Computer Vision

Paulo Dias

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

- Morphological mathematics operates on images as a set of points
- Modify in a control way the structure/morphology of an image
- Typically used in binary images
- Can be used in graylevel ou colour image as well
- Used in Image Processing for
 - Filtering
 - Segmentation
 - Object description

Main idea

Main idea

Erosion

Dilation

Burger and Burge

Structuring element

Neighbourhood

Burger and Burge

- Main Morphological operations
 - Dilation
 - Erosion

Basic Operations

- OpeningClosing

Composed Operations

Morphological operations - Dilation

Dilation

- gradually enlarge the boundaries of regions
- small holes and gaps are filled

0	1	0	0	0
0	1	0	0	0
0	1	0	0	0
0	1	1	1	0
0	0	0	0	0

Original image

*	-		
	1	1	
	_	urin	
0	len	neni	ŀ

0	1	1	0	0
0	1	1	0	0
0	1	1	0	0
0	1	1	1	1
0	0	0	0	0

Dil	ati	on
ווע	au	OH

*			_		
	0	1	1	0	0
	0	1	1	0	0
	0	1	1	0	0
	0	1	1	1	1
	0	0	0	0	0

 $I \oplus X$

Morphological operations - Dilation

$$I \equiv \{(1,1), (2,1), (2,2)\}, H \equiv \{(\mathbf{0},\mathbf{0}), (\mathbf{1},\mathbf{0})\}$$

$$I \oplus H \equiv \{ (1,1) + (\mathbf{0},\mathbf{0}), (1,1) + (\mathbf{1},\mathbf{0}), (2,1) + (\mathbf{0},\mathbf{0}), (2,1) + (\mathbf{1},\mathbf{0}), (2,2) + (\mathbf{0},\mathbf{0}), (2,2) + (\mathbf{1},\mathbf{0}) \}$$

Morphological operations - Erosion

Erosion

- Dual of the dilation operation
- Erode away the boundaries of regions of foreground
- holes and gaps are increased

0	1	0	0	0
0	1	0	0	0
0	1	0	0	0
0	1	1	1	0
0	0	0	0	0

Original image

*			
"[1	1	
Stru el		uri ner	9

0	1	0	0	0
0	1	0	0	0
0	1	0	0	0
0	1	1	1	0
0	0	0	0	0

\vdash	$r \cap c$		n
	103	SIC	/I I

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	1	1	0	0
0	0	0	0	0

 $I \ominus X$

Morphological operations - Erosion

$$I \equiv \{(1,1),(2,1),(2,2)\}, H \equiv \{(\mathbf{0},\mathbf{0}),(\mathbf{1},\mathbf{0})\}$$

$$I\ominus H\equiv\{\,(1,1)\,\}\ {\rm because}$$

$$(1,1)+({\bf 0},{\bf 0})=(1,1)\in I\quad {\bf and}\quad (1,1)+({\bf 1},{\bf 0})=(2,1)\in I$$

Dilation and Erosion are dual operations

Typical structuring elements

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

Morphological operations - Opening

Opening

- Erosion followed by dilation
- Idempotent operation
 - Results will not change applied multiple time
- Union of all objects that fit in Structuring Element

- Circular kernel:
 - Smooth edges of object
 - Broke thin connections

0	1	1	0	0
0	1	1	0	0
0	1	0	0	0
0	1	1	1	0
0	0	1	1	0

	ne	ını	ng
\sim	\sim		' '9

0	1	1	0	0
0	1	1	0	0
0	1	0	0	0
0	1	1	1	0
0	0	1	1	0

漂					
	0	1	1	0	0
	0	1	1	0	0
	0	0	0	0	0
	0	1	1	1	0
	0	0	1	1	0

Morphological operations - Opening

- Opening example
 - Circular structuring element
 - Radius of structuring element must be larger than subsets to remove

Original image

After erosion

After dilation

Opening with different structuring elements

Morphological operations - Closing

Closing

- Dilation followed by erosion
- Dual to opening
- Idempotent operation
 - Results will not change applied multiple time

$$I \bullet X = (I \oplus X) \ominus X$$

0	1	1	0	0
0	1	1	0	0
0	1	0	0	0
0	1	1	1	0
0	0	1	1	0

0	1	1	1
0	1	1	1
0	1	1	0
0	1	1	1
0	0	1	1
	\bigcirc		

Closing

0

Morphological operations - Closing

Closing example

Original image

After closing

- Edge detection with morphology (outlining)
 - Since erosion results in an isotropic contraction of images, can be used for edge detection:

$$Edge = I - (I \ominus X)$$

- Erosion of objects and then subtraction from original (using 3x3 or 5x5 structuring element)
- Size of structuring element will have impact of contour thickness

