

多标量乘法算法的GPU负载均衡并行实现

汇报人 : 邓同贵

指导老师: 董建阔

2024年5月18日

英文文献

Load-Balanced Parallel Implementation on GPUs for Multi-Scalar Multiplication Algorithm

Yutian Chen, Cong Peng⊠, Yu Dai, Min Luo⊠ and Debiao He

School of Cyber Science and Engineering, Wuhan University, Wuhan, China. wind. Oxdktb@gmail.com, {cpeng, mluo}@whu.edu.cn

IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925, Vol. 2024, No. 2, pp. 522–544.

目录

- 01 相关知识背景
- 02 算法加速优化实现
- 03 性能测评与总结

01 相关知识背景

GPU相关知识介绍

Load-Balanced Parallel Implementation on GPUs for Multi-Scalar Multiplication Algorithm

GPU 是指图形处理器单元

(Graphics Processing Unit) 的缩

写。它最初是为图形渲染和处理而设

计。然而,随着时间的推移,GPU

的用途逐渐扩展到了其他领域,尤其

是科学计算和深度学习等需要大规模

并行处理的任务。

ALU: 算术逻辑单元

与传统的中央处理器 (CPU) 不同, GPU 具有大量的小型处理核心,可以同时处理多个任务。这使得 GPU 成为处理大规模数据并执行复杂计算任务的强大工具

简单来说就是:gpu可以起不同的线程,并行完成不同的任务(SIMT)。

多标量乘法概念

多标量乘法(MSM)是大多数基于椭圆曲线的零知识证明系统的重要组成部分。MSM(Multiple Scalar Multiplication)指的是给定一系列的椭圆曲线上的点(P_i)和标量(K_i),计算: $Q = \sum_{i=1}^{n} k_i P_i$


```
{\bf Algorithm~1~{\it The~double-} and-add~algorithm~for~computing~MSM}
```

PADD refers to the point addition for unequal points

PDBL refers to the point doubling for equal points

>>没有出现 ki * Pi?

负载均衡/平衡

Load-Balanced Parallel Implementation on GPUs for Multi-Scalar Multiplication Algorithm

负载平衡(英语: load balancing)是一种<u>电子计算机</u>技术,用来在<mark>多个</mark>计算机(<u>计算机集群</u>)、网络连接、CPU、磁盘驱动器或其他资源中分配负载,以达到优化资源使用、最大化吞吐率、最小化响应时间、同时避免过载的目的。

负载平衡服务通常是由专用软件和硬件来完成。 主要作用是将大量作业<mark>合理地分摊</mark>到多个操作单元上进行执行,用于解决互联网架构中的<u>高并发</u>和<u>高可用</u>的问题。

文献中涉及的负载平衡是:让GPU中起的所有线程,均匀的处理任务,不出现线程闲置的情况,避免资源浪费。

Keywords: Multi-scalar Multiplication · Zero-knowledge Proof · Parallel Implementation

2020年代:零知识证明的研究和应用进入了新的阶段,人们开始关注如何提高零知识证明的效率,以满足大规模应用的需求。

通常来讲,零知识证明加速一般指的对部分运算加速。其中,MSM的计算量相对来说最大,NTT次之。

2023年,Lu等人提出了一种新的并行MSM算法cuZK。在本文中,研究者重新审视这一算法,以该算法为标靶,并提出了一个新的基于GPU的实现,以进一步提高MSM算法的性能,从提高零知识证明的效率。

02

算法加速优化实现

The Pippenger 算法 (MSM的优化实现)

Nanjing University Of Posts and Teleconsts and Teleconsts

文章是基于 Pippenger 算法 进一步优化 MSM算法。

先给出一些符号:

Window size: c, k_i is λ bit

$$k_{i,j} = k_i[j * c : j * c + c - 1]$$
 ---c bits

$$k_i = \sum_{j=0}^{\lambda_c} k_{ij} 2^{jc}$$
 --- 2^c 进制

The Pippenger 算法 (MSM的优化实现)

Step-1: 将主任务分解成多个子任务

Pippenger算法首先选择整数c \in [λ]作为窗口大小,并且将每个 λ 位标量ki分解为多个c位标量片 $k_{i,j}=k_i$ [j*c:j*c+c-1],所以 $k_i=\sum_{j=0}^{\lambda_c}k_{ij}2^{jc}$,因此,主任务可以被认为是计算 λ /c 向上取整的子任务,被称为小标量MSM Q_i ,记作: $Q_i=\sum_{i=1}^nk_{ij}P_i$

$$Q = \sum_{i=1}^{n} k_i P_i = \sum_{i=1}^{n} \sum_{j=0}^{\lambda_c} k_{i,j} 2^{jc} P_i = \sum_{j=0}^{\lambda_c} 2^{jc} Q_j.$$

