CMPSC 465: LECTURE V

Information Theory Lower Bound QuickSort

Ke Chen

September 08, 2025

Recall from last week...

The time complexity of MergeSort satisfies $T(n) = 2T(n/2) + \Theta(n) \; . \label{eq:Tn}$

We can solve this recurrence relation by

- substitution (guess and induction),
- unrolling,
- recursion tree,
- master theorem,

to get
$$T(n) = \Theta(n \log n)$$
.

Recall from last week...

The time complexity of MergeSort satisfies $T(n) = 2T(n/2) + \Theta(n) \; . \label{eq:Tn}$

We can solve this recurrence relation by

- substitution (guess and induction),
- unrolling,
- recursion tree,
- master theorem,

to get
$$T(n) = \Theta(n \log n)$$
.

Can we do better?

Recall from last week...

The time complexity of MergeSort satisfies $T(n) = 2T(n/2) + \Theta(n)$.

We can solve this recurrence relation by

- substitution (guess and induction),
- unrolling,
- recursion tree,
- master theorem,

to get
$$T(n) = \Theta(n \log n)$$
.

Can we do better?

No. Any comparison-based sorting algorithm needs $\Omega(n\log n)$ comparisons in the worst case.

Observations:

- Comparison-based sorting algorithms can be modeled by decision trees.
- Each leaf node corresponds to a possible output.
- ► The execution of the algorithm corresponds to a path from root down to a leaf.
- A longest path (i.e., height of the tree) gives the worst-case number of comparisons needed.

Observations:

- Comparison-based sorting algorithms can be modeled by decision trees.
- Each leaf node corresponds to a possible output.
- ► The execution of the algorithm corresponds to a path from root down to a leaf.
- ► A longest path (i.e., height of the tree) gives the worst-case number of comparisons needed.

A leaf-counting argument:

► Each possible output must appear in the tree. Sorting *n* distinct numbers, there are ? possible outputs.

Observations:

- Comparison-based sorting algorithms can be modeled by decision trees.
- Each leaf node corresponds to a possible output.
- ► The execution of the algorithm corresponds to a path from root down to a leaf.
- ► A longest path (i.e., height of the tree) gives the worst-case number of comparisons needed.

A leaf-counting argument:

► Each possible output must appear in the tree. Sorting *n* distinct numbers, there are *n*! possible outputs.

Observations:

- Comparison-based sorting algorithms can be modeled by decision trees.
- Each leaf node corresponds to a possible output.
- ► The execution of the algorithm corresponds to a path from root down to a leaf.
- A longest path (i.e., height of the tree) gives the worst-case number of comparisons needed.

A leaf-counting argument:

- ► Each possible output must appear in the tree. Sorting *n* distinct numbers, there are *n*! possible outputs.
- ▶ A binary tree of height *h* can have at most ? leaves.

Observations:

- Comparison-based sorting algorithms can be modeled by decision trees.
- Each leaf node corresponds to a possible output.
- ► The execution of the algorithm corresponds to a path from root down to a leaf.
- A longest path (i.e., height of the tree) gives the worst-case number of comparisons needed.

A leaf-counting argument:

- ► Each possible output must appear in the tree. Sorting *n* distinct numbers, there are *n*! possible outputs.
- A binary tree of height h can have at most 2^h leaves.

Observations:

- Comparison-based sorting algorithms can be modeled by decision trees.
- Each leaf node corresponds to a possible output.
- ► The execution of the algorithm corresponds to a path from root down to a leaf.
- A longest path (i.e., height of the tree) gives the worst-case number of comparisons needed.

A leaf-counting argument:

- ► Each possible output must appear in the tree. Sorting *n* distinct numbers, there are *n*! possible outputs.
- A binary tree of height h can have at most 2^h leaves.
- ightharpoonup So $2^h \ge n!$, or $h \ge \log(n!) = \Omega(n \log n)$.

Theorem: Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Theorem: Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Corollary: MergeSort is an asymptotically optimal comparison-based sorting algorithm.

Theorem: Any comparison-based sorting algorithm requires $\Omega(n\log n)$ comparisons in the worst case.

Corollary: MergeSort is an asymptotically optimal comparison-based sorting algorithm.

Notes:

Not all sorting algorithms are comparison-based: e.g., CountingSort, RadixSort, and BucketSort run in O(n) time (with constraints on inputs).

Theorem: Any comparison-based sorting algorithm requires $\Omega(n\log n)$ comparisons in the worst case.

Corollary: MergeSort is an asymptotically optimal comparison-based sorting algorithm.

Notes:

- Not all sorting algorithms are comparison-based: e.g., CountingSort, RadixSort, and BucketSort run in O(n) time (with constraints on inputs).
- ► ITLB can also be used to obtain lower bounds for other comparison-based problems.

Insertion problem: Given a sorted set of n distinct numbers, insert a new number into the proper position.

► There are ? possible outputs, so ITLB requires any algorithm make at least ? comparisons.

