Sétima Lista de Exercícios de Análise Real: Funções contínuas

- 1. Seja $f: \mathbb{R} \to \mathbb{R}$ contínua. Mostre que o conjunto $Z_f = \{x \in \mathbb{R} | f(x) = 0\}$ é fechado. Conclua que se $f, g: \mathbb{R} \to \mathbb{R}$ são contínuas, então $C = \{x \in \mathbb{R} | f(x) = g(x)\}$ é um conjunto fechado.
- 2. Sejam $f, g: X \to \mathbb{R}$ contínuas. Demonstre que são contínuas no ponto a as funções $\phi, \psi: X \to \mathbb{R}$, definidas por $\phi(x) = \max\{f(x), g(x)\}$ e $\psi(x) = \min\{f(x), g(x)\}$ para todo $x \in X$.
- 3. Demonstre a proposição a seguir: uma função $f:A\to\mathbb{R}$, definida em um aberto $A\subset\mathbb{R}$, é contínua se, e somente se, para todo $c\in\mathbb{R}$, os conjuntos $E[f< c]=\{x\in A|f(x)< c\}$ e $E[f> c]=\{x\in A|f(x)> c\}$ forem abertos.
- 4. Sejam $f, g: X \to \mathbb{R}$ contínuas. Se $\overline{Y} \subset X$ e f(y) = g(y) para todo $y \in Y$, então $f \upharpoonright \overline{Y} = g \upharpoonright \overline{Y}$. Conclua que se duas funções contínuas $f, g: \mathbb{R} \to \mathbb{R}$ são tais que f(r) = g(r) para todo $r \in \mathbb{Q}$, então f = g.
- 5. Demonstre que $f: \mathbb{R} \to \mathbb{R}$ é contínua se, e somente se, para todo $X \subset \mathbb{R}$, tem-se $f(\overline{X}) \subset \overline{f(X)}$.
- 6. Sejam $f, g: X \to \mathbb{R}$ contínuas no ponto a. Suponha que em cada vizinhança de a, existam pontos x, y tais que f(x) < g(x) e f(y) > g(y). Demonstre que f(a) = g(a).
- 7. Demonstre que uma função $f: X \to \mathbb{R}$ é descontínua no ponto $a \in X$ se, e somente se, existem $\varepsilon > 0$ e uma sequência de pontos $x_n \in X$ tais que $|x_n a| \le 1/n$ e $|f(x_n) f(a)| \ge \varepsilon$ para todo $n \in \mathbb{N}$.
- 8. Seja $f:\mathbb{R}\to\mathbb{R}$ contínua. Demonstre que as afirmações a seguir são equivalentes:
 - (a) $\lim_{x\to\infty} |f(x)| = \lim_{x\to-\infty} |f(x)| = \infty$;
 - (b) Se $|x_n| \to \infty$, então $|f(x_n)| \to \infty$;
 - (c) Se K for compacto, então $f^{-1}(K)$ será compacto.

- 9. Seja $f : \mathbb{R} \to \mathbb{R}$ uma função arbitrária. Para cada $n \in \mathbb{N}$, consideremos o conjunto $C_n = \{a \in \mathbb{R} | \text{ existe } I \ni a \text{ aberto tal que se } x, y \in I, \text{ então } |f(x) f(y)| < 1/n\}$. Demonstre que:
 - (a) Cada C_n é um conjunto aberto;
 - (b) f é contínua em a se, e somente se, $a \in C_n$ para todo $n \in \mathbb{N}$.

Conclua que o conjunto dos pontos de continuidade de qualquer função $f: \mathbb{R} \to \mathbb{R}$ é uma intersecção enumerável de abertos.

- 10. Uma função $f: X \to \mathbb{R}$ se diz localmente constante quando todo ponto de X possui uma vizinhança V tal que f é constante em $V \cap X$. Prove que toda função $f: I \to \mathbb{R}$ localmente constante num intervalo I é constante.
- 11. Diz-se que uma função $f:I\to\mathbb{R}$, definida no intervalo I, tem a propriedade do valor intermediário quando a imagem f(J) de todo intervalo $J\subset I$ é um intervalo. Suponha que f satisfaça tal propriedade. Demonstre que se, para cada $c\in\mathbb{R}$, existe apenas um número finito de pontos $x\in I$ tais que f(x)=c, então f é contínua.
- 12. Seja $f: \mathbb{R} \to \mathbb{R}$ contínua. Se $\lim_{x\to\pm\infty} f(x) = +\infty$, demonstre a existência de um ponto $x_0 \in \mathbb{R}$ no qual f assume seu valor mínimo.
- 13. Classifique os intervalos da reta quanto a homeomorfismos, isto é, faça uma lista de tipos de modo que dois intervalos são homeomorfos se, e somente se, têm o mesmo tipo.
- 14. Prove que não existe uma função contínua $f:[a,b] \to \mathbb{R}$ que assuma cada um dos seus valores $f(x), x \in [a,b]$, exatamente duas vezes.
- 15. Uma função $f: \mathbb{R} \to \mathbb{R}$ se diz periódica quando existe $p \in \mathbb{R}^+$ tal que f(x+p) = f(x) para todo $x \in \mathbb{R}$. Demonstre que toda função contínua periódica é limitada e atinge seus valores máximo e mínimo.
- 16. Demonstre que $f: X \to \mathbb{R}$ é contínua se, e somente se, para cada $\varepsilon > 0$, existir uma cobertura $X \subset \bigcup_{x \in X} I_x$, com $I_x = (x \delta_x, x + \delta_x)$, tais que $y, z \in X \cap I_x \to |f(x) f(y)| < \varepsilon$. Demonstre que f é uniformemente contínua se, e somente se, para cada $\varepsilon > 0$, os intervalos I_x puderem ser escolhidos com o mesmo comprimento.

- 17. Seja $f: \mathbb{R} \to \mathbb{R}$ contínua. Se existirem $\lim_{x \to \pm \infty} f(x)$, prove que f é uniformemente contínua.
- 18. Seja $f:[a,b] \to \mathbb{R}$ contínua. Dado $\varepsilon > 0$, demonstre a existência de pontos $a_i \in [a,b], \ a=a_0 < a_1 < a_2 < \cdots < a_n = b$ tais que, para cada $i=1,2,\ldots,n$, se $x,y \in [a_{i-1},a_i]$, então $|f(x)-f(y)| < \varepsilon$.
- 19. Dada uma função $f: X \to \mathbb{R}$, suponha que para cada $\varepsilon > 0$ se possa obter uma função contínua $g: X \to \mathbb{R}$, tal que $|f(x) g(x)| < \varepsilon$ qualquer que seja $x \in X$. Demonstre que f é contínua.