Assignment 8

Rushi Shah

April 4, 2018

Problem 1

Let f be a real-valued function defined as $f(x) = x^2$ on $Dom(f) = \mathbb{R}$, and let $\varepsilon > 0$ be given. Find a δ so that $|x - 1| \le \delta$ implies $|f(x) - 1| \le \varepsilon$.

We want to show

$$|f(x) - 1| \le \varepsilon$$

$$|x^2 - 1| \le \varepsilon$$

$$|(x+1)(x-1)| \le \varepsilon$$

$$|(x-1+2))(x-1)| \le \varepsilon$$

$$|x-1+2||x-1| \le \varepsilon$$

$$(|x-1|+|2|)|x-1| \le \varepsilon$$

$$(\delta+2)\delta \le \varepsilon$$

$$\delta^2 + 2\delta \le \varepsilon$$

We can solve $\delta^2 + 2\delta \le \varepsilon$ to get an equation for δ in terms of ε . Take $\delta = \sqrt{\varepsilon + 1} - 1$.

Problem 2

Prove that the real-valued function f(x) = 1/x defined on $Dom(f) = [1, \infty)$ is uniformly continuous under the usual Euclidean metric $\rho(x, y) = |x - y|$ on \mathbb{R} .

To show uniform continuity we would like to show that given any $\varepsilon > 0$, we can select a δ independent of x such that $\rho(x,y) \leq \delta \to \rho(f(x),f(y)) \leq \varepsilon$. So consider some $\varepsilon > 0$, and x,y such that $|x-y| \leq \delta$.

$$\begin{split} \rho(f(x),f(y)) &\leq \varepsilon \\ |f(x)-f(y)| &\leq \varepsilon \\ |1/x-1/y| &\leq \varepsilon \\ |\frac{y-x}{xy}| &\leq \varepsilon \\ \frac{|y-x|}{|xy|} &\leq \varepsilon \\ |y-x| &\leq \varepsilon \cdot |x| \cdot |y| \\ \delta &\leq \varepsilon \cdot x \cdot y \\ \delta &\leq \varepsilon \leq \varepsilon \cdot x \cdot y \end{split}$$

Where we know that $\varepsilon \leq \varepsilon \cdot x \cdot y$ since $x, y \in [1, \infty)$. Thus we can select $\delta \leq \varepsilon$ independent of x to satisfy uniform continuity. For example, we can always select $\delta = \varepsilon/2$.

Problem 3

Let (X, σ) be a metric space and x_0 a point in X. Prove that the function $f: X \to \mathbb{R}$ defined as $f(x) = \sigma(x, x_0)$ is continuous under the usual Euclidean metric $\rho(x, y) = |x - y|$ on \mathbb{R} .

To show continuity we would like to show that given any $\varepsilon > 0$, we can select a δ such that $\forall a, b : \sigma(a, b) \le 0$ $\delta \to |f(a) - f(b)| \le \varepsilon$

We can use the triangle inequality of σ to note that

$$|f(a) - f(b)| \le \varepsilon$$

$$|\sigma(a, x_0) - \sigma(b, x_0)| \le \varepsilon$$

$$|\sigma(a, b)| \le |\sigma(a, x_0) - \sigma(b, x_0)| \le \varepsilon$$

$$\delta \le \varepsilon$$

Thus by taking $\delta \leq \varepsilon$, for example $\delta = \varepsilon/2$, we can satisfy the criteria for continuity.

Problem 4

Let (X, ρ_X) and (Y, ρ_Y) be two metric spaces, and $f: X \to Y$ a function with domain Dom(f) = X and range Ran(f) = Y. Prove that f is continuous if and only if $f^{-1}[\tilde{Y}]$ (the preimage of \tilde{Y}) is open for every open set Y in Y.

If f is continuous, then for every open set $\tilde{Y} \in Y$ we know $f^{-1}[\tilde{Y}]$ is open. Since f is continuous, we know that for any $\varepsilon > 0$, if $f(y) \in B_{\varepsilon}(f(x))$ then there exists some δ such that $y \in B_{\delta}(x)$. Since \tilde{Y} is an open set in Y, we know that for any $f(x) \in \tilde{Y}$, there is some $\varepsilon > 0$ such that $B_{\varepsilon}(f(x)) \subseteq \tilde{Y}$. Thus for any $f(x) \in \tilde{Y}$, we can take the corresponding ε and plug it into the def'n of continuous to see that there exists some δ such that $B_{\delta}(x) \subseteq X$. This implies that every $x \in X$ has an open ball of some positive radius that is a subset of X, which means that $f^{-1}[\tilde{Y}]$ is open.

If for every open set $\tilde{Y} \in Y$ we know that $f^{-1}[\tilde{Y}]$ is open, then f must be continuous.

We would like to show that for any $\varepsilon > 0$, there exists some δ such that $\rho_X(x,y) < \delta$ implies $\rho_Y(f(x),f(y)) < \delta$ ε . Since \tilde{Y} is open, we know that for any $f(x) \in \tilde{Y}$ there exists some $\varepsilon > 0$ such that $B_{\varepsilon}(f(x)) \subseteq (\tilde{Y})$. Since $f^{-1}[\tilde{Y}]$ is also open, we know that for any x there exists some $\delta > 0$ such that $B_{\delta}(x) \subseteq X$. So for any $\varepsilon > 0$, we can select $\tilde{Y} = B_{\varepsilon}(f(x))$, which gives us the corresponding $f^{-1}[\tilde{Y}]$ with the ball $B_{\delta}(x)$. The connection between this x, δ , and ε satisfies the criteria for f to be continuous.

Problem 5

Let f be the function on [0,1] given by

$$f(x) = \begin{cases} 1 & \text{if } x \neq \frac{1}{2} \\ 2 & \text{if } x = \frac{1}{2} \end{cases}$$

Prove that f is Riemann integrable and compute $\int_0^1 f(x)dx$. Hint: for each $\varepsilon > 0$, find a partition P so that $U_P(f) - L_P(f) \leq \varepsilon$.

Given any ε , we can select the partition $P = \{0, \frac{1}{2} - \frac{\varepsilon}{2}, \frac{1}{2} + \frac{\varepsilon}{2}, 1\}$. Thus

$$U_P(f) = 1\left(\frac{1}{2} - \frac{\varepsilon}{2} - 0\right) + 2\left(\frac{1}{2} + \frac{\varepsilon}{2} - \left(\frac{1}{2} - \frac{\varepsilon}{2}\right)\right) + 1\left(1 - \left(\frac{1}{2} + \frac{\varepsilon}{2}\right)\right)$$
$$= 1 + \varepsilon$$

$$L_P(f) = 1\left(\frac{1}{2} - \frac{\varepsilon}{2} - 0\right) + 1\left(\frac{1}{2} + \frac{\varepsilon}{2} - \left(\frac{1}{2} - \frac{\varepsilon}{2}\right)\right) + 1\left(1 - \left(\frac{1}{2} + \frac{\varepsilon}{2}\right)\right)$$

So, $U_P(f) - L_P(f) = 1 + \varepsilon - 1 = \varepsilon$, which by the Riemann integrability test, shows that f is integrable. The value of $\int_0^1 f(x)dx = \sup_P [L_P(f)] = 1$.