RainFall Data

Problem Statement:- To Predict the Rainfall based on the various features of the dataset \P

In [2]:

```
#import the modules
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
```

In [4]:

```
df=pd.read_csv(r"C:\Users\lenovo\Downloads\rainfall in india 1901-2015.csv")
df
```

Out[4]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	Mar- May
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	560.3
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	458.3
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	236.1
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	506.9
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	309.7
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9	196.2
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3	99.6
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6	131.1
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3	76.7
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7	223.9
4116 rows × 19 columns																	
4																	>

Data preprocessing and cleaning

```
In [5]:
```

```
df.head()
```

Out[5]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jur Se
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	560.3	1696.
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	458.3	2185.
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	236.1	1874.
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	506.9	1977.
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	309.7	1624.
4																		•

In [6]:

df.tail()

Out[6]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	,
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9	196.2	10
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3	99.6	11
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6	131.1	10
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3	76.7	9
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7	223.9	8
4																		•

In [7]:

df.isnull().any()

Out[7]:

```
SUBDIVISION
               False
YEAR
               False
JAN
                True
FEB
                True
MAR
                True
APR
                True
MAY
                True
JUN
                True
JUL
                True
AUG
                True
SEP
                True
OCT
                True
NOV
                True
DEC
                True
ANNUAL
                True
Jan-Feb
                True
Mar-May
                True
Jun-Sep
                True
Oct-Dec
                True
dtype: bool
```

In [8]:

```
df.fillna(method='ffill',inplace=True)
```

In [9]:

```
df.fillna(method='bfill',inplace=True)
```

In [10]:

```
df.isnull().sum()
```

Out[10]:

SUBDIVISION 0 YEAR 0 JAN 0 FEB 0 MAR APR 0 MAY 0 JUN 0 JUL AUG SEP 0 OCT NOV DEC ANNUAL 0 Jan-Feb 0 Mar-May Jun-Sep 0 Oct-Dec dtype: int64

In [11]:

df.describe()

Out[11]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	
count	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000
mean	1958.218659	18.957240	21.823251	27.415379	43.160641	85.788994	230.567979	347.177235	290.239796	197.524
std	33.140898	33.576192	35.922602	47.045473	67.816588	123.220150	234.896056	269.321089	188.785639	135.509
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.400000	0.000000	0.000000	0.100
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.475000	175.900000	155.850000	100.575
50%	1958.000000	6.000000	6.700000	7.900000	15.700000	36.700000	138.900000	284.800000	259.400000	174.000
75%	1987.000000	22.200000	26.800000	31.400000	50.125000	97.400000	306.150000	418.325000	377.800000	266.225
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.900000	2362.800000	1664.600000	1222.000
4										•

```
In [12]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):
                 Non-Null Count Dtype
    Column
---
                 -----
0
    SUBDIVISION 4116 non-null
                                object
    YEAR
                 4116 non-null
1
                                int64
 2
    JAN
                 4116 non-null
                                float64
 3
    FEB
                 4116 non-null
                                float64
                                float64
 4
    MAR
                 4116 non-null
 5
    APR
                 4116 non-null
                                float64
                 4116 non-null
                                float64
 6
    MΔΥ
    JUN
                 4116 non-null
                                float64
 8
                 4116 non-null
                                float64
    JUL
 9
    AUG
                 4116 non-null
                                float64
 10
    SEP
                 4116 non-null
                                float64
 11
    OCT
                 4116 non-null
                                float64
    NOV
                 4116 non-null
                                float64
 12
                 4116 non-null
    DEC
                                float64
 13
 14 ANNUAL
                 4116 non-null
                                float64
 15
                 4116 non-null
                                float64
    Jan-Feb
 16
    Mar-May
                 4116 non-null
                                float64
                 4116 non-null
 17 Jun-Sep
                                float64
18 Oct-Dec
                 4116 non-null
                                float64
dtypes: float64(17), int64(1), object(1)
memory usage: 611.1+ KB
In [13]:
df.columns
Out[13]:
'Jun-Sep', 'Oct-Dec'],
     dtype='object')
In [14]:
df.shape
Out[14]:
(4116, 19)
In [15]:
df['ANNUAL'].value_counts()
Out[15]:
ANNUAL
790.5
770.3
         4
1836.2
         4
1024.6
         4
1926.5
443.9
         1
689.0
         1
605.2
         1
509.7
         1
1642.9
         1
Name: count, Length: 3712, dtype: int64
```

```
In [16]:
df['Jan-Feb'].value_counts()
Out[16]:
Jan-Feb
0.0
0.1
         80
0.2
         52
0.3
         38
0.4
         32
23.3
          1
95.2
76.9
          1
66.5
          1
69.3
          1
Name: count, Length: 1220, dtype: int64
In [17]:
df['Mar-May'].value_counts()
Out[17]:
Mar-May
0.0
         29
0.1
         13
0.3
         11
8.3
         11
11.5
         10
246.3
248.1
          1
151.3
249.5
          1
223.9
          1
Name: count, Length: 2262, dtype: int64
In [18]:
df['Jun-Sep'].value_counts()
Out[18]:
Jun-Sep
434.3
          4
          4
334.8
573.8
          4
613.3
          4
1082.3
          3
301.6
          1
380.9
          1
409.3
          1
229.4
958.5
          1
Name: count, Length: 3683, dtype: int64
In [19]:
df['Oct-Dec'].value_counts()
Out[19]:
Oct-Dec
0.0
         16
         15
0.1
0.5
         13
0.6
         12
0.7
         11
191.5
124.5
          1
139.1
          1
41.5
          1
555.4
          1
Name: count, Length: 2389, dtype: int64
```

