

AD-A194 205      EVALUATION OF ATMOSPHERIC EFFECTS FOR OPERATIONAL  
TACTICAL DECISION AID (U) PENNSYLVANIA STATE UNIV  
UNIVERSITY PARK DEPT OF ELECTRICAL EN K TOMIVANA  
UNCLASSIFIED 89 FEB 88 AFWAL-TR-87-1190 F49620-85-C-0013 F/G 4/1      1/1

NL





(2)

AFWAL-TR-87-1190

DTIC FILE COPY



AD-A194 205

EVALUATION OF ATMOSPHERIC EFFECTS  
FOR OPERATIONAL TACTICAL DECISION AID

Dr. Ken Tomiyama  
The Department of Electrical Engineering  
Pennsylvania State University  
University Park, Pennsylvania 16802

DTIC  
SELECTED  
APR 15 1988  
S D  
CD

February 1988

Final Report for Period January 1987 to August 1987

Approved for public release; distribution is unlimited.

DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of contents or reconstruction of the document.

AVIONICS LABORATORY  
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES  
AIR FORCE SYSTEMS COMMAND  
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

88 14 028

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention they may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.



MARIO N. MOYA, Project Engineer  
EO Sensors Eval/Analysis Group  
Electro-Optics Branch



JAMES J. STEWART, Chief, AFWAL/AARI-3  
EO Sensors Eval/Analysis Group  
Electro-Optics Branch

FOR THE COMMANDER



GALE D. URBAN, Chief, AFWAL/AARI  
Electro-Optics Branch

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFWAL/AARI-3, Wright-Patterson AFB OH 45433-6543 to help maintain a current mailing list.

Copies of this report should not be returned unless return is required by security consideration, contractual obligations, or notice on a specific document.

**REPORT DOCUMENTATION PAGE**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             |                                                                                                                |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1a. REPORT SECURITY CLASSIFICATION<br>Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                             | 1b. RESTRICTIVE MARKINGS                                                                                       |                                    |
| 2a. SECURITy CLASSIFICATION AUTHORITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                             | 3. DISTRIBUTION/AVAILABILITY OF REPORT<br>Approved for public release; distribution is unlimited.              |                                    |
| 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             |                                                                                                                |                                    |
| 4. PERFORMING ORGANIZATION REPORT NUMBER(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                             | 5. MONITORING ORGANIZATION REPORT NUMBER(S)<br><b>AFWAL-TR-87-1190</b>                                         |                                    |
| 6a. NAME OF PERFORMING ORGANIZATION<br>Pennsylvania State University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6b. OFFICE SYMBOL<br><i>(If applicable)</i>                                                                 | 7a. NAME OF MONITORING ORGANIZATION<br>Avionics Laboratory (AFWAL/AARI)<br>AF Wright Aeronautical Laboratories |                                    |
| 6c. ADDRESS (City, State and ZIP Code)<br>University Park, PA 16802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             | 7b. ADDRESS (City, State and ZIP Code)<br>Wright-Patterson AFB, OH 45433-6543                                  |                                    |
| 8a. NAME OF FUNDING SPONSORING ORGANIZATION<br>AFOSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8b. OFFICE SYMBOL<br><i>(If applicable)</i><br>XOT                                                          | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER<br>Contract No. F49620-85-C-0013                               |                                    |
| 10. SOURCE OF FUNDING NOS.<br>PROGRAM ELEMENT NO. 61102F<br>PROJECT NO. 2305<br>TASK NO. D5<br>WORK UNIT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                             |                                                                                                                |                                    |
| 11. TITLE (Include Security Classification)<br>Atmospheric Effects for Operational Tactical Decision Aid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                             |                                                                                                                |                                    |
| 12. PERSONAL AUTHORISI Decision Aid<br>Ken Tomiyama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             |                                                                                                                |                                    |
| 13a. TYPE OF REPORT<br>Final Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13b. TIME COVERED<br>FROM 1/87 TO 8/87                                                                      | 14. DATE OF REPORT (Yr., Mo., Day)<br>88/02/09                                                                 | 15. PAGE COUNT<br>59               |
| 16. SUPPLEMENTARY NOTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                             |                                                                                                                |                                    |
| 17. COSATI CODES<br>FIELD GROUP SUB GR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)<br><br>On the other side. |                                                                                                                |                                    |
| 19. ABSTRACT (Continue on reverse if necessary and identify by block number)<br><br>The Tactical Decision Aid (TDA) is an integrated target/atmosphere/sensor model that is used to estimate target acquisition ranges for infrared sensors. It employs an extensive 8000-plus line computer code, LOWTRAN-6, to evaluate the atmospheric extinction of infrared signals for various climatological conditions. The Operational Tactical Decision Aid (OTDA) is a simplified version of the TDA housed on an HP-41CX, a hand-held computer, and is intended for field use. Since LOWTRAN-6 is too voluminous to be employed for the OTDA, precomputed extinction data tables are currently in use. Manual input of data from the tables to the OTDA is cumbersome and is prone to erroneous readings. Therefore, compact atmospheric extinction models were developed for various types of atmospheric extinction which are significant for the TDA application. The models were developed based on the LOWTRAN-6 computation and were verified (over) |                                                                                                             |                                                                                                                |                                    |
| 20. APPROXIMATE AVAILABILITY OF ABSTRACT<br>The same as RPT to DTIC USERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             | 21. ABSTRACT SECURITY CLASSIFICATION<br>Unclassified                                                           |                                    |
| 22a. NAME OF PERSONNEL INVOLVED IN THE PREPARATION OF THIS REPORT<br>John M. May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                             | 22b. TELEPHONE NUMBER<br><i>(Include Area Code)</i><br>(513) 255-9609                                          | 22c. OFFICE SYMBOL<br>AFWAL/AARI-3 |

19. through extensive accuracy analysis. For automated generation of a data base for accuracy analysis, an interactive driver for LOWTRAN-6, called DGU, was developed. The program can create input decks for LOWTRAN-6 from interactive sessions, run LOWTRAN-6, and post process the LOWTRAN-6 generated data. Finally, the obtained models were integrated into a program, called CTRAN, and coded onto a VAX computer in FORTRAN and in Reverse Polish Notation for the HP-41CX.

10. LOWTRAN, Tactical Decision Aid, Atmospheric Absorption, Transmittance Modeling, Aerosol -

**ACKNOWLEDGEMENTS**

I would like to thank Roger L. Cranos and Don L. Tomlinson, both of the Avionics Laboratory, the Air Force Wright Aeronautical Laboratory (AFWAL/AARI), for providing me with the opportunity to pursue this research. I would like to mention that this report could not be materialized without the help from Mario N. Moya. Valuable help in UNIX and the C programming language from Jeff D. Sweet, also at AFWAL/AARI is acknowledged. I would also like to thank Dennis W. Richardson for his help throughout this project.

|                         |  |
|-------------------------|--|
| A-1                     |  |
| RECEIVED                |  |
| RPT CRAN                |  |
| DMC TAB                 |  |
| CONFIDENTIAL            |  |
| JULY 1987               |  |
| FBI - MEMPHIS           |  |
| BY [Signature]          |  |
| D-4                     |  |
| APPROVED BY [Signature] |  |
| DATE [Signature]        |  |
| A-1                     |  |



## TABLE OF CONTENTS

| <u>Section</u>                                              | <u>page</u> |
|-------------------------------------------------------------|-------------|
| 1. Introduction . . . . .                                   | 1           |
| 1.1 Background . . . . .                                    | 1           |
| 1.2 Project Objectives . . . . .                            | 2           |
| 1.3 Summary of Assumptions . . . . .                        | 3           |
| 2. Atmospheric Extinction Models . . . . .                  | 4           |
| 2.1 Introduction . . . . .                                  | 4           |
| 2.2 Molecular Resonant Absorptions . . . . .                | 5           |
| 2.2.1 Water Vapor Absorption . . . . .                      | 7           |
| 2.2.2 Uniformly-Mixed Gasses . . . . .                      | 9           |
| 2.2.3 Ozone . . . . .                                       | 10          |
| 2.3 Water Vapor Continuum Absorption . . . . .              | 10          |
| 2.4 Aerosol Extinction . . . . .                            | 12          |
| 2.5 Rain Model . . . . .                                    | 14          |
| 2.6 Summary of Model Equations . . . . .                    | 14          |
| 3. Accuracy Evaluation . . . . .                            | 17          |
| 4. Model Upgrading . . . . .                                | 20          |
| 5. Model Implementation . . . . .                           | 23          |
| 6. Conclusions and Directions for Future Study . . . . .    | 26          |
| 6.1 Conclusions . . . . .                                   | 26          |
| 6.2 Directions for Future Study . . . . .                   | 27          |
| REFERENCES . . . . .                                        | 29          |
| Appendix A. Data Generation Utility (DGU) Program . . . . . | 30          |
| Appendix B. CTRAN User's Manual . . . . .                   | 38          |
| Appendix C. CTRAN Programs . . . . .                        | 44          |

## LIST OF TABLES

| <u>Table</u>                                                |  | <u>page</u> |
|-------------------------------------------------------------|--|-------------|
| 1. Preliminary Extinction Models for the OTDA . . . . .     |  | 15          |
| 2. Input Variables for Extinction Models . . . . .          |  | 16          |
| 3. Accuracy Evaluation of Extinction Models . . . . .       |  | 19          |
| 4. Upgraded Aerosol Extinction Model . . . . .              |  | 22          |
| 5. Error Analysis of CTRAN . . . . .                        |  | 24          |
| 5-a. Molecular and Continuum Extinctions . . . . .          |  | 24          |
| 5-b. RURAL Aerosol Extinctions . . . . .                    |  | 24          |
| 5-c. OCEAN Aerosol Extinction . . . . .                     |  | 24          |
| 5-d. URBAN Aerosol Extinction . . . . .                     |  | 24          |
| 5-e. TROPOSPHERIC Aerosol Extinction . . . . .              |  | 25          |
| 5-f. FOG1 Aerosol Extinction . . . . .                      |  | 25          |
| 5-g. FOG2 Aerosol Extinction . . . . .                      |  | 25          |
| A-1. Listing of DGU . . . . .                               |  | 31          |
| A-2. Listing of a Typical Output of DGU (Partial) . . . . . |  | 37          |
| C-1. Listing of the FORTRAN Version of CTRAN . . . . .      |  | 45          |
| C-2. Listing of the HP-41 Version of CTRAN . . . . .        |  | 48          |
| C-2.a. PTRAN - Interactive Version . . . . .                |  | 48          |
| C-2.b. CTRAN - Batch Version . . . . .                      |  | 51          |

SUMMARY

The Tactical Decision Aid (TDA) is an integrated target/atmosphere/sensor model that is used to estimate target acquisition ranges for infrared sensors. It employs an extensive 8000-plus line computer code, LOWTRAN-6, to evaluate the atmospheric extinction of infrared signals for various climatological conditions. The Operational Tactical Decision Aid (OTDA) is a simplified version of the TDA housed on an HP-41CX, a hand-held computer, and is intended for field use. Since LOWTRAN-6 is too voluminous to be employed for the OTDA, precomputed extinction data tables are currently in use. Manual input of data from the tables to the OTDA is cumbersome and is prone to erroneous readings. Therefore, compact atmospheric extinction models were developed for various types of atmospheric extinction which are significant for the TDA application. The models were developed based on the LOWTRAN-6 computation and were verified through extensive accuracy analysis. For automated generation of a data base for accuracy analysis, an interactive driver for LOWTRAN-6, called DGU, was developed. The program can create input decks for LOWTRAN-6 from interactive sessions, run LOWTRAN-6, and post process the LOWTRAN-6 generated data. Finally, the obtained models were integrated into a program, called CTRAN, and coded onto a VAX computer in FORTRAN and in Reverse Polish Notation for the HP-41CX.

