```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import datetime
from matplotlib import style
style.use('fivethirtyeight')
from matplotlib.ticker import AutoMinorLocator
```

```
In [2]:  ### Importing data into Python environment.
```

In [3]: df1=pd.read_csv(r"F:\data sciene course\simplilearn\Data Science and Python\data Sci

```
In [4]: | ##Importing to Time-Date formate through timestamp in python
```

In [5]: Date_Time=[['Date','Time']]
 Comcast_telecom_complaints_data=r"F:\data sciene course\simplilearn\Data Science and
 ComeCasteMasterData=pd.read_csv(Comcast_telecom_complaints_data, parse_dates = Date_
 ComeCasteMasterData.drop(['Date', 'Date_month_year','Time'], axis=1, inplace=True)
 ComeCasteMasterData.head(5)

Out[5]:		Date_Time	Ticket #	Customer Complaint	Received Via	City	State	Zip code	Status	Filing on Behalf of Someone
	0	2015-04- 22 15:53:50	250635	Comcast Cable Internet Speeds	Customer Care Call	Abingdon	Maryland	21009	Closed	No
	1	2015-08- 04 10:22:56	223441	Payment disappear - service got disconnected	Internet	Acworth	Georgia	30102	Closed	No
	2	2015-04- 18 09:55:47	242732	Speed and Service	Internet	Acworth	Georgia	30101	Closed	Yes
	3	2015-07- 05 11:59:35	277946	Comcast Imposed a New Usage Cap of 300GB that	Internet	Acworth	Georgia	30101	Open	Yes
	4	2015-05- 26 13:25:26	307175	Comcast not working and no service to boot	Internet	Acworth	Georgia	30101	Solved	No

In [6]: #Providing the trend chart for the number of complaints at monthly and daily granula

```
In [7]: #Extracting date and Month
    ComeCasteMasterData['date_value'] = ComeCasteMasterData['Date_Time'].dt.date
    ComeCasteMasterData["month_of_the_year"]=ComeCasteMasterData['Date_Time'].dt.strftim
    ComeCasteMasterData.head()
```

Out[7]:

	Date_Time	Ticket #	Customer Complaint	Received Via	City	State	Zip code	Status	Filing on Behalf of Someone	date_'
0	2015-04- 22 15:53:50	250635	Comcast Cable Internet Speeds	Customer Care Call	Abingdon	Maryland	21009	Closed	No	201
1	2015-08- 04 10:22:56	223441	Payment disappear - service got disconnected	Internet	Acworth	Georgia	30102	Closed	No	201
2	2015-04- 18 09:55:47	242732	Speed and Service	Internet	Acworth	Georgia	30101	Closed	Yes	201
3	2015-07- 05 11:59:35	277946	Comcast Imposed a New Usage Cap of 300GB that	Internet	Acworth	Georgia	30101	Open	Yes	201
4	2015-05- 26 13:25:26	307175	Comcast not working and no service to boot	Internet	Acworth	Georgia	30101	Solved	No	201

In [8]:

#Calculating Nos of complians per day

df_perday=ComeCasteMasterData.groupby('date_value').size().reset_index().rename(colu
df_perday

Out[8]:	date_value	Complains_Perday

0	2015-01-04		18
1	2015-01-05		12
2	2015-01-06		25
3	2015-02-04		27
4	2015-02-05		7
86	2015-11-05		12
87	2015-11-06		21
88	2015-12-04		15
89	2015-12-05		7
90	2015-12-06		43

91 rows × 2 columns

In [9]:

df_perday.max()

Out[9]: date_value 2
Complains_Perday

2015-12-06 218 dtype: object

```
In [27]: #Extracting the month from the timestamp
    df=ComeCasteMasterData
    df_perMonth=ComeCasteMasterData.groupby('month_of_the_year').size().reset_index().re
    #df_perMonth=df_perMonth1.sort_values("Complains_Per_Month", ascending=False)
    df_perMonth
```

Out[27]:		month_of_the_year	Complains_Per_Month
	0	Apr-15	375
	1	Aug-15	67
	2	Dec-15	65
	3	Feb-15	59
	4	Jan-15	55
	5	Jul-15	49
	6	Jun-15	1046
	7	Mar-15	45
	8	May-15	317
	9	Nov-15	38
	10	Oct-15	53
	11	Sep-15	55

Showing trend chart per day basis

```
In [11]:
    plt.figure(figsize = (15,5))
    sns.lineplot(data=df_perday, x='date_value', y='Complains_Perday',marker = 'd', mark
    plt.xlabel('Date of the Year', fontsize = 14, fontfamily = 'Serif')
    plt.ylabel('Complains per day', fontsize = 14, fontfamily = 'Serif')
    plt.title('Nos of Complains per Day (Fig 1)', fontsize = 16, fontfamily = 'Arial', f
    #plt.annotate('Max',xy=(2015-06, 150), xytext = (5,75), fontsize = 18, fontfamily =
    plt.tick_params(labelrotation=45)
    plt.legend()
    plt.show()
```



```
In [12]: print(f"The complain is highest in the day \n{df_perday.max()}")
```

