

(1-9周) F207周三8: 00-9: 40

复变函数

朱炬波 13973168169 zhujubo@mail.sysu.edu.cn

中山大學人工智能学院

复变函数

第一节

孤立奇点

- 一、孤立奇点的概念
- 二、函数的零点与极点的关系
- 三、函数在无穷远点的性态
- 四、小结与思考

一、孤立奇点的概念

定义 如果函数 f(z)在 z_0 不解析, 但 f(z)在 z_0 的某一去心邻域 $0 < |z - z_0| < \delta$ 内处处解析, 则称 z_0 为 f(z)的孤立奇点.

例1
$$z=0$$
 是函数 $e^{\frac{1}{z}}$, $\frac{\sin z}{z}$ 的孤立奇点.

$$z=-1$$
是函数 $\frac{1}{z+1}$ 的孤立奇点.

注意: 孤立奇点一定是奇点, 但奇点不一定是孤立奇点.

例2 指出函数
$$f(z) = \frac{z^2}{\sin \frac{1}{z}}$$
 在点 $z = 0$ 的奇点特性.

解 函数的奇点为

$$z = 0, z = \frac{1}{k\pi} \qquad (k = \pm 1, \pm 2, \cdots)$$
因为
$$\lim_{k \to \infty} \frac{1}{k\pi} = 0,$$

即在z=0的不论怎样小的去心邻域内,总有f(z)

的奇点存在, 所以z = 0不是孤立奇点.

孤立奇点的分类

依据 f(z) 在其孤立奇点 z_0 的去心邻域

 $0 < |z-z_0| < \delta$ 内的洛朗级数的情况分为三类:

- 1. 可去奇点; 2. 极点; 3. 本性奇点.
- 1. 可去奇点
- 1) 定义 如果洛朗级数中不含 z z₀ 的负幂项,

那末孤立奇点 z_0 称为f(z)的可去奇点.

说明: (1) z_0 若是f(z)的孤立奇点,

$$f(z) = c_0 + c_1(z - z_0) + \dots + c_n(z - z_0)^n + \dots$$

$$(0 < |z - z_0| < \delta)$$

其和函数 F(z)为在 z_0 解析的函数.

(2) 无论 f(z) 在 z_0 是否有定义,补充定义 $f(z_0) = c_0$,则函数 f(z) 在 z_0 解析.

$$f(z_0) = \lim_{z \to z_0} f(z) \qquad f(z) = \begin{cases} f(z), z \neq z_0 \\ c_0, z = z_0 \end{cases}$$

- 2) 可去奇点的判定
- (1) 由定义判断: 如果 f(z)在 z_0 的洛朗级数无负幂项,则 z_0 为 f(z)的可去奇点.
- (2) 判断极限 $\lim_{z\to z_0} f(z)$: 若极限存在且为有限值,

则 z_0 为 f(z)的可去奇点.

例3
$$\frac{\sin z}{z} = 1 - \frac{1}{3!}z^2 + \frac{1}{5!}z^4 - \cdots$$
 中不含负幂项,

$$z=0$$
 是 $\frac{\sin z}{z}$ 的可去奇点.

如果补充定义:

$$z=0$$
 时, $\frac{\sin z}{z}=1$,

那末
$$\frac{\sin z}{z}$$
 在 $z=0$ 解析.

例4 说明
$$z=0$$
为 $\frac{e^z-1}{z}$ 的可去奇点.

解
$$\frac{e^{z}-1}{z} = \frac{1}{z}(1+z+\frac{1}{2!}z^{2}+\cdots+\frac{1}{n!}z^{n}+\cdots-1)$$

$$= 1+\frac{1}{2!}z+\cdots+\frac{1}{n!}z^{n-1}+\cdots, \quad 0<|z|<+\infty$$
无负幂项

所以 z=0 为 $\frac{e^z-1}{z}$ 的可去奇点.

另解 因为
$$\lim_{z\to 0} \frac{e^z-1}{z} = \lim_{z\to 0} e^z = 1$$
,

所以 z=0 为 $\frac{e^z-1}{z}$ 的可去奇点.

- 2. 极点
- 1) 定义 如果洛朗级数中只有有限多个 z-z0的

负幂项, 其中关于 $(z-z_0)^{-1}$ 的最高幂为 $(z-z_0)^{-m}$,

$$\mathbb{P} \qquad f(z) = c_{-m}(z - z_0)^{-m} + \dots + c_{-2}(z - z_0)^{-2} + c_{-1}(z - z_0)^{-1}$$

$$+ c_0 + c_1(z - z_0) + \dots \qquad (m \ge 1, c_{-m} \ne 0)$$

或写成
$$f(z) = \frac{1}{(z-z_0)^m}g(z),$$

那末孤立奇点 z_0 称为函数 f(z) 的 m 级极点.

