

General Multilayer Ceramic Capacitors

MLCC is an electronic part that temporarily stores an electrical charge and the most prevalent type of capacitor today. New technologies have enabled the MLCC manufacturers to follow the trend dictated by smaller and smaller electronic devices such as Cellular telephones, Computers, DSC, DVC

General Features

- Miniature Size
- Wide Capacitance and Voltage Range
- Tape & Reel for Surface Mount Assembly
- Low ESR

Applications

- General Electronic Circuit

Part Numbering

<u>CL</u>	<u>10</u>	<u>B</u>	<u> 104</u>	K	<u>B</u>	<u>8</u>	N	N	N	<u>C</u>

Samsung Multilayer Ceramic Capacitor

Size(mm)

Capacitance Temperature Characteristic

Nominal Capacitance

Capacitance Tolerance

Rated Voltage

Thickness Option

Product & Plating Method

Samsung Control Code

Reserved For Future Use

Packaging Type

Samsung Multilayer Ceramic Capacitor

SIZE(mm)

Code	EIA CODE	Size(mm)
03	0201	0.6 × 0.3
05	0402	1.0 × 0.5
10	0603	1.6 × 0.8
21	0805	2.0 × 1.25
31	1206	3.2 × 1.6
32	1210	3.2 × 2.5
43	1812	4.5 × 3.2
55	2220	5.7 × 5.0

CAPACITANCE TEMPERATURE CHARACTERISTIC

Code	Temperature Characteristics				Temperature Range
С		COG	С	0 ± 30 (ppm/)	
Р		P2H	Р	-150 ± 60	
R		R2H	R	-220 ± 60	
S	Class	S2H	S	-330 ± 60	-55 ~ +125
Т		T2H	Т	-470 ± 60	
U		U2J	U	-750 ± 60	
L		S2L	S	+350 ~ -1000	
Α		X5R	X5R	± 15%	-55 ~ +85
В	Class	X7R	X7R	± 15%	-55 ~ +125
X	Ciass	X6S	X6S	± 22%	-55 ~ +105
F		Y5V	Y5V	+22 ~ -82%	-30 ~ +85

Temperature Characteristic

Temperature Characteristics	Below 2.0pF	2.2 ~ 3.9pF	Above 4.0pF	Above 10pF
С	C0G	C0G	C0G	C0G
Р	-	P2J	P2H	P2H
R	-	R2J	R2H	R2H
S	-	S2J	S2H	S2H
Т	-	T2J	T2H	T2H
U	-	U2J	U2J	U2J

 $J:\pm 120PPM/$, $H:\pm 60PPM/$, $G:\pm 30PPM/$

NOMINAL CAPACITANCE

Nominal capacitance is identified by 3 digits.

The first and second digits identify the first and second significant figures of the capacitance.

The third digit identifies the multiplier. 'R' identifies a decimal point.

Example

Code	Nominal Capacitance
1R5	1.5pF
103	10,000pF, 10nF, 0.01 μF
104	100,000pF, 100nF, 0.1 μ F

CAPACITANCE TOLERANCE

Code	Tolerance	Nominal Capacitance
Α	±0.05pF	
В	± 0.1pF	
С	± 0.25pF	Less than 10pF (Including 10pF)
D	± 0.5pF	(meldaling Topi)
F	±1pF	
F	±1%	
G	±2%	
J	±5%	More than 10pF
K	± 10%	More than 10pF
М	±20%	
Z	+80, -20%	

RATED VOLTAGE

Code	Rated Voltage	Code	Rated Voltage
R	4.0V	D	200 V
Q	6.3V	E	250V
P	10V	G	500 V
O	16V	Н	630 V
Α	25V	I	1,000V
L	35V	J	2,000V
В	50V	К	3,000V
С	100V		

