

# Green Infrastructure is Important for Sustainable Development

- GI is the network of natural and semi-natural areas that\*:
  - provides eco-system services: clean air, pollination, recreation, etc.
  - preserves biodiversity
  - e.g. parks, gardens, rivers, playgrounds, pools, plazas, bike trails, bridges, etc.
- Maintaining and developing GI have a spatial dimension:
  - networked nature of this infrastructure must be assured at different scales
  - spatial dist. of GI is related with spatial-equity, ecological balance, and territorial cohesion.
- Location-Based-Social-Networks (LBSN) permit analyzing GI from user point of view and guide GI management and planning Marti et al. (2020).

## GI in Métropole du Grand Paris

- Métropole du Grand Paris is the largest urban region in the European Union.
  - already faces the effects of global warming
  - aims to improve resilience of the area via sustainability transition.
  - maintaining and developing GI is thus crucial for the area.
- The objective of this study is:
  - to explore the spatial pattern of GI in Métropole du Grand Paris by taking user's preferences into account
  - and shed some light on the spatial-equity dimension of the current GI in the area.

## **Data: Sources and Description of Data**

- Métropole du Grand Paris consists of 150 neighborhoods:
  - the city of Paris (20 arrondissements), inner and outer suburbs (130 communes)
- From INSEE: the list of arrondissements, their population and surface area
- From an open platform for French public data (https://www.data.gouv.fr):
  - the list of communes, and their population and surface area
  - polygonal representation and geographical coordinates of the neighborhoods
- From Marti et al. (2020): the list of Foursquare categories that can be considered as GI
- From Foursquare: data on GI venues.

# Methodology

- 1. Choropleth maps to describe spatial distribution of population density and GI venues.
- 2. Testing for correlation between population density and GI:
  - Pearson correlation coefficient between population density and number of GI venues.
  - Null hypothesis: population density and number of GI venues in neighborhoods are not correlated.
- 3. k-means clustering to analyze (user-based) GI in Métropole du Grand Paris.
  - Most neighborhoods have very few GI elements
  - Only neighborhoods with more than 7 venue categories are clustered according to top 5 venue categories (to be revisited in discussion)

## **Results**: Spatial distribution of population density and GI venues





- Moving from the city to outer suburbs, population both population density and number of GI venues decrease
- Less spatial heterogeneity in GI distribution as compared to population density
  - Strong assumption in measurement of GI: Foursquare check-ins are representative of the preferences of the whole population.

#### **Results**: Correlation between population density and GI venues



- Statistical evidence on moderate level of correlation
  - The Pearson corr. coeff: 0.594 (p-value= 0.000)
- 1<sup>st</sup> arrondissement differs from other neighborhoods.
  - population density is less than the average but more GI venues than the average.

## **Results**: Clustering neighborhoods with respect to top GI categories



- the Elbow heuristic suggests 7 clusters
- It is difficult to come-up with a cluster typology, but:
  - 3<sup>rd</sup> cluster: Plazas is the top category
  - 4<sup>th</sup> cluster: Public places such as parks, plazas, gardens are top venue categories.
  - 5<sup>th</sup> cluster: either parks and plazas as first rank categories and then sports facilities.
  - 6<sup>th</sup> cluster: similar to the 5<sup>th</sup> cluster except that sports facilities are more highly ranked.

|                         | Cluster ID |   |   |   |   |   |   |
|-------------------------|------------|---|---|---|---|---|---|
|                         | 1          | 2 | 3 | 4 | 5 | 6 | 7 |
| Number of Neighborhoods | 1          | 2 | 6 | 4 | 7 | 7 | 1 |

# **Results**: Clustering neighborhoods with respect to top GI categories



- differences between clusters are not sharp.
- similarly, no specific spatial pattern is observed in distribution of clusters.

#### **Discussion and Conclusion**

- These results should be taken with great care for at least two main reasons:
  - possible selection bias resulting from the use of Foursquare data: particular age cohorts with particular ICT usage patterns??
  - complementing this analysis with data from urban plans would be essential to draw conclusions for GI management and planning.
- Clusters identified in the study are overly sensitive to certain methodological choices.
  - small increases in the sample size or in the number of top venue categories lead to vastly different results
  - data triangulation and integrating theoretical insights from spatial planning can help.
- The results are far from being robust, and experimental in nature. Still, the exercise illustrates a Location-Based-Social-Networks (LBSN) approach to inform GI management and planning.