# Control Engineering Lecture 11 ver. 1.3.1.3

Claudio De Persis

### Last lecture

- ► Bode diagrams
- ► Frequency domain analysis (Chapter 9 of the textbook)
  - Nyquist plot
  - Nyquist stability theorems

## **Today**

- ► Frequency domain analysis (Chapter 9 of the textbook)
  - Conditional stability
  - Stability margins
- ▶ PID control (Chapter 10 of the textbook)
  - First control design in the frequency domain

PI(D) control is the most common feedback control in engineering





$$u = k_p e + k_i \int_0^t e(\tau) d\tau + k_d \frac{de}{dt} = k_p \left( e + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de}{dt} \right)$$

 $k_p$  is the gain,  $T_i = \frac{k_p}{k_i}$  the reset time,  $T_d = \frac{k_d}{k_p}$  is the derivative time

#### Transfer function

$$U(s) = (k_p + \frac{k_i}{s} + k_d s)E(s) \Rightarrow C(s) = \frac{k_p s + k_i + k_d s^2}{s}$$

The design of a PID control amounts to the tuning of the gains  $k_p$ ,  $k_i$ ,  $k_d$  or  $k_p$ ,  $T_i$ ,  $T_d$ 

PID embeds predictive action (Euler approximation  $\frac{de}{dt} \approx \frac{e(t+T_d)-e(t)}{T_d}$  if  $T_d$  very small)

$$k_{p}e(t) + k_{d}\frac{de(t)}{dt} = k_{p}\left(e(t) + T_{d}\frac{de(t)}{dt}\right) \approx k_{p}\left(e(t) + T_{d}\frac{e(t+T_{d}) - e(t)}{T_{d}}\right)$$

$$= k_{p}e(t+T_{d})$$

$$\frac{sT_{d}}{1+sT_{d}}$$

Actual implementation of the derivative action  $\upsilon(s) = k_p (1 - \frac{1}{1 + sT_d}) E(s)$ 



For frequencies  $\ll 1/T_d$  the transfer function approximates that of a pure derivative control action (think of its Bode diagrams) – hence in practice  $T_d$  is designed such that  $T_d \ll 1$ 

Implementing derivative control action is usually inaccurate and typically amplifies noise. Consider the noisy signal [Lewis, E6.20]

$$y(t) = A_s \sin(\omega_s t) + A_n \sin(\omega_n t + \varphi_n)$$

where  $A_s \sin(\omega_s t)$  is the signal and  $A_n \sin(\omega_n t + \varphi_n)$  is the noise, with  $\omega_n > \omega_s$ . The so-called SNR (signal-to-noise ratio) is

$$SNR_y = \frac{|A_s|}{|A_n|}$$

When the signal y(t) is processed via a derivative action, one obtains

$$\dot{y}(t) = A_s \omega_s \cos(\omega_s t) + A_n \omega_n \cos(\omega_n t + \varphi_n)$$

and this signal has a much lower SNR

$$SNR_{\dot{y}} = \frac{|A_s|\omega_s}{|A_n|\omega_n}$$

Such a bad effect of the derivative action on signals can also be seen using the Bode diagram of s



$$C(s) = k_p \Rightarrow G_{er}(s) = \frac{1}{1 + PC} = \frac{\frac{n_P}{d_P}}{c = \frac{\frac{n_C}{d_P}}{d_C}} \frac{d_P d_C}{d_P d_C + n_P n_C} = \frac{d_P}{d_P + k_P n_P}$$

If closed-loop system is stable, P(s) has no pole or zero at s=0, r(t)=r for all  $t\geq 0$  (constant reference signal), then  $\lim_{t\to +\infty} e(t)=\lim_{t\to +\infty} r(t)-y(t)$  exists, is finite and can be computed as

$$\begin{array}{rcl} \textbf{\textit{e}}_{\textit{steady}} & = & \lim_{t \to +\infty} e(t) \\ & = & \lim_{s \to 0} sE(s) = \lim_{s \to 0} sG_{er}(s)R(s) \\ & = & \lim_{s \to 0} s \frac{d_P}{d_P + k_P n_P} \frac{r}{s} \\ & = & \frac{d_P(0)}{d_P(0) + n_P(0)k_P} r = \frac{1}{1 + P(0)k_P} r \end{array}$$



