1001 求和

对于某一非负整数 d 和任一非负整数 x ,由 f_x 无法得到 f_{x+d} ,但可由 $f_{[x-k+1,x]}$ 以暴力递推或更快的方式得到 $f_{[x+d-k+1,x+d]}$; 记这种运算为 F_d ,并将 f 序列视为向量(可加), $F_d(f_{[x-k+1,x]})=f_{[x+d-k+1,x+d]}$;

对于集合 S ,记其前 i 个数形成的集合为 S_i ;对于任意 $T\subseteq S_{i-1}$:

- 其 $T,y=\sum_{x\in T}x,f_y,f_{[y-k+1,y]}$ 分别与 S_i 中的
 - \circ 一组 $T, y = \sum_{x \in T} x, f_y, f_{[y-k+1,y]}$
 - 。 和一组 $\{T,b_i\},\sum_{x\in\{T.b_i\}}x=y+b_i,f_{y+b_i},F_{b_i}(f_{[y-k+1,y]})$

相对应;

ullet 记 $Vec_i = \sum_{T \subseteq S_i} f_{[y-k+1,y]}$,可得 $Vec_i = F_{b_i}(Vec_{i-1}) + Vec_{i-1}$ 。

由定义得 Vec_0 的最后一项 a_0 为 1 ,其他项为 0 ; Vec_n 的最后一项即要输出的答案;我们只需要关心如何进行 F_d :

- 由于递推 Vec 需要调用 F 运算 n 次,矩阵乘法 $O(nk^3)$ 的做法是行不通的;
- 可以使用特征多项式:
 - o 对任一非负整数 x ,若限制其 f_x 往后的递推贡献限制在范围 [x+d-k+1,x+d] 内,对各项的贡献系数可由一个长 k 的特征多项式 g_d 反映;
 - 对于 d = 0 :

$$(g_d)_i = egin{cases} 0, i
eq k-1 \ 1, i = k-1 \end{cases}$$

o $\forall t \pm d > 0$

$$(g_d)_i = egin{cases} (g_d)_{i+1} + (g_d)_0 \cdot a_{i+1}, i
eq k-1 \ (g_d)_0 \cdot a_k, i = k-1 \end{cases}$$

- \circ 用 g_{d-1} 递推 g_d 用时 $\mathcal{O}(k)$;
- 。 用 g_a 和 g_b 计算 g_{a+b} ,即对 g_a 的各项套用 g_b 向后贡献,再对齐到范围正确范围内,用时 $\mathcal{O}(k^2)$;对向量运算同理,递推 Vec 部分的复杂度为 $\mathcal{O}(nk^2)$;
- 。 进一步地,用 g_d 倍增可得 g_{2d} ,以二进制构造可以 $\mathcal{O}(k^2 \log V)$ 得到每个 g_{b_i} ,但仍不足以通过本题;
- 。 可以用更进一步的科技加速(不作展开);或取一参数 B ,预处理 $\{g_d \mid 0 \leq d < B \vee d \ \%B = 0 \ \} , \ \ \cup \ \mathcal{O}(Bk + \frac{Vk^2}{B}) \ \$ 得到每个 g_{b_i} ;或进行其他方式的分块。

总复杂度 $\mathcal{O}(nk^2+Bk+rac{Vk^2}{B})$ (仅供参考)。

1002 小抹爱锻炼

当存在 $1 \le i < j \le n$ 使得 $b_i > c_j$ 时无解;

第 i 天训练量的下界为 $D_i = \displaystyle \max_{j=1}^i b_j$,上界为 $U_i = \displaystyle \min_{j=i}^n c_j$;

若训练量总和为 M ,需要每一天的 $D_i \leq U_i$,且 $\sum\limits_{i=1}^n D_i \leq M \leq \sum\limits_{i=1}^n U_i$ 。

总复杂度 $\mathcal{O}(n)$ 。

1003 光线折射

暴力递推经过每条网格线的光强几无可能,试着研究每条路径。

对于沿着一条完整路径(从起点到终点)的光线,其经过的玻璃数固定为 R=n+m+1 ,设其被反射的次数为 k ,则被折射的次数为 R-k ,这条路径的光强可以确定为 $bas_k=\frac{c^kd^{R-k}}{(c+d)^R}$;如果我们能再计算出对于每个 k 完整路径的个数 cnt_k ,即可得到答案 $Ans=\sum_{k=0}^Rbas_k\cdot cnt_k$ 。

k 也可视作路径拐弯的次数,在本题中显然 k 为奇数时 $cnt_k=0$,我们另记 $z=\frac{k}{2}$.

