一阶逻辑(一

一阶逻辑(一) 第六章 - 递归论基础

姚宁远

复旦大学哲学学院

November 1, 2021

─阶逻辑(一) └ ─ 原始递归函数

目录

- 1 原始递归函数
 - 原始递归集合和谓词
 - 编码
- 2 递归函数
 - 非原始递归函数
 - 递归函数
 - 部分的归函数
- 3 图灵机
 - 图灵机的定义 图录可计算与部分详归函数
- 4 图灵可计算与部分递归函数
 - ■从部分递归函数到图灵可计算函数
 - 从图灵可计算函数到部分递归函数
 - 丘奇论题
 - 克林尼正规型定理
- 5 递归可枚举集

初始函数的定义

定义

自然数 № 中的以下三类函数称为初始函数:

- 1 零函数 Z(x) = 0;
- 2 后继函数 S(x) = x + 1;
- 3 投射函数 $\pi_i^n(x_1,...,x_i,...,x_n) = x_i$;

注

投射函数 $\pi_1^1(x)$ 是恒等函数 $x \mapsto x$;

函数的原始递归

定义

设 $g: \mathbb{N}^n \to \mathbb{N}$ 与 $h: \mathbb{N}^{n+2} \to \mathbb{N}$ 分别为 n-元与 n+2-元函数。我 们称 $f: \mathbb{N}^{n+1} \to \mathbb{N}$ 是从 g 和 h经原始递归而得到的,如果

- 1 $f(\bar{x},0) = g(\bar{x});$
- 2 $f(\bar{x}, n+1) = h(\bar{x}, f(\bar{x}, n), n)$;

注:单变量递归函数

当 n=0 时, g=c 是常函数。

- 1 f(0) = c;
- 2 f(n+1) = h(f(n), n);

原始递归函数的定义

定义

全体原始递归函数的集合 C 是最小的满足以下条件的自然数上的函数集合:

- (1) 初始函数 $\subseteq C$;
- (2) C 对复合封闭;
- (3) C 对原始递归封闭;

称 C 中的元素为原始递归函数。

注

■ 定义 C 为满足条件 (1), (2), (3) 的函数的集合。则

$$C = \bigcap C$$

是原始递归函数的集合。

■ 定义 C_0 为初等函数的集合;

设 Cn 已定义

则 C_{n+1} 为 C_n 中的函数通过复合运算和原始递归而得到的函数集合;

$$C = \bigcup_{n \in \mathbb{N}} C_n$$
.

是原始递归函数的集合。

自然数上的加法

- = x + 0 = x

加法的生成序列

- $\blacksquare S(x_1)$
- $\blacksquare \pi_1^1(x_1) = x_1$
- $\blacksquare \pi_3^3(\mathbf{X}_1,\mathbf{X}_2,\mathbf{X}_3) = \mathbf{X}_3$
- $h(x_1, x_2, x_3) = S \circ \pi_3^3(x_1, x_2, x_3) = S(x_3)$
- $f(\mathbf{x}_1,0) = \pi_1^1(\mathbf{x}_1)$
- $f(x_1, x_2 + 1) = h(x_1, x_2, f(x_1, x_2))$

引理

下列函数都是原始递归函数。

- 1 n-元常函数 $C_{k}^{n}(x_{1},...,x_{n})=k$;
- $2 x \cdot y, x^y, x!$
- 3 非零检查函数与零检测函数

$$\sigma(\mathbf{x}) = \{ egin{array}{ll} 0, & \mathbf{y} & \mathbf{y} & \mathbf{y} & \mathbf{y} & \mathbf{y} & \mathbf{y} \\ 1, & \mathbf{y} & \mathbf{y} & \mathbf{y} & \mathbf{y} \end{array} \}$$
 $\delta(\mathbf{x}) = \{ egin{array}{ll} 1, & \mathbf{y} & \mathbf{y} & \mathbf{y} & \mathbf{y} \\ 0, & \mathbf{y} & \mathbf{y} & \mathbf{y} & \mathbf{y} \end{array} \}$

- 4 前驱函数 pred(x)
- 5 截断减法

$$x - y = \{ \begin{array}{ll} 0, & \text{如果} x < y \\ x - y, & \text{如果} x \ge y. \end{array}$$

一阶逻辑(一) └─ 原始递归函数

证明: *n*-元常函数是原始递归函数

- $\blacksquare \pi_1^n(x_1,...,x_n) = x_1;$
- $Z(x_1) = 0;$
- $S^k(0) = k;$

证明: $x \cdot y$, x^y , x! 是原始递归函数

$$x \cdot 0 = 0;$$

$$x \cdot (n+1) = (x \cdot n) + x;$$

$$x^0 = 1;$$

$$\blacksquare x^{n+1} = (x^n) \cdot x;$$

$$0! = 1;$$

$$(n+1)! = n! \cdot (n+1);$$

证明:非零检测函数与零检测函数是原始递归函数

$$\sigma(0) = 0;$$

$$\delta(0) = 1;$$

$$\delta(n+1) = C_0^2(n, \delta(n));$$

- 一阶逻辑(一) └_{─ 原始递归函数}
- 证明: 前驱函数是原始递归函数

- $extbf{pred}(0) = 0;$

- 一阶逻辑(一) └─ 原始递归函数
- 证明: 截断减法是原始递归函数

- $\blacksquare x \dot{-} 0 = x;$
- $\mathbf{x} \cdot (\mathbf{y} + 1) = \operatorname{pred}(\mathbf{x} \cdot \mathbf{y});$

引理

设 $f: \mathbb{N}^k \to \mathbb{N}$ 是原始递归函数。定义一个新的函数 $g: \mathbb{N}^r \to \mathbb{N}$ 为

$$g(x_1,...,x_r) = f(y_1,...,y_k)$$

其中 y_i 或者是 x_i 或者是常数。则 g 也是原始递归函数。

证明:

定义一组函数
$$h_1,...,h_k:\mathbb{N}^r\to\mathbb{N}$$
 为

- 若 y_j 是变元 x_i , 则 $h_j(x_1,...,x_r) = \pi_i^r(x_1,...,x_r)$;
- 若 y_j 是常数 $k \in \mathbb{N}$, 则 $h_j(x_1,...,x_r) = C_k^r(x_1,...,x_r)$.