#### Discussion

- Asymptotic stability of the closed-loop system design  $k_p$  such that the poles of  $G_{er}(s)$ , i.e. roots of  $d_P + k_p n_P = 0$ , all with strictly negative real parts
- If P(s) has no pole at s = 0 then

$$e_{steady} = \frac{1}{1 + P(0)k_p} r \overset{k_p \to +\infty}{\to 0}$$

- If P(s) has a pole at s=0 (integral action) then  $e_{\text{steady}}=0$
- ▶ If P(s) has a zero at s = 0 then  $e_{\text{steady}} = r$

Constant steady state error; goes to zero as  $k_p \to +\infty$ ; large  $k_p$  leads to oscillations (in the figure, the simulations are run for  $P(s) = \frac{1}{(s+1)^3}$ )

$$d_P + k_p \, n_P = s^3 + 3s^2 + 3s + k_p + 1$$

Routh table

Closed-loop stability  $-1 < k_p < 8$ For  $k_p = 8$  two imaginary poles For  $k_p > 8$  two unstable poles



(a) Proportional control

Constant steady state error; goes to zero as  $k_p \to +\infty$ ; large  $k_p$  leads to oscillations. This can be understood by looking at how the roots of the closed-loop system characteristic polynomial evolve as  $k_p$  ranges in the interval  $[0,+\infty)$ .



Roots are  $\lambda$  and  $\sigma \pm i\omega$  with corresponding modes

$$e^{\lambda t}, e^{\sigma t} \cos(\omega t), e^{\sigma t} \sin(\omega t)$$

As  $k_p \rightarrow$  8,  $\sigma \rightarrow$  0 and the oscillations become more pronounced

PI control leads to zero steady state error without large gain



$$C(s) = \frac{k_p s + k_i}{s} \Rightarrow G_{er}(s) = \frac{1}{1 + PC} = \frac{d_P d_C}{d_P d_C + n_P n_C} = \frac{s d_P}{s d_P + n_P (k_p s + k_i)}$$

If closed-loop system is stable, P(s) has no zero at s=0, r(t)=r for all  $t\geq 0$  (constant reference signal), then  $\lim_{t\to +\infty} e(t)=\lim_{t\to +\infty} r(t)-y(t)$  exists, is finite and can be computed as

$$\begin{array}{ll} \textbf{\textit{e}}_{\textit{steady}} & = & \lim_{s \to 0} sE(s) = \lim_{s \to 0} sG_{\textit{er}}(s)R(s) \\ & = & \lim_{s \to 0} s\frac{sd_P}{sd_P + n_P(k_P s + k_i)}\frac{r}{s} = \textbf{0} \end{array}$$



#### **Discussion**

- Asymptotic stability of the closed-loop system design  $k_p$ ,  $k_i$  such that the poles of  $G_{er}(s)$ , i.e. the roots of  $sd_P + n_P (k_p s + k_i) = 0$ , have all with strictly negative real parts
- lacktriangle The pole of C(s) at s=0 (integral action) guarantees  $e_{
  m steady}=0$
- ▶ If P(s) has a zero at s = 0 then the integral action is frustrated by the pole/zero cancellation

- Zero steady state error
- ▶ Increasing gain  $k_i$  leads to generally faster response but as  $k_i$  increases more it can also give rise to oscillations and eventually

$$sd_P + (k_p s + k_i) n_P = s^4 + 3s^3 + 3s^2 + (k_p + 1)s + k_i$$

#### Routh table

#### Closed-loop stability

$$\begin{cases} -1 < k_p < 8 \\ 0 < k_i < -\frac{(k_p - 8)(k_p + 1)}{9} = -\frac{k_p^2 - 7k_p - 8}{9} \end{cases}$$



Time t

Zero steady state error; large  $k_i$  leads to oscillations. The figure below represents the evolution of the poles of the closed-loop system for the process  $P(s) = \frac{1}{(s+1)^3}$  controlled by  $C(s) = \frac{k_i}{s}$  ( $k_p = 0$ ) as  $k_i$  ranges in the interval [0,1].



