Linear Algebra II

Ji, Yong-hyeon

July 14, 2025

We cover the following topics in this note.

Part I

- Coordinate
- Linear Transformation
- Vector Space Isomorphism

Part 2

- Classification of Vector Space (up to Isomorphism)
- Matrix Representation of a Linear Transformation

Part 3

• TBA

1 Part I

Uniqueness of Representation with respect to a Basis

Proposition. Let V be a vector space over a field \mathbb{F} and let dim $V = n < \infty$. Let

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\} \subseteq V$$

be a basis of V. Then for every vector $\mathbf{v} \in V$ there exists a unique scalars $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{F}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \dots + \alpha_n \mathbf{b}_n = \sum_{i=1}^n \alpha_i \mathbf{b}_i.$$

Proof. Suppose, for contradiction, that there exist two distinct representations of some vector $\mathbf{v} \in V$ in terms of the basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$:

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \, \mathbf{b}_i$$
 and $\mathbf{v} = \sum_{j=1}^{n} \beta_j \, \mathbf{b}_j$,

where $\alpha_i, \beta_i \in \mathbb{F}$ for all i, j. Then

$$\sum_{i=1}^n \alpha_i \, \mathbf{b}_i - \sum_{j=1}^n \beta_j \, \mathbf{b}_j = \mathbf{0} \implies \sum_{i=1}^n (\alpha_i - \beta_i) \, \mathbf{b}_i = \mathbf{0}.$$

Since a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is linearly independent, we have

$$\alpha_i - \beta_i = 0$$
, i.e., $\alpha_i = \beta_i$

for all i = 1, 2, ..., n. Therefore, the representation of any $\mathbf{v} \in V$ as a finite linear combination of elements of the basis \mathcal{B} is unique.

Coordinate in a Finite-Dimensional Vector Space

Definition. Let *V* be a vector space over a field \mathbb{F} with dim $V = n < \infty$, and let

$$\mathcal{B} = \{\mathbf{b}_i\}_{i=1}^n = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$$

be a basis of V. The coordinate of $\mathbf{v} \in V$ with respect to \mathcal{B} , denoted by $[\mathbf{v}]_{\mathcal{B}}$, is the n-tuple

$$[\mathbf{v}]_{\mathcal{B}} = (\alpha_1, \alpha_2, \dots, \alpha_n)$$
 where $\mathbf{v} = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \dots + \alpha_n \mathbf{b}_n$.

Observation.

★ Linear Transformation ★

Definition. Let V and W be vector spaces over a field \mathbb{F} . A function

$$T:V\to W$$

is called a **linear transformation** if for all vectors $\mathbf{v}_1, \mathbf{v}_2 \in V$ and for all scalars $\alpha, \beta \in \mathbb{F}$, the following condition holds:

$$T(\alpha \mathbf{v}_1 + \beta \mathbf{v}_2) = \alpha T(\mathbf{v}_1) + \beta T(\mathbf{v}_2).$$

Remark. Equivalently, a function $T: V \to W$ is linear if it satisfies

(i) (Additivity) For all $\mathbf{v}_1, \mathbf{v}_2 \in V$,

$$T(\mathbf{v}_1 + \mathbf{v}_2) = T(\mathbf{v}_1) + T(\mathbf{v}_2);$$

(ii) (*Homogeneity*) For all $\alpha \in \mathbb{F}$ and $\mathbf{v} \in V$,

$$T(\alpha \mathbf{v}) = \alpha T(\mathbf{v}).$$

Remark. This definition ensures *T* preserves the vector space structure of *V* in its image in *W*.

Vector Space Isomorphism

Definition. Let V and W be vector spaces over a field \mathbb{F} . A mapping

$$T: V \rightarrow W$$

is called a **vector space isomorphism** if it satisfies the following conditions:

(i) (*Linearity*) For any vectors $\mathbf{v}_2, \mathbf{v}_2 \in V$ and any scalars $\alpha, \beta \in \mathbb{F}$,

$$T(\alpha \mathbf{v}_1 + \beta \mathbf{v}_2) = \alpha T(\mathbf{v}_1) + \beta T(\mathbf{v}_2).$$

- (ii) (Bijectivity)
 - (*Injectivity*) $\forall \mathbf{v}_1, \mathbf{v}_2 \in V, T(\mathbf{v}_1) = T(\mathbf{v}_2) \implies \mathbf{v}_1 = \mathbf{v}_2;$
 - (Surjectivity) $\forall \mathbf{w} \in W$, $\exists \mathbf{v} \in V$ such that $T(\mathbf{v}) = \mathbf{w}$.

