

I. Data Literacy

데이터의 값

- 수치형: 1,2,3,4,5,.... 1.1,2.4,3.1,...
- 논리형: True or False
- 범주형: "합격" 또는 "불합격" 등
- 텍스트: "오늘의 뉴스는..."

정형 / 반정형 / 비정형 데이터

Structured / Semi Structured / Unstructured

1. 데이터의 이해

- 정형 데이터의 유형
 - 1) 질적 자료(qualitative data=비계측자료 : nonmetric data)
 - 범주형 자료(categorical data) : 예) 거주지, 성별, 등
 - 측정척도에 의한 구분
 - ① 명목자료(nominal data)
 - » 범주간 순서가 없음 : 예) 성별, 거주지, 등
 - 2 순서자료(ordinal data)
 - > 범주들 간에는 순서가 있는 자료, 사칙연산을 할 수 없음예) 서비스 선호도(5점 척도) 등
 - 2) 양적 자료(quantitative data=계측자료 : metric data)
 - 수치자료, 사칙연산 가능
 - 합계, 평균, 최대값, 최소값, 분산 등으로 자료를 요약/정리 가능
 - 예 : 요금, 데이터 사용량 등

1. 데이터의 이해

- 분석 대상 데이터는 여러 개의 관측된 개체가 있고, 개체 마다 속성이 있음
 - 관측된 개체는 데이터의 행으로, 속성은 데이터의 열로 고려하며, 속성을 변수로 이해
 - ① 관측된 개체
 - Observation=Case=individual=object
 - ② 개체의 속성
 - Variable=attribute=feature=item(Qualitative variable: nominal, ordinal / Quantitative variable: interval)
 - 종속변수=Dependent variable=response variable=target variable=Y 변수
 - » 다른 변수에 의해 영향을 받는 변수
 - 독립변수=설명변수=Independent variable=explanatory variable=input variable=X 변수
 - » 종속 변수에 영향을 주는 변수

2. 통계학이란

통계학?

- 1) 모수(parameter) : 불변
 - 모집단의 특성을 수치로 나타낸 척도
 - 모수들은 전수조사(census)를 통해 얻은 자료로부터 구해짐.
 - 모집단의 평균인 모평균(population mean) : μ
 - 모집단의 분산인 모분산(population variance) : σ^2
- 2) 통계량(statistic): 가변
 - 표본자료로부터 얻어진 표본의 특성을 수치로 나타낸 척도
 - 표본의 평균인 표본평균(sample mean) : \bar{X}
 - 표본의 분산인 표본분산(sample variance) : S^2

3. 모집단과 표본

• 모집단과 표본

1) 모집단 (Population)

- 얻고자 하는 정보와 관련 있는 모든 개체로 부터 얻을 수 있는 모든 관측값들의 집합, 관심을 갖는
 대상 전체
- 조사 및 관심의 대상이 되는 원소 하나 하나의 전체 집합(모임)
- 모집단은 일반적으로 매우 크고, 실제로 무한히 클 수도 있음
- 모집단 전체를 조사해서 얻은 통계자료를 모집단자료(Population data)

2) 표본 (Sample)

- 모집단의 일부분으로 원하는 정보를 얻기 위해 수행한 관측을 통해 얻어진 관측값
- 표본 공간 : 통계적 실험에서 모든 가능한 실험결과들의 집합
- 모집단의 특성을 파악하기 위하여 추출된 모집단의 일부. 즉, 모집단의 부분집합(subset)
- 모집단의 일부분인 표본으로부터 조사된 자료를 표본자료(sample data)라고 함.

3. 모집단과 표본

• 통계량: 자료의 정리 및 요약

통계적 분석은 자료의 분포가 가지고 있는 특성을 찾아내서 그 특성을 숫자로 표시하기 위한 작업

- 분포의 특성
 - 집중화 경향 (중심값 산술평균, 중앙값, 최빈값): 자료가 어느 위치에 집중되어 있는가를 나타냄
 - 산포도 (범위, 분산, 표준편차, 백분위수):자료가 산술평균을 중심으로 흩어져 있는 정도

이름	성별	나이	거주지	직업	요금	데이터 사용량	휴대폰 선호도	서비스 선호도
AAA	F	20	서울	회사원	55000	3GB	LG	5
BBB	F	19	인천	자영업	45000	9GB	삼성	4
CCC	М	25	김포	회사원	35000	1GB	샤오미	3
DDD	F	42	대전	회사원	75000	4GB	LG	5
EEE	F	27	서울	자영업	65000	2GB	소니	4
FFF	М	20	서울	회사원	55000	3GB	LG	5
GGG	М	43	서울	자영업	45000	9GB	삼성	4
ННН	М	25	대전	회사원	95000	11GB	샤오미	3
Ш	F	42	김포	회사원	45000	3GB	LG	5
JJJ	F	27	인천	자영업	40000	4GB	소니	4

1. 기술통계 vs 추론통계

기술통계

- Descriptive Statistics
- 자료의 특성을 표, 그림, 통계량 등을 사용하여 쉽게 파악할 수 있도록 정리/요약, 자료를 요약하는 기초적 통계
- 예:
 - 중심위치의 측도: 표본평균, 중앙값
 - 산포의 측정: 분산, 표준편차,사분위범위수, 백분위수, 변동계수, 평균의 표준오차
 - 분포의 형태에 관한 측도: 왜도(양수->왼쪽으로 치우친, 음수->우측으로 치우친),첨도

1. 기술통계 vs 추론통계

• 추론통계

- Statistical Inference
- 모수 추정(Parameter estimation)
 - 점추정(Point Estimation): 모수가 특정한 값일 것이라고 추정, 표본의 평균/중위수/최빈값 등을 사용, 불편성/효율성/일치성/충족성
 - 표본 평균과 표본 분산
 - 구간추정(Interval Estimation): 점추정의 정확성을 보완하기 위해 확률로 표현된 믿음의 정도 하에서 모수가 특정한 구간에 있을 것이라고 선언
 - 추정량의 분포에 대한 전제 필요, 구해진 구간 내 모수가 있을 가능성의 크기(신뢰수준) 필요
 - 예: 95% 신뢰수준 하에서 모평균의 신뢰구간
- 가설검정(Hypothesis Test)
 - 모집단에 대한 어떤 가설을 설정한 뒤, 표본 관찰을 통해 가설의 채택여부 결정
 - 표본관찰이나 실험을 통해 귀무가설과 대립가설 중 택1
 - 귀무가설이 옳다는 전제 하 검정통계량을 구하여, 이 값이 나타날 가능성의 크기로 판단
 - 귀무가설/대립가설/검정통계량/유의수준/기각역/채택역
 - 제1종 오류/제2종 오류

- 집중화 경향: 자료가 어느 위치에 집중되어 있는가를 나타냄, 평균, 중앙값 등이 있음
- 예를 들어, 평균은 집중화 경향에 대한 자료의 특성을 대표할 수 있는 값으로, 모든 관측값을 더해서 관측값 개수로 나누어 구하고, 중앙값은 어떤 주어진 값들을 크기의 순서대로 정렬했을 때가장 중앙에 위치하는 값

- Measure of central tendency
 - 평균(mean)
 - (산술)평균(mean; arithmetic mean; average), 균형점(자료의 중심), 모든 관측값의 크기(정보)를 반영, 이상값(outlier)의 영향을 받음.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

- 중앙값(Median)
 - 자료를 관측값의 크기순으로 배열하였을 경우, 중앙에 위치하는 관측값 이상값에 덜 민감
 - 관측값의 수가 짝수이면 중앙의 두 관측값을 평균함.
 - 50% percentile
- _ 최빈값(mode)
 - 자료 중에서 가장 많이 출현하는 관측값
 - 명목자료인 경우 평균과 중앙값은 무의미(예 : 허리사이즈)
 - 존재하지 않을 수도 있으며, 1개 이상 존재할 수도 있음.

