PAT-NO:

JP402164023A

DOCUMENT-

JP 02164023 A

IDENTIFIER:

TITLE:

FORMATION OF SOI STRUCTURE AND SOI

STRUCTURE

PUBN-DATE:

June 25, 1990

INVENTOR-INFORMATION:

NAME

COUNTRY

OGATA, HIDEKANE HANABUSA, HIROSHI YONEDA, KIYOSHI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

SANYO ELECTRIC CO LTD N/A

APPL-NO: JP63320924

APPL-DATE: December 19, 1988

INT-CL (IPC): H01L021/205, H01L021/86

ABSTRACT:

PURPOSE: To moderate residual stress (internal stress) produced from a difference of thermal expansion coefficients between a sapphire and Si by forming a porous Si film on the sapphire substrate and thereafter growing on the Si film a single crystal Si film for device formation.

Si film 2 of a sapphire substrate 2 on which the single crystal Si 2 is grown. The substrate 1 is dipped in an 50% fluoric acid electrolytic solution to render the single crystal Si film 2 to anodic formation for making porous the single crystal Si film 2. A single crystal Si film 3 is epitaxially grown on the single crystal Si film 2' so made porous to form an SOI (Silicon on Insulator) structure. Thus, the Si film 2' so made porous acts as a buffer material 2' to moderate compression stress of the upper layer single crystal Si film 3.

COPYRIGHT: (C)1990,JPO&Japio

⑫ 公 開 特 許 公 報 (A)

平2-164023

Mint. Cl. 5

識別記号

庁内整理番号

❸公開 平成2年(1990)6月25日

H 01 L 21/205 7739-5F 7739-5F

審査請求 未請求 請求項の数 4 (全3頁)

会発明の名称

SOI構造の形成方法とSOI構造

20特 頭 昭63-320924

忽出 頭 昭63(1988)12月19日

@発 明 者 尾 方 個発 明 者 屏 秀 謙 寬 大阪府守口市京阪本通2丁目18番地 三洋電機株式会社内

在 @発 明 者 米

大阪府守口市京阪本通2丁目18番地 大阪府守口市京阪本通2丁目18番地 三洋電機株式会社内

三洋電機株式会社内

H 创出 願 人 三洋電機株式会社

大阪府守口市京阪本通2丁目18番地

外1名

MH. 理 人 弁理士 西野 卓嗣

発明の名称 SOI構造の形成方法と

SOI構造

2. 特許額次の範囲

(1) 単結晶絶縁基台上に単結晶半導体膜を形成 する工程と、該単結晶半導体膜を多孔質化する工 程と、多孔質化した単結晶半導体膜上に単結晶半 将体膜を形成する工程とを含んでなる事を特徴と するSOI構造の形成方法。

(2) 前記単結晶組練基台は単結晶サファイア基 台で、且つ、前記単結晶半導体膜は単結晶Si膊 である事を特徴とする請求項1記載のSOI構造 の形成方法。

(3) 単結品絶縁基台上に多孔質の単結晶半導体 腹を介在して形成された単結晶半導体膜からなる がを特徴とするSOI構造。

(1) 前記単結晶絶縁基台は単結晶サファイア基 台で、且つ、前記多孔質の単結晶半導体膜及び前 記単結晶半導体膜は単結晶SI膜である事を特徴 とする請求項3記載のSO!構造。

3. 発明の詳細な説明

(イ)産業上の利用分野

本 発明は、SOI構造の形成方法に関し、特に 単結晶サファイア基板上に単結晶 S i 膜を形成す るらのに関する。

(ロ) 従来の技術

絶縁層(絶縁物の基板も含む)上に単結晶Si 崩を形成したものは、SOI(Silicon Insulator) 構造と称され、狭い 領域で容易に素子分離が行え、高塩積化や高速化 が可能なものとして知られている。そして、従来 のSi、店板上に業子が作成される半導体集積回路 (1C) に比べて、特性の向上が図れることから 係んに研究開発が行われている。

SOI構造の一つに、単結晶サファイア基板上 に単結晶Si腹を形成したものがある。これは、 通常CVD (Chemical Vapor eposition)法で、サファイア基板上に 收長温度900~1000℃でSi腹を皮長させ ている.

しかし、サファイア基板とSi膜では熱彫張係数が異なるため(サファイアは9、5×10~~/ で、Siは4、2×10~//で)、Si膜成長後、塔板温度を室温まで降温した段階でSi膜中に2次元的な圧縮応力が掛かる。この圧縮応力はSi膜の電子移動度の低下を招く(応用物理学会

た行「応用物理」第49巻(1980)p110
を照)ので、良好な特性が得られない等、成長させたSi膜上に素子の形成には不都合かあった。

例えば、 C V D 法によりサファイア基板上に形成した S i 膜 (膜厚 0 . 4 μm) の圧縮応力は約9. 5 × 1 0 °dyn/cm °であり、この時の電子の H a 1 ! 移動度はパルク S i に比べて約0. 6 2 倍 (キャリア 濃度が 1 0 '' ~ 1 0 '' cm ° の範囲の S O ! 膜の場合)の移動度しか示さない。

