Examen parcial de Física - ELECTRÒNICA 28 de novembre de 2019

Model A

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) En el circuit de la figura, tenim $\varepsilon = 5 \,\mathrm{V}, \, R =$ $1 k\Omega$ i $V_{\gamma} = 0.6$ V per a tots els díodes. Quina resposta referent a la potència dissipada als díodes és correcta?

b)
$$P_D = 0$$

c)
$$P_C = 3.8 \text{ mW}$$

d)
$$P_B = 2.28 \text{ mW}$$

T2) En el circuit de la figura tenim dues resistències de $1 k\Omega$, $V_{\gamma} = 0.6 \,\mathrm{V}$ per a tots els díodes i $V_{Z} =$ 3 V. Quin és el valor de la força electromotriu del generador a partir del qual el díode Zener comença a conduir?

- b) 6 V
- c) 5 V
- d) 3 V

- T3) Quina de les següents afirmacions referents a un transistor NMOS és correcta?
 - a) V_{DS} és més gran en zona òhmica que quan el transistor està en tall.
 - b) V_{DS} és més gran en saturació que en zona òhmica.
 - c) En saturació, la intensitat depèn de la diferència de potencial V_{DS} .
 - d) En zona òhmica la intensitat només depèn de la diferència de potencial V_{DS} .
- **T4)** Si el transistor PMOS té una tensió de tall $V_T = -1 \, \mathrm{V}$ i un paràmetre característic $\beta = 1 \text{ mA/V}^2$, la tensió V_G que cal aplicar a la porta perquè el transistor treballi en zona òhmica amb un corrent de 1 mA és:

b) 1.75 V c) 5 V d) 0 V

T5) Si la tensió a la part superior del circuit és $V_{SS} = 5$ V, quins valors de les tensions a les entrades fan que el transistor T3 estigui en tall?

a)
$$V_A = 0 \text{ V}, V_B = 5 \text{ V}$$

a)
$$V_A = 0 \text{ V}, V_B = 5 \text{ V}$$
 b) $V_A = 0 \text{ V}, V_B = 0 \text{ V}$

c)
$$V_A = 5 \text{ V}, V_B = 5 \text{ V}$$
 d) $V_A = 5 \text{ V}, V_B = 0 \text{ V}$

d)
$$V_A = 5 \, \text{V}, \, V_B = 0 \, \text{V}$$

Examen parcial de Física - ELECTRÒNICA 28 de novembre de 2019

Model B

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) Quina de les següents afirmacions referents a un transistor NMOS és correcta?

- a) V_{DS} és més gran en saturació que en zona òhmica.
- b) V_{DS} és més gran en zona òhmica que quan el transistor està en tall.
- c) En saturació, la intensitat depèn de la diferència de potencial V_{DS} .
- d) En zona òhmica la intensitat només depèn de la diferència de potencial V_{DS} .
- **T2)** En el circuit de la figura, tenim $\varepsilon = 5 \,\mathrm{V}, \, R =$ $1 k\Omega$ i $V_{\gamma} = 0.6$ V per a tots els díodes. Quina resposta referent a la potència dissipada als díodes és correcta?

- a) $P_C = 3.8 \text{ mW}$ b) $P_A = 19 \text{ mW}$ c) $P_B = 2.28 \text{ mW}$ d) $P_D = 0$
- **T3)** Si el transistor PMOS té una tensió de tall $V_T = -1 \, \text{V}$ i un paràmetre característic $\beta = 1 \text{ mA/V}^2$, la tensió V_G que cal aplicar a la porta perquè el transistor treballi en zona òhmica amb un corrent de 1 mA és:

- a) 5 V
- b) 0 V
- c) 1.75 V d) 1 V
- **T4)** Si la tensió a la part superior del circuit és $V_{SS} =$ 5 V, quins valors de les tensions a les entrades fan que el transistor T3 estigui en tall?

