Отчет по лабораторной работе № 3 «Применение многослойной нейронной сети для классификации данных»

студента Баранова Алекса	<u>ндра</u> группы_	Б22-534	. Дата сдачи: <u>07.05.2025</u>
Ведущий преподаватель:	Трофимов А.	Г. оценка:	подпись:

Вариант №9

Цель работы: изучение математической модели многослойной нейронной сети и решение с её помощью задачи классификации данных.

1. Исходные данные

Число признаков	Число классов	Объём выборки	Объёмы выборок для каждого класса
2	4	600	[200, 150, 150, 100]

Диаграмма рассеяния исходных данных (отметить данные разных классов разными цветами):

Формирование обучающей, валидационной и тестовой выборок:

	Обучающая	Валидационная	Тестовая	Всего
%	60	30	10	100
Объём выборки	360	180	60	600
Объёмы выборок для каждого класса	[112, 69, 84, 95]	[27, 8, 8, 17]	[61, 23, 58, 38]	[200, 100, 150, 150]

Предобработка данных:

	Метод	Параметры метода	Формула расчёта
Предобработка входов	Whitening	\overline{X}, Σ	$X' = \Sigma^{-\frac{1}{2}}(X - \overline{X})$
Предобработка выходов	One-Hot encoding	K	$y' = (y_1 y_2 \dots y_K)$ $y_i = \begin{cases} 1, & if \ y = i \\ 0 \end{cases}$

2. Построение нейросетевого классификатора с двумя скрытыми слоями

Параметры архитектуры сети:

Число входов	Число выходов	Число и АХ нейронов 1-го скрытого слоя	Число и АХ нейронов 2-го скрытого слоя	Функция активации выходного слоя
2	4	20, Sigmoid	20, Sigmoid	Softmax

Схема нейронной сети:

Параметры обучения:

Метод обучения	Параметры метода обучения	Режим обучения	Функция потерь
Momentum	$\alpha = 0.05$ $\eta = 0.9$	Mini-Batch bs = 20	Categorical cross- entropy

Параметры инициализации:

Распределение весов 1-го скрытого слоя	Распределение весов 2-го скрытого слоя	Распределение весов выходного слоя	
Xavier_normal(0, 0.1)	Xavier_normal(0, 0.1)	Xavier_normal(0, 0.1)	

Критерий останова: Early Stopping

Зависимость средней функции потерь $E(\tau)$ и ошибки классификации $\varepsilon(\tau)$ на обучающей, валидационной и тестовой выборках от времени обучения (всего 6 графиков):

Отметить на графике начало переобучения (если наблюдается) (ε = число неверно классифицированных примеров/число всех примеров)

Показатели качества обученного нейросетевого классификатора:

	Обучающая	Валидационная	Тестовая
Среднее значение функции потерь E	0.818	0.767	0.953
Ошибка классификации є	0.256	0.206	0.350

Матрица ошибок классификации обученной сети на обучающей / тестовой выборках:

Формируемые обученной сетью области классов:

(нанести на диаграмму исходные данные, закрасить области разных классов разными цветами, отметить границы между классами)

3. Проверка устойчивости найденного решения

Провести обучение сети заново из другой случайной начальной точки w(0).

Показатели качества обученного нейросетевого классификатора:

	Обучающая	Валидационная	Тестовая
Среднее значение функции потерь E	0.791	0.731	0.910
Ошибка классификации є	0.270	0.250	0.350

Формируемые обученной сетью области классов:

(нанести на диаграмму исходные данные, закрасить области разных классов разными цветами, отметить границы между классами)

Выводы: нейронная сеть с двумя скрытыми слоями способна к обобщению данных. Найденное в процессе лабораторной работы решение является устойчивым и показывает приемлемые результаты для таких исходных данных.