Announcement

• PS 1 uploaded is due Monday, January 27th.

Lecture 3 Statistics Review II

Outline

- Sampling distribution of the sample mean
- Central limit theorem
- Statistical inference-Confidence Interval (CI)
- Hypothesis testing

Population distribution vs. sampling distribution

- **Population distribution** of a random variable (X) is the distribution of its values for all members of the population.
 - Example: Height of individuals in the entire country.
- Sampling distribution is the probability distribution of a statistic (e.g. mean (X)).
 - The average height of a class follows normal distribution-sampling distribution

Population and sampling distribution

	POPULATION	SAMPLING DISTRIBUTION
Mean	μ	$\mu_{\overline{x}} = \mu$
Standard Deviation	σ	$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$
Shape	Normal	Normal
	Undetermined (skewed, etc.)	If n is "small" shape is similar to shape of original graph OR If n is "large" (rule of thumb: n ≥ 30) shape is approximately normal (central limit theorem)

Statistical inference

- Statistical inference: draw conclusions about population from sample.
- Example
 - Parameter: average height of adults in the US
 - Statistic: average height of 50 randomly selected people from the population
- Suppose scores on an IQ test are normally distributed. 10 people are randomly selected and tested. The mean and standard deviation in the sample group is 95 and 15. Construct a 95% confidence interval for the true population mean.
- Extract information:
- n=10,degree of freedom=n-1=9; $\bar{X}=95$;S=15; confidence level (C)=0.95

Steps to construct Confidence Interval(CI)

- Each confidence level C corresponds to a tail probability $\alpha=1-\mathcal{C}$
- Given lpha and the degree of freedom (n-1), find $t_{lpha/2}$ using the t-table
- Construct margin of error m= $t_{\alpha/2}$ *s/ \sqrt{n}
- CI= $\bar{X} \pm m$ = $\bar{X} \pm t_{\alpha/2}$ *s/ \sqrt{n}
- Where s is the standard deviation of the sample, and \overline{X} is the mean. n is sample size.

Answer

- Step 1: Convert C=0.95 to t-score using t table.
- C=0.95, $\alpha = 1 C$ =0.05, $\frac{\alpha}{2} = 0.025$
- look it up in t-table, $t_{\alpha/2}$ =2.262
- Step 2: Construct margin of error.
- m= $t_{\alpha/2}$ *s/ \sqrt{n} =2.262*15/ $\sqrt{10}$ =10.73
- Step 3: Construct Cl
- $\bar{X} \pm m=95 \pm 10.73$
- Translate the CI into real world meaning
- You are 95 percent confident that the true mean is within 84.27-105.73

T-Table

Test of significance (hypothesis test)

Test of significance (hypothesis test)

Example: The average hourly wage of a certain industry is said to be \$13. You randomly interviewed 49 firms in the industry and found the average hourly wage is \$12.5 and standard deviation is 2. So you start to question the number 13. Perform test of significance using α =0.10.

Extract Information: \bar{X} =12.5, s=2, n=49, df=48, μ = 13, α =0.10

Steps to perform test of significance

Step1: State null (Ho) and alternative hypotheses

H0:
$$\mu$$
=13

Ha: $\mu \neq 13 \ (\mu > 13 \ \text{or} \ \mu < 13)$

• Step2: Use test statistic to examine the compatibility of observed data with Ho

$$t^* = \left| \frac{\bar{X} - \mu}{s / \sqrt{n}} \right|$$

• \overline{X} =12.5, s=2, n=49, df=48, $\mu=13$. Plug them into t, we get t*= $|\frac{12.5-13}{2/\sqrt{49}}|$ =1.75

Two ways of conducting hypothesis test

- P-value approach:
 - Translate t* into p-value(using T-table)
 - ullet Compare P-value with lpha
- Critical value approach:
 - Translate α into $t_{\alpha/2}$ (using T-table)
 - Compare t* with tα/2

The bigger t* is, the smaller p-value is. The more likely you reject the null

Some tips to help you remember the rule

- To reject H₀, we want our sample to be far away from the middle-unusual sample based on H₀
- What does being far away mean?
 - a bigger t-value
 - a smaller p-value
- How far away is far enough?
 - Depend on α

P-value approach

- Test statistic t*= $|\frac{\bar{X}-\mu}{s/\sqrt{n}}|$
- \overline{X} =12.5, s=2, n=49, df=48, $\mu=13$. Plug them into t, we get t*= $|\frac{12.5-13}{2/\sqrt{49}}|$ =1.75
- Step 3: Find p-value

Look t up in the <u>t-table</u>,

0.025<P(t>1.75)<0.05

P-value=2P(t>1.75) is within (0.05,0.1)

- Compare p with $\boldsymbol{\alpha}$

 α =0.1, p-value<0.1, so α >p.

