Análisis Estadístico con R

Regresión

true

24 de julio de 2018

Contents

Regresión Lineal	1
Una idea general	1
Transformaciones Lineales	12
Regresión Lineal Múltiple	17
Referencias	32

Regresión Lineal

Una idea general

Abordemos las primeras ideas de regresión lineal a través de un ejemplo práctico:

- Abrir la tabla 2.1
- Creamos dos variables, Ingreso y Consumo Esperado

```
ingresos <- seq(80,260,20)
consumoEsperado <- c(65,77,89,101,113,125,137,149,161,173)</pre>
```

Ahora:

- Generar un gráfico tipo línea entre ingresos y consumo esperado
- Superponer un gráfico tipo puntos de X e Y (tabla 2.1) sobre el gráfico anterior
- Generar un gráfico tipo puntos X e Y en azul
- Superponer un gráfico tipo lineas de Ingresos y consumo esperado sobre el gráfico anterior en azul

```
familia <- read.csv(file="Tabla2_1.csv",sep=";",dec=".",header=T)
attach(familia)
names(familia)</pre>
```

```
## [1] "X" "Y"
```

cbind(ingresos,consumoEsperado)

##		ingresos	${\tt consumoEsperado}$
##	[1,]	80	65
##	[2,]	100	77
##	[3,]	120	89
##	[4,]	140	101
##	[5,]	160	113
##	[6,]	180	125
##	[7,]	200	137
##	[8,]	220	149

```
## [9,] 240 161
## [10,] 260 173
```

plot(X,Y,col="blue")

lines(ingresos,consumoEsperado,col="blue")

• ¿Qué hemos hecho?

$$E(Y|X_i) = f(X_i)$$

$$E(Y|X_i) = \beta_1 + \beta_2 X_i$$

$$u_i = Y_i - E(Y|X_i)$$

$$Y_i = E(Y|X_i) + u_i$$

• ¿Qué significa que sea lineal?

El término regresión lineal siempre significará una regresión lineal en los parámetros; los β (es decir, los parámetros) se elevan sólo a la primera potencia. Puede o no ser lineal en las variables explicativas X

Para evidenciar la factibilidad del uso de RL en este caso, vamos a obtener una muestra de la población:

- Creamos una variable indicadora para obtener una muestra indice=seq(1,55,1)
- Usamos sample para obtener una muestra sin reemplazo del tamaño indicado: muestra <- sample(indice, size=20)
- Obtenemos el valor de la variable X en la posición de muestra + ingreso.muestra <- X[muestra] + consumo.muestra <- Y[muestra]

```
indice <- seq(1,55,1)
muestra <- sample( X ,size=20)
muestra <- sample(indice,size=20)
ingreso.muestra <- X[muestra]
consumo.muestra <- Y[muestra]</pre>
```

- Graficamos ingreso.muestra vs consumo.muestra
- Realizar una regresión lineal de las variables muestra:
 - plot(ingreso.muestra,consumo.muestra)
 - ajuste.1=(lm(consumo.muestra\sim ingreso.muestra))
 - abline(coef(ajuste.1))
- Generar una segunda muestra (muestra.2 por ejemplo) y comparar los coeficientes
- ¿Qué conclusiones puede sacar?

```
plot(ingreso.muestra,consumo.muestra)
ajuste.1 <- (lm(consumo.muestra~ingreso.muestra))</pre>
ajuste.1
##
## Call:
## lm(formula = consumo.muestra ~ ingreso.muestra)
##
## Coefficients:
##
       (Intercept)
                     ingreso.muestra
           12.8469
##
                              0.6258
coef(ajuste.1)
##
       (Intercept) ingreso.muestra
        12.8468529
                          0.6258162
```


Regresión: Paso a paso

La función poblacional sería:

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

Como no es observable, se usa la muestral

$$Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{u}_i$$

$$Y_i = \hat{Y}_i + \hat{u}_i$$

$$\hat{u}_i = Y_i - \hat{Y}_i$$

$$\hat{u}_i = Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i$$

Es por esto que los residuos se obtienen a través de los betas:

$$\sum \hat{u}_{i}^{2} = \sum (Y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2}X_{i})^{2}$$

$$\sum \hat{u}_i^2 = f(\hat{\beta}_1, \hat{\beta}_2)$$

Diferenciando ([()]) se obtiene:

$$\hat{\beta}_2 = \frac{S_{xy}}{S_{xx}}$$

$$\hat{\beta}_1 = \bar{Y} - \hat{\beta}_2 \bar{X}$$

donde

$$S_{xx} = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$$

$$S_{xy} = \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}$$

Abrimos la tabla3.2, vamos a obtener:

uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/Tabla3_2.csv"
consumo <- read.csv(url(uu),sep=";",dec=".",header=TRUE)
attach(consumo)</pre>

The following objects are masked from familia:

##

X, Y

```
media_x <- mean(X, na.rm=T)
media_y <- mean(Y, na.rm=T)

n <- length(X)*1

sumcuad_x <- sum(X*X)
sum_xy <- sum(X*Y)

beta_som <- (sum_xy-n*media_x*media_y)/
    (sumcuad_x-n*(media_x^2))
alpha_som <- media_y-beta_som*media_x</pre>
```

• Verificamos lo anterior mediante:

```
reg.1 <- (lm(Y~X))
coef(reg.1)</pre>
```

(Intercept) X ## 24.4545455 0.5090909

• Veamos cómo queda nuestra estimación:

```
y.ajustado <- alpha_som+beta_som*X
head(cbind(X,y.ajustado))</pre>
```

```
## X y.ajustado

## [1,] 80 65.18182

## [2,] 100 75.36364

## [3,] 120 85.54545

## [4,] 140 95.72727

## [5,] 160 105.90909

## [6,] 180 116.09091
```

