Recall given paths β , γ s.t. $\beta(1) = \gamma(0)$,

$$\beta$$
 * y is a new path $(\beta$ * y)(s) = β (2s) s \leq 1/2 $(\beta$ * y)(s) = γ (2s $-$ 1) s \geq 1/2

 $y \sim_p y'$ means there's a path homotopy from y to y'

Suppose
$$\beta(1) = \gamma(0) = \gamma'(0)$$
 and $\gamma \sim_p \gamma'$ do we have $\beta * \gamma \sim_p \beta * \gamma'$?

Suppose
$$\beta(1) = \beta'(1) = \gamma(0)$$
 and $\beta \sim_p \beta'$ do we have $\beta * \gamma \sim_p \beta' * \gamma$?

Thm if
$$\beta(1) = \beta'(1) = \gamma(0) = \gamma'(0)$$
 and $\beta \sim_p \beta'$ and $\gamma \sim_p \gamma'$, then $\beta * \gamma \sim_p \beta' * \gamma'$

then
$$h(1, t) = \beta(1) = \beta'(1) = \gamma(0) = \gamma'(0) = j(0, t)$$

set
$$k(s, t) = h(2s, t)$$
 $s \le 1/2$
 $k(s, t) = j(2s - 1, t)$ $s \ge 1/2$

 \underline{Df} write [y] for the \sim_p equiv class of y

for any paths β , γ s.t. $\beta(1) = \gamma(0)$, take $[\beta] * [\gamma]$ to be the equiv class $[\beta * \gamma]$

by thm, * is a well-def operation on equiv classes

(Munkres §52) now focus on loops

if β , γ are loops in X at the same <u>basepoint</u> x then β * γ is also a loop at x

get a binary operation on equiv classes of loops: $[\beta] * [\gamma] = [\beta * \gamma]$

Thm 1 if α, β, γ are paths s.t.
$$\alpha(1) = \beta(0)$$

 $\beta(1) = \gamma(0)$

then
$$(\alpha * \beta) * \gamma \sim_p \alpha * (\beta * \gamma)$$

so $([\alpha] * [\beta]) * [\gamma] = [\alpha] * ([\beta] * [\gamma])$

Thm 2 write e_x : [0, 1] to X for the constant path e_x(s) = x
$$e_x * y \sim_p y \quad \text{for all paths } y \text{ starting at } x$$

$$\beta \sim_p \beta * e_x \quad \text{for all paths } \beta \text{ ending at } x$$

so
$$[e_x] * [y] = [y]$$

 $[\beta] * [e_x] = [\beta]$

Thm 3 write
$$y^-(s) = y(1 - s)$$
 for the reverse path

 $y * y \sim_p e x$ for y starting at x

$$y^- * y \sim_p e_y$$
 for y ending at y
so $[y] * [y] = [e_x]$
 $[v] * [v] = [e v]$

then

Pf of Thm 3 want
$$[y] * [y] = [e_x]$$
 for y starting at x

need path homotopy $h: [0, 1] \times [0, 1]$ to X

s.t. for all s in [0, 1],
$$h(s, 0) = e_x(s) = x$$

 $h(s, 1) = (y * y)(s)$

for fixed t, the path h(s, t) "freezes" at y(t), then rewinds

h(s, t): x to y(t) s in
$$[0, t/2]$$

stay at y(t) s in $[t/2, 1 - t/2]$
y(t) back to x s in $[1 - t/2, 1]$

h(s, t) =
$$y(2s)$$
 s in [0, t/2]
= $y(t)$ s in [t/2, 1 - t/2]
= $y(2-2s) = y(2s)$ s in [1 - t/2, 1]

<u>Cor</u> for loops in X based at a point x:

1)
$$([\alpha] * [\beta]) * [\gamma] = [\alpha] * ([\beta] * [\gamma])$$

2)
$$[y] * [e_x] = [y] = [e_x] * [y]$$

3)
$$[y] * [y] = [e_x] = [y] * [y]$$

<u>Df</u> the <u>fundamental group</u> of X based at x is

$$\pi_1(X, x) = \{[y] \mid \text{loops } y \text{ in } X \text{ based at } x\}$$

under the operation * on \sim_p equiv classes

Q how much does $\pi_1(X, x)$ depend on X and x?

[Thm suppose f : X to Y is cts

- 1) if y, y' are paths in X s.t. $y \sim_p y'$ then $f \circ y$, $f \circ y'$ are paths in Y s.t. $f \circ y \sim_p f \circ y'$
- 2) if β , γ are paths in X s.t. $\beta(1) = \gamma(0)$, then $f \circ (\beta * \gamma) = (f \circ \beta) * (f \circ \gamma)$

<u>Cor</u> suppose f : X to Y is cts and f(x) = y

- 1) well-def map f_* : $\pi_1(X, x)$ to $\pi_1(Y, y)$ s.t. $f_*([y]) = [f \circ y]$
- 2) f_* is a group homomorphism: $f_*([\beta] * [\gamma]) = f_*([\beta]) * f_*([\gamma])$