2의 보수 곱셈기 양자회로

https://youtu.be/k21U9F_2Ug

HANSUNG UNIVERSITY CryptoCraft LAB

서론

- 2의 보수 곱셈 양자 회로 구현
 - 1의 보수 : 모든 비트 반전하여 음수표현, 0의 표현이 0과 -0 두가지 (+5, 00000101) → 비트반전 (-5, 11111010)
 - 2의 보수 : 모든 비트 반전 후 더하기 1하여 음수표현 +5 (00000101) → 비트반전 (11111010) → 더하기 1 (11111011) : -5.
 - 컴퓨터상에서 주로 사용되는 표현
 - 양의 정수보다 복잡도가 있음
 - 뺄셈을 더하기로 연산 가능 : 보수를 취하고 더하기
 - 양자 회로 구현
 - 여러 방식에 따른 자원차이
 - Shift-Add 방식 : 자원 효율적
 - Tree 방식: 고속
 - 고차 기수 : 균형

이진 곱셈

• 이진 곱셈

기본 과정

- 1. Multiplier의 최하위 비트부터 시작하여 Multiplicand에 곱함
- 2. 각 단계마다 피곱수를 한 자리씩 왼쪽으로 시프트
- 3. 모든 곱셈 결과를 합산

(a) Riç	ght	-sh	ift	alg	gori	thm	۱ 		
а х		1		1	0				
$p^{(0)} + x_0 a$		0	0	0	0				
$2p^{(1)}$ $p^{(1)}$ $+x_1a$	0	1 0 1	0 1 0			0			
$2p^{(2)}$ $p^{(2)}$ $+x_2a$	0	1 0 0	1	1 1 0		0	0		
$2p^{(3)}$ $p^{(3)}$ $+x_3a$	0	0 0 1		1		1	0	0	
2p ⁽⁴⁾ p ⁽⁴⁾ =====	0	1 0	1	0	1	1	1	0	0 ==

• 기본 Shift-add 덧셈

• 양자회로 구현

2의 보수 곱셈

- 기본적으로 양수 곱셈과 유사,
- 피연산자 중 하나 또는 둘 모두가 음수일 때 추가 고려

(a) Rig	ght-	-sh	ift	alç	gori	ithm	1		
а х		1	0 0	1	0				
$p^{(0)} + x_0 a$		0		0	0				
$\frac{-}{2p^{(1)}}$ $p^{(1)}$ $+x_1a$	0	1 0 1	0 1 0		0 1 0	0			
$2p^{(2)}$ $p^{(2)}$ $+x_2a$	0	_	1	1 1 0	1	0	0		
$2p^{(3)}$ $p^{(3)}$ $+x_3a$	0	0 0 1	1 0 0	1 1 1	1 1 0	1	0	0	
2p ⁽⁴⁾ p ⁽⁴⁾	0	1 0	1	0	1	1	1	0	0

• 둘 다 양수

=====	===	==	==	==	==	===		==	==	==	==	=
а Х		0	0	0	1	0						_
p ⁽⁰⁾ +x ₀ a		0		0	0	0						_
$2p^{(1)}$ $p^{(1)}$ $+x_1a$	1	1 1 1	0 1 0	1 0 1	1 1 1	0 1 0	0					-
2p ⁽²⁾ p ⁽²⁾ +x ₂ a	1	1 1 0	0 1 0	0 0 0		1 0 0	0	0				_
2 <i>p</i> (3) <i>p</i> (3) + <i>x</i> ₃ <i>a</i>	1	1 1 1	1 1 0	0 1 1	0 0 1	0 0 0	1	0	0			-
2p ⁽⁴⁾ p ⁽⁴⁾ +x ₄ a	1	1 1 0	0 1 0	0 0 0		0 1 0		0	0	0		_
2 <i>p</i> (5) <i>p</i> (5)	1	1	1	0	0	1	0	0	1	0	0	_

• 멀티플라이어가 양수

2 <i>p</i> ⁽⁵⁾ <i>p</i> ⁽⁵⁾ ====	0		0	1 0	1	0	0	1	1	0	0	=
2 <i>p</i> (4) <i>p</i> (4) +(- <i>X</i> 4)	1 a)	1 1 0	1 1 1	0 1 0	0 0 1	1 0 0	1	1	0	0		
2p ⁽³⁾ p ⁽³⁾ +x ₃ a	1	1 1 0	0 1 0	0 0 0	1 0 0	1 1 0	1	0	0			
2p(2) p(2) +x ₂ a	1	1 1 1	1 1 0	1	1 0 1	1 1 0	0	0				
2 <i>p</i> (1) <i>p</i> (1) + <i>x</i> ₁ <i>a</i>	1	1 1 0	0 1 0	1 0 0	1 1 0	0 1 0	0					
p ⁽⁰⁾ +x ₀ a		0	0	0	0	0						_
а Х		1		1								_

• 멀티플라이어가 음수

양자 회로 구현 고려사항

- 2의 보수 변환
 - 2의 보수 변환 방법 : 모든 비트 반전 후 더하기 1 하여 음수표현
 - 더하기 1의 경우 케리가 발생 → 추가 토플리 게 이트
 - \Rightarrow 뺄셈 활용 A-B = $\underline{A+B}$ +1 A-B = \overline{A} + B
- 피연산자에 따른 연산차이
 - If,else 없이 논리연산으로 동작필요
 - 부호의 결정
 - 0인경우...

