WHAT IS CLAIMED IS:

1. A compound of the structure

$$B-A-CH \xrightarrow{\begin{array}{c} D \\ 1 \end{array}} \begin{array}{c} R_3 \\ R_2 \end{array} R_1$$

5

wherein:

D is H or ORa

10

wherein R^a is H or alkyl;

A is a linear string of A¹, A², A³, A⁴, A⁵, A⁶, A⁷ and/or A⁸, in any order, such that A¹ may occur in the string from 0 to 6 times;

15

A² may occur in the string from 0 to 2 times;

A³, A⁴, A⁵, A⁶, A⁷ and/or A⁸ may each occur in the string 0 or 1 time, such that the total number of linear A groups is 0 to 6;

20

$$A^{1}$$
 is $-\frac{{}^{R_{5}}_{1}}{{}^{L}_{R_{5a}}}$;

$$A^{2} is \xrightarrow{R_{5b} R_{5c} \atop |C=C};$$

A³ is
$$-\frac{N}{R_{5d}}$$
, -cycloheteroalkyl $-\frac{O}{C}$, or $-\frac{O}{C}$ cycloheteroalkyl;

$$A^4$$
 is $-\overset{\circ}{\mathbb{C}}$;

A⁵ is cycloalkyl;

5 A^6 is aryl;

A⁷ is heteroaryl; and

A⁸ is cycloheteroalkyl,

wherein R_{5a}, R_{5a}, R_{5b}, R_{5c}, and R_{5d} are the same or different and are independently selected from H, alkyl, aryl, arylalkyl halo or nitro;

B is amino, aminoalkyl, aminoalkyl, aminocycloalkyl, cycloheteroalkyl, aryl,

heteroaryl, alkylamino, carboxamido (—NH2-C—) or cycloalkyl;

 R_1 is hydrogen, carboxy, alkoxycarbonyl, A_2 -aryl, $C = R_7$

$$- \overset{\text{O}}{\overset{\text{II}}{\overset{\text{CH}_2)_m}{\text{m}}}}, \ \overset{\text{O}}{\overset{\text{II}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{N}}{\overset{\text{R}_7}{\text{R}_8}}}}}, \ - \overset{\text{O}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\text{R}_2}}}}}, \ - \overset{\text{O}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\text{C}}}}}}, \ - \overset{\text{O}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\text{C}}}}}, \ - \overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\text{C}}}}}, \ - \overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\text{C}}}}}, \ - \overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\text{C}}}}, \ - \overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\text{C}}}}}, \ - \overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\text{C}}}}, \ - \overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\text{C}}}}, \ - \overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\text{C}}}}}, \ - \overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\text{C}}}}, \ - \overset{\text{C}}{\overset{\text{C}}{\text{C}}}}, \ - \overset{\text{C}}{\overset{\text{C}}{\text{C}}}, \ - \overset{\text{C}}{\overset{\text{C}}}, \ - \overset{\text{C}}{\overset{\text{C}}}, \ - \overset{\text{C}}{\overset{\text{C}}{\text{C}}}, \ - \overset{\text{C}}{\overset{\text{C}}}, \ - \overset{\text{C}}{\overset{C}}}, \ - \overset{\text{C}}{\overset{\text{C}}}, \ - \overset{\text{C}$$

20

$$-C - N \xrightarrow{(CH_2)_0} B_1 - C - CH_2 - O - R_{10}, -SO_2-R_7,$$

$$B_3 - C - CH_2 - O - R_{10}, -SO_2-R_7,$$

R₂ and R₃ are the same or different and are independently selected from hydrogen, or alkyl;

$$X_1$$
 is $C = R_7$, $C = N = R_6$ $C = N = R_6$ $C = N = R_6$

$$-C = N \xrightarrow{(CH_2)_0} B_1 = R_8, \quad -C = alkyl = SO_2 = R_7,$$

10

$$-$$
C-aryl- SO_2-R_7 , $-$ C- CH_2-O-R_{10} , $-SO_2-R_7$,

R₄ and R₅ are the same or different and are independently selected from hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A₂-cycloalkyl, A₂-substituted cycloalkyl, aryl, substituted aryl, A₂-aryl, A₂-substituted aryl, heteroaryl, heterocycloalkyl, A₂-heterocycloalkyl, aryl-A₃-aryl, A₂-aryl-A₃-aryl, aryl-A₃-cycloalkyl, A₂-aryl-A₃-cycloalkyl, aryl-A₃-heteroaryl, A₂-aryl-A₃-heterocycloalkyl, aryl-A₃-substituted aryl, A₂-aryl-A₃-substituted aryl, A₂-aryl-A₃-substituted cycloalkyl, A₂-aryl-A₃-substituted

