专著

1. Deke Guo. Data Center Networking: Network Topologies and Traffic Managen	nent
in Large-scale Data Centers. Springer press, 2022, ISBN 978-981-16-9367-0.	
	1
2. Guoming Tang, Deke Guo, Kui Wu. GreenEdge: New Perspectives to Ene	ergy
Management and Supply in Mobile Edge Computing. Springer press, 2022, ISBN 9) 78-
981-16-9689-3.	
	8

Deke Guo

Data Center Networking

Network Topologies and Traffic Management in Large-Scale Data Centers

Contents

Part I Basic Knowledge

References

2.2.1 2.2.2

2.2.3

2.3.1

2.3.2

2.1 2.2

2.3

Evolution of Data Centers 3 3 1.1.1 Basic Concept and Intuitive Classification 1.1.2 Demands for Data Centers from Cloud Computing 6 1.1.3 Demands for Data Centers from Big Data 8 Applications 9 1.1.4 The Development of New Generation Data Centers 1.2 Fundamental Services Offered by Data Centers 13 1.2.1 13 1.2.2 Computing Services 14 1.2.3 Big Data Applications 15 1.3 Challenges for Data Center Networks 17 Customization of Network Functionality 1.3.1 18 1.3.2 19 High Scalability of Data Center Networks 20 1.3.3 Efficient Multiplexing of Network Resources 1.3.4 Network Virtualization of Data Centers 21 Cooperative Transmission of Correlated Traffic 1.3.5 22

Switch-Centric DCN Topologies

Server-Centric DCN Topologies

Tree-Like Topologies

Optical Switching Topologies

Compound Graph-Based DCN Topologies

Non-Compound Graph-Based DCN Topologies

Introduction of Data Center

23

25

25

27

28

30

33

36

36

39

x			Contents
	2.4	Modular DCN Topologies	41
		2.4.1 Intra-module Network Topology	
		2.4.2 Inter-module Network Topology	
	2.5	Random DCN Topologies	
		2.5.1 Small-World Network-Based DCN Topology	
		2.5.2 Random Regular Graph-Based DCN Topology	
		2.5.3 Scale-Free Network-Based DCN Topology	46
	2.6	Wireless DCN Topologies	
		2.6.1 60 GHz-Based Hybrid DCN Topology	
		2.6.2 60 GHz-Based Wireless DCN Topology	
		2.6.3 FSO-Based DCN Topology	50
		2.6.4 VLC-Based DCN Topology	
	2.7	Evolution and Future Trends of DCN Topology Design	
		2.7.1 Evolution of DCN Topology Design	
		2.7.2 Future Trends of DCN Topology Design	52
	Refe	rences	53
Pa	rt II	Novel Data Center Network Structures	
3	HCN	N: A Server-Centric Network Topology for Data Centers	59
	3.1	Introduction	
	3.2	The Design of HCN Topology	
		3.2.1 Basic Theories of the Compound Graph	
		3.2.2 The Construction Methodology of HCN	
	3.3	The Design of BCN Topology	
		3.3.1 Description of BCN Topology	
		3.3.2 The Construction Methodology of BCN	
	3.4	Routing Mechanism of BCN	
		3.4.1 Single-path for the Unicast Traffic	
		3.4.2 Multi-paths for Unicast Traffic	
		3.4.3 Fault-Tolerant Routing in BCN	
	3.5	Performance Evaluation	
		3.5.1 Network Order	78
		3.5.2 Low Network Diameter and Server Degree	80
		3.5.3 Connectivity and Path Diversity	80
		3.5.4 Evaluation of the Path Length	82
	3.6	Discussion	
		3.6.1 Extension to More Server Ports	84
		3.6.2 Locality-Aware Task Placement	
		3.6.3 Impact of the Server Routing	

