

# Cell Engineering – Work Overview Intern Final Presentation

Maaz Azam: June 17<sup>th</sup>, 2019 – May 1<sup>st</sup>, 2020



## Background

#### 4th Year Electrical Engineering Major at McMaster University

#### **Previous Work Experience:**

- Hardware Development & Research Intern Eaton
- Lab Assistant McMaster Automotive Resource Center
- Avionics Engineer Intern PAL Aerospace
- Production Operations Intern WestRock

#### **EcoCAR Mobility Challenge Team:**

Control Systems & Simulation Modelling Member















## **Project Overview**

- MATLAB Winding Simulation
- 24L Winder Operation
- Pancake Edge Alignment Tool
- Kato Winder Operation and Commissioning
  - Diameter Analysis
  - Keyence Quality Inspections
- Swift KOEM Winder



## MATLAB Cell Winding Simulation







## MATLAB Winding Simulation

 Takes into account various parameters (ex. length, thickness, coating pattern, etc.) and computes a polar plot of the jellyroll wounded

Purpose of simulation is to visually show tab alignment in the cell,

and how various factors affect this alignment







## MATLAB Winding Simulation

Outputs the length, radius, and total revolutions of winding

Output graphs to show cause and effect of variations of certain

parameters to the winding pattern

| fieldNames                | simLength | trackLength | error  | pcErro |
|---------------------------|-----------|-------------|--------|--------|
| 'sepInner'                | 2140.4    | 711.43      | 1428.9 | 200.86 |
| 'electrodeInnerCoatBot'   | 2015.7    | 639.62      | 1376   | 215.13 |
| 'electrodeInnerTabBot'    | 0         | 0           | 0      | NaN    |
| 'electrodeInnerTapeBot'   | 0         | 0           | 0      | NaN    |
| 'electrodeInnerSubstrate' | 2033      | 646.12      | 1386.9 | 214.64 |
| 'electrodeInnerCoatTop'   | 2038.3    | 639.62      | 1398.7 | 218.67 |
| 'electrodeInnerTabTop'    | 0         | 0           | 0      | NaN    |
| 'electrodeInnerTapeTop'   | 0         | 0           | 0      | NaN    |
| 'sepOuter'                | 2185.5    | 730.2       | 1455.3 | 199.3  |
| 'electrodeOuterCoatBot'   | 1996.3    | 641.23      | 1355.1 | 211.33 |
| 'electrodeOuterTabBot'    | 0         | 0           | 0      | NaN    |
| 'electrodeOuterTapeBot'   | 0         | 0           | 0      | NaN    |
| 'electrodeOuterSubstrate' | 2207.1    | 719.23      | 1487.9 | 206.88 |
| 'electrodeOuterCoatTop'   | 2143      | 694.73      | 1448.3 | 208.47 |
| 'electrodeOuterTabTop'    | 0         | 0           | 0      | NaN    |
| 'electrodeOuterTapeTop'   | 0         | 0           | 0      | NaN    |
| 'AVGelectrodeInnerCoat'   | 2027      | 639.62      | 1387.4 | 216.9  |





## MATLAB Winding Simulation

- Great "introduction" into winding
  - What materials are involved in the process
  - Crucial parameters that affect winding machine
  - Interpreting cell design diagrams
  - Helped inform early decision of if cell should use aligned tab or not









- Learned operation and controls of 24L 'baby' winder
- HMI functionality and options
- Mechanics of how the winder works











- Data collection process using Ignition
- Brief introduction into controls work
- Data analysis of various 2170 cell designs







- Cell dissections, and how to evaluate winding parameters and quality
- Other processes involved in the development of a cell (ex. press, slitter, etc.)





















- Goal: to get edge alignment of pancake within 30 microns, to ensure there is no telescoping
- Winding EPC can not perfectly wind a telescoped pancake
- Can result in misaligned layers in cell -> fire











- Step 1: brainstorming and forming rough sketches of potential designs that can work
- Evaluating pros and cons, and potential challenges of each sketch
- Eventually combined ideas from multiple sketches to form final rough design







