3.5.1. Изучение плазмы газового разряда в неоне.

Миндиярова Р.В Группа Б01-007

Цель работы: изучение вольт-амперной характеристики тлеющего разряда, изучение свойств плазмы методом зондовых характеристик.

В работе используются: стеклянная газоразрядная трубка, наполненная изотопом неона, высоковольтный источник питания (ВИП), источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

Теория

Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

$$div \mathbf{E} = 4\pi \rho,$$

а с учётом сферической симметрии и $\mathbf{E} = -\mathrm{grad}\ \varphi$:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_e}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$ – paduyc Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2. (4)$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды $\sigma=nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем плазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}}. (5)$$

Одиночный зонд

При внесении в плазму уединённого проводника — $son \partial a$ — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ — плавающего поменциала.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока I_{eh} — электронный ток насыщения, а минимальное I_{ih} — ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4 neS \sqrt{\frac{2kT_e}{m_i}}. (7)$$

Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS\langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right). \tag{8}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов $(I_1 = -I_2 = I)$:

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{i\text{H}}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{iii}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} \ln \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

$$I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
 (11)

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha \approx \alpha$ при малых α и $A \to 0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{i_{\rm H}}}{\frac{dI}{dU}}.$$
 (12)

Описание установки

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и $\mathit{геттерный}$ узел – стеклянный баллон, на внутреннюю повехность которого напылена газопоглощающая плёнка (remmep). Трубка наполнена изотопом неона 22 Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (≈ 450 кОм) к регулируемому ВИП с выкодным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке черезе высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

Таблица 1: Таблица с измерениями

I, mkA	V, volt
4,8	26,83
4,6	26,8
3,4	27
3,2	27,1
2,96	27,3
2,6	27,9
2,16	29
1,8	30
1,4	31,8
1	32,8
0,95	33,2

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

1 Выполнение работы

Данные установки $R_b = 450 \; kOm, d = 0.2 \; mm, l = 5.2 \; mm$

1.1 Вольт-амперная характеристика разряда

Снимаем значения, составляем таблицу 1:

По полученным значениям строим график зависимости U(I) - вольт-амперную характеристику разряда.

По наклону касательной к графику определим максимальное дифференциальное сопротивление разряда $R_{max} \approx 3.46 \ kOm$:

1.2 Работа с зондом

Снимаем значения, составляем таблицу 2:

Зависимость U(I) Table1_2 Table 1_4 Linear Приближение 1 33 32 31 **>** 30 29 28 27 0 1 2 3 4 *I, mA*

Рис. 1: Вольт-амперная характеристика разряда

Рис. 2: График зондовой характеристик $i_{razr}=5\ mA$

По графикам 2, 3, 4 рассчитаем I, а так же $\frac{dI}{dU}$, U=0. Для этого проводим соответствующие ассимптоты и касательные. Сведем полученные результаты в таблицу 3: Учтем погрешности.

Теперь рассчитаем температуру электронов T_e по формуле (12), а также n_e -

Таблица 2

V1, volt	I1, mkA	V2, volt	I2, mkA	V3, volt	I3, mkA
95,3	25,2	55,1	25,3	25,1	24,15
96,7	22,28	53,1	22,07	24,26	21,02
95,5	19,29	51,4	19,3	23,49	18,12
92,62	16,39	49,28	15,97	22,64	15,08
85,27	13,03	46,44	12,99	21,67	12,66
74,03	10,17	42,56	10,67	18,45	9,1
62,09	8,17	35,62	8,2	14,92	7,05
47,31	6,26	26	6,14	10,25	5,15
26,71	4,11	15,77	4,12	4,15	3,05
3,48	2	1,31	1,99	0,9	2,1
0,33	1,78	-13,1	-0,5	-13,68	-2,09
-21,2	-1,06	-30,2	-3,12	-19,83	-4,16
-42,8	-3,06	-42,87	-5,5	-24,05	-5,98
-64,2	-5,28	-53,6	-8,52	-27,66	-8,2
-85,5	-8,3	-57,6	-10,29	-29,93	-10,29
-94	-10,1	-61,9	-13,13	-31,83	-13,1
-104,5	-13,1	-64,3	-16	-33,32	-16,35
-110,7	-16,1	-66,84	-19	-34,6	-19,32
-114,11	-19,31	-68,42	-21,54	-35,82	-22,14
-115,08	-21,3	-70,27	-24,14	-36,69	-24,13

Таблица 3: Таблица для расчетов

I_{razr}, mA	I_{iH}, mkA	$\frac{dI}{dU}, \frac{mkA}{V}$
1.5	19	6.96
3.0	39	32
5.0	73	9.66

Рис. 3: График зондовой характеристик $i_{razr}=3\ mA$

I = 1,5 mA

Рис. 4: График зондовой характеристик $i_{razr}=3\ mA$

Ó

U,V

10

20

-10

концентрацию электронов в плазме по формуле Бома (7).

Построим график зависимости $n_e = f(I_{razr})$

-20

-80

Затем рассчитаем плазменную частоту колебаний электронов $\omega_e,$ а так же де-

Таблица 4: Таблица для расчетов

	$I_{razr},, \mathrm{mA}$	kT_e , $el \cdot Volt$	$n_e \cdot 10^{15}, m^{-3}$	$T_e, K \cdot 10^4$	$\sigma T_e K \cdot 10^4$
	1.5	1.36	26.3	1.6	0.18
	3.0	0.64	44	0.7	0.08
ĺ	5.0	0.44	77	0.5	0.06

Рис. 5: График зависимости n_e от I_{razr}

Таблица 5: Таблица для расчетов

I_{razr} mA	$\omega_p, \cdot 10^{11}, \frac{rad}{sec}$	$r_D \cdot 10^{-2}, cm$	N_D	$\alpha \cdot 10^{-7}$
1.5	0.87	0.21	387	4.60
3.0	1.56	0.16	171	7.81
5.0	2.18	0.13	92	13.6

баевский радиус экранирования (с учетом того, что температура ионов мала по сравнению с электронной). Теперь оценим среднее число ионов в дебаевской среде N_D . Примем $r_D \approx 10^{-3} m$ судя из рассчетов. Тогда $R_D \approx 10^8$ а также степерь ионизации плазмы долю ионизированных атомов α при учете, что давление в трубке $P \approx 2 \ Torr$. Сведем все полученные результаты в итоговую таблицу 5.

Вывод 2

В данной работе мы изучили вольт-амперную характеристику тлеющего разряда. Затем занялись изучением свойств плазмы методом зондовых характеристик.

В этом пункте мы получили, что температура электронов у нас порядка $T_e \approx 10^4 \, K$, тогда $kT_e \approx 1 eV$.

Концентрация электронов в плазме получилось порядка $n_e \approx 10^{16}$.

Плазменная частота колебаний получилось порядка $\omega_p \approx 10^{16} \, \frac{rad}{sec}$. Дебаевский радиус получили $r_D \approx 10^{-3} \, m$, среднее число ионов в дебаевской сфере много больше единицы (см. таблицу 5).

Полученные значения близки к табличным.