(1)

Bilgisayorli Grafik i Olusturulan veya toplanan verilerin oligisayan teknologiileri Vasitesiyla girinteli sekilde sunuknavini sağlayan bilim dalıdır.

Grafik Pipeline islemi: 3 azamalidir.

1) Uygulama asaması

*Bu asomada matematiksel veya veriye bağlı îslemler CPU szerinde gerçekleştirilir.

2) Geometri Agamasi

* Ne tor modellene yapılacapının artaya konulaluğu aşamıdır.

3) Rosterizaryon Asamasi

* Ekron Kartindaki renk degerlerihin ayorlanmasıdır.

30 model ight obstandocak Asomala

- 1) Materialist model
- 2) Birlestirme
- 3) Veri Ekleme
- 4) Isik Islemteri
- 5) Pozisyon -

(1.1

Cudo = GPU iqin NVIDIAIAM sundugu C programloma dili sterinde ettenti olarat kullanma imtan soplayan blir mimari ve tetnologidir.

Voxel = Bir pikselin 3 boyutlu korriligidir-

CPU = Bilgisagordaki lislemieri yunten ve sonuclar genetli yerlere grinderen elemandir.

GPU = Grafik isleme unitesidir. Grafik yoratımı için kullanlar aygıttır.

Stream = Verlain keyagaina denir.

* Egriler *

* 3 sekulde gosteville.

1) Kapali form:	2) AGIK form		3) Porometrik	Form
f(x14)=0 , f(x14,2)=0	y=f(x)	2 = f(x14)	x = rsind	$x = x(\theta)$
$y-x=0$ $x^2+2x-2=0$	y=x	$y = x^2 + 2x + 1$	y=rcoso	y=y(0)
			X2+y2	= 12

* Egri Modelleme Johntemleri *

- 1- Hermit Egrisi
- 2-Bezier Egrisi
- 3- Cordinal Spline Egilii
- 4- Kochonek Bertel Spline Esrist
- 5-8-Spline Egrisi
- 6-Rayonel Japilor

* Egri daeliller *

- 1) modernatiksel ifodesi olombor (Dziklem takımı Göt)
- 2) maternatiksel ifedesi olmayorlar (Ayrık Datalor Lullar)

43D Scanner

400 Digital

Yolgerek

- 3) iki yüzey karisimi egyidir.
- 4) Başlagıq ve bitis nottalorında bazı porametreler kullanlır
- 5) Bit norta ve a naktaoliki agrisellik deperi verllerek agrille dagert heraplandbiller.
- 6) Egihla delkkmi yerhe zasfi vellerek egiri modellenebillir.
- 7) Parga parga modellenebillir.

(1)

1) Hermit Egrisi

* 3. dereceden bir equidir.

* Kubik egrileridir.

Boyutten bopinsizer.

4 Hem 20 hem 30 model enebiller.

* albicid > billinmeyen

$$a+b = p(1) - p'(0) - p(0)$$

$$3a+2b=p'(1)-p'(0)$$

Genel formu :

p(u) = (2u3-3u2+1).(p(0)) + (-2u3+3u2)(p(4)) + (u3-2u2+u)...p(0) + (u3-u2)...p(4)

2) Bezier Egrisi

* Jaklasım egrisidir.

* Baslongia uz bitti noktasinda egri gecrer.

of Turavlenebles egridic.

* Balgesel kontrol joktur.

a Hermit egrisine give daha yumuaktur.

$$P(u) = \sum_{i=0}^{n} P_i B_{i,n}(u)$$

$$C\left(\begin{array}{c} 0 \\ 1 \end{array} \right) := \frac{n!}{(n-1)!!} \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$$

n=2 alur. 3 ise * Kontrol noktasi

 $P(u) = P_0 * (1-u)^2 + P_1 * 2 * u (1-u) + P_2 * u^2$

* 4 Kontrol novetasi var ise; n=3 P(u)=P0*(1-u)3+P1*3*11*(1-u)2+P2*3*12*(1-u)+P3*13

hagi nottador. Kesilirse Kesilsin Fonkslyon Singletion = Bezier fontsiyonu deferieri toplomi 1 / dir.

