Měření na operačních zesilovačích

Ondřej Šika

Obsah

1	Zad	lání		4												
2	Teo	Teoretický úvod														
	2.1	Opera	ční zesilovač	4												
		2.1.1	Ideální OZ	4												
		2.1.2	Reálný OZ	5												
		2.1.3	Vývody	5												
		2.1.4	Napájení	5												
		2.1.5	Vnitřní struktura	5												
	2.2	Zapoje	ení OZ	5												
		2.2.1	Invertující	6												
		2.2.2	Neinvertující	6												
		2.2.3	Komparátor	6												
	2.3	Frekve	nční charakteristiky OZ	7												
		2.3.1	Amplitudová frekvenční charakteristika OZ	7												
		2.3.2	Fázová frekvenční charakteristika OZ	7												
	2.4	Návrh	zesilovače	7												
		2.4.1	Požadavky	7												
		2.4.2	Zesílení	7												
		2.4.3	Zpětnovazební rezistory	8												
		2.4.4	Rozsah 0.3 V	8												
		2.4.5	Při 200uA na ampérmetru	8												
		2.4.6	Ampérmetr s odporem 100R	8												
		2.4.7	Návrh deliče z 1V na 0.3V	8												
		2.4.8	Schéma zapojení	9												
	2.5	Frekve	nční kompenzace OZ	9												
3	Sch	éma za	pojení	9												
	3.1		1 0	9												
	3.2	_		0												
4	Pos	tup më	éření 1	.0												
5	Tab	ulkv n	aměřených a vypočtených hodnot 1	1												
	5.1		· · · · · · · · · · · · · · · · · · ·	1												
		5.1.1	$A_U = 2, U_{IN} = 3V$													
		5.1.2		1												
		5.1.3		12												
	5.2			2												
		5.2.1	o e e e e e e e e e e e e e e e e e e e	12												
		5.2.2		3												
		5.2.3	· · · · · · · · · · · · · · · · · · ·	13												
	5.3		ost zesílení na napájecím napětí													

6	Gra	y 1	L 4
	6.1	Amplitudové frekvenční charakteristiky	14
		$6.1.1 A_U = 2 \text{ (invertující)} \dots \dots$	14
		6.1.2 $A_U=6$ (invertující)	15
		$6.1.3 A_U = 12 \text{ (invertující)} \dots \dots \dots \dots \dots$	16
		$6.1.4 A_U = 3 \text{ (neinvertující)} \dots \dots \dots \dots \dots$	17
		6.1.5 $A_U = 7$ (neinvertující)	18
		$6.1.6 A_U = 13 \text{ (neinvertující)} \dots \dots \dots \dots \dots \dots$	19
	6.2	Fázové frekvenční charakteristiky	20
		$6.2.1 A_U = 2 \text{ (invertující)} \dots \dots$	20
		$6.2.2 A_U = 6 \text{ (invertující)} \dots \dots$	21
		(22
		$6.2.4 A_U = 3 \text{ (neinvertující)} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	23
		- · · · · · · · · · · · · · · · · · · ·	24
		· · · · · · · · · · · · · · · · · · ·	25
	6.3	Závislost zesílení na napájecím napětí	26
7	Přík	ady výpočtů	27
	7.1	V V2	27
			27
		7.1.2 Nenvertující	27
	7.2	Zisk	27
	7.3	Fázový posuv	27
		7.3.1 Invertující	27
		7.3.2 Nenvertující	27
8	Záv	\mathbf{r}	28

1 Zadání

- 1. Proveď te teoretický návrh zesilovače pro stejnosměrný milivoltmetr. Zadaný stejnosměrný zesilovač má zisk 15 dB. Vstupní obvod (dělič) navrhněte pro rozsahy 1V a 0,3V. Na výstupu místo zatěžovacího proudu bude připojen mikroampérmetr s rozsahem 200uA a s vnitřním odporem $100~\Omega$. Tento bod zadání zpracujte jako část přípravy na cvičení.
- 2. Změřte amplitudovou frekvenční a fázovou charakteristiku daného operačního zesilovače v základních zapojeních se třemi různými hodnotami zesílení jako:

invertujícího zesilovače

neinvertujícího zesilovače.

- 3. Vyneste příslušné amplitudové a fázové frekvenční charakteristiky a určete mezní frekvenci fm a šířku pásma B3 pro tři různé stupně zpětné vazby.
- 4. Zjistěte a graficky znázorněte pokles zesílení zesilovače v závislosti na napájecím napětí.
- 5. Zjistěte vliv OZ s uzavřenou kladnou zpětnou vazbou (komparátor s hysterezí) na vstupní analogové napětí U1. Časové průběhy vstupního a výstupního signálu vytiskněte s pomocí digitálního osciloskopu, ocejchujte a popište.

