

Plan Curricular 2016 del Escuela Profesional de Ciencia de la Computación http://cs.ucsp.edu.pe

- Reporte Final-

Última modificación: 14 de marzo de 2016

Equipo de trabajo

Ernesto Cuadros-Vargas (Editor)

Director del P.P. de Ciencia de la Computación, UCSP, Arequipa Presidente de la Sociedad Peruana de Computación (SPC) 2001-2007, 2009 Secretario Ejecutivo del Centro Latinoamericano de Estudios en Informática (CLEI) email: ecuadros@spc.org.pe, ecuadros@ucsp.edu.pe
http://socios.spc.org.pe/ecuadros

Alex Cuadros-Vargas

Profesor Investigador del P.P. de Ciencia de la Computación, UCSP, Arequipa Director del Centro de Investigación de Ciencia de la Computación, UCSP, Arequipa Miembro de la Sociedad Peruana de Computación email: alex@ucsp.edu.pe

Además, han colaborado con este esfuerzo los siguientes profesionales: line:31 ?? a quienes dejamos público nuestro agradecimiento.

Resumen ejecutivo

Este documento representa el informe final de la nueva malla curricular 2016 de la Escuela Profesional de Ciencia de la Computación de la Universidad Católica San Pablo (http://www.ucsp.edu.pe) en la ciudad de Arequipa-Perú.

Todo el contenido del documento está basado en la propuesta internacional denominada *Computing Curricula*¹ en el área específica de Ciencia de la Computación. Este documento es el resultado de un trabajo conjunto de la *Association for Computing Machinery* (ACM) y la Sociedad de Computación de IEEE (IEEE-CS) y puede ser accesado a través de la dirección http://www.acm.org/education en sus versions CS2001, CS2008 y CS2013.

Considerando que existen peculiaridades menores al aplicar esta propuesta internacional a nuestros paises, el modelo de *Computing Curricula* fue utilizado para proponer el documento base de la presente malla.

La computación hoy en día presenta 5 perfiles de formación profesional claramente definidos:

- Ciencia de la Computación (Computer Science CS),
- Ingeniería de Computación (Computer Engineering CE),
- Sistemas de Información (Information Systems IS),
- Ingeniería de Software (Software Engineering SE) y
- Tecnología de la Información (Information Technology IT).

Los pilares fundamentales que consideramos en esta propuesta curricular son:

- Una sólida formación profesional en el área de Ciencia de la Computación,
- Preparación para la generación de empresas de base tecnológica,
- Una sólida formación ética y proyección a la sociedad

Estos pilares redundarán en la formación de profesionales que se puedan desempeñar en cualquier parte del mundo y que ayuden de forma clara al desarrollo de la Industria de Software de nuestro país.

Un pilar que merece especial consideración en el caso de la Universidad Católica San Pablo es el aspecto de valores humanos, básicos y cristianos debido a que forman parte fundamental de los lineamientos básicos de la existencia de la institución.

El resto de este documento está organizado de la siguiente forma: el Capítulo 1, define y explica el campo de acción de la Ciencia de la Computación, además se hace una muy breve explicación de las distintas carreras del área de computación propuestas por IEEE-CS y ACM.

El Capítulo 2, muestra las Areas de Conocimiento de la Ciencia de la Computación, indicando los tópicos y objetivos de aprendizaje de los temas, pertenecientes a estos grupos.

El Capítulo 3 contiene la distribución por semestres, por áreas, por niveles, visión gráfica de la malla curricular, comparación con las diversas propuestas internacionales, distribución de tópicos por curso así como la distribución de habilidades por materia.

El Capítulo 4 contiene información detallada para cada uno de los cursos incluyendo las habilidades con las cuales contribuye, bibliografía por cada unidad así como el número de horas mínimas por cada unidad.

¹http://www.sigcse.org/cc2001/

En el Capítulo 5 se presentan las tablas de equivalencias con otros planes curriculares. Finalmente, en el Capítulo 6 se presenta una sugerencia de los laboratorios requeridos para el dictado de clases las mismas que podrían variar de acuerdo al volumen de alumnos que se tenga.

Índice general

\mathbf{A}	Agradecimientos xv			
A	Abreviaturas			
1.	1.1. II 1.2. F 1.3. C 1.4. II 1.5. Id 1.7. V 1.8. F 1.9. F 1 1 1 1 1.10. C 1.11. F 1.12. F 1.13. F 1.14. C	Ceffil Profesional Campo y mercado ocupacional mportancia de la carrera en la sociedad dentidad Misión Visión Resultados de la carrera Outcomes Perfil de competencias profesionales (Resultados de la carrera) 1.9.1. Competencias Generales 1.9.2. Competencias Específicas para Ciencia de la Computación (Computer Science) 1.9.3. Competencias Específicas para Ingeniería de Computación (Information Systems) 1.9.4. Competencias Específicas para Ingeniería de Software (Software Engineering) 1.9.5. Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.6. Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.6. Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.6. Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.6. Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.7 Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.8 Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.9 Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.9 Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.9 Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.9 Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.9 Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.9 Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.9 Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.9 Competencias Específicas para Tecnología de la Información (Information Technology) 1.9.9 Competencias Específicas para Tecnología de la Información (Information Technology) 1.9 Competencias Específicas para Tecnología de la Información (Information Technologia)	1 1 3 4 4 5 5 5 5 6 6 8 8 9 9 10 10 11 12 12 12 12 13	
2.	2.1. A 2 2 2 2 2 2 2 2 2.2. A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Algoritmos y Complejidad (AL)	15 17 18 19 20 21 22 22 23 24 24 25 26 27	

	2.2.5.	AR/Interfaz y comunicación (1 horas Core-Tier2)
	2.2.6.	AR/Organización funcional
	2.2.7.	AR/Multiprocesamiento y arquitecturas alternativas
		, 1
0.0		, 8
2.3.		a Computacional (CN)
	2.3.1.	CN/Introducción al modelamiento y simulación (1 horas Core-Tier1) 30
	2.3.2.	CN/Modelamiento y simulación
	2.3.3.	CN/Procesamiento
	2.3.4.	CN/Visualización interactiva
	2.3.5.	CN/Datos, información y conocimiento
	2.3.6.	CN/Análisis numérico
2.4.		turas Discretas (DS)
	2.4.1.	DS/Funciones, relaciones y conjuntos (4 horas Core-Tier1)
	2.4.2.	DS/Lógica básica (9 horas Core-Tier1)
	2.4.3.	DS/Técnicas de demostración (10 horas Core-Tier1, 1 horas Core-Tier2)
	2.4.4.	DS/Fundamentos de conteo (5 horas Core-Tier1)
		,
	2.4.5.	DS/Árboles y Grafos (3 horas Core-Tier1, 1 horas Core-Tier2)
		DS/Probabilidad Discreta (6 horas Core-Tier1, 2 horas Core-Tier2) 39
2.5.		os y Visualización (GV)
	2.5.1.	GV/Conceptos Fundamentales (2 horas Core-Tier1, 1 horas Core-Tier2) 41
	2.5.2.	GV/Rendering Básico
	2.5.3.	GV/Modelado Geométrico
		GV ['] /Renderizado Avanzado
		GV/Animación por computadora
		GV/Visualización
2.6.		cción Humano-Computador (HCI)
	2.6.1.	HCI/Fundamentos (4 horas Core-Tier1)
	_	HCI/Diseño de Interacción (4 horas Core-Tier2)
	2.6.3.	HCI/Programación de Sistemas Interactivos
		HCI/Diseño y Testing centrados en el usuario
	2.6.4. $2.6.5.$, , , , , , , , , , , , , , , , , , , ,
		, e
		HCI/Colaboración y Comunicación
		HCI/Métodos estadísticos para HCI
		HCI/Factores Humanos y seguridad
		HCI/HCI orientada al diseño
		HCI/Realidad virtual y aumentada mezcladas
2.7.	Asegu	ramiento y Seguridad de la Información (IAS)
	2.7.1.	IAS/Fundamentos y Conceptos en Seguridad (1 horas Core-Tier1, 2 horas Core-
		Tier2)
	2.7.2.	IAS/Principios de Diseño Seguro (1 horas Core-Tier1, 2 horas Core-Tier2) 54
	2.7.3.	IAS/Programación Defensiva (1 horas Core-Tier1, 2 horas Core-Tier2) 56
	2.7.4.	IAS/Ataques y Amenazas (1 horas Core-Tier2)
	2.7.5.	IAS/Seguridad de Red (2 horas Core-Tier2)
	2.7.6.	IAS/Criptografía (1 horas Core-Tier2)
	2.7.7.	IAS/Seguridad en la Web
	2.7.8.	IAS/Seguridad de plataformas
		IAS/Política de Seguridad y Gobernabilidad
		IAS/Investigación digital (Digital Forensics)
0.0		
2.8.		n de la información (IM)
	2.8.1.	IM/Conceptos de Gestión de la Información (1 horas Core-Tier1, 2 horas Core-
	2 2 2	$Tier2) \dots \dots$
	2.8.2.	IM/Sistemas de Bases de Datos (3 horas Core-Tier2)
	2.8.3.	IM/Modelado de datos (4 horas Core-Tier2)
	2.8.4.	IM/Indexación
	2.8.5.	IM/Bases de Datos Relacionales

	2.8.6.	IM/Lenguajes de Consulta	. 68
	2.8.7.	IM/Procesamiento de Transacciones	. 69
	2.8.8.	IM/Bases de Datos Distribuidas	. 69
	2.8.9.	IM/Diseño Físico de Bases de Datos	. 70
	2.8.10.	. IM/Minería de Datos	. 71
		. IM/Almacenamiento y Recuperación de Información	
		. IM/Sistemas Multimedia	
2.9.		nas Inteligentes (IS)	
		IS/Cuestiones fundamentales (1 horas Core-Tier2)	
		IS/Estrategias de búsquedas básicas (4 horas Core-Tier2)	
		IS/Raciocinio y representación básica de conocimiento (3 horas Core-Tier2) .	
		IS/Aprendizaje Automático Básico (2 horas Core-Tier2)	
		IS/Búsqueda Avanzada	
		IS/Representación Avanzada y Razonamiento	
		IS/Razonamiento Bajo Incertidumbre	
		IS/Agentes	
		IS/Procesamiento del Lenguaje Natural	
		. IS/Aprendizaje de máquina avanzado	
		. IS/Robótica	
		. IS/Visión y percepción por computador	
2.10		y comunicaciones (NC)	
2.10		NC/Introducción (1.5 horas Core-Tier1)	
		NC/Aplicaciones en red (1.5 horas Core-Tier1)	
		NC/Entrega confiable de datos (2 horas Core-Tier2)	
		NC/Ruteo y reenvío (1.5 horas Core-Tier2)	
		NC/Redes de área local (1.5 horas Core-Tier2)	
		NC/Asignación de recursos (1 horas Core-Tier2)	
		NC/Celulares (1 horas Core-Tier2)	
		. NC/Redes sociales	
2 11		has Operativos (OS)	
2.11		OS/Visión general de Sistemas Operativos (2 horas Core-Tier1)	
		OS/Principios de Sistemas Operativos (2 horas Core-Tier1)	
		OS/Concurrencia (3 horas Core-Tier2)	
		OS/Planificación y despacho (3 horas Core-Tier2)	
		OS/Manejo de memoria (3 horas Core-Tier2)	
		OS/Seguridad y protección (2 horas Core-Tier2)	
		OS/Máquinas virtuales	
	2.11.7.	OS/Manejo de dispositivos	. 90
		OS/Sistema de archivos	
		0.0S/Sistemas empotrados y de tiempo real	
		10S/Tolerancia a fallas	
		2OS/Evaluación del desempeño de sistemas	
2 12		rollo basados en plataforma (PBD)	
2.12		. PBD/Introducción	
		. PBD/Plataformas web	
		. PBD/Plataformas móviles	
		. PBD/Plataformas industriales	
0.19		. PBD/Plataformas para video juegos	
2.13		utación paralela y distribuída (PD)	
		PD/Fundamentos de paralelismo (2 horas Core-Tier1)	
		. PD/Descomposición en paralelo (1 horas Core-Tier1, 2 horas Core-Tier2)	
		. PD/Comunicación y coordinación (1 horas Core-Tier1, 3 horas Core-Tier2) .	
		. PD/Análisis y programación de algoritmos paralelos (3 horas Core-Tier2)	
		. PD/Arquitecturas paralelas (1 horas Core-Tier1, 2 horas Core-Tier2)	
		. PD/Desempeño en paralelo	
	2.13.7.	. PD/Sistemas distribuídos	. 101

2.13.8. PD/Cloud Computing	. 102
2.13.9. PD/Modelos y semántica formal	. 103
2.14. Lenguajes de programación (PL)	. 103
2.14.1. PL/Programación orientada a objetos (4 horas Core-Tier1, 6 horas Core-Tier2) 104
2.14.2. PL/Programación funcional (3 horas Core-Tier1, 4 horas Core-Tier2)	
2.14.3. PL/Programación reactiva y dirigida por eventos (2 horas Core-Tier2)	
2.14.4. PL/Sistemas de tipos básicos (1 horas Core-Tier1, 4 horas Core-Tier2)	
2.14.5. PL/Representación de programas (1 horas Core-Tier2)	
2.14.6. PL/Traducción y ejecución de lenguajes (3 horas Core-Tier2)	
2.14.7. PL/Análisis de sintaxis	
2.14.8. PL/Análisis semántico de compiladores	
2.14.9. PL/Generación de código	
2.14.10PL/Sistemas de tiempo de ejecución	
2.14.11PL/Análisis estático	
2.14.12PL/Construcciones de programación avanzados	
2.14.13PL/Concurrencia y Paralelismo	
2.14.14PL/Sistemas de tipos	
2.14.15PL/Semántica formal	
2.14.16PL/Pragmática de lenguajes	
2.14.17PL/Programación lógica	
2.15. Fundamentos del desarrollo de software (SDF)	
2.15.1. SDF/Algoritmos y Diseño (11 horas Core-Tier1)	
2.15.1. SDF/Conceptos Fundamentales de Programación (10 horas Core-Tier1)	
2.15.3. SDF/Estructuras de Datos Fundamentales (12 horas Core-Tier1)	
2.15.4. SDF/Métodos de Desarrollo (10 horas Core-Tier1)	
2.16. Ingeniería de Software (SE)	
2.16.1. SE/Procesos de Software (2 horas Core-Tier1, 1 horas Core-Tier2)	
2.16.1. SE/T locesos de Software (2 horas Core-Tier1)	
2.16.3. SE/Herramientas y Entornos (2 horas Core-Tier2)	
2.16.4. SE/Ingeniería de Requisitos (1 horas Core-Tier2)	
2.10.4. SE/Diseño de Software (3 horas Core-Tier1, 5 horas Core-Tier2)	
2.16.6. SE/Construcción de Software (2 horas Core-Tier2)	
2.16.7. SE/Verificación y Validación de Software (3 horas Core-Tier2)	
2.16.8. SE/Evolución de Software (2 horas Core-Tier2)	
2.16.9. SE/Fiabilidad de Software (1 horas Core-Tier2)	
2.16.10 SE/Métodos Formales	. 130
2.17. Fundamentos de Sistemas (SF)	
2.17.1 SF/Paradigmas computacionales (3 horas Core-Tier1)	191
2.17.1. SF/Faradigmas computacionaies (5 noras Core-Tierr)	
,	
2.17.3. SF/Estados y máquinas de estados (6 horas Core-Tier1)	
2.17.4. SF/Paralelismo (1 horas Core-Tier1)	
2.17.5. SF/Evaluación (3 horas Core-Tier1)	
2.17.6. SF/Asignación de recursos y planeamiento (2 horas Core-Tier2)	
2.17.7. SF/Proximidad (3 horas Core-Tier2)	
2.17.8. SF/Virtualización y aislamiento (2 horas Core-Tier2)	
2.17.9. SF/Confiabilidad a través de redundancia (2 horas Core-Tier2)	
2.17.10SF/Evaluación cuantitativa	
2.18. Asuntos sociales y práctica profesional (SP)	
2.18.1. SP/Contexto Social (1 horas Core-Tier1, 2 horas Core-Tier2)	
2.18.2. SP/Herramientas de Análisis (2 horas Core-Tier1)	
2.18.3. SP/Ética Profesional (2 horas Core-Tier1, 2 horas Core-Tier2)	
2.18.4. SP/Propiedad Intelectual (2 horas Core-Tier1)	
2.18.5. SP/Privacidad y Libertades Civiles (2 horas Core-Tier1)	
2.18.6. SP/Comunicación profesional (1 horas Core-Tier1)	
2.18.7. SP/Sostenibilidad (1 horas Core-Tier1, 1 horas Core-Tier2)	
2.18.8. SP/Historia	. 145

	2.18.9. SP/Economía de la Computación 14 2.18.10SP/Políticas de seguridad, Leyes y crímenes computacionales 14
3.	Malla curricular 2016
	3.1. Clasificación de los cursos por niveles
	3.2. Codificación de los cursos
	3.3. Constitución del Plan de Estudios
	3.4. Distribución de cursos en la carrera
	3.5. Visión gráfica de la Malla curricular
	3.6. Resultados esperados distribuídos por curso
1	Contenido detallado por curso 16
4.	Primer Semestre
	CS111. Programación de Video Juegos (Obligatorio)
	CS1D1. Estructuras Discretas I (Obligatorio)
	MA100. Matemática I (Obligatorio)
	FG102. Metodología del Estudio (Obligatorio)
	FG102. Metodologia del Estudio (Obligatorio)
	FG103. Introducción a la Vida Universitaria (Obligatorio)
	Segundo Semestre
	0
	1 (9)
	CS112. Ciencia de la Computación I (Obligatorio)
	MA101. Matemática II (Obligatorio)
	FG112. Persona, Matrimonio y Familia (Electivos)
	FG104. Introducción a la Filosofía (Obligatorio)
	FG105. Apreciación Musical (Electivos)
	Tercer Semestre
	CS113. Ciencia de la Computación II (Obligatorio)
	CS2B1. Desarrollo Basado en Plataformas (Obligatorio)
	CS221. Arquitectura de Computadores (Obligatorio)
	CS1D3. Álgebra Abstracta (Obligatorio)
	MA102. Cálculo I (Obligatorio)
	FG107. Antropología Filosófica y Teológica (Obligatorio)
	FG201. Apreciación Artística (Electivos)
	FG202. Apreciación Literaria (Electivos)
	Cuarto Semestre
	CS210. Algoritmos y Estructuras de Datos (Obligatorio)
	CS211. Teoría de la Computación (Obligatorio)
	CS271. Bases de Datos I (Obligatorio)
	MA201. Cálculo II (Obligatorio)
	MA203. Estadística y Probabilidades (Obligatorio)
	FG204. Teología (Obligatorio)
	Quinto Semestre
	CS272. Bases de Datos II (Obligatorio)
	CS291. Ingeniería de Software I (Obligatorio)
	CS212. Análisis y Diseño de Algoritmos (Obligatorio)
	CB111. Física Computacional (Obligatorio)
	MA306. Análisis Numérico (Obligatorio)
	FG106. Teatro (Obligatorio)
	FG210. Moral (Obligatorio)
	Sexto Semestre
	CS311. Programación Competitiva (Obligatorio)
	CS312. Estructuras de Datos Avanzadas (Obligatorio)
	CS2S1. Sistemas Operativos (Obligatorio)
	CS292. Ingeniería de Software II (Obligatorio)

	MA307. Matemática aplicada a la computación (Obligatorio)	
	FG203. Oratoria (Obligatorio)	299
	Séptimo Semestre	300
	CS251. Computación Gráfica (Obligatorio)	
	CS391. Ingeniería de Software III (Obligatorio)	305
	CS231. Redes y Comunicación (Obligatorio)	309
	CS261. Inteligencia Artificial (Obligatorio)	
	CS401. Metodología de la Investigación en Computación (Obligatorio)	319
	CS341. Lenguajes de Programación (Obligatorio)	
	FG350. Liderazgo (Obligatorio)	
	Octavo Semestre	
	CS281. Computación en la Sociedad (Obligatorio)	
	CS342. Compiladores (Obligatorio)	
	CS3I1. Seguridad en Computación (Obligatorio)	
	CS2H1. Interacción Humano Computador (Obligatorio)	
	CS402. Proyecto de Final de Carrera I (Obligatorio)	
	CS3P1. Computación Paralela y Distribuída (Obligatorio)	
	FG205. Historia de la Cultura (Obligatorio)	
	Noveno Semestre	
	CS392. Tópicos Avanzados en Ingeniería de Software (Electivos)	
	CS403. Proyecto de Final de Carrera II (Obligatorio)	
	CS361. Tópicos en Inteligencia Artificial (Electivos)	
	CS370. Big Data (Obligatorio)	
	CS351. Tópicos en Computación Gráfica (Electivos)	
	CB309. Computación Molecular Biológica (Electivos)	372
	FG221. Historia de la Ciencia y Tecnología (Obligatorio)	
	FG301. Enseñanza Social de la Iglesia (Obligatorio)	
	ET201. Formación de Empresas de Base Tecnológica I (Obligatorio) $\ \ldots \ \ldots \ \ldots$	
	Décimo Semestre	
	CS3P2. Cloud Computing (Obligatorio)	
	CS393. Sistemas de Infomación (Electivos)	389
	CS362. Robótica (Electivos)	
	CS404. Proyecto de Final de Carrera III (Obligatorio)	
	FG211. Ética Profesional (Obligatorio)	
	FG220. Análisis de la Realidad Peruana (Obligatorio)	399
	ET301. Formación de Empresas de Base Tecnológica II (Obligatorio)	
	ID101. Inglés técnico profesional (Obligatorio)	
5.	Equivalencias con otros planes curriculares	409
	5.1. Equivalencia del Plan 2006 al Plan 2016	409
	5.2. Equivalencia del Plan 2016 al Plan 2006	413
	5.3. Equivalencia del Plan 2010 al Plan 2016	417
	5.4. Equivalencia del Plan 2016 al Plan 2010	421
6.	Laboratorios	425

Índice de figuras

1.1.	Campo acción de la Ciencia de la Computación	2
3.1.	Esquema de codificación para los cursos	149
3.2.	Distribución de cursos por áreas considerando creditaje	154
3.3.	Distribución de créditos por niveles de cursos	155
3.4.	Malla curricular Escuela Profesional de Ciencia de la Computación	156

Índice de cuadros

3.1.	Distribución de cursos por áreas	154
3.2.	Resultados esperados por curso 1^{er} al 2^{do} Semestre	157
3.3.	Resultados esperados por curso 3^{er} al 4^{to} Semestre	158
3.4.	Resultados esperados por curso 5^{to} al 6^{to} Semestre	159
3.5.	Resultados esperados por curso 7^{mo} al 8^{vo} Semestre	160
3.6.	Resultados esperados por curso 9^{no} al 10^{mo} Semestre	161

Agradecimientos

Además de los autores directos de este documento, también deseamos dejar manifiesto de nuestro agradecimiento a otros colegas de diversas universidades del país y del mundo que gentilmente han aportado parte de su tiempo a darnos sus sugerencias. Entre ellos debemos mencionar a:

Roberto Heredia (UCSP), Miriam Luque (UCSP), Anthony Ccapira A.(UCSP), Simon Choquehuayta (UNSA), Miler Diaz Zevallos (UCSP), Alvaro Mamani Aliaga (UCSP), Rómulo Condori (UNSA), Carlso Arias (UCSP), Miguel Ravelo (UNSA), Junior Mayta (UCSP), Omar Quispe (UCSP), César Espinoza (USS), Daniel Yanac (UCSP), Jose Valdivia (UCSP), Julio Santisteban (UCSP), Josimar Chire Saire (UCSP), Juan Carlos Dueñas García (UCSP), Liliana Sarmiento López (UCSP).

También deseamos agradecer a la Universidad Católica San Pablo (UCSP) de Arequipa-Perú por su colaboración decidida de forma institucional y de forma individual a través de sus autoridades. No hay duda de que cuando las autoridades están decididas a hacer las cosas bien todo el trabajo se realiza de forma rápida. Realmente es un ejemplo a seguir y llevar a todas las universidades de nuestro país.

Todo este equipo de trabajo asumió como premisa que el centro de nuestro esfuerzo, es la formación académica y humana <u>de los estudiantes</u>.

A todos ellos deseamos agradecerles por su aporte que ha permitido generar este documento, único en su género en nuestro país, que servirá para sentar las bases de una carrera más sólida en esta fantástica área que nos ha tocado estudiar y de la cual nos sentimos orgullosos de formar parte: Computación.

Abreviaturas

ACM Association for Computing Machinery

AIS Association for Information Systems

CC Ciencia de la Computación

CONCYTEC Consejo Nacional de Ciencia y Tecnología

 \mathbf{CS} Ciencia de la Computación – Computer Science

IEEE-CS IEEE Computer Society

KA Área de Conocimiento (Knowledge Area-KA)

Capítulo 1

Introducción

La computación ha sufrido un desarrollo impresionante en los últimos 60 años, convirtiéndose en el motor del desarrollo científico, tecnológico, industrial, social, económico y cultural, transformando de manera significativa nuestro diario accionar.

El surgimiento del computador ha marcado una nueva era en la historia de la humanidad que era imposible de imaginar varias décadas atrás. La gran cantidad de aplicaciones que se han desarrollado en los últimos años están transformando el desarrollo de todas las disciplinas del saber, la comercialización en el ámbito globalizado en que vivimos, la manera en que nos comunicamos, los procesos de enseñanza-aprendizaje y hasta en la manera como nos entretenemos.

Para darnos una idea de la relevancia e importancia, que en nuestro país ha alcanzado esta disciplina, basta mencionar que actualmente se ofrecen aproximadamente más de 110 carreras de Computación a nivel nacional. Esto sin considerar los programas de nivel Técnico Superior No Universitario que se ofertan.

Todas estas carreras existentes tienen como centro de su estudio a la computación pero lo hacen con 28 nombres distintos como: Ingeniería de Sistemas, Ingeniería de Computación, Ingeniería de Computación y Sistemas, entre otros. A pesar de que todas ellas apuntan al mismo mercado de trabajo, resulta por lo menos sorprendente que no sea posible encontrar por lo menos dos que compartan la misma curricula.

Muchos países consideran a la computación como estratégica para su desarrollo. En Perú, el Consejo Nacional de Ciencia y Tecnología (CONCYTEC) ha recomendado al gobierno que considere a la Computación como una de las áreas prioritarias de vinculación entre la academia e industria para fomentar la competitividad y la innovación.

Comúnmente, durante la década de los setenta, la Computación se desarrolló dentro de las Facultades de Ciencias en la mayoría de las universidades estadounidenses, británicas y de otros países. Durante la década de los ochenta, los grupos de computación en las universidades se esforzaron por lograr una legitimidad académica en su ámbito local. Frecuentemente, se transformaron en departamentos de Matemáticas y Computación, hasta finalmente dividirse en dos departamentos de Matemáticas y de Computación, en la década de los noventa. Es en esta década en que un número creciente de instituciones reconocieron la influencia penetrante de la Computación, creando unidades independientes como departamentos, escuelas o institutos dedicados a tal área de estudio, un cambio que ha demostrado tanto perspicacia como previsión.

En Perú, un número cada vez mayor de instituciones de educación superior han tratado de seguir el desarrollo de las universidades extranjeras (aunque no siempre en forma muy seria o exitosa), reconociendo a la Computación como un área de estudio en sí misma, así como su importancia estratégica en la educación, y creando departamentos, escuelas o institutos dedicados a su estudio. La Facultad de Facultad de Ingeniería y Computación no puede ser la excepción a este cambio, en el que ya se tiene un retraso relativo con muchas de las instituciones educativas dentro y fuera de Perú.

1.1. Definiciones básicas

La referencia más sólida a nivel mundial en cuanto a la propuesta de carreras de computación para nivel de pregrado es la que fue propuesta en conjunto por la Association for Computing Machinery

(ACM), IEEE Computer Society (IEEE-CS) y la Association for Information Systems (AIS). Estas tres organizaciones propusieron la Computing Curricula en el documento denominado: Joint Task Force for Computing Curricula 2005, Computing Curricula 2005. Overview Report[Shakelford et al., 2005].

La Ciencia de la Computación es un término de origen estadounidense Ciencia de la Computación – Computer Science (CS). Este término es conocido también como informática en el ámbito europeo¹. Según el diccionario de la Real Academia de la Lengua Española (http://www.rae.es) ambos términos también son sinónimos.

A nivel internacional, la computación presenta 5 perfiles claramente definidos:

- Ciencia de la Computación (*Computer Science*)
 [ACM/IEEE-CS Joint Task Force on Computing Curricula, 2013],
- Ingeniería de Computación (Computer Engineering) [Soldan et al., 2004],
- Sistemas de Información (*Information Systems*) [Topi et al., 2010, Gorgone et al., 2002b],
- Ingeniería de Software (Software Engineering) [Díaz-Herrera and Hilburn, 2004],
- Tecnología de la Información (Information Technology) [ACM and IEEE-CS, 2005]

La Figura 1.1 es tomada de la definición propuesta en la *Computing Curricula* [Shakelford et al., 2005] en el área de Ciencia de la Computación (CC) cuyo última versión es la denominada CS2013 (cs2013.org) [ACM/IEEE-CS Joint Task Force on Computing Curricula, 2013]. La CC cubre la mayor parte entre el extremo superior y el extremo inferior, porque el profesional en CC no trata "solamente con el hardware" que utiliza un software o de "solamente la organización" que hace uso de la información que la computación le puede proveer.

Figura 1.1: Campo acción de la Ciencia de la Computación

Las Ciencias de la Computación cubren un amplio rango, desde sus fundamentos teóricos y algorítmicos hasta los últimos desarrollos en robótica, visión por computadora, sistemas inteligentes, bioinformática, y otras áreas emocionantes. Podemos pensar que el trabajo de un científico de la computación pertenece a las siguientes tres categorías:

¹El término europeo es derivado del vocablo francés *Informatique*.

- Diseño e implementación de software. Los científicos de computación se encargan de desafiantes labores de programación. También supervisan otros programadores, haciéndolos concientes de nuevas aproximaciones.
- Instrumentación de nuevas formas para usar computadoras. El progreso en las áreas de ciencias de la computación como redes, bases de datos, e interfaces humano-computadora permitieron el desarrollo de la www y actualmente se trabaja en el desarrollo de metasistemas Grid. Además, los investigadores trabajan ahora en hacer que los robots sean ayudantes prácticos y demuestren inteligencia, utilizan las bases de datos para crear nuevos conocimientos, y están utilizando computadoras para decifrar los secretos de nuestro ADN.
- Desarrollo de formas efectivas de resolver problemas de computación. Por ejemplo, los científicos de la computación desarrollan las mejores formas posibles de almacenar información en bases de datos, enviar datos a través de la red, y desplegar imágenes complejas. Sus bases teóricas les permiten determinar el mejor desempeño posible, y su estudio de algoritmos les ayuda a desarrollar nuevas aproximaciones para proveer un mejor desempeño.

Las Ciencias de la Computación cubren todo el rango desde la teoría hasta la programación. Mientras otras disciplinas pueden producir titulados mejor preparados para trabajos específicos, las ciencias de la computación ofrecen un amplio fundamento que permite a sus titulados adaptarse a nuevas tecnologías y nuevas ideas.

El profesional en CC se preocupa por casi todo en medio de estas áreas. En dirección hacia el hardware, este profesional llega a desarrollar software que permite el funcionamiento de dispositivos devices. En dirección a aspectos organizacionales, el profesional de CC ayuda a que los sistemas de información operen correctamente en las organizaciones. Él genera la tecnología que permite que otras áreas como los sistemas de información se desarrollen adecuadamente.

El profesional en CC diseña y desarrolla todo tipo de software, desde infraestructura de plataformas (sistemas operativos, programas de comunicación, etc.) hasta aplicación de tecnologías (navegadores de Internet, bases de datos, motores de búsqueda, etc.). Este profesional crea estas capacidades, pero no está orientado al uso de las mismas. Por lo tanto, el área sombreada (fig. 1.1) para CC se estrecha y finaliza en la medida que nos movamos hacia la aplicación y configuración de productos.

1.2. Perfil Profesional

El profesional en Ciencia de la Computación tiene las siguientes características:

- Desarrollar tecnología computacional buscando el bien común de los individuos, la sociedad y las organizaciones.
- Aportar con su formación humana y sus capacidades científicas y profesionales con la solución de los problemas sociales de nuestro entorno.
- Transformar, acelerar y ampliar los límites de cualquier área del conocimiento a través de soluciones innovadoras basadas en el uso eficiente de tecnología computacional.
- Adaptarse rápidamente a los cambios tecnológicos debido a su formación basada en la investigación constante.
- Trabajar y liderar equipos multidisciplinarios que llevan a cabo proyectos de innovación tecnológica.
- Incrementar las ventajas competitivas de cualquier organización a través del uso eficiente de tecnología computacional gracias a su alta capacidad de abstracción.
- Crear empresas de base tecnológica.
- Poder seguir estudios de postgrado con exigencia internacional en áreas relacionadas.

1.3. Campo y mercado ocupacional

Nuestro egresado podrá prestar sus servicios profesionales en empresas e instituciones públicas y privadas que requieran sus capacidades en función del desarrollo que oferta, entre ellas:

- Empresas dedicadas a la producción de software con calidad internacional.
- Empresas, instituciones y organizaciones que requieran software de calidad para mejorar sus actividades y/o servicios ofertados.

Nuestro egresado puede desempeñarse en el mercado laboral sin ningún problema ya que, en general, la exigencia del mercado y campo ocupacional está mucho más orientada al uso de herramientas. Sin embargo, es poco común que los propios profesionales de esta carrera se pregunten: ¿qué tipo de formación debería tener si yo quisiera crear esas herramientas además de saber usarlas?. Ambos perfiles (usuario y creador) son bastante diferentes pues no sería posible usar algo que todavía no fue creado. En otras palabras, los creadores de tecnología son los que dan origen a nuevos puestos de trabajo y abren la posibilidad de que otros puedan usar esa tecnología.

Debido a la formación basada en la investigación, nuestro profesional debe siempre ser un innovador donde trabaje. Esta misma formación permite que el egresado piense también en crear su propia empresa de desarrollo de software. Considerando que países como el nuestro tienen un costo de vida mucho menor que Norte América ó Europa, una posibilidad que se muestra interesante es la exportación de software pero eso requiere que la calidad del producto sea al mismo nivel de lo ofrecido a nivel internacional.

Este perfil profesional también posibilita que nuestros egresados se queden en nuestro país; producir software en nuestro país y venderlo fuera es más rentable que salir al extranjero y comercializarlo allá.

El campo ocupacional de un egresado es amplio y está en continua expansión y cambio. Prácticamente toda empresa u organización hace uso de servicios de computación de algún tipo, y la buena formación básica de nuestros egresados hace que puedan responder a los requerimientos de las mismas exitosamente. Este egresado, no sólo podrá dar soluciones a los problemas existentes sino que deberá proponer innovaciones tecnológicas que impulsen la empresa hacia un progreso constante.

A medida que la informatización básica de las empresas del país avanza, la necesidad de personas capacitadas para resolver los problemas de mayor complejidad aumenta y el plan de estudios que hemos desarrollado tiene como objetivo satisfacer esta demanda considerandola a mediano y largo plazo. El campo para las tareas de investigación y desarrollo de problemas complejos en computación es también muy amplio y está creciendo día a día a nivel mundial.

Debido a la capacidad innovadora de nuestro egresado, existe una mayor la probabilidad de registrar patentes con un alto nivel inventivo lo cual es especialmente importante en nuestros países.

1.4. Importancia de la carrera en la sociedad

Uno de los caminos que se espera que siga un profesional del área de computación es que el se dedique a producir software o que se integre a las empresas productoras de software. En el ámbito de la computación, es común observar que los países cuentas con Asociaciones de Productores de Software cuyas políticas están orientadas a la exportación. Siendo así, no tendría sentido preparar a nuestros alumnos sólo para el mercado local o nacional. Nuestros egresados deben estar preparados para desenvolverse en el mundo globalizado que nos ha tocado vivir.

Nuestros futuros profesionales deben estar orientados a crear nuevas empresas de base tecnológica que puedan incrementar las exportaciones de software peruano. Este nuevo perfil está orientado a generar industria innovadora. Si nosotros somos capaces de exportar software competitivo también estaremos en condiciones de atraer nuevas inversiones. Las nuevas inversiones generarían más puestos de empleo bien remunerados y con un costo bajo en relación a otros tipos de industria. Bajo esta perspectiva, podemos afirmar que esta carrera será un motor que impulsará al desarrollo del país de forma decisiva con una inversión muy baja en relación a otros campos.

Es necesario recordar que la mayor innovación de productos comerciales de versiones recientes utiliza tecnología que se conocía en el mundo académico hace 20 años o más. Un ejemplo claro son las bases de datos que soportan datos y consultas espaciales desde hace muy pocos años. Sin embargo,

utilizan estructuras de datos que ya existían hace algunas décadas. Es lógico pensar que la gente del área académica no se dedique a estudiar en profundidad la última versión de un determinado software cuando esa tecnología ya la conocían hace mucho tiempo. Por esa misma razón es raro en el mundo observar que una universidad tenga convenios con una transnacional de software para dictar solamente esa tecnología pues, nuestra función es generar esa tecnología y no sólo saber usarla.

Tampoco debemos olvidar que los alumnos que ingresan hoy saldrán al mercado dentro de 5 años aproximadamente y, en un mundo que cambia tan rápido, no podemos ni debemos enseñarles tomando en cuenta solamente el mercado actual. Nuestros profesionales deben estar preparados para resolver los problemas que habrá dentro de 10 o 15 años y eso sólo es posible a través de la investigación.

1.5. Identidad

La Universidad Católica San Pablo es una comunidad académica animada por las orientaciones y vida de la Iglesia Católica que, a la luz de la fe y con el esfuerzo de la razón, busca la verdad y promueve la formación integral de la persona mediante actividades como la investigación, la enseñanza y la extensión, para contribuir con la configuración de la cultura conforme a la identidad y despliegue propios del ser humano.

De esta identidad se desprenden cuatro pilares fundamentales que sostienen la Universidad Católica San Pablo:

COMUNIDAD ACADÉMICA CATÓLICA BÚSQUEDA DE LA VERDAD FORMACIÓN INTEGRAL DE LA PERSONA HUMANA EVANGELIZACIÓN DE LA CULTURA

1.6. Misión

Por lo antes mencionado, pensamos que tenemos como misión:

Contribuir al desarrollo tecnológico y técnico del país, a través de profesionales competentes, orientados a la creación de nueva tecnología computacional, como motor que impulse y consolide la industria del software en base a la investigación científica y tecnológica en áreas innovadoras formando profesionales un conjunto de habilidades y destrezas para la solución de problemas computacionales con un compromiso social.

1.7. Visión

- Queremos ser una carrera profesional acreditada con estandares internacionales y que cuente con el reconocimiento en función de la calidad y competitividad de sus docentes y egresados.
- Queremos ser una carrera que trascienda por la relevancia y pertinencia de sus proyectos de investigación básica y aplicada.
- Queremos ser una carrera que promueva el desarrollo de la industria del software a nivel internacional, incorporando a sus egresados a la industria ya establecida o generando nuevas empresas desarrolladoras de software.
- Queremos ser una carrera que comparta y difunda el conocimiento con todos los sectores de la población y contribuya a la solución de los problemas estratégicos de nuestra sociedad.

1.8. Resultados de la carrera Outcomes

Al finalizar esta carrera, el(la) egresado(a), habrá logrado los siguientes resultados (Outcomes):

a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina.

- Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución.
- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas.
- d) Trabajar efectivamente en equipos para cumplir con un objetivo común.
- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión.
- f) Comunicarse efectivamente con audiencias diversas.
- g) Analizar el impacto local y global de la computación sobre los individuos, organizaciones y sociedad.
- h) Incorporarse a un proceso de aprendizaje profesional continuo.
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación.
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida.
- k) Aplicar los principios de desarrollo y diseño en la construcción de sistemas de software de complejidad variable.
- Desarrollar principios investigación en el área de computación con niveles de competividad internacional.
- m) Transformar sus conocimientos del área de Ciencia de la Computación en emprendimientos tecnológicos.
- n) Aplicar conocimientos de humanidades en su labor profesional.
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural.
- o) Mejorar las condiciones de la sociedad poniendo la tecnología al servicio del ser humano.

Las competencias y/o resultados a)-k) propuestas en esta malla curricular corresponden a las competencias y/o resultados propuestas por ABET². Por otro lado, las habilidades l)-o) son aportes de este grupo de trabajo.

1.9. Perfil de competencias profesionales (Resultados de la carrera)

La lista de competencias profesionales para lso profesionales en computación están divididas en dos grupos: Competencias generales y competencias especificas.

1.9.1. Competencias Generales

De acuerdo al más reciente publicación en este aspecto [IEEE, 2013], las competencias generales para los profesionales de computación son las siguientes:

C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).

6

²http://www.abet.org

- C2. Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.
- C3. Una comprensión intelectual de, y el aprecio por el papel central de los algoritmos y estructuras de datos.
- C4. Una comprensión del hardware de la computadora desde la perspectiva del software, por ejemplo, el uso del procesador, memoria, unidades de disco, pantalla, etc
- C5. Capacidad para implementar algoritmos y estructuras de datos en el software..
- C6. Capacidad para diseñar y poner en práctica las unidades estructurales mayores que utilizan algoritmos y estructuras de datos y las interfaces a través del cual estas unidades se comunican.
- C7. Ser capaz de aplicar los principios y tecnologías de ingeniería de software para asegurar que las implementaciones de software son robustos, fiables y apropiados para su público objetivo.
- C8. Entendimiento de lo que las tecnologías actuales pueden y no pueden lograr.
- C9. Comprensión de las limitaciones de la computación, incluyendo la diferencia entre lo que la computación es inherentemente incapaz de hacer frente a lo que puede lograrse a través de un futuro de ciencia y tecnología.
- C10. Comprensión del impacto en las personas, las organizaciones y la sociedad de la implementación de soluciones tecnológicas e intervenciones.
- C11. Entendimiento del concepto del ciclo de vida, incluyendo la importancia de sus fases (planificación, desarrollo, implementación y evolución).
- C12. Entender las implicaciones de ciclo de vida para el desarrollo de todos los aspectos de los sistemas informáticos (incluyendo software, hardware, y la interfaz de la computadora humana).
- C13. Comprender la relación entre la calidad y la gestión del ciclo de vida.
- C14. Entendimiento del concepto esencial del proceso en lo relacionado con la informática, especialmente la ejecución del programa y el funcionamiento del sistema.
- C15. Entendimiento del concepto esencial del proceso, ya que se relaciona con la actividad profesional sobre todo la relación entre la calidad del producto y el despliegue de los procesos humanos apropiados durante el desarrollo de productos.
- C16. Capacidad para identificar temas avanzados de computación y de la comprensión de las fronteras de la disciplina.
- C17. Capacidad para expresarse en los medios de comunicación orales y escritos como se espera de un graduado..
- C18. Capacidad para participar de forma activa y coordinada en un equipo.
- C19. Capacidad para identificar eficazmente los objetivos y las prioridades de su trabajo / área / proyecto con indicación de la acción, el tiempo y los recursos necesarios.
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.
- C21. Comprender el aspecto profesional, legal, seguridad, asuntos políticos, humanistas, ambientales, culturales y éticos.
- C22. Capacidad para demostrar las actitudes y prioridades que honrar, proteger y mejorar la estatura y la reputación ética de la profesión.
- C23. Capacidad para emprender, completar, y presentar un proyecto final.
- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades.
- C25. Capacidad para comunicarse en un segundo idioma.

1.9.2. Competencias Específicas para Ciencia de la Computación (Computer Science)

En la carrera de Ciencia de la Computación (*Computer Science*) [ACM/IEEE-CS Joint Task Force on Computing Curl las competencias específicas son [IEEE, 2013]:

- CS1. Modelar y diseñar sistemas de computadora de una manera que se demuestre comprensión del balance entre las opciones de diseño.
- CS2. Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.
- CS3. Analizar el grado en que un sistema basado en el ordenador cumple con los criterios definidos para su uso actual y futuro desarrollo.
- CS4. Implementar la teoría apropiada, prácticas y herramientas para la especificación, diseño, implementación y mantenimiento, así como la evaluación de los sistemas basados en computadoras.
- CS5. Especificar, diseñar e implementar sistemas basados en computadoras.
- CS6. Evaluar los sistemas en términos de atributos de calidad en general y las posibles ventajas y desventajas que se presentan en el problema dado.
- CS7. Aplicar los principios de una gestión eficaz de la información, organización de la información, y las habilidades de recuperación de información a la información de diversos tipos, incluyendo texto, imágenes, sonido y vídeo. Esto debe incluir la gestión de los problemas de seguridad.
- CS8. Aplicar los principios de la interacción persona-ordenador para la evaluación y la construcción de una amplia gama de materiales, incluyendo interfaces de usuario, páginas web, sistemas multimedia y sistemas móviles.
- CS9. Identificar los riesgos (y esto incluye cualquier seguridad o los aspectos de seguridad) que pueden estar involucrados en la operación de equipo de cómputo dentro de un contexto dado.
- CS10. Implementar efectivamente las herramientas que se utilizan para la construcción y la documentación de software, con especial énfasis en la comprensión de todo el proceso involucrado en el uso de computadoras para resolver problemas prácticos. Esto debe incluir herramientas para el control de software, incluyendo el control de versiones y gestión de la configuración.
- CS11. Ser consciente de la existencia de software a disposición del público y la comprensión del potencial de los proyectos de código abierto.
- CS12. Operar equipos de computación y software eficaz de dichos sistemas.

1.9.3. Competencias Específicas para Ingeniería de Computación (Computer Engineering)

En la carrera de Ingeniería de Computación (*Computer Engineering*) [Soldan et al., 2004], las competencias específicas son [IEEE, 2013]:

- CE1. Especificar, diseñar, construir, probar, verificar y validar los sistemas digitales, incluyendo computadores, sistemas basados en microprocesadores y sistemas de comunicación.
- CE2. Desarrollar procesadores específicos y sistemas empotrados y de desarrollo de software y optimización de estos sistemas.
- CE3. Analizar y evaluar arquitecturas de computadores, incluyendo paralelo y plataformas distribuidas, así como desarrollar y optimizar software para ellos.
- CE4. Diseñar e implementar el software para el sistema de comunicaciones.
- CE5. Analizar, evaluar y seleccionar plataformas hardware y software adecuados para los sistemas de soporte de aplicaciones en tiempo real y embebidos.

- CE6. Comprender, aplicar y gestionar los sistemas de protección y seguridad.
- CE7. Analizar, evaluar, seleccionar y configurar plataformas hardware para el desarrollo e implementación de aplicaciones y servicios de software.
- CE8. Diseñar, implementar, administrar y gestionar redes de computadoras.

1.9.4. Competencias Específicas para Sistemas de Información (*Information Systems*)

En la carrera de Sistemas de Información (*Information Systems*) [Topi et al., 2010, Gorgone et al., 2002b], las competencias específicas son [IEEE, 2013]:

- IS1. Identificar, entender y documentar los requisitos de los sistemas de información.
- IS2. Cuenta para interfaces hombre-máquina y las diferencias interculturales, con el fin de ofrecer una experiencia de usuario de calidad.
- IS3. Diseñar, implementar, integrar y gestionar los sistemas de TI, la empresa, los datos y las arquitecturas de aplicaciones.
- IS4. Gestionar los proyectos de sistemas de información, incluyendo el análisis de riesgos, estudios financieros, elaboración de presupuestos, la contratación y el desarrollo, y para apreciar los problemas de mantenimiento de los sistemas de información.
- IS5. Identificar, analizar y comunicar los problemas, opciones y alternativas de solución, incluidos los estudios de viabilidad.
- IS6. Identificar y comprender las oportunidades creadas por las innovaciones tecnológicas.
- IS7. Apreciar las relaciones entre la estrategia empresarial y los sistemas de información, la arquitectura y la infraestructura.
- IS8. Entender los procesos de negocio y la aplicación de las TI para ellos, incluyendo la gestión de cambios, el control y las cuestiones de riesgo.
- IS9. Comprender e implementar sistemas seguros, infraestructuras y arquitecturas.
- IS10. Comprender los problemas de rendimiento y escalabilidad.
- IS11. Gestionar los sistemas de información, incluyendo recursos, el mantenimiento, la contratación y las cuestiones de continuidad de negocio existente.

1.9.5. Competencias Específicas para Ingeniería de Software (Software Engineering)

En la carrera de Ingeniería de Software (Software Engineering) [Díaz-Herrera and Hilburn, 2004], las competencias específicas son [IEEE, 2013]:

- SE1. Desarrollar, mantener y evaluar los sistemas de software y servicios para satisfacer todas las necesidades del usuario y se comporten de forma fiable y eficiente, sean asequibles de desarrollar y mantener y cumplir con los estándares de calidad, aplicando las teorías, principios, métodos y mejores prácticas de la Ingeniería del Software
- SE2. Evaluar las necesidades del cliente y especificar los requisitos software para satisfacer estas necesidades, reconciliando objetivos en conflicto mediante la búsqueda de compromisos aceptables dentro de las limitaciones derivadas de los costes, el tiempo, la existencia de sistemas ya desarrollados y de las propias organizaciones
- SE3. Resolver problemas de integración en términos de estrategias, estándares y tecnologías disponibles.

- SE4. Trabajar como individuo y como parte de un equipo para desarrollar y entregar artefactos de software de calidad. Comprender diversos procesos (actividades, normas y configuraciones de ciclo de vida, la formalidad a diferencia de agilidad) y roles. Realizar mediciones y análisis (básica) en proyectos, los procesos y las dimensiones del producto.
- SE5. Conciliar conflictivos objetivos del proyecto, la búsqueda de compromisos aceptables dentro de las limitaciones de costo, tiempo, conocimiento, sistemas existentes, las organizaciones, la ingeniería económica, las finanzas y los fundamentos del análisis de riesgos y la gestión en un contexto de software.
- SE6. Diseño soluciones apropiadas en uno o más dominios de aplicación utilizando métodos de ingeniería del software que integren aspectos éticos, sociales, legales y económicos.
- SE7. Demostrar una comprensión y aplicación de las teorías actuales, modelos y técnicas que proporcionan una base para la identificación y análisis de problemas, diseño de software, desarrollo, construcción e implementación, verificación y validación, documentación y análisis cuantitativo de los elementos de diseño y arquitecturas de software.
- SE8. Demostrar una comprensión de la reutilización del software y la adaptación, realizar el mantenimiento, la integración, la migración de productos de software y componentes, preparar elementos de software para su reutilización potencial y crear interfaces técnicas a los componentes y servicios
- SE9. Demostrar una comprensión de los sistemas de software y su entorno (los modelos de negocio, regulaciones).

1.9.6. Competencias Específicas para Tecnología de la Información (*Information Technology*)

En la carrera de Tecnología de la Información (*Information Technology*) [ACM and IEEE-CS, 2005] las competencias específicas son [IEEE, 2013]:

- IT1. Diseñar, implementar y evaluar un sistema basado en computadora, proceso, componente o programa para satisfacer las necesidades deseadas dentro de un contexto organizacional y social.
- IT2. Identificar y analizar las necesidades de los usuarios y tenerlas en cuenta en la selección, creación, evaluación y administración de los sistemas basados en computadoras.
- IT3. Integrarla de forma efectiva soluciones basadas, incluyendo el entorno del usuario.
- IT4. Función como defensor del usuario, explicar, aplicar tecnologías de información adecuadas y emplear estándares de mejores prácticas y metodologías apropiadas para ayudar a un individuo u organización a alcanzar sus metas y objetivos.
- IT5. Ayudar en la creación de un plan de proyecto eficaz y funcionar como un defensor del usuario.
- IT6. Administrar los recursos de tecnología de la información de un individuo u organización.
- IT7. Anticipar la dirección cambiante de la tecnología de la información y evaluar y comunicar la utilidad probable de las nuevas tecnologías a un individuo u organización.

1.10. Objetivos de Aprendizaje (Learning Outcomes)

Cada KU dentro de un KA enumera tanto un conjunto de temas y los resultados de aprendizaje (*Learning Outcomes*) que los estudiantes deben alcanzar en lo que respecta a los temas especificados. Resultados de aprendizaje no son de igual tamaño y no tienen una asignación uniforme de horas curriculares; temas con el mismo número de horas pueden tener muy diferentes números de los resultados del aprendizaje asociados.

Cada resultado de aprendizaje tiene un nivel asociado de dominio. En la definición de los diferentes niveles que dibujamos de otros enfoques curriculares, especialmente la taxonomía de Bloom, que ha sido

bien explorado dentro de la ciencia de la computación. En este documento no se aplicó directamente los niveles de Bloom en parte porque varios de ellos son impulsados por contexto pedagógico, que introduciría demasiada pluralidad en un documento de este tipo; en parte porque tenemos la intención de los niveles de dominio para ser indicativa y no imponer restricción teórica sobre los usuarios de este documento.

Nosotros usamos tres niveles de dominio esperados que son:

- Nivel 1 Familiarizarse(Familiarity): El estudiante entiende lo que un concepto es o qué significa. Este nivel de dominio se refiere a un conocimiento básico de un concepto en lugar de esperar instalación real con su aplicación. Proporciona una respuesta a la pregunta: ¿Qué sabe usted de esto?
- Nivel 2 Usar(*Usage*): El alumno es capaz de utilizar o aplicar un concepto de una manera concreta. El uso de un concepto puede incluir, por ejemplo, apropiadamente usando un concepto específico en un programa, utilizando una técnica de prueba en particular, o la realización de un análisis particular. Proporciona una respuesta a la pregunta: ¿Qué sabes de cómo hacerlo?
- Nivel 3 Evaluar(Assessment): El alumno es capaz de considerar un concepto de múltiples puntos de vista y/o justificar la selección de un determinado enfoque para resolver un problema. Este nivel de dominio implica más que el uso de un concepto; se trata de la posibilidad de seleccionar un enfoque adecuado de las alternativas entendidas. Proporciona una respuesta a la pregunta: ¿Por qué hiciste eso?

Por ejemplo, para evaluar los niveles de dominio, consideremos la noción de iteración en el desarrollo de software (for, while e iteradores). En el plano de la "familiaridad", se espera que un estudiante tenga una definición del concepto de iteración en el desarrollo de software y saber por qué esta técnica es útil

Con el fin de mostrar el dominio del nivel "Uso", el estudiante debe ser capaz de escribir un programa adecuadamente usando una forma de iteración.

En el nivel de "Evaluación", en la iteración se requeriría que un estudiante comprenda múltiples métodos de iteración y que sea capaz de seleccionar apropiadamente entre ellos para diferentes aplicaciones.

1.11. Perfil del ingresante

El aspirante a ingresar a la Escuela Profesional de Ciencia de la Computación de la Universidad Católica San Pablo debe tener:

Conocimientos de:

- 1. La operación básica de una computadora.
- 2. Conceptos básicos de operaciones algebraicas, geometría y precálculo.
- 3. Su entorno social en la actualidad.

Habilidades para:

- 1. Entender la relaciones entre los hechos y encontrar las causas que los produjeron, prever consecuencias y así poder resolver problemas de una manera coherente.
- 2. Diferenciar patrones, es decir, captar la diferencia entre la realidad observada y el modelo mental o idea preconcebida que se ha tenido. Percibir las relaciones lógicas (de funcionamiento o de comportamiento) existentes entre las observaciones realizadas.
- 3. Expresarse en forma oral o escrita de los procesos que llevan a la solución de un problema dado.
- 4. Concentración y constancia en el trabajo.
- 5. Comprensión, análisis y síntesis.
- 6. Hábitos y métodos adecuados para el estudio.

Actitudes de:

- 1. Interés y gusto por el estudio de las ciencias de la computación y matemáticas.
- 2. Disposición para el trabajo académico, en forma cooperativa y participativa, dentro y fuera del aula de clases.
- 3. Iniciativa y competencia en el desempeño escolar.

1.12. Perfil del egresado

El egresado del Programa Profesional de Ciencia de la Computación es capaz de:

- Desarrollar tecnología computacional buscando el bien común de los individuos, la sociedad y las organizaciones.
- 2. Aportar con su formación humana y sus capacidades científicas y profesionales con la solución de los problemas sociales de nuestro entorno.
- 3. Transformar, acelerar y ampliar los límites de cualquier área del conocimiento a través de soluciones innovadoras basadas en el uso eficiente de tecnología computacional.
- 4. Adaptarse rápidamente a los cambios tecnológicos debido a su formación basada en la investigación constante.
- 5. Trabajar y liderar equipos multidisciplinarios que llevan a cabo proyectos de innovación tecnológica.
- 6. Incrementar las ventajas competitivas de cualquier organización a través del uso eficiente de tecnología computacional gracias a su alta capacidad de abstracción.
- 7. Crear empresas de base tecnológica.
- 8. Poder seguir estudios de postgrado con exigencia internacional en áreas relacionadas.

1.13. Perfil del docente

El docente de la Escuela Profesional de Ciencia de la Computación de la Universidad Católica San Pablo es una persona que promueve la formación integral del estudiante a través de la enseñanza, la investigación y extensión, transmitiendo su sólidos conocimientos en los cursos que imparte fortaleciendo sus valores como persona y miembro de la sociedad.

Debe ser capaz de transmitir sus conocimientos de una forma simple y clara a los estudiantes fomentando en ellos la investigación continúa para que sean capaces de adaptarse fácilmente a los cambios tecnológicos y promover en ellos la búsqueda del bien común de los individuos, la sociedad y las organizaciones.

Debe ser un profesional que busca con frecuencia capacitación y grados académicos avanzados con el objetivo de desplegarse mejor hacia los individuos, las organizaciones y la sociedad.

El docente participa de la formación e integración del estudiante a una comunidad académica católica buscando siempre la exigencia continua.

1.14. Grados y Títulos

Cumplida la aprobación de los créditos académicos propuestos en la malla curricular y luego de haber cumplido con los requisitos estipulados en el reglamento de grados y títulos de la carrera, el egresado recibirá:

Grado Académico: Bachiller en Ciencia de la Computación yTitulo Profesional: Licenciado en Ciencia de la Computación

1.15. Recursos para dictado de clases

Un profesional innovador debe estar al tanto de los últimos avances de su área siempre. Los últimos avances de esta área no son presentados en los libros necesariamente. Debemos utilizar publicaciones de revistas indexadas de circulación mundial. Por esa razón tomamos como base la suscripción institucional a ACM e IEEE-CS. Es recomendado que el docente use este material para discutir en clase las tendencias en todas las áreas.

Los laboratorios de cómputo también deben ser renovados de acuerdo a la rapidez propia de esta área y esto implica renovaciones constantes para poder garantizar que los estudiantes estén actualizados.

14

Capítulo 2

Cuerpo del conocimiento de Ciencia de la Computación

Las 18 principales áreas de conocimiento en Ciencia de la Computación son:

2.1 Algoritmos y Complejidad (AL) (Pág. 17)

- 2.1.1 Análisis Básico (Pág. 18)
- 2.1.2 Estrategias Algorítmicas (Pág. 19)
- $\blacksquare \ 2.1.3$ Algoritmos y Estructuras de Datos fundamentales (Pág. 20)
- 2.1.4 Computabilidad y complejidad básica de autómatas (Pág. 21)
- 2.1.5 Complejidad Computacional Avanzada (Pág. 22)
- 2.1.6 Teoría y Computabilidad Avanzada de Autómatas (Pág. 22)
- $\blacksquare \ 2.1.7$ Estructuras de Datos Avanzadas y Análisis de Algoritmos (Pág. 23)

2.2 Arquitectura y Organización (AR) (Pág. 24)

- $\blacksquare \ \ 2.2.1$ Lógica digital y sistemas digitales (Pág. 24)
- $\,\blacksquare\,\,2.2.2$ Representación de datos a nivel máquina (Pág. 25)
- 2.2.3 Organización de la Máquina a Nivel Ensamblador (Pág. 26)
- 2.2.4 Organización y Arquitectura del Sistema de Memoria (Pág. 27)
- $\blacksquare \ \ 2.2.5$ Interfaz y comunicación (Pág. 27)
- $\blacksquare \ 2.2.6$ Organización funcional (Pág. 28)
- \blacksquare 2.2.7 Multiprocesamiento y arquitecturas alternativas (Pág. 29)
- $\blacksquare \ \ 2.2.8$ Mejoras de rendimiento (Pág. 29)

2.3 Ciencia Computacional (CN) (Pág. 30)

- \blacksquare 2.3.1 Introducción al modelamiento y simulación (Pág. 30)
- $\blacksquare \ 2.3.2$ Modelamiento y simulación (Pág. 31)
- 2.3.3 Procesamiento (Pág. 32)
- $\blacksquare \ 2.3.4$ Visualización interactiva (Pág. 33)
- $\blacksquare \ 2.3.5$ Datos, información y conocimiento (Pág. 34)
- 2.3.6 Análisis numérico (Pág. 35)

2.4 Estructuras Discretas (DS) (Pág. 35)

- 2.4.1 Funciones, relaciones y conjuntos (Pág. 36)
- 2.4.2 Lógica básica (Pág. 36)
- 2.4.3 Técnicas de demostración (Pág. 37)
- 2.4.4 Fundamentos de conteo (Pág. 38)
- 2.4.5 Árboles y Grafos (Pág. 39)
- $\blacksquare \ 2.4.6$ Probabilidad Discreta (Pág. 39)

2.5 Gráficos y Visualización (GV) (Pág. 40)

- 2.5.1 Conceptos Fundamentales (Pág. 41)
- $\blacksquare \ 2.5.2$ Rendering Básico (Pág. 42)
- $\blacksquare \ \ 2.5.3$ Modelado Geométrico (Pág. 43)
- 2.5.4 Renderizado Avanzado (Pág. 44)
- 2.5.5 Animación por computadora (Pág. 45)
- 2.5.6 Visualización (Pág. 46)

2.6 Interacción Humano-Computador (HCI) (Pág. 46)

- 2.6.1 Fundamentos (Pág. 47)
- 2.6.2 Diseño de Interacción (Pág. 48)
- $\blacksquare \ 2.6.3$ Programación de Sistemas Interactivos (Pág. 48)
- 2.6.4 Diseño y Testing centrados en el usuario (Pág. 49)
- $\blacksquare \ \ 2.6.5$ Nuevas Tecnologías Interactivas (Pág. 50)
- 2.6.6 Colaboración y Comunicación (Pág. 50)
- $\blacksquare \ 2.6.7$ Métodos estadísticos para HCI (Pág. 51)
- 2.6.8 Factores Humanos y seguridad (Pág. 51)
- $\blacksquare \ 2.6.9 \ \mathrm{HCI}$ orientada al diseño (Pág. 52)
- 2.6.10 Realidad virtual y aumentada mezcladas (Pág. 52)

2.7 Aseguramiento y Seguridad de la Información (IAS) (Pág. 53)

- 2.7.1 Fundamentos y Conceptos en Seguridad (Pág. 54)
- $\blacksquare \ \ 2.7.2$ Principios de Diseño Seguro (Pág. 54)
- $\blacksquare~2.7.3$ Programación Defensiva (Pág. 56)

- 2.7.4 Ataques y Amenazas (Pág. 57)
- 2.7.5 Seguridad de Red (Pág. 58)
- 2.7.6 Criptografía (Pág. 59)
- 2.7.7 Seguridad en la Web (Pág. 60)
- 2.7.8 Seguridad de plataformas (Pág. 61)
- 2.7.9 Política de Seguridad y Gobernabilidad (Pág. 61)
- 2.7.10 Investigación digital (Digital Forensics) (Pág. 62)
- 2.7.11 Seguridad en Ingeniería de Software (Pág. 63)

2.8 Gestión de la información (IM) (Pág. 64)

- 2.8.1 Conceptos de Gestión de la Información (Pág. 64)
- 2.8.2 Sistemas de Bases de Datos (Pág. 65)
- 2.8.3 Modelado de datos (Pág. 66)
- 2.8.4 Indexación (Pág. 67)
- 2.8.5 Bases de Datos Relacionales (Pág. 67)
- 2.8.6 Lenguajes de Consulta (Pág. 68)
- 2.8.7 Procesamiento de Transacciones (Pág. 69)
- 2.8.8 Bases de Datos Distribuidas (Pág. 69)
- 2.8.9 Diseño Físico de Bases de Datos (Pág. 70)
- 2.8.10 Minería de Datos (Pág. 71)
- 2.8.11 Almacenamiento y Recuperación de Información (Pág. 71)
- 2.8.12 Sistemas Multimedia (Pág. 72)

2.9 Sistemas Inteligentes (IS) (Pág. 73)

- 2.9.1 Cuestiones fundamentales (Pág. 73)
- 2.9.2 Estrategias de búsquedas básicas (Pág. 74)
- 2.9.3 Raciocinio y representación básica de conocimiento (Pág. 75)
- $\blacksquare \ \ 2.9.4$ Aprendizaje Automático Básico (Pág. 75)
- $\blacksquare \ \ 2.9.5$ Búsqueda Avanzada (Pág. 76)
- 2.9.6 Representación Avanzada y Razonamiento (Pág. 76)
- 2.9.7 Razonamiento Bajo Incertidumbre (Pág. 77)
- 2.9.8 Agentes (Pág. 78)
- 2.9.9 Procesamiento del Lenguaje Natural (Pág. 78)
- 2.9.10 Aprendizaje de máquina avanzado (Pág. 79)
- 2.9.11 Robótica (Pág. 80)
- $\blacksquare \ \ 2.9.12$ Visión y percepción por computador (Pág. 81)

$2.10~{\rm Redes}$ y comunicaciones (NC) (Pág. 82)

- 2.10.1 Introducción (Pág. 82)
- 2.10.2 Aplicaciones en red (Pág. 83)
- $\, \bullet \,$ 2.10.3 Entrega confiable de datos (Pág. 83)
- $\blacksquare \ \ 2.10.4$ Ruteo y reenvío (Pág. 84)
- 2.10.5 Redes de área local (Pág. 84)
- 2.10.6 Asignación de recursos (Pág. 84)

- 2.10.7 Celulares (Pág. 85)
- 2.10.8 Redes sociales (Pág. 85)

2.11 Sistemas Operativos (OS) (Pág. 86)

- 2.11.1 Visión general de Sistemas Operativos (Pág. 86)
- 2.11.2 Principios de Sistemas Operativos (Pág. 87)
- 2.11.3 Concurrencia (Pág. 87)
- 2.11.4 Planificación y despacho (Pág. 88)
- 2.11.5 Manejo de memoria (Pág. 89)
- 2.11.6 Seguridad y protección (Pág. 89)
- 2.11.7 Máquinas virtuales (Pág. 90)
- 2.11.8 Manejo de dispositivos (Pág. 90)
- 2.11.9 Sistema de archivos (Pág. 91)
- 2.11.10 Sistemas empotrados y de tiempo real (Pág. 91)
- 2.11.11 Tolerancia a fallas (Pág. 92)
- $\blacksquare \ \ 2.11.12$ Evaluación del desempeño de sistemas (Pág. 92)

2.12 Desarrollo basados en plataforma (PBD) (Pág. 92)

- 2.12.1 Introducción (Pág. 93)
- 2.12.2 Plataformas web (Pág. 93)
- 2.12.3 Plataformas móviles (Pág. 94)
- 2.12.4 Plataformas industriales (Pág. 94)
- 2.12.5 Plataformas para video juegos (Pág. 95)

2.13 Computación paralela y distribuída (PD) (Pág. 95)

- 2.13.1 Fundamentos de paralelismo (Pág. 96)
- 2.13.2 Descomposición en paralelo (Pág. 97)
- $\blacksquare \ \ 2.13.3$ Comunicación y coordinación (Pág. 97)
- 2.13.4 Análisis y programación de algoritmos paralelos (Pág. 99)
- 2.13.5 Arquitecturas paralelas (Pág. 100)
- 2.13.6 Desempeño en paralelo (Pág. 101)
- 2.13.7 Sistemas distribuídos (Pág. 101)
- 2.13.8 Cloud Computing (Pág. 102)
- 2.13.9 Modelos y semántica formal (Pág. 103)

2.14 Lenguajes de programación (PL) (Pág. 103)

- $\blacksquare \ \ 2.14.1$ Programación orientada a objetos (Pág. 104)
- 2.14.2 Programación funcional (Pág. 105)
- 2.14.3 Programación reactiva y dirigida por eventos (Pág. 106)
- 2.14.4 Sistemas de tipos básicos (Pág. 106)
- $\blacksquare \ \ 2.14.5$ Representación de programas (Pág. 107)
- $\blacksquare \ 2.14.6$ Traducción y ejecución de lenguajes (Pág. 108)
- 2.14.7 Análisis de sintaxis (Pág. 108)
- 2.14.8 Análisis semántico de compiladores (Pág. 109)
- 2.14.9 Generación de código (Pág. 109)
- 2.14.10 Sistemas de tiempo de ejecución (Pág. 110)

- 2.14.11 Análisis estático (Pág. 110)
- 2.14.12 Construcciones de programación avanzados (Pág. 111)
- 2.14.13 Concurrencia y Paralelismo (Pág. 111)
- 2.14.14 Sistemas de tipos (Pág. 112)
- 2.14.15 Semántica formal (Pág. 112)
- 2.14.16 Pragmática de lenguajes (Pág. 113)
- 2.14.17 Programación lógica (Pág. 114)

2.15 Fundamentos del desarrollo de software (SDF) (Pág. 114)

- 2.15.1 Algoritmos y Diseño (Pág. 115)
- \blacksquare 2.15.2 Conceptos Fundamentales de Programación (Pág. 116)
- 2.15.3 Estructuras de Datos Fundamentales (Pág. 116)
- 2.15.4 Métodos de Desarrollo (Pág. 117)

2.16 Ingeniería de Software (SE) (Pág. 118)

- 2.16.1 Procesos de Software (Pág. 120)
- 2.16.2 Gestión de Proyectos de Software (Pág. 121)
- 2.16.3 Herramientas y Entornos (Pág. 123)
- 2.16.4 Ingeniería de Requisitos (Pág. 123)
- 2.16.5 Diseño de Software (Pág. 125)
- $\blacksquare \ 2.16.6$ Construcción de Software (Pág. 127)
- 2.16.7 Verificación y Validación de Software (Pág. 128)
- 2.16.8 Evolución de Software (Pág. 129)
- 2.16.9 Fiabilidad de Software (Pág. 130)
- 2.16.10 Métodos Formales (Pág. 130)

2.17 Fundamentos de Sistemas (SF) (Pág. 131)

- 2.17.1 Paradigmas computacionales (Pág. 131)
- 2.17.2 Comunicación a través de múltiples capas (Pág. 132)
- 2.17.3 Estados y máquinas de estados (Pág. 133)
- 2.17.4 Paralelismo (Pág. 133)
- 2.17.5 Evaluación (Pág. 134)
- \blacksquare 2.17.6 Asignación de recursos y planeamiento (Pág. 134)
- 2.17.7 Proximidad (Pág. 135)
- 2.17.8 Virtualización y aislamiento (Pág. 135)
- 2.17.9 Confiabilidad a través de redundancia (Pág. 136)
- 2.17.10 Evaluación cuantitativa (Pág. 136)

2.18 Asuntos sociales y práctica profesional (SP) (Pág. 137)

- 2.18.1 Contexto Social (Pág. 138)
- 2.18.2 Herramientas de Análisis (Pág. 139)
- 2.18.3 Ética Profesional (Pág. 140)
- 2.18.4 Propiedad Intelectual (Pág. 141)
- 2.18.5 Privacidad y Libertades Civiles (Pág. 142)
- 2.18.6 Comunicación profesional (Pág. 143)
- 2.18.7 Sostenibilidad (Pág. 144)
- 2.18.8 Historia (Pág. 145)
- 2.18.9 Economía de la Computación (Pág. 146)
- 2.18.10 Políticas de seguridad, Leyes y crímenes computacionales (Pág. 146)

2.1. Algoritmos y Complejidad (AL)

Los algoritmos son fundamentales para la ciencia de la computación y la ingeniería de software. En el mundo real el rendimiento de cualquier sistema de software depende de: (1) los algoritmos elegidos y (2) la idoneidad y la eficiencia de las diversas capas de aplicación. Un buen diseño de algoritmos es crucial para el rendimiento de todos los sistemas de software. Por otra parte, el estudio de algoritmos da una idea de la naturaleza intrínseca del problema y las posibles soluciones técnicas independientes del lenguaje de programación, paradigma de programación, hardware, o cualquier otro aspecto de implementación.

Una parte importante de la informática es la capacidad de seleccionar los algoritmos apropiados para determinados propósitos y aplicarlos, reconociendo la posibilidad de que no se encuentre un algoritmo adecuado. Este facilidad se basa en la comprensión de la variedad de algoritmos que abordan un importante conjunto de problemas bien determinadas, reconociendo sus fortalezas y debilidades, y su idoneidad en determinados contextos. La eficiencia es un tema omnipresente en toda esta área. Esta área de conocimiento se definen los conceptos centrales y los conocimientos necesarios para diseñar, implementar y analizar los algoritmos para resolver problemas. Los algoritmos son esenciales en todas las áreas avanzadas de la informática: inteligencia artificial, bases de datos, computación distribuida, gráficos, redes, sistemas operativos, lenguajes de programación, de seguridad, y así sucesivamente. Algoritmos que tienen utilidad específica en cada uno de éstos se enumeran en las áreas de conocimiento relevantes. Criptografía, por ejemplo, aparece en la nueva área de conocimiento en 2.7 Aseguramiento y Seguridad de la Información (IAS), Pág. 53, mientras que los algoritmos paralelos y distribuidos aparecen el Área de Conocimiento de 2.13 Computación paralela y distribuída (PD), Pág. 95.

Al igual que con todas las áreas de conocimiento, el orden de los temas y sus agrupaciones no necesariamente se correlaciona con un orden específico de presentación. Diferentes programas enseñarán los temas en diferentes cursos y deben hacerlo en el orden que ellos creen es el más apropiado para sus estudiantes.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core Tier1	Core Tier2	Electivos
2.1.1 Análisis Básico (Pág. 18)	2	2	No
2.1.2 Estrategias Algorítmicas (Pág. 19)	5	1	No
2.1.3 Algoritmos y Estructuras de Datos fundamentales (Pág. 20)	9	3	No
2.1.4 Computabilidad y complejidad básica de autómatas (Pág. 21)	3	3	No
2.1.5 Complejidad Computacional Avanzada (Pág. 22)			Si
2.1.6 Teoría y Computabilidad Avanzada de Autómatas (Pág. 22)			Si
2.1.7 Estructuras de Datos Avanzadas y Análisis de Algoritmos			Si
(Pág. 23)			

2.1.1. AL/Análisis Básico (2 horas Core-Tier1, 2 horas Core-Tier2)

Tópicos:

Core Tier1

- Diferencias entre el mejor, el esperado y el peor caso de un algoritmo.
- Análisis asintótico de complejidad de cotas superior y esperada.
- Definición formal de la Notación Big O.
- Clases de complejidad como constante, logarítmica, lineal, cuadrática y exponencial.
- Medidas empíricas de desempeño.
- Compensación entre espacio y tiempo en los algoritmos.

Core Tier2

- Uso de la notación Big O.
- Notación Little o, Big omega y Big theta.
- Relaciones recurrentes.
- Análisis de algoritmos iterativos y recursivos.
- Algunas versiones del Teorema Maestro.

Objetivos de Aprendizaje:

- 1. Explique a que se refiere con "mejor", "esperado" y "peor" caso de comportamiento de un algoritmo [Familiarizarse]
- 2. En el contexto de a algoritmos específicos, identifique las características de data y/o otras condiciones o suposiciones que lleven a diferentes comportamientos [Evaluar]
- 3. Determine informalmente el tiempo y el espacio de complejidad de simples algoritmos [Usar]
- 4. Indique la definición formal de Big O [Familiarizarse]
- 5. Lista y contraste de clases estándares de complejidad [Familiarizarse]
- 6. Realizar estúdios empíricos para validar una hipótesis sobre runtime stemming desde un análisis matemático Ejecute algoritmos con entrada de varios tamaños y compare el desempeño [Evaluar]

7. Da ejemplos que ilustran las compensaciones entre espacio y tiempo que se dan en los algoritmos [Familiarizarse]

Core-Tier2:

- 8. Use la notación formal de la Big O para dar límites superiores asintóticos en la complejidad de tiempo y espacio de los algoritmos [Usar]
- 9. Usar la notación formal Big O para dar límites de casos esperados en el tiempo de complejidad de los algoritmos [Usar]
- 10. Explicar el uso de la notación theta grande, omega grande y o pequeña para describir la cantidad de trabajo hecho por un algoritmo [Familiarizarse]
- 11. Usar relaciones recurrentes para determinar el tiempo de complejidad de algoritmos recursivamente definidos [Usar]
- 12. Resuelve relaciones de recurrencia básicas, por ejemplo. usando alguna forma del Teorema Maestro [Usar]

2.1.2. AL/Estrategias Algorítmicas (5 horas Core-Tier1, 1 horas Core-Tier2)

Un instructor puede optar por cubrir estas estrategias algorítmicas en el contexto de los algoritmos presentados en "Estructuras de Datos y Algoritmos Fundamentales". Mientras que el número total de horas para las dos unidades de conocimiento (18) se puede dividir de forma diferente entre ellos, nuestra sensación es que la proporción de 1: 2 es razonable.

Tópicos:

Core Tier1

- Algoritmos de fuerza bruta.
- Algoritmos voraces.
- Divide y vencerás.
 Ref: 2.15.1 Algoritmos y Diseño, Pág. 115
- Bactraking recursivo.
- Programación Dinámica.

Core Tier2

- Ramificación y poda.
- Heurísticas.
- Reducción: Transformar y Conquistar.

Objetivos de Aprendizaje:

- 1. Para cada una de las estrategias (fuerza bruta, algoritmo goloso, divide y vencerás, recursividad en reversa y programación dinámica), identifica un ejemplo práctico en el cual se pueda aplicar [Familiarizarse]
- 2. Utiliza un enfoque voraz para resolver un problema específico y determina si la regla escogida lo guía a una solución óptima [Evaluar]
- 3. Usa un algoritmo de divide-y-vencerás para resolver un determinado problema [Usar]
- 4. Usa recursividad en reversa a fin de resover un problema como en el caso de recorrer un laberinto [Usar]

- 5. Usa programación dinámica para resolver un problema determinado [Usar]
- 6. Determina el enfoque algorítmico adecuado para un problema [Evaluar]

Core-Tier2:

- 7. Describe varios métodos basados en heurísticas para resolver problemas [Familiarizarse]
- 8. Usa en enfoque heurístico para resolver un problema determinado [Usar]
- 9. Describe las compensaciones que se dan entre usar estrategias de fuerza bruta y aquellas basadas en heurísticas [Evaluar]
- 10. Describe como un enfoque de ramificación y poda puede ser usado para mejorar el rendimiento de un método heurístico [Familiarizarse]

2.1.3. AL/Algoritmos y Estructuras de Datos fundamentales (9 horas Core-Tier1, 3 horas Core-Tier2)

Esta unidad de conocimiento se ha hecho directamente con la base proporcionada por 2.15 Fundamentos del desarrollo de software (SDF), Pág. 114, en particular el material de 2.15.3 Estructuras de Datos Fundamentales, Pág. 116 y 2.15.1 Algoritmos y Diseño, Pág. 115.

Tópicos:

Core Tier1

- Algoritmos numéricos simples, tales como el cálculo de la media de una lista de números, encontrar el mínimo y máximo.
- Algoritmos de búsqueda secuencial y binaria.
- Algoritmos de ordenamiento de peor caso cuadrático (selección, inserción)
- Algoritmos de ordenamiento con peor caso o caso promedio en O(N lg N) (Quicksort, Heapsort, Mergesort)
- Tablas Hash, incluyendo estratégias para evitar y resolver colisiones.
- Árboles de búsqueda binaria: 1. Operaciones comunes en árboles de búsqueda binaria como seleccionar el mínimo, máximo, insertar, eliminar, recorrido en árboles.
- Grafos y algoritmos en grafos: 1. Representación de grafos (ej., lista de adyacencia, matriz de adyacencia) 2. Recorrido en profundidad y amplitud

Core Tier2

- Montículos (Heaps)
- Grafos y algoritmos en grafos: 1. Algoritmos de la ruta más corta (algoritmos de Dijkstra y Floyd) 2. Árbol de expansión mínima (algoritmos de Prim y Kruskal)
- Búsqueda de patrones y algoritmos de cadenas/texto (ej. búsqueda de subcadena, búsqueda de expresiones regulares, algoritmos de subsecuencia común más larga)

Objetivos de Aprendizaje:

- 1. Implementar algoritmos numéricos básicos [Usar]
- 2. Implementar algoritmos de busqueda simple y explicar las diferencias en sus tiempos de complejidad [Evaluar]
- 3. Ser capaz de implementar algoritmos de ordenamiento comunes cuádraticos y O(N log N) [Usar]

- 4. Describir la implementación de tablas hash, incluyendo resolución y el evitamiento de colisiones [Familiarizarse]
- 5. Discutir el tiempo de ejecución y eficiencia de memoria de los principales algoritmos de ordenamiento, busqueda y hashing [Familiarizarse]
- 6. Discutir factores otros que no sean eficiencia computacional que influyan en la elección de algoritmos, tales como tiempo de programación, mantenibilidad, y el uso de patrones específicos de la aplicación en los datos de entrada [Familiarizarse]
- 7. Explicar como el balanceamiento del arbol afecta la eficiencia de varias operaciones de un arbol de búsqueda binaria [Familiarizarse]
- 8. Resolver problemas usando algoritmos básicos de grafos, incluyendo busqueda por profundidad y busqueda por amplitud [Usar]
- 9. Demostrar habilidad para evaluar algoritmos, para seleccionar de un rango de posibles opciones, para proveer una justificación por esa selección, y para implementar el algoritmo en un contexto en específico [Evaluar]

Core-Tier2:

- 10. Describir la propiedad del heap y el uso de heaps como una implementación de colas de prioridad [Familiarizarse]
- 11. Resolver problemas usando algoritmos de grafos, incluyendo camino más corto de una sola fuente y camino más corto de todos los pares, y como mínimo un algoritmo de arbol de expansion minima [Usar]
- 12. Trazar y/o implementar un algoritmo de comparación de string [Usar]

2.1.4. AL/Computabilidad y complejidad básica de autómatas (3 horas Core-Tier1, 3 horas Core-Tier2)

Tópicos:

Core Tier1

- Máquinas de estado finito.
- Expresiones regulares.
- Problema de la parada.

Core Tier2

- Gramáticas libres de contexto.
 Ref: 2.14.7 Análisis de sintaxis, Pág. 108
- Introducción a las clases P y NP y al problema P vs. NP.
- Introducción y ejemplos de problemas NP- Completos y a clases NP-Completos.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Discute el concepto de máquina de estado finito [Familiarizarse]
- 2. Diseñe una máquina de estado finito determinista para aceptar un determinado lenguaje [Usar]
- 3. Genere una expresión regular para representar un lenguaje específico [Usar]
- 4. Explique porque el problema de la parada no tiene solucion algorítmica [Familiarizarse]

- 5. Diseñe una gramática libre de contexto para representar un lenguaje especificado [Usar]
- 6. Define las clases P y NP [Familiarizarse]
- 7. Explique el significado de NP-Completitud [Familiarizarse]

2.1.5. AL/Complejidad Computacional Avanzada

Tópicos:

Electivos

- Revisión de las clases P y NP; introducir spacio P y EXP.
- Jerarquía polimonial.
- NP completitud (Teorema de Cook).
- Problemas NP completos clásicos.
- Técnicas de reducción.

Objetivos de Aprendizaje:

Elective:

- 1. Define las clases P y NP (También aparece en AL / Automata Básico, Computalidad y Complejidad) [Familiarizarse]
- 2. Define la clase P-Space y su relación con la clase EXP [Familiarizarse]
- 3. Explique el significado de NP-Completo (También aparece en AL / Automata Básico, Computalidad y Complejidad) [Familiarizarse]
- 4. Muestre ejemplos de problemas clásicos en NP Completo [Familiarizarse]
- 5. Pruebe que un problema es NP- Completo reduciendo un problema conocido como NP-Completo [Usar]

2.1.6. AL/Teoría y Computabilidad Avanzada de Autómatas

Tópicos:

Electivos

- Conjuntos y Lenguajes: 1. Lenguajes Regulares. 2. Revisión de autómatas finitos determinísticos (Deterministic Finite Automata DFAs) 3. Autómata finito no determinístico (Nondeterministic Finite Automata NFAs) 4. Equivalencia de DFAs y NFAs. 5. Revisión de expresiones regulares; su equivalencia con autómatas finitos. 6. Propiedades de cierre. 7. Probando no-regularidad de lenguajes, a través del lema de bombeo (Pumping Lemma) o medios alternativos.
- Lenguajes libres de contexto: 1. Autómatas de pila (Push-down automata (PDAs) 2. Relación entre PDA y gramáticas libres de contexto. 3. Propiedades de los lenguajes libres de contexto.
- Máquinas de Turing, o un modelo formal equivalente de computación universal.
- Máquinas de Turing no determinísticas.
- Jerarquía de Chomsky.
- La tesis de Church-Turing.
- Computabilidad.
- Teorema de Rice.
- Ejemplos de funciones no computables.
- Implicaciones de la no-computabilidad.

Objetivos de Aprendizaje:

Elective:

1. Determina la ubicación de un lenguaje en la jerarquía de Chomsky (regular, libre de contexto, enumerable recursivamente) [Evaluar]

- 2. Convierte entre notaciones igualmente poderosas para un lenguaje, incluyendo entre estas AFDs, AFNDs, expresiones regulares, y entre AP y GLCs [Usar]
- 3. Explica la tesis de Church-Turing y su importancia [Familiarizarse]
- 4. Explica el teorema de Rice y su importancia [Familiarizarse]
- 5. Da ejemplos de funciones no computables [Familiarizarse]
- 6. Demuestra que un problema es no computable al reducir un problema clásico no computable en base a él [Usar]

2.1.7. AL/Estructuras de Datos Avanzadas y Análisis de Algoritmos

Muchos programas querrán que sus estudiantes tengan la exposición a los algoritmos más avanzados o los métodos de análisis. A continuación se presenta una selección de posibles temas avanzados que están al día y oportuna, pero no de una manera exhaustiva.

Tópicos:

Electivos

- Árboles balanceados (ej. árboles AVL, Arboles red-black, Arboles biselados (splay trees), Treaps)
- Grafos (ej. Ordenamiento Topológico, encontrando componentes puertemente conectados)
- Estructuras de Datos Avanzadas (ej. B-Trees, Fibonacci Heaps)
- Estructuras de Datos y Algoritmos basados en cadenas (ej. Arrays de sufijos, Arboles de sufijos, Arboles digitales (Tries)
- Redes de Flujo (ej. Flujo Máximo [Algoritmo de Ford-Fulkerson], Flujo Máximo Mínimo Corte,
 Máxima Asignación Bipartita)
- Programación Lineal (Dualidad, Método Simplex, Algoritmos de punto interior)
- Algoritmos Teórico-Numéricos (Aritmética Modular, Prueba del Número Primo, Factorización Entera)
- Algoritmos Geométricos (Puntos, Segmentos de Línea, Polígonos [propiedades, intersecciones], encontrando el polígono convexo)
- Algoritmos aleatorios.
- Algortimos estocásticos.
- Algoritmos de aproximación.
- Análisis amortizado.
- Análisis Probabilístico.
- Algoritmos en línea y análisis competitivo.

Objetivos de Aprendizaje:

Elective:

- 1. Entender el mapeamento de problemas del mundo real a soluciones algorítmicas (ejemplo, problemas de grafos, programas lineares, etc) [Evaluar]
- 2. Seleccionar y aplicar técnicas de algoritmos avanzadas (ejemplo, randonmización, aproximación) para resolver problemas reales [Evaluar]
- 3. Seleccionar y aplicar técnicas avanzadas de análisis (ejemplo, amortizado, probabilistico, etc) para algoritmos [Evaluar]

2.2. Arquitectura y Organización (AR)

Profesionales de la informática no deben considerar a la computadora como un simple cuadro negro que ejecuta programas por arte de magia. El área de conocimiento Arquitectura y Organización se basa en Fundamentos de Sistemas (SF) para desarrollar una comprensión más profunda del entorno de hardware sobre la que se basa toda la computación, y la interfaz que proporciona a las capas superiores de software. Los estudiantes deben adquirir una comprensión y apreciación de los componentes de un sistema informático funcionales, sus características, el rendimiento y las interacciones, y, en particular, el reto de aprovechar el paralelismo para sostener mejoras de rendimiento, ahora y en el futuro. Los estudiantes necesitan entender la arquitectura de computadores para desarrollar programas que puede lograr un alto rendimiento a través de la conciencia de un programador de paralelismo y la latencia. En la selección de un sistema a utilizar, los estudiantes deben ser capaces de entender el equilibrio entre los diversos componentes, tales como la velocidad del reloj de la CPU, ciclos por instrucción, tamaño de la memoria, y el tiempo medio de acceso a memoria.

Los resultados del aprendizaje especificados para estos temas corresponden principalmente al núcleo y están destinados a apoyar los programas que eligen requerir sólo el mínimo de 16 horas de la arquitectura de computadores de sus estudiantes. Para los programas que quieren enseñar más que el mínimo, los mismos temas de AR pueden ser tratados en un nivel más avanzado en la implementación de una secuencia de dos platos. Para los programas que quieren cubrir los temas electivos, esos temas se pueden introducir dentro de una secuencia de dos cursos y / o ser tratados de una manera más completa en un tercer curso.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core	Core	Electivos
	Tier1	Tier2	
2.2.1 Lógica digital y sistemas digitales (Pág. 24)		3	No
2.2.2 Representación de datos a nivel máquina (Pág. 25)		3	No
2.2.3 Organización de la Máquina a Nivel Ensamblador (Pág. 26)		6	No
2.2.4 Organización y Arquitectura del Sistema de Memoria (Pág. 27)		3	No
2.2.5 Interfaz y comunicación (Pág. 27)		1	No
2.2.6 Organización funcional (Pág. 28)			Si
2.2.7 Multiprocesamiento y arquitecturas alternativas (Pág. 29)			Si
2.2.8 Mejoras de rendimiento (Pág. 29)			Si

2.2.1. AR/Lógica digital y sistemas digitales (3 horas Core-Tier2)

Tópicos: Core Tier2

- Revisión e historia de la Arquitectura de Computadores.
- Lógica combinacional vs. secuencial/Arreglos de puertas de campo programables como bloque fundamental de construcción lógico combinacional-secuencial.
- Multiples representaciones / Capas de interpretación (El hardware es solo otra capa)
- Herramientas de diseño asistidas por computadora que procesan hardware y representaciones arquitecturales.
- Registrar transferencia notación / Hardware lenguage descriptivo (Verilog/VHDL)
- Restriccion física (Retrasos de Entrada, fan-in, fan-out, energia/poder)

Objetivos de Aprendizaje: Core-Tier2:

1. Describir el avance paulatino de los componentes de la tecnología de computación, desde los tubos de vacío hasta VLSI, desde las arquitecturas mainframe a las arquitecturas en escala warehouse [Familiarizarse]

- 2. Comprender que la tendencia de las arquitecturas modernas de computadores es hacia núcleos múltiples y que el paraleliso es inherente en todos los sistemas de hardware [Familiarizarse]
- 3. Explicar las implicancias de los límites de potencia para mejoras adicionales en el rendimiento de los procesadores y también en el aprovechamiento del paralelismo [Familiarizarse]
- 4. Relacionar las varias representaciones equivalentes de la funcionalidad de un computador, incluyendo expresiones y puertas lógicas, y ser capces de utilizar expresiones matemáticas para describir las funciones de circuitos combinacionales y secuenciales sencillos [Familiarizarse]
- 5. Diseñar los componentes básicos de construcción de un computador: unidad aritmético lógica (a nivel de puertas lógicas), unidad central de procesamiento (a nivel de registros de transferencia), memoria (a nivel de registros de transferencia) [Usar]
- 6. Usar herramientas CAD para capturar, sistetizar, y simular bloques de construcción (como ALUs, registros, movimiento entre registros) de un computador simple [Usar]
- 7. Evaluar el comportamiento de un diagrama de tiempos y funcional de un procesador simple implementado a nivel de circuitos lógicos [Evaluar]

2.2.2. AR/Representación de datos a nivel máquina (3 horas Core-Tier2)

Tópicos:

Core Tier2

- Bits, Bytes y Words.
- Representacion de datos numérica y bases numéricas.
- Sistemas de punto flotante y punto fijo.
- Representaciones con signo y complemento a 2.
- Representación de información no numérica (cdigos de caracteres, información gráfica)
- Representación de registros y arreglos.

Objetivos de Aprendizaje: Core-Tier2:

- 1. Explicar porqué en computación todo es datos, inclusive las instrucciones [Familiarizarse]
- 2. Explicar las razones de usar formatos alternativos para representar datos numéricos [Familiarizarse]
- 3. Describir cómo los enteros negativos se almacenan con representaciones de bit de signo y complemento a 2 [Familiarizarse]
- 4. Explicar cómo las representaciones de tamaño fijo afectan en la exactitud y la precisión [Familiarizarse]
- 5. Describir la representación interna de datos no numéricos como caracteres, cadenas, registros y arreglos [Familiarizarse]
- 6. Convertir datos numéricos de un formato a otro [Usar]
- 7. Escribir programas simples a nivel de ensamblador o código máquina para procesamiento y manipulación de cadenas [Usar]

2.2.3. AR/Organización de la Máquina a Nivel Ensamblador (6 horas Core-Tier2)

Tópicos: Core Tier2

- Organización Básica de la Máquina de Von Neumann.
- Unidad de Control.
- Paquetes de instrucciones y tipos (manipulación de información, control, I/O)
- Assembler / Programación en Lenguaje de Máquina.
- Formato de instrucciones.
- Modos de direccionamiento.
- Llamada a subrutinas y mecanismos de retorno.
 Ref: 2.14.6 Traducción y ejecución de lenguajes, Pág. 108
- I/O e Interrupciones.
- Montículo (Heap) vs. Estático vs. Pila vs. Segmentos de código.
- Multiprocesadores de memoria compartida / organización multinúcleo.
- Introducción a SIMD vs. MIMD y Taxonomía de Flynn.

Objetivos de Aprendizaje: Core-Tier2:

- 1. Explicar la organización de la maquina clásica de von Neumann y sus principales unidades funcionales [Familiarizarse]
- 2. Describir cómo se ejecuta una instrucción en una máquina de von Neumann con extensión para hebras, sincronización multiproceso y ejecucion SIMD (máquina vectorial) [Familiarizarse]
- 3. Describir el paralelismo a nivel de instrucciones y sus peligros, y cómo es esto tratado en pipelines de proceso típicos [Familiarizarse]
- 4. Resumir cómo se representan las instrucciones, tanto a nivel de máquina bajo el contexto de un ensamblador simbólico [Familiarizarse]
- 5. Demostrar cómo se mapean los patrones de lenguajes de alto nivel en notaciones en lenguaje ensamblador o en código máquina [Familiarizarse]
- 6. Explicar los diferentes formatos de instrucciones, así como el direccionamiento por instrucción, y comparar formatos de tamaño fijo y variable [Familiarizarse]
- 7. Explicar como las llamadas a subrutinas son manejadas a nivel de ensamblador [Familiarizarse]
- 8. Explicar los conceptos básicos de interrupciones y operaciones de entrada y salida (I/O) [Familiarizarse]
- 9. Escribir segmentos de programa simples en lenguaje ensamblador [Usar]
- 10. Ilustrar cómo los bloques constructores fundamentales en lenguajes de alto nivel son implementados a nivel de lenguaje máquina [Usar]

2.2.4. AR/Organización y Arquitectura del Sistema de Memoria (3 horas Core-Tier2)

Tópicos: Core Tier2

- Sistemas de Almacenamiento y su Tecnología.
- Jerarquía de Memoria: importancia de la localización temporal y espacial.
- Organización y Operaciones de la Memoria Principal.
- Latencia, ciclos de tiempo, ancho de banda e intercalación.
- Memorias caché (Mapeo de direcciones, Tamaño de bloques, Reemplazo y Politicas de almacenamiento)
- Multiprocesador coherencia cache / Usando el sistema de memoria para las operaciones de sincronización de memoria / atómica inter-core.
- Memoria virtual (tabla de página, TLB)
- Manejo de Errores y confiabilidad.
- Error de codificación, compresión de datos y la integridad de datos.
 Ref: 2.17.9 Confiabilidad a través de redundancia, Pág. 136

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Identifique las principales tecnologías de memoria (Por ejemplo: SRAM, DRAM, Flash,Disco Magnetico) y su relación costo beneficio [Familiarizarse]
- 2. Explique el efecto del retardo de la memoria en tiempo de ejecución [Familiarizarse]
- 3. Describa como el uso de jerarquía de memoria (caché, memoria virtual) es aplicado para reducir el retardo efectivo en la memoria [Familiarizarse]
- 4. Describa los principios de la administración de memoria [Familiarizarse]
- 5. Explique el funcionamiento de un sistema con gestión de memoria virtual [Familiarizarse]
- 6. Calcule el tiempo de acceso promedio a memoria bajo varias configuraciones de caché y memoria y para diversas combinaciones de instrucciones y referencias a datos [Usar]

2.2.5. AR/Interfaz y comunicación (1 horas Core-Tier2)

2.11.1 Visión general de Sistemas Operativos, Pág. 86 Área de conocimiento para una discusión de la vision del sistema operativo de entrada / salida procesamiento y administración. Se enfoca en los mecanismos de hardware para soportar dispositivos interconectados y comunicaciones de procesador a procesador.

Tópicos:

Core Tier2

- Fundamentos de I/O: Handshaking, Bbuffering, I/O programadas, interrupciones dirigidas de I/O.
- Interrumpir estructuras: interrumpir reconocimiento, vectorizado y priorizado.
- Almacenamiento externo, organización fisica y discos.
- Buses: Protocoles de bus, arbitraje, acceso directo a memoria (DMA).
- Introducción a Redes: comunicación de redes como otra capa de acceso remoto.

- Soporte Multimedia.
- Arquitecturas RAID.

Objetivos de Aprendizaje: Core-Tier2:

- 1. Explicar como las interrupciones son aplicadas para implementar control de entrada-salida y transferencia de datos [Familiarizarse]
- 2. Identificar diversos tipos de buses en un sistema computacional [Familiarizarse]
- 3. Describir el acceso a datos desde una unidad de disco magnético [Familiarizarse]
- 4. Comparar organizaciones de red conocidas como organizaciones en bus/Ethernet, en anillo y organizaciones conmutadas versus ruteadas [Familiarizarse]
- 5. Identificar las interfaces entre capas necesarios para el acceso y presentación multimedia, desde la captura de la imagen en almacenamiento remoto, a través del transporte por una red de comunicaciones, hasta la puesta en la memoria local y la presentación final en una pantalla gráfica [Familiarizarse]
- 6. Describir las ventajas y limitaciones de las arquitecturas RAID [Familiarizarse]

2.2.6. AR/Organización funcional

Nota: Electiva para Ciencia de la Computación; Es fundamental para el currículo de Ingeniería de la Computación.

Tópicos:

Electivos

- Implementación de rutas de datos simples, incluyendo la canalización de instrucciones, detección de riesgos y la resolución.
- Control de unidades: Realización Cableada vs Realización Microprogramada.
- Instruccion (Pipelining)
- Introducción al paralelismo al nivel de instrucción (PNI)

Objetivos de Aprendizaje:

Elective:

- 1. Comparar implementaciones alternativas de ruta de datos [Familiarizarse]
- 2. Discutir el concepto de puntos de control y la generación de señales de control usando implementaciones a nivel de circuito o microprogramadas [Familiarizarse]
- 3. Explicar el paralelismo a nivel de instrucciones básicas usando pipelining y los mayores riesgos que pueden ocurrir [Familiarizarse]
- 4. Diseñar e implementar un procesador completo, incluyendo ruta de datos y control [Usar]
- 5. Calcular la cantidad promedio de ciclos por instrucción de una implementación con procesador y sistema de memoria determinados [Evaluar]

2.2.7. AR/Multiprocesamiento y arquitecturas alternativas

La vista aquí es sobre la implementación de hardware de SIMD y MIMD arquitecturas.

Tópicos:

Electivos

- Ley potencial.
- Ejemplos de juego de instrucciones y arquitecturas SIMD y MIMD.
- Redes de interconexión (Hypercube, Shuffle-exchange, Mesh, Crossbar)
- Sistemas de memoria de multiprocesador compartido y consistencia de memoria.
- Coherencia de cache multiprocesador.

Objetivos de Aprendizaje:

Elective:

- 1. Discutir el concepto de procesamiento paralelo mas allá del clásico modelo de von Neumann [Familiarizarse]
- 2. Describir diferentes arquitecturas paralelas como SIMD y MIMD [Familiarizarse]
- 3. Explicar el concepto de redes de interconexión y mostrar diferentes enfoques [Familiarizarse]
- 4. Discutir los principales cuidados en los sistemas de multiprocesamiento presentes con respecto a la gestión de memoria y describir como son tratados [Familiarizarse]
- 5. Describir las diferencias entre conectores electricos en paralelo backplane, interconexión memoria procesador y memoria remota via red, sus implicaciones para la latencia de acceso y el impacto en el rendimiento de un programa [Familiarizarse]

2.2.8. AR/Mejoras de rendimiento

Tópicos:

Electivos

- Arquitectura superescalar.
- Predicción de ramificación, Ejecución especulativa, Ejecución fuera de orden.
- Prefetching.
- Procesadores vectoriales y GPU's
- Soporte de hardware para multiprocesamiento.
- Escalabilidad.
- Arquitecturas alternativas, como VLIW / EPIC y aceleradores y otros tipos de procesadores de propósito especial.

Objetivos de Aprendizaje:

Elective:

- 1. Describir las arquitecturas superescalares y sus ventajas [Familiarizarse]
- 2. Explicar el concepto de predicción de bifurcaciones y su utilidad [Familiarizarse]
- 3. Caracterizar los costos y beneficios de la precarga prefetching [Familiarizarse]
- 4. Explicar la ejecución especulativa e identifique las condiciones que la justifican [Familiarizarse]
- 5. Discutir las ventajas de rendimiento ofrecida en una arquitectura de multihebras junto con los factores que hacen dificil dar el maximo beneficio de estas [Familiarizarse]
- 6. Describir la importancia de la escalabilidad en el rendimiento [Familiarizarse]

2.3. Ciencia Computacional (CN)

Ciencia Computacional es un campo de la Ciencia de la Computación aplicada, es decir, la aplicación de la Ciencia de la Computación para resolver problemas a través de una gama de disciplinas. En el libro Introducción a la Ciencia Computacional, los autores ofrecen la siguiente definición: ""El campo de la Ciencia computacional combina simulación por computador, visualización científica, modelos matemáticos, estructuras de programación y de datos para computadoras, Redes, Diseño de Base de Datos, cálculo simbólico y la computación de alto rendimiento con varias disciplinas"". La Ciencia de la Computación, que se centra en gran medida en la teoría, el diseño y implementación de algoritmos para la manipulación de datos e información, se puede remontar sus raíces a los primeros dispositivos utilizados para ayudar a la gente en computación hace más de cuatro mil años. Varios sistemas fueron creados y se utilizan para calcular las posiciones astronómicas. El logo de programación de Ada Lovelace fue pensado para calcular los números de Bernoulli. A finales del siglo XIX, las calculadoras mecánicas estuvieron disponibles y fueron utilizados inmediatamente por los científicos. Las necesidades de los Científicos e Ingenieros con relación a computación han impulsado mucho la investigación y la innovación en computación. A medida que las computadoras aumentan su poder en la solución de problemas, la ciencia computacional ha crecido tanto en amplitud e importancia. Es una disciplina por derecho propio y se considera que es una de las cinco con mayor crecimiento. Una increíble variedad de sub-campos han surgido bajo el paraguas de la Ciencia Computacional, incluyendo la biología computacional, química computacional, mecánica computacional, arqueología computacional, finanzas computacionales, sociología computacional y forenses computacionales.

Algunos conceptos fundamentales de la ciencia computacional son pertinentes a cada científico de la computación (por ejemplo, el modelado y la simulación), y temas de ciencias computacionales son componentes extremadamente valiosos de un programa de pregrado en ciencia de la computación. Esta área ofrece la exposición a muchas ideas y técnicas valiosas, incluyendo la precisión de la representación numérica, análisis de errores, técnicas numéricas, arquitecturas paralelas y algoritmos, modelado y simulación, visualización de la información, ingeniería de software y optimización. Temas de interés para la ciencia computacional incluyen conceptos fundamentales en la construcción de programas (2.15.2 Conceptos Fundamentales de Programación, Pág. 116), el diseño de algoritmos (2.15.1 Algoritmos y Diseño, Pág. 115), pruebas del programa (2.15.4 Métodos de Desarrollo, Pág. 117), representaciones de datos (2.2.2 Representación de datos a nivel máquina, Pág. 25), y arquitectura básica del ordenador (2.2.4 Organización y Arquitectura del Sistema de Memoria, Pág. 27). Al mismo tiempo, los estudiantes que toman cursos en esta área tienen la oportunidad de aplicar estas técnicas en una amplia gama de áreas tales como la dinámica molecular y de fluidos, mecánica espacial, la economía, la biología, la geología, la medicina y análisis de redes sociales. Muchas de las técnicas que se utilizan en estas áreas requieren matemáticas avanzadas tales como cálculo, ecuaciones diferenciales y álgebra lineal. Las descripciones siguientes asumen que los estudiantes han adquirido los conocimientos matemáticos necesarios en otros lugares. En la comunidad de ciencia computaciónal, los términos de ejecución, modificación y creación a menudo se utilizan para describir los niveles de entendimiento. Este capítulo sigue las convenciones de otros capítulos de este volumen y usa los términos familiaridad, uso y evaluación.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core	Core	Electivos
	Tier1	Tier2	
2.3.1 Introducción al modelamiento y simulación (Pág. 30)	1		No
2.3.2 Modelamiento y simulación (Pág. 31)			Si
2.3.3 Procesamiento (Pág. 32)			Si
2.3.4 Visualización interactiva (Pág. 33)			Si
2.3.5 Datos, información y conocimiento (Pág. 34)			Si
2.3.6 Análisis numérico (Pág. 35)			Si

2.3.1. CN/Introducción al modelamiento y simulación (1 horas Core-Tier1)

La abstracción es un concepto fundamental en la Ciencia de la computación. Un enfoque principal de la computación es abstraer el mundo real, crear un modelo que puede ser simulado en una máquina. Las raíces de la Ciencia de la Computación se pueden remontar a este enfoque, las cosas de modelado

como trayectorias de proyectiles de artillería y los protocolos criptográficos de modelado, los cuales impulsaron el desarrollo de los primeros sistemas computacionales a principios y mediados de los años 1940

Modelado y simulación de sistemas del mundo real representan los conocimientos esenciales para los profesionales de Ciencia de la Computación y proporcionan una base para esta área. Cualquier introducción al modelamiento y la simulación sería incluir o presumir una introducción a la computación. Además, un conjunto general de modelado y simulación de las técnicas, métodos de visualización de datos y las pruebas de software y mecanismos de evaluación también son importantes.

Tópicos:

Core Tier1

- Modelos como abstracciones de situaciones.
- Simulaciones como modelamiento dinámico.
- Técnicas y herramientas de simulación, tales como simulaciones físicas, simulaciones humanain-the-loop guiada, y la realidad virtual.
- Enfoques fundamentales para la validación de modelos (por ejemplo, comparando la salida de una simulación a los datos reales o la salida de otro modelo).
- Presentación de los resultados en un formulario de interés para el sistema que se está modelando.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Describir las relaciones entre modelado y simulación, por ejemplo, pensar en la simulación como un modelado dinámico [Familiarizarse]
- 2. Crear un modelo matemático formal, simple de una situación del mundo real y usa dicho modelo en una simulación [Usar]
- 3. Distinguir entre los distintos tipos de simulación, incluyendo simulaciones físicas, simulaciones guiadas por humanos, y realidad virtual [Familiarizarse]
- 4. Describir diversos enfoques para la validación de modelos [Familiarizarse]
- 5. Crear una visualización simple de los resultados de una simulación [Usar]

2.3.2. CN/Modelamiento y simulación

Tópicos:

- Propósito de modelamiento y simulación incluyendo optimización; Soporte en la toma de decisiones, predicciones, consideraciones de seguridad; para entrenamiento y educación.
- Tradeoffs. Incluyendo rendimiento, precisión, validez y complejidad.
- Simulación de procesos; identificación de las principales características o comportamientos, simplificación de hipótesis; validación de resultados.
- Construcción del modelo: Uso de fórmulas matemáticas o ecuaciones, grafos, restricciones; metodologías y técnicas; uso del tiempo paso a paso (time-stepping) para sistemas dinámicos.
- Modelos formales y técnicas de modelamiento: descripciones matemáticas que implican simplificar hipótesis y eludir detalles. Ejemplos de técnicas incluidas: 1. Métodos de Monte Carlo. 2. Procesos estocásticos. 3. Teoría de colas. 4. Redes de Petri y redes de Petri coloreadas. 5. Estructuras de grafos tales como grafos dirigidos, árboles, redes. 6. Juegos, teoría de juegos, modelamiento de cosas usando teoría de juegos. 7. Programación lineal y sus extensiones . 8. Programación dinámica. 9. Ecuaciones diferenciales: EDO, EDP. 10. Técnicas no lineales. 11. Espacio de estados y transiciones.

- Valoración y evaluación de modelos y simulaciones en una variedad de contextos; verificación y validación de modelos y simulaciones.
- Áreas de aplicación importantes incluida la atención médica y el diagnóstico, la economía y las finanzas, la ciudad y el urbanismo, la ciencia y la ingeniería.
- Software en apoyo de la simulación y el modelado; paquetes, idiomas.

Objetivos de Aprendizaje: Elective:

- 1. Explicar y dar ejemplos de los beneficios de la simulación y el modelamiento en un rango de áreas de aplicación importantes [Familiarizarse]
- 2. Demostrar la habilidad para aplicar las técnicas de modelamiento y simulación a un rango de áreas problemáticas [Usar]
- 3. Explicar los constructores y conceptos de un enfoque de modelo en particular [Familiarizarse]
- 4. Explicar la diferencia entre verificación y validación de un modelo; demostrar la diferencia con ejemplos específicos [Evaluar]
- 5. Verificar y validar el resultado de una simulación [Evaluar]
- 6. Evaluar una simulación destacando sus beneficios y debilidades [Evaluar]
- 7. Escoger una propuesta de modelado apropiada para un determinado problema o situación [Evaluar]
- 8. Comparar resultados de diferentes simulaciones del mismo fenómeno y explicar cualquier diferencia [Evaluar]
- 9. Deducir el comportamiento de un sistema a partir de los resultados de simulación del sistema [Evaluar]
- 10. Extender o adaptar un modelo existente a nuevas situaciones [Evaluar]

2.3.3. CN/Procesamiento

El área temática de procesamiento incluye numerosos temas de otras áreas de conocimiento. En concreto, la cobertura del tratamiento debe incluir un análisis de las arquitecturas de hardware, incluyendo los sistemas paralelos, jerarquías de memoria, y las interconexiones entre procesadores. Estos se tratan en AR / Interfaz y Comunicación, AR / multiprocesamiento y Alternativa Arquitecturas, Mejoras AR / Rendimiento.

Tópicos:

- Conceptos Fundamentales de Programación: 1. El concepto de un algoritmo que consiste en un número finito de pasos bien definidos, cada uno de los cuales se completa en una cantidad finita de tiempo, al igual que todo el proceso. 2. Ejemplos de algoritmos bien conocidos como ordenamiento y busqueda. 3. El concepto de análisis como entendimiento de lo que el problema realmente pregunta, cómo un problema puede ser abordado utilizando un algoritmo, y cómo se representa la información de manera que una máquina pueda procesarla. 4. El desarrollo o la identificación de un flujo de trabajo (workflow). 5. El proceso de convertir un algoritmo en código máquina ejecutable. 6. Procesos de Software incluyendo modelos de ciclo de vida, requerimientos, diseño, implementación, verificación y mantenimiento. 7. Representación máquina de datos de aritmética para computación.
- Métodos Numéricos 1. Algoritmos para encajar datos numéricamente (e.g. Método de Newton)
 2. Algoritmos para computación numérica, incluyendo arquitecturas paralelas.

- Propiedades fundamentales de computación paralela y distribuida: 1. Ancho de banda. 2. Latencia. 3. Escalabilidad. 4. Granularidad. 5. Paralelismo, incluyendo parelelismo de tareas, datos y eventos. 6. Arquitecturas Paralelas incluyendo arquitecturas de procesador, memoria y caching. 7. Paradigmas de Programación Paralela incluyendo hilos, paso de mensajes, técnicas orientadas a eventos, Arquitecturas de Software Paralelo y Map / Reduce. 8. Computación en Grid. 9. El impacto de la arquitectura en tiempo computacional. 10. Tiempo total de la curva de la ciencia para el paralelismo: continuidad de las cosas.
- Costos de Cálculo, ej., el costo de recalcular un valor vs el costo de almacenar y buscar.

Objetivos de Aprendizaje: Elective:

- 1. Explicar las características y definir las propiedades de los algoritmos y como se relacionan con el procesamiento de la maquina [Familiarizarse]
- 2. Analizar declaraciones simples de problemas para identificar información relevante y seleccionar el procedimiento apropiado para resolver el problema [Evaluar]
- 3. Identificar o bosquejar un flujo de trabajo para un proceso computacional existente tal como la creación de un grafo basado en datos experimentales [Familiarizarse]
- 4. Describir el proceso de convertir un algoritmo a código maquina ejectuable [Familiarizarse]
- 5. Resumir las fases del desarrollo de software y comparar varios ciclos de vida en comín [Familia-rizarse]
- 6. Explicar como los datos son representados en una máquina. Comparar representaciones de números enteros a numeros flotantes. Describir underflow, overflow, redondeo, y truncamiento de errores en la representación de datos [Familiarizarse]
- 7. Aplicar algoritmos numéricos estándar para resolver ecuaciones diferenciales ordinarias y parciales. Usar sistemas computaciones para resolver sistemas de ecuaciones [Usar]
- 8. Describir las propiedades básicas de ancho de banda, latencia, escalabilidad y granularidad [Familiarizarse]
- 9. Describir los niveles de paralelismo incluyendo tareas, datos, y eventos de paralelismo [Familia-rizarse]
- 10. Comparar y contrastar paradigmas de programación paralela reconociendo las fortalezas y debilidades de cada una [Evaluar]
- 11. Identificar los problemas que afectan la corrección y eficiencia de un cálculo [Familiarizarse]
- 12. Diseñar, codificar, probar y depurar programas para un cálculo paralelo [Usar]

2.3.4. CN/Visualización interactiva

Esta sub-área está relacionada con el modelado y la simulación. La mayoría de los temas se discuten en detalle en otras áreas de conocimiento en este documento. Hay muchas maneras de presentar los datos y la información, incluyendo la inmersión, realismo, perspectivas variables; hápticas y muestra heads-up, sonificación, y mapeo gesto.

Visualización interactiva en general requiere la comprensión de la percepción humana (GV/Conceptos básicos); Los canales gráficos, estructuras de datos representaciones geométrica (GV/FundamentalsConcepts); 2D y 3D rendering, superficie y representación de volumen (GV/Rendering, GV/Modeling, y GV/AdvancedRendering); y el uso de APIs para el desarrollo de interfaces de usuario utilizando componentes de entrada estándar, tales como menús, deslizadores y botones; y componentes de salida estándar para la visualización de datos, incluyendo cuadros, gráficos, tablas e histogramas.(HCI/GUIConstrucción, HCI/GUIProgramming). **Tópicos:**

- Principios de visualización de datos.
- Algoritmos de visualización y gráficos.
- Técnicas de procesamiento de imagenes.
- Preocupaciones de escalabilidad.

Objetivos de Aprendizaje:

Elective:

- 1. Comparar los mecanismos de interfaz de computadora comunes con respecto a la facilidad de uso, facilidad de aprendizaje, y costo [Evaluar]
- 2. Usar APIs estándar y herramientas para crear representaciones visuales de datos, incluyendo grafos, gráficos, tablas, e histogramas [Usar]
- 3. Describir varios enfoques para usar una computadora como un medio para interactuar y procesar datos [Familiarizarse]
- 4. Extraér información util de un conjunto de datos [Evaluar]
- 5. Analizar y seleccionar técnicas visuales para problemas específicos [Evaluar]
- 6. Describir problemas relacionados con la ampliación de análisis de datos, desde pequeñas a grandes conjuntos de datos [Familiarizarse]

2.3.5. CN/Datos, información y conocimiento

Muchos temas se discuten en detalle en otras áreas de conocimiento en este documento tales como: Conceptos de Gestión de la Información (Pág. 64), Sistemas de Bases de Datos (Pág. 65), Modelado de datos (Pág. 66), Análisis Básico (Pág. 18), Algoritmos y Estructuras de Datos fundamentales (Pág. 20), Conceptos Fundamentales de Programación (Pág. 116), Métodos de Desarrollo (Pág. 117). **Tópicos:**

- Gestión de Contenido modelos, marcos de trabajo, sistemas, métodos de diseño (cómo GI: Gestión de Información).
- Representaciones digitales de contenido, incluyendo números, texto, imágenes (p.e. cuadricula y vector), video (p.e. Quicktime, MPEG2, MPEG4), audio (p.e. partituras escritas, MIDI, pista sonora digitalizada) y animaciones; objetos complejos/compuestos/agregados; registros bibliográficos.
- Creación/captura y preservación de contenido digital, incluyendo digitalización, muestreo, compresión, conversión, transformación/traducción, migración/emulación, rastreo, recolección.
- Estructura de contenido / administración, incluyendo librerias digitales y as pectos por estatica/dinamica/flujo: 1. Datos: Estructuras de datos, Bases de datos 2. Información: Colecciones de documentos, pools multimedia, hyperbases (hipertexto, hipermedios), catalogos, repositorios.
 3. Conocimiento: ontologías, triple stores, redes semánticas, reglas
- Procesamiento y reconocimiento de patrones, incluyendo indexación, busquedas (incluyendo: consultas y lenguajes de consultas; centrales/federadas/P2P), recuperación, clusterisación, clasificación/categorización, análisis/minería/extracción, renderizado/reportes, operaciones de manipulación.
- Apoyo / sociedad de usuario para la presentación y la interacción, incluyendo exploración, buscar, filtrar, ruta, visualizar, compartir, colaborar, tasa, anotar, personalice, recomendar.
- Modelado, diseño, implementación lógica y física, el uso de sistemas pertinentes / software.

Objetivos de Aprendizaje:

Elective:

- 1. Identificar todos los datos, información y elementos de conocimiento y organizaciones afines, para una aplicación de ciencia computacional [Evaluar]
- 2. Describir cómo representar datos e información para su procesamiento [Familiarizarse]
- 3. Describir los requisitos típicos de usuario con respecto a los datos, información y conocimiento [Familiarizarse]
- 4. Seleccione una adecuada implementación del sistema o el software para gestionar los datos, información y conocimiento [Evaluar]
- 5. Listar y describir los informes, transacciones y otros procesos necesarios para una aplicación de la ciencia computacional [Familiarizarse]
- 6. Comparar y contrastar el manejo de la base de datos, recuperación de información, y sistemas de bibliotecas digitales en relación con el manejo de las aplicaciones típicas de la ciencia computacional [Evaluar]
- 7. Diseñar una biblioteca digital para algunos usuarios/sociaedades de la ciencia computacional, con contenido y servicios adecuados [Usar]

2.3.6. CN/Análisis numérico

AR/Representación de datos a nivel máquina.

Tópicos:

Electivos

- Error, estabilidad, convergencia, incluyendo truncado y redondeo.
- Aproximación de funciones, incluyendo series de Taylor, interpolación, extrapolación y regresión.
- Diferenciación e Integración numérica (Regla de Simpson, métodos explícitos e implícitos).
- Ecuaciones diferenciales (Método de Euler, diferencias finitas)

Objetivos de Aprendizaje:

Elective:

- 1. Definir conceptos de error, estabilidad, precisión de máquina y la inexactitud de las aproximaciones computacionales [Familiarizarse]
- 2. Implementar series de Taylor, algoritmos de interpolación, extrapolación y regresión para aproximación de funciones [Usar]
- 3. Implementar algoritmos de diferenciación e integración [Usar]
- 4. Implementar algoritmos para solucionar ecuaciones diferenciales [Usar]

2.4. Estructuras Discretas (DS)

Estructuras discretas son el material fundamental para la informática. Por fundacional nos referimos a que son relativamente pocos los informáticos estarán trabajando principalmente en estructuras discretas, pero que muchas otras áreas de la informática requieren la capacidad de trabajar con los conceptos de estructuras discretas. Estructuras discretas incluyen material importante de áreas como la teoría de conjuntos, la lógica, la teoría de grafos y teoría de la probabilidad.

El material en estructuras discretas es un fenómeno generalizado en las áreas de estructuras de datos y algoritmos, sino que aparece en otras partes de la informática también. Por ejemplo, la capacidad de crear y entender una prueba-ya sea una prueba simbólica formal o una menos formal pero todavía matemáticamente rigurosa argumentación-es importante en prácticamente todas las áreas de ciencias de la computación, incluyendo (por nombrar sólo algunos) formal de especificación, verificación, bases de datos, y la criptografía. Conceptos teoría de grafos se utilizan en redes, sistemas operativos y compiladores. Conceptos teoría de conjuntos se utilizan en la ingeniería de software y bases de datos. Teoría de la probabilidad se utiliza en sistemas inteligentes, redes y una serie de aplicaciones informáticas.

Dado que las estructuras discretas sirve como base para muchas otras áreas de la informática, vale la pena señalar que el límite entre estructuras discretas y otras áreas, particularmente Algoritmos y Complejidad, Software Fundamentos de desarrollo, lenguajes de programación y sistemas inteligentes, no siempre puede ser quebradizo . De hecho, diferentes instituciones pueden optar por organizar los cursos en los que cubren este material de muy diferentes maneras. Algunas instituciones pueden cubrir estos temas en uno o dos cursos enfocados con títulos como ""estructuras discretas"" o ""matemática discreta"", mientras que otros pueden integrar estos temas en cursos de programación, algoritmos, y / o la inteligencia artificial. Las combinaciones de estos enfoques también son frecuentes (por ejemplo, que cubre muchos de estos temas en un solo curso introductorio centrado y que cubre los temas restantes en los cursos de tópicos más avanzados).

Área de Conocimiento (Knowledge Area-KA) (KA)	Core Tier1	Core Tier2	Electivos
2.4.1 Funciones, relaciones y conjuntos (Pág. 36)	4		No
2.4.2 Lógica básica (Pág. 36)	9		No
2.4.3 Técnicas de demostración (Pág. 37)	10	1	No
2.4.4 Fundamentos de conteo (Pág. 38)	5		No
2.4.5 Árboles y Grafos (Pág. 39)	3	1	No
2.4.6 Probabilidad Discreta (Pág. 39)	6	2	No

2.4.1. DS/Funciones, relaciones y conjuntos (4 horas Core-Tier1)

Tópicos:

Core Tier1

- Conjuntos: 1. Diagramas de Venn 2. Unión, intersección, complemento 3. Producto Cartesiano
 4. Potencia de conjuntos 5. Cardinalidad de Conjuntos finitos
- Relaciones: 1. Reflexividad, simetria, transitividad 2. Relaciones equivalentes, ordenes parciales
- Funciones: 1. Suryecciones, inyecciones, biyecciones 2. Inversas 3. Composición

Objetivos de Aprendizaje:

- Core-Tier1:
 - 2. Realizar las operaciones asociadas con conjuntos, funciones y relaciones [Usar]
 - 3. Relacionar ejemplos prácticos para conjuntos funciones o modelos de relación apropiados e interpretar la asociación de operaciones y terminología en contexto [Evaluar]

1. Explicar con ejemplos la terminología básica de funciones, relaciones y conjuntos [Familiarizarse]

2.4.2. DS/Lógica básica (9 horas Core-Tier1)

Tópicos:

Core Tier1

- Lógica proposicional.
 Ref: 2.9.3 Raciocinio y representación básica de conocimiento, Pág. 75
- Conectores lógicos.
- Tablas de verdad.
- Forma normal (conjuntiva y disyuntiva)

- Validación de fórmula bien formada.
- Reglas de inferencia proposicional (conceptos de modus ponens y modus tollens)
- Logica de predicados: 1. Cuantificación universal y existencial
- Limitaciones de la lógica proposicional y de predicados (ej. problemas de expresividad)

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Convertir declaraciones lógicas desde el lenguaje informal a expresiones de lógica proposicional y de predicados [Usar]
- 2. Aplicar métodos formales de simbolismo proposicional y lógica de predicados, como el cálculo de la validez de formulas y cálculo de formas normales [Usar]
- 3. Usar reglas de inferencia para construir demostraciones en lógica proposicional y de predicados [Usar]
- 4. Describir como la lógica simbólica puede ser usada para modelar situaciones o aplicaciones de la vida real, incluidos aquellos planteados en el contexto computacional como análisis de software (ejm. programas correctores), consulta de base de datos y algoritmos [Usar]
- 5. Aplicar demostraciones de lógica formal y/o informal, pero rigurosa, razonamiento lógico para problemas reales, como la predicción del comportamiento de software o solución de problemas tales como rompecabezas [Usar]
- 6. Describir las fortalezas y limitaciones de la lógica proposicional y de predicados [Familiarizarse]

2.4.3. DS/Técnicas de demostración (10 horas Core-Tier1, 1 horas Core-Tier2)

Tópicos:

Core Tier1

- Nociones de implicancia, equivalencia, conversión, inversa, contrapositivo, negación, y contradicción
- Estructura de pruebas matemáticas.
- Demostración directa.
- Refutar por contraejemplo.
- Demostracción por contradicción.
- Inducción sobre números naturales.
- Inducción estructural.
- Inducción leve y fuerte (Ej. Primer y Segundo principio de la inducción)
- Definiciones matemáticas recursivas.

Core Tier2

• Conjuntos bien ordenados.

Objetivos de Aprendizaje:

Core-Tier1:

1. Identificar la técnica de demostración utilizada en una demostración dada [Familiarizarse]

- 2. Describir la estructura básica de cada técnica de demostración (demostración directa, demostración por contradicción e inducción) descritas en esta unidad [Usar]
- 3. Aplicar las técnicas de demostración (demostración directa, demostración por contradicción e inducción) correctamente en la construcción de un argumento solido [Usar]
- 4. Determine que tipo de demostración es la mejor para un problema dado [Evaluar]
- 5. Explicar el paralelismo entre ideas matemáticas y/o inducción estructural para la recursión y definir estructuras recursivamente [Evaluar]
- 6. Explicar la relación entre inducción fuerte y débil y dar ejemplos del apropiado uso de cada uno [Evaluar]

Core-Tier2:

7. Enunciar el principio del buen-orden y su relación con la inducción matemática [Familiarizarse]

2.4.4. DS/Fundamentos de conteo (5 horas Core-Tier1)

Tópicos:

Core Tier1

- Técnicas de Conteo: 1. Conteo y cardinalidad de un conjunto 2. Regla de la suma y producto 3. Principio de inclusión-exclusión 4. Progresión geométrica y aritmética
- Principio de las casillas.
- Permutaciones y combinaciones: 1. Definiciones básicas 2. Identidad de Pascal 3. Teorema del binomio
- Resolviendo relaciones de recurrencia: 1. Un ejemplo de una relación de recurrencia simple, como los números de Fibonacci 2. Otras ejemplos, mostrando una variedad de soluciones
 Ref: 2.1.1 Análisis Básico, Pág. 18
- Aritmetica modular basica

Objetivos de Aprendizaje:

- 1. Aplicar argumentos de conteo, incluyendo las reglas del producto y de la suma, principio de inclusión-exclusión y progresiones aritméticas/geométricas [Usar]
- 2. Aplicar el principio de las casillas en el contexto de una demostración formal [Usar]
- 3. Calcular permutaciones y combinaciones en un conjunto, e interpreta su significado en el contexto de una aplicación en particular [Usar]
- 4. Mapear aplicaciones del mundo real a formalismos de conteo adecuados, como el determinar el número de formas de acomodar a un conjunto de personas alrededor de una mesa, sujeto a restricciones en la disposición de los asientos, o en el número de maneras de determinar ciertas manos en juegos de cartas (ejm. una casa llena) [Usar]
- 5. Resolver una variedad de relaciones de recurrencia básicas [Usar]
- 6. Analizar un problema para determinar las relaciones de recurrencia implícitas [Usar]
- 7. Realizar cálculos que involucran aritmética modular [Usar]

2.4.5. DS/Árboles y Grafos (3 horas Core-Tier1, 1 horas Core-Tier2)

Ver también: 2.1.3 Algoritmos y Estructuras de Datos fundamentales, Pág. 20, especialmente con estratégias de recorrido en grafos.