Measure of dispersion

- _ 필요성
 - 자료를 대표값으로 요약/정리하는 것 만으로 충분하지 않음
 - 자료에서 관측값들이 얼마만큼 퍼져있는가를 측정하는 척도인 산포도를 고려
 - 산포도는 자료에서 관측값들이 변화하는 크기인 변동량을 나타내는 값

- 범위(range)

- 자료의 관측값 중 가장 큰 값인 최대값(max)과 가장 작은 값인 최소값(min)과의 차이
- 범위(range)=최대값(max)-최소값(min)
- 자료들 중 두 관측값만 이용하며 관측값 하나 하나의 크기가 반영되지 못함.
- 이상값에 의해 크게 영향 받음.

Measure of dispersion

- 백분위수와 사분위수
 - 평균과 표준편차는 자료의 분포에 대해 중요한 정보를 제공하지만, outlier 등의 영향을 받을 수 있으며, 자료 분포의 치우침 등에 대한 정보는 아님.
 - Outlier나 Skewness 등에 영향을 받지 않고 자료를 파악하기 위해 median이나 interquartile range 등을 활용
- 백분위수(Percentile)
 - 자료를 크기 순서에 따라 나열한 자료를 100등분하는 수로, X 분위값이란 자료가 X%보다 작 거나 같게 되는 값
- 사분위수(Quartile)
 - 백분위수가 25%, 50%, 75%인 경우

Measure of dispersion

- 분산과 표준편차
 - 두 통계량 모두 각 자료가 평균에서 얼마나 퍼져있는지를 보는 정도, 관측값들이 자료의 중심인 평균으로부터 얼마나 떨어져 있는가의 척도, 즉 평균과 차이들의 평균
- 분산(Variance)
 - 각 자료가 평균에서 얼마나 퍼져있는지를 보는 정도. 각 자료의 평균과의 차이에 대한 평균
 - 모분산(population variance): 모집단으로부터 전수조사를 하여 얻은 관측값인 경우 모집단의 분산

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu)^2$$

표본 분산(sample variance)

$$- S^2 = \frac{1}{n-1} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

- _ 표준편차
 - 모분산이나 표본분산은 관측값들의 편차를 제곱하여 계산하므로 모분산이나 표본분산의 측정단위는 관 측값들의 측정단위와 일치하지 않으며, 그렇기 때문에 관측값의 측정단위와 일치시키기 위해서는 분산 의 양의 제곱근을 사용

Measure of dispersion

- 공분산 (Covariance)
 - 분산은 한 변수에 대한 자료의 퍼짐이며, 두 변수간의 관계를 알기 위해 공분산을 사용
 - 공분산은 X, Y가 각각의 평균들로부터 떨어진 거리, 변수의 편차간의 곱의 평균

$$\sigma(x, y) = \mathrm{E}\left[(x - \mathrm{E}[x])(y - \mathrm{E}[y])\right],$$

• 공분산

• 두 변수의 상관(하나가 증가할 때 다른 하나는 감소하거나, 하나가 증가할 때 다른 하나도 증가하는 등의 관계) 정도를 나타내는 값

• 공분산의 해석

- 공분산 > 0
- 공분산 = 0
- 공분산 < 0

Measure of dispersion

- _ 상관관계:
 - 두 변수의 공분산을 각 변수의 편차로 나눠서 -1~1 사이로 조정한 값
 - Scaled version of the covariance between X and Y
 - Pearson correlation

$$\sigma(x, y) = E[(x - E[x])(y - E[y])],$$

• 상관관계는 -1~1사이의 값으로 Scale되며, 1은 두 변수 간 강한 상관관계가 있음을, 0은 두 변수가 관계가 없음을, -1은 두 변수간 음의 상관관계가 강하게 있음을 의미

$$R = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2 \sum (Y_i - \bar{Y})^2}}$$

• 기대값, 평균, 분산

$$- \quad \mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$- \sigma^2 = V(X) = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (X - \mu)^2 x f(x) dx = E(X^2) - \mu^2$$

- E(aX) = aE(X)
- $V(aX) = a^2V(X)$

4. 확률

• 확률(Probability)

- 불확실성을 나타내는 측도(measure)로 0~1의 값으로 표현
- 확률(probability)은 어떤 특정한 사상이 발생할 가능성을 숫자로 나타낸 측정치임. 즉, 사상의 발생할 가능성을 말함.
- Random한 실험에서 실험결과가 항상 동일하지 않으므로 불확실성이 있으며, 이것을 확률로 측정

• 독립성

두 사건 A, B에 대해 P(A and B)=P(A)P(B)이면 A와 B는 서로 독립

(두 사건이 독립이 아닌 경우)

조건부 확률

- 하나의 사건이 일어났을 때, 이 사건이 다른 사건과 관련이 있는 경우 사용되는 방법.
- A가 주어졌을 때, B가 일어날 조건부 확률은 P(B|A)로 표시하며 P(A)>0 면,

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

- A, B 가 서로 배반이면
 - $P(A \cup B) = P(A) + P(B) \circ | \exists A, P(A \cap B) = 0$

4. 조건부 확률과 베이즈 정리

A, B에 대해서

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- A, B7\ exclusive \Leftrightarrow A\cap B = $\emptyset \Leftrightarrow$ P(A\cap B) = 0 \Leftrightarrow P(A\cup B) = P(A) + P(B)
- 조건부 확률
 - $P(A|B) = P(A \cap B) / P(B)$
 - 승법정리: P(A∩B) = P(B)P(A|B) = P(A)P(B|A)
- A, B7 statistically independent \Leftrightarrow P(A∩B) = P(A)P(B) \Leftrightarrow P(A|B) = P(A) \Leftrightarrow P(B|A) = P(B)

4. 조건부 확률과 베이즈 정리

- 조건부 확률 (두 사건이 독립이 아닌 경우)
 - 하나의 사건이 일어났을 때, 이 사건이 다른 사건과 관련이 있는 경우 사용되는 방법.
 - A가 주어졌을 때, B가 일어날 조건부 확률은 P(B|A)로 표시하며 P(A)>0 면,

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

multiplication rule

- 표본공간이 S에서 A로 바뀐 것을 의미
- A, B 가 서로 배반이면

$$P(A \cup B) = P(A) + P(B) \circ | \exists A, P(A \cap B) = 0$$

$$P(A_1 \cup A_2 | B) = P(A_1 | B) + P(A_2 | B)$$

4. 조건부 확률과 베이즈 정리

• 두 사건의 독립

- 두 사건 A, B에 대해 P(A∩B) =P(A)P(B)이면 A와 B는 서로 독립

• 조건부 독립

- P(H) > 0 인 사건 H와 두 사건 A, B에 대해 P(A∩B|H) =P(A|H)P(B|H)이면 A와 B는 H가 주어진 조건하에서 서로 조건부 독립
- H가 주어졌을 때, A가 추가되는 것은 B에 대한 정보를 아는데 영향을 미치지 않음.