说明: (1)

$$g(z) = c_{-m} + c_{-m+1}(z - z_0) + c_{-m+2}(z - z_0)^2 + \cdots$$

- 特点: 1. $\Delta z z_0 < \delta$ 内是解析函数
 - 2. $g(z_0) \neq 0$
 - (2) 如果 z_0 为函数 f(z) 的极点,则

$$\lim_{z\to z_0}f(z)=\infty.$$

- 2)极点的判定方法
- (1) 由定义判别
- f(z)的洛朗展开式中含有 $z-z_0$ 的负幂项为有限项.
 - (2) 由定义的等价形式判别

在点
$$z_0$$
的某去心邻域内 $f(z) = \frac{g(z)}{(z-z_0)^m}$

其中 g(z) 在 z_0 的邻域内解析, 且 $g(z_0) \neq 0$.

(3) 利用极限 $\lim_{z\to z_0} f(z) = \infty$ 判断.

例5 有理分式函数
$$f(z) = \frac{3z+2}{z^2(z+2)}$$
,

z=0是二级极点,z=-2 是一级极点.

课堂练习

求
$$\frac{1}{z^3-z^2-z+1}$$
 的奇点, 如果是极点, 指出它的级数.

答案 由于
$$\frac{1}{z^3-z^2-z+1}=\frac{1}{(z+1)(z-1)^2}$$
,

所以: z = -1是函数的一级极点,

z=1是函数的二级极点.

3. 本性奇点

如果洛朗级数中<mark>含有无穷多个 $z - z_0$ 的</mark>负幂项,那未孤立奇点 z_0 称为 f(z) 的本性奇点.

例如,
$$e^{\frac{1}{z}} = 1 + z^{-1} + \frac{1}{2!}z^{-2} + \dots + \frac{1}{n!}z^{-n} + \dots$$

含有无穷多个z的负幂项 $(0 < z < \infty)$

所以 z = 0 为本性奇点,同时 $\lim_{z \to 0} e^{\frac{z}{z}}$ 不存在.

特点: 在本性奇点的邻域内 $\lim_{z \to z_0} f(z)$ 不存在且不为 ∞ .

综上所述:

孤立奇点	洛朗级数特点	$\lim_{z\to z_0}f(z)$
可去奇点	无负幂项	存在且为 有限值
m级极点	含有限个负幂项 关于 $(z-z_0)^{-1}$ 的最高幂 为 $(z-z_0)^{-m}$	8
本性奇点	含无穷多个负幂项	不存在 且不为∞

二、函数的零点与极点的关系

1.零点的定义 不恒等于零的解析函数 f(z)如果能表示成 $f(z) = (z - z_0)^m \varphi(z)$,其中 $\varphi(z)$ 在 z_0 解析且 $\varphi(z_0) \neq 0$, m为某一正整数, m末 z_0 称为 f(z) 的 m 级零点.

例6 z = 0是函数 $f(z) = z(z-1)^3$ 的一级零点, z = 1是函数 $f(z) = z(z-1)^3$ 的三级零点.

注意: 不恒等于零的解析函数的零点是孤立的.

2.零点的判定

如果 f(z) 在 z_0 解析, 那末 z_0 为 f(z) 的 m 级 零点的充要条件是

$$f^{(n)}(z_0) = 0, (n = 0,1,2,\cdots m-1); f^{(m)}(z_0) \neq 0.$$

证 (必要性) 如果 z_0 为 f(z) 的 m 级零点

由定义:
$$f(z) = (z - z_0)^m \varphi(z)$$

设 $\varphi(z)$ 在 z_0 的泰勒展开式为:

$$\varphi(z) = c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + \cdots,$$

其中 $c_0 = \varphi(z_0) \neq 0$,

从而f(z)在 z_0 的泰勒展开式为

$$f(z) = c_0(z - z_0)^m + c_1(z - z_0)^{m+1} + c_2(z - z_0)^{m+2} + \cdots$$

展开式的前m项系数都为零,由泰勒级数的系数

公式知:
$$f^{(n)}(z_0) = 0, (n = 0,1,2,\cdots m-1);$$

并且
$$\frac{f^{(m)}(z_0)}{m!} = c_0 \neq 0.$$

充分性证明略.

