SVED SAMROZE ALT (BSC1-1J)

A5515NMENT#07

QUESTION #01

(11)
$$a_n = \frac{1-2^n}{2^n}$$

the term converges to -1.

2215-4187

Replacing 'n' with 'n',

7/2 = lim 222 (x+3)(x+1) = lim ax2 plying l'Hapsted 4x = lim 2x+4 42 lim ×++00 a. = lim 2 1700 OXX The sequence converges to e'

OUESTION #02 (1) \(\sigma \) \(\lambda_{=1} \) \(\lambda_{n}^3 \) Applying integral Test. because terms are positive, decreasing and continuous. En m= m-3 lmn dx n=1 n3 Ja=1 = lim ft Z-3lmx dx U = 600 du = + dx. V= -1 -1 SUdV= UV- SV du $\left(x^{-3}\ln x = \ln x \cdot \left(-\frac{1}{2}\right) + \int 1 \cdot 1 \, dx$ $\left(\frac{\partial x^2}{\partial x^2}\right) + \left(\frac{1}{2} \cdot \frac{1}{2}\right) dx$ = - lnx + 1 / 1 dx ax2 a / a3 $= -\ln x + 1 \left[-1 \right]$ $= 2 \left[2x^2 \right]$

 $= \left| -\ln x - 1 \right|$ $= \left| 2x^2 + 4x^2 \right| 1$ = lim /-lnx - /]!

120 (2x2 4x2)1 = -1 [lim [ln1-1] - [ln(1)+1]
2 [1-0] #12 #12) = -1 \lim 41 -0-1
2 \lim 21 \quad 2 2 / 1 im 1 - 1 Jeries is convergent

3

(11) \(\int \((-3)^2 \)	
101	
Using Ratio Test	
A track the product of the production of the pro	
$\frac{\mathcal{E}}{n=1} \frac{(-3)^n}{n!} = \lim_{n \to +\infty}$	(-3)" / (-3)"
n1	(n+1)! / n1
= lim 6	35° (-3) . M
770 10	+13698 (-3)
	3
Appleying limit	
P = 0	
A Company of the Comp	
7 P & I /: L	eries converges.
(m) & a a n(2n+1)	
As series is de	creasing, positive and
Continuous therefor Test.	e applying antegral
/23.	
5 2 = 2/ 2	de
= 2 = 2 = 2 = 2 == 1 n(2n+1) == 1 n(2n+1)	
4=1	

= 1 lim 1 2 dx
= { lim } 2 dx
Consider,
2 = A + B
X (2x+1) X 2x+1
$2 = A(\alpha x + 1) + Bx$
at x=0 at x=-1/2
$2 = A \qquad 2 = -18$
14=21
/B = -4/
a
6in [[2 + (-4)] dx
(in [2 + (-4)] dx
= ling [2 lmx - 2 lm (2x+1)]
1-0
= 2 (in [(nx - (n(2x+1))],
= 2 lim [ln/x) ,
1300 [(3x+1)]
$= 2 \left[\lim_{1 \to \infty} \ln \left(\frac{1}{2l+1} \right) - \ln \left(\frac{1}{3} \right) \right]$
[170 (2/4)

21+122K-4187 2 lim ln (1) - 2ln (1) 2 lim (1 1 - 2h/1) 2 lin (n/1) - 2 ln/1 2. ln (1) - 2 ln (1) = 0.810 : series converges.

(20+1) - 2

(N) $\underset{n=1}{\overset{\mathcal{L}}{\leq}} \frac{2^n}{3^n+1}$	
n=1 3n+1	
Applying compasision test.	
7700	
22 < 22	
$\frac{2^{n}}{3^{n}+1} < \frac{2^{n}}{3^{n}}$	
Check the convergence	of and series
£ 2°	
7=1 27	
7 it is geometric se	nes
= a = 2 , Y = 2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Sh = a 18/ < 1	
1 1-8 : 0	converge
= 43	
16A3	
- 2	
then 20 doo convex	converges
then 20 doo convex	900.
374/	

Applying Ratio Test $\frac{\mathcal{E}}{n=1} \frac{n!}{(an)!} = \lim_{n \to \infty} \frac{(n+1)!}{a(n+1)!} \left| \frac{n!}{(an)!} \right|$ = lim (n+1)n/ . 36! = lim (A+1)

1+100 2 (An+ 1)(A+1)

= lim 2
(An+ 1)

2 (An+ 1) = Alicho , P < 1 : series convergent

m 2	· · · · · · · · · · · · · · · · · · ·
(n) $\underset{n\geq 1}{\overset{\mathcal{E}}{=}} \left(\frac{n}{n+1}\right)^n$	The state of the
(10 No) (N+1)	
$P = \lim_{n \to +\infty} p / (n + 1) n \times p$	
n>+10 ((n+1)	
= 4in (2)	
$= \lim_{n \to +\infty} \binom{n}{n+1}$	
- lim wo []	
$= \lim_{n \to +\infty} \frac{n^n \left(1\right)^n}{n^n \left(1+\frac{1}{n}\right)}$	
= lim 1 n=+00 (1+1/n)n	
= lim (1+1/2)-n	
$= \lim_{n \to +\infty} -n \ln(1+1/n)$	
= lim - ln (1+1/n)	
ns+0 Kn	
Applying l'Hopital	
= lim - & (-/x2) _1	
707HD (1+1/x) -/x2	No the second
= lim - 1	
1+ Yn	
lny = -1	25 11
1y = e-1/ " e e <	1 /: converges
	(11)

