Measure and integration theory Lecture notes, University (of Technology) Graz based on the lecture by Wolfgang Wöss

Lukas Prokop

November 2, 2018

Contents

1	Cou	rse	1
2	Sigma algebras and measures		2
	2.1	Definition	3
	2.2	Simple properties of sigma-algebras	3
	2.3	Simple properties of measures	9
	2.4	Construction of the Lebesgue measures and similar ones	11
	2.5	Lebesgue measure on $(\mathbb{R}^d,\mathcal{B}_{\mathbb{R}^d})$	14
	2.6	Sigma-algebra generated by maps	16
	2.7	Product space	17
3	Integration of non-negative functions		17
4	4 Integrable functions		23
1 Course			
	1. Thursday, 16:15–18:00		
	2. M	onday, 12:15–14:00	
	3. Exam: oral, date negotiation per email, 3 examinees at once		
	4. In this document, \subset denotes \subseteq or \subsetneq		
	5. Li	terature: "Measure Theory" by Paul R. Halmos	

↓ This lecture took place on 2018/10/01.

2 Sigma algebras and measures

A measure represents the content of a set. In \mathbb{R}^2 , it represents the area. In \mathbb{R}^3 , it represents the volume. In \mathbb{R}^d , we can consider the content of a subspace as dimensionwise combination of intervals:

$$[a_1, b_1] \times \cdots \times [a_d, b_d]$$

To determine the "size" of this space, we can use the product of the individual interval sizes:

$$(b_1-a_1)\cdot\cdots\cdot(b_d-a_d)$$

Consider an geometric object as in Figure 1. We can approximate the size of B by considering inner or outer axis-parallel boundary. The approximation using the infimum of the outer and supremum of the inner boundary defines the Jordan measure.

The indicator function of this area (1_B) is Riemann-integrable.

Figure 1: Jordan measurability of this area ${\cal B}$

A one-point set is Jordan measurable with measure/content 0. However, $\mathbb{Q} \cap [0,1]$ is not Jordan measurable, because the indicator function is not Riemann integrable. It is desirable that the measure $\bigcup_{n=1}^\infty A_n = \sum_{n=1}^\infty \operatorname{measure}(A_n)$ (using pairwise disjoint union) holds true.

Modern measure theory was established by Lebesgue (1901):

- 1. Union of countable sets (σ -additivity)
- 2. arbitrary base set χ instead of \mathbb{R}^d , integration theory for $f:\chi\to\mathbb{R}$

2.1 Definition

Let (δ, ρ) be the non-empty base set. $\mathcal{A} \subset P(\chi)$. A set system of subsets of χ is called *sigma-algebra* (σ -algebra) if

1. $\chi \in \mathcal{A}$

2.
$$A \in \mathcal{A} \implies A^C = \chi \quad A \in \mathcal{A}$$

3.
$$A_n \in \mathcal{A} \ (n \in \mathbb{N}) \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$$

Properties 1 and 2 implies that $\emptyset \in \mathcal{A}$.

A measurable space is given by (χ, \mathcal{A}) . A measure $\mu : \mathcal{A} \to [0, \infty]$ is defined by

- 1. $\mu(\emptyset) = 0$
- 2. If $A_n \in \mathcal{A}$ $(n \in \mathbb{N})$, pairwise disjoint, then

$$\implies \mu\left(\bigcup_{n=1}^\infty A_n\right) = \sum_{n=1}^\infty \mu(A_n)$$

A measure space is given with (χ, \mathcal{A}, μ) .

Remark. • μ is called probability space if $\mu(\chi) = 1$

- μ is called finite measure if $\mu(\chi) < \infty$
- μ is called σ -finite if $\chi=\bigcup_{n=1}^\infty A_n$ with $A_n\in\mathcal{A}$ and $\mu(A_n)<\infty$ (e.g. real axes decomposes into intervals of length 1)

Examples:

1. χ is at most countable, then mostly $\mathcal{A}=\mathbb{P}(\chi)$. Then it suffices to know, $\mu(\{x\})\in[0,\infty)$. Then we denote $\mu(x)=\mu(\{x\})$ with $x\in\chi$.

$$\mu(A) = \sum_{x \in A} \mu(x)$$

e.g. $\mu(x) = 1 \forall x \in \chi$ in case of a counting measure.

2. If χ is uncountable, e.g. \mathbb{R}^d , then it is not recommended to use $\mathbb{P}(\chi)$. So what about A? Consider for example \mathbb{R}^d . All $[a_1,b_1]\times\cdots\times[a_d,b_d]$ should be elements of $\mathcal A$

3

2.2 Simple properties of sigma-algebras

1. $\emptyset \in \mathcal{A}$

2.
$$A_1, \dots, A_n \in \mathcal{A} \implies \bigcup_{k=1}^n A_k \in \mathcal{A}$$

3.
$$A_n\in\mathcal{A}\ (n\in\mathbb{N})\ \text{or}\ ,\dots,N$$
 \implies $\bigcap_{n\in\mathbb{N}}A_n\in\mathcal{A}\ (\text{deMorgan})\bigcap_nA_n=\left(\bigcup_nA_n^C\right)^C$

4.
$$A, B \in \mathcal{A} \implies A \quad B \in \mathcal{A}, A \triangle B = A \quad B \vee B \quad A$$

Definition 2.1 (Generating set). Let $\mathcal{E} \neq \emptyset$ with $\mathcal{E} \subset \mathbb{P}(\chi)$ be the generator (generating set) of the σ -algebra. $\sigma(\mathcal{E})$ is the smallest σ -algebra over χ which contains \mathcal{E} .

$$=\bigcap\left\{\tilde{A}:\tilde{A}\text{ is the }\sigma-\text{algebra over }\chi\text{ with }\mathcal{E}\subset\tilde{\mathcal{A}}\right\}$$

This set is non-empty because $\mathbb{P}(\chi)$ is the σ -algebra for all χ and $\mathcal{E} \subset \mathbb{P}(\chi)$

Lemma 2.2. If A_i with $i \in I$ is a family of σ -algebras, then $\bigcap_{i \in I} A_i$ is a σ -algebra over χ .

Immediate:

1. if
$$\mathcal{E}_1 \subset \mathcal{E}_2$$
 ($\Longrightarrow \mathcal{E}_1 \subset \sigma(\mathcal{E}_2)$), then $\sigma(\mathcal{E}_1) \subset \sigma(\mathcal{E}_2)$

2. if additionally
$$\mathcal{E}_2 \subset \sigma(\mathcal{E}_1)$$
, then $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2)$

Example:

$$\chi = \bigcup_{n \in I} E_n \neq \emptyset \qquad I = \mathbb{N} \text{ or } \{1, \dots, N\}$$

$$\mathcal{E} = \{E_n \ | \ n \in I\} \qquad \sigma(\mathcal{E}) = \left\{ \bigcup_{n \in J} E_n \ | \ J \subset I \right\}$$

1. Is a σ -algebra

2. If
$$\mathcal{E}\subset \tilde{\mathcal{A}}$$
, then $\left\{\bigcup_{n\in J}E_n\ |\ J\subset I\right\}\subset \tilde{\mathcal{A}}$

Definition. (χ, d) is a metric space. Borel- σ -algebra $\sigma(\mathcal{O})$. \mathcal{O} is the set of open sets in a metric space

Example. Consider \mathbb{R}^d . $\mathcal{B}_{\mathbb{R}^d}$ denotes the Borel σ -algebra.

1.
$$\mathcal{E}_1 = \{\text{open sets}\}\$$

2.
$$\mathcal{E}_2 = \{ closed sets \}$$

3.
$$\mathcal{E}_3 = \{(a_1,b_1) \times \cdots \times (a_d,b_d) : a_i,b_i \in \mathbb{R}, a_i < b_i\}$$
 is a parallelepiped

4.
$$\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2) = \sigma(\mathcal{E}_3) = \mathcal{B}_{\mathbb{R}^d}$$

5. $\sigma(\mathcal{E}_3)=\mathcal{B}_{\mathbb{R}^d}$ because every open set is a countable union of open (or left half-open) parallelepipeds

$$\begin{split} \mathcal{E}_3 \subset \mathcal{E}_1 \subset \sigma(\mathcal{E}_3) \\ \mathcal{E}_4 = \{(a_1,b_1] \times \cdots \times (a_d,b_d] \ | \ a_i,b_i \in \mathbb{R}, a_i < b_i\} \end{split}$$

$$(a,b) = \bigcup_{n=1}^{\infty} (a,b - \frac{1}{n}]$$

$$\mathcal{E}_5 = \{(-\infty,b_1) \times \cdots \times (-\infty,b_d] \mid b_i \in \mathbb{R} \} \text{ because } \mathcal{E}_4 \subset \sigma(\mathcal{E}_5)$$

If d=1, $(a,b]=(-\infty,b]$ $(-\infty,a]$. Recognize that A $B=(A\cap B^C)$. If d=2,

$$(a_1,b_1]\times (a_2,b_2] = (-\infty,b_1]\times (-\infty,b_2] \ (-\infty,a_1]\times (-\infty,b_2) \ (-\infty,b_1]\times (-\infty,a_2]$$

Definition. (χ, \mathcal{A}) is a measurable space, $B \in \mathbb{A}$ is a trace σ -algebra over B. $\{A \in \mathcal{A} \mid A \subset B\}$

Definition. $\varphi:(\chi_1,\mathcal{A}_1)\to (\chi_2,\mathcal{A}_2)$ is called measurable $\iff \varphi^{-1}(A_2)\in \mathcal{A}_1 \forall A_2\in \mathcal{A}_2$

Remark. In general φ is a map from χ_1 to χ_2 . A_1 and A_2 are mentioned to clarify that the map depends on the chosen algebra.