Contents xi

	Center	
4.1		action
4.2		Cube Topology
	4.2.1	Design Idea of DCube
	4.2.2	H-DCube
	4.2.3	M-DCube
4.3	_	-Path Routing for the Unicast Traffic
	4.3.1	Single-Path Routing in H-DCube
	4.3.2	Single-Path Routing in M-DCube
4.4		paths Routing for the Unicast and Multicast Traffic
	4.4.1	Multi-path Routing for the Unicast Traffic
		in H-DCube
	4.4.2	Multi-path Routing for the Unicast Traffic
		in M-DCube
	4.4.3	Speedup for the Multicast Traffic
4.5	-	sis and Evaluation
	4.5.1	Speedup for the Unicast and Multicast Traffic
	4.5.2	Aggregate Bottleneck Throughput
	4.5.3	Qualification of Cost and Cabling Complexity
	4.5.4	Summary
4.6		sions
	4.6.1	Locality-Aware Task Placement
	4.6.2	Extension to More Server Interfaces
	4.6.3	Impact of Server Routing
Refe	rences .	
R3:	A Hybri	d Network Topology for Data Centers
5.1		action
5.2	The De	esign Methodology of Hybrid Topologies
	5.2.1	Overview of Network Topologies
	5.2.2	R3: A Hybrid Topology Based on the Compound
		Graph Theory
	5.2.3	Deployment Strategy for Data Centers
		with a Hybrid Topology
5.3	Efficie	nt Routing Methods of R3
	5.3.1	Edge Coloring Based Identifier Allocation
	5.3.2	Identifier-Based Routing Algorithm
5.4	Topolo	ogy Optimization
	5.4.1	Impact Factors of the R3 Topology
	5.4.2	Optimization Strategy of Topologies
5.5		nental Expansion of R3
	5.5.1	Expansion within an Existing Random Cluster
	5.5.2	Expansion by Adding an Extra Random Cluster

xii				Contents
	5.6	Perform	mance Evaluation	. 127
		5.6.1	The Routing Flexibility	
		5.6.2	The Cabling Cost	
		5.6.3	The Network Performance	
	5.7	Discus	sion	. 130
	Refe	rences .		. 131
6	VLC	cube: A	Network Topology for VLC Enabled Wireless	
	Data	Center	s	. 133
	6.1	Introdu	action	. 133
		6.1.1	Motivation	. 133
		6.1.2	Related Work	. 135
	6.2	The D	esign of VLCcube	. 136
		6.2.1	Feasibility of Introducing VLC Links into DCNs	. 136
		6.2.2	The Interference Among Transceivers	. 137
		6.2.3	Topology Design of VLCcube	. 138
	6.3	Routin	g and Congestion Aware Flow Scheduling	
		in VLO	Ccube	. 142
		6.3.1	Hybrid Routing Scheme in VLCcube	. 142
		6.3.2	Problem Formulation of Flow Scheduling	
		6.3.3	Scheduling the Batched Flows	. 144
		6.3.4	Online Scheduling of Flows	. 147
	6.4	Perform	mance Evaluation	
		6.4.1	Settings of Evaluations	
		6.4.2	Topological Properties of VLCcube	. 150
		6.4.3	Network Performance Under Trace Flows	. 151
		6.4.4	Network Performance Under Stride-2k Flows	
		6.4.5	Network Performance Under Random Flows	
		6.4.6	Impact of Congestion Aware Flow Scheduling	
	6.5	Discus	sion	. 155
	Refe	rences .		. 156
Par	t III	Traffic	Cooperation Management in Data Centers	
1 ai 7			•	. 161
1	7.1		e Management of Correlated Incast Transfer	
	7.1		work Aggregation of an Incast Transfer	
	1.2	7.2.1	Feasibility of the Inter-flow Data Aggregation	
		7.2.1	Minimal Incast Tree	
		7.2.2		
	7.3		Inter-flow Data Aggregation on an Incast Tree nt Building Method of an Incast Tree	
	1.3	7.3.1	Online Construction of an Incast Tree	
		7.3.1		
			Construction of the Minimal Incast Tree	
		7.3.3	Dynamical Behaviors of the Becaiver	. 173

