

Decision Trees

CS229: Machine Learning Carlos Guestrin Stanford University

Slides include content developed by and co-developed with Emily Fox

©2022 Carlos Guestrin

Predicting potential loan defaults

What makes a loan risky?

Credit history explained

Income

Loan terms

How soon do I need to pay the loan?

Example: 3 years,

5 years,...

Term

Personal Info

Personal information

Classifier review

This module ... decision trees

Scoring a loan application

Decision tree learning task

Decision tree learning problem

Training data: N observations (x_i, y_i)

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Quality metric: Classification error

Error measures fraction of mistakes

```
Error = # incorrect predictions # examples
```

- Best possible value : 0.0

- Worst possible value: 1.0

How do we find the best tree?

Exponentially large number of possible trees makes decision tree learning hard!

 $T_1(X)$ $T_2(X)$ $T_3(X)$ $T_4(X)$ $T_5(X)$ $T_6(X)$

Learning the smallest decision tree is an *NP-hard problem* [Hyafil & Rivest '76]

15 ©2022 Carlos Guestrin CS229: Machine Learning

Our training data table

Assume N = 40, 3 features

Term	Income	У
3 yrs	high	safe
5 yrs	low	risky
3 yrs	high	safe
5 yrs	high	risky
3 yrs	low	risky
5 yrs	low	safe
3 yrs	high	risky
5 yrs	low	safe
3 yrs	high	safe
	3 yrs 5 yrs 3 yrs 5 yrs 5 yrs 5 yrs 5 yrs 5 yrs 5 yrs	3 yrs high 5 yrs low 3 yrs high 5 yrs high 3 yrs low 5 yrs low 5 yrs low 5 yrs low 5 yrs low

Start with all the data

Loan status: Safe Risky

Compact visual notation: Root node

Decision stump: Single level tree

Visual notation: Intermediate nodes

Making predictions with a decision stump

For each intermediate node, set $\hat{y} = majority value$

CS229: Machine Learning

How do we learn a decision stump?

How do we select the best feature?

How do we measure effectiveness of a split?

Calculating classification error

- Step 1: \hat{y} = class of majority of data in node
- Step 2: Calculate classification error of predicting ŷ
 for this data

Choice 1: Split on Credit history?

Choice 1: Split on Credit

Split on Credit: Classification error

Choice 1: Split on Credit

Error = _	
=	

Tree	Classification error
(root)	0.45
Split on credit	0.2

Choice 2: Split on Term?

Choice 2: Split on Term

Evaluating the split on Term

Choice 2: Split on Term

Error = _	
=	

Tree	Classification error
(root)	0.45
Split on credit	0.2
Split on term	0.25

Choice 1 vs Choice 2: Comparing split on Credit vs Term

Tree	Classification error
(root)	0.45
split on credit	0.2
split on loan term	0.25

Feature split selection algorithm

- Given a subset of data M (a node in a tree)
- For each feature h_i(x):
 - 1. Split data of M according to feature $h_i(x)$
 - 2. Compute classification error of split
- Chose feature $h^*(x)$ with lowest classification error

CS229: Machine Learning

We've learned a decision stump, what next?

Tree learning = Recursive stump learning

Second level

37

Final decision tree

38

Simple greedy decision tree learning

Pick best feature to split on

Learn decision stump with this split

For each leaf of decision stump, recurse

When do we stop???

39

Stopping condition 1: All data agrees on y

CS229: Machine Learning

Stopping condition 2: Already split on all features

Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to do, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

Stopping conditions

Recursion

Is this a good idea?

Proposed stopping condition 3:
Stop if no split reduces the classification error

Stopping condition 3: Don't stop if error doesn't decrease???

x [1]	x [2]	У
False	False	False
False	True	True
True	False	True
True	True	False

y values True False Root 2 2

Tree	Classification error
(root)	0.5

Consider split on x[1]

x [1]	x [2]	У
False	False	False
False	True	True
True	False	True
True	True	False

Error =	
=	

Tree	Classification error
(root)	0.5
Split on x [1]	0.5

Consider split on x[2]

Final tree with stopping condition 3

X[Τ]	X [∠]	У
False	False	False
False	True	True
True	False	True
True	True	False

Tree	Classification error	
with stopping condition 3	0.5	

Without stopping condition 3

Condition 3 (stopping when training error doesn't' improve) is not recommended!

x [1]	x [2]	у
False	False	False
False	True	True
True	False	True
True	True	False

Tree	Classification error
with stopping condition 3	0.5
without stopping condition 3	

CS220: Machine Learning

How do we use real values inputs?