Tópicos:

Core Tier1

- Árboles. 1. Propiedades 2. Estrategias de recorrido
- Grafos no dirigidos
- Grafos dirigidos
- Grafos ponderados

Core Tier2

- Arboles de expansion/bosques.
- Isomorfismo en grafos.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Ilustrar mediante ejemplos la terminología básica de teoría de grafos, y de alguna de las propiedades y casos especiales de cada tipo de grafos/árboles [Familiarizarse]
- 2. Demostrar diversos métodos de recorrer árboles y grafos, incluyendo recorridos pre, post e inorden de árboles [Usar]
- 3. Modelar una variedad de problemas del mundo real en ciencia de la computación usando formas adecuadas de grafos y árboles, como son la representación de una topología de red o la organización jerárquica de un sistema de archivos [Usar]
- 4. Demuestrar como los conceptos de grafos y árboles aparecen en estructuras de datos, algoritmos, técnicas de prueba (inducción estructurada), y conteos [Usar]

Core-Tier2:

- 5. Explicar como construir un árbol de expansión de un grafo [Usar]
- 6. Determinar si dos grafos son isomorfos [Usar]

2.4.6. DS/Probabilidad Discreta (6 horas Core-Tier1, 2 horas Core-Tier2)

Tópicos:

Core Tier1

- Espacio de probabilidad finita, eventos.
- Axiomas de Probabilidad y medidas de probabilidad.
- Probabilidad condicional, Teorema de Bayes.
- Independencia.
- Variables enteras aleatorias (Bernoulli, binomial).
- Esperado, Linearidad del esperado.

Core Tier2

- Varianza.
- Independencia Condicional.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Calcular las probablidades de eventos y el valor esperado de variables aleatorias para problemas elementales como en los juegos de azar [Usar]
- 2. Distinguir entre eventos dependientes e independientes [Usar]
- 3. Identificar un caso de la distribución binomial y calcula la probabilidad usando dicha distribución [Usar]
- 4. Aplicar el teorema de Bayes para determinar las probabilidades condicionales en un problema [Usar]
- 5. Aplicar herramientas de probabilidades para resolver problemas como el análisis de caso promedio en algoritmos o en el análisis de hash [Usar]

Core-Tier2:

- 6. Calcular la varianza para una distribución de probabilidad dada [Usar]
- 7. Explicar como los eventos que son independientes pueden ser condicionalmente dependientes (y vice versa) Identificar ejemplos del mundo real para estos casos [Usar]

2.5. Gráficos y Visualización (GV)

Computer Graphics es el término comúnmente utilizado para describir la generación y la manipulación de imagenes por medio de la computadora. Es la ciencia de la que permite la comunicación visual a través de la computación. Sus usos incluyen dibujos animados, efectos especiales de cine, video juegos, imágenes médicas, de ingeniería, así como científicos, información y visualización de conocimiento. Tradicionalmente, los gráficos a nivel de pregrado se ha centrado en la representación, el álgebra lineal, y los enfoques fenomenológicos. Más recientemente, la atención se ha comenzado a incluir la física, integración numérica, escalabilidad y hardware de propósito específico. Para que los estudiantes se conviertan en expertos en el uso y generación de gráficos por ordenador, muchos temas específicos de la implementación deben ser abordados, tales como formatos de archivos, interfaces de hardware y las interfaces de programa de aplicación. Estos temas cambian rápidamente, y la descripción que sigue a los intentos para evitar que sean excesivamente prescriptivos sobre ellos. El área abarcada por Gráficos y visualización se divide en varios campos relacionados entre sí: 1. Fundamentos: La infografía depende de una comprensión de cómo los seres humanos utilizan la visión para percibir la información y cómo la información se puede representar en un dispositivo de visualización. Cada científico de la computación debe tener cierta comprensión de dónde y cómo los gráficos se pueden aplicarse según corresponda, así asthe procesos fundamentales involucrados en la prestación de visualización. 2. Modelado artículo: Información que se muestra debe ser codificada en la memoria del ordenador en alguna forma, a menudo en forma de una especificación matemática de la forma y la forma. 3. Representación: Representación es el proceso de visualización de la información contenida en un modelo. 4. Animación: La animación es la prestación de una manera que hace que las imágenes parecen moverse y la síntesis o la adquisición de las variaciones en el tiempo de los modelos. 5. Visualización: El campo de la visualización busca determinar y presentar estructuras y relaciones en conjuntos de datos correlacionados subyacentes entre una amplia variedad de áreas de aplicación. El objetivo primordial de la presentación debe ser comunicar la información en un conjunto de datos con el fin de mejorar la comprensión 6. Geometría Computacional: Geometría Computacional es el estudio de los algoritmos que se indican en términos de geometría.

Gráficos y visualización está relacionado con la visión artificial y procesamiento de imágenes, que se encuentran en el área de 2.9 Sistemas Inteligentes (IS), Pág. 73 y algoritmos tales como la geometría computacional, que se encuentran en el área 2.1 Algoritmos y Complejidad (AL), Pág. 17. Los temas de la realidad virtual son encontrados en el el área de conocimiento 2.6 Interacción Humano-Computador (HCI), Pág. 46.

Esta descripción asume que los estudiantes están familiarizados con los conceptos fundamentales de la representación de los datos, la abstracción y la implementación del programa.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core	Core	Electivos
	Tier1	Tier2	
2.5.1 Conceptos Fundamentales (Pág. 41)	2	1	Si
2.5.2 Rendering Básico (Pág. 42)			Si
2.5.3 Modelado Geométrico (Pág. 43)			Si
2.5.4 Renderizado Avanzado (Pág. 44)			Si
2.5.5 Animación por computadora (Pág. 45)			Si
2.5.6 Visualización (Pág. 46)			Si

2.5.1. GV/Conceptos Fundamentales (2 horas Core-Tier1, 1 horas Core-Tier2)

Para casi todos los científicos de la computación y desarrolladores de software, una comprensión de cómo los seres humanos interactúan con las máquinas es esencial. Mientras que estos temas pueden ser cubiertos en un curso de pregrado de gráficos estándar, también pueden ser cubiertos en los cursos de ciencia de la computacióny programación introductorias. Parte de nuestra motivación para la inclusión de los modos inmediatos y retenidas es que estos modos son análogos a votación vs programación orientada a eventos. Esta es una cuestión fundamental en la ciencia de la computación: ¿ Hay un objeto botón o existe sólo la visualización de un botón en la pantalla? Tenga en cuenta que la mayoría de los resultados en esta sección se encuentran en el nivel de conocimiento y muchos de estos temas se revisan con mayor profundidad en las secciones posteriores.

Tópicos:

Core Tier1

- Aplicaciones multimedia, incluyendo interfaces de usuario, edición de audio y vídeo, motores de juego, cad, visualización, realidad virtual.
- Digitalización de datos analógicos, la resolución y los límites de la percepción humana, por ejemplo, los píxeles de la pantalla visual, puntos para impresoras láser y muestras de audio
 Ref: 2.6.1 Fundamentos, Pág. 47
- El uso de las API estándar para la construcción de interfaces de usuario y visualización de formatos multimedia estándar
 Ref: 2.6.2 Diseño de Interacción, Pág. 48
- Formatos estándar, incluyendo formatos sin pérdidas y con pérdidas.

Core Tier2

- Modelos de color sustractivo Aditivo y (CMYK y RGB) y por qué estos proporcionan una gama de colores.
- Soluciones de compensación entre el almacenamiento de datos y los datos re-computing es personalizado por vectores y raster en representaciones de imágenes.
- Animación como una secuencia de imágenes fijas.

Electivos

Almacenamiento doble.

Objetivos de Aprendizaje: Core-Tier1:

- 1. Identificar usos comunes de presentaciones digitales de humanos (por ejemplo, computación gráfica, sonido) [Familiarizarse]
- 2. Explicar en términos generales cómo las señales analógicas pueden ser representadas por muestras discretas, por ejemplo,cómo las imagenes pueden ser representadas por pixeles [Familiarizarse]
- 3. Explicar cómo las limitaciones en la percepción humana afectan la selección de la representación digital de señales analógicas [Usar]

- 4. Cronstruir una interfaz de usuario sencilla usando una API estándar [Familiarizarse]
- 5. Describir las diferencias entre técnicas de compresión de imágenes con pérdida y sin pérdida ejemplificando cómo se reflejan en formatos de archivos de imágenes conocidos como JPG, PNG, MP3, MP4, y GIF [Familiarizarse]

Core-Tier2:

- 6. Describir modelos de color y su uso en los dispositivos de visualización de gráficos [Familiarizarse]
- 7. Describir las ventajas y desventajas entre el almacenamiento de información vs almacenar suficiente información para reproducir la información, como en la diferencia entre el vector y la representación de la trama [Familiarizarse]

Elective:

- 8. Describir los procesos básico de la producción de movimiento continuo a partir de una secuencia de cuadros discretos(algunas veces llamado it flicker fusion) [Familiarizarse]
- 9. Describir cómo el doble buffer puede eliminar el parpadeo de la animación [Familiarizarse]

2.5.2. GV/Rendering Básico

En esta sección se describe la prestación básica y las técnicas gráficas fundamentales que casi todos los cursos de pregrado en los gráficos se cubre y que son esenciales para el estudio adicional en gráficos. Muestreo y anti-aliasing están relacionados con el efecto de la digitalización y aparecen en otras áreas de la computación, por ejemplo, en el muestreo de audio.

Tópicos:

Electivos

- Renderizado en la naturaleza, por ejemplo, la emisión y dispersión de la luz y su relación con la integración numérica.
- Renderizado Fordward and Backward (i.e., ray-casting y rasterización)
- Representación poligonal
- Radiometría básica, triángulos similares y modelos de proyecciones
- Afinamiento y Transformaciones de Sistemas de coordenadas
- Ray tracing
- Visibilidad y oclusión, incluyendo soluciones a este problema, como el almacenamiento en búfer de profundidad, algoritmo del pintor, y el trazado de rayos.
- Representación de la ecuación de adelante hacia atrás.
- Rasterización triangular simple.
- Renderización con una API basada en shader.
- Mapeo de texturas, incluyendo minificación y magnificación (e.g., MIP-mapping trilineal)
- Aplicación de la representación de estructuras de datos espaciales.
- Muestreo y anti-aliasing.
- Gráficos en escena y la canalización de gráficos.

Objetivos de Aprendizaje:

Elective:

1. Discutir el problema de transporte de la luz y su relación con la integración numérica, es decir, se emite luz, dispersa alrededor de la escena, y es medida por el ojo [Familiarizarse]

- 2. Describir la tubería básica gráficos y cómo el factor de representación va hacia adelante y atrás en esta [Familiarizarse]
- 3. Crear un programa para visualizar modelos 3D de imagenes gráficas simples [Usar]
- 4. Derivar la perspectiva lineal de triángulos semejantes por conversión de puntos (x,y,z) a puntos (x/z, y/z, 1) [Usar]
- 5. Obtener puntos en 2-dimensiones y 3-dimensiones por aplicación de transformaciones afín [Usar]
- 6. Aplicar sistema de coordenadas de 3-dimensiones y los cambios necesarios para extender las operaciones de transformación 2D para manejar las transformaciones en 3D [Usar]
- 7. Contrastar la renderización hacia adelanate forward y hacia atras backward [Evaluar]
- 8. Explicar el concepto y las aplicaciones de mapeo de texturas, muestreo y el anti-aliasing [Familiarizarse]
- 9. Explicar la dualidad de rastreo de rayos/rasterización para el problema de visibilidad [Familia-rizarse]
- 10. Implementar simples procedimientos que realicen la transformación y las operaciones de recorte de imágenes simples en 2 dimensiones [Usar]
- 11. Implementar un sencillo renderizador en tiempo real utilizando una API de rasterización (por ejemplo, OpenGL) utilizando buffers de vértices y shaders [Usar]
- 12. Comparar y contrastar las diferentes técnicas de renderización [Evaluar]
- 13. Calcular las necesidades de espacio en base a la resolución y codificación de color [Evaluar]
- 14. Calcular los requisitos de tiempo sobre la base de las frecuencias de actualización, técnicas de rasterización [Evaluar]

2.5.3. GV/Modelado Geométrico

La visualización tiene fuertes lazos con el área de conocimiento de Interacción humano computador (HCI), así como Ciencias de la Computación (CN). Los lectores deben consultar la HCI y CN KAs para consultar otros temas relacionados con las evaluaciones de población y de interfaz de usuario.

Tópicos:

- Operaciones geométricas básicas como cálculo de intersección y pruebas de proximidad.
- Volúmenes, voxels y representaciones basadas en puntos.
- Curvas polinomiales y Superficies paramétricas.
- Representación ímplicita de curvas y superficies.
- Técnicas de aproximación, tales como curvas polinómicas, curvas Bezier, curvas spline y superficies, y base racional no uniforme (NURB) espinas, y el método de ajuste de nivel.
- Técnicas de superficie de representación incluyendo teselación, la representación de malla, carenado malla, y las técnicas de generación de mallas, como la triangulación de Delaunay, marchando cubos.
- Técnicas de subdivisión espacial.
- Modelos procedimentales como fractales, modelamiento generativo y sistemas L.
- Graftales, referenciados con Lenguajes de Programación (gramática a imágenes generadas)
- Modelos deformables de forma libre y elásticamente deformables.

- Subdivisión de superficies.
- Modelado multiresolución.
- Reconstrucción.
- Representación de Geometría Sólida Constructiva (GSC)

Objetivos de Aprendizaje:

Elective:

- 1. Representar curvas y superficies utilizando formas tanto implícitas y paramétricas [Usar]
- 2. Crear modelos poliédrico simples por teselación de superficies [Usar]
- 3. Generar una representación de malla de una superficie implícita [Usar]
- 4. Generar un modelo fractal o terreno usando un método de procedimiento [Usar]
- 5. Generar una malla de un conjunto de puntos adquiridos por un scaner laser [Usar]
- 6. Construct modelos de geometría sólida constructiva a partir de simples primitivas, tales como cubos y superficies cuádricas [Usar]
- 7. Contrastar métodos de modelización con respecto a espacio y tiempo de complejidad y calidad de imagen [Evaluar]

2.5.4. GV/Renderizado Avanzado

Tópicos:

Electivos

- Soluciones y aproximaciones hacia la ecuación de renderizado, por ejemplo: 1. Distribución de ray tracing y path tracing 2. Mapeo de fotones 3. Path tracing bidireccional 4. Reyes rendering (micropoligono) 5. Metropolis light transport
- Tiempo (desenfoque de movimiento), la posición del objetivo (enfoque), y la frecuencia continua (color) y su impacto en la representación.
- Mapeo de Sombras.
- Selectiva de oclusión.
- Distribución función de dispersión bidireccional (BSDF) teoría y microfacets.
- Disperción de la Superficie.
- Recursos de luz de Área.
- Almacenamiento jerárquico por profundidad.
- El campo de luz, representación de imágenes.
- Renderizado no fotorealistico.
- Arquitectura del GPU.
- Sistemas visuales humanos incluida la adaptación a la luz, la sensibilidad al ruido, y la fusión de parpadeo.

Objetivos de Aprendizaje:

Elective:

1. Demostrar como un algoritmo calcula una solución a la ecuación de renderización [Evaluar]

- 2. Demostrar las propiedades de un algoritmo de renderización, por ejemplo, completo, consistente, e imparcial [Evaluar]
- 3. Analizar las demandas de ancho de banda y cálculo de un simple algoritmo [Evaluar]
- 4. Implementar un algoritmo no trivial de sombreado(por ejemplo, sombreado caricaturizado(toon shading), mapas de sombras en cascada(cascaded shadow maps)) bajo una APi de rasterización [Usar]
- 5. Discutir como una técnica artística particular puede ser implementada en un renderizador [Familiarizarse]
- 6. Explicar como reconocer las técnicas gráficas usadas para crear una imagen en particular [Familiarizarse]
- 7. Implementar cualquiera de las técnicas gráficas especificadas utilizando un sistema gráfico primitivo a nivel de píxel individual [Usar]
- 8. Implementar un trazado de rayos(ray tracer) para escenas una simple Función de Distribución de Reflectancia Bidireccional(BRDF) por ejemplo Phong's, además de la reflexión y la refracción [Usar]

2.5.5. GV/Animación por computadora

Tópicos:

Electivos

- Cinématica directa e inversa.
- Detección de colisiones y respuesta.
- Animación procedimental empleando ruido, reglas (boids/crowds) y sistemas de partículas.
- Algoritmos Skinning.
- Movimientos basado en la física, incluyendo la dinámica del cuerpo rígido, sistemas de partículas físicas, redes de masa-muelle de tela y la carne y el pelo.
- Animación de Cuadros Principales
- Splines
- Estructuras de datos para rotaciones, como cuaterniones.
- Animación de Cámara.
- Captura de Movimiento.

Objetivos de Aprendizaje:

Elective:

- 1. Calcular la localización y orientación de partes de un modelo usando un enfoque de cinemática hacia delante [Usar]
- 2. Calcular la orientación de partes articuladas de un modelo de una localizacion y orientación usando un enfoque de cinemática inversa [Usar]
- 3. Describir las ventajas y desventajas de diferentes representaciones de rotación [Evaluar]
- 4. Implementar el método de interpolación spline para producir las posiciones y orientaciones en medio [Usar]
- 5. Implementar algoritmos para el modelamiento físico de partículas dinámicas usando simplemente la mecánica de Newton, por ejemplo Witkin & Kass , serpientes y gusanos, Euler simpléctica, Stormer/Verlet, o métodos de punto medio de Euler [Usar]

- 6. Discutir las ideas básicas detrás de algunos métodos para dinámica de fluidos para el modelamiento de trayectorias balísticas, por ejemplo salpicaduras, polvo, fuego, o humo [Familiarizarse]
- 7. Usar el software de animación común para construir formas orgánicas simples usando metaball y el esqueleto [Usar]

2.5.6. GV/Visualización

Tópicos:

Electivos

- Visualización de campos escalares de 2D/3D: mapeado de color, isosurfaces.
- Representación de datos Direct volume: ray-casting, funciones de transferencia, segmentación.
- Visualización de: 1. Campos de vector y flujo de datos 2. Datos que varian en el tiempo 3. Highdimensional data: reducción de dimensiones, coordenadas paralelas 4. Datos Non-espaciales: multi-variados, estructurados en árbol/grafo, texto
- Fundamentos perceptuales y cognitivos que conducen abstracciones visuales.
- Diseño de visualización.
- Evaluación de métodos de visualización.
- Aplicaciones de visualización.

Objetivos de Aprendizaje:

Elective:

- 1. Describir los algitmos básicos para visualización escalar y vectorial [Familiarizarse]
- 2. Describir las ventajas y desventajas de los algoritmos de visualización en terminos de precisión y desempeño [Evaluar]
- 3. Proponer un diseño de visualización adecuado para una combinación particular de características de datos y tareas de la aplicación [Evaluar]
- 4. Analizar la eficacia de una visualización dada para una tarea en particular [Evaluar]
- 5. Diseñar un proceso para evaluar la utilidad de un algoritmo de visualización o del sistema [Evaluar]
- 6. Reconocer una variedad de aplicaciones de visualización incluyendo representaciones de datos científicos, médicos y matemática; visualización de flujo; y análisis espacial [Familiarizarse]

2.6. Interacción Humano-Computador (HCI)

La interacción humano-computador (Human-computer interaction HCI) tiene que ver con el diseño de las interacciones entre las actividades humanas y los sistemas computacionales que los apoyan y con la construcción de interfaces para permitirse esas interacciones.

La interacción entre los usuarios y artefactos computacionales se produce en una interfaz que incluye tanto de software como de hardware. Impactos de diseño de interfaz de esta manera el ciclo de vida del software, ya que debe darse al inicio; el diseño e implementación de la funcionalidad central pueden influir, para bien o para mal, en la interfaz de usuario.

Debido a que se trata de personas, así como los sistemas computacionales, como un área de conocimiento, HCI exige un análisis de las cuestiones culturales, sociales, organizativas, cognitivas y perceptivas. En consecuencia, se basa en una variedad de tradiciones disciplinarias, incluyendo la psicología, la ergonomía, la Ciencia de la Computación, el diseño gráfico y de producto, la antropología y la ingeniería.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core	Core	Electivos
	Tier1	Tier2	
2.6.1 Fundamentos (Pág. 47)	4		No
2.6.2 Diseño de Interacción (Pág. 48)		4	No
2.6.3 Programación de Sistemas Interactivos (Pág. 48)			Si
2.6.4 Diseño y Testing centrados en el usuario (Pág. 49)			Si
2.6.5 Nuevas Tecnologías Interactivas (Pág. 50)			Si
2.6.6 Colaboración y Comunicación (Pág. 50)			Si
2.6.7 Métodos estadísticos para HCI (Pág. 51)			Si
2.6.8 Factores Humanos y seguridad (Pág. 51)			Si
2.6.9 HCI orientada al diseño (Pág. 52)			Si
2.6.10 Realidad virtual y aumentada mezcladas (Pág. 52)			Si

2.6.1. HCI/Fundamentos (4 horas Core-Tier1)

Motivación: Para los usuarios finales, la interfaz es el sistema. Así que el diseño en este ámbito debe ser centrado en la interacción y en el hombre. Los estudiantes necesitan un repertorio diferente de las técnicas para hacer frente a esto que está previsto en el plan de estudios en otros lugares.

Tópicos:

Core Tier1

- Contextos para IHC (cualquiera relacionado con una interfaz de usuario, p.e., página web, aplicaciones de negocios, aplicaciones móviles y juegos)
- Procesos para desarrollo centrado en usuarios, p.e., enfoque inicial en usuarios, pruebas empíricas, diseño iterativo.
- Diferentes medidas para evaluación, p.e., utilidad, eficiencia, facilidad de aprendizaje, satisfacción de usuario.
- Heurística de usabilidad y los principios de pruebas de usabilidad.
- Capacidades físicas que informan diseño de interacción, p.e. percepción del color, ergonomía.
- Modelos cognoscitivos que informan diseño de interacciones, p.e., atención, percepción y reconocimiento, movimiento, memoria, golfos de expectativa y ejecución.
- Modelos sociales que informan el diseño de interacción, e.g., cultura, comunicación, redes y organizaciones.
- Principios del buen diseño y buenos diseñadores; ventajas y desventajas de ingeniería.
- Accesibilidad, p.e., interfaces para poblaciones con diferentes habilidades (p.e., invidentes, discapacitados)
- Interfaces para grupos de población de diferentes edades (p.e., niños, mayores de 80)

Objetivos de Aprendizaje: Core-Tier1:

- 1. Discutir por qué el desarrollo de software centrado en el hombre es importante [Familiarizarse]
- 2. Resumir los preceptos básicos de la interacción psicológica y social [Familiarizarse]
- 3. Desarrollar y usar un vocabulario conceptual para analizar la interación humana con el software: disponibilidad, modelo conceptual, retroalimentación, y demás [Usar]
- 4. Define un proceso de diseño centralizado en el usario que de forma explícita considere el hecho que un usuario no es como un desarrollador o como sus conocimientos [Usar]
- 5. Crear y dirigir una simple pruebga de usabilidad para una aplicación existente de software [Evaluar]

2.6.2. HCI/Diseño de Interacción (4 horas Core-Tier2)

Motivación: Estudiantes de CS necesitan un conjunto mínimo de métodos y herramientas bien establecidas para llevar a la interfaz en la construcción.

Tópicos:

Core Tier2

- Principios de interfaces gráficas de usuario (GUIs)
- Elementos de diseño visual (disposición, color, fuentes, etiquetado)
- Análisis de tareas, incluidos los aspectos cualitativos de la generación de modelos de análisis de tareas.
- Prototipos de baja fidelidad (papel)
- Técnicas de evaluación cuantitativa ej. evaluación Keystroke-level.
- Ayuda y documentación.
- Manejo de fallas humanas/sistema.
- Estándares de interfaz de usuario.

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Para un grupo de usuarios determinado, realizar y documentar un análisis de sus necesidades [Evaluar]
- 2. Crear una aplicación simple, junto con la ayuda y la documentación, que soporta una interfaz gráfica de usuario [Usar]
- 3. Llevar a cabo una evaluación cuantitativa y discutir / informar sobre los resultados [Usar]
- 4. Discutir al menos un standard nacional o internacional de diseño de interfaz de usuario [Familiarizarse]

2.6.3. HCI/Programación de Sistemas Interactivos

Motivación: Para tener una visión centrada en la experiencia de usuario de desarrollo de software y luego cubrir enfoques y tecnologías para hacer que eso suceda.

Tópicos:

Electivos

Patrones de arquitectura de software. Ej Modelo Vista Controlador, Objetos de comando, online,
 offline

Ref: 2.14.3 Programación reactiva y dirigida por eventos, Pág. 106

- Patrones de diseño de Interacción: jerarquía visual, distancia navegacional.
- Manejo de eventos e interacción de usuario.
- Manejo de geometría.

Ref: 2.5.3 Modelado Geométrico, Pág. 43

- Elección de estilos de interacción y técnicas de interacción.
- Presentación de información: navegación, representación, manipulación.
- Técnicas de animación de interfaz (ej. grafo de escena)
- Clases Widget y bibliotecas.

■ Bibliotecas modernas de GUI (ej. iOS, Android, JavaFX) constructores de GUI y entornos de programación UI.

Ref: 2.12.3 Plataformas móviles, Pág. 94

- Especificación declarativa de Interfaz: Hojas de Estilo y DOMs.
- Aplicaciones dirigidas a datos (Páginas web respaldadas por base de datos)
- Diseño multiplataforma.
- Diseño para dispositivos con restricción de recursos (ej. dispositivos pequeños, móviles)

Objetivos de Aprendizaje:

Elective:

- 1. Explicar la importancia del controlador Modelo-Vista para la programación de la interfaz [Familiarizarse]
- 2. Crear una aplicación con una moderna interfaz gráfica de usuario [Usar]
- 3. Identificar puntos comunes y las diferencias en las UIs a través de diferentes plataformas [Familiarizarse]
- 4. Explicar y utilizar los conceptos de programación de GUI: la gestión de eventos, gestión de distribución basado en restricciones, etc [Familiarizarse]

2.6.4. HCI/Diseño y Testing centrados en el usuario

Motivación: Una exploración de técnicas para garantizar que los usuarios finales sean totalmente en cuenta en todas las etapas del proceso de diseño, desde su creación hasta su implementación.

Tópicos:

Electivos

- Enfoque y características del proceso de diseño.
- Requerimientos de funcionalidad y usabilidad.
 Ref: 2.16.4 Ingeniería de Requisitos, Pág. 123
- Técnicas de recolección de requerimientos, ej. entrevistas, encuentas, etnografía e investigación contextual.
- Técnicas y herramientas para el análisis y presentación de requerimientos ej. reportes, personas.
- Técnicas de creación de prototipos y herramientas, ej.bosquejos, storyboards, prototipos de baja fidelidad, esquemas de página.
- Evaluación sin usuarios, usando ambas técnicas cualitativas y cuantitativas. Ej. Revisión estructurada, GOMS, análisis basado en expertos, heurísticas, lineamientos y estándar.
- Evaluación con usuarios. Ej. Observación, Método de pensamiento en voz alta, entrevistas, encuentas, experimentación.
- Desafíos para la evaluación efectiva, por ejemplo, toma de muestras, la generalización.
- Reportar los resultados de las evaluaciones.
- Internacionalización, diseño para usuarios de otras culturas, intercultural.

Objetivos de Aprendizaje:

Elective:

 Explicar cómo el diseño centrado en el usuario complementa a otros modelos de proceso software [Familiarizarse]

- 2. Utilizar lo-fi (baja fidelidad) técnicas de prototipado para recopilar y reportar, las respuestas del usuario [Usar]
- 3. Elegir los métodos adecuados para apoyar el desarrollo de una específica interfaz de usuario [Evaluar]
- 4. Utilizar una variedad de técnicas para evaluar una interfaz de usuario dada [Evaluar]
- 5. Comparar las limitaciones y beneficios de los diferentes métodos de evaluación [Evaluar]

2.6.5. HCI/Nuevas Tecnologías Interactivas

Motivación: Dado que las tecnologías evolucionan, se hacen posibles nuevos estilos de interacción. Esta unidad de conocimiento debe considerarse extensible, para realizar un seguimiento de las tecnologías emergentes.

Tópicos:

Electivos

- Elección de estilos de interacción y técnicas de interacción.
- Representación de información a usuarios; navegación, representación, manipulación.
- Approaches to design, implementation and evaluation of non-mouse interaction 1. Touch and multi-touch interfaces 2. Shared, embodied, and large interfaces 3. New input modalities (such as sensor and location data) 4. New Windows, e.g., iPhone, Android 5. Speech recognition and natural language processing 6. Wearable and tangible interfaces 7. Persuasive interaction and emotion 8. Ubiquitous and context-aware interaction technologies (Ubicomp) 9. Bayesian inference (e.g. predictive text, guided pointing) 10. Ambient/peripheral display and interaction Ref: 2.9.9 Procesamiento del Lenguaje Natural, Pág. 78

Objetivos de Aprendizaje:

Elective:

- 1. Describe cuando son adecuadas las interfaces sin uso de ratón [Familiarizarse]
- 2. Comprende las posibilidades de interacción que van más allá de las interfaces de ratón y puntero [Familiarizarse]
- 3. Discute las ventajas (y desventajas) de las interfaces no basadas en ratón [Evaluar]

2.6.6. HCI/Colaboración y Comunicación

De motivación: No sólo los usuarios de interfaces de ordenador de apoyo en el logro de sus metas individuales, sino también en su interacción con los demás, ya sea centrada en la tarea (trabajo o juego) o en tareas fuera de foco (redes sociales).

Tópicos:

- La comunicación asíncrona en grupo, por ejemplo, el correo electrónico, foros, redes sociales.
- Comunicación sincrónica en grupo, por ejemplo, las salas de chat, conferencias, juegos en línea.
- Medios de comunicación social, informática social, y el análisis de redes sociales.
- Colaboración en línea, espacios "inteligentes" y aspectos de coordinación social de tecnologías de flujo de trabajo.
- Comunidades en línea.
- Personajes de Software y agentes inteligentes, mundos virtuales y avatares.
 Ref: 2.9.8 Agentes, Pág. 78

■ Psicología Social

Objetivos de Aprendizaje:

Elective:

- 1. Describir la diferencia entre la comunicación sincrónica y asincrónica [Familiarizarse]
- 2. Comparar los problemas de IHC en la interacción individual con la interacción del grupo [Evaluar]
- 3. Discuta varias problemas de interés social planteados por el software colaborativo [Familiarizarse]
- 4. Discutir los problemas de IHC en software que personifica la intención humana [Familiarizarse]

2.6.7. HCI/Métodos estadísticos para HCI

Motivación: Mucho trabajo HCI depende del uso adecuado, la comprensión y aplicación de la estadística. Este conocimiento es a menudo ayuda en manos de los estudiantes que se incorporan al campo de la psicología, pero menos común en los estudiantes con un fondo CS.

Tópicos:

Electivos

- Pruebas T.
- Análisis de Varianza (ANOVA).
- La asignación al azar (no paramétrica) pruebas, dentro vs. entre sujetos diseño.
- Calculando el efecto producto del tamaño.
- Análisis exploratorio de datos.
- Presentación de datos estadísticos.
- Combinando resultados cuantitativos y cualitativos.

Objetivos de Aprendizaje:

Elective:

- 1. Explicar los conceptos estadísticos básicos y sus áreas de aplicación [Familiarizarse]
- 2. Extraer y articular los argumentos estadísticos utilizados en papers que informan cuantitativamente los estudios de usuarios [Usar]
- 3. Diseñar un estudio de usuarios que va a dar resultados cuantitativos [Usar]
- 4. Llevar a cabo e informar sobre un estudio que utiliza evalución cualitativa y cuantitativa [Usar]

2.6.8. HCI/Factores Humanos y seguridad

Motivación: Diseño eficaz interfaz requiere un conocimiento básico de la psicología de la seguridad. Muchos de los ataques no tienen una base tecnológica, pero explotan propensiones humanas y vulnerabilidades. "Sólo los aficionados atacan máquinas; profesionales se dirigen las personas" (Bruce Schneier, https://www.schneier.com/blog/archives/2013/03/phishing_has_go.h.)

Tópicos:

- Psicologia aplicada y politicas de seguridad
- Seguridad de economía.
- Entornos regulatorios, responsabilidad, riesgo y autodeterminación.
- Organización de vulnerabilidades y amenazas.

- Diseño de usabilidad y seguridad.
- Pretexto, suplantación y fraude, p.e., phishing y phishing focalizado.
 Ref: 2.7.4 Ataques y Amenazas, Pág. 57
- Confianza, privacidad y engaño.
- Autenticación biometrica.
- Manejo de Identidad.

Objetivos de Aprendizaje:

Elective:

- 1. Explicar los conceptos de phishing y spear phishing y cómo reconocerlos [Familiarizarse]
- 2. Describir los problemas de confianza en el diseño de interfaz con un ejemplo de un sistema de confianza alto y bajo [Evaluar]
- 3. Diseñar una interfaz de usuario para un mecanismo de seguridad [Evaluar]
- 4. Explicar el concepto de gestión de la identidad y su importancia [Familiarizarse]
- 5. Analizar una política y/o procedimientos para demostrar si consideran o no se consideran, los factores humanos de la seguridad [Usar]

2.6.9. HCI/HCI orientada al diseño

Motivación: Algunos planes de estudio va a querer enfatizar la comprensión de las normas y valores de HCI trabajar como surge de y desplegado en contextos históricos, culturales y disciplinarias específicas.

Tópicos:

Electivos

- Estilos y perspectivas intelectuales para la tecnología y sus interfaces.
- Consideración de IHC como una disciplina de diseño: 1. Sketching 2. Diseño participativo
- Critically reflective HCI: 1. Práctica Crítica Técnica 2. Tecnologías para activismo político 3. Filosofía de la experiencia de usuario 4. Etnografía y etnometodología
- Dominios indicativos de aplicación: 1. Sostenibilidad 2. Arts-informed computing

Objetivos de Aprendizaje:

Elective:

- 1. Explicar que significa que "La IHC es una disciplina orientada al diseño" [Familiarizarse]
- 2. Detallar los procesos de diseño apropiados para orientaciones específicas de diseño [Familiarizar-se]
- 3. Aplicar una varidad de métodos de diseño para un problema determinado [Usar]

2.6.10. HCI/Realidad virtual y aumentada mezcladas

Motivación: Un examen detallado de los componentes de interfaz necesarios para la creación y el desarrollo de entornos inmersivos, especialmente juegos.

Tópicos:

Electivos

 Salida: 1. Sonido 2. Visualización estereoscópica 3. Forzar la simulación de retroalimentación, dispositivos hápticos

- Entrada del usuario: 1. Visor y seguimiento de objetos 2. Pose y gesto de reconocimiento 3. Los acelerómetros 4. marcadores de referencia 5. Los problemas de interfaz de usuario de artículo
- Modelamiento y representación física: 1. Simulación física: detección de colisiones y respuesta, animación 2. Visibility computation 3. Representación sensitiva al tiempo, múltiples niveles de detalle (LOD)
- Arquitectura de Sistemas: 1. Motores de Juego 2. Relidad Aumentada móvil 3. Simuladores de vuelo 4. CAVEs 5. Imágenes médicas
- Redes: 1. p2p, cliente-servidor, dead reckoning, encriptación, sincronización 2. Colaboración distribuida

Objetivos de Aprendizaje: Elective:

- 1. Describir el modelo óptico realizado por un sistema de gráficos por computadora para sintetizar una visión estereoscópica [Familiarizarse]
- 2. Describir los principios de las diferentes tecnologias de seguimiento de espectador [Familiarizarse]
- 3. Describir las diferencias entre geometria y realidad virtual basada en imágenes [Familiarizarse]
- 4. Describir los casos de la acción de sincronización de un usuario y la consistencia de los datos en un entorno de red [Familiarizarse]
- 5. Determinar los requerimientos básicos en interfaz, software, hardware, y cofiguraciones de software de un sistema VR para una aplicación específica [Usar]
- 6. Describir varios usos posibles para los motores de juegos, incluyendo su potencial y sus limitaciones [Familiarizarse]

2.7. Aseguramiento y Seguridad de la Información (IAS)

En CS2013, el área de Aseguramiento de la Información y de Seguridad se añade al cuerpo de conocimiento en reconocimiento a la dependencia del mundo en tecnología de la información y su papel fundamental en la educación de ciencia de la computación. Aseguramiento y seguridad de la información, como un dominio, es el conjunto de controles y procesos tanto técnicos como de política destinadas a proteger y defender los sistemas de información y de información garantizando su confidencialidad, integridad y disponibilidad, suministrándoles autenticación y el no rechazo. El concepto de garantía también lleva una certificación de que los procesos y los datos actuales y anteriores son válidos. Se necesitan tanto los conceptos de aseguramiento y de seguridad para garantizar una perspectiva completa. Aseguramiento de la información y la educación de seguridad y, a continuación, incluye todos los esfuerzos para preparar un grupo de trabajo con los conocimientos necesarios, habilidades y capacidades para proteger nuestros sistemas de información y dar fe de la seguridad del pasado y actual estado de los procesos y datos. La importancia de los conceptos de seguridad y los temas se ha convertido en un requisito básico de la disciplina Ciencia de la Computación, al igual que la importancia de los conceptos de rendimiento ha sido durante muchos años.

El área de conocimiento de Aseguramiento y Seguridad de la Información es único entre el conjunto de áreas que aquí se presenta, dada la manera en que los temas son omnipresentes en toda otras áreas de conocimiento. Los temas que constarán únicamente en el área de IAS se presentan en esta sección; otros temas se observan y tienen referencias cruzadas. En esta área muchos temas son representados con sólo 9 horas de cobertura Core-Tier1 y Tier2. Esto se equilibra con el nivel de dominio principalmente a nivel familiaridad y la cobertura más profundizada distribuido en la áreas de conocimiento donde estas se aplican. La amplia aplicación de los conceptos de la esta área (63,5 horas) en todas las demás áreas ofrece la profundidad y cobertura de dominio necesario para un estudiante de ciencia de la computación de pregrado.

El área de IAS se muestra en dos grupos: (1) conceptos donde la profundidad es exclusiva de esta área y (2) los temas de IAS que se integran en otras áreas que reflejan temas naturalmente implícitos o expresadas con un papel importante en los conceptos y temas de seguridad.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core	Core	Electivos
	Tier1	Tier2	
2.7.1 Fundamentos y Conceptos en Seguridad (Pág. 54)	1	2	No
2.7.2 Principios de Diseño Seguro (Pág. 54)	1	2	No
2.7.3 Programación Defensiva (Pág. 56)	1	2	Si
2.7.4 Ataques y Amenazas (Pág. 57)		1	Si
2.7.5 Seguridad de Red (Pág. 58)		2	Si
2.7.6 Criptografía (Pág. 59)		1	Si
2.7.7 Seguridad en la Web (Pág. 60)			Si
2.7.8 Seguridad de plataformas (Pág. 61)			Si
2.7.9 Política de Seguridad y Gobernabilidad (Pág. 61)			Si
2.7.10 Investigación digital (Digital Forensics) (Pág. 62)			Si
2.7.11 Seguridad en Ingeniería de Software (Pág. 63)			Si

2.7.1. IAS/Fundamentos y Conceptos en Seguridad (1 horas Core-Tier1, 2 horas Core-Tier2)

Tópicos:

Core Tier1

- CIA (Confidencialidad, Integridad, Disponibilidad)
- Conceptos de riesgo, amenazas, vulnerabilidades, y los tipos de ataque . **Ref:** 2.16.2 Gestión de Proyectos de Software, Pág. 121
- Autenticación y autorización, control de acceso (vs. obligatoria discrecional)
- Concepto de la confianza y la honradez .
- Ética (revelación responsable)
 Ref: 2.18.3 Ética Profesional, Pág. 140

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Analizar las ventajas y desventajas de equilibrar las propiedades clave de seguridad (Confidenciabilidad, Integridad, Disponibilidad) [Usar]
- 2. Describir los conceptos de riesgo, amenazas, vulnerabilidades y vectores de ataque(incluyendo el hecho de que no existe tal cosa como la seguridad perfecta) [Familiarizarse]
- 3. Explicar los conceptos de autentificación, autorización, control de acceso [Familiarizarse]
- 4. Explicar el concepto de confianza y confiabilidad [Familiarizarse]
- 5. Reconocer de que hay problemas éticos más importantes que considerar en seguridad computacional, incluyendo problemas éticos asociados a arreglar o no arreglar vulnerabilidades y revelar o no revelar vulnerabilidades [Familiarizarse]

2.7.2. IAS/Principios de Diseño Seguro (1 horas Core-Tier1, 2 horas Core-Tier2)

Tópicos:

Core Tier1

- Menor privilegio y aislamiento.
- Ref: 2.11.6 Seguridad y protección, Pág. 89, 2.17.8 Virtualización y aislamiento, Pág. 135, 2.14.6 Traducción y ejecución de lenguajes, Pág. 108
- Valores predeterminados a prueba de fallos.
 Ref: 2.16.6 Construcción de Software, Pág. 127, 2.15.4 Métodos de Desarrollo, Pág. 117

■ Diseño abierto.

Ref: 2.16.8 Evolución de Software, Pág. 129

■ La seguridad de extremo a extremo.

Ref: 2.17.9 Confiabilidad a través de redundancia, Pág. 136

- La defensa en profundidad (por ejemplo, la programación defensiva, defensa en capas)
- Diseño de seguridad.

Ref: 2.16.5 Diseño de Software, Pág. 125

■ Las tensiones entre la seguridad y otros objetivos de diseño.

Core Tier2

- Mediación completa.
- El uso de componentes de seguridad vetados.
- Economía del mecanismo (la reducción de la base informática de confianza, minimizar la superficie de ataque)

Ref: 2.16.5 Diseño de Software, Pág. 125, 2.16.6 Construcción de Software, Pág. 127

• Seguridad utilizable.

Ref: 2.6.1 Fundamentos, Pág. 47

- Componibilidad de seguridad.
- Prevención, detección y disuasión.
 Ref: 2.17.9 Confiabilidad a través de redundancia, Pág. 136, 2.10.3 Entrega confiable de datos,
 Pág. 83, 2.10.3 Entrega confiable de datos,
 Pág. 83

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Describir el principio de privilegios mínimos y el aislamiento que se aplican al diseño del sistema [Familiarizarse]
- 2. Resumir el principio de prueba de fallos y negar por defecto [Familiarizarse]
- 3. Discutir las implicaciones de depender de diseño abierto o secreto de diseño para la seguridad [Familiarizarse]
- 4. Explicar los objetivos de seguridad de datos de extremo a extremo [Familiarizarse]
- 5. Discutir los beneficios de tener múltiples capas de defensas [Familiarizarse]
- 6. Por cada etapa en el ciclo de vida de un producto, describir que consideraciones de seguridad deberian ser evaluadas [Familiarizarse]
- 7. Describir el costo y ventajas y desventajas asociadas con el diseño de seguridad de un producto. [Familiarizarse]

- 8. Describir el concepto de mediación y el principio de mediación completa [Familiarizarse]
- 9. Conocer los componentes estándar para las operaciones de seguridad, en lugar de reinventar las operaciones fundamentales [Familiarizarse]
- 10. Explicar el concepto de computación confiable incluyendo base informática confiable y de la superficie de ataque y el principio de minimización de base informática confiable [Familiarizarse]
- 11. Discutir la importancia de la usabilidad en el diseño de mecanismos de seguridad [Familiarizarse]
- 12. Describir problemas de seguridad que surgen en los límites entre varios componentes [Familiarizarse]
- 13. Identificar los diferentes roles de mecanismos de prevención y mecanismos de eliminación/disuación [Familiarizarse]

2.7.3. IAS/Programación Defensiva (1 horas Core-Tier1, 2 horas Core-Tier2)

Temas en la programación defensiva en general no se piensa en el aislamiento, pero aplicados a otros temas en particular en SDF, SE y PD Áreas de Conocimiento.

Tópicos:

Core Tier1

- Validación de datos de entrada y sanitización Ref: 2.15.4 Métodos de Desarrollo, Pág. 117
- Elección del lenguaje de programación y lenguajes con tipos de datos seguro.
- Ejemplos de validación de entrada de datos y sanitización de errores. 1. Desbordamiento de búfer
 2. Errores enteros 3. Inyección SQL 4. Vulnerabilidad XSS
 Ref: 2.15.4 Métodos de Desarrollo, Pág. 117, 2.16.6 Construcción de Software, Pág. 127
- Las condiciones de carrera.

Ref: 2.17.4 Paralelismo, Pág. 133, 2.13.5 Arquitecturas paralelas, Pág. 100, 2.13.3 Comunicación y coordinación, Pág. 97, 2.13.1 Fundamentos de paralelismo, Pág. 96

Manejo correcto de las excepciones y comportamientos inesperados.
 Ref: 2.15.4 Métodos de Desarrollo, Pág. 117

Core Tier2

Uso correcto de los componentes de terceros.
 Ref: 2.15.4 Métodos de Desarrollo, Pág. 117

Desplegar eficazmente las actualizaciones de seguridad.
 Ref: 2.11.6 Seguridad y protección, Pág. 89

Electivos

- Información de control de flujo.
- Generando correctamente el azar con fines de seguridad.
- Mecanismos para la detección y mitigación de datos de entrada y errores de sanitización.
- Fuzzing
- El análisis estático y análisis dinámico.
- Programa de verificación.
- Soporte del sistema operativo (por ejemplo, la asignación al azar del espacio de direcciones, canarios)
- El soporte de hardware (por ejemplo, el DEP, TPM)

Objetivos de Aprendizaje:

- 1. Explicar por que la validación de entrada y desinfección de datos es necesario en el frente del control contencioso del canal de entrada [Familiarizarse]
- 2. Explicar por que uno deberia escoger para desallorrar un programa en un lenguaje tipo seguro como Java, en contraste con un lenguaje de programación no seguro como C/C++ [Familiarizarse]
- 3. Clasificar los errores de validación de entrada común, y escribir correctamente el código de validación de entrada [Usar]

- 4. Demostrar el uso de un lenguaje de programación de alto nivel cómo prevenir una condición de competencia que ocurran y cómo manejar una excepción [Usar]
- 5. Demostrar la identificación y el manejo elegante de las condiciones de error [Usar]

Core-Tier2:

- 6. Explique los riesgos de mal uso de las interfaces con código de terceros y cómo utilizar correctamente el código de terceros [Familiarizarse]
- 7. Discutir la necesidad de actualizar el software para corregir las vulnerabilidades de seguridad y la gestión del ciclo de vida de la corrección [Familiarizarse]

Elective:

- 8. Listar ejemplos de flujos de información directa e indirecta [Familiarizarse]
- 9. Explicar la función de números aleatorios en la seguridad, más allá de la criptografía (por ejemplo, la generación de contraseñas, algoritmos aleatorios para evitar la negación algorítmica de los ataques del servicio) [Familiarizarse]
- 10. Explicar los diferentes tipos de mecanismos para detectar y mitigar los errores de desinfección de datos [Familiarizarse]
- 11. Demostrar cómo se prueban los programas para el manejo de errores de entrada [Usar]
- 12. Usar herramientas estáticas y dinámicas para identificar errores de programación [Usar]
- 13. Describir cómo se utiliza la arquitectura de memoria para proteger de ataques en tiempo de ejecución [Familiarizarse]

2.7.4. IAS/Ataques y Amenazas (1 horas Core-Tier2)

Tópicos:

Core Tier2

- Atacante metas, capacidades y motivaciones (como economía sumergida, el espionaje digital, la guerra cibernética, las amenazas internas, hacktivismo, las amenazas persistentes avanzadas)
- Los ejemplos de malware (por ejemplo, virus, gusanos, spyware, botnets, troyanos o rootkits)
- Denegación de Servicio (DoS) y Denegación de Servicio Distribuida (DDoS)
- Ingeniería social (por ejemplo, perscando)
 Ref: 2.18.1 Contexto Social, Pág. 138, 2.6.2 Diseño de Interacción, Pág. 48

Electivos

- Los ataques a la privacidad y el anonimato .
 Ref: 2.6.1 Fundamentos, Pág. 47, 2.18.5 Privacidad y Libertades Civiles, Pág. 142
- El malware / comunicaciones no deseadas, tales como canales encubiertos y esteganografía.

Objetivos de Aprendizaje: Core-Tier2:

- 1. Describir tipos de ataques similares en contra de un sistema en particular [Familiarizarse]
- 2. Discutir los limitantes de las medidas en contra del malware (ejm. detección basada en firmas, detección de comportamiento) [Familiarizarse]
- 3. Identificar las instancias de los ataques de ingeniería social y de los ataques de negación de servicios [Familiarizarse]

4. Discutir como los ataques de negación de servicos puede ser identificados y reducido [Familiarizarse]

Elective:

- 5. Describir los riesgos de la privacidad y del anonimato en aplicaciones comunmente usadas [Familiarizarse]
- 6. Discutir los conceptos de conversión de canales y otros procedimientos de filtrado de datos [Familiarizarse]

2.7.5. IAS/Seguridad de Red (2 horas Core-Tier2)

La discusión de la seguridad de red se basa en la comprensión previa sobre conceptos fundamentales de la creación de redes, incluyendo protocolos, como TCP / IP y la arquitectura de red / organización./xrefNC/Network Communication

Tópicos:

Core Tier2

- Red de amenazas y tipos de ataques específicos (por ejemplo, la denegación de servicio, spoofing, olfateando y la redirección del tráfico, el hombre en el medio, ataques integridad de los mensajes, los ataques de enrutamiento, y el análisis de tráfico)
- El uso de cifrado de datos y seguridad de la red .
- Arquitecturas para redes seguras (por ejemplo, los canales seguros, los protocolos de enrutamiento seguro, DNS seguro, VPN, protocolos de comunicación anónimos, aislamiento)
- Los mecanismos de defensa y contramedidas (por ejemplo, monitoreo de red, detección de intrusos, firewalls, suplantación de identidad y protección DoS, honeypots, seguimientos)

Electivos

- Seguridad para redes inalámbricas, celulares .
 Ref: 2.10.7 Celulares, Pág. 85, 2.10.7 Celulares, Pág. 85
- Otras redes no cableadas (por ejemplo, ad hoc, sensor, y redes vehiculares)
- Resistencia a la censura.
- Gestión de la seguridad operativa de la red (por ejemplo, control de acceso a la red configure)

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Describir las diferentes categorías de amenazas y ataques en redes [Familiarizarse]
- 2. Describir las arquitecturas de criptografía de clave pública y privada y cómo las ICP brindan apoyo a la seguridad en redes [Familiarizarse]
- 3. Describir ventajas y limitaciones de las tecnologías de seguridad en cada capa de una torre de red [Familiarizarse]
- 4. Identificar los adecuados mecanismos de defensa y sus limitaciones dada una amenaza de red [Familiarizarse]

- 5. Discutir las propiedades de la seguridad y sus limitaciones de redes no cableadas [Familiarizarse]
- 6. Identificar amenazas adicionales que enfrentan las redes no cableadas [Familiarizarse]
- 7. Describir amenazas que pueden y no pueden ser protegidas en contra del uso de canales de comunicación seguros [Familiarizarse]
- 8. Resumir las defensas en contra de la censura en redes [Familiarizarse]
- 9. Diagramar una red de seguridad [Familiarizarse]

2.7.6. IAS/Criptografía (1 horas Core-Tier2)

Tópicos: Core Tier2

- Terminología básica de criptografía cubriendo las nociones relacionadas con los diferentes socios (comunicación), canal seguro / inseguro, los atacantes y sus capacidades, cifrado, descifrado, llaves y sus características, firmas.
- Tipos de cifrado (por ejemplo, cifrado César, cifrado affine), junto con los métodos de ataque típicas como el análisis de frecuencia.
- Apoyo a la infraestructura de clave pública para la firma digital y el cifrado y sus desafíos.

Electivos

- Preliminares matemáticos esenciales para la criptografía, incluyendo temas de álgebra lineal, teoría de números, teoría de la probabilidad y la estadística.
- Primitivas criptográficas: 1. generadores pseudo-aleatorios y cifrados de flujo 2. cifrados de bloque (permutaciones pseudo-aleatorios), por ejemplo, AES 3. funciones de pseudo-aleatorios 4. funciones de hash, por ejemplo, SHA2, resistencia colisión 5. códigos de autenticación de mensaje 6. funciones derivaciones clave
- Criptografía de clave simétrica: 1. El secreto perfecto y el cojín de una sola vez 2. Modos de funcionamiento para la seguridad semántica y encriptación autenticada (por ejemplo, cifrarentonces-MAC, OCB, GCM) 3. Integridad de los mensajes (por ejemplo, CMAC, HMAC)
- La criptografía de clave pública: 1. Permutación de trampilla, por ejemplo, RSA 2. Cifrado de clave pública, por ejemplo, el cifrado RSA, cifrado El Gamal 3. Las firmas digitales 4. Infraestructura de clave pública (PKI) y certificados 5. Supuestos de dureza, por ejemplo, Diffie-Hellman, factoring entero
- Protocolos de intercambio de claves autenticadas, por ejemplo, TLS.
- Los protocolos criptográficos: autenticación desafío-respuesta, protocolos de conocimiento cero, el compromiso, la transferencia inconsciente, seguro 2-partido o multipartidista computación, compartición de secretos y aplicaciones .
- Motivar a los conceptos que utilizan las aplicaciones del mundo real, por ejemplo, dinero electrónico, canales seguros entre clientes y servidores, correo electrónico seguro, autenticación de la entidad, el emparejamiento de dispositivos, sistemas de votación.
- Definiciones de seguridad y los ataques a las primitivas criptográficas: 1. Objetivos: indistinción, unforgeability, colisión-resistencia 2. Capacidades atacante: ataque-mensaje elegido (para firmas), ataques de cumpleaños, ataques de canal lateral, ataques de inyección de fallos.
- Estándares criptográficos y referencias de implementaciones.
- La criptografía cuántica.

Objetivos de Aprendizaje: Core-Tier2:

- 1. Describir el propósito de la Criptografía y listar formas en las cuales es usada en comunicación de datos [Familiarizarse]
- 2. Definir los siguientes términos: Cifrado, Criptoanálisis, Algorítmo Criptográfico, y Criptología y describe dos métodos básicos (cifrados) para transformar texto plano en un texto cifrado [Familiarizarse]
- 3. Discutir la importancia de los números primos en criptografía y explicar su uso en algoritmos criptográficos [Familiarizarse]

4. Explicar como una infraestructura de Clave Pública soporta firmas digitales y encriptación y discutir sus limitaciones/vulnerabilidades [Familiarizarse]

Elective:

- 5. Usar primitivas criptográficas y sus propiedades básicas [Usar]
- 6. Ilustrar como medir la entropía y como generar aleatoriedad criptográfica [Usar]
- 7. Usa primitivas de clave pública y sus aplicaciones [Usar]
- 8. Explicar como los protocolos de intercambio de claves trabajan y como es que pueden fallar [Familiarizarse]
- 9. Discutir protocolos criptográficos y sus propiedades [Familiarizarse]
- 10. Describir aplicaciones del mundo real de primitivas criptográficas y sus protocolos [Familiarizarse]
- 11. Resumir definiciones precisas de seguridad, capacidades de ataque y sus metas [Familiarizarse]
- 12. Aplicar técnicas conocidas y apropiadas de criptografía para un escenario determinado [Usar]
- 13. Apreciar los peligros de inventarse cada uno sus propios métodos criptográficos [Familiarizarse]
- 14. Describir la criptografía cuántica y el impacto de la computación cuántica en algoritmos criptográficos [Familiarizarse]

2.7.7. IAS/Seguridad en la Web

Tópicos:

Electivos

- Modelo de seguridad Web 1. Modelo de seguridad del navegador incluida la política de mismo origen 2. Los límites de confianza de cliente-servidor, por ejemplo, no pueden depender de la ejecución segura en el cliente
- Gestión de sesiones, la autenticación: 1. Single Sign-On 2. HTTPS y certificados
- Vulnerabilidades de las aplicaciones y defensas : 1. Inyección SQL 2. XSS 3. CSRF
- Seguridad del lado del cliente : 1. Política de seguridad Cookies 2. Extensiones de seguridad HTTP, por ejemplo HSTS 3. Plugins, extensiones y aplicaciones web 4. Seguimiento de los usuarios Web
- Herramientas de seguridad del lado del servidor, por ejemplo, los cortafuegos de aplicación Web (WAFS) y fuzzers

Objetivos de Aprendizaje:

- 1. Describe el modelo de seguridad de los navegadores incluyendo las políticas del mismo origen y modelos de amenazas en seguridad web [Familiarizarse]
- 2. Discutir los conceptos de sesiones web, canales de comunicación seguros tales como Seguridad en la Capa de Transporte(TLS) y la importancia de certificados de seguridad, autenticación incluyendo inicio de sesión único, como OAuth y Lenguaje de Marcado para Confirmaciones de Seguridad(SAML) [Familiarizarse]
- 3. Investigar los tipos comunes de vulnerabilidades y ataques en las aplicaciones web, y defensas contra ellos [Familiarizarse]
- 4. Utilice las funciones de seguridad del lado del cliente [Usar]

2.7.8. IAS/Seguridad de plataformas

Tópicos:

Electivos

- Integridad de código y firma de código.
- Arranque seguro, arranque medido, y la raíz de confianza.
- Testimonio.
- TPM y coprocesadores seguros.
- Las amenazas de seguridad de los periféricos, por ejemplo, DMA, IOMMU.
- Ataques físicos: troyanos de hardware, sondas de memoria, ataques de arranque en frío.
- Seguridad de dispositivos integrados, por ejemplo, dispositivos médicos, automóviles.
- Ruta confiable.

Objetivos de Aprendizaje:

Elective:

- 1. Explica el concepto de integridad de código y firma de códigos, así como el alcance al cual se aplica [Familiarizarse]
- 2. Discute los conceptos del origen de la confidencialidad y el de los procesos de arranque y carga segura [Familiarizarse]
- 3. Describe los mecanismos de arresto remoto de la integridad de un sistema [Familiarizarse]
- 4. Resume las metas y las primitivas claves de los modelos de plataforma confiable (TPM) [Familiarizarse]
- 5. Identifica las amenazas de conectar periféricos en un dispositivo [Familiarizarse]
- 6. Identifica ataques físicos y sus medidas de control [Familiarizarse]
- 7. Identifica ataques en plataformas con hardware que no son del tipo PC [Familiarizarse]
- 8. Discute los conceptos y la importancia de ruta confiable [Familiarizarse]

2.7.9. IAS/Política de Seguridad y Gobernabilidad

Véase en general 2.18.10 Políticas de seguridad, Leyes y crímenes computacionales, Pág. 146 **Tópicos:**

Electivos

- Política de privacidad.
 - Ref: 2.18.1 Contexto Social, Pág. 138, 2.18.3 Ética Profesional, Pág. 140, 2.18.5 Privacidad y Libertades Civiles, Pág. 142
- Controles de inferencia / limitación divulgación estadística .
- Política de copia de seguridad, política de contraseñas de actualización.
- Incumplimiento política de divulgación.
- La recolección de datos y políticas de retención
- Política de la cadena de suministro.
- Puntos de equilibrio de la seguridad en la nube.

Objetivos de Aprendizaje:

Elective:

- 1. Describe el concepto de privacidad incluyendo información privada personal, violaciones potenciales de privacidad debido a mecanismos de seguridad, y describe como los mecanismos de protección de la privacidad se ejecutan en conflicto con los mecanismos de seguridad [Familiarizarse]
- 2. Describe como un atacante puede descubrir un secreto al interactuar con una base de datos [Familiarizarse]
- 3. Explica como configurar una política de respaldo de datos o política de actualización de claves [Familiarizarse]
- 4. Discute como configurar una política en caso de revelación de la información [Familiarizarse]
- 5. Describe las consecuencias del políticas de retención de datos [Familiarizarse]
- 6. Identifica los riesgos de basarse en productos externos [Familiarizarse]
- 7. Identifica los riesgos y beneficios de emplear outsourcing en la nube [Familiarizarse]

2.7.10. IAS/Investigación digital (Digital Forensics)

Tópicos:

Electivos

- Principios básicos y metodologías de análisis digital forensico.
- Diseñar sistemas con necesidades forenses en mente.
- Reglas de Evidencia conceptos generales y las diferencias entre las jurisdicciones y la Cadena de Custodia.
- Búsqueda y captura de comprobación: requisitos legales y de procedimiento.
- Métodos y normas de evidencia digital.
- Las técnicas y los estándares para la conservación de los datos.
- Cuestiones legales y reportes incluyendo el trabajo como perito.
- Investigación digital de los sistema de archivos.
- Los forenses de aplicación.
- Investigación digital en la web.
- Investigación digital en redes.
- Investigación digital en dispositivos móviles.
- Ataques al computador/red/sistema.
- Detección e investigación de ataque.
- Contra investigación digital.

Objetivos de Aprendizaje:

- 1. Describe qué es una investigación digital, las fuentes de evidencia digital, y los límites de técnicas forenses [Familiarizarse]
- 2. Explica como diseñar software de apoyo a técnicas forenses [Familiarizarse]

- 3. Describe los requisitos legales para usar datos recuperados [Familiarizarse]
- 4. Describe el proceso de recolección de evidencia desde el tiempo en que se identifico el requisito hasta la colocación de los datos [Familiarizarse]
- 5. Describe como se realiza la recolección de datos y el adecuado almacenamiento de los datos originales y de la copia forense [Familiarizarse]
- 6. Realiza recolección de datos en un disco duro [Usar]
- 7. Describe la responsabilidad y obligación de una persona mientras testifica como un examinador forense [Familiarizarse]
- 8. Recupera datos basados en un determinado término de búsqueda en una imagen del sistema [Usar]
- 9. Reconstruye el historial de una aplicación a partir de los artefactos de la aplicación [Usar]
- 10. Reconstruye el historial de navegación web de los artefactos web [Usar]
- 11. Captura e interpreta el tráfico de red [Usar]
- 12. Discute los retos asociados con técnicas forenses de dispositivos móviles [Familiarizarse]
- 13. Inspecciona un sistema (red, computadora, o aplicación) para determinar la presencia de malware o de actividad maliciosa [Usar]
- 14. Aplica herramientas forenses a fin de investigar fugas en la seguridad [Usar]
- 15. Identifica métodos anti-forenses [Familiarizarse]

2.7.11. IAS/Seguridad en Ingeniería de Software

Fundamentos de las prácticas de codificación segura cubiertos en otras áreas de conocimiento, incluyendo SDF y SE 2.16.6 Construcción de Software, Pág. 127, 2.16.7 Verificación y Validación de Software, Pág. 128

Tópicos:

Electivos

- La construcción de la seguridad en el ciclo de vida de desarrollo de software.
 Ref: 2.16.1 Procesos de Software, Pág. 120
- Principios y patrones de diseño seguros.
- Especificaciones de software seguros y requisitos.
- Prácticas de desarrollo de software de seguros.
 Ref: 2.16.6 Construcción de Software, Pág. 127
- Asegure probar el proceso de las pruebas de que se cumplan los requisitos de seguridad (incluyendo análisis estático y dinámico)
- Aseguramiento de la calidad del software y las mediciones de benchmarking.

Objetivos de Aprendizaje:

- 1. Describir los requisitos para la integración de la seguridad en el SDL [Familiarizarse]
- 2. Aplicar los conceptos de los principios de diseño para mecanismos de protección, los principios para seguridad de software (Viega and McGraw) y los principios de diseño de seguridad (Morrie Gasser) en un proyecto de desarrollo de software [Usar]

- 3. Desarrollar especificaciones para un esfuerzo de desarrollo de software que especifica completamente los requisitos funcionales y se identifican las rutas de ejecución esperadas [Usar]
- 4. Describir las mejores prácticas de desarrollo de software para minimizar las vulnerabilidades en el código de programación [Familiarizarse]
- 5. Llevar a cabo una verificación de seguridad y la evaluación (estático y dinámico) de una aplicación de software [Usar]

2.8. Gestión de la información (IM)

Gestión de la información se refiere principalmente a la captura, digitalización, representación, organización, transformación y presentación de la información; algoritmos para el acceso y la actualización de la información almacenada de forma eficiente y eficaz; modelado de datos y abstracción; y técnicas de almacenamiento de archivos físicos. El estudiante tiene que ser capaz de desarrollar modelos de datos conceptuales y físicos, determinar qué métodos y técnicas de mensajería instantánea son apropiadas para un problema dado y ser capaz de seleccionar e implementar una solución de mensajería instantánea apropiada que aborde las preocupaciones de diseño relevantes, incluyendo escalabilidad, accesibilidad y usabilidad.

También observamos que el área de IM está relacionada con conceptos fundamentales de seguridad de información que se describen en el tópico IAS/FundamentalConcepts.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core Tier1	Core Tier2	Electivos
	Heri	11er2	
2.8.1 Conceptos de Gestión de la Información (Pág. 64)	1	2	No
2.8.2 Sistemas de Bases de Datos (Pág. 65)		3	Si
2.8.3 Modelado de datos (Pág. 66)		4	No
2.8.4 Indexación (Pág. 67)			Si
2.8.5 Bases de Datos Relacionales (Pág. 67)			Si
2.8.6 Lenguajes de Consulta (Pág. 68)			Si
2.8.7 Procesamiento de Transacciones (Pág. 69)			Si
2.8.8 Bases de Datos Distribuidas (Pág. 69)			Si
2.8.9 Diseño Físico de Bases de Datos (Pág. 70)			Si
2.8.10 Minería de Datos (Pág. 71)			Si
2.8.11 Almacenamiento y Recuperación de Información (Pág. 71)			Si
2.8.12 Sistemas Multimedia (Pág. 72)			Si

2.8.1. IM/Conceptos de Gestión de la Información (1 horas Core-Tier1, 2 horas Core-Tier2)

Tópicos:

Core Tier1

- Sistemas de Información como Sistemas Socio Técnicos.
- Conceptos Almacenamiento y Recuperación de Información Básica (IS&R)
- Representación y Captura de Información.
- Apoyo a las necesidades humanas:búsqueda, recuperación, enlace, navegación.

Core Tier2

- Aplicaciones de Administración de la Información.
- Consultas navegacionales y declarativas, uso de enlaces.
- Análisis e Indexación.

■ Temas de calidad:confiabilidad, escalabilidad, eficiencia y efectividad.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Describir cómo los seres humanos obtienen acceso a información y datos para apoyar sus necesidades [Familiarizarse]
- 2. Describir las ventajas y desventajas del control organizacional central sobre los datos [Evaluar]
- 3. Identificar las carreras/roles asociados con la gestión de la información (por ejemplo, el administrador de base de datos, modelador de datos, desarrollador de la aplicación, el usuario final) [Familiarizarse]
- 4. Comparar y contrastar información con los datos y el conocimiento [Evaluar]
- 5. Demostrar usos del almacenamiento explicito de metadata/esquemas asociados con los datos [Usar]
- 6. Identificar problemas de la persistencia de datos para una organización [Familiarizarse]

Core-Tier2:

- 7. Critique una solicitud de información con respecto a satisfacer las necesidades de información del usuario [Evaluar]
- 8. Explicar los usos de las consultas declarativas [Familiarizarse]
- 9. Dar una versión declarativa para una consulta de navegación [Familiarizarse]
- 10. Describir varias soluciones técnicas a los problemas relacionados con la privacidad de la información, integridad, seguridad y preservación [Familiarizarse]
- 11. Explicar medidas de eficiencia (rendimiento, tiempo de respuesta) y efectividad (llamada, precisión) [Familiarizarse]
- 12. Describir métodos para aumentar la escala de los sistemas de información [Familiarizarse]
- 13. Identificar las vulnerabilidades y escenarios de fallo en las formas comunes de los sistemas de información [Usar]

2.8.2. IM/Sistemas de Bases de Datos (3 horas Core-Tier2)

Tópicos:

Core Tier2

- Enfoque y Evolución de Sistemas de Bases de Datos.
- Componentes del Sistema de Bases de Datos.
- Diseño de las funciones principales de un DBMS.
- Arquitectura de base de datos e independencia de datos.
- Uso de un lenguaje de consulta declarativa.
- Sistemas de apoyo a contenido estructurado y / o corriente.

Electivos

■ Enfoques para la gestión de grandes volúmenes de datos (por ejemplo, sistemas de bases de datos NoSQL, uso de MapReduce).

Objetivos de Aprendizaje:

- 1. Explica las características que distinguen un esquema de base de datos de aquellos basados en la programación de archivos de datos [Familiarizarse]
- 2. Describe los diseños más comunes para los componentes base de sistemas de bases de datos incluyendo el optimizador de consultas, ejecutor de consultas, administrador de almacenamiento, métodos de acceso y procesador de transacciones [Familiarizarse]
- 3. Cita las metas básicas, funciones y modelos de un sistema de bases de datos [Familiarizarse]
- 4. Describe los componentes de un sistema de bases datos y da ejemplos de su uso [Familiarizarse]
- 5. Identifica las funciones principales de un SGBD y describe sus roles en un sistema de bases de datos [Familiarizarse]
- 6. Explica los conceptos de independencia de datos y su importancia en un sistema de bases de datos [Familiarizarse]
- 7. Usa un lenguaje de consulta declarativo para recoger información de una base de datos [Usar]
- 8. Describe las capacidades que las bases de datos brindan al apoyar estructuras y/o la secuencia de flujo de datos, ejm. texto [Familiarizarse]

Elective:

9. Describe los enfoques principales para almacenar y procesar larges volúmenes de datos [Familiarizarse]

2.8.3. IM/Modelado de datos (4 horas Core-Tier2)

Tópicos:

Core Tier2

- Modelado de datos
- Modelos conceptuales (e.g., entidad-relación, diagramas UML)
- Modelos de hoja de cálculo
- Modelos Relacionales.
- Modelos orientados a objetos.
 Ref: 2.14.1 Programación orientada a objetos, Pág. 104
- Modelos de datos semi-estructurados (expresados usando DTD o XML Schema, por ejemplo)

Objetivos de Aprendizaje:

- 1. Compare y contrasta modelos apropiados de datos, incluyendo estructuras sus estructuras internas, para diversos tipos de datos [Evaluar]
- 2. Describe los conceptos en notación de modelos (ejm. Diagramas Entidad-Relación o UML) y cómo deben de ser usados [Familiarizarse]
- 3. Define la terminología fundamental a ser usada en un modelo relacional de datos [Familiarizarse]
- 4. Describe los principios básicos del modelo relacional de datos [Familiarizarse]
- 5. Aplica los conceptos de modelado y la notación de un modelo relacional de datos [Usar]
- 6. Describe los conceptos principales del modelado OO como son identidad de objetos, constructores de tipos, encapsulación, herencia, polimorfismo, y versiones [Familiarizarse]
- 7. Describe las diferencias entre modelos de datos relacionales y semi-estructurados [Evaluar]
- 8. Da una semi estructura equivalente (ejm. en DTD o Esquema XML) para un esquema relacional dado [Usar]

2.8.4. IM/Indexación

Tópicos:

Electivos

- El impacto de indices en el rendimiento de consultas.
- La estructura basica de un indice.
- Mantener un buffer de datos en memoria.
- Creando indices con SQL.
- Indexando texto.
- Indexando la web (e.g., web crawling)

Objetivos de Aprendizaje:

Elective:

- 1. Generar un archivo índice para una colección de recursos [Usar]
- 2. Explicar la función de un índice invertido en la localización de un documento en una colección [Familiarizarse]
- 3. Explicar cómo rechazar y detener palabras que afectan a la indexación [Familiarizarse]
- 4. Identificar los índices adecuados para determinado el esquema relacional y el conjunto de consultas [Usar]
- 5. Estimar el tiempo para recuperar información, cuando son usados los índices comparado con cuando no son usados [Usar]
- 6. Describir los desafíos claves en el rastreo web, por ejemplo, la detección de documentos duplicados, la determinación de la frontera de rastreo [Familiarizarse]

2.8.5. IM/Bases de Datos Relacionales

Tópicos:

Electivos

- Mapeo de esquemas conceptuales a esquemas relacionales.
- Entidad y integridad referencial.
- Algebra relacional y calculo relacional.
- Diseño de bases de datos relacionales.
- Dependencia funcional.
- Descomposición de un esquema.
- Llaves candidatas, SuperLlaves y cierre de un conjunto de atributos.
- Formas Normales (BCNF)
- Dependencias multi-valoradas (4NF)
- Uniendo dependencias (PJNF, 5NF)
- Teoría de la representación.

Objetivos de Aprendizaje:

- 1. Prepara un esquema relacional de un modelo conceptual desarrollado usando el modelo entidadrelación [Usar]
- 2. Explica y demuestra los conceptos de restricciones de integridad de la entidad e integridad referencial (incluyendo la definición del concepto de clave foránea) [Usar]
- 3. Demuestra el uso de las operaciones de álgebra relacional de la teoría matemática de conjuntos (unión, intersección, diferencia, y producto Cartesiano) y de las operaciones de álgebra relacional desarrolladas específicamente para las bases de datos relacionales (selección (restringida), proyección, unión y división) [Usar]
- 4. Escribe consultas en álgebra relacional [Usar]
- 5. Escribe consultas en cálculo relacional de tuplas [Usar]
- 6. Determina la dependencia funcional entre dos o más atributos que son subconjunto de una relación [Evaluar]
- 7. Conecta restricciones expresadas como clave primaria y foránea, con dependencias funcionales [Usar]
- 8. Calcula la cerradura de un conjunto de atributos dado dependencias funcionales [Usar]
- 9. Determina si un conjunto de atributos forma una superclave y/o una clave candidata de una relación dada dependencias funcionales [Evaluar]
- 10. Evalua una descomposición propuesta, a fin de determinar si tiene una unión sin pérdidas o preservación de dependencias [Evaluar]
- 11. Describe las propiedades de la FNBC, FNUP (forma normal unión de proyecto), 5FN [Familia-rizarse]
- 12. Explica el impacto de la normalización en la eficacia de las operaciones de una base de datos especialmente en la optimización de consultas [Familiarizarse]
- 13. Describe que es una dependencia de multi valor y cual es el tipo de restricciones que especifica [Familiarizarse]

2.8.6. IM/Lenguajes de Consulta

Tópicos:

Electivos

- Visión general de lenguajes de base de datos.
- SQL (definición de datos, formulacion de consultas, sublengua je update, restricciones, integridad)
- Selecciones
- Provecciones
- Select-project-join
- Agregaciones y agrupaciones.
- Subconsultas.
- Entornos QBE de cuarta generación.
- Diferentes maneras de invocar las consultas no procedimentales en lenguajes convencionales.
- Introducción a otros lenguajes importantes de consulta (por ejemplo, XPATH, SPARQL)
- Procedimientos almacenados.

Objetivos de Aprendizaje:

Elective:

- 1. Crear un esquema relacional de bases de datos en SQL que incorpora restricciones clave y restricciones de integridad de entidad e integridad referencial [Usar]
- 2. Usar SQL para crear tablas y devuelve (SELECT) la información de una base de datos [Usar]
- 3. Evaluar un conjunto de estrategias de procesamiento de consultas y selecciona la estrategia óptima [Evaluar]
- 4. Crear una consulta no-procedimental al llenar plantillas de relacines para construir un ejemplo del resultado de una consulta requerida [Usar]
- 5. Adicionar consultas orientadas a objetos en un lenguaje stand-alone como C++ o Java (ejm. SELECT ColMethod() FROM Objeto) [Usar]
- 6. Escribe un procedimiento almacenado que trata con parámetros y con algo de flujo de control de tal forma que tenga funcionalidad [Usar]

2.8.7. IM/Procesamiento de Transacciones

Tópicos:

Electivos

- Transacciones.
- Fallo y recuperación.
- Control concurente.
- Interacción de gestión de transacciones con el almacenamiento, especialmente en almacenamiento

Objetivos de Aprendizaje:

Elective:

- 1. Crear una transacción mediante la incorporación de SQL en un programa de aplicación [Usar]
- 2. Explicar el concepto de confimaciones implicitas [Familiarizarse]
- 3. Describir los problemas específicos para la ejecución de una transacción eficiente [Familiarizarse]
- 4. Explicar cuando y porqué se necesita un *rollback*, y cómo registrar todo asegura un *rollback* adecuado [Evaluar]
- 5. Explicar el efecto de diferentes niveles de aislamiento sobre los mecanismos de control de concurrencia [Evaluar]
- 6. Elejir el nivel de aislamiento adecuado para la aplicación de un protocolo de transacción especificado [Evaluar]
- 7. Identificar los límites apropiados de la transacción en programas de aplicación [Evaluar]

2.8.8. IM/Bases de Datos Distribuidas

Tópicos:

Electivos

■ DBMS Distribuidas 1. Almacenamiento de datos distribuido 2. Procesamiento de consultas distribuido 3. Modelo de transacciones distribuidas 4. Soluciones homogéneas y heterogéneas 5. Bases de datos distribuidas cliente-servidor

Ref: 2.17.1 Paradigmas computacionales, Pág. 131

 Parallel DBMS 1. Arquitecturas paralelas DBMS: memoria compartida, disco compartido, nada compratido; 2. Aceleracion y ampliación, por ejemplo, el uso del modelo de procesamiento MapReduce 3. Replicacion de informacion y modelos de consistencia debil

Ref: 2.3.3 Procesamiento, Pág. 32, 2.13.2 Descomposición en paralelo, Pág. 97

Objetivos de Aprendizaje:

Elective:

- 1. Explicar las técnicas usadas para la fragmentación de datos, replicación, y la asignación durante el proceso de diseño de base de datos distribuida [Familiarizarse]
- 2. Evaluar estrategias simples para la ejecución de una consulta distribuida para seleccionar una estrategia que minimise la cantidad de transferencia de datos [Evaluar]
- 3. Explicar como el protocolo de dos fases de *commit* es usado para resolver problemas de transacciones que acceden a bases de datos almacenadas en múltiples nodos [Familiarizarse]
- 4. Describir el control concurrente distribuido basados en técnicas de copia distinguidos y el método de votación. [Familiarizarse]
- 5. Describir los tres niveles del software en el modelo cliente servidor [Familiarizarse]

2.8.9. IM/Diseño Físico de Bases de Datos

Tópicos:

Electivos

- Almacenamiento y estructura de archivos.
- Archivos indexados.
- Archivos Hash.
- Archivos de Firma.
- Árboles B.
- Archivos con índice denso.
- Archivos con registros de tamaño variable.
- Eficiencia y Afinación de Bases de Datos.

Objetivos de Aprendizaje:

- 1. Explica los conceptos de registro, tipos de registro, y archivos, así como las diversas técnicas para colocar registros de archivos en un disco [Familiarizarse]
- 2. Da ejemplos de la aplicación de índices primario, secundario y de agrupamiento [Familiarizarse]
- 3. Distingue entre un índice no denso y uno denso [Evaluar]
- 4. Implementa índices de multinivel dinámicos usando árboles-B [Usar]
- 5. Explica la teoría y la aplicación de técnicas de hash internas y externas [Familiarizarse]
- 6. Usa técnicas de hasp para facilitar la expansión de archivos dinámicos [Usar]
- 7. Describe las relaciones entre hashing, compresión, y búsquedas eficientes en bases de datos [Familiarizarse]
- 8. Evalúa el costo y beneficio de diversos esquemas de hashing [Evaluar]
- 9. Explica como el diseño físico de una base de datos afecta la eficiencia de las transacciones en ésta [Familiarizarse]

2.8.10. IM/Minería de Datos

Tópicos:

Electivos

- Uso de minería de datos.
- Algoritmos de minería de datos.
- Patrón asociativo y secuencial.
- Agrupación de datos.
- Análisis de la cesta de mercado.
- Limpieza de datos.
- Visualización de datos.
 Ref: 2.5.6 Visualización, Pág. 46, 2.3.4 Visualización interactiva, Pág. 33

Objetivos de Aprendizaje:

Elective:

- 1. Compara y contrasta los diversos usos de la minería de datos como se evidencia en campos tanto de investigación como de aplicación [Evaluar]
- 2. Explica el valor de encontrar associaciones de datos en mercados financieros [Familiarizarse]
- 3. Caracteriza los tipos de patrones que pueden ser descubiertos por minería de reglas de asociación [Evaluar]
- 4. Describe como expandir un sistema relacional para encontrar patrones usando reglas de asociación [Familiarizarse]
- 5. Evalúa diversas metodologías para la aplicación efectiva de minería de datos [Evaluar]
- 6. Identifica y caracteriza fuentes de ruido, redundancia y valores atípicos en los datos presentes [Evaluar]
- 7. Identifica mecanismos (agregación en línea, comportamiento cualquiera, visualización interactiva) a fin de cerrar el ciclo en un proceso de minería de datos [Familiarizarse]
- 8. Describe porqué los diversos procesos de cierre de ciclo mejoran la efectividad de la minería de datos [Familiarizarse]

2.8.11. IM/Almacenamiento y Recuperación de Información

Tópicos:

Electivos

- Documentos, publicación electrónica, markup, y lenguajes markup.
- Tries, archivos invertidos, Árboles PAT, archivos de firma, indexación.
- Análisis Morfológico, stemming, frases, stop lists.
- Distribuciones de frecuencia de términos, incertidumbre, fuzificación (fuzzyness), ponderación.
- Espacio vectorial, probabilidad, lógica, y modelos avanzados.
- Necesidad de Información , Relevancia, evaluación, efectividad.
- Thesauri, ontologías, clasificación y categorización, metadata.
- Información bibliográfica, bibliometría, citaciones.

- Enrutamiento y filtrado.
- Búsqueda multimedia.
- Información de resumen y visualización.
- Búsqueda por facetas (por ejemplo, el uso de citas, palabras clave, esquemas de clasificación).
- Librerías digitales.
- Digitalización, almacenamiento, intercambio, objetos digitales, composición y paquetes.
- Metadata y catalogación.
- Nombramiento, repositorios, archivos
- Archivamiento y preservación, integrdad
- Espacios (Conceptual, geográfico, 2/3D, Realidad virtual)
- Arquitecturas (agentes, autobuses, envolturas / mediadores), de interoperabilidad.
- Servicios (búsqueda, de unión, de navegación, y así sucesivamente).
- Gestión de derechos de propiedad intelectual, la privacidad y la protección (marcas de agua).

Objetivos de Aprendizaje:

Elective:

- 1. Explica los conceptos básicos de almacenamiento y recuperación de la información [Familiarizarse]
- 2. Describe que temas son específicos para una recuperación de la información eficiente [Familiarizarse]
- 3. Da aplicaciones de estrategias alternativas de búsqueda y explica porqué una estrategia en particular es apropiada para una aplicación [Evaluar]
- 4. Diseña e implementa un sistema de almacenamiento y recuperación de la información o librería digital de tamaño pequeño a mediano [Usar]
- 5. Describe algunas de las soluciones técnicas a los problemas relacionados al archivamiento y preservación de la información en una librería digital [Familiarizarse]

2.8.12. IM/Sistemas Multimedia

Tópicos:

Electivos

- Dispositivos de entrada/salida, controladores de dispositivo, señales de control y protocolos, DSPs
- Estándares (Ej. audio, gráfico, video)
- Aplicaciones, editores de media, sistemas de autoría , y autoría
- Flujos/estructuras, captura/ representación/transformarción, espacios/dominios, compresión/codificación.
- Análisis basado en contenido, indexación y recuperación de audio, imágenes, animación y video.
- Presentación, renderización, sincronización, integración multimodal, interfaces.
- Entrega en tiempo real, calidad de servicio (incluye rendimiento), capacidad de planeamiento, conferencia audio/video, video en demanda.

Objetivos de Aprendizaje: Elective:

- 1. Describe los medios y dispositivos de soporte más comunmente asociados a los sistemas de información multimedia [Familiarizarse]
- 2. Demostrar el uso de contenidos basados en análisis de información en un sistema de información multimedia [Usar]
- 3. Evaluar presentaciones multimedia en terminos de su uso apropiado de audio, video, gráficos, color y otros conceptos de presentación de información [Evaluar]
- 4. Implementar una aplicación multimedia usando un sistema de autoráa [Usar]
- 5. Para cada uno de los muchos estándares de medios de comunicación o multimedia, describe en lenguaje no técnico para lo que el estandar llama y explica como aspectos de la percepción humana deberian ser suceptibles a las limitaciones del estandar [Familiarizarse]
- 6. Describir las caracteristicas de un sistema de computador (incluyendo identificación de herramientas de soporte y estándares apropiados) que tiene que organizar de uno de un rango de aplicaciones multimedia posibles [Familiarizarse]

2.9. Sistemas Inteligentes (IS)

La inteligencia artificial (AI) es el estudio de soluciones para los problemas que son difíciles o muy difícil de resolver con los métodos tradicionales. Se utiliza de forma transversal en apoyo de aplicaciones de uso diario, tales como el correo electrónico, procesamiento de textos y la búsqueda, así como en el diseño y análisis de agentes autónomos que perciben su entorno y racionalmente interactúan con el medio ambiente.

Las soluciones se basan en un amplio conjunto de esquemas de representación de conocimientos generales y especializados, mecanismos de resolución de problemas y técnicas de aprendizaje. Se ocupan de la detección (por ejemplo, el reconocimiento del habla, la comprensión del lenguaje natural, la visión por computador), la resolución de problemas (por ejemplo, la búsqueda, planificación), y actuar (por ejemplo, la robótica) y las arquitecturas necesarias para apoyarlos (por ejemplo, agentes, multiagentes). El estudio de la Inteligencia Artificial prepara al estudiante para determinar cuándo un enfoque AI es apropiada para un problema dado, identificar la representación adecuada y mecanismo de razonamiento para ponerla en práctica y evaluarla.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core Tier1	Core Tier2	Electivos
2.9.1 Cuestiones fundamentales (Pág. 73)		1	Si
2.9.2 Estrategias de búsquedas básicas (Pág. 74)		4	No
2.9.3 Raciocinio y representación básica de conocimiento (Pág. 75)		3	No
2.9.4 Aprendizaje Automático Básico (Pág. 75)		2	No
2.9.5 Búsqueda Avanzada (Pág. 76)			Si
2.9.6 Representación Avanzada y Razonamiento (Pág. 76)			Si
2.9.7 Razonamiento Bajo Incertidumbre (Pág. 77)			Si
2.9.8 Agentes (Pág. 78)			Si
2.9.9 Procesamiento del Lenguaje Natural (Pág. 78)			Si
2.9.10 Aprendizaje de máquina avanzado (Pág. 79)			Si
2.9.11 Robótica (Pág. 80)			Si
2.9.12 Visión y percepción por computador (Pág. 81)			Si

2.9.1. IS/Cuestiones fundamentales (1 horas Core-Tier2)

Tópicos: Core Tier2

- Descripción general de los problemas de Inteligencia Artificial, ejemplos recientes de aplicaciones de Inteligencia artificial.
- ¿Qué es comportamiento inteligente? 1. El Test de Turing 2. Razonamiento Racional versus No Racional
- Características del Problema: 1. Observable completamente versus observable parcialmente 2. Individual versus multi-agente 3. Deterministico versus estocástico 4. Estático versus dinámico 5. Discreto versus continuo
- Naturaleza de agentes: 1. Autónomo versus semi-autónomo 2. Reflexivo, basado en objetivos, y basado en utilidad 3. La importancia en percepción e interacciones con el entorno

Electivos

Cuestiones filosóficas y éticas.

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Describir el test de Turing y el experimento pensado cuarto chino" (*Chinese Room*) [Familiarizarse]
- 2. Determinando las características de un problema dado que sistemas inteligentes deberian resolver [Evaluar]

2.9.2. IS/Estrategias de búsquedas básicas (4 horas Core-Tier2)

Tópicos:

Core Tier2

- Espacios de Problemas (estados, metas y operadores), solución de problemas mediante búsqueda.
- Factored representation (factoring state hacia variables)
- Uninformed search (breadth-first, depth-first, depth-first with iterative deepening)
- Heurísticas y búsqueda informada (hill-climbing, generic best-first, A*)
- El espacio y el tiempo de la eficiencia de búsqueda.
- Dos jugadores juegos (introducción a la búsqueda minimax).
- Satisfacción de restricciones (backtracking y métodos de búsqueda local).

Objetivos de Aprendizaje:

- 1. Formula el espacio eficiente de un problema para un caso expresado en lenguaje natural (ejm. Inglés) en términos de estados de inicio y final, así como sus operadores [Usar]
- 2. Describe el rol de las heurísticas y describe los intercambios entre completitud, óptimo, complejidad de tiempo, y complejidad de espacio [Familiarizarse]
- 3. Describe el problema de la explosión combinatoria del espacio de búsqueda y sus consecuencias [Familiarizarse]
- 4. Selecciona e implementa un apropiado algoritmo de búsqueda no informado para un problema, y describe sus complejidades de tiempo y espacio [Usar]
- 5. Selecciona e implementa un apropiado algoritmo de búsqueda informado para un problema al definir la función heurística de evaluación necesaria [Usar]
- 6. Evalúa si una heurística dada para un determinado problema es admisible/puede garantizar una solución óptima [Evaluar]

- 7. Formula un problema en particular en lenguaje natural (ejm. Inglés) como un problema de satisfacción de restricciones y lo implementa usando un algoritmo de retroceso cronológico o una búsqueda estocástica local [Usar]
- 8. Compara y contrasta tópicos de búsqueda básica con temas jugabilidad de juegos [Familiarizarse]

2.9.3. IS/Raciocinio y representación básica de conocimiento (3 horas Core-Tier2)

Tópicos:

Core Tier2

- Revisión de la lógica proposicional y de predicados Ref: 2.4.2 Lógica básica, Pág. 36
- Resolución y demostración de teoremas (sólo la lógica proposicional).
- Encadenamiento hacia adelante, encadenamiento hacia atrás.
- Examen de razonamiento probabilístico, el teorema de Bayes.
 Ref: 2.4.6 Probabilidad Discreta, Pág. 39

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Traducir una sentencia en lenguaje natural (Por ejemplo español) en una declaración lógica de predicados [Usar]
- 2. Convertir una declaración lógica en forma de cláusula [Usar]
- 3. Aplicar resolución a un conjunto de declaraciones lógicas para responder una consulta [Usar]
- 4. Hacer una inferencia probabilística para un problema real usando el teorema de Bayes para determinar la probabilidad que se cumpla una hipótesis [Usar]

2.9.4. IS/Aprendizaje Automático Básico (2 horas Core-Tier2)

Tópicos:

Core Tier2

- Definición y ejemplos de la extensa variedad de tareas de aprendizaje de máquina, incluida la clasificación.
- Aprendizaje inductivo
- Aprendizaje simple basado en estadísticas, como el clasificador ingenuo de Bayes, árboles de decisión.
- El problema exceso de ajuste.
- Medicion clasificada con exactitud.

Objetivos de Aprendizaje:

- 1. Listar las diferencias entre los tres principales tipos de aprendizaje: supervisado, no supervisado y por refuerzo [Familiarizarse]
- 2. Identificar ejemplos de tareas de clasificación, considerando las características de entrada disponibles y las salidas a ser predecidas [Familiarizarse]
- 3. Explicar la diferencia entre aprendizaje inductivo y deductivo [Familiarizarse]
- 4. Describir el sobre ajuste (overfitting) en el contexto de un problema [Familiarizarse]
- 5. Aplicar un algoritmo de aprendizaje estadístico simple como el Clasificador Naive Bayesiano e un problema de clasificacion y medirla precisión del clasificador [Usar]

2.9.5. IS/Búsqueda Avanzada

Tenga en cuenta que los temas generales de la rama-y-atado y dinámico Programación, se enumeran en AL / algorítmico Estrategias.

Tópicos:

Electivos

- Construcción de árboles de búsqueda, espacio de búsqueda dinámico, explosión combinatoria del espacio de búsqueda.
- Búsqueda estocástica: 1. Simulated annealing 2. Algoritmos genéticos 3. Búsqueda de árbol Monte-Carlo
- Implementación de búsqueda A *, búsqueda en haz.
- Búsqueda Minimax, poda alfa-beta.
- Búsqueda Expectimax (MDP-Solving) y los nodos de azar.

Objetivos de Aprendizaje:

Elective:

- 1. Diseñar e implementar una solución a un problema con algoritmo genético [Usar]
- 2. Diseñar e implementar un esquema de recocido simulado (simulated annealing) para evitar mínimos locales en un problema [Usar]
- 3. Diseñar e implementar una búsqueda A^* y búsqueda en haz (beam search) para solucionar un problema [Usar]
- 4. Aplicar búsqueda minimax con poda alfa-beta para simplifiar el espacio de búsqueda en un juego con dos jugadores [Usar]
- 5. Comparar y contrastar los algoritmos genéticos con técnicas clásicas de búsqueda [Evaluar]
- 6. Comparar y contrastar la aplicabilidad de varias heurísticas de búsqueda, para un determinado problema [Evaluar]

2.9.6. IS/Representación Avanzada y Razonamiento

Tópicos:

Electivos

- Problemas de Representación del Conocimiento: 1. Lógica de Descripción 2. Ingeniería de Ontología
- Razonamiento no monotónico (p.e., lógica no clásica, razonamiento por defecto)
- Argumentación
- El razonamiento sobre la acción y el cambio (por ejemplo, la situación y cálculo de eventos).
- Razonamiento temporal y espacial.
- Sistemas Expertos basados en reglas.
- Redes semánticas.
- Razonamiento basado en modelos y razonamiento basado en casos.
- Planeamiento: 1. Planeamiento Parcial y Totalmente ordenado 2. *Plan graphs* 3. Planeamiento Jerárquico 4. Planeamiento y Ejecución incluyendo planeamiento condicional y planeamiento continuo 5. Planeamiento Agente móvil/Multiagente

Objetivos de Aprendizaje:

Elective:

- 1. Comparar y contrastar los modelos más usados para la representación del conocimiento estructurado, destacando sus puntos fuertes y débiles [Evaluar]
- 2. Identificar los componentes de razonamiento no monótono y su utilidad como mecanismo de representación de los sistemas de confianza [Familiarizarse]
- 3. Comparar y contrastas las técnicas básicas para la representación de la incertidumbre [Evaluar]
- 4. Comparar y contrastar las técnicas básicas para la representación cualitativa [Evaluar]
- 5. Aplicar cálculo de situaciones y eventos a problemas de acción y cambios [Usar]
- 6. Explicar la diferencia entre razonamiento temporal y espacial, y cómo se relacionan entre sí. [Familiarizarse]
- 7. Explicar la diferencia entre técnicas de razonamiento basado en modelos, basado en casos y basados en reglas [Familiarizarse]
- 8. Definir el concepto de un sistema planificación y cómo se diferencia de las técnicas de búsqueda clásicas [Familiarizarse]
- 9. Describir las diferencias entre la planificación como búsqueda, la planificación basada en el operador, y la planificación proposicional, dando ejemplos de ámbitos en los que cada una es más aplicable [Familiarizarse]
- 10. Explique la diferencia entre la inferencia monótona y no monótona [Familiarizarse]

2.9.7. IS/Razonamiento Bajo Incertidumbre

Tópicos:

Electivos

- Revisión de Probabilidad Básica
 Ref: 2.4.6 Probabilidad Discreta, Pág. 39
- Variables aleatorias y distribuciones de probabilidad: 1. Axiomas de probabilidad 2. Inferencia probabilística 3. Regla de Bayes
- Independecia Condicional
- Representaciones del conocimiento: 1. Redes bayesianas a) Inferencia exacta y su complejidad
 b) Métodos de Muestreo aleatorio (Monte Carlo) (p.e. Muestreo de Gibbs)
 2. Redes Markov
 3. Modelos de probabilidad relacional 4. Modelos ocultos de Markov
- Teoria de decisiones: 1. Preferencias y funciones de utilidad 2. Maximizando la utilidad esperada

Objetivos de Aprendizaje:

- 1. Aplicar la regla de Bayes para determinar el cumplimiento de una hipótesis [Usar]
- 2. Explicar cómo al tener independencia condicional permite una gran eficiencia en sistemas probabilísticos [Evaluar]
- 3. Identificar ejemplos de representación de conocimiento para razonamiento bajo incertidumbre [Familiarizarse]
- 4. Indicar la complejidad de la inferencia exacta. Identificar métodos para inferencia aproximada [Familiarizarse]

- 5. Diseñar e implementar, al menos una representación de conocimiento para razonamiento bajo incertidumbre [Usar]
- 6. Describir la complejidad del razonamiento probabilístico en el tiempo [Familiarizarse]
- 7. Diseñar e implementar un Modelo Oculto de Markov (HMM) como un ejemplo de sistema probabilístico en el tiempo [Usar]
- 8. Describir las relaciones entre preferencias y funciones de utilidad [Familiarizarse]
- 9. Explicar como funciones de utilidad y razonamiento probabilístico puede ser combinado para tomar decisiones razonables [Evaluar]

2.9.8. IS/Agentes

Tópicos:

Electivos

- Definición de Agentes
- Arquitectura de agentes (Ej. reactivo, en capa, cognitivo)
- Teoría de agentes
- Racionalidad, teoría de juegos: 1. Agentes de decisión teórica 2. Procesos de decisión de Markov (MDP)
- Agentes de Software, asistentes personales, y acceso a información: 1. Agentes colaborativos
 2. Agentes de recolección de información 3. Agentes creíbles (carácter sintético, modelamiento de emociones en agentes)
- Agentes de aprendizaje
- Sistemas Multi-agente 1. Agentes Colaborativos 2. Equipos de Agentes 3. Agentes Competitivos (ej., subastas, votaciones) 4. Sistemas de enjambre y modelos biológicamente inspirados

Objetivos de Aprendizaje:

Elective:

- 1. Lista las características que definen un agente inteligente [Familiarizarse]
- 2. Describe y contrasta las arquitecturas de agente estándares [Evaluar]
- 3. Describe las aplicaciones de teoría de agentes para dominios como agentes de software, asistentes personales, y agentes creibles [Familiarizarse]
- 4. Describe los paradigmas primarios usados por agentes de aprendizaje [Familiarizarse]
- 5. Demuestra mediante ejemplos adecuados como los sistemas multi-agente soportan interacción entre agentes [Usar]

2.9.9. IS/Procesamiento del Lenguaje Natural

Tópicos:

Electivos

- Gramaticas determinísticas y estocásticas
- Algoritmos de parseo 1. Gramáticas libres de contexto (CFGs) y cuadros de parseo (e.g. Cocke-Younger-Kasami CYK) 2. CFGs probabilísticos y ponderados CYK
- Representación del significado / Semántica 1. Representación de conocimiento basado en lógica
 Roles semánticos 3. Representaciones temporales 4. Creencias, deseos e intenciones

- Metodos basados en el corpus
- N-gramas y Modelos ocultos de Markov (HMMs)
- Suavizado y back-off
- Ejemplos de uso: POS etiquetado y morfologia
- Recuperación de la información: 1. Modelo de espacio vectorial a) TF & IDF 2. Precision y cobertura

Ref: 2.8.11 Almacenamiento y Recuperación de Información, Pág. 71

- Extracción de información
- Traducción de lenguaje
- Clasificación y categorización de texto: 1. Modelo de bolsa de palabras

Objetivos de Aprendizaje:

Elective:

- 1. Define y contrasta gramáticas de tipo estocásticas y determinísticas, dando ejemplos y demostrando como adecuar cada una de ellas [Evaluar]
- 2. Simula, aplica, o implementa algoritmos clásicos y estocásticos para el parseo de un lenguaje natural [Usar]
- 3. Identifica los retos de la representación del significado [Familiarizarse]
- 4. Lista las ventajas de usar corpus estándares. Identifica ejemplos de corpus actuales para una variedad de tareas de PLN [Familiarizarse]
- 5. Identifica técnicas para la recuperación de la información, traducción de lenguajes, y clasificación de textos [Familiarizarse]

2.9.10. IS/Aprendizaje de máquina avanzado

Tópicos:

Electivos

- Definición y ejemplos de una amplia variedad de tareas de aprendizaje de máquina
- Aprendizaje general basado en estadística, estimación de parámetros (máxima probabilidad)
- Programación lógica inductiva (Inductive logic programming ILP)
- Aprendizaje supervisado 1. Aprendizaje basado en árboles de decisión 2. Aprendizaje basado en redes neuronales 3. Aprendizaje basado en máquinas de soporte vectorial (Support vector machines SVMs)
- Comité de Máquinas (Emsembles methods)
- Algoritmos del vecino mas próximo
- Aprendizaje y clustering no supervisado 1. EM 2. K-means 3. Mapas auto-organizados
- Aprendizaje semi-supervisado.
- Aprendizaje de modelos gráficos
 Ref: 2.9.7 Razonamiento Bajo Incertidumbre, Pág. 77
- Evaluación del desempeño (tal como cross-validation, area bajo la curva ROC)
- Teoria del aprendizaje.

- El problema del sobreajuste, la maldición de la dimensionalidad.
- Aprendizaje por refuerzo 1. Equilibrio Exploración vs. explotación 2. Procesos de decisión de Markov 3. Iteración por valor e iteración por politica
- Aplicación de algoritmos Machine Learning para Minería de datos.
 Ref: 2.8.10 Minería de Datos, Pág. 71

Objetivos de Aprendizaje:

Elective:

- 1. Explica las diferencias entre los tres estilos de aprendizaje: supervisado, por refuerzo y no supervisado [Familiarizarse]
- 2. Implementa algoritmos simples para el aprendizaje supervisado, aprendizaje por refuerzo, y aprendizaje no supervisado [Usar]
- 3. Determina cuál de los tres estilos de aprendizaje es el apropiado para el dominio de un problema en particular [Usar]
- 4. Compara y contrasta cada una de las siguientes técnicas, dando ejemplo de cuando una estrategia es la mejor: árboles de decisión, redes neuronales, y redes bayesianas [Evaluar]
- 5. Evalúa el rendimiento de un sistema de aprendizaje simple en un conjunto de datos reales [Evaluar]
- 6. Describe el estado del arte en la teoría del aprendizaje, incluyendo sus logros y limitantes [Familiarizarse]
- 7. Explica el problema del sobreajuste, conjuntamente con técnicas para determinar y manejar el problema [Usar]

2.9.11. IS/Robótica

Tópicos:

Electivos

- Vision general: problemas y progreso 1. Estado del arte de los sistemas robóticos, incluyendo sus sensores y una visión general de su procesamiento 2. Arquitecturas de control robótico, ejem., deliverado vs. control reactivo y vehiculos Braitenberg 3. Modelando el mundo y modelos de mundo 4. Incertidumbre inherente en detección y control
- Configuración de espacio y mapas de entorno.
- Interpretando datos del sensor con incertidumbre.
- Localización y mapeo.
- Navegación y control.
- Planeando el movimiento.
- Coordinación multi-robots.

Objetivos de Aprendizaje:

- 1. Listar capacidades y limitaciones de sistemas del estado del arte en robótica de hoy , incluyendo sus sensores y el procesamiento del sensor crucial que informa a esos sistemas [Familiarizarse]
- 2. Integrar sensores, actuadores y software en un robot diseñado para emprender alguna tarea [Usar]
- 3. Programar un robot para llevar a cabo tareas simples usando arquitecturas de control deliverativo, reactivo y/o híbrido [Usar]

- 4. Implementar algoritmos de planificación de movimientos fundamentales dentro del espacio de configuración de un robot [Usar]
- 5. Caracterizar las incertidumbres asociadas con sensores y actuadores de robot comunes; articular estrategias para mitigar esas incertidumbres. [Familiarizarse]
- 6. Listar las diferencias entre representaciones de los robot de su enterno externo, incluyendo sus fortalezas y defectos [Familiarizarse]
- 7. Comparar y contrastar al menos tres estrategias para la navegación de robots dentro de entornos conocidos y/o no conocidos, incluyendo sus fortalezas y defectos [Evaluar]
- 8. Describir al menos una aproximación para la coordinación de acciones y detección de varios robots para realizar una simple tarea [Familiarizarse]

2.9.12. IS/Visión y percepción por computador

Tópicos:

Electivos

- Visión Computacional 1. Adquisición de imágenes, representación, procesamiento y propiedades
 2. Representación de formas, reconocimiento y segmentación de objetos 3. Análisis de movimiento
- Audio y reconocimiento de dictado.
- Modularidad en reconocimiento.
- Enfoques de reconocimiento de patrones 1. Algoritmos de clasificación y medidas de calidad de la clasificación. 2. Técnicas estadísticas.

Ref: 2.9.10 Aprendizaje de máquina avanzado, Pág. 79

Objetivos de Aprendizaje:

- 1. Resumir la importancia del reconocimiento de imagenes y objetos en Inteligencia Artificial (AI) e indicar varias aplicaciones significativas de esta tecnologia [Familiarizarse]
- 2. Listar al menos tres aproximaciones de segmentación de imágenes, tales como algoritmos de limites (thresholding), basado en el borde y basado en regiones, junto con sus características definitorias, fortalezas y debilidades [Familiarizarse]
- 3. Implementar reconocimiento de objetos en 2d basados en la representación del contorno y/o regiones basadas en formas [Usar]
- 4. Destinguir las metas de reconocimiento de sonido, palabras y del habla e identificar como la señal de audio bruto sera manejada diferentemente en cada uno de esos casos. [Familiarizarse]
- 5. Proporcionar al menos dos ejemplos de transformación de una fuente de datos de un dominio sensorial a otro, ejemplo, datos táctiles interpretados como imágenes en 2d de una sola banda [Familiarizarse]
- 6. Implementar un algoritmo para la extracción de caracteristicas en información real, ejemplo, un detector de bordes o esquinas para imágenes o vectores de coeficientes de Fourier describiendo una pequeña porción de señal de audio [Usar]
- 7. Implementar un algoritmo que combina características en percepciones de más alto nivel, p.e., un contorno o poligono a partir de primitivas visuales o fonemas de una señal de audio [Usar]
- 8. Implementar un algoritmo de clasificación que segmenta percepciones de entrada en categorias de salida y evalua cuantitativamente la clasificación resultante [Usar]

- 9. Evaluar el desempeño de la función de extracción subyacente, en relación con al menos una aproximación alternativa posible (ya sea implementado o no) en su contribución a la tarea de clasificación (8) anterior [Evaluar]
- 10. Describir por lo menos tres enfoques de clasificación, sus pre requisitos para aplicabilidad, fortalezas y deficiencias [Familiarizarse]

2.10. Redes y comunicaciones (NC)

Las redes de Internet y de la computadora ahora son ubicuos y un número creciente de actividades informáticas dependen en gran medida de la correcta operación de la red subyacente. Redes, tanto fijos como móviles, son una parte clave del entorno informático de hoy y de mañana. Muchas de las aplicaciones informáticas que se utilizan hoy en día no sería posible sin las redes. Esta dependencia de la red subyacente es probable que aumente en el futuro.

El objetivo de aprendizaje de alto nivel de este módulo se puede resumir como sigue: 1. Pensar en un mundo en red. El mundo es cada vez más interconectados y el uso de redes seguirá aumentando. Los estudiantes deben entender cómo se comportan las redes y los principios clave detrás de la organización y el funcionamiento de las redes. 2. Continúa estudio. El dominio de red está evolucionando rápidamente y un primer curso de redes debe ser un punto de partida para otros cursos más avanzados en el diseño de redes, gestión de redes, redes de sensores, etc. 3. Principios y práctica interactúan. Networking es real y muchas de las decisiones de diseño que involucran redes también dependen de las limitaciones prácticas. Los estudiantes deben ser expuestos a estas limitaciones prácticas por experimentar con la creación de redes, el uso de herramientas, y la escritura de software en red.

Hay diferentes maneras de organizar un curso de creación de redes. Algunos educadores prefieren un enfoque de arriba hacia abajo, es decir, el curso se inicia desde las aplicaciones y luego explica confiable entrega, enrutamiento y reenvío. Otros educadores prefieren un enfoque de abajo hacia arriba, donde los estudiantes comienzan con las capas inferiores y construir su comprensión de las capas de red, transporte y aplicación posterior.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core	Core	Electivos
	Tier1	Tier2	
2.10.1 Introducción (Pág. 82)	1.5		No
2.10.2 Aplicaciones en red (Pág. 83)	1.5		No
2.10.3 Entrega confiable de datos (Pág. 83)		2	No
2.10.4 Ruteo y reenvío (Pág. 84)		1.5	No
2.10.5 Redes de área local (Pág. 84)		1.5	No
2.10.6 Asignación de recursos (Pág. 84)		1	No
2.10.7 Celulares (Pág. 85)		1	No
2.10.8 Redes sociales (Pág. 85)			Si

2.10.1. NC/Introducción (1.5 horas Core-Tier1)

IAS / Seguridad de la red, que analiza la seguridad de red y de sus aplicaciones.

Tópicos:

Core Tier2

- Organización de la Internet (proveedores de servicios de Internet, proveedores de contenido, etc)
- Técnicas de Switching (por ejemplo, de circuitos, de paquetes)
- Piezas físicas de una red, incluidos hosts, routers, switches, ISPs, inalámbrico, LAN, punto de acceso y firewalls.
- Principios de capas (encapsulación, multiplexación)
- Roles de las diferentes capas (aplicación, transporte, red, enlace de datos, física)

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Articular la organización de la Internet [Familiarizarse]
- 2. Listar y definir la terminología de red apropiada [Familiarizarse]
- 3. Describir la estructura en capas de una arquitectura típica en red [Familiarizarse]
- 4. Identificar los diferentes tipos de complejidad en una red (bordes, núcleo, etc.) [Familiarizarse]

2.10.2. NC/Aplicaciones en red (1.5 horas Core-Tier1)

Tópicos:

Core Tier1

- Esquemas de denominación y dirección (DNS, direcciones IP, identificadores de recursos uniformes, etc)
- Las aplicaciones distribuidas (cliente / servidor, peer-to-peer, nube, etc)
- HTTP como protocolo de capa de aplicación .
- Multiplexación con TCP y UDP
- API de Socket

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Listar las diferencias y las relaciones entre los nombres y direcciones en una red [Familiarizarse]
- 2. Definir los principios detrás de esquemas de denominación y ubicación del recurso [Familiarizarse]
- 3. Implementar una aplicación simple cliente-servidor basada en sockets [Usar]

2.10.3. NC/Entrega confiable de datos (2 horas Core-Tier2)

Tópicos:

Core Tier2

- Control de errores (técnicas de retransmisión, temporizadores)
- El control de flujo (agradecimientos, ventana deslizante)
- Problemas de rendimiento (pipelining)
- TCP

Objetivos de Aprendizaje:

- 1. Describir el funcionamiento de los protocolos de entrega fiables [Familiarizarse]
- 2. Listar los factores que afectan al rendimiento de los protocolos de entrega fiables [Familiarizarse]
- 3. Diseñar e implementar un protocolo confiable simple [Usar]

2.10.4. NC/Ruteo y reenvío (1.5 horas Core-Tier2)

Tópicos:

Core Tier2

- Enrutamiento vs reenvío .
- Enrutamiento estático .
- Protocolo de Internet (IP)
- Problemas de escalabilidad (direccionamiento jerárquico)

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Describir la organización de la capa de red [Familiarizarse]
- 2. Describir cómo los paquetes se envían en una red IP [Familiarizarse]
- 3. Listar las ventajas de escalabilidad de direccionamiento jerárquico [Familiarizarse]

2.10.5. NC/Redes de área local (1.5 horas Core-Tier2)

Tópicos:

Core Tier2

- Problemas de Acceso Múltiple.
- Enfoques comunes a Acceso múltiple (exponencial backoff, multiplexación por división de tiempo, etc)
- Redes de área local .
- Ethernet .
- Switching .

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Describir como los paquetes son enviados en una red Ethernet [Familiarizarse]
- 2. Describir las relaciones entre IP y Ethernet [Familiarizarse]
- 3. Describir las etapas usadas en un enfoque común para el problema de múltiples accesos [Familiarizarse]

2.10.6. NC/Asignación de recursos (1 horas Core-Tier2)

Tópicos:

Core Tier2

- Necesidad de asignación de recursos .
- \blacksquare Asignación fija (TDM, FDM, WDM) versus la asignación dinámica .
- \blacksquare De extremo a extremo frente a las red de enfoque asistida .
- Justicia.
- Principios del control de congestión.
- Enfoques para la congestión (por ejemplo, redes de distribución de contenidos)

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Describir como los recursos pueden ser almacenados en la red [Familiarizarse]
- 2. Describir los problemas de congestión en una red grande [Familiarizarse]
- 3. Comparar y contrastar las técnicas de almacenamiento estático y dinámico [Evaluar]
- 4. Comparar y contrastar los enfoques actuales de la congestión [Evaluar]

2.10.7. NC/Celulares (1 horas Core-Tier2)

Tópicos:

Core Tier2

- Principios de redes celulares.
- Redes 802.11
- Problemas en el apoyo a los nodos móviles (agente local)

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Describir la organización de una red inalambrica [Familiarizarse]
- 2. Describir como las redes inalámbricas soportan usuarios móviles [Familiarizarse]

2.10.8. NC/Redes sociales

Tópicos:

Electivos

- Panorama de las redes sociales.
- Ejemplo plataformas de redes sociales.
- Estructura de los grafos de redes sociales.
- Análisis de redes sociales.

Objetivos de Aprendizaje:

- 1. Discutir los principios fundamentales(como pertenencia, confianza) de una red social [Familiarizarse]
- 2. Describir como redes sociales existentes operan [Familiarizarse]
- 3. Construir un grafo de una red social a partir de datos de la red [Usar]
- 4. Analizar una red social para determinar quienes son las personas importantes [Usar]
- 5. Evaluar una determinada interpretación de una pregunta de red social con los datos asociados [Evaluar]

2.11. Sistemas Operativos (OS)

Un sistema operativo define una abstracción del hardware y gestiona el intercambio de recursos entre los usuarios de la computadora. Los temas de esta área explican los conocimientos más básicos de los sistemas operativos en el sentido de interfaz de un sistema operativo de redes, la enseñanza de la diferencia entre los modos del núcleo y de los usuarios, y el desarrollo de enfoques clave para el diseño del sistema operativo y la aplicación. Esta área de conocimiento está estructurado para ser complementarios a los Fundamentos de Sistemas (SF), Redes y Comunicación (NC), Seguridad de la Información y de Seguridad (IAS), y las áreas de Informática (PD) de conocimiento paralela y distribuida. Los Sistemas Fundamentales y Aseguramiento de la Información y de Seguridad áreas de conocimiento son las nuevas que para incluir temas contemporáneos. Por ejemplo, Sistemas Fundamentales incluye temas tales como el rendimiento, la virtualización y el aislamiento, y la asignación de recursos y la programación; Sistemas Paralelos y Distribuidos incluye fundamentos de paralelismo; yă Aseguramiento de la Información y de Seguridad incluye los forenses y los problemas de seguridad en profundidad. Muchos cursos de Sistemas Operativos dibujarán material a través de estas áreas de conocimiento.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core Tier1	Core Tier2	Electivos
2.11.1 Visión general de Sistemas Operativos (Pág. 86)	2		No
2.11.2 Principios de Sistemas Operativos (Pág. 87)	2		No
2.11.3 Concurrencia (Pág. 87)		3	No
2.11.4 Planificación y despacho (Pág. 88)		3	No
2.11.5 Manejo de memoria (Pág. 89)		3	No
2.11.6 Seguridad y protección (Pág. 89)		2	No
2.11.7 Máquinas virtuales (Pág. 90)			Si
2.11.8 Manejo de dispositivos (Pág. 90)			Si
2.11.9 Sistema de archivos (Pág. 91)			Si
2.11.10 Sistemas empotrados y de tiempo real (Pág. 91)			Si
2.11.11 Tolerancia a fallas (Pág. 92)			Si
2.11.12 Evaluación del desempeño de sistemas (Pág. 92)			Si

2.11.1. OS/Visión general de Sistemas Operativos (2 horas Core-Tier1)

Tópicos: Core Tier1

- Papel y el propósito del sistema operativo.
- Funcionalidad de un sistema operativo típico.
- Los mecanismos de apoyo modelos cliente-servidor, dispositivos de mano.
- Cuestiones de diseño (eficiencia, robustez, flexibilidad, portabilidad, seguridad, compatibilidad)
- Influencias de seguridad, creación de redes, multimedia, sistemas de ventanas.

Objetivos de Aprendizaje: Core-Tier1:

- 1. Explicar los objetivos y funciones de un sistema operativo moderno [Familiarizarse]
- 2. Analizar las ventajas y desventajas inherentes en el diseño de un sistema operativo [Usar]
- 3. Describir las funciones de un sistema operativo contemporaneo respecto a conveniencia, eficiencia, y su habilidad para evolucionar [Familiarizarse]
- 4. Discutir acerca de sistemas operativos cliente-servidor, en red, distribuidos y cómo se diferencian de los sistemas operativos de un solo usuario [Familiarizarse]

5. Identificar amenazas potenciales a sistemas operativos y las características del diseño de seguridad para protegerse de ellos [Familiarizarse]

2.11.2. OS/Principios de Sistemas Operativos (2 horas Core-Tier1)

Tópicos:

Core Tier1

- Métodos de estructuración (monolítico, capas, modular, los modelos micro-kernel)
- Abstracciones, procesos y recursos.
- Los conceptos de interfaces de programa de aplicación (API)
- La evolución de las técnicas de hardware / software y las necesidades de aplicación
- Organización de dispositivos.
- Interrupciones: métodos e implementaciones.
- Concepto de usuario de estado / sistema y la protección, la transición al modo kernel.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Explicar el concepto de una capa lógica [Familiarizarse]
- 2. Explicar los beneficios de construir capas abstractas en forma jerárquica [Familiarizarse]
- 3. Describir el valor de la API y middleware [Evaluar]
- 4. Describir como los recursos computacionales son usados por aplicaciones de software y administradas por el software del sistema [Familiarizarse]
- 5. Contrastar el modo kernel y modo usuario en un sistema operativo [Usar]
- 6. Discutir las ventajas y desventajas del uso de procesamiento interrumpido [Familiarizarse]
- 7. Explicar el uso de una lista de dispositivos y el controlador de colas de entrada y salida [Familiarizarse]

2.11.3. OS/Concurrencia (3 horas Core-Tier2)

Tópicos:

Core Tier2

- Diagramas de estado.
 - Ref: 2.17.3 Estados y máquinas de estados, Pág. 133
- Estructuras (lista preparada, bloques de control de procesos, y así sucesivamente)
- Despacho y cambio de contexto.
- El papel de las interrupciones.
- Gestionar el acceso a los objetos del sistema operativo atómica.
- La implementación de primitivas de sincronización.
- Cuestiones multiprocesador (spin-locks, reentrada)
 Ref: 2.17.4 Paralelismo, Pág. 133

Objetivos de Aprendizaje:

- 1. Describir la necesidad de concurrencia en el marco de un sistema operativo [Familiarizarse]
- 2. Demostrar los potenciales problemas de tiempo de ejecución derivados de la operación simultánea de muchas tareas diferentes [Usar]
- 3. Resumir el rango de mecanismos que pueden ser usados a nivel del sistema operativo para realizar sistemas concurrentes y describir los beneficios de cada uno [Familiarizarse]
- 4. Explicar los diferentes estados por los que una tarea debe pasar y las estructuras de datos necesarias para el manejo de varias tareas [Familiarizarse]
- 5. Resumir las técnicas para lograr sicronización en un sistema operativo(por ejemplo, describir como implementar semáforos usando primitivas del sistema operativo.) [Familiarizarse]
- 6. Describir las razones para usar interruptores, despacho, y cambio de contexto para soportar concurrencia en un sistema operativo [Familiarizarse]
- 7. Crear diagramas de estado y transición para los dominios de problemas simples [Usar]

2.11.4. OS/Planificación y despacho (3 horas Core-Tier2)

Tópicos:

Core Tier2

- Planificación preventiva y no preferente.
 - Ref: 2.17.6 Asignación de recursos y planeamiento, Pág. 134, 2.13.6 Desempeño en paralelo, Pág. 101
- Planificadores y políticas.
 - Ref: 2.17.6 Asignación de recursos y planeamiento, Pág. 134, 2.13.6 Desempeño en paralelo, Pág. 101
- \blacksquare Procesos y subprocesos.
 - Ref: 2.17.1 Paradigmas computacionales, Pág. 131
- Plazos y cuestiones en tiempo real.

Objetivos de Aprendizaje:

- 1. Comparar y contrastar los algoritmos comunes que se utilizan tanto para un programa preferente y no preferente de las tareas en los sistemas operativos, como la comparación de prioridad, el rendimiento, y los esquemas de distribución equitativa [Usar]
- 2. Describir las relaciones entre los algoritmos de planificación y dominios de aplicación [Familia-rizarse]
- 3. Discutir los tipos de planeamiento de procesos scheduling de corto, a mediano, a largo plazo y I/O [Familiarizarse]
- 4. Describir las diferencias entre procesos y hebras [Usar]
- 5. Comparar y contrastar enfoques estáticos y dinámicos para scheduling en tiempo real [Usar]
- 6. Hablar sobre la necesidad de tiempos límites de scheduling [Familiarizarse]
- 7. Identificar formas en que la lógica expresada en algoritmos de planificación son de aplicación a otros ámbitos, tales como I/O del disco, la programación de disco de red, programación de proyectos y problemas más allá de la computación [Usar]

2.11.5. OS/Manejo de memoria (3 horas Core-Tier2)

Tópicos:

Core Tier2

- Revisión de la memoria física y hardware de gestión de memoria.
- Conjuntos de trabajo y thrashing.
- El almacenamiento en caché
 Ref: 2.2.4 Organización y Arquitectura del Sistema de Memoria, Pág. 27

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Explicar la jerarquía de la memoria y costo-rendimiento de intercambio [Familiarizarse]
- 2. Resumir los principios de memoria virtual tal como se aplica para el almacenamiento en cache y paginación [Familiarizarse]
- 3. Evaluar las ventajas y desventajas en términos del tamaño de memoria (memoria principal, memoria caché, memoria axiliar) y la velocidad del procesador [Evaluar]
- 4. Defiende las diferentes formas de asignar memoria a las tareas, citando las ventajas relativas de cada uno [Evaluar]
- 5. Describir el motivo y el uso de memoria caché (rendimiento y proximidad, dimensión diferente de como los caches complican el aislamiento y abstracción en VM) [Familiarizarse]
- 6. Estudiar los conceptos de *thrashing*, tanto en términos de las razones por las que se produce y las técnicas usadas para el reconocimiento y manejo del problema [Familiarizarse]

2.11.6. OS/Seguridad y protección (2 horas Core-Tier2)

Tópicos:

Core Tier2

- Visión general de la seguridad del sistema .
- Política / mecanismo de separación.
- Métodos de seguridad y dispositivos.
- Protección, control de acceso y autenticación.
- Las copias de seguridad.

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Articular la necesidad para la protección y seguridad en un sistema operativo [Evaluar]
- 2. Resumir las caracteristicas y limitaciones de un sistema operativo usado para proporcionar protección y seguridad [Familiarizarse]
- 3. Explicar el mecanismo disponible en un OS para controlar los accesos a los recursos [Familiarizarse]
- 4. Realizar tareas de administración de sistemas sencillas de acuerdo a una política de seguridad, por ejemplo la creación de cuentas, el establecimiento de permisos, aplicación de parches y organización de backups regulares [Usar]

2.11.7. OS/Máquinas virtuales

Tópicos:

Electivos

- Tipos de virtualización (incluyendo Hardware / Software, OS, Servidor, Servicio, Red)
- Paginación y la memoria virtual.
- Sistemas de archivos virtuales.
- Los Hypervisor.
- Virtualización portátil; emulación vs aislamiento.
- Costo de la virtualización.

Objetivos de Aprendizaje:

Elective:

- 1. Explicar el concepto de memoria virtual y la forma cómo se realiza en hadware y software [Familiarizarse]
- 2. Diferenciar emulacion y el aislamiento [Familiarizarse]
- 3. Evaluar virtualización de compensaciones [Evaluar]
- 4. Discutir sobre hipervisores y la necesidad para ellos en conjunto con diferentes tipos de hipervisores [Usar]

2.11.8. OS/Manejo de dispositivos

Tópicos:

Electivos

- Características de los dispositivos serie y paralelo.
- Haciendo de abstracción de dispositivos.
- Estrategias de buffering.
- Acceso directo a memoria.
- La recuperación de fallos.

Objetivos de Aprendizaje:

- 1. Explique la diferencia clave entre dispositivos seriales y paralelos e identificar las condiciones en las cuales cada uno es apropiado [Familiarizarse]
- 2. Identificar la relación entre el hardware físico y los dispositivos virtuales mantenidos por el sistema operativo [Usar]
- 3. Explique buffering y describir las estrategias para su aplicación [Familiarizarse]
- 4. Diferenciar los mecanismos utilizados en la interconexión de un rango de dispositivos (incluyendo dispositivos portátiles, redes, multimedia) a un ordenador y explicar las implicaciones de éstas para el diseño de un sistema operativo [Usar]
- 5. Describir las ventajas y desventajas de acceso directo a memoria y discutir las cirscunstancias en cuales se justifica su uso [Usar]
- 6. Identificar los requerimientos para recuperación de errores [Familiarizarse]
- 7. Implementar un controlador de dispositivo simple para una gama de posibles equipos [Usar]

2.11.9. OS/Sistema de archivos

Tópicos:

Electivos

- Archivos: los datos, metadatos, operaciones, organización, amortiguadores, secuenciales, no secuencial.
- Directorios: contenido y estructura.
- Los sistemas de archivos: partición, montar sistemas de archivos / desmontar, virtuales.
- Técnicas estándar de implementación .
- Archivos asignados en memoria.
- Sistemas de archivos de propósito especial.
- Naming, búsqueda, acceso, copias de seguridad.
- La bitacora y los sistemas de archivos estructurados (log)

Objetivos de Aprendizaje:

Elective:

- 1. Describir las decisiones que deben tomarse en el diseño de sistemas de archivos [Familiarizarse]
- 2. Comparar y contrastar los diferentes enfoques para la organización de archivos, el reconocimiento de las fortalezas y debilidades de cada uno. [Usar]
- 3. Resumir cómo el desarrollo de hadware ha dado lugar a cambios en las prioridades para el diseño y la gestión de sistemas de archivos [Familiarizarse]
- 4. Resumir el uso de diarios y como los sistemas de archivos de registro estructurado mejora la tolerancia a fallos [Familiarizarse]

2.11.10. OS/Sistemas empotrados y de tiempo real

Tópicos:

Electivos

- Proceso y programación de tareas.
- Los requisitos de gestión de memoria / disco en un entorno en tiempo real.
- Los fracasos, los riesgos y la recuperación.
- Preocupaciones especiales en sistemas de tiempo real.

Objetivos de Aprendizaje:

- 1. Describir que hace a un sistema un sistema en tiempo real [Familiarizarse]
- 2. Explicar la presencia y describir las características de latencia en sistemas de tiempo real [Familiarizarse]
- 3. Resumir los problemas especiales que los sistemas en tiempo real presentan, incluyendo el riesgo, y cómo se tratan estos problemas [Familiarizarse]

2.11.11. OS/Tolerancia a fallas

Tópicos:

Electivos

- Conceptos fundamentales: sistemas fiables y disponibles.
 Ref: 2.17.9 Confiabilidad a través de redundancia, Pág. 136
- Redundancia espacial y temporal.
 Ref: 2.17.9 Confiabilidad a través de redundancia, Pág. 136
- Los métodos utilizados para implementar la tolerancia a fallos.
- Los ejemplos de los mecanismos del sistema operativo para la detección, recuperación, reinicie para implementar la tolerancia a fallos, el uso de estas técnicas para los servicios propios del sistema operativo.

Objetivos de Aprendizaje:

Elective:

- 1. Explicar la importancia de los términos tolerancia a fallos, fiabilidad y disponibilidad [Familia-rizarse]
- 2. Explicar en términos generales la gama de métodos para implementar la tolerancia a fallos en un sistema operativo [Familiarizarse]
- 3. Explicar cómo un sistema operativo puede continar funcionando después de que ocurra una falla [Familiarizarse]

2.11.12. OS/Evaluación del desempeño de sistemas

Tópicos:

Electivos

- ¿Por qué el rendimiento del sistema debe ser evaluado?
 Ref: 2.17.5 Cifras de desempeño de mérito., Pág. 134
- ¿Qué se va a evaluar?

