UPPER BOUND

$$R = 1 - \left(1 - R_{c_3 c_4} \right) + \left(1 - R_{C_3 c_4} \right) + \left(1 - R_{C_3 c_4} \right)^{\frac{1}{2}}$$

C3 NON FUNZ

CS NON FUNZ

4.1.2.2 Regola di bayes

Come detto ora si passa alla regola di Bayes per il calcolo preciso della Reliability dell'intero Sistema. Ciò lo si fa condizionando il funzionamento del sistema a quello del singolo componente (in questo caso il componente 4 poichè non ci permette di vedere il sistema in serie o in parallelo). I casi che quindi analizzaremo sono :

1. il sistema funziona dato che il componente 4 funziona (si sotituisce il componente con un corto circuito)

66

CAPITOLO 4. DEPENDABILITY

Figura 4.4: Sistema funzionante dato componente 4 funzionante

12 January 2023 17:1

$$R_{SYSA} = 1 - \left[(1 - R_1 R_2 R_3) (1 - R_2 R_1 R_3) (1 - R_2 R$$

$$R_{5}/_{5}B = \begin{bmatrix} 1 - (1 - R_{1})^{5} \end{bmatrix} \cdot \begin{bmatrix} 1 - (1 - R_{2})^{5} \end{bmatrix} \cdot \begin{bmatrix} 1 - (1 - R_{3})^{5} \end{bmatrix}$$

$$R_{5}/_{5}B = \begin{bmatrix} 1 - (1 - R_{1})^{5} \end{bmatrix} \cdot \begin{bmatrix} 1 - (1 - R_{2})^{5} \end{bmatrix} \cdot \begin{bmatrix} 1 - (1 - R_{3})^{5} \end{bmatrix} = \begin{bmatrix} 1 - (1 - R_{$$

+ 4375 X -0000 ~- 10-10

Pupilo B
$$\begin{bmatrix}
1 - (1-R)^{m} \end{bmatrix}^{3} = \begin{bmatrix}
1 - (1-R^{3})^{5}
\end{bmatrix}$$

$$1 - (2-R)^{m} = 3 \overline{1 - (1-R^{3})^{5}}$$

$$(1-R)^{m} = 1 - \overline{1}$$

$$m = \begin{cases} -1 - (1-R^{3})^{5}
\end{bmatrix}$$

$$m = \begin{cases} -1 - (1-R^{3})
\end{bmatrix}$$

$$m = \begin{cases} -1 - (1-$$

Grafico dei due sistemi, il blu è il primo, il rosso è il secondo.

T = 2 1400

Questa formula dobbiamo sostituirla alla reliability del sistema A.

26 January 2023 17:18

4.3.1 Svolgimento

Per poter risolvere il seguente esercizio, si è deciso di enumerare tutti i possibili casi in cui il sistema funziona e sommare la reliability di ognuno di essi. Le condizioni di funzionamento del sistema prevedono che tutti i nodi attivi riescano a comunicare con il nodo ad essi successi, anche in presenza di nodi guasti. In particolare, si apprende che la condizione minima perché il sistema non funzioni è il guasto di due nodi consecutivi. Per semplicità, si è deciso di utilizzare la formula per il calcolo della reliability in un sistema M-out-of-N a cui però sono stati sottratti i casi in cui il sistema fallisce. La formula utilizzata è la seguente:

$$R_{sys} = \sum_{i=0}^{N-M} {N \choose i} R_m^{N-i} (1 - R_m)^i$$

In cui:

- N: numero di nodi che compongono il sistema;
- M: massimo numero di nodi che si possono guastare;
- i: indice della sommatoria che varia all'aumentare dei nodi guasti;
- R_m : indica la reliability del singolo componente del sistema;
- R_m^{N-i} è la reliability dei nodi attivi;
- $(1 R_m)^i$ è l'unreliability dei nodi guasti.

RISOLVIANDLO CON UN FAULT-TREE

LA CONSIZIONE MINIMA DI FALLIMENTO LA CONOSCIAMO QU'NDI:

FER 1=0,005

-0,005.+

R(+) = 2

QUINDI PER 48 H ABBIAND

-0,005.48

R(+) = 2

50,7866279

SOMITURNOO IN RSYS

R675 = 0,688822

IN UN PERIODO DI 48 ORE IL SISTEMA AVA UNA

PROBABILITÀ DI CIRCA IL 6390 DI NON FACURE!

26 January 2023 18:28

Punto A

R₅y₅A =
$$(1 - (1 - R_c R_b)(1 - R_c R_c))$$

R₅y₅A = $(1 - (1 - R_c R_b)(1 - R_c R_c))$

R₆ = $(1 - (1 - R_c R_b)(1 - R_c R_c))$

R₇ = $(1 - (1 - R_c R_b)(1 - R_c R_c))$

R₇ = $(1 - (1 - R_c R_b)(1 - R_c R_c))$

R₈ = $(1 - (1 - R_c R_b)(1 - R_c R_c))$

R₉ = $(1 - (1 - R_c R_b)(1 - R_c R_c))$

PLOTTIAMO I DUR SISTRMI

