

R in Agricultural Research

"Research purposes are the master, whereas statistical methods are the servant"

Christian Tobias Ph.D.

Research Molecular Biologist, Project Leader

USDA-ARS Western Regional Research Center

USDA Organization

- 2,100 scientists
- 1,200 research projects within 21 National Programs
- 6,000 other employees
- 100 research locations including a few in other countries
- \$1.1 billion fiscal year 2009 budget

President

- Secretary of Agriculture
 - Deputy Secretary
 - Undersecretary for Research Education and Economics
 - ARS administrator
 - Deputy Administrator
 - National Program Leaders/Area Director
 - Center Director
 - Research Leader
 - Lead Scientist

Talk outline:

- Introduction (Bioenergy)
- Molecular tools for switchgrass
- Specific examples of R usage in:
 - marker/trait association
 - Graphical display of data
 - Interactive presention tools
 - Marker assisted selection/systems biology

Energy from biomass

Biomass is a Carbon neutral energy resource

Areas of Corn, Switchgrass, and Algal Photobioreactors Required in the US to Displace all

Biomass crops

Switchgrass Harvested annually

Hybrid Poplar Harvested at age 5 to 10

Willow coppice Harvested at age 3 or 4

Geographic distribution of Switchgrass and other Biomass crops

Wright et al DOE-ORNL-EERE

Large increases in biomass species productivity are probably possible through genetic improvement

Source: European Forest Institute (www.efi.fi)

Comparison of a wild and domesticated tomato

Switchgrass as an energy crop

- Compatible with common production systems and farming practices
- Perennial
- C4 metabolism/warm season grass
 Drought Tolerance
- Efficient nitrogen utilization
- Wide adaptation/large geographical range
- High yielding (13.5 Mg/ha)
- Large fibrous root system/increased soil organic matter Sod Forming Prevents soil erosion
- Tolerance to flooding Wetlands Soil Conservation/Buffer Strips
- Native component of N.A. tallgrass prairie
- Utilized as forage grass
- Good burn qualities for a grass Corn 9-13% Ash Switchgrass 3-6% Ash

Selection of the Best Plants Within a Population

Switchgrass breeding

Switchgrass as a system

- Polyploidy 4x, 8x 10x derivatives
- Difficult to phenotype in greenhouse
- Genetically intractable/cross-pollinated
- Upland and lowland cytotypes
- Transformation and regeneration systems aren't optimal

Sterility and somaclonal variation

- Potential weediness/containment
- Targets for breeding and transformation
 Dry matter yield
 Abiotic stress
 Seed dormancy/seed quality/rapid establishment
 Hybrids/semihybrids
 Cell Wall Composition
 Early spring growth

Switchgrass Linkage Map

- pseudo-testbackcross
- Kanlow x Alamo o*
- 238 F1 genotyped
- Combination of EST-SSR, EST-STS, and intergenic-SSR markers to allow sequence based comparison
- Scored by capillary gel-electrophoresis, ABI-3730
- greenhouse; Tifton, GA; Austin, TX

- Linkage Map: Miki Okada
- Raw data available from www.genetics.org
- Cmap data will be included in next version of Gramene (Ken Youens-Clark, personal communication

183.4

-sww2044_214

172.5 — nfsg164_121

sww346_308 sww2091_202 nfsg010_347

Amplification, polymorphism, and segregation ratios of molecular markers in the switchgrass mapping population

				Female parent				Male parent			Both parents	
		total	polymorphic	1:1	1:1	3:1	5:1	1:1	1:1	3:1	5:1	3:1
	probes	amplicons	amplicons		(TRD*)				(TRD))		$(SDxSD^b)$
EST-SSR	420	1364	945	354	13	2	0	342	62	11	0	91
Genomic-SSR	181	620	509	209	6	2	0	191	24	8	3	29
EST-STS	36	109	55	20	0	0	0	22	4	0	0	6
total	637	2093	1509	583	19	4	0	555	90	19	3	126

^{*}TRD, transmission ratio distorted. Markers were considered TRD if segregation ratio was less than 1.73:1 and deviated significantly from 1:1 by the chi-square test ($\alpha = 0.01$)

Markers monomorphic between parents and segregating in 3:1.

