

A Two-Step Computationally Efficient Procedure for IMU Classification and Calibration

Gaetan Bakalli¹

joint work with

Ahmed Radi², Prof. Stéphane Guerrier³, Yuming Zhang³, Dr. Roberto Molinari³ & Prof. Sameh Nassar²

- ¹ University of Geneva
- ² University of Calgary
- ³ Pennsylvania State University

IEEE/ION PLANS, Monterey 2018

April 25, 2018

G.Bakalli MGMWM April 25, 2018 1 / 15

Outline

Part I

- Introduction
 - Latent time series models
 - A motivating example
- GMWM
 - GMWM estimator

Part II

- Multivariate calibration
 - Motivation
 - Near stationarity
 - Multivariate GMWM
 - Case study
 - Test and validation
- Conclusions
 - Summary

IMU Calibration

Errors in Inertial Sensors

- Possible causes:
 - Non-orthogonalities of the sensor axes
 - Environmental conditions (e.g. temperature)
 - Electronics
 - Dynamics
 - Others
- Error types:
 - Deterministic (calibration models, physical models, ...)
 - Random error components (typically latent time series models,...)

Correct stochastic sensor error modeling implies:

- Correct stochastic assumptions for inference
- Better navigation or post-processing performance

G.Bakalli MGMWM April 25, 2018 3 / 15

A latent time series model

Remarks:

- Not a linear regression model but a state space model.
- Computing the likelihood is not an easy task.
- MLE (in fact EM-KF) fails.

G.Bakalli MGMWM April 25, 2018 4 / 15

The GMWM estimator and its Model Selection Criterium

Definition: GMWM Estimator

The GMWM estimator is the solution of the following optimization problem

$$\hat{ heta} = \mathop{\mathsf{argmin}}_{ heta \in \Theta} \|\hat{
u} -
u(heta)\|_{\Omega}^2,$$

in which Ω , a positive definite weighting matrix, is chosen in a suitable manner such that the above quadratic form is convex.

The Wavelet Variance Information Criterium

$$\mathsf{WVIC} = \mathbb{E}\left[\mathbb{E}_0\left[\|\hat{\boldsymbol{\nu}}^0 - \boldsymbol{\nu}(\hat{\boldsymbol{\theta}})\|_{\boldsymbol{\Omega}}^2\right]\right],$$

where $\mathbb{E}[\cdot]$ and $\mathbb{E}_0[\cdot]$ represent specific probabilistic expectations which measure how well the WV implied by the estimated model fits the WV observed on a future replicate.

G.Bakalli MGMWM April 25, 2018 5 / 15

What we observe in reality

Figure: Data coming from an MTIG 710 IMU supplied by InvenSense.

Remarks:

 Several sequences of the error signals issued from an IMU.

Current Assumption on IMU's Error Signal

G.Bakalli MGMWM April 25, 2018 7 / 15

What we observe in reality

G.Bakalli MGMWM April 25, 2018 8 / 15

Near stationarity

Context

- Lower grade IMUs.
- Several recording of IMU error signal.
- Static conditions.

Near stationarity

We define a nearly stationary time series, as one which exhibit the following properties:

- Same model, but with different parameter values for each sequences.
- ② The vector of parameter θ has a probability distribution $G(\theta_0)$, where $\mathbb{E}[\theta] = \theta_0$.
- **3** The distribution $G(\theta_0)$ can be interpreted as the internal sensor model, which may account for unobserved factors (e.g. temperature).

G.Bakalli MGMWM April 25, 2018 9 / 15

Multisignal GMWM (MGMWM)

MGMWM

The MGMWM estimator can be defined as:

$$\hat{ heta} = \mathop{\mathsf{argmin}}_{ heta \in \Theta} \|\hat{
u} -
u(heta)\|_{\Omega}^2,$$

where $\hat{\nu}$ represent the stack of WV computed and each sequences, and Ω a block diagonal weighting matrix.

