CSE508

Report - Information Retrieval Assignment 3

Indraayudh Talukdar - MT22031 Antara Das - MT22014 Arun Sen - MT22018

Dataset information

This is who-trusts-whom network of people who trade using Bitcoin on a platform called Bitcoin OTC. Members of Bitcoin OTC rate other members in a scale of -10 (total distrust) to +10 (total trust) in steps of 1. This is the first explicit weighted signed directed network available for research.

- SOURCE: node id of source, i.e., rater
- TARGET: node id of target, i.e., ratee
- RATING: the source's rating for the target, ranging from -10 to +10 in steps of 1
- TIME: the time of the rating, measured as seconds since Epoch.

	SOURCE	TARGET	RATING	TIME			
0	6	2	4	1.289242e+09			
1	6	5	2	1.289242e+09			
2	1	15	1	1.289243e+09			
3	4	3	7	1.289245e+09			
4	13	16	8	1.289254e+09			
35587	4499	1810	1	1.453612e+09			
35588	2731	3901	5	1.453679e+09			
35589	2731	4897	5	1.453679e+09			
35590	13	1128	1	1.453680e+09			
35591	1128	13	2	1.453684e+09			
35592 rows × 4 columns							

Link Analysis on Bitcoin OTC trust weighted signed network

Here density of the network is computed the following formula:

```
density(G) = E / (V * (V-1))
```

Where E = Total number of edges present in the network

And V = Total number of nodes present in the network.

So basically the denominator of density represents the total number of possible edges in the network.

```
[31] n = len(nodes)
    print("Total count of nodes in the network : ", n)
    print("Total count of edges in the network : ", len(data))

Total count of nodes in the network : 5881
    Total count of edges in the network : 35592

[33] print("Maximum number annotated to a node : ",max(nodes))
    print("Maximum weight annotated to an edge : ",max(data['RATING']))
    print("Minimum weight annotated to an edge : ",min(data['RATING']))

Maximum number annotated to a node : 6005
    Maximum weight annotated to an edge : 10
    Minimum weight annotated to an edge : -10
```

```
print("Maximum in-degree in this network : ", max(indegree_dict.values()))
print("Maximum out-degree in this network : ", max(outdegree_dict.values()))
Maximum in-degree in this network : 535
Maximum out-degree in this network: 763
d = len(data) / (n * (n-1))
print("Density of the network is : ", d)
Density of the network is : 0.0010292571373048454
indegs = sorted(list(set(indegree_dict.values())))
outdegs = sorted(list(set(outdegree_dict.values())))
print("------All possible in-degrees in the network -----")
print(indegs)
print("------All possible out-degrees in the network ------")
print(outdegs)
------All possible in-degrees in the network ---------
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
------ in the network -----All possible out-degrees in the network
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
```

The degree distribution of a network represents the probability distribution of $\langle k, P(k) \rangle$ where k is a degree of a node in the network and P(k) is the fraction of nodes having degree k. The followings are the degree distributions of the network and important stats about it:

Maximum in-degree probability of a node in this network: 0.413

Average in-degree probability of a node in this network: 0.009

Mean in-degree probability of a node in this network: 0.0

Minimum in-degree probability of a node in this network: 0.0

Maximum out-degree probability of a node in this network: 0.305

Average out-degree probability of a node in this network: 0.008

Mean out-degree probability of a node in this network: 0.0

Minimum out-degree probability of a node in this network: 0.0

The local Clustering coefficient of a node is defined by the number of edges present in the network among the neighbours of a node divided by the total number of nodes possible among those neighbour nodes.

It is implemented as follows: We can get the number of edges present among the neighbour nodes by a set intersection operation between all edges present in the network and all possible edges among the neighbours.

PageRank, Hubs and Authority scores of nodes of this network

Methodology:

The networkx library is used to find the PageRank values, hub scores and authority scores.

The scores obtained indicate the following:

The node with the highest page rank score will have quality nodes as its neighbours and a high in-degree.

The node having the highest hub score will have a high out-degree.

The node having the highest authority score will have a high in-degree.

	nodes	page_rank_score	hub_score	authority_score		
0	1	0.005029	4.636831e-03	4.496190e-03		
1	2	0.000977	7.758275e-04	5.890168e-04		
2	3	0.000383	-0.000000e+00	5.475613e-04		
3	4	0.001290	1.507356e-03	1.119703e-03		
4	5	0.000093	2.087995e-04	1.697030e-04		
5876	6000	0.000035	6.646890e-22	-1.381860e-20		
5877	6002	0.000065	-0.000000e+00	2.763719e-20		
5878	6003	0.000047	-0.000000e+00	2.131752e-06		
5879	6004	0.000052	-0.000000e+00	1.130527e-04		
5880	6005	0.000052	-0.000000e+00	1.130527e-04		
[5881 rows x 4 columns]						

Contributions:

Part 1 - Antara Das

Part 2 - Indraayudh Talukdar

Github repository