Угловая ширина фазового синхронизма

Если бы Бог, создавая мир, спросил у меня совета, я бы подсказал ему, как устроить Вселенную попроще. Альфонс Мудрый

Одноосные кристаллы

Угловая ширина синхронизма

$$\Delta k(\varphi_0, \theta_0 \pm \Delta \theta, \lambda_0, T_0) = \frac{\partial \Delta k}{\partial \theta} \Delta \theta \pm \frac{1}{2} \frac{\partial^2 \Delta k}{\partial \theta^2} (\Delta \theta)^2 \pm \dots$$

Угловая ширина синхронизма

Одноосный положительный кристалл ZnGeP₂ (ZGP).

Некритичный – критичный по углу синхронизм

Одноосный положительный кристалл: ZnGeP₂ (ZGP)

Дисперсия угловой ширины синхронизма

Критичный по углу синхронизм

Некритичный по углу синхронизм

Угловая ширина синхронизма – внутри и вне кристалла

$$\Delta\theta_{\phi c}$$
, _{внеш} = $n \cdot \Delta\theta_{\phi c}$, _{внутр}

 $ZnGeP_2$ - величина показателя преломления n=3,38.

Одноосные кристаллы – угловые ширины при ГВГ

Угловая ширина синхронизма на 1 см.

Кристалл	ΤΓC	Тип	λ , MKM	$\theta_{oldsymbol{\Phi}^{c}}$	$2\Delta heta$, мин.	n	К/НК С
BBO	3m	ooe	1,064	22° 53′	2′ 54″	1,65	
		oee	1,064	32° 33′	4′ 25″	1,67	
CDA	$\overline{4}2m$	ooe	1,064	88° 43′	7° 8′ 19″	1,55	НКУС
		oee	1,064				
KDP	$\overline{4}2m$	ooe	1,064	40° 53′	5′ 49″	1,49	
		oee	1,064	58° 42′	11′ 9″	1,47	
DKDP	$\overline{4}2m$	ooe	1,064	36° 34′	6' 24"	1,49	
		oee	1,064	53° 38′	11' 48"	1,47	
LiNbO ₃	3m	ooe	1,064	83° 4′	17′ 21″	2,23	
		oee	1,064				
LilO ₃	6	ooe	1,064	29° 58′	2' 11"	1,86	
		oee	1,064	43° 58′	3' 41"		
Proustite	3m	ooe	2,09	30° 5′	4′ 2″	2,79	
(Прустит)		oee	2,09	44° 17′	6′ 54″	2,78	
Urea	$\overline{4}2m$	eeo	1,064	22° 2′	3′ 32″	1,48	
(Мочевина)		eoo	1,064	31° 48′	5′ 20″	1,48	
$ZnGeP_2$	$\overline{4}2m$	eeo	5,3	47° 5′	1° 6′ 12″	3,38	
		eoo	5,3				8

Двухосные кристаллы

Угловая ширина синхронизма

Некритичный синхронизм

Кристалл: LBO.

LBO, ssf, Γ B Γ , λ =1,0642 MKM, Γ =**20** °**C**

L=1 см, $2\Delta\theta$ =84,9 мрад, $2\Delta\phi$ =7,5 мрад

Критичный синхронизм

Некритичный по углам синхронизм

LBO, ssf, Γ B Γ , λ =1,0642 MKM, T = 148 °C

L=1 см, $2\Delta\theta$ =78,8 мрад $2\Delta\phi$ =99,3 мрад

LBO, ssf-тип, φ = 0, θ = 90

Аномально некритичный по углу синхронизм

Аномально некритичный по углу синхронизм

Кристалл: LISe. Тип синхронизма sff

Аномально некритичный синхронизм по углу θ

Снос пучка

$$\beta = \frac{1}{n_e(\theta)} \frac{dn_e(\theta)}{d\theta}$$

ooe
$$\Delta x = tg\beta \cdot L_{cr} = \beta \cdot L_{cr} < d$$
 $L_{cr} < d/\beta$

Угловая ширина синхронизм

$$\varphi_o(\lambda) = \frac{2\pi}{\lambda} n_o L_{cr}$$

$$\begin{split} \phi_{e(\lambda)} &= \frac{2\pi}{\lambda} n_e L_{cr} + \\ &+ \frac{2\pi}{\lambda} \frac{dn_e}{d\theta} \Delta \theta L_{cr} \end{split}$$

$$\Delta \varphi = \frac{2\pi}{\lambda} \frac{dn_e}{d\theta} \Delta \theta L_{cr}$$

Снос и угловая ширина синхронизм

 $+0,443\pi$ -

$$\beta = \frac{1}{n_e(\theta)} \frac{dn_e(\theta)}{d\theta}$$

ooe:
$$\Delta x = tg\beta \cdot L_{cr} = \beta \cdot L_{cr} < d$$

$$L_{cr} < d/\beta$$

$$\Delta \varphi = \frac{\pi}{2} = \frac{d\Delta k}{d\theta} \Delta \theta L_{cr} = \frac{2\pi}{\lambda_1/2} L_{cr} \frac{d\Delta n}{d\theta} \Delta \theta$$

ooe:
$$0,443\pi = \frac{2\pi}{\lambda_1/2} L_{cr} \cdot n_e \left(\frac{1}{n_e} \frac{dn_e}{d\theta}\right) \Delta \theta$$

$$\Delta\theta = 0.11075 \frac{1}{L_{cr}} \frac{\lambda_1}{n_e} \left(\frac{1}{n_e} \frac{dn_e}{d\theta} \right)^{-1}$$

Связь сноса и угловой ширины синхронизма

$$\beta = \frac{1}{n_e(\theta)} \frac{dn_e(\theta)}{d\theta}$$

$$\Delta \theta = \frac{1}{8} \frac{1}{L_{cr}} \frac{\lambda_1}{n_e} \left(\frac{1}{n_e} \frac{dn_e}{d\theta} \right)^{-1}$$

 L_{cr} =1 cm, Полная ширина, внешняя

poe:
$$\Delta\theta_{phm} = 2\Delta\theta = 100 \frac{\lambda_1}{4|\beta_{2\omega}|}$$

ooe:
$$\Delta\theta_{phm} = 2\Delta\theta = 100 \frac{\lambda_1}{4|\beta_{2\omega}|}$$

oee: $\Delta\theta_{phm} = 2\Delta\theta = 100 \frac{\lambda_{10}}{2|2\beta_{2\omega} - \beta_{\omega}|}$

ooe:

$$\Delta \mathbf{x} = \frac{0,11 \cdot \lambda_1}{n_e} \frac{1}{\Delta \theta_{phm}}$$

$$\Delta\theta_{phm} = \theta_{rad} = \frac{1,22 \cdot \lambda_1}{d}$$

Излучение дифракционного качества

$$\frac{dn_e(\theta)}{d\theta}$$

$$\Delta \mathbf{x} = \frac{0.09}{n_e} d$$

Снос $(x - y) \leftarrow - - \rightarrow$ Угловая ширина $(\phi - \theta)$