Prüfungvorbereitung Biodiversität und Ökosystemfunktionen (WS 2016/17)

Quelle: Vorlesungsunterlagen

Inhaltsverzeichnis

1	DS1	L		1	
	1.1	Defini	ition Biodiversität	1	
	1.2	Facett	ten der Biodiversität	2	
			icklung der Biodiversität	2	
2	DS2	2		4	
	2.1	Breite	engradient	4	
	2.2	,,			
		2.2.1	Art-Areal-Beziehung	5	
		2.2.2	Mehr-Individuen-Hypothese	6	
		2.2.3	Metabolische Theorie der Diversität	7	
		2.2.4	Evolutionsbasierte Hypothesen	8	
3	DS3				
		3.0.5	Biotische Interaktionen	11	
		3.0.6	Toleranz-Hypothese	11	
		3.0.7	Nischenkonservatismus	12	
		3.0.8	Out of the tropics (OTT)	12	
4	\mathbf{DS}_4	1		13	
	4.1	Arten	reichtum messen	13	
	4.2		iduen/Module zählen	14	
	4.3		für Artendiversität	16	
5	DS5	S		18	
•		5.0.1	$\alpha \beta \gamma$ Diversität		
		5.0.2	Funktionelle Diversität	21	
		J.J.			

1 DS1

1.1 Definition Biodiversität

Erste Nennung: "National Forum of BioDiversity" (Name einer Tagung 1986 in Washington, USA)

Biodiversität = Information

Components of biodiversity [nach Noss (1990)]

- Compositional
 - Genes
 - Species, populations
 - Communities/ecosystems
 - Landscape type
- Structural
 - Landscape patterns
 - Physiognomy/habitat structure
 - Population structure
 - Genetic structure
- Functional
 - Gentic process
 - Demographis process
 - Interspecific interactions
 - Landscape process/disturbances

http://www.fao.org/docrep/006/y5187e/y5187e12.jpg

1.2 Facetten der Biodiversität

- Molekulare Vielfalt, z. B. Variation zwischen Proteinen (Isoenzyme)
- Chemische Vielfalt: z. B. Vielfalt der sekundären Inhaltsstoffe
- Genetische Vielfalt: z. B. Genotypen innerhalb einer Art
- Phylogenetische Vielfalt: Repräsentanz des "tree of life"
- Artenvielfalt: Anzahl und relative Abundanz von Arten
- Funktionelle Vielfalt: z. B. physiologische, anatomische, morphologische, demographische, ethologische Vielfalt
- Interaktionsvielfalt: z. B. Vielfalt der trophischen Beziehungen sowie aller Sym-, Pro- oder Antibiosen
- Ökosystemvielfalt: z. B. Vielfalt der Ökosysteme und Ökosystemprozesse in der Landschaft

1.3 Entwicklung der Biodiversität

Diversifizerungsmechanismen v.a. Meso-/Känozoische Radiation:

- Nach Landgang in Silur zunehmende Nährstoffeinträge vom Land durch organische Partikel
- Auseinander brechen von Pangäa erhöht Klimagradienten, Nischenraum und schafft Verbreitungshindernisse, die die Entstehung von Endemismen begünstigen
- Zunehmen ausdifferenzierte Baupläne ermöglichen immer größere Spezialisierung und Ausnutzen ökologischer Nischen

Sixth Mass Extinction: ???

Differentielle Entwicklung in Großtaxa: Die jeweils neu entwickelten Taxa machen rasch die größte Diversität aus

Suche nach Asymptote: Anzahl der beschriebenen Arten über Jahre keine Asymptote \rightarrow Warum?

Umso höher die Taxa umso weniger asymptotisch (Mora et al. 2011)

Wer ist wie häufig? (beschriebene Arten)

- 1.: Insekten > 1 Mio.
- 2.: Pflanze ~ 300000
- 12.: Vögel ca. 9950
- 18.: Amphibien ca. 4950
- 19.: Säugetiere ca. 4630

Pionier der Diversitätsforschung: Alexander von Humbolt beschreibt großräumige Diversitätsgradienten

erste globale Diversitätskarte: pflanzlichen Diversität nach Wulff (1935), aktualisiert von Mutke & Barthlott (2005)

2 DS2

Die Biodiversitätskarten zeigen: Taxonomische Diversität (Artenreichtum) pro Region steigt an:

