实验报告

1	-
(-
	31
	/

课程名称:	实验名称: 弗兰克	林為安实验	日期: 2023 年_	名:郭忠海
班 级: 07/6 2201	教学班级:	学	号:112022 0508姓	名:郭忠落
一、实验目的				

通过 弗兰克一赫兹 实验证明 戽子能极 (分立态)的存在。

二、实验原理

当原子爱外界作用而从一个稳定态过渡到另一个稳定态时,就吸收或放出一定频率的电磁波 h, = En - Em 式中, En 和 En 分别为第 n 和 第 n 级激发态, h 为善朗前荣教。

实验原理如图 25-1 所示。书兰克·赫兹管是一种四极管,内部充满氩气。本实验是用慢电子碰撞氩原子来证明原子能极的。由于从热阴极出,阴极长知第二栅极。企业,阴极长知第二栅极的栅风。在板板户和第二栅级 Ciz之间加有减速电压 UCip。如果电子的能量较大,能速克服 Ucip到达斯特·形成执极电流上。实验的主要工作就是观察在一定的加速电压控制下,抵流的变化情况。

当Uqik电压逐渐增加时,如果原子能极确实存在,就能观察到如图 2 所示的Uqik-1,规则变化曲线。该曲线反映了氩原子在 K- Gize间与电子进行能量交换的情形,当Uqik = nU。时,板流都会出现极小值。相邻的两个极小值对应的 Uqik 的差扰等于原于的第一演发电位 U。

三,实验内容与步骤

八颗热

实验特量程置于10-6档,所有电位器都逆时针转到头,使得各档电压分别降低到最小值。然后开电源,将电压选择开关置于VG,k挡税查调节(一般为1.5V左右),再拨到 VGaP 档并调节(一般7.5V左右)。预热F-H管3min后开始观测

2、观测

(1) 将示波器置于X个Y工作方式,X轴的放大管率被钮 V/div置于 0.2V/div。Y轴的放大倍率 V/div 可置于 20mV/div 或 50 mV/div, 然后把X轴卸 Y轴放大倍率定标即微调旋钮置于"CAL"(较难)外,这时, X. Y轴的实际放大倍率才准确等于旋钮指导值。

系方式:	指导教师签字:

北京理工大学

实验报告

APE

		-t- 14 FT HE	年	月	日
课程名称:	实验名称:	实验日期:		11	
班 级:	教学班级:	学号:		名:	
UNI VELE	n: 0() 0(" # +8-7 *	芝 子 PC 外			

- X轴和Y轴的: ACLPC" 选择开关都置于DC 外
- (2)将下一片实验仪的输出端与示波器的对应输入端连接。调节后面被上的信益 调节旋钮,使属上的水平扫描代径远正好为10格, 相当于100 V.
- (3) 特选择开关置于示演器挡 特"电压"选择开关塞于VF档并缓慢调节。一旦发现 几个波峰信长顿快时,再微微减小少值,直到波形稳定
- (4)分别读出 6 (或5) 个波谷对应的电压值。然后用逐套法求第一激发电位。示波 器的纵轴代表摄极电流,读数时记录钨数即可。
 - 3. 车动方式观测

先用示波器方式观测F-H曲线,调出最佳的灯丝电压VF,然后将"选择"开关置 于手动档, 电压选择开关拨歌到"加速电压"位置, 缓慢调节加速电压整钥。调出 第一个堆值时,记录 I_P W_{G_2k} , 再测该点附近的 V_{G_2k} ± 21 的两个点;然后增大 V_{G_2k} . 调出另一个名值时,记录了,如Vaik,两测该点附近的Vaik生以的两个点。共测6(或5) 个峰值和 6(成 5) 个各值。记录 F- H实验仪上的电流和电压值。

作出下一片实验曲线,并求出第一,微发电位。

4、加速电压波形

观察示波器方式下F-H管第二栅极上加速电压的波形,测量其幅度和频率。 注意此时寺波岩应及用了一十方式

注意:实验完年后将灯丝电压Vri的针调到最小,再头电源 四、思考题

- 1、在城连电压 Va.p=0时, 能否记录到了的有规则起伏?
- 2. 分析 F-H由传第三个波念处, F-H管中电子与氩原子发生非弹性碰撞的位置
- 3. 手动方式和示波器方式, 第二栅极上的电压变化各有什么特点?

