

Programmierparadigmen und Compilerbau (PPDC)

3. Weitere Beispiele zur Unifikation

Sommersemester 2021 PD Dr. Arne Nägel

*Basierend auf Unterlagen von Prof. Dr. Manfred Schmidt-Schauß und PD Dr. David Sabel

Berechne Typ von (map head)

$$\mathtt{map::} \qquad \qquad (a \to b) \quad \to \ [a] \to [b]$$

 $\texttt{head::} \hspace{1cm} [a] \rightarrow a$

Gesuchter Typ: $\gamma([a] \to [b])$

Regelanwendung benötigt Lösung γ von $(a \to b) \doteq ([a'] \to a')$:

G

E

Berechne Typ von (map head)

$$\mathtt{map::} \qquad \qquad (a \to b) \quad \to ([a] \to [b])$$

 $\texttt{head} \hbox{::} \qquad \qquad [a] \to a$

Gesuchter Typ: $\gamma([a] \to [b])$

$$\begin{array}{c|c} G & E \\ \hline \emptyset; & \{(a \to b) \doteq ([a'] \to a')\} \end{array}$$

Berechne Typ von (map head)

$$\mathtt{map::} \qquad \qquad (a \to b) \quad \to ([a] \to [b])$$

 $\texttt{head::} \hspace{1cm} [a] \rightarrow a$

Gesuchter Typ: $\gamma([a] \to [b])$

$$\begin{array}{c|c} G & E \\ \emptyset; & \{(a \to b) \doteq ([a'] \to a')\} \end{array}$$

Berechne Typ von (map head)

$$\mathtt{map::} \qquad \qquad (a \to b) \quad \to ([a] \to [b])$$

 $\texttt{head::} \hspace{1cm} [a] \to a$

 $\text{Gesuchter Typ:} \qquad \qquad \gamma([a] \to [b])$

$$\begin{array}{c|c} G & E \\ \hline \emptyset; & \{(a \to b) \doteq ([a'] \to a')\} \\ \emptyset; & \{a \doteq [a'], b \doteq a'\} \\ \end{array}$$

Berechne Typ von (map head)

$$\mathtt{map::} \qquad \qquad (a \to b) \quad \to ([a] \to [b])$$

 $\texttt{head::} \hspace{1cm} [a] \rightarrow a$

 $\text{Gesuchter Typ:} \qquad \qquad \gamma([a] \to [b])$

$$\begin{array}{c|c} G & E \\ \hline \emptyset; & \{(a \to b) \doteq ([a'] \to a')\} \\ \emptyset; & \{a \doteq [a'], b \doteq a'\} \\ \end{array}$$

Berechne Typ von (map head)

$$\mathtt{map::} \qquad \qquad (a \to b) \quad \to ([a] \to [b])$$

 $\texttt{head::} \hspace{1cm} [a] \rightarrow a$

 $\text{Gesuchter Typ:} \qquad \qquad \gamma([a] \to [b])$

$$\begin{array}{c|c} G & E \\ \hline \emptyset; & \{(a \rightarrow b) \doteq ([a'] \rightarrow a')\} \\ \emptyset; & \{a \doteq [a'], b \doteq a'\} \\ \{a \mapsto [a']\}; & \{b \doteq a'\} \end{array}$$

Berechne Typ von (map head)

$$\mathtt{map} \colon \qquad (a \to b) \quad \to ([a] \to [b])$$

 $\texttt{head::} \hspace{1cm} [a] \rightarrow a$

 $\text{Gesuchter Typ:} \qquad \qquad \gamma([a] \to [b])$

$$\begin{array}{c|c} G & E \\ \hline \emptyset; & \{(a \rightarrow b) \doteq ([a'] \rightarrow a')\} \\ \emptyset; & \{a \doteq [a'], b \doteq a'\} \\ \{a \mapsto [a']\}; & \{b \stackrel{.}{=} a'\} \end{array}$$

