06. Regression

- Scikit-learn 기초
- Linear Regression
- **Multiple Linear Regression**
- Logistic Regression

Scikit-Learn 기초

scikit-learn 이란?

■ python기반의 대표적인 기계학습 라이브러리

- scikit-learn은 오픈 소스로 공개되어 있으며, 개인, 비즈니스 관계없이 누구나 무료로 사용가능
- 많은 기계학습 알고리즘이 구현되어 있으며, 같은 방식으로 이용 이 가능
- 기계학습을 배우기 시작할 때 적합한 라이브러리

■ 설치

- python.exe -m pip install --upgrade pip
- pip install scikit-learn

scikit-learn의 주요기능

- Regression
 - SGD(stochastic gradient descent)
 - LASSO
 - Ridge, Liner SVR
 - Ensemble 등
- Classification
 - SGD, Linear SVC, k-NN 등
- Clustering
 - Kmeans, MeanShift 등
- Dimensionality Reduction
 - PCA 등

scikit-learn의 사용방법

- 기본적으로 다음과 같이 사용
 - 라이브러리 import
 - (예) from sklearn import svm
 - 데이터 준비(학습 또는 테스트데이터) 준비
 - sklearn의 datasets에는 샘플 데이터들이 제공되고 있음
 - 알고리즘 선택
 - 목적에 따라 알맞은 알고리즘을 선택하고 파라메터 지정
 - (예)svm.SVC(kernel='linear', C=10, gamma=0.1)
 - kernel: 커널함수(기본:rbf 즉, 가우시안 커널)
 - C: 오류허용도의 역수(기본 1.0, 값이 크면 과적합 가능성)
 - gamma: 학습데이터 의존도(값이 크면 과적합 가능성)
 - 학습
 - 테스트
 - 필요에 따라 학습결과, 정확도 등을 출력

```
from sklearn import svm
from sklearn.metrics import accuracy_score
# prepare data (XOR)
train_data = [[0, 0], [0, 1], [1, 0], [1, 1]]
train_label = [0, 1, 1, 0]
test_data = [[0, 0], [0, 1], [1, 0], [1, 1]]
# select a learning algorithm
clf = svm.SVC(C=10, gamma=0.1) # C:오류허용도의 역수, gamma:학습data 의존도
# learning
clf.fit(train_data, train_label)
# testing
test label = clf.predict(test data)
# results
print(f"train_data = {train_data}, train_label = {train_label}")
print(f"test data = {test data}")
print(f"accuracy = {accuracy score(train label, test label)}")
train_data = [[0, 0], [0, 1], [1, 0], [1, 1]], train_label = [0, 1, 1, 0]
test_data = [[0, 0], [0, 1], [1, 0], [1, 1]]
accuracy = 1.0
```

sklearn의 주요 모듈

- datasets
 - 사이킷런에 내장되어 예제로 제공하는 데이터셋
- preprocessing
 - 데이터 전처리에 필요한 다양한 가공 기능 제공
 - 문자열을 숫자형 코드 값으로 인코딩, 정규화, 스케일링 등
- feature_selection
 - 알고리즘에 큰 영향을 미치는 특징을 우선순위대로 선택작업을 수 행하는 다양한 기능 제공
- feature_extraction
 - 텍스트데이터나 이미지데이터의 벡터화된 특징을 추출하는데 사용

decomposition

- 차원 축소와 관련한 알고리즘을 지원하는 모듈
- PCA, NMF, Truncated SVD 등을 통해 차원 축소 기능을 수행

model_selection

- 교차 검증을 위한 학습용/테스트용 분리
- Grid Search로 최적 파라미터 추출 등의 API 제공

metrics

■ 분류, 회귀, 클러스터링, Pairwise에 대한 다양한 성능 측정방법 제공(Accuracy, Precision, Recall, ROC-AUC, RMSE 등)

pipeline

■ 특징처리 등의 변환과 기계학습 알고리즘, 예측 등을 함께 묶어서 실행할 수 있는 유틸리티 제공

■ 기계학습 알고리즘 관련

모듈명	설명
ensemble	 앙상블 알고리즘 제공 랜덤 포레스트, 에이다 부스트, 그래디언트 부스팅 등을 제공
linear_model	 주로 선형 회귀, 릿지(Ridge), 라쏘(Lasso) 및 로지스틱 회귀 등 회귀 관련 알고리즘을 지원 SGD(Stochastic Gradient Descent) 관련 알고리즘도 제공
naive_bayes	• 나이브 베이즈 알고리즘 제공(가우시안 NB. 다항 분포 NB 등)
neighbors	• 최근접 이웃 알고리즘 제공.(K-Nearest Neighborhood 등)
svm	• 서포트 벡터 머신 알고리즘 제공
tree	• 의사 결정 트리 알고리즘 제공
cluster	• 비지도 클러스터링 알고리즘 제공(K-평균, 계층형, DBSCAN 등)