Remark. $(\chi_1, d_1) \to (\chi_1, d_2)$ on metric spaces is continuous iff $\varphi^{-1}(O_2) \in \mathcal{O}_1 \forall O_2 \in \mathcal{O}_2$ where $\mathcal{O}_1, \mathcal{O}_2$ are sets of open sets.

Remark. Measurable maps are a much stronger statement than continuity, because they cover much more sets than open ones.

Lemma 2.3. The composition of measurable maps is measurable.

$$arphi: (\chi_1, \mathcal{A}_1) o (\chi_2, \mathcal{A}_2)$$
 measurable
$$\psi: (\chi_2, \mathcal{A}_2) o (\chi_2, \mathcal{A}_2)$$
 measurable
$$\Rightarrow \ \psi \circ \varphi: (\chi_1, \mathcal{A}_1) o (\chi_3, \mathcal{A}_3)$$
 measurable

Proof. Show that $(\psi \circ \varphi)^{-1}(\mathcal{A}_3) \in \mathcal{A}_1$ is trivial.

Theorem 2.3.1. Let \mathcal{E}_2 be a generator of \mathcal{A}_2 . Then $\varphi:(\chi_1,\mathcal{A}_1)\to\chi_2$ is measurable in regards of \mathcal{A}_2 iff $\varphi^{-1}(E_2)\in\mathcal{A}_1\forall E_2\in\mathcal{E}_2$

Proof. \implies is immediate

 $\Leftarrow \quad \tilde{\mathcal{A}}_2 = \left\{A_2 \in \mathcal{A}_2 \ | \ \varphi^{-1}(A_2) \in \mathcal{A}_1\right\} \text{ is a σ-algebra over χ_2. \mathcal{E}_2 is a TM of this σ algebra.}$

 $\implies \mathcal{A}_2 = \sigma(\mathcal{E}_2) \subset \tilde{\mathcal{A}}_2$

Example 2.4. $f: \mathbb{R} \to \mathbb{R}$ is monotonically increasing

$$f^{-1}(-\infty, b] = \{x \mid f(x) \le b\} = (-\infty, c) \in \mathcal{B}$$

Thus, f is measurable.

Remark. $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$

Example 2.5.

$$\mathcal{B}_{\overline{\mathbb{R}}} = \left\{B, B \cup \left\{-\infty\right\}, B \cup \left\{+\infty\right\}, B \cup \left\{+\infty, -\infty\right\} \ \middle| \ B \in \mathcal{B}_{\mathbb{R}}\right\}$$

$$f_1, \dots, f_n : \mathbb{R} \to \overline{\mathbb{R}} \ \textit{measurable in } (\chi, \mathcal{A}) \ \textit{and } f = \max \left\{f_1, \dots, f_n\right\}$$

$$f : \mathbb{R} \to \overline{\mathbb{R}} \qquad x \mapsto \max \left\{f_1(x), \dots, f_n(x)\right\}$$

$$f^{-1}([-\infty, b]) = \left\{x \ \middle| \ f(x) \leq b\right\}$$

$$= \left\{x \ \middle| \ f_k(x) \leq b, k = 1, \dots, n\right\}$$

$$= \bigcap_{k=1}^n \left\{x \ \middle| \ f_k(x) \leq b\right\} \in \mathcal{B}$$

Analogously for the minimum. Therefore f is measurable.

Example 2.6. The same applies to countably many functions. Let $f_n : \mathbb{R} \to \overline{\mathbb{R}}$ be measurable with $n \in \mathbb{N}$. Then $f : \sup \{f_n \mid n \in \mathbb{N}\}$ is measurable.

$$\begin{split} f^{-1}([-\infty,b]) &= \{x \ | \ \sup \left\{ f_n(x) \right\} \leq b \} = \{x \ | \ f_n(x) \leq b \forall n \} \\ &= \bigcap_{n=1}^{\infty} \underbrace{f_n^{-1}[-\infty,b]}_{\in B} \in \mathcal{B} \end{split}$$

Analogously for the infimum.

Example 2.7.

$$\limsup_{n o \infty} \sup f_n = \inf_n \sup_{\underline{k \geq n}} f_k$$
 is measurable with $n o \infty$ monotonically decreasing

$$\liminf_{n \to \infty} f_n = \sup_n \inf_{k \ge n} f_k$$
 is measurable

if all f_k are measurable. Especially if $f_n \to f$ pointwise and all f_n are measurable, then f is measurable.

Theorem 2.7.1 (Result from the previous example).

$$\begin{split} f_n: (\chi, \mathcal{A}) &\to \overline{\mathbb{R}} \text{ measurable}, n \in \mathbb{N} \\ &\Longrightarrow \inf f_n, \sup f_n, \lim_{n \to \infty} \inf f_n, \lim_{n \to \infty} \sup f_n \end{split}$$

are all measurable.

↓ This lecture took place on 2018/10/04.

- 1. Basic set χ [δ , ρ , ...]
- 2. σ -algebra $\mathcal{A} \subset p(\chi)$

- (a) $\chi \in \mathcal{A}$
- (b) $A \in \mathcal{A} \implies \mathcal{A}^C \in \mathcal{A}$

(c)
$$A_n \in \mathcal{A} (n \in \mathbb{N}) \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$$

 (χ, \mathcal{A}) is a measurable space

- 3. measure $\mu:\mathcal{A}\to[0,\infty]$
 - (a) $\mu(\emptyset) = 0$
 - (b) $A_n \in \mathcal{A}$ $(n \in \mathbb{N})$, $A_n \cap A_m \neq 0 \forall n \neq m$

$$\implies \mu\left(\bigcup_{n=1}^\infty A_n\right) = \sum_{n=1}^\infty \mu(A_n) \qquad \sigma - \text{additivity}$$

 (χ, \mathcal{A}, μ) is a measure space

4. $\mathcal{E} \subset p(\chi)$

$$\sigma(\mathcal{E}) = \bigcap \left\{ \tilde{A} : \tilde{A}\sigma - \mathsf{algebra}, \mathcal{E} \subset \tilde{A} \right\}$$

is the so-called \mathcal{E} -generated σ -algebra.

Recognize that $\mathcal{E}_1 \subset \mathcal{E}_2 \implies \sigma(\mathcal{E}_1) \subset \sigma(\mathcal{E}_2)$. If additionally, $\mathcal{E}_2 \subset \sigma(\mathcal{E}_1) \implies \sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2)$.

If X is a metric space, we commonly (sometimes implicitly) use the Borel-Sigma algebra as measure space.

Example: Let \mathbb{R}^d . Then $\mathcal{B}_{\mathbb{R}^d}$ denotes the Borel-sigma algebra.

Let \mathcal{E}_1 be the set of open sets. Let \mathcal{E}_2 be the set of closed sets. Let $\mathcal{E}_3 = \{(a_1,b_1) \times \cdots \times (a_d,b_d) : a_i,b_i \in \mathbb{R}, a_i < b_i\}$. $\sigma(\mathcal{E}_3) = \mathcal{B}_{\mathbb{R}^d}$ because every open set is a countable union of open (or left half-open) parallelepipeds (why countable?).

$$\mathcal{E}_3 \subset \mathcal{E}_1 \subset \sigma(\mathcal{E}_3)$$

$$\begin{split} \mathcal{E}_4 &= \{(a_1,b_1] \times (a_2,b_2] \times \dots \times (a_d,b_d] \} \\ &(a,b) = \bigcup_{n=0}^{\infty} (a,b-\frac{1}{n}) \end{split}$$

$$\mathcal{E}_5 = \{(-\infty,b_1) \times (-\sigma,b_d) : b_1,\dots,b_d \in \mathbb{R}\}$$

because $\mathcal{E}_4 \subset \sigma(\mathcal{E}_5)$.

