Označme horizontálně polarizovaný foton jako 0 a vertikálně polarizovaný foton jako 1.

Nejprve prodiskutujme tuto úlohu pro hodnoty $n \in \{2,3\}$. Pro n=2 je jediná možná sekvence fotonů, kdy jev nastane, je 11, a pro n=3 je tato sekvence 011. To se nám hodí, protože je z toho vidět, že pro sekvenci fotonů o n>3 musí nutně platit, že sekvence posledních tří fotonů je 011. Tudíž nám stačí jen získat způsob, jak určit pravděpodobnost, že po tom, co uvidí n-3 fotonů, nezahlédne dva vertikálně polarizované fotony za sebou.

Pro určení tohoto vzorce vůči k si nejdříve musíme uvědomit, že po horizontálně polarizovaném fotonu může následovat jakýkoli foton, kdežto po vertikálně polarizovaném fotonu může následovat jen horizontálně polarizovaný foton. Níže je schéma pro přehlednost:

Pak určíme funkční vztah posloupnosti a_k , určující celkový počet případů, kdy po k fotonech neskončí, posloupnosti h_k , určující počet případů, kdy posloupnost končí horizontálně polarizovaným fotonem, a posloupnosti v_k , určující počet případů, kdy posloupnost končí vertikálně polarizovaným fotonem:

$$a_k = h_k + v_k$$
$$h_k = h_{k-1} + v_{k-1}$$
$$v_k = h_{k-1}$$

Po dosazení v_{k-1} do vztahu pro h_k , získáme rekurentní vztah jak pro h_k , tak pro v_k :

$$h_k = h_{k-1} + h_{k-2}$$
$$v_k = v_{k-1} + v_{k-2}$$

Musíme však nejprve určit výchozí hodnoty těchto posloupností. Zřejmě platí $h_1 = 1$ a $v_1 = 1$, protože jsme teprve v první vrstvě rozhodovacího stromu a nemůže dojít k tomu, že by skončil po jednom fotonu. Pak víme, že $v_2 = h_1 = 1$ a $h_2 = h_1 + v_1 = 1 + 1 = 2$.

Tyto dvě posloupnosti jsou nápadně podobné Fibonacciho posloupnosti. Obě mají stejný funkční vztah jako Fibonacciho posloupnost, a taky $v_1 = F_1$, $v_2 = F_2$, $h_1 = F_2$ a $h_2 = F_3$. Z toho vyplývá, že je můžeme vyjádřit pomocí prvků Fibonacciho posloupnosti:

$$v_k = F_k$$

$$h_k = F_k + F_{k-1} = F_{k+1}$$

Teď jsme schopni elegantně vyjádřit hodnotu a_k :

$$a_k = F_{k+1} + F_k = F_{k+2}$$

Když už máme všechno potřebné, vyjádříme konečně pravděpodobnost toho, že po n fotonech uvidí dva vertikálně polarizované fotony za sebou. Protože pravděpodobnost, že sekvence fotonů o velikosti 3 bude 011, je $\frac{1}{8}$ a pravděpodobnost, že v sekvenci fotonů o velikosti n-3 nebudou žádné dva vertikálně polarizované fotony za sebou, je $\frac{a_{n-3}}{2^{n-3}}$, hledaná pravděpodobnost bude:

$$\frac{a_{n-3}}{2^{n-3}} \cdot \frac{1}{8} = \frac{F_{n-3+2}}{2^n} = \frac{F_{n-1}}{2^n}$$

Můžeme si všimnout, že tento vztah platí i pro $n \in \{1, 2, 3\}$, a to přestože jsme pracovali s podmínkou n > 3. Proto tento vzorec platí pro všechna $n \in \mathbb{N}$.

Q. E. D.