Insertion problem: Given a sorted set of n distinct numbers, insert a new number into the proper position.

There are (n+1) possible outputs, so ITLB requires any algorithm make at least $\log(n+1)$ comparisons.

- There are n+1 possible outputs, so ITLB requires any algorithm make at least $\log(n+1)$ comparisons.
- It turns out that this number suffices: binary search can solve the problem with $\lceil \log(n+1) \rceil$ comparisons.

- There are n+1 possible outputs, so ITLB requires any algorithm make at least $\log(n+1)$ comparisons.
- It turns out that this number suffices: binary search can solve the problem with $\lceil \log(n+1) \rceil$ comparisons.
- Note that ITLB only considers comparisons.

- There are n+1 possible outputs, so ITLB requires any algorithm make at least $\log(n+1)$ comparisons.
- It turns out that this number suffices: binary search can solve the problem with $\lceil \log(n+1) \rceil$ comparisons.
- Note that ITLB only considers comparisons. How many other operations are needed for insertion?

- There are n+1 possible outputs, so ITLB requires any algorithm make at least $\log(n+1)$ comparisons.
- It turns out that this number suffices: binary search can solve the problem with $\lceil \log(n+1) \rceil$ comparisons.
- Note that ITLB only considers comparisons. How many other operations are needed for insertion? Can insertion be done in $O(\log n)$ time?

Selection problem: Given a list of n numbers and a target k, select the k-th smallest number.

Selection problem: Given a list of n numbers and a target k, select the k-th smallest number.

► There are ? possible outputs, so ITLB requires any algorithm make at least ? comparisons.

Selection problem: Given a list of n numbers and a target k, select the k-th smallest number.

There are n possible outputs, so ITLB requires any algorithm make at least $\log n$ comparisons.

Selection problem: Given a list of n numbers and a target k, select the k-th smallest number.

- There are n possible outputs, so ITLB requires any algorithm make at least $\log n$ comparisons.
- This is quite a poor lower bound! Can you argue for $\Omega(n)$ comparisons?

Selection problem: Given a list of n numbers and a target k, select the k-th smallest number.

- There are n possible outputs, so ITLB requires any algorithm make at least $\log n$ comparisons.
- This is quite a poor lower bound! Can you argue for $\Omega(n)$ comparisons?
- There is an algorithm using O(n) comparisons in the worst case. Thus the complexity of selection is $\Theta(n)$.

Selection problem: Given a list of n numbers and a target k, select the k-th smallest number.

- There are n possible outputs, so ITLB requires any algorithm make at least $\log n$ comparisons.
- This is quite a poor lower bound! Can you argue for $\Omega(n)$ comparisons?
- ▶ There is an algorithm using O(n) comparisons in the worst case. Thus the complexity of selection is $\Theta(n)$.

Morale: The ITLB does not always give a tight bound, it can be very far off.

Back to MergeSort

Time complexity?

 $ightharpoonup \Theta(n \log n)$, asymptotic optimal.

Space complexity?

- ightharpoonup O(n) extra space for merging.
- ightharpoonup Can be reduced to O(1), but is complicated and not practical.

Back to MergeSort

Time complexity?

 $ightharpoonup \Theta(n \log n)$, asymptotic optimal.

Space complexity?

- ightharpoonup O(n) extra space for merging.
- ightharpoonup Can be reduced to O(1), but is complicated and not practical.

Can we do better?

QuickSort

Input: 8,1,9,2,8,4,6,5

Idea: divide and conquer < pivot > Split input by a pivot 1,2,4 (5) 8,9,6,8

Input: 8,1,9,2,8,4,6,5

Idea: divide and conquer < pivot > Split input by a pivot 1,2,4 (5) 8,9,6,8

2 Sort each part 1,2,4 5 6,8,8,9

Input: 8,1,9,2,8,4,6,5

Idea:	divide and conquer	< pivot >
1	Split input by a pivot	1,2,4 5 8,9,6,8
2	Sort each part	1,2,4 5 6,8,8,9
3	TADA!	1,2,4,5,6,8,8,9

Input: 8,1,9,2,8,4,6,5

 $p = \mathsf{Partition}(A, st, ed)$

QuickSort(A, st, p-1)
QuickSort(A, p+1, ed)

8 / 10

Input: 8,1,9,2,8,4,6,5

```
      Idea:
      divide and conquer
      pivot

      1
      Split input by a pivot
      1,2,4
      $\infty$ 8,9,6,8

      2
      Sort each part
      1,2,4
      5
      6,8,8,9

      3
      TADA!
      1,2,4,5,6,8,8,9
```

How to do Partition?

Input: 8,1,9,2,8,4,6,5

```
      Idea:
      divide and conquer
      pivot

      1
      Split input by a pivot
      1,2,4
      $\infty$ 8,9,6,8

      2
      Sort each part
      1,2,4
      $\infty$ 6,8,8,9

      3
      TADA!
      1,2,4,5,6,8,8,9
```

How to do Partition? Easy!

