Aggregate Implication of Corporate Taxation over Business Cycle

Hui-Jun Chen

The Ohio State University

October 7, 2024

Macro Workshop

- Introduction
- Model
- Calibration
- Long-run effects of corporate tax deductions

• Transitional dynamics of corporate tax deductions

- Application: policy evaluation

Intro Model Calib LR SR App

What are the macro effects of corporate tax deductions?

Fact: (i) Corporate tax deductions have estimated cost of 86B yet impact remains debatable (The Joint Committee on Taxation (2017), Chodorow-Reich, Zidar and Zwick (2024b))

(ii) Large (16.9%) and heterogeneous ($\epsilon \in [-0.5, -3.2]$) investment response (Zwick and Mahon (2017), Ohrn (2018, 2019))

Calibrate: match key moments in US economy and establishment-level investment data

Applications: equilibrium effects on policies in 2017 TCJA

■ expanding S179 deductions, expanding bonus depreciation rate, cutting statutory tax rate

Intro Model Calib LR SR App

Preview of findings and key mechanisms

With each policy cost 0.3% of baseline GDP,

- lacktriangle expanding S179 raises GDP by 1.6% and is $\sim 50\%$ more effective than bonus rate
- cutting corporate tax rate is the least effective policies among all
- Implementing both depreciation deductions leads to 20% decreases in efficiency (Ohrm (2019))

Micro level: tax wedges distort firms' investment based on their financial conditions

- tax wedge limits credit-rationed firms capital accumulation by taxing flow returns
- GE effects $(w\downarrow)$ induce large and resourceful firms to carry excess amounts of capital

Macro level: tax payers' money should go to firms who suffer the most in misallocation

■ Targeting motivates self-selection ⇒ productive firms will invest while others won't

- Introduction
- Model
- Calibration
- Long-run effects of corporate tax deductions

• Transitional dynamics of corporate tax deductions

- Application: policy evaluation

Environment

Rep. household: supplies labor and pays labor tax, lends risk-free loans, and owns the firms

Government: collect (1) corporate tax R from firms, (2) labor tax $\tau^n w N^h$ and (3) lump-sum tax T from HH to fund fixed \bar{G}

Firms: states $(k, b, \psi, \varepsilon)$; exogenous entry and exit with shock π_d

- DRS production fcn with idio. productivity $\varepsilon \sim \mathsf{AR}(1)$, collateral constraint $b' \leq \theta k'$
- Paying corporate tax based on rate τ^c and taxable income $\mathcal{I}(k',k,\psi)$
- \blacksquare Taxable capital ψ depreciates at rate δ^{ψ} to represent normal depreciation schedule
- lacktriangledown Policies are limited to equipment \Rightarrow on average ω fraction of investment is equipment

Corporate tax structure

Both current and past investment is deductible from non-negative taxable income $\mathcal{I}(k',k,\psi)$:

$$\mathcal{I}(k',k,\psi) = \max \left\{ z \varepsilon f(k,n) - wn - \underbrace{\mathcal{J}(k',k)\omega(k'-(1-\delta)k)}_{\text{current}} - \underbrace{\delta^{\psi}\psi}_{\text{past}}, 0 \right\},$$

where $\mathcal{J}(k',k)$ represents the fraction of current equipment investment that is deductible.

$$\mathcal{J}(k',k) = \begin{cases} 1 & \text{if } k' - (1-\delta)k \leq \overline{I} & \text{(S179 eligible)} \\ \xi \in [0,1] & \text{if } k' - (1-\delta)k > \overline{I} & \text{(Not S179 eligible)} \end{cases}.$$

The rest of current equipment investment is accumulated in tax capital ψ :

$$\psi' = (1 - \delta^{\psi})\psi + (1 - \mathcal{J}(k', k))\omega(k' - (1 - \delta)k).$$

Calib

Budget constraints and Discrete Choice

$$\begin{split} D &= z\varepsilon F(k,n) - wn - b + qb' - (k' - (1-\delta)k) - \tau^c \mathcal{I}(k',k,\psi) \\ &= \underbrace{(1-\tau^c)}_{\text{taxed}} (z\varepsilon F(k,n) - wn) - b + qb' - \underbrace{(1-\tau^c)\mathcal{I}(k',k)\omega)}_{\text{subsidized}} (k' - (1-\delta)k) + \tau^c \delta^\psi \psi \\ v^0(k,b,\psi,\varepsilon;\mu) &= \pi_d \max_n \left\{ z\varepsilon F(k,n) - wn - b + (1-\delta)k - \tau^c \mathcal{I}(0,k,\psi) \right\} \\ &\quad + (1-\pi_d)v(k,b,\psi,\varepsilon;\mu) \\ v(k,b,\psi,\varepsilon;\mu) &= \max \left\{ v^H(k,b,\psi,\varepsilon;\mu), v^L(k,b,\psi,\varepsilon;\mu), v^N(k,b,\psi,\varepsilon;\mu) \right\} \end{split}$$

For each option, firms maximize dividend and continuation value subject to (1) budget constraints, (2) <u>collateral constraints</u>, and (3) taxable capital LoM

$$D = (z\varepsilon F(k,n) - wn) - b + qb' - (k' - (1-\delta)k)$$

capital decision rule at median productivity with zero debt and taxable capital

$$D = (1 - \tau^c)(z\varepsilon F(k, n) - wn) - b + qb' - (k' - (1 - \delta)k)$$

capital decision rule at median productivity with zero debt and taxable capital

$$D = (1 - \tau^c)(z\varepsilon F(k, n) - wn) - b + qb' - (1 - \tau^c \mathcal{J}(k', k)\omega)(k' - (1 - \delta)k) + \tau^c \delta^{\psi}\psi$$
capital decision rule at median productivity with zero debt and taxable capital

$$D = (1 - \tau^c)(z\varepsilon F(k,n) - wn) - b + qb' - (1 - \tau^c \mathcal{J}(k',k)\omega)(k' - (1-\delta)k) + \tau^c \delta^{\psi}\psi$$
capital decision rule at median productivity with zero debt and taxable capital