The complain is highest in the day date_value 2015-12-06 Complains_Perday 218 dtype: object

Showing trend chart per Month basis

```
plt.figure(figsize = (15,5))
sns.lineplot(data=df_perMonth, x="month_of_the_year", y='Complains_Per_Month',marker
plt.xlabel('Month of the Year', fontsize = 14, fontfamily = 'Serif')
plt.ylabel('Complains per Month', fontsize = 14, fontfamily = 'Serif')
plt.title('Nos of Complains per Month (Fig 2)', fontsize = 16, fontfamily = 'Arial',
#plt.annotate('Max',xy=(2015-06, 150), xytext = (5,75), fontsize = 18, fontfamily =
plt.tick_params(labelrotation=45)
plt.legend()
plt.show()
```



```
In [26]: print(f"The complain is highest in the \n{df_perMonth.head(1)}")
```

```
The complain is highest in the month_of_the_year Complains_Per_Month 6 Jun-15 1046
```

From Fig1 and Fig 2 it can be observed that the complain was highest in the day 2015-12-06 and month wise it was highest in the Month Jun-15

#Table with the frequency of complaint types.

```
In [15]:
    df2=ComeCasteMasterData
    df2['Filtered Complaint'] = df2['Customer Complaint'].apply(lambda x : x.upper().rep
    df2.head(3)
```

Out[15]:		Date_Time	Ticket #	Customer Complaint	Received Via	City	State	Zip code	Status	Filing on Behalf of Someone	date_'
	0	2015-04- 22 15:53:50	250635		Customer Care Call	Abingdon	Maryland	21009	Closed	No	201

	Date_Time	Ticket #	Customer Complaint	Received Via	City	State	Zip code	Status	Filing on Behalf of Someone	date_
1	2015-08- 04 10:22:56	223441	Payment disappear - service got disconnected	Internet	Acworth	Georgia	30102	Closed	No	201
2	2015-04- 18 09:55:47	242732	Speed and Service	Internet	Acworth	Georgia	30101	Closed	Yes	201
4										•

In [16]:

```
df3=df2
#Defining the class of complain types
strings = ['SPEEDS', "SPEED", 'PAYMENT', 'SERVICE', "BILL", "INTERNET", "XFINITY", "DAT
#Fitering based on this class
for x in strings:
    df3.loc[df3['Filtered Complaint'].str.contains(x,na=True), 'Complain_type']=x
df3.loc[df3['Filtered Complaint'].str.contains("CHARGE",na=True), 'Complain_type']="P
df3.loc[df3['Filtered Complaint'].str.contains("PAYMENT",na=True), 'Complain_type']="
df3.loc[df3['Filtered Complaint'].str.contains("CAP",na=True), 'Complain_type']="DATA
df3.loc[df3['Filtered Complaint'].str.contains("DECEPTIVE",na=True), 'Complain_type']="DATA
df3.loc[df3['Filtered Complaint'].str.contains("SPEED",na=True), 'Complain_type']="IN
df3.loc[df3['Filtered Complaint'].str.contains("REFUSE",na=True), 'Complain_type']="S
df3['Complain_type'] = df3['Complain_type'].fillna("OTHERS")
df3.head()
```

Out[16]:

Date_Time	Ticket #	Customer Complaint	Received Via	City	State	Zip code	Status	Filing on Behalf of Someone	date_
2015-04- 0 22 15:53:50	250635	Comcast Cable Internet Speeds	Customer Care Call	Abingdon	Maryland	21009	Closed	No	201
2015-08- 1 04 10:22:56	223441	Payment disappear - service got disconnected	Internet	Acworth	Georgia	30102	Closed	No	201
2015-04- 2 18 09:55:47	242732	Speed and Service	Internet	Acworth	Georgia	30101	Closed	Yes	201
2015-07- 3 05 11:59:35	277946	Comcast Imposed a New Usage Cap of 300GB that	Internet	Acworth	Georgia	30101	Open	Yes	201
2015-05- 4 26 13:25:26	307175	Comcast not working and no service to boot	Internet	Acworth	Georgia	30101	Solved	No	201

In [17]:

#Calculating Complain Frequency and Complain type percentage for each complain class df_ComplainType=df3.groupby('Complain_type').size().reset_index().rename(columns={0:

```
df_ComplainType["COMPLAIN_TYPE_PERCENT"] = df_ComplainType["Complain_Type_Frequency"]/
df_ComplainType["COMPLAIN_TYPE_PERCENT"] = np.round(df_ComplainType["COMPLAIN_TYPE_P
df_ComplainType
```

Out[17]:		Complain_type	Complain_Type_Frequency	COMPLAIN_TYPE_PERCENT
	0	BILL	270	12.14
	1	CABLE	45	2.02
	2	DATA	226	10.16
	3	FRAUD	53	2.38
	4	НВО	30	1.35
	5	INTERNET	506	22.75
	6	MAIL	20	0.90
	7	OTHERS	574	25.81
	8	OUTAGE	22	0.99
	9	PRICE	172	7.73
	10	SERVICE	223	10.03
	11	USE	10	0.45
	12	XFINITY	73	3.28

```
fig, ax = plt.subplots(figsize=(15,5))
x = df_ComplainType['Complain_type']
y = df_ComplainType['COMPLAIN_TYPE_PERCENT']
ax.plot(x, y,marker = 'd', markersize = 10, markerfacecolor = 'Black', lw = 2, labe
ax.set_xlabel('Complain type')
ax.set_ylabel('Nos of Complain')
ax.set_title('Complain Type Frequency')
plt.legend()
plt.show()
```


