Problem Statement:

Based on the given financial data create a ML model to predict if the client is high risk or low risk if we were to provide them loan. We need to predict the column Risk_Flag and it contains value 1 if the client is high risk else it will be 0.

Dataset Variable Description:

- 1) Income: Annual salary
- 2) Age: Age of the person
- 3) Experience: Work Experience
- 4) Married/Single: Married or Single
- 5) House_Ownership: rented/owned/ norent_noown
- 6) Car_Ownership: Owns car or not (yes/no)
- 7) Profession: Type of profession
- 8) City: City
- 9) State: State
- 10) CURRENT_JOB_YRS: How many years the person is working on current job.
- 11) CURRENT_HOUSE_YRS: How many years the person is living in current house.
- 12) Risk_Flag: Target Variable, 0-Good customer for loan, 1- Risky customer to give loan

Methodology:

- 1) Checked for missing values in dataset.
- 2) Analyzed unique values of each variable and identified categorical and continuous variables.
- 3) Checked for any Outliers in dataset by plotting boxplots.
- 4) Conducted Univariate analysis for each variable. Checked for frequency distribution and also conducted ANOVA analysis for checking the impact of categorical variable wrt target variable.
- 5) Encoding of categorical variables.
- 6) Scaling of data.
- 7) Model-1 → Logistic Regression Classifier was built. Metrics evaluated. (LR)
- 8) Model-2 → Random Forest Classifier was built. Metrics evaluated. (RF)
- 9) Model-3 → SMOTE on imbalanced dataset and then Random Forest Classifier was built Metrics evaluated. (SMOTE+RF)
- 10) Important Features was identified.

EDA Insights and Data Visualization:

• Distribution of classes is unbalanced in dataset.

0- Good customers	87.7%
to give loan	
1- Risky Customers	12.3%
to give loan	

• Distribution of House_ownership with respect to target variable. It suggests that the customers living in rented house are riskier since there is a possibility for these customer to pay rent as well as pay loan amount which can be a burden to them. Thus a possibility that offering loan to rented customers is risky.

• Distribution of Married/Single with respect to the target variable. Riskier customers are observed from customers who are single. Thus suggesting a possibility that married customers can pay the loan amount because of their dependents who might be working.

Metrics Used:

1. Precision

Definition: Precision is the ratio of true positive predictions to the total predicted positives. It answers the question: "Out of all customers predicted to be risky, how many actually were risky?"

Formula:

Precision =
$$\frac{TP}{TP+FP}$$

- **TP** (**True Positives**): Number of customers correctly predicted as risky (Risk_Flag = 1).
- **FP** (**False Positives**): Number of customers incorrectly predicted as risky when they were actually good (Risk_Flag = 0).

Interpretation: High precision means that when the model predicts a customer as risky, it is usually correct. This is important for minimizing the number of good customers incorrectly labeled as risky.

2. Recall

Definition: Recall is the ratio of true positive predictions to the total actual positives. It answers the question: "Out of all the actual risky customers, how many were correctly identified by the model?"

Formula:

$$Recall = \frac{TP}{TP + FN}$$

- **TP** (**True Positives**): Number of customers correctly predicted as risky (Risk_Flag = 1).
- **FN** (**False Negatives**): Number of customers incorrectly predicted as good when they were actually risky (Risk_Flag = 1).

Interpretation: High recall means that the model is able to identify a large portion of the risky customers. This is important for catching as many risky customers as possible, even if it means labeling some good customers as risky.

3. F1-Score

Definition: The F1-score is the harmonic mean of precision and recall. It balances the two metrics and is useful when you need a single metric to evaluate the performance of your model.

Formula:

$$F1 ext{-Score} = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

Interpretation: The F1-score provides a single measure of model performance when there is a trade-off between precision and recall. A high F1-score indicates a good balance between precision and recall.

4. ROC-AUC Score

Definition: The ROC-AUC score is the area under the Receiver Operating Characteristic (ROC) curve. The ROC curve plots the true positive rate (recall) against the false positive rate (1 - specificity) at various threshold settings.

Interpretation: The ROC-AUC score ranges from 0 to 1. A score of 0.5 indicates no discrimination (the model is no better than random), while a score of 1 indicates perfect discrimination by the model. A higher ROC-AUC score means that the model is better at distinguishing between good and risky customers.