As  $k_i$  increases poles become  $\sigma_1 \pm i\omega_1$  and  $\sigma_2 \pm i\omega_2$  with corresponding modes

$$\mathrm{e}^{\sigma_i t} \cos(\omega_i t), \; \mathrm{e}^{\sigma_i t} \sin(\omega_i t), \; i = 1, 2$$

As  $k_i \to \frac{8}{9}$ , one pair of poles becomes dominant  $(\sigma_1 \to 0 \text{ with } \sigma_2 \ll \sigma_1)$  giving rise to more pronounced oscillations

PI control rejects constant load disturbances  $(r = n = 0, d \neq 0)$  and controller output settles at a value that compensate for the disturbance d n



Closed-loop system is stable, P(s) has no zero at s=0, d constant load disturbance

$$\begin{array}{lll} \textbf{\textit{u}}_{\textit{steady}} & = & \lim_{s \to 0} sU(s) = \lim_{s \to 0} sG_{\textit{ud}}(s)D(s) \\ & = & \lim_{s \to 0} s\frac{-n_P(k_Ps + k_i)}{n_P(k_Ps + k_i) + d_Ps}\frac{d}{s} = -\textbf{\textit{d}} \end{array}$$

PI control rejects constant load disturbances  $(r = n = 0, d \neq 0)$  and controller output settles at a value that compensate for the disturbance



Closed-loop system is stable, P(s) has no zero at s=0, d constant load disturbance

$$\begin{array}{ll} \textit{\textit{y}}_{\textit{steady}} & = & \lim_{s \to 0} sY(s) = \lim_{s \to 0} sG_{yd}(s)D(s) \\ & = & \lim_{s \to 0} s\frac{n_P s}{n_P(k_P s + k_i) + d_P s}\frac{d}{s} = \mathbf{0} \end{array}$$





- $\triangleright$  Derivative action makes system faster if  $k_d$  not too large
- Oscillatory behavior for small k<sub>d</sub> damped sluggish response for large k<sub>d</sub>
- It allows to deal with second order systems (systems with 2 poles)

## PI control for first order systems - stabilization

First order system Second order system PI control

$$P(s) = \frac{b}{s+a}$$

$$C(s) = \frac{k_p s + k_i}{s}$$



Closed-loop system

$$\frac{L}{1+L} = \frac{b(k_p s + k_i)}{s(s+a) + b(k_p s + k_i)} = \frac{b(k_p s + k_i)}{s^2 + (a + bk_p)s + bk_i}$$

Poles can be freely assigned via  $k_p$ ,  $k_i$ 

To assign closed-loop poles  $s^2 + 2\zeta\omega_0 s + \omega_0^2$ 

$$k_p = \frac{2\zeta\omega_0 - a}{b}, \quad k_i = \frac{\omega_0^2}{b}$$

### PI control for first order systems

- Constant reference tracking (set point) and load disturbance rejection always achievable for first order systems by PI control
- ► Step response freely tunable



### PI control for first order systems

- Constant reference tracking (set point) and load disturbance rejection always achievable for first order systems by PI control
- ► Step response freely tunable

Properties of the step response for the closed-loop system (second-order)

**Table 6.1:** Properties of the step response for a second-order system with  $0 < \zeta < 1$ .

| Property           | Value                                                  | $\xi = 0.5$    | $\zeta=1/\sqrt{2}$ | $\xi = 1$      |
|--------------------|--------------------------------------------------------|----------------|--------------------|----------------|
| Steady-state value | k                                                      | k              | k                  | k              |
| Rise time          | $T_r \approx 1/\omega_0 \cdot e^{\varphi/\tan\varphi}$ | $1.8/\omega_0$ | $2.2/\omega_0$     | $2.7/\omega_0$ |
| Overshoot          | $M_p = e^{-\pi \zeta/\sqrt{1-\zeta^2}}$                | 16%            | 4%                 | 0%             |
| Settling time (2%) | $T_s \approx 4/\zeta \omega_0$                         | $8.0/\omega_0$ | $5.9/\omega_0$     | $5.8/\omega_0$ |

**Example** Cruise control (Section 3.1 and Example 5.11 of the textbook)



(a) Effect of gravitational forces

Linearized model

$$\frac{d(v-v_e)}{dt} = -a(v-v_e) + b(u-u_e) - g\theta$$

v velocity, u input from the engine,  $\theta$  slope  $(v_e,u_e)$  equilibrium pair such that  $u=u_e+\frac{g\theta}{b}\Rightarrow v=v_e$ 

