

. (1)	2. (2)	3. (4)	4. (1)	5. (3)	6. (3)	7. (4)	8. (4)
(2)nathongo	10. (2) athongo						
(1) $-1 \le \log_3 \frac{x}{3}$ $\frac{1}{3} \le \frac{x}{3} \le 3$	≤ 1 mathongo						
$egin{array}{cccccccccccccccccccccccccccccccccccc$							
(2) For $f(x)$ to be $ \tan x - \tan x$							
$\Rightarrow { m tan} x > { m tan}$	$\mathbf{n}x$	hich is not possible.					
	$ax\Rightarrow 2\tan x < 0$						
$\Rightarrow rac{\pi}{2} < x < r$	π	$< n\pi + \pi \cdot n \in I$					
$\therefore x > -3 \ \&$	$(x+1)(x+2)\neq 0,$	i.e., $x \neq -1, -2$					
(1) Domain of $f($		mathongo					
$1 \leq \log_2ig(x^2+x^2+x^2)$ $\Rightarrow 2 \leq x^2+x^2$	$(3x-2) \le 3$ $(3x-2 \le 8)$						
Case $1: x^2 +$ or, $x^2 + 3x -$	$4 \geq 0$						
or, $(x + 4)(x + 1)$ $\therefore x \in (-\infty, 1)$ Case $2: x^2 + 1$	$-4] \cup [1,\infty)$						
or, $x^2 + 3x - $ or, $(x+5)(x$ $\therefore x \in [-5, 2]$	$-2) \le 0$ athongo						
Considering b	ooth Case 1 and Case // mothongo	2 we have, $x \in [-5,$ mothongo	$-4]\cup[1,2]$				
	$egin{aligned} \cos x & ext{is } [-1,1]. \ & \leq 1 \Rightarrow -1 \leq -\cos 3 \ & & \exists x \leq 3 \end{aligned}$	$3x \leq 1$ mathongo					
	$\left[\frac{1}{3},1\right]$ mathongo						
(3) $\frac{x^2+14x+9}{x^2+2x+3}$ $\Rightarrow x^2 + 14x - 3$ $\Rightarrow x^2(y-1)$		0)=0					
Since x is rea	1, $b^2-4ac\geq 0$						
$\Rightarrow 4(y^2 + 49)$ $\Rightarrow (y+5)(y+5)$		12y) < 0					

Answer Keys and Solutions

