Réseaux de neurones à convolution

Guillaume Bourmaud

PLAN

- I. Couche de convolution
- II. Réseaux de neurones à convolution

I) Couche de convolution

Limites d'une transformation affine générale (FC)

 $\mathbf{x}: 640 \times 480 \times 3 \approx 10^6$ éléments

Limites d'une transformation affine générale (FC)

 $\mathbf{x}: 640 \times 480 \times 3 \approx 10^6$ éléments

Exemple d'une seule couche FC préservant la résolution de l'image d'entrée

Limites d'une transformation affine générale (FC)

 $\mathbf{x}: 640 \times 480 \times 3 \approx 10^6$ éléments

Exemple d'une seule couche FC préservant la résolution de l'image d'entrée

Occupation mémoire de W: 4 octets (32 bits) x 10°x10° = 4To.

Nombre de « multiplications+additions » également très élevé.

Transformation affine générale

$$\left[egin{array}{ccccc} \mathtt{W}_{11} & \mathtt{W}_{12} & \mathtt{W}_{13} & \mathtt{W}_{14} \ \mathtt{W}_{21} & \mathtt{W}_{22} & \mathtt{W}_{23} & \mathtt{W}_{24} \ \mathtt{W}_{31} & \mathtt{W}_{32} & \mathtt{W}_{33} & \mathtt{W}_{34} \end{array}
ight] \left[egin{array}{c} \mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4 \end{array}
ight] + \left[egin{array}{c} \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \end{array}
ight]$$

"Fully Connected"

Transformation affine générale

Localement connecté

$$\left[egin{array}{cccc} \mathtt{W}_{11} & \mathtt{W}_{12} & 0 & 0 \ 0 & \mathtt{W}_{22} & \mathtt{W}_{23} & 0 \ 0 & 0 & \mathtt{W}_{33} & \mathtt{W}_{34} \end{array}
ight] \left[egin{array}{c} \mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4 \end{array}
ight] + \left[egin{array}{c} \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \end{array}
ight]$$

"Fully Connected"

Transformation affine générale

$$\begin{bmatrix} \begin{bmatrix} \mathsf{W}_{11} & \mathsf{W}_{12} & \mathsf{W}_{13} & \mathsf{W}_{14} \\ \mathsf{W}_{21} & \mathsf{W}_{22} & \mathsf{W}_{23} & \mathsf{W}_{24} \\ \mathsf{W}_{31} & \mathsf{W}_{32} & \mathsf{W}_{33} & \mathsf{W}_{34} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathsf{W}_{11} & \mathsf{W}_{12} & 0 & 0 \\ 0 & \mathsf{W}_{22} & \mathsf{W}_{23} & 0 \\ 0 & 0 & \mathsf{W}_{33} & \mathsf{W}_{34} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathsf{W}_{11} & \mathsf{W}_{12} & 0 & 0 \\ 0 & \mathsf{W}_{11} & \mathsf{W}_{12} & 0 \\ 0 & 0 & \mathsf{W}_{11} & \mathsf{W}_{12} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} b \\ b \\ b \end{bmatrix}$$

Localement connecté

$$\left[egin{array}{cccc} \mathtt{W}_{11} & \mathtt{W}_{12} & 0 & 0 \ 0 & \mathtt{W}_{22} & \mathtt{W}_{23} & 0 \ 0 & 0 & \mathtt{W}_{33} & \mathtt{W}_{34} \end{array}
ight] \left[egin{array}{c} \mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4 \end{array}
ight] + \left[egin{array}{c} \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \end{array}
ight]$$

Équivariance par translation « Convolution »

$$\begin{bmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} & 0 & 0 \\ 0 & \mathbf{W}_{11} & \mathbf{W}_{12} & 0 \\ 0 & 0 & \mathbf{W}_{11} & \mathbf{W}_{12} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} b \\ b \\ b \end{bmatrix}$$

"Fully Connected"

Transformation affine générale

$$\left[egin{array}{ccccc} \mathtt{W}_{11} & \mathtt{W}_{12} & \mathtt{W}_{13} & \mathtt{W}_{14} \ \mathtt{W}_{21} & \mathtt{W}_{22} & \mathtt{W}_{23} & \mathtt{W}_{24} \ \mathtt{W}_{31} & \mathtt{W}_{32} & \mathtt{W}_{33} & \mathtt{W}_{34} \end{array}
ight] \left[egin{array}{c} \mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4 \end{array}
ight] + \left[egin{array}{c} \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \end{array}
ight]$$

Localement connecté

$$\begin{bmatrix} \begin{bmatrix} \mathsf{W}_{11} & \mathsf{W}_{12} & \mathsf{W}_{13} & \mathsf{W}_{14} \\ \mathsf{W}_{21} & \mathsf{W}_{22} & \mathsf{W}_{23} & \mathsf{W}_{24} \\ \mathsf{W}_{31} & \mathsf{W}_{32} & \mathsf{W}_{33} & \mathsf{W}_{34} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathsf{W}_{12} & 0 & 0 \\ 0 & \mathsf{W}_{22} & \mathsf{W}_{23} & 0 \\ 0 & 0 & \mathsf{W}_{33} & \mathsf{W}_{34} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} \begin{bmatrix} \mathbf{w}_{11} & \mathsf{W}_{12} & 0 & 0 \\ 0 & \mathsf{W}_{11} & \mathsf{W}_{12} & 0 \\ 0 & 0 & \mathsf{W}_{11} & \mathsf{W}_{12} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} b \\ b \\ b \end{bmatrix}$$