**Example** Cruise control (Section 3.1 and Example 5.11 of the textbook)



(a) Effect of gravitational forces

Linearized model - transfer function

$$sV(s) = -aV(s) + bU(s) + \frac{1}{s}(av_e - bu_e - g\theta)$$

$$= -aV(s) + bU(s) + \frac{b}{s} \frac{av_e - bu_e - g\theta}{b}$$

$$V(s) = \frac{b}{s+a}(U(s) + \underbrace{\frac{1}{s} \frac{av_e - bu_e - g\theta}{b}}_{D(s)})$$

Example Cruise control (Section 3.1 and Example 5.11 of the textbook)



$$F(s) = 1, C(s) = \frac{k_p s + k_i}{s}, r = \text{cruise velocity} = v_e, d = \frac{a v_e - b u_e - g \theta}{b}$$
$$P(s) = \frac{b}{s+a} (U(s) + D(s)), \quad D(s) = d\frac{1}{s}$$

Cruise control guaranteed by PI controller

$$k_{p} = \frac{2\zeta\omega_{0} - a}{b}, \ k_{i} = \frac{\omega_{0}^{2}}{b} \Longrightarrow \frac{L(s)}{1 + L(s)} = \frac{b(k_{p}s + k_{i})}{s^{2} + (a + bk_{p})s + bk_{i}} = \frac{(2\zeta\omega_{0} - a)s + \omega_{0}^{2}}{s^{2} + 2\zeta\omega_{0}s + \omega_{0}^{2}}$$

**Example** Cruise control (Section 3.1 and Example 5.11 of the textbook)



- $\triangleright$  Rise time, overshoot, settling time can be adjusted by designing  $k_p, k_i$
- $ightharpoonup \omega_0$  compromise between response speed and control actions
- ightharpoonup Large  $\omega_0$  gives fast response, less overshoot but requires fast actuators
- ightharpoonup Large  $\zeta$  gives less overshoot and reduced control effort
- Response with no overshoot improves comfort

## PID control for second order systems

For a second order system

$$P(s) = \frac{b}{s^2 + a_1 s + a_2}$$

pole assignment is possible via PID control

$$C(s) = \frac{k_p s + k_i + k_d s^2}{s}$$

[Textbook, Exercise 10.2], [Tutorial 7]

Consider the negative feedback loop



with

$$P(s) = \frac{num_p(s)}{den_p(s)} = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \ldots + b_1s + b_0}{a_ns^n + a_{n-1}s^{n-1} + \ldots + a_1s + a_0}, \quad a_n \neq 0 \text{ (strictly proper)}$$

and

$$C(s) = \frac{num_c(s)}{den_c(s)} = \frac{d_{n-1}s^{n-1} + d_{n-2}s^{n-2} + \ldots + d_1s + d_0}{c_{n-1}s^{n-1} + c_{n-2}s^{n-2} + \ldots + c_1s + c_0}$$



### Theorem (Pole Assignment)

Let P(s) and C(s) be defined as before. Assume  $num_p(s)$ ,  $den_p(s)$  are coprime, that is they have no common factors. Let

$$p_{des}(s) = g_{2n-1}s^{2n-1} + g_{2n-2}s^{2n-2} + \ldots + g_1s + g_0$$

be an arbitrary polynomial of order 2n-1. Then there exist polynomials  $num_c(s)$ ,  $den_c(s)$  such that

$$num_p(s)num_c(s) + den_p(s)den_c(s) = p_{des}(s)$$

<u>Stabilization</u> If we choose the desired polynomial  $p_{des}(s)$  such that the roots of  $p_{des}(s) = 0$  have all strictly negative real parts, then in particular the controller C(s) stabilizes the closed-loop system.