Map Statistics

	Framework		with distorted and shared single-dose amplicons included			
	female map	male map	female map	male map		
number of mapped polymorphisms						
total	563	542	616	658		
single dose (accessory)	338(225)	380(162)	339(225)	381(162)		
distorted	n/a	n/a	14	75		
single dose x single dose	n/a	n/a	38	40		
per linkage group, average (range)	19(9-32)	21(5-35)	22(12-35)	28(8-43)		
unmapped single dose	9	4	8	3		
total number of linkage groups	18	18	18	18		
total map length (cM)	1376	1645	1400	1748		
average linkage group length (range) (cM)	76(45-129)	91(27-176)	78(47-129)	97(32-173)		

Subgenome Divergence Greater Than Expected by Chance

http://mkweb.bcgsc.ca/circos/
perl

Switchgrass HGIII Corresponds to Sorghum Chr 8 and 9

Collinearity of Switchgrass and Foxtail Millet Linkage Maps

web based tool that uses perl

QTL analysis

Bill Anderson, Rongling Wu

Figure 3a The profile of the log-likelihood ratios for crown width 7/13/07 across all the 18 linkage groups in the maternal map of tetraploid switchgrass.

The threshold value based on 1000 permutaions for asserting the existence of a QTL at the significant level p=0.05 is given as the horizontal dash lines.

Figure 3b The profile of the log-likelihood ratios for crown width 7/13/07 across all the 18 linkage groups in the paternal map of tetraploid switchgrass.

The threshold value based on 1000 permutaions for asserting the existence of a QTL at the significant level p=0.05 is given as the horizontal dash line.

Most yield traits are controlled by many QTL with small effects

Large effect QTL are infrequent and may have non-additive genetic variance (dominance, epistasis)

Chloroplast Genome Comparison

 Define functional breeding pools Identify cross ploidy relationships.

- Association of cytoplasms with maternal inheritance (dormancy, dispersal, herbicide resistance).
- Determine frequency of pollen transmission.

http://dogma.ccbb.utexas.edu/

SNPs and Indels in Lowland Switchgrass cv. 'Kanlow' Compared to Upland cv. 'Summer'

}	In/Del	Tn	Tv	Nonsyn	Total
Gene					
atpB		2			2
atpF		1			1
ccsA		1			1
matK		1	1	1	2
ndhA			1		1
ndhD			1	1	1
ndhF		2	1		3
ndhH		2			2
ndhK			1		1
rbcL		1	1	2	2
rpl22			1	1	1
rpl36	1				1
rpoB		1			1
rpoC1		1	1		2
rpoC2	1	2	3	4	6
rps3			2		2
Subtotal coding	2	14	11	8	29
Subotal noncoding	49	22	44	na	115
Total	51	36	57	8	144

Insertion	position	length	location	sequence
Lowland	6248-6265	17	rps16-psbK	ACTAATAATACAACAAA
Upland	28227-28246	19	rpoC2	AGTATAGGACTCGAGAGGA
Upland	48626-48672	47	rps4-ndhJ	AATTAGGAATGATTATGAAATATAAAATTCTGAATTTTTTTT
Lowland	49333-49374	42	rps4-ndhJ	TTTTCTTTCTGGTTCTTTTCTTTTCTTTCTGGTTCTTTTCT
Lowland	53233-53264	32	ndhC-atpE	ATAATATAATATAAACATACCAATAAT
Lowland	58304-58325	23	rbcL-psal	AAAAATCCATAAAAAGTATTCTA
Lowland	63685-63709	25	psbE-petL	AATTCCTTTTTTCTCTTCTTTGTTC
Upland	107092-107108	17	ndhF-rpl32	TTAAATTTTTCCTTTTG