Berechne Typ von (map head)

$$\mathtt{map} \colon \qquad \qquad (a \to b) \quad \to ([a] \to [b])$$

 $\texttt{head::} \hspace{1cm} [a] \rightarrow a$

 $\text{Gesuchter Typ:} \qquad \qquad \gamma([a] \to [b])$

$$\begin{array}{c|c} G & E \\ \hline \emptyset; & \{(a \rightarrow b) \doteq ([a'] \rightarrow a')\} \\ \emptyset; & \{a \doteq [a'], b \doteq a'\} \\ \{a \mapsto [a'], b \mapsto a'\}; & \{b \doteq a'\} \end{array}$$

Berechne Typ von (map head)

 $\mathtt{map} \colon \qquad (a \to b) \quad \to ([a] \to [b])$

 $\texttt{head::} \hspace{1cm} [a] \to a$

 $\text{Gesuchter Typ:} \qquad \qquad \gamma([a] \to [b])$

$$\begin{array}{c|c} G & E \\ \hline \emptyset; & \{(a \rightarrow b) \doteq ([a'] \rightarrow a')\} \\ \emptyset; & \{a \doteq [a'], b \doteq a'\} \\ \{a \mapsto [a'], b \mapsto a'\}; & \{b \doteq a'\} \\ \{a \mapsto [a'], b \mapsto a'\}; & \emptyset \end{array}$$

Berechne Typ von (map head)

 $\mathtt{map} :: \qquad \qquad (a \to b) \quad \to ([a] \to [b])$

 $\texttt{head::} \hspace{1cm} [a] \rightarrow a$

 $\text{Gesuchter Typ:} \qquad \qquad \gamma([a] \to [b])$

Regelanwendung benötigt Lösung γ von $(a \rightarrow b) \doteq ([a'] \rightarrow a')$:

$$\begin{array}{c|c} G & E \\ \hline \emptyset; & \{(a \rightarrow b) \doteq ([a'] \rightarrow a')\} \\ \emptyset; & \{a \doteq [a'], b \doteq a'\} \\ \{a \mapsto [a'], b \mapsto a'\}; & \{b \doteq a'\} \\ \{a \mapsto [a'], b \mapsto a'\}; & \emptyset \\ \end{array}$$

Einsetzen der Lösung $\gamma = \{a \mapsto [a'], b \mapsto a'\}$ in $[a] \to [b]$ ergibt: (map head) :: ([[a']] \to [a']).

Typ von map length

$$\frac{\texttt{map} :: (a \to b) \to ([a] \to [b]), \; \; \texttt{length} :: [a'] \to \texttt{Int}}{(\texttt{map length}) :: ? = \gamma([a] \to [b])}$$

Typ von map length

$$\frac{\texttt{map} :: (a \to b) \to ([a] \to [b]), \ \texttt{length} :: [a'] \to \texttt{Int}}{(\texttt{map length}) :: ? = \gamma([a] \to [b])}$$

$$\begin{array}{ccc} G & E \\ \hline \emptyset; & \{(a \rightarrow b) \doteq ([a'] \rightarrow \mathtt{Int})\} \\ \emptyset; & \{a \doteq [a'], b \doteq \mathtt{Int}\} \end{array}$$

Typ von map length

$$\frac{\texttt{map} :: (a \to b) \to ([a] \to [b]), \; \; \texttt{length} :: [a'] \to \texttt{Int}}{(\texttt{map length}) :: ? = \gamma([a] \to [b])}$$

$$\begin{array}{ccc} G & E \\ \hline \emptyset; & \{(a \rightarrow b) \doteq ([a'] \rightarrow \mathtt{Int})\} \\ \emptyset; & \{ \underbrace{a \doteq [a']}, b \doteq \mathtt{Int} \} \\ \end{array}$$

Typ von map length

$$\frac{\texttt{map} :: (a \to b) \to ([a] \to [b]), \; \texttt{length} :: [a'] \to \texttt{Int}}{(\texttt{map length}) :: ? = \gamma([a] \to [b])}$$

Unifiziere $(a \rightarrow b) \doteq ([a'] \rightarrow \mathtt{Int})$

$$\begin{array}{ccc} G & E \\ \hline \emptyset; & \{(a \rightarrow b) \doteq ([a'] \rightarrow \mathtt{Int})\} \\ \emptyset; & \{a \doteq [a'], b \doteq \mathtt{Int}\} \\ \{a \mapsto [a']\}; & \{b \doteq \mathtt{Int}\} \end{array}$$

