- □如何找出两个整数的线性组合以使之等于其最大公约数呢?
 - **▶方法1**: 使用欧几里得算法做反向处理, 获得线性组合的s和t值. 该方法因此需要将欧几里得算法的步骤正反各走一遍.

- □例: 把gcd(252,198) = 18表示为252,198的线性组合
- □解:首先用欧几里得算法可得gcd(252,198) = 18
 - >252 = 1*198 + 54
 - **►** 198 = 3*54 + 36
 - > 54 = 1*36 + 18
 - → 36 = 2*18

根据倒数第二行,可以得到18=54-1*36,这其中36又可以由倒数第三行得到36=198-3*54.代入就可以得到18=54-1*(198-3*54)=4*54-1*198,这其中54又可以由第一行得到54=252-1*198.代入就可以得到18=4*(252-1*198)-1*198=4*252-5*198,从而得解.

- □如何找出两个整数的线性组合以使之等于其最大公约数呢?
 - ▶方法1: 使用欧几里得算法做反向处理, 获得线性组合的s和t值. 该方法因此需要将欧几里得算法的步骤正反各走一遍.
 - ightharpoonup方法2(扩展欧几里得算法): 设置 s_0 =1, s_1 =0, t_0 =0, t_1 =1. 然后令

$$s_{j} = s_{j-2} - q_{j-1}s_{j-1}$$

$$t_{j} = t_{j-2} - q_{j-1}t_{j-1}$$

其中j = 2,3,...,n. q_j 表示欧几里得算法中做除法时的商. 最终求得 s_n 和 t_n . 因此 $\gcd(a,b) = s_n a + t_n b$. 该方法只需要经历一遍欧几里得算法的步骤.

除数 被除数 商 余数 $r_0 = r_1 q_1 + r_2 \qquad 0 \le r_2 < r_1, \\ r_1 = r_2 q_2 + r_3 \qquad 0 \le r_3 < r_2, \\ \vdots \\ r_{n-2} = r_{n-1} q_{n-1} + r_n \qquad 0 \le r_n < r_{n-1}, \\ r_{n-1} = r_n q_n$

- □例: 使用扩展欧几里得算法, 把gcd(252,198) = 18表示为252,198的线性组合
- □解:首先用欧几里得算法可得gcd(252,198) = 18

$$>$$
 252 = 1*198 + 54

其中 q_1 =1, q_2 =3, q_3 =1, q_4 =2. s_0 =1, s_1 =0, t_0 =0, t_1 =1. 那么根据 $s_j=s_{j-2}-q_{j-1}s_{j-1}$ 和 $t_j=t_{j-2}-q_{j-1}t_{j-1}$ 分别计算 s_2 =1-1*0=1, t_2 =0-1*1=-1

$$s_3 = 0-3*1=-3,$$
 $t_3 = 1-3*(-1)=4$

$$s_4 = 1-1*(-3)=4,$$
 $t_4 = -1-1*4=-5$

因此gcd(252,198) =4*252-5*198

- \Box 引理2: 如果a,b,c为正整数, 使得gcd(a,b) = 1, 且a|bc, 则有a|c.
- □证明:
 - ightharpoonup由于gcd(a,b) = 1,根据贝祖定理知有整数s和t,使得sa + tb = 1.
 - ightharpoonup在等式两边乘以c, 可得sac + tbc = c.
 - ▶根据定理1(如果a|b, 则对所有的整数c有a|bc), 已有a|bc, 则a|tbc成立.
 - ightharpoonup因为a|sac(这是sac除以a-定没有余数), a|tbc, 由定理1[如果a|b,a|c, 则有a|(b+c)], 则有a|(sac+tbc).
 - ▶因为sac + tbc = c, 所以可得a|c, 得证.

- \Box 引理3: 如果p是素数, 且 $p|a_1a_2\cdots a_n$, 那么对于某个i, $p|a_i$ 成立.
- □备注:证明此处省略, 提示可以数学归纳法.
- □定理7: 令m为正整数, a,b,c为整数. 如果 $ac \equiv bc \pmod{m}$, gcd(c,m) = 1,则 $a \equiv b \pmod{m}$.
- □证明:
 - ▶因为 $ac \equiv bc \pmod{m}$, 则有m|ac bc 整理为m|c(a b).
 - ▶根据引理2(gcd(a, b) = 1, 且a|bc, 则有a|c), 因为gcd(c, m) = 1, 所以 m|a b.
 - ▶从而, $a \equiv b \pmod{m}$.

- □定理:整数a和b互素的充分必要条件是存在整数x和y使得xa + yb = 1
- □证明略.

【基础知识:如果a|b,且b不为0,那a|a| <= |b|】

- □例: 如果a|c,b|c, 且a和b互素, 那么证明ab|c
- □证:
 - ▶根据上一个定理, a和b互素, 那么存在整数x和y使得xa + yb = 1.
 - ▶在等式两边同乘以c, 得到cxa + cyb = c.
 - ightharpoonup又由a|xa(根据整除的定义可得该结果), b|c, 那么ab|cxa.
 - 这是因为a|xa, 那么xa=xa. b|c, 那么c=bt, 其中t为整数. 因此cxa=xt*ab. 即ab|cxa.
 - ▶类似地, a|c, b|yb, 那么ab|cyb.
 - ▶于是ab|cxa + cyb.
 - \rightarrow 由于xa + yb = 1, 所以ab|c, 得证.

第1.3节 素数和最大公约数小结

- □素数, 大于1且恰只有1和它自身两个正因子的整数
- □合数, 大于1又不是素数的整数
- □最大公约数gcd(a,b),能整除a和b的最大整数
- □互素,满足gcd(a,b) = 1的整数a和b
- □最小公倍数lcm(a,b),能被a和b整除的最小正整数
- □欧几里得算法求最大公约数
- □贝祖系数, sa + tb = gcd(a, b)成立的整数sat, 欧几里得算法反向处理获得, 或者扩展欧几里得算法.