- a) $V_A = 5 \text{ V}, V_B = 0 \text{ V}$ b) $V_A = 0 \text{ V}, V_B = 5 \text{ V}$ c) $V_A = 0 \text{ V}, V_B = 0 \text{ V}$ d) $V_A = 5 \text{ V}, V_B = 5 \text{ V}$

- **T5)** En el circuit de la figura tenim dues resistències de $1 k\Omega$, $V_{\gamma} = 0.6 \,\mathrm{V}$ per a tots els díodes i $V_{Z} =$ 3 V. Quin és el valor de la força electromotriu del generador a partir del qual el díode Zener comença a conduir?

- a) 3 V
- b) 6 V c) 5 V
- d) 2.4 V

Examen de Física - ELECTRÒNICA 28 de novembre de 2019

Problema: 50% de l'examen

Al circuit de la figura es mostren dos transistors NMOS iguals (T_1, T_2) , amb característiques $\beta = 4\,\mathrm{mA/V^2}$ i $V_T = 3\,\mathrm{V}$, connectats entre ells a través de la porta.

- a) Trobeu els valors de V_{DS} , V_{GS} i I_D del transistor T_1 . Determineu el seu règim de treball i comproveu que és correcte.
- b) Feu el mateix que a l'apartat anterior per al transistor T_2 .
- c) Si modifiquem el potencial de 25 V que alimenta el transistor T_2 , es modificaran les condicions de treball del transistor T_1 ? Raoneu breument la resposta.

RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	d	a
T2)	b	c
T3)	b	c
T4)	b	c
T5)	b	b

Resolució del Model A

- T1) Amb la polaritat de la font, indicada a la figura, els díodes D i B estan en polarització directa i els A i C en inversa. Per tant, el corrent passa pels díodes D i B i la resistència (amb sentit cap a l'esquerra). El valor de la intensitat és: $I = \frac{5-0.6-0.6}{1} = 3.8$ mA. La potència dissipada per un díode és: $P = V_{\gamma} \cdot I$. Així, els díodes que estan en polarització inversa (A i C) no dissipen energia, ja que la intensitat és nul·la. Els que estan en polarització directa (B i D) dissipen una potència $P = 0.6 \cdot 3.8 = 2.28$ mW. Per tant, $P_A = 0$, $P_B = 2.28$ mW, $P_C = 0$ i $P_D = 2.28$ mW.
- T2) En el cas límit la força electromotriu del generador ha de ser tal que el corrent passi per les resistències (cadascuna de valor R=1 k Ω) i els díodes A i B (estan en polarització directa). Al mateix temps, cal que la diferència de potencial als extrems del díode Zener sigui la tensió Zener. És a dir, cal que alhora es verifica que: $\varepsilon_{min} = 2R \cdot I + 2V_{\gamma}$ i $V_Z = V_{\gamma} + R \cdot I$. Combinant ambdues expressions tenim: $\varepsilon_{min} = 2V_{\gamma} + 2 \cdot \frac{V_Z V_{\gamma}}{R} = 6$ V.
- T3) Quan el NMOS està en saturació la intensitat només depèn de la diferència de potencial entre la porta i l'emissor V_{GS} i no de V_{DS} . Quan treballa a la zona òhmica la intensitat depèn alhora de les diferències de potencial V_{GS} i V_{DS} . Quan està en tall $V_{DS} = V_{DD}$, que és el màxim valor possible. Si observem la corba de característica de transferència (V_{DS} en funció de V_{GS}), veurem que la diferència de potencial V_{DS} , quan el transistor està en saturació, és més gran que quan està a la zona òhmica.
- T4) Com que el transistor està en zona òhmica la intensitat és $I_D = \beta [V_{GT} \cdot V_{DS} V_{DS}^2/2]$. Per tant, $V_{GT} = \frac{I_D}{\beta \cdot V_{DS}} + V_{DS}/2$. Com que per la resistència circula un corrent de 1 mA, el potencial al drenador és $V_D = 1 \cdot 4.5 = 4.5$ V. Per tant, $V_{DS} = V_D V_S = 4.5 5 = -0.5$ V. Substituïnt a l'equació anterior, tenim que $V_{GT} = -2.25$ V. Per tant, $V_{GS} = V_T + V_{GT} = -3.25$ V i finalment $V_G = V_S + V_{GS} = 5 3.25 = 1.75$ V.
- T5 Si les tensions a les dues entrades són nul·les $(V_A = 0, V_B = 0)$ els dos PMOS estan en òhmica, per tant condueixen i la tensió a la porta de T3 és aproximadament $V_{SS} = 5$ V. Per tant, en aquest cas T3 està en tall, que és la solució correcta. La tensió a la sortida OUT és nul·la. Quan la tensió a la porta d'un PMOS és 5 V està en tall. Com T1 i T2 estan en sèrie, només que hi hagi un PMOS en tall, farà que la tensió a la porta de T3 sigui nul·la. Són els casos $(V_A = 0, V_B = 5 \text{ V})$, $(V_A = 5 \text{ V}, V_B = 0)$ i $(V_A = 5 \text{ V}, V_B = 5 \text{ V})$ Quan passa això T3 està en zona òhmica i la tensió a la sortida OUT serà 5 V. Observem, per tant, que es tracta d'una porta lògica OR.