• Gráficamente:

```
plot(X,y.ajustado,main="Valores estimados")
abline(a=alpha_som,b=beta_som)
```

Valores estimados

• Encontremos los residuos:

```
y.ajustado=alpha_som+beta_som*X
e <- Y-y.ajustado</pre>
```

• Comparemos los resultados

head(cbind(X,Y,y.ajustado,e))

```
X
              Y y.ajustado
## [1,]
         80
             70
                  65.18182
                              4.8181818
  [2,] 100
             65
                  75.36364 -10.3636364
## [3,] 120
             90
                  85.54545
                              4.4545455
## [4,] 140
             95
                  95.72727
                             -0.7272727
## [5,] 160 110
                 105.90909
                              4.0909091
                 116.09091
## [6,] 180 115
                            -1.0909091
```

• Veamos la media y la correlación

```
mean(e)
```

```
## [1] -1.421085e-15
cor(e,X)
```

[1] 1.150102e-15

- Hallemos el coeficiente de determinación o bondad de ajuste.
- Para ello necesitamos la suma de cuadrados total y la suma de cuadramos explicada

```
SCT <- sum((Y-media_y)^2)
SCE <- sum((y.ajustado-media_y)^2)
SCR <- sum(e^2)
R_2 <- SCE/SCT</pre>
```

```
summary(reg.1)
```

```
##
## Call:
## lm(formula = Y \sim X)
##
## Residuals:
##
      Min
                1Q Median
                                ЗQ
                                       Max
## -10.364 -4.977
                     1.409
                             4.364
                                     8.364
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.45455
                           6.41382
                                     3.813 0.00514 **
## X
                0.50909
                           0.03574 14.243 5.75e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.493 on 8 degrees of freedom
## Multiple R-squared: 0.9621, Adjusted R-squared: 0.9573
## F-statistic: 202.9 on 1 and 8 DF, p-value: 5.753e-07
```

Pruebas de hipótesis:

$$H_0: \beta_2 = 0$$
$$H_1: \beta_2 \neq 0$$

- Abrir la tabla 2.8
- Regresar el gasto total en el gasto en alimentos
- ¿Son los coeficientes diferentes de cero?

```
t1 <- (0.43681-0)/0.07832
1-pt(t1,53)
```

[1] 4.222605e-07

• ¿Son los coeficientes diferentes de 0.5?

```
# H0: beta1 = 0.5
t2 <- (0.43681-0.5)/0.07832
(1-pt(abs(t2),53))
```

```
## [1] 0.2116886
```

Interpretación de los coeficientes

- El coeficiente de la variable dependiente mide la tasa de cambio (derivada=pendiente) del modelo
- La interpretación suele ser En promedio, el aumento de una unidad en la variable independiente produce un aumento/disminución de β_i cantidad en la variable dependiente
- Interprete la regresión anterior.

Práctica: Paridad del poder de compra

Abrir la tabla 5.9, las variables son:

Figure 1:

```
uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/Tabla5_9.csv"
datos <- read.csv(url(uu),sep=";",dec=".",header=TRUE)
attach(datos)
names(datos)</pre>
```

[1] "COUNTRY" "BMACLC" "BMAC." "EXCH" "PPP" "LOCALC"

- BMACLC: Big Mac Prices in Local Currency
- BMAC\$: Big Mac Prices in \$
- EXCH: Actual \$ Exchange Rate 4/17/2001
- PPP: Implied Purchasing-Power Parity of the Dollar: Local Price Divided by Price in United States
- LOCALC: Local Currency Under (-)/Over (+) Valuation Against \$, Percent

Empezamos con el buen summary. ¿Notan algo raro?

• Debemos limpiar los datos

```
datos$EXCH[which( EXCH == -99999)] <- NA
datos$PPP[which( PPP == -99999)] <- NA
datos$LOCALC[which( LOCALC ==-99999)] <- NA</pre>
```

Regresamos la paridad del poder de compra en la tasa de cambio

```
reg1 <- lm(EXCH~PPP)
summary(reg1)</pre>
```

```
##
## Call:
## lm(formula = EXCH ~ PPP)
## Residuals:
             10 Median
                           3Q
## -212.9 -211.0 -208.0 -186.3 4827.8
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.116e+02 1.675e+02
                                    1.264
                                              0.216
              1.005e+00 9.306e-03 107.990
## PPP
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 920.1 on 29 degrees of freedom
## Multiple R-squared: 0.9975, Adjusted R-squared: 0.9974
## F-statistic: 1.166e+04 on 1 and 29 DF, p-value: < 2.2e-16
reg2 <- lm(EXCH[-13] \sim PPP[-13])
summary(reg2)
```

```
##
## Call:
## lm(formula = EXCH[-13] ~ PPP[-13])
##
## Residuals:
## Min   1Q Median   3Q   Max
## -203.1 -201.2 -199.0 -179.6 4838.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept) 2.018e+02 1.731e+02
                                    1.166
## PPP[-13]
               1.005e+00 9.465e-03 106.157 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 934.8 on 28 degrees of freedom
## Multiple R-squared: 0.9975, Adjusted R-squared: 0.9974
## F-statistic: 1.127e+04 on 1 and 28 DF, p-value: < 2.2e-16
reg3 <- lm(log(EXCH)~log(PPP))</pre>
summary(reg3)
##
## Call:
## lm(formula = log(EXCH) ~ log(PPP))
##
## Residuals:
##
                  1Q
                     Median
                                             Max
       Min
                                    ЗQ
## -0.70587 -0.24564 -0.05721 0.26862 0.42295
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.34363
                           0.08613
                                      3.99 0.000432 ***
                1.00231
                           0.02463
                                     40.69 < 2e-16 ***
## log(PPP)
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3206 on 28 degrees of freedom
     (1 observation deleted due to missingness)
## Multiple R-squared: 0.9834, Adjusted R-squared: 0.9828
## F-statistic: 1655 on 1 and 28 DF, p-value: < 2.2e-16
La PPA sostiene que con una unidad de moneda debe ser posible comprar la misma canasta de bienes en
todos los países.
Práctica: Sueño
De la carpeta Datos, abrir sleep.xls
uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/sleep75.csv"
datos <- read.csv(url(uu), header = FALSE)</pre>
agregamos los nombres:
names (datos) <- c("age","black","case","clerical","construc","educ","earns74","gdhlth","inlf", "leis1"</pre>
Veamos los datos gráficamente y corramos la regresión:
attach(datos)
## The following object is masked from package:datasets:
##
##
       sleep
#totwrk minutos trabajados por semana
#sleep minutos dormidos por semana
plot(totwrk,sleep)
```



```
dormir <- lm(sleep~totwrk)
summary(dormir)</pre>
```

```
##
## Call:
## lm(formula = sleep ~ totwrk)
##
## Residuals:
##
       Min
                       Median
                                    3Q
                  1Q
                                            Max
  -2429.94 -240.25
                         4.91
                                250.53 1339.72
##
##
##
  Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3586.37695
                            38.91243 92.165
                                               <2e-16 ***
## totwrk
                 -0.15075
                            0.01674
                                     -9.005
                                               <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 421.1 on 704 degrees of freedom
## Multiple R-squared: 0.1033, Adjusted R-squared: 0.102
## F-statistic: 81.09 on 1 and 704 DF, p-value: < 2.2e-16
```

