Engineering Mathematics Multivariable Calculus & Vector Calculus

DPP-01

- 1. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$, then the value of div

- (d) -1
- 2. Let $\vec{F}(x, y, z) = 2y\hat{i} + x^2\hat{j} + xy\hat{k}$ and let C be the curve of intersection of the plane x + y + z = 1 and the cylinder $x^2 + y^2 = 1$. Then the value of $\left| \oint F \cdot d\vec{r} \right|$ is
 - (a) π
- (c) 2π
- (d) 3π
- The flux of $\vec{F} = y\hat{i} x\hat{j} + z^2\hat{k}$ along the outward normal, across the surface of the solid $\{(x, y, z) \in \mathbb{R}^3\}$ $0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le \sqrt{2 - x^2 - y^2}$ is equal to

- **4.** For a > 0, b > 0 let $\vec{F} = \frac{x\hat{j} y\hat{i}}{b^2 x^2 + a^2 y^2}$ be a planner vector field. Let $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = a^2 + b^2 \mid$ be the circle oriented anti-clockwise. Then $\oint \vec{F} \cdot d\vec{r} =$
- (b) 2π
- (c) $2\pi ab$
- (d) 0
- 5. Let $\vec{F} = (3 + 2xy)\hat{i} + (x^2 3y^2)\hat{j}$ and let L be the curve $\vec{r} = e^t \sin t \hat{i} + e^t \cos t \hat{j}, \ 0 \le t \le \pi$. Then $\int \vec{F} \cdot d\vec{r} =$

 - (a) $e^{-3\pi} + 1$ (b) $e^{-6\pi} + 2$
- The flux of the vector field

 $\vec{F} = \left(2\pi x + \frac{2x^2y^2}{\pi}\right)\hat{i} + \left(2\pi xy - \frac{4y}{\pi}\right)\hat{j}$

along the outward normal, across the ellipse $x^{2} + 16y^{2} = 4$ is equal to

- (a) $4\pi^2 2$ (b) $2\pi^2 4$ (c) $\pi^2 2$ (d) 2π

- Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a scalar field, $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ be vector field and let $\vec{a} \in \mathbb{R}^3$ be a constant vector. If \vec{r} represents the position vector $x\hat{i} + y\hat{j} + z\hat{k}$, then which one of the following is FALSE?
 - (a) $\operatorname{curl}(f \vec{v}) = \operatorname{grad}(f) \times \vec{v} \times f \operatorname{curl}(\vec{v})$
 - (b) div (grad) $(f) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) f$
 - (c) curl $(\vec{a} \times \vec{r}) = 2|\vec{a}|\vec{r}$
 - (d) div $\left(\frac{r^3}{|\vec{x}|^3}\right) = 0$ for $\vec{r} \neq \vec{0}$
- Let S be the surface of the cone $z = \sqrt{x^2 + y^2}$ bounded by the planes z = 0 and z = 3. Further, let C be the closed curve forming the boundary of the surface S. A vector field F is such that $\nabla \times \vec{F} = -x\hat{i} - y\hat{j}$. Then absolute value of the line integral $\oint_{a} \vec{F} \cdot d\vec{r}$, where

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
 and $r = |\vec{r}|$, is

- (a) 0
- (b) 9π
- (c) 15π
- (d) 18π
- The line integral of the vector field $\vec{F} = zx\hat{i} + xy\hat{j} + yz\hat{k}$ along the boundary of the triangle with vertices (1, 0, (0, 1, 0) and (0, 0, 1) oriented anticlockwise, when viewed from the point (2, 2, 2) is
- (b) -2
- (c) $\frac{1}{2}$
- (d) 2

- **10.** If $\vec{F}(x, y) = (3x 8y)\hat{i} + (4y 6xy)\hat{j}$ for $(x, y) \in \mathbb{R}^2$, then $\oint_C \vec{F} \cdot d\vec{r}$, where C is the boundary of the triangular region bounded by the lines x = 0, y = 0 and x + y = 1 oriented in the anti-clockwise direction is
- (b) 3
- (c) 4
- (d) 5
- 11. If $F(x, y, z) = xy^2 + 3x^2 z^3$, then the value of $\nabla F(x, y, z)$ at (2, -1, 4) is equal to
 - (a) 13i-4j-48k (b) i-4j-k