Typ von map length

$$\frac{\texttt{map} :: (a \to b) \to ([a] \to [b]), \; \texttt{length} :: [a'] \to \texttt{Int}}{(\texttt{map length}) :: ? = \gamma([a] \to [b])}$$

$$\begin{array}{ccc} G & E \\ \hline \emptyset; & \{(a \rightarrow b) \doteq ([a'] \rightarrow \mathtt{Int})\} \\ \emptyset; & \{a \doteq [a'], b \doteq \mathtt{Int}\} \\ \{a \mapsto [a']\}; & \{b \doteq \mathtt{Int}\} \\ \{a \mapsto [a'], b \mapsto \mathtt{Int}\}; & \emptyset \\ \end{array}$$

Typ von map length

$$\frac{\texttt{map} :: (a \to b) \to ([a] \to [b]), \ \texttt{length} :: [a'] \to \texttt{Int}}{(\texttt{map length}) :: ? = \gamma([a] \to [b])}$$

Unifiziere $(a \to b) \doteq ([a'] \to \mathtt{Int})$

$$\begin{array}{ccc} G & E \\ \hline \emptyset; & \{(a \rightarrow b) \doteq ([a'] \rightarrow \mathtt{Int})\} \\ \emptyset; & \{a \doteq [a'], b \doteq \mathtt{Int}\} \\ \{a \mapsto [a']\}; & \{b \doteq \mathtt{Int}\} \\ \{a \mapsto [a'], b \mapsto \mathtt{Int}\}; & \emptyset \\ \end{array}$$

Somit: (map length) :: $\gamma([a] \rightarrow [b]) = [[a']] \rightarrow [\texttt{Int}]$

([]) :: [a]

 $\frac{G}{\phi}$


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

$$\begin{array}{ccc} G & E \\ \emptyset & \{a \rightarrow b \rightarrow b \stackrel{.}{=} c \rightarrow [c] \rightarrow [c], b \stackrel{.}{=} [d] \} \end{array}$$


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

$$\frac{G}{\emptyset} \qquad \frac{E}{\{a \to b \to b \doteq c \to [c] \to [c], \mathbf{b} \doteq [\mathbf{d}]\}}$$


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
\emptyset	$\boxed{\{a \rightarrow b \rightarrow b \doteq c \rightarrow [c] \rightarrow [c], b \doteq [d]\}}$
$\{b \mapsto [d]\}$	$\{a \to [d] \to [d] \doteq c \to [c] \to [c]\}$


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

$$\begin{array}{ccc} G & E \\ \hline \emptyset & \{a \rightarrow b \rightarrow b \stackrel{.}{=} c \rightarrow [c] \rightarrow [c], b \stackrel{.}{=} [d]\} \\ \{b \mapsto [d]\} & \{a \rightarrow [d] \rightarrow [d] \stackrel{.}{=} c \rightarrow [c] \rightarrow [c]\} \end{array}$$


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
\emptyset	$\{a \rightarrow b \rightarrow b \doteq c \rightarrow [c] \rightarrow [c], b \doteq [d]\}$
$\{b \mapsto [d]\}$	$\{a \to [d] \to [d] \doteq c \to [c] \to [c]\}$
$\{b\mapsto [d]\}$	$\{a \doteq c, [d] \doteq [c], [d] \doteq [c]\}$


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
\emptyset	$\{a \to b \to b \doteq c \to [c] \to [c], b \doteq [d]\}$
$\{b\mapsto [d]\}$	$\{a \to [d] \to [d] \doteq c \to [c] \to [c]\}$
$\{b\mapsto [d]\}$	$\{a \stackrel{.}{=} c, [d] \stackrel{.}{=} [c], [d] \stackrel{.}{=} [c]\}$


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
Ø	$\{a \to b \to b \doteq c \to [c] \to [c], b \doteq [d]\}$
$\{b \mapsto [d]\}$	$\{a \to [d] \to [d] \doteq c \to [c] \to [c]\}$
$\{b \mapsto [d]\}$	$\{a \doteq c, [d] \doteq [c], [d] \doteq [c]\}$
$\{b\mapsto [d], a\mapsto c\}$	$\{[d] \doteq [c], [d] \doteq [c]\}$


