

Prova de Números Complexos - ITA

1 - (ITA-13) A soma das raízes da equação em C, $z^8 - 17z^4 + 16 = 0$, tais que z - |z| = 0, é

a) 1. b) 2. c) 3. d) 4. e) 5.

2 - (ITA-13) Considere a equação em C, $(z - 5 + 3i)^4 = 1$. Se z_0 é a solução que apresenta o menor argumento principal dentre as quatro soluções, então o valor de $|z_0|$ é a) $\sqrt{29}$ b) $\sqrt{41}$ c) $3\sqrt{5}$ d) $4\sqrt{3}$ e) $3\sqrt{6}$

 ${\bf 3}~$ - (ITA-13) Seja λ solução da equação $\sqrt{\lambda+9}$ + $\sqrt{2\lambda+17}=12.$ Então a soma das soluções z , com Re z >0, da equação z 4 = – λ 32 , é

a) $\sqrt{2}$ b) $2\sqrt{2}$ c) $4\sqrt{2}$ d) 4 e) 16

4 - (ITA-12) Dados os pontos A=(0,0), B=(2,0) e C=(1,1), o lugar geométrico dos pontos que se encontram a uma distância d=2 da bissetriz interna, por A, do triângulo ABC é um par de retas definidas por

a)
$$r_{1,2}: \sqrt{2}y - x \pm 2\sqrt{4 + \sqrt{2}} = 0$$
.

b)
$$r_{1,2}: \frac{\sqrt{2}}{2} y - x \pm 2\sqrt{10 + \sqrt{2}} = 0$$

c)
$$r_{1,2}: 2y - x \pm 2\sqrt{10 + \sqrt{2}} = 0$$
.

d)
$$r_{1,2}: (\sqrt{2}+1)y-x \pm \sqrt{2+4\sqrt{2}}=0$$
.

e)
$$\mathbf{r}_{1,2}: (\sqrt{2}+1)\mathbf{y} - \mathbf{x} \pm 2\sqrt{4+2\sqrt{2}} = 0$$
.

5 - (ITA-12) Se $\arg z = \frac{\pi}{4}$, então um valor para $\arg(-2iz)$ é

a)
$$-\frac{\pi}{2}$$
 b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ d) $\frac{3\pi}{4}$ e) $\frac{7\pi}{4}$

 $z=\frac{1}{2}\Big(-1+\sqrt{3}i\Big), \text{ então } \sum_{n=1}^{89} Z^n \text{ é igual a}$

$$_{A)} - \frac{89}{2} \sqrt{3}i$$
 $_{B)-1}$ $_{C)\ 0}$ $_{D)\ 1}$ $_{E)} \frac{89}{6} \sqrt{3}i$

7 - (ITA-11) Das afirmações abaixo sobre números complexos z1 e z2 :

II - $|\overline{z_1}1 \cdot z \cdot 2| = ||\overline{z_2}2| \cdot ||\overline{z_2}2||$ (erro no original do ITA)

III - Se z1 = Iz1 | $(\cos \theta + i \sin \theta) \neq 0$, então = | z1|-1 ($\cos \theta - i \sin \theta$).

é(são) sempre verdadeira(s)

A () apenas I B () apenas II C () apenas III

D () apenas II e III E () todas.

8 - (ITA-11) A soma de todas as soluções da equação em

C:
$$z^2 + |z^2| + iz - 1 = 0$$
 é igual a

A) 2 B)
$$\frac{i}{2}$$
 C) 0 D) $-\frac{1}{2}$ E) $-2i$

9 - (ITA-10) Se **z** uma solução de equação em C

$$z - \bar{z} + |z|^2 = -\left[\left(\sqrt{2} + \iota\right)\left(\frac{\sqrt{2} - 1}{3} - \iota\frac{\sqrt{2} + 1}{3}\right)\right]^{12}$$

Pode-se afirmar que

(A)
$$t\left(z-\bar{z}\right) < 0$$
 (B) $t\left(z-\bar{z}\right) > 0$

(C)
$$|z| \in [5,6]$$
 (D) $|z| \in [6,7]$ (E) $|z + \frac{1}{z}| > 8$

10 - (ITA-10) Os argumentos principais das soluções da equação em z

$$tz + 3\overline{z} + \left(z + \overline{z}\right)^2 - t = 0$$

nertencem o

(A)
$$\left] \frac{\pi}{4}, \frac{3\pi}{4} \right[$$
 (B) $\left] \frac{3\pi}{4}, \frac{5\pi}{4} \right[$ (C) $\left[\frac{5\pi}{4}, \frac{3\pi}{2} \right[$

