CSC165H1, Problem Set 2

Youngsin Ryoo

Question 1

a) This statement is False. The negation of this statement in predicate notation is:

$$\forall x \in \mathbb{Z}, 12 \mid x(x+1)(x+2)(x+3)$$

Proof:

Let $x \in \mathbb{Z}$

Want to show: $\forall x \in \mathbb{Z}, \exists k \in \mathbb{Z}, x(x+1)(x+2)(x+3) = 12k$

Part 1: Show that $\forall x \in \mathbb{Z}, 3 \mid x(x+1)(x+2)(x+3)$, i.e., $\forall x \in \mathbb{Z}, \exists l \in \mathbb{Z}, x(x+1)(x+2)(x+3) = 3l$.

By the Quotient-Remainder Theorem, there are 3 cases.

- Case 1:
$$3 \mid x : \exists m \in \mathbb{Z}, x = 3m$$

Since $x = 3m, x(x+1)(x+2)(x+3) = 3m(3m+1)(3m+2)(3m+3)$
Let $l = m(3m+1)(3m+2)(3m+3) \in \mathbb{Z}$

$$\implies x(x+1)(x+2)(x+3) = 3l$$
$$\implies 3 \mid x(x+1)(x+2)(x+3)$$

- Case 2:
$$3 \nmid x : \exists m \in \mathbb{Z}, x = 3m + 1$$

Since $x = 3m + 1$,

$$x(x+1)(x+2)(x+3) = (3m+1)(3m+2)(3m+3)(3m+4)$$
$$= 3(3m+1)(3m+2)(m+1)(3m+4)$$

Let
$$l = (3m+1)(3m+2)(m+1)(3m+4) \in \mathbb{Z}$$
,

$$\implies x(x+1)(x+2)(x+3) = 3l$$

$$\implies$$
 3 | $x(x+1)(x+2)(x+3)$

- Case 3:
$$3 \nmid x : \exists m \in \mathbb{Z}, x = 3m + 2$$

Since
$$x = 3m + 2$$
,

$$x(x+1)(x+2)(x+3) = (3m+2)(3m+3)(3m+4)(3m+5)$$
$$= 3(3m+2)(m+1)(3m+4)(3m+5)$$

Let
$$l = (3m+2)(m+1)(3m+4)(3m+5) \in \mathbb{Z}$$
,

$$\implies x(x+1)(x+2)(x+3) = 3l$$

$$\implies$$
 3 | $x(x+1)(x+2)(x+3)$

So
$$3 \mid x(x+1)(x+2)(x+3)$$
 in all 3 cases. i.e., $\forall x \in \mathbb{Z}, \exists l \in \mathbb{Z}, x(x+1)(x+2)(x+3) = 3l$

Part 2: Show that $\forall x \in \mathbb{Z}, 4 \mid x(x+1)(x+2)(x+3)$, i.e., $\forall x \in \mathbb{Z}, \exists j \in \mathbb{Z}, x(x+1)(x+2)(x+3) = 4j$.

By the Quotient-Remainder Theorem, there are 4 cases.

- Case 1:
$$4 \mid x : \exists n \in \mathbb{Z}, x = 4n$$

Since $x = 4n, x(x+1)(x+2)(x+3) = 4n(4n+1)(4n+2)(4n+3)$
Let $q = n(4n+1)(4n+2)(4n+3) \in \mathbb{Z}$
 $\implies x(x+1)(x+2)(x+3) = 4q$
 $\implies 4 \mid x(x+1)(x+2)(x+3)$

- Case 2: $4 \nmid x : \exists n \in \mathbb{Z}, x = 4n + 1$ Since x = 4n + 1,

$$x(x+1)(x+2)(x+3) = (4n+1)(4n+2)(4n+3)(4n+4)$$
$$= 4(4n+1)(4n+2)(4n+3)(n+1)$$

Let
$$q = (4n+1)(4n+2)(4n+3)(n+1) \in \mathbb{Z}$$
,
 $\implies x(x+1)(x+2)(x+3) = 4q$
 $\implies 4 \mid x(x+1)(x+2)(x+3)$

