Last Revised: January 2023

The Page O' Logical Equivalences ("POLE")

Table I: Some Equivalences using AND (\wedge) and OR (\vee):

(0)		I Idamon at ant I ama
(a)	$p \wedge p \equiv p$	Idempotent Laws
	$p\vee p\equiv p$	
(b)	$p \wedge \mathbf{F} \equiv \mathbf{F}$	Domination Laws
	$p ee \mathbf{T} \equiv \mathbf{T}$	
(c)	$p \wedge \mathbf{T} \equiv p$	Identity Laws
	$p \lor \mathbf{F} \equiv p$	
(d)	$p \wedge q \equiv q \wedge p$	Commutative Laws
	$p \lor q \equiv q \lor p$	
(e)	$(p \land q) \land r \equiv p \land (q \land r)$	Associative Laws
	$(p \vee q) \vee r \equiv p \vee (q \vee r)$	
(f)	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive Laws
	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	
(g)	$p \land (p \lor q) \equiv p$	Absorption Laws
	$p \lor (p \land q) \equiv p$	

<u>Table II</u>: Some More Equivalences (adding Negation (\neg)):

(a)	$\neg(\neg p) \equiv p$	Double Negation
(b)	$egin{aligned} p \wedge \neg p &\equiv \mathbf{F} \ p ee \neg p &\equiv \mathbf{T} \end{aligned}$	Negation Laws
	$p \lor \neg p \equiv \mathbf{T}$	
(c)	$ \neg (p \land q) \equiv \neg p \lor \neg q \neg (p \lor q) \equiv \neg p \land \neg q $	De Morgan's Laws
	$\neg (p \lor q) \equiv \neg p \land \neg q$	

Table III: Still More Equivalences (adding Implication (\rightarrow)):

(a) $p \rightarrow q \equiv \neg p \lor q$ (b) $p \rightarrow q \equiv \neg q \rightarrow \neg p$ (c) $\mathbf{T} \rightarrow p \equiv p$ (d) $p \rightarrow \mathbf{F} \equiv \neg p$ (e) $p \rightarrow p \equiv \mathbf{T}$ (f) $p \rightarrow q \equiv (p \land \neg q) \rightarrow \mathbf{F}$ (g) $\neg p \rightarrow q \equiv p \lor q$ (h) $\neg (p \rightarrow q) \equiv p \land \neg q$ (i) $\neg (p \rightarrow \neg q) \equiv p \land q$ (j) $(p \rightarrow q) \lor (q \rightarrow p) \equiv \mathbf{T}$ (k) $(p \land q) \rightarrow r \equiv p \rightarrow (q \rightarrow r)$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \equiv \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \equiv \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \equiv \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \equiv \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \equiv \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \equiv \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \equiv \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \equiv \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \equiv \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \equiv \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \equiv \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \equiv \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \equiv \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (g) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \lor (q \rightarrow p) \Rightarrow \mathbf{T}$ (h) $(p \rightarrow q) \rightarrow \mathbf{T}$

<u>Table IV</u>: Yet More Equivalences (adding Exclusive OR (\oplus) and Biimplication (\leftrightarrow)):

(a) $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$ (b) $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$ (c) $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$ (d) $p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$ (e) $p \oplus q \equiv \neg (p \leftrightarrow q)$ (f) Definition of Biimplication Definition of Exclusive Or

Notes:

- 1. p, q, and r represent arbitrary logical expressions. They may represent equivalent expressions (e.g., if $p \equiv q$, then by Absorption $p \land (p \lor p) \equiv p$).
- 2. T and F represent the logical values True and False, respectively.
- 3. These tables show many of the common and/or useful logical equivalences; this is not an exhaustive collection!