ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ВЫСШЕМУ ОБРАЗОВАНИЮ НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н. И. ЛОБАЧЕВСКОГО

колебательные контуры

(Методические указания)

УДК 621.391.828

Колебательные контуры: Методические указания /Сост. С.М.Рыжаков.- Н.Новгород: ННГУ, 1994. - 37 с.

Методические указания к практическим занятиям разрасотаны в соответствии с программой курса "Теоретические основы радиотехники" для студентов, обучающихся по опециальности 0715 (радиофизика и электроника. Указания содержат основные теоретические сведения по последовательным, параллельным и связанным колесательным контурам и задачи, предлагаемые студентам для самостоятельного решения.

Рис. 39

Составитель к.т.н. С.М.Рыжаков Рецензент к.т.н. D.Г.Белов

РАЗДЕЛ І.

последовательный колебательный контур

І.І. Резонанс напряжений в последовательном контуре

Такой контур образован последовательным соединением индуктивности L , емкости $\mathcal C$, активного сопротивления потерь $\mathcal R$ источника (генератора) гармонической ЭДС $e(t) = E \cos(\omega t + \theta)$ - рис. I.I. Сопротивление R в общем случае включает в себя собственные потери контура и внутрен-

Puc. I.I

Комплексная амплитуда тока в кон-

$$\begin{bmatrix} R & \text{Type}^{+} \dot{y} = \frac{\hat{E}}{R + j(\omega L - 4|\omega C)} = \\ & = \frac{\hat{E}}{2} = \frac{E}{|\hat{z}|} \exp j(\theta - 9), \quad \text{(I.I)} \end{bmatrix}$$

нее сопротивление генератора.

где $\dot{E} = E \exp j\Theta_0$ — комплексная амплитуда ЭДС (далее будем полагать $\Theta = 0$, $\dot{E} = E$): $\dot{Z} = R + j(\omega L - 1/\omega C) =$ — $R + jX = /\dot{z}/\exp j\varphi$, $/\dot{z}/=\sqrt{R^2 + X^2}$ — модуль полного сопротивления последовательного контура, $\varphi = arcto X/R$ -- сдвиг фазы тока относительно фазы ЭДС. Положительные значения угла 🗸 соответствуют отставанию базы тока, а отрицательные -

- опережению. Мгновенное значение тока в контуре
$$i(t) = \frac{E}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} \cos(\omega t - \varphi). \tag{I.2}$$

Комплексные амплитуды напряжений на индуктивности и емкости

$$\dot{\mathcal{U}}_{L} = j\omega L\dot{\mathcal{J}} = \frac{j\omega L \cdot E}{R + j(\omega L - \frac{1}{2}\omega C)} = \frac{E\omega L}{|\dot{z}|} e^{-j(\varphi - \frac{\pi}{2}/2)}, \quad (I.3)$$

$$\dot{u}_{c} = \frac{1}{j\omega C}\dot{g} = \frac{E}{j\omega C[R+j(\omega L-\eta \omega C)]} = \frac{E}{\omega C[\dot{z}]}e^{-j(\varphi+x/2)} \tag{1.4}$$

^{•)} Точка над символом означает, что имеем дело с комплексной геличиной.

Если частота источника ЭДС подобрана так, что

$$\omega = \omega_p = \frac{1}{VLC}, \qquad (1.5)$$

то реактивное сопротивление X контура на частоте ω_{ρ} радно нулю, т.е. $X(\omega_{\rho}) = \omega_{\rho} L - 1/\omega_{\rho} C = 0$, а $|\dot{z}| = R$, $\varphi = 0$ При этом амплитуда тока в контуре достигает максимума

$$\mathcal{J}_{p} = \mathcal{J}(\omega_{p}) = \frac{E}{R}. \tag{I.6}$$

Частоту ω_p называют резонансной частотой контура. Амплитуды напряжений на индуктивности и выкости на частоте ω_p

$$u_{\mu\rho} = E \cdot \frac{\omega_{\rho} L}{R}, \qquad u_{e\rho} = E \cdot \frac{1}{\omega_{\rho} eR}.$$
 (1.7)

Так как $\omega_{\rho} L = 1/\omega_{\rho} C$, то $\mathcal{U}_{L\rho} = \mathcal{U}_{C\rho}$. Сопротивления $\omega_{\rho} L = 1/\omega_{\rho} C$ обозначаются через ρ и называются волновым или карчитеристи ческим сопротивлением последовательного контура

$$\rho = \omega_p L = \frac{1}{\omega_p C} = \sqrt{\frac{L(\Gamma_H)}{C(\Phi)}} (O_M). \tag{1.6}$$

На практике обычно $\rho \gg R$, поэтому одинаковые по неличине им плитуды резонансных напряжений на индуктивности и емкости $\mathcal{U}_{L\rho} = \mathcal{U}_{c\rho} = \mathcal{E}\rho/R$ могут во много раз превышать амплитуду \mathcal{E} внешней ЭДС. Отсюда и происходит название — резонанс напряжений. Безразмерная величина

$$Q = \frac{u_{Lp}}{E} = \frac{u_{cp}}{E} = \frac{\rho}{R} = \frac{\omega_{pL}}{R} = \frac{1}{\omega_{pCR}}$$
 (1.9)

называется добротностью последовательного контура. Величина Q поназывает, во сколько раз напряжение на емкости (или индуктивности) при резонансе больше, чем амплитуда подводимой ЭДС. Обычно на практике Q = 50 + 200.

Резонансная кривая и фазовая характеристика последовательного контура. Полоса пропускания

Знание частотных зависимостей $\mathcal{J}(\omega)$ и $\varphi(\omega)$ необходы в посуждения об избирательности контуса, пол которой поит

способность к выделению сигналов заданной области частот и ослаблению сигналов других частот. Зависимость $\mathcal{J}(\omega)$ определяется модулем выражения (I.I)

$$\mathcal{J}(\omega) = \frac{E}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = \frac{\beta_p}{\sqrt{1 + (\omega L - 1/\omega C)^2/R^2}} = \frac{\beta_p}{\sqrt{1 + Q^2(\frac{\omega}{\omega_p} - \frac{\omega_p}{\omega})^2}}$$
Безразмерное отношение
$$\eta = \frac{\mathcal{J}(\omega)}{\beta_p} = \frac{1}{\sqrt{1 + Q^2(\frac{\omega}{\omega_p} - \frac{\omega_p}{\omega})^2}}$$
(I. IO)

есть уравнение резонансной кривой последовательного колебательного контура. Фазовая характеристика, выражающая частотную зависимость сдвига фазы тока в контуре относительно фазы ЭДС, определяется выражением

$$\varphi = arctg \frac{X}{R} = arctg \frac{\omega L - 1/\omega c}{R} = arctg \left[Q(\frac{\omega}{\omega p} - \frac{\omega p}{\omega})\right]. (1.11)$$

На рис. I.2 и рис. I.3 приведены построенные по формулам (I.I0) и (I.II) графики $n(\omega/\omega_p)$ и $\varphi(\omega/\omega_p)$ при разных Q . При повышении Q резонансные кривые становятся более острыми, а фазоные характеристики в области частот, близких к ω_p – более крутыми.

Относительной расстройкой $\mathcal E$ называется величина $\mathcal E=\Delta\omega/\omega\rho$, где $\Delta\omega=\omega-\omega\rho$ — абсолютная расстройка частоты ω внешней ЭДС относительно резонансной частоты $\omega\rho$ контура. Если относительная расстройка $\mathcal E$ мала, т.е. $\mathcal E=\Delta\omega/\omega\rho<<1$ или $\Delta\omega<<\omega\rho$, ω , то можно положить $\omega\approx\omega\rho$ и записать выражение $(\frac{\omega}{\omega\rho}-\frac{\omega\rho}{\omega})$ в виде

$$\frac{\omega}{\omega_{\rho}} - \frac{\omega_{\rho}}{\omega} = \frac{(\omega - \omega_{\rho})(\omega + \omega_{\rho})}{\omega_{\rho} \omega} \approx \frac{2\Delta\omega}{\omega_{\rho}}, \quad (1.12)$$

а выражения (I.IO) и (I.II) с учетом (I.I2) представить в виде

$$n \approx \frac{1}{\sqrt{1+a^2}}$$
, $\varphi \approx aretg \alpha$, (I.13)

где безразмерная величина

$$\alpha = \frac{2\Delta\omega}{\omega\rho}Q = 2\varepsilon \cdot Q \tag{1.14}$$

называется обобщенной расстройкой контура. Зависимости n(a) и

Рис. I.2

Рис. I.3

 — у(а) определяют резонансную кривую и фазовую карактеристику последовательного контура вблизи резонансной частоты.