## 1. Introduction

### 1.1 Background

The Tactical Decision Aid (TDA) is an integrated target/atmosphere/sensor model that is used to estimate target acquisition ranges for infrared sensors. It employs LOWTRAN-6 [1], [2], an extensive 8000-plus line computer code, to evaluate the atmospheric extinction of infrared signals for various climatological conditions. The Operational Tactical Decision Aid (OTDA) is a simplified version of the TDA, and is intended for field use. It is housed on an HP-41CX, a hand-held computer. Because LOWTRAN-6 is too voluminous to be employed in the OTDA, precomputed extinction data tables are currently in use. However, it is inconvenient to carry the printed tables to the field, and the process of manual data input from the tables to the OTDA is prone to erroneous readings. It is preferred to have an extinction computation program as a part of the OTDA. Therefore, development of a compact atmospheric extinction computation code for the HP-41CX was initiated [3]. The program will replace the transmittance tables, and automate the extinction evaluation process of the OTDA.

As an initial step towards this goal, compact atmospheric extinction models for various extinction mechanisms were developed based on the LOWTRAN-6 models [3]. First, various components of the atmospheric extinction computation in LOWTRAN-6 were studied in detail, and the extinction mechanisms which are active over the wavelength interval of interest, 8 - 12 ( $\mu\text{m}$ ), were

identified. Then, simple analytical expressions were selected to model these active extinction mechanisms. Optimal values for model parameters were obtained by minimizing the differences between the LOWTRAN-6 computations and model predictions using parameter optimization techniques.

### 1.2 Project Objectives

The preliminary models in [3] were in good agreement with LOWTRAN-6 results. However, these models were not extensively tested for various combinations of climatological conditions which are typical of the TDA application. Furthermore, accuracies associated with some aerosol models may not be adequate in demanding applications. Critical testing of the developed models, including possible modifications, should be rendered before they can be coded to replace the extinction tables now in use.

To accommodate the general objective of developing an atmospheric extinction computation program for the OTDA, we have set the following specific objectives:

- (1) Develop a computer program to interactively generate extinction data for various extinction mechanisms using LOWTRAN-6, and to perform an error analysis of a given model. The program will be written as general as possible to facilitate its use for future error analysis.
- (2) Perform an exhaustive error analysis of the extinction models in [3].

- (3) Modify the models to obtain better accuracy, if warranted.
- (4) Develop an extinction computation program for the HP-41CX based on the fully tested models.
- (5) Test the program developed in (4) against climatological conditions typical to the TDA application.

Before starting the summary of previous work, some underlying assumptions which are in effect will be stated.

### 1.3 Summary of Assumptions

Some basic assumptions were made to focus our modeling effort onto the OTDA applications. It was assumed that the quantity to be modeled is an average transmittance over 830 - 1250 ( $\text{cm}^{-1}$ ), corresponding to 8 - 12 ( $\mu\text{m}$ ), band which is the primary spectral region of sensitivity for infrared sensors considered in the OTDA. Optical paths between the sensors and targets are considered horizontal and are located below 2 (km) altitude. The altitude of 300 (m) above sea level, which is the altitude of the sensor test cite at AFWAL/AARI, was designated as a standard height.

Finally, all simplified models should be consistent with LOWTRAN-6. Thus, the models will be derived from the LOWTRAN-6 computation.

## 2. Atmospheric Extinction Models

Although the derivation of various extinction models from the LOWTRAN-6 computation is reported in [3], it is revised and repeated here for review and for completeness of this report. The results of extended error analysis and model upgrading will be given in the next chapter.

### 2.1 Introduction

Infrared radiation passing through the atmosphere loses its intensity as a result of interactions with atmospheric constituents. A quantity which characterizes this process is the atmospheric extinction in terms of the extinction coefficient  $k$ , or the atmospheric transmission in terms of the transmittance  $t$ . The transmittance  $t$  is defined as the ratio of the emitted and received infrared radiation intensities  $I(\text{emitted})$  and  $I(\text{received})$  as,

$$t = \frac{I(\text{received})}{I(\text{emitted})}, \quad (1)$$

and the extinction coefficient  $k$  is related to the transmittance  $t$  by

$$t = \exp(-k). \quad (2)$$

The extinction coefficient  $k$  includes contributions from two extinction mechanisms; absorption, and scattering. Each of these, in turn, consists of various individual contributions. The absorption includes molecular resonant absorptions, molecular continuum absorptions, aerosol (including fog) absorptions, and

rain absorption. The scattering includes molecular scattering and aerosol scattering.

LOWTRAN-6 computes a LOW resolution TRANsmittance called the band transmittance. It is a degraded (or band) transmittance obtained by averaging the monochromatic transmittance over a small wavenumber interval using a triangular weighting function. LOWTRAN-6 adopts the basic assumption of superposition, where the total extinction is the sum of individual contributions. Equivalently, the total transmittance is assumed to be the product of transmittances corresponding to individual sources. This assumption enables us to deal with various extinction mechanisms listed above separately.

As LOWTRAN-6 suggests, some of the extinction mechanisms are inactive in the wavenumber region of interest,  $830 - 1250 \text{ (cm}^{-1}\text{)}.$  As a result, we only need to consider the extinction due to the following: water vapor, uniformly-mixed gasses, ozone, water vapor continuum, aerosol, and rain.

As we discussed above, the requirement of the OTDA is the evaluation of the average transmittance over the  $8 - 12 \text{ (\mu m)}$  wavelength band. Therefore, the extinction models will be developed to represent the relationships between the average transmittance and various climatological conditions including the optical path length.

## 2.2 Molecular Resonant Absorptions

In LOWTRAN-6, various sources are considered for molecular resonant absorption including the three absorbers of concern; water vapor, uniformly-mixed gasses, and ozone. In the evalua-

tion of the absorption due to these three absorbers, two intermediate quantities, called an equivalent absorber amount  $U$  and a modified equivalent absorber amount  $x$ , are utilized in conjunction with two empirical transmittance models. Both the formulation of the modified equivalent absorber amount  $x$  and the computation formula for transmittance depend on the absorber, and are discussed later for each absorber.

Two empirical models, one for ozone and another for both water vapor and uniformly-mixed gasses, are stored as 67 pairs of numbers which represent transmittance  $t$  versus modified equivalent absorber amount  $x$ . The variation of the absorption with respect to the wavenumber are specified through sets of spectral parameters  $C(v)$  which appear within  $x$ . The values of  $C(v)$  are stored at  $5 \text{ (cm}^{-1}\text{)}$  interval over wavenumber regions of significant absorption, called the absorption bands, for each absorber. LOWTRAN-6 computes the equivalent absorber amount  $U$  first and then the modified equivalent absorber amount  $x$  using the pressure, temperature, and wavenumber dependencies specific to each absorber. Finally, the transmittance is computed using the linear interpolation of empirical transmittance functions.

Transmittance profiles for those three absorbers over the  $830 - 1250 \text{ (cm}^{-1}\text{)}$  band were generated at  $5 \text{ (cm}^{-1}\text{)}$  intervals for various combinations of values for atmospheric variables using LOWTRAN-6. Then the resulting profiles are averaged and stored together with atmospheric variables into a data base. Analytical expressions based on the LOWTRAN-6 computations are developed to model the relationship of the average transmittance versus other

variables. An optimal set of model parameters are found using linearization of model equations and the linear least square estimation technique.

#### 2.2.1 Water Vapor Absorption

The transmittance expression used in LOWTRAN-6 for a horizontal path with homogeneous meteorological conditions of pressure  $P$  (mbar), temperature  $T$  (K), relative humidity RH (%), and path length  $R$  (km) at wavenumber  $v$  ( $\text{cm}^{-1}$ ) is as follows.

$$t = f(x), \quad (3-a)$$

$$x = C(v) PN^a TN^b U, \quad (3-b)$$

$$PN = P/P_0, \quad TN = T_0/T, \quad (3-c)$$

$$U = 0.1 WH R, \quad (3-d)$$

$$WH = 0.01 RH F(T_0/T), \quad (3-e)$$

where  $f(\cdot)$ ,  $a$ ,  $b$ ,  $PN$ ,  $TN$ ,  $P_0$ ,  $T_0$ ,  $WH$ , and  $F(\cdot)$  are the empirical transmittance function, absorber parameters ( $a=0.9$ ,  $b=0.45$ ), normalized pressure, normalized temperature, standard pressure (1013.25 mbar), standard temperature (273.15 K), water vapor density ( $\text{g}/\text{m}^3$ ), and an empirical function for saturated water vapor density ( $\text{g}/\text{m}^3$ ) at temperature  $T$ , respectively.

In earlier efforts on modeling of the molecular resonant absorption [4], [5], the following analytical expression, called the double exponential function, was found to have excellent agreement with the LOWTRAN-6 empirical transmittance function.

$$t = \exp\left(-10^{\frac{a_0 + a_1 x}{10}}\right), \quad (4-a)$$

$$x = \log C(v) + n \log(PN) + m \log(TN) + \log(U), \quad (4-b)$$

where  $a_0$ ,  $a_1$ ,  $n$ , and  $m$  are model parameters to be selected optimally.

This function was chosen as our model since it agrees excellently with the band transmittance which is a weighted average of transmittances and, therefore, is very similar to the average transmittance considered here. It is noted that the spectral parameter  $C(v)$  in this equation may be eliminated in our model since only an averaged transmittance is to be modeled. As a result, the model can be simplified to

$$t = \exp\left(-10^{\frac{a_0 + a_1 \log(PN) + a_2 \log(TN) + a_3 \log(U)}{10}}\right), \quad (5)$$

or

$$t = \exp\left(-A_0 \frac{PN^{a_1} TN^{a_2} U^{a_3}}{10}\right), \quad (6)$$

where  $a_0$ ,  $a_1$ ,  $a_2$ ,  $a_3$ , and  $A_0 = 10^{**a_0}$  are the adjustable model parameters.

For the optimal determination of the model parameters, we take the double logarithm of Eq. (5). This linearizes the model in terms of the unknown parameters.

$$\log(-\ln(t)) = a_0 + a_1 \log(PN) + a_2 \log(TN) + a_3 \log(U). \quad (7)$$

Linear regression techniques can then be utilized to obtain the optimal parameter values. Specifically, we take the difference

between the two sides of Eq. (7), square the difference, sum the squared differences, and minimize the sum with respect to the parameters. The minimization can be achieved by setting the partial derivatives of the sum of squared differences with respect to the unknown parameters to be zero. This process gives rise to a linear equation of the form  $Ax=b$ , commonly known as the normal equation, where  $A$ ,  $x$ , and  $b$  are the symmetric coefficient matrix, unknown parameter vector, and the known vector, respectively. This type of equation can be solved by any linear equation solver.

#### 2.2.2 Uniformly-Mixed Gasses

The absorber in question here is a mixture of various atmospheric gaseous molecules whose density profiles are relatively unperturbed, except for the pressure and temperature dependences. Therefore, the corresponding absorber amount is a function of the pressure, temperature, and the path length only. Basically, the transmittance expression for this absorber is the same as that for the water vapor given in Eq. (3). The only difference is that the pressure and temperature dependencies within the absorber amount  $U$  can be integrated into those appearing in  $x$ . This leads to the following LOWTRAN-6 model.

$$t = f(x), \quad (8-a)$$

$$x = C(v) PN^a TN^b U, \quad (8-b)$$

$$U = R, \quad (8-c)$$

where the absorber parameters  $a$  and  $b$  have values 1.75 and 1.375, respectively.

Thus, similar to the water vapor case, an appropriate model is given by, Eq. (5) or (6) with the expression for U being replaced by the path length R as in Eq. (8-c).

### 2.2.3 Ozone

The transmittance expression for ozone is the same as that for the water vapor, except the absorber parameter values,  $a = 0.4$  and  $b = 0.2$ , and the expression for the absorber amount U which is given by

$$U = 46.667 W_0 R, \quad (9)$$

where  $W_0$  is the ozone density in  $\text{g/m}^3$ . Therefore, the appropriate model expression is again given by Eqs. (5) or (6) together with the absorber amount expression in Eq. (9).

## 2.3 Water Vapor Continuum Absorption

The LOWTRAN-6 expression for the water vapor continuum absorption consists of self- and foreign-components. The expression for a homogeneous path is given by,

$$t = \exp(-v \tanh(hcv/2kT) [R_s C_s + R_f C_f] W H R), \quad (10)$$

where  $hc/k = 1.43879 (\text{K}/\text{cm}^{-1})$ ,  $R_s$  and  $R_f$  are self (water vapor versus total air at standard condition) and foreign (all other molecular species) number density ratios, and  $C_s$  and  $C_f$  ( $1/(\text{cm}^{-1}\text{mol}/\text{cm}^2)$ ) are wavenumber dependent parameters for self- and foreign-components, respectively.