- Von den Polen zum Äquator
- Von Gegenden mit ungünstigen Wachstumsbedingungen (zu kalt, zu trocken) hin zu Gegenden mit günstigeren Bedingungen (konstant warm und feucht)

2.1 Breitengradient

- Es existiert eine starke Korrelation zwischen geographischer Breite und Artenvielfalt (hier Pflanzenarten) vor allem dort, wo die Klimagradienten besonders stark ausgeprägt sind (siehe Mutke & Barthlott (2005))
- Breitengradienten existieren nicht nur bei Pflanzen (z.B. Termiten, Vögel, Säugetiere)
- Ausnahmen: Gymnospermen, parasitoide Hymenoptera,

Was verbirgt sich hinter der Breite? Viele Faktoren variieren mit der Breite:

- Mittlere Temperatur ↓ (Die mittlere Jahresmitteltemperatur folgt der Einstrahlungsintensität, d.h. Nordpol ↓ Äquator ↑ Südpol ↓)
- Mittlere Niederschlag ↓
- Variabilität (T, NS) ↑
- Netto-Primärproduktion¹ ↓
- Glazialgeschichte, Evol. Zeit ↓
- Fläche (↓↑)

¹Produktion organischer Substanz durch Photosynthese oder Chemosynthese, abzüglich des Verlustes durch Gesamt-Atmung (Tages- und Nachtatmung aller grünen und nicht-grünen Pflanzenteile)

http://www.spektrum.de/lexikon/biologie/nettoprimaerproduktion/46072

2.2 Übersicht der Erklärungsmuster

- Art-Areal-Beziehung
- Energie-basierte Hypothesen
 - Mehr-Individuen-Hypothese (u.a. Hutchinson 1959, Srivastava 1998)
 - Metabolische Theorie der Diversität (Allen et al. 2002)
- Toleranz-Hypothese
- Evolutionsbasierte Hypothesen
 - Speziationshypothese
 - Nischenkonservativismus-Hypothese

2.2.1 Art-Areal-Beziehung

- Generelles Prinzip in der Ökologie
- $S = c \cdot A^z$ mit S: Artenzahl, A: Fläche, z, c: Parameter, z (Exponent/Steigung) $\approx 0.25 0.30$
- logarithmische Kurve: 50% Habitatverlust $\sim 10\%$ Artenverlust, 90% Habitatverlust $\sim 50\%$ Artenverlust, 99% Habitatverlust $\sim 75\%$ Artenverlust

Mechanismen

- Artefakt?: Auf größeren Flächen können insgesamt mehr Individuen gesammelt warden als auf kleinen. Daher ist die Wahrscheinlichkeit größer, mehr Arten zu finden.
- Habitatdiversität: Größere Flächen sind topographisch/edaphisch diverser
 → mehr Habitate → mehr Möglichkeiten für unterschiedliche Arten zu existieren
- Artbildung/Extinktionsdynamik: größere Fläche → größeres potentielles Areal von Arten → größere Wahrscheinlichkeit der Artbildung (mehr Barrieren) und kleinere Wahrscheinlichkeit des Aussterbens (mehr Individuen)

Fazit: Art-Areal und Diversitätsgradient

- Rezente Verteilung der Landmassen nicht kompatibel mit den globalen Mustern
- Logarithmischer Zusammenhang könnte selbst bei entsprechender Landverteilung den starken Anstieg zu den Tropen nicht erklären

2.2.2 Mehr-Individuen-Hypothese

- Produktivität (NPP = Netto-Primärproduktion) limitiert die Anzahl der Individuen
- In tropischen Gebieten ist es wärmer und feuchter, NPP ist höher in den Tropen, ss ist Platz für mehr Individuen
- Wenn die Populationsgrößen nicht mit NPP variieren, dann ist Platz für mehr Arten!
- Mehr Energie, höhere NPP
- Es gibt einen positiven Zusammenhang zwischen NPP und Individuendichte
- Es gibt einen positiven Zusammenhang zwischen Individuendichte und Artenreichtum

Zusammenhang:

Sollte der Pfad über die Dichte/Individuenzahl den Mechanismus erklären, so müssten die "proximaten" Zusammenhänge (also ε vs. ρ /I und ρ /I vs. S) stärker sein als der distale (ε vs. S) **Dies ist nicht der Fall!**