3 Costelfor Algaritmos

Egriff alt porcalora bolerek cittles tetrified tellenment amoralor.

liferne tekran Bak 1,

(1-v)A + UB= 0.5A + 0.5(B)= $\frac{1}{2}A + \frac{1}{2}B$ 0=0,15 0=0,15 0=0,5 0=0,7

* Bezler He ayni open Gretin.

Bezier deki faktoriyel yok. Matemotiksel jiki azdır

* Recursif galisir. Highour.

3) Cordinal Spline equier

* Porço porça modellemeye salip egrilerell.

*4 kontrol noktarino gire califir.

#3. dereceden kubik epallerdin

*Egn Czerndeki kontrol iki sekilde soplair

Hy Kontrol notte pozisyonlori depistivilerek

4 Gerline katsayısı depiletirilerek

Guel formy

$$P(u) = P_{K-1} \left(-5u^3 + 2su^2 - su \right) + P_K \left[(2-s)u^2 + (s-3)u^2 + 1 \right]$$

$$+ P_{K+1} \left[(s-2)u^3 - (3-2s)u^2 + su \right] + P_{K+2} \left(su^3 - su^2 \right)$$

$$S = (1-t)/2$$

E=Gerline Latsogusi-

4) Kochonek-Beitel Spline Egiller

* Cordinal Spline egrishe ilane 2 parametro ile elde edilen parametredir.

Ly Süreklille

4 Bias

* Arabulma ve jaklasım yüzeyleri reklinde modellenebilir. (interpolation)

5) B-Spline Egrisi

* Parque parque modellemeye solub egrillerdir.

& Bälgesel kontrol vordir.

* Soper egri olorak adlandirilir.

* uniform veya notation (NURBS) Ly B-sprine

* esit oraklı veya tesit oraklı olmayan

* esnek depil veya y esnek

Hem yaklasin hem de interpolation egist ile modellerebili-.

6) Rayonel Japilor

of Hontrol notatalorno give quisir. # Egit, mustey us last modellemede kullanden kontrol nobtelarinin darkleme x tig 100 (dove ager) ne kador atki ettercept depart a no ketanin opirlidisidir.

* Streklille sorti *

* Parqui parqui modellermis egrillerth analistade kullantlan ifadellerdir.

Cosorti = Birinci egirinin bittis novotasi ikinci egirinin basilayan novotasina temas etmeli.

C'sorti = iki agri birletecest zarran 1. tureu yarlerihin aynı olması

C2 sort1 = Birlerin bölgesmalck1 2-türev yonlerin aynı alması

belli br kiabiti depenter inin 61 - Biolesian bolgesmole hestoplacocal 1 threi

ite bubune esit eluci.

$$G' = k \cdot C'$$

G2 = Birleim bölgelernde 2: Asrevlerin belli bir k sabítfyle esít olmosi

* YOTEY - MODELLEME *

gintent mercuttur. * Literaturde 1 der fatta yütey modelleme

Genel dorok 2 turbour.

Lymaternatiksel modelli yvzeyler 5 maternatiksel modely olmoyon yüseyler.

free form : Belli bir sinir egirlsine bopili kalmodon modelleme islemi gyraekkestimek i twist: DNA sormali gibi bir citzgiyi obndürne ülemidir.

* Yosey modellene youtenleri &

- 1) Kuralli Yszey modellene
- 2) Dådimeli Yuzey modellene
- 3) Bilinear yezzy modelleme

1) Kuralli Yizey modellene

gore yerlesterllyors a ble kural veya dintere * Verlettrirker

03-651

*Eger preader aroundakt veaklik exit ise homogenails. AGIK Armdo olnalı (ZD igin) will apride * Herild epinin kentral notites says aynı almadı

2) odnovneli Yitey modelleme

- 1) Datresel yapılar -> Cist parçası gember
- 2) Elipsoldol yapıları Est parası elips

$$p(t) = [x(t)]$$

y(t)] //parametr/k

X eksenthe gore o

ri=r2 -) gemberde

0 50 × 360 (Tamon1)

0 50 < 180 (kesit) (4011)

hadim idin =

her parcialin adi; gold, 12garo, mesh. - dentr. @ Buradaki

ysaey 3) Bi Linear

= Q(U,W) = p(0,0)(1-W)(1-U)+p(0,1)(1-U).W+p(1,0).U(1-U + p(1,1) - v.w

P(110)

boydutice hassosiyet ortan. # Parco sayisi a taldition from hit after. * nokta soulul

4=01) 2 for (1=0,0 4 1,0 w+=0,2) { 0,17w for (w=0.0

Giragi ve Crember Girame alportanes!

