Artificial Intelligence Assignment 0

Dahuin Jung

School of Computer Science and Engineering Soongsil University

2024

Assignment Objective

- Part o Requirements
- Part 1 Local & Colab Setup
- Part 2 Python Basics
 - Basic data types (Containers, Lists, Dictionaries, Sets, Tuples)
 - Functions, Classes
- Part 3 Numpy and Matplotlib
 - Arrays, Array indexing, Broadcasting, Plotting
- Part 4 PyTorch Tutorial
 - Problem: Implementing training/ testing codes for PyTorch model

How to install assignment files

- Assignment files
 - env/
 - Assignmento-1_Python_Basics.ipynb
 - Assignmento-2_Numpy_Matplotlib.ipynb
 - Assignmento-3_PyTorch_Tutorial.ipynb
 - CollectSubmission.sh
- Install assignment files
 - Please extract the downloaded file.

Pre-announcement

 Only Google Colab users should run this section. Local users can either delete or comment it out.

Colab Setup

- Step 1 Access Google Drive and create a folder.
 - Folder name : (student_id)_(subject)
 - Ex) 1102444016
- Step 2 Upload ONLY .ipynb files to the created folder.

Colab Setup

- Step 1: Runtime > Change runtime type
 - Change the hardware accelerator to T4.
- Step 2: verify that the changes have been made as shown in the red box(T4)
 - You can now use it like a regular Jupyter Notebook.
- Please make sure to save your changes.

Colab Setup

- Submitting your work(Colab)
 - Go into the Google Drive folder you created earlier.

Local setup

- Step 1 Anaconda Download
 - https://www.anaconda.com/download/success (download)


```
(base) C:\Users\ssu_hai\Desktop\인공지능\Assignment0>cd env
(base) C:\Users\ssu_hai\Desktop\인공지능\Assignment0\env>conda env create -f environment.yml
```

2. conda activate AI-24

```
(base) C:\Users\ssu_hai>conda activate AI-24

(AI-24) C:\Users\ssu_hai>

CSE | SSU © Dahuin Jung
```


Local setup

Step 3 Verification of activation

Once steps 1 to 3 are

Local setup

- Submitting your work
 - After you are done
 - Open Git Bash in VSCode or download it locally.
 - \$./CollectSubmission.sh 1102444016 (student-id)
 - Upload the (student-id).tar.gz on LMS
 - DO NOT clear the final outputs

Output Examples

###TO DO### is only in Assignmento-3_PyTorch_Tutorial.ipynb

```
Train Epoch: 9 [00000/60000 (0%)]
                                        Loss: 0.291984
Train Epoch: 9 [06400/60000 (11%)]
                                        Loss: 0.291847
Train Epoch: 9 [12800/60000 (21%)]
                                        Loss: 0.277419
Train Epoch: 9 [19200/60000 (32%)]
                                        Loss: 0.361615
Train Epoch: 9 [25600/60000 (43%)]
                                        Loss: 0.284308
Train Epoch: 9 [32000/60000 (53%)]
                                        Loss: 0.187955
Train Epoch: 9 [38400/60000 (64%)]
                                        Loss: 0.320377
Train Epoch: 9 [44880/60800 (75%)]
                                        Loss: 0.405238
Train Epoch: 9 [51200/60000 (85%)]
                                        Loss: 0.279186
Train Epoch: 9 [57600/60000 (96%)]
                                        Loss: 0.162448
Train Epoch: 10 [00000/60000 (0%)]
                                        Loss: 0.296218
Train Epoch: 10 [06400/60000 (11%)]
                                        Loss: 0.380556
Train Epoch: 10 [12800/60000 (21%)]
                                        Loss: 0.293848
Train Epoch: 10 [19200/60000 (32%)]
                                        Loss: 0.253909
Train Epoch: 10 [25600/60000 (43%)]
                                        Loss: 0.397972
Train Epoch: 10 [32000/60000 (53%)]
                                        Loss: 0.228490
Train Epoch: 10 [38400/60000 (64%)]
                                        Loss: 0.326564
Train Epoch: 10 [44800/60000 (75%)]
                                        Loss: 0.237349
Train Epoch: 10 [51200/60000 (85%)]
                                        Loss: 0.334854
Train Epoch: 10 [57600/60000 (96%)]
                                        Loss: 0.227650
Test set: Average loss: 0.2893, Accuracy: 9193/10000 (91.93%)
```

Important Notes

- Please read the notes on the notebooks carefully
- Googling first before mailing TAs
- TA email: 1102444016@soongsil.ac.kr

