

Computer Abstractions and Technology

COMPUTER ORGANIZATION AND ARCHITECTURE

What is a Computer?

CSULE

Components of a Computer

- Classical components
 - ■Processor (control + data path), Memory, Input, Output

CSULB

What You Will Learn

- •How programs are translated into the machine language
 - •And how the hardware executes them
- ■The hardware/software <u>interface</u>
- •What determines program performance
 - And how it can be improved
- •How hardware designers improve performance
- What is parallel processing

Below Your Program

- Application software
 - Written in high-level language
- System software
 - Compiler: translates HLL code to machine code
 - Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources
- Hardware
 - Processor, memory, I/O controllers

CSULB

Levels of Program Code

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

Abstractions

Abstractions

- Abstraction helps us deal with complexity
 - Hide lower-level detail
- The hardware/software interface
 - Instruction Set Architecture (ISA)
- Application binary interface
 - ■The ISA plus system software interface
- Implementation
 - The details underlying and interface

Technology Trends

- •Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	2,400,000
2013	Ultra large scale IC	250,000,000,000

Semiconductor Technology

- Silicon: semiconductor
- •Add materials to transform properties:
 - Conductors
 - Insulators
 - Switch

Manufacturing ICs

CSULB

Intel Core i7 Wafer

■300mm wafer, 280 chips, 32nm technology

■Each chip is 20.7 x 10.5 mm

Yield Matters

Yield: proportion of working dies per wafer

CSULB

Defining Performance

•Which airplane has the best performance?

Response Time and Throughput

- Response time
 - •How long it takes to do a task
- Throughput
 - Total work done per unit time
 - ■e.g., tasks/transactions/... per hour
- •How are response time and throughput affected by
 - Replacing the processor with a faster version?
 - •Adding more processors?
- •We'll focus on response time for now...

Relative Performance

- •Define Performance = $\frac{1}{Execution\ Time}$
- ■"X is *n* time faster than Y"

$$\blacksquare \frac{Performance_X}{Performance_Y} = \frac{Execution Time_Y}{Execution Time_X} = n$$

- Example: time taken to run a program
 - •10s on A, 15s on B
 - Execution TimeB / Execution TimeA = 15/16
 - ■So A is <u>1.5</u> times faster than B

Measuring Execution Time

- Elapsed time
 - Total response time, including all aspects
 - Processing, I/O, OS overhead, idle time
 - Determines system performance
- CPU time
 - ■Time spent processing a given job
 - Discounts I/O time, other jobs' shares
 - Comprises user CPU time and system CPU time
 - Different programs are affected differently by CPU and system performance

CPU Clocking

- Operation of digital hardware governed by a constant-rate clock
- Clock period: duration of a clock cycle

•e.g.,
$$250ps = 0.25ns = 250 \times 10^{-12}s$$

- Clock frequency (rate): cycles per second
 - •e.g., $4.0GHz = 4000MHz = 4.0 \times 10^9 Hz$

CPU Time

- ■CPU Time = CPU Clock Cycles × Clock Cycle Time $= CPU \ Clock \ Cycles \times \frac{1}{Clock \ Rate}$
- Performance improved by
 - Reducing number of clock cycles
 - Increasing clock rate
 - •Hardware designer must often trade off clock rate against cycle count

CPU Time Example

- Computer A: 2GHz clock, 10s CPU time
 - Designing Computer B
 - Aim for 6s CPU time
 - Can do faster clock, but causes 1.2 × clock cycles

•How fast must Computer B clock be?