The bijectivity of T guarantees the existence of an inverse mapping $T^{-1}:W\to V$, which satisfies

$$(\forall \mathbf{v} \in V, T^{-1}(T(\mathbf{v})) = \mathbf{v}), \text{ and } (\forall \mathbf{w} \in W, T(T^{-1}(\mathbf{w})) = \mathbf{w}).$$

Remark. The inverse mapping $T^{-1}: W \to V$ is also a linear transformation.

Proof. Let $\mathbf{w}_1, \mathbf{w}_2 \in W$ and let $\alpha, \beta \in \mathbb{F}$. Since T is bijective, for each $\mathbf{w} \in W$, there exists a unique $\mathbf{v} \in V$ such that $\mathbf{w} = T(\mathbf{v})$. Define

$$\mathbf{v}_1 = T^{-1}(\mathbf{w}_1) \in V$$
 and $\mathbf{v}_2 = T^{-1}(\mathbf{w}_2) \in V$.

Since *T* is linear, we have

$$T(\alpha \mathbf{v}_1 + \beta \mathbf{v}_2) = \alpha T(\mathbf{v}_1) + \beta T(\mathbf{v}_2) = \alpha \mathbf{w}_1 + \beta \mathbf{w}_2.$$

Thus,

$$T^{-1}(\alpha \mathbf{w}_1 + \beta \mathbf{w}_2) = T^{-1}(T(\alpha \mathbf{v}_1 + \beta \mathbf{v}_2))$$
$$= \alpha \mathbf{v}_1 + \beta \mathbf{v}_2$$
$$= \alpha T^{-1}(\mathbf{w}_1) + \beta T^{-1}(\mathbf{w}_2).$$

Remark. When a vector space isomorphism $T: V \to W$ exists, the vector spaces V and W are said to be **isomorphic**, denoted by $V \simeq W$.

Lemma. Let V and W be vector spaces over a field \mathbb{F} with dim $V < \infty$ and dim $W < \infty$. The following are equivalent:

- (1) $\dim V = \dim W$
- (2) There exists a vector space isomorphism T from V to W

Proof. ((2) \Rightarrow (1)) Assume that there exists a vector space isomorphism $T: V \to W$. Let $\mathcal{B}_V = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be any basis of V. Consider the set

$$\operatorname{Img}(\mathcal{B}_V) = T[\mathcal{B}_V] = \{T(\mathbf{v}) : \mathbf{v} \in \mathcal{B}_V\} = \{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n)\} \subseteq W.$$

We claim that $T[\mathcal{B}_V]$ is a basis of W:

• (*Linear Independence*) Suppose that for some finite scalars $\{\alpha_i\}_{i=1}^n \subseteq \mathbb{F}$ we have

$$\alpha_1 T(\mathbf{v}_1) + \alpha_2 T(\mathbf{v}_2) + \cdots + \alpha_n T(\mathbf{v}_n) = \mathbf{0}_W.$$

By the linearity of T, we obtain $T(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n) = \mathbf{0}_W$. Note that $T(\mathbf{0}_V) = T(0 \cdot \mathbf{v}) = 0 \cdot T(\mathbf{v}) = \mathbf{0}_W$ for any $\mathbf{v} \in V$. Since T is injective, it follows that

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n = \mathbf{0}_V.$$

As $\mathcal{B}_V = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis (and hence linearly independent), $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$. Thus, $T[\mathcal{B}_V]$ is linearly independent.

