GigaDevice Semiconductor Inc.

GD32407Z-NB-IOT 开发板 用户手册

目录

Ħ	录		1
表	₹		2
1	简イ	ጉ	3
2	功能		3
3	入门		4
4	硬化	牛设计概述	5
	4.1	供电电源	
	4.2	启动方式选择	5
	4.3	LED 指示灯	6
	4.4	按键	6
	4.5	串口	6
	4.6	Arduino 扩展接口	7
	4.7	BC95(NB-IOT 模组)	7
	4.8	DS18B20(温度传感器)	8
	4.9	MPU6050(六轴传感器)	8
	4.10	USB	9
	4.11	扩展电路	9
	4.12	GD-Link	10
	4.13	NB-IOT 开发板布局	11
5	例和	星使用指南	11
	5.1	开始前准备	11
	5.2	开发板配套 DEMO	12
	5.3	DEMO: NB-IOT-Lock-BC95	12
	5.4	DEMO: NB-IOT-Lock-Lirda	15
	5.5	DEMO: NB-IOT-Park	16
6	版才	太更新历中	17

表

Table 1	引脚分配表	3
Table 2	版本更新历史1	7

1 简介

GD32407Z-NB-lot-V1.1 开发板使用 GD32F407ZGT6 作为主控制器。开发板使用 Mini USB 接口/DC-005 连接器/GDLINK/Arduino 扩展接口提供 5V 电源。提供包括扩展引脚在内的及 SWD, Reset, Boot, User button key, LED, USART, GD-Link, Arduino 扩展引脚等外设资源。更多关于开发板的资料可以查看 GD32407Z-NB-loT-V1.1 原理图。

注: GD32407Z-NB-lot-V1.0 与 GD32407Z-NB-lot-V1.1 开发板区别主要为 NB-IOT 模组厂商不同,其余功能均相同。

2 功能引脚分配

Table 1 引脚分配表

Function	Pin	Description
LED	PD4	LED1
LED	PD5	LED2
RESET		K1-Reset
KEY	PA0	K2- User1 key
	PB0	K3- User2 key
USART2	PC10	USART2_TX
	PC11	USART2_RX
Arduino	PC0	ARD_A0
	PC1	ARD_A1
	PC2	ARD_A2
	PC3	ARD_A3
	PC4/PB11	ARD_A4/I2C_SDA
	PC5/PB10	ARD_A5/I2C_SCL
	PA3	ARD_D0
	PA2	ARD_D1
	PA5	ARD_D2
	PA6	ARD_D3
	PA4	ARD_D4
	PC8	ARD_D5
	PA7	ARD_D6
	PA1	ARD_D7
	PB7	ARD_D8
	PB8	ARD_D9
	PB9	ARD_D10
	PB15	ARD_D11
	PB14	ARD_D12
	PB13	ARD_D13

		02021012112101
	PB11	ARD_D14/I2C_SDA
	PB10	ARD_D15/I2C_SCL
USART5	PC6	USART5_TX<->NB_RX
USARIS	PC7	USART5_RX<->NB_TX
Temp Sensor(DS18B20)	PD0	DQ
AXIS Sensor(MPU6050)	PB5	MPU_INT
	PC9	MPU_I2C_SDA
	PA8	MPU_I2C_SCL
USB	PD13	USB_VBUS_CONTROL
	PA9	USB_VBUS
	PA11	USB_DM
	PA12	USB_DP

3 入门指南

下载程序到评估板需要一套 J-Link 或者使用 GD-Link 工具,在选择了正确的启动方式并 且上电后,LEDPWR 将被点亮,表明评估板供电正常。

所有例程提供了 Keil 和 IAR 两个版本,其中 Keil 版的工程是基于 Keil MDK-ARM 5.18 uVision5 创建的,IAR 版的工程是基于 IAR Embedded Workbench for ARM 7.40.2 创建的,同时在 Firmware 里提供有 Addon 和 Software Pack。在使用过程中有如下几点需要注意:

- 1、如果使用 Keil uVision4 打开工程, 安装\Library\Firmware\GD32F4xx_Addon.1.0.0.exe, 以加载相关文件:
- 2、如果使用 Keil uVision5 打开工程,有两种方法解决"Missing Device(s)"问题。第一种是方法先安装\Library\Firmware\GigaDevice.GD32F4xx_DFP.1.0.0.pack,在 Project 菜单中选择 Manage 子菜单,点击 Migrate to Version 5 Format...菜单,将 Keil uVision4 工程转为 Keil uVision5 工程,同时在 Option for Target 的 C/C++中添加路径 C:\Keil_v5\ARM\Pack\ARM\CMSIS\4.2.0\CMSIS\Include;第二种方法是直接安装 Addon,在 Folder Selection 中的 Destination Folder 那一栏选择 Keil uVision5 软件的安装目录,如 C:\Keil_v5, 然后在 Option for Target 的 Device 选择对应的器件,同时在 Option for Target 的 C/C++中添加路径 C:\Keil_v5\ARM\Pack\ARM\CMSIS\4.2.0\CMSIS\Include。
- 3、如果使用 IAR 打开工程,安装\Library\Firmware\IAR_ GD32F4xx_Addon.exe,以加载相关文件。

