Chapter 5-1. PN-junction electrostatics

In this chapter you will learn about pn junction electrostatics: Charge density, electric field and electrostatic potential existing inside the diode under equilibrium and steady state conditions.

You will also learn about:

Poisson's Equation

Built-In Potential

Depletion Approximation

Step-Junction Solution

PN-junction fabrication

PN-junctions are created by several processes including:

- 1. Diffusion
- 2. Ion-implantation
- 3. Epitaxial deposition

Each process results in different doping profiles

Ideal step-junction doping profile

(a) Figure 5.2

Equilibrium energy band diagram for the pn junction

$$E_{\rm c}$$
 $E_{\rm c}$ $E_{\rm F}$ $E_{\rm r}$ $E_{\rm r}$ $E_{\rm r}$ $E_{\rm r}$ $E_{\rm r}$

(a)

$$p = n_{\rm i} \exp\left(\frac{E_{\rm i} - E_{\rm F}}{kT}\right)$$

 $E_{\rm F}$ = same everywhere under equilibrium

Figure 5.3

Join the two sides of the band by a smooth curve.

Electrostatic variables for the equilibrium pn junction

Figure 5.4

Potential, V = -(1/q) ($E_{\rm C}$ – $E_{\rm ref}$). So, potential difference between the two sides (also called built-in voltage, $V_{\rm bi}$) is equal to $-(1/q)(\Delta E_{\rm C})$.

$$V = -\frac{1}{q} \left(E_{\rm C} - E_{\rm ref} \right)$$

$$\mathcal{E} = \frac{1}{q} \frac{dE_{C}}{dx} = \frac{1}{q} \frac{dE_{i}}{dx}$$

$$\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}x} = \frac{\rho}{\varepsilon} \left. \right\} \quad \begin{array}{l} \rho = \text{charge density} \\ \varepsilon = K_{\mathrm{s}} \varepsilon_{\mathrm{o}} \end{array}$$

Conceptual pn-junction formation

p and n type regions before junction formation

movement of carriers.

Holes and electrons will diffuse towards opposite directions, uncovering ionized dopant atoms. This will build up an electric field which will prevent further

The built-in potential, $V_{\rm bi}$

When the junction is formed, electrons from the n-side and holes from the p-side will diffuse leaving behind charged dopant atoms. Remember that the dopant atoms cannot move! Electrons will leave behind positively charged donor atoms and holes will leave behind negatively charged acceptor atoms.

The net result is the build up of an electric field from the positively charged atoms to the negatively charged atoms, i.e., from the n-side to p-side. When steady state condition is reached after the formation of junction (how long this takes?) the net electric field (or the built in potential) will prevent further diffusion of electrons and holes. In other words, there will be drift and diffusion currents such that net electron and hole currents will be zero.

Equilibrium conditions

Under equilibrium conditions, the net electron current and hole

current will be zero.

hole diffusion current

hole drift current

electron diffusion current opposite to electron flux electron drift current opposite to electron flux

The built-in potential, $V_{\rm bi}$

$$E_{\rm C} = \frac{1}{E_{\rm F}}$$

$$E_{\rm I} = E_{\rm I}$$

$$E_{\rm C} = \frac{E_{\rm I} - E_{\rm F} = kT \ln \left(\frac{p}{n_{\rm I}}\right)}{q V_{\rm bi} = (E_{\rm I} - E_{\rm F})_{\rm p-side} + (E_{\rm F} - E_{\rm I})_{\rm n-side}}$$

$$E_{\rm V} = E_{\rm I} = kT \ln \left(\frac{n}{n_{\rm I}}\right)$$

The built-in potential, $V_{\rm bi}$

The built-in potential, $V_{\rm bi}$, measured in Volts, is numerically equal to the "shift" in the bands expressed in eV.

$$V_{\text{bi}} = (1/q) \{ (E_{\text{i}} - E_{\text{F}})_{\text{p-side}} + (E_{\text{F}} - E_{\text{i}})_{\text{n-side}} \}$$

$$= \frac{kT}{q} \ln \left(\frac{p}{n_{\text{i}}} \right) + \frac{kT}{q} \ln \left(\frac{n}{n_{\text{i}}} \right)$$

$$= \frac{kT}{q} \ln \left(\frac{p_{\text{p}} n_{\text{n}}}{n_{\text{i}}^2} \right)$$
where $p_{\text{p}} = \text{hole} - \text{concentration on p-side}$
and $n_{\text{n}} = \text{electron} - \text{concentration on n-side}$

An interesting fact:
$$\frac{p_p}{p_n} = \frac{n_n}{n_p} = \exp\left(\frac{q V_{bi}}{kT}\right)$$

Majority and minority carrier concentrations

Built-in potential as a function of doping concentration for an abrupt p⁺n or n⁺p junction

Depletion approximation

$$\frac{d\mathcal{E}}{dx} = \frac{\rho}{K_{s}\epsilon_{0}}$$
 Poisson equation
$$= \begin{cases} \frac{q}{K_{s}\epsilon_{0}} (N_{D} - N_{A}) & \text{for } -x_{p} \leq x \leq x_{n} \\ = 0 & \text{everywhere else} \end{cases}$$

We *assume* that the free carrier concentration inside the depletion region is zero.

Example 1

A p-n junction is formed in Si with the following parameters. Calculate the built-in voltage, $V_{\rm bi}$.

$$N_{\rm D} = 10^{16} \, {\rm cm}^{-3}$$
 $N_{\rm A} = 10^{17} \, {\rm cm}^{-3}$

Calculate majority carrier concentration in n-side and p-side. Assume $n_{\rm n} = N_{\rm D} = 10^{16} \, {\rm cm}^{-3}$ and $p_{\rm p} = N_{\rm A} = 10^{17} \, {\rm cm}^{-3}$.

$$V_{\text{bi}} = \frac{kT}{q} \ln \left(\frac{p_{\text{p}} n_{\text{n}}}{n_{\text{i}}^2} \right) = \frac{kT}{q} \ln \left(\frac{N_{\text{A}} N_{\text{D}}}{n_{\text{i}}^2} \right)$$

Plug in the numerical values to calculate $V_{\rm bi}$.

Example 2

A pn junction is formed in Si with the following parameters. Calculate the built-in voltage, $V_{\rm bi}$.

$$N_{\rm D} = 2 \times 10^{16} \,\text{cm}^{-3}$$
 $N_{\rm A} = 3 \times 10^{17} \,\text{cm}^{-3}$ $N_{\rm D} = 2 \times 10^{17} \,\text{cm}^{-3}$ $N_{\rm D} = 2 \times 10^{17} \,\text{cm}^{-3}$

Calculate majority carrier concentration in n-side and p-side. $n_{\rm n}$ = "effective $N_{\rm D}$ " = 10^{16} cm⁻³; $p_{\rm p}$ = "effective $N_{\rm A}$ " = 10^{17} cm⁻³

$$V_{\text{bi}} = \frac{kT}{q} \ln \left(\frac{p_{\text{p}} n_{\text{n}}}{n_{\text{i}}^2} \right) = \frac{kT}{q} \ln \left(\frac{N_{\text{A}} N_{\text{D}}}{n_{\text{i}}^2} \right)$$
Here N_{A} and N_{D} are "effective" or net values.

Plug in the numerical values to calculate $V_{\rm bi}$.