

第4章 决策树

- 1. 基本流程
- 2. 划分选择

西瓜书: 第4章4.1和4.2全部

第4章 决策树

- 1. 基本流程
- 2. 划分选择

以二分类任务为例:

我们要对"这是好瓜吗?"问题进行决策时, 通常会进行一系列的判断或"子决策"

- 1. 先看"它是什么颜色?",如果是"青绿色",
- 2. 再看"根蒂是什么形态?",如果是"蜷缩",
- 3. 再判断"它敲起来是什么声音?"

最后,我们得出最终决策:这是个好瓜.

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

□ 决策树(decision tree)

决策树是一种基本的分类与回归方法,决策树模型呈树形结构, 主要由<mark>节点</mark>(根节点、内部节点和叶节点)和<mark>有向边</mark>组成。

□ 决策树(decision tree)

决策树是一种基本的分类与回归方法,决策树模型呈树形结构,主要由节点(根节点、内部节点和叶节点)和边组成。

- ▶ 根节点(一个)
 包含样本全集
- ▶ 分支节点(若干)
 对应于一个属性的测试
- ▶ 叶节点(若干)
 对应于决策结果

概念——决策树(分类问题)

□ 决策树(decision tree)

决策树是一种基本的分类与回归方法,决策树模型呈树形结构,主要由节点(根节点、内部节点和叶节点)和边组成。

用决策树分类

- 从根节点开始,对实例的某一特征进行测试。根据测试结果,将实例分配到其子节点;这时,每一个子节点对应着该特征的一个取值
- 如此递归地对实例进行测试并分配, 直至达到叶节点
- ▶ 最后将实例分配到叶节点的类中

决策树举例(连续值)

决策树即为轴平行分割属性空间

决策树举例 (离散值)

		~		/
	Fea	tures		Classification
Outlook 天气预报	Temp 温度	Humidity 湿度	Wind 风力	Class Play Yes or No 赛事能否进行
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast 多云	Hot	High	Weak	Yes
Rain	Midd	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Midd	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Midd	Normal	Weak	Yes
Sunny	Midd	Normal	Strong	Yes
Overcast	Midd	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Midd	High	Strong	No
Overcast Overcast	Midd Hot	High Normal	Strong Weak	Yes Yes

Feature: Outlook, Temperature, Humidity, Wind

训练数据:

$$D = \{(x_1, y_1), (x_2, y_2), \dots (x_i, y_i), \dots, (x_m, y_m)\}$$

概念——决策树(分类问题)

- □ 决策树(decision tree)
- ▶ 决策过程中提出的每个判定问题都 是对某个属性的"测试"
- ▶ 每个测试结果,或导出最终结论,或导出进一步的判定问题,其考虑范围是在上次决策结果的限定范围之内
- 决策过程的最终结论对应了我们所 希望的判定结果
- ➤ 从根结点到每个叶结点的路径对应 了一个<mark>判定测试序列</mark>

概念——决策树(分类问题)

- □ 决策树(decision tree)
- ▶ 决策过程中提出的每个判定问题都 是对某个属性的"测试"
- ▶ 每个测试结果,或导出最终结论,或导出进一步的判定问题,其考虑范围是在上次决策结果的限定范围之内
- 决策过程的最终结论对应了我们所 希望的判定结果
- ➤ 从根结点到每个叶结点的路径对应 了一个<mark>判定测试序列</mark>

由决策树的根节点到叶节点的每一条路径构成了<mark>一条规则</mark>。

每一个实例都被一条规则且<mark>只</mark>被这条规则所覆 盖。<mark>(互斥并且完备)</mark>

□基本思想

数据: $D = \{(x_1, y_1), (x_2, y_2), \cdots, (x_m, y_m)\}$ 其中 $x_i = \{x_{i1}, x_{i2}, \cdots, x_{id}\} \in \mathbb{R}^d, y_i \in \{1, 2, \cdots, K\}$ 为类标记

	Classification			
Outlook 天气预告	Temp 温度	Humidity 湿度	Wind 风	Class Play Yes or No 赛事能否进行
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast 多云	Hot	High	Weak	Yes
Rain	Midd	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Midd	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Midd	Normal	Weak	Yes
Sunny	Midd	Normal	Strong	Yes

□基本思想

数据: $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$

其中 $x_i = \{x_{i1}, x_{i2}, \dots, x_{id}\} \in \mathbb{R}^d, y_i \in \{1, 2, \dots, K\}$ 为类标记

模型: 分类决策树模型(一种由结点和有向边组成的用于描述对实例进行分类的树形结构)

□基本思想

数据: $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$ 其中 $x_i = \{x_{i1}, x_{i2}, \dots, x_{id}\} \in \mathbb{R}^d, y_i \in \{1, 2, \dots, K\}$ 为类标记

模型: 分类决策树模型(一种由结点和有向边组成的用于描述对实例进行分类的树形结构)