The Pippenger 算法(MSM的优化实现)

For Q_i

Step-2: 在每一个子任务中计算 bucket points

Pippenger 算法 将创建的缓冲点 (buffer point) 称为

"bucket"

随后再次将 每个子任务 分成两个 阶段:桶堆积(bucket accumulation)和桶聚合(bucket aggregation) 我们将每一个 bucket 存储的点记作 B_t , 因此:

$$Q_j = \sum_{i=1}^n k_{i,j} P_i = \sum_{t=1}^{2^c - 1} t B_t = \sum_{t=1}^{2^c - 1} G_t.$$

接下来我会详细介绍该阶段

The Pippenger 算法(MSM的优化

实现)

Eg.
$$Q_j = 3P_0 + 5P_1 + 3P_2$$

$$\rightarrow Q_j = 3(P_0 + P_2) + 5P_1$$

Step-2.1: 桶堆积(bucket accumulation)

$$\Rightarrow B_3 = (P_0 + P_2), B_5 = P_1$$

The Pippenger 算法(MSM的优化实现)

Step-2.2: 桶聚合 (bucket aggregation)

$$Q_j = \sum_{i=1}^n k_{i,j} P_i = \sum_{t=1}^{2^c - 1} t B_t = \sum_{t=1}^{2^c - 1} G_t.$$

已有: B_t

类似于前缀和

Figure 2: The original bucket aggregation phase (excluding the final summation).

The Pippenger 算法(MSM的优化实现)

Step-3: 将子任务聚合成主任务

$$Q = \sum_{i=1}^{n} k_i P_i = \sum_{i=1}^{n} \sum_{j=0}^{\lambda_c} k_{i,j} 2^{jc} P_i = \sum_{j=0}^{\lambda_c} 2^{jc} Q_j.$$

$$sets Q = Q \lambda_c$$

computes
$$Q = 2^c Q + Q_i$$

from
$$i = \lambda_c to 0$$

finally we get the result Q.

Pippenger 算法的GPU并行实现及挑战

桶堆积(bucket accumulation)阶段

>>对于子任务 Q_i 输出: B_t , t is 1 to 2^c-1

$$Q_j = \sum_{i=1}^n k_{i,j} P_i$$

bucket 的数量: k_{ij} 可能的个数

Eg.
$$Q_j = 3P_0 + 5P_1 + 3P_2 + P_3$$

$$\rightarrow$$
 (1, P_3), (3, P_0), (3, P_2), (5, P_1)

$$\Rightarrow$$
 $B_1 = P_3, B_3 = (P_0 + P_2), B_5 = P_1$

thread 0

thread 1

>>load imbalance

Pippenger 算法的GPU并行实现及挑战

桶堆积(bucket accumulation)阶段

>>对于子任务 Q_i 输出: B_t , t is 1 to 2^c-1

```
Algorithm 2 Previous parallel bucket accumulation algorithm
Input: Sorted array (ascending) of tuple pairs \{(a_i, p_i)\}_{i \in [n]}, points \{P_i\}_{i \in [n]}
                                                                                                      i: 1-n
Output: Buckets \{B_t\} (0 \le t < 2^c), which is initialized as \{\mathcal{O}\} beforehand
 1: s = \lceil \frac{n}{N} \rceil \cdot tid
 2: e = \lceil \frac{n}{N} \rceil \cdot (tid + 1)
                                                             \triangleright tid \in [0, N) is the index of thread
 3: if s \ge n then return
 4: if e \ge n then e = n
 5: while s \neq 0 and s < n and a_s = a_{s-1} do
 6: s = s + 1
 7: end while
 8: while e < n and a_e = a_{e-1} do
                                                                    Then we could get
     e = e + 1
                                                                    the Qi
10: end while
11: for i = s to e - 1 by 1 do
12: B_{a_i} = \mathbf{PADD}(B_{a_i}, P_{p_i})
13: end for
```

- \rightarrow (1, P_3), (3, P_0), (3, P_2), (5, P_1)
- \Rightarrow $B_1 = P_3, B_3 = (P_0 + P_2), B_5 = P_1$

thread 0

thread 1

>>load imbalance

Pippenger 算法的GPU并行实现及挑战

桶聚合 (bucket aggregation) 阶段

>>对于子任务 Q_j 输入: B_t , t is 1 to 2^c-1 输出: Q_j

$$Q_j = \sum_{i=1}^{n} k_{i,j} P_i = \sum_{t=1}^{2^c - 1} t B_t$$

类似于前缀和

Figure 2: The original bucket aggregation phase (excluding the final summation).