Ref: 2.17.5 Cifras de desempeño de mérito., Pág. 134

- Sistemas de políticas de rendimiento, por ejemplo, el almacenamiento en caché, de paginación, la programación, la gestión de memoria, y la seguridad.
- Modelos de evaluación: analítica, simulación, o de implementación específico determinista.
- Cómo recoger los datos de evaluación (perfiles y mecanismos de localización)

Objetivos de Aprendizaje:

Elective:

- 1. Describir las medidas de rendimiento utilizados para determinar cómo el sistema funciona [Familiarizarse]
- 2. Explicar los principales modelos de evaluación utilizados para evaluar un sistema [Familiarizarse]

2.12. Desarrollo basados en plataforma (PBD)

Desarrollo basado en la plataforma tiene que ver con el diseño y desarrollo de aplicaciones de software que residen en plataformas de software específicos. En contraste con la programación de propósito general, el desarrollo basado en la plataforma tiene en cuenta las limitaciones específicas de la plataforma. Por ejemplo la programación web, desarrollo multimedia, informática móvil, desarrollo de aplicaciones, y la robótica son ejemplos de plataformas relevantes que proporcionan servicios específicos

/ API / hardware que limitan el desarrollo. Estas plataformas se caracterizan por el uso de APIs especializadas, mecanismos de entrega / de actualización distintos, y se resumieron lejos del nivel de la máquina. Desarrollo basado en la plataforma se puede aplicar sobre una amplia extensión de los ecosistemas.

Si bien reconocemos que algunas plataformas (por ejemplo, desarrollo web) son prominentes, también somos conscientes del hecho de que ninguna plataforma en particular se debe especificar como requisito en los lineamientos curriculares CS2013. En consecuencia, esta área de conocimiento destaca muchas de las plataformas thathave hecho popular, sin incluir dicha plataforma en el plan de estudios básico. Tomamos nota de que la habilidad general de desarrollo con respecto a una API o un entorno restringido está cubierta en otras áreas de conocimiento, tales como Fundamentos de Desarrollo de Software (SDF). Desarrollo basado en la Plataforma enfatiza aún más esas habilidades generales en el contexto de las plataformas particulares.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core Tier1	Core Tier2	Electivos
2.12.1 Introducción (Pág. 93)			Si
2.12.2 Plataformas web (Pág. 93)			Si
2.12.3 Plataformas móviles (Pág. 94)			Si
2.12.4 Plataformas industriales (Pág. 94)			Si
2.12.5 Plataformas para video juegos (Pág. 95)			Si

2.12.1. PBD/Introducción

Esta unidad de conocimiento describe las diferencias fundamentales que la plataforma basada en el Desarrollo tiene sobre el desarrollo de software tradicional.

Tópicos:

Electivos

- Visión general de plataformas (ejemplo, Web, Mobil, Juegos, Industrial)
- Programación a través de APIs específicos.
- Visión general de lenguajes de plataforma (ejemplo, Objective C, HTML5)
- Pogramación bajo restricciónes de plataforma.

Objetivos de Aprendizaje:

Elective:

- 1. Describir cómo el desarrollo basado en plataforma difiere de la programación de proposito general [Familiarizarse]
- 2. Listar las características de lenguajes de plataforma [Familiarizarse]
- 3. Escribir y ejecutar un programa simple basado en plataforma [Usar]
- 4. Listar las ventajas y desventajas de la programación con restricciones de plataforma [Familiarizarse]

2.12.2. PBD/Plataformas web

Tópicos:

Electivos

- Lenguajes de programación web (e.g., HTML5, Javascript, PHP, CSS)
- Restricción de plataformas web.
- Software como servicio.
- Estándares web.

Objetivos de Aprendizaje:

Elective:

- 1. Diseñar e implementar una aplicación web sencilla [Usar]
- 2. Describir las limitaciones que la web pone a los desarrolladores [Familiarizarse]
- 3. Comparar y contrastar la programación web con la programación de proposito general [Evaluar]
- 4. Describir las diferencias entre software como un servicio y productos de software tradicionales [Familiarizarse]
- 5. Discutir cómo los estándares de web impactan el desarrollo de software [Familiarizarse]
- 6. Revise una aplicación web existente con un estándar web actual [Evaluar]

2.12.3. PBD/Plataformas móviles

Tópicos:

Electivos

- Lenguajes de Programación para Móviles.
- Desafíos con mobilidad y comunicación inalámbrica.
- Aplicaciones Location-aware.
- Rendimiento / Compensación de Potencia.
- Restricciones de las Plataformas Móviles.
- Tecnologías Emergentes.

Objetivos de Aprendizaje:

Elective:

- 1. Diseñar e implementar una aplicación móvil para una plataforma móvil dada [Usar]
- 2. Discutir las limitaciones que las plataformas móviles ponen a los desarrolladores [Familiarizarse]
- 3. Discutir el rendimiento vs perdida de potencia [Familiarizarse]
- 4. Compare y contraste la programación móvil con la programación de proposito general [Evaluar]

2.12.4. PBD/Plataformas industriales

Tópicos:

Electivos

- Tipos de Plataformas Industriales (Matemática, Robótica, Control Industrial)
- Software para Robótica y su Arquitectura.
- Lenguajes de Dominio Específico.
- Restricciones de las Plataformas Industiales.

Objetivos de Aprendizaje:

- 1. Diseñar e implementar una aplicación industrial en una plataforma dada (por ejemplo, usando *Lego Mindstorms* o *Matlab*) [Usar]
- 2. Comparar y contrastar lenguajes específicos de dominio con los lenguajes de programación de porposito general [Evaluar]
- 3. Discutir las limitaciones que una dada plataforma industrial impone a los desarrolladores [Familiarizarse]

2.12.5. PBD/Plataformas para video juegos

Tópicos: Electivos

- Tipos de Plataformas de Juego (ej. XBox, Wii, PlayStation)
- Lenguajes de Plataformas de Juego (ej. C++, Java, Lua, Python)
- Restricciones de las Plataformas de Juegos.

Objetivos de Aprendizaje:

Elective:

- 1. Diseñar e implementar una aplicación simple en una plataforma de juego. [Usar]
- 2. Describir las limitaciones que las plataformas de juego imponen en los desarrolladores [Familia-rizarse]
- 3. Comparar y contrastar la programación de juegos con la programación de proposito general [Evaluar]

2.13. Computación paralela y distribuída (PD)

La última década ha traído un crecimiento explosivo en multiprocesador computación, incluyendo los procesadores de varios núcleos y centros de datos distribuidos. Como resultado, la computación paralela y distribuida se ha movido de un tema ampliamente electiva a ser más de un componente central de los planes de estudios de computación de pregrado. Tanto la computación paralela y distribuida implica la ejecución lógicamente simultánea de múltiples procesos, cuyas operaciones tienen el potencial para intercalar de manera compleja. La computación paralela y distribuida construye sobre cimientos en muchas áreas, incluyendo la comprensión de los conceptos fundamentales de los sistemas, tales como la concurrencia y la ejecución en paralelo, la consistencia en el estado / manipulación de la memoria, y la latencia. La comunicación y la coordinación entre los procesos tiene sus raíces en el paso de mensajes y modelos de memoria compartida de la computación y conceptos algorítmicos como atomicidad, el consenso y espera condicional. El logro de aceleración en la práctica requiere una comprensión de algoritmos paralelos, estrategias para la descomposición problema, arquitectura de sistemas, estrategias de implementación detallados y análisis de rendimiento y el ajuste. Los sistemas distribuidos destacan los problemas de la seguridad y tolerancia a fallos, hacen hincapié en el mantenimiento del estado replicado, e introducen problemas adicionales que el puente a las redes de computadoras.

Debido paralelismo interactúa con tantas áreas de la computación, incluyendo al menos algoritmos, lenguajes, sistemas, redes y hardware, muchos planes de estudio pondrán diferentes partes del área de conocimiento en diferentes cursos, en lugar de en un curso dedicado. Si bien reconocemos que la informática se está moviendo en esa dirección y puede llegar a ese punto, en 2013 este proceso se encuentra aún en proceso de cambio y creemos que ofrece una guía más útil para diseñadores curriculares para agregar los temas fundamentales de paralelismo en un solo lugar. Tenga en cuenta, sin embargo, que los fundamentos de la concurrencia y la exclusión mutua aparecen en el área de conocimiento 2.17 Fundamentos de Sistemas (SF), Pág. 131. Muchos planes de estudios pueden optar por introducir el paralelismo y la concurrencia en el mismo curso (ver más abajo para la distinción prevista por estos términos). Además, observamos que los temas y resultados de aprendizaje que figuran a continuación incluyen sólo breves menciones de cobertura puramente electiva. En la actualidad, hay demasiada diversidad en temas que comparten poco en común (incluyendo por ejemplo, la computación científica paralela, cálculos de procesos y estructuras de datos no-bloqueo) para recomendar determinados temas se tratarán en cursos electivos.

Debido a la terminología de la computación paralela y distribuida varía entre las comunidades, ofrecemos aquí una breve descripción de los sentidos previstos de algunos términos. Esta lista no es exhaustiva ni definitiva, pero se proporciona para mayor claridad.

1. Paralelismo: El uso de los recursos computacionales adicionales simultáneamente, por lo general durante la aceleración. 2. Concurrencia: gestionar de manera eficiente y correcta el acceso simultáneo

a los recursos. 3. Actividad: Un cálculo que pueden ejecutarse simultáneamente con los demás; por ejemplo, un programa, proceso, hilo, o activa componente de hardware paralelo. 4. Atomicity: Normas y propiedades de legalidad de una acción es observacional indivisible; por ejemplo, el establecimiento de todos los bits en una palabra, la transmisión de un único paquete, o completar una transacción. 5. Consenso artículo: Acuerdo entre dos o más actividades alrededor de un predicado dado; por ejemplo, el valor de un contador, el propietario de una cerradura, o la terminación de un hilo. 6. Consistencia: Las reglas y propiedades que rigen el acuerdo sobre los valores de las variables escritos o mensajes producidos, por algunas actividades y usados ??por otros (así posiblemente exhibiendo una raza de datos); por ejemplo, la consistencia secuencial, indicando que los valores de todas las variables de un programa paralelo de memoria compartida son equivalentes a la de un único programa de la realización de algún intercalado de la memoria de accesos de estas actividades.

7. Multicast: Un mensaje enviado a varios destinatarios, posiblemente, en general sin restricciones acerca de si algunos destinatarios reciban el mensaje antes que otros. Un evento es un mensaje de multidifusión enviado a un conjunto designado de oyentes o suscriptores.

Como multi-procesador de computación continúa creciendo en los próximos años, también lo hará el papel de la computación paralela y distribuida en los programas informáticos de pregrado. Además de las directrices que se presentan aquí, también nos dirigimos al lector interesado al documento titulado "NSF/TCPP Curriculum Initiative on Parallel and Distributed Computing - Core Topics for Undergraduates", disponible en el sitio web: http://www.cs.gsu.edu/tcpp/curriculum/.

Nota general de referencias cruzadas: Fundamentos de Sistemas también contiene una introducción al paralelismo (2.17.1 Paradigmas computacionales, Pág. 131, 2.17.4 Paralelismo, Pág. 133, 2.13.6 Desempeño en paralelo, Pág. 101).

La introducción al paralelismo en SF complementa el uno aquí y no hay restricción de pedido entre ellos. En San Francisco, la idea es proporcionar una visión unificada del apoyo del sistema para su ejecución simultánea en varios niveles de abstracción (el paralelismo es inherente a las puertas, procesadores, sistemas operativos y servidores), mientras que aquí la atención se centra en una comprensión preliminar de paralelismo como la computación primitivo y las complicaciones que surgen en paralelo y la programación concurrente. Teniendo en cuenta estas diferentes perspectivas, las horas asignadas a cada uno no son redundantes: ver los sistemas de capas y los conceptos computacionales de alto nivel se contabilizan por separado en termsof las horas centrales.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core	Core	Electivos
	Tier1	Tier2	
2.13.1 Fundamentos de paralelismo (Pág. 96)	2		No
2.13.2 Descomposición en paralelo (Pág. 97)	1	2	No
2.13.3 Comunicación y coordinación (Pág. 97)	1	3	Si
2.13.4 Análisis y programación de algoritmos paralelos (Pág. 99)		3	Si
2.13.5 Arquitecturas paralelas (Pág. 100)	1	2	Si
2.13.6 Desempeño en paralelo (Pág. 101)			Si
2.13.7 Sistemas distribuídos (Pág. 101)			Si
2.13.8 Cloud Computing (Pág. 102)			Si
2.13.9 Modelos y semántica formal (Pág. 103)			Si

2.13.1. PD/Fundamentos de paralelismo (2 horas Core-Tier1)

Hacer que los estudiantes estén familiarizados con las nociones básicas de una ejecución paralela, un concepto de observado en Fundamentos de Sistemas, para resolver problemas de compilación que derivan de estas nociones, alá igual que las condiciones de carrera (*Race Conditions*) y vida

Tópicos:

Core Tier1

- Procesamiento Simultáneo Múltiple.
- Metas del Paralelismo (ej. rendimineto) frente a Concurrencia (ej. control de acceso a recursos compartidos)
- Paralelismo, comunicación, y coordinación: 1. Paralelismo, comunicación, y coordinación 2. Necedidad de Sincronización

■ Errores de Programación ausentes en programación secuencial: 1. Tipos de Datos (lectura/escritura simultánea o escritura/escritura compartida) 2. Tipos de Nivél más alto (interleavings violating program intention, no determinismo no deseado) 3. Falta de vida/progreso (deadlock, starvation)

Objetivos de Aprendizaje: Core-Tier1:

- 1. Distinguir el uso de recursos computacionales para una respuesta mas rápida para administrar el acceso eficiente a un recurso compartido [Familiarizarse]
- 2. Distinguir múltiples estructuras de programación suficientes para la sincronización que pueden ser inter-implementables pero tienen ventajas complementarias [Familiarizarse]
- 3. Distinguir datos de carrera (data races) a partir de carreras de mas alto nivel [Familiarizarse]

2.13.2. PD/Descomposición en paralelo (1 horas Core-Tier1, 2 horas Core-Tier2)

Tópicos:

Core Tier1

- Necesidad de Comunicación y coordinación/sincronización.
- Independencia y Particionamiento.

Core Tier2

- Conocimiento Básico del Concepto de Descomposición Paralela.
 Ref: 2.17.4 Paralelismo, Pág. 133
- Decomposición basada en tareas: 1. Implementación de estrategias como hebras
- Descomposición de Información Paralela 1. Estrategias como SIMD y MapReduce
- Actores y Procesos Reactivos (solicitud de gestores)

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Explicar por qué la sincronización es necesaria en un programa paralelo especifico [Usar]
- 2. Identificar oportunidades para particionar un programa serial en módulos paralelos independientes [Familiarizarse]

Core-Tier2:

- 3. Escribir un algoritmo paralelo correcto y escalable [Usar]
- 4. Paralelizar un algoritmo mediante la aplicación de descomposición basada en tareas [Usar]
- 5. Paralelizar un algoritmo mediante la aplicación de descomposición datos en paralelo [Usar]
- 6. Escribir un programa usando actores y/o procesos reactivos [Usar]

2.13.3. PD/Comunicación y coordinación (1 horas Core-Tier1, 3 horas Core-Tier2)

Tópicos:

Core Tier1

Memoria Compartida.

■ La consistencia, y su papel en los lenguaje de programación garantias para los programas de carrera libre.

Core Tier2

- Pasos de Mensaje: 1. Mensajes Punto a Punto versus multicast (o basados en eventos) 2. Estilos para enviar y recibir mensajes Blocking vs non-blocking 3. Buffering de mensajes
 Ref: 2.15.3 Estructuras de Datos Fundamentales, Pág. 116
- Atomicidad: 1. Especificar y probar atomicidad y requerimientos de seguridad 2. Granularidad de accesos atómicos y actualizaciones, y uso de estructuras como secciones críticas o transacciones para describirlas 3. Exclusión mutua usando bloques, semáforos, monitores o estructuras relacionadas a) Potencial para fallas y bloqueos (deadlock) (causas, condiciones, prevención) 4. Composición a) Componiendo acciones atómicas granulares más grandes usando sincronización b) Transacciones, incluyendo enfoques optimistas y conservadores

Electivos

- Consensos: 1. (Ciclicos) barerras, contadores y estructuras relacionadas
- Acciones condicionales: 1. Espera condicional (p.e., empleando variables de condición)

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Usar exclusión mútua para evitar una condición de carrera [Usar]
- 2. Dar un ejemplo de una ordenación de accesos entre actividades concurrentes (por ejemplo, un programa con condición de carrera) que no son secuencialmente consistentes [Familiarizarse]

Core-Tier2:

- 3. Dar un ejemplo de un escenario en el que el bloqueo de mensajes enviados pueden dar dead-lock [Usar]
- 4. Explicar cuándo y por qué mensajes de multidifusión (*multicast*) o basado en eventos puede ser preferible a otras alternativas [Familiarizarse]
- 5. Escribir un programa que termine correctamente cuando todo el conjunto de procesos concurrentes hayan sido completados [Usar]
- 6. Usar una apropiada cola de sincronización para almacenar temporalmente datos pasados entre actividades [Usar]
- 7. Explicar por qué verificaciones para precondiciones, y acciones basados en estas verificaciones, deben compartir la misma unidad de atomicidad para ser efectivo [Familiarizarse]
- 8. Escribir un programa de prueba que pueda revelar un error de programación concurrente; por ejemplo, falta una actualización cuando dos actividades intentan incrementar una variable [Usar]
- 9. Describir al menos una técnica de diseño para evitar [Familiarizarse]
- 10. Describir las ventajas relativas del control de concurrencia optimista y conservadora bajo diferentes tipos de carrera entre actualizaciones [Familiarizarse]
- 11. Dar un ejemplo de un escenario en el que un intento optimista de actualización puede nunca completarse [Familiarizarse]

Elective:

12. Usar semaforos o variables de condición para bloquear hebras hasta una necesaria precondición de mantenga [Usar]

2.13.4. PD/Análisis y programación de algoritmos paralelos (3 horas Core-Tier2)

Tópicos:

Core Tier2

- Caminos críticos, el trabajo y la duración y la relación con la ley de Amdahl.
 Ref: 2.13.6 Desempeño en paralelo, Pág. 101
- Aceleración y escalabilidad.
- Naturalmente (vergonzosamente) algoritmos paralelos.
- Patrones Algoritmicos paralelos (divide-y-conquista, map/reduce, amos-trabajadores, otros) 1. Algoritmos específicos (p.e., MergeSort paralelo)

Electivos

 Algoritmos de grafos paralelo (por ejemplo, la ruta más corta en paralelo, árbol de expansión paralela)

Ref: 2.1.2 Estrategias Algorítmicas, Pág. 19

- Cálculos de matriz paralelas.
- Productor-consumidor y algoritmos paralelos segmentados.
- Ejemplos de algoritmos paralelos no-escalables.

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Definir: camino crítico, trabajo y span [Familiarizarse]
- 2. Calcular el trabajo y el *span* y determinar el camino crítico con respecto a un diagrama de ejecución paralela. [Usar]
- 3. Definir *speed-up* y explicar la noción de escalabilidad de un algoritmo en este sentido [Familia-rizarse]
- 4. Identificar tareas independientes en un programa que debe ser paralelizado [Usar]
- 5. Representar características de una carga de trabajo que permita o evite que sea naturalmente paralelizable [Familiarizarse]
- 6. Implementar un algoritmo dividir y conquistar paralelo (y/o algoritmo de un grafo) y medir empiricamente su desempeño relativo a su analogo secuencial [Usar]
- 7. Descomponer un problema (por ejemplo, contar el número de ocurrencias de una palabra en un documento) via operaciones map y reduce [Usar]

- 8. Proporcionar un ejemplo de un problema que se corresponda con el paradigma productor-consumidor [Familiarizarse]
- 9. Dar ejemplos de problemas donde el uso de *pipelining* sería un medio eficaz para la paralelización [Familiarizarse]
- 10. Implementar un algoritmo de matriz paralela [Usar]
- 11. Identificar los problemas que surgen en los algoritmos del tipo productor-consumidor y los mecanismos que pueden utilizarse para superar dichos problemas [Familiarizarse]

2.13.5. PD/Arquitecturas paralelas (1 horas Core-Tier1, 2 horas Core-Tier2)

Los temas que se muestran aquí están relacionados con las unidades de conocimiento en la Arquitectura y Organización (AR) área de conocimiento (AR / ensamblaje nivel de máquina y AR / multiprocesamiento y Alternativa Architectures). Aquí, nos centramos en la arquitectura paralela desde el punto de vista de las aplicaciones, mientras que el área de conocimiento Arquitectura y Organización presenta el tema desde la perspectiva del hardware.

Tópicos:

Core Tier1

- Procesadores mutlinúcleo.
- Memoria compartida vs memoria distribuida.

Core Tier2

- Multiprocesamiento simétrico.
- SIMD, procesamiento de vectores.

Electivos

- GPU, coprocesamiento.
- Taxonomia de Flynn.
- Soporte a nivel de instrucciones para programación paralela. 1. Instrucciones atómicas como Compare/Set (Comparar / Establecer)
- Problemas de Memoria: 1. Caches multiprocesador y coherencia de cache 2. Acceso a Memoria no uniforme (NUMA)
- Topologías. 1. Interconecciones 2. Clusters 3. Compartir recursos (p.e., buses e interconexiones)

Objetivos de Aprendizaje:

Core-Tier1:

1. Explicar las diferencias entre memoria distribuida y memoria compartida [Familiarizarse]

Core-Tier2:

- 2. Describir la arquitectura SMP y observar sus principales caracteristicas [Familiarizarse]
- 3. Distinguir los tipos de tareas que son adecuadas para máquinas SIMD [Familiarizarse]

- 4. Describir las ventajas y limitaciones de GPUs vs CPUs [Familiarizarse]
- 5. Explicar las caracteristicas de cada clasificación en la taxonomía de Flynn [Familiarizarse]
- 6. Describir el soporte a de nivel de lenguaje ensamblador para las operaciones atómicas [Familia-rizarse]
- 7. Describir los desafíos para mantener la coherencia de la caché [Familiarizarse]
- 8. Describir los desafíos clave del desempeño en diferentes memorias y topologías de sistemas distribuidos [Familiarizarse]

2.13.6. PD/Desempeño en paralelo

Tópicos:

Electivos

- Equilibrio de carga.
- La medición del desempeño.
- Programación y contención.
 Ref: 2.11.4 Planificación y despacho, Pág. 88
- Evaluación de la comunicación de arriba.
- Gestión de datos: 1. Costos de comunicación no uniforme debidos a proximidad 2. Efectos de Cache (p.e., false sharing) 3. Manteniendo localidad espacial
 Ref: 2.17.7 Proximidad, Pág. 135
- Consumo de energía y gestión.

Objetivos de Aprendizaje:

Elective:

- 1. Detectar y corregir un desbalanceo de carga [Usar]
- 2. Calcular las implicaciones de la ley de Amdahl para un algoritmo paralelo particular [Usar]
- 3. Describir como la distribuición/disposición de datos puede afectar a los costos de comunicación de un algoritmo [Familiarizarse]
- 4. Detectar y corregir una instancia de uso compartido falso (false sharing) [Usar]
- 5. Explicar el impacto de la planificación en el desempeño paralelo [Familiarizarse]
- 6. Explicar el impacto en el desempeño de la localidad de datos [Familiarizarse]
- 7. Explicar el impacto y los puntos de equilibrio relacionados al uso de energía en el desempeño paralelo [Familiarizarse]

2.13.7. PD/Sistemas distribuídos

Tópicos:

Electivos

- Fallos: 1. Fallos basados en red (incluyendo particiones) y fallos basados en nodos 2. Impacto en garantías a nivel de sistema (p.e., disponibilidad)
 Ref: 2.11.11 Tolerancia a fallas, Pág. 92
- Envío de mensajes distribuido: 1. Conversión y transmisión de datos 2. Sockets 3. Secuenciamiento de mensajes 4. Almacenando *Buffering*, renviando y desechando mensajes
- Compensaciones de diseño para Sistemas Distribuidos: 1. Latencia versus rendimiento 2. Consistencia, disponibilidad, tolerancia de particiones
- Diseño de Servicio Distribuido: 1. Protocolos y servicios Stateful versus stateless 2. Diseños de Sesión (basados en la conexión) 3. Diseños reactivos (provocados por E/S) y diseños de múltiples hilos
- Algoritmos de Distribución de Núcleos: 1. Elección, descubrimiento

Objetivos de Aprendizaje:

Elective:

1. Distinguir las fallas de red de otros tipos de fallas [Familiarizarse]

- 2. Explicar por qué estructuras de sincronización como cerraduras simples (*locks*) no son útiles en la presencia de fallas distribuidas [Familiarizarse]
- 3. Escribir un programa que realiza cualquier proceso de *marshalling* requerido y la conversión en unidades de mensajes, tales como paquetes, para comunicar datos importantes entre dos *hosts* [Usar]
- 4. Medir el rendimiento observado y la latencia de la respuesta a través de los *hosts* en una red dada [Usar]
- 5. Explicar por qué un sistema distribuido no puede ser simultaneamente Consistente (*Consistent*), Disponible (*Available*) y Tolerante a fallas (*Partition tolerant*). [Familiarizarse]
- 6. Implementar un servidor sencillo por ejemplo, un servicio de corrección ortográfica [Usar]
- 7. Explicar las ventajas y desventajas entre: overhead, escalabilidad y tolerancia a fallas entre escojer un diseño sin estado (stateless) y un diseño con estado (stateful) para un determinado servicio [Familiarizarse]
- 8. Describir los desafios en la escalabilidad, asociados con un servicio cresciente para soportar muchos clientes, así como los asociados con un servicio que tendrá transitoriamente muchos clientes [Familiarizarse]
- 9. Dar ejemplos de problemas donde algoritmos de consenso son requeridos, por ejemplo, la elección de líder [Usar]

2.13.8. PD/Cloud Computing

Tópicos:

Electivos

- Computación a Escala de Internet: 1. Particionamiento de Tareas 2. Acceso a datos 3. Clusters, grids y mallas
 - Ref: 2.13.4 Análisis y programación de algoritmos paralelos, Pág. 99
- Servicios en la nube. 1. Infraestructura como servicio a) Elasticidad de recursos b) APIs de la Platforma 2. Software como servicio 3. Securidad 4. Administración del Costo
- Virtualización. 1. Gestión de recursos compartidos 2. Migración de procesos
 Ref: 2.17.8 Virtualización y aislamiento, Pág. 135, 2.11.7 Máquinas virtuales, Pág. 90
- Almacenamiento de datos en la nube: 1. Acceso compartido a data stores de consistencia débil
 2. Sincronización de datos 3. Particionamiento de datos 4. Sistemas de Archivos Distribuidos
 5. Replicación

Ref: 2.8.8 Bases de Datos Distribuidas, Pág. 69

Objetivos de Aprendizaje: Elective:

- 1. Discutir la importancia de la elasticidad y administración de recursos en la Computación en la Nube (Cloud Computing) [Familiarizarse]
- 2. Explicar las estrategias para sincronizar una vista comun de datos compartidos a través de una colección de dispositivos [Familiarizarse]
- 3. Explicar las ventajas y desventajas de usar una infraestructura vistualizada [Familiarizarse]
- 4. Desplegar una aplicación que usa una infraestructura en la nube para computación y/o recursos de datos [Usar]
- 5. Apropiadamente particionar una aplicación entre un cliente y los recursos [Usar]

2.13.9. PD/Modelos y semántica formal

Tópicos: Electivos

- Modelos formales de procesos y paso de mensajes, incluyendo algebras como Procesos Secuenciales de Comunicación (CSP) y Pi-Calculus
- Modelos formales de computación paralela, incluyendo la Máquina de Acesso Aleatorio Paralelo (PRAM) y alternativas como Bulk Synchronous Parallel (BSP)
- Modelos formales de dependencias computacionales.
- Modelos de consistencia (relajado) de memoria compartida y su relación con las especificaciones del lenguaje de programación.
- Criterios de corrección de algoritmos incluyendo (linearizability).
- Modelos de progreso algorítmic, incluyendo garantias de no bloqueo y equidad.
- Técnicas para especificar y comprobar las propiedades de corrección tales como atomicidad y la libertad de las carreras de datos.

Objetivos de Aprendizaje: Elective:

- 1. Modelar un proceso concurrente usando un modelo formal, por ejemplo, cálculo pi [Usar]
- 2. Explicar las caracteristicas de un particular modelo paralelo formal [Familiarizarse]
- 3. Formalmente modelar un sistema de memoria compartida para mostrar y éste es consistente [Usar]
- 4. Usar un modelo para mostrar las garantias de progreso en un algoritmo paralelo [Usar]
- 5. Usar técnicas formales para mostrar que un algoritmo paralelo es correcto con respecto a la seguridad o la propiedad *liveness* [Usar]
- 6. Decidir si una ejecución específica es linealizable o no [Usar]

2.14. Lenguajes de programación (PL)

Los lenguajes de programación son el medio a través del cual los programadores describen con precisión los conceptos, formulan algoritmos, y la representan sus soluciones. Un científico de la computación con diferentes lenguajes, por separado o en conjunto. Los científicos de la computación deben entender los modelos de programación de los diferentes lenguajes y tomar decisiones de diseño basados en el lenguaje de programación y conceptos complementarios. El profesional a menudo necesitará aprender nuevos lenguajes y construcciones de programación y debe entender los fundamentos de como las características del lenguaje de programación estan definidas, compuestas, y implementadas. El uso eficaz de los lenguajes de programación, y la apreciación de sus limitaciones, también requiere un conocimiento básico de traducción de lenguajes de programación y su análisis de ambientes estáticos y dinámicos, así como los componentes de tiempo de ejecución tales como la gestión de memoria, entre otros detalles de relevancia.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core	Core	Electivos
	Tier1	Tier2	
2.14.1 Programación orientada a objetos (Pág. 104)	4	6	No
2.14.2 Programación funcional (Pág. 105)	3	4	No
2.14.3 Programación reactiva y dirigida por eventos (Pág. 106)		2	No
2.14.4 Sistemas de tipos básicos (Pág. 106)	1	4	No
2.14.5 Representación de programas (Pág. 107)		1	No
2.14.6 Traducción y ejecución de lenguajes (Pág. 108)		3	No
2.14.7 Análisis de sintaxis (Pág. 108)			Si
2.14.8 Análisis semántico de compiladores (Pág. 109)			Si
2.14.9 Generación de código (Pág. 109)			Si
2.14.10 Sistemas de tiempo de ejecución (Pág. 110)			Si
2.14.11 Análisis estático (Pág. 110)			Si
2.14.12 Construcciones de programación avanzados (Pág. 111)			Si
2.14.13 Concurrencia y Paralelismo (Pág. 111)			Si
2.14.14 Sistemas de tipos (Pág. 112)			Si
2.14.15 Semántica formal (Pág. 112)			Si
2.14.16 Pragmática de lenguajes (Pág. 113)			Si
2.14.17 Programación lógica (Pág. 114)			Si

2.14.1. PL/Programación orientada a objetos (4 horas Core-Tier1, 6 horas Core-Tier2)

Tópicos:

Core Tier1

- Diseño orientado a objetos: 1. Descomposicion en objetos que almacenan estados y poseen comportamiento 2. Diseño basado en jerarquia de clases para modelamiento
- Definición de las categorías, campos, métodos y constructores.
- Las subclases, herencia y método de alteración temporal.
- Asignación dinámica: definición de método de llamada.

Core Tier2

Subtipificación: 1. Polimorfismo artículo Subtipo; upcasts implícitos en lenguajes con tipos.
 2. Noción de reemplazo de comportamiento: los subtipos de actuar como supertipos.
 3. Relación entre subtipos y la herencia.

Ref: 2.14.14 Sistemas de tipos, Pág. 112

- Lenguajesăorientados a objetos para la encapsulación: 1. privacidad y la visibilidad de miembros de la clase 2. Interfaces revelan único método de firmas 3. clases base abstractas
- Uso de coleccion de clases, iteradores, y otros componentes de la libreria estandar.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Diseñar e implementar una clase [Usar]
- 2. Usar subclase para diseñar una jerarquía simple de clases que permita al código ser reusable por diferentes subclases [Usar]
- 3. Razonar correctamente sobre el flujo de control en un programa mediante el envío dinámico [Usar]
- 4. Comparar y contrastar (1) el enfoque procedurar/funcional- definiendo una función por cada operación con el cuerdo de la función proporcionando un caso por cada variación de dato y (2) el enfoque orientado a objetos definiendo una clase por cada variación de dato con la definición de la clase proporcionando un método por cada operación. Entender ambos enfoques como una definición de variaciones y operaciones de una matriz [Evaluar]

Core-Tier2:

- 5. Explicar la relación entre la herencia orientada a objetos (codigo compartido y overriding) y subtipificación (la idea de un subtipo es ser utilizable en un contexto en el que espera al supertipo) [Familiarizarse]
- 6. Usar mecanismos de encapsulación orientada a objetos, tal como interfaces y miembros privados [Usar]
- 7. Definir y usar iteradores y otras operaciones sobre agregaciones, incluyendo operaciones que tienen funciones como argumentos, en múltiples lenguajes de programación, selecionar la forma mas natural por cada lenguaje [Usar]

2.14.2. PL/Programación funcional (3 horas Core-Tier1, 4 horas Core-Tier2)

Tópicos:

Core Tier1

- El efecto de la programación libre: 1. Llamadas a función que no tiene efecto secundarios, para facilitar el razonamiento composicional 2. Variables inmutables, prevencion de cambios no esperados en los datos del programa por otro código. 3. Datos que pueden ser subnombrados o copiados libremente sin introducir efectos no deseados del cambio
- Procesamiento de estructuras de datos (p.e. arboles) a través de fuciones con casos para cada variación de los datos. 1. Constructores asociados al lenguaje tales como uniones discriminadas y reconocimiento de patrones sobre ellos. 2. Funciones definidas sobre datos compuestos en términos de funciones aplicadas a las piezas constituidas.
- Funciones de primera clase (obtener, retornar y funciones de almacenamiento)

Core Tier2

- Cierres de función (funciones que usan variables en entornos léxicos cerrados) 1. Significado y definicion básicos creacion de cierres en tiempo de ejecución mediante la captura del entorno.
 2. Idiomas canónicos: llamadas de retorno, argumentos de iteradores, código reusable mediante argumentos de función 3. Uso del cierre para encapsular datos en su entorno 4. Evaluación y aplicación parcial
- Definición de las operaciones de orden superior en los agregados, especialmente en mapa, reducir / doblar, y el filtro.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Escribir algoritmos básicos que eviten asignación a un estado mutable o considerar igualdad de referencia [Usar]
- 2. Escribir funciones útiles que puedan tomar y retornar otras funciones [Usar]
- 3. Comparar y contrastar (1) el enfoque procedurar/funcional- definiendo una función por cada operación con el cuerdo de la función proporcionando un caso por cada variación de dato y (2) el enfoque orientado a objetos definiendo una clase por cada variación de dato con la definición de la clase proporcionando un método por cada operación. Entender ambos enfoques como una definición de variaciones y operaciones de una matriz [Evaluar]

Core-Tier2:

- 4. Razonar correctamente sobre variables y el ámbito léxico en un programa usando funciones de cierre (function closures) [Usar]
- 5. Usar mecanismos de encapsulamiento funcional, tal como closures e interfaces modulares [Usar]
- 6. Definir y usar iteradores y otras operaciones sobre agregaciones, incluyendo operaciones que tienen funciones como argumentos, en múltiples lenguajes de programación, seleccionar la forma mas natural por cada lenguaje [Usar]

2.14.3. PL/Programación reactiva y dirigida por eventos (2 horas Core-Tier2)

Este material puede ser independiente o estar integrado con otras unidades de conocimiento sobre la concurrencia, la asincronía, y roscado para permitir contrastar hechos con hilos.

Tópicos:

Core Tier2

- Eventos y controladores de eventos.
- Usos canónicos como interfaces gráficas de usuario, dispositivos móviles, robots, servidores.
- Uso de frameworks reactivos. 1. Definición de controladores/oyentes (handles/listeners) de eventos. 2. Bucle principal de enventos no controlado po el escritor controlador de eventos (event-handler-writer)
- Eventos y eventos del programa generados externamente generada.
- La separación de modelo, vista y controlador.

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Escribir manejadores de eventos para su uso en sistemas reactivos tales como GUIs [Usar]
- 2. Explicar porque el estilo de programación manejada por eventos es natural en dominios donde el programa reacciona a eventos externos [Familiarizarse]
- 3. Describir un sistema interactivo en términos de un modelo, una vista y un controlador [Familia-rizarse]

2.14.4. PL/Sistemas de tipos básicos (1 horas Core-Tier1, 4 horas Core-Tier2)

Las horas-core tier2 serían bien gastadas tanto en los temas estratégicos Core-Tier2 y en un tratamiento menos superficial de los resultados Core-Tier1 aprendizaje topicsand.

Tópicos:

Core Tier1

- Tipos como conjunto de valores junto con un conjunto de operaciones. 1. Tipos primitivos (p.e. numeros, booleanos) 2. Composición de tipos construidos de otros tipos (p.e., registros, uniones, arreglos, listas, funciones, referencias)
- Asociación de tipos de variables, argumentos, resultados y campos.
- Tipo de seguridad y los errores causados ??por el uso de valores de manera incompatible dadas sus tipos previstos.
- Metas y limitaciones de tipos estáticos 1. Eliminación de algunas clases de errores sin ejecutar el programa 2. Indesición significa que un análisis estatico puede aproximar el comportamiento de un programa

Core Tier2

- Tipos genéricos (polimorfismo paramétrico) 1. Definición 2. Uso de librerías genéricas tales como colecciones. 3. Comparación con polimorfismo ad-hoc y polimorfismo de subtipos
- Beneficios complementarios de tipos estáticos y dinámicos: 1. Errores tempranos vs. errores tardios/evitados. 2. Refuerzo invariante durante el desarrollo y mantenimiento del codigo vs. desiciones pospuestas de tipos durante la la creacion de prototipos y permititr convenientemente la codificación flexible de patrones tales como colecciones heterogéneas. 3. Evitar el mal uso del código vs. permitir más reuso de código. 4. Detectar programas incompletos vs. permitir que programas incompletos se ejecuten

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Tanto para tipo primitivo y un tipo compuesto, describir de manera informal los valores que tiene dicho tipo [Familiarizarse]
- 2. Para un lenguaje con sistema de tipos estático, describir las operaciones que están prohibidas de forma estática, como pasar el tipo incorrecto de valor a una función o método [Familiarizarse]
- 3. Describir ejemplos de errores de programa detectadas por un sistema de tipos [Familiarizarse]
- 4. Para múltiples lenguajes de programación, identificar propiedades de un programa con verificación estática y propiedades de un programa con verificación dinámica [Usar]
- 5. Dar un ejemplo de un programa que no verifique tipos en un lenguaje particular y sin embargo no tenga error cuando es ejecutado [Familiarizarse]
- 6. Usar tipos y mensajes de error de tipos para escribir y depurar programas [Usar]

Core-Tier2:

- 7. Explicar como las reglas de tipificación definen el conjunto de operaciones que legales para un tipo [Familiarizarse]
- 8. Escribir las reglas de tipo que rigen el uso de un particular tipo compuesto [Usar]
- 9. Explicar por qué indecidibilidad requiere sistemas de tipo para conservadoramente aproximar el comportamiento de un programa [Familiarizarse]
- 10. Definir y usar piezas de programas (tales como, funciones, clases, métodos) que usan tipos genéricos, incluyendo para colecciones [Usar]
- 11. Discutir las diferencias entre, genéricos (generics), subtipo y sobrecarga [Familiarizarse]
- 12. Explicar múltiples beneficios y limitaciones de tipificación estática en escritura, mantenimiento y depuración de un software [Familiarizarse]

2.14.5. PL/Representación de programas (1 horas Core-Tier2)

Tópicos:

Core Tier1

- Programas que tienen otros programas como entrada tales como interpretes, compiladores, revisores de tipos y generadores de documentación.
- Arboles de sintaxis abstracta, para contrastar la sintaxis correcta.
- Estructuras de datos que representan código para ejecución, traducción o transmisión.

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Explicar como programas que procesan otros programas tratan a los otros programas como su entrada de datos [Familiarizarse]
- 2. Describir un árbol de sintaxis abstracto para un lenguaje pequeño [Usar]
- 3. Describir los beneficios de tener representaciones de programas que no sean cadenas de código fuente [Familiarizarse]
- 4. Escribir un programa para procesar alguna representación de código para algún propósito, tales como un interprete, una expresión optimizada, o un generador de documentación [Usar]

2.14.6. PL/Traducción y ejecución de lenguajes (3 horas Core-Tier2)

Tópicos:

Core Tier2

- Interpretación vs. compilación a código nativo vs. compilación de representación portable intermedia.
- Pipeline de traducción de lenguajes: análisis, revisión opcional de tipos, traducción, enlazamiento, ejecución: 1. Ejecución como código nativo o con una máquina virtual 2. Alternativas como carga dinámica y codificación dinámica de código (o "just-in-time")
- Representación en tiempo de ejecución de construcción del lenguaje núcleo tales como objetos (tablas de métodos) y funciones de primera clase (cerradas)
- Ejecución en tiempo real de asignación de memoria: pila de llamdas, montículo, datos estáticos:
 1. Implementación de bucles, recursividad y llamadas de cola
- Gestión de memoria: 1. Gestión manual de memoria: asignación, limpieza y reuso de la pila de memoria 2. Gestión automática de memoria: recolección de datos no utilizados (garbage colletion) como una técnica automática usando la noción de accesibilidad

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Distinguir una definición de un lenguaje de una implementación particular de un lenguaje (compilador vs interprete, tiempo de ejecución de la representación de los objetos de datos, etc) [Familiarizarse]
- 2. Distinguir sintaxis y parseo de la semantica y la evaluación [Familiarizarse]
- 3. Bosqueje una representación de bajo nivel de tiempo de ejecución de construcciones del lenguaje base, tales como objetos o cierres (*closures*) [Familiarizarse]
- 4. Explicar cómo las implementaciones de los lenguajes de programación tipicamente organizan la memoria en datos globales, texto, *heap*, y secciones de pila y cómo las características tales como recursión y administración de memoria son mapeados a esté modelo de memoria [Familiarizarse]
- 5. Identificar y corregir las pérdidas de memoria y punteros desreferenciados [Usar]
- 6. Discutir los beneficios y limitaciones de la recolección de basura (garbage collection), incluyendo la noción de accesibilidad [Familiarizarse]

2.14.7. PL/Análisis de sintaxis

Tópicos:

Electivos

- Exploración (análisis léxico) usando expresiones regulares.
- Estratégias de análisis incluyendo técnicas de arriba a abajo (top-down) (p.e. descenso recursivo, análisis temprano o LL) y de abajo a arriba (bottom-up) (ej, 'llamadas hacia atrás bracktracking, o LR); rol de las gramáticas libres de contexto.
- Generación de exploradores (scanners) y analizadores a partir de especificaciones declarativas.

Objetivos de Aprendizaje:

- 1. Usar gramáticas formales para especificar la sintaxis de los lenguajes [Usar]
- 2. Usar herramientas declarativas para generar parseadores y escáneres [Usar]
- 3. Identificar las características clave en las definiciones de sintaxis: ambiguedad, asociatividad, precedencia [Familiarizarse]

2.14.8. PL/Análisis semántico de compiladores

Tópicos:

Electivos

- Representaciones de programas de alto nivel tales como árboles de sintaxis abstractas.
- Alcance y resolución de vínculos.
- Revisión de tipos.
- Especificaciones declarativas tales como gramáticas atribuídas.

Objetivos de Aprendizaje:

Elective:

- 1. Implementar analizadores sensibles al contexto y estáticos a nivel de fuente, tales como, verificadores de tipos o resolvedores de identificadores para identificar las ocurrencias de vinculo [Usar]
- 2. Describir analizadores semanticos usando una gramatica con atributos [Usar]

2.14.9. PL/Generación de código

Tópicos:

Electivos

- Llamadas a procedimientos y métodos en envío.
- Compilación separada; vinculación.
- Selección de instrucciones.
- Calendarización de instrucciones.
- Asignación de registros.
- Optimización por rendija (peephole)

Objetivos de Aprendizaje:

- 1. Identificar todos los pasos esenciales para convertir automáticamente código fuente en código emsamblador o otros lenguajes de bajo nivel [Familiarizarse]
- 2. Generar código de bajo nivel para llamadas a funciones en lenguajes modernos [Usar]
- 3. Discutir por qué la compilación separada requiere convenciones de llamadas uniformes [Familia-rizarse]
- 4. Discutir por qué la compilación separada limita la optimización debido a efectos de llamadas desconocidas [Familiarizarse]
- 5. Discutir oportunidades para optimización introducida por la traducción y enfoques para alcanzar la optimización, tales como la selección de la instrucción, planificación de instruccion, asignación de registros y optimización de tipo mirilla (peephole optimization) [Familiarizarse]

2.14.10. PL/Sistemas de tiempo de ejecución

Tópicos:

Electivos

- Gestión dinámica de memoria, aproximaciones y técnicas: malloc/free, garbage collection (marksweep. copia, referencia), regiones (también conocidas como arenas o zonas)
- Disposición de datos para objetos y activación de registro.
- Compilación en tiempo just-in time y re-compilación dinámica.
- Otras características comunes de las máquinas virtuales, tales como carga de clases, hilos y seguridad.

Objetivos de Aprendizaje:

Elective:

- 1. Comparar los beneficios de diferentes esquemas de administración de memoria, usando conceptos tales como, fragmentación, localidad, y sobrecarga de memoria [Familiarizarse]
- 2. Discutir beneficios y limitaciones de la gestión automática de la memoria [Familiarizarse]
- 3. Explicar el uso de metadatos en las representaciones de tiempo de ejecución de objetos y registros de activación, tales como los punteros de la clase, las longitudes de arreglos, direcciones de retorno, y punteros de frame [Familiarizarse]
- 4. Discutir las ventajas, desventajas y dificultades del término (*just-in-time*) y recompilación automática [Familiarizarse]
- 5. Identificar los servicios proporcionados por los sistemas de tiempo de ejecución en lenguajes modernos [Familiarizarse]

2.14.11. PL/Análisis estático

Tópicos:

Electivos

- Representaciones relevantes de programas, tales como bloques básicos, grafos de control de flujos, cadenas de definiciones y asignación estática simple.
- Indecisión y consecuencias en el analisis de programas.
- Análisis y minúsculas de flujo, tales como la comprobación de tipos y puntero escalable y análisis de alias.
- Análisis sensibles al flujo, como hacia delante y hacia atrás de flujo de datos de análisis.
- Análisis sensibles de camino, como modelo de software de cheques.
- Herramientas y frameworks para definir análisis.
- Rol del análisis estático en la optimización de programas.
- Rol del análisis estático en la verificación parcial y busqueda de errores.

Objetivos de Aprendizaje:

- 1. Definir análisis estáticos útiles en términos de un marco conceptual, como el análisis de flujo de datos [Usar]
- 2. Explicar por qué los análisis estáticos de tipos no triviales (non-trivial sound static analyses) deben ser aproximados [Familiarizarse]

- 3. Comunicar por qué un análisis es correcto (sound and terminating) [Usar]
- 4. Distinguir análisis de tipo: "puede" y "debe" [Familiarizarse]
- 5. Explicar por qué el *aliasing* potencial limita el análisis de tipos en los programas y como el análisis de alias puede ayudar [Familiarizarse]
- 6. Usar los resultados de un análisis estático para una optimización de un programa y/o la correctitud parcial de dicho programa [Usar]

2.14.12. PL/Construcciones de programación avanzados

Tópicos:

Electivos

- Evaluación perezosa y corrientes infinitas.
- Abstracciones de control: Control de excepciones, continuaciones, mónadas.
- Abstracciones orientadas a objetos: La herencia múltiple, mixins, Rasgos, métodos múltiples.
- Metaprogramación: Macros, programación generativa, el desarrollo basado en modelos.
- Sistems modulares.
- Manipulación de cadenas a través de expresiones regulares.
- Evaluación dinámica de código (eval)
- Soporte de los lenguajes para verificación de (assert), invariantes, pre y post condiciones.

Objetivos de Aprendizaje:

Elective:

- 1. Usar diversas construcciones de programación avanzada correctamente [Usar]
- 2. Discutir cómo diversas construcciones de programación avanzada tienen como objetivo mejorar la estructura del programa, la calidad del software y la productividad del programador [Familiarizarse]
- 3. Discutir cómo diversas construcciones de programación avanzada interactúan con la definición e implementación de otras características del lenguaje [Familiarizarse]

2.14.13. PL/Concurrencia y Paralelismo

Apoyo a la concurrencia es una cuestión de programación-idiomas fundamental con material rico en diseño de lenguajes de programación, implementación del lenguaje y la teoría del lenguaje. Debido a la cobertura en otras áreas de conocimiento, esta unidad de conocimiento electiva tiene como único objetivo complementar el material incluido en el Cuerpo de Conocimientos de otros lugares. Cursos sobre lenguajes de programación son un excelente lugar para incluir un tratamiento general de concurrencia incluyendo este otro material PDParallelandDistributedComputing, SFParallelism

Tópicos:

Electivos

- Construye para las variables de rosca-compartida y la sincronización de memoria compartida.
- Modelos de Actor.
- Futuros.
- Soporte de lenguaje para paralelismo de datos.
- Modelos para pasar mensajes entre procesos secuenciales.

■ Efecto de modelos de consistenicia de memoria en la semántica del lenguaje y la correcta generación de código.

Objetivos de Aprendizaje:

Elective:

- 1. Escribir programas concurrentes correctos usando múltiples modelos de programación, tales como memoria compartida, actores, futures y primitivas de paralelismo de datos [Usar]
- 2. Usar un modelo de paso de mensajes para analizar un protocolo de comunicación [Usar]
- 3. Explicar porqué los lenguajes de programación no garantizan consistencia secuencial en la presencia de la carrera de datos (data race) y qué es lo que los programadores deben hacer como resultado de esto [Familiarizarse]

2.14.14. PL/Sistemas de tipos

Tópicos:

Electivos

- Constructores de tipo composicional, como tipos de producto (para agregados), tipos de suma (para uniones), tipos de función, tipos cuantificados y tipos recursivos.
- Comprobación de tipos.
- Seguridad de tipos como preservación más progreso.
- Inferencia de tipos.
- Sobrecarga estática.

Objetivos de Aprendizaje:

Elective:

- 1. Definir un sistema de tipo de forma precisa y en su composición [Usar]
- 2. Para varias construcciones de tipo fundamental, identificar los valores que describen y las invariantes que hacen que se cumplan [Familiarizarse]
- 3. Precisar las invariantes preservadas por un sistema de tipos seguro (sound type system) [Familiarizarse]
- 4. Demostrar la seguridad de tipos para un lenguaje simple en términos de conservación y progreso teoremas [Usar]
- 5. Implementar un algoritmo de inferencia de tipos basado en la unificación para un lenguaje básico [Usar]
- 6. Explicar cómo la sobrecarga estática y algoritmos de resolución asociados influyen el comportamiento dinámico de los programas [Familiarizarse]

2.14.15. PL/Semántica formal

Tópicos:

Electivos

- Sintáxis vs. semántica.
- Cálculo Lambda.
- Enfóques a semántica: Operacional, Denotativo, Axiomático.
- Demostración por inducción sobre lenguajes semánticos.

- Definición formal y demostración para sistemas de tipo.
 Ref: 2.14.14 Sistemas de tipos, Pág. 112
- Parametricidad.

Ref: 2.14.14 Sistemas de tipos, Pág. 112

Uso de semántica formal para modelamiento de sistemas.

Objetivos de Aprendizaje:

Elective:

- 1. Define una semántica formal para un lenguaje pequeño [Usar]
- 2. Escribe un programa en cálculo lambda y muestra su evaluación hacia un forma normal [Usar]
- 3. Discute los diversos enfoques de semánticas operacionales, de notación y axiomáticas [Familia-rizarse]
- 4. Usa la inducción para demostrar las propiedades de todos los programas de un lenguaje [Usar]
- 5. Usa inducción para demostrar las propiedades de todos los programas de un lenguaje que es bien tipado de acuerdo a un sistema formalmente definido de tipos [Usar]
- 6. Usa parametricidad para establecer el comportamiento de un código dado solamente su tipo [Usar]
- 7. Usa semánticas formales para construir un modelo formal de un sistema de software en vez de un lenguaje de programación [Usar]

2.14.16. PL/Pragmática de lenguajes

Tópicos:

Electivos

- Principios de diseño de lenguaje tales como la ortogonalidad.
- Orden de evaluación, precedencia y asociatividad.
- Evaluación tardía vs. evaluación temprana.
- Definiendo controles y constructos de iteración.
- Llamadas externas y sistema de librerías.

Objetivos de Aprendizaje:

- 1. Discute el rol de conceptos como ortogonalidad y el buen criterio de selección en el diseño de lenguajes [Familiarizarse]
- 2. Utiliza criterios objetivos y nítidos para evaluar las decisiones en el diseño de un lenguaje [Usar]
- 3. Da un ejemplo de un programa cuyo resultado puede diferir dado diversas reglas de orden de evaluación, precedencia, o asociatividad [Usar]
- 4. Muestra el uso de evaluación con retraso, como en el caso de abstracciones definidas y controladas por el usuario [Familiarizarse]
- 5. Discute la necesidad de permitir llamadas a librerias externas y del sistema y las consecuencias de su implementación en un lenguaje [Familiarizarse]

2.14.17. PL/Programación lógica

Tópicos: Electivos

- Representación causal de estructura de datos y algoritmos.
- Unificación.
- Bactracking y busqueda.
- Cuts.

Objetivos de Aprendizaje:

Elective:

- 1. Usa un lenguaje lógico para implementar un algoritmo convencional [Usar]
- 2. Usa un lenguaje lógico para implementar un algoritmo empleando búsqueda implícita usando claúsulas, relaciones, y cortes [Usar]

2.15. Fundamentos del desarrollo de software (SDF)

La fluidez en el proceso de desarrollo de software es un requisito previo para el estudio de la mayor parte de la ciencia de la computación. Para utilizar las computadoras para resolver problemas de manera eficaz, los estudiantes deben ser competentes en los programas de lectura y escritura en múltiples lenguajes de programación. Más allá de conocimientos de programación, sin embargo, debe ser capaz de diseñar y analizar algoritmos, seleccionar paradigmas apropiados y utilizar el desarrollo moderno y herramientas de prueba. Esta área de conocimiento reúne a aquellos conceptos y habilidades fundamentales relacionadas con el proceso de desarrollo de software. Como tal, proporciona una base para otras áreas de conocimiento orientadas a software, sobre todo Lenguajes de Programación, Algoritmos y Complejidad, e Ingeniería de Software.

Es importante señalar que esta área de conocimiento es distinta de la antigua área conocimiento de de CC2001: Fundamentos de Programación . Considerando que dicha área de conocimiento se centró exclusivamente en los conocimientos de programación necesarios en un curso introductoria de ciencia de la computación, esta nueva área del conocimiento tiene la intención de llenar un propósito mucho más amplio. Se centra en todo el proceso de desarrollo de software, la identificación de los conceptos y habilidades que debe dominar en el primer año de un programa de ciencia de la computación. Esto incluye el diseño y análisis de algoritmos simples, conceptos fundamentales de programación, estructuras de datos, métodos y herramientas de desarrollo de software básicos. Como resultado de su propósito más amplio, esta área de conocimiento incluye conceptos y habilidades fundamentales que naturalmente podrían ser listados en otras áreas de conocimiento de software orientado a (por ejemplo, construcciones de programación de lenguajes de programación, análisis simple de Algoritmos y Complejidad, de desarrollo simple metodologías de Ingeniería de Software). Del mismo modo, cada una de estas áreas de conocimiento contendrá material más avanzado que se basa en los conceptos y habilidades fundamentales enumerados aquí.

Aunque más amplio que el área antigua de Fundamentos de Programación, esta área de conocimiento todavía permite una gran flexibilidad en el diseño de planes de estudios de primer año. Por ejemplo, la unidad Conceptos Fundamentales de Programación identifica sólo aquellos conceptos que son comunes a todos los paradigmas de programación. Se espera que un instructor seleccione uno o más paradigmas de programación (por ejemplo, la programación orientada a objetos, programación funcional, scripting) para ilustrar estos conceptos de programación, y se retiraría contenido paradigma específico del área de conocimiento Lenguajes de Programación para completar un curso. Del mismo modo, un instructor puede optar por enfatizar el análisis formal (por ejemplo, Big-O, computabilidad) o metodologías de diseño (por ejemplo, proyectos de equipo, el ciclo de vida del software), integrando así las horas de áreas de conocimiento tales como Lenguajes de Programación, Algoritmos y Complejidad, y/o Software Ingeniería. Por lo tanto, las 43 horas de material en esta área de conocimiento típicamente serán aumentadas con material de núcleo de una o más de estas otras áreas de conocimiento para formar una experiencia completa y coherente de primer año.

Al considerar las horas asignadas a cada unidad de conocimiento, cabe señalar que estas horas reflejan la cantidad mínima de cobertura de clase necesaria para introducir el material. Muchos de los temas de desarrollo de software volverán a aparecer y ser completados por temas posteriores (por ejemplo, aplicando estructuras iterativas al procesar listas). Además, el dominio de los conceptos y habilidades de esta área de conocimiento requiere una cantidad significativa de experiencia en desarrollo de software fuera de la clase

Área de Conocimiento (Knowledge Area-KA) (KA)	Core	Core	Electivos
	Tier1	Tier2	
2.15.1 Algoritmos y Diseño (Pág. 115)	11		No
2.15.2 Conceptos Fundamentales de Programación (Pág. 116)	10		No
2.15.3 Estructuras de Datos Fundamentales (Pág. 116)	12		No
2.15.4 Métodos de Desarrollo (Pág. 117)	10		No

2.15.1. SDF/Algoritmos y Diseño (11 horas Core-Tier1)

Esta unidad construye las bases para los conceptos fundamentales del área de conocimiento de Algoritmos y Complejidad, de forma más clara en las unidades de Análisis Básico y Estrategias Algorítmicas.

Tópicos:

Core Tier1

- Conceptos y propiedades de los algoritmos 1. Comparación informal de la eficiencia de los algoritmos (ej., conteo de operaciones)
- Rol de los algoritmos en el proceso de solución de problemas
- Estrategias de solución de problemas 1. Funciones matemáticas iterativas y recursivas 2. Recorrido iterativo y recursivo en estructura de datos 3. Estrategias Divide y Conquistar
- Conceptos y principios fundamentales de diseño 1. Abstracción 2. Descomposición de Program
 3. Encapsulamiento y camuflaje de información 4. Separación de comportamiento y aplicación

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Discute la importancia de los algoritmos en el proceso de solución de un problema [Familiarizarse]
- 2. Discute como un problema puede ser resuelto por múltiples algoritmos, cada uno con propiedades diferentes [Familiarizarse]
- 3. Crea algoritmos para resolver problemas simples [Usar]
- 4. Usa un lenguaje de programación para implementar, probar, y depurar algoritmos para resolver problemas simples [Usar]
- 5. Implementa, prueba, y depura funciones recursivas simples y sus procedimientos [Usar]
- 6. Determina si una solución iterativa o recursiva es la más apropiada para un problema [Evaluar]
- 7. Implementa un algoritmo de divide y vencerás para resolver un problema [Usar]
- 8. Aplica técnicas de descomposición para dividir un programa en partes más pequeñas [Usar]
- 9. Identifica los componentes de datos y el comportamiento de mútiples tipos de datos abstractos [Usar]
- 10. Implementa un tipo de dato abstracto coherente, con la menor pérdida de acoplamiento entre componentes y comportamientos [Usar]
- 11. Identifica las fortalezas y las debilidades relativas entre múltiples diseños e implementaciones de un problema [Evaluar]

2.15.2. SDF/Conceptos Fundamentales de Programación (10 horas Core-Tier1)

Esta unidad de conocimiento sienta las bases para los conceptos básicos en el área de conocimiento Lenguajes de programación, sobre todo en las unidades de paradigma específico: Programación orientada a objetos, programación funcional, programación reactiva y Event-Driven.

Tópicos:

Core Tier1

- Sintaxis y semántica básica de un lenguaje de alto nivel.
- Variables y tipos de datos primitivos (ej., numeros, caracteres, booleanos)
- Expresiones y asignaciones.
- Operaciones básicas I/O incluyendo archivos I/O.
- Estructuras de control condicional e iterativas.
- Paso de funciones y parámetros.
- Concepto de recursividad.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Analiza y explica el comportamiento de programas simples que involucran estructuras fundamentales de programación variables, expresiones, asignaciones, E/S, estructuras de control, funciones, paso de parámetros, y recursividad [Evaluar]
- 2. Identifica y describe el uso de tipos de datos primitivos [Familiarizarse]
- 3. Escribe programas que usan tipos de datos primitivos [Usar]
- 4. Modifica y expande programas cortos que usen estructuras de control condicionales e iterativas así como funciones [Usar]
- 5. Diseña, implementa, prueba, y depura un programa que usa cada una de las siguientes estructuras de datos fundamentales: cálculos básicos, E/S simple, condicional estándar y estructuras iterativas, definición de funciones, y paso de parámetros [Usar]
- 6. Escribe un programa que usa E/S de archivos para brindar persistencia a través de ejecuciones múltiples [Usar]
- 7. Escoje estructuras de condición y repetición adecuadas para una tarea de programación dada [Evaluar]
- 8. Describe el concepto de recursividad y da ejemplos de su uso [Familiarizarse]
- 9. Identifica el caso base y el caso general de un problema basado en recursividad [Evaluar]

2.15.3. SDF/Estructuras de Datos Fundamentales (12 horas Core-Tier1)

Esta unidad desarrolla las bases de los conceptos básicos en los Algoritmos y Area del conocimiento Complejo, sobre todo en las Estructuras de Datos y Algoritmos fundamentales y básicos computabilidad y unidades de conocimiento complejo.

Tópicos:

Core Tier1

- Arreglos
- Registros/estructuras (datos heterogéneos)
- Cadenas y procesamiento de cadenas.

- Tipos Abstractos de datos y sus implementaciones: 1. Pilas 2. Colas 3. Colas de prioridad 4. Conjuntos 5. Mapas
- Referencias y aliasing.
- Listas enlazadas
- Estrategias para escoger la estructura de datos apropiada.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Discute el uso apropiado de estructuras de datos incorporadas [Familiarizarse]
- 2. Describe aplicaciones comunes para cada de las siguientes estructuras de datos: pila, cola, cola de prioridad, conjunto y mapa [Familiarizarse]
- 3. Escribe programas que usen cada una de las siguientes estructuras de datos: arreglos, registros/estructuras, cadenas, listas enlazadas, pilas, colas, conjuntos, y mapas [Usar]
- 4. Compara implementaciones alternas de estructuras de datos con respecto a su rendimiento [Evaluar]
- 5. Describe cómo las referencias permiten que los objetos sean accesibles de diversas formas [Familiarizarse]
- 6. Compara y contrasta el costo y beneficio de implementar estructuras de datos dinámicas y estáticas [Evaluar]
- 7. Escoje la estructura de dato apropiada para modelar un problema determinado [Evaluar]

2.15.4. SDF/Métodos de Desarrollo (10 horas Core-Tier1)

Esta unidad desarrolla las bases de los conceptos básicos en el área de conocimiento de Ingeniería de Software, más notablemente en los Procesos de Software, Diseño de software y unidades de conocimiento Software Evolution.

Tópicos:

Core Tier1

- Comprensión de programas.
- Exactitud del programa. 1. Tipos de error (sintaxis, logica, tiempo de ejecucion) 2. El concepto de la especificacion 3. Programacion defensiva (ejem., codificacion segura, manejo de excepciones)
 4. Revision de codigo 5. Fundamentos de testing y generacion de casos de prueba 6. El rol y el uso de contratos, incluyendo pre- y post- condiciones 7. Pruebas unitarias
- Refactorización simple.
- Entornos modernos de programación: 1. Búsqueda de código. 2. Programación usando libreria de componentes y sus APIs.
- Estrategias de depuración.
- Documentación y estilo de programas.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Traza la ejecución de una variedad de segmentos de código y escribir resúmenes de sus cálculos [Evaluar]
- 2. Explique por qué la creación de componentes de programa correctos es importante en la producción de software de alta calidad [Familiarizarse]

- 3. Identificar los errores de codificación comunes que conducen a programas inseguros (por ejemplo, desbordamientos de buffer, pérdidas de memoria, código malicioso) y aplicar estrategias para evitar este tipo de errores [Usar]
- 4. Llevar a cabo una revisión de código personal (centrado en los errores comunes de codificación) en un componente del programa utilizando una lista de verificación [Usar]
- 5. Contribuir en un pequeño grupo para una revisión de código centrada en la corrección de componentes [Usar]
- 6. Describir cómo un contrato se puede utilizar para especificar el comportamiento de un componente del programa [Familiarizarse]
- 7. Refactorizar un programa mediante la identificación de oportunidades para aplicar la abstracción del procesamiento [Usar]
- 8. Aplicar una variedad de estrategias para la prueba y depuración de programas sencillos [Usar]
- 9. Contruir, ejecutar y depurar programas usando un IDE moderno y herramientas asociadas tales como herramientas de pruebas de unidad y depuradores visuales [Usar]
- 10. Construir y depurar programas que utilizan las bibliotecas estándar disponibles con un lenguaje de programación elegido [Usar]
- 11. Analizar el grado en que el código de otro programador cumple con los estándares de documentación y de estilo de programación [Evaluar]
- 12. Aplicar los estandares de documentación y estilo de programación que contribuyan a la legibilidad y mantenimiento de software [Usar]

2.16. Ingeniería de Software (SE)

En cada dominio de la aplicación computación, la profesionalidad, la calidad, el cronograma y el costo son fundamentales para la producción de sistemas de software. Debido a esto, los elementos de la ingeniería de software se aplican al desarrollo de software en todas las áreas de la computación. Una amplia variedad de prácticas de ingeniería de software se han desarrollado y utilizado desde que la necesidad de la disciplina de la ingeniería de software fue reconocida por primera vez. También se han identificado muchos puntos de equilibrio entre estas diferentes prácticas. La práctica de la ingeniería de software tiene que seleccionar y aplicar las técnicas y prácticas adecuadas para un esfuerzo de desarrollo determinado con el fin de maximizar el valor. Para aprender a hacerlo así, ellos estudian los elementos de ingeniería de software.

La ingeniería de software es la disciplina que estudia la aplicación de la teoría, el conocimiento y la práctica de construir con eficacia y eficiencia los sistemas de software confiables que satisfacen los requisitos de los clientes y usuarios. Esta disciplina es aplicable a sistemas de gran escala pequeña, mediana . Abarca todas las fases del ciclo de vida de un sistema de software, incluyendo la obtención de requisitos, análisis y especificación; diseño; construcción; verificación y validación; despliegue; así como la operación y mantenimiento. Ya sea pequeña o grande, siguiendo un proceso tradicional plan de desarrollo dirigido, un enfoque ágil, o algún otro método, la ingeniería de software se refiere a la mejor manera de construir buenos sistemas de software.

Ingeniería del software utiliza métodos de ingeniería, procesos, técnicas y mediciones. Se beneficia de la utilización de herramientas para la gestión de desarrollo de software; análisis y modelado de artefactos de software; evaluación y control de calidad; y para garantizar un enfoque disciplinado y controlado para la evolución del software y su reutilización. La caja de herramientas de ingeniería de software ha evolucionado a lo largo de los años. Por ejemplo, el uso de los contratos, con cláusulas que requiere y garantiza invariantes de clase, es una buena práctica que se ha vuelto más común. El desarrollo de software, que puede implicar un desarrollador individual o un equipo o equipos de desarrolladores, requiere la elección de las herramientas más apropiadas, métodos y enfoques para un entorno de desarrollo determinado.

Los estudiantes y los instructores tienen que entender los impactos de la especialización en los enfoques de ingeniería de software. Por ejemplo, los sistemas especializados incluyen:

1. Sistemas de tiempo real 2. Sistemas cliente-servidor 3. Sistemas distribuidos 4. Sistemas paralelas 5. sistemas basados ??en Web 6. Sistemas de alta integridad 7. Juegos 8. Computación móvil 9. Software de dominio específico (por ejemplo, la computación científica o aplicaciones de negocio)

Las cuestiones planteadas por cada uno de estos sistemas especializados exigen tratamientos específicos en cada fase de la ingeniería de software. Los estudiantes deben ser conscientes de las diferencias entre las técnicas y los principios de la ingeniería de software en general y las técnicas y los principios necesarios para abordar los problemas específicos de los sistemas especializados.

Un efecto importante de la especialización es que se puede necesitară tomar decisiones diferentes de material en la enseñanza de las aplicaciones de la ingeniería de software, como entre los diferentes modelos de procesos, diferentes enfoques para los sistemas de modelamiento, o diferentes opciones de técnicas para llevar a cabo cualquiera de las actividades clave. Esto se refleja en la asignación de núcleo y el material electivo, con los temas básicos y los resultados de aprendizaje centrados en los principios que subyacen a las distintas opciones, y los detalles de las diversas alternativas entre las que hay que decidir el material electivo .

Otra división de las prácticas de ingeniería de software es entre los interesados ??en la necesidad fundamental de desarrollar sistemas que implementan correctamente la funcionalidad que se requiere, los relacionados con otras cualidades de los sistemas y las compensaciones necesarias para equilibrar estas cualidades. Esta división también se refleja en la asignación de núcleo y el material electivo, por lo que los temas y resultados de aprendizaje relacionados con los métodos básicos para el desarrollo de tal sistema se asignan al núcleo y aquellos que se ocupan de otras cualidades y compensaciones entre ellos están asignados al material electivo.

En general, los estudiantes pueden aprender mejor a aplicar gran parte del material definido en el Ingeniería Sofware, al participar en un proyecto. Tales proyectos deben exigir a los estudiantes a trabajar en equipo para desarrollar un sistema de software a través de la mayor cantidad de su ciclo de vida como sea posible. Gran parte de la ingeniería de software se dedica a la comunicación efectiva entre los miembros del equipo y las partes interesadas. La utilización de los equipos de proyectos, los proyectos pueden ser lo suficientemente desafiantes para requerir a los estudiantes a utilizar técnicas de ingeniería de software efectivas para desarrollar y practicar sus habilidades de comunicación. Si bien la organización y realización de proyectos eficaces en el marco académico puede ser un reto, la mejor manera de aprender a aplicar la teoría de la ingeniería del software y el conocimiento está en el entorno práctico de un proyecto. Las horas mínimas especificadas para algunas unidades de conocimiento en este documento pueden aparecer insuficientes para lograr los resultados del aprendizaje a nivel de la aplicación asociada. Se debe entender que estos resultados deben ser alcanzados a través de la experiencia del proyecto que incluso puede ocurrir más adelante en el plan de estudios que cuando se introducen los temas dentro de la unidad de conocimiento.

Además, cada vez hay más evidencia de que los estudiantes aprenden a aplicar los principios de ingeniería de software con mayor eficacia a través de un enfoque iterativo, donde los estudiantes tienen la oportunidad de trabajar a través de un ciclo de desarrollo, evaluar su trabajo, y luego aplicar los conocimientos adquiridos a través de su evaluación a otro ciclo de desarrollo. Modelos de ciclo de vida ágiles e iterativos inherentemente ofrecen tales oportunidades.

La terminología del ciclo de vida del software en este documento se basa en la utilizada en las fuentes anteriores, como el Cuerpo de Conocimiento de la Software Ingeniería (SWEBOK) y las Directrices Curriculares ACM/IEEE-CS Software Engineering 2004 (SE2004). Mientras que algunos términos se definieron originalmente en el contexto de los procesos de desarrollo del plan impulsado, son tratados aquí como genérico y por lo tanto igualmente aplicable a procesos ágiles.

Nota: La unidad de conocimiento 2.15.4 Métodos de Desarrollo, Pág. 117 incluye 9 horas Core Tier1-que constituyen una introducción a ciertos aspectos de la ingeniería de software. Las unidades de conocimiento, los temas y las especificaciones básicas horas de esta área de Ingeniería de Software deben ser entendidos como asumiendo una exposición previa al material descrito en el 2.15.4 Métodos de Desarrollo, Pág. 117.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core	Core	Electivos
	Tier1	Tier2	
2.16.1 Procesos de Software (Pág. 120)	2	1	Si
2.16.2 Gestión de Proyectos de Software (Pág. 121)		2	Si
2.16.3 Herramientas y Entornos (Pág. 123)		2	No
2.16.4 Ingeniería de Requisitos (Pág. 123)	1	3	Si
2.16.5 Diseño de Software (Pág. 125)	3	5	Si
2.16.6 Construcción de Software (Pág. 127)		2	Si
2.16.7 Verificación y Validación de Software (Pág. 128)		3	Si
2.16.8 Evolución de Software (Pág. 129)		2	No
2.16.9 Fiabilidad de Software (Pág. 130)		1	Si
2.16.10 Métodos Formales (Pág. 130)			Si

2.16.1. SE/Procesos de Software (2 horas Core-Tier1, 1 horas Core-Tier2)

Tópicos:

Core Tier1

- Consideraciones a nivel de sistemas, ejem., la interacción del software con su entorno.
 Ref: 2.7.11 Seguridad en Ingeniería de Software, Pág. 63
- Introducción a modelos del proceso de software (e.g., cascada, incremental, agil): 1. Actividades con ciclos de vida de software.
- Programación a gran escala versus programación individual.

Core Tier2

• Evaluación de modelos de proceso de software.

Electivos

- Conceptos de calidad de software.
- Mejoramiento de procesos.
- Modelos de madurez de procesos de software.
- Mediciones del proceso de software.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Describa cómo el software puede interactuar y participar en varios sistemas, incluyendo la gestión de información, integración, control de procesos y sistemas de comunicaciones [Familiarizarse]
- 2. Describir las ventajas y desventajas relativas entre varios modelos importantes de procesos (por ejemplo, la cascada, iterativo y ágil) [Familiarizarse]
- 3. Describir las diferentes prácticas que son componentes clave de los diversos modelos de procesos [Familiarizarse]
- 4. Diferenciar entre las fases de desarrollo de software [Familiarizarse]
- 5. Describir cómo la programación en grandes equipos difiere de esfuerzos individuales con respecto a la comprensión de una gran base de código, lectura de código, comprensión de las construcciones, y comprensión de contexto de cambios [Familiarizarse]

Core-Tier2:

6. Explicar el concepto de ciclo de vida del software y proporcionar un ejemplo que ilustra sus fases incluyendo los entregables que se producen [Familiarizarse]

7. Comparar varios modelos comunes de procesos con respecto a su valor para el desarrollo de las clases particulares de sistemas de software, teniendo en cuenta diferentes aspectos tales como, estabilidad de los requisitos, tamaño y características no funcionales [Usar]

Elective:

- 8. Definir la calidad del software y describir el papel de las actividades de aseguramiento de la calidad en el proceso de software [Familiarizarse]
- 9. Describir el objetivo y similitudes fundamentales entre los enfoques de mejora de procesos [Familiarizarse]
- 10. Comparar varios modelos de mejora de procesos, tales como CMM, CMMI, CQI, *Plan-Do-Check-Act*, o ISO9000 [Evaluar]
- 11. Evaluar un esfuerzo de desarrollo y recomendar cambios potenciales al participar en la mejora de procesos (usando un modelo como PSP) o involucración en una retrospectiva de un proyecto [Usar]
- 12. Explicar el papel de los modelos de madurez de procesos en la mejora de procesos [Familiarizarse]
- 13. Describir varias métricas de procesos para la evaluación y el control de un proyecto [Familiarizarse]
- 14. Usar las medidas en proyecto para describir el estado actual de un proyecto [Usar]

2.16.2. SE/Gestión de Proyectos de Software (2 horas Core-Tier2)

Tópicos:

Core Tier2

- La participación del equipo: 1. Procesos elemento del equipo, incluyendo responsabilidades de tarea, la estructura de reuniones y horario de trabajo 2. Roles y responsabilidades en un equipo de software 3. Equipo de resolución de conflictos 4. Los riesgos asociados con los equipos virtuales (comunicación, la percepción, la estructura)
- Estimación de esfuerzo (a nivel personal)
- Riesgo. 1. El papel del riesgo en el ciclo de vida 2. Categorías elemento de riesgo, incluyendo la seguridad, la seguridad, mercado, finanzas, tecnología, las personas, la calidad, la estructura y el proceso de
 - Ref: 2.7.11 Seguridad en Ingeniería de Software, Pág. 63

Electivos

- Gestión de equipos: 1. Organización de equipo y la toma de decisiones 2. Roles de identificación y asignación 3. Individual y el desempeño del equipo de evaluación
- Gestión de proyectos: 1. Programación y seguimiento de elementos 2. Herramientas de gestión de proyectos 3. Análisis de Costo/Beneficio
- Software de medición y técnicas de estimación.
- Aseguramiento de la calidad del software y el rol de las mediciones.
- Riesgo. 1. Identificación de riesgos y gestión. 2. Análisis riesgo y evaluación. 3. La tolerancia al riesgo (por ejemplo, riesgo adverso, riesgo neutral, la búsqueda de riesgo) 4. Planificación de Riesgo
- En todo el sistema de aproximación al riesgo, incluyendo riesgos asociados con herramientas.

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Discutir los comportamientos comunes que contribuyen al buen funcionamiento de un equipo [Familiarizarse]
- 2. Crear y seguir un programa para una reunión del equipo [Usar]
- 3. Identificar y justificar las funciones necesarias en un equipo de desarrollo de software [Usar]
- 4. Entender las fuentes, obstáculos y beneficios potenciales de un conflicto de equipo [Usar]
- 5. Aplicar una estrategia de resolución de conflictos en un ambiente de equipo [Usar]
- 6. Utilizar un método ad hoc para estimar el esfuerzo de desarrollo del software (ejemplo, tiempo) y comparar con el esfuerzo actual requerido [Usar]
- 7. Listar varios ejemplos de los riesgos del software [Familiarizarse]
- 8. Describir el impacto del riesgo en el ciclo de vida de desarrollo de software [Familiarizarse]
- 9. Describir las diferentes categorías de riesgo en los sistemas de software [Familiarizarse]

- 10. Demostrar a través de la colaboración de proyectos de equipo los elementos centrales de la contrucción de equipos y gestión de equipos [Usar]
- 11. Describir como la elección de modelos de procesos afectan la estructura organizacional de equipos y procesos de toma de decisiones [Familiarizarse]
- 12. Crear un equipo mediante la identificación de los roles apropiados y la asignación de funciones a los miembros del equipo [Usar]
- 13. Evaluar y retroalimentar a los equipos e individuos sobre su desempeño en un ambiente de equipo [Usar]
- 14. Usando un software particular procesar, describir los aspectos de un proyecto que encesita ser planeado y monitoreado, (ejemplo, estimar el tamaño y esfuerzo, un horario, reasignación de recursos, control de configuración, gestión de cambios, identificación de riesgos en un proyecto y gestión) [Familiarizarse]
- 15. Realizar el seguimiento del progreso de alguna etapa de un proyecto que utiliza métricas de proyectos apropiados [Usar]
- 16. Comparar las técnicas simples de tamaño de software y estimación de costos [Usar]
- 17. Usar una herramienta de gestión de proyectos para ayudar en la asignación y rastreo de tareas en un proyecto de desarrollo de software [Usar]
- 18. Describir el impacto de la tolerancia de riesgos en el proceso de desarrollo de software [Evaluar]
- 19. Identificar riesgos y describir enfoques para manejar riesgos (evitar, aceptar, tranferir, mitigar) y caracterizar fortalezas y defectos para cada uno [Familiarizarse]
- 20. Explicar cómo el riesgo afecta las decisiones en el proceso de desarrollo de software [Usar]
- 21. Identificar los riesgos de seguridad para un sistema de software [Usar]
- 22. Demostrar un enfoque sistemático para la tarea de identificar los peligros y riesgos en una situación particular [Usar]
- 23. Aplicar los principios básicos del manejo de riesgos en una variedad de escenarios simples incluyendo una situación de seguridad [Usar]
- 24. Dirigir un análisis de costo/beneficio para el enfoque de mitigación de riesgos [Usar]
- 25. Identificar y analizar alguno de los riesgos para un sistema entero que surgen de aspectos distintos del software [Usar]

2.16.3. SE/Herramientas y Entornos (2 horas Core-Tier2)

Tópicos:

Core Tier2

- Administración de configuración de software y control de versiones.
- Administración de despliegues.
- Análisis de requerimientos y herramientas para modelado del diseño.
- Herramientas de testing incluyendo herramientas de análisis estático y dinámico.
- Entornos de programación que automatizan el proceso de construcción de partes de programa (ejem., construcciones automatizadas) 1. Integración continua.
- Mecanismos y conceptos de herramientas de integración.

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Describir la diferencia entre el manejo de configuración de software centralizado y distribuido [Familiarizarse]
- 2. Describir como el control de versión puede ser usado para ayudar a manejar la administración de versiones del software [Familiarizarse]
- 3. Identificar elementos de configuración y usar herramientas de control de código fuente en un equipo de un proyecto pequeño [Usar]
- 4. Describir cómo la disponibilidad de herramientas de pruebas estática y dinámica se puede integrar en el entorno de desarrollo de software [Familiarizarse]
- 5. Describir los aspectos que son importantes en la selección de un conjunto de herramientas para el desarrollo de un sistema de software en particular, incluyendo herramientas para el seguimiento de los requisitos, modelado de diseño, implementación, construcción automática y pruebas [Familiarizarse]
- 6. Demostrar la capacidad de utilizar herramientas de software para apoyar el desarrollo de un producto de software de tamaño medio [Usar]

2.16.4. SE/Ingeniería de Requisitos (1 horas Core-Tier1, 3 horas Core-Tier2)

El propósito de la ingeniería de requisitos es desarrollar un entendimiento común de las necesidades, prioridades y restricciones pertinentes a un sistema de software. Muchos fallos de software surgen de una comprensión incompleta de los requisitos para el software a desarrollar o manejo inadecuado de esos requisitos.

Especificaciones de los requisitos varían en trámite desde completamente informal (por ejemplo, habla) a rigor matemático (por ejemplo, escrito en un lenguaje de especificación formal, como Z o lógica de primer orden). En la práctica, los esfuerzos de ingeniería de software exitosos usan especificaciones de requisitos para reducir la ambigüedad y mejorar la coherencia y la integridad de la comprensión del equipo de desarrollo de la visión de los programas informáticos destinados. Enfoques del plan impulsado tienden a producir documentos formales con los requisitos numerados. Enfoques ágiles tienden a favorecer a las especificaciones menos formales que incluyen historias de usuario, casos de uso y casos de prueba.

Tópicos:

Core Tier1

 Al describir los requisitos funcionales utilizando, por ejemplo, los casos de uso o historias de los usuarios. • Propiedades de requisitos, incluyendo la consistencia, validez, integridad y viabilidad.

Core Tier2

- Requisitos de software elicitatión.
- Descripción de datos del sistema utilizando, por ejemplo, los diagramas de clases o diagramas entidad-relación.
- Requisitos no funcionales y su relación con la calidad del software.
 Ref: 2.7.11 Seguridad en Ingeniería de Software, Pág. 63
- Evaluación y uso de especificaciones de requisitos.

Electivos

- Requisitos de las técnicas de modelado de análisis.
- La aceptabilidad de las consideraciones de certeza/incertidumbre sobre el comportamiento del software/sistema.
- Prototipos.
- Conceptos básicos de la especificación formal de requisitos.
- Especificación de requisitos.
- Validación de requisitos.
- Rastreo de requisitos.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Enumerar los componentes clave de un caso de uso o una descripción similar de algún comportamiento que es requerido para un sistema [Familiarizarse]
- 2. Describir cómo el proceso de ingeniería de requisitos apoya la obtención y validación de los requisitos de comportamiento [Familiarizarse]
- 3. Interpretar un modelo de requisitos dada por un sistema de software simple [Familiarizarse]

Core-Tier2:

- 4. Describir los retos fundamentales y técnicas comunes que se utilizan para la obtención de requisitos [Familiarizarse]
- 5. Enumerar los componentes clave de un modelo de datos (por ejemplo, diagramas de clases o diagramas ER) [Familiarizarse]
- 6. Identificar los requisitos funcionales y no funcionales en una especificación de requisitos dada por un sistema de software [Usar]
- 7. Realizar una revisión de un conjunto de requisitos de software para determinar la calidad de los requisitos con respecto a las características de los buenos requisitos [Usar]

- 8. Aplicar elementos clave y métodos comunes para la obtención y el análisis para producir un conjunto de requisitos de software para un sistema de software de tamaño medio [Usar]
- 9. Comparar los métodos ágiles y el dirigido por planes para la especificación y validación de requisitos y describir los beneficios y riesgos asociados con cada uno [Familiarizarse]
- 10. Usar un método común, no formal para modelar y especificar los requisitos para un sistema de software de tamaño medio [Usar]

- 11. Traducir al lenguaje natural una especificación de requisitos de software (por ejemplo, un contrato de componentes de software) escrito en un lenguaje de especificación formal [Usar]
- 12. Crear un prototipo de un sistema de software para reducir el riesgo en los requisitos [Usar]
- 13. Diferenciar entre el rastreo (*tracing*) hacia adelante y hacia atrás y explicar su papel en el proceso de validación de requisitos [Familiarizarse]

2.16.5. SE/Diseño de Software (3 horas Core-Tier1, 5 horas Core-Tier2)

Tópicos:

Core Tier1

- Principios de diseño del sistema: niveles de abstracción (diseño arquitectónico y el diseño detallado), separación de intereses, ocultamiento de información, de acoplamiento y de cohesión, de reutilización de estructuras estándar.
- Diseño de paradigmas tales como diseño estructurado (descomposición funcional de arriba hacia abajo), el análisis orientado a objetos y diseño, orientado a eventos de diseño, diseño de nivel de componente, centrado datos estructurada, orientada a aspectos, orientado a la función, orientado al servicio.
- Modelos estructurales y de comportamiento de los diseños de software.
- Diseño de patrones.

Core Tier2

- Relaciones entre los requisitos y diseños: La transformación de modelos, el diseño de los contratos, invariantes.
- Conceptos de arquitectura de software y arquitecturas estándar (por ejemplo, cliente-servidor, n-capas, transforman centrados, tubos y filtros).
- El uso de componentes de diseño: seleccion de componentes,diseño,adaptacion y componentes de ensamblaje, componentes y patrones, componentes y objetos(por ejemplo,construir una GUI usando un standar widget set)
- Diseños de refactorización utilizando patrones de diseño

Electivos

- Calidad del diseño interno, y modelos para: eficiencia y desempeño, redundancia y tolerancia a fallos, trazavilidad de los requerimientos.
- Medición y análisis de la calidad de un diseño.
- Compensasiones entre diferentes aspectos de la calidad.
- Aaplicaciones en frameworks.
- Middleware: El paradigma de la orientacion a objetos con middleware, requerimientos para correr y clasificar objetos, monitores de procesamiento de transacciones y el sistema de flujo de trabajo.
- Principales diseños de seguridad y codificación(cross-reference IAS/Principles of securre design).
 1. Principio de privilegios mínimos 2. Principio de falla segura por defecto 3. Principio de aceptabilidad psicológica

Ref: 2.7.2 Principios de Diseño Seguro, Pág. 54

Objetivos de Aprendizaje:

Core-Tier1:

1. Formular los principios de diseño, incluyendo la separación de problemas, ocultación de información, acoplamiento y cohesión, y la encapsulación [Familiarizarse]

- 2. Usar un paradigma de diseño para diseñar un sistema de software básico y explicar cómo los principios de diseño del sistema se han aplicado en este diseño [Usar]
- 3. Construir modelos del diseño de un sistema de software simple los cuales son apropiado para el paradigma utilizado para diseñarlo [Usar]
- 4. En el contexto de un paradigma de diseño simple, describir uno o más patrones de diseño que podrían ser aplicables al diseño de un sistema de software simple [Familiarizarse]

Core-Tier2:

- 5. Para un sistema simple adecuado para una situación dada, discutir y seleccionar un paradigma de diseño apropiado [Usar]
- 6. Crear modelos apropiados para la estructura y el comportamiento de los productos de software desde la especificaciones de requisitos [Usar]
- 7. Explicar las relaciones entre los requisitos para un producto de software y su diseño, utilizando los modelos apropiados [Evaluar]
- 8. Para el diseño de un sistema de software simple dentro del contexto de un único paradigma de diseño, describir la arquitectura de software de ese sistema [Familiarizarse]
- 9. Dado un diseño de alto nivel, identificar la arquitectura de software mediante la diferenciación entre las arquitecturas comunes de software, tales como 3 capas (3-tier), pipe-and-filter, y cliente-servidor [Familiarizarse]
- 10. Investigar el impacto de la selección arquitecturas de software en el diseño de un sistema simple [Evaluar]
- 11. Aplicar ejemplos simples de patrones en un diseño de software [Usar]
- 12. Describir una manera de refactorar y discutir cuando esto debe ser aplicado [Familiarizarse]
- 13. Seleccionar componentes adecuados para el uso en un diseño de un producto de software [Usar]
- 14. Explicar cómo los componentes deben ser adaptados para ser usados en el diseño de un producto de software [Familiarizarse]
- 15. Diseñar un contrato para un típico componente de software pequeño para el uso de un dado sistema [Usar]

- 16. Discutir y seleccionar la arquitectura de software adecuada para un sistema de software simple para un dado escenario [Usar]
- 17. Aplicar modelos de cualidades internas y externas en el diseño de componentes de software para lograr un equilibrio aceptable entre los aspectos de calidad en conflictos [Usar]
- 18. Analizar un diseño de software desde la perspectiva de un atributo significativo de la calidad interna [Evaluar]
- 19. Analizar un diseño de software desde la perspectiva de un atributo significativo de calidad externa [Evaluar]
- 20. Explicar el papel de los objetos en los sistemas de middleware y la relación con los componentes [Familiarizarse]
- 21. Aplicar métodos orientado a componentes para el diseño de una amplia gama de software, tales como el uso de componentes para la concurrencia y transacciones, para los servicios de comunicación confiables, para la interacción con la base de datos que incluye los servicios de consulta remota y gestión de bases de datos, o para la comunicación segura y el acceso [Usar]

- 22. Refactorizar una implementación de software existente para mejorar algún aspecto de su diseño [Usar]
- 23. Determinar y aplicar los principios de mínimo privilegio y defectos-a prueba de errores [Familiarizarse]

2.16.6. SE/Construcción de Software (2 horas Core-Tier2)

Tópicos:

Core Tier2

Prácticas de codificación: técnicas, idiomas/patrones, mecanismos para construcción de programas de calidad: 1. Prácticas de codificación defensive 2. Prácticas de codificación segura 3. Utilizando mecanismos de manejo de excepciones para hacer el programa más robusto, tolerante a fallas

Ref: 2.7.3 Programación Defensiva, Pág. 56, 2.15.4 Métodos de Desarrollo, Pág. 117

- Normas de codificación.
- Estrategias de integración.
- Desarrollando contexto: ""campo verde"" frente a la base de código existente : 1. Análisis de cambioăimpacto 2. Cambio de actualización

Electivos

■ Los problemas de seguridad potenciales en los programas : 1. Buffer y otros tipos de desbordamientos 2. Condiciones elemento Race 3. Inicialización incorrecta, incluyendo la elección de los privilegios 4. Entrada Comprobación 5. Suponiendo éxito y corrección 6. La validación de las hipótesis

Objetivos de Aprendizaje: Core-Tier2:

- 1. Describir técnicas, lenguajes de codificación y mecanismos de implementación para conseguir las propiedades deseadas, tales como la confiabilidad, la eficiencia y la robustez [Familiarizarse]
- 2. Construir código robusto utilizando los mecanismos de manejo de excepciones [Usar]
- 3. Describir la codificación segura y prácticas de codificación de defensa [Familiarizarse]
- 4. Seleccionar y utilizar un estándar de codificación definido en un pequeño proyecto de software [Usar]
- 5. Comparar y contrastar las estrategias de integración incluyendo: de arriba hacia abajo (top-down), de abajo hacia arriba (bottom-up), y la integración Sándwich [Familiarizarse]
- 6. Describir el proceso de analizar e implementar los cambios a la base de código desarrollado para un proyecto específico [Familiarizarse]
- 7. Describir el proceso de analizar e implementar los cambios a una gran base de código existente [Familiarizarse]

- 8. Reescribir un programa sencillo para eliminar vulnerabilidades comunes, tales como desbordamientos de búffer, desbordamientos de enteros y condiciones de carrera [Usar]
- 9. Escribir un componente de software que realiza alguna tarea no trivial y es resistente a errores en la entrada y en tiempo de ejecución [Usar]

2.16.7. SE/Verificación y Validación de Software (3 horas Core-Tier2)

Tópicos:

Core Tier2

- Verificación y validación de conceptos.
- Inspecciones, revisiones, auditorias.
- Tipos de pruebas, incluyendo la interfas humano computador, usabildiad, confiabilidad, seguridad, desempeño para la especificación.

Ref: 2.7.11 Seguridad en Ingeniería de Software, Pág. 63

■ Fundamentos de testeo: 1. Pruebas de Unit, integración, validación y de Sistema 2. Creación de plan de pruebas y generación de casos de test 3. Técnicas de test de caja negra y caja blanca 4. Test de regresión y automatización de pruebas

Ref: 2.15.4 Métodos de Desarrollo, Pág. 117

- Seguimiento de defectos.
- Limitaciones de testeo en dominios particulares, tales como sistemas paralelos o críticos en cuanto a seguridad.

Electivos

- Enfoques estáticos y enfoques dinámicos para la verificación.
- Desarrollo basado en pruebas.
- Plan de Validación, documentación para validación.
- Pruebas Orientadas a Objetos, Sistema de Pruebas.
- Verificación y validación de artefactos no codificados (documentación, archivos de ayuda, materiales de entrenamiento)
- Logeo fallido, error crítico y apoyo técnico para dichas actividades.
- Estimación fallida y terminación de las pruebas que incluye la envios por defecto.

Objetivos de Aprendizaje:

- 1. Distinguir entre la validación y verificación del programa [Familiarizarse]
- 2. Describir el papel que las herramientas pueden desempeñar en la validación de software [Familiarizarse]
- 3. Realizar, como parte de una actividad de equipo, una inspección de un segmento de código de tamaño medio [Usar]
- 4. Describir y distinguir entre diferentes tipos y niveles de pruebas (unitaria, integracion, sistemas y aceptacion) [Familiarizarse]
- 5. Describir tecnicas para identificar casos de prueba representativos para integracion, regresion y pruebas del sistema [Familiarizarse]
- 6. Crear y documentar un conjunto de pruebas para un segmento de código de mediano tamaño [Usar]
- 7. Describir cómo seleccionar buenas pruebas de regresión y automatizarlas [Familiarizarse]
- 8. Utilizar una herramienta de seguimiento de defectos para manejar defectos de software en un pequeño proyecto de software [Usar]

9. Discutir las limitaciones de las pruebas en un dominio particular [Familiarizarse]

Elective:

- 10. Evaluar un banco de pruebas (a test suite) para un segmento de código de tamaño medio [Usar]
- 11. Comparar los enfoques estáticos y dinámicos para la verificación [Familiarizarse]
- 12. Identificar los principios fundamentales de los métodos de desarrollo basado en pruebas y explicar el papel de las pruebas automatizadas en estos métodos [Familiarizarse]
- 13. Discutir los temas relacionados con las pruebas de software orientado a objetos [Usar]
- 14. Describir las técnicas para la verificación y validación de los artefactos de no código [Familiarizarse]
- 15. Describir los enfoques para la estimación de fallos [Familiarizarse]
- 16. Estimar el número de fallos en una pequeña aplicación de software basada en la densidad de defectos y siembra de errores [Usar]
- 17. Realizar una inspección o revisión del de código fuente de un software para un proyecto de software de tamaño pequeño o mediano [Usar]

2.16.8. SE/Evolución de Software (2 horas Core-Tier2)

Tópicos:

Core Tier2

- Desarrollo de Software en el contexto de código grande pre existente 1. Cambios de software
 2. Preocupaciones y ubicación de preocupaciones 3. Refactoring
- Evolución de Software.
- Características de Software mantenible.
- Sistemas de Reingeniería.
- Reuso de Software. 1. Segmentos de código 2. Bibliotecas y *frameworks* 3. Componentes 4. Líneas de Producto

Objetivos de Aprendizaje:

- 1. Identificar los problemas principales asociados con la evolución del software y explicar su impacto en el ciclo de vida del software [Familiarizarse]
- 2. Estimar el impacto del cambio de requerimientos en productos existentes de tamaño medio [Usar]
- 3. Usar refactorización en el proceso de modificación de un componente de sosftware [Usar]
- 4. Estudiar los desafios de mejorar sistemas en un entorno cambiante [Familiarizarse]
- 5. Perfilar los procesos de pruebas de regresión y su rol en el manejo de versiones [Familiarizarse]
- 6. Estudiar las ventajas y desventajas de diferentes tipos de niveles de confiabilidad [Familiarizarse]

2.16.9. SE/Fiabilidad de Software (1 horas Core-Tier2)

Tópicos:

Core Tier2

- Conceptos ingenieriles de confiabilidad de software.
- Confiabilidad de software, de sistemas y comportamiento de fallas.
 Ref: 2.17.9 Confiabilidad a través de redundancia, Pág. 136
- Conceptos y técnicas del ciclo de vida de fallas.

Electivos

- Modelos de confiabilidad de Software.
- Técnicas y modelos de software tolerante a fallas.
- Prácticas ingenieriles de confiabilidad de software.
- Análisis de confiabilidad de software basado en mediciones.

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Estudiar los problemas que existe en lograr niveles muy altos de confiabilidad [Familiarizarse]
- 2. Describir como el software confiable contribuye a la confiabilidad del sistema [Familiarizarse]
- 3. Listar los enfoques para minimizar fallas que pueden ser aplicadas en cada etapa de el ciclo de vida del software [Familiarizarse]

Elective:

- 4. Comparar las caracteristicas de los tres diferentes métodos de modelización confiable [Familia-rizarse]
- 5. Demostrar la capacidad de aplicar multiples métodos para desarrollar estimaciones confiables para un sistema de software [Usar]
- 6. Identificar métodos que conduzcan a la realización de una arquitectura de software que permita alcanzar un nivel especifico de fiabilidad [Usar]
- 7. Identificar formas de aplicar la redundancia para lograr tolerancia a fallos para una aplicación de tamaño medio [Usar]

2.16.10. SE/Métodos Formales

Los tópicos listed a continuación tienen una fuerte dependencia con el material del Área de Conocimiento de Estructuras Discretas (DS).

Tópicos:

Electivos

- El rol de la especificación formal y técnicas de análisis en el ciclo de desarrollo de software
- Lenguajes controlar (assert) en un programa y abordajes de análisis (incluyendo lenguajes para escribir y analizar pre y post condiciones tales como OCL, JML)
- Abordajes formales para modelamiento y análisis de software. 1. Verificadores de modelos Model checkers 2. Buscadores de Modelo Model finders
- Herramientas para el soporte de métodos formales.

Objetivos de Aprendizaje:

- 1. Describir la especificación formal del rol y técnicas de análisis que pueden jugar en el desarrollo de software complejo y comparar su uso como técnicas de validación y verificación con pruebas [Familiarizarse]
- 2. Aplicar especificación formal y técnicas de análisis para diseños de software y programas con baja complejidad [Usar]
- 3. Explicar los beneficios potenciales y desventajas de usar lenguajes de especificación formal [Familiarizarse]
- 4. Crear y evaluar validaciones de programa para una variedad de comportamientos que van desde lo simple hasta lo complejo [Usar]
- 5. Usando un lenguaje de especificación formal, formular la especificación de un sistema de software simple y derivar ejemplos de casos de prueba a partir de la especificación [Usar]

2.17. Fundamentos de Sistemas (SF)

La infraestructura subyacente de hardware y software sobre la que se construyen las aplicaciones se describe colectivamente por el término "sistemas de computadores". Los sistemas de computadores en general abarcan las subdisciplinas de sistemas operativos, sistemas paralelos y distribuidos, redes de comunicaciones y la arquitectura de computadores. Tradicionalmente, estas áreas se imparten en forma no integrada a través de cursos independientes. Sin embargo, estas subdisciplinas comparten cada vez más importantes conceptos fundamentales comunes dentro de sus respectivos núcleos. Estos conceptos incluyen paradigmas computacionales, paralelismo, comunicaciones entre capas, el estado y transición de estado, la asignación de recursos y la programación y así sucesivamente. El Área de Conocimiento de Fundamentos de Sistemas está diseñada para presentar una visión integradora de estos conceptos fundamentales en una unificada aunque de manera simplificada proporcionando una base común para los diferentes mecanismos especializados y políticas apropiadas para un área de dominio particular.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core	Core	Electivos
	Tier1	Tier2	
2.17.1 Paradigmas computacionales (Pág. 131)	3		No
2.17.2 Comunicación a través de múltiples capas (Pág. 132)	3		No
2.17.3 Estados y máquinas de estados (Pág. 133)	6		No
2.17.4 Paralelismo (Pág. 133)	1		No
2.17.5 Evaluación (Pág. 134)	3		No
2.17.6 Asignación de recursos y planeamiento (Pág. 134)		2	No
2.17.7 Proximidad (Pág. 135)		3	No
2.17.8 Virtualización y aislamiento (Pág. 135)		2	No
2.17.9 Confiabilidad a través de redundancia (Pág. 136)		2	No
2.17.10 Evaluación cuantitativa (Pág. 136)			Si

2.17.1. SF/Paradigmas computacionales (3 horas Core-Tier1)

El punto de vista que aquí se presenta es las múltiples representaciones de un sistema a través de capas, desde bloques de construcción de hardware hasta los componentes de aplicaciones y el paralelismo disponible en cada representación.

Tópicos:

Core Tier1

- Bloques básicos de construcción de un computador (compuertas, flip-flops, registros, interconexiones; Caminos de datos (Datapath) + Control + Memoria)
- Hardware como un paradigma computacional: bloques de construcción lógicos fundamentales; expresiones lógicas, minimización, formas de suma de productos.

- Procesamiento secuencial a nivel de aplicacion: single thread.
- Procesamiento paralelo simple a nivel de aplicación: niveles de pedidos (web-services, cliente-servidor, distribuído), una hebra simple por servidor, múltiples hebras con múltiples servidores.
- Concepto básico de la secuencia de ejecución (pipelining), etapas de superposición de procesamiento.
- Conceptos básicos de escalabilidad: ir más rápido vs manejar problemas grandes.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Enumerar los patrones comúnmente encontrados de cómo los cálculos son organizados [Familia-rizarse]
- 2. Describir los bloques de construcción básicos de las computadoras y su rol en desarrollo histórico de la arquitectura del computador. [Familiarizarse]
- 3. Articular las diferencias entre un solo thread contra múltiples threads, un solo servidor contra modelos de servidores múltiples, motivados por ejemplos del mundo real (recetas de cocina, lineas de múltiples cajeros y parejas) [Familiarizarse]
- 4. Articular el concepto de escalabilidad fuerte y débil, es decir, cómo el rendimiento se ve afectado por la escala del problema contra escala de los recursos para resolver el problema. Esto puede ser motivado por lo simple, ejemplos en el mundo real [Familiarizarse]
- 5. Diseñar un circuito lógico simple usando los bloques de construcción fundamental del diseño lógico [Usar]
- 6. Usar herramientas para la captura, síntesis, y la simulación para evaluar un diseño lógico [Usar]
- 7. Escribir problema secuencial simple y una versión paralela simple de un mismo programa [Usar]
- 8. Evaluar el desempeño de las versiones simples secuenciales y paralelas de un programa con diferentes tamaños de problemas, y ser capaz de describir los planos de velocidad obtenidos [Evaluar]

2.17.2. SF/Comunicación a través de múltiples capas (3 horas Core-Tier1)

Tópicos:

Core Tier1

- Abstracciones de programación, interfaces, uso de librerías.
- Distinción entre Aplicaciones y Servicios del SO, Llamadas a procedimientos remotos.
- Interacción entre la aplicación y la máquina virtual.
- Confiabilidad.

Objetivos de Aprendizaje:

- 1. Describir cómo los sistemas computacionales están construídos con capas sobre capas basada en la separación de los problemas, con interfaces bien definidas, ocultando los detalles de las capas bajas a las capas superiores [Familiarizarse]
- 2. Describir que el hardware, VM, OS, aplicación son capas adicional interpretación/procesamiento [Familiarizarse]
- 3. Describir los mecanismos de como los errores se detectan, nos notificados hacia atrás y se manejan a través de capas [Familiarizarse]
- 4. Construir un programa simple utilizando métodos de capas, la detección y recuperación de errores, y reflexión de la condición de error a través de capas [Usar]
- 5. Encontrar bugs en un programa multi capas a través de la utilización de programas de rastreo, paso a paso y depuración debugging [Usar]

2.17.3. SF/Estados y máquinas de estados (6 horas Core-Tier1)

Tópicos:

Core Tier1

- Sistemas Digitales vs Analógicos and Discretos vs Continuos.
- Compuertas lógicas simples, expresiones lógicas, simplificación lógica booleana.
- Relojes, estado, secuenciamiento.
- Lógica combinacional, lógica secuencial, registros, memorias.
- Computadoras y protocolos de red como ejemplos de estado de máquinas.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Describir los cálculos como un sistema que se caracteriza por un conjunto conocido de configuraciones con las transiciones de una configuración (estado) a otra (estado) [Familiarizarse]
- 2. Describir la distinción entre sistemas cuya salida es sólo una función de su entrada (combinacional) y los que tienen memoria/historia (secuencial) [Familiarizarse]
- 3. Describir una computadora como una máquina de estados que interpreta las instrucciones de la máquina [Familiarizarse]
- 4. máquina de estados y que pueden existir representaciones alternativas para el mismo cálculo [Familiarizarse]
- 5. Desarrollar descripciones de máquinas de estado para soluciones de problemas de planteamiento simple (por ejemplo, la secuencia del semáforo, reconocedores de patrones) [Usar]
- 6. Deducir el comportamiento de series de tiempo de una máquina de estado a partir de su representación de estados de máquina [Evaluar]

2.17.4. SF/Paralelismo (1 horas Core-Tier1)

Tópicos:

Core Tier1

- Procesamiento secuencial vs paralelo.
- Programación paralela vs concurrente.
- Paralelismo de solicitudes vs Paralelismo de tareas.
- Cliente-Servidor/Web Services, Hilos (Fork-join), Pipelining.
- Arquitecturas multinúcleo y soporte de hardware para sincronización.

Objetivos de Aprendizaje:

- 1. Dado un programa, distinguir entre su ejecución secuencial y paralela y las implicaciones en el desempeño de los mismos [Familiarizarse]
- 2. Demostrar sobre una linea de tiempo de ejecución que los eventos y operaciones paralelas pueden tomar lugar simultaneamente (al mismo tiempo). Explicar como la carga de trabajo puede ser realizada en menos tiempo si se explora el paralelismo [Familiarizarse]
- 3. Explicar otros usos del paralelismo, tales como la confiabilidad/redundancia de la ejecución [Familiarizarse]

- 4. Definir las diferencias entre los conceptos de Paralelismo a nivel de Instrucción, Paralelismo a nivel de datos, Paralelimos/Multitareas a nivel de hebras, Paralelimos a nivel de Procesos/Peticiones [Familiarizarse]
- 5. Escribir mas de un programa en paralelo (por ejemplo, un programa paralelo en mas de un paradigma de programación paralela; un programa paralelo que administre recursos compartidos a través de primitivas de sincronización; un programa paralelo que realiza operaciones simultaneas sobre datos particionados a través de paralelización de tareas/procesos (por ejemplo, busqueda de términos en paralelo; un programa que realiza paso a paso un procesamiento pipeline a través de paso de mensajes)) [Usar]
- 6. Usar herramientas de desempeño para medir el *speed-up* alcanzado por un programa paralelo en términos de tamaño de los datos y número de recursos [Evaluar]

2.17.5. SF/Evaluación (3 horas Core-Tier1)

Tópicos:

Core Tier1

- Cifras de desempeño de mérito.
- Las cargas de trabajo y puntos de referencia representativos y los métodos de recolección y análisis de las cifras de desempeño.
- La ecuación CPI (*Cycles per Instruction*) como una herramienta para entender puntos de equilibrio en el diseño de un conjunto de instrucciones, secuencia de ejecución en un procesador y organización de un sistema de memoria.
- La ley de Amdahl: la parte de la computación que no se puede acelerar limita el efecto de las partes que si pueden.

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Explique cómo los componentes de la arquitectura del sistema contribuyen a la mejora del rendimiento [Familiarizarse]
- 2. Describir la ley de Amdahl y discutir sus limitaciones [Familiarizarse]
- 3. Diseñar e implementar un experimento orientado al desempeño [Usar]
- 4. Usar herramientas de software para perfilar y medir el desempeño de un programa [Evaluar]

2.17.6. SF/Asignación de recursos y planeamiento (2 horas Core-Tier2)

Tópicos:

Core Tier2

- Clases de recursos (p.e., unidad de procesador, memoria, disco, ancho de banda neto)
- Clases de programación (p.e., FIFO, prioridad)
- \blacksquare Ventajas de la planificación equitativa, la programación preventiva.

Objetivos de Aprendizaje:

Core-Tier2:

1. Definir como recursos computacionales limitados (por ejemplo, participación de procesador, memoria, almacenamiento y ancho de banda) son gestionadas por una cuidadosa asignación para entidades existentes [Familiarizarse]

- 2. Describir los algoritmos de planificación mediante el cual, recursos son asignados a entidades competentes, y los factores de calidad por el cual se evaluan estos algoritmos, tal como equidad (fairness) [Familiarizarse]
- 3. Implementar un algoritmo básico de planificación [Usar]
- 4. Usar factores de calidad de implementaciones de planificadores alternativos [Evaluar]

2.17.7. SF/Proximidad (3 horas Core-Tier2)

Tópicos:

Core Tier2

- La velocidad de la luz y los computadores (un pie por nano segundo vs reloj de 1 GHz)
- Latencia en sistemas de computadores: memoria vs latencia de disco vs memoria a lo largo de la red.
- Memoria *cache* y el efecto de localidad espacial y temporal en el desempeño en el procesador y sistemas
- Memoria *cache* y coherencia de memoria *cache* en bases de datos, sistemas operativos, sistemas distribuídos y arquitectura de computadores.
- Introducción a la jerarquía de memorias de procesador y la fórmula para el promedio de acceso a memoria.

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Explicar la importancia de localidad en la determinación de desempeño [Familiarizarse]
- 2. Describir por qué las cosas que están cerca en espacio toman menos tiempo para su acceso [Familiarizarse]
- 3. Calcular el tiempo promedio de acceso a la memoria y describir los tradeoffs en el desempeño jerarquico de la memoria en términos de capacidad, tasa de fallos/éxitos y el tiempo de acceso [Evaluar]

2.17.8. SF/Virtualización y aislamiento (2 horas Core-Tier2)

Tópicos:

Core Tier2

- Justificación de la protección y el rendimiento predecible.
- Los niveles de indirección, ilustrados por la memoria virtual para la gestión de los recursos de memoria física.
- Los métodos para la implementación de la memoria virtual y las máquinas virtuales.

Objetivos de Aprendizaje:

- 1. Explicar por qué es importante isolar y proteger la ejecución de programas individuales y ambientes que comparten recursos subyacentes comunes [Familiarizarse]
- 2. Describa cómo el concepto de indirección puede crear la ilusión de un equipo y recursos dedicados, incluso cuando físicamente esté compartida entre varios programas y entornos [Familiarizarse]
- 3. Medir el desempeño de dos instancias de aplicaciones que se ejecutan en máquinas virtuales independientes y determinar el efecto de aislamiento rendimiento [Evaluar]

2.17.9. SF/Confiabilidad a través de redundancia (2 horas Core-Tier2)

Tópicos:

Core Tier2

- Distinción entre bugs y fallas.
- Redundancia a través de chequear y reintentar
- Redundancia a través de código redundante (código de corrección de errores, CRC, FEC)
- Duplicación/espejos/réplicas.
- Otros abordajes para tolerancia a fallas y disponibilidad.

Objetivos de Aprendizaje:

Core-Tier2:

- 1. Explique la diferencia entre los errores del programa, errores del sistema y fallos de hardware (por ejemplo, mala memoria) y excepciones (por ejemplo, intento de dividir por cero) [Familiarizarse]
- 2. Articular la distinción entre la detección, manejo y recuperación de fallas y los métodos para su aplicación. [Familiarizarse]
- 3. Describir el papel de los códigos de corrección de errores en la prestación de técnicas de control y corrección de errores en la memoria, almacenamiento y redes. [Familiarizarse]
- 4. Aplicar algoritmos simples para la explotación de la información redundante para los propósitos de corrección de datos. [Usar]
- 5. Comparar los diferentes métodos de detección de errores y de corrección para sus sobre gastos de datos, complejidad de implementación y el tiempo de ejecución para la codificación relativa, detección y corrección de errores [Evaluar]

2.17.10. SF/Evaluación cuantitativa

Tópicos:

Electivos

- Herramientas analíticas para guiar evaluación cuantitativa.
- Análisis de orden de magnitud (Notación Big O)
- Análisis del camino corto y rápido de un sistema.
- Eventos sobre su efecto en el rendimiento (por ejemplo, lugar de instrucción, fallos de caché, los errores de página)
- La comprensión de los sistemas de capas, cargas de trabajo y plataformas, sus implicaciones para el rendimiento, y los retos que representan para la evaluación
- Trampas de micro puntos de referencia.

Objetivos de Aprendizaje:

- 1. Explicar las circunstancias en las que una figura de una métrica del rendimiento del sistema es útil [Familiarizarse]
- 2. Explicar las insuficiencias de los puntos de referencia como medida de rendimiento del sistema. [Familiarizarse]
- 3. Utilice estudios limitados o cálculos sencillos para producir estimaciones de orden de magnitud para una métrica de rendimiento en un contexto dado. [Usar]
- 4. Llevar a cabo un experimento de rendimiento en un sistema de capas para determinar el efecto de un parámetro del sistema en la figura del rendimiento del sistema [Evaluar]

2.18. Asuntos sociales y práctica profesional (SP)

Si bien las cuestiones técnicas son fundamentales para el plan de estudios de computación, no constituyen un programa educativo completo en el campo. Los estudiantes también deben estar expuestos al contexto social más amplio de la computación para desarrollar una comprensión de las cuestiones sociales, éticas, legales y profesionales pertinentes. Esta necesidad de incorporar el estudio de estos problemas no técnicos en el plan de estudios ACM fue reconocido formalmente en el año 1991, como puede verse en el siguiente extracto:

Estudiantes universitarios también deben comprender los aspectos culturales, sociales, legales y éticos básicos inherentes a la disciplina de la computación. Ellos deben entender donde la disciplina ha estado, dónde está y hacia dónde se dirige. También deben entender su papel individual en este proceso, así como apreciar las cuestiones filosóficas, problemas técnicos y los valores estéticos que desempeñan un papel importante en el desarrollo de la disciplina.

Los estudiantes también tienen que desarrollar la capacidad de formular preguntas serias sobre el impacto social de la computación y de evaluar las respuestas propuestas a esas preguntas. Los futuros profesionales deben ser capaces de anticipar el impacto de la introducción de un producto dado en un entorno determinado. ¿Será ese producto mejorar o degradar la calidad de vida? ¿Cuál será el impacto sobre los individuos, los grupos y las instituciones?

Por último, los estudiantes deben ser conscientes de los derechos legales básicos de software y hardware y los usuarios así como y también tienen que apreciar los valores éticos que son la base de estos derechos. Los futuros profesionales deben entender la responsabilidad que van a llevar y las posibles consecuencias del fracaso. Ellos deben comprender sus propias limitaciones, así como las limitaciones de sus herramientas. Todos los profesionales deben hacer un compromiso a largo plazo para permanecer al día en sus especialidades elegidas y en la disciplina de la computación en su conjunto.

Como los avances tecnológicos siguen afectando de manera significativa la forma en que vivimos y el trabajo, la importancia crítica de asuntos sociales y práctica profesional continua aumentando; nuevos productos basados en computadores y lugares plantean problemas cada vez más difíciles cada año. Son nuestros estudiantes que deben entrar en el mundo laboral y el mundo académico con el objetivo de identificar y resolver estos problemas.

Los educadores de ciencia de la computación pueden optar por enseñar este núcleo y el material electivo en cursos independientes, integrados en cursos técnicos y teóricos tradicionales, o como unidades especiales en cursos de fina de carrera y cursos de práctica profesional. El material en esta área está mejor cubierto a través de una combinación de un curso obligartorio junto con módulos breves en otros cursos. Por un lado, algunas unidades que figuran como Core Tier-1 (en particular, el contexto social, herramientas de análisis, la ética profesional y la propiedad intelectual) no se prestan fácilmente a ser cubiertos en otros cursos tradicionales. Sin un curso independiente, es difícil cubrir estos temas adecuadamente. Por otro lado, si las consideraciones éticas y sociales son cubiertas solamente en el curso independiente y no en contexto, esto reforzará la falsa idea de que los procesos técnicos no necesitan de estas otras cuestiones pertinentes.

Debido a esta amplia relevancia, es importante que varios cursos tradicionales incluyan módulos con estudios de casos que analizan los aspectos éticos, legales, sociales y profesionales en el contexto de la materia técnica del curso. Los cursos en áreas como la ingeniería de software, bases de datos, redes de computadores, y seguridad aseguramiento de la información y la introducción a la computación proporcionan un contexto obvio para el análisis de cuestiones éticas. Sin embargo, un módulo relacionado con la ética podría desarrollarse para casi cualquier curso en el currículo. Sería explícitamente en contra del espíritu de la recomendaciones tener sólo un curso independiente. A lo largo de todos los asuntos en esta área existe la necesidad de hablar con el profesional para que siempre enfrente estos problemas desde la perspectiva moral y técnica. Las cuestiones éticas discutidas en cualquier clase deben surgen naturalmente de la materia objeto de esa clase. Los ejemplos incluyen una discusión en el curso de base de datos de la agregación de datos o minería de datos, o una discusión en el curso de ingeniería de software de los posibles conflictos entre las obligaciones para con el cliente y las obligaciones para el usuario y otras personas afectadas por su trabajo. Asignaciones de programación construidas alrededor de aplicaciones tales controlar el movimiento de un láser durante la cirugía de

los ojos puede ayudar a hacer frente a los impactos profesionales, éticos y sociales de la computación. El cuerpo docente que no esté familiarizados con el contenido y/o la pedagogía de la ética aplicada debe aprovechar los recursos considerables de ACM, IEEE-CS, SIGCAS (grupo de interés especial en las computadoras y la sociedad), y otras organizaciones.

Cabe señalar que la aplicación de un análisis ético subyace en cada sección de esta área de conocimiento. El Código ACM de Ética y Conducta Profesional (http://www.acm.org/about/code-of-ethics) proporciona directrices que sirven como base para la realización de nuestro trabajo profesional. Los imperativos morales generales proporcionan un mejor entendimiento de nuestro compromiso con la responsabilidad personal, la conducta profesional y nuestros roles de liderazgo.

Área de Conocimiento (Knowledge Area-KA) (KA)	Core	Core	Electivos
	Tier1	Tier2	
2.18.1 Contexto Social (Pág. 138)	1	2	No
2.18.2 Herramientas de Análisis (Pág. 139)	2		No
2.18.3 Ética Profesional (Pág. 140)	2	2	No
2.18.4 Propiedad Intelectual (Pág. 141)	2		Si
2.18.5 Privacidad y Libertades Civiles (Pág. 142)	2		Si
2.18.6 Comunicación profesional (Pág. 143)	1		Si
2.18.7 Sostenibilidad (Pág. 144)	1	1	Si
2.18.8 Historia (Pág. 145)			Si
2.18.9 Economía de la Computación (Pág. 146)			Si
2.18.10 Políticas de seguridad, Leyes y crímenes computacionales			Si
(Pág. 146)			

2.18.1. SP/Contexto Social (1 horas Core-Tier1, 2 horas Core-Tier2)

Las computadoras y el Internet, quizás más que cualquier otra tecnología, han transformado la sociedad durante los últimos 75 años, con un aumento espectacular en la productividad humana; una explosión de opciones para las noticias, el entretenimiento y la comunicación; y los avances fundamentales en casi todas las ramas de la ciencia e ingeniería. Social Contexto proporciona la base para todas las demás unidades de conocimiento de esta área (SP), especialmente la ética profesional.

Tópicos:

Core Tier1

- Implicancias sociales de la computación en un mundo conectado en red.
 Ref: 2.6.1 Fundamentos, Pág. 47, 2.7.1 Fundamentos y Conceptos en Seguridad, Pág. 54
- Impacto de los medios sociales en el individualismo, colectivismo y en la cultura.

Core Tier2

- Crecimiento y control de la Internet Ref: 2.10.1 Introducción, Pág. 82
- A menudo se refiere como la brecha digital, las diferencias en el acceso a los recursos de la tecnología digital y sus ramificaciones resultantes para el género, la clase, la etnia, la geografía, y/o los países subdesarrollados.
- Los problemas de accesibilidad, incluyendo los requisitos legales.
- Computación consciente del contexto.
 Ref: 2.6.2 Diseño de Interacción, Pág. 48

Objetivos de Aprendizaje:

Core-Tier1:

1. Describir las formas positivas y negativas en las que la tecnología computacional (redes, computación móvil, *cloud computing*) altera los modos de interacción social en el plano personal [Familiarizarse]

- 2. Identificar los supuestos y valores incorporados en el hardware y el software de diseño de los desarrolladores, especialmente lo que se refiere a la facilidad de uso para diversas poblaciones incluyendo minorías poblaciones y los discapacitados [Familiarizarse]
- 3. Interpretar el contexto social de un determinado diseño y su aplicación [Familiarizarse]
- 4. Evaluar la eficacia de un diseño y aplicación dada a partir de datos empíricos [Evaluar]
- 5. Resumir las implicaciones de los medios sociales en el individualismo frente al colectivismo y la cultura [Usar]

Core-Tier2:

- 6. Discuta cómo el acceso a Internet sirve como una fuerza liberadora para las personas que viven bajo las formas opresivas de gobierno; explicar la utilización los límites al acceso a Internet como herramientas de represión política y social [Familiarizarse]
- 7. Analizar los pros y los contras de la dependencia de la computación en la implementación de la democracia (por ejemplo, prestación de servicios sociales, votación electrónica) [Evaluar]
- 8. Describir el impacto de la escasa representación de las diversas poblaciones en la profesión (por ejemplo, la cultura de la industria, la diversidad de productos) [Familiarizarse]
- Explicar las consecuencias de la sensibilidad al contexto en los sistemas de computación ubicua [Familiarizarse]

2.18.2. SP/Herramientas de Análisis (2 horas Core-Tier1)

Teorías y principios éticos son los fundamentos del análisis ético, ya que son los puntos de vista desde el que se pueden obtener directrices a lo largo de la vía a una decisión. Cada teoría hace hincapié en diferentes puntos, como la predicción del resultado y siguiendo los propios deberes con los demás con el fin de llegar a una decisión éticamente guiada. Sin embargo, para que una teoría ética sea útil, la teoría debe ser dirigida hacia un conjunto común de objetivos. Los principios éticos son los objetivos comunes que cada teoría intenta alcanzar con el fin de tener éxito. Estos objetivos incluyen la beneficencia, menor daño, el respeto por la autonomía y la justicia.

Tópicos:

Core Tier1

- Argumentación ética.
- Teorías éticas y toma de decisiones.
- Suposiciones morales y valores.

Objetivos de Aprendizaje:

- 1. Evaluar las posiciones de las partes interesadas en una situación dada [Evaluar]
- 2. Analizar errores lógicos básicos en una discusión [Evaluar]
- 3. Analizar un argumento para identificar premisas y la conclusión [Evaluar]
- 4. Ilustrar el uso de ejemplo y analogía en el argumento ético [Usar]
- 5. Evaluar compensaciones éticos / sociales en las decisiones técnicas [Evaluar]

2.18.3. SP/Ética Profesional (2 horas Core-Tier1, 2 horas Core-Tier2)

La ética de la computadora es una rama de la filosofía práctica que se ocupa de cómo los profesionales en computación deben tomar decisiones relativas a la conducta profesional y social. Hay tres influencias principales: 1) propio código personal de un individuo; 2) cualquier código informal de comportamiento ético existente en el lugar de trabajo; y 3) la exposición a los códigos formales de ética. Ver Information Assurance and Security (IAS) KA

Tópicos:

Core Tier1

- Community values and the laws by which we live.
- La naturaleza del profesionalismo incluido el cuidado, la atención y la disciplina, la responsabilidad fiduciaria y mentoría.
- Mantenerse al día como profesional de computación en términos de familiaridad, herramientas, habilidades, marco legal y profesional, así como la capacidad de autoevaluarse y avances en el campo de la computación.
- La certificación profesional, códigos de ética, conducta y práctica, como la ACM / IEEE-CS, SE, AITP, IFIP y las sociedades internacionales.
 Ref: 2.7.1 Fundamentos y Conceptos en Seguridad, Pág. 54
- Rendición de cuentas, la responsabilidad y la confiabilidad (por ejemplo, la corrección de software, fiabilidad y seguridad, así como la confidencialidad ética de los profesionales de seguridad cibernética)

Core Tier2

- El papel del profesional de de computación en las políticas públicas.
- Mantenimiento de la conciencia en relación a las consecuencias.
- Disidencia ética y la denuncia de irregularidades.
- La relación entre la cultura regional y dilemas éticos.
- Tratar con el acoso y la discriminación.
- Formas de credenciamiento profesional.
- Políticas de uso aceptable para la computación en el lugar de trabajo.
- Ergonomía y entornos de trabajo computacionales saludables.
- Consideraciones a tiempos de entrega de mercado vs estándares de calidad profesional.

Objetivos de Aprendizaje:

- 1. Identificar los problemas éticos que se plantean en el desarrollo de software y determinar cómo abordarlos técnica y éticamente [Familiarizarse]
- 2. Explicar la responsabilidad ética de velar por la corrección de software, confiabilidad y seguridad [Familiarizarse]
- 3. Describir los mecanismos que normalmente existen para que profesional se mantenga al día [Familiarizarse]
- 4. Describir las fortalezas y debilidades de códigos profesionales relevantes como expresiones de profesionalismo y guías para la toma de decisiones [Familiarizarse]
- 5. Analizar un problema mundial de computación, observando el papel de los profesionales y funcionarios del gobierno en el manejo de este problema [Evaluar]

6. Evaluar los códigos de ética profesional de la ACM, la Sociedad de Computación de la IEEE, y otras organizaciones [Evaluar]

Core-Tier2:

- 7. Describir las formas en que los profesionales pueden contribuir a las políticas públicas [Familia-rizarse]
- 8. Describir las consecuencias de la conducta profesional inadecuada [Familiarizarse]
- 9. Identificar las etapas progresivas en un incidente de denuncia de irregularidades [Familiarizarse]
- 10. Identificar ejemplos de cómo interactúa la cultura regional con dilemas éticos [Familiarizarse]
- 11. Investigar las formas de acoso, discriminación y formas de ayuda [Usar]
- 12. Examine las diversas formas de acreditación de profesionales [Usar]
- 13. Explicar la relación entre la ergonomía en los ambientes y la salud de las personas de computación [Familiarizarse]
- 14. Desarrollar un uso del computador/política de uso aceptable con medidas coercitivas [Evaluar]
- 15. Describir los problemas asociados con la presión de la industrias para centrarse en el tiempo de comercialización en comparación con la aplicación de normas de calidad profesional [Familiarizarse]

2.18.4. SP/Propiedad Intelectual (2 horas Core-Tier1)

La propiedad intelectual se refiere a una serie de derechos intangibles de propiedad de un activo tal como un programa de software. Cada "derecho" de propiedad intelectual es en sí mismo un activo. La ley establece diferentes métodos para la protección de estos derechos de propiedad en función de su tipo. Hay básicamente cuatro tipos de derechos de propiedad intelectual relacionados con el software: patentes, derechos de autor, secretos comerciales y marcas registradas. Cada una proporciona un tipo diferente de protección legal. Ver InformationManagement (IM) KA

Tópicos:

Core Tier1

- Fundamentos filosóficos de propiedad intelectual.
- Derechos de propiedad intelectual.
 Ref: 2.8.11 Almacenamiento y Recuperación de Información, Pág. 71
- Propiedad intelectual digital intangible (IDIP).
- Fundamentos legales para protección de la propiedad intelectual.
- Gestión de derechos digitales.
- Copyrights, patentes, secretos de comercio, marcas registradas.
- Plagiarismo.

