

PRODUCT SPECIFICATION

F89FTSM13

Wi-Fi Single-band 1T1R Module Datasheet

Version:v1.6

F89FTSM13 Module Datasheet

Ordering	Part NO.	Description	
Ordering Information	FG89FTSM13-W5	RTL8189FTV-VC,b/g/n,Wi-Fi,1T1R,12X12mm,SDIO	

Customer:	
Customer P/N:	
Signature:	
Data	

Office: 14th floor, Block B, phoenix zhigu, Xixiang Street, Baoan District, Shenzhen

Factory: NO.8, Litong RD., Liuyang Economic & Technical Development Zone, Changsha, CHINA

TEL:+86-755-2955-8186 Website:www.fn-link.com

CONTENTS

1. General Description	5
1.1 Introduction	5
1.2 Description	5
2. Features	6
3. Block Diagram	6
4. General Specification	7
4.1 WI-FI Specification	7
5. ID setting information	7
6. Pin Definition	8
6.1 Pin Outline	8
6.2 Pin Definition details	
7. Electrical Specifications	10
7.1 Power Supply DC Characteristics	10
7.2 Power Consumption	
7.3 Interface Circuit time series	
7.3.1 SDIO/GSPI Interface Timing	
7.3.2 SDIO Interface Power-On Sequence	
7.3.3 GSPI Interface Power-On Sequence	
7.3.4 SDIO Interface	14
7.3.5 GPIO Interface	14
8. Size reference	
8.1 Module Picture	
8.2 Physical Dimensions	15
8.3 Layout Recommendation	16
9. The Key Material List	16
10. Reference Design	17
11. Recommended Reflow Profile	18
12. Package	19
12.1 Blister packaging	
12.2 Reel	19
12.3 Carrier Tape Detail	20
12.4 Packaging Detail	20
13. Moisture sensitivity	21

Revision History

Version	Date	Contents of Revision Change	Draft	Checked	Approved
V1.0	2018/12/13	New version	Lzm	Lzm	Jakey
V1.1	2020/03/09	Update formart	LXY	LXY	SZS
V1.2	2020/06/28	Update feflow information	LXY	LXY	SZS
V1.3	2020/08/21	Update PAD information	LXY	LXY	Lgp
V1.4	2020/12/22	统一指标版本	LXY	LXY	SZS
V1.5	2021/08/21	Revise package quantity	LXY	LXY	QJP
V1.6	2022/01/20	Update the specification format Update Reference Design	FC	LXY	QJP
				KY.	1
			-12	100	
			JIN	1	The second second
			CI	- 2	37
			and the second		
ال ا					
		in the second			
		. F			
	9-7-3-9-				

1. General Description

1.1 Introduction

F89FTSM13 is a highly integrated and excellent performance Wireless LAN (WLAN) SDIO network interface device. High-speed wireless connection up to 150 Mbps.

The general hardware for the module is shown in Figure 1. This WLAN Module design is based on Realtek RTL8189FTV-VC-CG. It is a highly integrated single-chip 1T1R Wireless LAN (WLAN) SDIO network interface controller complying with the 802.11n specification. It combines a MAC, a 1T1R capable baseband, and RF in a single chip. It is designed to provide excellent performance with low power Consumption and enhance the advantages of robust system and cost-effective.

1.2 Description

Model Name	F89FTSM13
Product Description	Support Wi-Fi functionalities
Dimension	L x W x H: 12 x 12 x1.6 mm
Wi-Fi Interface	Support SDIO/GPIO
OS supported	Android /Linux
Operating temperature	0°C to 70°C
Storage temperature	-40°C to 80°C

NOT:Chip set spec recommended at 0°C, but module actually test passed at -10°C.

2. Features

General

■ Enterprise level security which can apply WPA/WPA2 certification for WiFi.

PHY Features

- Operate at ISM frequency bands (2.4GHz)
- IEEE standards support: IEEE 802.11b, IEEE 802.11g, IEEE 802.11n
- WiFi 1 transmitter and 1 receiver allow data rates supporting up to 150 Mbps downstream and 150 Mbps upstream PHY rates

Host Interface

■ SDIO1.1/2.0 Interface for WiFi

3. Block Diagram

Single-Band 11n (1x1) Solution

4. General Specification

4.1 WI-FI Specification

Feature	Description				
WLAN Standard	IEEE 802.11 b/g/n Wi-Fi compliant				
Frequency Range	2.4 GHz ~ 2.497 GHz (2.4 GHz ISM Band)				
Number of Channels	2.4GHz: Ch1 ~ Ch14				
Test Items	Typical Value	EVM			
	802.11b /11Mbps : 17dBm ± 2 dB	EVM ≤ -10dB			
Output Power	802.11g /54Mbps : 15dBm ± 2 dB	EVM ≤ -25dB			
	$802.11n / MCS7 : 15dBm \pm 2 dB$	EVM ≤ -28dB			
Spectrum Mask	Meet with IEEE standard				
Freq. Tolerance	± 20 ppm				
Receive Sensitivity	- 11Mbps PER @ -86 dBm	≤-76			
(11b,20MHz) @8% PER					
Receive Sensitivity (11g,20MHz) @10% PER	- 54Mbps PER @ -72 dBm	≤-68			
Receive Sensitivity (11n,20MHz) @10% PER	- MCS=7 PER @ -69 dBm	≤-67			
Receive Sensitivity (11n,40MHz) @10% PER	- MCS=7, PER @ -67 dBm	≤-64			