策略:找到一个与训练数据矛盾较小同时泛化能力较强的决策树

□基本思想

数据: $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$ 其中 $x_i = \{x_{i1}, x_{i2}, \dots, x_{id}\} \in \mathbb{R}^d, y_i \in \{1, 2, \dots, K\}$ 为类标记

模型: 分类决策树模型(一种由结点和有向边组成的用于描述对实例进行分类的树形结构)

策略:找到一个与训练数据矛盾较小同时泛化能力较强的决策树

算法: 启发式方法(ID3、C4.5、CART等)

▶ 通常是一个递归地选择最优特征,并根据该特征对训练数据进行分割,使得对各个子数据集有一个最好的分类的过程。

概念——决策树(分类问题)

□ 决策树(decision tree)

决策树是一种基本的分类与回归方法,决策树模型呈树形结构,主要由节点(根节点、内部节点和叶节点)和有向边组成。

用决策树分类的关键问题

- 从根节点开始,对实例的某一特征进行测试(??),根据测试结果,将实例分配到其子节点;这时,每一个子节点对应着该特征的一个取值
- 如此递归地对实例进行测试并分配, 直至达到叶节点(??)
- ▶ 最后将实例分配到叶节点的类中

□基本思想

算法: 启发式方法(ID3、C4.5、CART等)

开始,构建根节点,将所有训练数据都放在根节点。

□基本思想

算法: 启发式方法(ID3、C4.5、CART等)

- 开始,构建根节点,将所有训练数据都放在根节点。
- ▶ 同时,选择一个最优属性,按照这一属性将训练数据集分割成子集,使得各个子集有一个当前条件下最好的分类。
 - 如果,这些子集已经能够被基本正确分类,那么构建叶节点, 并将这些子集分到所对应的叶节点中去;
 - 如果,还有子集不能被正确分类,那么构建中间节点,对这些 子集选择新的最优属性,继续对其进行分割。

□基本思想

算法: 启发式方法(ID3、C4.5、CART等)

- ▶ 开始、构建根节点、将所有训练数据都放在根节点。
- ▶ 同时,选择一个最优属性,按照这一属性将训练数据集分割成子集,使得各个子集有一个当前条件下最好的分类。
 - 如果,这些子集已经能够被基本正确分类,那么构建叶节点, 并将这些子集分到所对应的叶节点中去;
 - 如果,还有子集不能被正确分类,那么构建中间节点,对这些子集选择新的最优属性,继续对其进行分割。
- ➢ 然后,如此递归地进行下去,直至所有训练数据子集被基本 正确分类,或者没有合适的属性为止。

□基本思想

算法: 启发式方法(ID3、C4.5、CART等)

- 开始,构建根节点,将所有训练数据都放在根节点。
- ▶ 同时,选择一个最优属性,按照这一属性将训练数据集分割成子集,使得各个子集有一个当前条件下最好的分类。
 - 如果,这些子集已经能够被基本正确分类,那么构建叶节点, 并将这些子集分到所对应的叶节点中去;
 - 如果,还有子集不能被正确分类,那么构建中间节点,对这些子集选择新的最优属性,继续对其进行分割。
- ➢ 然后,如此递归地进行下去,直至所有训练数据子集被基本 正确分类,或者没有合适的属性为止。
- ▶ 最后,构建叶节点,每个子集被分到叶节点得到各自的类。

基本流程

年龄	Sal	信用等级
35	8000	1
36	6000	0
40	7000	1
25	2000	0

5000

4000

3600

24

20

23

Algorithm	1	决策树学习基本算法
-----------	---	-----------

输入:

- 训练集 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\};$
- 属性集 $A = \{a_1, \ldots, a_d\}.$

过程: 函数 TreeGenerate(D, A)

- 1: **生成结**点 node;
- 2: if D 中样本全属于同一类别 C then
- 3: 将 node 标记为 C 类叶结点; return
- 4: end if
- 5: **if** $A = \emptyset$ **OR** D 中样本在 A 上取值相同 **then**
- 6: 将 node 标记叶结点,其类别标记为 D 中样本数最多的类; return
- 7: end if
- 8: 从 A 中选择最优划分属性 a*;
- 9: for a* 的每一个值 a* do
- 10: 为 node 生成每一个分枝; 令 D_v 表示 D 中在 a_* 上取值为 a_*^v 的样本子集;
- 11: if D_v 为空 then
- 12: 将分枝结点标记为叶结点, 其类别标记为 D 中样本最多的类; return
- 13: else
- 14: 以 TreeGenerate(D_v , $A \{a_*\}$) 为分枝结点
- 15: end if
- 16: end for

