Dynamic Programming 3

Shortest Paths via DP

- 1. Directed graph G = (V, E) with edge weights w(e)
- 2. Can encode undirected graph as a directed graph through use of antiparallel edges (A -> D, D -> A)
 - Directed graph problem is more general than undirected
- 3. For z in V, dist(z) = length of shortest path from s to z
 - dist(s) = 0
 - dist(b) = 5
 - dist(a) = 8
 - dist(e) = 6
 - dist(d) = 12
 - dist(f) = 11
- 4. Dijkstra's algorithm:
 - Given G and s in V, finds dist(z) for all z in V
 - Similar to BFS, explore graph in a layered approach
 - O((n+m) * log(n)) time
 - n + m for vertices vs edges
 - Additional log(n) because BFS uses a priority queue where operations take log(n) time
 - Dijkstra's algorithm requires positive edge weights

Negative Weights Cycles

- 1. Negative weight cycles can cause dist to be -inf
 - Path: Can only visit a vertex once
 - Walk: Can visit a vertex multiple times
 - a -> e -> b is a negative weight cycle
 - Negative weight cycles make the shortest path problem not well-defined
- 2. Given G with w(e) and s in V
 - Find a negative weight cycle
 - Else: find dist(z) for all z in V

Directed Graph with Negative Cycle

Single Source: Subproblem

- 1. Given G with edge weights and s in V
 - Assume no negative weight cycles
 - Shortest path from s to z visits every vertex <= 1
 - $|P| \le n 1$ edges
- 2. DP idea: Use i = 0 -> n 1 edges on the paths
 - For $0 \le i \le n 1$ and z in V
 - Let D(i,z) = length of shortest path from s to z using $\leq i$ edges

Single Source: Recurrence

- 1. For $0 \le i \le n 1$ and z in V
 - Let D(i,z) = length of shortest path from s to z using $\leq i$ edges
- 2. Base case: D(0,s) = 0 and for all z != s, $D(0,z) = \inf$
- 3. For $i \ge 1$: look at shortest path s -> z using i edges
 - $D(i,z) = \min\{D(i-1,y) + w(y,z)\}$ for yz in E
 - Length of shortest path from S to Z that goes through Y D(i-1,y) + w(y,z)
- 4. For $i \ge 1$: look at shortest path s -> z using <= i edges
 - $D(i,z) = \min(\min\{D(i-1,y) + w(y,z)\} \text{ for yz in E, } D(i-1,z))$

Single Source: Summary

- 1. For $0 \le i \le n 1$ and z in V
 - Let D(i,z) = length of shortest path from s to z using $\leq i$ edges
- 2. Base case: D(0,s) = 0 and for all z != s, $D(0,z) = \inf$
- 3. For $i \ge 1$: $D(i,z) = \min(\min\{D(i-1,y) + w(y,z)\})$ for yz in E, D(i-1,z)

Single Source: Pseudocode

```
# G = graph, S = source w = weights
def BellmanFord(G, S, W):
    for all z in V:
        D(0,z) = inf
D(0,s) = 0
    for i = 1 -> n-1:
        for all z in V:
```

```
D(i,z) = D(i-1,z)
for all yz in E:
    if (Di,z) > D(i-1,y) + w(y,z):
        D(i,z) = D(i-1,y) + w(y,z)
return D(n-1,:)
```

- 1. Subtlety: We want to look at all of the edges from y into z
 - Typically when we use adjacency lists, it contains all edges leaving a node
 - Instead, look at the adjacency list for the reverse graph
 - Takes O(n+m) time to compute
- 2. Time complexity:
 - O(n) for outer loop
 - O(m) for inner loop
 - Combined, this takes O(nm) time

Finding Negative Weight Cycle 1

- 1. How to find a negative weight cycle?
 - Negative weight cycle will continue to update graph
 - Check if D(n,:) == D(n-1,:) for some z in V