자주 사용되는 모듈과 알고리즘

■ preprocessing 모듈

- StandardScaler
 - 평균을 제거하고 데이터를 단위 분산으로 조정
- MinMaxScaler
 - 모든 feature 값이 0~1사이에 있도록 데이터를 재조정
- RobustScaler
 - 아웃라이어의 영향을 최소화한 기법
 - 중간값(median)과 IQR(interquartile range:25%~75%범위의 데이터를 스 케일링)을 사용

StandardScaler

```
[[1. -1. 2.]
from sklearn import preprocessing
                                     [ 2. 0. 0.]
import numpy as np
                                     [0. 1. -1.]
                                    mean = [0. 0. 0.], std = [1. 1. 1.]
                                    [[ 0. -1.22474487 1.33630621]
data = np.array([[1., -1., 2.]],
                                     [ 1.22474487 0. -0.26726124]
                [ 2., 0., 0.],
                                    [-1.22474487 1.22474487 -1.06904497]]
                 [0., 1., -1.]
print(data)
scaler = preprocessing.StandardScaler()
scaler.fit(data)
scaled data = scaler.transform(data)
print(f"mean = {scaled data.mean(axis=0)}, std = {scaled data.std(axis=0)}
) } " )
print(scaled data)
```

MinMaxScaler

```
[[1. -1. 2.]
from sklearn import preprocessing
                                    [ 2. 0. 0.]
import numpy as np
                                    [ 0. 1. -1.]]
                                   mean = [0.5]
                                               0.5
                                                              0.44444444],
                                   std = [0.40824829 \ 0.40824829 \ 0.41573971]
data = np.array([[ 1., -1., 2.],
                                   [[0.5
                                               0.
                                                         1.
                [2., 0., 0.],
                                   [1.
                                                         0.33333333
                                              0.5
                [ 0., 1., -1.]])
                                    [0.
                                               1.
                                                         0.
                                                                  11
print(data)
scaler = preprocessing.MinMaxScaler()
scaler.fit(data)
scaled data = scaler.transform(data)
print(f"mean = {scaled data.mean(axis=0)}, std = {scaled data.std(axis=0)}
) } " )
print(scaled_data)
```

RobustScaler

```
[[1. -1. 2.]
from sklearn import preprocessing
                                    [ 2. 0. 0.]
import numpy as np
                                    [ 0. 1. -1.]]
                                   mean = [0.
                                                            0.22222222],
                                                    0.
                                   std = [0.81649658 0.81649658 0.83147942]
data = np.array([[1., -1., 2.]],
                                   [[ 0. -1.
                                                           1.33333333]
                [ 2., 0., 0.],
                                    [ 1.
                                                           0.
                [0., 1., -1.]
                                    [-1.
                                                1.
                                                          -0.66666667]]
print(data)
scaler = preprocessing.RobustScaler()
scaler.fit(data)
scaled data = scaler.transform(data)
print(f"mean = {scaled data.mean(axis=0)}, std = {scaled data.std(axis=0)}
) } " )
print(scaled_data)
```

■ metrics 모듈

- Regression에 사용되는 metric
 - r2_score(y_true, y_pred)
 - 일반적으로 R²로 표시되는 계수(즉, y의 분산비율)를 계산
 - $R^{2}(y, \hat{y}) = 1 \frac{\sum_{i=0}^{n} (y_{i} \hat{y}_{i})^{2}}{\sum_{i=0}^{n} (y_{i} \bar{y}_{i})^{2}}$
 - explained_variance_score(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average')
 - 일반적으로 분산의 차이를 계산(r2_score와 비슷함)
- Classification에 사용되는 metric
 - accuracy_score(y_true, y_pred)
 - 분류의 정확도를 계산
 - 예측된 값 y_pred가 y_true와 정확히 일치하는 개수의 비율의 계산
 - $accuracy(y, \hat{y}) = \frac{1}{N} \sum_{i=0}^{N} 1(\hat{y} = y_i)$

```
from sklearn.metrics import r2_score
y_{true} = [0, 1, 2, 3]
y_pred = [0, 2, 1, 3]
score = r2_score(y_true, y_pred)
print(score) # 0.6
                            from sklearn.metrics import explained_variance_score
                            y_{true} = [0, 1, 2, 3]
                            y_{pred} = [0, 2, 1, 3]
                            score = explained_variance_score(y_true, y_pred)
                            print(score) # 0.6
```

```
from sklearn.metrics import accuracy_score

y_true = [0, 1, 2, 3]
y_pred = [0, 2, 1, 3]
accuracy = accuracy_score(y_true, y_pred)
print(accuracy) # 0.5
accuracy = accuracy_score(y_true, y_pred, normalize=False)
print(accuracy) # 2
```