THICKNESS OPTION

Size	Code	Thickness(T)	Size	Code	Thickness(T)
0201(0603)	3	0.30±0.03		F	1.25 ± 0.20
0402(1005)	5	0.50±0.05		н	1.6±0.20
0603(1608)	8	0.80±0.10	1812(4532)	I	2.0±0.20
	Α	0.65±0.10		J	2.5±0.20
00.05(00.40)	С	0.85±0.10		L	3.2±0.30
0805(2012)	F	1.25±0.10		F	1.25 ± 0.20
	Q	1.25±0.15		Н	1.6±0.20
	С	0.85±0.15	2220(5750) I		2.0±0.20
1206(3216)	F	1.25±0.15	•	J	2.5±0.20
	Н	1.6 ± 0.20		L	3.2±0.30
	F	1.25±0.20			
1210(3225)	Н	1.6 ± 0.20			
	I	2.0 ± 0.20			
	J	2.5 ± 0.20			
	V	2.5 ± 0.30			

PRODUCT & PLATING METHOD

Code	Electrode	Termination	Plating Type
Α	Pd	Ag	Sn_100%
N	Ni	Cu	Sn_100%
G	Cu	Cu	Sn_100%

SAMSUNG CONTROL CODE

Code	Description of the code	Code	Description of the code
Α	Array (2-element)	N	Normal
В	Array (4-element)	Р	Automotive
С	High - Q	L	LICC

RESERVED FOR FUTURE USE

Code	Description of the code
N	Reserved for future use

PACKAGING TYPE

Code	Packaging Type	Code	Packaging Type
В	Bulk	F	Embossing 13" (10,000EA)
Р	Bulk Case	L	Paper 13" (15,000EA)
С	Paper 7"	О	Paper 10"
D	Paper 13" (10,000EA)	S	Embossing 10"
Е	Embossing 7"		

APPEARANCE AND DIMENSION

CODE	EIA CODE		DIMENSION (mm)								
CODE	EIA CODE	L	w	T (MAX)	BW						
03	0201	0.6 ± 0.03	0.3 ± 0.03	0.33	0.15 ± 0.05						
05	0402	1.0 ± 0.05	0.5 ± 0.05	0.55	0.2 +0.15/-0.1						
10	0603	1.6 ± 0.1	0.8 ± 0.1	0.9	0.3 ± 0.2						
21	0805	2.0 ± 0.1	1.25 ± 0.1	1.35	0.5 +0.2/-0.3						
24	1206	3.2 ± 0.15	1.6 ± 0.15	1.40	0.5 +0.2/-0.3						
31		3.2 ± 0.2	1.6 ± 0.2	1.8	0.5 +0.3/-0.3						
20	1210	3.2 ± 0.3	2.5 ± 0.2	2.7	06.02						
32	1210	3.2 ± 0.4	2.5 ± 0.3	2.8	0.6 ± 0.3						
43	1812	4.5 ± 0.4	3.2 ± 0.3	3.5	0.8 ± 0.3						
55	2220	5.7 ± 0.4	5.0 ± 0.4	3.5	1.0 ± 0.3						

