functional analysis study note

Zehao Li

October 2025

0.1 Krein-Milman theorem

Definition 1. The convex ball of a set $A \subset X$ is smallest convex subset of X that contains A:

 $Convex(A) = \cap_{A \subset C, C convex} C$

Definition 2. Let X be a TVS such that X^* separates. Let $K \subset X$ be a compact and convex set.

We say $S \subset K$ is an extreme set if whenever $x, y \in K$, and if s = tx + (1-t)y for some 0 < t < 1, and $s \in S$, then $x, y \in S$.

This is equivalent to if segment $[x,y] \cap S \neq \emptyset$, then $[x,y] \subset X$.

example 1. K is an extreme set in K

Theorem 1. Kreim Milman theorem: Let X be a TVS, assume x^* separates the points of X, Let $K \subset X$ be a compact convex set then

$$K = \overline{Convex(Ext(K))}$$

Proof. We proceed in several steps.

Step 1: Every nonempty closed convex subset of K contains an extreme point.

Let \mathcal{F} be the family of all nonempty closed convex subsets $F \subseteq K$ such that F is *extreme* in K, meaning:

if
$$x, y \in K, \lambda \in (0, 1)$$
, and $\lambda x + (1 - \lambda)y \in F$, then $x, y \in F$.

Note that $K \in \mathcal{F}$, so \mathcal{F} is nonempty.

Partially order \mathcal{F} by reverse inclusion: $F_1 \leq F_2$ if $F_1 \supseteq F_2$.

Let $\{F_{\alpha}\}_{{\alpha}\in A}$ be a totally ordered chain in \mathcal{F} . Then the intersection $F=\bigcap_{\alpha}F_{\alpha}$ is nonempty because K is compact and each F_{α} is a closed subset of K. Moreover, F is convex and closed, and it is also an extreme set in K: suppose $\lambda x + (1-\lambda)y \in F$ for some $x,y \in K$, $\lambda \in (0,1)$. Then for each α , $\lambda x + (1-\lambda)y \in F_{\alpha}$, so $x,y \in F_{\alpha}$ since F_{α} is extreme. Hence $x,y \in F$. So $F \in \mathcal{F}$ and is a lower bound for the chain.

By Zorn's Lemma, \mathcal{F} has a minimal element, say M.

Claim: M is a singleton.

Suppose not. Then there exist distinct points $x_1, x_2 \in M$. Since X^* separates points, there exists $\phi \in X^*$ such that $\phi(x_1) \neq \phi(x_2)$. Without loss of generality, assume $\phi(x_1) < \phi(x_2)$.

Define:

$$c = \min_{x \in M} \phi(x).$$

Since M is compact (closed subset of compact K) and ϕ is continuous, this minimum is attained. Let:

$$F = \{x \in M : \phi(x) = c\}.$$

Then F is a nonempty proper closed convex subset of M (since $x_2 \notin F$).

We show F is extreme in K. Suppose $x, y \in K$, $\lambda \in (0, 1)$, and $\lambda x + (1 - \lambda)y \in F$. Then $\lambda x + (1 - \lambda)y \in M$, and since M is extreme in K, we have $x, y \in M$. Now,

$$\phi(\lambda x + (1 - \lambda)y) = c.$$

But $\phi(x) \geq c$, $\phi(y) \geq c$, so equality implies $\phi(x) = \phi(y) = c$. Thus $x, y \in F$. So F is extreme in K, hence $F \in \mathcal{F}$, and $F \subsetneq M$, contradicting the minimality of M.

Therefore, M must be a singleton: $M = \{x_0\}$, and $x_0 \in \text{Ext}(K)$.

Thus, every nonempty closed convex subset of K contains an extreme point of K.

Step 2: $K = \overline{\text{covex}}(\text{Ext}(K))$

Let $C = \overline{\text{covex}}(\text{Ext}(K))$. Clearly $C \subseteq K$ since K is closed and convex.