DeMorgan: $A B = A \cap B^C$

Let
$$d=1$$
, $(a,b]=(-\infty,b]$ $(-\infty,a]$. Let $d=2$, $(a_1,b_1]\times (a_2,b_2]=(-\infty,b_1]\times (-\infty,b_2]$ $(-\infty,a_1]\times (-\infty,b_2]$ $(-\infty,a_1]$.

Definition 2.8. Let (χ, A) be a measure space. $B \in A$. trace σ -algebra over B is defined as $\{A \in \mathcal{A} : A \subset B\}$.

Remark (Revision on continuity). Let $\varphi:(\chi_1,d_1)\to (\chi_2,d_2)$ be a map between metric spaces. Let φ be continuous.

On the one hand, we know the ε - δ definition, but we also consider $\varphi^{-1}(O_2) \in \mathcal{O}_1 \forall O_2 \in \mathcal{O}_2$ (set of open sets)

Definition 2.9 (Measurable maps). Let $\varphi:(\chi_1,\mathcal{A}_1)\to(\chi_2,\mathcal{A}_2)^1$

$$\iff \varphi^{-1}(A_2) \in \mathcal{A}_1 \forall A_2 \in \mathcal{A}_2$$

Lemma 2.10. The composition of measurable maps is measurable.

$$\varphi: (\chi_1, \mathcal{A}_1) \to (\chi_2, \mathcal{A}_2)$$

$$\Psi: (\chi_2, \mathcal{A}_2) \to (\chi_3, \mathcal{A}_3)$$

with φ and Ψ measurable.

$$\implies \Psi \circ \varphi : (\chi_1, \mathcal{A}_1) \to (\chi_3, \mathcal{A}_3)$$

is measurable. (trivial to prove)

Theorem 2.10.1. Let \mathcal{E}_2 be the generator of some algebra \mathcal{A}_2 . Then $\varphi:(\chi_1,\mathcal{A}_1)\to\chi_2$ in regards of \mathcal{A}_2 is measurable if and only if $\varphi^{-1}(E_2)\in\mathcal{A}_1 \forall E_2\in\mathcal{E}_2$.

Proof. \Longrightarrow trivial

Example. $f: \mathbb{R} \to \mathbb{R}$ is monotonically increasing. $f^{-1}(-\infty, b] = \{x: f(x) \leq b\}$ is in the Borel-sigma algebra \mathcal{B} . So f is measurable.

$$\begin{array}{l} \textbf{Definition.} \ \, \overline{\mathbb{R}} \coloneqq \mathbb{R} \cup \{-\infty, +\infty\} \\ \mathcal{B}_{\overline{\mathbb{R}}} = \{B, B \cup \{-\infty\} \,, B \cup \{+\infty\} \,, B \cup \{\pm\infty\} : B \in \mathcal{B}_{\mathbb{R}} \} \end{array}$$

Example 2.11. Let $f_1,\ldots,f_n:\mathbb{R} o\overline{\mathbb{R}}$ measurable. $f=\max\{f_1,\ldots,f_n\}$.

$$f^{-1}([-\infty,b]) = \{x: f(x) \leq b\} = \{x: f_k(x) \leq b, k = 1, \dots, n\} = \bigcap_{k=1}^n \underbrace{\{x: f_k(x) \leq b\}}_{f_k^{-1}[-\infty,b]} \in \mathcal{B}$$

Equivalently, $\min \{f_1, \dots, f_n\}$ is measurable. Equivalently, $f_n : \mathbb{R} \to \overline{\mathbb{R}}$ is measurable $(n \in \mathbb{N})$. $\implies f = \sup \{f_n : n \in \mathbb{N}\}$ is measurable.

$$\begin{split} f^{-1}(\infty,b] &= \{x: \sup f_n(x) \leq b\} = \{x: f_n(x) \leq b \forall n\} \\ f^{-1}[-\infty,b) &= \{x: \sup f_n(x) < b\} \subset \{x: f_n(x) < b \forall n\} \end{split}$$

$$\bigcap_{n=1}^{\infty}\underbrace{f_n^{-1}[-\infty,b]}_{\in\mathcal{B}}\in\mathcal{B}$$

Actually, $\varphi:\chi_1 \to \chi_2$, but we don't want to forget about the associated σ -algebras

Let f_n be measurable functions.

$$\limsup_{n\to\infty}f_n=\inf_n\sup_{k\geq n}f_k$$

The supremum of measurable functions is measurable (see Lemma 2.10). The infimum as well. So the result is measurable.

$$\liminf_{n\to\infty} f_n = \sup_n \inf_{k\geq n} f_k$$

Equivalently, the result is measurable.

Especially, if $f_n \to f$ pointwise, and all f_n are measurable, then also limit f is measurable.

How to determine measurability? Show that pre-images of generators are in the σ -algebra.

Theorem 2.11.1. Let $f:(\chi,\mathcal{A}) \to \overline{\mathbb{R}}$ be measurable $(n \in \mathbb{N})$

$$\implies \inf f_n, \sup f_n, \liminf f_n, \limsup f_n$$

are also measurable.

↓ This lecture took place on 2018/10/08.

2.3 Simple properties of measures

A monotonically increasing sequence $(A_n)_{n\in\mathbb{N}}$ of sets is given by $A_1\subset A_2\subset A_3\subset A_3$

Theorem 2.11.2. Let (χ, \mathcal{A}, μ) .

- I. $A_1,\ldots,A_n\in\mathcal{A},A_i\cap A_j=0 \ \forall i\neq j \implies \mu\left(\bigcup_{k=1}^nA_n\right)=\sum_{k=1}^n\mu(A_n)$
- 2. $\mu(B) = \mu(A \cap B) + \mu(A^C \cap B)$ for $A, B \in \mathcal{A}$
- 3. $A \subset B \implies \mu(A) \leq \mu(B)$ for $A, B \in \mathcal{A}$
- 4. $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$
- 5. Let $(A_n)_{n\in\mathbb{N}}$ be a monotonically increasing sequence of $\mathcal A$ and $A=\bigcup_{n=1}^\infty A_n=\lim_{n\to\infty}A_n$, then $\mu(A)=\lim_{n\to\infty}\mu(A_n)$ "Continuity from below"
- 6. Let A_n be a monotonically decreasing sequence of \mathcal{A} . $A=\bigcap_{n=1}^{\infty}A_n=\lim A_n$.
- 7. A_n arbitrary $\implies \mu\left(\bigcup_{n=1}^{\infty}A_n\right) \leq \sum_{n=1}^{\infty}\mu(A_n)$

Proof of continuity from below. Consider a monotonically increasing sequence of \mathcal{A} . Consider $B_1=A_1, B_k=A_k$ A_{k-1} and $k\geq 2$. Sets B_i and B_j are disjoint with $i\neq j$.

Then $B_1 \cup \cdots \cup B_n = A_n$ and $\bigcup_{k=1}^{\infty} B_k = A$.

$$\mu(A) = \sum_{k=1}^{\infty} \mu(B_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k) = \lim_{n \to \infty} \mu\left(\bigcup_{k=1}^{n} B_k\right) = \lim_{n \to \infty} \mu(A_n)$$

$$A'_n = A_1 \quad A_n \qquad \nearrow A_1 \quad A$$

$$\mu(A_1 \quad A_n) = \mu(A'_n) \qquad \nearrow \mu(A_1 \quad A)$$

What about the measure of intersected set in infinity? $A\cap B=A$ and $\mu(B)=\mu(A)+\mu(A^C\cap B)$. What happens if $\mu(A)=+\infty$ and $\mu(A^C\cap B)=-\infty$?

Remark. How to compute algebraically with the extended real numbers?

$$\pm \infty + a = \pm \infty \quad (a \in \mathbb{R})$$

$$+\infty \cdot a = \begin{cases} +\infty & a > 0 \\ 0 & a = 0 \\ -\infty & a < 0 \end{cases}$$

0 for a = 0 makes sense in measure theory, but not in calculus.

If
$$\mu(A_1)<\infty$$
, then $\mu(A_1-A_n)=\mu(A_1)-\mu(A_n)$ and $\mu(A_1-A)=\mu(A_1)-\mu(A)$.

Remark (Reminder).

$$\limsup a_n \coloneqq \lim_{n \to \infty} \sup_{k > n} a_k$$

What about (A_n) arbitrary?

$$\limsup A_n = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} A_k$$

$$\lim\inf A_n = \bigcup_{n=1}^{\infty} \bigcap_{k>n} A_k$$

Property 7 can be shown as generalization of $\mu\left(\bigcup_{n=1}^{N}A_{n}\right)\leq\sum_{n=1}^{N}\mu(A_{n})$

Example (Simplest example). $\chi=\{x_n:n\in\mathbb{N}\}.$ $\mathcal{A}=p(\chi).$ Fix $\mu(\{x_n\}).$

$$\sim \mu(A) = \sum_{n: x_n \in A} \mu(x_n)$$

 $\mu(x_n) = 1$ gives a counting measure.