В радиотехнических схемах последовательный контур часто используется как четырехполюсник, когда выходное напряжение снима-

Рис. 1.4

ется с емкости - рис. 1.4. При этом комплексный коэффициент передачи четырехполюсника равен

$$\dot{K}_{c}(j\omega) = \frac{\dot{\mathcal{U}}_{c}}{\dot{E}} = \frac{1/j\omega c}{R + j(\omega L - 1/\omega c)} = |\dot{K}_{c}(j\omega)|e^{-j\varphi_{c}} , \text{ figs.}$$

$$|\dot{K}_{c}(j\omega)| = \frac{Q\omega_{p}/\omega}{\sqrt{1 + Q^{2}(\frac{\omega}{\omega_{p}} - \frac{\omega_{p}}{\omega})^{2}}} - (1.15)$$

модуль коэффициента передачи, представляющий амплитудно-частотную карактеристику (АЧХ) последовательного контура; график зависимости (1.15) есть в то же время резонансная кривая последовательного контура по напряжению:

$$\varphi_c = arc tgQ\left(\frac{\omega}{\omega_p} - \frac{\omega_p}{\omega}\right) + \frac{\mathcal{I}}{2} -$$

- сдвиг фазы напряжения на емкости относительно фазы ЭДС. На резонансной частоте $\omega = \omega_D$ имеем $|K_n(j\omega_D)| = Q$ $arphi_{\mathcal{C}}=\pi/2$. Разделив (I.I5) на Q , получим уравнение резонанс ной кривой по напряжению последовательного контура

$$n_c = \frac{|K_c(j\omega)|}{|K_c(j\omega_p)|} = \frac{|u_c|}{|u_{cp}|} = \frac{\omega_p/\omega}{\sqrt{1 + Q^2(\frac{\omega}{\omega_p} - \frac{\omega_p}{\omega})^2}}$$
(1.16)

Вычислив dn_r/dx , где $x=\omega/\omega_0$, приравняв производную нулю, по лучим, что функция $n_c(x)$ достигает максимума на частоте

$$\omega_1 = \omega_p \sqrt{1 - \frac{1}{2Q^2}}$$
 (1.17)

Частоты ω_{q} и ω_{p} могут заметно отличаться между собой при небольшой добротности Q контура. Для контуров с добротностью Q = 50 + 100, которые обычно применяются в радиотехнике, различие между частотами $\ensuremath{\omega_4}$ и $\ensuremath{\omega_{\mathcal{O}}}$ столь незначительно, что может не приниматься во внимание.

Сравнение резонансных кривых по току (1.10) и напряжению (I.I6) показывает, что они отличаются лиць множителем $\omega_{
ho}/\omega$ Это различие заметно не проявляется, так как отклонение множителя ω_D/ω от единицы обычно не превышает нескольких процентов.

В радиотехнике условились определять полосу пропускания коле бательного контура как полосу частот вблизи резонанса, на границах которой амплитуда тока в контуре (или амплитуда напряжения

на емкости или индуктивности) снижается до $1/\sqrt{2} \approx 0.7$ от резонансного значения; при этом амплитуда действующей на контур ЭДС

Рис. I.5

$$\frac{2 \omega_{p}}{\omega_{p}} Q = \frac{\Pi_{qq} Q}{\omega_{p}} = 1,$$

Это выражение используют для экспериментального определения Q . С этой

целью изменяют частоту ЭДС, действующей в контуре, до снижения показания измерительного прибора, регистрирующего ток в контуре, до 0,7 от максимального значения, соответствующего частоте ω_p . Измерив частоты ω_1 и ω_2 , зная ω_p , находят $Q = \frac{\omega_p}{(\omega_1 - \omega_2)}$.

І.З. Задачи

- I.I. Заданы резонансная частота последовательного контура $f_{p}=2$ МГц, ширина полосы пропускания $f_{0.7}=16$ кГц и сопротивление потерь $\mathcal{Q}=12$ Ом. Рассчитать параметры реактивных элементов.
- I.2. Последовательный контур с добротностью Q =I20, Δ = 220 мкГн, C = 535 пФ подключен к источнику энергии с внутренним сопротивлением \mathcal{R}_i =I7 Ом рис. I.6. Определить резонанствук частоту и полосу пропускания контура.

Найти, при наком соотношении сопротивлений \mathcal{R} и \mathcal{R}_i в контуре выделяется максимальная иощность при резонансе.

Рис. I.6

- I.3. Вычислить резонансную частоту и добротность контура, состоящего из последовательно соединенных R = 5.1 Ом, $L = 65 \cdot 10^{-6}$ Гм, $C = 1.56 \cdot 10^{-9}$ Ф. Определить сопротивление цепи при частоте, превызващей резонансную на 1%.
- 1.4. Последовательный контур с индуктивностью 2 мГн настроен на частоту f_0 = 160 мГи. Сопротивление потерь R = 40 0м. Каким сопротивлением $R_{\rm in}$ смедует зашунтировать катушку индуктивности, чтобы полоса пропускамия $\Pi_{0.7}$ была равна 10 кГи?
- I.5. Последовательный контур имеет емкость C = 2000 п Φ и сопротивление потерь $\mathcal{R} = 2$ 0м. Контур настроен на длину волны
- $\mathcal{A}=1000$ М. Пропустит ли контур полосу частот 2 к Γ ц с ослаблением на граничных частотах, не превышающим 20%? Если не пропустит, то как следует изменить параметры контура, чтобы удовлетворить поставленному условию?
- I.6. Найти выражение для коэффициента передачи $K(j\omega)$ = $\dot{\mathcal{U}}_{foc}(j\omega)/\dot{\mathcal{U}}_{fc}(j\omega)$ контура, изображенного на рис. I.7. Сопротивление R можно рассматривать либо как сопротивление утечки конденсатора, либо как входное сопротивление последующего каскада. Найти выражение для резонансной частоты ω_p такой колебательной системы. Вычислить $|\dot{K}(\omega_p)|$.

Рис. I.7

Рис. 1.8

- 1.7. Дан последовательный контур (рис. 1.8), имеющий активное сопротивление $R_4=10$, Ом. Вольтметром с бесконечно большим входным сопротивлением измерили добротность контура G, которая оказалась равной 100, т.е. $\mathcal{U}_2/\mathcal{U}_4=100$ на резонансной частоте. Затем были произведены эти же измерения вольтметром, входное сопротивление которого $R_2=10^5$ Ом. Рассчитать амплитуду напряжения на конденсаторе в последнем случае, если на вход подвется напряжение с амплитудой $\mathcal{U}_4=1$ В.
 - 1.8. На последовательный контур воздействуют синусоидальные напряжения с частотами ω_{p} , $2\omega_{p}$, $3\omega_{p}$,..., $n\omega_{p}$ (n =2,3,4...), но с одинаковыми амплитудами; ω_{p} резонансная частота контура. Найти соотношение между токами, вызванными этими напряжениями.
 - —I.9. На последовательный контур подается амплитудно-модулированное колебание $\mathcal{U} = \mathcal{U}_o(1 \cdot m Sin \mathcal{Q}t) \cdot Sin \omega_p t$. Определить ток в контуре, считал, что он настроен в резонанс с частотой ω_p .

Рассчитать, как изменится коэффициент модуляции m и сдвиг по фазе огибающей, если $f_p=300$ кГц, $C=10^3$ пФ, $F_1=1000$ Гц, m=0.7. R=10 Ом, $F_2=10000$ Гц, где F_1 и F_2 — частоты модулирующего синусондального колебания.