- Introduction
- Model
- Calibration
- Long-run effects of corporate tax deductions

• Transitional dynamics of corporate tax deductions

Application: policy evaluation

Model Calib LR SR Intro Арр

Calibrated Moments

Parameter	Target		Model
$\beta = 0.96$	real interest rate	= 0.04	0.04
$\alpha = 0.3$	private capital-output ratio	= 2.3	2.03
$\nu = 0.6$	labor share	= 0.6	0.6
$\tau^n = 0.25$	government spending-output ratio	= 0.21	0.201
$\delta = 0.069$	average investment-capital ratio	= 0.069	0.069
$\varphi = 2.05$	hours worked	= 0.33	0.33
$\theta = 0.54$	debt-to-assets ratio	= 0.37	0.371
$\theta_l = 0.3942$	decreases in debt	= 0.26	0.257
$\rho_{\varepsilon} = 0.6$	corr. investment rate distribution	= 0.058	0.050
$\sigma_{\varepsilon} = 0.1$	std. investment rate distribution	= 0.337	0.300
$\omega = 0.6$	${\rm lumpy\ investment} > 20\%$	= 0.186	0.185
$\xi = 0.5$	2015 bonus rate		
$\bar{I} = 0.092$	2015 threshold model counterpart Detail		

Intro Model **Calib** LR SR App

Model validation: investment rate distribution for unconstrained firms

Model validation: heterogeneous investment response in the short-run

Model prediction: not much heterogeneity in long-run investment response

- Introduction
- Model
- Calibration
- Long-run effects of corporate tax deductions
- Transitional dynamics of corporate tax deductions
- Application: policy evaluation

Aggregate outcomes as percentage of baseline

Variable	S179	Bonus	S179 + Bonus	Tax cut
Output	1.61%	1.06%	1.31%	0.64%
Consumption	1.55%	0.92%	1.27%	0.56%
Labor	0.06%	0.13%	0.04%	0.08%
Capital	4.22%	3.21%	3.39%	1.95%
Investment	4.22%	3.21%	3.39%	1.95%
Measured TFP	0.32%	0.03%	0.28%	0.01%

- \blacksquare Each policy costs 0.3% of baseline GDP and delivers the same government spending \bar{G}
- In S179 + Bonus, policy tools are 82% of the level in S179 and Bonus

Distribution of Excess Return

Intro Model Calib **LR** SR App

Expanding S179 reduces investment wedge for productive firms

- Introduction
- Model
- Calibration
- Long-run effects of corporate tax deductions
- Transitional dynamics of corporate tax deductions
- Application: policy evaluation

Intro

Model

Calib

Almost no role of corporate taxation following a TFP shock

- Introduction
- Model
- Calibration
- Long-run effects of corporate tax deductions
- Transitional dynamics of corporate tax deductions
- Application: policy evaluation

IRF: negative TFP shocks with scale 2.18% and persistence 0.909

Intro

IRF: negative TFP shocks with scale 2.18% and persistence 0.909

Intro

IRF: negative TFP shocks with scale 2.18% and persistence 0.909

Intro

Model

Calib

LR

IRF: negative credit shocks with scale 27% and persistence 0.909

IRF: negative credit shocks with scale 27% and persistence 0.909

Intro

Model

Calib

Calib

SR

IRF: negative credit shocks with scale 27% and persistence 0.909

LR

SR

IRF: negative credit shocks with scale 27% and persistence 0.909

Intro Model Calib LR SR **App**

Conclusions

- Equilibrium model of how investment tax credit and subsidy policies boost economy
- Use model to quantify the macroeconomics effects of both subsidy policies:
 - S179 boost GDP by motivating marginal firms to be unconstrained and alleviate misallocation
 - ullet Bonus depreciation is 50% less effective than S179 as it motivates dividend payment
 - Cutting statutory tax rate is the least effective
- What's next:
 - Permanent change in policies
 - Policy effectiveness under aggregate uncertainty
 - Endogenizing financial frictions: does deduction policy reduce the incidence of firm default?

References Empirical Model

References I

- Chodorow-Reich, Gabriel, Matthew Smith, Owen Zidar, and Eric Zwick (2024a) "Tax Policy and Investment in a Global Economy," *SSRN Electronic Journal*, 10.2139/ssrn.4746790.
- Chodorow-Reich, Gabriel, Owen Zidar, and Eric Zwick (2024b) "Lessons from the Biggest Business Tax Cut in US History," *Journal of Economic Perspectives*, 38 (3), 61–88, 10.1257/jep.38.3.61.
- Cooper, Russell W. and John C. Haltiwanger (2006) "On the Nature of Capital Adjustment Costs," *Review of Economic Studies*, 73 (3), 611–633, 10.1111/j.1467-937x.2006.00389.x.
- Cummins, Jason G., Kevin A. Hassett, and R.Glenn Hubbard (1996) "Tax reforms and investment: A cross-country comparison," *Journal of Public Economics*, 62 (1), 237–273, https://doi.org/10.1016/0047-2727(96)01580-0, Proceedings of the Trans-Atlantic Public Economic Seminar on Market Failures and Public Policy.
- Desai, Mihir A. (Mihir Arvind) and Austan Goolsbee (2004) "Investment, Overhang, and Tax Policy," *Brookings Papers on Economic Activity*, 2004 (2), 285–355, 10.1353/eca.2005.0004.
- Fernández-Villaverde, Jesús (2010) "Fiscal Policy in a Model With Financial Frictions," *American Economic Review*, 100 (2), 35–40, 10.1257/aer.100.2.35.

