Introduction aux réseaux de Neurones :

De la biologie...

...aux sciences pour l'ingénieur

Introduction

- Objectif
 - Découvrir les approches d'intelligence artificielles d'inspiration biologique
 - Réseaux de neurones
 - Architectures comportementales
 - Application au contrôle robotique

Introduction

- Cerveau humain
 - 10 à 100 Milliards de neurones

 Architecture très différente de celle d'un ordinateur

Le neurone biologique

Le neurone biologique

Neurone biologique

Potentiel du neurone

A) potentiel récepteur qui dépolarise le neurone au-delà du seuil.

Potentiel du neurone

B) les canaux sodiques sensibles au voltage s'ouvrent.

Potentiel du neurone

C) entrée massive d'ion sodium qui dépolarisent davantage le neurone.

Potentiel du neurone

D) fermeture des canaux sodiques et ouverture des canaux potassiques.

Potentiel du neurone

E) les ions potassium chargés positivement sortent du neurone.

Potentiel du neurone

F) période réfractaire.

Potentiel du neurone

G) le potentiel de repos est restauré.

Potentiel du neurone

H) le sodium est pompé vers l'extérieur et le potassium vers l'intérieur, restaurant ainsi la distribution originale des ions.

Apprentissage

Apprentissage

Apprentissage

Apprentissage: psychologie

- Règle de Hebb
 - Quand une cellule A excite par son axone une cellule B et que, de manière répétée et persistante, elle participe à la genèse d'une impulsion dans B, un processus de croissance ou un changement métabolique a lieu dans l'une ou dans les deux cellules, de telle sorte que l'efficacité de A à déclencher une impulsion dans B est, parmi les autres cellules qui ont cet effet, accrue

Hebb 1949

Modèle du neurone formel

McCulloch & Pitts 1943

Modèle du neurone formel

- x_i: entrées du neurone (observations)
- W_i: poids du neurone (pondérations)
- Σ $W_{ij}x_i$: combinaison linéaire des entrées
- f(): fonction de mise en forme

On optimise les $\mathbf{W_i}$ de manière à ce que $f(\mathbf{\Sigma} \ \mathbf{W_{ij}} \mathbf{x_i})$ donne le résultat attendu

Fonction d'activation

• Échelon :

 Si la somme pondérée des entrées dépasse un seuil, activation du neurone

• Linéaire seuillée :

 Activation proportionelle à la somme pondérée des entrées, seuilée entre +/- max (flou)

Sigmoïde :

Activation non linéaire, dynamique rapide

Réseau?

 Un réseau de neurone est un ensemble de neurones

- Plusieurs sorties : chacune correspondant à une

combinaison différente

Apprentissage du réseau

- Algorithme itératif
 - 1. Initialisation le réseau avec des poids initiaux
 - 2. Présentation au réseau d'un exemple
 - 3. Calcul de la valeur de sortie
 - 4. Mise à jour des poids en fonction de des entrées et de la valeur de sortie
 - 5. Retour en 2.

Modèle de la règle de Hebb

Modèle de la règle de Hebb

- Augmentation des poids proportionellement au produit de l'entrée avec la sortie
 - Si activation : augmentation du poids

Réseaux supervisés

Réseaux supervisés

- 1.On coupe l'ensemble d'apprentissage en 2 (train et val)
 - On entraîne sur train tant que l'erreur baisse sur val
- 2.On évalue les performances du réseau sur l'ensemble de test
- 3.On peut éventuellement répéter l'étape 1. un certain nombre de fois afin de garder le meilleur réseau (l'erreur la plus faible sur val)

Exemples de réseaux

Mémoires associatives

- Architecture
 - Réseaux entièrement interconnecté
- Apprentissage
 - Règle de Hebb
- Vecteur d'entrée de taille N
- Vecteur de sortie de taille P
 - Apprentissage hétéroassociatif
 - Si P = N, apprentissage autoassociatif

- Apprentissage
 - $W = \sum_{i} Y_i X_i^T$
 - W est la matrice de poids, Y vecteur à apprendre, X vecteur de rappel
- Rappel
 - Y'=W.X
 - Si X dans la base d'apprentissage alors
 - Y'=Y