In [20]:

Exploratary Data analysis

```
df=df[['JAN','FEB','MAR','APR','DEC']]
```



```
In [21]:
```

```
df.columns
```

Out[21]:

```
Index(['JAN', 'FEB', 'MAR', 'APR', 'DEC'], dtype='object')
```

In [22]:

```
x=df[['FEB']]
y=df[['JAN']]
```

Applying Linear Regression to Data

```
In [23]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

In [24]:

```
from sklearn.linear_model import LinearRegression
reg=LinearRegression()
reg.fit(x_train,y_train)
print(reg.intercept_)
coeff_=pd.DataFrame(reg.coef_,x.columns,columns=['coefficient'])
coeff_
```

[9.65066661]

Out[24]:

```
coefficient
       0.442278
FEB
```

In [25]:

score=reg.score(x_test,y_test)
print(score)

0.1793580786264921

In [26]:

predictions=reg.predict(x_test)

In [27]:

plt.scatter(y_test,predictions)

Out[27]:

<matplotlib.collections.PathCollection at 0x27796d6e790>

In [28]:

plt.scatter(y_test,predictions)

Out[28]:

<matplotlib.collections.PathCollection at 0x277bf1b2090>

In [29]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33)
reg.fit(x_train,y_train)
reg.fit(x_test,y_test)
```

Out[29]:

```
▼ LinearRegression
LinearRegression()
```

In [30]:

```
y_pred=reg.predict(x_test)
plt.scatter(x_test,y_test,color='green')
plt.plot(x_test,y_pred,color='red')
plt.show()
```


In [31]:

from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler

In [32]:

```
features=df.columns[0:5]
targets=df.columns[-5]
```

In [33]:

```
x=df[features].values
y=df[targets].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=17)
```

In [35]:

```
ridgeReg=Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
train_score_ridge=ridgeReg.score(x_train,y_train)
test_score_ridge=ridgeReg.score(x_test,y_test)
```

```
In [42]:

print("\n Ridge Model:\n")
print(" the train score for Ridge model is{}".format(train_score_ridge))
print(" the test score for Ridge model is{}".format(test_score_ridge))

Ridge Model:

the train score for Ridge model is0.999999999874192
the test score for Ridge model is0.9999999998833
```

```
lr=LinearRegression()
```

```
In [45]:
```

In [43]:

```
plt.figure(figsize=(10,10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize='5',color='red',label=r'Ridge,$\alpha=10
plt.plot(features,alpha=0.4,linestyle='none',marker='o',markersize='7',color='green',label=r'LinearRegression')
plt.xticks(rotation=90)
plt.legend()
plt.show()
```


Lasso Linear Regression

In [46]:

```
print("\n lasso Model:\n")
lasso=Lasso(alpha=10)
lasso.fit(x_train,y_train)
train_score_ls=lasso.score(x_train,y_train)
test_score_ls=lasso.score(x_test,y_test)
print(" the train score for ls model is{}".format(train_score_ls))
print(" the test score for ls model is{}".format(test_score_ls))
```

lasso Model:

the train score for ls model is0.9999207747038827 the test score for ls model is0.9999206791315255

In [47]:

```
pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="bar")
```

Out[47]:

<Axes: >

In [48]:

```
from sklearn.linear_model import LassoCV
lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,0.1,1,10],random_state=0).fit(x_train,y_train)
print(lasso_cv.score(x_train,y_train))
print(lasso_cv.score(x_test,y_test))
```

0.99999999999991

0.999999999999921

```
In [53]:
```

```
plt.figure(figsize=(10,10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize='5',color='red',label=r'Ridge,$\alpha=10
plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',label=r'lasso;$\alpha=grid$')
plt.plot(features,alpha=0.4,linestyle='none',marker='o',markersize='7',color='green',label=r'LinearRegression')
plt.xticks(rotation=90)
plt.legend()
plt.show()
```


Elastic Net Regression

```
In [54]:
```

```
from sklearn.linear_model import ElasticNet
eln=ElasticNet()
eln.fit(x,y)
print(eln.coef_)
print(eln.intercept_)
print(eln.score(x,y))
```

```
[9.99098574e-01 0.00000000e+00 3.02728910e-05 0.00000000e+00 0.00000000e+00] 0.016258606966612632
```

0.9999992160905338

In [55]:

```
y_pred_elastic=eln.predict(x_train)
mean_squared_score=np.mean((y_pred_elastic - y_train)**2)
print(mean_squared_score)
```

0.0008816302333951303

Conclusion:-

We can conclude that from the above all models Lasso Regression model is suitable and best fit for given Rainfall DataSet.

In []:		