Resolució del Problema

a) Donada la configuració dels transistors, observem que $V_{GS1} = V_{G1} = V_{G2} = V_{GS2}$, donat que $V_{S1} = V_{S2} = 0$. A més, com que $V_{D1} = V_{G1}$ tenim que $V_{DS1} = V_{GS1}$, per la qual cosa $V_{DS1} > V_{GS1} - V_T$. En definitiva, el transistor T1 està en SATURACIÓ. Aleshores, es satisfà que (I en Ampère):

$$I_{D1} = \beta \frac{V_{GT1}^2}{2} = 2 \times 10^{-3} (V_{GS1} - V_T)^2 = 2 \times 10^{-3} (V_{DS1} - 3)^2.$$

D'altra banda, tenim que $30 = 3 \times 10^3 I_D + V_{DS1}$. Combinant les dues equacions ens queda la següent equació de segon grau:

$$6V_{DS1}^2 - 35V_{DS1} + 24 = 0,$$

que té per solucions: $V_{DS1}=5.04~{\rm V}$ i $V_{DS1}=0.8~{\rm V}$.

Com que $V_{DS1}=V_{GS1}$, l'única solució vàlida és $V_{DS1}=5.04$ V. Substituint a l'equació per I_{D1} , tenim que: $I_{D1}=8.32$ mA.

b) Per a T2, fem la hipòtesi que està en SATURACIÓ. Aleshores:

$$I_{D2} = \beta \frac{V_{GT2}^2}{2} = 2 \times 10^{-3} (V_{GS2} - V_T)^2 = 8.32 \text{ mA},$$

donat que $V_{GS2} = V_{GS1}$. De l'equació de la banda dreta del circuit, tenim que:

$$V_{DS2} = 25 - 2.2 \times 10^3 I_{D2} = 6.7 \text{ V}.$$

Comprovació del règim de treball: $V_{GS2} - V_T = 2.04 < V_{DS2}$, i per tant la condició requerida per la hipòtesi de saturació se satisfà.

c) El règim de treball i la intensitat del transistor T_1 depenen dels valors dels potencials V_{GS} i V_{DS1} (que en la configuració indicada val $V_{DS1} = V_{GS}$); al seu torn aquests depenen de la pròpia intensitat del transistor T_1 , però la intensitat del transistor T_2 no hi intervé, ni tampoc cap dels potencials de la branca per on circula aquesta, ja que estan aïllats de V_{GS} i V_{DS1} per la porta G_2 . Per tant, si modifiquem el potencial de 25 V que alimenta el transistor T_2 , NO es modificaran les condicions de treball del transistor T_1 .