Modeling Interaction 2

CS6501: Human-Computer Interaction

Seongkook Heo

Fall 2020, Department of Computer Science

What is a model?

• A *model* is a simplification of reality

Architect's scale model of a building

description

→ provides insight into space usage, movement of people, light, etc.

Physicist's model for the trajectory of a tossed ball

prediction

→ gives the ball's position as a function of time

Fitts' Law

- One of the most widely used models in HCI
- Model for rapid aimed movements
- Three applications:
 - 1. Use a Fitts' law prediction equation to analyse and compare design alternatives
 - 2. Use Fitts' index of performance (now throughput) as a dependent variable in a comparative evaluation
 - 3. Determine if a device or technique "conforms to Fitts' law"
- Origins: Two papers in experimental psychology^{1,2}

¹ Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. *Journal of Experimental Psychology, 47*, 381-391.

² Fitts, P. M., & Peterson, J. R. (1964). Information capacity of discrete motor responses. *Journal of Experimental Psychology, 67*, 103-112.

Fitts' Law

- One of the most widely used models in HCI
- Model for rapid aimed movements
- Three applications:
 - 1. Use a Fitts' law prediction equation to analyse and compare design alternatives

Predictive model

- 2. Use Fitts' index of performance (now throughput) as a dependent variable in a comparative evaluation
- 3. Determine if a device or technique "conforms to Fitts' law"
- Origins: Two papers in experimental psychology^{1,2}

¹ Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. *Journal of Experimental Psychology, 47*, 381-391.

² Fitts, P. M., & Peterson, J. R. (1964). Information capacity of discrete motor responses. *Journal of Experimental Psychology, 67*, 103-112.

Fitts' Law – Task Paradigms

These sketches were adapted from Fitts' 1954 and 1964 papers.

Fitts' Index of Difficulty (ID)

Fitts' index of difficulty (ID) is a measure of the difficulty of a target selection task:

$$ID = \log_2\left(\frac{A}{W} + 1\right)$$
Units: bits

• Fitts hypothesized that the relation between movement time (MT) and ID is linear

Fitts' Law Models for Pointing Devices

- A research project compared four pointing devices, including two for remote pointing¹
- Twelve participants performed the tasks using for devices, including:

Interlink RemotePoint

Microsoft Mouse 2.0

¹ MacKenzie, I. S., & Jusoh, S. (2001). An evaluation of two input devices for remote pointing. *Proceedings - EHCI 2000*, 235-249, Heidelberg, Germany: Springer-Verlag.

Experiment Conditions and Observations

Fitts' Law Prediction Equations

Fitts' Law Prediction Equations

$$\mathrm{MT} = a + b \cdot \mathrm{ID}$$

Mouse

 $MT = 159 + 204 \times \log_2(A/W + 1) \text{ ms}$

RemotePoint

 $MT = 597 + 408 \times \log_2(A/W + 1) \text{ ms}$

Fitts' Law Prediction Equations

$$\mathrm{MT} = a + b \cdot \mathrm{ID}$$

Mouse

 $MT = 159 + 204 \times \log_2(A/W + 1) \text{ ms}$

RemotePoint

 $MT = 597 + 408 \times \log_2(A/W + 1) \text{ ms}$

Throughput (Index of Performance) = ID/MT (bits per second) = 1/b

60 Years of Data

Device	Study	IP (bits/s)
Hand	Fitts (1954)	10.6
Mouse	Card, English, & Burr (1978)	10.4
Joystick	Card, English, & Burr (1978)	5.0
Trackball	Epps (1986)	2.9
Touchpad	Epps (1986)	1.6
Eyetracker	Ware & Mikaelian (1987)	13.7

MacKenzie, I. Fitts' Law as a research and design tool in human computer interaction. *Human Computer Interaction*, 1992, Vol. 7, pp. 91-139

What About 2D Targets?

Fitts' Law in 2D

What is the target width?