The temperature dependence of the self-component  $C_s$  is taken into account through the linear interpolation from two values,  $C_{s1}$  at 296 (K) and  $C_{s2}$  at 260 (K) if the temperature is between

these two, or by setting at one of the two if the temperature is outside of the range. This can be expressed conveniently using a factor  $K_p$  defined by,

$$K_p = \begin{cases} 1 & , \quad T < 260, \\ (296 - T) / (296 - 260), & 260 < T < 296, \\ 0 & , \quad 296 < T, \end{cases} \quad (11)$$

as

$$Cs = (1 - K_p) Cs_1 + K_p Cs_2. \quad (12)$$

The parameters  $Cs_1$ ,  $Cs_2$ , and  $Cf$  are stored in LOWTRAN-6 at 10 ( $\text{cm}^{-1}$ ) wavenumber intervals over regions where the water vapor continuum absorption is non-trivial.

Now, various quantities in Eq. (10) are investigated. The number density ratio  $R_s$  is linearly dependent on the water vapor concentration  $WH$ . The sum of the two densities, water vapor and all others, is linearly dependent on the product  $PN*TN$  since it is the air density. Therefore, our model needs to carry two linear dependencies on  $PN*TN$  and  $WH$  in an additive fashion. The wavenumber dependent coefficient in Eq. (10), on the other hand, can be imbedded into  $Cs$  and  $Cf$ . Combining all of these observations to modify the expression in Eq. (10), we obtain,

$$t = e^{-[(q(Cs_1' + Cf') + K_p(Cs_2' - Cs_1')) WH + r Cf' PN * TN] WH R} \quad (13)$$

where  $q$  and  $r$  are wavenumber independent constants, and  $Cs_1'$ ,  $Cs_2'$ , and  $Cf'$  are scaled wavenumber dependent parameters.

For our model, the averages of  $Cs_1'$ ,  $Cs_2'$ , and  $Cf'$  over 830

- 1250 ( $\text{cm}^{-1}$ ) region are computed from the LOWTRAN-6 data, and these parameters in Eq. (13) are replaced with respective averages. Then the expression is simplified by combining the constants yielding,

$$t = \exp\{-C_0 [PN TN + (C_1 Kp + C_2) WH] WH R\}, \quad (14)$$

where  $C_0$ ,  $C_1$ , and  $C_2$  are the final model parameters.

#### 2.4 Aerosol Extinction

Aerosols are active over 830 - 1250 ( $\text{cm}^{-1}$ ) wavenumber region in both absorption and scattering. Since LOWTRAN-6 has models for the extinction, we will consider the modeling of the extinction instead of the absorption and scattering individually.

The transmittance due to aerosols is given by an exponential law,

$$t = \exp\{-X H R\}, \quad (15)$$

where  $X$  is the aerosol extinction profile which is dependent on the type of aerosol, the relative humidity RH and the wavelength.  $H$  is the aerosol density profile which represents the visibility and the altitude dependencies.

We first consider the aerosol extinction profile  $X$ . There are 10 aerosol types used in LOWTRAN-6, some are relative humidity dependent and some are not. Due to our assumption that the application of the OTDA is limited to horizontal paths below 2 (km) altitude, we only need to consider four humidity dependent aerosols; RURAL, URBAN, MARITIME, TROPOSPHERE, and two humidity independent ones; FOG1 and FOG2. LOWTRAN-6 stores four extinc-

tion profiles  $X$ , corresponding to the relative humidities (RH) of 0, 70, 80, and 99 (%), for each humidity dependent aerosol and one each for FOG1 and FOG2. These profiles are first averaged to eliminate wavelength dependence. Then the humidity dependencies in four aerosols are modeled using the following empirical relationship which was suggested in [6], based on the observation by Hanel [7],

$$X(\text{RH}) = c_1 (1 - \text{RH}/100)^{c_2}, \quad (16)$$

where  $c_1$  and  $c_2$  are model parameters. Noting that this relationship represents a straight line in log-log scale, optimal values for these parameters were obtained using the linear regression technique. This reduced the set of four profiles for each aerosol type to only two numbers. The same model is also used for the two humidity independent models, FOG1 and FOG2, by setting  $c_2$  to 0 to eliminate humidity dependence.

Next, the visibility (VIS) dependent aerosol density profiles  $H$  are studied. In the first 2 (km) height, it is represented by three empirical functions of the visibility at 0, and 1 (km) altitudes. First, these profiles are fitted by the inverse relationship,

$$H(\text{VIS}) = d_1 \text{ VIS}^{-1} + d_2, \quad (17)$$

which is used in LOWTRAN-6 for interpolation of the  $H(\cdot)$ . Then, using the assumption that the typical altitude at which the OTDA is used is 300 (m) above sea level, the weighted average of the two profiles at 0 and 1 (km) heights is adopted as our model.

Finally, Eqs. (15), (16) and (17) are combined to form the

following aerosol model,

$$t = \exp\{-(\text{VIS}^{-1} + d_2') c_1' (1 - \text{RH}/100)^{c_2} R\}, \quad (18)$$

where  $d_1'$  is imbedded into  $c_1'$  by factoring it out to reduce the number of parameters. We note that  $d_2'$  is independent of the aerosol type.

## 2.5 Rain Model

Since the rain extinction model used in LOWTRAN-6 is a simple analytic function of the rain rate RR (mm/hr) and the range R (km), we can adopt it with a slight modification. After combining some parameters to minimize the number of constants, the model becomes as follows,

$$t = \exp\{-0.3647 \text{ RR}^{0.63} R\}. \quad (19)$$

## 2.6 Summary of Model Equations

The model equations derived in the previous subsections are summarized in Table 1 together with the obtained optimum parameter values. Table 2 lists the input variables together with the definitions and default values where applicable.

**Table 1. Preliminary Extinction Models for the OTDA**

## (1) Molecular resonant absorption

$$t = \exp\left\{-A_0 \frac{P/P_0}{(T_0/T)} U^{a_1} (T_0/T)^{a_2} U^{a_3}\right\}$$

| Absorber               | $A_0$                                                        | $a_1$  | $a_2$  | $a_3$  |
|------------------------|--------------------------------------------------------------|--------|--------|--------|
| Water Vapor            | 0.0850<br>U = 0.1 WH R,<br>WH = 0.01 RH F(T <sub>0</sub> /T) | 0.4981 | 0.2989 | 0.5582 |
| Uniformly-mixed Gasses | 0.0118<br>U = R                                              | 1.0792 | 0.8488 | 0.6178 |
| Ozone                  | 0.0076<br>U = 46.667 WO R                                    | 0.3091 | 0.1541 | 0.7498 |

$$F(s) = s \exp(18.9766 - 14.9595 s - 2.43882 s^2)$$

$$WO = 6.0E-05 (g/m^3).$$

## (2) Water Vapor Continuum Absorption

$$t = \exp\left\{-C_0 [(P/P_0)(T_0/T) + (C_1 K_p + C_2) WH] WH U\right\}$$

$$C_0 = 1.655E-03 \quad C_1 = 0.5693 \quad C_2 = 0.5437$$

$$K_p = \begin{cases} 1 & T < 260 \\ (296 - T)/(296 - 260), & 260 < T < 296 \\ 0 & 296 < T \end{cases}$$

## (3) Aerosol Extinction

$$t = \exp\left\{-(VIS^{-1} + d_2') c_1' (1 - RH/100)^{c_2} R\right\}$$

| # | Model        | $c_1'$  | $c_2$    | Default VIS(km) |
|---|--------------|---------|----------|-----------------|
| 1 | RURAL        | 0.3670  | -0.02877 | 23              |
| 2 | URBAN        | 0.3119  | -0.08499 | 5               |
| 3 | OCEAN        | 0.4013  | -0.3417  | 23              |
| 4 | TROPOSPHERIC | 0.08054 | -0.04621 | 50              |
| 5 | FOG1         | 4.487   | 0        | 0.2             |
| 6 | FOG2         | 1.309   | 0        | 0.5             |

$$d_2' = -0.005183 \text{ (independent of aerosol type)}$$

## (4) Rain Extinction

$$t = \exp(-0.3647 RR^{0.63} R)$$

**Table 2. Input Variables for Extinction Models**

| Variable          | Notation (Units) | Default        |
|-------------------|------------------|----------------|
| Pressure          | P (mbar)         | None           |
| Temperature       | T (°C)           | None           |
| Relative Humidity | RH (%)           | None           |
| Visibility        | VIS (km)         | *              |
| Aerosol Model     | IHAZE (integer)  | 0 (No Aerosol) |
| Rain Rate         | RR (mm/h)        | 0.0            |
| Range             | R (km)           | None           |

\* See Table 1 for model dependent default values.

### 3. Accuracy Evaluation

A preliminary accuracy evaluation was done at AFWAL/AARI-3 while the principal investigator was visiting the laboratory. The obtained results were reported in [3]. For more comprehensive accuracy study, a data base was generated using LOWTRAN-6 according to the following scheme:

- a. For the molecular and water vapor continuum extinction, eight pressure values are used. Maximum and minimum pressure values of the 0 and 1 (km) layers of six atmosphere models in LOWTRAN-6 are first chosen. Then, six more intermediate values, evenly distributed between the two extremes, are selected. They are: 1018.0, 999.4, 980.8, 962.2, 943.6, 925.0, 906.4, and 887.8 (mbar).
- b. Eight temperature values are chosen for temperature dependent models similarly to a. The values are 35.0, 27.14, 19.29, 11.43, 3.57, -4.26, -12.14, and -20.0 (C).
- c. Eight humidity levels; 99, 95, 90, 85, 75, 50, 30 and 10 (percent) are used for humidity dependent models.
- d. Eight visibility values are used for aerosols. The values are chosen at and about the default visibility values for each aerosol model. Therefore, the actual values are dependent on the aerosol model.
- e. Eight range values were used where the values were chosen so that the resulting transmittances are as well-distributed in [0, 1] interval. For aerosol models, this implies that the range value is comparable to the default visibility values.

Although the numbers of variations in each input parameter is small, combinations of the above set of variations can be very large. To automate the process of data generation, an interactive computer program, called DGU (Data Generation Utility), was developed. It was written mostly in the C programming language. It uses a FORTRAN routine for post processing of LOWTRAN-6 generated data. (The listing of the DGU program is given in Appendix A.) Enough prompts are included in the program so that the user will need minimal effort in generating input data for LOWTRAN-6.

The program takes advantage of the UNIX operating system in creating input decks for LOWTRAN-6 automatically from the interactive inputs. It also runs LOWTRAN-6 for each set of input deck and post-processes the output data to compute the averaged transmittances. DGU repeatedly performs the combined task; generation of input deck, running LOWTRAN-6, and post-processing output data file, rather than creating all the input deck and then running LOWTRAN-6. This is because the latter method creates impractically large data files. The adopted method reduces the entire output of one LOWTRAN-6 run to a single line. Thus, the storage requirement is immensely reduced.

LOWTRAN-6 was run over 6000 times to generate data for all possible input value combinations. Outputs produced from this extensive computation were utilized for accuracy evaluation and stored for later usage as well. Results of accuracy evaluations are summarized in Table 3, in which the column MODEL 1 represents RMS errors of the developed models.

**Table 3.** Accuracy Evaluation of Extinction Models

| TYPE<br>OF<br>EXTINCTION | MODEL 1      |                |              | MODEL 1A       |  |
|--------------------------|--------------|----------------|--------------|----------------|--|
|                          | R.M.S. Error | # of +/ - Err. | R.M.S. Error | # of +/ - Err. |  |
| Water Vapor              | 0.0123       | 1834/2262      |              |                |  |
| Uniformly-Mixed Gasses   | 0.0007       | 2008/2088      |              |                |  |
| Ozone                    | 0.0015       | 592/3504       |              |                |  |
| Water Vapor Continuum    | 0.0064       | 416/3680       |              |                |  |
| Aerosol                  | 0.0097       | 217/295        |              |                |  |
| RURAL                    | 0.0170       | 219/293        |              |                |  |
| OCEAN                    | 0.0108       | 199/313        |              |                |  |
| URBAN                    | 0.0063       | 265/247        |              |                |  |
| TROPOSPHERIC             | 0.0013       | 13/26*         |              |                |  |
| FOG1                     | 0.0261       | 0/49*          | 0.0089       | 234/278        |  |
| FOG2                     |              |                | 0.0164       | 236/276        |  |
|                          |              |                | 0.0040       | 231/281        |  |
|                          |              |                | 0.0006       | 295/217        |  |
|                          |              |                | 0.0179       | 36/28          |  |
|                          |              |                |              | 11/53          |  |

\* Data points which resulted in zero transmittance by LOWTRAN computation are ignored.