输出: 以 node 为根结点的一棵决策树

(1) 当前结点包含的样本全部属于同一类别

甘★☆1 □	年龄	Sal	信用等级
基本流程	35	8000	1
	36	6000	0
•	40	7000	1
Algorithm 1 决策树学习基本算法	25	2000	0
输入:	24	5000	1
• 训练集 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\};$	20	4000	0
• 属性集 $A = \{a_1, \dots, a_d\}$. 过程: 函数 TreeGenerate(D, A)	23	3600	1
1: 生成结点 node;			
2: if D 中样本全属于同一类别 C then	(1)	当前结点包含	含的样本全
3: 将 node 标记为 C 类叶结点; return	部属于	一同一类别	
4: end if			
5: if $A = \emptyset$ OR D 中样本在 A 上取值相同 then		当前属性集	为空,或所
6: 将 node 标记叶结点,其类别标记为 D 中样本数最多的类; retur	<u>"</u> 有样本	在所有属性	上取值相同
7: end if			
8: 从 A 中选择最优划分属性 a_* ;			
9: for <i>a</i> _* 的每一个值 <i>a</i> _* do 对于每一个子集,年龄<3		两个子集	
10: 为 node 生成每一个分枝; 令 D_v 表示 D 中在 a_* 上取值为 a_*^v 的	样本子集;		
11: if D_v 为空 then			
12: 将分枝结点标记为叶结点, 其类别标记为 D 中样本最多的类; \mathbf{r} e	eturn /	E 选	

- 14: 以 $TreeGenerate(D_v, A \{a_*\})$ 为分枝结点 15: **end if**
- 16: end for

else

13:

输出: 以 node 为根结点的一棵决策树

Algorithm 1 决策树学习基本算法 输入: • 训练集 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\};$ • 属性集 $A = \{a_1, \ldots, a_d\}.$ 过程: 函数 TreeGenerate(D, A) 1: **生成结**点 node; (1) 当前结点包含的样本全 2: if D 中样本全属于同一类别 C then 将 node 标记为 C 类叶结点: return 部属于同一类别 4: end if 5: if $A = \emptyset$ OR D 中样本在 A 上取值相同 then (2) 当前属性集为空,或所 将 node 标记叶结点, 其类别标记为 D 中样本数最多的类: return 有样本在所有属性上取值相同 7: end if 8: 从 A 中选择最优划分属性 a*; 对于每一个子集, 年龄<30, (3,50),>50 三个子集 9: for a* 的每一个值 a* do 为 node 生成每一个分枝; 令 D_v 表示 D 中在 a_* 上取值为 a_*^v 的样本子集; 10: if D_v 为空 then 11: (3) 当前结点包含的样本集 将分枝结点标记为叶结点, 其类别标记为 D 中样本最多的类; return 12: 合为空

输出: 以 node 为根结点的一棵决策树

以 TreeGenerate(D_v , $A - \{a_*\}$) 为分枝结点

13:

14:

15:

else

end if

16: end for

第4章 决策树

- 1. 基本流程
- 2. 划分选择

划分选择

- □决策树学习的关键在于如何选择最优划分属性。
- □随着划分过程不断进行,希望决策树的分支结点所包含的样本 尽可能属于同一类别,即结点的"纯度"(purity)越来越高。

Outlook	Wind	Humidity	Play or Not
Sunny	Weak	High	1
Sunny	Strong	High	-1
Sunny	Weak	Normal	1
Rain	Strong	Normal	1
Rain	Weak	High	1
Rain	Strong	High	-1

经典的属性划分方法

□ 信息增益 (Information gain ID3)

□ 增益率 (Gain ratio C4.5)

□ 基尼指数 (Gini index CART)

划分选择--信息增益(ID3)

划分选择——信息增益

□熵

自信息描述了离散事件集X中一个事件出现给出的信息量

整个集合 X 的平均信息量是该集合所有事件自信息的统计平均值(数学期望) 称作集合 X 的

度量了集合 X 中各个事件未出现时所呈现的平均不确定性,

也度量了集合 X 中一个事件出现时所给出的平均信息量

划分选择——信息增益

□信息熵

"信息熵"是度量样本集合纯度最常用的一种指标。 假定样本集合D中第k类样本所占的比例为 $p_k(k = 1,2 \cdots, |Y|)$,则D的信息熵定义为

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k$$

- ightharpoonup Ent(D)的值越小,则D的纯度越高
- \rightarrow 计算信息熵时约定: 若 $p_k = 0$, 则 $p_k \log_2 p_k = 0$
- \triangleright Ent(D)的最小值为0,最大值为log₂|Y|

