

Module 14

Partha Pratim Das

Objectives & Outline

Transaction

Constraints

Referential Integri

SQL Data Types

and Schemas

Index

UDT

Large Object

Authorizatio

Privileges Revocation

Module Summar

Database Management Systems

Module 14: Intermediate SQL/3

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

Module Recap

Module 14

Partha Pratir Das

Objectives & Outline

Transactio

Constraints

Referential Integri

SQL Data Type

and Schemas

Index

Domains

Large Objec

Authorizatio

Revocation

Module Summar

SQL expressions for Join and Views

Module Objectives

Module 14

Partha Pratii Das

Objectives & Outline

Transaction

Integrity
Constraints
Referential Integrit

SQL Data Type

Built-in Types

UDT Domains

Large Object

Privileges
Revocation
Roles

- To understand Transactions
- To learn SQL expressions for Integrity Constraints
- To understand more Data Types in SQL
- To understand Authorization in SQL

Module Outline

Module 14

Partha Pratii Das

Objectives & Outline

Transactio

Constraints

Referential Integri

SQL Data Type

and Schemas

UDT

Domains Large Object

Privileges Revocation

- Transactions
- Integrity Constraints
- SQL Data Types and Schemas
- Authorization

Transactions

14.5

Module 14

Partha Prat Das

Objectives Outline

Transactions

Constraints

Referential Integr

SQL Data Type

and Schemas

Index

Domains

Authorizatio

Privileges Revocation

Madula Summ

Transactions

Transactions

Module 14

Partha Pratin Das

Objectives Outline

Transactions

Integrity
Constraints
Referential Integrity

SQL Data Types and Schemas Built-in Types Index

Domains Large Object

Authorizatio

Privileges Revocation Roles

Module Summa

• Unit of work

- Atomic transaction
 - o either fully executed or rolled back as if it never occurred
- Isolation from concurrent transactions
- Transactions begin implicitly
 - Ended by commit work or rollback work
- But default on most databases: each SQL statement commits automatically
 - Can turn off auto commit for a session (for example, using API)
 - ∘ In SQL:1999, can use: **begin atomic ... end**
 - ▷ Not supported on most databases

Integrity Constraints

Module 14

Partha Prat Das

Objectives Outline

Transaction Integrity

Constraints

Referential Integr

SQL Data Type

and Schemas

Built-in T

UDT

Large Ob

Authorization

Revocatio

Module Summar

Integrity Constraints

Integrity Constraints

Module 14

Partha Pratim Das

Objectives of Outline

Transaction Integrity

Constraints

Referential Integri

SQL Data Type and Schemas

Index

Domains

Large Object

Authorizati

Privileges
Revocation
Roles

- Integrity constraints guard against accidental damage to the database, by ensuring that authorized changes to the database do not result in a loss of data consistency
 - A checking account must have a balance greater than Rs. 10,000.00
 - o A salary of a bank employee must be at least Rs. 250.00 an hour
 - A customer must have a (non-null) phone number

Integrity Constraints on a Single Relation

Module 14

Partha Pratim Das

Objectives Outline

Transaction

Integrity Constraints

Defermatel Internal

Referential Integrit

SQL Data Type:

and Schemas

Built-in Types

UDT

Domains

Large Object

Privilege

Revocation

- not null
- primary key
- unique
- **check**(P), where P is a predicate

Not Null and Unique Constraints

Module 14

Partha Pratir Das

Objectives Outline

Transaction

Integrity Constraints

Referential Integri

SQL Data Types and Schemas Built-in Types

Built-in Ty Index UDT

Domains

Authorizati

Privileges Revocation Roles

Module Summar

• not null

- o Declare name and budget to be **not null**name varchar(20) **not null**budget numeric(12,2) **not null**
- unique $(A_1, A_2, ..., A_m)$
 - \circ The unique specification states that the attributes A_1,A_2,\ldots,A_m form a candidate key
 - Candidate keys are permitted to be null (in contrast to primary keys).

The check clause

Module 14

Partha Pratim Das

Objectives Outline

Transaction

Integrity Constraints

Referential Integr

SQL Data Types and Schemas

Built-in 1
Index
UDT

Domains Large Obje

Authorizati

Privileges Revocation Roles

- **check**(P), where P is a predicate
- Ensure that semester is one of fall, winter, spring or summer:

```
create table section (
       course_id varchar(8),
       sec_id varchar(8),
       semester varchar(6).
       year numeric(4,0).
       building varchar(15),
       room_number varchar(7),
       time slot id varchar(4).
       primary key (course_id. sec_id. semester. year).
       check (semester in ('Fall', 'Winter', 'Spring', 'Summer'))
```


