# **Density and Sparsity**

$$\rho = \frac{\langle k \rangle}{n} \qquad \langle k \rangle = \rho n$$



- The average degree  $\langle k \rangle$  is related to the density:
  - In a dense network, where  $\rho$  is approximately constant as  $n \to \infty$ ,
    - The mean degree  $\langle k \rangle$  grows linearly with n
  - In a sparse network:
    - The mean degree  $\langle k \rangle$  grows sublinearly with n (e.g.,  $\log n$ )
  - In an extremely sparse network:
    - The mean degree  $\langle k \rangle$  remains constant
    - Ex) Friendship networks (the maintenance of friendships is likely independent of world population)

More details in later lectures on 'network models'

## Real-world networks are far from complete

#### Most real-world networks are sparse

$$(|\mathbf{E}| \ll |\mathbf{E}|_{\text{max}}) \text{ or } (\langle k \rangle \ll n-1)$$

| Social networks (LinkedIn): | N=6,946,668   | ⟨k⟩=8.87                            |
|-----------------------------|---------------|-------------------------------------|
| Communication (MSN IM):     | N=242,720,596 | $\langle \mathbf{k} \rangle = 11.1$ |
| Coauthorships (DBLP):       | N=317,080     | ⟨k⟩=6.62                            |
| Internet (AS-Skitter):      | N=1,719,037   | $\langle k \rangle = 14.91$         |
| Roads (California):         | N=1,957,027   | ⟨k⟩=2.82                            |
| Proteins (S. Cerevisiae):   | N=1,870       | $\langle k \rangle = 2.39$          |

(Source: Leskovec et al., Internet Mathematics, 2009)

**Consequence:** Adjacency matrix is filled with zeros!

#### **Walks and Paths**

- Walk any sequence of nodes in a network such that every consecutive pair of nodes in the sequence is connected by an edge
  - A walk can intersect itself (possibly revisiting a node more than once)
  - [In undirected networks]: each edge can be traversed in either direction
  - [In directed networks]: each edge must be traversed in the direction of that edge





Ex) 
$$a \rightarrow b \rightarrow c \rightarrow d \rightarrow c \rightarrow g \rightarrow f \rightarrow g$$

#### **Walks and Paths**

- Path a walk that does not intersect itself
- Length of a walk in a network: #edges traversed along the walk (not #nodes)
  - The number of 'hops' from node to adjacent node
- How to calculate the number of walks of a given length  $\gamma$  on a network?
  - The total number of walks of length 2 from i to j via any node is:

$$N_{ij}^{(2)} = \sum_{k=1}^{n} A_{ik} A_{kj} = [A^2]_{ij} \quad ,$$

Where  $[...]_{ij}$  denotes the ijth element of the matrix (i-th row, j-th column)

#### **Walks and Paths**

• Then, the total number of walks of length 3 from i to j via k and l?

$$N_{ij}^{(3)} = \sum_{k=1}^{n} \sum_{l=1}^{n} A_{ik} A_{kl} A_{lj} = [A^3]_{ij} .$$

• Generalizing to walks of arbitrary length  $\gamma$ :

$$N_{ij}^{(\gamma)} = [A^{\gamma}]_{ij} .$$

• Then, the total number of **loops** of length  $\gamma$ ?

$$L_{\gamma} = \sum_{i=1}^{n} [A^{\gamma}]_{ii} = \operatorname{tr}(A^{\gamma}) .$$

# **Independent Paths**

- Two paths connecting a given pair of nodes are edge-independent if they share no edges.
- Two paths connecting a given pair of nodes are node-independent if they share no nodes (other than starting and ending nodes).
- If two paths are node-independent then they are also edge-independent (but, the reverse is not true).

## **Independent Paths**

Can you find edge-independent paths from A to B?



- Edge-independent paths are not unique.
- The number of independent paths(edge- or node-independent) from A to B cannot exceed A's degree nor B's degree.
- The smaller of the degrees of the two nodes gives an upper bound on the number of independent paths.

# Connectivity

- Connectivity: the number of independent paths between a pair of nodes
  - node connectivity: #node-independent paths between a pair of nodes
  - edge connectivity: # edge -independent paths between a pair of nodes



- edge connectivity 2
- node connectivity 1

The connectivity of a pair of nodes can be thought of as a measure of how strongly connected those nodes are.

#### **Cut Sets**



- Connectivity can also be thought of in terms of 'bottlenecks' between nodes.
  - Ex) Nodes A and B are connected by only one node-independent path due to node C:
- Node cut set: a set of nodes whose removal will disconnect a specified pair of the nodes
  - Ex) The removal of node C leads to no path from A to B (a cut set of size 1).
  - Ex) Other cut sets for A and B (a cut set larger than size 1)
- Edge cut set: a set of edges whose removal will disconnect a specified pair of nodes
- Minimum cut set: the smallest cut set disconnecting a specified pair of nodes
  - Ex) {C}: a minimum node cut set for nodes A and B

minimum cut set size = #independent paths (b.w. any pair of nodes)

We can obtain minimum cut set size by counting independent paths.

Maximum flow = (#edge-independent paths) X (edge capacity) (when the same maximum for every edge capacity is assumed)

#### Distance in a Network

- Distance in a network
  - Shortest or geodesic path between two nodes
  - The length of the shortest path (#edges along the shortest path)
  - Directed Networks: distance is not symmetric
- Diameter of a network
  - The maximum distance (shortest path) between two nodes in a network (the longest shortest path)





 $m{h}_{\mathrm{B,D}} 
eq m{h}_{\mathrm{D,B}}$ 

$$h_{
m A.D} = 2$$

$$h_{A,E} = 3$$

$$h_{\mathrm{A.X}} = \infty$$

$$h_{\mathrm{B,D}} = \mathbf{1}$$

$$h_{\mathrm{D,B}} = 2$$

#### Components

- Component: a subset of nodes of a network, where exists at least one path between any two nodes
  - No path between any pair of nodes in different components
- The majority of nodes in the real-world networks are connected, while the others are fragmented.



## **Components – Undirected Networks**

- Connected Network
  - Any two vertices can be joined by a path
- A disconnected graph is made up by two or more connected components



#### **Bridge Edge:**

- If erased, the graph becomes disconnected
- Which one? (A, F)

#### **Articulation Node:**

- If erased, the graph becomes disconnected
- Which one?

A, F

## **Components – Undirected Networks**

- Connected Network
  - Any two vertices can be joined by a path
- A disconnected graph is made up by two or more connected components



#### **Giant Component:**

- Largest Component
- Which one?



#### **Isolated Node:**

- Degree is zero
- Which one?



## **Components – Adjacency Matrix**

- Adjacency matrix in a block-diagonal form:
  - Nonzero elements are in a block
  - All other elements are zero



## **Components – Adjacency Matrix**

- Adjacency matrix in a block-diagonal form:
  - Nonzero elements are in a block
  - All other elements are zero



## **Components – Directed Networks**

- Strongly connected component (SCC)
  - Any two nodes can be reachable by paths
- Weakly connected component (WCC)
  - Connected but not strongly connected



## **Components – Directed Networks**

- Strongly connected component (SCC)
  - Any two nodes can be reachable by paths



- Weakly connected component (WCC)
  - Connected but not strongly connected



**Every SCC with more than one node must contain at least one cycle.** 

## **Components – Directed Networks**

- Out-component (of an arbitrary node V)
  - a set of nodes that are reachable via directed paths starting from a given node V
- In-component (of an arbitrary node V)
  - a set of nodes from which there is a directed path to a given node V



[Out-component of node A]



[Out-component of node B]