30

cycloalkyl, cycloalkyl-A₃-cycloalkyl, A₂-cycloalkyl-A₃-cycloalkyl, cycloalkyl-A₃aryl, A₂-cycloalkyl-A₃-aryl, cycloalkyl-A₃-heteroaryl, A₂-cycloalkyl-A₃-heteroaryl, cycloalkyl-A₃-heterocycloalkyl, A₂-cycloalkyl-A₃-heterocycloalkyl, cycloalkyl-A₃substituted cycloalkyl, A2-cycloalkyl-A3-substituted cycloalkyl, cycloalkyl-A3-5 substituted aryl, A₂-cycloalkyl-A₃-substituted aryl, substituted cycloalkyl-A₃cycloalkyl, A₂-substituted cycloalkyl-A₃-cycloalkyl, substituted cycloalkyl-A₃substituted cycloalkyl, A₂-substituted cycloalkyl-A₃-substituted cycloalkyl, substituted cycloalkyl-A₃-aryl, A₂-substituted cycloalkyl-A₃-aryl, substituted cycloalkyl-A₃heteroaryl, A₂-substituted cycloalkyl-A₃-heteroaryl, substituted cycloalkyl-A₃-10 heterocycloalkyl, A2-substituted cycloalkyl-A3-heterocycloalkyl, substituted cycloalkyl-A₃-substituted aryl, A₂-substituted cycloalkyl-A₃-substituted aryl, heteroaryl-A₃-heteroaryl, A₂-heteroaryl-A₃-heteroaryl, heteroaryl-A₃-cycloalkyl, A₂heteroaryl-A₃-cycloalkyl, heteroaryl-A₃-substituted cycloalkyl, A₂-heteroaryl-A₃substituted cycloalkyl, heteroaryl-A₃-aryl, A₂-heteroaryl-A₃-aryl, heteroaryl-A₃-15 heterocycloalkyl, A2-heteroaryl-A3-heterocycloalkyl, heteroaryl-A3-substituted aryl, A₂-heteroaryl-A₃-substituted aryl, heterocycloalkyl-A₃-heterocycloalkyl, A₂heterocycloalkyl-A₃-heterocycloalkyl, heterocycloalkyl-A₃-cycloalkyl, A₂heterocycloalkyl-A₃-cycloalkyl, heterocycloalkyl-A₃-substituted cycloalkyl, A₂heterocycloalkyl-A₃-substituted cycloalkyl, heterocycloalkyl-A₃-aryl, A₂-20 heterocycloalkyl-A₃-aryl, heterocycloalkyl-A₃-substituted aryl, A₂-heterocycloalkyl-A₃-substituted aryl, heterocycloalkyl-A₃-heteroaryl, A₂-heterocycloalkyl-A₃heteroaryl, substituted aryl-A₃-substituted aryl, A₂-substituted aryl-A₃-substituted aryl, substituted aryl-A₃-cycloalkyl, A₂-substituted aryl-A₃-cycloalkyl, substituted aryl-A₃substituted cycloalkyl, A2-substituted aryl-A3-substituted cycloalkyl, substituted aryl-25 A₃-aryl, A₂-substituted aryl-A₃-aryl, substituted aryl-A₃-heteroaryl, A₂-substituted aryl-A₃-heteroaryl, substituted aryl-A₃-heterocycloalkyl, and A₂-substituted aryl-A₃heterocycloalkyl;

R₆ is hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A₂-cycloalkyl, A₂-substituted cycloalkyl, aryl, substituted aryl, A₂-aryl, A₂-substituted aryl, aryl-A₃-aryl, A₂-aryl-A₃-aryl, heteroaryl, A₂-heteroaryl, heterocycloalkyl, A₂-heteroaryl, A₃-heteroaryl, A₂-heteroaryl, A₃-heteroaryl, A₂-heteroaryl, A₃-heteroaryl, A₂-heteroaryl, A₃-heteroaryl, A₂-heteroaryl, A₃-heteroaryl, A₂-heteroaryl, A₃-heteroaryl, A₃-heter

aryl-A₃-heteroaryl, aryl-A₃-heterocycloalkyl, A₂-aryl-A₃-heterocycloalkyl, carboxy,

alkoxycarbonyl, aryloxycarbonyl,
$$-\stackrel{O}{-}\stackrel{R_4}{\sim}$$
, $-\stackrel{R_4}{\sim}$, alkoxycarbonylamino,

aryloxycarbonylamino, arylcarbonylamino, -N(alkyl)(alkoxycarbonyl),

- -N(alkyl)(aryloxycarbonyl), alkylcarbonylamino, -N(alkyl)(alkylcarbonyl), or
- 5 -N(alkyl)(arylcarbonyl);

m is an integer from 1 to 5;

10

20

$$\stackrel{\circ}{N-C-O-A_3-R_7}, \stackrel{N}{N-C-N}, \stackrel{\circ}{N-C-N} N-R_4, \stackrel{\circ}{N-C-N} N-C-R_7, \stackrel{\circ}{N-C-R_7}, \stackrel{\circ}{$$

$$N-C-A_3-C-R_7$$
, $N-C-N-C-CH_2-O-R_7$,

15
$$N-C-N$$
 $N-C-C-R_7$, or $N-C-N$ $N-C-C-R_7$;

R₇ is hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A₂-cycloalkyl, A₂-substituted cycloalkyl, aryl, substituted aryl, A₂-aryl, A₂-substituted aryl, heteroaryl, A₂-heteroaryl, heterocycloalkyl, A₂-heterocycloalkyl, aryl-A₃-aryl, A₂-aryl-A₃-aryl, aryl-A₃-cycloalkyl, A₂-aryl-A₃-cycloalkyl, aryl-A₃-heteroaryl, A₂-aryl-A₃-heterocycloalkyl, aryl-A₃-substituted aryl, A₂-aryl-A₃-substituted cycloalkyl, A₂-aryl-A₃-substituted cycloalkyl, A₂-aryl-A₃-substituted cycloalkyl, A₂-cycloalkyl, cycloalkyl-A₃-c