例7 求以下函数的零点及级数:

(1)
$$f(z) = z^3 - 1$$
, (2) $f(z) = \sin z$.

解 (1)由于
$$f'(1) = 3z^2 \Big|_{z=1} = 3 \neq 0$$
,
知 $z = 1$ 是 $f(z)$ 的一级零点.

(2)由于
$$f'(0) = \cos z \Big|_{z=0} = 1 \neq 0$$
,
知 $z = 0$ 是 $f(z)$ 的一级零点.

课堂练习 求 $f(z) = z^5(z^2 + 1)^2$ 的零点及级数.

答案 z=0是五级零点, $z=\pm i$ 是二级零点.

3.零点与极点的关系

定理 如果 z_0 是 f(z) 的 m 级极点, 那末 z_0 就是

$$\frac{1}{f(z)}$$
的 m 级零点. 反过来也成立.

证 如果 z_0 是 f(z) 的 m 级极点,则有

$$f(z) = \frac{1}{(z - z_0)^m} g(z) \qquad (g(z_0) \neq 0)$$

当
$$z \neq z_0$$
时, $\frac{1}{f(z)} = (z - z_0)^m \frac{1}{g(z)} = (z - z_0)^m h(z)$

函数 h(z) 在 z_0 解析且 $h(z_0) \neq 0$.

由于
$$\lim_{z \to z_0} \frac{1}{f(z)} = 0$$
,只要令 $\frac{1}{f(z_0)} = 0$,

那末 z_0 就是 $\frac{1}{f(z)}$ 的 m 级零点.

反之如果 z_0 是 $\frac{1}{f(z)}$ 的 m 级零点,

那末
$$\frac{1}{f(z)} = (z-z_0)^m \varphi(z),$$

解析且 $\psi(z_0) \neq 0$

当
$$z \neq z_0$$
时, $f(z) = \frac{1}{(z-z_0)^m} \psi(z)$, $\psi(z) = \frac{1}{\varphi(z)}$

所以 z_n 是 f(z)的 m 级极点.

说明 此定理为判断函数的极点提供了一个较为 简便的方法.

例8 函数 $\frac{1}{\sin z}$ 有些什么奇点, 如果是极点, 指出它的级.

解 函数的奇点是使 $\sin z = 0$ 的点,

这些奇点是 $z = k\pi (k = 0, \pm 1, \pm 2 \cdots)$. 是孤立奇点.

因为
$$(\sin z)'|_{z=k\pi} = \cos z|_{z=k\pi} = (-1)^k \neq 0,$$

所以 $z = k\pi$ 是 $\sin z$ 的一级零点,即 $\frac{1}{\sin z}$ 的一级极点.

例9 问
$$z=0$$
是 $\frac{e^{z}-1}{z^{2}}$ 的二级极点吗?

解
$$\frac{e^z - 1}{z^2} = \frac{1}{z^2} \left(\sum_{n=0}^{\infty} \frac{z^n}{n!} - 1 \right)$$
 解析且 $\varphi(0) \neq 0$

$$= \frac{1}{z} + \frac{1}{2!} + \frac{z}{3!} + \cdots = \frac{1}{z} \varphi(z),$$

所以z = 0不是二级极点, 而是一级极点.

思考
$$z=0$$
是 $\frac{\sinh z}{z^3}$ 的几级极点?

注意: 不能以函数的表面形式作出结论.

三、函数在无穷远点的性态

1. 定义 如果函数 f(z) 在无穷远点 z = ∞ 的去心

邻域 $R < |z| < +\infty$ 内解析, 则称点 ∞ 为 f(z) 的孤

立奇点.

令变换
$$t = \frac{1}{z}$$
:则 $f(z) = f\left(\frac{1}{t}\right) = \varphi(t)$,规定此变换将:

$$z = \infty$$

 $z = \infty$ 映射为

$$t=0,$$

扩充 z 平面 映射为 扩充 t 平面

$$\{z_n\} (z_n \to \infty)$$
 映射为 $\{t_n = \frac{1}{z_n}\} (t_n \to 0)$

$$R < |z| < +\infty$$
 映射为 $0 < |t| < \frac{1}{R}$

结论:

在去心邻域 $R < |z| < +\infty$ 内对函数 f(z) 的研究

一 在去心邻域 $0 < |t| < \frac{1}{R}$ 内对函数 $\varphi(t)$ 的研究 因为 $\varphi(t)$ 在去心邻域 $0 < |t| < \frac{1}{R}$ 内是解析的, 所以 t = 0是 $\varphi(t)$ 的孤立奇点.

