HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

WEB MINING

LECTURE 09: ONLINE AD & QUERY MINING

Agenda

- 1. Online advertising
- 2. Search engine advertising
- 3. Query Mining

1. Online Advertising

Online advertising model

CPC

CPA

Revenue - CPM

- Assume that an ad is shown N items at the same position
- CPM: Revenue = N * CPM

Revenue - CPC

Assume that an ad is shown N items at the same position

Revenue - CPA

- Assume that an ad is shown N items at the same position
- CPM: Revenue = N * CPM
- CPC: Revenue = N * CTR * CPC
- CPA: Revenue = N * CTR * Conv. Rate * CPA

Conversion Rate
(the probability that the user
takes an action when viewing the
ad page)

2. Search engine advertising

Search engine advertising model

Maximize revenue

- The problem of advertising company
- Select ads for maximum revenue
 - Match the query
 - Advertising costs
 - Ad page quality

Scoring based on content

- Consider advertising like a text
- Compare query similarity to ads
- Methods
 - Vector space model
 - Language model

Language model

P(ad|query LM)

Language model (cont.)

P(query|ad LM)

Language model (cont.)

KL(ad LM;query LM)

Pros and Cons

- Pros
 - Simple model
 - Suitable for short popular query
- Cons:
 - Hardly handle rare queries (long tail)
 - Hardly process in real-time
 - Not using user feedback

Score based on user feedback

- Query set Q
- Ad page set A
- For each query $q \in Q$ and ad page $a \in A$, compute the probability that user clicks on ad page Pr(click|q,a)
- Using user feedback to estimate probabilities

Logistic Regression

- Representation of query and advertising content in vectors (bag of words)
- Pr(click | q, a) = f(q, a; θ)
- Logistic Regression:
 - Log-odds (Pr(click $|q, a\rangle) = q' Wa$
 - Estimate Wusing user feedback as training data

from Wikipedia

Collaborative filtering

- Interactive matrix query, advertising
- Use latent user feedback (click on ad page)
- For each query q and ad page a, predict user interest
- Collaborative filtering
 - Using kNN
 - Represent ads by query to calculate similarity

Collaborative filtering (cont.)

3. Query Mining

Google: 40,000 query/s

Query features

- A query contains an average of 2.4 words
- 21% of internet traffic comes from search engines
- User feedback
 - 50% click on first result
 - Users mostly only use the first two results

Query features (cont.)

- Users often edit query
- Search trends shift from entertainment to e-commerce, in which product search accounts for 1/5
- The distribution of vocabulary on the query and on the website content is different \rightarrow what users search for is different from what is available on the internet

Query logging

- User information
- Query content
- List of relevant documents
- Selected documents of user

Query preprocessing

- Identify query session
- Filter bot query
- Standardize query

Identify query session

- Classify pairs of consecutive queries into classes :
 - Same query content but different search scope
 - Query Generalization
 - Query fine-tuning for a more precise query
 - Query detailing
 - New query content

Filter bot query

- Query generated by bot to collect search engine results
- Duplicate content
- Unusually high query rate and/and recurring query frequency

Standardize query

- Remove stopwords
- Convert to lower case
- Standardize number
- Stemming
- For Vietnamese
 - Restore accent
 - Tokenize

Application 1: Query suggestion

Language model

- Learn language model on query data $argmax_w P(w|w_0, w_1, ..., w_{n-1}, w_n)$
- Require large query dataset
- The basic unit of the language model
 - word (tokenize)
 - syllable
 - demisyllabel ('ch', 'ang')
 - Character

n-gram language model

Unigram

$$P(w) = (count(w)+1) / (sum_{w'} count(w')+V)$$

Bigram

$$P(w_0, w_1) = P(w_1|w_0)^*P(w_0)$$

 $P(w_1|w_0) = (count(w_0, w_1) + 1) / (sum_{w'} count(w_0, w') + V)$

Application 2: Extend query

- User queries often do not contain enough information
- Query expansion based solely on textual content may not meet user needs properly
 - Using user feedback
- Assumption: If a query containing one keyword leads to related documents containing another keyword, it is likely that the two keywords are related.

Extend query model

$$P(w_{j}^{(d)} | w_{i}^{(q)}) = \frac{P(w_{j}^{(d)}, w_{i}^{(q)})}{P(w_{i}^{(d)})}$$

$$= \frac{\sum_{\forall D_{k} \in S} P(w_{j}^{(d)}, w_{i}^{(q)}, D_{k})}{P(w_{i}^{(q)})}$$

$$= \frac{\sum_{\forall D_{k} \in S} P(w_{j}^{(d)} | w_{i}^{(q)}, D_{k}) \times P(w_{i}^{(q)}, D_{k})}{P(w_{i}^{(q)})}$$

$$P(w_{j}^{(d)} | w_{i}^{(q)}, D_{k}) = P(w_{j}^{(d)} | D_{k})$$

$$P(w_{j}^{(d)} | w_{i}^{(q)}) = \frac{\sum_{\forall D_{k} \in S} P(w_{j}^{(d)} | D_{k}) \times P(D_{k} | w_{i}^{(q)}) \times P(w_{i}^{(q)})}{P(w_{i}^{(q)})}$$

$$= \sum_{\forall D_{k} \in S} P(w_{j}^{(d)} | D_{k}) \times P(D_{k} | w_{i}^{(q)})$$

 $P(w_j^{(d)} \mid D_k)$: probability of $w_j^{(d)}$ given selected D_k $P(D_k \mid w_i^{(q)})$: probability of D_k to be selected if $w_i^{(q)}$ appears in query

$$P(D_{k} \mid w_{i}^{(q)}) = \frac{f_{ik}^{(q)}(w_{i}^{(q)}, D_{k})}{f^{(q)}(w_{i}^{(q)})}$$

$$P(w_{j}^{(d)} \mid D_{k}) = \frac{W_{jk}^{(d)}}{\max\limits_{\forall t \in D_{k}} (W_{tk}^{(d)})}$$

$$P(w_j^{(d)} \mid w_i^{(q)}) = \sum_{\forall D_k \in S} (P(w_j^{(d)} \mid D_k) \times \frac{f_{ik}^{(q)}(w_i^{(q)}, D_k)}{f^{(q)}(w_i^{(q)})})$$

 $f_{ik}^{(q)}(w_i^{(q)}, D_k)$: number query session in which query contain $w_i^{(q)}$ and D_k is seleted

 $f^{(q)}(w_i^{(q)})$: number of query session in which query contain $w_i^{(q)}$

 $W_{jk}^{(d)}$: Weight of $w_j^{(d)}$ in document D_k

$$CoWeight_{Q}(w_{j}^{(d)}) = \ln(\underset{w_{t}^{(q)} \in Q}{\div} (P(w_{j}^{(d)} \mid w_{t}^{(q)}) + 1))$$

- 1. Extract term in query Q
- 2. Find documents related to any term
- 3. For each term in each document, use the formula to measure relevance to query Q
- 4. Using top n highest score term to construct query Q'
- 5. Search with query Q'

Application 3: Disease warning

- https://www.google.org/flutrends
- Based on related queries
- The number of people looking for information about the disease is proportional to the number of people who are sick

HUST: hust.edu.vn f fb.com/dhbkhn

THANK YOU!