最终加法(final summation): 并行规约算法(parallel reduction algorithms)

文章基于此前介绍的Pippenger 算法进行了一系列的优化:

- 1.标量处理和点预计算(Scalar processing and point precomputation)
- 2.单点和双点加法优化(Single-point and double-point addition optimization)
- 3.从原始点到桶的负载平衡累积(Load-balanced accumulation from original points to buckets)
- 4.桶聚集的分层并行约简算法(A layered parallel reduction algorithm for the bucket aggregation)

文章基于此前介绍的Pippenger 算法进行了一系列的优化:

1.标量处理和点预计算(Scalar processing and point precomputation) 对于子任务 \mathbf{Q}_j

标量(k_{i,j})处理 能够将桶(buckets)的数量从 $2^c - 1$ 减少到 $2^{c-2} - 1$,相比于原始的Pippenger算法,减少了约1/4,**点预计算**则是进一步加快了子任务的处理效率。

$$Q_j = \sum_{i=1}^n k_{i,j} P_i$$

宏观过程:

$$k_{i,j}P_i \to \tilde{k}_{i,j} \cdot (-1)^{s_{i,j}}P_i \to \bar{k}_{i,j} \cdot (-1)^{s_{i,j}}2^{h_{i,j}}P_i \to \bar{k}_{i,j} \cdot (-1)^{s_{i,j}}P'_{i,h_{i,j}}$$

where $\bar{k}_{i,j}$ is an odd number of at most c-1 bits and $P'_{i,h_{i,j}}$ is a precomputed point.

标量($k_{i,i}$)处理阶段(Scalar processing)

1.将无符号子标量 (k_{ij}) 转换为有符号数 $((-1)^{s_{ij}}\tilde{k}_{ij})$ (line 1-6)

对于子任务 Q_i

$$Q_j = \sum_{i=1}^{n} k_{i,j} P_i = \sum_{t=1}^{2^c - 1} t B_t$$

$$k_{i,j}P_i \to \tilde{k}_{i,j} \cdot (-1)^{s_{i,j}}P_i$$

Algorithm 3 Scalar conversion to the float representation

Input: The bit-length λ , n integers $\{k_i\}_{i\in[n]}$ and the window size $c\in[\lambda]$

Output: The integer tuples $\{\bar{k}_{i,j}, h_{i,j}, s_{i,j}\}$

1:
$$s_{i,-1} = 0$$
, $t[0] = 0$, $t[2] = 2^c$

2: for j = 0 to λ_c by 1 do

kij is c bits

3:
$$k_{i,j} = k_i[jc : jc + c - 1]$$

4:
$$t[1] = k_{i,j} + s_{i,j-1}$$

5:
$$s_{i,j} = (t[1] >> c)|(t[1] >> (c-1))$$

6:
$$k_{i,j} = t[s_{i,j} + 1] - t[s_{i,j}]$$

7:
$$h_{i,j} = \max\{\eta : 2^{\eta} \mid \tilde{k}_{i,j}\}, \ \bar{k}_{i,j} = \tilde{k}_{i,j} >> \eta$$

8: end for

$$\triangleright k'_{i,j} = t[1]$$

$$\triangleright \tilde{k}_{i,j} = (s_{i,j}) ? (2^c - k'_{i,j}) : k'_{i,j}$$

 \triangleright factor $k_{i,j}$

注意: \tilde{k}_{ij} 的数据类型是无符号类型, $k_{ij}! = (-1)^{s_{ij}} \tilde{k}_{ij}$ 但是可以保证: $k_i = \sum_{j=0}^{\lambda_c} k_{ij} 2^{jc} = \sum_{j=0}^{\lambda_c} (-1)^{s_{ij}} \tilde{k}_{ij} 2^{jc}$

$$Q = \sum_{i=1}^{n} k_i P_i = \sum_{i=1}^{n} \sum_{j=0}^{\lambda_c} k_{i,j} 2^{jc} P_i = \sum_{j=0}^{\lambda_c} 2^{jc} Q_j.$$

 k_{ij} : 0110 1011 0101

 \tilde{k}_{ij} : 0111 0101 0101

 $s_{ij} : 0 1$

此外添加了限制 保证了不会溢出

21

效果: 最终处理后的标量的数值范围减少了一半

标量($k_{i,j}$)处理阶段(Scalar processing)