唇始	数据	,
----	----	---

作业纸

课程名称:_

班级:	教学班级:	姓名:	学号:	第 页
1、用示波器。	DiR!		1 8 30 100	ale with
液岩	1	2 3	4 5 6	
Ip (格)	1,6	0.8 0.4	0,3 0,4 0,	9
VG2 K(V)	221	34 46	58 72 84	
2、争动记录	_			
I (NA) Vazk(V)	141	峰1 右 172 156 18.7 20.7	167 139	石 200 14.8
1 (NA) Vazk(V)	五 297 27,0 五	峰2 右 340 270 29.0 31.0 峰3 右	日 31.9 33.9	右干 232日 35.9 石
1 (NA)	374	45) 358	202 76	232
Vazk (V)	37.8	39.8 41.8	43, 2 45, 2	47.2
	立	峰4 右	左 省4	右
I (NA) V _{Gz k} (V)	416 49.5 左	509 400 51.5 53.5 峰5 右	172 76 55,2 57,3 左 给5	59,2
1 (NA)	464	553 436	228 100	720
Va. K(V)	61.7	63.7 65.7	67.3 69.	
	立	峰6 在	左 分	
1 (NA)			308 19	9 284
方式:VGik(V)	11.5	76.5 78.5	90,1 82,	1 84.1

实验二十五 弗兰克一赫兹实验

(原始数据可以用空白纸记录)

1. 示波器方式: (测连续6个波谷加速电压值)

波谷	1	2	3	4	5	6
Ip (1.6	0.8	0.4	0.3	0.4	0,9
V_{G2K} (V)	22	34	46	58	72	84

 $\Delta V_{G2R} = 1 \text{ V}$, 包含因子 k = 1.645. 用逐差法计算第一激发电位,并正确表达结果:

2. 手动记录: (连续 6 个波峰和波谷、及峰谷两侧±2 V 的加速电压和板级电流值)

	左	峰 1	右	左	谷1	右
I (μ A)	141	172	156	167	139	200
$V_{G2K}\left(\mathbf{V}\right)$	16.8	18.7	20.7	20.9	27.8	24.8
	左	峰 2	右	左	谷 2	右
I (μ A)	297	340	270	202	111	232
$V_{G2K}\left(\mathbf{V}\right)$	27.0	29.0	31.0	31.9	33, 9	35.9
	左	峰3	右	左	谷 3	右
<i>I</i> (μA)	374	451	358	202	76	232
$V_{G2K}\left(\mathbf{V}\right)$	37. 8	39.8	41. 8	43.2	45,2	47.2
	左	峰 4	右	左	谷 4	右
<i>I</i> (μA)	416	509	400	172	76	227
$V_{G2K}\left(\mathbf{V}\right)$	49.5	51.5	53,5	55.7	57, 2	59,2
	左	峰 5	右	左	谷 5	右
<i>I</i> (μA)	464	553	436	228	100	220
$V_{G2K}(V)$	61,7	63.7	65,7	67.3	69.3	71,3
	左	峰 6	右	左	谷 6	右
<i>I</i> (μA)	508	594	475	308	199	284
$V_{G2K}(V)$	74,5	76.5	78.5	80.1	82.1	84,

 $\Delta V_{G2K} = 0.1 \text{ V}$,包含因子 k = 1.645.

用坐标纸作图;用逐差法计算第一激发电位;写出主要计算过程;正确表达结果;

思考题: 第3题。

弗兰克赫兹实验费据结果答题卡

$$U = \frac{\frac{1}{3}\sum_{i=1}^{3}(U_{i+3}-U_{i})}{3} = \frac{58+12+84-22-34-4}{9}$$

= 12,44V

$$U(v) = \frac{1}{1.645} = 0.61V$$

U = 12.44 (0.61) V

$$U = \frac{1}{2} \left[\frac{\frac{1}{3} \frac{2}{5} (U_{kit3} - U_{kit})}{3} + \frac{\frac{1}{3} \frac{2}{5} (U_{kit3} - U_{ki})}{3} \right]$$

$$= \frac{1}{2} \left[\frac{1}{9} (76.5 + 63.7 + 51.5 - 18.7 - 29.0 - 39.8) + \frac{1}{9} (82.1 + 69.3 + 57.2 - 22.8 - 33.9 - 45.2) \right]$$

= 11,72 V

$$U(v) = \frac{0.1}{1.645} = 0.06$$

3. 思考題 (教材第3題), 其中弗兰克赫兹曲线自愿选择是否在坐标纸上绘图。

①解释上降顶的形状

电子在发射出时,在某一重度 V。附近分本路。当速度为 V。的电子经过 Vack 加速达硬。时,使氦原于跌迁,会导致电流宏观上的减小,由于此时仍有速度不为 GV。的电子没有达到能量 E。,不与氦厚于这类能量而打到报报上,故电流不会突然减小,面是由转平缓逐渐减小,对应到不峰顶较平滑的形状

②会垂直下降,由①知当所有电子初速度为①时,每个电子达到后。所需的Vazk的一致。当Vax达到特定值时,所有电子增好均能与氢厚子交换能量,而在Vaxk左右没有附合争件的电子,就造成电流3聚降,即垂直下降。但不是所有电子均气与氢原子碰撞并支换能量,故电流不会降为①