- 확률변수 : 측정치로부터 얻을 수 있는 값의 총 집합을 표본공간이라 하는데, 표본 공간상의 각각의 값에 실수를 부여하는 함수
- 확률분포 : 확률변수가 취할 수 있는 모든 값들에 대해 이들 값들이 취할 수 있는 확률을 그림이나 표 (함수식)로 나타낸 것
 - 1) 이산확률분포 : 불량수나 결점수와 같이 셀 수 있는 확률변수에 대응되는 확률분포
 - 2) 연속확률분포: 제품이 중량이나 치수와 같이 셀 수 없는 연속값을 갖는 확률분포

Distribution

- 예2: 동전을 두 번 던진다면?
 - 확률변수는 앞면의 횟수로 고려

Sample Space(S)	R.V. (X)	P(X=x)
H,H	2	0.25
H,T	1	0.25
T,H	1	0.25
T,T	0	0.25

- 조건부 확률의 확률분포
 - 결합확률분포

	Х			
Υ	1	2	3	
1	0.2	0.3	0.2	
2	0.1	0.1	0.1	

• 주변확률분포

x	1	2	3
$f_X(x)$	0.3	0.4	0.3

у	1	2
$f_Y(y)$	0.7	0.3

Y가 주어진 X의 조건부 분포 f(x|y) = f(x,y) /f(y)

х	1	2	3
f(x y=1)	0.2/0.7	0.3/0.7	0.2/0.7
f(x y=2)	0.1/0.3	0.1/0.3	0.1/0.3

- X, Y는 독립?
- $f_{XY}(1,1) = 0.2$
- $f_X(1) = 0.3$
- $f_y(1) = 0.7$

● 이항분포(binomial distribution)

베르누이 시행의 조건 -예) 동전 던지기

- 1) 시행의 결과는 한 사건은 성공(S), 다른 사건은 실패(F)로서 상호 배타적인 두 사건
- 2) 각 시행에서 성공이 나타날 확률은 p=P(S), 실패가 나타날 확률은 q=P(F)=1-p 성공과 실패가 나타날 확률의 합은 p+q=1
- 3) 각 시행은 서로 독립적
- 4) 확률밀도함수: p^x(1-p)^{n-x} X~Ber(p), E(X) = p, Var(X) = p(1-p)

이항분포는 여러 번의 베르누이 시행을 할 때 나타나는 분포

- 이항분포의 확률 밀도 함수 X~B(n, p)
- E(X) = np, Var(X) = np(1-p) $P(X=x|p) = {n \choose x} p^x (1-p)^{n-x} = {n \choose x} p^x (1-p)^{n-x}$ ${n \choose x} = \frac{n!}{x!(n-x)!}$

포아송분포(Poisson distribution)

단위시간이나 단위공간에서 특정 사건이 드물게 발생될 때

- 강판, 직물 등의 연속체에 평균 m개의 흠이 있을 때,
- 랜덤하게 일정 단위를 채 취하여 흠을 조사할 때, 흠이 x개 나타날 확률
- 단위시간 내에 은행에 찾아오는 고객의 수,
- 어느 지역의 하루 교통사고 수

포아송분포의 밀도함수

$$P(X=x) = \frac{e^{-m} m^x}{x!} m : 평균발생횟수$$

x: 사건발생횟수

- 포아송 분포의 특성
 - -이항분포에서 p<0.1일 때, 포아송분포로 변화
 - -포아송분포에서 m>5일 때, 정규분포로 변화

- 정규분포(Normal distribution)
 - 1) 정규분포의 모양과 위치는 분포의 평균과 표준편차로 결정
 - 2) 정규분포의 확률밀도함수는 평균을 중심으로 대칭인 종 모양
 - 3) 정규곡선은 X축에 맞닿지 않으므로 확률변수 X가 취할 수 있는 값의 범위는 -∞ < X < +∞이다 (관측값의 99.7%가 ±3σ안에 속해 있다)
 - 4) 분포의 평균 (μ) 과 표준편차 (σ) 가 어떤 값을 갖더라도 정규곡선과 X축사이의 전체면적은 1이다
 - 정규분포의 밀도함수

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

-∞ < x <∞, π: 3.142(원주율), e: 2.7183

• 표준정규분포

- 표준정규분포는 정규분포를 평균 μ=0, 표준편차σ=1이 되도록 **표준화** 한 것.
- 어떤 관측값 X의 값이 그 분포의 평균으로부터 표준편차의 몇 배 정도나 떨어져 있는가를

Z=0에서 ±45%에 해당하

• 다음과 같이 표준화된 확률변수 Z로 나타내며, N(0,12)으로 표시한다.

는 Z값

$$Z = \frac{X - \mu}{\sigma}$$

Γ – 분포

- 양의 실수 영역에서 정의된 연속확률분포, 다양한 실세계 현상을 모델링할 때 유용
- PDF

$$f(x;lpha,eta)=rac{1}{\Gamma(lpha)eta^lpha}x^{lpha-1}e^{-x/eta},\quad x>0$$

- a: 형상 모수(shape parameter), b:척도 모수(scale parameter), λ: 비율 모수(rate parameter, 1/b)
- $\Gamma(\alpha)$ 는 감마 함수로, 정수 n에 대해서는 $\Gamma(n)=(n-1)!$
- $E(X) = \alpha \beta$, $V(X) = \alpha \beta^2$
 - $\alpha = 1$ 이면 지수분포
- 활용:
 - 지수분포의 일반화: 지수분포는 감마분포의 특별한 경우
 - 대기시간 모델링: 사건이 여러 번 일어나는 데 걸리는 총 대기시간을 설명
 - 비대칭 데이터 모델링: 평균보다 큰 극단값이 자주 나타나는 데이터(오른쪽 꼬리)가 있는 경우 적합

• 지수 분포

- 지수분포(Exponential Distribution)
 - 어떤 사건이 발생할 때까지 걸리는 시간을 모델링
 - 포아송 과정과 밀접한 관계가 있어, 시간 간격이나 대기 시간과 관련된 현상에서 널리 활용
 - PDF
 - $f(x;\lambda) = \lambda e^{-\lambda x}, \quad x \ge 0$
 - $\lambda > 0$, rate parameter이며 단위시간당 사건이 발생하는 평균 횟수
 - $E(X) = \frac{1}{\lambda}$ $V(X) = \frac{1}{\lambda^2}$
 - memoryless
 - $P(X > s+t \mid X > s) = P(X > t)$
 - 활용
 - 다음 버스 올 때까지의 시간, 기계가 고장 나기까지의 시간, 패킷이 수신될 때까지의 시간, 사건 간의 시간 간격

- 포아송, 감마, 지수 분포
 - 포아송 분포: 일정한 시간 내 발생한 사건의 횟수, 사건의 개수
 - 지수 분포: 다음 사건이 발생할 때까지 걸리는 시간, 사건 간의 시간 간격
 - 감마분포: n번째 사건이 발생할 때까지 걸리는 총 시간, 누적 대기시간(지수분포의 합)

- 예: 버스가 평균적으로 10분에 1대씩 오는 경우, $\lambda = \frac{1}{10}$
 - 다음 버스를 기다리는 시간: 지수 분포
 - 3번째 버스가 오기까지 걸리는 시간: 감마 분포
 - 30분동안 버스가 몇 대 왔는지: 포아송 분포

- t 분포(서로 다른 두 집단의 평균의 통계 검정)
 - 정규분포로부터 확률표본이 크지 않고 표준편차(σ)를 모를 때 $t = \overline{X} \mu$ 는 자유도 n-1인 t-분포를 따름. S/ \sqrt{n}

- T-분포의 특징
 - t분포는 정규분포보다 퍼져 있으며 자유도(♠)가 커질수록 정규 분포에 근접
 - 표본의 크기가 작아 표본의 표준편차(s)가 모집단의 표준편차(σ) 보다 불확실성이 크기 때문
 - 표본의 크기 n이 커질수록 표본의 표준편차가 모집단의 표준편 차에 접근하기 때문
 - t분포는 자유도에 따라 달라지며 자유도는 표본의 크기에서 1을 뺀 것으로 n-1로 표시

- χ^2 분포(서로 다른 2개 이상 집단의 비율의 통계 검정)
 - 단일 모집단의 분산의 표본분포는 χ^2 분포를 이용하여 나타낼 수 있음
 - 두 모집단의 분산의 표본분포는 F분포를 이용하여 나타낼 수 있음
 - 정규모집단 $N(\mu, \sigma^2)$ 으로부터의 확률표본 X1, X2,....Xn에 대해
 - $\chi^2 = \frac{\sum (X_i X)^2}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2}$ 의 분포를 자유도 n-1인 χ^2 분포라 한다.

