平面の幾何 — 余弦定理

2つの地点の間の距離を知りたくても、その間に 山や池があって直接距離を測るのが難しいことが ある

こんなとき、第3の地点からの角度を含めた測量 データがあれば、知りたい距離を計算できること がある

* * *

AB 間の距離 n は、別の 2 つの辺の長さ l, m とその間の角度 θ から計算できる(A と B の間に池があってもかまわない)

この計算方法を与えるのが余弦定理である

$$n^2 = l^2 + m^2 - 2lm\cos\theta$$

この式を書き換えると、3辺の情報から、角度を知る公式にもなる

$$\cos\theta = \frac{l^2 + m^2 - n^2}{2lm}$$

余弦定理は、三平方の定理(ピタゴラスの定理)を 拡張した定理と見なせる

実際、 $\theta = 90^\circ$ のとき $\cos \theta = 0$ であるから、余弦 定理はピタゴラスの定理に一致する

$$n^2 = l^2 + m^2$$

* * *

余弦定理を座標で書き表してみる

まず、この 3 頂点が xy 平面にあるものと思って、ベクトルで表示する

$$\overrightarrow{OA} = (a, b)$$

$$\overrightarrow{OB} = (p, q)$$

$$\overrightarrow{BA} = (a - p, b - q)$$

とおくと、各辺の長さは、

$$l = \sqrt{a^2 + b^2}$$

$$m = \sqrt{p^2 + q^2}$$

$$n = \sqrt{(a-p)^2 + (b-q)^2}$$

と表せる

これを使って、 $\cos\theta = \frac{l^2 + m^2 - n^2}{2lm}$ の分子を計算すると、多くの項が打ち消し合って、

$$l^{2} + m^{2} - n^{2}$$

$$= a^{2} + b^{2} + p^{2} + q^{2} - ((a - p)^{2} - (b - q)^{2})$$

$$= 2ap + 2bq$$

となるので、余弦定理は、

$$\cos \theta = \frac{2(ap + bq)}{2lm}$$

$$\therefore ap + bq = lm \cos \theta$$

と書き換えられる

* * *

この式の両辺をあらためて観察してみる

$$ap + bq = lm \cos \theta$$

左辺に現れる a,b,p,q という数は、座標系を決めないと値が定まらない

たとえば、三角形が地面に描かれているとする 地面の上なので、好きな点を原点にとり、好きな 方向をx軸に選び、それと垂直にy軸を定める そうするとベクトル \overrightarrow{OA} や \overrightarrow{OB} の x 成分やy 成分 である a,b,p,q の値が定まるが、別の座標系をと れば、ベクトルの成分 a,b,p,q は別の値になる

しかし、右辺は、辺の長さや角度という三角形の 幾何に固有な量だけで表されている ap + bq は、どんな座標系でも同じ値になる、三角形に内在的な量なのだ

この重要な量 ap+bq を、2 つのベクトル \overrightarrow{OA} と \overrightarrow{OB} の内積あるいはスカラー積あるいはドット積という

ap + bq は、座標系のとり方に依存しない</mark>がゆえに重要な量である

* * *

■内積の座標による定義 ベクトル (a,b) と (p,q) の内積を

$$(a,b) \cdot (p,q) = ap + bq$$

と定義する

■内積の幾何的な定義 ベクトル \overrightarrow{OA} と \overrightarrow{OB} の内積を

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = |\overrightarrow{OA}||\overrightarrow{OB}|\cos\theta$$

と定義する

ここで、 θ は \overrightarrow{OA} と \overrightarrow{OB} のなす角を表す

* * *

この2つの定義が一致するというのが、

$$ap + bq = lm\cos\theta$$

という等式の意味である

* * *

ベクトルの直交について、次の関係が成り立つ

$$\overrightarrow{OA} \land \overrightarrow{OB}$$
が直交する $\Leftrightarrow \cos \theta = 0$
 $\Leftrightarrow \overrightarrow{OA} \cdot \overrightarrow{OB} = 0$