Automatic Learning of Proof Methods in Proof Planning

Mateja Jamnik^{1,2}, Manfred Kerber¹, Martin Pollet^{1,3}, Christoph Benzmüller^{1,3}

¹ The University of Birmingham, ² University of Cambridge, ³ University of Saarbrücken

- Emulate human learning from examples
- Find appropriate learning technique
- Appropriate method representation is crucial
- The big picture:
 - Systems starts with a few inference rules
 - Simple proof methods are
 - Progressively, more complex proof methods learned

Residue Class Theorems:

- 1. closed-under(\mathbb{Z}_3 , $(\lambda x \lambda y \cdot x + (x + y))$)
- **2.** associative-under(\mathbb{Z}_3 , $(\lambda x \lambda y (x \bar{x} y))$)
- 3. $commutative\text{-}under(\mathbb{Z}_2, (\lambda x \lambda y_{\blacksquare}(x + y)))$

Traces:

E x a m p l

- 1. [defn-exp, ∀_i-sort,∀_i-sort, convertresclass-to-num, defn-exp, or-e-rec, simp-num-exp, simp-num-exp, ... simp-num-exp]
- 2. $[defn\text{-}exp, \forall_i\text{-}sort, \forall_i\text{-}sort, \\ convert\text{-}resclass\text{-}to\text{-}num, or\text{-}e\text{-}rec, \\ simp\text{-}num\text{-}exp, simp\text{-}num\text{-}exp, \\ \dots simp\text{-}num\text{-}exp]$
- 3. Similar to 2.

Learned Method Outline:

 $\begin{bmatrix} d\mathit{efn}\mathit{-exp}, [\forall_i\mathit{-sort}]^*, \mathit{convert}\mathit{-resclass-to-num}, \\ [[\mathit{or-e-rec}]][\mathit{defn}\mathit{-exp}, \mathit{or-e-rec}]], \mathit{simp}\mathit{-num-exp}^* \end{bmatrix}$

Further Examples

- Set Theory
- Group Theory

Method Outlines

Primitives: $\forall p \in P$, let $p \in L$ Sequence: $\forall l_1, l_2 \in L$, let $[l_1, l_2] \in L$ Disjunction: $\forall l_1, l_2 \in L$, let $[l_1|l_2] \in L$ Repeat: $\forall l \in L$, let $l^* \in L$ and $\forall l \in L, \forall n \in \mathbb{N}$, let $l^n \in L$

Learning algorithm

- 1. Split examples into all possible sublists.
- 2. For each sublist in each example find consecutive repetitions, (patterns)
- 3. Find patterns that match in all examples
- 4. If no matches, no generalisation
- 5. Generalise with Kleene star or constant.
- 6. Repeat the process on both sides of pattern.
- 7. Choose smallest generalisation

From Method Outlines to Usable Methods

- Have well-chosen example proofs
- Abstract them into sequences of rule identifiers
- Learn method outlines using learning algorithm.
- Hence: need to restore missing information to method outlines so proof planner can use the new methods

In Ω MEGA:

- Add preconditions and parameters to method outlines
- Precondition of learned method is true if there is instantiation of method outline where each of its methods is applicable
- But: cannot get precondition without instantiating methods of method outline
- Hence: need to apply methods of method outline to find the one suitable for the new proof situation

Related work:

- Machine learning in machine-oriented theorem proving: Fuchs, Schulz
- Precondition analysis to learn inference schemas: Silver, Desimone
- Analogy: Melis, Whittle; proof reuse: Kolbe, Walter
- Grammatical inference: Muggleton

Future Work

- Realisation in λ -Clam
- Include in evolutionary cycle (to get rid of need for well-chosen examples)
- Learn more accurate preconditions