则

$$g(x_1,...,x_r) = f(h_1(x_1,...,x_r),...,h_k(x_1,...,x_r)).$$

- 1 原始递归函数
 - 原始递归集合和谓词
 - 编码
- 2 递归函数
- 3 图灵机
- 4 图灵可计算与部分递归函数
- 5 递归可枚举集

一阶逻辑(一)
□ 原始递归函数
□ 原始递归集合和谓词 **原始递归集合**

特征函数

设 $R \subseteq \mathbb{N}^k$,则 R 的特征函数 $\chi_R : \mathbb{N}^k \to \{0,1\}$ 定义为

$$\chi_{R}(\bar{\mathbf{x}}) = \left\{ \begin{array}{ll} 1, & \mathbf{y} \mathbf{x} \in \mathbf{R} \\ 0, & \mathbf{y} \mathbf{x} \notin \mathbf{R}. \end{array} \right.$$

特征函数

称 \mathbb{N}^k 的子集 A (或者一个 k-元谓词 P) 是原始递归的,如果其特征函数是原始递归的。

─阶逻辑(一) └─ 原始递归函数 ── └─ 原始递归集合和谓词

引理

- 11 如果 $A, B \subseteq \mathbb{N}^k$ 是原始递归的,则 $\mathbb{N}^k \setminus A, A \cup B$ 和 $A \cap B$ 也 是原始递归的;
- **2** 如果 P, Q 是原始递归谓词,则 $\neg P, P \lor Q, P \land Q$ 也是原始递归的。

一阶逻辑(一) └─原始递归函数 └─原始递归集合和谓词 **证明**:

班 时

设 χ_A, χ_B 是原始递归函数,则

- $\chi_{\mathbb{N}^k \backslash A}(x) = 1 \chi_A(x)$ 是原始递归的;
- $\chi_{A \cup B}(x) = \sigma(\chi_A(x) + \chi_B(x))$ 是原始递归的;
- $\chi_{A \cap B}(x) = \chi_A(x) \cdot \chi_B(x)$ 是原始递归的;

注

如果 $f: \mathbb{N}^k \to \mathbb{N}$ 是原始递归函数,则

$$\{x \in \mathbb{N}^k | f(x) = 0\}$$

$$\{x \in \mathbb{N}^k | f(x) > 0\}$$

都是原始递归的。

─阶逻辑(一) ──原始递归函数 ──原始递归集合和谓词

引理

如果 f_1, f_2 都是 k-元原始递归函数,P 是原始递归谓词,则

$$f(\bar{x}) = \{ egin{array}{ll} f_1(\bar{x}), & \hbox{如果}P(\bar{x}) \ f_2(\bar{x}), & \hbox{否则}, \ \end{array}$$

也是原始递归的。

证明

$$f(x) = \chi_p(x) f_1(x) + (1 - \chi_P(x)) f_2(x).$$

- 商 quo(x, y) 与余数 rem(x, y)
 - 1 quo(x, y) 表示 x 除 y 的商;
 - 2 rem(x,y) 表示 x 除 y 的余数;
 - $3 y = \operatorname{quo}(x, y)x + \operatorname{rem}(x, y), \operatorname{rem}(x, y) < x_{\circ}$

└ 原始递归集合和谓词

商 quo(x, y) 与余数 rem(x, y)

引理

函数 quo(x, y) 和 rem(x, y) 都是原始递归的。

└ 原始递归集合和谓词

证明丨

$$\begin{split} \operatorname{rem}(\textbf{\textit{x}},\textbf{\textit{y}}+1) &= \{ \begin{array}{ll} \operatorname{rem}(\textbf{\textit{x}},\textbf{\textit{y}})+1, & \textbf{\textit{y}} \\ 0, & \textbf{\textit{否则}}. \end{array} \\ \operatorname{quo}(\textbf{\textit{x}},\textbf{\textit{y}}+1) &= \{ \begin{array}{ll} \operatorname{quo}(\textbf{\textit{x}},\textbf{\textit{y}}), & \textbf{\textit{y}} \\ \operatorname{quo}(\textbf{\textit{x}},\textbf{\textit{y}})+1, & \textbf{\textit{Tem}}(\textbf{\textit{x}},\textbf{\textit{y}})+1 < \textbf{\textit{x}} \\ \operatorname{quo}(\textbf{\textit{x}},\textbf{\textit{y}})+1, & \textbf{\textit{Tem}}(\textbf{\textit{y}},\textbf{\textit{y}}) + 1 \end{cases} \end{split}$$

24/113

└ 原始递归集合和谓词

证明Ⅱ

$$\begin{split} \operatorname{rem}(\pmb{x},0) &= 0, \ \operatorname{rem}(\pmb{x},\pmb{y}+1) = (\operatorname{rem}(\pmb{x},\pmb{y})+1)\sigma(\pmb{x}-\operatorname{rem}(\pmb{x},\pmb{y})-1) \\ \operatorname{quo}(\pmb{x},0) &= 0, \ \operatorname{quo}(\pmb{x},\pmb{y}+1) = \operatorname{quo}(\pmb{x},\pmb{y})\sigma(\pmb{x}-\operatorname{rem}(\pmb{x},\pmb{y})-1) + \\ &\qquad \qquad (\operatorname{quo}(\pmb{x},\pmb{y})+1)\delta(\pmb{x}-\operatorname{rem}(\pmb{x},\pmb{y})-1) \end{split}$$

25/113

有界量词

- **1** 定义 $(\exists x < a)\phi(x)$ 为 $\exists x(x < a \land \phi(x))$;
- ② 定义 $(\forall x < a)\phi(x)$ 为 $\forall x(x < a \rightarrow \phi(x))$;
- 称形如 (∃x < a) 和 (∀x < a) 的量词为有界量词。

一所逻辑(一) □ 原始递归函数 □ 原始递归集合和谓词 有界极小算子 μ

定义

设 $P(\bar{x}, z)$ 是一个 k+1-元谓词。定义

$$(\mu \mathbf{z} \leq \mathbf{y}) \mathbf{P}(\bar{\mathbf{x}}, \mathbf{z}) = \left\{ \begin{array}{ll} \mathbf{最小的满足} \mathbf{P}(\bar{\mathbf{x}}, \mathbf{z}) \mathbf{\underline{1}} \leq \mathbf{y} \mathbf{n} \mathbf{z}, & \mathbf{如果它存在} \\ \mathbf{y} + 1, & \mathbf{否则}. \end{array} \right.$$

$$P(\bar{x}, 0)$$
?, $P(\bar{x}, 1)$?, ... $P(\bar{x}, k)$? ...

