Problem Statement 1:

Is gender independent of education level? A random sample of 395 people were surveyed and each person was asked to report the highest education level they obtained. The data that resulted from the survey is summarized in the following table:

High School Bachelors Masters Ph.d. Total

Female 60	54	46	41	201	
Male 40	44	53	57	194	
Total 100	98	99	98	395	

Question: Are gender and education level dependent at 5% level of significance? In other words, given the data collected above, is there a relationship between the gender of an individual and the level of education that they have obtained?

Solution:

The chi squared test can also be used to test independence.

Hypothesis

Null Hypothesis: Both gender and level of education is independent Alternate Hypothesis: Both gender and level of education is dependent

Observed:

	High	Bachelors	Masters	Ph.d	Total
	School				
Female	60	54	46	41	201
Male	40	44	53	57	194
Total	100	98	99	98	395

Expected:

	High	Bachelors	Masters	Ph.d	Total
	School				
Female	50.88	49.868	50.377	49.868	201
Male	49.114	48.132	48.623	48.132	194
Total	100	98	99	98	395

$$\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}$$

 $Col1 = (60 - 50.88)^2/50.88 = 1.634$

 $Col2 = (54-49.868)^2/49.868 = 0.342$

 $Col3 := (46-50.377)^2/50.377 = 0.380$

 $col4 := (41-49.868)^2/49.868 = 1.576$

C21 : = $(60 - 49.114)^2/49.114 = 2.412$

C22 : = $(54-48.132)^2/48.132 = 0.715$

C23 := (46-48.623)^2/48.623= 0.141

C24: = $(41-48.132)^2/48.132 = 1.056$

 $\chi 2 = 8.256$

Degrees of Freedom: (4-1)*(2-1) = 3

At 5% significant level = 7.815

Conclusion:

Our calculated Chi squared value greater than the critical value and hence we reject the Null Hypothesis.

Problem Statement 2:

Using the following data, perform a oneway analysis of variance using α =.05. Write up the results in APA format.

[Group1: 51, 45, 33, 45, 67] [Group2: 23, 43, 23, 43, 45] [Group3: 56, 76, 74, 87, 56]

	1	ı	1	1	ı	1
	GROUP 1			(GROUP1-	(GROUP2	(GROUP3
				GROUP1	-GROUP2	-GROUP3
		GROUP 2	GROUP 3	MEAN)^2	MEAN)^2	MEAN)^2
	51	23	56	7.84	153.76	190.44
	45	43	76	10.24	57.76	38.44
	33	23	74	231.04	153.76	17.64
	45	43	87	10.24	57.76	295.84
	67	45	56	353.44	92.16	190.44
TOTAL	241	177	349	612.8	515.2	732.8
MEAN	48.2	35.4	69.8			
GRAND MEAN	51.33	51.33	51.33			
NO OF SAMPLES	5	5	5			
k	3			_		

N	15				
		1268.824	1705.70	3023.513	
Sum of Squares		5	5	5	
between	48.9845				
Mean between					
=(sum of squares					
between)/(k-1)	1511.75675				
Sum of squares					
within	1860.8				
Mean within = (sum					
of squares	155.066666				
between)/(N-K)	7				
F data = MSS					
between / MSS	9.74907620				
within	4				
F Test =					
	Sample -1 =				
	2				
Degree of Freedom					
Fcritical(2,12)=3.8					
9					

Conclusion: Reject Null hypothesis

Problem Statement 3:

Calculate F Test for given 10, 20, 30, 40, 50 and 5,10,15, 20, 25.

For 10, 20, 30, 40, 50:

Solution:

Standard Deviation:

$$\sigma = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{x})^2}$$

Variance for 1st set: (10,20,30,40,50)

Mean = (10+20+30+40+50)/5 = 30

Standard Deviation: $sqrt(1/(5-1)((10-30)^2+(20-30)^2+(30-30)^2+(40-30)^2+(50-30)^2))$

= $sqrt(1/4((-20)^2+(-10)^2+(0)^2+(10)^2+(20)^2))$

=sqrt(1/4((400)+(100)+(0)+(100)+(400)))

=sqrt(250)

=15.811

Variance = SD^2

Variance = 249.98

Variance for 2nd set: (5,10,15,20,25)

Mean = (5+10+15+20+25)/5 = 15

Standard Deviation: $sqrt(1/(5-1)((5-15)^2+(10-15)^2+(15-15)^2+(20-15)^2+(25-15)^2))$

= $\operatorname{sqrt}(1/4((-10)^2+(5)^2+(0)^2+(5)^2+(10)^2))$

=sqrt(1/4((100)+(25)+(0)+(25)+(100)))

=sqrt(62.5)

=7.90

Variance = SD^2

Variance = 62.5

F Test: (Variance for 1st set) / (Variance for 2nd set)

F Test: 250/62.5

F Test = 4