Let $\mathcal E$ be the generator of $\mathcal A=\sigma(\mathcal E).$ A stable set by intersection is given by $E_1,E_2\in\mathcal E\implies E_1\cap E_2\in\mathcal E.$

Theorem 2.11.3 (Uniqueness of measures). Let μ, ν be measures on \mathcal{A} with $\mu|_{\mathcal{E}} = \nu|_{\mathcal{E}}$. $\Rightarrow \mu = \nu$ on \mathcal{A} .

 $\chi \in \mathcal{E}$ and $\mu(\chi) = \nu(\chi) < \infty$ or $\chi = \bigcup_n E_n$ with $E_n \in \mathcal{E}$ and $\mu(E_n) = \nu(E_n) < \infty$.

Definition 2.12. *Let* $\mathcal{E} \subset \mathcal{P}(\chi)$ *be a semiring over* χ *. If*

- 1. $\emptyset \in \mathcal{E}$
- 2. $A, B \in \mathcal{E} \implies A \cap B \in \mathcal{E}$
- 3. $A, B \in \mathcal{E}$. $\Longrightarrow \exists C_1, \dots, C_k \in \mathcal{E}$ pairwise disjoint : A $B = \bigcup_{i=1}^k C_i$.

What is the difference compared to a ring? Let $A, B \in \mathcal{R} \implies (A \cap B \in \mathcal{E} \land A \triangle B \in \mathcal{E})$.

Theorem 2.12.1 (Extension theorem by Caratheodory). $\mu:\mathcal{E}$ (semiring) $\to \{0,\infty\}$ with

- 1. $\mu(\emptyset) = 0$
- 2. $(\chi \in \mathcal{E} \text{ and } \mu(\chi) < \infty) \text{ or } (\chi = \bigcup_{n=1}^{\infty} E_n, E_n \in \mathcal{E}, \mu(E_n) < \infty)$
- 3. μ is σ -additive on $\mathcal E$, hence (A_n) is a sequence in $\mathcal E$, pairwise disjoint and $\bigcup_{n=1}^\infty A_n \in \mathcal E$

$$\implies \mu\left(\bigcup_{n=1}^\infty A_n\right) = \sum_n \mu(A_n)$$

Then μ has a (unique) continuation for a measure on $\mathcal{A} = \sigma(\mathcal{E})$.

2.4 Construction of the Lebesgue measures and similar ones

Let $\chi = \mathbb{R}$ or $\chi = \overline{\mathbb{R}}$.

$$\mathcal{E} = \{(a, b] : a, b \in \mathbb{R}, a < b\}$$

is semiring.

Let $F: \mathbb{R} \to \mathbb{R}$ be monotonically increasing and right-sided continuous. Let $\mu(a,b] \coloneqq F(b) - F(a)$. Properties 1 and 2 of the extension theorem are satisfied. We show finite additivity of property 3 in three steps:

1. If $(a,b]=\bigcup_{k=1}^n(a_k,b_k]$ can be sorted. $a_1=a,a_{k+1}=b_k$ for $k=1,\dots,n-1$ and $b_n=b$. We get a telescoping sum such that

$$\sum_{b=1}^n (F(b_k)-F(a_k))=F(b)-F(a)$$

2. Also $(a_1, b_1], \dots, (a_n, b_n]$. Disjoint subintervals of (a, b] are

$$\implies \sum_{k=1}^n \mu(a_k,b_k] \le \mu(a,b]$$

3.
$$(a,b]=\bigcup_{n=1}^{\infty}(a_n,b_n]$$
 (a)
$$\bigcup_{n=1}^{N}(a_n,b_n]\subset(a,b]$$

$$\sum_{n=1}^{N}\mu(a_n,b_n]\leq\mu(a,b]\forall N$$

$$\Longrightarrow\sum_{n=1}^{\infty}\mu(a_n,b_n]\leq\mu(a,b]$$

(b) Let $\varepsilon > 0$, then $\exists a' \in (a,b] : F(a') - F(a) < \varepsilon$

$$\begin{split} \exists b_n' > b : F(b_n') - F(b_n) < \frac{\varepsilon}{2^n} \\ [a',b] \subseteq (a,b] \subset \bigcup_n (a_n,b_n] \subset \bigcup_n (a_n,b_n') \\ \Longrightarrow \exists N : (a',b) \subset [a',b] \subset \bigcup_{n=1}^N (a_n,b_n') \subset \bigcup_{n=1}^N (a_n,b_n') \end{split}$$

But these intervals in \bigcup are not necessarily non-overlapping any more. But this is no problem as we can split them into disjoint sets.

$$\begin{split} \mu(a',b] & \leq \sum_{n=1}^N \mu(a_n,b_n'] \\ \mu(a',b] & = F(b) - F(a') \leq \sum_{n=1}^N F(b_n') - F(a_n) \leq \sum_{n=1}^N \left(F(b_n) - F(a_n) + \frac{\varepsilon}{2^n} \right) \\ \text{with } F(b) - F(a') & \geq F(b) - F(a) - \varepsilon. \\ \mu(a,b] & \leq \sum_{n=1}^\infty \mu(a_n,b_n] + 2\varepsilon \quad \forall \varepsilon > 0 \end{split}$$

↓ This lecture took place on 2018/10/15.

Theorem 2.12.2. Let $\mathcal E$ be semiring over χ and $\mu:\mathcal E\to [0,\infty]$ on $\mathcal E$ be σ -additive and σ -finite. Then there exists exactly one continuaton for measure on $\sigma(\mathcal E)$.

Let $F: \mathbb{R} \to \mathbb{R}$ be monotonic and right-sided continuous.

$$\mathcal{E} = \{(a,b] \ | \ a,b \in \mathbb{R}, a \leq b\} \qquad \mu(a,b] = F(b) - F(a)$$

Now consider the special case F(x) = x. This define the Lebesgue measure on $(\mathbb{R}, \mathcal{B})$.

Theorem 2.12.3. λ is the only measure on $(\mathbb{R}, \mathcal{B})$ with

1.
$$\lambda(B+C) = \lambda(\{x+c \mid x \in B\}) = \lambda(B) \quad \forall B \in \mathcal{B} \forall c \in \mathbb{R}$$

2.
$$\lambda(0,1] = 1$$

Proof. Does λ satisfy these properties? Yes, λ has properties (1) and (2), because

(1) is correct $\forall (a,b] \in \mathcal{E}$

$$c \in \mathbb{R} : \{B \in \mathcal{B} \mid \lambda(B+c) = \lambda(B)\}\$$

is σ -algebra and contains \mathcal{E} , so also $\sigma(\mathcal{E})$

(2) trivial

Is λ unique? Let λ be the measure with the two properties.

$$(0,1] = \bigcup_{k=1}^{n} \left(\frac{k-1}{n}, \frac{k}{n}\right]$$

$$1 = \mu(0,1] = \sum_{k=1}^{n} \mu\left(\left(0, \frac{1}{n}\right] + \frac{k-1}{n}\right) = n\mu\left(0, \frac{1}{n}\right]$$

$$\mu\left(\frac{k-1}{n}, \frac{k}{n}\right] = \frac{1}{n} \quad \forall k \in \mathbb{Z}$$

$$\implies \mu(a,b] = b - a \qquad a,b \in \mathbb{Q}$$

$$\mu|_{\mathcal{E}_{\mathbb{Q}}} = \lambda_{\mathcal{E}_{\mathbb{Q}}} \qquad \mathcal{E}_{\mathbb{Q}} = \{(a,b] \mid a,b \in \mathbb{Q}, a \leq b\}$$

Closed under finite intersection, $\sigma(\mathcal{E}_{\mathbb{Q}}) = \mathcal{B}$:

$$(a,b) = \bigcup_n (a,b-\frac{1}{n}] \qquad (a,b] = \bigcap_n (a,b+\frac{1}{n}) \qquad \sigma\text{-finite}$$

$$\mu(-n,n] < \infty \qquad \bigcup_{n=1}^\infty (-n,n] = \mathbb{R} \qquad \sigma\text{-finite}$$

$$\implies \mu = \lambda \text{ (distinct extensionability)}$$

We apply the principle analogously to $(\mathbb{R}^d, \mathcal{B}_{\mathbb{R}^d})$.