I.IO. На последовательный контур с параметрами $\mathcal{L}=$ IO мГн, C= IOO пФ, $\mathcal{R}=$ IOO Ом подается сигнал

$$\mathcal{U}(t) = 10 \sin \frac{\omega_p t}{2} + 10 \sin \omega_p t + 10 \sin 2\omega_p t, B.$$

Контур настроен на частоту ω_p . Найти ток в контуре i(t) Нарисовать спектры входного сигнала и тока.

I.II. Для показанной на рис. I.9 цепи найти эначение индук-

Puc. 1.9

тинности L_o , при которой ток \mathcal{F} сонпадает по фазе с напряжением питания \mathcal{U} , если R =2 Ом, L = 2 мГн, C = 0.25 10^{-3} Φ .

 $-\omega = 2 - 10^8 \frac{\text{гад}}{\text{сек.}}$. Построить частотную характеристику входного реактирно-

го сопротивление контура между точками А и В.

РАЗДЕЛ 2.

парадлельный колебательный контур

2.I. Резонансная частота и сопротивление параллельного контура при резонансе

Пусть генератор (или источник входного сигнала) с внутренним сопротивлением $\mathcal{R}_{\mathbf{z}}$ подключен к колебательному контуру параллельно – рис. 2.1. В общем случае каждая из ветвей контура может

Рис. 2.1

Puc. 2.2

содержать индуктивности, емкости и сопротивления. Обозначим

$$\dot{Z}_1 = R_1 + jX_1$$
, $\dot{Z}_2 = R_2 + jX_2$

где X_1 и X_2 . R_1 и R_2 — результирующие реактивные и активные сопротивления параллельных ветвей. Сопротивление контуря между точками A и Б равно

$$\dot{Z}_{AB} = \frac{\dot{Z}_{1} \dot{Z}_{2}}{\dot{Z}_{1} + \dot{Z}_{2}} = \frac{(R_{1} + jX_{1})(R_{2} + jX_{2})}{R_{1} + R_{2} + j(X_{1} + X_{2})} = R_{3} + jX_{3}, (2.1)$$

$$R_{g} = \frac{R_{2}(X_{1}^{2} + R_{1}^{2}) + R_{1}(X_{2}^{2} + R_{2}^{2})}{(R_{1} + R_{2})^{2} + (X_{1}^{2} + X_{2}^{2})^{2}},$$
(2.2)

$$X_{g} = \frac{X_{4}(X_{2}^{2} + R_{2}^{2}) + X_{2}(X_{1}^{2} + R_{1}^{2})}{(R_{1} + R_{2})^{2} + (X_{1} + X_{2})^{2}} - (2.3)$$

соответственно активная и реактивная составляющие сопротивления \dot{Z}_{46} . Таким образом, заменили параллельный контур эквивалентным ему последовательным контуром — рис. 2.2, который называют схемой замещения параллельного контура (см. § 2.5).

Резонансные частоты параллельного контура находятся из условия равенства нулю реактивной составляющей X_g входного сопротивления

$$X_1(X_2^2 + R_2^2) + X_2(X_1^2 + R_1^2) = 0.$$
 (2.4)

Формула (2.4) является точной расчетной формулой для определения частоты параллельного резонанса. На высоких частотах обычно выполняются неравенства

$$R_1 \ll |X_1|, R_2 \ll |X_2|,$$
 (2.5)

поэтому уравнение (2.4) принимает вид

$$X_1 \cdot X_2 (X_1 + X_2) = 0.$$
 (2.6)

Любой из этих трех сомножителей в общем случае может быть равен нулю.

Если $X_1 = 0$, то имеет место последовательный резонанс (резонанс напряжений) в левой ветви - рис. 2.1;

если $X_2 = 0$, то имеет место последовательный резонанс (резонанс напряжений) в правой ветви – рис. 2.1;

если $X_1 + X_2 = 0$, то имеет место параллельный резонанс - резонанс токов. Формула

$$X_1 + X_2 = 0$$
 (2.7)

является приближенной расчетной формулой для определения частоты параллельного резонанса. Таким образом, в параллельном колеба тельном контуре с малыми потерями резонанс токов наступает в том

случае, когда реактивные сопротивления ветвей равны друг другу по абсолютной величине и противоположны по знаку $(X_1 = -X_2)$. Подставив (2.7) в (2.2), получим с учетом неравенств (2.5)

$$R_{3} = R_{9p} = \frac{X_{1}^{2}}{R_{1} + R_{2}} = \frac{X_{2}^{2}}{R_{1} + R_{2}} = \frac{X_{1,2}^{2}}{R_{1} + R_{2}}.$$
 (2.8)

Применим формулы (2.4), (2.7) и (2.8) к трем схемам параллельных контуров.

2.2. Простой параллельный контур (контур I-го вида). Резонанс токов в параллельном контуре

Схема простого контура, или, как его еще называют, контура I-го вида, показана на рис. 2.3. Здесь левая ветвь не содержит

емкостей, а правая - инпуктивностей. Активные сопротивления

 R_1 и R_2 учитывают потери в катушке и конденсаторе, причем обычно $R_1 >> R_2$. Подставив в (2.4) $X_1 = \omega_p L$, $X_2 = -\frac{1}{\omega_p C}$, получим точное выражение для частоты параллельного резонанса контура I-го вида

Puc. 2.3 $\omega_{p} = \frac{1}{\sqrt{LC}} \cdot \sqrt{\frac{\rho^{2} - R_{1}^{2}}{\rho^{2} - R_{2}^{2}}}$ (2.9)

где $\rho = \sqrt{L/C}$ — волновое или жарактеристическое сопротивление контура I-го вида.

Подставив $X_1=\omega_{\rho L}$, $X_2=-I/\omega_{\rho C}$ в (2.7), получим приближенное выражение для резонансной частоты контура I-го вида

$$\omega_p \approx \frac{1}{\sqrt{LC}}$$
, (2.10)

совпадающее с выражением для резонансной частоты последовательного контура.

Подставив, наконец, $X_1 = \omega_p L$, $X_2 = -1/\omega_p C$, $\omega_p = 1/\sqrt{LC}$ и $R = R_1 + R_2$ в (2.8), получим выражение для сопротивления простого паражлельного контура при резонансе

$$R_{3\rho} = \frac{\omega_{\rho}^{2} L^{2}}{R} = \frac{1}{\omega_{\rho}^{2} C^{2} R} = \frac{L}{CR} = \frac{\rho^{2}}{R} = Q\rho, \quad (2.11)$$

где $Q = \rho/R$ - добротность простого параллельного контура.

Обычно 2 - ммеет величину несколько килоом.

Рассмотрим распределение токов при резонансе в простом параллельном контуре. Пусть \mathcal{J} — ток в неразветвленной части контура (ток генератора), а \mathcal{J}_4 и \mathcal{J}_2 — токи в индуктивной и емкостной ветвях - рис. 2.3. Напряжение $\, \mathcal{U}_{\!_{\!R}} \,$ на контуре

$$\begin{split} \dot{\mathcal{U}}_{k} &= R_{9p} \dot{\mathcal{J}} = \dot{\mathcal{J}}_{4}(R_{1} + j\omega_{p}L) = \dot{\mathcal{J}}_{2}(R_{2} - j\frac{1}{\omega_{p}C}) &, \text{ откуда} \\ \dot{\dot{\mathcal{J}}}_{4} &= \frac{\dot{\mathcal{U}}_{k}}{R_{4} + j\omega_{p}L} = \frac{\dot{\mathcal{J}}R_{3p}}{R_{4} + j\omega_{p}L} = \dot{\mathcal{J}}\frac{R_{3p}}{\sqrt{R_{4}^{2} + (\omega_{p}L)^{2}}}, \quad (2.12) \\ \dot{\dot{\mathcal{J}}}_{2} &= \frac{\dot{\mathcal{U}}_{k}}{R_{2} - j\frac{1}{\omega_{p}C}} = \frac{\dot{\mathcal{J}}R_{3p}}{R_{2} - j\frac{1}{\omega_{p}C}} = \dot{\mathcal{J}}\frac{R_{3p}e^{-j\varphi_{2}}}{\sqrt{R_{2}^{2} + (\frac{1}{\omega_{p}C})^{2}}}, \quad (2.13) \end{split}$$
 где $\varphi_{4} = \operatorname{arctg}\,\omega_{p}L/R_{4}, \qquad \varphi_{2} - \operatorname{arctg}(-1/\omega_{p}CR_{2}).$ Угол φ_{4} запаздывающий, а φ_{2} - опережающий фазу тока $\dot{\mathcal{J}}$ и,

