UCLA Math151A Fall 2021 Lecture 21 2021/11/12

Gaussian Quadrature [continued]

Lemma 1 $\{q_i\}_{i=0}^n$ form a basis for \mathbb{P}^n Lemma 2 $\mathbb{P}^{n-1} \perp q_n$

Theorem
$$x_i : q_n(x_i) = 0$$
 $w_i = \int_{-1}^{1} L_i(x) dx \Rightarrow DOE\left(\sum_i w_i f(x_i)\right) = 2n - 1$

(1) First suppose $f \in \mathbb{P}^{n-1}$

there are n nodes $\{x_i\}_{i=1}^n \Rightarrow \exists P(x)$ to interpolate f(x)

$$P(x) = \sum_{i=1}^{n} f(x_i) L_i(x)$$

Both P(x) and f(x) are degree n-1 polynomials for $\{x_i\}_{i=1}^n$

$$\Rightarrow f(x) = \sum f(x_i)L_i(x)$$
 (uniqueness of L.I.P.)

$$\Rightarrow \int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} w_i f(x_i)$$
 Exact!

Lemma 1 $\{q_i\}_{i=0}^n$ form a basis for \mathbb{P}^n Lemma 2 $\mathbb{P}^{n-1} \perp q_n$

Theorem
$$x_i : q_n(x_i) = 0$$
 $w_i = \int_{-1}^{1} L_i(x) dx \Rightarrow DOE\left(\sum_i w_i f(x_i)\right) = 2n - 1$

- (1) First suppose $f \in \mathbb{P}^{n-1}$ Exact!
- (2) Next assume f is a polynomial of degree $n \leq d \leq 2n-1$

Polynomial Long Division implies that quotient remainder

$$f(x) = Q(x)q_n(x) + R(x),$$

degree: $f:[n,2n-1], q_n:n, Q:[0,n-1], R:[0,n-1]$

$$f(x_i) = Q(x_i)q_n(x_i) + R(x_i) = R(x_i).$$
 (*)

by part (1)
$$\int_{-1}^{1} R(x)dx = \sum_{i=1}^{n} w_i R(x_i). \tag{**}$$

Lemma 1 $\{q_i\}_{i=0}^n$ form a basis for \mathbb{P}^n Lemma 2 $\mathbb{P}^{n-1} \perp q_n$

Theorem
$$x_i : q_n(x_i) = 0$$
 $w_i = \int_{-1}^{1} L_i(x) dx \Rightarrow DOE\left(\sum_i w_i f(x_i)\right) = 2n - 1$

- (1) First suppose $f \in \mathbb{P}^{n-1}$ Exact!
- (2) Next assume f is a polynomial of degree $n \leq d \leq 2n-1$

$$f(x_i) = Q(x_i)q_n(x_i) + R(x_i) = R(x_i).$$
 (*)

$$\int_{-1}^{1} R(x)dx = \sum_{i=1}^{n} w_i R(x_i). \tag{**}$$

$$\int_{-1}^{1} f(x)dx = \int_{-1}^{1} Q(x)q_{n}(x)dx + \int_{-1}^{1} R(x)dx$$
$$= \sum_{i=1}^{n} w_{i}R(x_{i}) = \sum_{i=1}^{n} w_{i}f(x_{i})$$

Theorem
$$x_i : q_n(x_i) = 0$$
 $w_i = \int_{-1}^{1} L_i(x) dx \Rightarrow DOE\left(\sum_i w_i f(x_i)\right) = 2n - 1$

Only question left: how to construct

$$\{q_1, q_2, \ldots, q_n\}$$

How to construct an orthonormal basis for a vector space?

Construct Orthonormal Basis

The **Gram–Schmidt** process is a method for orthonormalizing a set of vectors in an inner product space.

Consider the following set of vectors in \mathbb{R}^2 (with the conventional inner product)

$$S = \left\{ \mathbf{v}_1 = egin{bmatrix} 3 \ 1 \end{bmatrix}, \mathbf{v}_2 = egin{bmatrix} 2 \ 2 \end{bmatrix}
ight\}.$$

Now, perform Gram-Schmidt, to obtain an orthogonal set of vectors:

$$egin{align*} \mathbf{u}_1 &= \mathbf{v}_1 = egin{bmatrix} 3 \ 1 \end{bmatrix} \ \mathbf{u}_2 &= \mathbf{v}_2 - \mathrm{proj}_{\mathbf{u}_1}(\mathbf{v}_2) = egin{bmatrix} 2 \ 2 \end{bmatrix} - \mathrm{proj}_{egin{bmatrix} 3 \ 1 \end{bmatrix}} egin{bmatrix} 2 \ 2 \end{bmatrix} = egin{bmatrix} 2 \ 2 \end{bmatrix} - rac{8}{10} egin{bmatrix} 3 \ 1 \end{bmatrix} = egin{bmatrix} -2/5 \ 6/5 \end{bmatrix}. \end{split}$$