From the graph it can be observed that the complains are mostly in Internet domain. Though in the graph and data the No of complains are most in OTHERS category, it is not to be considered as it is unclassified data which does not belong to any particular domain and even if it is classified, no one class under OTHERS category will be able to cross the Nos of complain in internet domain.

Creating a new categorical variable with value

as Open and Closed. Open & Pending is to be categorized as Open and Closed & Solved is to be categorized as Closed.

```
In [19]:
    df_Open_Close=ComeCasteMasterData
    df_Open_Close.loc[df_Open_Close['Status'].str.contains('Closed|Solved',na=True),'Com
    df_Open_Close.loc[df_Open_Close['Status'].str.contains('Open|Pending',na=True),'Comp
    df_Open_Close.head()
```

\cap	-4-	Γ1	\cap I	
U	uч	1 1	9	

Da	ate_Time	Ticket #	Customer Complaint	Received Via	City	State	Zip code	Status	Filing on Behalf of Someone	date_
0	2015-04- 22 15:53:50	250635	Comcast Cable Internet Speeds	Customer Care Call	Abingdon	Maryland	21009	Closed	No	201
1	2015-08- 04 10:22:56	223441	Payment disappear - service got disconnected	Internet	Acworth	Georgia	30102	Closed	No	201
2	2015-04- 18 09:55:47	242732	Speed and Service	Internet	Acworth	Georgia	30101	Closed	Yes	201
3	2015-07- 05 11:59:35	277946	Comcast Imposed a New Usage Cap of 300GB that	Internet	Acworth	Georgia	30101	Open	Yes	201
4	2015-05- 26 13:25:26	307175	Comcast not working and no service to boot	Internet	Acworth	Georgia	30101	Solved	No	201

In [20]:

#df_statwise_complain_grouped=df_Open_Close[["State",'Complain Closed/Open']].groupb
df_statwise_complain_grouped=df_Open_Close[["State",'Complain Closed/Open']].groupby
#df_statwise_complain_grouped
df_statwise_complain_grouped

Out[20]:

	State	Complain Closed/Open	Complain_Type_Frequency
0	Alabama	Closed	17
1	Alabama	Open	9
2	Arizona	Closed	14
3	Arizona	Open	6
4	Arkansas	Closed	6
•••			
72	Virginia	Open	11
73	Washington	Closed	75
74	Washington	Open	23
75	West Virginia	Closed	8

State Complain Closed/Open Complain_Type_Frequency

76 West Virginia Open

77 rows × 3 columns

In [21]:
 sns.set(font_scale=10)
 sns.displot(data=df_Open_Close, x="State", hue='Complain Closed/Open',multiple="stac
 plt.tick_params(labelrotation=45)
 plt.show()

In [22]: #Calculating the state with highest no of complains (Method2)
 df_state_sorted=df_Open_Close.sort_values(by=["State"],ascending=False)
 dfWithHigestComplain=df_state_sorted["State"].value_counts().head(1)
 print(f"State with Highest No of clomplain is\n{dfWithHigestComplain}")

State with Highest No of clomplain is Georgia 288
Name: State, dtype: int64

Which state has the highest percentage of unresolved complaints

In [23]:

StateWithHighestUnresolvedComplains=df_statwise_complain_grouped
StateWithHighestUnresolvedComplainsOpen=df_statwise_complain_grouped.copy()
#Filtering and copying the Open or unresolved complains
StateWithHighestUnresolvedComplainsOpen=StateWithHighestUnresolvedComplains[(StateWithGalculating the percentage of Unresolved complain
StateWithHighestUnresolvedComplainsOpen["Unresolved_Complain_Percentage"]=(StateWithCalculating the percentage of unresolved_complain_Percentage"]=(StateWithCalculating the percentage)

| Complain_Percentage of Unresolved_Complain_Percentage of Unreso

State with highest percentage of unresolved complaints
State West Virginia
Complain Closed/Open Open
Complain_Type_Frequency 80
Unresolved_Complain_Percentage 15.473888
dtype: object

The percentage of complaints resolved till date, which were received through the Internet and customer care calls.

ComplainInternetCustomercare=df_Open_Close
 ComplainInternetCustomercar=ComplainInternetCustomercare[(ComplainInternetCustomerca
 ComplainInternetCustomercar=ComplainInternetCustomercare[(ComplainInternetCustomerca
 PercentageOfComplainResovled=ComplainInternetCustomercar["Complain Closed/Open"].cou
 print(f"The percentage of complaints resolved till date that were received through t

The percentage of complaints resolved till date that were received through the inter

net and customercare calls 76.75

In []:			