PSI1 et PSI2 samedi 1^{er} octobre 2016

DEVOIR SURVEILLÉ N°2

Les calculatrices sont autorisées.

Consignes:

- On attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. En particulier, on laissera une marge et on encadrera le résultat de chaque question traitée.
- La question 6. de la partie II. devra être rédigée sur une copie séparée afin d'être corrigée par votre professeur d'informatique.

MATRICES DONT LES VALEURS PROPRES SONT SUR LA DIAGONALE

Les matrices diagonales et les matrices triangulaires sont des exemples triviaux de matrices ayant leurs valeurs propres sur la diagonale. Ce problème s'intéresse aux matrices vérifiant cette particularité.

Dans ce problème, toutes les matrices sont à coefficients réels et n est un entier, $n \ge 2$. On dira qu'une matrice $A = (a_{ij})$ de $\mathcal{M}_n(\mathbb{R})$ est une **matrice à diagonale propre** si son polynôme caractéristique est scindé sur \mathbb{R} et si ses termes diagonaux sont ses valeurs propres avec le même ordre de multiplicité, c'est-à-dire :

$$A$$
 est à diagonale propre $\iff \chi_A(X) = \prod_{i=1}^n (X - a_{ii})$

On pourra noter en abrégé : A est une \mathbf{MDP} pour A est une matrice à diagonale propre.

On notera \mathcal{E}_n l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ à diagonale propre.

On notera également \mathcal{S}_n le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ formé des matrices symétriques et \mathcal{A}_n le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ formé des matrices antisymétriques.

I. EXEMPLES

- 1. Soit α un réel et $M(\alpha)=\begin{pmatrix} 1 & -1 & \alpha \\ 0 & 2 & -\alpha \\ 1 & 1 & 2-\alpha \end{pmatrix}$
 - (a) Calculer, en donnant le détail des calculs, le polynôme caractéristique de la matrice $M(\alpha)$. En déduire que, pour tout α , la matrice $M(\alpha)$ est une matrice à diagonale propre.
 - (b) Quelles sont les valeurs de α pour lesquelles la matrice $M(\alpha)$ est diagonalisable?
- 2. On considère la matrice $A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. Cette matrice antisymétrique A est-elle une matrice à diagonale propre?
- 3. Déterminer \mathcal{E}_2 .

II. TEST DANS LE CAS n=3

- 4. Donner une condition nécessaire et suffisante pour qu'une matrice à diagonale propre soit inversible. Donner un exemple de matrice à diagonale propre (non diagonale) de $\mathcal{M}_3(\mathbb{R})$, inversible et telle que A^{-1} est également une matrice à diagonale propre. On donnera A^{-1}
- 5. Soit $A = (a_{ij})$ une matrice de $\mathcal{M}_3(\mathbb{R})$, démontrer que A est une matrice à diagonale propre si et seulement si, elle vérifie les deux propriétés suivantes : $\det A = \prod_{i=1}^3 a_{ii}$ et $a_{12}a_{21} + a_{13}a_{31} + a_{23}a_{32} = 0$
- 6. Utilisation du langage Python
 - (a) Ecrire une fonction qui reçoit en argument une matrice $A = (a_{ij}) \in \mathcal{M}_3(\mathbb{R})$ sous forme de liste de listes, et qui renvoie True si la matrice est à diagonale propre et False sinon. Le calcul du déterminant d'une matrice est réalisé avec la fonction numpy.linalg.det(M).
 - (b) A l'aide de votre calculatrice, indiquer, parmi les matrices suivantes, celles qui sont à diagonale propre :

$$A_{1} = \begin{pmatrix} -1 & 0 & 3 \\ -3 & 2 & 3 \\ 0 & 0 & 2 \end{pmatrix} \quad A_{2} = \begin{pmatrix} 5 & 2 & 2 \\ -8 & 4 & 0 \\ 1 & 1 & 4 \end{pmatrix} \quad A_{3} = \begin{pmatrix} 1 & -1 & 4 \\ 0 & 2 & -4 \\ 1 & 1 & -2 \end{pmatrix}$$

$$A_{4} = \begin{pmatrix} 4 & 2 & 0 \\ 0 & 2 & 0 \\ -2 & -2 & 2 \end{pmatrix} \quad A_{5} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ -2 & 3 & 6 \end{pmatrix} \quad A_{6} = \begin{pmatrix} 2 & 0 & 2 \\ -2 & 4 & 2 \\ 2 & -2 & 2 \end{pmatrix}$$

$$A_{7} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} \quad A_{8} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

III. EXEMPLES DE MATRICES PAR BLOCS

7. Si $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ est une matrice de $\mathcal{M}_n(\mathbb{R})$ par blocs (les matrices A et C étant des matrices carrées), démontrer que

$$\det M = (\det A)(\det C)$$

(on pourra utiliser les matrices par blocs $\begin{pmatrix} I_r & 0 \\ 0 & C \end{pmatrix}$ et $\begin{pmatrix} A & B \\ 0 & I_s \end{pmatrix}$ en donnant des précisions sur les tailles des matrices qui interviennent).

