Ad-Soyad : Email : No : İmza :

Final sınavı (01.06.2010, süre: 90 dk)

(D)

0112622 - Elektronik Devreler

_		112022		COLLICIO			
	S1	S2	S3	S4	S5	S6	Toplam

- S1. Aşağıdaki ifadelerin doğru ya da yanlış olduklarını yandaki parantez içinde D ya da Y şeklinde belirtiniz. (15)
 - a. Termistor sıcaklığı elektriğe dönüştürür.
 - b. FET in giriş direnci BJT ye göre daha düşüktür. (Y)
 - c. BJT nin gerilim kazancı FET e göre daha yüksektir. (D)
 - d. CMOS lojik kapılar, TTL ye göre daha fazla güç harcarlar.(Y)
 - e. Ideal OPAMP in kazanci sonsuzdur. (D)
- S2. Şekil S2 de verilen devrede V_0 çıkışını hesaplayınız. (15)

$$\frac{V_{-}-2}{150} + \frac{V_{-}-v_{0}}{300} = 0 \implies \frac{2V_{-}-4}{300} + \frac{V_{-}-v_{0}}{300} = 0 \implies v_{0} = 3V_{-}-4$$

$$V_{+} = \frac{10 \times 1}{10 + 10} = 0.5 \text{ V} \qquad V_{-} = V_{+}$$

$$v_0 = 3V_- - 4 = 3 \times 0.5 - 4 = -2.5 \text{ V}$$

S3. Şekil S3 de verilen devrede A_v = -10 ve r_e = 3.8 Ω olarak verildiğine göre; R_E ve R_B dirençlerini bulunuz. (Z_b = βR_E olduğunu varsayın) (20)

$$A_{v} = -\frac{\beta R_{C}}{Z_{b}} = -\frac{\beta R_{C}}{\beta R_{E}} = -\frac{R_{C}}{R_{E}} = -10 \quad \Rightarrow \quad R_{E} = \frac{R_{C}}{10} = \frac{8.2 \text{ k}\Omega}{10} = 0.82 \text{ k}\Omega$$

$$I_{E} = \frac{26 \text{ mV}}{r_{e}} = \frac{26 \text{ mV}}{3.8 \Omega} = 6.842 \text{ mA}$$

$$V_{E} = I_{E}R_{E} = 6.842 \text{ mA} \times 0.82 \text{ k}\Omega = 5.61 \text{ V}$$

$$V_B = V_E + V_{BE} = 5.61 \text{ V} + 0.7 \text{ V} = 6.31 \text{ V}$$

$$I_B = \frac{I_E}{\beta + 1} = \frac{6.842 \text{ mA}}{121} = 56.55 \,\mu\text{A}$$

$$R_B = \frac{V_{R_B}}{I_B} = \frac{V_{CC} - V_B}{I_B} = \frac{20 \text{ V} - 6.31 \text{ V}}{56.55 \,\mu\text{A}} = 242.09 \text{ k}\Omega$$

Hatırlatma:
$$A_{v} = -\beta R_{C} / Z_{b}$$
 $I_{E} = 26 \text{ mV} / r_{e}$ $slope = 1/r_{D}$ $y_{os} = 1/r_{d}$ $A_{v} = -g_{m}(r_{d} \parallel R_{D})$ $I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{D}}\right)^{2}$ $g_{m} = \frac{2I_{DSS}}{|V_{c}|} \left[1 - \frac{V_{GS}}{V_{D}}\right]^{2}$

S4. a.Şekildeki diyot devresinde **diyot modeli 1** kullanıldığında devreden
geçen toplam akımı bulunuz. (7)

$$I = \frac{3 \text{ V} - 0.7 \text{ V}}{2 \text{ k}\Omega \| 2 \text{ k}\Omega} = \frac{2.3 \text{ V}}{1 \text{ k}\Omega} = 2.3 \text{ mA}$$

b. Aynı diyot devresinde **diyot modeli 2** kullanıldığında **V**_{out} gerilimini bulunuz. (8)

$$slope = \frac{1}{r_D} \implies r_D = \frac{1}{slope} = \frac{1}{50 \times 10^{-3}} = \frac{10^3}{50} = \frac{100}{5} = 20 \Omega$$

$$I = \frac{3 \text{ V} - 0.7 \text{ V}}{(2||2) \times 10^3 \Omega + 20 \Omega} = \frac{2.3 \text{ V}}{1020 \Omega} = 0.00225 \text{ A} = 2.25 \text{ mA}$$

$$V_{out} = I \times (2||2) \times 10^3 \Omega = 2.25 \times 10^{-3} \times 1 \times 10^3 = 2.25 \text{ V}$$

