Terms of Use

School Licence Agreement

Purchase of this digital resource entitles the purchaser and their school unlimited print reproduction for classroom use.

Sharing this resource outside of the purchasing school is a violation of the licensing agreement.

Please use this workbook only if you or someone from your school has paid for it.

By using only legitimately purchased copies, you are acknowledging the time and effort that has gone into creating these resources and helping the author to produce more.

Workbooks In This Series

Written and illustrated by Greg Good, except for credited images.

www.goodscience.com.au

admin@goodscience.com.au

© Good Science Education Australia, 2021. All rights reserved.

Key Learning Idea

➤ Punnett squares can be used to predict genotypes and phenotypes of offspring for traits that are sex-linked.

Content

- Constructing Punnett squares for traits that are: (i) X-linked with dominant and recessive inheritance, and (ii) X-linked with codominant inheritance.
 - Determining parental alleles.
 - Determining possible genotypes of male and female offspring.
 - Determining possible phenotypes of male and female offspring.
 - Determining probabilities of different genotypes and phenotypes in male and female offspring.
- Determining genotypes of parents based on phenotypes observed in male and female offspring.

Learning Checklist

By the end of this worksheet students will be able to:

- ✓ Use a Punnett square to determine the possible genotypes and phenotypes of male and female offspring for traits that are X-linked.
- ✓ Use a Punnett square to determine the probabilities of different genotypes and phenotypes in male and female offspring for traits that are X-linked.
- ✓ Determine genotypes of parents based on the numbers of different phenotypes observed in male and female offspring for traits that are X-linked.

Sex Linkage and Dominance

In humans, the gene associated with red-green colour blindness is located on the X chromosome. The allele for normal vision (X^B) is dominant over the allele for red-green colour blindness (X^b) .

Use this information to answer questions 1-4.

1. (a) Complete the Punnett square to show the offspring of a hemizygous dominant male and a heterozygous female.

Include the genotypes and phenotypes of offspring.

- **(b)** For sons, what is the probability of:
 - (i) Normal vision? <u>1</u> in <u>2</u> or <u>50</u> %
 - (ii) Colour blindness?

 1 in 2 or 50 %

- **(c)** For daughters, what is the probability of:
 - (i) Normal vision?

 2 in 2 or 100 %
 - (ii) Colour blindness?

 <u>0</u> in <u>2</u> or <u>0</u> %
- (d) What is the probability of daughters being carriers (unaffected heterozygotes)?

Punnett Squares – Sex-Linked Inheritance

2. (a) Complete the Punnett square to show the offspring of a hemizygous dominant male and a homozygous recessive female.

Include the genotypes and phenotypes of offspring.

- **(b)** For sons, what is the probability of:
- **(c)** For daughters, what is the probability of:

(i) Normal vision?

(ii) Colour blindness?

(i) Normal vision?

(ii) Colour blindness?

(d) What is the probability of daughters being carriers?

Punnett Squares – Sex-Linked Inheritance

3. (a) Complete the Punnett square to show the offspring of a hemizygous recessive male and a homozygous dominant female.

Include the genotypes and phenotypes of offspring.

- **(b)** For sons, what is the probability of:
- **(c)** For daughters, what is the probability of:
- (i) Normal vision?

 2 in 2 or 100 %

(i) Normal vision?

2 in 2 or 100 %

(ii) Colour blindness?

<u>0</u> in <u>2</u> or <u>0</u> %

- (ii) Colour blindness?

 <u>0</u> in <u>2</u> or <u>0</u> %
- (d) What is the probability of daughters being carriers?

Punnett Squares – Sex-Linked Inheritance

4. Complete the Punnett square to show the offspring of a hemizygous recessive male and a heterozygous female.

Include the genotypes and phenotypes of offspring.

- **(b)** For sons, what is the probability of:
- (c) For daughters, what is the probability of:

- (i) Normal vision?
 - <u>1</u> in <u>2</u> or <u>50</u> %
- (ii) Colour blindness?