4 硬件设计概述

4.1 供电电源

4.2 启动方式选择

4.3 LED 指示灯

4.4 按键

4.5 串口

4.6 Arduino 扩展接口

4.7 BC95(NB-IOT 模组)

4.8 DS18B20 (温度传感器)

4.9 MPU6050(六轴传感器)

4.10 USB

4.11 扩展电路

4.12 GD-Link

4.13 NB-IOT 开发板布局

5 例程使用指南

5.1 开始前准备

在使用开发板之前,请先按照以下步骤确认硬件配置:

- 1. 通过跳线帽 JP4 选择供电方式。供电方式可选: Arduino/GDlink/USB/DC-5V。
- 2. 正确配置 MCU 的 Boot 引脚。从 flash 启动需将跳线帽 JP2、JP3 跳到 2-3 位置。

- 3. 需要串口打印调试信息时,请将 JP5 跳到 1-2 位置。
- 4. 如需使用板载的温度传感器(DS18B20),请连接 JP16 跳线帽。
- 5. 如需使用板载的六轴传感器(MPU6050),请连接 JP17 跳线帽。
- 6. 如需使用板载的 NB-IOT 模组,请连接 JP10 跳线帽。
- 7. 开发板支持的烧写工具为 GD-Link(USB 接口: CN100)及 J-link(JTAG/SWD 接口: JP1)
- 8. 根据板载 NB-IOT模组名称选择对应运营商的 SIM 卡。B05 对应 850MHz(电信频段), B08 对应 900MHz(移动、联通)
- 9. 如需要使用 PC 串口向 NB-IOT 模组输入 AT 指令,可以在 MCU 程序擦除的情况下,使用杜邦线将 JP11 的 RXD/TXD 引脚与 MCU 扩展引脚 PC11/PC10 相连。并将 JP5 跳到 1-2 位置,之后便可使用 COM1 接口进行指令的输入。

5.2 开发板配套 DEMO

本节主要介绍开发板配套 DEMO 的功能及如何将开发板作为"南向设备"连入华为云"OceanConnect IoT 平台"的过程。

华为物联网平台将设备架构定义为"北向应用"和"南向设备"两部分。关于华为云平台的详细介绍,请参考: http://developer.huawei.com/ict/forum/thread-19045.html

关于开发板 DEMO 配套的北向应用开发介绍,请参考《GD32407Z-NB-IOT 开发板北向应用用户手册》

5.3 DEMO: NB-IOT-Lock-BC95

5.3.1 DEMO 介绍

该 DEMO 实现了类似共享单车智能锁的功能,使用移远 BC95 模组。通过杜邦线将开发板与车锁控制单元相连,实现车锁状态的检测、远程开锁以及手动关锁后状态上传到云端的功能。配合上位机,可以在 PC 端实时检测锁的状态。

5.3.2 DEMO 实现

1. DEMO 概述:

DEMO 使用华为 LiteOS 操作系统。在程序开始,建立了 4 个任务,如下图:


```
void LOS_Init_Tsk(void)
438
439 ⊟ {
440
        gd_eval_led_init(LED1);
        gd_eval_led_init(LED2);
441
      gd eval led off(LED1);
442
443
      gd eval led off(LED2);
444
445
      LOS EvbKeyInit();
446 LOS_MPU6050Task_Entry();
       LOS_TamperTask_Entry();
447
447 LOS_TamperTabl_
448 // ··· LOS_IrDA_Task_Entry();
449
       LOS_NBIOT_Task_Entry();
450
        LOS_Lock_Tsk_Entry();
451
        LOS_TaskDelete(g_uwInitTaskID);
452
```

MPU6050_Task:实现板载六轴传感器数据的采集并通过串口打印。

Tamper_Task: 实现板载温度传感器数据的采集并通过串口打印。

NBIOT_Task: 实现 NBIOT 模组的联网及无线数据的传输交互。

Lock_Task: 实现智能锁控制单元的开锁及关锁响应等功能。

2. NB-IOT 联网:

NB-IOT 的通讯主要是通过 NBIOT_Task 来实现。NB-IOT 模组与 MCU 之间通过 USART 进行通讯。命令以 AT 指令的形式发送。关于模组的 AT 指令详情,请参考《Quectel_BC95_AT_Commands_Manual_V1.1》