NO	ITE	М	PER	FORMANCE	TEST	CONDITION			
1	Appea	rance	No Abnormal Exterior	Appearance	Through Microscope(×10)			
2	Insula Resist		10,000MΩ or 500MΩ·μF· Rated Voltage is below 10,000MΩ or 100MΩ·μF·	v 16V ;	Apply the Rated Voltage	Apply the Rated Voltage For 60 ~ 120 Sec.			
3	Withsta	•	No Dielectric Breakdown		Class : 300% of the Rate Class :250% of the Rated with less than 50mA curren	d Voltage for 1~5			
					Capacitance	Frequency	Voltage		
		Class	Within the specifie	d tolerance	1,000 pF	1MHz ±1 0%			
	Capacita				>1,000 pF	1kHz ±1 0%	0.5 ~ 5 Vrms		
4	nce				Capacitance	Frequency	Voltage		
		Class	Within the specifi	ed tolerance	10 μF	1kHz ±1 0%	1.0±0.2Vrms		
					>1 0 µF	120Hz±20%	0.5±0.1Vrms		
			Capacitance 30pF:	Q 1.000	Capacitance	Frequency	Voltage		
5	Q	Class		: Q 400 +20C	1,000 pF	1MHz ±1 0%			
			(C	: Capacitance)	>1,000 pF	1kHz ±1 0%	0.5 ~ 5 Vrms		
			1. Characteristic : A()	(5R), B(X7R), X(X6S)	Capacitance	Frequency	Voltage		
				Rated Voltage	Spec	10 <i>μ</i> F	1kHz ±1 0%	1.0±0.2Vrms	
				25V	0.025 max	>1 0 μF	120Hz±20%	0.5±0.1Vrms	
			16V	0.035 max					
			10V	0.05 max	-				
			6.3V	0.05 max/ 0.10max*1	*1. 0201 C 0.022uF, 0	402 C 0.22uF,	0603 C 2.2uF,		
			2. Characteristic : F(\)	/5V)	0805 C 4.7uF, 1206 1812 C 47uF, 2220 All Low Profile Capa	C 100uF, citors (P.16).) C 22uF,		
6	Tan	Class	Rated Voltage	Spec	*2 0603 C 0.47uF, 08 *3. 0402 C 0.033uF, 06				
			50V	0.05 max, 0.07max*2	All 0805, 1206 size		F		
			35V	0.07 max	*4 1210 C>6.8uF	, 1210 0 0.00	·		
			25V	0.05 max/ 0.07 max*3/ 0.09max*4	*5 0402 C 0.22uF *6 All 1812 size				
			16V	0.09 max/ 0.125max*5	0 All 1012 Size				
			10V	0.125 max/ 0.16max*6					
			6.3V	0.16max					

NO		M		DEDECC	MA NCE		TEST CONDITION	
NO	ITE	IVI	PERFORMANCE				TEST CONDITION	
						'	shall be measured by the steps	
			Characte	ristics	Temp. Coefficient	shown in the	following table.	
			-		(PPM/)	Step	Temp.()	
			COC		0 ± 30	1	25 ± 2	
		Class	PH		-150 ± 60	2	Min. operating temp. ± 2	
			RH		-220 ± 60	3	25 ± 2	
			SH		-330 ± 60	4	Max. operating temp ± 2	
			TH		-470 ± 60	5	25 ± 2	
			UL		-750 ± 120	(1) Class		
			SL		+350 ~ -1000	Temperature	Coefficient shall be calculated from	
	Temperature					the formula a	s below.	
7	Characteristics of Capacitance					Temp, Coefficient = $\frac{\text{C2 - C1}}{\text{C1x T}} \times 10^6 \text{ [ppm/s]}$		
						C1; Capacita	ance at step 3	
					Capacitance Change	C2: Capacita	ance at 85	
			Characteristics Capacitance Change with No Bias		T: 60 (=8	35 -25)		
		Class	A(X5 B(X7		±15%	(2) CLASS		
			X(Xe	6S)	±22%	Capacitance (Change shall be calculated from the	
			F(Y5	5V)	+22% ~ -82%	formula as be	elow.	
						$C = \frac{C2 - }{}$	<u>C1</u> × 100(%)	
							ance at step 3	
							ance at step 2 or 4	
						1	* Pressure for 10±1 sec.	
							0201 case size.	
8	Adhesive	Strength	No Indicati	ion Of Peel	ling Shall Occur On The			
0	of Term	ination	Terminal E	lectrode.			500g.f	
						Bending limit		
		Apperance	No mecha	anical dam	nage shall occur.	Test speed ;		
			Ch and	to rioti	Consoitones Observe	-	t board at the limit point in 5 sec.,	
			Charac	LETISTICS	Capacitance Change	Then measur	e capacitance.	
					Within ±5% or ± 0.5			
			Clas	ss I	pF whichever is		20	
					larger		R=340*	
9	Bending					50		
	Strength	Capacitance		A(X5R)/		<u> </u>	▲	
		Sapasitario		B(X7R)/	Within ±12.5%	/		
				X(X6S)		· .	[†]	
			Class II			45±1	Bending limit	
					E0/510	NACH IN OCC	D 000 F	
				F(Y5V)	Within ±30%	K=230 For	0201 Case size	
					1			

