Fundamentos matemáticos del aprendizaje profundo

 1° cuatrimestre 2025

Práctica 7: Teoremas de aproximación

Ejercicio 1. Sea $\mathcal{F} = \{\tanh(ax+b) : a, b \in \mathbb{R}\}$. Mostrar que la familia \mathcal{F} es uniformemente acotada

Ejercicio 2. Sea $\mathcal{F} = \{ax+b \colon |a|+|b|<1, \ x\in[0,1]\}$. Mostrar que la familia es equicontinua y uniformemente acotada.

Ejercicio 3. Sea M > 0 y consideremos la familia

$$\mathcal{F} = \left\{ f \in C^1([a,b]) : \int_a^b |f'(x)|^2 dx \le M \right\}.$$

Mostrar que \mathcal{F} es equicontinua.

Ejercicio 4. Notemos por $\mathcal{D} \subset (a,b)$ un conjunto denso. Sea \mathcal{F} la familia de funciones tales que

- (a) Es equicontinua sobre el intervalo (a, b).
- (b) Para todo $x \in \mathcal{D}$, la familia es uniformemente acotada en x, es decir, existe M > 0 tal que $|f(x)| \leq M$ para toda $f \in \mathcal{F}$.

Mostrar que \mathcal{F} es uniformemente acotada en todos los puntos.

Ejercicio 5. Sean \mathcal{F} una familia equicontinua, $k \geq 1$ un entero fijo y $\{w_1, \ldots, w_k\}$ un conjunto de pesos tales que $|w_j| < 1$ para $j = 1, \ldots, k$. Mostrar que el conjunto sigue siendo equicontinuo si se extiende para incluir a las combinaciones lineales de la forma $\sum_{j=1}^k w_j f_j$ con $f_j \in \mathcal{F}$, $j = 1, \ldots, k$.

Ejercicio 6. Una red neuronal usando neuronas sigmoides es diseñada para aprender una función continua $f \in C([a,b])$ por el método de descenso de gradiente. La salida de la red obtenida luego de la n-ésima actualización de los parámetros es denotada por $G_n(x) = G(x; w(n), b(n))$. Asumamos que en cada paso la aproximación mejora, es decir $|f(x) - G_{n+1}(x)| < |f(x) - G_n(x)|$ para todo $x \in [a,b]$ y todo $n \ge 1$. Probar que G_n converge uniformemente a f en [a,b] (es decir, la red aprende cualquier función continua en [a,b]).

Ejercicio 7. Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua y periódica con período T > 0, i.e. f(x + T) = f(x) para todo $x \in \mathbb{R}$. Mostrar que para todo $x \in \mathbb{R}$ existe una función

$$F(x) = a_0 + \sum_{n=1}^{N} \left(a_n \cos \frac{2\pi nx}{T} + b_n \sin \frac{2\pi nx}{T} \right),$$

tal que $|F(x) - f(x)| < \varepsilon$ para todo $x \in \mathbb{R}$.

Ejercicio 8 (El conjunto de transformaciones integrales de funciones L^2). Sea M>0 y sea $K: [a,b]\times [c,d]\to \mathbb{R}$ una función continua. Se define la clase

$$\mathcal{F}_{M} = \left\{ g(x) = \int_{c}^{d} K(x, y)h(y) \, dy \colon h \in C([c, d]), \int_{c}^{d} |h(y)|^{2} \, dy \le M \right\}.$$

Mostrar que \mathcal{F}_M es equicontinuo y uniformemente acotado.

Ejercicio 9. Se define la clase

$$\mathcal{A} = \left\{ \sum_{i=1}^{n} \alpha_i e^{m_i x} \colon \alpha_i \in \mathbb{R}, \ m_i \in \mathbb{N}_0, \ n = 1, 2, \dots \right\}.$$

Mostrar que $\mathcal{A} \subset C([a,b])$ es un álgebra de funciones. Probar que dada $f \in C([a,b])$ y $\varepsilon > 0$, existen $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ y $m_1, \ldots, m_n \in \mathbb{N}_0$ tales que

$$\left| f(x) - \sum_{i=1}^{n} \alpha_i e^{m_i x} \right| < \varepsilon, \quad \forall x \in [a, b].$$

Formular una interpretación en términos de aprendizaje automático de este resultado.