

ON THE SOLUTION OF CONVEX KNAPSACK PROBLEMS WITH BOUNDED VARIABLES

> GABRIEL R. BITRAN AND ARNALDO C. HAX

Technical Report No. 129
OPERATIONS RESEARCH CENTER

MASSACHUSETTS INSTITUTE of TECHNOLOGY

April 1977 DISTRIEUTION STATEMENT Approved for public release,
Approved for public release,
Distribution Unlimited

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
(11)00	. S. RECIPIENT'S CATALOG NUMBER
Technical Report No. 129	- The second second
TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERE
	Technical Report
ON THE SOLUTION OF CONVEX KNAPSACK PROBLEMS	April 1977
WITH BOUNDED VARIABLES	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
Gabriel R. Bitran	N00014-75-C-0556
Arnoldo C./Hax	1400014 75 0 0550
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
M.I.T. Operations Research Center	
77 Massachusetts Avenue	NR 347-027
Cambridge, MA 02139	
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
O.R. Branch, ONR Navy Dept.	April 1977
800 North Quincy Street	13. NUMBER OF PAGES
	14 pages (2) 176
Arlington, VA 22217 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
MUNITURING AGENCY NAME & ADDRESS(II different from Controlling Office)	SECONT CEASS. (of the report)
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
DISTRIBUTION STATEMENT (of this Report)	
. DISTRIBUTION STATEMENT (of this Report)	
Releasable without limitation on dissemination.	
Approved for public DISTRIBUTION STATEMENT (of the abstract entered in Biochass Middlerens for	release;
	WE WAY TO THE
8. SUPPLEMENTARY NOTES	Mico
KEY WORDS (Continue on reverse side if necessary and identify by block number	
Convex Knapsack Problems	
Resource Allocation	
Hierarchical Production Planning	
ABSTRACT (Continue on reverse side if necessary and identify by block number)	
See Page	
27078	in Suc

CURITY CLASSIFICATION OF THIS PAGE	(When Date Entered)	

ON THE SOLUTION OF CONVEX KNAPSACK PROBLEMS WITH BOUNDED VARIABLES

by

GABRIEL R. BITRAN*

and

ARNOLDO C. HAX

Technical Report No. 129

Work Performed Under

Contract N00014-75-C-0556, Office of Naval Research

Multilevel Logistics Organization Models

NR 347-027

M.I.T. OSP 82491

Operations Research Center

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

April 1977

*Presently at "Universidade de Sao Paulo (Dept. de Engenharia de Producao)", Brazil

Reproduction in whole or in part is permitted for any purpose of the United States Government.

FOREWORD

The Operations Research Center at the Massachusetts Institute of Technology is an interdepartmental activity devoted to graduate education and research in the field of operations research. The work of the Center is supported, in part, by government contracts and industrial grants-in-aid. The work reported herein was supported (in part) by the Office of Naval Research under Contract NO0014-75-C-0556.

Jeremy F. Shapiro Acting Director

is presented

ABSTRACT

In this paper, we present a recursive method to solve separable differentiable convex knapsack problems with bounded variables. The method differs from classical optimization algorithms of convex programming and determines at each iteration the optimal value of at least one variable. Applications of such problems are frequent in resource allocation and recently have shown to be useful in hierarchical production planning. Computational results are presented.

ON THE SOLUTION OF CONVEX KNAPSACK PROBLEMS WITH BOUNDED VARIABLES

Gabriel R. Bitran and Arnoldo C. Hax Massachusetts Institute of Technology

In this paper we present a recursive method to solve the problem

$$(N) : z = \min_{j \in J^{\circ}} \sum_{j \in J^{\circ}} (x_{j})$$

$$\sum_{j \in J^{\circ}} x_{j} = P^{\circ}$$

$$\ell b_{j} \leq x_{j} \leq ub_{j} \quad j \in J^{\circ}$$

$$x_{j} \in X_{j} \quad j \in J^{\circ}$$

$$(2)$$

where $G_{j}(\cdot)$ $j \in J^{\circ}$ are differentiable convex functions on the open convex set $X_{j} \subseteq R$ $j \in J^{\circ}$ respectively. $ub_{j} \geq b_{j}$ $j \in J^{\circ}$ and $\sum_{j \in J^{\circ}} b_{j} < P^{\circ} < \sum_{j \in J^{\circ}} ub_{j}$ (otherwise the problem is trivial or infeasible).