#### 4. Model Upgrading

Table 3 shows that the accuracy of most of the models are acceptably high, but some are not. Aerosol extinction models exhibit higher RMS errors. Especially, the RMS errors associated with RURAL, URBAN, and OCEAN models may be excessive for demanding applications. Note also that the numbers of positive (+) and negative (-) errors differ rather large in some models. This is not desirable since it indicates there exists a non-zero bias in the model. The accuracy of biased models can easily be improved by eliminating the biases. Based on these observations, we decided to upgrade all the aerosol models.

Model improvements start from the identification of causes of the observed error. In developing the aerosol extinction models, each intermediate quantity was separately modelled from the LOWTRAN-6 expressions and then combined. If better intermediate models are developed, then the total model accuracy should be improved. This approach leads us to, for example, quadratic models for the relative humidity dependent quantity  $X$ .

On the other hand, the component-wise modelling approach may be optimal for each individual component, but the combination of the individual components need not be optimal as a whole. This prompted the approach of obtaining optimal parameter values by directly minimizing the difference between model prediction and the LOWTRAN-6 computation. Keeping the model formulation derived in Section 2.4, namely Eq.(18), unchanged, the difference was minimized in terms of three parameters  $c1'$ ,  $c2$ , and  $d2'$  simul-

taneously. Since the model equation, Eq.(18), is nonlinear in the unknown parameters, the method of choice here is nonlinear optimization.

The difference between the LOWTRAN-6 and model transmittances are squared and summed to form a sum of squared errors which is to be minimized. A general approach for this minimization is to set the derivative of the sum of squared errors to be zero. However, if the model equation is nonlinear and complicated, derivation of derivative expressions is cumbersome and susceptible to error in analytical manipulation. Therefore, a subroutine called ZXSSQ of the IMSL library was adopted for this task because it directly minimizes the sum of squares without utilizing derivatives [8].

Table 4 summarizes the new optimal parameter values for aerosol models. Note that the parameter  $c_3$  (formerly  $d_2'$ ) is no longer independent of the aerosol type. In Table 3, RMS errors corresponding to the new parameter set are listed in the MODEL 1A column. The new set of model parameters produces uniformly better modelling accuracies with the same number of parameters for each aerosol type. We concluded that the obtained models have sufficient accuracy to be adopted in the OTDA.

**Table 4. Upgraded Aerosol Extinction Model**

$$t = \exp\{ -c_1 (1 - RH/100)^{c_2} (VIS^{-1} + c_3) R \}$$

| # | Model        | c <sub>1</sub> | c <sub>2</sub> | c <sub>3</sub> |
|---|--------------|----------------|----------------|----------------|
| 1 | RURAL        | 0.3250795      | -0.0698031     | -0.0062501     |
| 2 | OCEAN        | 0.407210       | -0.346923      | -0.0073294     |
| 3 | URBAN        | 0.377737       | -0.010870      | -0.0055683     |
| 4 | TROPOSPHERIC | 0.084286       | -0.018607      | -0.0055992     |
| 5 | FOG1         | 4.475481       | 0              | 0.0051780      |
| 6 | FOG2         | 1.082089       | 0              | 0.2241563      |

## 5. Model Implementation

The models listed in Table 1 with the upgraded parameters given in Table 4 are now ready to be integrated into a transmittance computation code. First, a FORTRAN program, called CTRAN (Compact TRANsmittance code), was developed. Outputs from CTRAN were compiled for climatological conditions which were used for data generation. As a final check of the validity of the models, the CTRAN transmittance values were compared with the average LOWTRAN-6 total transmittance computed within LOWTRAN-6. This is done using an error evaluation code called ILMAP (Interactive Lowtran Model Analysis Program). Tables 5-a through 5-g summarize the obtained error statistics. The overall result was an RMS error of 0.00463 in the total transmittance for 6,272 cases. This shows an excellent accuracy of the adopted models, considering the simplicity of them.

The models are then implemented on the HP-41CX. The programming language of the HP-41CX, which is based on the Reverse Polish notation, has been carefully studied for its use and capabilities. We developed two versions; one utilizes interactive inputs, and the other uses stored input values. The developed program is thoroughly tested by computing the transmittance values for the input combinations used in accuracy test data generation, and then by comparing it with the results from the FORTRAN version. A user's manual for the HP-41CX version of CTRAN is prepared and is listed in Appendix B. The listing of CTRAN, both the FORTRAN and HP-41CX versions, is in Appendix C.

Table 5. Error Analysis of CTRAN5-a. Molecular and Continuum Extinctions

| MECHANISM | AVG % ERROR | RMS ERROR   | POS/NEG   |
|-----------|-------------|-------------|-----------|
| H2O       | 9.14734E-01 | 1.22954E-02 | 1834/2262 |
| CO2       | 4.98500E-02 | 7.38009E-04 | 2008/2088 |
| O3        | 9.97693E-02 | 1.45760E-03 | 592/3504  |
| CONTINUUM | 6.25526E+00 | 6.35660E-03 | 416/3680  |
| TOTAL     | 5.85113E+00 | 4.58491E-03 | 558/3538  |

5-b. RURAL Aerosol Extinctions

| MECHANISM | AVG % ERROR | RMS ERROR   | POS/NEG |
|-----------|-------------|-------------|---------|
| AEROSOL   | 3.42939E+00 | 8.38769E-03 | 234/278 |
| H2O       | 3.34638E+00 | 2.75920E-02 | 176/336 |
| CO2       | 4.86877E-02 | 6.78719E-04 | 256/256 |
| O3        | 9.99364E-02 | 1.48416E-03 | 64/448  |
| CONTINUUM | 2.41252E+01 | 7.82923E-03 | 96/416  |
| TOTAL     | 1.72796E+01 | 4.67787E-03 | 227/285 |

5-c. OCEAN Aerosol Extinction

| MECHANISM | AVG % ERROR | RMS ERROR   | POS/NEG |
|-----------|-------------|-------------|---------|
| AEROSOL   | 7.27404E+00 | 1.64423E-02 | 236/276 |
| H2O       | 3.34638E+00 | 2.75920E-02 | 176/336 |
| CO2       | 4.86877E-02 | 6.78719E-04 | 256/256 |
| O3        | 9.99364E-02 | 1.48416E-03 | 64/448  |
| CONTINUUM | 2.41252E+01 | 7.82923E-03 | 96/416  |
| TOTAL     | 1.70245E+01 | 4.00414E-03 | 193/319 |

5-d. URBAN Aerosol Extinction

| MECHANISM | AVG % ERROR | RMS ERROR   | POS/NEG |
|-----------|-------------|-------------|---------|
| AEROSOL   | 2.56816E+00 | 8.87016E-03 | 231/281 |
| H2O       | 2.74367E+00 | 2.34464E-02 | 184/328 |
| CO2       | 3.34411E-02 | 3.71156E-04 | 320/192 |
| O3        | 6.56806E-02 | 8.48168E-04 | 128/384 |
| CONTINUUM | 2.47998E+01 | 7.94757E-03 | 80/432  |
| TOTAL     | 1.85094E+01 | 3.74464E-03 | 220/292 |

Table 5. Error Analysis of CTRAN (contd.)5-e. TROPOSPHERIC Aerosol Extinction

| MECHANISM | AVG % ERROR | RMS ERROR   | POS/NEG |
|-----------|-------------|-------------|---------|
| AEROSOL   | 3.22787E-01 | 3.98972E-03 | 295/217 |
| H2O       | 1.00691E+01 | 5.51320E-02 | 56/456  |
| CO2       | 3.43206E-01 | 4.85434E-03 | 128/384 |
| O3        | 6.63520E-01 | 9.08007E-03 | 64/448  |
| CONTINUUM | 2.81415E+01 | 6.68107E-03 | 240/272 |
| TOTAL     | 2.56393E+01 | 5.71252E-03 | 266/246 |

5-f. FOG1 Aerosol Extinction

| MECHANISM | AVG % ERROR | RMS ERROR   | POS/NEG |
|-----------|-------------|-------------|---------|
| AEROSOL   | 4.07248E+00 | 6.15750E-04 | 36/28   |
| H2O       | 1.63007E-01 | 1.79514E-03 | 40/24   |
| CO2       | 6.69631E-02 | 6.69892E-04 | 0/64    |
| O3        | 8.30899E-02 | 8.56288E-04 | 0/64    |
| CONTINUUM | 5.64428E-01 | 4.60394E-03 | 0/64    |
| TOTAL     | 3.08853E+00 | 4.85773E-04 | 48/16   |

5-g. FOG2 Aerosol Extinction

| MECHANISM | AVG % ERROR | RMS ERROR   | POS/NEG |
|-----------|-------------|-------------|---------|
| AEROSOL   | 5.49332E+00 | 1.79535E-02 | 11/53   |
| H2O       | 3.04797E-01 | 2.74605E-03 | 64/0    |
| CO2       | 5.73236E-02 | 5.86308E-04 | 0/64    |
| O3        | 1.06208E-01 | 1.06103E-03 | 0/64    |
| CONTINUUM | 2.79759E+00 | 1.13680E-02 | 0/64    |
| TOTAL     | 7.33842E+00 | 8.88518E-03 | 7/57    |

## 6. Conclusions and Directions for Future Study

### 6.1 Conclusions

Simple models for atmospheric extinctions due to various atmospheric absorption mechanisms were developed for the Operational Tactical Decision Aid. These models were for three molecular resonant absorptions due to the water vapor, uniformly-mixed gasses, and ozone, for water vapor continuum absorption, for aerosol extinction, and for rain extinction. All of those absorption mechanisms are active in the 8 - 12 ( $\mu\text{m}$ ) band which is the primary band of sensitivity for infrared sensors.

Set of preliminary models were developed from LOWTRAN-6 by carefully simplifying the structures of the LOWTRAN-6 models. The preliminary models were extensively compared with LOWTRAN-6 computations for various combinations of input values. An interactive program, DGU, was written to automate the data generation for accuracy testing. It generates LOWTRAN-6 input deck sets for all possible combinations of given input values, runs LOWTRAN-6, and post-processes the LOWTRAN-6 generated data files.

Acceptable agreements were found in most models with the exceptions of the aerosol models. As a result, aerosol models were upgraded using the direct minimization of the discrepancies between the model predicted transmittances and the LOWTRAN-6 results.

The final models with their optimal parameter values were integrated into a compact transmittance computation code, called

CTRAN, in the FORTRAN language for mainframe computers. CTRAN was then coded onto an HP-41CX using the HP-41CX programming language. The program was thoroughly tested against the data set used for accuracy testing. The HP-41CX version of CTRAN is now ready to be employed in the OTDA.

#### 6.2 Directions for Future Study

The models obtained in this project are very simple. All of them are simple analytical functions with a small number of parameters. This was necessary because of the severe restriction of the computational capability of the HP-41CX hand-held computer. It is well understood that the portability is of utmost importance for the OTDA, and that this leads to the employment of HP-41CX computer. However, the availability of powerful but truly portable microcomputers is rapidly increasing. Newer machines are smaller, faster, of higher memory capacity, and longer operation time between rechargings. The choice of the HP-41CX for OTDA may need to be reconsidered. The capability of the HP-41CX can hardly be compared with that of a microcomputer. Since the portability of the two do not differ significantly, availability of high level languages alone may be a sufficient advantage of microcomputers. Also, because of the large memory capacity, a microcomputer can store the entire OTDA in a cluster of programs and data files. Therefore, it is highly recommended that a portable microcomputer instead of an HP-41CX be used for the OTDA.

