

(采用四 级 记 分 制)

南北方学

本科毕业论文(设计)

题目: _____

عدد دا.	ط اللا	
子生	姓名	
学	号	
指导	教师	
院	系	
专	业	
年	级	

教务处制

诚信声明

本人郑重声明:本人所呈交的毕业论文(设计),是在导师的指导下独立进行研究所取得的成果。毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或在网上发表的论文。

特此声明。

论文作者签名:

日期: 年月日

中文标题

摘要

摘要就写在这里吧

关键词 关键词1; 关键词2; 关键词3; 关键词4;

English Title

Abstract Abstract bla bla bla.

Keywords Keyword1; Keyword2; Keyword3; Keyword4.

目 录

	摘要			 i
	Abstr	act		 iii
第	一章	5 这是	是一章	1
	1.1	介绍.		 1
		1.1.1	简介	 1
		1.1.2	使用环境	 1
		1.1.3	LATEX学习(中文)	 1
		1.1.4	模板使用	 1
	1.2	测试开	始	 3
		1.2.1	测试数学环境和BIBTeX	 3
		1.2.2	测试itemize和enumerate环境	 3
		1.2.3	测试表格环境和双重标题	 3
		1.2.4	测试插图和横向环境	 5
		1.2.5	测试化学符号	 8
		1.2.6	测试插入程序源代码	 8
参	考文	献		14
致	谢			17
附	录 A	Title		19

第一章 这是一章

1.1 介绍

1.1.1 简介

本模板用于西北大学本科毕业设计论文的LATEX排版,排版按照西北大学毕业论文格式规范,在Windows环境下使用。双面打印,页眉页脚、目录、各级标题、页码、参考文献、正文格式均已设好,包含了论文的基本部分,可以直接使用,适合各理工学科同学的本科毕业论文排版。本模板由hkkhhk制作,Email:hkkhhkkl@126.com。

1.1.2 使用环境

软件环境:

操作系统 Windows 系列操作系统(推荐XP)1;

PDF浏览器 Adobe Reader (推荐6以上版本);

LATEX IDE CTEX (推荐2.6.5以上版本);

EPS 格式转换 All2EPS, 压缩包里有带;

DOC 浏览器 Microsoft Office (推荐2007以上版本,可以直接转换为PDF);

1.1.3 IMFX学习(中文)

基础入门 lnotes(Alpha Huang)、lshorts(Tobias Oetiker);

系统全面 \LaTeX 2 ε 科技排版指南(邓建松等);

深入进阶 TeXbook0(xianxian)。

FAQ http://bbs.ctex.org。

1.1.4 模板使用

本模板只有1章和1个附录,需要增加的参考第一章的方式建立新文件,并去掉main.tex相应注释。

插入EPS图片:使用All2EPS把各种位图转化为EPS格式,如果是矢量图建议直接存为EPS格式。

¹没在Linux下测试,不知道能不能用

插入封面: 把学校提供的DOC封面转为PDF格式,用GSView打开该PDF,菜单"File-"Convert"转为EPS格式,Device选择"epswrite",Resolution选择"300",见图1.1然后保存在titlepage子目录下的titlepage.eps。而诚信申明已经做好,打印好签名就行。

图 1.1: 插入封面-用GSViewer转化PDF封面

参考文献先修改main.bib的条目,从scholar.google.com中可快速搜索到题录,见图1.2(需要设置"学术搜索设置",让其显示导入BIBTeX连接),将其贴入main.bib,并修改引用的标签,需要引用的地方用\cite{标签}来加入引用²,格式为GBT-7714-2005标准。

图 1.2: Google Scholar查找题录

生成PDF输出文件:本模板使用LeTeX编译生成DVI,再经DviPdfmx转换为PDF,只要运行makefile.bat即可,也可按照LeTeX-BIBTeX-LeTeX-LeTeX-DviPdfmx的手动顺序进行。

²参考1.2.1

1.2 测试开始

1.2.1 测试数学环境和BIBT_FX

复变函数欧拉公式为,对于任意实数x,存在:

$$e^{ix} = \cos x + i \sin x$$

当 $x = \pi$ 时,欧拉公式的特殊形式为1.1。

$$e^{ix} + 1 = 0 (1.1)$$

Einstein et al.于1935年提出了质能方程:

$$e = mc^{2[1]}$$

1.2.2 测试itemize和enumerate环境

• C/C++;

• Ruby;

• Java:

• Assembly;

• Python;

• VB.net ASP.net C#.net;

• Basic;

• Galaxy³ .