The derivative of G_{i} at x_{i} is denoted by $DG_{i}(x_{i})$. The iterative method proposed to solve (N) differs from classical convex programming algorithms and at each iteration determines the optimal value of at least one variable. This problem was formerly treated, for particular objective functions, by convex programming arguments [3] and dynamic programming [6]. More recently Luss and Gupta [4] presented an iterative method for strictly convex decreasing functions and a one pass algorithm for a set of particular functions with the variables bounded from below. Luss and Gupta's method consists in relaxing the upper bounding constraints. The algorithm proposed in this paper applies for a more general set of functions. At each iteration it solves a simpler problem of the form min $\{\Sigma G_{i}(x_{i}) \text{ st } \Sigma x_{j} = P, x_{j} \in X_{j}\}$ obtained by relaxing both bounds (2). At the end of each iteration (except possibly the last) we show that either the subset of variables $\{x_j : x_j \ge ub_j\}$ have optimal value ub in (N) or the subset $\{x_j : x_j \leq lb_j\}$ have optimal value lb_j in (N). Applications of this class of knapsack problems to resource allocation can be found in [3], [4] and to hierarchical production planning in [2].

(N) is a convex problem and is regular [1]. Thus the Kuhn-Tucker conditions (3)-(9), below, are necessary and sufficient for optimality of $\mathbf{x}_{\mathbf{j}}^{*}$ jEJ° in (N).

$$DG_{j}(x_{j}^{*}) + \lambda + u_{j} - \tau_{j} = 0 \quad j \in J^{\circ}$$
(3)

$$u_{j}(x_{j}^{*}-ub_{j}) = 0 \quad j\varepsilon J^{\circ}$$
 (4)

$$\tau_{\mathbf{j}}(\ell b_{\mathbf{j}} - \mathbf{x}_{\mathbf{j}}^{*}) = 0 \quad \mathbf{j} \varepsilon \mathbf{J}^{\circ}$$
 (5)

$$\sum_{j \in J^{\circ}} x_{j}^{*} = P^{\circ}$$
 (6)

$$lb_{j} \leq x_{j}^{*} \leq ub_{j}$$
 $j \in J^{\circ}$ (7)

$$\lambda \in \mathbb{R}, \ u_{\underline{i}} \geq 0, \ \tau_{\underline{i}} \geq 0$$
 $j \in J^{\circ}$ (8)

$$x_j^* \in X_j$$
 $J \in J^\circ$ (9)

We first state the algorithm and then prove that it is optimal.

Algorithm

Initialization: $J^1 = J^{\circ}, P^1 = P^{\circ}$

Iteration β ($\beta=1,2,3...$)

Step 1: Solve
$$N(\beta)$$
 : min $\{\sum_{j \in J} \beta^G_j(x_j) : \sum_{j \in J} \beta x_j = P^{\beta}, x_j \in X_j \in J^{\beta}\}$

and let the solution be x_j^{β} $j \in J^{\beta}$. If $\ell b_j \leq x_j^{\beta} \leq u b_j$ $j \in J^{\beta}$ define $x_j^{\star} = x_j^{\beta}$ $j \in J^{\beta}$ and stop the solution x_j^{\star} $j \in J^{\circ}$ generated by the algorithm is optimal. Otherwise go to step 2.

Step 2: Compute

$$\Delta^{\beta} = \sum_{\mathbf{j} \in J_{+}^{\beta}} (\mathbf{x}_{\mathbf{j}}^{\beta} - \mathbf{u}\mathbf{b}_{\mathbf{j}}) \text{ where } J_{+}^{\beta} = \{ \mathbf{j} \in J^{\beta} : \mathbf{x}_{\mathbf{j}}^{\beta} \ge \mathbf{u}\mathbf{b}_{\mathbf{j}} \}$$

and

$$\nabla^{\beta} = \sum_{j \in J_{-}^{\beta}} (\ell b_{j} - x_{j}^{\beta}) \text{ where } J_{-}^{\beta} = \{j \in J^{\beta} : x_{j}^{\beta} \leq \ell b_{j}\}$$

Step 3: If $\Delta^{\beta} \geq \nabla^{\beta}$ define $x_{i}^{*} = ub_{i} j \epsilon J_{+}^{\beta}$ and let

$$J^{\beta+1} = J^{\beta} - J^{\beta}_+, P^{\beta+1} = P^{\beta} - \sum_{j \in J^{\beta}_+} ub_j.$$

If
$$\Delta^{\beta} < \nabla^{\beta}$$
 define $x_{j}^{*} = \ell b_{j}$ $j \in J_{-}^{\beta}$ and let

$$J^{\beta+1} = J^{\beta} - J^{\beta}_{-}, P^{\beta+1} = P^{\beta} - \sum_{j \in J^{\beta}_{-}} \ell b_{j}.$$

If $J^{\beta+1}=\phi$ stop. The solution x_j^* $j \in J^\circ$ generated by the algorithm is optimal. Otherwise let $\beta=\beta+1$ and go to step 1.

Since at each iteration the set J^{β} is reduced by at least one element the algorithm is finite. To prove that x_j^{\star} $f \in J^{\circ}$, generated by the algorithm, solve (N) we construct a corresponding Kuhn-Tucker vector through the following results. Let λ^{β} be the Kuhn-Tucker multiplier associated to the knapsack contraint in $N(\beta)$.