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
Ø	$\{a \rightarrow b \rightarrow b \doteq c \rightarrow [c] \rightarrow [c], b \doteq [d]\}$
$\{b \mapsto [d]\}$	$\{a \to [d] \to [d] \doteq c \to [c] \to [c]\}$
$\{b \mapsto [d]\}$	$\{a \doteq c, [d] \doteq [c], [d] \doteq [c]\}$
$\{b\mapsto [d], a\mapsto c\}$	$\{ [d] \doteq [c], [d] \doteq [c] \}$


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
\emptyset	$\{a \rightarrow b \rightarrow b \doteq c \rightarrow [c] \rightarrow [c], b \doteq [d]\}$
$\{b \mapsto [d]\}$	$\{a \to [d] \to [d] \stackrel{.}{=} c \to [c] \to [c]\}$
$\{b \mapsto [d]\}$	$\{a \doteq c, [d] \doteq [c], [d] \doteq [c]\}$
$\{b\mapsto [d], a\mapsto c\}$	$\{[d] \doteq [c], [d] \doteq [c]\}$
$\{b\mapsto [d], a\mapsto c\}$	$\{d \doteq c, [d] \doteq [c]\}$


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
Ø	$\{a \rightarrow b \rightarrow b \doteq c \rightarrow [c] \rightarrow [c], b \doteq [d]\}$
$\{b \mapsto [d]\}$	$\{a \to [d] \to [d] \doteq c \to [c] \to [c]\}$
$\{b \mapsto [d]\}$	$\{a \doteq c, [d] \doteq [c], [d] \doteq [c]\}$
$\{b\mapsto [d], a\mapsto c\}$	$\{[d] \doteq [c], [d] \doteq [c]\}$
$\{b\mapsto [d], a\mapsto c\}$	$\{\underline{d} \doteq c, [d] \doteq [c]\}$


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
Ø	$\{a \to b \to b \doteq c \to [c] \to [c], b \doteq [d]\}$
$\{b \mapsto [d]\}$	$\{a \to [d] \to [d] \doteq c \to [c] \to [c]\}$
$\{b \mapsto [d]\}$	$\{a \doteq c, [d] \doteq [c], [d] \doteq [c]\}$
$\{b\mapsto [d], a\mapsto c\}$	$\{[d] \doteq [c], [d] \doteq [c]\}$
$\{b\mapsto [d], a\mapsto c\}$	$\{d \doteq c, [d] \doteq [c]\}$
$\{b\mapsto [c], a\mapsto c, d\mapsto c\}$	$\{[c] \doteq [c]\}$


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
\emptyset	$\{a \rightarrow b \rightarrow b \doteq c \rightarrow [c] \rightarrow [c], b \doteq [d]\}$
$\{b \mapsto [d]\}$	$\{a \to [d] \to [d] \doteq c \to [c] \to [c]\}$
$\{b\mapsto [d]\}$	$\{a \doteq c, [d] \doteq [c], [d] \doteq [c]\}$
$\{b\mapsto [d], a\mapsto c\}$	$\{[d] \doteq [c], [d] \doteq [c]\}$
$\{b\mapsto [d], a\mapsto c\}$	$\{d \doteq c, [d] \doteq [c]\}$
$\{b\mapsto [c], a\mapsto c, d\mapsto c\}$	$\{[c] \doteq [c]\}$


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
Ø	$\{a \rightarrow b \rightarrow b \doteq c \rightarrow [c] \rightarrow [c], b \doteq [d]\}$
$\{b \mapsto [d]\}$	$\{a \to [d] \to [d] \doteq c \to [c] \to [c]\}$
$\{b\mapsto [d]\}$	$\{a \doteq c, [d] \doteq [c], [d] \doteq [c]\}$
$\{b\mapsto [d], a\mapsto c\}$	$\{[d] \doteq [c], [d] \doteq [c]\}$
$\{b\mapsto [d], a\mapsto c\}$	$\{d \doteq c, [d] \doteq [c]\}$
$\{b\mapsto [c], a\mapsto c, d\mapsto c\}$	$\{[c] \doteq [c]\}$
$\{b\mapsto [c], a\mapsto c, d\mapsto c\}$	$\{c \doteq c\}$