Mémoires associatives

- Exercices
 - Apprendre l'association
 - [1001] et [010]
 - [0 1 1 0] et [1 0 0]
- Faire le rappel de [1 0 0 0]
- Mettre [1 1 0 0] en entrée

- Limitations
 - Les vecteurs doivent être orthogonaux
 - Nombre d'apprentissages limité
- Applications
 - Complétion de motifs

Le Perceptron

- Architecture
 - Neurones formels
 - Sortie seuillée
- Règle d'apprentissage
 - $\Delta W = (Y_d Y).X_i$
- Convergence
 - Séparation en hyperplans

Le Perceptron : exemples

Le ET logique

Le Perceptron : exemples

Le OU logique

Le Perceptron : exemples

Le XOR (ou exclusif)

Le Perceptron : Limitations

• Problèmes linéairement séparables

- Latitude
 - Augmenter le nombre de couches

Le Perceptron : Limitations

• Problèmes linéairement séparables

Latitude

Augmenter le nombre de couches

2 couches

3 couches

Le Perceptron : Exercice

Résoudre le problème du XOR

Utiliser 2 couches de neurones

- Apprentissage
 - Règle de rétropropagation du gradient
- Critère
 - On veut minimiser l'erreur quadratique de classification en sortie du réseau
 - $E = \frac{1}{2} \cdot (Y_d Y)^2$
- Comment doit-on corriger les poids?

- Cas à 1 couche
 - $dE/dW_{ij} = d/dW_{ij}.1/2.(Y_d-Y)^2$
 - Avec $Y=f(\Sigma Wij.X)$
- $dE/dW_{ij}=-dY/dW_{ij}=(Y_d-Y).X_i.f'(\Sigma W_{ij}.X_i)$
- D'où la règle ΔW_{ij}=α.(Y_d-Y).X_i
 - Règle du LMS (Widrow et Hoff)

- Cas à n couches
 - On peut montrer de la même manière

$$\Delta w_{kh}^j = -\alpha \cdot \delta_k^j \cdot y_h^{j-1}$$

$$\delta_k^j = \left\{ \begin{array}{ll} y_k^j - y_{d_k} & \text{pour la dernirre couche} \\ \left[\sum_{i \in \text{couche j}+1} \delta_i^{j+1} \cdot w_{ik}^{j+1} \right] \cdot \sigma'(p_k^j) & \text{pour les autres couches} \end{array} \right.$$

- Propriétés
 - 2 couches cachées
 - Approximateur universel
- Pratiquement:
 - Lissage de l'apprentissage
 - Rétropropagation avec momentum

- Définition
 - C'est un MLP dont la fonction de sortie des neurones de la couche d'entrée est une RBF (triangle, gaussien...) multiplié par la probabilité a priori de la classe
- Intérêt
 - Estimer la densité de probabilité des données

- Apprentissage
 - Chaque noyau est centré sur une donnée d'apprentissage
 - L'apprentissage est un LMS en sortie de couche
- Problème
 - Taille des noyaux ?
 - Si trop de données dans la base d'apprentissage?
- Solution
 - Plus proches voisins
 - Auto-organisation (Kohonen...)

- Un réseaux RBF utilisé dans le cadre du contrôle est très comparable avec un controleur flou
 - Les entrées RBF sont semblables aux entrées fuzzyfiées
 - Le réseaux agit sur les sorties en calculant une mixture non-linéaires des entrées
- Différences
 - Il n'y a pas « d'expert » mais le réseau apprend les règles de production

Sur-apprentissage

Réseaux supervisés

Réseaux supervisés

- 1.On coupe l'ensemble d'apprentissage en 2 (train et val)
 - On entraîne sur train tant que l'erreur baisse sur val

Si l'erreur sur val remonte => sur-apprentissage

1.On évalue les performances du réseau sur l'ensemble de test

Réseaux de neurones

Applications
les différents domaines
détail sur le contrôle

Classification de signaux

Clustering, catégorisation

Approximation de fonctions

Prédiction/Prévision

Optimisation

MATHEMATIQUES ET CALCUL

- itérations discrètes
- réseaux systoliques
- calcul parallèle
- calculabilité sur réseaux et algorithmique
- optimisation combinatoire
- approximation de fonction
- modèles probabilistes
- systèmes dynamiques
- codage
- prédiction

