Hilberts drittes Problem

Jannis Klingler

Bachelorarbeit

Zur Erlangung des akademischen Grades Bachelor of Science

vorgelegt am 27. Februar 2020

Albert-Ludwigs-Universität Freiburg

Institut für Mathematik

Seminar: Numberphile Betreuung: Dr. Oliver Bräunling

Vorgelegt von: Jannis Klingler

Unterer Mühlenweg 57

79114 Freiburg im Breisgau

jannis-klingler@web.de

Matrikelnummer: 4331982

Studiengang: Mathematik

Nebenfach: Volkswirtschaftslehre Bearbeitungszeitraum: 27.11.2019 bis 27.02.2020

ERKLÄRUNG ZUR BACHELORARBEIT

Datum, Ort

Hiermit versichere ich, dass die vorliegende Arbeit von mir selbstständig verfasst wurde und dass keine anderen als die angegebenen Quellen und Hilfsmittel benutzt wurden. Sämtliche Stellen der Arbeit, die im Wortlaut oder dem Sinn nach Publikationen anderer Autoren entsprechen, wurden gekennzeichnet. Diese Erklärung bezieht sich auch auf in der Arbeit enthaltene Grafiken und bildliche Darstellungen. Darüber hinaus versichere ich, dass diese Arbeit nicht und auch nicht auszugsweise bereits für eine andere Prüfung angefertigt wurde.

Unterschrift

Inhaltsverzeichnis

V	orwo	rt	1			
1	Einführung					
	1.1	Polytope	3			
	1.2	Zerlegungsgleichheit				
2	Zer	Zerlegungsgleichheit in der Ebene				
	2.1	Bolyai-Gerwien Theorem	6			
3	Zerlegungsgleichheit von Polyedern					
	3.1	Tensoren	15			
	3.2	Die Dehn-Invariante	16			
	3.3	Lokalisierung des Tensorprodukts	18			
	3.4	Dehns Lösung	26			
4	Erg	Ergänzungsgleichheit von Polytopen				
	4.1	Ein wenig Polyedertheorie	31			
	4.2	Zylinderklassen	36			
	4.3	Hilfssatz	40			
	4.4	Ergänzungsgleichheit und Zerlegungsgleichheit	46			
T.i	torst	urvorzoichnis	55			

Vorwort

Schon in der Antike beschäftigten sich die Menschen mit der Berechnung von Flächeninhalten und Volumina geometrischer Figuren. So auch der griechische Mathematiker Euklid. Dabei galt es vor allem einfache Methoden zur Berechnung zu finden. So versuchte man schon damals komplizierte Objekte mit bereits bekannten Objekten darzustellen, um diese besser berechnen zu können. Beispielweise greift man bei der Berechnung des Flächeninhalts eines Dreiecks auf die Berechnung bei einem Parallelogramm zurück und hier wiederum auf die Berechnung bei einem Rechteck. Je nachdem wie detailliert manche Objekte sind, gestaltet sich dies jedoch als äußerst schwierig. Wir wollen uns in dieser Arbeit mit Polytopen, salopp gesagt mit Vielecken, beschäftigen. Zwei Polytope sind zerlegungsgleich, wenn sie sich in endlich viele paarweise kongruente Stücke zerlegen lassen. Die Frage, ob das Volumen zweier Polytope genau dann gleich ist, wenn diese zerlegungsgleich sind, spielt in dieser Arbeit eine zentrale Rolle. Eine derartige Aussage würde es erlauben, auf die Methoden wie die Exhaustionsmethode bei der Volumenberechung von unterschiedlichen Figuren, zu verzichten. In der Ebene bewiesen der ungarische Mathematiker Farkas Bolyai (1832) und der deutsche Polizist und Mathematiker Paul Gerwien (1833) die Aussage unabhängig voneinander (siehe dazu auch [Bol78]). Es stellt sich nun die Frage, ob die Aussage auch im dreidimensionalen Raum wahr ist. Der Mathematiker Carl Friedrich Gauß stieß bereits 1844 auf diese Frage, wie sich auf zwei Briefe, die in Gauß' Gesammelten Werken 1900 veröffentlicht wurden, zurückverfolgen lässt (siehe dazu auch [AZ18]). Als am 8. August 1900 der deutsche Mathematiker David Hilbert auf dem zweiten internationalen Mathematikerkongress seine berühmte Liste von 23 mathematischen Problemen vorstellte, stellte er diese Frage als sein drittes Problem vor. Hilbert vermutete bereits, dass die Aussage nicht stimmt. Er sagte, dass ein Unmöglichkeitsbeweis erbracht sei, sobald es gelinge

"zwei Tetraeder mit gleicher Grundfläche und von gleicher Höhe anzugeben, die sich auf keine Weise in congruente Tetraeder zerlegen lassen und die sich auch durch Hinzufügung congruenter Tetraeder nicht zu solchen Polyedern ergänzen lassen, für die ihrerseits eine Zerlegung in congruente Tetraeder möglich ist." (Hilbert 1900)¹

Bereits ein Jahr nach dem Vortrag löste Hilberts Schüler Max Dehn das Problem. Dehn definierte die sogenannte Dehn-Invariant, eine Invariante, die sich auf die Kanten eines Polyeders

¹Vergleiche dazu auch [Hil00]

bezieht und sich beim Zerschneiden von Polyedern nicht ändert. Die Dehn-Invariante ist für jeden Polyeder also, wie das Volumen, ein ausgezeichnetes Charakteristikum. Wir wollen in dieser Arbeit zunächst die Zerlegungsgleichheit von Polytopen genauer betrachten, um dann die Aussage in der Ebene, das Bolyai-Gerwien Theorem, zu beweisen. Danach wollen wir zum dreidimensionalen Fall übergehen und uns Dehns Lösung anschauen. Als zweiten größeren Abschnitt wollen wir den Zusammenhang zwischen der Zerlegungsgleichheit und der schon von Hilbert erwähnten Ergänzungsgleichheit von Polytopen betrachten und uns überlegen, ob eine Unterscheidung von Zerlegungs- und Ergänzungsgleichheit bei der Frage der Volumenberechnung überhaupt notwendig ist.

1 Einführung

1.1 Polytope

Zu Beginn wollen wir Polytope formal über Vektorräumen einführen. Später werden wir dann vor allem auf dem Euklidischen Raum \mathbb{R}^d arbeiten. Wir betrachten dazu einen Vektorraum V über einem Körper k mit Dimension d.

Wiederholung (Dual-Raum). Der Dualraum V^* eines k-Vektorraums V ist die Menge aller linearen Abbildungen von V in den Körper k.

Wir bemerken, dass der Dualraum wieder ein Vektorraum ist.

Definition 1.1 (Halbraum). Ein *Halbraum* in einem reellen Vektorraum ist eine Teilmenge der Form

$$H = \{ v \in V \mid \alpha(v) \le r \},\$$

wobei $\alpha \in V^* \setminus \{0\}$ und $r \in \mathbb{R}$. Verwenden wir in der Definition die Gleichheit dann erhalten wir eine *Hyperebene*.

Definition 1.2 (konvexes Polytop). Ein konvexes d-Polytop P in einem d-dimensionalen reellen Vektorraum V ist der Schnitt endlich vieler Halbräume. P ist beschränkt, falls für jedes $\alpha \in V^* \setminus \{0\}$ ein $r \in \mathbb{R}$ existiert, s. d. $\alpha(x) \leq r$ für alle $x \in P$ gilt.

Bemerkung 1.3. Der Schnitt zweier konvexer d-Polytope ist offensichtlich wieder ein konvexes d-Polytop.

Definition 1.4. Wir wollen die Dimension eines konvexen d-Polytops P definieren als das Maximum der Anzahl der linear unabhängigen Vektoren, die wir in P finden. Hierbei ist es auch möglich, dass das, durch die Halbräume entstehende, konvexe d-Polytop von niedrigerer Dimension ist als der ursprünglich zugrunde liegende Vektorraum, das Polytop also keine inneren Punkte hat. Ein solches Polytop wollen wir uneigentlich nennen. Ein Polytop, dessen Dimension gleich der des Vektorraums ist bzw. das innere Punkte besitzt, nennen wir dementsprechend eigentlich. Wenn von Polytopen die Rede ist sprechen wir, falls nicht anders genannt, immer von eigentlichen Polytopen. Wir wollen zwei konvexe d-Polytope disjunkt nennen, falls der Schnitt der beiden Polytope ein uneigentliches Polytop ist, also eine niedrigere Dimension hat, als der zugrunde liegende Vektorraum. Für die Vereinigung zweier disjunkter, konvexer d-Polytope P und Q schreiben wir P + Q.

Definition 1.5 (Polytop). Ein d-Polytop P ist die Vereinigung endlich vieler disjunkter, konvexer, beschränkter d-Polytope.

Wir nennen ein 0-dimensionales Polytop eine *Ecke*, ein 1-dimensionales Polytop eine *Strecke* bzw. *Kante*, ein 2-dimensionales Polytop eine *Polygon* und ein 3-dimensionales Polytop einen *Polyeder*.

Die Eigenschaften, die wir oben für konvexe d-Polytope genannt haben, lassen sich genauso auf d-Polytope übertragen. Weiter gilt nun, dass die Vereinigung von d-Polytopen wieder ein d-Polytop ist. Wir werden in dieser Arbeit viel mit der Vereinigung von Polytopen arbeiten. Hierbei impliziert die Schreibweise P+Q bei der Vereinigung von Polytopen, deren Disjunktheit. Wir schreiben im Folgenden statt d-Polytop einfach Polytop. Weiter wollen wir als zugrunde liegenden Vektorraum \mathbb{R}^d betrachten.

Definition 1.6 (Kongruenz). Wir nennen zwei Polytope P und Q kongruent, wenn es eine Isometrie g gibt, s. d. g(P) = Q. Wir schreiben dann $P \cong Q$.

Mit Isometrien meinen wir hier längenerhaltende Affinitäten, also bijektive affine Abbildungen, die den Abstand zweier beliebiger Punkte erhalten. Isometrien sind Bewegungen, d. h. sie setzen sich aus einer Translation und einer Drehung zusammen. Zu jeder Isometrie $f: \mathbb{R}^d \to \mathbb{R}^d$ lässt sich also ein Vektor $\alpha \in \mathbb{R}^d$ und eine orthogonale Matrix $U \in O(d)$, also eine Drehung finden, s. d. wir für alle $x \in \mathbb{R}^d$ die Darstellung $f(x) = \alpha + Ux$ erhalten. Da das Skalarprodukt translationsinvariant ist und invariant unter Drehungen, ist das Skalarprodukt auch invariant unter Isometrien. Weiter bilden Isometrien Halbräume wieder auf Halbräume ab und damit auch Polytope auf Polytope. Die Menge der Isometrien bildet, mit der Hintereinanderausführung von Abbildungen als Verknüpfung und der Identitätsabbildung als neutralem Element, eine Gruppe. Wir wollen diese Gruppe die Isometriegruppe nennen. Wir bemerken außerdem, dass wir die Isometrien auf Translationen einschränken können und erhalten so eine Untergruppe der Isometriegruppe, die Tranlationsgruppe. Die Translationsgruppe hat als Untergruppe also die gleichen Eigenschaften wie die Isometriegruppe. Wir werden diese im späteren Verlauf benötigen.

Bemerkung 1.7. Wir stellen fest, dass Kongruenz von Polytopen eine Äquivalenzrelation ist. Die Reflexivität und Symmetrie sind klar. Es bleibt die Transitivität zu zeigen, dazu seien P, Q, R drei d-Polytope mit $P \cong Q$ und $Q \cong R$. Es gibt also Isometrien f und g, s. d. f(P) = Q und g(Q) = R gilt. Dann ist $g \circ f$ wieder eine Isometrie und wir erhalten

$$(g \circ f)(P) = g(f(P)) = g(Q) = R,$$

also $P \cong R$.

Wir können uns nun mit der Zerlegungsgleichheit von Polytopen beschäftigen.

1.2 Zerlegungsgleichheit

Definition 1.8 (Zerlegungsgleichheit). Zwei Polytope P und Q heißen zerlegungsgleich, wenn es endlich viele Polytope $P_1, \ldots, P_n, Q_1, \ldots, Q_n$ mit $P = P_1 + \ldots + P_n, Q = Q_1 + \ldots + Q_n$ gibt, s. d.

$$P_i \cong Q_i$$

für alle i = 1, ..., n. Wir schreiben $P \sim Q$.

Wir stellen fest, dass die Kongruenz zweier Polytope auch deren Zerlegungsgleichheit impliziert. Dazu betrachten wir als Zerlegung einfach die Polytope selbst. Die Zerlegungsgleichheit von Polytopen ist eine Äquivalenzrelation. Reflexivität und Symmetrie sind klar. Die Transitivität wird in der folgenden Proposition bewiesen.

Proposition 1.9 (Transitivität der Zerlegungsgleichheit). Seien P, Q und R Polytope und es gelte $P \sim Q$ und $Q \sim R$. Dann folgt $P \sim R$.

Der Beweis hiervon richtet sich nach [Bol78] [Lemma 1, Kapitel 2].

Beweis. Seien die Zerlegungen der Polytope wie folgt gegeben

$$P = P_1 + \ldots + P_n$$

 $Q = Q_1 + \ldots + Q_n = Q'_1 + \ldots + Q'_m$
 $R = R_1 + \ldots + R_m$

wobei $P_i \cong Q_i$ für alle $i=1,\ldots,n$ und $Q_j'\cong R_j$ für alle $j=1,\ldots,m$. Seien f_1,\ldots,f_n die Isometrien, die alle Q_i in P_i überführen, d. h. $f_i(Q_i)=P_i$ und g_1,\ldots,g_m die Isometrien, die alle R_j in Q_j' überführen, d. h. $g_j(R_j)=Q_j'$. Wir definieren

$$F_{ij} := Q_i \cap Q'_j,$$

für i = 1, ..., n und j = 1, ..., m. Beachte, dass F_{ij} leer sein kann. Zwei verschiedene F_{ij} sind disjunkt, denn für $i_1, i_2 \in \{1, ..., n\}$ mit $i_1 \neq i_2$ gilt

$$F_{i_1j} \cap F_{i_2j} = (Q_{i_1} \cap Q'_j) \cap (Q_{i_2} \cap Q'_j) = (Q_{i_1} \cap Q_{i_2}) \cap Q'_j.$$

Da Q_{i_1} und Q_{i_2} disjunkt sind, d. h. der Schnitt niedrigerdimensional, als die Dimension des umgebenen Vektorraums ist, ist auch dieser Schnitt mit Q'_j niedrigerdimensional, also sind F_{i_1j} und F_{i_2j} disjunkt. Außerdem gilt

$$\bigcup_{j=1}^{m} F_{ij} = \bigcup_{j=1}^{m} \left(Q_i \cap Q_j' \right) = Q_i \cap \left(\bigcup_{j=1}^{m} Q_j' \right) = Q_i \cap Q = Q_i. \tag{1}$$

Also lässt sich P folgendermaßen darstellen

$$P = \bigcup_{i=1}^{n} P_i = \bigcup_{i=1}^{n} f_i(Q_i) \stackrel{1}{=} \bigcup_{i=1}^{n} f_i \left(\bigcup_{j=1}^{m} F_{ij} \right) = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} f_i(F_{ij}),$$

und für R gilt analog

$$R = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} g_j(F_{ij}).$$

Damit haben wir sowohl für P als auch für R eine Zerlegung in disjunkte Polytope gefunden. Als letztes überlegen wir uns, dass gilt $f_i(F_{ij}) \cong g_j(F_{ij})$. Wir betrachten hierzu die Isometrie $g_j \circ f_i^{-1}$, dann gilt $g_j(f_i^{-1}(f_i(F_{ij}))) = g_j(F_{ij})$. Also finden wir für P und R jeweils eine Zerlegung aus kongruenten Polytopen und damit sind auch P und R zerlegungsgleich in Formeln $P \sim R$.

Wir wollen nun den Begriff des Volumens eines Polytops betrachten. Dabei ist vor allem die Invarianz des Volumens unter Zerschneidung von Polytopen, die wir in Proposition 1.12 beweisen werden, ein wichtiges Resultat. Mit dem Volumen vol eines Polytops meinen wir im Folgenden das d-dimensionale Lebesgue-Maß. Da unsere Polytope abgeschlossene Mengen sind, liegen sie in der Borelalgebra und sind damit auch Lebesgue-messbar.

