

Low Latency Interest Rate Markets

Theory, Pricing & Practice

PART ONE: Theory

IR Markets, Products & Models

- Introduction to IR Markets
- Interest Rate Swaps
- > IR Products & CDS
- Yield Curves
- > IR Risk
- Credit Models

Quant Research Papers https://ssrn.com/author=1728976

Support Materials: Quant Research, C++ and Excel Examples https://github.com/nburgessx/SwapsBook

PART TWO: Pricing & Practice

Case Studies

- IRS Pricing Formulae
- IRS Pricing Case Study
- Asset Swap Structuring
- Asset Swap Pricing Case Study
- Pricing Tricks & Rules of Thumb

PART ONE - THEORY

Interest Rate Markets - Project Finance

Purpose

- > To Facilitate Government, Corporate & Project Finance
- Mortgages, Corporate Loans, Gov Projects & Infrastructure
- e.g. Hospitals, Transport (HS2), Energy & Defence Projects

Market Size

- Market Size by Notional: \$200T (US) + \$150T (EU)
- Derivatives, Loans & Securities
- ➤ All Referencing LIBOR, until Recently

Interest Rate Markets – Why the need for Speed?

- Cleared Electronic Trading & Auto-Hedging
- ➤ Real-Time, Highly Liquid & High Precision (Bid-Offer 1/10th bps i.e. USD 10 per MM)
- > Trading Horizon: High Frequency Trading (HFT) vs Long-Term Fund Performance

USD Semi vs 3M	Libor			USD Spreads v	s Treasuries		
31) 1 Year	0.750 / 0.754	+0.014	≣	71) 1 Year	4.282 / 5.295	+0.687	
32) 2 Year	1.045 / 1.049	+0.017	#	72) 2 Year	10.248 / 10.806	-0.073	
33) 3 Year	1.284 / 1.287	+0.018	■	73) 3 Year	3.337 / 3.895	-0.029	≣
34) 4 Year	1.467 / 1.471	+0.015	# I	74) 4 Year	1.350 / 1.900	+0.161	
35) 5 Year	1.617 / 1.621	+0.014	■	75) 5 Year	-4.020 / -3.454	+0.138	≣
36) 6 Year	1.750 / 1.754	+0.012	#1	76) 6 Year	-8.100 / -7.550	+0.157	
37) 7 Year	1.866 / 1.870	+0.011	. ≣ .	///) 7 Year	-13.577 / -13.036	+0.382	, II
38) 8 Year	1.966 / 1.970	+0.011		78) 8 Year	-11.100 / -10.550	+0.335	
39) 9 Year	2.052 / 2.056	+0.011	≣	79) 9 Year	-9.888 / -9.088	+0.492	
40) 10 Year	2.126 / 2.129	+0.011	# I	80) 10 Year	-9.775 / -9.275	+0.537	==
41) 12 Year	2.250 / 2.254	+0.007		81) 12 Year	2.520 / 3.320	+0.204	
42) 15 Year	2.376 / 2.380	+0.006	#	82) 15 Year	-3.599 / -2.799	+0.110	
43) 20 Year	2.497 / 2.501	+0.002	≣	83) 20 Year	-10.100 / -9.600	+0.150	
4) 25 Year	2.558 / 2.563	+0.003	41	84) 25 Year	-22.800 / -22.250	+0.150	
45) 30 Year	2.592 / 2.597	+0.000	, .	85) 30 Year	-38.058 / -37.491	+0.351	
46) 40 Year	2.612 / 2.621	+0.003					
47) 50 Year	2.598 / 2.604	+0.004	≣				

Interest Rate Markets – Yield Curve Models

Interest Rate Markets – The LIBOR Problem

\$500M Or less of underlying daily transactions

feed into LIBOR, a reference rate for nearly

~\$200T

The Problem with LIBOR

- ➤ LIBOR Market Transactions < \$500M
- Rates Do Not Reflect Actual Borrowing Levels
- LIBOR Levels Increasingly Set by Panel/Expert Judgement

Market Size

Market Size by Notional: \$200T (US) + \$150T (EU)

Large Market Driven by Small Number of LIBOR Transactions!!!

Interest Rate Markets – LIBOR Benchmark Replacement

LIBOR Rates

- Low Transaction Volume / Panel Based
- Forward Looking Term Rate, known In-Advance
- In Built Credit Risk Component

Risk-Free Rates (RFRs)

- Transaction Based
- Backward Looking Rate, Known In-Arrears
- No Credit Component i.e. Risk-Free

Market Changes

- Legacy LIBOR Contracts, Fall-Back Rates
- New RFR Products & Yield Curve Model Changes

3 Month Risk-Free Rate

Rate: Daily O/N Fixings leading to an Averaged Effective Rate

Coupon: Determined in Arrears

Interest Rate Markets – Project Finance Risks & Solutions

1. Interest Rate Risk

- > Finance linked to variable interest rates
- Use IRS to Fix Borrowing Costs

2. Foreign Exchange / Currency Risk

- International Finance
- Use Cross Currency Swaps to Fix FX Rates

3. Credit Default Risk

- Bonds, Bi-Lateral and Non-Cleared Transactions
- Risk of Counterpart Default
- Credit Default Swaps, Collateral & CSA Agreements

4. No money to invest?

- Use Asset Swaps to Borrow Funds to Invest in Bonds
- Pay LIBOR + Spread (Finance) to Receive Bond Coupons
- Floating Spread includes Funding + Credit Costs

Interest Rate Swaps – Fixed or Variable Borrowing Costs?

Project Finance

- Project Finance Naturally Incurs Variable Interest Costs (LIBOR + Spread)
- Exposed to Interest Rate Risk (Market may Move Against Us)

Hedging Interest Rate Risk

- Use IRS to Exchange Floating for Fixed Interest (or Vice Versa)
- We Can Choose to Fix Borrowing Costs
- We Also Trade IRS for Speculative Purposes

Interest Rate Swaps – Market Quotes & Pricing

USD Semi vs 3	3M Libor			USD Spreads	vs Treasuries		
31) 1 Year	0.750 / 0.754	+0.014	≣	71) 1 Year	4.282 / 5.295	+0.687	
32) 2 Year	1.045 / 1.049	+0.017	-	72) 2 Year	10.248 / 10.806	-0.073	
33) 3 Year	1.284 / 1.287	+0.018		73) 3 Year	3.337 / 3.895	-0.029	≣
34) 4 Year	1.467 / 1.471	+0.015	4厘	74) 4 Year	1.350 / 1.900	+0.161	
35) 5 Year	1.617 / 1.621	+0.014		75) 5 Year	-4.020 / -3.454	+0.138	≣
36) 6 Year	1.750 / 1.754	+0.012	幕團	76) 6 Year	-8.100 / -7.550	+0.157	
37) 7 Year	1.866 / 1.870	+0.011		77) 7 Year	-13.577 / -13.036	+0.382	. ≡ .
38) 8 Year	1.966 / 1.970	+0.011	1	78) 8 Year	-11.100 / -10.550	+0.335	
39) 9 Year	2.052 / 2.056	+0.011	≣	79) 9 Year	-9.888 / -9.088	+0.492	
40) 10 Year	2.126 / 2.129	+0.011		80) 10 Year	-9.775 / -9.275	+0.537	
41) 12 Year	2.250 / 2.254	+0.007		81) 12 Year	2.520 / 3.320	+0.204	
42) 15 Year	2.376 / 2.380	+0.006	4厘	82) 15 Year	-3.599 / -2.799	+0.110	
43) 20 Year	2.497 / 2.501	+0.002	=	83) 20 Year	-10.100 / -9.600	+0.150	
4) 25 Year	2.558 / 2.563	+0.003	集團	84) 25 Year	-22.800 / -22.250	+0.150	
45) 30 Year	2.592 / 2.597	+0.000	■	85) 30 Year	-38.058 / -37.491	+0.351	
46) 40 Year	2.612 / 2.621	+0.003	1				
47) 50 Year	2.598 / 2.604	+0.004	■				