2 Teoretický úvod

2.1 Operační zesilovač

Stejnosměrný širokopásmový zesilovač s velkým zesílením, který pomocí vhodné zpětné vazby a různých korekcí umožňuje realizovat různé přenosové funkce (lineární, nelineární), potlačit rušivé vlivy vyskytující se u ss zesilovačů. K OZ se přidávají další součástky (operační síť). OZ umožňují konstruovat obvody pro matematické operace, vyrábět kvalitní zesilovače, oscilátory, regulátory, klopné obvody apod. Nacházíme je i v modulátorech, demodulátorech, směšovačích, A/D a D/A převodnících

2.1.1 Ideální OZ

- ullet nekonečně velké napěťové zesílení A_U
- nulové rozdílové napětí mezi vstupy
- nekonečně velký vstupní odpor
- nulový výstupní odpor
- nezávislost vlastností na frekvenci

2.1.2 Reálný OZ

- zesílení řádově desetitisíce až statisíce
- rozdílové napětí až mV
- Rystup M Ω
- \bullet Rvýst desítky Ω
- maximální frekvence jednotky MHz

2.1.3 Vývody

- neinvertující vstup (+)
- invertující vstup (-)
- kladné napájení napětí (+Ucc)
- zem (0)
- výstup
- dále může obsahovat:

```
korekční vstupy
záporné napájecí napětí (-Ucc)
```

2.1.4 Napájení

• Symetrické +Ucc, -Ucc, GND

 $\bullet\,$ Nesymetrické $\pm Ucc,\,GND$

Koncový zesilovač s malým odporem

Rozkmit výstupního napětí je omezen napájecím napětím a je o cca 1-2 V menší.

2.1.5 Vnitřní struktura

- Diferenciální zesilovač s velkým vnitřním odporem
- Zesilovač s vysokým zesílením
- Koncový zesilovač s malým odporem

2.2 Zapojení OZ

Všechny zapojení OZ jako zesilovače musí mít zápornou zpětnou vazbu, jinak jsou to komparátory.

2.2.1 Invertující

Vnitřní odpor závisí na R_1

$$A_U = \frac{R_0}{R_1}$$

2.2.2 Neinvertující

Výhodou je velký vnitřní odpor.

$$A_U = 1 + \frac{R_0}{R_1}$$

2.2.3 Komparátor

Kladná zpětná vazba z výstupu do neinvertujícího vstupu zajišťuje hysterezi překlápění. Vstupní napětí se zde porovnává nejen s referenčním napětím, ale částečně i s výstupním napětím. Úroveň překlápění tak závisí částečně na i stavu výstupu. Rezistory R1 a R2 tvoří dělič napětí, který určuje velikost hystereze.

Hysterezní diagram schmittova klopného obvodu

2.3 Frekvenční charakteristiky OZ

2.3.1 Amplitudová frekvenční charakteristika OZ

2.3.2 Fázová frekvenční charakteristika OZ

2.4 Návrh zesilovače

2.4.1 Požadavky

Proveď te teoretický návrh zesilovače pro stejnosměrný milivoltmetr. Zadaný stejnosměrný zesilovač má zisk $a_U = 15dB$. Vstupní obvod (dělič) navrhněte pro rozsahy 300 mV a 1V. Na výstupu místo zatěžovacího odporu bude připojen mikroampérmetr s rozsahem 0.2mA a s vnitřním odporem 100Ω .

2.4.2 Zesílení

$$a_U = 20 * log(A_U)$$

$$15 = 20 * log(A_U)$$

$$\frac{15}{20} = log(A_U)$$

$$A_U = 10^{\frac{15}{20}}$$

$$A_U = 5.62$$

2.4.3 Zpětnovazební rezistory

$$A_U = 1 + \frac{R_0}{R_1} R1 = 1k\Omega$$

$$5.62 = 1 + \frac{R_0}{1000}$$
$$R_0 = 4620\Omega$$

2.4.4 Rozsah 0.3 V

$$A_{U} = \frac{U_{2}}{U_{1}}$$

$$U_{2} = A_{U} * U_{1}$$

$$U_{2} = 5,62 * 0,3$$

$$U_{2} = 1.686V$$

2.4.5 Při 200uA na ampérmetru

$$R = \frac{U_2}{I_2}$$

$$R = \frac{1.686}{200 * 10^{-6}}$$
$$R = 8.43k\Omega$$

2.4.6 Ampérmetr s odporem 100R

$$R = 8430 - 100$$
$$R = 8.33k\Omega$$

2.4.7 Návrh deliče z 1V na 0.3V

$$U_2 = U_1 * \frac{R4}{R3 + R4}$$

$$0,3 = 1 * \frac{15000}{R3 + 15000}$$
$$0,3 * (R3 + 15000) = 15000$$
$$R3 = 35k\Omega$$

2.4.8 Schéma zapojení

2.5 Frekvenční kompenzace OZ

Freknenční závislost OZ je způsobena parazitními kapacitami polovodičových přechodů, kde tyto kapacity společně s odpory tvoří RC články s různými přenosovými vlastnostmi (integrační, derivační).