A₃-heteroaryl, cycloalkyl-A₃-heterocycloalkyl, A₂-cycloalkyl-A₃-heterocycloalkyl, cycloalkyl-A₃-substituted cycloalkyl, A₂-cycloalkyl-A₃-substituted cycloalkyl, cycloalkyl-A₃-substituted aryl, A₂-cycloalkyl-A₃-substituted aryl, substituted cycloalkyl-A₃-cycloalkyl, A₂-substituted cycloalkyl-A₃-cycloalkyl, substituted 5 cycloalkyl-A₃-substituted cycloalkyl, A₂-substituted cycloalkyl-A₃-substituted cycloalkyl, substituted cycloalkyl-A₃-aryl, A₂-substituted cycloalkyl-A₃-aryl, substituted cycloalkyl-A₃-heteroaryl, A₂-substituted cycloalkyl-A₃-heteroaryl, substituted cycloalkyl-A₃-heterocycloalkyl, A₂-substituted cycloalkyl-A₃heterocycloalkyl, substituted cycloalkyl-A3-substituted aryl, A2-substituted cycloalkyl-10 A_3 -substituted aryl, heteroaryl- A_3 -heteroaryl, A_2 -heteroaryl- A_3 -heteroaryl, heteroaryl-A₃-cycloalkyl, A₂-heteroaryl-A₃-cycloalkyl, heteroaryl-A₃-substituted cycloalkyl, A₂heteroaryl-A₃-substituted cycloalkyl, heteroaryl-A₃-aryl, A₂-heteroaryl-A₃-aryl, heteroaryl-A₃-heterocycloalkyl, A₂-heteroaryl-A₃-heterocycloalkyl, heteroaryl-A₃substituted aryl, A₂-heteroaryl-A₃-substituted aryl, heterocycloalkyl-A₃-15 heterocycloalkyl, A₂-heterocycloalkyl-A₃-heterocycloalkyl, heterocycloalkyl-A₃cycloalkyl, A2-heterocycloalkyl-A3-cycloalkyl, heterocycloalkyl-A3-substituted cycloalkyl, A2-heterocycloalkyl-A3-substituted cycloalkyl, heterocycloalkyl-A3-aryl, A₂-heterocycloalkyl-A₃-aryl, heterocycloalkyl-A₃-substituted aryl, A₂-

heterocycloalkyl-A₃-substituted aryl, heterocycloalkyl-A₃-heteroaryl, A₂
20 heterocycloalkyl-A₃-heteroaryl, substituted aryl-A₃-substituted aryl, A₂-substituted aryl-A₃-substituted aryl-A₃-cycloalkyl, A₂-substituted aryl-A₃
cycloalkyl, substituted aryl-A₃-substituted cycloalkyl, A₂-substituted aryl-A₃
substituted cycloalkyl, substituted aryl-A₃-aryl, A₂-substituted aryl-A₃-aryl, substituted aryl-A₃-heteroaryl, A₂-substituted aryl-A₃-

25 heterocycloalkyl, A_2 -substituted aryl- A_3 -heterocycloalkyl, -N R_5 , or

$$A_2 - N \begin{pmatrix} R_4 \\ R_5 \end{pmatrix}$$
;

n and o are independently one or two provided that the sum of n plus o is two or three;

v and w are independently one, two, or three provided that the sum of v plus w is three, four, or five;

R₈ is hydrogen, halo, amino, -NH(lower alkyl), -N(lower alkyl)₂, nitro, alkyl, substituted alkyl, alkoxy, hydroxy, aryl, substituted aryl, A₂-aryl, A₂-substituted aryl, aryl-A₃-aryl, A₂-aryl-A₃-aryl, cycloalkyl, substituted cycloalkyl, A₂-cycloalkyl, A₂-substituted cycloalkyl, heteroaryl, A₂-heteroaryl, heterocycloalkyl, A₂-heterocycloalkyl, aryl-A₃-heteroaryl, A₂-aryl-A₃-cycloalkyl, aryl-A₃-heterocycloalkyl, or A₂-aryl-A₃-heterocycloalkyl;

B₁, B₂ and B₃ are each CH, or two of B₁, B₂ and B₃ are CH and the other is N, or one of B₁, B₂ and B₃ is CH and the other two are N;

R₉ is hydrogen or lower alkyl;

R₁₀ is alkyl, substituted alkyl, alkyl-O-alkyl, alkyl-O-alkyl-O-alkyl, cycloalkyl, 20 substituted cycloalkyl, A₂-cycloalkyl, A₂-substituted cycloalkyl, aryl, substituted aryl, A₂-aryl, A₂-aryl, A₂-aryl, A₂-aryl, heteroaryl, A₂-heteroaryl, heterocycloalkyl, A₂-heterocycloalkyl, aryl-A₃-cycloalkyl, A₂-aryl-A₃-cycloalkyl, aryl-A₃-heteroaryl, A₂-aryl-A₃-heterocycloalkyl or A₂-aryl-A₃-heterocycloalkyl;

25

10

15

 R_{21} and R_{22} are the same or different and are independently selected from hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A_2 -cycloalkyl, A_2 -substituted cycloalkyl, A_2 -aryl, and A_2 -substituted aryl;

p is an integer from 2 to 6;

q is an integer from 1 to 6;

r is zero, 1, 2 or 3;

s is 1, 2 or 3;

5

t is 1, 2, 3 or 4;

u is 1, 2 or 3;

A₂ is an alkylene or a substituted alkylene bridge of 1 to 10 carbons, an alkenyl or substituted alkenyl bridge of 2 to 10 carbons having one or more double bonds, or an alkynyl or substituted alkynyl bridge of 2 to 10 carbons having one or more triple bonds;