信息熵举例

$$Ent(D) = -\left(\frac{0}{6}\log_2\frac{0}{6} + \frac{6}{6}\log_2\frac{6}{6}\right)$$

$$= 0$$

$$Ent(D) = -\left(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}\right)$$

$$= 1$$

$$Ent(D) = -\left(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}\right)$$

$$= 0.92$$

信息熵与数据纯度

- □ 有一个数据集D,分为正例和反例,计算下面三种情况的信息熵
 - (1) 20%正例,80%反例子

$$-\frac{2}{10}\log_2 0.2 - \frac{8}{10}\log_2 0.8 = 0.722$$

• (1) 50%正例,50%反例子

$$-\frac{5}{10}\log_2 0.5 - \frac{5}{10}\log_2 0.5 = 1$$

• (1) 80%正例, 20%反例子

$$-\frac{8}{10}\log_2 0.8 - \frac{2}{10}\log_2 0.2 = 0.722$$

Ent = $-p_1 \log_2 p_1 - (1 - p_1) \log_2 (1 - p_1)$

数据纯度越高时,信息熵越小

	Classificat ion					
Outlook	Temperat ure	Humidity	Wind	Yes or No		
Sunny	Hot	High	Weak	No		
Sunny	Hot	High	Strong	No		
Overcast	Hot	High	Weak	Yes		
Rain	Midd	High	Weak	Yes		
Rain	Cool	Normal	Weak	Yes		
Rain	Cool	Normal	Strong	No		
Overcast	Cool	Normal	Strong	Yes •		
Sunny	Midd	High	Weak	No		
Sunny	Cool	Normal	Weak	Yes •		
Rain	Midd	Normal	Weak	Yes		
Sunny	Midd	Normal	Strong	Yes		
Overcast	Midd	High	Strong	Yes		
Overcast	Hot	Normal	Weak	Yes		
Rain	Midd	High	Strong	No		

当前样本集合D的信息熵

14个训练样本

分类数: 2

$$p_1 = \frac{9}{14}$$

$$p_2 = \frac{5}{14}$$

$$Ent(D) = -(p_1 \log_2 p_1 + p_2 \log_2 p_2)$$

$$= -\left(\frac{9}{14}\log_2\frac{9}{14} + \frac{5}{14}\log_2\frac{5}{14}\right)$$

$$= 0.94$$

数据集的信息熵

□ 信息熵实例

							-
编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

该数据集包含 17 个训练样本, $|\mathcal{Y}| = 2$,其中正例占 $p_1 = \frac{8}{17}$,反例占 $p_2 = \frac{9}{17}$,计算根结点的信息熵。

$$\operatorname{Ent}(D) = -\sum_{k=1}^{2} p_k \log_2 p_k = -\left(\frac{8}{17} \log_2 \frac{8}{17} + \frac{9}{17} \log_2 \frac{9}{17}\right) = 0.998$$

划分选择——信息增益

□ 数据集的信息熵

数据: $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$ 其中 $x_i = \{x_{i1}, x_{i2}, \dots, x_{id}\} \in \mathbb{R}^d, y_i \in \{1, 2, \dots, K\}$ 为类标记

- ightharpoonup 训练数据集D中有K个类 C_k , $k=1,2,\cdots,K$, |D|为总样本个数, $|C_k|$ 为属于第k类的样本个数,有 $|D|=\sum_{k=1}^K |C_k|$ 。
- 》当前样本集合D中第k类样本所占的比例为 $p_k = |C_k|/|D|, (k = 1,2 \cdots, K)$,则D的信息熵定义为

$$\operatorname{Ent}(D) = -\sum_{k=1}^{K} \frac{|C_k|}{|D|} \log_2 \frac{|C_k|}{|D|}$$

Ent(D) 表示数据集的"纯度"以及对数据集进行分类的不确定性

划分选择——信息增益

□ 信息增益(因某一属性使数据集分类的"纯度提升"的程度)

离散属性a有V个可能的取值{ a^1, a^2, \dots, a^V },用a来进行划分,则会产生V个分支结点,其中第v个分支结点包含了D中所有在属性a上取值为 a^v 的样本,记为 D^v 。

可计算出用属性a对样本集D进行划分所得的"信息增益":

离散属性a的V个可能的取值

分支结点权重,即样本数越 多的分支结点的影响越大 第v个分支结点包含了D中 所有在属性a上取值为 a^v 的样本

划分选择——信息增益

□ 信息增益(因某一属性使数据集分类的"纯度提升"的程度)

离散属性a有V个可能的取值{ a^1 , a^2 , ..., a^V },用a来进行划分,则会产生V个分支结点,其中第v个分支结点包含了D中所有在属性a上取值为 a^v 的样本,记为 D^v 。

可计算出用属性a对样本集D进行划分所获得的"信息增益":

划分选择——信息增益

□ 信息增益(因某一属性使数据集分类的"纯度提升"的程度)

离散属性a有V个可能的取值{ a^1, a^2, \cdots, a^V },用a来进行划分,则会产生V个分支结点,其中第v个分支结点包含了D中所有在属性a上取值为 a^v 的样本,记为 D^v 。

可计算出用属性a对样本集D进行划分所得的"信息增益":

$$Gain(D, a) = Ent(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} Ent(D^v)$$