Referential Integrity

Module 14

Partha Pratim Das

Objectives Outline

Transactio

Constraints
Referential Integrity

SQL Data Types

Built-in Types

UDT Domains

Large Object

Privileges
Revocation

- Ensures that a value that appears in one relation for a given set of attributes also appears for a certain set of attributes in another relation
- Example: If "Biology" is a department name appearing in one of the tuples in the instructor relation, then there exists a tuple in the *department* relation for "Biology"
- Let A be a set of attributes. Let R and S be two relations that contain attributes A and where A is the primary key of S. A is said to be a foreign key of R if for any values of A appearing in R these values also appear in S

Cascading Actions in Referential Integrity

Module 14

Referential Integrity

```
    With cascading, you can define the actions that the Database Engine takes when a user

  tries to delete or update a key to which existing foreign keys point
```

```
• create table course (
         course_id char(5) primary key,
         title varchar(20),
         dept_name varchar(20) references department

    create table course (

         dept_name varchar(20),
         foreign key (dept_name) references department
                on delete cascade
                on update cascade.
         . . .
```

Alternative actions to cascade: no action, set null, set default Database Management Systems Partha Pratim Das

Integrity Constraint Violation During Transactions

Module 14

Partha Pratin

Objectives Outline

Transactio

Constraints
Referential Integrity

SQL Data Types and Schemas Built-in Types Index

UDT
Domains
Large Objec

Authorization Privileges Revocation Roles

- How to insert a tuple without causing constraint violation?
 - Insert father and mother of a person before inserting person
 - OR, Set father and mother to null initially, update after inserting all persons (not
 possible if father and mother attributes declared to be **not null**)
 - OR Defer constraint checking (will discuss later)

Partha Prati Das

Objectives

Transactio

Constraints

SQL Data Types and Schemas

Built-in Types

Index UDT

Large Object

Authorizati

Revocation

Module Summa

SQL Data Types and Schemas

Database Management Systems Partha Pratim Das 14.15

Built-in Data Types in SQL

Module 14

Partha Pratin Das

Objectives Outline

Transaction

Integrity
Constraints
Referential Integrity

SQL Data Types and Schemas

Built-in Types

Domains

Authorizatio

Privileges Revocation Roles

- date: Dates, containing a (4 digit) year, month and date
 - Example: date '2005-7-27'
- time: Time of day, in hours, minutes and seconds.
 - Example: time '09:00:30' time '09:00:30.75'
- timestamp: date plus time of day
 - Example: timestamp '2005-7-27 09:00:30.75'
- interval: period of time
 - Example: interval '1' day
 - o Subtracting a date/time/timestamp value from another gives an interval value
 - Interval values can be added to date/time/timestamp values

Index Creation

Module 14

```
    create table student

         (ID varchar(5),
         name varchar(20) not null.
         dept_name varchar(20),
         tot_cred numeric (3,0) default 0,
```

- create index studentID_index on student(ID)
- Indices are data structures used to speed up access to records with specified values for index attributes

```
select *
from student
where ID = '12345'
```

primary key (ID)

- o Can be executed by using the index to find the required record, without looking at all records of student
- More on indices in Chapter 9

User-Defined Types

Module 14

Partha Pratim Das

Objectives of Outline

Transaction

Constraints

Referential Integrit

SQL Data Type:

and Schemas

Built-in Types

UDT

Domains

Large Object

Authorization

Revocation Roles

```
    create type construct in SQL creates user-defined type (alias, like typedef in C)
    create type Dollars as numeric (12,2) final
```

```
create table department (
dept_name varchar (20),
building varchar (15),
budget Dollars);
```


Domains

Module 14

Partha Pratim Das

Objectives Outline

Transaction

Constraints
Referential Integrit

SQL Data Type: and Schemas

Built-in Types Index

Domains

Authorization

Privileges Revocation Roles

- create domain construct in SQL-92 creates user-defined domain types
 create domain person_name char(20) not null
- Types and domains are similar
- Domains can have constraints, such as not null, specified on them create domain degree_level varchar(10)
 constraint degree_level_test
 check (value in ('Bachelors', 'Masters', 'Doctorate'));

Large-Object Types

Module 14

Partha Pratin Das

Objectives Outline

Transaction

Integrity
Constraints
Referential Integri

SQL Data Types and Schemas

UDT Domains

Large Object

Authorizat

Privileges Revocation Roles

- Large objects (photos, videos, CAD files, etc.) are stored as a large object:
 - blob: binary large object object is a large collection of uninterpreted binary data (whose interpretation is left to an application outside of the database system)
 - o clob: character large object object is a large collection of character data
 - When a query returns a large object, a pointer is returned rather than the large object itself