• (*Spanning Property*) Let $\mathbf{w} \in W$. Since T is surjective, there exists $\mathbf{v} \in V$ such that

$$T(\mathbf{v}) = \mathbf{w}.$$

By Uniqueness of Representation w.r.t. a Basis, we know that there exists a unique scalars $\{\alpha\}_{i=1}^n \subseteq \mathbb{F}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n.$$

Then

$$\mathbf{w} = T(\mathbf{v}) = T(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n) \stackrel{\text{linearity}}{=} \alpha_1 T(\mathbf{v}_1) + \alpha_2 T(\mathbf{v}_2) + \cdots + \alpha_n T(\mathbf{v}_n) \in \text{span } T[\mathcal{B}_V].$$

That is, $\mathbf{w} \in W$ is a linear combination of elements of $T[\mathcal{B}_V]$. Therefore, span $T[\mathcal{B}_V] = W$. Since $|\mathcal{B}_V| = |T[\mathcal{B}_V]| = n$, thus, we have

$$\dim V = \dim W$$
.

 $((1) \Rightarrow (2))$ Conversely, assume that dim $V = \dim W =: n$. Consider bases

$$\mathcal{B}_V = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$$
 and $\mathcal{B}_W = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$

for V and W, respectively. By Uniqueness of Representation w.r.t. a Basis, for each vector $\mathbf{v} \in V$, \exists ! finite scalars $\{\alpha_i\}_{i=1}^n \subseteq \mathbb{F}$ such that $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n$. Define a mapping

$$T: V \to W, \quad \mathbf{v} \mapsto T(\mathbf{v}) = T\left(\sum_{i=1}^n \alpha_i \mathbf{v}_i\right) := \sum_{j=1}^n \alpha_j \mathbf{w}_j.$$

for each $\mathbf{v} \in V$. We NTS that T be a one-to-one and onto linear transformation:

(i) (*Linearity*) Let $\mathbf{v}, \mathbf{v}' \in V$ with $\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i$ and $\mathbf{v}' = \sum_{j=1}^{n} \beta_j \mathbf{v}_j$. For any $\lambda, \mu \in \mathbb{F}$, we have

$$\lambda \mathbf{v} + \mu \mathbf{v}' = \lambda \sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i} + \mu \sum_{j=1}^{n} \beta_{j} \mathbf{v}_{j} = \lambda (\alpha_{1} \mathbf{v}_{1} + \alpha_{2} \mathbf{v}_{2} + \dots + \alpha_{n} \mathbf{v}_{n}) + \mu (\beta_{1} \mathbf{v}_{1} + \beta_{2} \mathbf{v}_{2} + \dots + \beta_{n} \mathbf{v}_{n})$$

$$= (\lambda \alpha_{1} + \mu \beta_{1}) \mathbf{v}_{1} + (\lambda \alpha_{2} + \mu \beta_{2}) \mathbf{v}_{2} + \dots + (\lambda \alpha_{n} + \mu \beta_{n}) \mathbf{v}_{n}$$

$$= \sum_{k=1}^{n} (\lambda \alpha_{k} + \mu \beta_{k}) \mathbf{v}_{k}.$$

By definition of T, we have

$$T(\lambda \mathbf{v} + \mu \mathbf{v'}) = \sum_{k=1}^{n} (\lambda \alpha_k + \mu \beta_k) \mathbf{w}_k = \lambda \sum_{i=1}^{n} \alpha_i \mathbf{w}_i + \mu \sum_{j=1}^{n} \beta_j \mathbf{w}_j = \lambda T(\mathbf{v}) + \mu T(\mathbf{v'}).$$

(ii) (*Injectivity*) Let $\mathbf{v}, \mathbf{v}' \in V$ with $\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i$ and $\mathbf{v}' = \sum_{j=1}^{n} \beta_j \mathbf{v}_j$. Suppose $T(\mathbf{v}) = T(\mathbf{v}')$. Then

$$T(\mathbf{v}) - T(\mathbf{v}') = \sum_{k=1}^{n} (\alpha_k - \beta_k) \mathbf{w}_k = \mathbf{0}_W.$$

Since $\mathcal{B}_W = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ is a basis of W, the linear independence of \mathcal{B}_W implies that $\alpha_k = \beta_k$ for all $k = 1, 2, \dots, n$. Thus $\mathbf{v} = \mathbf{v}'$, and so T is injective.

