PROBE CABLE AND ITS MANUFACTURING METHOD

Patent number:

JP2002015628

Publication date:

2002-01-18

Inventor:

TANAKA KANDAI; SEYA OSAMU

Applicant:

HITACHI CABLE

Classification: - international:

A61B8/00; H01B7/04; H01B7/17; H01B7/295; H01B11/20; A61B8/00; H01B7/04; H01B7/17;

H01B11/18; (IPC1-7): H01B11/20; A61B8/00; H01B7/04;

H01B7/17; H01B7/295

european:

Application number: JP20000200099 20000628 Priority number(s): JP20000200099 20000628

Report a data error here

Abstract of JP2002015628

PROBLEM TO BE SOLVED: To provide a probe cable which satisfies demands of medical treatment functions, and which is superior in flame-resistance with low cost. SOLUTION: In the probe cable 1 which is used for an ultrasonic diagnostic device or the like for the medical treatment, and in which plural coaxial wires 3a to 3e are coated by a sheath 6, the sheath 6 is made to have a 2-layered structure composed of an inner layer 7 and an outer layer 8, and the inner layer 7 is formed by a flame-resistant material, and the outer layer 8 is formed by a plastic having a composition to pass the elution test satisfying demands of medical treatment functions.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-15628 (P2002-15628A)

(43)公開日 平成14年1月18日(2002.1.18)

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)	
H01B	11/20		H01B 1	1/20		4 C 3 O 1	
A 6 1 B	8/00		A61B	8/00		5 G 3 1 1	
H01B	7/04		H01B	7/04		5 G 3 1 3	
	7/17			7/18		H 5G315	
	7/295		7/34			B 5G319	
			審査請求	未請求	請求項の数 2	OL (全 4 頁)	
(21)出願番号	}	特願2000-200099(P2000-200099)	(71) 出願人		20 象株式会社		
(22)出願日		平成12年6月28日(2000.6,28)				一丁目6番1号	
(22) 山野 口		172) 発明者				100413	
			(15/36974	茨城県		丁目1番1号 日立	
			(72)発明者			,, ,	
			(15/32/31	茨城県		丁目1番1号 日立	
			(74)代理人	1000680	21		
				弁理士	絹谷 信雄		
						最終頁に続く	

(54) 【発明の名称】 プロープケーブル及びその製造方法

(57)【要約】

【課題】 医療用機能の要求を満たし、しかも、難燃性 に優れたプローブケーブルを低コストで提供することに ある。

【解決手段】 医療用の超音波診断装置等に用いられ、複数本の同軸線3a~eをシース6で被覆したプローブケーブル1において、上記シース6を、内層7と外層8の2層構造とし、内層7を、難燃性材料で形成すると共に、外層8を、医療用機能の要求を満たす溶出物試験に合格する配合のビニルで形成したものである。

1

【特許請求の範囲】

【請求項1】 医療用の超音波診断装置等に用いられ、複数本の同軸線をシースで被覆したプローブケーブルにおいて、上記シースを、内層と外層の2層構造とし、内層を、難燃性材料で形成すると共に、外層を、医療用機能の要求を満たす溶出物試験に合格する配合のビニルで形成したことを特徴とするプローブケーブル。

【請求項2】 医療用の超音波診断装置等に用いられ、複数本の同軸線をシースで被覆したプローブケーブルの製造方法において、上記シースを、内層と外層の2層構 10造とし、内層を、難燃性材料で形成すると共に、外層を、医療用機能の要求を満たす溶出物試験に合格する配合のビニルで形成し、これら2層を同時に押出成形してシースを形成したことを特徴とするプローブケーブルの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、医療用の超音波診断装置等に用いられ、複数本の同軸線をシースで被覆したプローブケーブル及びその製造方法に係り、特に、医 20 療用機能の要求を満たし、しかも、難燃性に優れたプローブケーブル及びその製造方法に関するものである。

[0002]

【従来の技術】医療用の超音波診断装置では、探触子と 機器間を接続するためにプローブケーブルが使用されて いる。このプローブケーブルは、複数本の同軸線をシー スで被覆したものである。

【0003】従来のプローブケーブルは、使用するとき患者の肌に触れるため、ケーブルの最も外側にあたるシースには、医療用機能の要求を満たす溶出物試験:厚生 30 省告示第301号V(2)に合格することを要求されている。

[0004]

【発明が解決しようとする課題】しかしながら、従来のプローブケーブルは、シースに溶出物試験に合格する特別の配合を用いているため、難燃性は考慮されていない。このシースでは、一般のシース用PVC(ポリ塩化ビニル)グレードに比較すると難燃性を向上させるのは困難で、その配合製造コストも割高である。