- Step 2: defining requirements, acceptable tolerances, and types of measurements to capture
- Exploring functionality of device further, and determining critical parameters and variables in experiment



|                         | Telescoping                                                                              | Width Measurement                                                                        | Warpage Measurement                                                                      |
|-------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Resolution              | ~ 30um                                                                                   | <5um (width<br>measurement spec +/-<br>50um on slitter)                                  | <5um                                                                                     |
| Diameter                | 700mm                                                                                    |                                                                                          |                                                                                          |
| Width                   | 1,110,000,100,000                                                                        | <100mm                                                                                   |                                                                                          |
| Position on core        | Anywhere on the flat<br>surface                                                          |                                                                                          |                                                                                          |
| Height                  |                                                                                          |                                                                                          | <10mm                                                                                    |
| Scan Axis<br>Resolution | <50um                                                                                    |                                                                                          |                                                                                          |
| Scan Axis<br>Actuation  | Manual                                                                                   |                                                                                          |                                                                                          |
| Measurement<br>Range    | ~ 5mm x 5mm (spot<br>or field of view)                                                   | 60 to 130mm                                                                              | (100mm x 130mm, size<br>of sheet)                                                        |
| Other<br>Requirements:  | -Resistant or minimal<br>effect to texture,<br>color, surface and<br>temperature changes | -Resistant or minimal<br>effect to texture,<br>color, surface and<br>temperature changes | -Resistant or minimal<br>effect to texture, color,<br>surface and<br>temperature changes |



- Step 3: exploring types of sensors and vendor options
- Weighing pros and cons of different types of sensor (ex. Displacement sensor, profile sensor, laser sensor, etc.)

Comparing sensor options to requirements and functionality of the

device



| Type of Sensor: | 3D Profile Sensors                                                                                                    | Ultrasonic Displacement<br>Sensors                                                                                               | Optical<br>Displacement<br>Sensors                                              | Laser 3D<br>Displacement<br>Sensors                                        |
|-----------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Advantages      | <ul> <li>Very informative, other dimensions can be extracted</li> <li>Accuracy</li> <li>High response time</li> </ul> | <ul> <li>Very long range</li> <li>Unaffected by target<br/>material<br/>colors/texture</li> <li>Greater field of view</li> </ul> | - Small<br>measurement<br>range<br>- Very high<br>accuracy and<br>response time | Very high accuracy<br>and response time     Decent<br>measurement<br>range |
| Disadvantages   | <ul> <li>Not widely used<br/>for thickness,<br/>although possible</li> <li>Limited field of<br/>view</li> </ul>       | - Slow response speed<br>and not as high accuracy                                                                                | Depending on<br>sensor type,<br>may be<br>affected by<br>color or<br>texture    | - Limited field of<br>view                                                 |



- Step 4: finalizing vendor, type of sensor to be used, and critical parameters to be met
- Keyence high precision displacement sensor
- Further research and requesting demo from vendor





