

RFM300H/RFM300

ISM Transceiver Module With +20dBm (100mW) Output Power

(The purpose of this RFM300H/RFM300 spec covers mainly for the hardware and RF parameterinfo of the module, For software info please refer toCMT2300 chip datasheets and demo program of HopeDuinoTM Develo -pment

1. General Introduction

RFM300H/RFM300module series' design is based on the high performanceCMOSTEK NextGenRFTM CMT2300 chip, Itoperate at 433/868/915MHz ISM band, The low receive sensitivity(-120dBm) coupled with +20dBm (RFM300H)/+13dBm(RFM300) output power ensures extended range and improved link performance.

2. Features

- 140dB maximum link budget.
- Low RX current of 7mA.
- +20 dBm output power @RFM300H; +13 dBm output power @RFM300.
- Programmable bit rate up to 300 kbps@FSK/40 kbps@OOK
- High sensitivity: down to -120dBm.
- FSK, GFSK, and OOK modulation.
- SMD Package (16x16X1.8mm)

3. Application

- Meter Reading
- Wireless data collection
- Automobile security system
- Home automation and security system

4. Pin Definition

4.1 RFM300H Pin Definition

Figure 1. RFM300H Pin Definition

Number	Definition	Туре	Function	
1	ANT	AI/ AO	RF signal input/output.	
2	GND	G	Ground.	
3	TX-ANT	I/O	Tx Antenna select input pin, When RFM300H is TX state,TX_ANT should be = 0, RX_ANT	
			should be = 1	
4	RX-ANT	I/O	Rx Antenna select input pin, When RFM300H is RX	
			state,RX_ANT should be = 0, TX_ANT	
			should be = 1	
5	3.3V(VDD)	PI	Power supply input,1.8-3.6V.	
6	GPIO1	I/O	General Purpose Digital I/O that may be configured	
7	GPIO2		through the registers to perform variousfunctions	
8	GPIO3	1		
9	GND	G	Ground.	
10	SDIO	I/O	SPI Data input and output.	
11	CSB	I	SPI Chip select input, active low.	
12	SCK	I	SPI Clock input.	
13	FCSB	I	SPI FIFO select input, active low.	
14	NC		No Connect.	
15	NC		No Connect.	
16	GND	G	Ground.	

4.2 RFM300 Pin Definition

Figure 2. RFM300 Pin Definition

Number	Definition	Туре	Function
1	ANT	AI/ AO	RF signal input/output.
2	3.3V(VDD)	PI	Power supply input,1.8-3.6V.
3	GND	G	Ground.
4	NC		No Connect.
5	CSB	1	SPI Chip select input, active low.
6	SCK	1	SPI Clock input.
7	FCSB	1	SPI FIFO select input, active low.
8	SDIO	I/O	SPI Data input and output.
9	GPIO1	I/O	General Purpose Digital I/O that may be configured
10	GPIO3		through the registers to perform variousfunctions
11	GPIO2		
12	NC		No Connect.
13	NC		No Connect.
14	GND	G	Ground.

Notes:

- [1]. INT1 and INT2 are interrupts. DOUT is demodulated output. DIN is a modulation input. DCLK is a modulation or demodulation data rate synchronization clock, automatic switching in TX/RX mode.
- [2]. The SCLK pin connects an internal pull-down resistor of 4.7 k Ω inside the chip. Thus in low-power applications, the MCU cannot output high level (pull up), otherwise it will generate leakage current and will cause low-power implementation failure.
- [3]. The SDIO pin connects an internal pull-up resistor of 15 k Ω inside the chip. Thus in low-power applications, the MCU cannot output low level (pull down), otherwise it will generate leakage current and

will cause low-power implementation failure.

The GPIO pins connect an internal pull-up resistor of 15 $k\Omega$ inside the chip. Thus in low-power applications, the MCU cannot output low level (pull down), otherwise it will generate leakage current and will cause low-power implementation failure.