一般而言,信息增益越大,

则意味着使用属性a来进行划分所获得的"纯度提升"越大

	Feat	ures		Classificat ion
Outlook 天气预告	Temp 温度	Humidity 湿度	Wind 风	赛事能否 进行
Sunny	Hot	High	Weak	<mark>No</mark>
Sunny	Hot	High	Strong	<mark>No</mark>
Overcast	Hot	High	Weak	Yes
Rain	Midd	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Midd	High	Weak	No
Sunny	Cool	Normal	Weak	<mark>Yes</mark>
Rain	Midd	Normal	Weak	Yes
Sunny	Midd	Normal	Strong	Yes
Overcast	Midd	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Midd	High	Strong	No

Outlook天气预告

$$H(X) = -\sum_{i=1}^{N} p_i log p_i$$

$$Ent(D^1)$$

$$= -(\frac{2}{5} log_2 \frac{2}{5} + \frac{3}{5} log_2 \frac{3}{5}) = 0.97$$

	Feat	ures		Classificat ion
Outlook 天气预告	Temp 温度	Humidity 湿度	Wind 风	赛事能否 进行
Sunny	Hot	High	Weak	No
Sunny	Hot	Hot High		No
Overcast	Hot	High	Weak	Yes
Rain	Midd	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Midd	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Midd	Normal	Weak	Yes
Sunny	Midd	Normal	Strong	Yes
Overcast	Midd	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Midd	High	Strong	No

Outlook

$$Ent(D^{1})$$

$$= -(\frac{2}{5}\log_{2}\frac{2}{5} + \frac{3}{5}\log_{2}\frac{3}{5}) = 0.97$$

$$Ent(D^{2})$$

$$Ent(D^{2})$$

$$= -(\frac{4}{4}\log_{2}\frac{4}{4} + 0\log_{2}\frac{0}{4}) = 0$$

	Feat	ures		Classificat ion
Outlook 天气预告	Temp 温度	Humidity 湿度	Wind 风	赛事能否 进行
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Midd	High	Weak	Yes
Rain	Cool	Normal	Weak	<mark>Yes</mark>
Rain	Cool	Normal	Strong	<mark>No</mark>
Overcast	Cool	Normal	Strong	Yes
Sunny	Midd	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Midd	Normal	Weak	Yes
Sunny	Midd	Normal	Strong	Yes
Overcast	Midd	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Midd	High	Strong	No

Outlook

$$v = 3$$

$$Ent(D^{1})$$

$$= -(\frac{2}{5}\log_{2}\frac{2}{5} + \frac{3}{5}\log_{2}\frac{3}{5}) = 0.97$$

$$Ent(D^{2})$$

$$= -(\frac{4}{4}\log_{2}\frac{4}{4} + 0\log_{2}\frac{0}{4}) = 0$$

$$Ent(D^3)$$
= $-(\frac{2}{5}\log_2\frac{2}{5} + \frac{3}{5}\log_2\frac{3}{5}) = 0.97$

	Features								
Outlook 天气预告	Temp 温度	Humidity 湿度	Wind 风	赛事能否 进行					
Sunny	Hot	High	Weak	No					
Sunny	Hot	High	Strong	No					
Overcast	Hot	High	Weak	<mark>Yes</mark>					
Rain	Midd	High	Weak	<mark>Yes</mark>					
Rain	Cool	Normal	Weak	<mark>Yes</mark>					
Rain	Cool	Normal	Strong	No					
Overcast	Cool	Normal	Strong	<mark>Yes</mark>					
Sunny	Midd	High	Weak	No					
Sunny	Cool	Normal	Weak	<mark>Yes</mark>					
Rain	Midd	Normal	Weak	<mark>Yes</mark>					
Sunny	Midd	Normal	Strong	<mark>Yes</mark>					
Overcast	Midd	High	Strong	<mark>Yes</mark>					
Overcast	Hot	Normal	Weak	<mark>Yes</mark>					
Rain	Midd	High	Strong	<mark>No</mark>					

Outlook

$$v = 3$$

$$Ent(D^1) = 0.97$$

$$Ent(D^2) = 0$$

$$Ent(D^3) = 0.97$$

$$Gain(D, a) = Ent(D) - \sum_{v=1}^{V} \frac{|D^{v}|}{|D|} Ent(D^{v})$$

$$Gain(D, o) = Ent(D) - \frac{5}{14}Ent(D^{1})$$

$$-\frac{4}{14}Ent(D^2) - \frac{5}{14}Ent(D^3)$$

$$= 0.94 - \frac{5}{14} * 0.97 - 0 - \frac{5}{14} * 0.97$$

$$= 0.24$$

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜	
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是	-
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是	
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是	
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是	
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是	
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是	
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是	以属性"色泽"为例,对应的
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是	数据子集为 3
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否 (#	
10	青绿	硬挺	清脆	清晰	平坦	软粘	否(包	色泽= <mark>青绿</mark>)(色泽= <mark>乌黑</mark>)(色泽= <mark>浅白</mark>)
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否	
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否	
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否	
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否	
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否	
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否	
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否	

