Observables

- Observables/measurements represented by Hermitian operators \hat{A} .
- Hermitian conjugate is defined as $< A\psi, \chi > = <\psi, A^{\dagger}\chi >$. Matrix representation is $(A^*)^t$.
- outcome of measurement is eigenvalue of \hat{A} . Spectral representation is $\hat{A} = \sum_i \alpha_i \ |i> < i|$ for eigenvalues α_i and eigenstates |i>.
- If $\hat{B} = \sum_j \beta_j \ |j> < j|$ and $\left[\hat{A}, \hat{B}\right] \neq 0$ then measuring \hat{A} and \hat{B} will not result in state collapsing to simultaneous eigenstate.

Mixed states vs pure states

- Pure state: definite quantum mechanical state.
- Mixed state is ensemble of pure states, each with associated classical probability of system being in that state.
- e.g. $|\psi>=\frac{1}{\sqrt{2}}(|0>+|1>)=|+>$ is pure, mixed state is $\left\{\left(\frac{1}{2},|0>\right),\left(\frac{1}{2},|1>\right)\right\}$. If \hat{B} has eigenstates |+> and |-> with eigenvalues 1,-1 (i.e. σ_1), then measuring \hat{B} on |+> then result will always be 1. But measuring \hat{B} on mixed state will randomly yield 1 or -1 with equal probability.
- Double slit experiment analog: mixed state is closing one slit in half of the cases, closing the other in the other half. Pure state: electron goes through both slits at the same time.

Density matrix

- $\hat{\rho} = |\psi\rangle\langle\psi|$ for pure state $|\psi\rangle$.
- $\hat{\rho} = \sum_i p_i \ |\psi_i> <\psi_i|$ for mixed state $\{(p_i,|\psi_i>)\}.$
- For any density matrix, ${\rm tr}(\hat{\rho})=1$ but ${\rm tr}(\hat{\rho}^2)=1$ iff $\hat{\rho}$ is pure state.
- Spectral decomposition: $\hat{A} = \sum_i \alpha_i |i> < i| = \sum_i \alpha_i P_i$. Probability of measuring result α_i is $\operatorname{tr}(\rho P_i)$.

Bloch sphere not as important to revise.

Bipartite systems

- Entangled vs separable states.
- Separable states: $|\psi\rangle\otimes|\varphi\rangle$.
- Entangled: sum of separable states which cannot be factorised into a separable state.
- If $|\psi>=\frac{1}{\sqrt{2}}(|0>\otimes|1>+|1>\otimes|0>)$, it has density matrix $\frac{1}{2}(|01><01|+|01><10|+|10><01|+|10><10|)$.
 - ▶ If Alice measures with operator A = |0> < 0| |1> < 1| then if her measurement is 1 then state collapses to |01>. If her measurement is -1 then state collapses to |10>.
 - ▶ Density matrix afterwards is $\frac{1}{2} |01> < 01| + \frac{1}{2} |10> < 10|$ if know Alice has measured but we don't know what she measured.
 - Reduced density matrix for Bob:
 - Before measurement: ${\rm tr}_A(\rho_{\rm before})=\frac{1}{2}(|1><1|+|0><0|)$ (only states kept are those where A and B bits agree). This is the density matrix of a mixed state.
 - After measurement: $\operatorname{tr}_B(\rho_{\operatorname{after}}) = \frac{1}{2}(|1><1|+|0><0|)$ i.e. same as before measurement.
 - So Bob's reduced density matrix is not affected by Alice's measurement.

Entanglement applications

- Don't learn QKD etc. by heart, learn the key ingredients. They are:
- 1. We can entangled information into an existing state: e.g. start with product state $|\psi\rangle\otimes|\beta_{00}\rangle$, then apply CNOT on first two qubits, this is used in teleportation.

• 2. Quantum systems do not have local realism: since it is possible to have measurement operators which do not commute.

Don't expect heavy computations about entropy chapter.