- 1. London English;
- 2. Chinglish;
- 3. South African English;
- 4. American English⁴;

1.2.3 测试表格环境和双重标题

下面测试表格和中英文双重标题,如表1.1所示:

表 1.1: 中文标题

Table 1.1: English Title

				- 6			
0	1	2	3	4	5	6	7
0	1	2	3	4	5	6	7
0	1	2	3	4	5	6	7

而表1.2是跨页长表格,使用longtable宏包,无双重caption:

³精通各种编程语言

⁴精通各国英语

表 1.2: 测试长表格

ID	Ρ3Δ	P3R	Ρ7 Δ		ΡΟΔ			P14R	P15A	P15R
LG01	H4	H4	H5	H3	H4	H4	H5	H3	H5	H5
LG01	H4	H4	H5	H3	H4	H4	H5	H3	H5	H5
LG01	H4	H4	H5	H3	H4	H4	H5	H3	H5	H5
LG01	H4	H4	H5	H3	H4	H4	H5	H3	H5	H5
LG01	H4	H4	H5	H3	H4	H4	H5	H3	H5	H5
LG01	H4	H4	H5	H3	H4	H4	H5	H3	H5	H5
LG01	H4	H4	H5	H3	H4	H4	H5	H3	H5	H5
LG01	H4	H4	H5	H3	H4	H4	H5	H3	H5	H5
LG01	H4	H4	H5	НЗ	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	НЗ	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	НЗ	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	НЗ	H4	H4	H5	Н3	H5	H5

接下页...

ID	P3A	P3B	P7A	P7B	P9A	P9B	P14A	P14B	P15A	P15B
LG01	H4	H4	Н5	НЗ	H4	H4	Н5	НЗ	Н5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5
LG01	H4	H4	H5	Н3	H4	H4	H5	Н3	H5	H5

1.2.4 测试插图和横向环境

Heightway Dragon曲线,见图1.3。 $f(x,y) = 1 - (1 - e^{-ax})^y$ 的曲面见图1.4。

图 1.3: 龙曲线

Figure 1.3: Heightway Dragon

1.2.5 测试化学符号

有机化学符号使用xymtex宏包插入,具体查看说明,在CT_EX安装目录 \texmf\doc\latex\xymtex。也能用ChemOffice保存成eps格式用插图方式插入,如图1.5。

$$H_2N$$
 CH
 CH
 CH_2
 NH

图 1.5: 氨基酸

1.2.6 测试插入程序源代码

计算机程序源代码使用listings宏包插入,程序框图用EPS插入。C的:

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>

#define TRUE 1
#define FALSE 0
#define PI 3.1415926535898
typedef unsigned long BOOL;
typedef signed long INT32;
typedef unsigned long UINT32;
typedef double DOUBLE;
typedef char CHAR, *PCHAR;
```

```
typedef struct _group{
     INT32 x;/*mm*/
     INT32 n;
  }Group; *PGroup;
 BOOL expl(INT32 dis, INT32 n);
20 BOOL exp2(INT32 dis, INT32 n);
 BOOL exp3(INT32 dis, INT32 n);
  UINT32 rand32(UINT32);
 DOUBLE rand1(void);
 DOUBLE normrnd(DOUBLE mean, DOUBLE std);
25 void main (void) {
     BOOL (*EXP[3])(INT32 dis, INT32 n);
     INT32 L = 100; /*100km*/
     INT32 W = 20; /*20km*/
     DOUBLE D = 100; /*Density */
     DOUBLE Rmax = 2500;
30
     INT32 N = D * L * W;
     INT32 N2 = N;
     INT32 i, j;
     DOUBLE dis;
     PGroup animals, animals2;
35
     FILE *f[6];
     CHAR filehead [250] = "事件记录格式 0.1.2,,,,,,,\区域面积 (公
         PCHAR strbuffer = (PCHAR) malloc (10000);
     animals = (PGroup) malloc(N * size of (Group));
40
     animals2 = (PGroup) malloc(N * sizeof(Group));
     EXP[0] = \&exp1, EXP[1] = \&exp2, EXP[2] = \&exp3;
     srand((UINT32)time(NULL));
     for(i = 0; i < 6; ++i)
         sprintf(strbuffer, "d:\\bioline%d.csv", i + 1);
         f[i] = fopen(strbuffer, "w");
45
         fprintf(f[i], filehead, L * W * 100, L);
     }
     /* generate groups */
     for(i = 0; i < N; ++i)
         animals [i].x = rand32(W);
50
         animals[i].n = 1;
     for (i = 0; i < N2; ++i)
         animals 2[i].x = rand 32(W);
         animals2[i].n = normrnd(15, 5) + 0.5;
55
         N2 = animals 2 [i].n - 1;
     }
     /* generate line data */
     for(i = 0; i < N; ++i)
60
```