								<u></u>			
编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜	-			
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是				
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是				
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是				
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是				
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是				
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是		((- \ - \ - 11	\	
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是	以属性	色泽"	为例	,对应的
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是	数据子算	集为 3		
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否 (4	- 	/ /- \ - \-	<u>+</u> .	/ /
10	青绿	硬挺	清脆	清晰	平坦	软粘	否(f	色泽= <mark>青绿</mark>)	(色泽=	马黑)	(色泽=浅白)
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否				
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否				
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否				
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否				
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否				
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否				
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否				
								-			

$$\operatorname{Ent}(D^{1}) = -\left(\frac{3}{6}\log_{2}\frac{3}{6} + \frac{3}{6}\log_{2}\frac{3}{6}\right) = 1.000$$

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜	- -
1	青绿乌黑	蜷缩 蜷缩	浊响 沉闷	清晰 清晰	凹陷 凹陷	硬滑 硬滑	是 是	
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是	
4 5	青绿 浅白	蜷缩 蜷缩	沉闷 浊响	清晰 清晰	凹陷 凹陷	硬滑 硬滑	是 是	
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是	
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是	以属性"色泽"为例,对应的
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是	_ 数据子集为 3
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否(一 在汉—丰妇)(在汉—古國)(在汉—沙古)
9	乌黑 青绿	<u>稍</u> 蜷 硬挺	沉闷 清脆	稍糊 清晰	稍凹 平坦	硬滑 软粘	<u>否</u> 否(色泽=青绿)(色泽= <mark>乌黑</mark>)(色泽=浅白)
9 10 11								色泽=青绿)(色泽= <mark>乌黑</mark>)(色泽=浅白)
10.00	青绿	硬挺	清脆	清晰	平坦	软粘	否(色泽=青绿)(色泽= <mark>乌黑</mark>)(色泽=浅白)
11	青绿 浅白	硬挺 硬挺	清脆 清脆	清晰 模糊	平坦 平坦	软粘 硬滑	否 否	色泽=青绿)(色泽= <mark>乌黑</mark>)(色泽=浅白)
11 12	青绿 浅白 浅白	硬挺 硬挺 蜷缩	清脆 清脆 浊响	清晰 模糊 模糊	平坦 平坦 平坦	软粘 硬滑 软粘	否否否	色泽=青绿)(色泽= <mark>乌黑</mark>)(色泽=浅白)
11 12 13	青绿 浅白 浅白 青绿	硬挺 硬挺 蜷缩 稍蜷	清脆 清脆 浊响 浊响	清晰 模糊 稍糊	平坦 平坦 平坦 凹陷	软粘 硬滑 软粘 硬滑	否否否否	色泽=青绿)(色泽= <mark>乌黑</mark>)(色泽=浅白)
11 12 13 14	青绿 浅白 浅白 青绿 浅白	硬挺 硬挺缩 蜷 稍蜷	清脆 清脆 浊响 沉闷	清晰 模糊 模糊 稍糊	平坦 平坦 四 四 陷 凹陷	软 料 硬 软 硬 滑 看 滑	否否否否否	色泽=青绿)(色泽= <mark>乌黑</mark>)(色泽=浅白)

$$\operatorname{Ent}(D^{1}) = -\left(\frac{3}{6}\log_{2}\frac{3}{6} + \frac{3}{6}\log_{2}\frac{3}{6}\right) = 1.000$$

$$\operatorname{Ent}(D^2) = -\left(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}\right) = 0.918$$

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜	
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是	
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是	
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是	
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是	
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是	
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是	
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是	以属性" <mark>色泽</mark> "为例,对应的
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是	数据子集为 3
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否 //	
10	青绿	硬挺	清脆	清晰	平坦	软粘	否(包	色泽=青绿)(色泽=乌黑)(色泽= <mark>浅白</mark>)
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否	
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否	
13	青绿	梢蜷	浊响	梢糊	凹陷	使滑	台	
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否	
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否	
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否	
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否	

Ent(D¹) =
$$-(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}) = 1.000$$

Ent(D²) = $-(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}) = 0.918$
Ent(D³) = $-(\frac{1}{5}\log_2\frac{1}{5} + \frac{4}{5}\log_2\frac{4}{5}) = 0.722$

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

$$Gain(D, 色泽) = Ent(D) - \sum_{v=1}^{3} \frac{|D^{v}|}{|D|} Ent(D^{v})$$
$$= 0.998 - \left(\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722\right) = 0.109$$

