Домашнее задание 1

Дедлайн: 2025-02-04, 23:59.

- 1. Случайные величины y_i независимы и одинаково распределены с $\mathbb{P}(y_i=0)=a, \mathbb{P}(y_i=1)=2a,$ $\mathbb{P}(y_i=2)=1-3a.$ В выборке $y_1,y_2,...,y_n$ оказалось N_0 нулей, N_1 единиц и N_2 двоек.
 - а) Найдите оценку \hat{a} параметра a методом моментов используя $\mathbb{E}(y_i)$.
 - б) Найдите оценку \hat{a} параметра a методом моментов используя $\mathbb{E}(y_i^2)$.
 - в) Найдите оценку \hat{a} параметра a методом максимального правдоподобия.
- 2. Случайные величины y_i независимы и нормально распределены $\mathcal{N}(2a;a)$ с неизвестным параметром a.
 - а) Найдите оценку \hat{a} параметра a методом моментов используя $\mathbb{E}(y_i)$.
 - б) Найдите оценку \hat{a} параметра a методом моментов используя $\mathbb{E}(y_i^2)$.
 - в) Найдите оценку \hat{a} параметра a методом максимального правдоподобия.
- 3. В отделении банка 5 клиентских окошек. Время обслуживания каждого клиента имеет экспоненциальное распределение с неизвестной интенсивностью λ . Я был в очереди последним, и когда я встал к освободившемуся окошку номер 5, все остальные окошки ещё обслуживали клиентов. Через 3 минуты обслужили клиента в окошке 3, через 7 минут клиента в окошке номер 4, а потом я освободился и ушёл.
 - а) Найдите оценку \hat{a} параметра a методом моментов, используя любое математическое ожидание.
 - б) Найдите оценку \hat{a} параметра a методом максимального правдоподобия.

Примечание: если в данной задаче возникает нерешаемое в явном виде уравнение, то, конечно, можно и нужно воспользоваться подходящим численным методом.