References II

- Goolsbee, A. (1998) "Investment Tax Incentives, Prices, and the Supply of Capital Goods," *The Quarterly Journal of Economics*, 113 (1), 121–148, 10.1162/003355398555540.
- Hall, Robert E. and Dale W. Jorgenson (1967) "Tax Policy and Investment Behavior," *The American Economic Review*, 57 (3), 391–414, http://www.jstor.org/stable/1812110.
- House, Christopher L. (2014) "Fixed costs and long-lived investments," *Journal of Monetary Economics*, 68, 86–100, 10.1016/j.jmoneco.2014.07.011.
- House, Christopher L and Matthew D Shapiro (2008) "Temporary Investment Tax Incentives: Theory with Evidence from Bonus Depreciation," *American Economic Review*, 98 (3), 737–768, 10.1257/aer.98.3.737.
- Khan, Aubhik and Julia K. Thomas (2013) "Credit Shocks and Aggregate Fluctuations in an Economy with Production Heterogeneity," *Journal of Political Economy*, 121 (6), 1055–1107, 10.1086/674142.
- Koby, Yann and Christian Wolf (2020) "Aggregation in heterogeneous-firm models: Theory and measurement," Working Paper.
- Lamont, Owen (1997) "Cash Flow and Investment: Evidence from Internal Capital Markets," *The Journal of Finance*, 52 (1), 83–109, 10.1111/j.1540-6261.1997.tb03809.x.

References III

- Occhino, Filippo (2022) "The macroeconomic effects of the tax cuts and jobs act," *Macroeconomic Dynamics*, 27 (6), 1495-1527, 10.1017/s1365100522000311.
- ——— (2023) "The macroeconomic effects of business tax cuts with debt financing and accelerated depreciation," *Economic Modelling*, 125, 106308, 10.1016/j.econmod.2023.106308.
- Ohrn, Eric (2018) "The Effect of Corporate Taxation on Investment and Financial Policy: Evidence from the DPAD," *American Economic Journal: Economic Policy*, 10 (2), 272–301, 10.1257/pol.20150378.
- ——— (2019) "The effect of tax incentives on U.S. manufacturing: Evidence from state accelerated depreciation policies," *Journal of Public Economics*, 180, 104084, 10.1016/j.jpubeco.2019.104084.
- Summers, Lawrence H., Barry P. Bosworth, James Tobin, and Philip M. White (1981) "Taxation and Corporate Investment: A q-Theory Approach," *Brookings Papers on Economic Activity*, 1981 (1), 67, 10.2307/2534397.
- The Joint Committee on Taxation (2017) "Macroeconomic Analysis Of The Conference Agreement For H.R. 1, "The Tax Cuts And Jobs Act"."

References IV

- Winberry, Thomas (2021) "Lumpy Investment, Business Cycles, and Stimulus Policy," *American Economic Review*, 111 (1), 364–396, 10.1257/aer.20161723.
- Zwick, Eric and James Mahon (2017) "Tax Policy and Heterogeneous Investment Behavior," *American Economic Review*, 107 (1), 217–248, 10.1257/aer.20140855.

Outline

• Empirical Literatures

Model Appendix

Literature

- Large empirical literature on responsiveness of investment to tax credit
 - Public firm data: Goolsbee (1998), Cummins, Hassett and Hubbard (1996), House and Shapiro (2008), Lamont (1997); Firm/State-level data: Zwick and Mahon (2017), Ohrn (2018), Ohrn (2019)

New - evaluates aggregate effects of both investment subsidy policies

- Representative firm model on the response of fiscal policies with simplistic tax structure
 - Hall and Jorgenson (1967), Summers, Bosworth, Tobin and White (1981), Fernández-Villaverde (2010), Occhino (2022), Occhino (2023), Chodorow-Reich, Smith, Zidar and Zwick (2024a)

New - accounts for distributional effects and a realistic tax deduction structure

- Heterogeneous firm model on price elasticity of investment and policy transmission
 - Khan and Thomas (2013), House (2014), Koby and Wolf (2020), Winberry (2021)

New - expands to fiscal policies and determines their aggregate effects

Why accelerated depreciation?

- ① Tax deduction follows depreciation schedule ⇒ value needs to be discounted
- Stated purpose: boost investment in economic downturn (Committee on Ways and Means 2003)
- 3 Yet, such tax incentives become part of firms' expectation (Desai and Goolsbee (2004)) Policy change
- Policy response is heterogeneous across firms and industries (Zwick and Mahon (2017))
 - firms respond to immediate cash flows but not future realization of cash flow
 - industries with longer-duration capital respond more Diff-n-diff
- Policy adoption by states allows evaluation of effectiveness of subsidy policies (Ohrn (2019))
 - The \$100000 increases in Section 179 threshold boost 2.06% more investment
 - Both policies are weakening each other conforming states

F007 D ----- C170 -1:-:|-|- /

Corporate taxation in the US

- Two policies coexist: bonus depreciation (untargeted) and Section 179 (targeted)
- Consider a firm buying \$1000 of computer and interest rate is 4%:

Year	Cost × Depreciation %	Normai		50% Bonus	S179 eligible /
					100% Bonus
0	$1000 \times 20.00\%$	\$200	\Longrightarrow $+800\times0.5$	\$600	\$1000
1	$1000 \times 32.00\%$	\$320		\$160	\$0
2	$\$1000\times19.20\%$	\$192		\$96	\$0
3	$\$1000\times11.52\%$	\$115.2	\Rightarrow $\times 0.5$	\$57.5	\$0
4	$\$1000\times11.52\%$	\$115.2		\$57.5	\$0
5	$1000 \times 5.76\%$	\$57.6		\$29	\$0
Total		\$1000		\$1000	\$1000
NPV		\$933		\$966	\$1000

Example: Modified Accelerated Cost Recovery System (MARCS)

Shawn bought and placed in service a used pickup for \$15,000 on March 5,1998. The pickup has a 5 year class life. His depreciation deduction for each year is computed in the following table.