Pur. 2.4

следовательно, фазу напряжения 24 . Векторная диаграмма токов и напряжений в простом параллельном контуре при резонансе представлена на рис. 2.4. Поскольку /Х,/= $=\omega_{p}L\gg R_{1}[X]=\frac{1}{\omega_{n}C}\gg R_{2}$

т.е. выполняются негоства

(2.5), TO YEAR $\varphi_1 + \varphi_2$

по абсолютной величине близки к $\pi/2$. Следовательно, токи \mathcal{J}_{4} и \mathcal{J}_{2} сдвинуты между собой по фазе на угол, близкий к \mathcal{K} , а их амплитуды почти одинаковы. Можно считать, что токи ветвей \mathcal{J}_{4} и \mathcal{J}_{2} образуют как бы один контурный ток \mathcal{J}_{4} , обтекающий последовательно все элементы контура

$$\mathcal{J}_{\mathcal{K}} \approx \mathcal{J}_{\mathcal{A}} \approx \mathcal{J}_{\mathcal{Z}}.$$
 (2.14)

Из (2.12) и (2.13) с учетом (2.5) следует

$$\mathcal{J}_{\kappa} = \mathcal{J}_{4} \approx \frac{R_{3p}\mathcal{J}}{\omega_{p}L} = \frac{\rho^{2}\mathcal{J}}{R\rho} - Q\mathcal{J}; \qquad \mathcal{J}_{\kappa} = \mathcal{J}_{2} \approx \frac{R_{3p}\mathcal{J}}{I/\omega_{p}C} = \frac{\rho^{2}\mathcal{J}}{R\rho} = Q\mathcal{J}.$$

Таким образом, при резонансе ток \mathcal{J}_{k} , обтекащий контур, в Q раз больше, чем ток \mathcal{J} в неразветвленной части контура. Отсида и происходит название "резонанс токов" или параллельный резонанс.

2.3. Сложные парадлежьные контура П-го и Ш-го видов /

Пусть одна ветвь контура является чисто индуктивной, а вторая ветвь, кроме емкости, содержит еще и индуктивность — рис. 2.5а. Такой контур называют сложным параллельным контуром, а иногда параллельным контуром П—го вида. Для определения частоты параллель-

Рис. 2.5

ного резонанса контура П-го вида подставляем в (2.7) $X_1=\omega_p L_1$, $X_2=\omega_p L_2-\frac{1}{\omega_p C}$. Тогда $\omega_p L_1+\omega_p L_2-\frac{1}{\omega_p C}=0$, откуле

$$\omega_{p} = \frac{1}{\sqrt{(L_{1} + L_{2}) C'}} = \frac{1}{\sqrt{LC'}},$$
 (2.15)

где $L=L_1+L_2$. Из условия $X_2=\omega_{ph}L-\frac{1}{\omega_{ph}C}=0$ находим частоту ω_{ph} последовательного резонанса (резонанса напряжений), имеющего место в правой ветви контура: $\omega_{ph}=1/\sqrt{L_2C}$. Обозначим через ρ отношение

$$\rho = \frac{L_1}{L_1 + L_2} = \frac{L_1}{L} \,. \tag{2.16}$$

Тогда $X_1 = \omega_\rho L_1 = \rho \omega_\rho L$. Из формулы (2.8) находим сопротивление параллельного контура. П-го вида на частоте ω_ρ

$$R_{gp} = \frac{X_{1,2}^2}{R} = \rho^2 \frac{(\omega_p L)^2}{R} = \rho^2 \frac{\rho^2}{R} = \rho^2 \rho Q, \qquad (2.17)$$

где $R=R_1+R_2$, $\rho=\sqrt{L_1+L_2}/C=\sqrt{L/C}$ — характеристическое сопротивление контура Π -го вида. Коэффициент ρ называют коэффициентом включения. Формула (2.17) показывает, что перераспределение индуктивности между ветвями контура Π -го вида дает удобный способ изменения активного сопротивления R_{3D} на частоте параллельного резонанса. При перераспределении индуктивности между ветвями контура его параметры (резонансная частота ω_p волновое сопротивление $\rho=\sqrt{L/C}$ и добротность $Q=\rho/R$) остаются неизменными. В практических схемах контур Π -го вида выполняется так, как показано на рис. 2.56: при перестановке ползунка происходит изменение козфициента включения ρ , что и позволяет изменить сопротивление R_{3D} между точками Λ и Γ от нуля до наибольшей величины Γ

Пусть сложный параллельный контур содержит в индуктивной ветви емкость, а вторая ветвь является чисто емкостной – рис. 2.6. Такой контур называют еще контуром \mathbb{U} —го вида. При $X_{,}==\omega_{ph}L_{,}-1/\omega_{ph}C_{,}=Q$ в левой ветви контура происходит петведова гельный резонане на частоте $\omega_{ph}=1/L_{,}C_{,}$. Для опледеления

частоты паравлел ного резонанса подставляем в (2.7)

$$X_1 = \omega_p L_1 - \frac{1}{\omega_p C_1}$$

$$X_2 = -\frac{1}{\omega_p C_2}$$

$$\omega_p L_1 - \frac{1}{\omega_p C_1} = \frac{1}{\omega_p C_2}$$
orkyga
$$\omega_p = \frac{1}{\sqrt{LC}}, \quad (2.18)$$

где
$$C = \frac{C_1 C_2}{C_1 + C_2}$$
 (2.19)
Обозначим через ρ козффици-

ент включения

Puc. 2.6
$$\rho = C/C_2$$
 (2.20)

где $C < C_1$, C_2 ; $0 . Тогда <math>X_2 = -1/\omega_p C_2 = -p/\omega_p C$. Из (2.8) находим сопротивление параллельного контура Ш-го вида (рис. 2.6) на резонансной частоте ω_p

$$R_{pp} = \frac{X_{2}^{2}}{R} = \frac{\rho^{2}}{\omega_{p}^{2} C^{2} R} = \rho^{2} \frac{\rho^{2}}{R} = \rho^{2} Q \rho, \qquad (2.21)$$

где $R=R_1+R_2$, $\rho=1/\omega_\rho C$ = $\sqrt{L(C_1+C_2)}C_{f_2}$ характеристическое сопротивление контура $\mathbb B$ -го вида. Формула (2.21) показывает, что, изменяя соотношение между емкостями C_1 и C_2 , можно изменять резонансное сопротивление контура на частоте ω_ρ . При этом емкости C_4 и C_2 нужно изменять так, чтобы суммарная емкость C — формула (2.19) — оставалась неизменной и, следовательно, параметры контура (ω_ρ , ρ и Q) также оставались неизменными.

Контуры П-го и Е-го видов широко используются на практике для построения ламповых и транзисторных трехточеных схем автогенераторов - емкостной трехточки (рис. 2.7a) и индуктивной трехточки (рис. 2.76). Термин "трехточка" означает, что активный прибор соединяется с колебательным контуром в 3-х точках 1,2 м 3. Для выполнения условия баланса фаз в трехточечной схеме автогенератора необходимо, чтобы напряжение и на контуре и напряжение обрат-

ной связи \mathcal{U}_o , снимаемое с емкости (рис. 2.7a) или с индуктив-

Рис. 2.7

ности (рис. 2.76), находились в противофазе. Рассмотрим, как выполняется это условие, например, в схеме емкостной трехточки. Полагая, что ток базы $\mathcal{J}_5 \approx 0$, находим ток \mathcal{J}_6 в левой (индуктивной) ветви контура (рис. 2.7a)

$$\dot{\beta} = \frac{\dot{u}}{j\omega L + 1/j\omega C_1} = \frac{j\omega C_1 \dot{u}}{1 - (\omega/\omega_{noch})^2}.$$

где $\omega_{noch}=1/VLC_1$ — частота последовательного резонанса левой ветви. Чтобы сопротивление контура между точками I-3 (рис. 2.7a) имело индуктивный характер, необходимо выполнение неравенства $\omega \geq \omega_{noch}$, где ω — возможная частота генерации. Находим напряжение \mathcal{U}_o на емкости C_1 , являющееся в схеме автогенератора напряжением обратной связи

$$\dot{\mathcal{U}}_{o} = \dot{\mathcal{Z}}_{c,i}\dot{\mathcal{I}} - \frac{1}{j\omega C_{i}} \cdot \frac{j\omega C_{i}\dot{\mathcal{U}}}{1 - (\omega/\omega_{noca})^{2}} - \frac{2U}{\left[1 - (\omega/\omega_{noca})^{2}\right]}.$$

Отсюда следует, что напряжения \mathcal{U}_o и \mathcal{U} противофазны. В таблице I приведены сравнительные характеристики контуров 3-х видов.