■ pipeline 모듈

- Pipeline(steps)
 - steps: (key, value)를 요소로 하는 리스트를 지정
 - key: 각 단계를 나타내는 문자열
 - value: 각 단계를 수행하는 객체
- make_pipeline(steps)
 - steps: 각 단계를 수행하는 객체
- 주의사항
 - 마지막 단계를 제외한 나머지 단계는 transform(), fit_transform()이 있는 객체
 - 맨 마지막 단계는 predict()가 있는 객체

```
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
from sklearn.decomposition import PCA

pipe = Pipeline(steps=[('reduce_dim', PCA()), ('clf', SVC())])
print(pipe)
```

```
from sklearn.pipeline import make_pipeline
from sklearn.svm import SVC
from sklearn.decomposition import PCA
pipe = make_pipeline(PCA(), SVC())
print(pipe)
Pipeline(memory=None,
        steps=[('pca',
                PCA(copy=True, iterated_power='auto', n_components=None,
                    random_state=None, svd_solver='auto', tol=0.0,
                    whiten=False)),
               ('svc',
                SVC(C=1.0, break ties=False, cache size=200, class weight=None,
                    coef0=0.0, decision function shape='ovr', degree=3,
                    gamma='scale', kernel='rbf', max_iter=-1,
                    probability=False, random state=None, shrinking=True,
                    tol=0.001, verbose=False))],
        verbose=False)
```

Linear Regression

Regression이란?

- 회귀분석(Regression Analysis)
 - 2개 또는 그 이상 변수들의 의존관계를 파악함으로써 특정 변수 (종속변수)의 값을 예측하는 통계학의 한 분야
- Linear Regression Analysis(선형 회귀분석)
 - 두 변수 x, y에 대한 n개의 측정값 (x1, y1), (x2, y2), ···, (xn, yn)이 있을 때
 - 주어진 가설(hypothesis)에 대한 비용(cost)이 최소화 되도록 하는 직선을 찾는 문제

Linear Regression

■ Linear Hypothesis

$$H(x) = Wx + b$$

Cost Function

- $cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^i) y^i)^2$
- cost(W)함수의 모양

- Linear Regression이란?
 - cost함수 *cost(W,b)* 를 최소화하는 W와 b를 찾는 문제

cost함수의 모양

■ cost함수를 단순화시켜서 생각해 보자!

- $\blacksquare H(x) = Wx$
- $cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^i y^i)^2$

■ 계산결과

- $x = \{1, 2, 3, 4, 5\}$
- $y = \{1, 2, 3, 4, 5\}$

```
W = -3.0, C = 176.0
W = -2.0, C = 99.0
W = -1.0, C = 44.0
W = 0.0, C = 11.0
W = 1.0, C = 0.0
W = 2.0, C = 11.0
W = 3.0, C = 44.0
W = 4.0, C = 99.0
```



```
import numpy as np
import matplotlib.pyplot as plt
X = np.array([1, 2, 3, 4, 5], dtype=np.float)
y = np.array([1, 2, 3, 4, 5], dtype=np.float)
def run(W):
                                                          K Figure 1
    hypothesis = W * X
    cost = np.mean((hypothesis-y)**2)
                                                           175
    return cost
                                       W = -3.0, C = 176.0
                                      W = -2.0, c = 99.0
W val = []
                                       W = -1.0, c = 44.0
cost_val = []
                                      W = 0.0, C = 11.0
                                      W = 1.0, c = 0.0
for i in range(-30, 50):
                                      W = 2.0, c = 11.0
    W = i * 0.1
                                      w = 3.0, c = 44.0
    c = run(w)
                                      W = 4.0, c = 99.0
    if i%10 == 0:
        print(f'w = \{w:5.1f\}, c = \{c:5.1f\}')
                                                         ☆ ← → + Q = B
    W_val.append(w)
    cost val.append(c)
plt.plot(W_val, cost_val)
plt.show()
```

How to minimize cost?