=====		-	==	-				==	==	==	==:
а Х		1	0		1						
p ⁽⁰⁾ +x ₀ a		0	0	0		0					
$2p^{(1)}$ $p^{(1)}$ $+x_1a$	1		0 1 0		1	0 1 0	0				
2p ⁽²⁾ p ⁽²⁾ +x ₂ a	1	1 1 0	0 1 0	0	0 0 0		0	0			
2p ⁽³⁾ p ⁽³⁾ +x ₃ a	1	1 1 1	1 1 0	0 1 1	0 0 1		1 0	0	0		
2p ⁽⁴⁾ p ⁽⁴⁾ +x ₄ a	1	1 1 0	0 1 0			1		1		0	
2 <i>p</i> (5) <i>p</i> (5)	1	1	1	0	0		0	0	1	0	0

												_
а Х		1	0	1	1	0						_
p ⁽⁰⁾ +x ₀ a		0	0	0	0	0						_
$2p^{(1)}$ $p^{(1)}$ $+x_1a$	1	1 1 0	0 1 0	1 0 0	1 1 0	0 1 0	0					
2 <i>p</i> (2) <i>p</i> (2) + <i>x</i> 2 <i>a</i>	1	1 1 1	1 1 0	1	1 0 1	1 1 0	0	0				
2 <i>p</i> (3) <i>p</i> (3) + <i>x</i> 3 <i>a</i>	1			0	1 0 0		1	0	0			
$ \begin{array}{c} \hline 2p^{(4)} \\ p^{(4)} \\ +(-x_{4}a) \end{array} $			1 1 1		0 0 1	1 0 0	1	1	0	0		
2 <i>p</i> ⁽⁵⁾ <i>p</i> ⁽⁵⁾	0	0	0	1 0	1	0	1 0	1 1 ==	1	0 1 ==	0	=

booth-recoding

- 곱하는 수(multiplier)의 표현을 변형
- ▶ 부호 계산이 간단

Χį	x_{i-1}	y i	Explanation
0	0	0	No string of 1s in sight
0	1	1	End of string of 1s in x
1	0	-1	Beginning of string of 1s in x
1	1	0	Continuation of string of 1s in x

=====	==	==	==	==	==		===	==	==	==	==	=	
а х у	,	1 1 -1	0 0 1	1 1 -1	1 0 1	0 1 -1			tip oth		r eco	de	d
p ⁽⁰⁾ +y ₀ a		0	0	0	0	0						_	
2p ⁽¹⁾ p ⁽¹⁾ +y ₁ a	0	0 0 1	1 0 0	0 1 1	1 0 1	0 1 0	0						
2p ⁽²⁾ p ⁽²⁾ +y ₂ a	1	1 1 0	1 1 1	0 1 0	1 0 1	1 1 0	0	0					
2p ⁽³⁾ p ⁽³⁾ +y ₃ a	0	0 0 1	0 0 0	1 0 1	1 1 1	1 1 0	1	0	0				
2p ⁽⁴⁾ p ⁽⁴⁾ +y ₄ a	1	1 1 0	1 1 1	0 1 0	0 0 1	1 0 0	1	1	0	0			
2p ⁽⁵⁾ p ⁽⁵⁾	0	0	0	1 0	1	0	1 0	1	1	0	0	_	

booth-recoding 양자회로

• 양의 정수 곱셈기

Radix-4

- 한 번의 연산으로 2비트의 곱해지는 수(Multiplicand)를 처리
 2a의 연산이 빠른경우 효율적

a 3a X	0 1	0 1 1 0 0 0 1 0 1 1 1 0	
$p^{(0)} + (x_1 x_0)_{\text{two}} a$	0 0	0 0 0 0 1 1 0 0	
4p(1) p(1) +(x ₃ x ₂) _{two} a		1 1 0 0 0 0 1 1 0 0 1 0	0 0
4 <i>p</i> (2) <i>p</i> (2)	0 1	0 1 0 1 0 1 0 1	

Radix-4 Booth's recoding

<i>x</i> _{i+1}	x _i	x_{i-1}	<i>y</i> _{i+1}	y i	$z_{i/2}$	Explanation
0	0	0	0	0	0	No string of 1s in sight
0	0	1	0	1	1	End of a string of 1s in x
0	1	0	1	-1	1	Isolated 1 in x
0	1	1	1	0	2	End of a string of 1s in x
1	0	0	-1	0	-2	Beginning of a String of 1s in x
1	0	1	-1	1	-1	End one string, begin new string
1	1	0	0	-1	-1	Beginning of a string of 1s in x
1	1	1	0	0	0	Continuation of string of 1s in x

a X Z	0 1 1 0 1 0 1 0 -1 -2	Radix-4 recoded version of x
$p^{(0)} + z_0 a$	000000	
4p(1) p(1) +Z ₁ a	1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0	0 0
4p ⁽²⁾ p ⁽²⁾	1 1 0 1 1 1 1 1 1 1 0 1	

Radix-4 Booth's recoding

- 병렬
 - 4x2+ 4x2는 병렬 x

- 분할정복
 - 추가 큐비트 사용, 회로 깊이 감소

• 문제점

Baugh-Wooley 2's-complement multiplication

결론

- 2의 보수 곱셈 양자 회로의 기법에 따른 구현 및 자원 비교 목표
 - · Booth's recoding
 - Hight-Radix
 - Baugh-Wooley 기반 트리
 - 여러기법 복합
 - 자원비교
 - 제한된 큐비트 : 임베디드 컴퓨터 유사 리소스를 절약-보조 큐빗의 Uncompute를 포함
 - 보조 큐빗 대비 Toffoli-depth, Toffoli-count

Q&A