

Toufan Tambunan

Chii-Chang Chen

Yuto Tataki

Yudai Nakakubo

M. Hafizhankarim W

Basic Quantum Neural Network

Qiskit Camp Asia 2019

Introduction

- Neural Network models are widely used for Classification problem in Machine Learning [1]
- Training the data in Neural Network for Big Data problem
- Representation of the Qubit for Neuron (Quantum Neuron), with the input and weight
- Optimization of the parameters of quantum neural networks

<u> Why Quantum Neural Networks?</u>

Classical

- 2ⁿ possible state only one at the same times
- Problem in multiple layer and many neuron (processing neuron and complexity)

Quantum

- Simultaneously: exponential advantage of quantum information storage
- Features quantum parallelism, entanglement and interference effects

Solution Neural Network Quantum Computing

- The first two unitary operations prepare the input quantum state, $|\psi_i\rangle$, and implement the U_w transformation, respectively.
- Gate for input and weight;
 - In the paper: $\{-1 \text{ or } 1\}$ (Z gate)
 - Our used (continuous values): $\{-1 < x < 1\}$ (Rotation gate)
- The final outcome is then written on an ancilla qubit

Our Strategy: Quantum Neural Networks

inspired by the paper

training

input (training data)

Example: AND

x1	x2	У
0	0	0
0	1	0
1	0	0
1	1	1

Our Strategy: Quantum Neural Networks

inspired by the paper

testing

 w_{opt} (fixed)

Result

How much will accuracy be?

Quantum Neural Networks

Result: training data (AND Gate)

- Run on the IBM-Q Simulator with 1024 times shots
- 100 training data (same with testing)

- Choose the best weight (w₁ & w₂) from the high correction rate (accuracy),
- Max 97% correction rate during training at \mathbf{w}_1 =-1.5, \mathbf{w}_2 =-0.9

Conclusion & What's next?

Quantum Neural Networks

- An AND gate is obtained by optimizing the neuron using the qubit gates.
- Multi-Layer Perceptrons Quantum Neural Network for Deep Learning Neural Network
- Improvement in the time and efficiency of training process
- More qubit usage to used for more complex problem