(D)
$$\left] \frac{\pi}{4}, \frac{\pi}{2} \right[\cup \left] \frac{3\pi}{2}, \frac{7\pi}{4} \right[$$
 (E) $\left] 0, \frac{\pi}{4} \right[\cup \left] \frac{7\pi}{4}, 2\pi \right[$

11 - (ITA-09) Se a = $\cos \frac{\pi}{5}$ e b = $\sin \frac{\pi}{5}$, então, o número

complexo $\left(\cos\frac{\pi}{5} + i \operatorname{sen}\frac{\pi}{5}\right)^{54}$ é igual a:

c)
$$(1+2a^2b^2) + ab(1+b^2)$$

e)
$$1 - 4a^2b^2 + 2ab(1 - b^2)i$$

12 - (ITA-08) Sejam $\alpha \beta \in C$ tais que $|\alpha| = |\beta| = 1 |\alpha - \beta| = \sqrt{2}$. Então $\alpha^2 + \beta^2$ é igual a:

13 - (ITA-07) Considere a equação:16 $\left(\frac{1-ix}{1+ix}\right)^3$

$$\left(\frac{1+i}{1-i}-\frac{1-i}{1+i}\right)^4$$

Sendo x um número real, a soma dos quadrados das soluções dessa equação é

- a) 3. b) 6. c) 9. d) 12. e) 15.
- **14** (ITA-06) Se $\alpha \in [0, 2\pi)$ é o argumento de um número complexo z ≠ 0 e n é um número natural tal que $(z/|z|)^n = i \operatorname{sen}(n\alpha)$, então, é verdade que
- a) $2n\alpha$ é múltiplo de 2π .
- b) $2n\alpha \pi$ é múltiplo de 2π .
- c) $n\alpha \pi/4$ é múltiplo de $\pi/2$.
- d) $2n\alpha \pi$ é múltiplo não nulo de 2.
- e) n α 2π é múltiplo de π .
- **15** (ITA-05) Seja $z \in \mathbb{C}$ com |z| = 1. Então, a expressão

$$\left| \frac{1-\overline{zw}}{z-w} \right|$$
 assume valor

- a) maior que 1, para todo w com |w| > 1.
- b) menor que 1, para todo w com |w| < 1.
- c) maior que 1, para todo w com $w \neq z$.
- d) igual a 1, independente de w com $w \neq z$.
- e) crescente para |w| crescente, com |w| < |z|.

d) 1

16 - (ITA-04) A soma das raízes da equação $z^3 + z^2 - |z|^2$ + 2z = 0, $z \in \mathbb{C}$, é igual a:

e) 2

- a) -2 b) -1 c) 0
- 17 (ITA-03) Seja z ∈ C. Das seguintes afirmações independentes:

I - Se
$$\omega = \frac{2iz^2 + 5\overline{z} - i}{1 + 3\overline{z}^2 + 2iz + 3|z|^2 + 2|z|}$$
, então

$$\overline{\omega} = \frac{-2i\overline{z}^2 + 5z + i}{1 + 3z^2 - 2i\overline{z} + 3|\overline{z}|^2 + 2|z|}.$$

$$II - \text{Se z} \neq 0 \text{ e } \omega = \frac{2iz + 3i + 3}{\left(1 + 2i\right)\!z} \text{ , então } \left|\omega\right| \leq \frac{2\left|z\right| + 3\sqrt{2}}{\sqrt{5}\left|z\right|} \text{ .}$$

III — Se
$$\omega = \frac{(1+i)z^2}{4\sqrt{3}+4i}$$
, então 2 arg z + $\frac{\pi}{12}$ é um

argumento de ω .

- é (são) verdadeira(s):
- a) todas.
- d) apenas I e III.
- b) apenas I e II.
- e) apenas II.
- c) apenas II e III.
- 18 (ITA-02) Seja a equação em C

$$z^4 - z^2 + 1 = 0$$
.