Suppose for contradiction that $C \subsetneq K$. Then there exists $x_0 \in K \setminus C$. Since C is closed and convex, and X^* separates points, by the Hahn–Banach separation theorem (geometric form), there exists $\phi \in X^*$ and $\alpha \in \mathbb{R}$ such that:

$$\phi(x_0) > \alpha > \phi(x)$$
 for all $x \in C$.

Now consider the set:

$$F = \{x \in K : \phi(x) = \max_{y \in K} \phi(y)\}.$$

This is nonempty (by compactness of K and continuity of ϕ), closed, convex, and extreme in K (same argument as above). By Step 1, F contains an extreme point e of K. But then $e \in \text{Ext}(K) \subset C$, so $\phi(e) \leq \alpha$. Yet $\phi(e) = \max_K \phi > \alpha$ (since $\phi(x_0) > \alpha$ and $x_0 \in K$), contradiction.

Therefore, $K \subseteq C$, so:

$$K = \overline{\operatorname{covex}}(\operatorname{Ext}(K)).$$

0.2 Distribution theory

Definition 3 (Schwartz Space $\mathcal{S}(\mathbb{R}^n)$). The **Schwartz space** $\mathcal{S}(\mathbb{R}^n)$ is the space of all smooth functions $\phi \in C^{\infty}(\mathbb{R}^n)$ such that for all multi-indices $\alpha, \beta \in \mathbb{N}_0^n$, the seminorms

$$\|\phi\|_{\alpha,\beta} = \sup_{x \in \mathbb{R}^n} |x^{\alpha} \partial^{\beta} \phi(x)|$$

are finite. Elements of $\mathcal{S}(\mathbb{R}^n)$ are called rapidly decreasing functions.

Definition 4 (Tempered Distribution). A tempered distribution is a continuous linear functional on the Schwartz space $\mathcal{S}(\mathbb{R}^n)$.

The space of all tempered distributions is denoted by

$$\mathcal{S}'(\mathbb{R}^n)$$

and is called the dual of the Schwartz space.

That is, $u: \mathcal{S}(\mathbb{R}^n) \to \mathbb{C}$ (or \mathbb{R}) is in $\mathcal{S}'(\mathbb{R}^n)$ if:

- 1. (Linearity) $u(a\phi + b\psi) = au(\phi) + bu(\psi)$ for all $\phi, \psi \in \mathcal{S}(\mathbb{R}^n)$, $a, b \in \mathbb{C}$;
- 2. (Continuity) If $\phi_k \to \phi$ in $\mathcal{S}(\mathbb{R}^n)$ (i.e., $\|\phi_k \phi\|_{\alpha,\beta} \to 0$ for all α, β), then $u(\phi_k) \to u(\phi)$.

example 2.

$$\mathcal{F}f(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i \xi x} dx$$

is the Foureir transform of the function $f(\xi)$

Definition 5. A function $\phi \in C^{\infty}(\mathbb{R}^n)$ is called a **test function** if it has compact support, i.e.,

$$\operatorname{supp}(\phi) = \overline{\{x \in \mathbb{R}^n : \phi(x) \neq 0\}} \quad \text{is compact.}$$

which is

$$C_c^\infty(K) = \{\phi \in C_c^\infty(R^n) | supp(f) \subset K\}$$

The space of all test functions is denoted

$$\mathcal{D}(\mathbb{R}^n) = C_c^{\infty}(\mathbb{R}^n).$$

Thus, each $C_c^{\infty}(K)$ is a Frechet space with semi-norm $||f||_{\alpha} = \sup_{x \in K} |\partial^{\alpha} f(x)|$ Then $f_n \to f$ converges in $C_c^{\infty}(K)$ if and only if $f_n, f \in K$ and $\partial^{\alpha} f_n \to \partial^{\alpha} f$ uniformly on K for all α .

