Report:

Title: Strains in a Ring under Combined Bending and Extension

1. Objective

- (a) To measure strains using bonded foil strain gauges in combination with a Wheatstone Bridge.
- (b) Compare with linear elastic solution in a "proving" ring (circular beam with rectangular cross-section) subjected to combined extension and bending with strains measured from experiment.

2. Experimental Method(s):

- (a) Mounted on a fixture is an aluminium ring with a Young's modulus of 70GPa, an inner diameter of 129.6 mm, a thickness of 14.8 mm, and a depth of 11.2 mm.
- (b) A device that uses the balanced wheat-stone bridge principle to show values of the measured strain.
- (c) Before starting the measurements, balance the wheat-stone bridge.
- (d) Auto balance the device if not then follow the instructions given on the device to manually balance the device.
- (e) Note the strain values at various loads.
- (f) Take the initial reading of zero weight added, but there is a 0.5 kg inaccuracy because the hanger weighs 500 g, thus the device is not actually set to zero..
- (g) Continue to add 1 kg of weight after that and record the strain values at the four gauges in the case of loading.
- (h) Remove each weight until there is nothing left on the hanger, then record the strain readings for the unloading scenario.

3. Results and Calculations:

Theoretical Stains for inner and outer strain gauges respectively:

$$\epsilon_i = \frac{F}{2EA} + \frac{F(R - r_i)}{AEe} (0.5 - 1/\pi)$$

$$\epsilon_o = \frac{F}{2EA} + \frac{F(R - r_o)}{AEe} (0.5 - 1/\pi)$$

- $r_i = 64.8 \text{ mm}$
- $r_0 = 50$ mm
- b = 11.2mm
- E = 70 GPa
- Area(A) = $b(r_0-r_i)$ = 165.76 mm²
- Neutral axis(R)= $(r_0-r_i)/(\ln(r_0/r_i)) = 57.08057586$ mm

Observation Table:

-												
Load	SG-1			SG-2			SG-3			SG-4		
	Expt.	Theor.	Error%	Expt.	Theor.	Error%	Expt.	Theor.	Error%	Expt.	Theor.	Error%
Loading												
0.0	0	0	0	0	0	0	0	0	0	0	0	0
1.0	-4.875	-2.549231699	-91.23408837	6.75	3.60527	-46.589	7.75	3.60527	-53.48	-5.125	-2.54923	-50.2589
2.0	-8.875	-4.248719498	-108.8864658	12.75	6.00878	-52.872	13.75	6.00878	-56.3	-9.625	-4.24872	-55.8575
3.0	-12.63	-5.9118207298	-112.3328823	18.75	8.41229	-55.1311	19.25	8.ii1229	-56.3	-13.13	-5.9482	-54.6976
4.0	-16.38	-7.6117695097	-114.182179	24.75	10.8158	-56.3	25.25	10.816	-57.164	-17.13	-7.64n	-55.355
5.0	-20.63	-9.347182897	-120.7082094	30.75	13.2193	-57.01	31.25	13.219	-57.699	-21.88	-9.34718	-57.2798
Unoading												
5.0	-20.63	-9.347182897	-120.7082094	30.75	13.2193	-57.01	31.25	13.219	-57.699	-21.88	-9.34718	-57.2798
4.0	-16.38	-7.6117695097	-114.182179	24.75	10.8158	-56.3	25.25	10.816	-57.164	-17.13	-7.6477	-55.355
3.0	-11.88	-5.9118207298	-99.7240413	18.75	8 41229	-55.134	19.25	8.4123	-56.3	-12.38	-5.94821	-51.9531
2.0	-8.875	-4.21187191198	-108.8864658	13.25	6.00878	-54.651	15.25	6.0088	-60.598	-9.625	-4.24872	-55.8575
1.0	-5.375	-2.549231699	-110.84784	17.25	3.60527	-50.272	8.25	3.6053	-56.99	-5.625	-2.54923	-54.6803
0.0	0	0	0	0	0	0	0	0	0	0	0	0

The plots for the values of the four strain gauges are as follows:

• Similar behavior of SG-1 and SG-4 (decreasing graph)

• Similar behavior of SG-2 and SG-4 (increasing graph)

4. Analysis/observations/discussion

- The almost linear strain versus load graph suggests that for smaller loads, Hooke's law is applied.
- ii. Percentage error for gauges on internal surface is much higher than outer gauges, this may be due to loose connections or some residual stresses.
- iii. As expected from theory the outer rings have compression while inner rings are in tension.
- iv. We observe the same strain values during loading and unloading to which we can comment that the specimen is within it's elastic range
- v. For S1 the experimental values were consistent with the theoretical values as in S1 percentage error is minimum of all others.
- vi. Even when there is no load attached, strain gauges show non-zero values which shows strains due to residual stresses and strains due to own weights.

5. Summary/conclusions.

- (a) We learn that the proving ring follows hooke's law during loading and unloading
- (b) There have remained some residual stresses after unloading which has been reflected in the data as at zero load there were some strain present.
- (c) We observe that the outer ring has compression while inner ring has tension.
- (d) The strain is increasing in all four strain gauges with increasing load.
- (e) For the same value of load applied during loading and unloading the values of strain are almost equal which proves the symmetry of the ring and forces.
- (f) S1 has least error from literature values which shows the consistency from literature.
- (g) Also all the values are slightly higher from the literature values.
- (h) The inner ring is in tension and the outer ring is in compression.

a) Sources of error:

- a. Improper balancing of the entire experimental setup.
- b. While putting the weights on the hanger, the center of gravity might be disturbed.
- c. Temperature variation can cause some variation or error in the readings since we are working in the very small strain regime.
- d. Loose and improper wires between the setup and strain gauge could cause error.
- e. Parallax and least count error.