S5. Şekil S5 de verilen devrede I_{DSS} = 6 mA, V_P = -6 V, V_{GSQ} = 0 V ve y_{os} = 40 μ S olarak verildiğine göre; Z_i , Z_o , ve A_v değerlerini bulunuz. (20)

$$g_{m} = \frac{2I_{DSS}}{|V_{P}|} \left(1 - \frac{V_{GS}}{V_{P}} \right) = \frac{2 \times 6 \text{ mA}}{|-6| \text{ V}} \left(1 - \frac{0 \text{ V}}{-6 \text{ V}} \right) = \frac{2 \times 6 \text{ mA}}{6 \text{ V}} = 2 \text{ mS}$$

$$r_{d} = \frac{1}{y_{os}} = \frac{1}{40 \text{ µS}} = \frac{10^{6}}{40 \text{ S}} = \frac{1000 \times 10^{3}}{40 \text{ S}} = 25 \times 10^{3} \Omega = 25 \text{ k}\Omega$$

$$Z_{i} = 1 \text{ M}\Omega$$

$$Z_{o} = r_{d} \parallel R_{D} = \frac{r_{d} \times R_{D}}{r_{d} + R_{D}} = \frac{25 \text{ k}\Omega \times 2 \text{ k}\Omega}{(25 \text{ k}\Omega + 2 \text{ k}\Omega)} \approx 1.852 \text{ k}\Omega$$

$$A_{v} = -g_{m} Z_{o} = -2 \text{ mS} \times 1.852 \text{ k}\Omega \approx -3.7$$

S6.

 a. Yandaki devrede diyot ve tranzistörlerin ideal olduğunu varsayarak devrenin nasıl çalıştığını yandaki tabloyu doldurarak açıklayınız. (10)

Α	В	D_A	D _B	D_Y	T_X	Χ
0	0	on	on	off	off	V_{CC}
0	V_{CC}	on	off	off	off	V_{CC}
V _{CC}	0	off	on	off	off	V_{CC}
V _{CC}	V _{CC}	off	off	on	on	0

A ve/veya B '0' a bağlandığında D_A ve/veya D_B iletimde, D_Y ve T_X kesimde olur. Bu durumda X çıkışı V_{CC} olur. A ve B ' V_{CC} ' ye bağlandığında D_A ve D_B kesimde, D_Y ve T_X iletimde olur. Bu durumda X çıkışı '0' olur.

b. Bu devre ne iş yapar? (5)

Bu bir NAND kapısıdır.

Ad-Soyad : No :			mail :		
Vize 1 (0112622 – Ele	05.04.201 ektronik D	•			
S1. (a) İdeal bir işlemsel kuvvetlendirici nin genel özellikle (b) Kazanç×Bant genişliği = 10 ⁶ olan gerçek bir işlem devresinin kazancı 1000 olursa Bant genişliği kaç I	sel kuvvetler	ndirici kulla	anarak gerçel	kleştirilen bir kuv	(5) vetlendirici (10)
S2. Yandaki devre verildiğine göre; devrenin kazancını (A _v), R ₁ , R ₂ , R ₃ ve R _f cinsinden bulı	unuz ((20)	tvin	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vout F
 S3. Yandaki devrede V_{z1}=V_{z2}= 6.3 V, V_F = 0.7 V (zener diyo düşümü), R₁= 5 kΩ ve R_f = 100 kΩ olarak verildiğine g (a) Devrenin kazancını (A_v) bulunuz. (b) Giriş işareti V_{in} = 0.3 sin10t olduğunda devrenin çık (c) Giriş işareti V_{in} = 0.6 cos100t olduğunda devrenin ç (d) Giriş işareti V_{in} = 3 sin(1000t+ π / 6) olduğunda dev bulunuz. 	öre; cışını (V_{out}) cıkışını (V_{out})	(5) (5) (5)	- in	R ₁ R _f	V _{out}
S4. Yandaki diyot devresinde V_{o1} , V_{o2} ve I değerlerini bulun $V_{F(Si)} = 0.7 \ V$ $V_{F(Ge)} = 0.3 \ V$	iuz. ((20)	V + 1 kΩ	V ₀₁ 0.47 kΩ V ₀₁ 0.47 kΩ Si	V _{o2} Ge
 S5. Yandaki tranzistörlü devrede R_B= 470 kΩ , R_C = 3 kΩ , r₀ = 50 kΩ olarak verildiğine göre; (a) I_B, I_E ve r_e değerlerini bulunuz. (b) Giriş direncini (Z_i) bulunuz. (c) Çıkış direncini (Z_o) bulunuz. (b) Devrenin kazancını (A_v) bulunuz. 	β = 100 ve (10) (5) (5) (5)	$V_i \circ \longrightarrow I_i$ C_1 C_1	R_B	R_{C} R_{C} I_{o} I_{o	V_o

CEVAPLAR

C1. a. İdeal op-amp ın genel özellikleri:

Gerilim kazancı $A_v = \infty$, Giriş direnci $R_i = \infty$ Çıkış direnci $R_0 = 0$

b. Kazanç×Bant genişliği = 10⁶

 $Kazanç = 1000 = 10^3$

Bant genişliği = (Kazanç×Bant genişliği) / Kazanç = 10^6 / 10^3 = 10^3 Hz = 1000 Hz

C2.

