

Zagadka z kwadratową tablicą

W tej zagadce otrzymujesz indeksowaną od 0 kwadratową tablicę $N \times N$ zawierającą różne liczby całkowite od 0 to $N \times N - 1$ włącznie. Twoim celem jest uporządkować ją w taki sposób, że na przecięciu i-tego wiersza i j-tej kolumny będzie liczba $i \times N + j$ dla każdych $0 \le i, j < N$. Możesz osiągnąć ten cel używając dwóch typów ruchów:

- Down (ruch w dół): "D a[0] a[1] ... a[N-1]", gdzie a[0], a[1], ..., a[N-1] to pewne ustawienie liczb ze skrajnie górnego wiersza tablicy. Z tym ruchem górny wiersz jest usunięty i skrajnie na dole tablicy tworzony jest nowy wiersz z liczbami a[0], a[1], ..., a[N-1] od lewej do prawej.
- Right (ruch w prawo): "R b[0] b[1] ... b[N-1]", gdzie b[0], b[1], ..., b[N-1] to pewne ustawienie liczb ze skrajnie lewej kolumny tablicy. Z tym ruchem lewa kolumna jest usunięta i skrajnie po prawej stronie tablicy tworzona jest nowa kolumna z liczbami b[0], b[1], ..., b[N-1] z góry na dół.

Ustawienie liczb odnosi się do zmiany kolejności liczb bez dodawania lub usuwania żadnej z nich i może również zachowywać oryginalną kolejność.

Na przykład, jeżeli aktualna tablica to:

Wiersz/Kolumna	0	1	2
0	2	4	6
1	8	1	5
2	7	3	0

Wykonując ruch "D 6 2 4", otrzymujemy następującą tablicę:

Wiersz/Kolumna	0	1	2
0	8	1	5
1	7	3	0
2	6	2	4

Jeżeli jednak zamiast tego wykonalibyśmy ruch "R 2 8 7" to otrzymalibyśmy:

Wiersz/Kolumna	0	1	2
0	4	6	2
1	1	5	8
2	3	0	7

Dla N=3, docelowy, oczekiwany stan tablicy wygląda następująco:

Wiersz/Kolumna	0	1	2
0	0	1	2
1	3	4	5
2	6	7	8

Twoim celem jest rozwiązać zagadkę wykonując mniej niż $3 \times N$ ruchów. Częściowe punkty mogą być jednak przyznane w przypadku, gdy użyjesz więcej ruchów lub nawet gdy nie rozwiążesz całej zagadki. Więcej szczegółów znajduje się w sekcji Ocenianie.

Format wejścia

Pierwszy wiersz wejścia zawiera jedną liczbę całkowitą: N.

Kolejne N wierszy opisuje początkową tablicę, z N liczbami w każdym wierszu.

Format wyjścia

Pierwszy wiersz powinien zawierać pojedynczą liczbę całkowitą M, liczbę ruchów. Każdy z kolejnych M wierszy powinien zawierać pojedynczy ruch.

Ocenianie

Niech M to liczba ruchów w Twoim rozwiązaniu. Ponadto, niech A=3 imes N oraz $B=2 imes N^2.$

Jeżeli wyjście jest nieprawidłowe lub jeżeli M>B, otrzymasz 0 punktów. W przeciwnym przypadku, Twój wynik zależy od liczby poprawnie ustawionych liczb na docelowych pozycjach (oznaczmy to jako C).

Jeżeli $C < N \times N$, zagadka jest nierozwiązana i otrzymasz jedynie $(50 \times \frac{C}{N \times N})$ % punktów za test. W przeciwnym razie:

- Jeżeli M < A, otrzymasz 100% punktów za test.
- ullet Jeżeli $A \leq M \leq B$, otrzymasz $(40 imes (rac{B-M}{B-A})^2 + 50)$ % punktów za test.

Każdy pojedynczy test jest wart tę samą liczbę punktów. Twój wynik to suma punktów za pojedyncze testy i Twój łączny wynik jest najlepszym wynikiem wśród wszystkich zgłoszeń.

Przykład 1

Standardowe wejście	Standardowe wyjście
3	4
1 4 2	R 3 6 1
375	D 2 3 4
680	D 5 6 7
	R 2 5 8

To rozwiązanie osiąga oczekiwany wynik w mniej niż 9 ruchów zdobywając maksymalną punktację.

Przykład 2

Standardowe wejście	Standardowe wyjście
2	0
2 1	
0 3	

Zagadka nie jest rozwiązana, ponieważ jedynie dwie liczby (1 oraz 3) z 4 są na swoich pozycjach. To wyjście otrzymałoby $50 \times \frac{2}{4} = 25\%$ punktów za test.

Ograniczenia

• 2 < N < 9

Podzadania

- Nie ma żadnych podzadań.
- Jest jednakowa liczba testów z N od 2 do 9.