The advantage of higher memory capacity of microcomputers can be exploited to employ more accurate but complicated atmos-

AFWAL-TR-87-1190

pheric extinction models to the OTDA. It is even conceivable to add another set of models for 3 - 5 ( $\mu\text{m}$ ) spectral band, which is also used by some infrared detectors. Furthermore, it should be possible to implement a program which generates simplified transmittance profiles for the two spectral regions. This point is currently under investigation.

REFERENCES

- [1] Kneizys, F.X., E.P. Shettle, W.O. Gallery, J.H. Chetwynd, Jr., L.W. Abreu, J.E.A. Selby, R.W. Fenn, and R.A. McClatchey 1980. "Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 5," Report AFGL-TR-80-0067, Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass.
- [2] Kneizys, F.X., E.P. Shettle, W.O. Gallery, J.H. Chetwynd, Jr., L.W. Abreu, J.E.A. Selby, S.A. Clough, and R.W. Fenn 1983. "Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 6," Report AFGL-TR-83-0187, Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass.
- [3] Tomiyama, K. 1986. "Atmospheric Modeling for Operational Tactical Decision Aid," Final Report, Contract Number F49620-85-C-0013, Air Force Office of Scientific Research.
- [4] Gruenzel, R.R. 1978. "Mathematical Expressions for Molecular Absorption in LOWTRAN 3B," Applied Optics, 17, pp 2591-2593.
- [5] Pierluissi, J.H., K. Tomiyama, and R.G. Gomez 1979. "Analysis of LOWTRAN Transmission Functions," Applied Optics, 18, pp 1607-1612.
- [6] Shettle, E.P., and R.W. Fenn 1979. "Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties," Report AFGL-TR-79-0214, Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass.
- [7] Hanel, G. 1976. "The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air," Advances in Geophysics, Ed. by H.E. Landsberg and J. Van Mieghem, Academic Press, New York, 19, pp 73-188.
- [8] IMSL 1984. IMSL User's Manual, V.4, Chapter Z, pp ZXSSQ1-ZXSSQ7.

Appendix A. Data Generation Utility (DGU) Program

The DGU program is listed in this appendix. DGU consists of two parts; DGU.C, a C-language main program, and AVERAGE.F, a FORTRAN program. DGU.C generates a LOWTRAN-6 input deck, executes LOWTRAN-6, calls AVERAGE to post-process the output of LOWTRAN-6, and repeats this process until all combinations of input variables have been exhausted. A part of a typical output of DGU is also listed here.<sup>1</sup>

---

<sup>1</sup> A computer tape which contains DGU and the FORTRAN version of CTRAN was prepared and was submitted separately to the effort focal point.

Table A-1. Listing of DGU

-- DGU.C in C Language --

```

#include <stdio.h>
#include <ctype.h>

#define STRING "lowdate"           /* defines shell program to be
                                   executed by the system call */

/*      #undef    goes to screen      */
/*      #define   creates files       */
#define FILE_MODE      /* create and write files      */

float hum[9] = {0.0, 99.0, 95.0, 90.0, 85.0, 70.0, 50.0,
                30.0, 10.0};
float temp[9] = {0.0, 35.00, 27.14, 19.29, 11.43, 3.57,
                 -4.29, -12.14, -20.00};
float pr[9] = {0.0, 1018.0, 999.4, 980.8, 962.2, 943.6,
               925.0, 906.4, 887.8};

main()
{
    int i1, i2, i3, i4, i5;

    FILE *fp;
    char name2[40];

    float max_t, min_t, max_p, min_p, step;
    float range[9], vis[9];
    char buff[20], buff1[20], string1, name1[20];
    int i, j, irange, itemp, ipress, ihum, ivis, ihaze, itotal;

    system("clear");
    printf("\n\n\n\n\n");
    sprintf(buff,"banner 'ILMAP/DGU'\n\n\n");
    system(buff);
    printf(" Interactive LOWtran Model Analysis Program and Data Generation Utility\n");
    printf("\n\n\n\n\n");
    printf("                                Press <return> to begin the data generation\n");
    getchar();
    system("clear");

    printf("You must first choose the type of AEROSOL computation");
    printf(" that you wish to perform.  The choices are:\n");
    printf("0. ----- NO AEROSOL COMPUTATION ----- \n");
    printf("1. RURAL Model          Default VISIBILITY = 23.0 KM\n");
    printf("2. RURAL Model          Default VISIBILITY = 5.0 KM\n");
    printf("3. OCEAN Model          Default VISIBILITY = 23.0 KM\n");
    printf("4. URBAN Model          Default VISIBILITY = 5.0 KM\n");
    printf("5. TROPOSPHERIC Model  Default VISIBILITY = 50.0 KM\n");
    printf("6. FOG1 Model (Advection)  Default VISIBILITY = 0.2 KM\n");

```

## -- DGU.C in C Language (contd.) --

```
printf("7. FOG2 Model (Radiation)  Default VISIBILITY = 0.5 KM\n");
printf("\n");
printf("Type 0,1,2,3,4,5,6 or 7 followed by <return>\n\n");
scanf("%d", &ihaze);
getchar();
if (ihaze == 0) sprintf(name1, "molabs.data");
if (ihaze == 1) sprintf(name1, "rural.data");
if (ihaze == 2) sprintf(name1, "rural.data");
if (ihaze == 3) sprintf(name1, "ocean.data");
if (ihaze == 7) (ihaze = 9; sprintf(name1, "fog2.data"));
if (ihaze == 6) (ihaze = 8; sprintf(name1, "fog1.data"));
if (ihaze == 5) (ihaze = 6; sprintf(name1, "tropo.data"));
if (ihaze == 4) (ihaze = 5; sprintf(name1, "urban.data"));
printf("\n\n");
printf("IHAZE = %d\n\n", ihaze);
printf("The file which contains the output data will be (%s", name1);
printf(")\n\n\n\n\n");
printf("                                Press <return > to continue ... \n");
getchar();
system("clear");
printf("Enter the desired minimum TEMPERATURE (C), followed by <return>\n\n");
scanf("%10f", &min_t);
getchar();
printf("\n\n");
printf("Enter the desired maximum TEMPERATURE (C), followed by <return>\n\n");
scanf("%10f", &max_t);
getchar();
printf("\n\n");
printf("Maximum TEMPERATURE is %10.3f\n\nMinimum TEMPERATURE is %10.3f\n\n",
       max_t, min_t);
if (max_t == min_t) {
    printf("\n\n");
    printf("You have chosen the same values for maximum and minimum \n");
    printf("TEMPERATURE. One value will be used \n\n");
    itemp = 1;
} else {
    printf("How many total TEMPERATURE points do you wish to use?\n\n");
    printf("Example: 3 means maximum, minimum and the");
    printf(" midpoint between the two.\n\n");
    printf("Enter the total number of TEMPERATURE points followed by <return>.");
    printf(" It MUST be\n ");
    printf("two or more but no more than 8.\n\n");
    scanf("%d", &itemp);
    getchar();
    step = (max_t-min_t)/(itemp-1);
    printf("\n\n");
    printf("TEMPERATURE values :   (C)\n\n");
    for (j=1; j<=itemp; j++) {
        temp[j] = min_t + (j - 1.0)*step;
        printf("%d:      %7.2f\n", j, temp[j]);
    }
}
```

## -- DGU.C in C Language (contd.) --

```
printf("\n\n");
printf("Press <return> to continue ... \n\n");
getchar();
system("clear");
printf("Enter the desired minimum PRESSURE (mbar), followed by <return>\n\n");
scanf("%10f", &min_p);
getchar();
printf("\n\n");
printf("Enter the desired maximum PRESSURE (mbar), followed by <return>\n\n");
scanf("%10f", &max_p);
getchar();
printf("\n\n");
printf("Maximum PRESSURE is %10.3f\n\nMinimum PRESSURE is %10.3f\n\n",
      max_p, min_p);
if (max_p == min_p) {
    printf("\n\n");
    printf("You have chosen the same values for maximum and minimum \n");
    printf("PRESSURE. One value will be used \n\n");
    ipress = 1;
} else {
    printf("How many total PRESSURE points do you wish to use?\n\n");
    printf("Enter the total number followed by <return>.");
    printf(" It MUST be\n ");
    printf("two or more but no more than 5 \n\n");
    scanf("%d", &ipress);
    getchar();
    step = (max_p-min_p)/(ipress-1);
    printf("\n\n");
    printf("PRESSURE values : (mbar)\n\n");
    for (j=1; j<=ipress; j++) {
        pr[j] = min_p + (j - 1.0)*step;
        printf("%d: %7.2f\n", j, pr[j]);
    }
}
printf("\n\n");
printf("Press <return> to continue ... \n\n");
getchar();

printf("Enter the number of VISIBILITY values you wish to use.\n\n");
printf("It should be no more than eight and you must choose\n");
printf("at least one. Enter number followed by <return>.\n\n");
scanf("%d", &i_vis);
getchar();
printf("\n\n");
printf("Enter the %d desired VISIBILITY (km) values each followed by <return>\n",
      i_vis);
printf("\n\n");

for (j=1;j<=i_vis;j++) {
    scanf("%10f", &vis[j]);
    getchar(); }
printf("\n\n");
```

## -- DGU.C in C Language (contd.) --

```
printf("VISIBILITY values :  (km)\n\n");
for (j=1; j<=ivis; j++)
    printf("%d.  %7.3f\n", j, vis[j]);
printf("\n\n");
printf("                                Press <return> to continue ... \n\n");
getchar();
system("clear");

printf("Do you want to change the default HUMIDITY values?  (y,n) \n\n");
scanf("%c", &string1);
printf("\n\n");
getchar();
if (tolower(string1) == 'y') {
    printf("\n\n");
    printf("The current values for HUMIDITY are as follows :\n\n\n");
    printf("HUMIDITY values :  (%%) \n\n");
    for (i=1; i<=8; i++)
        printf("%d.  %7.3f\n", i, hum[i]);
    printf("\n\n");
    printf("How many HUMIDITY value(s) do you wish to use?\n\n");
    printf("You should choose no more than 8 and at least 1\n\n");
    printf("Enter number followed by <return>\n\n");
    scanf("%d", &ihum);
    printf("\n\n");
    printf("Enter the %d HUMIDITY (%%) value(s) each followed by <return>.\n\n",
", ihum);
    for (i=1; i<=ihum; i++) {
        scanf("%10f", &hum[i]);
        getchar(); }
} else {
    ihum = 8;
}
printf("\n\n");
printf("HUMIDITY values :  (%%) \n\n");
for (j=1; j<=ihum; j++)
    printf("%d.  %7.3f\n", j, hum[j]);
printf("\n\n");

printf("                                Press <return> to continue ... \n\n");
getchar();

system("clear");
printf("Enter the number of RANGE values you wish to use.\n\n");
printf("It should be no more than eight and you must choose\n");
printf("at least one. Enter number followed by <return>.\n\n");
scanf("%d", &irange);
printf("\n\n");
printf("Enter the %d desired RANGE (km) values each followed by <return>\n\n",
irange);
printf("\n\n");

for (j=1; j<=irange; j++) {
```

## -- DGU.C in C Language (contd.) --

```

        scanf("%10f", &range[j]);
        getchar(); }
printf("\n\n");
printf("RANGE values : (km)\n\n");
for (j=1; j<=irange; j++)
    printf("%d. %7.3f\n", j, range[j]);
printf("\n\n");
printf("                                Press <return> to continue ... \n\n");
getchar();

j = 1;

itotal = ipress*itemp*ihum*irange*ivis;

for(i1=1;i1<=ipress;i1++)
    for(i2=1;i2<=itemp;i2++)
        for(i3=1;i3<=ihum;i3++)
            for(i4=1;i4<=irange;i4++)
                for(i5=1;i5<=ivis;i5++)
{
#endif FILE_MODE
    sprintf (name2, "input.card", j++);
    fp = fopen(name2, "w");
    if (fp == NULL)
        exit(1);
/*          printf ("Creating file %s\n", name2); */

fprintf(fp,
"      0      1      0      0      0      0      0      0.000      0.000\n");
fprintf(fp,
"      %d      0      0      0      0      %10.3f      0.000      0.000      0.000\n",
    ihaze, vis[i5]);
fprintf(fp,
"      0.300%10.3f%10.3f      0.0%5.1f      0.0E+00      6.0E-05%10.3f\n",
/*123456789      12345      12345678901234567890 */
    pr[i1], temp[i2], hum[i3], range[i4]);
fprintf(fp, "      830.000      1250.000      5.000\n");
fprintf(fp, "      0\n");
/*          printf ("Closing File %s\n", name2); */
printf ("COMPUTATION NUMBER %5d of %6d\n",j-1,itotal);
fclose(fp);
system (STRING);

#else
    printf("%d:\t %10.4f\t%10.4f\t%5.1f\t%10.4f\t%10.4f\n",
           j++, pr[i1], temp[i2], hum[i3], range[i4], vis[i5]);
#endif
} /* end for      */

sprintf(buff1,"mv test.data %s",name1);
System(buff1);
printf("The data for ilmap is located in file %s\n", name1);
}

