Definizioni

Agostino Cesarano

January 2024

Premesse

Si definisce intervallo chiuso di estremi a e b l'insieme $[a,b]=\{x\in\mathbb{R}:a\leq x\leq b\}.$

Si definisce intervallo aperto di estremi a e b l'insieme $(a,b) = \{x \in \mathbb{R} : a < x < b\}.$

Si definisce intervallo chiuso a sinistra e aperto a destra di estremi a e b l'insieme $[a,b)=\{x\in\mathbb{R}:a\leq x< b\}.$

Si definisce intervallo aperto a sinistra e chiuso a destra di estremi a e b l'insieme $(a,b] = \{x \in \mathbb{R} : a < x \le b\}.$

Si definisce intervallo chiuso a sinistra e illimitato superiormente a destra di estremo a l'insieme $[a, +\infty) = \{x \in \mathbb{R} : a \leq x\}.$

Si definisce intervallo illimitato inferiormente a sinistra e chiuso a destra di estremo a l'insieme $(-\infty,a]=\{x\in\mathbb{R}:x\leq a\}.$

Si definisce intervallo aperto a sinistra e illimitato superiormente a destra di estremo a l'insieme $(a, +\infty) = \{x \in \mathbb{R} : a < x\}.$

Si definisce intervallo illimitato inferiormente a sinistra e aperto a destra di estremo a l'insieme $(-\infty, a) = \{x \in \mathbb{R} : x < a\}.$

Si definisce intervallo illimitato inferiormente e superiormente $(-\infty, +\infty) = \mathbb{R}$.

Part III

Continuità e Discontinuità

Continuità

Sia f una funzione definita in un intervallo aperto (a,b). Si dice che f è continua in $x_0 \in (a,b)$ se

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Si dice che f è continua in $x_0 \in (a, b)$ a destra se

$$\lim_{x \to x_0^+} f(x) = f(x_0)$$

Si dice che f è continua in $x_0 \in (a, b)$ a sinistra se

$$\lim_{x \to x_0^-} f(x) = f(x_0)$$

Si dice che f è continua in $x_0 \in (a, b)$ se è continua sia a destra che a sinistra.

Esempio

Le funzioni elementari sono continue in ogni punto del loro dominio.

$$x^a \quad (a \in \mathbb{R}); \quad \log x; \quad a^x (a \in \mathbb{R}); \quad \sin x; \quad \cos x; \quad |x|$$

Esempio

La funzione f(x) = x è continua in ogni punto del suo dominio. Funzione identica

Sia f una funzione definita in un intervallo chiuso [a,b]. Si dice che f è continua in a se

$$\lim_{x \to a^+} f(x) = f(a)$$

Si dice che f è continua in b se

$$\lim_{x \to b^{-}} f(x) = f(b)$$

Prese due funzioni f e g continue in x_0 , allora

- f + g è continua in x_0 ;
- f g è continua in x_0 ;
- $f \cdot g$ è continua in x_0 ;
- f/g è continua in x_0 se $g(x_0) \neq 0$;
- f(g(x)) è continua in x_0 se g è continua in x_0 e f è continua in $g(x_0)$.

Osserva che in un punto isolato la funzione è continua.

Criterio di monotonia

Sia f una funzione continua in un intervallo [a,b] e derivabile in (a,b). Allora.

- Se $f'(x) \ge 0$ in (a, b), allora f è crescente in [a, b].
- Se $f'(x) \leq 0$ in (a, b), allora f è decrescente in [a, b].
- Se f'(x) > 0 in (a, b), allora f è strettamente crescente in [a, b].
- Se f'(x) < 0 in (a, b), allora f è strettamente decrescente in [a, b].
- Se f'(x) = 0 in (a, b), allora f è costante in [a, b].

Discontinuità

Sia f una funzione definita in un intervallo aperto (a,b). Si dice che f è discontinua in $x_0 \in (a,b)$ se non è continua in x_0 . In particolare, si dice che f è discontinua in $x_0 \in (a,b)$ se

$$\lim_{x\to x_0^+}f(x)\neq \lim_{x\to x_0^-}f(x) \quad \textit{Discontinuità di prima specie o di salto}$$

 x_0 è un punto di discontinuità di prima specie se i limiti destro e sinistro della funzione in x_0 esistono e sono finiti ma sono diversi.

Figure 1: Discontinuità di prima specie o di salto

$$\lim_{x\to x_0^+} f(x) = \pm\infty \quad \vee \quad \lim_{x\to x_0^-} f(x) = \pm\infty \quad \text{oppure}$$

$$\lim_{x\to x_0^+} f(x) = \nexists \quad \vee \quad \lim_{x\to x_0^-} f(x) = \nexists \quad \textbf{Discontinuità di seconda specie}$$

 x_0 è un punto di discontinuità di seconda specie se almeno uno tra limite sinistro o destro della funzione in x_0 è uguale a $\pm \infty$, oppure non esiste.

Figure 2: Discontinuità di seconda specie

Ricordiamo che una funzione monotona può avere al più un numero finito di punti di discontinuità di prima specie.

$\lim_{x \to x_0} f(x) \neq f(x_0)$ Discontinuità di terza specie o eliminabile

 x_0 è un punto di discontinuità di terza specie se il limite sinistro e destro della funzione in x_0 sono uguali e finiti ma non esiste il valore della funzione in x_0 oppure esiste ma risulta diverso dal limite cioè diverso dal suo limite destro e sinistro.

Figure 3: Discontinuità di terza specie o eliminabile

In questo caso la discontinuità si può eliminare ponendo $f(x_0)=\lim_{x\to x_0^+}f(x)=\lim_{x\to x_0^-}f(x).$