- 8. Donner un exemple d'une matrice M à diagonale propre de $\mathcal{M}_4(\mathbb{R})$ (matrice 4×4) dans chacun des cas suivants :
 - (a) La matrice M contient treize réels non nuls (on expliquera brièvement la démarche).
 - (b) $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ où les matrices A, B et C sont toutes des matrices de $\mathcal{M}_2(\mathbb{R})$ ne contenant aucun terme nul (on expliquera brièvement la démarche).

IV. QUELQUES PROPRIÉTÉS

- 9. Si A est une matrice de $\mathcal{M}_n(\mathbb{R})$ à diagonale propre, démontrer que, pour tout couple (a,b) de réels, les matrices $aA + bI_n$ et les matrices $a^tA + bI_n$ sont encore des matrices à diagonale propre.
- 10. Si on note G_n l'ensemble des matrices à diagonale propre inversibles, démontrer que tout élément de \mathcal{E}_n est limite d'une suite d'éléments de G_n .

2

- 11. Matrices trigonalisables
 - (a) Une matrice trigonalisable est-elle nécessairement une matrice à diagonale propre?
 - (b) Justifier qu'une matrice à diagonale propre est trigonalisable.
 - (c) Déterminer une condition nécessaire et suffisante pour qu'une matrice de $\mathcal{M}_n(\mathbb{R})$ soit semblable à une matrice à diagonale propre.
- 12. Démontrer que toute matrice de $\mathcal{M}_n(\mathbb{R})$ est somme de deux matrices à diagonale propre. \mathcal{E}_n est-il un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$?

V. MATRICES SYMÉTRIQUES ET MATRICES ANTISYMÉTRIQUES

On pourra utiliser sans démonstration le résultat suivant :

- \square Tout élément de \mathcal{S}_n est diagonalisable. Plus précisément, si $A \in \mathcal{S}_n$, il existe une matrice inversible $P \in \mathcal{M}_n(\mathbb{R})$ d'inverse tP (dite orthogonale) telle que tPAP soit diagonale.
- 13. Question préliminaire

Soit $A = (a_{ij})$ une matrice de $\mathcal{M}_n(\mathbb{R})$, exprimer $\operatorname{tr}({}^t\!AA)$ en fonction des coefficients de A.

- 14. Matrices symétriques à diagonale propre
 - (a) Soit $A = (a_{ij})$ une matrice de $\mathcal{M}_n(\mathbb{R})$, symétrique dont les valeurs propres sont notées $\lambda_1, ..., \lambda_n$. Démontrer que tAA est semblable à diag $(\lambda_1^2, ..., \lambda_n^2)$, puis que :

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2} = \sum_{i=1}^{n} \lambda_{i}^{2}$$

- (b) Déterminer l'ensemble des matrices symétriques réelles à diagonale propre.
- 15. Matrices antisymétriques à diagonale propre

Soit A une matrice antisymétrique de $\mathcal{M}_n(\mathbb{R})$ à diagonale propre.

- (a) Démontrer que $A^n = 0$ et calculer $({}^tAA)^n$. (On pourra utiliser le théorème de Cayley-Hamilton)
- (b) Justifier que la matrice ${}^{t}AA$ est diagonalisable puis que ${}^{t}AA = 0$.
- (c) Conclure que A est la matrice nulle.

VI. DIMENSION MAXIMALE D'UN ESPACE VECTORIEL INCLUS DANS \mathcal{E}_n

16. Question préliminaire

Indiquer la dimension de A_n (on ne demande aucune démonstration, la réponse suffit).

17. Soit F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ tel que l'on ait $F \subset \mathcal{E}_n$. Démontrer que

$$\dim F \leqslant \frac{n(n+1)}{2}$$

pour cela on pourra utiliser $\dim(F + \mathcal{A}_n)$. Quelle est la dimension maximale d'un sous-espace vectoriel F de $\mathcal{M}_n(\mathbb{R})$ vérifiant $F \subset \mathcal{E}_n$?

18. On suppose $n \ge 3$. Déterminer un sous-espace vectoriel F de $\mathcal{M}_n(\mathbb{R})$ vérifiant $F \subset \mathcal{E}_n$, de dimension maximale, mais tel que F ne soit pas constitué uniquement de matrices triangulaires.

3