- F 분포(서로 다른 2개 이상 집단의 분산의 균질성 검증)
 - 모집단이 정규분포를 이루며 각각 σ_1^2 , σ_2^2 라는 분산을 갖는 두 개의 모집단에서 각각 크기가 n_1 , n_2 인 두 표본을 추출하여 표본분산을 계산
 - 두 표본분산이 S_1^2 , S_2^2 이라고 할 때, 표본분산과 모분산의 비율로 이루어진 두 개의 χ^2 의 비율은 F분 포를 이루며, F분포는 두 개의 자유도를 갖음

$$\chi_{1}^{2} = \frac{(n_{1}-1)S_{1}^{2}}{\sigma_{1}^{2}} \sim \chi_{1}^{2} (n_{1}-1)$$

$$\chi_{2}^{2} = \frac{(n_{2}-1)S_{2}^{2}}{\sigma_{2}^{2}} \sim \chi_{2}^{2} (n_{2}-1)$$

$$\frac{\chi_{1}^{2} / (n_{1}-1)}{\chi_{2}^{2} / (n_{2}-1)} = \frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}} \sim F(n_{1}-1, n_{2}-1)$$

• 위의 식에서 F분포는 두 모집단의 분산을 비교하는 것임을 알 수 있음

6. 통계 검정

- 통계적 가설 검정(Hypothesis Testing)
 - 가설 검정 = 가설(Hypothesis) + 검정(Testing)
 - 가설검정이란?
 - 표본(Sample)으로부터 주어지는 정보를 이용하여, 모수에 대한 예상 혹은, 주장 또는 단순한 추측 등의 옳고 그름을 확률적인 개념을 이용하여 판정하는 과정
 - 가설(Hypothesis)
 - 귀무가설(Null Hypothesis ; H₀)
 - "Equal(=); 같다"
 - 과거부터 알려져 왔던 모수에 대한 일반적인 내용
 - 대립가설(Alternative Hypothesis ; H₁)
 - "Not Equal(≠); 다르다"
 - 자료로부터 강력한 증거에 의하여 입증하고자 하는 내용

• 가설 검정 절차

•Step #1 가설 설정

귀무가설(H₀)과 대립가설(H₁)을 세운다.

•Step #2 검정 통계량(Test Statistics) 산출 or 유의 수준(α) 결정

•Step #3 기각치(Critical Value) 산출 or P-Value 산출

If P-Value < 유의수준(α)이면, 귀무가설 (H₀) 기각

•Step #5 기술적 용어로 해석

Significance level, 귀무가설을 기각하게 되는 확률의 크기, 귀무가설이 옮음에도 이를 기각하는 확률의 크기

- 통계적 가설 검정
 - 오류가 발생할 수 있음
 - 오류는 다음과 같이 제1종 오류와 제2종 오류로 나누어 고려
 - 제1종 오류: Type I error
 - 귀무가설(H0)이 참이지만, 기각된 경우 발생
 - False positive로 이해할 수 있음
 - 제 1종 오류의 수준은 α (alpha)로 표시하며, alpha level 또는 유의수준(significance level)으로도 사용
 - 유의수준은 일반적으로 0.05 (5%)로 사용하며, (True임에도) 귀무가설을 잘못 기각하는 확률을 5%까지는 용인 한다는 의미
 - 제2종 오류: Type II error
 - 귀무가설이 거짓임에도, 기각을 못한 경우 발생
 - False negative로 이해
 - 제2종 오류의 수준은 β (beta)로 표시하며, 검정력($1-\beta$)과 관련있는 것으로 고려

- 정규성 검정 Normality Test
 - 목적
 - 대부분의 통계 분석에 있어, 데이터의 정규성을 가정한다.
 - 주어진 데이터의 정규성을 통계적인 방법으로 검정
 - 가설

 - 대립가설 (H_1) : 정규분포를 따르지 않는다.

- ・ t-검정 (t-Test)
 - t-검정: 표본 데이터가 정규 분포를 따른다는 가정 하에 수행
 - 단일 표본 t-검정 (One-Sample t-Test): 한 집단의 평균이 특정 값과 차이가 있는지를 검정
 - 독립 표본 t-검정 (Independent Two-Sample t-Test): 두 독립적인 집단의 평균이 서로 차이가 있는지를 비교.
 - 쌍체 비교 (Paired Sample t-Test): 동일한 집단에 대해 두 번의 측정을 했을 때, 측정 전후 결과의 평균이 서로 다른지를 검정.

- 쌍체 비교(Paired t-Test)
 - 목적
 - 동일한 모집단을 대상으로 처리 전,후에 차이가 있는지 여부를 통계적인 방법을 이용해서 검정
 - 가설
 - 1 귀무가설(H_0) : $\delta = 0$ (두 모집단의 평균은 같다.)
 - 대립가설 (H_1) : $\delta \neq 0$ (두 모집단의 평균은 다르다.)

Χ	Υ	d(=X-Y)
X ₁	Y ₁	d_1
X_2	Y_2	d_2
:	:	:
X_k	Y_k	d_k

- · 쌍체 비교(Paired t-Test)
 - 쌍체 비교의 예
 - 환자들에 대해 새로운 치료법을 적용한 실험 결과
 - 각 환자별로 기록된 수치는 환자들로부터 측정한 약의 효과(높을수록 좋은 수치)를 처치 전/후로 나누어 정리
 - "약의 효과가 있을까?"
 - 새로운 치료법 적용 전후의 효과 차이를 검정하기 위해 Paired T-test를 이용할 수 있음.
 - 귀무가설은 치료법 적용 전후에 효과의 평균 차이가 없는 것을 가정
 - 유의수준이 5%, P-value가 5% 유의수준보다 크면, 새로운 치료법으로 인한 개선 효과는 없다고 볼 수 있음

	환자1	환자2	환자3	환자4	환자5	환자6	환자7	환자8	환자9	환자10
처치 전	51.4	52	45.5	54.5	52.3	50.9	52.7	50.3	53.8	53.1
처치 후	50.1	51.5	45.9	53.1	51.8	50.3	52	49.9	52.5	53

- 범주형 데이터 분석에 활용
 - 표준 정규 분포를 따르는 독립적인 여러 확률 변수의 제곱합으로 정의
 - 비대칭적이며, 오른쪽으로 긴 꼬리
 - 자유도가 증가함에 따라 분포의 형태는 점점 더 정규 분포와 유사
 - _ 활용
 - 적합도 검정 (Goodness-of-Fit Test):
 - 관찰된 빈도가 예상 빈도와 얼마나 잘 일치하는지를 평가, 실제 데이터 분포가
 기대하는 이론적 분포를 따르는지 검정
 - 독립성 검정(Test of Independence):
 - 두 변수가 서로 독립적인지를 평가
 - 두 범주형 변수 간에 관련이 있는지를 확인 (예: 카이제곱 독립성 검정)
 - 분산 분석:
 - 두 집단의 분산이 동일한지 비교

F-Test

- 두 모집단 간에 산포 차이가 있는지 여부를 통계적인 방법을 이용해서 검정 $\sigma_1^2 = \sigma_2^2$

- 귀무가설(H₀) : $\sigma^2 \neq \sigma^2$ (두 모집단의 산포는 같음)

- 대립가설 (H_1) : (두 모집단의 산포는 다름)

산포 차이가 있나?