Tím pádem dochází k fázovému posunutí signálu vůči vstupnímu a po projití signálu všemi stupni může být výsledný posun velmi velký, takže výsledná zpětná vazba se může blížit kladné a to vede k netabilitě a útlumu výsledného signálu.

U moderních OZ lze toto napravit zapojením vhodného kompenzačního prvku z vnějšku, který způsobí posun signálu opačným směrem a tím dojde k vykompenzování. Frekvenční vlastnosti ovlivňují i vlastnosti použitých polovodičů zejména pak rychlost přechodů.

3 Schéma zapojení

3.1 Amplitudová a fázová charakteristika

3.2 Komparátor s hysterezí

4 Postup měření

Pro měření můžete použít hotový přípravek s operačním zesilovačem (viz příloha) a s uvedenými odpory pro realizaci zpětné vazby nebo modul OZ ze stavebnice RC Dominoputer. Ve druhém případě je doporučená hodnota zesílení volena mezi 10 a 50.

• Invertující zapojení

Při zapojení OZ jako invertujícího zesilovače uzemněte neinvertující vstup a zapojení různých hodnot zpětnovazebních odporů (10, 30, 60 k Ω) realizujte přepínáním přepínačů ve zpětné vazbě.

• Neinvertující zapojení

Při zapojení OZ jako neinvertujícího zesilovače uzemněte invertující vstup a zpětnou vazbu realizujte stejně jako v případě 1a. Vstupní signál přivádíte na neinvertující vstup.

- Pro zjišťování poklesu zesílení nechte poslední realizované zapojení zesilovače a
 měňte velikost napájecího napětí při referenčním kmitočtu 1kHz (na přípravku
 je symetrické napájení realizováno vnitřním odporovým děličem).
- OZ s kladnou zpětnou vazbou (komparátor s hysterezí Schmittův KO)

Zapojení OZ jako komparátoru realizujte uzavřením kladné zpětné vazby. Vstupní signál můžete přivést na libovolný vstup (který není uzemněn). Postupně zvyšujte napětí do chvíle, kdy se na výstupu OZ objeví obdélník.

5 Tabulky naměřených a vypočtených hodnot

5.1 Invertující

5.1.1 $A_U = 2, U_{IN} = 3V$

f[Hz]	10	100	1000	10000	11000	12000	15000	20000
U_2 [V]	6	6	6	5.5	5	4.8	3.8	2.8
A_U	2	2	2	1.8333	1.6666	1.6	1.2666	0.9333
$a_U [dB]$	6.0205	6.0205	6.0205	5.2648	4.4369	4.0823	2.0532	-0.5994
a[cm]	0	0	0	0.5	0.5	0.75	1.1	1.5
b[cm]	3.5	3.5	3.5	3.5	3.5	3.5	3	2.1
$\varphi[^{\circ}]$	180	180	180	171.8699	171.8699	167.9052	159.8637	144.4623

f[Hz]	30000	40000	13000	14000	9000	16000	50000
U_2 [V]	1.9	1.5	4.4	4.2	5.7	3.5	1.1
A_U	0.6333	0.5	1.4666	1.4	1.9	1.1666	0.3666
$a_U [\mathrm{dB}]$	-3.9699	-6.0205	3.3266	2.9225	5.5751	1.3389	-8.7145
a[cm]	1.2	4	2	2.2	0.2	1.2	3.5
b[cm]	1.5	5.5	8	7	3.5	2.5	4.2
$\varphi[^{\circ}]$	141.3402	143.9726	165.9638	162.5528	176.7295	154.3590	140.1944

