EXAMEN STRUCTURE MACHINE I

Durée: 1h30'

Exercice 1 : Effectuer les opérations arithmétiques suivantes (4 pts)

- $(2A9)_{11} + (3A8)_{11}$
- (EAB)₁₅ (4BE)₁₅
- \sim (345)7 * (16)7
- $\sim (101100/100)_2$

Exercice 2: Trouver les valeurs décimales, signes et valeurs absolues, Complément à un et à deux pour chacun des cas suivants (Sur 8 bits) (6pts)

Décimal	S/VA	Càl	Cà2
19			
	1 0011011		
		10000101	
			11001001

Exercice 3: (6pts)

- A. Trouver la représentation IEEE 754 simple précision de (-37.125)₁₀ ensuite donner sa représentation hexadécimale équivalente. (2 pts)
- B. Trouver la représentation simple précision sur 32 bits de (19.375)₁₀ sachant que l'exposant est représenté sur 6 bits. (2 pts)
- C. Trouver le nombre flottant ayant la représentation IEEE754 suivante : (C2AEC000)16 En déduire (sans calculer) celui de (42AEC000)16 avec explication (2 pts)

Exercice 4: (4pts)

On dispose de 4 interrupteurs (A, B, C, D) pouvant être en position 0 ou 1, et une lampe L pouvant être allumée (1) ou éteinte (0).

La lampe L sera allumée lorsque au moins trois interrupteurs voisins ont la même positon 0 ou 1

- 1- Etablir la table de vérité.
- 2- Trouver la première et la deuxième forme canonique.

Corrigé Examen Structure Machine I

Exercice 1 (1* 4 pts)

Exercice 2 (0.5 * 12 = 6pts):

Décimal	S/VA	Cà1	Cà2
19	0001 0011	0001 0011	0001 0011
- 27	1 0011011	11100100	11100101
-122	1 1111010	10000101	10000110
-55	10110111	11001000	11001001

A/ (-37.125)10

Le nombre est négatif → S=1

 $(37.125)_{10} = (100101.001)_2$ Virgule fixe

= 1.00101001* 2^5 \rightarrow Virgule flottante \rightarrow M= 00101001

Exposant : E-127 = 5 \Rightarrow E= 132 = (10000100)₂ \Rightarrow E = 10000100

1	10000100	0010100100000000000000000
		The state of the state of the state of

En hexadécimal: (C2148000)16

B/ (19.375)10

Exposant sur 6 bits - La formule d'expression des nombres réels devient :

$$(-1)^{s}$$
 . 2 $(E-31)$. 1,M

Le nombre est positif

 $\rightarrow S=0$

 $(19.375)_{10} = (10011,011)_2$ Virgule fixe

 $(10011,011)_2 = 1.0011011 * 2^4 \dots$ Virgule flottante

 \rightarrow M = 11011

Exposant: $E - 31 = 4 \implies E = 35 = (100011)_2$

 \rightarrow E = 100011

 $C/(C2AEC\ 0\ 0\ 0)_{16} = (1100\ 0010\ 1010\ 1110\ 1100\ 0000\ 0000\ 0000)_2$

1	10000101	010111011000000000000
		지기 회사에 가는 것이 되는 것이라고 보다고 않는데 없는 그 바로를 하게 되어 되었다.

S=1 → Le nombre est négatif

$$E = (10000101)_2 = (133)_{10} \rightarrow E - 127 = 133 - 127 = 6$$

1, M=1, 010111011

$$1,010111011 * 2^6 = (1010111.011)_2 = (87,375)_{10}$$
 Résultat = (-87. 375)₁₀

 $(42AEC000)_{16} = (+87.375)_{10}$ Ex

Explication (le bit de signe = $0 \rightarrow \text{nbre} > 0$)

Exercice 4

A	В	C	D	L
0	0	0	0	1
	0	0	1	1
0	0	1	0	0
0 0 0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0 0 1	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

 \overline{A}

 \overline{B}

T

 \overline{D}

 $F_{1c} = \overline{A} \ \overline{BC} \ \overline{D} + \overline{A} \ \overline{BC} \ D + \overline{A} \ B \ C \ D + A \ \overline{BC} \ \overline{D} + A \ B \ C \ D$

 $F_{2c} = (A + B + \overline{C} + D) \cdot (A + B + \overline{C} + \overline{D}) \cdot (\overline{A} + \overline{B} + \overline{C} + \overline{D})$