Tutorial 6 - STAT 485/685

Trevor Thomson

Department of Statistics & Actuarial Science Simon Fraser University, BC, Canada

October 26, 2020

Today's Plan

- Recap of Tutorial 5
 - General Linear Process
 - Moving Average Process
 - Autoregressive Process
 - The Mixed Autoregressive Moving Average Model
- Models for Nonstationary Time Series
 - Stationarity Through Differencing
 - ARIMA Models
 - Constant Terms in ARIMA Models
 - Other Transformations
- Examples
 - Question 5.1
 - Question 5.6
 - Question 5.14

General Linear Processes

Definition: $\{Y_t: t \in \mathcal{I}\}$ is a *general linear process* if it can be written as a (weighted) linear combination of present and past white noise terms:

$$Y_t = e_t + \psi_1 e_{t-1} + \psi_2 e_{t-2} + \psi_3 e_{t-3} + \cdots$$
$$= \sum_{j=0}^{\infty} \psi_j e_{t-j},$$

where $\psi_0 \equiv 1$.

• Also referred to as ψ -weight representation of $\{Y_t : t \in \mathcal{I}\}$.

In order for the infinite sum above to be convergent, we assume that

$$\sum_{j=1}^{\infty} \psi_j^2 < \infty.$$

What is $E(Y_t)$, $Var(Y_t)$, $Cov(Y_t, Y_{t-k})$, and $Corr(Y_t, Y_{t-k})$, for $k \ge 0$?

General Linear Processes

$$E(Y_t) = E\left(\sum_{j=0}^{\infty} \psi_j e_{t-j}\right) = 0.$$

$$Var(Y_t) = \sigma_e^2 \underbrace{\sum_{j=0}^{\infty} \psi_j^2}_{<\infty} < \infty.$$

For k > 0:

$$Cov(Y_t, Y_{t-k}) = \sigma_e^2 \sum_{\ell=0}^{\infty} \psi_{k+\ell} \psi_{\ell}.$$

$$Corr(Y_t,Y_{t-k}) = \frac{\sum\limits_{\ell=0}^{\infty} \psi_{k+\ell} \psi_{\ell}}{\sum\limits_{j=0}^{\infty} \psi_{j}^{2}}.$$

Remark: $E(Y_t)$ and $Cov(Y_t, Y_{t-k})$ do not depend on time t

 $\Rightarrow \{Y_t : t \in \mathcal{I}\}$ is stationary.

Moving Average Processes

Definition: $\{Y_t: t\in \mathcal{I}\}$ is a moving average of order q if q of the ψ_j 's of the general linear process are non-zero

$$\begin{split} Y_t &= \sum_{j=0}^\infty \psi_j e_{t-j} \\ &= \sum_{j=0}^q \psi_j e_{t-j}, \quad \text{with } \psi_0 = 1, \\ &= e_t + \psi_1 e_{t-1} + \dots + \psi_q e_{t-q}. \end{split}$$

If so, we say that $\{Y_t: t \in \mathcal{I}\}$ is an MA(q) process.

People often express MA(q) processes by slightly changing the notation \Rightarrow letting $\theta_j = -\psi_j$:

$$\begin{split} Y_t &= -\sum_{j=0}^q \theta_j e_{t-j}, \quad \text{with } \theta_0 = -1, \\ &= e_t - \theta_1 e_{t-1} - \dots - \theta_1 e_{t-q}. \end{split}$$

What is $E(Y_t)$, $Var(Y_t)$, $Cov(Y_t, Y_{t-k})$, and $Corr(Y_t, Y_{t-k})$, for $k \ge 0$?

