1

Deformación de un cilindro mediante calor

Autores: Alejandro Magnorsky, Andrés Mata Suárez, Mariano Merchante Instituto Tecnológico de Buenos Aires

Resumen

Palabras clave

Cilindro; temperatura; deformación; diferencias finitas

I. Introducción

II. DESARROLLO

A. Cálculo de la temperatura del cilindro

La temperatura de un cilindro uniforme puede modelarse como una función u(r,t), donde r es la coordenada radial desde el eje del cilindro y t es el tiempo. Dicha función debe satisfacer la siguiente ecuación diferencial:

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} = \frac{1}{4K} \frac{\partial u}{\partial t} \tag{1}$$

para $\frac{1}{2} < r < 1$, 0 < t < 10 y K = 0.1.

Las condiciones de contorno, para $0 \le t \le 10$, son:

$$u(\frac{1}{2}, t) = t \tag{2}$$

$$u(1,t) = 100 + 40t \tag{3}$$

Además, la condición inicial, para $\frac{1}{2} \le r \le 1$, es:

$$u(r,0) = 200(r - 0.5) \tag{4}$$

El objetivo es, entonces, encontrar una aproximación $v_k^m \approx u(\frac{1}{2} + k\Delta r, m\Delta t)$, donde $k = 0, 1, \dots, n$ siendo $n = \frac{1-\frac{1}{2}}{\Delta r}$ y $m = 0, 1, \dots, l$ con $l = \frac{10}{\Delta t}$.

Para ello, se utilizan las siguientes diferencias finitas:

Centradas

$$\frac{\partial^2 u}{\partial r^2} = \frac{u(r + \Delta r, t) - 2u(r, t) + u(r - \Delta r, t)}{\Delta r^2} + O(\Delta r^2)$$
 (5)

$$\frac{\partial u}{\partial r} = \frac{u(r + \Delta r, t) - u(r - \Delta r, t)}{2\Delta r} + O(\Delta r^2)$$
(6)

• Progresiva

$$\frac{\partial u}{\partial t} = \frac{u(r, t + \Delta t) - u(r, t)}{\Delta t} + O(\Delta t) \tag{7}$$

Escribiendo las aproximaciones de las diferencias centradas en la ecuación (1), se obtiene el siguiente esquema:

$$\frac{v_{k+1}^m - 2v_k^m + v_{k-1}^m}{\Delta r^2} + \frac{1}{\frac{1}{2} + k\Delta r} \frac{v_{k+1}^m - v_{k-1}^m}{2\Delta r} = \frac{1}{4K} \frac{v_k^{m+1} - v_k^m}{\Delta t}$$
(8)

$$v_k^{m+1} = v_k^m + \frac{4K\Delta t}{\Delta r^2} (v_{k+1}^m - 2v_k^m + v_{k-1}^m) + \frac{4K\Delta t}{(\frac{1}{2} + k\Delta r)2\Delta r} (v_{k+1}^m - v_{k-1}^m)$$
(9)

Las condiciones de contorno y la inicial se deducen de las ecuaciones (2), (3) y (4):

$$v_0^m = m\Delta t \tag{10}$$

$$v_n^m = 100 + 40m\Delta t \tag{11}$$

$$v_k^0 = 200(\frac{1}{2} + k\Delta r - 0.5) \tag{12}$$

Las diferencias finitas, utilizadas para construir el esquema de la ecuación (9), tienen errores de $O(\Delta r^2)$ y $O(\Delta t)$. Por lo tanto, el esquema tiene $O(\Delta r^2 + \Delta t)$, es decir, orden (2,1).

Para analizar la estabilidad, se aplica la Transformada de Fourier de Tiempo Discreto en ambos miembros del esquema de la ecuación (9), junto a las propiedades de desplazamiento en el tiempo y linealidad (Mathews y Fink, 1992), obteniendo:

$$V_k^{m+1} = V_k^m + \frac{4K\Delta t}{\Delta r^2} (V_k^m e^{i\omega} - 2V_k^m + V_k^m e^{-i\omega}) + \frac{4K\Delta t}{r2\Delta r} (V_k^m e^{i\omega} - V_k^m e^{-i\omega})$$
(13)

Despejando V_k^m :

$$V_k^{m+1} = \left(1 + \frac{4K\Delta t}{\Delta r^2} (e^{i\omega} + e^{-i\omega}) - 2\frac{4K\Delta t}{\Delta r^2} + \frac{4K\Delta t}{r2\Delta r} (e^{i\omega} - e^{-i\omega})\right) V_k^m \tag{14}$$

$$V_k^{m+1} = \left(1 + 2\frac{4K\Delta t}{\Delta r^2}(\cos\omega - 1) + i2\frac{4K\Delta t}{r2\Delta r}\sin\omega\right)V_k^m \tag{15}$$

Se define $\rho=1+2\frac{4K\Delta t}{\Delta r^2}(\cos\omega-1)+i2\frac{4K\Delta t}{r2\Delta r}\sin\omega$. Entonces:

$$V_k^{m+1} = \rho V_k^m \tag{16}$$

$$V_k^{m+1} = \rho^{m+1} V_k^0 \tag{17}$$

Por lo tanto, $|\rho| < 1$ para que el método sea estable. Para que eso se cumpla, como mínimo, $|Im(\rho)| < 1$:

$$|2\frac{4K\Delta t}{r2\Delta r}\sin\omega| < 1 \Rightarrow \frac{4K\Delta t}{r2\Delta r} < \frac{1}{2} \Rightarrow \Delta t < \frac{r\Delta r}{4K}$$
(18)

Considerando los casos en que $r=\frac{1}{2}$ y r=1, se obtiene que el caso más restrictivo es que $\Delta t<\frac{\Delta r}{8K}$.

En la figura 1, se detalla la implementación de un programa que, dados Δr y Δt , utiliza las condiciones de contorno y la inicial (ecuaciones (10), (11) y (12)) para armar parte de la matriz v que representa a la función v_k^m , donde k es la columna y m es la fila. Para completar el resto, usa el esquema de la ecuación (9).

B. Cálculo de la deformación del cilindro

La deformación del cilindro, d, es proporcional a la temperatura media del mismo. Por lo tanto, se calcula como:

$$d = \alpha \int_{\frac{1}{2}}^{1} u(r, t) r dr \tag{19}$$

donde $\alpha = 10.7$.

III. RESULTADOS

Para realizar todos los cálculos se utiliza $\Delta r = 0.1$ y $\Delta t = 0.01$.

Fig. 1: Temperatura del cilindro para $r=0.6,0.7,0.8 \ \mathrm{y}\ 0.9$

Fig. 2: Evolución de la temperatura del cilindro

Fig. 3: Temperatura en régimen permamente

Fig. 4: Deformación del cilindro

IV. CONCLUSIONES

REFERENCIAS

Mathews, John H., Fink, Kurtis D., "Numerical Methods Using MATLAB", Prentice Hall, 1999

Listing 1: Implementación del cálculo de \boldsymbol{v}_k^m .

```
function v = finiteDifferences(deltaR, deltaT)
      K = 0.1;
      n = (1/2)/deltaR;
l = 10/deltaT;
      v = zeros(1+1,n+1);
      for k = 0:n
            v(1,k+1) = 200*(1/2 + k*deltaR - 0.5);
      endfor
      for m=0:1
            v(m+1,1) = m*deltaT;
            v(m+1,n+1) = 100 + 40*m*deltaT;
      endfor
      for m=1:1
            for k=2:n
                  endfor
      endfor
```

endfunction