5. Electrical Parameter:

Maximum

parameter	minimum	maximum	unit
Positive Power Supply	-0.3	+3.6	V
Voltage On Digital Control Inputs	-0.3	VDD + 0.3	V
Voltage On Analog Inputs	-0.3	VDD+ 0.3	V
RX Input Power	-	+10	dBm
Storage Temperature	-55	+125	$^{\circ}\!\mathbb{C}$
Soldering Temperature(10s)	-	+255	$^{\circ}\!\mathbb{C}$
ESD Rating(Human Body Model)	-2	2	KV

Recommended Working Range

parameter	minimum	maximum	unit
Positive Power Supply	+1.8	+3.6	٧
Working Temperature	-40	+85	$^{\circ}$ C
Supply Voltage Slew Rate	1	-	mV/us

DC Characteristic

parameter	conditions	minimum	typical	maximum	unit
RFM300H	433MHz band, P _{out} =+20dBm	-	75	100	mA
TX WorkingCurrent	868MHz band, Pout =+20dBm	-	80	100	
	915MHz band, Pout =+20dBm	-	85	100	
RFM300	433MHz band, Pout =+13dBm	-	28	45	mA
TX WorkingCurrent	868MHz band, P _{out} =+13dBm	-	30	45	
	915MHz band, Pout =+13dBm	-	30	45	
RFM300H/RFM300	433MHz band,	-	7	10	mA
RX WorkingCurrent	868MHz band,	-	7.5	10.5	
	915MHz band,	-	7.5	10.5	
RFM300H/RFM300	All band	-	-	1	uA
Sleep Current					

Transmitter AC Characteristic

parameter	conditions	minimum	typical	maximum	unit
TX Frequency Range	433 MHz band,	413	-	453	MHz
Programmable	868 MHz band,	848	-	888	
	915 MHz band,	895	-	935	
RFM300H	433/868/915MHz band	-	+20	-	dBm
Output Power					
RFM300	433/868/915MHz band	-	+13	-	dBm
Output Power					
Symbol Rate, FSK Mode	Programmable	0.1	-	300	kbps
SymbolRate, OOK Mode	Programmable	0.1	-	40	kbps
Frequency Deviation,FSK	Programmable	1	-	200	KHz
Frequency Resolution		-	24.8	-	Hz

Receiver AC Characteristic

parameter	conditions	minimum	typical	maximum	unit
RX Frequence Range	433 MHz band,	413	-	453	MHz
Programmable	868 MHz band,	848	-	888	
	915 MHz band,	895	-	935	
RX Sensitivity	433MHz	-	-120	-	dBm
OOK ModeSR =1.2 kbps,	868MHz	-	-118	-	
	915MHz	-	-118	-	
RX Sensitivity	433MHz	-	-118	-	dBm
FSK ModeFDEV = 19.2 kHz, SR	868MHz	-	-116	-	
=1.2 kbps,	915MHz	-	-116	-	
Receiver Bandwidth		50		500	KHz
Blocking Immunity	+/-1MHz offset	-	52	-	dB
	+/-2MHz offset	-	74	-	
	+/-10MHz offset	-	75	-	
Image Rejection Ratio	IF=280KHz	-	35	-	dB

6. Typical Application:

Figure 3. RFM300H Application

Figure 4. RFM300 Application

(For software info please refer to CMT2300 chip datasheets and demo program of HopeDuinoTM Development Kit)

7. Mechanical Dimension

(All units in mm)

Figure 5. RFM300H Mechanical Dimension

Figure 6. RFM 300 Mechanical Dimension

8. Order Information

Model	Frequency	Output power
RFM300H-433S2	433MHZ	+20dBm
RFM300H-868S2	868MHZ	+20dBm
RFM300H-915S2	915MHZ	+20dBm
RFM300-433S2	433MHZ	+13dBm
RFM300-868S2	868MHZ	+13dBm
RFM300-915S2	915MHZ	+13dBm

HOPEMICROELECTRONICS CO.,LTD

Add: 30th floor of 8th Building, C Zone, Vanke Cloud City, Xili Sub-district, Nanshan, Shenzhen, GD, P.R. China

Tel: 86-755-82973805
Fax: 86-755-82973550
Email: sales@hoperf.com
Website: https://www.hoperf.com

This document may contain preliminary information and is subject to change by Hope Microelectronics without notice. Hope Microelectronics assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Hope Microelectronics or third parties. The products described in this document are not intended for use in implantation or other direct life support applications where malfunction may result in the direct physical harm or injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OF MECHANTABILITY OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT.

©2006, HOPE MICROELECTRONICS CO. LTD. All rights reserved.