Filter Summary Report: TIA,simple,Z1,ZL

Generated by MacAnalog-Symbolix

December 7, 2024

Contents

- 1 Examined H(z) for TIA simple Z1 ZL: $\frac{Z_1Z_Lg_m}{Z_1g_m+1}$
- 2 HP
- 3 BP
- 3.1 BP-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_L Z_1 g_m}{Z_1 g_m + 1}$
Qz: 0
Wz: None

3.2 BP-2 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_L Z_1 g_m}{Z_1 g_m + 1}$
Qz: 0
Wz: None

3.3 BP-3 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_L Z_1 g_m}{Z_1 g_m + 1}$
Qz: 0
Wz: None

$$H(z) = \frac{Z_1 Z_L g_m}{Z_1 g_m + 1}$$

$$H(s) = \frac{L_L R_L Z_1 g_m s}{\left(Z_1 g_m + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)} \label{eq:hamiltonian}$$

$$H(s) = \frac{L_L R_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

$$H(s) = \frac{L_L R_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

3.4 BP-4
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_L Z_1 g_m}{Z_1 g_m + 1}$
Qz: 0
Wz: None

3.5 BP-5
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_L Z_1 g_m}{Z_1 g_m + 1}$
Qz: 0
Wz: None

3.6 BP-6
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_L Z_1 g_m}{Z_1 g_m + 1}$
Qz: 0
Wz: None

3.7 BP-7
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$

$$H(s) = \frac{L_L R_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

$$H(s) = \frac{L_L R_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

$$H(s) = \frac{L_L R_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

$$H(s) = \frac{L_{L}R_{L}Z_{1}g_{m}s}{\left(Z_{1}g_{m}+1\right)\left(C_{L}L_{L}R_{L}s^{2}+L_{L}s+R_{L}\right)}$$

bandwidth:
$$\frac{1}{C_L R_L}$$
 K-LP: 0
K-HP: 0
K-BP: $\frac{R_L Z_1 g_m}{Z_1 g_m + 1}$ Qz: 0
Wz: None

3.8 BP-8
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_L Z_1 g_m}{Z_1 g_m + 1}$
Qz: 0
Wz: None

3.9 BP-9
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_L Z_1 g_m}{Z_1 g_m + 1}$
Qz: 0
Wz: None

3.10 BP-10
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_L Z_1 g_m}{Z_1 g_m + 1}$
Qz: 0
Wz: None

$$H(s) = \frac{L_L R_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

$$H(s) = \frac{L_L R_L Z_1 g_m s}{\left(Z_1 g_m + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}$$

$$H(s) = \frac{L_L R_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

3.11 BP-11
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \frac{L_LR_Ls}{C_LL_LR_Ls^2+L_Ls+R_L}\right)$$

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_L Z_1 g_m}{Z_1 g_m + 1}$
Qz: 0
Wz: None

4 LP

5 BS

5.1 BS-1
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{R_L}{L_L}$$
 K-LP:
$$\frac{R_LZ_1g_m}{Z_1g_m+1}$$
 K-HP:
$$\frac{R_LZ_1g_m}{Z_1g_m+1}$$
 K-BP: 0
Qz: None
Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

5.2 BS-2 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$

$$\begin{aligned} &\text{Q: } \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L}\\ &\text{wo: } \sqrt{\frac{1}{C_LL_L}}\\ &\text{bandwidth: } \frac{R_L}{L_L}\\ &\text{K-LP: } \frac{R_LZ_1g_m}{Z_1g_m+1}\\ &\text{K-HP: } \frac{R_LZ_1g_m}{Z_1g_m+1}\\ &\text{K-BP: } 0\\ &\text{Qz: None}\\ &\text{Wz: } \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

$$H(s) = \frac{L_L R_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

$$H(s) = \frac{R_L Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}$$

$$H(s) = \frac{R_L Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}$$

5.3 BS-3
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$\begin{aligned} & \text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ & \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ & \text{bandwidth:} \ \frac{R_L}{L_L} \\ & \text{K-LP:} \ \frac{R_L Z_1 g_m}{Z_1 g_m + 1} \\ & \text{K-HP:} \ \frac{R_L Z_1 g_m}{Z_1 g_m + 1} \\ & \text{K-BP:} \ 0 \\ & \text{Qz:} \ \text{None} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.4 BS-4
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_LL_L}} \\ &\text{bandwidth: } \frac{R_L}{L_L} \\ &\text{K-LP: } \frac{R_LZ_1g_m}{Z_1g_m+1} \\ &\text{K-HP: } \frac{R_LZ_1g_m}{Z_1g_m+1} \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