GenoPlotR package

```
## PACKAGES TO LOAD library("genoPlotR")
```

Reads genbank and several other formats

Takes comparison files from Mauve and blast -m8

Many display options

```
##
        Load Genbank Annotations and DNA segments or "ad hoc segments"
kanlow<-try(read dna seg from genbank("kanlowcp.gbk"))
mid pos kan <- middle(kanlow)
annot kan <- annotation(x1 = mid pos kan, text = kanlow$name, rot = 90)
names <- c("Kanlow", "Sorghum", "Rice", "Brachypodium", "Sugarcane")
## Load Mauve or Genbank comparisons
bbone file <- "kan.sorg.rice.brach.sacc.Align1.backbone"
bbone <- read mauve backbone(bbone file, ref = 1, filter low = 100)
names(bbone$dna segs) <-names
#Calculating the lengths by adding the length on both sides of the comparisons
for (i in 1:length(bbone$comparisons)) {
     cmp <- bbone$comparisons[[i]]
     bbone$comparisons[[i]]$length <- abs(cmp$end1 - cmp$start1) +
     abs(cmp$end2 - cmp$start2)}
#reads blast sequence comparisons from m9 formatted output
kan.sbi<-try(read comparison from blast("kanlowcp.fasta.6.out"))
#Plot subregions
xlims <- list(c(1, 80000), c(1, 80000), c(1, 80000), c(1, 80000), c(1, 80000))
#Plot features incorporates global color scheme for comparisons and many other
#formatting options
pdf("output.pdf")
plot gene map(dna segs = list(kanlow, sorghum, rice, brady, sugarcane),
     comparisons = bbone$comparisons,
  annotations = list(annot kan, annot sbi, annot osa, annot bdi, annot sof),
     annotation height = 0.8, gene type = "side blocks",
     dna seg scale = TRUE, scale = FALSE,
     global color scheme = c("length", "increasing", "red_blue"),
     override color schemes = TRUE)
pdf()
```

Cytogenetics Hugh Young

Diploid Genetic Stocks ALB280, ALB5B have been deposited at Plant Genetic Resources Conservation Unit (PGRCU) Griffin, GA for propagation and public release We are still working on chromosome doubling, restoring fertility, and FISH

CHIAS III http://www2.kobe-u ac jp/~ohmido/cl/chiasIII (Java)

Package agricolae

Planning of field experiments:

lattice, factorial, RCBD, CRD, Latin Square, Graeco, BIB, Alpha design, Cyclic, augmented block, split and strip plot designs.

Comparison of multi-location trials:

AMMI Stability (biplot and triplot),

Comparison between treatments:

LSD, Bonferroni and other p-adjust, HSD, Waller, Student Newman Keuls SNK, Duncan, Scheffe

Non parametric tests;

Kruskal, Friedman, Durbin, Van Der Waerden

Analysis of genetic experiments:

North Carolina designs, LinexTester, Balanced Incomplete Block, Strip plot, Partially Balanced Incomplete Block, analysis Mother and baby trials

Resampling and simulation:

resampling model, simulation model, montecarlo

Ecology:

Biodiversity Index, Path Analysis

Soil Uniformity:

Smith's Index. Cluster Analysis: Consensus Cluster

HSD test

- > comparison <- HSD.test(Cal,Sample.Name, df,MSerror, group=TRUE,
- + main="CAD silencing: Caloric Data")

Study: CAD silencing: Caloric Data

HSD Test for Cal

• • • • • •

Alpha 0.050000

Error Degrees of Freedom 12.000000 Error Mean Square 170.778744 Critical Value of Studentized Range 4.750231

Treatment Means

Sample.Name Cal std.err replication
1 A22-34 6-1 4460.760 5.101150 3
2 A22-34 6-89 4445.040 3.888907 3
3 A22-91 6-19A 4352.430 6.911920 3
4 A22-91 6-27A 4388.080 12.142019 3
5 A22-91 6-36A 4403.643 5.310823 3
6 A22-91 6-54F 4390.863 8.775195 3

Honestly Significant Difference 35.84025 Means with the same letter are not significantly different.

