学号:

一、单项选择题(共20分,每小题2分)

得分

1. 对任意两事件 A、B,与 $A \cup B=B$ 不等价的是 ()。

- A, A \subset B B, $\overline{B}\subset\overline{A}$ C, $A\overline{B}=\varnothing$ D, $\overline{A}B=\varnothing$
- 2. 袋中有5个黑球,3个白球,大小相同,一次随机的摸出4个球,其中恰有3个 白球的概率为()。

- B, $\left(\frac{3}{8}\right)^{5}\frac{1}{8}$ C, $C_{8}^{4}\left(\frac{3}{8}\right)^{3}\frac{1}{8}$ D, $\frac{5}{C_{8}^{4}}$
- 3. 若事件 A 与 B 相互独立, P(A) = 0.6, P(B) = 0.3, P(B|A) = ()。

A, 0.6

B, 1/2 C, 0.3

D. 0.18

4. 己知离散型随机变量 X 的概率分布表如下:

X	1	2	3	4
P(x)	0. 4	0. 3	0. 2	0. 1

则 P (X>2) =()。

A, 0.4

B, 0.3 C, 0.7 D, 0.9

5. 设二维随机向量(X,Y)的联合分布列为:

YX	0	1	2
0	1/12	1/12	2/12
1	2/12	1/12	1/12
2	2/12	0	2/12

则 P(Y = 2) = ()。

A, 1/12 B, 2/12 C, 4/12 D, 5/12

6. 设随机变量 X 的期望 EX 存在,且 EX = a, $EX^2 = b$, c 为一常数,则 D(cX) =

().

- A, $c(a-b^2)$ B, $c(b-a^2)$ C, $c^2(a-b^2)$ D, $c^2(b-a^2)$
- 7. 设随机变量X 服从参数为 λ 的泊松分布,且EX +DX = 2,则 λ = ()。

A, 1/2

B、1

C₂ 3/2

8. 设 $X \sim N(\mu, 4^2)$, $Y \sim N(\mu, 5^2)$, 记 $P(X \leq \mu - 4) = p_1$, $P(Y \geq \mu + 5) = p_2$, 则 ()。

A、对于任意实数 μ 有 p_1 = p_2 B、 p_1 < p_2
C、 p₁>p₂ D、只对 μ 的个别值有 p₁= p₂
9. 已知 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,其中 μ 未知, $\sigma > 0$ 已知,
则下列关于 X_1, X_2, \cdots, X_n 的函数不是统计量的是()。
A, $\frac{1}{n} \sum_{i=1}^{n} X_i^2$ B, $\frac{1}{\sigma^2} \sum_{i=1}^{n} X_i^2$ C, $\sum_{i=1}^{n} (X_i - \mu)^2$ D, $\max(X_1, X_2, \dots, X_n)$
10. 无论 σ^2 是否已知,正态总体均值 μ 的置信区间的中心都是()。 A、 μ B、 σ^2 C、 X D、 S^2
二、填空(共 15 分,每空格 3 分) 得分
2. 设两随机变量 ξ 与 η 的方差分别为 25 和 16,相关系数为 0.4,则协方差 $Cov(\xi,\eta)$
=。 3. 事件运算满足分配律: <i>A</i> ∩(<i>B</i> ∪ <i>C</i>)=。
4. 设由来自正态总体 $X \sim N(\mu, 0.9^2)$ 容量为 9 的简单随机样本得样本均值 $\bar{x} = 5$,则未知参数 μ 的置信水平为 0. 95 的置信区间是。
$(\Phi(1.96) = 0.975)$
5. 若检验统计量的观察值落在拒绝域内,则应。
E、计算题(共 50 分,每小题 10 分) 得分
1. 对同一靶子进行三次独立射击,第一、二、三次击中的概率分别为 $p_1 = 0.4, p_2 = 0.5,$
$p_3 = 0.7$,求:(1)这三次射击中恰有一次击中的概率;(2)这三次射击中至少有

一次击中的概率。

2. 设随机变量 X 的密度函数为 f(x) = $\begin{cases} a\cos x, \, \dot{\exists} - \frac{\pi}{2} \leq x < \frac{\pi}{2}; \\ 0, & \text{其他} \end{cases}$

求: (1) 系数a; (2) 相应的分布函数F(x)。

3. 已知离散型随机变量 X 的分布律

$$\begin{bmatrix} X & 0 & -1 & 2 \\ p_k & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix}$$

求
$$Y = X^2 + 1$$
的分布律。

4.设盒中有5个球,其中2个白球,3个红球,现从中随机取3球,设X为取得白球数, 试求X的数学期望与方差。

5. 设总体 X 的密度函数为 $f(x;\alpha) = \begin{cases} (\alpha+1)x^{\alpha}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$, 其中 $\alpha > -1$ 是未知参数,

 (X_1, \cdots, X_n) 是总体 X 的一样本,试求参数 α 的最大似然估计量。

四、应用题(共15分)

得分

设二维随机变量(X, Y) 只取下列数组中的值:(0, 0),(-1, 1),(-1, 1/3),(2, 0) 且相应概率依次为 1/6, 1/3, 1/12, 5/12。

求: (1) 列出(X, Y)的概率分布表; (2)求随机变量 Y的边缘分布;

(3) 判断 X 与 Y 是否独立并说明理由。