Final Talk

Simulation of EEG Activity based on Sequential Sampling Models

M.Sc. Business Informatics
Timo Zaoral

Table of Content

- 1. Introduction
- 2. Motivation & related work
- 3. Approach
- 4. Implementation & Integration
- 5. Results
- 6. Discussion

Introduction

What is this thesis about?

- Human decision-making
- Sequential Sampling Models (SSMs)
- Simulating **EEG activity**

Why is this important?

- Insights interpreting decision-related signals
- Open debate in research
- Simulated EEG data is useful for multiple tasks

Main Research Goal:

- Extension development
- Integration into UnfoldSim.jl
- can replicate decision-making

Changing coherence moving dots Experiment

Evidence-dependent structural dynamics of the component centroparietal positivity (CPP) in the brain

Kelly et al. Neurophysiology of Human Perceptual Decision-Making 2021 [1]

Kelly et al. Neurocomputational mechanisms of prior-informed perceptual decision-making in humans 2021 [2]

6

Frömer et al. Common neural choice signals can emerge artefactually amid multiple distinct value signals 2024 [3]

Understanding

Insights interpreting decision-related signals

Deconvolution

Techniques can
separate overlapping
components but need
validation

EEG Overlap

Signals overlap, making it hard to distinguish actual decision-making activity

This study provides a flexible EEG simulation extension

to test for example such models systematically

Approach

1. Theoretical Description of Sequential Sampling Models

Brown et al. The simplest complete model of choice response time: Linear ballistic accumulation 2008 [4]

Kelly et. al Model of neural activity

Approach

Kelly et. al Model of neural activity

Approach

2. Reimplementation of the Kelly

et. al Model

3. Integration into UnfoldSim

2.1 Understanding the code

2.2 Structured and methodical reimplementation

2.3
Parameters
Docu.

```
u1 = Z .+ (U.+randn(rng).*Su) .* timevec;
u1 = u1 .+ (rand(rng)-.5)*Sz;
u2 = Z .+ (U+randn(rng).*Su) .* timevec;
u2 = u2 .+ (rand(rng)-.5)*Sz;
```

3.1 Introduction to UnfoldSim.jl usage

3.2 Adapting implementation to package paradigms

3.3 Splitting functionalities and documenting code

Implementation & Integration – Complete picture

Test

```
@testset "sequentialSamplingModelSimulation" begin
   \Delta t = 1 / fs # time step
   tEnd = 1.0 # trial Duration
   time vec = 0:∆t:tEnd # time base
   max length = tEnd / Δt
   rng = StableRNG(1)
   @testset "KellyModel" begin
       assert event onset = 0.663
       assert_drift_rate = "drift_rate"
       km = KellyModel(event onset = assert event onset, drift rate = assert drift rate)
       @test km.event onset == assert event onset
       @test km.drift_rate == assert_drift_rate
   @testset "KellyModel_simulate_cpp" begin
       boundary = 1.0
       result rt, result trace = UnfoldSim.KellyModel simulate cpp(
           KellyModel(boundary = boundary),
           time vec,
       @test size(result rt) == ()
       @test size(result trace) == (501,)
       @test isapprox(result_rt, 399.6903067274333, atol = 1e-8)
       @test any(result_trace .== 0)
       @test any(result trace .>= boundary)
       result sim rt, result sim trace = UnfoldSim.SSM_Simulate(rng, KellyModel(), fs, max length)
       @test result rt == result sim rt
       @test result trace == result sim trace
```

Documentation

```
SSM_Simulate(rng, model::KellyModel, sfreq, max_length)
Generate response time and evidence Vector of max length by using the Kelly Model for the simulation.
 - `rng::StableRNG`: Random seed to ensure the same traces are created for reconstruction.
 - `model::KellyModel`: SequentialSamplingModel to simulate the evidence and response time.
  `sfreq::Real`: sample frequency used to simulate the signal.
   `max_length::Int`: maximum length of the simulated signal.
# Returns
 - `Float64`: Simulated response time for the trial.
 - `Vector{Float64}`: evidence values over time. The output dimension is `c.max_length`.
# Examples
 ```julia-repl
julia> model = KellyModel()
 julia> SSM_Simulate(StableRNG(1), model, 500, 500)
Float64, Vector{Float64}:
(96.65745162948949, [0.0 0.0 ... 0.0 0.0])
function SSM_Simulate(rng, model::KellyModel, sfreq, max_length)
```





### Results

### 1. Simulation Space

- 1. Setup for all model simulations
- 2. LBA
- 3. DDM
- 4. KellyModel

### 2. Use Case

- 1. Setup for the use case
- 2. Results of a basic overlap deconvolution
- 3. Results of the simulated data

# Results – Simulation Space - Setup

### Design



#### **Onsets**

### **Components**

```
components = Dict(
 'S' => [stimulus],
 'C' => [drift_component],
 'R' => [response]
)
```



#### **Simulation**

```
data, events = UnfoldSim.simulate(
 StableRNG(12),
 design_rep,
 components,
 seq_onset,
 NoNoise()
)
```

# Results – Simulation Space - LBA

### Legend

Stimulus(S) Component(C) Response(R)





own illustration

# Results – Simulation Space - DDM

### Legend

Stimulus(S) Component(C) Response(R)





# Results – Simulation Space - KellyModel

### Legend

Stimulus(S) Component(C) Response(R)





# Results – No component activity after deconv



Frömer et al. Common neural choice signals can emerge artefactually amid multiple distinct value signals 2024 [3]

# Results – Overlap Simulation - LBA

### Legend

Stimulus(S) Component(C) Response(R)





# Results – Overlap Simulation - LBA



# Results – No component activity after deconv

### Legend

Stimulus(S) Response(R)





### Discussion



#### **Main Contributions:**

- Extension for decision-making research
- Model-Based EEG Simulation
- Overlap & Deconvolution Use Cases



#### **Limitations:**

- Biological parameter validation
- Integration of other models
- Deconv could be further investigated (RIDE)

### **Possible Next Steps**

- Refining EEG simulations & validating with real EEG data
- Parameter optimization study & integration of new models

# Questions?

### Literature

- [1]: Redmond G. Connell and Simon P. Kelly. Neurophysiology of human perceptual decision making. Annual Review of Neuroscience, 44(Volume 44, 2021):495–516, 2021.
- [2]: Kelly, S. P., Corbett, E. A., & O'Connell, R. G. (2021). Neurocomputational mechanisms of prior informed perceptual decisionmaking in humans. Nature Human Behaviour, 5(4), 467–481. https://doi.org/10.1038/s41562020009679
- [3]: Frömer, R., Nassar, M. R., Ehinger, B. V., & Shenhav, A. (2024). Common neural choice signals can emerge artefactually amid multiple distinct value signals. Nature Human Behaviour, 8(11), 2194 2208. https://doi.org/10.1038/s4156202401971z
- [4]: S. D. Brown and A. Heathcote, "The simplest complete model of choice response time: Linear ballistic accumulation," Cognitive Psychology, vol. 57, no. 3, pp. 153–178, 2008, doi: https://doi.org/10.1016/j.cogpsych.2007.12.002.