Math 104 Homework 8

Natalie Brewer

April 11, 2024

1 Exercises 4.3

4.3.9 Assume $h: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and let $K = \{x : h(x) = 0\}$. Show that K is a closed set.

Proof: Let x be a limit point of K. There exists a subsequence $(x_n) \subseteq K$ such that $(x_n) \to x$. By the continuity of h, $h(x_n) \to h(x)$.

For all $n \in \mathbb{N}$, $h(x_n) = 0$ since each x_n is in K. So their limit must be 0, implying that h(x) = 0 and thus x is in K.

4.3.11 (Contraction Mapping Theorem) Let f be a function defined on all of \mathbb{R} , and assume there is a constant c such that 0 < c < 1 and

$$|f(x) - f(y)| \le c|x - y|$$

for all $x, y \in \mathbb{R}$.

(a) Show that f is continuous on \mathbb{R} .

Given $\epsilon > 0$, let $\delta = \frac{\epsilon}{c}$. Then if $|x - y| < \delta$, it is also true that

$$|f(x) - f(y)| \le c|x - y| < c \cdot \frac{\epsilon}{c} = \epsilon$$

(b) Pick some point $y_1 \in \mathbb{R}$ and construct the sequence

$$(y_1, f(y_1), f(f(y_1)), \ldots)$$

In general, if $y_{n+1} = f(y_n)$, show that the resulting sequence (y_n) is a Cauchy sequence. Hence, we may let $y = \lim_{n \to \infty} y_n$.

Given $\epsilon > 0$, we want to find a bound for $|y_n - y_m|$.

$$|y_n - y_m| = |f(y_{n-1} - f(y_{m-1})|$$

$$\leq c|y_{n-1} - y_{m-1}| = |f(y_{n-2} - f(y_{m-2})|$$

$$\leq c^2|y_{n-2} - y_{m-3}| = c^2|f(y_{n-3} - f(y_{m-3})|$$

$$\vdots$$

$$\leq c^{n-1}|y_1 - y_{m-n+1}|$$

This can be smaller than ϵ if $|y_1 - y_{m-n+1}|$ can be bounded by M and we let n be such that $c^{n-1} < \frac{\epsilon}{M}$. Indeed,

$$\begin{aligned} |y_1 - y_{m-n+1}| &= |y_1 - y_2 + y_2 - y_3 + \dots + y_{m-n} - y_{m_n+1}| \\ &\leq |y_1 - y_2| + |y_2 - y_3| + \dots + |y_{m-n} - y_{m_n+1}| \\ &= |y_1 - y_2| + |f(y_1) - f(y_2)| + \dots + |f(y_{m-n-1}) - f(y_{m_n})| \\ &\leq |y_1 - y_2| + c|y_1 - y_2| + \dots + |f(y_{m-n-1}) - f(y_{m_n})| \\ &\vdots \\ &\leq |y_1 - y_2| + c|y_1 - y_2| + \dots + c^{m-n-1}|y_1 - y_2| \\ &= |y_1 - y_2| \sum_{i=1}^{m-n-1} c^i \end{aligned}$$

This series is geometric with 0 < c < 1 so it is convergent and thus bounded.

(c) Prove that y is a fixed point of f (i.e., f(y) = y) and that it is unique in this regard.

Since f is continuous, $(y_n) \to y$ implies that $f(y_n) \to f(y)$. The second sequence is the same as the first but without the first term, so it converges to the same limit. Thus f(y) = y.

To show uniqueness, suppose that another element x has this property. f(x) = x

By part (d), the sequence $\{x, f(x), f(f(x)), ...\}$ has the same limit as (y_n) . This sequence also equals $\{x, x, x, ...\}$ so we have $(x_n) \to x = y$. So y is the only element with the given property.

(d) Finally, prove that if x is any arbitrary point in \mathbb{R} , then the sequence $(x, f(x), f(f(x)), \ldots)$ converges to y defined in (b).

Consider the sequence $(x_n - y_n) = \{x - y, f(x) - f(y), f(f(x)) - f(f(y)), ...\}$. By the Algebraic Limit Theorem,

$$\lim_{n \to \infty} x_n - \lim_{n \to \infty} y_n = \lim_{n \to \infty} x_n - y_n$$

$$\leq \lim_{n \to \infty} |x_n - y_n|$$

$$= \lim_{n \to \infty} |f(x_{n-1}) - f(y_{n-1})|$$

$$\leq \lim_{n \to \infty} c^{n-1} |x_1 - y_1| = 0$$

Thus, $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = y$.

2 Exercises 4.4

- **4.4.6** Give an example of each of the following, or state that such a request is impossible. For any that are impossible, supply a short explanation for why this is the case.
- (a) A continuous function $f:(0,1)\to\mathbb{R}$ and a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence.

Let $f(x) = \frac{1}{x}$ and let $x_n = \frac{1}{n}$. This sequence is convergent and therefore Cauchy. However, the sequence $f(x_n) = n$ is not.

(b) A uniformly continuous function $f:(0,1)\to\mathbb{R}$ and a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence.

This is impossible. Let $\epsilon > 0$. Since f is uniformly continuous, there also exists $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x_n) - f(y)| < \epsilon$. Since (x_n) is Cauchy, there exists $N \in \mathbb{N}$ such that $n, m \geq N$ implies that $|x_n - x_m| < \delta$. So if $n, m \geq N$, then

$$|f(x_n) - f(y)| < \epsilon$$

So $(f(x_n))$ must be Cauchy.

