Department of Physiology

Dr. K. Medagoda

 Orderly depolarization wave results a contraction wave in the myocardium

- Excitation—contraction coupling
 - → Results contractile response
 - → Begins just after the start of depolarization
 - → Lasts about until about 50ms after repolarization

- Contraction of the chambers –systole
- Relaxation of the cambers- diastole

- Atrial systole stars just after the P wave
- Ventricular systole starts near the end of the R wave and ends just after the T wave
- Contraction produces
 - → Sequential changes in pressures and flows in the heart chambers and vessels
- Blood pressures
 - → Systolic pressure-Highest pressure during systole in aorta
 - → Diastolic pressure-Lowest pressure during diastole in aorta

- Mechanical events of the cardiac cycle
- Following are the phases of the cardiac cycle
 - 1. Late diastole
 - 2. Atrial systole
 - 3. Ventricular systole
 - 4. Early diastole

1. Events in late diastole

- Mitral and the tricuspid valves are opened
- Aortic and the pulmonary vales are closed
- Blood flows into the heart throughout diastole
- → Filling of the atria and the ventricles
- → The rate of filling declines as the ventricles become distended
- → The cusps of the mitral and tricuspid valves drift toward the closed position
- → The pressure in the ventricle remains low

2. Atrial systole

- Contraction of the atria propels additional blood into the ventricles
- → But 70% of the ventricular filling occurs passively during diastole
- During atria systole some blood regurgitates into the great veins

- 3. Ventricular systole
 - Has
 - 1. Isovolumetric (isovolumic, isometric) ventricular contraction
 - 2. Ventricular ejection

- 3. Ventricular systole-Isovolumetric ventricular contraction
 - → Lasts about 0.05 second
 - → At the start of ventricular systole the mitral and tricuspid vales close and aortic pulmonary valves remain closed
 - → All the valves are closed and ventricles are closed chambers for a short period of time

- 3. Ventricular systole-Isovolumetric ventricular contraction
 - Ventricles contracts very little
 - → But ventricular pressure rises very rapidly as the myocardium presses on the blood
 - The pressure in the ventricles exceeds the pressure in the great arteries
- During this time the cusps of AV valve bulge into atria causing a small but sharp rise in atrial pressure

- 3. Ventricular systole- Ventricular ejection
 - → When the pressure in the left ventricle exceeds aortic artery pressure the aortic valve opens
 - When the pressure in the right ventricle exceeds
 pulmonary artery pressure the pulmonary valves open
 - → The phase of ventricular ejection begins
 - Blood ejects into aorta and pulmonary artery
 - → The intraventricular pressure rises to a maximum and then declines before the end of ventricular systole
 - Therefore the ejection is rapid at first and the slows down

- 3. Ventricular systole- Ventricular ejection
 - Peak left ventricular pressure is about 120mmHg
 - Peak right ventricular pressure is about 25mmHg
 - ★ Late in the systole the aortic pressure actually exceeds the ventricular pressure
 - → But momentum keeps the blood moving forward into the aorta
 - → The AV valves are pulled down by the contraction of the ventricles
 - And the atrial pressure drops

- 4. Early diastole
 - Protodiastole-lasts for 0.04 seconds
 - → When the ventricular muscle is fully contracted the falling ventricular pressure drop more rapidly
 - → Ends when the momentum of the ejected blood is overcome
 - → The aortic and pulmonary valves close

- 4. Early diastole
 - The isovolumetric relaxation
 - → The AV valves, aortic and pulmonary valves are closed
 - Pressure continue to drop rapidly
 - When the ventricular pressure falls below the atrial pressure the AV valves open
 - Resulting end of the isovolumetric relaxation
 - When AV valves open ventricular filling starts

- 4. Early diastole
 - Ventricular filling is rapid at first
- Slows down towards the late diastole

- Atrial pressure continues to rise after the ventricular systole until the AV valves open
- Timing of the events
 - → The activities of the right and left side are asynchronous
 - → Right atrial systole precedes the left atrial systole
 - → Left ventricular systole precedes the right
 - → Right ventricular ejection begins before the left ventricular ejection
- During inspiration the aortic valve closes slightly before pulmonary valve
- During expiration both valve close at the same time

Cardiac chamber volumes

- End diastolic volume
 - → The volume of the ventricles at the end of the diastole
 - → About 130 ml

Stroke volume

- → The volume of blood ejected from each ventricle during ventricular ejection (with each stroke)
- → About 70-90 ml at rest

End systolic volume

- Volume of blood remains in each ventricle at the end of systole
- → About 50 ml

- Cardiac chamber volumes
- Ejection fraction
 - → Percentage of blood ejected with each stroke from the end diastolic volume
 - → = stroke volume / end diastolic volume X 100%
 - → Normally about 65%
 - → Valuable index of ventricular function

- Length of systole and diastole
- With change of heart rate the length of systole and diastole varies
- With tachycardia the length of cardiac cycle decreases
 - → Both the systolic and diastolic length decreases
 - → The shortening is mainly due to reduction of the length of diastole

Arterial pulse

- The blood forced into the aorta during ventricular ejection
 - → Moves the blood forward
 - → Sets up a pressure wave that travels along the arteries
 - → Expands the arterial wall
- This expansion is palpable as the pulse

Arterial pulse

- Character of the pulse
 - → Slow rising pulse occurs in aortic stenosis
 - → Collapsing pulse is seen with a ortic regurgitation
 - → Radio-femoral delay is seen with co-arctation of the aorta

• The rate, rhythm, character, volume, radio- femoral delay of the pulse –refer practical manual

Atrial pressure changes

- Atrial pressure
 - → Rises during atrial systole
 - Starts to drop with atrial diastole
 - → A transient rise is seen with isometric ventricular contraction when AV valve cups bulge into the atria
 - → With ventricular ejection pressure drops rapidly due pulling of the AV valve and continues to drop due to atrial diastole
 - → Atrial pressure rises again due to venous return in ventricular systole
 - → When AV valve opens in ventricular diastole pressure drops again

- The atrial pressure changes are transmitted to the great veins
- These pressure fluctuations can be seen in the internal jugular veins in the neck
- Produces three characteristic waves
 - → Three positive waves 'a,c and v'
 - → Two descents 'x and y'

- The 'a' wave due to
 - → atrial systole
 - → Regurgitation of blood into the great veins with atrial systole
 - → Stoppage of venous flow in great veins
- The 'c' wave due to
 - → Transmitted pressure due to bulging of the cusp of AV valves during isovolumetric ventricular contraction

- The 'v' wave due to
 - → Rise of atrial pressure due to venous return in ventricular systole
- The 'x' descent due to atrial diastole
- The 'y' descent due to opening of tricuspid valve in ventricular diastole

- Abnormal jugular venous pulse
 - → Large 'a' wave is seen in complete heart block when atria contracts with closed AV valves
 - → Giant 'c' wave is seen in tricuspid regurgitation

 \rightarrow Q – Can you see 'a' wave in atrial fibrillation?