If p < alpha, we can reject H₀. The true average hourly wage is not 13.

Critical-value approach

- Compare t values instead of comparing probabilities
- -Use the t-table to find the critical value of t at α =0.1, 1.684>t_{α /2}>1.676
- -compare t*=1.75 with t-critical, t*> $t_{\alpha/2}$
- -Reject H₀

Takeaways:

The bigger t* is, the smaller p-value is. The more likely you reject the null

Logic of test of significance

- Start with a null hypothesis-e.g. Average height for female is 6 foot
- Based on the evidence-e.g. sample of heights of females in this class
- Conclude whether it is likely that the null is true-unlikely in this case In the previous example:
- We assume average hourly wage is 13 (the null)
- Statistics tells us if wage is indeed 13, then the probability of seeing our current sample (p-value) is lower than 10% (α)
- Conclude-the null is unlikely to be true

Confidence interval and hypothesis test

- Confidence interval and hypothesis test are two sides of the same coin!
- Solve the question using confidence interval

The average hourly wage of a certain industry is said to be \$13. You randomly interviewed 49 firms in the industry and found the average hourly wage is \$12.5 with a standard deviation of 2. So you start to question the number 13.

Calculate confidence interval using C=0.9 and check whether 13 falls into the interval. Use CI to help you decide whether to reject H₀.

Steps to perform test of significance

- Step1: State null (H₀) and alternative hypotheses
- Step2: Use test statistic to examine the compatibility of observed data with Ho
- Step3: Two approaches
- a. P-value approach: Translate test statistic into P-value, and compare P-value with significance level α . State conclusion
- b. Critical-value approach: Find the t-critical value directed by α , and compare the test statistic with t-critical value. State conclusion

Steps to perform test of significance

- Step1: State null (H₀) and alternative hypotheses
- Step2: Use test statistic to examine the compatibility of observed data with Ho
- Step3: Two approaches
- a. P-value approach: Translate test statistic into P-value, and compare P-value with significance level α . State conclusion
- b. Critical-value approach: Find the t-critical value directed by α , and compare the test statistic with t-critical value. State conclusion

Confidence interval and hypothesis test

- Confidence interval and hypothesis test are two sides of the same coin!
- Solve the question using confidence interval

The average hourly wage of a certain industry is said to be \$13. You randomly interviewed 49 firms in the industry and found the average hourly wage is \$12.5 with a standard deviation of 2. So you start to question the number 13.

Calculate confidence interval using C=0.9 and check whether 13 falls into the interval. Use CI to help you decide whether to reject H₀.

TABLE 1.1 Donut Consumption and Weight

Observation number	Name	Donuts per week	Weight (pounds)
1	Homer	14	275
2	Marge	0	141
3	Lisa	0	70
4	Bart	5	75
5	Comic Book Guy	20	310
6	Mr. Burns	0.75	80
7	Smithers	0.25	160
8	Chief Wiggum	16	263
9	Principal Skinner	3	205
10	Rev. Lovejoy	2	185
11	Ned Flanders	0.8	170
12	Patty	5	155
13	Selma	4	145

Weight 300 — Principal Skinner Rev. Lovejoy

Ned Flanders Patty
Marga Selma

Mr. Burns

Bart

So — Mr. Burns

Bart

Donute

FIGURE 1.2: Weight and Donuts in Springfield

FIGURE 1.3: Regression Line for Weight and Donuts in Springfield

$$Weight_i = \beta_0 + \beta_1 Donuts_i + \epsilon_i \tag{1.1}$$

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \tag{1.2}$$

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \tag{1.2}$$

Source: MonkeyCage blog

Gun deaths

CASE STUDY Flu Shots

$$Death_i = \beta_0 + \beta_1 Flu \ shot_i + \epsilon_i \tag{1.3}$$

FIGURE 1.7: Two Scenarios for the Relationship between Flu Shots and Health

Research question: will more education defer marriage?

- What are some possible channels that education might affect marriage?
- What are the two key variables in this example?

Visually display the relationship

REMEMBER THIS

Our core statistical model is

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- 1. β_1 , the slope, indicates how much change in Y (the dependent variable) is expected if X (the independent variable) increases by one unit.
- **2.** β_0 , the intercept, indicates where the regression line crosses the *Y*-axis. It is the value of *Y* when *X* is zero.
- **3.** β_1 is almost always more interesting than β_0 .

Review for quizzes

- Know how to use CI and hypothesis test to perform statistical inference
- Understand the concepts of statistical significance, reject/fail to reject the null hypothesis
- Know the regression model in the population