Politecnico di Milano - Facoltà di Ingegneria dei Sistemi- A. A. 2005/2006 Corso di Laurea in Ingegneria Fisica

Appello I - Analisi Matematica D (20 febbraio 2006) - Prof. I. FRAGALÀ

COGNOME E NOME: ______ N. MATRICOLA: _____

N.B. Tempo a disposizione: 2h. Non è consentito l'uso di testi o di appunti.

Esercizio 1.

A. Sia a un parametro reale positivo, e si consideri la funzione di variabile complessa

$$f(z) = \frac{\cot(\pi z)}{z^2 + a^2} .$$

Sia S l'insieme delle singolarità isolate di f, e sia $S^* := \{z \in S : \operatorname{Imz} \neq 0\}.$

- 1) Determinare S.
- 2) Per ogni $z \in S$, classificare il tipo di singolarità.
- 3) Per ogni $z \in S^*$, calcolare Res(f, z).
- 4) Dimostrare che

$$\sum_{z \in S^*} \operatorname{Res}(f, z) = -\frac{\coth(\pi a)}{a}.$$

B.* Dire (giustificando la risposta) se esiste una funzione $g: \mathbb{C} \to \mathbb{C}$ olomorfa tale che $g(1/n) = (-1)^n/n$.

Α.

- 1) Si ha $S = \pm ia \cup \{\pi z = k\pi : k \in \mathbb{Z}\} = \pm ia \cup \{k : k \in \mathbb{Z}\}.$
- 2) Tutte le singolarità sono poli semplici (il numeratore non si annulla mai nelle singolarità, e il denominatore ha degli zeri semplici).
- 3) Si ha $S^* = \pm ia$ e

$$\operatorname{Res}(f \pm ia) = \frac{\cot(\pm i\pi a)}{\pm 2ia} \ .$$

4)
$$\frac{1}{2ia}(\cot(i\pi a) - \cot(-i\pi a)) = -\frac{i}{a}\cot(i\pi a) = -\frac{1}{a}\coth(\pi a) ,$$

dove nell'ultimo passaggio si è usata l'identità $\coth y = i \cot(iy)$ (che si può verificare scrivendo le espressioni esplicite di ambo i membri in termini di esponenzali).

B. La risposta è NO. Infatti per continuità la funzione g dovrebbe annullarsi nell'origine, e quindi la funzione h(z) := g(z) + z avrebbe nell'origine uno zero non isolato (perchè si annullerebbe in tutti i punti del tipo $(-1)^{2k+1}/(2k+1)$).

Esercizio 2.

Sia assegnata una funzione $\varphi \in L^{\infty}(\mathbb{R})$, non identicamente nulla, con $\varphi(x) = 0$ per |x| > 1. Si considerino le successioni di funzioni definite, per $x \in \mathbb{R}$, da

$$f_n(x) := \varphi(x+n)$$
, $g_n := \varphi(nx)$.

- 1) Studiare la convergenza di f_n in $L^p(\mathbb{R})$ per $p \in [1, +\infty)$.
- 2) Studiare la convergenza di g_n in $L^p(\mathbb{R})$ per $p \in [1, +\infty)$.
- 3) Studiare la convergenza di f_n in $L^{\infty}(\mathbb{R})$.
- 4) Studiare la convergenza di g_n in $L^{\infty}(\mathbb{R})$.
- 1) Il limite puntuale di f_n è zero (poiché φ è nulla fuori da (-1,1). Ma la norma in L^p di f_n è indipendente da n (cambio variabile x+n=y) e strettamente positiva (poiché φ non è identicamente nulla). Quindi f_n non può convergere in L^p .
- 2) Si ha che g_n converge a zero in L^p , poiché

$$\int |g_n|^p = \int |\varphi(nx)|^p dx = \frac{1}{n} \int |\varphi(y)|^p dy.$$

- 3) Come già osservato, il limite puntuale di f_n è zero, ma la norma L^{∞} di f_n è una costante positiva indipendente da n (uguale alla norma L^{∞} di φ). Pertanto f_n non converge in L^{∞} .
- 4) Di nuovo, il limite puntuale di g_n è zero (quasi ovunque), ma la norma L^{∞} di g_n è una costante positiva indipendente da n. Pertanto g_n non converge in L^{∞} .

Esercizio 3. Determinare, se esistono, tutte le soluzioni 2π -periodiche dell'equazione

$$u''' - u = \cos x , \qquad x \in \mathbb{R} .$$

Cerchiamo u sotto la forma

$$u(x) = \sum_{k \in \mathbb{Z}} \hat{u}_k e^{ikx} .$$

Il polinomio caratteristico è $P(\lambda) = \lambda^3 - 1$. Poiché $P(ik) = -ik^3 - 1 \neq 0$ per ogni $k \in \mathbb{Z}$, si ha una e una sola soluzione 2π -periodica.

I suoi coefficienti \hat{u}_k sono determinati univocamente da

$$\hat{u}_h = \frac{\hat{f}_k}{P(ik)} \; ,$$

dove \hat{f}_k sono i coefficienti di Fourier del termine noto dell'equazione (ovvero $\cos x$), e quindi sono uguali a zero per $k \neq \pm 1$, e a 1/2 per $k = \pm 1$. Quindi

$$u(x) = -\frac{1}{2} \left(\frac{e^{ix}}{1+i} + \frac{e^{-ix}}{1-i} \right) = -\frac{1}{2} (\cos x + \sin x) .$$