| 200                            | Head                       |                 | CL-P007 CL-P015 CL-P030 CL-P07                                                |                                                                                       |                      |                    | CL-PT010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|--------------------------------|----------------------------|-----------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Model"                         | Optical unit               | 8               | CL-P007N                                                                      | CL-P015N                                                                              | CL-P030N             | CL-P070N           | CL-PT010N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Isference dietance             |                            |                 | 7 mm 0.28*                                                                    | 15 mm 0.59"                                                                           | 30 mm 118"           | 70 mm 2:76"        | 10 mm (I.39"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Reference<br>measurement range | Measurement range          |                 | 41.5 mm 40.0H                                                                 | 41.3 mm 40.05"                                                                        | 43.7 mm 40.35        | ±10 mm ±0.30"      | 40.3 mm ±0.01*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                | Linearity <sup>1</sup>     |                 | ±0.96 µm ±0.000038*                                                           | ±0.49 pm ±0:000018*                                                                   | ±0.94 µm ±0.000037*  | ±2:2 ym ±0:000067* | ±0.22 µm ±0.000009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| High precision                 | Measurement range          |                 | ±0.5 mm ±0.02*                                                                | ±0.5 mm ±0.02"                                                                        | ±1.0 mm.=0.04"       | ±3.0 mm ±0.12*     | ±0.15 mm ±0.01*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| measurement range Linuarity    |                            | 10000000        | +0.55 µm ±0.000022*                                                           | ±0.41 µm ±0.000015"                                                                   | ±0.72 µm ±0.0000028" | #2.0 pm #0.000010* | ±0.2 µm ±0.000000°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Resolution*                    |                            |                 | 0.25 µm 0.0000101                                                             | 0.25 µm 0.000010"                                                                     | 0.25 µm 0.000010"    | 0.25 µm 0.000010*  | 0.25 µm 0.000010*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Spot diameter                  |                            | e60 µm e0,0000* | a25 µm a0.0010*                                                               | #38 µm #0.0015"                                                                       | o50 µm e0,0020*      | e3.5 µm a4.000138" |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| aser class                     | Optical unit               |                 | 2 200 2011 200000                                                             |                                                                                       | Class 1              | - Politica Village | and the state of t |  |  |  |  |  |
| Sampling cycle                 |                            |                 | 100/200/500/1000 µs (Adjustable 4-stage)                                      |                                                                                       |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Environmental<br>resistance    | Enclosure<br>rating        | Head            |                                                                               | IPez (IECeosza)                                                                       |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                | Ambient ope                |                 | Target surface illuminance 30,000 km (Incandescent lamp)                      |                                                                                       |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                | Operating a<br>temperature | mbient          | 0 to 50°C 32 to 122°F                                                         |                                                                                       |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                | Operating a humidity       | mbient          | 20% RH to 95% RH (no condensation)                                            |                                                                                       |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                | Vibration resistance       | Head            | 10 to 57 Hz.                                                                  | 10 to 57 Hz. double<br>amplitude 0.45 mm 0.02<br>2 hours each for X, Y, and<br>Z sees |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                |                            | Optical unit    | 10 to 57 Hz, double amplitude 0.3 mm 0.01"; 2 hours each for X, Y, and Z axes |                                                                                       |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                | Shock resist               | tance           | 15 <b>G</b> 8 ma                                                              |                                                                                       |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Temperature<br>characteristic  | Head                       |                 |                                                                               | 0.1% of ES. / C                                                                       |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                | Optical unit               |                 | 0.015% of F.S./ °C 0.01                                                       |                                                                                       |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Material                       | Head                       |                 | SUS Front: SUS Rear: Aluminum                                                 |                                                                                       |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Material                       | Optical unit               |                 | Polycarbonate                                                                 |                                                                                       |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                | Head                       |                 | Approx. 140 g                                                                 | Арргох. 180 g                                                                         | Approx. 200 g        | Арргок 280 g       | Approx. 1100 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Weight                         | Optical unit               |                 | Approx. 1900 p                                                                |                                                                                       |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

<sup>\*1</sup> Sensor head and optical unit are a matched pair. Not cross competitiol. "2 Value measured in displacement mode with KEYENCE rolescope workplace (mirrored surface). (Value measured using 18,384 average cycles with KEYENCE reference workplace (mirrored surface). (Value measured with 4006 average cycles on CL-PT010 only).



- Step 5: creating and testing prototype
- Evaluating performance of prototype device
- Transitioning from prototype to final design









Step 6: creating 'rough' final design

Integration of all components and creating assembly to evaluate all

movement and functionality

Simulation modelling and calculations





- Step 7: hardware validation of purchased products
- CL sensor and encoder testing and validation based on given specifications of datasheet: prototype test set-up resulted in noise, although products found to meet specifications
- Creating trial conditions reflecting real-life conditions









 Step 8: finalizing and creating final design, and final validation testing to ensure device meets all requirements and is fully functionable





- Skills/technologies used: Solidworks, 3D printer, laser cutter, rapid prototyping
- Managing and overview of the entire product design cycle
- Biggest takeaway: learning how to read a datasheet
  - Precision vs. accuracy vs. resolution









Deadliest, most complex machine on the floor – BY FAR



- Assisted with moving-in process and early commissioning
- Learnt how the winder works, differences between 24L winder and Kato winder









- Learning how to control the HMI, and establishing an SAT schedule with LEAD
- Overseeing LEAD progress on punch list items
- System and hardware validation of completed items
- First jellyroll!