CAEJIMIA I

патаметт.	\$\frac{4}{c} \text{I BMEA} \text{SMEABA}	{ 2, 2, 2, 1 вида (контур к п вида к
Частота парадледьного гезонанса	$\omega_p = 1/\sqrt{\omega}$	40 = 4/16, 29e L= Ly+ L2	$\omega_p = 4/\sqrt{LC}$, age $L = L_f L_2$ $\omega_p = 4/\sqrt{LC}$, age $C = \frac{C_f C_2}{C_f + C_2}$
Macrora nochemosareab-	1	40 < 22/1/20 > Wp	Wpw = 1/122, < Wp
эмп входного реактивного хот сопротивления (при С. К. = К. = 0)	2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No wp , wp w	XAS O COPH COS CO
Taparrepucrumentoe comportanente	D=1/7/C=0	8=7 t, 2ge L=L,+ L2	$S=\sqrt{\frac{L}{C}}$, $sge\ L=L_{1}+L_{2}$ $\rho=\sqrt{\frac{L}{C}}$, $sge\ C=\frac{C_{1}C_{2}}{C_{1}+C_{2}}$
Тобротность	Q = 9/R, de R = R,+R2	R = R, + R2	
поэфициент включения		$D = L_{2}/(L_{q}^{+}L_{2}) = L_{2}/L$	p = C/C2
опротивление на частоте параллельного резонанса	$p_{\varphi} = p^2/p - p \varphi$	Rp = PDG, 0 < p < 1	R3p = p2p Q 0 < p < 1

Резонансная кривая параллельного контура. Полоса пропускания.

Для определения резонансных свойств парадлельного контура воспользуемся выражением (2.1), справедливом при любых соотношениях между частотой ω источника сигнала (генератора) и резонансной частотой контура ω_{ρ} . При выполнении неравенств (2.5) выражение (2.1) принимает вид

$$\dot{z}_{AB} \cong \frac{-X_1 X_2}{R + j(X_1 + X_2)},$$
(2.22)

где $R = R_1 + R_2$. Пусть имеем простой параллельный контуррис. 2.3. Тогда, полагая в (2.22) $X_1 = \omega L$, $X_2 = -\frac{1}{\omega C}$

$$\dot{Z}_{AB}(\omega) = \frac{L/C}{R + j(\omega L - \frac{1}{\omega C})} = \frac{R_{3p}}{1 + j\alpha}, \quad (2.23)$$

где $R_{3p}=\frac{L}{QR}=\frac{\rho^2}{R}$, $\alpha=Q(\frac{\omega}{\omega p}-\frac{\omega p}{\omega})$ - обобщенная расстройка контура.

На практике парадлельный контур используют в качестве нагрузки в усилительных, умножительных и других каскадах. Эквивалентная схема такого каскада показана на рис. 2.8, где под \mathcal{R}_{\bullet} понимается внутреннее сопротивление генератора. Ток \mathcal{J} в неразветвленной части схемы на про-

MOR CXEMS

Puc. 2.8

извольной частоте ω равен $\dot{\mathcal{J}}(\omega) = \dot{\mathcal{E}}/[R_i + Z_{AB}(\omega)]$, а на резонансной частоте этот же ток $\dot{\mathcal{J}}(\omega_p) = \dot{\mathcal{E}}/(R_i + R_{ap})$. Поделив $\dot{\mathcal{J}}(\omega)$ на $\dot{\mathcal{J}}(\omega_p)$ с учетом соотношения (2.23), получим уравнение резонансной кривой по току для рассматривае—

$$n_{\mathcal{J}} = \frac{\dot{\mathcal{J}}(\omega)}{\dot{\mathcal{J}}(\omega_{p})} = \frac{(1+\beta)(1+ja)}{1+\beta+ja}, \qquad (2.24)$$

где обозначено

$$\beta = \frac{R_{gp}}{R_i} . \tag{2.25}$$

Вычислив модуль выражения (2.24), получим

$$n_{g} = (1+\beta) \frac{\sqrt{1+\alpha^{2}}}{\sqrt{(1+\beta)^{2}+\alpha^{2}}} = \frac{\sqrt{1+Q^{2}(\omega/\omega_{p}-\omega_{p}/\omega)^{2}}}{\sqrt{1+Q^{2}(\omega/\omega_{p}-\omega_{p}/\omega)^{2}}}, \quad (2.26)$$

где

$$Q_3 = \frac{Q}{1+\beta} = \frac{Q}{1+R_{3p}/R_i}$$
 (2.27)

- эквивалентная добротность контура с учетом шунтирующего действия внутреннего сопротивления R: генератора.

. Напряжение на контуре на произвольной частоте (

 $\dot{\mathcal{U}}_{\kappa}(\omega)=\dot{\mathcal{J}}(\omega)\cdot\dot{\mathcal{Z}}_{A5}(\omega)$, а на резонансной частоте это же напряжение $\dot{\mathcal{U}}_{\kappa}(\omega_p)=\dot{\mathcal{E}}R_{3p}/(R_i+R_{3p})$. Поделив $\dot{\mathcal{U}}_{\kappa}(\omega)$ на $\dot{\mathcal{U}}_{\kappa}(\omega_p)$,

учтя соотношение (2.23), получим уравнение резонансной кривой по напряжению

$$n_u = \frac{u_\kappa(\omega)}{\dot{u}_\kappa(\omega_p)} = \frac{1+\beta}{1+\beta+j\alpha}.$$

Вычислив модуль этого выражения, получим

$$n_{u} = \frac{1+\beta}{\sqrt{(1+\beta)^{2} + \alpha^{2}}} = \frac{1}{\sqrt{1+Q_{3}^{2}(\omega/\omega_{p} - \omega_{p}/\omega)^{2}}} . (2.28)$$

Резонансные кривые по току и напряжению при разных В изображены на гис. 2.9. Рассмотрим частные случаи.

1. Пусть $\beta >> 1$ или $R_{90} >> R_i$. Тогда $Q_j = D$, уравнение резонансной кривой по току принимает вид

$$n_{\chi^2} \sqrt{1 + Q^2(\omega/\omega_p - \omega_p/\omega)^2}$$

а уравнение резонансной кривой по напряжению $\mathcal{\Pi}_{\mathcal{U}}= \mathrm{I}$. Таким образом, в этом предельном случае лишь поведение тока в неразветвлен ной части цепи может быть индикатором резонанса.

2. Пусть, наоборот, $\beta < 1$ или $R_{gp} < R_2$. Такой случай часто встречается на практике и соответствует применению параллельного контура в транзисторных и пентодных ламповых схемах. Указанные приборы обладают большим внутренним сопротивлением R_2 . В этом случае $Q_2 \rightarrow Q$, уравнение резонансной кривой по току $n_3 \rightarrow 1$, а уравнение резонансной кривой по напряжению

$$n_u \cong \frac{1}{\sqrt{1+\alpha^2}} - \frac{1}{\sqrt{1+Q^2(\omega|\omega_p - \omega_p/\omega)^2}}.$$

В этом предельном случае индикатором резонанса служит поведение напряжения на контуре.

3. При $\beta = 1$ (R_{3D} и R_{2} сравнимы по величине) индикатором резонанса может служить как поведение тока в неразветвленной части схемы, так и поведение напряжения на контуре.