Fazit: Mehr-Individuen-Hypothese

Angesichts der Datenlage eher nicht wahrscheinlich

- Verbindung zwischen Energie und Dichte/Individuenanzahl eher schwach
- Änderungen der Dichte mit der Breite nicht in der richtigen Größenordnung (zu schnell)

2.2.3 Metabolische Theorie der Diversität

- Körpertemperatur = Umgebungstemperatur
- \bullet Wärmer \rightarrow mehr metabolische Energie pro Individuum
- \bullet Annahme, dass Energienutzung durch Population konstant: wärmer \to kleinere Populationen und/oder kleinere Individuen
- \bullet Individuenzahl pro Gemeinschaft variiert nicht geographisch \to höhere Diversität

Fazit: Metabolische Theorie der Diversität

passt auch nicht... warum???

2.2.4 Evolutionsbasierte Hypothesen

Sind die Tropen die "Wiege" oder das "Museum" der Diversität?

• Evolutionszeit (=,,Museum")

- Tropische Regionen sind erdgeschichtlich älter, viele Taxa haben Ursprung in den Tropen
- Verbreitung aus den Tropen heraus ist limitiert

• Diversifizierungraten (=,,Cradle")

- Genetische Drift in kleineren Populationen hat h\u00f6here Artbildungsraten zur Folge (Federov 1966)
- Klimavariabilität hat in den Tropen höhere Artbildungsrate zur Folge (Haffer 1969)
- Höhere Wahrscheinlichkeit von parapatrischer (Moritz 2000) und sympatrischer Artbildung (Gentry 1989)
- Größere Fläche bewirkt größere Wahrscheinlichkeit von Isolation (Terborgh 1973)
- Geringere physiologische Toleranzen erschweren die Verbreitung und fördern die Isolation (Janzen 1967)
- Höhere Temperaturen bedingen höhere Mutationsraten und damit Artbildungsraten (Rohde 1992)
- Stärkere biotische Interaktionen führen zu höherer Spezialisierung und höherer Artbildungsrate (Dobzhansky 1950, Fischer 1960)

• Extinktionsraten

- Geringere Klimavariabilität reduziert Extinktionsrisiko (Darwin 1859)
- Größere Fläche, höhere Populationsgrößen, reduziertes Extinktionsrisiko (Rosenzweig 1995)

Das Argument "Zeit": die Tropen sind älter und konnten daher eine größere Anzahl von Arten akkumulieren ("fair chance"). Die nördlicheren Regionen sind durch Klimavariabilität, v.a. Eiszeiten, stärker in Mitleidenschaft gezogen worden → jedoch sehr unterschiedlich (Vergleich USA, Europa, Asien)

$3 \quad DS3$

Fazit aus Montoya et al.:

- Modelle, die neben dem aktuellen Klima auch die Zeit seit der Vereisung beinhalten, erklären die rezenten Diversitätsmuster besser
- Unterstützt die Museumstheorie
- Problem:
 - Differenziert nicht zwischen Artneubildung und Einwanderung
 - Erklärt nicht den Breitengradienten der Diversität (nur Glazialgeschichte)

Zeit X Fläche: Ein Test mit Bäumen

- Grundannahme: Zeit und Fläche haben jeweils eigene Erklärungkraft
- Problem:
 - Evolution über viele Millionen Jahre
 - Heutige Flächenverteilung der Biome nicht repräsentativ
- Lösung: Errechnen des Integrals der verfügbaren Fläche über die geologische Zeit als Prädiktor für Artenreichtum

Wie hoch ist die Baumdiversität wo?

Biom	$\mid \#$ Baumarten
north american boreal	61
eurasien boreal	100
north am. eastern temp.	300
north am. western temp	115
europ. temp.	124
east asien temp.	729
south am. temp.	84
australien temp.	310
neutropics	22500
asian tropics	14000
african tropics	6500
	•

Korrelationsanalyse

- Keine Korrelation zwischen Artenreichtum und rezenter Biomverteilung!
- Bei vier der fünf Biomrekonstruktionen ergeben sich signifikante Effekte mit einer erklärten Varianz von bis zu 60%.
- Legt nahe, dass Zeit und Fläche beide wichtig sind

• Sagt aber wenig über die eigentlichen Mechanismen aus (Speziation, Extinktion?)

