Customer Dataset

```
import pandas as pd
dataset_path = '/content/Customer Data.csv'
df = pd.read_csv(dataset_path)
df.head()
```

	CUST_ID		BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PL
	0	C10001	40.900749	0.818182	95.40	0.00	
	1	C10002	3202.467416	0.909091	0.00	0.00	
	2	C10003	2495.148862	1.000000	773.17	773.17	
	3	C10004	1666.670542	0.636364	1499.00	1499.00	
	4	C10005	817.714335	1.000000	16.00	16.00	

Next steps:

Generate code with df

View recommended plots

1.Perform EDA on the Dataset and draw the insights.

```
missing_values = df.isnull().sum()
missing_values[missing_values > 0]
```

CREDIT_LIMIT 1 MINIMUM PAYMENTS 313 dtype: int64

summary_stats = df.describe() summary_stats

$\overline{\Rightarrow}$		BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHASES	CASH_ADVANCE	PURCH
	count	8950.000000	8950.000000	8950.000000	8950.000000	8950.000000	8950.000000	
	mean	1564.474828	0.877271	1003.204834	592.437371	411.067645	978.871112	
	std	2081.531879	0.236904	2136.634782	1659.887917	904.338115	2097.163877	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	128.281915	0.888889	39.635000	0.000000	0.000000	0.000000	
	50%	873.385231	1.000000	361.280000	38.000000	89.000000	0.000000	
	75%	2054.140036	1.000000	1110.130000	577.405000	468.637500	1113.821139	
	max	19043.138560	1.000000	49039.570000	40761.250000	22500.000000	47137.211760	

Generate code with summary_stats View recommended plots Next steps:

```
df['CREDIT_LIMIT'].fillna(df['CREDIT_LIMIT'].mean(), inplace=True)
df['MINIMUM_PAYMENTS'].fillna(df['MINIMUM_PAYMENTS'].mean(), inplace=True)
```

```
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 6))
sns.histplot(df['BALANCE'], bins=30, kde=True)
plt.title('Distribution of Balance')
plt.show()
```


2. Prepare the dataset for Machine Learning

```
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score

# Prepare the data
X = df.drop(['CUST_ID', 'TENURE'], axis=1)
y = df['TENURE']

# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Scale the features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

3. Apply Decision Tree, Random Forest and Naïve Bayes to classify the customers based on the tenures

```
# Decision Tree
dt = DecisionTreeClassifier()
dt.fit(X_train_scaled, y_train)
y_pred_dt = dt.predict(X_test_scaled)
print("Decision Tree Accuracy:", accuracy_score(y_test, y_pred_dt))
# Random Forest
rf = RandomForestClassifier()
rf.fit(X_train_scaled, y_train)
y_pred_rf = rf.predict(X_test_scaled)
print("Random Forest Accuracy:", accuracy_score(y_test, y_pred_rf))
# Naïve Bayes
nb = GaussianNB()
nb.fit(X train scaled, y train)
y pred nb = nb.predict(X test scaled)
print("Naïve Bayes Accuracy:", accuracy_score(y_test, y_pred_nb))
Decision Tree Accuracy: 0.888268156424581
     Random Forest Accuracy: 0.9055865921787709
     Naïve Bayes Accuracy: 0.3268156424581006
   6. Clustering
from sklearn.cluster import KMeans
X_clustering = df.drop(['CUST_ID', 'TENURE'], axis=1)
# Apply KMeans
kmeans = KMeans(n_clusters=4, random_state=42)
clusters = kmeans.fit_predict(X_clustering)
df['Cluster'] = clusters
cluster_names = {0: 'Low Balance', 1: 'Moderate Users', 2: 'High Spenders', 3: 'Cash Advance Users'}
df['Cluster Name'] = df['Cluster'].map(cluster_names)
df[['CUST_ID', 'Cluster', 'Cluster Name']].head()
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n ini
      warnings.warn(
                                           丽
        CUST_ID Cluster Cluster Name
      0 C10001
                       1 Moderate Users
      1 C10002
                       0
                             Low Balance
      2 C10003
                       0
                             Low Balance
        C10004
                       0
                             Low Balance
        C10005
                       1 Moderate Users
   4. Optimization
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
```

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X_clustering)