- ¿Existe una relación entre estas variables?
- Interprete el modelo

Intervalo de confianza para β_2 y veamos los residuos

```
-0.15084-2*c(-0.01677,0.01677)

## [1] -0.11730 -0.18438

hist(resid(dormir), freq=F)
lines(density(resid(dormir)))
```

Histogram of resid(dormir)

Derivaciones del modelo

Transformaciones Lineales

Abrir la tabla 31.3, regresar el ingreso per cápita en el número de celulares por cada 100 personas:

```
uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/Table%2031_3.csv"
datos <- read.csv(url(uu),sep=";",dec=".",header=TRUE)
attach(datos)</pre>
```

```
reg.1 <- lm(Cellphone ~ Pcapincome)
summary(reg.1)</pre>
```

```
##
## Call:
## lm(formula = Cellphone ~ Pcapincome)
## Residuals:
##
               1Q Median
                               3Q
                                      Max
## -45.226 -10.829 -2.674
                            8.950 47.893
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.248e+01 6.109e+00
                                     2.043
                                             0.0494 *
## Pcapincome 2.313e-03 3.158e-04
                                     7.326 2.5e-08 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 19.92 on 32 degrees of freedom
## Multiple R-squared: 0.6265, Adjusted R-squared: 0.6148
```

Modelo	Ecuación	Pendiente $\left(=\frac{dY}{dX}\right)$	Elasticidad $\left(=\frac{dY}{dX}\frac{X}{Y}\right)$
Lineal	$Y = \beta_1 + \beta_2 X$	β2	$\beta_2 \left(\frac{X}{Y}\right)^*$
Log-lineal	$\ln Y = \beta_1 + \beta_2 \ln X$	$\beta_2\left(\frac{Y}{X}\right)$	β_2
Log-lin	$ \ln Y = \beta_1 + \beta_2 X $	$\beta_2(Y)$	$\beta_2(X)^*$
Lin-log	$Y = \beta_1 + \beta_2 \ln X$	$\beta_2\left(\frac{1}{\chi}\right)$	$\beta_2 \left(\frac{1}{Y}\right)^*$
Recíproco	$Y = \beta_1 + \beta_2 \left(\frac{1}{X}\right)$	$-\beta_2\left(\frac{1}{X^2}\right)$	$-\beta_2 \left(\frac{1}{XY}\right)^*$
Recíproco log	$\ln Y = \beta_1 - \beta_2 \left(\frac{1}{X}\right)$	$\beta_2\left(\frac{Y}{X^2}\right)$	$\beta_2 \left(\frac{1}{X}\right)^*$

Nota: * indica que la elasticidad es variable: depende del valor tomado por X o por Y, o por ambas. En la práctica, cuando no se especifican los valores de X y de Y, es muy frecuente medir estas elasticidades con los valores medios de estas variables, es decir, \bar{X} y \bar{Y} .

Figure 2:

```
## F-statistic: 53.67 on 1 and 32 DF, p-value: 2.498e-08
plot(Pcapincome,Cellphone)
abline(coef(reg.1))
```


Modelo recíproco

Abrir la tabla 6.4, regresar el Producto Nacional Bruto (PGNP) en la tasa de mortalidad (CM).

```
uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/tabla_6_4.csv"
datos <- read.csv(url(uu),sep=";",dec=".",header=TRUE)
attach(datos)
names(datos)</pre>
```

```
## [1] "CM" "FLR" "PGNP" "TFR"
plot(CM~ PGNP)
```

```
0
             0
             8
     200
                                          0
     100
                        0
                           0
                                                                                0
                           യ
     0
            0
                           5000
                                            10000
                                                             15000
                                                                              20000
                                            PGNP
reg1 <- lm(CM ~ PGNP)
summary(reg1)
##
## Call:
## lm(formula = CM ~ PGNP)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    ЗQ
                                            Max
## -113.764 -53.111
                       -6.685
                                48.064 157.758
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 157.424441
                            9.845583 15.989 < 2e-16 ***
## PGNP
                -0.011364
                            0.003233 -3.516 0.000826 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 69.93 on 62 degrees of freedom
## Multiple R-squared: 0.1662, Adjusted R-squared: 0.1528
## F-statistic: 12.36 on 1 and 62 DF, p-value: 0.0008262
reg2 <- lm(CM~I(1/PGNP))</pre>
summary(reg2)
##
## Call:
## lm(formula = CM ~ I(1/PGNP))
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    ЗQ
                                            Max
## -130.806 -36.410
                        2.871
                                31.686 132.801
##
```

