Chapitre 1

Contexte d'intérêt composé :

Nom	notation	formule
Facteur d'accumulation	a(t)	$a(t) = (1+i)^t$
Valeur accumulée	A(t)	$A(t) = A(0)(1+i)^t$
facteur d'actualisation	v(t)	$v(t) = (1+i)^{-t}$
Valeur actualisée	A(0)	$A(0) = A(t)(1+i)^{-t}$

Contexte d'intérêt simple :

Nom	notation	formule
Facteur d'accumulation	a(t)	a(t) = (1+it)
Facteur d'actualisation	v(t)	$v(t) = \frac{1}{1+it}$
Prix d'un bon du trésor canadien	T-Bills	$Prix = 100 \left(1 + \frac{it}{365}\right)^{-1}$

Contexte de taux d'intérêt effectif et nominal :

Nom	notation	formule
Taux intérêt <u>effectif</u> annuel	i	$i = \left(1 + \frac{i^{(m)}}{m}\right)^m - 1$
Taux d'intérêt <u>nominal</u> annuel	$i^{(m)}$	$i^{(m)} = m\left((1+i)^{\frac{1}{m}} - 1\right)$

Contexte de taux d'escompte effectif et nominal :

Nom	notation	formule
Conversion du taux d'intérêt	$i \to d$	$d = \frac{i}{1+i}$
Conversion du taux d'escompte	$d \rightarrow i$	$i = \frac{1}{1-d}$
Taux d'escompte <u>nominal</u> annuel	$d^{(m)}$	$d^{(m)} = m \left(1 - (1 - d)^{\frac{1}{m}} \right)$
Taux d'escompte <u>effectif</u> annuel	d	$d = 1 - \left(1 - \frac{d^{(m)}}{m}\right)^m$
Valeur accumulée	a(t)	$a(t) = (1-d)^{-t}$
Valeur actualisée	v(t)	$v(t) = (1 - d)^t$
Prix d'un bon du trésor américain		$Prix = 100 \left(1 - \frac{dt}{360}\right)^t$

Contexte de force d'intérêt :

Nom	notation	formule
	$\delta = \lim_{m \to \infty} i^{(m)}$ $\delta = \lim_{m \to \infty} d^{(m)}$	$\delta = \ln(1+i)$
Force d'intérêt	$\delta = \lim_{m \to \infty} d^{(m)}$	$\delta = \ln(\frac{1}{1-d})$
		$\delta = \frac{a'(t)}{a(t)}$
Taux d'intérêt effectif avec la force d'intérêt	i	$i = e^{i^{(m)}}$
a(t)si force d'intérêt continue	$\delta_t = \delta$	$a(t) = e^{\delta t}$
a(t)si force d'intérêt variable	$\delta_t = \delta_t$	$a(t) = e^{\delta t}$ $a(t) = e^{\int_0^t \delta_s ds}$
Trouver facteur d'accumulation entre 2 périodes		$\frac{a(n)}{a(m)} = e^{\int_{m}^{n} \delta_{s} ds}$

Contexte de taux d'inflation :

Nom	notation	formule
Taux d'intérêt réel (après inflation)	$i_{r\acute{ ext{e}el}}$	$i_{r\acute{e}el} = \frac{i-r}{1+r}$

Chapitre 2

Forme générale de la somme géométrique :

$$\sum_{j=m}^{n} ar^{m} = \left(\frac{1 - r^{n-m+1}}{1 - r}\right)$$

Valeur accumulée d'une rente :

aux versements égaux	formule
au moment du dernier versement	$k \cdot S_{\overline{n} j}$
	$S_{\overline{n} j} = \left(\frac{(1+j)^n - 1}{j}\right)$
$\dots r$ période après le dernier versement	$k \cdot S_{\overline{n} j}(1+j)^r$
équivalent à	$k \cdot \left(S_{\overline{n+r} j} - S_{\overline{n} j}\right)$

dernière mise à jour : 28 septembre 2017