Natural Language Processing

Last update: 01 October 2024

Contents

1	Basi	ic text processing
	1.1	Regular expressions
		1.1.1 Basic operators
	1.2	Tokenization
		1.2.1 Data-driven tokenization
	1.3	Normalization
	1.4	Edit distance
2	Lang	guage models
	2.1	Spelling correction
	2.2	Language models

1 Basic text processing

Text normalization Operations such as:

Tokenization Split a sentence in tokens.

| Remark. Depending on the approach, a token is not always a word.

Lemmatization/stemming Convert words to their canonical form.

| Example. $\{$ sang, sung, sings $\} \mapsto$ sing

Sentence segmentation Split a text in sentences.

| Remark. A period does not always signal the end of a sentence.

Tokenization

Lemmatization/stemming

Sentence segmentation

1.1 Regular expressions

Regular expression (regex) Formal language to describe string patterns.

Regular expression (regex)

1.1.1 Basic operators

Disjunction (brackets) Match a single character between square brackets [].

| Example. / [wW] oodchuck/ matches Woodchuck and woodchuck.

Range Match a single character from a range of characters or digits.

Example.

- /[A-Z]/ matches a single upper case letter.
- /[a-z]/ matches a single lower case letter.
- /[0-9]/ matches a single digit.

Negation Match the negation of a pattern.

Example. /[^A-Z]/ matches a single character that is not an upper case letter.

Disjunction (pipe) Disjunction of regular expressions separated by |.

| Example. /groundhog | woodchuck/ matches groundhog and woodchuck.

Wildcards

Optional A character followed by ? can be matched optionally.

Example. /woodchucks?/ matches woodchuck and woodchucks.

Any . matches any character.

Kleene * A character followed by * can be matched zero or more times.

Kleene + A character followed by + must be matched at least once.

Counting A character followed by $\{n,m\}$ must be matched from n to m times.

Example.

- $\{n\}$ matches exactly n instances of the previous character.
- $\{n,m\}$ matches from n to m instances of the previous character.
- $\{n,\}$ matches at least n instances of the previous character.
- $\{,m\}$ matches at most m instances of the previous character.

Anchors

Start of line ^ matches only at the start of line.

| Example. $/^a$ / matches <u>a</u> but not ba.

End of line \$ matches only at the end of line.

| Example. /a\$/ matches \underline{a} but not \underline{a} b.

Word boundary \b matches a word boundary character.

Word non-boundary \B matches a word non-boundary character.

Aliases

- \d matches a single digit (same as [0-9]).
- \D matches a single non-digit (same as [^\d]).
- \w matches a single alphanumeric or underscore character (same as [a-zA-Z0-9_]).
- $\$ matches a single non-alphanumeric and non-underscore character (same as $[^\w]$).
- \s matches a single whitespace (space or tab).
- \S matches a single non-whitespace.

Capture group Operator to refer to previously matched substrings.

Example. In the regex /the (.*)er they were, the \left\1er they will be/, $\$ should match the same content matched by (.*).

1.2 Tokenization

Lemma Words with the same stem and roughly the same semantic meaning.

Lemma

Example. cat and cats are the same lemma.

Wordform Orthographic appearance of a word.

Wordform

Example. cat and cats do not have the same wordform.

Vocabulary Collection of text elements, each indexed by an integer.

Vocabulary

Remark. To reduce the size of a vocabulary, words can be reduced to lemmas.

Type / Wordtype Element of a vocabulary (i.e., wordforms in the vocabulary).

Type / Wordtype

Token Instance of a type in a text.

Token

Genre Topic of a text corpus (e.g., short social media comments, books, Wikipedia pages, ...).

2

Genre

Remark (Herdan's law). Given a corpus with N tokens, a vocabulary V over that corpus roughly have size:

$$|V| = kN^{\beta}$$

where the typical values are $10 \le k \le 100$ and $0.4 \le \beta \le 0.6$.

Stopwords Frequent words that can be dropped.