5/23

Trevor Thomson (SFU) October 26, 2020

Moving Average Processes

$$E(Y_t) = E\left(\sum_{j=0}^{\infty} \psi_j e_{t-j}\right) = 0.$$

$$Var(Y_t) = \sigma_e^2 \sum_{j=0}^q \theta_j^2.$$

For k > 0:

$$Cov(Y_t,Y_{t-k}) = \begin{cases} \sigma_e^2 \sum_{\ell=0}^{q-k} \theta_{k+\ell} \theta_\ell & \text{if } k=0,1,\cdots,q \\ 0 & \text{if } k>q \end{cases}.$$

$$Corr(Y_t, Y_{t-k}) = \begin{cases} \frac{q-k}{\sum\limits_{\ell=0}^{p}\theta_{k+\ell}\theta_{\ell}} \\ \frac{q}{\sum\limits_{j=0}^{p}\theta_{j}^{2}} \\ 0 & \text{if } k > q \end{cases}.$$

Remark 1: Note that the ACF cuts off after lag q

Remark 2: $E(Y_t)$ and $Cov(Y_t,Y_{t-k})$ do not depend on time t

 $\Rightarrow \{Y_t : t \in \mathcal{I}\}$ is stationary.

Autoregressive Processes

Definition: $\{Y_t: t \in \mathcal{I}\}$ is an autoregressive process of order p if the time series $\{Y_t: t \in \mathcal{I}\}$ satisfies the following equation

$$\begin{split} Y_t &= \sum_{j=1}^p \phi_j Y_{t-j} + e_t \\ &= \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + e_t. \end{split}$$

If so, we say that $\{Y_t: t \in \mathcal{I}\}$ is an AR(p) process.

Rather than writing an AR(p) process in terms of Y_t , we can rearrange for e_t :

$$e_t = \phi(B)Y_t$$
,

where

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p,$$

 $B^k Y_t = Y_{t-k}.$

- $\Rightarrow B$ is the backshift operator
- $\Rightarrow \phi(B)$ is the autoregressive process characteristic polynomial.
 - **Result**: An AR(p) process is stationary if the roots of $\phi(B)$ lie outside the "unit circle" in \mathbb{R}^p -space.

4 □ > 4 □ > 4 □ > 4 □ >

Autoregressive Processes

$$\begin{aligned} Y_t &= \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + e_t \\ e_t &= \underbrace{\left[1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p\right]}_{\phi(B)} Y_t \end{aligned}$$

 \Rightarrow Setting $\phi(B) = 0 \cdot \cdot \cdot$ $\Rightarrow \cdot \cdot \cdot$ Turns out we need

$$\phi_1 + \phi_2 + \dots + \phi_p < 1,$$
$$|\phi_p| < 1$$

Examples:

$$p=1$$
 : Stationarity condition: $|\phi_1|<1$ $p=2$: Stationarity conditions: $\phi_1+\phi_2<1$ $\phi_2-\phi_1<1$ $|\phi_2|<1$

To obtain γ_k and ρ_k , solve the Yule-Walker equations

$$\rho_{1} = \phi_{1} + \phi_{2}\rho_{1} + \phi_{3}\rho_{2} + \dots + \phi_{p}\rho_{p-1}$$

$$\rho_{2} = \phi_{1}\rho_{1} + \phi_{2} + \phi_{3}\rho_{1} + \dots + \phi_{p}\rho_{p-2}$$

$$\vdots$$

$$\rho_{p} = \phi_{1}\rho_{p-1} + \phi_{2}\rho_{p-2} + \phi_{3}\rho_{p-3} + \dots + \phi_{p}.$$

Mixed Autoregressive and Moving Average Processes

Definition: $\{Y_t: t \in \mathcal{I}\}$ is a mixed autoregressive moving average process of orders p and q, respectively, if the time series $\{Y_t: t \in \mathcal{I}\}$ satisfies the following equation

$$\begin{split} Y_t &= [\phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + e_t] + [-\theta_1 e_{t-1} - \theta_2 e_{t-2} - \dots - \theta_q e_{t-q}] \\ &= \sum_{j=1}^p \phi_j Y_{t-j} - \sum_{j=0}^q \theta_j e_{t-j}, \end{split}$$

with $\theta_0 \equiv -1$. If so, we say that $\{Y_t: t \in \mathcal{I}\}$ is an ARMA(p,q) process.

