A Theoretically-Principled Sparse, Connected, and Rigid Graph Representation of Molecules

Shih-Hsin Wang*1, Yuhao Huang*1, Justin Baker2, Yuan-En Sun1, Qi Tang3, Bao Wang1

- 1: University of Utah,
- 2: University of California, Los Angeles,
- 3: Georgia Institute of Technology

Motivation

- GNNs need graphs to analyze 3D data.
- Graph structure impacts performance.

What Makes a 3D Graph Good?

- Sparsity → Efficient computation
- Connectedness → Full message passing
- Rigidity → Unique 3D structure recovery

Challenges

- Existing methods (e.g., radial cutoff) **trade off** between sparsity and connectedness.
- No method ensures all 3 properties at once.

A hyperparameter-free method to construct sparse, connected, and rigid graphs for molecules, with theoretical guarantees and real-world performance.

Scan to access paper, code, and slides

Our Solution: SCHull

Step 1: Project to unit sphere

Step 2: Compute spherical convex hull

Step 3: Use hull edges to define the graph

Why It Works

- No hyperparameters.
- Sparse & Connected: #Edges $< 3 \times$ #Nodes.
- Rigid: Dihedrals + lengths + distances to center.
- Theoretical Guarantee: 1-layer GNN can distinguish between non-isomorphic point clouds.

Selected Results

Fold and Reaction Classification (Accuracy %)

Method	React	Avg. Time	Fold				Avg. Time
riceriou		7176. 111110	Fold	Super	Family	Avg.	7 (4 8) 1 11110
GCN	67.3		16.8	21.3	82.8	40.3	_
IEConv	87.2	_	45.0	69.7	98.9	71.2	_
DWNN	76.7	_	31.8	37.8	85.2	51.5	_
GearNet	79.4	_	28.4	42.6	95.3	55.4	_
HoloProt	78.9	_	_	-	_	_	_
MACE	_	_	$23.7_{\pm 0.5}$	$21.4_{\pm 0.5}$	$60.2_{\pm 0.2}$	35.1	$114_{\pm0.5}$
MACE+SCHull	_	_	$27.0_{\pm 0.6}$	$23.1_{\pm 0.5}$	$65.0_{\pm 0.2}$	38.4	$135_{\pm0.5}$
SEGNN	_	_	$28.8_{\pm 0.6}$	$30.3_{\pm 0.6}$	$77.1_{\pm 0.3}$	45.4	$121_{\pm0.7}$
SEGNN+SCHull	_	_	$32.0_{\pm 0.4}$	$36.8_{\pm 0.7}$	$86.9_{\pm0.3}$	51.9	$152_{\pm0.5}$
GVP-GNN	65.5	$320_{\pm 5}$	16.0	22.5	83.8	40.8	$106.3_{\pm 0.5}$
GVP-GNN + SCHull	$ 77.1_{\pm 0.5} $	$345_{\pm 5}$	$24.5_{\pm 0.3}$	$27.1_{\pm 0.2}$	$88.6_{\pm0.3}$	46.7	$111.5_{\pm0.5}$
ProNet-Amino-Acid	86.0	$210_{\pm 5}$	51.5	69.9	99.0	73.5	$70.5_{\pm 0.5}$
ProNet-Amino Acid+SCHull	$87.9_{\pm 0.3}$	$221_{\pm 6}$	$55.2_{\pm 0.2}$	$73.9_{\pm 0.2}$	$99.1_{\pm 0.1}$	76.1	$73.8_{\pm 0.5}$
ProNet-Backbone	86.4	$213_{\pm 5}$	52.7	70.3	99.3	74.1	$71.4_{\pm 0.8}$
ProNet-Backbone+SCHull	88 . 1 _{±0.3}	$230_{\pm 5}$	$ $ 56 . 1 $_{\pm 0.3}$	74 . 6 \pm 0.2	99 .4 $_{\pm 0.1}$	76.7	$75.8_{\pm 0.5}$

Ligand Binding Affinity Prediction

Method		Avg. Time			
Method	RMSE↓	Pearson ↑	Spearman ↑	Kendall↑	Avg. Tillic
IEConv	1.554	0.414	0.428	_	_
HoloProt-Full Surface	1.464	0.509	0.500	_	_
HoloProt-Superpixel	1.491	0.491	0.482	_	_
GVP-GNN	$1.529_{\pm 0.001}$	$0.441_{\pm 0.001}$	$0.432_{\pm 0.002}$	$0.301_{\pm 0.002}$	$48.6_{\pm 0.6}$
GVP-GNN + SCHull	$1.401_{\pm 0.001}$	$0.475_{\pm 0.001}$	$0.459_{\pm 0.001}$	$0.335_{\pm 0.002}$	$53.6_{\pm 0.6}$
ProNet-Amino-Acid	1.455	0.536	0.526	$0.465_{\pm 0.001}$	$31.7_{\pm 0.5}$
ProNet-Amino Acid+SCHull	$1.355_{\pm 0.002}$	$0.556_{\pm 0.001}$	$0.568_{\pm 0.001}$	$0.512_{\pm 0.001}$	$33.9_{\pm 0.5}$
ProNet-Backbone	1.458	0.546	0.550	$0.481_{\pm 0.001}$	$32.1_{\pm 0.5}$
ProNet-Backbone+SCHull	$1.321_{\pm 0.002}$	$0.581_{\pm 0.001}$	$0.578_{\pm 0.1}$	$0.535_{\pm 0.001}$	34.4 _{+0.5}

See more results — scan the QR code!