Lista Exercícios – RNA Simples

Nome: João Victor da Silva 044983

Data de Entrega: Regras no portal

Entrega do fonte: github e teóricas documento de texto 1)

Considere o conjunto de dados abaixo e responda:

X(2) 122 4,7 Y(2) Laranja X(3) 107 5,2 Y(3) Maçã X(4) 98 3,6 Y(4) Maçã X(5) 115 2,9 Y(5) Laranja		X(k)		pH	Y(k)	
= 6 - X(3) 107 5,2 Y(3) Maçã X(4) 98 3,6 Y(4) Maçã X(5) 115 2,9 Y(5) Laranja	Γ	X(1)	113	6,8	Y(1)	Maçã
= 6 X(4) 98 3,6 Y(4) Maçã X(5) 115 2,9 Y(5) Laranja		X(2)	122	4,7	Y(2)	Laranja
X(4) 98 3,6 Y(4) Maça X(5) 115 2,9 Y(5) Laranja	q = 6 -	X(3)	107	5,2	Y(3)	Maçã
		X(4)	98	3,6	Y(4)	Maçã
X(6) 120 4.2 Y(6) Larania		X(5)	115	2,9	Y(5)	Laranja
7(0)		X(6)	120	4,2	Y(6)	Laranja
	Atributos				Classificaçã	

a) A partir dos dados é possível concluir que o perceptron camada simples funciona? Justifique sua resposta.

Sim, o perceptron de camada simples é eficaz, pois sua função principal é traçar uma linha que separa os dados de forma linear. Com base nesse conceito e analisando as imagens, é viável aplicar o perceptron de camada simples para classificar os dados no caso de laranjas e maçãs.

Usando a planilha que fizemos na aula ao vivo, faça os cálculos passando por cada etapa das 6 de treinamento.

- b) Faça a implementação do algoritmo visto em aula, ajuste os pontos necessários para treinar o perceptron para classificar laranjas e maçãs e responda faça a partir do resultado do seu código:
- Como ficou os resultados dos pesos a cada iteração? Obs: algoritmo deve gerar peso inicial aleatoriamente.
- Depois de treinado com os casos do enunciado, gere 5 novos casos e mostre qual a saída do algoritmo, ou seja, se é laranja ou maçã.
- d) Nesse exercício tivemos 6 casos de treinamento, mas em um problema mais complexo onde a variação de características são maiores, descreva porque devemos fazer muitos treinamentos para ter uma melhor RNA.

É necessário realizar diversos treinamentos para que a Rede Neural Artificial (RNA) aprenda padrões gerais, compreenda melhor os espaços de entrada e minimize seus erros. Esse processo também permite que a RNA melhore significativamente sua capacidade de reconhecer padrões complexos e não lineares, tornando-a mais estável e precisa na análise dos dados.

Envie no portal o link do github da implementação final e o excel do classificador de laranjas e maçãs