Sequential Circuits: Timing

Digital Design and Computer Architecture Mohammad Sadrosadati Frank K. Gürkaynak

http://safari.ethz.ch/ddca

What will we learn?

- Timing of Sequential Logic
 - Setup time
 - Hold time
- Clock frequency
- Metastability and prevention

Timing

- Flip-flop samples D at clock edge
- D must be stable when it is sampled
- Similar to a photograph, D must be stable around the clock edge
- If D is changing when it is sampled, metastability can occur
 - Recall that a flip-flop copies the input D to the output Q on the rising edge of the clock. This process is called sampling D on the clock edge. If D is stable at either 0 or 1 when the clock rises, this behavior is clearly defined. But what happens if D is changing at the same time the clock rises?

Input Timing Constraints

- Setup time: t_{setup} = time before the clock edge that data must be stable (i.e. not changing)
- Hold time: t_{hold} = time after the clock edge that data must be stable
- Aperture time: t_a = time around clock edge that data must be stable (t_a = t_{setup} + t_{hold})

Output Timing Constraints

- Propagation delay: t_{pcq} = time after clock edge that the output Q is guaranteed to be stable (i.e., to stop changing)
- Contamination delay: t_{ccq} = time after clock edge that Q might be unstable (i.e., start changing)

Dynamic Discipline

- The input to a synchronous sequential circuit must be stable during the aperture (setup and hold) time around the clock edge.
- Specifically, the input must be stable
 - at least t_{setup} before the clock edge
 - at least until t_{hold} after the clock edge

Dynamic Discipline

 The delay between registers has a minimum and maximum delay, dependent on the delays of the circuit elements

- The clock period or cycle time, T_c, is the time between rising edges of a repetitive clock signal. Its reciprocal, f_c=1/T_c, is the clock frequency.
- All else being the same, increasing the clock frequency increases the work that a digital system can accomplish per unit time.
- Frequency is measured in units of Hertz (Hz), or cycles per second:
 - 1 megahertz (MHz) 10⁶ Hz
 - 1 gigahertz (GHz) 10⁹ Hz.

- The setup time constraint depends on the maximum delay from register R1 through the combinational logic.
- The input to register R2 must be stable at least t_{setup} before the clock edge.

- The setup time constraint depends on the maximum delay from register R1 through the combinational logic.
- The input to register R2 must be stable at least t_{setup} before the clock edge.

- The setup time constraint depends on the maximum delay from register R1 through the combinational logic.
- The input to register R2 must be stable at least t_{setup} before the clock edge.

$$T_c >= t_{pcq} + t_{pd} + t_{setup}$$

$$t_{pd} <= T_c - (t_{pcq} + t_{setup})$$

Hold Time Constraint

- The hold time constraint depends on the minimum delay from register R1 through the combinational logic.
- The input to register R2 must be stable for at least t_{hold} after the clock edge.

Hold Time Constraint

- The hold time constraint depends on the minimum delay from register R1 through the combinational logic.
- The input to register R2 must be stable for at least t_{hold} after the clock edge.

Hold Time Constraint

- The hold time constraint depends on the minimum delay from register R1 through the combinational logic.
- The input to register R2 must be stable for at least t_{hold} after the clock edge.

Timing Analysis

$$t_{cd} =$$

Setup time constraint:

$$T_c \ge$$

$$f_c = 1/T_c =$$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$\frac{\Phi}{E} \Gamma t_{pd} = 35 \text{ ps}$$

$$t_{cd}$$
 = 25 ps

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

Timing Analysis

$$t_{pd}$$
 = 3 x 35 ps = 105 ps

$$t_{cd} = 25 \text{ ps}$$

Setup time constraint:

$$T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

$$f_c = 1/T_c = 4.65 \text{ GHz}$$

Timing Characteristics

$$t_{cca}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$\begin{array}{ccc} & & & = 35 \text{ ps} \\ \hline & & & = 25 \text{ ps} \\ \hline & & & & = 25 \text{ ps} \\ \end{array}$$

$$t_{ccq} + t_{cd} > t_{hold}$$
?

$$(30 + 25) ps > 70 ps ? No!$$

Fixing Hold Time Violation

Add buffers to the short paths:

$$t_{pd} =$$

$$t_{cd} =$$

Setup time constraint:

$$T_c \ge$$

$$f_c =$$

Timing Characteristics

$$t_{cca}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$\begin{array}{ccc} & & & = 35 \text{ ps} \\ \hline & & & = 25 \text{ ps} \\ \hline & & & & = 25 \text{ ps} \\ \end{array}$$

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

Fixing Hold Time Violation

Add buffers to the short paths:

$$t_{pd}$$
 = 3 x 35 ps = 105 ps

$$t_{cd}$$
 = 2 x 25 ps = 50 ps

Setup time constraint:

$$T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

$$f_c = 1/T_c = 4.65 \text{ GHz}$$

Timing Characteristics

$$t_{cca}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

$$(30 + 50) ps > 70 ps ? Yes!$$

Clock Skew

- The clock doesn't arrive at all registers at the same time
- Skew is the difference between two clock edges
- Examine the worst case to guarantee that the dynamic discipline is not violated for any register – many registers in a system!

