Student Name:	
Student Number:	
School:	
Year of Entrance:	

ShanghaiTech University Midterm Examination Cover Sheet

EE111 Fall 2023/2024 Exam Time 2023/11/18 8:15am-9:55am
6 problems in total (1 A4 crib sheet allowed)
Answer the Questions in English
Two-decimal policy applies for the final answer

Academic Year:	2023 to 2024	Term:	Fall
Course-offering School:	SIST		
Instructor:	Dr. Xinbo ZOU		
Course Name:	Electrical Circuits	=	
Course Number:	EE111.01	_	

Exam Instructions for Students:

- 1. All examination rules must be strictly obeyed throughout the entire test, and any form of cheating is prohibited.
- 2. Other than allowable materials, students taking closed-book tests must place their books, notes, tablets and any other electronic devices in places designated by the examiners.
- 3. Students taking open-book tests may use allowable materials authorized by the examiners. They must complete the exam independently without discussion with each other or exchange of materials.

For Marker's Use:

Section	1	2	3	4	5	6	Total
Marks							
Recheck							

Marker's Signature:	Rechecker's Signature:
Date:	Date:

Q1. (15 points) For the following circuit, apply **mesh** analysis method to find current I and the power absorbed by the *independent source*.

Fig.Q1

Q2. (15 points) Use **nodal analysis method** to calculate the voltage for node *a*, *b* and *c*, namely v_a , v_b , and v_c .

Fig.Q2

$$\begin{cases} \frac{V_{0}+3}{4k} + \frac{V_{0}-V_{b}}{0.5k} + \frac{V_{0}-V_{c}}{3k} = 0 & 3 \\ \frac{V_{b}-V_{0}}{0.5k} + \frac{V_{b}-V_{c}}{2k} - 3\times10^{-3}V_{1} = 0 & 3 \\ \frac{V_{c}}{11k} + \frac{V_{c}-10}{2k} + \frac{V_{c}-V_{0}}{3k} + \frac{V_{c}-V_{b}}{2k} = 0 & 3 \\ V_{1} = V_{0} - V_{0} & 2 & 2 \\ \begin{cases} 31 V_{0} - 24 V_{b} - 4V_{c} = 9 \\ -10 V_{0} + 5 V_{b} + 5V_{c} = 0 & 2 \\ -14 V_{0} - 21 V_{b} + 62 V_{c} = 210 \end{cases}$$

Q3. (15 points) For the following circuit, using **Thevenin equivalent circuit to** determine the *value* of R when maximum power could be transferred to it, and calculate the *maximum power* P_R

Q4. (15 points) The following operational amplifier is working in its linear mode. Find the expression of v_0 using v_1 , v_2 , R_a , R_b , R_c , and R_d .

$$(V_o - \frac{V_2 R_d}{R_L + R_d}) \cdot \frac{1}{R_b} = -(V_1 - \frac{V_2 R_d}{R_C + R_d}) \cdot \frac{1}{R_o} / O$$

$$V_o = \frac{R_d (R_a + R_b)}{R_a (R_c + R_d)} V_2 - \frac{R_b}{R_a} V_1$$
5

- Q5. (20 points) In the circuit below, the switch has been open for a long time and reaches steady state before t=0. At t=0, the switch is turned to node a and remains there for **15ms**. Then it is turned to node b. Given no initial charge stored in the capacitor, please find:
- (a) $v_c(t)$ for t > 0. (15 points)
- (b) Sketch the plot of $v_c(t)$ versus time t. (5 points)

Q6. (20 points) For the following circuit, the switch has been at node a for a long time before t=0. At t=0, the switch is turned to node b. Please find

- (a) the current on the inductance $i_L(t)$ for $t \ge 0$. (10 points)
- (b) the voltage on the inductance $v_L(t)$ for $t \ge 0$ (5 points)
- (c) the voltage on the 2Ω -resistor v(t) for $t \ge 0$ (5 points)