Electivos

- Fundamentos del movimiento Open Source.
- Piratería de Software.

Objetivos de Aprendizaje:

- 1. Discute las bases filosóficas de la propiedad intelectual [Familiarizarse]
- 2. Discute la racionalidad de la protección legal de la propiedad intelectual [Familiarizarse]

- 3. Decribe la legislación orientada a los delitos de derechos de autor digitales [Familiarizarse]
- 4. Critica la legislación orientada a los delitos digitales de derechos de autor [Evaluar]
- 5. Identifica ejemplos contemporáneos de propiedad intelectual digital intangible [Familiarizarse]
- 6. Justifica el uso de material con derechos de autor [Evaluar]
- 7. Evalúa los asuntos éticos inherentes a diversos mecanismos de detección de plagio [Evaluar]
- 8. Interpreta el intento y la implementación de licencias de software [Familiarizarse]
- 9. Discute asuntos que involucran la seguridad de patentes en software [Familiarizarse]
- 10. Caracteriza y contrasta los conceptos de derechos de autor, patentes y de marcas comerciales [Evaluar]

Elective:

- 11. Identifica los objetivos del movimiento de software libre [Familiarizarse]
- 12. Identifica la naturaleza global de la piratería de software [Familiarizarse]

2.18.5. SP/Privacidad y Libertades Civiles (2 horas Core-Tier1)

El intercambio de información electrónica destaca la necesidad de equilibrar la protección de la privacidad con acceso a la información. La facilidad de acceso digital a muchos tipos de datos hace que los derechos de privacidad y las libertades civiles sean mas complejas, siendo difierentes entre la variedad de culturas en todo el mundo.

Tópicos:

Core Tier1

- Fundamentos filosóficos de derechos de privacidad.
 Ref: 2.9.1 Cuestiones fundamentales, Pág. 73
- Fundamentos legales de protección de privacidad.
- Implicaciones de privacidad de recopilación de datos generalizada de bases de datos transaccionales, almacenes de datos, sistemas de vigilancia y la computación en la nube.
 Ref: 2.8.2 Sistemas de Bases de Datos, Pág. 65, 2.8.10 Minería de Datos, Pág. 71
- Ramificaciones de privacidad diferencial.
- Soluciones basadas en la tecnología para la protección de la privacidad.
 Ref: 2.7.4 Ataques y Amenazas, Pág. 57

Electivos

- Legislación de privacidad en áreas de práctica.
- Libertades civiles y diferencias culturales.
- Libertad de expresión y sus limitaciones.

Objetivos de Aprendizaje:

- 1. Discute las bases filosóficas para la protección legal de la privacidad personal [Familiarizarse]
- 2. Evalúa soluciones para amenazas a la privacidad en bases de datos transaccionales y almacenes de datos [Evaluar]
- 3. Describe los roles de la recolección de datos en la implementación de sistemas de vigilancia intrusiva (ejm. RFID, reconocimiento de rostro, cobro electrónico, computación móvil) [Familiarizarse]

- 4. Describe las ramificaciones de la privacidad diferenciada [Familiarizarse]
- 5. Investica el impacto de soluciones tecnológicas a los problemas de privacidad [Usar]

Elective:

- 6. Critica la intención, el valor potencial y la implementación de las diversas formas de legislación en privacidad [Evaluar]
- 7. Identifica estrategias que permitan la apropiada libertad de expresión [Familiarizarse]

2.18.6. SP/Comunicación profesional (1 horas Core-Tier1)

La comunicación profesional transmite información técnica a los diversos públicos que pueden tener diferentes objetivos y necesidades de esa información. Comunicación profesional efectiva de información técnica es rara vez un don heredado, sino que necesita ser enseñado en su contexto a través del currículo de pregrado.

Tópicos:

Core Tier1

- Leer, comprender y resumir el material técnico, incluyendo el código fuente y la documentación.
- Escritura de documentación y material técnico eficaz.
- Dinámica de comunicación oral, escrita, electrónica de equipos y en grupos.

 Ref: 2.6.6 Colaboración y Comunicación, Pág. 50, 2.16.2 La participación del equipo: 1. Procesos elemento del equipo, incluyendo responsabilidades de tarea, la estructura de reuniones y horario de trabajo 2. Roles y responsabilidades en un equipo de software 3. Equipo de resolución de conflictos 4. Los riesgos asociados con los equipos virtuales (comunicación, la percepción, la estructura), Pág. 121
- Comunicarse profesionalmente con los accionistas y otros involucrados en una empresa.
- Utilizando herramientas colaborativas.
 Ref: 2.6.6 Colaboración en línea, espacios "inteligentes" y aspectos de coordinación social de tecnologías de flujo de trabajo., Pág. 50, 2.9.8 Agentes, Pág. 78

Electivos

- Tratar con ambientes interculturales.
 Ref: 2.6.4 Internacionalización, diseño para usuarios de otras culturas, intercultural., Pág. 49
- Puntos de equilibrio de riesgos en proyectos de software, en términos de la tecnología, la estructura/proceso, la calidad, la gente, el mercado y financiero.
 Ref: 2.16.2 Riesgo. 1. El papel del riesgo en el ciclo de vida 2. Categorías elemento de riesgo,

Ref: 2.16.2 Riesgo. 1. El papel del riesgo en el ciclo de vida 2. Categorías elemento de riesgo, incluyendo la seguridad, la seguridad, mercado, finanzas, tecnología, las personas, la calidad, la estructura y el proceso de , Pág. 121

Objetivos de Aprendizaje:

- 1. Escribe documentos técnicos claros, concisos y exactos siguiendo estándares bien definidos para su formato y para la inclusión de tablas, figuras y referencias adecuadas [Usar]
- 2. Evalúa documentación técnica escrita para detectar problemas de diversos tipos [Evaluar]
- 3. Desarrolla y brinda una presentación formal de buena calidad [Evaluar]
- 4. Interacciones del plan (por ejemplo, cara a cara, documentos compartidos virtuales) con otros en los que son capaces de obtener su punto de vista, escuchar con atención y apreciar los puntos de los demás, incluso cuando no están de acuerdo y son capaces de transmitir a los demás que han oído [Usar]

- 5. Describir las fortalezas y debilidades de las diversas formas de comunicación (por ejemplo, cara a cara, documentos compartidos virtuales) [Familiarizarse]
- 6. Examinar las medidas adecuadas que se utilizan para comunicarse con las partes involucrados en un proyecto [Usar]
- 7. Comparar y contrastar diversas herramientas de colaboración [Evaluar]

Elective:

- 8. Discutir formas de influir en el rendimiento y los resultados en equipos multi-culturales [Familiarizarse]
- 9. Examine los puntos de equilibrio y las fuentes comunes de riesgo en proyectos relacionados con el software de tecnología, estructura/proceso, la calidad, la gente, el mercado y la parte financiera [Usar]
- 10. Evaluar las fortalezas y debilidades personales para trabajar de forma remota como parte de un equipo multinacional [Evaluar]

2.18.7. SP/Sostenibilidad (1 horas Core-Tier1, 1 horas Core-Tier2)

La sostenibilidad, de acuerdo a las Naciones Unidas es "el desarrollo que satisface las necesidades del presente sin comprometer la capacidad de generaciones futuras para satisfacer sus propias necesidades." La sostenibilidad se introdujo por primera vez en las directrices curriculares CS2008. Los temas en esta área emergente se pueden integrar de forma natural en otras áreas y unidades que presenten familiaridad, como la interacción humano-computador y la evolución del software. Ver 2.6 Interacción Humano-Computador (HCI), Pág. 46, 2.16 Ingeniería de Software (SE), Pág. 118.

Tópicos:

Core Tier1

- Comenzando una partición sustentable para tener en consideracion cultural y impacto ambiental de desicione sd eimplementación.
- Explorar la sociedad global y impacto ambiental del uso de computadoras y disposicion (e-waste)

Core Tier2

■ Impactos ambientales de las elecciones de diseño en areas específicas tal como los algoritmos de los sistemas operativos, internet, bases de datos o interacción humano computador.

Ref: 2.16.8 Desarrollo de Software en el contexto de código grande pre existente 1. Cambios de software 2. Preocupaciones y ubicación de preocupaciones 3. Refactoring, Pág. 129, 2.6.9 HCI orientada al diseño, Pág. 52

Electivos

- Lineamientos para estandares de diseño sostenible.
- Efectos sistémicos de fenómenos complejos mediados por computador (e.g. teleconmutación o compras web)
- Computación penetrante; procesamiento integrado de información dentro de objetos cotidianos y actividades, tal como sistemas de inteligentes de energía, redes sociales y sistemas retroalimentados para promover comportamiento sostenible, transporte, monitoreo del medio ambiente, ciencias ciudadana y activismo.
- Investigación de aplicaciones de la computación a problemas ambientales, como la energía, contaminación, uso de recursos, reciclaje y reutilización, administración de alimentos, agricultura y otros.
- La interdependencia de la sostenibilidad de los sistemas de software con sistemas sociales, incluyendo el conocimiento y las habilidades de sus usuarios, procesos organizacionales y políticas y su contexto social (ejem. fuerzas del mercado, políticas gubernamentales).

Objetivos de Aprendizaje:

Core-Tier1:

- 1. Identificar maneras para ser un practicante sostenible [Familiarizarse]
- 2. Ilustrar los impactos sociales y ambientales globales de uso y la eliminación de computadores (e-waste) [Usar]

Core-Tier2:

- 3. Describir los impactos ambientales de las opciones de diseño en el campo de la informática que se relacionan con el diseño de algoritmo, el diseño del sistema operativo, diseño de redes, diseño de bases de datos, etc [Familiarizarse]
- 4. Investigar los impactos sociales y ambientales de los nuevos diseños de sistemas a través de proyectos [Usar]

Elective:

- 5. Identificar los lineamientos para el diseño o despliegue de TI sostenible [Familiarizarse]
- 6. Enumerar los efectos sostenibles de teletrabajo o de compras web [Familiarizarse]
- 7. Investigar la computación ubicua en áreas como los sistemas inteligentes de energía, redes sociales, el transporte, la agricultura, los sistemas de la cadena de suministro, monitoreo ambiental y el activismo ciudadano [Usar]
- 8. Desarrollar aplicaciones de computación y evaluar a través de areas de investigación relacionadas a cuestiones ambientales (ejemplo energia, contaminación, uso de recursos, reciclaje y reutilización, gestión de alimentos y agricultura) [Evaluar]

2.18.8. SP/Historia

La historia de la computación nos provee de un camino de como los cambios rápidos en los impactos computacionales en la sociedad y en escala global. esto amenudo se sabe en los conceptos fundamentales al igual que los Fundamentos de Sistemas y los Fundamentos de desarrollo de software.

Tópicos:

Electivos

- Pre-historia El mundo antes de 1946.
- Historia del hardware, software, redes.
 Ref: 2.2.1 Lógica digital y sistemas digitales, Pág. 24
- Pioneros de la Computación.
- Historia de Internet.

Objetivos de Aprendizaje:

- 1. Identificar importantes tendencias en la historia del campo de la computación [Familiarizarse]
- 2. Identificar las contribuciones de varios pioneros en el campo de la computación [Familiarizarse]
- 3. Discutir el contexto histórico de los paradigmas de diversos lenguajes de programación [Familiarizarse]
- 4. Comparar la vida diaria antes y después de la llegada de los ordenadores personales y el Internet [Evaluar]

2.18.9. SP/Economía de la Computación

Las métricas y mejores prácticas para la gestión del personal y gestión financiera en sistemas de información

Tópicos:

Electivos

- Monopolio y sus implicaciones económicas.
- Efecto del suministro de mano de obra calificada y la demanda sober la calidad de los productos de computación.
- Estrategias de precio en el dominio de la computación.
- El fenomeno del desarrollo de software outsourcing y off-shoring; impactos en el empleo y la economia.
- Consecuencias de la globalización para la profesión de Ciencias de la Computación.
- Diferencias en acceso a recursos de computación y el posible efecto de los mismos.
- Analisis costo/beneficio de trabajos con consideraciones para manufactura, hardware, software e implicaciones de ingeniería.
- Costo estimado versus costo actual in relacion al costo total.
- Emprendimiento: perspectivas y entrampamientos.
- Efectos de red o economias de escala del lado de la demanda.
- El uso de la ingeniería económica para hacer frente a las finanzas.

Objetivos de Aprendizaje:

Elective:

- 1. Resumir los fundamentos para los esfuerzos antimonopolio [Familiarizarse]
- 2. Identificar diversas maneras en que la industria de la tecnología de la información está afectada por la escasez de la oferta de trabajo [Familiarizarse]
- 3. Identificar la evolución de la estrategía de precios para el cálculo de los bienes y servicios [Familiarizarse]
- 4. Discutir los beneficios, los inconvenientes y las implicaciones de off-shoring y outsourcing [Familiarizarse]
- 5. Investigar y defender maneras de tratar las limitaciones en el acceso a la computación. [Usar]
- 6. Describir los beneficios económicos de efectos de la red [Familiarizarse]

2.18.10. SP/Políticas de seguridad, Leyes y crímenes computacionales

Si bien las políticas de seguridad, las leyes y los delitos informáticos son temas importantes, es esencial que se vean con la base de otras unidades de conocimiento relacionadas al área social y profesional, tales como la propiedad intelectual, de privacidad y las libertades civiles, Contexto Social y Ética Profesional. Las computadoras y la Internet, quizás más que cualquier otra tecnología, han transformado la sociedad en los últimos 75 años. Al mismo tiempo, han contribuído a amenazas sin precedentes a la vida privada; nuevas categorías de delitos y conductas antisociales; grandes trastornos a las organizaciones; y la concentración a gran escala de los riesgos en los sistemas de información. Ver las áreas 2.6 Interacción Humano-Computador (HCI), Pág. 46 y 2.7 Aseguramiento y Seguridad de la Información (IAS), Pág. 53.

Tópicos:

Electivos

- Ejemplos de delitos informáticos y reparación legal para delincuentes informáticos.
 Ref: 2.7.10 Investigación digital (Digital Forensics), Pág. 62
- Ingenieria social, robo de identidad y recuperación.
 Ref: 2.6.8 Factores Humanos y seguridad, Pág. 51
- Tópicos relacionados al uso de acceso indebido y las infracciones y materia de seguridad.
- Motivaciones y ramificaciones del ciberterrorismo y el hacking criminal, cracking.
- Efectos de malware, como virus, worms y Trojan horses.
- Estrategias de prevención de Crimen.
- Políticas de Seguridad.
 Ref: 2.7.9 Política de Seguridad y Gobernabilidad, Pág. 61

Objetivos de Aprendizaje:

- 1. Listar ejemplos clásicos de delitos informáticos y incidentes de ingeniería social con impacto social [Familiarizarse]
- 2. Indentificar leyes que se aplican a delitos informáticos [Familiarizarse]
- 3. Describir la motivación y ramificaciones de cyberterrorismo y hackeo criminal [Familiarizarse]
- 4. Examinar los problemas éticos y legales relacionados con el mal uso de accesos y diversas violaciones en la seguridad [Usar]
- 5. Discutir el rol del profesional en seguridad y los problemas que están envueltos [Familiarizarse]
- 6. Investigar medidas que puedan ser consideradas por personas y organizaciones incluyendo al gobierno para prevenir o mitigar efectos indeseables de los delitos informáticos y robo de identidad [Usar]
- 7. Escribir una politica de seguridad de una empresa, la cual incluye procedimientos para administrar contraseñas y monitorizar a los empleados [Usar]

Capítulo 3

Malla curricular 2016

3.1. Clasificación de los cursos por niveles

De acuerdo a la *Computing Curricula*, los cursos son clasificados en 3 niveles: Introductorios (Códigos 100), Intermedios (Códigos 200), Avanzados (Códigos 300) y orientados a la construcción del trabajo de final de carrera (Códigos 400) también llamado tesis.

Los cursos de tercer nivel tienen por objetivo abrir varias posibilidades de especialización a través de cursos electivos

Esta propuesta de malla curricular está basada en el abordaje orientado a objetos. El abordaje orientado a la web se escogió porque hacia eso apuntan las tendencias futuras de la computación.

3.2. Codificación de los cursos

Los cursos se encuentran codificados bajo el esquema que se muestra en la Figura 3.1:

```
Nivel

Ixx = introductorio, 2xx = intermedio, 3xx = avanzado, 4xx = proyecto final de carrera

Tema (segundo dígito/letra)

1 = Algoritmos y Complejidad (AL)

2 = Arquitectura y Organización (AR)

3 = Redes y Comunicaciones (NC)

C S 2 7 1

4 = Lenguajes de Programación (PL)

5 = Gráficos y Visualización (GV)

6 = Sistemas Inteligentes (IS)

7 = Gestión de Información (IM)

8 = Asuntos Sociales y Práctica Profesional (SP) S = Sistemas Operativos (OS)

9 = Ingeniería de Software (SE)

Identificador numérico en el área
```

Figura 3.1: Esquema de codificación para los cursos.

El tipo de curso esta determinado por sus 2 primeras letras. Los posibles códigos para estos tipos son:

- 1. **CS** Área de Ciencia de la Computación (*Computer Science*);
- 2. MA Matemáticas (MA);
- 3. FG Área de Formación General;
- 4. ET Área de Formación de Empresas de Base Tecnológica;
- 5. **ID** Área de Idiomas.
- 6. **CB** Área de Ciencias Básicas (Física, Biología);

Al mismo tiempo, y de acuerdo a la ley universitaria vigente, los cursos están clasificados en: **AF:** Área formativa, **AE:** Área de especialidad, **AB:** Área básica, **AC:** Área complementaria.

Universidad Católica San Pablo

3.3. Constitución del Plan de Estudios

La relación de cursos se muestra a continuación:

Primer S	Semestre							
Código	Curso	Área	HT	HP	$_{ m HL}$	\mathbf{Cr}	\mathbf{T}	Requisitos
CS111	Programación de Video Juegos (Pág. 163)	AF	2	2	2	4	О	
CS1D1	Estructuras Discretas I (Pág. 168)	AF	2	4		4	О	
MA100	Matemática I (Pág. 171)	AB	2	6		5	О	
FG102	Metodología del Estudio (Pág. 174)	AF	2	2		3	О	
FG101	Comunicación (Pág. 177)	AC	2	2		3	О	
FG103	Introducción a la Vida Universitaria (Pág. 180)	AB	3			3	О	
						22		

Segundo	Semestre							
Código	Curso	Área	HT	HP	$_{ m HL}$	\mathbf{Cr}	\mathbf{T}	Requisitos
CS100	Introducción de Ciencia de la Computación (Pág. 183)	AF	2	2		3	О	
CS1D2	Estructuras Discretas II (Pág. 185)	AF	2	2	2	4	О	CS1D1 (1^{er} Sem)
CS112	Ciencia de la Computación I (Pág. 188)	AF	2	2	4	5	О	CS111 (1 er Sem)
MA101	Matemática II (Pág. 193)	AB	2	4		4	О	$MA100 (1^{er} Sem)$
FG104	Introducción a la Filosofía (Pág. 198)	AC	3			3	Ο	
FG112	Persona, Matrimonio y Familia (Pág. 195)	AC	1	2		2	Ε	
FG105	Apreciación Musical (Pág. 201)	AC	1	2		2	Ε	
						0.1		

Tercer S	emestre							
Código	Curso	Área	\mathbf{HT}	HP	HL	\mathbf{Cr}	${f T}$	Requisitos
CS113	Ciencia de la Computación II (Pág. 203)	AF	2	2	2	4	О	$CS112 (2^{do} Sem)$
CS2B1	Desarrollo Basado en Plataformas (Pág. 210)	AF	1	2	2	3	Ο	$CS112 \ (2^{do} \ Sem)$
CS221	Arquitectura de Computadores (Pág. 213)	AF	2		2	3	О	$CS1D2 \ (2^{do} \ Sem)$
CS1D3	Álgebra Abstracta (Pág. 218)	AF	2		2	3	Ο	CS1D1 (1 ^{er} Sem), CS112 (2 ^{do} Sem)
MA102	Cálculo I (Pág. 222)	AB	2	4		4	О	$MA100 (1^{er} Sem)$
FG107	Antropología Filosófica y Teológica (Pág. 225)	AC	3			3	Ο	$FG104 \ (2^{do} \ Sem)$
FG201	Apreciación Artística (Pág. 229)	AC	1	2		2	Е	
FG202	Apreciación Literaria (Pág. 232)	AC	1	2		2	Ε	
						22		

Cuarto S	Semestre							
Código	Curso	Área	HT	HP	$_{ m HL}$	\mathbf{Cr}	\mathbf{T}	Requisitos
CS210	Algoritmos y Estructuras de Datos (Pág. 235)	AF	2	2	2	4	О	CS113 (3^{er} Sem), CS100 (2^{do} Sem)
CS211	Teoría de la Computación (Pág. 237)	AF	2	2	2	4	О	$CS1D2 \ (2^{do} \ Sem)$
CS271	Bases de Datos I (Pág. 240)	AF	2		4	4	О	$CS1D3 (3^{er} Sem)$
MA201	Cálculo II (Pág. 245)	AB	2	4		4	О	MA101 (2^{do} Sem), MA102 (3^{er} Sem)
MA203	Estadística y Probabilidades (Pág. 248)	AB	2	2	2	4	О	$MA102 (3^{er} Sem)$
FG204	Teología (Pág. 251)	AC	1	2		2	О	$FG107 (3^{er} Sem)$
						22		

Código	Curso	Área	\mathbf{HT}	HP	\mathbf{HL}	\mathbf{Cr}	${f T}$	Requisitos
CS272	Bases de Datos II (Pág. 254)	AF	1	2	2	3	Ο	$CS271 (4^{to} Sem), Inglés(300)$
CS291	Ingeniería de Software I (Pág. 258)	AF	2	2	2	4	О	CS113 (3^{er} Sem), CS271 (4^{to} Sem)
CS212	Análisis y Diseño de Algoritmos (Pág. 263)	AF	2	2	2	4	О	$CS210 \ (4^{to} \ Sem)$
CB111	Física Computacional (Pág. 267)	AB	2	2	2	4	О	$MA102 (3^{er} Sem)$
MA306	Análisis Numérico (Pág. 271)	AB	1	2	2	3	О	$MA201 (4^{to} Sem)$
FG106	Teatro (Pág. 274)	AC	1	2		2	Ο	
FG210	Moral (Pág. 277)	AC	1	2		2	Ο	$FG204 (4^{to} Sem)$
		•	-	-	-	22		

Universidad Católica San Pablo

Código	Curso	Área	\mathbf{HT}	HP	$_{ m HL}$	\mathbf{Cr}	\mathbf{T}	Requisitos
CS251	Computación Gráfica (Pág. 301)	AF	2	2	2	4	О	CS312 (6 to Sem), MA306 (5 to Sem)
CS391	Ingeniería de Software III (Pág. 305)	AE	2	2		3	О	$CS292 (6^{to} Sem)$
CS231	Redes y Comunicación (Pág. 309)	AE	1	2	2	3	О	CS2S1 (6 ^{to} Sem), $Inglés(400)$
CS261	Inteligencia Artificial (Pág. 313)	AF	2	2	2	4	О	$MA203 (4^{to} Sem)$
CS401	Metodología de la Investigación en Computación (Pág. 319)	AF	1	2		2	О	CS212 (5 ^{to} Sem), 100Cr
CS341	Lenguajes de Programación (Pág. 321)	AF	2	2	2	4	О	$CS211 (4^{to} Sem)$
FG350	Liderazgo (Pág. 326)	AC	1	2		2	О	$FG203 \ (6^{to} \ Sem)$
		•	-	-	-	22		

	Semestre							
Código	Curso	Área	HT	HP	$_{ m HL}$	\mathbf{Cr}	${f T}$	Requisitos
CS281	Computación en la Sociedad (Pág. 329)	AF	2			2	О	$FG210 \ (5^{to} \ Sem)$
CS342	Compiladores (Pág. 334)	AF	2	2	2	4	О	$CS341 \ (7^{mo} \ Sem)$
CS3I1	Seguridad en Computación (Pág. 337)	AE	1	2	2	3	О	$CS231 \ (7^{mo} \ Sem)$
CS2H1	Interacción Humano Computador (Pág. 344)	AE	1	2	2	3	О	$CS251 \ (7^{mo} \ Sem)$
CS402	Proyecto de Final de Carrera I (Pág. 349)	AF	2	2		3	О	$CS401 \ (7^{mo} \ Sem)$
CS3P1	Computación Paralela y Distribuída (Pág. 351)	AF	2	2	2	4	О	$CS212 (5^{to} Sem), CS231 (7^{mo} Sem)$
FG205	Historia de la Cultura (Pág. 355)	AC	3			3	О	
						22		

Noveno	Semestre							
Código	Curso	Área	HT	HP	$_{ m HL}$	\mathbf{Cr}	\mathbf{T}	Requisitos
CS403	Proyecto de Final de Carrera II (Pág. 363)	AF	2	2		3	Ο	$CS402 (8^{vo} Sem)$
CS370	Big Data (Pág. 367)	AE	1	2	2	3	Ο	$CS272 (5^{to} Sem), CS3P1 (8^{vo} Sem)$
CS392	Tópicos Avanzados en Ingeniería de Software (Pág. 358)	AE	2	2	2	4	Е	CS391 (7^{mo} Sem)
CS361	Tópicos en Inteligencia Artificial (Pág. 365)	AE	2	2	2	4	\mathbf{E}	$CS261 \ (7^{mo} \ Sem)$
CS351	Tópicos en Computación Gráfica (Pág. 370)	AE	2	2	2	4	Е	$CS251 \ (7^{mo} \ Sem)$
CB309	Computación Molecular Biológica (Pág. 372)	AE	2	2	2	4	\mathbf{E}	$CS212 (5^{to} Sem), MA307 (6^{to} Sem)$
FG221	Historia de la Ciencia y Tecnología (Pág. 376)	AC	1	2		2	О	$FG205 (8^{vo} Sem)$
FG301	Enseñanza Social de la Iglesia (Pág. 378)	AC	3			3	Ο	$FG210 \ (5^{to} \ Sem)$
ET201	Formación de Empresas de Base Tecnológica I	AC	2	2		3	О	$FG350 \ (7^{mo} \ Sem)$
	(Pág. 381)							
						22		

Décimo	Semestre							
Código	Curso	Área	HT	HP	HL	\mathbf{Cr}	Т	Requisitos
CS3P2	Cloud Computing (Pág. 385)	AE	1	2	2	3	О	$CS370 \ (9^{no} \ Sem)$
CS404	Proyecto de Final de Carrera III (Pág. 394)	AF	2	2		3	О	$CS403 \ (9^{no} \ Sem)$
CS393	Sistemas de Infomación (Pág. 389)	AE	2	2	2	4	Ε	$CS292 \ (6^{to} \ Sem)$
CS362	Robótica (Pág. 391)	AE	2		4	4	E	CS361 (9 ^{no} Sem)
FG211	Ética Profesional (Pág. 396)	AC	3			3	О	FG301 (9 ^{no} Sem)
FG220	Análisis de la Realidad Peruana (Pág. 399)	AC	3			3	О	$FG221 (9^{no} Sem)$
ET301	Formación de Empresas de Base Tecnológica II	AC	2	2		3	О	ET201 (9 ^{no} Sem)
	(Pág. 402)							
ID101	Inglés técnico profesional (Pág. 405)	AC	2	2		3	Ο	
						22		

Total de créditos de la carrera: 219.

3.4. Distribución de cursos en la carrera

Esta propuesta puede ser analizada por el número de créditos dedicados a cada área y por niveles de cursos (Introductorios, Intermedios, Avanzados y Proyectos).

Figura 3.2: Distribución de cursos por áreas considerando creditaje.

	\mathbf{AF}	\mathbf{AE}	\mathbf{AB}	\mathbf{AC}	
Primer Semestre	11		8	3	22
Segundo Semestre	12		4	5	21
Tercer Semestre	13		4	5	22
Cuarto Semestre	12		8	2	22
Quinto Semestre	11		7	4	22
Sexto Semestre	16		4	2	22
Séptimo Semestre	14	6		2	22
Octavo Semestre	13	6		3	22
Noveno Semestre	3	11		8	22
Décimo Semestre	3	7		12	22
Total	108	30	35	46	219
	49.3%	13.6%	15.9%	21%	

Cuadro 3.1: Distribución de cursos por áreas

Figura 3.3: Distribución de créditos por niveles de cursos.

Universidad Católica San Pablo

3.5. Visión gráfica de la Malla curricular

Este documento también puede ser analizado desde el punto de vista de los prerequisitos de forma gráfica.

Figura 3.4: Malla curricular Escuela Profesional de Ciencia de la Computación

3.6. Resultados esperados distribuídos por curso

Las siquientes tablas nos muestras una visión global de los resultados que se esperan lograr en cada curso de la presente malla curricular. La lista completa de resultados esperados se encuentra en la Sección: 1.9.

		Primer Sem Segundo Sem												
	Habilidad o Competencia/Curso	CS1111	CS1D1	MA100	FG102	FG101	FG103	CS100	CS1D2	CS112	MA101	FG112	FG104	FG105
a)	Aplicar conocimientos de computación y de matemáticas.	2	3	3				1	1	3	3			
b)	Analizar problemas e identificar y definir los requerimientos computacionales.	2						1						
c)	Diseñar, implementar y evaluar un sistema, proceso, componente o programa	2								3				
,	computacional.													
d)	Trabajar efectivamente en equipos.				2									
e)	Entender las implicancias profesionales, éticas, legales, de seguridad y sociales.						1	1					2	
f)	Comunicarse efectivamente.					2								
g)	Analizar el impacto local y global de la computación.							1				3		
h)	Aprender de forma continua.				2	2		1		1				
i)	Utilizar técnicas y herramientas actuales.	2	3						1	2				
j)	Aplicar matemática, algoritmos y la teoría de la CS en el modelamiento y diseño de sistemas.		3	3					1		3			
k)	Aplicar los principios de desarrollo y diseño en software de complejidad variable.	1												
1)	Desarrollar principios de investigación con nivel internacional.	1			1									
m)	Transformar sus conocimientos en emprendimientos tecnológicos.				*									
n)	Aplicar conocimientos de humanidades en su labor profesional.					2	1						2	2
\tilde{n})	Comprender que la formación humana contribuye al auténtico crecimiento perso-					_	1					2	2	$\overline{2}$
/	nal.											_		
o)	Poner la tecnología al servicio del ser humano.						1					2		

Cuadro 3.2: Resultados esperados por curso 1^{er} al 2^{do} Semestre

	1	Tercer Sem								Cuarto Sem						
	Habilidad o Competencia/Curso	CS113	CS2B1	CS221	CS1D3	MA102	FG107	FG201	FG202	CS210	CS211	CS271	MA201	MA203	FG204	
a)	Aplicar conocimientos de computación y de matemáticas.	2			3	3				2	3		3	2		
b)	Analizar problemas e identificar y definir los requerimientos computacionales.	2		2	0					2	3	2		_		
c)	Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional.	-	2	-						2	J	_				
d)	Trabajar efectivamente en equipos.	2	2									2				
e)	Entender las implicancias profesionales, éticas, legales, de seguridad y sociales.						3					2				
f)	Comunicarse efectivamente.								2							
g)	Analizar el impacto local y global de la computación.		2				3									
h)	Aprender de forma continua.															
i)	Utilizar técnicas y herramientas actuales.		2	3	2							3		2		
j)	Aplicar matemática, algoritmos y la teoría de la CS en el modelamiento y diseño de sistemas.				3	3				2	3	3	3	3		
k)	Aplicar los principios de desarrollo y diseño en software de complejidad variable.									2						
1)	Desarrollar principios de investigación con nivel internacional.															
m)	Transformar sus conocimientos en emprendimientos tecnológicos.															
n)	Aplicar conocimientos de humanidades en su labor profesional.														2	
ñ)	Comprender que la formación humana contribuye al auténtico crecimiento personal.						3	2	2						2	
o)	Poner la tecnología al servicio del ser humano.		2				3								2	

Cuadro 3.3: Resultados esperados por curso 3^{er} al 4^{to} Semestre

		Quinto Sem						Sexto Sem						
	Habilidad a Campatanaia /Cuna	CS272	CS291	CS212	CB1111	MA306	FG106	FG210	CS311	CS312	CS2S1	CS292	MA307	FG203
2)	Habilidad o Competencia/Curso Aplicar conocimientos de computación y de matemáticas.			3	1		щ	щ		1			1	Н
a)	- v	4	0	_	1	3			2	1	2	0	1	
b)	Analizar problemas e identificar y definir los requerimientos computacionales.	4	2	3					2	2	3	2		
c)	Diseñar, implementar y evaluar un sistema, proceso, componente o programa		2							1		2		
-1)	computacional.													
d)	Trabajar efectivamente en equipos.	9						0			1			
e)	Entender las implicancias profesionales, éticas, legales, de seguridad y sociales.	3	0				0	2			1	0		0
1)	Comunicarse efectivamente.		2				2					2		2
g)	Analizar el impacto local y global de la computación.										3			
h)	Aprender de forma continua.			2							2			
i)	Utilizar técnicas y herramientas actuales.	3	3	2	1	3			2			3	1	
j)	Aplicar matemática, algoritmos y la teoría de la CS en el modelamiento y diseño	3			2	4			2	1			2	
	de sistemas.													
k)	Aplicar los principios de desarrollo y diseño en software de complejidad variable.		2									2		
1)	Desarrollar principios de investigación con nivel internacional.													
m)	Transformar sus conocimientos en emprendimientos tecnológicos.													
n)	Aplicar conocimientos de humanidades en su labor profesional.													2
\tilde{n}	Comprender que la formación humana contribuye al auténtico crecimiento perso-						2	2						2
	nal.													
o)	Poner la tecnología al servicio del ser humano.													
,														

Cuadro 3.4: Resultados esperados por curso 5^{to} al 6^{to} Semestre

Cuadro 3.5: Resultados esperados por curso 7^{mo} al 8^{vo} Semestre

		Noveno Sem										Décimo Sem							
		92	03	61				221	301	201	P2	93					301	01	
	Habilidad o Competencia/Curso	CS392	CS403	CS361	CS370	CS351	CB309	FG221	FG301	ET201	CS3P2	CS393	CS362	CS404	FG211	FG220	ET301	ID101	
a)	Aplicar conocimientos de computación y de matemáticas.		3	2	2	2	2				2		2	3					
b)	Analizar problemas e identificar y definir los requerimientos computacionales.		3		2	2	3				2		2	3					
c)	Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional.	2	3									2		3					
d)	Trabajar efectivamente en equipos.	2								2							2		
e)	Entender las implicancias profesionales, éticas, legales, de seguridad y sociales.		3						2					3		2			
f)	Comunicarse efectivamente.		3							3				3			2	2	
g)	Analizar el impacto local y global de la computación.							3											
h)	Aprender de forma continua.		3	2									1	3					
i)	Utilizar técnicas y herramientas actuales.	2	3	2	2	2				2	2	2	2	3				2	
j)	Aplicar matemática, algoritmos y la teoría de la CS en el modelamiento y diseño de sistemas.	3		3	2	2					2								
k)	Aplicar los principios de desarrollo y diseño en software de complejidad variable.									3		3							
1)	Desarrollar principios de investigación con nivel internacional.		3				1							3					
m)	Transformar sus conocimientos en emprendimientos tecnológicos.	3								3							3		
n)	Aplicar conocimientos de humanidades en su labor profesional.								2						2	2			
\tilde{n})	Comprender que la formación humana contribuye al auténtico crecimiento personal.							3	_						2	_			
o)	Poner la tecnología al servicio del ser humano.	2							2						2				

Cuadro 3.6: Resultados esperados por curso 9^{no} al 10^{mo} Semestre

Referencias Bibliográficas

- [ACM and IEEE-CS, 2005] ACM and IEEE-CS (2005). Computing Curricula: Information Technology. Technical report, ACM, IEEE-CS.
- [ACM/IEEE-CS Joint Task Force on Computing Curricula, 2013] ACM/IEEE-CS Joint Task Force on Computing Curricula (2013). Computer science curricula 2013. Technical report, ACM Press and IEEE Computer Society Press.
- [Díaz-Herrera and Hilburn, 2004] Díaz-Herrera, J. L. and Hilburn, T. B. (2004). Software engineering: Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering. Technical report, ACM, IEEE. Last visit June 2004.
- [Gorgone et al., 2002b] Gorgone, J. T., Gray, P., Feinstein, D., Kasper, G. M., Luftman, J. N., Stohr, E. A., Valacich, J. S., and Wigand, R. (2002b). Model Curriculum and Guidelines for Graduate Degree Programs in Information Systems. Communications of the Association for Information Systems (CAIS)), 3(1).
- [IEEE, 2013] IEEE (2013). IEEE common nomenclature for computing related programs in latin america. Technical report, IEEE R9.
- [Shakelford et al., 2005] Shakelford, R., Cross, J. H., Davies, G., Impagliazzo, J., Kamali, R., LeBlanc, R., Lunt, B., McGettrick, A., Sloan, R., and Topi, H. (2005). Computing curricula 2005. Technical report, ACM/IEEE, http://www.acm.org/education.
- [Soldan et al., 2004] Soldan, D., Aylor, J., Clements, A., Engel, G., Hoelzeman, R., Hughes, E. A., Hughes, J. L., Impagliazzo, J., Jaeger, R. C., Klenke, R., Lyon, D. A., McGettrick, A., Nelson, V. P., Neebel, D. J., Page, I., Peterson, G. D., Ranganathan, N., Sloan, R., Srimani, P. K., Theys, M. D., Wolf, W., and Varanasi, M. (2004). Computer Engineering: Curriculum Guidelines for Undergraduate Degree Programs in Computer Engineering. Technical report, ACM, IEEE-CS. Last visited June 2004.
- [Topi et al., 2010] Topi, H., Valacich, J. S., Wright, R. T., Kaiser, K. M., Nunamaker Jr., J., Sipior, J. C., and de Vreede, G. (2010). Curriculum guidelines for undergraduate degree programs in information systems. Technical report, ACM Press and AIS Press.

Capítulo 4

Contenido detallado por curso

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

CS111. Programación de Video Juegos (Obligatorio)

1. Información General

■ Semestre: 1^{er} Sem. Créditos: 4

■ Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;

■ Prerrequisitos: Ninguno

2. Fundamentación

Este es el primer curso en la secuencia de los cursos introductorios a la Ciencia de la Computación. En este curso se pretende cubrir los conceptos señalados por la Computing Curricula IEEE-CS/ACM 2013, bajo el enfoque orientado a objetos. La programación es uno de los pilares de la Ciencia de la Computación; cualquier profesional del Área, necesitará programar para concretizar sus modelos y propuestas. Este curso introdución a los participantes en los conceptos fundamentales de este arte. Lo tópicos incluyen tipos de datos, estructuras de control, funciones, listas, recursividad y la mecánica de la ejecución, prueba y depuración.

3. Objetivos del curso

- Introducir los conceptos fundamentales de programación durante la construcción de un video juego
- Desarrollar su capacidad de abstracción, utilizar un lenguaje de programación orientado a objetos.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (\mathbf{Usar})
- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- k) Aplicar los principios de desarrollo y diseño en la construcción de sistemas de software de complejidad variable. (Familiarizarse)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C2. Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.⇒ Outcome b
- C5. Capacidad para implementar algoritmos y estructuras de datos en el software..⇒ Outcome b
- C4. Una comprensión del hardware de la computadora desde la perspectiva del software, por ejemplo, el uso del procesador, memoria, unidades de disco, pantalla, etc⇒ Outcome i

6. Contenido del curso

6.1 Historia, 5 hr(s)

Competencias: C4

- **Tópicos: I:** Pre-historia El mundo antes de 1946. **II:** Historia del hardware, software, redes. **III:** Pioneros de la Computación. **IV:** Historia de Internet.
- Objetivos de Aprendizaje I: Identificar importantes tendencias en la historia del campo de la computación[Familiarizarse] II: Identificar las contribuciones de varios pioneros en el campo de la computación[Familiarizarse] III: Discutir el contexto histórico de los paradigmas de diversos lenguajes de programación[Familiarizarse] IV: Comparar la vida diaria antes y después de la llegada de los ordenadores personales y el Internet[Evaluar]

Bibliografía: [Brookshear, 2011, Guttag, 2013, Zelle, 2010]

6.2 Sistemas de tipos básicos, 2 hr(s)

Competencias: C1

- **Tópicos: I:** Tipos como conjunto de valores junto con un conjunto de operaciones. a) Tipos primitivos (p.e. numeros, booleanos) b) Composición de tipos construidos de otros tipos (p.e., registros, uniones, arreglos, listas, funciones, referencias) **II:** Asociación de tipos de variables, argumentos, resultados y campos. **III:** Tipo de seguridad y los errores causados ??por el uso de valores de manera incompatible dadas sus tipos previstos.
- Objetivos de Aprendizaje I: Tanto para tipo primitivo y un tipo compuesto, describir de manera informal los valores que tiene dicho tipo[Familiarizarse] II: Para un lenguaje con sistema de tipos estático, describir las operaciones que están prohibidas de forma estática, como pasar el tipo incorrecto de valor a una función o método[Familiarizarse] III: Describir ejemplos de errores de programa detectadas por un sistema de tipos[Familiarizarse] IV: Para múltiples lenguajes de programación, identificar propiedades de un programa con verificación estática y propiedades de un programa con verificación dinámica[Usar] V: Usar tipos y mensajes de error de tipos para escribir y depurar programas[Usar] VI: Definir y usar piezas de programas (tales como, funciones, clases, métodos) que usan tipos genéricos, incluyendo para colecciones[Usar]

Bibliografía: [Guttag, 2013, Zelle, 2010]

6.3 Conceptos Fundamentales de Programación, 9 hr(s)

Competencias: C1

Tópicos: I: Sintaxis y semántica básica de un lenguaje de alto nivel. **II:** Variables y tipos de datos primitivos (ej., numeros, caracteres, booleanos) **III:** Expresiones y asignaciones. **IV:** Operaciones básicas I/O incluyendo archivos I/O. **V:** Estructuras de control condicional e iterativas. **VI:** Paso de funciones y parámetros. **VII:** Concepto de recursividad.

Objetivos de Aprendizaje I: Analiza y explica el comportamiento de programas simples que involucran estructuras fundamentales de programación variables, expresiones, asignaciones, E/S, estructuras de control, funciones, paso de parámetros, y recursividad[Evaluar] II: Identifica y describe el uso de tipos de datos primitivos[Familiarizarse] III: Escribe programas que usan tipos de datos primitivos[Usar] IV: Modifica y expande programas cortos que usen estructuras de control condicionales e iterativas así como funciones[Usar] V: Diseña, implementa, prueba, y depura un programa que usa cada una de las siguientes estructuras de datos fundamentales: cálculos básicos, E/S simple, condicional estándar y estructuras iterativas, definición de funciones, y paso de parámetros[Usar] VI: Escribe un programa que usa E/S de archivos para brindar persistencia a través de ejecuciones múltiples[Usar] VII: Escoje estructuras de condición y repetición adecuadas para una tarea de programación dada[Familiarizarse] VIII: Describe el concepto de recursividad y da ejemplos de su uso[Evaluar] IX: Identifica el caso base y el caso general de un problema basado en recursividad[Familiarizarse]

Bibliografía: [Guttag, 2013, Zelle, 2010]

6.4 Análisis Básico, 2 hr(s)

Competencias: C1,C5

Tópicos: I: Diferencias entre el mejor, el esperado y el peor caso de un algoritmo. **II:** Definición formal de la Notación Big O. **III:** Clases de complejidad como constante, logarítmica, lineal, cuadrática y exponencial. **IV:** Uso de la notación Big O. **V:** Análisis de algoritmos iterativos y recursivos.

Objetivos de Aprendizaje I: Explique a que se refiere con "mejor", "esperado" y "peor" caso de comportamiento de un algoritmo[Familiarizarse] II: En el contexto de a algoritmos específicos, identifique las características de data y/o otras condiciones o suposiciones que lleven a diferentes comportamientos[Familiarizarse] III: Indique la definición formal de Big O[Familiarizarse] IV: Use la notación formal de la Big O para dar límites superiores asintóticos en la complejidad de tiempo y espacio de los algoritmos[Usar] V: Usar la notación formal Big O para dar límites de casos esperados en el tiempo de complejidad de los algoritmos[Usar]

Bibliografía: [Guttag, 2013, Zelle, 2010]

6.5 Algoritmos y Estructuras de Datos fundamentales, 8 hr(s)

Competencias: C1,C2,C5

Tópicos: I: Algoritmos numéricos simples, tales como el cálculo de la media de una lista de números, encontrar el mínimo y máximo. II: Algoritmos de búsqueda secuencial y binaria. III: Algoritmos de ordenamiento de peor caso cuadrático (selección, inserción) IV: Algoritmos de ordenamiento con peor caso o caso promedio en O(N lg N) (Quicksort, Heapsort, Mergesort) V: Tablas Hash, incluyendo estratégias para evitar y resolver colisiones. VI: Árboles de búsqueda binaria: a) Operaciones comunes en árboles de búsqueda binaria como seleccionar el mínimo, máximo, insertar, eliminar, recorrido en árboles. VII: Grafos y algoritmos en grafos: a) Representación de grafos (ej., lista de adyacencia, matriz de adyacencia) b) Recorrido en profundidad y amplitud VIII: Montículos (Heaps) IX: Grafos y algoritmos en grafos: a) Algoritmos de la ruta más corta (algoritmos de Dijkstra y Floyd) b) Árbol de expansión mínima (algoritmos de Prim y Kruskal) X: Búsqueda de patrones y algoritmos de cadenas/texto (ej. búsqueda de subcadena, búsqueda de expresiones regulares, algoritmos de subsecuencia común más larga)

Objetivos de Aprendizaje I: Implementar algoritmos numéricos básicos[Usar] II: Implementar algoritmos de busqueda simple y explicar las diferencias en sus tiempos de complejidad[Evaluar] III: Ser capaz de implementar algoritmos de ordenamiento comunes cuádraticos y O(N log N)[Usar] IV: Describir la implementación de tablas hash, incluyendo resolución y el evitamiento de colisiones[Familiarizarse] V: Discutir el tiempo de ejecución y eficiencia de memoria de los principales algoritmos de ordenamiento, busqueda y hashing[Familiarizarse] VI: Discutir

factores otros que no sean eficiencia computacional que influyan en la elección de algoritmos, tales como tiempo de programación, mantenibilidad, y el uso de patrones específicos de la aplicación en los datos de entrada[Familiarizarse] VII: Explicar como el balanceamiento del arbol afecta la eficiencia de varias operaciones de un arbol de búsqueda binaria[Familiarizarse] VIII: Resolver problemas usando algoritmos básicos de grafos, incluyendo busqueda por profundidad y busqueda por amplitud[Usar] IX: Demostrar habilidad para evaluar algoritmos, para seleccionar de un rango de posibles opciones, para proveer una justificación por esa selección, y para implementar el algoritmo en un contexto en específico [Evaluar] X: Describir la propiedad del heap y el uso de heaps como una implementación de colas de prioridad[Familiarizarse] XI: Resolver problemas usando algoritmos de grafos, incluyendo camino más corto de una sola fuente y camino más corto de todos los pares, y como mínimo un algoritmo de arbol de expansion minima[Usar] XII: Trazar y/o implementar un algoritmo de comparación de string[Usar]

Bibliografía: [Guttag, 2013, Zelle, 2010]

6.6 Algoritmos y Diseño, 9 hr(s)

Competencias: C1,C2,C5

Tópicos: I: Conceptos y propiedades de los algoritmos a) Comparación informal de la eficiencia de los algoritmos (ej., conteo de operaciones) II: Rol de los algoritmos en el proceso de solución de problemas III: Estrategias de solución de problemas a) Funciones matemáticas iterativas y recursivas b) Recorrido iterativo y recursivo en estructura de datos c) Estrategias Divide y Conquistar IV: Conceptos y principios fundamentales de diseño a) Abstracción b) Descomposición de Program c) Encapsulamiento y camuflaje de información d) Separación de comportamiento y aplicación

Objetivos de Aprendizaje I: Discute la importancia de los algoritmos en el proceso de solución de un problema[Familiarizarse] II: Discute como un problema puede ser resuelto por múltiples algoritmos, cada uno con propiedades diferentes [Familiarizarse] III: Crea algoritmos para resolver problemas simples[Usar] IV: Usa un lenguaje de programación para implementar, probar, y depurar algoritmos para resolver problemas simples[Usar] V: Implementa, prueba, y depura funciones recursivas simples y sus procedimientos [Usar] VI: Determina si una solución iterativa o recursiva es la más apropiada para un problema[Evaluar] VII: Implementa un algoritmo de divide y vencerás para resolver un problema [Usar] VIII: Aplica técnicas de descomposición para dividir un programa en partes más pequeñas [Usar] IX: Identifica los componentes de datos y el comportamiento de mútiples tipos de datos abstractos[Usar] X: Implementa un tipo de dato abstracto coherente, con la menor pérdida de acoplamiento entre componentes y comportamientos [Usar] XI: Identifica las fortalezas y las debilidades relativas entre múltiples diseños e implementaciones de un problema[Evaluar]

Bibliografía: [Guttag, 2013, Zelle, 2010]

6.7 Programación orientada a objetos, 4 hr(s)

Competencias: C2

Tópicos: I: Lenguajesăorientados a objetos para la encapsulación: a) privacidad y la visibilidad de miembros de la clase b) Interfaces revelan único método de firmas c) clases base abstractas II: Definición de las categorías, campos, métodos y constructores. III: Las subclases, herencia y método de alteración temporal. IV: Subtipificación: a) Polimorfismo artículo Subtipo; upcasts implícitos en lenguajes con tipos. b) Noción de reemplazo de comportamiento: los subtipos de actuar como supertipos. c) Relación entre subtipos y la herencia. V: Lenguajesăorientados a objetos para la encapsulación: a) privacidad y la visibilidad de miembros de la clase b) Interfaces revelan único método de firmas c) clases base abstractas

Objetivos de Aprendizaje I: Diseñar e implementar una clase[Usar] II: Usar subclase para diseñar una jerarquía simple de clases que permita al código ser reusable por diferentes subclases[Familiarizarse] III: Comparar y contrastar (1) el enfoque procedurar/funcional- definiendo una función por cada operación con el cuerdo de la función proporcionando un caso por cada variación de dato - y (2) el enfoque orientado a objetos - definiendo una clase por cada variación de dato con la definición de la clase proporcionando un método por cada operación. Entender ambos enfoques como una definición de variaciones y operaciones de una matriz[Familiarizarse] IV: Explicar la relación entre la herencia orientada a objetos (codigo compartido y overriding) y subtipificación (la idea de un subtipo es ser utilizable en un contexto en el que espera al supertipo)[Familiarizarse] V: Usar mecanismos de encapsulación orientada a objetos, tal como interfaces y miembros privados[Familiarizarse]

Bibliografía: [Guttag, 2013, Zelle, 2010]

6.8 Métodos de Desarrollo, 1 hr(s)

Competencias: C2

Tópicos: I: Entornos modernos de programación: a) Búsqueda de código. b) Programación usando libreria de componentes y sus APIs.

Objetivos de Aprendizaje I: Construir y depurar programas que utilizan las bibliotecas estándar disponibles con un lenguaje de programación elegido[Familiarizarse]

Bibliografía: [Guttag, 2013, Zelle, 2010]

7. Bibliografía

[Brookshear, 2011] Brookshear, J. G. (2011). Computer Science: An Overview. Addison-Wesley.

[Guttag, 2013] Guttag, J. V. (2013). Introduction To Computation And Programming Using Python. MIT Press.

[Zelle, 2010] Zelle, J. (2010). Python Programming: An Introduction to Computer Science. Franklin, Beedle & Associates Inc.

CS1D1. Estructuras Discretas I (Obligatorio)

1. Información General

■ Semestre: 1^{er} Sem. Créditos: 4

■ Horas del curso: Teoría: 2 horas; Práctica: 4 horas;

■ Prerrequisitos: Ninguno

2. Fundamentación

Las estructuras discretas proporcionan los fundamentos teóricos necesarios para la computación. Dichos fundamentos no son sólo útiles para desarrollar la computación desde un punto de vista teórico como sucede en el curso de teoría de la computación, sino que también son útiles para la práctica de la computación; en particular en se aplica en áreas como verificación, criptografía, métodos formales, etc.

3. Objetivos del curso

- Aplicar adecuadamente conceptos de la matemática finita (conjuntos, relaciones, funciones) para representar datos de problemas reales.
- Modelar situaciones reales descritas en el lenguaje natural, usando lógica proposicional y lógica de predicados.
- Determinar las propiedades abstractas de las relaciones binarias.
- Escoger el método de demostración más adecuado para determinar la veracidad de una proposición y construir argumentos matemáticos correctos.
- Interpretar las soluciones matemáticas para un problema y determinar su fiabilidad, ventajas y desventajas.
- Expresar el funcionamiento de un circuito electrónico simple usando el álgebra de Boole.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Evaluar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome i,j

6. Contenido del curso

6.1 Funciones, relaciones y conjuntos, 13 hr(s)

Competencias: C1,C20

Tópicos: I: Conjuntos: a) Diagramas de Venn b) Unión, intersección, complemento c) Producto Cartesiano d) Potencia de conjuntos e) Cardinalidad de Conjuntos finitos II: Relaciones: a) Reflexividad, simetria, transitividad b) Relaciones equivalentes, ordenes parciales III: Funciones: a) Suryecciones, inyecciones, biyecciones b) Inversas c) Composición

Objetivos de Aprendizaje I: Explicar con ejemplos la terminología básica de funciones, relaciones y conjuntos[Evaluar] II: Realizar las operaciones asociadas con conjuntos, funciones y relaciones[Evaluar] III: Relacionar ejemplos prácticos para conjuntos funciones o modelos de relación apropiados e interpretar la asociación de operaciones y terminología en contexto[Evaluar]

Bibliografía: [Grimaldi, 2003, Rosen, 2007]

6.2 Lógica básica, 14 hr(s)

Competencias: C1,C20

Tópicos: I: Lógica proposicional. **II:** Conectores lógicos. **III:** Tablas de verdad. **IV:** Forma normal (conjuntiva y disyuntiva) **V:** Validación de fórmula bien formada. **VI:** Reglas de inferencia proposicional (conceptos de modus ponens y modus tollens) **VII:** Logica de predicados: a) Cuantificación universal y existencial **VIII:** Limitaciones de la lógica proposicional y de predicados (ej. problemas de expresividad)

Objetivos de Aprendizaje I: Convertir declaraciones lógicas desde el lenguaje informal a expresiones de lógica proposicional y de predicados [Usar] II: Aplicar métodos formales de simbolismo proposicional y lógica de predicados, como el cálculo de la validez de formulas y cálculo de formas normales [Usar] III: Usar reglas de inferencia para construir demostraciones en lógica proposicional y de predicados [Usar] IV: Describir como la lógica simbólica puede ser usada para modelar situaciones o aplicaciones de la vida real, incluidos aquellos planteados en el contexto computacional como análisis de software (ejm. programas correctores), consulta de base de datos y algoritmos [Familiarizarse] V: Aplicar demostraciones de lógica formal y/o informal, pero rigurosa, razonamiento lógico para problemas reales, como la predicción del comportamiento de software o solución de problemas tales como rompecabezas [Usar] VI: Describir las fortalezas y limitaciones de la lógica proposicional y de predicados [Usar]

Bibliografía: [Rosen, 2007, Grimaldi, 2003]

6.3 Técnicas de demostración, 14 hr(s)

Competencias: C1,C20

Tópicos: I: Nociones de implicancia, equivalencia, conversión, inversa, contrapositivo, negación, y contradicción II: Estructura de pruebas matemáticas. III: Demostración directa. IV: Refutar por contraejemplo. V: Demostracción por contradicción. VI: Inducción sobre números naturales. VII: Inducción estructural. VIII: Inducción leve y fuerte (Ej. Primer y Segundo principio de la inducción) IX: Definiciones matemáticas recursivas. X: Conjuntos bien ordenados.

Objetivos de Aprendizaje I: Identificar la técnica de demostración utilizada en una demostración dada[Evaluar] II: Describir la estructura básica de cada técnica de demostración (demostración directa, demostración por contradicción e inducción) descritas en esta unidad[Usar] III: Aplicar las técnicas de demostración (demostración directa, demostración por contradicción e inducción) correctamente en la construcción de un argumento solido[Usar] IV: Determine que tipo de demostración es la mejor para un problema dado[Evaluar] V: Explicar el paralelismo entre ideas matemáticas y/o inducción estructural para la recursión y definir estructuras recursivamente[Familiarizarse] VI: Explicar la relación entre inducción fuerte y débil y dar ejemplos del

apropiado uso de cada uno [Evaluar] **VII:** Enunciar el principio del buen-orden y su relación con la inducción matemática [Familiarizarse]

Bibliografía: [Rosen, 2007, Epp, 2010, Scheinerman, 2012]

6.4 Lógica Digital y Representación de Datos, 19 hr(s)

Competencias: C1,C20

Tópicos: I: Ordenes Parciales y Conjuntos Parcialmente Ordenados. II: Elementos extremos de un conjunto parcialmente ordenado. III: Retículas: Tipos y propiedades. IV: Álgebras Booleanas
V: Funciones y expresiones Booleanas VI: Representación de Funciones Booleanas: Forma Normal Disyuntiva y Conjuntiva VII: Puertas Lógicas VIII: Minimización de Circuitos

Objetivos de Aprendizaje I: Explicar la importancia del álgebra de Boole como unificación de la teoría de conjuntos y la lógica proposicional [Evaluar]. II: Conocer las estructuras algebraicas de retículo y sus tipos [Evaluar]. III: Explicar la relación entre retículo y conjunto parcialmente ordenado y saber utilizarlo para demostrar que un conjunto es un retículo [Evaluar]. IV: Conocer las propiedades que satisface un álgebra de Boole [Evaluar]. V: Demostrar si una terna formada por un conjunto y dos operaciones internas es o no álgebra de Boole [Evaluar]. VII: Encontrar las formas canónicas de una función booleana [Evaluar]. VII: Representar una función booleana como un circuito booleano usando puertas lógicas [Evaluar]. VIII: Minizar una función booleana [Evaluar].

Bibliografía: [Rosen, 2007, Grimaldi, 2003]

7. Bibliografía

[Epp, 2010] Epp, S. S. (2010). Discrete Mathematics with Applications. 4 ed. edition.

[Grimaldi, 2003] Grimaldi, R. (2003). Discrete and Combinatorial Mathematics: An Applied Introduction. Pearson, 5 ed. edition.

[Rosen, 2007] Rosen, K. H. (2007). Discrete Mathematics and Its Applications. 7 ed. edition.

[Scheinerman, 2012] Scheinerman, E. R. (2012). Mathematics: A Discrete Introduction. 3 ed. edition.

MA100. Matemática I (Obligatorio)

1. Información General

■ Semestre: 1^{er} Sem. Créditos: 5

■ Horas del curso: Teoría: 2 horas; Práctica: 6 horas;

■ Prerrequisitos: Ninguno

2. Fundamentación

Un aspecto muy importante en el nivel universitario lo constituye el cálculo diferencial, aspecto que constituye la piedra angular de las posteriores asignaturas de matemáticas así como de la utilidad de la matemática en la solución de problemas aplicados a la ciencia y la tecnología. Cualquier profesional con rango universitario debe por lo tanto tener conocimiento amplio de esta asignatura, pues se convertirá en su punto de partida para los intereses de su desarrollo profesional; así también será soporte para no tener dificultades en las asignaturas de matemática y física de toda la carrera.

3. Objetivos del curso

- Asimilar y manejar los conceptos de función, sucesión y relacionarlos con los de límites y continuidad.
- Describir, analizar, diseñar y formular modelos continuos que dependan de una variable.
- Conocer y manejar la propiedades del cálculo diferencial y aplicarlas a la resolución de problemas.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad. \Rightarrow $\mathbf{Outcome}$ j
- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades.⇒ Outcome j

6. Contenido del curso

6.1 Números reales y funciones, 20 hr(s)

Competencias: C1

Tópicos: I: Números reales II: Funciones de variable real

Objetivos de Aprendizaje I: Comprender la importancia del sistema de los números reales (construcción), manipular los axiomas algebraicos y de orden [Evaluar]. II: Comprender el concepto de función. Manejar dominios, operaciones, gráficas, inversas [Evaluar].

Bibliografía: [Leithold, 2000, Stewart, 2007, Finney, 1998]

6.2 Sucesiones numéricas de números reales, 10 hr(s)

Competencias: C20

Tópicos: I: Sucesiones II: Covergencia III: Límites. Operaciones con sucesiones

Objetivos de Aprendizaje I: Entender el concepto de sucesión y su importancia [Evaluar]. II: Conecer los principales tipos de sucesiones, manejar sus propiedades [Evaluar]. III: Manejar y calcular límites de sucesiones [Evaluar].

Bibliografía: [Leithold, 2000, Finney, 1998]

6.3 Límites de funciones y continuidad, 20 hr(s)

Competencias: C1

Tópicos: I: Límites II: Continuidad III: Aplicaciones de funciones continuas. Teorema del valor intermedio

Objetivos de Aprendizaje I: Comprender el concepto de límite. calcular límites [Evaluar]. II: Analizar la continuidad de una función [Evaluar]. III: Aplicar el teorema del valor intermedio [Evaluar].

Bibliografía: [Leithold, 2000, Leithold, 2000, Stewart, 2007]

6.4 Diferenciación, 22 hr(s)

Competencias: C20

Tópicos: I: Definición. reglas de derivación **II:** Incrementos y diferenciales **III:** Regla de la cadena. Derivación implícita

Objetivos de Aprendizaje I: Comprender el concepto de derivada e interpretarlo [Evaluar]. II: Manipular las reglas de derivación [Evaluar].

Bibliografía: [Leithold, 2000, Finney, 1998, Stewart, 2007]

6.5 Aplicaciones, 20 hr(s)

Competencias: C24

Tópicos: I: Funciones crecientes, decrecientes II: Extremos de funciones III: Razón de cambio IV: Límites infinitos V: Teorema de Taylor

Objetivos de Aprendizaje I: Utilizar la derivada para hallar extremos de funciones [Evaluar]. II: Resolver problemas aplicativos [Evaluar]. III: Utilizar el Teorema de Taylor [Evaluar].

Bibliografía: [Stewart, 2007, Leithold, 2000]

7. Bibliografía

[Finney, 1998] Finney, T. (1998). Cálculo una variable. Edit. Addison Wesley Longman.

[Leithold, 2000] Leithold, L. (2000). El Cálculo. Oxford University Press.

[Stewart, 2007] Stewart, J. (2007). Cálculo de una variable. Thomson Editores.

FG102. Metodología del Estudio (Obligatorio)

1. Información General

■ Semestre: 1^{er} Sem. Créditos: 3

■ Horas del curso: Teoría: 2 horas; Práctica: 2 horas;

■ Prerrequisitos: Ninguno

2. Fundamentación

Los alumnos en formación profesional necesitan mejorar su actitud frente al trabajo y exigencia académicos. Además conviene que entiendan el proceso mental que se da en el ejercicio del estudio para lograr el aprendizaje; así sabrán dónde y cómo hacer los ajustes más convenientes a sus necesidades. Asimismo, requieren dominar variadas formas de estudiar, para que puedan seleccionar las estrategias más convenientes a su personal estilo de aprender y a la naturaleza de cada asignatura. De igual modo conocer y usar maneras de buscar información académica y realizar trabajos creativos de tipo académico formal, así podrán aplicarlos a su trabajo universitario, haciendo exitoso su esfuerzo.

3. Objetivos del curso

Desarrollar en el estudiante actitudes y habilidades que promuevan la autonomía en el aprendizaje, el buen desempeño académico y su formación como persona y profesional.

4. Resultados (Outcomes)

- d) Trabajar efectivamente en equipos para cumplir con un objetivo común. (Usar)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Usar)
- l) Desarrollar principios investigación en el área de computación con niveles de competividad internacional. (Familiarizarse)

5. Competencias específicas de Computación (IEEE)

- C19. Capacidad para identificar eficazmente los objetivos y las prioridades de su trabajo / área / proyecto con indicación de la acción, el tiempo y los recursos necesarios.⇒ Outcome h
- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades.⇒
 Outcome h.d

6. Contenido del curso

6.1 Primera Unidad: La universidad, trabajo intelectual y organización, 12 hr(s)

Competencias: C19, C24

Tópicos: I: El subrayado. II: Toma de puntes. III: La vocación, hábitos de la vida universitaria. IV: Interacción humana. V: La voluntad como requisito para el aprendizaje. VI: La plantificación y el tiempo

Objetivos de Aprendizaje I: Analizar la documentación normativa de la Universidad valorando su importancia para la convivencia y desempeño académico. [Usar] II: Comprender y valorar la exigencia de la vida universitaria como parte de la formación personal y profesional.[Usar] III: Planificar adecuadamente el tiempo en función de sus metas personales y académicas.[Usar] IV: Elaborar un plan de mejora personal a partir del conocimiento de sí mismo.[Usar]

Bibliografía: [? line:39

6.2 Segunda Unidad, 12 hr(s)

Competencias: C19,C24

Tópicos: I: Resumen. Notas al margen. Nemotecnias. II: Procesos mentales: Simples, complejos. Fundamentos del aprendizaje significativo. III: Los pasos o factores para el aprendizaje. Leyes del aprendizaje. Cuestionario de estilos de aprendizaje Identificación del estilo de aprendizaje personal IV: La lectura académica. Niveles de análisis de un texto: idea central, idea principal e ideas secundarias. El modelo de Meza de Vernet. V: Exámenes: Preparación. Pautas y estrategias para antes, durante y después de un examen. Inteligencia emocional y exámenes. VI: Las fuentes de información. Aparato crítico: concepto y finalidad. Normas Vancouver. Referencias y citas.

Objetivos de Aprendizaje I: Identificar los procesos mentales relacionándolos con el aprendizaje [Usar]. II: Comprender el proceso del aprendizaje para determinar el estilo propio e incorporarlo en su actividad académica [Usar]. III: Desarrollar estrategias para el análisis de textos potenciando la comprensión lectora [Usar]. IV: Diseñar un programa estratégico para afrontar con éxito los exámenes[Usar].

Bibliografía: [Rodríguez, , Perez, 2010, Quintana,]

6.3 Tercera Unidad, 12 hr(s)

Competencias: C24

Tópicos: I: Los mapas conceptuales. Características y elementos. II: Los derechos de autor y el plagio. Derechos personales o morales. Derechos patrimoniales. "Copyrigth". III: Autoestima, Inteligencia Emocional, Asertividad y Resiliencia. Conceptos, desarrollo y fortalecimiento. IV: Aparato crítico: Normas Vancouver. Aplicación práctica. V: Generación de ideas. Estrategias para organizar las ideas, redacción y revisión.

Objetivos de Aprendizaje I: Aplicar las técnicas de estudio atendiendo a sus particularidades y adecuándolas a las distintas situaciones que demanda el aprendizaje [Usar]. II: Reconocer la importancia del respeto a la propiedad Intelectual [Usar]. III: Reconocer la importancia de la Inteligencia Emocional, la conducta asertiva, la autoestima y la resiliencia valorándolas como fortalezas para el desempeño universitario [Usar].

Bibliografía: [Chávez, 2011, Velazco, 1999]

6.4 Cuarta Unidad, 12 hr(s)

Competencias: C19

Tópicos: I: Cuadro Sinóptico. Los mapas mentales. Practicas con la temática del curso. II: El método personal de estudio. III: El aprendizaje cooperativo: definición, los grupos de estudio, organización, roles de los miembros. IV: Pautas para conformar grupos eficientes y armónicos.
V: El método personal de estudio. Reforzamiento de técnicas de estudio. VI: Presentación y exposición de trabajos de producción intelectual. VII: El debate y la argumentación.

Objetivos de Aprendizaje I: Aplicar las técnicas de estudio atendiendo a sus particularidades y adecuándolas a las distintas situaciones que demanda el aprendizaje [Usar]. II: Asumir el manejo de conductas y actitudes para el aprendizaje cooperativo y el desempeño en los equipos de trabajo [Usar]. III: Formular un proyecto de método personal de estudio, de acuerdo a su estilo y necesidades, que incluya técnicas y estrategias [Usar].

Bibliografía: [Rodríguez, , Chávez, 2011]

7. Bibliografía

[Chávez, 2011] Chávez, A. (2011). Se necesita un tutor. UCSP.

[Perez, 2010] Perez, A. (2010). Teoría del Derecho. Editorial Madrid.

[Quintana,] Quintana, V. El estudio Universitario y elementos de investigación científica.

[Rodríguez,] Rodríguez, J. Guía para el método de estudio universitario.

[Velazco, 1999] Velazco, M. F. (1999). Mapas conceptuales en el aula. Ed. San Marcos.

FG101. Comunicación (Obligatorio)

1. Información General

■ Semestre: 1^{er} Sem. Créditos: 3

■ Horas del curso: Teoría: 2 horas; Práctica: 2 horas;

• Prerrequisitos: Ninguno

2. Fundamentación

Para lograr una eficaz comunicación en el ámbito personal y profesional, es prioritario el manejo adecuado de la Lengua en forma oral y escrita. Se justifica, por lo tanto, que los alumnos de la Universidad Católica San Pablo conozcan, comprendan y apliquen los aspectos conceptuales y operativos de su idioma, para el desarrollo de sus habilidades comunicativas fundamentales: Escuchar, hablar, leer y escribir. En consecuencia el ejercicio permanente y el aporte de los fundamentos contribuyen grandemente en la formación académica y, en el futuro, en el desempeño de su profesión

3. Objetivos del curso

 Desarrollar capacidades comunicativas a través de la teoría y práctica del lenguaje que ayuden al estudiante a superar las exigencias académicas del pregrado y contribuyan a su formación humanística y como persona humana.

4. Resultados (Outcomes)

- f) Comunicarse efectivamente con audiencias diversas. (Usar)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Usar)
- n) Aplicar conocimientos de humanidades en su labor profesional. (Usar)

5. Competencias específicas de Computación (IEEE)

- C17. Capacidad para expresarse en los medios de comunicación orales y escritos como se espera de un graduado..⇒ Outcome f,h,n
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome f,n
- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades.⇒
 Outcome f,h

6. Contenido del curso

6.1 Primera Unidad, 16 hr(s)

Competencias: C17,C20

Tópicos: I: La comunicación, definición, relevancia. Elementos. Proceso. Funciones. Clasificación. Comunicación oral y escrita. II: El lenguaje: definición. Características y funciones. Lengua: niveles. Sistema. Norma. Habla. El signo lingüístico: definición, características. III: Multilingüismo en el Perú. Variaciones dialectales en el Perú. IV: La palabra: definición, clases y estructura. Los monemas: lexema y morfema. El morfema: clases. La etimología. V: El Artículo académico: Definición, estructura, elección del tema, delimitación del tema.

Objetivos de Aprendizaje I: Reconocer y valorar la comunicación como un proceso de comprensión e intercambio de mensajes, diferenciando sus elementos, funciones y clasificación [Usar]. II: Analizar las características, funciones y elementos del lenguaje y de la lengua [Usar]. III: Identificar las características del multilingüismo en el Perú, valorando su riqueza idiomática [Usar]. IV: Identificar las cualidades de la palabra y sus clases [Usar].

Bibliografía: [de la Lengua Española, 2010]

6.2 Segunda Unidad, 16 hr(s)

Competencias: C17, C24

Tópicos: I: Párrafo: Idea principal, secundaria y global. II: El texto: definición, características. Cohesión y coherencia. III: Organización del texto: La referencia (deixis); anáfora, catáfora, elipsis. Conectores lógicos y textuales. IV: Tipos de texto: descriptivo (procesos), expositivo, argumentativo. V: Funciones de elocución en el texto: generalización, identificación, nominalización, clasificación, ejemplificación, definición. VI: Textos discontinuos: gráficos, tablas y diagramas. VII: Búsqueda de información. Fuentes de información. Referencias y citas. Registro de información: fichas, notas, resúmenes, etc. Aparato crítico: concepto y finalidad. Normas APA u otro.

Objetivos de Aprendizaje I: Redactar textos expositivos resaltando la idea principal y secundaria [Usar]. II: Redactar textos expositivos con adecuada cohesión y coherencia, haciendo uso de referencias y conectores textuales [Usar]. III: Interpretar textos discontinuos valorando su importancia para la comprensión del mensaje [Usar].

Bibliografía: [de la Lengua Española, 2010, Gatti Muriel, 2007]

6.3 Tercera Unidad, 12 hr(s)

Competencias: C17

Tópicos: I: La oración: definición y clases. La oración enunciativa, interrogativa, imperativa, exclamativa, optativa. La proposición y la frase. La oración simple y compuesta. Coordinación y subordinación. El sintagma: estructura y clases: nominal, verbal, adjetival, preposicional, adverbial. II: Elaboración de un glosario de términos técnicos, abreviaturas y siglas relacionadas con la especialidad (actividad permanente a lo largo del semestre). III: Redacción del artículo académico: Resumen, palabras clave, introducción, desarrollo, conclusiones, bibliografía (Normas APA u otro que la Escuela profesional requiera).

Objetivos de Aprendizaje I: Reconocer y analizar la estructura oracional valorando su importancia y utilidad en la redacción de textos [Usar]. II: Registrar y emplear terminología propia de la especialidad [Usar].

Bibliografía: [Sanchez Lobato, 2005]

у

6.4 Cuarta Unidad, 12 hr(s)

Competencias: C17, C20, C24

Tópicos: I: Redacción de correspondencia: carta - solicitud, informe, memorando, hoja de vida.
II: El discurso oral: propósitos, partes. Escuchar: propósitos y condiciones. Vicios de dicción: barbarismo, solecismo, cacofonía, redundancia, anfibología, monotonía. Régimen preposicional.
III: Comunicación en grupo Proceso, dinámica, estructura Formas (Técnicas): Mesa redonda, panel, foro y debate.
IV: Revisión final del artículo académico. Presentación y exposición oral de trabajos de producción intelectual.

Objetivos de Aprendizaje I: Redactar textos académicos y funcionales atendiendo los distintos momentos de su producción, su estructura, finalidad y formalidad [Usar]. II: Demostrar habilidades como emisor o receptor en distintas situaciones de comunicación con corrección idiomática [Usar]. III: Aplicar las diferentes formas (técnicas) de comunicación en grupo reconociendo su importancia para la solución de problemas, toma de decisiones o discusión [Usar].

Bibliografía: [Martin Vivaldi, 2006]

7. Bibliografía

[de la Lengua Española, 2010] de la Lengua Española, R. A. (2010). Nueva gramática de la lengua española, morfología y sintaxis. Madrid, España: Ed. Espasa.

[Gatti Muriel, 2007] Gatti Muriel, C. (2007). Elementos de la gramática española. Lima, Universidad del Pacífico.

[Martin Vivaldi, 2006] Martin Vivaldi, G. (2006). Teoría y práctica de la composición y estilo. Thompson.

[Sanchez Lobato, 2005] Sanchez Lobato, J. (2005). Saber Escribir. España, Instituto Cervantes.

FG103. Introducción a la Vida Universitaria (Obligatorio)

1. Información General

■ Semestre: 1^{er} Sem. Créditos: 3

■ Horas del curso: Teoría: 3 horas;

• Prerrequisitos: Ninguno

2. Fundamentación

El ingreso a la universidad es un momento de nuevos desafíos y decisiones en la vida de una persona. En ese sentido, la Universidad Católica San Pablo busca, mediante el presente espacio, escuchar y acoger al joven ingresante con sus inquietudes y anhelos personales, presentar la identidad y misión de la universidad como su "alma mater", señalando los principales desafíos que el futuro profesional enfrentará en el mundo actual y orientando a nuestros jóvenes estudiantes, a través de diversos principios, medios y otros recursos, con el fin de que puedan formarse integralmente y desplegarse plenamente en la fascinante aventura de la vida universitaria. Su realización como buen profesional depende de una buena formación personal y cultural que le brinde horizontes amplios, que sustenten y proyecten su conocimiento y quehacer técnicos e intelectuales y que le permitan contribuir siendo agentes de cambio cultural y social.

3. Objetivos del curso

■ Que el alumno canalice sus inquietudes y anhelos a través del encuentro y descubrimiento de sí mismo, que le brinden espacios de análisis y reflexión personales para asumir posturas bien fundamentadas hacia los valores e ideales de su entorno. Mediante su inserción en la vida universitaria, logrará una disposición de apertura a su propio mundo interior y a su misión en el mundo, cuestionando su cosmovisión y a sí mismo para obtener un conocimiento y crecimiento personales que permitan su despliegue integral y profesional.

4. Resultados (Outcomes)

- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (Familiarizarse)
- n) Aplicar conocimientos de humanidades en su labor profesional. (Familiarizarse)
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (Familiarizarse)
- o) Mejorar las condiciones de la sociedad poniendo la tecnología al servicio del ser humano. (Familiarizarse)

5. Competencias específicas de Computación (IEEE)

- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad. \Rightarrow Outcome e,n, \tilde{n}
- C21. Comprender el aspecto profesional, legal, seguridad, asuntos políticos, humanistas, ambientales, culturales y éticos. \Rightarrow Outcome e,n,ñ

6. Contenido del curso

6.1 Primera Unidad: La experiencia existencial y el descubrimiento del sentido de la vida, 24 hr(s)

Competencias: C20

Tópicos: I: Introducción al curso: presentación y dinámicas. II: Sentido de la Vida, búsqueda de propósito y vocación profesional. III: Obstáculos para el autoconocimiento: el ruido, la falta de comunicación, la mentira existencial, máscaras. IV: Ofertas Intramundanas: Hedonismo, Relativismo, Consumismo, Individualismo, Inmanentismo V: Las consecuencias: la falta de interioridad, masificación y el desarraigo, soledad VI: Los vicios capitales como plasmación en lo personal

Objetivos de Aprendizaje I: Identificar y caracterizar la propia cosmovisión y los criterios personales predominantes en sí mismos acerca del propósito y sentido de la vida y la felicidad. [Usar] II: Crear un vínculo de confianza con el docente del curso para lograr apertura a nuevas perspectivas[Usar].

Bibliografía: [Sanz, 2008, Rilke, 1941, Marias, 1995, Frankl, 1991]

6.2 Segunda Unidad: Visión sobre la persona humana, 15 hr(s)

Competencias: C20, C21

Tópicos: I: Quién soy yo, las preguntas fundamentales II: El hombre como unidad. III: El hombre: nostalgia de infinito. IV: La libertad como elemento fundamental en las elecciones personales: la experiencia del mal. V: Análisis del Amor y la Amistad. VI: Aceptación y Reconciliación personal. VII: Llamados a ser personas: la vivencia de la virtud según un modelo concreto.

Objetivos de Aprendizaje I: Reconocer la importancia de iniciar un proceso de autoconocimiento [Usar]. II: Identificar las manifestaciones que evidencian la unidad de la persona humana y su anhelo de trascendencia [Usar]. III: Contrastar los modelos de amor y libertad ofertados por la cultura actual con los propuestos en el curso [Usar]. IV: Distinguir los criterios que conducen a una recta valoración personal [Usar].

Bibliografía: [Guardini, 1994, Fromm, 1959, Figari, 2002a, Pieper, 2007]

6.3 Tercera Unidad: Vida Universitaria y Horizontes de Misión, 12 hr(s)

Competencias: C20, C21

Tópicos: I: Origen y propósito de la Universidad: breve reseña histórica. **II:** La identidad católica de la UCSP: comunidad académica, búsqueda de la verdad, la formación integral y la evangelización de la cultura. **III:** Proyecto final.

Objetivos de Aprendizaje I: Conocer e identificar a la UCSP dentro del contexto histórico de las universidades [Usar]. II: Reconocer a su universidad como un ámbito de despliegue y espacio para crear cultura [Usar]. III: Afirmar, desde su vocación profesional, la necesidad de transformar el mundo que le toca vivir [Usar].

Bibliografía: [Juan Pablo II, 2001, Guardini, 2012, Ide,]

7. Bibliografía

[Ide,] Identidad y Misión.

[Figari, 2002a] Figari, L. F. (2002a). Nostalgia de Infinito. Fondo Editorial.

[Frankl, 1991] Frankl, V. (1991). El hombre en búsqueda de sentido. Editorial Herder. UCSP:616.891 F80.

[Fromm, 1959] Fromm, E. (1959). El arte de amar. Ediciones Paidos Iberica.

[Guardini, 1994] Guardini, R. (1994). La aceptación de sí mismo. Lumen.

[Guardini, 2012] Guardini, R. (2012). Tres escritos sobre la Universidad. EUNSA.

[Juan Pablo II, 2001] Juan Pablo II (2001). Constitución apostólica sobre las universidades católicas Ex Corde Ecclesiae. Teológica Limense.

[Marias, 1995] Marias, J. (1995). La Felicidad Humana. Alianza.

[Pieper, 2007] Pieper, J. (2007). Las Virtudes Fundamentales. Ediciones Rialp, Madrid.

[Rilke, 1941] Rilke, R. M. (1941). Los cuadernos de Malte Lauridis Brigge. Lossada.

[Sanz, 2008] Sanz, A. (2008). El Hombre Moderno. Ediciones Gladius.

CS100. Introducción de Ciencia de la Computación (Obligatorio)

1. Información General

■ Semestre: 2^{do} Sem. Créditos: 3

■ Horas del curso: Teoría: 2 horas; Práctica: 2 horas;

■ Prerrequisitos: Ninguno

2. Fundamentación

La Ciencia de la Computación es un campo de estudio enorme con muchas especialidades y aplicaciones. Este curso brindará a sus participantes, una visión panorámica de la informática y mostrará sus campos más representativos, como son: Algoritmos, Estructuras de de Datos, Sistemas Operativos, Bases de Datos, etc.

3. Objetivos del curso

• Brindar un panorama del área del conocimiento que es cubierta en la ciencia de la computación.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Familiarizarse)
- **b)** Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (**Familiarizarse**)
- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (Familiarizarse)
- g) Analizar el impacto local y global de la computación sobre los individuos, organizaciones y sociedad. (Familiarizarse)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Familiarizarse)

5. Competencias específicas de Computación (IEEE)

- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades.⇒
 Outcome h
- C10. Comprensión del impacto en las personas, las organizaciones y la sociedad de la implementación de soluciones tecnológicas e intervenciones.⇒ Outcome g
- C2. Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.⇒ Outcome b
- CS4. Implementar la teoría apropiada, prácticas y herramientas para la especificación, diseño, implementación y mantenimiento, así como la evaluación de los sistemas basados en computadoras.⇒
 Outcome a

6. Contenido del curso

6.1 Introducción, 2 hr(s)

Competencias: C24

Tópicos: I: Introducción a la computación. II: Historia de la computación.

Objetivos de Aprendizaje I: Incentivar a los alumnos el estudio de Computacion como una ciencia. [Familiarizarse]

Bibliografía: [Brookshear, 2008]

6.2 Lógica básica, 2 hr(s)

Competencias: C24

Tópicos: I: Lógica proposicional. **II:** Conectores lógicos. **III:** Tablas de verdad. **IV:** Forma normal (conjuntiva y disyuntiva)

Objetivos de Aprendizaje I: Convertir declaraciones lógicas desde el lenguaje informal a expresiones de lógica proposicional y de predicados[Familiarizarse] II: Aplicar métodos formales de simbolismo proposicional y lógica de predicados, como el cálculo de la validez de formulas y cálculo de formas normales[Familiarizarse]

Bibliografía: [Brookshear, 2008]

7. Bibliografía

[Brookshear, 2008] Brookshear, J. G. (2008). Computer Science: An Overview. Addison-Wesley, 10th edition. 0321524039.

CS1D2. Estructuras Discretas II (Obligatorio)

1. Información General

- Semestre: 2^{do} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS1D1. Estructuras Discretas I (1 er Sem-Pág. 168)

2. Fundamentación

Para entender las técnicas computacionales avanzadas, los estudiantes deberán tener un fuerte conocimiento de las diversas estructuras discretas, estructuras que serán implementadas y usadas en laboratorio en el lenguaje de programación.

3. Objetivos del curso

- Que el alumno sea capaz de modelar problemas de ciencia de la computación usando grafos y árboles relacionados con estructuras de datos
- Que el alumno aplicar eficientemente estrategias de recorrido para poder buscar datos de una manera óptima

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Familiarizarse)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Familiarizarse)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Familiarizarse)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome i

6. Contenido del curso

6.1 Fundamentos de conteo, 25 hr(s)

Competencias: C1

Tópicos: I: Técnicas de Conteo: a) Conteo y cardinalidad de un conjunto b) Regla de la suma y producto c) Principio de inclusión-exclusión d) Progresión geométrica y aritmética **II:** Principio de las casillas. **III:** Permutaciones y combinaciones: a) Definiciones básicas b) Identidad de Pascal c) Teorema del binomio **IV:** Resolviendo relaciones de recurrencia: a) Un ejemplo de una relación de recurrencia simple, como los números de Fibonacci b) Otras ejemplos, mostrando una variedad de soluciones **V:** Aritmetica modular basica

Objetivos de Aprendizaje I: Aplicar argumentos de conteo, incluyendo las reglas del producto y de la suma, principio de inclusión-exclusión y progresiones aritméticas/geométricas[Familiarizarse] II: Aplicar el principio de las casillas en el contexto de una demostración formal[Familiarizarse] III: Calcular permutaciones y combinaciones en un conjunto, e interpreta su significado en el contexto de una aplicación en particular[Familiarizarse] IV: Mapear aplicaciones del mundo real a formalismos de conteo adecuados, como el determinar el número de formas de acomodar a un conjunto de personas alrededor de una mesa, sujeto a restricciones en la disposición de los asientos, o en el número de maneras de determinar ciertas manos en juegos de cartas (ejm. una casa llena)[Familiarizarse] V: Resolver una variedad de relaciones de recurrencia básicas[Familiarizarse] VII: Analizar un problema para determinar las relaciones de recurrencia implícitas[Familiarizarse] VII: Realizar cálculos que involucran aritmética modular[Familiarizarse]

Bibliografía: [Grimaldi, 1997]

6.2 Árboles y Grafos, 25 hr(s)

Competencias: C1

Tópicos: I: Árboles. a) Propiedades b) Estrategias de recorrido **II:** Grafos no dirigidos **III:** Grafos dirigidos **IV:** Grafos ponderados **V:** Arboles de expansion/bosques. **VI:** Isomorfismo en grafos.

Objetivos de Aprendizaje I: Ilustrar mediante ejemplos la terminología básica de teoría de grafos, y de alguna de las propiedades y casos especiales de cada tipo de grafos/árboles[Familiarizarse] II: Demostrar diversos métodos de recorrer árboles y grafos, incluyendo recorridos pre, post e inorden de árboles[Familiarizarse] III: Modelar una variedad de problemas del mundo real en ciencia de la computación usando formas adecuadas de grafos y árboles, como son la representación de una topología de red o la organización jerárquica de un sistema de archivos[Familiarizarse] IV: Demuestrar como los conceptos de grafos y árboles aparecen en estructuras de datos, algoritmos, técnicas de prueba (inducción estructurada), y conteos[Familiarizarse] V: Explicar como construir un árbol de expansión de un grafo[Familiarizarse] VI: Determinar si dos grafos son isomorfos[Familiarizarse]

Bibliografía: [Johnsonbaugh, 1999]

6.3 Probabilidad Discreta, 10 hr(s)

Competencias: C20

Tópicos: I: Espacio de probabilidad finita, eventos. II: Axiomas de Probabilidad y medidas de probabilidad. III: Probabilidad condicional, Teorema de Bayes. IV: Independencia. V: Variables enteras aleatorias (Bernoulli, binomial). VI: Esperado, Linearidad del esperado. VII: Varianza. VIII: Independencia Condicional.

Objetivos de Aprendizaje I: Calcular las probablidades de eventos y el valor esperado de variables aleatorias para problemas elementales como en los juegos de azar[Familiarizarse] II: Distinguir entre eventos dependientes e independientes[Familiarizarse] III: Identificar un caso de la distribución binomial y calcula la probabilidad usando dicha distribución[Familiarizarse] IV: Aplicar el teorema de Bayes para determinar las probabilidades condicionales en un problema[Familiarizarse] V: Aplicar herramientas de probabilidades para resolver problemas como el análisis de caso promedio en algoritmos o en el análisis de hash[Familiarizarse] VI: Calcular la varianza para una distribución de probabilidad dada[Familiarizarse] VII: Explicar como los eventos que son independientes pueden ser condicionalmente dependientes (y vice versa) Identificar ejemplos del mundo real para estos casos[Familiarizarse]

Bibliografía: [Micha, 1998, Rosen, 2007]

7. Bibliografía

[Grimaldi, 1997] Grimaldi, R. (1997). *Matemáticas Discretas y Combinatoria*. Addison Wesley Iberoamericana.

[Johnsonbaugh, 1999] Johnsonbaugh, R. (1999). Matemáticas Discretas. Prentice Hall, México.

[Micha, 1998] Micha, E. (1998). Matemáticas Discretas. Limusa.

[Rosen, 2007] Rosen, K. H. (2007). Discrete Mathematics and Its Applications. 7 ed. edition.

CS112. Ciencia de la Computación I (Obligatorio)

1. Información General

- Semestre: 2^{do} Sem. Créditos: 5
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 4 horas;
- Prerrequisitos:
 - CS111. Programación de Video Juegos (1^{er} Sem-Pág. 163)

2. Fundamentación

Este es el segundo curso en la secuencia de los cursos introductorios a la informática. El curso servirá como puente entre el paradigma de la imperativo y el orientado al objeto, a demás introducirá a los participantes en los diversos temas del área de computación como: algoritmos, estructuras de datos, ingeniería del software, etc.

3. Objetivos del curso

■ Introducir al alumno a los fundamentos del paradigma de orientación a objetos, permitiendo asimilar los conceptos necesarios para desarrollar sistemas de información.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Evaluar)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Familiarizarse)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C2. Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional. \Rightarrow Outcome h
- **C3.** Una comprensión intelectual de, y el aprecio por el papel central de los algoritmos y estructuras de datos.⇒ **Outcome c**
- C23. Capacidad para emprender, completar, y presentar un proyecto final.⇒ Outcome i
- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades.⇒
 Outcome i
- **CS1.** Modelar y diseñar sistemas de computadora de una manera que se demuestre comprensión del balance entre las opciones de diseño. \Rightarrow **Outcome c**
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome c**
- CS6. Evaluar los sistemas en términos de atributos de calidad en general y las posibles ventajas y desventajas que se presentan en el problema dado.⇒ Outcome a

6. Contenido del curso

6.1 Visión General de los Lenguajes de Programación, 1 hr(s)

Competencias: C1

Tópicos: I: Breve revisión de los paradigmas de programación. **II:** Comparación entre programación funcional y programación imperativa. **III:** Historia de los lenguajes de programación.

Objetivos de Aprendizaje I: Discutir el contexto histórico de los paradigmas de diversos lenguajes de programación[Familiarizarse]

Bibliografía: [Stroustrup, 2013, Deitel and Deitel, 2013]

6.2 Máquinas virtuales, 1 hr(s)

Competencias: C2, CS6

Tópicos: I: El concepto de máquina virtual. **II:** Tipos de virtualización (incluyendo Hardware / Software, OS, Servidor, Servicio, Red) . **III:** Lenguajes intermedios.

Objetivos de Aprendizaje I: Explicar el concepto de memoria virtual y la forma cómo se realiza en hadware y software [Familiarizarse] II: Diferenciar emulacion y el aislamiento [Familiarizarse] III: Evaluar virtualización de compensaciones [Evaluar]

Bibliografía: [Stroustrup, 2013, Deitel and Deitel, 2013]

6.3 Sistemas de tipos básicos, 2 hr(s)

Competencias: C1,C2,CS1

Tópicos: I: Tipos como conjunto de valores junto con un conjunto de operaciones. a) Tipos primitivos (p.e. numeros, booleanos) b) Composición de tipos construidos de otros tipos (p.e., registros, uniones, arreglos, listas, funciones, referencias) **II:** Declaración de modelos (enlace, visibilidad, alcance y tiempo de vida). **III:** Vista general del chequeo de tipos.

Objetivos de Aprendizaje I: Tanto para tipo primitivo y un tipo compuesto, describir de manera informal los valores que tiene dicho tipo[Familiarizarse] II: Para un lenguaje con sistema de tipos estático, describir las operaciones que están prohibidas de forma estática, como pasar el tipo incorrecto de valor a una función o método[Familiarizarse] III: Describir ejemplos de errores de programa detectadas por un sistema de tipos[Familiarizarse] IV: Para múltiples lenguajes de programación, identificar propiedades de un programa con verificación estática y propiedades de un programa con verificación dinámica[Usar] V: Dar un ejemplo de un programa que no verifique tipos en un lenguaje particular y sin embargo no tenga error cuando es ejecutado[Familiarizarse] VI: Usar tipos y mensajes de error de tipos para escribir y depurar programas[Usar] VII: Explicar como las reglas de tipificación definen el conjunto de operaciones que legales para un tipo[Familiarizarse] VIII: Escribir las reglas de tipo que rigen el uso de un particular tipo compuesto[Usar] IX: Explicar por qué indecidibilidad requiere sistemas de tipo para conservadoramente aproximar el comportamiento de un programa[Familiarizarse] X: Definir y usar piezas de programas (tales como, funciones, clases, métodos) que usan tipos genéricos, incluyendo para colecciones [Usar] XI: Discutir las diferencias entre, genéricos (generics), subtipo y sobrecarga[Familiarizarse] XII: Explicar múltiples beneficios y limitaciones de tipificación estática en escritura, mantenimiento y depuración de un software[Familiarizarse]

Bibliografía: [Stroustrup, 2013, Deitel and Deitel, 2013]

6.4 Conceptos Fundamentales de Programación, 6 hr(s)

Competencias: C1,C2,CS2

Tópicos: I: Sintaxis y semántica básica de un lenguaje de alto nivel. **II:** Variables y tipos de datos primitivos (ej., numeros, caracteres, booleanos) **III:** Expresiones y asignaciones. **IV:** Operaciones básicas I/O incluyendo archivos I/O. **V:** Estructuras de control condicional e iterativas. **VI:** Paso de funciones y parámetros.

Objetivos de Aprendizaje I: Analiza y explica el comportamiento de programas simples que involucran estructuras fundamentales de programación variables, expresiones, asignaciones, E/S, estructuras de control, funciones, paso de parámetros, y recursividad[Evaluar] II: Identifica y describe el uso de tipos de datos primitivos[Familiarizarse] III: Escribe programas que usan tipos de datos primitivos[Usar] IV: Modifica y expande programas cortos que usen estructuras de control condicionales e iterativas así como funciones[Usar] V: Diseña, implementa, prueba, y depura un programa que usa cada una de las siguientes estructuras de datos fundamentales: cálculos básicos, E/S simple, condicional estándar y estructuras iterativas, definición de funciones, y paso de parámetros[Usar] VI: Escribe un programa que usa E/S de archivos para brindar persistencia a través de ejecuciones múltiples[Usar] VII: Escoje estructuras de condición y repetición adecuadas para una tarea de programación dada[Evaluar] VIII: Describe el concepto de recursividad y da ejemplos de su uso[Familiarizarse] IX: Identifica el caso base y el caso general de un problema basado en recursividad[Evaluar]

Bibliografía: [Stroustrup, 2013, Deitel and Deitel, 2013]

6.5 Programación orientada a objetos, 10 hr(s)

Competencias: C2,C24,CS1,CS2

Tópicos: I: Diseño orientado a objetos: a) Descomposicion en objetos que almacenan estados y poseen comportamiento b) Diseño basado en jerarquia de clases para modelamiento II: Lenguajesăorientados a objetos para la encapsulación: a) privacidad y la visibilidad de miembros de la clase b) Interfaces revelan único método de firmas c) clases base abstractas III: Definición de las categorías, campos, métodos y constructores. IV: Las subclases, herencia y método de alteración temporal. V: Subtipificación: a) Polimorfismo artículo Subtipo; upcasts implícitos en lenguajes con tipos. b) Noción de reemplazo de comportamiento: los subtipos de actuar como supertipos. c) Relación entre subtipos y la herencia. VI: Uso de coleccion de clases, iteradores, y otros componentes de la libreria estandar. VII: Asignación dinámica: definición de método de llamada.

Objetivos de Aprendizaje I: Diseñar e implementar una clase[Usar] II: Usar subclase para diseñar una jerarquía simple de clases que permita al código ser reusable por diferentes subclases[Usar] III: Razonar correctamente sobre el flujo de control en un programa mediante el envío dinámico[Usar] IV: Comparar y contrastar (1) el enfoque procedurar/funcional- definiendo una función por cada operación con el cuerdo de la función proporcionando un caso por cada variación de dato - y (2) el enfoque orientado a objetos - definiendo una clase por cada variación de dato con la definición de la clase proporcionando un método por cada operación. Entender ambos enfoques como una definición de variaciones y operaciones de una matriz[Evaluar] V: Explicar la relación entre la herencia orientada a objetos (codigo compartido y overriding) y subtipificación (la idea de un subtipo es ser utilizable en un contexto en el que espera al supertipo)[Familiarizarse] VI: Usar mecanismos de encapsulación orientada a objetos, tal como interfaces y miembros privados[Usar] VII: Definir y usar iteradores y otras operaciones sobre agregaciones, incluyendo operaciones que tienen funciones como argumentos, en múltiples lenguajes de programación, selecionar la forma mas natural por cada lenguaje[Usar]

Bibliografía: [Stroustrup, 2013, Deitel and Deitel, 2013]

6.6 Algoritmos y Diseño, 3 hr(s)

Competencias: C1,C2,C23,CS6

Tópicos: I: Estrategias de solución de problemas a) Funciones matemáticas iterativas y recursivas b) Recorrido iterativo y recursivo en estructura de datos c) Estrategias Divide y Conquistar **II:** Rol de los algoritmos en el proceso de solución de problemas **III:** Estrategias de solución de problemas a) Funciones matemáticas iterativas y recursivas b) Recorrido iterativo y recursivo en estructura de datos c) Estrategias Divide y Conquistar **IV:** Conceptos y principios fundamentales de diseño a) Abstracción b) Descomposición de Program c) Encapsulamiento y camuflaje de información d) Separación de comportamiento y aplicación

Objetivos de Aprendizaje I: Discute la importancia de los algoritmos en el proceso de solución de un problema [Familiarizarse] II: Discute como un problema puede ser resuelto por múltiples algoritmos, cada uno con propiedades diferentes [Familiarizarse] III: Crea algoritmos para resolver problemas simples [Usar] IV: Usa un lenguaje de programación para implementar, probar, y depurar algoritmos para resolver problemas simples [Usar] V: Implementa, prueba, y depura funciones recursivas simples y sus procedimientos [Usar] VII: Determina si una solución iterativa o recursiva es la más apropiada para un problema [Evaluar] VII: Implementa un algoritmo de divide y vencerás para resolver un problema [Usar] VIII: Aplica técnicas de descomposición para dividir un programa en partes más pequeñas [Usar] IX: Identifica los componentes de datos y el comportamiento de mútiples tipos de datos abstractos [Usar] X: Implementa un tipo de dato abstracto coherente, con la menor pérdida de acoplamiento entre componentes y comportamientos [Usar] XI: Identifica las fortalezas y las debilidades relativas entre múltiples diseños e implementaciones de un problema [Evaluar]

Bibliografía: [Stroustrup, 2013, Deitel and Deitel, 2013]

6.7 Estrategias Algorítmicas, 3 hr(s)

Competencias: C1,C2,C24,CS1

Tópicos: I: Algoritmos de fuerza bruta. II: Algoritmos voraces. III: Divide y vencerás. IV: Bactraking recursivo. V: Programación Dinámica.

Objetivos de Aprendizaje I: Para cada una de las estrategias (fuerza bruta, algoritmo goloso, divide y vencerás, recursividad en reversa y programación dinámica), identifica un ejemplo práctico en el cual se pueda aplicar[Familiarizarse] II: Utiliza un enfoque voraz para resolver un problema específico y determina si la regla escogida lo guía a una solución óptima[Evaluar] III: Usa un algoritmo de divide-y-vencerás para resolver un determinado problema[Usar] IV: Usa recursividad en reversa a fin de resover un problema como en el caso de recorrer un laberinto[Usar] V: Usa programación dinámica para resolver un problema determinado[Usar] VI: Determina el enfoque algorítmico adecuado para un problema[Evaluar] VII: Describe varios métodos basados en heurísticas para resolver problemas[Familiarizarse]

Bibliografía: [Stroustrup, 2013, Deitel and Deitel, 2013]

6.8 Análisis Básico, 2 hr(s)

Competencias: C1,C2,C24,CS1

Tópicos: I: Diferencias entre el mejor, el esperado y el peor caso de un algoritmo.

Objetivos de Aprendizaje I: Explique a que se refiere con "mejor", "esperado" y "peor" caso de comportamiento de un algoritmo[Familiarizarse]

Bibliografía: [Stroustrup, 2013, Deitel and Deitel, 2013]

6.9 Algoritmos y Estructuras de Datos fundamentales, 6 hr(s)

Competencias: C1,C2,C24,CS1

Tópicos: I: Algoritmos numéricos simples, tales como el cálculo de la media de una lista de números, encontrar el mínimo y máximo. **II:** Algoritmos de búsqueda secuencial y binaria. **III:** Algoritmos de ordenamiento de peor caso cuadrático (selección, inserción) **IV:** Algoritmos de ordenamiento con peor caso o caso promedio en O(N lg N) (Quicksort, Heapsort, Mergesort) **V:** Tablas Hash, incluyendo estratégias para evitar y resolver colisiones. **VI:** Árboles de búsqueda binaria: a) Operaciones comunes en árboles de búsqueda binaria como seleccionar el mínimo, máximo, insertar, eliminar, recorrido en árboles. **VII:** Grafos y algoritmos en grafos: a) Representación de grafos (ej., lista de adyacencia, matriz de adyacencia) b) Recorrido en profundidad y amplitud

Objetivos de Aprendizaje I: Implementar algoritmos numéricos básicos [Usar] II: Implementar algoritmos de busqueda simple y explicar las diferencias en sus tiempos de complejidad[Evaluar] III: Ser capaz de implementar algoritmos de ordenamiento comunes cuádraticos y O(N log N)[Usar] IV: Describir la implementación de tablas hash, incluyendo resolución y el evitamiento de colisiones[Familiarizarse] V: Discutir el tiempo de ejecución y eficiencia de memoria de los principales algoritmos de ordenamiento, busqueda y hashing[Familiarizarse] VI: Discutir factores otros que no sean eficiencia computacional que influyan en la elección de algoritmos, tales como tiempo de programación, mantenibilidad, y el uso de patrones específicos de la aplicación en los datos de entrada[Familiarizarse] VII: Explicar como el balanceamiento del arbol afecta la eficiencia de varias operaciones de un arbol de búsqueda binaria[Familiarizarse] VIII: Resolver problemas usando algoritmos básicos de grafos, incluyendo busqueda por profundidad y busqueda por amplitud[Usar] IX: Demostrar habilidad para evaluar algoritmos, para seleccionar de un rango de posibles opciones, para proveer una justificación por esa selección, y para implementar el algoritmo en un contexto en específico [Evaluar] X: Describir la propiedad del heap y el uso de heaps como una implementación de colas de prioridad[Familiarizarse] XI: Resolver problemas usando algoritmos de grafos, incluyendo camino más corto de una sola fuente y camino más corto de todos los pares, y como mínimo un algoritmo de arbol de expansion minima[Usar] XII: Trazar y/o implementar un algoritmo de comparación de string[Usar]

Bibliografía: [Stroustrup, 2013, Deitel and Deitel, 2013]

7. Bibliografía

[Deitel and Deitel, 2013] Deitel, P. and Deitel, H. (2013). C++ How to Program (Early Objects Version). Deitel, How to Program. Prentice Hall.

[Stroustrup, 2013] Stroustrup, B. (2013). The C++ Programming Language. Addison-Wesley, 4th edition.

MA101. Matemática II (Obligatorio)

1. Información General

■ Semestre: 2^{do} Sem. Créditos: 4

■ Horas del curso: Teoría: 2 horas; Práctica: 4 horas;

• Prerrequisitos:

• MA100. Matemática I (1^{er} Sem-Pág. 171)

2. Fundamentación

Curso introductorio, soporte de los posteriores cursos de Análisis Matemático, estudia el plano y el espacio, haciendo énfasis es su aspecto vectorial y su interpretación geométrica, lo que permite visualizar conceptos que posteriormente se verán en forma abstracta.

3. Objetivos del curso

- Familiarizarse y manejar las matrices, determinantes y sus relaciones con los sistemas de ecuaciones y aplicaciones.
- Establecer relaciones lineales y cuadráticas en el plano y en el espacio.
- Relacionar el álgebra con la geometría, de modo que visualice problemas que de otro modo serían abstractos.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome j

6. Contenido del curso

6.1 Sistemas de ecuaciones. Matrices y determinantes, 24 hr(s)

Competencias: C1,C20

Tópicos: I: Sistemas de ecuaciones lineales II: Matrices III: Determinantes

Objetivos de Aprendizaje I: Resolver sistemas de ecuaciones lineales utilizando los métodos de eliminación II: Determinar la consistencia e inconsistencia de un sistema III: Identificar y manipular los diferentes tipos de matrices, así como el álgebra de matrices IV: Relacionar las matrices con los sistemas de ecuaciones lineales V: Calcular determinantes e inversas de matrices

Bibliografía: [Strang, 2003, Grossman, 2008]

6.2 Sistemas de coordenadas. La recta, 12 hr(s)

Competencias: C1,C20

Tópicos: I: El plano cartesiano II: La Recta, Ecuaciones de la recta

Objetivos de Aprendizaje I: Identificar, graficar una recta y manejarla en sus diferentes formas.

Bibliografía: [de Matemática. San Pablo, 2013]

6.3 Cónicas y Coordenadas polares, 24 hr(s)

Competencias: C1,C20

Tópicos: I: Cónicas II: Coordenadas Polares

Objetivos de Aprendizaje I: Reconocer las ecuaciones de las cónicas. Trazar la gráfica de una cónica descrita en su forma canónica y viceversa. II: Manejar el cambio de coordenadas polares a cartesianas y viceversa III: Trazar la gráfica de una curva en coordenadas polares

Bibliografía: [de Matemática. San Pablo, 2013]

6.4 Vectores en R^2 y vectores en R^3 , 30 hr(s)

Competencias: C1,C20

Tópicos: I: Vectores en \mathbb{R}^2 II: Vectores en \mathbb{R}^3

Objetivos de Aprendizaje I: Manipular las operaciones con vectores. Interpretarlos geométricamente. II: Aplicar los vectores a la resolución de problemas geométricos. III: Formular y analizar la ecuación vectorial de la recta y el plano. Manipular ecuaciones de planos

Bibliografía: [Grossman, 2008]

7. Bibliografía

[de Matemática. San Pablo, 2013] de Matemática. San Pablo, D. (2013). Guía de práctica de Algebra y Geometría / Arequipa:. Fondo Editorial de la UCSP.

[Grossman, 2008] Grossman, S. I. (2008). Álgebra Lineal. McGraw Hill.

[Strang, 2003] Strang, G. (2003). *Introduction to Linear Algebra*. Wellesley, MA: Wellesley-Cambridge Press, 3rd edition.

FG112. Persona, Matrimonio y Familia (Electivos)

1. Información General

■ Semestre: 2^{do} Sem. Créditos: 2

■ Horas del curso: Teoría: 1 horas; Práctica: 2 horas;

• Prerrequisitos: Ninguno

2. Fundamentación

Los tiempos actuales muestran la necesidad - cada vez más apremiante- de una adecuada visión antropológica sobre el matrimonio y la familia.

La referencia de la familia como institución natural fundada en el matrimonio, viene en diversas organizaciones internacionales promovida como una construcción social y cultural que tiende a desconocer la complementariedad del varón y la mujer.

Este curso intentará mostrar los presupuestos de una perspectiva de familia que destaque la riqueza de la familia como auténtico eje de desarrollo humano.

3. Objetivos del curso

- Comprender que la familia es una comunión de vida y amor, fundado en el matrimonio entre un hombre y una mujer, para toda la vida en orden al perfeccionamiento mutuo y a la procreación y educación de los hijos.
- Que el alumno entienda los criterios fundamentales sobre los que descansa una recta comprensión de la persona, el matrimonio y la familia
- Que el alumno tenga elementos para comprender la vida afectiva como un llamado a la vida matrimonial y familiar
- Comprender la importancia de la familia para la persona y para la sociedad entera.

4. Resultados (Outcomes)

- g) Analizar el impacto local y global de la computación sobre los individuos, organizaciones y sociedad. (Evaluar)
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (Usar)
- \mathbf{o}) Mejorar las condiciones de la sociedad poniendo la tecnología al servicio del ser humano. (\mathbf{Usar})

5. Competencias específicas de Computación (IEEE)

- C10. Comprensión del impacto en las personas, las organizaciones y la sociedad de la implementación de soluciones tecnológicas e intervenciones. \Rightarrow Outcome g, $\tilde{\mathbf{n}}$, o
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome g

6. Contenido del curso

6.1 Primera Unidad: Consideraciones sobre la persona humana, 12 hr(s)

Competencias: C10, C20

Tópicos: I: Persona y ser humano (el problema del reduccionismo antropológico) **II:** La persona humana: Unidad. Niveles de acción. Las emociones. Integración. **III:** La dignidad humana

Objetivos de Aprendizaje I: Comprender los fundamentos que permitan conocer a la persona valorando su dignidad.

Bibliografía: [S.S Juan Pablo II,]

6.2 Segunda Unidad: Matrimonio: Aportes para una reflexión actual, 18 hr(s)

Competencias: C20

Tópicos: I: El enamoramiento. II: El matrimonio

Objetivos de Aprendizaje I: Comprender que el ser humano ha sido creado por amor y para el amor, que lo direcciona hacia una unión de las naturalezas (complementariedad) y como vocación al matrimonio.

Bibliografía: [Concilio Vaticano II, , Pontificio Consejo Justicia y Paz, 2005, Santa Sede, 1983]

6.3 Tercera Unidad, 21 hr(s)

Competencias: C10, C20

Tópicos: I: Ideología de Género. **II:** Divorcio. **III:** Convivencia y relaciones libres. **IV:** Homose-xualidad. **V:** Anticoncepción y mito poblacional. **VI:** El Futuro de la humanidad.

Objetivos de Aprendizaje I: Comprender la importancia de la familia como célula fundamental de la sociedad y corazón de la civilización.

Bibliografía: [Biblia, 1975]

6.4 Cuarta Unidad: Protección jurídica y políticas familiares, 3 hr(s)

Competencias: C20

Tópicos: I: Ideología de Género. II: Divorcio. III: Convivencia y relaciones libres. IV: Homose-xualidad. V: Anticoncepción y mito poblacional. VI: El Futuro de la humanidad.

Objetivos de Aprendizaje I: Comprender la importancia de la familia como célula fundamental de la sociedad y corazón de la civilización. II: Identificar los organismos e instituciones que velan, protegen y promueven la familia como institución de derecho natural.

Bibliografía: [Biblia, 1975]

7. Bibliografía

[Biblia, 1975] Biblia (1975). Sagrada Biblia. Editorial Descleé de Brower Bilbao España.

[Concilio Vaticano II,] Concilio Vaticano II. Constitución Gaudium et spes.

[Pontificio Consejo Justicia y Paz, 2005] Pontificio Consejo Justicia y Paz (2005). Compendio de la Doctrina Social de la Iglesia.

[Santa Sede, 1983] Santa Sede (1983). Carta de los Derechos de la Familia.

[S.S Juan Pablo II,] S.S Juan Pablo II. Exhortación Apostólica Post Sinodal Familiaris Consortio.

FG104. Introducción a la Filosofía (Obligatorio)

1. Información General

■ Semestre: 2^{do} Sem. Créditos: 3

■ Horas del curso: Teoría: 3 horas;

■ Prerrequisitos: Ninguno

2. Fundamentación

El estudio de la Filosofía en la universidad, se presenta como un espacio de reflexión constante sobre el ser y el quehacer del ser humano en el mundo. Así mismo, proporciona las herramientas académicas necesarias para la adquisición del pensamiento formal y la actitud crítica frente a las corrientes relativistas que nos alejan de la Verdad. La formación filosófica aporta considerablemente al cultivo de los saberes, capacidades y potencialidades humanas, de tal manera que facilita al ser humano encontrar el camino hacia la Verdad plena.

3. Objetivos del curso

Estructurar en los alumnos los fundamentos filosóficos buscando desarrollar en ellos las capacidades superiores de pensamiento, a través del estudio crítico de los contenidos temáticos, que les permita despertar la avidez por el saber, el buscar la Verdad y el conocer la realidad de manera objetiva, de tal forma que puedan orientar su vida con criterios claros y razonables.

4. Resultados (Outcomes)

- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (Usar)
- n) Aplicar conocimientos de humanidades en su labor profesional. (Usar)
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (Usar)

5. Competencias específicas de Computación (IEEE)

- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome n
- C21. Comprender el aspecto profesional, legal, seguridad, asuntos políticos, humanistas, ambientales, culturales y éticos. \Rightarrow Outcome e,n

6. Contenido del curso

6.1 Primera Unidad: Aproximación a la noción de Filosofía, 12 hr(s)

Competencias: C20

Tópicos: I: Importancia de la Filosofía II: Filosofía: definición etimológica y real. III: El asombro como comienzo del filosofar. IV: El ocio como condición para la filosofía. V: La filosofía como sabiduría natural. VI: Condiciones morales del filosofar. VII: Filosofía y otros conocimientos. VIII: Aproximación histórica: Antigua, media, moderna y contemporánea.

Objetivos de Aprendizaje I: Investigar y valorar la naturaleza de la filosofía [Usar]. II: Identificar y analizar las distintas corrientes filosóficas en la historia [Usar].

Bibliografía: [Pieper, 2007]

6.2 Segunda Unidad: El hombre, 6 hr(s)

Competencias: C21

Tópicos: I: Características generales de la Antropología filosófica. Definiciones, objetos, métodos y relación con otros saberes. **II:** Visiones reduccionistas: materialismo y espiritualismo. **III:** Visión integral del ser humano. **IV:** La persona humana. Definición. Unidad sustancial del cuerpo y el espíritu.

Objetivos de Aprendizaje I: Distinguir las nociones fundamentales de la antropología realista [Usar]. II: Valorar críticamente las diversas posturas antropológicas [Usar]. III: Identificar y valorar al hombre como un ser personal [Usar].

Bibliografía: [Amerio, 2005, Acodesi, 1986]

6.3 Tercera Unidad: El conocimiento humano, 6 hr(s)

Competencias: C20

Tópicos: I: Características generales del conocimiento humano. **II:** Discusión con otras posturas: el escepticismo y el relativismo; racionalismo y empirismo. **III:** La verdad: lógica y ontológica.

Objetivos de Aprendizaje I: Examinar las dificultades que plantea el conocimiento humano y las diversas soluciones que se dan a las mismas [Usar]. II: Explicar los conceptos fundamentales del realismo gnoseológico [Usar].

Bibliografía: [Zanotti, 1967, Platon, , Pieper, 2007]

6.4 Cuarta Unidad : El obrar humano, 6 hr(s)

Competencias: C20

Tópicos: I: Características generales: etimología, moral y ética, objeto, tipo de conocimiento. II: Criterios de moralidad. III: Fuentes de la moralidad. IV: Relativismo ético. V: El bien. El fin último. La felicidad. VI: Virtudes

Objetivos de Aprendizaje I: Distinguir las nociones esenciales de la ética filosófica desde sus fundamentos [Usar]. II: Explicar el valor de la vida virtuosa y asumirla como camino a la felicidad [Usar].

Bibliografía: [Aristoteles, 2003]

6.5 Quinta Unidad : El ser, 6 hr(s)

Competencias: C20

Tópicos: I: La metafísica como estudio del ser. **II:** Los trascendentales **III:** La estructura del ente finito.Sustancia-Accidente, Materia-Forma, Acto-Potencia, Esencia-Acto de ser. **IV:** La causalidad. La existencia de Dios. La creación y sus implicancias.

Objetivos de Aprendizaje I: Examinar las características fundamentales de la metafísica y valorar su primacía en el pensamiento filosófico [Usar]. II: Comprender las nociones metafísicas fundamentales [Usar]. III: Explicar la posibilidad de acceder filosóficamente a Dios como creador [Usar].

Bibliografía: [Pérez, 2006, Alvira et al., 1993]

7. Bibliografía

[Acodesi, 1986] Acodesi (1986). La formación integral y sus dimensiones. Dimensión corporal.

[Alvira et al., 1993] Alvira, T., Clavell, L., and Melendo, T. (1993). Metafísica. Navarra.

[Amerio, 2005] Amerio, F. (2005). Historia de la Filosofia. Universidad de Turin.

[Aristoteles, 2003] Aristoteles (2003). Ética nicomaquea. Ética eudemia. Gredos. UCSP:185 A72E.

[Pieper, 2007] Pieper, J. (2007). Las Virtudes Fundamentales. Ediciones Rialp, Madrid.

[Platon,] Platon. La Republica.

[Pérez, 2006] Pérez, R. G. (2006). Introducción a la metafísica. Rialp, madrid.

[Zanotti, 1967] Zanotti, G. (1967). Filosofía para no filósofos. Editorial Belgrano.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

FG105. Apreciación Musical (Electivos)

1. Información General

■ Semestre: 2^{do} Sem. Créditos: 2

• Horas del curso: Teoría: 1 horas; Práctica: 2 horas;

■ Prerrequisitos: Ninguno

2. Fundamentación

El egresado de la Universidad San Pablo, no sólo deberá ser un excelente profesional, conocedor de la más avanzada tecnología, sino también, un ser humano sensible y de amplia cultura. En esta perspectiva, el curso proporciona los instrumentos conceptuales básicos para una óptima comprensión de las obras musicales como producto cultural y artístico creado por el hombre.

3. Objetivos del curso

• Analizar de manera crítica las diferentes manifestaciones artísticas a través de la historia identificando su naturaleza expresiva, compositiva y características estéticas así como las nuevas tendencias artísticas identificando su relación directa con los actuales indicadores socioculturales. Demostrar conducta sensible, crítica, creativa y asertiva, y conductas valorativas como indicadores de un elevado desarrollo personal.

4. Resultados (Outcomes)

- n) Aplicar conocimientos de humanidades en su labor profesional. (Usar)
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (Usar)

5. Competencias específicas de Computación (IEEE)

C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades. \Rightarrow Outcome $\mathbf{n},\tilde{\mathbf{n}}$

6. Contenido del curso

6.1 Primera Unidad, 9 hr(s)

Competencias: C24

Tópicos: I: La música en la vida del hombre. Concepto. El Sonido: cualidades. **II:** Los elementos de la música. Actividades y audiciones.

Objetivos de Aprendizaje I: Dotar al alumno de un lenguaje musical básico, que le permita apreciar y emitir un juicio con propiedad [Usar].

Bibliografía: [Aopland, 1999, Salvat editores, 1989, Hürlimann, 1984]

6.2 Segunda Unidad, 9 hr(s)

Competencias: C24

Tópicos: I: La voz, el canto y sus intérpretes. Práctica de canto. **II:** Los instrumentos musicales. El conjunto instrumental. **III:** El estilo, género y las formas musicales. Actividades y audiciones.

Objetivos de Aprendizaje I: Que el alumno conozca, discrimine y aprecie los elementos que integran la obra de arte musical [Usar].

Bibliografía: [Salvat editores, 1989, Hürlimann, 1984]

6.3 Tercera Unidad, 15 hr(s)

Competencias: C24

Tópicos: I: El origen de la música - fuentes. La música en la antigüedad. II: La música medieval: Música religiosa. Canto Gregoriano. Música profana. III: El Renacimiento: Música instrumental y música vocal. IV: El Barroco y sus representantes. Nuevos instrumentos, nuevas formas. V: El Clasicismo. Las formas clásicas y sus más destacados representantes. VI: El Romanticismo y el Nacionalismo, características generales instrumentos y formas. Las escuelas nacionalistas europeas. VII: La música contemporánea: Impresionismo, Postromanticismo, Expresionismo y las nuevas corrientes de vanguardia.

Objetivos de Aprendizaje I: Que el alumno conozca y distinga con precisión los diferentes momentos del desarrollo musical [Usar]. II: Dotar al alumno de un repertorio mínimo que le permita poner en práctica lo aprendido antes de emitir una apreciación crítica de ella [Usar].

Bibliografía: [Palisca, 2006, Hürlimann, 1984]

6.4 Cuarta Unidad, 12 hr(s)

Competencias: C24

Tópicos: I: Principales corrientes musicales del Siglo XX. **II:** La música peruana: Autóctona, Mestiza, Manifestaciones musicales actuales. **III:** Música arequipeña, principales expresiones. **IV:** Música latinoamericana y sus principales manifestaciones.

Objetivos de Aprendizaje I: Que el alumno conozca e identifique las diferentes manifestaciones populares actuales [Usar]. II: Que el alumno Se identifique con sus raíces musicales [Usar].

Bibliografía: [Palisca, 2006, Xavier, 2007, Juan, 1984, Isabel,]

7. Bibliografía

[Aopland, 1999] Aopland, A. (1999). Como escuchar la música. Fondo de cultura económica.

[Hürlimann, 1984] Hürlimann, H. F. (1984). Encicopedia de la Música. Ediciones Grijalbo.

[Isabel,] Isabel, A. Sintesis de la etnomusica en America Latina. Monte Avila.

[Juan, 1984] Juan, C. M. (1984). Arequipa, Música y pueblo. Editorial Carig.

[Palisca, 2006] Palisca, D. J. G. C. V. (2006). Historia de la música occidental. Alianza editorial.

[Salvat editores, 1989] Salvat editores (1989). Los grandes compositores. Salvat.

[Xavier, 2007] Xavier, B. (2007). El espacio musical andino. Instituto Francés de Estudios Andinos.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

CS113. Ciencia de la Computación II (Obligatorio)

1. Información General

- Semestre: 3^{er} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS112. Ciencia de la Computación I (2^{do} Sem-Pág. 188)

2. Fundamentación

Este es el tercer curso en la secuencia de los cursos introductorios a la informática. En este curso se pretende cubrir los conceptos señalados por la Computing Curricula IEEE(c)-ACM 2001, bajo el enfoque functional-first. El paradigma orientado a objetos nos permite combatir la complejidad haciendo modelos a partir de abstracciones de los elementos del problema y utilizando técnicas como encapsulamiento, modularidad, polimorfismo y herencia. El dominio de estos temas permitirá que los participantes puedan dar soluciones computacionales a problemas de diseño sencillos del mundo real.

3. Objetivos del curso

■ Introducir al alumno a los fundamentos del paradigma de orientación a objetos, permitiendo asimilar los conceptos necesarios para desarrollar un sistema de información

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (\mathbf{Usar})
- d) Trabajar efectivamente en equipos para cumplir con un objetivo común. (Usar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science). \Rightarrow Outcome a
- C3. Una comprensión intelectual de, y el aprecio por el papel central de los algoritmos y estructuras de datos.⇒ Outcome a
- C18. Capacidad para participar de forma activa y coordinada en un equipo.⇒ Outcome d
- CS1. Modelar y diseñar sistemas de computadora de una manera que se demuestre comprensión del balance entre las opciones de diseño.⇒ Outcome a
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome b**

6. Contenido del curso

6.1 abc, 7 hr(s)

Competencias: C3,C18

Tópicos: I: Árboles. a) Propiedades b) Estrategias de recorrido **II:** Grafos no dirigidos **III:** Grafos dirigidos **IV:** Grafos ponderados **V:** Arboles de expansion/bosques. **VI:** Isomorfismo en grafos.

Objetivos de Aprendizaje I: Ilustrar mediante ejemplos la terminología básica de teoría de grafos, y de alguna de las propiedades y casos especiales de cada tipo de grafos/árboles[Usar] II: Demostrar diversos métodos de recorrer árboles y grafos, incluyendo recorridos pre, post e inorden de árboles[Usar] III: Modelar una variedad de problemas del mundo real en ciencia de la computación usando formas adecuadas de grafos y árboles, como son la representación de una topología de red o la organización jerárquica de un sistema de archivos[Usar] IV: Demuestrar como los conceptos de grafos y árboles aparecen en estructuras de datos, algoritmos, técnicas de prueba (inducción estructurada), y conteos[Usar] V: Explicar como construir un árbol de expansión de un grafo[Usar] VI: Determinar si dos grafos son isomorfos[Usar]

Bibliografía: [Nakariakov, 2013]

6.2 Conceptos Fundamentales de Programación, 5 hr(s)

Competencias: C1,C18

Tópicos: I: Sintaxis y semántica básica de un lenguaje de alto nivel. **II:** Variables y tipos de datos primitivos (ej., numeros, caracteres, booleanos) **III:** Expresiones y asignaciones. **IV:** Operaciones básicas I/O incluyendo archivos I/O. **V:** Estructuras de control condicional e iterativas. **VI:** Paso de funciones y parámetros. **VII:** Concepto de recursividad.

Objetivos de Aprendizaje I: Analiza y explica el comportamiento de programas simples que involucran estructuras fundamentales de programación variables, expresiones, asignaciones, E/S, estructuras de control, funciones, paso de parámetros, y recursividad[Usar] II: Identifica y describe el uso de tipos de datos primitivos[Usar] III: Escribe programas que usan tipos de datos primitivos[Usar] IV: Modifica y expande programas cortos que usen estructuras de control condicionales e iterativas así como funciones[Usar] V: Diseña, implementa, prueba, y depura un programa que usa cada una de las siguientes estructuras de datos fundamentales: cálculos básicos, E/S simple, condicional estándar y estructuras iterativas, definición de funciones, y paso de parámetros[Usar] VI: Escribe un programa que usa E/S de archivos para brindar persistencia a través de ejecuciones múltiples[Usar] VII: Escoje estructuras de condición y repetición adecuadas para una tarea de programación dada[Usar] VIII: Describe el concepto de recursividad y da ejemplos de su uso[Usar] IX: Identifica el caso base y el caso general de un problema basado en recursividad[Usar]

Bibliografía: [Stroustrup, 2013]

6.3 Algoritmos y Diseño, 5 hr(s)

Competencias: C3,C18

Tópicos: I: Conceptos y propiedades de los algoritmos a) Comparación informal de la eficiencia de los algoritmos (ej., conteo de operaciones) II: Rol de los algoritmos en el proceso de solución de problemas III: Estrategias de solución de problemas a) Funciones matemáticas iterativas y recursivas b) Recorrido iterativo y recursivo en estructura de datos c) Estrategias Divide y Conquistar IV: Conceptos y principios fundamentales de diseño a) Abstracción b) Descomposición de Program c) Encapsulamiento y camuflaje de información d) Separación de comportamiento y aplicación

Objetivos de Aprendizaje I: Discute la importancia de los algoritmos en el proceso de solución de un problema [Usar] II: Discute como un problema puede ser resuelto por múltiples algoritmos, cada uno con propiedades diferentes [Usar] III: Crea algoritmos para resolver problemas simples [Usar] IV: Usa un lenguaje de programación para implementar, probar, y depura algoritmos para resolver problemas simples [Usar] V: Implementa, prueba, y depura funciones recursivas simples y sus procedimientos [Usar] VI: Determina si una solución iterativa o recursiva es la más apropiada para un problema [Usar] VII: Implementa un algoritmo de divide y vencerás para resolver un problema [Usar] VIII: Aplica técnicas de descomposición para dividir un programa en partes más pequeñas [Usar] IX: Identifica los componentes de datos y el comportamiento de mútiples tipos de datos abstractos [Usar] X: Implementa un tipo de dato abstracto coherente, con la menor pérdida de acoplamiento entre componentes y comportamientos [Usar] XI: Identifica las fortalezas y las debilidades relativas entre múltiples diseños e implementaciones de un problema [Usar]

Bibliografía: [Stroustrup, 2013]

6.4 Programación reactiva y dirigida por eventos, 2 hr(s)

Competencias: C1,C18

Tópicos: I: Eventos y controladores de eventos. **II:** Usos canónicos como interfaces gráficas de usuario, dispositivos móviles, robots, servidores. **III:** Uso de frameworks reactivos. a) Definición de controladores/oyentes (handles/listeners) de eventos. b) Bucle principal de enventos no controlado po el escritor controlador de eventos (event-handler-writer) **IV:** Eventos y eventos del programa generados externamente generada. **V:** La separación de modelo, vista y controlador.