■ 경사하강알고리즘을 이용

- Gradient descent algorithm
 - 임의의 곳에서 시작하여 경사도(gradient)에 따라 W를 변경시켜가면서 cost함수의 값이 최소화되는 W를 구하는 알고리즘
- 경사도(gradient)는 미분값
- W값의 변화

$$W = W - \alpha \frac{\partial}{\partial W} cost(W)$$

- α 는 learning rate
- Gradient descent algorithm

$$W = W - \alpha \frac{1}{m} \sum_{i=1}^{m} (Wx^i - y^i) x^i$$

가중치와 편향이 고려된 경사하강법

$$cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^i) - y^i)^2$$

Linear Regression

- 임의의 데이터
 - 데이터가 선형회귀에 적절한지 확인

```
import numpy as np
# random data
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
                                           12
# plot
                                           10
plt.scatter(X, y)
plt.axis([0, 2, 0, 15])
plt.show()
```



```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
# random data
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
# linear regression
lin reg = LinearRegression()
lin reg.fit(X, y)
print(f"기울기 = {lin_reg.coef_}, y절편 = {lin_reg.intercept_}")
# plot
plt.scatter(X, y)
                                                   10
new_y = lin_reg.coef_ * X + lin_reg.intercept_
plt.plot(X, new_y, "r-")
```

0.50

0.75

1.00

1.25

1.50

plt.axis([0, 2, 0, 15])

plt.show()

규제가 추가된 선형 회귀

- 규제 : 과적합을 감소시키는 방법 중의 하나
- 선형회귀에서의 규제
 - 모델의 가중치를 제한하여 가중치가 가능한한 작게 유지되도록
- 종류
 - **Ridge** Regression(L2규제)

$$cost(\theta) = MSE(\theta) + \alpha \frac{1}{2} \sum_{i=1}^{n} \theta_i^2$$

■ Lasso Regression(L1규제)

$$cost(\theta) = MSE(\theta) + \alpha \frac{1}{2} \sum_{i=1}^{n} |\theta_i|$$

■ α가 Ø이면 선형회귀에 동일

회귀분석용 가상 데이터 만들기

■ sckikit-learn에서는 회귀분석 데이터를 만들기 위한 함수를 제공

■ n_samples : 데이터의 개수

■ n_features : 변수의 개수(차원)

■ bias : y-절편

■ niose : 잡음의 표준편차

■ coef : 계수(기울기) 출력여부(True이면 c를 반환)

■ random_state : 난수발생 시드값

■ 변수가 1개인 경우

```
import matplotlib.pyplot as plt
from sklearn.datasets import make_regression
X, y, w = make_regression(
        n_samples=50,
                                    140
        n_features=1,
                                    120
        bias=100,
        noise=20,
                                    100
        coef=True,
        random_state=0,
                                     80
                                     60
plt.scatter(X, y)
plt.show()
```

■ 변수가 2개인 경우

```
import matplotlib.pyplot as plt
from sklearn.datasets import make_regression
X, y, w = make_regression(
        n_samples=50,
        n_features=2,
        bias=100,
        noise=20,
        coef=True,
        random_state=0,
plt.scatter(X, y)
plt.show()
```

Boston 집값 예측용

- 보스턴의 506개 타운(town)의 13개 독립변수로 구성
 - CRIM: 범죄율
 - INDUS: 비소매상업지역 면적 비율
 - NOX: 일산화질소 농도
 - RM: 주택당 방 수
 - LSTAT: 인구 중 하위 계층 비율
 - B: 인구 중 흑인 비율
 - PTRATIO: 학생/교사 비율
 - ZN: 25,000 평방피트를 초과 거주지역 비율
 - CHAS: 찰스강의 경계에 위치한 경우는 1, 아니면 0
 - AGE: 1940년 이전에 건축된 주택의 비율
 - RAD: 방사형 고속도로까지의 거리
 - DIS: 직업센터의 거리
 - TAX: 재산세율


```
from sklearn.datasets import load_boston
import pandas as pd
```

```
boston = load_boston()
dfX = pd.DataFrame(boston.data, columns=boston.feature_names)
dfy = pd.DataFrame(boston.target, columns=["PRICE"])
df = pd.concat([dfX, dfy], axis=1)
df
```


	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRA	TIO	В	LSTAT	PRICE
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	1	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	1	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	2 CRIN	M		죄율		
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	ZN	LIS			방피트를 지역 면	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	² CHA		: 찰:	스강의 경	경계에 우	
										NOX RM	<		산화질소 택당 방		
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	AGE		-	•	ㅜ 전에 건축	북된 주택
)2	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	2 DIS			업센터의		TIOL 71:
03	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	RAD		_	샤영 고≒ 산세율	속도로까	시의 거대
04	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	2 PTR		: 학	생/교사	· —	
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	B LSTA PRIC				인 비율 위 계층	비율

