Conteúdo Programático: Cinética Química Competências e Habilidades: Saber calcular a velocidade das reações químicas / Ler gráficos.	ETESP COS PAÑO PARIODO INCOMENSOR	Lista de Exercícios 2 3º Bimestre	Físico-Química Professor: Jo	ota Série: 2º Data:/
	Conteúdo Programático:	Cinética Química	Competências e Habilidades:	

Exercícios | CINÉTICA QUÍMICA

01] A revelação de uma imagem fotográfica em um filme é um processo controlado pela cinética química da redução do halogeneto de prata por um revelador. A tabela abaixo mostra o tempo de revelação de um determinado filme.

N° de mols do revelador	Tempo de revelação (min)
24	6
22	7
21	8
20	9
18	10

Qual a velocidade média (v_m) de revelação, no intervalo de tempo de 7 min a 10 min?

02] A relação a seguir mostra a variação da concentração de uma substância ${\bf A}$, em função do tempo, em uma reação química: ${\bf a}$ ${\bf A}$ + ${\bf b}$ ${\bf B}$ \rightarrow ${\bf c}$ ${\bf C}$ + ${\bf d}$ ${\bf D}$

t (min)	0	2	4	6	8	10	12	14	16	18
[A] mols/L	11	7	4,3	3,0	2,0	1,0	0 , 5	0,3	0,2	0,2

Qual será o valor da velocidade média da reação de ${f A}$ correspondente ao intervalo entre 4 e 14 min?

03] Na reação a seguir: $\mathbf{X} + \mathbf{2} \mathbf{Y} \rightarrow \mathbf{Z}$, observou-se a variação da concentração de \mathbf{X} em função do tempo, segundo a tabela abaixo:

Tempo (s)	0	120	240	360	720
[X] mol/L	0,225	0,220	0,200	0,190	0,100

No intervalo de 4 a 6 minutos a velocidade média da reação, em mol/L.min, é:

- 04] A velocidade média da reação N_2 + 3 H_2 \rightarrow 2 NH_3 vale 2 mols/min. Quanto vale a velocidade média em função do hidrogênio?
- 05] Em determinada experiência, a reação de formação de água está ocorrendo com o consumo de 4 mols de oxigênio por minuto. Conseqüentemente, qual seria a velocidade de consumo de hidrogênio?

06] Numa reação completa de combustão, foi consumido, em 5 minutos, 0,25 mols de metano, que foi transformado em CO_2 e H_2O . Qual a velocidade da reação?

07] O gráfico a seguir representa a variação das concentrações das substâncias ${f X}$, ${f Y}$ e ${f Z}$.

A equação que representa a reação é:

- a) $X + Z \rightarrow Y$
- b) $X + Y \rightarrow Z$
- c) $X \rightarrow Y + Z$
- d) $Y \rightarrow X + Z$
- e) $Z \rightarrow X + Y$

8] Numa reação que ocorre em solução (reação I), há o desprendimento de oxigênio e a sua velocidade pode ser medida pelo volume do $O_2(g)$ desprendido. Uma outra reação (reação II) ocorre nas mesmas condições, porém consumindo $O_2(g)$ e este consumo mede a velocidade desta reação. O gráfico representa os resultados referentes às duas reações:

Considerando as duas horas iniciais, qual das reações tem velocidade maior? Justifique sua resposta.

Tempo/horas

9).Analise o seguinte diagrama e responda às perguntas:

Coordenada da reação

- a) Qual é a equação da reação química envolvida?
- b) Quantas e quais são as moléculas que colidem nessa reação elementar?
- c) Como se chama a situação representada por " $\rm N_3O_2{^{\prime\prime}}?$
- d) A que corresponde o trecho marcado com a letra \mathbf{x} ?
- e) A que corresponde o trecho marcado com a letra Y?
- f) A reação em questão é endotérmica ou exotérmica?

- 10) O gráfico a seguir refere-se ao diagrama energético de uma reação química (reagentes→produtos), onde se vêem destacados dois caminhos de reação: Após uma analise das entalpias dos reagentes, dos produtos e dos valores a, b, c e d, podemos afirmar que:
- a) reação é endotérmica e a presença do catalisador diminuiu o ΔH de a para b.
- b) reação é endotérmica e a representa o AH com a presença do catalisador.
- c) reação é exotérmica e a energia de ativação, sem a presença do catalisador, é representada por c.

- d) presença do catalisador diminuiu o $\;\Delta H$ da reação representada por c.
- e) presença do catalisador diminuiu a energia de ativação de a para b e mantém constante o ΔH da reação representada por d.

