Theoretische Physik II: Soft Matter Heinrich-Heine-Universität Düsseldorf

Master thesis in physics submitted by

Jakob Krummeich

and written at the

Institute for Theoretical Physics

 ${\bf D\ddot{u}sseldorf}$

XX.XX.2022

Critical behavior of a 2-D Lennard-Jones mixture under shear

Adviser and first examiner: Prof. Dr. J. Horbarch

Second examiner: Prof. Dr. H. Löwen

Contents

1	Introduction	1	
2	Theoretical background 2.1 Pair correlation function	2 3	
3	3 Simulation methods		
4	Results		
5	Conclusion and Outlook	7	

1 Introduction

2 Theoretical background

2.1 Pair correlation function

The partial pair correlation functions for a binary mixture can be defined as

$$g_{\alpha\beta}(\vec{r}) = \frac{V}{N_{\alpha}N_{\beta}} \langle \sum_{i \neq j} \delta(\vec{r} - (\vec{r}_i - \vec{r}_j)) \rangle$$
 (2.1)

where $\alpha, \beta \in \{A, B\}$ label the particle type, V is the total volume, N_{α} , N_{β} denote the particle numbers, $\langle . \rangle$ indicates the ensemble average and $\delta(.)$ is the delta function. The sum runs over all pairs of particles i, j where $i \neq j$, so that $\vec{r}_{ij} = \vec{r}_i - \vec{r}_j$ are the distance vectors between particle types α and β . Thus, $g_{\alpha\beta}(\vec{r})$ simply is the averaged distribution of \vec{r}_{ij} over the volume space V. Note that this definition implies $g_{\alpha\beta}(\vec{r}) = g_{\alpha\beta}(-\vec{r})$, i.e. $g_{\alpha\beta}(\vec{r})$ is an even function.

In 2 dimensions with the usual map

$$\vec{r} = \begin{pmatrix} r \cdot \cos \phi \\ r \cdot \sin \phi \end{pmatrix} \tag{2.2}$$

for $r \in (0, \infty]$, $\phi \in [0, 2\pi)$ and

$$\phi_{ij} = \langle (\vec{r}_i, \vec{r}_j) \tag{2.3}$$

we get

$$g_{\alpha\beta}(\vec{r}) = \frac{2V}{N_{\alpha}N_{\beta}} \langle \sum_{i} \sum_{i < j} \frac{1}{r} \delta(r - |\vec{r}_{i} - \vec{r}_{j}|) \delta(\phi - \phi_{ij}) \rangle.$$
 (2.4)

To examine structural anisotropy we expand $g_{\alpha\beta}(\vec{r})$ into spherical harmonics:

$$g_{\alpha\beta}(\vec{r}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} g_{lm}^{\alpha\beta} Y_{lm}(\theta, \phi)$$
 (2.5)

where $Y_{lm}(\theta, \phi)$ are spherical harmonics with degree l and order m. In 2 dimensions we restrict $\theta = \pi/2$. Since the spherical harmonics form a complete orthonormal set the coefficients $g_{lm}^{\alpha\beta}$ are given by

$$g_{lm}^{\alpha\beta}(r) = \frac{2V}{N_{\alpha}N_{\beta}} \langle \sum_{i} \sum_{i < j} \int_{0}^{2\pi} d\phi' \frac{1}{r} \delta\left(r - |\vec{r}_{i} - \vec{r}_{j}|\right) \delta\left(\phi' - \phi_{ij}\right) Y_{lm}^{*}(\pi/2, \phi') \rangle \quad (2.6)$$

$$= \frac{2V}{N_{\alpha}N_{\beta}} \langle \sum_{i} \sum_{i < j} \frac{1}{r} \delta\left(r - |\vec{r}_{i} - \vec{r}_{j}|\right) Y_{lm}^{*}(\pi/2, \phi_{ij}) \rangle. \quad (2.7)$$

Note that $g_{lm}^{\alpha\beta}$ depends only on r since the angular dependence of $g_{\alpha\beta}$ is fully included in Y_{lm} . Furthermore, since $g_{\alpha\beta}(\vec{r}) = g_{\alpha\beta}(-\vec{r})$ and $Y_{lm}(-\vec{r}) = (-1)^l Y_{lm}(\vec{r})$ we see that all $g_{lm}^{\alpha\beta}$ with odd l vanish. For isotropic systems all coefficients except $g_{00}^{\alpha\beta}(r)$ vanish.

Of special importance in the context of Couette flow is the imaginary part of $g_{22}^{\alpha\beta}$ as it can be linked to the configurational part of the shear stress. In Cartesian coordinates we have

$$Im Y_{22} = \sqrt{\frac{15}{8\pi}} \frac{xy}{r^2} \tag{2.8}$$

so that in 2 dimensions we get

$$\operatorname{Im} g_{22}^{\alpha\beta} = \sqrt{\frac{15}{2\pi}} \frac{V}{N_{\alpha} N_{\beta}} \langle \sum_{i} \sum_{i < j} \frac{1}{r^{3}} \delta\left(r - |\vec{r}_{i} - \vec{r}_{j}|\right) (x_{i} - y_{j}) \langle y_{i} - y_{j}\rangle \rangle. \tag{2.9}$$

2.2 Static structure factors

We can define partial structure factors by

$$S_{\alpha\beta}(\vec{q}) = \frac{1}{N} \langle \sum_{i,j,i \neq j} \exp\left[-i\vec{q}(\vec{r}_i - \vec{r}_j)\right] \rangle$$
 (2.10)

where the sum runs over all distance vectors $\vec{r}_{ij} = \vec{r}_i - \vec{r}_j$ of particles of types $\alpha, \beta \in \{A, B\}$. Thus, the partial structure factors are proportional to the Fourier transform of the partial pair correlation functions $g_{\alpha\beta}(\vec{r})$ given in section 2.1. Furthermore, with this definition it is clear that $S_{\alpha\beta}(\vec{q}) \in \mathbb{R}$ as the partial pair correlation functions are even.

In a system with periodic boundary conditions we need to respect the symmetry, so that only a discrete set of \vec{q} values is allowed. In a 2 dimensional system in a quadratic box with length L these are given by

$$\vec{q} \in \begin{pmatrix} \frac{2\pi}{L} z_x \\ \frac{2\pi}{L} z_y \end{pmatrix}, z_{x,y} \in \mathbb{Z}.$$
 (2.11)

3 Simulation methods

4 Results

5 Conclusion and Outlook

Attachments

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Düsseldorf, den XX.XX.2022

Jakob Krummeich