- Case 3: $4 \nmid x : \exists n \in \mathbb{Z}, x = 4n + 2$ Since x = 4n + 2,

$$x(x+1)(x+2)(x+3) = (4n+2)(4n+3)(4n+4)(4n+5)$$
$$= 4(4n+2)(4n+3)(n+1)(4n+5)$$

Let
$$q = (4n+2)(4n+3)(n+1)(4n+5) \in \mathbb{Z}$$
,
 $\implies x(x+1)(x+2)(x+3) = 4q$
 $\implies 4 \mid x(x+1)(x+2)(x+3)$

- Case 4: $4 \nmid x : \exists n \in \mathbb{Z}, x = 4n + 3$ Since x = 4n + 3,

$$x(x+1)(x+2)(x+3) = (4n+3)(4n+4)(4n+5)(4n+6)$$
$$= 4(4n+3)(n+1)(4n+5)(4n+6)$$

Let
$$q = (4n+3)(n+1)(4n+5)(4n+6) \in \mathbb{Z}$$
,
 $\implies x(x+1)(x+2)(x+3) = 4q$
 $\implies 4 \mid x(x+1)(x+2)(x+3)$

So $4 \mid x(x+1)(x+2)(x+3)$ in all 4 cases. i.e., $\forall x \in \mathbb{Z}, \exists j \in \mathbb{Z}, x(x+1)(x+2)(x+3) = 4j$. Since we've shown above that $\forall x \in \mathbb{Z}, 3 \mid x(x+1)(x+2)(x+3)$, so $\forall x \in \mathbb{Z}, \exists j \in \mathbb{Z}$:

$$3 \mid x(x+1)(x+2)(x+3)$$

$$\implies 3 \mid 4j \quad \text{(since } \forall x \in \mathbb{Z}, \exists j \in \mathbb{Z}, x(x+1)(x+2)(x+3) = 4j)$$

$$\implies 3 \mid j \quad \text{(since } 3 \nmid 4)$$

$$\implies \exists g \in \mathbb{Z}, j = 3g$$

$$\implies \exists g \in \mathbb{Z}, 3 \mid 4(3g) \quad \text{(since } 3 \mid 4j \text{ and } j = 3g)$$

$$\implies \exists g \in \mathbb{Z}, 3 \mid 12g$$

Therefore,
$$\forall x \in \mathbb{Z}, \exists g \in \mathbb{Z}, x(x+1)(x+2)(x+3) = 12g$$
, i.e., $\forall x \in \mathbb{Z}, 12 \mid x(x+1)(x+2)(x+3)$.

b) This statement is True. This statement in predicate notation is:

$$\forall x \in \mathbb{R}, x \ge 6 \implies 4x^2 - 3|x|^2 \ge 9$$

Proof:

Let $x \in \mathbb{R}$, and assume $x \ge 6$ Want to show: $4x^2 - 3\lfloor x \rfloor^2 \ge 9$ Since $x \in \mathbb{R}$,

$$0 \le x - \lfloor x \rfloor \le 1$$
 (by Fact 1)

$$\implies x - 1 \le \lfloor x \rfloor \le x$$
 (by arithmetic)

$$\implies (x - 1)^2 \le \lfloor x \rfloor^2 \le x^2$$

(since $x \ge 6 > 0$, and $y = x^2$ is a monotonically increasing function when x > 0)

Therefore,

$$4x^{2} - 3\lfloor x \rfloor^{2} \ge 4x^{2} - 3x^{2}$$
 (since $\lfloor x \rfloor^{2} \le x^{2}$)
$$= x^{2}$$
 (by arithmetic)
$$\ge 36$$
 (since $x \ge 6$)
$$\ge 9$$
 (since $36 \ge 9$)

Therefore, $4x^2 - 3\lfloor x \rfloor^2 \ge 9$.

c) This statement is False. The negation of this statement in predicate notation is:

$$\forall g: \mathbb{R} \to \mathbb{R}, \forall h: \mathbb{R} \to \mathbb{R}, (\forall x \in \mathbb{R}, (g(-x) = -g(x)) \land (h(-x) = -h(x)))$$

$$\implies ((\exists x \in \mathbb{R}, (g(x) - h(x)) \neq (g(-x) - h(-x))) \lor (\exists k \in \mathbb{R}, \forall x \in \mathbb{R}, g(x) - h(x) = k))$$

Proof:

Let $g: \mathbb{R} \to \mathbb{R}, h: \mathbb{R} \to \mathbb{R}$

Let $x \in \mathbb{R}$, assume g(-x) = -g(x) and h(-x) = -h(x)Want to show: $(\exists x \in \mathbb{R}, (g(x) - h(x)) \neq (g(-x) - h(-x))) \vee (\exists k \in \mathbb{R}, \forall x \in \mathbb{R}, g(x) - h(x) = k)$ Let f(x) = g(x) - h(x), then:

$$f(-x) = g(-x) - h(-x)$$

$$= -g(x) - (-h(x)) \qquad \text{(since } \forall x \in \mathbb{R}, \ g(-x) = -g(x) \text{ and } h(-x) = -h(x)\text{)}$$

$$= -g(x) + h(x) \qquad \text{(by arithmetic)}$$

$$= -(g(x) - h(x)) \qquad \text{(since } f(x) = g(x) - h(x)\text{)}$$

So
$$\forall x \in \mathbb{R}, f(-x) = -f(x)$$

i.e., $\forall x \in \mathbb{R}, q(-x) - h(-x) = -(q(x) - h(x))$

Since g, h are any odd functions from \mathbb{R} to \mathbb{R} , there can be only two cases in terms of the relationship between g and h:

Case 1: $\forall x \in \mathbb{R}, g(x) = h(x)$, i.e., $\forall x \in \mathbb{R}, f(x) = g(x) - h(x) = 0$ In this case, since $-x \in \mathbb{R}, f(-x) = 0$. So $\forall x \in \mathbb{R}, f(-x) = -f(x) = f(x) = 0$, i.e., $\exists k = 0, \forall x \in \mathbb{R}, g(x) - h(x) = 0$.

Case 2: $\exists x \in \mathbb{R}, g(x) \neq h(x)$, i.e., $\exists x \in \mathbb{R}, f(x) = g(x) - h(x) \neq 0$ So let $x = x_0 \in \mathbb{R}$, such that $f(x_0) \neq 0$. Since $\forall x \in \mathbb{R}, f(-x) = -f(x)$, so $f(-x_0) = -f(x_0)$. Since $f(x_0) \neq 0$, so $f(x_0) \neq -f(x_0)$. Since $-f(x_0) = f(-x_0)$, so $f(x_0) \neq f(-x_0)$. i.e., $\exists x = x_0 \in \mathbb{R}, (g(x_0) - h(x_0)) \neq (g(-x_0) - h(-x_0))$.

Question 2

a) •

$$G_0(S,T) \implies G_0(S,T)$$

 $G_0(S,T) \implies G_0(S,T)$ is equivalent to $\neg G_0 \lor G_0$. $\neg G_0 \lor G_0$ always outputs True. Equivalently, the implication statement will also always output True.

$$G_0(S,T) \implies G_1(S,T)$$

Assume every x is greater than every y. Then for every x, there must be at least one y that is less than x. Therefore, if the hypothesis is true, the conclusion of the implication statement is also true.

$$G_0(S,T) \implies G_2(S,T)$$

Assume every x is greater than every y. Then, there must be always at least one x that is greater than every y. Therefore, if the hypothesis is true, the conclusion of the statement is also true.

$$G_0(S,T) \implies G_3(S,T)$$

Assume every x is greater than every y. Then, there must be always at least one x that is greater than at least one y. Therefore, if the hypothesis is true, the conclusion of the statement is also true.

$$G_1(S,T) \implies G_1(S,T)$$

 $G_1(S,T) \implies G_1(S,T)$ is equivalent to $\neg G_1 \lor G_1$. $\neg G_1 \lor G_1$ always outputs True. Equivalently, the implication statement will also always output True.

$$G_1(S,T) \implies G_3(S,T)$$

Assume every x is greater than at least one y (let this y be y_0). Then, that means that there exists at least one x that is greater than y_0 . Therefore, if the hypothesis is true, the conclusion of the statement is also true.

$$G_2(S,T) \implies G_2(S,T)$$

 $G_2(S,T) \implies G_2(S,T)$ is equivalent to $\neg G_2 \lor G_2$. $\neg G_2 \lor G_2$ always outputs True. Equivalently, the implication statement will also always output True.

$$G_2(S,T) \implies G_3(S,T)$$

Assume at least one x is greater than every y (let this x be x_0). Then, that means that there exists at least one x, x_0 , that is greater than at least one y. Therefore, if the hypothesis is true, the conclusion of the statement is also true.