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 81.79 10.83 7.551 2.38e-10 ***

## I(1/PGNP) 27273.17 3760.00 7.254 7.82e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 56.33 on 62 degrees of freedom

## Multiple R-squared: 0.4591, Adjusted R-squared: 0.4503

## F-statistic: 52.61 on 1 and 62 DF, p-value: 7.821e-10
```

Modelo log-lineal

Abrir los datos ceosal2.xls,

```
uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/ceosal2.csv"
datos <- read.csv(url(uu), header = FALSE)
names(datos) = c("salary", "age", "college", "grad", "comten", "ceoten", "sales", "profits", "mktval", "attach(datos)</pre>
```

Regresar la antigüedad del CEO en el logaritmo del salario.

```
summary(lm(lsalary~ceoten))
```

```
##
## Call:
## lm(formula = lsalary ~ ceoten)
## Residuals:
##
       Min
                 1Q
                      Median
                                   30
                                           Max
## -2.15314 -0.38319 -0.02251 0.44439 1.94337
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 6.505498
                         0.067991 95.682
                                            <2e-16 ***
## ceoten
              0.009724
                         0.006364
                                   1.528
                                             0.128
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6038 on 175 degrees of freedom
## Multiple R-squared: 0.01316,
                                   Adjusted R-squared:
## F-statistic: 2.334 on 1 and 175 DF, p-value: 0.1284
```

- Hay una probabilidad de equivocarnos del 12.84% si rechazamos la hipótesis nula
- No hay evidencia de la entiguedad tenga relación con el salario
- Los CEO con 0 a?os de antiguedad entran ganando exp(6.505)=668.4757 miles de USD exp(6.505)

Regresión a través del origen

Abrir la tabla 6.1, regresar X (rendimientos excedentes de un índice acciones del sector de bienes de consumo cíclico) en Y (rendimientos excedentes de un índice acciones de todo el mercado de valores en el Reino Unido)

```
uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/Table%206_1.csv"
datos <- read.csv(url(uu),sep=";",dec=".",header=TRUE)
attach(datos)</pre>
```

```
lmod1 \leftarrow lm(Y \sim -1 + X)
summary(lmod1)
##
## Call:
## lm(formula = Y \sim -1 + X)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
## -20.8053 -3.9760 -0.2102
                                 3.0745 14.7680
##
## Coefficients:
##
     Estimate Std. Error t value Pr(>|t|)
       1.1555
                  0.0744
                            15.53
                                    <2e-16 ***
## X
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.549 on 239 degrees of freedom
## Multiple R-squared: 0.5023, Adjusted R-squared: 0.5003
## F-statistic: 241.2 on 1 and 239 DF, p-value: < 2.2e-16
lmod2 \leftarrow lm(Y\sim
summary(lmod2)
##
## Call:
## lm(formula = Y ~ X)
## Residuals:
        Min
                  10
                       Median
                                     30
## -20.4122 -3.5274
                       0.2316
                                 3.4774 15.1150
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.44748
                            0.36294 -1.233
                                               0.219
## X
                1.17113
                            0.07539 15.535
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.543 on 238 degrees of freedom
## Multiple R-squared: 0.5035, Adjusted R-squared: 0.5014
## F-statistic: 241.3 on 1 and 238 DF, p-value: < 2.2e-16
  • El coeficiente de la pendiente no es sólo estadísticamente significativo, sino que es significativamente
```

- El coeficiente de la pendiente no es sólo estadísticamente significativo, sino que es significativamente mayor que 1 (¿puede verificar esto?).
- Si un coeficiente Beta es mayor que 1, se dice que ese título (en este caso, un portafolios de 104 acciones) es volátil

Regresión Lineal Múltiple

Abrir los datos hprice1.xls. Correr los siguientes modelos e interpretarlos:

```
uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/hprice1.csv"
precios <- read.csv(url(uu), header = FALSE)</pre>
```

```
names(precios)=c("price"
                             "assess"
                             "lotsize" ,
                 "bdrms"
                 "sqrft"
                             "colonial",
                 "lprice"
                             "lassess" ,
                 "llotsize" , "lsqrft")
attach(precios)
modelo1 <- lm(lprice ~ lassess + llotsize + lsqrft + bdrms)</pre>
summary(modelo1)
##
## Call:
## lm(formula = lprice ~ lassess + llotsize + lsqrft + bdrms)
## Residuals:
##
                 1Q
                     Median
                                   ЗQ
       Min
                                           Max
## -0.53337 -0.06333 0.00686 0.07836 0.60825
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.263745
                        0.569665 0.463
                                   6.887 1.01e-09 ***
## lassess
               1.043065
                          0.151446
## llotsize
               0.007438
                         0.038561
                                   0.193
                                              0.848
## lsqrft
              -0.103239 0.138431 -0.746
                                              0.458
## bdrms
                          0.022098
               0.033839
                                    1.531
                                              0.129
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1481 on 83 degrees of freedom
## Multiple R-squared: 0.7728, Adjusted R-squared: 0.7619
## F-statistic: 70.58 on 4 and 83 DF, p-value: < 2.2e-16
modelo2 <- lm(lprice ~ llotsize + lsqrft + bdrms)</pre>
summary(modelo2)
##
## Call:
## lm(formula = lprice ~ llotsize + lsqrft + bdrms)
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
## -0.68422 -0.09178 -0.01584 0.11213 0.66899
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -1.29704 0.65128 -1.992
                                            0.0497 *
## llotsize
               0.16797
                          0.03828
                                   4.388 3.31e-05 ***
## lsqrft
               0.70023
                          0.09287
                                    7.540 5.01e-11 ***
               0.03696
## bdrms
                          0.02753
                                    1.342 0.1831
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1846 on 84 degrees of freedom
```