Qual dentre as alternativas abaixo é igual à soma de duas das raízes dessa equação?

- a) $2\sqrt{3}$
- b) $-\frac{\sqrt{3}}{2}$
- c) + $\frac{\sqrt{3}}{2}$

19 - (ITA-01) Se z = 1 + i $\sqrt{3}$, z. \overline{w} = 1 e $\alpha \in [0, 2\pi]$ é um argumento de z, w, então α é igual a:

a)
$$\frac{\pi}{3}$$
 b) π c) $\frac{2\pi}{3}$ d) $\frac{5\pi}{3}$ e) $\frac{3\pi}{2}$

 $z = \frac{1 - \cos\alpha}{\sin\alpha \cos\alpha} + \frac{1 - 2\cos\alpha + 2\sin\alpha}{\sin2a}; a \in]0, \pi/2[$ tem

argumento π /4. Neste caso, α é igual a:

a)
$$\frac{\pi}{6}$$
 b) $\frac{\pi}{3}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{5}$ e) $\frac{\pi}{9}$

21 - (ITA-00) Seja $\,z_0^{}\,$ o número complexo $\,1+i\,$. Sendo S o conjunto solução no plano complexo de $\mid z-z_0\mid=\mid z+z_0\mid=2$, então o produto dos elementos de S é igual a :

- (A) 4(1-i)
- (B) 2(1+i) (C) 2(i-1)

- (D) -2i
- (E) 2i

22 - (ITA-99) Sejam a_k e b_k números reais com k = 1, 2,..., 6. Os números complexos $z_k = a_k + ib_k$ são tais que $|z_k|$ = 2 e $b_k \ge 0$, para todo k = 1, 2, ..., 6. Se $(a_1, a_2, ..., a_6)$ é uma progressão aritmética de razão -1/5 e soma 9, então z₃ é igual a:

- a) 2i
- b) $\frac{8}{5} + \frac{6}{5}i$ c) $\sqrt{3} + i$
- d) $\frac{-3\sqrt{3}}{5} + \frac{\sqrt{73}}{5}i$ e) $\frac{4\sqrt{2}}{5} + \frac{2\sqrt{17}}{5}i$

23 - (ITA-99) O conjunto de todos os números complexos z, $z \neq 0$, que satisfazem à igualdade

$$|z+1+i| = ||z|-|1+i||$$
 é:

- a) $\{z \in C: \arg z = 5\pi/4 + 2k\pi, k \in Z\}$
- b) $\{z \in C: \arg z = \pi/4 + 2k\pi, k \in Z\}$
- c) $\{z \in C: |z| = 1 \text{ e arg } z = \pi/6 + k\pi, k \in Z\}$
- d) $\{z \in C: |z| = \sqrt{2} \text{ arg } z = \pi/4 + 2k\pi, k \in Z\}$
- e) $\{z \in C: arg \ z = \pi/4 + k\pi, \ k \in Z\}$
- 24 (ITA-98) Considere, no plano complexo, um polígono regular cujos vértices são as soluções da

equação z⁶ = 1. A área deste polígono, em unidades de área, é igual a:

a) $\sqrt{3}$

b) 5

c) π d) $\frac{3\sqrt{3}}{2}$

e) 2π

25 - (ITA-98) Sejam x e y números reais tais que:

$$\begin{cases} x^3 - 3xy^2 = 1 \\ 3x^2y - y^3 = 1 \end{cases}$$

Então, o números complexo $z = x + iy é tal que z^3 e |z|$, valem respectivamente:

a) $1 - i e \sqrt[6]{2}$ b) $1 + i e \sqrt[6]{2}$ c) i e 1

d) – i e 1

e) 1 + i e $\sqrt[3]{2}$

26 - (ITA-97) Considere os números complexos

$$z = \sqrt{2} + i\sqrt{2} e w = 1 + i\sqrt{3}$$
.