TRAITEMENT DE DONNEES

- classification
- Auto-organisation et catégorisation
- décision, diagnostic
- linguistique, traitement de la parole
- séparation de sources en traitement du signal
- affectation de ressources, routage
- fusion de données
- décision spatiale multi-critères

- APPRENTISSAGE ET SYSTEMES AUTO-ADAPTATIFS
 - apprentissage dans les réseaux algorithmique
 - génétique et évolutionniste
 - apprentissage dans les modèles physiques
 - mémoires associatives
 - apprentissage de séquences temporelles

- RECONNAISSANCE DE FORMES ET VISION
 - traitement d'images
 - invariance de formes
 - reconnaissance de caractères et d'écritures manuscrites
 - imagerie médicale

COGNITION ARTIFICIELLE

- modélisation des processus cognitifs
- intelligence artificielle
- systèmes experts
- systèmes hybrides
- intelligence artificielle distribuée, systèmes multiagents
- extraction de connaissance
- réseaux sémantiques
- interfaces homme-machine
- robotique mobile
- robotique autonome et robotique sous-marine

- SIMULATION DE PHENOMENES PHYSIQUES
 - mécanique des fluides, gaz sur réseaux
 - phénomènes de combustion et d'explosion
 - processus de réaction/diffusion
 - étude des milieux désordonnés, verres de spins

- PHENOMENES D'INTERACTION, DE PROPAGATION ET DE CROISSANCE
 - processus d'émergence
 - épidémiologie, développement, immunologie
 - morphogenèse et croissance
 - percolation
 - interaction entre gènes

NEUROSCIENCES

- neurosciences théoriques
- modélisation en neurophysiologie
- modélisation en biologie
- réseaux neuromimétiques
- simulation du fonctionnement de systèmes naturels

- MODELISATION EN PSYCHOLOGIE ET EN SOCIOLOGIE
 - étude de la mémoire et de l'apprentissage
 - apprentissage et reconnaissance en didactique
 - comportements collectifs

- TECHNOLOGIE INFORMATIQUES
 - machines parallèles
 - machines réseaux
 - ASIC neuronaux
 - microcircuits dédiés
 - traitements analogiques
 - procédés optiques

INDUSTRIE ET AUTRES

- identification et conduite de procédés
- commande et contrôle
- sidérurgie, économie, finance, droit, imprimerie, cartographie, téléphonie

Applications privilégiées

- Les traitements non linéaires
- L'approximation de fonctions à valeurs continues
- L'identification de lois non analytiques
- L'identification et le contrôle de procédés
- Le contrôle flou (cf. logique floue)
- L'apprentissage, en particulier dans le domaine de l'apprentissage non supervisé
- l'optimisation dynamique contextuelle

Applications privilégiées

La reconnaissance de formes

- En particulier la reconnaissance de caractères manuscrits où ils sont parmi les meilleurs outils la séparation de sources
- En 1984, les réseaux neuronaux ont apporté la première solution à ce problème

Exemple : Classification acoustique des phénomènes de cavitation

- Contexte de résolution du problème :
 - les hypothèses de statistique classique ne s'appliquent pas.
 - les relations entre les données sont fortement nonlinéaires
 - on ne dispose pas de modèle théorique satisfaisant.
 - on a besoin d'adaptativité parce que de nouvelles données peuvent arriver.
 - il existe un expert capable de traiter le problème, ici une personne ayant appris à reconnaître le type de cavitation à l'oreille.

Classification acoustique des phénomènes de cavitation

• Résultats :

- le taux de réponse correcte atteint 95,4 % sur des signaux non appris par le réseau mais correspondant à des conditions similaires aux signaux appris.
- A titre de comparaison, une personne ayant eu une bonne écoute préalable de ces signaux à atteint 93 % de réponses correctes.
- Méthode : totalement expérimentale
 - plusieurs types de pré-traitement des données ont été essayés et couplés avec des réseaux, puis l'on a choisi le réseau permettant d'obtenir la meilleure généralisation

Exemple : reconnaissance de codes postaux • Principe

- Pour chaque objet postal, on doit
 - soit identifier le code
 - soit indiquer qu'elle ne peut pas l'identifier, et donc faire appel à un opérateur humain
 - ! il est plus onéreux de rectifier une erreur de tri commise par une machine que de faire lire un code postal par un opérateur!
 - le critère de performance utilisé est le suivant :
 - pour un taux d'erreur maximum fixé (par exemple 1 %) sur les codes identifiés, quelle est la fraction du courrier qui devra être traitée par un opérateur ?