Proposition 1.10. Seien P und Q zwei Polytope, s. d. $P \cong Q$, dann gilt vol(P) = vol(Q).

Beweis. Sei f also die Isometrie, s. d. f(P) = Q. Dann finden wir ein $\alpha \in \mathbb{R}^d$ und eine orthogonale Matrix $U \in O(d)$, s. d. für alle $x \in \mathbb{R}^d$ gilt $f(x) = \alpha + Ux$. Damit ergibt sich die Aussage mit der Transformationsformel aus der Analysis (siehe auch [Kuw17, Satz 4.7]). \square

Lemma 1.11. Seien P und Q zwei disjunkte Polytope, dann gilt

$$vol(P+Q) = vol(P) + vol(Q).$$

Beweis. Seien P und Q zwei Polytope in \mathbb{R}^d mit $k := dim(P \cap Q) < d$. Es gilt nun

$$vol(P+Q) = vol(P) + vol(Q) - vol(P \cap Q).$$

Wir wollen also zeigen, dass der Schnitt von P und Q eine Nullmenge bezüglich unseres Maßes ist. Wir definieren $\mathfrak{L}:=P\cap Q\subset \mathbb{R}^k$. Sei nun $M:=\mathfrak{L}\times [0,1]^{d-k}\subset \mathbb{R}^d$ ein d-dimensionaler Quader, der \mathfrak{L} einschließt. Für die Aufzählung $\mathfrak{L}_q:=\mathfrak{L}+(0,q)$, wobei $q\in (\mathbb{Q}\cap [0,1])^{d-k}$, gilt dann mit der σ -Additivität des Lebesgue-Maßes

$$vol\left(\bigcup_{q} \mathfrak{L}_{q}\right) = \sum_{q} vol(\mathfrak{L}_{q}),$$
 (2)

da diese Aufzählung abzählbar ist und die einzelnen \mathfrak{L}_q jeweils einen leeren Schnitt haben. Es gilt also mit der Monotonie und der Translationsinvarianz des Lebesgue-Maßes

$$\infty > vol(M) \ge vol\left(\bigcup_{q} \mathfrak{L}_{q}\right) \stackrel{2}{=} \sum_{q} vol(\mathfrak{L}_{q}) = \sum_{q} vol(\mathfrak{L}).$$

Also muss gelten $vol(\mathfrak{L}) = 0$, da wir eine abzählbar große Summe haben. Damit ergibt sich

$$vol(P+Q) = vol(P) + vol(Q).$$

Wir stellen fest, dass dieser Beweis über eine beliebige endliche Anzahl von disjunkten Polytopen funktioniert. Mit diesem Resultat ergibt sich die folgende Proposition.

Proposition 1.12. Seien P und Q zerlegungsgleiche Polytope, dann gilt vol(P) = vol(Q).

Beweis. Seien $P = P_1 + \ldots + P_n$ und $Q = Q_1 + \ldots + Q_n$ die Zerlegungen von P und Q, also $P_i \cong Q_i$ für alle $i = 1, \ldots, n$. Mit Proposition 1.10 und Lemma 1.11 erhalten wir

$$vol(P) = vol(P_1 + ... + P_n) = \sum_{i=1}^{n} vol(P_i) = \sum_{i=1}^{n} vol(Q_i) = vol(Q_1 + ... + Q_n) = vol(Q).$$

Wir haben nun die nötigen Voraussetzungen, um uns den Fall in der Ebene anzuschauen. Wir wollen also beweisen, dass zwei Polygone genau dann zerlegungsgleich sind, wenn sie das gleiche Volumen haben. Diese Aussage liefert uns das Bolyai-Gerwien Theorem.

2 Zerlegungsgleichheit in der Ebene

2.1 Bolyai-Gerwien Theorem

Im Folgenden setzen wir die Dimension d auf 2 d. h. wir betrachten Polygone. Dieses Kapitel richtet sich nach dem zweiten Kapitel von [Bol78].

Lemma 2.1. Sei P ein Dreieck, dann gibt es ein Rechteck Q, s. d. $P \sim Q$.

Beweis. Sei P das Dreieck mit den Ecken a, b, c und sei o.B.d.A ab die längste Seite. Wir zeichnen nun die Lotstrecke auf der Strecke \overline{ab} durch den Punkt c ein und nennen den Lotfußpunkt d. Der Punkt d liegt auf der Strecke \overline{ab} , da sonst \overline{ab} nicht die längste Seite wäre. Nun halbieren wir die Lotstrecke \overline{cd} und zeichnen die Lotgerade durch die Punkte m und n auf dem Mittelpunkt e der Strecke cd ein (m und n sind hierbei die Schnittpunkte dieser Lotgeraden mit dem Dreieck P). Da \overline{cd} senkrecht auf \overline{ab} und die Lotgerade durch die Punkte m und nsenkrecht auf \overline{cd} ist, sind \overline{ab} und die Lotgerade parallel. Wir bilden erneut die Lotgeraden auf ab durch die Punkte a und b. Wir nennen den Schnittpunkt der Lotgerade durch a mit der Lotgerade, die durch m und n verläuft, f und den Schnittpunkt der Lotgerade durch bmit der Lotgerade, die durch m und n verläuft, g. Dadurch erhalten wir ein Rechteck Q mit den Eckpunkten a, b, g, f. Wir stellen fest, dass die Dreiecke mit den Eckpunkten m, e, c und a, m, f, welche in Abbildung 1 grau hinterlegt sind, kongruent sind. Da mit dem Strahlensatz der Winkel im Punkt m in den beiden Dreiecken gleich ist. Somit haben die Dreiecke jeweils drei gleiche Winkel und sind damit kongruent. Weiterhin sind mit dem gleichen Argument die Dreiecke mit den Eckpunkten e, n, c und b, g, n, welche weiß hinterlegt sind, kongruent. Damit lassen sich P und Q jeweils in die beiden kongruenten Dreiecke und das schraffierte Trapez, mit den Eckpunkten a, b, n, m, zerlegen und sind somit zerlegungsgleich.

Abbildung 1: Zerlegung eines Dreiecks in ein Rechteck

Lemma 2.2. Zwei beliebige Rechtecke mit dem gleichen Flächeninhalt sind zerlegungsgleich.

Abbildung 2: Zerlegung zweier Rechtecke

Beweis. Seien P und Q zwei Rechtecke mit dem gleichen Flächeninhalt, d. h. falls h_P die Höhe und b_P die Breite des Rechtecks P und h_Q die Höhe und b_Q die Breite des Rechtecks Q sind, dann soll gelten $h_P \cdot b_P = h_Q \cdot b_Q$ also auch

$$\frac{b_P}{h_Q} = \frac{b_Q}{h_P}. (3)$$

Seien o, a, b, c die Eckpunkte des Rechtecks P und o, m, n, p die Eckpunkte des Rechtecks Q, siehe Abbildung 2. Wir verschieben hier Q so auf P, dass beide eine gemeinsame Ecke o mit rechtem Winkel haben. Dies ändert nichts am Resultat. Die Höhe h_P soll also der Länge der Strecken \overline{co} und \overline{ab} entsprechen. Die Breite b_P soll der Länge der Strecken \overline{oa} und \overline{bc} entsprechen. Analog soll h_Q der Länge der Strecken \overline{po} und \overline{mn} und b_Q der Länge der Strecken \overline{om} und \overline{mp} entsprechen. Wegen Gleichung 3 sehen wir also, dass die Strecken \overline{mc} und \overline{ap} parallel sind. Außerdem stellen wir fest, dass gilt

$$(b_P - b_Q)h_P = b_P h_P - b_Q h_P = h_Q b_Q - b_Q h_P = b_Q (h_Q - h_P)$$

also auch

$$\frac{b_P - b_Q}{h_Q - h_P} = \frac{b_Q}{h_P}.$$

Damit folgt, dass die Dreiecke omc und dbn ähnlich sind, d. h. sie haben die gleichen Seitenverhältnisse und folglich sind die Strecken \overline{mc} und \overline{nb} parallel. Hierbei sei d der Schnittpunkt der Strecken \overline{mn} und \overline{bc} . Also sind die drei Strecken \overline{mc} , \overline{ap} und \overline{nb} parallel.

Nun unterscheiden wir zwei Fälle

- 1. Fall: Die Verbindungsstrecke \overline{ap} der Eckpunkte schneidet das Rechteck omdc in den Punkten e, mit der Seite \overline{dc} , und f, mit der Seite \overline{md} , siehe Abbildung 2. Es gilt $2b_Q \geq b_P$. Also sind die beiden in der Abbildung grau hinterlegten Dreiecke maf und cep und die beiden in der Abbildung hellgrau hinterlegten Dreiecke abe und fnp kongruent. Mit dem übrig gebliebenen, in der Abbildung schraffierten Fünfeck omfec ist unsere Zerlegung komplett.
- 2. Fall: Die Verbindungsstrecke \overline{ap} der Eckpunkte schneidet das Rechteck omdc nicht, siehe Abbildung 3. Es gilt also $2b_Q < b_P$. Sei nun e der Mittelpunkt der Strecke \overline{oa} . Weiter sei k die kleinste natürliche Zahl, die angibt, wie oft man die Strecke \overline{om} entlang der Strecke \overline{oa} legen muss, s. d. der äußere Eckpunkt der k-ten Verlegung der Strecke \overline{om} nicht mehr auf der Strecke \overline{oe} liegt, sondern auf der Strecke \overline{ea} . Diesen Eckpunkt wollen wir t nennen. Nun zerlegen wir das Rechteck Q in k Rechtecke, deren Basis parallel ist zur Strecke \overline{om} , die wir nun entlang der neu enstandenen Strecke \overline{ot} legen. Wir erhalten, somit das zu Q zerlegungsgleiche Rechteck otuv. Sei die Breite dieses Rechtecks nun b', die die Bedingung

$$2b' > b_P$$

erfüllt. Damit können wir nach dem ersten Fall sagen, dass die Rechtecke P und otuv zerlegungsgleich sind. Mit der Transitivität der Zerlegungsgleichheit (Proposition 1.9) sind also auch P und Q zerlegungsgleich.

Abbildung 3: Zerlegung zweier Rechtecke

Damit sind P und Q zerlegungsgleich.

Satz 2.3 (Bolyai-Gerwien Theorem). Zwei beliebige Polygone mit dem gleichen Flächeninhalt sind zerlegungsgleich.

Beweis. Sei P ein Polygon. Dann kann P, wie wir später in Satz 4.3 sehen werden, in endlich viele disjunkte Dreiecke zerlegt werden und jedes dieser Dreiecke ist nach Lemma 2.1 zerlegungsgleich zu einem Rechteck. Wir finden also für P die Darstellung

$$P \sim P_1 + \ldots + P_n$$

wobei P_1, \ldots, P_n Rechtecke sind. Nun nehmen wir eine beliebige Kante $\overline{a_0b_0}$ und stellen die Lotgeraden auf den Eckpunkten a_0 und b_0 durch die Strecke $\overline{a_0b_0}$ auf. Anschließend ziehen wir n parallele Strecken zu $\overline{a_0b_0}$, s. d. der Flächeninhalt des Recheckts $a_{i-1}b_{i-1}b_ia_i$, welches wir R_i nennen, dem Flächeninhalt des Rechtecks P_i entspricht, wobei $i=1,\ldots,n$. Nach Lemma 2.2 gilt also $P_i \sim R_i$ für alle i und damit

$$P_1 + \ldots + P_n \sim R_1 + \ldots + R_n$$
.

Da $P \sim P_1 + \ldots + P_n$ gilt also mit Proposition 1.9

$$P \sim R_1 + \ldots + R_n$$

und damit ist P mit dem Rechteck $a_0b_0b_na_n$ zerlegungsgleich. Somit ist jedes Polygon zerlegungsgleich zu einem Rechteck.

Seien nun P und Q zwei Polygone mit gleichem Flächeninhalt, dann finden wir wie bereits oben gezeigt Rechtecke R_1 und R_2 , s. d.

$$P \sim R_1$$
, $Q \sim R_2$.

Nach Proposition 1.12 haben R_1 und R_2 also das gleiche Volumen und nach Lemma 2.2 gilt also nun auch $R_1 \sim R_2$. Mit der Transitivität der Zerlegungsgleichheit (Proposition 1.9) folgt, dass $P \sim Q$ gilt.

Wir haben gesehen, dass sich jedes beliebige Polygon in Dreiecke zerlegen lässt. Diese Dreiecke sind nach Lemma 2.1 zerlegungsgleich zu Rechtecken mit gleichem Flächeninhalt. Mit Satz 2.3 können wir die Rechtecke zerlegen in Rechtecke mit gleicher Grundseite. Dieses Verfahren können wir nun auf beliebige Polygone mit gleichem Flächeninhalt anwenden. Da diese

Rechtecke nach Lemma 2.2 zerlegungsgleich sind, folgt mit der Transitivität der Zerlegungsgleichheit aus Proposition 1.9 die Zerlegungsgleichheit der Polygone.

Wir haben nun den Fall in der Ebene abgeschlossen und können in den dreidimensionalen Raum übergehen.

3 Zerlegungsgleichheit von Polyedern

Im Folgenden setzen wir die Dimension d auf 3, d. h. wir betrachten Polyeder.

Definition 3.1. Wir wollen den Schnitt einer der Hyperebenen, durch die der Polyeder definiert ist, mit dem Polyeder eine Seite des Polyeders nennen. Den Schnitt zweier Seiten nennen wir eine Kante und den Schnitt zweier Kanten eine Ecke des Polyeders.

Max Dehn fand bereits 1901 heraus, dass die Kanten des Polyeders der Teil sind, der beim Zerschneiden eine entscheidende Rolle spielt. Sie sind sozusagen der Knackpunkt. Deshalb müssen wir uns zunächst überlegen, was mit den Kanten eines Polyeders P passiert, wenn wir diesen in zwei Polyeder P_1 und P_2 zerlegen.

Definition 3.2. Sei k eine Kante des Polyeders P. Wir wollen jeder Kante k ihre Länge $\ell(k) \in \mathbb{R}_+$ zurodnen, also den größten Abstand zwischen den Punkten der Kante. Weiter ordnen wir k den Diederwinkel $w(k) \in (0, 2\pi)$, also den Winkel innerhalb des Polyeders zwischen den beiden Hyperebenen, durch die die Kante k entsteht, zu.

Sei $\ell(k) = l$ die Länge der Kante k und $w(k) = \varphi$ der dazugehörige Diederwinkel. Dann können beim Zerschneiden folgende Fälle eintreten (diese orientieren sich nach den Fällen in [Goe17][7.4]).

- 1. Wir schneiden durch die Kante: Es entstehen zwei neue Kanten k_1 von P_1 und k_2 von P_2 , deren Kantenlängen sich zu der von k addieren lassen und deren Winkel gleich dem von k sind. d. h. für $\ell(k_1) = l_1$ und $\ell(k_2) = l_2$ gilt $l = l_1 + l_2$.
- 2. Wir schneiden entlang der Kante: Also entstehen zwei neue Kanten k_1 von P_1 und k_2 von P_2 , deren Kantenlänge gleich der von k ist und deren Winkel sich zu dem von k addieren lassen. d. h. für $w(k_1) = \varphi_1$ und $w(k_2) = \varphi_2$ gilt $\varphi = \varphi_1 + \varphi_2$.
- 3. Wir schneiden nicht durch die Kante: Die Kante k lässt sich entweder in P_1 oder P_2 wiederfinden und sowohl Kantenlänge, als auch Diederwinkel bleiben gleich.
- 4. Bleibt nur noch der Sonderfall, wenn wir durch eine der Flächen von P schneiden. Hierbei entstehen zwei neue Kanten k_1 von P_1 und k_2 von P_2 , deren Längen gleich sind und deren Winkel sich zu π addieren lassen. d. h. für $w(k_1) = \varphi_1$ und $w(k_2) = \varphi_2$ gilt $\varphi_1 + \varphi_2 = \pi$.

Wir wollen eine Operation, die in beiden Argumenten, sowohl in Länge als auch Diederwinkel, linear ist und bei der wir einen Diederwinkel π mit 0 identifizieren. Dies führt uns auf das Tensorprodukt.

3.1 Tensoren

Tensoren sind bereits aus der Linearen Algebra bekannt. Wir wiederholen hier noch einmal ihre universelle Eigenschaft.

