

## **Learning Objectives**

Describe the structural and functional complexity of biopharmaceuticals

Describe the testing requirements for in process testing, lot release, stability and comparability testing

## **Topics**

Biopharmaceuticals: A Closer Look

**Analytical Characterisation of Biologics** 

Stability Testingal Institute for Bioprocessing Research

Comparability Testing in g

# Biopharmaceuticals Are Complex Molecules...

- Biopharmaceuticals are vastly more complex structurally than traditional medicines
- Hierarchical structural organisation
- Mutations, RNA splicing
- PTMs, glycosylation
- Other process effects
- Multiple mechanism of action
- Heterogeneous batches



Walsh, Gary, ed. *Post-translational modification of protein biopharmaceuticals*. Wiley-VCH, 2009. Image from NIBRT-AbbVie Educational film, https://www.youtube.com/watch?v=fjuF16eQ7iQ

Process impurities and degradation products

# The Structural Features of Biopharmaceuticals Are Not Fixed!

- Many of the physicochemical properties of biopharmaceuticals are subject to change during all steps of manufacturing
- Rigorous control of the process and sensitive testing of drug substance, drug product and raw materials aim to minimise this
- Batches are still a **keterogeneous mix** of structurally related **isoforms** but these must be defined and consistent from batch-to-batch

National Institute for

Where is this heterogeneity coming from?

IRT ©

## **Amino Acid Substitutions**



Image modified from https://neuroendoimmune.files.wordpress.com/2014/03/snp.png Walsh, Gary, ed. *Post-translational modification of protein biopharmaceuticals*. Wiley-VCH, 2009.

## **Glycoforms: Creating Mixtures**

- There is no DNA template for glycans
- Their structure depends on many factors
- The regulation of glycosylation is poorly understood



# Downstream Processing Can Change Protein Structure Too!



**Pyroglutamate** 

Disulfide scrambling

**Oxidation** 

## Formulation and Stability Issues

- As traditional medicines degrade, major concern is loss of efficacy
- As biopharmaceuticals degrade, there can be loss of efficacy and potentially increased safety issues
  - AggregationHydrolysis
  - PrecipitationPhotolysis
  - Fragmentation Deamidation (ASX,GLX)

- Oxidation (MET)
- Disulfide Scrambling
- Deglycosylation (Glycoproteins)

Presence of potentially unsafe degradation products



## Process-Related Impurities Must Also Be Tackled!

Detecting and removing process related impurities represent

another challenge

- Host Cell Proteins
- Host Cell DNA
- Virus
- Residual Protein A



## **Mechanisms of Action:**







- Many mAbs have multiple
   MoA
- Their relative dominance can vary depending on the indication in which they are used!

nstitute for

sing Research

CDC = Complement dependent cytotoxicity

ADCC = Antibody dependent cell mediated cytotoxicity

Hansel, Trevor T., et al. "The safety and side effects of monoclonal antibodies." *Nature reviews Drug discovery* 9.4 (2010): 325-338.

## Many Orthogonal Methods Required...

 Due to the complexity of protein structure and function, it is impossible to determine the safety, efficacy and quality with just one test!



 An extensive panel of biochemical and functional analytical tests is required for a complete picture!

## **Topics**

Biopharmaceuticals: A Closer Look

**Analytical Characterisation of Biologics** 

Stability Testingal Institute for Bioprocessing Research

Comparability Testing in g

## The Importance of Analytics

Products are defined by their material and processes of manufacture, which are controlled by sometimes variable and complex analytical methods

$$M^A + P^A = Pr^A$$

- M = Materials
- P = Process
- Pr = Product
- A = Confidence of Analytical Methods

National Institute for Bioprocessing Research and Training

## What is Bioanalytics?

Bioanalytics is concerned with testing the quality of the product throughout the manufacturing process to ensure its safety and efficacy

## **Bioanalytical Methods are used throughout:**

- Product characterisation
- In-process testing
- Lot release testing
- Stability testing
- Comparability testing and Training



# How Does the Manufacturer Know What Tests to Use?

- Manufacturer is free to use any scientifically valid test for testing of product in their license application
- Information on generally acceptable types of testing:
  - Pharmacopoeias (EP, USP, JP. etc.)
  - FDA Guidance documents
  - ICH Guidance documents
  - Scientific literature, etc. National Institute for
- Also possible to use alternative tests to those prescribed by biological product standards: 21 CFR 610.9/ICH, if justified raining
- Once approved, must continue to use the approved tests for all subsequent batches

