${\bf Estatisticas_Descritivas}$

July 21, 2023

Lighthouse Indicium

```
[2]: import re
     import pandas
                     as pd
     import numpy
                     as np
     import seaborn as sns
     from matplotlib import pyplot as plt
[5]: df4 = pd.read_csv('../data/interim/dataset_selected.csv')
```

1.1 Análise Univariada

```
[10]: num_attributes = df4.select_dtypes(include=['int64', 'float64'])
      cat_attributes = df4.select_dtypes(exclude=['int64', 'float64'])
```

1.1.1 Response Variable

[49]: sns.distplot(df4['preco']);

1.1.2 Numerical Variable

[191]: descriptive_analysis(num_attributes)

[191]:	attributes	min	max	range	mean	median
std	skew kurtosi	.s				
0	num_fotos	0.0000	21.0000	21.0000	10.2621	8.0000
3.5668	0.8371 -0.	3903				
1 ano	_fabricacao 19	85.0000	2022.0000	37.0000	2016.7586	2018.0000
4.0624	-2.4938 9.	1891				
2	ano_modelo 19	97.0000	2023.0000	26.0000	2017.8090	2018.0000
2.6739	-0.4986 -0.	5225				
3	hodometro 1	.00.000	390065.0000	389965.0000	58430.5921	57434.0000
32561.2190 0.5909 1.1946						
4	num_portas	2.0000	4.0000	2.0000	3.9407	4.0000
0.3384 -5.5450 28.7976						
5	preco 98	69.9506	1359812.8923	1349942.9417	133023.8799	114355.7970
81661.	4920 2.1490	10.9749	1			

Para as features númericas foram calculados os valores mínimos, máximos, range, média, mediana, desvio padrão, assimetria (skewness) e curtose (kurtosis).

- Mínimo, Máximo, Range: esses três valores permitem observarmos a presença de outliers quando comparados a média e mediana.
- Média: valor médio de cada feature, por ser influenciada pelos outliers, é comparada a mediana
- Mediana: valor central de cada feature, como não é influenciada por outliers, serve como norte para entendermos o comportamento da feature comparando com a média
- Desvio padrão: um desvio padrão grande significa que os valores estão bem distribuídos em torno da média, quanto maior o desvio padrão menos homogênea a feature
- Assimetria: mede o afastamento da distribuição ao eixo de simetria, indica a relação da média e mediana com valores negativos ou positivos
- Curtose: grau de achatamento da curva, valores positivos indicam caudas mais pesadas do que a distribuição normal

[192]: num_attributes.hist(bins=25);

1.1.3 4.1.3 Categorical Variable

```
Marca
```

```
[194]: sns.countplot(x=df4['marca'])
plt.xticks(rotation=60);
```



```
[16]: sns.boxplot(x='marca', y='preco', data=df4)
plt.xticks(rotation=75);
```


Cambio

[50]: sns.countplot(x=df4['cambio']);


```
[24]: sns.boxplot(x='cambio', y='preco', data=df4);
```


Estado

[236]: sns.countplot(x=df4['estado_vendedor'])
plt.xticks(rotation=35);


```
[28]: sns.boxplot(x='estado_vendedor', y='preco', data=df4)
plt.xticks(rotation=75);
```


Cilindradas

[240]: sns.countplot(x=df4['cilindradas']);

Combustível

[242]: sns.countplot(x=df4['combustivel']);

Cambio, Tipo, Cor e Anunciante

```
[51]: features = ['cambio', 'tipo', 'cor', 'anunciante']

for index, feature in enumerate(features, start=1):
    plt.subplot(3, 2, index)
    sns.countplot(x=feature, data=df4)
    plt.xticks(rotation=5);
```



```
[26]: sns.boxplot(x='cor', y='preco', data=df4);
```


[23]: sns.boxplot(x='tipo', y='preco', data=df4);

Variáveis Binárias

```
[221]: list_features = ['blindado', 'tipo_vendedor', 'delivery', 'troca', \( \) \( \tipo_{\text{delivery}}, \text{ 'troca', \( \) \( \) \( \) 'aceita_troca', 'unico_dono', \( \) \( \) 'revisoes_concessionaria', 'ipva', 'licenciado', \( \) \( \) \( \) 'garantia_fabrica', 'revisoes_agenda', 'turbo']
```

```
[222]: for index, feature in enumerate(list_features, start=1):
    plt.subplot(4, 4, index)
    sns.countplot(x=feature, data=df4)
```