The ARMA(p, q) characteristic polynomial is

$$\begin{split} &\theta(B)e_t = \phi(B)Y_t\,,\\ &\theta(B) = 1 - \theta_1B - \theta_2B^2 - \dots - \theta_qB^q \quad (MA(q) \text{ characteristic polynomial})\\ &\phi(B) = 1 - \phi_1B - \phi_2B^2 - \dots - \phi_pB^p \quad (AR(p) \text{ characteristic polynomial}) \end{split}$$

It is assumed that $\theta(B)$ and $\phi(B)$ have no common factors.

• Result: An ARMA(p,q) process is stationary if the roots of $\phi(B)$ lie outside the "unit circle" in \mathbb{R}^p -space.

 \Rightarrow Solve the Yule-Walker equations to derive γ_k and ρ_k (see Appendix C, page 85).

∢ロト∢御ト∢産ト∢産トー産

Recall: For a time series $\{Y_t : t \in \mathcal{I}\}$, we can write each term as

$$Y_t = \mu_t + X_t$$

where $E(Y_t) = \mu_t \Rightarrow E(X_t) = 0$.

 \Rightarrow If $\mu_t \neq \mu$ for all t (i.e. a constant), the time series cannot be stationary.

- We considered models for nonstationary time series in Chapter 3
 - Linear Trend: $\mu_t = \beta_0 + \beta_1 t$
 - Seasonal Means: $\mu_t = \mu_{t+k}$, with k = 12.
 - Cosine Trend: $\mu_t = \beta_1 \cos(2\pi f t) + \beta_2 \sin(2\pi f t)$, with $f = \frac{1}{12}$.

Question: If $\{Y_t : t \in \mathcal{I}\}$ is not stationary, can we find a stationary time series $\{W_t : t \in \mathcal{I}\}$, such that W_t is derived from $\{Y_t : t \in \mathcal{I}\}$?

- **Approach 1**: Define $W_t = \nabla^d Y_t = \nabla(\nabla^{d-1} Y_t)$, where d=1 or d=2.
- **Approach 2**: Define $W_t = f(Y_t)$, for some function f(.).

Stationarity Through Differencing

Recall Exercise 2.9:

• Suppose $Y_t = \beta_0 + \beta_1 t + X_t$, where $\{X_t : t \in \mathcal{I}\}$ is a zero-mean stationary series with autocovariance function γ_k , and β_0 and β_1 are non-zero constants.

Show that $\{Y_t: t \in \mathcal{I}\}$ is not stationary but $\{W_t: t \in \mathcal{I}\}$ is stationary, where $W_t = \nabla Y_t = Y_t - Y_{t-1}$.

Stationarity Through Differencing

Recall Exercise 2.9:

Suppose $Y_t = \beta_0 + \beta_1 t + X_t$, where $\{X_t : t \in \mathcal{I}\}$ is a zero-mean stationary series with autocovariance function γ_k , and β_0 and β_1 are non-zero constants.

Show that $\{Y_t: t \in \mathcal{I}\}$ is not stationary but $\{W_t: t \in \mathcal{I}\}$ is stationary, where $W_t = \nabla Y_t = Y_t - Y_{t-1}$.

We see that

$$E(Y_t) = E(\beta_0 + \beta_1 t + X_t) = \beta_0 + \beta_1 t + \underbrace{E(X_t)}_0 = \beta_0 + \beta_1 t.$$

Therefore, $\{Y_t: t \in \mathcal{I}\}$ is not stationary since $E(Y_t)$ is not constant over time.