 - (c) 13i + j 6k (d) -13i + 4j 6k
- **12.** Let F be a vector field given by

 $\vec{F}(x, y, z) = -y\hat{i} + 3xy\hat{j} + z^3\hat{k}$ for $(x, y, z) \in \mathbb{R}^3$. If C is the curve of intersection of the surfaces $x^2 + y^2 = 1$ and x + z = 2, then which of the following is (are) equal to $\left| \oint_C \vec{F} \cdot d\vec{r} \right|$?

- (a) $\int_{0}^{2\pi} \int_{0}^{1} (1 + 2r\sin\theta) r dr d\theta$
- (b) $\int_0^{2\pi} \left(\frac{1}{2} + \frac{2}{3} \sin \theta \right) d\theta$
- (c) $\int_0^{2\pi} \int_0^1 (1+2r\sin\theta)dr d\theta$
- (d) $\int_{0}^{2\pi} (1+\sin\theta)d\theta$
- **13.** If $\vec{F}(x, y, z) = (2x + 3yz)\hat{i} + (3xz + 2y)\hat{j} + (3xy + 2z)\hat{k}$ for $(x, y, z) \in \mathbb{R}^3$, then which among the following is (are) true?
 - (a) $\nabla \times \vec{F} = \vec{0}$
 - (b) $\oint_C \vec{F} \cdot d\vec{r} = 0$ along any simple closed curve C
 - (c) There exist a scalar function $\phi: \mathbb{R}^3 \to \mathbb{R}$ such that $\nabla \cdot \vec{F} = \phi_{xx} + \phi_{yy} + \phi_{zz}$
 - (d) $\nabla \cdot \vec{F} = 0$
- **14.** Let *T* be the smallest positive real number such that the tangent to the helix $\cos t\vec{i} + \sin t\vec{j} + \frac{t}{\sqrt{2}}\hat{k}$ at t = T is orthogonal to the tangent at t = 0. Then the line integral

- of $\vec{F} = x\hat{j} y\hat{i}$ along the section of the helix from t = 0to t = T is
- **15.** Let $\vec{F} = -y\hat{i} + x\hat{j}$ and let C be the ellipse

$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

oriented counter clockwise. Then the value of $\oint_C \vec{F} \cdot d\vec{r}$ (round off to 2 decimal place) is _____

- 16. If the triple integral over the region bounded by the planes 2x + y + z = 4, x = 4, y = 0, z = 0 is given by $\int_0^2 \int_0^{\lambda(x)} \int_0^{\mu(x,y)} dz dy dz$, then the function

 - (a) x+y
- (b) x-y
- (c) x
- (d) y
- 17. The value of the integral

$$\int_{y=0}^{1} \int_{x=0}^{1-y^2} y \sin(\pi (1-x)^2) dx dy$$
 is

- (a) $\frac{1}{2\pi}$ (b) 2π (c) $\frac{\pi}{2}$ (d) $\frac{2}{\pi}$

- 18. The area of the surface generated by rotating the curve $x = y^3$, $0 \le y \le 1$. about the y-axis is

