CHEMISTRY

Paper 2

Oct/Nov.2021

2 hours.

CHEMISTRY DEPARTMENT.

Resourceful Chemistry revision Set 1.

UGANDA CERTIFICATE OF EDUCATION.

PAPER 2.

TIME. 2 hours.

INSTRUCTIONS TO CANDIDATES.

Section **A** consists of **10** structured numbers. Attempt **all** questions in this section. Answers to this section must be written in the spaces provided.

Section **B** consists of **4** semi-structured questions. Attempt only **2** questions from this section. Answers to this section must be written in the answer booklets provided. In both sections, **All** working must be clearly shown.

Where necessary use, (AI = 27, C=12 O=16 N=14 S=32 Pb=207 Na=23)

1 mole of a gas occupies **24***I* at room temperature.

1 mole of a gas occupies 22.4/ at s.t.p

For Examiner's Use Only.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	TOTAL

SECTION A . (50 marks)

Answer all questions in this section.

1.	During the industrial separation of the major two components of air W and Z , carbon dioxide and water vapour are first removed from air, the resultant air, is compressed and then cooled repeatedly forming <i>liquid mixture</i> of gases W and Z . When <i>liquid mixture</i> is fractionally distilled, liquid of gas W distills off first from it's liquid mixture with gas Z .
	(a) Name gas,
	(i) W (½ mark)
	(ii) Z (½ mark)
	(b) Give a reason why liquid of gas W distills off first, from it's <i>liquid</i> mixture with gas Z . (½ mark)
	(c)State how each of the following components of air are removed,
	during the industrial separation of gases named in (a).
	(i) Carbon dioxide. (½ mark)
	(ii) Water Vapour. (½ mark)

(d) (I) State what would happen if carbon dioxide and was are not removed from air first, during the industrial	•
of the gases named in (a).	(½ mark)
(ii) Write the equation of reaction that takes place du	ring the
removal of carbon dioxide from air.	(1 ½ mark)
••••••	
(e) State,	
(I)how the concentration of gas ${f W}$ can be decreased	from the
atmosphere.	(½ mark)
(ii)One industrial use of gas Z.	(½ mark).

 The number of particles (Protons, electrons and neutrons) in atoms B, D, E, H and M) are shown in the table below.

Atom	Protons	Neutrons	Electrons
В	20	20	20
D	14	14	14
E	17	19	17
Н	12	12	12
G	8	8	8

(a) State the <i>atomic mass</i> of E .	(½ mark)

n the atoms in (b)(i) b	group of the periodic table to which tl
(½ marks)	
(½ mark).	ason for your answer in (b) (ii).
formed by atom B.	electronic configuration of the ion for
(½ mark)	
ound with atom E.	<i>explain</i> how atom H forms a compour
(3 marks)	
nd formed by atoms	ne difference between the compound and compound formed by atoms D a

3.	(a) State what would be observed if a crystal of each of the	efollowing
	Compounds is left in an open place, for about 1 hour.	
	(i) Sodium carbonate – 10 -water.	(1 mark)
	(ii) Anhydrous copper (II) sulphate.	(1 mark)
	(iii) Anhydrous iron(III) chloride.	(1 mark)
	(b)Name the process that occurred , leading to your obse	
	(c)Name any other compound which when left in open p	olace , behaves
	In a similar way as Anhydrous copper(II) sulphate.	(½ mark)
	(d)Write equation of reaction that takes place when Sod	ium carbonate
	- 10 -water is left in an open place, leading to your o	bservation in
	(a) (I) above.	(1 ½ marks).

4. (a)Lead(II) nitrate decomposes according to the following equation.

(I)State what was observed?	(1 ½ marks)
(ii) Calculate the mass of lead (II) nitrate required to	produce 15000 cm3 o
total gaseous products at s.t.p (N =14, O =16, P	b = 207, 1 mole of a
a gas occupies 22.4dm3 at s.t.p).	(2 ½ marks).
(b) Excess dry hydrogen gas was passed over hea	ated solid residue
obtained from (a).	
Write equation of reaction that took place.	(1 ½ marks)

