模型量化

问题

不同的网络结构,如何保精度地量化到8比特甚至更低的比特位数?

量化研究分类

按照量化方式可以分为

- 线性量化:即量化分立值是均匀的,绝大多数文章研究线性量化
- 非线性量化:量化分立值非均匀

按照是否从 pre-trained 模型出发,可以分为

- 网络模型量化: 即对一个 pre-trained full-precision 模型量化到 fixed-point precision 网络
- 量化网络: 从头训练一个量化的网络

对网络模型量化,按照训练方式分为

- Post-training,这种不需要训练,基本只是做 calibaration
- Training-aware,这种需要量化模拟训练,
 - 。 按照使用的 loss 分类,可以分成
 - 最小化量化误差 (QE Minimization), 通过最小化量化误差来决定量 化超参
 - 数据统计形式(Data Statics),通过数据统计信息决定量化超参
 - 量化超参 BP (BackProp), 即通过网络总的 loss 对超参进行回传, 按照研究 BP 的类型,可以分为
 - 使用 STE 近似:即在 STE 近似基础下是 BP 更加有效
 - 对 STE 近似改进:对 STE 本身进行改进使得 BP 更有效

量化策略

量化理论

论文列表

Quantization Strategies

论文题目	tags	评价	相关资料
Effective Training of Convolutional Neural Networks with Low-bitwidth Weights and Activations		低化难量不训度有传络的难够度提策化渐化随化双蒸者策进试合在量比都升这可步化比训点化可练不效,非时收高。出略:进,机,向馏对略行并,低化基有,些以提精特练在函导时能地在常候敛的作三来(量(量(知。这分了组发比时准提组策进升度量时于数,梯很回网深很足精者种量)。)。识作些别测。现特相线。合略一量。	https://arxiv.org/abs/1908.04680

WRPN: WIDE REDUCED- PRECISION NETWORKS	受R发尝网c数进化在特网保fup一度实发后度fup快精提Wint作了的e加量发低化仍和一该的部甚量络一点时甚了由者将。由于现比后能。由于1年,现比后能。由于1年,1年,1年,1年,1年,1年,1年,1年,1年,1年,1年,1年,1年,1	https://arxiv.org/abs/1709.01134
Incremental Network Quantization: Towards Lossless CNNs with Low- Precision Weights		http://arxiv.org/abs/1612.01064

Post-training

论文题目	tags	评价	相关资料
【Presentation】 8-bit Inference with TensorRT		TensorRT Calibration from Nvidia	http://on-demand.gputechconf.com/gtc/2017/presentation tensorrt.pdf
【Presentation】 Low Precision Inference on GPU		Int8 Quantization General Introduction from Nvidia	https://developer.download.nvidia.com/video/gputechcorinference-at-reduced-precision-on-gpus.pdf
Fighting Quantization Bias With Bias		不用训练的缓 解 mobileNet 内的 MAS 现象	
Post training 4-bit quantization of convolutional networks for rapid-deployment		无训练 4bit,很多计 算近似,效果 比 TensorRT 好一点	
Bit Efficient Quantization for Deep Neural Networks			https://arxiv.org/abs/1910.04877

Training-aware

流派	论文题目	tags	评价	相关资料
Fixed	A Quantization- Friendly Separable Convolution for MobileNets		解决了 mbv2 的 dw-conv 的掉点 问题	

		T	
	Convolutional networks for fast, energy-efficient neuromorphic computing		
	Discovering low-precision networks close to full- precision networks for efficient embedded inference		
	Quantizing deep convolutional networks for efficient inference: A whitepaper	google 的经典 白皮书,量化入 门必读	
QE Minimization	Lq-nets: Learned quantization for highly accurate and compact deep neural networks	本文提出了一个 有效训练 quantizer 的方 法,使得在 very low-bit 量化时,相比这 篇文章之前的 SOTA 方法都有 提升	https://arxiv.org/abs/1807.10029

	1	ı	T	
	Weight Normalization based Quantization for Deep Neural Network Compression			
	Joint training of low-precision neural network with quantization interval parameters	QIL	和 QIL 同一 篇,包含更多细 节	https://deeplearn.org/arxiv/44389/joint-tr precision-neural-network-with-quantization
BackProp	Nice: Noise injection and clamping estimation for neural network quantization	NICE	作者在量化训练的同时逐步在 weights 中注入 噪声,使得量化 具有 dropout 的效果,通过化 特数 b≥4 相比其他为ET 这 有所提升.以用知 Trick 可知 等 有比感知 练中	https://arxiv.org/abs/1810.00162
	Learned Step Size Quantization	LSQ	对 scale 阈值 进行 online 训 练,相比 PACT 完善了 round 函数的梯度反向 传递,效果更好	https://arxiv.org/abs/1902.08153

Trained Uniform Quantization for Accurate and Efficient Neural Network Inference on Fixed-Point Hardware	ALT	作者在 log-domain 对 clip threshold 进行 训练,并克服了 LSQ 具体训练过程的困难,在 MobileNets v1/v2 中测试只需 5 个 epoch FLQ 训练,不掉点	https://arxiv.org/abs/1903.08066
Learning to Quantize Deep Networks by Optimizing Quantization Intervals with Task Loss	QIL	作者提出了一种同时包含pruning和clipping的non-linearquantizer,利用task loss学习quantizer参数可以使得在4-bit下也能保持full-precision的精度。据说是三星npu芯片的4-bit核心算法	https://arxiv.org/abs/1808.05779

