Roll Number:

CS 228 Spring 2022

18-04-2022 Total Marks: 50

- If you need to make any assumptions, state them clearly.
- If needed, you may cite results/proofs covered in class without reproducing them.
- 1. [10 marks] Consider the following formula where Gtn, f, NonEmpty, L are predicates and convert it into FOL CNF.

$$\neg \exists n. \ \forall w. \ [Gtn(w) \Rightarrow$$

$$\exists x, y, z. \ (f(x, y, z) = w \land NonEmpty(y) \land \neg Gtn(f(x, y)) \land (\forall k. \ L(x, y, z, k)))]$$

- 2. [10 marks] Consider a CNF formula F equivalent to $p_1 \oplus \oplus p_n$. F only contains variables $p_1, ..., p_n$.
 - (a) Show that the size of each clause in F is at least n.
 - (b) Show that F has at least 2^{n-1} clauses.
- 3. [5 marks] Write an MSO formula that captures all bipartite graphs. Remember that the signature allows only the binary relation E. Explain why your formula is correct.
- 4. [10 marks] Consider the DBA given below.

(a) What is the language accepted if q_c is the only good state?

- (b) Draw an NBA which is the complement of the DBA.
- 5. [3+5+2=10 marks] Consider the transition system TS given below.

- Let $\varphi = \Box(p \to \bigcirc(\Diamond \Box q))$. Does $TS \models \varphi$?. To answer this, you must draw an NBA $A_{\neg \varphi}$ for $\neg \varphi$, construct $TS' = TS \otimes A_{\neg \varphi}$, write an appropriate persistence property P_{pers} to be checked on TS'. Finally, your answer for TS satisfying (or not) φ must be linked to TS'satisfying (or not) P_{pers} .
- 6. [15 marks] Write LTL formulae φ which capture each requirement.

Requirement	Your LTL formula φ
Finitely many a's	
Infinitely many a 's and finitely many b 's	
immittely many a s and mittely many a s	
Eventually a and eventually forever $\neg a$	
There is an archiel in a constant live	
There is an a which is never eventually	
followed by two occurrences of b's	
There is at least one c , and	
b holds since the last occurrence of c	