С учетом шунтирующего действия внутреннего сопротивления генератора полоса пропускания параллельного контура на уровне 0,7 равна

$$\Pi_{q\bar{q}} = \frac{\omega_p}{Q_{\bar{g}}} = \frac{\omega_p(1+R_{\bar{g}p}/R_i)}{Q} > \frac{\omega_p}{Q} .$$
(2.29)

Как следует из (2.29), учет внутреннего сопротивления R_2 генератора приводит к расширению полосы пропускания контура.

2.5. Схема замещения параллельного контура

Как отмечалось выше, записавы полное сопротивление между точками A и Б (рис. 2.1) в форме $Z_{AB} = R_2 + jX_2$, представляем параллельный контур в виде последовательной схемы замещения — — рис. 2.2. Запишем выражение (2.23) в виде

Схемы замещения параллельного контура полезны при решении зедач - см. задачи 2.2, 2.3, 2.4.

2.6. Задачи.

- 2.1. Рассчитать емкость и индуктивность простого параллельного контура, если \mathcal{A}_{ρ} =900 M, \mathcal{R} =10 0м, $\mathcal{R}_{g\rho}$ =9 -10³ 0ж.
- 2.2. Найти значения активной R_3 и реактивной X_3 составляющих, полное сопротивление простого параллельного контура, питаемого генератором с частотой f =935 кГц. Параметры контура L =240 мкГн, L =120 пL, R =20 0м.

- 2.3. Простой парадлельный контур настроен на длину волны \mathcal{A} =400 м. Параметры контура \mathcal{L} =200 мкГн, \mathcal{R} =10 0м. Чему равны резонансное сопротивление контура \mathcal{R}_{gp} , его добротность \mathcal{Q} и полоса пропускания $\Pi_{0,7}$? На какой частоте реактивная составляющая контура имеет максимальное значение и емкостной характер?
- 2.4. В схеме простого параллельного контура (рис. 2.8) $R_{20}^* = 10 \text{ кОм}$, $R_{30}^* = 50 \text{ кОм}$. Для настройки контура в резонанс можно использовать либо амперметр, либо вольтметр. Решить, чем лучше настраиваться в резонанс в этих условиях вольтметром или амперметром. Определить границы шкалы прибора, если напряжение генератора \mathcal{U}_{p} =200 В. Настройку вести в пределах полосы пропускания. Добротность контура Q =50.
- 2.5. Найти мощность, выделяемую в простом параллельном контуре, если известно, что R_{3p} =40 кОм, добротность Q =30, а амплитула тока в контуре равна 0.6 A.
- 2.6. Простой параллельный контур, параметры которого R=16,3 Ом, L=338 мкГн, C=300 пФ (рис. 2.II), полключен к источнику гармонической ЭДС с амплитудой 200 В и внутренним сопротивлением $R_2=69$ кОм. Чему равны эквивалентная добротность контура и полоса его пропускания, если нагрузить контур на сопротивление $R_{\rm H}=138$ кОм?

Рис. 2.11

Рис. 2.12

2.7. Для измерения добротности простого параллельного контура собрана схема — рис. 2.12а. Входная цель вольтметра описывается эквивалентной схемой, представленной на рис. 2.126. Каким должно быть входное сопротивление вольтметра \mathcal{R}_{fig} .

чтобы при заданных параметрах L =10 мкГн, C =88 пФ, R = 5 0м, R_i =100 кОм, C_{cs} = 1 мкФ, C_{tc} = 2 пФ ошиска измерения добротности не превыпала 5% ?

- 2.8. Во сколько раз сопротивление простого параллельного контура на частоте $n\omega_{\rho}$ меньше, чем на резонансной частоте ω_{ρ} Здесь n =2,3,4,... номер гармоники. Определить $|Z(\omega_{\rho})|$ и $|Z(2\omega_{\rho})|$, если L =250 мкГн, C =1000 пФ, R =5 Ом.
- 2.9. Найти точное выражение для резонансной частоты и сопротивления при резонансе параллельного контура (рис. 2.13), считая, что $R_1 \ll \omega L$, а $R_2 \gg R_4$.

Рис. 2.13

Рис. 2.14

- 2.10. При перемещении ползунка (рис.2.14) сопротивление распределяется между ветвями параллельного контура, у которого L=2 мГн, C=500 пФ, R=1 кОм. Определить пределы изменения резонансной частоты контура при изменении параметра K от 0 до I. Сделайте вывод о целесообразности использования на практике такого способа изменения резонансной частоты параллельного контура.
- 2.II. Вычислить частоты резонансов токов f_{pr} и напряжений f_{ph} , жарактеристическое сопротивление ρ , добротность Q коэффициент включения ρ , резонансное сопротивление R_3 , эквивалентную добротность Q_3 , полосу пропускания $\Pi_{0,7}$ и значение напряжения на контуре на частотах f_{pr} и f_{ph} . Параметры элементов цени рыс. 2.I5): L =220 мкГн, C_4 =48 пФ, C_4 = 320 пФ, R_4 =100 м, R_4 =100 кОм, R_4 =24 В.

Рис. 2.15.

Рис. 2.16

Рис. 2.17

- 2.12. Задан параллельный контур Ш-го вида рис. 2.16. Найти $C_{\rm I}$ и $C_{\rm 2}$, если $R_{\rm 3p}={\rm IO}^4$ Ом, $L_{\rm =I50}$ wkГн, C $C_{\rm 2}/C_{\rm 2}/C_{\rm 2}$ =500 пФ. $R_{\rm =I0}$ Ом.
- 2.13. Задан параллельный контур П-го вида рис. 2.17. Дано: $L = L_1 + L_2 = 150$ мкГн, C = 600 пФ, R = 10 Ом. Определить, как распределить индуктивность по ветвям, чтобы $R_{30} = 10$ кОм.
- 2.14. Определить вид и нарисовать схему сложного параллельно го контура, найти его сопротивление потерь R, если на частотах f_1 =17 МГц и f_2 =51 МГц входное сопротивление контура $Z_{\delta x}$ достигает соответственно своего максимального и минимального значений, причем $Z_{\delta x}$ макс -20 кОм, а на частоте f добротность контура G =40.
- 2.15. Рассчитать параметры сложного парадлельного контура, который на частоте 10 сек должен обладать активным сопротивлением 10 кОм, а на частота 2 10 рад сек активным сопротивлением 10 Ом. Полное сопротивление потерь контура 20 Ом.
- 2.16. Определить резонансные частоты, характеристическое сопротивление, добротность и сопротивление на частоте параллельного резонанса сложного параллельного контура рис. 2.18, если \mathcal{R}_{4} =12 0м, \mathcal{L}_{4} =220 мкГн, \mathcal{C}_{4} =270 пФ, \mathcal{R}_{2} =9.6 0м, \mathcal{L}_{2} =640 мкГн, \mathcal{C}_{2} =410 пФ.
- 2.17. Через неразгеталенную часть простого параллельного контура с параметрами L =20 мкГн, C =200 пФ, R =10 Ом. проходит ток

 $i(t) = f_0(1 + m\cos\Omega t) \cdot \cos\omega\rho t$, A.

Амплитуда несущей \mathcal{F}_o =IO A, глубина модуляции . \mathcal{M} =30%, частота модуляции \mathcal{F}' =500 Гц. Контур настроен на частоту ω_p Найти напряжение на контуре $\mathcal{U}(t)$. Нарисовать спектры тока и напряжения.

Рис. 2.18

Рис. 2.19

- 2.18. Колебательный контур (рис. 2.19) имеет частоту $25M\Gamma_{\rm U}$ парадлельного резонанса. При этом правая ветвь контура настроена на вдвое большую частоту (частота последовательного резонанса) Определить параметры контура, если R_1 =10 Ом, а эквивалентное сопротивление 18 кОм.
- 2.19. В коллекторный контур УВЧ (рис. 2.20) включены разделительные конденсаторы $C_{\rm I}$ и $C_{\rm 2}$. Емкость конденсатора настройки $C_{\rm MUH}=30$ пФ, $C_{\rm Makc}=300$ пФ. Емкости $C_{\rm I}=C_{\rm 2}=20.000$ пФ. Убедиться, что разделительные конденсаторы не влияют на настройку контура.
- 2.20. Параллельный колебательный контур с параметрами L = 10 мкГн, C = 100 пФ. R = 5 Ом включается в качества нагрузки УВЧ рис. 2.21а. Внутреннее сопротивление транзистора R_i на рабочей частоте пунтирует контур рис. 2.216. Определить величину R_i , при которой добротность контура снежается не более, чем на 10^{4} .