Used frequently in tables

Groups, Treatments and means						
a	A22-34 6-1	4460.76				
a	A22-34 6-89	4445.04				
b	A22-91 6-36A	4403.643				
b	A22-91 6-54F	4390.863				
bc	A22-91 6-27A	4388.08				
С	A22-91 6-19A	4352.43				

AMMI (Additive Main effects and Multiplicative Interaction (AMMI) model Genotype main effects and Genotype × Environment interaction (GGE) model

Widely used for Multienvironment field trials determine GxE interactions visualizing data and gaining accuracy Combines ANOVA and PCA

$$Y_{ger} - \alpha_g - \beta_e + \mu = \Sigma_n \lambda_n \gamma_{gn} \delta_{en} + \rho_{ge} + \epsilon_{ger}$$

$$\begin{split} Y_{ger} &= \text{ yield for genotype g in environment e for replicate } r, \\ \mu &= \text{ grand mean, summation is done over components } n = 1 \text{ to N} \\ \lambda_n &= \text{ singular value for principal component }, \\ \gamma_{gn} &= \text{ eigenvector score for genotype g and component } n \\ \delta_{en} &= \text{ eigenvector score for environment e and component } n, \\ \rho_{ge} &= \text{ residual for genotype g and environment e, and} \\ \epsilon_{ger} &= \text{ error for genotype g and environment e and replicate r} \end{split}$$

For visualizing data n typically is 1 or 2.

Example Potato Yield

A data frame with 504 observations on the following 6 variables.

```
Genotype
  a factor with levels 102.18 104.22 121.31 141.28 157.26 163.9 221.19
233.11 235.6 241.2 255.7 314.12 317.6 319.20 320.16 342.15 346.2
351.26 364.21 402.7 405.2 406.12 427.7 450.3 506.2 Canchan Desiree
Unica
Locality
  a factor with levels Ayac Hyo-02 LM-02 LM-03 SR-02 SR-03
Rep
  a numeric vector
WeightPlant
  a numeric vector
WeightPlot
  a numeric vector
Yield
  a numeric vector
```

Example continued

```
library(agricolae)
# Example 1
data(plrv)
#startgraph
# biplot
model<- AMMI(Locality, Genotype, Rep,
    Yield,graph="biplot" number="FALSE")</pre>
```

ANOVA Results

```
Response: Y
         Df Sum Sq Mean Sq F value Pr(>F)
ENV 5 9607.4 1921.49 284.6352 4.957e-12 ***
REP(ENV) 12 81.0 6.75 2.7313 0.00154 **
GEN 27 1367.4 50.64 20.4904 < 2.2e-16 ***
ENV:GEN 135 1764.8 13.07 5.2891 < 2.2e-16 ***
Residuals 324 800.8 2.47
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
Coeff var Mean plrv[, 5]
20.07525
           7.831188
Analysis
   percent acum Df Sum.Sq Mean.Sq F.value Pr.F
PC1 56.3 56.3 31 13368.5954 431.24501 11.65 0.0000
PC2 27.1 83.4 29 6427.5799 221.64069 5.99 0.0000
PC3 9.4 92.8 27 2241.9398 83.03481 2.24 0.0005
PC4 4.3 97.1 25 1027.5785 41.10314 1.11 0.3286
PC5 2.9 100.0 23 696.1012 30.26527 0.82 0.7059
PC6
    0.0 \ 100.0 \ 21 0.0000 \ 0.00000 0.00 \ 1.0000
```