Stopwords

Remark. If semantics is important, stopwords should be kept. LLMs keep stopwords.

Rule-based tokenization Hand-defined rules for tokenization.

Rule-based tokenization

| Remark. For speed, simple tokenizers use regex.

Data-driven tokenization Determine frequent tokens from a large text corpus.

Data-driven tokenization

1.2.1 Data-driven tokenization

Tokenization is done by two components:

Token learner Learns a vocabulary from a given corpus (i.e., training).

Token learner

Token segmenter Segments a given input into tokens based on a vocabulary (i.e., inference).

Token segmenter

Byte-pair encoding (BPE) Based on the most frequent n-grams.

Byte-pair encoding (BPE)

Token learner Given a training corpus C, BPE determines the vocabulary as follows:

- 1. Start with a vocabulary V containing all the 1-grams of C and an empty set of merge rules M.
- 2. While the desired size of the vocabulary has not been reached:
 - a) Determine the pair of tokens $t_1 \in V$ and $t_2 \in V$ such that, among all the possible pairs, the *n*-gram $t_1 + t_2 = t_1 t_2$ obtained by merging them is the most frequent in the corpus C.
 - b) Add t_1t_2 to V and the merge rule $t_1 + t_2$ to M.

Example. Given the following corpus:

Occurrences	Tokens	
5	1 o w \$	
2	lower\$	
6	newest\$	
6	widest\$	

The initial vocabulary is: $V = \{\$, 1, o, w, e, r, n, w, s, t, i, d\}$.

At the first iteration, e + s = es is the most frequent *n*-gram. Corpus and vocabulary are updated as:

Occurrences	Tokens
5	1 o w \$
2	lower\$
6	newest\$
6	widest\$

$$V = \{\$, \texttt{l}, \texttt{o}, \texttt{w}, \texttt{e}, \texttt{r}, \texttt{n}, \texttt{w}, \texttt{s}, \texttt{t}, \texttt{i}, \texttt{d}\} \cup \{\texttt{es}\}$$

At the second iteration, es + t = est is the most frequent n-gram:

Occurrences	Tokens
5	1 o w \$
2	lower\$
6	n e w est \$
6	w i d est \$

$$V = \{\$, \texttt{l}, \texttt{o}, \texttt{w}, \texttt{e}, \texttt{r}, \texttt{n}, \texttt{w}, \texttt{s}, \texttt{t}, \texttt{i}, \texttt{d}, \texttt{es}\} \cup \{\texttt{est}\}$$

And so on...

Token segmenter Given the vocabulary V and the merge rules M, the BPE segmenter does the following:

- 1. Split the input into 1-grams.
- 2. Iteratively scan the input and do the following:
 - a) Apply a merge rule if possible.
 - b) If no merge rules can be applied, lookup the (sub)word in the vocabulary. Tokens out-of-vocabulary are marked with a special unknown token [UNK].

WordPiece Similar to BPE with the addition of merge rules ranking and a special leading/tailing set of characters (usually ##) to identify subwords (e.g., new##, ##est are possible tokens).

WordPiece

Unigram Starts with a big vocabulary and remove tokens following a loss function.

Unigram

1.3 Normalization

Normalization Convert tokens into a standard form.

Normalization

Example. U.S.A. and USA should be encoded using the same index.

Case folding Map every token to upper/lower case.

Case folding

| Remark. Depending on the task, casing might be important (e.g., US vs us).

Lemmatization Reduce inflections and variant forms to their base form.

Lemmatization

|Example. $\{$ am, are, is $\} \mapsto$ be

| Remark. Accurate lemmatization requires complete morphological parsing.

Stemming Reduce terms to their stem.

Stemming

| Remark. Stemming is a simpler approach to lemmatization.

Porter stemmer Simple stemmer based on cascading rewrite rules.

| Example. ational \mapsto ate, ing $\mapsto \varepsilon$, sses \mapsto ss.

1.4 Edit distance

Minimum edit distance Minimum number of edit operations (insertions, deletions, and substitutions) needed to transform a string into another one.