<u>Lemma 1</u>: If at iteration $\beta \Delta^{\beta} \geq \nabla^{\beta}$ then

a) for any
$$s \in J_{+}^{\beta}$$
 we have $-DG_{s}(ub_{s}) \geq -DG_{i}(ub_{i})$ for all $i \in J^{\beta} - J_{+}^{\beta}$

b)
$$\lambda^{\beta+1} < \lambda^{\beta}$$

Proof: a) $\lambda^{\beta} = -DG_{j}(x_{j}^{\beta}) j \varepsilon J^{\beta}$. Let $s \varepsilon J_{+}^{\beta}$ and $i \varepsilon J^{\beta} - J_{+}^{\beta}$. Then, since for convex functions [5]

$$[DG_{j}(x_{j}^{2}) - DG_{j}(x_{j}^{1})](x_{j}^{2} - x_{j}^{1}) \ge 0$$
 (10)

it follows that

$$-DG_{\mathbf{S}}(\mathbf{ub_{\mathbf{S}}}) \geq -DG_{\mathbf{S}}(\mathbf{x_{\mathbf{S}}^{\beta}}) = \lambda^{\beta} = -DG_{\mathbf{I}}(\mathbf{x_{\mathbf{I}}^{\beta}}) \geq -DG_{\mathbf{I}}(\mathbf{ub_{\mathbf{I}}})$$

$$b) \quad \sum_{\mathbf{j} \in \mathbf{J}^{\beta} - \mathbf{J_{\mathbf{I}^{\beta}}^{\beta}}} \mathbf{x_{\mathbf{j}}^{\beta}} = P^{\beta} - \sum_{\mathbf{j} \in \mathbf{J_{\mathbf{I}^{\beta}}^{\beta}}} \mathbf{x_{\mathbf{j}}^{\beta}} \leq P^{\beta} - \sum_{\mathbf{j} \in \mathbf{J_{\mathbf{I}^{\beta}}^{\beta}}} \mathbf{ub_{\mathbf{j}}} = P^{\beta+1} = \sum_{\mathbf{j} \in \mathbf{J}^{\beta}+1} \mathbf{x_{\mathbf{j}}^{\beta+1}}$$

For at least one $j \in J^{\beta+1}$ we have $x_j^{\beta+1} \geq x_j^{\beta}$. Thus

$$\lambda^{\beta+1} = -DG_{\mathbf{j}}(\mathbf{x}_{\mathbf{j}}^{\beta+1}) \leq -DG_{\mathbf{j}}(\mathbf{x}_{\mathbf{j}}^{\beta}) = \lambda^{\beta}$$

where the inequality follows from (10).

Lemma 2: If at iteration $\beta \Delta^{\beta} < \nabla^{\beta}$ then

a) for any $s \in J_{\underline{J}}^{\beta}$ we have $-DG_{\underline{s}}(\ell b_{\underline{s}}) \leq -DG_{\underline{t}}(\ell b_{\underline{t}})$ for all $i \in J^{\beta} - J^{\beta}$

b)
$$\lambda^{\beta+1} \geq \lambda^{\beta}$$

The proofs of this lemma and of theorem 4 are omitted because they are similar to those of lemma 2 and theorem 3 respectively.

Theorem 3: Assume that $\Delta^{\beta} \geq \nabla^{\beta}$, $\Delta^{i} < \nabla^{i}$ i= $\beta+1,\beta+2,\ldots,\gamma-1$. Then

a)
$$J^{\gamma} \supseteq (J^{\beta} - J^{\beta}_{+} - J^{\beta}_{-})$$

b)
$$\lambda^{\beta} \geq \lambda^{\gamma}$$

Proof:
$$\mathbf{P}^{\beta+1} = \sum_{\mathbf{j} \in J} \beta+1 \ \mathbf{x}^{\beta+1}_{\mathbf{j}} = \sum_{\mathbf{j} \in J} \mathbf{x}^{\beta}_{\mathbf{j}} - \sum_{\mathbf{j} \in J} \beta \ \mathbf{u} \mathbf{b}_{\mathbf{j}} + \sum_{\mathbf{j} \in J} \beta \ \mathbf{x}^{\beta}_{\mathbf{j}}$$
$$= \sum_{\mathbf{j} \in J} \beta+1 \ \mathbf{x}^{\beta}_{\mathbf{j}} + \Delta^{\beta}$$

$$\mathbf{p}^{\beta+2} = \sum_{\mathbf{j} \in \mathbf{J}^{\beta+2}} \mathbf{x}^{\beta+2}_{\mathbf{j}} = \sum_{\mathbf{j} \in \mathbf{J}^{\beta+1}} \mathbf{x}^{\beta+1}_{\mathbf{j}} - \sum_{\mathbf{j} \in \mathbf{J}^{\beta+1}} \mathbf{k}^{\mathbf{b}}_{\mathbf{j}} =$$

$$= \sum_{\mathbf{j} \in \mathbf{J}^{\beta+1} - \mathbf{J}^{\beta+1}_{-}} \mathbf{x}^{\beta}_{\mathbf{j}} + \sum_{\mathbf{j} \in \mathbf{J}^{\beta+1}_{-}} \mathbf{x}^{\beta}_{\mathbf{j}} + \Delta^{\beta}_{\mathbf{j}} - \sum_{\mathbf{j} \in \mathbf{J}^{\beta+1}_{-}} \mathbf{k}^{\mathbf{b}}_{\mathbf{j}}.$$