$$\mathcal{E} = \{(a,b] = (a_1,b_1] \times \cdots \times (a_n,b_n] \ | \ a_i \leq b_i \in \mathbb{R}\}$$

is semiring over \mathbb{R}^d . In \mathbb{R}^2 , you can draw rectangles and their induced area based on their geometrical relation to each other. $F: \mathbb{R}^d \to \mathbb{R}$ complete is *monotonic* if

$$\mu(a,b]: \prod_{i=1}^d \left(F_i(b_i) - F_i(a_i)\right) = \sum_{x \in \{a_1,b_1\} \times \dots \times \{a_d,b_d\}} (-1)^{|\{i\,|\, x_i = a_i\}|} \qquad F_1(x_1) F_2(x_2) \dots F_d(x_d)$$

Simplest case: $F_1,\dots,F_d:\mathbb{R}\to\mathbb{R}$ is monotonically right-sided continuous.

$$\begin{split} \sum_{x \in \{a_1,b_1\} \times \dots \times \{a_d,b_d\}} (-1)^{|\{i\,|\,x_i=a_i\}|} F(x) &\geq 0 \forall (a,b] \in \mathcal{E} \\ F(b_1,b_2) - F(a_1,b_2) - F(a_1,b_1) + F(a_1,a_2) \end{split}$$

F is right-sided in every coordinate, thus $\mu(a,b] = \sum_{x \in \{a_1,b_1\} \times \dots \times \{a_d,b_d\}} (-1)^{|\{i\,|\,x_i=a_i\}|}$

2.5 Lebesgue measure on $(\mathbb{R}^d,\mathcal{B}_{\mathbb{R}^d})$

We can extend the previous definition from \mathbb{R} to \mathbb{R}^d . Thus λ is the only measure on $(\mathbb{R}^d, \mathcal{B}_{\mathbb{R}^d})$ with

1.
$$\lambda^d(B+c) = \lambda(B) \forall B \in \mathbb{B}_{\mathbb{R}^d} \forall c \in \mathbb{R}^d$$

2.
$$\lambda((0,1]^d) = 1$$

Theorem 2.12.4. Let $H \subset \mathbb{R}^d$ be a hyperplane. Then $\lambda_d(H) = 0$.

Proof. Without loss of generality, $\vec{O} \in H$ is subspace with dimension d-1. Why is $H \in \mathcal{B}_d$ true? The Lebesgue measure is based on open sets. The σ -algebra requires the complement, thus closed sets are also given. The measure of closed sets is zero.

 $\left\{ ec{b}_{1},\ldots,ec{b}_{d-1}
ight\}$ is an orthonormal basis of H.

$$\begin{split} Q &= \left\{c_1 \vec{b}_1 + \dots + c_{d-1} \vec{b}_{d-1} \ | \ 0 \leq c_i \leq 1\right\} \in \mathcal{B}_{\mathbb{R}^d} \\ \vec{b}_d \bot \vec{b}_i \ (i = 1, \dots, d-1), \left\| \vec{b}_d \right\| &= 1. \\ Q + q \cdot \vec{b}_d \qquad q \in \mathbb{Q} \cap [0, 1] \text{ pairwise disjoint} \\ \bigcup_{q \in \mathbb{Q} \cap [0, 1]} Q + q \vec{b}_d \subset \left\{c_1 \vec{b}_1 + \dots + c_d \vec{b}_d \ | \ 0 \leq c_i \leq 1\right\} \text{ compact} \end{split}$$

$$\begin{split} \infty > \lambda_d \left(\bigcup_{q \in \mathbb{Q} \cap [0,1]} Q + q \cdot \vec{b}_d \right) &= \sum_{q \in \mathbb{Q} \cap [0,1]} \lambda_d(Q) \\ \implies \lambda_d(Q) &= 0 \qquad H \subset \bigcup_{\vec{x} \in \mathbb{Z}^d} (Q + \vec{x}) \end{split}$$

$$\lambda_d(H) \leq \sum_{\vec{x} \in \mathbb{Z}^d} \lambda_d(Q + \vec{x}) = 0$$

Theorem 2.12.5. Let $\varphi: \mathbb{R}^d \to \mathbb{R}^d$ be linear and bijective. $\varphi(\vec{x}) = M \cdot \vec{x}$ with M as regular matrix.

Linear implies continuous in finite dimensions. Every continuous map is measurable.

 $\Rightarrow \varphi$ is measurable and $\lambda_d(\varphi(B)) = \det(\varphi) \cdot \lambda_d(B)$. This holds even if φ is not bijective, because then $\det(\varphi) = 0$ and thus we have a factor zero. If φ is not bijective,

then the matrix has lower rank. The image is a hyperplane or is contained in a hyperplane. So the measure is zero.

Proof. $\mu_{\varphi}(B) \coloneqq \lambda_d(\varphi(B))$ is measure on $\mathcal{B}_{\mathbb{R}^d}$ (why? left as an exercise to the reader).

$$\mu_{\varphi}(B+\vec{c}) = \lambda_d(\varphi(B+\vec{c})) = \lambda_d(\varphi(B) + \underbrace{\varphi(\vec{c})}_{X}) = \mu_{\varphi}(B)$$

$$\frac{\mu_\varphi}{\mu_\varphi((0,1]^d)} = \lambda_d$$

Show that: $\mu_{\varphi}((0,1]^d] = \left| \det \varphi \right|$

Case 1 $\varphi(M)$ is orthogonal $M^* = M^{-1}$.

$$\varphi(B_1(\vec{0})) = B_1(\vec{0}) \qquad 0 < \lambda_d(B_1(\vec{0})) < \infty$$

$$\begin{split} \frac{\lambda_d(B_1(\vec{0}))}{\mu_{\varphi}((0,1]^d)} &= \frac{\mu_{\varphi}(B_1(\vec{0}))}{\mu_{\varphi}((0,1]^d)} = \lambda_d(B_1(\vec{0})) \\ \mu_{\varphi} &= \lambda_d \end{split}$$

Case 2

$$\begin{split} M = D = \begin{pmatrix} d_1 & 0 \\ & \ddots \\ 0 & d_d \end{pmatrix} \qquad d_i > 0 \\ & \varphi(\vec{e}_i) = d_i \cdot e_i \\ & \varphi((0,1]^d) = (0,d_1] \times (0,d_2] \times \dots (0,d_d] \\ & \varphi_{\wp}((0,1]^d) = \det D \end{split}$$

Generic case Let M be any matrix. We consider the singular value decomposition $M=O_1\cdot D\cdot O_2$ with O_1,O_2 orthogonal and D is a non-negative diagonal matrix

$$M^*M \rightsquigarrow O^*D^2O$$

Then $\varphi = \varphi_1 \circ \psi \circ \varphi_2$. φ_1 and φ_2 are orthogonal. Let D be the representation matrix of ψ . Diagonal entries are positive because it is regular.

$$|\det \varphi| = \det(\psi)$$

Combining these results gives us the theorem.

↓ This lecture took place on 2018/10/16.

15

2.6 Sigma-algebra generated by maps

Definition 2.13. A_i ($i \in I$) is σ -algebra over χ .

$$\bigvee_{i \in I} \mathcal{A}_i = \sigma \left(\bigcup_{i \in I} \mathcal{A}_i \right)$$

Definition 2.14 (Image σ -algebra and Push-forward measure). Push-forward measures are called Bildmaß (χ, \mathcal{A}) is a measure space. $\varphi : \chi \to \chi'$.

$$\varphi(\mathcal{A}) = \left\{ A' \subset \chi' \mid \varphi^{-1}(A') \in \mathcal{A} \right\}$$

 $\varphi(\chi, \mathcal{A}) \to (\chi', \mathcal{A}')$ is measurable $\iff \varphi(\mathcal{A}) \supset \mathcal{A}'$.

 (χ,\mathcal{A},μ) is a measure space, $\varphi:\chi\to\chi'$. μ_φ is the push-forward measure on $(\chi',\varphi(\mathcal{A}))$.

$$\mu_\varphi(A') = \mu(\varphi^{-1}(A'))$$

Definition 2.15 (Generated σ -algebra).
1. χ , (χ', \mathcal{A}') is a measurable space. $\varphi: \chi \to \chi'$

$$\sigma(\varphi) = \left\{ \varphi^{-1}(A') \ | \ A' \in \mathcal{A}' \right\}$$

Iff $\varphi:(\chi,\mathcal{A})\to(\chi',\mathcal{A}')$ is measurable, $\sigma(\varphi)\subset\mathcal{A}$.

2. $\chi, (\chi_i, \mathcal{A}_i), i \in I$ are measure spaces

$$\psi_i:\chi\to\chi_i\forall i$$

The σ -algebra generated by ψ_i ($i \in I$) is the smallest σ -algebra that contains such a set. $\bigvee_{i \in I} \sigma(\psi_i)$. Is the smallest σ -algebra on χ which are measurable for all ψ_i .