Objetivos de Aprendizaje I: Escribir manejadores de eventos para su uso en sistemas reactivos tales como GUIs[Usar] II: Explicar porque el estilo de programación manejada por eventos es natural en dominios donde el programa reacciona a eventos externos[Usar] III: Describir un sistema interactivo en términos de un modelo, una vista y un controlador[Usar]

Bibliografía: [Stroustrup, 2013]

6.5 Análisis Básico, 3 hr(s)

Competencias: CS2,C18

Tópicos: I: Diferencias entre el mejor, el esperado y el peor caso de un algoritmo. II: Análisis asintótico de complejidad de cotas superior y esperada. III: Definición formal de la Notación Big O. IV: Clases de complejidad como constante, logarítmica, lineal, cuadrática y exponencial. V: Medidas empíricas de desempeño. VI: Compensación entre espacio y tiempo en los algoritmos. VII: Uso de la notación Big O. VIII: Notación Little o, Big omega y Big theta. IX: Relaciones recurrentes. X: Análisis de algoritmos iterativos y recursivos. XI: Algunas versiones del Teorema Maestro.

Objetivos de Aprendizaje I: Explique a que se refiere con "mejor", "esperado" y "peor" caso de comportamiento de un algoritmo[Usar] II: En el contexto de a algoritmos específicos, identifique las características de data y/o otras condiciones o suposiciones que lleven a diferentes comportamientos[Usar] III: Determine informalmente el tiempo y el espacio de complejidad de simples algoritmos[Usar] IV: Indique la definición formal de Big O[Usar] V: Lista y contraste de clases estándares de complejidad[Usar] VI: Realizar estúdios empíricos para validar una hipótesis sobre runtime stemming desde un análisis matemático Ejecute algoritmos con entrada de varios tamaños y compare el desempeño[Usar] VII: Da ejemplos que ilustran las compensaciones entre espacio y tiempo que se dan en los algoritmos[Usar] VIII: Use la notación formal de la Big O para dar límites superiores asintóticos en la complejidad de tiempo y espacio de los algoritmos[Usar] IX: Usar la notación formal Big O para dar límites de casos esperados en el tiempo de complejidad de los algoritmos[Usar] X: Explicar el uso de la notación theta grande, omega grande y o pequeña para describir la cantidad de trabajo hecho por un algoritmo[Usar]

XI: Usar relaciones recurrentes para determinar el tiempo de complejidad de algoritmos recursivamente definidos[Usar] XII: Resuelve relaciones de recurrencia básicas, por ejemplo. usando alguna forma del Teorema Maestro[Usar]

Bibliografía: [Stroustrup, 2013]

6.6 Algoritmos y Estructuras de Datos fundamentales, 3 hr(s)

Competencias: C3,C18

Tópicos: I: Algoritmos numéricos simples, tales como el cálculo de la media de una lista de números, encontrar el mínimo y máximo. II: Algoritmos de búsqueda secuencial y binaria. III: Algoritmos de ordenamiento de peor caso cuadrático (selección, inserción) IV: Algoritmos de ordenamiento con peor caso o caso promedio en O(N lg N) (Quicksort, Heapsort, Mergesort) V: Tablas Hash, incluyendo estratégias para evitar y resolver colisiones. VI: Árboles de búsqueda binaria: a) Operaciones comunes en árboles de búsqueda binaria como seleccionar el mínimo, máximo, insertar, eliminar, recorrido en árboles. VII: Grafos y algoritmos en grafos: a) Representación de grafos (ej., lista de adyacencia, matriz de adyacencia) b) Recorrido en profundidad y amplitud VIII: Montículos (Heaps) IX: Grafos y algoritmos en grafos: a) Algoritmos de la ruta más corta (algoritmos de Dijkstra y Floyd) b) Árbol de expansión mínima (algoritmos de Prim y Kruskal) X: Búsqueda de patrones y algoritmos de cadenas/texto (ej. búsqueda de subcadena, búsqueda de expresiones regulares, algoritmos de subsecuencia común más larga)

Objetivos de Aprendizaje I: Implementar algoritmos numéricos básicos[Usar] II: Implementar algoritmos de busqueda simple y explicar las diferencias en sus tiempos de complejidad[Usar] III: Ser capaz de implementar algoritmos de ordenamiento comunes cuádraticos y O(N log N)[Usar] IV: Describir la implementación de tablas hash, incluyendo resolución y el evitamiento de colisiones [Usar] V: Discutir el tiempo de ejecución y eficiencia de memoria de los principales algoritmos de ordenamiento, busqueda y hashing[Usar] VI: Discutir factores otros que no sean eficiencia computacional que influyan en la elección de algoritmos, tales como tiempo de programación, mantenibilidad, y el uso de patrones específicos de la aplicación en los datos de entrada[Usar] VII: Explicar como el balanceamiento del arbol afecta la eficiencia de varias operaciones de un arbol de búsqueda binaria[Usar] VIII: Resolver problemas usando algoritmos básicos de grafos, incluyendo busqueda por profundidad y busqueda por amplitud[Usar] IX: Demostrar habilidad para evaluar algoritmos, para seleccionar de un rango de posibles opciones, para proveer una justificación por esa selección, y para implementar el algoritmo en un contexto en específico[Usar] X: Describir la propiedad del heap y el uso de heaps como una implementación de colas de prioridad[Usar] XI: Resolver problemas usando algoritmos de grafos, incluyendo camino más corto de una sola fuente y camino más corto de todos los pares, y como mínimo un algoritmo de arbol de expansion minima[Usar] XII: Trazar y/o implementar un algoritmo de comparación de string[Usar]

Bibliografía: [Stroustrup, 2013]

6.7 Sistemas de tipos básicos, 5 hr(s)

Competencias: C1,C18

Tópicos: I: Tipos como conjunto de valores junto con un conjunto de operaciones. a) Tipos primitivos (p.e. numeros, booleanos) b) Composición de tipos construidos de otros tipos (p.e., registros, uniones, arreglos, listas, funciones, referencias) **II:** Asociación de tipos de variables, argumentos, resultados y campos. **III:** Tipo de seguridad y los errores causados ??por el uso de valores de manera incompatible dadas sus tipos previstos. **IV:** Metas y limitaciones de tipos estáticos a) Eliminación de algunas clases de errores sin ejecutar el programa b) Indesición significa que un análisis estatico puede aproximar el comportamiento de un programa **V:** Tipos genéricos (polimorfismo paramétrico) a) Definición b) Uso de librerías genéricas tales como colecciones. c) Comparación con polimorfismo ad-hoc y polimorfismo de subtipos **VI:** Beneficios complementarios de tipos estáticos y dinámicos: a) Errores tempranos vs. errores tardios/evitados.

b) Refuerzo invariante durante el desarrollo y mantenimiento del codigo vs. desiciones pospuestas de tipos durante la la creacion de prototipos y permititr convenientemente la codificación flexible de patrones tales como colecciones heterogéneas. c) Evitar el mal uso del código vs. permitir más reuso de código. d) Detectar programas incompletos vs. permitir que programas incompletos se ejecuten

Objetivos de Aprendizaje I: Tanto para tipo primitivo y un tipo compuesto, describir de manera informal los valores que tiene dicho tipo [Usar] II: Para un lenguaje con sistema de tipos estático, describir las operaciones que están prohibidas de forma estática, como pasar el tipo incorrecto de valor a una función o método [Usar] III: Describir ejemplos de errores de programa detectadas por un sistema de tipos[Usar] IV: Para múltiples lenguajes de programación, identificar propiedades de un programa con verificación estática y propiedades de un programa con verificación dinámica[Usar] V: Dar un ejemplo de un programa que no verifique tipos en un lenguaje particular y sin embargo no tenga error cuando es ejecutado [Usar] VI: Usar tipos y mensajes de error de tipos para escribir y depurar programas[Usar] VII: Explicar como las reglas de tipificación definen el conjunto de operaciones que legales para un tipo [Usar] VIII: Escribir las reglas de tipo que rigen el uso de un particular tipo compuesto[Usar] IX: Explicar por qué indecidibilidad requiere sistemas de tipo para conservadoramente aproximar el comportamiento de un programa[Usar] X: Definir y usar piezas de programas (tales como, funciones, clases, métodos) que usan tipos genéricos, incluyendo para colecciones [Usar] XI: Discutir las diferencias entre, genéricos (generics), subtipo y sobrecarga[Usar] XII: Explicar múltiples beneficios y limitaciones de tipificación estática en escritura, mantenimiento y depuración de un software[Usar]

Bibliografía: [Stroustrup, 2013]

6.8 Programación orientada a objetos, 7 hr(s)

Competencias: C1,C18

Tópicos: I: Diseño orientado a objetos: a) Descomposicion en objetos que almacenan estados y poseen comportamiento b) Diseño basado en jerarquia de clases para modelamiento II: Definición de las categorías, campos, métodos y constructores. III: Las subclases, herencia y método de alteración temporal. IV: Asignación dinámica: definición de método de llamada. V: Subtipificación: a) Polimorfismo artículo Subtipo; upcasts implícitos en lenguajes con tipos. b) Noción de reemplazo de comportamiento: los subtipos de actuar como supertipos. c) Relación entre subtipos y la herencia. VI: Lenguajesăorientados a objetos para la encapsulación: a) privacidad y la visibilidad de miembros de la clase b) Interfaces revelan único método de firmas c) clases base abstractas VII: Uso de coleccion de clases, iteradores, y otros componentes de la libreria estandar.

Objetivos de Aprendizaje I: Diseñar e implementar una clase[Usar] II: Usar subclase para diseñar una jerarquía simple de clases que permita al código ser reusable por diferentes subclases[Usar] III: Razonar correctamente sobre el flujo de control en un programa mediante el envío dinámico[Usar] IV: Comparar y contrastar (1) el enfoque procedurar/funcional- definiendo una función por cada operación con el cuerdo de la función proporcionando un caso por cada variación de dato - y (2) el enfoque orientado a objetos - definiendo una clase por cada variación de dato con la definición de la clase proporcionando un método por cada operación. Entender ambos enfoques como una definición de variaciones y operaciones de una matriz[Usar] V: Explicar la relación entre la herencia orientada a objetos (codigo compartido y overriding) y subtipificación (la idea de un subtipo es ser utilizable en un contexto en el que espera al supertipo)[Usar] VI: Usar mecanismos de encapsulación orientada a objetos, tal como interfaces y miembros privados[Usar] VII: Definir y usar iteradores y otras operaciones sobre agregaciones, incluyendo operaciones que tienen funciones como argumentos, en múltiples lenguajes de programación, selecionar la forma mas natural por cada lenguaje[Usar]

Bibliografía: [Stroustrup, 2013]

6.9 Diseño de Software, 6 hr(s)

Competencias: CS1,C18

Tópicos: I: Principios de diseño del sistema: niveles de abstracción (diseño arquitectónico y el diseño detallado), separación de intereses, ocultamiento de información, de acoplamiento y de cohesión, de reutilización de estructuras estándar. II: Diseño de paradigmas tales como diseño estructurado (descomposición funcional de arriba hacia abajo), el análisis orientado a objetos y diseño, orientado a eventos de diseño, diseño de nivel de componente, centrado datos estructurada, orientada a aspectos, orientado a la función, orientado al servicio. III: Modelos estructurales y de comportamiento de los diseños de software. IV: Diseño de patrones. V: Relaciones entre los requisitos y diseños: La transformación de modelos, el diseño de los contratos, invariantes. VI: Conceptos de arquitectura de software y arquitecturas estándar (por ejemplo, cliente-servidor, n-capas, transforman centrados, tubos y filtros). VII: El uso de componentes de diseño: seleccion de componentes, diseño, adaptacion y componentes de ensamblaje, componentes y patrones, componentes y objetos(por ejemplo,construir una GUI usando un standar widget set) VIII: Diseños de refactorización utilizando patrones de diseño IX: Calidad del diseño interno, y modelos para: eficiencia y desempeño, redundancia y tolerancia a fallos, trazavilidad de los requerimientos. X: Medición y análisis de la calidad de un diseño. XI: Compensasiones entre diferentes aspectos de la calidad. XII: Aaplicaciones en frameworks. XIII: Middleware: El paradigma de la orientacion a objetos con middleware, requerimientos para correr y clasificar objetos, monitores de procesamiento de transacciones y el sistema de flujo de trabajo. XIV: Principales diseños de seguridad y codificación(cross-reference IAS/Principles of securre design). a) Principio de privilegios mínimos b) Principio de falla segura por defecto c) Principio de aceptabilidad psicológica

Objetivos de Aprendizaje I: Formular los principios de diseño, incluyendo la separación de problemas, ocultación de información, acoplamiento y cohesión, y la encapsulación [Usar] II: Usar un paradigma de diseño para diseñar un sistema de software básico y explicar cómo los principios de diseño del sistema se han aplicado en este diseño [Usar] III: Construir modelos del diseño de un sistema de software simple los cuales son apropiado para el paradigma utilizado para diseñarlo[Usar] IV: En el contexto de un paradigma de diseño simple, describir uno o más patrones de diseño que podrían ser aplicables al diseño de un sistema de software simple[Usar] V: Para un sistema simple adecuado para una situación dada, discutir y seleccionar un paradigma de diseño apropiado[Usar] VI: Crear modelos apropiados para la estructura y el comportamiento de los productos de software desde la especificaciones de requisitos[Usar] VII: Explicar las relaciones entre los requisitos para un producto de software y su diseño, utilizando los modelos apropiados[Usar] VIII: Para el diseño de un sistema de software simple dentro del contexto de un único paradigma de diseño, describir la arquitectura de software de ese sistema[Usar] IX: Dado un diseño de alto nivel, identificar la arquitectura de software mediante la diferenciación entre las arquitecturas comunes de software, tales como 3 capas (3-tier), pipe-and-filter, y cliente-servidor[Usar] X: Investigar el impacto de la selección arquitecturas de software en el diseño de un sistema simple[Usar] XI: Aplicar ejemplos simples de patrones en un diseño de software[Usar] XII: Describir una manera de refactorar y discutir cuando esto debe ser aplicado[Usar] XIII: Seleccionar componentes adecuados para el uso en un diseño de un producto de software[Usar] XIV: Explicar cómo los componentes deben ser adaptados para ser usados en el diseño de un producto de software [Usar] XV: Diseñar un contrato para un típico componente de software pequeño para el uso de un dado sistema[Usar] XVI: Discutir y seleccionar la arquitectura de software adecuada para un sistema de software simple para un dado escenario[Usar] XVII: Aplicar modelos de cualidades internas y externas en el diseño de componentes de software para lograr un equilibrio aceptable entre los aspectos de calidad en conflictos[Usar] XVIII: Analizar un diseño de software desde la perspectiva de un atributo significativo de la calidad interna[Usar] XIX: Analizar un diseño de software desde la perspectiva de un atributo significativo de calidad externa [Usar] XX: Explicar el papel de los objetos en los sistemas de middleware y la relación con los componentes [Usar] XXI: Aplicar métodos orientado a componentes para el diseño de una amplia gama de software, tales como el uso de componentes para la concurrencia y transacciones, para los servicios de comunicación confiables, para la interacción con la base de datos que incluye los servicios de consulta remota y gestión de bases de datos, o para la comunicación segura y el acceso[Usar] **XXII**: Refactorizar una implementación de software existente para mejorar algún aspecto de su diseño[Usar] **XXIII**: Determinar y aplicar los principios de mínimo privilegio y defectos-a prueba de errores[Usar]

Bibliografía: [Stroustrup, 2013]

6.10 Ingeniería de Requisitos, 1 hr(s)

Competencias: CS1,C18

Tópicos: I: Al describir los requisitos funcionales utilizando, por ejemplo, los casos de uso o historias de los usuarios. II: Propiedades de requisitos, incluyendo la consistencia, validez, integridad y viabilidad. III: Requisitos de software elicitatión. IV: Descripción de datos del sistema utilizando, por ejemplo, los diagramas de clases o diagramas entidad-relación. V: Requisitos no funcionales y su relación con la calidad del software. VI: Evaluación y uso de especificaciones de requisitos. VII: Requisitos de las técnicas de modelado de análisis. VIII: La aceptabilidad de las consideraciones de certeza/incertidumbre sobre el comportamiento del software/sistema. IX: Prototipos. X: Conceptos básicos de la especificación formal de requisitos. XII: Especificación de requisitos. XII: Validación de requisitos. XIII: Rastreo de requisitos.

Objetivos de Aprendizaje I: Enumerar los componentes clave de un caso de uso o una descripción similar de algún comportamiento que es requerido para un sistema[Usar] II: Describir cómo el proceso de ingeniería de requisitos apoya la obtención y validación de los requisitos de comportamiento[Usar] III: Interpretar un modelo de requisitos dada por un sistema de software simple[Usar] IV: Describir los retos fundamentales y técnicas comunes que se utilizan para la obtención de requisitos [Usar] V: Enumerar los componentes clave de un modelo de datos (por ejemplo, diagramas de clases o diagramas ER)[Usar] VI: Identificar los requisitos funcionales y no funcionales en una especificación de requisitos dada por un sistema de software[Usar] VII: Realizar una revisión de un conjunto de requisitos de software para determinar la calidad de los requisitos con respecto a las características de los buenos requisitos[Usar] VIII: Aplicar elementos clave y métodos comunes para la obtención y el análisis para producir un conjunto de requisitos de software para un sistema de software de tamaño medio[Usar] IX: Comparar los métodos ágiles y el dirigido por planes para la especificación y validación de requisitos y describir los beneficios y riesgos asociados con cada uno [Usar] X: Usar un método común, no formal para modelar y especificar los requisitos para un sistema de software de tamaño medio[Usar] XI: Traducir al lenguaje natural una especificación de requisitos de software (por ejemplo, un contrato de componentes de software) escrito en un lenguaje de especificación formal[Usar] XII: Crear un prototipo de un sistema de software para reducir el riesgo en los requisitos[Usar] XIII: Diferenciar entre el rastreo (tracing) hacia adelante y hacia atrás y explicar su papel en el proceso de validación de requisitos[Usar]

Bibliografía: [Stroustrup, 2013]

7. Bibliografía

[Nakariakov, 2013] Nakariakov, S. (2013). The Boost C++ Libraries: Generic Programming. CreateSpace Independent Publishing Platforml.

[Stroustrup, 2013] Stroustrup, B. (2013). The C++ Programming Language, 4th edition. Addison-Wesley.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

CS2B1. Desarrollo Basado en Plataformas (Obligatorio)

1. Información General

- Semestre: 3^{er} Sem. Créditos: 3
- Horas del curso: Teoría: 1 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS112. Ciencia de la Computación I $(2^{do}$ Sem-Pág. 188)

2. Fundamentación

El mundo ha cambiado debido al uso de la web y tecnologías relacionadas, el acceso rápido, oportuno y personalizado de la información, a través de la tecnología web, ubícuo y pervasiva; han cambiado la forma de ¿cómo hacemos las cosas?, ¿cómo pensamos? y ¿cómo la industria se desarrolla?.

Las tecnologías web, ubicuo y pervasivo se basan en el desarrollo de servicios web, aplicaciones web y aplicaciones móviles, las cuales son necesarias entender la arquitectura, el diseño, y la implementación de servicios web, aplicaciones web y aplicaciones móviles.

3. Objetivos del curso

- Que el alumno sea capaz de diseño e implementación de servicios, aplicaciones web utilizando herramientas y lenguajes como HTML, CSS, JavaScript (incluyendo AJAX), back-end scripting y una base de datos, a un nivel intermedio.
- Que el alumno sea capaz de desarrollar aplicaciones móviles, administración de servidores web en un sistema Unix y una introducción a la seguridad web, a un nivel intermedio.

4. Resultados (Outcomes)

- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Usar)
- d) Trabajar efectivamente en equipos para cumplir con un objetivo común. (Usar)
- g) Analizar el impacto local y global de la computación sobre los individuos, organizaciones y sociedad. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- o) Mejorar las condiciones de la sociedad poniendo la tecnología al servicio del ser humano. (Usar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome c,d,i
- C6. Capacidad para diseñar y poner en práctica las unidades estructurales mayores que utilizan algoritmos y estructuras de datos y las interfaces a través del cual estas unidades se comunican.⇒
 Outcome c,d,i
- **CS8.** Aplicar los principios de la interacción persona-ordenador para la evaluación y la construcción de una amplia gama de materiales, incluyendo interfaces de usuario, páginas web, sistemas multimedia y sistemas móviles.⇒ **Outcome g,o**

6. Contenido del curso

6.1 Introducción, 5 hr(s)

Competencias: CS8

Tópicos: I: Visión general de plataformas (ejemplo, Web, Mobil, Juegos, Industrial) II: Programación a través de APIs específicos. III: Visión general de lenguajes de plataforma (ejemplo, Objective C, HTML5) IV: Pogramación bajo restricciónes de plataforma.

Objetivos de Aprendizaje I: Describir cómo el desarrollo basado en plataforma difiere de la programación de proposito general[Familiarizarse] II: Listar las características de lenguajes de plataforma[Familiarizarse] III: Escribir y ejecutar un programa simple basado en plataforma[Familiarizarse] IV: Listar las ventajas y desventajas de la programación con restricciones de plataforma[Familiarizarse]

Bibliografía: [Grove, 2009, Annuzzi et al., 2013]

6.2 Plataformas web, 5 hr(s)

Competencias: C1,C6

Tópicos: I: Lenguajes de programación web (e.g., HTML5, Javascript, PHP, CSS) **II:** Restricción de plataformas web. **III:** Software como servicio. **IV:** Estándares web.

Objetivos de Aprendizaje I: Diseñar e implementar una aplicación web sencilla[Familiarizarse] II: Describir las limitaciones que la web pone a los desarrolladores[Familiarizarse] III: Comparar y contrastar la programación web con la programación de proposito general[Familiarizarse] IV: Describir las diferencias entre software como un servicio y productos de software tradicionales[Familiarizarse] V: Discutir cómo los estándares de web impactan el desarrollo de software[Familiarizarse] VI: Revise una aplicación web existente con un estándar web actual[Familiarizarse]

Bibliografía: [Grove, 2009]

6.3 Desarrollo de servicios y aplicaciones web, 25 hr(s)

Competencias: C1,C6

Tópicos: I: Describir, identificar y depurar problemas relacionados con el desarrollo de aplicaciones web II: Diseño y desarrollo de aplicaciones web interactivas usando este tipo de incrustar scripts en lenguaje python III: Utilice MySQL para la gestión de datos y manipular MySQL con python IV: Diseño y desarrollo de aplicaciones web asíncronos utilizando técnicas Ajax V: Uso del lado del cliente dinámico lenguaje de script Javascript y del lado del servidor lenguaje de scripting python con Ajax VI: Aplicar las tecnologías XML / JSON para la gestión de datos con Ajax VII: Utilice marco, los servicios y APIs web Ajax y aplicar los patrones de diseño para el desarrollo de aplicaciones web

Objetivos de Aprendizaje I: Del lado del servidor lenguaje de scripting python: variables, tipos de datos, operaciones, cadenas, funciones, sentencias de control, matrices, archivos y el acceso a directorios, mantener el estado. [Usar] II: Enfoque de programación web usando python incrustado. [Usar] III: El acceso y la manipulación de MySQL. [Usar] IV: El enfoque de desarrollo de aplicaciones web Ajax. [Usar] V: DOM y CSS utilizan en JavaScript. [Usar] VI: Tecnologías de actualización de contenido asíncrono. [Usar] VII: Objetos XMLHttpRequest utilizar para comunicarse entre clientes y servidores. [Usar] VIII: XML y JSON. [Usar] IX: XSLT y XPath como mecanismos para transformar documentos XML. [Usar] X: Servicios web y APIs (especialmente Google Maps). [Usar] XI: Marcos Ajax para el desarrollo de aplicaciones web contemporánea. [Usar] XII: Los patrones de diseño utilizados en aplicaciones web. [Usar]

Bibliografía: [Grove, 2009]

6.4 Plataformas móviles, 5 hr(s)

Competencias: C1,C6

Tópicos: I: Lenguajes de Programación para Móviles. **II:** Desafíos con mobilidad y comunicación inalámbrica. **III:** Aplicaciones Location-aware. **IV:** Rendimiento / Compensación de Potencia. **V:** Restricciones de las Plataformas Móviles. **VI:** Tecnologías Emergentes.

Objetivos de Aprendizaje I: Diseñar e implementar una aplicación móvil para una plataforma móvil dada[Familiarizarse] II: Discutir las limitaciones que las plataformas móviles ponen a los desarrolladores[Familiarizarse] III: Discutir el rendimiento vs perdida de potencia[Familiarizarse] IV: Compare y contraste la programación móvil con la programación de proposito general[Familiarizarse]

Bibliografía: [Annuzzi et al., 2013]

6.5 Mobile Applications for Android Handheld Systems, 25 hr(s)

Competencias: C1,C6

Tópicos: I: The Android Platform II: The Android Development Environment III: Application Fundamentals IV: The Activity Class V: The Intent Class VI: Permissions VII: The Fragment Class VIII: User Interface Classes IX: User Notifications X: The BroadcastReceiver Class XI: Threads, AsyncTask & Handlers XII: Alarms XIII: Networking (http class) XIV: Multitouch & Gestures XV: Sensors XVI: Location & Maps

Objetivos de Aprendizaje I: Los estudiantes identifican software necesario y lo instalan en sus ordenadores personales. Los estudiantes realizan varias tareas para familiarizarse con la plataforma Android y Ambiente para el Desarrollo. [Usar] II: Los estudiantes construyen aplicaciones que trazan los métodos de devolución de llamada de ciclo de vida emitidas por la plataforma Android y que demuestran el comportamiento de Android cuando los cambios de configuración de dispositivos (por ejemplo, cuando el dispositivo se mueve de vertical a horizontal y viceversa). [Usar] III: Los estudiantes construyen aplicaciones que requieren iniciar múltiples actividades a través de ambos métodos estándar y personalizados. [Usar] IV: Los estudiantes construyen aplicaciones que requieren permisos estándar y personalizados. [Usar] V: Los estudiantes construyen una aplicación que utiliza una única base de código, sino que crea diferentes interfaces de usuario dependiendo del tamaño de la pantalla de un dispositivo. [Usar] VI: Los estudiantes construyen un gestor de listas de tareas pendientes utilizando los elementos de la interfaz de usuario discutidos en clase. La aplicación permite a los usuarios crear nuevos elementos y para mostrarlos en un ListView. [Usar] VII: Los estudiantes construyen una aplicación que utiliza la información de ubicación para recoger latitud, longitud de los lugares que visitan. [Usar]

Bibliografía: [Annuzzi et al., 2013]

7. Bibliografía

[Annuzzi et al., 2013] Annuzzi, J., Darcey, L., and Conder, S. (2013). *Introduction to Android Application Development: Android Essentials*. Developer's Library. Pearson Education.

[Grove, 2009] Grove, R. (2009). Web Based Application Development. Jones & Bartlett Learning.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

CS221. Arquitectura de Computadores (Obligatorio)

1. Información General

■ Semestre: 3^{er} Sem. Créditos: 3

■ Horas del curso: Teoría: 2 horas; Laboratorio: 2 horas;

■ Prerrequisitos:

• CS1D2. Estructuras Discretas II (2^{do} Sem-Pág. 185)

2. Fundamentación

Es necesario que el profesional en Ciencia de la COmputación tenga sólido conocimiento de la organización y funcionamiento de los diversos sistema de cómputo actuales en los cuales gira se instala el entorno de programación. Con ello también sabrá establecer los alcances y límites de las aplicaciones que se desarrollen de acuerdo a la plataforma siendo usada.

Se tratarán los siguientes temas: componentes de lógica digital básicos en un sistema de computación, diseño de conjuntos de instrucciones, microarquitectura del procesador y ejecución en *pipelining*, organización de la memoria: caché y memoria virtual, protección y compartición, sistema I/O e interrupciones, arquitecturas super escalares y ejecución fuera de orden, computadoras vectoriales, arquitecturas para *multithreading*, multiprocesadores simétricos, modelo de memoria y sincronización, sistemas integrados y computadores en paralelo.

3. Objetivos del curso

- Este curso tiene como propósito ofrecer al estudiante una base sólida de la evolución de las arquitecturas de computadores y los factores que influenciaron en el diseño de los elementos de hardware y software en sistemas de computación actuales.
- Garantizar la comprensión de cómo es el *hardware* en sí y cómo interactuan *hardware* y *software* en un sistema de cómputo actual.
- Tratar los siguientes temas: componentes de lógica digital básicos en un sistema de computación, diseño de conjuntos de instrucciones, microarquitectura del procesador y ejecución en pipelining, organización de la memoria: caché y memoria virtual, protección y compartición, sistema I/O e interrupciones, arquitecturas super escalares y ejecución fuera de orden, computadoras vectoriales, arquitecturas para multithreading, multiprocesadores simétricos, modelo de memoria y sincronización, sistemas integrados y computadores en paralelo.

4. Resultados (Outcomes)

- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (\mathbf{Usar})
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C4. Una comprensión del hardware de la computadora desde la perspectiva del software, por ejemplo, el uso del procesador, memoria, unidades de disco, pantalla, etc⇒ Outcome i
- C8. Entendimiento de lo que las tecnologías actuales pueden y no pueden lograr.⇒ Outcome b,i

- C9. Comprensión de las limitaciones de la computación, incluyendo la diferencia entre lo que la computación es inherentemente incapaz de hacer frente a lo que puede lograrse a través de un futuro de ciencia y tecnología.⇒ Outcome b
- **CS3.** Analizar el grado en que un sistema basado en el ordenador cumple con los criterios definidos para su uso actual y futuro desarrollo.⇒ **Outcome i**

6. Contenido del curso

6.1 Lógica digital y sistemas digitales, 18 hr(s)

Competencias: C8

- Tópicos: I: Revisión e historia de la Arquitectura de Computadores. II: Lógica combinacional vs. secuencial/Arreglos de puertas de campo programables como bloque fundamental de construcción lógico combinacional-secuencial. III: Multiples representaciones / Capas de interpretación (El hardware es solo otra capa) IV: Herramientas de diseño asistidas por computadora que procesan hardware y representaciones arquitecturales. V: Registrar transferencia notación / Hardware lenguage descriptivo (Verilog/VHDL) VI: Restriccion física (Retrasos de Entrada, fan-in, fan-out, energia/poder)
- Objetivos de Aprendizaje I: Describir el avance paulatino de los componentes de la tecnología de computación, desde los tubos de vacío hasta VLSI, desde las arquitecturas mainframe a las arquitecturas en escala warehouse[Familiarizarse] II: Comprender que la tendencia de las arquitecturas modernas de computadores es hacia núcleos múltiples y que el paraleliso es inherente en todos los sistemas de hardware[Usar] III: Explicar las implicancias de los límites de potencia para mejoras adicionales en el rendimiento de los procesadores y también en el aprovechamiento del paralelismo[Usar] IV: Relacionar las varias representaciones equivalentes de la funcionalidad de un computador, incluyendo expresiones y puertas lógicas, y ser capces de utilizar expresiones matemáticas para describir las funciones de circuitos combinacionales y secuenciales sencillos [Familiarizarse] V: Diseñar los componentes básicos de construcción de un computador: unidad aritmético lógica (a nivel de puertas lógicas), unidad central de procesamiento (a nivel de registros de transferencia), memoria (a nivel de registros de transferencia) [Usar] VI: Usar herramientas CAD para capturar, sistetizar, y simular bloques de construcción (como ALUs, registros, movimiento entre registros) de un computador simple [Familiarizarse] VII: Evaluar el comportamiento de un diagrama de tiempos y funcional de un procesador simple implementado a nivel de circuitos lógicos [Evaluar]

Bibliografía: [Parhami, 2005, Patterson and Hennessy, 2004]

6.2 Representación de datos a nivel máquina, 8 hr(s)

Competencias: C9

- **Tópicos: I:** Bits, Bytes y Words. **II:** Representacion de datos numérica y bases numéricas. **III:** Sistemas de punto flotante y punto fijo. **IV:** Representaciones con signo y complemento a 2. **V:** Representación de información no numérica (cdigos de caracteres, información gráfica) **VI:** Representación de registros y arreglos.
- Objetivos de Aprendizaje I: Explicar porqué en computación todo es datos, inclusive las instrucciones [Evaluar] II: Explicar las razones de usar formatos alternativos para representar datos numéricos [Familiarizarse] III: Describir cómo los enteros negativos se almacenan con representaciones de bit de signo y complemento a 2[Usar] IV: Explicar cómo las representaciones de tamaño fijo afectan en la exactitud y la precisión [Usar] V: Describir la representación interna de datos no numéricos como caracteres, cadenas, registros y arreglos [Usar] VI: Convertir datos numéricos de un formato a otro [Usar]

Bibliografía: [Parhami, 2005, Stalings, 2010]

6.3 Organización de la Máquina a Nivel Ensamblador, 8 hr(s)

Competencias: C4,CS3

Tópicos: I: Organización Básica de la Máquina de Von Neumann. II: Unidad de Control. III: Paquetes de instrucciones y tipos (manipulación de información, control, I/O) IV: Assembler / Programación en Lenguaje de Máquina. V: Formato de instrucciones. VI: Modos de direccionamiento. VII: Llamada a subrutinas y mecanismos de retorno. VIII: I/O e Interrupciones. IX: Montículo (Heap) vs. Estático vs. Pila vs. Segmentos de código.

Objetivos de Aprendizaje I: Explicar la organización de la maquina clásica de von Neumann y sus principales unidades funcionales[Familiarizarse] II: Describir cómo se ejecuta una instrucción en una máquina de von Neumann con extensión para hebras, sincronización multiproceso y ejecucion SIMD (máquina vectorial)[Familiarizarse] III: Describir el paralelismo a nivel de instrucciones y sus peligros, y cómo es esto tratado en pipelines de proceso típicos[Familiarizarse] IV: Resumir cómo se representan las instrucciones, tanto a nivel de máquina bajo el contexto de un ensamblador simbólico[Familiarizarse] V: Demostrar cómo se mapean los patrones de lenguajes de alto nivel en notaciones en lenguaje ensamblador o en código máquina[Usar] VI: Explicar los diferentes formatos de instrucciones, así como el direccionamiento por instrucción, y comparar formatos de tamaño fijo y variable[Usar] VII: Explicar como las llamadas a subrutinas son manejadas a nivel de ensamblador[Usar] VIII: Explicar los conceptos básicos de interrupciones y operaciones de entrada y salida (I/O)[Familiarizarse] IX: Escribir segmentos de programa simples en lenguaje ensamblador[Usar] X: Ilustrar cómo los bloques constructores fundamentales en lenguajes de alto nivel son implementados a nivel de lenguaje máquina[Usar]

Bibliografía: [Parhami, 2005, Patterson and Hennessy, 2004, Hennessy and Patterson, 2006]

6.4 Organización funcional, 8 hr(s)

Competencias: C9

Tópicos: I: Implementación de rutas de datos simples, incluyendo la canalización de instrucciones, detección de riesgos y la resolución. **II:** Control de unidades: Realización Cableada vs Realización Microprogramada. **III:** Instruccion (Pipelining) **IV:** Introducción al paralelismo al nivel de instrucción (PNI)

Objetivos de Aprendizaje I: Comparar implementaciones alternativas de ruta de datos [Evaluar]
II: Discutir el concepto de puntos de control y la generación de señales de control usando implementaciones a nivel de circuito o microprogramadas [Familiarizarse] III: Explicar el paralelismo a nivel de instrucciones básicas usando pipelining y los mayores riesgos que pueden ocurrir [Usar] IV: Diseñar e implementar un procesador completo, incluyendo ruta de datos y control [Usar] V: Calcular la cantidad promedio de ciclos por instrucción de una implementación con procesador y sistema de memoria determinados [Evaluar]

Bibliografía: [Parhami, 2005, Hennessy and Patterson, 2006]

6.5 Organización y Arquitectura del Sistema de Memoria, 8 hr(s)

Competencias: CS3

Tópicos: I: Sistemas de Almacenamiento y su Tecnología. II: Jerarquía de Memoria: importancia de la localización temporal y espacial. III: Organización y Operaciones de la Memoria Principal. IV: Latencia, ciclos de tiempo, ancho de banda e intercalación. V: Memorias caché (Mapeo de direcciones, Tamaño de bloques, Reemplazo y Politicas de almacenamiento) VI: Multiprocesador coherencia cache / Usando el sistema de memoria para las operaciones de sincronización de memoria / atómica inter-core. VII: Memoria virtual (tabla de página, TLB) VIII: Manejo de Errores y confiabilidad. IX: Error de codificación, compresión de datos y la integridad de datos.

Objetivos de Aprendizaje I: Identifique las principales tecnologías de memoria (Por ejemplo: SRAM, DRAM, Flash, Disco Magnetico) y su relación costo beneficio [Familiarizarse] II: Explique el efecto del retardo de la memoria en tiempo de ejecución [Familiarizarse] III: Describa como el uso de jerarquía de memoria (caché, memoria virtual) es aplicado para reducir el retardo efectivo en la memoria [Usar] IV: Describa los principios de la administración de memoria [Usar] V: Explique el funcionamiento de un sistema con gestión de memoria virtual [Usar] VI: Calcule el tiempo de acceso promedio a memoria bajo varias configuraciones de caché y memoria y para diversas combinaciones de instrucciones y referencias a datos [Evaluar]

Bibliografía: [Parhami, 2005, Patterson and Hennessy, 2004, Denning, 2005]

6.6 Interfaz y comunicación, 8 hr(s)

Competencias: C4,C9,CS3

Tópicos: I: Fundamentos de I/O: Handshaking, Bbuffering, I/O programadas, interrupciones dirigidas de I/O. II: Interrumpir estructuras: interrumpir reconocimiento, vectorizado y priorizado. III: Almacenamiento externo, organización fisica y discos. IV: Buses: Protocoles de bus, arbitraje, acceso directo a memoria (DMA). V: Introducción a Redes: comunicación de redes como otra capa de acceso remoto. VI: Soporte Multimedia. VII: Arquitecturas RAID.

Objetivos de Aprendizaje I: Explicar como las interrupciones son aplicadas para implementar control de entrada-salida y transferencia de datos[Familiarizarse] II: Identificar diversos tipos de buses en un sistema computacional[Familiarizarse] III: Describir el acceso a datos desde una unidad de disco magnético [Usar] IV: Comparar organizaciones de red conocidas como organizaciones en bus/Ethernet, en anillo y organizaciones conmutadas versus ruteadas[Evaluar] V: Identificar las interfaces entre capas necesarios para el acceso y presentación multimedia, desde la captura de la imagen en almacenamiento remoto, a través del transporte por una red de comunicaciones, hasta la puesta en la memoria local y la presentación final en una pantalla gráfica[Familiarizarse] VI: Describir las ventajas y limitaciones de las arquitecturas RAID[Familiarizarse]

Bibliografía: [Parhami, 2005, Stalings, 2010]

6.7 Multiprocesamiento y arquitecturas alternativas, 8 hr(s)

Competencias: C9

Tópicos: I: Ley potencial. **II:** Ejemplos de juego de instrucciones y arquitecturas SIMD y MIMD. **III:** Redes de interconexión (Hypercube, Shuffle-exchange, Mesh, Crossbar) **IV:** Sistemas de memoria de multiprocesador compartido y consistencia de memoria. **V:** Coherencia de cache multiprocesador

Objetivos de Aprendizaje I: Discutir el concepto de procesamiento paralelo mas allá del clásico modelo de von Neumann[Evaluar] II: Describir diferentes arquitecturas paralelas como SIMD y MIMD[Familiarizarse] III: Explicar el concepto de redes de interconexión y mostrar diferentes enfoques[Usar] IV: Discutir los principales cuidados en los sistemas de multiprocesamiento presentes con respecto a la gestión de memoria y describir como son tratados[Familiarizarse] V: Describir las diferencias entre conectores electricos en paralelo backplane, interconexión memoria procesador y memoria remota via red, sus implicaciones para la latencia de acceso y el impacto en el rendimiento de un programa[Evaluar]

Bibliografía: [Parhami, 2005, Parhami, 2002, El-Rewini and Abd-El-Barr, 2005]

6.8 Mejoras de rendimiento, 8 hr(s)

Competencias: C8,C9

- Tópicos: I: Arquitectura superescalar. II: Predicción de ramificación, Ejecución especulativa, Ejecución fuera de orden. III: Prefetching. IV: Procesadores vectoriales y GPU's V: Soporte de hardware para multiprocesamiento. VI: Escalabilidad. VII: Arquitecturas alternativas, como VLIW / EPIC y aceleradores y otros tipos de procesadores de propósito especial.
- Objetivos de Aprendizaje I: Describir las arquitecturas superescalares y sus ventajas [Familiarizarse]
 II: Explicar el concepto de predicción de bifurcaciones y su utilidad [Usar] III: Caracterizar los costos y beneficios de la precarga prefetching [Evaluar] IV: Explicar la ejecución especulativa e identifique las condiciones que la justifican [Evaluar] V: Discutir las ventajas de rendimiento ofrecida en una arquitectura de multihebras junto con los factores que hacen dificil dar el maximo beneficio de estas [Evaluar] VI: Describir la importancia de la escalabilidad en el rendimiento [Evaluar]

Bibliografía: [Parhami, 2005, Parhami, 2002, Patterson and Hennessy, 2004, Dongarra, 2006, Johnson, 1991]

7. Bibliografía

[Denning, 2005] Denning, P. J. (2005). The locality principle. Commun. ACM, 48(7):19-24.

- [Dongarra, 2006] Dongarra, J. (2006). Trends in high performance computing: a historical overview and examination of future developments. *Circuits and Devices Magazine*, *IEEE*, 22(1):22–27.
- [El-Rewini and Abd-El-Barr, 2005] El-Rewini, H. and Abd-El-Barr, M. (2005). Advanced Computer Architecture and Parallel Processing. John Wiley & Sons, Hoboken, NJ.
- [Hennessy and Patterson, 2006] Hennessy, J. L. and Patterson, D. A. (2006). Computer Architecture: A Quantitative Approach. Morgan Kaufman, San Mateo, CA, 4th edition.
- [Johnson, 1991] Johnson, M. (1991). Superscalar microprocessor design. Prentice Hall series in innovative technology. Prentice Hall.
- [Parhami, 2002] Parhami, B. (2002). Introduction to parallel processing: algorithms and architectures. Plenum series in computer science. Plenum Press.
- [Parhami, 2005] Parhami, B. (2005). Computer Architecture: From Microprocessors to Supercomputers. Oxford Univ. Press, New York.
- [Patterson and Hennessy, 2004] Patterson, D. A. and Hennessy, J. L. (2004). Computer Organization and Design: The Hardware/Software Interface. Morgan Kaufman, San Mateo, CA, 3 edition.
- [Stalings, 2010] Stalings, W. (2010). Computer Organization and Architecture: Designing for Performance. Prentice Hall, Upper Saddle River, NJ, 8th edition.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

CS1D3. Álgebra Abstracta (Obligatorio)

1. Información General

- Semestre: 3^{er} Sem. Créditos: 3
- Horas del curso: Teoría: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS1D1. Estructuras Discretas I (1^{er} Sem-Pág. 168)
 - CS112. Ciencia de la Computación I (2^{do} Sem-Pág. 188)

2. Fundamentación

En algebra abstracta se explotará las nociones de teoria de números, grupos, anillos y campos para comprender en profundidad temas de computación como criptografía y teoría de la codificación.

3. Objetivos del curso

- Entender los conceptos de estructuras algebraicas como anillos, dominios, cuerpos y grupos.
- Utilizar las propiedades de las estructuras algebraicas para resolver problemas
- Conocer las técnicas y métodos de sistemas criptográficos y como los teoremas permiten la realización de cálculos rápidos y eficientes.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C8. Entendimiento de lo que las tecnologías actuales pueden y no pueden lograr.⇒ Outcome a
- C16. Capacidad para identificar temas avanzados de computación y de la comprensión de las fronteras de la disciplina.⇒ Outcome j
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome i**

6. Contenido del curso

6.1 Teoría de Números, 16 hr(s)

Competencias: C1,CS2

Tópicos: I: Número enteros, algoritmos de la división, máximo común divisor, algoritmo de Euclides y algoritmo extendido de Euclides. Ecuaciones diofánticas II: Aritmética Modular y Operaciones en Zn: suma, resta, multiplicación, inversa y exponenciación. III: Congruencia, conjunto de residuos, congruencia lineal, teorema chino del resto. IV: Generadores de números primos y pseudo-aleatorios, función phi de Euler, teorema pequeño de Fermat, teorema de Euler, teorema fundamental de la aritmética y factorización.

Objetivos de Aprendizaje I: Realizar cálculos que involucren aritmética modular [Usar] II: Describir algoritmos numérico teóricos bÃasicos eficientes, incluyendo el algoritmo de Euclides y el algoritmo extendido de Euclides. [Evaluar] III: Establecer la importancia del estudio de la teoría de números. [Familiarizarse] IV: Discutir la importancia de los números primos en criptografía y explicar su uso en algoritmos criptográficos[Familiarizarse]

Bibliografía: [Rosen, 2011, Grimaldi, 2003, Koshy, 2007]

6.2 Estructuras Algebraicas, 14 hr(s)

Competencias: C1, C16

Tópicos: I: Grupos: propiedades, operaciones, homomorfismos e isomorfismo, orden de un grupo, grupos cíclicos, teorema de Lagrange y raíces primitivas. **II:** Anillos y cuerpos: propiedades, sub-anillos, dominios de integridad.

Objetivos de Aprendizaje I: Adquirir habilidad en la resolución de problemas abstractos y en la formulación de conjeturas . [Familiarizarse] II: Argumentar como los principales teoremas y algoritmos permiten resolver problemas criptográficos. [Evaluar]

Bibliografía: [Grimaldi, 2003, Gallian, 2012, Koshy, 2007]

6.3 Criptografía, 20 hr(s)

Competencias: C8, C16

Tópicos: I: Terminología básica de criptografía cubriendo las nociones relacionadas con los diferentes socios (comunicación), canal seguro / inseguro, los atacantes y sus capacidades, cifrado, descifrado, llaves y sus características, firmas. II: Tipos de cifrado (por ejemplo, cifrado César, cifrado affine), junto con los métodos de ataque típicas como el análisis de frecuencia. III: Apoyo a la infraestructura de clave pública para la firma digital y el cifrado y sus desafíos. IV: Preliminares matemáticos esenciales para la criptografía, incluyendo temas de álgebra lineal, teoría de números, teoría de la probabilidad y la estadística. V: Primitivas criptográficas: a) generadores pseudoaleatorios y cifrados de flujo b) cifrados de bloque (permutaciones pseudo-aleatorios), por ejemplo, AES c) funciones de pseudo-aleatorios d) funciones de hash, por ejemplo, SHA2, resistencia colisión e) códigos de autenticación de mensaje f) funciones derivaciones clave VI: Criptografía de clave simétrica: a) El secreto perfecto y el cojín de una sola vez b) Modos de funcionamiento para la seguridad semántica y encriptación autenticada (por ejemplo, cifrar-entonces-MAC, OCB, GCM) c) Integridad de los mensajes (por ejemplo, CMAC, HMAC) VII: La criptografía de clave pública: a) Permutación de trampilla, por ejemplo, RSA b) Cifrado de clave pública, por ejemplo, el cifrado RSA, cifrado El Gamal c) Las firmas digitales d) Infraestructura de clave pública (PKI) y certificados e) Supuestos de dureza, por ejemplo, Diffie-Hellman, factoring entero VIII: Protocolos de intercambio de claves autenticadas, por ejemplo, TLS . IX: Los protocolos criptográficos: autenticación desafío-respuesta, protocolos de conocimiento cero, el compromiso, la transferencia inconsciente, seguro 2-partido o multipartidista computación, compartición de secretos y aplicaciones . X: Motivar a los conceptos que utilizan las aplicaciones del mundo real, por ejemplo, dinero electrónico, canales seguros entre clientes y servidores, correo

electrónico seguro, autenticación de la entidad, el emparejamiento de dispositivos, sistemas de votación. \mathbf{XI} : Definiciones de seguridad y los ataques a las primitivas criptográficas: a) Objetivos: indistinción, unforgeability, colisión-resistencia b) Capacidades atacante: ataque-mensaje elegido (para firmas), ataques de cumpleaños, ataques de canal lateral, ataques de inyección de fallos. \mathbf{XII} : Estándares criptográficos y referencias de implementaciones. \mathbf{XIII} : La criptografía cuántica.

Objetivos de Aprendizaje I: Describir el propósito de la Criptografía y listar formas en las cuales es usada en comunicación de datos[Familiarizarse] II: Definir los siguientes términos: Cifrado, Criptoanálisis, Algorítmo Criptográfico, y Criptología y describe dos métodos básicos (cifrados) para transformar texto plano en un texto cifrado[Familiarizarse] III: Discutir la importancia de los números primos en criptografía y explicar su uso en algoritmos criptográficos[Familiarizarse] IV: Explicar como una infraestructura de Clave Pública soporta firmas digitales y encriptación y discutir sus limitaciones/vulnerabilidades[Familiarizarse] V: Usar primitivas criptográficas y sus propiedades básicas[Familiarizarse] VI: Ilustrar como medir la entropía y como generar aleatoriedad criptográfica[Familiarizarse] VII: Usa primitivas de clave pública y sus aplicaciones [Familiarizarse] VIII: Explicar como los protocolos de intercambio de claves trabajan y como es que pueden fallar [Familiarizarse] IX: Discutir protocolos criptográficos y sus propiedades[Familiarizarse] X: Describir aplicaciones del mundo real de primitivas criptográficas y sus protocolos [Familiarizarse] XI: Resumir definiciones precisas de seguridad, capacidades de ataque y sus metas[Familiarizarse] XII: Aplicar técnicas conocidas y apropiadas de criptografía para un escenario determinado [Familiarizarse] XIII: Apreciar los peligros de inventarse cada uno sus propios métodos criptográficos[Familiarizarse] XIV: Describir la criptográfia cuántica y el impacto de la computación cuántica en algoritmos criptográficos[Familiarizarse]

Bibliografía: [A.Menezes, 1996, Paar and Pelzl, 2011, Forouzan, 2008]

6.4 Teoria Algebraica de la Codificación, 10 hr(s)

Competencias: CS2

Tópicos: I: Elementos, proceso de transmitir una palabra **II:** Esquemas de codificación: paridad, triple repetición, verificación de paridad y generación de códigos de grupo.

Objetivos de Aprendizaje I: Utilizar las propiedades de las estructuras algebraicas en el estudio de la teoria algebraica de los códigos. [Familiarizarse] II: Aplicar técnicas que permitan la detección de errores, y si es necesario, proveer de métodos para reconstruir palabras originales. [Usar]

Bibliografía: [Grimaldi, 2003, W.Trappe and Washington, 2005]

7. Bibliografía

[A.Menezes, 1996] A.Menezes (1996). Handbook of Applied Cryptography (Discrete Mathematics and Its Applications. CRC Press.

[Forouzan, 2008] Forouzan, B. (2008). Introduction to Cryptography and Network Security. McGraw-Hill.

[Gallian, 2012] Gallian, J. (2012). Contemporary Abstract Algebra. Brooks/Cole, 8 ed. edition.

[Grimaldi, 2003] Grimaldi, R. (2003). Discrete and Combinatorial Mathematics: An Applied Introduction. Pearson, 5 ed. edition.

[Koshy, 2007] Koshy, T. (2007). Elementary Number Theory with Applications. Academic Press, 2 ed. edition.

[Paar and Pelzl, 2011] Paar, C. and Pelzl, J. (2011). Understanding Cryptography: A Textbook for Students and Practitioners. Springer.

[Rosen, 2011] Rosen, K. H. (2011). *Matemática Discreta y sus Aplicaciones*. McGraw Hill, 7 ed. edition.

[W.Trappe and Washington, 2005] W.Trappe and Washington, C. (2005). Introduction to Cryptography with Coding Theory. Pearson Prentice Hall.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

MA102. Cálculo I (Obligatorio)

1. Información General

- Semestre: 3^{er} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 4 horas;
- Prerrequisitos:
 - MA100. Matemática I (1^{er} Sem-Pág. 171)

2. Fundamentación

Estudia la integral de funciones en una variable, series numéricas y de funciones así como una introducción a las ecuaciones diferenciales, base para los siguientes cursos de Análisis Matemático y Física.

3. Objetivos del curso

- Comprender el concepto de integral, calcular integrales y aplicar la integral a la resolución de problemas.
- Manejar, manipular las sucesiones y series. Determinar la convergencia de una serie numérica y de funciones.
- Comprender el concepto de ecuación diferencial, resolver ecuaciones y aplicarlas (como modelos) a la resolución de problemas.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome j
- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades. \Rightarrow Outcome j

6. Contenido del curso

6.1 Integración, 18 hr(s)

Competencias: C1

Tópicos: I: Integral definida II: Integral indefinida

Objetivos de Aprendizaje I: Comprender el proceso de deducción de la integral definida y su relación con el cocepto de área [Usar]. II: Calcular integrales definidas [Usar]. III: Asimilar el Teorema fundamental del cálculo. Manejar los métodos de integración [Usar]. IV: Aplicar la integral a problemas [Usar].

Bibliografía: [Apostol, 1997, Simmons, 1995]

6.2 Funciones trascendentes, 14 hr(s)

Competencias: C1

Tópicos: I: Función logaritmo II: Función exponencial III: Funciones trigonométricas e inversas IV: Derivación e integración V: Regla de L'Hopital

Objetivos de Aprendizaje I: Conocer las funciones trascendentes y su importancia. Calcular derivadas e integrales [Usar]. **II:** Manejar y ejecutar aplicaciones de las funciones trascendentes [Usar].

Bibliografía: [Apostol, 1997, Simmons, 1995]

6.3 Integrales Impropias. Sucesiones y series, 22 hr(s)

Competencias: C24

Tópicos: I: Integrales impropias II: Sucesiones III: Series. IV: Criterios de convergencia

Objetivos de Aprendizaje I: Manejar el concepto de integral impropia, calcular integrales [Usar]. II: Conocer y manejar los diferentes series. Determinar la convergencia de una serie [Usar]. III: Manejar los criterios de convergencia [Usar].

Bibliografía: [Apostol, 1997, Bartle, 1976, Simmons, 1995]

6.4 Sucesiones y Series de funciones, 18 hr(s)

Competencias: C20

Tópicos: I: Convergencia uniforme y puntual II: Series de potencias. Series de Taylor III: Integración de series

Objetivos de Aprendizaje I: Asimilar y comprender los conceptos de convergencia puntual y uniforme [Usar]. II: Aproximar funciones mediante series de potencias. Manejar y utilizar las series de Taylor [Usar].

Bibliografía: [Apostol, 1997, Simmons, 1995, Bartle, 1976]

6.5 Introducción a las Ecuaciones diferenciales, 18 hr(s)

Competencias: C1

Tópicos: I: Ecuaciones diferenciales de primer orden II: Ecuaciones lineales de segundo orden

Objetivos de Aprendizaje I: Comprender el concepto de ecuación diferencial y su aplicabilidad en las ciencias [Usar]. II: Resolver ecuaciones diferenciales de primer orden y segundo orden [Usar]. III: Aplicar ecuaciones diferenciales a la resolución de problemas [Usar].

Bibliografía: [Apostol, 1997]

7. Bibliografía

[Apostol, 1997] Apostol, T. M. (1997). Calculus, volume 1. Editorial Reverté, 2nd edition.

[Bartle, 1976] Bartle, R. G. (1976). The Elements of Real Analysis. Wiley, 2nd edition.

[Simmons, 1995] Simmons, G. F. (1995). Calculus With Analytic Geometry. McGraw-Hill, 2nd edition.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

FG107. Antropología Filosófica y Teológica (Obligatorio)

1. Información General

■ Semestre: 3^{er} Sem. Créditos: 3

■ Horas del curso: Teoría: 3 horas;

■ Prerrequisitos:

• FG104. Introducción a la Filosofía (2^{do} Sem-Pág. 198)

2. Fundamentación

Todos los hombres desean saber (Aristóteles, Metafísica, I, 1). La aspiración natural de todo hombre por alcanzar la verdad y la sabiduría se encuentra desde los orígenes mismos de la humanidad. Este saber se dirige de manera especial hacia el hombre mismo, porque la pregunta acerca de la verdad del hombre afecta a lo más íntimo de la felicidad y destino humano". Con éstas palabras comienza José Angel García Cuadrado su obra Antropología Filosófica. Una introducción a la Filosofía del Hombre, y resume la fundamentación de este curso que, aunque apretado en cuanto al vasto conocimiento acerca del hombre, intenta proporcionar una síntesis significativa de conocimientos y razonamientos que sirvan de base para responder a la pregunta sobre el ser humano.

3. Objetivos del curso

■ Ser capaz de comprender la naturaleza humana (es decir, las facultades y las finalidades de cada facultad, su jerarquización y posible dominio); la condición de persona humana y su dignidad; las consecuencias existenciales de dicha naturaleza y condición de persona humana (manifestaciones del ser persona: libertad, sociabilidad, sexualidad, cultura); y los datos relevantes de la antropología teológica que dan explican el misterio de la existencia humana y su fin trascendente (pecado original, redención, encarnación del Verbo, vida después de la muerte, resurrección, naturaleza y sobre-naturaleza).

4. Resultados (Outcomes)

- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (Evaluar)
- g) Analizar el impacto local y global de la computación sobre los individuos, organizaciones y sociedad. (Evaluar)
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (Evaluar)
- o) Mejorar las condiciones de la sociedad poniendo la tecnología al servicio del ser humano. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C10. Comprensión del impacto en las personas, las organizaciones y la sociedad de la implementación de soluciones tecnológicas e intervenciones. \Rightarrow Outcome g, \tilde{n}, o
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome e,g,ñ,o
- C21. Comprender el aspecto profesional, legal, seguridad, asuntos políticos, humanistas, ambientales, culturales y éticos.⇒ Outcome e

6. Contenido del curso

6.1 Primera Unidad: Estatuto científico de la antropología filosófica, 5 hr(s)

Competencias: C20

Tópicos: I: Presentación del curso **II:** La pregunta sobre el hombre y la importancia de la Antropología **III:** Antropología filosófica y antropologías positivas. Delimitando el objeto: a) Antropología física o natural (etnografía paleo antropología) b) Antropología cultural o social (etnología) c) Psicología Moderna d) Limitaciones de la ciencia moderna y el mito del progreso e) Antropología filosófica: Objeto y definición f) Antropología teológica: Objeto y definición **IV:** Planos metodológicos del estudio de la antropología filosófica.

Objetivos de Aprendizaje I: Comprender la importancia del curso para la formación universitaria (personal y profesional). Delimitar y definir la Antropología Filosófica y Teológica y sus respectivos objetos de estudio. Comprender el método de estudio segížn los diversos planteamientos. [Usar].

Bibliografía: [Ángel García Cuadrado,]

6.2 Segunda Unidad: El hombre en el mundo natural, 15 hr(s)

Competencias: C20

Tópicos: I: La jerarquía del mundo natural a) Noción de vida: el alma b) Características de la vida c) Tipos de alma. **II:** Semejanzas y diferencias con los vivientes: a) Las operaciones básicas vitales b) La sensibilidad interna y externa c) Las tendencias sensibles: deseos (apetito concupiscible) e impulsos (apetito irascible). **III:** Afectividad humana: a) Pasiones humanas b) Educación de la afectividad. **IV:** Diferencias específicas: a) Inteligencia b) Voluntad c) La inmortalidad del alma humana.

Objetivos de Aprendizaje I: Analizar y comprender la naturaleza humana utilizando una metodología ascendente: Comprendiendo el fenómeno de la vida, las semejanzas y diferencias que tenemos con los vivientes (facultades) y las facultades superiores que nos otorgan nuestra diferencia específica en el mundo natural. [Usar]

Bibliografía: [Ángel García Cuadrado,]

6.3 Tercera Unidad: La persona humana: fundamento, dignidad y manifestaciones, 15 hr(s)

Competencias: C10, C20

Tópicos: I: Origen de la noción de persona. II: La fundamentación metafísica de la persona humana. III: Otras aproximaciones a la fundamentación de persona. IV: Dignidad de la persona humana. a) Otras aproximaciones. V: El cuerpo humano. VI: Manifestaciones de la persona humana. VII: Manifestaciones persona humana (perspectiva dinámico-existencial de la naturaleza humana): a) Persona y libertad: La libertad: ser libre (ontológico) y la operatividad de la libertad (3 tipos de operatividad). b) Las relaciones interpersonales: El ser humano es social por naturaleza el amor y la amistad. c) Persona y sexualidad: Ser varón y ser mujer: Sexualidad y matrimonio, La cuestión homosexual.

Objetivos de Aprendizaje I: Analizar y comprender qué es significa ser Âńpersona humanaÂż, desde los orígenes de la noción hasta el aporte definitivo del cristianismo; comprender la fundamentación de la dignidad de la persona humana desde una perspectiva metafísica y cristiana; comprender las manifestaciones de la persona humana a través de su naturaleza en un plano dinámico-existencial. [Usar].

Bibliografía: [Ángel García Cuadrado, , Melendo, 2003]

6.4 Cuarta Unidad: La persona humana: aproximación existencial y fenomenológica, 3 hr(s)

Competencias: C20

Tópicos: I: Aproximación existencial y fenomenológica a la persona humana. **II:** El sentido de la vida: fines objetivos y fines subjetivos. **III:** La necesidad de una misión particular. **IV:** Quién soy? La perenne pregunta. **V:** Visión tripartita - fenomenológica de la persona humana: unidad biológica, psicológica y espiritual. **VI:** Diferencia entre el yo psicológico y el yo personal. a) Personalidad, mismidad e identidad. Persona y sexualidad: Ser varón y ser mujer. b) Sexualidad y matrimonio. c) La cuestión homosexual. **VII:** Complementariedad entre las visiones dualista y tripartita de la persona. a) Teocentrismo y Antropocentrismo **VIII:** Dinamismos de la persona: permanencia y despliegue necesidad de seguridad y significación.

Objetivos de Aprendizaje I: Presentar la antropología desde una perspectiva fenomenológica existencial. Analizar el aporte de dicho enfoque frente a los vistos anteriormente y frente el hombre moderno. [Usar].

Bibliografía: [Quesada, , Frankl, 1991]

6.5 Quinta Unidad: Destino de la Persona Humana - Antropología Teológica, 3 hr(s)

Competencias: C20,C21

Tópicos: I: Finitud y trascendencia de la persona humana. II: El deseo de eternidad. III: Aproximación metafísica desde la inmortalidad del alma humana. IV: Aproximación existencial y fenomenológica desde la experiencia de finitud: a) Nostalgia de infinito. V: Antropología Teológica: a) El hombre como imagen de Dios. b) El pecado original y la redención. c) Resurrección. d) Vida en Cristo (vida sobrenatural).

Objetivos de Aprendizaje I: Comprensión ontológica del ser personal desde sus dinamismos fundamentales y otros dinamismos [Usar]. II: Comprensión de la fe, enraizada en el ser personal [Usar].

Bibliografía: [Ángel García Cuadrado,]

6.6 La persona: ser en relación, 6 hr(s)

Competencias: C22

Tópicos: I: Relacionalidad, encuentro y comunión en la persona. **II:** La persona como ser sexuado y como ser social. **III:** La familia. **IV:** La sociedad.

Objetivos de Aprendizaje I: Comprensión de la persona desde su dimensión ontológica relacional con Dios, consigo mismo, con lo demás y con la Creación [Usar].

Bibliografía: [Quesada, , Ángel García Cuadrado, , para la Educación Católica, , Stein,]

7. Bibliografía

[Frankl, 1991] Frankl, V. (1991). El hombre en búsqueda de sentido. Editorial Herder. UCSP:616.891 F80.

[Melendo, 2003] Melendo, T. (2003). Introducción a la antropología. Eunsa-Pamplona.

[para la Educación Católica,] para la Educación Católica, C. Orientaciones educativas sobre el amor humano. Pautas de educación sexual.

[Quesada,] Quesada, A. G. La mismidad.

[Stein,] Stein, E. La estructura de la persona humana. UCSP:128 S92.

[Ángel García Cuadrado,] Ángel García Cuadrado, J. Antropología filosófica. Una introducción a la filosofía del hombre. UCSP:128 G23.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

FG201. Apreciación Artística (Electivos)

1. Información General

■ Semestre: 3^{er} Sem. Créditos: 2

■ Horas del curso: Teoría: 1 horas; Práctica: 2 horas;

■ Prerrequisitos: Ninguno

2. Fundamentación

El curso es de naturaleza teórico práctico, tiene como propósito vincular al ser humano con la cultura y sus manifestaciones para apreciarlas y valorarlas.

3. Objetivos del curso

■ Promover en el estudiante la capacidad de descripción e interpretación crítica de la imagen para acrecentar su sensibilidad.

4. Resultados (Outcomes)

 $\tilde{\mathbf{n}}$) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (\mathbf{Usar})

5. Competencias específicas de Computación (IEEE)

C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades. \Rightarrow Outcome $\tilde{\mathbf{n}}$

6. Contenido del curso

6.1 Primera Unidad: Arte, elementos y principios del diseño, 9 hr(s)

Competencias: C24

Tópicos: I: El Arte y la Estática: Consideraciones básicas introductorias **II:** Diseño bidimensional: Elementos y principios **III:** Historia del Arte: Consideraciones sobre arte desde la prehistoria en sus variadas manifestaciones.

Objetivos de Aprendizaje I: Exponer los elementos del diseño que intervienen en una obra artística para poder hacer una descripción e interpretación de los mismos. [Usar]. II: Exponer las manifestaciones artísticas (plásticas) en el transcurso de la historia para vincular estos contenidos con los elementos del diseño. [Usar].

Bibliografía: [Pischel, , Bense, , Milla Batres, , Eco, , Sol9(ed.),]

6.2 Segunda Unidad: Teoría del color, 9 hr(s)

Competencias: C24

Tópicos: I: El color: Teorías del color y dimensiones del color **II:** Psicología del Color: Consideraciones iniciales **III:** Historia del Arte: Arte en las culturas antiguas.

Objetivos de Aprendizaje I: Exponer las teorías del color para una mejor apreciación del mundo que nos rodea. [Usar]. II: Desarrollo de la sensibilidad del color. [Usar]. III: Exponer las manifestaciones artísticas (plásticas) en el transcurso de la historia para vincular estos contenidos con el conocimiento del color. [Usar].

Bibliografía: [Pischel, , Milla Batres, , Sol9(ed.),]

6.3 Tercera Unidad: Historia del Arte - Apreciación, 9 hr(s)

Competencias: C24

Tópicos: I: Modelos de análisis y apreciación I: El análisis visual o formal, Consideraciones sobre objeto artístico y contexto (influencia). **II:** Historia del Arte: Consideraciones sobre arte hasta el siglo XVIII.

Objetivos de Aprendizaje I: Exponer las manifestaciones artísticas (plásticas) en el transcurso de la historia para distinguir su influencia a través del tiempo. [Usar]. II: Formular comentarios, describiendo y analizando, teniendo en cuenta el contexto y los conocimientos adquiridos. [Usar].

Bibliografía: [Pischel, , Milla Batres, , Sol9(ed.),]

6.4 Cuarta Unidad: Historia del Arte - Apreciación, 9 hr(s)

Competencias: C24

Tópicos: I: Modelos de apreciación II: El análisis visual y su relación con el concepto de tendencia, El análisis de contexto del objeto artístico (variedad) **II:** Historia del Arte: Siglos XIX , XX, XXI.

Objetivos de Aprendizaje I: Exponer las técnicas de comunicación visual, para identificar su aplicación en el lenguaje visual. [Usar]. II: Conocer algunas tendencias artísticas a través del tiempo en nuestro país, como valioso legado de nuestros antepasados, ubicándolas en su contexto. [Usar].

Bibliografía: [Pischel, , Milla Batres, , Sol9(ed.), , Comercio,]

6.5 Quinta Unidad: Arte Peruano - Contexto, 6 hr(s)

Competencias: C24

Tópicos: I: Visión de la cultura peruana: Las manifestaciones artísticas en su contexto. **II:** La apreciación.

Objetivos de Aprendizaje I: Relacionar algunas tendencias artà sticas del siglo XIX y XX con las manifestaciones artísticas en el Perú, ubicándolas en su contexto. [Usar].

Bibliografía: [Milla Batres, , Comercio,]

7. Bibliografía

[Bense,] Bense, M. Estética.

[Comercio,] Comercio, E. Maestros de la pintura peruana.

[Eco,] Eco, H. Historia de la Belleza.

 $[{\rm Milla~Batres,}~]~{\rm Milla~Batres,}~{\rm C.}~{\it Compendio~hist\'{o}rico~del~Per\'u}.$

[Pischel,] Pischel, G. Historia universal del arte.

[Sol9(ed.),] Sol9(ed.), E. Grandes maestros de la pintura.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

FG202. Apreciación Literaria (Electivos)

1. Información General

■ Semestre: 3^{er} Sem. Créditos: 2

■ Horas del curso: Teoría: 1 horas; Práctica: 2 horas;

■ Prerrequisitos: Ninguno

2. Fundamentación

Siendo la literatura una actividad artística que tiene por objeto la expresión de ideas y sentimientos por medio de la palabra, esta constituye, la reconstrucción de experiencias de la realidad en diversos órdenes, gracias a la expresión personal y emotiva del escritor y el momento social que le tocó vivir. Partiendo de este enunciado las grandes obras literarias, son poderosos agentes de cultura. De ahí que, la literatura cumple un rol integrador en la formación cultural del ser humano; pero, para lograr este objetivo en su verdadera dimensión, hay que saber apreciar la belleza de la expresión literaria con un sentido analítico, crítico y valorativo El curso de Apreciación Literaria corresponde a los cursos del Area de Formación General y es considerado como un curso electivo que tiene el valor de dos créditos. Es de carácter teórico-práctico, va que los alumnos reciben información teórica sobre el análisis de textos literarios y sobre los diferentes movimientos literarios que se han dado a través del tiempo; dicha información, los alumnos la ponen en práctica al analizar fragmentos y obras literarias. La metodología consiste en trabajos individuales y grupales de análisis de textos, los cuales serán expuestos por los alumnos a sus compañeros, al mismo tiempo, responden a una serie de interrogantes referentes a los temas tratados. El propósito fundamental es, sensibilizar a los estudiantes en la percepción de la belleza escrita que se expresa a través de las distintas obras literarias; además, busca desarrollar en los alumnos la capacidad crítica y valorativa que le ayudará en su formación personal y cultural. Así mismo, este curso permite que los estudiantes desarrollen destrezas comunicativas a nivel verbal y escrito. La temática abarca los siguientes aspectos: análisis de textos, teoría de los géneros literarios, lenguaje literario y figurado, los movimientos literarios como: la antigüedad clásica, edad media, humanismo y renacimiento, neoclasicismo, romanticismo, realismo, naturalismo y la literatura contemporánea.

3. Objetivos del curso

- Desarrollar su capacidad crítica, creativa y valorativa, a través de la lectura, análisis e interpretación de textos literarios con el fin de estimular y formar su sensibilidad estética y reforzar el hábito lector.
- Adquirir destreza en la técnica del Comentario de Textos y en la utilización de los mismos.
- Promover el desarrollo de destrezas comunicativas a nivel verbal (escrito y hablado).

4. Resultados (Outcomes)

- f) Comunicarse efectivamente con audiencias diversas. (Usar)
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (Usar)

5. Competencias específicas de Computación (IEEE)

C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades. \Rightarrow Outcome $\tilde{\mathbf{n}}$, \mathbf{f}

6. Contenido del curso

6.1 Primera Unidad, 9 hr(s)

Competencias: C24

Tópicos: I: Textos literarios y no literarios.- Conceptos y características. II: El comentario de textos. Ficha de análisis literario. III: Corrientes o movimientos literarios de la literatura universal y peruana a través de la historia.- Panorama general. Características y diferencias. 3.1. Vigencia de la teoría de los géneros: lírico, épico, dramático, narrativo y didáctico. IV: El lenguaje figurado: figuras literarias.-Análisis y reconocimiento.

Objetivos de Aprendizaje I: Distinguir textos literarios de otros tipos de textos. [Usar]. II: Comentar textos literarios y desarrollar adecuadamente la ficha de análisis literario. [Usar]. III: Diferenciar los distintos tipos de expresión literaria a través de la evolución histórica de la misma, valorándolas en su verdadera dimensión. [Usar]. IV: Aplicar las figuras literarias en textos tanto en prosa como en verso. [Usar].

Bibliografía: [Cáceres Cuadros, 2007, Bello Vazquez, 1997]

6.2 Segunda Unidad, 15 hr(s)

Competencias: C24

Tópicos: I: Homero "La Iliada" **II:** Sófocles "Edipo Rey" **III:** Virgilio "La Eneida" **IV:** Literatura Cristiana "La Biblia"

Objetivos de Aprendizaje PERSPECTIVA CRÍTICA- LITERARIA (Con lecturas de fragmentos de obras representativas) I: Literatura de la Antigüedad Clásica: Perspectiva crítica: Características, Representantes, Análisis del fragmento: Proverbios, La Iliada [Usar]. II: Literatura de la Edad Media: Perspectiva crítica: Características, Representantes, Análisis de texto: El Quijote de la Mancha [Usar]. III: Literatura del Humanismo y Renacimiento: Perspectiva crítica: Características, Representantes, Análisis del fragmento: La Divina Comedia.[Usar].

Bibliografía: [Torres Amat, 1950, Homero, 1912, Sanzos Oliver, 1916, Alighieri, 1938]

6.3 Tercera Unidad, 18 hr(s)

Competencias: C24

Tópicos: I: Literatura del Neoclasicismo y Romanticismo: Perspectiva crítica: Características, Representantes, Análisis del fragmento. II: Literatura del Realismo y Naturalismo: Perspectiva crítica: Características, Representantes, Análisis del fragmento. III: Literatura Contemporánea: Perspectiva crítica: Características, Representantes, Análisis del fragmento. IV: Análisis, interpretación, valoración y comentario de una completa de la literatura: Exposición individual y/o grupal de una obra completa de la literatura universal, Exposición individual y/o grupal de una obra completa de la literatura peruana. V: Redacción de ensayo sobre obras y/o fragmentos leídos o expuestos.

Objetivos de Aprendizaje I: Descubrir en las obras literarias los valores humanos más importantes reconociéndolos en su verdadera dimensión. [Usar]. II: Comprender y textos literarios y reflexionar sobre el contenido. [Usar]. III: Valorar sus propias cualidades en relación a la literatura [Usar]. IV: Exponer y comentar adecuadamente obras clásicas del canon literario- universal y peruano. [Usar]. V: Redactar textos argumentativos (ensayo) sobre una obra de la literatura universal o peruana leída. [Usar].

Bibliografía: [Hugo, 1896, Hemingway, 1984, Goethe, 1905]

7. Bibliografía

[Alighieri, 1938] Alighieri, D. (1938). La divina comedia, texto impreso. Buenos Aires: Editorial Sopena.

[Bello Vazquez, 1997] Bello Vazquez, F. (1997). El comentario de textos literarios. Editorial Paidos iberica, España.

[Cáceres Cuadros, 2007] Cáceres Cuadros, T. (2007). Análisis de textos literarios. Unsa.

[Goethe, 1905] Goethe, J. W. v. (1905). Fausto. Montaner y Simón, editores.

[Hemingway, 1984] Hemingway, E. (1984). El viejo y el mar. Editorial La Oveja Negra Ltda. Colombia.

[Homero, 1912] Homero (1912). La Iliada. Editorial Librería de la Vda. de Ch. Bouret.

[Hugo, 1896] Hugo, Victor y Marie, C. (1896). Los Miserables. Librería de Garnier Hermanos.

[Sanzos Oliver, 1916] Sanzos Oliver, M. (1916). Vida y semblanza de Cervantes. Editorial Montaner y Simón.

[Torres Amat, 1950] Torres Amat, F. (1950). La Sagrada Biblia. Editorial Sopena.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

CS210. Algoritmos y Estructuras de Datos (Obligatorio)

1. Información General

- Semestre: 4^{to} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS113. Ciencia de la Computación II (3^{er} Sem-Pág. 203)
 - CS100. Introducción de Ciencia de la Computación (2^{do} Sem-Pág. 183)

2. Fundamentación

El fundamento teórico de todas las ramas de la informática descansa sobre los algoritmos y estructuras de datos, este curso brindará a los participantes una introducción a estos témas, formando así una base que servirá para los siguientes cursos en la carrera.

3. Objetivos del curso

- Hacer que el alumno entienda la importancia de los algoritmos para la solución de problemas.
- Introducir al alumno hacia el campo de la aplicación de las estructuras de datos.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Usar)
- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Usar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Usar)
- k) Aplicar los principios de desarrollo y diseño en la construcción de sistemas de software de complejidad variable. (Usar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science). \Rightarrow Outcome j
- C2. Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.⇒ Outcome b
- C5. Capacidad para implementar algoritmos y estructuras de datos en el software..⇒ Outcome c
- CS2. Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución. \Rightarrow Outcome b
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome k**

6. Contenido del curso

6.1 Grafos, 12 hr(s)

Competencias: C1,C2,C5

Tópicos: I: Concepto de Grafos. II: Grafos Dirigidos y Grafos no Dirigidos. III: Utilización de los Grafos. IV: Medida de la Eficiencia. En tiempo y espacio. V: Matrices de Adyacencia.
VI: Matrices de Adyacencia etiquetada. VII: Listas de Adyacencia. VIII: Implementación de Grafos usando Matrices de Adyacencia. IX: Implementación de Grafos usando Listas de Adyacencia. X: Inserción, Búsqueda y Eliminación de nodos y aristas. XI: Algoritmos de búsqueda en grafos.

Objetivos de Aprendizaje I: Adquirir destreza para realizar una implementación correcta. [Usar] II: Desarrollar los conocimientos para decidir cuando es mejor usar una técnica de implementación que otra. [Usar]

Bibliografía: [Cormen et al., 2009, Fager et al., 2014]

6.2 Matrices Esparzas, 8 hr(s)

Competencias: C1,C2,C5

Tópicos: I: Conceptos Iniciales. **II:** Matrices poco densas **III:** Medida de la Eficiencia en Tiempo y en Espacio **IV:** Creación de la matriz esparza estática vs Dinámicas. **V:** Métodos de inserción, búsqueda y eliminación

Objetivos de Aprendizaje I: Comprender el uso y implementacion de matrices esparzas. [Evaluar]

Bibliografía: [Cormen et al., 2009, Fager et al., 2014]

6.3 Arboles Equilibrados, 16 hr(s)

Competencias: C2,C5,C6

Tópicos: I: Árboles AVL. **II:** Medida de la Eficiencia. **III:** Rotaciones Simples y Compuestas **IV:** Inserción, Eliminación y Búsqueda. **V:** Árboles B, B+ B* y Patricia.

Objetivos de Aprendizaje I: Comprender las funciones básicas de estas estructuras complejas con el fin de adquirir la capacidad para su implementación. [Evaluar]

Bibliografía: [Cormen et al., 2009, Fager et al., 2014]

7. Bibliografía

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). *Introduction to Algorithms*. MIT Press, third edition edition. ISBN: 978-0-262-53305-8.

[Fager et al., 2014] Fager, J., Yépez, W. L. P., Villacrés, M., Martinez, L. A. P., Ochoa, D., and Cuadros-Vargas, E. (2014). *Estructura de datos*. Iniciativa Latinoamericana de Libros de Texto Abiertos (LATIn), first edition edition.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

CS211. Teoría de la Computación (Obligatorio)

1. Información General

- Semestre: 4^{to} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - \bullet CS1D2. Estructuras Discretas II (2 do Sem-Pág. 185)

2. Fundamentación

Este curso hace fasis en los lenguajes formales, modelos de computación y computabilidad, además de incluir fundamentos de la complejidad computacional y de los problemas NP completos.

3. Objetivos del curso

• Que el alumno aprenda los conceptos fundamentales de la teoría de lenguajes formales.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Evaluar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C8. Entendimiento de lo que las tecnologías actuales pueden y no pueden lograr.⇒ Outcome a
- C9. Comprensión de las limitaciones de la computación, incluyendo la diferencia entre lo que la computación es inherentemente incapaz de hacer frente a lo que puede lograrse a través de un futuro de ciencia y tecnología.⇒ Outcome b,j

6. Contenido del curso

6.1 Computabilidad y complejidad básica de autómatas, 20 hr(s)

Competencias: C9

Tópicos: I: Máquinas de estado finito. II: Expresiones regulares. III: Problema de la parada. IV: Gramáticas libres de contexto. V: Introducción a las clases P y NP y al problema P vs. NP. VI: Introducción y ejemplos de problemas NP- Completos y a clases NP-Completos. VII: Máquinas de Turing, o un modelo formal equivalente de computación universal. VIII: Máquinas de Turing no determinísticas. IX: Jerarquía de Chomsky. X: La tesis de Church-Turing. XI: Computabilidad. XII: Teorema de Rice. XIII: Ejemplos de funciones no computables. XIV: Implicaciones de la no-computabilidad.

Objetivos de Aprendizaje I: Discute el concepto de máquina de estado finito [Evaluar] II: Diseñe una máquina de estado finito determinista para aceptar un determinado lenguaje [Evaluar] III: Genere una expresión regular para representar un lenguaje específico [Evaluar] IV: Explique porque el problema de la parada no tiene solucion algorítmica [Evaluar] V: Diseñe una gramática libre de contexto para representar un lenguaje especificado [Evaluar] VI: Define las clases P y NP [Evaluar] VII: Explique el significado de NP-Completitud [Evaluar] VIII: Explica la tesis de Church-Turing y su importancia [Familiarizarse] IX: Explica el teorema de Rice y su importancia [Familiarizarse] X: Da ejemplos de funciones no computables [Familiarizarse] XI: Demuestra que un problema es no computable al reducir un problema clásico no computable en base a él [Familiarizarse]

Bibliografía: [Kolman, 1997, Kelley, 1995]

6.2 Complejidad Computacional Avanzada, 20 hr(s)

Competencias: C8,C9

Tópicos: I: Revisión de las clases P y NP; introducir spacio P y EXP. **II:** Jerarquía polimonial. **III:** NP completitud (Teorema de Cook). **IV:** Problemas NP completos clásicos. **V:** Técnicas de reducción.

Objetivos de Aprendizaje I: Define las clases P y NP (También aparece en AL / Automata Básico, Computalidad y Complejidad) [Evaluar] II: Define la clase P-Space y su relación con la clase EXP [Evaluar] III: Explique el significado de NP-Completo (También aparece en AL / Automata Básico, Computalidad y Complejidad) [Evaluar] IV: Muestre ejemplos de problemas clásicos en NP - Completo [Evaluar] V: Pruebe que un problema es NP- Completo reduciendo un problema conocido como NP-Completo [Evaluar]

Bibliografía: [Kelley, 1995, Hopcroft and Ullman, 1993]

6.3 Teoría y Computabilidad Avanzada de Autómatas, 20 hr(s)

Competencias: C8

Tópicos: I: Conjuntos y Lenguajes: a) Lenguajes Regulares. b) Revisión de autómatas finitos determinísticos (Deterministic Finite Automata DFAs) c) Autómata finito no determinístico (Nondeterministic Finite Automata NFAs) d) Equivalencia de DFAs y NFAs. e) Revisión de expresiones regulares; su equivalencia con autómatas finitos. f) Propiedades de cierre. g) Probando no-regularidad de lenguajes, a través del lema de bombeo (Pumping Lemma) o medios alternativos. **II:** Lenguajes libres de contexto: a) Autómatas de pila (Push-down automata (PDAs) b) Relación entre PDA y gramáticas libres de contexto. c) Propiedades de los lenguajes libres de contexto.

Objetivos de Aprendizaje I: Determina la ubicación de un lenguaje en la jerarquía de Chomsky (regular, libre de contexto, enumerable recursivamente)[Evaluar] II: Convierte entre notaciones igualmente poderosas para un lenguaje, incluyendo entre estas AFDs, AFNDs, expresiones regulares, y entre AP y GLCs[Evaluar]

Bibliografía: [Hopcroft and Ullman, 1993, Brookshear, 1993]

7. Bibliografía

[Brookshear, 1993] Brookshear, J. G. (1993). Teoría de la Computación. Addison Wesley Iberoamericana.

[Hopcroft and Ullman, 1993] Hopcroft, J. E. and Ullman, J. D. (1993). Introducción a la Teoría de Autómatas, Lenguajes y Computación. CECSA.

[Kelley, 1995] Kelley, D. (1995). Teoría de Autómatas y Lenguajes Formales. Prentice Hall.

[Kolman, 1997] Kolman, Busby, R. (1997). Estructuras de Matemáticas Discretas para la Computación. Prentice Hall.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

CS271. Bases de Datos I (Obligatorio)

1. Información General

■ Semestre: 4^{to} Sem. Créditos: 4

■ Horas del curso: Teoría: 2 horas; Laboratorio: 4 horas;

Prerrequisitos:

• CS1D3. Álgebra Abstracta (3^{er} Sem-Pág. 218)

2. Fundamentación

La gestión de la información (IM) juega un rol principal en casi todas las áreas donde los computadores son usados. Esta área incluye la captura, digitalización, representación, organización, transformación y presentación de información; algorítmos para mejorar la eficiencia y efectividad del acceso y actualización de información almacenada, modelamiento de datos y abstracción, y técnicas de almacenamiento de archivos físicos.

Este también abarca la seguridad de la información, privacidad, integridad y protección en un ambiente compartido. Los estudiantes necesitan ser capaces de desarrollar modelos de datos conceptuales y físicos, determinar que métodos de (IM) y técnicas son apropiados para un problema dado, y ser capaces de seleccionar e implementar una apropiada solución de IM que refleje todas las restricciones aplicables, incluyendo escalabilidad y usabilidad.

3. Objetivos del curso

- Que el alumno aprenda a representar información en una base de datos priorizando la eficiencia en la recuperación de la misma
- Que el alumno aprenda los conceptos fundamentales de gestión de bases de datos. Esto incluye aspectos de diseño de bases de datos, lenguajes de bases de datos y realización de bases de datos
- Discutir el modelo de bases de datos con base en el álgebra relacional, cálculo relacional y en el estudio de sentencias SQL.

4. Resultados (Outcomes)

- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Usar)
- d) Trabajar efectivamente en equipos para cumplir con un objetivo común. (Usar)
- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (\mathbf{Usar})
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Evaluar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome b
- **C2.** Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.⇒ **Outcome d**
- C7. Ser capaz de aplicar los principios y tecnologías de ingeniería de software para asegurar que las implementaciones de software son robustos, fiables y apropiados para su público objetivo.⇒ Outcome e
- CS4. Implementar la teoría apropiada, prácticas y herramientas para la especificación, diseño, implementación y mantenimiento, así como la evaluación de los sistemas basados en computadoras.⇒
 Outcome i
- **CS6.** Evaluar los sistemas en términos de atributos de calidad en general y las posibles ventajas y desventajas que se presentan en el problema dado.⇒ **Outcome j**

6. Contenido del curso

6.1 Sistemas de Bases de Datos, 14 hr(s)

Competencias: 3

- Tópicos: I: Enfoque y Evolución de Sistemas de Bases de Datos. II: Componentes del Sistema de Bases de Datos. III: Diseño de las funciones principales de un DBMS. IV: Arquitectura de base de datos e independencia de datos. V: Uso de un lenguaje de consulta declarativa. VI: Sistemas de apoyo a contenido estructurado y / o corriente. VII: Enfoques para la gestión de grandes volúmenes de datos (por ejemplo, sistemas de bases de datos NoSQL, uso de MapReduce).
- Objetivos de Aprendizaje I: Explica las características que distinguen un esquema de base de datos de aquellos basados en la programación de archivos de datos [Usar] II: Describe los diseños más comunes para los componentes base de sistemas de bases de datos incluyendo el optimizador de consultas, ejecutor de consultas, administrador de almacenamiento, métodos de acceso y procesador de transacciones [Usar] III: Cita las metas básicas, funciones y modelos de un sistema de bases de datos [Usar] IV: Describe los componentes de un sistema de bases datos y da ejemplos de su uso [Usar] V: Identifica las funciones principales de un SGBD y describe sus roles en un sistema de bases de datos [Usar] VI: Explica los conceptos de independencia de datos y su importancia en un sistema de bases de datos [Usar] VII: Usa un lenguaje de consulta declarativo para recoger información de una base de datos [Usar] VIII: Describe las capacidades que las bases de datos brindan al apoyar estructuras y/o la secuencia de flujo de datos, ejm. texto [Usar] IX: Describe los enfoques principales para almacenar y procesar larges volúmenes de datos [Usar]

Bibliografía: [Rob and Coronel, 2004, Elmasri and Navathe, 2004, Date, 2005, Korth and Silberschatz, 2002]

6.2 Modelado de datos, 14 hr(s)

Competencias: 4

- Tópicos: I: Modelado de datos II: Modelos conceptuales (e.g., entidad-relación, diagramas UML) III: Modelos de hoja de cálculo IV: Modelos Relacionales. V: Modelos orientados a objetos. VI: Modelos de datos semi-estructurados (expresados usando DTD o XML Schema, por ejemplo)
- Objetivos de Aprendizaje I: Compare y contrasta modelos apropiados de datos, incluyendo estructuras sus estructuras internas, para diversos tipos de datos[Usar] II: Describe los conceptos en notación de modelos (ejm. Diagramas Entidad-Relación o UML) y cómo deben de ser usados[Usar] III: Define la terminología fundamental a ser usada en un modelo relacional de datos[Usar] IV: Describe los principios básicos del modelo relacional de datos[Usar] V: Aplica

los conceptos de modelado y la notación de un modelo relacional de datos[Usar] **VI:** Describe los conceptos principales del modelado OO como son identidad de objetos, constructores de tipos, encapsulación, herencia, polimorfismo, y versiones[Usar] **VII:** Describe las diferencias entre modelos de datos relacionales y semi-estructurados[Usar] **VIII:** Da una semi estructura equivalente (ejm. en DTD o Esquema XML) para un esquema relacional dado[Usar]

Bibliografía: [Simsion and Witt, 2004, Elmasri and Navathe, 2004, Korth and Silberschatz, 2002]

6.3 Indexación, 4 hr(s)

Competencias: 5

Tópicos: I: El impacto de indices en el rendimiento de consultas. II: La estructura basica de un indice. III: Mantener un buffer de datos en memoria. IV: Creando indices con SQL. V: Indexando texto. VI: Indexando la web (e.g., web crawling)

Objetivos de Aprendizaje I: Generar un archivo índice para una colección de recursos [Usar] II: Explicar la función de un índice invertido en la localización de un documento en una colección [Usar] III: Explicar cómo rechazar y detener palabras que afectan a la indexación [Usar] IV: Identificar los índices adecuados para determinado el esquema relacional y el conjunto de consultas [Usar] V: Estimar el tiempo para recuperar información, cuando son usados los índices comparado con cuando no son usados [Usar] VI: Describir los desafíos claves en el rastreo web, por ejemplo, la detección de documentos duplicados, la determinación de la frontera de rastreo [Usar]

Bibliografía: [Whitehorn and Marklyn, 2001, Date, 2005, Korth and Silberschatz, 2002]

6.4 Bases de Datos Relacionales, 14 hr(s)

Competencias: 5

Tópicos: I: Mapeo de esquemas conceptuales a esquemas relacionales. II: Entidad y integridad referencial. III: Algebra relacional y calculo relacional. IV: Diseño de bases de datos relacionales. V: Dependencia funcional. VI: Descomposición de un esquema. VII: Llaves candidatas, SuperLlaves y cierre de un conjunto de atributos. VIII: Formas Normales (BCNF) IX: Dependencias multi-valoradas (4NF) X: Uniendo dependencias (PJNF, 5NF) XI: Teoría de la representación.

Objetivos de Aprendizaje I: Prepara un esquema relacional de un modelo conceptual desarrollado usando el modelo entidad-relación[Usar] II: Explica y demuestra los conceptos de restricciones de integridad de la entidad e integridad referencial (incluyendo la definición del concepto de clave foránea) [Usar] III: Demuestra el uso de las operaciones de álgebra relacional de la teoría matemática de conjuntos (unión, intersección, diferencia, y producto Cartesiano) y de las operaciones de álgebra relacional desarrolladas específicamente para las bases de datos relacionales (selección (restringida), proyección, unión y división) [Usar] IV: Escribe consultas en álgebra relacional [Usar] V: Escribe consultas en cálculo relacional de tuplas [Usar] VI: Determina la dependencia funcional entre dos o más atributos que son subconjunto de una relación[Usar] VII: Conecta restricciones expresadas como clave primaria y foránea, con dependencias funcionales[Usar] VIII: Calcula la cerradura de un conjunto de atributos dado dependencias funcionales[Usar] IX: Determina si un conjunto de atributos forma una superclave y/o una clave candidata de una relación dada dependencias funcionales [Usar] X: Evalua una descomposición propuesta, a fin de determinar si tiene una unión sin pérdidas o preservación de dependencias[Usar] XI: Describe las propiedades de la FNBC, FNUP (forma normal unión de proyecto), 5FN[Usar] XII: Explica el impacto de la normalización en la eficacia de las operaciones de una base de datos especialmente en la optimización de consultas[Usar] XIII: Describe que es una dependencia de multi valor y cual es el tipo de restricciones que especifica[Usar]

Bibliografía: [Whitehorn and Marklyn, 2001, Date, 2005, Korth and Silberschatz, 2002]

6.5 Lenguajes de Consulta, 12 hr(s)

Competencias: 5

Tópicos: I: Visión general de lenguajes de base de datos. II: SQL (definición de datos, formulacion de consultas, sublenguaje update, restricciones, integridad) III: Selecciones IV: Proyecciones V: Select-project-join VI: Agregaciones y agrupaciones. VII: Subconsultas. VIII: Entornos QBE de cuarta generación. IX: Diferentes maneras de invocar las consultas no procedimentales en lenguajes convencionales. X: Introducción a otros lenguajes importantes de consulta (por ejemplo, XPATH, SPARQL) XI: Procedimientos almacenados.

Objetivos de Aprendizaje I: Crear un esquema relacional de bases de datos en SQL que incorpora restricciones clave y restricciones de integridad de entidad e integridad referencial[Usar] II: Usar SQL para crear tablas y devuelve (SELECT) la información de una base de datos[Usar] III: Evaluar un conjunto de estrategias de procesamiento de consultas y selecciona la estrategia óptima[Usar] IV: Crear una consulta no-procedimental al llenar plantillas de relacines para construir un ejemplo del resultado de una consulta requerida[Usar] V: Adicionar consultas orientadas a objetos en un lenguaje stand-alone como C++ o Java (ejm. SELECT ColMethod() FROM Objeto)[Usar] VI: Escribe un procedimiento almacenado que trata con parámetros y con algo de flujo de control de tal forma que tenga funcionalidad[Usar]

Bibliografía: [Dietrich, 2001, Elmasri and Navathe, 2004, Celko, 2005, Korth and Silberschatz, 2002]

6.6 Bases de Datos Relacionales, 12 hr(s)

Competencias: 4

Tópicos: I: Mapeo de esquemas conceptuales a esquemas relacionales. II: Entidad y integridad referencial. III: Algebra relacional y calculo relacional. IV: Diseño de bases de datos relacionales. V: Dependencia funcional. VI: Descomposición de un esquema. VII: Llaves candidatas, SuperLlaves y cierre de un conjunto de atributos. VIII: Formas Normales (BCNF) IX: Dependencias multi-valoradas (4NF) X: Uniendo dependencias (PJNF, 5NF) XI: Teoría de la representación.

Objetivos de Aprendizaje I: Prepara un esquema relacional de un modelo conceptual desarrollado usando el modelo entidad-relación[Usar] II: Explica y demuestra los conceptos de restricciones de integridad de la entidad e integridad referencial (incluyendo la definición del concepto de clave foránea) [Usar] III: Demuestra el uso de las operaciones de álgebra relacional de la teoría matemática de conjuntos (unión, intersección, diferencia, y producto Cartesiano) y de las operaciones de álgebra relacional desarrolladas específicamente para las bases de datos relacionales (selección (restringida), proyección, unión y división) [Usar] IV: Escribe consultas en álgebra relacional [Usar] V: Escribe consultas en cálculo relacional de tuplas [Usar] VI: Determina la dependencia funcional entre dos o más atributos que son subconjunto de una relación[Usar] VII: Conecta restricciones expresadas como clave primaria y foránea, con dependencias funcionales[Usar] VIII: Calcula la cerradura de un conjunto de atributos dado dependencias funcionales[Usar] IX: Determina si un conjunto de atributos forma una superclave y/o una clave candidata de una relación dada dependencias funcionales [Usar] X: Evalua una descomposición propuesta, a fin de determinar si tiene una unión sin pérdidas o preservación de dependencias[Usar] XI: Describe las propiedades de la FNBC, FNUP (forma normal unión de proyecto), 5FN[Usar] XII: Explica el impacto de la normalización en la eficacia de las operaciones de una base de datos especialmente en la optimización de consultas[Usar] XIII: Describe que es una dependencia de multi valor y cual es el tipo de restricciones que especifica[Usar]

Bibliografía: [Harrington, 2002, Elmasri and Navathe, 2004, Date, 2005, Korth and Silberschatz, 2002]

7. Bibliografía

[Celko, 2005] Celko, J. (2005). Joe Celko's SQL Programming Style. Elsevier.

- [Date, 2005] Date, C. (2005). Data Mining: Practical Machine Learning Tools and Techniques, Second Edition. Elsevier.
- [Dietrich, 2001] Dietrich, S. W. (2001). Understanding Relational Database Query Languages, First Edition. Prentice Hall.
- [Elmasri and Navathe, 2004] Elmasri, R. and Navathe, S. B. (2004). Fundamentals of Database Systems, Fourth Edition. Addison Wesley.
- [Harrington, 2002] Harrington, J. L. (2002). Relational Database Design Clearly Explained, Second Edition. Morgan Kaufmann.
- [Korth and Silberschatz, 2002] Korth, H. F. and Silberschatz, A. (2002). Fundamentos de Base de Datos. McGraw-Hill.
- [Rob and Coronel, 2004] Rob, P. and Coronel, C. (2004). Database Systems: Design, Implementation and Management, Sixth Edition. Morgan Kaufmann.
- [Simsion and Witt, 2004] Simsion, G. and Witt, G. (2004). Data Modeling Essentials, Third Edition. Morgan Kaufmann.
- [Whitehorn and Marklyn, 2001] Whitehorn, M. and Marklyn, B. (2001). *Inside Relational Databases*, Second Edition. Springer.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

MA201. Cálculo II (Obligatorio)

1. Información General

■ Semestre: 4^{to} Sem. Créditos: 4

■ Horas del curso: Teoría: 2 horas; Práctica: 4 horas;

■ Prerrequisitos:

• MA101. Matemática II (2^{do} Sem-Pág. 193)

 $\bullet\,$ MA102. Cálculo I (3 er Sem-Pág. 222)

2. Fundamentación

Es una extensión de los cursos de Análisis Matemático I y Análisis Matemático II, tomando en cuenta dos o más variables, indispensables para aquellas materias que requieren trabajar con geometría en curvas y superficies, así como en procesos de búsqueda de puntos extremos.

3. Objetivos del curso

- Diferenciar e integrar funciones vectoriales de variable real, entender y manejar el concepto de parametrización. Describir una curva en forma paramétrica.
- Describir, analizar, diseñar y formular modelos continuos que dependen de más de una variable.
- Establecer relaciones entre diferenciación e integración y aplicar el cálculo diferencial e integral ala resolución de problemas geométricos y de optimización.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad. \Rightarrow Outcome j
- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades.⇒
 Outcome j

6. Contenido del curso

6.1 Geometría en el espacio, 8 hr(s)

Competencias: C1

Tópicos: I: \mathbb{R}^3 como espacio euclídeo y álgebra . **II:** Superficies básicas en el espacio.

Objetivos de Aprendizaje I: Manejar el álgebra vectorial en R^3 [Usar]. II: Identificar tipos de superficies en el espacio [Usar]. III: Graficar superficies básicas [Usar].

Bibliografía: [Apóstol, 1973, Simmons, 1995]

6.2 Curvas y parametrizaciones, 20 hr(s)

Competencias: C1

Tópicos: I: Funciones vectoriales de variable real. Reparametrizaciones **II:** Diferenciación e integración **III:** Velocidad, aceleración, curvatura, torsión

Objetivos de Aprendizaje I: Describir las diferentes características de una curva [Usar].

Bibliografía: [Apóstol, 1973, Simmons, 1995]

6.3 Campos escalares, 20 hr(s)

Competencias: C1

Tópicos: I: Curvas de nivel II: Límites y continuidad III: Diferenciación

Objetivos de Aprendizaje I: Graficar campos escalares II: Discutir la existencia de un límite y la continuidad de un campo escalar [Usar]. III: Calcular derivadas parciales y totales [Usar].

Bibliografía: [Apóstol, 1973, Bartle, 1976, Simmons, 1995]

6.4 Aplicaciones, 12 hr(s)

Competencias: C20

Tópicos: I: Máximos y mínimos II: Multiplicadores de Lagrange

Objetivos de Aprendizaje I: Interpretar la noción de gradiente en curvas de nivel y en superficies de nivel [Usar]. II: Usar técnicas para hallar extremos [Usar].

Bibliografía: [Apóstol, 1973, Simmons, 1995, Bartle, 1976]

6.5 Integración Múltiple, 12 hr(s)

Competencias: C24

Tópicos: I: Integración de Riemann II: Integración sobre regiones III: Cambio de coordenadas IV: Aplicaciones

Objetivos de Aprendizaje I: Reconocer regiones de integración adecuadas [Usar]. II: Realizar cambios de coordenadas adecuados [Usar]. III: Aplicar la integración múltiple a problemas [Usar].

Bibliografía: [Apóstol, 1973]

6.6 Campos vectoriales, 18 hr(s)

Competencias: C1

Tópicos: I: Integrales de linea II: Campos conservativos III: Integrales de superficie

Objetivos de Aprendizaje I: Calcular la integral de linea de campos vectoriales[Usar]. II: Reconocer campos conservativos[Usar]. III: Hallar funciones potenciales de campos conservativos [Usar]. IV: Hallar integrales de superficies y aplicarlas [Usar].

Bibliografía: [Apóstol, 1973]

7. Bibliografía

[Apóstol, 1973] Apóstol, T. M. (1973). Calculus, volume II. Editorial Reverté.

[Bartle, 1976] Bartle, R. G. (1976). The Elements of Real Analysis. Wiley; 2 edition.

[Simmons, 1995] Simmons, G. F. (1995). Calculus With Analytic Geometry. McGraw-Hill Science/Engineering.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

MA203. Estadística y Probabilidades (Obligatorio)

1. Información General

- Semestre: 4^{to} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - $\bullet\,$ MA102. Cálculo I (3 er Sem-Pág. 222)

2. Fundamentación

Provee de una introducción a la teoría de las probabilidades e inferencia estadística con aplicaciones, necesarias en el análisis de datos, diseño de modelos aleatorios y toma de decisiones.

3. Objetivos del curso

- Que el alumno aprenda a utilizar las herramientas de la estadística para tomar decisiones ante situaciones de incertidumbre.
- Que el alumno aprenda a obtener conclusiones a partir de datos experimentales.
- Que el alumno pueda extraer conslusiones útiles sobre la totalidad de una población basándose en información, recolectada

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- **CS6.** Evaluar los sistemas en términos de atributos de calidad en general y las posibles ventajas y desventajas que se presentan en el problema dado.⇒ **Outcome i**
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome j**

6. Contenido del curso

6.1 Estadística descriptiva, 6 hr(s)

Competencias: C1

Tópicos: I: Presentación de datos II: Medidas de localización central III: Medidas de dispersión

Objetivos de Aprendizaje I: Presentar resumir y describir datos. [Usar]

Bibliografía: [William Mendenhall, 1997]

6.2 Probabilidades, 6 hr(s)

Competencias: C1

Tópicos: I: Espacios muestrales y eventos II: Axiomas y propiedades de probabilidad III: Probabilidad condicional IV: Independencia, V: Teorema de Bayes

Objetivos de Aprendizaje I: Identificar espacios aleatorios [Usar] II: diseñar modelos probabilísticos [Usar] III: Identificar eventos como resultado de un [Usar]experimento aleatorio [Usar] IV: Calcular la probabilidad de ocurrencia de un evento [Usar] V: Hallar la probabilidad usando condicionalidad, independencia y Bayes [Usar]

Bibliografía: [Meyer, 1970]

6.3 Variable aleatoria, 6 hr(s)

Competencias: CS6

Tópicos: I: Definición y tipos de variables aleatorias **II:** Distribución de probabilidades **III:** Funciones densidad **IV:** Valor esperado **V:** Momentos

Objetivos de Aprendizaje I: Identificar variables aleatorias que describan un espacio muestra [Usar] II: Construir la distribución o función de densidad. [Usar] III: Caracterizar distribuciones o funciones densidad conjunta. [Usar]

Bibliografía: [Meyer, 1970, Devore, 1998]

6.4 Distribución de probabilidad discreta y continua, 6 hr(s)

Competencias: CS6

Tópicos: I: Distribuciones de probabilidad básicas **III:** Densidades de probabilidad básicas **IIII:** Funciones de variable aleatoria

Objetivos de Aprendizaje I: Calcular probabilidad de una variable aleatoria con distribución o función densidad [Usar] II: Identificar la distribución o función densidad que describe un problema aleatorio [Usar] III: Probar propiedades de distribuciones o funciones de densidad [Usar]

Bibliografía: [Meyer, 1970, Devore, 1998]

6.5 Distribución de probabilidad conjunta, 6 hr(s)

Competencias: CS2

Tópicos: I: Variables aleatorias distribuidas conjuntamente **II:** Valores esperados, covarianza y correlación **III:** Las estadísticas y sus distribuciones **IV:** Distribución de medias de muestras **V:** Distribución de una combinación lineal

Objetivos de Aprendizaje I: Encontrar la distribución conjunta de dos variables aleatorias discretas o continuas [Usar] II: Hallar las distribuciones marginales o condicionales de variables aleatorias conjuntas [Usar] III: Determinar dependencia o independencia de variables aleatorias [Usar] IV: Probar propiedades que son consecuencia del teorema del límite central [Usar]

Bibliografía: [Meyer, 1970, Devore, 1998]

6.6 Inferencia estadística, 6 hr(s)

Competencias: CS2

Tópicos: I: Estimación estadística II: Prueba de hipótesis III: Prueba de hipótesis usando ANOVA

Objetivos de Aprendizaje I: Probar si un estimador es insesgado, consistente o suficiente [Usar] II: Hallar intervalo intervalos de confianza para estimar parámetros [Usar] III: Tomar decisiones de parámetros en base a pruebas de hipótesis [Usar] IV: Probar hipótesis usando ANOVA [Usar]

Bibliografía: [Meyer, 1970, Devore, 1998]

7. Bibliografía

[Devore, 1998] Devore, J. L. (1998). Probabilidad y estadística para ingeniería y ciencias. International Thomson Editores.

[Meyer, 1970] Meyer, P. L. (1970). Introductory Probability and Statistical Applications. Addison Wesley.

[William Mendenhall, 1997] William Mendenhall, T. S. (1997). Probabilidad y Estadística para Ingenerías Ciencias. Prentice Hall Hispanoamericano, S.A.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

FG204. Teología (Obligatorio)

1. Información General

■ Semestre: 4^{to} Sem. Créditos: 2

■ Horas del curso: Teoría: 1 horas: Práctica: 2 horas:

■ Prerrequisitos:

• FG107. Antropología Filosófica y Teológica (3^{er} Sem-Pág. 225)

2. Fundamentación

La Universidad Católica San Pablo busca ofrecer una visión de la persona humana y del mundo iluminada por el Evangelio y, consiguientemente, por la fe en Cristo-Logos, como centro de la creación y de la historia. El estudio de la teología es fundamental para dicha comprensión de Dios, del hombre y del cosmos. La Teología permite al creyente en Cristo conocer y comprender mejor su fe. Al no creyente, la comprensión de la cosmovisión que ha forjado la cultura occidental en la cual ha nacido, vive y desarrollará su propia vida, así como abrirse al conocimiento de Dios desde Jesucristo y su Iglesia.

3. Objetivos del curso

 Conocer y comprender el Cristianismo en cuanto religión revelada desde las razones en las que se apoya, mostrando su credibilidad, a fin de ofrecer al creyente razones que motivan su opción de fe y presentar a quien no lo es razones para creer. [Familiarizarse]

4. Resultados (Outcomes)

- n) Aplicar conocimientos de humanidades en su labor profesional. (Usar)
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (Usar)
- o) Mejorar las condiciones de la sociedad poniendo la tecnología al servicio del ser humano. (Usar)

5. Competencias específicas de Computación (IEEE)

- C17. Capacidad para expresarse en los medios de comunicación orales y escritos como se espera de un graduado.. \Rightarrow Outcome n,\tilde{n}
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome n,ñ,o
- C21. Comprender el aspecto profesional, legal, seguridad, asuntos políticos, humanistas, ambientales, culturales y éticos. \Rightarrow Outcome n, $\tilde{\mathbf{n}}$
- **C22.** Capacidad para demostrar las actitudes y prioridades que honrar, proteger y mejorar la estatura y la reputación ética de la profesión. \Rightarrow **Outcome n,ñ**
- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades. \Rightarrow Outcome $\tilde{\mathbf{n}}, \tilde{\mathbf{n}}$

6. Contenido del curso

6.1 Primera Unidad: Homo Capa Dei, El hombres es capaz de Dios, 3 hr(s)

Competencias: C17,C24

Tópicos: I: El hombre: un ser inquieto en búsqueda. **II:** La vía ascendente del hombre a Dios. a) La razón y el conocimiento de Dios. b) La experiencia existencial. c) La búsqueda religiosa. **III:** Expresiones del espíritu religioso. **IV:** La negación de Dios.

Objetivos de Aprendizaje I: Mostrar la "hipótesis Dios" como algo connatural al espíritu humano y las consecuencias que de ello se derivan. [Familiarizarse]

Bibliografía: [Valdivia Laura, 2011, Arroyo, 2006, Ratzinger, 2007, Swinburne, 2011, De Lubac, 2005]

6.2 Segunda Unidad: Dios sale al encuentro del hombre, 9 hr(s)

Competencias: C22

Tópicos: I: Dios habla al hombre. **II:** Jesucristo: Plenitud de la Revelación. **III:** Las Sagradas Escrituras. **IV:** La Tradición. **V:** La sucesión apostólica.

Objetivos de Aprendizaje I: Reconocer la doctrina católica de la Revelación, entendida como el camino de auto comunicación de Dios hacia el hombre y las implicaciones que de dicha doctrina se derivan. [Familiarizarse]

Bibliografía: [Con, , Conferencia Episcopal, 1992, Latourelle, 1985]

6.3 Tercera Unidad: Credo ut Intelligam. La fe y la razón, 6 hr(s)

Competencias: C20

Tópicos: I: La fe natural y el acto de creer como acto razonable. **II:** La Fe sobrenatural (Fides qua creditur). **III:** El contenido de la Fe (Fides quae creditur). **IV:** Fe y razón.

Objetivos de Aprendizaje I: Estimar el acto de Fe como la respuesta del hombre a Dios, que se revela, y su relación con la razón. [Familiarizarse]

Bibliografía: [Conferencia Episcopal, 1992, Benedicto, 2006, Pablo II, 1998a, Conferencia Episcopal, 1992, Benedicto, 2011, Anselmo, 1970]

6.4 Cuarta Unidad: Jesús de Nazaret, 15 hr(s)

Competencias: C21

Tópicos: I: ¿Quién es Jesús? a) Historicidad de Jesús de Nazaret. II: ¿Qué dice Jesús de sí mismo? a) Jesús el Mesías. b) Jesús el Hijo del Hombre. c) Jesús el Hijo de Dios. III: ¿Qué hizo Jesús? a) Testigo de la Verdad: El mensaje de Jesús. b) Pasó haciendo el bien: Los milagros de Jesús. c) La Resurrección. IV: La Fe de la Iglesia en Cristo. a) Verdadero Dios: Logos. b) Verdadero Hombre: La Encarnación. c) Dios y hombre Verdadero: La unión Hipostática. d) El Reconciliador, el Señor.

Objetivos de Aprendizaje I: Distinguir a Jesús de Nazaret como el Cristo, Plenitud de la revelación de Dios a los hombres. [Familiarizarse]

Bibliografía: [Guardini, 2006, XVI, 2011, Pablo II, 1998b, Conferencia Episcopal, 1992, Giacomo, 2001, Adam, 1972]

6.5 Quinta Unidad: La Iglesia de Cristo, 6 hr(s)

Competencias: C20,C22,C24

Tópicos: I: Objeciones contra la Iglesia. **II:** La Iglesia de Cristo. *a*) Cristo funda la Iglesia. *b*) La Iglesia Cuerpo de Cristo. *c*) La Iglesia prolonga en la historia la presencia de Cristo. *d*) Sacramento Universal de Salvación.

III: Las notas de la Iglesia a) Una b) Santa c) Católica d) Apostólica

Objetivos de Aprendizaje I: Conocer y valorar la naturaleza y misión de la Iglesia y su inseparable relación con Jesucristo. [Familiarizarse]

Bibliografía: [Pablo II, 1998b, Conferencia Episcopal, 1992, De Lubac, 1988, Concilio Vaticano, 1973, XVI, 1992]

7. Bibliografía

[Con,] Concilio Vaticano II, Constitución Dogmática Dei Verbum sobre la divina revelación. Paulinas.

[Adam, 1972] Adam, K. (1972). El Cristo de nuestra fe. Herder.

[Anselmo, 1970] Anselmo, S. (1970). Proslogion. Aguilar Argentina.

[Arroyo, 2006] Arroyo, L. M. (2006). Humanismo y cristianismo: El humanismo ateo. *Thémata: Revista de filosofía*, (36):207–222.

[Benedicto, 2006] Benedicto, X. (2006). Discurso en la universidad de ratisbona. Fe, razón y universidad. Recuerdos y reflexiones.

[Benedicto, 2011] Benedicto, X. (2011). Discurso en la entrega del premio ratzinger.

[Concilio Vaticano, 1973] Concilio Vaticano, I. (1973). Constitución dogmática sobre la iglesia lumen gentium. Constituciones. Decretos. Declaraciones.

[Conferencia Episcopal, 1992] Conferencia Episcopal, E. (1992). Catecismo de la Iglesia Católica. Asociación de Editores del Catecismo, 5 edition.

[De Lubac, 1988] De Lubac, H. (1988). Catolicismo: Aspectos Sociales del Dogma. Ediciones Encuentro.

[De Lubac, 2005] De Lubac, H. (2005). El drama del humanismo ateo: Prólogo de Valentí Puig. Encuentro.

[Giacomo, 2001] Giacomo, B. (2001). Jesús de nazaret: Centro del cosmos y de la historia.

[Guardini, 2006] Guardini, R. (2006). La esencia del cristianismo: una ética para nuestro tiempo. Ediciones Cristianas.

[Latourelle, 1985] Latourelle, R. (1985). Theología de la revelación, volume 19. Sígueme.

[Pablo II, 1998a] Pablo II, J. (1998a). Carta encíclica fides et ratio sobre las relaciones entre fe y razón. Technical report, 14-IX.

[Pablo II, 1998b] Pablo II, J. (1998b). Creo en Jesucristo: Catequesis sobre el Credo (II), volume 2. Palabra.

[Ratzinger, 2007] Ratzinger, J. (2007). Jesús de Nazareth. Planeta.

[Swinburne, 2011] Swinburne, R. (2011). La existencia de Dios. San Esteban.

[Valdivia Laura, 2011] Valdivia Laura, C. A. (2011). Separata homo capax dei.

[XVI, 2011] XVI, B. (2011). Jesús de Nazaret. Desde la entrada en Jerusalén hasta la Resurrección. Ediciones Encuentro.

[XVI, 1992] XVI, P. B. (1992). La Iqlesia: una comunidad siempre en camino. Paulinas.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

CS272. Bases de Datos II (Obligatorio)

1. Información General

- Semestre: 5^{to} Sem. Créditos: 3
- Horas del curso: Teoría: 1 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS271. Bases de Datos I (4^{to} Sem-Pág. 240)
 - Inglés(300)

2. Fundamentación

La Gestión de la Información (IM-Information Management) juega un rol principal en casi todas las áreas donde los computadores son usados. Esta área incluye la captura, digitalización, representación, organización, transformación y presentación de información; algorítmos para mejorar la eficiencia y efectividad del acceso y actualización de información almacenada, modelamiento de datos y abstracción, y técnicas de almacenamiento de archivos físicos.

Este también abarca la seguridad de la información, privacidad, integridad y protección en un ambiente compartido. Los estudiantes necesitan ser capaces de desarrollar modelos de datos conceptuales y físicos, determinar que métodos de IM y técnicas son apropiados para un problema dado, y ser capaces de seleccionar e implementar una apropiada solución de IM que refleje todas las restricciones aplicables, incluyendo escalabilidad y usabilidad.

3. Objetivos del curso

- Hacer que el alumno entienda las diferentes aplicaciones que tienen las bases de datos, en las diversas áreas de conocimiento.
- Mostrar las formas adecuadas de almacenamiento de información basada en sus diversos enfoques y su posterior recuperación de información.

4. Resultados (Outcomes)

- **b)** Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. ()
- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (Evaluar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Evaluar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome b
- C7. Ser capaz de aplicar los principios y tecnologías de ingeniería de software para asegurar que las implementaciones de software son robustos, fiables y apropiados para su público objetivo.⇒ Outcome e
- CS4. Implementar la teoría apropiada, prácticas y herramientas para la especificación, diseño, implementación y mantenimiento, así como la evaluación de los sistemas basados en computadoras.⇒
 Outcome i
- **CS6.** Evaluar los sistemas en términos de atributos de calidad en general y las posibles ventajas y desventajas que se presentan en el problema dado.⇒ **Outcome j**

6. Contenido del curso

6.1 Diseño Físico de Bases de Datos, 10 hr(s)

Competencias: C1

- Tópicos: I: Almacenamiento y estructura de archivos. II: Archivos indexados. III: Archivos Hash. IV: Archivos de Firma. V: Árboles B. VI: Archivos con índice denso. VII: Archivos con registros de tamaño variable. VIII: Eficiencia y Afinación de Bases de Datos.
- Objetivos de Aprendizaje I: Explica los conceptos de registro, tipos de registro, y archivos, así como las diversas técnicas para colocar registros de archivos en un disco[Usar] II: Da ejemplos de la aplicación de índices primario, secundario y de agrupamiento[Usar] III: Distingue entre un índice no denso y uno denso[Usar] IV: Implementa índices de multinivel dinámicos usando árboles-B[Usar] V: Explica la teoría y la aplicación de técnicas de hash internas y externas[Usar] VI: Usa técnicas de hasp para facilitar la expansión de archivos dinámicos[Usar] VII: Describe las relaciones entre hashing, compresión, y búsquedas eficientes en bases de datos[Usar] VIII: Evalúa el costo y beneficio de diversos esquemas de hashing[Usar] IX: Explica como el diseño físico de una base de datos afecta la eficiencia de las transacciones en ésta[Usar]

Bibliografía: [Burleson, 2004, Date, 2005, Celko, 2005]

6.2 Procesamiento de Transacciones, 12 hr(s)

Competencias: C1

- **Tópicos: I:** Transacciones. **II:** Fallo y recuperación. **III:** Control concurente. **IV:** Interacción de gestión de transacciones con el almacenamiento, especialmente en almacenamiento.
- Objetivos de Aprendizaje I: Crear una transacción mediante la incorporación de SQL en un programa de aplicación [Usar] II: Explicar el concepto de confimaciones implicitas [Usar] III: Describir los problemas especificos para la ejecución de una transacción eficiente [Usar] IV: Explicar cuando y porqué se necesita un rollback, y cómo registrar todo asegura un rollback adecuado [Usar] V: Explicar el efecto de diferentes niveles de aislamiento sobre los mecanismos de control de concurrencia [Usar] VI: Elejir el nivel de aislamiento adecuado para la aplicación de un protocolo de transacción especificado [Usar] VII: Identificar los límites apropiados de la transacción en programas de aplicación [Usar]

Bibliografía: [Philip A. Bernstein, 1997, Ramez Elmasri, 2004]

6.3 Almacenamiento y Recuperación de Información, 10 hr(s)

Competencias: C1

Tópicos: I: Documentos, publicación electrónica, markup, y lenguajes markup. II: Tries, archivos invertidos, Árboles PAT, archivos de firma, indexación. III: Análisis Morfológico, stemming, frases, stop lists. IV: Distribuciones de frecuencia de términos, incertidumbre, fuzificación (fuzzyness), ponderación. V: Espacio vectorial, probabilidad, lógica, y modelos avanzados. VI: Necesidad de Información, Relevancia, evaluación, efectividad. VII: Thesauri, ontologías, clasificación y categorización, metadata. VIII: Información bibliográfica, bibliometría, citaciones. IX: Enrutamiento y filtrado. X: Búsqueda multimedia. XI: Información de resumen y visualización. XII: Búsqueda por facetas (por ejemplo, el uso de citas, palabras clave, esquemas de clasificación). XIII: Librerías digitales. XIV: Digitalización, almacenamiento, intercambio, objetos digitales, composición y paquetes. XV: Metadata y catalogación. XVI: Nombramiento, repositorios, archivos XVII: Archivamiento y preservación, integrdad XVIII: Espacios (Conceptual, geográfico, 2/3D, Realidad virtual) XIX: Arquitecturas (agentes, autobuses, envolturas / mediadores), de interoperabilidad. XX: Servicios (búsqueda, de unión, de navegación, y así sucesivamente). XXI: Gestión de derechos de propiedad intelectual, la privacidad y la protección (marcas de agua).

Objetivos de Aprendizaje I: Explica los conceptos básicos de almacenamiento y recuperación de la información [Usar] II: Describe que temas son específicos para una recuperación de la información eficiente [Usar] III: Da aplicaciones de estrategias alternativas de búsqueda y explica porqué una estrategia en particular es apropiada para una aplicación [Usar] IV: Diseña e implementa un sistema de almacenamiento y recuperación de la información o librería digital de tamaño pequeño a mediano [Usar] V: Describe algunas de las soluciones técnicas a los problemas relacionados al archivamiento y preservación de la información en una librería digital [Usar]

Bibliografía: [Peter Brusilovsky, 1998, Ramez Elmasri, 2004]

6.4 Bases de Datos Distribuidas, 36 hr(s)

Competencias: C1

Tópicos: I: DBMS Distribuidas a) Almacenamiento de datos distribuido b) Procesamiento de consultas distribuido c) Modelo de transacciones distribuidas d) Soluciones homogéneas y heterogéneas e) Bases de datos distribuidas cliente-servidor **II:** Parallel DBMS a) Arquitecturas paralelas DBMS: memoria compartida, disco compartido, nada compratido; b) Aceleracion y ampliación, por ejemplo, el uso del modelo de procesamiento MapReduce c) Replicacion de informacion y modelos de consistencia debil

Objetivos de Aprendizaje I: Explicar las técnicas usadas para la fragmentación de datos, replicación, y la asignación durante el proceso de diseño de base de datos distribuida [Usar] II: Evaluar estrategias simples para la ejecución de una consulta distribuida para seleccionar una estrategia que minimise la cantidad de transferencia de datos [Usar] III: Explicar como el protocolo de dos fases de commit es usado para resolver problemas de transacciones que acceden a bases de datos almacenadas en múltiples nodos [Usar] IV: Describir el control concurrente distribuido basados en técnicas de copia distinguidos y el método de votación. [Usar] V: Describir los tres niveles del software en el modelo cliente servidor [Usar]

Bibliografía: [M. Tamer Ozsu, 1999, Date, 2005]

7. Bibliografía

[Burleson, 2004] Burleson, D. K. (2004). Physical Database Design Using Oracle. CRC Press.

[Celko, 2005] Celko, J. (2005). Joe Celko's SQL Programming Style. Elsevier.

[Date, 2005] Date, C. (2005). Data Mining: Practical Machine Learning Tools and Techniques, Second Edition. Elsevier.

- [M. Tamer Ozsu, 1999] M. Tamer Ozsu, P. V. (1999). Principles of Distributed Database Systems, Second Edition. Prentice Hall.
- [Peter Brusilovsky, 1998] Peter Brusilovsky, Alfred Kobsa, J. V. (1998). Adaptive Hypertext and Hypermedia, First Edition. Springer.
- [Philip A. Bernstein, 1997] Philip A. Bernstein, E. N. (1997). Principles of Transaction Processing, First Edition. Morgan Kaufmann.
- [Ramez Elmasri, 2004] Ramez Elmasri, S. B. N. (2004). Fundamentals of Database Systems, Fourth Edition. Addison Wesley.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

CS291. Ingeniería de Software I (Obligatorio)

1. Información General

- Semestre: 5^{to} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - \bullet CS113. Ciencia de la Computación II (3 er Sem-Pág. 203)
 - \bullet CS271. Bases de Datos I (4 to Sem-Pág. 240)

2. Fundamentación

La taréa de desarrollar software, excepto para aplicaciones sumamente simples, exige la ejecución de un proceso de desarrollo bien definido. Los profesionales de esta área requieren un alto grado de conocimiento de los diferentes modelos e proceso de desarrollo, para que sean capaces de elegir el más idóneo para cada proyecto de desarrollo. Por otro lado, el desarrollo de sistemas de mediana y gran escala requiere del uso de bibliotecas de patrones y componentes y del dominio de técnicas relacionadas al diseño basado en componentes.

3. Objetivos del curso

- Brindar al alumno un marco teórico y práctico para el desarrollo de software bajo estándares de calidad.
- Familiarizar al alumno con los procesos de modelamiento y construcción de software a través del uso de herramientas CASE.
- Los alumnos debe ser capaces de seleccionar Arquitecturas y Plataformas tecnológicas ad-hoc a los escenarios de implementación.
- Aplicar el modelamiento basado en componentes y fin de asegurar variables como calidad, costo y time-to-market en los procesos de desarrollo.
- Brindar a los alumnos mejores prácticas para la verificación y validación del software.