Proposition 3.3 (Universelle Eigenschaft). Sei R ein kommutativer Ring mit Eins und seien M und N zwei R-Moduln. Dann ist das Tensorprodukt $M \otimes_R N$ genau derjenige R-Modul, zu dem es eine bilineare Abbildung $\otimes : M \times N \to M \otimes_R N$ gibt, die die folgende universelle Eigenschaft erfüllt:

Sei L ein weiterer R-Modul und $\phi: M \times N \to L$ eine bilineare Abbildung. Dann existiert genau eine lineare Abbildung $\eta: M \otimes_R N \to L$, s. d. das folgende Diagramm kommutiert:

Gibt es einen solchen R-Modul $M \otimes_R N$, dann ist dieser bis auf Isomorphie eindeutig bestimmt.

Beweis. Für den Beweis verweise ich auf [AM16, Proposition 2.12] und [Goe17, Satz 7.3]. \square

Demzufolge wissen wir nun, dass das Tensorprodukt folgende Eigenschaften erfüllt: Sei R ein kommutativer Ring mit Eins und R-Moduln M und N, dann gilt für alle $m, m' \in M$, $n, n' \in N$ und $r, r' \in R$

$$(mr + m'r' \otimes n) = (m \otimes n) \cdot r + (m' \otimes n) \cdot r'$$
$$(m \otimes nr + n'r') = (m \otimes n) \cdot r + (m \otimes n') \cdot r'.$$

Damit ist der bilineare Operator gefunden. Wir wollen für unser Problem den Spezialfall $\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}/\pi\mathbb{Z}$ betrachen. Hierbei identifizieren wir die Länge einer Kante mit dem ersten Argument und den Winkel einer Kante mit dem zweiten Argument. Den Winkel π identifizieren wir in $\mathbb{R}/\pi\mathbb{Z}$ mit 0. Das Tensorprodukt erfüllt also alle gewollten Eigenschaften.

3.2 Die Dehn-Invariante

Definition 3.4 (Dehn-Invariante). Sei P ein dreidimensionaler beschränkter Polyeder mit den Kanten k_1, \ldots, k_n . Dann definieren wir die Dehn-Invariante $D(P) \in \mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}/\pi\mathbb{Z}$ durch

$$\sum_{i=1}^{n} \ell(k_i) \otimes [w(k_i)].$$

Wir müssen nun zeigen, dass die Dehn-Invariante sich beim Zerschneiden eines Polyeders nicht verändert und somit eine Invariante ist.

Proposition 3.5 (Invarianz). Sei P ein Polyeder und $P = P_1 + P_2$ eine Zerlegung von P in zwei Polyeder P_1 und P_2 , dann gilt $D(P_1 + P_2) = D(P_1) + D(P_2)$.

Beweis. Sei P ein beschränkter Polyeder, den wir in zwei Polyeder P_1 und P_2 zerschneiden. Die Summe der Dehn-Invarianten der einzelnen Polyeder soll gerade der Dehn-Invariante von P entsprechen. Dazu betrachten wir die Kanten der Polyeder und überlegen, was für die Summanden gilt. Es reicht, die Fälle zu betrachten, die wir am Anfang des Kapitels erwähnt haben.

• Zu 1: Beim Schneiden durch eine Kante k von P entstehen zwei neue Kanten k_1 von P_1 und k_2 von P_2 , wobei die Längen sich addieren und die Winkel gleich bleiben. Es gilt

$$\ell(k_1) \otimes w(k) + \ell(k_2) \otimes w(k) = (\ell(k_1) + \ell(k_2)) \otimes w(k) = \ell(k) \otimes w(k).$$

Also verändert sich die Dehn-Invariante nicht.

• Zu 2: Beim Schneiden entlang einer Kante k von P entstehen zwei neue Kanten k_1 von P_1 und k_2 von P_2 , wobei die Längen gleich bleiben und die Winkel sich addieren. Es gilt

$$\ell(k) \otimes w(k_1) + \ell(k) \otimes w(k_2) = \ell(k) \otimes (w(k_1) + w(k_2)) = \ell(k) \otimes w(k).$$

Also verändert sich auch hier die Dehn-Invariante nicht.

• Zu 3: Wir schneiden nicht durch die Kante k von P, demnach finden wir die Kante mit gleicher Länge und gleichem Winkel in P_1 oder P_2 wieder und damit bleibt der Summand und somit die Dehn-Invariante gleich.

• Zu 4: Beim Schneiden durch eine Fläche entstehen zwei neue Kanten k_1 von P_1 und k_2 von P_2 , deren Längen gleich sind und Winkel sich zu π addieren lassen. Es gilt

$$\ell(k_1) \otimes w(k_1) + \ell(k_1) \otimes w(k_2) = \ell(k_1) \otimes (w(k_1) + w(k_2)) = \ell(k_1) \otimes \pi = \ell(k_1) \otimes 0 = 0.$$

Also ändert auch dies nichts an der Dehn-Invariante.

Damit gilt für alle Kanten k von P und alle Kanten k_1 von P_1 und k_2 von P_2 also

$$D(P) = \sum_{k} \ell(k) \otimes w(k) = \sum_{k_1} \ell(k_1) \otimes w(k_1) + \sum_{k_2} \ell(k_2) \otimes w(k_2) = D(P_1) + D(P_2).$$

Im Beweis haben wir lediglich die Bilinearität des Tensorprodukts ausgenutzt. Wir können dieses Resultat auf endlich viele Zerlegungen von P fortsetzen.

Proposition 3.6. Seien P und Q zwei Polyeder, s. d. $P \cong Q$, dann gilt D(P) = D(Q).

Beweis. Isometrien erhalten sowohl Kantenlängen, als auch Diederwinkel der Polyeder und damit bleibt auch die Dehn-Invariante unverändert. \Box

Satz 3.7 (Dehn). Seien P und Q zerlegungsgleiche Polyeder, dann gilt D(P) = D(Q) und vol(P) = vol(Q).

Beweis. Seien $P = P_1 + \ldots + P_n$ und $Q = Q_1 + \ldots + Q_n$ die Zerlegungen von P und Q, also $P_i \cong Q_i$ für alle $i = 1, \ldots, n$. Dann folgt mit Proposition 1.12 dass vol(P) = vol(Q). Außerdem gilt mit den Propositionen 3.6 und 3.5

$$D(P) = D(P_1 + \ldots + P_n) = \sum_{i=1}^n D(P_i) = \sum_{i=1}^n D(Q_i) = D(Q_1 + \ldots + Q_n) = D(Q).$$

Im Jahr 1965 bewies der Schweizer Mathematiker Jean-Pierre Sydler (in [Syd65]) sogar, dass die Zerlegungsgleichheit eine notwendige Bedingung ist und es ergibt sich der folgende Satz. Wir werden diesen hier nicht beweisen.

Satz 3.8 (Dehn-Sydler Theorem). Seien P und Q Polyeder, dann sind P und Q genau dann zerlegungsgleich, wenn die Dehn-Invariante und das Volumen der Polyeder gleich sind.

3.3 Lokalisierung des Tensorprodukts

Um später die Dehn-Invariante einiger Polyeder berechnen zu können, wollen wir uns ein paar Eigenschaften des Tensorprodukts $\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}/\pi\mathbb{Z}$ anschauen. Dazu wollen wir zeigen, dass unser Tensorprodukt isomorph zum Tensorprodukt $\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}/\pi\mathbb{Q}$ ist, hierzu benötigen wir ein paar Resultate aus der Kommutativen Algebra. Wir richten uns in diesem Abschnitt nach [AM16][Kapitel 3].

Sei im Folgenden R ein Integritätsring, wir wollen in diesem nun Brüche einführen. Sei dazu S eine multiplikative Teilmenge von R, d. h. $1 \in S$ und S ist unter Multiplikation abgeschlossen, also ein Monoid. Wir definieren die Relation \equiv auf $R \times S$ durch

$$(r_1, s_1) \equiv (r_2, s_2) \quad \Leftrightarrow \quad r_1 s_2 = r_2 s_1$$

für Elemente $r_1, r_2 \in R$ und $s_1, s_2 \in S$.

Wir stellen fest, dass diese Relation eine Äquivalenzrelation ist. Die Reflexivität und Symmetrie sind klar, wir zeigen also noch die Transitivität. Es gelte $(r_1, s_1) \equiv (r_2, s_2)$ und $(r_2, s_2) \equiv (r_3, s_3)$ für $r_1, r_2, r_3 \in R$ und $s_1, s_2, s_3 \in S$, also gilt $r_1s_2 = r_2s_1$ und $r_2s_3 = r_3s_2$ und damit $r_1s_2r_2s_3 = r_2s_1r_3s_2$. Falls $r_2 = 0$ oder $s_2 = 0$ ist klar, dass $(r_1, s_1) \equiv (r_3, s_3)$ gilt, falls $r_2 \neq 0$ können wir r_2 und s_2 aus der Gleichung streichen und es folgt $r_1s_3 = r_3s_1$ und damit $(r_1, s_1) \equiv (r_3, s_3)$.

Wir schreiben $\frac{r}{s}$ für die Äquivalenzklasse von (r,s) und $S^{-1}R$ für die Menge aller Äquivalenzklassen. Wir können $S^{-1}R$ nun eine Ringstruktur geben, indem wir die Addition und Multiplikation für alle $r_1, r_2 \in R$ und $s_1, s_2 \in S$ definieren durch

$$\begin{pmatrix} \frac{r_1}{s_1} \end{pmatrix} + \begin{pmatrix} \frac{r_2}{s_2} \end{pmatrix} = \begin{pmatrix} \frac{r_1 s_2 + r_2 s_1}{s_1 s_2} \end{pmatrix}$$
$$\begin{pmatrix} \frac{r_1}{s_2} \end{pmatrix} \cdot \begin{pmatrix} \frac{r_2}{s_2} \end{pmatrix} = \begin{pmatrix} \frac{r_1 r_2}{s_1 s_2} \end{pmatrix}.$$

Wir stellen fest, dass $S^{-1}R$ sogar ein kommutativer Ring mit Eins ist. Außerdem ist $S^{-1}R$ gerade der Quotientenkörper von R, falls $S = R \setminus \{0\}$ ist. Betrachten wir beispielweise den Ring \mathbb{Z} mit der multiplikativen Teilmenge $S = \mathbb{Z} \setminus \{0\}$, so ist $S^{-1}\mathbb{Z}$ gerade der Quotientenkörper von \mathbb{Z} , also \mathbb{Q} . Wir können diese Konstruktion nun auch auf Moduln fortführen. Haben wir ein R-Modul M, dann definieren wir die Äquivalenzrelation wie oben, nur auf M, und erhalten die Äquivalenzklassen $\frac{m}{s}$ für Elemente $m \in M$ und $s \in S$. Dann ist $S^{-1}M$ gerade die Menge solcher Brüche und wir erhalten mit $S^{-1}M$ einen $S^{-1}R$ -Modul mit der natürlichen Definition

der Addition und skalaren Multiplikation. Haben wir nun einen R-Modulhomomorphismus $f:M\to N$, dann führt uns dies zu einem $S^{-1}R$ -Modulhomomorphismus $S^{-1}f:S^{-1}M\to S^{-1}N$, indem $S^{-1}f$ Elemente $\frac{m}{s}$ aus $S^{-1}M$ auf Elemente $\frac{f(m)}{s}$ aus $S^{-1}N$ abbildet. Für Modulhomomorphismen f und g gilt also

$$S^{-1}(f \circ g) = (S^{-1}f) \circ (S^{-1}g).$$

Lemma 3.9. Sei R ein Integritätsring und M, M_1, M_2 seien R-Moduln. Weiter sei die Sequenz

$$M_1 \xrightarrow{f} M \xrightarrow{g} M_2$$
 (4)

 exakt^2 in M. Dann ist die Sequenz

$$S^{-1}M_1 \xrightarrow{S^{-1}f} S^{-1}M \xrightarrow{S^{-1}g} S^{-1}M_2$$

exakt in $S^{-1}M$.

Siehe dazu auch [AM16, Proposition 3.3].

Beweis. Sei $m_1 \in M_1$ dann gilt $f(m_1) \in im(f) = ker(g)$, wegen der Exaktheit von 4 in M und damit ist $g(f(m_1)) = 0$. Also gilt $g \circ f = 0$ und damit erhalten wir

$$(S^{-1}g) \circ (S^{-1}f) = S^{-1}(g \circ f) = S^{-1}(0) = 0.$$

Demzufolge gilt

$$im(S^{-1}f) \subset ker(S^{-1}g).$$

Um die umgekehrte Inklusion zu zeigen, wählen wir $\frac{m}{s} \in ker(S^{-1}g)$, das heißt $S^{-1}g\left(\frac{m}{s}\right) = \frac{g(m)}{s} = 0$ in $S^{-1}M_2$. Das wiederum bedeutet, dass g(m) = 0 in M_2 , da R ein Integritätsring ist, also auch $m \in ker(g) = im(f)$, wegen der Exaktheit von M in 4. Demnach gibt es ein $m_1 \in M_1$ mit $f(m_1) = m$ und damit gilt

$$\frac{m}{s} = \frac{f(m_1)}{s} = (S^{-1}f)\left(\frac{m_1}{s}\right) \in im(S^{-1}f).$$

²Zur Erinnerung: Eine Sequenz $M_1 \xrightarrow{f} M \xrightarrow{g} M_2$ ist exakt in M, falls im(f) = ker(g).

Es folgt

$$ker(S^{-1}g) \subset im(S^{-1}f).$$

Nun zurück zu unserem Problem. Wir wollen wissen, was passiert, wenn wir in dem \mathbb{Z} -Modul $\mathbb{R}/\pi\mathbb{Z}$ Brüche einführen. Um das zu verstehen, hilft uns das folgende Resultat.

Lemma 3.10. Sei M ein R-Modul und N ein R-Untermodul von M. Dann sind die $S^{-1}R$ -Moduln $S^{-1}(M/N)$ und $S^{-1}M/S^{-1}N$ isomorph.

Siehe [AM16, Korollar 3.4 (iii)].

Beweis. Wir betrachten hierzu die Sequenz

$$0 \to N \xrightarrow{f} M \xrightarrow{g} M/N \xrightarrow{h} 0$$

wobei f,g und h hier Modulhomomorphismen sind. Die Funktion f bettet das Untermodul N in M ein, also gilt im(f)=N. Weiter bildet die Funktion g gerade die Elemente aus M auf deren Äquivalenzklassen in M/N ab und da für alle $n\in N\subset M$ gilt, dass g(n)=[n]=0 in M/N, folgt auch, dass ker(g)=N. Damit ist die Sequenz in M exakt.

Weiter ist im(g) = M/N und da h die Nullabbildung ist, gilt ker(h) = M/N. Somit ist die Sequenz auch in M/N exakt.

Wir wenden S^{-1} auf die Sequenz an, dann ist die Sequenz

$$0 \to S^{-1}N \xrightarrow{S^{-1}f} S^{-1}M \xrightarrow{S^{-1}g} S^{-1}(M/N) \to 0$$
 (5)

mit Lemma 3.9 in $S^{-1}M$ und $S^{-1}(M/N)$ exakt.

Wir wollen den Homomorphiesatz³ auf den Modulhomomorphismus $S^{-1}g$ anwenden und erhalten mit der Exaktheit von 5 in $S^{-1}M$

$$S^{-1}(M/N) = im(S^{-1}g) \simeq S^{-1}M/ker(S^{-1}g) = S^{-1}M/im(S^{-1}f) = S^{-1}M/S^{-1}N.$$

Wenden wir das nun auf das \mathbb{Z} -Modul $\mathbb{R}/\pi\mathbb{Z}$ mit $S = \mathbb{Z}\setminus\{0\}$ an, dann sind die $(\mathbb{Z}\setminus\{0\})^{-1}\mathbb{Z}$ - also \mathbb{Q} -Moduln $(\mathbb{Z}\setminus\{0\})^{-1}(\mathbb{R}/\pi\mathbb{Z})$ und $((\mathbb{Z}\setminus\{0\})^{-1}\mathbb{R})/((\mathbb{Z}\setminus\{0\})^{-1}\pi\mathbb{Z})$ isomorph. Wir bemerken, dass $(\mathbb{Z}\setminus\{0\})^{-1}\mathbb{R}\simeq\mathbb{R}$ und $(\mathbb{Z}\setminus\{0\})^{-1}\pi\mathbb{Z}\simeq\pi\mathbb{Q}$. Damit gilt also

$$(\mathbb{Z}\setminus\{0\})^{-1}(\mathbb{R}/\pi\mathbb{Z})\cong\mathbb{R}/\pi\mathbb{Q}.$$

Lemma 3.11. Sei R ein Integritätsring und M ein R-Modul. Dann gibt es einen eindeutigen Isomorphismus

$$f: S^{-1}R \otimes_R M \to S^{-1}M$$

zwischen den $S^{-1}R$ -Moduln, s. d.

$$f\left(\frac{r}{s}\otimes m\right) = \frac{rm}{s}\tag{6}$$

für alle $r \in R$, $m \in M$ und $s \in S$.

