이다경

INDEX

- 1. Abstract
- 2. Introduction
- 3. Deformable Convolutional Networks
- 4. Understanding D-ConvNets
- 5. Experiment

1. Abstract

- CNN feature structure가 고정되어 있기 때문에 모델 변형이 제한
- 이에 본 논문은 CNN 변환 모델링 기능 두 가지를 소개
 - deformable convolution
 - deformable Rol pooling
- 추가적인 offset으로 정사각형이 아닌 직사각형 형태를 만들자

- 이 새로운 모듈들은 기존의 CNN모듈을 쉽게 대체할 수 있고, standard backpropagation 로 end-to-end로 쉽게 학습할 수 있다.
- object detection and semantic segmentation 에 효과적이다.

```
Convolution Rol pooling Convolution + learnable offset Rol pooling + learnable offset without additional supervision
```

• Visual recognition의 주요 이슈는 object scale, pose, viewpoint, and part deformation을 어떻게 수용하는가

- data augmentation

- SIFT (scale invariant feature)

Label-preserving augmentation?

Ex) 암 detection은 scale x > 사전 지식이 필요함 이는 generalization에 한계

• CNN모델은 이미 visual recognition tasks, such as image classification, semantic segmentation, and object detection에서 뛰어난 성능을 보이고 있지만, 다음과 같은 문제 존재

배경을 detection할 때도, 작은 물체를 큰 물체를 detection할 때도 같은 사이즈의 receptive filter

- 본 논문은 이를 해결하기 위한 두 가지 방법 제시
- 1. deformable convolution : standard convolution에 2D offsets 추가
- Dilated convolution, rotation convolution 등 커버 가능
- → 사람이 receptive size를 지정해 주는 것이 아니라, input 에 따라 알아서 학습
- 2. deformable Rol pooling : 위와 같은 방식

Figure 3. "Atrous" convolutions with r = 1, 2, and 3. The first convolution (r = 1) is actually the ordinary convolution.

(a)

• 본 논문은 spatial transform networks 와 철학 공유

https://www.youtube.com/watch?v=Ywv0Xi2-14Y

Rotated MNIST

Deformable Convolution도 input에서 관심있는 영역을 detection.

But spatial transform networks처럼 가운데로 돌리고 다시 classification하는게 아니라 end-to-end로 바로 가능

Input이 구석에 있거나, 돌아가 있는 것을 가운데로 맞추어 인식

Figure 2: Illustration of 3×3 deformable convolution.

3.1 Deformable Convolution

2.1. Deformable Convolution

The 2D convolution consists of two steps: 1) sampling using a regular grid \mathcal{R} over the input feature map \mathbf{x} ; 2) summation of sampled values weighted by \mathbf{w} . The grid \mathcal{R} defines the receptive field size and dilation. For example,

$$\mathcal{R} = \{(-1, -1), (-1, 0), \dots, (0, 1), (1, 1)\}$$

defines a 3×3 kernel with dilation 1.

For each location \mathbf{p}_0 on the output feature map \mathbf{y} , we have

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n), \tag{1}$$

where \mathbf{p}_n enumerates the locations in \mathcal{R} .

In deformable convolution, the regular grid \mathcal{R} is augmented with offsets $\{\Delta \mathbf{p}_n | n=1,...,N\}$, where $N=|\mathcal{R}|$. Eq. (1) becomes

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n + \Delta \mathbf{p}_n).$$
 (2)

3.1 Deformable Convolution

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n + \Delta \mathbf{p}_n).$$
 (2)

$$\mathbf{x}(\mathbf{p}) = \sum_{\mathbf{q}} G(\mathbf{q}, \mathbf{p}) \cdot \mathbf{x}(\mathbf{q}),$$
 (3)

where \mathbf{p} denotes an arbitrary (fractional) location ($\mathbf{p} = \mathbf{p}_0 + \mathbf{p}_n + \Delta \mathbf{p}_n$ for Eq. (2)), \mathbf{q} enumerates all integral spatial locations in the feature map \mathbf{x} , and $G(\cdot, \cdot)$ is the bilinear interpolation kernel. Note that G is two dimensional. It is separated into two one dimensional kernels as

$$G(\mathbf{q}, \mathbf{p}) = g(q_x, p_x) \cdot g(q_y, p_y), \tag{4}$$

where g(a,b) = max(0,1-|a-b|). Eq. (3) is fast to compute as $G(\mathbf{q},\mathbf{p})$ is non-zero only for a few qs.

P: 임의의 분수 값(ex - 0.5, 1.5 ... 즉, 너무 터무니없는 값은 아님)

q: feature map의 모든 공간 열거

G: 쌍방향 보간 커널

3.2 Deformable Rol Pooling

Figure 3: Illustration of 3×3 deformable RoI pooling.

3.2 Deformable Rol Pooling

RoI Pooling [15] Given the input feature map x and a RoI of size $w \times h$ and top-left corner p_0 , RoI pooling divides

the RoI into $k \times k$ (k is a free parameter) bins and outputs a $k \times k$ feature map y. For (i, j)-th bin $(0 \le i, j < k)$, we have

$$\mathbf{y}(i,j) = \sum_{\mathbf{p} \in bin(i,j)} \mathbf{x}(\mathbf{p}_0 + \mathbf{p})/n_{ij}, \tag{5}$$

where n_{ij} is the number of pixels in the bin. The (i,j)-th bin spans $\lfloor i \frac{w}{k} \rfloor \leq p_x < \lceil (i+1) \frac{w}{k} \rceil$ and $\lfloor j \frac{h}{k} \rfloor \leq p_y < \lceil (j+1) \frac{h}{k} \rceil$.