4. Resultados (Outcomes)

- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Usar)
- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Usar)
- f) Comunicarse efectivamente con audiencias diversas. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Evaluar)
- k) Aplicar los principios de desarrollo y diseño en la construcción de sistemas de software de complejidad variable. (Usar)

5. Competencias específicas de Computación (IEEE)

- C7. Ser capaz de aplicar los principios y tecnologías de ingeniería de software para asegurar que las implementaciones de software son robustos, fiables y apropiados para su público objetivo.⇒ Outcome b,k
- C8. Entendimiento de lo que las tecnologías actuales pueden y no pueden lograr.⇒ Outcome b,c,k
- C11. Entendimiento del concepto del ciclo de vida, incluyendo la importancia de sus fases (planificación, desarrollo, implementación y evolución).⇒ Outcome c
- C12. Entender las implicaciones de ciclo de vida para el desarrollo de todos los aspectos de los sistemas informáticos (incluyendo software, hardware, y la interfaz de la computadora humana).⇒
 Outcome c,i
- C13. Comprender la relación entre la calidad y la gestión del ciclo de vida.⇒ Outcome c,i
- C18. Capacidad para participar de forma activa y coordinada en un equipo.⇒ Outcome k
- **CS1.** Modelar y diseñar sistemas de computadora de una manera que se demuestre comprensión del balance entre las opciones de diseño. \Rightarrow **Outcome c**
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome b,c**
- CS4. Implementar la teoría apropiada, prácticas y herramientas para la especificación, diseño, implementación y mantenimiento, así como la evaluación de los sistemas basados en computadoras.⇒
 Outcome b,c,i
- CS5. Especificar, diseñar e implementar sistemas basados en computadoras.⇒ Outcome b,c,i
- CS10. Implementar efectivamente las herramientas que se utilizan para la construcción y la documentación de software, con especial énfasis en la comprensión de todo el proceso involucrado en el uso de computadoras para resolver problemas prácticos. Esto debe incluir herramientas para el control de software, incluyendo el control de versiones y gestión de la configuración.⇒ Outcome i,k

6. Contenido del curso

6.1 Ingeniería de Requisitos, 18 hr(s)

Competencias: C7, C11, CS2

- Tópicos: I: Al describir los requisitos funcionales utilizando, por ejemplo, los casos de uso o historias de los usuarios. II: Propiedades de requisitos, incluyendo la consistencia, validez, integridad y viabilidad. III: Requisitos de software elicitatión. IV: Descripción de datos del sistema utilizando, por ejemplo, los diagramas de clases o diagramas entidad-relación. V: Requisitos no funcionales y su relación con la calidad del software. VI: Evaluación y uso de especificaciones de requisitos. VII: Requisitos de las técnicas de modelado de análisis. VIII: La aceptabilidad de las consideraciones de certeza/incertidumbre sobre el comportamiento del software/sistema. IX: Prototipos. X: Conceptos básicos de la especificación formal de requisitos. XII: Especificación de requisitos. XII: Validación de requisitos. XIII: Rastreo de requisitos.
- Objetivos de Aprendizaje I: Enumerar los componentes clave de un caso de uso o una descripción similar de algún comportamiento que es requerido para un sistema [Evaluar] II: Describir cómo el proceso de ingeniería de requisitos apoya la obtención y validación de los requisitos de comportamiento [Evaluar] III: Interpretar un modelo de requisitos dada por un sistema de software simple [Evaluar] IV: Describir los retos fundamentales y técnicas comunes que se utilizan para la obtención de requisitos [Evaluar] V: Enumerar los componentes clave de un modelo de datos (por ejemplo, diagramas de clases o diagramas ER) [Evaluar] VI: Identificar los requisitos

funcionales y no funcionales en una especificación de requisitos dada por un sistema de software [Evaluar] VII: Realizar una revisión de un conjunto de requisitos de software para determinar la calidad de los requisitos con respecto a las características de los buenos requisitos [Evaluar] VIII: Aplicar elementos clave y métodos comunes para la obtención y el análisis para producir un conjunto de requisitos de software para un sistema de software de tamaño medio [Evaluar] IX: Comparar los métodos ágiles y el dirigido por planes para la especificación y validación de requisitos y describir los beneficios y riesgos asociados con cada uno [Evaluar] X: Usar un método común, no formal para modelar y especificar los requisitos para un sistema de software de tamaño medio [Evaluar] XI: Traducir al lenguaje natural una especificación de requisitos de software (por ejemplo, un contrato de componentes de software) escrito en un lenguaje de especificación formal [Evaluar] XII: Crear un prototipo de un sistema de software para reducir el riesgo en los requisitos [Evaluar] XIII: Diferenciar entre el rastreo (tracing) hacia adelante y hacia atrás y explicar su papel en el proceso de validación de requisitos [Evaluar]

Bibliografía: [Pressman, 2005, Sommerville, 2008, Larman, 2008]

6.2 Diseño de Software, 18 hr(s)

Competencias: C5, C7, C8, CS10

Tópicos: I: Principios de diseño del sistema: niveles de abstracción (diseño arquitectónico y el diseño detallado), separación de intereses, ocultamiento de información, de acoplamiento y de cohesión, de reutilización de estructuras estándar. II: Diseño de paradigmas tales como diseño estructurado (descomposición funcional de arriba hacia abajo), el análisis orientado a objetos y diseño, orientado a eventos de diseño, diseño de nivel de componente, centrado datos estructurada, orientada a aspectos, orientado a la función, orientado al servicio. III: Modelos estructurales y de comportamiento de los diseños de software. IV: Diseño de patrones. V: Relaciones entre los requisitos y diseños: La transformación de modelos, el diseño de los contratos, invariantes. VI: Conceptos de arquitectura de software y arquitecturas estándar (por ejemplo, cliente-servidor, n-capas, transforman centrados, tubos y filtros). VII: El uso de componentes de diseño: seleccion de componentes, diseño, adaptacion y componentes de ensamblaje, componentes y patrones, componentes y objetos(por ejemplo,construir una GUI usando un standar widget set) VIII: Diseños de refactorización utilizando patrones de diseño IX: Calidad del diseño interno, y modelos para: eficiencia y desempeño, redundancia y tolerancia a fallos, trazavilidad de los requerimientos. X: Medición y análisis de la calidad de un diseño. XI: Compensasiones entre diferentes aspectos de la calidad. XII: Aaplicaciones en frameworks. XIII: Middleware: El paradigma de la orientación a objetos con middleware, requerimientos para correr y clasificar objetos, monitores de procesamiento de transacciones y el sistema de flujo de trabajo. XIV: Principales diseños de seguridad y codificación (cross-reference IAS/Principles of securre design). a) Principio de privilegios mínimos b) Principio de falla segura por defecto c) Principio de aceptabilidad psicológica

Objetivos de Aprendizaje I: Formular los principios de diseño, incluyendo la separación de problemas, ocultación de información, acoplamiento y cohesión, y la encapsulación[Familiarizarse] II: Usar un paradigma de diseño para diseñar un sistema de software básico y explicar cómo los principios de diseño del sistema se han aplicado en este diseño[Usar] III: Construir modelos del diseño de un sistema de software simple los cuales son apropiado para el paradigma utilizado para diseñarlo[Usar] IV: En el contexto de un paradigma de diseño simple, describir uno o más patrones de diseño que podrían ser aplicables al diseño de un sistema de software simple[Familiarizarse] V: Para un sistema simple adecuado para una situación dada, discutir y seleccionar un paradigma de diseño apropiado[Usar] VII: Crear modelos apropiados para la estructura y el comportamiento de los productos de software desde la especificaciones de requisitos[Usar] VII: Explicar las relaciones entre los requisitos para un producto de software y su diseño, utilizando los modelos apropiados[Evaluar] VIII: Para el diseño de un sistema de software simple dentro del contexto de un único paradigma de diseño, describir la arquitectura de software de ese sistema[Familiarizarse] IX: Dado un diseño de alto nivel, identificar la arquitectura de software mediante la diferenciación entre las arquitecturas comunes de software, tales

como 3 capas (3-tier), pipe-and-filter, y cliente-servidor [Familiarizarse] X: Investigar el impacto de la selección arquitecturas de software en el diseño de un sistema simple [Evaluar] XI: Aplicar ejemplos simples de patrones en un diseño de software[Usar] XII: Describir una manera de refactorar y discutir cuando esto debe ser aplicado[Familiarizarse] XIII: Seleccionar componentes adecuados para el uso en un diseño de un producto de software[Usar] XIV: Explicar cómo los componentes deben ser adaptados para ser usados en el diseño de un producto de software [Familiarizarse] XV: Diseñar un contrato para un típico componente de software pequeño para el uso de un dado sistema[Usar] XVI: Discutir y seleccionar la arquitectura de software adecuada para un sistema de software simple para un dado escenario[Usar] XVII: Aplicar modelos de cualidades internas y externas en el diseño de componentes de software para lograr un equilibrio aceptable entre los aspectos de calidad en conflictos[Usar] XVIII: Analizar un diseño de software desde la perspectiva de un atributo significativo de la calidad interna[Evaluar] XIX: Analizar un diseño de software desde la perspectiva de un atributo significativo de calidad externa[Evaluar] XX: Explicar el papel de los objetos en los sistemas de middleware y la relación con los componentes[Familiarizarse] XXI: Aplicar métodos orientado a componentes para el diseño de una amplia gama de software, tales como el uso de componentes para la concurrencia y transacciones, para los servicios de comunicación confiables, para la interacción con la base de datos que incluye los servicios de consulta remota y gestión de bases de datos, o para la comunicación segura y el acceso[Usar] XXII: Refactorizar una implementación de software existente para mejorar algún aspecto de su diseño[Usar] XXIII: Determinar y aplicar los principios de mínimo privilegio y defectos-a prueba de errores[Familiarizarse]

Bibliografía: [Pressman, 2005, Sommerville, 2008, Larman, 2008]

6.3 Construcción de Software, 24 hr(s)

Competencias: C4, C5, C7, C8, CS2

Tópicos: I: Prácticas de codificación: técnicas, idiomas/patrones, mecanismos para construcción de programas de calidad: a) Prácticas de codificación defensive b) Prácticas de codificación segura c) Utilizando mecanismos de manejo de excepciones para hacer el programa más robusto, tolerante a fallas **II:** Normas de codificación. **III:** Estrategias de integración. **IV:** Desarrollando contexto: ""campo verde"" frente a la base de código existente: a) Análisis de cambioăimpacto b) Cambio de actualización **V:** Los problemas de seguridad potenciales en los programas: a) Buffer y otros tipos de desbordamientos b) Condiciones elemento Race c) Inicialización incorrecta, incluyendo la elección de los privilegios d) Entrada Comprobación e) Suponiendo éxito y corrección f) La validación de las hipótesis

Objetivos de Aprendizaje I: Describir técnicas, lenguajes de codificación y mecanismos de implementación para conseguir las propiedades deseadas, tales como la confiabilidad, la eficiencia y la robustez [Evaluar] II: Construir código robusto utilizando los mecanismos de manejo de excepciones [Evaluar] III: Describir la codificación segura y prácticas de codificación de defensa [Evaluar] IV: Seleccionar y utilizar un estándar de codificación definido en un pequeño proyecto de software [Evaluar] V: Comparar y contrastar las estrategias de integración incluyendo: de arriba hacia abajo (top-down), de abajo hacia arriba (bottom-up), y la integración Sándwich [Evaluar] VI: Describir el proceso de analizar e implementar los cambios a la base de código desarrollado para un proyecto específico [Evaluar] VII: Describir el proceso de analizar e implementar los cambios a una gran base de código existente [Evaluar] VIII: Reescribir un programa sencillo para eliminar vulnerabilidades comunes, tales como desbordamientos de búffer, desbordamientos de enteros y condiciones de carrera [Evaluar] IX: Escribir un componente de software que realiza alguna tarea no trivial y es resistente a errores en la entrada y en tiempo de ejecución [Evaluar]

Bibliografía: [Pressman, 2005, Sommerville, 2008, Larman, 2008]

7. Bibliografía

[Larman, 2008] Larman, C. (2008). Applying UML and Patterns. Prentice Hall.

[Pressman, 2005] Pressman, R. S. (2005). Software Engineering: A Practitioner's Approach. McGraw-Hill, 6th edition.

[Sommerville, 2008] Sommerville, I. (2008). Software Engineering. Addison Wesley, 7th edition. ISBN: 0321210263.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

CS212. Análisis y Diseño de Algoritmos (Obligatorio)

1. Información General

■ Semestre: 5^{to} Sem. Créditos: 4

• Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;

■ Prerrequisitos:

• CS210. Algoritmos y Estructuras de Datos (4^{to} Sem-Pág. 235)

2. Fundamentación

Un algoritmo es, esencialmente, un conjunto bien definido de reglas o instrucciones que permitan resolver un problema computacional. El estudio teórico del desempeño de los algoritmos y los recursos utilizados por estos, generalmente tiempo y espacio, nos permite evaluar si un algoritmo es adecuado para un resolver un problema específico, compararlo con otros algoritmos para el mismo problema o incluso delimitar la frontera entre lo viable y lo imposible.

Esta materia es tan importante que incluso Donald E. Knuth definió a Ciencia de la Computación como el estudio de algoritmos.

En este curso serán presentadas las técnicas más comunes utilizadas en el análisis y diseño de algoritmos eficientes, con el propósito de aprender los principios fundamentales del diseño, implementación y análisis de algoritmos para la solución de problemas computacionales.

3. Objetivos del curso

- Desarrollar la capacidad para evaluar la complejidad y calidad de algoritmos propuestos para un determinado problema.
- Estudiar los algoritmos más representativos, introductorios de las clases más importantes de problemas tratados en computación.
- Desarrollar la capacidad de resolución de problemas algorítmicos utilizando los principios fundamentales de diseño de algoritmos aprendidos.
- Ser capaz de responder a las siguientes preguntas cuando le sea presentado un nuevo algoritmo: ¿Cuán buen desempeño tiene?, ¿Existe una mejor forma de resolver el problema?

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- **b)** Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (**Evaluar**)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Usar)
- ${f i}$) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- **C2.** Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.⇒ **Outcome b**
- C3. Una comprensión intelectual de, y el aprecio por el papel central de los algoritmos y estructuras de datos.⇒ Outcome b
- C5. Capacidad para implementar algoritmos y estructuras de datos en el software..⇒ Outcome i
- C6. Capacidad para diseñar y poner en práctica las unidades estructurales mayores que utilizan algoritmos y estructuras de datos y las interfaces a través del cual estas unidades se comunican.⇒
 Outcome i
- C9. Comprensión de las limitaciones de la computación, incluyendo la diferencia entre lo que la computación es inherentemente incapaz de hacer frente a lo que puede lograrse a través de un futuro de ciencia y tecnología.⇒ Outcome a
- $\textbf{C16.} \ \text{Capacidad para identificar temas avanzados de computación y de la comprensión de las fronteras de la disciplina.} \Rightarrow \textbf{Outcome h}$

6. Contenido del curso

6.1 Análisis Básico, 10 hr(s)

Competencias: C1

- Tópicos: I: Diferencias entre el mejor, el esperado y el peor caso de un algoritmo. II: Análisis asintótico de complejidad de cotas superior y esperada. III: Definición formal de la Notación Big O. IV: Clases de complejidad como constante, logarítmica, lineal, cuadrática y exponencial. V: Uso de la notación Big O. VI: Relaciones recurrentes. VII: Análisis de algoritmos iterativos y recursivos. VIII: Algunas versiones del Teorema Maestro.
- Objetivos de Aprendizaje I: Explique a que se refiere con "mejor", "esperado" y "peor" caso de comportamiento de un algoritmo[Evaluar] II: En el contexto de a algoritmos específicos, identifique las características de data y/o otras condiciones o suposiciones que lleven a diferentes comportamientos[Evaluar] III: Determine informalmente el tiempo y el espacio de complejidad de simples algoritmos[Evaluar] IV: Indique la definición formal de Big O[Evaluar] V: Lista y contraste de clases estándares de complejidad[Evaluar] VI: Use la notación formal de la Big O para dar límites superiores asintóticos en la complejidad de tiempo y espacio de los algoritmos[Evaluar] VII: Usar la notación formal Big O para dar límites de casos esperados en el tiempo de complejidad de los algoritmos[Evaluar] VIII: Explicar el uso de la notación theta grande, omega grande y o pequeña para describir la cantidad de trabajo hecho por un algoritmo[Evaluar] IX: Usar relaciones recurrentes para determinar el tiempo de complejidad de algoritmos recursivamente definidos[Evaluar] X: Resuelve relaciones de recurrencia básicas, por ejemplo. usando alguna forma del Teorema Maestro[Evaluar]

Bibliografía: [Kleinberg and Tardos, 2005, Dasgupta et al., 2006, Cormen et al., 2009, Sedgewick and Flajolet, 2013, Knuth, 1997]

6.2 Estrategias Algorítmicas, 30 hr(s)

Competencias: C2

Tópicos: I: Algoritmos de fuerza bruta. **II:** Algoritmos voraces. **III:** Divide y vencerás. **IV:** Programación Dinámica.

Objetivos de Aprendizaje I: Para cada una de las estrategias (fuerza bruta, algoritmo goloso, divide y vencerás, recursividad en reversa y programación dinámica), identifica un ejemplo práctico en el cual se pueda aplicar[Evaluar] II: Utiliza un enfoque voraz para resolver un problema específico y determina si la regla escogida lo guía a una solución óptima[Evaluar] III: Usa un algoritmo de divide-y-vencerás para resolver un determinado problema[Evaluar] IV: Usa programación dinámica para resolver un problema determinado[Evaluar] V: Determina el enfoque algorítmico adecuado para un problema[Evaluar]

Bibliografía: [Kleinberg and Tardos, 2005, Dasgupta et al., 2006, Cormen et al., 2009, Alsuwaiyel, 1999]

6.3 Algoritmos y Estructuras de Datos fundamentales, 10 hr(s)

Competencias: C6

Tópicos: I: Algoritmos numéricos simples, tales como el cálculo de la media de una lista de números, encontrar el mínimo y máximo. **II:** Algoritmos de búsqueda secuencial y binaria. **III:** Algoritmos de ordenamiento de peor caso cuadrático (selección, inserción) **IV:** Algoritmos de ordenamiento con peor caso o caso promedio en O(N lg N) (Quicksort, Heapsort, Mergesort) **V:** Grafos y algoritmos en grafos: a) Representación de grafos (ej., lista de adyacencia, matriz de adyacencia) b) Recorrido en profundidad y amplitud **VI:** Montículos (Heaps) **VII:** Grafos y algoritmos en grafos: a) Algoritmos de la ruta más corta (algoritmos de Dijkstra y Floyd) b) Árbol de expansión mínima (algoritmos de Prim y Kruskal)

Objetivos de Aprendizaje I: Implementar algoritmos numéricos básicos [Evaluar] II: Implementar algoritmos de busqueda simple y explicar las diferencias en sus tiempos de complejidad [Evaluar] III: Ser capaz de implementar algoritmos de ordenamiento comunes cuádraticos y O(N log N) [Evaluar] IV: Discutir el tiempo de ejecución y eficiencia de memoria de los principales algoritmos de ordenamiento, busqueda y hashing [Usar] V: Discutir factores otros que no sean eficiencia computacional que influyan en la elección de algoritmos, tales como tiempo de programación, mantenibilidad, y el uso de patrones específicos de la aplicación en los datos de entrada [Familiarizarse] VI: Resolver problemas usando algoritmos básicos de grafos, incluyendo busqueda por profundidad y busqueda por amplitud [Evaluar] VII: Demostrar habilidad para evaluar algoritmos, para seleccionar de un rango de posibles opciones, para proveer una justificación por esa selección, y para implementar el algoritmo en un contexto en específico [Evaluar] VIII: Describir la propiedad del heap y el uso de heaps como una implementación de colas de prioridad [Evaluar] IX: Resolver problemas usando algoritmos de grafos, incluyendo camino más corto de una sola fuente y camino más corto de todos los pares, y como mínimo un algoritmo de arbol de expansion minima [Evaluar]

Bibliografía: [Kleinberg and Tardos, 2005, Dasgupta et al., 2006, Cormen et al., 2009, Sedgewick and Wayne, 2011, Goodrich and Tamassia, 2009]

6.4 Computabilidad y complejidad básica de autómatas, 2 hr(s)

Competencias: C9

Tópicos: I: Introducción a las clases P y NP y al problema P vs. NP. **II:** Introducción y ejemplos de problemas NP- Completos y a clases NP-Completos.

Objetivos de Aprendizaje I: Define las clases P y NP[Familiarizarse] II: Explique el significado de NP-Completitud[Familiarizarse]

Bibliografía: [Kleinberg and Tardos, 2005, Dasgupta et al., 2006, Cormen et al., 2009]

6.5 Estructuras de Datos Avanzadas y Análisis de Algoritmos, 8 hr(s)

Competencias: C16

- Tópicos: I: Grafos (ej. Ordenamiento Topológico, encontrando componentes puertemente conectados) II: Algoritmos Teórico-Numéricos (Aritmética Modular, Prueba del Número Primo, Factorización Entera) III: Algoritmos aleatorios. IV: Análisis amortizado. V: Análisis Probabilístico.
- Objetivos de Aprendizaje I: Entender el mapeamento de problemas del mundo real a soluciones algorítmicas (ejemplo, problemas de grafos, programas lineares,etc)[Familiarizarse] II: Seleccionar y aplicar técnicas de algoritmos avanzadas (ejemplo, randonmización, aproximación) para resolver problemas reales[Usar] III: Seleccionar y aplicar técnicas avanzadas de análisis (ejemplo, amortizado, probabilistico,etc) para algoritmos[Usar]
- **Bibliografía:** [Kleinberg and Tardos, 2005, Dasgupta et al., 2006, Cormen et al., 2009, Tarjan, 1983, Rawlins, 1992]

7. Bibliografía

- [Alsuwaiyel, 1999] Alsuwaiyel, H. (1999). Algorithms: Design Techniques and Analysis. World Scientific.
- [Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). *Introduction to Algorithms, Third Edition*. The MIT Press, 3rd edition.
- [Dasgupta et al., 2006] Dasgupta, S., Papadimitriou, C., and Vazirani, U. (2006). Algorithms. McGraw-Hill Education.
- [Goodrich and Tamassia, 2009] Goodrich, M. T. and Tamassia, R. (2009). Algorithm Design: Foundations, Analysis and Internet Examples. John Wiley & Sons, Inc., 2nd edition.
- [Kleinberg and Tardos, 2005] Kleinberg, J. and Tardos, E. (2005). Algorithm Design. Addison-Wesley Longman Publishing Co., Inc.
- [Knuth, 1997] Knuth, D. (1997). The Art of Computer Programming: Fundamental algorithms. Number v. 1. Addison-Wesley.
- [Rawlins, 1992] Rawlins, G. (1992). Compared to What?: An Introduction to the Analysis of Algorithms. Computer Science Press.
- [Sedgewick and Flajolet, 2013] Sedgewick, R. and Flajolet, P. (2013). An Introduction to the Analysis of Algorithms. Pearson Education.
- [Sedgewick and Wayne, 2011] Sedgewick, R. and Wayne, K. (2011). Algorithms. Pearson Education.
- [Tarjan, 1983] Tarjan, R. E. (1983). Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

CB111. Física Computacional (Obligatorio)

1. Información General

■ Semestre: 5^{to} Sem. Créditos: 4

■ Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;

■ Prerrequisitos:

• MA102. Cálculo I (3^{er} Sem-Pág. 222)

2. Fundamentación

Física Computacional es un curso que le permitirá al estudiante entender las leyes de física de macropartículas y micropartículas considerado desde un punto material hasta un sistemas de partículas; debiéndose tener en cuenta que los fenómenos aquí estudiados van desde la mecánica clásica hasta la mecánica cuántica; Cinemática, Dinámica, Trabajo y Energía, Termodinámica, Fluidos, Oscilaciones, Electrodinámica y Física Cuánticas; además se debe asociar que éstos problemas deben ser resueltos con algoritmos computacionales.

Poseer capacidad y habilidad en la interpretación de problemas clásicos y cuánticos con condiciones de frontera reales que contribuyen en la elaboración de soluciones eficientes y factibles en diferentes áreas de la Ciencia de la Computación.

3. Objetivos del curso

- Identificar los principios que rigen la materia.
- Utilizar las leyes físicas para la solución de problemas.
- Aplicar la simulación a sistemas físicos.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Familiarizarse)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Familiarizarse)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Usar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad. \Rightarrow Outcome i
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome j**

6. Contenido del curso

6.1 FI1 Fundamentos de Física y Algebra vectorial, 6 hr(s)

Competencias: C1

Tópicos: I: Introducción. II: Naturaleza de la Física. III: Relación de la física con las ciencias básicas y aplicadas. IV: Modelo idealizado. V: Magnitudes físicas elementales. VI: Propiedades de los vectores. VII: Componentes de un vector y vectores unitarios. VIII: Producto de vectores. IX: Ejercicios y problemas.

Objetivos de Aprendizaje I: Entender y trabajar con las magnitudes físicas del SI.[Usar] II: Abstraer de la naturaleza los conceptos físicos rigurosos y representarlos en modelos vectoriales.[Usar] III: Entender y aplicar los conceptos vectoriales a problemas físicos reales.[Usar]

Bibliografía: [Landau et al., 2007, Thijssen, 1999, Raymond A. Serway, 2009, Alonso and Finn, 1995]

6.2 FI2 Cinemática, 6 hr(s)

Competencias: C20

Tópicos: I: Velocidad y Aceleración Instantánea. II: Interpretación algebraico y geométrico III: Caída Libre. IV: Movimiento Compuesto. V: Movimiento Circular. VI: Aplicación con POO VII: Ejercicios y problemas.

Objetivos de Aprendizaje I: Describir matemáticamente el movimiento mecánico de una partícula unidimensional como un cuerpo de dimensiones despreciables.[Usar] II: Conocer y aplicar conceptos de magnitudes cinemáticas.[Usar] III: Describir el comportamiento de movimiento de partículas, teórica y graficamente.[Usar] IV: Conocer representaciones vectoriales de estos movimientos unidimensionales.[Usar] V: Resolver problemas.[Usar]

Bibliografía: [Landau et al., 2007, Thijssen, 1999, Rieger., 2002, Schwarz., 1998, Hugh D. Young, 2007, Raymond A. Serway, 2009]

6.3 FI3. Dinámica, 6 hr(s)

Competencias: C24

Tópicos: I: Fuerzas e interacciones. II: Masa inercial. III: Peso. IV: Condiciones de Equilibrio.
V: Leyes de Newton VI: Dinámica del movimiento compuesto. VII: Aplicación de las leyes de Newton. VIII: Aplicación con POO. IX: Ejercicios y problemas.

Objetivos de Aprendizaje I: Conocer los conceptos de fuerza.[Usar] II: Conocer las interacciones de la materia a través de la inercia.[Usar] III: Conocer los conceptos de equilibrio.[Usar] IV: Conocer y aplicar las leyes de Newton. [Usar] V: Conocer y aplicar las leyes de la dinámica lineal y circular.[Usar] VI: Resolver problemas.[Usar]

Bibliografía: [Landau et al., 2007, Thijssen, 1999, Rieger., 2002, Schwarz., 1998, Hugh D. Young, 2007, Raymond A. Serway, 2009]

6.4 FI4 Trabajo y Energia, 6 hr(s)

Competencias: C1

Tópicos: I: Trabajo realizado por una fuerza constante. II: Trabajo realizado por fuerzas variables. III: Trabajo y energía cinética. IV: Potencia. V: Energía potencial gravitatoria. VI: Energía potencial elástica. VII: Fuerzas conservativas y no conservativas. VIII: Principios de conservación de la energía. IX: Ejercicios y problemas.

Objetivos de Aprendizaje I: Establecer los conceptos de trabajo y energía. [Usar] II: Conocer tipos de energía. [Usar] III: Establecer la relación energía convencional y no convencional. [Usar] IV: Conocer y aplicar los conceptos de conservación de energía. [Usar] V: Resolver problemas. [Usar]

Bibliografía: [Landau et al., 2007, Thijssen, 1999, Schwarz., 1998, Hugh D. Young, 2007, Raymond A. Serway, 2009]

6.5 FI5 Momento lineal, 6 hr(s)

Competencias: C20

Tópicos: I: Momento lineal. **II:** Conservación del momento lineal. **III:** Centro de masa y de gravedad. **IV:** Movimiento de un sistema de partículas. **V:** Ejercicios y problemas.

Objetivos de Aprendizaje I: Establecer los conceptos de momento lineal.[Usar] II: Conocer los conceptos de conservación del momento lineal.[Usar] III: Conocer el momento de un sistema de partículas.[Usar] IV: Resolver problemas.[Usar]

Bibliografía: [Landau et al., 2007, Thijssen, 1999, Schwarz., 1998, Hugh D. Young, 2007, Raymond A. Serway, 2009]

6.6 FI6 Fluidos y Transferencia de Calor, 6 hr(s)

Competencias: C24

Tópicos: I: Estática de Fluidos. II: Dinámica de fluidos. III: Viscosidad. IV: Ejercicios y problemas.

Objetivos de Aprendizaje I: Conocer los conceptos y principios que rigen a los fluidos.[Usar] II: Conocer el movimiento de fluidos [Usar] III: Resolver problemas.[Usar]

Bibliografía: [Landau et al., 2007, Mermin, 2006, Gould, 2006, Hugh D. Young, 2007, Raymond A. Serway, 2009]

6.7 FI7 Termodinámica, 6 hr(s)

Competencias: C20

Tópicos: I: Calor y Temperatura. II: Leyes de la Termodinámica. III: Transferencia de calor. IV: Ecuación del Calor. V: Ejercicios y problemas.

Objetivos de Aprendizaje I: Establecer los conceptos de temperatura. [Usar] II: Comprender las leyes de la termodinámica. [Usar] III: Conocer los conceptos de transferencia de calor. [Usar] IV: Resolver problemas. [Usar]

Bibliografía: [Landau et al., 2007, Pang, 2006, Shabana, 2008, Schwarz., 1998, Hugh D. Young, 2007, Raymond A. Serway, 2009]

6.8 FI8 Movimiento Oscilatorio y Ondulatorio, 8 hr(s)

Competencias: C1

Tópicos: I: Movimiento armónico simple II: Sistema masa - resorte. III: El péndulo. IV: Movimiento amortiguado V: Resonancia VI: Ondas mecánicas. VII: Resolver problemas.

Objetivos de Aprendizaje I: Establecer los conceptos de oscilación. [Usar] II: Conocer los sistemas amortiguados. [Usar] III: Conocer fenómenos de resonancia. [Usar] IV: Analizar las diferentes magnitudes que intervienen en el movimiento ondulatorio para su aplicación a variados casos [Usar] V: Resolver problemas. [Usar]

Bibliografía: [Landau et al., 2007, Borneianu, 2008, Hugh D. Young, 2007]

7. Bibliografía

- [Alonso and Finn, 1995] Alonso, M. and Finn, E. (1995). Física. Addison Wesley Iberoamericana.
- [Borneianu, 2008] Borneianu, R. H. L. J. P. C. C. (2008). A Survey of Computational Physics: Introductory Computational Science. Princeton University Press. 978-0691131375.
- [Gould, 2006] Gould, H. (2006). An Introduction to Computer Simulation Methods: Applications to Physical Systems. Addison Wesley, 3rd edition edition. 978-0805377583.
- [Hugh D. Young, 2007] Hugh D. Young, Roger A. Freedman, L. F. (2007). *University Physics with Modern Physics*. Addison Wesley.
- [Landau et al., 2007] Landau, R. H., Páez, M. J., and Bordeianu, C. C. (2007). Computational Physics: Problem Solving with Computers. Wiley-VCH, 2nd edition. 978-3527406265.
- [Mermin, 2006] Mermin, N. D. (2006). Solving PDEs in C++. SIAM, Society for Industrial and Applied Mathematics, 1 edition edition. 978-0898716016.
- [Pang, 2006] Pang, T. (2006). An Introduction to Computational Physics. Cambridge University Press, 2nd edition. 978-0521825696.
- [Raymond A. Serway, 2009] Raymond A. Serway, J. W. J. (2009). *Physics for Scientists and Engineers*. Brooks Cole.
- [Rieger., 2002] Rieger., A. K. H. H. (2002). Optimization Algorithms in Physics. Wiley-VCH, 1 edition edition. 978-3527403073.
- [Schwarz., 1998] Schwarz., N. G. A. D. S. (1998). Physics for computer science students. Springer, 2nd edition. 978-0387949031.
- [Shabana, 2008] Shabana, A. A. (2008). Computational Continuum Mechanics. Cambridge University Press, 1 edition edition. 978-0521885690.
- [Thijssen, 1999] Thijssen, J. M. (1999). Computational Physics. Cambridge University Press. 978-0521575881.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

MA306. Análisis Numérico (Obligatorio)

1. Información General

■ Semestre: 5^{to} Sem. Créditos: 3

■ Horas del curso: Teoría: 1 horas; Práctica: 2 horas; Laboratorio: 2 horas;

■ Prerrequisitos:

• MA201. Cálculo II (4^{to} Sem-Pág. 245)

2. Fundamentación

En este curso se estudia y analiza algoritmos numéricos que contribuyen en la elaboración de soluciones eficientes y útiles en diferentes áreas de las ciencias de la computación

3. Objetivos del curso

- Se presentarán procedimientos numéricos más importantes para la resolución de ecuaciones no lineales, sistemas lineales y no lineales, junto con los métodos para la determinación de valores y vectores propios.
- Se tratarán los temas de interpolación y aproximación de funciones y la derivación e integración numérica.
- Se hará el análisis y desarrollo de métodos numéricos necesarios para la resolución de problemas en computación.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Evaluar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. ()

5. Competencias específicas de Computación (IEEE)

5.1 CN1.A Introducción, 12 hr(s)

Competencias: 3

Tópicos: I: Aritmética de punto flotante II: Error, estabilidad, convergencia. III: Series de Taylor

Objetivos de Aprendizaje I: Comparar y contrastar las técnicas de análisi numérico presentadas en esta unidad. [Usar] II: Definir error, estabilidad y conceptos de precision de máquinas, asi como la inexactitud de las operaciones computacionales.[Usar] III: Identificar las fuentes de inexactitud en aproximaciones computacionales.[Usar]

Bibliografía: [Richard L. Burden, 2002, David Kincaid, 1994, Steven C. Chapra, 1988]

5.2 CN1.B Soluciones de ecuaciones de una variable, 24 hr(s)

Competencias: 4

Tópicos: I: Soluciones iterativas para encontrar raíces (Método de Newton).

Objetivos de Aprendizaje I: Comparar y contrastar las técnicas de análisi numérico presentadas en esta unidad. [Usar] II: Definir error, estabilidad y conceptos de precision de máquinas, asi como la inexactitud de las operaciones computacionales.[Usar] III: Identificar las fuentes de inexactitud en aproximaciones computacionales.[Usar]

Bibliografía: [Richard L. Burden, 2002, David Kincaid, 1994]

5.3 CN1.C Interpolación y aproximación polinomial, 12 hr(s)

Competencias: 4

Tópicos: I: Ajuste de curva, función de aproximación

Objetivos de Aprendizaje I: Comparar y contrastar las técnicas de análisi numérico presentadas en esta unidad. [Usar] II: Definir error, estabilidad y conceptos de precision de máquinas, asi como la inexactitud de las operaciones computacionales.[Usar] III: Identificar las fuentes de inexactitud en aproximaciones computacionales.[Usar]

Bibliografía: [Richard L. Burden, 2002, David Kincaid, 1994]

5.4 CN1. Diferenciación numérica e integración numérica, 12 hr(s)

Competencias: 4

Tópicos: I: Diferenciación numérica e integración (regla de Simpson) **II:** Métodos implícitos y explícitos

Objetivos de Aprendizaje I: Comparar y contrastar las técnicas de análisi numérico presentadas en esta unidad. [Usar] II: Definir error, estabilidad y conceptos de precision de máquinas, asi como la inexactitud de las operaciones computacionales.[Usar] III: Identificar las fuentes de inexactitud en aproximaciones computacionales.[Usar]

Bibliografía: [Richard L. Burden, 2002, David Kincaid, 1994, Zill, 2002]

5.5 CN1.E Problemas de valor inicial para ecuaciones diferenciales ordinarias, 24 hr(s)

Competencias: 3

Tópicos: I: Ecuaciones diferenciales.

Objetivos de Aprendizaje I: Comparar y contrastar las técnicas de análisi numérico presentadas en esta unidad. [Usar] II: Definir error, estabilidad y conceptos de precision de máquinas, asi como la inexactitud de las operaciones computacionales.[Usar] III: Identificar las fuentes de inexactitud en aproximaciones computacionales.[Usar]

Bibliografía: [Richard L. Burden, 2002, David Kincaid, 1994]

5.6 CN1.F Métodos iterativos en el álgebra matricial, 12 hr(s)

Competencias: 3

Tópicos: I: Algebra lineal. II: Diferencia finita

Objetivos de Aprendizaje I: Comparar y contrastar las técnicas de análisi numérico presentadas en esta unidad. [Usar] II: Definir error, estabilidad y conceptos de precision de máquinas, asi como la inexactitud de las operaciones computacionales.[Usar] III: Identificar las fuentes de inexactitud en aproximaciones computacionales.[Usar]

Bibliografía: [David Kincaid, 1994]

6. Bibliografía

[David Kincaid, 1994] David Kincaid, W. C. (1994). Análisis Numérico. Addison Wesley Iberoamericana.

[Richard L. Burden, 2002] Richard L. Burden, J. D. F. (2002). Análisis Numérico. Thomson Learning.

[Steven C. Chapra, 1988] Steven C. Chapra, R. P. C. (1988). *Métodos Numéricos para Ingenieros McGraw*. MacGraw Hill.

[Zill, 2002] Zill, D. G. (2002). Ecuaciones Diferenciales con Problemas de Valores en la Frontera. Thomson Learning.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

FG106. Teatro (Obligatorio)

1. Información General

■ Semestre: 5^{to} Sem. Créditos: 2

■ Horas del curso: Teoría: 1 horas; Práctica: 2 horas;

■ Prerrequisitos: Ninguno

2. Fundamentación

Favorece al estudiante a identificarse a la "Comunidad Académica" de la Universidad, en la medida en que le brinda canales naturales de integración a su grupo y a su Centro de Estudios y le permite, desde una visión alternativa, visualizar la valía interior de las personas a su alrededor, a la vez que puede conocer mejor la suya propia. Relaciona al universitario, a través de la experimentación, con un nuevo lenguaje, un medio de comunicación y expresión que va más allá de la expresión verbal conceptualizada. Coadyuva al estudiante en su formación integral, desarrollando en él capacidades corporales. Estimula en él, actitudes anímicas positivas, aptitudes cognitivas y afectivas. Enriquece su sensibilidad y despierta su solidaridad. Desinhibe y socializa, relaja y alegra, abriendo un camino de apertura de conocimiento del propio ser y el ser de los demás.

3. Objetivos del curso

Contribuir a la formación personal y profesional del estudiante, reconociendo, valorando y desarrollando su lenguaje corporal, integrándolo a su grupo, afianzando su seguridad personal, enriqueciendo su intuición, su imaginación y creatividad, motivándolo a abrir caminos de búsqueda de conocimiento de sí mismo y de comunicación con los demás a través de su sensibilidad, de ejercicios de introspección y de nuevas vías de expresión.

4. Resultados (Outcomes)

- f) Comunicarse efectivamente con audiencias diversas. (Usar)
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (Usar)

5. Competencias específicas de Computación (IEEE)

- C17. Capacidad para expresarse en los medios de comunicación orales y escritos como se espera de un graduado..⇒ Outcome f
- ${\bf C18.}$ Capacidad para participar de forma activa y coordinada en un equipo. \Rightarrow ${\bf Outcome}~{ ilde {f n}}$
- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades. \Rightarrow Outcome $\tilde{\mathbf{n}}$

6. Contenido del curso

6.1 El Arte, la Creatividad y el Teatro, 6 hr(s)

Competencias: C18,C24

- Tópicos: I: ¿Qué es el Arte? Una experiencia vivencial y personal. II: La llave maestra: la creatividad. III: La importancia del teatro en la formación personal y profesional. IV: Utilidad y enfoque del arte teatral.
- Objetivos de Aprendizaje I: Reconocer la vigencia del Arte y la creatividad en el desarrollo personal y social [Usar]. II: Relacionar al estudiante con su grupo valorando la importancia de la comunicación humana y del colectivo social [Usar]. III: Reconocer nociones básicas del teatro [Usar].

Bibliografía: [Majorana, 1958, Pavis, 1998]

6.2 El Juego: el quehacer del actor, 6 hr(s)

Competencias: C17,C24

- **Tópicos: I:** Juego, luego existo. **II:** El juego del niño y el juego dramático. **III:** Juegos de integración grupal y juegos de creatividad. **IV:** La secuencia teatral.
- Objetivos de Aprendizaje I: Reconocer el juego como herramienta fundamental del teatro [Usar]. II: Interiorizar y revalorar el juego como aprendizaje creativo [Usar]. III: Acercar al estudiante de manera espontánea y natural, a la vivencia teatral [Usar].

Bibliografía: [Majorana, 1958, Pavis, 1998]

6.3 La expresión corporal y el uso dramático del Objeto, 9 hr(s)

Competencias: C17, C18, C24

- Tópicos: I: Toma de conciencia del cuerpo. II: Toma de conciencia del espacio III: Toma de conciencia del tiempo IV: Creación de secuencias individuales y colectivas: Cuerpo, espacio y tiempo. V: El uso dramático del elemento: El juego teatral. VI: Presentaciones teatrales con el uso del elemento.
- Objetivos de Aprendizaje I: Experimentar con nuevas formas de expresión y comunicación [Usar]. II: Conocer algunos mecanismos de control y manejo corporal [Usar]. III: Brindar caminos para que el alumno pueda desarrollar creativamente su imaginación, su capacidad de relación y captación de estímulos auditivos, rítmicos y visuales [Usar]. IV: Conocer y desarrollar el manejo de su espacio propio y de sus relaciones espaciales [Usar]. V: Experimentar estados emocionales diferentes y climas colectivos nuevos [Usar].

Bibliografía: [Majorana, 1958, Pavis, 1998]

6.4 Comunicación no verbal en el Teatro, 12 hr(s)

Competencias: C18, C24

- Tópicos: I: Relajación, concentración y respiración. II: Desinhibición e interacción con el grupo. III: La improvisación. IV: Equilibrio, peso, tiempo y ritmo. V: Análisis del movimiento. Tipos de movimiento. VI: La presencia teatral. VII: La danza, la coreografía teatral.
- Objetivos de Aprendizaje I: Ejercitarse en el manejo de destrezas comunicativas no verbales [Usar]. II: Practicar juegos y ejercicios de lenguaje corporal, individual y grupalmente [Usar]. III: Expresar libre y creativamente sus emociones y sentimientos y su visión de la sociedad a través de representaciones originales con diversos lenguajes [Usar]. IV: Conocer los tipos de actuación [Usar].

Bibliografía: [Majorana, 1958, Pavis, 1998]

6.5 Huellas del teatro en el tiempo (El Teatro en la historia), 3 hr(s)

Competencias: C24

Tópicos: I: El orígen del teatro, el teatro griego y el teatro romano. **II:** El teatro medieval , la comedia del arte. **III:** De la pasión a la razón: Romanticismo e Ilustración. **IV:** El teatro realista, teatro épico. Brech y Stanislavski. **V:** El teatro del absurdo, teatro contemporáneo y teatro total. **VI:** Teatro en el Perú: Yuyashkani, La Tarumba, pataclaun, otros.

Objetivos de Aprendizaje I: Conocer la influencia que la sociedad ha ejercido en el teatro y la respuesta de este arte ante los diferentes momentos de la historia [Usar]. II: Apreciar el valor y aporte de las obras de dramaturgos importantes [Usar]. III: Analizar el contexto social del arte teatral [Usar]. IV: Reflexionar sobre el Teatro Peruano y arequipeño [Usar].

Bibliografía: [Majorana, 1958, Pavis, 1998]

6.6 El Montaje Teatral, 12 hr(s)

Competencias: C17,C18, C24

Tópicos: I: Apreciación teatral. Expectación de una o más obras teatrales. II: El espacio escénico. III: Construcción del personaje IV: Creación y montaje de una obra teatral . V: Presentación en público de pequeñas obras haciendo uso de vestuario, maquillaje, escenografía, utilería y del empleo dramático del objeto.

Objetivos de Aprendizaje I: Emplear la creación teatral, como manifestación de ideas y sentimientos propios ante la sociedad [Usar]. II: Aplicar las técnicas practicadas y los conocimientos aprendidos en una apreciación y/o expresión teatral concreta que vincule el rol de la educación [Usar]. III: Intercambiar experiencias y realizar presentaciones breves de ejercicios teatrales en grupo, frente a público [Usar].

Bibliografía: [Majorana, 1958, Pavis, 1998]

7. Bibliografía

[Majorana, 1958] Majorana, A. (1958). El arte de hablar en publico. La España Moderna.

[Pavis, 1998] Pavis, P. (1998). Diccionario del Teatro. Edit. Piados BA.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

FG210. Moral (Obligatorio)

1. Información General

■ Semestre: 5^{to} Sem. Créditos: 2

■ Horas del curso: Teoría: 1 horas; Práctica: 2 horas;

- Prerrequisitos:
 - FG204. Teología (4^{to} Sem-Pág. 251)

2. Fundamentación

La ética-moral comienza cuando se trata de elegir un sentido correcto de realización humana en su línea propia, un sentido capaz de desarrollar en plenitud sus posibilidades. El problema de dar sentido a la vida es fundamental en el ser humano, ya que lo acompaña durante toda su existencia, y la ética-moral interpela a la persona a vivir según su fin último. En este sentido, la ética-moral busca la realización del hombre en la elección correcta de dicho fin.

3. Objetivos del curso

• Formar la conciencia del estudiante para que pueda conducirse con criterio moralmente correcto en los ámbitos personal y profesional.

4. Resultados (Outcomes)

- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (\mathbf{Usar})
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (Usar)

5. Competencias específicas de Computación (IEEE)

- C10. Comprensión del impacto en las personas, las organizaciones y la sociedad de la implementación de soluciones tecnológicas e intervenciones.⇒ Outcome e
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome e
- C21. Comprender el aspecto profesional, legal, seguridad, asuntos políticos, humanistas, ambientales, culturales y éticos. \Rightarrow Outcome e, $\tilde{\mathbf{n}}$
- C22. Capacidad para demostrar las actitudes y prioridades que honrar, proteger y mejorar la estatura y la reputación ética de la profesión. \Rightarrow Outcome $\tilde{\mathbf{n}}$

6. Contenido del curso

6.1 Primera Unidad: La Ética Filosófica, 9 hr(s)

Competencias: C10,C20

Tópicos: I: Presentación del curso. **II:** Lo ético y moral. La ética como rama de la filosofía. **III:** La necesidad de la metafísica. **IV:** La experiencia moral. **V:** El problema del relativismo y su solución.

Objetivos de Aprendizaje I: Incorporar una primera noción de la ética y la moral, junto con los problemas que buscan resolver.[Familiarizarse]

Bibliografía: [S., 1994, D., 2006, A., 1994, Aristoteles, 2003]

6.2 Segunda Unidad: La acción moral, 15 hr(s)

Competencias: C10,C20

Tópicos: I: Caracterización del actuar humano. **II:** Libertad, conciencia y voluntariedad. Distintos niveles de libertad. Factores que afectan la voluntariedad. **III:** El papel de la afectividad en la moralidad. **IV:** La felicidad como fin último del ser humano.

Objetivos de Aprendizaje I: Analizar el acto humano, presentando sus condiciones y especificando su moralidad.[Familiarizarse]

Bibliografía: [Sánchez-Migallón, 2008, Genta, 1970]

6.3 Tercera Unidad: La vida virtuosa, 12 hr(s)

Competencias: C21,C22

Tópicos: I: £Qué se entiende por virtud? **II:** La virtud moral: caracterización y modo de adquisición; el carácter dinámico de la virtud. **III:** Relación entre las distintas virtudes éticas. Las virtudes cardinales. Los vicios.

Objetivos de Aprendizaje I: Reflexionar respecto al ideal filosófico y moral de la vida virtuosa desde la práctica estable de bien y el rechazo constante de lo dañino.[Familiarizarse]

Bibliografía: [Pieper, 1997, Droste, , Lego, 2009]

6.4 Cuarta Unidad: Lo éticamente correcto y su conocimiento, 9 hr(s)

Competencias: C10,C20,C21

Tópicos: I: La corrección en lo ético. II: El conocimiento de lo éticamente correcto. III: La llamada "recta razón" y la "verdad práctica". IV: Las leyes morales: ley natural y ley positiva. V: La conciencia moral: definición, tipos, deformaciones. VI: La valoración moral de las acciones concretas.

Objetivos de Aprendizaje I: Discernir las nociones de recta razón, conciencia moral, y moral natural, remarcando la necesidad de la ley moral natural como el parámetro de conducta. [Familiarizarse]

Bibliografía: [Rey de Castro, 2010, Sánchez-Migallón, 2008, Genta, 1970]

7. Bibliografía

[A., 1994] A., R. L. (1994). Ética General. Ediciones de la Universidad de Navarra. UCSP:SU 170 R75.

[Aristoteles, 2003] Aristoteles (2003). Ética nicomaquea. Ética eudemia. Gredos. UCSP:185 A72E.

[D., 2006] D., B. (2006). Cien años de modernismo. Fundación San Pio X.

[Droste,] Droste, K. Desórdenes morales relacionados con el deleite sensible y alteraciones psicológicas desde una antropología perenne.

[Genta, 1970] Genta, J. B. (1970). Curso de ética. Centro de Estudios San Alberto Magno.

[Lego, 2009] Lego, P. (2009). UCSP.

[Pieper, 1997] Pieper, J. (1997). Las virtudes fundamentales. Rialp Madrid. UCSP:245 P54.

[Rey de Castro, 2010] Rey de Castro, J. (2010). Cuaderno de Trabajo de Introducción a la Filosofía. UCSP. UCSP:101 R47.

[S., 1994] S., L. C. (1994). Mero Cristianismo. Andres Bello. UCSP:230 L54.

[Sánchez-Migallón, 2008] Sánchez-Migallón, S. (2008). Ética filosófica. Ediciones Universidad de Navarra. UCSP:170 S23.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

CS311. Programación Competitiva (Obligatorio)

1. Información General

- Semestre: 6^{to} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS212. Análisis y Diseño de Algoritmos (5^{to} Sem-Pág. 263)

2. Fundamentación

La Programación Competitiva combina retos de solucionar problemas con la diversión de competir con otras personas. Enseña a los participantes a pensar más rápido y desarrollar habilidades para resolver problemas, que son de gran demanda en la industria. Este curso enseñará la resolución de problemas algorítmicos de manera rápida combinando la teoría de algoritmos y estructuras de datos con la práctica la solución de los problemas.

3. Objetivos del curso

- Que el alumno utilice técnicas de estructuras de datos y algoritmos complejos.
- Que el alumno aplique los conceptos aprendidos para la aplicación sobre un problema real.
- Que el alumno investigue la posibilidad de crear un nuevo algoritmo y/o técnica nueva para resolver un problema real.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Usar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a,b
- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades. \Rightarrow Outcome i,j

6. Contenido del curso

6.1 Primera Unidad, 20 hr(s)

Competencias: C24,C1

Tópicos: I: Estructura de datos II: Programación dinámica III: Algoritmos basados en grafos IV: Geometría computacional V: Algoritmos de ordenamiento

Objetivos de Aprendizaje I: Aprender a seleccionar los algoritmos adecuados para un problema dado, integrando múltiples algoritmos para la solución de un problema complejo. [Usar] II: Diseñar nuevos algoritmos para la resolución de problemas del mundo real.[Usar]

Bibliografía: [Cormen et al., 2009]

7. Bibliografía

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). *Introduction to Algorithms*. MIT Press.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

CS312. Estructuras de Datos Avanzadas (Obligatorio)

1. Información General

- Semestre: 6^{to} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS212. Análisis y Diseño de Algoritmos (5^{to} Sem-Pág. 263)

2. Fundamentación

Los algoritmos y estructuras de datos son una parte fundamental de la ciencia de la computación que nos permiten organizar la información de una manera más eficiente, por lo que es importante para todo profesional del área tener una sólida formación en este aspecto.

En el curso de estructuras de datos avanzadas nuestro objetivo es que el alumno conozca y analize estructuras complejas, como los Métodos de Acceso Multidimensional, Métodos de Acceso Espacio-Temporal y Métodos de Acceso Métrico, etc.

3. Objetivos del curso

• Que el alumno entienda, diseñe, implemente, aplique y proponga estructuras de datos innovadoras para solucionar problemas relacionados al tratamiento de datos multidimensionales, recuperación de información por similitud, motores de búsqueda y otros problemas computacionales.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Familiarizarse)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Usar)
- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Familiarizarse)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Familiarizarse)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad. \Rightarrow Outcome h
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome h**

6. Contenido del curso

6.1 Técnicas Básicas de Implementación de Estructuras de Datos, 16 hr(s)

Competencias: C1

Tópicos: I: Programación estructurada II: Programación Orientada a Objetos III: Tipos Abstractos de Datos IV: Independencia del lenguaje de programación del usuario de la estructura V: Independencia de Plataforma VI: Control de concurrencia VII: Protección de Datos VIII: Niveles de encapsulamiento (struct, class, namespace, etc)

Objetivos de Aprendizaje I: Que el alumno entienda las diferencias básicas que involucran las distintas técnicas de implementación de estructuras de datos[Usar] II: Que el alumno analice las ventajas y desventajas de cada una de las técnicas existentes[Usar]

Bibliografía: [Cuadros-Vargas et al., 2004, Knuth, 2007a, Knuth, 2007b, Gamma et al., 1994]

6.2 Métodos de Acceso Multidimensionales, 16 hr(s)

Competencias: C20

Tópicos: I: Métodos de Acceso para datos puntuales II: Métodos de Acceso para datos no puntuales III: Problemas relacionados con el aumento de dimensión

Objetivos de Aprendizaje I: Que el alumno entienda conozca e implemente algunos Métodos de Acceso para datos multidimensionales y espacio temporales[Usar] II: Que el alumno entienda el potencial de estos Métodos de Acceso en el futuro de las bases de datos comerciales[Usar]

Bibliografía: [Samet, 2006, Gaede and Günther, 1998]

6.3 Métodos de Acceso Métrico, 20 hr(s)

Competencias: C24

Tópicos: I: Métodos de Acceso Métrico para distancias discretas **II:** Métodos de Acceso Métrico para distancias continuas

Objetivos de Aprendizaje I: Que el alumno entienda conozca e implemente algunos métodos de acceso métrico[Usar] II: Que el alumno entienda la importancia de estos Métodos de Acceso para la Recuperación de Información por Similitud[Usar]

Bibliografía: [Samet, 2006, Chávez et al., 2001, Traina Jr et al., 2000, Zezula et al., 2007]

6.4 Métodos de Acceso Aproximados, 20 hr(s)

Competencias: C1

Tópicos: I: Space Filling Curves II: Locality Sensitive Hashing

Objetivos de Aprendizaje I: Que el alumno entienda conozca e implemente algunos métodos de acceso aproximados[Usar] II: Que el alumno entienda la importancia de estos Métodos de Acceso para la Recuperación de Información por Similitud en entornos donde la Escalabilidad sea una factor muy importante[Usar]

Bibliografía: [PGregory Shakhnarovich and Indyk, 2006, Zezula et al., 2007, Samet, 2006]

6.5 Seminarios, 8 hr(s)

Competencias: C20

Tópicos: I: Métodos de Acceso Espacio Temporal **II:** Estructuras de Datos con programación genérica

Objetivos de Aprendizaje I: Que el alumno pueda discutir sobre los últimos avances en métodos de acceso para distintos dominios de conocimiento[Usar]

Bibliografía: [Samet, 2006, Chávez et al., 2001]

7. Bibliografía

- [Chávez et al., 2001] Chávez, E., Navarro, G., Baeza-Yates, R., and Marroquín, J. (2001). Proximity searching in metric spaces. ACM Computing Surveys, 33(3):273–321.
- [Cuadros-Vargas et al., 2004] Cuadros-Vargas, E., Romero, R. A. F., Mock, M., and Brisaboa, N. (2004). Implementing data structures: An incremental approach. http://socios.spc.org.pe/ecuadros/cursos/pdfs/.
- [Gaede and Günther, 1998] Gaede, V. and Günther, O. (1998). Multidimensional Access Methods. ACM Computing Surveys, 30(2):170–231.
- [Gamma et al., 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M. (1994). *Design Patterns: Elements of Reusable Object-Oriented Software*. Computing Series. Addison-Wesley Professional. ISBN-10: 0201633612.
- [Knuth, 2007a] Knuth, D. E. (2007a). The Art of Computer Programming, Fundamental Algorithms, volume I. Addison-Wesley, 3rd edition. 0-201-89683-4.
- [Knuth, 2007b] Knuth, D. E. (2007b). The Art of Computer Programming, Sorting and Searching, volume II. Addison-Wesley, 2nd edition. 0-201-89685-0.
- [PGregory Shakhnarovich and Indyk, 2006] PGregory Shakhnarovich, T. D. and Indyk, P. (2006). Nearest-Neighbor Methods in Learning and Vision: Theory and Practice. MIT Press, 1st edition. ISBN 0-262-19547-X.
- [Samet, 2006] Samet, H. (2006). Foundations of Multidimensional and Metric Data Structures. Elsevier/Morgan Kaufmann, illustrated edition.
- [Traina Jr et al., 2000] Traina Jr, C., Traina, A. J. M., Seeger, B., and Faloutsos, C. (2000). Slim-Trees: High Performance Metric Trees Minimizing Overlap between Nodes. In Advances in Database Technology EDBT 2000, 6th International Conference on Extending Database Technology, volume 1777 of Lecture Notes in Computer Science, pages 51–65, Konstanz, Germany. Springer.
- [Zezula et al., 2007] Zezula, P., Amato, G., Dohnal, V., and Batko, M. (2007). Similarity Search: The Metric Space Approach. Springer, 1st edition. ISBN-10: 0387291466.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

CS2S1. Sistemas Operativos (Obligatorio)

1. Información General

- Semestre: 6^{to} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS221. Arquitectura de Computadores (3^{er} Sem-Pág. 213)

2. Fundamentación

Un Sistema Operativo es un programa que actúa como intermediario entre el usuario y la máquina. El propósito de un sistema operativo es proveer un ambiente en que el usuario pueda ejecutar sus aplicaciones.

En este curso se estudiará el diseño del núcleo de los sistemas operativos. Además el curso contempla actividades prácticas en donde se resolverán problemas de concurrencia y se modificará el funcionamiento de un pseudo Sistema Operativo.

3. Objetivos del curso

■ Conocer los elementos básicos del diseño de los sistemas operativos.

4. Resultados (Outcomes)

- **b)** Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (**Evaluar**)
- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (Familiarizarse)
- g) Analizar el impacto local y global de la computación sobre los individuos, organizaciones y sociedad. (Evaluar)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Usar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome e
- C6. Capacidad para diseñar y poner en práctica las unidades estructurales mayores que utilizan algoritmos y estructuras de datos y las interfaces a través del cual estas unidades se comunican.⇒
 Outcome h
- **CS8.** Aplicar los principios de la interacción persona-ordenador para la evaluación y la construcción de una amplia gama de materiales, incluyendo interfaces de usuario, páginas web, sistemas multimedia y sistemas móviles.⇒ **Outcome b, g**

6. Contenido del curso

6.1 Visión general de Sistemas Operativos, 3 hr(s)

Competencias: C1

Tópicos: I: Papel y el propósito del sistema operativo. **II:** Funcionalidad de un sistema operativo típico. **III:** Los mecanismos de apoyo modelos cliente-servidor, dispositivos de mano. **IV:** Cuestiones de diseño (eficiencia, robustez, flexibilidad, portabilidad, seguridad, compatibilidad) **V:** Influencias de seguridad, creación de redes, multimedia, sistemas de ventanas.

Objetivos de Aprendizaje I: Explicar los objetivos y funciones de un sistema operativo moderno [Familiarizarse] II: Analizar las ventajas y desventajas inherentes en el diseño de un sistema operativo [Evaluar] III: Describir las funciones de un sistema operativo contemporaneo respecto a conveniencia, eficiencia, y su habilidad para evolucionar [Familiarizarse] IV: Discutir acerca de sistemas operativos cliente-servidor, en red, distribuidos y cómo se diferencian de los sistemas operativos de un solo usuario [Familiarizarse] V: Identificar amenazas potenciales a sistemas operativos y las características del diseño de seguridad para protegerse de ellos [Familiarizarse]

Bibliografía: [Avi Silberschatz, 2012, Stallings, 2005, Tanenbaum, 2006, Tanenbaum, 2001, Mateu, 1999]

6.2 Principios de Sistemas Operativos, 6 hr(s)

Competencias: C1

Tópicos: I: Métodos de estructuración (monolítico, capas, modular, los modelos micro-kernel) II: Abstracciones, procesos y recursos. III: Los conceptos de interfaces de programa de aplicación (API)
IV: La evolución de las técnicas de hardware / software y las necesidades de aplicación V: Organización de dispositivos. VI: Interrupciones: métodos e implementaciones. VII: Concepto de usuario de estado / sistema y la protección, la transición al modo kernel.

Objetivos de Aprendizaje I: Explicar el concepto de una capa lógica[Familiarizarse] II: Explicar los beneficios de construir capas abstractas en forma jerárquica[Familiarizarse] III: Describir el valor de la API y middleware[Familiarizarse] IV: Describir como los recursos computacionales son usados por aplicaciones de software y administradas por el software del sistema[Familiarizarse] V: Contrastar el modo kernel y modo usuario en un sistema operativo[Evaluar] VI: Discutir las ventajas y desventajas del uso de procesamiento interrumpido[Familiarizarse] VII: Explicar el uso de una lista de dispositivos y el controlador de colas de entrada y salida[Familiarizarse]

Bibliografía: [Avi Silberschatz, 2012, Stallings, 2005, Tanenbaum, 2006, Tanenbaum, 2001, Mateu, 1999]

6.3 Concurrencia, 9 hr(s)

Competencias: C6

Tópicos: I: Diagramas de estado. II: Estructuras (lista preparada, bloques de control de procesos, y así sucesivamente) III: Despacho y cambio de contexto. IV: El papel de las interrupciones. V: Gestionar el acceso a los objetos del sistema operativo atómica. VI: La implementación de primitivas de sincronización. VII: Cuestiones multiprocesador (spin-locks, reentrada)

Objetivos de Aprendizaje I: Describir la necesidad de concurrencia en el marco de un sistema operativo [Familiarizarse] II: Demostrar los potenciales problemas de tiempo de ejecución derivados de la operación simultánea de muchas tareas diferentes [Usar] III: Resumir el rango de mecanismos que pueden ser usados a nivel del sistema operativo para realizar sistemas concurrentes y describir los beneficios de cada uno [Familiarizarse] IV: Explicar los diferentes estados por los que una tarea debe pasar y las estructuras de datos necesarias para el manejo de varias tareas [Familiarizarse] V: Resumir las técnicas para lograr sicronización en un sistema operativo (por ejemplo, describir como implementar semáforos usando primitivas del sistema

operativo.)[Familiarizarse] **VI:** Describir las razones para usar interruptores, despacho, y cambio de contexto para soportar concurrencia en un sistema operativo[Familiarizarse] **VII:** Crear diagramas de estado y transición para los dominios de problemas simples[Usar]

Bibliografía: [Avi Silberschatz, 2012, Stallings, 2005, Tanenbaum, 2006, Tanenbaum, 2001, Mateu, 1999]

6.4 Planificación y despacho, 6 hr(s)

Competencias: CS8

Tópicos: I: Planificación preventiva y no preferente. **II:** Planificadores y políticas. **III:** Procesos y subprocesos. **IV:** Plazos y cuestiones en tiempo real.

Objetivos de Aprendizaje I: Comparar y contrastar los algoritmos comunes que se utilizan tanto para un programa preferente y no preferente de las tareas en los sistemas operativos, como la comparación de prioridad, el rendimiento, y los esquemas de distribución equitativa[Evaluar] II: Describir las relaciones entre los algoritmos de planificación y dominios de aplicación[Familiarizarse] III: Discutir los tipos de planeamiento de procesos scheduling de corto, a mediano, a largo plazo y I/O[Familiarizarse] IV: Describir las diferencias entre procesos y hebras[Familiarizarse] V: Comparar y contrastar enfoques estáticos y dinámicos para scheduling en tiempo real[Evaluar] VI: Hablar sobre la necesidad de tiempos límites de scheduling[Familiarizarse] VII: Identificar formas en que la lógica expresada en algoritmos de planificación son de aplicación a otros ámbitos, tales como I/O del disco, la programación de disco de red, programación de proyectos y problemas más allá de la computación[Familiarizarse]

Bibliografía: [Avi Silberschatz, 2012, Stallings, 2005, Tanenbaum, 2006, Tanenbaum, 2001, Mateu, 1999]

6.5 Manejo de memoria, 6 hr(s)

Competencias: C1

Tópicos: I: Revisión de la memoria física y hardware de gestión de memoria. **II:** Conjuntos de trabajo y thrashing. **III:** El almacenamiento en caché

Objetivos de Aprendizaje I: Explicar la jerarquía de la memoria y costo-rendimiento de intercambio [Familiarizarse] II: Resumir los principios de memoria virtual tal como se aplica para el almacenamiento en cache y paginación [Familiarizarse] III: Evaluar las ventajas y desventajas en términos del tamaño de memoria (memoria principal, memoria caché, memoria axiliar) y la velocidad del procesador [Evaluar] IV: Defiende las diferentes formas de asignar memoria a las tareas, citando las ventajas relativas de cada uno [Familiarizarse] V: Describir el motivo y el uso de memoria caché (rendimiento y proximidad, dimensión diferente de como los caches complican el aislamiento y abstracción en VM) [Familiarizarse] VI: Estudiar los conceptos de thrashing, tanto en términos de las razones por las que se produce y las técnicas usadas para el reconocimiento y manejo del problema [Familiarizarse]

Bibliografía: [Avi Silberschatz, 2012, Stallings, 2005, Tanenbaum, 2006, Tanenbaum, 2001, Mateu, 1999]

6.6 Seguridad y protección, 6 hr(s)

Competencias: C1

Tópicos: I: Visión general de la seguridad del sistema . II: Política / mecanismo de separación. III: Métodos de seguridad y dispositivos. IV: Protección, control de acceso y autenticación. V: Las copias de seguridad.

Objetivos de Aprendizaje I: Articular la necesidad para la protección y seguridad en un sistema operativo [Familiarizarse] II: Resumir las caracteristicas y limitaciones de un sistema operativo usado para proporcionar protección y seguridad [Familiarizarse] III: Explicar el mecanismo disponible en un OS para controlar los accesos a los recursos [Familiarizarse] IV: Realizar tareas de administración de sistemas sencillas de acuerdo a una política de seguridad, por ejemplo la

creación de cuentas, el establecimiento de permisos, aplicación de parches y organización de backups regulares[Familiarizarse]

Bibliografía: [Avi Silberschatz, 2012, Stallings, 2005, Tanenbaum, 2006, Tanenbaum, 2001, Mateu, 1999]

6.7 Máquinas virtuales, 6 hr(s)

Competencias: CS8

Tópicos: I: Tipos de virtualización (incluyendo Hardware / Software, OS, Servidor, Servicio, Red) **II:** Paginación y la memoria virtual. **III:** Sistemas de archivos virtuales. **IV:** Los Hypervisor. **V:** Virtualización portátil; emulación vs aislamiento. **VI:** Costo de la virtualización.

Objetivos de Aprendizaje I: Explicar el concepto de memoria virtual y la forma cómo se realiza en hadware y software[Familiarizarse] II: Diferenciar emulacion y el aislamiento[Familiarizarse] III: Evaluar virtualización de compensaciones[Evaluar] IV: Discutir sobre hipervisores y la necesidad para ellos en conjunto con diferentes tipos de hipervisores[Familiarizarse]

Bibliografía: [Avi Silberschatz, 2012, Stallings, 2005, Tanenbaum, 2006, Tanenbaum, 2001, Mateu, 1999]

6.8 Manejo de dispositivos, 6 hr(s)

Competencias: C6

Tópicos: I: Características de los dispositivos serie y paralelo. **II:** Haciendo de abstracción de dispositivos. **III:** Estrategias de buffering. **IV:** Acceso directo a memoria. **V:** La recuperación de fallos.

Objetivos de Aprendizaje I: Explique la diferencia clave entre dispositivos seriales y paralelos e identificar las condiciones en las cuales cada uno es apropiado[Familiarizarse] II: Identificar la relación entre el hardware físico y los dispositivos virtuales mantenidos por el sistema operativo[Familiarizarse] III: Explique buffering y describir las estrategias para su aplicación[Familiarizarse] IV: Diferenciar los mecanismos utilizados en la interconexión de un rango de dispositivos (incluyendo dispositivos portátiles, redes, multimedia) a un ordenador y explicar las implicaciones de éstas para el diseño de un sistema operativo[Familiarizarse] V: Describir las ventajas y desventajas de acceso directo a memoria y discutir las cirscunstancias en cuales se justifica su uso[Familiarizarse] VI: Identificar los requerimientos para recuperación de errores[Familiarizarse] VII: Implementar un controlador de dispositivo simple para una gama de posibles equipos[Usar]

Bibliografía: [Avi Silberschatz, 2012, Stallings, 2005, Tanenbaum, 2006, Tanenbaum, 2001, Mateu, 1999]

6.9 Sistema de archivos, 6 hr(s)

Competencias: CS8

Tópicos: I: Archivos: los datos, metadatos, operaciones, organización, amortiguadores, secuenciales, no secuencial. II: Directorios: contenido y estructura. III: Los sistemas de archivos: partición, montar sistemas de archivos / desmontar, virtuales. IV: Técnicas estándar de implementación . V: Archivos asignados en memoria. VI: Sistemas de archivos de propósito especial. VII: Naming, búsqueda, acceso, copias de seguridad. VIII: La bitacora y los sistemas de archivos estructurados (log)

Objetivos de Aprendizaje I: Describir las decisiones que deben tomarse en el diseño de sistemas de archivos [Familiarizarse] II: Comparar y contrastar los diferentes enfoques para la organización de archivos, el reconocimiento de las fortalezas y debilidades de cada uno. [Evaluar] III: Resumir cómo el desarrollo de hadware ha dado lugar a cambios en las prioridades para el diseño y la gestión de sistemas de archivos [Familiarizarse] IV: Resumir el uso de diarios y como los sistemas de archivos de registro estructurado mejora la tolerancia a fallos [Familiarizarse]

Bibliografía: [Avi Silberschatz, 2012, Stallings, 2005, Tanenbaum, 2006, Tanenbaum, 2001, Mateu, 1999]

6.10 Sistemas empotrados y de tiempo real, 6 hr(s)

Competencias: C1

Tópicos: I: Proceso y programación de tareas. **II:** Los requisitos de gestión de memoria / disco en un entorno en tiempo real. **III:** Los fracasos, los riesgos y la recuperación. **IV:** Preocupaciones especiales en sistemas de tiempo real.

Objetivos de Aprendizaje I: Describir que hace a un sistema un sistema en tiempo real[Familiarizarse] II: Explicar la presencia y describir las características de latencia en sistemas de tiempo real[Familiarizarse] III: Resumir los problemas especiales que los sistemas en tiempo real presentan, incluyendo el riesgo, y cómo se tratan estos problemas[Familiarizarse]

Bibliografía: [Avi Silberschatz, 2012, Stallings, 2005, Tanenbaum, 2006, Tanenbaum, 2001, Mateu, 1999]

6.11 Tolerancia a fallas, 3 hr(s)

Competencias: C1

Tópicos: I: Conceptos fundamentales: sistemas fiables y disponibles. **II:** Redundancia espacial y temporal. **III:** Los métodos utilizados para implementar la tolerancia a fallos. **IV:** Los ejemplos de los mecanismos del sistema operativo para la detección, recuperación, reinicie para implementar la tolerancia a fallos, el uso de estas técnicas para los servicios propios del sistema operativo.

Objetivos de Aprendizaje I: Explicar la importancia de los términos tolerancia a fallos, fiabilidad y disponibilidad [Familiarizarse] II: Explicar en términos generales la gama de métodos para implementar la tolerancia a fallos en un sistema operativo [Familiarizarse] III: Explicar cómo un sistema operativo puede continar funcionando después de que ocurra una falla [Familiarizarse]

Bibliografía: [Avi Silberschatz, 2012, Stallings, 2005, Tanenbaum, 2006, Tanenbaum, 2001, Mateu, 1999]

6.12 Evaluación del desempeño de sistemas, 3 hr(s)

Competencias: C1

Tópicos: I: ¿Por qué el rendimiento del sistema debe ser evaluado? II: ¿Qué se va a evaluar? III: Sistemas de políticas de rendimiento, por ejemplo, el almacenamiento en caché, de paginación, la programación, la gestión de memoria, y la seguridad. IV: Modelos de evaluación: analítica, simulación, o de implementación específico determinista. V: Cómo recoger los datos de evaluación (perfiles y mecanismos de localización)

Objetivos de Aprendizaje I: Describir las medidas de rendimiento utilizados para determinar cómo el sistema funciona[Familiarizarse] II: Explicar los principales modelos de evaluación utilizados para evaluar un sistema[Familiarizarse]

Bibliografía: [Avi Silberschatz, 2012, Stallings, 2005, Tanenbaum, 2006, Tanenbaum, 2001, Mateu, 1999]

7. Bibliografía

[Avi Silberschatz, 2012] Avi Silberschatz, Peter Baer Galvin, G. G. (2012). Operating System Concepts, 9/E. John Wiley & Sons, Inc.

[Mateu, 1999] Mateu, L. (1999). Apuntes de Sistemas Operativos. Universidad de Chile.

[Stallings, 2005] Stallings, W. (2005). Operating Systems: Internals and Design Principles, 5/E. Prentice Hall.

[Tanenbaum, 2001] Tanenbaum, A. S. (2001). Modern Operating Systems, 2/E. Prentice Hall.

[Tanenbaum, 2006] Tanenbaum, A. S. (2006). Operating Systems Design and Implementation, 3/E. Prentice Hall.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

CS292. Ingeniería de Software II (Obligatorio)

1. Información General

- Semestre: 6^{to} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS291. Ingeniería de Software I (5^{to} Sem-Pág. 258)

2. Fundamentación

Los tópicos de este curso extienden las ideas del diseño y desarrollo de software desde la secuencia de introducción a la programación para abarcar los problemas encontrados en proyectos de gran escala. Es una visión más amplia y completa de la Ingeniería de Software apreciada desde un punto de vista de Proyectos.

3. Objetivos del curso

- Capacitar a los alumnos para formar parte y definir equipos de desarrollo de software que afronten problemas de envergadura real.
- Familiarizar a los alumnos con el proceso de administración de un proyecto de software de tal manera que sea capaz de crear, mejorar y utilizar herramientas y métricas que le permitan realizar la estimación y seguimiento de un proyecto de software.
- Crear, evaluar e implementar un plan de prueba para segmentos de código de tamaño medio ,
 Distinguir entre los diferentes tipos de pruebas , sentar las bases para crear, mejorar los procedimientos de prueba y las herramientas utilizadas con ese propósito.
- Seleccionar con justificación un apropiado conjunto de herramientas para soportar el desarrollo de un rango de productos de software.
- Crear, mejorar y utilizar los patrones existentes para el mantenimiento de software . Dar a conocer las características y patrones de diseño para la reutilización de software.
- Identificar y discutir diferentes sistemas especializados , crear , mejorar y utilizar los patrones especializados para el diseño , implementación , mantenimiento y prueba de sistemas especializados

4. Resultados (Outcomes)

- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (\mathbf{Usar})
- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Usar)
- f) Comunicarse efectivamente con audiencias diversas. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Evaluar)
- ${f k}$) Aplicar los principios de desarrollo y diseño en la construcción de sistemas de software de complejidad variable. ${f (Usar)}$

5. Competencias específicas de Computación (IEEE)

- C7. Ser capaz de aplicar los principios y tecnologías de ingeniería de software para asegurar que las implementaciones de software son robustos, fiables y apropiados para su público objetivo.⇒ Outcome b,k
- C8. Entendimiento de lo que las tecnologías actuales pueden y no pueden lograr.⇒ Outcome b,c,k
- C11. Entendimiento del concepto del ciclo de vida, incluyendo la importancia de sus fases (planificación, desarrollo, implementación y evolución).⇒ Outcome c
- C12. Entender las implicaciones de ciclo de vida para el desarrollo de todos los aspectos de los sistemas informáticos (incluyendo software, hardware, y la interfaz de la computadora humana). \Rightarrow Outcome c,i
- C13. Comprender la relación entre la calidad y la gestión del ciclo de vida.⇒ Outcome c,i
- C18. Capacidad para participar de forma activa y coordinada en un equipo. \Rightarrow Outcome k
- CS1. Modelar y diseñar sistemas de computadora de una manera que se demuestre comprensión del balance entre las opciones de diseño. \Rightarrow Outcome c
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome b,c**
- CS4. Implementar la teoría apropiada, prácticas y herramientas para la especificación, diseño, implementación y mantenimiento, así como la evaluación de los sistemas basados en computadoras.⇒ Outcome b,c,i
- CS5. Especificar, diseñar e implementar sistemas basados en computadoras.⇒ Outcome b,c,i
- CS10. Implementar efectivamente las herramientas que se utilizan para la construcción y la documentación de software, con especial énfasis en la comprensión de todo el proceso involucrado en el uso de computadoras para resolver problemas prácticos. Esto debe incluir herramientas para el control de software, incluyendo el control de versiones y gestión de la configuración.⇒ Outcome i.k

6. Contenido del curso

6.1 Herramientas y Entornos, 12 hr(s)

Competencias: C1

- Tópicos: I: Administración de configuración de software y control de versiones. II: Administración de despliegues. III: Análisis de requerimientos y herramientas para modelado del diseño. IV: Herramientas de testing incluyendo herramientas de análisis estático y dinámico. V: Entornos de programación que automatizan el proceso de construcción de partes de programa (ejem., construcciones automatizadas) a) Integración continua. VI: Mecanismos y conceptos de herramientas de integración.
- Objetivos de Aprendizaje I: Administración de configuración de software y control de versiones. [Usar] II: Administración de despliegues. [Usar] III: Análisis de requerimientos y herramientas para modelado del diseño. [Usar] IV: Herramientas de testing incluyendo herramientas de análisis estático y dinámico. [Usar] V: Entornos de programación que automatizan el proceso de construcción de partes de programa (ejem., construcciones automatizadas) a) Integración continua. [Usar] VI: Mecanismos y conceptos de herramientas de integración. [Usar]
- Bibliografía: [Pressman, 2004, Blum, 1992, Schach, 2004, Wang and King, 2000, Keyes, 2004, Windle and Abreo, 20 Priest and Sanchez, 2001, Schach, 2004, Montangero, 1996, Ambriola, 2001, Conradi, 2000, Oquendo, 2003]

6.2 Verificación y Validación de Software, 12 hr(s)

Competencias: C20

Tópicos: I: Verificación y validación de conceptos. II: Inspecciones, revisiones, auditorias. III: Tipos de pruebas, incluyendo la interfas humano computador, usabildiad, confiabilidad, seguridad, desempeño para la especificación. IV: Fundamentos de testeo: a) Pruebas de Unit, integración, validación y de Sistema b) Creación de plan de pruebas y generación de casos de test c) Técnicas de test de caja negra y caja blanca d) Test de regresión y automatización de pruebas V: Seguimiento de defectos. VI: Limitaciones de testeo en dominios particulares, tales como sistemas paralelos o críticos en cuanto a seguridad. VII: Enfoques estáticos y enfoques dinámicos para la verificación. VIII: Desarrollo basado en pruebas. IX: Plan de Validación, documentación para validación. X: Pruebas Orientadas a Objetos, Sistema de Pruebas. XI: Verificación y validación de artefactos no codificados (documentación, archivos de ayuda, materiales de entrenamiento) XII: Logeo fallido, error crítico y apoyo técnico para dichas actividades. XIII: Estimación fallida y terminación de las pruebas que incluye la envios por defecto.

Objetivos de Aprendizaje I: Distinguir entre la validación y verificación del programa[Usar] II: Describir el papel que las herramientas pueden desempeñar en la validación de software[Usar] III: Realizar, como parte de una actividad de equipo, una inspección de un segmento de código de tamaño medio[Usar] IV: Describir y distinguir entre diferentes tipos y niveles de pruebas (unitaria, integracion, sistemas y aceptacion) [Usar] V: Describir tecnicas para identificar casos de prueba representativos para integracion, regresion y pruebas del sistema[Usar] VI: Crear y documentar un conjunto de pruebas para un segmento de código de mediano tamaño[Usar] VII: Describir cómo seleccionar buenas pruebas de regresión y automatizarlas[Usar] VIII: Utilizar una herramienta de seguimiento de defectos para manejar defectos de software en un pequeño proyecto de software[Usar] IX: Discutir las limitaciones de las pruebas en un dominio particular[Usar] X: Evaluar un banco de pruebas (a test suite) para un segmento de código de tamaño medio [Usar] XI: Comparar los enfoques estáticos y dinámicos para la verificación[Usar] XII: Identificar los principios fundamentales de los métodos de desarrollo basado en pruebas y explicar el papel de las pruebas automatizadas en estos métodos[Usar] XIII: Discutir los temas relacionados con las pruebas de software orientado a objetos [Usar] XIV: Describir las técnicas para la verificación y validación de los artefactos de no código[Usar] XV: Describir los enfoques para la estimación de fallos[Usar] XVI: Estimar el número de fallos en una pequeña aplicación de software basada en la densidad de defectos y siembra de errores[Usar] XVII: Realizar una inspección o revisión del de código fuente de un software para un proyecto de software de tamaño pequeño o mediano[Usar]

Bibliografía: [Pressman, 2004, Blum, 1992, Schach, 2004, Wang and King, 2000, Keyes, 2004, Windle and Abreo, 2002, Priest and Sanchez, 2001, Schach, 2004, Montangero, 1996, Ambriola, 2001, Conradi, 2000, Oquendo, 2003]

6.3 Evolución de Software, 12 hr(s)

Competencias: C20

Tópicos: I: Desarrollo de Software en el contexto de código grande pre existente a) Cambios de software b) Preocupaciones y ubicación de preocupaciones c) Refactoring II: Evolución de Software. III: Características de Software mantenible. IV: Sistemas de Reingeniería. V: Reuso de Software. a) Segmentos de código b) Bibliotecas y frameworks c) Componentes d) Líneas de Producto

Objetivos de Aprendizaje I: Identificar los problemas principales asociados con la evolución del software y explicar su impacto en el ciclo de vida del software [Usar] II: Estimar el impacto del cambio de requerimientos en productos existentes de tamaño medio [Usar] III: Usar refactorización en el proceso de modificación de un componente de sosftware [Usar] IV: Estudiar los desafios de mejorar sistemas en un entorno cambiante [Usar] V: Perfilar los procesos de pruebas de regresión y su rol en el manejo de versiones [Usar] VI: Estudiar las ventajas y desventajas de diferentes tipos de niveles de confiabilidad [Usar]

Bibliografía: [Pressman, 2004, Blum, 1992, Schach, 2004, Wang and King, 2000, Keyes, 2004, Windle and Abreo, 20 Priest and Sanchez, 2001, Schach, 2004, Montangero, 1996, Ambriola, 2001, Conradi, 2000, Oquendo, 2003]

6.4 Gestión de Proyectos de Software, 12 hr(s)

Competencias: C24

Tópicos: I: La participación del equipo: a) Procesos elemento del equipo, incluyendo responsabilidades de tarea, la estructura de reuniones y horario de trabajo b) Roles y responsabilidades en un equipo de software c) Equipo de resolución de conflictos d) Los riesgos asociados con los equipos virtuales (comunicación, la percepción, la estructura) II: Estimación de esfuerzo (a nivel personal) III: Riesgo. a) El papel del riesgo en el ciclo de vida b) Categorías elemento de riesgo, incluyendo la seguridad, la seguridad, mercado, finanzas, tecnología, las personas, la calidad, la estructura y el proceso de IV: Gestión de equipos: a) Organización de equipo y la toma de decisiones b) Roles de identificación y asignación c) Individual y el desempeño del equipo de evaluación V: Gestión de proyectos: a) Programación y seguimiento de elementos b) Herramientas de gestión de proyectos c) Análisis de Costo/Beneficio VI: Software de medición y técnicas de estimación. VII: Aseguramiento de la calidad del software y el rol de las mediciones. VIII: Riesgo. a) Identificación de riesgos y gestión. b) Análisis riesgo y evaluación. c) La tolerancia al riesgo (por ejemplo, riesgo adverso, riesgo neutral, la búsqueda de riesgo) d) Planificación de Riesgo IX: En todo el sistema de aproximación al riesgo, incluyendo riesgos asociados con herramientas.

Objetivos de Aprendizaje I: Discutir los comportamientos comunes que contribuyen al buen funcionamiento de un equipo[Usar] II: Crear y seguir un programa para una reunión del equipo[Usar] III: Identificar y justificar las funciones necesarias en un equipo de desarrollo de software[Usar] IV: Entender las fuentes, obstáculos y beneficios potenciales de un conflicto de equipo[Usar] V: Aplicar una estrategia de resolución de conflictos en un ambiente de equipo[Usar] VI: Utilizar un método ad hoc para estimar el esfuerzo de desarrollo del software (ejemplo, tiempo) y comparar con el esfuerzo actual requerido[Usar] VII: Listar varios ejemplos de los riesgos del software[Usar] VIII: Describir el impacto del riesgo en el ciclo de vida de desarrollo de software[Usar] IX: Describir las diferentes categorías de riesgo en los sistemas de software[Usar] X: Demostrar a través de la colaboración de proyectos de equipo los elementos centrales de la contrucción de equipos y gestión de equipos[Usar]

Bibliografía: [Pressman, 2004, Blum, 1992, Schach, 2004, Wang and King, 2000, Keyes, 2004, Windle and Abreo, 20 Priest and Sanchez, 2001, Schach, 2004, Montangero, 1996, Ambriola, 2001, Conradi, 2000, Oquendo, 2003]

7. Bibliografía

[Ambriola, 2001] Ambriola, V. (2001). Software Process Technology. Springer.

[Blum, 1992] Blum, B. I. (1992). Software Engineering: A Holistic View. Oxford University Press US, 7th edition.

[Conradi, 2000] Conradi, R. (2000). Software Process Technology. Springer.

[Keyes, 2004] Keyes, J. (2004). Software Configuration Management. CRC Press.

[Montangero, 1996] Montangero, C. (1996). Software Process Technology. Springer.

[Oquendo, 2003] Oquendo, F. (2003). Software Process Technology. Springer.

[Pressman, 2004] Pressman, R. S. (2004). Software Engineering: A Practitioner's Approach. McGraw-Hill, 6th edition.

[Priest and Sanchez, 2001] Priest, J. W. and Sanchez, J. M. (2001). Product Development and Design for Manufacturing. Marcel Dekker.

[Schach, 2004] Schach, S. R. (2004). Object-Oriented and Classical Software Engineering. McGraw-Hill.

[Wang and King, 2000] Wang, Y. and King, G. (2000). Software Engineering Processes: Principles and Applications. CRC Press.

[Windle and Abreo, 2002] Windle, D. R. and Abreo, L. R. (2002). Software Requirements Using the Unified Process. Prentice Hall.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

MA307. Matemática aplicada a la computación (Obligatorio)

1. Información General

- Semestre: 6^{to} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - MA201. Cálculo II (4^{to} Sem-Pág. 245)

2. Fundamentación

Este curso es importante porque desarrolla tópicos del Álgebra Lineal y de Ecuaciones Diferenciales Ordinarias útiles en todas aquellas áreas de la ciencia de la computación donde se trabaja con sistemas lineales y sistemas dinámicos.

3. Objetivos del curso

 Que el alumno tenga la base matemática para el modelamiento de sistemas lineales y sistemas dinámicos necesarios en el àrea de Computación Gràfica e Inteligencia Artificial.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Familiarizarse)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Familiarizarse)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Usar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome i
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome j**

6. Contenido del curso

6.1 Espacios Lineales, 0 hr(s)

Competencias: C1

Tópicos: I: Espacios vectoriales. **II:** Independencia, base y dimensión. **III:** Dimensiones y ortogonalidad de los cuatro subespacios. **IV:** Aproximaciones por mínimos cuadrados. **V:** Proyecciones **VI:** Bases ortogonales y Gram-Schmidt

Objetivos de Aprendizaje I: Identificar espacios generados por vectores linealmente independientes [Usar] II: Construir conjuntos de vectores ortogonales [Usar] III: Aproximar funciones por polinomios trigonométricos [Usar]

Bibliografía: [Strang, 2003, Apóstol, 1973]

6.2 Transformaciones lineales, 0 hr(s)

Competencias: C20

Tópicos: I: Concepto de transformación lineal. II: Matriz de una transformación lineal. III: Cambio de base. IV: Diagonalización y pseudoinversa

Objetivos de Aprendizaje I: Determinar el núcleo y la imagen de una transformación[Usar] II: Construir la matriz de una transformación[Usar] III: Determinar la matriz de cambio de base[Usar]

Bibliografía: [Strang, 2003, Apóstol, 1973]

6.3 Autovalores y autovectores, 0 hr(s)

Competencias: C24

Tópicos: I: Diagonalización de una matriz II: Matrices simétricas III: Matrices definidas positivas IV: Matrices similares V: La descomposición de valor singular

Objetivos de Aprendizaje I: Encontrar la representación diagonal de una matriz[Usar] II: Determinar la similaridad entre matrices[Usar] III: Reducir una forma cuadrática real a diagonal[Usar]

Bibliografía: [Strang, 2003, Apóstol, 1973]

6.4 Sistemas de ecuaciones diferenciales, 0 hr(s)

Competencias: C1

Tópicos: I: Exponencial de una matriz **II:** Teoremas de existencia y unicidad para sistemas lineales homogéneos con coeficientes constantes **III:** Sistemas lineales no homogéneas con coeficientes constantes.

Objetivos de Aprendizaje I: Hallar la solución general de un sistema lineal no homogéneo[Usar]
II: Resolver problemas donde intervengan sistemas de ecuaciones diferenciales[Usar]

Bibliografía: [Zill, 2002, Apóstol, 1973]

6.5 Teoría fundamental, 0 hr(s)

Competencias: C20

Tópicos: I: Sistemas dinámicos **II:** El teorema fundamental **III:** Existencia y unicidad **IV:** El flujo de una ecuación diferencial

Objetivos de Aprendizaje I: Discutir la existencia y la unicidad de una ecuación diferencial[Usar] II: Analizar la continuidad de las soluciones[Usar] III: Estudiar la prolongación de una solución[Usar]

Bibliografía: [Hirsh and Smale, 1974]

6.6 Estabilidad de equilibrio, 0 hr(s)

Competencias: C24

Tópicos: I: Estabilidad II: Funciones de Liapunov III: Sistemas gradientes

Objetivos de Aprendizaje I: Analizar la estabilidad de una solución[Usar] II: Hallar la función de Liapunov para puntos de equilibrio[Usar] III: Trazar el retrato de fase un flujo gradiente[Usar]

Bibliografía: [Zill, 2002, Hirsh and Smale, 1974]

7. Bibliografía

[Apóstol, 1973] Apóstol, T. M. (1973). Calculus Vol II. Editorial Reverté.

[Hirsh and Smale, 1974] Hirsh, M. W. and Smale, S. (1974). Differential Equations, Dynamical Systems, and Linear Álgebra. Academia Press.

[Strang, 2003] Strang, G. (2003). Introduction to Linear Algebra, 3t edición. Wellesley-Cambridge Press.

[Zill, 2002] Zill, D. G. (2002). Ecuaciones Diferenciales con Problemas de Valores en la Frontera. Thomson Learning.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

FG203. Oratoria (Obligatorio)

1. Información General

■ Semestre: 6^{to} Sem. Créditos: 2

■ Horas del curso: Teoría: 1 horas; Práctica: 2 horas;

■ Prerrequisitos:

• FG106. Teatro (5^{to} Sem-Pág. 274)

2. Fundamentación

En la sociedad competitiva como la nuestra, se exige que la persona sea un comunicador eficaz y sepa utilizar sus potencialidades a fin de resolver problemas y enfrentar los desafíos del mundo moderno dentro de la actividad laboral, intelectual y social. Tener el conocimiento no basta, lo importante es saber comunicarlo y en la medida que la persona sepa emplear sus facultades comunicativas, derivará en éxito o fracaso aquello que tenga que realizar en su desenvolvimiento personal y profesional. Por ello es necesario para lograr un buen decir, recurrir a conocimientos, estrategias y recursos, que debe tener todo orador, para llegar con claridad, precisión y convicción al interlocutor

3. Objetivos del curso

• Al término del curso, el alumno será capaz de organizar y asumir la palabra desde la perspectiva del orador, en cualquier situación, en forma más correcta, coherente y adecuada, mediante el uso de conocimientos y habilidades lingüísticas, buscando en todo momento su realización personal y social a través de su expresión, teniendo como base la verdad y la preparación constante.

4. Resultados (Outcomes)

- f) Comunicarse efectivamente con audiencias diversas. (Usar)
- n) Aplicar conocimientos de humanidades en su labor profesional. (Usar)
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (Usar)

5. Competencias específicas de Computación (IEEE)

C17. Capacidad para expresarse en los medios de comunicación orales y escritos como se espera de un graduado..⇒ Outcome f,n,ñ

C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades. \Rightarrow Outcome f,n,\tilde{n}

6. Contenido del curso

6.1 Primera Unidad: Generalidades de la Oratoria, 3 hr(s)

Competencias: C24

Tópicos: I: La Oratoria **II:** La función de la palabra. **III:** El proceso de la comunicación. **IV:** Bases racionales y emocionales de la oratoria a) La expresión oral en la participación.

V: Fuentes de conocimiento para la oratoria: niveles de cultura general.

Objetivos de Aprendizaje I: Comprensión: interpretar, ejemplificar y generalizar las bases de la oratoria como fundamento teórico y práctico. [Usar].

Bibliografía: [Monroe and Ehninger, 1976b, Rodríguez,]

6.2 Segunda Unidad: El Orador, 4 hr(s)

Competencias: C17

Tópicos: I: Cualidades de un buen orador. **II:** Normas para primeros discursos. **III:** El cuerpo humano como instrumento de comunicación: a) La expresión corporal en el discurso b) La voz en el discurso. **IV:** Oradores con historia y su ejemplo.

Objetivos de Aprendizaje I: Comprensión: Interpretar, ejemplificar y generalizar conocimientos y habilidades de la comunicación oral mediante la experiencia de grandes oradores y la suya propia. [Usar]. II: Aplicación: Implementar, usar, elegir y desempeñar los conocimientos adquiridos para expresarse en público en forma eficiente, inteligente y agradable. [Usar].

Bibliografía: [Rodríguez,]

7. Bibliografía

[Monroe and Ehninger, 1976b] Monroe, A. and Ehninger, D. (1976b). La comunicación oral. Hispano Europea.

[Rodríguez,] Rodríguez, M. L. Cómo manejar la información en una presentación.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

CS251. Computación Gráfica (Obligatorio)

1. Información General

- Semestre: 7^{mo} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS312. Estructuras de Datos Avanzadas (6^{to} Sem-Pág. 282)
 - MA306. Análisis Numérico (5^{to} Sem-Pág. 271)

2. Fundamentación

Ofrece una introducción para el área de Computación Gráfica, la cual es una parte importante dentro de Ciencias de la Computación. El proposito de este curso es investigar los principios, técnicas y herramientas fundamentales para esta área.

3. Objetivos del curso

- Acercar al alumno a conceptos y técnicas usados en aplicaciones gráficas 3-D complejas.
- Dar al alumno las herramientas necesarias para determinar que software gráfico y que plataforma son los más adecuados para desarrollar una aplicación específica.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Usar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C2. Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.⇒ Outcome b
- C5. Capacidad para implementar algoritmos y estructuras de datos en el software..⇒ Outcome b
- C4. Una comprensión del hardware de la computadora desde la perspectiva del software, por ejemplo, el uso del procesador, memoria, unidades de disco, pantalla, etc⇒ Outcome i
- C8. Entendimiento de lo que las tecnologías actuales pueden y no pueden lograr.⇒ Outcome i

6. Contenido del curso

6.1 Conceptos Fundamentales, 6 hr(s)

Competencias: C1,C2

Tópicos: I: Aplicaciones multimedia, incluyendo interfaces de usuario, edición de audio y vídeo, motores de juego, cad, visualización, realidad virtual. **II:** Soluciones de compensación entre el almacenamiento de datos y los datos re-computing es personalizado por vectores y raster en representaciones de imágenes. **III:** Modelos de color sustractivo Aditivo y (CMYK y RGB) y por qué estos proporcionan una gama de colores. **IV:** Animación como una secuencia de imágenes fijas.

Objetivos de Aprendizaje I: Explicar en términos generales cómo las señales analógicas pueden ser representadas por muestras discretas, por ejemplo,cómo las imagenes pueden ser representadas por pixeles[Familiarizarse] II: Describir modelos de color y su uso en los dispositivos de visualización de gráficos[Familiarizarse] III: Describir las ventajas y desventajas entre el almacenamiento de información vs almacenar suficiente información para reproducir la información, como en la diferencia entre el vector y la representación de la trama[Familiarizarse] IV: Describir los procesos básico de la producción de movimiento continuo a partir de una secuencia de cuadros discretos(algunas veces llamado it flicker fusion)[Familiarizarse]

Bibliografía: [Hearn and Baker, 1990]

6.2 Rendering Básico, 12 hr(s)

Competencias: C1,C4

Tópicos: I: Renderizado en la naturaleza, por ejemplo, la emisión y dispersión de la luz y su relación con la integración numérica. II: Renderizado Fordward and Backward (i.e., ray-casting y rasterización) III: Radiometría básica, triángulos similares y modelos de proyecciones IV: Afinamiento y Transformaciones de Sistemas de coordenadas V: Ray tracing VI: Visibilidad y oclusión, incluyendo soluciones a este problema, como el almacenamiento en búfer de profundidad, algoritmo del pintor, y el trazado de rayos. VII: Rasterización triangular simple. VIII: Renderización con una API basada en shader. IX: Aplicación de la representación de estructuras de datos espaciales. X: Muestreo y anti-aliasing. XI: Renderizado Fordward and Backward (i.e., ray-casting y rasterización)

Objetivos de Aprendizaje I: Discutir el problema de transporte de la luz y su relación con la integración numérica, es decir, se emite luz, dispersa alrededor de la escena, y es medida por el ojo [Familiarizarse] II: Describir la tubería básica gráficos y cómo el factor de representación va hacia adelante y atrás en esta [Familiarizarse] III: Crear un programa para visualizar modelos 3D de imagenes gráficas simples [Usar] IV: Obtener puntos en 2-dimensiones y 3-dimensiones por aplicación de transformaciones afín [Usar] V: Aplicar sistema de coordenadas de 3-dimensiones y los cambios necesarios para extender las operaciones de transformación 2D para manejar las transformaciones en 3D [Usar] VI: Contrastar la renderización hacia adelanate forward y hacia atras backward [Evaluar] VII: Explicar el concepto y las aplicaciones de mapeo de texturas, muestreo y el anti-aliasing [Familiarizarse] VIII: Explicar la dualidad de rastreo de rayos/rasterización para el problema de visibilidad [Familiarizarse] IX: Implementar un sencillo renderizador en tiempo real utilizando una API de rasterización (por ejemplo, OpenGL) utilizando buffers de vértices y shaders [Usar] X: Calcular las necesidades de espacio en base a la resolución y codificación de color [Evaluar] XI: Calcular los requisitos de tiempo sobre la base de las frecuencias de actualización, técnicas de rasterización [Evaluar]

Bibliografía: [Hearn and Baker, 1990, Hughes et al., 2013, Wolff, 2011, Shreiner et al., 2013]

6.3 Programación de Sistemas Interactivos, 2 hr(s)

Competencias: C8

Tópicos: I: Manejo de eventos e interacción de usuario. **II:** Approaches to design, implementation and evaluation of non-mouse interaction a) Touch and multi-touch interfaces b) Shared, embodied, and large interfaces c) New input modalities (such as sensor and location data) d) New Windows, e.g., iPhone, Android e) Speech recognition and natural language processing f) Wearable and tangible interfaces g) Persuasive interaction and emotion h) Ubiquitous and context-aware interaction technologies (Ubicomp) i) Bayesian inference (e.g. predictive text, guided pointing) j) Ambient/peripheral display and interaction

Objetivos de Aprendizaje I: Discute las ventajas (y desventajas) de las interfaces no basadas en ratón[Evaluar]

Bibliografía: [Hearn and Baker, 1990]

6.4 Modelado Geométrico, 15 hr(s)

Competencias: C1,C5

Tópicos: I: Operaciones geométricas básicas como cálculo de intersección y pruebas de proximidad. II: Volúmenes, voxels y representaciones basadas en puntos. III: Curvas polinomiales y Superficies paramétricas. IV: Representación ímplicita de curvas y superficies. V: Técnicas de aproximación, tales como curvas polinómicas, curvas Bezier, curvas spline y superficies, y base racional no uniforme (NURB) espinas, y el método de ajuste de nivel. VI: Técnicas de superficie de representación incluyendo teselación, la representación de malla, carenado malla, y las técnicas de generación de mallas, como la triangulación de Delaunay, marchando cubos. VII: Técnicas de subdivisión espacial. VIII: Modelos procedimentales como fractales, modelamiento generativo y sistemas L. IX: Modelos deformables de forma libre y elásticamente deformables. X: Subdivisión de superficies. XI: Modelado multiresolución. XII: Reconstrucción. XIII: Representación de Geometría Sólida Constructiva (GSC)

Objetivos de Aprendizaje I: Representar curvas y superficies utilizando formas tanto implícitas y paramétricas[Usar] II: Crear modelos poliédrico simples por teselación de superficies[Usar] III: Generar una representación de malla de una superficie implícita[Usar] IV: Generar una malla de un conjunto de puntos adquiridos por un scaner laser[Usar] V: Construct modelos de geometría sólida constructiva a partir de simples primitivas, tales como cubos y superficies cuádricas[Usar] VI: Contrastar métodos de modelización con respecto a espacio y tiempo de complejidad y calidad de imagen[Evaluar]

Bibliografía: [Hearn and Baker, 1990, Shreiner et al., 2013]

6.5 Renderizado Avanzado, 6 hr(s)

Competencias: C1,C4

Tópicos: I: Tiempo (desenfoque de movimiento), la posición del objetivo (enfoque), y la frecuencia continua (color) y su impacto en la representación. II: Mapeo de Sombras. III: Selectiva de oclusión. IV: Disperción de la Superficie. V: Renderizado no fotorealistico. VI: Arquitectura del GPU. VII: Sistemas visuales humanos incluida la adaptación a la luz, la sensibilidad al ruido, y la fusión de parpadeo.

Objetivos de Aprendizaje I: Demostrar como un algoritmo calcula una solución a la ecuación de renderización [Evaluar] II: Demostrar las propiedades de un algoritmo de renderización, por ejemplo, completo, consistente, e imparcial [Evaluar] III: Implementar un algoritmo no trivial de sombreado (por ejemplo, sombreado caricaturizado (toon shading), mapas de sombras en cascada (cascaded shadow maps)) bajo una APi de rasterización [Usar] IV: Discutir como una técnica artística particular puede ser implementada en un renderizador [Familiarizarse] V: Explicar como reconocer las técnicas gráficas usadas para crear una imagen en particular [Familiarizarse]

Bibliografía: [Hearn and Baker, 1990, Hughes et al., 2013, Wolff, 2011, Shreiner et al., 2013]

6.6 Animación por computadora, 4 hr(s)

Competencias: C1

Tópicos: I: Cinématica directa e inversa. II: Detección de colisiones y respuesta. III: Animación procedimental empleando ruido, reglas (boids/crowds) y sistemas de partículas. IV: Algoritmos Skinning. V: Movimientos basado en la física, incluyendo la dinámica del cuerpo rígido, sistemas de partículas físicas, redes de masa-muelle de tela y la carne y el pelo. VI: Animación de Cuadros Principales VII: Splines VIII: Estructuras de datos para rotaciones, como cuaterniones. IX: Animación de Cámara. X: Captura de Movimiento.

Objetivos de Aprendizaje I: Calcular la localización y orientación de partes de un modelo usando un enfoque de cinemática hacia delante[Usar] II: Implementar el método de interpolación spline para producir las posiciones y orientaciones en medio[Usar] III: Implementar algoritmos para el modelamiento físico de partículas dinámicas usando simplemente la mecánica de Newton, por ejemplo Witkin & Kass, serpientes y gusanos, Euler simpléctica, Stormer/Verlet, o métodos de punto medio de Euler[Usar] IV: Discutir las ideas básicas detrás de algunos métodos para dinámica de fluidos para el modelamiento de trayectorias balísticas, por ejemplo salpicaduras, polvo, fuego, o humo[Familiarizarse] V: Usar el software de animación común para construir formas orgánicas simples usando metaball y el esqueleto[Usar]

Bibliografía: [Hearn and Baker, 1990, Shreiner et al., 2013]

7. Bibliografía

[Hearn and Baker, 1990] Hearn, D. and Baker, P. (1990). Computer Graphics in C. Prentice Hall.

[Hughes et al., 2013] Hughes, J. F., Dam, A. V., Mcguire, M., Sklar, D. F., Foley, J. D., Feiner, S. K., and Akeley, K. (2013). *Computer Graphics - Principles and Practice 3rd Edition*. Addison-Wesley.

[Shreiner et al., 2013] Shreiner, D., Sellers, G., Kessenich, J., and Licea-Kane, B. (2013). *OpenGL*, *Programming Guide*, *Eighth Edition*. Addison-Wesley.

[Wolff, 2011] Wolff, D. (2011). OpenGL 4.0 Shading Language Cookbook. Packt Publishing.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

CS391. Ingeniería de Software III (Obligatorio)

1. Información General

- Semestre: 7^{mo} Sem. Créditos: 3
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas;
- Prerrequisitos:
 - CS292. Ingeniería de Software II (6^{to} Sem-Pág. 291)

2. Fundamentación

El desarrollo de software requiere del uso de mejores prácticas de desarrollo, gestión de proyectos de TI, manejo de equipos y uso eficiente y racional de frameworks de aseguramiento de la calidad, estos elemento son pieza clave y transversal durante todo el proceso productivo.

La construcción de software contempla la implementación y uso de procesos, métodos, modelos y herramientas que permitan lograr la realización de los atributos de calidad de un producto.

3. Objetivos del curso

- Comprender y poner en práctica los conceptos fundamentales sobre la gestión de proyectos y manejo de equipos de software.
- Comprender los fundamentos de la gestión de proyectos, incluyendo su definición, alcance, y la necesidad de gestión de proyectos en la organización moderna.
- Los alumnos deben comprender los conceptos fundamentales de CMMI, PSP, TSP para que sean adoptados en los proyectos de software.
- Describir y comprender los modelos de aseguramiento de la calidad como marco clave para el éxitos de los proyectos de TI.

4. Resultados (Outcomes)

- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Usar)
- d) Trabajar efectivamente en equipos para cumplir con un objetivo común. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)
- m) Transformar sus conocimientos del área de Ciencia de la Computación en emprendimientos tecnológicos. (Evaluar)
- o) Mejorar las condiciones de la sociedad poniendo la tecnología al servicio del ser humano. (Usar)

5. Competencias específicas de Computación (IEEE)

- C7. Ser capaz de aplicar los principios y tecnologías de ingeniería de software para asegurar que las implementaciones de software son robustos, fiables y apropiados para su público objetivo. \Rightarrow Outcome c
- C11. Entendimiento del concepto del ciclo de vida, incluyendo la importancia de sus fases (planificación, desarrollo, implementación y evolución).⇒ Outcome i,k
- C12. Entender las implicaciones de ciclo de vida para el desarrollo de todos los aspectos de los sistemas informáticos (incluyendo software, hardware, y la interfaz de la computadora humana).⇒
 Outcome j,m
- C13. Comprender la relación entre la calidad y la gestión del ciclo de vida.

 Outcome c,i,m
- C18. Capacidad para participar de forma activa y coordinada en un equipo.⇒ Outcome d
- C19. Capacidad para identificar eficazmente los objetivos y las prioridades de su trabajo / área / proyecto con indicación de la acción, el tiempo y los recursos necesarios.⇒ Outcome j
- **CS6.** Evaluar los sistemas en términos de atributos de calidad en general y las posibles ventajas y desventajas que se presentan en el problema dado.⇒ **Outcome c,i,m**
- CS7. Aplicar los principios de una gestión eficaz de la información, organización de la información, y las habilidades de recuperación de información a la información de diversos tipos, incluyendo texto, imágenes, sonido y vídeo. Esto debe incluir la gestión de los problemas de seguridad.⇒ Outcome d,i,o
- **CS9.** Identificar los riesgos (y esto incluye cualquier seguridad o los aspectos de seguridad) que pueden estar involucrados en la operación de equipo de cómputo dentro de un contexto dado.⇒ **Outcome c,d,m**

6. Contenido del curso

6.1 Evolución de Software, 12 hr(s)

Competencias: C7, C11, C12, CS6

- **Tópicos: I:** Desarrollo de Software en el contexto de código grande pre existente a) Cambios de software b) Preocupaciones y ubicación de preocupaciones c) Refactoring II: Evolución de Software. III: Características de Software mantenible. IV: Sistemas de Reingeniería. V: Reuso de Software. a) Segmentos de código b) Bibliotecas y frameworks c) Componentes d) Líneas de Producto
- Objetivos de Aprendizaje I: Identificar los problemas principales asociados con la evolución del software y explicar su impacto en el ciclo de vida del software [Familiarizarse] II: Estimar el impacto del cambio de requerimientos en productos existentes de tamaño medio [Usar] III: Usar refactorización en el proceso de modificación de un componente de sosftware [Usar] IV: Estudiar los desafios de mejorar sistemas en un entorno cambiante [Familiarizarse] V: Perfilar los procesos de pruebas de regresión y su rol en el manejo de versiones [Familiarizarse] VI: Estudiar las ventajas y desventajas de diferentes tipos de niveles de confiabilidad [Familiarizarse]

Bibliografía: [Pressman and Maxim, 2014, Sommerville, 2010]

6.2 Gestión de Proyectos de Software, 18 hr(s)

Competencias: C18, C19, CS7, CS9

Tópicos: I: La participación del equipo: a) Procesos elemento del equipo, incluyendo responsabilidades de tarea, la estructura de reuniones y horario de trabajo b) Roles y responsabilidades en un equipo de software c) Equipo de resolución de conflictos d) Los riesgos asociados con los equipos virtuales (comunicación, la percepción, la estructura) II: Estimación de esfuerzo (a nivel personal) III: Riesgo. a) El papel del riesgo en el ciclo de vida b) Categorías elemento de riesgo, incluyendo la seguridad, la seguridad, mercado, finanzas, tecnología, las personas, la calidad, la estructura y el proceso de IV: Gestión de equipos: a) Organización de equipo y la toma de decisiones b) Roles de identificación y asignación c) Individual y el desempeño del equipo de evaluación V: Gestión de proyectos: a) Programación y seguimiento de elementos b) Herramientas de gestión de proyectos c) Análisis de Costo/Beneficio VI: Software de medición y técnicas de estimación. VII: Aseguramiento de la calidad del software y el rol de las mediciones. VIII: Riesgo. a) Identificación de riesgos y gestión. b) Análisis riesgo y evaluación. c) La tolerancia al riesgo (por ejemplo, riesgo adverso, riesgo neutral, la búsqueda de riesgo) d) Planificación de Riesgo IX: En todo el sistema de aproximación al riesgo, incluyendo riesgos asociados con herramientas.

Objetivos de Aprendizaje I: Discutir los comportamientos comunes que contribuyen al buen funcionamiento de un equipo Familiarizarse III: Crear y seguir un programa para una reunión del equipo[Usar] III: Identificar y justificar las funciones necesarias en un equipo de desarrollo de software [Usar] IV: Entender las fuentes, obstáculos y beneficios potenciales de un conflicto de equipo[Usar] V: Aplicar una estrategia de resolución de conflictos en un ambiente de equipo[Usar] VI: Utilizar un método ad hoc para estimar el esfuerzo de desarrollo del software (ejemplo, tiempo) v comparar con el esfuerzo actual requerido [Usar] VII: Listar varios ejemplos de los riesgos del software [Familiarizarse] VIII: Describir el impacto del riesgo en el ciclo de vida de desarrollo de software[Familiarizarse] IX: Describir las diferentes categorías de riesgo en los sistemas de software [Familiarizarse] X: Demostrar a través de la colaboración de proyectos de equipo los elementos centrales de la contrucción de equipos y gestión de equipos [Usar] XI: Describir como la elección de modelos de procesos afectan la estructura organizacional de equipos y procesos de toma de decisiones Familiarizarse XII: Crear un equipo mediante la identificación de los roles apropiados y la asignación de funciones a los miembros del equipo[Usar] XIII: Evaluar y retroalimentar a los equipos e individuos sobre su desempeño en un ambiente de equipo[Usar] XIV: Usando un software particular procesar, describir los aspectos de un proyecto que encesita ser planeado y monitoreado, (ejemplo, estimar el tamaño y esfuerzo, un horario, reasignación de recursos, control de configuración, gestión de cambios, identificación de riesgos en un proyecto y gestión)[Familiarizarse] XV: Realizar el seguimiento del progreso de alguna etapa de un proyecto que utiliza métricas de proyectos apropiados[Usar] XVI: Comparar las técnicas simples de tamaño de software y estimación de costos[Usar] XVII: Usar una herramienta de gestión de proyectos para ayudar en la asignación y rastreo de tareas en un proyecto de desarrollo de software [Usar] XVIII: Describir el impacto de la tolerancia de riesgos en el proceso de desarrollo de software [Evaluar] XIX: Identificar riesgos y describir enfoques para manejar riesgos (evitar, aceptar, tranferir, mitigar) y caracterizar fortalezas y defectos para cada uno [Familiarizarse] XX: Explicar cómo el riesgo afecta las decisiones en el proceso de desarrollo de software[Usar] XXI: Identificar los riesgos de seguridad para un sistema de software[Usar] XXII: Demostrar un enfoque sistemático para la tarea de identificar los peligros y riesgos en una situación particular [Usar] XXIII: Aplicar los principios básicos del manejo de riesgos en una variedad de escenarios simples incluyendo una situación de seguridad [Usar] XXIV: Dirigir un análisis de costo/beneficio para el enfoque de mitigación de riesgos[Usar] XXV: Identificar y analizar alguno de los riesgos para un sistema entero que surgen de aspectos distintos del software[Usar]

Bibliografía: [Pressman and Maxim, 2014, Sommerville, 2010]

6.3 Procesos de Software, 12 hr(s)

Competencias: C7, C13, C19, CS6, CS7

Tópicos: I: Consideraciones a nivel de sistemas, ejem., la interacción del software con su entorno. **II:** Introducción a modelos del proceso de software (e.g., cascada, incremental, agil): a) Actividades

con ciclos de vida de software. III: Programación a gran escala versus programación individual. IV: Evaluación de modelos de proceso de software. V: Conceptos de calidad de software. VI: Mejoramiento de procesos. VII: Modelos de madurez de procesos de software. VIII: Mediciones del proceso de software.

Objetivos de Aprendizaje I: Describa cómo el software puede interactuar y participar en varios sistemas, incluyendo la gestión de información, integración, control de procesos y sistemas de comunicaciones [Usar] II: Describir las ventajas y desventajas relativas entre varios modelos importantes de procesos (por ejemplo, la cascada, iterativo y ágil)[Usar] III: Describir las diferentes prácticas que son componentes clave de los diversos modelos de procesos[Usar] IV: Diferenciar entre las fases de desarrollo de software[Usar] V: Describir cómo la programación en grandes equipos difiere de esfuerzos individuales con respecto a la comprensión de una gran base de código, lectura de código, comprensión de las construcciones, y comprensión de contexto de cambios[Usar] VI: Explicar el concepto de ciclo de vida del software y proporcionar un ejemplo que ilustra sus fases incluyendo los entregables que se producen[Usar] VII: Comparar varios modelos comunes de procesos con respecto a su valor para el desarrollo de las clases particulares de sistemas de software, teniendo en cuenta diferentes aspectos tales como, estabilidad de los requisitos, tamaño y características no funcionales[Usar] VIII: Definir la calidad del software y describir el papel de las actividades de aseguramiento de la calidad en el proceso de software[Usar] IX: Describir el objetivo y similitudes fundamentales entre los enfoques de mejora de procesos[Usar] X: Comparar varios modelos de mejora de procesos, tales como CMM, CMMI, CQI, Plan-Do-Check-Act, o ISO9000[Usar] XI: Evaluar un esfuerzo de desarrollo y recomendar cambios potenciales al participar en la mejora de procesos (usando un modelo como PSP) o involucración en una retrospectiva de un proyecto [Usar] XII: Explicar el papel de los modelos de madurez de procesos en la mejora de procesos [Usar] XIII: Describir varias métricas de procesos para la evaluación y el control de un proyecto [Usar] XIV: Usar las medidas en proyecto para describir el estado actual de un proyecto[Usar]

Bibliografía: [Pressman and Maxim, 2014, Sommerville, 2010]

6.4 Estándares ISO/IEC, 6 hr(s)

Competencias: C7, C13, C19, CS6, CS7

Tópicos: I: ISO 9001:2001. II: ISO 9000-3. III: ISO/IEC 9126. IV: ISO/IEC 12207. V: ISO/IEC 15939. VI: ISO/IEC 14598. VII: ISO/IEC 15504-SPICE. VIII: IT Mark. IX: SCRUM. X: SQuaRE. XI: CISQ.

Objetivos de Aprendizaje I: Aprender y aplciar correctamente normas y estandares internacionales. [Usar]

Bibliografía: [Sommerville, 2010, Pressman and Maxim, 2014]

7. Bibliografía

[Pressman and Maxim, 2014] Pressman, R. S. and Maxim, B. (2014). Software Engineering: A Practitioner's Approach. McGraw-Hill, 8th edition.

[Sommerville, 2010] Sommerville, I. (2010). Software Engineering. Addison-Wesley, 9th edition.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

CS231. Redes y Comunicación (Obligatorio)

1. Información General

- Semestre: 7^{mo} Sem. Créditos: 3
- Horas del curso: Teoría: 1 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS2S1. Sistemas Operativos (6^{to} Sem-Pág. 285)
 - Inglés(400)

2. Fundamentación

El siempre creciente desarrollo de las tecnologías de comunicación y la información hace que exista una marcada tendencia a establecer más redes de computadores que permitan una mejor gestión de la información.

En este segundo curso se brindará a los participantes una introducción a los problemas que conlleva la comunicación entre computadores, a través del estudio e implementación de protocolos de comunicación como TCP/IP y la implementación de software sobre estos protocolos.

3. Objetivos del curso

- Que el alumno implemente y/o modifique un protocolo de comunicación de datos.
- Que el alumno domine las técnicas de transmisión de datos utilizadas por los protocolos de red existentes.

4. Resultados (Outcomes)

- **b)** Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (**Familiarizarse**)
- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Usar)
- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (Familiarizarse)
- g) Analizar el impacto local y global de la computación sobre los individuos, organizaciones y sociedad. (Evaluar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Usar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome j,e
- C6. Capacidad para diseñar y poner en práctica las unidades estructurales mayores que utilizan algoritmos y estructuras de datos y las interfaces a través del cual estas unidades se comunican.⇒
 Outcome c,b
- C7. Ser capaz de aplicar los principios y tecnologías de ingeniería de software para asegurar que las implementaciones de software son robustos, fiables y apropiados para su público objetivo.⇒ Outcome c
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome g,b**
- CS5. Especificar, diseñar e implementar sistemas basados en computadoras.⇒ Outcome c
- **CS8.** Aplicar los principios de la interacción persona-ordenador para la evaluación y la construcción de una amplia gama de materiales, incluyendo interfaces de usuario, páginas web, sistemas multimedia y sistemas móviles.⇒ **Outcome b**
- CS12. Operar equipos de computación y software eficaz de dichos sistemas.⇒ Outcome i

6. Contenido del curso

6.1 Introducción, 5 hr(s)

Competencias: C1,CS8

- Tópicos: I: Organización de la Internet (proveedores de servicios de Internet, proveedores de contenido, etc) II: Técnicas de Switching (por ejemplo, de circuitos, de paquetes) III: Piezas físicas de una red, incluidos hosts, routers, switches, ISPs, inalámbrico, LAN, punto de acceso y firewalls. IV: Principios de capas (encapsulación, multiplexación) V: Roles de las diferentes capas (aplicación, transporte, red, enlace de datos, física)
- Objetivos de Aprendizaje I: Articular la organización de la Internet[Familiarizarse] II: Listar y definir la terminología de red apropiada[Familiarizarse] III: Describir la estructura en capas de una arquitectura típica en red[Familiarizarse] IV: Identificar los diferentes tipos de complejidad en una red (bordes, núcleo, etc.)[Familiarizarse]

Bibliografía: [Kurose and Ross, 2013]

6.2 Aplicaciones en red, 5 hr(s)

Competencias: CS2,CS5

- Tópicos: I: Esquemas de denominación y dirección (DNS, direcciones IP, identificadores de recursos uniformes, etc)
 II: Las aplicaciones distribuidas (cliente / servidor, peer-to-peer, nube, etc)
 III: HTTP como protocolo de capa de aplicación . IV: Multiplexación con TCP y UDP V: API de Socket
- Objetivos de Aprendizaje I: Listar las diferencias y las relaciones entre los nombres y direcciones en una red[Familiarizarse] II: Definir los principios detrás de esquemas de denominación y ubicación del recurso[Familiarizarse] III: Implementar una aplicación simple cliente-servidor basada en sockets [Usar]

Bibliografía: [Kurose and Ross, 2013]

6.3 Entrega confiable de datos, 10 hr(s)

Competencias: C6,CS2,CS5

Tópicos: I: Control de errores (técnicas de retransmisión, temporizadores) **II:** El control de flujo (agradecimientos, ventana deslizante) **III:** Problemas de rendimiento (pipelining) **IV:** TCP

Objetivos de Aprendizaje I: Describir el funcionamiento de los protocolos de entrega fiables[Familiarizarse]
II: Listar los factores que afectan al rendimiento de los protocolos de entrega fiables[Familiarizarse]
III: Diseñar e implementar un protocolo confiable simple[Usar]

Bibliografía: [Kurose and Ross, 2013]

6.4 Ruteo y reenvío, 12 hr(s)

Competencias: CS2,CS5

Tópicos: I: Enrutamiento vs reenvío . **II:** Enrutamiento estático . **III:** Protocolo de Internet (IP) **IV:** Problemas de escalabilidad (direccionamiento jerárquico)

Objetivos de Aprendizaje I: Describir la organización de la capa de red[Familiarizarse] II: Describir cómo los paquetes se envían en una red IP[Familiarizarse] III: Listar las ventajas de escalabilidad de direccionamiento jerárquico[Familiarizarse]

Bibliografía: [Kurose and Ross, 2013]

6.5 Redes de área local, 10 hr(s)

Competencias: C1,C7

Tópicos: I: Problemas de Acceso Múltiple. **II:** Enfoques comunes a Acceso múltiple (exponencial backoff, multiplexación por división de tiempo, etc) **III:** Redes de área local . **IV:** Ethernet . **V:** Switching .

Objetivos de Aprendizaje I: Describir como los paquetes son enviados en una red Ethernet [Familiarizarse] II: Describir las relaciones entre IP y Ethernet [Familiarizarse] III: Describir las relaciones entre IP y Ethernet [Familiarizarse] IV: Describir las etapas usadas en un enfoque común para el problema de múltiples accesos [Familiarizarse]

Bibliografía: [Kurose and Ross, 2013]

6.6 Asignación de recursos, 12 hr(s)

Competencias: C6,CS5,CS12

Tópicos: I: Necesidad de asignación de recursos . **II:** Asignación fija (TDM, FDM, WDM) versus la asignación dinámica . **III:** De extremo a extremo frente a las red de enfoque asistida . **IV:** Justicia. **V:** Principios del control de congestión. **VI:** Enfoques para la congestión (por ejemplo, redes de distribución de contenidos)

Objetivos de Aprendizaje I: Describir como los recursos pueden ser almacenados en la red[Familiarizarse] II: Describir los problemas de congestión en una red grande[Familiarizarse] III: Comparar y contrastar las técnicas de almacenamiento estático y dinámico[Familiarizarse] IV: Comparar y contrastar los enfoques actuales de la congestión[Familiarizarse]

Bibliografía: [Kurose and Ross, 2013]

6.7 Celulares, 5 hr(s)

Competencias: C1,C7

Tópicos: I: Principios de redes celulares. **II:** Redes 802.11 **III:** Problemas en el apoyo a los nodos móviles (agente local)

Objetivos de Aprendizaje I: Describir la organización de una red inalambrica[Familiarizarse] II: Describir como las redes inalámbricas soportan usuarios móviles[Familiarizarse]

Bibliografía: [Kurose and Ross, 2013]

6.8 Redes sociales, 5 hr(s)

Competencias: C1,CS2,CS8

Tópicos: I: Panorama de las redes sociales. **II:** Ejemplo plataformas de redes sociales. **III:** Estructura de los grafos de redes sociales. **IV:** Análisis de redes sociales.

Objetivos de Aprendizaje I: Discutir los principios fundamentales(como pertenencia, confianza) de una red social[Familiarizarse] II: Describir como redes sociales existentes operan[Familiarizarse] III: Construir un grafo de una red social a partir de datos de la red[Usar] IV: Analizar una red social para determinar quienes son las personas importantes[Usar] V: Evaluar una determinada interpretación de una pregunta de red social con los datos asociados[Familiarizarse]

Bibliografía: [Kurose and Ross, 2013]

7. Bibliografía

[Kurose and Ross, 2013] Kurose, J. and Ross, K. (2013). Computer Networking: A Top-down Approach. Always learning. Pearson.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

CS261. Inteligencia Artificial (Obligatorio)

1. Información General

- Semestre: 7^{mo} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - MA203. Estadística y Probabilidades (4^{to} Sem-Pág. 248)

2. Fundamentación

La investigación en Inteligencia Artificial ha conducido al desarrollo de numerosas tónicas relevantes, dirigidas a la automatización de la inteligencia humana, dando una visión panorámica de diferentes algoritmos que simulan los diferentes aspectos del comportamiento y la inteligencia del ser humano.

3. Objetivos del curso

- Evaluar las posibilidades de simulación de la inteligencia, para lo cual se estudiarán las técnicas de modelización del conocimiento.
- Construir una noción de inteligencia que soporte después las tareas de su simulación.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Familiarizarse)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Familiarizarse)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Familiarizarse)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad. \Rightarrow Outcome c
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome i,j**

6. Contenido del curso

6.1 Cuestiones fundamentales, 2 hr(s)

Competencias: C1

Tópicos: I: Descripción general de los problemas de Inteligencia Artificial, ejemplos recientes de aplicaciones de Inteligencia artificial. II: ¿Qué es comportamiento inteligente? a) El Test de Turing b) Razonamiento Racional versus No Racional III: Características del Problema: a) Observable completamente versus observable parcialmente b) Individual versus multi-agente c) Deterministico versus estocástico d) Estático versus dinámico e) Discreto versus continuo IV: Naturaleza de agentes: a) Autónomo versus semi-autónomo b) Reflexivo, basado en objetivos, y basado en utilidad c) La importancia en percepción e interacciones con el entorno V: Cuestiones filosóficas y éticas.

Objetivos de Aprendizaje I: Describir el test de Turing y el experimento pensado cuarto chino" (Chinese Room)[Usar] II: Determinando las características de un problema dado que sistemas inteligentes deberian resolver[Usar]

Bibliografía: [De Castro, 2006, Ponce-Gallegos et al., 2014]

6.2 Estrategias de búsquedas básicas, 4 hr(s)

Competencias: C20

Tópicos: I: Espacios de Problemas (estados, metas y operadores), solución de problemas mediante búsqueda. II: Factored representation (factoring state hacia variables) III: Uninformed search (breadth-first, depth-first, depth-first with iterative deepening) IV: Heurísticas y búsqueda informada (hill-climbing, generic best-first, A*) V: El espacio y el tiempo de la eficiencia de búsqueda. VI: Dos jugadores juegos (introducción a la búsqueda minimax). VII: Satisfacción de restricciones (backtracking y métodos de búsqueda local).

Objetivos de Aprendizaje I: Formula el espacio eficiente de un problema para un caso expresado en lenguaje natural (ejm. Inglés) en términos de estados de inicio y final, así como sus operadores[Usar] II: Describe el rol de las heurísticas y describe los intercambios entre completitud, óptimo, complejidad de tiempo, y complejidad de espacio[Usar] III: Describe el problema de la explosión combinatoria del espacio de búsqueda y sus consecuencias[Usar] IV: Selecciona e implementa un apropiado algoritmo de búsqueda no informado para un problema, y describe sus complejidades de tiempo y espacio[Usar] V: Selecciona e implementa un apropiado algoritmo de búsqueda informado para un problema al definir la función heurística de evaluación necesaria[Usar] VI: Evalúa si una heurística dada para un determinado problema es admisible/puede garantizar una solución óptima[Usar] VII: Formula un problema en particular en lenguaje natural (ejm. Inglés) como un problema de satisfacción de restricciones y lo implementa usando un algoritmo de retroceso cronológico o una búsqueda estocástica local[Usar] VIII: Compara y contrasta tópicos de búsqueda básica con temas jugabilidad de juegos[Usar]

Bibliografía: [Nilsson, 2001, Ponce-Gallegos et al., 2014]

6.3 Raciocinio y representación básica de conocimiento, 6 hr(s)

Competencias: C24

Tópicos: I: Revisión de la lógica proposicional y de predicados **II:** Resolución y demostración de teoremas (sólo la lógica proposicional). **III:** Encadenamiento hacia adelante, encadenamiento hacia atrás. **IV:** Examen de razonamiento probabilístico, el teorema de Bayes.