5.5 BS-5
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{R_L}{L_L}$$
 K-LP:
$$\frac{R_LZ_1g_m}{Z_1g_m+1}$$
 K-HP:
$$\frac{R_LZ_1g_m}{Z_1g_m+1}$$
 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

$$H(s) = \frac{R_L Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}$$

$$H(s) = \frac{R_L Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}$$

$$H(s) = \frac{R_L Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}$$

5.6 BS-6
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$\begin{aligned} & \text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ & \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ & \text{bandwidth:} \ \frac{R_L}{L_L} \\ & \text{K-LP:} \ \frac{R_L Z_1 g_m}{Z_1 g_m + 1} \\ & \text{K-HP:} \ \frac{R_L Z_1 g_m}{Z_1 g_m + 1} \\ & \text{K-BP:} \ 0 \\ & \text{Qz:} \ \text{None} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.7 BS-7
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_LL_L}} \\ &\text{bandwidth: } \frac{R_L}{L_L} \\ &\text{K-LP: } \frac{R_LZ_1g_m}{Z_1g_m+1} \\ &\text{K-HP: } \frac{R_LZ_1g_m}{Z_1g_m+1} \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

5.8 BS-8
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{R_L}{L_L}$$
 K-LP:
$$\frac{R_LZ_1g_m}{Z_1g_m+1}$$
 K-HP:
$$\frac{R_LZ_1g_m}{Z_1g_m+1}$$
 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

$$H(s) = \frac{R_L Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}$$

$$H(s) = \frac{R_L Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}$$

$$H(s) = \frac{R_L Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}$$

5.9 BS-9
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{R_L}{L_L}$$
 K-LP:
$$\frac{R_LZ_1g_m}{Z_1g_m+1}$$
 K-HP:
$$\frac{R_LZ_1g_m}{Z_1g_m+1}$$
 K-BP: 0

Qz: None Wz: $\sqrt{\frac{1}{C_L L_L}}$

5.10 BS-10
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_L}{L_L} \\ &\text{K-LP: } \frac{R_L Z_1 g_m}{Z_1 g_m + 1} \\ &\text{K-HP: } \frac{R_L Z_1 g_m}{Z_1 g_m + 1} \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.11 BS-11
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \frac{R_L(C_LL_Ls^2+1)}{C_LL_Ls^2+C_LR_Ls+1}\right)$$

Parameters:

$$\begin{aligned} &\text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L} \\ &\text{wo:} \ \sqrt{\frac{1}{C_LL_L}} \\ &\text{bandwidth:} \ \frac{R_L}{L_L} \\ &\text{K-LP:} \ \frac{R_LZ_1g_m}{Z_1g_m+1} \\ &\text{K-HP:} \ \frac{R_LZ_1g_m}{Z_1g_m+1} \\ &\text{K-BP:} \ 0 \\ &\text{Qz:} \ \text{None} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

6 **GE**

7 AP

$$H(s) = \frac{R_L Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}$$

$$H(s) = \frac{R_L Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}$$

$$H(s) = \frac{R_L Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}$$

8 INVALID-NUMER

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (R_1, \infty, \infty, \infty, \infty, R_L)$

$$H(s) = \frac{R_L Z_1 g_m}{Z_1 g_m + 1}$$

10.2 INVALID-ORDER-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{Z_1 g_m}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L Z_1 g_m}{(Z_1 g_m + 1) (C_L R_L s + 1)}$$

10.4 INVALID-ORDER-4 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{Z_1 g_m (C_L R_L s + 1)}{C_L s (Z_1 g_m + 1)}$$

10.5 INVALID-ORDER-5 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

$$H(s) = \frac{Z_1 g_m (C_L L_L s^2 + 1)}{C_L s (Z_1 g_m + 1)}$$

10.6 INVALID-ORDER-6 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L s^2 + 1)}$$

10.7 INVALID-ORDER-7 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.8 INVALID-ORDER-8 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + 1 \right)}$$

10.9 INVALID-ORDER-9 $Z(s) = (L_1 s, \infty, \infty, \infty, \infty, R_L)$

$$H(s) = \frac{R_L Z_1 g_m}{Z_1 g_m + 1}$$

10.10 INVALID-ORDER-10 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{Z_1 g_m}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.11 INVALID-ORDER-11 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L Z_1 g_m}{(Z_1 g_m + 1) (C_L R_L s + 1)}$$

10.12 INVALID-ORDER-12 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{Z_1 g_m (C_L R_L s + 1)}{C_L s (Z_1 g_m + 1)}$$

10.13 INVALID-ORDER-13 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

$$H(s) = \frac{Z_1 g_m (C_L L_L s^2 + 1)}{C_L s (Z_1 g_m + 1)}$$

10.14 INVALID-ORDER-14 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L s^2 + 1)}$$

10.15 INVALID-ORDER-15 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.16 INVALID-ORDER-16 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + 1 \right)}$$

10.17 INVALID-ORDER-17 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$

$$H(s) = \frac{R_L Z_1 g_m}{Z_1 g_m + 1}$$

10.18 INVALID-ORDER-18 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{Z_1 g_m}{C_L s \left(Z_1 g_m + 1\right)}$$

10.19 INVALID-ORDER-19
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{(Z_1 g_m + 1) (C_L R_L s + 1)}$$

10.20 INVALID-ORDER-20
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L R_L s + 1\right)}{C_L s \left(Z_1 g_m + 1\right)}$$