$$G_3(S,T) \implies G_3(S,T)$$

 $G_3(S,T) \implies G_3(S,T)$ is equivalent to $\neg G_3 \lor G_3$. $\neg G_3 \lor G_3$ always outputs True. Equivalently, the implication statement will also always output True.

b) •
$$G_0([3,5],[0,2])$$

$$\forall x \in [3,5], \forall y \in [0,2], x > y$$

This statement is True. The proof is: Let $x \in [3, 5]$. Let $y \in [0, 2]$. Want to show x > y.

$$5 \ge x \ge 3$$
 and $2 \ge y \ge 0$.
 $5 \ge x \ge 3$
 > 2
 $\ge y$

Therefore, x > y

$$G_0(\mathbb{R}, \mathbb{R})$$
 $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x > y$

This statement is False. The disproof is:

Want to show the negation of the original statement $\neg G_0(\mathbb{R}, \mathbb{R})$: $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x \leq y$ is true.

Let x = 3. Let y = 4.

$$3 \leq 4$$
.

So, $x \leq y$

Since the negation of the original statement is true, the original statement is false.

 $G_1((0,1],(0,1))$ $\forall x \in (0,1], \exists y \in (0,1), x > y$

This statement is True. The proof is:

Let $x \in (0, 1]$. Let $y = \frac{x}{2}$.

Want to show x > y.

$$1 \ge x > 0$$

$$x > \frac{x}{2}$$

$$= y$$
(Since $1 \ge x > 0$)

So, x > y.

 $G_2(\mathbb{Z}, (-\infty, 0))$ $\exists x \in \mathbb{Z}, \forall y \in (-\infty, 0), x > y$

This statement is True. The proof is:

Let x = 1. Let $y \in (-\infty, 0)$.

Want to show x > y.

$$x = 1$$

$$> 0$$

$$> y$$
(Since $0 > y$)

So, x > y.

$$G_2(\{10\},\varnothing)$$

 $\exists x \in \{10\}, \forall y \in \varnothing, x > y$

This statement is True. The proof is:

Assume $\neg G_2(10, \varnothing)$ is True.

i.e., assume $\neg G_2(\{10\}, \varnothing)$: $\forall x \in \{10\}, \exists y \in \varnothing, x \geq y$ is True

Want to show $x \leq y$, i.e., $\neg G_2(10, \varnothing)$ is False

Let $x \in \{10\}$. This means that x = 10.

However, since $y \in \emptyset$, it means that there does not exist y in \emptyset , such that $x \geq y$. So $\neg G_2(10, \emptyset)$ is False.

Since $\neg G_2(\{10\}, \emptyset)$ is false, $G_2(\{10\}, \emptyset)$ is true.

$$G_3([0,1] \cap \mathbb{Q}, \mathbb{R} \setminus \mathbb{Q})$$

 $\exists x \in [0,1] \cap \mathbb{Q}, \exists y \in \mathbb{R} \setminus \mathbb{Q}, x > y$

This statement is True. The proof is:

Let x = 1. Let $y = -\pi$.

Want to show x > y.

$$1 > -\pi$$
$$\approx -3.14$$

So, x > y.

Question 3

a) Suppose $f(x) = (x + \frac{c}{x})^b$, where $b, c \in \mathbb{Z}^+$ and $x \in \mathbb{R}$. Let $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$.

Original statement: $\forall b, c \in \mathbb{Z}^+, \forall x \in \mathbb{R}^*$, if f(x) has no constant term, then b is an odd number.

Proof by contrapositive, and thus the statement becomes, $\forall b, c \in \mathbb{Z}^+, \forall x \in \mathbb{R}^*$, if b is an even number, then f(x) has at least one constant term.

Let $b, c \in \mathbb{Z}^+$. Let $x \in \mathbb{R}^*$. Assume b is an even number. We will show that f(x) has at least one constant term.