$$\frac{V_{1} - v_{in}}{R_{1}} + \frac{V_{1} - v_{out}}{R_{f}} = 0 \implies \left(\frac{1}{R_{1}} + \frac{1}{R_{f}}\right) V_{1} = \frac{v_{in}}{R_{1}} + \frac{v_{out}}{R_{f}} \implies \left(\frac{R_{1} + R_{f}}{R_{1}R_{f}}\right) V_{1} = \frac{R_{f}v_{in} + R_{1}v_{out}}{R_{1}R_{f}} \implies V_{1} = \frac{R_{f}v_{in} + R_{1}v_{out}}{R_{1} + R_{f}}$$

$$\frac{V_2 - v_{in}}{R_2} + \frac{V_2}{R_3} = 0 \implies \left(\frac{1}{R_2} + \frac{1}{R_3}\right) V_2 = \frac{v_{in}}{R_2} \implies \left(\frac{R_2 + R_3}{R_2 R_3}\right) V_2 = \frac{v_{in}}{R_2} \implies V_2 = \frac{R_3 v_{in}}{R_2 + R_3}$$

$$V_{1} = V_{2} \quad \Rightarrow \quad \frac{R_{f}v_{in} + R_{1}v_{out}}{R_{1} + R_{f}} = \frac{R_{3}v_{in}}{R_{2} + R_{3}} \quad \Rightarrow \quad R_{f}v_{in} + R_{1}v_{out} = \frac{(R_{1} + R_{f})R_{3}v_{in}}{R_{2} + R_{3}} \quad \Rightarrow \quad \frac{v_{out}}{v_{in}} = \frac{R_{3}(R_{1} + R_{f})}{R_{1}(R_{2} + R_{3})} - \frac{R_{f}}{R_{1}(R_{2} + R_{3})} - \frac{R_{f}}{R$$

$$G_{\rm V} = \frac{v_{out}}{v_{in}} = \frac{R_1 R_3 - R_2 R_f}{R_1 (R_2 + R_3)}$$

C3.

a.
$$\frac{0 - v_{in}}{R_1} + \frac{0 - v_{out}}{R_f} = 0 \implies \frac{-v_{in}}{R_1} = \frac{v_{out}}{R_f} \implies G_V = \frac{v_{out}}{v_{in}} = -\frac{R_f}{R_1} = -\frac{100}{5} = -20$$

Zener diyotlarından dolayı devrenin çıkışı $\pm (V_{Z1} + V_F) = \pm (6.3 + 07) = \pm 7$ V değerleriyle sınırlandırılmıştır. Buna göre;

- b. Giriş işareti V_{in} = 0.3 sin10t olduğunda devrenin çıkışı (V_{out}):
 - Tepe değerleri ±0.3×(-20)=±6 V olan kırpılmamış bir sinüsoidal bir işarettir.
- c. Giriş işareti $V_{in} = 0.6 \cos 100t$ olduğunda devrenin çıkışı (V_{out}):

Zener diyot olmasaydı tepe değerleri ±0.6×(-20)=±12 V olan kırpılmamış sinüsoidal bir işaret olacaktı. Ancak çıkış işareti zenerlerden dolayı kırpılacağı için çıkış işareti, tepe değerleri ±12 V olan sinüsoidal işaretin tepe değerlerinin ±7 V da kırpılmış olduğu bir periodik işaret olacaktır.

- d. Giriş işareti $V_{in} = 3 \sin(1000t + \pi/6)$ olduğunda devrenin çıkışı (V_{out}):
 - Zener diyot olmasaydı tepe değerleri ±3x(-20)=±60 V olan kırpılmamış sinüsoidal bir işaret olacaktı. Ancak çıkış işareti zenerlerden dolayı kırpılacağı için çıkış işareti, tepe değerleri ±60 V olan sinüsoidal işaretin tepe değerlerinin ±7 V da kırpılmış olduğu bir periodik işaret olacaktır.

C4. Her iki diyot iletim yönünde kutuplanmışlardır. Dolayısı ile ikisi de iletimdedir. Buna gore:

$$\begin{split} &V_{o1} = 0.7 \text{ V}, \quad V_{o2} = 0.3 \text{ V} \\ &I_{1 \text{k}\Omega} = \frac{20 - V_{o1}}{1 \text{ k}\Omega} = \frac{20 - 0.7}{1000} = \frac{19.3}{1000} = 0.0193 \text{ A} = 19.3 \text{ mA} \\ &I_{0.47 \text{k}\Omega} = \frac{V_{o1} - V_{o2}}{0.47 \text{ k}\Omega} = \frac{0.7 - 0.3}{470} = \frac{0.4}{470} = 0.000851 \text{ A} = 0.851 \text{ mA} \\ &I_{\text{Sidiode}} = I_{1 \text{k}\Omega} - I_{0.47 \text{k}\Omega} = 19.3 \text{ mA} - 0.851 \text{ mA} = 18.45 \text{ mA} \end{split}$$

C5.

a.
$$I_B = \frac{V_{CC} - V_{BE}}{R_B} = \frac{12 - 0.7}{470 \text{ k}\Omega} = \frac{19.3}{470 \times 10^3} = 0.02404 \times 10^{-3} \text{ A} = 24.04 \times 10^{-6} \text{ A} = 24.04 \ \mu\text{A}$$

$$I_E = (\beta + 1)I_B = (101) \times 24.04 \ \mu\text{A} = 2.428 \text{ mA}$$

$$r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{2.428 \text{ mA}} = 10.71 \ \Omega$$

b. $\beta r_e = 100 \times 10.71 \Omega = 1071 \Omega = 1.071 k\Omega$ $Z_i = R_B \| \beta r_e = \frac{R_B \times \beta r_e}{R_B + \beta r_e} = \frac{470 \times 1.071}{470 + 1.071} = 1.069 k\Omega$

$$Z_o = R_c \| r_o = \frac{R_C \times r_o}{R_C + r_{oe}} = \frac{3 \times 50}{3 + 50} = 2.83 \text{ k}\Omega$$

$$R_C \| r_o = 2.83 \text{ k}\Omega = 2.83 \times 10^3 \Omega = 2830$$

d.
$$A_v = -\frac{R_c \| r_o}{r_e} = -\frac{2.83 \,\mathrm{k}\Omega}{10.71 \,\Omega} = -\frac{2.83 \times 10^3 \,\Omega}{10.71 \,\Omega} = -\frac{2830}{10.71} = -264.24$$

