

ASSIGNMENT #2 REAL OPTIONS STRATEGY

Analytic Finance, Spring 2024

Laurenz Pehl

KEY MOTIVATION:

- Stock Prices reflect the value of a company if the market fully understands what the company is doing
- ➢ If the market does not fully understand what is going on there may be discrepancies, where Prices do not reflect underlying Value

Goal: Identify drivers of discrepancies

IDEA: REAL OPTIONS

Definition:

A Company's right but not obligation to make a business decision with some economic value

Rationale:

- > It is difficult for the market to proper assess the intrinsic values of real options
- > This might drive discrepancies between the price and intrinsic value

Expectation:

Companies with high level of real options may be systematically undervalued

IDEA: REAL OPTIONS

Hypothesis:

"Companies with high levels of real options are systematically undervalued"

Sorting Variable Strategy:

- > Has to be based on economic foundations without being too complex
- > Must be calculated solely on accounting data

REAL OPTIONS – SORTING VARIABLE

Linking Our Metrics to the Black-Scholes Model Our two new metrics together contain all five variables in the Black-Scholes model. Combining five variables into two lets us locate opportunities in two-dimensional space. **Investment Opportunity** Call Option **Option Value** Variable Metrics Present value of a project's Stock price operating assets to be acquired Expenditure required to Exercise price **NPV**a acquire the project assets Length of time the decision Time to may be deferred expiration Risk-free rate Time value of money of return $\sigma \sqrt{t}$ Variance of Riskiness of the project assets returns on stock

Factor	Call Value	Put Value
Increase in underlying asset's value	Increases	Decreases
Increase in Strike Price	Decreases	Increases
Increase in variance of underlying asset	Increases	Increases
Increase in time to expiration	Increases	Increases
Increase in interest rates	Increases	Decreases
Increase in dividends paid	Decreases	Increases

The Promise and Peril of Real Options, Damodaran, NYU

REAL OPTIONS – SORTING VARIABLE

REAL OPTIONS – SORTING VARIABLE

Morningstar's Five Sources of Moat

Moat investing is based on a simple concept: Invest in companies with sustainable competitive advantages trading at attractive valuations. One of the first steps in implementing this approach is finding companies with a moat.

A company's moat refers to its ability to maintain the competitive advantages that are expected to help it fend off competition and maintain profitability into the future. Morningstar has identified five sources of moat:

Sources of Moa

Description

Switching Cost

Switching costs give a company pricing power by locking customers into its unique ecosystem. Beyond the expense of moving they can also be measured by the effort, time and psychological toll of switching to a competitor.

Intangible Asset

Though not always easy to quantify, intangible assets may include brand recognition, patents and regulatory licenses. They may prevent competitors from duplicating products or allow a company to charge premium pricing.

Network Effect

A network effect is present when the value of a product or service grows as its user base expands. Each additional customer increases the product's or service's value exponentially.

Cost Advantage

Companies that are able to produce products or services at lower costs than competitors are often able to sell at the same price as competition and gather excess profit, or have the option to undercut competition.

Efficient Scal

In a market limited in size, potential new competitors have little incentive to enter because doing so would lower the industry's returns below the cost of capital.

INTANO = INTAN - GDWL

GM_Z = (GM – GM_sector_avg) / GM_sector_stdev

t-variable = Mean(INTANO_Z, GM_Z)

CONCERNS ADDRESSED

Sigma x SQRT(t)

- Square Root inappropriate as this is not a "real time" variable
- Solution: Remove Square Root

Number of Observations

- Subindustries may not have sufficient observations in each year
- Solution: Use Sectors Instead

INTAN includes Goodwill

- This would skew results as companies that overpay for M&A would get rewarded
- ➤ Initial Solution: Use INTANO, excluding Goodwill
- ➤ Issue: For some reason INTANO was only available after 1999 and 0 for all prior years
- Solution: Create own INTANO through INTAN GDWL