From the binomial theorem, we have:

$$(x + \frac{c}{x})^b = \sum_{k=0}^b \binom{b}{k} \cdot x^k \cdot (\frac{c}{x})^{b-k}$$

b being even means that $\exists m \in \mathbb{N}, 2m = b$. Consider the term where k = 2m - k, therefore, k = m. We would have:

$$\binom{2m}{k} \cdot x^k \cdot (\frac{c}{x})^{2k-k}$$

$$\binom{2m}{k} \cdot x^k \cdot (\frac{c^k}{x^k})$$
$$\binom{2m}{k} \cdot c^k$$

The term of $\binom{2m}{k} \cdot c^k$ is not based on x as it does not contain it:

$$\frac{(2m)!}{k!(2m-k)!} \cdot c^k$$

(since $2m = b, b \in \mathbb{Z}^+$, and $k = m, m \in \mathbb{N}$, so $2m \in \mathbb{N}, k \in \mathbb{N}$, and $k \leq 2m$.)

Therefore it is a constant term.

Since the contrapositive is true, the original statement is true.

b) Let $f(n,k) = \binom{n}{k}$, where $n,k \in \mathbb{N}$, we will show that it is an onto function. $f: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}^+$ being an onto function means that:

 $\forall x \in \mathbb{Z}^+, \exists (n,k) \in \mathbb{N} \times \mathbb{N}, x = f(n,k) = \binom{n}{k}$ (by the definition of onto given in Worksheet 2)

Let $x \in \mathbb{Z}^+$. Let n = x and k = 1.

$$x = n$$

$$x = \frac{n}{1!}$$

$$x = \frac{n}{k!}$$

$$x = \frac{n(n-1)!}{k!(n-1)!}$$

$$x = \frac{n!}{k!(n-1)!}$$

$$x = \frac{n!}{k!(n-1)!}$$

$$x = \frac{n!}{k!(n-k)!}$$
(since $n(n-1)! = n!$)
$$x = \frac{n!}{k!(n-k)!}$$

Since $n=x, x\in\mathbb{Z}^+$ and k=1, so $n\in\mathbb{N}$ and $k\in\mathbb{N}$ and $k\leq n$. Therefore, $f(n,k)=\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Therefore, x = f(n, k)

Thus, for all x values in \mathbb{Z}^+ , there exist $(n,k) \in \mathbb{N} \times \mathbb{N}$ such that $x = f(n,k) = \binom{n}{k}$. Therefore, the function is onto.

c) Let $n, k \in \mathbb{Z}^+$. Assume k < n. Want to show: $\binom{n}{k} \div \binom{n-1}{k} > 1$ We know: $n, k \in \mathbb{N}$, and specifically n > 0, k > 0, n > k

$$n>k$$

$$n-k>0$$

$$n>n-k>0$$
 (Since $k>0$ and $n>0$)

From this, we know that n > n - k, and we can have:

$$n>n-k$$

$$\frac{n}{n-k}>\frac{n-k}{n-k} \qquad (Since \ n-k>0)$$

$$\frac{n}{n-k}>1 \qquad (\frac{n-k-1}{n-k}=1)$$

$$\frac{n(n-k-1)!}{(n-k)!}>1 \qquad (\text{multiplying }\frac{(n-k-1)!}{(n-k-1)!} \text{ on the left hand side})$$

$$\frac{n!(n-1-k)!}{(n-k)!(n-1)!}>1 \qquad (\text{multiplying }\frac{(n-1)!}{(n-k-1)!} \text{ on the left hand side})$$

$$\frac{n!}{(n-k)!}\cdot\frac{(n-1-k)!}{(n-1)!}>1 \qquad (\text{multiplying }\frac{(n-1)!}{(n-1)!} \text{ on the left hand side})$$

$$\frac{n!}{k!(n-k)!}\cdot\frac{k!(n-1-k)!}{(n-1)!}>1 \qquad (\text{multiplying }\frac{k!}{k!} \text{ on left hand side})$$

$$\frac{n!}{k!(n-k)!}\div\frac{(n-1)!}{k!(n-1-k)!}>1 \qquad (\text{switching multiplication into division})$$

$$\binom{n}{k}\div\binom{n-1}{k}>1 \qquad (\text{switching multiplication into division})$$
 (since we know that $\forall n\in\mathbb{N}, \forall k\in\mathbb{N}, k\leq n \Longrightarrow \binom{n}{k}=\frac{n!}{k!(n-k)!}$, and here we have $n,k\in\mathbb{N}$, and $k< n$) Therefore, it satisfies $\binom{n}{k}\div\binom{n-1}{k}>1$.