Ad-Soyad : No :					Email : mza :	
		Vize	2 (17.05.2010			
			22 – Elektro	•		
		S1	S2	S3	S4	Toplam
Aşağıdaki ifadele a. FET akım kont b. FET in giriş dire c. FET in gerilim ko d. JFET gerilim ko e. CMOS lojik kap	rollü aktif bir d enci BJT ye gö kazancı BJT y ontrollü bir dire	levre elemar öre daha yük e göre daha enç olarak ku	nıdır. sektir. yüksektir. ıllanılabilir.	() () ()	ya da Y şeklinde t	oelirtiniz. (25)
S2. Yandaki devrede $V, V_{GG} = 2 V \text{ ve } y$ $A_v = -3.48$, giriş d verildiğine göre as a. V_{GSQ} b. I_{DQ} c. r_d d. g_m e. R_G f. R_D g. V_D	$_{ m os}$ = 40 $\mu { m S}$ olara irenci ${ m Z_i}$ = 1Ms	ak verilmiştir. Ω , çıkış direr	Devrenin gerilim oci $Z_0 = 1.85 \text{ k}\Omega$ o	kazancı	$V_i \circ \longrightarrow \downarrow $	$R_D = C_2$ $R_G = S$ V_{GG}

S3.

a. Kaç tür güç kuvvetlendiricisi vardır? Yazınız.

- (10)
- b. Şekildeki A sınıfı kuvvetlendiricisinde transformatörün kullanılmasının nedenlerini açıklayınız. (10)

S4.

a. Yandaki devrede tranzistörlerin ideal olduğunu varsayarak devrenin nasıl çalıştığını yandaki tabloyu doldurarak açıklayınız. (10)

Α	В	T _A	T _B	T _X	Χ
0	V _{CC}	on	off	off	V _{CC}

b. Bu devre ne iş yapar? (5)

Başarılar...

Hatırlatma: $\boldsymbol{A}_{_{\boldsymbol{V}}} = -\boldsymbol{g}_{_{\boldsymbol{m}}}(\boldsymbol{r}_{_{\boldsymbol{d}}} \parallel \boldsymbol{R}_{_{\boldsymbol{D}}}) \qquad \quad \boldsymbol{I}_{\boldsymbol{D}} \! = \! \boldsymbol{I}_{\boldsymbol{D}SS} \! \left(\! \boldsymbol{1} \! - \! \! \frac{\boldsymbol{v}_{GS}}{\boldsymbol{v}_{\boldsymbol{P}}} \! \right)^{\! 2}$ $y_{os} = 1/r_d$

CEVAPLAR

C1.

Aşağıdaki ifadelerin doğru ya da yanlış olduklarını yandaki parantez içinde D ya da Y şeklinde belirtiniz. (25)

a. FET akım kontrollü aktif bir devre elemanıdır.

b. FET in giriş direnci BJT ye göre daha yüksektir.

(D)

c. FET in gerilim kazancı BJT ye göre daha yüksektir.

(Y)

d. JFET gerilim kontrollü bir direnç alarak kullanılabilir.

(D)

e. CMOS lojik kapılar, TTL ye göre daha düşük güç harcarlar

C2.

a.
$$V_{GS_O} = -V_{GG} = -2 \text{ V}$$

b.
$$I_{D_Q} = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 10 \text{ mA} \left(1 - \frac{2 \text{ V}}{-8 \text{ V}} \right)^2 = 10 \text{ mA} (1 - 0.25)^2 = 10 \text{ mA} (0.75)^2 = 5.625 \text{ mA}$$

c.
$$r_d = \frac{1}{v_{os}} = \frac{1}{40 \,\mu\text{S}} = \frac{10^6}{40 \,\text{S}} = \frac{1000 \times 10^3}{40 \,\text{S}} = 25 \times 10^3 \,\Omega = 25 \,\text{k}\Omega$$

d.
$$g_{m} = \frac{2I_{DSS}}{|V_{P}|} \left(1 - \frac{V_{GS}}{V_{P}} \right) = \frac{2 \times 10 \text{ mA}}{|-8|} \left(1 - \frac{2 \text{ V}}{-8 \text{ V}} \right) = 2.5 \times 0.75 = 1.875 \text{ mS}$$
 ya da
$$g_{m} = -\frac{A_{v}}{Z_{o}} = -\frac{-3.48}{1.85 \times 10^{3}} = 1.88 \times 10^{3} \text{ S} = 1.88 \text{ mS}$$

e.
$$R_G = Z_i = 1 \text{ M}\Omega$$

$$Z_{o} = r_{d} \parallel R_{D} \rightarrow Z_{o} = \frac{r_{d} \times R_{D}}{r_{d} + R_{D}} \rightarrow Z_{o} (r_{d} + R_{D}) = r_{d} R_{D} \rightarrow r_{d} Z_{o} = R_{D} (r_{d} - Z_{o}) \rightarrow R_{D} = R_{D}$$

$$R_{\rm D} = \frac{r_{\rm d} Z_{\rm o}}{(r_{\rm d} - Z_{\rm o})} = \frac{25 \,\mathrm{k}\Omega \times 1.85 \,\mathrm{k}\Omega}{(25 \,\mathrm{k}\Omega - 1.85 \,\mathrm{k}\Omega)} \cong 2 \,\mathrm{k}\Omega$$

g.
$$V_D = V_{DD} - I_D \times R_D = 16 \text{ V} - 5.625 \text{ mA} \times 2 \text{ k}\Omega = 16 - 11.25 = 4.75 \text{ V}$$

h.
$$V_G = V_{GS} = -2 \text{ V}$$
 $V_S = 0 \text{ V}$

C3.