```
# Apply PCA
pca = PCA(n components=0.95) # Retain 95% of the variance
X pca = pca.fit transform(X scaled)
explained_variance = pca.explained_variance_ratio_.sum()
print(f"Explained variance by PCA components: {explained variance:.2f}")
X_train_pca, X_test_pca, y_train, y_test = train_test_split(X_pca, y, test_size=0.2, random_state=42)
# Decision Tree
dt = DecisionTreeClassifier()
dt.fit(X_train_pca, y_train)
y_pred_dt = dt.predict(X_test_pca)
print("Decision Tree Accuracy after PCA:", accuracy_score(y_test, y_pred_dt))
# Random Forest
rf = RandomForestClassifier()
rf.fit(X_train_pca, y_train)
y_pred_rf = rf.predict(X_test_pca)
print("Random Forest Accuracy after PCA:", accuracy_score(y_test, y_pred_rf))
# Naïve Bayes
nb = GaussianNB()
nb.fit(X_train_pca, y_train)
y_pred_nb = nb.predict(X_test_pca)
print("Naïve Bayes Accuracy after PCA:", accuracy_score(y_test, y_pred_nb))

→ Explained variance by PCA components: 0.96
     Decision Tree Accuracy after PCA: 0.7458100558659218
     Random Forest Accuracy after PCA: 0.846927374301676
     Naïve Bayes Accuracy after PCA: 0.8430167597765363
   7. Applying DBSCAN and Hierarchical Clustering
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
scaler = StandardScaler()
X scaled = scaler.fit transform(X clustering)
dbscan = DBSCAN(eps=0.5, min samples=5)
dbscan clusters = dbscan.fit predict(X scaled)
df['DBSCAN Cluster'] = dbscan clusters
Z = linkage(X_scaled, method='ward')
hierarchical clusters = fcluster(Z, 4, criterion='maxclust')
df['Hierarchical Cluster'] = hierarchical clusters
dbscan_unique_clusters = len(set(dbscan_clusters))
hierarchical_unique_clusters = len(set(hierarchical_clusters))
print(f"DBSCAN clusters: {dbscan_unique_clusters}, Hierarchical clusters: {hierarchical_unique_clusters}")
```

8. Optimizing the algorithms to yield better clusters

DBSCAN clusters: 35, Hierarchical clusters: 4

```
from sklearn.metrics import silhouette_score
# KMeans optimization using Silhouette Score
silhouette scores = []
for n clusters in range(2, 10):
    kmeans = KMeans(n_clusters=n_clusters, random_state=42)
    cluster_labels = kmeans.fit_predict(X_scaled)
    silhouette_avg = silhouette_score(X_scaled, cluster_labels)
    silhouette_scores.append((n_clusters, silhouette_avg))
optimal clusters = max(silhouette scores, key=lambda x: x[1])
print(f"Optimal number of clusters: {optimal_clusters[0]} with Silhouette Score: {optimal_clusters[1]:.2f}")
🗦 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_ini
      warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_ini
      warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n ini
      warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_ini
      warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n ini
      warnings.warn(
     Optimal number of clusters: 3 with Silhouette Score: 0.27
```

9. Applying Deep Learning models

