

# APPENDIX

(a) Information of logical channel



(b) Physical channel  
(rate = 256 bits/frame)



(i) Dividing information of logical channel into segments each of which has  $256 - 16 = 240$  bits



(ii) Forming each logical channel unit by adding CRC (16 bits) to each information segment

(iii) Mapping logical channel into physical channel

Reference Figure 1

(a) Information of logical channel



(b) Physical channel  
(rate = 128 bits/frame)



(i) Dividing information of logical channel into segments each of which has  $128 - 16 = 112$  bits



(ii) Forming each logical channel unit by adding CRC (16 bits) to each information segment



(iii) Mapping logical channel into physical channel



Reference Figure 2

(a) Information of logical channel



(b) Physical channel  
(rate = 256 bits/frame)



(i) Dividing information of logical channel into segments each of which has  $256 - 16 = 240$  bits



(ii) Forming each logical channel unit by adding CRC (16 bits) to each information segment

(iii) Mapping logical channel into physical channel

Reference Figure 3

(a) Information of logical channel



(b) Physical channel  
(rate = 128 bits/frame)



(i) Dividing information of logical channel into segments each of which has  $128 + 128 - 16 = 240$  bits

(ii) Forming each logical channel unit by adding CRC (16 bits) to each information segment

(iii) Mapping logical channel into physical channel



Reference Figure 4