Year	$Cost \times MACRS~\%$	Depreciation
1998	$\$15,000 \times 20.00\%$	\$3,000
1999	$$15,000 \times 32.00\%$	\$4,800
2000	$$15,000 \times 19.20\%$	\$2,880
2001	$$15,000 \times 11.52\%$	\$2,880
2002	$\$15,000 \times 11.52\%$	\$2,880
2003	$15,000 \times 5.76\%$	\$864
Total		\$15,000

MACRS Percentage Table

MACINO I ciccintage Table						
	Year	3 Year	5 Year	7 Year		
	1	33.33%	20.00%	14.29%		
	2	44.45%	32.00%	24.49%		
	3	14.81%	19.20%	17.49%		
	4	7.41%	11.52%	12.49%		
	5		11.52%	8.93%		
	6		5.76%	8.92%		
	7			8.93%		
	8			4.46%		

Empirical

References Empirical

Long-duration industries respond more to bonus depreciation

Model

Conforming states enjoys 18% of investment boosts

Table: Investment Impacts of State Bonus and State 179

Dependent Var:	In CapEx					
Specification	(1)	(2)	(3)	(4)		
State Bonus	0.038		0.031	0.174**		
	(0.036)		(0.037)	(0.073)		
State 179		0.013	0.012	0.020**		
		(0.009)	(0.009)	(0.009)		
Bonus 179 Interaction				-0.047***		
				(0.016)		
Year FE	✓	√	✓	✓		
State Controls, Time Trends	✓	✓	✓	✓		
NAICS x Year FE	✓	✓	\checkmark	✓		
Adj. R-Square	0.286	0.286	0.286	0.286		
State x NAICS Groups	883	883	883	883		
Observations	11,987	11,987	11,987	11,987		

Notes: Table 5 presents coefficient estimates of the impact of State 179 and State Bonus on Ln CapEx. All specifications include include year fixed effects, State \times NAICS fixed effects, state linear time trends, NAICS \times Year fixed effects, and a robust set if time-varying state level controls to capture the effect of changes in state politics, productivity, population, and finances. Standard errors are at the state level and are reported in parentheses. Statistical significance at the 1 percent level is denoted by ***, 5 percent by **, and 10 percent by *.

Model

Heterogeneity in investment response

Table: Heterogeneity by Ex Ante Constraints

	Sa	les	Div payer?		Lagged cash	
	Small	Big	No	Yes	Low	High
~	6.29	3.22	5.98	3.67	7.21	2.76
$z_{N,t}$	(1.21)	(0.76)	(0.88)	(0.97)	(1.38)	(0.88)
Equality test	p = 0.030		p = 0.079		p = 0.000	
Observations	177,620	255,266	274,809	127,523	176,893	180,933
Clusters (firms)	29,618	29,637	39,195	12,543	45,824	48,936
R^2	0.44	0.76	0.69	0.80	0.81	0.76

Heterogeneous response to bonus depreciation

In 2015,

- Real investment: \$2459.8B (Table 3.7 BEA)
- \blacksquare Numbers of firms in US: 5,900,731 (SUSB)
- \blacksquare Average investment: \$416,853
- Section 179 deduction: \$500,000
- Choose $\bar{I} = \frac{500,000}{416.853} \times$ aggregate investment ~ 0.092

Outline

Empirical Literatures

Model Appendix

Firms that pay corporate tax and those which did not

Let $\bar{k} = \frac{y - wn - \delta^{\psi}\psi}{\mathcal{J}(I)\omega} + (1 - \delta)k$ be the upper bound for capital such that taxable is nonnegative. Let \tilde{k} be the intersection between k' and \bar{k} .

For firms with $k>\tilde{k}$: binary choice; $k\leq \tilde{k}$: no effect on capital decision and exiting cash

Empirical

Unconstrained firms' problem: positive taxable income

Let W function be the value function for unconstrained firms.

The start-of-period value before the realization of exit shock is

$$W^{0}(k, b, \psi, \varepsilon; \mu) = p(\mu)\pi_{d} \max_{n} \left\{ z \varepsilon F(k, n) - wn - b + (1 - \delta)k - \tau^{c} \mathcal{I}(0, k, \psi) \right\}$$
$$+ (1 - \pi_{d})W(k, b, \psi, \varepsilon; \mu)$$

Upon survival, unconstrained firms undertake binary choice,

$$W(k,b,\psi,\varepsilon;\mu) = \max \left\{ W^L(k,b,\psi,\varepsilon;\mu), W^H(k,b,\psi,\varepsilon;\mu), W^N(k,b,\psi,\varepsilon;\mu) \right\}.$$

Firm's current value: $W(k, b, \psi, \varepsilon; \mu) = W(k, 0, \psi, \varepsilon; \mu) - pb$ Start-of-period value: $W^0(k, b, \psi, \varepsilon; \mu) = W^0(k, 0, \psi, \varepsilon; \mu) - pb$. Given these transformation, firms' problem can be rewritten as