Amaci #

tek bit nokto elevek and high depertury

hexaplamalarda kuntulup minimm nakta ile calismak-

Cityi citme Algoritmasi (The Bresenham Line Algorithm)

- 2) (X0,40) nottomini
- hesapla. 3) Po korar parametrasini

$$\Delta x = x_1 - x_0$$

4) Korar parametresi PK;

(XK+1, 1K) -) aydinlat

PK+1= PK+2 AY

PK >0

(XK+117K+1) +aydinlat

PK+1=PK + 2DY-2DX

galistic. 5) 4, admi DX-1 defa

ornek?

(20,10) ve (30,18) noktasina kada. 41791 witnes isterlyps

$$\Delta x = 30 - 20 = 10$$
 $2\Delta y - 2\Delta x = -4$
 $\Delta y = (18 - 10) = 8$ $2\Delta y = 16$ $2\Delta x = 20$

$$P_0 = 2 \times 8 - 10 = 6$$

$$P_1 = 6 + (-4) = 2$$

$$P_2 = 2 + (-4) = -2$$

$$P_3 = -2 + 16 = 14$$

$$P_4 = 14 + (-4) = 10$$

$$P_5 = 10 + (-4) = 6$$

$$P_6 = 6 + (-4) = 2$$

$$P_7 = 2 + (-4) = -2$$

$$P_8 = -2 + 16 = 14$$

& Bu A notetasini bulunsak ton kenonlar bulunuz-

Orta nokta ciember Algoritmasi (midpoint circle algorith)

code:

X=0;

y=r;

d=(-r;

w pixel (x,y);

while (y,x) | xp=x;

If (dxo)

3=7; else 3=1-1;

armek 8

Or Merkett (0,0) alon yorkopi 10 alon orta nobita crember Alportmesi

$$P_1 = -9 + 2 \times 1 + 1 = -6$$
 $P_2 = -6 + 2 \times 2 + 1 = -1$
 $P_3 = -1 + 2 \times 3 + 1 = 6$
 $P_4 = 6 + 1 \times 1 + 1 - 2 \times 9 = -3$
 $P_5 = -3 + 2 \times 5 + 1 = 8$
 $P_6 = 8 + 2 \times 6 + 1 - 2 \times 8 = 5$

6 Geometrik Dansumler

*3 ternel donison Islami winder: (Stellane jolgeldendlime ve byotip (wealthan)

1 - Nesne Szerinde yapılan istemler

2- Kamera Ezerhole yapılan islemler.

iki bayutta ölgetlerðirme lilemi

U = [x] torfinal vertex

L'= [x] + new wortex

de Yakınlaştırmok

Isterten

Stelenis order. Builterneyes olumder.

Bur you etnek igh affine affine allyone.

iki boyutta doldurne izleni

R(Q) = (cos 0 - sm 0)

Q - sout johnnily tersthole almak zomnab

a Everyluse + surely dorale official,

a buyonse - atlandi plank gardnst.

* 30 DONOGUMEN *

Dendime 3

t elser

2 Boyet Davin

$$\begin{bmatrix} x' \\ y' \\ z \end{bmatrix} = \begin{bmatrix} 0 & 0 & tx \\ 0 & 1 & 0 & tx \\ 0 & 0 & 1 & 1x \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ y \\ z \end{bmatrix}$$

$$x' = x + tx$$

Olcaklandhrie

SX,Sy x-y younder!