# ICH Guidelines for S,E&Q of Pharmaceuticals

The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use



ICH provides Guidelines on technical requirements under 4 Working Groups







Contact Log In



About ICH

Work Products

Meetings

Training

Newsroom



Search Our Site

#### Quality Guidelines / ICH Guidelines / Work Products /

Harmonisation achievements in the Quality area include pivotal milestones such as the conduct of stability studies, defining relevant thresholds for impurities testing and a more flexible approach to pharmaceutical quality based on Good Manufacturing Practice (GMP) risk management.

Zip with all ICH Quality Guidelines in word format





# Characterisation and Quality Control

### **Quality Guidelines**



| Q6A- Q6B | Specifications                                                                                                             |
|----------|----------------------------------------------------------------------------------------------------------------------------|
| Code     | Document Title Previously code                                                                                             |
| ▶ Q6A    | Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances |
| → Q6B    | Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products                           |

## Characterisation

ICH Topic Q 6 B

Characterised products are those whose identity, purity, impurities, potency and quantity have been determined

#### **Structural Characterisation**

- Amino acid sequence
- Post translational modifications
- Glycan content
- Disulphide bridges

### **Physiochemical Characterisation**

- Size/molecular weight
- Extinction coefficient
- Electrophoretic patterns
- Chromatographic patterns
- Isoforms

#### **Functional Characterisation**

- Potency
- Binding properties

# Bioprocessing Rese

#### **Process Related**

- DNA
- Viruses
- Host cell proteins (HCPs)

### <u>Product Related</u>

- Aggregates
- Truncated forms
- Chemically altered forms



20

## **Protein characterization methods**

| Characteristic                          | Methods                                                                                        | Application                                    |
|-----------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------|
| Concentration                           | Protein Assays, ELISA, SPR                                                                     | Protein concentration                          |
| Size                                    | 1D/2D-PAGE                                                                                     | Identity, purity, sample integrity, separation |
|                                         | Size Exclusion Chromatography                                                                  | Identity, purity, separation                   |
| Charge                                  | Ion Exchange Chromatography                                                                    | Identity, purity, separation                   |
|                                         | Iso-Electric Focusing                                                                          | Identity, purity, separation                   |
| Hydrophobicity                          | Hydrophobic Interaction Chromatography                                                         | Identity, purity, separation                   |
|                                         | Reversed Phase-HPLC                                                                            | Identity, purity, separation                   |
| Biological                              | Western blotting, ELISA, SPR                                                                   | Identity, sample integrity                     |
| affinity                                | Affinity Chromatography                                                                        | Identity, purity, separation                   |
| Size:charge                             | Capillary Electrophoresis                                                                      | Identity, purity, separation                   |
| Peptide sequence                        | Mass Spectrometry                                                                              | Identity, sample integrity                     |
| Post-<br>translational<br>modifications | e.g. Glycan analysis (by UPLC or UPLC-MS) Phosphorylation, Oxidation, Acetylation, Methylation | Identity, sample integrity                     |

# **Critical Quality Attributes (CQAs)**

• 'A CQA is a physical, chemical, biological, or microbiological property or characteristic that should be within an appropriate limit, range, or distribution to ensure the desired product quality.' ICH Q8 (R2)

• E.g. molecular weight, potency, charge variants, glycoforms, process and product related impurities

- Any property that affects:
  - Biological Activity
  - PK/PD
  - Immunogenicity
  - Safety





## **Characterisation vs Quality Control**

### Characterisation

- Refers to elucidation of product biological, chemical and physical characteristics
- Occurs during product and process development
- Informs setting of quality specifications for commercial batches
- Also required following process changes

### **QC Testing**

- Testing of:
  - raw materials,
  - buffers/media,
  - product intermediates (in-process, drug substance)
- National finished drug product ongoing stability

  - Bioprocessing Research
- and Trai Confirmation that all of the above meet *pre-defined* specifications and/or proven acceptable ranges as set out in Marketing Authorisation