> Standard Tenors: Spread Over US Treasury Yields

➤ New Swaps: Par Rate (%), since PV=0

Existing Swaps: Present Value (USD)

Interest Rate Swaps – Present Value

Present Value is the Sum of Discounted Cash Flows

$$Swap PV = \underbrace{\sum_{i=1}^{n} N r \tau_{i} P(t_{0}, t_{i})}_{Fixed Cash Flows} - \underbrace{\sum_{j=1}^{m} N(l_{j-1} + s) \tau_{j} P(t_{0}, t_{j})}_{Floating Cash Flows}$$

Interest Rate Swaps – Par Rate

- New Swaps Trade at Par i.e. PV = 0
- Consequently such Swaps Quote as a Par Rate
- This is the fixed rate that makes both trade legs equal

$$Swap \ PV = \underbrace{r \sum_{i=1}^{n} N \ \tau_{i} \ P(t_{0}, t_{i})}_{Fixed \ Cash \ Flows} - \underbrace{\sum_{j=1}^{m} N(\ l_{j-1} + s) \ \tau_{j} \ P(t_{0}, t_{j})}_{Floating \ Cash \ Flows} = 0$$

Rearrange for the Fixed Rate r and call this the Par Rate, p

$$Par\ Rate, p = \frac{PV(Float\ Leg)}{\sum_{i=1}^{n} N\ \tau_{i}\ P(t_{0}, t_{i})} = \frac{PV(Float\ Leg)}{Annuity(Fixed\ Leg)^{1}}$$

¹ Par Rates calculated in terms of Annuity or PV01

Interest Rate Swaps - Specification

- Majority of Swap Booking Schedule Related
- ➤ Trading Templates, Generators & Static Data

	Swap Generator Template	USD_SWAP_3M					
Dynamic Trade Info	LEG TYPE PAY / RECEIVE NOTIONAL FIXED RATE (%) FLOAT SPREAD (BPS) EFFECTIVE DATE / LAG MATURITY DATE / TENOR	LEG1:FIXED PAY 1,000,000 1,00% - 2D 2Y	LEG2:FLOAT RECEIVE 1,000,000 - 0.00 2D 2Y				
	LEG CURRENCY	USD	USD				
	NOTIONAL EXCHANGE	NONE	NONE				
	LEVERAGE	1.00	1.00				
	FRONT STUB INDEX	-	NATURAL				
	BACK STUB INDEX	-	NATURAL				
	VALUATION CURRENCY	USD	USD				
	FORECAST INDEX	-	USD3M				
	DISCOUNT INDEX	USDOIS	USDOIS				
0	INDEX COMPOUND METHOD	3.5	NONE				
ra Info	SPREAD COMPOUND METHOD	42	NONE				
		END	END				
Static Data Schedule In	STUB TYPE	SHORT START	SHORT START				
ed ⊑	FIXING BUS DAY ADJUSTMENT		MODIFIED_FOLLOWING				
s £	FIXING CALENDAR	-2	NY+LDN				
0)			2D				
+	FIXING IN-ADVANCE / IN-ARREARS	-	IN-ADVANCE				
	ACCRUAL FREQUENCY	SEMI-ANNUAL	QUARTERLY				
	ACCRUAL BUS DAY ADJUSTMENT	MODIFIED_FOLLOWING	MODIFIED_FOLLOWING				
	ACCRUAL CALENDAR	NY	NY				
	ACCRUAL DAYCOUNT	30/360	ACT/360				
	PAYMENT FREQUENCY	SEMI-ANNUAL	QUARTERLY				
	PAYMENT BUS DAY ADJUSTMENT	MODIFIED_FOLLOWING	MODIFIED_FOLLOWING				
	PAYMENT CALENDAR	NY	NY				
	PAYMENT LAG	2D	2D				

	TRADE PARAMETERS	LEG1	LEG2		
	LegType	FLOAT	FLOAT		
	Currency	EUR	USD		
	Notional	8,769,622	10,000,000		
	NotionalExchange	ALL	ALL		
	PayReceive	PAY	RECEIVE		
S	EffectiveDate	Fri, 26-Oct-18	Fri, 26-Oct-18		
TRADE	MaturityDateOrTenor	17	1Y		
PES	FixedRate (%)	-	-		
S	FloatSpread (Bps)	0.00	0.00		
	IndexCompoundMethod	14	NONE		
	SpreadCompoundMethod	0.5	NONE		
	Leverage	1.00	1.00		
	ForecastCurve	EUR3M	USD3M		
	DiscountCurve	EURDF_USDCSA	USDDF		
N S	isMTMResetLeg	FALSE	TRUE		
MTM	ResetBaseFX	1.00000	1.14030		
S	ValuationCurrency	USD	USD		
**	CouponRollDay	NATURAL	NATURAL		
COUPON & STUB	isEndOfMonth	TRUE	TRUE		
CONVENTIONS	StubType	SHORT_START	SHORT_START		
E S	FrontStubCurveIndex	NATURAL	NATURAL		
A N	BackStubCurveIndex	NATURAL	NATURAL		
5 5	FrontStubDate	7.5.	5		
	BackStubDate		24		
	AccrualFrequency	QUARTERLY	QUARTERLY		
	AccrualCalendar	TGT+NY+LON	TGT+NY+LON		
	AccrualBusDayConv	MOD_FOLLOWING	MOD_FOLLOWING		
Z	AccrualDaycount	ACT/360	ACT/360		
H 5	IRFixingBusDayConv	MOD_FOLLOWING	MOD_FOLLOWING		
SCHEDULE NFORMATION	IRFixingCalendar	TGT+NY+LON	TGT+NY+LON		
H &	IRFixingLag	2D	2D		
N PE	IRFirstFixingLag	121	25		
	PaymentFrequency	QUARTERLY	QUARTERLY		
	PaymentBusDayConv	MOD_FOLLOWING	MOD_FOLLOWING		
	Payment Calendar	TGT+NY+LON	TGT+NY+LON		
	PaymentLag	2D	2D		
83	IsNonDeliverable	FALSE	FALSE		
4BI	SettlementCurrency	142	25		
NON	FXFixingLag	688	₹:		
NON- DELIVERABLES	FXFixingBusDayConv	123	왕		
	FXFixingCalendar	688	*		