Con	itents			xiii
	7.4	Discus	ssion	174
		7.4.1	Extension to General Incast Transfers	174
		7.4.2	Extension to Other Network Topologies	175
		7.4.3	Impact on the Job Execution Time	175
	7.5		mance Evaluation	176
	,,,,	7.5.1	The Prototype Implementation	176
		7.5.2	Impact of the Data Center Size	178
		7.5.3	Impact of the Incast Transfer Size	179
		7.5.4	Impact of the Aggregation Ratio	180
		7.5.5	Impact of the Distribution of Incast Members	182
	Refe	rences .	impact of the Bibliotech of ficult Members	183
8	Colls	ahorativ	e Management of Correlated Shuffle Transfer	185
•	8.1		uction	185
	8.2		work Aggregation of Shuffle Transfers	186
	0.2	8.2.1	Problem Statement	186
		8.2.2	Construction of an Incast Aggregation Tree	188
		8.2.3	Construction of a Shuffle Aggregation Subgraph	192
		8.2.4	The Fault-Tolerance of Shuffle Aggregation	194
		0.2.4		195
	0.2	Coolah	Subgraph	193
	8.3			100
			gation	196
		8.3.1	General Forwarding Scheme	196
		8.3.2	In-Switch Bloom Filter Based Forwarding Scheme	197
	0.4	8.3.3	In-Packet Bloom Filter Based Forwarding Scheme	198
	8.4		mance Evaluation	200
		8.4.1	The Prototype	200
		8.4.2	Impact of the Data Center Size	201
		8.4.3	Impact of the Shuffle Transfer Size	203
		8.4.4	Impact of the Aggregation Ratio	204
		8.4.5	The Size of Bloom Filter in Each Packet	206
	Refe	rences .		207
9	Colla		e Management of Uncertain Incast Transfer	209
	9.1		uction	209
	9.2	Overv:	iew of Aggregating Uncertain Incast Transfer	211
		9.2.1	Problem Statement of Uncertain Incast Transfer	211
		9.2.2	Aggregating a Deterministic Incast Transfer	212
		9.2.3	Aggregating an Uncertain Incast Transfer	213
	9.3	Aggre	gation Tree Building Method for Uncertain Incast	
		Transf	er	214
		9.3.1	The Diversity of In-Network Aggregation Gain	215
		9.3.2	Initializing Senders for an Uncertain Incast	
			Transfer	215
		9.3.3	Aggregation Tree Building Method for Uncertain	
			Incast	220

xiv			C	ontents
	9.4	Perforn	nance Evaluation	223
		9.4.1	Evaluation Methodology and Scenarios	223
		9.4.2	Impact of the Incast Transfer Size	224
		9.4.3	Impact of the Data Center Size	226
		9.4.4	Impact of the Aggregation Ratio	227
		9.4.5	Impact of Distributions of Incast Members	
		9.4.6	Impact of the Receiver Diversity	
	Refer	ences		231
10	Colla	horative	Management of Correlated Multicast Transfer	233
10	10.1		ction	
	10.2		Work	
	10.3		n Statement of Uncertain Multicast	
	10.5	10.3.1	Observations	
		10.3.2	Problem Statement	
		10.3.3	Mixed Integer Linear Programming	
	10.4		at Building Methods of MCF	
	10	10.4.1	Primary Approximation Method	
		10.4.2	Enhanced Approximation Method	
	10.5		nance Evaluation	
		10.5.1	Implementation of the Uncertain Multicast	
			in SDN Testbed	247
		10.5.2	Evaluation Based on Small-Scale Experiments	
		10.5.3	Evaluation Based on Large-Scale Simulations	
	Dafa		6	255

SPRINGER BRIEFS IN COMPUTER SCIENCE

Guoming Tang Deke Guo Kui Wu

GreenEdge: New Perspectives to Energy Management and Supply in Mobile Edge Computing

Contents

1	Intr	oduction	1
	1.1	When 5G Meets Edge Computing	1
	1.2	The Energy Dilemma	2
	1.3	Key Problems and Contributions	3
	1.4	Content Organization	4
2	Inve	estigating Low-Battery Anxiety of Mobile Users	7
	2.1	Introduction	7
	2.2	Related Work	9
	2.3	A Survey Over 2000+ Mobile Users	10
	2.4	Quantification of Low-Battery Anxiety	11
		2.4.1 Extraction of LBA Curve	11
		2.4.2 Observations and Analysis	12
		2.4.3 Lessons Learnt from LBA Quantification	15
	2.5	Impacts of LBA on Video Watching	15
		2.5.1 Extraction of Video Abandoning Likelihood Curve	15
		2.5.2 Observations and Analysis	16
		2.5.3 Advice for Video Streaming Services	19
	2.6	Ethics	19
	2.7	Conclusion	19
3	Usei	r Energy and LBA Aware Mobile Video Streaming	21
	3.1	Introduction	21
	3.2	Background and Related Work	24
		3.2.1 Background of Low-Battery Anxiety	24
		3.2.2 Background of Display Power Saving	24
		3.2.3 Work Related to This Work	25
	3.3	LBA Survey and Modelling	26
		3.3.1 Data Collection	26
		3.3.2 LBA Curve Extraction	27
		3.3.3. Insights on LRA Alleviation	28