做法1:

路径拐弯 2z 次相当于:

- 把跨过 n+1 个整点的水平路径拆成 z+1 个非空段,即在 n+1 个分断点 $(x=0\sim n)$ 中选取 z 个,方案数为 C_{n+1}^z 个;
- 互不干扰地,把长为 m 的垂直路径拆成 z 个非空段,即在 m-1 个分断点 $(y=1\sim m-1)$ 中选取 z-1 个,方案数为 C_{m-1}^{z-1} 个。
 - 。 注意考虑 z=0 的特殊情况,m=0 时应定义 C_{m-1}^{z-1} 为 1 ,否则为 0 ;我们记这种加了特 判的 C_a^b 为 D_a^b 。
 - 。 当然不合法的 C_a^b ,比如 a < b ,也全部视作 0 。

因此有 $cnt_{2z}=C_{n+1}^{z}D_{m-1}^{z-1}$ 。

做法2:

递推从起点起,接下来将要经过的点为点 (i,j) ,且拐弯次数为 k (这时暂不忽视 k 为奇数的情况)的路径数 $A_k(i,j)$ 。考虑路径与最后一个拐弯点的组合,有:

$$A_k(i,j) = egin{cases} 0, i < 0 \ or \ j < 0 \ or \ k < 0 \ [j=0], k=0 \ \sum\limits_{0 \le h < j} A_{k-1}(i,h), k$$
为正奇数 $\sum\limits_{0 < w < i} A_{k-1}(w,j), k$ 为正偶数

发现 i 和 j 之间是互不干扰的。拆解 $A_k(i,j)$ 为 $W_{\lfloor \frac{k}{2} \rfloor}(i) \cdot H_{\lceil \frac{k}{2} \rceil}(j)$,有:

$$W_c(i) = egin{cases} 0, i < 0 \ or \ c < 0 \ 1, c = 0 \ \sum\limits_{0 \leq w < i} W_{c-1}(w), c > 0 \end{cases}, H_c(j) = egin{cases} 0, j < 0 \ or \ c < 0 \ [j = 0], c = 0 \ \sum\limits_{0 \leq h < j} H_{c-1}(h), c > 0 \end{cases}$$

更进一步地,设 $W_c'(i)=W_c(i+c)$, $H_c'(i)=H_c(i+c)$, 有

$$W_c'(i) = egin{cases} 0, i < 0 \ or \ c < 0 \ 1, c = 0 \ \sum\limits_{0 \leq w \leq i} W_{c-1}'(w), c > 0 \end{cases}, H_c'(j) = egin{cases} 0, j < 0 \ or \ c < 0 \ [j = 0], c = 0 \ \sum\limits_{0 \leq h \leq j} H_{c-1}'(h), c > 0 \end{cases}$$

其实在数值上,恒有 $W_c'(v)=H_{c+1}'(v)$ (仅有c=-1且v=0时除外);而 $W_c'(v)$ 实际上完全等价于 C_{c+v}^c , $H_c'(v)$ 的特判也与前文的 D_a^b 不谋而合。

于是有 $A_{2z}(i,j)=W_z(i)\cdot H_z(j)=W_z'(i-z)\cdot W_{z-1}''(j-z)=C_i^z\cdot D_{j-1}^{z-1}$; 经过点 (n+0.5,m) 的路径将经过点 (n+1,m) ,因此有 $cnt_{2z}=A_{2z}(n+1,m)=C_{n+1}^zD_{m-1}^{z-1}$,与做法1中的式子完全一致(当然,特判也是一致的)。

最终整理得到:

$$Ans=\sum_{z=0}^{\lfloor rac{R}{2}
floor}bas_{2z}cnt_{2z}=\sum_{z=0}^{\lfloor rac{R}{2}
floor}rac{c^{2z}d^{R-2z}}{(c+d)^R}\cdot C_{n+1}^zD_{m-1}^{z-1}$$