- A sınıfı, B sınıfı, AB sınıfı, C sınıfı ve D sınıfı güç kuvvetlendiricileri.
- Transformatör, yük ile tranzistor devresinin çıkışı arasında empedans uyumu ile birlikte devre ile yük arasında elektriksel izolasyonu sağlar.

C4.

a. A ve/veya B '0' a bağlandığında T_A ve/veya T_B iletimde, Tx kesimde olur. Bu durumda X çıkışı

A ve B 'Vcc' ye bağlandığında TA ve TB kesimde, Tx iletimde olur. Bu durumda X çıkışı '0' olur.

Α	В	T _A	T _B	T _X	Х
0	0	on	on	off	V_{CC}
0	V_{CC}	on	off	off	V_{CC}
V_{CC}	0	off	on	off	V _{cc}
V _{CC}	V_{CC}	off	off	on	0

b. Bu bir NAND kapısıdır.

Ad-Soyad	:	Email :
No	:	İmza :

0112622 - Elektronik Devreler - Final (06.06.2011) - Süre 75 dk

S1 (15)	S2 (15)	S3 (35)	S4 (15)	S5 (15)	S6 (15)	Toplam

S1. Aşağıdaki ifadelerde eksik olan kısımları doldurunuz.

(3+3+3+3+3=15)

- a. Ideal bir işlemsel kuvvetlendiricide __giriş direnci / kazanç__ sonsuzdur.
- b. Fiziksel bir enerjiyi elektriksel enerjiye dönüştüren devre elemanına _____sensor___ denir.
- c. Tranzistörlü devrelerin alternatif akım (AC) analizinde **__kapasiteler / DC gerilim kaynakları**__kısa devre varsayılırlar.
- d. Bir diyot test edilirken hem ileri yönde hem de geri yönde kutuplandığında **0 V** gösteriyorsa ____bozuktur____.
- e. Ortak emitörlü devrede tranzistor doyma bölgesinde çalışıyorsa kollektor ve emitör arasındaki gerilim ___sıfırdır__.

S2.

Yandaki devrede V_i = 20 V, R1 = 0.9 k Ω ve R2 = 10 k Ω olarak verilmiştir. Diyodun iletim yönündeki gerilim düşümü V_D = 0.7 V, direnci r_D = 0.1 k Ω ve zener diyot gerilimi V_z = 5 V olduğuna göre;

 $\mathbf{V_o},\,\mathbf{I_{R1}},\,\,\mathbf{I_{R2}}$ ve $\,\mathbf{I_Z}$ değerlerini bulunuz. (3+4+4+4=15)

$$\begin{split} V_o &= V_Z = 5 \text{ V} \\ I_{R1} &= \frac{20 - V_D - V_o}{R1 + r_D} = \frac{20 - 0.7 - 5}{0.9 \text{ k}\Omega + 0.1 \text{ k}\Omega} = \frac{20 - 5.7}{1 \text{ k}\Omega} = \frac{14.3}{1000} = 0.0143 \text{ A} = 14.3 \text{ mA} \\ I_{R2} &= \frac{V_o}{R2} = \frac{5}{10 \text{ k}\Omega} = \frac{5}{10 \times 10^3} = 0.5 \times 10^{-3} \text{ A} = 0.5 \text{ mA} \\ I_Z &= I_{R1} - I_{R2} = 14.3 \text{ mA} - 0.5 \text{ mA} = 13.8 \text{ mA} \end{split}$$

- a. Devrenin DC eşdeğerini çiziniz. (05)
- b. I_B akımını bulunuz. (05)
- c. V_{CE} gerilimini bulunuz. (05)
- d. Devrenin AC eşdeğerini çiziniz. (05)
- e. Z_i giriş direncini bulunuz. (05)
- f. Bu devrenin yüksüz gerilim kazancı A_{vNL} ise; kaynak ve yük direnci göz önüne alındığındaki devrenin gerilim kazancı (A_{vs} = Vo/V_s), A_{vNL} kazancına göre ne olur.