NO	IT	EM		PERF	ORMANCE		TEST CON	DITION		
			More Thar	95% of th	ne terminal surface is to	Solder	Sn-3Ag-0.5	Cu 63Sn-37Pb		
			be soldered newly, So metal part does not			Solder	0.45.5	005.5		
10	Cald		come out	or dissolve		245±5 235±5 Temp.				
10	Solde	erability				Flux	Flux RMA Type			
			├			Dip Time	3±0.3 sec	. 5±0.5 sec.		
			L			Pre-heatir	g at 80~120	for 10~30 sec.		
		Apperance	No mech	anical dam	age shall occur.	Solder Ter	nperature: 270	±5		
			Charac	teristics	Capacitance Change	Dip Time: 10±1 sec.				
					Within ±2.5% or	Each termination shall be fully immersed a preheated as below:				
			Clas	SS	±0.25pF whichever is	preneated as below.				
		Capacitance		A(X5R)/	larger	STEP	TEMP.()	TIME(SEC.)		
				B(X7R)	Within ±7.5%	1	80~100	60		
			Class	X(X6S)	Within ±15%	2	150~180	60		
	Resistance to		F		Within ±20%	Leave the	capacitor in an	bient condition for		
11	Soldering heat	_	Capacitar	nce 30pF	: Q 1000	specified time* before measurement				
		Q (Class)	<30 pF : Q 400+20×C			* 24 ± 2 hours (Class)				
		(Class)			(C: Capacitance)	48 ± 4 I	nours (Class)		
		Tan	Within the	snecified	initial value					
		(Class)	Viaini die	- оросинов	Timed Value					
		Insulation	Within the	e specified	initial value					
		Resistance								
		Withstanding Voltage	Within the	e specified	initial value					
		Appearance	No mecha	anical dam	age shall occur.					
			Charact	teristics	Capacitance Change					
					Within ±2.5% or		itor shall be su	-		
			Clas	S	±0.25pF whichever is		-	total amplitude of y from 10Hz to 55Hz		
		Capacitance			larger		to 10Hz In 1 m			
				A(X5R)/ B(X7R)	Within ±5%					
12	Vibration		Class	X(X6S)	Within ±10%	Repeat thi	s for 2hours ea	ch in 3 mutually		
	Test			F(Y5V)	Within ±20%	perpendicu	lar directions			
		Q			I					
		(Class)	Within the	specified	initial value					
		Tan	Mithin th	o enocific d	initial value					
		(Class)	vviunin the	specified	initial value					
		Insulation	\\/ithin 41-	Within the specified initial value						
		Resistance	vvitnin the	specified	initial value					