```
## Multiple R-squared: 0.643, Adjusted R-squared: 0.6302
## F-statistic: 50.42 on 3 and 84 DF, p-value: < 2.2e-16
modelo3 <- lm(lprice ~ bdrms)</pre>
summary(modelo3)
##
## Call:
## lm(formula = lprice ~ bdrms)
## Residuals:
##
       Min
                  1Q
                     Median
                                    3Q
                                            Max
## -0.99586 -0.17202 -0.00319 0.14974 0.71355
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.03649
                           0.12635 39.862 < 2e-16 ***
## bdrms
                0.16723
                           0.03447
                                     4.851 5.43e-06 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2706 on 86 degrees of freedom
## Multiple R-squared: 0.2148, Adjusted R-squared: 0.2057
## F-statistic: 23.53 on 1 and 86 DF, p-value: 5.426e-06
```

Predicción

• Forma 1 de predicción:

5.5 6.0 6.5

7.2

7.6

8.0

```
tamano_casa <- 8000
cuartos <- 4
tamano lote <- 2100
coef(modelo2)
## (Intercept)
                  llotsize
                                 lsqrft
                                               bdrms
## -1.29704057 0.16796682 0.70023213 0.03695833
valores <- c(1,log(tamano_lote),log(tamano_casa),cuartos)</pre>
valores
## [1] 1.000000 7.649693 8.987197 4.000000
sum(valores*coef(modelo2))
## [1] 6.428811
exp(sum(valores*coef(modelo2)))
## [1] 619.4372
  • Forma 2 de predicción:
datos.nuevos <- data.frame(llotsize=log(2100),lsqrft=log(8000),bdrms=4)</pre>
predict.lm(modelo2,newdata=datos.nuevos,se.fit=T)
## $fit
##
## 6.428811
##
## $se.fit
## [1] 0.1479752
##
## $df
## [1] 84
## $residual.scale
## [1] 0.1846026
```

RLM: Cobb-Douglas

El modelo:

$$Y_i = \beta_1 X_{2i}^{\beta_2} X_{3i}^{\beta_3} e^{u_i}$$

donde

- Y: producción
- X_2 : insumo trabajo
- X_3 : insumo capital
- ullet u: término de perturbación
- \bullet e: base del logaritmo

Notemos que el modelo es multiplicativo, si tomamos la derivada obetenemos un modelo más famliar respecto a la regresión lineal múltiple:

$$lnY_i = ln\beta_1 + \beta_2 ln(X_{2i}) + \beta_3 ln(X_{3i}) + u_i$$

La interpretación de los coeficientes es (Gujarati and Porter 2010):

- 1. β_2 es la elasticidad (parcial) de la producción respecto del insumo trabajo, es decir, mide el cambio porcentual en la producción debido a una variación de 1% en el insumo trabajo, con el insumo capital constante.
- 2. De igual forma, β_3 es la elasticidad (parcial) de la producción respecto del insumo capital, con el insumo trabajo constante.
- 3. La suma (β₂ + β₃) da información sobre los rendimientos a escala, es decir, la respuesta de la producción a un cambio proporcional en los insumos. Si esta suma es 1, existen rendimientos constantes a escala, es decir, la duplicación de los insumos duplica la producción, la triplicación de los insumos la triplica, y así sucesivamente. Si la suma es menor que 1, existen rendimientos decrecientes a escala: al duplicar los insumos, la producción crece en menos del doble. Por último, si la suma es mayor que 1, hay rendimientos crecientes a escala; la duplicación de los insumos aumenta la producción en más del doble.

Abrir la tabla 7.3. Regresar las horas de trabajo (X_2) e Inversión de Capital (X_3) en el Valor Agregado (Y)

```
uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/tabla7_3.csv"
# datos <- read.csv(file="tabla7_3.csv",sep=";",dec=".",header=TRUE)
datos <- read.csv(url(uu),sep=";",dec=".",header=TRUE)</pre>
attach(datos)
W \leftarrow log(X2)
K \leftarrow log(X3)
LY <-log(Y)
reg.1 <- lm(LY~W+K)
summary(reg.1)
##
## Call:
## lm(formula = LY \sim W + K)
## Residuals:
##
                  1Q
                       Median
## -0.15919 -0.02917 0.01179 0.04087
                                         0.09640
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                -3.3387
                             2.4491
                                     -1.363 0.197845
## W
                 1.4987
                             0.5397
                                      2.777 0.016750 *
## K
                 0.4899
                             0.1020
                                      4.801 0.000432 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.0748 on 12 degrees of freedom
## Multiple R-squared: 0.8891, Adjusted R-squared: 0.8706
## F-statistic: 48.08 on 2 and 12 DF, p-value: 1.864e-06
aov(reg.1)
```

Call:

• Las elasticidades de la producción respecto del trabajo y el capital fueron 1.49 y 0.48.

Ahora, si existen rendimientos constantes a escala (un cambio equi proporcional en la producción ante un cambio equiproporcional en los insumos), la teoría económica sugeriría que:

```
\beta_2 + \beta_3 = 1
LY_K \leftarrow log(Y/X3)
W_K \leftarrow log(X2/X3)
reg.2 \leftarrow lm(LY_K~W_K)
summary(reg.2)
##
## Call:
## lm(formula = LY_K ~ W_K)
##
## Residuals:
##
                     1Q
                           Median
## -0.164785 -0.041608 -0.008268 0.076112 0.098587
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                 1.7083
## (Intercept)
                             0.4159
                                       4.108 0.00124 **
                  0.3870
                             0.0933
                                       4.147 0.00115 **
## W_K
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.08388 on 13 degrees of freedom
## Multiple R-squared: 0.5695, Adjusted R-squared: 0.5364
## F-statistic: 17.2 on 1 and 13 DF, p-value: 0.001147
aov(reg.2)
## Call:
##
      aov(formula = reg.2)
##
## Terms:
                           W_K Residuals
## Sum of Squares 0.12100534 0.09145854
## Deg. of Freedom
                                        13
                             1
##
## Residual standard error: 0.08387653
## Estimated effects may be unbalanced
```

¿Se cumple la hipótesis nula? ¿Existen rendimientos constantes de escala?

Una forma de responder a la pregunta es mediante la prueba t, para $Ho: \beta_2 + \beta_3 = 1$, tenemos

$$t = \frac{(\hat{\beta}_2 + \hat{\beta}_3) - (\beta_2 + \beta_3)}{ee(\hat{\beta}_2 + \hat{\beta}_3)}$$
$$t = \frac{(\hat{\beta}_2 + \hat{\beta}_3) - 1}{\sqrt{var(\hat{\beta}_2) + var(\hat{\beta}_3) + 2cov(\hat{\beta}_2, \hat{\beta}_3)}}$$

donde la información nececesaria para obtener $cov(\hat{\beta}_2, \hat{\beta}_3)$ en R es vcov(fit.model) y fit.model es el ajuste del modelo.

Otra forma de hacer la prueba es mediante el estadístico F:

$$F = \frac{Q_2/gl}{Q_4/gl}$$

$$F = \frac{(SCE_R - SCE_{NR})/m}{SCR_{NR}/(n-k)}$$

donde m es el número de restricciones lineales y k es el número de parámetros de la regresión no restringida.

```
SCRNR <- 0.0671410
SCRRes <- 0.09145854
numero_rest <- 1
grad <- 12
est_F <- ((SCRRes-SCRNR)/numero_rest)/(SCRNR/grad)
est_F</pre>
```

```
## [1] 4.346234
```

```
valor.p <- 1-pf(est_F,1,12)
valor.p</pre>
```

[1] 0.05912184

No se tiene suficiente evidencia para rechazar la hipótesis nula de que sea una economía de escala.

Notemos que existe una relación directa entre el coeficiente de determinación o bondad de ajuste R^2 y F. En primero lugar, recordemos la descomposición de los errores:

$$SCT = SCE + SCR$$

$$\sum_{i=1}^{n} (Y - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y} - \bar{Y})^2 + \sum_{i=1}^{n} (\hat{u})^2$$

De cuyos elementos podemos obtener tanto R^2 como F:

$$R^2 = \frac{SCE}{SCT}$$

$$R^2 = \frac{SCE/(k-1)}{SCT/(n-k)}$$

donde k es el número de variables (incluido el intercepto) y sigue una distribución F con k-1 y n-k grados de libertad.

RLM: Dicotómicas

Abrir la tabla 9.1. ¿Hay alguna diferencia entre la ubicación del estado en los salarios?

```
uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/Table%209_1.csv"
datos <- read.csv(url(uu),sep=";",dec=".",header=TRUE)
attach(datos)
names(datos)</pre>
```

```
## [1] "State" "Salary" "Spending" "D2" "D3"
```

- "State"
- "Salary" salario prmedio de los profesores
- "Spending" gasto promedio en cada estudiante
- "D2" 1 si el estado se encuentra en el norte este/centr de EEUU
- "D3" 1 si el estado se encuentra en el Sur de EEUU
- D1 podria ser lo que no es ni D2 ni D3 (0,0)

```
reg1 <- lm(Salary~D2+D3)
summary(reg1)</pre>
```

```
##
## Call:
## lm(formula = Salary \sim D2 + D3)
##
## Residuals:
##
     Min
             1Q Median
                            ЗQ
                                  Max
## -14161 -4566 -1638
                          4632
                              15625
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                              1857 25.853
## (Intercept)
                 48015
                                            <2e-16 ***
## D2
                  1524
                              2363
                                   0.645
                                             0.522
## D3
                  -1721
                              2467 -0.698
                                             0.489
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6696 on 48 degrees of freedom
## Multiple R-squared: 0.04397,
                                  Adjusted R-squared: 0.004134
## F-statistic: 1.104 on 2 and 48 DF, p-value: 0.3399
```

Esto es un análisis de varianza, se analiza la var continua (salarios) con factores (categorias)

¿Hay alguna diferencia entre la ubicación del estado en los salarios?

```
reg2 <- lm(Salary~Spending+D2+D3)
summary(reg2)</pre>
```

```
##
## Call:
## lm(formula = Salary ~ Spending + D2 + D3)
##
## Residuals:
```

```
##
     Min
             1Q Median
                           3Q
                                 Max
                   106
## -10556 -2471
                         2066
                              15084
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28694.9180 3262.5213
                                      8.795 1.70e-11 ***
                                      6.515 4.45e-08 ***
## Spending
                  2.3404
                             0.3592
## D2
              -2954.1268 1862.5756
                                     -1.586
                                              0.1194
## D3
              -3112.1948 1819.8725
                                     -1.710
                                              0.0938 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4905 on 47 degrees of freedom
## Multiple R-squared: 0.4977, Adjusted R-squared: 0.4656
## F-statistic: 15.52 on 3 and 47 DF, p-value: 3.762e-07
```

- Esto es un análisis de la varianza con covariadas (el covariado es el gasto por estudiante).
- Se quiere mostrar que en los estados del sur se gana menos que los otros:

$$H_0: \beta_3 >= 0$$
$$H_a: \beta_3 < 0$$

Diferencias en medias, enfoque RLM

Abrir los datos wage1.xls. Correr los modelos. Se desea saber si el género tiene relación con el salario y en qué medida.