$$\begin{split} W^L(k,b,\psi,\varepsilon_i;\mu) &= p\left((1-\tau^c)(z\varepsilon f(k,n)-wn)-b+(1-\tau^c\omega)(1-\delta)k+\tau^c\delta^\psi\psi\right) \\ &+ \max_{k'\leq (1-\delta)k+\bar{I}} \left\{-p(1-\tau^c\omega)k'+\beta\sum_{j=1}^{N_\varepsilon}\pi_{ij}^\varepsilon W^0(k',0,\psi',\varepsilon_j;\mu')\right\}, \\ W^H(k,b,\psi,\varepsilon_i;\mu) &= p\left((1-\tau^c)(z\varepsilon f(k,n)-wn)-b+(1-\tau^c\omega\xi)(1-\delta)k+\tau^c\delta^\psi\psi\right) \\ &+ \max_{k'\in ((1-\delta)k+\bar{I},\bar{k})} \left\{-p(1-\tau^c\omega\xi)k'+\beta\sum_{j=1}^{N_\varepsilon}\pi_{ij}^\varepsilon W^0(k',0,\psi',\varepsilon_j;\mu')\right\}, \\ W^N(k,b,\psi,\varepsilon_i;\mu) &= p\left(z\varepsilon f(k,n)-wn-b+(1-\delta)k\right) \\ &+ \max_{k'\geq \bar{k}} \left\{-pk'+\beta\sum_{j=1}^{N_\varepsilon}\pi_{ij}^\varepsilon W^0(k',0,\psi',\varepsilon_j;\mu')\right\}, \end{split}$$

Model

Unconstrained capital decision rule

Targeted capitals are

$$k_H^*(k, \psi, \varepsilon) = \arg \max_{k' > \bar{I} + (1 - \delta)k} \left\{ -p(1 - \tau^c \omega \xi) k' + \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} W^0(k', 0, \psi', \varepsilon_j; \mu') \right\},$$

$$k_L^*(k, \psi, \varepsilon) = \arg \max_{k' \leq \bar{I} + (1 - \delta)k} \left\{ -p(1 - \tau^c \omega) k' + \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} W^0(k', 0, \psi', \varepsilon_j; \mu') \right\}.$$

Therefore, corresponding unconstrained capital decision rule follows (S,s) policy:

$$K^w(k,\psi,\varepsilon) = \begin{cases} k_H^*(k,\psi,\varepsilon) & \text{if } W^H(k,b,\psi,\varepsilon_i;\mu) > W^L(k,b,\psi,\varepsilon_i;\mu) \\ k_L^*(k,\psi,\varepsilon) & \text{if } W^H(k,b,\psi,\varepsilon_i;\mu) \leq W^L(k,b,\psi,\varepsilon_i;\mu) \end{cases}.$$

Empirical

When taxable income is negative, I slice the state space into two area:

- $\textbf{ 1} \text{ Upper bar implied by zero taxable income: } \bar{k} = \frac{z\varepsilon f(k,n) wn \delta^{\psi}\psi}{\mathcal{J}(k',k)\omega} + (1-\delta)k$
- $oldsymbol{\varrho}$ $ar{k}$ can be too low or even negative. In either case, the lower bound for capital should be solved by

$$\underline{k}^{w} = \arg \max_{k'} \left\{ -pk' + \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} W^{0}(k', 0, \psi', \varepsilon_{j}; \mu') \right\},\,$$

that is, the unconstrained level of capital when firm is not paying tax and doesn't have carry-over tax credit.

Unconstrained firms' problem when taxable income is nonpositive

The following question defines the lower bound for capital when the firms are having zero or negative taxable income:

$$W^{N}(k,b,\psi,\varepsilon_{i};\mu) = p(y-wn-b+(1-\delta)k) + \max_{k'} \left\{ -pk' + \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} W^{0}(k',0,\psi',\varepsilon_{j};\mu') \right\},\,$$

where

$$\psi' = (1 - \delta^{\psi})\psi + (1 - \mathcal{J}(I))\omega I \qquad \text{if } (y - wn - \mathcal{J}(I)\omega I - \delta^{\psi}\psi) \ge 0$$

$$\psi' = \psi + \omega I - y + wn \qquad \text{if } (y - wn - \mathcal{J}(I)\omega I - \delta^{\psi}\psi) < 0$$

Minimum Saving Policy

The minimum saving policy, $B^w(k,\psi,\varepsilon)$, can be recursively calculated by the following two equations with both policy functions for labor, $N(k,\varepsilon)$, and capital, $K^w(k,\psi,\varepsilon)$,

$$\begin{split} B^w(k,\psi,\varepsilon) &= \min_{\varepsilon_j} \left(\tilde{B}(K^w(k,\psi,\varepsilon_i),\psi',\varepsilon_j) \right) \\ \tilde{B}(k,\psi,\varepsilon_i) &= \frac{1}{1 - \tau^c \tau^b} \Big((1 - \tau^c) \pi(k,\varepsilon_i) + \tau^c \delta^\psi \psi \\ &\quad - (1 - \tau^c \omega \mathcal{J} \left(K^w(k,\psi,\varepsilon_i) - (1 - \delta)k \right) \right) (K^w(k,\psi,\varepsilon_i) - (1 - \delta)k) \\ &\quad + q \min \left\{ B^w(k,\psi,\varepsilon_i), \theta K^w(k,\psi,\varepsilon_i) \right\} \Big), \end{split}$$

I set interest deductability $\tau^b=0$ as minimum saving policy cannot converge with positive τ^b . As $\frac{1}{q}$ is the risk-free rate, firms are paying $\frac{q}{1-\tau^c\tau^b}>q$, implies the interest rate that firms are paying is less than risk-free rate.