Fitts' Law in 2D

- What is the target width?
- Compare various interpretations of width
- See which has best fit

Model	Target Width
STATUS QUO	horizontal extent (W)
W+H	sum of width and height
W×H	area
SMALLER-OF	smaller of width or height
W'	width along line of approach

Fitts' Law in 2D

- What is the target width?
- Compare various interpretations of width
- See which has best fit

	ID Range	(bits)	
Model for Target Width	Low	High	rª
SMALLER-OF	1.58	5.04	.9501
W '	1.00	5.04	.9333
W+H	0.74	3.54	.8755
WxH	0.32	4.09	.8446
STATUS QUO	1.00	5.04	.8097

MacKenzie, I. S., & Buxton, W. (1992, June). Extending Fitts' law to two-dimensional tasks. In *Proceedings of the SIGCHI conference on Human factors in computing systems* (pp. 219-226). ACM.

Beating Fitts' Law

$$ID = \log_2(\frac{A}{W} + 1)$$

Increase the Width Decrease the Distance

Increasing the Width: Expanding Targets

http://www.dgp.toronto.edu/people/ravin/papers/expandingTargets

Increasing the Width: Expanding Targets

Michael McGuffin, Ravin Balakrishnan. (2002). Acquisition of expanding targets. Proceedings of CHI 2002 – the ACM Conference on Human Factors in Computing Systems. p. 57-64.

Increasing the Width: Bubble Cursor

Tovi Grossman and Ravin Balakrishnan. 2005. The bubble cursor: enhancing target acquisition by dynamic resizing of the cursor's activation area. In *Proceedings of the SIGCHI conference on Human factors in computing systems* (CHI '05). ACM, New York, NY, USA, 281-290.

Calculating the Radius

Consider the two closest targets i and j

Decreasing the Distance: Gaze-Assisted Cursor

Can We Beat the Mouse with MAGIC? CHI 2013

Ribel Fares, Shaomin Fang, Oleg Komogortsev

Department of Computer Science Texas State University—San Marcos

- Reaction time = a + b log₂ (C)
 - Where C is the number of choices
 - a and b are empirically determined
 - log₂ (C) represents amount of information processed by human operator (Bits)

¹ Hick, W. E. (1952). On the rate of gain of information. *Quarterly J Exp Psychol, 4,* 11-36.

² Hyman, R. (1953). Stimulus information as a determinant of reaction time. *J Exp Psychol*, 45, 188-196.

Font

Bullets

Paragraph

Background

Alignment

Autoshape

Line Spacing

Insert

Font

Bullets

Paragraph

Background

Alignment

Autoshape

Line Spacing

Insert

Font
Bullets
Paragraph
Background
Alignment
Autoshape
Line Spacing
Insert

Keystroke-Level Model (KLM)

- Developed for predicting task performance using interactive computing systems
- Predicts expert error-free task completion times
- Elements of a KLM prediction
 - Task (or a series of tasks)
 - Method used
 - Command language of the system
 - Motor skill parameters of the user
 - Response time parameters of the system

Why Use the KLM?

- Consider a task such as "delete a file"
- Perhaps there are two ways to do the task:
 - 1. Mouse + menu selection
 - 2. Keyboard + command entry
- The KLM can predict the time for each method
- If used at the design stage, design alternatives may be considered and compared → design choices follow

KLM Operators

- Six operators
 - Keystroke
 - Average time determined by typing tests
 - Pointing
 - Varies from 0.8 1.5 seconds (Fitts' Law)
 - Homing
 - 0.4 seconds based on various studies
 - Drawing
 - Roughly defined as 0.9n + 0.16l
 - Mental
 - 1.35 seconds, experimentally determined
 - Response (system response)
 - Must be input to the model, varies widely

$$t_{\text{EXECUTE}} = t_{\text{K}} + t_{\text{P}} + t_{\text{H}} + t_{\text{D}} + t_{\text{M}} + t_{\text{R}}$$