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
Ø	$\{a \to b \to b \doteq c \to [c] \to [c], b \doteq [d]\}$
$\{b \mapsto [d]\}$	$\{a \to [d] \to [d] \stackrel{.}{=} c \to [c] \to [c]\}$
$\{b \mapsto [d]\}$	$\{a \doteq c, [d] \doteq [c], [d] \doteq [c]\}$
$\{b\mapsto [d], a\mapsto c\}$	$\{[d] \doteq [c], [d] \doteq [c]\}$
$\{b\mapsto [d], a\mapsto c\}$	$\{d \doteq c, [d] \doteq [c]\}$
$\{b\mapsto [c], a\mapsto c, d\mapsto c\}$	$\{[c] \doteq [c]\}$
$\{b\mapsto [c], a\mapsto c, d\mapsto c\}$	$\{c \doteq c\}$
$\{b\mapsto [c], a\mapsto c, d\mapsto c\}$	{}


```
foldr :: (a -> b -> b) -> b -> [a] -> b

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

Beispiel. Linksfaltung: (foldl (:) [])?

([]) :: [a]

$$G \longrightarrow E$$

Beispiel. Linksfaltung: (foldl (:) [])?

$$\frac{G}{\emptyset} \qquad \qquad \frac{E}{\{a \to b \to a \doteq c \to [c] \to [c], a \doteq [d]\}}$$

Beispiel. Linksfaltung: (foldl (:) [])?

$$\frac{G}{\emptyset} \qquad \frac{E}{\{a \to b \to a \doteq c \to [c] \to [c], \mathbf{a} \doteq [\mathbf{d}]\}}$$

$$\begin{array}{ccc} G & E \\ \hline \emptyset & \{a \rightarrow b \rightarrow a \stackrel{.}{=} c \rightarrow [c] \rightarrow [c], a \stackrel{.}{=} [d]\} \\ \{a \mapsto [d]\} & \{[d] \rightarrow b \rightarrow [d] \stackrel{.}{=} c \rightarrow [c] \rightarrow [c]\} \end{array}$$


```
foldl :: (a -> b -> a) -> a -> [b] -> a

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

$$\begin{array}{ccc} G & E \\ \hline \emptyset & \{a \rightarrow b \rightarrow a \stackrel{.}{=} c \rightarrow [c] \rightarrow [c], a \stackrel{.}{=} [d]\} \\ \{a \mapsto [d]\} & \{[d] \rightarrow b \rightarrow [d] \stackrel{.}{=} c \rightarrow [c] \rightarrow [c]\} \end{array}$$

G	E
Ø	$\boxed{ \{a \to b \to a \doteq c \to [c] \to [c], a \doteq [d] \}}$
$\{a \mapsto [d]\}$	$\{[d] \to b \to [d] \doteq c \to [c] \to [c]\}$
$\{a \mapsto [d]\}$	$\{[d] \doteq c, b \doteq [c], [d] \doteq [c]\}$


```
foldl :: (a -> b -> a) -> a -> [b] -> a

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
Ø	
$\{a \mapsto [d]\}$	$\{[d] \rightarrow b \rightarrow [d] \doteq c \rightarrow [c] \rightarrow [c]\}$
$\{a \mapsto [d]\}$	$\{[d] \doteq c, \mathbf{b} \doteq [c], [d] \doteq [c]\}$


```
foldl :: (a -> b -> a) -> a -> [b] -> a
(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]
([]) :: [a] umbenannt: [d]
```

G	E
Ø	$\{a \to b \to a \doteq c \to [c] \to [c], a \doteq [d]\}$
$\{a \mapsto [d]\}$	$\{[d] \to b \to [d] \doteq c \to [c] \to [c]\}$
$\{a \mapsto [d]\}$	$\{[d] \doteq c, b \doteq [c], [d] \doteq [c]\}$
$\{a\mapsto [d], b\mapsto [c]\}$	$\{[d] \doteq c, [d] \doteq [c]\}$