Der Beweis richtet sich nach [AM16, Proposition 3.5].

Beweis. Die Abbildung $g: S^{-1}R \times M \to S^{-1}M$ mit $g\left(\frac{r}{s}, m\right) = \frac{rm}{s}$ ist bilinear, da

$$g\left(\lambda_{1}\left(\frac{r_{1}}{s_{1}} + \frac{r_{2}}{s_{2}}\right), \lambda_{2}(m_{1} + m_{2})\right) = g\left(\frac{\lambda_{1}(r_{1}s_{2} + r_{2}s_{1})}{s_{1}s_{2}}, \lambda_{2}(m_{1} + m_{2})\right)$$

$$= \frac{\lambda_{1}(r_{1}s_{2} + r_{2}s_{1})\lambda_{2}(m_{1} + m_{2})}{s_{1}s_{2}}$$

$$= \lambda_{1}\lambda_{2}\left(\frac{r_{1}(m_{1} + m_{2})}{s_{1}} + \frac{r_{2}(m_{1} + m_{2})}{s_{2}}\right)$$

$$= \lambda_{1}\lambda_{2}\left(g\left(\frac{r_{1}}{s_{1}}, m_{1}\right) + g\left(\frac{r_{1}}{s_{1}}, m_{2}\right) + g\left(\frac{r_{2}}{s_{2}}, m_{1}\right) + g\left(\frac{r_{2}}{s_{2}}, m_{1}\right)\right)$$

für alle $r_1, r_2, \lambda_1, \lambda_2 \in R$, $s_1, s_2 \in S$ und $m_1, m_2 \in M$ gilt. Damit gibt es mit der universellen Eigenschaft des Tensorprodukts (Proposition 3.3) genau einen R-Modulhomomorphismus $f: S^{-1}R \otimes_R M \to S^{-1}M$, s. d. 6 gilt. Es ist klar, dass f surjektiv ist, dazu wählen wir r=1 und erhalten somit alle Elemente aus $S^{-1}M$. Weiter ist f auch eindeutig bestimmt durch 6. Wir zeigen also noch die Injektivität. Dazu betrachten wir die Elemente von $S^{-1}R \otimes_R M$. Sei

$$\sum_{i=1}^{n} \frac{r_i}{s_i} \otimes m_i \in S^{-1}R \otimes_R M$$

ein beliebiges Element, dann definieren wir

$$s := \prod_{i=1}^{n} s_i \in S, \qquad t_i := \prod_{\substack{j=1\\j \neq i}}^{n} s_j \in S$$

und es gilt

$$\sum_{i=1}^{n} \frac{r_i}{s_i} \otimes m_i = \sum_{i=1}^{n} \frac{r_i t_i}{s} \otimes m_i = \sum_{i=1}^{n} \frac{1}{s} \otimes r_i t_i m_i = \frac{1}{s} \otimes \sum_{i=1}^{n} \underbrace{r_i t_i m_i}_{\in M}.$$

Wir können demnach jedes Element aus $S^{-1}R \otimes_R M$ in der Form

$$\frac{1}{s} \otimes m$$

schreiben. Betrachten wir nun den Kern von f. Sei also $\frac{1}{s} \otimes m \in ker(f) \subset S^{-1}R \otimes_R M$, d. h. $f\left(\frac{1}{s} \otimes m\right) = 0$. Da R ein Integritätsring ist, folgt mit $f\left(\frac{1}{s} \otimes m\right) = \frac{m}{s} = 0$, dass m = 0 und damit gilt

$$\frac{1}{s} \otimes m = \frac{1}{s} \otimes 0 = 0.$$

Damit ist f bijektiv, ergo der gesuchte Isomorphismus.

Es lässt sich nun folgendes Resultat zeigen, siehe dazu auch [AM16][Proposition 3.7].

Proposition 3.12. Seien M und N zwei R-Moduln, dann gibt es einen eindeutigen Isomorphismus

$$f: S^{-1}M \otimes_{S^{-1}R} S^{-1}N \to S^{-1}(M \otimes_R N)$$

zwischen den $S^{-1}R$ -Moduln, s. d.

$$f\left(\frac{m}{s_1}\otimes\frac{n}{s_2}\right) = \frac{m\otimes n}{s_1s_2}.$$

Beweis. Es gilt mit Lemma 3.11 und den kanonischen Isomorphismen des Tensorprodukts

$$S^{-1}M \otimes_{S^{-1}R} S^{-1}N \overset{3.11}{\simeq} (S^{-1}R \otimes_R M) \otimes_{S^{-1}R} (S^{-1}R \otimes_R N)$$

$$\stackrel{4}{=} M \otimes_R (\underbrace{S^{-1}R \otimes_{S^{-1}R} S^{-1}R}) \otimes_R N$$

$$\stackrel{2}{=} M \otimes_R S^{-1}R \otimes_R N$$

$$= S^{-1}R \otimes_R (M \otimes_R N)$$

$$\stackrel{3.11}{\simeq} S^{-1}(M \otimes_R N).$$

Dies lässt sich nun auf unser Tensorprodukt $\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}/\pi\mathbb{Z}$ anwenden, indem wir $R = \mathbb{Z}$, $M = \mathbb{R}$ und $N = \mathbb{R}/\pi\mathbb{Z}$ setzen und mit $S = \mathbb{Z} \setminus \{0\}$ und dem obigen Resultat, ergibt sich dann

$$S^{-1}R \simeq \mathbb{Q}, \qquad S^{-1}M \simeq \mathbb{R} \quad \text{ und } \quad S^{-1}N \simeq \mathbb{R}/\pi\mathbb{Q}.$$

Weiterhin gilt

$$S^{-1}(M \otimes_R N) = (\mathbb{Z} \setminus \{0\})^{-1}(\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}/\pi\mathbb{Z}) \simeq \mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}/\pi\mathbb{Z},$$

denn mit der Bilinearität des Tensorproduktes gilt

$$(\mathbb{Z} \setminus \{0\})^{-1} (\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}/\pi\mathbb{Z}) \simeq \left\langle \left\{ \frac{m \otimes n}{z} \middle| m \in \mathbb{R}, n \in \mathbb{R}/\pi\mathbb{Z}, z \in \mathbb{Z} \setminus \{0\} \right\} \right\rangle$$

$$\simeq \left\langle \left\{ \frac{m}{z} \otimes n \middle| m \in \mathbb{R}, n \in \mathbb{R}/\pi\mathbb{Z}, z \in \mathbb{Z} \setminus \{0\} \right\} \right\rangle$$

$$\simeq (\mathbb{Z} \setminus \{0\})^{-1} \mathbb{R} \quad \otimes_{\mathbb{Z}} \ \mathbb{R}/\pi\mathbb{Z}$$

$$\simeq \mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}/\pi\mathbb{Z},$$

wobei wir hier mit $\langle \cdot \rangle$ das Erzeugnis meinen. Insgesamt erhalten wir mit Proposition 3.12

$$\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}/\pi\mathbb{Z} \simeq S^{-1}(M \otimes_R N) \simeq S^{-1}M \otimes_{S^{-1}R} S^{-1}N \simeq \mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}/\pi\mathbb{Q}.$$

⁴Wir können hier trotz der unterschiedlichen Tensorprodukte die Klammern vertauschen. Siehe dazu auch [Mat89, Formula 10]

Also gilt

$$\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}/\pi\mathbb{Z} \simeq \mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}/\pi\mathbb{Q}. \tag{7}$$

Wir können die Dehn-Invariante auch auf dem \mathbb{Q} -Vektorraum $\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}/\pi\mathbb{Q}$ betrachten, was uns zu der folgenden Tatsache führt.

Satz 3.13. Seien $x \in \mathbb{R}$ und $y \in \mathbb{R}/\pi\mathbb{Q}$ Elemente, dann gilt

$$x \otimes y = 0 \quad \Leftrightarrow \quad x = 0 \ \lor \ y \in \pi \mathbb{Q}.$$

Beweis. Die Rückrichtung ist schnell gezeigt, denn für $x \in \mathbb{R}$ mit $x \neq 0$ und $y = \pi \frac{p}{q} \in \mathbb{Q}$, wobei $p \in \mathbb{Z}$ und $q \in \mathbb{N}$, gilt

$$x \otimes y = x \otimes \pi \frac{p}{q} = xp \otimes \frac{\pi}{q} = q \frac{xp}{q} \otimes \frac{\pi}{q} = \frac{xp}{q} \otimes \pi = \frac{xp}{q} \otimes 0 = 0.$$

Dabei haben wir p zuerst nach links und danach q nach rechts bewegt.

Zur Hinrichtung: Betrachte $\pi\mathbb{Q}$ ist 1-dimensionaler \mathbb{Q} -Vektorraum mit Basis $\{\pi\}$ und $\pi\mathbb{Q} \subset \mathbb{R}$ ist als \mathbb{Q} -Vektorraum ein Untervektorraum von \mathbb{R} . Wir können also nun unsere Basis mit dem Lemma von Zorn auf ganz \mathbb{R} fortsetzen. Also hat \mathbb{R} als \mathbb{Q} -Vektorraum die Basis

$$\{\pi\} \dot{\bigcup} B,$$

wobei B die Menge ist, mit der wir $\{\pi\}$ zu einer Basis von \mathbb{R} ergänzen. Weiterhin gilt auch

$$\mathbb{R} \simeq \pi \mathbb{Q} \oplus \bigoplus_{b \in B} b \mathbb{Q}$$
 und $\mathbb{R}/\pi \mathbb{Q} \simeq \bigoplus_{b \in B} b \mathbb{Q}$.

Damit ist

$$\left\{(b_1\otimes b_2)\left|b_1\in\pi\mathbb{Q}\oplus\bigoplus_{b\in B}b\mathbb{Q},\ b_2\in\bigoplus_{b\in B}b\mathbb{Q}\right.\right\}$$

eine Basis von $\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}/\pi\mathbb{Q}$.

Zwei Elemente $x \in \mathbb{R}$ und $y \in \mathbb{R}/\pi\mathbb{Q}$ haben demnach die Darstellung

$$x = \alpha \pi + \sum_{b \in B} \beta_b b$$
$$y = \sum_{b' \in B} \gamma_{b'} b',$$

wobei $\alpha, \beta_b, \gamma_{b'} \in \mathbb{Q}$ für alle $b, b' \in B$ sind. Falls nun $x \otimes y = 0$ gilt also

$$0 = x \otimes y = \left(\alpha \pi + \sum_{b \in B} \beta_b b\right) \otimes \left(\sum_{b' \in B} \gamma_{b'} b'\right) = \sum_{b' \in B} \alpha \gamma_{b'} (\pi \otimes b') + \sum_{\substack{b \in B \\ b' \in B}} \beta_b \gamma_{b'} (b \otimes b').$$

Da $(\pi \otimes b')$ und $(b \otimes b')$ linear unabhängig sind für alle $b, b' \in B$ folgt

$$\alpha \gamma_{b'} = 0$$
 und $\beta_b \gamma_{b'} = 0$

für alle $b, b' \in B$.

- 1. Falls $\alpha \neq 0$, dann sind $\gamma_{b'} = 0$ für alle $b' \in B$ und damit ist y = 0, also $y \in \pi \mathbb{Q}$.
- 2. Falls $\alpha = 0$, dann sind die $\gamma_{b'}$ beliebig. Angenommen es gibt also ein $b \in B$, s. d. $\beta_b \neq 0$, dann muss $\gamma_{b'} = 0$ für alle $b' \in B$ damit $\beta_b \gamma_{b'} = 0$ für alle $b' \in B$ gilt. Das wiederum bedeutet y = 0 und wir sind hier fertig. Falls $\beta_b = 0$ für alle $b \in B$, folgt mit $\alpha = 0$, dass x = 0 ist.

Damit ist die Aussage bewiesen.

Wir bemerken, dass wir für die Hinrichtung das Auswahl-Axiom benutzt haben. Jedoch ist klar, dass wir bei einer konkreten Berechnung der Dehn-Invariante nur endlich viele Polyeder haben, diese somit auch nur einen endlich-dimensionalen \mathbb{Q} -Untervektorraum von \mathbb{R} aufspannen und wir somit nicht auf das Auswahl-Axiom angewiesen sind.

Wir erhalten folglich auch:

Folgerung 3.14. Seien $x \in \mathbb{R}$ und $y \in \mathbb{R}/\pi\mathbb{Q}$ Elemente, dann gilt

$$x \otimes y \neq 0 \quad \Leftrightarrow \quad x \neq 0 \quad \land \quad y \notin \pi \mathbb{Q}.$$

Folglich ist die Dehn-Invariante eines Polyeders 0, falls dessen Diederwinkel alle in $\pi\mathbb{Q}$ liegen.

Wir können nun die Dehn-Invarianten einiger Polyeder berechnen.

3.4 Dehns Lösung

Beispiel 3.15 (Quader). Sei P ein dreidimensionaler Quader. Dann gilt für alle Kanten k von P, dass $w(k) = \frac{\pi}{2}$. Also gilt $w(k) \in \pi \mathbb{Q}$ für alle Kanten k und mit Bemerkung 3.13 folgt

Abbildung 4: Ein regulärer Tetraeder

Beispiel 3.16 (regulärer Tetraeder). Sei P ein dreidimensionaler regulärer Tetraeder, d. h. alle Kanten von P haben die gleiche Länge l und den gleichen Diederwinkel α . Seien A,B,C,D die Ecken von P wie in Abbildung 4. Sei F der Mittelpunkt der Strecke \overline{BC} , also $|BF|=\frac{l}{2}$ und damit ist nach dem Satz von Pythagoras $|AF|=\frac{\sqrt{3}}{2}l=|DF|$. Der Mittelpunkt E des Dreiecks ABC hat gerade den Abstand $\frac{\sqrt{3}}{3\cdot 2}l=\frac{l}{2\sqrt{3}}$ zu F und schließlich gilt mit dem Satz von Pythagoras

$$\cos(\alpha) = \frac{\frac{l}{2\sqrt{3}}}{\frac{\sqrt{3}}{2}l} = \frac{1}{3}$$
 also $\alpha = \arccos\left(\frac{1}{3}\right)$.

Damit können wir die Dehn-Invariante berechnen. Es gibt sechs Kanten der Länge l, die alle den Diederwinkel $\arccos\left(\frac{1}{3}\right)$ haben, also

$$D(P) = \sum_{i=1}^{6} l \otimes_{\mathbb{Z}} \arccos\left(\frac{1}{3}\right) = 6l \otimes_{\mathbb{Z}} \arccos\left(\frac{1}{3}\right).$$

Siehe auch Beispiel 1 [AZ18] [Kapitel 10].

Proposition 3.17. Für alle ungeraden $n \in \mathbb{N}$ mit $n \geq 3$ gilt, dass $\frac{1}{\pi} \arccos\left(\frac{1}{\sqrt{n}}\right)$ irrational ist

Wir richten uns hierbei nach [AZ18][Satz 3, Kapitel 8].

Beweis. Zuerst stellen wir fest, dass mit dem Additionstheorem

$$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

für $\alpha = (k+1)\varphi$ und $\beta = (k-1)\varphi$ gilt

$$\cos((k+1)\varphi) + \cos((k-1)\varphi) = 2\cos\left(\frac{(k+1)\varphi + (k-1)\varphi}{2}\right)\cos\left(\frac{(k+1)\varphi - (k-1)\varphi}{2}\right)$$
$$= 2\cos(k\varphi)\cos(\varphi)$$

und damit folgt

$$\cos((k+1)\varphi) = 2\cos(k\varphi)\cos(\varphi) - \cos((k-1)\varphi). \tag{8}$$

Wir definieren nun $\varphi_n = \arccos(\frac{1}{\sqrt{n}})$ für n = 2l + 1 mit $l \in \mathbb{N}$. Dann ist $\cos(\varphi_n) = \frac{1}{\sqrt{n}}$ und $0 \le \varphi_n \le \pi$.