10.21 INVALID-ORDER-21
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m (C_L L_L s^2 + 1)}{C_L s (Z_1 g_m + 1)}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L s^2 + 1)}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + 1 \right)}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{Z_1 g_m + 1}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{(Z_1 g_m + 1) (C_L R_L s + 1)}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L R_L s + 1\right)}{C_L s \left(Z_1 g_m + 1\right)}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m (C_L L_L s^2 + 1)}{C_L s (Z_1 g_m + 1)}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L s^2 + 1)}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + 1 \right)}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{Z_1 g_m + 1}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{(Z_1 g_m + 1) (C_L R_L s + 1)}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L R_L s + 1\right)}{C_L s \left(Z_1 g_m + 1\right)}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L Z_1 g_m s}{\left(Z_1 g_m + 1\right) \left(C_L L_L s^2 + 1\right)} \label{eq:hamiltonian}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + 1 \right)}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{Z_1 g_m + 1}$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{(Z_1 g_m + 1) (C_L R_L s + 1)}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m (C_L R_L s + 1)}{C_L s (Z_1 g_m + 1)}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L s^2 + 1)}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + 1 \right)}$$

10.49 INVALID-ORDER-49
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{Z_1 g_m + 1}$$

10.50 INVALID-ORDER-50
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.51 INVALID-ORDER-51
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{(Z_1 g_m + 1) (C_L R_L s + 1)}$$

10.52 INVALID-ORDER-52
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m (C_L R_L s + 1)}{C_L s (Z_1 g_m + 1)}$$

10.53 INVALID-ORDER-53
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m (C_L L_L s^2 + 1)}{C_L s (Z_1 g_m + 1)}$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L s^2 + 1)}$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + 1 \right)}$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{Z_1 g_m + 1}$$

10.58 INVALID-ORDER-58
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m}{C_L s \left(Z_1 g_m + 1\right)}$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{(Z_1 g_m + 1) (C_L R_L s + 1)}$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m (C_L R_L s + 1)}{C_L s (Z_1 g_m + 1)}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m (C_L L_L s^2 + 1)}{C_L s (Z_1 g_m + 1)}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L s^2 + 1)}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + 1 \right)}$$

10.65 INVALID-ORDER-65
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{Z_1 g_m + 1}$$

10.66 INVALID-ORDER-66
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m}{C_L s (Z_1 g_m + 1)}$$

10.67 INVALID-ORDER-67
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{(Z_1 g_m + 1) (C_L R_L s + 1)}$$

10.68 INVALID-ORDER-68
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_{1}g_{m} (C_{L}R_{L}s + 1)}{C_{L}s (Z_{1}g_{m} + 1)}$$

10.69 INVALID-ORDER-69
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m (C_L L_L s^2 + 1)}{C_L s (Z_1 g_m + 1)}$$

10.70 INVALID-ORDER-70
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L s^2 + 1)}$$

10.71 INVALID-ORDER-71
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left(Z_1 q_m + 1 \right)}$$

10.72 INVALID-ORDER-72
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + 1 \right)}$$

10.73 INVALID-ORDER-73
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{Z_1 g_m + 1}$$

10.74 INVALID-ORDER-74
$$Z(s) = \left(\frac{L_1s}{C_1L_1s^2+1} + R_1, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{Z_1 g_m}{C_L s \left(Z_1 g_m + 1\right)}$$

10.75 INVALID-ORDER-75
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{(Z_1 g_m + 1) (C_L R_L s + 1)}$$

10.76 INVALID-ORDER-76
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m (C_L R_L s + 1)}{C_L s (Z_1 g_m + 1)}$$

10.77 INVALID-ORDER-77
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.78 INVALID-ORDER-78
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L Z_1 g_m s}{\left(Z_1 g_m + 1\right) \left(C_L L_L s^2 + 1\right)} \label{eq:hamiltonian}$$

10.79 INVALID-ORDER-79
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.80 INVALID-ORDER-80
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{\left(Z_1 g_m + 1 \right) \left(C_L L_L s^2 + 1 \right)}$$

10.81 INVALID-ORDER-81
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{Z_1 g_m + 1}$$

10.82 INVALID-ORDER-82
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{Z_1 g_m}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.83 INVALID-ORDER-83
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L Z_1 g_m}{(Z_1 g_m + 1) (C_L R_L s + 1)}$$

10.84 INVALID-ORDER-84
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{Z_1 g_m (C_L R_L s + 1)}{C_L s (Z_1 g_m + 1)}$$

10.85 INVALID-ORDER-85
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + 1 \right)}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.86 INVALID-ORDER-86
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_L Z_1 g_m s}{(Z_1 g_m + 1) (C_L L_L s^2 + 1)}$$

10.87 INVALID-ORDER-87
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{Z_1 g_m \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left(Z_1 g_m + 1 \right)}$$

10.88 INVALID-ORDER-88
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{Z_1g_m\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{\left(Z_1g_m + 1\right)\left(C_LL_Ls^2 + 1\right)}$$