```
foldl :: (a -> b -> a) -> a -> [b] -> a
(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]
([]) :: [a] umbenannt: [d]
```

G	E
$-\emptyset$	$\{a \rightarrow b \rightarrow a \doteq c \rightarrow [c] \rightarrow [c], a \doteq [d]\}$
$\{a \mapsto [d]\}$	$\{[d] \to b \to [d] \doteq c \to [c] \to [c]\}$
$\{a \mapsto [d]\}$	$\{[d] \doteq c, b \doteq [c], [d] \doteq [c]\}$
$\{a\mapsto [d], b\mapsto [c]\}$	$\{[d] \stackrel{.}{=} c, [d] \stackrel{.}{=} [c]\}$


```
foldl :: (a -> b -> a) -> a -> [b] -> a

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
Ø	$\{a \to b \to a \doteq c \to [c] \to [c], a \doteq [d]\}$
$\{a\mapsto [d]\}$	$\{[d] \to b \to [d] \doteq c \to [c] \to [c]\}$
$\{a \mapsto [d]\}$	$\{[d] \doteq c, b \doteq [c], [d] \doteq [c]\}$
$\{a\mapsto [d], b\mapsto [c]\}$	$\{[d] \doteq c, [d] \doteq [c]\}$
$\{a\mapsto [d], b\mapsto [c]\}$	$\{c \doteq [d], [d] \doteq [c]\}$


```
foldl :: (a -> b -> a) -> a -> [b] -> a

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
Ø	$\{a \to b \to a \doteq c \to [c] \to [c], a \doteq [d]\}$
$\{a \mapsto [d]\}$	$\{[d] \to b \to [d] \doteq c \to [c] \to [c]\}$
$\{a \mapsto [d]\}$	$\{[d] \doteq c, b \doteq [c], [d] \doteq [c]\}$
$\{a\mapsto [d], b\mapsto [c]\}$	$\{[d] \doteq c, [d] \doteq [c]\}$
$\{a\mapsto [d], b\mapsto [c]\}$	$\{c \doteq [d], [d] \doteq [c]\}$


```
foldl :: (a -> b -> a) -> a -> [b] -> a

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
$-\emptyset$	$\{a \to b \to a \doteq c \to [c] \to [c], a \doteq [d]\}$
$\{a \mapsto [d]\}$	$\{[d] \rightarrow b \rightarrow [d] \doteq c \rightarrow [c] \rightarrow [c]\}$
$\{a \mapsto [d]\}$	$\{[d] \doteq c, b \doteq [c], [d] \doteq [c]\}$
$\{a\mapsto [d], b\mapsto [c]\}$	$\{[d] \doteq c, [d] \doteq [c]\}$
$\{a\mapsto [d], b\mapsto [c]\}$	$\{c \doteq [d], [d] \doteq [c]\}$
$\{a\mapsto [d], b\mapsto [[d]], c\mapsto [d]\}$	$\{[d] \doteq [[d]]\}$


```
foldl :: (a -> b -> a) -> a -> [b] -> a

(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]

([]) :: [a] umbenannt: [d]
```

G	E
$\overline{\emptyset}$	$\{a \to b \to a \doteq c \to [c] \to [c], a \doteq [d]\}$
$\{a \mapsto [d]\}$	$\{[d] \rightarrow b \rightarrow [d] \doteq c \rightarrow [c] \rightarrow [c]\}$
$\{a \mapsto [d]\}$	$\{[d] \doteq c, b \doteq [c], [d] \doteq [c]\}$
$\{a\mapsto [d], b\mapsto [c]\}$	$\{[d] \doteq c, [d] \doteq [c]\}$
$\{a\mapsto [d], b\mapsto [c]\}$	$\{c \doteq [d], [d] \doteq [c]\}$
$\{a\mapsto [d], b\mapsto [[d]], c\mapsto [d]\}$	$\{[d] \doteq [[d]]\}$


```
foldl :: (a -> b -> a) -> a -> [b] -> a
(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]
([]) :: [a] umbenannt: [d]
```