【0005】 このため、難燃性に優れた低コストのプロ 40 明する。 ーブケーブルを実現するのは困難であるという問題があ 【00】 る。 の構造例

【0006】なお、実公平7-43866号公報、特開平7-272550号公報、特開平9-231837号公報、特開平11-162268号公報、実用新案登録

番号第2575811号に関連技術が開示されている。 【0007】そこで、本発明の目的は、医療用機能の要求を満たし、しかも、難燃性に優れたプローブケーブルを低コストで提供することにある。

[0008]

【課題を解決するための手段】本発明は、上記目的を達成するために創案されたものであり、請求項1の発明は、医療用の超音波診断装置等に用いられ、複数本の同軸線をシースで被覆したプローブケーブルにおいて、上記シースを、内層と外層の2層構造とし、内層を、難燃性材料で形成すると共に、外層を、医療用機能の要求を満たす溶出物試験に合格する配合のビニルで形成したプローブケーブルである。

【0009】請求項2の発明は、医療用の超音波診断装置等に用いられ、複数本の同軸線をシースで被覆したプローブケーブルの製造方法において、上記シースを、内層と外層の2層構造とし、内層を、難燃性材料で形成すると共に、外層を、医療用機能の要求を満たす溶出物試験に合格する配合のビニルで形成し、これら2層を同時に押出成形してシースを形成したプローブケーブルの製造方法である

[0010]

【発明の実施の形態】以下に、本発明の好適実施の形態 を添付図面にしたがって説明する。

【0011】図1は、本発明の好適実施の形態であるプローブケーブルの断面図を示したものである。

【0012】図1に示すように、本発明のプローブケーブル1は、医療用の超音波診断装置等に用いられる。このプローブケーブル1は、例えば、ケーブル中心部の介在2の外周に撚り合わせられる5本の同軸線3a~eと、撚り合わせた同軸線3a~eの外周に巻き付けられる押さえ巻テーブ4と、押さえ巻テーブ4の外周に形成されるシールド5と、このシールド5を被覆するシース6とで構成される。

【0013】シース6は、内層7と外層8の2層構造としており、内層7を、難燃性材料で形成すると共に、外層8を、医療用機能の要求を満たす溶出物試験に合格する配合のビニルで形成している。

【0014】次に、プローブケーブル1をより詳細に説明する。

【0015】表1は、図1に示したプローブケーブル1 の構造例及び燃焼試験結果を示したものである。

[0016]

【表1】

BEST AVAILABLE COPY

3							
項		単位	規 格	台			
憩 心	數	- 1	70				
	AWG#4X*	T - 1	40				
内部海体	排 成	本/mm	7/0.03 (銀めっき動合金線)				
	外径	mm	0.09				
終 級 体	材質	-	発泡PFA				
起 級 体	模學厚	mm	0.135				
40 IO BE	材質	-]	ポリエステルテープ巻き				
補 強 層	標準厚	mm	0.01				
AI 00 20 H-	材 質		すずめっき網合金線の模巻				
外部導体	保存法	mm	0.025				
	材質		ポリエステルテープ巻き				
ジャケット	は草厚	mm	0.02				
	標準外径	mm	0.46				
より合せを	外径	mm	4.8				
バインドテーフ	/容厚	mm	0.1				
シールド超組	材質	<u> </u>	すずめっき軟銅線				
フールの開設	程準厚	mm	0.2				
	母幸厚	mm	0.25				
一層目シース	酸素指数	<u> </u>	27				
	概學 厚	mm	0.4	0.0000000000000000000000000000000000000			
	材質	<u> </u>		ビニル(溶出物試験合格品)			
二暦目シース	政業指数	<u> </u>	22	22			
	極準厚	mm	0.3	0.7			
仕上り外租		mm	6.8	6.8			
燃烧試験系	# (n=3)	 -	n=3本とも試験クリア	n=3本ともNG			

【0017】表1に示すように、各同軸線3a~eは、 内部導体、絶縁体、補強層、外部導体、ジャケットから なる同軸芯線14芯を1ユニットとしている。5ユニットの同軸線3a~eの総線心数は70本である。

【0018】各同軸線3a~eの製造手順を説明する。内部導体には、例えば、線径が0.03mmの銀めっき 銅合金線を7本用いて撚り合わせたAWGサイズが40のものを用いた。撚り合わせた内部導体の外径は、約0.09mmである。絶縁体として、例えば、発泡PFA(ふっ素樹脂)を用い、撚り合わせた内部導体を被覆する。絶縁体の標準厚は、約0.135mmである。補30強層には、例えば、ボリエステルテープを用い、絶縁体の外周に巻き付ける。補強層の標準厚は、約0.01mmである。外部導体として、例えば、すずめっき銅合金線を用い、補強層の外周に横巻で巻き付ける。外部導体の標準厚は、約0.025mmである。ジャケットには、例えば、ボリエステルテープを用い、外部導体の外周に巻き付ける。ジャケットの標準厚は、約0.02mmである。ジャケットの標準厚は、約0.02mmである。

