

Information Management II

2. Database Architecture

CS4D2a – 4CSLL1 – CS3041
Vincent Wade
Vincent.wade@scss.tcd.ie

Database Systems

- Database System (DBS)
 - DBMS
 - DB
 - application data
 - associated metadata
 - Application programs
- Metadata and data are stored separately

- Database users are provided an abstract view of the data by hiding certain details of how it is physically stored
- DBMS describe Databases at three levels:
 - Internal (Physical) Level
 - Conceptual (Logical) Level
 - External (View) Level
- This is commonly referred to as the "threelevel DBMS architecture"

Schemas

- Each level of the architecture consists of one or more views of the underlying data
- Views are described by schemas (meta-data)
- A DB consists of:
 - physical data
 - an internal or physical schema
 - a conceptual or logical schema
 - several external schemas
- Schemas are stored in the system catalogue

- Internal or Physical level
 - The lowest level of data abstraction
 - Internal Schema describes how the data is physically stored and organized on the storage medium
 - Various aspects are considered to achieve optimal runtime performance and storage space utilization, including:
 - storage space allocation techniques
 - access paths such as indexes
 - data compression and encryption techniques

- Conceptual or Logical level
 - Deals with the logical structure of the entire database
 - Conceptual Schema describes what data is stored in the database and the relationships among the data without any concern for the physical implementation
 - This is the overall view of the database and includes all the information that is going to be represented in the database

- External or View level
 - The highest level of abstraction that deals with the user's view of the database
 - Most users and applications do not require access to the entire data stored in the database.
 - External Schemas (or User Views) describe a part of the database for a particular group of users or applications.
 - This is a powerful and flexible security mechanism, as parts of the database are hidden from certain users
 - the user is not aware of the existence of any attributes that are missing from the view.

Schemas

- The physical Database is usually stored on Hard Disk
 - The OS controls disk access
- The Stored Data Manager (SDM) controls access to DBMS information on disk
 - including buffer management

- DBMS Users
 - Casual Users
 - Application Programmers
 - Parametric Users
 - DBA Staff
- Different Interfaces are used by each type of user

- DDL compiler processes schema definitions and stores them in catalogue
- Catalogue contains information such as:
 - Names and Sizes of Files
 - Names and Data Type of Data Items
 - Storage details
 - Mapping information among Schemas
 - Constraints
 -

- "Casual Users" use an Interactive Query Interface
- The Query Compiler parses and validates the submitted query
- The internal query is then processed for Query Optimization
 - Consults the DBMS Catalogue
 - Generates Executable Code

- Application Programmers write programs (Java, C++ etc.) which need to access a DB
- The Precompiler extracts DML commands from the host language program
- The extracted commands are sent to the DML
 Compiler
- The rest of the program is sent to the Host Language Compiler

- Object code for DML commands and the rest of the program are linked forming a canned transaction
 - The executable code of a canned transaction calls the run-time processor
 - Canned transactions are used by parametric users

- Run-time Database Processor handles all Database access at run-time:
 - Privileged Commands
 - Executable Queries
 - Canned Transactions
- Utilises and Updates the Catalogue
- May be responsible for Buffer Management
- Manages Concurrency Control and Backup and Recovery as part of Transaction Management

System Catalogue and Data Dictionary

- The DDL, and hence the system catalogue, are primarily concerned with syntactic definition of the data
- Data Dictionaries augment the internal DBMS catalogue with semantic support
 - Accessed directly by users (i.e. DBA)
 - Catalogue accessed by the DBMS

System Catalogue and Data Dictionary

- There are two main ways of coupling Data Dictionaries and System Catalogues:
 - Integrated Data Dictionary
 - Independent Data Dictionary

Integrated

- The majority of DBMS have an integrated Data Dictionary
- Data Dictionary is an integral part of DBMS
 - Documents the computerised data that is managed by the DBMS
- It is generally fully active
 - accessed at run-time by DBMS software

Independent

- Independent, free-standing system performing its own data management functions
- Normally passive
 - No run-time link between the Data Dictionary and the DBMS
 - Hence DBMS has to have its own System Catalogue
- Often generates metadata automatically for a variety of DBMS in the form of DDL
 - Helps to ensure consistency of metadata between the Data Dictionary and the System catalogue

Data Dictionary Systems

A fully functional DDS should store and manage:

- a) Descriptions of the database schemas
- b) Detailed information on physical database design
 - Storage structures
 - Access paths
 - File and record sizes.
- c) Descriptions of the types of database users, their responsibilities and their access rights.
- d) High-level descriptions of transactions, applications and the relationships of users to transactions.

Data Dictionary Systems (con't)

- e) The relationship between database transactions and the data items referenced by them.
- f) Usage statistics such as frequencies of queries and transactions and access counts to different portions of the database.
- g) The history of any changes made to the database and applications, and documentation that describes the reasons for these changes.