Zwischenstand: Zeit / Fläche

- Es gibt Hinweise dafür, dass die verfügbare Zeit "ungestörter Evolution" (nicht unterbrochen durch Massenextinktionen) positiv mit der Diversität korrelliert.
 - Diese Effekte sind besonders stark ausgeprägt für die jüngere Erdgeschichte (Eiszeiten)
 - Aber es gab auch vorher schon deutliche Breitengradienten der Diversität!
- Die Ergebnisse schließen das gleichzeitige Vorhandensein der Effekte von Unterschieden in den Netto-Speziationsraten nicht aus

Speziationsraten: Sind die Netto-Speziationsraten in den Tropen höher? Diverse Hypothesen:

- Genetic Drift: Kleine Population \to Genetische Drift $\uparrow \to$ Artbildung \uparrow Zirkulär / schwer zu testen
- Klimavariabilität: Milankovich-Zyklen in Tropen $\downarrow \rightarrow$ Vagilität $\uparrow \rightarrow$ Artbildung \downarrow Kaum Daten
- Sympatrische Artbildung † Kaum Daten
- Metabolismus: Temperatur $\uparrow \rightarrow$ Metabolismus $\uparrow \rightarrow$ Mutation \uparrow Siehe später
- Fläche: Fläche ↑→ Wahrscheinlichkeit der reproduktiven Isolation ↑ Siehe z.B. Fine & Rees (oben)
- Toleranzhypothese: Toleranz in den Tropen ↓→ Wahrscheinlichkeit der repr. Isolation ↑ Plausibel, aber wenig Daten
- Biotische Interaktion: biotische Nischen ↑→ ungerichtete Selektion ↑→ Wahrscheinlichkeit der Divergenz ↑ Siehe unten

Wie alt sind Taxa? Frage: Seit wann haben sich zwei nächstverwandte Vogelund Säugetierarten getrennt \rightarrow ergibt eine Altersverteilung; Arten höherer Breiten haben sich später getrennt!

Fazit: Speziationshypothese

- es gibt Hinweise darauf, dass die molekulare Uhr bei höherer Temperatur "schneller tickt" (höhere Substitutionsraten).
- Diverse Probleme:

- Das erklärt nicht, warum der Breitengradient der Diversität auch für homoitherme gilt
- Es ist noch unklar, inwieweit die Substitutionsraten ein guter Indikator für Artbildung sind

3.0.5 Biotische Interaktionen

- Temperate Zone: Abiotischer Selektionsdruck (z.B. Spätfrost) ist omnipresent und führt zu gleichgerichteten Anpassungen (targeted Evolution)
- In milden Klimaten überwiegt biotischer Selektionsdruck. Dieser ist kleinräumig variabel und unvorhersehbar. Daher sind die Selektionsdrücke entsprechend divers → schnellere Divergenz (Evolution with moving target)

Short-cut: Biotische Interaktion

- Es gibt einige Hinweise auf stärkere Interaktionen in den Tropen (aber auch Gegenbeispiele)
- Es gibt Hinweise darauf, dass sich Merkmale, die biotische Interaktion widerspiegeln, schneller evoluieren (z. B. Bestäubungsmodi)

3.0.6 Toleranz-Hypothese

- Tropische Organismen besitzen engere Klimanischen: Höhenzüge wirken daher eher als Barrieren
- \bullet Die Folge: Schnellere geographische und damit reproduktive Isolierung \to Divergenz
- Der Artenreichtum wird durch die Anzahl von Arten limitiert, die die Umweltbedingungen tolerieren können
- Die Umweltbedingungen werden mit der Breite ungünstiger
- Zwei Fälle:
 - Extremfall: Die Artbildungsrate ist überall gleich (bzw. die Verbreitung ist prinzipiell unlimitiert). Dann ergibt sich die Diversität rein aus der Toleranz (bzw. der differentiellen Extinktion)
 - Wenn Arten in tropischen Gebieten entstanden sind (oder übrig geblieben sind), müssten sie für eine Ausbreitung polwärts erst Toleranzen entwickeln. Dieser Prozess dauert lange Zeit.

3.0.7 Nischenkonservatismus

- Wenn die Artbildungsrate in den Tropen höher und die Extinktionsraten niedriger sind, warum verbreiten sich die tropischen Arten dann nicht nach Norden aus?
- Nischenkonservatismus: Die Anpassungen, die ein Vordringen in kältere Regionen erlauben, sind komplex und werden "selten" erfunden.