1.将有符号数($(-1)^{s_{ij}}\tilde{k}_{ij}$)转换为浮点数表示($(-1)^{s_{ij}}2^{h_{ij}}\bar{k}_{ij}$)(line 7)

对于子任务 Q_i

$$Q_j = \sum_{i=1}^{n} k_{i,j} P_i = \sum_{t=1}^{2^c - 1} t B_t$$

Algorithm 3 Scalar conversion to the float representation

Input: The bit-length λ , n integers $\{k_i\}_{i\in[n]}$ and the window size $c\in[\lambda]$

Output: The integer tuples $\{\bar{k}_{i,j}, h_{i,j}, s_{i,j}\}$

1:
$$s_{i,-1} = 0$$
, $t[0] = 0$, $t[2] = 2^c$

2: for j = 0 to λ_c by 1 do

 $\mathbf{b} \lambda_c \mathbf{b} \mathbf{y} \mathbf{1} \mathbf{d} \mathbf{o}$ kij is c bits

3:
$$k_{i,j} = k_i[jc: jc + c - 1]$$

4:
$$t[1] = k_{i,j} + s_{i,j-1}$$

5:
$$s_{i,j} = (t[1] >> c)|(t[1] >> (c-1))$$

6:
$$k_{i,j} = t[s_{i,j} + 1] - t[s_{i,j}]$$

7:
$$h_{i,j} = \max\{\eta : 2^{\eta} \mid \tilde{k}_{i,j}\}, \ \bar{k}_{i,j} = \tilde{k}_{i,j} >> \eta$$

8: end for

$$\triangleright k'_{i,j} = t[1]$$

$$\triangleright \tilde{k}_{i,j} = (s_{i,j}) ? (2^c - k'_{i,j}) : k'_{i,j}$$

$$\triangleright$$
 factor $\tilde{k}_{i,j}$

注意: \bar{k}_{ij} 会被构造成奇数,以此来减少bucket的数量

0110 -> 0011
$$h_{ij} = 1$$

$$\tilde{k}_{ij}$$
 \bar{k}_{ij}

标量(
$$k_{i,j}$$
)处理阶段(Scalar processing)小结:
$$Q = \sum_{i=1}^n k_i P_i = \sum_{i=1}^n \sum_{j=0}^{\lambda_c} k_{i,j} 2^{jc} P_i = \sum_{j=0}^{\lambda_c} 2^{jc} Q_j.$$

$$k_{i,j}P_i \to \tilde{k}_{i,j} \cdot (-1)^{s_{i,j}}P_i \to \bar{k}_{i,j} \cdot (-1)^{s_{i,j}}2^{h_{i,j}}P_i \to \bar{k}_{i,j} \cdot (-1)^{s_{i,j}}P'_{i,h_{i,j}}$$

原始

有符号表示

浮点型表示

点预计算

$$Q_j = \sum_{i=1}^n k_{i,j} P_i$$

最终效果就是:将bucket的数量(标量的取值范围/个数)从

 $2^{c}-1$ (c bits) 减少到了 $2^{c-2}-1$ (c-1 bits 且 是奇数),因

此算法的效率可以得到提升。

Nanjing university of Posts and Telegod

2.单点和双点加法优化(Single-point and double-point addition optimization)

3.从原始点到桶的负载平衡累积(Load-balanced accumulation from original points to buckets)

Eg.
$$Q_j = 3P_0 + 5P_1 + 3P_2 + P_3$$

- \rightarrow (1, P_3), (3, P_0), (3, P_2), (5, P_1)
- $\rightarrow B_1 = P_3, B_3 = (P_0 + P_2), B_5 = P_1$

thread 0

thread 1

>>load imbalance

文章给出的解决办法是: 创建一个缓冲区(buffer),来解决thread的读写冲突问题。即:原本 thread 0 和thread 1 会同时向 bucket 1 中写入数据,这样引发了冲突。解决办法就是,分两步:① 暂时安排thread 0 和thread 1 不同时向bucket 1 写入数据,而是向buffer 中的不同位置写入数据。② 最后再整合buffer中的数据,完成整个 bucket accumulation。

3.从原始点到桶的负载平衡累积(Load-balanced accumulation from

original points to buckets) ①


```
\mathit{offset}_{tid} = tid + \min \left\{ \left\lfloor \frac{\hat{a}_i.ODD + 1}{2} \right\rfloor \right\}_{i \in [s,e)}
```