$$m = \left| \frac{w^6 + 3z^4 + 4i}{z^2 + w^3 + 6 - 2i} \right|^2$$
, então **m** vale

a) 34 b) 26 c) 16 d) 4 e) 1

27 - (ITA-97) Considere no plano complexo, um hexágono regular centrado em $z_0 = i$. Represente z_1, z_2 , ... z₆ seus vértices, quando percorridos no sentido antihorário. Se $z_1 = 1$ então $2z_3$ é igual a:

a) 2 + 4i

b)
$$(\sqrt{3} - 1) + (\sqrt{3} + 3)i$$

c) $\sqrt{6} + (\sqrt{2} + 2)i$

d)
$$(2\sqrt{3} - 1) + (2\sqrt{3} + 3)i$$

e) $\sqrt{2} + (\sqrt{6} + 2)i$

28 - (ITA-97) Seja S o conjunto dos números complexos que satisfazem simultaneamente, às equações:

$$|z-3i| = 3 e |z+i| = |z-2-i|$$

O produto de todos os elementos de S é igual a:

a) $-2 + i\sqrt{3}$

b) $2\sqrt{2} + 3i\sqrt{3}$ c) $3\sqrt{3} - 2i\sqrt{3}$

d) - 3 + 3i

e) - 2 + 2i

29 - (ITA-96) O valor da potência $\left(\frac{\sqrt{2}}{1+i}\right)^{93}$ é:

a) $\frac{-1+i}{\sqrt{2}}$ b) $\frac{1+i}{\sqrt{2}}$ c) $\frac{-1-i}{\sqrt{2}}$ d) $(\sqrt{2})^{93}i$ e) $(\sqrt{2})^{93}+i$

30 - (ITA-95) Seja z um número complexo satisfazendo Re(z) > 0 e $(\overline{z} + i)^2 + |\overline{z} + i|^2 = 6$. Se n é o menor natural para o qual z n é um número imaginário puro, então n é igual a:

a) 1

b) 2

c) 3

d) 4 e) 5

31 - (ITA-95) Sejam z₁ e z₂ números complexos com $|z_1| = |z_2| = 4$. Se 1 é uma raiz da equação $z_1 z^6 + z_2 z^3 - 8$ = 0 então a soma das raízes reais é igual a:

a) - 1

b) $-1 + 2^{1/2}$

c) $1 - 2^{1/3}$

d) $1 + 3^{1/2}$

e) $-1 + 3^{1/2}$

32 - (ITA-94) Considere as afirmações:

I- $(\cos \theta + i \sin \theta)^{10} = \cos(10\theta) + \sin(10\theta)$, para todo $\theta \in$

II- (5i)/(2 + i) = 1 + 2i

III- $(1 - i)^4 = -4$

IV- Se $z^2 = (\bar{z})^2$ então z é real ou imaginário puro.

V- O polinômio $x^4 + x^3 - x - 1$ possui apenas raízes reais. Podemos concluir:

a) Todas são verdadeiras.

b) Apenas quatro são verdadeiras.

c) Apenas três são verdadeiras.

d) Apenas duas são verdadeiras.

e) Apenas uma é verdadeira.

33 - (ITA-93) Seja a o módulo do número complexo $\left(2-2\sqrt{3}i
ight)^{10}$. Então o valor de x que verifica a igualdade $(4\mathbf{a})^x = \mathbf{a}$ é:

a) 10/11

b) -2

c) 5/8

d) 3/8

e) /15

34 - (ITA-93) Resolvendo a equação $z^2 = \overline{2+z}$ no conjunto dos números complexos, conclui-se sobre as suas soluções que:

a) nenhuma delas é um número inteiro.

b) a soma delas é dois.

c) estas são em número de 2 e são distintas.

d) estas são em número de quatro e são 2 a 2 distintas.

e) uma delas é da forma z = bi com b real não-nulo.

35 - (ITA-92) Considere o número complexo z = a + 2icujo argumento está no intervalo (0, $\pi/2$). Sendo S o conjunto dos valores de a para os quais z⁶ é um número real, podemos afirmar que o produto dos elementos de S vale:

a) 4 b) $4/\sqrt{3}$

c) 8

d) 8/√3

e) n.d.a.