However,

$$\begin{split} W_t &= \nabla Y_t = \underbrace{Y_t}_{\beta_0 + \beta_1 t + X_t} - \underbrace{Y_{t-1}}_{\beta_0 + \beta_1 (t-1) + X_{t-1}} = \beta_1 + X_t - X_{t-1} \\ &\Rightarrow E(W_t) = E(\beta_1 + X_t - X_{t-1}) = \beta_1 + \underbrace{E(X_t)}_{0} + \underbrace{E(X_{t-1})}_{0} = \beta_1 \\ &\Rightarrow Cov(W_t, W_{t-k}) = Cov(\beta_1 + X_t - X_{t-1}, \beta_1 + X_{t-k} - X_{t-k-1}) \\ &= \underbrace{Cov(X_t, X_{t-k})}_{\gamma_k} - \underbrace{Cov(X_t, X_{t-k-1})}_{\gamma_{k+1}} - \underbrace{Cov(X_{t-1}, X_{t-k})}_{\gamma_{k-1}} + \underbrace{Cox(X_{t-1}, X_{t-k-1})}_{\gamma_k} \\ &= 2\gamma_k - \gamma_{k+1} - \gamma_{k-1}. \end{split}$$

Since $E(Y_t)$ and $Cov(Y_t,Y_{t-k})$ do not depend on time, $\{W_t:t\in\mathcal{I}\}$ is stationary.

Stationarity Through Differencing

Recall: the Random Walk $\{Y_t : t \in \mathcal{I}\}$, where

$$Y_t = Y_{t-1} + e_t$$
.

We already showed that $\{Y_t : t \in \mathcal{I}\}$ is not stationary.

Note that this is an AR(1) process $Y_t = \phi_1 Y_{t-1} + e_t$ with $\phi_1 = 1$.

• If $\{Y_t : t \in \mathcal{I}\}$ is stationary, we need $|\phi_1| < 1$.

If we let $W_t = \nabla Y_t = Y_t - Y_{t-1}$, we see from the random walk that $W_t = e_t$.

Therefore, $\{W_t: t \in \mathcal{I}\}$ is stationary.

ARIMA Models

Definition: $\{Y_t:t\in\mathcal{I}\}$ is an integrated autoregressive moving average model if the dth difference $W_t=\nabla^d Y_t$ is a stationary ARMA(p,q). That is, we can construct $\{W_t:t\in\mathcal{I}\}$, where

$$\begin{split} W_t &= [\phi_1 W_{t-1} + \phi_2 W_{t-2} + \dots + \phi_p W_{t-p} + e_t] + [-\theta_1 e_{t-1} - \theta_2 e_{t-2} - \dots - \theta_q e_{t-q}] \\ &= \sum_{j=1}^p \phi_j W_{t-j} - \sum_{j=0}^q \theta_j e_{t-j}. \end{split}$$

If so, we say that $\{Y_t: t \in \mathcal{I}\}$ is an ARIMA(p, d, q) process.

Note: For practical purposes, we only allow for $d \in \{0, 1, 2\}$.

We can then apply the models from Chapter 4 with $\{W_t : t \in \mathcal{I}\}.$

 \Rightarrow Use the fact that $W_t = \nabla^d Y_t$ to then apply the model to $\{Y_t : t \in \mathcal{I}\}.$

Special Cases:

- \bigcirc $ARIMA(0, d, q) \Rightarrow IMA(d, q)$
- \bigcirc $ARIMA(p, d, 0) \Rightarrow ARI(p, d)$

Constant Terms in ARIMA Models

Recall: If $\{W_t: t \in \mathcal{I}\}$ is an ARMA(p,q) process, then $E(W_t) = \mu = 0$.