Thus, since $J^{\beta+2} = J^{\beta+1} - J^{\beta+1}$

$$\mathbf{P}^{\beta+2} = \sum_{\mathbf{j} \in \mathbf{J}^{\beta+2}} \mathbf{x}_{\mathbf{j}}^{\beta} + \Delta^{\beta} - \sum_{\mathbf{j} \in \mathbf{J}^{\beta+1}} (\mathfrak{L}_{\mathbf{j}} - \mathbf{x}_{\mathbf{j}}^{\beta}). \tag{12}$$

Similarly we obtain

$$\mathbf{P}^{\gamma} = \sum_{\mathbf{j} \in \mathbf{J}^{\gamma}} \mathbf{x}_{\mathbf{j}}^{\beta} + \Delta^{\beta} - \sum_{\mathbf{s} = \beta + 1}^{\gamma - 1} \sum_{\mathbf{j} \in \mathbf{J}_{\underline{s}}^{\mathbf{s}}} (\ell \mathbf{b}_{\mathbf{j}} - \mathbf{x}_{\mathbf{j}}^{\beta})$$
(13)

From (11) it follows that for at least one $j_0 \epsilon^{J^{\beta+1}}$

$$x_{j_{o}}^{\beta+1} \geq x_{j_{o}}^{\beta} \tag{14}$$

(11)

But, from the Kuhn-Tucker conditions for $N(\beta+1)$:

$$-DG_{1}(x_{1}^{\beta+1}) = \lambda^{\beta+1} \qquad i \in J^{\beta+1}$$
 (15)

Combining (10), (14), and (15) it follows that

$$x_i^{\beta+1} \geq x_j^{\beta}$$
 for all $j \in J^{\beta+1}$

If all functions G_j are not strictly convex it is possible that $-\mathrm{DG}_{d_O}(\mathbf{x}_{d_O}^{\beta+1}) = \lambda^{\beta+1} = \lambda^{\beta}$. In this case $\mathrm{N}(\beta+1)$ may have more than one optimal solution. However at least one will satisfy this condition.

Thus
$$J_{\underline{}}^{\beta+1} \subseteq J_{\underline{}}^{\beta}$$
 and $\Delta^{\beta} - \sum_{j \in J_{\underline{}}^{\beta+1}} (lb_{j} - x_{j}^{\beta}) \geq 0$. (16)

(12), (16) and the fact that
$$J^{\beta+2} = J^{\beta+1} - J^{\beta+1}_{-}$$
 imply that $\mathbf{x}_{\mathbf{j}}^{\beta+2} \geq \mathbf{x}_{\mathbf{j}}^{\beta}$ for all $\mathbf{j} \in J^{\beta+2}$, $J^{\beta+2}_{-} \subseteq J^{\beta}_{-}$ and
$$\Delta^{\beta} - \sum_{\mathbf{j} \in J^{\beta+1}_{-}} (\ell b_{\mathbf{j}} - \mathbf{x}_{\mathbf{j}}^{\beta}) - \sum_{\mathbf{j} \in J^{\beta+2}_{-}} (\ell b_{\mathbf{j}} - \mathbf{x}_{\mathbf{j}}^{\beta}) \geq 0 \quad \text{thus}$$

$$\mathbf{p}^{\beta+3} = \sum_{\mathbf{j} \in J^{\beta+3}} \mathbf{x}_{\mathbf{j}}^{\beta+3} \geq \sum_{\mathbf{j} \in J^{\beta+3}} \mathbf{x}_{\mathbf{j}}^{\beta}$$

Continuing with the same reasoning we obtain

$$\mathbf{J}_{\underline{\mathbf{J}}}^{\underline{\mathbf{i}}} \subseteq \mathbf{J}_{\underline{\mathbf{J}}}^{\beta} \quad \mathbf{i} = \beta + 1, \dots, \gamma - 1; \ \Delta^{\beta} - \sum_{\mathbf{s} = \beta + 1}^{\gamma - 1} \sum_{\mathbf{j} \in \mathbf{J}_{\underline{\mathbf{J}}}^{\underline{\mathbf{S}}}} (\ell \mathbf{b}_{\mathbf{j}} - \mathbf{x}_{\mathbf{j}}^{\beta}) \ge 0$$

and from (13)

$$\mathbf{P}^{\Upsilon} = \sum_{\mathbf{j} \in \mathbf{J}^{\Upsilon}} \mathbf{x}_{\mathbf{j}}^{\Upsilon} \geq \sum_{\mathbf{j} \in \mathbf{J}^{\Upsilon}} \mathbf{x}_{\mathbf{j}}^{\beta}. \tag{17}$$