```
uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/wage1.csv"
salarios <- read.csv(url(uu), header = FALSE)</pre>
names(salarios) <- c("wage", "educ", "exper", "tenure", "nonwhite", "female", "married",</pre>
                     "numdep", "smsa", "northcen", "south", "west", "construc", "ndurman",
                     "trcommpu", "trade", "services", "profserv", "profocc", "clerocc",
                     "servocc", "lwage", "expersq", "tenursq")
attach(salarios)
reg3 <- lm(wage~female)
summary(reg3)
##
## Call:
## lm(formula = wage ~ female)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -5.5995 -1.8495 -0.9877 1.4260 17.8805
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               7.0995
                            0.2100 33.806 < 2e-16 ***
## female
                -2.5118
                            0.3034 -8.279 1.04e-15 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 3.476 on 524 degrees of freedom
## Multiple R-squared: 0.1157, Adjusted R-squared: 0.114
## F-statistic: 68.54 on 1 and 524 DF, p-value: 1.042e-15
reg4 <- lm(wage~female + educ+ exper + tenure)</pre>
summary(reg4)
##
## Call:
## lm(formula = wage ~ female + educ + exper + tenure)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                      Max
## -7.7675 -1.8080 -0.4229 1.0467 14.0075
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.56794
                          0.72455 - 2.164
                                            0.0309 *
              -1.81085
                          0.26483 -6.838 2.26e-11 ***
## female
               0.57150
                          0.04934 11.584 < 2e-16 ***
## educ
               0.02540
                          0.01157
                                     2.195
                                            0.0286 *
## exper
## tenure
               0.14101
                          0.02116
                                    6.663 6.83e-11 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.958 on 521 degrees of freedom
## Multiple R-squared: 0.3635, Adjusted R-squared: 0.3587
## F-statistic: 74.4 on 4 and 521 DF, p-value: < 2.2e-16
```

- La hipotesis es que saber si el coeficiente de female es menor a cero
- Se nota que es menor,
- Tomando en cuenta, educacion experiencia y edad, en promedio a la mujer le pagan 1.81 menos

RLM: Educación con insumos

##

Min

Abrir los datos gpa1.xls. Correr los modelos.

1Q

Median

• ¿Afecta el promedio el tener o no una computadora?

```
uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/gpa1.csv"
datosgpa <- read.csv(url(uu), header = FALSE)

names(datosgpa) <- c("age", "soph", "junior", "senior", "senior5", "male", "campus", attach(datosgpa)

Realizamos la regresión lineal:
reg4 <- lm(colGPA ~ PC )
summary(reg4)

##
## Call:
## Im(formula = colGPA ~ PC)
##
## Residuals:</pre>
```

"busine

Max

3Q

```
## -0.95893 -0.25893 0.01059 0.31059 0.84107
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.98941
                          0.03950
                                  75.678
## PC
               0.16952
                          0.06268
                                    2.704
                                            0.0077 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3642 on 139 degrees of freedom
## Multiple R-squared: 0.04999,
                                   Adjusted R-squared:
## F-statistic: 7.314 on 1 and 139 DF, p-value: 0.007697
reg5 <- lm(colGPA~ PC + hsGPA + ACT)
summary(reg5)
##
## Call:
## lm(formula = colGPA ~ PC + hsGPA + ACT)
##
## Residuals:
##
      Min
                1Q Median
                               3Q
                                      Max
## -0.7901 -0.2622 -0.0107 0.2334
                                  0.7570
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                         0.333126
                                    3.793 0.000223 ***
## (Intercept) 1.263520
## PC
              0.157309
                         0.057287
                                    2.746 0.006844 **
## hsGPA
                                    4.776 4.54e-06 ***
              0.447242
                         0.093647
## ACT
              0.008659
                         0.010534
                                    0.822 0.412513
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3325 on 137 degrees of freedom
## Multiple R-squared: 0.2194, Adjusted R-squared: 0.2023
## F-statistic: 12.83 on 3 and 137 DF, p-value: 1.932e-07
```

RLM: Cambio estructural

Cuando utilizamos un modelo de regresión que implica series de tiempo, tal vez se dé un cambio estructural en la relación entre la regresada Y y las regresoras. Por cambio estructural nos referimos a que los valores de los parámetros del modelo no permanecen constantes a lo largo de todo el periodo (Gujarati and Porter (2010))

La tasa de desempleo civil alcanzó 9.7%,

la más alta desde 1948. Un suceso como éste pudo perturbar la relación entre el ahorro y el IPD. Para ver si lo anterior sucedió, dividamos la muestra en dos periodos: 1970-1981 y 1982-1995, antes y después de la recesión de 1982.

Ahora tenemos tres posibles regresiones:

1970-1981:
$$Y_t = \lambda_1 + \lambda_2 X_t + u_{1t}$$

Figure 3:

1982-1995:
$$Y_t = \gamma_1 + \gamma_2 X_t + u_{2t}$$

1970-1995:
$$Y_t = \alpha_1 + \alpha_2 X_t + u_{2t}$$

De los períodos parciales se desprende cuatro posibilidades:

Para evaluar si hay diferencias, podemos utilizar los modelos de regresión con variables dicotómicas:

$$Y_t = \alpha_1 + \alpha_2 D_t + \beta_1 X_t + \beta_2 (D_t X_t) + u_t$$

donde

- Y: ahorro
- X: ingreso
- t: tiempo
- D: 1 para el período 1982-1995, 0 en otro caso.

La variable dicotómica de la ecuacuión () es quien me permite estimar las ecuaciones () y () al $mismo\ tiempo$. Es decir:

Función de ahorros medios para 1970-1981:

$$E(Y_t|D_t = 0, X_t) = \alpha_1 + \beta_1 X_t$$

Función de ahorros medios para 1982-1995:

$$E(Y_t|D_t = 1, X_t) = (\alpha_1 + \alpha_2) + (\beta_1 + \beta_2)X_t$$

Notemos que se trata de las mismas funciones que en () y (), con

- $\lambda_1 = \alpha_1$
- $\lambda_2 = \beta_2$
- $\gamma_1 = (\alpha_1 + \alpha_2)$
- $\gamma_2 = (\beta_1 + \beta_2)$

Abrir los datos 8.9. Veamos las variables gráficamente:

```
uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/tabla_8_9.csv"
datos <- read.csv(url(uu),sep=";",dec=".",header=TRUE)
attach(datos)
names(datos)</pre>
```

```
## [1] "YEAR" "SAVINGS" "INCOME"
```

```
par(mfrow = c(1,2))
plot(INCOME,SAVINGS,main="Ahorro VS Ingresos")
plot(YEAR,SAVINGS,main="Ahorro VS Tiempo",t="l")
abline(v=1981,col = "red")
```

Ahorro VS Ingresos

Ahorro VS Tiempo


```
par(mfrow = c(1,1))
```

¿Hubo algún cambio en la relación entre ingreso y ahorro en el 80?

```
    Hay varias formas de hacer la prueba, la mas fácil es mediante variables dicotómicas

ajuste chow <- lm(SAVINGS~INCOME)
summary(ajuste_chow)
##
## Call:
## lm(formula = SAVINGS ~ INCOME)
##
## Residuals:
                1Q Median
                                       Max
## -62.236 -21.208 -9.271 18.726 67.399
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 62.422671 12.760749
                                      4.892 5.47e-05 ***
## INCOME
                0.037679
                           0.004237
                                      8.894 4.61e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 31.12 on 24 degrees of freedom
## Multiple R-squared: 0.7672, Adjusted R-squared: 0.7575
## F-statistic: 79.1 on 1 and 24 DF, p-value: 4.607e-09
cambio <- (YEAR>1981)*1
ajuste_chow <- lm(SAVINGS~INCOME+cambio)</pre>
summary(ajuste_chow)
##
## Call:
## lm(formula = SAVINGS ~ INCOME + cambio)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -53.053 -20.645 -4.828 15.793 69.159
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 71.705871
                          13.545668
                                      5.294 2.26e-05 ***
## INCOME
                           0.007925
                                      3.340 0.00285 **
                0.026468
## cambio
               37.833470
                          22.905072
                                      1.652 0.11217
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 30.06 on 23 degrees of freedom
## Multiple R-squared: 0.7919, Adjusted R-squared: 0.7738
## F-statistic: 43.76 on 2 and 23 DF, p-value: 1.446e-08
```

Veamos el modelo en términos de interacciones y la matriz de diseño:

```
ajuste_chow1 <- lm(SAVINGS~INCOME+cambio+INCOME*cambio, x = TRUE)</pre>
summary(ajuste_chow1)
##
## Call:
## lm(formula = SAVINGS ~ INCOME + cambio + INCOME * cambio, x = TRUE)
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -38.729 -14.777 -1.398 11.689 50.535
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                   1.01612
                             20.16483
                                      0.050 0.960266
## INCOME
                   0.08033
                            0.01450
                                        5.541 1.44e-05 ***
## cambio
                 152.47855 33.08237 4.609 0.000136 ***
## INCOME:cambio -0.06547 0.01598 -4.096 0.000477 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 23.15 on 22 degrees of freedom
## Multiple R-squared: 0.8819, Adjusted R-squared: 0.8658
## F-statistic: 54.78 on 3 and 22 DF, p-value: 2.268e-10
ajuste_chow1$x
      (Intercept) INCOME cambio INCOME:cambio
##
## 1
                1 727.1
                              0
                1 790.2
## 2
                                          0.0
                              0
## 3
               1 855.3
                                          0.0
## 4
               1 965.0
                                          0.0
                              0
## 5
               1 1054.2
                              0
                                          0.0
## 6
                              0
               1 1159.2
                                          0.0
## 7
               1 1273.0
                              0
                                          0.0
## 8
               1 1401.4
                              0
                                          0.0
## 9
               1 1580.1
                              0
                                          0.0
## 10
               1 1769.5
                              0
                                          0.0
## 11
               1 1973.3
                              0
                                          0.0
## 12
               1 2200.2
                              0
                                          0.0
## 13
               1 2347.3
                              1
                                       2347.3
## 14
               1 2522.4
                              1
                                       2522.4
## 15
               1 2810.0
                                       2810.0
                              1
## 16
               1 3002.0
                              1
                                       3002.0
## 17
               1 3187.6
                              1
                                       3187.6
## 18
               1 3363.1
                                       3363.1
## 19
               1 3640.8
                                       3640.8
                              1
## 20
               1 3894.5
                                       3894.5
                              1
## 21
               1 4166.8
                              1
                                       4166.8
## 22
               1 4343.7
                              1
                                       4343.7
## 23
               1 4613.7
                              1
                                       4613.7
```

4790.2

5021.7

5320.8

24

25

26

attr(,"assign")

1 4790.2

1 5021.7

1 5320.8

1

1

1

[1] 0 1 2 3

Referencias

Gujarati, Damodar, and Dawn Porter. 2010. Econometria. 5th ed. México: McGRAW-HILL/INTERAMERICANA EDITORES, SS DE CV.