 $lacktriangledaw{0}$ What if we instead consider the time series $\{W_t^*:t\in\mathcal{I}\}$, where

$$W_t^* = W_t + c,$$

for some $c \neq 0$.

$$\Rightarrow E(W_{\star}^*) = c$$

$$\Rightarrow Cov(W_t^*, W_{t-k}^*) = Cov(W_t, W_{t-k}).$$

 \Rightarrow Can we model $\{W_t^*: t \in \mathcal{I}\}$?

$$W_t = \sum_{j=1}^p \phi_j W_{t-j} - \sum_{j=0}^q \theta_j e_{t-j}$$

$$(W_t^* - c) = \sum_{j=1}^p \phi_j(W_{t-j}^* - c) - \sum_{j=0}^q \theta_j e_{t-j}$$

$$\begin{split} W_t^* &= \underbrace{\left[c - \sum_{j=1}^p c\phi_j\right]}_{\theta_0} + \sum_{j=1}^p \phi_j W_{t-j}^* - \sum_{j=0}^q \theta_j e_{t-j} \\ &= \theta_0 + \sum_{j=1}^p \phi_j W_{t-j}^* - \sum_{j=0}^q \theta_j e_{t-j}. \end{split}$$

4 日 ト 4 周 ト 4 ミト 4 ミト - ミ

SFU

This looks like an ARMA(p, q) process, except θ_0 is an intercept term!

Trevor Thomson (SFU)

Constant Terms in ARIMA Models

$$W_t^* = \theta_0 + \sum_{j=1}^p \phi_j W_{t-j}^* - \sum_{j=0}^q \theta_j e_{t-j}$$

Therefore, we see that

$$\theta_0 = c - \sum_{j=1}^p c\phi_j$$

$$c = \frac{\theta_0}{1 - \sum_{j=1}^{p} \phi_j}$$

 \Rightarrow if we include an intercept term in an ARMA(p,q) model, we can model stationary processes with non-zero means.

Special case: $\theta_0 = 0 \Rightarrow c = 0$, which is what we considered in Chapter 4.

Other Transformations

- \checkmark

Approach 2: Define $W_t = f(Y_t)$, for some function f(.).

What if $E(Y_t)$ and $Var(Y_t)$ are related?

$$E(Y_t) = \mu_t$$
$$Var(Y_t) = \mu_t^2 \sigma^2$$

Other Transformations

Solution: Consider the transformation function $f(Y_t) = \log Y_t$

Consider a (first-order) Taylor series expansion of $\log(Y_t)$ evaluated about μ_t :

$$\begin{split} \log Y_t &\approx \log \mu_t + \frac{Y_t - \mu_t}{\mu_t} \\ &\therefore E(\log Y_t) \approx E\left(\log \mu_t + \frac{Y_t - \mu_t}{\mu_t}\right) = \log \mu_t + \frac{E(Y_t) - \mu_t}{\mu_t} = \log \mu_t \\ &\therefore Var(\log Y_t) \approx Var\left(\log \mu_t + \frac{Y_t - \mu_t}{\mu_t}\right) = \frac{1}{\mu_t^2} Var(Y_t) = \frac{1}{\mu_t^2} \mu_t^2 \sigma^2 = \sigma^2. \end{split}$$

That is, the variance of $\log Y_t$ no longer depends on μ_t ,

⇒ the variance is stabilized.

If $\mu_t
eq \mu$, we can consider $W_t = \nabla \log Y_t = \log Y_t - \log Y_{t-1}$ and assess if $\{W_t : t \in \mathcal{I}\}$ is stationary.

Note: The Taylor series of a function f(x) that is infinitely differentiable about a number a is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

Here, $f(x) = \log x$, $f'(x) = \frac{1}{x}$, $a = \mu_t$, and we only considered n = 0 and n = 1.

Trevor Thomson (SFU) October 26, 2020

17/23

Other Transformations

If we want to transform our data, which function should we use?

Examples:

- $f(x) = \frac{1}{x}$
- ...

