Computação Gráfica - 1ª Avaliação - Atividade 02

Gabrielly Moura de Oliveira¹

¹Engenharia da Computação – Universidade Estadual do Maranhão (UEMA) São Luis, MA, Brasil

gabriellymouta@gmail.com

1. Parte 01

1.1. Linguagem Utilizada

O foco do trabalho foi WebGL, então as linguagens escolhidas foram JavaScript concatenada junto ao HTLM, visto que o corpo do documento é feito através da sintaxe do HTML. O JavaScript possibilita a alteração de partes específicas do documento, como se estivesse chamando um objeto e o manipulando. Com isso torna mais fácil a alteração de uma parte da nossa página, seja ela uma <div>, um título, ou o próprio plano de fundo do projeto.

Para realizar a elaboração das formas geométricas foi usado uma biblioteca do JavaScript chamada Tree.js. Com ela é possível criar formas geométricas em 3D e fazer a manipulação da mesma de forma mais rápido e fácil. O ponto negativo dessa plataforma é que o desempenho da cena criada depende do navegador utilizado, ou seja, cabe ao suporte de cada navegador garantir a qualidade do desenho.

Para trabalhar com essas linguagens foi utilizada a plataforma Visual Studio Code, que é uma boa ferramenta para criar esse tipo de aplicação, já que é voltada para linguagens web, ou seja, html, php, css, javascript entre outras.

1.2. Figura Criada

Figure 1. Projeto final.

1.3. Pontos

O desenho é composto por um conjunto de formas, desde o pé até o fio do cabelo, passando por detalhes como o dedo e o brilho dos olhos. Todos esses são formados por pontos, abaixo estão listados todas os objetos usados e suas respectivas posições (x,y,z).

```
Para o corpo:
```

- bola 1 = (0, -1.5, -7);
- bola 2 = (0, -0.3, -7);
- pe1 = (-0.3, -2, -6);
- pe2 = (0.3, -2, -6);
- botão 1 = (-0.3, -0.3, -5.8);
- botão 2 = (-0.45, -1.2, -5.8);
- botão 3 = (-0.4, -1.7, -5.8);

Para a cabeça:

- rosto = (0, 1, -5);
- cabeça = (0, 1.8, -7);

Olhos:

- olho 1 = (-0.15, 1.35, -5);
- pupila1= (-0.12, 1.09, -4);
- brilho 1 = (0.055, 0.85, -3);
- olho 2 = (0.15, 1.35, -4);
- pupila 2 = (0.12, 1.09, -4);
- brilho 2 = (0.13, 0.85, -3);

Boca e Nariz:

- nariz 1 = (0.1, 1, -5);
- nariz 2 = (-0.1, 0.95, -1);
- boca = (0.2, 0.7, -2);

Braços:

- braço 1 = (0.3, -1, -2);
- dedo 1 = (0.2, -1, -2);
- braço 2 = (-1.5, 0.2, -2);
- dedo 2 = (-1.5, -0.1, -2);

Cabelo:

- cabelo 1 = (0, 2.1, -2);
- cabelo 2 = (0.2, 2.1, -2);
- cabelo 3 = (-0.2, 2.1, -2);

Em questão de organização os pontos foram organizados em uma figura, entretanto somente algumas legendas foram adicionadas:

Figure 2. Pontos do projeto.

2. Parte 02

2.1. Transformações Geometricas

2.1.1. Escala

A escala consiste em aumentar o desenho. Nesse caso é como se a câmera da cena se aproximasse dos pontos, portanto sempre que os pontos são "maximizados" ocorre uma certa deformação e os pontos ficam separados, já que a câmara está mais próxima e a diferença do eixo Z fica mais evidente.

Figure 3. Desenho em uma escala maior.

2.1.2. Translação

Translação é o fato de movimentar o objeto, ou seja, mover os pontos para direita ou esquerda, para cima ou para baixo. O mesmo que aconteceu na Escala ocorre na Translação, os pontos ficam de certa maneira fora da posição ideal em virtude da diferença do eixo Z.

Figure 4. Desenho transladado.

2.1.3. Rotação

A rotação irá girar o desenho em um determinado ângulo. Nesse exemplo o desenho gira 360° continuamente.

Figure 5. Desenho em rotação.

2.1.4. Reflexão

A reflexão é feita dependendo do seu eixo de referência. Pode ser feito em torno do eixo X, Y ou Z.

Em torno do eixo X:

Figure 6. Desenho refletido e X.

Em torno dos eixos XY:

Figure 7. Desenho refletido em X e Y.

2.1. Menu / Seções

A secção do menu foi feita em uma <div>, organizada com alguns artificios de bootstrap, a fim de deixar o resultado final mais intuitivo e chamativo.

Figure 8. Menu do projeto.

References

Three.js Tutorial. Disponível em: https://adolfoguimaraes.github.io/threejs/ Acesso em: 02 set. 2019