NO	ITE	M		PERFO	RMANCE	TEST CONDITION		
		Appearance	No mechanic	al damage sha	Il occur.	Temperature : 40±2		
		,,		cteristics	Capacitance Change	Relative humidity: 90~95 %RH		
			Citatal	010110100	<u> </u>	Duration time : 500 +12/-0 hr.		
			Class		Within ±5.0% or ±0.5pF			
				I	whichever is larger	Leave the capacitor in ambient		
		Capacitance		A(X5R)/		condition for specified time* before		
			Class	B(X7R)/	Within ±12.5%	measurement		
				X(X6S)		CLASS : 24±2 Hr.		
				F(Y5V)	Within ±30%	CLASS : 48±4 Hr.		
		Q	Capacitance 30pF : Q 350		350			
	Humidity	CLASS	10 Capacitance <30pF : Q 275 + 2.5xC		275 + 2.5×C			
13	(Steady	CLASS	Capacitance	< 10pF : Q	200 + 10xC (C: Capacitance)			
	State)		1. Characteri	stic: A(X5R),	2. Characteristic : F(Y5V)			
				B(X7R)				
			0.05max (16V and over)		0.075max (25V and over)			
		Tan	0.075max (10	OV)	0.1max (16V, C<1.0μF)			
		CLASS	0.075max		0.125max(16V, C 1.0μF)			
			(6.3V excep	t Table 1)	0.15max (10V)			
			0.125max*		0.195max (6.3V)			
			(refer to Tab	le 1)				
		Insulation						
		Resistance	1,000 MΩ or	50MΩ.μF whichev	ver is smaller.			
		Resistance						
		Appearance	No mechanic	al damage sha	ll occur.	Applied Voltage : rated voltage		
			Chara	cteristics	Capacitance Change	Temperature: 40±2		
					Within ±5.0% or ±0.5pF	- Humidity : :90~95%RH Duration Time : 500 +12/-0 Hr.		
			Cla	SS	whichever is larger	Charge/Discharge Current : 50mA max.		
						A(X5R)/	Within ±12.5%	
				B(X7R)/	Within ±12.5%	Perform the initial measurement according to		
		Capacitance		X(X6S)	Within ±30%	Note1.		
			Class	(,				
			Class		Within ±30%			
				F(Y5V)	Within +30~ - 40%	Perform the final measurement according to		
					In case of Table 2 *	Note2.		
	Moisture	Q	Capacitance	30pF : Q 2	00			
14	Resistance	(Class)	Capacitance		00 + 10/3×C (C: Capacitance)			
		,		·				
			1. Characteri	stic: A(X5R),	2. Characteristic : F(Y5V)			
				B(X7R)				
			0.05max (16\	,	0.075max (25V and over)			
			0.075max (10	JV)	0.1max (16V, C<1.0μF)			
		Tan	0.075max		0.125max(16V, C 1.0μF)			
		(Class)	(6.3V excep	t Table 1)	0.15max (10V)			
			0.125max*		0.195max (6.3V)			
			(refer to Tal	ole 1)				
			X(X6S) 0.11r	nax (6.3V and b	pelow)			
		Insulation						
		Resistance	500 MΩ or 25	5MΩ·μF whicheve	r is smaller.			

NO	ITE	М		PER	FORMANCE		TEST CONDIT	ION					
		Appearance	No mechanio	cal damage	shall occur.	1	oltage: 200%* of the	_					
			Charact	eristics	Capacitance Change	Duration Time: 1000 +48/-0 Hr.							
					Within ±3% or ±0.3pF,	Charge/Discharge Current : 50mA max.							
			Class	5	Whichever is larger	* refer to	* refer to table(3): 150%/100% of the rated						
		Capacitance		A(X5R)/ B(X7R)	Within ±12.5%	voltage	table(e) : 10074 100	yo or the lated					
								X(X6S)	Within ±25%	Perform th	erform the initial measurement according to		
				Class		Within ±30%	Note1 for	Note1 for Class					
				F(Y5V)	Within +30~ - 40% * In case of Table 2								
15	High Temperature Resistance	Q (Class) Tan (Class)	1. Characterion 1. Characterio	tance <30 p < 10pF :Q < 10pF :Q Stic : A(X5F B(X7R) OV) ot Table 1) ble 1) max (6.3V a	Q 350 F: Q 275 + 2.5xC 200 +10xC (C: Capacitance) R), 2. Characteristic : F(Y5V) 0.075max (25V and over) 0.1max(16V, C<1.0μF) 0.125max(16V, C 1.0μF) 0.15max (10V) 0.195max (6.3V)	Perform th Note2.	e final measurement	according to					
		Appearance	No mechanio	cal damage	shall occur.	1 '	shall be subjected	d to 5 cycles.					
			Charact	eristics	Capacitance Change	↓	for 1 cycle :	Time day's					
			Class	S	Within ±2.5% or ±0.25pF	Step	Temp.()	Time(min.)					
				10/55/	Whichever is larger	1	Min. operating temp.+0/-3	30					
		Capacitance	Class	A(X5R)/ B(X7R)/	Within ±7.5%	2	25	2~3					
16	Temperature			X(X6S)	Within ±15%	3	Max. operating	30					
.0	Cycle			F(Y5V)	Within ±20%		temp.+3/-0						
		Q (Class)	Within the sp	pecified initia	al value	4 Leave the	25 e capacitor in amb	2~3 ient condition					
		Tan (Class)	Within the sp	pecified initia	al value	for specif	ied time* before m						
		Insulation Resistance	Within the s	pecified initia	al value	48 ± 4	hours (Class)						