Box-Cox Power Transformations: For a given value of λ and for $Y_t>0$ for all $t\in\mathcal{I}$, a *power transformation* with parameter λ is defined by

$$g(x) = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \log x & \text{if } \lambda = 0 \end{cases}.$$

We see that if

- \bullet $\lambda = 0 \Rightarrow logarithm transformation$
- $\lambda = \frac{1}{2} \Rightarrow$ square-root transformation
- \bullet $\lambda = -1 \Rightarrow$ inverse transformation
- \bullet $\lambda = 1 \Rightarrow$ no transformation

Other Transformations

Remark: If some values in $\{Y_t: t \in \mathcal{I}\}$ are not positive, apply the power transformation to $\{Y_t^*: t \in \mathcal{I}\}$, where $Y_t^* = Y_t + m$, where m is some constant such that $Y_t^* > 0$ for all t.

In R: BoxCox.ar

- Computes a log-likelihood function for a grid of λ -values based on a normal likelihood function.
- Generates a 95% confidence interval for λ , where the centre is $\hat{\lambda}$.
- Use the 95% confidence interval to guide us in selecting a proper λ .

Let's look at the electricity dataset in R!

See the R file Tutorial6.R

Question 5.1

Question 5.1: Identify the following as specific ARIMA(p, d, q) models:

(a)
$$Y_t = Y_{t-1} - 0.25Y_{t-2} + e_t - 0.1e_{t-1}$$

(b)
$$Y_t = 2Y_{t-1} - Y_{t-2} + e_t$$

(c)
$$Y_t = 0.5Y_{t-1} - 0.5Y_{t-2} + e_t - 0.5e_{t-1} + 0.25e_{t-2}$$

Question 5.1

Question 5.1: Identify the following as specific ARIMA(p,d,q) models:

- (a) $Y_t = Y_{t-1} 0.25Y_{t-2} + e_t 0.1e_{t-1}$
- (b) $Y_t = 2Y_{t-1} Y_{t-2} + e_t$
- (c) $Y_t = 0.5Y_{t-1} 0.5Y_{t-2} + e_t 0.5e_{t-1} + 0.25e_{t-2}$
- (a) This appears to be an ARIMA(2,0,1) process with $\phi_1=1, \phi_2=-0.25$, and $\theta_1=0.1$; but we need to first check the stationarity conditions.

Recall that an ARMA(p,q) process is stationary if the autoregressive characteristic polynomial roots lie outside of the \mathbb{R}^p "unit circle",

The stationarity conditions are

$$\begin{array}{l} \phi_1 + \phi_2 = -0.75 < 1 \quad \checkmark \\ \phi_2 - \phi_1 = -1.25 < 1 \quad \checkmark \\ |\phi_2| = 0.25 < 1 \quad \checkmark \end{array}$$

Therefore, $\{Y_t: t \in \mathcal{I}\}$ is an ARIMA(2,0,1) process with $\phi_1=1, \phi_2=-0.25$, and $\theta_1=0.1$.

(b) This appears to be an AR(2) process with $\phi_1=2$, and $\phi_2=-1$. However, the stationarity conditions are not satisfied (actually, all three stationarity conditions fail!)

Consider the difference $W_t = \nabla Y_t = Y_t - Y_{t-1} = W_{t-1} + e_t$. This appears to be an AR(1) model with $\phi_1 = 1$, but since $|\phi_1| \nleq 1$, the stationarity conditions are not satisfied.

Consider the difference $X_t = \nabla W_t = W_t - W_{t-1} = e_t$, which is white noise.

Therefore, $\{Y_t: t \in \mathcal{I}\}$ is an ARIMA(0,2,0) process.