Copper(II) s	es of clean iron wire were ac sulphate in a beaker. A gree and The resultant mixture be	n solution and brown sol	
(a) Name th	ed. The resultant mixture be	comes warm.	
(a) Name (i)	Green solution.		(½ mark)
(ii)	Brown solid residue.		(½ mark)
(b)Write th	ne equation for reaction lead	ding to the formation of	,
(1).	Green Solution.	Excessively	(
1 mark)			
 (iii)	Brown solid residue.		(1 mark)
, ,			, ,
(c)Name t	he reaction leading to the fo	ormation of ,	
(1).	Green solution.		(½ mark)
(ii)	Brown solid residue.		(½ mark)
(d)Give a	reason why the resultant m	ixture becomes warm.	(1 mark)
•••••			

6. During the preparation of carbon dioxide gas in the laboratory from hydrochloric acid and calcium carbonate, the gas is first passed through Water, and then through *liquid L* before collection .

dioxide gas .	nation of carbon (1 mark)
(ii)Write ionic equation of reaction leading to the forma	ation of carbon
dioxide gas.	(1 ½ mark).
(b)(i)Name <i>liquid L.</i>	(½ mark)
(ii)State the role of <i>liquid L</i> in the preparation of carbon	n dioxide gas
	(½ mark)
(c)Excess dry carbon dioxide gas was bubbled through a fa	airly concentrated
Solution of sodium hydroxide, then filtered and residue	e dried.
(I)Write equation for the reaction to show the effect of	heat on the dried
residue.	(1 ½ marks)
(ii)State one industrial use of the product formed in (c)(l). (½ mark)
(d)Carbon dioxide changes on cooling to a solid called <i>dry i</i>	ice, used as a
refrigerating cooling agent. Give a reason why dry ice is	s a better
coolant in <i>deep freezers</i> than any other refrigerating co	poling agents.
	(½ mark)

7.	(a) A direct current was passed through concentrated sugar graphite electrodes for about 15 to 30 minutes.	solution using
	(I)State what was observed at the electrodes.	(½ marks)
	(ii)Give a reason for your observation in (i).	(½ mark)
	(b) The experiment in (a) was repeated using concentrated chloride solution.	
	(I)State what was observed at the cathode.	(½ mark)
	(ii)Write equation for reaction that took place at the cath	
	(ii)The solution around the anode was tested with litmus What was observed.	(½ mark)
	(c)(I)Comment on the concentration of the electrolyte in (b	o) at the end of
	electrolysis.	(½ mark)
	(ii)Give a reason for your comment in (C)(I).	(1 mark)
	(d)State one industrial application of electrolysis.	(½ mark)

nark)) to mark) n the
<i>mark)</i> m the
<i>mark)</i> m the
<i>mark)</i> m the
n the
n the
nark)
ene Q
nark)
ire and
omplex
ark)
• • • • • • • • • • • • • • • • • • • •
₹ from
R from
r

9.	(a)State what is meant by the term <i>allotropy of sulphur</i> .	(1 mark).	
	(b)Sulphur exists in two different crystalline forms. Name the		
	(I) Crystalline form of sulphur which Is needle-like shape	d.(½ mark)	
	(ii) other crystalline form of sulphur , and state the natur	e of it's shape	
		(1 mark)	
	(c)State two other difference between the two crystalline forms of Sulphui		
	Named in (b) apart from their structures.	(1 mark)	
	(d) Sulphur was completely burnt in air. The resultant product was Bubbled into acidified solution of potassium dichromate. (I)State what was observed when the resultant product was bubbled Into the solution. (½ mark)		
	(ii)Give a reason for your observation.	(1 mark)	
	(ii)State the practical application of the above reaction.	(½ mark)	
	(e)State one industrial use of sulphur.	(½ mark	

10. (a) Define <i>rate of reaction</i> .	(1 mark)	
	••••••	
(b)Dilute sulphuric acid was reacted with magnesium powd Temperature.	er at room	
Write the ionic equation for the reaction that took place.	(1 ½ marks)	
(c)State two ways by which the rate of reaction between the acid and		
Magnesium in (b) can be increased.	(1 mark)	
	••••••	
(d)Using the space below, on the same axes, sketch graphs of the char		
in the mass of the reactants verses time for the reaction	n between acid	
and magnesium powder at,		
(I)room temperature for reaction in (b)	(1 mark)	
(ii)one of the conditions you have named in (c).	(1 mark)	

SECTION B (30 MARKS)

Answer **two** questions from this section.

Additional question(s) answered will **not** be marked.

NB. Section B , to be completed.

Set by Tr. Hakim ssemogerere k.(Hasems@2021)