Let $C_c^{\infty}(\Omega) = \bigcup_{K \subset \Omega} C_c^{\infty}(K)$, we have $C_c^{\infty}(\Omega)$ with induced limit topology, induced from $C_c^{\infty}(K)$

The topology is characterized by

1. $(f_j), f \subset C_c^{\infty}(\Omega)$ then $f_j \to f$ if exists $K \subset \Omega$ compact, such that $supp(f_j) \subset K$ and $f_n \to f$ converges in $C_c^{\infty}(K)$

2.If X a LCTVS, and $T: C_c^\infty(\Omega) \to X$ is a linear map, then T is continuous if $T|_{C_c^\infty(K)}: C_c^\infty(K) \to X$ is continuous for any compact $K \subset \Omega$

3.A linear map $T:C_c^\infty(\Omega)\to C_c^\infty(\hat\Omega)$. If for any compact $K\subset\Omega$, there exists compact $\hat K\subset\hat\Omega$ such that $T(C_c^\infty(K))\subset T(C_c^\infty(\hat K))$, and $T|_{C_c^\infty(K)}:C_c^\infty(K)\to C_c^\infty(\hat K)$ is continuous.

This induced topology is Frechet.

 $D(\Omega)$ be the space of test function. A distribution T is an element in D^* which is $D'(\Omega)$.

 $D'(\Omega)$ with weak topology is a LCTVS

Definition 6 (Radon Measure). recall the Radon measure:

Let $\Omega \subset \mathbb{R}^n$ be an open set. A Radon measure on Ω is a Borel measure μ on Ω such that:

- 1. $\mu(K) < \infty$ for every compact set $K \subset \Omega$ (locally finite),
- 2. $\mu(U) = \sup\{\mu(K) : K \subset U, K \text{ compact}\}\$ for every open set $U \subset \Omega$ (inner regular),
- 3. $\mu(B) = \inf\{\mu(U) : B \subset U, U \text{ open}\}\$ for every Borel set $B \subset \Omega$ (outer regular).

example 3. 1. Let μ be a Radon measure on Ω , $\psi \to \int_{\Omega} \psi d\mu$:

$$\left| \int_{\Omega} \psi d\mu \right| \leq \mu(\Omega) \|\psi\|_{\infty}$$

defines an element in D'.

example 4. Let $\alpha \in N^n$ $x_0 \in \Omega$ then $\psi \in D(\Omega) \to D^{\alpha}\psi(x_0)$ also defines an element in D'

Fact 1. Some operation extended from function to distribution:

Let $\psi \in D(\Omega)$, then $f \in C^{|\alpha|}(\Omega), \psi \in D(\Omega)$, then

$$\int_{\Omega} (\partial^{\alpha} f) \psi dx = \int_{\Omega} f(\partial^{\alpha} \psi) dx$$

By partial integral, note that all boundary term vanishes since the support is compact.

If $T \in D'(\Omega)$, we define $D^{\alpha} = (\partial^{\alpha})$ by $D^{\alpha}T(\psi) = (-1)^{|\alpha|}T(\partial^{\alpha}\psi)$. Then, $D^{\alpha}T \in D'(\Omega)$

example 5. $f \in C(\mathbb{R}^n)$, then define distribution $T_f(\psi) = \int_N f \psi dx$.

The weak derivative is defined by $(D^{\alpha}f)\psi = (-1)^{|\alpha|} \int_{\Omega} f(\partial^{\alpha}\psi) dx$ $D^{\alpha}f$ is a distribution.

Let $P(x_1, \ldots x_n)$

$$P(D) = \sum_{|\alpha| \le k} a_{\alpha} D^{\alpha}$$

Let $T \in D'$ define $P(D)T = T(\sum_{|\alpha| \leq K} (-1)^{|\alpha|} D^{\alpha} \psi)$ for $\psi \in D'$ Suppose $f \in C(R^n)$, then $u \in C^k(R^n)$ is a strict solution if P(D)u = f. Let $T \in D'$ is called weak solution if P(D)T = f in some distributions. So $T(\sum_{|\alpha| \leq K} (-1)^{|\alpha|} D^{\alpha} \psi) = \int_{\Omega} f \psi dx$ has weak solution. There are regularity theorem in PDE that gives condition on different operator D that weakly allow one to deduce that a weak solution is strict solution.