```
dis = abs(W * 50000 - animals[i].x) / 100; /*m*/
           for(j = 0; j < 3; ++j) if((*EXP[j])(dis, animals[i].n)) fprintf(f[j],"
               L1,A,%d,%0.2lf,,,,,\n", animals[i].n, dis);
       }
       for(i = 0; i < N2; ++i)
           dis = abs(W * 50000 - animals2[i].x) / 100; /*m*/
           for(j = 0; j < 3; ++j) if((*EXP[j])(dis, animals2[i].n)) fprintf(f[j + j])
                3], "L1, A, %d, %0.2 lf,,,,,\n", animals 2[i].n, dis);
       for(i = 0; i < 6; ++i)
           fprintf(f[i],"结束标志#");
       free (animals);
70
       free (animals2);
       fcloseall();
75 BOOL exp1(INT32 dis, INT32 n) {
       if(rand1() < 1.0 - pow(1.0 - exp(dis / -500.0), n)) return TRUE;
       return FALSE;
   }
80 BOOL exp2(INT32 dis, INT32 n) {
       if (rand1() < 1.0 - pow(1.0 - exp(dis * dis / -720000.0), n)) return TRUE
       return FALSE;
   }
85 BOOL exp3 (INT32 dis, INT32 n) {
      DOUBLE Rm = 2000;
      DOUBLE k = -240;
       if ( dis >Rm) return FALSE;
       if(rand1() < 1.0 - pow(exp(k / dis * atan( sqrt(Rm * Rm - dis * dis) / dis
           )), n)) return TRUE;
       return FALSE;
90
  UINT32 rand32(UINT32 n){
       return ( (rand() << 17) + (rand() << 2) + rand() % 4) % (n * 100000);
  }
95
  DOUBLE rand1(void){
       return rand() * 1.0 / 0x8000;
100
  DOUBLE normrnd (DOUBLE mean, DOUBLE std) {
      DOUBLE norm = 1.0 / 0x8000;
      DOUBLE u = 1.0 - rand() * norm;
      DOUBLE v = rand() * norm;
      DOUBLE \ z \ = \ sqrt(-2.0 \ * \ log(u)) \ * \ cos(2.0 \ * \ PI \ * \ v);
105
       if (mean < 0) return 0;
```

```
if ( mean + std * z > 0 ) return mean + std * z;
else return normrnd(mean, std);
}
```

Matlab的:

```
clear;
  D = 100; L0 = 100; W0 = 20; k = -240; Rm = 2000; N = D * L0 * W0;
  animalnum = zeros(0);
  animals = rand(N, 1) * 100000 * W0; %Generate distance data
[5] animalnum1 = round(normrnd(15, 5, [1, N]));
  i = 0; j = 1;
  while (i < N)
      if(animalnum1(j) > 0)
          i = i + animalnum1(j);
          animalnum = [animalnum, animalnum1(j)];
10
      end
      j = j + 1;
  end
  % individual
a3 = \mathbf{zeros}(0), a1 = a3, a2 = a3;
  for i = 1 : length(animals)
     dis = abs (animals(i) - 50000 * W0) / 100;
     if(rand() < exp(-dis / 500))
         a1 = [a1, dis];
20
     end
     if(rand() < exp(-dis * dis / 720000))
         a2 = [a2, dis];
     end
     if(dis \le Rm \&\& rand() \le 1 - exp(k / dis * atan(sqrt(Rm * Rm - ...)))
             dis * dis) / dis)))
25
         a3 = [a3, dis];
     end
  end
 W = zeros(1,3), D = W;
30 for ii = 1:3
      eval(sprintf('a=a%d;', ii));
      sec = floor(max(a))/(length(a)/50);
      x = [0 : sec : ceil(max(a) / sec) * sec];
      y = zeros(1, length(x));
      for i = 1 : length(a)
          t = floor(a(i) / sec) + 1;
          y(t) = y(t) + 1;
      end
      x = x + (sec / 2);
      P = POLYFIT(x, y, 5);
      yy = polyval(P, x);
      y = y ./ max(yy);
      yy = yy ./ max(yy);
      P = POLYFIT(x, y, 5);
```