- 등분산 검정(Test of Equal Variances)
 - 등분산 검정: 두 모집단 간 혹은 세 집단 이상 간에 산포 차이가 있는지 여부를 통계적인 방법을 이용해서 검정
 - _ F-검정
 - 가장 기본적인 등분산 검정 방법
 - 두 집단의 분산 비율이 F-분포를 따르는지 검정하여, 두 집단 간 분산을 비교
 - 정규분포를 따라야 함
 - 그 외 Levene's Test, Bartlett's Test 등이 있음.
 - _ 가설
 - 귀무가설 $\sigma_1^2 = \sigma_2^2 = ... = \sigma_k^2$
 - 대립가설 $\sigma_i^2 \neq \sigma_i^2$

- 분산분석(ANOVA : Analysis Of Variance)
 - 여러 집단의 평균을 비교
 - 2개의 집단에 대한 평균을 비교하는 통계적 기법: t-Test
 - 3개 이상 집단의 평균 비교: 분산분석 (ANOVA: Analysis Of Variance)
 - 분산의 개념 기반하여 분석: 분산 계산 방식처럼 편차들의 제곱합을 해당 자유도로 나누어서 얻게 되는 값을 이용, 범주 각 수준의 평균들간의 차이 존재 여부 판단
 - 영국의 통계학자 피셔(R.A. Fisher)가 고안한 분석 기법, 농업 연구에서 사용이 시작되었으며, 사회과학, 공학, 의학 등 다양한 분야에 폭넓게 적용
 - 모형 구성: 설명변수는 범주형 자료(categorical data), 종속변수는 연속형 자료 (continuous data)

- 일원분산분석 (One-way ANOVA)
 - 독립변수에 하나의 요인(범주형 변수)만 고려하는 경우 사용
 - 아래와 같은 자료에 대해 적용 (전체 Y 평균: Ī)

요인(Factor)	Observation	Mean
Factor의 Level 1	Y_{11}, Y_{12},Y_{1n}	Level 1 관측치의 평균, $\overline{Y_1}$
Factor의 Level r	Y_{r1}, Y_{r2}, Y_{rn}	Level 1 관측치의 평균, $\overline{Y_r}$

- 이때, 측정된 각 값인 $Y_{ij} = \mu_i + \varepsilon_{ij}$ 로 나타나는데
 - i=1,2,...,r 로 Factor의 여러 level 의미
 - j=1,2,...,n으로 각 level에 해당하는 관측치의 개수(level별로 동일하게 설정)
 - μ_i : i번째 수준에서의 평균
 - Y_{ij}, ε_{ij} : i번째 수준에서 측정된 j번째 값이며, 이때의 오차. 특히, ε_{ij} 는 서로 독립이며, 정규분포 $N(\mu_i, \sigma^2)$ 을 따른다고 가정

- 일원분산분석 (One-way ANOVA)
 - 분산분석은 관측치의 전체 변동(Sum of Squares)을, 비교하려는 요인 수준(Factor Level) 간 차이에 의해서 발생하는 변동(SSTR)과, 그 외 요인에 의한 변동(SSE)으로 나누어 분석
 - 즉, 측정값과 전체 측정값 평균의 차이는 다음과 같이 나눌 수 있음 $Y_{ii} \bar{Y} = (\bar{Y}_i \bar{Y}) + (Y_{ii} \bar{Y}_i)$
 - $Y_{ij} \bar{Y}$: 관측치의 전체 변동
 - $\bar{Y}_i \bar{Y}$: 수준 i에서 관측치와 전체 평균의 차이, 요인(범주형 변수)에 의한 변동
 - $Y_{ij} \overline{Y}_i$: 관측치와 각 수준 평균 간 차이, 요인 수준i에 의해 설명될 수 없는 변동
 - 위의 식을 양변을 제곱하여 더하면(Sum of Squares), 아래와 같이 SST = SSTR+SSE로 표현할 수 있음

$$\sum_{i=1}^{r} \sum_{j=1}^{n} (Y_{ij} - \bar{Y})^{2} = \sum_{i=1}^{r} n(\bar{Y}_{i} - \bar{Y})^{2} + \sum_{i=1}^{r} \sum_{j=1}^{n} (Y_{ij} - \bar{Y}_{i})^{2}$$

$$SST = SSTR + SSE$$

- SST: 총제곱합(Total Sum of Squares)
- SSTR: 처리제곱합(Treatment Sum of Squares)
- SSE : 오차제곱합(Error Sum of Squares)

• 일원분산분석표 (One-way ANOVA Table)

	Sum of Squares	degrees of freedom	Mean Square Error	F statistics
처리	SSTR	r-1	MSTR	MSTR/MSE
오차	SSE	nT - r	MSE	
전체	SST	nT - 1		

F-통계량: 그룹간 변동성이 그룹내 변동 성보다 커야하는 것을 의미!

- F 통계량으로 요인들의 수준 간 평균의 차이여부를 검정
- F 통계량: 처리평균제곱 (MSTR)이 커지면 오차평균제곱(MSE)은 작아지며, F 통계량 값이 커지게 됨. 즉, 수준 평균들간에 차이가 큼
- 가설 검정
 - 귀무가설 H0 : μ1 = μ2 = ... = μr
 - 대립가설 H1 : 모든 μi 는 같지 않다. i = 1, 2, ..., r
 - P-value < α 이면, H0 기각 (H0 reject)

다중비교 (Multiple Comparison)

- 분산분석에서 한 요인(Factor) 내 세 개 이상의 수준(Levels)의 집단 간에 평균의 차이를 검정
- 그 결과 귀무가설 H0 기각하는 경우, 각 인자 수준들의 평균이 같지 않다는 결론을 내리게 됨
- 이 때, 수준(Levels)에 따른 평균의 차이가 어떤 수준에서 발생했는지를 알고 싶을 때 사용

- Pairwise T-test, Tukey's HSD test를 사용할 수 있으나, Pairwise T-test는 1종오류(True->False로의 오류)의 가능성이 커져서 Tukey's HSD test 사용 권장
- Tukey's HSD(honestly significant difference) test: Studentized range distribution 바탕으로 모든 가능한 두 수준들의 평균 차이 검정(pairwise post-hoc testing using Tukey HSD test)