Operator	Description	Time (s)
K	PRESS A KEY OR BUTTON	11110 (0)
1	Pressing a modifier key (e.g., shift) counts	
	as a separate operation, Time varies with	
	typing skill:	
	Best typist (135 wpm)	0.08
	Good typist (90 wpm)	0.12
	Average skilled typist (55 wpm)	0.20
	Average non-secretary typist (40 wpm)	0.28
	Typing random letters	0.50
	Typing complex codes	0.75
	Worst typist (unfamiliar with keyboard)	1.20
Р	POINT WITH A MOUSE	
	Empirical value based on Fitts' law. Range	1.10
	from 0.8 to 1.5 seconds. Operator does not	
	include the button click at the end of a	
	pointing operation	
Н	HOME HAND(S) ON KEYBOARD OR	0.40
	OTHER DEVICE	
$D(n_D.l_D)$	DRAW nD STRAIGHT-LINE SEGMENTS	.9 <i>n</i> _D + .16 <i>l</i> _D
	OF TOTAL LENGTH ID.	
	Drawing with the mouse constrained to a	
	grid.	
M	MENTALLY PREPARE	1.35
R(t)	RESPONSE BY SYSTEM	t
	Different commands require different	
	response times. Counted only if the user	
	must wait.	

KLM Example

Keystroke Pointing Homing Drawing Mental Response

Replace 5 letter word with another in a text editor

Reach for mouse H_{mouse} Point to word P_{word} Select word K_{select} Home on keyboard $H_{keyboard}$ Call replace cmd $K_{replace}$ Type new 5 letter word $5K_{word}$

$$T_{\text{execute}} = H_{\text{mouse}} + P_{\text{word}} + K_{\text{select}} + H_{\text{keyboard}} + K_{\text{replace}} + 5K_{\text{word}}$$

Original KLM Experiment

Keystroke Pointing Homing Drawing Mental

Response

 The KLM was validated in an experiment with fourteen tasks performed using various methods and systems

Command Line Editor (POET)

Jump to next line M K[LINEFEED]

Call Substitute command M K[S]

Specify new 5-digit word 5K[word]

Terminate argument M K[RETURN]

Specify old 5-digit word 5K[word]

Terminate argument M K[RETURN]

Terminate command **K**[RETURN]

$$T_{execute} = 4 \times t_M + 15 \times t_K = 8.85 \text{ sec.}$$

Original KLM Experiment

 The KLM was validated in an experiment with fourteen tasks performed using various methods and systems

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ: Erlbaum.

Sensitivity Analysis

 If parameters are treated as variables, the sensitivity of predictions to changes in parameters can be assessed

Implication: The preferred method changes with the distance to the misspelled word.

n is a parameter – the distance in words to the location of a misspelled word to correct.

Pointing Operator – Example

- Develop KLM mouse and keyboard predictions for the GUI screen below
- Task: Change the font and style for "M K" to bold, Arial

Keystroke
Pointing
Homing
Drawing
Mental
Response

Mouse Analysis

Operations:

Mouse Subtasks	KLM Operators	$t_{P}\left(\mathbf{s}\right)$
Drag across text to select "M K"	M P [2.5, 0.5]	0.686
Move pointer to Bold button and click	M P [13, 1]	0.936
Move pointer to Font drop-down button and click	M P [3.3, 1]	0.588
Move pointer down list to Arial and click	M P [2.2, 1]	0.501
	$\sum t_{P} =$	2.71

Prediction:

$$t_{\text{EXECUTE}} = 4 \times t_{\text{M}} + \sum t_{\text{P}} = 4 \times 1.35 + 2.71 = 8.11 \text{ seconds}$$

$$t_{\rm p} = 0.159 + 0.204 \times \log_2 \left(\frac{A}{W} + 1\right)$$

Keystroke
Pointing
Homing
Drawing
Mental
Response

Keyboard Analysis

Operations:

Keyboard Subtasks	KLM Operators
Select text	M K [shift] 3 K [→]
Convert to boldface	M K[ctrl] K[b]
Activate Format menu and enter Font sub-menu	M K[alt] K[o] K[f]
Type a ("Arial" appears at top of list)	M K [a]
Select "Arial"	K [↓] K [enter]

• Prediction:

$$t_{\text{EXECUTE}} = 4 \times t_{\text{M}} + 12 \times t_{\text{K}} = 4 \times 1.35 + 12 \times 0.75 = 14.40 \text{ seconds}$$

Use "typing complex codes" ($t_K = 0.75 \text{ s}$)

Keystroke
Pointing
Homing
Drawing
Mental
Response

Sensitivity Analysis

- The keyboard prediction is sensitive to the parameter $t_{\rm K}$, the keystroking time
- If $t_{\rm K}$ is allowed to vary, what is the effect on the predictions?