- (ii) Colour blindness? <u>1</u> in <u>2</u> or <u>50</u> %
- (d) What is the probability of daughters being carriers?

Sex Linkage and Codominance

In cats, the gene associated with orange fur colour is located on the X chromosome. The allele for black fur (X^B) and the allele for orange fur (X^D) exhibit codominance, with heterozygotes having black and tan fur, known as the 'calico' phenotype.

Use this information to answer questions 5-8.

5. (a) Complete the Punnett square to show a cross between a black male and a calico female.
Include the genotypes and phenotypes of offspring.

- **(b)** For male offspring, what is the probability of:
 - (i) Black fur? <u>1</u> in <u>2</u> or <u>50</u> %
 - (ii) Calico fur? <u>0</u> in <u>2</u> or <u>0</u> %
 - (iii) Orange fur?

 <u>1</u> in <u>2</u> or <u>50</u> %

- **(c)** For female offspring, what is the probability of:
 - (i) Black fur? <u>1</u> in <u>2</u> or <u>50</u> %
 - (ii) Calico fur? <u>1</u> in <u>2</u> or <u>50</u> %
 - (iii) Orange fur?

 <u>0</u> in <u>2</u> or <u>0</u> %

Punnett Squares – Sex-Linked Inheritance

6. (a) Complete the Punnett square to show a cross between a black male and an orange female. Include the genotypes and phenotypes of offspring.

- **(b)** For male offspring, what is the probability of:
 - (i) Black fur?

 <u>0</u> in <u>2</u> or <u>0</u> %
 - (ii) Calico fur? <u>0</u> in <u>2</u> or <u>0</u> %

- (c) For female offspring, what is the probability of:
 - (i) Black fur? <u>0</u> in <u>2</u> or <u>0</u> %
 - (ii) Calico fur? 2 in 2 or 100 %
 - (iii) Orange fur?

 <u>0</u> in <u>2</u> or <u>0</u> %

Punnett Squares – Sex-Linked Inheritance

7. (a) Complete the Punnett square to show a cross between an orange male and a black female.
Include the genotypes and phenotypes of offspring.

- **(b)** For male offspring, what is the probability of:
 - (i) Black fur? 2 in 2 or 100 %
 - (ii) Calico fur? <u>0</u> in <u>2</u> or <u>0</u> %
 - (iii) Orange fur?

 <u>0</u> in <u>2</u> or <u>0</u> %

- **(c)** For female offspring, what is the probability of:
 - (i) Black fur? <u>0</u> in <u>2</u> or <u>0</u> %
 - (ii) Calico fur? 2 in 2 or 100 %
 - (iii) Orange fur?

 <u>0</u> in <u>2</u> or <u>0</u> %

Punnett Squares – Sex-Linked Inheritance

8. (a) Complete the Punnett square to show a cross between an orange male and a calico female. Include the genotypes and phenotypes of offspring.

- **(b)** For male offspring, what is the probability of:
 - (i) Black fur? <u>1</u> in <u>2</u> or <u>50</u> %
 - (ii) Calico fur? <u>0</u> in <u>2</u> or <u>0</u> %
 - (iii) Orange fur?

 1 in 2 or 50 %

- **(c)** For female offspring, what is the probability of:
 - (i) Black fur? <u>0</u> in <u>2</u> or <u>0</u> %
 - (ii) Calico fur? 1 in 2 or 50 %
 - (iii) Orange fur?

 <u>1</u> in <u>2</u> or <u>50</u> %

Punnett Squares – Sex-Linked Inheritance

- **9.** In fruit flies, the gene associated with white eye colour is located on the X chromosome. The allele for red eye colour (X^R) is dominant over the allele for white eye colour (X^R) .
 - (a) What is the only possible genotype for red-eyed male fruit flies? X^RY
 - (b) What is the only possible genotype for white-eyed male fruit flies? X'Y
 - (c) What are the two possible genotypes for red-eyed female fruit flies? X^RX^R , X^RX^T
 - (d) What is the only possible genotype for white-eyed female fruit flies? X^rX^r
 - (e) A red-eyed male fruit fly was mated with a red-eyed female fruit fly, resulting in:
 - 22 red-eyed male offspring
 - 19 white-eyed male offspring
 - 43 red-eyed female offspring

What can you say about the genotype of the female parent? Use a Punnett square to support your answer.