规定: 如果 t=0 是 $\varphi(t)$ 的可去奇点、m级奇点或本性奇点,那末就称点 $z=\infty$ 是 f(z) 的可去奇点、m级奇点或本性奇点.

2.判别方法:判别法1(利用洛朗级数的特点)

如果 f(z) 在 $R < |z| < +\infty$ 内的洛朗级数中:

- 1)不含正幂项;
- 2)含有有限多的正幂项且 z^m 为最高正幂;
- 3)含有无穷多的正幂项;

那末 $z = \infty$ 是 f(z) 的 1)可去奇点;

- 2) m 级极点;
- 3)本性奇点.

判别法2:(利用极限特点)

如果极限 $\lim_{n\to\infty} f(z)$

- 1)存在且为有限值;
- 2)无穷大;
- 3)不存在且不为无穷大;

那末 $z = \infty$ 是 f(z) 的 1)可去奇点;

- 2)m级极点;
- 3)本性奇点.

例10 (1)函数
$$f(z) = \frac{z}{z+1}$$
 在圆环域 $1 < |z| < +\infty$

内的洛朗展开式为:

$$f(z) = \frac{1}{1 + \frac{1}{z}} = 1 - \frac{1}{z} + \frac{1}{z^{2}} - \dots + (-1)^{n} \frac{1}{z^{n}} + \dots$$

$$7 - \frac{1}{z} = 1 - \frac{1}{z} + \frac{1}{z^{2}} - \dots + (-1)^{n} \frac{1}{z^{n}} + \dots$$

$$7 - \frac{1}{z} = \frac{1}{z} - \frac{1}{z} + \frac{1}{z} - \dots + (-1)^{n} \frac{1}{z^{n}} + \dots$$

所以 $z = \infty$ 是 f(z) 的可去奇点.

(2)函数
$$f(z) = z + \frac{1}{z}$$
含有正幂项且 z 为最高正

幂项,所以 $z = \infty$ 是f(z)的 1级极点.

(3)函数 $\sin z$ 的展开式:

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots + \frac{z^{2n+1}}{(2n+1)!} + \dots$$

含有无穷多的正幂项

所以 $z = \infty$ 是 f(z) 的本性奇点.

课堂练习

说出函数 $f(z) = z + e^{\overline{z}}$ 的奇点及其类型.

答案 $z = \infty$ 是一级极点, z = 0是本性奇点.

例11 函数
$$f(z) = \frac{(z^2-1)(z-2)^3}{(\sin \pi z)^3}$$
在扩充复平面内

有些什么类型的奇点?如果是极点,指出它的级.

解 函数 f(z) 除点 $z = 0, \pm 1, \pm 2 \cdots$ 外,

在 $|z| < +\infty$ 内解析.

因 $(\sin \pi z)' = \cos \pi z$ 在 $z = 0, \pm 1, \pm 2, \cdots$ 处均不为零.

所以这些点都是 sin πz 的一级零点,

故这些点中除1, -1, 2外, 都是 f(z)的三级极点.

因 $z^2-1=(z-1)(z+1)$,以1与-1为一级零点,

所以 15-1是 f(z)的 2级极点.

当
$$z=2$$
时,

因为
$$\lim_{z \to 2} f(z) = \lim_{z \to 2} \frac{(z^2 - 1)(z - 2)^3}{(\sin \pi z)^3}$$

$$= \frac{3}{\pi^3},$$

那末 z=2 是 f(z) 的可去奇点.

当
$$z = \infty$$
时,因为 $f\left(\frac{1}{\zeta}\right) = \frac{(1-\zeta^2)(1-2\zeta)^3}{\zeta^2 \sin^3 \frac{\pi}{\zeta}}$

$$\zeta = 0, \zeta_n = \frac{1}{n}$$
使分母为零, $\zeta_n = \frac{1}{n}$ 为 $f\left(\frac{1}{\zeta}\right)$ 的极点,

故
$$\zeta = 0$$
不是 $f\left(\frac{1}{\zeta}\right)$ 的孤立奇点,

所以 $z = \infty$ 不是 f(z)的孤立奇点.

四、小结与思考

理解孤立奇点的概念及其分类; 掌握可去奇点、极点与本性奇点的特征; 熟悉零点与极点的关系.

思考题

确定函数
$$f(z) = \frac{1}{z^3(e^{z^3}-1)}$$
的孤立奇点的类型.

思考题答案

z = 0是分母的6级零点,

也即是函数 f(z)的6级极点.

作业

P183, 1, 4