(c) A continuous function $f:[0,\infty)\to\mathbb{R}$ and a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence.

This is impossible. The set $[0, \infty)$ is closed so it contains its limit points. So the limit of (x_n) (which exists since it is Cauchy) must be in the domain. By the characterization of continuity, $(x_n) \to c$ implies that $f(x_n) \to f(c)$. Since $f(x_n)$ is convergent, it must be Cauchy.

4.4.11 (Topological Characterization of Continuity) Let g be defined on all of \mathbb{R} . If B is a subset of \mathbb{R} , define the set $g^{-1}(B)$ by

$$g^{-1}(B) = \{x \in \mathbb{R} : g(x) \in B\}$$

Show that q is continuous if and only if $q^{-1}(O)$ is open whenever $O \subseteq \mathbb{R}$ is an open set.

 (\Longrightarrow) Let g be continuous and $O\subseteq\mathbb{R}$ be an open set. Consider the set

$$g^{-1}(O) = \{x \in \mathbb{R} : g(x) \in O\}$$

Suppose for contradiction that this set is not open. Then for some $x \in g^{-1}(O)$, every neighborhood $V_{\epsilon}(x)$ is not contained in $g^{-1}(O)$. In particular, every $\epsilon = 1/n$ neighborhood contains some point outside of $g^{-1}(O)$, call this point x_n . The sequence (x_n) converges to x.

By the continuity of g, if (x_n) converges to x, then it should also be true that $g(x_n) \to g(x)$. However, $g(x_n) \notin O$ for all $n \in \mathbb{N}$ by construction, so we can find an element outside of O within any neighborhood of g(x), which contradicts the openness of O.

 (\Leftarrow) Let $g^{-1}(O)$ be open whenever $O \subseteq \mathbb{R}$ is open.

Consider $V_{\epsilon}(g(c))$ which is open. The set $g^{-1}(V_{\epsilon}(g(c))) = \{x \in \mathbb{R} : g(x) \in V_{\epsilon}(g(c))\}$ is also open. It contains c, so there exists a neighborhood $V_{\delta}(c)$ such that $V_{\delta}(c) \subseteq g^{-1}(V_{\epsilon}(g(c)))$. In other words, there exists a δ such that $x \in V_{\delta}(c)$ implies $g(x) \in V_{\epsilon}(c)$. This is the definition of continuity. \square

3 Exercises 4.5

- **4.5.2** Provide an example of each of the following, or explain why the request is impossible.
- (a) A continuous function defined on an open interval with range equal to a closed interval.

Consider the function $f:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}$ where $f(x)=\tan(x)$ this function is defined on this open interval and has a range that equals $(-\infty,\infty)$, which is closed.

(b) A continuous function defined on a closed interval with range equal to an open interval.

Consider $f: \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$ where $f(x) = \tan^{-1}(x)$. This function is continuous on the closed interval (all of \mathbb{R}) and has a range which is an open interval.

(c) A continuous function defined on an open interval with range equal to an unbounded closed set different from \mathbb{R} .

Consider $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to (0, \infty)$ where

$$f(x) = \begin{cases} -\tan(x) & -\frac{\pi}{2} < x \le 0\\ \tan(x) & 0 < x < \frac{\pi}{2} \end{cases}$$

(d) A continuous function defined on all of \mathbb{R} with range equal to \mathbb{Q} .

This is not possible. By theorem 4.5.2, if the $f: E \to \mathbb{R}$ is a function with a connected domain E, then f(E) must be connected as well. In this case, since $E = \mathbb{R}$ is connected, the range of f cannot be \mathbb{Q} because it is disconnected.

4.5.8 (Inverse functions) If a function $f: A \to \mathbb{R}$ is one-to-one, then we can define the inverse function f^{-1} on the range of f in the natural way: $f^{-1}(y) = x$ where y = f(x). Show that if f is continuous on an interval [a, b] and one-to-one, then f^{-1} is also continuous.

Suppose for contradiction that $f^{-1}: f([a,b]) \to [a,b]$ is not continuous on f([a,b]). Then there exists some $f(x) \in f([a,b])$ such that we can define a sequence $(y_n) \subseteq f([a,b])$ where $(y_n) \to f(x)$ but $f^{-1}(y_n) \nrightarrow f^{-1}(f(x)) = x$.

Uniquely define a sequence in [a, b] by $(x_n) = f^{-1}(y_n)$, so x_n is such that $y_n = f(x_n)$. For every y_n , there is only one such x_n because f is one-to-one. Now we have that

$$(x_n) \nrightarrow x$$

This means that for some $\epsilon > 0$, there are only finite elements of (x_n) the ϵ -neighborhood $(x-\epsilon, x+\epsilon)$ around x. Therefore there are infinite elements in the complement of this neighborhood:

$$[a, x - \epsilon] \cup [x + \epsilon, b]$$

which is closed and bounded. Thus, there exists a subsequence (x_{n_k}) that converges to a limit x' in $[a, x - \epsilon] \cup [x + \epsilon, b]$. Note that $x' \neq x$. However, by the continuity of f,

$$(x_{n_k}) \to x' \implies f(x_{n_k}) \to f(x')$$

But,

$$f(x_{n_k}) = f(f^{-1}(y_{n_k})) = (y_{n_k}) \to f(x)$$

This implies that x = x' because f is one-to-one, which is a contradiction.