总复杂度 $\mathcal{O}(\sum n + \sum m)$ 。

1004 = 带-

二分答案, 判断某 *Ans* 是否有解:

设每个数有 b_i 个 "3" 被使用,则余 $c_i = a_i - 3b_i$ 个 "1",使用个数待定;

由 c_i 不能为负有限制:

$$1. \forall i \rightarrow b_i \leq \lfloor \frac{a_i}{3} \rfloor$$

另设
$$\sum a_i = A, \sum b_i = B = Ans, \sum c_i = C = A - 3Ans$$
;

由于每个 "3" 都要匹配一个 "1", 有限制:

2.
$$B \leq C o Ans \leq \lfloor rac{A}{4}
floor$$

另外,给定所有 b_i 和 c_i ,存在方案使每个 "3" 匹配上不同数的充要条件是 $\max(b_i+c_i) \leq C$:

- 当存在某i 使得 $b_i > C c_i$ 时,显然该i的 b_i 个"3"无法被匹配完;
- 否则当存在某i使得 $b_i + c_i = C$ 时,匹配的策略显然;
- 否则由于任意一次操作仅使 C 减1,且各 i 的 b_i+c_i 不升,可随意匹配直至出现 $\max(b_i+c_i)=C$ 。

即 $\forall i \rightarrow b_i + c_i \leq C$; 又 $b_i + c_i = a_i - 2b_i$, 得限制:

3.
$$orall \ i o b_i \geq \lceil rac{a_i - A + 3Ans}{2}
ceil$$

整理所有限制,得 $[Ans \leq rac{A}{4}] \wedge [\ orall i, \lceil rac{a_i - A + 3Ans}{2} \rceil \leq b_i \leq \lfloor rac{a_i}{3} \rfloor]$

通过累加各 b_i 的上下界判该Ans的合法性 (注意单个 b_i 的上下界之间也不能冲突)。

1005 平衡阵盘

先对边的分布进行一些分析:

- 可仅由黑/黄边相连的点之间不可能由单条红蓝边连通,说明黑/黄边形成若干双向完全图;
- 若钦定哪些边为红蓝边,哪些边不是:将黑/黄边完全图缩为一点,再去除所有蓝边,图中剩余的红边不可能形成回路,且此时所有点对都由一条红边相连,则各点存在由红边决定的拓扑序;反之确定各点(黑/黄边完全图)的拓扑序能反过来决定红蓝边的方向,两者情况——对应,个数相等。

考虑以"按拓扑序排序后黑/黄边完全图大小的序列"分类合法阵盘的所有可能性;对于一序列 a (其长度为 m ,阵盘总点数为 $n=\sum\limits_{i=1}^m a_i$):

- 符合该序列,忽略黑/黄边完全图结构的阵盘数为 $f'(a)=rac{n!}{\prod\limits_{i=1}^m a_i!}$;
- 不忽略黑/黄边完全图结构的阵盘数为 $f(a)=f'(a)\cdot\prod_{i=1}^m G(a_i)!$,其中 G(x) 为大小为 x 的有标号黑/黄边完全图种数;
- 可另记 $H(x)=rac{G(x)}{x!}$,得 $f(a)=n!\cdot\prod\limits_{i=1}^m H(a_i)!$

则 n 点有标号合法阵盘的个数 $Ans_n = \sum\limits_{a:\sum a=n} n! \cdot \prod\limits_{i=1}^m H(a_i)!$;

另考虑拓扑序最大黑/黄边完全图的添加(递推)与删去,记

$$Ans_n' = rac{Ans_n}{n!} = \sum_{a:\sum a=n} \prod_{i=1}^m H(a_i)! = \sum_{i=1}^n H(i) \cdot Ans_{n-i}'$$

至此,最重要的是如何求得各G(x):

事实上,由于 n 条边在 n 点中必定成环,边双色而不出现回路的有标号双向完全图不可能很大;有:

$$G(x) = egin{cases} 1, x = 1 \ 2, x = 2 \ 6, x = 3 \ 12, x = 4 \ 0, x \geq 5 \end{cases}$$