Interest Rate Swaps - Schedules & Stubs

Swap Schedules

- Backwards vs Forward Rolling Schedules
- Unadjusted to Preserve Roll Day
- Holiday Adjustments Ex-Ante
- Accrual Day Count Conventions

Broken-Dated Swaps

- Stubs & Stub Rates (Linear Interp)
- Short Start/End, Long Start/End
- Market Default: Short Start

зм

зм

зм

Maturity Date (Unadjusted)

зм

2M

Effective Date

Interest Rate Swaps - Forward Roll Schedules

Forward Roll Schedules

- End Stubs
- Regular, Short End or Long End
- Less Popular

3M

3M

2M

Maturity Date (Unadjusted)

3M

Effective Date

IR Products – Tenor & Xccy Basis Swaps

Tenor Basis Swaps

- Float vs Float (Same Currency)
- Exchange USD3M for USD6M say
- Match Project Cash Flow Frequency

Tenor Basis Swap Formulae (December 30, 2015). Available at SSRN: https://ssrn.com/abstract=2959605

Xccy Basis Swaps

- Float vs Float (Different Currencies)
- Exchange USD3M for EUR3M say
- Marked-to-Market / FX Notional Resets
- Reduces XVA Costs

An Illustrated Step-by-Step Guide of How to Price Cross Currency Swaps (November 11, 2018). Available at SSRN: https://ssrn.com/abstract=3278907

IR Products – Asset Swaps

Asset Swap

Borrow Funds to Invest in Bonds

Client Perspective

- Receive Bond Coupons
- Pay LIBOR + Spread
- Spread Includes Finance + Credit Costs

IR Products – Credit Default Swaps (CDS)

Insurance Against Counterparty Default

- Insuring Bond Notional Invested
- Pay Fixed Insurance Premium
- Receive Protection Payment on Default

Credit Crisis & ISDA Big Bang (2008)

- Standardized & Cleared Contracts (IMM Dates¹)
- Increased Liquidity
- Accrued Interest, Clean & Dirty Prices

¹ Third Wednesday of Mar, June, Sep and Dec

IR Products – CDS Pricing

Pricing

- Similar to Interest Rate Swap Pricing
- With Additional Survival Probability Term, Q(t,T)

$$ightharpoonup Q(t,T) = exp\left(-\int_t^T \lambda(t,u)du\right)$$

 $\triangleright \lambda$ is the 'Hazard Rate' (instantaneous prob of default)

Buying Credit Protection

PV = PV(Protection Leg) - PV(Premium Leg)

$$PV(Premium \, Leg) = \sum_{i=1}^{n} \underbrace{N \, s \, \tau_{i} \Delta(t_{i-1}, t_{i})}_{Coupon} \underbrace{Q(t_{i})}_{P(Survive)} \underbrace{P(t_{0}, t_{i})}_{\substack{Discount \\ Factor}}$$

$$PV(Protection\ Leg) = \sum_{i=1}^{n} \underbrace{N(1-R)}_{\substack{Loss\ Given\\Default}} \underbrace{[Q(t_{i-1})-Q(t_i)]}_{\substack{Premium\ Period\\Factor}} \underbrace{P(t_0,t_i)}_{\substack{Discount\ Factor}}$$

IR Risk

What are the main IR risks?

- Discount Risk (DF01)
- Forward Risk (PV01)
- Discount + Forward Risk (DV01)

Risk Calculation Methods

- Analytical
- Numerical Risk (Benchmark)
- Using Yield Curve Jacobian
- Automatic Adjoint Differentiation (AAD)

Instrument	Term	Rate
USD SOFR Swap	ON	2.37000%
USD SOFR Swap	1W	2.36510%
USD SOFR Swap	2W	2.34960%
USD SOFR Swap	3W	2.35200%
USD SOFR Swap	1M	2.34550%
USD SOFR Swap	2M	2.30320%
USD SOFR Swap	3M	2.25590%
USD SOFR Swap	4M	2.19610%
USD SOFR Swap	5M	2.14750%
USD SOFR Swap	6M	2.10350%
USD SOFR Swap	1Y	1.89350%
USD SOFR Swap	2Y	1.68360%
USD SOFR Swap	3Y	1.62600%
USD SOFR Swap	4Y	1.61700%
USD SOFR Swap	5Y	1.64200%
USD SOFR Swap	6Y	1.67900%
USD SOFR Swap	7Y	1.71600%
USD SOFR Swap	8Y	1.75700%
USD SOFR Swap	9Y	1.79800%
USD SOFR Swap	10Y	1.83200%
USD SOFR Swap	15Y	1.96800%
USD SOFR Swap	20Y	2.03300%
USD SOFR Swap	25Y	2.04100%
USD SOFR Swap	30Y	2.04900%

Bucketed DV01, US	D	
Instrument	Tenor	DV01
USD SOFR Swap	ON	8
USD SOFR Swap	1W	0
USD SOFR Swap	2W	0
USD SOFR Swap	3W	0
USD SOFR Swap	1M	0
USD SOFR Swap	2M	0
USD SOFR Swap	3M	0
USD SOFR Swap	4M	0
USD SOFR Swap	5M	-1
USD SOFR Swap	6M	1
USD SOFR Swap	1Y	92
USD SOFR Swap	2Y	213
USD SOFR Swap	3Y	294
USD SOFR Swap	4Y	409
USD SOFR Swap	5Y	453
USD SOFR Swap	6Y	541
USD SOFR Swap	7Y	723
USD SOFR Swap	8Y	736
USD SOFR Swap	9Y	852
USD SOFR Swap	10Y	892
USD SOFR Swap	15Y	1,320
USD SOFR Swap		1,662
USD SOFR Swap	25Y	1,979

USD SOFR Swap

Total Risk

2,252

12,428

Yield Curves - Calibration

Model Inputs & Outputs

- Liquid Market Instrument Quotes [IN]
- Forward Rates [OUT]
- Discount Factors [OUT]

Calibration Process

- Choose State Variable¹
- Choose Interpolator (Functional Form)
- Solve and Imply Forwards & Disc Factors²

¹ Popular choices: forward rate, disc factor, logDF, zero rate etc.

