Cálculo Numérico 2012 Trabajo Práctico 1

Introducción al Cálculo Numérico

Ejercicio 1: Repase la sección 1.1 del libro de Richard Burden y Douglas Faires, prestando especial énfasis a los teoremas 1.6, 1.7, 1.8, 1.9, 1.11, 1.12, 1.13 y 1.14.

Ejercicio 1: Encuentre el mayor intervalo al cual debe pertenecer el valor obtenido p^* para aproximar a $\sqrt{2}$ con un error relativo de a lo sumo 10^{-4} .

Ejercicio 2: Dada la forma decimal normalizada de un número real positivo

$$y = 0.d_1 d_2 \dots d_k d_{k+1} d_{k+2} \dots \times 10^n$$

su representación en punto flotante fl(y) se obtiene terminando la mantisa de y en k dígitos decimales. Suponga que se tienen las representaciones de punto flotante fl(x) y fl(y) para los números reales x e y. Si se supone que se usa una aritmética con un número finito de cifras, las operaciones básicas se calculan de la siguiente manera:

$$x \oplus y = fl(fl(x) + fl(y))$$
$$x \ominus y = fl(fl(x) - fl(y))$$
$$x \otimes y = fl(fl(x) \times fl(y))$$
$$x \oslash y = fl(fl(x)/fl(y))$$

Utilice dichas reglas para realizar las siguientes cuentas considerando una aritmética de redondeo a dos dígitos

- (a) (1/3 + 1/3) + 1/3
- (b) (0.58 + 0.53) 0.53
- (c) 0.58 + (0.53 0.53)

Compare los resultados obtenidos en los ítems b) y c).

Ejercicio 3: Use el término del error del polinomio de Taylor para estimar el error involucrado en aproximar $\sin(x) \approx x$ para aproximar $\sin(1^{\circ})$. Ayuda: primero convierta los grados a radianes, arme el polinomio de Taylor correspondiente y finalmente use la cota $|\cos(\xi)| \leq 1$.

Ejercicio 4: Justifique cada caso según corresponda:

- (a) $(n+1)/n^2 = O(1/n)$
- (b) $5/n + e^{-n} = O(1/n)$
- (c) Explique el significado de $\sin(x) = x x^3/6 + O(x^5)$.

Ejercicio 5: Cuántos cálculos son necesarios para determinar una suma de la siguiente forma

$$\sum_{i=1}^{n} \sum_{j=1}^{i} a_i b_j?$$

Luego, reescriba la serie de manera que se reduzca la cantidad de cálculos necesarios para determinar la suma.

Ejercicio 6: (Entregar) El polinomio de Taylor de grado n para $f(x) = e^x$ está dado por $\sum_{i=0}^n x^i/i!$ Utilizar el polinomio de Taylor de grado 9 y aritmética de 3 dígitos por truncamiento para encontrar una aproximación para e^{-5} mediante los siguientes métodos.

(a)
$$e^{-5} \approx \sum_{i=0}^9 (-5)^i/i! = \sum_{i=0}^9 (-1)^i 5^i/i!$$

(b)
$$e^{-5} = \frac{1}{e^5} \approx \frac{1}{\sum_{i=0}^9 5^i / i!}$$

(c) Un valor aproximado para e^{-5} correcto hasta el tercer dígito es 6.74×10^{-3} . Cuál de las fórmulas (a) ó (b) es más precisa y por qué?