(可暴搜, 也可直接手玩得到)

整理以上内容即可线性得出 $Ans_{1\sim 10^7}$, 总复杂度 $\mathcal{O}(n)$ 。

1006 巨龙守卫

尝试从高位到低位确定每个士兵的力量值 a_i ,容易确定:

- 设当前操作位为 h ,将某数 x 的第 h 位及以上的部分记作 x_h ;
- 每个 $(a_i)_h$ 是否在区间 (l_h, r_h) 内或边界上(较高的若干位是否与 l_h 或 r_h 相等/在两者之间),或:在区间 (l_h, r_h) 内不可能再跑出边界 / 左边界 l / 右边界 r 的三部分位置各有多少个 a_i ;
- 现 $S_2=\oplus_{i=1}^n a_i$ 是否等于/小于 V_2 (小于则接下来不再受 V_2 的限制) ;
- V_1 减去 现 $S_1=\sum_{i=1}^n a_i$ 的值;若大于则不合法,否则记刚操作完的位为第 k 位(从最低位第 0 位起计),记录 $\min(\lfloor \frac{V_1-S_1}{2^k} \rfloor,n)$ (前者达到 n 则接下来不再受 V_1 的限制)。

定义dp状态 dp[h][cl][cr][slf][xt]:

- h: 当前操作位,范围为 $0\sim30$;初始状态可从 h=30开始,可用滚动数组去掉该维;
- cl: 当前有多少个 a_i 满足 $(a_i)_h = l_h$, 范围为 $0 \sim n$;
- cr: 当前有多少个 a_i 满足 $(a_i)_h = r_h$, 范围为 $0 \sim n$;
 - $l_h = r_h$ 的前缀部分处理方法因人而异;
- slf: 上文的 $rac{V_1-S_1}{2^k}$ 或 $\min(\lfloor rac{V_1-S_1}{2^k}
 floor, n)$,允许在当前位再加上的 1 的个数,范围为 $0\sim n$;
- xt: 当前是否有 $(S_2)_h=(V_2)_h$,是则为 1,不是则为 0,范围为 $0\sim 1$ 。

由此将每个操作位(每层)的状态数压缩至 $\mathcal{O}(n^3)$;

每个状态往低位转移时,需确定在区间 (l_h,r_h) 内不可能再跑出边界 / 左边界 l / 右边界 r 的三部分位置的 a_i 各有多少个在下一位接 0 (另一部分接 1) ,单个状态转移复杂度为 $\mathcal{O}(n^3)$,整层状态转移复杂度为 $\mathcal{O}(n^6)$ ——但实际上枚举得当可以除以 5! (考虑将士兵分为 6 段的 5 个有序分界点),且有相当多的状态无法到达,可以剪枝。

单测的复杂度为极小常数 $\mathcal{O}(n^6logV)$,总复杂度为极小常数 $\mathcal{O}(\sum n \cdot n^5logV)$; 复杂度不是本题的 重点。

1007 性质不同的数字

关注(初始状态和)每个"有元素出现或消失的时间点后"的状态:

- 可以直接哈希,比如给每个元素赋随机哈希值,维护场上所有元素哈希值的异或和;注意哈希值的 范围不宜低于 10^{12} ;
- 也可以用一个类似栈的结构在排序后以 $\mathcal{O}(n)$ 准确求得答案:
 - 。 栈内每个元素有一独立的位置("高度"),可能不连续;时刻(在 vector 中用指针)追踪栈的最大高度 h 及其对应元素 id ,和栈内的元素数 cnt ;
 - \circ 每个元素"入栈"时赋其一个"高度",为当时栈内所有元素"高度"的最大值加1,即 h+1;
 - 。 对比不同时刻,栈的 $\{h,id,cnt\}$ 三元组不同时对应的状态肯定不同,而三元组相同时对应的状态肯定相同; $\{h,id,cnt\}$ 三元组与状态——对应,只需求三元组种数;
 - 。 一个 id 只能占据某"高度"一段连续时间,且作为 h 时 cnt 单减;每当发现某高度作为 h 且 $\{id,cnt\}$ 二元组较上次不同,即认为出现新的三元组。