3.0.8 Out of the tropics (OTT)

- Diese Theorie bildet einen Kompromiss. Der Breitengradient hat mehrere Ursachen:
 - Höhere Speziationsraten in den Tropen
 - Geringere Extinktionsraten in Tropen
- Gleichzeitig wird davon ausgegangen, dass die hohe Diversität auch in die Extratropen "überschwappt" (Immigration in den Extratropen hoch).

Fazit

- Die evolutionsbasierten Theorien schließen sich nicht gegenseitig aus!
- Sie sind allesamt wahrscheinlicher als die energiebasierten Theorien
- Die Evolutionshistorie spielt allgemein ein große Rolle.
- Eine synthetische Theorie wie die OTT ist erfolgversprechend.

4 DS4

4.1 Artenreichtum messen

Was wir selten(st) schaffen

- Wir erfassen fast nie alle Organismen des untersuchten Systems (schon gar nicht einer Region)
- Wir erfassen so gut wie nie alle Taxa eines Systems (oft nur ausgewählte Gruppen)
- Die Erfassungsmethode richtet sich selten nach den Taxa / Arten, die am schwierigsten zu erfassen sind

Welche Taxa / Arten sind schwierig zu erfassen?

- Generell: Seltene Arten
- Arten in schwer zugänglichen Bereichen des Ökosystems (tiefe Bodenschichten, Kronendach, ...)
- Arten in schwer bestimmbaren Zwischenstadien (Sporen, Samen, Nymphen)
- Arten, die sich auch als Adulte nur schwer bestimmen lassen
- Arten mit zeitlich sehr variabler Präsenz
- Arten mit räumlich sehr heterogener Präsenz (stark aggregiert an bestimmten Mikrostandorten)

Problem: Was ist ein Individuum?

- Bei unitaren Organismen eindeutig: Form deterministisch
- Bei modularen Organismen nicht
 - Bäume, Korallen, Schwämme
 - Oft verzweigte, sich selbst wiederholende Strukturen
 - Entwicklungsprogramm nicht vorhersagbar indeterminiertes Wachstum
- Modulare Organismen sind sehr häufig (Wälder, Grünländer, Korallenriffe, Moore)

Genet vs. Modul

- Genet:
 - Genetisches Individuum; Produkt einer Zygote
 - kann aus vielen Modulen bestehen (Polykormon)
 - Beispiel: Nähnadel Gottes
- Modul, z. B. bei Pflanzen:
 - vegetatives Modul: Blatt, Knospe (in Blattachsel) und Internodium (fundamentales Modul = Phytomer)
 - Generatives Modul: Blüte
 - -Äste: "kleine Bäumchen, die in einem großen Baum wurzeln
- Ramet: Module, die sich vom Genet getrennt haben und m.o.w. unabhängig geworden sind

4.2 Individuen/Module zählen

- Sessile Organismen:
 - Plot abstecken und zählen
 - Transekte
 - "plotless sampling methods"
 - Luftbilder (v.a. Bäume)
 - Fernerkundung (v.a. Bäume oder Vegetationsstrukturen)
- Bewegliche Organismen
 - Diverse Fallen
 - Fang-Wiederfang Methoden
 - Sichtzählung / Transekte
 - Akustische Kartierung
 - Luftbilder
 - Jagd- und Fangstatistiken

Transektmethoden

- Schnitt-Transekte
 - Sehr günstig bei Polykormonen
 - Liefert: Anzahl, mittlere Kormongröße, Deckung
- Lineare Transektplots
 - Günstig bei kleinen "punktförmigen" z. B. Grasrameten
 - Liefert: Anzahl

over pin frame

- v.a. im Grünland
- Gezählt werden die Berührungen von Organen (Blättern, Stengel, Blüte)
- Trennung nach Individuen nicht möglich
- Höhe der Berührung gibt auch Auskunft über vertikale Struktur
- Dauert lange, ist aber objektiver als Deckungsschätzungen