─阶逻辑(一) └─ 原始递归函数 ── └─ 原始递归集合和谓词

引理

如果 $f(\bar{x}, y)$ 是原始递归的,则有界和与有界积

$$\sum_{y\leq z} f(\bar{x},y), \quad \Pi_{y\leq z} f(\bar{x},y)$$

都是原始递归的。

一阶逻辑(一) └─原始递归函数 └─原始递归集合和谓词 **证明**

引理

$$F(\bar{x},z) = \sum_{y \leq z} f(\bar{x},y), \quad G(\bar{x},z) = Pi_{y \leq z} f(\bar{x},y)$$

则

$$F(\bar{x},0) = f(\bar{x},0), F(\bar{x},n+1) = F(\bar{x},n) + f(\bar{x},n+1),$$

且

$$G(\bar{x},0) = f(\bar{x},0), F(\bar{x},n+1) = F(\bar{x},n) \times f(\bar{x},n+1),$$

引理

如果 $P(\bar{x}, y)$ 是原始递归的谓词,则

1 谓词

$$E(\bar{x}, y) := (\exists z \leq y) P(\bar{x}, z) \text{ for } A(\bar{x}, y) := (\forall z \leq y) P(\bar{x}, z)$$

都是原始递归的;

2 函数

$$f(\bar{x}, y) := (\mu z \le y) P(\bar{x}, z)$$

是原始递归的。

─阶逻辑(一) ──原始递归函数 ───原始递归集合和谓词

证明

$$\chi_{E}(\bar{x}, y) = \sigma(\sum_{z \leq y} \chi_{P}(\bar{x}, z))$$

$$(\forall z \leq y) P(\bar{x}, z) \iff \neg (\exists z \leq y) \neg P(\bar{x}, z)$$

3 $(\mu z \leq y)P(\bar{x},z)$ 可以用 χ_P 计算

$$(\mu z \le y)P(\bar{x}, z) = \sum_{k \le y} \prod_{z \le k} (1 - \chi_P(\bar{x}, z))$$

- 1 原始递归函数
 - 原始递归集合和谓词
 - 编码
- 2 递归函数
- 3 图灵机
- 4 图灵可计算与部分递归函数
- 5 递归可枚举集

一阶逻辑(一) 原始递归函数 编码

引理

- 谓词 "x 整除 y" 是原始递归的;
- 2 谓词 "x 是合数"与 "x 是素数"是原始递归的;
- 3 函数 $p: \mathbb{N} \to \mathbb{N}$, $n \mapsto$ "第 n 个素数" 是原始递归的。

1

4

证明

$$x \mid y \iff x \le y \land \operatorname{rem}(x, y) = 0 \iff \exists z < y (y = x \times z)$$

p(0) = 2, $p(n+1) = \left(\mu z \le y\right)(z > p(n) \land z$ 是素数 $\land y = (p(n)! + 1)$

② 谓词 "
$$x$$
 是合数" $\iff \exists z < x(z \mid x \land z > 1)$;

3 "
$$x$$
 是素数" $\iff \forall z < x(z > 1 \rightarrow z \nmid x)$;

用 p_k 表示第 k 个素数, 2 是第 0 个素数。

哥德尔数

- $< a_0,...,a_n >$ 表示 $p_0^{a_0+1}...p_n^{a_{n+1}+1}$, 称之为序列 $(a_0,...,a_n)$ 的哥德尔数;
- 空序列 < > 的哥德尔数是 1;
- 定义函数 $\ln : \mathbb{N} \to \mathbb{N}$ 为 $\ln(a) = \mu k \le a(p_k \nmid a)$, 称 \ln 为长 度函数;
- 对任意的哥德尔数 $a = \langle a_0, ..., a_n \rangle$, lh(a) = n + 1;
- 定义函数 $(a)_i : \mathbb{N}^2 \to \mathbb{N}$ 为 $(a)_i = (\mu k \le a)(p_i^{k+2} \nmid a)$,称 $(a)_i$ 为分量函数;
- 对任意的哥德尔数 $a = \langle a_0, ..., a_n \rangle$, $(a)_i = a_i$;
- 定义串接函数 $\hat{}: \mathbb{N}^2 \to \mathbb{N}$ 为

$$a\hat{b} = a \cdot \prod_{i < \mathrm{lh}(b)} p_{\mathrm{lh}(a)+i}^{(b)_i+1}$$

─阶逻辑(一) └──原始递归函数 └──编码

引理

- 哥德尔数的集合是原始递归的;
- 2 lh(a) 和 (a); 是原始递归的;
- 3 函数 a b 是原始递归的且

$$< a_0,...,a_n > \hat{\ } < b_0,...,b_m > = < a_0,...,a_n,b_0,...,b_m > .$$

证明

1 x 是哥德尔数

$$\exists n \leq x \bigg(\forall i \leq n(p_i \mid x) \land \forall j \leq x(j > n \rightarrow p_j \nmid x) \bigg)$$

2 $\ln(a) = \mu k \le a(p_k \nmid a)$ 和 $(a)_i = \mu k \le a(p_i^{k+2} \nmid a)$ 显然是原始递归的。

3

$$\hat{ab} = a \cdot \prod_{i < \mathrm{lh}(b)} p_{\mathrm{lh}(a)+i}^{(b)_i+1}$$

显然原始递归。

$$< a_0, ..., a_n > \hat{\ } < b_0, ..., b_m > = p_0^{a_0+1} ... p_n^{a_{n+1}+1} \cdot \prod_{i < m+1} p_{n+1+i}^{(b)_i+1}$$
 $= < a_0, ..., a_n, b_0, ..., b_m > .$

设 $f(\bar{x}, y)$ 是一个函数,定义

$$F(\bar{x}, n) = p_0^{f(\bar{x}, 0)+1} ... p_n^{f(\bar{x}, n)+1}$$

即 F(x,n) "存储" 了 f(x,0),...,f(x,n) 的值。

定义

设 $g(\bar{x})$ 与 $h(\bar{x},y,z)$ 是两个函数。称 $f(\bar{x},y)$ 是从 g 与 h 经强递归得到的,如果

$$f(\bar{x},0) = g(\bar{x});$$

$$f(\bar{x},n+1) = h(\bar{x},n,F(\bar{x},n)).$$

─阶逻辑(一) └─ 原始递归函数 └─ 编码

引理

如果 $f(\bar{x}, y)$ 是从 g 与 h 经强递归得到的,且 g 与 h 均是原始递归的,则 f 也是原始递归的。

$$F(\bar{x},0) = 2^{f(\bar{x},0)+1} = 2^{g(\bar{x})+1}$$

$$F(\bar{x},n+1) = F(\bar{x},n)p_{n+1}^{f(\bar{x},n+1)+1} = F(\bar{x},n)p_{n+1}^{h(\bar{x},n,F(\bar{x},n)+1)}$$

故 $F(\bar{x},y)$ 是原始递归的。 $f(\bar{x},y)=F(\bar{x},y)_y$ 显然是原始递归的。

40/113

─阶逻辑(一 └─ 递归函数

目录

- 1 原始递归函数
 - ■原始递归集合和谓词
 - 编码
- 2 递归函数
 - 非原始递归函数
 - 递归函数
 - ■部分的归函数
- 3 图灵机
 - 图灵机的定义
- 4 图灵可计算与部分递归函数
 - 从部分递归函数到图灵可计算函数
 - 从图灵可计算函数到部分递归函数
 - 丘奇论题
 - 克林尼正规型定理
 - 5 递归可枚举集

- 1 原始递归函数
- 2 递归函数
 - 非原始递归函数
 - 递归函数
 - ■部分的归函数
- 3 图灵机
- 4 图灵可计算与部分递归函数
- 5 递归可枚举集