```
45
      if(ii == 1)
           plot(x, y, 'r.', x, yy, 'r')
       elseif(ii == 2)
           plot(x, y, 'g.', x, yy, 'g')
       elseif(ii == 3)
           plot(x, y, 'b.', x, yy, 'b')
50
      end
      hold on, xlabel 'd', ylabel 'p'
      legend('Original', 'Polyfit')
      axis([0, max(x) + sec / 2, 0, 1.1])
      str = sprintf('(\%d*x.^5) + (\%d*x.^4) + (\%d*x.^3) + (\%d*x.^2) + (\%d*x) + (\%d)', \dots
55
          P(1), P(2), P(3), P(4), P(5), P(6);
      f = inline(str, 'x');
      W(ii) = quad(f, 0, max(x));
      D(ii) = length(a) / (2 * L0 * W(ii) / 1000);
  end
60
  pause
  %group
  a3 = zeros(0); a1 = a3; a2 = a3; b1 = a3; b2 = a3; b3 = a3;
65 animals = animals(1: length(animalnum));
  for i = 1 : length(animals)
     dis = abs (animals(i) - 50000 * W0) / 100;
     if (rand() < (1 - (1 - exp(dis / -500)) \land animalnum(i)))
          a1 = [a1, dis];
         b1 = [b1, animalnum(i)];
70
     end
     if(rand() < (1 - (1 - exp(dis * dis / -720000)) \land animalnum(i)))
          a2 = [a2, dis];
         b2 = [b2, animalnum(i)];
     end
75
     if(dis \leftarrow Rm \&\& rand() \leftarrow (1 - (exp(k / dis * atan(sqrt(Rm * Rm - ...)))))
              dis * dis) / dis))) ^ animalnum(i)))
          a3 = [a3, dis];
         b3 = [b3, animalnum(i)];
     end
  end
  W2 = zeros(1,3); D2 = W2;
  for ii = 1:3
      eval(sprintf('a=a%d;b=b%d;', ii,ii));
      sec = floor(max(a))/(length(a)/50);
85
      x = [0 : sec : ceil(max(a) / sec) * sec];
      y = zeros(1, length(x));
      for i = 1 : length(a)
           t = floor(a(i) / sec) + 1;
          y(t) = y(t) + b(i);
      end
      x = x + (sec / 2);
      P = POLYFIT(x, y, 5);
```

```
95
       yy = polyval(P, x);
       y = y ./ max(yy);
       yy = yy ./ max(yy);
       P = POLYFIT(x, y, 5);
       if(ii == 1)
           plot(x, y, 'r.', x, yy, 'r')
100
       elseif(ii == 2)
           plot(x, y, 'g.', x, yy, 'g')
       elseif(ii == 3)
           plot(x, y, 'b.', x, yy, 'b')
       end
105
       hold on, xlabel 'd', ylabel 'p'
       legend('Original', 'Polyfit')
       axis([0, max(x) + sec / 2, 0, 1.1])
       str = sprintf('(\%d*x.^5) + (\%d*x.^4) + (\%d*x.^3) + (\%d*x.^2) + (\%d*x) + (\%d)', \dots
           P(1), P(2), P(3), P(4), P(5), P(6));
110
       f = inline(str, 'x');
       W2(ii) = quad(f, 0, max(x));
       eval(sprintf('D2(ii)_=_mean(b%d)_*_length(a)_/_(2_*_L0_*_W2(ii)_/_1000);',
            ii , ii));
   end
115 clc
  W, D, W2, D2
```

参考文献

[1] EINSTEIN A, PODOLSKY B, ROSEN N, *et al.* Can quantum-mechanical description of physical reality be considered complete?[J]. Physical review, 1935, 47(10):777–780.

致谢

先谢国家, 然后是CCTV。

附录 A Title

这是一个附录的章。