A quick tour of Fourier Transform

with a short comparison with SVD

Jayson Cunanan

Twitter: JsonMathsAi

LI: https://www.linkedin.com/in/jaysoncunanan-phd/

Fourier transform

- Formulated by Joseph Fourier to study the nature of heat transfer.
- Idea is to decompose any signals into basic sine waves
- Applied in ru
 VIRTUALLY
 ANYTHING

Definitions

1D FOURIER TRANSFORM

$$\mathcal{F}:\mathbb{C}\to\mathbb{C}$$

$$\mathcal{F}(f)(\omega) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i\omega \cdot t} dt$$

1D DISCRETE FT AND ITS INVERSE FT

$$\mathcal{F}:\mathbb{C}^N\to\mathbb{C}^N$$

$$\mathcal{F}(f)(k) = F(k) = \sum_{a=0}^{N-1} f(a)e^{-2\pi i \left(\frac{ka}{N}\right)}$$

$$f(x) = \frac{1}{N} \sum_{k=0}^{N-1} F(k) e^{-2\pi i \left(\frac{kx}{N}\right)}$$

Some properties

LINEARITY

SHIFTS

•
$$\mathcal{F}\left(f(a)\cdot e^{2\pi i\left(\frac{am}{N}\right)}\right)(k) = \mathcal{F}(f)(k-m) = F(k-m),$$

$$F(f(a-m))(k) = F(k) \cdot e^{-2\pi i \left(\frac{km}{N}\right)}$$

CONVOLUTION

 $F(f * K_N)(k) = F \cdot F(K_N)(k), \quad \forall c, d \in \mathbb{C}$

image

filter

kernel

FT image

Path to discrete setting

Fourier transfrom of images

2D DISCRETE FT AND ITS INVERSE FT

$$F(k,l) = \sum_{a=0}^{N-1} \sum_{b=0}^{M-1} f(a,b)e^{-2\pi i \left(\frac{ka}{N} + \frac{lb}{M}\right)}$$

$$f(x,y) = \frac{1}{NM} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} F(k,l) e^{-2\pi i \left(\frac{kx}{N} + \frac{ly}{M}\right)}$$

Pixel-intensity space (spatial domain)

0	0	0	0	0	0		
87	3	9	0	32	0		
2	6	89	0	5	0		
3	65	69	3	9	0		
0	0	0	88	0	0		
0	87	3	9	0	0		

DFT

Frequency space (Fourier domain)

	0	1	2	3	4	5
0	1+0j	.5+.7j	2-6j	.2+3j		
1	-2+j					
2						
3						
4						
5						

^{*} Fast Fourier Transform (FFT) is an efficient way to compute DFT.

What is SVD?

- Singular Value Decomposition
- $\bullet A = U \Sigma V^T$
- SVD decomposes an $m \times n$ matrix A into products of orthogonal matrices U size $m \times m$, V size $n \times n$, and singular matrix Σ size $n \times m$.