- 다중비교 (Multiple Comparison)
 - HSD 통계량

$$HSD_{ij} = q_{\alpha}(\gamma, -\gamma) \sqrt{\frac{MSE}{n}}$$

- α : 유의 수준, γ : 수준의 수, n_T : 관측치의 수
- *MSE*: error mean square
- $|\bar{Y}_i \bar{Y}_j|$ 와 HSD 통계량 비교해서, $|\bar{Y}_i \bar{Y}_j|$ 이 값이 더 크면 귀무가설(i와 j의 수준의 평균이 같음) 기각

	group 1	group 2	group 3
group 1	-	12 ***	-5 ***
group 2		-	-0.59
group 3			-

- 이원분산분석(two-way ANOVA): 관측값 1개
 - 2개의 요인(2 factors) 내의 요인 수준(factor levels) 간의 조합(combination)을 각각 개별 개별 집단으로(groups, treatments)로 고려하여, 요인수준 간 조합의 평균 차이 비교
 - 예를 들어, 요인(factor) A '크기'가 3개의 요인 수준(factor levels, 대,중,소)이 있고, 요인(factor) B ' 맛'이 2개의 요인 수준(factor levels, 맛있음, 맛없음)이 있으면, 총 그룹의 수는 3 x 2 = 6 개
 - (1) 관측값이 하나일 경우와 (2) 관측값이 2개 이상일 경우 (반복 실험을 할 경우)로 구분

	수준1	•••	수준 b	평균
수준 1	Y ₁₁		Y_{1b}	<u> </u>
	•••			
수준 a	Y _{a1}		Y _{ab}	$\overline{Y_{a}}$.
평균	<u>Y.</u> 1		$\overline{Y_{\cdot b}}$	<u>Y</u>

- 이원분산분석(two-way ANOVA): 관측값 1개, Interaction 고려 안 하는 경우
 - 이원분산분석모형의 편차 $(Y_{ij}-\overline{Y}_{..})$ 는 다음과 같이 구분할 수 있음

•
$$Y_{ij} - \overline{Y}_{..} = (\overline{Y}_{i.} - \overline{Y}_{..}) + (\overline{Y}_{.j} - \overline{Y}_{..}) + (Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} - \overline{Y}_{..})$$

- $Y_{ij} \overline{Y_{i.}} \overline{Y_{.j}} \overline{Y_{..}} : \mathcal{Q} \nearrow \!\!\!\!/$
- 위의 식의 값을 제곱합한 후 아래식과 표처럼 나타낼 수 있음
 - SST: 총제곱합 (자유도 ab-1)
 - SSA: 요인A 수준 평균 간 제곱합 (자유도 a-1)
 - SSB: 요인B 수준 평균 간 제곱합 (자유도 b-1)
 - SSE: 오차 제곱합 (자유도 (a-1)(b-1))

• 이원분산분석표(two-way ANOVA Table)

요인	squared sum	degrees of freedom	mean squared	F statistics
요인 A	SSA	a-1	MSA	MSA/MSE
요인 B	SSB	b-1	MSB	MSB/MSE
오차	SSE	(a-1)(b-1)	MSE	
계	SST	ab-1		

• F 통계량 검정

• 요인A 효과 검정 = MSA/MSE (F통계량)

• H0 : A의 수준에 따라 평균 차이가 없다

• H1 : A의 수준에 따라 평균 차이가 있다

• 요인B 효과 검정 = MSB/MSE (F통계량)

• H0 : B의 수준에 따라 평균 차이가 없다

• H1 : B의 수준에 따라 평균 차이가 있다

F-통계량: |그룹간 변동성이 그룹내 변동 |성보다 커야하는 것을 의미!

• 이원분산분석표(two-way ANOVA Table): Interaction 고려 하는 경우

요인	squared sum	degrees of freedom	mean squared	F statistics
요인 A	SSA	a-1	MSA	MSA/MSE
요인 B	SSB	b-1	MSB	MSB/MSE
A*B	SSAB	(a-1)*(b-1)	MSAB	MSAB/MSE
오차	SSE	(a-1)(b-1)	MSE	
계	SST	ab-1		

- 수식: SST=SSA+SSB+SSAB+SSE
- F 통계량 검정
 - 요인A 효과 검정 = MSA/MSE (F통계량)
 - H0: A의 수준에 따라 평균 차이가 없다
 - H1: A의 수준에 따라 평균 차이가 있다
 - 요인B 효과 검정 = MSB/MSE (F통계량)
 - H0: B의 수준에 따라 평균 차이가 없다
 - H1: B의 수준에 따라 평균 차이가 있다
 - 요인A와 B의 조합에 의한 Interaction 효과 검정 = MSAB/MSE (F통계량)
 - H0: AB의 수준에 따라 평균 차이가 없다
 - H1 : AB의 수준에 따라 평균 차이가 있다

Interaction Effect?

Level 2

B의 Level 1

- A의 Effect (Main Effect)
- B의 Effect (Main Effect)
- AB의 Interaction Effect는 없음

- Two way Anova의 Interaction effect: A, B 두 변수 간의 조합이 만들어내는 결과
 - A, B 모두 Numeric 값에 영향을 주고 있음

Level 3 ...

• 변수 간 조합에 의한 패턴으로 해석할 부분이 없고 그래서 평행이동하는 패턴

Interaction Effect?

- ➤ A의 Effect (Main Effect)
- ➤ B의 Effect (Main Effect)는 없음
- ➤ AB의 Interaction Effect

- Two way Anova의 Interaction effect: A, B 두 변수 간의 조합이 만들어내는 결과
 - B가 단일 변수로는 효과가 없어 보이지만, A 변수와 함께 고려 시, 다른 패턴을 보여줌

Dr. Genichi Taguchi

- Born in Japan in 1924.
- Japan's Telephone Communications System
- Industrial Quality Movement in US
- Father of the "Taguchi Method", "Robust Engineering".
- Cost Driven Quality Engineering
- Applications of Engineering Strategies VS Advanced Statistical Techniques

Source: Sung Hyun Park, Robust Design and Analysis for Quality Engineering, Chapman Hall

Factor Characteristics Relation Diagram

Taguchi Design의 특징

- 직교배열표(orthogonal arrays)를 이용한 부분요인 실시법(Fractional Factorial Design)
- 실험 시 잡음요인(noise factor)의 인식: Control 인자와 함께 Control 안되는 인자를 고려
- 분산분석과 함께 손실개념을 도입한 성능통계량으로서 신호 대 잡음비(signal-to-noise ratio)의 사용

Orthogonal?

- 직교, 독립
- Control 인자들의 독립

• 직교배열표

- 제품 품질/생산성을 향상시키거나 불량률 감소하려는 실험에서 일반적으로 고려해
 야할 인자의 수는 많은 경우 사용
- ① 인자의 수가 많은 경우(보통 4개 이상)에 큰 "그물"을 쳐서 주효과(main effect)와
- ② 기술적으로 보아서 있을 것 같은 2인자 교호작용(interaction)을 검출하고,
- ③ 기술적으로 없으리라고 생각되는 2인자 교호작용 및 고차의 교호작용을 희생시켜서,
- ④ 실험회수를 적게 할 수 있는 실험계획을 짤 수 있도록 만들어 놓은 표

Loss Function

Nominal is best

$$L(Y) = k (y - m)^2$$

$$L(Y) = k (y - m)^{2}$$
 $SN_{i} = 10 \log \left[\frac{(\overline{y}_{i})^{2}}{V_{i}} \right]$

Smaller is better

$$\hat{E}(y^2) = \frac{\sum y_i^2}{n}$$

$$L(Y) = k y^{2} \qquad \hat{E}(y^{2}) = \frac{\sum y_{i}^{2}}{n} \qquad SN_{i} = -10\log(\frac{1}{n}\sum_{j=1}^{n}y_{ij}^{2})$$