These conclusions together with $J^{\beta+1}=J^{\beta}-J^{\beta}_{+}$ and $J^{i+1}=J^{i}-J^{i}_{-}$ $i=\beta+1,\ldots,\gamma-1$ prove part a). From (17) it follows $\mathbf{x}_{j}^{\gamma}\geq\mathbf{x}_{j}^{\beta}$ $j\in J^{\gamma}$. Thus, from (10) and (15) with γ instead of $\beta+1$

$$\lambda^{\gamma} = -DG_{j}(x_{j}^{\gamma}) \leq -DG_{j}(x_{j}^{\beta}) = \lambda^{\beta}$$

Theorem 4: Assume that $\Delta^{\beta} < \nabla^{\beta}$, $\Delta^{i} \geq \nabla^{i}$ $i=\beta+1,\beta+2,\ldots,\gamma-1$. Then a) $J^{\gamma} \supseteq (J^{\beta}-J^{\beta}-J^{\beta}+1)$ b) $\lambda^{\beta} < \lambda^{\gamma}$

Theorem 5: The set x_i^* $j \in J^*$ generated by the algorithm is optimal in (N).

Proof: By lemmas 1 and 2, theorems 3b) and 4b) the set x_i^* jeJ° generated by the algorithm has the following property:

$$\underbrace{-DG_{\mathbf{k_1}}(\mathbf{ub_{\mathbf{k_1}}}) \geq \ldots \geq -DG_{\mathbf{k_p}}(\mathbf{ub_{\mathbf{k_p}}}) \geq -DG_{\mathbf{v_1}}(\mathbf{x_{\mathbf{v_1}}}^*) = \ldots = -DG_{\mathbf{v_g}}(\mathbf{x_{\mathbf{v_g}}}^*) \geq -DG_{\mathbf{i_1}}(\ell b_{\mathbf{i_1}}) \geq \ldots \geq -DG_{\mathbf{i_s}}(\ell b_{\mathbf{i_s}})$$

corresponding to variables defined at upper bound

not defined at any iteration at upper or lower bound

corresponding to variables corresponding to variables defined at lower bound

The $x_{v_1}^*$ j=1,2,...,g are obtained at the last iteration. To see that conditions (3)-(9) are satisfied take

$$\lambda = -DG_{v_1}(x_{v_1}^*)$$

$$\tau_{i_j} = \lambda + DG_{i_j}(\ell b_{i_j}) \ge 0 , u_{i_j} = 0 j=1,2,...,s$$

$$u_{k_j} = -DG_{k_j}(ub_{k_j}) - \lambda \ge 0 , \tau_{k_j} = 0 j=1,2,...,p and$$

$$\tau_{v_j} = u_{v_j} = 0 j=1,2,...,g.$$

Thus, since x_i^* jEJ° also satisfies (6), (7), and (9) it follows that $x_{k_i} = ub_{k_i}$ j=1,2,...,p; $x_{v_i} = x_{v_i}^*$ j=1,2,...,g and $x_{i_{j}} = lb_{i_{j}}$ j=1,2,...,s solve (N). 7/////

The algorithm depends strongly on the existence of a solution to $N(\beta)$. However when among the $G_{i}(\cdot)$ jeJ $^{\beta}$ there are strictly increasing and decreasing functions $N(\beta)$ has no solution. The next theorem shows how to cope with this difficulty,

Let $J_1 = \{j \in J^0 : G_i(\cdot) \text{ is strictly increasing}\} \neq \emptyset$ and $J_2 = \{j \in J^0 : G_j(\cdot) \text{ is strictly decreasing}\} \neq \emptyset$

Assume that (N) has an optimal solution x_i^* $j \in J^0$. Then

Theorem 6: The optimal solution of (N) is such that either

$$x_i^* = ub_i$$
 $i \in J_2$ and/or $x_i^* = lb_i$ $i \in J_1$.