Constrained firms' problem

Constrained firms' bond decision is implied by binding collateral constraints, i.e., $B^c(k,b,\psi,\varepsilon) = \theta K^c(k,b,\psi,\varepsilon) \text{, and the capital decision } K^c(k,b,\psi,\varepsilon) \text{ has to be determined recursively.}$

$$J(k, b, \psi, \varepsilon; \mu) = \max \left\{ J^H(k, b, \psi, \varepsilon; \mu), J^L(k, b, \psi, \varepsilon; \mu), J^N(k, b, \psi, \varepsilon; \mu) \right\},\,$$

and J^H , J_L and J_N are defined as

Constrained firms' problem: invest higher than threshold

$$J^{H}(k, b, \psi, \varepsilon; \mu) = \max_{k' \in \Omega_{H}(k, b, \psi, \varepsilon)} \beta \sum_{i=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} V^{0}(k', b_{H}^{2}(k'), \psi', \varepsilon_{j}; \mu'),$$

subject to

$$b_H(k') = -\frac{1}{q} \Big((1 - \tau^c) \pi(k, \varepsilon) - b + \tau^c \delta^{\psi} \psi - (1 - \tau^c \omega \xi) (k' - (1 - \delta)k) \Big),$$

$$\psi' = (1 - \delta^{\psi}) \psi + (1 - \xi) (k' - (1 - \delta)k),$$

The choice sets for H-type firms' problem are defined by

$$\Omega_H(k,b,\psi,\varepsilon) = \left[\max\left\{ (1-\delta)k + \bar{I}, \min\left\{ \bar{k}_H(k,b,\psi,\varepsilon), \bar{k} \right\} \right\}, \min\left\{ \bar{k}_H(k,b,\psi,\varepsilon), \bar{k} \right\} \right],$$

Maximum affordable capital: $\bar{k}_H = \frac{(1-\tau^c)\pi(k,\varepsilon)+\tau^c\delta^{\psi}\psi-b+(1-\tau^c\omega\xi)(1-\delta)k}{1-\tau^c\omega\xi-\sigma\theta}$

Constrained firms' problem: invest lower than threshold

$$J^{L}(k, b, \psi, \varepsilon; \mu) = \max_{k' \in \Omega_{L}(k, b, \psi, \varepsilon)} \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} V^{0}(k', b_{L}^{2}(k'), \psi', \varepsilon_{j}; \mu'),$$

subject to

$$b_L(k') = \frac{1}{q} \Big(-(1 - \tau^c)\pi(k, \varepsilon) + b - \tau^c \delta^{\psi} \psi + (1 - \tau^c \omega)(k' - (1 - \delta)k) \Big),$$

$$\psi' = (1 - \delta^{\psi})\psi.$$

Choice set:
$$\Omega_L(k,b,\psi,\varepsilon) = \left[0, \max\left\{0, \min\left\{(1-\delta)k + \bar{I}, \bar{k}_L(k,b,\psi,\varepsilon)\right\}\right\}\right],$$

Maximum affordable capital: $\bar{k}_L = \frac{(1-\tau^c)\pi(k,\varepsilon)+\tau^c\delta^\psi\psi-b+(1-\tau^c\omega)(1-\delta)k}{1-\tau^c\psi-\sigma^\theta}$.

When taxable income is negative for constrained firms

$$J^{N}(k, b, \psi, \varepsilon; \mu) = \max_{k' \in \Omega^{N}(k, b)} \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} V^{0}(k', b_{N}(k'), \psi', \varepsilon_{j}; \mu')$$

subject to

$$b_N(k') = -\frac{1}{q} \left(z \varepsilon f(k, n) - wn - b - (k' - (1 - \delta)k) \right)$$

$$\psi' = (1 - \delta^{\psi}) \psi + (1 - \xi) \omega (k' - (1 - \delta)k)$$

$$\Omega^N(k, b, \varepsilon) = \left[\min \left\{ \max \left\{ \bar{k}, 0 \right\}, \bar{k}_N(k, b, \varepsilon) \right\}, \bar{k}_N(k, b, \varepsilon) \right]$$

$$\bar{k}_N(k, b, \varepsilon) = \frac{z \varepsilon f(k, n) - wn - b + (1 - \delta)k}{1 - q\theta}$$

- In principle, IRS will not give tax subsidy if taxable income is negative.
- User cost of capital for firms with nonpositive taxable income is not affected by deduction.
- \blacksquare Solving for $\mathcal{I} \geq 0$ gives the upper threshold for capital decision that pays corporate tax:

$$k' \le \bar{k} \equiv \frac{z\varepsilon f(k,n) - wn - \delta^{\psi}\psi}{\xi\omega} + (1-\delta)k,$$

Assume $F(k,n)=k^{\alpha}n^{\nu}$, I solve for $\bar{k}=(1-\delta)k+\bar{I}$ and get,

$$\tilde{k} \equiv \left(\frac{\delta^{\psi}\psi + \xi\omega\bar{I}}{A(w)z^{\frac{1}{1-\nu}}\varepsilon^{\frac{1}{1-\nu}}}\right)^{\frac{1-\nu}{\alpha}}$$

Model

$$v^H(k,b,\psi,\varepsilon_i;\mu) = \max_{D,k',b',n} D + \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} Q(\mu) v^0(k',b',\psi',\varepsilon_j;\mu'),$$

subject to

$$0 \leq D = (1 - \boldsymbol{\tau}^c)(z\varepsilon F(k,n) - wn) - b$$

$$+ qb' - (1 - \boldsymbol{\tau}^c \xi \omega)(k' - (1 - \delta)k) + \boldsymbol{\tau}^c \delta^\psi \psi. \tag{Dividend}$$

$$k' \in ((1 - \delta)k + \bar{I}, \bar{k}) \text{ and } k > \tilde{k} \tag{Choice Sets}$$

$$b' \leq \theta k' \tag{Collateral}$$

$$\psi' = (1 - \delta^\psi)\psi + (1 - \xi)\omega(k' - (1 - \delta)k) \tag{Tax capital LoM}$$

$$\mu' = \Gamma(\mu) \tag{Distribution LoM}$$

$$v^{L}(k, b, \psi, \varepsilon_{i}; \mu) = \max_{D, k', b', n} D + \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} Q(\mu) v^{0}(k', b', \psi', \varepsilon_{j}; \mu'), \tag{1}$$

subject to

$$0 \le D = (1 - \tau^c)(z\varepsilon F(k, n) - wn) - b$$
$$+ qb' - (1 - \tau^c \omega)(k' - (1 - \delta)k) + \tau^c \delta^{\psi} \psi.$$