Minimum edit distance

Remark. Dynamic programming can be used to efficiently determine the minimum edit distance.

Levenshtein distance Edit distance where:

Levenshtein distance

- Insertions cost 1;
- Deletions cost 1;
- Substitutions cost 2.

Example. The Levenshtein distance between intention and execution is 8.

2 Language models

2.1 Spelling correction

Spelling correction Spelling errors can be of two types:

Spelling correction

Non-word spelling Typos that result in non-existing words. Possible candidates can be determined though a dictionary lookup.

Real-word spelling Can be:

Typographical error Typos that result in existing words.

Cognitive error Due to words similarity (e.g., piece vs peace).

Noisy channel model Assumes that the observable input is a distorted form of the original word. A decoder tests word hypotheses and selects the best match.

Noisy channel model

More formally, we want a model of the channel that, similarly to Bayesian inference, determines the likelihood that a word $w \in V$ is the original word for a noisy one x. From there, we can estimate the correct word \hat{w} :

By applying (i) Bayes' rule, (ii) the fact that \hat{w} is independent of $\mathcal{P}(x)$, and (iii) that a subset $C \subseteq V$ of the vocabulary can be used, the estimate becomes:

$$\hat{w} = \arg\max_{w \in C} \underbrace{\mathcal{P}(x|w)}_{\text{channel model}} \underbrace{\mathcal{P}(w)}_{\text{prior}}$$

Moreover, it is reasonable to include a context c when computing the prior:

$$\hat{w} = \arg\max_{w \in C} \underbrace{\mathcal{P}(x|w)}_{\text{channel model language model}} \underbrace{\mathcal{P}(w|c)}_{\text{language model}}$$

Noisy channel spelling method Spelling correction in a noisy channel model can be done as follows:

- 1. Find candidate words with similar spelling to the input based on a distance metric (e.g., Damerau-Levenshtein which is the Levenshtein distance with the addition of adjacent transpositions).
- 2. Score each candidate based on the language and channel model:
 - Use typing features of the user.
 - Use local context.
 - Use a confusion matrix with common mistakes.

Example. Consider the sentence:

[...] was called a "stellar and versatile acress whose combination of sass and glamour has defined her [...]"

By using the Corpus of Contemporary English (COCA), we can determine the following words as candidates:

 $actress \cdot cress \cdot caress \cdot access \cdot across \cdot acres$

Language model By considering a language model without context, the priors are computed as $\mathcal{P}\left(w\right) = \frac{\mathtt{count}\left(w\right)}{|\mathtt{COCA}|}$ (where $|\mathtt{COCA}| = 404\,253\,213$):

\overline{w}	$\mathtt{count}(w)$	$\mathcal{P}\left(w\right)$
actress	9321	0.0000231
cress	220	0.000000544
caress	686	0.00000170
access	37038	0.0000916
across	120844	0.000299
acres	12874	0.0000318

Channel model By using a confusion matrix of common typos, the channel model is:

w	x w	$\mathcal{P}\left(x w\right)$
actress	cct	0.000117
cress	a #	0.00000144
caress	ac ca	0.00000164
access	r c	0.000000209
across	e o	0.0000093
acres	es e	0.0000321
acres	ssss	0.0000342

The ranking is the obtained as:

w	$\mathcal{P}\left(x w\right)\mathcal{P}\left(w\right)$
actress	$2.7\cdot 10^9$
cress	$0.00078 \cdot 10^9$
caress	$0.0028 \cdot 10^9$
access	$0.019 \cdot 10^9$
across	$2.8 \cdot 10^{9}$
acres	$1.02 \cdot 10^{9}$
acres	$1.09 \cdot 10^9$

Therefore, the most likely correction of acress for this model is across. If the previous word is considered in the context, the relevant tokens of the new language model are:

w_i	$\mathcal{P}\left(w_{i} w_{i-1}\right)$
actress	0.000021
across	0.000021
whose	0.001
whose	0.000006
	actress across whose