Include Market Share in t-variable

- Include standardized Market Share in t-variable as a measure of competitive advantage
- Slightly worse alphas, less significance, did not end up adopting it in final model

GICS

EQUAL WEIGHTED RETURNS

Returns in % per month	Q1_EW_returns	Q2_EW_returns	Q3_EW_returns	Q4_EW_returns	Q5_EW_returns
Full_sample 1981-07 - 2012-12	0.823	1.153	1.203	1.144	1.196
Pre_2000 1981-07 - 1999-12	0.853	1.125	1.114	1.210	1.245
Post_2000 2000-01 - 2012-12	0.781	1.192	1.329	1.050	1.126
Extended_period 2013-01 - 2022-12	0.763	0.999	1.174	0.945	1.130

VALUE WEIGHTED RETURNS

Returns in % per month	Q1_VW_returns	Q2_VW_returns	Q3_VW_returns	Q4_VW_returns	Q5_VW_returns
Full_sample 1981-07 - 2012-12	1.013	1.086	0.915	1.000	1.008
Pre_2000 1981-07 - 1999-12	1.354	1.399	1.177	1.354	1.326
Post_2000 2000-01 - 2012-12	0.528	0.641	0.543	0.496	0.555
Extended_period 2013-01 - 2022-12	0.813	0.855	1.236	1.046	1.075

EQUAL WEIGHTED CAPM REGRESSION

	Regression_EW_CAPM_Full_Sample									
1981-07 - 2012-12										
	coef	std err	t	P> t	[0.025	0.975]	R-Squared:	Annual Sharpe:		
const	0.4376	0.107	4.087	0.000	0.227	0.648	0.056	0.612		
Mkt-RF	-0.1093	0.023	-4.696	0.000	-0.155	-0.064				
	Regression_EW_CAPM_Pre-2000 1981-07 - 1999-12									
	1981-07 - 1999-12									
const	0.4470	0.128	3.484	0.001	0.194	0.700	0.018	0.728		
Mkt-RF	-0.0572	0.029	-2.003	0.046	-0.114	-0.001				
		Regressi	on_EW_	CAPM_I	Post-2000	2000-01	- 2012-12			
				2000-0	1 - 2012-1	L 2				
const	0.4101	0.179	2.295	0.023	0.057	0.763	0.136	0.557		
Mkt-RF	-0.1848	0.038	-4.915	0.000	-0.259	-0.111				
	Re	gression_	EW_CAP	M_Exte	ended Pei	riod 2013	-01 - 2022-1	2		
	2013-01 - 2022-12									
const	0.4868	0.243	2.000	0.048	0.005	0.969	0.04	0.489		
Mkt-RF	-0.1186	0.054	-2.202	0.030	-0.225	-0.012				

VALUE WEIGHTED CAPM REGRESSION

	Regression_VW_CAPM_Full_Sample									
1981-07 - 2012-12										
	coef	std err	t	P> t	[0.025	0.975]	R-Squared:	Annual Sharpe:		
const	-0.0151	0.119	-0.127	0.899	-0.248	0.218	0.007	0.014		
Mkt-RF	0.0422	0.026	1.639	0.102	-0.008	0.093				
	Regression_VW_CAPM_Pre-2000									
	1981-07 - 1999-12									
const	0.0107	0.146	0.073	0.942	-0.278	0.299	0.001	-0.006		
Mkt-RF	-0.0160	0.033	-0.491	0.624	-0.080	0.048				
			Regressi	on_VW	_CAPM_I	Post-2000)			
				2000-01	l - 2012-1	2				
const	0.0396	0.196	0.202	0.840	-0.349	0.428	0.044	0.077		
Mkt-RF	0.1091	0.041	2.639	0.009	0.027	0.191				
			Regressi	on_VW	_CAPM_I	Post-2000)			
	2013-01 - 2022-12									
const	0.3634	0.179	2.031	0.045	0.009	0.718	0.037	0.504		
Mkt-RF	-0.0844	0.040	-2.131	0.035	-0.163	-0.006				