**Proof (Sketch)** Equating the coefficients of  $num_p(s)num_c(s) + den_p(s)den_c(s) = p_{des}(s)$  one obtains the  $2n \times 2n$  so-called *eliminant* matrix (# rows = # coefficients of  $p_{des}$ , # columns = # coefficients of  $den_c$  +# coefficients of  $num_c$ )

$$\begin{bmatrix} a_n & 0 & \dots & 0 & b_n = 0 & 0 & \dots & 0 \\ a_{n-1} & a_n & \dots & 0 & b_{n-1} & b_n = 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_n & b_1 & b_2 & \dots & 0 \\ a_0 & a_1 & \dots & a_{n-1} & b_0 & b_1 & \dots & b_n = 0 \\ 0 & a_0 & \dots & a_{n-2} & 0 & b_0 & \dots & b_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_0 & 0 & 0 & \dots & b_0 \end{bmatrix} \begin{bmatrix} c_{n-1} \\ \vdots \\ c_0 \\ d_{n-1} \\ \vdots \\ d_0 \end{bmatrix} = \begin{bmatrix} g_{2n-1} \\ \vdots \\ g_0 \end{bmatrix}$$

#### **Proof (Sketch)** Sylvester's theorem The polynomials

$$b_n s^n + b_{n-1} s^{n-1} + \ldots + b_1 s + b_0$$
  
 $a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0$ 

are coprime if and only if the  $(2n \times 2n)$  matrix

$$M = \begin{bmatrix} a_n & 0 & \dots & 0 & b_n & 0 & \dots & 0 \\ a_{n-1} & a_n & \dots & 0 & b_{n-1} & b_n & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_n & b_1 & b_2 & \dots & 0 \\ a_0 & a_1 & \dots & a_{n-1} & b_0 & b_1 & \dots & b_n \\ 0 & a_0 & \dots & a_{n-2} & 0 & b_0 & \dots & b_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_0 & 0 & 0 & \dots & b_0 \end{bmatrix}$$

is non-singular.

**Proof (Sketch)** Going back to the system of linear equations on Slide 28, we realize that the matrix on the left-hand side is the matrix M with  $b_n=0$ . By Sylvester's theorem it is nonsingular if and only if the the polynomials  $num_p(s)$ ,  $den_p(s)$  are coprime, which is true by assumption. Hence

$$\begin{bmatrix} c_{n-1} \\ \vdots \\ c_0 \\ d_{n-1} \\ \vdots \\ d_0 \end{bmatrix} = \begin{bmatrix} a_n & 0 & \dots & 0 & b_n = 0 & 0 & \dots & 0 \\ a_{n-1} & a_n & \dots & 0 & b_{n-1} & b_n = 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_n & b_1 & b_2 & \dots & 0 \\ a_0 & a_1 & \dots & a_{n-1} & b_0 & b_1 & \dots & b_n = 0 \\ 0 & a_0 & \dots & a_{n-2} & 0 & b_0 & \dots & b_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_0 & 0 & 0 & \dots & b_0 \end{bmatrix}^{-1} \begin{bmatrix} g_{2n-1} \\ \vdots \\ g_0 \end{bmatrix}$$

This ends the proof.

**Example** n=2

$$P(s) = \frac{b_1 s + b_0}{a_2 s^2 + a_1 s + a_0}, \quad C(s) = \frac{d_1 s + d_0}{c_1 s + c_0}$$

Then  $num_p(s)num_c(s) + den_p(s)den_c(s) = p_{des}(s)$  writes as

$$(a_2s^2 + a_1s + a_0)(c_1s + c_0) + (b_1s + b_0)(d_1s + d_0) = g_3s^3 + g_2s^2 + g_1s + g_0$$
  
$$a_2c_1s^3 + (a_1c_1 + a_2c_0 + b_1d_1)s^2 + (\dots)s + (a_0c_0 + b_0d_0) = g_3s^3 + g_2s^2 + g_1s + g_0$$

In matrix form

$$\begin{bmatrix}
a_2 & 0 & 0 & 0 \\
a_1 & a_2 & b_1 & 0 \\
a_0 & a_1 & b_0 & b_1 \\
0 & a_0 & 0 & b_0
\end{bmatrix} \quad
\begin{bmatrix}
c_1 \\
c_0 \\
d_1 \\
d_0
\end{bmatrix} = 
\begin{bmatrix}
g_3 \\
g_2 \\
g_1 \\
g_0
\end{bmatrix}$$
coefficient matrix  $A$  unknowns  $x$  known terms  $b$ 

If the polynomials  $b_1s + b_0$  and  $a_2s^2 + a_1s + a_0$  have no common factors, then the matrix of coefficients A is nonsingular (i.e.,  $\det A \neq 0$ ) and the unknowns are obtained as  $x = A^{-1}b$ .

