Balachandran-Kang-Sanwal-Seymour 21-1-3-12

FIG. 1

Prior Art

Bursts 8 2 8 2 8 0 Speech frame 2 8 2 2 N 2 Speech frame 1 ~ × × \times Frequency Even bits Odd bits

FIG. 2 Balachandran-Kang-Sanwal-Seymour 21-1-3-12

the first first and the second of the first firs

Balachandran-Kang-Sanwal-Seymour 21-1-3-12

FIG 3

Even bits	1	_	_	_	7	7	8	7	3	3	3	3
Odd bits	×	×	×	×	_	_	_	_	2	2	2	2
Frequency	f ₃	f	f ₄	fo	f_7	f_8	f_5	f_6	f_1	f_3	f_0	f_4
												4
											a d	2 moto
				Speech	Speech frame						a	SIS III

The first case was some some and the first case and

Balachandran-Kang-Sanwal-Seymour 21-1-3-12

Prior Art

Parameter	Definition	Range
TDMA Frame Number, FN	TDMA frame number	0 to $(26 \times 51 \times 2048)$ -
Time parameter, 71R	[FN div (26 x 51)] modulo 64	0 to 63
Time parameter. 72	FN modulo 26	0 to 25
Time parameter. 73	FN modulo 51	0 to 50
Hopping Sequence Number	Used along with other time	0 to 63
(HSN)	parameters to generate a pseudo-	
	random hopping sequence	
NBIN	Number of bits required to	
	represent N	
XOF	Bit-wise exclusive or of 8 bit binary	
	operands	

Table One

Balachandran-Kang-Sanwal-Seymour 21-1-3-12

Balachandran-Kang-Sanwal-Seymour 21-1-3-12

FIG. 6

•	F	F=4	F=3	F = 2	F = I	F = 0, $F = 4$	F=3	•	• (•
	Н	$H = \{13462057\}$	$H = \{16432057\}$	$H = \{16432057\}$	$H = \{61432057\}$	$\mathbf{H} = \{61432057\}$ $\mathbf{H} = \{20576143\}$	$H_{(1 \text{ mod } 4)} = H_I = 0$ $\mathbf{H} = \{2 \ 7 \ 5 \ 0 \ 6 \ 1 \ 4 \ 3\}$	•	•	•
	Compute Hop Frequency	I I	$H_{(1 \mod 4)} = H_I = 3$	$H_{(5 \text{ mod } 3)} = H_2 = 4$	$H_{(2 \bmod 2)} = H_0 = I$	$H_{(4\bmod 1)}=H_0=6$	$H_{(1 \bmod 4)} = H_I = 0$	•	•	•
	A	l	$A = \{1346\}$	$A = \{1 6 4\}$	$A = \{1 \ 6\}$	$A = \{6\}$	$A = \{2 \ 0 \ 5 \ 7\}$	•	•	•
	Hopping index	-	1	5	2	4	-	•	•	•
column 1	Burst Number	I I	0	1	2	3	4	•	•	•
		row 1								

Table Two