

Chapter 12

Factor Input Demand

Outline

- 1. Input Demand for Profit-maximizing Firms
- 2. Substitution among Factor Inputs
- 3. Firm's and Market's Factor Demand

Outline

1. Input Demand for Profit-maximizing Firms

1.1 Marginal Revenue Product

- Marginal Revenue Product (MRP) of input A is the additional revenue produced by an additional unit of input A
- Calculation:
 - Adding another unit of input (labor) increase firm's production by MP_i
 - Sale of each addition unit of output increase firm's revenue by MR
 - Therefore: MRP = $MP_i \times MR$

Market Structure	Marginal Revenue (MR)	Marginal Revenue Product (MRP)
Perfect Competition	MR=P	$MRP = MP_i \times P$
Imperfect Competition	MR(q) depends on the specific output level	$MRP = MP_i \times MR$

1.2 Input Demand for Profit-maximizing Firms

- Adding another unit of input is a "marginal change"
- According to the marginal principle, as long as
 "benefit of adding the unit of input i" > "cost of adding the unit of input i"
 i.e. MRP_i = MP_i × MR > Price of factor i
 the firm should increase additional unit of factor input
- As factor input \uparrow , marginal productivity \downarrow , eventually MRP_i = Price of factor i when firm's profit is maximized
- For labor, this means that $MRP_1 = MP_1 \times MR = wage$

实例:一个工厂装配汽车。4台机器:车轮,底盘,内饰,外壳。应该雇佣多少工人?

Q 18 16	Increasing Marginal Return to Labor	Diminishing Marginal Return to Labor	Negative Marginal Return to Labor
14 -			
12 -			
10 -	9		
8 -			
6 -	,		
4 -			
2 -			MP
0 +			L
-2 -	1 2 3	4 5 6 7	8 9 10

# Worker	Total Product (TP)	Marginal Product (MP)	
1	1	1	
2	3	2	
3	6	3	
4	10	4	
5	13	3	
6	15	2	
7	16	1	
8	16	0	
9	15	-1	
10	13	-2	

Optimal Labor Input

- 1. P=1, w=2
- 2. $\Pi = R-C = P \cdot TP w \cdot L$
- 3. When L=6, Π is maximized (Vertical distance between R and C)
- 4. At this point, slope of R = Slope of C (point A).
- 5. i.e. $MRP_1 = w$

Rule: Profit-maximization labor input

Manager should keep hiring labor, until MRP_L=w in the <u>diminishing</u> <u>marginal return</u> region

Hui Wang, Dept. of Applied Economics, GSM, Peking University

1.3 Least Cost Rule (1)

- Profit maximizing problem can be thought as to
 - 1. minimize the cost of producing a given level of output
 - 2. Chose a output level that maximize profit
- Condition of achieving cost minimization

$$\frac{MP_L}{wage} = \frac{MP_K}{interest}$$

- Suppose that $\frac{MP_L}{wage} < \frac{MP_K}{interest}$
- Now consider to shift \$1 spent on labor to the capital
 - \$1 decrease in labor spending decreases labor input by 1/wage units
 - Decreases production by MPL/wage units of output
 - \$1 increase in capital spending increase capital by 1/interest units
 - Increases production by MPK/interest units of output
 - Since (MPL/wage) < (MPK/interest), we can increase output while keeping the same level of total cost
 - Put in another way, we can maintain the same level of output while reducing the total cost

Least Cost Rule (2)

- As we shift expenditure from labor to capital
 - MPL is increasing (diminishing marginal productivity of labor)
 - MPK is decreasing (diminishing marginal productivity of capital)
 - We should stop the shifting until $\frac{MP_L}{wage} = \frac{MP_K}{interest}$
 - At this point, production cost of a given level of output is minimized
- When $\frac{MP_L}{wage} = \frac{MP_K}{interest}$, this ratio give us the amount of output being generated if we spend \$1 in factor inputs; it does not matter we spend the extra \$1 on labor or capital. Therefore

$$\frac{MP_L}{wage} = \frac{MP_K}{interest} = \frac{\Delta Q}{\Delta C} = \frac{1}{MC}$$

- Now, we should chose a output level that can maximize profit
 - MR=MC
 - Therefore $\frac{MP_L}{wage} = \frac{MP_K}{interest} = \frac{1}{MR}$
 - This is equivalent with the condition obtained from maximizing profit directly

$$MRP_i = MP_i \times MR = Price of factor i$$

2. Substitution among Factor Inputs

Optimization requires:

$$\frac{MP_L}{wage} = \frac{MP_K}{interest} = \dots = \frac{1}{MR}$$

What if the interest rate increases while wage remain fixed?

$$\frac{MP_L}{wage} > \frac{MP_K}{interest}$$

- Keeping the same level of capital use will increase production cost without increase in output
- Reduce the use of capital and use more labor for cost minimization
- MPA↑ and MPL↓ until the above equation is balanced again
- **Substitution Rule**: If the price of one factor rises while other factor prices remain fixed, the firm will profit form substituting more of the other inputs for the more expensive factor.
- What if MP_{κ} increases due to technological changes?

3. Firm's and Market's Factor Demand

- The MRP schedule for each input gives the demand schedule of the firm for that input
- As with all demand curves, the competitive market demand curve is the horizontal summation of demand curves of all the firms

FIGURE 12-3. Demand for Inputs Derived through Marginal Revenue Products