Proof: The optimal solution satisfies (3)-(9) and in particular

$$\begin{aligned} &-DG_{\mathbf{j}}(\mathbf{u}\mathbf{b}_{\mathbf{j}}) &= \lambda + \mathbf{u}_{\mathbf{j}} & \mathrm{j}\varepsilon J(\mathbf{u}\mathbf{b}) \equiv \{\mathrm{j}\varepsilon J^{\circ} \colon \mathbf{x}_{\mathbf{j}}^{\star} = \mathbf{u}\mathbf{b}_{\mathbf{j}}\} \\ &-DG_{\mathbf{j}}(\ell \mathbf{b}_{\mathbf{j}}) &= \lambda - \tau_{\mathbf{j}} & \mathrm{j}\varepsilon J(\ell \mathbf{b}) = \{\mathrm{j}\varepsilon J^{\circ} \colon \mathbf{x}_{\mathbf{j}}^{\star} = \ell \mathbf{b}_{\mathbf{j}}\} \text{ and} \\ &-DG_{\mathbf{j}}(\mathbf{x}_{\mathbf{j}}^{\star}) &= \lambda & \mathrm{j}\varepsilon J^{\circ} - J(\ell \mathbf{b}) - J(\mathbf{u}\mathbf{b}). \end{aligned}$$

Note that the assumption $P^{\circ} > \Sigma$ \emptyset b implies $J^{\circ}-J(\emptyset b) \neq \emptyset$. If $\min \{-DG_j(\mathbf{x}_j^{\star}) \ j \in J^{\circ}-J(\emptyset b)\} \geq 0$, since $-DG_i(\mathbf{x}_i) < 0$ $i \in J_1$, it follows that $J_1 \subseteq J(\emptyset b)$. Otherwise, since $-DG_i(\mathbf{x}_i) > 0$ $i \in J_2$ and $-DG_j(\mathbb{u}_j) \geq -DG_i(\mathbf{x}_i^{\star}) \geq -DG_k(\emptyset b_k)$ for any $j \in J(\mathbb{u} b)$ $i \in J^{\circ}-J(\mathbb{u} b)-J(\emptyset b)$ and $k \in J(\emptyset b)$, we have that $J_2 \subseteq J(\mathbb{u} b)$.

A direct consequence of theorem 6 is that the solution to (N) can be obtained by solving the following two problems

$$(N_1): z_1 = \min \{ \sum_{j \in J^\circ - J_2} G_j(x_j): \sum_{j \in J^\circ - J_2} x_j = P^\circ - \sum_{j \in J_2} ub_j \text{ } b_j \leq x_j \leq ub_j \text{ } j \in J^\circ - J_2 \}$$
 and

$$(N_2): z_2 = \min \left\{ \sum_{j \in J^\circ - J_1} G_j(x_j): \sum_{j \in J^\circ - J_1} x_j = P^\circ - \sum_{j \in J_1} lb_j \ lb_j \leq x_j \leq ub_j \ j \in J^\circ - J_1 \right\}$$

and taking $z = \min(z_1, z_2)$.

Let $(N\leq)$ and $(N\geq)$ be the versions of (N) when constraint (1) is an inequality of the type \leq and \geq respectively. For a variable $j \in J^0$ let h_j be the value of x_j for which $DG_j(x_j) = 0$. If such a point does not exist we adopt $h_j = -\infty$ $(+\infty)$ in Theorem 7 (Theorem 8). Let x_j^* $j \in J^0$ solve (N). Then

Theorem 7: a) If
$$\lambda = -DG_{v_j}(x_{v_j}^*) \le 0$$
, $x_j = x_j^* j \in J^0$ solve $(N \ge)$.
b) If $\lambda = -DG_{v_j}(x_{v_j}^*) < 0$, x_j defined as:

$$\begin{aligned} &x_{i_{j}} &= \&b_{i_{j}} & j=1,2,\ldots,s; \\ &x_{v_{j}} &= \max(\&b_{v_{j}},h_{v_{j}}) & j=1,2,\ldots,g; \\ &x_{k_{j}} &= \max(\&b_{k_{j}},h_{k_{j}}) & \text{for all } k_{j} & \text{such that } DG_{k_{j}}(ub_{k_{j}}) \geq 0 & \text{and} \\ &x_{k_{j}} &= ub_{k_{j}} & \text{for all } k_{j} & \text{such that } DT_{k_{j}}(ub_{k_{j}}) < 0 \\ &\text{solve } (N\leq). \end{aligned}$$

Theorem 8: a) If
$$\lambda = -DG_{v_j}(x_{v_j}^*) \le 0$$
, $x_j = x_j^*$ jeJ° solves (N≥).

b) If $\lambda = -DG_{v_j}(x_{v_j}^*) > 0$, x_j defined as:

$$x_{k_j} = ub_{k_j} \quad j=1,2,...,p;$$

$$x_{v_j} = min(ub_{v_j}, h_{v_j}) \quad j=1,2,...,g;$$

$$x_{i_j} = min(ub_{i_j}, h_{i_j}) \text{ for all } i_j \text{ such that } DG_{i_j}(\ell b_{i_j}) \le 0 \text{ and } min(ub_{i_j}, h_{i_j}) \text{ for all } i_j \text{ such that } DG_{i_j}(\ell b_{i_j}) > 0$$

$$x_{i_j} = \ell b_{i_j} \text{ for all } i_j \text{ such that } DG_{i_j}(\ell b_{i_j}) > 0$$

$$x_{i_j} = \ell b_{i_j} \text{ for all } i_j \text{ such that } DG_{i_j}(\ell b_{i_j}) > 0$$

$$x_{i_j} = \ell b_{i_j} \text{ for all } i_j \text{ such that } DG_{i_j}(\ell b_{i_j}) > 0$$

$$x_{i_j} = \ell b_{i_j} \text{ for all } i_j \text{ such that } DG_{i_j}(\ell b_{i_j}) > 0$$