5. ID setting information

WI-FI

Vendor ID	-
Product ID	-

6. Pin Definition

6.1 Pin Outline

< TOP VIEW

6.2 Pin Definition details

NO.	Name	Type	Description	Voltage
1	GND		Ground connections	
2	RF	I/O	RF OUTPUT	
3	GND		Ground connections	
4~8	NC		Floating (NC)	
9	3.3V	P	3.3V Optional	3.3V

FD-LÎDK欧智通

F89FTSM13

10	NC		Floating (NC)	
11	NC		Floating (NC)	
12	WL_REG_ON		WL_REG_ON	3.3V
13	WL_HOST_WAKE	О	WAKE UP	
14	SDIO_DATA_2	I/O	SDIO_D2	
15	SDIO_DATA_3	I/O	SDIO_D3	
16	SDIO_DATA_CMD	I/O	SDIO_CMD	
17	SDIO_DATA_CLK	I	SDIO_CLK	
18	SDIO_DATA_D0	I/O	SDIO_D0	-1
19	SDIO_DATA_D1	I/O	SDIO_D1	10
20	GND		Ground connections	1116
21	NC		Floating (NC)	
22	VDIO	Р	1.8~3.3V	D
23	NC		Floating (NC)	(Stor Beau)
24	LPO		CLK_REQ, Not used please NC	Resilient Control
25~29	NC		Floating (NC)	
30	TCXO_IN	8	I/O Voltage supply input	
31	GND	6	Ground connections	
32	NC	1	Floating (NC)	
33	GND		Ground connections	
34~35	NC		Floating (NC)	
36	GND	2	Ground connections	
37~40	NC		Floating (NC)	
41	GND	7	Ground connections	
42~44	NC		Floating (NC)	

P:POWER I:INPUT O:OUTPUT

7. Electrical Specifications

7.1 Power Supply DC Characteristics

	MIN	ТҮР	MAX	Unit
Operating Temperature	0	25	70	deg.C
VCC33	3.0	3.3	3.6	V
VDDIO	1.62	1.8 or 3.3	3.6	V

7.2 Power Consumption

Mode	Status Power(mA)		Note	
	Link	130	172	
OS	RX	130	20M	
Windows XP	TV	190	20M(MCS7)	
	TX	175	40M(MCS7)	

7.3 Interface Circuit time series

7.3.1 SDIO/GSPI Interface Timing

Figure 4. SDIO High Speed Interface Timing

Table 11. SDIO/GSPI Interface Timing Parameters

NO	Parameter	Mode	MIN	MAX	Unit
$\mathbf{f}_{\mathtt{PP}}$	Clock Frequency	Default	0	25	MHz
		HS	0	50	MHz
T_{WL}	Clock Low Time	DEF	10	-	ns
0		HS	7	-	ns
T_{WH}	Clock High Time	DEF	10	=	ns
		HS	7	-	ns
T_{ISU}	Input Setup Time	DEF	5	-	ns
		HS	6	į.	ns
T_{IH}	Input Hold Time	DEF	5	-	ns
		HS	2		ns
T_{ODLY}	Output Delay Time	DEF		14	ns
		HS	-	14	ns

7.3.2 SDIO Interface Power-On Sequence

After power-on, the SDIO interface is selected by the RTL8189FTV-VC automatically when a valid SDIO command is received. To attain better SDIO host compatibility, the following power-on sequence is recommended:

T_{33ramp}': The 3.3V power pre-charge ramp up duration before formal power up. We recommend that a 3.3V power-on and then power-off sequence is executed by the host controller before the formal power-on sequence. This procedure can eliminate the host card detection issue when the power ramp up duration is too long or the system warm reboot fails.

Toff: The duration 3.3V is cut off before formal power up.

T_{33ramp}: The 3.3V main power ramp up duration.

T_{12ramp}: The internal 1.2V ramp up duration.

TPOR: The duration the power-on reset releases, and the power management unit executes power-on tasks. The power-on reset will detect both 3.3V and 1.2V power ramp up after a predetermined duration.

T_{non_rdy}: SDIO not ready duration. In this state the RTL8189FTV-VC may respond to commands without the ready bit set. After the ready bit is set, the host will initiate the full card detection procedure.

Power-On Flow Description

We recommend that the card detection procedures are divided into two phases: a 3.3V power pre-charge phase and a formal power-up phase.

For the 3.3V power pre-charge phase, the power ramp up duration is not limited. The 3.3V is then cut off and is turned on after a Toff period. The ramp up time is specified by the T33ramp duration.

After main 3.3V ramp up and 1.2V ramp up, the power management unit will be enabled by the power ready detection circuit, and will enable the SDIO block. eFUSE is then autoloaded to the SDIO circuits during the Tnon_rdy duration. After the autoload has completed, the SDIO sets the ready bit. After CMD5/ 5/3/7 procedures, card detection is then executed. After the driver has loaded, normal commands 52 and 53 are then used.