² May need to differentiate and/or integrate state variable, $P(t,T) = \exp\left(-\int_t^T f(t,u)du\right)$

Yield Curves — Collateral & CSA Curves

Collateral & CSA Curves

- Calibrate to FX Forwards & Xccy Swaps
- FX Forward Invariance (FX Carry Trade)
- Impacts Discount Factors Only
- No Impact on Forward Rates

Advanced CSA Topics

- Cheapest to Deliver (Multiple CSAs)
- Collateral Switch Options

$$f(t,T)^{USD/EUR} = s(t)^{USD/EUR} \underbrace{\left(\frac{P(t,T)^{EUR_USDCSA}}{P(t,T)^{USD_USDCSA}}\right)}_{USD\ CSA} = s(t)^{USD/EUR} \underbrace{\left(\frac{P(t,T)^{EUR_EURCSA}}{P(t,T)^{USD_EURCSA}}\right)}_{EUR\ CSA}$$

Yield Curves - Features

Curve Features & Considerations

- Underlying Instrument Behaviour
- Mixed Interpolation Schemes
- Turn-of-Year Effects (ToYs)

Advanced Features for Electronic Markets

- Curve Jacobian
- Ultra-Fast Curves & Analytical Risk
- Automatic Adjoint Differentiation (AAD)

Yield Curves – Curve Jacobian

Electronic HFT Usage

- Ultra-Fast Rebuilds
- Real-Time Risk
- Auto-Hedging

Inverse Curve Ja	cobian, dL	/dP										
Curve Calibration Instruments												
Forward Pillars	dP _{1Y} OIS	dP _{2Y} OIS	dP _{3Y} OIS	dP _{4Y} OIS	dP _{5Y} OIS	dP _{1Y} IRS	dP _{2Y} IRS	dP _{3Y} IRS	dP _{4Y} IRS	dP _{5Y} IRS		
dO _{1Y}	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
dO _{2Y}	-1.01	2.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
dO _{3Y}	0.00	-2.04	3.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
dO _{4Y}	0.00	0.00	-3.08	4.08	0.00	0.00	0.00	0.00	0.00	0.00		
dO _{5Y}	0.00	0.00	0.00	-4.13	5.13	0.00	0.00	0.00	0.00	0.00		
dL _{1Y}	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00		
dL _{2Y}	0.00	0.00	0.00	0.00	0.00	-1.01	2.01	0.00	0.00	0.00		
dL _{3Y}	0.00	0.00	0.00	0.00	0.00	0.00	-2.04	3.04	0.00	0.00		
dL _{4Y}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-3.08	4.08	0.00		
dL _{5Y}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-4.13	5.13		

By-Product of Calibration Process

- Measures Changes in Market Instrument Quotes (P) on Forward Rates (L)
- \triangleright First Order Derivative Matrix, dP/dL (Inverse Required)
- Controls Hedge and Risk Buckets (Same as Numerical Bumping)
- Use Implicit Function Theorem (IFT) to modify Risk Buckets (see Appendix)

Yield Curves — Ultra-Fast Rebuilds

New Forwards
$$L_{New} = L_{Old} + dL$$

$$= L_{Old} + (\frac{dL}{dP}) \cdot dP$$

N	ew Forward	S	Orig	ginal Forwar	ds		Invers	e Jaco	bian, d	L/dP								Chang	ge in Mkt Data
	LNEW			LOLD			OIS 1Y	OIS 2Y	OIS 3Y	OIS 4Y	OIS SY	IRS 1Y	IRS 2Y	IRS 3Y	IRS 4Y	IRS SY			dP
LIYOIS	1.44591%		LIVOIS	1.43591%		LIYOIS	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		LIYOU	0.01%
Layous	1.24323%		Layors	1.23323%		L2Y OIS	-1.01	2.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Lay OIS	0.01%
L 3Y OIS	1.26107%		Layors	1.25107%		Layous	0.00	-2.04	3.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Layos	0.01%
Lay OIS	1.30130%		Layois	1.29130%		Layors	0.00	0.00	-3.08	4.08	0.00	0.00	0.00	0.00	0.00	0.00		Layors	0.01%
LSYOIS	1.40782%		Lsy	1.39782%	+	LsyOIS	0.00	0.00	0.00	-4.13	5.13	0.00	0.00	0.00	0.00	0.00	×	LSYOIS	0.01%
LIYIRS	1.71896%		LIYIRS	1.70896%	9 51	LIYIRS	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	^	LIYIRS	0.01%
L2Y IRS	1.48359%		L2Y IRS	1.47359%		LzyIRS	0.00	0.00	0.00	0.00	0.00	-1.01	2.01	0.00	0.00	0.00		L _{2Y} IRS	0.01%
L 3Y IRS	1.50531%		LayiRS	1.49531%		L 3Y IRS	0.00	0.00	0.00	0.00	0.00	0.00	-2.04	3.04	0.00	0.00		LayIRS	0.01%
Lay IRS	1.56934%		Lay IRS	1.55934%		LayIRS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-3.08	4.08	0.00		L _{4Y} IRS	0.01%
LsyIRS	1.63999%		LSYIRS	1.62999%		L SY IRS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-4.13	5.13		LsyIRS	0.01%

Implementation

- ➤ Slow Curve (Full-Rebuild) Ticks in Background (ca. 10ms)
- Fast Curve (Jacobian Method) Used Between Refreshes (Real-Time)

Yield Curves — Real-Time Bucketed Risk

Requirements

- Curve Jacobian
- Trade or Portfolio Jacobian

	aPV	aL
$DV01(Analytical) = 1bps \times$	\overline{dL} ×	\overline{dP}
Pricin	g	Curve
Jacobio	an	Jacobian

זמ ג

Risk as a Matrix Operation

- Can be Parallelized / Vectorized
- Matrix Dimensions Must Agree
- Interpolation & Forward Mapping
- Barycentric Weights, w_i(t)

$$p(t) = \sum_{j=0}^{n} w_j(t) f(t_j), \qquad w_j(t) = \frac{\prod_{k=0, k \neq j}^{n} (t - t_k)}{\prod_{k=0, k \neq j}^{n} (t_j - t_k)}$$

Yield Curves – Automatic Adjoint Differentiation (AAD)

Trade Jacobian

- AAD Can Compute Instrument Price & Risk Simultaneously
- Direct Differentiation of Code + Implicit Function Theorem (IFT)
- Exact & Fast (X4 Pricing Time)

Tangent & Adjoint Modes

- Tangent Mode (dot): Forward Mode One Risk at a Time
- > Adjoint Mode (bar): Backward Mode All Risks Simultaneously
- Activation Inputs Control Risk Outputs

Implementation Methods

- By Hand (See Appendix for Swap DV01 Risk Example)
- Derivative Code by Overloading, DCO/C++
- Professional Tools: Adept, NAG

Pricing Calculations

$$x \to f(x) \to g(f) \to h(g) \to y$$

Chain Rule: Forwards

$$\frac{df}{dx}.\frac{dg}{df}.\frac{dk}{dg}.\frac{dy}{dk} = \frac{dy}{dx}$$

Chain Rule: Backwards

$$\frac{dy}{dh}.\frac{dh}{dg}.\frac{dg}{df}.\frac{df}{dx} = \frac{dy}{dx}$$

Yield Curves – AD Tangent Mode Example

Tangent Mode

- Differentiate Forwards using 'Dot' Notation
- One Risk at a Time, Controlled by Dot Input Activation Variables 1 or 0
- For $\frac{df}{dx_1}$ and $\frac{df}{dx_2}$ must call tangent method twice

```
double function( double x1, double x2)
02 {
       double a = x1*x1;
                                    // Step 1:
       double b = 2*a;
                                    // Step 2:
04
       double c = x2;
                                    // Step 3:
                                // Step 4:
                                                    d = 3x_2
       double d = 3*c;
                                                    f = 2x_1^2 + 3x_2
       double f = b + d;
                                    // Step 5:
       return f;
09 }
```