		Reco	ommended Sold	ering Method		
		Size	Temperature		Cond	lition
		inch (mm)	Characteristic	Capacitance	Flow	Reflow
		0201 (0603)	-	-		
		0402 (1005)				
			Class I	-		
		0603 (1608)	Class II	C < 1μF		
			Class II	C 1μF	-	
	Recommended	0805 (2012)	Class I	-		
18	Soldering Method		Class II	C < 4.7μF		
	By Size & Capacitance		Class II	C 4.7μF	-	
	by the a tapathant		Array	-	-	
			Class I	-		
		1206 (3216)	Class II	C < 10μF		
		1200 (3210)	Class II	C 10μF	-	
			Array	-	-	
		1210 (3225)				
		1808 (4520)			_	
		1812 (4532)	-	-	-	
		2220 (5750)				

Note1. Initial Measurement For Class

Perform the heat treatment at 150 \pm +0/-10 for 1 hour. Then Leave the capacitor in ambient condition for 48±4 hours before measurement. Then perform the measurement.

Note2. Latter Measurement

1. CLASS

Leave the capacitor in ambient condition for 24±2 hours before measurement

Then perform the measurement.

2. Class

Perform the heat treatment at 150 \pm +0/-10 for 1 hour. Then Leave the capacitor in ambient condition for 48±4 hours before measurement. Then perform the measurement.

*Table1.

Tan 0.125max* 0201 C 0.022μF 0402 C 0.22μF 0603 C 2.2μF 0805 C 4.7μF Class 1206 C 10.0μF A(X5R), 1210 C 22.0μF B(X7R) 1812 C 47.0μF 2220 C 100.0μF All Low Profile Capacitors (P.16).

*Table2.

perature Res	sistance test					
+30~ - 40%						
0402 C	0.47 <i>μ</i> F					
0603 C	2.2μF					
0805 C	4.7μF					
1206 C	10.0 <i>μ</i> F					
1210 C	22.0μF					
1812 C	47.0 <i>μ</i> F					
2220 C	100.0 <i>μ</i> F					
	+30~ 0402 C 0603 C 0805 C 1206 C 1210 C 1812 C					

*Table3.

	High Temperature Resi	stance test
Applied Voltage	100% of the rated voltage	150% of the rated voltage
Class A(X5R), B(X7R), X(X6S), F(Y5V)	0201 C 0.1 μF 0402 C 1.0 μF 0603 C 4.7 μF 0805 C 22.0 μF 1206 C 47.0 μF 1210 C 100.0 μF All Low Profile Capacitors (P.16).	0201 C 0.022 μF 0402 C 0.47 μF 0603 C 2.2 μF 0805 C 4.7 μF 1206 C 10.0 μF 1210 C 22.0 μF 1812 C 47.0 μF 2220 C 100.0 μF

PACKAGING

CARDBOARD PAPER TAPE (4mm)

unit : mm

	mbol ype	Α	В	w	F	E	P1	P2	P0	D	t
D i m	0603 (1608)	1.1 ±0.2	1.9 ±0.2								
e n s	0805 (2012)	1.6 ±0.2	2.4 ±0.2	8.0 ±0.3	3.5 ±0.05	1.75 ±0.1	4.0 ±0.1	2.0 ±0.05	4.0 ±0.1	1.5 +0.1/-0	1.1 Below
i o n	1206 (3216)	2.0 ±0.2	3.6 ±0.2								