MGMWM considering independent signals

Considering $k=1,\ldots,K$, the number replicates recorded from the same IMU in static condition, we define the **Multisignal GMWM** estimator as the solution of the following minimization problem:

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{K} \sum_{k=1}^K \| \hat{\nu}_k - \nu(\theta) \|_{\Omega}^2.$$

Let $\hat{\nu}_{jk}$, respectively $\nu_j\left(\boldsymbol{\theta}\right)$ be the j^{th} elements of the vectors $\hat{\boldsymbol{\nu}}_k$, the empirical WV computed on the k^{th} replicates of size $j=1,\ldots,J_k$.

G.Bakalli MGMWM April 25, 2018 10 / 15

Testing for Near Stationarity

This frameworks allows to use the MGMWM objective function as a test statistics, which is defined below:

$$g(\hat{\theta}) = \|\hat{\theta} - \nu(\hat{\theta})\|_{\hat{\Omega}}^2.$$

Using this statistic we would therefore like to test the following null and alternative hypotheses

$$\mathcal{H}_0: \boldsymbol{\theta}_k = \boldsymbol{\theta}_0, \ \forall \ k,$$

 $\mathcal{H}_a: \mathcal{H}_0 \text{ is false.}$

Under \mathcal{H}_0 , we fall in the case where the distribution G is a Dirac function and $\theta_k = \theta_0, \forall k$.

G.Bakalli MGMWM April 25, 2018 11 / 15

WVIC with Multiple Signal Replicates

G.Bakalli MGMWM April 25, 2018 12 / 15

Thank you very much for your attention!

A special thanks to

- Prof. Nasser El-Sheimy (U. Geneva)
- Justin Lee (Penn State University)

Any questions?

More info...

SMAC-group.com

github.com/SMAC-Group

gaetan.bakalli @unige.ch

@SMAC_Group

Two Estimators: Average GMWM vs MGMWM

Average GMWM vs MGMWM

We define $\hat{ heta}^{\circ}$ as the Average GMWM (AGMWM) defined as:

$$\hat{oldsymbol{ heta}}^{\circ} = rac{1}{K} \sum_{k=1}^K ilde{oldsymbol{ heta}}_k \, ,$$

with $\tilde{\theta}_k = \operatorname{argmin}_{\theta_k \in \Theta} \|\hat{\nu}_k - \nu(\theta_k)\|_{\Omega_k}^2$. Remeber that we define the Multisignal GMWM (MGMWM) as

$$\hat{ heta}^\star = \mathop{\mathrm{argmin}}_{ heta \in \Theta} rac{1}{K} \sum_{k=1}^K \|\hat{
u}_k -
u(heta)\|_{\Omega_k}^2.$$

G.Bakalli MGMWM April 25, 2018 14 / 15

Two Estimators: Average GMWM vs MGMWM

Properties

It turns out that the MGMWM appears far more appropriate than the AGMWM for two main reasons:

• The MGMWM is more efficient than the AGMWM, i.e.

$$\frac{\mathsf{tr}\left(\mathsf{min}_{\Omega_i}\,\mathsf{var}\left[\boldsymbol{\hat{\theta}}^{\circ}\right]\right)}{\mathsf{tr}\left(\mathsf{min}_{\Omega_i}\,\mathsf{var}\left[\boldsymbol{\hat{\theta}}^{\star}\right]\right)} \overset{\mathcal{P}}{\longmapsto} c > 1.$$

- From Jensen inequality implies that
 - If $\nu(\theta)$ is linear, i.e for stochastic processes WN, DR and QN, or if $G(\theta_0)$ is a Dirac function,

$$\hat{\boldsymbol{\theta}}^{\star} - \hat{\boldsymbol{\theta}}^{\circ} \stackrel{\mathcal{P}}{\longmapsto} 0.$$

ullet If u(heta) is not linear i.e for stochastic processes RW and AR1, than

$$\hat{\boldsymbol{\theta}}^{\star} - \hat{\boldsymbol{\theta}}^{\circ} \stackrel{\mathcal{P}}{\longmapsto} \delta \neq 0.$$

G.Bakalli MGMWM April 25, 2018 15 / 15