### Ziegler-Nichols

Empirical rules to tune the parameters of a PI(D) controller

$$u = k_p e + k_i \int_0^t e(\tau) d\tau + k_d \frac{de}{dt} = k_p \left( e + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de}{dt} \right)$$

The rule implicitly assumes a step response as in the figure below from which  $a, \tau$  are graphically determined (via the steepest tangent of the step response) **Step method** 



| Туре | $k_p$ | $T_i$   | $T_d$     |
|------|-------|---------|-----------|
| P    | 1/a   |         |           |
| PI   | 0.9/a | 3τ      |           |
| PID  | 1.2/a | $2\tau$ | $0.5\tau$ |

(a) Step response method

### Ziegler-Nichols

Empirical rules to tune the parameters of a PI(D) controller

$$u = k_p e + k_i \int_0^t e(\tau) d\tau + k_d \frac{de}{dt} = k_p \left( e + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de}{dt} \right)$$

Improved step method – it assumes  $P(s) = \frac{K}{1 + \epsilon T} e^{-\tau s}$ . Then

$$Y(s) = \frac{K}{1 + sT} e^{-\tau s} \frac{1}{s} \Rightarrow y(t) = \begin{cases} 1 & \text{if } s > t \end{cases}$$



(a) Step response method

$$Y(s) = \frac{K}{1+sT} e^{-\tau s} \frac{1}{s} \Rightarrow y(t) = \begin{cases} 0 & 0 \leq t < \tau \\ K(1(t-\tau) - e^{-(t-\tau)/T}) & t > \tau \\ \text{Parameters } K, \tau, T \text{ can obtained by fitting the approximate model to the measured step response: } K \text{ is the steady state output value, } \tau \text{ is the delay and the steepest tangent} \\ (= K/T, \text{ because} \\ y(t) = \begin{cases} 0 & 0 \leq t < \tau \\ \frac{K}{T} e^{-(t-\tau)/T} & t \geq \tau \end{cases} \text{ gives} \end{cases}$$

$$\frac{\Delta y}{\Delta x} = \frac{a}{-} \approx \frac{K}{T} \Leftrightarrow T \approx \frac{K\tau}{2}$$

### Ziegler-Nichols

Empirical rules to tune the parameters of a PI(D) controller

$$u = k_p e + k_i \int_0^t e(\tau) d\tau + k_d \frac{de}{dt} = k_p \left( e + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de}{dt} \right)$$

The parameters of P(s) identified with this improved method are used to finely tune the PID with different parameters

#### Improved sten method



(a) Step response method

[Textbook, Eq. (10.11) top]

| Туре | k <sub>p</sub>                 | k <sub>i</sub>                   |
|------|--------------------------------|----------------------------------|
| PI   | $\frac{0.15\tau+0.35T}{K\tau}$ | $\frac{0.46\tau+0.02T}{K\tau^2}$ |

### Ziegler-Nichols

Empirical rules to tune the parameters of a PI(D) controller

$$u = k_p e + k_i \int_0^t e(\tau) d\tau + k_d \frac{de}{dt} = k_p \left( e + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de}{dt} \right)$$

#### Frequency response method

- ▶ P controller gain  $k_p$  in the closed-loop system  $\frac{L(s)}{1+L(s)}$ ,  $L(s)=k_pP(s)$ , is increased until system starts oscillating for  $k_p=k_c$
- ► Critical *k<sub>c</sub>* and period *T<sub>c</sub>* of oscillation are measured
- Oscillation is triggered by the occurrence of imaginary poles  $s=\pm i\omega_c$ , with  $\omega_c=\frac{2\pi}{T_c}$ , hence

Type
 
$$k_p$$
 $T_i$ 
 $T_d$ 

 P
  $0.5k_c$ 
 ...