The long answer: The red-eyed male fly can only be hemizygous dominant (X^RY) , but the red-eyed female fly could be either homozygous dominant (X^RX^R) or heterozygous (X^RX^r) . Therefore, there are two possible crosses – $X^RY \times X^RX^R$ and $X^RY \times X^RX^R$ – which can be represented by the following Punnett squares.

In scenario (i), it is not possible for any white-eyed male flies to be present in the offspring. In scenario (ii), there is a 50% chance of male offspring being red-eyed and a 50% chance of male offspring being white-eyed. Since the male offspring in question are approximately 1:1 red-eyed and white-eyed, the female parent must have the X^RX^r genotype.

The short answer: Males receive their X chromosome from their mother. For there to be both red-eyed and white-eyed male offspring, the mother must have one red-eye allele and one white-eye allele. Therefore, the mother must have the X^RX^r genotype. This is illustrated by the second Punnett square above.

(f) A white-eyed male fruit fly was mated with a red-eyed female fruit fly, resulting in:

27 red-eyed male offspring26 red-eyed female offspring

What can you say about the genotype of the female parent? Use a Punnett square to support your answer.

The long answer: The white-eyed male fly can only be hemizygous recessive (X^rY), but the red-eyed female fly could be either homozygous dominant (X^RX^R) or heterozygous (X^RX^r). Therefore, there are two possible crosses – $X^rY \times X^RX^R$ and $X^rY \times X^RX^r$ – which can be represented by the following Punnett squares.

In scenario (i), all male and female offspring are red-eyed. In scenario (ii), there is a 50% chance of male and female offspring being red-eyed and a 50% chance of male and female offspring being white-eyed. Since all male and female offspring in question are red-eyed, the female parent must have the X^RX^R genotype.

The short answer: Males receive their X chromosome from their mother. For there to be only red-eyed male offspring, the mother must only have red-eye alleles. Therefore, the mother must have the X^R X^R genotype. This is illustrated by the first Punnett square above.

(g) Two fruit flies were mated, resulting in:

36 white-eyed male offspring 31 red-eyed female offspring

What can you say about the genotype and phenotype of both parents? Use a Punnett square to support your answer.

Males receive their X chromosome from their mother. For there to be only white-eyed male offspring, the mother must have only white-eye alleles. Therefore, the mother must have the X^rX^r genotype and the white-eyed phenotype.

Females receive one X chromosome from each parent. For there to be only red-eyed female offspring, the father must have the red-eye allele. This is because, for daughters to have red eyes, they must have at least on red-eye allele, and they could not receive this from their mother as she has only white-eye alleles. Therefore, the father must have the XRY genotype and the red-eyed phenotype.

This is illustrated by the following Punnett square.

(h) The fruit flies in question (e) went on to produce 76 more offspring. What are the predicted numbers of each phenotype for male and female offspring?

Using Punnett square (ii) from question (e):

Half of the offspring are predicted to be female – all with red eyes. Half of the offspring are predicted to be male – half with red eyes and half with white eyes. Therefore, the predicted phenotypes of offspring are:

 $38 (\frac{1}{2} \times 76)$ red-eyed females $19 (\frac{1}{4} \times 76)$ red-eyed males $19 (\frac{1}{4} \times 76)$ white-eyed males