5.1.2 $A_U = 6, U_{IN} = 0.5V$

f[Hz]	10	100	1000	10000	20000	25000	27000	30000
$U_2[V]$	3	3	3	3	2.5	2.2	2.1	1.9
A_U	6	6	6	6	5	4.4	4.2	3.8
$a_U[dB]$	15.5630	15.5630	15.5630	15.5630	13.9794	12.8691	12.4650	11.5957
a[cm]	0	0	0.1	0.6	1.5	1.7	1.9	2
b[cm]	4	4	4	4.5	4.2	3.5	3.5	3.2
$\varphi[^{\circ}]$	180	180	178.5679	172.4054	160.3462	154.0935	151.5044	147.9946

f[Hz]	40000	50000	26000	22000	15000	18000	22000
$U_2[V]$	1.4	1.1	2.2	2.1	3	2.8	2.6
A_U	2.8	2.2	4.4	4.2	6	5.6	5.2
$a_U[dB]$	8.9432	6.8485	12.8691	12.4650	15.5630	14.9638	14.3201
a[cm]	1.8	1.8	1.9	1.8	1	1.2	1.6
b[cm]	2.4	2	3.6	3.5	4.2	4.2	4.1
$\varphi[^{\circ}]$	143.1301	138.0128	152.1759	152.7839	166.6075	164.0546	158.6821

5.1.3 $A_U = 12, U_{IN} = 0.2V$

f[Hz]	10	100	1000	5000	8000	10000	20000	25000
$U_2[V]$	2.5	2.5	2.5	2.5	2.5	2.5	2.2	2
A_U	12.5	5	5	5	5	5	4.4	4
$a_U[dB]$	21.9382	13.9794	13.9794	13.9794	13.9794	13.9794	12.8691	12.0412
a[cm]	0	0	0	0.5	0.5	0.6	1.5	1.8
b[cm]	3.6	3.6	3.5	3.7	3.6	3.5	3.5	3
$\varphi[^{\circ}]$	180	180	180	172.3039	172.0928	170.2724	164.0546	164.4759

f[Hz]	30000	40000	50000	15000	17000	22000	35000
$U_2[V]$	1.7	1.3	1.1	2.4	2.3	2.1	1.5
A_U	3.4	2.6	2.2	4.8	4.6	4.2	3
$a_U[dB]$	10.6296	8.2995	6.8485	13.6248	13.2552	12.4650	9.5424
a[cm]	1.5	1.8	1.5	1	1	1.8	1.8
b[cm]	2.8	2.1	1.8	3.5	3.6	3.2	2.5
$\varphi[^{\circ}]$	156.8014	150.6422	149.0362	151.8214	144.2461	139.3987	140.1944

5.2 Neinvertující

5.2.1 $A_U = 3, U_{IN} = 1V$

f[Hz]	10	100	1000	10000	15000	20000	17000	25000.0
$U_2[V]$	3	3	3	3	3	2.7	2.9	2.3
A_U	3	3	3	3	3	2.7	2.9	2.3
$a_U[dB]$	9.5424	9.5424	9.5424	9.5424	9.5424	8.6273	9.2480	7.2346
a[cm]	0	0	0	0.2	0.2	1	0.5	1.2
b[cm]	4	4	4	4.2	4.2	4.2	4.2	4.1
$\varphi[^{\circ}]$	0.0000	0.0000	0.0000	2.7263	2.7263	13.3925	6.7890	16.3139

f[Hz]	23000	30000	35000	27000	33000	40000	50000.0
$U_2[V]$	2.5	1.9	1.6	2.2	1.8	1.4	1.1
A_U	2.5	1.9	1.6	2.2	1.8	1.4	1.1
$a_U[dB]$	7.9588	5.5751	4.0824	6.8485	5.1055	2.9226	0.8279
a[cm]	1.2	1.5	1.5	1.5	1.5	1.5	1.5
b[cm]	4.2	3.5	3	4	3.2	2.5	2.2
$\varphi[^{\circ}]$	15.9454	23.1986	26.5651	20.5560	25.1148	30.9638	34.2869

5.2.2 $A_U = 7, U_{IN} = 0.5V$

f[Hz]	10	100	1000	10000	15000	17000	20000	22000
$U_2[V]$	3.5	3.5	3.5	3.5	3.2	3.1	2.9	2.6
A_U	7	7	7	7	6.4	6.2	5.8	5.2
$a_U[dB]$	16.9020	16.9020	16.9020	16.9020	16.1236	15.8478	15.2686	14.3201
a[cm]	0	0	0	0.5	1.4	1.6	2	2
b[cm]	5	5	5	5	5	5	4.8	4.5
$\varphi[^{\circ}]$	0.0000	0.0000	0.0000	5.7106	15.6422	17.7447	22.6199	23.9625

f[Hz]	25000	27000	30000	35000	40000	50000	21000
$U_2[V]$	2.4	2.2	2	1.7	1.4	1.4	2.8
A_U	4.8	4.4	4	3.4	2.8	2.8	5.6
$a_U[dB]$	13.6248	12.8691	12.0412	10.6296	8.9432	8.9432	14.9638
a[cm]	2	2	2	2	2	2	2
b[cm]	4	4	3.5	3	2.6	2.8	4.8
$\varphi[^{\circ}]$	26.5651	26.5651	29.7449	33.6901	37.5686	35.5377	22.6199