Income	Credit	Term	у
\$105 K	excellent	3 yrs	Safe
\$112 K	good	5 yrs	Risky
\$73 K	fair	3 yrs	Safe
\$69 K	excellent	5 yrs	Safe
\$217 K	excellent	3 yrs	Risky
\$120 K	good	5 yrs	Safe
\$64 K	fair	3 yrs	Risky
\$340 K	excellent	5 yrs	Safe
\$60 K	good	3 yrs	Risky

Threshold split

Finding the best threshold split

Consider a threshold between points

Same classification error for any threshold split between v_A and v_B

Only need to consider mid-points

Threshold split selection algorithm

- Step 1: Sort the values of a feature $h_j(x)$: Let $\{v_1, v_2, v_3, ... v_N\}$ denote sorted values
- Step 2:
 - For i = 1 ... N-1
 - Consider split $t_i = (v_i + v_{i+1}) / 2$
 - Compute classification error for treshold split $h_i(x) >= t_i$
 - Chose the t* with the lowest classification error

Visualizing the threshold split

Split on Age >= 38

Depth 2: Split on Income >= \$60K

Threshold split is the line Income = 60K

Each split partitions the 2-D space

Logistic regression

Feature	Value	Weight Learned
$h_0(x)$	1	0.22
$h_1(\mathbf{x})$	x[1]	1.12
$h_2(\mathbf{x})$	x [2]	-1.07

Depth 1: Split on x[1]

©2022 Carlos Guestrin

CS229: Machine Learning

Depth 2

Threshold split caveat

For threshold splits, same feature can be used multiple times

Decision boundaries

Comparing decision boundaries

What you can do now

- Define a decision tree classifier
- Interpret the output of a decision trees
- Learn a decision tree classifier using greedy algorithm
- Traverse a decision tree to make predictions
 - Majority class predictions
- Tackle continuous and discrete features

Decision Trees

CS229: Machine Learning Carlos Guestrin Stanford University

Slides include content developed by and co-developed with Emily Fox

©2022 Carlos Guestrin

Predicting potential loan defaults

What makes a loan risky?

Credit history explained

Income

Loan terms

How soon do I need to pay the loan?

Example: 3 years,

5 years,...

Term

Personal Info

Personal information

Classifier review

This module ... decision trees

Scoring a loan application

Decision tree learning task

Decision tree learning problem

Training data: N observations (x_i, y_i)

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Quality metric: Classification error

Error measures fraction of mistakes

```
Error = # incorrect predictions
# examples
```

- Best possible value : 0.0
- Worst possible value: 1.0

How do we find the best tree?

Exponentially large number of possible trees makes decision tree learning hard!

Learning the smallest decision tree is an NP-hard problem [Hyafil & Rivest '76]

15 CS229: Machine Learning ©2022 Carlos Guestrin

Our training data table

Assume N = 40, 3 features

Term	Income	У
3 yrs	high	safe
5 yrs	low	risky
3 yrs	high	safe
5 yrs	high	risky
3 yrs	low	risky
5 yrs	low	safe
3 yrs	high	risky
5 yrs	low	safe
3 yrs	high	safe
	3 yrs 5 yrs 3 yrs 5 yrs 5 yrs 5 yrs 5 yrs 5 yrs 5 yrs	3 yrs high 5 yrs low 3 yrs high 5 yrs high 3 yrs low 5 yrs low 5 yrs low 5 yrs low 5 yrs low

Start with all the data

Compact visual notation: Root node

Decision stump: Single level tree

Visual notation: Intermediate nodes

Making predictions with a decision stump

For each intermediate node, set $\hat{y} = majority value$

CS229: Machine Learning

How do we learn a decision stump?

How do we select the best feature?

How do we measure effectiveness of a split?

Calculating classification error

- Step 1: \hat{y} = class of majority of data in node
- Step 2: Calculate classification error of predicting ŷ
 for this data

Tree	Classification error
(root)	0.45

Choice 1: Split on Credit history?

