第1讲:操作系统概述

第四节:操作系统结构

向勇、陈渝、李国良

清华大学计算机系

xyong,yuchen,liguoliang@tsinghua.edu.cn

2021年9月12日

简单结构

- MS-DOS: 在最小的空间,设计用于提供大部分功能 (1981-1994)
 - 没有拆分为模块
 - 主要用汇编编写
 - 没有安全保护

单体分层结构

内板		应用程序	
		命令行程序 编译器 解释器 系统库	
		系统调用接口	
	信号	文件管理系统	CPU 调度
	字符设备I/O	块设备I/O	虚拟内存管理
	串口驱动	磁盘驱动	物理内存管理
		硬件抽象层	
	串口控制器	块设备控制器	存储控制器
	终端设备	磁盘和磁带	物理内存

- 将单体操作系统 (Monolithic OS) 划分为多层 (levels)
 - 每层建立在低层之上
 - 最底层 (layer 0), 是硬件驱动
 - 最高层 (layer N) 是用户界面
- 每一层仅使用更低一层的功能和服务。

微内核结构

- 尽可能把内核功能移到用户空间
- 用户模块间的通信使用消息传递
- 好处: 灵活/安全...
- 缺点: 性能

外核结构 Exokernel

- 让内核分配物理资源给多个应用程序, 并让每个程序决定如何处理这些资源
- 程序能链接到操作系统库 (libOS) 实现了操作系统抽象
- 保护与控制分离

虚拟机结构 VMM

虚拟机管理器将单独的机器接口转换成很多的虚拟机,每个虚拟机都是一个原始计算机系统的有效副本,并能完成所有的处理器指令。

应用程序运行与 OS 抽象 + 架构的关系

• 硬件 + 操作系统等给应用程序的运行提供了一个"舒适"的执行环境