Common Probability Distributions, Means, Variances, and Moment-Generating **Functions**

Table 1 Discrete Distributions

Distribution	Probability Function	Mean	Variance	Moment- Generating Function	
Binomial	$p(y) = \binom{n}{y} p^{y} (1-p)^{n-y};$	np	np(1-p)	$[pe^t + (1-p)]^n$	
	$y=0,1,\ldots,n$				
Geometric	$p(y) = p(1 - p)^{y-1};$ y = 1, 2,	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$	
Hypergeometric	$p(y) = \frac{\binom{r}{y} \binom{N-r}{n-y}}{\binom{N}{n}};$	$\frac{nr}{N}$	$n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$	does not exist in closed form	
	$y = 0, 1,, n \text{ if } n \le r,$ y = 0, 1,, r if n > r				
Poisson	$p(y) = \frac{\lambda^y e^{-\lambda}}{y!};$	λ	λ	$\exp[\lambda(e^t-1)]$	
	$y=0,1,2,\ldots$				
Negative binomial	$p(y) = {y-1 \choose r-1} p^r (1-p)^{y-r};$ y = r, r+1,	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$	

Table 2 Continuous Distributions

Distribution	Probability Function	Mean	Variance	Moment- Generating Function
Uniform	$f(y) = \frac{1}{\theta_2 - \theta_1}; \theta_1 \le y \le \theta_2$	$\frac{\theta_1 + \theta_2}{2}$	$\frac{(\theta_2 - \theta_1)^2}{12}$	$\frac{e^{t\theta_2} - e^{t\theta_1}}{t(\theta_2 - \theta_1)}$
Normal	$f(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\left(\frac{1}{2\sigma^2}\right)(y-\mu)^2\right]$ $-\infty < y < +\infty$	μ	σ^2	$\exp\left(\mu t + \frac{t^2 \sigma^2}{2}\right)$
Exponential	$f(y) = \frac{1}{\beta} e^{-y/\beta}; \beta > 0$ $0 < y < \infty$	β	$oldsymbol{eta}^2$	$(1-\beta t)^{-1}$
Gamma	$f(y) = \left[\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right] y^{\alpha - 1} e^{-y/\beta};$ $0 < y < \infty$	αβ	$lphaeta^2$	$(1-\beta t)^{-\alpha}$
Chi-square	$f(y) = \frac{(y)^{(\nu/2)-1}e^{-y/2}}{2^{\nu/2}\Gamma(\nu/2)};$ $y > 0$	ν	2v	$(1-2t)^{-\nu/2}$
Beta	$f(y) = \left[\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\right] y^{\alpha - 1} (1 - y)^{\beta - 1};$ $0 < y < 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	does not exist in closed form

"runall" --- 2007/10/15 --- 13:48 --- page 592 --- #2

592 Tables

TABLE A: Normal curve tail probabilities. Standard normal probability in right-hand tail (for negative values of *z*, probabilities are found by symmetry).

	Second Decimal Place of z									
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0 0.1 0.2 0.3 0.4	.5000 .4602 .4207 .3821 .3446	.4960 .4562 .4168 .3783 .3409	.4920 .4522 .4129 .3745 .3372	.4880 .4483 .4090 .3707 .3336	.4840 .4443 .4052 .3669 .3300	.4801 .4404 .4013 .3632 .3264	.4761 .4364 .3974 .3594 .3228	.4721 .4325 .3936 .3557 .3192	.4681 .4286 .3897 .3520 .3156	.4641 .4247 .3859 .3483 .3121
0.5 0.6 0.7 0.8 0.9	.3085 .2743 .2420 .2119 .1841	.3050 .2709 .2389 .2090 .1814	.3015 .2676 .2358 .2061 .1788	.2981 .2643 .2327 .2033 .1762	.2946 .2611 .2296 .2005 .1736	.2912 .2578 .2266 .1977 .1711	.2877 .2546 .2236 .1949 .1685	.2843 .2514 .2206 .1922 .1660	.2810 .2483 .2177 .1894 .1635	.2776 .2451 .2148 .1867 .1611
1.0 1.1 1.2 1.3 1.4	.1587 .1357 .1151 .0968 .0808	.1562 .1335 .1131 .0951 .0793	.1539 .1314 .1112 .0934 .0778	.1515 .1292 .1093 .0918	.1492 .1271 .1075 .0901 .0749	.1469 .1251 .1056 .0885 .0735	.1446 .1230 .1038 .0869 .0722	.1423 .1210 .1020 .0853 .0708	.1401 .1190 .1003 .0838 .0694	.1379 .1170 .0985 .0823
1.5 1.6 1.7 1.8 1.9	.0668 .0548 .0446 .0359 .0287	.0655 .0537 .0436 .0352 .0281	.0643 .0526 .0427 .0344 .0274	.0630 .0516 .0418 .0336 .0268	.0618 .0505 .0409 .0329 .0262	.0606 .0495 .0401 .0322 .0256	.0594 .0485 .0392 .0314 .0250	.0582 .0475 .0384 .0307 .0244	.0571 .0465 .0375 .0301 .0239	.0559 .0455 .0367 .0294 .0233
2.0 2.1 2.2 2.3 2.4	.0228 .0179 .0139 .0107 .0082	.0222 .0174 .0136 .0104 .0080	.0217 .0170 .0132 .0102 .0078	.0212 .0166 .0129 .0099 .0075	.0207 .0162 .0125 .0096 .0073	.0202 .0158 .0122 .0094 .0071	.0197 .0154 .0119 .0091 .0069	.0192 .0150 .0116 .0089 .0068	.0188 .0146 .0113 .0087 .0066	.0183 .0143 .0110 .0084 .0064
2.5 2.6 2.7 2.8 2.9	.0062 .0047 .0035 .0026	.0060 .0045 .0034 .0025 .0018	.0059 .0044 .0033 .0024 .0017	.0057 .0043 .0032 .0023 .0017	.0055 .0041 .0031 .0023 .0016	.0054 .0040 .0030 .0022 .0016	.0052 .0039 .0029 .0021 .0015	.0051 .0038 .0028 .0021 .0015	.0049 .0037 .0027 .0020 .0014	.0048 .0036 .0026 .0019
3.0 3.5 4.0 4.5 5.0	.00135 .000233 .0000317 .00000340 .000000287									

Source: R. E. Walpole, Introduction to Statistics (New York: Macmillan, 1968).