非原始递归函数

- 存在一个"程序"可以枚举所有的原始递归函数;
- ② 设 $g_0, g_1, g_2, ...$ 是所有原始递归函数的枚举;
- 3 令 $F: \mathbb{N} \to \mathbb{N}$ 为 $F(n) = g_n(n) + 1$;
- \blacksquare 直观上 F 是可计算的,但不是原始递归的。

- 所逻辑 (一)
□ 递归函数
□ 非原始递归函数

阿克曼函数

阿克曼函数

阿克曼函数 A(x, y) 定义如下:

$$A(0, y) = y + 1, \quad A(x + 1, 0) = A(x, 1)$$

$$A(x+1), y+1) = A(x, A(x+1, y))$$

习题: 阿克曼函数不是原始递归的。

- 1 原始递归函数
- 2 递归函数
 - 非原始递归函数
 - 递归函数
 - ■部分的归函数
- 3 图灵机
- 4 图灵可计算与部分递归函数
- 5 递归可枚举集

-阶逻辑(一) - 递归函数 - <mark>_ 递归函数</mark>

正则 μ -算子

定义

令 $f: \mathbb{N}^{n+1} \to \mathbb{N}$ 是一个全函数。我们称函数 $g(\bar{x})$ 是从 f 通过正则极小化或正则 μ -算子得到的,如果

- $\forall \bar{x} \exists y f(\bar{x}, y) = 0;$
- $g(\bar{x})$ 是使得 $f(\bar{x}, y) = 0$ 的最小的 y。

记作 $g(\bar{x}) = \mu y(f(\bar{x}, y) = 0)$.

注

正则性条件不是"计算"出来的,而是我们利用数学证明获得的知识(类似于费马定理,四色定理等)

定义

- 全体递归函数的集合为最小的包含所有初始函数,并且对复合、原始递归、正则极小化封闭的函数集合。
- **2** 称一个集合 $A \subseteq \mathbb{N}^k$ 是递归集,如果 χ_A 是递归函数。

- **1** 正则性 $\forall \bar{x} \exists y f(\bar{x}, y) = 0$ 的检验是非常复杂的
- 2 去掉正则性的后果可能是会使得在某个 \bar{x}_0 处对 "解" y 的 搜索永远不会停止,从而 $g(\bar{x}) = \mu y \big(f(\bar{x}, y) = 0 \big)$ 在 \bar{x}_0 处没有定义;
- **3** 设 *f* ⊆ *A* × *B* 是一个函数;
- **4** *f*(*x*) ↓ 表示 *f* 在 *x* 处有定义(收敛);
- **5** f(x) ↑表示 f 在 x 处没有定义 (发散)。
- 6 称 $f: A \rightarrow B$ 是一个部分函数。

- 1 原始递归函数
- 2 递归函数
 - 非原始递归函数
 - 递归函数
 - 部分的归函数
- 3 图灵机
- 4 图灵可计算与部分递归函数
- 5 递归可枚举集

─阶逻辑(一) ──递归函数 ──[─]─部分的归函数

定义

设 f 是一个部分函数。称函数 g 是从 f 通过极小化或者由 μ -算子得到的,如果

$$g(\bar{x}) = \mu y \bigg(\forall z \le y (f(x, z) \downarrow) \land f(x, y) = 0 \bigg)$$

- **1** 条件 $\forall z \leq y(f(x,z) \downarrow)$ 是用来保证可计算性与准确性;
- 2 为了找到最小的 y, 必须逐一计算 $f(\bar{x},0), f(\bar{x},1), f(\bar{x},2)...$, 直到找到 0;
- 3 如果在以上步骤中,遇到一个 z_0 使得 $f(\bar{x}, z_0) \uparrow$,则计算不会终止,此时没有输出;
- **4** 不能跳过 *z*₀ 继续寻找。
- 5 函数 $\mu y \left(f(x,y) = 0 \right)$ 没有 "可计算性";

一阶逻辑(一) └─ 递归函数 └─ 部分的归函数

定义

全体部分递归函数的集合为最小的包含所有初始函数,并且对复合、原始递归、极小化封闭的函数集合。

─阶逻辑(一) 一递归函数 ────部分的归函数

引理

阿克曼函数

$$A(0, y) = y + 1, \quad A(x + 1, 0) = A(x, 1)$$

$$A(x+1), y+1) = A(x, A(x+1, y))$$

是部分递归函数。

称一个三元组的有穷集合 S 是好的,如果

- 1 如果 $(0, y, z) \in S$,则 z = y + 1
- 2 如果 $(x+1,0,z) \in S$,则 $(x,1,z) \in S$;
- 3 如果 $(x+1,y+1,z) \in S$,则存在自然数 u 使得 $(x+1,y,u) \in S$ 且 $(x,u,z) \in S$;
- 即,如果 S 是好的三元组集,则当 $(x, y, z) \in S$ 时,一定有
 - 1 z = A(x, y)
 - ② S 包含了计算 A(x,y) 所需的所有三元组 (x',y',A(x',y')).

证明

- **1** 三元组 (x, y, z) 可以编码为哥德尔数 $< x, y, z >= 2^{x+1}3^{y+1}5^{z+1};$
- **2** 三元组编码的有穷集合 $\{u_0,...,u_k\}$ 可以编码为哥德尔数 $< u_0,...,u_k>$;
- 3 任何一个有穷三元组集合 S 可以编码为一个哥德尔数 v
- 4 用 S_ν 表示 ν 解码有穷三元组集合
- 5 四元谓词 P(x, y, z, v): $(x, y, z) \in S_v$ 是原始递归的。

$$(x, y, z) \in S_{V} \iff \exists i < V((V)_{i} = < x, y, z >)$$

```
一阶逻辑(一)
一递归函数
一部分的归函数
订门
```

断言

- " S_V 是好的三元组集"是原始递归的。
 - *v* 是三元组的集合(编码)
 - 2 $\forall y, z < v((0, y, z) \in S_v \rightarrow z = y + 1);$
 - $\exists \forall x, z < \mathbf{v}((x+1,0,z) \in \mathcal{S}_{\mathbf{v}} \to (x,1,z) \in \mathcal{S}_{\mathbf{v}});$
 - $\forall x, y, z < v \bigg((x+1, y+1, z) \in S_v \to \exists u < v ((x+1, y, u) \in S_v \land (x, u, z) \in S_v) \bigg);$

一阶逻辑(一) 一递归函数 一部分的归函数 **订门**

断言

谓词

$$R(x,y,v) := v$$
是好的三元组集的编码 $\wedge \exists z < v((x,y,z) \in S_v)$

是原始递归的。R(x, y, v) 表示 (x, y) 在 v 中被计算过。

$$f(x,y)=\mu v\;R(x,y,v)$$
 寻找计算过 (x,y) 的三元组集合
$$A(x,y)=\mu z((x,y,z)\in S_{f(x,y)})$$
 输出计算机结果