36 - (ITA-92) Sabe-se que 2(cos $\pi/20$ + i sen $\pi/20$) é uma raiz quíntupla de w. Seja S o conjunto de todas as raízes

de
$$z^4 - 2z^2 + \frac{w - 16\sqrt{2}i}{8\sqrt{2}} = 0$$
. Um subconjunto de S é:

a) $\{2^{1/2}(\cos 7\pi/8 + i \operatorname{sen} 7\pi/8), 2^{1/2}(\cos \pi/8 + i \operatorname{sen} \pi/8)\}$

b) $\{2^{1/2}(\cos 9\pi/8 + i \text{ sen } 9\pi/8), 2^{1/2}(\cos 5\pi/8 + i \text{ sen } 9\pi/8)\}$ $5\pi/8)$

c) $\{2^{1/4}(\cos 7\pi/8 + i \operatorname{sen} 7\pi/4), 2^{1/4}(\cos \pi/4 + i \operatorname{sen} \pi/4)\}$

d) $\{2^{1/4}(\cos 7\pi/8 + i \sin 7\pi/8), 2^{1/4}(\cos \pi/8 + i \sin \pi/4)\}$

e) n.d.a.

- **37** (ITA-91) Sejam w = a + bi com b \neq 0 e a, b, c $\in \Re$. O conjunto dos números complexos z que verificam a equação wz + \overline{wz} + c = 0, descreve:
- a) Um par de retas paralelas.
- b) Uma circunferência.
- c) Uma elipse.
- d) Uma reta com coeficiente angular m = $\frac{a}{b}$.
- e) n.d.a.
- **38** (ITA-91) Se z = cos t + i sen t, onde $0 < t < 2\pi$, então podemos afirmar que w = $\frac{1+z}{1-z}$ é dado por:
- a) i cotg $\frac{t}{2}$ b) i tg $\frac{t}{2}$
- c) i cotg t

- d) i tg t
- e) n.d.a.
- **39** (ITA-90) Considere as equações $z^3 = i e z^2 + (2 + i)z + i e z^2$ 2i = 0, onde z é complexo. Seja S_1 o conjunto das raízes da primeira equação e S2 o da segunda. Então
- a) $S_1 \cap S_2$ é vazio;
- b) $S_1 \cap S_2 \subset R$;
- c) S₁ possui apenas dois elementos distintos;
- d) $S_1 \cap S_2$ é unitário;
- e) $S_1 \cap S_2$ possui dois elementos.
- **40** (ITA-90) A igualdade 1 + |z| = |1+z|, onde $z \in C$, é satisfeita:
- a) Para todo $z \in C$ tal que Rez = 0 e Imz<0;
- b) Para todo $z \in C$ tal que Rez ≥ 0 e Imz = 0;
- c) Para todo $z \in C$ tal que |z|=1;
- d) Para todo $z \in C$ tal que Imz = 0;
- e) Para todo $z \in C$ tal que |z| < 1.

Nota: C denota o conjunto dos números complexos, Rez a parte real de z e Imz a parte imaginária de z.

- **41** (ITA-89) O valor da expressão $|1 z|^2 + |1 + z|^2$, sendo z um número complexo, é:
- a) 5, se $|z| \le 1$
- d) 2, para todo z
- b) 4, se |z| = 1
- e) 3, se Re(z) = 0
- c) 0, se Im(z) = 0
- 42 (ITA-89) O produto dos números complexos z = x + yi, que têm módulo igual a $\sqrt{2}$ e se encontram sobre a reta y = 2x – 1 contida no plano complexo, é igual a:

- a) $\frac{6}{5} \frac{8}{5}i$ b) $\frac{4}{5} \frac{2}{5}i$ c) $-\frac{8}{5} \frac{8}{5}i$ d) 2 + 2i
- e) não existe nenhum número complexo que pertença à reta y = 2x - 1 e cujo módulo seja $\sqrt{2}$.

- **43** (ITA-88) Seja a equação $z^4 a bi = 0$, onde a e b são reais não nulos. Sobre as raízes desta equação podemos afirmar que:
- a) uma delas é um imaginário puro.
- b) os seus módulos formam uma progressão aritmética de razão (|a + bi|)^{1/4}.
- c) o seu produto é um imaginário puro.
- d) cada uma tem argumento igual a [arg(a + bi)]/4
- e) a sua soma é zero.
- **44 -** (ITA-88) O número natural n tal que (2i) n + (1 + i) 2n = -16i, onde i é a unidade imaginária do conjunto dos números complexos, vale:
- a) n = 6
- b) n = 3
- c) n = 7
- d) n = 4
- e) não
- existe n nestas condições 45 - (ITA-87) Seja S a coleção de todos os números
- complexos z, que são raízes da equação |z| z = 1 + 2i, onde i é a unidade imaginária. Então podemos garantir a) $S = \{3/2 - 2i\}$
- $\{1/2 + 4k\pi; k = 1, 2, 3\}$
- b) $S = \{1/2 + 2i, -1/2 2i\}$
- c) S =