A₃ is a bond, an alkylene or a substituted alkylene bridge of 1 to 10 carbons, an alkenyl or substituted alkenyl bridge of 2 to 10 carbons having one or more double bonds, an alkynyl or substituted alkynyl bridge of 2 to 10 carbons having one or more triple bonds, $-(CH_2)_d-O-(CH_2)_e$, $-(CH_2)_d-S-(CH_2)_e$,

20 —
$$(CH_2)_d$$
— $(CH_2)_e$ —, — $(CH_2)_d$ — $(CH_2)_d$ — $(CH_2)_e$ —,

$$\begin{array}{c|c} & S & & \\ \hline - (CH_2)_d - N - C - N - (CH_2)_e - , & - (CH_2)_d - C - N - (CH_2)_e - , \\ \hline R_{21} & R_{22} & & \\ \hline \end{array}$$

$$-(CH_2)_d$$
 O C N $(CH_2)_e$, $-(CH_2)_d$ N C $(CH_2)_e$, R_{21}

$$-(CH_2)_d$$
 $-(CH_2)_e$ or $-(CH_2)_d$ $-(CH_2)_e$;

d and e are independently selected from zero and an integer from 1 to 10 provided that the sum of d plus e is no greater than 10;

and an inner salt or a pharmaceutically acceptable salt thereof, a hydrolyzable ester thereof, or a solvate thereof, with the provisos that

10 (a) where R_1 is COOZ, where Z is $(t-c_4H_9OC-0r c_6H_5CH_2OC-)$, and $-A-C-1s (CH_2)_q$, then B is other than amino or R_{20} -NH- where R_{20} is alkyl, cycloalkyl, A_2 -cycloalkyl or A_2 -aryl;

(b) where
$$R_1$$
 is $C_6H_5CH_2OC$, X_1 is X_1 is X_1 is X_1 is X_2 is X_1 is X_1 is X_2 is X_1 is X_1 is X_2 is X_1 is X_2 is X_2 is X_2

15 and -A-c is other than

(1)
$$(CH_3)_3 - C - O - C - N$$
 $C_1 - C_4$ alkyl,

(2)
$$[(H_3C)_3-C-O-C]_2-N-C_1-C_4 \text{ alkyl---},$$

- (3) amino C_1 - C_5 alkyl,
- (4) C_1 - C_4 alkylamino C_1 - C_5 alkyl, or
- 25 (5) piperidyl.

- 2. The compound as defined in Claim 1 wherein R₃ and R₂ are each H.
- The compound as defined in Claim 1 wherein R₁ is carboxy orarylalkoxycarbonyl.
 - 4. The compound as defined in Claim 1 wherein R_1 is carboxy, $-\stackrel{\circ}{\mathbb{C}}_{-OR_7}$, or $-\stackrel{\circ}{\mathbb{C}}_{-N}$, $\stackrel{\circ}{\mathbb{C}}_{-N}$.
- 10 5. The compound as defined in Claim 4 wherein R_7 is substituted alkyl, R_6 is substituted alkyl and m is 2.
 - 6. The compound as defined in Claim 1 wherein X_1 is $-\stackrel{\circ}{\mathbb{C}}_{-\mathbb{R}_7}$ or

$$- \bigcup_{\mathsf{C}-\mathsf{N}}^{\mathsf{O}} \bigcup_{\mathsf{CH}_2)_{\mathsf{W}}}^{\mathsf{CH}_2)_{\mathsf{V}}$$

15

where Y is

$$-N-C-A_3-O-R_7$$

$$-N-C-N$$
 R_{5}

$$-N$$
 N
 N

$$-N-C-A_3-R_7$$
.

- 7. The compound as defined in Claim 6 wherein $-\overset{\circ}{C}_{-R_7}$ is $-\overset{\circ}{C}_{-N}^{H}$; and
- 5 Y is N-C-O
 - or $N \longrightarrow N$
 - or N-C,
- or $N \stackrel{\circ}{C} N \stackrel{\circ}{\longleftarrow}$.

- 8. The compound as defined in Claim 1 wherein A is a bond, heteroaryl, (alkylene) $-\frac{\binom{R_5}{\binom{C}{1}}}{\binom{R_5}{\binom{R_5}{1}}}$,
- $\begin{array}{c|c}
 R_{5a} & O \\
 \hline
 C & q \\
 R_{5a} \\
 R_{5a}
 \end{array}$ where Z is CH or N, r = 0 to 3, s = 0 to 3.
- (alkylcarbonyl cycloheteroalkyl), carbonyl cycloheteroalkyl, $-\frac{N}{C}$

(aminocarbonyl),
$$-\frac{1}{2}$$
 $CH-CH=CH=CH=CH$.

- 9. The compound as defined in Claim 1 wherein B is heteroaryl,5 cycloheteroaryl, alkylcycloheteroalkyl, amino, alkylamino, dialkylamino or aminoalkyl.
 - 10. The compound as defined in Claim 1 wherein $-\stackrel{D}{\subset}H$ is $-CH_2^{\text{min}}$.
- 10 11. The compound as defined in Claim 1 wherein X_1 is

$$\begin{array}{c}
O \\
II \\
-C - N
\end{array}$$
(CH₂) $_{\nabla}$

where Y is
$$N-C-A_3-R_7$$
 or $N-C-A_3-OR_7$,

wherein A_3 is a bond,

and R_7 is alkyl, cycloalkyl, aryl or arylalkyl, or Y is N = N = N.