```

**-- AVERAGE.F in FORTRAN used by DGU.C --**

```
dimension h2o(101),co2(101),o3(101),cont(101),aero(101)
open(12,file='temp1',status='old',access='sequential',form=
.'formatted')
rewind 12
open(13,file='temp2',status='old',access='sequential',form=
.'formatted')
rewind 13
open(14,file='temp3',status='new',access='sequential',form=
.'formatted')
rewind 14
open(15,file='output.data',status='old',access='sequential',
.form='formatted')
rewind 15
npts=85
read(15,96) trans
96 format(t25,f6.4)
read(12,97) junk
97 format(i5)
read(12,98) ihaze,i,j,k,l,m,vis,c1,c2,rnrt
98 format(6i5,4f10.3)
read(12,99) h1,p,t,dp,h,wh,wo,r
99 format(3f10.3,2f5.1,2e10.3,f10.3)
read(13,101) (h2o(i),co2(i),o3(i),cont(i),aero(i),i=1,npts)
101 format(t2,f7.4,t10,f7.4,t18,f7.4,t28,f7.4,t38,f7.4)
sum1=0.0
sum2=0.0
sum3=0.0
sum4=0.0
sum5=0.0
sum6=0.0
do 12 i=2,84
  sum1=sum1+h2o(i)
  sum2=sum2+co2(i)
  sum3=sum3+o3(i)
  sum4=sum4+cont(i)
  sum5=sum5+aero(i)
12 continue
sum1=sum1+0.5*(h2o(1)+h2o(84))
sum2=sum2+0.5*(co2(1)+co2(84))
sum3=sum3+0.5*(o3(1)+o3(84))
sum4=sum4+0.5*(cont(1)+cont(84))
sum5=sum5+0.5*(aero(1)+aero(84))
sum1=sum1/84.0
sum2=sum2/84.0
sum3=sum3/84.0
sum4=sum4/84.0
sum5=sum5/84.0
write(14,19) ihaze,vis,p,t,h,r,sum1,sum2,sum3,sum4,sum5,trans
19 format(i2,f7.3,f8.2,f7.2,f5.1,f7.3,6f7.4)
endfile 14
stop
end
```

Table A-2. Listing of a Typical Output of DGU (Partial)

The values are, from left to right, IHAZE, visibility, pressure, temperature, relative humidity, range, and transmittances due to water vapor, uniformly-mixed gasses, ozone, water vapor continuum, aerosol, and the total transmittance. This data set has IHAZE = 9. This implies that the FOG2 aerosol model is used.

|   |       |         |       |      |      |       |       |       |       |       |       |
|---|-------|---------|-------|------|------|-------|-------|-------|-------|-------|-------|
| 9 | .200  | 1018.00 | 35.00 | 99.0 | .200 | .9296 | .9968 | .9987 | .7519 | .3071 | .2152 |
| 9 | .300  | 1018.00 | 35.00 | 99.0 | .200 | .9296 | .9968 | .9987 | .7519 | .4518 | .3158 |
| 9 | .400  | 1018.00 | 35.00 | 99.0 | .200 | .9296 | .9968 | .9987 | .7519 | .5495 | .3835 |
| 9 | .500  | 1018.00 | 35.00 | 99.0 | .200 | .9296 | .9968 | .9987 | .7519 | .6186 | .4314 |
| 9 | .600  | 1018.00 | 35.00 | 99.0 | .200 | .9296 | .9968 | .9987 | .7519 | .6697 | .4667 |
| 9 | .700  | 1018.00 | 35.00 | 99.0 | .200 | .9296 | .9968 | .9987 | .7519 | .7089 | .4938 |
| 9 | .850  | 1018.00 | 35.00 | 99.0 | .200 | .9296 | .9968 | .9987 | .7519 | .7530 | .5243 |
| 9 | 1.000 | 1018.00 | 35.00 | 99.0 | .200 | .9296 | .9968 | .9987 | .7519 | .7856 | .5468 |
| 9 | .200  | 1018.00 | 35.00 | 99.0 | .300 | .9118 | .9957 | .9980 | .6535 | .1745 | .1043 |
| 9 | .300  | 1018.00 | 35.00 | 99.0 | .300 | .9118 | .9957 | .9980 | .6535 | .3072 | .1830 |
| 9 | .400  | 1018.00 | 35.00 | 99.0 | .300 | .9118 | .9957 | .9980 | .6535 | .4101 | .2438 |
| 9 | .500  | 1018.00 | 35.00 | 99.0 | .300 | .9118 | .9957 | .9980 | .6535 | .4886 | .2902 |
| 9 | .600  | 1018.00 | 35.00 | 99.0 | .300 | .9118 | .9957 | .9980 | .6535 | .5497 | .3261 |
| 9 | .700  | 1018.00 | 35.00 | 99.0 | .300 | .9118 | .9957 | .9980 | .6535 | .5981 | .3546 |
| 9 | .850  | 1018.00 | 35.00 | 99.0 | .300 | .9118 | .9957 | .9980 | .6535 | .6544 | .3877 |
| 9 | 1.000 | 1018.00 | 35.00 | 99.0 | .300 | .9118 | .9957 | .9980 | .6535 | .6971 | .4128 |
| 9 | .200  | 1018.00 | 35.00 | 99.0 | .400 | .8969 | .9947 | .9973 | .5687 | .1006 | .0514 |
| 9 | .300  | 1018.00 | 35.00 | 99.0 | .400 | .8969 | .9947 | .9973 | .5687 | .2104 | .1072 |
| 9 | .400  | 1018.00 | 35.00 | 99.0 | .400 | .8969 | .9947 | .9973 | .5687 | .3073 | .1562 |
| 9 | .500  | 1018.00 | 35.00 | 99.0 | .400 | .8969 | .9947 | .9973 | .5687 | .3870 | .1965 |
| 9 | .600  | 1018.00 | 35.00 | 99.0 | .400 | .8969 | .9947 | .9973 | .5687 | .4521 | .2292 |
| 9 | .700  | 1018.00 | 35.00 | 99.0 | .400 | .8969 | .9947 | .9973 | .5687 | .5055 | .2561 |
| 9 | .850  | 1018.00 | 35.00 | 99.0 | .400 | .8969 | .9947 | .9973 | .5687 | .5693 | .2882 |
| 9 | 1.000 | 1018.00 | 35.00 | 99.0 | .400 | .8969 | .9947 | .9973 | .5687 | .6190 | .3131 |
| 9 | .200  | 1018.00 | 35.00 | 99.0 | .500 | .8841 | .9938 | .9967 | .4957 | .0587 | .0257 |
| 9 | .300  | 1018.00 | 35.00 | 99.0 | .500 | .8841 | .9938 | .9967 | .4957 | .1451 | .0633 |
| 9 | .400  | 1018.00 | 35.00 | 99.0 | .500 | .8841 | .9938 | .9967 | .4957 | .2312 | .1007 |
| 9 | .500  | 1018.00 | 35.00 | 99.0 | .500 | .8841 | .9938 | .9967 | .4957 | .3074 | .1337 |
| 9 | .600  | 1018.00 | 35.00 | 99.0 | .500 | .8841 | .9938 | .9967 | .4957 | .3725 | .1619 |
| 9 | .700  | 1018.00 | 35.00 | 99.0 | .500 | .8841 | .9938 | .9967 | .4957 | .4277 | .1857 |
| 9 | .850  | 1018.00 | 35.00 | 99.0 | .500 | .8841 | .9938 | .9967 | .4957 | .4957 | .2151 |
| 9 | 1.000 | 1018.00 | 35.00 | 99.0 | .500 | .8841 | .9938 | .9967 | .4957 | .5500 | .2384 |
| 9 | .200  | 1018.00 | 35.00 | 99.0 | .600 | .8727 | .9929 | .9961 | .4326 | .0347 | .0130 |
| 9 | .300  | 1018.00 | 35.00 | 99.0 | .600 | .8727 | .9929 | .9961 | .4326 | .1006 | .0377 |
| 9 | .400  | 1018.00 | 35.00 | 99.0 | .600 | .8727 | .9929 | .9961 | .4326 | .1746 | .0653 |
| 9 | .500  | 1018.00 | 35.00 | 99.0 | .600 | .8727 | .9929 | .9961 | .4326 | .2448 | .0914 |
| 9 | .600  | 1018.00 | 35.00 | 99.0 | .600 | .8727 | .9929 | .9961 | .4326 | .3075 | .1147 |
| 9 | .700  | 1018.00 | 35.00 | 99.0 | .600 | .8727 | .9929 | .9961 | .4326 | .3625 | .1352 |

**Appendix B. CTRAN User's Manual**

CTRAN/PTRAN manual which explains how to use the two HP-41CX versions of CTRAN, one interactive and the other batch, is listed here.

PTRAN / CTRAN USER'S MANUAL

PTRAN and CTRAN are programs which run on the HP-41CX hand-held computer. Both of these programs compute the average transmittance of the atmosphere in the 8- to 12-micron region of the infrared spectrum. The full model analysis and development was discussed in this report. This manual is designed to instruct the user in the operation of PTRAN and CTRAN. The programs themselves are stored on a single mini cassette tape. The user must have access to Hewlett-Packard's Digital Cassette Drive for program operation. The general procedure to run a stored program and to use a mini data cassette tape are explained in the respective HP manuals, and are not discussed here.

The program CTRAN (Compact low-resolution TRANsmittance computation code) is in modular form suitable for batch computation while PTRAN is in interactive form. The first time user may want to use PTRAN until he/she becomes familiar with the data storage and recall locations. For the remainder of this manual, CTRAN will be used to mean either program.

Both CTRAN and PTRAN are smaller versions of parent LOWTRAN-6. LOWTRAN-6 is an exhaustive computation code which requires on the average 35 input variables. Since the CTRAN computation is performed on a very small part of the spectrum, only certain atmospheric conditions play a part in the transmittance calculation. We have shown that the number of relevant input variables to CTRAN is 7. Those variables are Pressure, Temperature, IHAZE (used for choosing the desired aerosol model), Relative Humidity,

RaiN RaTe, VISibility and Range. The variable names appear as the concatenation of the capital letters in their names. For instance, the rain rate variable is RNRT, etc ...

The HP-41CX stores data and programs in registers in its internal memory. The data registers are numbered from 00-99. CTRAN only uses registers 00-18 for input variable storage, intermediate computations storage, data holding and output transmittance storage. The following is a break-down of the individual register contents:

| REGISTER | STORES | REGISTER     | STORES |
|----------|--------|--------------|--------|
| 00       | VIS    | 09           | TH2O   |
| 01       | P      | 10           | TCO2   |
| 02       | T      | 11           | TO3    |
| 03       | RH     | 12           | TCONT  |
| 04       | RNRT   | 13           | TRAIN  |
| 05       | R      | 14           | TTOTAL |
| 06       | PBAR   | 15           | WH     |
| 07       | TBAR   | 16, 17, & 18 | temp   |
| 08       | TAERO  |              |        |

where

- VIS = Visibility in km
- P = Pressure in mbar
- T = Temperature in C
- RH = Relative humidity in %
- RNRT = Rain rate in mm/hr
- R = Range in km

|        |                                                   |
|--------|---------------------------------------------------|
| PBAR   | = P/P0 with P0=1013.25 mbar                       |
| TBAR   | = T0/T with T0=273.15 C                           |
| TAERO  | = Aerosol transmittance                           |
| TH2O   | = Water Vapor absorption transmittance            |
| TCO2   | = Uniformly-mixed gasses absorption transmittance |
| TO3    | = Ozone absorption transmittance                  |
| TCONT  | = Water Vapor continuum absorption transmittance  |
| TRAIN  | = Rain absorption transmittance                   |
| TTOTAL | = Total transmittance                             |
| WH     | = A value computed for the continuum calculation  |
| temp   | = temporary storage of intermediate results       |

The aerosol extinction model is chosen through the value of IHAZE. The definition of IHAZE is as follows:

- 0 = No aerosol computation (TAERO=1.0000)
- 1 = Ocean model
- 2 = Rural model
- 3 = Tropospheric model
- 4 = Urban model
- 5 = Fog1 (Advection) model
- 6 = Fog2 (Radiation) model

The user specifies the value of IHAZE by setting a user flag.