 $k' < (1-\delta)k + \bar{I}$ and $k > \hat{k}$

(Choice Sets)

 $b' < \theta k'$

(Collateral)

(Dividend)

$$\mu' = \Gamma(\mu)$$

 $\psi' = (1 - \delta^{\psi})\psi$

(Tax Benefit LoM) (Distribution LoM)

Firms not paying corporate tax

$$v^{N}(k, b, \psi, \varepsilon_{i}; \mu) = \max_{D, k', b', n} D + \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} Q(\mu) v^{0}(k', b', \psi', \varepsilon_{j}; \mu'), \tag{2}$$

subject to

$$0 \leq D = z\varepsilon F(k,n) - wn - b + qb' - (k' - (1-\delta)k) \tag{Dividend}$$

$$k' \geq \max(\bar{k},0) \tag{Choice Sets}$$

$$b' \leq \theta k' \tag{Collateral}$$

$$\psi' = (1-\delta^{\psi})\psi + (1-\mathcal{J}(k',k))\omega(k'-(1-\delta)k) \tag{Tax Benefit LoM}$$

$$\mu' = \Gamma(\mu) \tag{Distribution LoM}$$

Household

In each period, representative households maximize their lifetime utility by choosing consumption, c, labor supply, n^h , future firm shareholding, λ' , and future bond holding, a':

$$V^{h}(\lambda, a; \mu) = \max_{c, n^{h}, a', \lambda'} \left\{ u(c, 1 - n^{h}) + \beta V^{h}(\lambda', a'; \mu') \right\}$$
s.t. $c + q(\mu)a' + \int \rho_{1}(k', b', \psi', \varepsilon'; \mu)\lambda'(d[k' \times b' \times \psi' \times \varepsilon']) \leq (1 - \tau^{n})w(\mu)n^{h},$ (3)
$$+ a + \int \rho_{0}(k, b, \psi, \varepsilon; \mu)\lambda(d[k \times b \times \psi \times \varepsilon]) + R - T$$

where $\rho_0(k, b, \psi, \varepsilon)$ is the dividend-inclusive price of the current share, $\rho_1(k', b', \psi', \varepsilon')$ is the ex-dividend price of the future share, τ^n is payroll tax, R is the steady state government lump-sum rebates to households, and T is lump-sum tax to fund policy changes.

Model

Equilibrium

Market clear :
$$Y = C + \left[(1 - \pi_d) \left(K' - (1 - \delta)K \right) - \pi_d (1 - \delta)K \right] + \pi_d k_0 + \bar{G}$$

Output:
$$Y = \int z \varepsilon F(k, n(k, \varepsilon)) d\mu$$

Capital:
$$K = \int k d\mu$$

Labor :
$$N^h=N$$
, where $N=\int n(k,arepsilon)d\mu$

Taxable capital :
$$\Psi = \int \psi(k,\psi,arepsilon) d\mu$$

Debt:
$$B = \int bd\mu$$

Corp. revenue :
$$R = \tau^c \left(Y - w(\mu) N - \omega \mathcal{J}(I) (K' - (1 - \delta)K) - \delta^\psi \Psi \right)$$

Gov. Budget :
$$\bar{G} = \tau^n w N^h + R + T$$

Household Optimality Conditions

■ After-tax wage fully compensate MRS between leisure and consumption:

$$w(\mu) = \frac{1}{(1-\tau^n)} \frac{D_2 u(c, 1-n^h)}{D_1 u(c, 1-n^h)}$$

With $u(c, 1 - n^h) = \log c + \varphi(1 - n^h)$, implied Frisch elasticity is ∞ ,

$$w(\mu) = \frac{\varphi c}{(1 - \tau^n)}$$

■ As there's no agg. shock, SDF equals discounting factor equals to bond prices

$$Q(\mu) = \beta \frac{D_1 u(c, 1 - n^h)}{D_1 u(c, 1 - n^h)} = \beta = q$$

Empirical

Frisch elasticity of labor supply

Let $u(c, L) = \log c + \varphi \log L$, the Lagrangian is

$$\max_{L} \log c + \varphi \log L + \lambda \left[w(1-L) - c \right]$$

Thus

$$[L]: \frac{\varphi}{L} = \lambda w \Rightarrow L = \frac{\varphi}{\lambda w}, \frac{\partial L}{\partial w} = -\frac{\varphi}{\lambda w^2} = -\frac{L}{w}$$

and therefore

$$\eta^{\lambda} = \frac{\partial L}{\partial w} \frac{w}{L} = -1$$

Algorithm

I use Broyden's method to solve system of prices and policy tool equations.

For baseline model, I choose p and w to solve $p=\frac{1}{c}$ and $n^h=N$ to calibrate a fixed \bar{G} .

For all experiments, I choose p, w, and τ^n to solve $p = \frac{1}{c}$, $n^h = N$, and $\tau^n w n^h + R = \bar{G}$.

