Tutorato 5 - Elettrostatica

Daniele Pani - daniele.pani@edu.unito.it

29 Aprile 2019

Formule Utili

- Legge di Coulomb: $F_e = k \frac{q q_0}{r^2}$, in notazione vettoriale $\vec{F}_e = k \frac{q q_0}{r^2} \frac{\vec{r}}{\|\vec{r}\|}$ con $k = \frac{1}{4\pi\epsilon_0}$
- Campo Elettrico: $\vec{E} = \frac{\vec{F_e}}{q_0}$
- Principio di sovrapposizione: $\vec{E_{tot}} = \Sigma_i \vec{E_i}$ (lo stesso ragionamento vale per la forza elettrostatica)
- \bullet Energia potenziale: $\Delta U_e = q_0 \Delta V$ con il potenziale elettrico $V = k \frac{q}{r}$
- Costante dielettrica nel vuoto: $\epsilon_0 = 8,85 \times 10^{-12} \frac{C^2}{N \cdot m^2}$
- Carica dell'elettrone: $e = -1, 6 \times 10^{-19} C$
- Massa dell'elettrone: $m_e = 9, 1 \times 10^{-31} \ kg$
- Massa del protone: $m_p = 1,67 \times 10^{-27} \ kg$

Esercizi

- Un anello di raggio a ha una densità lineare di carica positiva uniforme, con carica totale Q. Calcolare il campo elettrico e il potenziale lungo l'asse dell'anello, in un punto P posto a distanza x dal centro dell'anello stesso.
- 2. Una bacchetta di lunghezzal = $14.0\,cm$, uniformemente carica, è piegata a forma di semicerchio. Se la bacchetta possiede una carica totale $Q=7.50\mu C$, trovare modulo, direzione e verso del campo elettrico nel centro del semicerchio.
- 3. Un disco di raggio r possiede una densità di carica uniforme σ . Quale è il campo elettrico e il potenziale nel punto P a distanza x dal suo asse? (suggerimento: scomporre il disco in anelli concentrici e sommare i vari contributi).
- 4. Una carica q e' distribuita con densita' superficiale costante σ su una superficie sferica di raggio R. Calcolare il campo e il potenziale nei punti all'interno e all'esterno della superficie.
- 5. Una carica q e' distribuita con densita' spaziale ρ nel volume di una sfera di raggio R. Calcolare il campo e il potenziale nei punti all'interno e all'esterno della superficie.
- 6. Siano date tre cariche elettriche puntiformi $Q_0 = -5 mC$, $Q_1 = +10 mC$ e Q_2 poste rispettivamente nei punti A = (0,3) m, B = (-3,0) m e C = (4,0) m di un piano cartesiano. Determinare:
 - \bullet Il valore di Q_2 per il quale la forza che agisce su Q_0 è diretta lungo l'asse y
 - La forza $\vec{F_A}$ che agisce su Q_0 nel punto A
 - La forza $\vec{F_0}$ che agisce su Q_0 se posta nell'origine O degli assi.

[ESAME]