Hypothesis testing for two samples

Giorgio Corani - (IDSIA, SUPSI)

Bayesian Data Analysis and Probabilistic Programming

TODO

- in fondo: inserire analisi frequentista delle due proporzioni beauty and gender
- nel notebook aggiungere analisi bayesiana dell'esempio
- discutere che analisi frequentista equivale a prior uniforme?
- aggiungere anche posterior predictive check?

Credits

■ The examples are mostly from D. P. Montgomery, *Introduction to Statistical Process Control*, 6th Edition, Wiley.

How to compare two populations

- The first population has mean μ_1 and variance σ_1^2 .
- The second population has mean μ_2 and variance σ_2^2 .

How to compare two populations

- lacksquare The sample sizes are n_1 e n_2 .
- We assume the samples of the populations to be *independent* from each other.

The assumption of equal variances

- We assume $\sigma_1^2 = \sigma_2^2$.
- This allows estimating σ^2 as a weighted average of s_1^2 e s_2^2 . This is generally more accurate than estimating the two variances independently.

Comparing the mean of two populations

■ The two-tailed test is:

$$H_0 \ : \mu_1 = \mu_2$$

$$H_1 \ : \mu_1 \neq \mu_2$$

Comparing the mean of two populations

We have:

- $\blacksquare \ \bar{x}_1$ e \bar{x}_2 : empirical means of the two samples
- \blacksquare s_1^2 e s_2^2 : empirical variances of the two samples.

Sampling distribution of $\bar{x}_1 - \bar{x}_2$

- It is the distribution of $\bar{x}_1 \bar{x}_2$ if we extract many times two samples of size n_1 e n_2 from the two populations.
- Assuming
 - $\sigma_1^2 = \sigma_2^2 = \sigma^2$.
 - $\blacksquare \ n_1$ and n_2 >15-20 (for the normality of \bar{x}_1 e \bar{x}_2):

$$\bar{x}_1 - \bar{x}_2 \sim N\left(\mu_1 - \mu_2, \sigma^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\right)$$

9

Test statistic, assuming σ to be known

Given:

$$\bar{x}_1 - \bar{x}_2 \sim N\left(\mu_1 - \mu_2, \sigma^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\right)$$

under H_0 we have:

$$\frac{\bar{x}_1 - \bar{x}_2 - \overbrace{(\mu_1 - \mu_2)}^{\text{ipotizzato 0 in } H_0}}{\sigma \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\bar{x}_1 - \bar{x}_2}{\sigma \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0, 1)$$

 \blacksquare Yet, σ is. unknown and we cannot use this statistic.

 \blacksquare The statistic of the t is:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- \blacksquare which follows a t distribution with (n_1+n_2-2) degrees of freedom.
- \blacksquare note that s_p replaces σ in the statistic

Pooled variance

■ In order to estimate σ^2 we use a weighted average of s_1^2 and s_2^2 :

$$\begin{split} s_P^2 &= \frac{(n_1-1)}{n_1+n_2-2} \cdot s_1^2 + \frac{(n_2-1)}{n_1+n_2-2} \cdot s_2^2 \\ s_P &= \sqrt{s_P^2} \end{split}$$

- \blacksquare s_P^2 : pooled variance
 - the weight are in practice proportional to the sample sizes (actually, they are proportional to the degrees of freedom).
 - $\qquad \text{if } n_1=n_2, s_p^2 \text{ is the simple mean of } s_1^2 \text{ and } s_2^2.$

The test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- lacksquare $\bar{x}_1 \bar{x}_2$ is the sample estimate of $\mu_1 \mu_2$.
- $s_P\sqrt{rac{1}{n_1}+rac{1}{n_2}}$ is the standard error of $ar{x}_1-ar{x}_2$, i.e., a measure of how the estimate $ar{x}_1-ar{x}_2$ is spread around the actual value of $\mu_1-\mu_2$

Rejection region

■ The rejection region is a set of values of the test statistic for which the null hypothesis is rejected.