VIII)	2 121	nen			
		116			
	12/				
ALC: U	Rate	o Test			
	7		A Market Way		
	8	$\frac{n^2}{n} = 0$	in (n+1)	1 12	
	11 6		6 6 41 /	en	
		= lin	(n+1)2.	62	
		170	en.e	n2	
		= lem	$(n+1)^2$		
		1300	enz		7
		= lein	n2+2n+1		
		n>00	0 12		
		= lim	1 / m 2	W. 19	
		77700	5 (Dx 1)	e nel	
		= lin	1/1+2	- 17	
		n++00	1/1+2	n2 /	
201	Average 5	= 1			
		0			
	P	=0-1	1 /: 0		
			1 60	nverges.	14.9
ud	45+	9/3 + 3/4 ,			
	-				
1	2=1	/n+1			
1	Birer	gence tes	t		100
0	1 1	100 11+	000 1		1
	K = uen	+00	> Che tim		

	UK = lim 1
	n=00 1+Vn
1	UK = 1
	[3]
	UK + O diverges
	1 /(3 Y: /3)
(IK)	
(614)	1-3+9-27+
	By \$ (-1)37-1
	m=1 /3p-1
	Uk = 1/2 - /3"/
	$U_{k} = \frac{2 \cdot 3^{2}}{3 \cdot 2^{9}}$ (it is a ge
	lit is a ga
	It is a geometric series
	$\alpha = 1$ $\sigma = \frac{-3}{2}$
	2
	181 > 1 series diverges

(vu	
(VIII	QUESTION # 03
(i)	$ \stackrel{\text{def}}{\underset{n=0}{\text{def}}} \frac{(n-1)(an+1)^n}{(an+1)a^n} $
	$a_0 = (-1)(+1)^0 = -1$
	$a_{i} = ((1-1)(a(1)+1)^{d} = 0$ $(a(1)+1)a^{d}$
	$a_2 = (a-1)(a(a)+1)^2 = 5$ $(a(a)+1)a^2 = 4$
	$a_3 = (3-1)(2(3)+1)^3 = 49$ $(2(3)+1)2^3 = 4$
(11)	$ \frac{2n-2}{2n-2} \left[\frac{-1+0+5}{4} + \frac{49+\cdots}{4} \right] $ $ \frac{(2n-1)}{(2n-1)} $
Gu	$a_1 = (1-1)^2 a_0 - 2 = 0$ $(a(1)-1)/2$
	$a_{2} = (2-1)^{2(2)-2}$ $(2(2)-3)/6$

2216-4187

$$a_{3} = (3-1) = 16 = 2$$

$$(2(3)-1)/ = 100 = 15$$

$$0 + 1 + 2 + ...$$

$$6 = 15$$

$$(1-x)^{\frac{1}{2}}$$

$$det = x = x_{0} = 2$$

$$(1-x)^{\frac{1}{2}}$$

$$f'(x) = 1$$

$$(1-x)^{2}$$

$$f''(x) = 2$$

$$(1-x)^{3}$$

$$f''(x) = 3$$

$$(1-x)^{3}$$

$$f''(x) = 6$$

$$(1-x)^{4}$$

$$f''(x) = 6$$

f(x) = f(x0) + f'(x0)(x-x0) + f"(x0)(x-x0)"2 VII + fal(x0) (x-x0)3 $= -1 + 1(x-2) + (-2)(x-2)^{2} + 6(x-2)^{2}$ $= -1 + (x-2) + (x-2)^2 + (x-2)^3$ (11) f(a) = V3+x2 x= -1 det n = 20 = -1 f((x) = x(x2+3) 12 f'(-1) = -(4 f *(x) = 3(x2+3) = 1"(-1) = 3 3 4 8 f"(x) = - 9x (x2+3) = ful(-1) = 05 9 32

	1
	f(x)= V2 + -18 x (x-(-1)) + 38 (x-(-1))2 21
	21
	+ 32 (x-(-1))3 +
	31
	F(A) 12 (X+1) + 3/2 (X+1)2 + 3/2 (X+1)3
	2 0 16
	2 - (x+1) + 3(x+1)2 + 3(x+1)3/
	$\frac{2}{2} = \frac{2}{(n+1)} + \frac{3(n+1)^{2}}{3(n+1)^{2}} + \frac{3(n+1)^{3}}{64}$
	QUESTION#05
21 10 11	
(1)	COSISX
(9)	$f'(x) = -15 \sin \sqrt{5x}$
	2/2
	f'(0) = does not es undefined
	Maclaurin series not posible.
	THE
- 4	
1	

(1)	C-x2
(,,	
	$f'(x) = -2xe^{-x^2}$
	f'(0) = 0
	$f''(x) = (4x^2-2)e^{-x^2}$
	f''(0) = 0 - 2
	f "(x) = (-Bx3+12x)e-x2
	f"(0) = 0
	7 (0) = 0
	A A
-	PUNDE S (111(x) = 16x4e x2 48x2e x2 12
	7 (6) = 12
	" deries will be
	> I + 0 - 2x2 + 0 + 12x4 +
Male	2/ 4/
	$1-x^2$
1	2
1	