Learning Objectives

- After this segment, students will be able to
 - Compare traditional & spatial clustering methods
 - Contrast K-Means and SatScan

Clustering Question

Question: What are natural groups of points?

R ld	Х	у
Α	30	5
В	50	25
С	50	15
D	25	5
Е	30	10
F	55	25

Maps Reveal Spatial Groups

Map shows 2 spatial groups!

R ld	Х	У
Α	30	5
В	50	25
С	50	15
D	25	5
E	30	10
F	55	25

1. Start with random seeds

$$K = 2$$

R Id	х	у
Α	30	5
В	50	25
С	50	15
D	25	5
E	30	10
F	55	25

2. Assign points to closest seed

$$K = 2$$

R ld	x	у
Α	30	5
В	50	25
С	50	15
D	25	5
E	30	10
F	55	25

3. Revise seeds to group centers

$$K = 2$$

R Id	х	У
Α	30	5
В	50	25
С	50	15
D	25	5
E	30	10
F	55	25

Revised seeds

Spatial Computing

2. Assign points to closest seed

$$K = 2$$

R ld	X	У
Α	30	5
В	50	25
С	50	15
D	25	5
E	30	10
F	55	25

Colors show closest Seed

Spatial Computing

3. Revise seeds to group centers

$$K = 2$$

R ld	Х	У
Α	30	5
В	50	25
С	50	15
D	25	5
E	30	10
F	55	25

Colors show closest Seed

If seeds changed then loop back to Step 2. Assign points to closest seed

$$K = 2$$

R ld	х	у
Α	30	5
В	50	25
С	50	15
D	25	5
Е	30	10
F	55	25

Colors show closest Seed

Spatial Computing

3. Revise seeds to group centers

$$K = 2$$

R ld	X	У
Α	30	5
В	50	25
С	50	15
D	25	5
Е	30	10
F	55	25

Termination

Colors show closest Seed

Spatial Computing

Limitations of K-Means

- K-Means does not test Statistical Significance
 - Finds chance clusters in complete spatial randomness (CSR)

Classical Clustering

Spatial Clustering

Spatial Scan Statistics (SatScan)

- Goal: Omit chance clusters
- Ideas: Likelihood Ratio, Statistical Significance
- Steps
 - Enumerate candidate zones & choose zone X with highest likelihood ratio (LR)
 - LR(X) = p(H1|data) / p(H0|data)
 - H0: points in zone X show complete spatial randomness (CSR)
 - H1: points in zone X are clustered
 - If LR(Z) >> 1 then test statistical significance
 - Check how often is LR(CSR) > LR(Z)
 using 1000 Monte Carlo simulations

SatScan Examples

Test 1: Complete Spatial Randomness
SatScan Output: No hotspots!
Highest LR circle is a chance cluster!
p-value = 0.128

Test 2: Data with a hotspot SatScan Output: One significant hotspot! p-value = 0.001

Spatial-Concept/Theory-Aware Clusters

- Spatial Theories, e.g., environmental criminology
 - Circles → Doughnut holes
- Geographic features, e.g., rivers, streams, roads, ...
 - Hot-spots => Hot Geographic-features

(a) Input

(b) Crimestat K-means with Eu- (c) Crimestat K-means clidean Distance

Network Distance

(d) KMR

Spatial Computing

Research Group

Source: A K-Main Routes Approach to Spatial Network Activity Summarization, to appear in IEEE Transactions on Knowledge and Data Eng. (www.computer.org/csdl/trans/tk/preprint/06574)