Therefore, olson
-x'=-x x-5 x-y ginder!

y'= y x s y nemaye

your

pandime

x' = xcoso -ysind y' = xsind +ycoso

1 401/ 5x,54,57 esit 150

1) Ekranda gözülmeyen cok kürük deperleri güzülebilir hole getirebiliriz

$$P[x y] P_h[x y w] P[3,2 6,8] \longrightarrow [32 68] \frac{3,2}{0,1} \frac{6,8}{0,1}$$

- 2) GOL BSYSE depented elrondo gosternek ich kullender Budurunda matrisch boyutu 1 arter. 2x2-73x3 ? moline geren
- 3) ôtelene matrismi kesmikle homogen koordhat olarak ifade edeblilyoruz-

$$T_{\text{constation}} = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix} \qquad T_{\text{U}} = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+dx \\ y+dy \\ 1 \end{bmatrix} = x^{1}$$
(Steleme)

Scaling (5|celclord/me) =
$$\begin{bmatrix} 5 \times 0 & 0 \\ 0 & 5 & 0 \end{bmatrix}$$
 rotation = $\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \end{bmatrix}$

Ters donuzumlerde o

* Audintatina (Edgelene) Teknikleri *

ducer

gière appinhentme

Normal vectors yitteye

$$\vec{A} = (\alpha_{3x} - \alpha_{3x})^{\frac{1}{2}} + (\alpha_{3y} - \alpha_{3y})^{\frac{1}{2}} + (\alpha_{3z} - \alpha_{3z})^{\frac{1}{2}}$$

$$\vec{B} = (a_{4x} - a_{3x})^{\frac{7}{4}} + (a_{4y} - a_{3y})^{\frac{7}{4}} + (a_{4z} - a_{3z})^{\frac{7}{4}}$$

$$= 8\vec{x}i + 8\vec{y}j + 8\vec{z}k$$

$$AxB = \begin{bmatrix} i & j & k \\ Ax & Ay & Az \\ Bx & By & Bz \end{bmatrix} = (Ay.Bz - AzBy)^{\frac{3}{2}} - (AxBz - AzBx)^{\frac{3}{2}} + (AxBy - AyBx)^{\frac{3}{2}}$$

$$\vec{c} = (\alpha_{3x} - I_{x})^{\frac{3}{2}} + (\alpha_{3y} - I_{y})^{\frac{3}{2}} + (\alpha_{3z} - I_{z})^{\frac{3}{2}}$$

* Aci hesabi *

Ax8x + Ay8y + Az82 = \Ax2+ Ay2+ Az2 . (B) Bx2+ By2+ Bz2 . cos0

1) Sabit Gölgelene (Constant Shading)

Atterble yüzey , nesne parquinin pria noktorindaki yüzey normalme göre & acusi heraplain.

$$a_0 = \frac{2a}{4}$$

$$A = \frac{2a}{3} \times \frac{1}{3} + \frac{2a}{3} +$$

Not:

Sabit galgeleme algoritmonia qualey promasion and notternobler qualey normali
ile 1816 bornagi vettar assirdad acumin hesaplanmasidir.

of acusina give ronk secilmi o

R G B (Red Green Blue)

8 bit = 2 = 256 [0, 255]

Red → C01299] AG1 = 0-900

K = 255 /90 = 2,84

$$\theta = 0$$
 (se =) $255 - AGI \times 2184 = 255$
 $\theta = 30$ (se =) $255 - 30 \times 2184 = 170$
 $\theta = 90$ (se =) $255 - 90 \times 2184 = 9$

*Goratu kalitesma iyl almamasıdır.

Egrisd madesharde para para birlestiribili

gibl gétikur.

& Solit gjölgelene hitlidir.

2) Ground Shading

Essendent renk depert hesoplour. Sonra
burenk depert juzey isethe bilineer yuzey
modellane ythtemique dopitilir.

Sobit golgelenege opere date net sozum sertr.

High ture gerislerman older gerende sikutildis

3) Phony yolgelene medell

* Bu model neme itertridekt dusen plksellere bistan isigi hesoplar. Dolayisiyle differ 2 algoritmodakt problemlerle kosligmor.

atitlem you fatledir. * kityphoneler ornik kaynak kadludur.

WENGL Justipline