The effect of cryogenic thermal cycling on potential energy states and mechanical properties of metallic glasses

Nikolai V. Priezjev

Department of Mechanical and Materials Engineering

Wright State University

Movies, preprints @ http://www.wright.edu/~nikolai.priezjev/

- N. V. Priezjev, The potential energy states and mechanical properties of thermally cycled binary glasses (2019). Preprint: cond-mat/1810.10877
- N. V. Priezjev, The effect of cryogenic thermal cycling on aging, rejuvenation, and mechanical properties of metallic glasses, *J. Non-Cryst. Solids* **503-504**, 131-138 (2019).

Thermal treatment and mechanical cycling of metallic glasses

Metallic glasses: mechanical properties include high strength and low ductility

Sun, Concustell, and Greer, Thermomechanical processing of metallic glasses: extending the range of the glassy state, *Nature Reviews Materials* **1**, 16039 (2016).

Rejuvenated states offer improvements in plasticity, while relaxed states exhibit high yield stress and greater chemical stability.

Periodic shear: yielding transition, relaxation dynamics, failure mechanism, nonaffine motion

Candelier, Dauchot, and Biroli, Dynamical heterogeneity in the cyclic shear experiment on dense 2D granular media, *Phys. Rev. Lett.* **102**, 088001 (2009).

Knowlton, Pine, and Cipelletti, A microscopic view of the yielding transition in concentrated emulsions, *Soft Matter* **10**, 6931 (2014).

"Mechanical annealing" during sub-yield cycling

Priezjev, The yielding transition in periodically sheared <u>binary glasses</u> at finite temperature, *Comput. Mater. Sci.* **150**, 162 (2018).

Thermal loading: aging or rejuvenation, structural relaxation, ductile vs brittle fracture (??)

200 (2015).

Ketov, Sun, Nachum, Lu, Checchi, Beraldin, Bai, Wang, Louzguine-Luzgin, Carpenter, and Greer, Rejuvenation of metallic glasses by non-affine thermal strain, *Nature* **524**,

Priezjev, The effect of cryogenic thermal cycling on aging, rejuvenation, and mechanical properties of metallic glasses, *J. Non-Cryst. Solids* **503-504**, 131 (2019).

Details of molecular dynamics simulations and parameter values

Binary Lennard-Jones Kob-Andersen mixture:

$$V_{LJ}(r) = 4\varepsilon_{\alpha\beta} \left[\left(\frac{\sigma_{\alpha\beta}}{r} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r} \right)^{6} \right]$$
Ni₈₀P₂₀

Parameters for $\alpha, \beta = A$ and B particles:

$$\varepsilon_{AA}=1.0,\,\varepsilon_{AB}=1.5,\,\,\varepsilon_{BB}=0.5,\,m_{A}=m_{B}$$

$$\sigma_{AA} = 1.0, \sigma_{AB} = 0.8, \ \sigma_{BB} = 0.88$$

Temperature: $T_{LJ} = 0.01 \ \epsilon/k_B < T_g = 0.435 \ \epsilon/k_B$

LAMMPS: $N_p = 60000$, MD step $\Delta t_{MD} = 0.005 \tau$

Initial quench rates: $10^{-2} \varepsilon/k_B \tau$ to $10^{-5} \varepsilon/k_B \tau$

16

Pressure P = 0 and thermal period $T = 5000\tau = 10^6$ MD steps

Potential energy per atom during 100 thermal cycles for different max T_{LJ}

N. V. Priezjev, The effect of cryogenic thermal cycling on aging, rejuvenation, and mechanical properties of metallic glasses, *J. Non-Cryst. Solids* **503-504**, 131-138 (2019).

Potential energy U during 1000 thermal cycles for different maximum T_{LJ}

Preprint: <u>cond-mat/1810.10877</u>

Potential energy minima during 1000 thermal cycles for different max T_{LJ}

Black curves = Aging at constant temperature: $T_{LI} = 0.01 \ \epsilon/k_B$

Lowest U_{min} at $\max T_{LJ} = 0.35 \ \epsilon/k_B$

Configurations of atoms with large nonaffine displacements after 1 cycle

Tensile stress vs strain after 1000 cycles: effects of quench rate and max T_{LJ}

Highest yield peak (blue curves) at maximum $T_{LJ} = 0.35 \ \epsilon/k_B$

Strain rate = $10^{-5} 1/\tau$

The yielding peak σ_Y , the elastic modulus E, and U_{min} versus maximum T_{LJ}

Highest yield peak and elastic modulus after thermal loading with maximum $T_{LJ} = 0.35 \ \epsilon/k_B$ A correlation between U_{min} and maximum values of σ_Y and E.

Conclusions:

1000 cycles

- MD simulations of binary 3D Lennard-Jones glasses that are initially prepared with different cooling rates and then subjected to repeated cycles of heating and cooling.
- With increasing cycle number, the potential energy minima saturate to a constant value that depends on the thermal amplitude ($max\ T_{LJ}$) and the initial cooling rate.
- The elastic modulus and the yielding peak (after the thermal treatment) acquire maximum values at a particular $max\ T_{IJ}$ which coincides with the minimum of the potential energy.
- In the steady state, the glasses thermally expand and contract but most of the atoms return to their cages after each cycle, similar to *limit cycles* in periodically driven glasses.
- N. V. Priezjev, The potential energy states and mechanical properties of thermally cycled binary glasses (2019). Preprint: cond-mat/1810.10877
- Q.-L. Liu and N. V. Priezjev, "The influence of complex thermal treatment on mechanical properties of amorphous materials", *Computational Materials Science* **161**, 93-98 (2019).
- N. V. Priezjev, The effect of cryogenic thermal cycling on aging, rejuvenation, and mechanical properties of metallic glasses, *Journal of Non-Crystalline Solids* **503-504**, 131-138 (2019).