Mit Induktion über $k \in \mathbb{N}_0$ zeigen wir, dass gilt

$$\cos(k\varphi_n) = \frac{A_k}{\sqrt{n^k}},\tag{9}$$

wobei A_k eine ganze Zahl ist, die nicht durch n teilbar ist. Wir beginnen und stellen fest, dass

für
$$k = 0$$

$$1 = \cos(0 \cdot \varphi_n) = \frac{A_0}{\sqrt{n^0}} = A_0$$
 für $k = 1$
$$\frac{1}{\sqrt{n}} = \cos(1 \cdot \varphi_n) = \frac{A_1}{\sqrt{n^1}} = \frac{A_0}{\sqrt{n}}$$

und damit $A_0 = A_1 = 1$ ist. Weiterhin gilt mit 8

$$\cos((k+1)\varphi_n) = 2\cos(k\varphi_n)\cos(\varphi_n) - \cos((k-1)\varphi_n)$$

$$= 2\frac{A_k}{\sqrt{n^k}} \cdot \frac{1}{\sqrt{n}} - \frac{A_{k-1}}{\sqrt{n^{k-1}}}$$

$$= \underbrace{\frac{2A_{k+1}}{\sqrt{n^{k+1}}}}_{=:A_{k-1}}.$$

Da A_k nicht durch n teilbar ist und $n \geq 3$ ungerade, ist die Zahl $2A_k$ auch nicht durch n teilbar und damit auch nicht $A_{k+1} := 2A_k - nA_{k-1}$. Wir haben also eine konkrete Darstellung für A_{k+1} gefunden und sind mit der Induktion fertig.

Nun kommen wir zum eigentlichen Beweis. Angenommen $\frac{1}{\pi}\varphi_n$ ist rational mit

$$\frac{1}{\pi}\varphi_n = \frac{m}{k}$$

für $m \in \mathbb{Z}$ und $k \in \mathbb{N}$. Dann gilt mit $k\varphi_n = m\pi$ und 9

$$\pm 1 = \cos(m\pi) = \cos(k\varphi_n) = \frac{A_k}{\sqrt{n^k}}.$$

Also auch $\sqrt{n}^k = \pm A_k$. Da A_k eine ganze Zahl ist, ist \sqrt{n}^k auch eine ganze Zahl und somit $k \geq 2$. Damit ist jedoch n ein Teiler von \sqrt{n}^k und da $\sqrt{n}^k | A_k$, teilt n auch A_k , was ein Widerspruch ist.

Damit folgt für n = 9, dass $\arccos\left(\frac{1}{3}\right)$ nicht in $\pi\mathbb{Q}$ liegt. Wir erhalten unser folgendes Resultat.

Folgerung 3.18 (Dehns Lösung). Sei Q ein Quader und T ein regulärer Tetraeder mit Kantenlänge l. Angenommen Q und T sind zerlegungsgleich, dann gilt mit Satz 3.7 sowohl vol(Q) = vol(T), als auch D(Q) = D(T). Nach Beispiel 3.15 gilt D(Q) = 0 und nach Beispiel 3.16 gilt

$$D(T) = 6l \otimes_{\mathbb{Z}} \arccos\left(\frac{1}{3}\right).$$

Da nach Proposition 3.17 $\frac{1}{\pi} \arccos\left(\frac{1}{3}\right)$ irrational ist, liegt $\arccos\left(\frac{1}{3}\right)$ nicht in $\pi\mathbb{Q}$ und damit

ist nach Bemerkung 3.13 mit $l \neq 0$ auch $6l \otimes_{\mathbb{Z}} \arccos\left(\frac{1}{3}\right) \neq 0$. Also gilt

$$D(Q) = 0 \neq 6l \otimes_{\mathbb{Z}} \arccos\left(\frac{1}{3}\right) = D(T).$$

Was ein Widerspruch ist.

Damit sind Q und T nicht zerlegungsgleich.

Also haben wir gezeigt, dass es Polyeder gibt, die das gleiche Volumen haben, jedoch nicht zerlegungsgleich sind. Wir wollen uns nun, wie Hilbert bereits vorschlug, zwei Tetraeder, die nicht zerlegungsgleich sind, aber gleiche Grundseite und Höhe haben, überlegen. Wir betrachten hier die Beispiele 2 und 3 aus [AZ18][Kapitel 10].

Beispiel 3.19. Sei T_1 der Tetraeder mit den Eckpunkten A, B, C, D und der Grundseite ABC. Der Tetraeder wird durch die drei zueinander orthogonal liegenden Kanten \overline{AB} , \overline{AC} und \overline{AD} , die jeweils die Länge l haben, aufgespannt. Siehe Abbildung 5. An den drei zueinander orthogonal liegenden Kanten befinden sich offensichtlich rechte Winkel. Die anderen drei Kanten haben alle die gleiche Länge $\sqrt{2}l$ und alle Diederwinkel haben den gleich Wert φ . Sei E der Mittelpunkt der Kante \overline{BC} , dann gilt $|AE| = \frac{1}{\sqrt{2}}l$. Das Dreieck ADE hat in A einen rechten Winkel, damit ergibt sich

$$|DE| = \sqrt{|AD|^2 + |AE|^2} = \sqrt{l^2 + \left(\frac{1}{\sqrt{2}}l\right)^2} = \sqrt{\frac{3}{2}}l.$$

Es gilt für den Winkel φ an E also

$$cos(\varphi) = \frac{|AE|}{|DE|} = \frac{\frac{1}{\sqrt{2}}l}{\sqrt{\frac{3}{2}}l} = \frac{1}{\sqrt{3}}$$

und damit $\varphi = \arccos\left(\frac{1}{\sqrt{3}}\right)$. Wir erhalten für die Dehn-Invariante von T_1 also

$$D(T_1) = 3 \cdot \underbrace{\left(l \otimes \frac{\pi}{2}\right)}_{=0} + 3 \cdot \left(\sqrt{2}l \otimes \arccos\left(\frac{1}{\sqrt{3}}\right)\right) = \left(3\sqrt{2}l \otimes \arccos\left(\frac{1}{\sqrt{3}}\right)\right).$$

Mit Proposition 3.17 gilt für n=3, dass $\frac{1}{\pi} \arccos\left(\frac{1}{\sqrt{3}}\right)$ irrational ist und damit liegt $\arccos\left(\frac{1}{\sqrt{3}}\right)$

$D(T_1) \neq 0$.

Abbildung 5: Der Tetraeder T_1

Abbildung 6: Der Tetraeder T_2

Beispiel 3.20. Sei T_2 ein Tetraeder mit drei aufeinander folgenden Kanten \overline{AB} , \overline{BC} und \overline{CD} , die jeweils orthogonal aufeinander stehen und die gleiche Länge l haben. Siehe dazu Abbildung 6. Der Tetraeder T_2 hat die Grundseite ABC und die Höhe l. Drei der Diederwinkel haben hierbei den Wert $\frac{\pi}{2}$, zwei den Wert $\frac{\pi}{4}$ und einer den Wert $\frac{\pi}{3}$. Damit liegen alle Diederwinkel von T_2 in $\pi\mathbb{Q}$ und damit gilt

$$D(T_2) = 0.$$

Wir sehen, dass die beiden Tetraeder T_1 und T_2 die gleiche Grundseite und Höhe haben, jedoch unterschiedliche Dehn-Invarianten. Damit sind sie nicht zerlegungsgleich. Wir haben also die vollständige Lösung für Hilberts drittes Problem für die Zerlegungsgleichheit von Polyeder gefunden.

4 Ergänzungsgleichheit von Polytopen

Wir wollen uns nun dem zweiten Teil von Hilberts Problem widmen und zwar der Ergänzungsgleichheit von Polytopen. In diesem Kapitel zeigen wir, dass Zerlegungsgleichheit und Ergänzungsgleichheit gleichbedeutend sind. Für den Beweis hierzu benötigen wir vorweg noch einige Kenntnisse über Polytope. Das Kapitel richtet sich nach [Had13].

4.1 Ein wenig Polyedertheorie

Wir beginnen mit dem einfachsten Polytop, dem Simplex. Ein Simplex im \mathbb{R}^d hat d+1 Ecken und damit gerade soviele Kanten, dass wir ein konvexes Polytop erhalten. Im zweidimensionalen Fall ist ein Simplex ein Dreieck und im drei-dimensionalen ein Tetraeder. Wir werden feststellen, dass sich jedes konvexe Polytop in endlich viele Simplizes zerlegen lässt. Diese Simplizialzerlegung von Polytopen spielt bei der Zerlegungsgleichheit von Polytopen eine wichtige Rolle, wie wir schon im Beweis des Bolyai-Gerwien Theorems (Satz 2.3) gesehen haben. Ebenso ist, wie sich aus Hilberts Formulierung des dritten Problems herauslesen lässt, ersichtlich, dass es eine der einfachsten Lösungen ist, zwei Simplizes mit gleichem Volumen zu finden, die nicht zerlegungsgleich sind.

Definition 4.1 (Simplex). Ein Simplex S im \mathbb{R}^d ist die konvexe Hülle einer Menge von d+1 Punkten p_0, \ldots, p_d , die sich im Raum in allgemeiner Lage befinden, also nicht alle in einer Ebene liegen. Diese Punkte bezeichnen wir als Ecken des Simplex. Wir wollen das Simplex durch Wahl der Ecke $p=p_0$ und der Kantenvektoren $s_i=p_i-p_{i-1}$ für alle $i=1,\ldots,d$ charakterisieren. Wir schreiben für das Simplex S auch

$$S = \langle p; s_1 \dots s_d \rangle.$$

Ein Simplex ist offensichtlich ein spezielles konvexes Polytop.

Bemerkung 4.2 (Parameterdarstellung des Simplex). Für einen Simplex $S = \langle p; s_1, \dots s_d \rangle$ stellen wir fest, dass sich jeder Punkt s des Simplex in folgender Form darstellen lässt

$$s = p + \sum_{i=1}^{d} \alpha_i s_i$$

für Parameter $1 \ge \alpha_1 \ge \ldots \ge \alpha_d \ge 0$.

Satz 4.3 (Simplizialzerlegung von Polytopen). Sei P ein Polytop, dann lässt sich P in endlich viele Simplizes S_1, \ldots, S_n zerlegen, das heißt

$$P = S_1 + \ldots + S_n.$$

Beweis. Das Polytop P lässt sich nach Definition als Vereinigung endlich vieler konvexer Polytope darstellen. Wir müssen also zeigen, dass sich jedes konvexe Polytop P' in endlich viele Simplizes zerlegen lässt. Wir wollen dies per Induktion über die Dimension des umgebenen Vektorraumes zeigen. Für d=1 ist die Aussage klar, da jedes konvexe 1-Polytop eine Strecke ist und damit auch ein Simplex. Wir nehmen also an, die Aussage sei für die Dimension d-1 bewiesen. Betrachten wir eine beliebige d-1-dimensionale Seite von P', dann wissen wir nach Induktionsvoraussetzung, dass sich diese in endliche viele d-1-dimensionale Simplizes S'_1, \ldots, S'_m zerlegen lassen. Betrachten wir einen beliebigen festen Punkt p' im Inneren von P', dann bildet für alle $i=1,\ldots,m$ die konvexe Hülle des Punktes p' und des Simplex S'_i ein neues d-dimensionales Simplex S_i . Führen wir das mit p' auf alle Seiten von P' fort, so erhalten wir eine, wegen der Konvexität von P', disjunkte Zerlegung von P' in endlich viele Simplizes. Weiter erhalten wir demzufolge auch eine Zerlegung von P in Simplizes.

Wir wollen uns zunächst überlegen, wie wir Polytope vervielfältigen, sowie über eine Dilatation stauchen und strecken können.

Definition 4.4 (Dilatation). Unter einer *Dilatation* mit einem Faktor $\lambda > 0$ verstehen wir eine Streckung bzw. Stauchung aller Punkte im Koordinatensystem. Ein Punkt $p \in \mathbb{R}^d$ wird auf sein skalares Vielfaches $\lambda \cdot p$ abgebildet. In Bezug auf Polytope erhalten wir mit dem Faktor λ das dilatierte Polytop

$$\lambda P = \{ \lambda p \mid p \in P \}.$$

Wir bemerken, dass diese Abbildung, angewandt auf Polytope, wieder neue Polytope erzeugt, da Halbräume auf Halbräume abgebildet werden. Eine Dilatation um den Faktor $\lambda=1$ lässt die Punkte unverändert und hat somit keine Auswirkung.

Bemerkung 4.5. Gegeben $\lambda > 0$. Dann können wir eine Dilatation mittels der Matrix

$$M = \begin{pmatrix} \lambda & & 0 \\ & \ddots & \\ 0 & & \lambda \end{pmatrix}$$

bezüglich der Standardbasis des \mathbb{R}^d darstellen. Für das Volumen eines Polytops P erhält man mit der Transformationsformel aus der Analysis (siehe auch [Kuw17, Satz 4.7])

$$vol(\lambda P) = |det(M)| \cdot vol(P) = \lambda^d \cdot vol(P).$$

Weiter stellen wir fest, dass eine Streckung einer Zerlegung eines Polytops das Gleiche ist wie die Zerlegung der gestreckten Polytope.

Lemma 4.6. Sei P ein Polytop und P_1, \ldots, P_n endlich viele Polytope, s. d. $P = P_1 + \ldots + P_n$ und $\lambda > 0$ gegeben, dann gilt

$$\lambda P = \lambda P_1 + \ldots + \lambda P_n$$
.

Beweis. Es gilt

$$\lambda P = \lambda (P_1 + \ldots + P_n)$$

$$= \{ \lambda p \mid p \in P_1 \vee \ldots \vee p \in P_n \}$$

$$= \{ \lambda p \mid p \in P_1 \} \cup \ldots \cup \{ \lambda p \mid p \in P_n \}$$

$$= \lambda P_1 + \ldots + \lambda P_n.$$

Lemma 4.7. Seien P und Q zwei Polytope und $\lambda > 0$ gegeben, dann gilt $P \cong Q$ genau dann, wenn $\lambda P \cong \lambda Q$.

Beweis. Sei für die Hinrichtung $P \cong Q$ gegeben. Somit gibt es eine Isometrie f, s. d. f(P) = Q. Wir können die Isometrie f durch ein $\alpha \in \mathbb{R}^d$ und eine orthogonale Matrix $U \in O(d)$ darstellen, s. d. $f(P) = \alpha + UP$ gilt. Betrachte die Abbildung f_{λ} , die für alle $x \in \mathbb{R}^d$ durch $f_{\lambda}(x) = \lambda \cdot \alpha + Ux$ definieren. Offensichtlich ist f_{λ} eine Isometrie. Dann gilt

$$f_{\lambda}(\lambda P) = \lambda \cdot \alpha + U\lambda P = \lambda \cdot \alpha + \lambda UP = \lambda(\alpha + UP) = \lambda f(P) = \lambda Q$$

Damit sind λP und λQ kongruent.

Sei für die Rückrichtung nun $\lambda P \cong \lambda Q$, folglich gibt es eine Isometrie f, s. d. $f(\lambda P) = \lambda Q$. Es gibt also wieder $\alpha \in \mathbb{R}^d$ und $U \in O(d)$, s. d. $f(x) = \alpha + Ux$ für alle $x \in \mathbb{R}^d$ gilt. Betrachte die Abbildung f_{λ} , die wir durch $f_{\lambda}(x) = \frac{1}{\lambda} \cdot \alpha + Ux$ für alle $x \in \mathbb{R}^d$ definieren. Diese ist wieder

33

eine Isometrie. Dann gilt

$$f_{\lambda}(P) = \frac{1}{\lambda} \cdot \alpha + UP = \frac{1}{\lambda} (\alpha + \lambda UP) = \frac{1}{\lambda} (\alpha + U\lambda P) = \frac{1}{\lambda} f(\lambda P) = \frac{1}{\lambda} \lambda Q = 1 \cdot Q = Q.$$

Die Polytope P und Q sind demzufolge kongruent.

Proposition 4.8. Seien P und Q Polytope und $\lambda > 0$ gegeben, dann gilt $P \sim Q$ genau dann, wenn $\lambda P \sim \lambda Q$.