Question 5.1

Question 5.1: Identify the following as specific ARIMA(p, d, q) models:

- (a) $Y_t = Y_{t-1} 0.25Y_{t-2} + e_t 0.1e_{t-1}$
- (b) $Y_t = 2Y_{t-1} Y_{t-2} + e_t$
- (c) $Y_t = 0.5Y_{t-1} 0.5Y_{t-2} + e_t 0.5e_{t-1} + 0.25e_{t-2}$

(c) This appears to be an ARIMA(2,0,2) process with $\phi_1=0.5, \phi_2=-0.5, \theta_1=0.5,$ and $\theta_2=-0.25.$

The stationarity conditions are

$$\begin{split} \phi_1 + \phi_2 &= 0 < 1 \quad \checkmark \\ \phi_2 - \phi_1 &= -1 < 1 \quad \checkmark \\ |\phi_2| &= 0.5 < 1 \quad \checkmark \end{split}$$

Therefore, $\{Y_t: t\in\mathcal{I}\}$ is an ARIMA(2,0,2) process with $\phi_1=0.5, \phi_2=-0.5, \theta_1=0.5$, and $\theta_2=-0.25$.

Question 5.6

Question 5.6: Consider a stationary process $\{Y_t: t\in \mathcal{I}\}$. Show that if $\rho_1<\frac{1}{2}, \nabla Y_t$ has a larger variance than Y_t .

Question 5.6

Question 5.6: Consider a stationary process $\{Y_t: t \in \mathcal{I}\}$. Show that if $\rho_1 < \frac{1}{2}$, ∇Y_t has a larger variance than Y_t .

$$Var(\nabla Y_t) = Var(Y_t - Y_{t-1}) = \underbrace{Var(Y_t)}_{\gamma_0} + \underbrace{Var(Y_{t-1})}_{\gamma_0} - 2\underbrace{Cov(Y_t, Y_{t-1})}_{\gamma_1} = \gamma_0 + \underbrace{\gamma_0 - 2\gamma_1}_{(*)}.$$

If $Var(\nabla Y_t) > \gamma_0$, we need to show that (*) > 0, i.e. $\gamma_0 - 2\gamma_1 > 0$.

Since
$$ho_1=rac{\gamma_1}{\gamma_0}$$
 , then $\gamma_1=
ho_1\gamma_0$.

Therefore,

$$\begin{split} \gamma_0 &- 2\gamma_1 > 0 \\ \Rightarrow \gamma_0 &- 2(\rho_1\gamma_0) > 0 \\ \Rightarrow \gamma_0 (1 - 2\rho_1) > 0 \\ \Rightarrow 1 - 2\rho_1 > 0 \quad \text{(since } \gamma_0 > 0\text{)} \\ \Rightarrow -2\rho_1 > -1 \\ \Rightarrow \rho_1 < \frac{1}{2}. \end{split}$$

Takeaway Message: If the autocorrelation is weak, modelling the process $\{W_t: t \in \mathcal{I}\}$, where $W_t = \nabla Y_t$ will exhibit more variability than $\{Y_t: t \in \mathcal{I}\}$.

4 D > 4 M > 4 B > 4 B >

If the autocorrelation is weak (i.e. $\rho_1 < \frac{1}{2}$), is it worth it?

Question 5.14

Question 5.14: Consider the larain dataset. The quantile-quantile normal plot of these data convinced us that the data are not normally distributed.

- (a) Use R to determine the "best" value of λ for a power transformation of the data.
- (b) Display a quantile-quantile plot of the transformed data. Does the data appear to be normally distributed?
- (c) Produce a time series plot of the transformed values.
- (d) Use the transformed values to display a plot of Y_t vs. Y_{t-1} . Should we expect the transformation to change the dependence or lack of dependence in the series?

4 D > 4 A > 4 B > 4 B >

Question 5.14

Question 5.14: Consider the larain dataset. The quantile-quantile normal plot of these data convinced us that the data are not normally distributed.

- (a) Use R to determine the "best" value of λ for a power transformation of the data.
- (b) Display a quantile-quantile plot of the transformed data. Does the data appear to be normally distributed?
- (c) Produce a time series plot of the transformed values.
- (d) Use the transformed values to display a plot of Y_t vs. Y_{t-1} . Should we expect the transformation to change the dependence or lack of dependence in the series?

See the R file Tutorial 6.R for the solutions.