CARDBOARD PAPER TAPE (2mm)

unit: mm

Symbol Type		Α	В	w	F	E	P1	P2	P0	D	t
D i m e	0201 (0603)	0.38 ±0.03	0.68 ±0.03	8.0	3.5	1.75	2.0	2.0	4.0	1.5	0.37 ±0.03
n s i o n	0402 (1005)	0.62 ±0.04	1.12 ±0.04	±0.3	±0.05	±0.1	±0.05	±0.05	±0.1	+0.1/-0.03	0.6 ±0.05

PACKAGING

EMBOSSED PLASTIC TAPE

 $u\,n\,it\,:\,m\,m$

Sy	m bol	Α	В	w	F	Е	P1	P 2	P0	D	t1	t0
Т	уре					_						
	0805 (2012)	1.45 ±0.2	2.3 ±0.2									
P	1206 (3216)	1.9 ±0.2	3.5 ±0.2	8.0 ±0.3	3.5 ±0.05		4.0 ±0.1				2.5 max	
m e	1210 (3225)	2.9 ±0.2	3.7 ±0.2			1.75		2.0	4.0	1.5 +0.1/-0		0.6
n s i	1808 (4520)	2.3 ±0.2	4.9 ±0.2			±0.1		±0.05	±0.1	+0.17-0		Below
o n	1812 (4532)	3.6 ±0.2	4.9 ±0.2	12.0 ±0.3	5.60 ±0.05		8.0 ±0.1				3.8 max	
	2220 (5750)	5.5 ±0.2	6.2 ±0.2									

TAPING SIZE

Type	Symbol	Size	Cardboard Paper Tape	Symbol	Size	Embossed Plastic Tape
		0201(0603)	10,000		All Size 3216 1210(3225),1808(4520) (t 1.6mm)	2,000
7" Reel	С	0402(1005)	10,000	E	1210(3225)(t 2.0mm)	1,000
		OTHERS	4,000	-	1808(4520)(t 2.0mm)	1,000
10" Reel	0	-	10,000	-	-	-
	D	0402(1005)	50,000		All Size 3216 1210(3225),1808(4520) (t<1.6mm)	10,000
		OTHERS	10,000		1210(3225)(1.6 t<2.0mm) 1206(3216)(1.6 t)	8,000
13" Reel	0603(1608) 10,000 or 15,000 or 0805(2012) 15,000 or	F	1210(3225),1808(4520) (t 2.0mm)	4,000		
		0805(2012) (t 0.85mm)	l '		1812(4532)(t 2.0mm)	4,000
		1206(3216) (t 0.85mm)	10,000		1812(4532)(t>2.0mm) 5750(2220)	2,000

PACKAGING

REEL DIMENSION

unit : mm

Symbol	Α	В	С	D	E	W	t	R
7" Reel	180+0/ -3	60+1/ -3	40.00	25 . 0 5	20.05	0.45	1.2±0.2	4.0
13" Reel	330±2.0	80+1/ -3	13±0.3	13±0.3 25±0.5	2.0±0.5	9±1.5	2.2±0.2	1.0

BULK CASE PACKAGING

- Bulk case packaging can reduce the stock space and transportation costs.
- The bulk feeding system can increase the productivity.
- It can eliminate the components loss.

unit: mm

Symbol	Α	В	Т	С	D	Е
Dimension	6.8 ± 0.1	8.8 ± 0.1	12 ± 0.1	1.5+0.1/-0	2+0/-0.1	3.0+0.2/-0

Symbol	F	W	G	Н	L	I
Dimension	31.5+0.2/-0	36+0/-0.2	19±0.35	7±0.35	110 ± 0.7	5 ± 0.35

QUANTITY OF BULK CASE PACKAGING

unit : pcs

Ci	0400(4005)	0002(4000)	0805(2012)		
Size	0402(1005)	0603(1608)	T=0.65mm	T=0.85mm	
Quantity	50,000	10,000 or 15,000	10,000	5,000 or 10,000	

APPLICATION MANUAL

ELECTRICAL CHARACTERISTICS

CAPACITANCE - TEMPERATURE CHARACTERISTICS

CAPACITANCE - DC VOLTAGE CHARACTERISTICS

TICS CAPACITANCE CHANGE - AGING

IMPEDANCE - FREQUENCY CHARACTERISTICS

STORAGE CONDITION

Storage Environment

The electrical characteristics of MLCCs were degraded by the environment of high temperature or humidity. Therefore, the MLCCs shall be stored in the ambient temperature and the relative humidity of less than 40 and 70%, respectively.