```
from keras.models import Sequential
from keras.layers import Dense
X deep = X clustering.values
y deep = df['TENURE'].values
from sklearn.model_selection import train_test_split
X train deep, X test deep, y train deep, y test deep = train test split(X deep, y deep, test size=0.2, random state=42
scaler = StandardScaler()
X_train_deep_scaled = scaler.fit_transform(X_train_deep)
X_test_deep_scaled = scaler.transform(X_test_deep)
model1 = Sequential()
model1.add(Dense(64, input_dim=X_train_deep_scaled.shape[1], activation='relu'))
model1.add(Dense(32, activation='relu'))
model1.add(Dense(1, activation='linear'))
model1.compile(optimizer='adam', loss='mse', metrics=['mae'])
model1.fit(X_train_deep_scaled, y_train_deep, epochs=50, batch_size=32, validation split=0.2)
model2 = Sequential()
model2.add(Dense(128, input_dim=X_train_deep_scaled.shape[1], activation='relu'))
model2.add(Dense(64, activation='relu'))
model2.add(Dense(32, activation='relu'))
model2.add(Dense(1, activation='linear'))
model2.compile(optimizer='adam', loss='mse', metrics=['mae'])
model2.fit(X_train_deep_scaled, y_train_deep, epochs=50, batch_size=32, validation_split=0.2)
```

```
Epoch 23/50
 Epoch 24/50
 Epoch 25/50
 Epoch 26/50
 179/179 [========================== ] - 1s 4ms/step - loss: 0.8297 - mae: 0.5589 - val_loss: 1.0368 - val_mae
 Epoch 27/50
 Epoch 28/50
 Epoch 29/50
 Epoch 30/50
 179/179 [============================ ] - 1s 3ms/step - loss: 0.7958 - mae: 0.5557 - val_loss: 1.0267 - val_mae
 Epoch 31/50
 179/179 [=========================== ] - 1s 4ms/step - loss: 0.8216 - mae: 0.5676 - val_loss: 0.9702 - val_mae
 Epoch 32/50
 Epoch 33/50
 179/179 [=========================== ] - 1s 5ms/step - loss: 0.8216 - mae: 0.5743 - val_loss: 0.9854 - val_mae
 Epoch 34/50
 179/179 [============================ ] - 1s 5ms/step - loss: 0.7430 - mae: 0.5293 - val_loss: 1.0024 - val_mae
 Epoch 35/50
 179/179 [=========================== ] - 1s 4ms/step - loss: 0.8002 - mae: 0.5648 - val_loss: 1.1383 - val_mae
 Epoch 36/50
 Epoch 37/50
 179/179 [========================== ] - 1s 3ms/step - loss: 0.7636 - mae: 0.5419 - val_loss: 1.0304 - val_mae
 Epoch 38/50
 179/179 [========================== ] - 1s 3ms/step - loss: 0.7466 - mae: 0.5365 - val_loss: 1.0392 - val_mae
 Epoch 39/50
 Epoch 40/50
 Epoch 41/50
 Epoch 42/50
 179/179 [=========================== ] - 1s 3ms/step - loss: 0.6984 - mae: 0.5110 - val_loss: 1.0116 - val_mae
 Epoch 43/50
 Epoch 44/50
 Epoch 45/50
 Epoch 46/50
 Epoch 47/50
 Epoch 48/50
 Epoch 49/50
 Epoch 50/50
 <keras.src.callbacks.History at 0x7cfce81c57e0>
```

10. Optimizing the deep learning model

from keras.callbacks import EarlyStopping, ReduceLROnPlateau

```
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5)
```

model1.fit(X_train_deep_scaled, y_train_deep, epochs=100, batch_size=32, validation_split=0.2, callbacks=[early_stoppi
model2.fit(X_train_deep_scaled, y_train_deep, epochs=100, batch_size=32, validation_split=0.2, callbacks=[early_stoppi

```
Epoch 28/100
 179/179 [============ ] - 1s 3ms/step - loss: 0.7721 - mae: 0.5117 - val loss: 0.9286 - val mae
 Epoch 1/100
 Epoch 2/100
 Fnoch 3/100
 Epoch 4/100
 179/179 [============================ ] - 1s 5ms/step - loss: 0.6379 - mae: 0.4859 - val loss: 1.2059 - val mae
 Epoch 5/100
 Epoch 6/100
 Epoch 7/100
 Epoch 8/100
 Epoch 9/100
 Fnoch 10/100
 179/179 [============================ ] - 1s 4ms/step - loss: 0.4912 - mae: 0.3934 - val loss: 0.9221 - val mae
 Epoch 11/100
 179/179 [=========================== ] - 1s 3ms/step - loss: 0.4822 - mae: 0.3887 - val_loss: 0.9268 - val_mae
 Epoch 12/100
 Epoch 13/100
 Epoch 14/100
 Epoch 15/100
 Epoch 16/100
 Fnoch 17/100
 Epoch 18/100
 Epoch 19/100
 Epoch 20/100
 Epoch 21/100
 Epoch 22/100
 Epoch 23/100
 Epoch 24/100
 Epoch 25/100
 Epoch 26/100
 Epoch 27/100
 <keras.src.callbacks.History at 0x7cfc9b964f40>
```