(iii) (*Surjectivity*) Let $\mathbf{w} \in W$. Since $\mathcal{B}_W = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ is a basis of W, there exists a unique finite scalars $\{\alpha_i\}_{i=1}^n \subseteq \mathbb{F}$ such that $\mathbf{w} = \alpha_1 \mathbf{w}_1 + \alpha_2 \mathbf{w}_2 + \dots + \alpha_n \mathbf{w}_n$. Define a vector

$$\mathbf{v} := \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = \sum_{i=1}^n \alpha_i \mathbf{v}_i \in V.$$

Then $T(\mathbf{v}) = \sum_{i=1}^{n} \alpha_i \mathbf{w}_i = \mathbf{w}$. Thus, T is surjective.

2 Part II

Classification of Vector Spaces up to Isomorphism

Theorem. Let

$$\mathcal{V}_{\mathbb{F}} := \{ V : V \text{ is a vector space over a field } \mathbb{F} \}.$$

Define a relation \sim *on* $V_{\mathbb{F}}$ *by*

$$\forall V, W \in \mathcal{V}_{\mathbb{F}}, V \sim W \iff \exists T \in W^V \text{ such that } T \text{ is a vector space isomorphism.}$$

Then

- (1) \sim is an equivalence relation on $V_{\mathbb{F}}$;
- (2) $\forall V, W \in \mathcal{V}_{\mathbb{F}}, V \simeq W \iff \dim V = \dim W.$

The isomorphism classes of vector spaces over \mathbb{F} are completely determined by their dimensions.

Proof.

- (1) We NTS that the relation ~ is reflexive, symmetric, and transitive:
 - (i) (*Reflexivity*) For each $V \in \mathcal{V}_{\mathbb{F}}$, the identity map $\mathrm{id}_V : V \to V$ is a linear isomorphism, so $V \sim V$.
 - (ii) (*Symmetry*) If $V \sim W$ via an isomorphism $T: V \to W$, then its inverse $T^{-1}: W \to V$ is also linear, implying $W \sim V$.
 - (iii) (*Transitivity*) If $V \sim W$ via $T: V \to W$ and $W \sim U$ via $S: W \to U$, then the composition $S \circ T: V \to U$ is a linear isomorphism, so $V \sim U$.
- (2) It is proved by previous lemma.

Coordinate Isomorphism

Corollary. Let V be a vector space over a field \mathbb{F} with dim $V = n \in \mathbb{N}$, and let

$$\mathbb{F}^n = \{ (x_1, x_2, \dots, x_n) : x_i \in F, \ 1 \le i \le n \}$$

is the space of n-tuples over \mathbb{F} equipped with the usual operations of vector addition and scalar multiplication. Then there exists a vector space isomorphism

$$\Phi: V \to \mathbb{F}^n$$
, i.e., $V \simeq \mathbb{F}^n$.

Example. Consider the vector space

$$\operatorname{Mat}_{n \times m}(\mathbb{R}) = \left\{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix} : a_{ij} \in \mathbb{R}, \ 1 \le i \le n, \ 1 \le j \le m \right\}$$

which consists of all $n \times m$ matrices with entries in \mathbb{R} (and where the vector space structure is defined over the field \mathbb{R}). Also, let

$$\mathbb{R}^{nm} = \{(x_1, x_2, \dots, x_{nm}) : x_k \in \mathbb{R}, \ 1 \le k \le nm\}$$

the vector space of nm-tuples of real numbers, with the usual coordinate-wise addition and scalar multiplication (again, over the field \mathbb{R}). Then there exists a vector space isomorphism

$$\Phi: \operatorname{Mat}_{n \times m}(\mathbb{R}) \to \mathbb{R}^{nm}$$

i.e., $\operatorname{Mat}_{n \times m}(\mathbb{R}) \simeq \mathbb{R}^{nm}$.

Note. We also denote the set of all $n \times m$ matrices with real entries, namely $\mathrm{Mat}_{n \times m}(\mathbb{R})$ by $\mathbb{R}^{n \times m}$.

