Chapter 6 Sequence and Series

ee24btech11015 - Dhawal

D. MCQs with One or More than One Correct

- 1) If the first and the (2n 1)th terms of an A.P., a G.P. and an H.P. are equal and their n-th terms are a, b and c respectively, then (1988-2 Marks)
 - a) a = b = c
- c) a + b = c
- b) $a \ge b \ge c$
- d) $ac b^2 = 0$
- 2) For $0 < \phi < \pi/2$, if

(1993-2 Marks)

- a) xyz = xz + y
- c) xyz = x + y + z
- b) xyz = xy + z
- d) xyz + yz + x
- 3) Let n be a odd integer. If

$$sinn\theta = \sum_{r=0}^{n} b_r sin^r \theta,$$

for every value of θ , then

(1998-2 Marks)

- a) $b_0 = 1, b_1 = 3$
- b) $b_0 = 0, b_1 = n$
- c) $b_0 = -1, b_1 = 3$
- d) $b_0 = 0, b_1 = n^2 3n + 3$
- 4) Let T_r be the r^{th} term of an A.P., for r=1,2,3,...If for some positive integers m,n we have $T_m =$ $\frac{1}{n}$ and $T_n = \frac{1}{m}$, then T_{mn} equals (1998-2 Marks)

- c) 1
- a) $\frac{1}{mn}$ b) $\frac{1}{m} + \frac{1}{m}$
- 5) If x > 1, y > 1, z > 1 are in G.P., then $\frac{1}{1+\ln x}, \frac{1}{1+\ln y}, \frac{1}{1+\ln z}$ are in (1998-2 Marks)
 - a) A.P.

c) G.P.

b) H.P.

- d) None of these
- 6) For a positive integer n, let $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac$ $\dots \frac{1}{(2^n)-1}$. Then

- a) $a(100) \le 100$
- c) $a(200) \le 100$
- b) a(100) > 100
- d) a(200) > 100
- 7) A straight line through the vertex P of a triangle POR intersects the side QR at the point S and the circumcircle of the triangle PQR at the point T. If S is not the centre of the circumcircle,then (2008)

8) Let

$$S_n = \sum_{k=1}^n \frac{n}{n^2 + kn + k^2}$$
 and $T_n = \sum_{k=0}^{n-1} \frac{n}{n^2 + kn + k^2}$

for n=1,2,3,... Then,

(2008)

9) Let

$$S_n = \sum_{k=1}^{4n} (-1)^{\frac{k(k+1)}{2}} k^2.$$

Then S_n can take value(s) (JEE Adv.2013)

- a) 1056
- c) 1120
- b) 1088
- d) 1332
- 10) Let α and β be the roots of $x^2 x 1 = 0$, with $\alpha > \beta$. For all positive integers n, define

$$a_n = \frac{\alpha_n - \beta_n}{\alpha - \beta}, n \ge 2$$

$$b_1 = 1$$
 and $b_n = a_{n-1} + a_{n+1}, n \ge 1$

Then which of the following options is/are (JEE Adv. 2019)

- a) $\sum_{n=1}^{\infty} \frac{a_n}{10^n} = \frac{10}{89}$ b) $B_n = a^n + b^n \text{ for all } n \ge 1$
- c) $a_1 + a_2 + a_3 + \dots + a_n = a_{n+2} 1$ for all $n \ge 1$ d) $\sum_{n=1}^{\infty} \frac{b_n}{10^n} = \frac{8}{89}$

E. Subjective Problems

1) The harmonic mean of two numbers is 4. Their arithmetic mean A and the geometric mean G satisfy the relation.

 $2A + G^2 = 27$

Find the two numbers. (1979)

- 2) The interior angles of a polygon are in arithmetic progression. The smallest angle is 120° and the common difference is 5°Find the number of sides of the polygon. (1980)
- 3) Does there exist a geometric progression containing 27, 8 and 12 as three of its terms? If it exits, how many such progressions are possible? (1982-3 Marks)
- 4) Find three numbers a,b,c, between 2 and 18 such that
 - a) their sum is 25
 - b) the numbers 2,a,b are consecutive terms of an A.P. and
 - c) the numbers b,c,18 are consecutive terms of a G.P. (1983-2 Marks)
- 5) If a > 0, b > 0, c > 0, prove that $(a + b + c)(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) \ge 9$ (1984-2 Marks)