Assignment 2

EE24BTECH11049 Patnam Shariq Faraz Muhammed

1)	A bar is subjected to fluctuating tensile load from 20kN to 100kN. The materia	al
	has yield strength of 240MPa and endurance limit in reversed bending is 160MPa	<i>a</i> .
	According to the Soderberg principle, the area of cross-section in mm ² of the bar for	or
	a factor of safety of 2 is	

a) 400

b) 600

c) 750

d) 1000

2) A simply supported beam of length L is subjected to a varying distributed load $\sin \frac{3\pi x}{L} N m^{-1}$, where the distance x is measured from the left support. The magnitude of the vertical reaction force in N at the left support is

a) Zero

b) $\frac{L}{3\pi}$

c) $\frac{L}{\pi}$

d) $\frac{2L}{\pi}$

3) Two large diffuse gray parallel plates, separated by a small distance, have surface temperatures of 400*K* and 300*K*. If the emissivities of the surfaces are 0.8 and the Stefan-Boltzmann constant is $5.67 \times 10^{-8} \frac{W}{m^2 K^4}$, the net radiation heat exchange rate in $\frac{kW}{m^2}$ between the two plates is

a) 0.66

b) 0.79

c) 0.99

d) 3.96

4) A hinged gate of length 5m, inclined at 30° with the horizontal and with water mass on its left, is shown in the figure below. Density of water is $1000 \frac{kg}{m^3}$. The minimum mass of the gate in kg per unit width (perpendicular to the plane of paper), required to keep it closed is

1

	a) 5000	b) 6600	c) 7546	d)	9623
5)	$50\frac{m}{s}$ respectively. The are $1.005\frac{KJ}{kgK}$ and 0.7	the specific heats of air $718 \frac{KJ}{kgK}$ respectively. Nurroundings are $1bar$ a	air flowing in a pipe at constant pressure an leglect potential energy and 300K, respectively	id a y. If	t constant volume f the pressure and
	a) 170	b) 187	c) 191	d)	213

6) The probability that a student knows the correct answer to a multiple choice question is $\frac{2}{3}$. If the student does not know the answer, then the student guesses the answer. The probability of the guessed answer being correct is $\frac{1}{4}$. Given that the student has answered the question correctly, the conditional probability that the student knows the correct answer is

- a) $\frac{2}{3}$ b) $\frac{3}{4}$ c) $\frac{5}{6}$ d) $\frac{8}{9}$
- 7) The solution of the differential equation

$$\frac{d^2u}{dx^2} - k\frac{du}{dx} = 0$$

where k is a constant, subjected to the boundary conditions u(0) = 0 and u(L) = U, is

a)
$$u = U\frac{x}{L}$$

b) $u = U\left(\frac{1 - e^{kx}}{1 - e^{kL}}\right)$
c) $u = U\left(\frac{1 - e^{-kx}}{1 - e^{-kL}}\right)$
d) $u = U\left(\frac{1 + e^{kx}}{1 + e^{kL}}\right)$

8) The value of the definite integral

$$\int_{1}^{e} \sqrt{x} \ln(x) \, dx$$

is

a)
$$\frac{4}{9}\sqrt{e^3} + \frac{2}{9}$$
 b) $\frac{2}{9}\sqrt{e^3} - \frac{4}{9}$ c) $\frac{2}{9}\sqrt{e^3} + \frac{4}{9}$ d) $\frac{4}{9}\sqrt{e^3} - \frac{2}{9}$

1 Common Data Questions

1.1 Common Data for Questions 48 & 49:

A single riveted lap joint of two similar plates as shown in the figure below has the following geometrical and material details.

width of the plate w = 200mm, thickness of the plate t = 5mm, number of rivets n = 3, diameter of the rivet $d_r = 10mm$, diameter of the rivet hole $d_h = 11mm$, allowable tensile stress of the plate $\sigma_p = 200MPa$, allowable shear stress of the

rivet $\sigma_s = 100MPa$ and allowable bearing stress of the rivet $\sigma_c = 150MPa$.

- 9) If the rivets are to be designed to avoid crushing failure, the maximum permissible load *P* in *kN* is
 - a) 7.50
- b) 15.00
- c) 22.50
- d) 30.00
- 10) If the plates are to be designed to avoid tearing failure, the maximum permissible load P in kN is
 - a) 83

- b) 125
- c) 167
- d) 501

1.2 Common Data for Questions 50 & 51:

Water (specific heat, $c_p = 4.18 \frac{KJ}{kgK}$) nters a pipe at a rate of $0.01 \frac{kg}{s}$ and a temperature of $20^{\circ}C$. The pipe, of diameter 50mm and length 3m, is subjected to a wall heat flux q'' in $\frac{W}{m^2}$

- 11) If $q_W'' = 2500x$, where x is in m and in the direction of flow (x = 0 at the inlet), the bulk mean temperature of the water leaving the pipe in $^{\circ}C$ is
 - a) 42

b) 62

c) 74

- d) 104
- 12) If $q_W'' = 5000$ and the convection heat transfer coefficient at the pipe outlet is $1000 \frac{W}{m^2 K}$, the temperature in $^{\circ}C$ at the inner surface of the pipe at the outlet is
 - a) 71

b) 76

c) 79

d) 81

2 Linked Answer Questions

2.1 Statement for Linked Answer Questions 52 & 53:

In orthogonal turning of a bar of 100mm diameter with a feed of $0.25 \frac{mm}{rev}$, depth of cut of 4mm and cutting velocity of $90 \frac{m}{min}$, it is observed that the main (tangential)

4

cutting force is perpendicular to the friction force acting at the chip-tool interface. The main (tangential) cutting force is 1500N.

13)	The orth	ogonal	rake	angle	of	the	cutting	tool	in	degree	is

a) zero

b) 3.58

c) 5

d) 7.16