Beweis. Seien für die Hinrichtung P und Q zerlegungsgleich, dann gibt es endlich viele Polytope P_1, \ldots, P_n und Q_1, \ldots, Q_n mit $P = P_1 + \ldots + P_n$ und $Q = Q_1 + \ldots Q_n$, s. d. $P_i \cong Q_i$ für alle $i = 1, \ldots, n$. Nach Lemma 4.6 können wir die Zerlegungen der gestreckten Polytope betrachten, also

$$\lambda P = \lambda (P_1 + \dots + P_n) = \lambda P_1 + \dots + \lambda P_n$$

$$\lambda Q = \lambda (Q_1 + \dots + Q_n) = \lambda Q_1 + \dots + \lambda Q_n.$$

Weiter gilt mit Lemma 4.7, dass aus $P_i \cong Q_i$ für alle i = 1, ..., n folgt, dass auch $\lambda P_i \cong \lambda Q_i$ für alle i = 1, ..., n gilt. Damit folgt $\lambda P \sim \lambda Q$.

Für die Rückrichtung seien $\lambda P \sim \lambda Q$, dann gibt es endlich viele Polytope $P_1, \ldots P_n$ und $Q_1 \ldots Q_n$ mit $\lambda P = P_1 + \ldots + P_n$ und $\lambda Q = Q_1 + \ldots + Q_n$, s. d. $P_i \cong Q_i$ für alle $i = 1, \ldots, n$. Wir betrachten die Zerlegungen

$$P = 1 \cdot P = \frac{1}{\lambda} \lambda P = \frac{1}{\lambda} (P_1 + \dots + P_n) = \frac{1}{\lambda} P_1 + \dots + \frac{1}{\lambda} P_n$$
$$Q = 1 \cdot Q = \frac{1}{\lambda} \lambda Q = \frac{1}{\lambda} (Q_1 + \dots + Q_n) = \frac{1}{\lambda} Q_1 + \dots + \frac{1}{\lambda} Q_n.$$

Dann sind mit Lemma 4.7, wegen der Kongruenz der P_i und Q_i für alle $i=1,\ldots,n$, die Polytope $\frac{1}{\lambda}P_i$ und $\frac{1}{\lambda}Q_i$ für alle $i=1,\ldots,n$ kongurent. Die Polytope P und Q sind demnach zerlegungsgleich.

Definition 4.9 (Vervielfachung). Sei P ein Polytop, dann ist die ganze Vervielfachung von P mit einer natürlichen Zahl n ein Polytop $n \cdot P$, das sich in n viele Polytope zerlegen lässt, die alle kongruent zu P sind. Formal bedeutet das, dass es Polytope P_1, \ldots, P_n gibt, s. d.

$$n \cdot P = P_1 + \ldots + P_n$$

wobei $P_i \cong P$ für alle $i = 1, \ldots, n$.

Wir bemerken, dass die Lage und Ausrichtung der Polyeder P_i nicht eindeutig festgelegt ist, was jedoch beim eigentlichen Zerlegen keine Rolle spielt. Wir wollen die Polytope so verschieben, dass sie paarweise disjunkt sind.

Die folgenden Eigenschaften ergeben sich beim Vervielfältigen.

Bemerkung 4.10. Wir wollen uns überlegen, wie sich das Volumen bei einer Vervielfachung verhält. Dazu sei P ein Polytop und n eine natürliche Zahl. Das Polytop $n \cdot P$ lässt sich in endlich viele Polytope P_1, \ldots, P_n zerlegen, also $n \cdot P = P_1 + \ldots + P_n$ und für alle $i = 1, \ldots, n$ soll $P_i \cong P$ gelten. Mit Proposition 1.10 gilt dann

$$vol(n \cdot P) = vol(P_1 + \ldots + P_n) = vol(P_1) + \ldots + vol(P_n) = n \cdot vol(P).$$

Bemerkung 4.11 (Additionssatz). Seien P, Q, R, S vier Polytope, s. d. $P \sim Q$ und $R \sim S$, dann gilt

$$P + R \sim Q + S$$
.

Wir iterieren hierbei einfach die Zerlegungen der einzelnen Polytope auf und erhalten damit die Zerlegungsgleichheit.

Bemerkung 4.12 (Multiplikationssatz). Seien P und Q zwei Polytope und n eine natürliche Zahl. Dann sind die Polytope $n \cdot P$ und $n \cdot Q$ zerlegungsgleich, falls P und Q zerlegungsgleich sind.

Folgerung 4.13. Seien P und Q zwei Polytope und n eine natürliche Zahl, dann gilt

$$n \cdot (P + Q) \sim n \cdot P + n \cdot Q$$
.

Beweis. Wir finden n viele Polytope R_1, \ldots, R_n mit $R_i \cong (P+Q)$ für alle $i=1,\ldots,n$, s. d. $n \cdot (P+Q) = R_1 + \ldots + R_n$. Da Schnitte von Polytopen wieder Polytope sind, folgt, dass sich jedes R_i darstellen lässt durch Polytope P_i und Q_i für alle $i=1,\ldots,n$, wobei $P_i \cong P$ und $Q_i \cong Q$. Ebenso finden wir mit der Definition der Polytope $n \cdot P$ und $n \cdot Q$ auch jeweils n viele Polytope P'_1, \ldots, P'_n und Q'_1, \ldots, Q'_n mit $P'_i \cong P$ und $Q'_i \cong Q$ für alle $i=1,\ldots,n$, s. d. $n \cdot P = P'_1 + \ldots + P'_n$ und $n \cdot Q = Q'_1 + \ldots + Q'_n$. Mit der Transitivität der Kongruenz gilt

auch $P_i \cong P_i'$ und $Q_i \cong Q_i'$ für alle $i = 1, \dots, n$. Wir erhalten die Zerlegungen

$$n \cdot (P+Q) = R_1 + \ldots + R_n = P_1 + Q_1 + \ldots + P_n + Q_n$$
 und
 $n \cdot P + n \cdot Q = P'_1 + \ldots + P'_n + Q'_1 + \ldots + Q'_n = P'_1 + Q'_1 + \ldots + P'_n + Q'_n.$

Damit sind $n \cdot (P + Q)$ und $n \cdot P + n \cdot Q$ zerlegungsgleich.

Um Polytope besser zu charakterisieren, werden wir in diesem Abschnitt sogenannte Zylinderklassen einführen. Wir werden später feststellen, dass diese Charakterisierung beim Beweisen einiger Resultate sehr hilfreich ist.

4.2 Zylinderklassen

Definition 4.14 (Minkowski-Summe). Seien A und B Mengen, dann ist die Minkowski-Summe $A \times B$ von A und B mit der vektoriellen Addition definiert als

$$A \times B = \{a + b \mid a \in A, b \in B\}.$$

In Bezug auf die leere Menge gilt

$$A \times \emptyset = \emptyset \times A = \emptyset.$$

Bemerkung 4.15. Seien A, B, C Mengen, dann ergeben sich folgende Eigenschaften mit der Minkowski-Summe:

 Die Minkowski-Addition erbt die Kommutativität und Assoziativität von der Addition, d. h. es gilt

$$A \times B = B \times A$$
 und $A \times (B \times C) = (A \times B) \times C$.

2. Weiter gelten auch die Distributivgesetze, also

$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

und mit der Kommutativität der Minkowski-Addition erhalten wir das zweite Distribu-

tivgesetz. Wenden wir dies nun auf Polytope P,Q und R an, dann gilt

$$(P+Q) \times R = (P \times R) + (Q \times R)$$
 und $P \times (Q+R) = (P \times Q) + (P \times R)$. (10)

3. In Verbindung mit der Dilatation ergibt sich für Polytope P und Q und ein $\lambda > 0$, dass

$$\lambda P \times \lambda Q = \lambda (P \times Q)$$

gilt.

4. Wir hatten im Zusammenhang mit der Definition der Kongruenz 1.6 bereits die Translationsgruppe erwähnt, die Untergruppe der Isometriegruppe, welche ausschließlich aus Translationen besteht. Wir stellen fest, dass für zwei Translationen f, g im Zusammenhang mit der Minkowski-Summe

$$f(A) \times g(B) = (g \circ f)(A \times B)$$

gilt (siehe dazu auch [Had13][1.2.2]).

Definition 4.16 (Parallelotop). Seien p_1, \ldots, p_d linear unabhängige Vektoren und S_1, \ldots, S_d die durch die Vektoren p_1, \ldots, p_d für alle $i = 1, \ldots, n$ definierten Strecken

$$S_i = \{tp_i \mid t \in [0,1]\},\$$

die die Richtung und Länge der Vektoren p_1, \ldots, p_d haben. Dann ist das Parallelotop P definiert durch

$$P = S_1 \times \ldots \times S_d$$

Wir sagen, das Parallelotop wird durch die Vektoren p_1, \ldots, p_d erzeugt.

Definition 4.17 (Gramsches Funktional). Sei P das durch die Vektoren p_1, \ldots, p_d erzeugte Parallelotop, dann ordnen wir dem Parallelotop P das Gramsche Funktional $\mathfrak{D}(P) > 0$ zu, das definiert ist durch

$$\mathfrak{D}(P) = \left(\det \begin{pmatrix} \langle p_1, p_1 \rangle & \cdots & \langle p_1, p_d \rangle \\ \vdots & \ddots & \vdots \\ \langle p_d, p_1 \rangle & \cdots & \langle p_d, p_d \rangle \end{pmatrix} \right)^{1/2}.$$

Mit $\langle p_i, p_j \rangle$ ist hier das Standardskalarprodukt gemeint.

Bemerkung 4.18. Wir stellen fest, dass das Gramsche Funktional folgende Eigenschaften erfüllt:

1. Sind P und Q zwei kongruente Parallelotope, dann gilt mit der Invarianz des Skalarprodukts unter Isometrien

$$\mathfrak{D}(P) = \mathfrak{D}(Q).$$

2. Sei P ein Parallelotop und $\lambda > 0$ gegeben, dann gilt

$$\mathfrak{D}(\lambda P) = \lambda^d \mathfrak{D}(P).$$

Satz 4.19. Die Parallelotope P und Q sind zerlegungsgleich, falls ihre Gramschen Funktionale übereinstimmen, d. h. $\mathfrak{D}(P) = \mathfrak{D}(Q)$.

Beweis. Beweisskizze: Der Beweis des Satzes ergibt sich aus zwei Resultaten. Es lässt sich feststellen, dass zwei Parallelotope scherungsäquivalent sind, falls ihre Gramschen Funktionale übereinstimmen. Vergleiche mit [Had13][Kapitel 1, Satz III]. Mit scherungsäquivalent meinen wir hier, dass wir die Vektoren, die die Parallelotope erzeugen, so verändern, dass wir in endlich vielen Scherungen die Parallelotope ineinander überführen können. Bei einer Scherung addieren wir auf einen dieser Vektoren ein Vielfaches eines anderen der Vektoren. Weiter kann man aus der Scherungsäquivalenz der Parallelotope folgern, dass diese auch zerlegungsgleich sind. Siehe dazu [Had13][Kapitel 1,Satz IV].

Definition 4.20 (i-stufiger Zylinder). Ein Polytop P ist ein i-stufiger Zylinder, falls es eine Darstellung der Form

$$P = P_1 \times \ldots \times P_i$$

gibt, wobei P_k für alle $k=1,\ldots,i$ konvexe Polytope sind, die jeweils in einer d_k -dimensionalen Ebene E_{d_k} liegen. Hierbei soll $\sum_{k=1}^i d_k = d$ und $d_k \geq 1$ für alle $k=1,\ldots,i$ gelten. Die Ebenen E_{d_k} befinden sich paarweise in allgemeiner Lage, d. h. dass diese paarweise keine gleichen Richtungen aufweisen bzw. als Räume komplementär in \mathbb{R}^d liegen.

Wir bemerken, dass die konvexen Polytope P_1, \ldots, P_n uneigentliche Polytope sind. Dennoch gibt es die Möglichkeit, diese in ihrer Ebene E_{d_k} als ein eigentliches Polytop aufzufassen. Jedes Simplex ist also offensichtlich ein 1-stufiger Zylinder. Genauso ist jedes Parallelotop ein k-stufiger Zylinder.

Definition 4.21 (Zylinderklassen). Ein Polytop P ist ein i-stufiges Zylinderpolytop, falls es endlich viele i-stufige Zylinder P_1, \ldots, P_n gibt, s. d.

$$P = P_1 + \ldots + P_n.$$

Die *i-te Zylinderklasse* \mathfrak{B}_i ist die Menge aller Polytope, die zu einem *i-*stufigen Zylinderpolytop zerlegungsgleich sind, wobei $\emptyset \in \mathfrak{B}_i$. Die Stufenzahl i, mit $1 \leq i \leq d$, ist die Ordnung der Zylinderklasse \mathfrak{B}_i .

Es ist klar, dass für zwei Polytope $P,Q\in\mathfrak{B}_i$ auch $P+Q\in\mathfrak{B}_i$ gilt. Besonders interessant sind hierbei die erste und die d-te Zylinderklasse. Es lässt sich nämlich feststellen, dass die erste Zylinderklasse gerade der Menge aller Polytope entspricht. Jedes Polytop lässt sich nach Satz 4.3 in endlich viele Simplizes zerlegen und jedes Simplex ist ein 1-stufiger Zylinder. Die d-te Zylinderklasse entspricht gerade Polytopen, welche mit endlich vielen Parallelotopen zerlegungsgleich sind. Es gilt sogar die folgende Eigenschaft.

Proposition 4.22. Sei $P \in \mathfrak{B}_d$ ein Polytop, dann gibt es ein $\lambda > 0$, s. d.

$$P \sim \lambda W$$
.

Hierbei ist W der d-dimensionale Einheitswürfel, den wir erhalten, indem wir die Minkowski-Summe der Strecken S_1, \ldots, S_n , welche die Richtung und Länge der Standardbasisvektoren e_1, \ldots, e_d des \mathbb{R}^d haben, bilden.

Beweis. Da P ein Polytop aus der d-ten Zylinderklasse ist, finden wir endlich viele Parallelotope P_1, \ldots, P_n , s. d. $P = P_1 + \ldots + P_n$. Wir definieren λ durch

$$\lambda^d = \sum_{i=1}^n \mathfrak{D}(P_i).$$

Weiter definieren wir

$$\lambda_i = \frac{\mathfrak{D}(P_i)}{\lambda^d} \tag{11}$$

für alle $i=1,\ldots,n$. Dann lässt sich der Einheitswürfel W in n viele Parallelotope W_1,\ldots,W_n

zerlegen, wobei

$$W_i := (S_1 \times \dots S_{d-1} \times \lambda_i S_d) + \sum_{k=1}^{i-1} \lambda_k e_d$$

für alle $i=1,\ldots,n$ gilt. Anschaulich wird der Einheitswürfel W hierbei in n viele Scheiben der Länge λ_i geschnitten. Es gilt

$$\mathfrak{D}(\lambda W_i) = \lambda^d \mathfrak{D}(W_i) = \lambda^d \left(\det \begin{pmatrix} 1 & 0 \\ \ddots & 1 \\ 0 & \lambda_i \end{pmatrix} \right)^{1/2} = \lambda^d \lambda_i \stackrel{1}{=} \mathfrak{D}(P_i)$$

für alle i = 1, ..., n. Mit Satz 4.19 sind also P_i und λW_i für alle i = 1, ..., n zerlegungsgleich. Mit dem Additionssatz (Satz 4.11) sind auch P und λW zerlegungsgleich.

Bemerkung 4.23. Wir stellen fest, dass jeder *i*-stufige Zylinder auch ein *j*-stufiger Zylinder für ein j < i ist und damit erhalten wir

$$\mathfrak{B}_1 \supset \mathfrak{B}_2 \supset \ldots \supset \mathfrak{B}_d$$
.

Die Zylinderklassen sind vor allem deswegen für uns interessant, da sie Beweisverfahren nach dem Prinzip der vollständigen Induktion ermöglichen. So können wir Aussagen für alle Polytope mittels Induktion über die Zylinderklassen beweisen. Wir werden dieses Verfahren im Beweis zu Satz 4.34 verwenden. Im nächsten Abschnitt werden wir uns einen Hilfssatz anschauen, der die Dilatation von Polytopen in Verbindung mit der Vervielfachung von Polytopen bringen wird. Wir werden sehen, dass dieser Satz von zentraler Bedeutung für die darauffolgenden Beweise ist.

4.3 Hilfssatz

Wir wollen noch die Translationsgleichheit, analog zur Kongruenz, von Polytopen einführen. Dazu erinnern wir uns an die Translationsgruppe. Wir benötigen an einigen Stellen in den Beweisen in diesem Abschnitt die Translationsgleichheit. Letztendlich können wir dann den Hilfssatz auf die Zerlegungsgleichheit verallgemeinern, da die translative Zerlegungsgleichheit die Zerlegungsgleichheit impliziert.