Example. $\varphi:(\mathbb{R}^2,\mathcal{B})\to(\mathbb{R},\mathcal{B}).$

$$\varphi(x,y) = \sqrt{x^2 + y^2} \qquad \sigma(\varphi) = \left\{ B \subset \mathbb{R}^2 \mid B \text{ rotation invariant in } 0.000001 \right\}$$

Theorem 2.15.1. Let (χ, \mathcal{A}) be a measure space. Let (χ', \mathcal{A}') be another one. Let (χ_i, \mathcal{A}_i) be measure spaces with $(i \in I)$. Then we can map from (χ, \mathcal{A}) to (χ', \mathcal{A}') with measurable φ and we can map (χ', \mathcal{A}') to (χ_i, \mathcal{A}_i) with ψ_i such that $\mathcal{A}' = \sigma(\psi_i : i \in I)$. Then φ is measurable iff $\psi_i \circ \varphi$ is measurable $\forall i \in I$.

Proof. \Longrightarrow immediate.

 \leftarrow

$$\begin{split} \mathcal{E}' &= \bigcup \sigma(\psi_i) \text{ generates } \mathcal{A}' \\ A' \subset \mathcal{E}' \implies \exists i: A' \in O(\psi_i) \text{, so } A' = \psi_i^{-1}(A_i) \text{ with } A_i \in \mathcal{A}_i. \\ \varphi^{-1}(A) &= \psi^{-1}(\psi_i^{-1}(A_i)) = (\underbrace{\psi_i \circ \varphi}_{\in \mathbb{R}})^{-1}(A_i) \end{split}$$

2.7 Product space

Let χ_n, \mathcal{A}_n and $n=1,\dots,N$ with $N<\infty$. Let $\chi=\prod_{n=1}^N \chi_n$ ("product sigma-algebra") generated by $\mathcal{E}=\left\{\prod_{n=1}^N A_n\cdot A_n\subset A_n \forall n\right\}$.

Consider N=2. $\chi=\chi_1\times\chi_2$. $\mathcal{E}=\{A_1\times A_2\mid A_n\in\mathcal{A}_n, n=1,2\}$. Product σ -algebra: $\mathcal{A}_1\otimes\mathcal{A}_2$.

Commonly, we use the notation $(\chi, \otimes \mathcal{A}_n) = \otimes (\chi_n, \mathcal{A}_n)$

Lemma 2.16.

$$\bigoplus_{n=1}^{N} \mathcal{A}_n = \sigma\left(\pi_n : n = 1, \dots, N\right)$$

where $\pi_n:\chi \to \chi_n$ is the n-th projection.

Hint: $\mathcal{E}_0 = \left\{\prod_{n=1}^N A_n \text{ with } A_n = \chi_n \forall n \text{ expect for one and this } A_n \in \mathcal{A}_n \right\}$ also generates $\otimes \mathcal{A}_n$.

This lemma holds obviously.

Theorem 2.16.1. $\varphi:(\chi,\mathcal{A})\to \otimes_{n=1}^N(\chi_n,\mathcal{A}_n)$, where N denotes finite or countable, is measurable $\iff \pi_n\circ\varphi:(\chi,\mathcal{A})\to (\chi_n,\mathcal{A}_n)$ is measurable $\forall n$. This is a special case of Theorem 2.15.1.

Prospect: Product measure.

Let $(\chi_1, \mathcal{A}_1) \otimes (\chi_2, \mathcal{A}_2, \mu_2)$. How to generate this? Well,

$$= (\chi_1 \times \chi_2, \mathcal{A}_1 \otimes \mathcal{A}_2, \mu_1 \otimes \mu_2)$$

on $\mathcal{E}: \mu_1 \otimes \mu_2(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$ (compare it to the trivial case of the area of a rectangle in \mathbb{R}^2) where \mathcal{E} is a semiring.

3 Integration of non-negative functions

Let (χ, \mathcal{A}, μ) be a measure space. Consider $f: (\chi, \mathcal{A}) \to (\overline{\mathbb{R}}, \mathcal{B})$ How about $\int_{\chi} f \, d\mu$? First of all, $f: (\chi, \mathcal{A}) \to [0, \infty]$. We know construct the Lebesgue integral:

First step Consider simple functions (like step functions). f takes up only finitely many different values. $z_1,\dots,z_n(\geq 0):[f=z_k]\coloneqq\{x\in\chi\mid f(x)=z_k\}=f^{-1}(\{z_k\})\in\mathcal{A}.$ We restrict $z_i\geq 0$ to avoid issues like $+\infty+(-\infty)$.

$$\chi = \bigcup_{k=1}^{n} [f = z_k]$$

Definition 3.1.

$$\int f\,d\mu = \sum_{k=1}^n z_k \mu[f=z_k]$$

Consider that $z_k\mu[f=z_k]$ might go to infinity. We commonly denote $\sum_{z\in\mathbb{R}}z\mu[f=z]$ in the real-valued case to avoid indices.

Second step Let $f:(\chi,\mathcal{A})\to [0,\infty]$ be measurable.

$$\int_{\chi} f \, d\mu \coloneqq \sup \left\{ \int_{\chi} s \, d\mu : s \text{ simple}, 0 \le s \le f \right\}$$

So the Riemann integral approximates the area with upper and lower bounds for rectangles. For the Lebesgue integral, we split the function into horizontal slices in $\mathbb R$. Then we consider the differences of the function values between two consecutive slices. The important point is that this does not require $\mathbb R$, but some χ and therefore is more generic.

Third step Let $f:(\chi,\mathcal{A})\to\mathbb{R}$ and $f=f^+-f^-$. Let $f^+=\max\{f,0\}$ and $f^-=\min\{f,0\}$. If $\int_\chi f^+\,d\mu=\int_\chi f^-\,d\mu=\infty:\int_\chi f\,d\mu$ is not defined. Otherwise $\int_\chi f\,d\mu=\int_\chi f^+\,d\mu-\int_\chi f^-\,d\mu$.

Does this definition/construction of the Lebesgue integral satisfy the desired properties of linearity/monotonicity/...? In the following, we will denote "simple" functions always as s.

Definition 3.2. Let $f:(\chi,\mathcal{A})\to [0,\infty]$ be measurable. Let $A\in\mathcal{A}$.

$$\int_A f \, d\mu \coloneqq \int \mathbf{1}_A f \, d\mu$$

Lemma 3.3. Let $s:(\chi,\mathcal{A})\to [0,\infty]$ be a simple function. Then $\nu_s(A)=\int_A s\,d\mu$ is a measure on (χ,\mathcal{A}) .

$$\nu_s(A) = \sum_{k=1}^n z_k \mu([s=z_k] \cap A)$$

because $\mathbf{1}_A \cdot s = \sum_{k=1}^n z_k \mathbf{1}_{[s=z_k]} \mathbf{1}_A + 0 \cdot \mathbf{1}_{A^C}$.

 $A \mapsto \mu([s=z_k] \cap A)$ is a measure $\forall k$.

 \downarrow This lecture took place on 2018/10/22.

Definition 3.4. Let (χ, \mathcal{A}, μ) be a measure space. $s : (\chi, \mathcal{A}) \to (\mathbb{R}, \mathcal{B})$ is called simple if $s(\chi)$ is finite. $s \ge 0$.

$$\int_{\chi} s \, d\mu \coloneqq \sum_{z} z \cdot \mu[s = z]$$

Trivial: If $s=\sum_{j=1}^m c_j\cdot \mathbf{1}_{A_j}, A_j\in \mathcal{A}$ then s is simple. A_j are not necessarily pairwise disjoint and $\int_{\chi} s\,d\mu=\sum_{j=1}^n c_j\mu(A_j).$

Proof. $\vec{\varepsilon} \in \left\{-1,1\right\}^m$ with $A^1 \coloneqq A, A^{-1} \coloneqq A^C$. $\vec{\varepsilon} = (\varepsilon_1,\dots,\varepsilon_m)$. E.g. $A_1 \cap A_2 \cap A_3^C = B_{1,1,-1}$.

$$B_{\vec{\varepsilon}} = A_1^{\varepsilon_1} \cap A_2^{\varepsilon_2} \cap \dots \cap A_m^{\varepsilon_m}$$

is pairwise disjoint. On $B_{\vec{\varepsilon}}, s$ has value $\sum_{\varepsilon_i=1} c_j = b_{\vec{\varepsilon}}$

$$\implies s = \sum b_{\vec{\epsilon}} \mathbf{1}_{B_{\vec{\epsilon}}}$$

and $\int \leq d\mu = \sum_{\vec{\varepsilon}} b_{\vec{\varepsilon}} \mu(B_{\vec{\varepsilon}}) = \cdots = \sum c_j \mu(A_j)$ (where $\sum_{\vec{\varepsilon}} b_{\vec{\varepsilon}} \mu(B_{\vec{\varepsilon}})$ is the disjoint case and $\sum c_j \mu(A_j)$ is generic).

$$\sum_{\vec{\varepsilon}} \sum_{j: \varepsilon_j = 1} c_j \cdot \mu(B_{\vec{\varepsilon}}) = \sum_j c_j \sum_{\vec{\varepsilon}: \varepsilon_j = 1} \mu(B_{\vec{\varepsilon}}) = \sum_j c_j \mu(A_j)$$

Corollary 3.5. Let $s_1, s_2 : \chi \to [0, \infty]$ be simple. Then $s = \alpha \cdot s_1 + \beta \cdot s_2$ ($\alpha, \beta \geq 0$) is simple and $\int s \, d\mu = \alpha \cdot \int s_1 \, d\mu + \beta \int s_2 \, d\mu$.