Authorization

Module 14

Partha Prat Das

Objectives Outline

Transaction

Constraints

SQL Data Type

and Schemas

Built-in Index

UDT

Large Ob

Authorization

Privileges Revocatio

Module Summa

Authorization

Authorization

Module 14

Partha Pratin Das

Objectives Outline

Transactior

Constraints

Referential Integrity

SQL Data Types and Schemas Built-in Types

UDT Domains

Large Object

Authorization

Privileges Revocation Roles

- Forms of authorization on parts of the database:
 - Read allows reading, but not modification of data
 - Insert allows insertion of new data, but not modification of existing data
 - o Update allows modification, but not deletion of data
 - o Delete allows deletion of data
- Forms of authorization to modify the database schema
 - o Index allows creation and deletion of indices
 - Resources allows creation of new relations
 - o Alteration allows addition or deletion of attributes in a relation
 - Drop allows deletion of relations

Authorization Specification in SQL

Module 14

Partha Pratim

Objectives Outline

Transaction

Constraints
Referential Integrit

SQL Data Types

Built-in Types
Index

UDT
Domains

Authorization

Privileges Revocation Roles

Module Summa

• The **grant** statement is used to confer authorization

```
grant <privilege list>
```

on <relation name or view name> to <user list>

- <user list> is:
 - o a user-id
 - o public, which allows all valid users the privilege granted
 - A role (more on this later)
- Granting a privilege on a view does not imply granting any privileges on the underlying relations
- The grantor of the privilege must already hold the privilege on the specified item (or be the database administrator)

Privileges in SQL

Module 14

Partha Pratim Das

Objectives Outline

Transaction

Constraints
Referential Integrit

SQL Data Type: and Schemas

Index UDT Domains

Authorizati

Privileges
Revocation

- select: allows read access to relation, or the ability to query using the view
 - \circ Example: grant users U_1, U_2 , and U_3 select authorization on the *instructor* relation: grant select on *instructor* to U_1, U_2, U_3
- **insert**: the ability to insert tuples
- update: the ability to update using the SQL update statement
- **delete**: the ability to delete tuples.
- all privileges: used as a short form for all the allowable privileges

Revoking Authorization in SQL

Module 14

Partha Pratim Das

Objectives Outline

Transaction

Constraints
Referential Integrit

SQL Data Type: and Schemas Built-in Types Index UDT

Domains

Large Object

Privileges
Revocation
Roles

Module Summar

• The revoke statement is used to revoke authorization

```
revoke <privilege list>
```

on <relation name or view name> from <user list>

Example:

revoke select on branch from U_1, U_2, U_3

- <privilege-list> may be all to revoke all privileges the revokee may hold
- If <revokee-list> includes **public**, all users lose the privilege except those granted it explicitly
- If the same privilege was granted twice to the same user by different grantees, the user may retain the privilege after the revocation
- All privileges that depend on the privilege being revoked are also revoked

Roles

Module 14

Partha Pratin Das

Objectives Outline

Transaction

Constraints
Referential Integrit

SQL Data Types and Schemas

Built-in Types

UDT Domains

Authorizatio

Privileges
Revocation
Roles

Module Summar

create role instructor;

grant instructor to Amit;

- Privileges can be granted to roles:
 grant select on takes to instructor;
- Roles can be granted to users, as well as to other roles create role teaching_assistant grant teaching_assistant to instructor;
 - Instructor inherits all privileges of teaching_assistant
- Chain of roles
 - create role dean;
 - grant instructor to dean;
 - grant dean to Satoshi;

Authorization on Views

Module 14

Partha Pratim

Objectives Outline

Transaction

Constraints
Referential Integrit

SQL Data Types and Schemas

Built-in Types Index

Domains Large Object

Authorizatio

Privileges
Revocation
Roles

Module Summai

create view geo_instructor as
 (select *
from instructor
where dept_name = 'Geology');
grant select on geo_instructor to geo_staff

- Suppose that a geo_staff member issues select * from geo_instructor;
- What if
 - geo_staff does not have permissions on instructor?
 - creator of view did not have some permissions on instructor?

Other Authorization Features

Module 14

Partha Pratim Das

Objectives Outline

Transaction

Integrity
Constraints
Referential Integrit

SQL Data Type and Schemas

Built-in Types Index

Domains Large Object

Privileges
Revocation
Roles

- references privilege to create foreign key
 grant reference (dept_name) on department to Mariano;
 - o why is this required?
- Transfer of privileges
 - o grant select on department to Amit with grant option;
 - o revoke select on department from Amit, Satoshi cascade;
 - o revoke select on department from Amit, Satoshi restrict;

Module Summary

14 29

Module 14

Partha Prati Das

Objectives Outline

Transactio

Integrity Constraints Referential Integr

and Schemas
Built-in Types
Index
UDT
Domains

Large Object

Authorization

Privileges

Revocation

Roles

Module Summary

- Introduced transactions
- Learnt SQL expressions for integrity constraints
- Familiarized with more data types in SQL
- Discussed authorization in SQL

Slides used in this presentation are borrowed from http://db-book.com/ with kind permission of the authors.

Edited and new slides are marked with "PPD".