12. The compound as defined in Claim 10 where X_1 includes the moiety

$$\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right)^{N} \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right)$$

13. The compound as defined in Claim 1 wherein

- heteroaryl.
 - The compound as defined in Claim 13 wherein R_7 is $\begin{array}{c} \text{CH}-\text{CH}_3 \\ \text{CH}-\text{CH}_3 \\ \end{array}$, A 14.

is pyridyl, B is H_2N \longrightarrow $^{N-}$, $^{Z_1-N}$ where Z_1 is H, NH_2CO or alkyl, or B is

 $10 \qquad {\tt HN-CH_2-C-N} \ .$

15. The compound as defined in Claim 1 having the structure

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

or its mono HCl, a monoTFA salt,

5

or its TFA salt,

5

or its TFA salt,

10

$$\begin{array}{c|c} & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

or its HCl salt,

or its TFA salt, or

5

or its TFA salt.

10 16. A compound of the formula

$$B-A-CH \xrightarrow{R_3} \xrightarrow{R_2} R_1 \quad \text{or} \quad X_1$$

including an inner salt thereof, or a pharmaceutically acceptable salt thereof, or a hydrolyzable ester thereof, or a solvate thereof wherein:

B, A, D, R_1 , R_2 and R_3 are as defined in Claim 1;

$$X_1$$
 is $-C-N$ $N-C-C-R_{25}$, $-C-N$ $N-C-C-R_{25}$, $-C-N$ $N-C-C-R_{25}$, $-C-N$ $N-R_{25}$ or $-C-N$ $N-SO_2-R_{25}$; and

R₂₅ is a spacer terminating in a lipophilic group wherein said spacer comprises groups of 3 or more atoms or groups of 2 or more atoms and a phenylene, substituted phenylene, cycloalklene, heteroarylene, or heterocycloalkylene ring and said lipophilic terminating group is aryl, substituted aryl, cycloalkyl, heteroaryl, or heterocycloalkyl.

5

17. A compound of Claim 16 wherein R₂₅ is selected from the group

consisting of
$$-(CH_2)_5$$
 , $-(CH_2)_6$

$$10 - (CH_2)_4 - O$$
, $-NH - (CH_2)_4 - O$,

$$-N-(CH_2)_4-O$$
, $-NH-(CH_2)_3-O$

$$-0-(CH_2)_4$$
 $-0-(CH_2)_2$, -0

$$-0-(CH_2)\frac{1}{3}$$
 0 $(CH_2)\frac{1}{3}$

$$-(CH_2)_2$$
 , $-(CH_2)_5-N$,

20
$$-(CH_2)_5-N$$
 0, $-(CH_2)_2-NH-C-NH-C$

$$-(CH_2)_3$$
 NH , $-(CH_2)_5$,

$$-CH_2$$
 O $(CH_2)_2$ O , $-(CH_2)_4$ N NH ,

5
$$-(CH_2)_5$$
, and $-N$ $N-(CH_2)_2$.

18. A compound of Claim 17 wherein R₂₅ is selected from the group

consisting of
$$-(CH_2)_5$$
 , $-(CH_2)_6$,

$$-(CH_2)_4$$
 , $-NH-(CH_2)_4$

$$-N$$
 $(CH_2)_4$ $-NH$ $(CH_2)_3$

$$_{15}$$
 $-0-(CH_2)_4- \bigcirc$, $-0-(CH_2)_2$ 0- \bigcirc ,

$$-0-(CH_2)\frac{1}{3}$$
 0 (CH₂) 3 (CH₂) 3

$$5 - (CH_2)_5 - N - (CH_2)_2 - NH - C - NH - C$$

$$-(CH_2)_3$$
 NH , $-(CH_2)_5$

10
$$-(CH_2)_5 \xrightarrow{N} \text{, and } -N \xrightarrow{N} (CH_2)_2 \xrightarrow{N}$$

19. A compound of Claim 17 wherein

$$R_{25} is - (CH_2)_5 - C$$

20. The compound as defined in Claim 16 having the following structure:

5

5

21. A pharmaceutical composition comprising a compound as defined in Claim 1 and a pharmaceutically acceptable carrier therefor.

10

22. A method for treating and/or preventing medical conditions in a mammalian species related to tryptase, thrombin, trypsin, Factor Xa, Factor VIIa, or urokinase-type plasminogen activator and/or for treating and/or preventing asthma or

allergic rhinitis and/or for treating chronic asthma, which comprises administering a mammalian species a therapeutically effective amount of a compound of the structure

5

wherein:

D is H or OR^a;

wherein R^a is H or alkyl;

A is a linear string of A¹, A², A³, A⁴, A⁵, A⁶, A⁷ and/or A⁸, in any order, such that A¹ may occur in the string from 0 to 6 times;

15 A² may occur in the string from 0 to 2 times;

A³, A⁴, A⁵, A⁶, A⁷ and/or A⁸ may each occur in the string 0 or 1 time, such that the total number of linear A groups is 0 to 6;

20
$$A^{1}$$
 is $-\frac{{}^{R_{5a}}_{|C}}{{}^{C}_{R_{5a}}}$;

$$A^2$$
 is $C=C$;

A³ is
$$-\frac{0}{1}$$
 -cycloheteroalkyl $-\frac{0}{1}$ -, or $-\frac{0}{1}$ -cycloheteroalkyl;

$$A^4$$
 is $-\overset{\circ}{C}$;

A⁵ is cycloalkyl;

5 A^6 is aryl;

10

20

A⁷ is heteroaryl; and

A⁸ is cycloheteroalkyl;

wherein R_{5a}, R_{5a}, R_{5b}, R_{5c}, and R_{5d} are the same or different and are independently selected from H, alkyl, aryl, arylalkyl halo or nitro;