Response 증가->SN 증가

Larger is better

Response 증가->SN 감소

$$L(Y) = k \frac{1}{y^2}$$

$$\hat{E}(\frac{1}{y^2}) = \frac{\sum \frac{1}{y_i^2}}{n}$$

$$L(Y) = k \frac{1}{v^2} \qquad \hat{E}(\frac{1}{v^2}) = \frac{\sum \frac{1}{v_i^2}}{n} \qquad SN_i = -10\log(\frac{1}{n}\sum_{j=1}^n \frac{1}{y_{ij}^2})$$

예

자동차의 점화 케이블의 코어 인장력을 규격 40에 맞도록 하는 다구치 디자인

- 인장강도?
 - 재료의 세기를 나타내는 힘으로, 재료가 절단되도록 끌어당겼을 때 견뎌내는 최대 하중을 재료의 단면적으로 나눈 값

예

- 주요 실험인자와 잡음인자를 다음과 같이 정의

인자구분	인자명	수준1	수준2	수준3
	A: 압출장치	A1 형	A2 형	
	B: 생산라인 속도	저속	중속	고속
	C: 가열온도	저온	보통	고온
제어인자	D: 절연재료	D1	D2	D3
제어단자	F: CV 압력	저압	중압	고압
	G: CV 속도	저속	중속	고속
	H: 편조기 장력	낮다	보통	높다
	l: 릴리스 도포	11	12	13
잡음인자	S: 작업 샘플	S1	S2	
	P: 샘플내의 위치	P1	P2	

- <u>예</u>
 - 직교 배열
 - A 의 수준 : 1, 2
 - B~I 의 수준: 1, 2, 3
 - $L_{18}(2^1 \times 3^7) \Rightarrow L_{18}(2^1 \times 3^2)$
 - nominal is best

$$SN_i = 10log\left[\frac{\frac{1}{n}*(S_{m(i)})}{V_i}\right] = 10log\left[\frac{(\bar{y}_i)^2}{V_i}\right]$$

Where

$$V_i = \sum_{j=1}^n \frac{(y_{ij} - \overline{y_i})^2}{n-1} =$$
sample variance for the ith row

$$\overline{y_i} = \sum_j \frac{y_{ij}}{n}$$
 = sample mean for the ith row

$$S_{m(i)} = \frac{1}{n} (\sum_{i=1}^{n} y_{ij})^2 = n(\overline{y_i})^2 =$$
correction term for the ith row

- SN ratio는 변동의 크기에 영향을 받음(y의 평균이 아닌) / 영향을 주는 인자를 찾기 위해서 sensitivity 계산: 민감도? I번째 행의 n개의 값에 대해 다음과 같이 정의

$$S_{n(i)} = 10 \log[S_{m(i)}] = 10 \log[n(\bar{y}_i)^2] = 20 \log[\sqrt{n}\bar{y}_i]$$

• 직교배열표

관측치 관측치	Α	В	С	D	F	G	н		S(=0)		S(=1)	
근국시	_ A	Ь				G			P(=0)	P(=1)	P(=0))P(=1)
1	0	0	0	0	0	0	0	0	30	40	38	49
2	0	0	1	1	1	1	1	1	10	15	25	25
3	0	0	2	2	2	2	2	2	49	53	53	55
4	0	1	0	0	1	1	2	2	62	58	52	68
5	0	1	1	1	2	2	0	0	30	50	49	62
6	0	1	2	2	0	0	1	1	10	25	29	36
7	0	2	0	1	0	2	1	2	58	42	41	50
8	0	2	1	2	1	0	2	0	28	29	32	31
9	0	2	2	0	2	1	0	1	110	74	94	115
10	1	0	0	2	2	1	1	0	76	86	66	103
11	1	0	1	0	0	2	2	1	52	37	54	59
12	1	0	2	1	1	0	0	2	55	79	62	98
13	1	1	0	1	2	0	2	1	5	35	16	42
14	1	1	1	2	0	1	0	2	52	96	79	91
15	1	1	2	0	1	2	1	0	50	70	56	65
16	1	2	0	2	1	2	0	1	15	20	18	21
17	1	2	1	0	2	0	1	2	51	62	59	70
18	1	2	2	1	0	1	2	0	77	83	66	74

cience Lab & Unique AI

• 실습

40을 목표로하는 망목 특성 /각각의 SN비와민감도를 구하기

Experiment number	Total(T;)	$Mean(\overline{y_i})$	Variance(Vi)	$\frac{SN}{10\log\left[\frac{(y)^2}{V_i}\right]}$	Sensitivity $Sn = 10 \log \left[\frac{T_i^2}{4} \right]$
1	157	39.25	60.92	П	14.0	37.90
2	75	18.75	56.25	П	7.8	31.49
3	210	52.50	6.33	П	26.4	40.41
4	240	60.00	45.33	П	19.0	41.58
5	191	47.75	174.92	П	11.0	39.60
6	100	25.00	120.67	П	6.9	33.98
7	191	47.75	62.92	П	15.6	39.60
8	120	30.00	3.33	П	24.3	35.56
9	393	98.25	341.58		14.5	45.87
10	333	83.25	254.25	П	14.3	44.42
11	202	50.50	89.67	П	14.5	40.09
12	294	73.50	368.33		11.6	43.34
13	98	24.50	289.67		2.6	33.80
14	318	79.50	387.0	П	12.1	44.03
15	241	60.25	80.25	П	16.5	41.61
16	74	18.50	7.00	П	16.9	31.37
17	242	60.50	61.67	П	17.7	41.64
18	300	75.00	50.00	П	20.5	43.52
Total	3779	944.75			266.2	709.81

ience Lab & Unique AI

해석

- Inner array의 각 행에 대한 SN비와 민감도 계산
- 분산분석으로 SN에 유의한 Control 인자 / 민감도에 유의한 영향 주는 Control 인자 발견
- Control인자를 다음 3가지 카테고리로 분류
 - 1) Dispersion control factor: significant factors for SN ratios
 - 2) Mean adjustment factor: significant factors for sensitivities
 - 3) Insignificant factor: other control factors
 - *인자가 1)이면서 2)인 경우, dispersion control factor.
- Optimum condition 발견
 - (1) dispersion control factor: SN 비 크게 해주는 수준
 - (2) mean adjustment factor: 추정된 응답이 목표 응답과 가장 가까운 수준
 - (3) insignificant factor : 경제성이나 간결함, 운용가능성 등으로 고려한 인자

Experiment number	Total(T₃)	$\mathrm{Mean}(\overline{y_i})$	Variance(V;)	$\frac{SN}{10\log\left[\frac{(\sqrt{y})^2}{V_i}\right]}$	Sensitivity $Sn = 10 \log \left[\frac{T_{i}^{2}}{4} \right]$
1	157	39.25	60.92	14.0	37.90
2	75	18.75	56.25	7.8	31.49
3	210	52.50	6.33	26.4	40.41
4	240	60.00	45.33	19.0	41.58
5	191	47.75	174.92	11.0	39.60
6	100	25.00	120.67	6.9	33.98
7	191	47.75	62.92	15.6	39.60
8	120	30.00	3.33	24.3	35.56
9	393	98.25	341.58	14.5	45.87
10	333	83.25	254.25	14.3	44.42
11	202	50.50	89.67	14.5	40.09
12	294	73.50	368.33	11.6	43.34
13	98	24.50	289.67	2.6	33.80
14	318	79.50	387.0	12.1	44.03
15	241	60.25	80.25	16.5	41.61
16	74	18.50	7.00	16.9	31.37
17	242	60.50	61.67	17.7	41.64
18	300	75.00	50.00	20.5	43.52
Total	3779	944.75		266.2	709.81