Simple Function: $f(x_1, x_x) = 2x_1^2 + 3x_2$

Source Code: https://onlinegdb.com/kKqaS6hJT

```
01 tangent(2.0, 3.0, 1.0, 0.0); // Input: x1 = 2, x2 = 3, x1_d = 1, x2_d = 0 Output: 8
02 tangent(2.0, 3.0, 0.0, 1.0); // Input: x1 = 2, x2 = 3, x1_d = 0, x2_d = 1 Output: 3
```

Function Derivatives using Tangent Mode

```
01 double tangent( double x1, double x2, double x1 dot, double x2 dot )
02 {
                                                           a = x_1^2
        double a = x1*x1;
                                           // Step 1:
                                                           \dot{a} = 2x_1 \cdot \dot{x}_1
        double a dot = 2*x1*x1 dot; // Tangent:
04
                                                                                   \dot{a} = 2x_1
                                                           b = a
        double b = 2*a;
                                           // Step 2:
        double b dot = 2*a dot;
                                           // Tangent:
                                                           b=2\cdot a
                                                                                   b = 4x_1
        double c = x2;
                                           // Step 3:
                                                           c = x_2
        double c dot = x2 dot;
                                          // Tangent:
                                                           \dot{c} = \dot{x}_2
                                                                                   \dot{c} = 1
        double d = 3*c;
                                          // Step 4:
                                                           d = 3c
        double d dot = 3*c dot;
                                                                                   d = 3
                                          // Tangent:
                                                           d = 3 \cdot c
                                           // Step 5:
                                                           f = 2x_1^2 + 3x_2
        double f = b + d;
        double f dot = b dot + d dot; // Tangent:
                                                           \dot{f} = \dot{b} + \dot{d}
        return f dot;
                                           // Result:
                                                           \dot{f} = 4x_1 + 3
14 }
```

Simple Function $f(x_1,x_x)=2x_1^2+3x_2$ with Tangent Derivatives

Yield Curves – AD Adjoint Mode Example

Adjoint Mode (Reverse Mode)

- Backwards Differentiation with 'Bar' Notation
- Forward Sweep then Back Propagate Risk
- Computes All Risks at Same Time
- Risk Controlled By Bar Input Activation Variable 1 or 0
- ightharpoonup Adjoint Method Calculates Both $\frac{df}{dx_1}$ and $\frac{df}{dx_2}$

```
double function( double x1, double x2)
02 {
                                                       a = x_1^2
        double a = x1*x1;
                                       // Step 1:
                                                       b = 2x_1^2
04
       double b = 2*a;
                                       // Step 2:
       double c = x2;
                                       // Step 3:
                                                       c = x_2
       double d = 3*c;
                                       // Step 4:
                                                       d = 3x_2
                                                      f = 2x_1^2 + 3x_2
                                      // Step 5:
       double f = b + d:
       return f;
09
```

Simple Function: $f(x_1, x_x) = 2x_1^2 + 3x_2$

```
01 void adjoint/ double v1 double v2 double f har )
```

adjoint(2.0, 3.0, 1.0); // Input: x1 = 3, x2 = 2, f bar Output: $df/dx_1 = 8$ and $df/dx_2 = 3$

```
01 void adjoint( double x1, double x2, double f bar )
02 {
        // Forward Sweep
                                                       a = x_1^2
        double a = x1*x1;
                                         // Step 1:
                                                       b = 2x_1^2
        double b = 2*a;
                                         // Step 2:
                                         // Step 3:
                                                       c = x2
        double c = x2;
                                                       d = 3x_2
        double d = 3*c;
                                         // Step 4:
                                                       f = 2x_1^2 + 3x_2
        double f = b + d;
                                         // Step 5:
        // Back Propagation
                                                       b bar = 1
        double b bar = f bar;
                                         // Step 5:
                                                                       from input variable
        double d bar = f bar;
                                         // Step 5:
                                                       d bar = 1
                                                                       from input variable
        double c bar = 3*d bar;
                                         // Step 4:
                                                       c bar = 3
        double x2 bar = c bar;
                                         // Step 3:
                                                       x2 bar = 3
                                                                       df/dx_2 = 3
        double a bar = 2*b bar;
                                                       a bar = 2
                                         // Step 2:
        double x1 bar = 2*x1*a bar;
                                                       x1 \text{ bar} = 4x_1 \quad df/dx_1 = 4x_1
                                        // Step 1:
        // Display Results
        std::cout << "df/dx1: " << x1 bar << std::endl;
                                                               //\bar{x}_1 = df/dx_1 = 4x_1
        std::cout << "df/dx2: " << x2 bar << std::endl;
                                                               //\bar{x}_2 = df/dx_2 = 3
20 }
```

Simple Function $f(x_1, x_x) = 2x_1^2 + 3x_2$ with Adjoint Derivatives

Function Derivatives using Adjoint Mode

Source Code: https://onlinegdb.com/kKgaS6hJT

Credit Models – Hazard Rates & Survival Probabilities

Calibration Summary

- Yield Curve is an Input
- Calibrate to Bonds or CDS
- \triangleright Imply Hazard Rates, λ
- Used for Survival Prob, Q(t,T)

Common Assumptions

- Piecewise Constant¹
- Deterministic Hazard Rates

Rule of Thumb

$$\lambda = \frac{s}{(1-R)}$$

$$Q(t,T) = exp\left(-\int_{t}^{T} \lambda(t,u)du\right) \qquad \qquad P(t,T) = \exp\left(-\int_{t}^{T} f(t,u)du\right)$$

¹ As often there is only a single calibration instrument

PART TWO - PRICING & PRACTICE

Interest Rate Swap – Annuity is the Key Pricing & Risk Factor

It's All About Annuity

- Pricing & Risk Expressed in Terms of Annuity
- Similarly Float Legs Expressed in Annuity Terms
- Can Be Used to Convert a Float Leg to Fixed Leg
- Useful for Low Latency Pricing

Key Formulae:

- \triangleright PV = (r p) Annuity(Fixed)
- Par Rate = PV(Float) / Annuity(Fixed)
- PV01 = Annuity(Fixed) x 0.01%
- DV01 = PV01 + DF01 = PV01 for Par Swaps

$$A_N = N \sum_{i=1}^n \tau_i P(t_0, t_i)$$

Low Latency Interest Rate Swap Pricing

Electronic Rates Markets & Low Latency Interest Rate Swap Calculations (May 31, 2022).