Computational Results

In Tables 1 to 7 we present the results of 84 problems of type (N). The data were randomly generated. For identification purposes, our algorithm was denominated Bitran-Hax. In each problem the objective function was composed by functions $G_{i}(x_{i})$ of the same family. They are indicated in the first row of each table. Following the time in seconds to solve each problem, by both methods, appears the number of iterations required. n represents the number of variables in a problem. For a fixed n three problems were solved for each type of objective function. In Luss and Gupta's method [4] the ordering of the derivatives evaluated at the lower bound of each variable was executed by the "Quick Method". In our algorithm, problems $N(\beta)$ were solved through the corresponding Kuhn-Tucker conditions. For the problems of Tables 6 and 7, Luss and Gupta's algorithm does not apply because in the former one the objective functions are strictly convex increasing and in the later one we have not imposed any condition among the values of the bounds, P° and the point where each of the $G_i(x_i)$ attains its minimum. The computer used is a Borroughs B6700. The programs were written in Algol. Application of problems presented in Tables 5 and 7 to hierarchical production planning can be found in [2]. The parameters (s, m, lb, ub, etc...) corresponding to problems in Tables 1 to 5 (6 and 7) were randomly generated in intervals where the functions $G_{i}(x_{i})$ are strictly convex decreasing (strictly convex).

		9	; (x,)	= s _i [1	-exp(-m	$G_{i}(x_{i}) = s_{i}[1-exp(-m_{i}x_{i})]$ $i=1,2,,n$	i=1,2,	u,				
	u	n = 50	90	а	n = 100	0	С	n = 150	0	а	n = 200	0
Bitran-Hax (sec.)	0.138	0.157	0.119	0.292	0.213	138 0.157 0.119 0.292 0.213 0.237 0.482 0.540 0.434 0.709 0.720 0.711	0.482	0.540	0.434	0.709	0.720	0.711
No. of Iterations	9	7	7	9	9	9	80	6	7	8	80	6
Luss-Gupta (sec.)	0.728	1.029	1.174	1.125	4.179	728 1.029 1.174 1.125 4.179 0.830 5.903 9.073 3.969 10.531 2.109 15.124	5.903	9.073	3.969	10.531	2,109	15.124
No. of Iterations	2	4	8	1	7	1 7 1 3 4 2 3 1 5	3	7	2	3	1	5

Table 1

			$G_{1}(\mathbf{x_1})$	= s ₁ &	$G_{i}(x_{i}) = s_{i} l + m_{i} x_{i}$ i=1,2,,n	,] i=	1,2,	u,				
	0	n = 50		С	n = 100	0	С	n = 150	0	а	n = 200	0
Bitran-Hax (sec.)	0.051	0.051 0.050 0.038 0.118 0.099 0.131 0.163 0.178 0.162 0.191 0.245 0.208	0.038	0.118	0.099	0.131	0.163	0.178	0.162	0.191	0.245	0.208
No. of Iterations	7	7	3	9	4 3 6 5 6		6 6 4 7 6	9	4	7	9	5
Luss-Gupta (sec.)	0.486	0.486 0.447 0.201 0.516 1.316 0.488 0.536 0.958 1.232 3.394 4.210 1.105	0.201	0.516	1.316	0.488	0.536	0.958	1.232	3.394	4.210	1,105
No. of Iterations	3	3	3 1 2		7	2	2 1 2 1 6 4	2	1	9	4	1

Table 2

		9	i (x _i)	" s 'r × 'x ×	1 + c i vi	th (m _j	$G_{i}(x_{i}) = s_{i} \frac{x_{i} + c_{i}}{x_{i} + m_{i}} \text{ with } (m_{i} > c_{i}) i=1,2,,n$	i=1,2,	u,			
	а	n = 50	0	G	n = 100	0	E .	n = 150	0	G	n = 200	0
Bitran-Hax (sec.)	0.113	0.095	0.124	0.208	0.221	0.178	113 0.095 0.124 0.208 0.221 0.178 0.308 0.307 0.298 0.400 0.421 0.327	0.307	0.298	0.400	0.421	0.327
No. of iterations	9	5	5	5	5	5	7	9	7	5	9	3
Luss-Gupta (sec.)	0.210	0.284	0.229	0.825	0.796	0.291	0.210 0.284 0.229 0.825 0.796 0.291 1.033 2.687 1.098 1.394 5.448 2.543	2.687	1.098	1.394	5.448	2,543
No. of iterations	1	1	1	1 1 3	2	1	2 1 1 4 1 1 2	7	1	1	2	1

