1、实验名称及目的

Windows 平台图像发送与多个飞机 Linux 环境接收图片实验:根据 config.xlsx 使用 MATLAB 自动生成代码,通过在Windows 平台下调用接口进行图像数据的请求转发,然后在多个Linux 环境下进行图像数据的接收完成图像的传输。

2、实验原理

Windows 平台发送图像数据,可通过不同的传输方式以及不同的平台进行图像的接收

3、实验效果

Linux 主机中可看到从 Windows 主机传输过来的传感器收到的图像,同时可看到 RflySim3D 仿真中飞机起飞到空中。

4、文件目录

文件夹/文件名称	说明
AllSourceFile	MATLAB 自动生成代码使用的模板源文件
1-SITLUdpDemo_TransMode0_Local	代码配置文件: UDP 直传 jpg 压缩+软件在环 + 单架机配置文件
2-SITLUdpDemo_TransMode3_Local	代码配置文件: 共享内存+软件在环 +单架机
3-HITLUdpDemo_TransMode3_Local	代码配置文件:UDP 直传 jpg 压缩+硬件在环 +单架机
4-HITLSerialDemo_TransMode3_Local	代码配置文件: 串口通信+UDP 直传 jpg 压缩+硬件在环仿真 + 单架机
5- SITLUdpDemo_TransMode3_Remote	代码配置文件:UDP 直传 jpg 压缩+软件在环+多架机

6- HITLUdpDemo_TransMode3_Remote	代码配置文件:UDP +硬件在环+多架机	
7- HITLSerialDemo_TransMode3_Remote	代码配置文件:串口+UDP 直传 jpg 压缩+硬件在环+多架机	
8- SITLUdpDemo_TransMode3_Local_2Ve hicle4Cameras	代码配置文件: UDP 直传 jpg 压缩+软件在环+单机+两架飞机四个相机	
9- SITLUdpDemo_TransMode3_Remote_2 Vehicle4Cameras	代码配置文件: UDP 直传 jpg 压缩+软件在环+多机+两架飞机四个相机	
10- HITLSerialDemo_TransMode3_Remote _2Vehicle4Cameras	代码配置文件:串口通信+ UDP 直传 jpg 压缩+硬件在环+多架机+两架飞机四个相机	
Config.xlsx	自动生成代码的参数配置文件	
Config.json	相机配置文件	
ConfigWrite.m	MATLAB 自动生成代码的文件	

5、运行环境

		硬件要求		
ולים ו	5	名称	数量	
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1	
2	RflySim 平台免费版			

6: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

6、实验步骤

以 1-SITLUdpDemo_TransMode0_Local 为例

Step 1:

在 1-SITLUdpDemo_TransMode0_Local 目录下有如下文件

Config.json	2022/6/11 23:46	JSON 源式
Config.pdf	2023/10/17 16:21	QQBrows
Config.xlsx	2023/10/25 11:25	Microsoft
ConfigWrite.m	2022/1/16 20:13	MATLAB

打开 Config.xlsx 文件更改 Windows 主机 IP 地址以及相连的 NX 的 IP 地址。

Windows 主机的 IP 地址可在命令行输入 ipconfig 进行查询,Linux 系统可使用 ifconfig 进行查找。完成填写后保存更改并关闭 Excel,NX 主机 IP 地址有几架飞机就填几个 IP 地址 (一台 NX 主机可控 n 个飞机,也就是 IP 地址可用同一个,但要写上 n 个相同的地址)。

Step 2:

打开 MATLAB 定位到 1-SITLUdpDemo_TransMode0_Local 目录下的 ConfigWrite.m 文件右键点 击运行

运行完成会在当前目录下生成一个名为 VisionDemo1 的文件夹,内部为自动生成各台电脑的可执行代码文件夹,例如本例是一台 Windows+1 台 Linux 的可执行文件夹

名称	修改日期	类型
LinuxNXX1	2023/10/23 16:19	文件夹
WindowsPC1	2023/10/23 16:19	文件夹

其生成的文件个数与 Config.xlsx 的参数配置有关,若飞机数量为 n,则生成的文件包含 WindowsPC1、LinuxNXX1、LinuxNXX2、······· 、LinuxNXXn。

Step 3:

进入 WindowsPC1 目录下,可见如下文件

client_ue4.py	2023/10/25 11:25	Python 源文件	4 KB
\$ client_ue4_SITL.bat	2023/10/25 11:25	Windows 批处理文件	6 KB
ii Config.json	2022/6/11 23:46	JSON 源文件	2 KB
PX4MavCtrlV4.py	2023/6/7 10:43	Python 源文件	137 KB
🖫 Python38Run.bat	2022/9/20 17:07	Windows 批处理文件	1 KB
VisionCaptureApi.py	2023/8/25 18:02	Python 源文件	98 KB

右键点击 client_ue4_SITL.bat 文件,选择以管理员身份运行,即可启动软件在环仿真

待 CopterSim 软件出现如下语句

回到 WindowsPC1 目录下,使用 VS Code 启动 client_ue4.py 脚本,或双击 Python38Run.bat 脚本启动 python 环境,在 python 环境下输入 python client_ue4.py 启动脚本,开始发送图像。

Step 4:

将上文中 LinuxNXX1 文件夹拷贝到 Linux 主机上任意位置,进入到目录下

右键点击空白处输入如下语句 chmod +x server_ue4.py, 为 server_ue4.py 脚本赋权限, 使其可作为可执行程序, 输入如下语句 python3 server_ue4.py 启动脚本, 可看到从 Windows 主机传输过来的传感器收到的图像, 同时可看到 RflySim3D 仿真中飞机起飞飞到空中。

上述步骤即为 1-SITLUdpDemo_TransMode0_Local 例程的完整步骤, e2_MultipleVehicles 目录下除 AllSourceFile 为 MATLAB 自动生成代码的代码源外,其他文件使用步骤皆与上相同,硬件在环仿真则需要 将飞控与 Windows 主机相连接,除此之外步骤基本一致,其连接方式如下图。