Theorem 3.5.1 (Markov inequality). Let $z \in \mathbb{R}$. Let $f \geq 0$.

$$z \cdot \mu[\underbrace{f \geq z}_{\{x \in \chi \mid f(x) \geq z\}}] \leq \int f \, d\mu$$

Proof.

$$s = z \cdot \mathbf{1}_{[f > z]} \le f$$

 $\begin{aligned} &\text{If } x \in [f \leq z]: z \cdot 1 \leq f(x). \\ &\text{If } x \notin [f \leq z]: z \cdot 0 \leq f(x). \end{aligned}$

$$s$$
 is simple, so $z\mu[f\geq z]=\int s\,d\mu\leq\int f\,d\mu.\ s=0:\mathbf{1}_{[f< z]} imes z\cdot\mathbf{1}_{[f>z]}.$

Definition 3.6. A statement holds almost everywhere if $\forall x \in \mathcal{A} : \mu(A^C) = 0$. So A^C is a null set, i.e. of measure zero.

Theorem 3.6.1.

$$\forall f,g:\chi \to [0,\infty]$$
 measurable

 $f \leq g$ almost everywhere $\implies \int f \, d\mu \leq \int g \, d\mu$

- **2.** f = g almost everywhere $\implies \int f d\mu = \int g d\mu$
- 3. $\int f d\mu = 0 \implies f = 0$ almost everywhere
- 4. $\int f d\mu < \infty \implies f < \infty$ almost everywhere

Proof. 1. Let s be simple, $0 \le s \le f$. $s \cdot \mathbf{1}_{[f \le g]} \le g$ where $s \cdot \mathbf{1}_{[f \le g]}$ is simple. $\int s \cdot \mathbf{1}_{[f \le g]} \, d\mu \le \int g \, d\mu. \int s \cdot \mathbf{1}_{[f \le g]} \, d\mu = \int s \, d\mu.$ If $\forall s$ simple, $0 \le s \le f$, then

$$\int f \, d\mu = \sup \left\{ \int s \, d\mu \, \mid \, 0 \le s \le f, s \, \text{simple} \right\} \le \int g \, d\mu$$

2. $f \leq g$ almost everywhere and $f \geq g$ almost everywhere $\implies \int f \, d\mu = \int g \, d\mu$.

3. Markov inequality with $z=\frac{1}{n}$.

$$\begin{split} \frac{1}{n}\mu\left[f\geq\frac{1}{n}\right]&\leq\int f\,d\mu=0\implies\mu\left[f\geq\frac{1}{n}\right]=0\forall n\in\mathbb{N}\\ x\in\left[f\geq\frac{1}{n}\right]\implies x\in\left[f\geq\frac{1}{n+1}\right]\\ &\implies\mu\left[f\geq\frac{1}{n}\right]\rightarrow\mu\left[\bigcup\left[f\geq\frac{1}{n}\right]\right]=\mu\left[f>0\right]=0 \end{split}$$

4. z > 0, $s = z \cdot \mathbf{1}_{[f = \infty]} \le f$.

$$z\mu[f=\infty] = \int s\,d\mu \le \int f\,d\mu = M < \infty$$

$$\mu[f=\infty] \le \frac{M}{z} \qquad \forall z>0 \implies \mu[f=\infty] = 0$$

Theorem 3.6.2 (Levi's theorem about monotonic convergence). If $f_n:(\chi,\mathcal{A})\to [0,\infty]$ is measurable and pointwise monotonically increasing $(f_1\leq f_2\leq\dots)$ and $f=\lim_{n\to\infty} f_n$ then $\int f\,d\mu=\lim_{n\to\infty} \int f_n\,d\mu$

Proof. Because of (1) in the previous theorem, $\int f_n d\mu$ is monotonically increasing and $\leq \int f d\mu$, so $\lim \int f_n d\mu \leq \int f d\mu$.

 $(y)^+$ denotes the function y if $y \ge 0$ and 0 otherwise.

Show " \geq ". Let $0 \leq s \leq f$ be simple. Let $\varepsilon > 0$. $s_{n,\varepsilon} \coloneqq (s-\varepsilon)^+ \mathbf{1}_{[f_n \geq f - \varepsilon]}$ is a simple function. $s-\varepsilon \leq f-\varepsilon \leq f_n$. $s_{n,\varepsilon} \leq f_n$.

$$\begin{split} \sum_z (z-\varepsilon)^+ \mu \left[s = z, f_n > f - \varepsilon \right] &= \int s_{n,\varepsilon} \, d\mu \leq \int f_n \, d\mu \leq \lim \int f_n \, d\mu \\ s_{n,\varepsilon} &= \underbrace{\sum_{z \, (\text{values of } s)} (z-\varepsilon)^+ \mathbf{1}_{[s-z]}}_{(s-\varepsilon)^+} \mathbf{1}_{[f_n > f - \varepsilon]} \\ \left[f_n > f - \varepsilon \right] \nearrow \chi \qquad \left[s = z, f_n > f - \varepsilon \right] \nearrow \left[s - z \right] \\ &\Longrightarrow \sum_z (z-\varepsilon)^+ \mu [s = z] \leq \lim \int f_n \, d\mu \\ \varepsilon &\to 0 \implies \sum_z z \mu [s = z] \leq \lim \int f_n \, d\mu \end{split}$$

If z > 0, such that $\mu[s = z] = +\infty$. $0 < \varepsilon < z$.

Let $s_{n,\varepsilon}=(s-\varepsilon)^+\mathbf{1}_{[f_n\geq M\wedge (f-\varepsilon)]}$, where $a\wedge b$ denotes the minimum of a and b. Let $M\geq \max s$.

↓ This lecture took place on 2018/10/29.

Remark (Revision). Let s be a simple function. $s=\sum_{i=1}^n c_i \mathbf{1}_{A_i}$. $s=\sum_z z \mathbf{1}_{[s=z]}$ is a finite sum $\int s \, d\mu = \sum_z \mu[s=z] = \sum_{i=1}^n c_i \mu(A_i)$

This is independent of the representation.

Let $f:(\chi,\mathcal{A})\to [0,\infty]$ be measurable. Then we can approximate the integral of f using the integrals of simple functions.

$$\int f\,d\mu = \sup\left\{\int s\,d\mu\ |\ 0 \le s \le f, \ \mathrm{simple}\right\}$$

Remark (Properties). 1. $0 \le f \le f$ almost everywhere (wrt. μ) $\implies \int f \, d\mu \le \int g \, d\mu$

- 2. f = g almost everywhere (wrt. μ) $\Longrightarrow \int f d\mu = \int g d\mu$
- 3. $\int f d\mu = 0 \iff f = 0$ almost everywhere (wrt. μ)
- 4. $\int f d\mu < \infty \implies f < \infty$ almost everywhere

It is obvious if s is simple, then $\int s d\mu = \max \{ \int t d\mu \mid 0 \le t \le s \text{ simple} \}$

Theorem (Monotonic convergence). Let $f_n:(\chi,\mathcal{A}) \to [0,\infty]$ be measurable.

$$f_n \le f_{n+1} \forall n \qquad f = \lim_{n \to \infty} f_n \qquad \Longrightarrow \int f \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu$$

Lemma (Lemma by Fatou). Let $f_n:(\chi,\mathcal{A})\to [0,\infty]$ be measurable.

$$\implies \int \left(\lim_{n \to \infty} \inf f_n \right) d\mu \le \liminf_{n \to \infty} \int f_n d\mu$$

Proof.

$$\lim_{n\to\infty}\inf_{\underline{m\geq n}}f_m \qquad g_n \nearrow \liminf f_n$$

By the theorem of monotonic convergence,

$$\implies \int \left(\liminf f_n \right) \, d\mu = \int \lim g_n \, d\mu = \lim \int g_n \, d\mu$$

Lemma 3.7. Let $f:(\chi,\mathcal{A})\to [0,\infty]$ with countable $f(\chi)$.

$$\implies \int f \, d\mu = \sum_{z \in f(\chi)} z \mu[f = z]$$

Proof.

$$f(\chi) = \{z_n \mid n \in \mathbb{N}\}$$

$$f_n = \sum_{k=1}^n z_k \mathbf{1}_{[f=z_k]} \nearrow f \implies \int f \, d\mu = \lim \int f_n \, d\mu = \lim \sum_{k=1}^n z_k \mu[f=z_k]$$

The integral should be linear. We expect this for any integral.