Setup Time Constraint with Clock Skew

■ In the worst case, the CLK2 is earlier than CLK1

Setup Time Constraint with Clock Skew

In the worst case, the CLK2 is earlier than CLK1

Setup Time Constraint with Clock Skew

In the worst case, the CLK2 is earlier than CLK1

Hold Time Constraint with Clock Skew

In the worst case, CLK2 is later than CLK1

Hold Time Constraint with Clock Skew

In the worst case, CLK2 is later than CLK1

Hold Time Constraint with Clock Skew

In the worst case, CLK2 is later than CLK1

Violating the Dynamic Discipline

 Asynchronous (for example, user) inputs might violate the dynamic discipline

Metastability

- Any bi-stable device has two stable states and a metastable state between them
- A flip-flop has two stable states (1 and 0) and one metastable state
- If a flip-flop lands in the metastable state, it could stay there for an undetermined amount of time

Metastability

■ T₀/T_c describes the probability that the input changes at a bad time, i.e., during the aperture time

$$P(t_{res} > t) = (T_0/T_c) e^{-t/\tau}$$

- **t** is a time constant indicating how fast the flip-flop moves away from the metastable state; it is related to the delay through the cross-coupled gates in the flip-flop
- In short, if a flip-flop samples a metastable input, if you wait long enough (t), the output will have resolved to 1 or 0 with high probability.

Synchronizers

- Asynchronous inputs (D) are inevitable (user interfaces, systems with different clocks interacting, etc.).
- The goal of a synchronizer is to make the probability of failure (the output Q still being metastable) low.
- A synchronizer cannot make the probability of failure 0.

Synchronizer Internals

- A synchronizer can be built with two back-to-back flip-flops.
- Suppose the input D is changing when it is sampled by F1.
- Internal signal D2 has $(T_c t_{setup})$ time to resolve a 1 or 0.

Synchronizer Probability of Failure

For each sample, the probability of failure of this synchronizer is:

$$P(\text{failure}) = \frac{T_0}{T_c} e^{-\frac{T_c - t_{\text{setup}}}{\tau}}$$

Synchronizer Mean Time Before Failure

- If the asynchronous input changes once per second, the probability of failure per second of the synchronizer is simply P(failure).
- In general, if the input changes N times per second, the probability of failure per second of the synchronizer is:

$$P(\text{failure})/\text{sec} = N \frac{T_0}{T_c} e^{-\frac{T_c - t_{\text{setup}}}{\tau}}$$

Thus, the synchronizer fails, on average,1/[P(failure)/second]
This is called the mean time between failures, MTBF:

$$MTBF = \frac{1}{P(\text{failure})/\text{sec}} = \frac{T_c e^{\frac{T_c - t_{\text{setup}}}{\tau}}}{NT_0}$$

Example Synchronizer

Suppose:
$$T_c = 1/500 \text{ MHz} = 2 \text{ ns}$$
 $\tau = 200 \text{ ps}$ $T_0 = 150 \text{ ps}$ $T_0 = 10 \text{ events per second}$ $T_0 = 10 \text{ events per second}$

What is the probability of failure? MTBF?

Example Synchronizer

Suppose:
$$T_c = 1/500 \text{ MHz} = 2 \text{ ns}$$
 $\tau = 200 \text{ ps}$ $T_0 = 150 \text{ ps}$ $T_0 = 100 \text{ ps}$

What is the probability of failure? MTBF?

P(failure) = (150 ps/2 ns)
$$e^{-(1.9 \text{ ns})/200 \text{ ps}}$$

= 5.6 × 10⁻⁶
P(failure)/second = 10 × (5.6 × 10⁻⁶)
= 5.6 × 10⁻⁵ / second
MTBF = 1/[P(failure)/second] ≈ 5 hours

What did we learn?

- Timing constraints for sequential circuits
 - Setup time, time needed for the inputs to be present before clock
 - Hold time, time needed after the clock where inputs should not change
 - Aperture time, time around clock event where inputs should stay stable
- Problems related to clock skew
- Metastability and Synchronization