Available at SSRN: https://ssrn.com/abstract=4125565

$$Swap PV = PV^{Fixed Leg} - PV^{Float Leg}$$

$$= r \sum_{i=1}^{n} N_i \tau_i P(t_0, t_i) - \sum_{j=1}^{m} N_j l_{j-1} \tau_j P(t_0, t_j)$$

$$= (r - p) A_{Fixed}$$

Interest Rate Swap – Pricing & Risk Example

Compute Annuity A_N

= USD 4,863,971.74

$$A_N = N \sum_{i=1}^n \tau_i P(t_0, t_i)$$

 $PV = (r - p) A_N$

 $= (5.00\% - 1.59\%) A_N$

= USD 167,892.11

Par Rate = $PV(Float) / A_N$

 $= 75,306 / A_N$

= 1.5482%

PV01

 $= A_N \times 0.01\%$

= USD 486.40

33

Credit Default Swap – Pricing & Risk Example

Compute Risky Annuity \tilde{A}_N

= USD 49,512,369.11

$$\tilde{A}_N = N \sum_{i=1}^n \tau_i Q(t_i) P(t_0, t_i)$$

$$PV = (r - p) \tilde{A}_N$$

 $= (5.00\% - 1.39\%)\tilde{A}_N$

= USD 1,786,536

$$CSO1 = \widetilde{A}_N \times 0.01\%$$

= USD 486.40

Asset Swap – Structuring the Asset Swap Spread

Trader Creates Synthetic Asset Swap

- Borrow Cash from Treasury to Purchase Bond
- Buy Bond
- Buy CDS Protection (or Carries Credit Risk Unhedged)

Credit Risky Bond Coupons, C **ASW TRADER**

Trader Cash Flows

Pays Treasury Funding

- Pays CDS Premium
- Receives Bond Coupons and Passes on to Client
- Client Pays All Costs + Commission as a Spread over LIBOR (or RFR)

Asset Swap – Pricing as a Spread Over LIBOR (or RFR)

- ASW Spread Par-Par Spread
- MMS Spread Yield-Yield Spread¹

¹Y/Y Spread Between Swap Rate and Benchmark Gov't Bond Yield

Asset Swap – Pricing using Par-Par Method

Pricing as a PV

- Valuation Method for Existing Swaps, Unwinds and Novations (trade transfers)
- Again Present Value is Simply the Sum of Incoming and Outgoing Cash Flows
- An Upfront Par-Adjustment is Made if the Underlying Bond not Trading at Par, i.e., 100

$$PV^{Asset \, Swap} = \underbrace{\Phi^{r}^{Fixed} \sum_{i=1}^{n} N_{i} \tau_{i} P(t_{0}, t_{i})}_{Fixed \, Leg} - \underbrace{\Phi \sum_{j=1}^{m} N_{j} (l_{j-1} + s) \tau_{j} P(t_{0}, t_{j})}_{Float \, Letg} + \underbrace{\Phi N_{1} (100 - B)\%}_{Par \, Adjustment}$$

Pricing as a Par Spread

- New Asset Swaps Price to Par i.e., zero
- Instead Quote as a Par Spread s
- Rearrangement of PV formula with PV=0

$$s = \left(\frac{\left(r^{Fixed} - p^{Market}\right)A^{Fixed} + (100 - B)\%}{A^{Float}}\right)$$

Fast Pricing & Risk — Using Annuity Factors

Pricing Tricks - Identifying Annuity Factors

Pricing Tricks & Rules of Thumb

- Identify the Annuity Factor
- Key Pricing and Risk Factor
- ightharpoonup Assume $A_N^{Fixed} = A_N^{Float}$

Annuity

$$A_N = N \sum_{i=1}^n \tau_i P(t_0, t_i)$$

Credit Risky Annuity

$$\widetilde{A_N} = N \sum_{i=1}^n \tau_i Q(t_i) P(t_0, t_i)$$

Interest Rate Swaps

$$PV^{Swap} = \phi(r - p)A_{N}$$
$$DV01^{Swap} = \phi A_{N} \times 0.01\%$$

Credit Default Swaps

$$PV^{CDS} = \phi(s - p) \widetilde{A_N}$$
$$CS01^{CDS} = \phi \widetilde{A_N} \times 0.01\%$$

Asset Swap Spreads

$$S^{ASW} = \left(\frac{(r-p)\% A + (100-B)\%}{A}\right)$$

Pricing Tricks – Fast Annuity Factors

Pricing Tricks & Rules of Thumb

- Assume Annual Coupons & Discount Factors = 1.0
- ightharpoonup This gives $A_N = NT$ and A = T
- Resulting Prices are an upper-bound

Annuity

$$A_N = N \sum_{i=1}^n \tau_i P(t_0, t_i) = NT$$

Credit Risky Annuity

$$\widetilde{A_N} = N \sum_{i=1}^n \tau_i Q(t_i) P(t_0, t_i) = NT$$

We could also assume survival probabilities Q(t) = 1.0

Interest Rate Swaps

$$PV^{Swap} = \phi(r - p)NT$$
$$DV01^{Swap} = \phi NT \times 0.01\%$$

Credit Default Swaps

$$PV^{CDS} = \phi(s - p) NT$$
$$CS01^{CDS} = \phi NT \times 0.01\%$$

Asset Swap Spreads

$$s^{ASW} = \underbrace{(r-p)\%}_{Cpn\ Factor} + \underbrace{(100-B)\%/T}_{Price\ Factor}$$

Pricing Tricks – Multiples Pricing & Risk

Swap Multiples Pricing

- Knowledge of Liquid Market Par Rates Required
- Precompute a Base Case / Reference Price
- Determine all Prices as a Multiple of a Base Case
- Prices computed this way are an Upper-Bound

Swap Reference Prices

- Price Base Case Units: Per Million, Per Bps, Per Year
- \triangleright N = USD 1,000,000, (r p) = 1bps and T = 1.0
- PV(Base Swap) = USD 100

Swap Reference Risk

- Price Base Case Units: Per Million, Per Year
- DV01(Base Swap) = USD 100

Swap PV Multiples

```
PV(1mm, 1bps, 1y) = USD 100
PV(5mm, 1bps, 1y) = USD 500
```

PV(1mm, 5bps, 1y) = USD 500

PV(1mm, 1bps, 5y) = USD 500

PV(5mm, 5bps, 5y) = USD 12,500

Swap DV01 Multiples

 $DV01(1mm, 1y) = USD\ 100$

DV01(1mm, 5y) = USD 500

DV01(5mm, 5y) = USD 2,500

Pricing Tricks – CDS Multiples & ASW Spread Factors

CDS Multiples

- Similar to IRS Multiples
- PV(Base CDS) = USD 100
- CS01(Base CDS) = USD 100

Asset Swap Spread Factors

- Simple addition of Bond Coupon and Bond Price Factors
- \triangleright Coupon Factor, $C_F = (r p)$
- Price Factor, P_F = (100 B)% / T
- Note bond price factor can be negative if B below Par

CDS Multiples

```
PV(1\text{mm}, 1\text{bps}, 1y) = USD \ 100

PV(1\text{mm}, 1\text{bps}, 5y) = USD \ 500

PV(1\text{mm}, 5\text{bps}, 5y) = USD \ 2,500

PV(5mm, 5\text{bps}, 5y) = USD \ 12,500

ASW Spread Factors

S^{ASW}(C_F = 10\text{bps}, P_F = \{100\text{bps}, 10Y\})

= 10 + 100/10 = 20 \text{ bps}

S^{ASW}(C_F = 10\text{bps}, P_F = \{0\text{bps}, 10Y\})

= 10 + 0/10 = 10 \text{ bps}

S^{ASW}(C_F = 10\text{bps}, P_F = \{-100\text{bps}, 10Y\})

= 10 - 100/10 = 0 \text{ bps}
```

