Calcul de dérivées (TS2)

Exercice 1

Montrer les dérivées suivantes.

1.
$$f(x) = \frac{2x-3}{(2x+1)^2}$$
 $f'(x) = \frac{-4x+14}{(2x+1)^3}$

2.
$$g(x) = \frac{x\sqrt{x}}{2x+1}$$
 $g'(x) = \frac{2x^2+3x}{2\sqrt{x}(2x+1)^2}$.

3.
$$f(x) = \sin^2 x \cos 2x$$
 $f'(x) = 2 \sin x \cos 3x$

4.
$$h(x) = \frac{2x-1}{\sqrt{x-x^2}}$$
 $h''(x) = \frac{6x-3}{4(\sqrt{x-x^2})^5}$

5.
$$k(x) = \frac{1 + \cos 3x}{\cos^3 x}$$
 $k'(x) = \frac{3\sin x(1 - 2\cos x)}{\cos^4 x}$

Exercice 2

Calculer la dérivée f' dans chacun des cas suivants en simplifiant le résultat :

1.
$$f(x) = \frac{-2x+3}{\sqrt{x^3-1}}$$

2.
$$f(x) = \frac{1}{1 + \sqrt{1 - x}}$$

3.
$$f(x) = (x^2 - 1)\sqrt{1 - x}$$

4.
$$f(x) = 5\sin^2(3x - 1)$$

5.
$$f(x) = -\cos 2x + 2\sin^2 x$$

6.
$$f(x) = x(1 - \cos x)^2$$

Exercice 3

Le but de l'exercice est d'appliquer la formule suivante $((f \circ g))'(x) = g'(x) \times f'(g(x))$ Soit la fonction g définie sur \mathbb{R} telle que $g'(x) = \frac{1}{x^2 + 1}$.

- 1. Calculer la dérivée des fonctions $x \mapsto g(\sqrt{x})$ et $x \mapsto g(\tan x)$.
- 2. Exprimer en fonction de g(x) la dérivée des fonctions $x \mapsto \sqrt{g(x)}$ et $x \mapsto \tan(g(x))$.

Exercice 4

Soit la fonction
$$f$$
 définie par $f(x) = \begin{cases} x^3 + 1 & \text{si } \leq 1. \\ 2\cos(x - 1) & \text{si } x > 1. \end{cases}$

Étudier la dérivabilité de f en 1. Interpréter graphiquement le résultat. Calculer f'(x).

Exercice 5

Soit la fonction f définie par $f(x) = \begin{cases} x + 1 + \frac{4x}{x^2 + 1} & \text{si } x < -1. \\ 2x + \sqrt{x + 1} & \text{si } x \ge -1. \end{cases}$

- 1. Étudier la continuité de f en -1.
- 2. Étudier la dérivabilité de f en -1. Interpréter graphiquement le résultat obtenu.
- 3. Étudier la dérivabilité de f sur $]-\infty$; -1[et]-1; $+\infty[$.
- 4. Calculer f'(x) puis établir le tableau de variation de f.

Exercice 6

Les questions sont indépendantes

- 1. Déterminer les abscisses des points de la courbe de la fonction $x \mapsto x^3$ où la tangente parallèle à la droite y = 6x 1.
- 2. Si $\lim_{x\to 2^+} \frac{f(x)-f(2)}{x-2} = -\infty$ alors \mathscr{C}_f admet au point d'abscisse 2 une tangente d'équation \cdots
- 3. Si $f_d'(1) = -3$ et $f_g'(1) = 0$ alors \mathcal{C}_f admet au point d'abscisse $1 \cdots$

Exercice 7

Le plan est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$. Soit une fonction f définie par $f(x) = ax^2 + bx + c$ pour tout $x \in \mathbb{R}$.

- la tangente à \mathscr{C} au point A(1;-2) est paralléle à l'axe des abscisses;
- la tangente à \mathscr{C} au point d'abscisse 0 est paralléle à la droite 2x + y + 3 = 0.

Déterminer les réels a, b et c.