Biplot PC1 & PC2

AMMI1 biplot

```
bplot<-model$biplot[,1:4]
attach(bplot)
#startgraph
par(cex=0.8)
plot(Yield, PC1, cex=0.0, text(Yield, PC1, labels=row.names
(bplot),col="blue"),
 main="AMMI BIPLOT",frame=TRUE)
MEANS<-mean(Yield)</pre>
abline(h=0,v= MEANS,lty=2,col="red")
amb<-subset(bplot,type=="ENV")</pre>
detach(bplot)
attach(amb)
s <- seq(length(Yield))</pre>
arrows(MEANS, 0, 0.9*(Yield[s]-MEANS)+MEANS,
0.9*PC1[s], col= "brown",
lwd=1.8, length=0.1)
```


Fig. 6. Additive Main Effects and Multiplicative Interaction (AMMI)-F yield data and AMMI-1 estimates for environment SJ86 of a Louisiana corn trial. Genotype 4673 ranks first in the raw data but ranks fifth in the more predictively accurate AMMI-1 model. AMMI-1 identifies Genotype 8172 as the best genotype in this environment.

Model validation using cross-validation (bootstrapping approach)

Coordinated Agricultural Project

Barley Coordinated
Agricultural Project (CAP)
USDA-NIFA
Incorporating public breeding
programs data to facilitate
marker assisted selection

Objectives:

- High-Throughput Marker Development
- Worldwide Web Access
- Genes and Traits
- Superior Germplasm
- Education and Outreach

The Hordeum Toolbox (THT) http://tht.vrac.iastate.edu/

Gene expression resources for plants and plant pathogens

PlexDB (http://www.plexdb.org/) USDA-NRI project

MIAME/Plant-compliant database which serves as a public repository for raw and normalized expression data. PLEXdb also provides annotation for the Affymetrix plant microarrays and for other important microarrays.

(Schnabel lab lowa state)
Bioconductor: background adjustedment, normalization, and transformation using the robust multiarray average (RMA) approach

Association mapping

Association mapping,

R packages such as gap (genetics analysis package), genetics, GenAbel, mapLD, hwde, SNPmatrix, etc. can perform GWAS

$$D=p_{A1}p_{G1} - (p_{A1})(p_{G1})$$

$$r^2 = D^2/(p_{A1})(p_{G1})$$

$$E[r^2] = 1/1 - 4Nc$$

Also ASREML-R (commercial)
Tassel (ARS) and probably others

LD heat map showing pairwise LD

'Manhattan Plot' Chromosome location vs. significance threshold for trait assn.

Short Read Sequencing

Sequencing: Packages: Short Read

Can be used with multiplexing and reduced representation libraries for highly efficient genotyping.

Map reads to a reference sequence assembly or assemble de novo and call SNPs.

Genotyping can be complicated in plants due to repetitive DNA, large gene families, polyploidy, and nucleotide diversity.

www.maizegenetics.net, gramene, graingenes and others for examples of custom databases, and GWAS

Genome Wide Selection and GEBVs

Extent and nature of LD

- Biparental populations
- Many founders in mutation-drift-recombination equilibrium

Number and Genetic Architecture of quantitative trait loci (QTL)

- Small number that explain most of variance
- Large number with small effects
- GxG and GxE interactions

Availability of a reference genome

- Missing Data Imputation
- Combining results of different SNP panels

Allocation of resources

- Larger population (increase in power)
- Increased accuracy of phenotypic data
- Number of markers required

Prediction

 BLUP, Baysian, ridge regression, kernel regression, support vector machine, random forest

OPPORTUNTIES FOR INTEGRATION OF STATISTICAL MODELING TOOLS IN MICROBIOLOGY, PLANT BIOLOGY AND METAGENOMICS

Acknowledgements

WRRC

- Miki Okada
- Christina Lanzatella-Craig
- Elaine Chow
- Daniel Hayden
- Olin Anderson (RL)
- Hugh Young

Pennsylvania State

Rongling Wu

Other ARS Collaborators

- Gautam Sarath
- Ken Vogel
- Mike Casler
- John Vogel
- Bill Anderson

U. Madison

Juan Zalapa

Noble Foundation

- Malay Saha
- Joe Bouton