Objetivos de Aprendizaje I: Traducir una sentencia en lenguaje natural (Por ejemplo español) en una declaración lógica de predicados[Usar] II: Convertir una declaración lógica en forma de cláusula[Usar] III: Aplicar resolución a un conjunto de declaraciones lógicas para responder una consulta[Usar] IV: Hacer una inferencia probabilística para un problema real usando el teorema de Bayes para determinar la probabilidad que se cumpla una hipótesis[Usar]

Bibliografía: [Nilsson, 2001, Russell and Norvig, 2003, Ponce-Gallegos et al., 2014]

6.4 Búsqueda Avanzada, 4 hr(s)

Competencias: C1

Tópicos: I: Construcción de árboles de búsqueda, espacio de búsqueda dinámico, explosión combinatoria del espacio de búsqueda. **II:** Búsqueda estocástica: a) Simulated annealing b) Algoritmos genéticos c) Búsqueda de árbol Monte-Carlo **III:** Implementación de búsqueda A *, búsqueda en haz. **IV:** Búsqueda Minimax, poda alfa-beta. **V:** Búsqueda Expectimax (MDP-Solving) y los nodos de azar.

Objetivos de Aprendizaje I: Diseñar e implementar una solución a un problema con algoritmo genético[Usar] II: Diseñar e implementar un esquema de recocido simulado (simulated annealing) para evitar mínimos locales en un problema[Usar] III: Diseñar e implementar una búsqueda A* y búsqueda en haz (beam search) para solucionar un problema[Usar] IV: Aplicar búsqueda minimax con poda alfa-beta para simplifiar el espacio de búsqueda en un juego con dos jugadores[Usar] V: Comparar y contrastar los algoritmos genéticos con técnicas clásicas de búsqueda[Usar] VI: Comparar y contrastar la aplicabilidad de varias heurísticas de búsqueda, para un determinado problema[Usar]

Bibliografía: [Goldberg, 1989, Nilsson, 2001, Russell and Norvig, 2003, Ponce-Gallegos et al., 2014]

6.5 Representación Avanzada y Razonamiento, 6 hr(s)

Competencias: C1

Tópicos: I: Problemas de Representación del Conocimiento: a) Lógica de Descripción b) Ingeniería de Ontología **II:** Razonamiento no monotónico (p.e., lógica no clásica, razonamiento por defecto) **III:** Argumentación **IV:** El razonamiento sobre la acción y el cambio (por ejemplo, la situación y cálculo de eventos). **V:** Razonamiento temporal y espacial. **VI:** Sistemas Expertos basados en reglas. **VII:** Redes semánticas. **VIII:** Razonamiento basado en modelos y razonamiento basado en casos.

Objetivos de Aprendizaje I: Comparar y contrastar los modelos más usados para la representación del conocimiento estructurado, destacando sus puntos fuertes y débiles[Usar] II: Identificar los componentes de razonamiento no monótono y su utilidad como mecanismo de representación de los sistemas de confianza[Usar] III: Comparar y contrastas las técnicas básicas para la representación de la incertidumbre[Usar] IV: Comparar y contrastar las técnicas básicas para la representación cualitativa[Usar] V: Aplicar cálculo de situaciones y eventos a problemas de acción y cambios[Usar] VI: Explicar la diferencia entre razonamiento temporal y espacial, y cómo se relacionan entre sí. [Usar] VII: Explicar la diferencia entre técnicas de razonamiento basado en modelos, basado en casos y basados en reglas[Usar] VIII: Definir el concepto de un sistema planificación y cómo se diferencia de las técnicas de búsqueda clásicas[Usar]

Bibliografía: [Nilsson, 2001, Russell and Norvig, 2003, Ponce-Gallegos et al., 2014]

6.6 Agentes, 6 hr(s)

Competencias: C1

Tópicos: I: Definición de Agentes II: Arquitectura de agentes (Ej. reactivo, en capa, cognitivo) III: Teoría de agentes IV: Racionalidad, teoría de juegos: a) Agentes de decisión teórica b) Procesos de decisión de Markov (MDP) V: Agentes de Software, asistentes personales, y acceso a información: a) Agentes colaborativos b) Agentes de recolección de información c) Agentes creíbles (carácter sintético, modelamiento de emociones en agentes) VI: Agentes de aprendizaje VII: Sistemas Multi-agente a) Agentes Colaborativos b) Equipos de Agentes c) Agentes Competitivos (ej., subastas, votaciones) d) Sistemas de enjambre y modelos biológicamente inspirados

Objetivos de Aprendizaje I: Lista las características que definen un agente inteligente[Usar] II: Describe y contrasta las arquitecturas de agente estándares[Usar] III: Describe las aplicaciones de teoría de agentes para dominios como agentes de software, asistentes personales, y agentes creibles[Usar] IV: Describe los paradigmas primarios usados por agentes de aprendizaje[Usar] V: Demuestra mediante ejemplos adecuados como los sistemas multi-agente soportan interacción entre agentes[Usar]

Bibliografía: [Nilsson, 2001, Russell and Norvig, 2003, Ponce-Gallegos et al., 2014]

6.7 Procesamiento del Lenguaje Natural, 4 hr(s)

Competencias: C1

Tópicos: I: Gramaticas determinísticas y estocásticas II: Algoritmos de parseo a) Gramáticas libres de contexto (CFGs) y cuadros de parseo (e.g. Cocke-Younger-Kasami CYK) b) CFGs probabilísticos y ponderados CYK III: Representación del significado / Semántica a) Representación de conocimiento basado en lógica b) Roles semánticos c) Representaciones temporales d) Creencias, deseos e intenciones IV: Metodos basados en el corpus V: N-gramas y Modelos ocultos de Markov (HMMs) VI: Suavizado y back-off VII: Ejemplos de uso: POS etiquetado y morfologia VIII: Recuperación de la información: a) Modelo de espacio vectorial 1) TF & IDF b) Precision y cobertura IX: Extracción de información X: Traducción de lenguaje XI: Clasificación y categorización de texto: a) Modelo de bolsa de palabras

Objetivos de Aprendizaje I: Define y contrasta gramáticas de tipo estocásticas y determinísticas, dando ejemplos y demostrando como adecuar cada una de ellas[Usar] II: Simula, aplica, o implementa algoritmos clásicos y estocásticos para el parseo de un lenguaje natural[Usar] III: Identifica los retos de la representación del significado[Usar] IV: Lista las ventajas de usar corpus estándares. Identifica ejemplos de corpus actuales para una variedad de tareas de PLN[Usar] V: Identifica técnicas para la recuperación de la información, traducción de lenguajes, y clasificación de textos[Usar]

Bibliografía: [Nilsson, 2001, Russell and Norvig, 2003, Ponce-Gallegos et al., 2014]

6.8 Aprendizaje Automático Básico, 10 hr(s)

Competencias: C1

Tópicos: I: Definición y ejemplos de la extensa variedad de tareas de aprendizaje de máquina, incluida la clasificación. **II:** Aprendizaje inductivo **III:** Aprendizaje simple basado en estadísticas, como el clasificador ingenuo de Bayes, árboles de decisión. **IV:** El problema exceso de ajuste. **V:** Medicion clasificada con exactitud.

Objetivos de Aprendizaje I: Listar las diferencias entre los tres principales tipos de aprendizaje: supervisado, no supervisado y por refuerzo[Usar] II: Identificar ejemplos de tareas de clasificación, considerando las características de entrada disponibles y las salidas a ser predecidas[Usar] III: Explicar la diferencia entre aprendizaje inductivo y deductivo[Usar] IV: Describir el sobre ajuste (overfitting) en el contexto de un problema[Usar] V: Aplicar un algoritmo de aprendizaje estadístico simple como el Clasificador Naive Bayesiano e un problema de clasificacion y medirla precisión del clasificador[Usar]

Bibliografía: [Haykin, 1999, Nilsson, 2001, Russell and Norvig, 2003, Ponce-Gallegos et al., 2014]

6.9 Robótica, 6 hr(s)

Competencias: C1

Tópicos: I: Vision general: problemas y progreso a) Estado del arte de los sistemas robóticos, incluyendo sus sensores y una visión general de su procesamiento b) Arquitecturas de control robótico, ejem., deliverado vs. control reactivo y vehiculos Braitenberg c) Modelando el mundo

y modelos de mundo d) Incertidumbre inherente en detección y control II: Configuración de espacio y mapas de entorno. III: Interpretando datos del sensor con incertidumbre. IV: Localización y mapeo. V: Navegación y control. VI: Planeando el movimiento. VII: Coordinación multi-robots.

Objetivos de Aprendizaje I: Listar capacidades y limitaciones de sistemas del estado del arte en robótica de hoy , incluyendo sus sensores y el procesamiento del sensor crucial que informa a esos sistemas[Usar] II: Integrar sensores, actuadores y software en un robot diseñado para emprender alguna tarea[Usar] III: Programar un robot para llevar a cabo tareas simples usando arquitecturas de control deliverativo, reactivo y/o híbrido [Usar] IV: Implementar algoritmos de planificación de movimientos fundamentales dentro del espacio de configuración de un robot[Usar] V: Caracterizar las incertidumbres asociadas con sensores y actuadores de robot comunes; articular estrategias para mitigar esas incertidumbres. [Usar] VI: Listar las diferencias entre representaciones de los robot de su enterno externo, incluyendo sus fortalezas y defectos[Usar] VII: Comparar y contrastar al menos tres estrategias para la navegación de robots dentro de entornos conocidos y/o no conocidos, incluyendo sus fortalezas y defectos[Usar] VIII: Describir al menos una aproximación para la coordinación de acciones y detección de varios robots para realizar una simple tarea[Usar]

Bibliografía: [Nilsson, 2001, Russell and Norvig, 2003, Ponce-Gallegos et al., 2014]

6.10 Visión y percepción por computador, 6 hr(s)

Competencias: C1

Tópicos: I: Visión Computacional a) Adquisición de imágenes, representación, procesamiento y propiedades b) Representación de formas, reconocimiento y segmentación de objetos c) Análisis de movimiento **II:** Audio y reconocimiento de dictado. **III:** Modularidad en reconocimiento. **IV:** Enfoques de reconocimiento de patrones a) Algoritmos de clasificación y medidas de calidad de la clasificación. b) Técnicas estadísticas.

Objetivos de Aprendizaje I: Resumir la importancia del reconocimiento de imagenes y objetos en Inteligencia Artificial (AI) e indicar varias aplicaciones significativas de esta tecnologia[Usar] II: Listar al menos tres aproximaciones de segmentación de imágenes, tales como algoritmos de limites (thresholding), basado en el borde y basado en regiones, junto con sus características definitorias, fortalezas y debilidades[Usar] III: Implementar reconocimiento de objetos en 2d basados en la representación del contorno y/o regiones basadas en formas[Usar] IV: Destinguir las metas de reconocimiento de sonido, palabras y del habla e identificar como la señal de audio bruto sera manejada diferentemente en cada uno de esos casos. [Usar] V: Proporcionar al menos dos ejemplos de transformación de una fuente de datos de un dominio sensorial a otro, ejemplo, datos táctiles interpretados como imágenes en 2d de una sola banda[Usar] VI: Implementar un algoritmo para la extracción de caracteristicas en información real, ejemplo, un detector de bordes o esquinas para imágenes o vectores de coeficientes de Fourier describiendo una pequeña porción de señal de audio[Usar] VII: Implementar un algoritmo que combina características en percepciones de más alto nivel, p.e., un contorno o poligono a partir de primitivas visuales o fonemas de una señal de audio[Usar] VIII: Implementar un algoritmo de clasificación que segmenta percepciones de entrada en categorias de salida y evalua cuantitativamente la clasificación resultante[Usar] IX: Evaluar el desempeño de la función de extracción subyacente, en relación con al menos una aproximación alternativa posible (ya sea implementado o no) en su contribución a la tarea de clasificación (8) anterior [Usar] X: Describir por lo menos tres enfoques de clasificación, sus pre requisitos para aplicabilidad, fortalezas y deficiencias [Usar]

Bibliografía: [Nilsson, 2001, Russell and Norvig, 2003, Ponce-Gallegos et al., 2014]

7. Bibliografía

[De Castro, 2006] De Castro, L. (2006). Fundamentals of natural computing: basic concepts, algorithms, and applications. CRC Press.

[Goldberg, 1989] Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley.

[Haykin, 1999] Haykin, S. (1999). Neural networks: A Comprehensive Foundation. Prentice Hall.

[Nilsson, 2001] Nilsson, N. (2001). Inteligencia Artificial: Una nueva visiÃşn. McGraw-Hill.

[Ponce-Gallegos et al., 2014] Ponce-Gallegos, J., Torres-Soto, A., tima Quezada Aguilera, Silva-Sprock, A., Flor, E. M., Casali, A., Scheihing, E., Tupac, Y., Soto, M. T., Zapata, F. O., A., J. H., D., C. Z., Vakhnia, N., and Pedreño, O. (2014). *Inteligencia Artificial*. Iniciativa Latinoamericana de Libros de Texto Abiertos (LATIn).

[Russell and Norvig, 2003] Russell, S. and Norvig, P. (2003). *Inteligencia Artifical: Un enfoque moderno*. Prentice Hall.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

CS401. Metodología de la Investigación en Computación (Obligatorio)

1. Información General

■ Semestre: 7^{mo} Sem. Créditos: 2

■ Horas del curso: Teoría: 1 horas; Práctica: 2 horas;

■ Prerrequisitos:

• CS212. Análisis y Diseño de Algoritmos (5^{to} Sem-Pág. 263)

• 100Cr

2. Fundamentación

Este curso tiene por objetivo que el alumno aprenda a realizar una investigación de carácter científico en el área de computación. Los docentes del curso determinarán un área de estudio para cada alumno, y se le hará entrega de bibliografía para analizar y a partir de la misma, y de fuentes bibliográficas adicionales (investigadas por el alumno), el alumno deberá ser capaz de construir un artículo del tipo survey del tema asignado.

3. Objetivos del curso

- Que el alumno aprenda como se inicia una investigación científica en el área de computación.
- Que el alumno conozca las principales fuentes para obtener bibliografía relevante para trabajos de investigación en el área de computacion: Researchindex, IEEE-CS¹, ACM².
- Que el alumno sea capaz de analizar las propuestas existentes sobre un determinado tópico y relacionarlos de forma coherente en una revisión bibliográfica.
- Que el alumno pueda redactar documentos técnicos en computación utilizando LATEX.
- Que el alumno sea capaz de <u>reproducir</u> los resultados ya existentes en un determinado tópico a través de la experimentación.
- Los entregables de este curso son:

Avance parcial: Dominio del tema del artículo y bibliografía preliminar en formato de artículo \LaTeX

Final: Entendimiento del artículo del tipo survey, documento concluído donde se contenga, opcionalmente, los resultados experimentales de la(s) técnica(s) estudiada(s).

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Familiarizarse)
- **b)** Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (**Familiarizarse**)
- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Familiarizarse)

¹http://www.computer.org

²http://www.acm.org

- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (Usar)
- f) Comunicarse efectivamente con audiencias diversas. (Familiarizarse)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Familiarizarse)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- l) Desarrollar principios investigación en el área de computación con niveles de competividad internacional. (Familiarizarse)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a,b,c
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome e,f.g
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome h,i,l**

6. Contenido del curso

6.1 Iniciación científica en el área de computación, 60 hr(s)

Competencias: C1,C20,CS2

Tópicos: I: Búsqueda bibliográfica en computación. **II:** Redacción de artículos técnicos en computación.

Objetivos de Aprendizaje I: Aprender a hacer una investigación correcta en el área de computación [Usar] II: Conocer las fuentes de bibliografía adecuada para esta área [Usar] III: Saber redactar un documento de acorde con las características que las conferencias de esta área exigen [Usar]

Bibliografía: [IEEE-Computer Society, 2008, Association for Computing Machinery, 2008, CiteSeer.IST, 2008]

7. Bibliografía

[Association for Computing Machinery, 2008] Association for Computing Machinery (2008). *Digital Libray*. Association for Computing Machinery. http://portal.acm.org/dl.cfm.

[CiteSeer.IST, 2008] CiteSeer.IST (2008). Scientific Literature Digital Libray. College of Information Sciences and Technology, Penn State University. http://citeseer.ist.psu.edu.

[IEEE-Computer Society, 2008] IEEE-Computer Society (2008). Digital Libray. IEEE-Computer Society. http://www.computer.org/publications/dlib.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

CS341. Lenguajes de Programación (Obligatorio)

1. Información General

- Semestre: 7^{mo} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS211. Teoría de la Computación (4^{to} Sem-Pág. 237)

2. Fundamentación

Los lenguajes de programación son el medio a través del cual los programadores describen con precisión los conceptos, formulan algoritmos y representan sus soluciones. Un científico de la computación trabajará con diferentes lenguajes, por separado o en conjunto. Los científicos de la computación deben entender los modelos de programación de los diferentes lenguajes, tomar decisiones de diseño basados en el lenguaje de programación y sus conceptos. El profesional a menudo necesitará aprender nuevos lenguajes y construcciones de programación y debe entender los fundamentos de como las características del lenguaje de programación estan definidas, compuestas e implementadas. El uso eficaz de los lenguajes de programación y la apreciación de sus limitaciones, también requiere un conocimiento básico de traducción de lenguajes de programación y su análisis de ambientes estáticos y dinámicos, así como los componentes de tiempo de ejecución tales como la gestión de memoria, entre otros detalles de relevancia.

3. Objetivos del curso

Capacitar a los estudiantes para entender los lenguajes de programación desde diferentes tipos de vista, según el modelo subyacente, los componentes fundamentales presentes en todo lenguaje de programación y como objetos formales dotados de una estructura y un significado según diversos enfoques.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Usar)

5. Competencias específicas de Computación (IEEE)

- C2. Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.⇒ Outcome a
- CS1. Modelar y diseñar sistemas de computadora de una manera que se demuestre comprensión del balance entre las opciones de diseño.⇒ Outcome b
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome i**

CS3. Analizar el grado en que un sistema basado en el ordenador cumple con los criterios definidos para su uso actual y futuro desarrollo.⇒ **Outcome j**

CS6. Evaluar los sistemas en términos de atributos de calidad en general y las posibles ventajas y desventajas que se presentan en el problema dado.⇒ **Outcome j**

6. Contenido del curso

6.1 Evolución de los lenguajes de programación, 18 hr(s)

Competencias: C2, CS1, CS2

Tópicos: I: Historia de los Lenguajes de Programación II: Programas que tienen otros programas como entrada tales como interpretes, compiladores, revisores de tipos y generadores de documentación. III: Estructuras de datos que representan código para ejecución, traducción o transmisión. IV: Estructura de un programa: Léxico, Sintáctico y Semántico V: BNF VI: Interpretación vs. compilación a código nativo vs. compilación de representación portable intermedia. [Familiarizarse]

Objetivos de Aprendizaje I: Reconocer el desarrollo histórico de los lenguajes de programación. [Familiarizarse] II: Identificar los paradigmas que agrupan a la mayoría de lenguajes de programación existentes hoy en día. [Familiarizarse] III: Explicar como programas que procesan otros programas tratan a los otros programas como su entrada de datos[Familiarizarse] IV: Describir un árbol de sintaxis abstracto para un lenguaje pequeño[Familiarizarse] V: Escribir un programa para procesar alguna representación de código para algún propósito, tales como un interprete, una expresión optimizada, o un generador de documentación[Usar] VI: Distinguir una definición de un lenguaje de una implementación particular de un lenguaje (compilador vs interprete, tiempo de ejecución de la representación de los objetos de datos, etc)[Familiarizarse] VII: Reconocer como funciona un programa a nivel de computador. [Familiarizarse]

Bibliografía: [Sebesta, 2012, Webber, 2010]

6.2 Pragmática de lenguajes, 12 hr(s)

Competencias: C2, CS1, CS2

Tópicos: I: Principios de diseño de lenguaje tales como la ortogonalidad. **II:** Orden de evaluación, precedencia y asociatividad. **III:** Evaluación tardía vs. evaluación temprana. **IV:** Definiendo controles y constructos de iteración. **V:** Llamadas externas y sistema de librerías.

Objetivos de Aprendizaje I: Discute el rol de conceptos como ortogonalidad y el buen criterio de selección en el diseño de lenguajes[Usar] II: Utiliza criterios objetivos y nítidos para evaluar las decisiones en el diseño de un lenguaje[Usar] III: Da un ejemplo de un programa cuyo resultado puede diferir dado diversas reglas de orden de evaluación, precedencia, o asociatividad[Usar] IV: Muestra el uso de evaluación con retraso, como en el caso de abstracciones definidas y controladas por el usuario[Familiarizarse] V: Discute la necesidad de permitir llamadas a librerias externas y del sistema y las consecuencias de su implementación en un lenguaje[Familiarizarse]

Bibliografía: [Sebesta, 2012, Webber, 2010, Roy and Haridi, 2004]

6.3 Sistemas de tipos, 18 hr(s)

Competencias: C2, CS1, CS2

Tópicos: I: Constructores de tipo composicional, como tipos de producto (para agregados), tipos de suma (para uniones), tipos de función, tipos cuantificados y tipos recursivos. **II:** Comprobación de tipos. **III:** Seguridad de tipos como preservación más progreso. **IV:** Inferencia de tipos. **V:** Sobrecarga estática.

Objetivos de Aprendizaje I: Definir un sistema de tipo de forma precisa y en su composición [Usar] II: Para varias construcciones de tipo fundamental, identificar los valores que describen y las invariantes que hacen que se cumplan [Familiarizarse] III: Precisar las invariantes preservadas por un sistema de tipos seguro (sound type system) [Familiarizarse] IV: Demostrar la seguridad de tipos para un lenguaje simple en términos de conservación y progreso teoremas [Usar] V: Implementar un algoritmo de inferencia de tipos basado en la unificación para un lenguaje básico [Usar] VI: Explicar cómo la sobrecarga estática y algoritmos de resolución asociados influyen el comportamiento dinámico de los programas [Familiarizarse]

Bibliografía: [Sebesta, 2012, Webber, 2010, Roy and Haridi, 2004]

6.4 Programación orientada a objetos, 12 hr(s)

Competencias: CS2, CS3, CS6

Tópicos: I: Diseño orientado a objetos: a) Descomposicion en objetos que almacenan estados y poseen comportamiento b) Diseño basado en jerarquia de clases para modelamiento II: Definición de las categorías, campos, métodos y constructores. III: Las subclases, herencia y método de alteración temporal. IV: Asignación dinámica: definición de método de llamada. V: Subtipificación: a) Polimorfismo artículo Subtipo; upcasts implícitos en lenguajes con tipos. b) Noción de reemplazo de comportamiento: los subtipos de actuar como supertipos. c) Relación entre subtipos y la herencia. VI: Lenguajesăorientados a objetos para la encapsulación: a) privacidad y la visibilidad de miembros de la clase b) Interfaces revelan único método de firmas c) clases base abstractas VII: Uso de coleccion de clases, iteradores, y otros componentes de la libreria estandar.

Objetivos de Aprendizaje I: Diseñar e implementar una clase[Usar] II: Usar subclase para diseñar una jerarquía simple de clases que permita al código ser reusable por diferentes subclases[Usar] III: Razonar correctamente sobre el flujo de control en un programa mediante el envío dinámico[Usar] IV: Comparar y contrastar (1) el enfoque procedurar/funcional- definiendo una función por cada operación con el cuerdo de la función proporcionando un caso por cada variación de dato - y (2) el enfoque orientado a objetos - definiendo una clase por cada variación de dato con la definición de la clase proporcionando un método por cada operación. Entender ambos enfoques como una definición de variaciones y operaciones de una matriz[Evaluar] V: Explicar la relación entre la herencia orientada a objetos (codigo compartido y overriding) y subtipificación (la idea de un subtipo es ser utilizable en un contexto en el que espera al supertipo)[Usar] VI: Usar mecanismos de encapsulación orientada a objetos, tal como interfaces y miembros privados[Usar] VII: Definir y usar iteradores y otras operaciones sobre agregaciones, incluyendo operaciones que tienen funciones como argumentos, en múltiples lenguajes de programación, selecionar la forma mas natural por cada lenguaje[Usar]

Bibliografía: [Sebesta, 2012, Webber, 2010, Roy and Haridi, 2004]

6.5 Programación funcional, 18 hr(s)

Competencias: CS2, CS3, CS6

Tópicos: I: El efecto de la programación libre: a) Llamadas a función que no tiene efecto secundarios, para facilitar el razonamiento composicional b) Variables inmutables, prevencion de cambios no esperados en los datos del programa por otro código. c) Datos que pueden ser subnombrados o copiados libremente sin introducir efectos no deseados del cambio II: Procesamiento de estructuras de datos (p.e. arboles) a través de fuciones con casos para cada variación de los datos. a) Constructores asociados al lenguaje tales como uniones discriminadas y reconocimiento de patrones sobre ellos. b) Funciones definidas sobre datos compuestos en términos de funciones aplicadas a las piezas constituidas. III: Funciones de primera clase (obtener, retornar y funciones de almacenamiento) IV: Cierres de función (funciones que usan variables en entornos léxicos cerrados) a) Significado y definicion básicos - creacion de cierres en tiempo de ejecución mediante la captura del entorno. b) Idiomas canónicos: llamadas de retorno, argumentos de iteradores,

código reusable mediante argumentos de función c) Uso del cierre para encapsular datos en su entorno d) Evaluación y aplicación parcial \mathbf{V} : Definición de las operaciones de orden superior en los agregados, especialmente en mapa, reducir / doblar, y el filtro.

Objetivos de Aprendizaje I: Escribir algoritmos básicos que eviten asignación a un estado mutable o considerar igualdad de referencia[Usar] II: Escribir funciones útiles que puedan tomar y retornar otras funciones[Usar] III: Comparar y contrastar (1) el enfoque procedurar/funcionaldefiniendo una función por cada operación con el cuerdo de la función proporcionando un caso por cada variación de dato - y (2) el enfoque orientado a objetos - definiendo una clase por cada variación de dato con la definición de la clase proporcionando un método por cada operación. Entender ambos enfoques como una definición de variaciones y operaciones de una matriz[Evaluar] IV: Razonar correctamente sobre variables y el ámbito léxico en un programa usando funciones de cierre (function closures)[Usar] V: Usar mecanismos de encapsulamiento funcional, tal como closures e interfaces modulares[Usar] VI: Definir y usar iteradores y otras operaciones sobre agregaciones, incluyendo operaciones que tienen funciones como argumentos, en múltiples lenguajes de programación, seleccionar la forma mas natural por cada lenguaje[Usar]

Bibliografía: [Sebesta, 2012, Webber, 2010, Roy and Haridi, 2004]

6.6 Programación reactiva y dirigida por eventos, 12 hr(s)

Competencias: CS2, CS3, CS6

Tópicos: I: Eventos y controladores de eventos. **II:** Usos canónicos como interfaces gráficas de usuario, dispositivos móviles, robots, servidores. **III:** Uso de frameworks reactivos. a) Definición de controladores/oyentes (handles/listeners) de eventos. b) Bucle principal de enventos no controlado po el escritor controlador de eventos (event-handler-writer) **IV:** Eventos y eventos del programa generados externamente generada. **V:** La separación de modelo, vista y controlador.

Objetivos de Aprendizaje I: Escribir manejadores de eventos para su uso en sistemas reactivos tales como GUIs[Usar] II: Explicar porque el estilo de programación manejada por eventos es natural en dominios donde el programa reacciona a eventos externos[Familiarizarse] III: Describir un sistema interactivo en términos de un modelo, una vista y un controlador[Familiarizarse]

Bibliografía: [Sebesta, 2012]

6.7 Programación lógica, 12 hr(s)

Competencias: CS2, CS3, CS6

Tópicos: I: Representación causal de estructura de datos y algoritmos. II: Unificación. III: Bactracking y busqueda. IV: Cuts.

Objetivos de Aprendizaje I: Usa un lenguaje lógico para implementar un algoritmo convencional [Usar] II: Usa un lenguaje lógico para implementar un algoritmo empleando búsqueda implícita usando claúsulas, relaciones, y cortes [Usar]

Bibliografía: [Sebesta, 2012, Webber, 2010, Roy and Haridi, 2004]

7. Bibliografía

[Roy and Haridi, 2004] Roy, P. V. and Haridi, S. (2004). Concepts, Techniques, and Models of Computer Programming. MIT Press, Cambridge, MA, USA.

[Sebesta, 2012] Sebesta, R. W. (2012). Concepts of Programming Languages. Addison-Wesley Publishing Company, USA, 10th edition.

[Webber, 2010] Webber, A. B. (2010). *Modern Programming Languages: A Practical Introduction*. Franklin, Beedle and Associates, Inc, 2nd edition.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

FG350. Liderazgo (Obligatorio)

1. Información General

■ Semestre: 7^{mo} Sem. Créditos: 2

■ Horas del curso: Teoría: 1 horas; Práctica: 2 horas;

Prerrequisitos:

• FG203. Oratoria (6^{to} Sem-Pág. 299)

2. Fundamentación

En la actualidad las diferentes organizaciones en el mundo exigen a sus integrantes el ejercicio de liderazgo, esto significa asumir los retos asignados con eficacia y afán de servicio, siendo estas exigencias necesarias para la búsqueda de una sociedad más justa y reconciliada. Este desafío, pasa por la necesidad de formar a nuestros alumnos con un recto conocimiento de sí mismos, con capacidad de juzgar objetivamente la realidad y de proponer orientaciones que busquen modificar positivamente el entorno.

3. Objetivos del curso

 Desarrollar conocimientos, criterios, capacidades y actitudes para ejercer liderazgo, con el objeto de lograr la eficacia y servicio en los retos asignados, contribuyendo así en la construcción de una mejor sociedad.

4. Resultados (Outcomes)

- d) Trabajar efectivamente en equipos para cumplir con un objetivo común. (Usar)
- f) Comunicarse efectivamente con audiencias diversas. (Usar)
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (Usar)

5. Competencias específicas de Computación (IEEE)

- C17. Capacidad para expresarse en los medios de comunicación orales y escritos como se espera de un graduado..⇒ Outcome f
- ${f C18.}$ Capacidad para participar de forma activa y coordinada en un equipo. \Rightarrow ${f Outcome~d}$
- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades. \Rightarrow Outcome $\tilde{\mathbf{n}}$

6. Contenido del curso

6.1 Primera Unidad: Fundamentos del liderazgo, 15 hr(s)

Competencias: C18,C24

Tópicos: I: Teorías de Liderazgo: II: Definición de Liderazgo. III: Fundamentos de Liderazgo. IV: Visión integral del Ser Humano y Motivos de la acción. V: La práctica de la Virtud en el ejercicio de Liderazgo.

Objetivos de Aprendizaje I: Analizar y comprender las bases teóricas del ejercicio de Liderazgo. [Familiarizarse] II: En base a lo comprendido, asumir la actitud correcta para llevarlo a la práctica. [Familiarizarse] III: Iniciar un proceso de autoconocimiento orientado a descubrir rasgos de liderazgo en sí mismo. [Familiarizarse]

Bibliografía: [Pilar, 2002, Manuel., 2009, Alexandre., 2009, D' Souza, , Alfred., 2010]

6.2 Segunda Unidad: Formación de virtudes y competencias, 15 hr(s)

Competencias: C17,C18,C24

Tópicos: I: Teoría de las Competencias III: Reconocimiento de Competencias III: Plan de Desarrollo IV: Modelos Mentales V: Necesidades Emocionales VI: Perfiles Emocionales VII: Vicios Motivacionales

Objetivos de Aprendizaje I: Conocer y Desarrollar competencias de Liderazgo, centradas en lograr la eficacia, sin dejar de lado el deber de servicio con los demás.[Familiarizarse] II: Reconocer las tendencias personales y grupales necesarias para el ejercicio de Liderazgo.[Familiarizarse]

Bibliografía: [Wilkinson., 2009, Luis., 2008, Pilar, 2002, Maruja., 2007]

6.3 Tercera Unidad: Gestión y dirección de equipos, 18 hr(s)

Competencias: C18,C24

Tópicos: I: La relación personal con el equipo II: Liderazgo integral III: Acompañamiento y discipulado IV: Fundamentos de unidad

Objetivos de Aprendizaje I: Desarrollar habilidades para el trabajo en equipo [Familiarizarse]

Bibliografía: [Goleman, 2012, Cardona, Hersey, 1998, Hunsaker, 2010, Hawkins, 2012, Ginebra, 2010]

7. Bibliografía

[Alexandre., 2009] Alexandre., D.-H. (2009). Perfil del Líder. Hacia un Liderazgo Virtuoso. Ediciones Urano S.A.

[Alfred., 2010] Alfred., S. (2010). Liderazgo Ético. La Sabiduría de decidir bien. Ediciones Encuentro S.A Madrid y Nueva Revista de Madrid.

[Cardona,] Cardona, P., y. P. C. R. Dirección por misiones: Cómo generar empresas de alto rendimiento.

[D' Souza,] D' Souza, S. A. Descubre tu Liderazgo. Editorial Sal Terrae.

[Ginebra, 2010] Ginebra, G., . S. G. G. (2010). Gestión de incompetentes. Libros de Cabecera.

[Goleman, 2012] Goleman, D. (2012). Inteligencia emocional. Editorial Kairós.

[Hawkins, 2012] Hawkins, P. (2012). Coaching y liderazgo de equipos: coaching para un liderazgo con capacidad de transformación. Ediciones Granica.

[Hersey, 1998] Hersey, P., B. K. H. . J. D. E. (1998). Administración del comportamiento organizacional: liderazgo situacional.

[Hunsaker, 2010] Hunsaker, P. (2010). El nuevo arte de gestionar equipos: Un enfoque actual para quiar y motivar con éxito.

[Luis., 2008] Luis., H. (2008). Construye tu Sueño. LID Editorial Empresarial.

[Manuel., 2009] Manuel., F. P. (2009). Gobierno de Personas en la Empresa. Ediciones Universidad de Navarra EUNSA.

[Maruja., 2007] Maruja., C. N. (2007). Dueños de Nuestro Destino. Editorial Ariel.

[Pilar, 2002] Pilar, C. P. L. (2002). Cómo desarrollar las Competencias de Liderazgo. PAD Lima-Perú, Tercera Edición.

[Wilkinson., 2009] Wilkinson., C. P. H. (2009). Creciendo como Líder. Ediciones Universidad de Navarra S.A (EUNSA), Primera Edición.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

CS281. Computación en la Sociedad (Obligatorio)

1. Información General

■ Semestre: 8^{vo} Sem. Créditos: 2

■ Horas del curso: Teoría: 2 horas;

■ Prerrequisitos:

• FG210. Moral (5^{to} Sem-Pág. 277)

2. Fundamentación

Ofrece una visión amplia de los aspectos éticos y profesionales relacionados con la computación. Los tópicos que se incluyen abarcan los aspectos éticos, sociales y políticos. Las dimensiones morales de la computación. Los métodos y herramientas de análisis. Administración de los recursos computacionales. Seguridad y control de los sistemas computacionales. Responsabilidades profesionales y éticas. Propiedad intelectual.

3. Objetivos del curso

- Hacer que el alumno entienda la importancia del cuidado y la ética en la transferencia y uso de la información.
- Inculcar en el alumno que las tendencias de mejoramiento de la tecnología, no debe ser llevada a degradar la moral de la sociedad.

4. Resultados (Outcomes)

- f) Comunicarse efectivamente con audiencias diversas. (Familiarizarse)
- g) Analizar el impacto local y global de la computación sobre los individuos, organizaciones y sociedad. (Usar)
- $\tilde{\mathbf{n}}$) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (\mathbf{Usar})
- o) Mejorar las condiciones de la sociedad poniendo la tecnología al servicio del ser humano. (Usar)

5. Competencias específicas de Computación (IEEE)

- C10. Comprensión del impacto en las personas, las organizaciones y la sociedad de la implementación de soluciones tecnológicas e intervenciones. \Rightarrow Outcome g
- C2. Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.⇒ Outcome h
- C3. Una comprensión intelectual de, y el aprecio por el papel central de los algoritmos y estructuras de datos.⇒ Outcome c
- C23. Capacidad para emprender, completar, y presentar un proyecto final.⇒ Outcome i
- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades.⇒
 Outcome i

- CS1. Modelar y diseñar sistemas de computadora de una manera que se demuestre comprensión del balance entre las opciones de diseño.⇒ Outcome c
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome c**
- **CS6.** Evaluar los sistemas en términos de atributos de calidad en general y las posibles ventajas y desventajas que se presentan en el problema dado.⇒ **Outcome a**

6. Contenido del curso

6.1 Historia, 2 hr(s)

Competencias: C2,C3

- **Tópicos: I:** Pre-historia El mundo antes de 1946. **II:** Historia del hardware, software, redes. **III:** Pioneros de la Computación. **IV:** Historia de Internet.
- Objetivos de Aprendizaje I: Identificar importantes tendencias en la historia del campo de la computación[Familiarizarse] II: Identificar las contribuciones de varios pioneros en el campo de la computación[Familiarizarse] III: Discutir el contexto histórico de los paradigmas de diversos lenguajes de programación[Familiarizarse] IV: Comparar la vida diaria antes y después de la llegada de los ordenadores personales y el Internet[Familiarizarse]

Bibliografía: [Laudon and Laudon, 2004, Jr, 2000]

6.2 Contexto Social, 4 hr(s)

Competencias: C23,CS1

- Tópicos: I: Implicancias sociales de la computación en un mundo conectado en red. II: Impacto de los medios sociales en el individualismo, colectivismo y en la cultura. III: Crecimiento y control de la Internet IV: A menudo se refiere como la brecha digital, las diferencias en el acceso a los recursos de la tecnología digital y sus ramificaciones resultantes para el género, la clase, la etnia, la geografía, y/o los países subdesarrollados. V: Los problemas de accesibilidad, incluyendo los requisitos legales. VI: Computación consciente del contexto.
- Objetivos de Aprendizaje I: Describir las formas positivas y negativas en las que la tecnología computacional (redes, computación móvil, cloud computing) altera los modos de interacción social en el plano personal[Familiarizarse] II: Identificar los supuestos y valores incorporados en el hardware y el software de diseño de los desarrolladores, especialmente lo que se refiere a la facilidad de uso para diversas poblaciones incluyendo minorías poblaciones y los discapacitados[Usar] III: Interpretar el contexto social de un determinado diseño y su aplicación[Evaluar] IV: Evaluar la eficacia de un diseño y aplicación dada a partir de datos empíricos [Familiarizarse] V: Resumir las implicaciones de los medios sociales en el individualismo frente al colectivismo y la cultura Familiarizarse VI: Discuta cómo el acceso a Internet sirve como una fuerza liberadora para las personas que viven bajo las formas opresivas de gobierno; explicar la utilización los límites al acceso a Internet como herramientas de represión política y social[Familiarizarse] VII: Analizar los pros y los contras de la dependencia de la computación en la implementación de la democracia (por ejemplo, prestación de servicios sociales, votación electrónica) [Familiarizarse] VIII: Describir el impacto de la escasa representación de las diversas poblaciones en la profesión (por ejemplo, la cultura de la industria, la diversidad de productos)[Usar] IX: Explicar las consecuencias de la sensibilidad al contexto en los sistemas de computación ubicua[Familiarizarse]

Bibliografía: [Laudon and Laudon, 2004, Jr, 2000]

6.3 Herramientas de Análisis, 2 hr(s)

Competencias: CS1,CS2

Tópicos: I: Argumentación ética. **II:** Teorías éticas y toma de decisiones. **III:** Suposiciones morales y valores.

Objetivos de Aprendizaje I: Evaluar las posiciones de las partes interesadas en una situación dada[Familiarizarse] II: Analizar errores lógicos básicos en una discusión[Usar] III: Analizar un argumento para identificar premisas y la conclusión[Familiarizarse] IV: Ilustrar el uso de ejemplo y analogía en el argumento ético[Familiarizarse] V: Evaluar compensaciones éticos / sociales en las decisiones técnicas[Familiarizarse]

Bibliografía: [Laudon and Laudon, 2004, Jr, 2000]

6.4 Ética Profesional, 4 hr(s)

Competencias: C3

Tópicos: I: Community values and the laws by which we live. II: La naturaleza del profesionalismo incluido el cuidado, la atención y la disciplina, la responsabilidad fiduciaria y mentoría. III: Mantenerse al día como profesional de computación en términos de familiaridad, herramientas, habilidades, marco legal y profesional, así como la capacidad de autoevaluarse y avances en el campo de la computación. IV: La certificación profesional, códigos de ética, conducta y práctica, como la ACM / IEEE-CS, SE, AITP, IFIP y las sociedades internacionales. V: Rendición de cuentas, la responsabilidad y la confiabilidad (por ejemplo, la corrección de software, fiabilidad y seguridad, así como la confidencialidad ética de los profesionales de seguridad cibernética) VI: El papel del profesional de de computación en las políticas públicas. VII: Mantenimiento de la conciencia en relación a las consecuencias. VIII: Disidencia ética y la denuncia de irregularidades. IX: La relación entre la cultura regional y dilemas éticos. X: Tratar con el acoso y la discriminación. XI: Formas de credenciamiento profesional. XII: Políticas de uso aceptable para la computación en el lugar de trabajo. XIII: Ergonomía y entornos de trabajo computacionales saludables. XIV: Consideraciones a tiempos de entrega de mercado vs estándares de calidad profesional.

Objetivos de Aprendizaje I: Identificar los problemas éticos que se plantean en el desarrollo de software y determinar cómo abordarlos técnica y éticamente[Usar] II: Explicar la responsabilidad ética de velar por la corrección de software, confiabilidad y seguridad [Evaluar] III: Describir los mecanismos que normalmente existen para que profesional se mantenga al día[Familiarizarse] IV: Describir las fortalezas y debilidades de códigos profesionales relevantes como expresiones de profesionalismo y guías para la toma de decisiones[Familiarizarse] V: Analizar un problema mundial de computación, observando el papel de los profesionales y funcionarios del gobierno en el manejo de este problema[Familiarizarse] VI: Evaluar los códigos de ética profesional de la ACM, la Sociedad de Computación de la IEEE, y otras organizaciones[Familiarizarse] VII: Describir las formas en que los profesionales pueden contribuir a las políticas públicas [Familiarizarse] VIII: Describir las consecuencias de la conducta profesional inadecuada[Usar] IX: Identificar las etapas progresivas en un incidente de denuncia de irregularidades[Usar] X: Identificar ejemplos de cómo interactúa la cultura regional con dilemas éticos[Familiarizarse] XI: Investigar las formas de acoso, discriminación y formas de ayuda [Usar] XII: Examine las diversas formas de acreditación de profesionales [Usar] XIII: Explicar la relación entre la ergonomía en los ambientes y la salud de las personas de computación[Usar] XIV: Desarrollar un uso del computador/política de uso aceptable con medidas coercitivas[Familiarizarse] XV: Describir los problemas asociados con la presión de la industrias para centrarse en el tiempo de comercialización en comparación con la aplicación de normas de calidad profesional[Usar]

Bibliografía: [Laudon and Laudon, 2004, Jr, 2000, Ediciones, 2009a, Ediciones, 2009b, Ediciones, 2010]

6.5 Propiedad Intelectual, 4 hr(s)

Competencias: CS1,CS2

Tópicos: I: Fundamentos filosóficos de propiedad intelectual. II: Derechos de propiedad intelectual. III: Propiedad intelectual digital intangible (IDIP). IV: Fundamentos legales para protección de la propiedad intelectual. V: Gestión de derechos digitales. VI: Copyrights, patentes, secretos de comercio, marcas registradas. VII: Plagiarismo. VIII: Fundamentos del movimiento Open Source. IX: Piratería de Software.

Objetivos de Aprendizaje I: Discute las bases filosóficas de la propiedad intelectual [Evaluar] II: Discute la racionalidad de la protección legal de la propiedad intelectual [Familiarizarse] III: Decribe la legislación orientada a los delitos de derechos de autor digitales [Evaluar] IV: Critica la legislación orientada a los delitos digitales de derechos de autor [Familiarizarse] V: Identifica ejemplos contemporáneos de propiedad intelectual digital intangible [Evaluar] VI: Justifica el uso de material con derechos de autor [Evaluar] [Familiarizarse] VII: Evalúa los asuntos éticos inherentes a diversos mecanismos de detección de plagio [Familiarizarse] VIII: Interpreta el intento y la implementación de licencias de software [Familiarizarse] IX: Discute asuntos que involucran la seguridad de patentes en software [Familiarizarse] X: Caracteriza y contrasta los conceptos de derechos de autor, patentes y de marcas comerciales [Familiarizarse] XI: Identifica los objetivos del movimiento de software libre [Evaluar] XII: Identifica la naturaleza global de la piratería de software [Familiarizarse]

Bibliografía: [Laudon and Laudon, 2004, Jr, 2000, Ediciones, 2009a, Ediciones, 2009b, Ediciones, 2010]

6.6 Privacidad y Libertades Civiles, 4 hr(s)

Competencias: C24

Tópicos: I: Fundamentos filosóficos de derechos de privacidad. II: Fundamentos legales de protección de privacidad. III: Implicaciones de privacidad de recopilación de datos generalizada de bases de datos transaccionales, almacenes de datos, sistemas de vigilancia y la computación en la nube. IV: Ramificaciones de privacidad diferencial. V: Soluciones basadas en la tecnología para la protección de la privacidad. VI: Legislación de privacidad en áreas de práctica. VII: Libertades civiles y diferencias culturales. VIII: Libertad de expresión y sus limitaciones.

Objetivos de Aprendizaje I: Discute las bases filosóficas para la protección legal de la privacidad personal[Familiarizarse] II: Evalúa soluciones para amenazas a la privacidad en bases de datos transaccionales y almacenes de datos[Familiarizarse] III: Describe los roles de la recolección de datos en la implementación de sistemas de vigilancia intrusiva (ejm. RFID, reconocimiento de rostro, cobro electrónico, computación móvil)[Familiarizarse] IV: Describe las ramificaciones de la privacidad diferenciada[Familiarizarse] V: Investica el impacto de soluciones tecnológicas a los problemas de privacidad[Familiarizarse] VI: Critica la intención, el valor potencial y la implementación de las diversas formas de legislación en privacidad[Familiarizarse] VII: Identifica estrategias que permitan la apropiada libertad de expresión[Familiarizarse]

Bibliografía: [Laudon and Laudon, 2004, Jr., 2000, Ediciones, 2009a, Ediciones, 2009b, Ediciones, 2010]

6.7 Políticas de seguridad, Leyes y crímenes computacionales, 2 hr(s)

Competencias: C23

Tópicos: I: Ejemplos de delitos informáticos y reparación legal para delincuentes informáticos. II: Ingenieria social, robo de identidad y recuperación. III: Tópicos relacionados al uso de acceso indebido y las infracciones y materia de seguridad. IV: Motivaciones y ramificaciones del ciberterrorismo y el hacking criminal, cracking. V: Efectos de malware, como virus, worms y Trojan horses. VI: Estrategias de prevención de Crimen. VII: Políticas de Seguridad.

Objetivos de Aprendizaje I: Listar ejemplos clásicos de delitos informáticos y incidentes de ingeniería social con impacto social[Familiarizarse] II: Indentificar leyes que se aplican a delitos informáticos[Familiarizarse] III: Describir la motivación y ramificaciones de cyberterrorismo y hackeo criminal[Familiarizarse] IV: Examinar los problemas éticos y legales relacionados con el mal uso de accesos y diversas violaciones en la seguridad[Familiarizarse] V: Discutir el rol del profesional en seguridad y los problemas que están envueltos[Familiarizarse] VI: Investigar medidas que puedan ser consideradas por personas y organizaciones incluyendo al gobierno para prevenir o mitigar efectos indeseables de los delitos informáticos y robo de identidad[Familiarizarse] VII: Escribir una politica de seguridad de una empresa, la cual incluye procedimientos para administrar contraseñas y monitorizar a los empleados[Familiarizarse]

Bibliografía: [Laudon and Laudon, 2004, Jr, 2000, Ediciones, 2009a, Ediciones, 2009b, Ediciones, 2010]

6.8 Economía de la Computación, 2 hr(s)

Competencias: C10,CS6

Tópicos: I: Monopolio y sus implicaciones económicas. II: Efecto del suministro de mano de obra calificada y la demanda sober la calidad de los productos de computación. III: Estrategias de precio en el dominio de la computación. IV: El fenomeno del desarrollo de software outsourcing y off-shoring; impactos en el empleo y la economia. V: Consecuencias de la globalización para la profesión de Ciencias de la Computación. VI: Diferencias en acceso a recursos de computación y el posible efecto de los mismos. VII: Analisis costo/beneficio de trabajos con consideraciones para manufactura, hardware, software e implicaciones de ingeniería. VIII: Costo estimado versus costo actual in relacion al costo total. IX: Emprendimiento: perspectivas y entrampamientos. X: Efectos de red o economias de escala del lado de la demanda. XI: El uso de la ingeniería económica para hacer frente a las finanzas.

Objetivos de Aprendizaje I: Resumir los fundamentos para los esfuerzos antimonopolio [Familiarizarse] II: Identificar diversas maneras en que la industria de la tecnología de la información está afectada por la escasez de la oferta de trabajo [Familiarizarse] III: Identificar la evolución de la estrategía de precios para el cálculo de los bienes y servicios [Familiarizarse] IV: Discutir los beneficios, los inconvenientes y las implicaciones de off-shoring y outsourcing [Familiarizarse] V: Investigar y defender maneras de tratar las limitaciones en el acceso a la computación. [Usar] VI: Describir los beneficios económicos de efectos de la red [Usar]

Bibliografía: [Laudon and Laudon, 2004, Jr., 2000, Ediciones, 2009a, Ediciones, 2009b, Ediciones, 2010]

7. Bibliografía

[Ediciones, 2009a] Ediciones, D., editor (2009a). Revista Datamation MC Ediciones.

[Ediciones, 2009b] Ediciones, D., editor (2009b). Understanding the Digital Economy.

[Ediciones, 2010] Ediciones, D., editor (2010). Financial Times Mastering Information Management.

[Jr, 2000] Jr, R. M. (2000). Sistemas de Información Gerencial. Prentice Hall.

[Laudon and Laudon, 2004] Laudon, K. C. and Laudon, J. P. (2004). Sistemas de Información Gerencial. Prentice Hall.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación **SUMILLA**

CS342. Compiladores (Obligatorio)

1. Información General

- Semestre: 8^{vo} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - \bullet CS341. Lenguajes de Programación (7 mo Sem-Pág. 321)

2. Fundamentación

Que el alumno conozca y comprenda los conceptos y principios fundamentales de la teoría de compilación para realizar la construcción de un compilador

3. Objetivos del curso

- Conocer las técnicas básicas empleadas durante el proceso de generación intermedio, optimización y generación de código.
- Aprender a implementar pequeños compiladores.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Evaluar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C8. Entendimiento de lo que las tecnologías actuales pueden y no pueden lograr.⇒ Outcome a
- C9. Comprensión de las limitaciones de la computación, incluyendo la diferencia entre lo que la computación es inherentemente incapaz de hacer frente a lo que puede lograrse a través de un futuro de ciencia y tecnología. \Rightarrow Outcome b,j

6. Contenido del curso

6.1 Representación de programas, 5 hr(s)

Competencias: C9

Tópicos: I: Programas que tienen otros programas como entrada tales como interpretes, compiladores, revisores de tipos y generadores de documentación. II: Arboles de sintaxis abstracta, para contrastar la sintaxis correcta. III: Estructuras de datos que representan código para ejecución, traducción o transmisión. IV: Compilación en tiempo just-in time y re-compilación dinámica. V: Otras características comunes de las máquinas virtuales, tales como carga de clases, hilos y seguridad.

Objetivos de Aprendizaje I: Explicar como programas que procesan otros programas tratan a los otros programas como su entrada de datos[Familiarizarse] II: Describir un árbol de sintaxis abstracto para un lenguaje pequeño[Familiarizarse] III: Describir los beneficios de tener representaciones de programas que no sean cadenas de código fuente[Familiarizarse] IV: Escribir un programa para procesar alguna representación de código para algún propósito, tales como un interprete, una expresión optimizada, o un generador de documentación[Familiarizarse] V: Explicar el uso de metadatos en las representaciones de tiempo de ejecución de objetos y registros de activación, tales como los punteros de la clase, las longitudes de arreglos, direcciones de retorno, y punteros de frame[Familiarizarse] VI: Discutir las ventajas, desventajas y dificultades del término (just-in-time) y recompilación automática[Familiarizarse] VII: Identificar los servicios proporcionados por los sistemas de tiempo de ejecución en lenguajes modernos[Familiarizarse]

Bibliografía: [Louden, 2004b, Pratt and V.Zelkowitz, 1998]

6.2 Traducción y ejecución de lenguajes, 10 hr(s)

Competencias: C8

Tópicos: I: Interpretación vs. compilación a código nativo vs. compilación de representación portable intermedia. II: Pipeline de traducción de lenguajes: análisis, revisión opcional de tipos, traducción, enlazamiento, ejecución: a) Ejecución como código nativo o con una máquina virtual b) Alternativas como carga dinámica y codificación dinámica de código (o "just-in-time"") III: Representación en tiempo de ejecución de construcción del lenguaje núcleo tales como objetos (tablas de métodos) y funciones de primera clase (cerradas) IV: Ejecución en tiempo real de asignación de memoria: pila de llamdas, montículo, datos estáticos: a) Implementación de bucles, recursividad y llamadas de cola V: Gestión de memoria: a) Gestión manual de memoria: asignación, limpieza y reuso de la pila de memoria b) Gestión automática de memoria: recolección de datos no utilizados (garbage colletion) como una técnica automática usando la noción de accesibilidad

Objetivos de Aprendizaje I: Distinguir una definición de un lenguaje de una implementación particular de un lenguaje (compilador vs interprete, tiempo de ejecución de la representación de los objetos de datos, etc) [Evaluar] II: Distinguir sintaxis y parseo de la semantica y la evaluación [Evaluar] III: Bosqueje una representación de bajo nivel de tiempo de ejecución de construcciones del lenguaje base, tales como objetos o cierres (closures) [Evaluar] IV: Explicar cómo las implementaciones de los lenguajes de programación tipicamente organizan la memoria en datos globales, texto, heap, y secciones de pila y cómo las características tales como recursión y administración de memoria son mapeados a esté modelo de memoria [Evaluar] V: Identificar y corregir las pérdidas de memoria y punteros desreferenciados [Evaluar] VI: Discutir los beneficios y limitaciones de la recolección de basura (garbage collection), incluyendo la noción de accesibilidad [Evaluar]

Bibliografía: [Aho et al., 2008, Aho, 1990, Louden, 2004a, Teufel and Schmidt, 1998, A.Lemone, 1996, Appel, 2002]

6.3 Análisis de sintaxis, 10 hr(s)

Competencias: C8

Tópicos: I: Exploración (análisis léxico) usando expresiones regulares. **II:** Estratégias de análisis incluyendo técnicas de arriba a abajo (top-down) (p.e. descenso recursivo, análisis temprano o LL) y de abajo a arriba (bottom-up) (ej, 'llamadas hacia atrás - bracktracking, o LR); rol de las gramáticas libres de contexto. **III:** Generación de exploradores (scanners) y analizadores a partir de especificaciones declarativas.

Objetivos de Aprendizaje I: Usar gramáticas formales para especificar la sintaxis de los lenguajes[Evaluar] II: Usar herramientas declarativas para generar parseadores y escáneres[Evaluar] III: Identificar las características clave en las definiciones de sintaxis: ambiguedad, asociatividad, precedencia[Evaluar] **Bibliografía:** [Aho et al., 2008, Aho, 1990, Louden, 2004a, Teufel and Schmidt, 1998, A.Lemone, 1996, Appel, 2002]

6.4 Análisis semántico de compiladores, 15 hr(s)

Competencias: C8

- **Tópicos: I:** Representaciones de programas de alto nivel tales como árboles de sintaxis abstractas. **II:** Alcance y resolución de vínculos. **III:** Revisión de tipos. **IV:** Especificaciones declarativas tales como gramáticas atribuídas.
- Objetivos de Aprendizaje I: Implementar analizadores sensibles al contexto y estáticos a nivel de fuente, tales como, verificadores de tipos o resolvedores de identificadores para identificar las ocurrencias de vinculo[Evaluar] II: Describir analizadores semanticos usando una gramatica con atributos[Evaluar]
- **Bibliografía:** [Aho et al., 2008, Aho, 1990, Louden, 2004a, Teufel and Schmidt, 1998, A.Lemone, 1996, Appel, 2002]

6.5 Generación de código, 20 hr(s)

Competencias: C8

- **Tópicos: I:** Llamadas a procedimientos y métodos en envío. **II:** Compilación separada; vinculación. **III:** Selección de instrucciones. **IV:** Calendarización de instrucciones. **V:** Asignación de registros. **VI:** Optimización por rendija (peephole)
- Objetivos de Aprendizaje I: Identificar todos los pasos esenciales para convertir automáticamente código fuente en código emsamblador o otros lenguajes de bajo nivel[Evaluar] II: Generar código de bajo nivel para llamadas a funciones en lenguajes modernos[Evaluar] III: Discutir por qué la compilación separada requiere convenciones de llamadas uniformes[Evaluar] IV: Discutir por qué la compilación separada limita la optimización debido a efectos de llamadas desconocidas[Evaluar] V: Discutir oportunidades para optimización introducida por la traducción y enfoques para alcanzar la optimización, tales como la selección de la instrucción, planificación de instruccion, asignación de registros y optimización de tipo mirilla (peephole optimization)[Evaluar]
- Bibliografía: [Aho et al., 2008, Aho, 1990, Louden, 2004a, Teufel and Schmidt, 1998, A.Lemone, 1996, Appel, 2002]

7. Bibliografía

[Aho, 1990] Aho, A. (1990). Compiladores Principios, técnicas y herramientas. Addison Wesley.

[Aho et al., 2008] Aho, A., Lam, M., Sethi, R., and Ullman, J. D. (2008). *Compiladores. Principios*, técnicas y herramientas. Addison Wesley, 2nd edition. ISBN:10-970-26-1133-4.

[A.Lemone, 1996] A.Lemone, K. (1996). Fundamentos de Compiladores. CECSA-Mexico.

[Appel, 2002] Appel, A. W. (2002). Modern compiler implementation in Java. Cambridge University Press, 2.a edición edition.

[Louden, 2004a] Louden, K. C. (2004a). Construccion de Compiladores Principios y Practica. Thomson.

[Louden, 2004b] Louden, K. C. (2004b). Lenguajes de Programacion. Thomson.

[Pratt and V.Zelkowitz, 1998] Pratt, T. W. and V.Zelkowitz, M. (1998). Lenguajes de Programacion Diseño e Implementacion. Prentice-Hall Hispanoamericana S.A.

[Teufel and Schmidt, 1998] Teufel, B. and Schmidt, S. (1998). Fundamentos de Compiladores. Addison Wesley Iberoamericana.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación

SUMILLA

CS3I1. Seguridad en Computación (Obligatorio)

1. Información General

■ Semestre: 8^{vo} Sem. Créditos: 3

■ Horas del curso: Teoría: 1 horas; Práctica: 2 horas; Laboratorio: 2 horas;

■ Prerrequisitos:

• CS231. Redes y Comunicación (7^{mo} Sem-Pág. 309)

2. Fundamentación

Hoy en dia la información es uno de los activos más preciados en cualquier organización. Este cursos está orientado a poder brindar al alumno los elementos de seguridad orientados a proteger la información de la organización y principalmente poder preveer los posibles problemas relacionados con este rubro. Esta materia involucra el desarrollo de una actitud preventiva por parte del alumno en todas las áreas relacionadas al desarrollo de software.

3. Objetivos del curso

- Discutir a un nivel intermedio avanzado los los fundamentos de la Seguridad Informática.
- Brindar los diferentes aspectos que presenta el código malicioso.
- Que el alumno conozca los conceptos de criptografí**s**a y seguridad en redes de computadoras.
- Discutir y analizar junto con el alumno los aspectos de la Seguridad en Internet.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Evaluar)
- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Evaluar)
- g) Analizar el impacto local y global de la computación sobre los individuos, organizaciones y sociedad. (Evaluar)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Evaluar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Usar)

5. Competencias específicas de Computación (IEEE)

- C2. Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.⇒ Outcome a
- C8. Entendimiento de lo que las tecnologías actuales pueden y no pueden lograr.⇒ Outcome j,g
- C9. Comprensión de las limitaciones de la computación, incluyendo la diferencia entre lo que la computación es inherentemente incapaz de hacer frente a lo que puede lograrse a través de un futuro de ciencia y tecnología.⇒ Outcome g,a
- C21. Comprender el aspecto profesional, legal, seguridad, asuntos políticos, humanistas, ambientales, culturales y éticos.⇒ Outcome g,a
- C22. Capacidad para demostrar las actitudes y prioridades que honrar, proteger y mejorar la estatura y la reputación ética de la profesión.⇒ Outcome h,c
- **CS6.** Evaluar los sistemas en términos de atributos de calidad en general y las posibles ventajas y desventajas que se presentan en el problema dado.⇒ **Outcome b**
- CS7. Aplicar los principios de una gestión eficaz de la información, organización de la información, y las habilidades de recuperación de información a la información de diversos tipos, incluyendo texto, imágenes, sonido y vídeo. Esto debe incluir la gestión de los problemas de seguridad.⇒ Outcome i,h,c
- **CS9.** Identificar los riesgos (y esto incluye cualquier seguridad o los aspectos de seguridad) que pueden estar involucrados en la operación de equipo de cómputo dentro de un contexto dado.⇒ **Outcome j,b**
- **CS11.** Ser consciente de la existencia de software a disposición del público y la comprensión del potencial de los proyectos de código abierto.⇒ **Outcome g,b**

6. Contenido del curso

6.1 Fundamentos y Conceptos en Seguridad, 25 hr(s)

Competencias: C2,C8

- **Tópicos: I:** CIA (Confidencialidad, Integridad, Disponibilidad) **II:** Conceptos de riesgo, amenazas, vulnerabilidades, y los tipos de ataque . **III:** Autenticación y autorización, control de acceso (vs. obligatoria discrecional) **IV:** Concepto de la confianza y la honradez . **V:** Ética (revelación responsable)
- Objetivos de Aprendizaje I: Analizar las ventajas y desventajas de equilibrar las propiedades clave de seguridad (Confidenciabilidad, Integridad, Disponibilidad) [Familiarizarse] II: Describir los conceptos de riesgo, amenazas, vulnerabilidades y vectores de ataque (incluyendo el hecho de que no existe tal cosa como la seguridad perfecta) [Familiarizarse] III: Explicar los conceptos de autentificación, autorización, control de acceso [Familiarizarse] IV: Explicar el concepto de confianza y confiabilidad [Familiarizarse] V: Reconocer de que hay problemas éticos más importantes que considerar en seguridad computacional, incluyendo problemas éticos asociados a arreglar o no arreglar vulnerabilidades y revelar o no revelar vulnerabilidades [Familiarizarse]

Bibliografía: [Stallings and Brown, 2014]

6.2 Principios de Diseño Seguro, 25 hr(s)

Competencias: C,9C21,C22

Tópicos: I: Menor privilegio y aislamiento. II: Valores predeterminados a prueba de fallos. III: Diseño abierto. IV: La seguridad de extremo a extremo. V: La defensa en profundidad (por ejemplo, la programación defensiva, defensa en capas) VI: Diseño de seguridad. VII: Las tensiones entre la seguridad y otros objetivos de diseño. VIII: Mediación completa. IX: El uso de componentes de seguridad vetados. X: Economía del mecanismo (la reducción de la base informática de confianza, minimizar la superficie de ataque) XI: Seguridad utilizable. XII: Componibilidad de seguridad. XIII: Prevención, detección y disuasión.

Objetivos de Aprendizaje I: Describir el principio de privilegios mínimos y el aislamiento que se aplican al diseño del sistema[Familiarizarse] II: Resumir el principio de prueba de fallos y negar por defecto Familiarizarse III: Discutir las implicaciones de depender de diseño abierto o secreto de diseño para la seguridad[Familiarizarse] IV: Explicar los objetivos de seguridad de datos de extremo a extremo [Familiarizarse] V: Discutir los beneficios de tener múltiples capas de defensas[Familiarizarse] VI: Por cada etapa en el ciclo de vida de un producto, describir que consideraciones de seguridad deberian ser evaluadas [Familiarizarse] VII: Describir el costo y ventajas y desventajas asociadas con el diseño de seguridad de un producto. [Familiarizarse] VIII: Describir el concepto de mediación y el principio de mediación completa Familiarizarse IX: Conocer los componentes estándar para las operaciones de seguridad, en lugar de reinventar las operaciones fundamentales [Familiarizarse] X: Explicar el concepto de computación confiable incluyendo base informática confiable y de la superficie de ataque y el principio de minimización de base informática confiable [Familiarizarse] XI: Discutir la importancia de la usabilidad en el diseño de mecanismos de seguridad[Familiarizarse] XII: Describir problemas de seguridad que surgen en los límites entre varios componentes [Familiarizarse] XIII: Identificar los diferentes roles de mecanismos de prevención y mecanismos de eliminación/disuación[Familiarizarse]

Bibliografía: [Stallings and Brown, 2014]

6.3 Programación Defensiva, 25 hr(s)

Competencias: CS6,CS7,CS9

Tópicos: I: Validación de datos de entrada y sanitización II: Elección del lenguaje de programación y lenguajes con tipos de datos seguro. III: Ejemplos de validación de entrada de datos y sanitización de errores. a) Desbordamiento de búfer b) Errores enteros c) Inyección SQL d) Vulnerabilidad XSS IV: Las condiciones de carrera. V: Manejo correcto de las excepciones y comportamientos inesperados. VI: Uso correcto de los componentes de terceros. VII: Desplegar eficazmente las actualizaciones de seguridad. VIII: Información de control de flujo. IX: Generando correctamente el azar con fines de seguridad. X: Mecanismos para la detección y mitigación de datos de entrada y errores de sanitización. XI: Fuzzing XII: El análisis estático y análisis dinámico. XIII: Programa de verificación. XIV: Soporte del sistema operativo (por ejemplo, la asignación al azar del espacio de direcciones, canarios) XV: El soporte de hardware (por ejemplo, el DEP, TPM)

Objetivos de Aprendizaje I: Explicar por que la validación de entrada y desinfección de datos es necesario en el frente del control contencioso del canal de entrada[Usar] II: Explicar por que uno deberia escoger para desallorrar un programa en un lenguaje tipo seguro como Java, en contraste con un lenguaje de programación no seguro como C/C++[Usar] III: Clasificar los errores de validación de entrada común, y escribir correctamente el código de validación de entrada[Usar] IV: Demostrar el uso de un lenguaje de programación de alto nivel cómo prevenir una condición de competencia que ocurran y cómo manejar una excepción[Usar] V: Demostrar la identificación y el manejo elegante de las condiciones de error[Familiarizarse] VI: Explique los riesgos de mal uso de las interfaces con código de terceros y cómo utilizar correctamente el código de terceros[Familiarizarse] VII: Discutir la necesidad de actualizar el software para corregir las vulnerabilidades de seguridad y la gestión del ciclo de vida de la corrección[Familiarizarse]

Bibliografía: [Stallings and Brown, 2014]

6.4 Ataques y Amenazas, 25 hr(s)

Competencias: CS6,CS7,CS9

Tópicos: I: Atacante metas, capacidades y motivaciones (como economía sumergida, el espionaje digital, la guerra cibernética, las amenazas internas, hacktivismo, las amenazas persistentes avanzadas)
II: Los ejemplos de malware (por ejemplo, virus, gusanos, spyware, botnets, troyanos o rootkits)
III: Denegación de Servicio (DoS) y Denegación de Servicio Distribuida (DDoS)
IV: Ingeniería social (por ejemplo, perscando)
V: Los ataques a la privacidad y el anonimato
VI: El malware / comunicaciones no deseadas, tales como canales encubiertos y esteganografía.

Objetivos de Aprendizaje I: Describir tipos de ataques similares en contra de un sistema en particular [Familiarizarse] II: Discutir los limitantes de las medidas en contra del malware (ejm. detección basada en firmas, detección de comportamiento) [Familiarizarse] III: Identificar las instancias de los ataques de ingeniería social y de los ataques de negación de servicios [Familiarizarse] IV: Discutir como los ataques de negación de servicos puede ser identificados y reducido [Familiarizarse] V: Describir los riesgos de la privacidad y del anonimato en aplicaciones comunmente usadas [Familiarizarse] VI: Discutir los conceptos de conversión de canales y otros procedimientos de filtrado de datos [Familiarizarse]

Bibliografía: [Stallings and Brown, 2014]

6.5 Seguridad de Red, 25 hr(s)

Competencias: CS6,CS7,CS9

Tópicos: I: Red de amenazas y tipos de ataques específicos (por ejemplo, la denegación de servicio, spoofing, olfateando y la redirección del tráfico, el hombre en el medio, ataques integridad de los mensajes, los ataques de enrutamiento, y el análisis de tráfico) II: El uso de cifrado de datos y seguridad de la red . III: Arquitecturas para redes seguras (por ejemplo, los canales seguros, los protocolos de enrutamiento seguro, DNS seguro, VPN, protocolos de comunicación anónimos, aislamiento) IV: Los mecanismos de defensa y contramedidas (por ejemplo, monitoreo de red, detección de intrusos, firewalls, suplantación de identidad y protección DoS, honeypots, seguimientos) V: Seguridad para redes inalámbricas, celulares . VI: Otras redes no cableadas (por ejemplo, ad hoc, sensor, y redes vehiculares) VII: Resistencia a la censura. VIII: Gestión de la seguridad operativa de la red (por ejemplo, control de acceso a la red configure)

Objetivos de Aprendizaje I: Describir las diferentes categorías de amenazas y ataques en redes[Familiarizarse] II: Describir las arquitecturas de criptografía de clave pública y privada y cómo las ICP brindan apoyo a la seguridad en redes[Familiarizarse] III: Describir ventajas y limitaciones de las tecnologías de seguridad en cada capa de una torre de red[Familiarizarse] IV: Identificar los adecuados mecanismos de defensa y sus limitaciones dada una amenaza de red[Usar]

Bibliografía: [Stallings and Brown, 2014]

6.6 Criptografía, 25 hr(s)

Competencias: CS6,CS7,CS9

Tópicos: I: Terminología básica de criptografía cubriendo las nociones relacionadas con los diferentes socios (comunicación), canal seguro / inseguro, los atacantes y sus capacidades, cifrado, descifrado, llaves y sus características, firmas. **II:** Tipos de cifrado (por ejemplo, cifrado César, cifrado affine), junto con los métodos de ataque típicas como el análisis de frecuencia. **III:** Apoyo a la infraestructura de clave pública para la firma digital y el cifrado y sus desafíos. **IV:** Criptografía de clave simétrica: a) El secreto perfecto y el cojín de una sola vez b) Modos de funcionamiento para la seguridad semántica y encriptación autenticada (por ejemplo, cifrar-entonces-MAC, OCB, GCM) c) Integridad de los mensajes (por ejemplo, CMAC, HMAC) **V:** La criptografía de clave pública: a) Permutación de trampilla, por ejemplo, RSA b) Cifrado de clave pública,

por ejemplo, el cifrado RSA, cifrado El Gamal c) Las firmas digitales d) Infraestructura de clave pública (PKI) y certificados e) Supuestos de dureza, por ejemplo, Diffie-Hellman, factoring entero \mathbf{VI} : Protocolos de intercambio de claves autenticadas, por ejemplo, TLS . \mathbf{VII} : Primitivas criptográficas: a) generadores pseudo-aleatorios y cifrados de flujo b) cifrados de bloque (permutaciones pseudo-aleatorios), por ejemplo, AES c) funciones de pseudo-aleatorios d) funciones de hash, por ejemplo, SHA2, resistencia colisión e) códigos de autenticación de mensaje f) funciones derivaciones clave

Objetivos de Aprendizaje I: Describir el propósito de la Criptografía y listar formas en las cuales es usada en comunicación de datos[Familiarizarse] II: Definir los siguientes términos: Cifrado, Criptoanálisis, Algorítmo Criptográfico, y Criptología y describe dos métodos básicos (cifrados) para transformar texto plano en un texto cifrado[Familiarizarse] III: Discutir la importancia de los números primos en criptografía y explicar su uso en algoritmos criptográficos[Familiarizarse] IV: Ilustrar como medir la entropía y como generar aleatoriedad criptográfica[Usar] V: Usa primitivas de clave pública y sus aplicaciones[Usar] VI: Explicar como los protocolos de intercambio de claves trabajan y como es que pueden fallar[Familiarizarse] VII: Discutir protocolos criptográficos y sus propiedades[Familiarizarse]

Bibliografía: [Stallings and Brown, 2014]

6.7 Seguridad en la Web, 25 hr(s)

Competencias: C8,C9

Tópicos: I: Modelo de seguridad Web a) Modelo de seguridad del navegador incluida la política de mismo origen b) Los límites de confianza de cliente-servidor, por ejemplo, no pueden depender de la ejecución segura en el cliente II: Gestión de sesiones, la autenticación: a) Single Sign-On b) HTTPS y certificados III: Vulnerabilidades de las aplicaciones y defensas : a) Inyección SQL b) XSS c) CSRF IV: Seguridad del lado del cliente : a) Política de seguridad Cookies b) Extensiones de seguridad HTTP, por ejemplo HSTS c) Plugins, extensiones y aplicaciones web d) Seguimiento de los usuarios Web V: Herramientas de seguridad del lado del servidor, por ejemplo, los cortafuegos de aplicación Web (WAFS) y fuzzers

Objetivos de Aprendizaje I: Describe el modelo de seguridad de los navegadores incluyendo las políticas del mismo origen y modelos de amenazas en seguridad web[Familiarizarse] II: Discutir los conceptos de sesiones web, canales de comunicación seguros tales como Seguridad en la Capa de Transporte(TLS) y la importancia de certificados de seguridad, autenticación incluyendo inicio de sesión único, como OAuth y Lenguaje de Marcado para Confirmaciones de Seguridad(SAML)[Familiarizarse] III: Investigar los tipos comunes de vulnerabilidades y ataques en las aplicaciones web, y defensas contra ellos[Familiarizarse] IV: Utilice las funciones de seguridad del lado del cliente[Usar]

Bibliografía: [Stallings and Brown, 2014]

6.8 Seguridad de plataformas, 25 hr(s)

Competencias: CS6,CS7,CS9

Tópicos: I: Integridad de código y firma de código. II: Arranque seguro, arranque medido, y la raíz de confianza. III: Testimonio. IV: TPM y coprocesadores seguros. V: Las amenazas de seguridad de los periféricos, por ejemplo, DMA, IOMMU. VI: Ataques físicos: troyanos de hardware, sondas de memoria, ataques de arranque en frío. VII: Seguridad de dispositivos integrados, por ejemplo, dispositivos médicos, automóviles. VIII: Ruta confiable.

Objetivos de Aprendizaje I: Explica el concepto de integridad de código y firma de códigos, así como el alcance al cual se aplica[Familiarizarse] II: Discute los conceptos del origen de la confidencialidad y el de los procesos de arranque y carga segura[Familiarizarse] III: Describe los mecanismos de arresto remoto de la integridad de un sistema[Familiarizarse] IV: Resume las metas y las primitivas claves de los modelos de plataforma confiable (TPM)[Familiarizarse]

V: Identifica las amenazas de conectar periféricos en un dispositivo[Familiarizarse] VI: Identifica ataques físicos y sus medidas de control[Familiarizarse] VII: Identifica ataques en plataformas con hardware que no son del tipo PC[Familiarizarse] VIII: Discute los conceptos y la importancia de ruta confiable[Familiarizarse]

Bibliografía: [Stallings and Brown, 2014]

6.9 Investigación digital (Digital Forensics), 25 hr(s)

Competencias: C8,C9

Tópicos: I: Principios básicos y metodologías de análisis digital forensico. II: Diseñar sistemas con necesidades forenses en mente. III: Reglas de Evidencia - conceptos generales y las diferencias entre las jurisdicciones y la Cadena de Custodia. IV: Búsqueda y captura de comprobación: requisitos legales y de procedimiento. V: Métodos y normas de evidencia digital. VI: Las técnicas y los estándares para la conservación de los datos. VII: Cuestiones legales y reportes incluyendo el trabajo como perito. VIII: Investigación digital de los sistema de archivos. IX: Los forenses de aplicación. X: Investigación digital en la web. XI: Investigación digital en redes. XII: Investigación digital en dispositivos móviles. XIII: Ataques al computador/red/sistema. XIV: Detección e investigación de ataque. XV: Contra investigación digital.

Objetivos de Aprendizaje I: Describe qué es una investigación digital, las fuentes de evidencia digital, y los límites de técnicas forenses [Familiarizarse] II: Explica como diseñar software de apoyo a técnicas forenses [Familiarizarse] III: Describe los requisitos legales para usar datos recuperados [Familiarizarse] IV: Describe el proceso de recolección de evidencia desde el tiempo en que se identifico el requisito hasta la colocación de los datos [Familiarizarse] V: Describe como se realiza la recolección de datos y el adecuado almacenamiento de los datos originales y de la copia forense [Familiarizarse] VI: Realiza recolección de datos en un disco duro [Usar] VII: Describe la responsabilidad y obligación de una persona mientras testifica como un examinador forense [Familiarizarse] VIII: Recupera datos basados en un determinado término de búsqueda en una imagen del sistema [Usar] IX: Reconstruye el historial de una aplicación a partir de los artefactos de la aplicación [Familiarizarse] X: Reconstruye el historial de navegación web de los artefactos web [Familiarizarse] XI: Captura e interpreta el tráfico de red [Familiarizarse] XII: Discute los retos asociados con técnicas forenses de dispositivos móviles [Familiarizarse]

Bibliografía: [Stallings and Brown, 2014]

6.10 Seguridad en Ingeniería de Software, 25 hr(s)

Competencias: C21,C22

Tópicos: I: La construcción de la seguridad en el ciclo de vida de desarrollo de software. **II:** Principios y patrones de diseño seguros. **III:** Especificaciones de software seguros y requisitos. **IV:** Prácticas de desarrollo de software de seguros. **V:** Asegure probar el proceso de las pruebas de que se cumplan los requisitos de seguridad (incluyendo análisis estático y dinámico)

Objetivos de Aprendizaje I: Describir los requisitos para la integración de la seguridad en el SDL[Familiarizarse] II: Aplicar los conceptos de los principios de diseño para mecanismos de protección, los principios para seguridad de software (Viega and McGraw) y los principios de diseño de seguridad (Morrie Gasser) en un proyecto de desarrollo de software [Familiarizarse] III: Desarrollar especificaciones para un esfuerzo de desarrollo de software que especifica completamente los requisitos funcionales y se identifican las rutas de ejecución esperadas [Familiarizarse]

Bibliografía: [Stallings and Brown, 2014]

7. Bibliografía

[Stallings and Brown, 2014] Stallings, W. and Brown, L. (2014). Computer Security: Principles and Practice. Pearson Education, Limited.

Universidad Católica San Pablo Escuela Profesional de Ciencia de la Computación SUMILLA

CS2H1. Interacción Humano Computador (Obligatorio)

1. Información General

■ Semestre: 8^{vo} Sem. Créditos: 3

■ Horas del curso: Teoría: 1 horas; Práctica: 2 horas; Laboratorio: 2 horas;

■ Prerrequisitos:

• CS251. Computación Gráfica (7^{mo} Sem-Pág. 301)

2. Fundamentación

El lenguaje ha sido una de las creaciones más significativas de la humanidad. Desde el lenguaje corporal y gestual, pasando por la comunicación verbal y escrita, hasta códigos simbólicos icónicos y otros, ha posibilitado interacciones complejas entre los seres humanos y facilitado considerablemente la comunicación de información. Con la invención de dispositivos automáticos y semiautomáticos, entre los que se cuentan las computadoras, la necesidad de lenguajes o interfaces para poder interactuar con ellos, ha cobrado gran importancia.

La usabilidad del software, aunada a la satisfacción del usuario y su incremento de productividad, depende de la eficacia de la Interfaz Usuario-Computador. Tanto es así, que a menudo la interfaz es el factor más importante en el éxito o el fracaso de cualquier sistema computacional. El diseño e implementación de adecuadas Interfaces Humano-Computador, que además de cumplir los requisitos técnicos y la lógica transaccional de la aplicación, considere las sutiles implicaciones psicológicas, culturales y estéticas de los usuarios, consume buena parte del ciclo de vida de un proyecto software, y requiere habilidades especializadas, tanto para la construcción de las mismas, como para la realización de pruebas de usabilidad.

3. Objetivos del curso

- Conocer y aplicar criterios de usabilidad y accesibilidad al diseño y construcción de interfaces humano-computador, buscando siempre que la tecnología se adapte a las personas y no las personas a la tecnología.
- Que el alumno tenga una visión centrada en la experiencia de usuario al aplicar apropiados enfoques conceptuales y tecnológicos.
- Entender como la tecnologica emergente hace posible nuevos estilos de interacción.
- Determinar los requerimientos básicos a nivel de interfaces, hardware y software para la construcción de ambientes inmersivos.

4. Resultados (Outcomes)

- **b)** Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (**Familiarizarse**)
- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Evaluar)
- d) Trabajar efectivamente en equipos para cumplir con un objetivo común. (Usar)
- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (Familiarizarse)

- g) Analizar el impacto local y global de la computación sobre los individuos, organizaciones y sociedad. (Familiarizarse)
- o) Mejorar las condiciones de la sociedad poniendo la tecnología al servicio del ser humano. (Familiarizarse)

5. Competencias específicas de Computación (IEEE)

- **CS8.** Aplicar los principios de la interacción persona-ordenador para la evaluación y la construcción de una amplia gama de materiales, incluyendo interfaces de usuario, páginas web, sistemas multimedia y sistemas móviles.⇒ **Outcome b**
- C7. Ser capaz de aplicar los principios y tecnologías de ingeniería de software para asegurar que las implementaciones de software son robustos, fiables y apropiados para su público objetivo. \Rightarrow Outcome c
- C9. Comprensión de las limitaciones de la computación, incluyendo la diferencia entre lo que la computación es inherentemente incapaz de hacer frente a lo que puede lograrse a través de un futuro de ciencia y tecnología.⇒ Outcome o
- C15. Entendimiento del concepto esencial del proceso, ya que se relaciona con la actividad profesional sobre todo la relación entre la calidad del producto y el despliegue de los procesos humanos apropiados durante el desarrollo de productos.

 Outcome g
- CS10. Implementar efectivamente las herramientas que se utilizan para la construcción y la documentación de software, con especial énfasis en la comprensión de todo el proceso involucrado en el uso de computadoras para resolver problemas prácticos. Esto debe incluir herramientas para el control de software, incluyendo el control de versiones y gestión de la configuración.⇒

 Outcome d

6. Contenido del curso

6.1 Fundamentos, 8 hr(s)

Competencias: CS8

- Tópicos: I: Contextos para IHC (cualquiera relacionado con una interfaz de usuario, p.e., página web, aplicaciones de negocios, aplicaciones móviles y juegos) II: Heurística de usabilidad y los principios de pruebas de usabilidad. III: Procesos para desarrollo centrado en usuarios, p.e., enfoque inicial en usuarios, pruebas empíricas, diseño iterativo. IV: Principios del buen diseño y buenos diseñadores; ventajas y desventajas de ingeniería. V: Diferentes medidas para evaluación, p.e., utilidad, eficiencia, facilidad de aprendizaje, satisfacción de usuario.
- Objetivos de Aprendizaje I: Discutir por qué el desarrollo de software centrado en el hombre es importante[Familiarizarse] II: Define un proceso de diseño centralizado en el usario que de forma explícita considere el hecho que un usuario no es como un desarrollador o como sus conocimientos[Familiarizarse] III: Resumir los preceptos básicos de la interacción psicológica y social[Familiarizarse] IV: Desarrollar y usar un vocabulario conceptual para analizar la interacción humana con el software: disponibilidad, modelo conceptual, retroalimentación, y demás[Familiarizarse]

Bibliografía: [Dix et al., 2004, Stone and Minocha, 2005, Rogers, 2011]

6.2 Factores Humanos, 8 hr(s)

Competencias: CS8

Tópicos: I: Modelos cognoscitivos que informan diseño de interacciones, p.e., atención, percepción y reconocimiento, movimiento, memoria, golfos de expectativa y ejecución. **II:** Capacidades físicas que informan diseño de interacción, p.e. percepción del color, ergonomía. **III:** Accesibilidad, p.e.,

interfaces para poblaciones con diferentes habilidades (p.e., invidentes, discapacitados) **IV:** Interfaces para grupos de población de diferentes edades (p.e., niños, mayores de 80)

Objetivos de Aprendizaje I: Crear y dirigir una simple pruebga de usabilidad para una aplicación existente de software[Familiarizarse]

Bibliografía: [Dix et al., 2004, Stone and Minocha, 2005, Rogers, 2011, Mathis, 2011, Norman, 2004]

6.3 Diseño y Testing centrados en el usuario, 16 hr(s)

Competencias: C7, CS8, CS10

Tópicos: I: Enfoque y características del proceso de diseño. II: Requerimientos de funcionalidad y usabilidad. III: Técnicas de recolección de requerimientos, ej. entrevistas, encuentas, etnografía e investigación contextual. IV: Técnicas y herramientas para el análisis y presentación de requerimientos ej. reportes, personas. V: Análisis de tareas, incluidos los aspectos cualitativos de la generación de modelos de análisis de tareas. VI: Consideración de IHC como una disciplina de diseño: a) Sketching b) Diseño participativo a) Sketching b) Diseño participativo VII: Técnicas de creación de prototipos y herramientas, ej.bosquejos, storyboards, prototipos de baja fidelidad, esquemas de página. VIII: Prototipos de baja fidelidad (papel) IX: Técnicas de evaluación cuantitativa ej. evaluación Keystroke-level. X: Evaluación sin usuarios, usando ambas técnicas cualitativas y cuantitativas. Ej. Revisión estructurada, GOMS, análisis basado en expertos, heurísticas, lineamientos y estándar. XI: Evaluación con usuarios. Ej. Observación, Método de pensamiento en voz alta, entrevistas, encuentas, experimentación. XIII: Desafíos para la evaluación efectiva, por ejemplo, toma de muestras, la generalización. XIII: Reportar los resultados de las evaluaciones. XIV: Internacionalización, diseño para usuarios de otras culturas, intercultural.

Objetivos de Aprendizaje I: Llevar a cabo una evaluación cuantitativa y discutir / informar sobre los resultados[Familiarizarse] II: Para un grupo de usuarios determinado, realizar y documentar un análisis de sus necesidades[Familiarizarse] III: Discutir al menos un standard nacional o internacional de diseño de interfaz de usuario[Familiarizarse] IV: Explicar cómo el diseño centrado en el usuario complementa a otros modelos de proceso software[Familiarizarse] V: Utilizar lo-fi (baja fidelidad) técnicas de prototipado para recopilar y reportar, las respuestas del usuario[Usar] VI: Elegir los métodos adecuados para apoyar el desarrollo de una específica interfaz de usuario [Evaluar] VII: Utilizar una variedad de técnicas para evaluar una interfaz de usuario dada[Evaluar] VIII: Comparar las limitaciones y beneficios de los diferentes métodos de evaluación [Evaluar]

Bibliografía: [Dix et al., 2004, Stone and Minocha, 2005, Rogers, 2011, Mathis, 2011, Buxton, 2007]

6.4 Diseño de Interacción, 8 hr(s)

Competencias: CS8, CS15

Tópicos: I: Principios de interfaces gráficas de usuario (GUIs) II: Elementos de diseño visual (disposición, color, fuentes, etiquetado) III: Manejo de fallas humanas/sistema. IV: Estándares de interfaz de usuario. V: Presentación de información: navegación, representación, manipulación. VI: Técnicas de animación de interfaz (ej. grafo de escena) VII: Clases Widget y bibliotecas. VIII: Internacionalización, diseño para usuarios de otras culturas, intercultural. IX: Elección de estilos de interacción y técnicas de interacción.

Objetivos de Aprendizaje I: Crear una aplicación simple, junto con la ayuda y la documentación, que soporta una interfaz gráfica de usuario[Usar]

Bibliografía: [Dix et al., 2004, Stone and Minocha, 2005, Rogers, 2011, Johnson, 2010, Mathis, 2011, Leavitt and Shneiderman, 2006]

6.5 Nuevas Tecnologías Interactivas, 8 hr(s)

Competencias: C9

Tópicos: I: Elección de estilos de interacción y técnicas de interacción. **II:** Approaches to design, implementation and evaluation of non-mouse interaction a) Touch and multi-touch interfaces b) Shared, embodied, and large interfaces c) New input modalities (such as sensor and location data) d) New Windows, e.g., iPhone, Android e) Speech recognition and natural language processing f) Wearable and tangible interfaces g) Persuasive interaction and emotion h) Ubiquitous and context-aware interaction technologies (Ubicomp) i) Bayesian inference (e.g. predictive text, guided pointing) j) Ambient/peripheral display and interaction **III:** Salida: a) Sonido b) Visualización estereoscópica c) Forzar la simulación de retroalimentación, dispositivos hápticos **IV:** Arquitectura de Sistemas: a) Motores de Juego b) Relidad Aumentada móvil c) Simuladores de vuelo d) CAVEs e) Imágenes médicas

Objetivos de Aprendizaje I: Describe cuando son adecuadas las interfaces sin uso de ratón [Familiarizarse] II: Comprende las posibilidades de interacción que van más allá de las interfaces de ratón y puntero [Familiarizarse] III: Discute las ventajas (y desventajas) de las interfaces no basadas en ratón [Usar] IV: Describir el modelo óptico realizado por un sistema de gráficos por computadora para sintetizar una visión estereoscópica [Familiarizarse] V: Describir los principios de las diferentes tecnologias de seguimiento de espectador [Familiarizarse] VI: Determinar los requerimientos básicos en interfaz, software, hardware, y cofiguraciones de software de un sistema VR para una aplicación específica [Evaluar]

Bibliografía: [Dix et al., 2004, Stone and Minocha, 2005, Rogers, 2011, Wigdor and Wixon, 2011, Mathis, 2011]

6.6 Colaboración y Comunicación, 8 hr(s)

Competencias: CS8, CS9

Tópicos: I: La comunicación asíncrona en grupo, por ejemplo, el correo electrónico, foros, redes sociales. II: Medios de comunicación social, informática social, y el análisis de redes sociales. III: Colaboración en línea, espacios "inteligentes" y aspectos de coordinación social de tecnologías de flujo de trabajo. IV: Comunidades en línea. V: Personajes de Software y agentes inteligentes, mundos virtuales y avatares. VI: Psicología Social

Objetivos de Aprendizaje I: Describir la diferencia entre la comunicación sincrónica y asincrónica[Familiarizarse] II: Comparar los problemas de IHC en la interacción individual con la interacción del grupo[Familiarizarse] III: Discuta varias problemas de interés social planteados por el software colaborativo[Usar] IV: Discutir los problemas de IHC en software que personifica la intención humana[Evaluar]

Bibliografía: [Dix et al., 2004, Stone and Minocha, 2005, Rogers, 2011]

7. Bibliografía

[Buxton, 2007] Buxton, B. (2007). Sketching User Experiences: Getting the Design Right and the Right Design. Morgan Kaufmann Publishers Inc.

[Dix et al., 2004] Dix, A., Finlay, J., Abowd, G., and Beale, R. (2004). *Human-computer Interaction*. Prentice-Hall, Inc, 3 ed. edition.

[Johnson, 2010] Johnson, J. (2010). Designing with the Mind in Mind: Simple Guide to Understanding User Interface Design Rules. Morgan Kaufmann Publishers Inc., 3 ed. edition.

[Leavitt and Shneiderman, 2006] Leavitt, M. and Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. Health and Human Services Dept.

[Mathis, 2011] Mathis, L. (2011). Designed for Use: Create Usable Interfaces for Applications and the Web. Pragmatic Bookshelf.

- [Norman, 2004] Norman, D. A. (2004). Emotional Design: Why We Love (or Hate) Everyday Things. Basic Book.
- [Rogers, 2011] Rogers, Y.; Sharp, H. . P. J. (2011). Interaction Design: Beyond Human-Computer Interaction. John Wiley and Sons Ltd, 3 ed. edition.
- [Stone and Minocha, 2005] Stone, D.; Jarrett, C. W. M. and Minocha, S. (2005). *User Interface Design and Evaluation*. Morgan Kaufmann Series in Interactive Technologies.
- [Wigdor and Wixon, 2011] Wigdor, D. and Wixon, D. (2011). Brave NUI World: Designing Natural User Interfaces for Touch and Gesture. Morgan Kaufmann Publishers Inc.

CS402. Proyecto de Final de Carrera I (Obligatorio)

1. Información General

- Semestre: 8^{vo} Sem. Créditos: 3
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas;
- Prerrequisitos:
 - CS401. Metodología de la Investigación en Computación (7^{mo} Sem-Pág. 319)

2. Fundamentación

Este curso tiene por objetivo que el alumno pueda realizar un estudio del estado del arte de un que el alumno ha elegido como tema para su tesis.

3. Objetivos del curso

- Que el alumno realice una investigación inicial en un tema especifico realizando el estudio del estado del arte del tema elegido.
- Que el alumno muestre dominio en el tema de la línea de investigación elegida.
- Que el alumno elija un docente que domine el de investigación elegida como asesor.
- Los entregables de este curso son:

Avance parcial: Bibliografía sólida y avance de un Reporte Técnico.

Final: Reporte Técnico con experimentos preliminares comparativos que demuestren que el alumno ya conoce las técnicas existentes en el área de su proyecto y elegir a un docente que domine el área de su proyecto como asesor de su proyecto.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Evaluar)
- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Usar)
- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (Evaluar)
- f) Comunicarse efectivamente con audiencias diversas. (Usar)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Evaluar)
- l) Desarrollar principios investigación en el área de computación con niveles de competividad internacional. (Usar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a,b,c
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome e,f,g
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome h,i.l**

6. Contenido del curso

6.1 Levantamiento del estado del arte, 60 hr(s)

Competencias: C1,C20,CS2

Tópicos: I: Realizar un estudio profundo del estado del arte en un determinado tópico del área de Computación. **II:** Redacción de artículos técnicos en computación.

Objetivos de Aprendizaje I: Hacer un levantamiento bibliográfico del estado del arte del tema escogido (esto significa muy probablemente 1 o 2 capítulos de marco teórico además de la introducción que es el capítulo I de la tesis) [Usar] II: Redactar un documento en latex en formato articulo (paper) con mayor calidad que en Proyecto I (dominar tablas, figuras, ecuaciones, índices, bibtex, referencias cruzadas, citaciones, pstricks) [Usar] III: Tratar de hacer las presentaciones utilizando prosper [Usar] IV: Mostrar experimentos básicos [Usar] V: Elegir un asesor que domine el área de investigación realizada [Usar]

Bibliografía: [IEEE-Computer Society, 2008, Association for Computing Machinery, 2008, CiteSeer.IST, 2008]

7. Bibliografía

[Association for Computing Machinery, 2008] Association for Computing Machinery (2008). *Digital Libray*. Association for Computing Machinery. http://portal.acm.org/dl.cfm.

[CiteSeer.IST, 2008] CiteSeer.IST (2008). Scientific Literature Digital Libray. College of Information Sciences and Technology, Penn State University. http://citeseer.ist.psu.edu.

[IEEE-Computer Society, 2008] IEEE-Computer Society (2008). Digital Libray. IEEE-Computer Society. http://www.computer.org/publications/dlib.

CS3P1. Computación Paralela y Distribuída (Obligatorio)

1. Información General

- Semestre: 8^{vo} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS212. Análisis y Diseño de Algoritmos (5^{to} Sem-Pág. 263)
 - CS231. Redes y Comunicación (7^{mo} Sem-Pág. 309)

2. Fundamentación

La última década ha traído un crecimiento explosivo en computación con multiprocesadores, incluyendo los procesadores de varios núcleos y centros de datos distribuidos. Como resultado, la computación paralela y distribuida se ha convertido de ser un tema ampliamente electivo para ser uno de los principales componentes en la malla estudios en ciencia de la computación de pregrado. Tanto la computación paralela como la distribuida implica la ejecución simultánea de múltiples procesos, cuyas operaciones tienen el potencial para intercalar de manera compleja. La computación paralela y distribuida construye sobre cimientos en muchas áreas, incluyendo la comprensión de los conceptos fundamentales de los sistemas, tales como: concurrencia y ejecución en paralelo, consistencia en el estado/manipulación de la memoria, y latencia. La comunicación y la coordinación entre los procesos tiene sus cimientos en el paso de mensajes y modelos de memoria compartida de la computación y conceptos algorítmicos como atomicidad, el consenso y espera condicional. El logro de aceleración en la práctica requiere una comprensión de algoritmos paralelos, estrategias para la descomposición problema, arquitectura de sistemas, estrategias de implementación y análisis de rendimiento. Los sistemas distribuidos destacan los problemas de la seguridad y tolerancia a fallos, hacen hincapié en el mantenimiento del estado replicado e introducen problemas adicionales en el campo de las redes de computadoras.

3. Objetivos del curso

- Que el alumno sea capaz de crear aplicaciones paralelas de mediana complejidad aprovechando eficientemente máquinas con múltiples núcleos.
- Que el alumno sea capaz de comparar aplicaciones secuenciales y paralelas.
- Que el alumno sea capaz de convertir, cuando la situación lo amerite, aplicaciones secuenciales a paralelas de forma eficiente.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Usar)

5. Competencias específicas de Computación (IEEE)

- C2. Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.⇒ Outcome a
- **C4.** Una comprensión del hardware de la computadora desde la perspectiva del software, por ejemplo, el uso del procesador, memoria, unidades de disco, pantalla, etc⇒ **Outcome b**
- C16. Capacidad para identificar temas avanzados de computación y de la comprensión de las fronteras de la disciplina. \Rightarrow Outcome i
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome i**
- **CS3.** Analizar el grado en que un sistema basado en el ordenador cumple con los criterios definidos para su uso actual y futuro desarrollo.⇒ **Outcome j**
- **CS6.** Evaluar los sistemas en términos de atributos de calidad en general y las posibles ventajas y desventajas que se presentan en el problema dado.⇒ **Outcome j**

6. Contenido del curso

6.1 Fundamentos de paralelismo, 18 hr(s)

Competencias: C2

- Tópicos: I: Procesamiento Simultáneo Múltiple. II: Metas del Paralelismo (ej. rendimineto) frente a Concurrencia (ej. control de acceso a recursos compartidos) III: Paralelismo, comunicación, y coordinación: a) Paralelismo, comunicación, y coordinación b) Necedidad de Sincronización IV: Errores de Programación ausentes en programación secuencial: a) Tipos de Datos (lectura/escritura simultánea o escritura/escritura compartida) b) Tipos de Nivél más alto (interleavings violating program intention, no determinismo no deseado) c) Falta de vida/progreso (deadlock, starvation)
- Objetivos de Aprendizaje I: Distinguir el uso de recursos computacionales para una respuesta mas rápida para administrar el acceso eficiente a un recurso compartido [Familiarizarse] II: Distinguir múltiples estructuras de programación suficientes para la sincronización que pueden ser interimplementables pero tienen ventajas complementarias [Familiarizarse] III: Distinguir datos de carrera (data races) a partir de carreras de mas alto nivel [Familiarizarse]

Bibliografía: [Pacheco, 2011, Matloff, 2014, Quinn, 2003]

6.2 Arquitecturas paralelas, 12 hr(s)

Competencias: C4

- Tópicos: I: Procesadores mutlinúcleo. II: Memoria compartida vs memoria distribuida. III: Multiprocesamiento simétrico. IV: SIMD, procesamiento de vectores. V: GPU, coprocesamiento. VI: Taxonomia de Flynn. VII: Soporte a nivel de instrucciones para programación paralela. a) Instrucciones atómicas como Compare/Set (Comparar / Establecer) VIII: Problemas de Memoria: a) Caches multiprocesador y coherencia de cache b) Acceso a Memoria no uniforme (NUMA) IX: Topologías. a) Interconecciones b) Clusters c) Compartir recursos (p.e., buses e interconexiones)
- Objetivos de Aprendizaje I: Explicar las diferencias entre memoria distribuida y memoria compartida [Evaluar] II: Describir la arquitectura SMP y observar sus principales caracteristicas [Evaluar] III: Distinguir los tipos de tareas que son adecuadas para máquinas SIMD [Usar] IV: Describir las ventajas y limitaciones de GPUs vs CPUs [Usar] V: Explicar las caracteristicas de cada clasificación en la taxonomía de Flynn [Usar] VI: Describir los desafíos para mantener la coherencia de la caché [Familiarizarse] VII: Describir los desafíos clave del desempeño en diferentes memorias y topologías de sistemas distribuidos [Familiarizarse]

Bibliografía: [Pacheco, 2011, Kirk and mei W. Hwu, 2013, Sanders and Kandrot, 2010]

6.3 Descomposición en paralelo, 18 hr(s)

Competencias: C16

Tópicos: I: Necesidad de Comunicación y coordinación/sincronización. **II:** Independencia y Particionamiento. **III:** Conocimiento Básico del Concepto de Descomposición Paralela. **IV:** Decomposición basada en tareas: a) Implementación de estrategias como hebras **V:** Descomposición de Información Paralela a) Estrategias como SIMD y MapReduce **VI:** Actores y Procesos Reactivos (solicitud de gestores)

Objetivos de Aprendizaje I: Explicar por qué la sincronización es necesaria en un programa paralelo específico [Usar] II: Identificar oportunidades para particionar un programa serial en módulos paralelos independientes [Familiarizarse] III: Escribir un algoritmo paralelo correcto y escalable [Usar] IV: Paralelizar un algoritmo mediante la aplicación de descomposición basada en tareas [Usar] V: Paralelizar un algoritmo mediante la aplicación de descomposición datos en paralelo [Usar] VI: Escribir un programa usando actores y/o procesos reactivos [Usar]

Bibliografía: [Pacheco, 2011, Matloff, 2014, Quinn, 2003]

6.4 Comunicación y coordinación, 18 hr(s)

Competencias: C16

Tópicos: I: Memoria Compartida. **II:** La consistencia, y su papel en los lenguaje de programación garantias para los programas de carrera libre. **III:** Pasos de Mensaje: a) Mensajes Punto a Punto versus multicast (o basados en eventos) b) Estilos para enviar y recibir mensajes Blocking vs non-blocking c) Buffering de mensajes **IV:** Atomicidad: a) Especificar y probar atomicidad y requerimientos de seguridad b) Granularidad de accesos atómicos y actualizaciones, y uso de estructuras como secciones críticas o transacciones para describirlas c) Exclusión mutua usando bloques, semáforos, monitores o estructuras relacionadas 1) Potencial para fallas y bloqueos (deadlock) (causas, condiciones, prevención) d) Composición 1) Componiendo acciones atómicas granulares más grandes usando sincronización 2) Transacciones, incluyendo enfoques optimistas y conservadores **V:** Consensos: a) (Ciclicos) barerras, contadores y estructuras relacionadas **VI:** Acciones condicionales: a) Espera condicional (p.e., empleando variables de condición)

Objetivos de Aprendizaje I: Usar exclusión mútua para evitar una condición de carrera [Usar] II: Dar un ejemplo de una ordenación de accesos entre actividades concurrentes (por ejemplo, un programa con condición de carrera) que no son secuencialmente consistentes [Familiarizarse] III: Dar un ejemplo de un escenario en el que el bloqueo de mensajes enviados pueden dar deadlock [Usar] IV: Explicar cuándo y por qué mensajes de multidifusión (multicast) o basado en eventos puede ser preferible a otras alternativas [Familiarizarse] V: Escribir un programa que termine correctamente cuando todo el conjunto de procesos concurrentes hayan sido completados [Usar] VI: Dar un ejemplo de un escenario en el que un intento optimista de actualización puede nunca completarse [Familiarizarse] VII: Usar semaforos o variables de condición para bloquear hebras hasta una necesaria precondición de mantenga [Usar]

Bibliografía: [Pacheco, 2011, Matloff, 2014, Quinn, 2003]

6.5 Análisis y programación de algoritmos paralelos, 18 hr(s)

Competencias: CS2

Tópicos: I: Caminos críticos, el trabajo y la duración y la relación con la ley de Amdahl. **II:** Aceleración y escalabilidad. **III:** Naturalmente (vergonzosamente) algoritmos paralelos. **IV:** Patrones Algoritmicos paralelos (divide-y-conquista, map/reduce, amos-trabajadores, otros) a) Algoritmos específicos (p.e., MergeSort paralelo) **V:** Algoritmos de grafos paralelo (por ejemplo,

la ruta más corta en paralelo, árbol de expansión paralela) **VI:** Cálculos de matriz paralelas. **VII:** Productor-consumidor y algoritmos paralelos segmentados. **VIII:** Ejemplos de algoritmos paralelos no-escalables.

Objetivos de Aprendizaje I: Definir: camino crítico, trabajo y span [Familiarizarse] II: Calcular el trabajo y el span y determinar el camino crítico con respecto a un diagrama de ejecución paralela. [Usar] III: Definir speed-up y explicar la noción de escalabilidad de un algoritmo en este sentido [Familiarizarse] IV: Identificar tareas independientes en un programa que debe ser paralelizado [Usar] V: Representar características de una carga de trabajo que permita o evite que sea naturalmente paralelizable [Familiarizarse] VI: Implementar un algoritmo dividir y conquistar paralelo (y/o algoritmo de un grafo) y medir empiricamente su desempeño relativo a su analogo secuencial [Usar] VII: Descomponer un problema (por ejemplo, contar el número de ocurrencias de una palabra en un documento) via operaciones map y reduce [Usar] VIII: Proporcionar un ejemplo de un problema que se corresponda con el paradigma productor-consumidor [Usar] IX: Dar ejemplos de problemas donde el uso de pipelining sería un medio eficaz para la paralelización [Usar] X: Implementar un algoritmo de matriz paralela [Usar] XI: Identificar los problemas que surgen en los algoritmos del tipo productor-consumidor y los mecanismos que pueden utilizarse para superar dichos problemas [Usar]

Bibliografía: [Matloff, 2014, Quinn, 2003]

6.6 Desempeño en paralelo, 18 hr(s)

Competencias: CS3

Tópicos: I: Equilibrio de carga. **II:** La medición del desempeño. **III:** Programación y contención. **IV:** Evaluación de la comunicación de arriba. **V:** Gestión de datos: a) Costos de comunicación no uniforme debidos a proximidad b) Efectos de Cache (p.e., false sharing) c) Manteniendo localidad espacial **VI:** Consumo de energía y gestión.

Objetivos de Aprendizaje I: Detectar y corregir un desbalanceo de carga [Usar] II: Calcular las implicaciones de la ley de Amdahl para un algoritmo paralelo particular [Usar] III: Describir como la distribuición/disposición de datos puede afectar a los costos de comunicación de un algoritmo [Familiarizarse] IV: Detectar y corregir una instancia de uso compartido falso (false sharing) [Usar] V: Explicar el impacto de la planificación en el desempeño paralelo [Familiarizarse] VI: Explicar el impacto en el desempeño de la localidad de datos [Familiarizarse] VII: Explicar el impacto y los puntos de equilibrio relacionados al uso de energía en el desempeño paralelo [Familiarizarse]

Bibliografía: [Pacheco, 2011, Matloff, 2014, Kirk and mei W. Hwu, 2013, Sanders and Kandrot, 2010]

7. Bibliografía

[Kirk and mei W. Hwu, 2013] Kirk, D. B. and mei W. Hwu, W. (2013). *Programming Massively Parallel Processors: A Hands-on Approach*. Morgan Kaufmann, 2nd edition.

[Matloff, 2014] Matloff, N. (2014). Programming on Parallel Machines. University of California, Davis.

[Pacheco, 2011] Pacheco, P. S. (2011). An Introduction to Parallel Programming. Morgan Kaufmann, 1st edition.

[Quinn, 2003] Quinn, M. J. (2003). Parallel Programming in C with MPI and OpenMP. McGraw-Hill Education Group, 1st edition.

[Sanders and Kandrot, 2010] Sanders, J. and Kandrot, E. (2010). CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley Professional, 1st edition.

SUMILLA

FG205. Historia de la Cultura (Obligatorio)

1. Información General

■ Semestre: 8^{vo} Sem. Créditos: 3

■ Horas del curso: Teoría: 3 horas;

■ Prerrequisitos: Ninguno

2. Fundamentación

El propósito de este curso es proporcionar al alumno una base histórica que le permita comprender críticamente los principales procesos culturales que han configurado la Civilización Occidental desde sus orígenes remotos en las civilizaciones antiguas Ü principalmente en el mundo clásico grecorromanointroduciéndonos en la Edad Media mediante la formación, desarrollo y crisis de la cristiandad, analizando los principales hechos que han configurado la historia moderna de Occidente, como el Renacimiento, el Protestantismo, la Ilustración, la Revolución Industrial, la emergencia de las utopías sociales y el humanismo ateo, o la Postmodernidad. La asignatura asume que el mundo occidental constituye históricamente una unidad cultural Ü con sus diferencias continentales y particularidades nacionales, regionales y locales. Como se ve, no se trata de dar a conocer los principales hechos históricos de la Historia Universal, sino fundamentalmente de introducir al estudiante en una visión crítica general de los procesos culturales que generan nuevas mentalidades, conceptos, modos de ver la vida, costumbres, políticas y normas. Por lo dicho, tampoco nos referimos a la nueva historia cultural moderna que, historiográficamente hablando, se ocupa solo del tratamiento, producción y socialización de servicios y bienes culturales. A lo largo del curso serán fundamentales dos textos que tomaremos como referencia. El primero será el libro de Florencio Hubeñak, Historia integral de Occidente (2008) y el segundo de Alfredo Sáenz, La cristiandad y su cosmovisión (1992). Ambos textos servirán de guía para comprender los principales cambios culturales de fondo y los acontecimientos políticos, sociales y económicos más importantes. La finalidad es que los alumnos puedan obtener una base de información fáctica relevante de las lecturas y que las clases sean lugares no solo de exposición magistral sino de diálogo que permita consolidar su aprendizaje. El curso ofrecerá una visión panorámica de la formación y desarrollo de Occidente, desde sus orígenes en el mundo clásico grecorromano, la posterior influencia sociocultural que tuvo el cristianismo, poniendo énfasis en la conformación de la Cristiandad como estructura fundamental política económica y social, analizando el fenómeno cultural de la Modernidad, sus orígenes, formación, desarrollo y crisis hasta la Postmodernidad. Entendiendo el término SculturaT en el sentido amplio de ScivilizaciónT, el curso ofrece una perspectiva de las principales inflexiones culturales en Occidente. Teniendo en cuenta la conjunción de factores políticos, sociales y económicos, se buscará abordar los principales cambios de perspectiva y mentalidad respecto de los problemas filosófico-teológicos fundamentales, los ordenamientos políticos y normativos, así como los presupuestos morales, costumbres y valores predominantes de cada periodo histórico.

3. Objetivos del curso

• Analizar y comprender los principales procesos históricos por los que ha atravesado el mundo de Occidente, dotando al alumno de una información real y equilibrada de los acontecimientos más relevantes que han ido conformando nuestro mundo actual a fin de criticar y tomar conciencia sobre los mismos y sobre la influencia que han tenido en la sociedad así como en la política y economía a través del tiempo. [Familiarizarse]

4. Resultados (Outcomes)

- n) Aplicar conocimientos de humanidades en su labor profesional. (Usar)
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (Usar)

5. Competencias específicas de Computación (IEEE)

C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad. \Rightarrow Outcome n,\tilde{n}

6. Contenido del curso

6.1 Mundo grecorromano y el cristianismo, 12 hr(s)

Competencias: C20

Tópicos: I: Nociones fundamentales de Historia de la Cultura Occidental. a) Concepto. b) Importancia. c) Cuestiones metodológicas básicas. d) Alcances y límites. II: Civilización Helénica. a) Evolución de la polis griega. b) Apogeo y legado cultural helénico. c) Cosmovisión y paradigmas culturales. d) El helenismo. III: Civilización Romana. a) Importancia. b) La cosmovisión del romano. c) Helenización y Romanización. d) Consolidación del Imperio. IV: Cristianismo en el Imperio Romano. a) La revolución cultural del cristianismo. b) De la Romanidad a la Cristiandad.

Objetivos de Aprendizaje I: Comprender la importancia del estudio de la historia como parte de la formación integral del estudiante universitario. [Familiarizarse] II: Identificar el aporte de las civilizaciones antiguas en la formación del mundo occidental. [Familiarizarse] III: Analizar el aporte del cristianismo en la configuración de la civilización occidental, el proceso de expansión y consolidación en el marco de la unidad política y cultural grecorromana. [Familiarizarse]

Bibliografía: [Hubeñak, 2007, Dawson, 2007, Krebs, 2006]

6.2 Formación y desarrollo de la Cristiandad, 9 hr(s)

Competencias: C20

Tópicos: I: Labor civilizadora de la Iglesia. a) Los reinos romano-germánicos. b) La romanización de los bárbaros y la cristianización de la Romanidad. c) El monacato occidental. d) La legislación romano-germánica. II: El Imperio Bizantino y el Islam. a) Origen, importancia y etapas del Imperio Bizantino. b) Cisma de Oriente. c) Conceptos fundamentales de la religión musulmana. d) Expansión y amenaza a la Cristiandad. III: Iglesia y Estado en la Edad Media. IV: La Cristiandad y su cosmovisión.

Objetivos de Aprendizaje I: Identificar los procesos históricos de la formación de la Cristiandad, el desarrollo de la cristiandad oriental, el sistema feudal y la estructura política que lo sustentaba. [Familiarizarse]

Bibliografía: [Hubeñak, 2007, Garcia Villoslada, 1960, Sáenz, 1992]

6.3 Absolutismo e Ilustración, 9 hr(s)

Competencias: C20

Tópicos: I: Concepto, origen, desarrollo y crisis históricos de la Modernidad. **II:** Cambios sociales, económicos y culturales en la Cristiandad a) Legado medieval. b) Eclosión del mundo moderno. **III:** Renacimiento. **IV:** Protestantismo. **V:** Reforma católica. **VI:** Monarquías nacionales. **VII:** La paz de Westfalia. **VIII:** La Ilustración. **IX:** Fin del Antiguo Régimen.

Objetivos de Aprendizaje I: Identificar y analizar los procesos históricos que dan origen y configuran la Modernidad. [Familiarizarse]

Bibliografía: [Hubeñak, 2007]

6.4 Siglo XIX y XX, 9 hr(s)

Competencias: C20

Tópicos: I: Consolidación del Estado-nación. **II:** Revolución Industrial y pensamiento científico. **III:** Eras de las utopías sociales. *a*) Comunismo. *b*) Fascismo. *c*) Nazismo. **IV:** La guerra fría y la postmodernidad.

Objetivos de Aprendizaje I: Analizar los procesos históricos asociados a los radicales cambios ocurridos durante el siglo XIX y consecuente siglo XX. [Familiarizarse]

Bibliografía: [Hubeñak, 2007]

6.5 Siglo XIX y XX, 9 hr(s)

Competencias: C20

Tópicos: I: Consolidación del Estado-nación. **II:** Revolución Industrial y pensamiento científico. **III:** Eras de las utopías sociales. *a)* Comunismo. *b)* Fascismo. *c)* Nazismo. **IV:** La guerra fría y la postmodernidad.

Objetivos de Aprendizaje I: Analizar los procesos históricos asociados a los radicales cambios ocurridos durante el siglo XIX y consecuente siglo XX. [Familiarizarse]

Bibliografía: [Hubeñak, 2007]

7. Bibliografía

[Dawson, 2007] Dawson, C. (2007). Los orígenes de Europa.

[Garcia Villoslada, 1960] Garcia Villoslada, R. (1960). Historia de la iglesia católica : edad nueva. La iglesia en la época del renacimiento y de la reforma católica. Biblioteca de Autores Peruanos.

[Hubeñak, 2007] Hubeñak, F. F. (2007). Historia integral de occidente : desde una perspectiva cristiana. Buenos Aires: Educa, 1ł ed., 1ł reimpr. edition.

[Krebs, 2006] Krebs, R. (2006). Breve Historia Universal.

[Sáenz, 1992] Sáenz, A. (1992). La cristiandad y su cosmovisión. Ediciones Gladius.

CS392. Tópicos Avanzados en Ingeniería de Software (Electivos)

1. Información General

■ Semestre: 9^{no} Sem. Créditos: 4

■ Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;

■ Prerrequisitos:

• CS391. Ingeniería de Software III (7^{mo} Sem-Pág. 305)

2. Fundamentación

El desarrollo de software requiere del uso de mejores prácticas de desarrollo, gestión de proyectos de TI, manejo de equipos y uso eficiente y racional de frameworks de aseguramiento de la calidad y de Gobierno de Portfolios, estos elemento son pieza clave y transversal para el éxito del proceso productivo.

Este curso explora el diseño, selección, implementación y gestión de soluciones TI en las Organizaciones. El foco está en las aplicaciones y la infraestructura y su aplicación en el negocio.

3. Objetivos del curso

- Entender una variedad de frameworks para el análisis de arquitectura empresarial y la toma de decisiones
- Utilizar técnicas para la evaluación y gestión del riesgo en el portfolio de la empresa
- Evaluar y planificar la integración de tecnologías emergentes
- Entender el papel y el potencial de las TI para a apoyar la gestión de procesos empresariales
- Entender los difentes enfoques para modelar y mejorar los procesos de negocio
- Describir y comprender modelos de aseguramiento de la calidad como marco clave para el éxitos de los proyectos de TI.
- Comprender y aplicar el framework de IT Governance como elemento clave para la gestión del portfolio de aplicaciones Empresariales

4. Resultados (Outcomes)

- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Usar)
- d) Trabajar efectivamente en equipos para cumplir con un objetivo común. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)
- m) Transformar sus conocimientos del área de Ciencia de la Computación en emprendimientos tecnológicos. (Evaluar)
- o) Mejorar las condiciones de la sociedad poniendo la tecnología al servicio del ser humano. (Usar)

5. Competencias específicas de Computación (IEEE)

- C7. Ser capaz de aplicar los principios y tecnologías de ingeniería de software para asegurar que las implementaciones de software son robustos, fiables y apropiados para su público objetivo.⇒ Outcome c
- C11. Entendimiento del concepto del ciclo de vida, incluyendo la importancia de sus fases (planificación, desarrollo, implementación y evolución).⇒ Outcome i,k
- C12. Entender las implicaciones de ciclo de vida para el desarrollo de todos los aspectos de los sistemas informáticos (incluyendo software, hardware, y la interfaz de la computadora humana). ⇒

 Outcome j,m
- C13. Comprender la relación entre la calidad y la gestión del ciclo de vida.

 Outcome c,i,m
- C18. Capacidad para participar de forma activa y coordinada en un equipo.⇒ Outcome d
- C19. Capacidad para identificar eficazmente los objetivos y las prioridades de su trabajo / área / proyecto con indicación de la acción, el tiempo y los recursos necesarios. Dutcome j
- CS1. Modelar y diseñar sistemas de computadora de una manera que se demuestre comprensión del balance entre las opciones de diseño.⇒ Outcome c,i,k,m
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome c,i,k**
- CS4. Implementar la teoría apropiada, prácticas y herramientas para la especificación, diseño, implementación y mantenimiento, así como la evaluación de los sistemas basados en computadoras.⇒

 Outcome c,i,k
- CS7. Aplicar los principios de una gestión eficaz de la información, organización de la información, y las habilidades de recuperación de información a la información de diversos tipos, incluyendo texto, imágenes, sonido y vídeo. Esto debe incluir la gestión de los problemas de seguridad.⇒ Outcome c,i,k

6. Contenido del curso

6.1 Diseño de Software, 18 hr(s)

Competencias: C7, C11, CS1, CS4, CS5, CS7

Tópicos: I: Principios de diseño del sistema: niveles de abstracción (diseño arquitectónico y el diseño detallado), separación de intereses, ocultamiento de información, de acoplamiento y de cohesión, de reutilización de estructuras estándar. II: Diseño de paradigmas tales como diseño estructurado (descomposición funcional de arriba hacia abajo), el análisis orientado a objetos y diseño, orientado a eventos de diseño, diseño de nivel de componente, centrado datos estructurada, orientada a aspectos, orientado a la función, orientado al servicio. III: Modelos estructurales y de comportamiento de los diseños de software. IV: Diseño de patrones. V: Relaciones entre los requisitos y diseños: La transformación de modelos, el diseño de los contratos, invariantes. VI: Conceptos de arquitectura de software y arquitecturas estándar (por ejemplo, cliente-servidor, n-capas, transforman centrados, tubos y filtros). VII: El uso de componentes de diseño: seleccion de componentes, diseño, adaptacion y componentes de ensamblaje, componentes y patrones, componentes y objetos(por ejemplo,construir una GUI usando un standar widget set) VIII: Diseños de refactorización utilizando patrones de diseño IX: Calidad del diseño interno, y modelos para: eficiencia y desempeño, redundancia y tolerancia a fallos, trazavilidad de los requerimientos. X: Medición y análisis de la calidad de un diseño. XI: Compensasiones entre diferentes aspectos de la calidad. XII: Aaplicaciones en frameworks. XIII: Middleware: El paradigma de la orientacion a objetos con middleware, requerimientos para correr y clasificar objetos, monitores de procesamiento de transacciones y el sistema de flujo de trabajo. XIV: Principales diseños de seguridad y codificación(cross-reference IAS/Principles of securre design). a) Principio de privilegios mínimos b) Principio de falla segura por defecto c) Principio de aceptabilidad psicológica

Objetivos de Aprendizaje I: Formular los principios de diseño, incluyendo la separación de problemas, ocultación de información, acoplamiento y cohesión, y la encapsulación [Usar] II: Usar un paradigma de diseño para diseñar un sistema de software básico y explicar cómo los principios de diseño del sistema se han aplicado en este diseño [Usar] III: Construir modelos del diseño de un sistema de software simple los cuales son apropiado para el paradigma utilizado para diseñarlo[Usar] IV: En el contexto de un paradigma de diseño simple, describir uno o más patrones de diseño que podrían ser aplicables al diseño de un sistema de software simple[Usar] V: Para un sistema simple adecuado para una situación dada, discutir y seleccionar un paradigma de diseño apropiado[Usar] VI: Crear modelos apropiados para la estructura y el comportamiento de los productos de software desde la especificaciones de requisitos[Usar] VII: Explicar las relaciones entre los requisitos para un producto de software y su diseño, utilizando los modelos apropiados[Usar] VIII: Para el diseño de un sistema de software simple dentro del contexto de un único paradigma de diseño, describir la arquitectura de software de ese sistema[Usar] IX: Dado un diseño de alto nivel, identificar la arquitectura de software mediante la diferenciación entre las arquitecturas comunes de software, tales como 3 capas (3-tier), pipe-and-filter, y cliente-servidor [Usar] X: Investigar el impacto de la selección arquitecturas de software en el diseño de un sistema simple[Usar] XI: Aplicar ejemplos simples de patrones en un diseño de software[Usar] XII: Describir una manera de refactorar y discutir cuando esto debe ser aplicado[Usar] XIII: Seleccionar componentes adecuados para el uso en un diseño de un producto de software[Usar] XIV: Explicar cómo los componentes deben ser adaptados para ser usados en el diseño de un producto de software [Usar] XV: Diseñar un contrato para un típico componente de software pequeño para el uso de un dado sistema[Usar] XVI: Discutir y seleccionar la arquitectura de software adecuada para un sistema de software simple para un dado escenario[Usar] XVII: Aplicar modelos de cualidades internas y externas en el diseño de componentes de software para lograr un equilibrio aceptable entre los aspectos de calidad en conflictos[Usar] XVIII: Analizar un diseño de software desde la perspectiva de un atributo significativo de la calidad interna[Usar] XIX: Analizar un diseño de software desde la perspectiva de un atributo significativo de calidad externa[Usar] XX: Explicar el papel de los objetos en los sistemas de middleware y la relación con los componentes [Usar] XXI: Aplicar métodos orientado a componentes para el diseño de una amplia gama de software, tales como el uso de componentes para la concurrencia y transacciones, para los servicios de comunicación confiables, para la interacción con la base de datos que incluye los servicios de consulta remota y gestión de bases de datos, o para la comunicación segura y el acceso[Usar] XXII: Refactorizar una implementación de software existente para mejorar algún aspecto de su diseño[Usar] XXIII: Determinar y aplicar los principios de mínimo privilegio y defectos-a prueba de errores[Usar]

Bibliografía: [Sommerville, 2010, Pressman and Maxim, 2014]

6.2 Gestión de Proyectos de Software, 14 hr(s)

Competencias: C7,C11, C12, C13, CS7

Tópicos: I: La participación del equipo: a) Procesos elemento del equipo, incluyendo responsabilidades de tarea, la estructura de reuniones y horario de trabajo b) Roles y responsabilidades en un equipo de software c) Equipo de resolución de conflictos d) Los riesgos asociados con los equipos virtuales (comunicación, la percepción, la estructura) II: Estimación de esfuerzo (a nivel personal) III: Riesgo. a) El papel del riesgo en el ciclo de vida b) Categorías elemento de riesgo, incluyendo la seguridad, la seguridad, mercado, finanzas, tecnología, las personas, la calidad, la estructura y el proceso de IV: Gestión de equipos: a) Organización de equipo y la toma de decisiones b) Roles de identificación y asignación c) Individual y el desempeño del equipo de evaluación V: Gestión de proyectos: a) Programación y seguimiento de elementos b) Herramientas de gestión de proyectos c) Análisis de Costo/Beneficio VI: Software de medición y técnicas de estimación. VII: Aseguramiento de la calidad del software y el rol de las mediciones. VIII: Riesgo. a) El papel del riesgo en el ciclo de vida b) Categorías elemento de riesgo, incluyendo la seguridad, la seguridad, mercado, finanzas, tecnología, las personas, la calidad, la estructura y el proceso de IX: En todo el sistema de aproximación al riesgo, incluyendo riesgos asociados con herramientas.

Objetivos de Aprendizaje I: Discutir los comportamientos comunes que contribuyen al buen funcionamiento de un equipo[Usar] II: Crear y seguir un programa para una reunión del equipo[Usar] III: Identificar y justificar las funciones necesarias en un equipo de desarrollo de software[Usar] IV: Entender las fuentes, obstáculos y beneficios potenciales de un conflicto de equipo[Usar] V: Aplicar una estrategia de resolución de conflictos en un ambiente de equipo[Usar] VI: Utilizar un método ad hoc para estimar el esfuerzo de desarrollo del software (ejemplo, tiempo) y comparar con el esfuerzo actual requerido[Usar] VII: Listar varios ejemplos de los riesgos del software [Usar] VIII: Describir el impacto del riesgo en el ciclo de vida de desarrollo de software [Usar] IX: Describir las diferentes categorías de riesgo en los sistemas de software [Usar] X: Demostrar a través de la colaboración de proyectos de equipo los elementos centrales de la contrucción de equipos y gestión de equipos [Usar] XI: Describir como la elección de modelos de procesos afectan la estructura organizacional de equipos y procesos de toma de decisiones [Usar] XII: Crear un equipo mediante la identificación de los roles apropiados y la asignación de funciones a los miembros del equipo [Usar] XIII: Evaluar y retroalimentar a los equipos e individuos sobre su desempeño en un ambiente de equipo[Usar] XIV: Usando un software particular procesar, describir los aspectos de un proyecto que encesita ser planeado y monitoreado, (ejemplo, estimar el tamaño y esfuerzo, un horario, reasignación de recursos, control de configuración, gestión de cambios, identificación de riesgos en un proyecto y gestión) [Usar] XV: Realizar el seguimiento del progreso de alguna etapa de un proyecto que utiliza métricas de proyectos apropiados [Usar] XVI: Comparar las técnicas simples de tamaño de software y estimación de costos [Usar] XVII: Usar una herramienta de gestión de proyectos para ayudar en la asignación y rastreo de tareas en un proyecto de desarrollo de software[Usar] XVIII: Describir el impacto de la tolerancia de riesgos en el proceso de desarrollo de software[Usar] XIX: Identificar riesgos y describir enfoques para manejar riesgos (evitar, aceptar, tranferir, mitigar) y caracterizar fortalezas y defectos para cada uno[Usar] XX: Explicar cómo el riesgo afecta las decisiones en el proceso de desarrollo de software [Usar] XXI: Identificar los riesgos de seguridad para un sistema de software[Usar] XXII: Demostrar un enfoque sistemático para la tarea de identificar los peligros y riesgos en una situación particular [Usar] XXIII: Aplicar los principios básicos del manejo de riesgos en una variedad de escenarios simples incluyendo una situación de seguridad [Usar] XXIV: Dirigir un análisis de costo/beneficio para el enfoque de mitigación de riesgos [Usar] XXV: Identificar y analizar alguno de los riesgos para un sistema entero que surgen de aspectos distintos del software[Usar]

Bibliografía: [Sommerville, 2010, Pressman and Maxim, 2014]

6.3 ITIL, 14 hr(s)

Competencias: C7, C11, C13, CS7

Tópicos: I: Administración del servicio como práctica. II: Ciclo de vida del servicio. III: Definiciones y conceptos genéricos. IV: Modelos y principios claves. V: Procesos. VI: Tecnología y arquitectura. VII: Competencia y entrenamiento.

