MATH 178 Homework #5
Tamir Enkhjargal
April 2019

\mathbf{FF}

1.

i)

2^1	$ 2^2$	2^3	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	2^{10}	2^{11}	2^{12}
2	4	8	3	6	12	11	9	5	10	7	1

Table 1: The set 2^i that generates \mathbb{F}_{13}^*

ii)

i	$2^i = b$	r
1	2	12
2	4	6
3	8	4
4	3	3
5	6	12
6	12	11
7	11	12
8	9	3
9	5	4
10	10	6
11	7	12
12	1	1

Table 2: The set of numbers r where $2^r = 1 \pmod{13}$

iii)
$$(2^i)^r=1 (\bmod 13)$$
 and $\log_2(i)=r$

iv)

$$3 \cdot 12 \pmod{13} = 10 \qquad (1)$$

$$\log_2(3) = 4 \qquad (2)$$

$$\log_2(12) = 1 \qquad (3)$$

$$\log_2(3 * 12) = 6 \qquad (4)$$

$$9 \cdot 10 \pmod{13} = 12 \qquad (5)$$

$$\log_2(9) = 3 \qquad (6)$$

$$\log_2(10) = 6 \qquad (7)$$

$$\log_2(9 * 10) = 1 \qquad (8)$$

$$11 \cdot 5 \pmod{13} = 3 \qquad (9)$$

$$\log_2(11) = 12 \qquad (10)$$

$$\log_2(5) = 4 \qquad (11)$$

$$\log_2(11 * 5) = 3 \qquad (12)$$

$\log_2(ab) = \log(a) + \log(b)(\bmod p - 1) \tag{13}$

2.

i)

										3^{11}					
3	9	10	13	5	15	11	16	14	8	7	4	12	2	6	1

Table 3: The set 3^i that generates \mathbb{F}_{17}^*

- ii) The smallest power of i that gives 2 is 14.
- iii) The power of r of 2 that gives me 1 is 12.

LM

3.

i)
$$a = \text{nextprime}(2^50) = 1125899906842679$$

 $b = \text{nextprime}(3^50) = 717897987691852588770277$
 $m = 11^27 = 13109994191499930367061460371$
 $m = 11^27 = 13109994191499930367061460371$

ii) $Mod(a,m)^-1 = 1105586377394340712003222035$

iii)
$$d = lift(c)$$

 $f = (d*a)-1)/m = 94948905478684$

- iv) gcd(m,8689142)=11
- v) No writeup.
- vi) Decrypted Message: That is all

SC

1.

2 generates $\mathbb{F}_{83}^*,$ and 5 generates $\mathbb{F}_{2*83+1}^*.$ Secret key k=7

Modular arithmetic	$= S_i$	$\mod 2$	$= K_i$
$5^7 \bmod 167$	= 136	$\mod 2$	=0
$136^2 \mod 167$	= 126	$\mod 2$	=0
$126^2 \mod 167$	= 11	$\mod 2$	= 1
$11^2 \mod 167$	= 121	$\mod 2$	= 1
$121^2 \mod 167$	= 112	$\mod 2$	= 0
$112^2 \mod 167$	= 19	$\mod 2$	= 1
$19^2 \mod 167$	= 27	$\mod 2$	= 1
$27^2 \mod 167$	= 61	$\mod 2$	= 1
$61^2 \mod 167$	= 47	$\mod 2$	= 1
$47^2 \mod 167$	= 38	$\mod 2$	= 0
$38^2 \mod 167$	= 108	$\mod 2$	= 0
$108^2 \mod 167$	= 141	$\mod 2$	= 1
$141^2 \mod 167$	= 8	$\mod 2$	=0
$8^2 \mod 167$	= 64	$\mod 2$	= 0
$64^2 \mod 167$	= 88	$\mod 2$	=0
$88^2 \bmod 167$	= 62	$\mod 2$	=0

Our keystream is then $0011\,\,0111\,\,1001\,\,0000.$ XORing the ciphertext with the keystream gets us:

Ciphertext	0110	1101	1111	0111
Keystream	0011	0111	1001	0000
Plaintext	0101	1010	0110	0111

 $\begin{array}{l} {\rm Plaintext~(in~binary) = 01011010~01100111} \\ {\rm Plaintext~(in~ASCII) = Zg} \end{array}$