```
# Check for non-numeric columns in X_set_b
non_numeric_columns_b = X_set_b.select_dtypes(include=['object']).columns
print("Non-numeric columns in X_set_b:", non_numeric_columns_b)
# Check for non-numeric columns in X set a
non_numeric_columns = X_set_a.select_dtypes(include=['object']).columns
print("Non-numeric columns in X_set_a:", non_numeric_columns)
     Non-numeric columns in X_set_b: Index(['Cluster Name_A'], dtype='object')
     Non-numeric columns in X_set_a: Index([], dtype='object')
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score
dataset_path = '/content/Customer Data.csv'
df = pd.read_csv(dataset_path)
df = df.drop(['CUST_ID'], axis=1)
df.fillna(df.mean(), inplace=True)
set_a, set_b = train_test_split(df, test_size=0.5, random_state=42)
X_set_a = set_a.drop(['TENURE'], axis=1)
non_numeric_columns_a = X_set_a.select_dtypes(include=['object']).columns
print("Non-numeric columns in X_set_a:", non_numeric_columns_a)
X_set_a = X_set_a.drop(non_numeric_columns_a, axis=1)
kmeans = KMeans(n_clusters=4, random_state=42)
clusters_a = kmeans.fit_predict(X_set_a)
set_a['Cluster_A'] = clusters_a
X_set_b = set_b.drop(['TENURE'], axis=1)
non_numeric_columns_b = X_set_b.select_dtypes(include=['object']).columns
print("Non-numeric columns in X set b:", non numeric columns b)
X_set_b = X_set_b.drop(non_numeric_columns_b, axis=1)
set_b['Cluster_A'] = kmeans.predict(X_set_b)
cluster_names_a = {0: 'Segment 1', 1: 'Segment 2', 2: 'Segment 3', 3: 'Segment 4'}
set_a['Cluster Name_A'] = set_a['Cluster_A'].map(cluster_names_a)
set_b['Cluster Name_A'] = set_b['Cluster_A'].map(cluster_names_a)
X_set_b = set_b.drop(['Cluster_A', 'Cluster Name_A'], axis=1)
y_set_b = set_b['Cluster_A']
non_numeric_columns_b = X_set_b.select_dtypes(include=['object']).columns
print("Non-numeric columns in X_set_b:", non_numeric_columns_b)
X_set_b = X_set_b.drop(non_numeric_columns_b, axis=1)
X_train_b, X_test_b, y_train_b, y_test_b = train_test_split(X_set_b, y_set_b, test_size=0.2, random_state=42)
scaler b = StandardScaler()
X_train_b_scaled = scaler_b.fit_transform(X_train_b)
Y tact h cralad - cralan h trancform(Y tact h)
```

```
rf_classifier = RandomForestClassifier(random_state=42)
rf_classifier.fit(X_train_b_scaled, y_train_b)
y_pred_b = rf_classifier.predict(X_test_b_scaled)
print("Random Forest Classification Accuracy on Set B:", accuracy_score(y_test_b, y_pred_b))

Non-numeric columns in X_set_a: Index([], dtype='object')
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_ini warnings.warn(
Non-numeric columns in X_set_b: Index([], dtype='object')
Non-numeric columns in X_set_b: Index([], dtype='object')
Random Forest Classification Accuracy on Set B: 0.9843575418994414
```

Start coding or generate with AI.