Observation. Let V and W be vector spaces over a field \mathbb{F} , and let $T:V\to W$ be a linear transformation. Suppose that

$$\mathcal{B}_V = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$$
 and $\mathcal{B}_W = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$

are bases for V and W, respectively. Then for each $1 \le j \le n$, there exist unique scalars $\{a_{ij}\}_{i=1}^m \subseteq \mathbb{F}$ such that $T(\mathbf{v}_i) = a_{1j}\mathbf{w}_1 + a_{2j}\mathbf{w}_2 + \cdots + a_{mj}\mathbf{w}_m$:

In other words, the action of *T* on the basis of *V* is completely determined by the matrix

$$[T]_{\mathcal{B}_{V}}^{\mathcal{B}_{W}} := \begin{bmatrix} \vdots & \vdots & & \vdots \\ T(\mathbf{v}_{1}) & T(\mathbf{v}_{2}) & \cdots & T(\mathbf{v}_{n}) \\ \vdots & \vdots & & \vdots \end{bmatrix} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m1} & \cdots & a_{mn} \end{bmatrix} \in \operatorname{Mat}_{m \times n}(\mathbb{F}).$$

Example. Consider the linear transformation

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x, y) = (2x, 0.5y)$.

Its effect on the standard basis vectors is

$$T(\mathbf{e}_1) = T(1,0) = (2,0)$$
 and $T(\mathbf{e}_2) = T(0,1) = (0,0.5)$.

Then, we have

$$T(x,y) = (2x, 0.5y)$$

$$= \begin{bmatrix} : & : \\ T(\mathbf{e}_1) & T(\mathbf{e}_2) \\ : & : \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & 0.5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

★ Matrix Representation of a Linear Transformation ★

Definition. Let V and W be vector spaces over a field \mathbb{F} , and let $T:V\to W$ be a linear transformation. Suppose that

$$\mathcal{B}_V = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$$
 and $\mathcal{B}_W = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$

are bases for V and W, respectively. The matrix representation of T with respect to the bases \mathcal{B}_V and \mathcal{B}_W is the unique matrix

$$[T]_{\mathcal{B}_{V}}^{\mathcal{B}_{W}} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m1} & \cdots & a_{mn} \end{bmatrix} \in \operatorname{Mat}_{m \times n}(\mathbb{F})$$

whose $a_{ij} \in \mathbb{F}$ are defined by $T(\mathbf{v}_j) = \sum_{i=1}^m a_{ij} \mathbf{w}_i$ for each j = 1, 2, ..., n. In other words, if

$$[T(\mathbf{v}_j)]_{\mathcal{B}_W} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj}, \end{bmatrix},$$

then the *j*-th column of $[T]_{\mathcal{B}_V}^{\mathcal{B}_W}$ is given by the coordinate vector $[T(\mathbf{v}_j)]_{\mathcal{B}_W}$ of $T(\mathbf{v}_j)$ w.r.t. \mathcal{B}_W .

Remark. For each $\mathbf{v} \in V$, we have $[T(\mathbf{v})]_{\mathcal{B}_W} = [T]_{\mathcal{B}_V}^{\mathcal{B}_W}[\mathbf{v}]_{\mathcal{B}_V}$.

Note (Standard Basis for \mathbb{F}^n). Consider the vector space of n-tuples over a field \mathbb{F} , that is,

$$\mathbb{F}^n = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{F} \text{ for } i = 1, \dots, n\}.$$

The *standard basis* for \mathbb{F}^n is the set $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$, where each \mathbf{e}_i is defined by

$$\mathbf{e}_i = (0, \dots, 0, \underbrace{1}_{i\text{-th position}}, 0, \dots, 0),$$

Equivalently, in terms of the Kronecker delta, $\mathbf{e}_i = (\delta_{1i}, \delta_{2i}, \dots, \delta_{ni})$, with $\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$

Every vector $\mathbf{x} = (x_1, x_2, \dots, x_n)$ in \mathbb{F}^n can be uniquely expressed as $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n$.

Example (Coordinate Isomorphism).