Choice 1: Split on Credit

Split on Credit: Classification error

Choice 1: Split on Credit

Error =	8
=	

Tree	Classification error
(root)	0.45
Split on credit	0.2

Choice 2: Split on Term?

Choice 2: Split on Term

Evaluating the split on Term

Choice 2: Split on Term

$$Error = \frac{10}{40}$$

$$= 0.25$$

Tree	Classification error
(root)	0.45
Split on credit	0.2
Split on term	0.25

Choice 1 vs Choice 2: Comparing split on Credit vs Term

Tree	Classification error
(root)	0.45
split on credit	0.2
split on loan term	0.25

Feature split selection algorithm

- Given a subset of data M (a node in a tree)
- For each feature h_i(x):
 - 1. Split data of M according to feature $h_i(x)$
 - 2. Compute classification error of split
- Chose feature h x with lowest classification error

CS229: Machine Learning

We've learned a decision stump, what next?

Tree learning = Recursive stump learning

Second level

Final decision tree

Simple greedy decision tree learning

Pick best feature to split on

Learn decision stump with this split

For each leaf of decision stump, recurse

When do we stop???

Stopping condition 1: All data agrees on y

CS229: Machine Learning

Stopping condition 2: Already split on all features

Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to do, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

Stopping conditions

Recursion

Is this a good idea?

Proposed stopping condition 3:
Stop if no split reduces the classification error

Stopping condition 3:

Don't stop if error doesn't decrease???

$$y = x[1] xor x[2]$$

x [1]	x [2]	У
False	False	False
False	True	True
True	False	True
True	True	False

y values True False Root 2 2

$$Error = \frac{2}{4}$$

$$= 0.5$$

Tree	Classification error
(root)	0.5

Consider split on x[1]

x [1]	x [2]	У
False	False	False
False	True	True
True	False	True
True	True	False

Tree	Classification error	
(root)	0.5	
Split on x [1]	0.5	

Consider split on x[2]

Final tree with stopping condition 3

X[Τ]	X [∠]	У
False	False	False
False	True	True
True	False	True
True	True	False

Tree	Classification error	
with stopping condition 3	0.5	

Without stopping condition 3

Condition 3 (stopping when training error doesn't' improve) is not recommended!

x [1]	x [2]	у
False	False	False
False	True	True
True	False	True
True	True	False

Tree	Classification error
with stopping condition 3	0.5
without stopping condition 3	

CS220: Machine Learning

How do we use real values inputs?

Income	Credit	Term	у
\$105 K	excellent	3 yrs	Safe
\$112 K	good	5 yrs	Risky
\$73 K	fair	3 yrs	Safe
\$69 K	excellent	5 yrs	Safe
\$217 K	excellent	3 yrs	Risky
\$120 K	good	5 yrs	Safe
\$64 K	fair	3 yrs	Risky
\$340 K	excellent	5 yrs	Safe
\$60 K	good	3 yrs	Risky

Threshold split turn continuous var into binning

Finding the best threshold split

Consider a threshold between points

Same classification error for any threshold split between v_A and v_B

Only need to consider mid-points

Sorta data:

Finite number of splits to consider

Threshold split selection algorithm

- Step 1: Sort the values of a feature $h_j(x)$: Let $\{v_1, v_2, v_3, ... v_N\}$ denote sorted values
- Step 2:
 - For i = 1 ... N-1
 - Consider split $t_i = (v_i + v_{i+1}) / 2$
 - Compute classification error for treshold split $h_i(x) >= t_i$
 - Chose the t* with the lowest classification error

Visualizing the threshold split

Split on Age >= 38

Depth 2: Split on Income >= \$60K

Threshold split is the line Income = 60K

Each split partitions the 2-D space

Logistic regression

Feature	Value	Weight Learned
$h_0(x)$	1	0.22
$h_1(\mathbf{x})$	x[1]	1.12
$h_2(\mathbf{x})$	x [2]	-1.07

Depth 1: Split on x[1]

©2022 Carlos Guestrin

CS229: Machine Learning

Depth 2

Threshold split caveat

For threshold splits, same feature can be used multiple times

Decision boundaries

Comparing decision boundaries

What you can do now

- Define a decision tree classifier
- Interpret the output of a decision trees
- Learn a decision tree classifier using greedy algorithm
- Traverse a decision tree to make predictions
 - Majority class predictions
- Tackle continuous and discrete features