SAATVIK STUDY STATION

: Choose Us, Be Ahead

MOTION AND TIME

- When an object changes its position with time, it is said to be in **motion**.
- Example When the position of a car changes with time, we say that the car is moving or the car is in motion.

SLOW OR FAST MOTION

- x The motion of an object with respect to another object can be slow or fast.
- **x** The distance covered by objects in a given set of time decided which object is faster or slower.
- x SLOW An object which takes longer time with respect to another object to cover a certain distance is said to be slow.
- x FAST An object which takes shorter time to cover the same distance is said to be fast.

Example – Manish covers the distance between school and home in 10 minutes and Rahul travels the same distance in 20 minutes. Suppose, Manish and Rahul, leave school at 1 PM. Manish reaches home at 1:10 PM and Rahul reaches home at 1:20 PM. So, Manish reaches home before Rahul.

So, we can conclude that Manish moves faster than Rahul.

SPEED

x Speed is defines as the distance covered by an object in unit time. i. e.

- x SI Unit of speed is meter/sec (m/s)
- x Example Suppose a car travels a distance of 100 Km in 2h, then the speed of car is given by -

Speed =
$$\frac{100 \, \text{Km}}{2 \, \text{h}}$$
 = 50 km/h

The fastest possible speed in the universe is the speed of light i.e. 3×10^8 m/s or 3×10^5 Km/s. It means, light can travel 3 lakh km per sec.

Question:

Roger covers 400 meters in 1 minute in a marathon race. What is the speed of Roger in m/s and km/h respectively.

Answer:

• Speed of Roger in m/s
Roger covers 400 m distance in 1 min

$$Speed = \frac{Distance Travelled}{Time Taken}$$

we know, 1 min = 60 sec [Converting minutes to sec]

Speed =
$$\frac{400}{1 \times 60}$$
 = 6.66 m/s

So, speed of Roger in 6.66 m/s.

• Speed of Roger in km/h

To do so, first we convert meter to kilometre and then time in seconds to time in an hour.

We know, 1 Km = 1000 m
1 m =
$$\frac{1}{1000}$$
 Km
400 m = $\frac{400}{1000}$ Km = 0.4 Km [Distance covered by Roger in 1 min]

Now, 1 hour = 60 min

$$1 \min = \frac{1}{60} h$$

Speed of roger in Km/h is

Speed =
$$\frac{0.4}{1/60}$$
 = 0.4 X 60 Km/h = **24 km/h**

TIP: To convert speed from Km/h to m/s multiply by $\frac{5}{18}$ and to convert it from m/s to Km/h multiply it by $\frac{18}{5}$.

UNIFORM AND NON-UNIFORM MOTION

- Uniform Motion An object moving along a straight line with a constant or uniform speed is said to be in uniform motion.
 - Example The school bus is travelling at a constant speed of 15 km/hr in a straight line, as shown below. Its speed is not changing at different points.

- **Non-Uniform Motion** If the speed of an object moving along a straight line keeps changing, then the object is in non-uniform motion.
 - Example The speed of the school bus is changing while it is moving in a straight line.

MEASURING SPEED

Speedometer – A speedometer is a device which is used to measure the speed of a vehicle. It records the speed directly in km/h.

Odometer – Odometer is usually combined with a device which is used to measure the distance covered by vehicle, known as odometer.

MEASUREMENT OF TIME

- **x** The duration or moment in which things occur is known as time.
- **x** We generally measure time with the help of clocks and watches.
- X To measure time, we need a motion that repeats itself at equal intervals. Such a motion is called periodic motion.

UNITS OF TIME -

1 minute = 60 seconds

1 hour = 60 minutes

1 day = 24 hours

1 week = 7 days

1 year = 365 days

1 decade = 10 years

1 century = 100 years

Simple Pendulum -

- **x** A Simple pendulum is a device which is used to measure time.
- X It was discovered by Galileo Galilei.
- X It consists of a metallic ball call **bob** which is suspended on a long thread from a rigid support such that bob is free to swing back and forth.

X The time taken by the pendulum to complete one oscillation is called its time period.

SAATVIK STUDY STATION

Question:

Calculate the time period of a simple pendulum that takes 55 seconds to complete 50 oscillation.

Answer:

Time Period =
$$\frac{\text{Time taken for oscillations}}{\text{Number of oscillations}}$$
$$= \frac{55}{50} = 1.1 \text{ sec}$$

Before the pendulum clock, many other time measuring devices are used like sundials, water clocks, and sand clock, etc.

1. Sundial

This is a device that tells the time of day. It consists of a flat plate, which casts a shadow onto the dial when there is sunlight and that shadow helps to know the time of day.

2. Sand Clock

It uses the flow of sand to measure time. It consists of two rounded glass bulbs connected by a narrow neck of the glass. The upper bulb contains some sand that streams down into the bottom bulb giving the fixed interval of time.

3. Water clock

Consists of two containers kept at different levels. This device uses the rate at which water drips from one vessel to another to measure the time interval.

DISTANCE - TIME GRAPH

- X In the distance-time graph, distance is marked on the y-axis and time is marked in the x-axis.
- **x** Distance-Time graph is useful to study the motion of a body.

Question:

From the distance-time graph of the motion of an object answer the following questions?

- 1. What will be the position of the object at t = 3 sec?
- 2. What is the average speed of the object?

Answer:

1. From the graph distance travelled by an object at t = 3 sec is 3 meters.

2. We know,

Average speed =
$$\frac{\text{Total time}}{\text{Total Distance}}$$

The total distance travelled by an object is 4 meters and the total time taken by the object is 6 sec.

Therefore,

Average speed =
$$\frac{4}{6}$$
 = **0.66 m/s**

GLOSSARY

- **Speed** Total distance covered by an object divided by total time taken is called speed.
- Uniform motion When an object moves with a constant speed along a straight line, then its motion is called uniform motion.
- **Non-Uniform motion** When an object changes its speed during its motion, then its motion is called non-uniform motion.
- **Simple pendulum** It contains a mass hung with a thread to a rigid support. The mass can move freely to and fro.
- Oscillation To and fro motion of pendulum is known as oscillation.
- **Time period** The time taken by pendulum to complete one oscillation is called time period.
- **Speedometer** An instrument which is used to measure the speed is called speedometer.
- **Odometer** An instrument which is used to measure the total distance covered by a vehicle is called odometer.