To run CTRAN, the six input variables need to be stored in the respective memory locations, and the value of IHAZE needs to be given as a set flag. On the other hand, PTRAN can be run by simply following the prompts. The detailed instructions for running each program are given next.

(1) RUNNING PTRAN

The following steps are necessary to run PTRAN.

1. Load PTRAN into main memory by doing the following:
  - (a) Store the string "PTRAN" in the alpha register
  - (b) execute the program READP
2. Clear all the user flags! This is most important, as only one user flag must be set during the execution of PTRAN or erroneous results could occur. The user flags are flags 00-07. After pressing CF (Clear flag), type 00. Press CF, followed by 01, and so on to 07.
3. Execute PTRAN
4. After each prompt, enter the desired value followed by the R/S key.
5. The program will run automatically after each input has been typed in. The program is running when the arrows move across the HP-41CX display.
6. The total transmittance will be displayed. The total transmittance is also stored in register 14.
7. Use the chart and RCL function to view other results.

For example, if you want to look at the continuum transmittance, type RCL and 12 when RCL prompts you. Also, if you want to save some results from the computation, you can store them somewhere outside the register range of PTRAN, i.e., store it in register 19 or whatever you like after register 18. Also, if you want to run PTRAN twice and compare the total transmittances, you may recall (RCL) register 14 and store (STO) it in a register that is

higher than 18. Then run PTRAN the second time and the total transmittance for the second computation will now be in register 14. Two results can be compared by recalling them from the respective memory registers.

(2) RUNNING CTRAN

1. Load CTRAN into main memory by doing the following:
  - (a) Put the string "CTRAN" into the alpha register
  - (b) Execute the program READP
2. Use the charts to store the desired input values in the corresponding registers. For example, if you want to have the range as 10.0 (km), store 10.0 in register 05.
3. Clear all the user flags! (See Instruction 2 of PTRAN.)
4. Having cleared all the user flags 00-07 in step 3 you must now set the flag which corresponds to the desired aerosol model. Use the aerosol IHAZE chart to find the correct flag to set. For example, if the tropospheric model is desired, set flag 03 by typing SF and 03 when SF prompts you.
5. The total transmittance will be displayed and the other values may be displayed by the same method as described in step 7 and what follows of the PTRAN instructions.

If you have any questions or suggestions about the operation of PTRAN or CTRAN please contact:

Dennis W. Richardson  
201 Electrical Engineering East  
University Park, PA 16802  
(814) 863-3211

**Appendix C. CTRAN Programs**

The CTRAN; the FORTRAN version, and the two HP-41CX versions, are listed in this appendix.

**Table C-1. Listing of the FORTRAN Version of CTRAN**

```

PROGRAM CTRAN
c
c      FORTRAN version
c
c      This program computes the average transmittance over
c      8 - 12 (micron) band for a given set of inputs.
c      The inputs are:
c          pressure           (mbar)
c          temperature        (C)
c          relative humidity  (%)
c          visibility         (km)
c          rain rate          (mm/Hr)
c          and
c          path length        (km)
c
c      For questions and comments, please contact
c          Ken Tomiyama
c          121 Electrical Engineering East
c          Penn State University
c          University Park, PA 16802
c          (814) 865-7667
c
c      dimension c1(9), c2(9), c3(9)
c      data c1/0.3250795, 0.3250795, 0.0, 0.407210, 0.377737,
c           0.084286, 0.0, 4.475481, 1.082089/
c      data c2/-0.0698031, -0.0698031, 0.0, -0.346923, -0.010870,
c           -0.018607, 0.0, 0.0, 0.0/
c      data c3/-0.0062501, -0.0062501, 0.0, -0.0073294, -0.0055683,
c           -0.0055992, 0.0, 0.0051780, 0.2241563/
c
c      print *,***** CTRAN (FORTRAN version) *****
c      print *,'
c      print *,'This program computes the average transmittance over'
c      print *,'8 - 12 (micron) spectral region.'
c      print *,'
c      print *,'Start of Input Session'
c      print *,'
c      print *,'Do you want intermediate results (0=no)?'
c      read(5,*) iout
c      if (iout .eq. 0) then
c          print *,'No intermediate result printed (iout=0).'
c      else
c          print *,'Intermediate results are stored in int.dat file.'
c          open(unit=8, file='int.dat', status='unknown')
c      endif
c10 continue
c      print *,'
c      print *,'aerosol types (ihaze) are identical to LOWTRAN-6 a'
c      print *,'      no aerosol    (ihaze=0)'
c      print *,'      rural       (ihaze=1 or 2)'
c      print *,'      ocean       (ihaze=4)'

```

Table C-1. Listing of CTRAN program (contd.)

```

print *,'      urban      (ihaze=5)'
print *,'      tropospheric (ihaze=6)'
print *,'      fog1       (ihaze=8)'
print *,'      fog2       (ihaze=9)'
print *,'  (ihaze = 3 and 7 are not used and reset to 0.)'
print *,'
print *,'aerosol type =?'
print *,'[ihaze < 0 or ihaze > 9 to stop]'
read(5,*)  ihaze
if ((ihaze .lt. 0) .or. (ihaze .gt. 9))  stop
print *,'visibility (km) =?'
read(5,*)  vis
print *,'pressure (mbar) =?'
read(5,*)  pres
pbar = pres / 1013.25
print *,'temperature (C) =?'
read(5,*)  tempc
tempk = tempc + 273.15
tbar = 273.15 / tempk
print *,'relative humidity (%) =?'
read(5,*)  rhump
rhum = rhump / 100.0
print *,'rain rate (mm/Hr) =?'
read(5,*)  rr
print *,'path length (km) =?'
read(5,*)  range
c
c-----start of transmittance computation-----
c
c aerosol
c
taero = 1.0000
if (ihaze .eq. 0)  go to 20
if (ihaze .le. 6)  then
  xx1 = c1(ihaze) * (1.0 - rhum)**c2(ihaze)
else
  xx1 = c1(ihaze)
endif
zhaze = (1.0 / vis) + c3(ihaze)
taero = exp(-xx1 * zhaze * range)
20 continue
c
c water vapor
c
wh = rhum * tbar * exp(18.9766 - 14.9596*tbar - 2.43882*tbar**2)
uh2o = 0.1 * wh * range
eh2o = 0.08500 * pbar**0.4981 * tbar**0.2989 * uh2o**0.5582
th2o = exp(-eh2o)
c
c uniformly-mixed gasses
c

```

Table C-1. Listing of CTRAN program (contd.)

```

      eco2 = 0.01164 * pbar**1.0792 * tbar**0.8488 * range**0.6178
      tco2 = exp(-eco2)

c
c ozone
c
      eo3 = 0.007561 * pbar**0.3091 * tbar**0.1541 * range**0.7498
      to3 = exp(-eo3)

c
c water vapor continuum
c
      a3 = 0.0
      if (tempk .lt. 296.0) a3 = (296.0 - tempk) / 36.0
      if (tempk .lt. 260.0) a3 = 1.0
      econt = 1.655e-03 * (pbar * tbar + (0.5693 * a3 + 0.5437) * wh)
      1           * wh * range
      tcont = exp(-econt)

c
c rain
c
      erain = 0.3647 * rr**0.63 * range
      train = exp(-erain)

c
c total transmittance
c
      trans = taero * th2o * tco2 * to3 * tcont * train
c
      write(6,200) trans
      200 format(5x,'TOTAL TRANSMITTANCE =',f7.4)
c
c-----returning point-----
c
      if (iout .eq. 0) go to 10
      write(8,100) i haze, vis, pres, tempc, rhump, rr, range,
      1           taero, th2o, tco2, to3, tcont, trans
      100   format(i3,f6.2,f7.1,f6.1,2f5.1,f6.2,f7.4)
      go to 10
      end

```

Table C-2. Listing of the HP-41CX Version of CTRANC-2.a. PTRAN - Interactive Version

|                 |                 |                 |
|-----------------|-----------------|-----------------|
| 001♦LBL "PTRAN" | 046 FS? 03      | 091 RCL 05      |
| 002 2.0         | 047 GTO "TROPO" | 092 *           |
| 003 "IHAZE = ?" | 048 FS? 04      | 093 E^X         |
| 004 PROMPT      | 049 GTO "URBAN" | 094 STO 08      |
| 005 Y^X         | 050 FS? 05      | 095 GTO "H2O"   |
| 006 X<>F        | 051 GTO "FOG1"  | 096♦LBL "TROPO" |
| 007 "VIS = ?"   | 052 FS? 06      | 097 RCL 14      |
| 008 PROMPT      | 053 GTO "FOG2"  | 098 -0.0186073  |
| 009 STO 00      | 054♦LBL "NONE"  | 099 Y^X         |
| 010 "P = ?"     | 055 1.0000      | 100 0.0842857   |
| 011 PROMPT      | 056 STO 08      | 101 *           |
| 012 STO 01      | 057 GTO "H2O"   | 102 STO 15      |
| 013 1013.25     | 058♦LBL "OCEAN" | 103 RCL 00      |
| 014 /           | 059 RCL 14      | 104 1/X         |
| 015 STO 06      | 060 -0.3469229  | 105 -0.0055992  |
| 016 273.15      | 061 Y^X         | 106 +           |
| 017 "T = ?"     | 062 0.4072999   | 107 RCL 15      |
| 018 PROMPT      | 063 *           | 108 *           |
| 019 STO 02      | 064 STO 15      | 109 CHS         |
| 020 +           | 065 RCL 00      | 110 RCL 05      |
| 021 STO 18      | 066 1/X         | 111 *           |
| 022 273.15      | 067 -0.0073296  | 112 E^X         |
| 023 RCL 18      | 068 +           | 113 STO 08      |
| 024 /           | 069 RCL 15      | 114 GTO "H2O"   |
| 025 STO 07      | 070 *           | 115♦LBL "URBAN" |
| 026 "RH = ?"    | 071 CHS         | 116 RCL 14      |
| 027 PROMPT      | 072 RCL 05      | 117 -0.0108702  |
| 028 STO 03      | 073 *           | 118 Y^X         |
| 029 -100.00     | 074 E^X         | 119 0.3777368   |
| 030 /           | 075 STO 08      | 120 *           |
| 031 1.0000      | 076 GTO "H2O"   | 121 STO 15      |
| 032 +           | 077♦LBL "RURAL" | 122 RCL 00      |
| 033 STO 14      | 078 RCL 14      | 123 1/X         |
| 034 "RNRT = ?"  | 079 -0.0698031  | 124 -0.0055683  |
| 035 PROMPT      | 080 Y^X         | 125 +           |
| 036 STO 04      | 081 0.3250795   | 126 RCL 15      |
| 037 "RANGE = ?" | 082 *           | 127 *           |
| 038 PROMPT      | 083 STO 15      | 128 CHS         |
| 039 STO 05      | 084 RCL 00      | 129 RCL 05      |
| 040 FS? 00      | 085 1/X         | 130 *           |
| 041 GTO "NONE"  | 086 -0.0062501  | 131 E^X         |
| 042 FS? 01      | 087 +           | 132 STO 08      |
| 043 GTO "OCEAN" | 088 RCL 15      | 133 GTO "H2O"   |
| 044 FS? 02      | 089 *           | 134♦LBL "FOG1"  |
| 045 GTO "RURAL" | 090 CHS         | 135 RCL 00      |

C-2.a. PTRAN - Interactive Version (contd.)