Edge detection with morphology (outlining)

$$I' = I \ominus H_n$$

$$B = I \cap \overline{I'} = I \cap \overline{(I \ominus H_n)}$$

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

Segmentation

Segmentation means dividing image in regions

- Often applied before image analysis
- Typical approach is to group pixels with similar properties

Segmentation

Examples

Burger and Burge

Segmentation

- No segmentation methods that can be used in every case
- No "perfect" segmentation method

- Typical segmentation are based in:
 - pixel intensity
 - regions
 - edges

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

- Thresholding
 - Oldest segmentation method
 - Appropriate when object of interest have homogeneous intensity different from background
 - Not easy to find the adequate value

- Oldest segmentation approach
- Appropriate whenever the intensity of the objects of interest is homogeneous and they are different from the background

Example: OCR (Optical Character Recognition)

- If the threshold value is unknown, analyze the histogram to choose an adequate threshold value
- For a bimodal histogram, the threshold value corresponds to the valley between the peaks

- This approach can produce "classification errors", depending on the image histogram and the intensity values of the objects
- The *thresholding* can be applied to image sub-regions

- Several approaches for threshold selection
 - Global
 - Variable
 - Local depends on properties of neighbouring pixels
 - Adaptive depends on spatial coordinates
 - Otsu's method based on probabilistic analysis obtained from histogram

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

- Grow region by aggregation of pixels starting at a seed point
- All neighbouring pixels that comply the rule are labelled as belonging to the region
- A problem is to obtain "good" seed pixels
- Seed can be obtained using
 - Histograms
 - Interactively

– ...


```
1: RegionLabeling(I)
          I: binary image (0 = background, 1 = foreground)
          The image I is labeled (destructively modified) and returned.
       Initialize m \leftarrow 2 (the value of the next label to be assigned).
2:
 3:
        Iterate over all image coordinates (u, v).
           if I(u,v) = 1 then
4:
               FLOODFILL(I, u, v, m) \triangleright use any of the 3 versions below
 5:
6:
               m \leftarrow m + 1.
7:
       return the labeled image I.
    FLOODFILL(I, u, v, label)
                                                       ▶ Recursive Version
       if coordinate (u, v) is within image boundaries and I(u, v) = 1 then
9:
            Set I(u, v) \leftarrow label
10:
            FLOODFILL(I, u+1, v, label)
11:
            FLOODFILL(I, u, v+1, label)
12:
            FloodFill(I, u, v-1, label)
13:
14:
            FLOODFILL(I, u-1, v, label)
15:
        return.
```



```
FloodFill(I, u, v, label)
                                                              ▷ Depth-First Version
16:
17:
         Create an empty stack S
         Put the seed coordinate \langle u, v \rangle onto the stack: Push(S, \langle u, v \rangle)
18:
19:
         while S is not empty do
20:
              Get the next coordinate from the top of the stack:
                   \langle x, y \rangle \leftarrow \text{Pop}(S)
              if coordinate (x,y) is within image boundaries and I(x,y)=1
21:
                   then
22:
                   Set I(x,y) \leftarrow label
                   PUSH(S, \langle x+1, y \rangle)
23:
                   PUSH(S, \langle x, y+1 \rangle)
24:
                   PUSH(S, \langle x, y-1 \rangle)
25:
                   PUSH(S, \langle x-1, y \rangle)
26:
27:
         return.
```



```
FLOODFILL(I, u, v, label)

▷ Breadth-First Version

29:
         Create an empty queue Q
         Insert the seed coordinate \langle u, v \rangle into the queue: Enqueue(Q, \langle u, v \rangle)
30:
31:
         while Q is not empty do
32:
              Get the next coordinate from the front of the queue:
                   \langle x, y \rangle \leftarrow \text{Dequeue}(Q)
              if coordinate \langle x,y\rangle is within image boundaries and I(x,y)=1
33:
                  then
34:
                   Set I(x,y) \leftarrow label
                   ENQUEUE(Q, \langle x+1, y \rangle)
35:
                   ENQUEUE(Q, \langle x, y+1 \rangle)
36:
                   ENQUEUE(Q, \langle x, y-1 \rangle)
37:
                   ENQUEUE(Q, \langle x-1, y \rangle)
38:
39:
         return.
```


Flood-Filling

(a) Original

depth-first

breadth-first