 $\underline{\operatorname{caminho}\ 1}$ - reação normal ; $\underline{\operatorname{caminho}\ 2}$ - reação $\underline{\operatorname{com}\ um\ catalisador}$

 $H\colon$ Entalpia; $H_R\colon$ Entalpia dos Reagentes; $H_P\colon$ Entalpia dos produtos.

11) Considere a reação: $M(g) + N(g) \rightarrow O(g)$

Observa-se, experimentalmente, que, dobrando-se a concentração de N, a velocidade de formação de O quadruplica e, dobrando-se a concentração de M, a velocidade da reação não é afetada. Indique a equação de velocidade para esta reação.

12) A combustão da gasolina pode ser equacionada por:

 $C_8H_{18} + O_2 \rightarrow CO_2 + H_2O$ (equação não balanceada)

Considere que após uma hora e meia de reação foram produzidos 36 mols de CO_2 . Dessa forma, qual será a velocidade de reação, expressa em número de mols de gasolina consumida por minuto?

- 13) Experimentalmente foi determinado que, para a reação entre os gases hidrogênio e monóxido de nitrogênio, a lei de velocidade é v = k. $[H_2]$. $[NO]^2$
- a) Qual a ordem da reação com relação ao H2? E ao NO?
- b) O que acontece com a velocidade da reação quando se duplica a concentração de hidrogênio? E a de NO?

TR

14) Uma reação hipotética, não-elementar, foi testada para verificar os efeitos que as concentrações exerciam sobre sua velocidade. A reação em questão é a seguinte: $A + 2B \rightarrow C + 3D$. Os experimentos estão na tabela abaixo:

Concentração de A (mol/L)	Concentração de B (mol/L)	Velocidade (mol/L. s)
0,02	0,04	2x 10-2
0,02	0,08	2x10 ⁻²
0,04	0,04	8x10 ⁻²

Qual será a equação da velocidade para essa reação?

15) A tabela a seguir mostra valores da velocidade inicial de uma reação para várias concentrações molares dos reagentes A,B e C. Observe:

[A]	[B]	[C]	Mol . L ⁻¹ . min ⁻¹
0,4	0,4	0,4	0,02
0,4	0,4	0,8	0,02
0,4	0,8	0,4	0,04
0,8	0,4	0,4	0,08

Sabendo que a lei da velocidade é do tipo v = K [A]^m[B]ⁿ[C]^q, determine o valor dos expoentes m, n e q.

16) Uma das reações mais importantes do *smog* fotoquímico, tipo de poluição que ocorre em cidades com muitos carros, é dada pelo mecanismo:

$$NO_2(g) \rightarrow NO(g) + O(g)$$
 (etapa lenta)

$$O_2 + O(g) \rightarrow O_3(g)$$
 (etapa rápida)

 $NO_2(g) + O_2(g) \rightarrow NO(g) + O_3(g)$

Escreva a lei de velocidade dessa reacão.

17) O gráfico abaixo indica na abscissa o andamento de uma reação química desde os reagentes (A+B) até os produtos (C+D) e na ordenada as energias envolvidas na reação. Qual o valor indicado pelo gráfico para a energia de ativação da reação A + B C+D?

18] Considere o gráfico a seguir, referente aos diagramas energéticos de uma reação química com e sem catalisador

Assinale a afirmativa CORRETA.

- a) A reação é endotérmica.
- b) A energia de ativação em presença do catalisador é 150 kJ.
- c) A curva II representa o diagrama energético da reação catalisada.
- d) A reação acontece em duas etapas.

19] ANALISE O GRÁFICO

- A] INDIQUE AS ETAPAS ENDOTÉRMICAS E EXOTÉRMICAS.
- B] CALCULE A VARIAÇÃO DA ENTALPIA NA CONVERSÃO DO CO2, EM METANOL.
- C] INDIQUE A ETAPA LENTA DO PROCESSO. JUSTIFIQUE SUA RESPOSTA.

20] CONSIDERE A REAÇÃO DE DECOMPOSIÇÃO DA SUBSTÂNCIA A NA SUBSTÂNCIA B E AS ESPÉCIES A CADA MOMENTO SEGUNDO O TEMPO INDICADO.

SOBRE A VELOCIDADE DESSA REAÇÃO, É CORRETO AFIRMAR QUE A VELOCIDADE DE:

- A] DECOMPOSIÇÃO DA SUBSTÂNCIA A, NO INTERVALO DE TEMPO DE 0 A 20s, É 0,46 mol/s.
- B] DECOMPOSIÇÃO DA SUBSTÂNCIA A, NO INTERVALO DE TEMPO DE 20 A 40s, É 0,012 mol/s.
- C] DECOMPOSIÇÃO DA SUBSTÂNCIA A, NO INTERVALO DE TEMPO DE 0 A 40s, É 0,035 mol/s.
- D] FORMAÇÃO DA SUBSTÂNCIA B, NO INTERVALO DE TEMPO DE 0 A 20s, É 0,46 mol/s.
- E] FORMAÇÃO DA SUBSTÂNCIA B, NO INTERVALO DE TEMPO DE 0 A 40s, \pm 0,70 mol/s.