また、サファイア基板上のSi膜を分子線エピタキシャル(MBE)法により、成長温度700で成長させた場合でも、そのSi膜(膜厚0. 1 μm)の圧縮応力は約5. 5×10°dyn/cm°で、Si膜の成長温度を低下させても余り圧縮応

第1図A乃至Cに本発明一実施例の工程以明図を示す。(1)は(「012)面(R面)を主面とする単結晶絶縁基台としての単結晶サファイア 悲板である。そしてこのサファイア 悲板(1)の 上面上に MBE 法により、成長温度 700℃、成氏速度 10~20 A/secで単結晶 Si膜(2)を 膜 質 約100人工ピタキシャル成長させる(第1図A)。

次に、この単結晶Si膜を成長させた基板を図示しないMBE装置から取り出し、単結晶Si膜(2)に硼素(B)をイオン注入する。イオン注入は、加速エネルギー25keV、ドーズ量1×10′′°m′′でイオンの注入を行い、単結晶Si膜(2)をり型にする。更に、50%の弗酸を電解液とし、この電解液に上記基板を漬けて、電流密度5mA/cm′で基板上の単結晶Si膜(2)の陽板化成を行う。この陽極化成により単結晶Si膜(2)は70人/secの速度で多孔質化がされる(第1図B)。

単結晶の多孔質 Siは、例えば本実施例のよう ·

力を低減させるに到っていない。

(ハ) 発明が解決しようとする課題

本税明は上述の点に鑑みて為されたもので、サファイア基板上に形成した単結晶Si膜の残留応力(圧協応力)が大きくなく、素子を形成して良好な特性を得ることが可能なSOI構造を提供するのもである。

(二) 課題を解決するための手段

本発明は、サファイア基台上に単結晶Si膜を 形成する工程と、該単結晶Si膜を多孔質化する 「程と、多孔質化した単結晶Si膜上に単結晶S i膜を形成する工程とを含んでなる事を特徴とするSOI構造の形成方法である。

(ホ) 作用

煮子を作成するための上層の単結晶Si膜とサファイア指台との間に、多孔質化したSi膜を介作させてSOI構造を形成することにより、多孔質化したSi膜が緩衝材として機能して、上層の単結晶Si膜の圧縮応力が級和される。

(へ) 実施例

に 陽 橋 化 成 で 単 結 晶 S i を 多 孔 質 化 し た も の で は 、 単径 2 0 ~ 1 0 0 人 の 細 孔 を 多数 有 し た 単 結 晶 S i の 博 造 を 持 ち 、 そ の 密 度 は 完 全 結 晶 の S i の 1 0 ~ 7 0 % で ある こ と が 知 ら れ て い る 。 こ の た め 、 多 孔 質 化 の 単 結 晶 S i は 完 全 結 晶 の S i よ り 伸 縮 性 を 有 す る こ と に な る 。

単結晶 S i 膜 (2) を多孔質化したら(多孔質化した単結晶 S i 膜を(2') とする)、再び図示しない M B E 装置に基板をセットする。そして、多孔質化した単結晶 S i 膜(2') 上に、先と同様の条件、成長温度 7 0 0 ℃、成長速度 1 0 ~ 2 0 Å/secで、単結晶 S i 膜(3) を膜厚 3 0 0 0 Å エピタキシャル成長させて(第1図C)、S O 1 構造を形成する。

斯様にして形成されたSOI構造における単結品Si膜中の内部応力(圧縮応力)は、レーザラマン分光法で測定した結果、およそ2.5×10 'dyn/cm'であった。素子を形成するための能動層となる単結晶Si膜をサファイア基板上に直接形成していた従来のSOI構造の単結晶Si膜中の

内部応力 (残留応力)に比べると、大幅な内部応 力の低減が実現されている。

これは、多孔質化したSi膜(2°)が、その 中部性により、サファイア基板(1)と菓子が形 成される単結晶Si膜(3)との熱彫張係数の差 によって生ずる内部応力を複和するためである。

そして、内部応力の低減により、単結晶Si膜(3)の電子のHal1移動度は、バルクSiのそれと比べて0.88倍程度で、従来のものより改革され、単結晶Si膜(3)に形成する素子の特性向上が可能となる。

(ト) 発明の効果

本発明は以上の説明から明らかな知く、サファイア塔板上に多孔質のSi膜を形成した後、そのSi膜上に、素子を形成するための単結晶Si膜を成及するので、サファイア基板とSiとの熱態低級の差から生ずる残留応力(内部応力)が緩和される。そして単結晶Si膜の電子のHail移動度が改善されて、該単結晶Si膜に形成する素子の特性向上が可能となる。

4. 図面の簡単な説明

邓 I 図 A 乃至 C は本発明一実施例の工程説明図である。

(1)・・・サファイア基板(単結晶絶縁基白) 、(2),(3)・・・単結晶 S i 膜(単結晶半導体膜)、(2°)・・・多孔質化した S i 膜(多孔質の単結晶半導体膜)。

> 出願人 三洋電機株式会社 代理人 西野 卓嗣 外一名

第1図