## **Topics**

Biopharmaceuticals: A Closer Look

Analytical Characterisation of Biologics

Stability Testingal Institute for Bioprocessing Research

Comparability Testing in g



# **Stability Testing**

### **Quality Guidelines**



| Q6A- Q6B Specifications |                                                                                                        |                     |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| Code                    | Document Title                                                                                         | Previously coded    |  |  |  |
| ▶ Q6A                   | Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: | Chemical Substances |  |  |  |
| → Q6B                   | Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products       |                     |  |  |  |



# Stability Testing: Regulations

#### ICH Topic Q 1 A (R2) Stability Testing of new Drug Substances and Products

- Parent guideline for stability testing
- Offers guidance for any new drug
- > Stress testing, batch selection, testing frequency, storage conditions

ICH Topic Q 5 C
Quality of Biotechnological Products:
Stability Testing of Biotechnological/Biological Products

Offers extra guidance for biopharmaceutical products – biopharmaceuticals are very complex, and therefore pose extra challenges

# **Stability Testing**

Key part of QC Program and conducted throughout the product lifecycle

To understand how the **quality** of a DS/DP **changes over time** under the influence of **different environmental conditions**, and to determine degradation pathways

Provides information with regard to DS/DP storage conditions, final formulation/packaging and shelf life. This information is necessary for regulatory approval

tional Institute for

Ensure continuous safety and efficacy for the patient

SGS, "A guide to biologic stability testing" Accessed April 2002 <a href="https://www.sgs.com/en/news/2015/10/a-guide-to-biologic-stability-testing">https://www.sgs.com/en/news/2015/10/a-guide-to-biologic-stability-testing</a>

Blessy, M., et al. (2014) "Development of a forced degradation and stability indicating studies of drugs - a review" Journal of Pharmaceutical Analysis 4(3) pp 159-165

Product must be completely characterised, and CQAs determined before stability studies begin

27

# Stability Testing: Strategies

Will my protein degrade under these conditions??

### Real Time (Long Term)

- DS/DP is stored at recommended storage conditions and monitored until it falls out of specification\*
- Used to establish storage conditions and/or shelf life – the number of days that the product remains stable
- Continues post approval, up to and beyond the expiry proposed by the manufacturer

#### Accelerated/Stressed

- DS/DP is stored at elevated stressful conditions –atypical conditions
- Indicates which environments that product should **not** be exposed to – determines the point and time when the DS/DP falls out of specification\*
- Provides data for future process changes
- Degradation profile
- Risk management

<sup>\*</sup>The characteristics of a biopharmaceutical will change as it ages, but it is considered to be stable as long as these characteristics remain within the manufacturer's specifications

## **Drug Product Stability Protocol Example**

Testing frequency is based on proposed shelf life; < or > 1 year

|                               | Real-time Testing |       | Real-time Testing |            |
|-------------------------------|-------------------|-------|-------------------|------------|
| Timepoints (number of months) | -20°C             | 5°C   | 25°C/60%RH        | 40°C/75%RH |
| 0                             | ABCDE             | ABCDE | ABCDE             | ABCDE      |
| 1                             | ABCDE             | ABCDE | ABCDE             | ABCDE      |
| 2                             | ABCDE             | ABCDE | ABCDE             | ABCDE      |
| 3                             | ABCDE             | ABCDE | ABCDE             | ABCDE      |
| 6                             | ABCDE             | ABCDE | ABCDE             |            |
| 9                             | ABCDE             | ABCDE | ABCDE             |            |
| 12                            | ABCDE             | ABCDE |                   |            |
| 18                            | ABCDE             | ABCDE |                   |            |

A = appearance

B = electrophoretic method

C = HPLC/UPLC method

D = bioassay/immunoassay **\_\_ potency** 

purity/identity

E = bioburden (DS)/sterility (DP)

## **Forced Degradation Studies**

NIBRT ©

- In order to develop and validate suitable stability-indicating analytical methods, we need to "make ghosts"
- This means forcing our biopharmaceutical to degrade under harsh conditions (e.g. exposure to 5-15 freeze/thaw cycles, agitation for 6-36 hours)
- Most sensitive analytical methods can then be picked to be used as stability-indicating



Will my test methods be able to detect my degraded protein?