Model-1: Logistic Regression Classifier

TRAINING DATA	precision	recall	f1-score	support
0 1	0.91 0.17	0.57 0.62	0.70 0.27	154703 21697
accuracy macro avg weighted avg	0.54 0.82	0.60 0.58	0.58 0.48 0.65	176400 176400 176400

ROC-AUC Score:0.6

TEST DATA				
	precision	recall	f1-score	support
0	0.91	0.58	0.71	66301
1	0.17	0.60	0.26	9299
accuracy			0.58	75600
macro avg	0.54	0.59	0.48	75600
weighted avg	0.82	0.58	0.65	75600

ROC-AUC Score:0.59

- This model performs badly on predicting Class-1 which is Risky customer for giving loan.
- Out of all customers predicted to be risky, the model is only able to predict 17% of customers who are actually risky (Precision). This means that when the model predicts that a customer is risky, it is right only 17% of the time.
- Low F-1 score for class-1 indicates that there is poor balance between recall and precision.

Model-2: Random Forest Classifier

TRAINING DATA				
	precision	recall	f1-score	support
0	0.99	0.92	0.95	154703
1	0.61	0.95	0.74	21697
accuracy			0.92	176400
macro avg	0.80	0.93	0.85	176400
weighted avg	0.95	0.92	0.93	176400

ROC-AUC Score:0.93

TEST DATA		precision	recall	f1-score	support
	0 1	0.97 0.56	0.91 0.77	0.94 0.65	66301 9 2 99
accura macro a weighted a	avg	0.76 0.92	0.84 0.90	0.90 0.79 0.90	75600 75600 75600

ROC-AUC Score:0.84

- Precision, Recall and F-1 score have improved over the logistic regression classifier model on test data.
- Out of all customers predicted to be risky, the model is only able to predict 56% of customers who are actually risky (Precision). This means that when the model predicts that a customer is risky, it is right only 56% of the time.
- The top 5 features influencing for approving loan are: Income, Age, Experience, Current_job_years and current_house years.

Model 3- Random Forest Classifier with SMOTE

On comparing the metrics of training and testing dataset, it is observed that F1-score is very less for testing dataset. The reason for this is because of imbalanced dataset of the label class.

Usually when dealing with imbalanced datasets accuracy and roc_score are not good measures. When the positive class is more important F-1 score is usually focussed upon.

In order to increase the performance of our ML model, we need to create a balanced dataset of labels and then check metrics.

SMOTE- Synthetic Minority Oversampling Technique.

It's a popular technique used to address class imbalance by generating synthetic samples for the minority class.

For Training dat	a:			
_	ecision	recall	f1-score	support
0	0.99	0.91	0.95	154858
1	0.92	0.99	0.96	154547
accuracy			0.95	309405
macro avg	0.96	0.95	0.95	309405
weighted avg	0.96	0.95	0.95	309405
ROC-AUC Score:0.	95			
For Testing	data:			
	precision	recall	f1-score	support
0	0.97	0.91	0.94	66146
1	0.91	0.97	0.94	66457
accuracy			0.94	132603
macro avg	0.94	0.94	0.94	132603
weighted avg	0.94	0.94	0.94	132603
ROC-AUC Score	:0.94			

• The model performs excellently on test data for both classes.

- F-1 score of 94% indicates that there is a balance between recall and precision.
- ROC_AUC score of 95% indicates that the model is good at distinguishing between the two classes.
- The top 5 features influencing for approving loan are: Income, Age, Experience, Current_job_years and current_house years.

Model-1	F1-score: 26%
Model-2	F1-score: 65%
Model-3	F1-score: 94%

Hence Model-3 is best model for predicting the classes for loan approval.

Factors affecting risk:

- **Income:** If the person has a low income, then the person will have a hard time repaying the loan. Hence it is the most important factor for assessing loan approval.
- **Age:** If the person's age is too young or too old, then the person might be risky to give out loan since no or less income.
- **Experience:** If the person has very less work experience means that there is a possibility that the person recently joined job and may have less income.
- Current Job Years: A customer who has been in their current job for many years may be seen as more stable and reliable. It suggests a steady income, lower risk of unemployment, and an established career, which can positively impact their ability to repay the loan. A customer with a short tenure in their current job might be viewed as less stable. Frequent job changes can indicate a riskier financial situation, potentially leading to a higher likelihood of default.
- Current House Years: A customer who has lived in their current house for many years may be seen as more stable and less likely to move. This stability can indicate a lower risk of default, as moving frequently can be associated with financial instability. Frequent moves might be a red flag for lenders, indicating potential financial difficulties, lack of stability, or other underlying issues.

LINK FOR THE PYTHON CODE:

https://colab.research.google.com/drive/15o1o7sqMeMEnMaW-i7WlvayUc-8nPP4A?usp=sharing