Nedenleriyle açıklayınız (10)

а

b

$$I_B = \frac{V_{CC} - V_{BE}}{R_B} = \frac{12 - 0.7}{470 \text{ k}\Omega} = \frac{11.3 \text{ V}}{470 \text{ k}\Omega} \cong 0.024 \text{ mA} \cong 24 \text{ }\mu\text{A}$$

C.

$$\begin{split} V_{CE} &= V_{CC} - I_C R_C = V_{CC} - \beta I_B R_C = 12 - 100 \times 0.024 \text{ mA} \times 3 \text{ k}\Omega \\ V_{CE} &= 12 - 2.4 \times 10^{-3} \times 3 \times 10^3 = 12 - 2.4 \times 3 = 4.8 \text{ V} \end{split}$$

e.
$$\beta r_e = 100 \times \frac{26 \text{ mV}}{I_E} = 100 \times \frac{26 \text{ mV}}{(\beta + 1)I_B} = \frac{2600 \text{ mV}}{101 \times 0.024 \text{ mA}} = \frac{2600 \text{ mV}}{2.424 \text{ mA}} = 1072.6 \ \Omega \cong 1.072 \text{ k}\Omega$$

$$Z_i = R_B \parallel \beta r_e = \frac{470 \times 1.072}{470 + 1.072} = \frac{66.21}{471.072} = 1.0695 \text{ k}\Omega \cong 1070 \ \Omega$$

f. Kaynak ve yük direnci göz önüne alındığında devrenin gerilim kazancı $A_{vs} = \frac{Z_i}{R_s + Z_i} \times \frac{R_L}{R_L + Z_o} \times A_{vNL}$ olur. Buna göre devrenin gerilim kazancı A_{vs} yüksüz durumdaki gerilim kazancı A_{vNL} den daha düşük olacaktır.

S4. Aşağıdaki devrede opamp ve diyot idealdir. Aşağıda verilen (v_i) işareti devreye uygulandığında devrenin çıkışında elde edilecek olan (v_o) işaretini çiziniz (çıkış dalga şeklini aynı grafik üzerine çizebilirsiniz). (15)

 v_i < 0 olduğunda diyot iletimdedir ve devre kazancı -0.5 ($K = v_o/v_i = -(R_f/R_i)$) olan eviren bir kuvvetlendirici olarak çalışır.

 $v_i > 0$ olduğunda diyot kesimdedir ve opamp devre dışıdır. Devre kazancı +0.5 ($K = v_o/v_i = R_L/(R_f + R_i)$) olan pasif bir gerilim bölücü olarak çalışır.

S5. Bir biyolojik ölçme sistemindeki sensörün çıkışında elde edilen elektriksel işaretin maksimum tepe değeri **10 mV** ve bantgenişliği **1 kHz** dir. Bu işaretin işlenebilmesi için kuvvetlendirilmesi gerekmektedir. *Kazanç×Bant Genişliği* =**10**⁶ olan gerçek bir opamp kullanıldığına göre; belirlenen çalışma frekans aralığı içinde çıkış tepe değeri maksimum **1 V** olacak sekilde (evirmeyen) kazanç sağlayan kuvvetlendirici devresini tasarlayınız.

Tasarlanması istenen kuvvetlendiricinin Kazancı (K_{amp}) = 1 V / 10 mV = 1 / (10×10^{-3}) = 10^{2} , Bant Genişliği (BG) 10^{3} Hz olarak verilmiş.

Bu kuvvetlendirici için $K_{amp} \times BG = 10^2 \times 10^3 = 10^5$, kullanılacak olan opamp ın $K_{op} \times BG$ değerinden (10⁶) daha azdır.

Bir opamp la tasarlanacak 1 kHz bant genişliğine sahip kuvvetlendiriciden elde edilebilecek en yüksek kazanç;

$$K_{1op} \times BG = 10^6 \rightarrow K_{1op} \times 10^3 = 10^6 \rightarrow K_{1op} = 10^6 \times 10^{-3} = 10^3$$

Bu durumda tasarlanması istenen kuvvetlendirici sistem, kazancı 100 olan tek opamplı evirmeyen bir kuvvetlendirici kullanılarak aşağıdaki gibi gerçekleştirilebilir.

Evirmeyen kuvvetlendirici için;

$$K = 1+(R2/R1) = 100$$
 \rightarrow $R2 = 99 \times R1$ \rightarrow $R1 = 1 kΩ$ seçilirse $R2 = 99 kΩ$

S6.

Yandaki devrenin gerilim kazancı Av = -8 ve $V_{GSQ} = \frac{1}{4}V_P$ olarak verildiğine göre R_D direnç değerini bulunuz. (

$$V_{GSQ} = V_{GS} = \frac{V_p}{4} = \frac{-4}{4} = -1 \text{ V}$$

$$A_{v} = -g_{m}(r_{d} \parallel R_{D}) = -g_{m} \frac{r_{d} \times R_{D}}{r_{d} + R_{D}} \implies -8 = -g_{m} \frac{r_{d} \times R_{D}}{r_{d} + R_{D}} \implies 8 = g_{m} \frac{r_{d} \times R_{D}}{r_{d} + R_{D}} \implies 8 = g_{m} \frac{r_{d} \times R_{D}}{r_{d} + R_{D}} \implies 8r_{d} + 8R_{D} = g_{m} \times r_{d} \times R_{D} \implies 8r_{d} = (g_{m} \times r_{d} - 8)R_{D} \implies R_{D} = \frac{8r_{d}}{g_{m} \times r_{d} - 8}$$

r_d ve g_m yi hesaplayıp yukarıda yerine koyarsak R_D yi bulmuş oluruz.