Pricing Tricks – Interest Rate Swap Multiples

IRS Base Cases

- PV(Base Case) = 100
- DV01(Base Case) = 100

Market Par Rate

- > 5Y Par Rate = 150 bps
- $ightharpoonup \Delta r = (r-p) = (500-150) = 350 bps$

IRS Multiples

- \triangleright Here ΔN = 1, Δr = 350, ΔT = 5
- PV = 100 x 1 x 350 x 5 = USD 175K
- \triangleright DV01 = 100 x 1 x 5 = USD 500

Reference Price USD 100 per Million per Year per Δr in bps

Pricing Tricks – Credit Default Swap Multiples

CDS Base Cases

- PV(Base Case) = 100
- CS01(Base Case) = 100

Market CDS Par Rate

- > 5Y CDS Par Rate ≈ 140 bps
- $ightharpoonup \Delta r = (r-p) = (500-140) = 360 \text{ bps}$

CDS Multiples

- ightharpoonup Here ΔN = 10, Δr = 360, ΔT = 5
- \triangleright PV = 100 x 10 x 360 x 5 = USD 1.8mm
- \triangleright CS01 = 100 x 10 x 5 = USD 5,000

Reference Price USD 100 per Million per Year per Δr in bps

Pricing Tricks – Asset Swap Spread Factors

Par-Par Spread Factors

$$s = (r - p) + (100 - B)\% / T$$

= Coupon Factor C_F + Price Factor P_F

We compute $C_F = (r - p)$ in bps and $P_F = (B - 100)\% / T$ in bps

Par-Par Spread

For this German Bund we have,

$$C_F = 0.50\% - 0.44\% = 6 \text{ bps}$$

$$P_F = (100 - 104.580)\% / 10$$

= -458/10 \approx -46 bps

$$S = 6 - 46 = -40 \text{ bps}$$

Swap Risk – Curve Calibration & Risk Hedges

Swap Curve

- Calibrated using 1Y, 2Y, 3Y, 4Y and 5Y swaps
- Bucketed DV01 risk profile shown
- Calibration instruments are the risk hedge instruments

Risk Hedge Instruments

- Consider a portfolio of calibration instruments
- Each with USD 1mm Notional
- Risk from each calibration instrument fits perfectly into

... calibration risk buckets

Actual Risk Hedge Trade Risk

		I	Hedge Trade	S	
Risk Bucket	IRS 1Y	IRS 2Y	IRS 3Y	IRS 4Y	IRS 5Y
OIS 1Y	0	0	0	0	0
OIS 2Y	0	0	0	0	0
OIS 3Y	0	0	0	0	0
OIS 4Y	0	0	0	0	0
OIS 5Y	0	0	0	0	0
IRS 1Y	98	0	0	0	0
IRS 2Y	0	195	0	0	0
IRS 3Y	0	0	291	0	0
IRS 4Y	0	0	0	386	0
IRS 5Y	0	0	0	0	479

Total Trade DV01

IRS 1Y	IRS 2Y	IRS 3Y	IRS 4Y	IRS 5Y
98	195	291	386	479

Swap Risk - Trade Positions & DV01 Risk

Trade Positions

- IRS 1Y: USD 1mm Spot Starting 1Y IRS
- > IRS(4Y, 5Y): USD 1mm Forward Starting IRS
 Starts in 4Y and Ends in 5Y
- ➤ IRS(4.5Y): USD 1mm Spot Starting 4.5Y IRS

Actual Risk
Portfolio Risk - Trade Level

Risk Bucket	IRS 1Y	IRS(4Y, 5Y)	IRS(4.5Y)
OIS 1Y	0	0	0
OIS 2Y	0	0	0
OIS 3Y	0	0	0
OIS 4Y	0	0	0
OIS 5Y	0	0	0
IRS 1Y	98	0	0
IRS 2Y	0	0	0
IRS 3Y	0	0	0
IRS 4Y	0	-386	193
IRS 5Y	0	479	239

Actual Risk Portfolio Risk - Total

Risk Bucket	Risk Total
OIS 1Y	0
OIS 2Y	0
OIS 3Y	0
OIS 4Y	0
OIS 5Y	0
IRS 1Y	98
IRS 2Y	0
IRS 3Y	0
IRS 4Y	-193
IRS 5Y	718

Actual Risk Portfolio Hedges

Hedge	Qty
OIS 1Y	0
OIS 2Y	0
OIS 3Y	0
OIS 4Y	0
OIS 5Y	0
IRS 1Y	-1
IRS 2Y	0
IRS 3Y	0
IRS 4Y	0.50
IRS 5Y	-1.50

Risk Profiles

- IRS 1Y: Same Risk as Calibration Instrument
- > IRS(4Y, 5Y): Equivalent to Long 5Y IRS and Short 4Y IRS
- ➤ IRS(4.5Y): Equivalent to 50% 4Y IRS and 50% 5Y IRS

Total	Trade	DV01	
IR	S 1Y	IRS(4Y, 5Y)	IRS

IRS(4Y, 5Y)	IRS(4.5Y)	Total DV
93	432	624

Fast Swap Risk – Curve Calibration Instruments

Fast Swap Risk

- Use Multiples Approach for intuition
- Gives a quick risk overview
- A close approximation & upper-bound
- DV01(Base Case) = 100 per Million per Year

Quick Risk

Hedge Trade Risk

Hedge Trades

Risk Bucket	IRS 1Y	IRS 2Y	IRS 3Y	IRS 4Y	IRS 5Y
OIS 1Y	0	0	0	0	0
OIS 2Y	0	0	0	0	0
OIS 3Y	0	0	0	0	0
OIS 4Y	0	0	0	0	0
OIS 5Y	0	0	0	0	0
IRS 1Y	100	0	0	0	0
IRS 2Y	0	200	0	0	0
IRS 3Y	0	0	300	0	0
IRS 4Y	0	0	0	400	0
IRS 5Y	0	0	0	0	500

Total Trade DV01

IRS 1Y	IRS 2Y	IRS 3Y	IRS 4Y	IRS 5Y
100	200	300	400	500

Fast Swap Risk – Trade Positions & DV01 Risk

Risk Profiles

- > IRS 1Y: Same Risk as Calibration Instrument
- IRS(4Y, 5Y): Long 5Y IRS and Short 4Y IRS
- IRS(4.5Y): 50% of 4Y IRS and 50% of 5Y IRS

DV01 Calculations

- IRS 1Y: DV01(Base Case)=100
- ► IRS(4Y, 5Y): DV01(1mm, 5Y) DV01(1mm, 4Y)
- > IRS(4.5Y): 0.5 x DV01(1mm 4Y) + 0.5 x DV01(1mm 5Y)

Quick Risk
Portfolio Risk - Trade Level

Risk Bucket	IRS 1Y	IRS(4Y, 5Y)	IRS(4.5Y)
OIS 1Y	0	0	0
OIS 2Y	0	0	0
OIS 3Y	0	0	0
OIS 4Y	0	0	0
OIS 5Y	0	0	0
IRS 1Y	100	0	0
IRS 2Y	0	0	0
IRS 3Y	0	0	0
IRS 4Y	0	-400	200
IRS 5Y	0	500	250