【0019】このような手順で製造した同軸芯線 1 本あたりの標準外径は、約0.46 mmとなる。そして、1 4 芯の同軸芯線をより合わせて各同軸線 3 a \sim e を製造し、5 ユニットの同軸線 3 a \sim e を、ケーブル中心部の介在 2 の外周に撚り合わせる。より合わせ外径は、約4.8 mmである。

【0020】撚り合わせた同軸線3a~eの外周には、押さえ巻テープ(バインドテープ)4を巻き付ける。押さえ巻テープ4の巻厚は、約0.1mmである。押さえ巻テープ4は、シース作業時の断熱効果や外傷防止の役目を兼ねており、撚り合わせた同軸線3a~eが乱れないようにするものである。

【0021】押さえ巻テーブ4の外周には、シールド5として、例えば、すずめっき軟銅線編組を施す。シールド5の標準厚は、約0.2mmである。シールド5は、ブローブケーブル1が微弱な電圧・電流で使用されることから、ブローブケーブル1に近接する他のケーブルなどからの影響を軽減・保護するためのものである。

【0022】さて、シールド5を被覆するシース6を説明する。

【0023】本発明では、シース6を、内層7(一層目シース)と外層8(二層目シース)の2層構造としている。

【0024】内層7は、例えば、酸素指数が27の難燃性材料であるビニルで形成している。内層7の標準厚は、約0.65mmである。一方、外層8は、例えば、医療用機能の要求を満たす溶出物試験に合格する配合のビニルで形成している。このビニルの酸素指数は22である。外層8の標準厚は、約0.3mmである。このように、内層7には、酸素指数が25以上且つ、外層8の酸素指数と5以上の差がある配合のビニルを用い、内層7の割合がシース6全体の50%以上となるようにする40とよい。

【0025】シース6は、例えば、押出し機により、内層7と外層8の2層を同時に押出成形して形成され、このシース6でシールド5を被覆するようにしている。

【0026】以上の手順でプローブケーブル1を製造すると、仕上がり外径は約6.8mmとなる。

【0027】次に、本発明のブローブケーブル1の燃焼 試験結果を説明する。

【0028】この燃焼試験は、アメリカのUL(Underwriters Laboratories Inc.)規格で規定された燃焼試験 (VW-1) である。

【0029】本発明のプローブケーブル1との比較のた めに、試料として3本のプローブケーブル1と、3本の 従来のプローブケーブルとについて燃焼試験を行った。 試験に用いた従来のプローブケーブルは、本発明におけ るシース6を、すべて外層8で形成したものであり、そ の他の構成はプローブケーブル1と同様のものである。 【0030】表1に示すように、本発明のプローブケー ブル1は、内層7を難燃性材料で形成しているので、全 ての試料が燃焼試験をクリアした。一方、従来のブロー ブケーブルは、シース全体が医療用機能の要求を満たす 10 外層8のみで形成されており、難燃性を考慮していない ことから、全ての試料が燃焼試験をクリアできなかっ

【0031】本発明の特徴は、シースを2層にした構造 にある。もともと、シースに要求される特性(溶出物試 験:厚生省告示第301号V(2)に合格品)は、患者 の肌に触れるために要求されているものである。つま り、本当にその特性を必要とするのは表面のみである。 【0032】よって、本発明は、被覆するシースを2層 の構造にし、内層を、難燃性材料で形成すると共に、外 20 【符号の説明】 層を、医療用機能の要求を満たす溶出物試験に合格する 配合のビニルで形成している。

【0033】こうする事により、最外層には溶出物試験 に合格する配合のビニルが被覆されているため、患者の 肌に触れても問題ないままで、しかも、UL規格の燃焼 試験(VW-1)に合格するプローブケーブルにするこ* *とができる。

【0034】本実施の形態のように、内層がシース全体 の50%以上となるように形成すれば、高価な材料であ る、溶出物試験に合格する配合を今までの使用量の半分 以下にすることができるため、材料費の低減も図ること ができる。

6

【0035】また、内層と外層を別々に被覆する方法 は、内層と外層間に空気が入り、エアーブクレが生じる が、本発明においては、内層と外層の2層を同時に押出 成形してシースを形成しているので、内層と外層がしっ かり密着し、エアーブクレが生じることもない。

【発明の効果】以上説明したことから明らかなように、 本発明によれば次のごとき優れた効果を発揮する。

【0037】(1)医療用機能の要求を満たし、しか も、難燃性に優れている。

【0038】(2)低コストである。

【図面の簡単な説明】

【図1】本発明の好適実施の形態を示す断面図である。

- 1 プローブケーブル
- 3a~e 同軸線
- 6 シース

[0036]

- 7 内層
- 8 外層

【図1】

フロントページの続き

F ターム(参考) 4C301 EE17 GA20 GB33 GB34 5G311 AB06 AC04 AC06 AD03 5G313 AA10 AB09 AC07 AE10

5G315 CA03 CA04 CB06

5G319 GA03 GA08