Updating the KLM's Mental Operator

Proposed Mnemonic	Task	Execution Time (ms)	
		Card et al.	Figure 2-28 & Figure 2-30
Ms	Simple Reaction	240 [105 – 470]	277 [±44]
M _P	Physical Matching	310 [130 – 640]	510 [±59]
M _N	Name Matching	380 [155 – 810]	485 [±52]
M _L	Class Matching	450 [180 – 980]	566 [±96]
M _C	Choice Reaction	200 + 150 log ₂ (N + 1)	
M _V	Visual Search		498 + 41 N

Contemporary Uses of the KLM

- The KLM continues to be widely used in HCI
- Examples:
 - Attention shifts with mobile phones
 - Stylus-based circling gestures
 - Managing folders and messages in e-mail applications
 - Predictive text entry on mobile phones
 - Task switching in multi-monitor systems
 - Mode switching on tablet PCs
 - Distractions in in-vehicle information systems (IVIS)

RIMES: Interactive Multimedia Exercises for Lecture Videos

Juho Kim (Microsoft Research, MIT CSAIL)

Elena L. Glassman (Microsoft Research, MIT CSAIL)

Andrés Monroy-Hernández (Microsoft Research)

Meredith Ringel Morris (Microsoft Research)

Course Project: Timeline

Assignment #2: Formative Study

- Conduct an Interview or a Focus Group
- Find an interview topic that's related to your project.
- Team effort, team report
- 2+ interview sessions or a focus group with 4+ participants.
- Report should include:
 - Interview design
 - Interview results (summary and insights)
 - Your reflections on the interview

Due Oct 19 (Mon) 23:59 pm

Assignment instruction will be on the course webpage

- Project Progress Report (Due Oct 23)
 - Similar to Method Section of a CHI paper
 - Three sections
 - Findings from Formative Study
 - Study Method
 - Research Plan

- You will share
 - What you found during your formative study
 - How you will conduct your study
 - Your detailed timeline

- Project Progress Report (Due Oct 23)
 - Similar to Method Section of a CHI paper
 - Three sections
 - Findings from Formative Study
 - Study Method
 - Research Plan

- Project Progress Presentation (On Oct 19, 21)
 - Each team will present for 15 minutes
 - Each team will have 5 minutes Q&A and feedback session
 - Presentation order will be randomized

Topic Presentation – Preparation

- There are 12 topics to be presented (check the topic list on Collab)

 Topic sign-up is due today. You'll be randomly assigned to a topic if you don't do it.
- Each team will have two or three students.
- Each team will cover a topic, which has two papers.
- All team members should thoroughly read the papers.
- After reading the papers, team should discuss them. E.g., about the benefits/contributions, limitations, or future directions of the paper

Topic Presentation – Presentation

- Each team will present for 30-35 minutes and discuss for 10-15 minutes
- Presentation will have three components
 - Topic introduction: a brief description about the topic
 - Paper summary: explain what these papers are about, including their contributions, design, and study design and results.
 - **Discussion:** share your discussion and also lead discussions in the class
- Every member of the team should present.

Topic Presentation – Participation

- All students should read the papers before each class so that they can actively participate in the class
- You will choose a paper among the four papers to be presented in the class and write a reading response to it.
- You don't need to write a reading response for the day you're presenting
- Actively participate in the class, feel free to ask questions or talk about your thoughts – it will not be recorded.

Topic Presentation - Grading

- Grade breakdown (15 points)
 - Topic Introduction (2 points)
 - Understanding Paper 1 (5 points)
 - Understanding Paper 2 (5 points)
 - Effective Talk Delivery (1 points)
 - Discussion (2 points)
- First two teams will get 0.5 bonus points

Thank you!