目录

- 1 原始递归函数
 - ■原始递归集合和谓词
 - 编码
- 2 递归函数
 - 非原始递归函数
 - 递归函数
 - ■部分的归函数
- 3 图灵机
 - 图灵机的定义
- 4 图灵可计算与部分递归函数
 - 从部分递归函数到图灵可计算函数
 - 从图灵可计算函数到部分递归函数
 - 丘奇论题
 - 克林尼正规型定理
 - 5 递归可枚举集

- 1 原始递归函数
- 2 递归函数
- 3 图灵机
 - 图灵机的定义
- 4 图灵可计算与部分递归函数
- 5 递归可枚举集

图灵机的物理描述

- 一条双向无限延伸的纸带,被分成一个个小格子,或者空白 (0),或者写有字符;
- 2 有穷字母表 $A = \{0, a_1, ..., a_n\};$
- ③ 读写头:每次可以扫描一个格子,可以识别格子中的字符,可以写入字符,可以抹去字符,可以左右移动,每次一格;
- 4 有穷状态集 $Q = \{q_1, ..., q_m\}$,在任何一个给定时刻,图灵机都处于某个状态 q_i 。

定义

- 一台图灵机是由以下几个部分组成的:
 - 1 有穷字母表 A;
 - 2 方向符 L,R;
 - 3 有穷状态集 Q;
 - 4 有穷指令集 δ
- 其中每个指令是一个具有下列形式的四元组:
- **1** qaq'a', 其中 $q, q' \in Q$, $a, a' \in A$;
 - 2 qaLq', 其中 $q, q' \in Q$, $a \in A$;
 - **3** qaRq',其中 $q,q' \in Q$, $a \in A$;

此外,还假定对任意的状态 q 和字符 a,至多有一条指令以 qa 开头。

注

- 1 指令集 $\delta\subseteq (Q\times A)\times (A\cup\{R,L\}\times Q)$ 是一个部分函数,称之为转换函数;
- 2 指令 qaq'a' 的解读:若图灵机的当前状态为 q,当前读写头读到字符 a,则将 a 改为 a',状态改为 q';
- 1 指令 qaLq' 与 qaRq' 的含义类似;

- 1 单向无穷纸带/双向无穷纸带;
- 2 字母表的选取;
- 3 五元组指令 qaa'q'D, 其中 D 是 L、R、S;
- 非确定图灵机:以状态 q 和字符 a 开头的指令可以有多条;

-阶逻辑(一) 一图灵机 ──图灵机的定义

格局

格局是图灵机在某个时刻的全部信息,包含:

- 11 纸带上所有字符的信息;
- 2 读写头的位置;
- 3 当前状态;

记作

$$C = u q a v$$

其中 q 是状态,a 是读写头当前读到的字符,u 是 a 左边的字符 串,v 是 a 右边的字符串。

设 C = u q a v 是一个格局,如果不存在以 qa 开头的指令,则称 C 是一个终止格局。否则,可根据指令定义新的格局 C' 如下

- **11** 如果 $qaa'q' \in \delta$,则 C' = u q' a' v;
- 2 如果 $qaRq' \in \delta$,则 C' = u' q' b v',其中 u' = u a,v = b v:
- 3 如果 $qaLq' \in \delta$, 则 C' = u' q' b v', 其中 u = b u', v' = a v;

称格局 C 产生 C'。

- 1 图灵机的一个计算是一个格局的序列 (C_i) ;
- 2 如果 C_i 不是终止格局,则 C_i 产生 C_{i+1};
- $oxed{3}$ 为了方便起见,假定图灵机有两个特殊状态 q_s 与 q_h ;
- 4 所有的计算以状态 qs 开始;
- 5 如果遇到终止格局 C,且不是停机状态,则要将其转换到停机状态。
- 6 规定输入向量为 $(x_1,...,x_n)$ 时,初始格局应为

$$q_s 1^{x_1+1} 0 1^{x_2+1} 0 \dots 0 1^{x_k+1}$$
.

Z 规定输出时,初始格局应为 $q_h 1^y$,表示输出值为 y;

一所逻辑 (一)
L 图灵机
L 图灵机的定义
图灵可计算

定义

称一个部分函数 $f: \mathbb{N}^k \to \mathbb{N}$ 是被图灵机 M 所计算的,或者说图 灵机 M 计算函数 f,如果

$$f(x) = \begin{cases} y, & \text{如果}M$$
对输入 x 的输出为 y 没有定义,如果计算过程无限 / 没有终止格局

称部分函数 f 为图灵可计算的,如果存在一个图灵机 M 计算它。

一阶逻辑(一)
└── 图灵机
└── 图灵机的定义

作业

习题 7.1, 习题 7.2, 习题 7.3

图灵可计算与部分递归函数

目录

- - 原始递归集合和谓词
 - = 编码
- 非原始递归函数
 - 递归函数
 - ■部分的归函数
 - - 图灵机的定义
- 4 图灵可计算与部分递归函数
 - 从部分递归函数到图灵可计算函数
 - 从图灵可计算函数到部分递归函数 ■ 丘奇论题

 - 克林尼正规型定理

─阶逻辑(一) └ ──图灵可计算与部分递归函数

图灵可计算与部分递归函数

定理

一个函数是图灵可计算的当且仅当它是部分递归的。

- 一图灵可计算与部分递归函数 ——从部分递归函数到图灵可计算函数
 - 1 原始递归函数
 - 2 递归函数
 - 3 图灵机
 - 4 图灵可计算与部分递归函数
 - 从部分递归函数到图灵可计算函数
 - 从图灵可计算函数到部分递归函数
 - 丘奇论题
 - 克林尼正规型定理
 - 5 递归可枚举集

一阶逻辑(一*)* |___图灵可计算与部分递归函数

└─ 从部分递归函数到图灵可计算函数

引理

每个初始函数都是图灵可计算的。

└─从部分递归函数到图灵可计算函数

引理

任何一台标准图灵机 M_1 都可以被一台纸袋是单向无穷的图灵机 M_2 模拟。

一阶逻辑(一)

—图灵可计算与部分递归函数

___从部分递归函数到图灵可计算函数

证明-纸带变换

一阶逻辑(一)

一图灵可计算与部分递归函数

─ 从部分递归函数到图灵可计算函数

证明-定义字母表与状态集

- *M*₁ 的字母表是 *A*;
- 则 *M*₂ 的字母表是 *A* × *A*;
- (a, b) 表示上轨道为 a, 下轨道为 b;
- *M*₁ 的状态集是 *Q*;
- 则 M_2 的字母表是 $Q \times \{1,2\}$;
- (*q*, *i*) 模拟轨道 *i* 上的计算;