两种做法的总复杂度均为 $\mathcal{O}(n \log n)$,来自排序。

1008 01环

由显然的等效策略,大可将所有"翻转操作"放在最后;

钦定每个位置的最终颜色(只有2种组合,从某位起为0/1),要求:

讲行任意次"交换操作" $(a \times p)$,并记交换操作结束后颜色不符预期的位置数为 b ,最小化 a + b 。

由于两个有重叠,且两时间点间无其他"交换操作"干扰的"交换操作"可由一次"交换操作"和一次"翻转操作" 或两次"翻转操作"替换,可限制每个位置最多被"交换操作"影响一次,将不符该条件的策略转化为符合该 条件的策略不劣;

任取环上的两个相邻点,分别断环成链,跑线性dp即可;任意"交换操作"方案在至少一条链中没有任何 交换操作被打断。

总复杂度 $\mathcal{O}(n)$, 也有很多其他做法。

1009 线段边角

从左到右(从 1 到 n)进行染色,记已尝试染色整点 $1\sim i$,且 $1\sim i$ 内的线段已全被染色,且当前最后一个被染色点为 j 的概率为 $dp_{i,j}$ 。

尝试从i-1转移至i:

1. 当点 i 被染色时,所有状态有同样的 p_i 的概率被改变(最后一个染色点被后移至 i) ,则使全局的 所有值乘以 $1-p_i$,再将损失的值加到位置 i :

$$dp_{i,j} = egin{cases} dp_{i-1,j} \cdot (1-p_i), j < i \ \sum_{k=0}^{j-1} dp_{i-1,k}, j = i \ 0, j > i \end{cases}$$

1. 这之后关注右端点为 i 的线段,取其中最大的左端点为 mxl_i (没有线段则记其为 0),此时最后一个被染色点为 $j < mxl_i$ 则确定不符合"染色所有线段"的条件,使所有 $dp_{i,j < mxl_i}$ 变为 0 。

最后要求的
$$Ans = \sum\limits_{i=0}^n dp_{n,j}$$
 。

易线性求得每个 mxl_i 和 $mxl_i' = \min_{j=0}^i mxl_j$; 但用区乘线段树以 $\mathcal{O}(n\log n)$ 转移 dp 可能过慢。

优化:

维护"全局的所有值之和"为 sum;

- 1. 将上文的第1步改为:
 - 。 若 $p_i \neq 1 (a_i \neq 10)$,全局的值不变,仅赋位置 i 的值为 $sum \cdot \frac{p_i}{1-p_i}$ (最后再使答案乘回 $1-p_i$);
 - 否则赋位置 i 的值为 sum, 并视 mxl_i 为 i;
 - 2. 维护"存在有效值"的区间 $[mxl_i',i]$; 区间的左右端点都只会向右移动,移动时容易维护区间内的 " sum";

最后要求的
$$Ans = sum \cdot \prod_{i=1 \sim n, p_i
eq 1} (1-p_i)$$
 。

注意预处理 $0\sim 10$ 关于 10^9+7 的逆元;总复杂度 $\mathcal{O}(\sum n+\sum m)$ 。

1010 坚船利炮

以任意点为根(以1为例),记每个点(点 i)的儿子数为 ch_i ,其本身与其前 j 个儿子所对应子树形成的连通块为 $B_{i,j}$;特别地, $B_{i,0}$ 为点 i 本身形成的连通块。

试递推每个被定义连通块 $B_{i,j}$, 内含 k 条被打断的边时的状态:

- 打断边的方案数 $c_{i,i,k}$;
- 各方案中未确定大小(与子树根相连)的连通块大小之总和 $sz_{i,i,k}$;
- 各方案中未确定大小(与子树根相连)的连通块大小平方之总和 $a_{i,j,k}$;
- 各方案中已确定大小(与子树根不相连)的连通块大小平方之总和 $fx_{i,j,k}$ 。

当连接两连通块 U 和 D (U 含树根, D 的子树根紧邻 U 的树根) 形成新连通块时,根据所用边是否被打断,4个参数的组合计算略有区别,具体见代码。

最后,k 条边被打断时的答案即 $\frac{a_{1,ch_1,k}+fx_{1,ch_1,k}}{c_{1,ch_1,k}}$ 。 由树上背包的结论,总复杂度 $\mathcal{O}(nk)$ 。