Quick Risk Portfolio Risk - Total

Risk Bucket Risk Total		
OIS 1Y	0	
OIS 2Y	0	
OIS 3Y	0	
OIS 4Y	0	
OIS 5Y	0	
IRS 1Y	100	
IRS 2Y	0	
IRS 3Y	0	
IRS 4Y	-200	
IRS 5Y	750	

Quick Risk Portfolio Hedges

Bucket	Risk Total	Hedge	Qty
IS 1Y	0	OIS 1Y	0
IS 2Y	0	OIS 2Y	0
IS 3Y	0	OIS 3Y	0
IS 4Y	0	OIS 4Y	0
IS 5Y	0	OIS 5Y	0
RS 1Y	100	IRS 1Y	-1
RS 2Y	0	IRS 2Y	0
RS 3Y	0	IRS 3Y	0
RS 4Y	-200	IRS 4Y	0.50
RS 5Y	750	IRS 5Y	-1.50

Total Trade DV01

IRS 1Y	IRS(4Y, 5Y)	IRS(4.5Y)
100	100	450

Total DV01 650

References

Quant Research Papers https://ssrn.com/author=1728976

Support Materials, C++ & Excel Examples https://github.com/nburgessx/SwapsBook

Available at Amazon: https://amzn.eu/d/5B1bPll

Appendix – Implicit Function Theorem (IFT)

IFT Theorem

To gain some intuition consider the following function f(x,y)=0 for which we have a solution (a,b). Near the solution we can express y as function of x namely f(x,y(x))=0. Using this expression, we can compute the derivative in terms of x only by differentiating with respect to x as follows,

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x} = 0$$

which gives,

$$\frac{\partial y}{\partial x} = -\left(\frac{\partial f}{\partial f}\right)_{\partial y}$$

We have a solution under the condition, $\frac{\partial f}{\partial y} \neq 0$, since we cannot divide by zero.

Yield Curve Application

In the context of a yield curve calibration, we solve for the solution of a helper target function, H(L,P)=0, where L is the LIBOR forward rate state variable (model output) and P the yield curve par rate (model input). The helper target function computes the difference between model par rates as a function of the forward state variable L and a market instrument par rate quote,

$$H(L, P) = Model Par Rate(L) - Market Par Rate$$

How does this Help with Sensitivity Calculations?

The IFT theorem says that having found a solution to the continuously differentiable function H(L,P)=0 in two variables we can express the solution solely in terms of the model output L namely H(L,P(L))=0 and that the Jacobian derivative can be computed independent of model inputs i.e., the yield curve instruments and par rates as,

$$\frac{\partial P}{\partial L} = -\left(\frac{\partial H}{\partial H}\right)_{\partial P}$$

Now, from the definition of the function H(L,P) we can easily determine dH/dP=-1 which leads to,

$$\frac{\partial P}{\partial L} = -\left(\frac{\partial H}{\partial H}\right) = \frac{\partial H}{\partial L}$$
$$= \frac{d}{dL} (Model \ Par \ Rate)$$

For an Interest Rate Swap

$$Par\ Rate, p = \frac{PV(Float\ Leg)}{\sum_{i=1}^{n} N\ \tau_{i}\ P(t_{0}, t_{i})} = \frac{\sum_{j=1}^{m} N\left(\ l_{j-1} + s\right)\tau_{j}\ P(t_{0}, t_{j})}{Annuity(Fixed)}$$

- > The derivative with respect to L is trivial to calculate
- We can calculate for any set of calibration instruments
- This allows us to modify and select any risk & hedge buckets

51

Appendix – Swap DV01 Risk Example using AAD (Part I)

IRS Present Value Code

- Swap Price Implementation
- Simplified for Demo Purposes
- For Full Example See

https://bit.ly/SwapCodeAAD

```
01 // Swap Inputs
02 // phi
                Pay or Receive Fixed: Pay = 1, Receive = -1
03 // n
               Swap Notional
04 // r
                Fixed rate
05 // tau
               Accrual year fraction
06 // t
                Coupon Payment Time
07 // f
               Floating Forward Rate
08 // s
               Floating Spread
09 // z
                Discounting Zero Rate for Discount Factor, where df = exp(-z*t)
11 double swap_pv(double phi, double n, double r, double tau, double t, double f, double s,
    double z)
12 {
        double df
                         = \exp(-z*t);
                                                // Step 1. Discount Factor using zero rate, z
        double pv fixed = phi*n*r*tau*df;
                                                // Step 2. Fixed PV = \varphi N r \tau_1 P(0, t_1)
        double pv float = -phi*n*(f+s)*tau*df; // Step 3. Float PV = \varphi N(l_1 + s)\tau_1 P(0, t_1)
        double pv swap = pv fixed+pv float; // Step 4. Swap PV = Fixed PV + Float PV
        return pv_swap;
18 }
```

Swap Price

Appendix – Swap DV01 Risk Example using AAD (Part II)

Analytical DV01 Risk

- Using Adjoint Mode (AAD)
- Forward Sweep for Price
- Back Propagation for Risk
- Simultaneous Forward and Discount Risk

Source Code: https://onlinegdb.com/5U3IChYiD

```
01 double adjoint(double phi, double n, double r, double tau, double t, double f, double s, double z,
     double pv bar)
02 {
       // Forward Sweep
                                                       // Step 1. Discount Factor using zero rate, z
04
        double df
                               = \exp(-z*t);
        double pv fixed
                               = phi*n*r*tau*df;
                                                       // Step 2. Fixed PV = \phi N r \tau 1 P(0, t 1)
        double pv float
                               = -phi*n*(f+s)*tau*df; // Step 3. Float PV = \phi N(1 1+s) \tau 1 P(0,t 1)
        double pv swap
                               = pv fixed+pv float; // Step 4. Swap PV = Fixed PV + Float PV
        // Backward Propagation
        double pv fixed bar
                               = pv bar;
                                                                               // Step 4.
        double py float bar
                                                                               // Step 4.
                               = pv bar;
        double f bar
                               = -phi*n*tau*df*pv float bar*shift size f;
                                                                               // Step 3. *
        double df_bar
                               = -phi*n*f*tau*pv_float_bar*shift_size_df;
                                                                               // Step 3. *
14
        df bar
                               += phi*n*r*tau*pv fixed bar*shift size df;
                                                                               // Step 2. *
                               = -t*exp(-z*t)*df bar;
        double z bar
                                                                               // Step 1.
        // DV01 Result
       return f_bar + df_bar; // Sensitivity to 1 bps change in forwards and discount factors
18
19 }
```

Swap DV01 using AD in Adjoint Mode

```
01 // inputs( phi, n, r, tau, t, f, s, z, pv_bar )
02 adjoint( 1, 1000000, 0.02, 1, 1, 0.01, 0, 0.02, 1 ); // Output DV01 Risk
```

Swap DV01 Risk using Adjoint Mode

Have questions or want further info?

Contact

LinkedIn: <u>www.linkedin.com/in/nburgessx</u>