Definition 4.24 (Translationsgleichheit, translative Zerlegungsgleichheit). Wir nennen zwei Polytope P und Q translationsgleich, wenn es eine Translation f aus der Translationsgruppe gibt, s. d. f(P) = Q gilt. Wir schreiben $P \cong_t Q$.

Die Translationsgleichheit ist, wie die Kongruenz, eine Äquivalenzrelation.

Weiter nennen wir zwei Polytope P und Q translativ zerlegungsgleich, wenn es endlich viele P_1, \ldots, P_n und Q_1, \ldots, Q_n gibt, mit $P = P_1 + \ldots + P_n$ und $Q = Q_1 + \ldots + Q_n$, s. d. für alle $i = 1, \ldots, n$ die Polytope P_i und Q_i translationsgleich sind. Wir schreiben $P \approx Q$.

Bemerkung 4.25. Es ist klar, dass aus der Translationsgleichheit von Polytopen auch die Kongruenz folgt. Damit folgt aus der translativen Zerlegungsgleichheit die Zerlegungsgleichheit. Wir bemerken, dass die Eigenschaften in diesem Kapitel, die wir für die Zerlegungsgleichheit gezeigt haben, auch für die translative Zerlegungsgleichheit gelten.

Weiter erhalten wir mit Bemerkung 4.15 Eigenschaft 4 auch die folgende Eigenschaft.

Bemerkung 4.26. Seien P,Q,R,S Polytope mit $P\approx R$ und $Q\approx S$, dann gilt $P\times Q\approx R\times S$. Betrachten wir die Zerlegungen der einzelnen Polytope und setzen diese in $P\times Q$ und $R\times S$ ein. Dann ergeben sich durch Ausmultiplizieren mit den Distrubivgesetzen der Minkowski-Addition Zerlegungen, dessen einzelne Polytope mit Bemerkung 4.15 Eigenschaft 4 translationsgleich sind.

Bevor wir zu dem Hilfssatz kommen, wollen wir uns eine Folgerung aus der kanonischen Simplexzerlegung anschauen.

Definition 4.27 (Simplotop). Sei p ein Vektor und s_1, \ldots, s_i und t_1, \ldots, t_{d-i} insgesamt d linear unabhängige Vektoren, wobei $1 \le i \le d-1$ ist. Dann ist das Simplotop S gerade das Polytop, dessen Elemente s dargestellt werden durch

$$s = p + \sum_{k=1}^{i} \alpha_k s_k + \sum_{j=1}^{d-i} \beta_j t_j,$$

für beliebige $1 \ge \alpha_1 \ge \ldots \ge \alpha_i \ge 0$ und $1 \ge \beta_1 \ge \ldots \ge \beta_{d-i} \ge 0$.

Erinnern wir uns zurück an die Definition des Simplex (Definition 4.1) dann fallen uns in dieser Definition einige Gemeinsamkeiten auf. Tatsächlich ergibt sich die folgende Bemerkung.

Bemerkung 4.28. Wir stellen fest, dass sich ein wie oben definiertes Simplotop S als Minkowski-Summe eines Punktes p und zweier im Ursprung liegender Simplexe $S_1 = \langle 0; s_1, \ldots, s_i \rangle$ und $S_2 = \langle 0; t_1, \ldots, t_{d-i} \rangle$ darstellen lässt. Es gilt also

$$S = p \times S_1 \times S_2$$
.

Wir betrachten nun die Zerlegung eines Simplex in d + 1 viele konvexe Teilpolytope, die sogenannte kanonische Simplexzerlegung.

Satz 4.29 (Folgerung aus der Kanonischen Simplexzerlegung). Sei S ein Simplex und $0 < \lambda < 1$ gegeben, dann gibt es ein $S_0 \in \mathfrak{B}_2$, s. d.

$$S \approx \lambda S + (1 - \lambda)S + S_0.$$

Dieser Satz ist ein spezielles Resultat aus der Kanonischen Simplexzerlegung in [Had13][1.2.6]. Wir wollen uns aus dem Beweis an dieser Stelle nur die Konstruktion, mit der wir auf die Zerlegungsrelation kommen, anschauen, den vollständigen Beweis jedoch nicht.

Beweis. Sei $S = \langle p; s_1, \ldots, s_d \rangle$ das Simplex und $0 < \lambda < 1$ gegeben. Wir wollen zunächst diesem Simplex für alle $i = 1, \ldots, d-1$ zwei uneigentliche Simplexe $S_i' = \langle p; s_1, \ldots, s_i \rangle$ und $S_{d-i}'' = \langle p + \sum_{k=1}^i s_k; s_{i+1}, \ldots, s_d \rangle$ zuordnen. Die beiden Simplexe S_i' und S_{d-i}'' liegen in allgemeiner Lage in komplementären Räumen. Wir ergänzen unsere Konstruktion durch $S_0' = p$, $S_0'' = q = p + \sum_{k=1}^i s_k$ und $S_d' = S_d'' = S$. Seien nun die Simplotope $W_0(\lambda), \ldots, W_d(\lambda)$ gegeben durch

$$W_i(\lambda) = (1 - \lambda)S_i' \times \lambda S_{d-i}''$$

für alle i = 0, ..., d. Besonders das erste und letzte Simplotop sind hierbei interessant. Es gilt nämlich $W_0(\lambda) = (1 - \lambda)p \times \lambda S$, was translationsgleich zu λS ist, und $W_d(\lambda) = \lambda q \times (1 - \lambda)S$, was translationsgleich zu $(1 - \lambda)S$ ist. Damit gilt dann die Zerlegung

$$S = W_0(\lambda) + \ldots + W_d(\lambda).$$

Dieses Resultat ist die kanonische Simplexzerlegung. Für den Beweis davon sei auf [Had13][1.2.6] verwiesen. Wir stellen fest, dass die Simplotope $W_1(\lambda), \ldots, W_{d-1}(\lambda)$, als Minkowski-Summe zweier uneigentlicher Simplexe, alle 2-stufige Zylinder sind und damit in \mathfrak{B}_2 liegen. Damit auch $W_1(\lambda) + \ldots + W_{d-1}(\lambda) \in \mathfrak{B}_2$. Wir definieren also $S_0 = W_1(\lambda) + \ldots + W_{d-1}(\lambda)$. Weiter gilt $W_0(\lambda) \approx \lambda S$ und $W_d(\lambda) \approx (1 - \lambda)S$ demnach erhalten wir

$$S = W_0(\lambda) + \ldots + W_d(\lambda) \approx \lambda S + (1 - \lambda)S + S_0.$$

Satz 4.30 (Hilfssatz). Sei P ein Polytop, das in der i-ten Zylinderklasse \mathfrak{B}_i ist und n eine natürliche Zahl, dann gilt

$$nP \sim n^i \cdot P + P_0$$

wobei $P_0 \in \mathfrak{B}_{i+1}$ ein (von *n* abhängiges) Polytop ist. Falls i = d ist $P_0 = \emptyset$.

Da wir im Beweis der Aussage lediglich die Streckung und Vervielfachung von Polytopen betrachten, gilt der Satz sogar für translative Zerlegungsgleichheit, wir folgern daraus die Zerlegungsgleichheit.

Beweis.

1. Fall: Es gilt i=1. Dann reicht es, aufgrund der Simplizialzerlegung eines Polytops, die Behauptung für ein Simplex P nachzuweisen. Für alle $j=1,\ldots,n-1$ gilt nun, dass $n-j\in\{1,\ldots,n-1\}$ und $n-j+1\in\{2,\ldots,n\}$ und damit auch $0<\frac{n-j}{n-j+1}<1$. Wir wenden nun Satz 4.29 mit den Parametern $\lambda_j=\frac{n-j}{n-j+1}$ an und erhalten für alle $j=1,\ldots,n-1$ die Relationen

$$P \approx \frac{n-j}{n-j+1}P + \left(1 - \frac{n-j}{n-j+1}\right)P + P_{j,0} = \frac{n-j}{n-j+1}P + \frac{1}{n-j+1}P + P_{j,0},$$

wobei $P_{j,0} \in \mathfrak{B}_2$ gilt. Mit Dilatation mit n-j+1 erhalten wir dann die Relationen

$$(n-j+1)P \approx (n-j)P + P_j + P_{j,0}$$

für alle j = 1, ..., n-1, wobei $P_j \cong_t P$ und $P_{j,0} \in \mathfrak{B}_2$ gilt. Wir schreiben die Relationen aus als

$$nP \approx (n-1)P + P_1 + P_{1,0}$$
$$(n-1)P \approx (n-2)P + P_2 + P_{2,0}$$
$$\vdots$$
$$3P \approx 2P + P_{n-2} + P_{n-2,0}$$
$$2P \approx P + P_{n-1} + P_{n-1,0}$$

Es lässt sich durch sukzessives Einsetzen erkennen, dass wir schreiben können

$$nP \approx (P + P_1 + \dots + P_{n-1}) + (P_{1,0} + \dots + P_{n-1,0}).$$

Wir können die erste Summe zusammenfassen zu $n \cdot P$ und da alle $P_{j,0}$ in \mathfrak{B}_2 liegen, liegt auch die Summe in \mathfrak{B}_2 und wir erhalten

$$nP \approx n \cdot P + P_0 \tag{12}$$

für ein $P_0 \in \mathfrak{B}_2$. Damit sind wir mit dem ersten Fall fertig.

2. Fall: Es gilt i > 1, folglich reicht es, die Behauptung für einen i-stufigen Zylinder P nachzuweisen. Sei also $P = P_1 \times \ldots \times P_i$ für konvexe Polytope $P_1 \ldots P_i$ die in d_k -dimensionalen Ebenen E_{d_k} liegen, mit $\sum_{k=1}^i d_k = d$ und $d_k \ge 1$ für alle $k = 1, \ldots, i$. Es gilt mit Bemerkung 4.15 Eigenschaft 3 auch

$$nP = nP_1 \times \ldots \times nP_i$$
.

Betrachten wir Zylinderklassen in den Räumen \mathbb{R}^{d_k} , in denen die Ebenen E_{d_k} liegen. Dann sind die konvexen Polytope P_1, \ldots, P_i , die im Raum \mathbb{R}^d uneigentliche Polytope sind, im Raum \mathbb{R}^{d_k} wieder eigentliche Polytope, die wir als Polytope der Zylinderklasse $\mathfrak{B}_1^{(d_k)}$ auffassen können. Mit $\mathfrak{B}_i^{(d_k)}$ meinen wir die *i*-te Zylinderklasse der d_k -dimensionalen Polytope, die in der Ebene E_{d_k} liegen. Mit dem ersten Fall (Relation 12) folgt also für die Polytope, dass für alle $k = 1, \ldots, i$ gilt

$$nP_k \approx P_{k,0} + n \cdot P_k = P_{k,0} + P_{k,1} + \ldots + P_{k,n}$$

wobei $P_{k,0} \in \mathfrak{B}_2^{(d_k)}$ und $P_{k,j} \cong_t P_k$ für alle $j = 1, \ldots, n$ ist. Wir erhalten mit Bemerkung 4.26 die Relation

$$nP = nP_1 \times ... \times nP_i \approx (P_{1,0} + P_{1,1} + ... + P_{1,n}) \times ... \times (P_{i,0} + P_{i,1} + ... + P_{i,n}),$$

die wir mit den Distributivgesetzen aus Bemerkung 4.15 2 umformen können zu

$$nP \approx \sum_{\substack{\mu = (\mu_1, \dots, \mu_i) \\ \in \{0, 1, \dots, n\}^i}} \underset{k=1}{\overset{i}{\underset{k=1}{\times}}} P_{k, \mu_k}.$$

Hierbei läuft der Vektor μ in i Koordinaten alle Kombinationen von 0 bis n durch, es gibt also $(n+1)^i$ viele unterschiedliche Kombinationen die μ annehmen kann. Jeder Summand hat demnach die Form $P_{1,\mu_1} \times \ldots \times P_{i,\mu_i}$ mit einer jeweiligen Kombination.

Betrachten wir zunächst die Summanden, in denen $\mu_k \neq 0$ für alle k = 1, ..., i gilt. Dies sind insgesamt n^i viele Kombinationen, da in diesem Fall $\mu \in \{1, ..., n\}^i$ ist. Dann gilt

$$P_{k,\mu_k} \cong_t P_k$$

für alle $\mu_k=1,\dots,n$ und damit erhalten wir mit Bemerkung 4.15 Eigenschaft 4

$$\underset{k=1}{\overset{i}{\times}} P_{k,\mu_k} = P_{1,\mu_1} \times \ldots \times P_{i,\mu_i} \cong_t P_1 \times \ldots \times P_i = P.$$

Wir haben n^i viele Summanden die translationsgleich, also auch kongruent, zu P sind, demnach können wir diese zu $n^i \cdot P$ zusammenfassen.

Betrachten wir nun die übrigen Summanden, in denen mindestens ein Eintrag von μ verschwindet. Dann stellen wir fest, dass $P_{k,0}$ entweder leer ist oder in $\mathfrak{B}_2^{(d_k)}$ ist. Falls ein $P_{k,0}$ leer ist gilt für den Summand

$$\underset{k=1}{\overset{i}{\times}} P_{k,\mu_k} = \emptyset$$

Falls $P_{k,0}$ stattdessen in $\mathfrak{B}_2^{(d_k)}$ liegt, ist $P_{k,0}$ bezogen auf die Ebene E_{d_k} ein 2-stufiger Zylinder, also gibt es zwei konvexe Polytope $P'_{k,0}$ und $P''_{k,0}$, die in zwei Ebenen E' und E'' liegen, s. d. $P_{k,0} = P'_{k,0} \times P''_{k,0}$ gilt. Das wiederum bedeutet, dass unser Summand $\times_{k=1}^{i} P_{k,\mu_k}$ in \mathfrak{B}_{i+1} liegt. Die Summanden in diesem Fall sind folglich entweder leer oder sie liegen in \mathfrak{B}_{i+1} . Demnach erhalten wir insgesamt

$$nP \approx n^i \cdot P + P_0$$

wobei $P_0 \in \mathfrak{B}_{i+1}$ ist. Also gilt auch die Zerlegungsgleichheit.

Damit ist die Aussage gezeigt.

4.4 Ergänzungsgleichheit und Zerlegungsgleichheit

Wir wollen noch einmal kurz die Definition der Zerlegungsgleichheit wiederholen.

Definition 4.31 (Zerlegungsgleichheit). Zwei Polytope P und Q heißen zerlegungsgleich, wenn es endlich viele Polytope $P_1, \ldots, P_n, Q_1, \ldots, Q_n$ mit $P = P_1 + \ldots + P_n, Q = Q_1 + \ldots + Q_n$ gibt, s. d.

$$P_i \cong Q_i$$

für alle $i \in \{1, \ldots, n\}$.

Nun können wir die Ergänzungsgleichheit definieren.

Definition 4.32 (Ergänzungsgleich). Zwei Polytope P und Q heißen ergänzungsgleich, wenn es endlich viele Polytope $P_1, \ldots, P_n, Q_1, \ldots, Q_n$ gibt, wobei $P_i \cong Q_i$ für alle $i \in \{1, \ldots, n\}$ gilt, s. d. die Polytope

$$P' = P + P_1 + \ldots + P_n, \qquad Q' = Q + Q_1 + \ldots + Q_n$$

zerlegungsgleich sind.

Alternativ sind zwei Poltope P und Q ergänzungsgleich, falls es zwei zerlegungsgleiche Polytope A und B gibt, s. d. $P + A \sim Q + B$ gilt.

Man sieht leicht, dass die folgende Aussage gilt.

Proposition 4.33. Seien P und Q zwei ergänzungsgleiche Polytope, dann gilt vol(P) = vol(Q).

Beweis. Seien P und Q ergänzungsgleich, d. h. es gibt endlich viele Polytope P_1, \ldots, P_n , Q_1, \ldots, Q_n mit $P_i \cong Q_i$ für alle $i \in 1, \ldots, n$, s. d. $P' = P + P_1 + \ldots + P_n$ und $Q' = Q + Q_1 + \ldots + Q_n$ zerlegungsgleich sind. Nach Proposition 1.12 gilt dann auch vol(P') = vol(Q'). Damit folgt

$$vol(P) + vol(P_1) + \ldots + vol(P_n) = vol(P') = vol(Q') = vol(Q) + vol(Q_1) + \ldots + vol(Q_n)$$

und da mit $P_i \cong Q_i$ für alle $i \in 1, ..., n$ nach Proposition 1.10 auch $vol(P_i) = vol(Q_i)$ gilt, folgt vol(P) = vol(Q).