Two-tailed test

- $\blacksquare H_0: \mu_1 = \mu_2$
- $\blacksquare \ H_1: \mu_1 \neq \mu_2$
 - \blacksquare Rejection region: $t_0 < t_{n_1+n_2-2,\alpha/2}$ e $t_0 > t_{n_1+n_2-2,1-\alpha/2}$
 - Each tails contains probability $\alpha/2$

Right-tailed test

- $\blacksquare H_0: \mu_1 \leq \mu_2$
- $\blacksquare H_1: \mu_1 > \mu_2$
 - \blacksquare The most positive values of the statistic support H_1 .
 - Rejection region: $t_0 > t_{n_1+n_2-2,\alpha}$ (contains probability α).

Left-tailed test

- $\blacksquare \ H_0: \mu_1 \geq \mu_2$
- $\blacksquare H_1 : \mu_1 < \mu_2$
 - The most negative values of the statistic support H_1 .
 - \blacksquare Rejection region: $t_0 < -t_{n_1+n_2-2,\alpha}$ (contains probability α)

Example: comparing mean yields of catalysts

- Two catalysts are being compared: catalyst 1 is currently in use, but catalyst 2 is acceptable.
- Catalyst 2 is cheaper: it should be adopted, providing it does not change the process yield.
- An experiment is run in the pilot plant and results are in the next slide. Is there any difference between the mean yields?
- The two-tailed test is:

$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

Comparing mean yields of catalysts

$$n_1 = n_2 = 8$$

$$\bar{x}_1$$
 = 92.25, s_1 =2.39

$$\bar{x}_2$$
 = 92.73, s_2 =2.98

■ We adopt α =0.05.

Comparing mean yields of catalysts

 \blacksquare Since $n_1=n_2,\,s_p^2$ is the average of s_1^2 and s_2^2 :

$$s_p^2 = \frac{7}{14}s_1^2 + \frac{7}{14}s_2^2 = \frac{2.39^2 + 2.98^2}{2} = 7.3$$

$$s_p = \sqrt{s_p^2} = \sqrt{7.3} = 2.7$$

Statistic and critical values

$$t_0 = \frac{x_1 - x_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$= \frac{92.25 - 92.73}{2.7 \sqrt{\frac{1}{8} + \frac{1}{8}}}$$

$$= -0.35$$

■ The critical values are $\pm t_{.975,14} = \pm 2.145$.

Decision

■ The statistic is in *non-rejection* region: we do not have strong evidence that the mean yield of the two catalysts is different.

Confidence interval (CI) of $\mu_1 - \mu_2$

■ The CI contains the plausible values of $\mu_1 - \mu_2$:

$$\bar{x}_1 - \bar{x}_2 \pm t_{1-\alpha/2, n_1+n_2-2} \cdot s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

- $t_{1-\alpha/2,n_1+n_2-2}$: quantile $(1-\alpha/2)$ of the t distributon with (n_1+n_2-2) degrees of freedom; it is the critical value of the test.
- $\blacksquare \ s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ is the standard error of $(\bar{x}_1 \bar{x}_2)$

CI vs hypothesis test

- If the hypothesis $\mu_1 = \mu_2$ is plausible given the data:
 - \blacksquare the two-tailed test does not reject H_0
 - the CI contains 0.
- If the hypothesis $\mu_1 = \mu_2$ is not plausible:
 - \blacksquare the two-tailed test rejects H_0
 - the CI does not contain 0.

Confidence interval (CI)

■ The degrees of freedom are 8-1+8-1 = 14

$$\begin{split} \bar{x}_1 - \bar{x}_2 \pm t_{.975,14} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \\ (92.25 - 92.73) \pm 2.145 \cdot 2.7 \sqrt{\frac{1}{8} + \frac{1}{8}} = (-3.38, 2.42) \end{split}$$

- \blacksquare 0 is a plausible value for $\mu_1 \mu_2$, as it is within the Cl.
- Indeed the test does not refuse H_0 .

Example of one-tailed test

- A study reports the weight of calcium in standard cement and cement doped with lead, after a stress test.
- Reduced levels of calcium imply low hydration in the cement, possibly allowing water to attack various the cement structure.
- The dopes cement is more expensive, and we want evidence $(\alpha$ =0.05) of its higher performance compared to standard cement.