|                |               |                |
|----------------|---------------|----------------|
| 136 1/X        | 181 STO 15    | 226♦LBL "03"   |
| 137 0.0051780  | 182 RCL 05    | 227 RCL 05     |
| 138 +          | 183 *         | 228 0.7498     |
| 139 4.4754801  | 184 0.100     | 229 Y^X        |
| 140 *          | 185 *         | 230 STO 16     |
| 141 CHS        | 186 0.5582    | 231 RCL 07     |
| 142 RCL 05     | 187 Y^X       | 232 0.1541     |
| 143 *          | 188 STO 16    | 233 Y^X        |
| 144 E^X        | 189 RCL 07    | 234 STO 17     |
| 145 STO 08     | 190 0.2989    | 235 RCL 06     |
| 146 GTO "H2O"  | 191 Y^X       | 236 0.3091     |
| 147♦LBL "FOG2" | 192 STO 17    | 237 Y^X        |
| 148 RCL 00     | 193 RCL 06    | 238 0.0076     |
| 149 1/X        | 194 0.4981    | 239 *          |
| 150 0.2241563  | 195 Y^X       | 240 RCL 16     |
| 151 +          | 196 0.0850    | 241 *          |
| 152 1.0820891  | 197 *         | 242 RCL 17     |
| 153 *          | 198 RCL 16    | 243 *          |
| 154 CHS        | 199 *         | 244 CHS        |
| 155 RCL 05     | 200 RCL 17    | 245 E^X        |
| 156 *          | 201 *         | 246 STO 11     |
| 157 E^X        | 202 CHS       | 247♦LBL "CONT" |
| 158 STO 08     | 203 E^X       | 248 260.0      |
| 159♦LBL "H2O"  | 204 STO 09    | 249 RCL 18     |
| 160 RCL 03     | 205♦LBL "CO2" | 250 X<=Y?      |
| 161 0.01       | 206 RCL 05    | 251 GTO A      |
| 162 *          | 207 0.6178    | 252 296.0      |
| 163 RCL 07     | 208 Y^X       | 253 X<=Y?      |
| 164 *          | 209 STO 16    | 254 GTO B      |
| 165 STO 15     | 210 RCL 07    | 255 296.0      |
| 166 RCL 07     | 211 0.8488    | 256 RCL 18     |
| 167 X^2        | 212 Y^X       | 257 -          |
| 168 -2.43882   | 213 STO 17    | 258 36.0       |
| 169 *          | 214 RCL 06    | 259 /          |
| 170 STO 16     | 215 1.0792    | 260 STO 16     |
| 171 -14.9595   | 216 Y^X       | 261 GTO C      |
| 172 RCL 07     | 217 0.01164   | 262♦LBL A      |
| 173 *          | 218 *         | 263 1.000      |
| 174 RCL 16     | 219 RCL 16    | 264 STO 16     |
| 175 +          | 220 *         | 265 GTO C      |
| 176 18.9766    | 221 RCL 17    | 266♦LBL B      |
| 177 +          | 222 *         | 267 0.000      |
| 178 E^X        | 223 CHS       | 268 STO 16     |
| 179 RCL 15     | 224 E^X       | 269 GTO C      |
| 180 *          | 225 STO 10    | 270♦LBL C      |

C-2.a. PTRAN - Interactive Version (contd.)

|                |             |               |
|----------------|-------------|---------------|
| 271 0.5693     | 290 CHS     | 309 STO 13    |
| 272 RCL 16     | 291 E^X     | 310♦LBL E     |
| 273 *          | 292 STO 12  | 311 RCL 08    |
| 274 0.5437     | 293 0.0     | 312 RCL 09    |
| 275 +          | 294 RCL 04  | 313 *         |
| 276 RCL 15     | 295 X=Y?    | 314 RCL 10    |
| 277 *          | 296 GTO D   | 315 *         |
| 278 STO 16     | 297 RCL 04  | 316 RCL 11    |
| 279 RCL 07     | 298 0.63    | 317 *         |
| 280 RCL 06     | 299 Y^X     | 318 RCL 12    |
| 281 *          | 300 RCL 05  | 319 *         |
| 282 RCL 16     | 301 *       | 320 RCL 13    |
| 283 +          | 302 -0.3647 | 321 *         |
| 284 RCL 15     | 303 *       | 322 STO 14    |
| 285 *          | 304 E^X     | 323 CLA       |
| 286 RCL 05     | 305 STO 13  | 324 "TOTAL =" |
| 287 *          | 306 GTO E   | 325 ARCL X    |
| 288 1.655 E-03 | 307♦LBL D   | 326 AVIEW     |
| 289 *          | 308 1.000   | 327 .END.     |

C-2.b. CTRAN - Batch Version

|                 |                 |                 |
|-----------------|-----------------|-----------------|
| 001 LBL "CTRAN" | 046 1/X         | 091 *           |
| 002 RCL 01      | 047 -0.0073296  | 092 E^X         |
| 003 1013.25     | 048 +           | 093 STO 08      |
| 004 /           | 049 RCL 15      | 094 GTO "H2O"   |
| 005 STO 06      | 050 *           | 095 LBL "URBAN" |
| 006 273.15      | 051 CHS         | 096 RCL 14      |
| 007 RCL 02      | 052 RCL 05      | 097 -0.0108702  |
| 008 +           | 053 *           | 098 Y^X         |
| 009 STO 18      | 054 E^X         | 099 0.3777368   |
| 010 273.15      | 055 STO 08      | 100 *           |
| 011 RCL 18      | 056 GTO "H2O"   | 101 STO 15      |
| 012 /           | 057 LBL "RURAL" | 102 RCL 00      |
| 013 STO 07      | 058 RCL 14      | 103 1/X         |
| 014 RCL 03      | 059 -0.0698031  | 104 -0.0055683  |
| 015 -100.00     | 060 Y^X         | 105 +           |
| 016 /           | 061 0.3250795   | 106 RCL 15      |
| 017 1.0000      | 062 *           | 107 *           |
| 018 +           | 063 STO 15      | 108 CHS         |
| 019 STO 14      | 064 RCL 00      | 109 RCL 05      |
| 020 FS? 00      | 065 1/X         | 110 *           |
| 021 GTO "NONE"  | 066 -0.0062501  | 111 E^X         |
| 022 FS? 01      | 067 +           | 112 STO 08      |
| 023 GTO "OCEAN" | 068 RCL 15      | 113 GTO "H2O"   |
| 024 FS? 02      | 069 *           | 114 LBL "FOG1"  |
| 025 GTO "RURAL" | 070 CHS         | 115 RCL 00      |
| 026 FS? 03      | 071 RCL 05      | 116 1/X         |
| 027 GTO "TROPO" | 072 *           | 117 0.0051780   |
| 028 FS? 04      | 073 E^X         | 118 +           |
| 029 GTO "URBAN" | 074 STO 08      | 119 4.4754801   |
| 030 FS? 05      | 075 GTO "H2O"   | 120 *           |
| 031 GTO "FOG1"  | 076 LBL "TROPO" | 121 CHS         |
| 032 FS? 06      | 077 RCL 14      | 122 RCL 05      |
| 033 GTO "FOG2"  | 078 -0.0186073  | 123 *           |
| 034 LBL "NONE"  | 079 Y^X         | 124 E^X         |
| 035 1.0000      | 080 0.0842857   | 125 STO 08      |
| 036 STO 08      | 081 *           | 126 GTO "H2O"   |
| 037 GTO "H2O"   | 082 STO 15      | 127 LBL "FOG2"  |
| 038 LBL "OCEAN" | 083 RCL 00      | 128 RCL 00      |
| 039 RCL 14      | 084 1/X         | 129 1/X         |
| 040 -0.3469229  | 085 -0.0055992  | 130 0.2241563   |
| 041 Y^X         | 086 +           | 131 +           |
| 042 0.4072999   | 087 RCL 15      | 132 1.0820891   |
| 043 *           | 088 *           | 133 *           |
| 044 STO 15      | 089 CHS         | 134 CHS         |
| 045 RCL 00      | 090 RCL 05      | 135 RCL 05      |

C-2.b. CTRAN - Batch Version (contd.)

|               |               |                |
|---------------|---------------|----------------|
| 136 *         | 181 *         | 226 STO 11     |
| 137 E^X       | 182 CHS       | 227 LBL "CONT" |
| 138 STO 08    | 183 E^X       | 228 260.0      |
| 139 LBL "H2O" | 184 STO 09    | 229 RCL 18     |
| 140 RCL 03    | 185 LBL "CO2" | 230 X<=Y?      |
| 141 0.01      | 186 RCL 05    | 231 GTO A      |
| 142 *         | 187 0.6178    | 232 296.0      |
| 143 RCL 07    | 188 Y^X       | 233 X<=Y?      |
| 144 *         | 189 STO 16    | 234 GTO B      |
| 145 STO 15    | 190 RCL 07    | 235 296.0      |
| 146 RCL 07    | 191 0.8488    | 236 RCL 18     |
| 147 X^2       | 192 Y^X       | 237 -          |
| 148 -2.43882  | 193 STO 17    | 238 36.0       |
| 149 *         | 194 RCL 06    | 239 /          |
| 150 STO 16    | 195 1.0792    | 240 STO 16     |
| 151 -14.9595  | 196 Y^X       | 241 GTO C      |
| 152 RCL 07    | 197 0.01164   | 242 LBL A      |
| 153 *         | 198 *         | 243 1.000      |
| 154 RCL 16    | 199 RCL 16    | 244 STO 16     |
| 155 +         | 200 *         | 245 GTO C      |
| 156 18.9766   | 201 RCL 17    | 246 LBL B      |
| 157 +         | 202 *         | 247 0.000      |
| 158 E^X       | 203 CHS       | 248 STO 16     |
| 159 RCL 15    | 204 E^X       | 249 GTO C      |
| 160 *         | 205 STO 10    | 250 LBL C      |
| 161 STO 15    | 206 LBL "03"  | 251 0.5693     |
| 162 RCL 05    | 207 RCL 05    | 252 RCL 16     |
| 163 *         | 208 0.7498    | 253 *          |
| 164 0.100     | 209 Y^X       | 254 0.5437     |
| 165 *         | 210 STO 16    | 255 +          |
| 166 0.5582    | 211 RCL 07    | 256 RCL 15     |
| 167 Y^X       | 212 0.1541    | 257 *          |
| 168 STO 16    | 213 Y^X       | 258 STO 16     |
| 169 RCL 07    | 214 STO 17    | 259 RCL 07     |
| 170 0.2989    | 215 RCL 06    | 260 RCL 06     |
| 171 Y^X       | 216 0.3091    | 261 *          |
| 172 STO 17    | 217 Y^X       | 262 RCL 16     |
| 173 RCL 06    | 218 0.0076    | 263 +          |
| 174 0.4981    | 219 *         | 264 RCL 15     |
| 175 Y^X       | 220 RCL 16    | 265 *          |
| 176 0.0850    | 221 *         | 266 RCL 05     |
| 177 *         | 222 RCL 17    | 267 *          |
| 178 RCL 16    | 223 *         | 268 1.655 E-03 |
| 179 *         | 224 CHS       | 269 *          |
| 180 RCL 17    | 225 E^X       | 270 CHS        |

C-2.b. CTRAN - Batch Version (contd.)

|             |            |               |
|-------------|------------|---------------|
| 271 E^X     | 284 E^X    | 297 *         |
| 272 STO 12  | 285 STO 13 | 298 RCL 12    |
| 273 0.0     | 286 GTO E  | 299 *         |
| 274 RCL 04  | 287 LBL D  | 300 RCL 13    |
| 275 X=Y?    | 288 1.000  | 301 *         |
| 276 GTO D   | 289 STO 13 | 302 STO 14    |
| 277 RCL 04  | 290 LBL E  | 303 CLA       |
| 278 0.63    | 291 RCL 08 | 304 "TOTAL =" |
| 279 Y^X     | 292 RCL 09 | 305 ARCL X    |
| 280 RCL 05  | 293 *      | 306 AVIEW     |
| 281 *       | 294 RCL 10 | 307 .END.     |
| 282 -0.3647 | 295 *      |               |
| 283 *       | 296 RCL 11 |               |

ENVID  
DATED D  
FILM  
8-88  
Eric