| G G                                                                        | п         |           | ,     | N.    | L     | IVI          |
|----------------------------------------------------------------------------|-----------|-----------|-------|-------|-------|--------------|
| LEAD Update                                                                | Date      | Tesla     | Owner | ETA _ | Last  | Status       |
| _                                                                          | Created 🐣 | Contact * | ~     | ~     | Che ▼ | ₩.           |
| Need tesla to check                                                        | 16-Jan    | Kevin     | Tesla |       |       | Open         |
|                                                                            |           |           |       |       |       |              |
| need tesla to confirm if we can remove another air tubing from your lab.   | 31-Dec    | Kevin     | Tesla |       |       | Open         |
| Tesla have purchased                                                       | 26-Dec    | Kevin     | Tesla |       |       | Open         |
| not clear for this question before, will check on site                     | 15-Jan    | Kevin     | LEAD  |       |       | Open         |
| Need tesla to confirm the position                                         | 22-May    | Kevin     | LEAD  |       |       | Open         |
|                                                                            |           | Kevin     | LEAD  |       |       | Open         |
| We have put some label accordingly, need telsa to check                    |           | Kevin     | LEAD  |       |       | Open         |
| Not clear the details                                                      |           | Kevin     | LEAD  |       |       | Open         |
| LEAD confirm we have put easy page switching button, please check          |           | Kevin     | LEAD  |       |       | Open         |
| complete                                                                   |           | Kevin     | LEAD  |       |       | Open         |
| complete                                                                   |           | Kevin     | Tesla |       |       | Open         |
| We got issue and will discuss internally                                   |           | Ben       | LEAD  |       |       | Open         |
| LEAD suppose there is data shared from Keyence                             |           | Ben       | Tesla |       |       | Open         |
| complete                                                                   | 10-Jan    | Uma       | LEAD  |       |       | Open         |
| complete                                                                   | 10-Jan    | Kevin     | LEAD  |       |       | Open         |
| complete                                                                   | 6-Jan     | Kevin     | LEAD  |       |       | Open         |
| Need tesla to check?                                                       |           | Ben       | Tesla |       |       | Open         |
| Need tesla to check?                                                       |           | Ben       | LEAD  |       |       | Open         |
| have shipped to mental material, may due to production, didn't assemble or |           |           |       |       |       |              |
| site                                                                       |           | Kevin     | LEAD  |       |       | In Progress  |
| now is fabricating;we will ship soon                                       |           | Kevin     | LEAD  |       |       | Open         |
|                                                                            |           |           |       |       |       |              |
| Need to check on site                                                      |           | Kevin     | Tesla |       |       | Tesla Verify |
| will ship material and change on site                                      |           | Kevin     | Tesla |       | 3-Jan | Open         |
| complete                                                                   |           | Ganesh    | Tesla |       |       | Open         |



- Ramping up production of jellyrolls
- Stabilizing processes (ex. diameter, thickness, width, etc.)
- Further commissioning of the beast!









- Ramping up production even more!
- Running machine independently from LEAD
- Diameter analysis and DOE









## Diameter Analysis

 Used TM65 in addition to precise 'golden' sample as a reference for Keyence camera diameter check station

Completed Gage R&R study to evaluate sources and causes of variation









## **Keyence Inspection**

- Responsible for bring-up of Keyence quality on winding, including controllers/cameras integration, tuning, inspection programs, and inspection validation, and creating SOP
- Total of 7 Keyence cameras on winder









- MES database and connectivity
- Tableau dashboard
- EPIC data logging









- "Production hell" of the Kato winder
- Passing on the knowledge to technicians
- X-ray commissioning











- More DOE's (cracking, wettability, tension)
- Assisting LEAD with outstanding winder items













- Cell quality and x-ray dissections and training
- Documentation of all processes
- Further advancing winder capabilities!





#### X-Ray Explanation & Overview

The x-ray is the most important quality inspection for the winder, responsible for checking the alignment of the anode overhang on the cathode in the transverse direction.

The separator must overhanging the anode on both sides of the jellyroll, with the anode overhanging the cathode on both sides of the jellyroll as well, ideally, this would mean that there is a 0.5mm gap between each layer on both sides, as the separator is 65.5mm, anode is 64.5mm, and cathode being 63.5mm wide. Each consecutive layer is 1mm shorter in width. Hence, the separator must fully cover the anode, and anode must fully cover the cathode as shown below.











Assisting with KOEM winder production, operation, and jellyroll quality

Created documentation to further understand controls and

capabilities of winder







At the back of the machine, the center cabinet contains a central power switch to power on all the components and HMI for the winder. Turn this switch on.





- Jellyroll dissections and quality inspections
- Creation of SOP for quality at winding









- DOE's (center forming and tension)
- Process capability analysis
- Core obstruction analysis









#### Work Overview

- Can be found on the following link: <u>Maaz's Work</u>
- Documentation with links to all the work I've done
- Further questions? Contact me!
  - 647-880-2395 or azamm3@mcmaster.ca







## Challenges I Faced

- Language barrier and time difference with vendors (LEAD)
- "Chain of command" with LEAD
- Occasionally, very slow response time







#### What I LOVED!

- Cross functionality between other processes and teams
- Diversity of cell engineering lab
- Revolutionary work
- Learning curve
- Much more!









## Most Importantly... THE TEAM!





#### In Addition...

- First time in California!
- Countless memorable experiences









## Thank You TESLA!