5.2.3 $A_U = 13, U_{IN} = 0.5V$

f[Hz]	10	100	1000	10000	12000	15000	20000	30000
$U_2[V]$	6.5	6.5	6.5	5.5	4.8	3.8	3	2
A_U	32.5	32.5	32.5	27.5	24	19	15	10
$a_U[dB]$	30.2377	30.2377	30.2377	28.7867	27.6042	25.5751	23.5218	20.0000
a[cm]	0	0	0	1.2	1.5	1.5	1.8	1.5
b[cm]	4	4	4	3.5	3.5	3	2	1.6
$\varphi[^{\circ}]$	0.0000	0.0000	0.0000	18.9246	23.1986	26.5651	41.9872	43.1524

f[Hz]	5000	7000	8000	11000	13000	14000	17000
$U_2[V]$	6.5	6.4	6.2	5.2	4.5	4	3.4
A_U	32.5	32	31	26	22.5	20	17
$a_U[dB]$	30.2377	30.1030	29.8272	28.2995	27.0437	26.0206	24.6090
a[cm]	0.5	1	1.2	1.5	1.5	1.6	1.7
b[cm]	4	3.8	4	3.5	3	3	2.5
$\varphi[^{\circ}]$	7.1250	14.7436	16.6992	23.1986	26.5651	28.0725	34.2157

5.3 Závislost zesílení na napájecím napětí

 $U_1 = 0.2V$

<u> </u>								
	Ucc	0	1	2	3	9	15	18
	U2 [V]				l			0.4
	A_U [-]	0	0.1	1.75	2	2	2	2

6 Grafy

- 6.1 Amplitudové frekvenční charakteristiky
- 6.1.1 $A_U = 2$ (invertující)

6.1.2 $A_U = 6$ (invertující)

6.1.3 $A_U = 12$ (invertující)

6.1.4 $A_U = 3$ (neinvertující)

6.1.5 $A_U = 7$ (neinvertující)

6.1.6 $A_U = 13$ (neinvertující)

6.2 Fázové frekvenční charakteristiky

6.2.1
$$A_U = 2$$
 (invertující)

6.2.2 $A_U = 6$ (invertující)

6.2.3 $A_U = 12$ (invertující)

6.2.4 $A_U = 3$ (neinvertující)

6.2.5 $A_U = 7$ (neinvertující)

6.2.6 $A_U = 13$ (neinvertující)

6.3 Závislost zesílení na napájecím napětí

7 Příklady výpočtů

7.1 Zesílení

$$A_U = \frac{U_2}{U_1} = \frac{6}{3} = 2$$

7.1.1 Invertující

$$A_U = \frac{R_0}{R_1} = \frac{20000}{10000} = 2$$

7.1.2 Nenvertující

$$A_U = 1 + \frac{R_0}{R_1} = 1 + \frac{20000}{10000} = 3$$

7.2 Zisk

$$a_U = 20 * log(A_U) = 20 * log(2) = 6.0205dB$$

7.3 Fázový posuv

7.3.1 Invertující

$$\varphi = 180 - \arcsin\frac{a}{b} = 180 - \arcsin\frac{0.5}{3.7} = 172.3039^{\circ}$$

7.3.2 Nenvertující

$$\varphi = \arcsin\frac{a}{b} = \arcsin\frac{1.2}{3.5} = 18.9^{\circ}$$

8 Závěr

Z charakteristik je vidět, že Pásmo B_3 se zmenšuje se zvyšujícím ziskem a zesílením. Mezní frekvence se při nejvyšším zisku (30dB) nedostala pod 10kHz ($B_3 = 10kHz$) a při nejnižsím zisku (6dB) byla okolo 20kHz ($B_3 = 20kHz$).

V pásmu B_3 jsou fázové posuny do 5° u neinvertujících zapojení, u invertujících nejsou meší než 185°

Při zavedení kladné zpětné vazby začne opreační zesilovač pracovat jako komplarátor s hysterézií. Na jeho výstupu jsou pouze 2 hodnoty napětí $(U_{CC} \ a \ -U_{CC})$. Ze -Ucc do +Ucc se překlápí v -2.5V a z +Ucc do -Ucc v -5V. Hysteréze je 2.5V.

Naměřené Au se schoduje s teoretickými předpoklady.