Seria 6, zadania dla grup PnParzysty na dzień 19.01.2015

1. Wielomian n-go stopnia:

$$y = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0$$

można drogą kolejnych wyłączeń przed nawiasy zmiennej x doprowadzić do postaci:

$$y = ((...(a_n x + a_{n-1})x + a_{n-2})x + ... + a_2)x + a_1)x + a_0$$

Jest to tzw. schemat Hornera. Napisać program, który oblicza wartość wielomianu n-go stopnia $(2 \le n)$ według tego schematu.

Dane: n - stopień wielomianu,

 $a_0, a_1, a_2, \dots, a_n$ - współczynniki wielomianu

x – wartość zmiennej niezależnej.

(4 pkt)

2. Funkcja

```
double trapez(double p, double q, double h)
{
    return h*(p + q)/2;
}
```

oblicza pole powierzchni trapezu o bokach a, b i wysokości h. Zastosować tą funkcję do obliczenia pola powierzchni figury ograniczonej krzywą $y = ae^{x+1} + b$ oraz prostymi y = 0, $x = x_p$, $x = x_k$ z zadaną dokładnością ε .

Dane: a, b – współczynniki funkcji,

x_p, x_k - ograniczenia przedziału wartości x,

ε - żadana dokładność obliczeń

Uwaga: Zastosować metodę polegającą na obliczaniu sumy pól trapezów stanowiących wynik kolejnych podziałów przedziału <x $_p$, $x_k>$ na 2, 4, 8, 16, ... części. Procedurę kolejnych podziałów zakończyć jeżeli sumy pól trapezów częściowych po n-tym kroku podziału F_n i po kolejnym n+1 kroku F_{n+1} spełniają zależność:

$$\frac{\mid F_{n+1} - F_n \mid}{\mid F_n \mid} \le \varepsilon$$

Za wynik przyjąć wartość F_{n+1} (4 pkt)