- d) $S = \{1/4 + 3i\}$ e) $S = \{1 + 2ki; k = 1, 2, 3\}$
- 46 (ITA-87) A soma de todas as raízes da equação z³ -1 = 0 é:
- a) 1
- b) 2
- c) zero
- d) $-2\sqrt{2}i$
 - e) $2 + \sqrt{3}i$
- 47 (ITA-87) Considerando z e w números complexos arbitrários e $u = z.w + \overline{z}.\overline{w}$, então o conjugado de u será necessariamente:
- a) igual a |z| |w|
- b) um número imaginário puro
- c) igual ao dobro da parte real de z + w
- d) igual ao dobro da parte real do número z.w
- e) diferente de u
- 48 (ITA-86) No conjunto C dos números complexos seja a tal que |a| < 1. O lugar geométrico dos pontos z
- \in C que satisfazem a igualdade $\left| \frac{z-a}{1-az} \right| = 1$ é:
- a) Uma circunferência de centro na origem e raio 1.
- b) Uma hipérbole.
- c) Uma elipse de semi-eixo maior igual a 1.
- d) Uma parábola.
- e) Formado por duas retas concorrentes.
- **49** (ITA-85) Seja a um número real. Os valores de $z \in C$ que satisfazem $\left(\frac{a+z^{10}}{1+i}\right)\left(\frac{a+\left(\overline{z}\right)^{10}}{1-i}\right)\in\Re$ são

a)
$$z = -a + i \sqrt[10]{|a|}$$

- b) Não é possível determiná-los
- c) $z = -i \sqrt[10]{|a|}$
- d) Não existe z ∈ C tal que isto aconteça
- e) todo $z \in R$
- **50** (ITA-84) Sabendo-se que n é um número natural tal $(\sqrt{3} + i)^n$

que
$$\frac{(\sqrt{3}+i)^n}{3i}$$
 é um número real, podemos afirmar que:

- a) n = 6k, k = 1, 2, 3, ...
- b) n = 3(2k + 1), k = 0, 1, 2, 3, ...
- c) n = 3k, k = 0, 1, 2, 3, ...
- d) n = k, k = 1, 2, 3, ...
- e) não existe valor de n natural tal que o número dado seja real.
- **51** (ITA-84) Sabendo-se que z_1 , = i, z_2 e z_3 são as raízes da equação $z^3 + az^2 + bz + c = 0$, onde a, b, c são reais não-nulos, podemos afirmar que:
- a) z₁, z₂ e z₃ são imaginários puros
- b) z₂ e z₃ são reais
- c) $z_1z_2z_3 = c$
- d) $z_1 + z_2 + z_3 = a$
- e) pelo menos uma das raízes é real.
- 52 (ITA-83) Consideremos um número complexo z tal

que
$$\frac{z^2}{\overline{z}_i}$$
 tem argumento igual a $\pi/4$ e $\log_2(z+\overline{z}+2)=3$

- . Nestas condições, podemos afirmar que:
- a) Não existe $In\left(\frac{z-\overline{z}}{i}\right)$.

b)
$$z^4 + In \left(\frac{z - \overline{z}}{i} \right) = -324$$
.

c) $z + 2\overline{z}$ é um número real.

d)
$$\left(\frac{1}{z}\right)^3 = \frac{1}{10^3}(1+i)$$
.

e)
$$\left(\frac{1}{z}\right)^3 = -\frac{1}{108}(1+i)$$
.

GABARITO

1	С
2	В
3	В
4	В
5	E
6	В
7	С
8	E
9	E
10	С
11	В
12	В
13	В
14	В
15	D
16	Α
17	Α
18	D
19	С
20	Α
21	E
22	В
23	Α
24	D
25	В
26	Α
27	В
28	D
29	Α
30	В
31	С
32	В
33	Α
34	С
35	Α
36	D
37	D
38	Α
39	D
40	В
41	В

42	Α
43	E
44	В
45	Α
46	С
47	В
48	Α
49	E
50	В
51	E
52	SR