01357 ---> 01234

thread $0:1 \rightarrow buffer[1]$

thread $1:1 \rightarrow buffer[3]$

无读写冲突

3.从原始点到桶的负载平衡累积(Load-balanced accumulation from original points to buckets) ② 将buffer缓冲区中的点,聚合到 bucket 中

文章分配 2^{c-2} 个线程,其中索引为 tid 的线程用于搜索(二分搜索) 桶 (bucket) $B_{2*tid+1}$ 对应的所有缓冲点,然后写入到 $B_{2*tid+1}$ 中。

这样我们就能得到所有的 桶(bucket) B_t ,随后设法求出 Q_i

先前:
$$Q_j = \sum_{i=1}^n k_{i,j} P_i = \sum_{t=1}^{2^c - 1} t B_t$$

先前:
$$Q_j = \sum_{i=1}^n k_{i,j} P_i = \sum_{t=1}^{2^c - 1} t B_t \qquad Q = \sum_{i=1}^n k_i P_i = \sum_{i=1}^n \sum_{j=0}^{\lambda_c} k_{i,j} 2^{jc} P_i = \sum_{j=0}^{\lambda_c} 2^{jc} Q_j.$$

4.桶聚集的分层并行约简算法(A layered parallel reduction algorithm for the bucket aggregation)

$$Q_j = \sum_{i=0}^{2^{c-2}-1} (2 \cdot i + 1) B_{2 \cdot i + 1} \quad (j = 0, 1, \dots, c - 1) \longrightarrow \mathfrak{A}$$

$$Q_j = \sum_{i=1}^{n} k_{i,j} P_i = \sum_{t=1}^{2^c - 1} t B_t$$

→ 原来

$$B_7 + B_5$$

$$B_7 + B_5$$

$$B_7 + B_5$$

$$B_7 + B_5$$

$$\vdots Round - 1$$

$$\vdots Round - 2$$

Figure 6: Example of the layered reduction algorithm (scale=4).

Eg.
$$Q_j = 3P_0 + 5P_1 + 3P_2$$

$$\rightarrow Q_j = 3(P_0 + P_2) + 5P_1$$

$$\Rightarrow B_3 = (P_0 + P_2), B_5 = P_1$$

得到了 Q_i 后

$$Q = \sum_{i=1}^{n} k_i P_i = \sum_{i=1}^{n} \sum_{j=0}^{\lambda_c} k_{i,j} 2^{jc} P_i = \sum_{j=0}^{\lambda_c} 2^{jc} Q_j.$$

最终能够算出 结果Q

Table 3: Execution times (millisecond) of BLS12-381 MSM on different GPUs (V100/RTX3090/RTX4090) and speedup ratios compared to the recent implementation.

Size	V100		RTX3090		RTX4090	
	cuZK	ours	cuZK	ours	cuZK	ours
2^{19}	115.39	44.97 $(2.566 \times)$	69.17	29.89 $(2.314×)$	51.18	17.95 $(2.85 \times)$
2^{20}	195.94	84.28 $(2.325 \times)$	112.37	56.91 $(1.974 \times)$	77.43	$32.86 \ (2.36 \times)$
2^{21}	321.92	161.08 $(1.998 \times)$	183.02	110.82 $(1.652 \times)$	113.94	62.92 $(1.81 \times)$
2^{22}	574.47	315.51 $(1.821 \times)$	326.13	214.94 $(1.517 \times)$	185.33	124.21 $(1.49 \times)$
2^{23}	1128.36	620.74 (1.818×)	645.15	425.78 $(1.515 \times)$	355.22	250.68 $(1.42 \times)$
2^{24}	2022.47	1233.87 $(1.639 \times)$	1181.98	843.18 (1.402×)	1385.76	500.07 (2.77×)

A Manifing University Of A Osts and Transcolor

Figure 7: Comparison of the load-balanced and imbalanced versions of our method based on the homogeneous coordinate system (BLS24-315 MSM on RTX4090).

- 1. 文章由于涉及到多个子任务 并且 launch 了多个核函数(kernel function),核融合(kernel fusion)可以是往后的优化方向。
- 2. 一些基本运算,比如点加,倍加等,可以通过内联汇编指令集 (CUDA PTX)来进行优化,预计可以进一步提升性能。

感谢各位老师 请各位老师批评指正!

汇报人: 邓同贵 指导老师: 董建阔