Every $\mathbf{v} \in V$ can be uniquely expressed as $\mathbf{v} = a_1\mathbf{b}_1 + a_2\mathbf{b}_2$ and $\Phi(\mathbf{v}) = (a_1, a_2) \in \mathbb{F}^2$.

Let *V* be an *n*-dimensional vector space over a field \mathbb{F} . Suppose that $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is a basis of *V* and that $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a standard basis of \mathbb{F}^n . Define the mapping

$$\Phi : V \longrightarrow \mathbb{F}^n$$

$$\mathbf{v} \longmapsto \Phi(\mathbf{v}) = \sum_{i=1}^n \alpha_i \mathbf{e}_i$$

where $\mathbf{v} \in V$ is uniquely expressed as $\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{b}_i$ with unique scalars $\{\alpha_i\}_{i=1}^n \subseteq \mathbb{F}$. Then

$$\Phi(\mathbf{b}_{1}) = \Phi(1 \cdot \mathbf{b}_{1}) = \mathbf{e}_{1} = 1\mathbf{e}_{1} + 0\mathbf{e}_{2} + \dots + 0\mathbf{e}_{n},$$

$$\Phi(\mathbf{b}_{2}) = \Phi(1 \cdot \mathbf{b}_{2}) = \mathbf{e}_{2} = 0\mathbf{e}_{1} + 1\mathbf{e}_{2} + \dots + 0\mathbf{e}_{n},$$

$$\vdots$$

$$\Phi(\mathbf{b}_{n}) = \Phi(1 \cdot \mathbf{b}_{n}) = \mathbf{e}_{n} = 0\mathbf{e}_{1} + 0\mathbf{e}_{2} + \dots + 1\mathbf{e}_{n}.$$

Thus, the matrix representation of Φ w.r.t. the bases $\mathcal B$ and $\mathcal E$ is the unique matrix

$$[\Phi]_{\mathcal{B}}^{\mathcal{E}} = \begin{bmatrix} \vdots & \vdots & & \vdots \\ \Phi(\mathbf{b}_1) & \Phi(\mathbf{b}_2) & \cdots & \Phi(\mathbf{b}_n) \\ \vdots & \vdots & & \vdots \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} =: I_{n \times n} \text{ (or just } I_n).$$

Hence each vector $\mathbf{v} \in V$ is uniquely represented by its coordinate vector w.r.t. a fixed basis, thereby establishing an isomorphism.

Example (Transpose Map). Consider the vector space of 2×2 matrices over \mathbb{F} ,

$$\operatorname{Mat}_2(\mathbb{F}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{F} \right\}.$$

Define the mapping

$$\Phi: \mathrm{Mat}_2(\mathbb{F}) \to \mathrm{Mat}_2(\mathbb{F}), \quad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}.$$

Here Φ is linear: for any A, $B \in Mat_2(\mathbb{F})$,

$$\Phi(A + B) = (A + B)^T = A^T + B^T$$
 and $\Phi(cA) = (cA)^T = cA^T$.

To express the matrix representation of Φ w.r.t. a fixed basis, choose the standard basis for $Mat_2(\mathbb{F})$:

$$\mathcal{E} = \left\{ E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Then

$$\Phi(E_{11}) = (E_{11})^T = E_{11} = 1E_{11} + 0E_{12} + 0E_{21} + 0E_{22},$$

$$\Phi(E_{12}) = (E_{12})^T = E_{21} = 0E_{11} + 0E_{12} + 1E_{21} + 0E_{22},$$

$$\Phi(E_{21}) = (E_{21})^T = E_{12} = 0E_{11} + 1E_{12} + 0E_{21} + 0E_{22},$$

$$\Phi(E_{22}) = (E_{11})^T = E_{22} = 0E_{11} + 0E_{12} + 0E_{21} + 1E_{22}.$$

Thus,

$$[T]_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} : & : & : & : \\ \Phi(E_{11}) & \Phi(E_{12}) & \Phi(E_{21}) & \Phi(E_{22}) \\ : & : & : & : \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Remark. The matrix representation of a linear transformation $T:V\to W$ is not canonical; it depends explicitly on the choices of bases for the domain V and the codomain W.

3 Part III

TBA