EQUAL WEIGHTED FF3 REGRESSION

			Re	gression_EV	/_FF3_Full_Sar	mple		
				1981-0	7 - 2012-12			
	coef	std err	t	P> t	[0.025	0.975]	R-Squared:	Annual Sharpe:
const	0.4001	0.097	4.127	0.000	0.209	0.591	0.252	0.612
Mkt-RF	-0.0541	0.022	-2.475	0.014	-0.097	-0.011		
SMB	-0.2798	0.033	-8.582	0.000	-0.344	-0.216		
HML	0.0784	0.034	2.274	0.024	0.011	0.146		
			R	egression_E	W_FF3_Pre-20	000		
				1981-0	7 - 1999-12			
const	0.4267	0.119	3.598	0.000	0.193	0.660	0.216	0.728
Mkt-RF	-0.0516	0.030	-1.731	0.085	-0.110	0.007		
SMB	-0.3310	0.045	-7.388	0.000	-0.419	-0.243		
HML	-0.0958	0.052	-1.845	0.066	-0.198	0.007		
			Re	egression_E	W_FF3_Post-2	000		
				2000-0	1 - 2012-12			
const	0.3594	0.155	2.325	0.021	0.054	0.665	0.387	0.557
Mkt-RF	-0.1327	0.033	-3.987	0.000	-0.198	-0.067		
SMB	-0.1970	0.046	-4.246	0.000	-0.289	-0.105		
HML	0.2278	0.047	4.882	0.000	0.136	0.320		
			Regre	ession_EW_	FF3_Extended-	Period		
				2013-0	1 - 2022-12			
const	0.3616	0.185	1.953	0.053	-0.005	0.728	0.458	0.489
Mkt-RF	-0.0210	0.042	-0.495	0.622	-0.105	0.063		
SMB	-0.6471	0.073	-8.827	0.000	-0.792	-0.502		
HML	0.1735	0.051	3.382	0.001	0.072	0.275		

VALUE WEIGHTED FF3 REGRESSION

			Re	gression_VV	V_FF3_Full_Sar	mple		
				1981-0	7 - 2012-12			
	coef	std err	t	P> t	[0.025	0.975]	R-Squared:	Annual Sharpe:
const	-0.0324	0.118	-0.275	0.783	-0.264	0.199	0.053	0.0138
Mkt-RF	0.0706	0.027	2.658	0.008	0.018	0.123		
SMB	-0.1489	0.040	-3.760	0.000	-0.227	-0.071		
HML	0.0360	0.042	0.859	0.391	-0.046	0.118		
			R	egression_V	/W_FF3_Pre-20	000		
				1981-0	7 - 1999-12			
const	0.0473	0.144	0.328	0.744	-0.237	0.332	0.092	-0.006
Mkt-RF	-0.0399	0.036	-1.100	0.273	-0.111	0.032		
SMB	-0.2435	0.055	-4.467	0.000	-0.351	-0.136		
HML	-0.1623	0.063	-2.569	0.011	-0.287	-0.038		
			Re	egression_V	W_FF3_Post-2	000		
				2000-0	1 - 2012-12			
const	0.0126	0.196	0.064	0.949	-0.374	0.399	0.1	0.077
Mkt-RF	0.1345	0.042	3.190	0.002	0.051	0.218		
SMB	-0.0950	0.059	-1.617	0.108	-0.211	0.021		
HML	0.1151	0.059	1.948	0.053	-0.002	0.232		
			Regre	ession_VW_	FF3_Extended-	Period		
				2013-0	1 - 2022-12			
const	0.2896	0.162	1.785	0.077	-0.032	0.611	0.228	0.504
Mkt-RF	-0.0294	0.037	-0.789	0.432	-0.103	0.044		
SMB	-0.3417	0.064	-5.319	0.000	-0.469	-0.214		
HML	-0.0143	0.045	-0.318	0.751	-0.103	0.075		

