HDMI (三): VGA

目录

- 1、VGA接口
- 2、扫描方式
- 3、VGA时序

1、VGA接口

VGA(Video Graphic Arrary,显示绘图阵列),是 IBM 在 1987 年随 PS/2 机一起推出的使用模拟信号的一种视频传输标准。VGA接口采用非对称分布的15pin 连接,共15根管脚,一共三排。

DB-15 VGA 连接器	针脚	说明	针脚	说明	针脚	说明
	1	红色	6	红色回路(接 地)	11	未连接
	2	绿色	7	绿色回路(接 地)	12	SDA (DDC 数据)
5 4 3 2 1 10 9 8 7 6 15 14 13 12 11	3	蓝色	8	蓝色回路(接 地)	13	水平同步
	4	未连接	9	+5V (熔断电流 为 250 mA)	14	垂直同步
	5	接地 (模拟)	10	接地(同步回路)	15	SCL (DDC 时钟)

VGA接口最常用的就是RGB三个分量和行场同步信号

VGA传输的是模拟信号,所以需要对RGB数据进行数模转换。

而VGA中的SDA、SCL引脚的作用是通过DDC(Display Data Channel,显示数据<mark>通道</mark>)从显示器EEPROM中读取显示器的EDID格式数据(包括分辨率、刷新率、横纵比等),这样就可以通过读取EDID格式数据来自动控制输出分辨率等。如果要使用该功能,则需要在IIC协议下进行数据读取。

2、扫描方式

VGA采用逐行扫描的方式,从左上方开始,自上向下,从左到右。

VGA时序的由来:在VGA兴起的时候,那时候显示器一般由CRT(阴极射线管)构成,阴极射线管发射的电子束从左上方开始,自上向下,从左到右。每扫描完一行,电子束都回到屏幕的下一行的最左侧位置。在这期间,CRT对电子束消隐。每行结束时,用 行同步信号(**一般低电平有效**)进行同步,扫描完所有行,用 场同步信号进行同步(**一般低电平有效**),并使电子束回到左上方,这期间进行场消隐,准备下一场扫描。

虽然现在使用的液晶显示器并不是使用电子束,但是由于液晶显示器后与CRT技术,为了能够兼容传统的显示接口,只要液晶显示器有VGA接口,那就可以使用VGA时序(显示器厂家设计时,已经通过内部电路对VGA接口完全兼容)

3、VGA时序

图 17.1.3 行同步时序

图 17.1.4 场同步时序

hitne //hitne rests nation 40483920

行同步时序:

- 1、产生一个同步HSYNC,HSYNC是一个脉冲信号(常常是低脉冲),周期 e = a + b + c +d;其中的a、b、d(同步、显示后沿,显示前沿)又统称为消隐信号Blank。
- 2、产生显示的数据,也就是RGB三原色,并且在有效数据段中输出

场同步时序: 与行同步时序类似

不同显示分辨率、刷新率的消隐时间不同,具体参数可以参考 VESA(Video Electronics Standards Association,视频电子标准协会)标准。

常用VGA时序参数

显示模式	时钟	行时序(像素数)					帧时序 (行数)				
	(MHz)	a	Ь	С	d	e	0	P	q	r	s
640x480@60	25.175	96	48	640	16	800	2	33	480	10	525
640x480@75	31.5	64	120	640	16	840	3	16	480	1	500
800x600@60	40.0	128	88	800	40	1056	4	23	600	1	628
800x600@75	49.5	80	160	800	16	1056	3	21	600	1	625
1024x768@60	65	136	160	1024	24	1344	6	29	768	3	806
1024x768@75	78.8	176	176	1024	16	1312	3	28	768	1	800
1280x1024@60	108.0	112	248	1280	48	1688	3	38	1024	1	1066
1280x800@60	83.46	136	200	1280	64	1680	3	24	800	1	828
1440x900@60	106.47	152	232	1440	80	1904	3	28	900	1	932

关于时序中的时钟频率计算: 以640*480@60HZ为例

60HZ,即一秒钟的时间内刷新60幅图像,而一副图像包含 800*525=420000(不仅包括有效像素,还有消隐像素)那么1s内要显示的像素点 = 420000*60=25200000,那么最终时钟就为25.2MHZ 但是为什么1VESA中的时钟为125.175MHZ呢?

不是计算错误,而是因为在25.175MHZ时钟的驱动下刷新率达不到60HZ,只有59.94HZ,其实和60HZ也差不多。

在设计时钟时,也不一定要设计完整的25.175MHZ,这种小数点后几位的时钟用PLL比较难生成,一般用PLL话,也不是可以生成任意频率的时钟,所以如下 图,像素时钟有个误差范围(±0.5%),所以在设计640*480@60HZ的VGA时序时,如果对刷新率要求不是很高,可以采用更容易生成的25MHZ的时钟。

分辨率越高、刷新越快,所需要的时钟就越快,所以在设计VGA或者HDMI显示时,一定要注意自己使用的芯片最高工作频率是多少(可以在器件手册查看),同时还要注意PLL(可以在器件手册或者PLL IP核配置界面查看)能生成的最高频率是多少。

Timing Name	= 640 x 480 @ 6	60Hz;			
Hor Pixels Ver Pixels	= 640; = 480;	// Pixels // Lines			
Hor Frequency Ver Frequency	= 31.469; = 59.940:	// kHz // Hz	=	31.8 usec 16.7 msec	/ line / frame
Pixel Clock	= 25.175;	// MHz	=	39.7 nsec	± 0.5%
Character Width	= 8;	// Pixels	=	317.8 nsec	
Scan Type	= NONINTERI	LACED;		// H Phase	= 2.0 %
Hor Sync Polarity Ver Sync Polarity	= NEGATIVE; = NEGATIVE;			18.0% of HT 5.5% of VT	
Hor Total Time Hor Addr Time Hor Blank Start Hor Blank Time Hor Sync Start	= 31.778; = 25.422; = 25.740; = 5.720; = 26.058;	// (usec) // (usec) // (usec) // (usec) // (usec)		100 chars 80 chars 81 chars 18 chars 82 chars	= 640 Pixels = 648 Pixels = 144 Pixels
// H Right Border // H Front Porch Hor Sync Time // H Back Porch // H Left Border	= 0.318; = 0.318; = 3.813; = 1.589; = 0.318;	// (usec) // (usec) // (usec) // (usec) // (usec)	= = =	1 chars 1 chars 12 chars 5 chars 1 chars	= 8 Pixels = 96 Pixels = 40 Pixels
Ver Total Time Ver Addr Time Ver Blank Start Ver Blank Time Ver Sync Start	= 16.683; = 15.253; = 15.507; = 0.922; = 15.571;	// (msec) // (msec) // (msec) // (msec) // (msec)	= = = =	525 lines 480 lines 488 lines 29 lines 490 lines	HT - (1.06xHA) = 4.83
// V Bottom Border // V Front Porch Ver Sync Time // V Back Porch // V Top Border	= 0.254; = 0.064; = 0.064; = 0.794; = 0.254;	// (msec) // (msec) // (msec) // (msec) // (msec)	= = = =	8 lines 2 lines 2 lines 25 lines 8 lines	