$$\begin{split} y_{os} &= \frac{1}{r_d} \implies r_d = \frac{1}{y_{os}} = \frac{1}{20 \, \mu S} = \frac{10^6}{20} = \frac{1000000}{20} = 50000 \, \Omega = 50 \, k\Omega \\ g_m &= \frac{2I_{DSS}}{\left|V_P\right|} \left[1 - \frac{V_{GS}}{V_P}\right] = \frac{2 \times 10 \, mA}{4 \, V} \left[1 - \frac{-1}{-4}\right] = 5 \times 0.75 \, mS = 3.75 \, mS \end{split}$$

$$R_{_{D}} = \frac{8r_{_{d}}}{g_{_{m}} \times r_{_{d}} - 8} = \frac{8 \times 50 \times 10^{3}}{3.75 \times 10^{^{-3}} \times 50 \times 10^{^{3}} - 8} = 2228 \ \Omega \cong 2.2 \ k\Omega$$

Ortak-Emitörlü Tranzistor eşdeğer devresi

$$\beta r_{e}$$

$$\beta I_{b}$$

$$\beta I_{b}$$

$$\beta I_{b}$$

$$\beta I_{b}$$

$$\beta I_{b}$$

$$\beta I_{c}$$

$$I_E = I_C + I_B$$

$$g_{e} = \frac{I_{E}}{26 \text{ mV}}$$

$$I_{e} = \frac{I_{E}}{26 \text{ mV}}$$

$$I_{C} = \beta I_{B}$$

$$g_{e} = \frac{I_{E}}{26 \text{ mV}}$$

$$A_{vs} = \frac{Z_{i}}{R_{s} + Z_{i}} \times \frac{R_{L}}{R_{L} + Z_{o}} \times A_{vNL}$$

$$S \circ \longrightarrow \downarrow$$

$$V_{gs} \downarrow g_{m}V_{gs} \downarrow r_{d}$$

$$A_{vg} = \frac{2I_{DSS}}{|V_{P}|} \left[1 - \frac{V_{GS}}{V_{P}} \right]$$

$$A_{vg} = -g_{m}(r_{d} \parallel R_{D})$$

$$g_{\rm m}$$

$$y_{os} = 1/r_{d} I_{D=I_{DSS}} \left(1 - \frac{V_{GS}}{V_{P}}\right)^{2}$$

$$A_{v} = -g_{m}(r_{d} \parallel R_{D})$$

Ad-Soyad:

Email:

No :

imza :

0112622 - Elektronik Devreler - Vize 1 (04.04.2011) - Süre 75 dk

S1 (15)	S2 (15)	S3 (20)	S4 (15)	S5 (20)	S6 (15)	Toplam

- S1. Aşağıdaki ifadelerin doğru ya da yanlış olduklarını yandaki parantez içinde **D** ya da **Y** şeklinde belirtiniz. (3+3+3+3+3=15)
 - a. Transducer bir enerji türünü başka bir enerji türüne dönüştüren devre elemanıdır. (D)
 - b. Doğruluk (accuracy) gerçek değerle ölçülen değer arasındaki farktır.

(Y) (Y)

(D)

c. İdeal op-amp ın giriş direnci sıfırdır.

- (Y) (D)
- d. Bir diyot test edilirken hem ileri yönde hem de geri yönde kutuplandığında 0 V gösteriyorsa bozuktur.
- e. Girişine tepe değeri V_m olan bir işaret uygulanan tam dalga doğrultucusunun ortalama çıkış gerilimi **0.636V**_m dir.
- S2. Yanda verilen sisteme ait transfer fonksiyonunu (**c/g**) bulunuz.

C2.

$$s_3 = s_1 \times G$$

$$c = s_3 + s_4 = s_3 + s_1 \times L = s_1 \times L + s_1 \times G = s_1 \times (L + G)$$

$$s_1 = \frac{c}{L + G}$$

$$s_2 = s_3 \times H$$

$$s_1 = g - s_2 = g - s_3 \times H = g - s_1 \times G \times H \rightarrow g = s_1 + s_1 \times G \times H = s_1 (1 + G \times H)$$

$$g = \frac{c}{L+G}(1+G\times H) = c\frac{1+GH}{L+G} \rightarrow \frac{c}{g} = \frac{L+G}{1+GH}$$

S3. Yandaki devrede
$$R_1$$
= 200 k Ω , R_2 = 100 k Ω , R_3 = 50 k Ω , ve R_f = 10 k Ω olarak verildiğine göre;

(a) Devrenin çıkış ifadesini (**V**₀) bulunuz.

(10)

$$\frac{0 - V_1}{R_1} + \frac{0 - V_2}{R_2} + \frac{0 - V_3}{R_3} + \frac{0 - V_0}{R_f} = 0 \implies$$

$$-\left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3}\right) = \frac{V_0}{R_f} \implies$$

$$V_0 = -\left(\frac{R_f V_1}{R_1} + \frac{R_f V_2}{R_2} + \frac{R_f V_3}{R_3}\right)$$

$$V_0 = -\left(\frac{10V_1}{200} + \frac{10V_2}{100} + \frac{10V_3}{50}\right)$$

$$V_0 = -(0.05V_1 + 0.1V_2 + 0.2V_3)$$

(b) Giriş işaretleri (V_1 , V_2 , V_3) yandaki gibi verildiğine göre çıkış işaretini (V_0) tamamlayınız. (10)

S4. Yandaki diyot devresinde V_{o1} , V_{o2} , I_1 , I_2 ve I_Z değerlerini bulunuz. (3+3+3+3+3=15)

$$V_F = 0.7 V$$
 $V_Z = 5.4 V$

C4.