Équivariance par translation « Convolution »

$$\begin{bmatrix} & \mathsf{W}_{11} & \mathsf{W}_{12} & 0 & 0 \\ 0 & \mathsf{W}_{11} & \mathsf{W}_{12} & 0 \\ 0 & 0 & \mathsf{W}_{11} & \mathsf{W}_{12} \end{bmatrix} \begin{bmatrix} & \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} b \\ b \\ b \end{bmatrix}$$

Beaucoup moins de paramètres à stocker

Opération de « convolution » en 2D

En fait, il s'agit d'une intercorrélation

Opération de « convolution » en 2D

En fait, il s'agit d'une intercorrélation

Opération de « convolution » en 2D

En fait, il s'agit d'une intercorrélation

Couche de convolution 2D : un seul filtre

« Tenseur » d'entrée

« Tenseur » = tableau multi-dimensionnel

Couche de convolution 2D : un seul filtre

« Tenseur » d'entrée

Couche de convolution 2D : un seul filtre

Couche de convolution 2D: un seul filtre

$$\mathbf{X}_{i,j}^{(1)} = \sum_{k=0}^{2} \sum_{m=0}^{4} \sum_{n=0}^{4} \mathbf{W}_{k,m,n} \mathbf{X}_{k,i+m,j+n}^{(0)} + b$$

18

19

« Zero padding »

« Zero padding »

Permet de préserver la taille du tenseur d'entrée

« Stride »

Exemple Stride = 1

*

« Stride »

Exemple Stride = 1

*

*

Exemple Stride = 2

« Stride »

Exemple Stride = 1

*

Exemple Stride = 2

- Taille des filtres
 - En pratique toujours impair
 - Souvent 1x1 ou 3x3, parfois 5x5 ou 7x7

- Taille des filtres
 - En pratique toujours impair
 - Souvent 1x1 ou 3x3, parfois 5x5 ou 7x7
- Nombre de filtres
 - = Nombre de canaux souhaité en sortie

- Taille des filtres
 - En pratique toujours impair
 - Souvent 1x1 ou 3x3, parfois 5x5 ou 7x7
- Nombre de filtres
 - = Nombre de canaux souhaité en sortie
- Quantité de zero-padding
 - Compense la taille du filtre si volonté de préserver la taille de l'entrée
 - 1x1 → padding = 0, 3x3 → padding = 1, 5x5 → padding = 2

- Taille des filtres
 - En pratique toujours impair
 - Souvent 1x1 ou 3x3, parfois 5x5 ou 7x7
- Nombre de filtres (équivalent du nombre de couches caché
 - = Nombre de canaux souhaité en sortie
- Quantité de zero-padding
 - Compense la taille du filtre si volonté de préserver la taille de l'entrée
 - 1x1 → padding = 0, 3x3 → padding = 1, 5x5 → padding = 2
- Stride
 - = 1 si volonté de préserver la résolution de l'entrée
 - = 2 si volonté de réduire la résolution de l'entrée

II) Réseau de neurones à convolution

II)

Réseau de neurones à convolution (CNN)

Réseau de neurones à convolution (CNN)

Réseau de neurones à convolution (CNN)

- FC (transformations affines générales)
- + Conv (transformations affines spécifiques)

Réseau de neurones à convolution (CNN)

→ Initialisation des paramètres d'une couche de convolution identique à ceux d'une FC!

"9"

"9"

"9"

Exemple d'architecture de CNN pour MNIST

39

Architectures de CNN : Deux cas extrêmes

Cas 1: Extraire une information globale présente dans l'image d'entrée

Architectures de CNN: Deux cas extrêmes

Cas 1: Extraire une information globale présente dans l'image d'entrée

Réduction progressive de la résolution

Utilisation de couches de conv ou pooling avec stride = 2

Architectures de CNN: Deux cas extrêmes

Cas 1: Extraire une information globale présente dans l'image d'entrée

Cas 2 : Extraire une information pour chaque pixel de l'image d'entrée

Un « descripteur » par pixel de l'image d'entrée

Comment obtenir un descripteur pour chaque pixel?

Comment obtenir un descripteur pour chaque pixel?

Comment obtenir un descripteur pour chaque pixel?

Les patchs voisins ont beaucoup de pixels en commun \rightarrow calculs redondants

54

Architecture entièrement convolutive

Architecture entièrement convolutive

Descripteur Cx1x1 d'un patch de taille RxR, où RxR s'appelle le Champ Récepteur du CNN (« Receptive Field »)

Architecture entièrement convolutive

Descripteur Cx1x1 d'un patch de taille RxR, où RxR s'appelle le Champ Récepteur du CNN (« Receptive Field »)

Comment avoir un grand champ récepteur tout en restant raisonnable en mémoire et temps de calculs ?

Champ récepteur d'une couche de convolution

Champ récepteur de deux couches de convolution Stride = 1

Champ récepteur RF = 5x5

Remarque : les ReLU n'affectent pas le RF donc on ne les représente pas ici.

Champ récepteur de quatre couches de convolution Stride = 1

Champ récepteur RF = 9x9

→ Croissance du RF très lente ...

Champ récepteur de deux couches de convolution Stride = 2

Champ récepteur RF = 7x7

Champ récepteur de quatre couches de convolution Stride = 2 Le stride = 2 fait monten plus vite le champ recepteur

Champ récepteur RF = 31x31

→ Croissance rapide du RF ... mais baisse de la résolution → Architecture U-Net