Exemple: reconnaissance de codes postaux

- Motivations
 - Intérêt économique
 - Dès 1990 : disponibilité de BdD

Types de données

NSFAECOLE NATIONALE SUPÉRIEURE DE L'ÉLECTRONIQUE ET DE SES

- Nécessité de pré-traitements
 - Segmentation des données
 - détection de contours
 - rehaussement de contraste
 - la *normalisation* (pour que tous les traitements portent sur des chiffres de même taille)
- Une fois les pré-traitements réalisés
 - Le classifieur peut être simple

- Architectures
 - « LeNet » [LeCun,1991]

COLE NATIONALE SUPÉRIEURE DE L'ÉLECTRONIQUE ET DE SES

- Architectures
 - « LeNet » [LeCun,1991]
 - [Knerr,1992]
 - Pré-traitements figés
 - détection de contours
 - normalisation
 - 4 cartes de caractéristiques de 64 éléments
 - les dix classes sont séparées deux à deux
 - 45 classifieurs différents
 - Apprentissage effectué séparément
 - Tous les exemples de l'ensemble d'apprentissage sont linéairement séparables deux à deux $C_2^{10} = \frac{10!}{8! \times 2!} = \frac{10 \times 9}{2}$
 - Chacun des 45 classifieurs est donc en fait constitué d'un seul neurone.

Résultats

	Chiffres Bien classés	Taux de rejet	Exemples mal classés
LeNet	70,9%	28,1%	1%
Knerr	90,3%	8,7%	1%

- Principe
 - Utiliser directement les capteurs pour produire des comportements
 - Approche bottom-up

Véhicules de Braitenberg : évitement d'obstacles

Contrôle par un «vrai» cerveau

Contrôle par un «vrai» cerveau [Potter03]

Réseaux de neurones

Application à la commande

Application à la commande

Cadre

Commande Adaptative

- Hypothèses
 - Système contrôlable et observable
 - Représenté par une fonction de transfert
 - Le système est stable (sinon il faut le stabiliser préalablement)

Identification

- Principe
 - On dispose d'un processus inconnu
 - On veut modéliser le processus par un réseau de neurones

Identification de processus

- Principe
 - faire apprendre un réseau de telle sorte qu'il réagisse comme le système.

Identification de processus

Principe

Méthode

- On échantillone la réponse du processus à différentes commandes de gains faibles
- On constitue ainsi un ensemble d'associations (Commande → Sortie)
- On sépare cet ensemble en deux groupes appelés entraînement et validation
- On optimise le réseau sur entraînement tant que l'erreur baisse sur validation

Structure du réseau?

- La sortie du réseau doit être celle du processus, mais quelles en sont les entrées?
 - X[n] l'entrée au temps n (évident)
 - Entrées précédentes (X[n-1], X[n-2], ...)
 - Sortie précédentes (Y[n-1], Y[n-2], ...)
- Le choix de la structure du réseau est toujours délicat

Exemple

Structure du réseau choisie

- Fonction d'activation linéaire
- Sans seuil
- Combinaison de l'entrée et de la sortie retardée

Échantillonage des réponses indicielles

```
% on génère la consigne (indice)
Consigne = ones(1, fin);
Consigne(1:10) = 0;
% gain allant de 0.01 à 0.5 par pas de 0.05
g = [0.01:0.05:0.5]
for ig = 1:length(g)
      % on génère la sortie en BF
      S = sampleProcessusA(Consigne, g(ig));
      % on génère la base d'apprentissage
      err = zeros(1, 1:fin);
      for i = [debut:fin]
             err(i) = Consigne(i) - S(i-1);
             X(:, i+1-debut) = [g(ig)*err(i) S(i-1)]';
      end
      % assemblage des réponses
      Xt = [Xt X];
      St = [St S(debut:fin)];
```