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

Gain(D, 色泽) = 0.109

Gain(D, 根蒂) = 0.143

Gain(D, 敲声) = 0.141

Gain(D, 纹理) = 0.381

Gain(D, 脐部) = 0.289

Gain(D, 触感) = 0.006

□ 显然,属性"纹理"的信息增益最大,其被选为划分属性

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1 2 3 4 5 6 7 8	青乌乌青浅青乌乌绿黑黑绿白绿黑黑	蜷蜷蜷蜷蜷稍稍稍缩缩缩缩缩缩缩缩缩缩缩缩缩	浊沉浊沉浊浊浊浊	清清清清清清消清	凹凹凹凹凹稍稍稍稍	硬硬硬硬硬软软硬滑滑滑滑滑滑滑滑滑滑	是是是是是是是是
9 10 11 12 13 14 15 16 17	乌青浅浅青浅乌浅青黑绿白白绿白黑白绿	稍硬硬蜷稍稍稍蜷蜷蜷挺挺缩蜷蜷蜷缩缩	沉清清浊浊沉浊浊沉闷脆脆响响闷响响闷	稍清模模稍稍清模稍糊晰糊糊糊糊糊糊糊糊糊糊糊糊	稍平平平凹凹稍平稍凹坦坦坦陷陷凹坦凹	硬软硬软硬硬软硬硬料粘滑粘滑粘滑粘滑粘滑	否否否否否否否否

□决策树学习算法将对每个分支结点做进一步划分,最终得到的决策树如图:

根据信息增益准则的属性选择方法:

对训练数据集D(或子集),

坏瓜

- > 计算其每个属性的信息增益,
- > 比较大小,
- > 选择信息增益最大的属性。

划分选择——信息增益

□ 信息增益(ID3决策树)

离散属性a有V个可能的取值{ a^1, a^2, \dots, a^V },用a来进行划分,则会产生V个分支结点,其中第v个分支结点包含了D中所有在属性a上取值为 a^v 的样本,记为 D^v 。

可计算出用属性a对样本集D进行划分所获得的"信息增益":

划分选择——信息增益

□ 信息增益(ID3决策树)

离散属性a有V个可能的取值{ a^1, a^2, \dots, a^V },用a来进行划分,则会产生V个分支结点,其中第v个分支结点包含了D中所有在属性a上取值为 a^v 的样本,记为 D^v 。

可计算出用属性a对样本集D进行划分所获得的"信息增益":

弱点: 对可取值数目较多的

属性有所偏好

第v个分支的权重, 样本越多越重要

□ 若把"编号"也作为一个候选划分属性,则其信息增益一般 远大于其他属性。显然,这样的决策树不具有泛化能力,无法 对新样本进行有效预测。

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

划分选择--增益率(C4.5)

划分选择——增益率

□ 增益率 (C4.5决策树)

$$Gain(D,a) = Ent(D) - \sum_{v=1}^{V} \frac{|D^{v}|}{|D|} Ent(D^{v})$$

$$Gain_ratio(D,a) = \frac{Gain(D,a)}{IV(a)}$$
有值:

属性a的固有值:

属性a的可能取值越多(V越大),则IV(a)通常会越大,Gain_ratio(D, a)则越小。

$$IV(a) = -\sum_{v=1}^{V} \frac{|D^{v}|}{|D|} \log_2 \frac{|D^{v}|}{|D|}$$

划分选择——增益率

□ 增益率 (C4.5决策树)

离散属性a有V个可能的取值{ a^1, a^2, \cdots, a^V },用a来进行划分,则会产生V个分支结点,其中第v个分支结点包含了D中所有在属性a上取值为 a^v 的样本,记为 D^v 。则可计算出用属性a对样本集D进行划分所获得的"增益率":

Gain_ratio(D, a) =
$$\frac{\text{Gain}(D, a)}{\text{IV}(a)}$$

$$\text{IV}(a) = -\sum_{v=1}^{V} \frac{|D^v|}{|D|} \log_2 \frac{|D^v|}{|D|}$$

	Classificat ion			
Outlook 天气预告	Temp 温度	Humidity 湿度	Wind 风	赛事能否 进行
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Midd	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Midd	High	Weak	No
Sunny	Cool	Normal	Weak	<mark>Yes</mark>
Rain	Midd	Normal	Weak	Yes
Sunny	Midd	Normal	Strong	<mark>Yes</mark>
Overcast	Midd	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Midd	High	Strong	No

Outlook v = 3

Ent(D) = 0.94

Gain(D, o) = 0.24

$$IV(o) = -\sum_{v=1}^{V} \frac{|D^{v}|}{|D|} \log_{2} \frac{|D^{v}|}{|D|}$$

$$= -(\frac{5}{14} \log_{2} \frac{5}{14} + \frac{4}{14} \log_{2} \frac{4}{14} + \frac{5}{14} \log_{2} \frac{5}{14})$$

$$= 1.57$$

$$Gain_ratio(D, o) = \frac{Gain(D, o)}{IV(o)}$$
= 0.15

划分选择--基尼指数 (CART)

CART (Classification and Regression Tree)

- □CART既能是分类树,又可以做回归树
 - 分类树
 - 划分选择--基尼指数
 - 回归树
 - 最小方差
 - 二叉树

For example: predict whether the user like a move

For example: predict the user's rating to a movie

划分选择——基尼系数(CART)

□ 基尼值(CART决策树)