Exogenous Parameters

	Parameter	Value	Reason
Exogenous parameters			
fraction of entrants capital endowment	χ	0.1	10% of aggregate capital
exogenous exit rate	π_d	0.1	10% entry and exit
Corporate tax rate	$ au^c$	0.21	US Tax schedule after TCJA
Tax benefit depreciation rate	δ^ψ	0.138	$\delta^\psi=2\delta$ (Double-declining balance)

Frequency and Functional Form

- Model frequency: annual
- Household utility function: $u(c, n^h) = \log c + \varphi(1 n^h)$
- Production function: $F(k,n) = k^{\alpha}n^{\nu}$
- lacksquare Initial capital for entrants: $k_0=\chi\int k\tilde{\mu}(d[k imes b imes\psi imesarepsilon])$
- lacksquare Initial bond and taxable capital: $b_0=0$ and $\psi_0=0$
- Idiosyncratic productivity shock: $\log \varepsilon' = \rho_{\varepsilon} \log \varepsilon + \eta'_{\varepsilon}$, $\eta_{\varepsilon} \sim N(0, \sigma_{\varepsilon}^2)$
 - 7-state Markov chain discretized using Tauchen algorithm

Empirical

Unproductive firm: similar to standard model ($\varepsilon = 0.7847$)

Steady State Comparison

	Description	baseline	S179	bonus	both
\tilde{T}/Y	cost of policy / baseline output	-	0.30	0.31	0.42
Y	aggregate output	100 (0.54)	101.61	101.06	102.00
C	aggregate consumption	100 (0.36)	101.55	100.92	101.91
K	aggregate capital	100 (1.10)	104.22	103.21	105.30
I	aggregate investment	100 (0.08)	104.22	103.21	105.30
N	aggregate labor	100 (0.33)	100.06	100.13	100.09
B > 0	aggregate debt	100 (0.41)	106.35	113.01	112.48
R	corporate tax revenue	100 (0.03)	94.25	94.08	91.89
ê	measured TFP	100 (1.02)	100.32	100.02	100.38
$dY/ ilde{T}$		-	5.40	3.44	4.74
dC/\tilde{T}		-	3.42	1.98	2.98
$dI/ ilde{T}$		-	1.98	1.46	1.76

Notes: output, capital, debt, labor, consumption, government spending, measured TFP are expressed as fractions of baseline value.

Steady State Comparison (Cont.)

	Description	baseline	S179	bonus	both			
Prices								
p	marginal utility of consumption	100 (2.80)	98.47	99.08	98.13			
w	wage	100 (0.97)	101.55	100.92	101.91			
Distributio	Distribution							
$\mu_{\sf unc}$	unconstrained firm mass	0.080	0.093	0.099	0.129			
μ_{con}	constrained firm mass	0.920	0.907	0.901	0.871			
$\mu_{\sf unc} K$	capital: unconstrained	100 (2.70)	94.31	99.78	92.51			
$\mu_{con} K$	capital: constrained	100 (0.96)	104.36	100.39	100.03			
$\mu_{\sf unc} I$	investment: unconstrained	100 (0.01)	170.53	7.04	102.47			
$\mu_{con} I$	investment: constrained	100 (0.18)	102.29	106.01	105.38			
Financial	Financial Variables							
D	dividend	100 (0.03)	102.08	110.14	115.64			
$\mu V(\cdot)$	average firm value	100 (3.41)	98.02	94.13	95.35			
μc	user cost of capital	100 (0.14)	86.26	97.44	85.45			
$ au^*$	effective corporate tax rate	100 (0.10)	92.43	94.08	91.68			

References Empirical Model

Capital choice state space

Investment Response to raising bonus depreciation

Tax term: $\frac{1-\tau^c \omega \xi}{1-\tau^c}$; Elasticity: $\frac{\%\Delta \text{Investment at bin}}{\%\Delta \text{tax term}}$

Size-dependent investment response

Private excess return on capital

N-type firms:

$$\beta \sum_{i=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} \left[\frac{\partial V^{0}(k',b',\psi',\varepsilon_{j};\mu)}{\partial k'} + \frac{\partial V^{0}(k',b',\psi',\varepsilon_{j};\mu)}{\partial \psi'} \frac{\partial \psi'}{\partial k'} \right] - 1$$

H-type firms:

$$\beta \sum_{i=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} \left[\frac{\partial V^{0}(k',b',\psi',\varepsilon_{j};\mu)}{\partial k'} + \frac{\partial V^{0}(k',b',\psi',\varepsilon_{j};\mu)}{\partial \psi'} \frac{\partial \psi'}{\partial k'} \right] - (1 - \tau^{c} \omega \xi)$$

L-type firms:

$$\beta \sum_{i=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} \left[\frac{\partial V^{0}(k', b', \psi', \varepsilon_{j}; \mu)}{\partial k'} + \frac{\partial V^{0}(k', b', \psi', \varepsilon_{j}; \mu)}{\partial \psi'} \frac{\partial \psi'}{\partial k'} \right] - (1 - \tau^{c} \omega)$$

Approximating the derivatives of the value functions

I use RHS and LHS secant to approximate the derivatives of the value functions.

Let
$$i_{\varepsilon}=1,\ldots,N(\varepsilon)$$
, $i_b=1,\ldots,N(b)$, $i_k=1,\ldots,N(k)$ and $i_{\psi}=1,\ldots,N(\psi)$.

RHS secant at $(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon})$, $i_k=1,\dots,N(k)-1$ is

$$s_r(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon}) = \frac{V^0(k_{i_k+1},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon}) - V^0(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon})}{k_{i_k+1} - k_{i_k}}$$

LHS secant at $(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon})$, $i_k=2,\dots,N(k)$ is

$$s_l(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon}) = \frac{V^0(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon}) - V^0(k_{i_k-1},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon})}{k_{i_k}-k_{i_k-1}}$$

Approximating the derivatives of the value functions (Cont.)

When
$$i_k = 2, ..., N(k) - 1$$
,

$$D_k V^0(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon}) = 0.5 s_r(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon}) + 0.5 s_l(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon})$$

When $i_k = 1$,

$$D_k V^0(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon}) = s_r(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon})$$

When $i_k = N(k)$,

$$D_k V^0(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon}) = s_l(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon})$$

Distribution: median productivity

Distribution: minimum productivity

Decompose the wage effects

Fix wage at the baseline level and resolve the steady state