Рис. 2.20

Puc. 2.2I

- 2.21. Определить, в какие кривые выродяться кривые активной R_3 и реактивной X_3 составляющих входного сопротивления контура I-го вида (рис. 2.3) в случае, когда $R_1 + R_2 \rightarrow 0$.
- 2.22. Заменить схему контура I-го вида (рис. 2.3) на резонансной частоте эквивалентной схемой, представляющей собой параллельное

Рис. 2.22

соединение контура без потерь и активного сопротивления R - рис. 2.22. Определить сопротивление R

РАЗДЕЛ З. СВЯЗАННЫЕ КОНТУРА

3.1. Амплитудно-частотная характеристика индуктивно связанных контуров.

На практике наиболее часто применяется система связанных колебательных контуров с индуктивной или трансборматорной связыв — — рис. З.І. Степень связи между контурами определяется коэффици—

Рис. 3.1

ентом связи $K = M/\sqrt{L_1L_2}$, (0 < K < 1), гдв M — коэффициент взаимоиндукции. В радиотехнике используются связанные контура, в которых $K \approx 0.01 \pm 0.05$.

В общем случае два связанных контура имеют разные параметры L, C, R и настроены на разные, хотя и достаточно близкие частоты. Положим, что параметры контуров одинаковы, т.е. $C_1 = C_2 = C$. $R_1 = R_2 = R$, $L_4 = L_2 = L$. Запишем уравнения системы двух индуктивно связанных контуров в комплексной форме

$$\dot{Z}(\omega)\dot{Z}_{1}(\omega) - j\omega M\dot{Z}_{2}(\omega) = \dot{E}(\omega),
- j\omega M\dot{Z}_{1}(\omega) + \dot{Z}(\omega)\dot{Z}_{2}(\omega) = 0,$$
(3.1)

где $\dot{Z}(\omega) = j\omega L + R + 1/j\omega C$, . Определив из (3.1) ток $\dot{Z}_2(\omega) = j\omega M \dot{E}/(\omega^2 M^2 + \ddot{Z}^2)$, находим напряжение на емкости $\dot{U}(\omega) = \dot{Z}_2/j\omega C = \dot{E}(\omega)M/C(\omega^2 M^2 + \ddot{Z}^2)$. Определяем коэффициент передачи по напряжению $\dot{K}_V = \frac{\dot{U}(\omega)}{\dot{E}(\omega)} = \frac{\dot{M}}{C} \cdot \frac{\dot{U}}{(\omega^2 M^2 + \ddot{Z}^2)} = \frac{\dot{M}}{C} \cdot \frac{\dot{U}}{(\omega^2 M^2 + \ddot{Z}^2 - \omega^2 L^2 (1 - \omega^2 / \omega^2)^2 L \dot{E}_j \omega L (1 - \omega^2 / \omega^2)^2}$

где $\omega_o^2=1/LC$ — резонансная частота каждого из контутов. Рассмотрим поведение $|K_{\nu}|$ вблизи частоты ω_o , положив $\omega L \approx \omega_o L = \rho$, где ρ — характеристическое сопротивление каждого из контуров. Запишем выражение $(1-\omega_o^2/\omega^2)$ в виде

$$1 - \frac{\omega_o^2}{\omega^2} = \frac{\omega^2 - \omega_o^2}{\omega^2} = \frac{(\omega - \omega_o)(\omega + \omega_o)}{\omega^2} \approx -\frac{2\Delta\omega}{\omega_o} = -\mathcal{E},$$

тре $\Delta \omega = \omega_o - \omega$ — небольшая абсолютная расстройка частоты ω генератора относительно резонансной частоты ω_o , $\Delta \omega << \omega_o$, ω ; $\mathcal{E} = 2\Delta \omega/\omega_o <\!\!\!/ \Delta -$ относительная расстройка. Тогда запишем выражение (3.2) в виде $K_{\omega}(\omega) = K_{\omega}(\omega)/e^{-\omega}$, где

$$|K_{\nu}(\omega)| = A = \frac{\kappa}{\sqrt{(d^2 + \kappa^2)^2 + 2(d^2 - \kappa^2)\epsilon^2 + \epsilon^4}}$$
 (3.3)

- модуль коэффициента передачи, выражающий АЧХ системы индуктивно связанных контуров;

$$\varphi = arctg \frac{2E/d}{(\kappa/d)^2 + 1 - (E/d)^2}$$
 (3.4)

— ФЧХ системы связанных контуров, характеризушцая сдвиг фазы между напряжением генератора и напряжением на емкости выходного (второго) контура; d=4/Q — затухание, $Q=\omega_0 L/R$ — добротность каждого из индуктивно связанных контуров, $K=M/U_L/2=M/L$ — коэффициент связи. Найдем частоту, т.е. значение \mathcal{E} , при которой $|K_V|$ имеет максимум. Вычислив производную $dA/d\mathcal{E}$ и приравняв ее нулю, получим два уравнения для определения положения 3-x экстремальных точек

 $\varepsilon = 0, \qquad d^2 - \kappa^2 + \varepsilon^2 = 0.$

Пусть K > d. Экстремальная точка при $\mathcal{E} = 0$ есть точка минимума, а уравнение $d^2 - K^2 + \mathcal{E}^2 = 0$ определяет положение двух максимумов. Редив уравнение, получим

$$\mathcal{E} = \pm \sqrt{\kappa^2 - d^2}$$
 with $\omega = \frac{\omega_c}{\sqrt{1 \pm \sqrt{\kappa^2 - d^2}}}$. (3.5)

Таким образом, имеется две частоты

$$\omega_{2} = \frac{\omega_{o}}{\sqrt{1 + \sqrt{\kappa^{2} - d^{2}}}}$$
 $\omega_{2} = \frac{\omega_{o}}{\sqrt{1 - \sqrt{\kappa^{2} - d^{2}}}}$ (3.6)

причем ω_1 ниже, а ω_2 - выше частоты ω_o . Частоты ω_1 и ω_2 зависят от коэйфициента связи K и называются частотамы связи. Разница между ω_1 и ω_2 тем больше, чем больше K

Пусть K = d . Связь, соответствующая значению K = d .

называется критической. При этом $\omega_1 = \omega_2 = \omega_0$

При K < d формула (3.5) несправедлива. Исследование показывает, что при K < d имеется один максимум на частоте ω_o Действительно, при K < d, как видно из выражения (3.3), все коэффициенты в знаменателе при $\mathcal E$ положительны, следовательно, при любом $\mathcal E$ значение $|K_v|$ меньше максимального значения $K_o = K/(d^2 + K^2)$, которое имеет место при $\mathcal E$ =0, т.е. при $\omega = \omega_o$.

На рис. 3.2 показаны частотные характеристики системы индук-

тивно связанных контуров, построенные по формуле

$$\frac{|K_{\nu}|}{|K_{\nu MAKC}|} \frac{|A|}{|A_{MAKC}|} = \frac{2\kappa/d}{\sqrt{[1+(\kappa/d)^2]^2 + 2[1-(\kappa/d)^2] \cdot (\varepsilon/d)^2 + (\varepsilon/d)^4}}, (3.7)$$

в которой значение $|K_{VMAKC}| = |A_{MAKC}| = \frac{1}{2d}$ получено подстановкой в выражение (3.3) значения $\mathcal{E}^2 = K^2 - d^2$, соответствуюмее частотам связи. Кривая при K/d =I отличается от резонансной кривой одиночного контура (пунктирная кривая на рис. 3.2) тем, что имеет более плоскую вершину и более крутые скаты; такая кривая представляет некоторое приближение к идеальной прямоугольной характеристике.