B is amino, aminoalkyl, aminoalkyl, aminocycloalkyl, cycloheteroalkyl, aryl, heteroaryl, alkylamino, carboxamido (—NH2-C) or cycloalkyl;

 R_1 is hydrogen, carboxy, alkoxycarbonyl, A_2 -aryl, alkyl, $C = R_7$,

$$- \overset{\circ}{\underset{R_{6}}{ - }} \overset{\circ}{\underset{R_{6}}{ - }} \overset{\circ}{\underset{R_{6}}{ - }} \overset{\circ}{\underset{R_{7}}{ - }} , \ - \overset{\circ}{\underset{R_{8}}{ - }} \overset{\circ}{\underset{R_{7}}{ - }} \overset{\circ}{\underset{R_{7}}{ - }} \overset{\circ}{\underset{R_{7}}{ - }} \overset{\circ}{\underset{R_{1}}{ - }} \overset{\circ}{\underset{R_{1}}{ - }} \overset{\circ}{\underset{R_{1}}{ - }} \overset{\circ}{\underset{R_{1}}{ - }} \overset{\circ}{\underset{R_{2}}{ - }} \overset{\circ}{\underset{R_{1}}{ - }} \overset{\circ}{\underset{R_{2}}{ - }} \overset{\overset{\circ}{\underset{R_{2}}{ - }} \overset{\circ}{\underset{R_{2}}{ - }} \overset{\circ}{\underset{R}{2}} \overset{\circ}{\underset{R_{2}}{ - }} \overset{\circ}{\underset{R_{2}}{ - }} \overset{\circ}{\underset{R_{2}}{ - }}$$

 $-C - N \xrightarrow{(CH_2)_0} B_1 - C - CH_2 - O - R_{10}, SO_2 - R_7,$

R₂ and R₃ are the same or different and are independently selected from hydrogen, or alkyl;

$$X_1$$
 is $C = R_7$, $C = N - R_6$ $C = N_1$, $C = N_2$ $C = N_1$

$$-C = N \xrightarrow{(CH_2)_0} B_1 \xrightarrow{B_1} R_8, \quad -C = alkyl = SO_2 = R_7,$$

10

$$\begin{array}{c} O \\ \parallel \\ -C-aryl-SO_2-R_7, \end{array} \begin{array}{c} O \\ \parallel \\ -C-CH_2-O-R_{10}, \end{array} -SO_2-R_7, \\ \end{array}$$

R₄ and R₅ are the same or different and are independently selected from hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A₂-cycloalkyl, A₂-cycloalkyl, A₂-substituted cycloalkyl, aryl, substituted aryl, A₂-aryl, A₂-substituted aryl, heteroaryl, A₂-heteroaryl, A₂-heterocycloalkyl, aryl-A₃-aryl, aryl-A₃-aryl, aryl-A₃-cycloalkyl, A₂-aryl-A₃-cycloalkyl, aryl-A₃-heteroaryl, A₂-aryl-A₃-heterocycloalkyl, aryl-A₃-substituted aryl, A₂-aryl-A₃-substituted cycloalkyl, A₂-aryl-A₃-substituted cycloalkyl, A₂-aryl-A₃-substituted cycloalkyl, cycloalkyl-A₃-aryl, cycloalkyl, A₂-cycloalkyl-A₃-cycloalkyl-A₃-heteroaryl, cycloalkyl-A₃-heterocycloalkyl, A₂-cycloalkyl-A₃-heteroaryl, cycloalkyl-A₃-heterocycloalkyl, cycloalkyl-A₃-

substituted cycloalkyl, A2-cycloalkyl-A3-substituted cycloalkyl, cycloalkyl-A3substituted aryl, A₂-cycloalkyl-A₃-substituted aryl, substituted cycloalkyl-A₃cycloalkyl, A2-substituted cycloalkyl-A3-cycloalkyl, substituted cycloalkyl-A3substituted cycloalkyl, A2-substituted cycloalkyl-A3-substituted cycloalkyl, substituted 5 cycloalkyl-A₃-aryl, A₂-substituted cycloalkyl-A₃-aryl, substituted cycloalkyl-A₃heteroaryl, A₂-substituted cycloalkyl-A₃-heteroaryl, substituted cycloalkyl-A₃heterocycloalkyl, A2-substituted cycloalkyl-A3-heterocycloalkyl, substituted cycloalkyl-A₃-substituted aryl, A₂-substituted cycloalkyl-A₃-substituted aryl, heteroaryl-A₃-heteroaryl, A₂-heteroaryl-A₃-heteroaryl, heteroaryl-A₃-cycloalkyl, A₂-10 heteroaryl-A₃-cycloalkyl, heteroaryl-A₃-substituted cycloalkyl, A₂-heteroaryl-A₃substituted cycloalkyl, heteroaryl-A₃-aryl, A₂-heteroaryl-A₃-aryl, heteroaryl-A₃heterocycloalkyl, A2-heteroaryl-A3-heterocycloalkyl, heteroaryl-A3-substituted aryl, A₂-heteroaryl-A₃-substituted aryl, heterocycloalkyl-A₃-heterocycloalkyl, A₂heterocycloalkyl-A₃-heterocycloalkyl, heterocycloalkyl-A₃-cycloalkyl, A₂-15 heterocycloalkyl-A₃-cycloalkyl, heterocycloalkyl-A₃-substituted cycloalkyl, A₂heterocycloalkyl-A₃-substituted cycloalkyl, heterocycloalkyl-A₃-aryl, A₂heterocycloalkyl-A₃-aryl, heterocycloalkyl-A₃-substituted aryl, A₂-heterocycloalkyl-A₃-substituted aryl, heterocycloalkyl-A₃-heteroaryl, A₂-heterocycloalkyl-A₃heteroaryl, substituted aryl-A₃-substituted aryl, A₂-substituted aryl-A₃-substituted aryl, 20 substituted aryl-A₃-cycloalkyl, A₂-substituted aryl-A₃-cycloalkyl, substituted aryl-A₃substituted cycloalkyl, A₂-substituted aryl-A₃-substituted cycloalkyl, substituted aryl-A₃-aryl, A₂-substituted aryl-A₃-aryl, substituted aryl-A₃-heteroaryl, A₂-substituted aryl-A₃-heteroaryl, substituted aryl-A₃-heterocycloalkyl, and A₂-substituted aryl-A₃heterocycloalkyl;

