

JU 0853089
AUG 1981

61005 E/29 H01 Q49 BORE = 29.11.79
BOREHOLE REINF INST *SU -853-089
29.11.79-SU-844451 (07.08.81) E21b-29/10
Casing patch liner for wells - is reduced in perimeter in centre so
expanding stress is kept clear of casing when liner is expanded in situ

29.11.79 as 844451 (26MI)

The blank consists of a corrugated piece of metal pipe reduce
stress in the casing etc at damage site, the perimeter of the patch
liner (4) in the centre is equal or less than the inside perimeter of
the casing by an amount up to 3 PI mm. The liner is suitable for
longitudinal casing cracks and weakness. Bul.29/7.8.81. (2pp
Dwg.No.1.2)

The outside diameter of the liner is 1-3mm greater than the inside
diameter of the casing to form an interference fit, as compared
with the centre part which is reduced in diameter by the specified
amount so that the difference between casing and liner centre
sizes is not more than 3mm. The corrugated patch is run and
followed down by an expander which closes it to the walls of the
casing at both ends. The expanding action in the centre part of the
liner means that stresses are locked up in the liner rather than
affecting the casing either side of this.

H(1-C1)

066

BEST AVAILABLE COPY

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(11) 853089

(61) Дополнительное к авт. свид-ву —

(22) Заявлено 29.11.79 (21) 2844451/22-03

(51) М. Кл.³
Е 21B 29/10

с присоединением заявки № —

(23) Приоритет —

(43) Опубликовано 07.08.81. Бюллетень № 29

(53) УДК 622.245.4
(088.8)

(45) Дата опубликования описания 07.08.81

(72) Авторы
изобретения

В. И. Мишин, С. Ф. Петров и М. Л. Кисельман

(71) Заявитель

Всесоюзный научно-исследовательский институт по креплению
скважин и буровым растворам

(54) ЗАГОТОВКА ПЛАСТЫРЯ ДЛЯ РЕМОНТА ОБСАДНЫХ ТРУБ

1

Изобретение относится к буровой технике, а именно к устройствам для ремонта обсадных колонн в скважине.

Известна заготовка пластиря для перекрытия интервала повреждения или очаговой коррозии в обсадных трубах, выполненная из пластмассовой оболочки [1].

Недостатком этой заготовки пластиря является слабое сцепление ее со стенками обсадной колонны.

Наиболее близкой к изобретению по технической сущности и достигаемому результату является заготовка пластиря для ремонта обсадных труб, выполненная из металлической продольной гофрированной трубы [2].

Недостатком заготовки является то, что она не обеспечивает нужного качества и надежности ремонта в интервале больших продольных трещин, так как ремонтируемые трубы могут быть дополнительно нарушены в результате действия на них радиальных сил при установке пластиря.

Цель изобретения — повышение качества и надежности ремонта путем снижения напряжений в теле ремонтируемой трубы в местах повреждения.

Это достигается тем, что продольно гофрированная труба выполнена в средней части с периметром, равным или меньшим на

2

величину до 3 л. мм внутреннего периметра ремонтируемой обсадной трубы.

На фиг. 1 изображена заготовка пластиря; на фиг. 2 — разрез А—А фиг. 1.

5 Заготовка пластиря представляет собой продольно гофрированную трубу 1, изготовленную из тонкостенной стальной трубы путем протяжки через специальную оправку. Условный наружный диаметр гофрированной трубы 1 выбирается на 1—3 мм больше внутреннего диаметра ремонтируемого участка обсадной трубы 2. Эта разность называется условным натягом между пластирем и трубой 2 с повреждением 3. В средней части 4 гофрированная труба 1 выполнена с периметром, равным или меньшим на величину до 3 л. мм внутреннего периметра трубы 2. При этом разность между внутренним диаметром трубы 2 и условным наружным диаметром средней части трубы 1 составляет не более 3 мм.

25 Гофрированную трубу 1 вместе с расширителем опускают в интервал, где находится повреждение 3 трубы 2. После этого расширителем протягивается внутри гофрированной трубы 1 гидравлическим толкателем или с помощью талевой системы по всей длине трубы 1. При этом концевые верхняя и нижние части пластиря плотно

прижимаются к стенкам ремонтируемой трубы 2, создавая напряженную систему «пластырь — обсадная труба» и не вызывая разрушения трубы 2, так как зоны напряжения приходятся на неповрежденный участок трубы 2. В зоне повреждения 3 напряжения в теле обсадной трубы 2 возникают незначительные, потому что радиальные усилия расширителя расходятся в основном только на приздание цилиндрической формы гофрированной трубы 1, длина которой выбирается в зависимости от размеров и характера повреждения 3 обсадной трубы 2.

Применение предложенной заготовки пластиря повышает надежность ремонта коррозированных труб, труб с продольными трещинами и т. д.

Формула изобретения

Заготовка пластиря для ремонта обсадных труб, выполненная из металлической 5 продольной гофрированной трубы, отличающаяся тем, что, с целью повышения качества и надежности ремонта путем снижения напряжений в теле ремонтируемой 10 трубы в местах повреждения, продольно гофрированная труба выполнена в средней части с периметром, равным или меньшим на величину до 3л мм внутреннего периметра ремонтируемой обсадной трубы.

Источники информации,

- 15 принятые во внимание при экспертизе
 1. Патент США № 3111991, кл. 166—14,
 опублик. 1963.
 2. Патент США № 3179168, кл. 166—14,
 опублик. 1965 (прототип).

Фиг.1

Фиг.2

Составитель Н. Панин

Редактор С. Титова

Техред М. Гайдмак

Корректор Е. Осипова

Заказ 1811/8

НПО «Понск»

Изд. № 498

Государственного комитета СССР по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Подписьное

Типография, пр. Сапунова, 2

BEST AVAILABLE COPY