This allows to measure the likelihood of a sentence as:

 $\mathcal{P}\left(\text{versatile } \underline{\text{actress}} \text{ whose}\right) = \mathcal{P}\left(\text{actress} | \text{versatile}\right) \mathcal{P}\left(\text{whose} | \text{actress}\right) = 210 \cdot 10^{-10}$ $\mathcal{P}\left(\text{versatile } \underline{\text{across whose}}\right) = \mathcal{P}\left(\text{across} | \text{versatile}\right) \mathcal{P}\left(\text{whose} | \text{across}\right) = 1 \cdot 10^{-10}$

Finally, we have that:

 $\mathcal{P}\left(\text{versatile } \underline{\text{actress}} \text{ whose} \middle| \text{versatile acress whose}\right) = 2.7 \cdot 210 \cdot 10^{-19}$ $\mathcal{P}\left(\text{versatile } \underline{\text{across}} \text{ whose}\middle| \text{versatile acress whose}\right) = 2.8 \cdot 10^{-19}$

So actress is the most likely correction for acress in this model.

Remark. In practice, log-probabilities are used to avoid underflows and to make computation faster (i.e., sums instead of products).

2.2 Language models

(Probabilistic) language model Model to determine the probability of a word w in a Language model given context c:

$$\mathcal{P}\left(w|c\right)$$

Usually, it is based on counting statistics and uses as context the sequence of previous tokens:

$$\mathcal{P}\left(w_i|w_1,\ldots,w_{i-1}\right)$$

This is equivalent to computing the probability of the whole sentence, which expanded using the chain rule becomes:

$$\mathcal{P}(w_1, \dots, w_{i-1}w_i) = \mathcal{P}(w_1)\mathcal{P}(w_2|w_1)\mathcal{P}(w_3|w_{1..2})\dots\mathcal{P}(w_n|w_{1..n-1})$$
$$= \prod_{i=1}^n \mathcal{P}(w_i|w_{1..i-1})$$

Remark. Simply counting the number of occurrences of a sentence as $\mathcal{P}(w_i|w_{1..i-1}) = w_{1..i}/w_{1..i-1}$ is not ideal as there are too many possible sentences.

Markov assumption Limit the length of the context to a window of k previous tokens:

Markov assumption in language models

$$\mathcal{P}\left(w_{i}|w_{1..i-1}\right) \approx \mathcal{P}\left(w_{i}|w_{i-k..i-1}\right)$$

$$\mathcal{P}(w_{1..n}) \approx \prod_{i=1}^{n} \mathcal{P}(w_i|w_{i-k..i-1})$$

Unigram model Model without context (k = 0):

$$\mathcal{P}\left(w_{1..n}\right) \approx \prod_{i} \mathcal{P}\left(w_{i}\right)$$

Bigram model Model with a single token context (k = 1):

$$\mathcal{P}\left(w_{1..n}\right) \approx \prod_{i} \mathcal{P}\left(w_{i}|w_{i-1}\right)$$

N-gram model Model with a context of k = N - 1 tokens:

N-gram model

$$\mathcal{P}(w_{1..n}) \approx \prod_{i} \mathcal{P}(w_{i}|w_{i-N+1..i-1})$$

| Remark. N-gram models cannot capture long-range dependencies.

Estimating N-gram probabilities Consider the bigram case, the probability that a token w_i follows w_{i-1} can be determined by counting:

$$\mathcal{P}\left(w_{i}|w_{i-1}\right) = \frac{\mathtt{count}(w_{i-1}w_{i})}{\mathtt{count}(w_{i-1})}$$

| Remark. N-gram models cannot handle unknown tokens.

Remark. N-gram models capture knowledge about:

- Grammar and syntax.
- Some information about the dataset (e.g., domain, genre of corpus, cultural aspects, ...).

Generation by sampling Randomly sample tokens from the distribution of a language model.

Generation by sampling

Remark. In N-gram models $(N \ge 2)$, the distribution changes depending on the previously sampled tokens.