$$\begin{split} &V_{o1} = V_Z = 5.4 \text{ V}, \quad V_{o2} = 0.7 \text{ V} \\ &I_1 = \frac{20 - V_{o1}}{1 \text{ k}\Omega} = \frac{20 - 5.4}{1000} = \frac{14.6}{1000} = 0.0146 \text{ A} = 14.6 \text{ mA} \\ &I_2 = \frac{V_{o1} - V_{o2}}{0.47 \text{ k}\Omega} = \frac{5.4 - 0.7}{470} = \frac{4.7}{470} = 0.01 \text{ A} = 10 \text{ mA} \\ &I_Z = I_1 - I_2 = 14.6 \text{ mA} - 10 \text{ mA} = 4.6 \text{ mA} \end{split}$$

S5. **0-100 kHz** frekans aralığında kazancı **10**³ olan evirmeyen bir kuvvetlendirici tasarlanacaktır. *Kazanç×Bant Genişliği* **10**⁶ olan bir opamp kullanıldığına göre; belirlenen çalışma frekans aralığı içinde istenen kazancı sağlayan devreyi tasarlayınız (gerekiyorsa birden fazla opamp devresi kullanabilirsiniz). (20)

C5. Tasarlanması istenen kuvvetlendiricinin Kazancı (K_{amp}) 10³, Bant Genişliği (BG) 10⁵ olarak verilmiş.

Bu kuvvetlendirici için $K_{amp} \times BG = 10^3 \times 10^5 = 10^8$, kullanılacak olan opamp ın $K_{op} \times BG$ değerinden (10⁶) daha yüksektir.

Buna göre bir opamp la tasarlanacak 100 kHz bant genişliğine sahip kuvvetlendiriciden elde edilebilecek en yüksek kazanç;

$$K_{1op} \times BG = 10^6$$
 \rightarrow $K_{1op} \times 10^5 = 10^6$ \rightarrow $K_{1op} = 10^6 \times 10^{-5} = 10$

Tasarlanması istenen kuvvetlendirici system, kazancı 10 olan tek opamp lı üç farklı kuvvetlendiricinin arka arkaya bağlanmasıyla elde edilebilir. Buna göre kuvvetlendirici sistemi, herbirinin kazancı 10 olan iki eviren ve bir evirmeyen kuvvetlendirici kullanılarak aşağıdaki gibi gerçekleştirilebilir.

Eviren kuvvetlendirici için;

$$K_1 = K_2 = -(R2/R1) = -10$$
 $+$

Evirmeyen kuvvetlendirici için;

$$K_3 = 1 + (R4/R3) = 10$$
 \Rightarrow $R4 = 9 \times R3$ \Rightarrow $R3 = 1 \times \Omega$ secilirse $R4 = 9 \times \Omega$

Diğer bir çözüm ise yukarıda tasarımı yapılan kazancı 10 olan evirmeyen kuvvetlendiricinin aşağıdaki gibi 3 defa arka arkaya bağlanması ile elde edilir.

S6. Hassas bir terazide kullanılan yandaki Wheatstone köprü devresinde tartılan cismin ağırlığı $\bf a$ ve $\bf b$ noktaları arasında ölçülen gerilimle (ΔV_0) orantılıdır. Köprüyü oluşturan bütün dirençlerin ($\bf R_1$, $\bf R_2$, $\bf R_3$, $\bf R_4$) değerleri tartılan cismin oluşturduğu basınçla değişmektedir ve başlangıç değerleri $\bf R_0$ olarak verilmiştir. Ağırlık ölçülürken $\bf R_1$ ve $\bf R_3$ $\Delta \bf R$ kadar artmakta, $\bf R_2$ ve $\bf R_4$ ise $\Delta \bf R$ kadar azalmaktadır. Buna göre ölçü aletinden okunan $\Delta \bf V_0$ değerinin ($\Delta \bf R/\bf R_0$)× $\bf V_i$ olduğunu gösteriniz. (15)

C6.

$$\begin{split} R_1 &= R_3 = R_0 + \Delta R \quad , \quad R_2 = R_4 = R_0 - \Delta R \\ V_a &= V_i \! \left(\frac{R_3}{R_2 + R_3} \right) \quad V_b = V_i \! \left(\frac{R_4}{R_1 + R_4} \right) \quad \Delta V_o = V_a - V_b = V_i \! \left(\frac{R_3}{R_2 + R_3} - \frac{R_4}{R_1 + R_4} \right) \\ \Delta V_o &= V_i \! \left(\frac{R_0 + \Delta R}{R_0 - \Delta R + R_0 + \Delta R} - \frac{R_0 - \Delta R}{R_0 + \Delta R + R_0 - \Delta R} \right) \! = V_i \! \left(\frac{R_0 + \Delta R}{R_0 + R_0} - \frac{R_0 - \Delta R}{R_0 + R_0} \right) \\ \Delta V_o &= V_i \! \left(\frac{R_0 + \Delta R - R_0 + \Delta R}{2 \times R_0} \right) \! = V_i \! \left(\frac{2 \times \Delta R}{2 \times R_0} \right) \! = V_i \! \left(\frac{\Delta R}{R_0} \right) \end{split}$$

Hatırlatma

Eviren (inverting) kuvvetlendirici

Evirmeyen (noninverting) kuvvetlendirici

Opamp Kazanç-Bant Genişliği grafiği