Plot-less

- Viele plot-less Methoden sind ein Mischung aus einer Zufallsauswahl und Distanzmessungen, z. B.
 - 1. Auwahl zufälliger Organismen \rightarrow Messung der Distanz zum nächsten Nachbarn
 - 2. Auswahl zufälliger Orte \rightarrow Messung der Distanz zu nächsten Organismus (s. Abbildung)
- Probleme:
 - 1. Auswahl von zufälligen Individuen ist sehr schwierig
 - 2. Methode 2 wird sehr stark von isolierten Individuen beeinflusst.
 - 3. Lösung: z. B. T-Sampling (siehe Vorlesung)

Point-Quarter

- Zufallspunkte i als Zentrum eines Kreuzes. Ingesamt n Zufallspunkte.
- Jeweils Distanz d zum nächsten Nachbar in Quadrant j messen.
- Vorteil: Man braucht weniger Zufallspunkte. Sehr effizient.
- Nachteil: Empfindlich gegenüber Abweichungen von der Zufallsverteilung.

weitere Verfahren:

- Imaging: z. B. Laser Scanner, Spektralkamera, RGB Kamera, Thermokamera
- Multispektralaufnahme vom Flugzeug
- Akustisches Monitoring

Ideale für Biodiversitätssampling

- Verschiedene Skalen für verschieden große Organismen
- Plots sind so klein, dass alle darin vorhandenen Arten und Individuen erfasst werden können
- Plots sind so zahlreich, dass alle vorkommenden Arten erfasst werden.
- Grundannahme: Alle Arten sind gleich gut detektierbar

Whittaker-Plot

- Tastet Artenreichtum über verschiedene Skalen hinweg ab
- Abwandlungen:
 - nested quadrat
 - Long-Thin Plot
 - modified whittaker plot
 - ncvs Protokoll (siehe Vorlesung)

4.3 Maße für Artendiversität

- Artenreichtum (species richness)
 - "richness"
 - Chaos Schätzer
- Artendiversität (species diversity)
 - Shannon-Wiener Diversität
 - Simpson Index
- Arten-Gleichverteilung (eveness)

Arten-Akkumulationskurven

- Individuum-based
 - Ein Individuum nach dem anderen sammeln
 - Wenn ein neues dabei ist, Zähler eins höher setzen.
 - Irgendwann wird man kaum noch neue Arten finden
- Sample-based
 - Ein Probe (mit potentiell mehreren Individuen) nach der anderen sammeln (oft Probeflächen)
 - etc. siehe oben

Fragen (siehe Vorlesung)

- Ein Altwald und ein nachgewachsener Wald im Vergleich Warum sind die Kurven glatt? (rarefaction curve)
- Warum besteht einmal der Unterschied (individual-based) und einmal nicht (sample-based)?
- Warum ist die individual-based Kurve der Altwälder kürzer?

5 DS5

Chao's Schätzer

- Schätzt die "wahre" Artenvielfalt
- Gleiche Datenstruktur wie vorher
- Die Gesamtartenzahl in der Probe wird extrapoliert

Überlegung zur Artenvielfalt: Welche Gemeinschaft ist diverser? Warum?

Shannon-Wiener Diversität

- Artenzahl S ("species richness"): Gesamtartenzahl, pro Fläche
- Shannon-Wiener-Diversität (H oder D Shannon): Diversität abh. von Artenzahl und deren Häufigkeit (Rechenbeispiel siehe Vorlesung)

Gini-Simpson's Diversitäts-Index D: beschreibt die Wahrscheinlichkeit, mit der zwei zufällig ausgewählte Organismen der gleichen Art angehören (= Varianzmaß)

Zwischen welchen Werten schwankt der Simpson-Index?

Was das Maß können sollte

- 1. Bei konstanter Artenzahl, Abundanz und Gleichverteilung (Eveness) aber variabler Anteile einzelner Arten, soll das Maß auch konstant bleiben
- 2. Wenn die Gesamtabundanz abnimmt, wird das Maß kleiner
- 3. Wenn nur die Gleichverteilung abnimmt (Abundanz, Artenzahl konstant), wird das Maß kleiner
- 4. Wenn nur die Artenzahl abnimmt (Abundanz, Gleichverteilung konstant), wird das Maß kleiner
- 5. Der Erwartungswert des Maßes sollte unabhängig von der Probenmenge sein
- 6. Der Erwartungswert sollte einfach und präzise quantifizierbar sein

Fazit bezüglich Shannon-Wiener und Simpson: Befriedigen alle Kriterien bis auf F2, d.h. wenn alle Arten (Artenzahl und Eveness konstant) in der Abundanz abnehmen, bleiben beide Indizes konstant!