25

30

 R_6 is hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A_2 -cycloalkyl, A_2 -substituted cycloalkyl, aryl, substituted aryl, A_2 -aryl, A_2 -substituted aryl, aryl- A_3 -aryl, A_2 -aryl- A_3 -aryl, heteroaryl, A_2 -heteroaryl, heterocycloalkyl, A_2 -heterocycloalkyl, aryl- A_3 -cycloalkyl, A_2 -aryl- A_3 -heteroaryl, aryl- A_3 -heterocycloalkyl, A_2 -aryl- A_3 -heterocycloalkyl, carboxy,

alkoxycarbonyl, aryloxycarbonyl, -C-N R_4 R_5 R_5 , alkoxycarbonylamino,

aryloxycarbonylamino, arylcarbonylamino, -N(alkyl)(alkoxycarbonyl),

- -N(alkyl)(aryloxycarbonyl), alkylcarbonylamino, -N(alkyl)(alkylcarbonyl), or
- -N(alkyl)(arylcarbonyl);

5

m is an integer from 1 to 5;

10 N-C-O-A₃-R₇, N-
$$\stackrel{N}{\longleftarrow}$$
, N-C-N N-R₄, N-C-N N- $\stackrel{O}{\longleftarrow}$ N- $\stackrel{O}{\longleftarrow}$ R₇,

$$\begin{array}{c} O \\ N-C-N \\ \end{array} \\ N-C-C-R_7, \text{ or } N-C-N \\ \end{array} \\ \begin{array}{c} O \\ N-C-C-C \\ \end{array} \\ R_7;$$

15

20

25

R₇ is hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A₂-cycloalkyl, A₂-substituted cycloalkyl, aryl, substituted aryl, A₂-aryl, A₂-substituted aryl, heteroaryl, A₂-heteroaryl, heterocycloalkyl, A₂-heterocycloalkyl, aryl-A₃-aryl, A₂-aryl-A₃-aryl, aryl-A₃-cycloalkyl, A₂-aryl-A₃-beteroaryl, A₂-aryl-A₃-heteroaryl, aryl-A₃-heterocycloalkyl, A₂-aryl-A₃-heterocycloalkyl, aryl-A₃-substituted aryl, A₂-aryl-A₃-substituted cycloalkyl, A₂-aryl-A₃-substituted cycloalkyl, A₂-aryl-A₃-substituted cycloalkyl, cycloalkyl-A₃-cycloalkyl, A₂-cycloalkyl-A₃-heteroaryl, A₂-cycloalkyl-A₃-heteroaryl, A₂-cycloalkyl-A₃-heteroaryl, cycloalkyl-A₃-heterocycloalkyl, cycloalkyl-A₃-heterocycloalkyl, cycloalkyl-A₃-heterocycloalkyl, cycloalkyl-A₃-heterocycloalkyl, cycloalkyl-A₃-substituted cycloalkyl, cycloalkyl-A₃-substituted cycloalkyl, cycloalkyl-A₃-substituted cycloalkyl,

cycloalkyl-A₃-substituted aryl, A₂-cycloalkyl-A₃-substituted aryl, substituted cycloalkyl-A₃-cycloalkyl, A₂-substituted cycloalkyl-A₃-cycloalkyl, substituted cycloalkyl-A₃-substituted cycloalkyl, A₂-substituted cycloalkyl-A₃-substituted cycloalkyl, substituted cycloalkyl-A₃-aryl, A₂-substituted cycloalkyl-A₃-aryl, 5 substituted cycloalkyl-A₃-heteroaryl, A₂-substituted cycloalkyl-A₃-heteroaryl, substituted cycloalkyl-A₃-heterocycloalkyl, A₂-substituted cycloalkyl-A₃heterocycloalkyl, substituted cycloalkyl-A3-substituted aryl, A2-substituted cycloalkyl-A₃-substituted aryl, heteroaryl-A₃-heteroaryl, A₂-heteroaryl-A₃-heteroaryl, heteroaryl-A₃-cycloalkyl, A₂-heteroaryl-A₃-cycloalkyl, heteroaryl-A₃-substituted cycloalkyl, A₂-10 heteroaryl-A₃-substituted cycloalkyl, heteroaryl-A₃-aryl, A₂-heteroaryl-A₃-aryl, heteroaryl-A₃-heterocycloalkyl, A₂-heteroaryl-A₃-heterocycloalkyl, heteroaryl-A₃substituted aryl, A₂-heteroaryl-A₃-substituted aryl, heterocycloalkyl-A₃heterocycloalkyl, A2-heterocycloalkyl-A3-heterocycloalkyl, heterocycloalkyl-A3cycloalkyl, A2-heterocycloalkyl-A3-cycloalkyl, heterocycloalkyl-A3-substituted 15 cycloalkyl, A₂-heterocycloalkyl-A₃-substituted cycloalkyl, heterocycloalkyl-A₃-aryl, A₂-heterocycloalkyl-A₃-aryl, heterocycloalkyl-A₃-substituted aryl, A₂heterocycloalkyl-A₃-substituted aryl, heterocycloalkyl-A₃-heteroaryl, A₂heterocycloalkyl-A₃-heteroaryl, substituted aryl-A₃-substituted aryl, A₂-substituted aryl-A₃-substituted aryl, substituted aryl-A₃-cycloalkyl, A₂-substituted aryl-A₃-20 cycloalkyl, substituted aryl-A₃-substituted cycloalkyl, A₂-substituted aryl-A₃substituted cycloalkyl, substituted aryl-A3-aryl, A2-substituted aryl-A3-aryl, substituted aryl-A₃-heteroaryl, A₂-substituted aryl-A₃-heteroaryl, substituted aryl-A₃-