Table 3

		G ₁ (x ₁	× "	'i x i - m i x	2 with	lb _i < k	$G_{1}(\mathbf{x_1}) = \mathbf{x_1} \mathbf{x_1} - \mathbf{m_1} \mathbf{x_1}^2$ with $\&b_{1} < \mathbf{k_1}$ and $P < \sum mn(ub_{1}, \mathbf{k_1})$ where $\mathbf{k_1} = \frac{s_{1}}{2m_{1}}$	n < Σ m i=1	n(ub _i ,k	i) wher	e k, = .	S _i
	П	n = 50	0:	а	n = 100	0	d	n = 150	0	G	n = 200	
Bitran-Hax (sec.)	0.063	0.059	0.049	0.105	0.108	0.101	063 0.059 0.049 0.105 0.108 0.101 0.152 0.161 0.157 0.223 0.261 0.210	0.161	0.157	0.223	0.261	0.210
No. of iterations	7	7	9	8	7	9	8	8	8	8	8	80
Luss-Gupta (sec.)	0.225	0.236	0.164	0.361	0.850	0.283	225 0.236 0.164 0.361 0.850 0.283 0.737 1.129 0.693 2.150 0.893 0.745	1.129	0.693	2.150	0.893	0.745
No. of iterations	1	12	1	5	34	1	6 12 1 5 34 1 10 13 10 18 1 7	13	10	18	1	7

Table 4

			Gi	(x)	$G_1(x_1) = a_1/x_1$ i=1,2,,n	i=1,	2,,n					
		n = 50	0	-	n = 100	0	п	n = 150	0	а	n = 200	0
Bitran-Hax (sec.)	0.061	061 0.058 0.048 0.095 0.076 0.133 0.128 0.246 0.168 0.276 0.306 0.282	0.048	0.095	0.076	0,133	0.128	0.246	0.168	0.276	0.306	0.282
No. of iterations	9	3	7	5	5 6	7	3	9	5	8	4	3
Luss-Gupta (sec.)	0.624	624 0.752 0.916 2.611 2.012 1.431 2.618 2.715 4.869 3.719 3.901 5.088	0.916	2,611	2.012	1.431	2,618	2.715	4.869	3.719	3.901	5.088
No. of iterations	2	1 3 4 2 1 2	3	7	2	1	2	5	5 6	9	2	1

Table 5

			G	(x ₁)	exp k	ixik	$G_{1}(x_{1}) = \exp k_{1}x_{1} k_{1} > 0 i=1,2,,n$	i=1,2,	u,			
		n = 50	09	а	n = 100	0	а	n = 150	0	п	n = 200	
Bitran-Hax (sec.)	0.163	0.151	.163 0.151 0.135 0.237 0.267 0.261 0.445 0.443 0.381 0.596 0.486 0.536	0.237	0.267	0.261	0.445	0.443	0,381	0.596	0.486	0.536
No. of iterations	7	7	9	5	9	9	7	7		8	9	9

Table 6

			S	1 (x,)	$= \frac{1}{2} \left(\frac{h}{s} \right)$	$-\frac{x_1}{s_1}$	$G_{1}(x_{1}) = \frac{1}{2}(\frac{h}{s} - \frac{x_{1}}{s_{1}})^{2}$ $i=1,2,,n$	u,,				
	п	n = 50	0	п	n = 100	0	c	n = 150	0	а	n = 200	0
Bitran-Hax (sec.)	0.054	0.050	0.044	0.114	0.073	0.073	0.159	0.151	.054 0.050 0.044 0.114 0.073 0.073 0.159 0.151 0.170 0.202 0.214 0.227	0.202	0,214	0.227
No. of iterations	9	9	5	9	3	3	5	4	5	4	5	8

Table 7

References

- G. R. Bitran, "Admissible Points and Vector Optimization: A Unified Approach", unpublished Ph.D. thesis, Operations Research Center, M.I.T., February, 1975.
- G. R. Bitran and A. C. Hax, "On the Design of Hierarchical Production Planning Systems", to appear in January 1977.
- 3. A Charnes and W. W. Cooper, "The Theory of Search: Optimum Distribution of Search Effort", Management Science 5, 44-49 (1958).
- H. Luss and S. K. Gupta, "Allocation of Effort Resources Among Competing Activities", Operations Research 23, 360-366 (1975).
- 5. O. L. Mangasarian, "Nonlinear Programming", McGraw-Hill, New York, 1969.
- C. Wilkinson and S. K. Gupta, "Allocating Promotional Effort to Competing Activities: A Dynamic Programming Approach", IFORS Conference, Venice, 419-432 (1969).