11.16.4.3.3

1

EE24BTECH11022 - Eshan Sharma

Question: A die has two faces each with number '1', three faces each with number '2', and one face with number '3'. If the die is rolled once, determine P(not 3).

Theoretical Solution: The die has 6 faces in total. The probability of rolling a number other than '3' is:

$$P(\text{not } 3) = 1 - P(3)$$

From the problem, the probability of rolling '3' is:

$$P(3) = \frac{\text{Number of faces with 3}}{\text{Total faces}} = \frac{1}{6}$$

Thus:

$$P(\text{not } 3) = 1 - \frac{1}{6} = \frac{5}{6} \approx 0.8333$$

Numerical Solution using Monte Carlo Method: The Monte Carlo method is used to estimate P(not 3). This involves simulating a large number of die rolls and counting the proportion of rolls that result in a number other than '3'.

Steps of the Simulation:

- 1) Generate a large number N of random numbers uniformly distributed between 0 and 1.
- 2) Map these numbers to die outcomes based on the given probabilities:

Face '1': Range [0, 2/6)

Face '2': Range [2/6, 5/6)

Face '3': Range [5/6, 1)

- 3) Count the number of outcomes where the result is not '3'.
- 4) Estimate P(not 3) as the ratio of outcomes not equal to 3 to the total number of rolls:

$$P(\text{not } 3) \approx \frac{\text{Count of outcomes not equal to } 3}{N}$$

Plots:

Fig. 4: Stem Plot of Monte Carlo Simulation for P(not 3).

Fig. 4: Histogram of Simulated Outcomes.

Explanation of Plots:

- **1. Stem Plot of Monte Carlo Simulation: Purpose:** This plot shows the estimated probability of P(not 3) over multiple iterations of the simulation. **X-axis:** Iteration number (or step number) in the simulation. **Y-axis:** Cumulative estimate of P(not 3) after each iteration. **Key Insight:** The values fluctuate initially due to randomness. As the number of iterations increases, the estimate converges to the theoretical value $\frac{5}{6}$. **Usage:** This helps visualize the stability and convergence of the simulation.
 - 2. Histogram of Simulated Outcomes: Purpose: Visualizes the frequencies of

outcomes from the simulated rolls. - **X-axis:** Possible outcomes (1, 2, or 3). - **Y-axis:** Frequency of each outcome. - **Key Insight:** - The frequency of outcomes '1' and '2' combined is higher than '3', aligning with $P(\text{not } 3) = \frac{5}{6}$.

- Usage: Validates that the simulation adheres to the die's probabilities.