Gram-Schmidt process

- Let $\{x_1, x_2, \ldots, x_n\}$ be linearly independent, this is the input.
- Set $v_1 = x_1$
- For i = 2, ..., n set $v_i = x_i \sum_{j=1}^{i-1} \frac{\langle x_i, v_j \rangle}{\langle v_i, v_i \rangle} v_j$
- For i = 1, ..., n normalize $q_i = \frac{v_i}{\|v_i\|}$ where $\|v_i\| = (\langle v_i, v_i \rangle)^{1/2}$
- Output is $\{q_1, q_2, \dots, q_n\}$ orthonormal.

$$\mathbb{P}^{n} : \{1, x, x^{2}, \dots, x^{n-1}, x^{n}\}$$
$$\langle f, g \rangle = \int_{-1}^{1} f g dx$$

$$P_0(x) = 1 P_1(x) = x - \frac{\langle x, 1 \rangle}{\langle 1, 1 \rangle} 1 = x - \frac{\int_{-1}^{1} x dx}{\int_{-1}^{1} dx} = x$$

$$P_2(x) = x^2 - \frac{\langle x^2, 1 \rangle}{\langle 1, 1 \rangle} 1 - \frac{\langle x^2, x \rangle}{\langle x, x \rangle} x$$

$$=x^{2} - \frac{\int_{-1}^{1} x^{2} dx}{\int_{-1}^{1} dx} - \frac{\int_{-1}^{1} x^{3} dx}{\int_{-1}^{1} x^{2} dx} \qquad P_{3}(x) = x^{3} - \frac{3}{5}x$$

$$=x^2 - \frac{2/3}{2} - 0$$

$$=x^2 - \frac{1}{3}$$

$$P_3(x) = x^3 - \frac{3}{5}x$$

$$P_4(x) = x^4 - \frac{6}{7}x^2 + \frac{3}{35}$$

Legendre polynomials

Finding the roots: Fixed-point?

Bisection?

Newton?

JUST LOOK IT UP!

n	Roots $r_{n,i}$
2	0.5773502692
	-0.5773502692
3	0.7745966692
	0.0000000000
	-0.7745966692
4	0.8611363116
	0.3399810436
	-0.3399810436
	-0.8611363116
5	0.9061798459
	0.5384693101
	0.0000000000
	-0.5384693101
	-0.9061798459

There is one last thing remaining...

Recall this lengthy version

Theorem 20.1. [Gaussian Quadrature Theorem]

Let $\{x_i\}_{i=1}^n$ be the *n* roots of n degree polynomial $q_n(x)$, where q_n is the last in the set $\{q_i\}_{i=0}^n$.

where q_n is the last in the set $\{q_i\}_{i=0}$

We'll assume they are real and distinct.

Let one last thing remaining...

$$w_i = \int_{-1}^{1} \prod_{j=1, j \neq i}^{n} \frac{x - x_j}{x_i - x_j} dx, \qquad i = 1, 2, \dots, n,$$

where the integrand equals to $L_i(x)$ from Lagnraigan interpolation polynomial. Then

$$\sum_{i=1}^{n} w_i f(x_i) \quad \text{is exact for any } f \in \mathbb{P}^{2n-1}. \quad \Box$$

Theorem 21.1.

Let $\{\Phi_1, \Phi_2, \dots, \Phi_n\}$ be a set of orthogonal polynomials on [a, b], and let each Φ_k has degree k.

Then each Φ_k has precisely k real roots which are simple

Proof: not required/covered in 151A.

Example of using Gaussian Quadrature

Approximate $\int_{-1}^{1} e^x \cos x \, dx$ using Gaussian quadrature with n = 3.

		$w_i = \int_{-1}^{1} \prod_{j=1, j \neq i}^{n} \frac{x - x_j}{x_i - x_j} dx, \qquad i = 1, 2, \dots, n,$
n	Roots $r_{n,i}$	J_{-1} $x_i - x_j$
2	0.5773502692	1.000000000
	-0.5773502692	1.000000000000000000000000000000000000
3	0.7745966692	$0.555555556 0.\overline{5}e^{0.774596692}\cos 0.774596692$
	0.0000000000	0.888888889
	-0.7745966692	$\frac{0.888888889}{0.555555556} + 0.8 \cos 0$
4	0.8611363116	$0.3478548451 + 0.\overline{5}e^{-0.774596692}\cos(-0.774596692)$
	0.3399810436	0.6521451549
	-0.3399810436	0.6521451549 = 1.9333904
	-0.8611363116	0.3478548451
5	0.9061798459	1
	0.5384693101	true value of the integral is 1.9334214
	0.0000000000	0.5688888889
	-0.5384693101	the absolute error is less than 3.2×10^{-5}
	-0.9061798459	U.230920883U