Apprentissage du réseau

- Initialisation des poids W aléatoirement
- Rétropropagation du gradient
 - Avec décroissance de la constante d'apprentissage
- 10 initialisations aléatoires
 - On garde la meilleure sur l'ensemble de validation

Test

- Échantillonage du processus pour un gain différent (1.0)
- Comparaison entre la sortie du processus avec ce gain et la sortie du réseau avec ce gain
- Erreur = 3.47e-07

Connaissances a priori

- Parfois, on connait le modèle du système, mais pas les grandeurs numériques
- On peut utiliser un réseau de neurone pour découvrir les paramètres du système
- On construit le réseau tel que sa structure est proche de celle de la fonction de transfert

Exemple

 Le processus A de l'exemple précédent est en fait

$$H(z) = \frac{0.1}{1 + 0.9Z^{-1}}$$

- Le réseau modélisait donc bien le processus
- Les poids obtenus : [0.10086 0.89887] (proches des vraies valeurs)

Identification série-parallèle

- Principe
 - On décompose la fonction de transfert
 - H(z)=Y(z)/U(z)=B(z)/A(z)
 - B(z).U(z)=A(z).Y(z)

Identification série/parallèle

Copie d'un régulateur

Commande Adaptative Inverse

- Identification
 - Modélisation directe ou identification
 - Techniques de filtrages adaptatifs
 - Modélisation inverse ou déconvolution
 - mêmes techniques
 - commande de systèmes dynamiques
 - Minimisation des perturbations
 - Modèles directs et inverses

Commande Adaptative Inverse

- Commande Adaptative
 - Les algorithmes de filtrage adaptatifs peuvent être utilisés pour réaliser la commande adaptative de systèmes inconnus éventuellement variant dans le temps
 - Les paramètres du système peuvent être ajustés ou adaptés pour satisfaire l'inconnu ou les variations du système à commander

Commande par modèle inverse

• Commande par modèle direct et inverse.

Apprentissage en 2 temps

Apprentissage en 2 temps

Applications en commande

- Cadre de la commande adaptative
 - systèmes d'antennes adaptatives
 - égalisation de canaux
 - annulation d'interférence
 - analyse spectral
 - synthèse de la parole

Application : Compensation adaptatif du bruit

Application : Compensation adaptatif du bruit

- Utilisation d'un RN
 - Architecture: 1 neurone
 - Apprentissage : Widrow & Hoff

Fonctionnement en prédicteur

Applications en robotique

- Approche classique
 - modèles des systèmes
 - bras manipulateur, tête (modèles géométrique, cinématique, ...)
 - caméra(s) (paramètres intrinsèques)
 - reconstruction 3D de l'objet cible
 - commande du robot

Applications en robotique

- > 80 % des robots industriels sont programmés par un « expert»
- très peu d'interaction avec l'environnement («intelligence»?)
- très peu de progrès en vision robotique

Applications en robotique

- Difficultés
 - Modélisation
 - équations diff. non-linéaires
 - couplées
 - fonction du temps

Exemple: Contrôle visuo-moteur

Exemple : Contrôle visuomoteur

- Limites de la commande par les modèles
 - calibrage difficile
 - imperfections des modèles et capteurs
 - boucle ouverte
 - Absence d'informations de retour sur le positionnement réellement effectué

Utilisation de réseaux de neurones

- Caractéristiques
 - Apprentissage
 - Capacités d'apprentissage de relations complexes nonlinéaires
 - Adaptabilité
 - Comportement robuste face à des changements imprévus des paramètres du système

Contrôle visuo-moteur

- 2 propriétés :
 - regarder ce que fait la main pour corriger son mouvement
 - mémoriser les adaptations pour acquérir une certaine expérience à partir des mouvements effectués

Contrôle visuo-moteur

 Projection des sorties motrices dans l'espace des entrées visuelles.

Conclusion

- Utilisation des RN très vaste
- Intérêt surtout quand
 - Pas « d'expert »
 - Systèmes non-linéaires
 - Systèmes versatiles