

Machine Learning and Material Science 3. Support Vector Machine

Steffen Brinckmann, Claas Hüter IEK-2, Forschungszentrum Jülich GmbH

Support Vector Machine

For classification problems

Find linearly separable hyperplane to separate classes

If data cannot be separated linearly
uses nonlinear mapping to transform data into higher dimension
search for separating hyperplane

Algorithm finds hyperplane using support vectors and margins

Example:

Datapoints with $X=(x_1,x_2)$ and class (-1 or 1)

Finding best way to separate data

Best hyperplane is the one with the longest support vector or maximum margin

Support vector:

Example:

Datapoints with $X=(x_1,x_2)$ and Y the class (-1 or 1)

Finding best way to separate data

Best hyperplane is the one with the longest support vector or maximum margin

Support vector:

Example:

Datapoints with $X=(x_1,x_2)$ and Y the class (-1 or 1)

Finding best way to separate data

Best hyperplane is the one with the longest support vector or maximum margin

Support vector:

Example:

Datapoints with $X=(x_1,x_2)$ and Y the class (-1 or 1)

Finding best way to separate data

Best hyperplane is the one with the longest support vector or maximum margin

Support vector:

Example:

Datapoints with $X=(x_1,x_2)$ and Y the class (-1 or 1)

Finding best way to separate data

Best hyperplane is the one with the longest support vector or maximum margin

Support vector:

Support Vector Machine

Hyperplane: $\vec{w} \cdot \vec{x} - b = 0$ \vec{w} : normal vector (not unit length)

maximizing margin \rightarrow minimizing $\|\vec{w}\|$

Prevent data inside margin

$$\begin{cases} \vec{w} \cdot \vec{x}_i - b \ge 1, & if \ y_i = 1 \\ \vec{w} \cdot \vec{x}_i - b \le -1, & if \ y_i = -1 \end{cases}$$

Minimizing $\|\vec{w}\|$ with $y_i(\vec{w} \cdot \vec{x}_i - b) \ge 1$

Allow for misclassification / errors in data

 ξ_i : slack variables allow for some misclassification

Data is noisy and maximal margin is bad solution

Hyperplane which **almost** separates => soft margin.

Small number of samples cross margin => violate margin

Minimizing
$$[\|\vec{w}\| + C \sum_i \xi_i]$$

subject to $y_i(\vec{w} \cdot \vec{x}_i - b) \ge 1 - \xi_i$

C is regularization parameter to avoid misclassification (smaller *C* = softer, less penalty for error) User has to be smart

Support Vector Machine

Large C is better!

Low C is better!

10

Support Vector Machine

If data is linearly separable SVM finds best separator

How about not linearly separable data?

Classification problem: not linearly separable

Classification problem: not linearly separable

Classification problem: not linearly separable

Low dimension Not linearly separable Kernel trick

High dimensional space Linearly separable

Support Vector Machine

If there are **N** (N>2) classes:

'one-against-one' approach: N(N-1)/2 classifiers will be constructed and each one is trained on data from two classes. To predict, each classification gives one vote to the winning class and the point is labeled with the class having most votes.

'one-against-all' approach: k SVM models will be constructed, where k is the number of classes. The mth SVM is trained with all of the examples, in the mth class with positive label, and all other examples with negative labels. To predict, choose the class which has the largest value of $(\vec{w}^T \vec{x} + b)$.

Support Vector Machines

are based on

- Dot product of separating hyperplanes
- Hard margin and soft margin classification
- Kernel trick to higher dimension

Pros & Cons:

- Kernel Trick is efficient in separating classes if problem is not too complex
- Kernel Trick possibly increases error
- require larger data sets for complex kernels

Example: Perovskite or BaNiO₃-type structure?

ideal cubic perovskite with corner-shared BX₆ octahedral

BaNiO₃ structure with face-shared BX₆ octahedral

Classification:

- ABCl₃ with ideal cubic perovskite structure
- BaNiO₃ structure

Example: Perovskite or BaNiO₃-type structure?

Feature \vec{x} : $(R_A, R_B, X_A, X_B \text{ and } N_d)$

 R_A and R_B : ionic radii of A and B in ABCl₃ X_A and X_B : electroegativity of A and B

 N_d : the number of d electrons in the unfilled shell of d electrons of B ions

Two classes: perovskite structure and BaNiO₃-type structure

Data set: 23 samples

Training data: 22 samples

Testing data: 1 sample

The criterion for the formation of BaNiO₃- type structure

$$4.52R_B - 1.83R_A + 2.23X_A - 0.142X_B - 4.10N_d + 0.589 < 0$$

How to communicate classification?

Example: check ultrasonic reflection to determine 'damaged' or 'not damaged'

	Actual state		
Predicted state		damaged	not damaged
	damaged	True Positive TP	False Positive FP
	not damaged	False Negative FN	True Negative TN

4 individual values: which to optimize

What is a good classifier value?

Sensitivity/Recall/Hit Rate/True Positive Rate

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

Specificity/Selectivity/True Negative Rate

$$TNR = \frac{TN}{N} = \frac{TN}{TN + FP}$$

Precision/Positive Predictive Value

$$PPV = \frac{TP}{TP + FP}$$

	damaged	not damaged
damaged	True Positive TP	False Positive FP
not damaged	False Negative FN	True Negative TN

Fall-Out/False Positive Rate

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

Given set of inputs X, want to assign them to either class 0 or class 1

Logistic Regression simulates probability that each data point belongs either to class 0 or 1

Logistic Regression: Maximum Likelihood

- Calculate likelihood for each datapoint to be described by the sigmoid, take product of likelihoods for all dps
- Optimise weights such that maximum value for the product of likelihoods of all dps is reached

Visualisation depends on the symmetry of your dataset:

Symmetric distribution of positives and negatives:

Receiver Operating Characteristic (ROC)

-Visualizes Trade-Off between TPR and FPR

-Area under ROC (AUROC) is scalar measure for comparison of binary classifiers

Asymmetric distribution of positives and negatives:

Precision-Recall Curve (PR)

-Visualizes Trade-off between high Precision and high

Recall

-better suited than ROC for asymmetric data since true negatives (TN), the majority population, are ignored

ROC vs PR for samples with 90% negatives:

High fraction of correctly classified negatives can give optimistic impression of skill of binary classifier

Our exercise: Solid oxide fuel cell (SOFC) JÜLICH and their stacks

Clean "green" energy:

produce energy from

hydrogen or methanol

Use stacks of SOFC increase voltage use steel to connect

Our exercise: Solid oxide fuel cell (SOFC) JÜLICH

During operation:

- Cr₂O₃ containing oxide scale forms on steel
 evaporation of gaseous Cr (CrO₃ or CrO₂(OH)₂)
- Sr is reactive element in the cathode
 Sr→SrO which segregates out of cathode
- Reaction of SrO & Cr species
 secondary phases that block oxygen reduction / functionality

$$SrO + CrO_3 \leftrightharpoons SrCrO_4$$

 $SrO + CrO_3 \leftrightharpoons SrCrO_3 + \frac{1}{2}O_2$
 $SrO + \frac{2}{3}CrO_3 \leftrightharpoons \frac{1}{3}Sr_3Cr_2O_8 + \frac{1}{6}O_2$
 $SrO + \frac{1}{2}CrO_3 \leftrightharpoons \frac{1}{2}Sr_2CrO_4 + \frac{1}{4}O_2$

CSV file with data

Response/Target: chemical component last column

Parameters first columns:

- Partial pressure of CrO₃ (pCrO₃)
- local oxygen partial pressure (pO₂)