Similarly as in Eq. (2), in deformable RoI pooling, offsets $\{\Delta \mathbf{p}_{ij} | 0 \le i, j < k\}$ are added to the spatial binning positions. Eq.(5) becomes

$$\mathbf{y}(i,j) = \sum_{\mathbf{p} \in bin(i,j)} \mathbf{x}(\mathbf{p}_0 + \mathbf{p} + \Delta \mathbf{p}_{ij}) / n_{ij}.$$
 (6)

Typically, $\Delta \mathbf{p}_{ij}$ is fractional. Eq. (6) is implemented by bilinear interpolation via Eq. (3) and (4).

input feature map

output roi feature map

Figure 3: Illustration of 3×3 deformable RoI pooling.

k = 3, ΔP_{ij} : 쌍방향 보간법

3.2 Deformable Rol Pooling

둘다 backpropagation에 의해 한번에 학습

- 그냥 기존의 conv 레이어를 살짝만 바꾸어도 잘 작동
- Two stage, Three stage 필요 x → 간단

Layer가 쌓이다 보면 엄청 큰 차이

Figure 7: Illustration of offset parts in deformable (positive sensitive) RoI pooling in R-FCN [7] and 3×3 bins (red) for an input RoI (yellow). Note how the parts are offset to cover the non-rigid objects.

Test Accuracy	Regular CNN	Deformable CNN		
Regular MNIST	98.74%	97.27%		
Scaled MNIST	57.01%	92.55%		

4.1 In Context of Related Works

Spatial Transform Networks (STN)

- Linear transform으로 한정
- Small scale만 고성능

• 찾은 bounding box를 다시 정면에 박고, 이후에 classification작업 필요

W*X에서 그동안은 W에만 신경썼다면, Deformable ConvNets는 X에도 신경썼다!

4.1 In Context of Related Works

Effective Receptive Field

이론상 3 by 3 → 9 by 9 → 27 by 27 But 사실 그렇게 Linear하게 커지지 X

Stride가 딱 3 by 3 이 아닐 수도 있어서 겹치는 부분이 존재하기 때문.

하지만 Deformable ConvNets는 receptive field가 효율적으로 커짐

5. Experiments

deformation modules	DeepLab	class-aware RPN	Faster R-CNN	R-FCN	
deformation modules	mIoU@V/@C	mAP@0.5 / @0.7	mAP@0.5 / @0.7	mAP@0.5 / @0.7	
atrous convolution (2,2,2) (default)	69.7 / 70.4	68.0 / 44.9	78.1 / 62.1	80.0 / 61.8	
atrous convolution (4,4,4)	73.1 / 71.9	72.8 / 53.1	78.6 / 63.1	80.5 / 63.0	
atrous convolution (6,6,6)	73.6 / 72.7	73.6 / 55.2	78.5 / 62.3	80.2 / 63.5	
atrous convolution (8,8,8)	73.2 / 72.4	73.2 / 55.1	77.8 / 61.8	80.3 / 63.2	
deformable convolution	75.3 / 75.2	74.5 / 57.2	78.6 / 63.3	81.4 / 64.7	
deformable RoI pooling	N.A	N.A	78.3 / 66.6	81.2 / 65.0	
deformable convolution & RoI pooling	N.A	N.A	79.3 / 66.9	82.6 / 68.5	

Table 3: Evaluation of our deformable modules and atrous convolution, using ResNet-101.

5. Experiments

method	backbone architecture	M	В	mAP@[0.5:0.95]	mAP ^r @0.5	mAP@[0.5:0.95] (small)	mAP@[0.5:0.95] (mid)	mAP@[0.5:0.95] (large)
class-aware RPN	ResNet-101			23.2	42.6	6.9	27.1	35.1
Ours				25.8	45.9	7.2	28.3	40.7
Faster RCNN	ResNet-101			29.4	48.0	9.0	30.5	47.1
Ours				33.1	50.3	11.6	34.9	51.2
R-FCN	ResNet-101			30.8	52.6	11.8	33.9	44.8
Ours				34.5	55.0	14.0	37.7	50.3
Faster RCNN	Aligned-Inception-ResNet			30.8	49.6	9.6	32.5	49.0
Ours				34.1	51.1	12.2	36.5	52.4
R-FCN	Aligned-Inception-ResNet			32.9	54.5	12.5	36.3	48.3
Ours				36.1	56.7	14.8	39.8	52.2
R-FCN	Aligned-Inception-ResNet	✓		34.5	55.0	16.8	37.3	48.3
Ours		\checkmark		37.1	57.3	18.8	39.7	52.3
R-FCN		✓	✓	35.5	55.6	17.8	38.4	49.3
Ours		\checkmark	✓	37.5	58.0	19.4	40.1	52.5

Table 5: Object detection results of deformable ConvNets v.s. plain ConvNets on COCO test-dev set. M denotes multi-scale testing, and B denotes iterative bounding box average in the table.