G	E
Ø	$\{a \to b \to a \doteq c \to [c] \to [c], a \doteq [d]\}$
$\{a \mapsto [d]\}$	$\{[d] \to b \to [d] \doteq c \to [c] \to [c]\}$
$\{a \mapsto [d]\}$	$\{[d] \doteq c, b \doteq [c], [d] \doteq [c]\}$
$\{a\mapsto [d], b\mapsto [c]\}$	$\{[d] \doteq c, [d] \doteq [c]\}$
$\{a\mapsto [d], b\mapsto [c]\}$	$\{c \doteq [d], [d] \doteq [c]\}$
$\{a \mapsto [d], b \mapsto [[d]], c \mapsto [d]\}$	$\{[d] \doteq [[d]]\}$
$\{a\mapsto [d], b\mapsto [[d]], c\mapsto [d]\}$	$\{d \doteq [d]\}$


```
foldl :: (a -> b -> a) -> a -> [b] -> a
(:) :: a -> [a] -> [a] umbenannt: c -> [c] -> [c]
([]) :: [a] umbenannt: [d]
```

$$\begin{array}{ll} G & E \\ \hline \emptyset & \{a \rightarrow b \rightarrow a \stackrel{.}{=} c \rightarrow [c] \rightarrow [c], a \stackrel{.}{=} [d]\} \\ \{a \mapsto [d]\} & \{[d] \rightarrow b \rightarrow [d] \stackrel{.}{=} c \rightarrow [c] \rightarrow [c]\} \\ \{a \mapsto [d]\} & \{[d] \stackrel{.}{=} c, b \stackrel{.}{=} [c], [d] \stackrel{.}{=} [c]\} \\ \{a \mapsto [d], b \mapsto [c]\} & \{[d] \stackrel{.}{=} c, [d] \stackrel{.}{=} [c]\} \\ \{a \mapsto [d], b \mapsto [[d]], c \mapsto [d]\} & \{[d] \stackrel{.}{=} [[d]]\} \\ \{a \mapsto [d], b \mapsto [[d]], c \mapsto [d]\} & \{[d] \stackrel{.}{=} [[d]]\} \\ \text{nicht l\"osbar, da} & d \text{ in } [d] \text{ echt vorkommt} \\ \hline \end{array}$$

(fold1 (:) []) ist nicht typisierbar!

Listen müssen Elemente gleichen Typs haben

Positivbeispiel: Berechne Typ der Liste [1]:

$$\frac{1 :: \mathtt{Int} \quad \ (:) :: a \to [a] \to [a] \quad \ \ [] :: [b]}{1 :: [] ::?}$$

Anwendungsregel ergibt Gleichungen: $\{a \doteq Int, [a] \doteq [b]\}$

$$\text{L\"{o}sung: } \gamma = \{a \mapsto \texttt{Int}, b \mapsto \texttt{Int}\}$$

Anwenden auf [a]:

Typ von
$$(1:[])$$
 ist $[Int]$

Beispiel zu Typfehler


```
Negativbeispiel: [1, 'a'] hat keinen Typ:
```

- 1:('a':[])=[1, 'a']
- 1 :: Integer, 'a' :: Char, []::[b], (:) hat Typ $a \to [a] \to [a]$ (Typen der Konstanten.)

```
ergibt: (1:) :: [Integer] \rightarrow [Integer] und ('a':[]) :: [Char].
```

Kein Typ als Resultat, denn:

 $[Integer] \doteq [Char]$ ist nicht lösbar.

Typisierung und Reduktion

Beachte: Nach Reduktionen kann ein Ausdruck

mehr Typen (bzw. einen allgemeineren Typ) haben

als vor der Reduktion

Typisierung und Reduktion

Beachte: Nach Reduktionen kann ein Ausdruck mehr Typen (bzw. einen allgemeineren Typ) haben als vor der Reduktion

Beispiel:

if 1 > 0 then [] else [1] :: [Integer]

arithmetische-Reduktion:

 \longrightarrow if True then [] else [1] :: [Integer]

Case-Reduktion:

 \longrightarrow [] :: [a]