按如下图所示顺序发送指令,可以实现模组连入运营商网络:


```
Neul
                                       //Module is powered on, wait for 3 seconds
OK
AT+NTSETID=1,460012345678966
                                       //Configure IMEI number, set it only once and cannot change
                                         again after a successful setup (If the module has been
                                         configured, this step can be omitted).
OK
AT+NRB
                                       //Reboot the module (If the module has been configured, this
                                        step can be omitted).
REBOOTING
Neul
OK
AT+CGSN=1
                                       //Query the IMEI number
+CGSN: 460012345678966
AT+CFUN=1
                                      //Configuration CFUN
OK
AT+CIMI
                                      //Query the IMSI
460012345678966
OK
AT+NBAND=8
                                      //Configure only once, set to BAND 8 for BC95-CM,
                                       set to BAND 5 for BC95-SL and set to BAND 20 for BC95-VF.
OK
AT+CGDCONT=1,"IP","HUAWEI.COM" //Configuration PDP
AT+CGATT=1
                                      //Activate the network
OK
AT+CGATT?
                                      //Query whether network is activated. Need to wait for some
                                       time.
+CGATT:1
```

具体联网实现可参考 DEMO 中的 main.c 文件第 286 行, nbiot_basic_connect()函数。

```
char test_buf[50];
276
     uint8_t g_lock_state = 0;
277
278
    void LOS_NBIOT_Test_Tsk(void)
279 □ {
280
         int msgcnt = 0;
281
        \cdot int \cdot n \cdot = \cdot 0;
          uint32_t uwRet;
282
283

··static·char·coapmsg[50] ·= ·{0};
284
         static char response_command[20] = {0};
285
286
                                            //没有NB-IOT网络,该函数会卡死。
        nbiot_basic_connect();
          nbiot_at_command_send(20, "AT+NBAND?\r\n");
287
288
         gd_eval_led_on(LED1);
289
         nbiot_at_command_send(NB_AT_NSMIO, nbiot_cmd_data[NB_AT_NSMIO].cmdstr);
         if(nbiot cmd data[NB AT NSMI0].revresult == BACK TIMEOUT)
290
291
             nbiot_at_command_send(NB_AT_NSMI0, nbiot_cmd_data[NB_AT_NSMI0].cmdstr);
292
293
```

3. NB-IOT 数据交互:

NB-IOT 模组与华为云平台的数据交互使用 COAP 协议实现。模组本身集成了华为云平台的 agent 协议。因此可以通过特定的 AT 指令直接进行访问。

按如下图所示顺序发送指令,可以实现模组与华为云平台的数据交互:

AT+NCDP=192.53.100.53 //Configuration CDP server

OK

AT+NCDP? //Query CDP server

+NCDP:192.53.100.53,5683

OK

AT+NMGS=10, AA7232088D0320623399 //Send messages

+LOG[D]ep=460012345678969

+LOG[D]create success

+LOG[I]UE->IOM: POST t/r register +LOG[D]ep=460012345678969

OK

+LOG[I]IOM->UE: ACK response code=2.04 +LOG[I]IOM->UE: ACK device Changed

+LOG[D]IOM->UE: GET request +LOG[D]IOM->UE: GET request

+LOG[I]IOM->UE: GET request direct upload len=10

+LOG[D]IOM->UE: POST request //IOM posts messages to UE

AT+NQMGS //Query whether messages is sent

PENDING=0,SEND=1,ERROR=0

OK

AT+NMGR //Get messages

2,AABB

OK

AT+NQMGR //Query whether messages is received

BUFFERED=0,RECEIVED=1,DROPPED=0

ΟK

AT+NMGS=10, AA7232088D0320623399 //Send messages

+LOG[D]IOM->UE: GET request

+LOG[I]IOM->UE: GET request direct upload len=10

通过"AT+NCDP="指令可以设置 IOT 平台的 IP 地址及端口号。该地址及端口号的获取详见华为 OceanConnect 相关资料。

DEMO 中数据的接收通过 nbiot_coap_msg_read()函数实现,数据的发送通过 nbiot_coap_send()函数实现。由于 NB-IOT 的机制,在需要接收数据时,首先需要发送一包数据通知云平台设备在线,之后云平台才会将数据下发。

5.4 DEMO: NB-IOT-Lock-Lirda

该 DEMO 使用利尔达公司的 NB-IOT 模组,实现的功能与"DEMO:NB-IOT-Lock-BC95"基本相同。

5.5 DEMO: NB-IOT-Park

5.5.1 DEMO 介绍

该 DEMO 实现了类似智能停车的功能,通过杜邦线将开发板与车辆检测装置相连,实现车位的闲忙统计,并将车位的实时状态上传云端等功能。配合上位机,可以在 PC 端实时观察车位状态。

5.5.2 DEMO 实现

车辆检测功能通过一组红外发射管与红外接收管实现。当车位上停有车辆时,红外发射管发射的信号通过车辆底部反射被红外接收管接收,MCU 引脚电平被改变,从而判断车辆已经停入车位并开始计时。当车辆移走后,红外接收管不再接收到信号,从而判断车辆已经驶离,并停止计时。

DEMO 中主要通过 IrDA_Task 任务实现。

NB-IOT 通讯部分与 DEMO:NB-IOT-Lock-BC95 基本相同。

6 版本更新历史

Table 2 版本更新历史

Revision No.	Description	Date
1.0	初始发布版本	Oct. 19, 2017