"基尼值"是度量样本集合纯度最常用的一种指标。 假定样本集合D中,第k类样本所占的比例为 $p_k(k = 1, 2 \cdots, K)$,则D的基尼值定义为

$$Gini(D) = 1 - \sum_{k=1}^{K} p_k^2$$

 $> p_k$ 越大,Gini(D)的值越小,则D的纯度越高

划分选择——基尼系数

Outlook 天气预告	Temp 温度	Humidity 湿度	Wind 风	赛事能否 进行
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Midd	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Midd	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Midd	Normal	Weak	Yes
Sunny	Midd	Normal	Strong	Yes
Overcast	Midd	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Midd	High	Strong	No

□数据集**D**的纯度可用"基尼值"来度量

$$Gini(D) = 1 - \sum_{k=1}^{K} p_k^2$$

Gini(D) =
$$1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.33$$

划分选择——基尼系数

Gini(D)的值越小,则D的纯度越高

划分选择——基尼系数

 \square 对于样本集合D,根据属性A是否取值为a,将样本集合D分为两个子集 D_1 和 D_2 ,此时基尼系数定义为:

Gini_index
$$(D|A = a) = \frac{|D^1|}{|D|} \text{Gini}(D^1) + \frac{|D^2|}{|D|} \text{Gini}(D^2)$$

□注意,CART分类树算法构造的是二叉树,而不是多叉树。

根据基尼系数的属性选择方法:

对训练数据集D(或子集),计算其每个属性的基尼系数, 并比较大小,选择基尼系数最小的属性。

决策树学习(分类问题)

□基本思想

数据: $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$ 其中 $x_i = \{x_{i1}, x_{i2}, \dots, x_{id}\} \in \mathbb{R}^d, y_i \in \{1, 2, \dots, K\}$ 为类标记

模型: 分类决策树模型(一种由节点和边组成的用于描述对实例进行分类的树形结构)

策略:找到一个与训练数据矛盾较小同时泛化能力较强的决策树

算法: 启发式方法(ID3、C4.5、CART等)

- ▶ ID3决策树学习算法[Quinlan, 1986]以信息增益为准则来选择划分属性
- C4.5决策树学习算法[Quinlan, 1993] 先从候选划分属性中找出信息增益高于平均水平的属性,再从中选取增益率最高的
- ➤ CART决策树学习算法[Breiman et al., 1984]采用基尼指数来选择划分属性

决策树学习(分类问题)

□基本思想

算法: 启发式方法(ID3、C4.5、CART等)

- 开始、构建根节点、将所有训练数据都放在根节点。
- ▶ 同时,选择一个最优属性,按照这一属性将训练数据集分割成子集,使得各个子集有一个当前条件下最好的分类。
 - 如果,这些子集已经能够被基本正确分类,那么构建叶节点, 并将这些子集分到所对应的叶节点中去;
 - 如果,还有子集不能被正确分类,那么构建中间节点,对这些子集选择新的最优属性,继续对其进行分割。
- ➢ 然后,如此递归地进行下去,直至所有训练数据子集被基本 正确分类,或者没有合适的属性为止。
- ▶ 最后,构建叶节点,每个子集被分到叶节点得到各自的类。

决策树学习(分类问题)

□基本流程

Algorithm 1 决策树学习基本算法

输入:

- 训练集 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\};$
- 属性集 $A = \{a_1, \ldots, a_d\}.$

过程: 函数 TreeGenerate(D, A)

- 1: **生成结点** node;
- 2: if D 中样本全属于同一类别 C then
- 3: 将 node 标记为 C 类叶结点; return
- 4: end if
- 5: if $A = \emptyset$ OR D 中样本在 A 上取值相同 then
- 6: 将 node 标记叶结点,其类别标记为 D 中样本数最多的类; return
- 7: end if
- 8: 从 A 中选择最优划分属性 a*;
- 9: for a* 的每一个值 a* do
- 10: 为 node 生成每一个分枝; 令 D_v 表示 D 中在 a_* 上取值为 a_*^v 的样本子集;
- 11: if D_v 为空 then
- 12: 将分枝结点标记为叶结点, 其类别标记为 D 中样本最多的类; return
- 13: else
- 14: 以 TreeGenerate $(D_v, A \{a_*\})$ 为分枝结点
- 15: end if
- 16: end for

输出: 以 node 为根结点的一棵决策树

如何选择最后划分属性

- (1) 信息增益(最大)
- (2) 增益率(最大)
- (3) 基尼指数(最小)

如何判断达到叶节点, 如何确定叶节点的类

- (1) 当前结点包含的样本 全部属于同一类别
- (2) 当前属性集为空,或 所有样本在所有属性上取 值相同
- (3) 当前结点包含的样本 集合为空

决策树(总结)

- □决策树的优点
 - ✓ 推理过程容易理解,决策推理过程可以表示成lf-Then形式
 - ✓ 推理过程完全依赖于属性变量的取值特点
 - ✓ 可自动忽略目标变量没有贡献的属性变量,也为判断属性变量的重要性、减少变量的数目提供参考

谢谢!