Satz 4.34. Zwei Polyeder P und Q sind genau dann zerlegungsgleich, wenn sie ergänzungsgleich sind.

Um den Satz zu beweisen, benötigen wir noch eine Definition und ein Lemma.

Definition 4.35. Ein Polytop P ist zerlegungsgleich zu einem Teilpolytop des Polytops Q ist, falls es ein Polytop gibt, zu dem P zerlegungsgleich ist und das in Q enthalten ist. Formal ausgedrückt finden wir Polytope $Q_1, Q_2 \subset Q$ mit $Q_1 + Q_2 = Q$, s. d. $P \sim Q_1$ ist. Hierfür schreiben wir

$$P \sim_{\subset} Q$$
.

Bemerkung 4.36. Wir bemerken, dass diese Relation transitiv ist. Seien dazu Polytope P, Q, R gegeben, s. d. $P \sim_{\mathbb{C}} Q$ und $Q \sim_{\mathbb{C}} R$ gilt, d. h. es gibt ein Polytop $Q' \subset Q$, s. d. $P \sim Q'$ und ein Polytop $R' \subset R$, s. d. $Q \sim R'$. Weiter gibt es endlich viele Polytope Q_1, \ldots, Q_n und R'_1, \ldots, R'_n mit $Q = Q_1 + \ldots + Q_n$ und $R' = R'_1 + \ldots + R'_n$, s. d. für alle $i = 1, \ldots, n$ die Kongruenz $Q_i \cong R'_i$ gilt. Seien also f_1, \ldots, f_n die Isometrien, für die für alle $i = 1, \ldots, n$ die Gleichungen $f_i(Q_i) = R'_i$ gelten. Wir wollen zeigen, dass Q' zerlegungsgleich zu einem Teilpolytop von R ist. Wir erhalten von Q' die Zerlegung

$$Q' = Q' \cap Q = Q' \cap (Q_1 + \ldots + Q_n) = (Q' \cap Q_1) + \ldots + (Q' \cap Q_n).$$

Da Q' nicht leer ist, gibt es auch $Q' \cap Q_i$, die nicht leer sind. Weiter definieren das Polytop $R'' \subset R$ durch

$$R'' = (f_1(Q') \cap R'_1) + \ldots + (f_n(Q') \cap R'_n).$$

Mit der Bijektivität der Isometrien gilt für alle i = 1, ..., n

$$f_i(Q' \cap Q_i) = f_i(Q') \cap f_i(Q_i) = f_i(Q') \cap R'_i$$

Das Polytop R'' ist nicht leer und es gilt $Q' \sim R''$, also auch $P \sim R''$ und die Transitivität ist gezeigt.

Lemma 4.37. Seien P und Q Polytope, dann ist P genau dann zu einem Teilpolytop von Q zerlegungsgleich, d. h. $P \sim_{\subset} Q$, wenn $vol(P) \leq vol(Q)$.

Beweis.

" \Rightarrow ": Die Hinrichtung ist klar: Wenn P zu einem Teilpolytop von Q zerlegungsgleich ist, ist mit Proposition 1.12 auch das Volumen dieser Polytope gleich. Da wir ein Teilpolytop von Q haben, folgt die Aussage mit der Monotonie des Maßes.

" \Leftarrow ": Betrachten wir nun die Rückrichtung. Es gelte $vol(P) \leq vol(Q)$, dann gibt es ein $\gamma \geq 0$, s. d. $vol(Q) - vol(P) = \gamma^d$ gilt. Wir beweisen die Aussage per Induktion über die Zylinderklassen. Seien $P, Q \in \mathfrak{B}_d$, dann gibt es nach Proposition 4.22 $\alpha, \beta > 0$, s. d. $P \sim \alpha W$ und $Q \sim \beta W$, wobei W der d-dimensionale Einheitswürfel ist. Also gilt mit Proposition 1.12 und Bemerkung 4.5 auch

$$0 \le \gamma^d = vol(Q) - vol(P) = vol(\beta W) - vol(\alpha W) = \beta^d - \alpha^d.$$

Damit folgt $\beta \geq \alpha$ also ist der Würfel αW in dem Würfel βW enthalten und wir finden das gesuchte Teilpolytop von Q, nämlich gerade das dilatierte Polytop $\frac{\alpha}{\beta}Q$. Denn mit $\beta W \sim Q$ erhalten wir mit Proposition 4.8 auch $\alpha W \sim \frac{\alpha}{\beta}Q$ und mit der Transitivität der Zerlegungsgleichheit folgt $P \sim \frac{\alpha}{\beta}Q$. Damit ist die Aussage für die letzte Zylinderklasse bewiesen und wir nehmen induktiv an, dass die Aussage für alle Polytope der Zylinderklasse \mathfrak{B}_{i+1} gelte. Seien $P,Q \in \mathfrak{B}_i$. Es gibt ein $\delta > 0$, für das $P \sim_{\subset} \delta W$ gilt. Dieses δ existiert und wir können es einfach so groß wählen, dass das Polytop P in diesem Würfel enthalten ist. Desweiteren sei eine natürliche Zahl n so gewählt, dass $\lambda \geq \delta$ gilt, wenn wir λ definieren durch

$$\lambda = \left(\frac{\gamma}{2}\right) (n^{d-i} - 1)^{1/d}. \tag{13}$$

Wir sehen, dass dann auch $P \sim_{\subset} \lambda W$ gilt. Mit dem Multiplikationssatz (Bemerkung 4.12) gilt weiter

$$n^i \cdot P \sim_{\subset} n^i \cdot \lambda W.$$
 (14)

Wir stellen fest, dass das Polytop $n^i \cdot \lambda W$ in der Zylinderklasse \mathfrak{B}_d ist, da es sich aus n^i vielen Würfeln $\lambda W_1 \dots, \lambda W_{n^i}$, die alle kongruent zu λW sind, zusammensetzt und diese Würfel natürlich d-stufige Zylinder sind. Mit Proposition 4.22 gibt es ein μ , s. d. $n^i \cdot \lambda W \sim \mu W$, damit auch

$$n^i \cdot \lambda W \sim_{\subset} \mu W$$
 (15)

Das μ ist hierbei definiert durch

$$\mu^d = \sum_{j=1}^{n^i} \mathfrak{D}(\lambda W_j) = \sum_{j=1}^{n^i} \lambda^d \mathfrak{D}(W) = n^i \lambda^d.$$
 (16)

Dabei haben wir Bemerkung 4.18 verwendet. Also gilt mit den Relationen 14 und 15 und mit der Transitivität von " \sim_{\subset} " auch

$$n^i \cdot P \sim_{\subset} \mu W.$$
 (17)

Weiter erhalten wir für die Dilatation der Polytope P und Q mit n aus Satz 4.30 die Relationen

$$nP \sim P_0 + n^i \cdot P$$

$$nQ \sim Q_0 + n^i \cdot Q,$$
(18)

wobei P_0 und Q_0 Polytope der Zylinderklasse \mathfrak{B}_{i+1} sind. Es gilt für das Volumen mit Bemerkung 4.10

$$n^{d}vol(P) = vol(nP) = vol(P_0 + n^{i}P) = vol(P_0) + vol(n^{i} \cdot P) = vol(P_0) + n^{i}vol(P).$$

Also gilt

$$vol(P_0) = vol(P)(n^d - n^i).$$

Analog erhalten wir auch

$$vol(Q_0) = vol(Q)(n^d - n^i).$$

Zusammengesetzt ergibt das

$$vol(Q_0) - vol(P_0) = (vol(Q) - vol(P))(n^d - n^i) = \gamma^d(n^d - n^i).$$
 (19)

Mit den Relationen 17 und 18 gilt

$$nP \sim P_0 + n^i \cdot P \sim_{\subset} P_0 + \mu W. \tag{20}$$

Wir berechnen nun

$$vol(P_0 + \mu W) = vol(P_0) + \mu^d$$

$$\stackrel{16}{=} vol(P_0) + n^i \lambda^d$$

$$\stackrel{13}{=} vol(P_0) + n^i \left(\left(\frac{\gamma}{2} (n^{d-i} - 1)^{1/d} \right) \right)^d$$

$$= vol(P_0) + \left(\frac{\gamma}{2} \right)^d (n^d - n^i).$$

Weiter gilt

$$vol(Q_0) - vol(P_0 + \mu W) = vol(Q_0) - vol(P_0) - \left(\frac{\gamma}{2}\right)^d (n^d - n^i)$$

$$\stackrel{19}{=} \gamma^d (n^d - n^i) - \left(\frac{\gamma}{2}\right)^d (n^d - n^i)$$

$$\geq 0.$$

Damit erhalten wir $vol(Q_0) \geq vol(P_0 + \mu W)$. Wir stellen fest, dass $Q_0, P_0 \in \mathfrak{B}_{i+1}$ und $\mu W \in \mathfrak{B}_d$, demnach auch $\mu W \in \mathfrak{B}_{i+1}$ und damit $P_0 + \mu W \in \mathfrak{B}_{i+1}$ gilt. Mit der Induktionsvoraussetzung folgt nun, dass

$$P_0 + \mu W \sim_{\subset} Q_0$$

gilt. Weiter gilt mit 20 und der Transitivität von " \sim_{\subset} " auch $nP \sim_{\subset} Q_0$. Somit gilt erst recht

$$nP \sim_{\subset} nQ$$

und mit Proposition 4.8 folgt

$$P \sim_{\subset} Q$$
.

Damit sind wir fertig.

Nun haben wir alle Voraussetzungen, um den Satz 4.34 zu beweisen. Der Beweis richtet sich nach [Had13, Satz III].

Beweis. (Satz 4.34)

- " \Rightarrow ": Haben wir zwei zerlegungsgleiche Polytope, so müssen wir kein weiteres Polytop ergänzen, damit die Ergänzungen zerlegungsgleich sind, also folgt bereits die Ergänzungsgleichheit.
- " \Leftarrow ": Die Rückrichtung funktioniert per Induktion über die Zylinderklassen. Seien Polytope P,Q,R,S gegeben, s. d.

$$P + R \sim Q + S \tag{21}$$

und

$$R \sim S.$$
 (22)

Wir wollen zeigen, dass $P \sim Q$ gilt. Falls nun $P,Q \in \mathfrak{B}_d$ gilt, dann gibt es mit Proposition $4.22 \ \lambda_1, \lambda_2 > 0$, s. d. $P \sim \lambda_1 W$ und $Q \sim \lambda_2 W$, wobei mit W der d-dimensionale Einheitswürfel gemeint ist. Da mit Folgerung 4.33 folgt, dass vol(P) = vol(Q), muss $\lambda_1 = \lambda_2$ sein, und damit $P \sim Q$.

Wir nehmen nun induktiv an, dass die Aussage bereits für alle Polytope $P, Q \in \mathfrak{B}_{i+1}$ gilt. Es sei nun $P, Q \in \mathfrak{B}_i$ für ein beliebiges $1 \leq i \leq d-1$. Da d-i > 0 und o.B.d.A. vol(R) > 0, dann gibt es eine natürliche Zahl n, s. d.

$$n^{d-i} > 1 + \frac{vol(R)}{vol(P)}. (23)$$

Betrachten wir nun Gleichung 21, dann erhalten wir mit Lemma 4.6, dass n(P+R) = nP + nR und n(Q+S) = nQ + nS gilt. Mit Proposition 4.8 erhalten wir

$$nP + nR \sim nQ + nS \tag{24}$$

und

$$nR \sim nS.$$
 (25)

Mit Satz 4.30 gibt es nun ein Polytop $P_0 \in \mathfrak{B}_{i+1}$, s. d.

$$nP \sim P_0 + n^i \cdot P \tag{26}$$

und mit Proposition 1.12 folgt dann

$$vol(nP) = vol(P_0 + n^i \cdot P) = vol(P_0) + vol(n^i \cdot P) = vol(P_0) + n^i \cdot vol(P).$$

Nach Bemerkung 4.5 gilt $vol(nP) = n^d vol(P)$ und damit

$$vol(P_0) = (n^d - n^i)vol(P).$$
(27)

Weiter folgt mit der Ungleichung 23, dass $n^d > n^i + n^i \frac{vol(R)}{vol(P)}$ und damit

$$vol(P_0) = (n^d - n^i)vol(P) > n^i vol(R) = vol(n^i \cdot R).$$
(28)

Mit Lemma 4.37 ist $n^i \cdot R$ zerlegungsgleich zu einem Teilpolytop von P_0 , d. h. es gibt Polytope $C, D \subset P_0$ mit $C + D = P_0$ und $n^i \cdot R \sim C$, s. d.

$$P_0 = C + D \sim n^i \cdot R + D. \tag{29}$$

Wir erhalten mit Folgerung 4.13 also

$$nP \stackrel{26}{\approx} P_0 + n^i \cdot P$$

$$\stackrel{29}{\approx} n^i \cdot R + D + n^i \cdot P$$

$$\sim D + n^i \cdot (R + P)$$

$$\stackrel{21}{\approx} D + n^i \cdot (Q + S)$$

$$\stackrel{22}{\approx} D + n^i \cdot (Q + R)$$

$$\sim D + n^i \cdot Q + n^i \cdot R$$

$$\stackrel{29}{\approx} P_0 + n^i \cdot Q. \tag{30}$$

Analog zu 26 finden wir für Q ebenso ein $Q_0 \in \mathfrak{B}_{i+1}$ mit $nQ \sim Q_0 + n^i \cdot Q$. Wir erhalten

$$P_0 + n^i \cdot Q + nR \stackrel{30}{\sim} nP + nR \stackrel{24}{\sim} nQ + nS \sim Q_0 + n^i \cdot Q + nS.$$

Wegen 25 gilt $n^i \cdot Q + nR \sim n^i \cdot Q + nS$ und mit der Induktionsvoraussetzung folgt für

 $P_0,Q_0\in\mathfrak{B}_{i+1},$ dass $P_0\sim Q_0$ und damit folgt mit 30 und der analogen Folgerung, dass

$$nP \sim nQ$$

gilt. Mit Proposition 4.8 erhalten wir insgesamt

$$P \sim Q$$
.

Zusammenfassend können wir sagen, dass es bei der Volumenberechnung keinen Unterschied macht, die Zerlegungsgleichheit oder die Ergänzungsgleichheit von Polytopen zu betrachten. Dennoch erscheint die Zerlegungsgleichheit oftmals als intuitivere Variante. Auch sind hierbei die Beweise oft leichter zu führen, als bei der Ergänzungsgleichheit. Für Hilberts Problem reicht es jedoch aus, die Beweise für eine der beiden Relationen zu führen.

Literatur

- [AM16] M. F. Atiyah and I. G. Macdonald. *Introduction to commutative algebra*. Addison-Wesley Series in Mathematics. Westview Press, Boulder, CO, economy edition, 2016. For the 1969 original see [MR0242802].
- [AZ18] Martin Aigner and Günter M. Ziegler. *Proofs from The Book*. Springer, Berlin, sixth edition, 2018. See corrected reprint of the 1998 original [MR1723092], Including illustrations by Karl H. Hofmann.
- [Bol78] Vladimir G. Boltianskiĭ. Hilbert's third problem. V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian by Richard A. Silverman, With a foreword by Albert B. J. Novikoff, Scripta Series in Mathematics.
- [Goe17] Sebastian Goette. Skript zur Vorlesung Lineare Algebra WS 2016/17. page 271, 2017.
- [Had13] Hugo Hadwiger. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, volume 93. Springer-Verlag, 2013.
- [Hil00] David Hilbert. Mathematische probleme. Vortrag, gehalten auf dem internationalem Mathematiker-Kongress zu Paris. 1900. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, pages 253–297, 1900.
- [Kuw17] Ernst Kuwert. Skript zur Vorlesung Analysis 3 WS 2016/17. page 117, 2017.
- [Mat89] Hideyuki Matsumura. *Commutative ring theory*, volume 8. Cambridge university press, 1989.
- [Syd65] J.-P. Sydler. Conditions nécessaires et suffisantes pour l'équivalence des polyèdres de l'espace euclidien à trois dimensions. *Comment. Math. Helv.*, 40:43–80, 1965.