第十章 图的基本概念

计算机科学与技术系 洪源

- 无序积
 - · · · · 设 A 和 B 是两个集合
 - ◎ 则称 {{a, b}|a∈A∧b∈B} 为集合 A 和 B 的无序积
 - ° 记做 A&B
 - 。 其中的元素 {a, b} 记做 (a, b)
- 图,无向图,有向图
 - 一个图是一个有序二元组 <V, E> , 其中V 是一个非空有穷集,称为顶点集,其中的元素称为顶点或结点E 是 V&V 或者 V×V 的有穷多重子集,称为边集
 - 。 若 E 是 V&V 的子集,则称该图是无向图, E 中元素称为无向边,简称边
 - 。 若 E 是 V×V 的子集,则称该图是有向图, E 中元素称为有向边,简称边
 - 例
- □ 程序函数之间的调用关系
- □ 城市之间的可达关系
- 注意
 - □ V和E均为有限集
 - V≠Ø
- 有向图的基图
 - 将一个有向图的有向边全部改成无向边后得到的无向图

图解

- 。 用以表达一个图的具体图形称为该图的一个图解
- 例:同一个图的不同图解

- 阶
- 顶点数称作图的阶 , n 个顶点的图称作 n 阶图
- 含有 n 个顶点和 m 条边的图称为 (n, m) 图
- (n, 0) 图称为 n 阶零图,记作 N_n
- N₁称作平凡图(只有1个顶点,没有边)
- 空图
 - 。 在运算过程中可能产生 V=∅ 的运算结果,此时称这个图为空图,记为∅

- 设 G=<V,E> 是无向图 , e_k=(v_i, v_j)∈E , e_l=(v_j, v_m)∈E , 则称
 - 。 v_i和 v_i为 e_k的端点
 - 。e_k与v_i(v_i)关联
 - 若 v_i≠v_i则称 e_k与 v_i (v_i) 的关联次数为 1
 - 若 v_i=v_j则称 e_k与 v_i (v_j)的关联次数为 2 , 并称 e_k是环
 - V_i 与 v_j 相邻
 - 。 e ॢ与 e 相邻
 - 若 e_k 与 v_i 不关联,则称 e_k 与 v_i 的关联次数为 0

- 设 G=<V,E> 是有向图 , e_k=<v_i, v_j>∈E , e_l=<v_j, v_m>∈E , 则
 - 。 V_i 和 v_i 为 e_k 的端点,其中 v_i 是 e_k 的始点, v_i 是 e_k 的终点
 - 。 e_k 与 v_i (v_i) 关联
 - 。 若 v_i=v_i则称 e_k是环
 - V_i 与 v_i 相邻
 - 。 e 与 e 相邻 (e 的终点是 e 的始点)
- 不论在有向图中还是无向图中,不与任何边关联的顶点都称为孤立点

- (顶点的)度,出度,入度——deg(v), deg-(v), deg+(v)
 - 参见第 314 页定义 10.3
 - 第2、3个逗号之间改为"某一顶点 v 与所有边的关联次数之和称为该顶点的度数"
 - 第4、5个逗号之间改为"顶点 v 做为终点与所有边的关联次数之和称为该顶点的入度"
 - 第2个句号和第7个逗号之间改为"顶点 v 做为始点与所有边的关联次数之和称为该顶点的出度"
- (图的)最大度,最小度,最大入度,最小入度,最大出度,最小出度——Δ(G),δ(G),Δ+(G),δ+(G),Δ-(G),δ-(G)
 - 参见第 314 页定义 10.3
- 悬挂顶点,悬挂边,偶度顶点,奇度顶点
 - · 度数为 1 的顶点称为悬挂顶点
 - 。 与悬挂顶点关联的边称为悬挂边
 - 度数为偶数的顶点称为偶度顶点
 - 。 度数为奇数的顶点称为奇度顶点

握手定理

- 第 314 页定理 10.1
- 第 315 页定理 10.3
- 推论:第315页定理10.2

- (有向和无向的)多重图,(有向图和无向图中的)平行边,重数,简单图
 - 参见第 313 页(6)
 - 。 有向图中的平行边指始点和终点相同的边
 - 例

- n 阶无向完全图 (n 阶完全图 , K_n) , n 阶有向完全
 图 , n 阶竞赛图 , k- 正则图
 - 第 318 页定义 10.5 , 第 319 页定义 10.6

- 同构
 - 第 317 页定义 10.4

- 子图,母图,真子图,生成子图,顶点集导出的子图, 边集导出的子图
 - 第 320 页定义 10.7

- 补图,自补图
 - 设 G = <V, E> 为无向简单图
 - 令Ē = (V&V E) {(v, v) | v∈V}
 - \circ 称 $\overline{G} = \langle V, \overline{E} \rangle$ 为 G 的补图
 - 若 G≅G , 则称 G 是自补图
 - 例
- 删除(边,边集,顶点,顶点集),收缩,加 新边
 - G-e, G-E', G-v, G-V', G/e, G+e
 - 删除顶点或顶点集的时候,同时要删除与被删除顶点相 关联的边
 - 边的收缩和加新边都可能产生环或平行边
 - 例