Objective 2 - Composition

Evaluate the composition of two functions.

Link to section in online textbook.

First, watch $\underline{\text{this video}}$ to learn how use a new operation on functions: Composition.

Question 1 For the two functions below, evaluate $(f \circ g)$ and $(g \circ f)$ (??)

$$f(x) = ??$$

$$g(x) = ??$$

$$(f \circ g)(??) = \boxed{??}$$

$$(g \circ f)(??) = \boxed{??}$$

Feedback(attempt): Remember, the order is important! This joins subtraction and division where the order matters.

Question 2 For the two functions below, evaluate $(f \circ g)$ and $(g \circ f)$ and $(g \circ f)$?

$$f(x) = ??$$

$$g(x) = ??$$

$$(f \circ g)(??) = \boxed{??}$$

$$(g \circ f)(\ref{eq:goal}) = \ref{eq:goal}$$

Feedback(correct): Great! Beyond our first question, we needed to be careful that we could plug in our values, as g(x) has a restricted domain.

Learning outcomes:

Author(s): Darryl Chamberlain Jr.

Question 3 For the two functions below, evaluate $(f \circ g)(??)$ and $(g \circ f)(??)$

$$f(x) = ??$$

$$g(x) = ??$$

$$(f \circ g)(??) = \boxed{??}$$

$$(g \circ f)(??) = \boxed{??}$$

Feedback(correct): Great! Beyond our first question, we needed to be careful that we could plug in our values, as g(x) has a restricted domain.

Question 4 For the two functions below, evaluate $(f \circ g)$ and $(g \circ f)$ (??)

$$f(x) = ??$$

$$g(x) = ??$$

$$(f \circ g)(??) = \boxed{??}$$

$$(g \circ f)(??) = \boxed{??}$$

Question 5 One of the biggest takeaways from this objective is noticing that $(f \circ g)(x) \neq (g \circ f)(x)$ in most cases.

For which question was $(f \circ g)(x) \neq (g \circ f)(x)$? 4

Feedback(attempt): It is just asking for the number of the question. The answer is either "1", "2", "3", or "4".

Feedback(correct): Great job! But since it wasn't always the case, it should make you wonder: when is it that $(f \circ g)(x) = (g \circ f)(x)$? The next two objectives will answer this question.