Input: 8,1,9,2,8,4,6,5

```
      Idea:
      divide and conquer
      pivot
      pivot

      1
      Split input by a pivot
      1,2,4
      $\overline{5}$ 8,9,6,8

      2
      Sort each part
      1,2,4
      5
      6,8,8,9

      3
      TADA!
      1,2,4,5,6,8,8,9
```

How to do Partition in place, namely, with O(1) extra space?

Idea: check elements one by one against the $\begin{array}{c} \text{pivot} \end{array}$ and maintain a $\begin{array}{c} \text{<} \text{ pivot region} \end{array}$ and a $\begin{array}{c} \text{>} \text{ pivot region} \end{array}$

8 1 9 2 8 4 6 5

Idea: check elements one by one against the pivot and maintain a < pivot region and a \geq pivot region \downarrow 8 1 9 2 8 4 6 5

st ed

Idea: check elements one by one against the pivot and maintain a < pivot region and a \geq pivot region \downarrow 8 1 9 2 8 4 6 5

st ed

Idea: check elements one by one against the pivot and maintain a < pivot region and a \geq pivot region \downarrow 8 1 9 2 8 4 6 5

st ed

Idea: check elements one by one against the pivot and maintain a < pivot region and a \geq pivot region \downarrow 1 8 9 2 8 4 6 5

st ed

Idea: check elements one by one against the pivot and maintain a < pivot region and a \geq pivot region \downarrow 1 8 9 2 8 4 6 5 st ed

Idea: check elements one by one against the pivot and maintain a < pivot region and a \geq pivot region \downarrow 1 8 9 2 8 4 6 5 st ed

Idea: check elements one by one against the $\begin{array}{c} \text{pivot} \end{array}$ and maintain a $\begin{array}{c} \text{c} \end{array}$ pivot region

Idea: check elements one by one against the $\begin{array}{c} \text{pivot} \end{array}$ and maintain a $\begin{array}{c} \text{c} \end{array}$ pivot region and a $\begin{array}{c} \text{c} \end{array}$ pivot region

Idea: check elements one by one against the $\begin{array}{c} \text{pivot} \end{array}$ and maintain a $\begin{array}{c} \text{<} \text{ pivot region} \end{array}$ and a $\begin{array}{c} \text{>} \text{ pivot region} \end{array}$

Idea: check elements one by one against the $\begin{array}{c} \text{pivot} \end{array}$ and maintain a $\begin{array}{c} \text{c} \end{array}$ pivot region

Idea: check elements one by one against the pivot and maintain a < pivot region and a ≥ pivot region

Idea: check elements one by one against the pivot and maintain a < pivot region and a ≥ pivot region

Idea: check elements one by one against the pivot and maintain a < pivot region and a ≥ pivot region

Idea: check elements one by one against the pivot and maintain a < pivot region and a \geq pivot region

Idea: check elements one by one against the pivot and maintain a < pivot region and a \geq pivot region

Idea: check elements one by one against the pivot and maintain a < pivot region and a \geq pivot region

1 2 4 5 8 9 6 8 ea

```
\begin{array}{|c|c|c|} \hline \text{Partition}(A,\,st,\,ed) \\ \hline pivot = A[ed] \\ bd = st - 1 \\ \hline \textbf{for } cur = st \textbf{ to } ed - 1 \textbf{ do} \\ \hline & \textbf{ if } A[cur] < pivot \textbf{ then} \\ \hline & bd = bd + 1 \\ \hline & \texttt{swap } A[bd] \textbf{ with } A[cur] \\ \hline & \texttt{swap } A[bd + 1] \textbf{ with } A[ed] \\ \hline & \textbf{ return } bd + 1 \\ \hline \end{array}
```

Idea: check elements one by one against the pivot and maintain a < pivot region and a \geq pivot region

Partition(A, st, ed)

```
\begin{aligned} pivot &= A[ed] \\ bd &= st-1 \\ \textbf{for } cur &= st \textbf{ to } ed-1 \textbf{ do} \\ & & \textbf{ if } A[cur] < pivot \textbf{ then} \\ & & bd = bd+1 \\ & & \textbf{ swap } A[bd] \textbf{ with } A[cur] \end{aligned}
```

Time complexity? $\Theta(n)$

Space complexity? $\Theta(1)$

swap A[bd+1] with A[ed] return bd+1

Time complexity?

▶ Worst-case is when each partition results in sizes (0, 1, n - 1).

$$T(n) \le T(n-1) + cn$$

Time complexity?

▶ Worst-case is when each partition results in sizes (0, 1, n - 1).

Time complexity?

Worst-case is when each partition results in sizes (0, 1, n-1).

Can you find an input that achieves this worst-case performance?

Time complexity?

Worst-case is when each partition results in sizes (0, 1, n-1).

- Can you find an input that achieves this worst-case performance?
- Why is it called QuickSort then?