### Agitation



## Freeze-Thaw Pal Institute for



Both Agitation and Freeze-Thaw promote aggregation that was measured using the following methods:

Advanced Topics in Analytical CMC Studies for Biotech and Biosimilar Products, N. Ritter, 2017

## **Topics**

Biopharmaceuticals: A Closer Look

Analytical Characterisation of Biologics

Stability Testingal Institute for Bioprocessing Research

Comparability Testing in 9



## Comparability

### **Quality Guidelines**



| Q6A- Q6B Specifications |                                                                                    |                                              |  |  |
|-------------------------|------------------------------------------------------------------------------------|----------------------------------------------|--|--|
| Code                    | Document Title                                                                     | Previously coded                             |  |  |
| ▶ Q6A                   | Specifications: Test Procedures and Acceptance Criteria for New Drug Substances    | s and New Drug Products: Chemical Substances |  |  |
| ▶ Q6B                   | Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biolo | ogical Products                              |  |  |

# Changes in CQAs: Drift and Evolution in Biologics

Changes in the biologic can be a result of:

Drift: a result of unknown deviations in the manufacturing process



Evolution: known changes in the manufacturing process (equipment change, 9 scaling, raw materials suppliers, etc.)





Photo: https://www.wuxibiologics.com/scale-out-vs-scale-up-biomanufacturing/

Ramanan, Sundar, and Gustavo Grampp. "Drift, Evolution, and Divergence in Biologics and Biosimilars Manufacturing." *BioDrugs* (2014): 1-10.

## The Goal of ICH Q5E

- The goal of this comparability exercise is to ensure the quality, safety and efficacy of a drug product produced by a changed manufacturing process
- Demonstration of comparability does not necessarily mean that CQAs of pre-change and post-change product are identical.
  - They are highly similar and that existing knowledge is sufficiently predictive to ensure that any differences in CQAs have no adverse impact

## **How Do We Manage Change?**

Gather important information



Select relevant analytical methods

Determine acceptance criteria

- List of CQAs
- Description of product change and rationale for change
- Historical data and product characterisation data

- What might be effects on CQAs?
- What might be effects on inprocess controls?

and Trair

 Which analytical methods are most relevant to detect potential change in corresponding CQA  Based on side by side comparison or statistical comparison

Mélanie Schlegel and Yves Bobinnec, Comparability Protocols for Biotechnological Products; BioProcess International 11(6) June 2013

# **Example of a Comparability Plan**

| Process Change           | Affected CQA               | Impact Assessment                                                                                 | Analytical Method                              | Acceptance Criteria                                |
|--------------------------|----------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|
|                          | Residual HCP               | Scale-up is expected to produce more biomass hence more residual HCP                              | HCP ELISA                                      | ≤ 50ppm                                            |
| Scale-up of cell culture | Glycosylation Profile  N B | 0, ,                                                                                              | Oligosaccharide mapping  stitute for sing Rese |                                                    |
| 10,000L                  | Isoform profile            | Scale up might affect cell line growth parameters possibly generating a different isoform profile | HPLC<br>19                                     | Main peak ≥ 90%<br>Pre-peak < 3%<br>Post-peak < 2% |

## **Comparability Examples**



- Manufacturer wanted to have two sites approved for manufacture of Cetuximab
- There was a major difference observed in human pharmacokinetics between products manufactured at the two sites: 30 % difference in mean trough concentration and 50 % difference in mean peak concentration.
- FDA only approved a single manufacturing site.





EMA Human Medicine European Public Assessment Report For Prolia (Denosumab) (March 2010); EMA website



- Manufacturer wanted to have two sites approved for manufacture of Prolia and two different dosage forms (vial and pre-filled syringe).
- Analytical differences were observed: minor differences in the glycosylation, size and charge profiles, but with no impact on the in-vitro potency assay
- Also no impact was seen in nonclinical PK/PD study in cynomolgus monkeys
- The product received an FDA and EMA approval

FDA BLA Market Approval of Erbitux (Cetuximab): Approval History, Letters, Reviews and Related Documents – Administrative and Correspondence Documents – Recommendation For Approval Action (February 12, 2004)

## **Evolution in Biologics**



## **Topics**

Biopharmaceuticals: A Closer Look

Analytical Characterisation of Biologics

Stability Testingal Institute for Bioprocessing Research

Comparability Testing in g



## **Thank You**