One-tailed test

lacktriangle The alternative hypothesis H_1 is what we try to demonstrate (*doped* cement has higher performance).

$$\begin{split} H_0: \mu_{\text{standard}} &\geq \mu_{\text{doped}} \\ H_1: \mu_{\text{standard}} &< \mu_{\text{doped}} \end{split}$$

Data

$$\begin{split} n_{\mathrm{standard}} &= 10 \\ \bar{x}_{\mathrm{standard}} &= 87.0 \\ s_{\mathrm{standard}} &= 5.0 \\ \\ n_{\mathrm{doped}} &= 15 \\ \bar{x}_{\mathrm{doped}} &= 90.0 \\ \\ s_{\mathrm{doped}} &= 4.0 \end{split}$$

Test statistic

$$\begin{split} s_P^2 &= \frac{9 \cdot (5)^2 + 14 \cdot (4)^2}{10 + 15 - 2} = 19.52 \\ s_P &= \sqrt{19.52} = 4.4 \end{split}$$

The statistic is:

$$\begin{split} t_0 &= \frac{x_{\rm standard} - x_{\rm doped}}{s_p \sqrt{\frac{1}{n_{\rm standard}} + \frac{1}{n_{\rm doped}}}} \\ &= \frac{87 - 90}{4.4 \sqrt{\frac{1}{10} + \frac{1}{15}}} = -1.67 \end{split}$$

Rejection region

- If $\bar{x}_{\text{doped}} > \bar{x}_{\text{standard}}$, the statistic is negative and thus in favor of H_1 .
- The precise criterion is that we reject H_0 if $t_0 < t_{0.05.23} = -1.71$.
- The statistic (-1.67) is in rejection region: there is no strong evidence that *doped* cement performs better than standard cement.

Comparing two proportions

Hypothesis test for two proportions

- We want to check whether π_1 e π_2 , the proportion of successes in two populations, are significantly different.
- We observe the *sample* proportion of successes, $p_1=\frac{X_1}{n_1}$ and $p_2=\frac{X_2}{n_2}$, while π_1 and π_2 cannot be observed.
- The term success and failure refer to the outcome being 1 or 0.
- \blacksquare If both samples contains at least 5 successes and failures, then p_1 and p_2 are approximately normally distributed. We use this approximation in order to define the sampling distribution of the statistic.

Comparing two proportions

- We have two samples of size n_1 e n_2 , containing X_1 and X_2 successes.
- The two-tailed test is:

$$H_0 : \pi_1 = \pi_2$$

 $H_1 : \pi_1 \neq \pi_2$

The test statistic

$$Z=\frac{(p_1-p_2)}{\sqrt{\bar{p}(1-\bar{p})\left(\frac{1}{n_1}+\frac{1}{n_2}\right)}}$$
 with :

$$\bar{p} = \frac{X_1 + X_2}{n_1 + n_2}$$

 \blacksquare Under H_0 , the statistic $Z \sim N(0,1)$

The test statistic

- If we extract many times two samples of size n_1 and n_2 from two populations with $\pi_1=\pi_2$ and compute the statistic, it will be different every time, following approximately a N(0,1) distribution.
- It the test is one-tailed the statistics remains the same, but the rejection region changes.

Rejection regions

H_1	Rejection region	p-value
$\pi_1 \neq \pi_2$	$z < z_{\alpha/2} \ \mathrm{e} \ z > z_{1-\alpha/2}$	$2(1-\Phi(z))$
$\pi_1 > \pi_2$	$z>z_{1-\alpha}$	$1-\Phi(z)$
$\pi_1 < \pi_2$	$z < z_{\alpha}$	$\Phi(z)$

Cl of $\pi_1 - \pi_2$

- If we extract many times two samples of size n_1 and n_2 from two populations with $\pi_1=\pi_2$ and compute the CI, it will contain the actual value of $\pi_1-\pi_2$ in $(1-\alpha)$ of the experiments.
- The CI is:

$$p_1 - p_2 \pm z_{1-\alpha/2} \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

■ The CI and the two-tailed test approximate differently the standard error and they might sometimes draw inconsistent conclusions.

Esempio: valutare l'efficacia di un farmaco

- Per valutare l'efficacia di un farmaco si svolge un randomized trial.
- In modo casuale ad alcuni pazienti viene somministrato il farmaco; ad altri il placebo.
- Alla fine del periodo di cura, è necessario analizzare se c'è una differenza statisticamente significativa fra i due gruppi.