heterocycloalkyl, A_2 -substituted aryl- A_3 -heterocycloalkyl, $-\mathbb{N}_{R_5}$, or

$$A_2 - N \begin{pmatrix} R_4 \\ R_5 \end{pmatrix}$$
;

25

n and o are independently one or two provided that the sum of n plus o is two or three;

v and w are independently one, two, or three provided that the sum of v plus w is three, four, or five;

 R_8 is hydrogen, halo, amino, -NH(lower alkyl), -N(lower alkyl)₂, nitro, alkyl, substituted alkyl, alkoxy, hydroxy, aryl, substituted aryl, A_2 -aryl, A_2 -substituted aryl, aryl- A_3 -aryl, A_2 -aryl- A_3 -aryl, cycloalkyl, substituted cycloalkyl, A_2 -cycloalkyl, A_2 -substituted cycloalkyl, heteroaryl, A_2 -heteroaryl, heterocycloalkyl, A_2 -heterocycloalkyl, aryl- A_3 -cycloalkyl, aryl- A_3 -heteroaryl, A_2 -aryl- A_3 -heterocycloalkyl, aryl- A_3 -heterocycloalkyl, or A_2 -aryl- A_3 -heterocycloalkyl;

10

5

 B_1 , B_2 and B_3 are each CH, or two of B_1 , B_2 and B_3 are CH and the other is N, or one of B_1 , B_2 and B_3 is CH and the other two are N;

R₉ is hydrogen or lower alkyl;

15

20

25

 R_{10} is alkyl, substituted alkyl, alkyl-O-alkyl, alkyl-O-alkyl, cycloalkyl, substituted cycloalkyl, A_2 -cycloalkyl, A_2 -substituted cycloalkyl, aryl, substituted aryl, A_2 -aryl, A_2 -aryl, A_2 -aryl, A_2 -aryl, A_2 -aryl, heteroaryl, A_2 -heteroaryl, heterocycloalkyl, A_2 -heterocycloalkyl, aryl- A_3 -cycloalkyl, A_2 -aryl- A_3 -cycloalkyl, aryl- A_3 -heteroaryl, A_2 -aryl- A_3 -heterocycloalkyl or A_2 -aryl- A_3 -heterocycloalkyl;

 R_{21} and R_{22} are the same or different and are independently selected from hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A_2 -cycloalkyl, A_2 -substituted cycloalkyl, A_2 -aryl, and A_2 -substituted aryl;

p is an integer from 2 to 6; q is an integer from 1 to 6;

30

r is zero, 1 or 2;

s is 1 or 2;

t is 1, 2, 3 or 4;

5 u is 1, 2 or 3;

A₂ is an alkylene or a substituted alkylene bridge of 1 to 10 carbons, an alkenyl or substituted alkenyl bridge of 2 to 10 carbons having one or more double bonds, or an alkynyl or substituted alkynyl bridge of 2 to 10 carbons having one or more triple bonds;

A₃ is a bond, an alkylene or a substituted alkylene bridge of 1 to 10 carbons, an alkenyl or substituted alkenyl bridge of 2 to 10 carbons having one or more double bonds, an alkynyl or substituted alkynyl bridge of 2 to 10 carbons having one or more triple bonds, $-(CH_2)_d$ $-(CH_2)_e$, $-(CH_2)_d$ $-(CH_2)_e$.

$$-(CH_2)_d$$
 N_{CH_2} N_{e} $(CH_2)_e$ N_{e} $(CH_2)_d$ N_{e} $(CH_2)_e$ N_{e} $(CH_2)_e$ N_{e}

$$-(CH_2)_d$$
 $N - C - N - (CH_2)_e$ $-(CH_2)_d$ $C - N - (CH_2)_e$ R_{21}

20

10

$$-(CH_2)_d$$
 O $-(CH_2)_e$ $-(CH_2)_d$ $-(CH_2)_d$ $-(CH_2)_e$ $-($

$$-(CH_2)_d$$
 $-(CH_2)_e$ $-(CH_2)_d$ $-(CH_2)_d$ $-(CH_2)_e$;

d and e are independently selected from zero and an integer from 1 to 10 provided that the sum of d plus e is no greater than 10;

5

and an inner salt or a pharmaceutically acceptable salt thereof, a hydrolyzable ester thereof, or a solvate thereof;

- 23. The method as defined in Claim 22 for treating and/or preventing asthma or allergic rhinitis.
 - 24. The method for treating chronic asthma as defined in Claim 22 which comprises administering to a mammalian species by inhalation to the bronchioles an effective amount of said compound.