Find steady state node voltage $v_a(t)$.

R1: 3Ω

R2: 2Ω

R3: 2Ω

L: 200 mH

A1: 2 A

B1: -20 degrees

A2: 2A

A3: 1 A

Q2

The AC circuit below has $\omega = 10$ rad/s and is in steady state. The phasor diagram shows the phasors of v_S and i_S . You are given the angle α , $|\mathbf{I_S}|$ and $|\mathbf{V_S}|$. The diagram is not necessarily drawn to scale (but V_S is along the imaginary axis).

The element in the center (rectangular box) is either an inductor or a capacitor but you are not told which.

- (a) At what time t_0 does the waveform of v_R reach its maximum value? (if there are multiple such times, giving one of them is sufficient).
- (b) We select the mystery element such that $|I_a|$ is minimized (not $|I_b|$). What is the mystery element (capacitor or inductor) and what is its value?

|Is|: 2 A

|Vs|: 3 V

alpha: -30 degrees

R1: 3 Ω