Guaranteed storage period is within 6 months from the outgoing date of delivery.

Corrosive Gases

Since the solderability of the end termination in MLCC was degraded by a chemical atmosphere such as chlorine, acid or sulfide gases, MLCCs must be avoid from these gases.

Temperature Fluctuations

Since dew condensation may occur by the differences in temperature when the MLCCs are taken out of storage, it is important to maintain the temperature-controlled environment.

DESIGN OF LAND PATTERN

When designing printed circuit boards, the shape and size of the lands must allow for the proper amount of solder on the capacitor.

The amount of solder at the end terminations has a direct effect on the crack.

The crack in MLCC will be easily occurred by the tensile stress which was due to too much amount of solder. In contrast, if too little solder is applied, the termination strength will be insufficiently.

Use the following illustrations as guidelines for proper land design.

Recommendation of Land Shape and Size.

ADHESIVES

When flow soldering the MLCCs, apply the adhesive in accordance with the following conditions.

Requirements for Adhesives

They must have enough adhesion, so that, the chips will not fall off or move during the handling of the circuit board.

They must maintain their adhesive strength when exposed to soldering temperature.

They should not spread or run when applied to the circuit board.

They should harden quickly. They should not corrode the circuit board or chip material.

They should be a good insulator. They should be non-toxic, and not produce harmful gases, nor be harmful when touched.

Application Method

It is important to use the proper amount of adhesive. Too little and much adhesive will cause poor adhesion and overflow into the land, respectively.

		unit : mm
Туре	21	31
а	0.2 min	0.2 min
b	70~100 μm	70~100μm
С	> 0	> 0

Adhesive hardening Characteristics

To prevent oxidation of the terminations, the adhesive must harden at 160 or less, within 2 minutes or less.

MOUNTING

Mounting Head Pressure

Excessive pressure will cause crack to MLCCs. The pressure of nozzle will be 300g maximum during mounting.

Bending Stress

When double-sided circuit boards are used, MLCCs first are mounted and soldered onto one side of the board. When the MLCCs are mounted onto the other side,

it is important to support the board as shown in the illustration. If the circuit board is not supported, the crack occur to the ready-installed MLCCs by the bending stress.

Manual Soldering

Manual soldering can pose a great risk of creating thermal cracks in chip capacitors.

The hot soldering iron tip comes into direct contact with the end terminations, and operator's carelessness may cause the tip of the soldering iron to come into direct contact with the ceramic body of the capacitor.

Therefore the soldering iron must be handled carefully, and close attention must be paid to the selection of the soldering iron tip and to temperature control of the tip.

Amount of Solder

Cooling

Natural cooling using air is recommended. If the chips are dipped into solvent for cleaning, the temperature difference(T) must be less than 100

Cleaning

If rosin flux is used, cleaning usually is unnecessary. When strongly activated flux is used, chlorine in the flux may dissolve into some types of cleaning fluids, thereby affecting the chip capacitors. This means that the cleaning fluid must be carefully selected, and should always be new.

Notes for Separating Multiple, Shared PC Boards.

A multi-PC board is separated into many individual circuit boards after soldering has been completed. If the board is bent or distorted at the time of separation, cracks may occur in the chip capacitors. Carefully choose a separation method that minimizes the bending often circuit board.

Recommended Soldering Profile

Soldering Iron

Variation of Temp.	Soldering	Pre-heating	Soldering	Cooling
	Temp()	Time (Sec)	Time(Sec)	Time(Sec)
T 130	300±10 max	60	4	-

Condition of Iron facilities				
Wattage Tip Diameter		Soldering Time		
20W Max	3mm Max	4 Sec Max		

^{*} Caution - Iron Tip Should Not Contact With Ceramic Body Directly.