Objetivos de Aprendizaje I: Utilizar y aplicar correctamente ITIL en el proceso de software. [Usar]

Bibliografía: [Sommerville, 2010, Pressman and Maxim, 2014]

6.4 COBIT, 14 hr(s)

Competencias: C7, C11, C12, C13, CS7

Tópicos: I: Fundamentos e Introducción. II: Frameworks de Control y IT Governance.

Objetivos de Aprendizaje I: Utilizar y aplicar correctamente COBIT en el proceso de software. [Usar]

Bibliografía: [Sommerville, 2010, Pressman and Maxim, 2014]

7. Bibliografía

[Pressman and Maxim, 2014] Pressman, R. S. and Maxim, B. (2014). Software Engineering: A Practitioner's Approach. McGraw-Hill, 8th edition.

[Sommerville, 2010] Sommerville, I. (2010). Software Engineering. Addison-Wesley, 9th edition.

CS403. Proyecto de Final de Carrera II (Obligatorio)

1. Información General

- Semestre: 9^{no} Sem. Créditos: 3
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas;
- Prerrequisitos:
 - CS402. Proyecto de Final de Carrera I (8^{vo} Sem-Pág. 349)

2. Fundamentación

Este curso tiene por objetivo que el alumno concluya su proyecto de tesis.

3. Objetivos del curso

- Que el alumno este en la capacidad de presentar formalmente su proyecto de tesis con el marco teórico y levantamiento bibliográfico completo.
- Que el alumno domine el estado del arte de su área de investigación.
- Los entregables de este curso son:
 - **Avance parcial:** Avance del plan de tesis incluyendo motivación y contexto, definición del problema, objetivos, cronograma de actividades hasta el proyecto final de tesis y el estado del arte del tema abordado.
 - **Final:** Plan de tesis completo y Avance de la Tesis incluyendo los capítulos de marco teórico, trabajos relacionados y resultados (formales o estadísticos) preliminares orientados a su tema de tesis.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Evaluar)
- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Evaluar)
- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (Evaluar)
- f) Comunicarse efectivamente con audiencias diversas. (Evaluar)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Evaluar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Evaluar)
- l) Desarrollar principios investigación en el área de computación con niveles de competividad internacional. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a,b,c
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome e,f.g
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome h,i,l**

6. Contenido del curso

6.1 Proyecto de Tesis, 30 hr(s)

Competencias: C1,C20,CS2

Objetivos de Aprendizaje I: Descripción del formato utilizado por la Universidad para el plan de tesis [Evaluar] II: Concluir el plan del proyecto de tesis [Evaluar] III: Presentar el estado del arte del tema de tesis (50 %)[Evaluar]

Bibliografía: [IEEE-Computer Society, 2008, Association for Computing Machinery, 2008, CiteSeer.IST, 2008]

6.2 Avance de Tesis, 30 hr(s)

Competencias: C1,C20,CS2

Objetivos de Aprendizaje I: Descripción del formato utilizado por la Universidad para la tesis[Evaluar] II: Concluir el capítulo del Marco Teórico de la Tesis[Evaluar] III: Concluir el capítulo de Trabajos Relacionados (35 %)[Evaluar] IV: Planear, desarrollar y presentar resultados (formales o estadísticos) de experimentos orientados a su tema de tesis (35 %)[Evaluar]

Bibliografía: [IEEE-Computer Society, 2008, Association for Computing Machinery, 2008, CiteSeer.IST, 2008]

7. Bibliografía

[Association for Computing Machinery, 2008] Association for Computing Machinery (2008). *Digital Libray*. Association for Computing Machinery. http://portal.acm.org/dl.cfm.

[CiteSeer.IST, 2008] CiteSeer.IST (2008). Scientific Literature Digital Libray. College of Information Sciences and Technology, Penn State University. http://citeseer.ist.psu.edu.

[IEEE-Computer Society, 2008] IEEE-Computer Society (2008). Digital Libray. IEEE-Computer Society. http://www.computer.org/publications/dlib.

CS361. Tópicos en Inteligencia Artificial (Electivos)

1. Información General

- Semestre: 9^{no} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS261. Inteligencia Artificial (7^{mo} Sem-Pág. 313)

2. Fundamentación

Provee una serie de herramientas para resolver problemas que son difíciles de solucionar con los métodos algorítmicos tradicionales. Incluyendo heurísticas, planeamiento, formalismos en la representación del conocimiento y del razonamiento, técnicas de aprendizaje en mícquinas, técnicas aplicables a los problemas de acción y reacción: asi como el aprendizaje de lenguaje natural, visión artificial y robótica entre otros.

3. Objetivos del curso

■ Realizar algún curso avanzado de Inteligencia Artificial sugerido por el curriculo de la ACM/IEEE.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a
- C8. Entendimiento de lo que las tecnologías actuales pueden y no pueden lograr.⇒ Outcome h,i
- CS5. Especificar, diseñar e implementar sistemas basados en computadoras.⇒ Outcome i,j

6. Contenido del curso

6.1 Levantamiento del estado del arte, 60 hr(s)

Competencias: C1,C20,CS2

Tópicos: I: CS360. Sistemas Inteligentes II: CS361. Razonamiento automatizado III: CS362. Sistemas Basados en Conocimiento IV: CS363. Aprendizaje de Maquina [Russell and Norvig, 2003], [Haykin, 1999]
V: CS364. Sistemas de Planeamiento VI: CS365. Procesamiento de Lenguaje Natural VII: CS366.
Agentes VIII: CS367. Robótica IX: CS368. Computación Simbólica X: CS369. Algoritmos Genéticos [Goldberg, 1989]

Objetivos de Aprendizaje I: Profundizar en diversas técnicas relacionadas a la Inteligencia Artificial [Usar]

Bibliografía: [Russell and Norvig, 2003, Haykin, 1999, Goldberg, 1989]

7. Bibliografía

[Goldberg, 1989] Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley.

[Haykin, 1999] Haykin, S. (1999). Neural networks: A Comprehensive Foundation. Prentice Hall.

[Russell and Norvig, 2003] Russell, S. and Norvig, P. (2003). *Inteligencia Artifical: Un enfoque moderno*. Prentice Hall.

CS370. Big Data (Obligatorio)

1. Información General

- Semestre: 9^{no} Sem. Créditos: 3
- Horas del curso: Teoría: 1 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS272. Bases de Datos II (5^{to} Sem-Pág. 254)
 - CS3P1. Computación Paralela y Distribuída (8^{vo} Sem-Pág. 351)

2. Fundamentación

En la actualidad conocer enfoques escalables para procesar y almacenar grande volumenes de información (terabytes, petabytes e inclusive exabytes) es fundamental en cursos de ciencia de la computación. Cada dia, cada hora, cada minuto se genera gran cantidad de información la cual necesitá ser procesada, almacenada, analisada.

3. Objetivos del curso

- Que el alumno sea capaz de crear aplicaciones paralelas para procesar grandes volumenes de información.
- Que el alumno sea capaz de comparar las alternativas para el procesamiento de big data.
- Que el alumno sea capaz de proponer arquitecturas para una aplicación escalable.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Usar)

5. Competencias específicas de Computación (IEEE)

- C2. Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.⇒ Outcome a
- C4. Una comprensión del hardware de la computadora desde la perspectiva del software, por ejemplo, el uso del procesador, memoria, unidades de disco, pantalla, etc⇒ Outcome b
- $\textbf{C16.} \ \text{Capacidad para identificar temas avanzados de computación y de la comprensión de las fronteras de la disciplina.} \Rightarrow \textbf{Outcome i}$
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome i**
- **CS3.** Analizar el grado en que un sistema basado en el ordenador cumple con los criterios definidos para su uso actual y futuro desarrollo. \Rightarrow **Outcome j**
- CS6. Evaluar los sistemas en términos de atributos de calidad en general y las posibles ventajas y desventajas que se presentan en el problema dado.⇒ Outcome j

6. Contenido del curso

6.1 Introducción a Big Data, 15 hr(s)

Competencias: C2, C4

Tópicos: I: II: Visión global sobre Cloud Computing **III:** Visión global sobre Sistema de Archivos Distribuidos **IV:** Visión global sobre el modelo de programación MapReduce

Objetivos de Aprendizaje I: Explicar el concepto de Cloud Computing desde el punto de vista de Big Data[Familiarizarse] II: Explicar el concepto de los Sistema de Archivos Distribuidos [Familiarizarse] III: Explicar el concepto del modelo de programación MapReduce[Familiarizarse]

Bibliografía: [Coulouris et al., 2011]

6.2 Hadoop, 15 hr(s)

Competencias: C2, C4

Tópicos: I: Visión global de Hadoop. **II:** Historia. **III:** Estructura de Hadoop. **IV:** HDFS, Hadoop Distributed File System. **V:** Modelo de Programación MapReduce

Objetivos de Aprendizaje I: Entender y explicar la suite de Hadoop. [Familiarizarse] II: Implementar soluciones usando el modelo de programación MapReduce. [Usar] III: Entender la forma como se guardan los datos en el HDFS. [Familiarizarse]

Bibliografía: [Hwang et al., 2011, Buyya et al., 2013]

6.3 Procesamiento de Grafos en larga escala, 10 hr(s)

Competencias: C16

Tópicos: I: Pregel: A System for Large-scale Graph Processing. **II:** Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud. **III:** Apache Giraph is an iterative graph processing system built for high scalability.

Objetivos de Aprendizaje I: Entender y explicar la arquitectura del proyecto Pregel. [Familiarizarse] II: Entender la arquitectura del proyecto GraphLab. [Familiarizarse] III: Entender la arquitectura del proyecto Giraph. [Familiarizarse] IV: Implementar soluciones usando Pregel, GraphLab o Giraph. [Usar]

Bibliografía: [Low et al., 2012, Malewicz et al., 2010, Baluja et al., 2008]

7. Bibliografía

[Baluja et al., 2008] Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran, D., and Aly, M. (2008). Video suggestion and discovery for youtube: Taking random walks through the view graph. In *Proceedings of the 17th International Conference on World Wide Web*, WWW '08, pages 895–904, New York, NY, USA. ACM.

[Buyya et al., 2013] Buyya, R., Vecchiola, C., and Selvi, S. T. (2013). *Mastering Cloud Computing: Foundations and Applications Programming*. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition.

[Coulouris et al., 2011] Coulouris, G., Dollimore, J., Kindberg, T., and Blair, G. (2011). *Distributed Systems: Concepts and Design*. Addison-Wesley Publishing Company, USA, 5th edition.

[Hwang et al., 2011] Hwang, K., Dongarra, J., and Fox, G. C. (2011). Distributed and Cloud Computing: From Parallel Processing to the Internet of Things. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition.

[Low et al., 2012] Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., and Hellerstein, J. M. (2012). Distributed graphlab: A framework for machine learning and data mining in the cloud. *Proc. VLDB Endow.*, 5(8):716–727.

[Malewicz et al., 2010] Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., and Czajkowski, G. (2010). Pregel: A system for large-scale graph processing. pages 135–146.

SUMILLA

CS351. Tópicos en Computación Gráfica (Electivos)

1. Información General

- Semestre: 9^{no} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS251. Computación Gráfica (7^{mo} Sem-Pág. 301)

2. Fundamentación

En este curso se puede profundizar en alguno de los tópicos mencionados en el área de Computación Gráfica (*Graphics and Visual Computing* - GV).

Éste curso está destinado a realizar algun curso avanzado sugerido por la curricula de la ACM/IEEE. [Hughes et al., 2013, Hearn and Baker, 1990]

3. Objetivos del curso

- Que el alumno utilice técnicas de computación gráfica más sofisticadas que involucren estructuras de datos y algoritmos complejos.
- Que el alumno aplique los conceptos aprendidos para crear una aplicación sobre un problema real.
- Que el alumno investigue la posibilidad de crear un nuevo algoritmo y/o técnica nueva para resolver un problema real.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Usar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a,b
- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades.⇒
 Outcome i,j

6. Contenido del curso

- CS355. Computación Gráfica avanzada
- CS356. Animación por computadora
- CS313. Algoritmos Geométricos
- CS357. Visualización
- CS358. Realidad Virtual
- CS359. Algoritmos Genéticos

7. Bibliografía

[Hearn and Baker, 1990] Hearn, D. and Baker, P. (1990). Computer Graphics in C. Prentice Hall.

[Hughes et al., 2013] Hughes, J. F., Dam, A. V., Mcguire, M., Sklar, D. F., Foley, J. D., Feiner, S. K., and Akeley, K. (2013). Computer Graphics - Principles and Practice 3rd Edition. Addison-Wesley.

CB309. Computación Molecular Biológica (Electivos)

1. Información General

- Semestre: 9^{no} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS212. Análisis y Diseño de Algoritmos (5^{to} Sem-Pág. 263)
 - MA307. Matemática aplicada a la computación (6^{to} Sem-Pág. 296)

2. Fundamentación

El uso de métodos computacionales en las ciencias biológicas se ha convertido en una de las herramientas claves para el campo de la biología molecular, siendo parte fundamental en las investigaciones de esta área.

En Biología Molecular, existen diversas aplicaciones que involucran tanto al ADN, al análisis de proteínas o al secuenciamiento del genoma humano, que dependen de métodos computacionales. Muchos de estos problemas son realmente complejos y tratan con grandes conjuntos de datos.

Este curso puede ser aprovechado para ver casos de uso concretos de varias áreas de conocimiento de Ciencia de la Computacion como: Lenguajes de Programación (PL), Algoritmos y Complejidad (AL), Probabilidades y Estadística, Manejo de Información (IM), Sistemas Inteligentes (IS).

3. Objetivos del curso

- Que el alumno tenga un conocimiento sólido de los problemas biológicos moleculares que desafían a la computación.
- Que el alumno sea capaz de abstraer la esencia de los diversos problemas biológicos para plantear soluciones usando sus conocimientos de Ciencia de la Computación

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- **b)** Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (**Evaluar**)
- Desarrollar principios investigación en el área de computación con niveles de competividad internacional. (Familiarizarse)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a,b
- C3. Una comprensión intelectual de, y el aprecio por el papel central de los algoritmos y estructuras de datos.⇒ Outcome b,l
- $\textbf{C5.} \ \text{Capacidad para implementar algoritmos y estructuras de datos en el software..} \Rightarrow \textbf{Outcome a,b}$

6. Contenido del curso

6.1 Introducción a la Biología Molecular, 4 hr(s)

Competencias: CS1

Tópicos: I: Revisión de la química orgánica: moléculas y macromoléculas, azúcares, acidos nucleicos, nuclótidos, ARN, ADN, proteínas, aminoácidos y nivels de estructura en las proteinas. **II:** El dogma de la vida: del ADN a las proteinas, transcripción, traducción, síntesis de proteinas **III:** Estudio del genoma: Mapas y secuencias, técnicas específicas

Objetivos de Aprendizaje I: Lograr un conocimiento general de los tópicos más importantes en Biología Molecular. [Familiarizarse] II: Entender que los problemas biológicos son un desafío al mundo computacional. [Evaluar]

Bibliografía: [Clote and Backofen, 2000, Setubal and Meidanis, 1997]

6.2 Comparación de Secuencias, 4 hr(s)

Competencias: CS2

Tópicos: I: Secuencias de nucléotidos y secuencias de aminoácidos. **II:** Alineamiento de secuencias, el problema de alineamiento por pares, búsqueda exhaustiva, Programación dinámica, alineamiento global, alineamiento local, penalización por gaps **III:** Comparación de múltiples secuencias: suma de pares, análisis de complejidad por programación dinámica, heurísticas de alineamiento, algoritmo estrella, algoritmos de alineamiento progresivo.

Objetivos de Aprendizaje I: Entender y solucionar el problema de alineamiento de un par de secuencias. [Usar] II: Comprender y solucionar el problema de alineamiento de múltiples secuencias. [Usar] III: Conocer los diversos algoritmos de alineamiento de secuencias existentes en la literatura. [Familiarizarse]

Bibliografía: [Clote and Backofen, 2000, Setubal and Meidanis, 1997, Pevzner, 2000]

6.3 Árboles Filogenéticos, 4 hr(s)

Competencias: CS2

Tópicos: I: Filogenia: Introducción y relaciones filogenéticas. **II:** Arboles Filogenéticos: definición, tipo de árboles, problema de búsqueda y reconstrucción de árboles **III:** Métodos de Reconstrucción: métodos por parsimonia, métodos por distancia, métodos por máxima verosimilitud, confianza de los árboles reconstruidos

Objetivos de Aprendizaje I: Comprender el concepto de filogenia, árboles filogenéticos y la diferencia metodológica entre biología y biología molecular. [Familiarizarse] II: Comprender el problema de reconstrucción de árboles filogenéticos, conocer y aplicar los principales algoritmos para reconstrucción de árboles filogenéticos. [Evaluar]

Bibliografía: [Clote and Backofen, 2000, Setubal and Meidanis, 1997, Pevzner, 2000]

6.4 Ensamblaje de Secuencias de ADN, 4 hr(s)

Competencias: CS2

Tópicos: I: Fundamento biológico: caso ideal, dificultades, métodos alternativos para secuenciamiento de ADN **II:** Modelos formales de ensamblaje: Shortest Common Superstring, Reconstruction, Multicontig **III:** Algoritmos para ensamblaje de secuencias: representación de overlaps, caminos para crear superstrings, algoritmo voraz, grafos acíclicos. **IV:** Heurísticas para ensamblaje: búsqueda de sobreposiciones, ordenación de fragmentos, alineamientos y consenso.

Objetivos de Aprendizaje I: Comprender el desafío computacional que ofrece el problema de Ensamblaje de Secuencias. [Familiarizarse] II: Entender el principio de modelo formal para ensamblaje. [Evaluar] III: Conocer las principales heurísticas para el problema de ensambjale de secuencias ADN [Usar]

Bibliografía: [Setubal and Meidanis, 1997, Aluru, 2006]

6.5 Estructuras secundarias y terciarias, 4 hr(s)

Competencias: CS2

Tópicos: I: Estructuras moleculares: primaria, secundaria, terciaria, cuaternaria. II: Predicción de estructuras secundarias de ARN: modelo formal, energia de pares, estructuras con bases independientes, solución con Programación Dinámica, estructuras con bucles. III: Protein folding: Estructuras en proteinas, problema de protein folding. IV: Protein Threading: Definiciones, Algoritmo Branch & Bound, Branch & Bound para protein threading. V: Structural Alignment: definiciones, algoritmo DALI

Objetivos de Aprendizaje I: Conocer las estructuras protéicas y la necesidad de métodos computacionales para la predicción de la geometría. [Familiarizarse] II: Cnocer la algoritmos de solución de problemas de predicción de estructuras secundarias ARN, y de estructuras en proteínas. [Evaluar]

Bibliografía: [Setubal and Meidanis, 1997, Clote and Backofen, 2000, Aluru, 2006]

6.6 Modelos Probabilísticos en Biología Molecular, 4 hr(s)

Competencias: CS2

Tópicos: I: Probabilidad: Variables aleatorias, Cadenas de Markov, Algoritmo de Metropoli-Hasting, Campos Aleatorios de Markov y Muestreador de Gibbs, Máxima Verosimilitud. II: Modelos Ocultos de Markov (HMM), estimación de parámetros, algoritmo de Viterbi y método Baul-Welch, Aplicación en alineamientos de pares y múltiples, en detección de Motifs en proteínas, en ADN eucariótico, en familias de secuencias. III: Filogenia Probabilística: Modelos probabilísticos de evolución, verosimilitud de alineamientos, verosimilitud para inferencia, comparación de métodos probabilísticos y no probabilísticos

Objetivos de Aprendizaje I: Revisar conceptos de Modelos Probabilísticos y comprender su importancia en Biología Molecular Computacional. [Evaluar] II: Conocer y aplicar Modelos Ocultos de Markov para varios análisis en Biología Molecular. [Usar] III: Conocer la aplicación de modelos probabilísticos en Filogenia y comparalos con modelos no probabilísticos [Evaluar]

Bibliografía: [Durbin et al., 1998, Clote and Backofen, 2000, Aluru, 2006, Krogh et al., 1994]

7. Bibliografía

[Aluru, 2006] Aluru, S., editor (2006). *Handbook of Computational Molecular Biology*. Computer and Information Science Series. Chapman & Hall, CRC, Boca Raton, FL.

[Clote and Backofen, 2000] Clote, P. and Backofen, R. (2000). Computational Molecular Biology: An Introduction. John Wiley & Sons Ltd. 279 pages.

[Durbin et al., 1998] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). *Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids*. Cambridge University Press.

[Krogh et al., 1994] Krogh, A., Brown, M., Mian, I. S., Sjölander, K., and Haussler, D. (1994). Hidden markov models in computational biology, applications to protein modeling. *J Mol. Biol*, 235:1501–1531.

[Pevzner, 2000] Pevzner, P. A. (2000). Computational Molecular Biology: an Algorithmic Approach. The MIT Press, Cambridge, Massachusetts.

[Setubal and Meidanis, 1997] Setubal, J. C. and Meidanis, J. (1997). Introduction to computational molecular biology. Boston: PWS Publishing Company.

FG221. Historia de la Ciencia y Tecnología (Obligatorio)

1. Información General

■ Semestre: 9^{no} Sem. Créditos: 2

■ Horas del curso: Teoría: 1 horas; Práctica: 2 horas;

■ Prerrequisitos:

 \bullet FG205. Historia de la Cultura (8 vo Sem-Pág. 355)

2. Fundamentación

Contemplada en su esencia, la tecnología (técnica) es un proceso histórico universal, en el cual el hombre descompone la realidad en sus elementos y funciones elementales, formando a partir de éstos nuevas estructuras más aptas para sus fines específicos. El fin positivo de este hecho es el dominio del hombre, supuesto este dominio, podrá vivir experiencialmente su propia libertad. Este fin no llega a realizarse, en gran parte a causa de la falta de respeto mutuo entre los hombres y a causa de la falta de respeto a la naturaleza, a causa en fin, de la opresión, de la explotación y de la destrucción mutua. Por esta razón, se impone la tarea de hacerse aptos para la configuración responsable del poder técnico. Y este aprendizaje se logrará por medio de una estructura social solidaria y en régimen de compañerismo. Pero, sin la correspondiente aceptación de la experiencia dolorosa de la técnica, difícilmente se tendrá éxito.

3. Objetivos del curso

• Desarrollar capacidades y habilidades para que el alumno tenga un pensamiento crítico acerca de la ciencia y tecnología, las cuales deben estar al servicio del hombre. [Familiarizarse]

4. Resultados (Outcomes)

- g) Analizar el impacto local y global de la computación sobre los individuos, organizaciones y sociedad. (Evaluar)
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C10. Comprensión del impacto en las personas, las organizaciones y la sociedad de la implementación de soluciones tecnológicas e intervenciones. \Rightarrow Outcome g, $\tilde{\mathbf{n}}$
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad. \Rightarrow Outcome $\tilde{\mathbf{n}}$

6. Contenido del curso

6.1 Primera Unidad: Amanecer de la Ciencia, 6 hr(s)

Competencias: C10,C20

Tópicos: I: Introducción. a) ¿Qué es la ciencia? b) ¿Qué es la tecnología? **II:** Amanecer de la Ciencia. a) Prehistoria. b) El fuego. c) Los metales d) La agricultura. e) La rueda. f) Medios de transporte. g) Efectos de la tecnología primitiva.

Objetivos de Aprendizaje I: Comprender y diferenciar lo que es Ciencia y Tecnología. [Familiarizarse] II: Analizar el papel de la técnica en la organización de la civilización antigua. [Familiarizarse]

Bibliografía: [Asimov, 1997, Asimov, 1992, Artigas, 1992, Morandé, 2009, Comellas, 2007, Childe, 1996]

7. Bibliografía

[Artigas, 1992] Artigas, M. (1992). Ciencia, razón y fe. Madrid: Ediciones Palabra.

[Asimov, 1992] Asimov, I. (1992). Cien preguntas básicas sobre la ciencia. México: Alianza Editorial.

[Asimov, 1997] Asimov, I. (1997). Grandes ideas de la Ciencia. México: Alianza Editorial.

[Childe, 1996] Childe, V. G. (1996). Los orígenes de la civilización. *México: Fondo de Cultura Económica*, pages 219–274.

[Comellas, 2007] Comellas, J. L. (2007). Historia sencilla de la ciencia. Ediciones Rialp, pages 17–25.

[Morandé, 2009] Morandé, P. (2009). Tradición sapiencial y tecnología. Persona y Cultura, (7):6–12.

FG301. Enseñanza Social de la Iglesia (Obligatorio)

1. Información General

■ Semestre: 9^{no} Sem. Créditos: 3

■ Horas del curso: Teoría: 3 horas;

■ Prerrequisitos:

• FG210. Moral (5^{to} Sem-Pág. 277)

2. Fundamentación

La propuesta del Magisterio de la Iglesia para el correcto orden de la vida social -en los ámbitos políticos, social y económico- debería constituir la piedra angular de la organización social, logrando así una sociedad reconciliada para todos.

3. Objetivos del curso

• Contribuir en la formación de agentes de cambio, quienes desde el rol que les toque desempeñar en la sociedad, sean partícipes en una sociedad orientada al desarrollo social solidario. [Usar]

4. Resultados (Outcomes)

- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (Usar)
- n) Aplicar conocimientos de humanidades en su labor profesional. (Usar)
- o) Mejorar las condiciones de la sociedad poniendo la tecnología al servicio del ser humano. (Usar)

5. Competencias específicas de Computación (IEEE)

- C10. Comprensión del impacto en las personas, las organizaciones y la sociedad de la implementación de soluciones tecnológicas e intervenciones.⇒ Outcome e,n
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome n,o
- C21. Comprender el aspecto profesional, legal, seguridad, asuntos políticos, humanistas, ambientales, culturales y éticos.⇒ Outcome e,n,o

6. Contenido del curso

6.1 Primera Unidad: Misión de la Doctrina Social de la Iglesia, 6 hr(s)

Competencias: C21

Tópicos: I: Naturaleza de la Doctrina Social de la Iglesia. **II:** La Doctrina Social de la Iglesia en nuestro tiempo. **III:** La persona humana: múltiples dimensiones y su centralidad. **IV:** Los derechos humanos.

Objetivos de Aprendizaje I: Comprender la naturaleza de la acción de la Iglesia en el mundo. [Familiarizarse] II: Comprender la importancia de la centralidad del hombre en la sociedad. [Familiarizarse]

Bibliografía: [Peruana, 2005, de Pensamiento Social Católico, 2011, II, 2002, II, 2003]

6.2 Segunda Unidad: Principios y Valores de la Doctrina Social de la Iglesia, 9 hr(s)

Competencias: C10,C20,C21

Tópicos: I: Bien común. **II:** Destino universal de los bienes. **III:** Subsidiaridad. **IV:** Participación. **V:** Solidaridad. **VI:** Valores Fundamentales. a) La verdad. b) La libertad. c) La justicia. d) El amor.

Objetivos de Aprendizaje I: Conocer y comprender los principios permanentes y valores fundamentales que están presentes en la Enseñanza Magisterial, los cuales deben ser la base para la formación de las diversas instancias sociales. [Familiarizarse]

Bibliografía: [Peruana, 2005, II, 2002, de Pensamiento Social Católico, 2011]

6.3 Tercera Unidad: La familia: Célula vital de la Sociedad, 6 hr(s)

Competencias: C10,C20

Tópicos: I: Importancia de la Familia para la persona y sociedad. **II:** Fundamento de la Familia: El Matrimonio. **III:** Familia necesaria para la vida social. **IV:** Familia, centro de la civilización del amor.

Objetivos de Aprendizaje I: Comprender que de la naturaleza social del hombre derivan, algunos órdenes sociales necesarios, como la familia. [Familiarizarse] II: Conocer, comprender y valorar la naturaleza de la familia y el matrimonio y su rol en la sociedad. [Familiarizarse]

Bibliografía: [Peruana, 2005, de Pensamiento Social Católico, 2011, II, 2002]

6.4 Cuarta Unidad: Trabajo y vida económica, 9 hr(s)

Competencias: C10,C20,C21

Tópicos: I: La Dignidad del trabajo. II: Derecho al trabajo y derechos de los trabajadores. III: Solidaridad entre los trabajadores. IV: El Trabajo en un mundo global. V: Relación entre la moral y la economía. VI: Iniciativa Privada y empresa. VII: Instituciones y nuevas organizaciones económicas al servicio del hombre. VIII: Frente a la economía global.

Objetivos de Aprendizaje I: Conocer y comprender los principios de la Doctrina Social de la Iglesia en el campo de la actividad económica. [Familiarizarse] II: Formación de la conciencia cristiana para el posterior desenvolvimiento profesional.[Usar] III: Comprender que los principios del Evangelio y de la ética natural pueden ser aplicados a las concreciones del orden económico de la actividad humana.[Familiarizarse]

Bibliografía: [Peruana, 2005, Benedicto, 2009, II, 2002, de Pensamiento Social Católico, 2010, Benedicto, 2006, II, 2003]

6.5 Quinta Unidad: Comunidad Política y Comunidad Internacional, 12 hr(s)

Competencias: C21

Tópicos: I: Elementos constitutivos de la comunidad política. II: El fundamento y fin de la comunidad política. III: Autoridad Política y Democracia. IV: Relación entre Iglesia y Estado.
V: Comunidad Política al servicio de la Sociedad Cívil. VI: Las reglas fundamentales y organización de la comunidad internacional. VII: Cooperación interna-cional para el desarrollo.
VIII: La promoción de la paz. IX: Salvaguarda del medio ambiente.

Objetivos de Aprendizaje I: Comprender que de la naturaleza social del hombre derivan, la nación y el Estado como órdenes sociales necesarios.[Familiarizarse]

Bibliografía: [II, 2003, Peruana, 2005, Benedicto, 2006, II, 2002, de Pensamiento Social Católico, 2010]

7. Bibliografía

- [Benedicto, 2006] Benedicto, X. (2006). Encíclica Deus caritas est. Conferencia Episcopal Peruana Paulinas.
- [Benedicto, 2009] Benedicto, X. (2009). Caritas in veritate. Paulinas.
- [de Pensamiento Social Católico, 2010] de Pensamiento Social Católico, C. (2010). Boletín de Doctrina Social de la Iglesia. Universidad Cátolica San Pablo.
- [de Pensamiento Social Católico, 2011] de Pensamiento Social Católico, C. (2011). Boletín de Doctrina Social de la Iglesia. Universidad Cátolica San Pablo.
- [II, 2002] II, C. V. (2002). Gaudium et spes : Constitución Pastoral sobre la Iglesia en el mundo actual. Paulinas.
- [II, 2003] II, J. P. (2003). Centesimus annus. Conferencia Episcopal Peruana.
- [Peruana, 2005] Peruana, C. E. (2005). Compendio de la Doctrina Social de la Iglesia. Epiconsa, 1a. ed edition.

ET201. Formación de Empresas de Base Tecnológica I (Obligatorio)

1. Información General

■ Semestre: 9^{no} Sem. Créditos: 3

■ Horas del curso: Teoría: 2 horas; Práctica: 2 horas;

■ Prerrequisitos:

• FG350. Liderazgo (7^{mo} Sem-Pág. 326)

2. Fundamentación

Este es el primer curso dentro del área formación de empresas de base tecnológica, tiene como objetivo dotar al futuro profesional de conocimientos, actitudes y aptitudes que le permitan elaborar un plan de negocio para una empresa de base tecnológica. El curso está dividido en las siguientes unidades: Introducción, Creatividad, De la idea a la oportunidad, el modelo Canvas, Customer Development y Lean Startup, Aspectos Legales y Marketing, Finanzas de la empresa y Presentación.

Se busca aprovechar el potencial creativo e innovador y el esfuerzo de los alumnos en la creación de nuevas empresas.

3. Objetivos del curso

- Que el alumno conozca como elaborar un plan de negocio para dar inicio a una empresa de base tecnológica.
- Que el alumno sea capaz de realizar, usando modelos de negocio, la concepción y presentación de una propuesta de negocio.

4. Resultados (Outcomes)

- d) Trabajar efectivamente en equipos para cumplir con un objetivo común. (Usar)
- f) Comunicarse efectivamente con audiencias diversas. (Evaluar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- **k)** Aplicar los principios de desarrollo y diseño en la construcción de sistemas de software de complejidad variable. (**Evaluar**)
- m) Transformar sus conocimientos del área de Ciencia de la Computación en emprendimientos tecnológicos. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- **C2.** Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.⇒ **Outcome d**
- C10. Comprensión del impacto en las personas, las organizaciones y la sociedad de la implementación de soluciones tecnológicas e intervenciones.⇒ Outcome f
- C17. Capacidad para expresarse en los medios de comunicación orales y escritos como se espera de un graduado..⇒ Outcome f

- C18. Capacidad para participar de forma activa y coordinada en un equipo.⇒ Outcome i
- C19. Capacidad para identificar eficazmente los objetivos y las prioridades de su trabajo / área / proyecto con indicación de la acción, el tiempo y los recursos necesarios.⇒ Outcome i
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad. \Rightarrow Outcome k
- C23. Capacidad para emprender, completar, y presentar un proyecto final.⇒ Outcome k
- CS5. Especificar, diseñar e implementar sistemas basados en computadoras.⇒ Outcome m

6.1 Introducción, 5 hr(s)

Competencias: C2

Tópicos: I: Emprendedor, emprendedurismo e innovación tecnológica **II:** Modelos de negocio **III:** Formación de equipos

Objetivos de Aprendizaje I: Identificar características de los emprendedores [Familiarizarse] II: Introducir modelos de negocio [Familiarizarse]

Bibliografía: [Byers et al., 2010, Osterwalder and Pigneur, 2010, Garzozi-Pincay et al., 2014]

6.2 Creatividad, 5 hr(s)

Competencias: C10

Tópicos: I: Visión **III:** Misión **III:** La Propuesta de valor **IV:** Creatividad e invención **V:** Tipos y fuentes de innovación **VI:** Estrategia y Tecnología **VII:** Escala y ámbito

Objetivos de Aprendizaje I: Plantear correctamente la vision y misión de empresa [Usar] II: Caracterizar una propuesta de valor innovadora [Evaluar] III: Identificar los diversos tipos y fuentes de innovación [Familiarizarse]

Bibliografía: [Byers et al., 2010, Blank and Dorf, 2012, Garzozi-Pincay et al., 2014]

6.3 De la Idea a la Oportunidad, 5 hr(s)

Competencias: C17

Tópicos: I: Estrategia de la Empresa II: Barreras III: Ventaja competitiva sostenible IV: Alianzas V: Aprendizaje organizacional VI: Desarrollo y diseño de productos

Objetivos de Aprendizaje I: Conocer estrategias empresariales [Familiarizarse] II: Caracterizar barreras y ventajas competitivas [Familiarizarse]

Bibliografía: [Byers et al., 2010, Osterwalder and Pigneur, 2010, Ries, 2011, Garzozi-Pincay et al., 2014]

6.4 El Modelo Canvas, 20 hr(s)

Competencias: C18

Tópicos: I: Creación de un nuevo negocio II: El plan de negocio III: Canvas IV: Elementos del Canvas

Objetivos de Aprendizaje I: Conocer los elementos del modelo Canvas [Usar] II: Elaborar un plan de negocio basado en el modelo Canvas [Usar]

Bibliografía: [Osterwalder and Pigneur, 2010, Blank and Dorf, 2012, Garzozi-Pincay et al., 2014]

6.5 Customer Development y Lean Startup, 20 hr(s)

Competencias: C19

Tópicos: I: Aceleración versus incubación II: Customer Development III: Lean Startup

Objetivos de Aprendizaje I: Conocer y aplicar el modelo Customer Development [Usar] II: Conocer y aplicar el modelo Lean Startup [Usar]

Bibliografía: [Blank and Dorf, 2012, Ries, 2011, Garzozi-Pincay et al., 2014]

6.6 Aspectos Legales y Marketing, 5 hr(s)

Competencias: C20

Tópicos: I: Aspectos Legales y tributarios para la constitución de la empresa II: Propiedad intelectual III: Patentes IV: Copyrights y marca registrada V: Objetivos de marketing y segmentos de mercado VI: Investigación de mercado y búsqueda de clientes

Objetivos de Aprendizaje I: Conocer los aspectos legales necesarios para la formación de una empresa tecnológica [Familiarizarse] II: Identificar segmentos de mercado y objetivos de marketing [Familiarizarse]

Bibliografía: [Byers et al., 2010, Ries, 2011, Congreso de la Republica del Perú, 1996, de la Republica del Peru, 1997, Garzozi-Pincay et al., 2014]

6.7 Finanzas de la Empresa, 5 hr(s)

Competencias: C23

Tópicos: I: Modelo de costos II: Modelo de utilidades III: Precio IV: Plan financiero V: Formas de financiamiento VI: Fuentes de capital VII: Capital de riesgo

Objetivos de Aprendizaje I: Definir um modelo de costos y utilidades [Evaluar] II: Conocer las diversas fuentes de financiamento [Familiarizarse]

Bibliografía: [Byers et al., 2010, Blank and Dorf, 2012, Garzozi-Pincay et al., 2014]

6.8 Presentación, 5 hr(s)

Competencias: CS5

Tópicos: I: The Elevator Pitch II: Presentación III: Negociación

Objetivos de Aprendizaje I: Conocer las diversas formas de presentar propuestas de negocio [Familiarizarse] II: Realizar la presentación de una propuesta de negocio [Usar]

Bibliografía: [Byers et al., 2010, Blank and Dorf, 2012, Garzozi-Pincay et al., 2014]

7. Bibliografía

[Blank and Dorf, 2012] Blank, S. and Dorf, B. (2012). The Startup Owner's Manual: The Step-By-Step Guide for Building a Great Company. K and S Ranch.

[Byers et al., 2010] Byers, T., Dorf, R., and Nelson, A. (2010). *Technology Ventures: From Idea to Enterprise*. McGraw-Hill Science.

[Congreso de la Republica del Perú, 1996] Congreso de la Republica del Perú (1996). Decreto Legislativo Nž823. Ley de la Propiedad Industrial. El Peruano.

[de la Republica del Peru, 1997] de la Republica del Peru, C. (1997). Ley Nž26887. Ley General de Sociedades. El Peruano.

- [Garzozi-Pincay et al., 2014] Garzozi-Pincay, R., Messina-Scolaro, M., Moncada-Marino, C., Ochoa-Luna, J., Ilabel-Pérez, G., and Zambrano-Segura, R. (2014). *Planes de Negocios para Emprendedores*. Iniciativa Latinoamericana de Libros de Texto Abiertos (LATIn).
- [Osterwalder and Pigneur, 2010] Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. Wiley.
- [Ries, 2011] Ries, E. (2011). The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. Crown Business.

CS3P2. Cloud Computing (Obligatorio)

1. Información General

- Semestre: 10^{mo} Sem. Créditos: 3
- Horas del curso: Teoría: 1 horas; Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - \bullet CS370. Big Data (9 no Sem-Pág. 367)

2. Fundamentación

Para entender las técnicas computacionales avanzadas, los estudiantes deberán tener un fuerte conocimiento de las diversas estructuras discretas, estructuras que serán implementadas y usadas en laboratorio en el lenguaje de programación.

3. Objetivos del curso

- Que el alumno sea capaz de modelar problemas de ciencia de la computación usando grafos y árboles relacionados con estructuras de datos.
- Que el alumno aplicar eficientemente estrategias de recorrido para poder buscar datos de una manera óptima.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Usar)

5. Competencias específicas de Computación (IEEE)

- C2. Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.⇒ Outcome a
- C16. Capacidad para identificar temas avanzados de computación y de la comprensión de las fronteras de la disciplina. \Rightarrow Outcome i
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome i**
- **CS3.** Analizar el grado en que un sistema basado en el ordenador cumple con los criterios definidos para su uso actual y futuro desarrollo.⇒ **Outcome j**
- CS6. Evaluar los sistemas en términos de atributos de calidad en general y las posibles ventajas y desventajas que se presentan en el problema dado.⇒ Outcome j

6.1 Sistemas distribuídos, 15 hr(s)

Competencias: C2, C4

Tópicos: I: Fallos: a) Fallos basados en red (incluyendo particiones) y fallos basados en nodos b) Impacto en garantías a nivel de sistema (p.e., disponibilidad) II: Envío de mensajes distribuido: a) Conversión y transmisión de datos b) Sockets c) Secuenciamiento de mensajes d) Almacenando Buffering, renviando y desechando mensajes III: Compensaciones de diseño para Sistemas Distribuidos: a) Latencia versus rendimiento b) Consistencia, disponibilidad, tolerancia de particiones IV: Diseño de Servicio Distribuido: a) Protocolos y servicios Stateful versus stateless b) Diseños de Sesión (basados en la conexión) c) Diseños reactivos (provocados por E/S) y diseños de múltiples hilos V: Algoritmos de Distribución de Núcleos: a) Elección, descubrimiento

Objetivos de Aprendizaje I: Distinguir las fallas de red de otros tipos de fallas [Familiarizarse] II: Explicar por qué estructuras de sincronización como cerraduras simples (locks) no son útiles en la presencia de fallas distribuidas [Familiarizarse] III: Escribir un programa que realiza cualquier proceso de marshalling requerido y la conversión en unidades de mensajes, tales como paquetes, para comunicar datos importantes entre dos hosts [Usar] IV: Medir el rendimiento observado y la latencia de la respuesta a través de los hosts en una red dada [Usar] V: Explicar por qué un sistema distribuido no puede ser simultaneamente Consistente (Consistent), Disponible (Available) y Tolerante a fallas (Partition tolerant). [Familiarizarse] VI: Implementar un servidor sencillo - por ejemplo, un servicio de corrección ortográfica [Usar] VII: Explicar las ventajas y desventajas entre: overhead, escalabilidad y tolerancia a fallas entre escojer un diseño sin estado (stateless) y un diseño con estado (stateful) para un determinado servicio [Familiarizarse] VIII: Describir los desafios en la escalabilidad, asociados con un servicio cresciente para soportar muchos clientes, así como los asociados con un servicio que tendrá transitoriamente muchos clientes [Familiarizarse] IX: Dar ejemplos de problemas donde algoritmos de consenso son requeridos, por ejemplo, la elección de líder [Usar]

Bibliografía: [Coulouris et al., 2011]

6.2 Cloud Computing, 15 hr(s)

Competencias: C2, C4

Tópicos: I: Visión global de *Cloud Computing*. **II:** Historia. **III:** Visión global de las tecnologias que envuelve. **IV:** Beneficios, riesgos y aspectos económicos. **V:** Servicios en la nube. *a)* Infraestructura como servicio 1) Elasticidad de recursos 2) APIs de la Platforma *b)* Software como servicio *c)* Securidad *d)* Administración del Costo **VI:** Computación a Escala de Internet: *a)* Particionamiento de Tareas *b)* Acceso a datos *c)* Clusters, grids y mallas

Objetivos de Aprendizaje I: Explicar el concepto de Cloud Computing. [Familiarizarse] II: Listar algunas tecnologias relacionadas con Cloud Computing. [Familiarizarse] III: Explicar las estrategias para sincronizar una vista comun de datos compartidos a través de una colección de dispositivos [Familiarizarse] IV: Discutir las ventajas y desventajas del paradigma de Cloud Computing. [Familiarizarse] V: Expresar los beneficios económicos así como las características y riesgos del paradigma de Cloud para negocios y proveedores de cloud. [Familiarizarse] VI: Diferenciar entre los modelos de servicio. [Usar]

Bibliografía: [Hwang et al., 2011, Buyya et al., 2013]

6.3 Centros de Procesamiento de Datos, 10 hr(s)

Competencias: C16

Tópicos: I: Visión global de un centro de procesamiento de datos. **II:** Consideraciones en el diseño. **III:** Comparación de actuales grandes centros de procesamiento de datos.

Objetivos de Aprendizaje I: Describir la evolución de los Data Centers. [Familiarizarse] II: Esbozar la arquitectura de un data center en detalle. [Familiarizarse] III: Indicar consideraciones de diseño y discutir su impacto. [Familiarizarse]

Bibliografía: [Hwang et al., 2011, Buyya et al., 2013]

6.4 Cloud Computing, 20 hr(s)

Competencias: CS2, CS3

Tópicos: I: Virtualización. a) Gestión de recursos compartidos b) Migración de procesos **II:** Seguridad, recursos y isolamiento de fallas. **III:** Almacenamiento como servicio. **IV:** Elasticidad. **V:** Xen y WMware. **VI:** Amazon EC2.

Objetivos de Aprendizaje I: Virtualización. a) Gestión de recursos compartidos b) Migración de procesos. [Familiarizarse] II: Explicar las ventajas y desventajas de usar una infraestructura vistualizada. [Familiarizarse] III: Identificar las razones por qué la virtualización está llegando a ser enormente útil, especialmente en la cloud. [Familiarizarse] IV: Explicar diferentes tipos de isolamiento como falla, recursos y seguridad proporcionados por la virtualización y utilizado por la cloud. [Familiarizarse] V: Explicar la complejidad que puede tener el administrar en términos de niveles de abstracción y interfaces bien definidas y su aplicabilidad para la virtualización en la cloud. [Familiarizarse] VI: Definir virtualización y identificar diferentes tipos de máquinas virtuales. [Familiarizarse] VII: Identificar condiciones de virtualización de CPU, reconocer la diferencia entre full virtualization y paravirtualization, explicar emulación como mayor técnica para virtualización del CPU y examinar planificación virtual del CPU en Xen. [Familiarizarsel VIII: Esbozar la diferencia entre la clásica memoria virtual del SO y la virtualización de memoria. Explicar los múltiplos niveles de mapeamiento de páginas en oposición a la virtualización de la memoria. Definir memoria over-commitment e ilustrar sobre WMware memory ballooning como técnica de reclamo para sistemas virtualizados con memoria over-committed. [Familiarizarse]

Bibliografía: [Hwang et al., 2011, Buyya et al., 2013]

6.5 Cloud Computing, 12 hr(s)

Competencias: CS2, CS3

Tópicos: I: Almacenamiento de datos en la nube: a) Acceso compartido a data stores de consistencia débil b) Sincronización de datos c) Particionamiento de datos d) Sistemas de Archivos Distribuidos e) Replicación **II:** Visión global sobre tecnologías de almacenamiento. **III:** Conceptos fundamentales sobre almacenamiento en la cloud. **IV:** Amazon S3 y EBS. **V:** Sistema de archivos distribuidos. **VI:** Sistema de bases de datos NoSQL.

Objetivos de Aprendizaje I: Describir la organización general de datos y almacenamiento. [Familiarizarse] II: Identificar los problemas de escalabilidad y administración de la big data. Discutir varias abstracciones en almacenamiento. [Familiarizarse] III: Comparar y contrastar diferentes tipos de sistema de archivos. Comparar y contrastar el Sistema de Archivos Distribuido de Hadoop (HDFS) y el Sistema de Archivos Paralelo Virtual (PVFS). [Usar] IV: Comparar y contrastar diferentes tipos de bases de datos. Discutir las ventajas y desventajas sobre las bases de datos NoSQL. [Usar] V: Discutir los conceptos de almacenamiento en la cloud. [Familiarizarse]

Bibliografía: [Hwang et al., 2011, Buyya et al., 2013]

6.6 Modelos de Programación, 12 hr(s)

Competencias: CS6

Tópicos: I: Visión global de los modelso de programación basados en cloud computing. **II:** Modelo de Programación MapReduce. **III:** Modelo de programación para aplicaciones basadas en Grafos.

Objetivos de Aprendizaje I: Explicar los aspectos fundamentales de los modelos de programación paralela y distribuida. [Familiarizarse] II: Diferencias entre los modelos de programación: MapReduce, Pregel, GraphLab y Giraph. [Usar] III: Explicar los principales conceptos en el modelo de programación MapReduce. [Usar]

Bibliografía: [Hwang et al., 2011, Buyya et al., 2013, Low et al., 2012, Malewicz et al., 2010, Baluja et al., 2008]

7. Bibliografía

- [Baluja et al., 2008] Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran, D., and Aly, M. (2008). Video suggestion and discovery for youtube: Taking random walks through the view graph. In *Proceedings of the 17th International Conference on World Wide Web*, WWW '08, pages 895–904, New York, NY, USA. ACM.
- [Buyya et al., 2013] Buyya, R., Vecchiola, C., and Selvi, S. T. (2013). *Mastering Cloud Computing: Foundations and Applications Programming*. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition.
- [Coulouris et al., 2011] Coulouris, G., Dollimore, J., Kindberg, T., and Blair, G. (2011). *Distributed Systems: Concepts and Design*. Addison-Wesley Publishing Company, USA, 5th edition.
- [Hwang et al., 2011] Hwang, K., Dongarra, J., and Fox, G. C. (2011). Distributed and Cloud Computing: From Parallel Processing to the Internet of Things. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition.
- [Low et al., 2012] Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., and Hellerstein, J. M. (2012). Distributed graphlab: A framework for machine learning and data mining in the cloud. *Proc. VLDB Endow.*, 5(8):716–727.
- [Malewicz et al., 2010] Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., and Czajkowski, G. (2010). Pregel: A system for large-scale graph processing. pages 135–146.

CS393. Sistemas de Infomación (Electivos)

1. Información General

- Semestre: 10^{mo} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas: Práctica: 2 horas; Laboratorio: 2 horas;
- Prerrequisitos:
 - CS292. Ingeniería de Software II (6^{to} Sem-Pág. 291)

2. Fundamentación

Analizar técnicas para la correcta implementación de Sistemas de Información escalables, robustos, confiables y eficientes en las organizaciones.

3. Objetivos del curso

■ Implementar de forma correcta (escalables, robustos, confiables y eficientes) Sistemas de Información en las organizaciones.

4. Resultados (Outcomes)

- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)
- **k)** Aplicar los principios de desarrollo y diseño en la construcción de sistemas de software de complejidad variable. (**Evaluar**)

5. Competencias específicas de Computación (IEEE)

- C7. Ser capaz de aplicar los principios y tecnologías de ingeniería de software para asegurar que las implementaciones de software son robustos, fiables y apropiados para su público objetivo.⇒ Outcome c
- C8. Entendimiento de lo que las tecnologías actuales pueden y no pueden lograr.⇒ Outcome c
- C13. Comprender la relación entre la calidad y la gestión del ciclo de vida.⇒ Outcome c,i,k
- $\textbf{C16.} \ \text{Capacidad para identificar temas avanzados de computación y de la comprensión de las fronteras de la disciplina.} \Rightarrow \textbf{Outcome k}$
- CS4. Implementar la teoría apropiada, prácticas y herramientas para la especificación, diseño, implementación y mantenimiento, así como la evaluación de los sistemas basados en computadoras.⇒
 Outcome k
- **CS6.** Evaluar los sistemas en términos de atributos de calidad en general y las posibles ventajas y desventajas que se presentan en el problema dado.⇒ **Outcome i**
- CS10. Implementar efectivamente las herramientas que se utilizan para la construcción y la documentación de software, con especial énfasis en la comprensión de todo el proceso involucrado en el uso de computadoras para resolver problemas prácticos. Esto debe incluir herramientas para el control de software, incluyendo el control de versiones y gestión de la configuración.⇒ Outcome k

6.1 Introducción, 15 hr(s)

Competencias: C7,C8,C13

Tópicos: I: Introducción a la gestión de la información II: Software para gestión de información. III: Tecnología para gestión de información.

Objetivos de Aprendizaje I: Aplicar correctamente la tecnología para la gestión de la información [Evaluar]

Bibliografía: [Sommerville, 2010, Pressman and Maxim, 2014]

6.2 Estrategia, 15 hr(s)

Competencias: C16, CS4

Tópicos: I: Estrategia para gestión de información **II:** Estrategia para gestión conocimiento **III:** Estrategia para sistema de información.

Objetivos de Aprendizaje I: Aplicar y evaluar correctamente estrategias de gestión [Evaluar]

Bibliografía: [Sommerville, 2010, Pressman and Maxim, 2014]

6.3 Implementación, 15 hr(s)

Competencias: CS4, CS6, CS10

Tópicos: I: Gestión de desarrollo de sistemas de información. II: Gestión del cambio III: Arquitectura de Información

Objetivos de Aprendizaje I: Aplicar y evaluar correctamente estrategias de implementación [Evaluar]

Bibliografía: [Sommerville, 2010, Pressman and Maxim, 2014]

7. Bibliografía

[Pressman and Maxim, 2014] Pressman, R. S. and Maxim, B. (2014). Software Engineering: A Practitioner's Approach. McGraw-Hill, 8th edition.

[Sommerville, 2010] Sommerville, I. (2010). Software Engineering. Addison-Wesley, 9th edition.

CS362. Robótica (Electivos)

1. Información General

- Semestre: 10^{mo} Sem. Créditos: 4
- Horas del curso: Teoría: 2 horas; Laboratorio: 4 horas;
- Prerrequisitos:
 - \bullet CS361. Tópicos en Inteligencia Artificial (9
no Sem-Pág. 365)

2. Fundamentación

Que el alumno conozca y comprenda los conceptos y principios fundamentales de control, planificación de caminos y definición de estratégias en robótica móvil así como conceptos de percepción robótica de forma que entienda el potencial de los sistemas robóticos actuales

3. Objetivos del curso

- Sintetizar el potencial y las limitaciones del estado del arte de los sistemas robóticos actuales.
- Implementar algoritmos de planeamiento de movimientos simples.
- Explicar las incertezas asociadas con sensores y la forma de tratarlas.
- Diseñar una arquitectura de control simple
- Describir varias estratégias de navegación
- Entender el rol y las aplicaciones de la percepción robótica
- Describir la importancia del reconocimiento de imagenes y objetos en sistemas inteligentes
- Delinear las principales técnicas de reconocimiento de objetos
- Describir las diferentes características de las tecnologías usadas en percepción

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Usar)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Familiarizarse)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)

5. Competencias específicas de Computación (IEEE)

- C2. Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.⇒ Outcome a
- C23. Capacidad para emprender, completar, y presentar un proyecto final.⇒ Outcome b,h
- CS1. Modelar y diseñar sistemas de computadora de una manera que se demuestre comprensión del balance entre las opciones de diseño.⇒ Outcome b
- CS12. Operar equipos de computación y software eficaz de dichos sistemas.⇒ Outcome i

6.1 Conceptos Generales de Robótica, 5 hr(s)

Competencias: CS12

Tópicos: I: Vision general: problemas y progreso a) Estado del arte de los sistemas robóticos, incluyendo sus sensores y una visión general de su procesamiento b) Arquitecturas de control robótico, ejem., deliverado vs. control reactivo y vehiculos Braitenberg c) Modelando el mundo y modelos de mundo d) Incertidumbre inherente en detección y control **II:** Configuración de espacio y mapas de entorno.

Objetivos de Aprendizaje I: Listar capacidades y limitaciones de sistemas del estado del arte en robótica de hoy , incluyendo sus sensores y el procesamiento del sensor crucial que informa a esos sistemas[Familiarizarse] II: Integrar sensores, actuadores y software en un robot diseñado para emprender alguna tarea[Usar]

Bibliografía: [Siegwart and Nourbakhsh, 2004, Thrun and Fox, 2005, Stone, 2000]

6.2 Percepción Robótica, 15 hr(s)

Competencias: C2,C23

Tópicos: I: Interpretando datos del sensor con incertidumbre. II: Localización y mapeo.

Objetivos de Aprendizaje I: Programar un robot para llevar a cabo tareas simples usando arquitecturas de control deliverativo, reactivo y/o híbrido [Usar] II: Implementar algoritmos de planificación de movimientos fundamentales dentro del espacio de configuración de un robot[Usar]

Bibliografía: [Siegwart and Nourbakhsh, 2004, Thrun and Fox, 2005]

6.3 Control de Sistemas Robóticos, 20 hr(s)

Competencias: CS1

Tópicos: I: Navegación y control. II: Planeando el movimiento.

Objetivos de Aprendizaje I: Caracterizar las incertidumbres asociadas con sensores y actuadores de robot comunes; articular estrategias para mitigar esas incertidumbres. [Usar] II: Listar las diferencias entre representaciones de los robot de su enterno externo, incluyendo sus fortalezas y defectos[Usar]

Bibliografía: [Siegwart and Nourbakhsh, 2004]

6.4 Visión Robótica, 10 hr(s)

Competencias: C2,CS1

Tópicos: I: Visión Computacional a) Adquisición de imágenes, representación, procesamiento y propiedades b) Representación de formas, reconocimiento y segmentación de objetos c) Análisis de movimiento **II:** Modularidad en reconocimiento.

Objetivos de Aprendizaje I: Resumir la importancia del reconocimiento de imagenes y objetos en Inteligencia Artificial (AI) e indicar varias aplicaciones significativas de esta tecnologia[Usar] II: Implementar reconocimiento de objetos en 2d basados en la representación del contorno y/o regiones basadas en formas[Usar]

Bibliografía: [Sonka and Boile, 2007, Gonzales and Woods, 2007]

6.5 Sistemas Multi-Robot, 10 hr(s)

Competencias: C23,CS1

Tópicos: I: Coordinación multi-robots.

Objetivos de Aprendizaje I: Comparar y contrastar al menos tres estrategias para la navegación de robots dentro de entornos conocidos y/o no conocidos, incluyendo sus fortalezas y defectos[Familiarizarse] II: Describir al menos una aproximación para la coordinación de acciones y detección de varios robots para realizar una simple tarea[Familiarizarse]

Bibliografía: [Stone, 2000]

7. Bibliografía

[Gonzales and Woods, 2007] Gonzales, R. C. and Woods, R. E. (2007). *Digital Image Processing*. Prentice Hall, 3rd edition.

[Siegwart and Nourbakhsh, 2004] Siegwart, R. and Nourbakhsh, I. (2004). *Introduction to Autonomous Mobile Robots*. The MIT Press.

[Sonka and Boile, 2007] Sonka, M., H. V. and Boile, R. (2007). *Image Processing, Analysis and Machine Vision*. Cengage-Engineering.

[Stone, 2000] Stone, P. (2000). Layered Learning in Multiagent Systems. Intelligent Robots and Autonomous Agents. The MIT Press.

[Thrun and Fox, 2005] Thrun, S., B. W. and Fox, D. (2005). *Probabilistic Robotics*. Intelligent Robots and Autonomous Agents. The MIT Press.

CS404. Proyecto de Final de Carrera III (Obligatorio)

1. Información General

- Semestre: 10^{mo} Sem. Créditos: 3
- Horas del curso: Teoría: 2 horas; Práctica: 2 horas;
- Prerrequisitos:
 - CS403. Proyecto de Final de Carrera II (9^{no} Sem-Pág. 363)

2. Fundamentación

Este curso tiene por objetivo que el alumno logre finalizar adecuadamente su borrador de tesis.

3. Objetivos del curso

- Que el alumno complete este curso con su tesis elaborada en calidad suficiente como para una inmediata sustentación.
- Que el alumno presente formalmente el borrador de tesis ante las autoridades de la facultad.
- Los entregables de este curso son:

Parcial: Avance del proyecto de tesis incluyendo en el documento: introducción, marco teorico, estado del arte, propuesta, análisis y/o experimentos y bibliografía sólida.

Final: Documento de tesis completo y listo para sustentar en un plazo no mayor de quince días.

4. Resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Evaluar)
- c) Diseñar, implementar y evaluar un sistema, proceso, componente o programa computacional para alcanzar las necesidades deseadas. (Evaluar)
- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (Evaluar)
- f) Comunicarse efectivamente con audiencias diversas. (Evaluar)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Evaluar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Evaluar)
- l) Desarrollar principios investigación en el área de computación con niveles de competividad internacional. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática (computer science).⇒ Outcome a,b,c
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome e,f.g
- **CS2.** Identificar y analizar los criterios y especificaciones apropiadas a los problemas específicos, y planificar estrategias para su solución.⇒ **Outcome h,i,l**

6.1 Escritura del Borrador del trabajo de final de carrera (tesis), 60 hr(s)

Competencias: C1,C20,CS2

Tópicos: I: Redacción y correccion del trabajo de final de carrera

Objetivos de Aprendizaje I: Parte experimental concluída (si fuese adecuado al proyecto) [Evaluar] II: Verificar que el documento cumpla con el formato de tesis de la carrera [Evaluar] III: Entrega del borrador de tesis finalizado y considerado listo para una sustentación pública del mismo (requisito de aprobación) [Evaluar]

Bibliografía: [IEEE-Computer Society, 2008, Association for Computing Machinery, 2008, CiteSeer.IST, 2008]

7. Bibliografía

[Association for Computing Machinery, 2008] Association for Computing Machinery (2008). *Digital Libray*. Association for Computing Machinery. http://portal.acm.org/dl.cfm.

[CiteSeer.IST, 2008] CiteSeer.IST (2008). Scientific Literature Digital Libray. College of Information Sciences and Technology, Penn State University. http://citeseer.ist.psu.edu.

[IEEE-Computer Society, 2008] IEEE-Computer Society (2008). Digital Libray. IEEE-Computer Society. http://www.computer.org/publications/dlib.

SUMILLA

FG211. Ética Profesional (Obligatorio)

1. Información General

■ Semestre: 10^{mo} Sem. Créditos: 3

■ Horas del curso: Teoría: 3 horas:

■ Prerrequisitos:

• FG301. Enseñanza Social de la Iglesia (9^{no} Sem-Pág. 378)

2. Fundamentación

La ética es una parte constitutiva inherente al ser humano, y como tal debe plasmarse en el actuar cotidiano y profesional de la persona humana. Es indispensable que la persona asuma su rol activo en la sociedad pues los sistemas económico-industrial, político y social no siempre están en función de valores y principios, siendo éstos en realidad los pilares sobre los que debería basarse todo el actuar de los profesionales.

3. Objetivos del curso

■ Que el alumno amplíe sus propios criterios personales de discernimiento moral en el quehacer profesional, de forma que no sólo tome en cuenta los criterios técnicos pertinentes sino que incorpore a sí mismo cuestionamientos de orden moral y se adhiera a una ética profesional correcta, de forma que sea capaz de aportar positivamente en el desarrollo económico y social de la ciudad, región, país y comunidad global.[Usar]

4. Resultados (Outcomes)

- n) Aplicar conocimientos de humanidades en su labor profesional. (Usar)
- ñ) Comprender que la formación de un buen profesional no se desliga ni se opone sino mas bien contribuye al auténtico crecimiento personal. Esto requiere de la asimilación de valores sólidos, horizontes espirituales amplios y una visión profunda del entorno cultural. (Usar)
- o) Mejorar las condiciones de la sociedad poniendo la tecnología al servicio del ser humano. (Usar)

5. Competencias específicas de Computación (IEEE)

- C10. Comprensión del impacto en las personas, las organizaciones y la sociedad de la implementación de soluciones tecnológicas e intervenciones.⇒ Outcome n,ñ,o
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad. \Rightarrow Outcome n,ñ,o
- **C21.** Comprender el aspecto profesional, legal, seguridad, asuntos políticos, humanistas, ambientales, culturales y éticos. \Rightarrow **Outcome n,ñ,o**
- C22. Capacidad para demostrar las actitudes y prioridades que honrar, proteger y mejorar la estatura y la reputación ética de la profesión.⇒ Outcome n,ñ,o

6.1 Objetividad moral, 12 hr(s)

Competencias: C10,C21

Tópicos: I: Ser profesional y ser moral. II: La objetividad moral y la formulación de principios morales. III: El profesional y sus valores. IV: La conciencia moral de la persona. V: El aporte de la DSI en el quehacer profesional. VI: El bien común y el principio de subsidiaridad. VII: Principios morales y propiedad privada. VIII: Justicia: Algunos conceptos básicos.

Objetivos de Aprendizaje I: Presentar al alumno la importancia de tener principios y valores en la sociedad actual. [Usar] II: Presentar algunos de los principios de podrían contribuir en la sociedad de ser aplicados y vividos día a día. [Usar] III: Presentar a los alumnos el aporte de la Doctrina Social de la Iglesia en el quehacer profesional. [Usar]

Bibliografía: [for Computing Machinery (ACM), 1992, Schmidt, 1995, Loza, 2000, Argandoña, 2006]

6.2 Liderazgo, Responsabilidad Individual, 12 hr(s)

Competencias: C20,C22

Tópicos: I: La responsabilidad individual del trabajador en la empresa. II: Liderazgo y ética profesional en el entorno laboral. III: Principios generales sobre la colaboración en hechos inmorales. IV: El profesional frente al soborno: ¿víctima o colaboración?

Objetivos de Aprendizaje I: Presentar al alumno el rol de la responsabilidad social individual y del liderazgo en la empresa. [Familiarizarse] II: Conocer el juicio de la ética frente a la corrupción y sobornos como forma de relación laboral. [Familiarizarse] III: Presentar la profesión como una forma de realización personal, y como consecuencia. []

Bibliografía: [for Computing Machinery (ACM), 1992, Manzone, 2007, Schmidt, 1995, Pérez López, 1998, Nieburh, 2003]

6.3 Ética y Nuevas Tecnologías, 12 hr(s)

Competencias: C10,C20,C21

Tópicos: I: La ética profesional frente a la ética general. **II:** Trabajo y profesión en los tiempos actuales. **III:** Ética, ciencia y tecnología. **IV:** Valores éticos en organizaciones relacionadas con el uso de la información. **V:** Valores éticos en la era de la Sociedad de la Información.

Objetivos de Aprendizaje I: Presentar al alumno las interrelaciones entre ética y las disciplinas de la última era tecnológica.[Familiarizarse]

Bibliografía: [for Computing Machinery (ACM), 1992, IEEE, 2004, Hernández, 2006]

6.4 Aplicaciones prácticas, 12 hr(s)

Competencias: C21,C22

Tópicos: I: Ética informática. a) Ética y software. b) El software libre. **II:** Regulación y ética de telecomunicaciones. a) Ética en Internet. **III:** Derechos de autor y patentes. **IV:** Ética en los servicios de consultoría. **V:** Ética en los procesos de innovación tecnológica. **VI:** Ética en la gestión tecnológica y en empresas de base tecnológica.

Objetivos de Aprendizaje I: Presentar al alumno algunos aspectos que confrontan la ética con el quehacer de las disciplinas emergentes en la sociedad de la información.[Familiarizarse]

Bibliografía: [para las Comunicaciones Sociales, 2002, Hernández, 2006, for Computing Machinery (ACM), 1992]

7. Bibliografía

[Argandoña, 2006] Argandoña (2006). La identidad cristiana del directivo de empresa. IESE.

[for Computing Machinery (ACM), 1992] for Computing Machinery (ACM), A. (1992). Acm code of ethics and professional conduct.

[Hernández, 2006] Hernández, A. (2006). Ética Actual y Profesional. Lecturas para la Convivencia Global en el Siglo XXI. Ed. Thomson.

[IEEE, 2004] IEEE (2004). Ieee code of ethics. IEE.

[Loza, 2000] Loza, C. (2000). El aporte de la doctrina social de la iglesia a la toma de decisiones empresariales. Separata ofrecida por el profesor.

[Manzone, 2007] Manzone, G. (2007). La Responsabilidad de la Empresa, Business Ethics y Doctrina Social de la Iglesia en Diálogo. Universidad Católica San Pablo.

[Nieburh, 2003] Nieburh, R. (2003). El Yo Responsable. Ensayo de Filosofía Moral Cristiana. Bilbao.

[para las Comunicaciones Sociales, 2002] para las Comunicaciones Sociales, P. C. (2002). Ética en Internet.

[Pérez López, 1998] Pérez López, J. A. (1998). Liderazgo y Ética en la Dirección de Empresas. Bilbao.

[Schmidt, 1995] Schmidt, E. (1995). Ética y Negocios para América Latina. Universidad del Pacífico.

FG220. Análisis de la Realidad Peruana (Obligatorio)

1. Información General

Semestre: 10^{mo} Sem. Créditos: 3
Horas del curso: Teoría: 3 horas;

■ Prerrequisitos:

• FG221. Historia de la Ciencia y Tecnología (9^{no} Sem-Pág. 376)

2. Fundamentación

La formación integral del alumno supone una adecuada valoración histórica de la realidad nacional de modo que su accionar profesional esté integrado y articulado con la identidad cultural peruana, que genera el compromiso de hacer de nuestra sociedad un ámbito más humano, solidario y justo.

3. Objetivos del curso

 Analizar y comprender la situación actual del Perú desde una perspectiva histórica y sociológica, de modo que los alumnos puedan reconocerse y entenderse como parte de una Nación sellada en su núcleo más íntimo por los valores cristianos que impulsan la construcción de una sociedad más justa y reconciliada. [Familiarizarse]

4. Resultados (Outcomes)

- e) Entender correctamente las implicancias profesionales, éticas, legales, de seguridad y sociales de la profesión. (Usar)
- n) Aplicar conocimientos de humanidades en su labor profesional. (Usar)

5. Competencias específicas de Computación (IEEE)

C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome e,n

6. Contenido del curso

6.1 Primera Unidad, 18 hr(s)

Competencias: C20

Tópicos: I: Aspectos conceptuales relevantes para elaboración de las matrices analíticas. a) Cultura. b) Identidad. c) Nación. d) Sociedad. e) Estado. f) Normas para elaboración de matrices. **II:** El imperio de los Incas. a) Repaso de aspectos socio-culturales más importantes. b) Elaboración de la matriz del imperio Inca. **III:** Conquista española. a) ¿Encuentro o choque de las culturas?. b) Hacia una comprensión integral del fenómeno. c) Debate conceptual. d) Elaboración de matriz: cultura española. **IV:** Virreinato. a) Repaso de aspectos socio-culturales más importantes. b) Surgimiento de la identidad nacional peruana al calor de la Fe Católica. c) Elaboración de matriz: cultura virreinal.

Objetivos de Aprendizaje I: Comprender adecuadamente el proceso histórico que determina el nacimiento de nuestra identidad nacional a partir de la síntesis cultural del virreinato. [Familiarizarse]

Bibliografía: [Belaúnde, 1965, Messori, 1998, Morandé, 1987, Vargas Ugarte, 1996]

6.2 Segunda Unidad, 6 hr(s)

Competencias: C20

Tópicos: I: El proceso de la emancipación peruana. II: Hacia una compresión integral del fenómeno. III: Debate conceptual. IV: Elaboración de matriz.

Objetivos de Aprendizaje I: Comprender el proceso independentista peruano como expresión de la identidad nacional.[Familiarizarse]

Bibliografía: [Pease, 1999, Basadre, 1994, Vargas Ugarte, 1996]

6.3 Tercera Unidad, 9 hr(s)

Competencias: C20

Tópicos: I: Primeros cambios culturales. a) Inicio del proceso secularizador de la cultura. b) Primera República y Militarismo. c) Repaso de aspectos socio-culturales más importantes. d) Elaboración de matriz. II: Prosperidad Falaz. a) Repaso de aspectos socio-culturales más importantes. b) Elaboración de matriz. III: Guerra con Chile. a) Repaso de aspectos socio-culturales más importantes. b) Elaboración de matriz.

Objetivos de Aprendizaje I: Identificar adecuadamente los procesos históricos de desintegración nacional en el siglo XIX.[Familiarizarse]

Bibliografía: [Pease, 1999, Vargas Ugarte, 1996]

6.4 Cuarta Unidad, 18 hr(s)

Competencias: C20

Tópicos: I: Principales ideologías políticas en el siglo XX en contrapunto con los principios de la Doctrina Social de la Iglesia. II: Ciclo liberal. a) Repaso de aspectos socio-culturales más importantes. b) Elaboración de matriz. III: Ciclo Nacional-Populista. a) Primer subciclo (1930-1948).
1) Repaso de aspectos socio-culturales más importantes. 2) Elaboración de matriz. b) Segundo subciclo (1948-1968). 1) Repaso de aspectos socio-culturales más importantes. 2) Elaboración de matriz. c) Tercer subciclo (1968-1980). 1) Repaso de aspectos socio-culturales más importantes.
2) Elaboración de matriz. d) Cuarto subciclo (1980-1990). 1) Repaso de aspectos socio-culturales más importantes.
2) Elaboración de matriz. IV: Ciclo Neoliberal (1990- ¿?). a) Repaso de aspectos socio-culturales más importantes. b) Elaboración de matriz. V: Situación de la Nación Peruana. VI: Recuperación de la integración y la solidaridad socio-cultural.

Objetivos de Aprendizaje I: Identificar adecuadamente los procesos históricos de desintegración nacional en el siglo XX.[Familiarizarse]

Bibliografía: [Pease, 1999, De la puente Candamo, 2006, Quiroz Paz Soldán, 2006]

7. Bibliografía

[Basadre, 1994] Basadre, J. (1994). Perú: Problema y posibilidad. Fundación MJ. Bustamante de la Fuente.

[Belaúnde, 1965] Belaúnde, V. A. (1965). Peruanidad. Studium.

[De la puente Candamo, 2006] De la puente Candamo, J. A. (2006). Reflexiones sobre la identidad nacional. *Persona y Cultura*, 4(4):9–41.

[Messori, 1998] Messori, V. (1998). Leyendas Negras de la Iglesia. Editorial Planeta, S.A., 6a. ed. edition.

[Morandé, 1987] Morandé, P. (1987). Cultura y Modernización en América Latina. Editorial Planeta, S.A.

[Pease, 1999] Pease, F. (1999). Breve Historia Contemporánea del Perú. Fondo de Cultura Económica.

[Quiroz Paz Soldán, 2006] Quiroz Paz Soldán, E. (2006). La identidad cultural arequipeña como camino a la identidad nacional peruana. Persona y Cultura, 4(4):57–75.

[Vargas Ugarte, 1996] Vargas Ugarte, R. (1996). Historia General del Perú. Milla Batres, Carlos.

ET301. Formación de Empresas de Base Tecnológica II (Obligatorio)

1. Información General

■ Semestre: 10^{mo} Sem. Créditos: 3

■ Horas del curso: Teoría: 2 horas; Práctica: 2 horas;

• Prerrequisitos:

• ET201. Formación de Empresas de Base Tecnológica I (9^{no} Sem-Pág. 381)

2. Fundamentación

Este curso tiene como objetivo dotar al futuro profesional de conocimientos, actitudes y aptitudes que le permitan formar su propia empresa de desarrollo de software y/o consultoría en informática. El curso está dividido en tres unidades: Valorización de Proyectos, Marketing de Servicios y Negociaciones. En la primera unidad se busca que el alumno pueda analizar y tomar decisiones en relación a la viabilidad de un proyecto y/o negocio.

En la segunda unidad se busca preparar al alumno para que este pueda llevar a cabo un plan de marketing satisfactorio del bien o servicio que su empresa pueda ofrecer al mercado. La tercera unidad busca desarrollar la capacidad negociadora de los participantes a través del entrenamiento vivencial y práctico y de los conocimientos teóricos que le permitan cerrar contrataciones donde tanto el cliente como el proveedor resulten ganadores. Consideramos estos temas sumamente críticos en las etapas de lanzamiento, consolidación y eventual relanzamiento de una empresa de base tecnológica.

3. Objetivos del curso

- Que el alumno comprenda y aplique la terminología y conceptos fundamentales de ingeniería económica que le permitan valorizar un proyecto para tomar la mejor decisión económica.
- Que el alumno adquiera las bases para formar su propia empresa de base tecnológica.

4. Resultados (Outcomes)

- d) Trabajar efectivamente en equipos para cumplir con un objetivo común. (Usar)
- f) Comunicarse efectivamente con audiencias diversas. (Usar)
- m) Transformar sus conocimientos del área de Ciencia de la Computación en emprendimientos tecnológicos. (Evaluar)

5. Competencias específicas de Computación (IEEE)

- C17. Capacidad para expresarse en los medios de comunicación orales y escritos como se espera de un graduado..⇒ Outcome f
- C18. Capacidad para participar de forma activa y coordinada en un equipo.⇒ Outcome d
- C19. Capacidad para identificar eficazmente los objetivos y las prioridades de su trabajo / área / proyecto con indicación de la acción, el tiempo y los recursos necesarios.⇒ Outcome m
- C20. Posibilidad de conectar la teoría y las habilidades aprendidas en la academia a los acontecimientos del mundo real que explican su pertinencia y utilidad.⇒ Outcome m

- C21. Comprender el aspecto profesional, legal, seguridad, asuntos políticos, humanistas, ambientales, culturales y éticos.⇒ Outcome m
- C22. Capacidad para demostrar las actitudes y prioridades que honrar, proteger y mejorar la estatura y la reputación ética de la profesión.⇒ Outcome m
- C23. Capacidad para emprender, completar, y presentar un proyecto final.⇒ Outcome m
- C24. Comprender la necesidad de la formación permanente y la mejora de habilidades y capacidades.⇒
 Outcome m

6.1 Valorización de Proyectos, 20 hr(s)

Competencias: C19

- Tópicos: I: Introducción II: Proceso de toma de decisiones III: El valor del dinero en el tiempo IV: Tasa de interés y tasa de rendimiento V: Interés simple e interés compuesto VI: Identificación de costos VII: Flujo de Caja Neto VIII: Tasa de Retorno de Inversión (TIR) IX: Valor Presente Neto (VPN) X: Valorización de Proyectos
- Objetivos de Aprendizaje I: Permitir al alumno tomar decisiones sobre como invertir mejor los fondos disponibles, fundamentadas en el análisis de los factores tanto económicos como no económicos que determinen la viabilidad de un emprendimiento. [Evaluar]

Bibliografía: [Blank and Tarkin, 2006]

6.2 Marketing de Servicios, 30 hr(s)

Competencias: C20

- Tópicos: I: Introducción II: Importancia del marketing en las empresas de servicios III: El Proceso estratégico. IV: El Plan de Marketing V: Marketing estratégico y marketing operativo VI: Segmentación, targeting y posicionamiento de servicios en mercados competitivos VII: Ciclo de vida del producto VIII: Aspectos a considerar en la fijación de precios en servicios IX: El rol de la publicidad, las ventas y otras formas de comunicación X: El comportamiento del consumidor en servicios XI: Fundamentos de marketing de servicios XII: Creación del modelo de servicio XIII: Gestión de la calidad de servicio
- Objetivos de Aprendizaje I: Brindar las herramientas al alumno para que pueda identificar, analizar y aprovechar las oportunidades de marketing que generan valor en un emprendimiento. [Usar] II: Lograr que el alumno conozca, entienda e identifique criterios, habilidades, métodos y procedimientos que permitan una adecuada formulación de estrategias de marketing en sectores y medios específicos como lo es una empresa de base tecnológica. [Usar]

Bibliografía: [Kotler and Keller, 2006, Lovelock and Wirtz, 2009]

6.3 Negociaciones, 10 hr(s)

Competencias: C18

- Tópicos: I: Introducción. ¿Qué es una negociación? II: Teoría de las necesidades de la negociación III: La proceso de la negociación IV: Estilos de negociación V: Teoría de juegos VI: El método Harvard de negociación
- Objetivos de Aprendizaje I: Conocer los puntos clave en el proceso de negociación. [Usar] II: Establecer una metodología de negociación eficaz. [Usar] III: Desarrollar destrezas y habilidades que permitan llevar a cabo una negociación exitosa. [Usar]

Bibliografía: [Fisher et al., 1996, de Manuel Dasí and Martínez, 2006]

7. Bibliografía

- [Blank and Tarkin, 2006] Blank, L. and Tarkin, A. (2006). Ingeniería Económica. McGraw Hill, México D.F., México.
- [de Manuel Dasí and Martínez, 2006] de Manuel Dasí, F. and Martínez, R. M.-V. (2006). *Técnicas de Negociación. Un método práctico*. Esic, Madrid.
- [Fisher et al., 1996] Fisher, R., Ury, W., and Patton, B. (1996). Si... qde acuerdo! Cómo negociar sin ceder. Norma, Barcelona.
- [Kotler and Keller, 2006] Kotler, P. and Keller, K. L. (2006). Dirección de Marketing. Prentice Hall, México.
- [Lovelock and Wirtz, 2009] Lovelock, C. and Wirtz, J. (2009). Marketing de servicios. Personal, tecnología y estratégia. Prentice Hall, México.

ID101. Inglés técnico profesional (Obligatorio)

1. Información General

■ Semestre: 10^{mo} Sem. Créditos: 3

■ Horas del curso: Teoría: 2 horas; Práctica: 2 horas;

■ Prerrequisitos: Ninguno

2. Fundamentación

Parte fundamental de la formación integral de un profesional es la habilidad de comunicarse en un idioma extranjero además del propio idioma nativo. No solamente amplía su horizonte cultural sino que permite una visión más humana y comprensiva de la vida de las personas. En el caso de los idiomas extranjeros, indudablemente el Inglés es el más prátcico porque es hablado alrededor de todo el mundo. No hay país alguno donde éste no sea hablado. En las carreras relacionadas con los servicios al turista el Inglés es tal vez la herramienta práctica más importante que el alumno debe dominar desde el primer momento, como parte de su formación integral.

3. Objetivos del curso

- Conocer el idioma Inglés y su estructura gramatical.
- Identificar situaciones y emplear diálogos relacionados a ellas.

4. Resultados (Outcomes)

C25. Capacidad para comunicarse en un segundo idioma.⇒ Outcome f,i

5. Contenido del curso

- f) Comunicarse efectivamente con audiencias diversas. (Usar)
- ${f i}$) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (${f Usar}$)

6. Competencias específicas de Computación (IEEE)

6.1 Hello everybody!, 0 hr(s)

Competencias: 2

Tópicos: I: Verbo To Be. **II:** Oraciones Afirmativas, Negativas y Preguntas. **III:** Expresiones Numéricas. **IV:** Objetos y Países. **V:** Expresiones para saludar y hacer presentaciones.

Objetivos de Aprendizaje I: Al terminar la primera unidad, cada uno de los alumnos, comprendiendo la gramática del tiempo presente es capaz de expresar una mayor cantidad de expresiones de tiempo y además usar oraciones con el verbo To Be para expresar situación y estado. II: Que el alumno sea capaz de analizar y expresar ideas acerca de fechas y números en orden.

Bibliografía: [Soars and John, 2002d, Soars and John, 2002f, Soars and John, 2002e, Cambridge, 2006, MacGrew, 1999]

6.2 Meeting people!, 0 hr(s)

Competencias: 2

- Tópicos: I: Adjetivos Posesivos. II: Expresiones para averiguar precios. III: Expresiones de Posesión. IV: Vocabulario de Familia, Comidas y Bebidas. V: Pedidos formales. VI: Cartas informales.
- Objetivos de Aprendizaje I: Al terminar la segunda unidad, los alumnos habiendo identificado la forma de expresar pedidos y hacer ofrecimientos en restaurantes los utilizan en situaciones varias. Explica y aplica vocabulario de comidas y bebidas.
- Bibliografía: [Soars and John, 2002d, Soars and John, 2002f, Soars and John, 2002e, Cambridge, 2006, MacGrew, 1999]

6.3 The world of work, 0 hr(s)

Competencias: 2

- **Tópicos: I:** Tiempo Presente Simple. Auxiliares. **II:** Oraciones Afirmativas, Negativas y Preguntas. **III:** Verbos comunes y Ocupaciones. **IV:** Indicaciones para expresar la hora.
- Objetivos de Aprendizaje I: Al terminar la tercera unidad, los alumnos habiendo reconocido las características del presente simple, lo utiliza para hacer descripciones de diversos tipos. Describen personas y lugares y dan indicaciones de dirección. Expresa la hora.
- Bibliografía: [Soars and John, 2002d, Soars and John, 2002f, Soars and John, 2002e, Cambridge, 2006, MacGrew, 1999]

6.4 Take it easy!, 0 hr(s)

Competencias: 2

- Tópicos: I: Presente Simple 2. II: Oraciones Afirmativas, Negativas y Preguntas. III: Uso de Verbos de entretenimiento. IV: Tiempo Libre. V: Las estaciones del año. VI: Expresiones de actividades sociales.
- Objetivos de Aprendizaje I: Al terminar la cuarta unidad, los alumnos habiendo identificado la idea de expresar ideas de acciones de tiempo libre en Presente Simple y Continuo. Expresan ideas de estaciones y actividades relacionadas.
- Bibliografía: [Soars and John, 2002d, Soars and John, 2002f, Soars and John, 2002e, Cambridge, 2006, MacGrew, 1999]

6.5 Where do you live?, 0 hr(s)

Competencias: 2

- Tópicos: I: Uso There is/There are. II: Oraciones con Preposiciones. III: Expresiones de Cantidad. IV: Vocabulario de aviones y lugares. V: Expresiones de indicaciones de dirección.
- Objetivos de Aprendizaje I: Al finalizar la quinta unidad, los alumnos, a partir de la comprensión del tiempo presente continuo, elaborararán oraciones utilizando ideas de ubicación y de lugar. Asimilarán además la necesidad de expresar objetos de uso común. Adquirirán vocabulario para describir las partes de una casa usan expresiones para pedir indicaciones de dirección.
- Bibliografía: [Soars and John, 2002d, Soars and John, 2002f, Soars and John, 2002e, Cambridge, 2006, MacGrew, 1999]

6.6 Can you speak English?, 0 hr(s)

Competencias: 2

- Tópicos: I: Can/cant. II: Pasado del verbo To Be. Uso de Could. III: Vocabulario de Países e idiomas. IV: Expresiones para el uso del teléfono. V: Redacción de cartas formales. VI: Lecturas.
- Objetivos de Aprendizaje I: Al finalizar la sexta unidad, los alumnos habiendo conocido los fundamentos del uso de auxiliares de modo, crearan oraciones aplicadas al contexto adecuado. Enfatizan la diferencia entre idiomas y nacionalidades. Describen sentimientos. Utilizan expresiones en el teléfono.
- Bibliografía: [Soars and John, 2002d, Soars and John, 2002f, Soars and John, 2002e, Cambridge, 2006, MacGrew, 1999]

6.7 Then and now!, 0 hr(s)

Competencias: 2

- **Tópicos: I:** Pasado Simple. **II:** Expresiones de tiempo pasado. **III:** Vocabulario verbos regulares e irregulares. **IV:** Expresiones para describir el clima. **V:** Redacción de párrafos descriptivos. **VI:** Ocasiones Especiales.
- Objetivos de Aprendizaje I: Al finalizar la sétima unidad, los alumnos habiendo conocido los fundamentos de la estructuración del Pasado Simple experimentan la necesidad de poder expresar este tipo de tiempo en acciones. Realizarán prácticas en contextos adecuados. Enfatizan la diferencia entre verbos irregulares y regulares. Describen acciones con verbos varios. Utilizan expresiones para describir el clima.
- Bibliografía: [Soars and John, 2002d, Soars and John, 2002f, Soars and John, 2002e, Cambridge, 2006, MacGrew, 1999]

7. Bibliografía

[Cambridge, 2006] Cambridge (2006). Diccionario Inglés-Español Cambridge. Editorial Oxford.

[MacGrew, 1999] MacGrew, J. (1999). Focus on Grammar Basic. Editorial Oxford.

[Soars and John, 2002d] Soars, L. and John (2002d). American Headway N 2 Student Book. Editorial Oxford.

[Soars and John, 2002e] Soars, L. and John (2002e). American Headway N 2 Teachers Book. Editorial Oxford.

[Soars and John, 2002f] Soars, L. and John (2002f). American Headway N 2 Work Book. Editorial Oxford.

Capítulo 5

Equivalencias con otros planes curriculares

A continuación se pueden observar las equivalencias de la presente malla con el(los) Plan(es) curricular(es) anterior(ES). Para ver mayores detalles de la malla propuesta observar la sección 3.3 Pág. 150.

5.1. Equivalencia del Plan 2006 al Plan 2016

	Primer Semestre – Plan 2006			Plan 2016					
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}			
HU101	Comunicación	3	FG101	Comunicación	1^{er}	3			
CS101F	Introducción a la Programación	4	CS111	Programación de Video Juegos	1^{er}	4			
HU103	Introducción a la Vida Universitaria	3	FG103	Introducción a la Vida Universitaria	1^{er}	3			
CS105	Estructuras Discretas I	4	CS1D1	Estructuras Discretas I	1^{er}	4			
HU102	Metodología del Estudio	3	FG102	Metodología del Estudio	1^{er}	3			
CB101	Álgebra y Geometría	5	MA101	Matemática II	2^{do}	4			

Universidad Católica San Pablo

	Segundo Semestre – Plan 2006		Plan 2016					
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}		
CS101O	Introducción a la Programación Orientada a Objetos	5	CS112	Ciencia de la Computación I	2^{do}	5		
			FG112	Persona, Matrimonio y Familia	2^{do}	2		
HU104	Fundamentos de Filosofía	3	FG104	Introducción a la Filosofía	2^{do}	3		
CB102	Análisis Matemático I	5	MA100	Matemática I	1^{er}	5		
HU106	Teatro	2	FG106	Teatro	5^{to}	2		
HU105	Apreciación de la Música	2	FG105	Apreciación Musical	2^{do}	2		
CS106	Estructuras Discretas II	4	CS1D2	Estructuras Discretas II	2^{do}	4		
CS100	Introducción a la Ciencia de la Computación	3	CS100	Introducción de Ciencia de la Computación	2^{do}	3		

	Tercer Semestre – Plan 2006		Plan 2016					
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}		
CB111	Física I	3	CB111	Física Computacional	5^{to}	4		
HU203	Oratoria y Expresión Personal	2	FG203	Oratoria	6^{to}	2		
CS102O	Objetos y Abstracción de Datos	4	CS113	Ciencia de la Computación II	3^{er}	4		
HU107	Fundamentos Antropológicos de la Ciencia de la Computación	2	FG107	Antropología Filosófica y Teológica	3^{er}	3		
HU202	Apreciación Literaria	2	FG202	Apreciación Literaria	3^{er}	2		
HU201	Artes Plásticas	2	FG201	Apreciación Artística	3^{er}	2		
HU350	Liderazgo y Desempeño	2	FG350	Liderazgo	7^{mo}	2		
CB103	Análisis Matemático II	5	MA102	Cálculo I	3^{er}	4		
CS107	Estructuras Discretas III	3	CS1D3	Álgebra Abstracta	3^{er}	3		
CS103	Introducción a Internet	3	CS2B1	Desarrollo Basado en Plataformas	3^{er}	3		

Cuarto Semestre – Plan 2006			Plan 2016					
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}		
CS103O	Algoritmos y Estructuras de Datos	4	CS210	Algoritmos y Estructuras de Datos	4^{to}	4		
CS302	Estadística y Probabilidades	4	MA203	Estadística y Probabilidades	4^{to}	4		
CS211T	Teoría de la Computación	5	CS211	Teoría de la Computación	4^{to}	4		
CB201	Análisis Matemático III	5	MA201	Cálculo II	4^{to}	4		

405

	Quinto Semestre – Plan 2006			Plan 2016					
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}			
CS306	Análisis Numérico	4	MA306	Análisis Numérico	5^{to}	3			
HU205	Historia de la Cultura	3	FG205	Historia de la Cultura	8^{vo}	3			
CS210T	Análisis y Diseño de Algoritmos	4	CS212	Análisis y Diseño de Algoritmos	5^{to}	4			
CS220T	Arquitectura de Computadores	3	CS221	Arquitectura de Computadores	3^{er}	3			
CS290T	Ingeniería de Software I	4	CS291	Ingeniería de Software I	5^{to}	4			
CS270T	Base de Datos I	4	CS271	Bases de Datos I	4^{to}	4			

	Sexto Semestre – Plan 2006			Plan 2016					
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}			
CS271T	Base de Datos II	4	CS272	Bases de Datos II	5^{to}	3			
CS315	Estructuras de Datos Avanzadas	4	CS312	Estructuras de Datos Avanzadas	6^{to}	4			
			FG204	Teología	4^{to}	2			
CS343	Lenguajes de Programación	3	CS341	Lenguajes de Programación	7^{mo}	4			
CS390	Ingeniería de Software II	4	CS292	Ingeniería de Software II	6^{to}	4			
CS225T	Sistemas Operativos	4	CS2S1	Sistemas Operativos	6^{to}	4			

	Séptimo Semestre – Plan 2006			Plan 2016					
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}			
CS401	Proyecto I	3	CS401	Metodología de la Investigación en Computación	7^{mo}	2			
CB202	Matemática Aplicada a la Computación	4	MA307	Matemática aplicada a la computación	6^{to}	4			
CS391	Calidad de Software	3	CS391	Ingeniería de Software III	7^{mo}	3			
CS250W	Interacción Humano Computador	3	CS2H1	Interacción Humano Computador	8^{vo}	3			
CS309	Computación Molecular Biológica	2	CB309	Computación Molecular Biológica	9^{no}	4			
			CS3P1	Computación Paralela y Distribuída	8^{vo}	4			
CS255	Computación Gráfica	4	CS251	Computación Gráfica	7^{mo}	4			

406

	Octavo Semestre – Plan 2006	Plan 2016					
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}	
CS280T	Aspectos Sociales y Profesionales de la Computación	2	CS281	Computación en la Sociedad	8^{vo}	2	
CS240S	Compiladores	4	CS342	Compiladores	8^{vo}	4	
CS402	Proyecto II	3	CS402	Proyecto de Final de Carrera I	8^{vo}	3	
CS392	Tópicos en Ingeniería de Software	3	CS392	Tópicos Avanzados en Ingeniería de Software	9^{no}	4	
CS261T	Inteligencia Artificial	4	CS261	Inteligencia Artificial	7^{mo}	4	
ET101	Formación de Empresas de Base Tecnológica I	3	ET201	Formación de Empresas de Base Tecnológica I	9^{no}	3	
			CS3I1	Seguridad en Computación	8^{vo}	3	
	Noveno Semestre – Plan 2006			Plan 2016			
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}	
CS230W	Computación Centrada en Redes I	3	CS231	Redes y Comunicación	7^{mo}	3	
			CS370	Big Data	9^{no}	3	
CS403	Proyecto de Tesis	3	CS403	Proyecto de Final de Carrera II	9^{no}	3	
CS356	Tópicos en Computación Gráfica I	4	CS351	Tópicos en Computación Gráfica	9^{no}	4	
HU210	Ética General	3	FG210	Moral	5^{to}	2	
CS360	Tópicos en Inteligencia Artificial I	3	CS361	Tópicos en Inteligencia Artificial	9^{no}	4	
ET102	Formación de Empresas de Base Tecnológica II	2	ET301	Formación de Empresas de Base Tecnológica II	10^{mo}	3	
	Décimo Semestre – Plan 2006		Plan 2016				
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}	
HU304	Historia de la Ciencia y Tecnología	2	FG221	Historia de la Ciencia y Tecnología	9^{no}	2	
CS281T	Ética Profesional	2	FG211	Ética Profesional	10^{mo}	3	
HU303	Análisis de la Realidad Peruana	2	FG220	Análisis de la Realidad Peruana	10^{mo}	3	
HU302	Visión Cristiana de Nuestros Tiempos	3	FG301	Enseñanza Social de la Iglesia	9^{no}	3	
CS404	Seminario de Tesis	3	CS404	Proyecto de Final de Carrera III	10^{mo}	3	
CS361	Tópicos en Inteligencia Artificial II	4	CS362	Robótica	10^{mo}	4	

5.2. Equivalencia del Plan 2016 al Plan 2006

	Primer Semestre – Plan 2016			Plan 2006					
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}			
CS111	Programación de Video Juegos	4	CS101F	Introducción a la Programación	1^{er}	4			
CS1D1	Estructuras Discretas I	4	CS105	Estructuras Discretas I	1^{er}	4			
MA100	Matemática I	5	CB102	Análisis Matemático I	2^{do}	5			
FG102	Metodología del Estudio	3	HU102	Metodología del Estudio	1^{er}	3			
FG101	Comunicación	3	HU101	Comunicación	1^{er}	3			
FG103	Introducción a la Vida Universitaria	3	HU103	Introducción a la Vida Universitaria	1^{er}	3			

	Segundo Semestre – Plan 2016		Plan 2006				
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}	
CS100	Introducción de Ciencia de la Computación	3	CS100	Introducción a la Ciencia de la Computación	2^{do}	3	
CS1D2	Estructuras Discretas II	4	CS106	Estructuras Discretas II	2^{do}	4	
CS112	Ciencia de la Computación I	5	CS101O	Introducción a la Programación Orientada a Objetos	2^{do}	5	
MA101	Matemática II	4	CB101	Álgebra y Geometría	1^{er}	5	
FG112	Persona, Matrimonio y Familia	2			2^{do}		
FG104	Introducción a la Filosofía	3	HU104	Fundamentos de Filosofía	2^{do}	3	
FG105	Apreciación Musical	2	HU105	Apreciación de la Música	2^{do}	2	

	Tercer Semestre – Plan 2016		Plan 2006					
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}		
CS113	Ciencia de la Computación II	4	CS102O	Objetos y Abstracción de Datos	3^{er}	4		
CS2B1	Desarrollo Basado en Plataformas	3	CS103	Introducción a Internet	3^{er}	3		
CS221	Arquitectura de Computadores	3	CS220T	Arquitectura de Computadores	5^{to}	3		
CS1D3	Álgebra Abstracta	3	CS107	Estructuras Discretas III	3^{er}	3		
MA102	Cálculo I	4	CB103	Análisis Matemático II	3^{er}	5		
FG107	Antropología Filosófica y Teológica	3	HU107	Fundamentos Antropológicos de la Ciencia de la Computación	3^{er}	2		
FG201	Apreciación Artística	2	HU201	Artes Plásticas	3^{er}	2		
FG202	Apreciación Literaria	2	HU202	Apreciación Literaria	3^{er}	2		

Universidad Católica San Pablo

	Cuarto Semestre – Plan 2016			Plan 2006					
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}			
CS210	Algoritmos y Estructuras de Datos	4	CS103O	Algoritmos y Estructuras de Datos	4^{to}	4			
CS211	Teoría de la Computación	4	CS211T	Teoría de la Computación	4^{to}	5			
CS271	Bases de Datos I	4	CS270T	Base de Datos I	5^{to}	4			
MA201	Cálculo II	4	CB201	Análisis Matemático III	4^{to}	5			
MA203	Estadística y Probabilidades	4	CS302	Estadística y Probabilidades	4^{to}	4			
FG204	Teología	2			6^{to}				

	Quinto Semestre – Plan 2016			Plan 2006					
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}			
CS272	Bases de Datos II	3	CS271T	Base de Datos II	6^{to}	4			
CS291	Ingeniería de Software I	4	CS290T	Ingeniería de Software I	5^{to}	4			
CS212	Análisis y Diseño de Algoritmos	4	CS210T	Análisis y Diseño de Algoritmos	5^{to}	4			
CB111	Física Computacional	4	CB111	Física I	3^{er}	3			
MA306	Análisis Numérico	3	CS306	Análisis Numérico	5^{to}	4			
FG106	Teatro	2	HU106	Teatro	2^{do}	2			
FG210	Moral	2	HU210	Ética General	9^{no}	3			

Sexto Semestre – Plan 2016			Plan 2006				
Código	Curso	Cr	Código	Curso	Sem	Cr	
CS311	Programación Competitiva	4			6^{to}		
CS312	Estructuras de Datos Avanzadas	4	CS315	Estructuras de Datos Avanzadas	6^{to}	4	
CS2S1	Sistemas Operativos	4	CS225T	Sistemas Operativos	6^{to}	4	
CS292	Ingeniería de Software II	4	CS390	Ingeniería de Software II	6^{to}	4	
MA307	Matemática aplicada a la computación	4	CB202	Matemática Aplicada a la Computación	7^{mo}	4	
FG203	Oratoria	2	HU203	Oratoria y Expresión Personal	3^{er}	2	

409

	Séptimo Semestre – Plan 2016		Plan 2006					
Código	Curso	Cr	Código	Curso	Sem	Cr		
CS251	Computación Gráfica	4	CS255	Computación Gráfica	7^{mo}	4		
CS391	Ingeniería de Software III	3	CS391	Calidad de Software	7^{mo}	3		
CS231	Redes y Comunicación	3	CS230W	Computación Centrada en Redes I	9^{no}	3		
CS261	Inteligencia Artificial	4	CS261T	Inteligencia Artificial	8^{vo}	4		
CS401	Metodología de la Investigación en Computación	2	CS401	Proyecto I	7^{mo}	3		
CS341	Lenguajes de Programación	4	CS343	Lenguajes de Programación	6^{to}	3		
FG350	Liderazgo	2	HU350	Liderazgo y Desempeño	3^{er}	2		

	Octavo Semestre – Plan 2016			Plan 2006				
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}		
CS281	Computación en la Sociedad	2	CS280T	Aspectos Sociales y Profesionales de la Computación	8^{vo}	2		
CS342	Compiladores	4	CS240S	Compiladores	8^{vo}	4		
CS3I1	Seguridad en Computación	3			8^{vo}			
CS2H1	Interacción Humano Computador	3	CS250W	Interacción Humano Computador	7^{mo}	3		
CS402	Proyecto de Final de Carrera I	3	CS402	Proyecto II	8^{vo}	3		
CS3P1	Computación Paralela y Distribuída	4			7^{mo}			
FG205	Historia de la Cultura	3	HU205	Historia de la Cultura	5^{to}	3		

	Noveno Semestre – Plan 2016			Plan 2006				
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}		
CS392	Tópicos Avanzados en Ingeniería de Software	4	CS392	Tópicos en Ingeniería de Software	8^{vo}	3		
CS403	Proyecto de Final de Carrera II	3	CS403	Proyecto de Tesis	9^{no}	3		
CS361	Tópicos en Inteligencia Artificial	4	CS360	Tópicos en Inteligencia Artificial I	9^{no}	3		
CS370	Big Data	3			9^{no}			
CS351	Tópicos en Computación Gráfica	4	CS356	Tópicos en Computación Gráfica I	9^{no}	4		
CB309	Computación Molecular Biológica	4	CS309	Computación Molecular Biológica	7^{mo}	2		
FG221	Historia de la Ciencia y Tecnología	2	HU304	Historia de la Ciencia y Tecnología	10^{mc}	2		
FG301	Enseñanza Social de la Iglesia	3	HU302	Visión Cristiana de Nuestros Tiempos	10^{mc}	3		
ET201	Formación de Empresas de Base Tecnológica I	3	ET101	Formación de Empresas de Base Tecnológica I	8^{vo}	3		

410

	Décimo Semestre – Plan 2016		Plan 2006					
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}		
CS3P2	Cloud Computing	3			10^{mo}			
CS393	Sistemas de Infomación	4			10^{mo}			
CS362	Robótica	4	CS361	Tópicos en Inteligencia Artificial II	10^{mo}	4		
CS404	Proyecto de Final de Carrera III	3	CS404	Seminario de Tesis	10^{mo}	3		
FG211	Ética Profesional	3	CS281T	Ética Profesional	10^{mo}	2		
FG220	Análisis de la Realidad Peruana	3	HU303	Análisis de la Realidad Peruana	10^{mo}	2		
ET301	Formación de Empresas de Base Tecnológica II	3	ET102	Formación de Empresas de Base Tecnológica II	9^{no}	2		
ID101	Inglés técnico profesional	3			10^{mo}			

5.3. Equivalencia del Plan 2010 al Plan 2016

	Primer Semestre – Plan 2010		Plan 2016					
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}		
CB101	Álgebra y Geometría	5	MA101	Matemática II	2^{do}	4		
CS105	Estructuras Discretas I	4	CS1D1	Estructuras Discretas I	1^{er}	4		
FG102	Metodología del Estudio	3	FG102	Metodología del Estudio	1^{er}	3		
FG101	Comunicación	3	FG101	Comunicación	1^{er}	3		
CS101F	Introducción a la Programación	4	CS111	Programación de Video Juegos	1^{er}	4		
FG103	Introducción a la Vida Universitaria	3	FG103	Introducción a la Vida Universitaria	1^{er}	3		
	Segundo Semestre – Plan 2010		Plan 2016					
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}		
CS106	Estructuras Discretas II	4	CS1D2	Estructuras Discretas II	2^{do}	4		
FG104	Introducción a la Filosofía	3	FG104	Introducción a la Filosofía	2^{do}	3		
CS100	Introducción a la Ciencia de la Computación	3	CS100	Introducción de Ciencia de la Computación	2^{do}	3		
FC112	Matrimonio y Familia	2	FC112	Persona Matrimonio y Familia	gdo	2		

Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}
CS106	Estructuras Discretas II	4	CS1D2	Estructuras Discretas II	2^{do}	4
FG104	Introducción a la Filosofía	3	FG104	Introducción a la Filosofía	2^{do}	3
CS100	Introducción a la Ciencia de la Computación	3	CS100	Introducción de Ciencia de la Computación	2^{do}	3
FG112	Matrimonio y Familia	2	FG112	Persona, Matrimonio y Familia	2^{do}	2
FG105	Apreciación de la Música	2	FG105	Apreciación Musical	2^{do}	2
CB102	Análisis Matemático I	5	MA100	Matemática I	1^{er}	5
CS101O	Introducción a la Programación Orientada a Ob-	5	CS112	Ciencia de la Computación I	2^{do}	5
	jetos					
FG106	Teatro	2	FG106	Teatro	5^{to}	2

	Tercer Semestre – Plan 2010		Plan 2016					
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}		
CS130	Introducción a Internet	3	CS2B1	Desarrollo Basado en Plataformas	3^{er}	3		
FG203	Oratoria y Expresión Personal	2	FG203	Oratoria	6^{to}	2		
CB103	Análisis Matemático II	5	MA102	Cálculo I	3^{er}	4		
FG201	Artes Plásticas	2	FG201	Apreciación Artística	3^{er}	2		
CS220T	Arquitectura de Computadores	3	CS221	Arquitectura de Computadores	3^{er}	3		
CS107	Estructuras Discretas III	3	CS1D3	Álgebra Abstracta	3^{er}	3		
FG107	Fundamentos Antropológicos de la Ciencia	2	FG107	Antropología Filosófica y Teológica	3^{er}	3		
FG202	Apreciación Literaria	2	FG202	Apreciación Literaria	3^{er}	2		
CS102O	Objetos y Abstracción de Datos	4	CS113	Ciencia de la Computación II	3^{er}	4		

	Cuarto Semestre – Plan 2010			Plan 2016					
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}			
CS103O	Algoritmos y Estructuras de Datos	4	CS210	Algoritmos y Estructuras de Datos	4^{to}	4			
CS270T	Bases de Datos I	5	CS271	Bases de Datos I	4^{to}	4			
CS211T	Teoría de la Computación	4	CS211	Teoría de la Computación	4^{to}	4			
CB201	Análisis Matemático III	5	MA201	Cálculo II	4^{to}	4			
CB203	Estadística y Probabilidades	4	MA203	Estadística y Probabilidades	4^{to}	4			

	Quinto Semestre – Plan 2010		Plan 2016					
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}		
CB306	Análisis Numérico	3	MA306	Análisis Numérico	5^{to}	3		
FG206	Sociología							
CB111	Física Computacional	4	CB111	Física Computacional	5^{to}	4		
FG210	Ética	2	FG210	Moral	5^{to}	2		
CS271T	Base de Datos II	3	CS272	Bases de Datos II	5^{to}	3		
CS210T	Análisis y Diseño de Algoritmos	4	CS212	Análisis y Diseño de Algoritmos	5^{to}	4		
FG209	Psicología							
CS290T	Ingeniería de Software I	4	CS291	Ingeniería de Software I	5^{to}	4		

	Sexto Semestre – Plan 2010			Plan 2016					
Código	Curso	Cr	Código	Curso	Sem	Cr			
CS315	Estructuras de Datos Avanzadas	4	CS312	Estructuras de Datos Avanzadas	6^{to}	4			
CB307	Matemática Aplicada a la Computación	4	MA307	Matemática aplicada a la computación	6^{to}	4			
FG204	Teología I	2	FG204	Teología	4^{to}	2			
CS390	Ingeniería de Software II	4	CS292	Ingeniería de Software II	6^{to}	4			
			CS311	Programación Competitiva	6^{to}	4			
CS225T	Sistemas Operativos	4	CS2S1	Sistemas Operativos	6^{to}	4			

	Séptimo Semestre – Plan 2010			Plan 2016				
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}		
FG204A	Teología II							
CS250W	Interacción Humano Computador	3	CS2H1	Interacción Humano Computador	8^{vo}	3		
CS343	Lenguajes de Programación	4	CS341	Lenguajes de Programación	7^{mo}	4		
CS336	Seguridad en Computación	3	CS3I1	Seguridad en Computación	8^{vo}	3		
CS401	Proyecto I	2	CS401	Metodología de la Investigación en Computación	7^{mo}	2		
CS314	Algoritmos Paralelos	4	CS3P1	Computación Paralela y Distribuída	8^{vo}	4		
CS261T	Inteligencia Artificial	4	CS261	Inteligencia Artificial	7^{mo}	4		

	Octavo Semestre – Plan 2010		Plan 2016				
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}	
CS255	Computación Gráfica	4	CS251	Computación Gráfica	7^{mo}	4	
CS240S	Compiladores	4	CS342	Compiladores	8^{vo}	4	
CS280T	Aspectos Sociales y Profesionales de la Computación	2	CS281	Computación en la Sociedad	8^{vo}	2	
CS402	Proyecto II	3	CS402	Proyecto de Final de Carrera I	8^{vo}	3	
FG205	Historia de la Cultura	3	FG205	Historia de la Cultura	8^{vo}	3	
CS230W	Computación Centrada en Redes	3	CS231	Redes y Comunicación	7^{mo}	3	
CS391	Calidad de Software	3	CS391	Ingeniería de Software III	7^{mo}	3	

	Noveno Semestre – Plan 2010			Plan 2016					
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}			
			CS392	Tópicos Avanzados en Ingeniería de Software	9^{no}	4			
CS361	Tópicos en Inteligencia Artificial	4	CS361	Tópicos en Inteligencia Artificial	9^{no}	4			
CS355	Tópicos en Computación Gráfica	4	CS351	Tópicos en Computación Gráfica	9^{no}	4			
FG301	Enseñanza Social de la Iglesia	3	FG301	Enseñanza Social de la Iglesia	9^{no}	3			
ET101	Formación de Empresas de Base Tecnológica I	3	ET201	Formación de Empresas de Base Tecnológica I	9^{no}	3			
CB309	Computación Molecular Biológica	4	CB309	Computación Molecular Biológica	9^{no}	4			
FG221	Historia de la Ciencia y Tecnología	2	FG221	Historia de la Ciencia y Tecnología	9^{no}	2			
CS403	Proyecto de Tesis	3	CS403	Proyecto de Final de Carrera II	9^{no}	3			

	Décimo Semestre – Plan 2010		Plan 2016					
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}		
CS331	Claud Computing	3	CS3P2	Cloud Computing	10^{mo}	3		
FG220	Análisis de la Realidad Peruana	2	FG220	Análisis de la Realidad Peruana	10^{mo}	3		
ET102	Formación de Empresas de Base Tecnológica II	3	ET301	Formación de Empresas de Base Tecnológica II	10^{mo}	3		
CS404	Seminario de Tesis	3	CS404	Proyecto de Final de Carrera III	10^{mo}	3		
FG350	Liderazgo y Desempeño	2	FG350	Liderazgo	7^{mo}	2		
FG211	Ética Profesional	2	FG211	Ética Profesional	10^{mo}	3		
			CS393	Sistemas de Infomación	10^{mo}	4		
CS367	Robótica	4	CS362	Robótica	10^{mo}	4		

5.4. Equivalencia del Plan 2016 al Plan 2010

	Primer Semestre – Plan 2016			Plan 2010				
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}		
CS111	Programación de Video Juegos	4	CS101F	Introducción a la Programación	1^{er}	4		
CS1D1	Estructuras Discretas I	4	CS105	Estructuras Discretas I	1^{er}	4		
MA100	Matemática I	5	CB102	Análisis Matemático I	2^{do}	5		
FG102	Metodología del Estudio	3	FG102	Metodología del Estudio	1^{er}	3		
FG101	Comunicación	3	FG101	Comunicación	1^{er}	3		
FG103	Introducción a la Vida Universitaria	3	FG103	Introducción a la Vida Universitaria	1^{er}	3		

	Segundo Semestre – Plan 2016			Plan 2010				
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}		
CS100	Introducción de Ciencia de la Computación	3	CS100	Introducción a la Ciencia de la Computación	2^{do}	3		
CS1D2	Estructuras Discretas II	4	CS106	Estructuras Discretas II	2^{do}	4		
CS112	Ciencia de la Computación I	5	CS101O	Introducción a la Programación Orientada a Obje-	2^{do}	5		
				tos				
MA101	Matemática II	4	CB101	Álgebra y Geometría	1^{er}	5		
FG112	Persona, Matrimonio y Familia	2	FG112	Matrimonio y Familia	2^{do}	2		
FG104	Introducción a la Filosofía	3	FG104	Introducción a la Filosofía	2^{do}	3		
FG105	Apreciación Musical	2	FG105	Apreciación de la Música	2^{do}	2		

	Tercer Semestre – Plan 2016			Plan 2010				
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}		
CS113	Ciencia de la Computación II	4	CS102O	Objetos y Abstracción de Datos	3^{er}	4		
CS2B1	Desarrollo Basado en Plataformas	3	CS130	Introducción a Internet	3^{er}	3		
CS221	Arquitectura de Computadores	3	CS220T	Arquitectura de Computadores	3^{er}	3		
CS1D3	Álgebra Abstracta	3	CS107	Estructuras Discretas III	3^{er}	3		
MA102	Cálculo I	4	CB103	Análisis Matemático II	3^{er}	5		
FG107	Antropología Filosófica y Teológica	3	FG107	Fundamentos Antropológicos de la Ciencia	3^{er}	2		
FG201	Apreciación Artística	2	FG201	Artes Plásticas	3^{er}	2		
FG202	Apreciación Literaria	2	FG202	Apreciación Literaria	3^{er}	2		

	Cuarto Semestre – Plan 2016			Plan 2010				
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}		
CS210	Algoritmos y Estructuras de Datos	4	CS103O	Algoritmos y Estructuras de Datos	4^{to}	4		
CS211	Teoría de la Computación	4	CS211T	Teoría de la Computación	4^{to}	4		
CS271	Bases de Datos I	4	CS270T	Bases de Datos I	4^{to}	5		
MA201	Cálculo II	4	CB201	Análisis Matemático III	4^{to}	5		
MA203	Estadística y Probabilidades	4	CB203	Estadística y Probabilidades	4^{to}	4		
FG204	Teología	2	FG204	Teología I	6^{to}	2		

	Quinto Semestre – Plan 2016			Plan 2010				
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}		
CS272	Bases de Datos II	3	CS271T	Base de Datos II	5^{to}	3		
CS291	Ingeniería de Software I	4	CS290T	Ingeniería de Software I	5^{to}	4		
CS212	Análisis y Diseño de Algoritmos	4	CS210T	Análisis y Diseño de Algoritmos	5^{to}	4		
CB111	Física Computacional	4	CB111	Física Computacional	5^{to}	4		
MA306	Análisis Numérico	3	CB306	Análisis Numérico	5^{to}	3		
FG106	Teatro	2	FG106	Teatro	2^{do}	2		
FG210	Moral	2	FG210	Ética	5^{to}	2		

	Sexto Semestre – Plan 2016			Plan 2010					
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}			
CS311	Programación Competitiva	4			6^{to}				
CS312	Estructuras de Datos Avanzadas	4	CS315	Estructuras de Datos Avanzadas	6^{to}	4			
CS2S1	Sistemas Operativos	4	CS225T	Sistemas Operativos	6^{to}	4			
CS292	Ingeniería de Software II	4	CS390	Ingeniería de Software II	6^{to}	4			
MA307	Matemática aplicada a la computación	4	CB307	Matemática Aplicada a la Computación	6^{to}	4			
FG203	Oratoria	2	FG203	Oratoria y Expresión Personal	3^{er}	2			

	Séptimo Semestre – Plan 2016			Plan 2010				
Código	Curso	Cr	Código	Curso	Sem	\mathbf{Cr}		
CS251	Computación Gráfica	4	CS255	Computación Gráfica	8^{vo}	4		
CS391	Ingeniería de Software III	3	CS391	Calidad de Software	8^{vo}	3		
CS231	Redes y Comunicación	3	CS230W	Computación Centrada en Redes	8^{vo}	3		
CS261	Inteligencia Artificial	4	CS261T	Inteligencia Artificial	7^{mo}	4		
CS401	Metodología de la Investigación en Computación	2	CS401	Proyecto I	7^{mo}	2		
CS341	Lenguajes de Programación	4	CS343	Lenguajes de Programación	7^{mo}	4		
FG350	Liderazgo	2	FG350	Liderazgo y Desempeño	10^{mc}	2		

	Octavo Semestre – Plan 2016			Plan 2010				
Código	Curso	Cr	Código	Curso	Sem	Cr		
CS281	Computación en la Sociedad	2	CS280T	Aspectos Sociales y Profesionales de la Computación	8^{vo}	2		
CS342	Compiladores	4	CS240S	Compiladores	8^{vo}	4		
CS3I1	Seguridad en Computación	3	CS336	Seguridad en Computación	7^{mo}	3		
CS2H1	Interacción Humano Computador	3	CS250W	Interacción Humano Computador	7^{mo}	3		
CS402	Proyecto de Final de Carrera I	3	CS402	Proyecto II	8^{vo}	3		
CS3P1	Computación Paralela y Distribuída	4	CS314	Algoritmos Paralelos	7^{mo}	4		
FG205	Historia de la Cultura	3	FG205	Historia de la Cultura	8^{vo}	3		

Noveno Semestre – Plan 2016				Plan 2010				
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}		
CS392	Tópicos Avanzados en Ingeniería de Software	4			9^{no}			
CS403	Proyecto de Final de Carrera II	3	CS403	Proyecto de Tesis	9^{no}	3		
CS361	Tópicos en Inteligencia Artificial	4	CS361	Tópicos en Inteligencia Artificial	9^{no}	4		
CS370	Big Data	3			9^{no}			
CS351	Tópicos en Computación Gráfica	4	CS355	Tópicos en Computación Gráfica	9^{no}	4		
CB309	Computación Molecular Biológica	4	CB309	Computación Molecular Biológica	9^{no}	4		
FG221	Historia de la Ciencia y Tecnología	2	FG221	Historia de la Ciencia y Tecnología	9^{no}	2		
FG301	Enseñanza Social de la Iglesia	3	FG301	Enseñanza Social de la Iglesia	9^{no}	3		
ET201	Formación de Empresas de Base Tecnológica I	3	ET101	Formación de Empresas de Base Tecnológica I	9^{no}	3		

Décimo Semestre – Plan 2016			Plan 2010				
Código	Curso	\mathbf{Cr}	Código	Curso	Sem	\mathbf{Cr}	
CS3P2	Cloud Computing	3	CS331	Claud Computing	10^{mo}	3	
CS393	Sistemas de Infomación	4			10^{mo}		
CS362	Robótica	4	CS367	Robótica	10^{mo}	4	
CS404	Proyecto de Final de Carrera III	3	CS404	Seminario de Tesis	10^{mo}	3	
FG211	Ética Profesional	3	FG211	Ética Profesional	10^{mo}	2	
FG220	Análisis de la Realidad Peruana	3	FG220	Análisis de la Realidad Peruana	10^{mo}	2	
ET301	Formación de Empresas de Base Tecnológica II	3	ET102	Formación de Empresas de Base Tecnológica II	10^{mo}	3	
ID101	Inglés técnico profesional	3			10^{mo}		

Capítulo 6

Laboratorios

CS111. Programación de Video Juegos (Obligatorio) 1er Sem, Lab: 2 hr(s)

Laboratorio Básico: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video y Sonido Integrada Sistemas Operativos: Linux/Windows

Lenguajes de Programación: Python, Java, C++, Prolog, C++11/C++14, C#, Lex, Yacc

CS1D2. Estructuras Discretas II (Obligatorio) 2do Sem, Lab: 2 hr(s)

Laboratorio Básico: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video y Sonido Integrada Sistemas Operativos: Linux/Windows

Lenguajes de Programación: Python, Java, C++, Prolog, C++11/C++14, C#, Lex, Yacc

CS112. Ciencia de la Computación I (Obligatorio) 2do Sem, Lab: 4 hr(s)

Laboratorio Básico: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video y Sonido Integrada Sistemas Operativos: Linux/Windows

Lenguajes de Programación: Python, Java, C++, Prolog, C++11/C++14, C#, Lex, Yacc

CS113. Ciencia de la Computación II (Obligatorio) 3er Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX) y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET, LEDA, VTK

CS2B1. Desarrollo Basado en Plataformas (Obligatorio) 3er Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX) y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET,

LEDA, VTK

CS221. Arquitectura de Computadores (Obligatorio) 3er Sem, Lab: 2 hr(s)

Laboratorio Redes: 30 PCs: Pentium I/II/III/IV, HDD: 20Gb, Tarj. Red, Video y Sonido Integrada,

Internet

Sistemas Operativos: Linux Red Hat/Mandrake/Windows

Software: Emuladores 8088

CS1D3. Álgebra Abstracta (Obligatorio) 3er Sem, Lab: 2 hr(s)

 $\textbf{Laboratorio Avanzado: } 30~\text{PCs: Pentium IV } 2.6~\text{GHz, HDD: } 80\text{Gb, Tarj. Red, Video } \\ (\text{GeForce FX})$

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET,

LEDA, VTK

CS210. Algoritmos y Estructuras de Datos (Obligatorio) 4to Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX)

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET,

LEDA, VTK

CS211. Teoría de la Computación (Obligatorio) 4
to Sem, Lab: 2 $\mathrm{hr}(\mathrm{s})$

Laboratorio Básico: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video y Sonido Integrada

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: Python, Java, C++, Prolog, C++11/C++14, C#, Lex, Yacc

CS271. Bases de Datos I (Obligatorio) 4to Sem, Lab: 4 hr(s)

 $\textbf{Laboratorio Avanzado: } 30~\text{PCs: Pentium IV } 2.6~\text{GHz, HDD: } 80\text{Gb, Tarj. Red, Video } \\ (\text{GeForce FX})$

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

 ${\bf Software: Rational\ Rose\ con\ WAE, J2EE, Mathlab, Emuladores\ 8088, DB2, MONO, Plataforma\ .NET, and the state of th$

LEDA, VTK

MA203. Estadística y Probabilidades (Obligatorio) 4to Sem, Lab: 2 hr(s)

Laboratorio Básico: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video y Sonido Integrada

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: Python, Java, C++, Prolog, C++11/C++14, C#, Lex, Yacc

CS272. Bases de Datos II (Obligatorio) 5to Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX) y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET, LEDA, VTK

CS291. Ingeniería de Software I (Obligatorio) 5to Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX) y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET, LEDA, VTK

CS212. Análisis y Diseño de Algoritmos (Obligatorio) 5to Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX) y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET, LEDA, VTK

CB111. Física Computacional (Obligatorio) 5to Sem, Lab: 2 hr(s)

Laboratorio Física: Mesas de trabajo para estática y dinámica, trípodes, alambiques, reactivos varios, péndulos

MA306. Análisis Numérico (Obligatorio) 5to Sem, Lab: 2 hr(s)

Laboratorio Básico: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video y Sonido Integrada Sistemas Operativos: Linux/Windows

Lenguajes de Programación: Python, Java, C++, Prolog, C++11/C++14, C#, Lex, Yacc

CS311. Programación Competitiva (Obligatorio) 6to Sem, Lab: 2 hr(s)

 $\textbf{Laboratorio B\'asico} : 30 \ \text{PCs} : \text{Pentium IV 2.6 GHz}, \\ \text{HDD} : 80 \ \text{Gb}, \\ \text{Tarj} : \text{Red}, \\ \text{Video y Sonido Integrada} \\ \text{Tarj} : \\ \text{Red} : \text{Constant of the problem} : \\ \text{Constant of the problem} : \text{Constant of the problem} :$

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: Python, Java, C++, Prolog, C++11/C++14, C#, Lex, Yacc

CS312. Estructuras de Datos Avanzadas (Obligatorio) 6to Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX)

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

 $Software: Rational\ Rose\ con\ WAE,\ J2EE,\ Mathlab,\ Emuladores\ 8088,\ DB2,\ MONO,\ Plataforma\ .NET,$

LEDA, VTK

CS2S1. Sistemas Operativos (Obligatorio) 6to Sem, Lab: 2 hr(s)

 $\textbf{Laboratorio Avanzado} \hbox{: } 30 \hbox{ PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX)}$

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

 $Software: Rational\ Rose\ con\ WAE,\ J2EE,\ Mathlab,\ Emuladores\ 8088,\ DB2,\ MONO,\ Plataforma\ .NET,$

LEDA, VTK

CS292. Ingeniería de Software II (Obligatorio) 6to Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX)

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

 $Software: Rational\ Rose\ con\ WAE,\ J2EE,\ Mathlab,\ Emuladores\ 8088,\ DB2,\ MONO,\ Plataforma\ .NET,$

LEDA, VTK

MA307. Matemática aplicada a la computación (Obligatorio) 6to Sem, Lab: 2 hr(s)

Laboratorio Básico: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video y Sonido Integrada

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: Python, Java, C++, Prolog, C++11/C++14, C#, Lex, Yacc

CS251. Computación Gráfica (Obligatorio) 7mo Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX)

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET, LEDA, VTK

CS231. Redes y Comunicación (Obligatorio) 7mo Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX)

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET, LEDA, VTK

CS261. Inteligencia Artificial (Obligatorio) 7mo Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX) y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET, LEDA, VTK

CS341. Lenguajes de Programación (Obligatorio) 7mo Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX) y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET, LEDA, VTK

CS342. Compiladores (Obligatorio) 8vo Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX) y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET, LEDA, VTK

CS3I1. Seguridad en Computación (Obligatorio) 8vo Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX) y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET, LEDA, VTK

CS2H1. Interacción Humano Computador (Obligatorio) 8vo Sem, Lab: 2 hr(s)

Laboratorio Básico: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video y Sonido Integrada

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: Python, Java, C++, Prolog, C++11/C++14, C#, Lex, Yacc

CS3P1. Computación Paralela y Distribuída (Obligatorio) 8vo Sem, Lab: 2 hr(s)

 $\textbf{Laboratorio Avanzado} : 30 \ \text{PCs} : \ \text{Pentium IV 2.6 GHz}, \ \text{HDD} : \ 80 \ \text{Gb}, \ \text{Tarj}. \ \text{Red}, \ \text{Video} \ (\text{GeForce FX})$

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET,

LEDA, VTK

CS392. Tópicos Avanzados en Ingeniería de Software (Electivos) 9no Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX)

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET,

LEDA, VTK

CS361. Tópicos en Inteligencia Artificial (Electivos) 9no Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX)

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET,

LEDA, VTK

CS370. Big Data (Obligatorio) 9no Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX)

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET,

 $LEDA,\,VTK$

CS351. Tópicos en Computación Gráfica (Electivos) 9no Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX) y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET,

LEDA, VTK

CB309. Computación Molecular Biológica (Electivos) 9no Sem, Lab: 2 hr(s)

Laboratorio Básico: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video y Sonido Integrada

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: Python, Java, C++, Prolog, C++11/C++14, C#, Lex, Yacc

CS3P2. Cloud Computing (Obligatorio) 10mo Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX)

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET,

LEDA, VTK

CS393. Sistemas de Infomación (Electivos) 10mo Sem, Lab: 2 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX)

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET,

LEDA, VTK

CS362. Robótica (Electivos) 10mo Sem, Lab: 4 hr(s)

Laboratorio Avanzado: 30 PCs: Pentium IV 2.6 GHz, HDD: 80Gb, Tarj. Red, Video (GeForce FX)

y Sonido Integrado, Internet

Sistemas Operativos: Linux/Windows

Lenguajes de Programación: C++, Perl, Python

Software: Rational Rose con WAE, J2EE, Mathlab, Emuladores 8088, DB2, MONO, Plataforma .NET,

LEDA, VTK