Physics 5a: Homework 1

Abhijay Bhatnagar

August 29, 2018

Continued from last week .																1
New Material																1
Linear transformations			_			_					_			_		1

Continued from last week

New Material

Linear transformations

For

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} -2 \\ 2 \\ 6 \end{pmatrix}$$

Is y a linear combination of v_1 and v_2 ? We can use RREF to find whether there are scalars c_1, c_2 s.t. $cv_1 + cv_2 = y$.

Definition: Given $v_1, ..., v_n \in \mathbb{R}^m$, the span of $v_1, ..., v_n$ is denoted $span\{v_1, ..., v_n\} \in \mathbb{R}^m$, which is the set of all linear combinations of $v_1, ..., v_n$.

e.g.:
$$span\{\underline{0}\} = \{\underline{0}\}$$

e.g. 2:
$$span\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} = cv : c \in \mathbb{R}^n$$

e.g. 3:

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$span\{v_1, v_2\} = \{c_1v_1 + c_2v_2 : c_1, c_2 \in \mathbb{R}\} = \mathbb{R}^2$$

Proof.

Goal: $span\{v_1, v_2\} = \mathbb{R}^2 \iff$

For every b in R2, b is a linear comb of $v_1, v_2 \iff$ for ever b in R2, RREF (1,1,b1),(0,1,b2) is consistent.

$$b=(b1),(b2)$$

e.g. 4

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

 $span\{v_1, v_2\} = \{c_1v_1 + c_2v_2 : c_1, c_2 \in \mathbb{R}\} = \mathbb{R}^2$

Intuitively, this is all points reachable by moving along v1, v2 (2d plane containing the vectors)

Question: Why is the span $span\{v_1, v_2\} \notin R^3$?

A1.) Cross product not in span

A2.) No Vector perpendicular to plane of span is in span

A3.) etc...

Linear Algebra Answer: $b \in span\{v_1, v_2\} \iff$

 $\begin{array}{ccccc}
1 & 0 & b_1 \\
1 & 0 & b_2 \\
0 & 0 & b_3
\end{array}$

is consistent.

Using RREF, there are 3 cases:

- 1. no pivots
- 2. 1 pivot, top right
- 3. 2 pivots

Since b3 is an undefined variable, we can define it as nonzero in all three cases so that the RREF is inconsistent, which means no matter what b_1, b_2 are, we can find a b_3 s.t. \underline{b} is a vector that is not in the span.

Theorem: Equivalence Theorem

 $v_1,...,v_n$ spans $\mathbb{R}^m\iff x_1v_1+...+x_nv_n=b$ has solution for every $b\in R^m$.

 \iff

 $\begin{array}{ccccc}
1 & \dots & 1 \\
v_1 & \dots & v_n & b \\
1 & \dots & 1
\end{array}$

is consistent for every b in Rm

 \iff

 $\{A,\,B\}$ has a pivot in every row of A=

$$\begin{array}{cccc}
1 & \dots & 1 \\
v_1 & \dots & v_n \\
1 & & 1
\end{array}$$

, aka need to block last augmented column with a pivot in every row $\,$