Example: assess the effect of a process innovation

- From a traditional production process we have 262 boards, of which 154 without any defect.
- From a innovative production process we have 227 boards, of which
 163 without any defect.
- Is the new process significantly more accurate than the previous one?

Comparing the two proportions

- Both samples contain more than 5 successes and 5 failures; the normal approximation is sound.
- The test is:

$$\begin{split} H_0 \ : \pi_{\text{farmaco}} & \leq \pi_{\text{placebo}} \\ H_1 \ : \pi_{\text{farmaco}} & > \pi_{\text{placebo}} \end{split}$$

 \blacksquare and we use $\alpha = 0.01$.

Comparing the two proportions

- The rejection region contains positive values of $p_{\rm farmaco} p_{\rm placebo}$ and thus also of the statistic.
- Rejection region: $Z_0 > \Phi^{-1}(.99)$ = 2.33

Comparing the two proportions

$$\begin{split} p_{\text{new}} &= 163/227 = 0.72 \\ p_{\text{old}} &= 154/262 = 0.59 \\ \bar{p} &= (163+154)/(227+262) = 0.65 \\ Z &= \frac{p_{\text{new}} - p_{\text{old}}}{\sqrt{\bar{p} \cdot (1-\bar{p}) \cdot 1/n}} = 3.01 > 2.33 \end{split}$$

The statistic is in rejection region.

Esercizio

- Un processo produce cuscinetti per l'albero motore.
- Si preleva un campione di 85 cuscinetti, che risulta contenere 12 non-conformi.
- Il processo produttivo viene quindi rivisto. Si preleva un nuovo campione di 85 cuscinetti, che risulta contenere 8 non-conformi.
- Possiamo concludere con confidenza del 95% che la frazione di non-conformi è significativamente decresciuta?

Esercizio: p - value

- Il valore critico (quinto percentile) è $t_{0.05,23} = -1.71$
- Per 23 gradi di libertà, da tabella troviamo il decimo percentile $t_{0.1,23}=-t_{0.9,23}=-1.319.$
- La statistica (-1.67) è compresa fra il 5 ed il 10 percentile.
- Il p-value è calcolato integrando la distribuzione di $-\infty$ a -1.67. Concludiamo che 0.05 < p-value < 0.1

Vendite a scaffale vs spazio dedicato

$$\begin{split} H_0 \ : \mu_{\text{dedicato}} & \leq \mu_{\text{scaffale}} \\ H_1 \ : \mu_{\text{dedicato}} & > \mu_{\text{scaffale}} \end{split}$$

$$s_p = \sqrt{(350 + 157)/2} = 15.92$$

■ statistica
$$t = \frac{72 - 50.3}{s_p \sqrt{(1/10 + 1/10)}} = 3.05$$

- valore critico: $t_{0.95,18}$ =1.73
- \blacksquare Rifiutiamo H_0 : le vendite medie con spazio dedicato sono significativamente superiori a quelle dello scaffale.

Tempi di parcheggio

L'intervallo di confidenza per il tempo medio di parcheggio è:

$$1.21 \pm \frac{12.68}{\sqrt{14}} \cdot t_{0.95,13} = [-4.79, 7.21]$$

- e quindi la differenza nei tempi di parcheggio non risulta statisticamente significativa.
- Una conclusione analoga si può ottenere calcolando la statistica (0.35) e verificando che ricade all'interno dei valori critici (\pm 1.77).

Produzione di cuscinetti a sfera

Testiamo che dopo l'intervento il processo sia diventato meno difettoso:

$$\begin{split} H_0 \ : \pi_1 & \leq \pi_2 \\ H_1 \ : \pi_1 & > \pi_2 \end{split}$$

Produzione di cuscinetti a sfera

$$\begin{split} \bar{p} &= \frac{8+12}{85+85} = 0.118 \\ Z &= \frac{12/85-8/85}{\sqrt{.118(1-.118)\cdot(\frac{1}{85}+\frac{1}{85})}} = 0.95 \\ \text{valore critico: } \Phi^{-1}(1-\alpha) &= \Phi^{-1}(0.95) = 1.64 \\ \text{p-value } : 1-\Phi(Z) &= 1-\Phi(0.95) = 0.18 \end{split}$$

 \blacksquare II test non rifiuta H_0