Eveness (= Gleichverteilung)

Eveness ist ein Maß dafür, wie sich die vorkommenden Arten in ihren Abundanzen unterscheiden

(Shannon-) Eveness

Wird typischerweise indirekt ausgerechnet:

- Diversitätsmaß ist eine Mischung ist aus Artenzahl und Gleichverteilung (= Eveness)
- Wenn man die Artenzahl heraus rechnet, isoliert man die Eveness

2 Schritte:

- 1. Shannon-Diversität für maximale Gleichverteilung: $D_{Shannon\ max} = ln(S)$
- 2. Verhältnis der gemessenen zur maximalen Diversität = Gleichverteilung: $E = \frac{D_{Shannon}}{D_{Shannon \ max}}$

5.0.1 $\alpha \beta \gamma$ Diversität

- α -Diversität: Diversität innerhalb der einzelnen Untersuchungseinheit (z. B. Plot, eine Falle usw.)
- \bullet β -Diversität: Diversität zwischen den Untersuchungseinheit
- \bullet γ -Diversity: Diversität der Gesamtheit aller Untersuchungseinheiten (oft eine Landschaft)

Partitionierung

- Bezogen auf Artenreichtum: $\alpha \cdot \beta = \gamma$
- Bezogen auf $D_{Shannon}$: $\alpha + \beta = \gamma$
- Bezogen auf $D_{Gini-Simpson}$: $\alpha + \beta \alpha \cdot \beta = \gamma$

Was damit machen?

- Es ist einfach α und γ zu berechnen
- β -Diversität wird aus α und γ errechnet, wobei α_{av} der Mittelwert über alle Plots ist: $\beta = \gamma \alpha_{av}$
- \bullet $\beta\text{-Diversit"at}$ wird auch als Maß für "species turnover" verwendet

β -Diversität

- ist ein Maß für die Unterschiedlichkeit der Artenausstattung
- Wird häufig auch direkt mit multivariaten Vergleichen über Ähnlichkeitsmaße errechnet (Multiple assemblage overlap measures: Morisita-Horn-Index, C_{qN} -Index)

Ihre Einschätzung: Welche Prozesse befördern β -Diversität? Wo ist welche Diversitätskomponente wie hoch?

- Moore?
- Borealer Wald?
- Fynbos (Kapensis)?
- Tropischer Regenwald?
- Inselarchipele?

5.0.2 Funktionelle Diversität

Kontinuierliche Maße der funktionellen Diversität basieren auf Ähnlichkeit der Arten bzgl. Ihrer Eigenschaften

Facetten der Funktionellen Diversität

• Funktionelle Identität: Wo befindet sich die Gemeinschaft im Merkmalsraum?

• Facetten der funktionellen Diversität

- <u>Functional Richness:</u> Wie groß ist der Merkmalsraum, der von der Gemeinschaft eingenommen wird?
- Functional Diversity/Divergence/Dispersion: Wie unterschiedlich sind die Arten im Mittel?
- <u>Functional Eveness:</u> Wie gleichmäßig sind die Abundanzen der Arten im Merkmalsraum verteilt
- <u>Functional Distinctiveness</u>: Wie weit ist eine Art im Merkmalsraum von allen anderen entfernt? (Wie "besonders" ist sie?)

Funktionelle Identität (FI)

- Mittelwert der Merkmale über alle Arten
- Besser: Mittelwert 1 über alle Arten gewichtet mit deren Bedeutung in der Gemeinschaft (Abundanz, Biomasse, Deckung,...)

Functional richness (FR)

- Merkmalsraum, den die Gemeinschaft einnimmt
- FR Masszahlen
 - Nur ein Merkmal: Spanne zwischen dem kleinsten und dem größten Wert (engl. range)
 - Zwei und mehrere Merkmale: Fläche des "Convex hull volume (CVH)": Fläche, die durch eine umhüllende Linie gebildet wird. Die "Eck"-Arten heißen auch Vortex-Arten. Linie darf nicht "nach innen knicken".

• Bemerkung zu FR

- Wird sehr stark durch extreme Arten bestimmt
- Für die Vergleichbarkeit wird üblicherweise durch die Gesamtspanne (-fläche, -volumen,...) aller Gemeinschaften geteilt. Dann variieren die Werte'zwischen 0 und 1