Two-Step Quantization for Low-bit Neural Networks	TSQ	作者将 low-bit 训练分成两步: 稀疏量化学习 在 low-bit constraints 下 的非线性回归上 做 2-bit 量 化,该方法相对于full- precision 只掉了0.5 个点,相较于有点提升 掉 5 个点提升显著	http://openaccess.thecvf.com/content_cvpr Step Quantization for CVPR 2018 paper.pdf
Training Quantized Network with Auxiliary Gradient Module		低比特 2bit 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是	https://arxiv.org/abs/1903.11236

	 -		-	
	Learning Low- precision Neural Networks without Straight- Through Estimator (STE)	AB		https://arxiv.org/abs/1903.01061
	Relaxed Quantization For Discretized Neural Networks	RQ		https://arxiv.org/abs/1810.01875
	ProxQuant: Quantized Neural Networks via Proximal Operators			http://arxiv.org/abs/1810.00861
	Mirror Descent View for Neural Network Quantization			https://arxiv.org/abs/1910.08237
BackProp+KD	Apprentice: Using knowledge distillation techniques to improve low- precision network accuracy			https://openreview.net/forum?id=B1ae11ZRb

		蒸馏量化的一篇	
	Model compression via distillation and quantization	经典文章。作者 提出了两种蒸馏 量化方式: (1) quantized distillation: 在训练量化分立 的 student 网 络的过程中使用 蒸馏 loss, (2) differentiable quantization: 通过 SGD 优化	https://openreview.net/forum?id=S1Xo1QbRWhttps://openreview.net/forum.net/forum?id=S1Xo1QbRWhttps://openreview.net/forum.net/fo
Others	EIE: Efficient Inference Engine on Compressed Deep Neural Network	介绍量化底层实现	https://arxiv.org/pdf/1602.01528
	GDRQ: Group- based Distribution Reshaping for Quantization Haibao		

Quantized Network

论文题目	tags	评价	相关资料
BinaryConnect: Training Deep Neural Networks with binary weights during propagations	BNN	作者提出了一种 1-bit 的 Quantized Neural Networks (QNN),在 MNIST 上测试速度快了 7 倍 同时并没有带来精度 上的降低	
Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to +1 or -1			https://arxiv.org/abs/1609.07061
Towards Accurate Binary Convolutional Neural Network			
Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations			http://arxiv.org/abs/1609.07061
Ternary weight networks			
Trained ternary quantization			

DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients		
Xnor-net: Imagenet classification using binary convo- lutional neural networks		
Bridging the accuracy gap for 2-bit quantized neural networks		https://arxiv.org/abs/1807.06964
Deep learning with low precision by half-wave gaussian quantization		https://arxiv.org/abs/1702.00953
Learning Discrete Weights Using the Local Reparameterization Trick	作者提出了一种新的 训练 Binary/Ternary 网 络的方法,通过一种 local reparameterization trick 可以成功地训 练 discrete weights,效果比之 前的 stochastic 或 者 STE 的方法好	https://openreview.net/forum?id=BySRH6CpW https://discourse.brainpp.cn/t/topic/21524
Structured Binary Neural Networks for Accurate Image Classification and Semantic Segmentation		https://arxiv.org/abs/1811.10413

BNN+: Improved	
Binary Network	https://arxiv.org/abs/1812.11800
Training	

Nonlinear Quantization

论文题目	tags	评价	相关资料
Weighted- entropy-based quantization for deep neural networks		作 logQuant	https://ieeexplore.ieee.org/document/8100244

Additive Powers-of-Two Quantization: A Non-uniform Discretization for Neural Networks		作将 po f 非化增 po f 量度可其度实表最量如 DS Ne P Do 相要者几 we t 线器加 we t 化,以计优验明近化 Q G,,T,F R E L L L L L , A E L L L , A E L L L , B E L L L , B E L L , B E L L , B E L L , B E L L , B E L L , B E L L , B E L L , B E L L , B E L L , B E L L , B E L L , B E L L , B E L L , B E L L L , B E L L L , B E L L L , B E L L L L L L L L L L L L L L L L L L	https://openreview.net/forum?id=BkgXT24tDS
Joint training of low- precision neural network with quantization interval parameters	QIL		https://deeplearn.org/arxiv/44389/joint- training-of-low-precision-neural-network- with-quantization-interval-parameters

Lq-nets:				
Learned				
quantization				
for highly	LQ-			
accurate and	Net			
compact deep				
neural				
networks				

Quantization Theory

论文题目	tags	评价	相关资料
The High- Dimensional Geometry of Binary Neural Networks			https://arxiv.org/abs/1705.07199
Training Quantized Nets: A Deeper Understanding			https://arxiv.org/abs/1706.02379

Review Articles

论文题目 tags 评价 相关资料	论文题目	tags	175 111 1	
-------------------------	------	------	-----------	--

A Survey on Methods and Theories of Quantized Neural Networks
--