└─从部分递归函数到图灵可计算函数

证明-定义指令集

设 M_1 的指令集为 δ_1 , 定义 M_2 的指令集 δ_2 如下

上轨道模拟

■ 如果 $qaa'q' \in \delta_1$,则对每个 $b \in A$,有

$$(q,1)(\mathbf{a},\mathbf{b})(\mathbf{a}',\mathbf{b})(q',1) \in \delta_2$$

■ 如果 $qaLq' \in \delta_1$,则对每个 $b \in A$,有

$$(\boldsymbol{q},1)(\boldsymbol{a},\boldsymbol{b})\boldsymbol{L}(\boldsymbol{q}',1)\in\delta_2$$

■ 如果 $qaRq' \in \delta_1$,则对每个 $b \in A$,有

$$(q,1)(a,b)R(q',1) \in \delta_2$$

一阶逻辑(一

一图灵可计算与部分递归函数

└─从部分递归函数到图灵可计算函数

证明-定义指令集

下轨道模拟

■ 如果 $qbb'q' \in \delta_1$,则对每个 $a \in A$,有

$$(\boldsymbol{q},2)(\boldsymbol{a},\boldsymbol{b})(\boldsymbol{a},\boldsymbol{b'})(\boldsymbol{q'},2) \in \delta_2$$

■ 如果 $qbLq' \in \delta_1$,则对每个 $a \in A$,有

$$(q,2)(a,b)$$
 $L(q',2) \in \delta_2$

■ 如果 $qbRq' \in \delta_1$,则对每个 $a \in A$,有

$$(\mathbf{q},2)(\mathbf{a},\mathbf{b})\mathbf{R}(\mathbf{q}',2)\in\delta_2$$

一阶逻辑(一) | _____

- 图灵可计算与部分递归函数

└─从部分递归函数到图灵可计算函数

证明-定义指令集

轨道转换

■ 上轨道变下轨道:

$$(q, 1)$$
\$ $R(q, 2) \in \delta_2$

■ 下轨道变上轨道:

$$(q, 2)$$
\$ $R(q, 1) \in \delta_2$

证明-计算模拟

■ M_1 的格局集合 C 与 M_2 的格局集合 D ——对应

$$\eta: \mathcal{C} \to \mathcal{D}$$

■ 如果格局 $C_1 \in \mathcal{C}$ 产生格局 C_2 ,则 $\eta(C_1) \in \mathcal{D}$ 产生格局 $\eta(C_2)$

└ 图灵可计算与部分递归函数

└─从部分递归函数到图灵可计算函数

引理

任何一台标准图灵机 M_1 都可以被一台纸带是单向无穷的图灵机 M_2 模拟。

推论

任何图灵可计算函数 h 都可以被一台加了如下限制的图灵机计算:

- 在初始格局中,纸带中有一个不在字母表中的新字符 \$,可以在任何实现给定的位置,只要不混在输入字符串中间;
- 在计算完成后, \$ 左边的内容不变;
- **③** 输出字符串的位置起始于 \$ 右边第一格。

一阶逻辑(一)

图灵可计算与部分递归函数

└─**从部分递归函数到图灵可计算函数**

引理

图灵可计算函数类对符合运算封闭。设 g 与 $h_1,...,h_r$ 均是图灵可计算的,则

$$f(x_1,...,x_n) = g(h_1(x_1,...,x_n),...,h_r(x_1,...,x_n))$$

也是图灵可计算的。

一时这辑(一) 一图灵可计算与部分递归函数 [—]—从部分递归函数到图灵可计算函数

证明

- 引入 r+1 个新字母 $\$_1,...,\$_{r+1}$ 。
- 输入纸带如下

$$|\bar{x}| \$_1 | 0 | 0 | 0 | \dots$$

- 根据推论,存在计算 h_1 的图灵机/程序使得计算完后输出为 $\frac{1}{1} \frac{1}{1} \frac{1}{1}$
- 存在计算 h_2 的图灵机/程序使得计算完后输出为 ... $|\bar{x}|$ $|\frac{\$_1}{h_1(\bar{x})}|$ $|\frac{\$_2}{h_2(\bar{x})}|$ $|\frac{\$_3}{h_3}|$ 0 | ...
- 存在计算 h₂ 的图灵机/程序使得计算完后输出为

$$|| \bar{x} || \bar{x} || s_1 || h_1(\bar{x}) || s_2 || h_2(\bar{x}) || s_3 || ... || s_{r+1} || g(h_1(\bar{x}), ..., h_r(\bar{x}))||$$

L 从部分递归函数到图灵可计算函数

引理

图灵可计算函数类对原始递归和极小算子封闭。

___从部分递归函数到图灵可计算函数

证明丨

设
$$f(x,0) = g(x)$$
, $f(x,y+1) = h(x,y,f(x,y))$

- 引入 1 个新字母 \$。
- 输入纸带如下

- 在第 0 步,存在计算 g 的图灵机/程序使得计算完后输出为 $\frac{1}{1}$... $\frac{1}{1}$ \frac
- 在第 *k* + 1 步,存在计算 *h* 的图灵机/程序使得计算完后输出为

...
$$k+1 \mid x \mid y \mid \$ \mid h(k, x, f(x, k)) \mid 0 \mid 0 \mid 0 \mid ...$$

即可以设计一个循环程序,使得 k+1=y 时输出结果。

一图灵可计算与部分递归函数 ____从部分递归函数到图灵可计算函数

一从部分速归函数到图灵可计异函数

证明Ⅱ

设
$$f(x) = \mu y \Big(\forall z \leq y (h(x, z) \downarrow) \land h(x, y) = 0 \Big).$$

- 引入1个新字母\$。
- 输入纸带如下

- 在第 0 步, 存在计算 h 的图灵机/程序使得计算完后输出为.... 1 x \$ h(x,0) 0 0 0 ...
- 如果 h(x,0) = 0, 则输出 0,且停机,否则在下一步计算 h(x,1), 计算完后输出为

$$...$$
 2 \times $h(x,1)$ 0 0 0 ...

■ 一般地,在第 k+1 步,如果 h(x,k)=0,则输出 k,且停机,否则在下一步计算 h(x,k+1),计算完后输出为 ... \ k+2 \ x \ s \ h(x,k+1) \ 0 \ 0 \ 0 \ ...

即可以设计一个循环程序, 计算 f(x).

一阶逻辑(一*)* └─ 图灵可计算与部分递归函数

___从部分递归函数到图灵可计算函数

定理

任何部分递归函数都是图灵可计算的。

- - _____
 - 3 图灵机
 - 4 图灵可计算与部分递归函数
 - 从部分递归函数到图灵可计算函数
 - 从图灵可计算函数到部分递归函数
 - 丘奇论题
 - 克林尼正规型定理
 - 5 递归可枚举集

一图灵可计算与部分递归函数

└─从图灵可计算函数到部分递归函数

接下来证明:任何图灵可计算函数都是部分递归的。

-阶逻辑(一) ─ 图灵可计算与部分递归函数 [─]└─ 从图灵可计算函数到部分递归函数

图灵机的编码

符号的编码

图灵机 M 的符号

- 1 字母表 $A = \{0, 1\}$
- 2 R, L
- 3 状态集 Q。

的编码为

$$\lceil 0 \rceil = 0, \ \lceil 1 \rceil = 1, \ \lceil L \rceil = 2, \ \lceil R \rceil = 3, \ \lceil q_s \rceil = 4, ..., \lceil q_h \rceil = n$$

符号集编码为 n.