 PI
  $0.4k_c$ 
 $0.8T_c$ 

 PID
  $0.6k_c$ 
 $0.5T_c$ 
 $0.125T_c$ 

$$1 + L(i\frac{2\pi}{T_c}) = 0$$

**Example** [Textbook, Exercise 10.4]

$$P(s) = \frac{\mathrm{e}^{-s}}{s}$$

Determine the parameters of P, PI, PID controllers using ZN step and frequency response methods.

Step method Determine the step response of the system

$$Y(s) = P(s)\frac{1}{s} = \frac{e^{-s}}{s^2}$$

Then

$$y(t) = \mathcal{L}^{-1}\left[\frac{e^{-s}}{s^2}\right] = \left\{ \begin{array}{cc} 0 & 0 \le t < 1 \\ t - 1 & t \ge 1 \end{array} \right.$$

Intercept a=1 and delay  $\tau=1$ .

**Example (cont'd)** Intercept a = 1 and delay  $\tau = 1$ .

$$u = k_p e + k_i \int_0^t e(\tau) d\tau + k_d \frac{de}{dt} = k_p \left( e + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de}{dt} \right)$$

### Step method

| Туре | k <sub>p</sub>        | $T_i$     | $T_d$      |  |
|------|-----------------------|-----------|------------|--|
| Р    | $\frac{1}{a} = 1$     |           |            |  |
| PI   | $\frac{0.9}{a} = 0.9$ | $3\tau=3$ |            |  |
| PID  | $\frac{1.2}{a} = 1.2$ | $2\tau=2$ | 0.5	au=0.5 |  |

$$P(s) = \frac{e^{-s}}{s}$$

**Frequency method** Critical  $k_c$  and period  $T_c$  of oscillation are measured

$$1 + L(i\frac{2\pi}{T_c}) = 0$$

Set  $\omega_c=rac{2\pi}{T_c}$  and look for values of  $k_c$ ,  $\omega_c$  such that

$$1 + L(i\omega_c) = 0 \Leftrightarrow k_c \frac{e^{-i\omega_c}}{i\omega_c} = -1$$

Note that

$$L(i\omega_c) = k_c \frac{e^{-i\omega_c}}{i\omega_c} = k_c \frac{\cos \omega_c - i\sin \omega_c}{i\omega_c} = k_c \frac{\sin \omega_c + i\cos \omega_c}{-\omega_c}$$

**Frequency method** Critical  $k_c$  and period  $T_c$  of oscillation are measured

$$1 + L(i\frac{2\pi}{T_a}) = 0$$

Note that

$$L(i\omega_c) = k_c \frac{e^{-i\omega_c}}{i\omega_c} = k_c \frac{\sin \omega_c + i\cos \omega_c}{-\omega_c}$$

Hence  $L(i\omega_c) = -1$  if and only if

$$k_c \frac{\sin \omega_c}{-\omega_c} = -1, \quad k_c \frac{\cos \omega_c}{-\omega_c} = 0$$

from which

$$\omega_c = \frac{\pi}{2}, \quad k_c \frac{1}{-\frac{\pi}{2}} = -1$$

i.e.

$$\omega_c = \frac{\pi}{2}, \quad k_c = \frac{\pi}{2} \Leftrightarrow \omega_c = \frac{2\pi}{T_c} = \frac{\pi}{2}, \quad k_c = \frac{\pi}{2} \Leftrightarrow T_c = 4, \quad k_c = \frac{\pi}{2}$$

### Frequency method

$$T_c = 4, \quad k_c = \frac{\pi}{2}$$

| Туре | $k_p$            | $T_i$          | $T_d$             |
|------|------------------|----------------|-------------------|
| Р    | $0.5k_c = 0.785$ |                |                   |
| PI   | $0.4k_c = 0.628$ | $0.8T_c = 3.2$ |                   |
| PID  | $0.6k_c = 0.942$ | $0.5T_c = 2$   | $0.125 T_c = 0.5$ |

| Type | $k_p$                 | $T_i$     | $T_d$      |
|------|-----------------------|-----------|------------|
| Р    | $\frac{1}{a} = 1$     |           |            |
| PI   | $\frac{0.9}{a} = 0.9$ | $3\tau=3$ |            |
| PID  | $\frac{1.2}{a} = 1.2$ | $2\tau=2$ | 0.5	au=0.5 |

### Next lecture

► Frequency domain design (Chapter 11 of the textbook)