have an uncountable subfamily consisting of uniformly orthogonal measures; we have only to smit Lebesgue measure. The fellowing example shows that in general we cannot obtain an uncountable uniformly orthogonal family from a pairwise orthogonal family by discarding measures -- provided the continuum hypothesis is assumed.

Theorem (CH) There exists an uncountable family M of pairwise orthogonal Borel probability measures on the unit square I², such that no uncountable subset of M is uniformly orthogonal.

we need a well-known lemma (see for example [1, p. 76]).

Lemma (CH) There exists a partition of the unit interval I into a family $\mathcal N$ of c pairwise disjoint non-empty Borel null sets such that each null set in I is covered by a countable sub-family of $\mathcal N$.

<u>Proof:</u> Well-order the null G_S sets as $\{G_{\alpha}: \alpha < \omega_i\}$, define $M_{\alpha} = G_{\alpha} - \bigcup \{G_{\beta}: \beta < \alpha\}$, and emit empty M_{α} 's.

Construction Let $\mathcal{N} = \{\mathbb{N}_{\alpha} : \alpha < \omega \}$ be a partition as in the Lemma, and let $\{y_{\alpha} : \alpha < \omega_{\beta}\}$ well-order I without repetition. For each $\alpha < \omega_{\beta}$, let μ_{α} denote the (linear) Lebesgue measure on $\mathbb{I} \times \{y_{\alpha}\} \subset \mathbb{I}^2$. For each $\alpha > 0$, take a sequence $\{u_{\alpha\beta} : \beta < \alpha\}$ of positive real numbers such that $\sum \{u_{\alpha\beta} : \beta < \alpha\} = 1/2$. Take a Berel measure $m_{\alpha\beta}$ on $\mathbb{N}_{\alpha} \times \{y_{\beta}\}$ ($\beta < \alpha < \omega_{\beta}$) such that $m_{\alpha\beta}(\mathbb{N}_{\alpha} \times \mathbb{N}_{\beta}) = u_{\alpha\beta}$. Now, for each Berel set $\mathbb{N}_{\beta} \subset \mathbb{N}_{\beta}$ and $\alpha < \omega_{\beta}$, define

 $m_{\alpha}(H) = \frac{1}{2} \mu_{\alpha}(H_{\alpha}(I \times \{\chi_{\lambda}\})) + \sum_{\{m_{\alpha/3}(H_{\alpha}(N_{\alpha} \times \{y_{3}\})): |3 < \alpha\}}$ if $\alpha \geq 1$, and define $m_{\alpha}(H) = \mu_{\alpha}(H_{\alpha}(I \times \{y_{3}\}))$. Then put $\mathcal{W} = \{m_{\alpha}: \alpha < \omega_{\lambda}\}$, an uncountable family of Borel probability measures on I^{2} . It is easy to see that they are pairwise orthogonal. On the other hand, fixing $\gamma < \omega_{\lambda}$, suppose H_{γ} is a Borel subset of I^{2} such that $m_{\gamma}(H_{\gamma}) = 1$; then also $\mu_{\gamma}(H_{\gamma} \cap (I \times \{y_{\gamma}\})) = 1$. That is, $\mu(H^{\gamma}) = 1$ where μ is Lebesgue measure and $H^{\gamma} = \{x \in I : (x, y_{\gamma}) \in H_{\gamma}\}$. By construction of the sets N_{α} , H^{γ} must contain all but a countable subfamily of the sets N_{α} , and hence H_{γ} can be null with repect to only countably many measures m_{β} with $\beta > \gamma$. It follows at once that every uniformly orthogonal subfamily of \mathcal{W} is countable, as required.

- Remarks 1. By taking a little more trouble, we could ensure that the measures m_{α} were all non-atomic (in addition to their other properties).
- 2. The continuum hypothesis is essential for the theorem. It is relatively consistent (with usual set theory) that the union of fewer than c null sets in I (with respect to any finite Borel measure) is always null. (See, for example, [2] for the case of Lebesgue measure; the same argument works for the more general measures considered here.) From this assumption it follows easily that, if $\aleph_1 < c$, each family of \aleph_1 pairwise orthogonal finite Borel measures on I (or, what comes to the same thing, on I^2) is uniformly orthogonal.

REFERENCES

- 1. J. C. Oxtoby, Measure and category, New York 1970.
- 2. J. R. Shoenfield, <u>Martin's axiom</u>, Amer. Math. Monthly 82 (1975) 610-617.

University of Rochester Rochester, N.Y., U.S.A.