vii

viii Contents

	0.4	IDMG I D MILL OF	20
	3.4	LPVS: Low-Power Video Streaming	28
		3.4.1 Scenario Overview	28
		3.4.2 Models for Power Consumption in Video Streaming	30
		3.4.3 Models for Energy Status and Low-Battery Anxiety	31
		3.4.4 Video Streaming Capacity at the Edge	32
		3.4.5 Joint Optimization for Energy Saving and Anxiety	
		Reduction	32
	3.5	Solution Methodology	33
		3.5.1 The Difficulties	33
		3.5.2 Information Compacting	33
		3.5.3 A Two-Phase Heuristic for Joint Optimization	35
		3.5.4 Determine γ_n with Bayesian Inference	36
	3.6	LBA Model Updating	38
		3.6.1 Analysis of LBA Heterogeneity	38
		3.6.2 Local LBA Model Updating	38
	3.7	Implementations	40
		3.7.1 Real-World Video Streaming Traces	40
		3.7.2 LPVS Emulation and Setups	41
	3.8	Performance Evaluations	43
		3.8.1 LPVS with Sufficient Edge Resource	43
		3.8.2 LPVS with Limited Edge Resource	44
		3.8.3 Impact of LPVS on Low-Battery Users	45
		3.8.4 LPVS with Updated LBA Models	46
		3.8.5 Overhead of LPVS and Impact on Other QoE Metrics	47
	3.9	Conclusion	48
4		imal Backup Power Allocation for 5G Base Stations	51
	4.1	Introduction	51
		4.1.1 Spatial Dimension	52
		4.1.2 Temporal Dimension	53
	4.2	Related Work	53
	4.3	BS Power Measurements and Observations	54
		4.3.1 Power Consumption of 4G and 5G BSs	54
		4.3.2 Power Consumption of 5G BS Major Components	55
		4.3.3 Multiplexing Gain with Backup Power Sharing	55
	4.4	System Model	57
		4.4.1 Scenario Overview	58
		4.4.2 Traffic Load and Power Demand	59
	4.5	Optimal Backup Power Allocation	59
		4.5.1 Analysis of Power Outages and Network Failure	59
		4.5.2 Condition of Network Reliability	61
		4.5.3 Backup Power Deployment Constraints	62
		4.5.4 Backup Power Allocation Optimization	62

Contents	ix
----------	----

	4.6	Experimental Evaluations
	4.0	4.6.1 Experiment Setup
		4.6.2 Results and Analysis.
	4.7	Conclusion
5	Ren	sing Backup Batteries for Power Demand Reshaping in 5G
	5.1	Introduction
	5.2	System Models
	5.2	5.2.1 Scenario Overview
		5.2.2 BS Power Supply and Demand
		5.2.3 Battery Specification
	5.3	Power Demand Reshaping via BESS Scheduling
		5.3.1 Energy Cost with BESS
		5.3.2 Battery Degradation Cost
		5.3.3 Optimal BESS Operation Scheduling
		5.3.4 Problem Analysis
	5.4	A DRL-Based Approach to Distributed BESS Scheduling
		5.4.1 DRL Based BESS Scheduling: Components
		and Concepts
		5.4.2 Reward Function Design
		5.4.3 Learning Process Design
	5.5	Experimental Evaluations
		5.5.1 Experiment Setup
		5.5.2 General Performance at Cost Reduction with BESS
		5.5.3 Case Studies of DRL-Based BESS Scheduling
		5.5.4 ROIs of Different BESS Deployments
	5.6	Related Work
		5.6.1 General System Peak Power Shaving with BESS
		5.6.2 DC Peak Power Shaving with Centralized BESS
		5.6.3 DC Peak Power Shaving with Distributed BESS
	5.7	Conclusion
5	Soft	ware-Defined Power Supply to Geo-Distributed Edge DCs
	6.1	Introduction
	6.2	Architecture of Software-Defined Power Supply (SDPS)
		6.2.1 Motivation and Design Rationales
		6.2.2 Architecture Design
	6.3	Two-Phase Optimization in Software-Defined Power Supply
		6.3.1 System Model
		6.3.2 Phase-I: Constructing Green Cells
		6.3.3 Phase-II: BESS Discharging/Charging Operations
	6.4	Experimental Evaluations
		6.4.1 Experiments Setup
		6.4.2 Performance Comparison
	6.5	Conclusion

x		Cor	ntents
7	Conclusions and Future Work		103
A	Questionnaire of LBA Survey and Collected Answers		105
Bi	iography		109