Image Credits

p3 4zevar, Adobe Stock	p68 SciePro, Adobe Stock
p5 OpenClipart-Vectors, Pixabay	p69 SiberianPhotographer, Adobe Stock
p6 OpenClipart-Vectors, Pixabay	p70 200degrees, Pixabay
p7 GDJ, Pixabay	p71 Public Domain Pictures
p10 Public Domain Pictures	p72 Clker-Free-Vector-Images, Pixabay
p11 Yikrazuul, Wikimedia Commons	p73 SUM1, Wikimedia Commons
p11 CNX OpenStax, Wikimedia Commons	p74 pimmimemom, Adobe Stock
p14 blueringmedia, Adobe Stock	p75 happy_author, Adobe Stock
p15 iaremenko, Adobe Stock	p76 Kate Garyuk, Adobe Stock
p16 designua, Adobe Stock	p77 adogslifephoto, Adobe Stock
p18 Sebastian Kaulitzki, Adobe Stock	p78 nechaevkon Adobe Stock
p19 Clker-Free-Vector-Images, Pixabay	p79 SiberianPhotographer, Adobe Stock
p28 Clipart Station	p80 Free Clip Art
p31 OpenClipart-Vectors, Pixabay	p81 Unknown, Wikimedia Commons
p32 Ineuw, Wikimedia Commons	p82 designua, Adobe Stock
p16 designua, Adobe Stock	p83 designua, Adobe Stock
p33 sanchesnet1, Adobe Stock	p84 caffeinesystem, Pixabay
p34 mcmurryjulie, Pixabay	p85 makamuki0, Pixabay
p35 _aine_, Adobe Stock	p95 Thomas Hunt Morgan, Wikimedia Commons
p36 fancytapis, Adobe Stock	p96 Eric Isselée, Adobe Stock
p37 GraphicsRF, Adobe Stock	p97 YassineMrabet, Wikimedia Commons
p41 Andrii_Oliinyk, Adobe Stock	p98 YassineMrabet, Wikimedia Commons
p42 sanchesnet1, Adobe Stock	p100 Momentmal, Pixabay
p43 Andrii_Oliinyk, Adobe Stock	p101 Thomas Hunt Morgan, Wikimedia Commons
44 Andrii_Oliinyk, Adobe Stock	p102 Mysticsartdesign, Pixabay
p45 susannp4, Pixabay	p103 OpenClipart-Vectors, Pixabay
p46 Chaos07p47 LillyCantabile, Pixabay	p104 Clker-Free-Vector-Images, Pixabay
p48 PNG Guru	p105 OpenClipart-Vectors, Pixabay
p49 PNG Guru	p107 OpenClipart-Vectors, Pixabay
p51 Kuebi, Wikimedia Commons	p107 neonmoon, Pixabay
p52 US National Center for Biotechnology Information, Wikimedia Commons	p108 mcmurryjulie, Pixabay
p53 PublicDomainVectors	p111 Jianlong Li, Xiao Chen, Bin Kang, Min Liu, Wikimedia Commons
p54 SiberianPhotographer, Adobe Stock	p112 AquilaGib, Wikimedia Commons
p55 uiliaaa, Adobe Stock	p113 tigatelu, Adobe Stock
p56 Alejandro Porto, Wikimedia Commons	p115 tomakuma, Pixabay
p56 Free SVG	p115 Charles Darwin, Wikimedia Commons
p57 uiliaaa, Adobe Stock	p115 OpenClipart-Vectors, Pixabay
p59 nechaevkon, Adobe Stock	p115 Painting Valley
p60 OpenClipart-Vectors, Pixabay	p116 Vikivector, Adobe Stock
p62 OpenClipart-Vectors, Pixabay	p117 Jakovche, Wikimedia Commons
p63 Pearson Scott Foresman, Wikimedia Commons	p118 jenesesimre, Adobe Stock
p64 Get Drawings	p119 VectorMine, Adobe Stock
p65 Nikitax11, Pixabay	p120 jenesesimre, Adobe Stock

p121 Sjef, Wikimedia Commons

p122 Ancient Chinese Authors, Wikimedia Commons

p66 OpenClipart-Vectors, Pixabay

p67 Rachealmarie, Pixabay