普通物理实验(3) 偏振光研究

南昌大学物理实验报告

课程名称:	<u></u>	<u> 爭通物理实验(3</u>)	
实验名称:		偏振光研究		
			物理学 151 班	
	黄泽豪			
			14	
实验时间:		─────────────────────────────────────		

普通物理实验(3) 偏振光研究

【实验目的】

- 1.了解分光计的结构,掌握调节分光计的方法;
- 2.了解最小偏向角的定义以及如何测量;
- 3.测量三棱镜玻璃的折射率。

【实验原理】

棱镜玻璃折射率的测定;棱镜玻璃的折射率可用测定最小分辨角的方法来测量。

如图 37-8 所示,光线以入射角 i_1 透射到棱镜的 AB 面上,经棱镜的两次折射后,以 i_2 角从 AC 面出射,出射光线和入射光线的夹角 δ 称为偏向角。 δ 的大小随入射角 i_1 而改变。可以证明,当 $i_1=i_2$ 时,偏向角为极小值 δ_{\min} ,称为棱镜的最小偏向角。它与棱镜的顶角 α 和折射率 n 之间有如下关系:

$$n = \frac{\sin \frac{\alpha + \delta_{\min}}{2}}{\sin \frac{\alpha}{2}}$$

因此,只要测得 $_{lpha}$ 和 $_{\delta_{\min}}$ 就可用上式求得待测棱镜材料的折射率。

【实验仪器】

分光计、三棱镜、双面镜

【实验内容及步骤】

- 1. 调节分光计
- (1) 望远镜调焦无穷远.
- (2) 望远镜、准直管主轴均垂直于仪器主轴.
- (3) 准直管(平行光管) 发出平行光.
- 2. 三棱镜顶角的测量

反射法测量三棱镜的顶角

图 37-1 为反射法测量三棱镜顶角的示意图。将三棱镜放在载物台上,使平行光管射出的光束投射到棱镜的两个折射面上,从棱镜左面反射的光可将望远镜转至左边观察,使用望远镜微调螺丝,使" \neq "准线的中心垂直线对准反射狭缝像,从两个游标读出方位角读数 θ ,再将望远镜调至光线垂直入射,又可分别读得方位角读数 θ ,和 θ 。

普通物理实验(3) 偏振光研究

3. 测量最小偏向角

将待测棱镜放在载物平台上,转动望远镜,直至能从望远镜中看见待测谱线。慢慢转动游标盘。使谱线朝偏向减小方向移动,同时转动望远镜跟踪谱线。当棱镜无论向哪个方向转动,偏向角均增大时,谱线的极限位置就是棱镜对该谱线的最小偏向角的位置。使望远镜叉丝对准该谱线中心。读出望远镜在此位置的坐标值。

撤去三棱镜,转动望远镜使之正对平行光管,定位后再读出望远镜的角坐标。两次数值之差即为最小偏向角 $_{\delta_{\min}}$ 。代入(1)式即可计算 n。

【数据处理】

		角位置			布儒斯特角			
次数	光垂直	1入射时	反射光泽	肖光时	į	; 1	玻璃折射率	
1人数	$\theta_{_{\! 1}}$ '	θ_2 '	$ heta_{\scriptscriptstyle 1}$	θ_2	ι_B	i_B '		
1	59° 5′	239° 05'	138° 19'	318° 17'	50° 24'			
2	57° 25'	237° 2'	139° 3′	319° 3'	48° 57'	49° 26'	1.15	
3	57° 35'	237° 31'	139° 45′	319° 39'	48° 56'			

【误差分析】

此时实验的实验结果与准确值误差较大,主要因为以下几点原因:

- 1. 实验仪器松动。平行光管的螺丝松动,在调节偏振器的方向,检测消光的时候,会使平行光管的角度发生改变,使实验结果不准确。
- 2. 三棱镜的表面不够清洁。三棱镜的表面可能不小心被手接触到,留下了手上的油脂, 使光再三棱镜表面多次反射,造成实验结果不准确。

【原始数据】

	(南昌	大学实验	报告	
实验	性名: 黄泽东 学 类型: □验证□综合□设计 汽车系入取分子	ト□创新 实验日期: 反身才之消充分 ○		-
2 3	59°5′ 239°5′ 57°55′ 237°31′ 57°55′ 237°31′	138°19' 318'17' 139°30' 319°30' 139°47' 319°39'		
	•		3.25	