Theorem 3.7.1. Let $f,g:(\chi,\mathcal{A})\to [0,\infty]$ be measurable. Let $\alpha\geq 0$.

1.
$$\int (\alpha f) \, d\mu = \alpha \int f \, d\mu$$
 (trivial to prove)

2.
$$\int (f+g) d\mu = \int f d\mu + \int g d\mu$$

Proof. 1. trivial

2. We represent f_n

$$f_n = \sum_{k=0}^{n2^n-1} \frac{k}{2^n} \mathbf{1}_{\left[\frac{k}{2^n} \le f < \frac{k+1}{2^n}\right)} + n \cdot \mathbf{1}_{[f \ge n]} \nearrow f$$

Compare with Figure 2. g analogously $\nearrow g$

Figure 2: Illustration of the lebesgue integral

Let
$$f_n,g_n$$
 be simple. $f_n+g_n\nearrow f+g$
$$\int (f+g)\,d\mu \stackrel{\text{monotonic convergence}}{=}\lim\int (f_n+g_n)\,d\mu$$

$$= \lim (\int f_n \, d\mu + \int g_n \, d\mu) \stackrel{\text{monotonic convergence}}{=} \int f \, d\mu + \int g \, d\mu$$

Unlike the Riemann integral, we use horizontal lines instead of vertical lines. Thus we partition the image, not the domain.

4 Integrable functions

Definition 4.1. Let $f:(\chi,d)\to \overline{\mathbb{R}}$ is measurable. If not $\int f^+d\mu=\int f^-d\mu=+\infty$, integral exists:

$$\int f\,d\mu=\int f^+\,d\mu-\int f^-\,d\mu$$

$$f^+=\max\left\{f,0\right\} \qquad f^-=\max\left\{-f,0\right\} \qquad f=f^+-f^- \qquad |f|=f^++f^-$$
 f is called integrable, if $\int f^+\,d\mu<\infty$ and $\int f^-\,d\mu<\infty$

$$\iff \int f \, d\mu$$
 exists and is finite

Remark 4.2 (Properties).

- 1. f is integrable \iff |f| is integrable and $|\int f d\mu| \le \int |f| d\mu$
- 2. f, g are integrable with $f \leq g$ almost everywhere wrt. $\mu \implies \int f d\mu \leq \int g d\mu$
- 3. f is integrable, $\alpha \in \mathbb{R} \implies \alpha \cdot f$ is integrable and $\int (\alpha \cdot f) d\mu = \alpha \cdot \int f d\mu$
- 4. f, g are integrable $\implies f + g$ is integrable and $\int (f + g) d\mu = \int f d\mu + \int g d\mu$

Proof. 1. *f* is integrable

$$:\iff \int f^{\pm}\,d\mu < \infty \iff \underbrace{\int f^{+}\,d\mu + \int f^{-}\,d\mu < \infty}_{\int |f|\,d\mu < \infty}$$

$$\begin{split} \left| \int f \, d\mu \right| &= \left| \int f^+ \, d\mu - \int f^- \, d\mu \right| \\ &\leq \int f^+ \, d\mu + \int f^- \, d\mu \\ &= \int |f| \, \, d\mu \end{split}$$

$$\begin{array}{l} \text{2. } f^+ - f^- \overset{\text{almost}}{\leq} g^+ - g^- \implies f^+ + g^- \overset{\text{a.e.}}{\leq} f^- + g^+ \\ \int f^+ \, d\mu + \int g^- \, d\mu = \int (f^+ + g^-) \, d\mu \leq \int \left(f^- + g^+ \right) \, d\mu = \int f^- \, d\mu + \int g^+ \, d\mu \\ \end{array}$$

$$\int f^+ d\mu - \int f^- d\mu \le \int g^+ d\mu - \int g^- d\mu$$

It is important to recognize that all integrals are finite.

3. For $\alpha=0$, the statement is true. Consider $\alpha>0$.

$$(\alpha f)^{\pm} = \alpha \cdot f^{\pm} \qquad \int \alpha f \, d\mu = \int \alpha \cdot f^{+} \, d\mu - \int \alpha \cdot f^{-} \, d\mu = \alpha \int f^{+} \, d\mu - \alpha \int f^{-} \, d\mu$$

Now consider $\alpha < 0$, or more simply $\alpha = -1$ (any negative number is the product of a positive number and -1):

$$(-f)^+ = f^-(-f)^- = f^+ \dots$$

$$\begin{aligned} \text{4. } & (f+g)^+ - (f+g)^- = f + g = f^+ + g^+ - (f^- + g^-) \\ & (f+g)^+ + f^- + g^- = (f+g)^- + f^+ + g^+ \\ & \int (f+g)^+ \, d\mu + \int f^- \, d\mu + \int g^- \, d\mu = \int (f+g)^- \, d\mu + \int f^+ \, d\mu + \int g^+ \, d\mu \\ & \int (f+g)^+ \, d\mu - \int (f+g)^- \, d\mu = \int f^+ \, d\mu - \int f^- \, d\mu + \int g^+ \, d\mu - \int g^- \, d\mu \end{aligned}$$

Riemann integral only works for \mathbb{R}^n . The Lebesgue integral works for any measure space.

Example 4.3. We consider the Riemann integral:

$$\pi = \int_{-\infty}^{\infty} \frac{\sin x}{x} \, dx \stackrel{\textit{Riemann}}{=} \lim_{c,d \to \infty} \int_{-c}^{d} \frac{\sin x}{x} \, dx \, \textit{exists}$$

If you consider $\frac{\sin x}{x}$ for one π , we have a positive and negative area. By Leibniz criterion, we have an alternating series and its limit is zero.

We consider the Lebesgue integral:

$$\int_{\mathbb{R}} \left| \frac{\sin x}{x} \right| \, dx = +\infty$$

 $\frac{\sin x}{x}$ is not Lebesgue-integrable. Because in case of the Lebesgue integral, we don't consider an alternating series, but need to consider |f|, which is non-negative and the series does not converge.

Theorem 4.3.1 (Dominated convergence theorem by Lebesgue). Let $f_n:(\chi,\mathcal{A})\to \overline{\mathbb{R}}$ be a sequence of measurable functions. $f_n\to f$ pointwise [almost everywhere wrt. μ]. There exists $g:(\chi,\mathcal{A})\to [0,\infty]$ integrable $[\int g\,d\mu<\infty]$.

$$|f_n| \leq g$$
 almost everywhere wrt. $\mu orall n \implies \int f \, d\mu = \lim_{n o \infty} \int f_n \, d\mu$

Proof. Without loss of generality, almost everywhere implies everywhere.

$$\begin{split} |f| &= \lim |f_n| \leq g \qquad \text{all of them are integrable} \\ g_n &= 2g - |f_n - f| \geq 0 \qquad g_n \to 2g \\ \lim\inf\int g_n \, d\mu \geq \int \left(\liminf g_n \right) \, d\mu \stackrel{g_n \to 2g}{=} \int \left(\lim g_n \right) \, d\mu = 2 \int g \, d\mu \\ &\int g \, d\mu - \limsup\int |f_n - f| \, d\mu = \liminf\int g_n \, d\mu = 2 \int g \, d\mu \\ \lim\sup\left|\int f_n \, d\mu - \int f \, d\mu\right| \leq \limsup\int |f_n - f| \, d\mu = 0 \end{split}$$

Again:

$$\begin{split} \int g_n &= \left(\int 2g - \int |f_n - f| \right) \\ \implies \lim \sup \int g_n &= \lim \sup \left(\int 2g - \int |f_n - f| \right) \\ &= \int 2g + \lim \sup \left(- \int |f_n - f| \right) = \int 2g - \lim \inf \left(\int |f_n - f| \right) \end{split}$$

25

Index

Continuity from below, 9 Counting measure, 3

Generating set, 4 Generator, 4

Lebesgue measure, 12

Measurable maps, 5 Measurable space, 3 Measure, 3 Measure space, 3 Monotonically increasing set sequence, 9

Push-forward measure, 16

Sigma-algebra, 3 Stable set by intersection, 10

Trace σ -algebra, 5, 7