보스턴 주택 가격 예측(선형회귀)

accuracy = 0.702445591697509

```
from sklearn.datasets import load boston
from sklearn.linear_model import LinearRegression
from sklearn import model_selection
from sklearn import metrics
boston = load boston()
X = boston.data
y = boston.target
X_train, X_test, y_train, y_test
       = model_selection.train_test_split(X, y, test_size=0.3)
lin_reg = LinearRegression()
                                          분류문제: accuracy_score 사용
lin_reg.fit(X_train, y_train)
                                                    -> continuous is not supported
                                          회귀문제: r2_score 사용
y_predict = lin_reg.predict(X_test)
score = metrics.r2_score(y_test, y_predict)
print(f"accuracy = {score}")
```

보스턴 주택 가격 예측(Ridge 선형회귀)

```
from sklearn.datasets import load boston
from sklearn.linear_model import Ridge
from sklearn import model_selection
from sklearn import metrics
boston = load boston()
X = boston.data
y = boston.target
X_train, X_test, y_train, y_test
                      = model_selection.train_test_split(X, y, test_size=0.3)
lin_reg = Ridge(alpha=1.0)
lin reg.fit(X train, y train)
y_predict = lin_reg.predict(X_test)
score = metrics.r2_score(y_test, y_predict)
print(f"accuracy = {score}")
accuracy = 0.7627894929117215
```

보스턴 주택 가격 예측(Lasso 선형회귀)

```
from sklearn.datasets import load boston
from sklearn.linear_model import Lasso
from sklearn import model_selection
from sklearn import metrics
boston = load boston()
X = boston.data
y = boston.target
X_train, X_test, y_train, y_test
                      = model_selection.train_test_split(X, y, test_size=0.3)
lin_reg = Lasso(alpha=1.0)
lin_reg.fit(X_train, y_train)
y_predict = lin_reg.predict(X_test)
score = metrics.r2_score(y_test, y_predict)
print(f"accuracy = {score}")
accuracy = 0.6872938932906716
```

당뇨병 진행도 예측용

- 442명의 당뇨병 환자를 대상으로 한 검사 결과를 나타내는 데이터
- 모든 데이터는 스케일링 되었음
 - age: 나이
 - sex: 성별
 - bmi: BMI(Body mass index)지수
 - bp: 평균혈압
 - s1~s6: 6종류의 혈액검사수치
- 종속변수는 1년 뒤에 측정한 당뇨병의 진행률


```
from sklearn.datasets import load_diabetes
import pandas as pd
import seaborn as sns
```

```
diabetes = load_diabetes()
df = pd.DataFrame(diabetes.data, columns=diabetes.feature_names)
df["target"] = diabetes.target
df
```


	age	sex	bmi	bp	s1	s2	s3	s4	s5	s6	target			
0	0.038076	0.050680	0.061696	0.021872	-0.044223	-0.034821	-0.043401	-0.002592	0.019908	-0.017646	151.0			
1	-0.001882	-0.044642	-0.051474	-0.026328	-0.008449	-0.019163	0.074412	-0.039493	-0.068330	-0.092204	75.0			
2	0.085299	0.050680	0.044451	-0.005671	-0.045599	-0.034194	-0.032356	-0.002592	0.002864	-0.025930	141.0			
3	-0.089063	-0.044642	-0.011595	-0.036656	0.012191	0.024991	-0.036038	0.034309	0.022692	-0.009362	206.0			
4	0.005383	-0.044642	-0.036385	0.021872	0.003935	0.015596	0.008142	-0.002592	-0.031991	-0.046641	135.0			
437	0.041708	0.050680	0.019662	0.059744	-0.005697	-0.002566	-0.028674	-0.002592	0.031193	0.007207	178.0			
438	-0.005515	0.050680	-0.015906	-0.067642	0.049341	0.079165	-0.028674	0,034309	-0.018118	0.044485	104.0			
439	0.041708	0.050680	-0.015906	0.017282	-0.037344	-0.013840	-0.024993	-0. age sex	: 나이 : 성별					
440	-0.045472	-0.044642	0.039062	0.001215	0.016318	0.015283	-0.028674	0. bmi	: BMI(Body mass index)					
441	-0.045472	-0.044642	-0.073030	-0.081414	0.083740	0.027809	0.173816	-0 bp s1~s6	: 평균혈 : 6종류	^열 압 의 혈액검시	·수치			

프로젝트

■ 당뇨병 진행도 예측

여러분이 해 보세요!