Enter Title here

Université Paris-Saclay Machine Vision Project

Charbel Abi Hana

Department of Electrical Engineering
Université Paris-Saclay
Paris, France
charbel-a-h@outlook.com

Abstract— Index Terms—

I. INTRODUCTION

hello this is a test in the paper [2], in this text i am going to cite another paper exactly here [1].

II. RELATED WORK

III. METHODS

A. Conditional Generative adversarial network(GANs)

$$\min_{G} \max_{D} \mathcal{V}_{\text{GAN}} \left(D, G \right) = \tag{1}$$

$$\mathbb{E}_{x \sim p_{\text{data}(x)}} \left[\log \left\{ D\left(x\right) \right\} \right] + \mathbb{E}_{z \sim p_{z}(z)} \left[\log \left\{ 1 - D\left(G\left(z\right)\right) \right\} \right].$$

where $G: R^{100} \longrightarrow R^{16,384}$

$$L_D = -\sum_{x \in \chi, z \in \zeta} \log(D(x)) + \log(1 - D(G(z)))$$
 (6)

$$L_G = -\sum_{z \in \zeta} \log(D(G(z))) \tag{7}$$

B. Model Architecture

1) Generator:

$$h^{[i]} = LeakyRELU(W^{[i-1]}h^{[i-1]} + b[i-1])$$
 (2)

 α , with h[i] $\epsilon R^{16\alpha 2^i}$ and we output the vector o $\epsilon R^{16,384}$ via

$$o = \tanh(W^{[L]}h^{[L]} + b[L])$$
 (3)

Where L is the final layer.

2) Discriminator: h[0] denote the input image, W[j] and b[j] denoting the weight matrix and the bias vector in the L output layer, we have:

$$o = sigmoid(W^{[L]}h^{[L]} + b[L])$$

$$(4)$$

3) Classifier:

Fig. 1. Random Cows and Horses Images from Original Dataset

Fig. 2. Generated Output after 100 Steps

Fig. 3. Generated Output after 35000 Steps

Fig. 4. Generated Translated Output after 1 Epoch

IV. EXPERIMENTS

- A. Dataset
- B. Evaluation Metrics
- C. Experimentation Details
- D. GAN Experimentation Results
- E. CycleGAN Experimentation Results
 - Pass real images through the generators and get the generated images
 - Pass the generated images back to the generators to check if we can predict the original image from the generated image.
 - Do an identity mapping of the real images using the generators.
 - Pass the generated images in 1) to the corresponding discriminators.
 - Calculate the generators total loss (adverserial + cycle + identity)
 - Calculate the discriminators loss
 - Update the weights of the generators
 - Update the weights of the discriminators
 - Return the losses in a dictionary.

F. Classifier Experimentation Results

0.5

Recall

Fig. 5. Generated Output after 50 Epochs

Fig. 6. Classification metrics for classifier trained on original dataset

V. CONCLUSION REFERENCES

[1] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014.

Metric	Orig		Orig-250-GAN		Orig-500-GAN		Orig-1000-QANJun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired			
-	train	val	train	val	train	val	train		hage-to-image translation using cycle-consistent adversarial networks.	
BCE-Loss	0.01	5	0.01	0.7	0.01	0.7	8	0.7 C	pRR, abs/1703.10593, 2017.	
Accuracy	1.0	0.5	1.0	0.6	1.0	0.5	0.5	0.5		
Dessision	1.0	0.1	1.0	0.5	1.0	0.5	0.5	0.5		

TABLE I
COMPILED TABLE OF CLASSIFICATION METRICS

0.4

1.0

1.0

Fig. 7. Classification metrics for classifier trained on $\boldsymbol{original+250}$ $\boldsymbol{GAN-based}$

Fig. 8. Classification metrics for classifier trained on $\boldsymbol{original+250}$ $\boldsymbol{GAN-based}$

Fig. 9. Classification metrics for classifier trained on $\boldsymbol{original+250~GAN-based}$