Álgebra I Práctica 6 - Números Complejos

1. Para los siguientes $z \in \mathbb{C}$, hallar Re(z), Im(z), |z|, $\text{Re}(z^{-1})$, $\text{Im}(z^{-1})$, $\text{Re}(-i \cdot z)$ e $\text{Im}(i \cdot z)$

i)
$$z = (2+i)(1+3i)$$

v)
$$z = \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^{179}$$

ii)
$$z = 5i(1+i)^4$$

iii)
$$z = (\sqrt{2} + \sqrt{3}i)^2 (\overline{1 - 3i})$$

vi)
$$z = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{-1}$$

iv)
$$z = i^{17} + \frac{1}{2}i(1-i)^3$$

vii)
$$z = \overline{1 - 3i}^{-1}$$

2. Dados z = 1 + 3i y w = 4 + 2i, representar en el plano complejo los siguientes números

$$v) -z$$

ix)
$$\overline{z}$$

xiii)
$$|2z|$$

ii)
$$w$$

vi)
$$2z$$

x)
$$\overline{3z+2w}$$

$$xiv) |z+w|$$

iii)
$$z + w$$

vii)
$$\frac{1}{2}w$$

xi)
$$\overline{iz}$$

$$xv) |z-w|$$

iv)
$$z - w$$

xvi)
$$|\overline{w-z}|$$

3. Calcular las raíces cuadradas de los siguientes números complejos z

i)
$$z = -36$$

ii)
$$z = i$$

iii)
$$z = -3 - 4i$$

iv)
$$z = -15 + 8i$$

4. Calcular los módulos y los argumentos de los siguientes números complejos

i)
$$3 + \sqrt{3}i$$

iii)
$$(-1-i)^{-1}$$

v)
$$(-1+\sqrt{3}i)^{-5}$$

ii)
$$(2+2i)(\sqrt{3}-i)$$
 iv) $(-1+\sqrt{3}i)^5$

iv)
$$(-1 + \sqrt{3}i)^5$$

vi)
$$\frac{1+\sqrt{3}i}{1-i}$$

5. Graficar en el plano complejo

i)
$$\{z \in \mathbb{C} - \{0\} / |z| \ge 2 \text{ y } \frac{\pi}{4} \le \arg(z) \le \frac{2\pi}{3} \}.$$

ii)
$$\{z \in \mathbb{C} - \{0\} / \arg(-iz) > \frac{\pi}{4}\}.$$

iii)
$$\{z \in \mathbb{C} - \{0\} / |z| < 3 \text{ y } \arg(z^4) \le \pi\}.$$

- i) Determinar la forma binomial de $\left(\frac{1+\sqrt{3}i}{1-i}\right)^{17}$.
 - ii) Determinar la forma binomial de $(-1 + \sqrt{3}i)^n$ para cada $n \in \mathbb{N}$.
 - iii) Hallar todos los $n \in \mathbb{N}$ tales que $(\sqrt{3} i)^n = 2^{n-1}(-1 + \sqrt{3}i)$.
- 7. Hallar en cada caso las raíces n-avas de $z \in \mathbb{C}$:

i)
$$z = 8, n = 6$$

iv)
$$z = 2i(\sqrt{2} - \sqrt{6}i)^{-1}$$
, $n = 11$

ii)
$$z = -4, n = 3$$

v)
$$z = (2 - 2i)^{12}$$
, $n = 6$

iii)
$$z = -1 + i$$
, $n = 7$

vi)
$$z = 1, n = 8.$$

- i) Calcular $w + \overline{w} + (w + w^2)^2 w^{38}(1 w^2)$ para cada $w \in G_7$.
 - ii) Calcular $w^{73} + \overline{w} \cdot w^9 + 8$ para cada $w \in G_3$.

- iii) Calcular $1 + w^2 + w^{-2} + w^4 + w^{-4}$ para cada $w \in G_{10}$.
- iv) Calcular $w^{14} + w^{-8} + \overline{w}^4 + \overline{w^{-3}}$ para cada $w \in G_5$.
- 9. Determinar las raíces n-ésimas primitivas de la unidad para n=2,3,4,5,6 y 12.
- 10. Sea w una raíz quinceava primitiva de la unidad. Hallar todos los $n \in \mathbb{N}$ tales que

i)
$$\sum_{i=0}^{n-1} w^{5i} = 0$$
 ii) $\sum_{i=2}^{n-1} w^{3i} = 0$

- 11. i) Calcular la suma de las raíces n-ésimas primitivas de la unidad para n = 2, 3, 4, 5, 8, 10, 15.
 - ii) Calcular la suma de las raíces p-ésimas primitivas de la unidad para p primo.
- 12. Sea w una raíz cúbica primitiva de la unidad y sea $(z_n)_{n\in\mathbb{N}}$ la sucesión de números complejos definida por

$$z_1 = 1 + w$$
 y $z_{n+1} = \overline{1 + z_n^2}, \ \forall n \in \mathbb{N}.$

Probar que z_n es una raíz sexta primitiva de la unidad para todo $n \in \mathbb{N}$

- 13. Probar que $w \in \mathbb{C}$ es una raíz n-ésima primitiva de la unidad si y solo si \overline{w} lo es.
- 14. Sea w una raíz novena primitiva de la unidad. Hallar todos los $n \in \mathbb{N}$ tales que $w^{5n} = w^3$.
- 15. Sea $w \in G_{35}$ una raíz 35-ava primitiva de la unidad. Hallar todos los $n \in \mathbb{Z}$ tales que

$$\begin{cases} w^{15n} &= w^5 \\ w^{14n} &= w^{21} \end{cases}$$

16. Sea G_{20} el conjunto de raíces 20-avas de la unidad y G_4 el conjunto de raíces cuartas de la unidad. Sea \sim la relación en G_{20} definida por

$$a \sim b \iff a = \omega b$$
, para algún $\omega \in G_4$,

o sea dos elementos están relacionados si uno es un múltiplo del otro por una raíz cuarta de la unidad.

- i) Probar que \sim es una relación de equivalencia.
- ii) ¿Cuántas clases de equivalencia hay en total?