21] O DIÓXIDO DE NITROGÊNIO (NO2) REAGE COM O MONÓXIDO DE CARBONO (CO) FORMANDO O ÓXIDO NÍTRICO (NO) E DIÓXIDO DE CARBONO (CO2).

$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$

ANALISANDO O DIAGRAMA DE COORDENADAS DE REAÇÃO APRESENTADO, UM ESTUDANTE FEZ AS SEGUINTES AFIRMAÇÕES:

- I. A ENERGIA DE ATIVAÇÃO PARA A FORMAÇÃO DO ÓXIDO NÍTRICO É DE 132 KJ/ MOL.
- II. A FORMAÇÃO DO ÓXIDO NÍTRICO É UM PROCESSO ENDOTÉRMICO.

III. O AUMENTO DA TEMPERATURA DO SISTEMA REACIONAL DIMINUI A VELOCIDADE DE FORMAÇÃO DO ÓXIDO NÍTRICO, POIS AUMENTA A ENERGIA DE ATIVAÇÃO DA REAÇÃO.

ESTÁ(ÃO) CORRETA(S) SOMENTE A(S) AFIRMAÇÃO(ÕES)

- A] I.
- B] II.
- C] III.
- D] I E II.
- E] I E III.

22] UM COMPRIMIDO EFERVESCENTE DE VITAMINA C INTACTO, PESANDO 5 G, QUANDO COLOCADO EM UM COPO CONTENDO ÁGUA A 25 °C, SERÁ DISSOLVIDO EM DOIS MINUTOS.

CONSIDERANDO ESSA INFORMAÇÃO, ASSINALE VERDADEIRA (V) OU FALSA (F) EM CADA UMA DAS PROPOSIÇÕES.

- [] SE O COMPRIMIDO EFERVESCENTE ESTIVER EM PEQUENOS PEDAÇOS, O TEMPO DE DISSOLUÇÃO TAMBÉM SERÁ DE DOIS MINUTOS, POIS A MASSA CONTINUA SENDO 5 G.
- [] O TEMPO DE DISSOLUÇÃO DO COMPRIMIDO EFERVESCENTE INTACTO MANTÉM-SE QUANDO O COMPRIMIDO FOR DISSOLVIDO EM ÁGUA A 40 °C, POIS A ÁREA DE CONTATO É A MESMA.
- [] QUANTO MAIOR A SUPERFÍCIE DE CONTATO DO COMPRIMIDO EFERVESCENTE COM A ÁGUA, MAIOR O NÚMERO DE COLISÕES FAVORÁVEIS, PORTANTO MAIOR A VELOCIDADE DE DISSOLUÇÃO.
- [] O AUMENTO DA TEMPERATURA DIMINUI A ENERGIA DE ATIVAÇÃO, DIMINUINDO, PORTANTO, O TEMPO DE DISSOLUÇÃO.

23] Observe o gráfico:.

O perfil da reação genérica A e B indica que a energia de ativação do processo, em kJ, é igual a

- a) 100.
- b) 150.
- c) 250.
- d) 300.
- e) 400.

24] Quando uma fita de magnésio é mergulhada em uma solução aquosa de ácido clorídrico, ocorre a reação:

$$Mg(s) + 2HCI(aq) \rightarrow MgC_2(aq) + H_2(g)$$

A temperatura da solução e a concentração do ácido afetam a velocidade da reação de oxidação do magnésio. Considere as condições experimentais durante a oxidação da fita de magnésio, de acordo com os registros a seguir.

EXPERIMENTO	TEMPERATURA (°C)	CONCENTRAÇÃO DO HC&(mol.L ⁻¹)
1	20	0,2
2	20	2,0
3	50	2,0
4	50	5,0

O magnésio será oxidado, mais rapidamente, no experimento

- a) 1.
- b) 2.
- c) 3.
- d) 4

.25] Aumentando-se a temperatura em um sistema químico reagente, o único fator que NÃO se altera é a (o)

- a) energia de ativação da reação.
- b) tempo para o equilíbrio ser alcançado.
- c) energia cinética das partículas reagentes.
- d) número de colisões efetivas entre as partículas.