─图灵可计算与部分递归函数 └─ 从图灵可计算函数到部分递归函数

图灵机的编码

指令集的编码

■ 图灵机 M 的指令 qaXq′ 编码为

$$<\lceil q \rceil, \lceil a \rceil, \lceil X \rceil, \lceil q' \rceil> = 2^{\lceil q \rceil + 1} 3^{\lceil a \rceil + 1} 5^{\lceil X \rceil + 1} 7^{\lceil q' \rceil + 1}$$

2 指令集 δ 对于一个数集

$$\{\boldsymbol{s}_1,...,\boldsymbol{s}_m\}$$

 δ 的编码为哥德尔数

$$\lceil \delta \rceil = < n, s_1, ..., s_m >$$

 $e = \lceil \delta \rceil$ 包含了图灵机 M 的全部信息,规定它为图灵机 M 的编码,即 $e = \lceil M \rceil$

一阶逻辑(一)

- 图灵可计算与部分递归函数

─从图灵可计算函数到部分递归函数

引理

下列谓词是原始递归的:

- 1 e 是图灵机
- 2 s 是图灵机 e 的指令
- $\mathbf{3}$ q 是图灵机 e 停机状态。

- 图灵可计算与部分递归函数

└ 从图灵可计算函数到部分递归函数

证明

e 是图灵机当且仅当

- 1 e 是哥德尔数且 $e_0 = n \ge 5$;
- 2 $\forall i \leq e(i > 0 \rightarrow e_i$ 是哥德尔数且 $lh(e_i) = 4)$;
- 3

$$\forall 0 < i \le e \bigg((4 \le (e_i)_0, (e_i)_3 \le n) \land (e_i)_1 \le 1 \land (e_i)_2 \le 3 \bigg)$$

- 图灵可计算与部分递归函数 ── 从图灵可计算函数到部分递归函数

格局的编码

格局

设
$$C = ...b_1b_0qac_0c_1...$$
 是一个格局。

- 1 $x = \sum_i b_i 2^i$
- $y = \sum_{i} c_{i} 2^{i}$
- **3** C 的编码 「C ¬ 为

$$\lceil C \rceil = \langle x, \lceil q \rceil, \lceil a \rceil, y \rangle = 2^{x+1} 3^{\lceil q \rceil + 1} 5^{\lceil a \rceil + 1} 7^{y+1}$$

- 一阶逻辑(一)
- 一图灵可计算与部分递归函数
 - ___从图灵可计算函数到部分递归函数

引理

c 是一个格局的编码是原始递归的。

证明

- c 是 (e 的) 一个格局的编码当且仅当
 - 1 c 是哥德尔数;
 - 2 $4 \le c_1 \le e_0$;
 - 3 $c_2 \leq 1$.

- 一阶逻辑(一)
 - 一图灵可计算与部分递归函数

L 从图灵可计算函数到部分递归函数

给定一个图灵机 $e = \lceil M \rceil$

- **1** 输入函数 $IN(x_1,...,x_n) = \lceil C_0 \rceil$,其中 C_0 是初始格局;
- **2** 转换函数 NEXT(e, c) 当且仅当格局 c 产生格局 d。
- 3 谓词 TREM(e,c) 表示 $c \in e$ 的终止格局的编码。
- 4 转换函数 OUT(c) = y 当且仅当格局 c 终止格局 $C = q_h 1^y$ 的编码。

引理

函数 IN, OUT NEXT, 和谓词 TERM 都是原始递归的。

克林尼 T 谓词

定义

T(e, x, z) 表示 z 是图灵机 e 对输入 x 的计算过程(格局序列)的编码。

引理

克林尼谓词 T(e, x, z) 是原始递归的。

- 阶逻辑(一) - 图灵可计算与部分递归函数 - └─ 从图灵可计算函数到部分递归函数

克林尼 T 谓词

证明

T(e, x, z) 当且仅当

- 1 e 是图灵机;
- **2** $z \in e$ 的格局序列 $< \lceil C_0 \rceil, ..., \lceil C_k \rceil > ;$
- 4 $\forall i < k \lceil C_{i+1} \rceil = Next(e, \lceil C_i \rceil)$ 是初始格局;
- **5** *TERM*(e, $\lceil C_k \rceil$);

- 附逻辑(一) - 图灵可计算与部分递归函数 - └─ 从图灵可计算函数到部分递归函数

引理

如果 f 是图灵可计算的,则它是部分递归的。

证明

设f被图灵机e计算。则

$$g(x) = \mu z T(e, x, z),$$
 $h(z) = \mu m(TERM(e, (z)_{lh(z)}) \wedge (z)_{lh(z)} = m),$ $f(x) = OUT(h(g(x)))$

−阶逻辑(一) 一图灵可计算与部分递归函数 [─]└─ 丘奇论题

- 1 原始递归函数
- 2 递归函数
- 3 图灵机
- 4 图灵可计算与部分递归函数
 - 从部分递归函数到图灵可计算函数
 - 从图灵可计算函数到部分递归函数
 - 丘奇论题
 - 克林尼正规型定理
- 5 递归可枚举集

-阶逻辑(一) 一图灵可计算与部分递归函数 -___丘奇论题

丘奇论题

丘奇论题

直观上的可计算函数类就是部分递归函数。

- −阶逻辑(一) 一图灵可计算与部分递归函数 ^{【_} 克林尼正规型定理
 - 1 原始递归函数
 - 2 递归函数
 - 3 图灵机
 - 4 图灵可计算与部分递归函数
 - 从部分递归函数到图灵可计算函数
 - 从图灵可计算函数到部分递归函数
 - 丘奇论题
 - 克林尼正规型定理
 - 5 递归可枚举集

一阶逻辑(一) -------

一图灵可计算与部分递归函数

__ 克林尼正规型定理

克林尼正规型定理

定理

存在原始递归函数 $U:\mathbb{N}\to\mathbb{N}$ 和原始递归谓词 T(e,x,z) 使得对任意的部分递归函数 $f:\mathbb{N}\to\mathbb{N}$,都存在自然数 e 使得 $f(x)=U(\mu zT(e,x,z))$.

推论

- 一个函数是递归的当且仅当它是部分递归的全函数。
 - 1 ⇒: 递归函数是部分递归的,且是全函数;
 - ② \Leftarrow : 部分递归的全函数 $f(x) = U(\mu z T(e, x, z))$ 满足正则性,从而是递归函数。

-阶逻辑(一) 一图灵可计算与部分递归函数 ^{___}克林尼正规型定理

通用函数定理

存在一个通用的部分递归函数;即存在二元函数 $\Phi: \mathbb{N}^2 \to \mathbb{N}$ 使得对任何一元的部分递归函数 $f: \mathbb{N} \to \mathbb{N}$ 都存在一个自然数 e 使得对搜有的 x 有 $f(x) = \Phi(e, x)$.