3.2. Полоса пропускания индуктивно связанных контуров

Как и в случае одиночного контура, полоса пропускания системы индуктивно связанных контуров определяется как ширина частотной характеристики на уровне $1/\sqrt{2}=0.7$ от максимальной ординаты A_{MAKC} . Но в случае связанных контуров полоса пропускания завысит не только от затухания d, но и от коэффициента связи K. При увеличении K разнос частот связи возрастает, полоса пропускания расширяется, но иги этом углубляется провал

Рис. 3.2

варактеристики на частоте ω_o . Поэтому в качестве дополнительного условия, поэволящего найти однозначное решение задачи, пот-

ребуем, чтобы и минимум характеристики лежал на высоте $1/\sqrt{2}$ от A_{MAKC} - рис.3.3 Составим два уравнения для случая K > d (сильная связь между контурами)

$$\frac{2 \kappa / d}{\sqrt{\left[1 + (\kappa / d)^{2}\right]^{2} + 2\left[1 - (\kappa / d)^{2}\right] (\varepsilon / d)^{2} + (\varepsilon / d)^{4}}} = 1/\sqrt{2}, \quad (3.8)$$

$$\frac{A_{o}}{\sqrt{1 + (\kappa / d)^{2}}} = \frac{2 \kappa / d}{1 + (\kappa / d)^{2}} = \frac{1}{\sqrt{2}}.$$
(3.9)

Из (3.9) находим (κ/d) = $1+\sqrt{2}\approx 2.41$. Подставив это значение в (3.8), получим после решения этого уравнения

$$1\varepsilon_1 = \frac{2\Delta\omega}{\omega_o} = \frac{\Pi_{Q7}}{\omega_o} = 2\sqrt{1+\sqrt{2}} \cdot d = 3, 1 \frac{1}{Q},$$
откуда
$$\Pi_{Q7} = 3.1 \frac{\omega_o}{Q}, \quad (\kappa > d).$$
(3.10)

При $\kappa < d$ (слебая связь между контурами) уравнение для определения полосы пропускания имеет вид

$$\frac{A}{A_o} = \frac{d^2 + \kappa^2}{\sqrt{(d^2 + \kappa^2)^2 + 2(d^2 - \kappa^2)\varepsilon^2 + \varepsilon^4}} = \frac{1}{\sqrt{2}}.$$

Решьв последнее уравнение, получим

$$\mathcal{E} = \frac{2\Delta\omega}{\omega_o} = d \cdot \sqrt{\left(\frac{\kappa}{d}\right)^2 - 1 + \sqrt{2[1 + (\kappa/d)^4]}}$$

$$\Pi_{qr} = \frac{\omega_o}{Q} \sqrt{\left(\frac{\kappa}{d}\right)^2 - 1 + \sqrt{2[1 + (\kappa/d)^4]}}$$
(3.11)

В частности, при критической связи (K=d), как следует из (3.II), полоса пропускания

$$\Pi_{o7} = \frac{\sqrt{2} \omega_o}{Q} , \qquad (\kappa = d).$$
(3.12)

3.3. Задачи

3.І. Резонансные частоты двух индуктивно связанных контуров (рис. 3.4) соответственно равны $\mathcal{J}=8$ МГц, $\mathcal{J}_2=10$ МГц, а их емкости 50 и 80 пФ. При какой взаимной индуктивности \mathcal{M} можно получить коэффицент связи $\mathcal{K}=0.05$?

Рис. 3.4

Рис. 3.5

- 3.2. Приемная антенна индуктивно связана с настроенным в резонанс контуром, у которого C =300 п $\bar{\Phi}$, R =8 0м рис. 3.5. Определить напряжение \mathcal{U}_2 на сетке лампы, если ток в антенне \mathcal{J}_4 = 0, I7 мкÅ, коэффициент взаимоиндукции M =20 мк Γ н.
- 3.3. Найти резонансную частоту контура I (рис. 3.6), индуктивно связанного с апериодическим контуром П. Определить пределы изменения настройки контура I при помощи контура П, если L_2 =40мкГн, C_1 =250 пФ, L_2 = 5 мкГн, $M_{\rm MWH}$ = 0, $M_{\rm Makc}$ = 4 мкГн.

Рис. 3.6

Рис. 3.7

- 3.4. Генератор имеет внутреннее сопротивление $R_1=200~\rm OM~M$ должен быть нагружен на сопротивление нагрузки $R_2=2000~\rm OM$. Для согласования нагрузки с внутренним сопротивлением генератора применена схема, представленная на рис. 3.7. Определить козфициент связи M между контурами, если $R_1=20~\rm OM~M$ $L_2=200~\rm MmTh$. При этом считается, что песвый контур настроен в гезонанс.
- 3.5. Дани два одинаковых индуктивно связанных контура, настроенные в отлельности на частоту $f_0 = 2 \cdot 10^6$ Ги. Определить частоти связи f_1 и f_2 . если известно, что активные сопро-

тивления каждого контура R =10 Ом, X_{cg} = ωM = 16 Ом, а емкость каждого контура 100 пФ.

- 3.6. Система двух связаннях колебательных контуров (рис. 3.8) имеет следующие параметры: $X_{LI} = X_{CI} = 600$ Ом, $X_{L2} = X_{C2} = 400$ Ом, $R_I = R_I = R_2 = 100$ м) Ом, $\omega_o = 10^6$ рад/сек, M = 20 мкГн. Определить сопротивление между точками A и B на частоте ω_o
- 3.7. Два одинаковых индуктивно связанных контура, параметры которых $\mathcal{L}_1 = \mathcal{L}_2 = 250$ мкГн, $\mathcal{R}_1 = \mathcal{R}_2 = 10$ Ом, настроены отдельно на одну и ту же частоту $\mathcal{J}_0 = 5 \cdot 10^5$ Гц. Определить: полосу пропускания каждого контура; полосу пропускания индуктивно связанных контуров при критической связи; максимальную полосу пропускания двух связанных контуров; пр. каких коэбфициентах связи полоса пропускания двух связанных контурог будет: а) в $\sqrt{2}$ меньше, б) в I,2 раза больше, в) в 2 раза больше по сравнению с полосой пропускания одиночного контура.

Рис. 3.8

Рис. 3.9

- 3.8. Полосовой фильтр состоит из двух одинаковых контуров, связанных индуктивно рис. 3.9. Параметры контуров: $\mathcal{L}_1 = \mathcal{L}_2 = 400$ мкГн, $C_1 = C_2 = 100$ пФ. $R_4 = R_2 = 10$ ом. Определить наибольную полосу пропускания фильтра и коэффициент связи, при котором эта полоса обеспечивается. Найти коэффициент взаимоиндукции \mathcal{M}
- 3.9. На вход связанной системы, состоящей из двух одинаковых колебательных контуров (рис. 3.9), подается амплитудно-модулировенное немряжение $\mathcal{U}_4 = \mathcal{U}_0(1 + m \sin \Omega t) \sin \omega_0 t$.

Найти напряжение \mathcal{U}_2 на комденсаторе второго контура, считая, что каждый из контуров в отдельности настроен на частоту \mathcal{U}_2

JUTEPATYPA

- І. ЗАЕЗДНЫЙ А.М. Сборник задач и упражнений по курсу "Теоретичес кая радиотехника". М.: Гос. изд-во лит-ры по вопросам связи и радио, 1957.
- 2. ГОНОРОВСКИЙ И.С. Радиотехнические цепи и сигналы. Изд-е 2-е. М.: Сов. Радио, 1964.
- 3. ХАРКЕВИЧ А.А. Основы радиотехники. М.: Гос. изд-во лит-ры по вопросам связи и радио, 1962.
- 4. ШЕВЕС М.Р., КАБЛУКОВА М.В. Задачник по теории линейных электрических цепей. Изд-е 4-е. М.: Высш. шк., 1990.

СОДЕРЖАНИЕ

		Стр.
РАЗДЕЛ	I.	Последовательный колебательный контур3-10
РАЗДЕЛ	2.	Параллельный колебательный контурII-28
РАЗДЕЛ	3.	Связанные контура29-36
JUTTEPAT	УР	36