- 각 요인의 수준별 합계간 차이 제곱 평균
- S_A : (A 수준0의 합-수준1의 합) 제곱 평균
- *S_R: B* 각 수준 제곱 합 평균-전체 제곱합
- ...

$$S_{T} = \frac{266.2^{2}}{18} = 3,936.8$$

$$S_{T} = 14.0^{2} + 7.8^{2} + \dots + 20.5^{2} - 3,936.8 = 582.6$$

$$S_{A} = \frac{1}{18}(126.7 - 139.5)^{2} = 9.1$$

$$S_{B} = \frac{1}{6}(88.6^{2} + 68.1^{2} + 109.5^{2}) - 3,936.8 = 142.8$$

$$S_{C} = \frac{1}{6}(82.4^{2} + 87.4^{2} + 96.4^{2}) - 3,936.8 = 16.8$$

$$S_{B} = \frac{1}{6}(96.2^{2} + 69.1^{2} + 100.9^{2}) - 3,936.8 = 98.2$$

$$S_{F} = \frac{1}{6}(83.6^{2} + 96.1^{2} + 86.5^{2}) - 3,936.8 = 14.3$$

$$S_{G} = \frac{1}{6}(77.1^{2} + 88.2^{2} + 100.9^{2}) - 3,936.8 = 47.3$$

$$S_{H} = \frac{1}{6}(80.1^{2} + 78.8^{2} + 107.3^{2}) - 3,936.8 = 86.3$$

$$S_{I} = \frac{1}{6}(100.6^{2} + 63.2^{2} + 102.4^{2}) - 3,936.8 = 163.3$$

$$S_{S} = S_{T} - (S_{A} + S_{B} + S_{C} + S_{B} + S_{F} + S_{G} + S_{H} + S_{I}) = 4.5$$

- SN 비에 대한 ANOVA
 - Dispersion Control Factor(산포 제어 인자) 선택
 - SN비를 크게 해주는 Level을 선택

- 민감도에 대한 ANOVA
 - Mean Control Factor(평균조정인자) 선택
 - 산포 제어 인자로 이미 선택된 인자를 제외한 나머지가 평균조정인자
 - 목표 수치와 가까운 값이 되는 Level을 선택
- Other Control Factor(기타제어인자)
 - 경제적 요인 등을 고려한 Level 선택

Analysis of SN ratios

factor		A	В	С	D	F	G	Н	I	
level	0	139.5	88.6	82.4	96.2	83.6	77.1	80.1	100.6	SUM=
(sum)	1	126.7	68.1	87.4	69.1	96.1	88.2	78.8	63.2	
	2		109.5	96.4	100.9	86.5	100.9	107.3	102.4	266.2
level (avg.)	0	15.5	14.77	13.73	16.03	13.93	12.85	13.35	16.77	AV.G=
	1	14.08	11.35	14.57	11.52	16.02	14.70	13.13	10.53	1
	2		18.25	16.07	16.82	14.42	16.82	17.88	17.07	14.79
<u> </u>				_		7.7				

Factor	S	Φ	V	F ₀	
A	9.1	1	_		
В	142.8	2	71.4	11.2**	
С	16.8	2	_		
D	98.2	2	49.1	7.7*	
F	14.3	2	_		
G	47.3	2	23.7	3.7⁴	이지트이 치저 스즈 ㅈ하ㅇ
Н	86.3	2	43.2	6.8*	인자들의 최적 수준 조합은 각 인자에 대해 SN비를 크
I	163.3	2	81.7	12.8**	게 해주는 수준들의 조합
е	4.5	2	-		" " " " " " " " " " " " " " " " " " " "
(e)	(44.7)	(7)	(6.4)		
T	582.6	17			

Optimal condition for the dispersion control factors: B₂D₂G₂H₂I₂

Analysis of sensitivity

factor		A	В	С	D	F	G	Н	I	
level	0	345.99	237.65	228.67	248.69	239.12	226.22	242.11	242.61	SUM=
	1	363.82	234.60	23241	231.35	224.95	250.91	232.74	216.60	
(sum)	2		237.56	248.73	229.77	245.74	232.68	234.96	250.60	709.81
level	0	38.44	39.61	38.11	41.45	39.85	37.70	40.35	40.44	AV.G=
, ,	1	40.42	39.10	38.74	38.56	37.49	41.82	38.79	36.10	
(avg)	2		39.59	41.46	38.30	40.96	38.78	39.16	41.77	39.43

Factor	S	Φ	V	F ₀	
A	17.66	1	17.66	2.03	
В	1.00	2	-		
С	37.93	2	18.97	2.19	
D	36.73	2	18.37	2.12	
F	37.60	2	18.80	2.17	
G	54.65	2	27.33	5.15	
Н	7.99	2	-		
I	105.35	2	52.68	6.07	
е	43.08	2	-		
(e)	(52.07)	(6)	8.68		
T	341.99	17			

Significant factors are A,C,D,F,G and I

• Control 인자 분류:

Dispersion control factors: B,D,G,H,I

Mean adjustment factors : A,C,F

- Other control factors : 없음

Level	А	В	С	D	F	G	Н	I
0	46.58	52.96	45.54	61.64	52.83	42.13	59.46	55.92
1	58.39	49.50	47.83	47.88	43.50	69.13	49.25	39.25
2	55.50	64.08	48.13	61.13	46.21	48.75	62.29	
Average	52.49	52.49	52.49	52.49	52.49	52.49	52.49	52.49

• ACF의 최적 수준으로 추정된 평균이 목표값인 40에 가까운 A_i, C_i, F_k 를 찾기: $A_0 C_0 F_1$

$$\hat{u}(A_0C_0F_1) = \overline{A_0} + \overline{C_0} + \overline{F_1} - \overline{2T}$$

= 46.58+45.54+43.50-2X52.49

Dispersion control과 mean adjustment factors을 고려한 전체 Optimum condition: $A_0B_2C_0D_2F_1G_2H_2I_2$

SNH

$$= \overline{A_0} + \overline{B_2} + \overline{C_0} + \overline{D_2} + \overline{F_1} + \overline{G_2} + \overline{H_2} + \overline{I_2} - \overline{7T}$$

$$= \frac{139.5}{9} + \frac{109.5}{6} + \frac{82.4}{6} + \frac{100.9}{6} + \frac{83.6}{6} + \frac{100.9}{6} + \frac{109.3}{6} + \frac{102.4}{6} - 7* \frac{266.2}{18}$$

$$= 26.97dB$$

• 추정된 core pulling force: 예) A인자 0수준의 측정값 평균

$$\hat{\mathbf{u}} = \overline{A_0} + \overline{B_2} + \overline{C_0} + \overline{D_2} + \overline{F_1} + \overline{G_2} + \overline{H_2} + \overline{I_2} - \overline{7T}$$

$$= 46.58 + 55.50 + 45.54 + 48.13 + 43.5 + 46.21 + 48.75 + 62.29 - 7*52.4$$

$$= 38.40 kg cm^{-2}$$

- ✓ 추정된 core pulling force가 40에 근접
- ✓ 추정된 SN비는 높은 수준으로 Noise 인자에 Robust하며 작은 변동을 갖음

Industrial Data Science Lab

Contact:

won.sang.l@gwnu.ac.kr

https://sites.google.com/view/idslab