Bellman-Ford on a Graph with Negative Cycles

All Pairs Shortest Path

- 1. Bellman-Ford looks at a single source
 - Now, look at all pairs
- 2. Given G = (V,E) with edge weights w(e)
 - For y,z in V, let dist(y,z) = length of shortest path y -> z
 - Goal: Find dist(y,z) for all y,z in V
- 3. Easy: Run Bellman-Ford for all s in V

Naive Approach

- 1. What is the running time of the naive all-pairs algorithm?
 - $O(n^2 * m)$
- 2. Better approach: Floyd-Warshall

- $O(n^3)$
- This is better because m can be up to n²

All Pairs: Subproblem

- 1. Bellman-Ford idea: Condition on number of edges
- 2. New idea: let $V = \{1, 2, ..., n\}$
 - Number the vertices
 - Condition on intermediate vertices -> Use prefix of V
- 3. For $0 \le i \le n$ and $1 \le s,t \le n$ (start and end vertices)
 - Let D(i,s,t) = length of shortest path $s \rightarrow t$ using a subset of $\{1, \ldots, i\}$ as intermediate vertices

All Pairs: Base Case

- 1. For $0 \le i \le n$ and $1 \le s,t \le n$ (start and end vertices)
 - Let D(i,s,t) = length of shortest path $s \rightarrow t$ using a subset of $\{1, \ldots, i\}$ as intermediate vertices
- 2. Base case:
 - $D(0,s,t) = \{w(s,t) \text{ if st in E, inf otherwise}\}$

All Pairs: Recurrence

- 1. Base case:
 - $D(0,s,t) = \{w(s,t) \text{ if st in E, inf otherwise}\}$
- 2. For i >= 1: Look at shortest path P s -> t using $\{1, \ldots, i\}$

Case: i not on path

- 1. For i >= 1: Look at shortest path P s -> t using $\{1,\,\dots,\,i\}$
 - if i not on path: D(i,s,t) = D(i-1,s,t)

Case: i is on path

- 1. For $i \ge 1$: Look at shortest path P s -> t using $\{1, \ldots, i\}$
 - if i is on path:
 - We use a subset of the intermediate nodes (maybe all, maybe none)
 - Break up path into four sections:
 - * s to subset
 - * subset to i
 - * i to subset
 - * subset to t

Recurrence: i is on path

- 1. If i is on path:
 - D(i,s,t) = D(i-1,s,i) + D(i-1,i,t)

Recurrence: Summary

1.
$$D(i,s,t) = \min\{D(i-1,s,t), D(i-1,s,i) + D(i-1,i,t)\}\ i = 0 -> n$$

All Pairs: Pseudocode

```
if st in E:
        D(0,s,t) = w(s,t)
else:
        D(0,s,t) = inf

for i = 1 -> n:
    for s = 1 -> n:
    for t = 1 -> n:
        D(i,s,t) = min{D(i-1,s,t), D(i-1,s,i) + D(i-1,i,t)}

return D(n,:,:)
```

All Pairs: Running Time

- 1. What is the worst-case running time of the Floyd-Warshall all pairs shortest path algorithm?
 - $O(n^3)$

Finding Negative Weight Cycle 2

- 1. As written, algorithm assums no negative weight cycles
- 2. How to detect a negative weight cycle?
 - If D(n,a,a) < 0, there is a path to itself with negative weight
 - Check all diagonal entries:
 - if D(n,y,y) < 0 for some y in V

Directed Graph with a Negative Weight Cycle

Comparing Algorithms

- 1. Bellman-Ford
 - Only finds negative weight cycles reachable from the start vertex s
- 2. Floyd-Warshall
 - Finds negative weight cycle anywhere in the graph

DP3 Practice Problems

1. DPV 4.21 (currency exchange)

- Dollar -> Yen -> Pound -> Dollar
 Look for opportunities where this is greater than 0
 Arbitrage opportunity
- Reduce this problem to a negative weight cycle algorithm