1011 难度调整

记 $c_i = i - a_i$, 题意转化为:

- 对于每个 $1 \leq i \leq n$,允许进行0或1次操作使 [i,n] 范围内的所有 c_i 减1;
- $\exists c_0 = 0$, $\forall 1 \leq i \leq n \rightarrow c_i c_{i-1} \leq 1$;
- 最小化 $Ans = \sum_{i=1}^n c_i$ 。

考虑进行操作的位置序列 p 及位置对应的初始 c 序列(记为 S 序列) S_p 和最终 c 序列(记为 T 序列) T_p (显然有 $S_{p_i}-T_{p_i}=i$),并进行一些贪心:

- 在任意操作方案中,某 p_i 使得 $T_{p_i}=h<0$ 时更劣: p_i 往后极长的已操作位置连续段内,(记段内任意位置为 j)都有 $T_j\leq T_{p_i}<0$;大可转而操作往后第一个未被操作的位置,或若无该位置则去掉该操作,使答案减小;
 - o 如此最优操作方案中必有 $(S_{p_i}>\)$ $T_{p_i}\geq 0$;
- 在任意操作方案中,某 p_i 使得 $S_{p_i}=h>1$,而 h-1 在 S_{p_j} 中不出现时更劣优:找到 p_i 往前最近的位置 j 使得 $S_j=h-1$,将操作从 p_i 替换至位置 j 可使答案减小;
 - 。 如此最优操作方案中有 $S_{p_i}=h>1$ 则必有 $S_{p_{j < i}}=h-1$,且 S_p 形成的不重集合一定是从1起的连续正整数(或为空);
 - 。 且这意味着 $S_{p_i} \leq S_{p_i-1}+1 \leq \cdots \leq i$,和 $T_{p_i}=S_{p_i}-i \leq 0$,结合前文 $T_{p_i}\geq 0$ 有 $T_{p_i}=0$!
- 确定 $T_{p_i}=0$ 和 $S_{p_i}=i$ 后,容易分析:
 - \circ 选择操作 p_i 需 $c_{p_i} = i$,且将使答案减小 $f_i = \sum\limits_{j=i}^n [c_j \geq c_i] [c_j < c_i]$
 - 。 需要找出一个可空位置序列 p 使 $c_{p_i}=i$ 且最大化 $\sum\limits_{x\in p}f_x$

计算各 f_i 可使用树状数组等,也可利用 $\forall \ 1 \leq i \leq n \to c_i - c_{i-1} \leq 1$ 的特性均摊 $\mathcal{O}(1)$ 调整线性求得;最后进行简单的线性dp即可;复杂度 $\mathcal{O}(n\log n)$ 或 $\mathcal{O}(n)$ 。

1012核心共振

以任意核心为坐标原点,并任选一个正参数 d , 画出 $\max(|x|,|y|)=d$ 所对应的曲线,再将坐标轴旋转45度,你会发现图形 $\max(|x|,|y|)=d$ 变成了图形 $|x|+|y|=\sqrt{2}\,d$,意味着你可以将 \max 斜着拆成两维独立的绝对值;

或者有
$$\max(|x|,|y|)=rac{|x-y|+|x+y|}{2}$$
,即 $\max(|x_i-x_j|,|y_i-y_j|)=rac{|(x_i-y_i)-(x_j-y_j)|+|(x_i+y_i)-(x_j+y_j)|}{2}$

我们以
$$x+y$$
 为例,计算 $Ans'=\sum\limits_{1\leq i\leq j\leq n}(a_i+a_j)\cdot|(x_i+y_i)-(x_j+y_j)|$:将各点按 $w=x+y$ 升排,得 $Ans'=\sum\limits_{1\leq i\leq j\leq n}(a_i+a_j)\cdot(w_j-w_i)$;随后自由拆解,各前后缀的 $\sum 1,\sum a,\sum w,\sum a\cdot w$ 等易求。

镜像处理 x-y 即可求出 Ans ; 总复杂度 $\mathcal{O}(n\log n)$, 主要来自排序。