令 e_0, e_1, \dots 是图灵机的一个枚举,则 $\phi_0(x), \phi_1(x), \dots$ 是对应的对全体部分函数的枚举。即 $\phi_i(x) = \Phi(e_i, x)$.

定理

对递归函数来说,不存在通函数,即,不存在递归函数 $T:\mathbb{N}^2\to\mathbb{N}$ 使得对任何的一元递归函数 $f:\mathbb{N}\to\mathbb{N}$ 都存在一个 自然数 e 使得对搜有的 x 有 f(x)=T(e,x).

─阶逻辑(一) ─ 图灵可计算与部分递归函数 ^{─ __} 克林尼正规型定理

例

存在一个部分递归函数 f 使得对任何递归全函数 g,都存在 $n \in \text{dom}(f)$ 使得 $f(n) \neq g(n)$.

- 1 $f(n) = \Phi(n, n) + 1;$
- **2** $g(x) = \Phi(m, x);$
- 3 $f(m) = \Phi(m, m) + 1, m \in dom(f);$
- 4 $f(m) \neq g(m)$.

f 不是任何递归全函数 g 在 dom(f) 上的限制。

一阶逻辑(一) └ 遊归可枚举集

目录

- 1 原始递归函数
 - ■原始递归集合和谓词
 - 编码
- 2 递归函数
 - 非原始递归函数
 - 递归函数
 - ■部分的归函数
 - 图灵机的定义
- 4 图灵可计算与部分递归函数
 - 从部分递归函数到图灵可计算函数
 - 从图灵可计算函数到部分递归函数
 - 丘奇论题
 - 克林尼正规型定理

5 递归可枚举集

递归可枚举集

定义

称 $A \subseteq \mathbb{N}$ 是递归可枚举的,简称 r.e. 的,如果 $A = \emptyset$ 或者 A 是某个递归全函数 $f: \mathbb{N} \to \mathbb{N}$ 的值域,即,

$$A = \{y | \exists x f(x) = y\}$$

注

直观 F.

- A 中的元素可以通过 f 有效枚举;
- 2 如果 $y \in A$,则可以知道 $y \in A$;
- **3** 如果 *y* ∉ *A*,则不知道 *y* 是否属于 *A*;
- 4 *A* 是递归关系加<mark>存在</mark>量词而得到的。

引理

设 $A \subseteq \mathbb{N}$,则下列命题等价:

- 1 A 是递归可枚举的;
- 2 A 是空集或者某个原始递归函数的值域;
- 3 A 是某个部分递归函数的值域;
- **4** A 的部分特征函数是部分递归的。

$$\chi_{A_P}(x) = \left\{ egin{array}{ll} 1, & \hbox{如果} x \in A \\ \end{array}
ight.$$
 否则

- 5 A 是某个部分递归函数的定义域;
- 6 存在一个二元递归 / 原始递归谓词 R(x,y) 使得

$$A = \{x \mid \exists y \ R(x, y)\}$$

证明丨

1 (1) \Rightarrow (2): 设 A 是 $f(x)=U(\mu zT(e,x,z))$ 的值域,任取 $a_0\in A$,定义

$$F(x,n) = \left\{ egin{array}{ll} U(\mu y \leq n T(e,x,n)), & \mbox{如果} \exists y \leq n \ T(e,x,y) \ a_0, & \mbox{否则} \end{array}
ight.$$

则
$$F(\mathbb{N}^2) = f(\mathbb{N})$$
。

- 2 (2)⇒(3): 显然;
- **③** (3)⇒(4)∶ 设 $A = f(\mathbb{N})$,可以假设 f 是原始递归的则

$$\chi_{A_P}(\mathbf{y}) = \mathbf{C}_1^1(\mu \mathbf{x} \ f(\mathbf{x}) = \mathbf{y})$$

4 (4)⇒(5): 显然;

证明Ⅱ

5 (5)
$$\Rightarrow$$
(6): 设 $f(x) = U(\mu z T(e, x, z))$,则
$$\operatorname{dom}(f) = \{x | \exists z T(e, x, z)\}$$

$$A = \{x \mid \exists y \ R(x, y)\}, \ \ g(y) = x * C_1^1(\mu x R(x, y))$$

定理

一个自然数的集合 A 是递归的当且仅当 A 和它的补集 $\mathbb{N}\setminus A$ 都是递归可枚举的。

证明

设 $A \in f_1: 2\mathbb{N} \to \mathbb{N}$ 的值域, $\mathbb{N} \setminus A \in f_2: 2\mathbb{N} + 1 \to \mathbb{N}$ 的值域, $R_i(x, y) \iff y = f_i(x)$

$$extbf{\textit{h}}(extbf{\textit{y}}) = \mu extbf{\textit{x}} \; (extbf{\textit{R}}_1(extbf{\textit{x}}, extbf{\textit{y}}) \lor extbf{\textit{R}}_2(extbf{\textit{x}}, extbf{\textit{y}})), \;\; \chi_{ extbf{\textit{A}}}(extbf{\textit{y}}) = 1 \iff extbf{\textit{h}}(extbf{\textit{y}})$$
是偶数

定义

设 $\phi:\mathbb{N}^k\to\mathbb{N}$ 是原始递归的双射,称 $A\subseteq\mathbb{N}^k$ 是递归可枚举的,如果 $\phi(A)\subseteq\mathbb{N}$ 是递归可枚举的。

定理

设 $A, B \subseteq \mathbb{N}^k$ 是递归可枚举的,则

- **1** $A \cup B$ 和 $A \cap B$ 都是递归可枚举的;
- 2 A 的投射也是对可枚举的, 即

$$\{x \in \mathbb{N}^{k-1} | \exists y(x, y) \in A\}$$

是递归可枚举的。

定理

集合 $K = \{e \in \mathbb{N} | \Phi(e, e)$ 有定义 $\}$ 是递归可枚举集,但不是递归的。

证明

- **1** $K \in \Phi(x,x)$ 的定义域,从而是递归可枚举的;
- **2** 反设 K 是递归的,则 K 的补集也是递归的。以此 $X \in K$ 与 $X \notin K$ 都是递归谓词。从而函数

$$f(x) = \begin{cases} \Phi(x, x) + 1, & \text{如果} x \in K \\ 0, & \text{否则} \end{cases}$$

也是递归函数。以此存在一个自然数 e 使得 $f(x) = \Phi(e, x)$ 。如果 $e \in K$,则 $f(e) = \Phi(e, e) + 1$,矛盾。如果 $e \notin K$,则 $\Phi(e, e) \uparrow$,而 f(e) = 0,矛盾。

推论

递归可枚举集对补运算不封闭。

一阶逻辑(一)

Thanks!