A typical timing specification is shown below:

Parameter	Min	Typical	Max	Unit
T _{33ramp} '	0.25	i i i i i i i i i i i i i i i i i i i	No Limit	ms
T _{off}	250	500	1000	ms
T _{33ramp}	0.25	0.5	2.5	ms
T _{12ramp}	0.1	0.5	1.5	ms
T _{por}	2	2	8	ms
T _{non-rdy}	1	2	10	ms

7.3.3 GSPI Interface Power-On Sequence

The GSPI interface is enabled automatically when a valid GSPI command is first received. The recommended power-on sequence is as follows:

Definitions

T_{33ramp}': The 3.3V power pre-charge ramp up duration before formal power up. We recommend that a 3.3V power-on and then power-off sequence is executed by the host controller before the formal power-on sequence. This procedure can eliminate the host card detection issue when the power ramp up duration is too long or the system warm reboot fails.

Toff: The duration 3.3V is cut off before formal power up.

T_{33ramp}: The 3.3V main power ramp up duration.

T_{12ramp}: The internal 1.2V ramp up duration.

T_{non_rdy}: The duration of SPI device internal initialization. After Tnon_rdy, the SPI host can then send commands to write the SPI CFG register. The SPI CFG register controls SPI endian and word length.

Power-On Flow Description

We recommend that the card detection procedures are divided into two phases: a 3.3V power pre-charge phase and a formal power-up phase.

For the 3.3V power pre-charge phase, the power ramp up duration is not limited. The 3.3V is then cut off and is turned on after a Toff period. The ramp up time is specified by the T33ramp duration.

After main 3.3V ramp up and 1.2V ramp up, the power management unit will be enabled by the power ready detection circuit, and will enable the SPI block. eFUSE is then autoloaded to the SPI circuits, and the internal power circuits are configured during the Tnon_rdy duration.

A typical timing specification is shown below:

Parameter	Min	Typical	Max	Unit
T _{33ramp} ,	0.25	-	No Limit	ms
$T_{\rm off}$	250	500	1000	ms
T _{33ramp}	0.25	0.5	2.5	ms
$T_{12\text{ramp}}$	0.1	0.5	1.5	ms
$T_{\text{non-rdy}}$	3	4	18	ms

7.3.4 SDIO Interface

Symbol	Type	Pin	Description
SD CLK	I	16	SDIO Clock Input
SD CMD	I/O	15	SDIO Command Input
SD D0	I/O	17	SDIO Data Line 0
SD D1	I/O	18	SDIO Data Line 1
SD D2	I/O	13	SDIO Data Line 2
SD D3	I/O	14	SDIO Data Line 3

7.3.5 GPIO Interface

Symbol	Туре	Pin	Description
GSPI CLK	I	16	GSPI Clock Input
GSPI MOSI	I	15	GSPI Data Input
GSPI MISO	О	17	GSPI Data Out
GSPI SIRO	0	18	GSPI Interrupt
GSPI SCSn	I	14	GSPI Chip Select Bar

8. Size reference

8.1 Module Picture

Note: 1.The client board PCB PAD must same width with the module PAD and for length do not extend toward the inside.

2. The distance between the PAD and the copper keep clearance \(\rightarrow 0.3 mm. \)

8.2 Physical Dimensions

<TOP View>

8.3 Layout Recommendation

9. The Key Material List

Item	Part Name	Description	Manufacturer
1	Crystal	3225 26Mhz ±10ppm,10.5pF	ECEC,HOSONIC,TKD,JWT
2	ESD	0201 0.05pF 15KV TVS	Murata,Sunlord
3	Chipset	RTL8189FTV-VC-CG	Realtek
4	PCB	F89FTSM13 12X12 4L	XY-PCB,KX-PCB,Sunlord

10. Reference Design

11. Recommended Reflow Profile

Referred to IPC/JEDEC standard.

Peak Temperature: <260°C

Reflow 260 $^{\circ}\,$ C and holding time at least 10seconds

Number of Times : ≤2 times

12. Package

12.1 Blister packaging

A roll of 100pcs

12.2 Reel

A roll of 1500pcs

12.3 Carrier Tape Detail

12.4 Packaging Detail

the take-up package

Using self-adhesive tape Color of plastic disc: blue

13. Moisture sensitivity

The Modules is a Moisture Sensitive Device level 3, in according with standard IPC/JEDEC J-STD-020, take care

all the relatives requirements for using this kind of components.

Moreover, the customer has to take care of the following conditions:

- a) Calculated shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH)
- b) Environmental condition during the production: 30°C / 60% RH according to IPC/JEDEC J-STD-033A paragraph 5
- c) The maximum time between the opening of the sealed bag and the reflow process must be 168 hours if condition
- b) "IPC/JEDEC J-STD-033A paragraph 5.2" is respected
- d) Baking is required if conditions b) or c) are not respected
- e) Baking is required if the humidity indicator inside the bag indicates 10% RH or more