 - (a) $\frac{\pi}{27}10^{3/2}$ (b) $\frac{4\pi}{3}(10^{3/2}-1)$
 - (c) $\frac{\pi}{27}(10^{3/2}-1)$ (d) $\frac{4\pi}{3}10^{3/2}$
- 19. The area of the part of surface of the paraboloid $x^2 + y^2 + z = 8$ lying inside the cylinder $x^2 + y^2 = 4$
 - (a) $\frac{\pi}{2}(17^{\frac{3}{2}}-1)$ (b) $\pi(17^{\frac{3}{2}}-1)$
 - (c) $\frac{\pi}{6}(17^{\frac{3}{2}}-1)$ (d) $\frac{\pi}{3}(17^{\frac{3}{2}}-1)$
- **20.** Let C be the circle $(x-1)^2 + y^2 = 1$, oriented counter clockwise. Then the value of the line integral

$$\oint_C -\frac{4}{3}xy^3 dx + x^4 dy \text{ is}$$

- (a) 6π
- (b) 8π
- (c) 12π
- (d) 14π

21. Length of the arc of the curve

 $y = \log \sec x$ from x = 0 to $x = \frac{\pi}{3}$ is equal to

(a)
$$\log(2-\sqrt{3})$$
 (b) $\log(1-\sqrt{3})$

(b)
$$\log(1-\sqrt{3})$$

(c)
$$\log(1+\sqrt{3})$$
 (d) $\log(2+\sqrt{3})$

(d)
$$\log(2+\sqrt{3})$$

22. If x = v(1+u), y = u(1+v), then $\frac{\partial(x,y)}{\partial(u,v)} = v(1+v)$

(a)
$$1 + u + v$$

(b)
$$-1-u-v$$

(c)
$$1 - u + v$$

$$(d)$$
 0

23. Consider the surface $S = \{(x, y, xy) \in \mathbb{R}^3 : x^2 + y^2 \le 1\}$. Let $\vec{F} = y\hat{i} + x\hat{j} + \hat{k}$. If \hat{n} is the continuous unit normal field to the surface S with positive z-component, then $\int \vec{F} \cdot \hat{n} \, ds$ equals

(a)
$$\frac{\pi}{4}$$

(b)
$$\frac{\pi}{2}$$

(c)
$$2\pi$$

24. The volume of the solid

$$\left\{ (x, y, z) \in \mathbb{R}^3 \mid 1 \le x \le 2, \ 0 \le y \le \frac{2}{x}, \ 0 \le z \le x \right\}$$

is/are expressible as

(a)
$$\int_{1}^{2} \int_{2}^{2/x} \int_{0}^{x} dz \, dy \, dx$$

(b)
$$\int_{1}^{2} \int_{0}^{x} \int_{0}^{2/x} dy \, dz \, dx$$

(c)
$$\int_0^2 \int_1^2 \int_0^{2/x} dy \, dx \, dz$$

(d)
$$\int_0^2 \int_{\max(z,1)}^2 \int_0^{2/x} dy \, dx \, dz$$

25. Let *R* be the planar region bounded by the lines x = 0, y = 0 and the curve $x^2 + y^2 = 4$ in the first quadrant. Let C be the boundary of R, oriented counter-clockwise. Then the value of $\oint_C x(1-y)dx + (x^2-y^2)dy$ is ____

26. Let *R* be the region enclosed by
$$x^2 + 4y^2 \ge 1$$
 and $x^2 + y^2 \le 1$. Then the value of $\iint_R |xy| dx dy$ is _____

27. For a real number x, define [x] to be the smallest integer greater than or equal to x. Then

$$\int_0^1 \int_0^1 \int_0^1 ([x] + [y] + [z]) \, dx \, dy \, dz =$$

28. The value of the integral $\int_0^1 \int_x^1 y^4 e^{xy^2} dy dx$ is _____ (correct up to three decimal places)

Answer Key

1. (c) 2. (c) 3. (d) 4. (a)

5. (d) 6. (b)

7. (c)

8. (d)

9. (c)

10. (b)

11. (a)

12. (a, b)

13. (a, b, c) 14. (2.09) 15. (75.36)

16. (d)

17. (a)

18. (c)

19. (c)

20. (b)

21. (d)

22. (b)

23. (b)

24. (a, b, d)

25. (8)

26. (0.375)

27. (3)

28. (0.239)

Any issue with DPP, please report by clicking here:- https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if
Telegram Link: https://t.me/mathandaptitudes

PW Mobile APP: https://smart.link/7wwosivoicgd4