26] Considere o diagrama de energia da reação de decomposição do H2O2 representado

Assinale a alternativa INCORRETA:

- a) A reação de decomposição do H₂O₂ é exotérmica.
- b) A curva "A" apresenta maior energia de ativação que a curva "B".
- c) A presença de um catalisador afeta o ∆H da reação.
- d) A curva "B" representa a reação com a presença de um catalisador.
- e) A letra "Z" representa o ΔH da reação de decomposição do H₂O₂.

27] Em aquários, utilizam-se borbulhadores de ar para oxigenar a água. Para um mesmo volume de ar bombeado nesse processo, bolhas pequenas são mais eficientes, porque em bolhas pequenas

- a) a área superficial total é maior.
- b) a densidade é menor.
- c) a pressão é maior.
- d) a velocidade de ascensão é menor.
- e) o volume total é menor.

28] Analise as afirmações seguintes, sobre CINÉTICA QUÍMICA.

() A etapa determinante da rapidez de uma reação química é a mais lenta.

) Catalisadores não participam das etapas de uma reação química.

() Uma porção de maionese deteriora-se mais rapidamente do que os seus componentes considerados separadamente, pois, entre outros fatores, a superfície de contato de cada um é maior.

() A freqüência de colisões efetivas entre reagentes diminui com o aumento de temperatura.

() Alumínio em pó pode ser "queimado" mais facilmente do que alumínio em raspas.

29] Considere os diagramas representativos de Energia (E) versus coordenada das reações (cr):

O diagrama da reação mais lenta e o da que tem a energia de ativação igual a zero são, respectivamente,

- a) I e II.
- b) I e III.
- c) II e III.
- d) I e IV. e) II e IV.

30] A seguir estão representadas as etapas da reação:

$$H_2 + Br_2 \rightarrow 2HBr$$

I. Br₂ → Br • + Br • (etapa rápida)

II. H₂ + Br • → HBr + H • (etapa lenta)

III. H • + Br₂ → HBr + Br • (etapa rápida)

IV. Br • + Br • → Br₂ (etapa rápida)

V. H • + H • → H 2 (etapa rápida)

A velocidade da reação é determinada pela etapa:

- a) I
- b) II
- c) III
- d) IV
- e) V

31] No estudo cinético de uma reação representada por dados:

 $2A(g) + B_2(g) \rightarrow 2AB(g)$

colocou-se os seguintes

1			

Concentração inicial de A (mol/L)	Concentração inicial de B ₂ (mol/L)	Velocidade inicial (mol.L ⁻ . ¹ s ⁻¹)
0,10	0,10	2,53 x 10 ⁻⁶
0,10	0,20	5,06 x 10 ⁻⁶
0,20	0,10	10,01 x 10 ⁻⁶

A velocidade da reação pode ser expressa pela reação

- a) v = k 2[A]
- b) $v = k [B]^2$
- c) v = k [A] [B]
- d) $v = k [A]^2 [B]$
- e) $V = K [A] [B]^2$

32] No estudo da cinética da reação $2NO(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$ à temperatura de 700°C,

foram obtidos os dados constantes da tabela abaixo:

[NO] (mol/L)	[H ₂] (mol/L)	V _o (mol/(L.s))
0,025	0,01	2,4 . 10 ⁻⁶
0,025	0,005	1,2 . 10 ⁻⁶
0,0125	0,01	0,6 . 10 ⁻⁶

Pedem-se:

- a) A ordem global da reação.
- b) A constante de velocidade nessa temperatura.

Assinale a alternativa correta:

 a) reação não-elementar é a que ocorre por meio de duas ou mais etapas elementares

b) 2NO + ${\rm H_2} \longrightarrow {\rm N_2O}$ + ${\rm H_2O}$ é um exemplo de reação elementar porque ocorre por meio de três colisões entre duas moléculas de NO e uma de ${\rm H_2}$

c) no processo:

$$\begin{array}{c} \mathsf{HBr} + \mathsf{NO}_2 & \xrightarrow{\mathsf{lenta}} \mathsf{HBrO} + \mathsf{NO} \\ \mathsf{HBr} + \mathsf{HBrO} & \xrightarrow{\mathsf{rápida}} \mathsf{H}_2\mathsf{O} + \mathsf{Br}_2 \\ \\ \mathsf{2HBr} + \mathsf{NO}_2 & \longrightarrow \mathsf{H}_2\mathsf{O} + \mathsf{NO} + \mathsf{Br}_2 \end{array}$$

a expressão da velocidade da reação global é dada por:

$$V = K [HBr][HBrO]$$

d) se a velocidade de uma reação é dada por: V=K[NO₂][CO], sua provável reação será: NO+CO₂→NO₂+CO