Klausur zu "Diskrete Strukturen", WS 09/10

B.Sc-Modulprüfung / Scheinklausur Dr. Timo Hanke, Lehrstuhl D für Mathematik, RWTH Aachen

Name:							N	/Iatrik	elnumn	ner:			
Aufgab	e 1. (8	Punkt	se)										
Gegeben	ist die	Permi	ıtation	$\pi = \bigg($	1 2 4 6	3 4 5 2 1 3	5 6 7 3 5 8	$\begin{pmatrix} 8 \\ 7 \end{pmatrix}$.					
a) Schrei	iben Si	$e \pi als$	Produ	kt von	disjunk	kten Zy	keln.	·					(3 P.)
b) Berec					•	J							(2 P.)
c) Geber Probehin									iben.				(3 P.)
π :	=						$\operatorname{sgn}(\pi$	-) =		$\sigma = $			
Aufgab	e 2. (9	Punkt	se)										
a) Berec	hnen S	ie $d = 1$	ggT(78	4,602)	sowie .	$\lambda, \mu \in \mathbb{Z}$	$\mathbb{Z} \ \mathrm{mit} \ \lambda$. · 784 -	$+\mu \cdot 602$	= d.			(3 P.)
b) Geber									,				(2 P.)
	e Elem	ent an								-			(4 P.)
$d = \boxed{}$	λ	=	μ	=	x =	=		$\frac{\in R^* \mid}{x^{-1} \mid}$	1 7 1 13	11 13 11 7	17 19 23 19	23 2 17 2	9 9
alle $x:[4]$	498,554	4, 610, 6	566,722	2,778,5	0, 106,	162, 218	8, 274, 3	330, 386	[6,442]				
Aufgab	e 3. (1	0 Punl	kte)										
Betracht	et wird	l folger	ıder Gr	aph mi	t numi	m meriert	en Kan	ten: •	7 4	8 5	$ \begin{array}{c c} \bullet \\ \hline & 6\\ \hline & \\ 2\\ \hline & \\ & \\ \end{array} $	•	
a) Vervo	llständ	igen Si	e 4, 7, .	zu ei	iner Eu	ılertour							(2 P.)
								(1 P.)					
c) Wievi	ele Bri	icken e	nthält	der Gra	aph, we	enn ma	n die K	anten	7 und 8	entfern	t?		(2 P.)
									Sie einer ufsteiger		_		(3 P.)
ein. e) Wie la erreicl	autet d hen kar		cimale 1	Kompo	nenten	zahl, d	ie man	durch	Entferne	en von	zwei Ka	ınten	(2 P.)
a)	4	7							b)		c)		
d)									e)				_
		•						•	•		•		

Aufgabe 4. (8 Punkte)

Gegeben seien die Relationen

$$A = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\} \text{ auf } \underline{4},$$

$$B = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (1,3), (2,3), (4,3)\} \text{ auf } \underline{4},$$

$$C = \{(1,3), (1,4), (2,4), (3,1), (3,4), (4,1), (4,2), (4,3)\} \text{ auf } \underline{4},$$

$$D = \{(1,3), (1,4), (2,1), (2,4), (3,1), (3,4), (4,2), (4,3)\} \text{ auf } \underline{4},$$

$$E = \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,3), (1,5), (2,5)\} \text{ auf } \underline{5},$$

$$F = \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,3), (3,1), (2,4), (4,2)\} \text{ auf } \underline{5}.$$

- a) Ordnen Sie die Relationen gemäß ihrer Eigenschaften so in die untenstehende Tabelle ein, (5 P.) dass jede Relation genau ein Mal vorkommt. Eine *Quasiordnung* ist eine Relation, die transitiv und reflexiv ist, aber nicht notwendigerweise antisymmetrisch.
- b) Bestimen Sie die Anzahl der Äquivalenzklassen der Äquivalenzrelation. (1 P.)
- c) Bestimen Sie alle Elemente, die bzgl. der partiellen Ordnung ein Minimum sind. Tragen (1 P.) Sie '—' ein, falls es keine gibt.
- d) Bestimen Sie alle minimalen Elemente der Quasiordnung. Tragen Sie '—' ein, falls es keine (1 P.) gibt.

	A–F	
Totalordnung	A	_
partielle Ordnung	E	Minimum sind: —
Quasiordnung	В	minimal sind: 4
Äquivalenzrelation	F	Anzahl Klassen: 3
ungerichteter Graph ohne Schleifen	С	—
keins davon	D	_

Aufgabe 5. (9 Punkte)

Bestimmen Sie die folgenden Anzahlen. Vereinfachen Sie Ihr Ergebnis soweit, wie es ohne Taschenrechner möglich ist.

- a) Wieviele 6-stellige Dezimalzahlen gibt es, in denen keine zwei gleiche Ziffern hintereinander (3 P.) vorkommen?
- b) Wieviele verschiedene Typen von Perlenketten lassen sich bilden, wenn man 6 paarweise (3 P.) verschieden gefärbte Perlen auf eine Schnur aufzieht?
- c) Wieviele Wörter der Länge 7 lassen sich aus dem Buchstabenvorrat BBBBLAAA bilden? (3 P.)

a)		b) (c)	
----	--	------	--	----	--

Aufgabe 6. (schriftlich, 6 Punkte)

Geben eine geschlossene Formel für $S_{n,2}$ an, wobei $S_{n,k}$ die Stirling'sche Zahl zweiter Art bezeichnet. Leiten Sie Ihre Formel her bzw. begründen Sie sie ausführlich, **ohne** dabei die Rekursionsgleichung für die Stirling'schen Zahlen zu benutzen.