ECE 414/517 Reinforcement Learning

LECTURE 12: MONTE CARLO METHODS

OCT. 10 2022

Monte Carlo Summary

- MC has several advantages over DP:
 - Can learn directly from interaction with the environment
 - No need for full models
 - No need to learn about all states
 - Less harm by Markovian Violations (more details later).
- 2. One issue to watch out for: Maintaining sufficient exploration
 - Exploring starts, soft policies.
- 3. Introduced the distinction between on-policy and off-policy methods.
 - Why?
 - Why not?
- 4. No bootstrapping (as opposed to DP).

Monte Carlo (Exploring Starts)

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$ Initialize: $\pi(s) \in \mathcal{A}(s)$ (arbitrarily), for all $s \in \mathcal{S}$ $Q(s,a) \in \mathbb{R}$ (arbitrarily), for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$ $Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)$ Loop forever (for each episode): Choose $S_0 \in \mathcal{S}$ and $A_0 \in \mathcal{A}(S_0)$ such that all pairs have probability > 0Generate an episode from S_0, A_0 , following π : $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ Loop for each step of episode, $t = T-1, T-2, \ldots, 0$: $G \leftarrow \gamma G + R_{t+1}$ Unless the pair S_t , A_t appears in S_0 , A_0 , S_1 , A_1 , ..., S_{t-1} , A_{t-1} : Append G to $Returns(S_t, A_t)$ $Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$ $\pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$

On policy Monte Carlo

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
    Q(s,a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in A(s)
    Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)
Repeat forever (for each episode):
    Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T - 1, T - 2, \dots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
             Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
              A^* \leftarrow \operatorname{argmax}_a Q(S_t, a)
                                                                                    (with ties broken arbitrarily)
              For all a \in \mathcal{A}(S_t):
                      \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```

On-policy Vs. Off-policy

- 1. On-policy methods, are methods where you evaluate and improve the policy that is used to create the episodes.
 - To ensure all actions are selected we need to employ an ϵ -soft policy
- 2. Instead we can use **off-Policy methods**. In this case the policy we use to generate the episodes is different than the behavior we are trying to evaluate and improve.
 - Behavior policy b(a|s) The policy used to generate episodes
 - Estimation policy $\pi(a|s)$ The policy being evaluated and improved.
- 3. This has some advantages:
 - Include On-policy as special case $(b(a|s) = \pi(a|s))$
 - Estimation policy can be deterministic (e.g. greedy) and therefore optimal vs near optimal (ϵ -soft).
 - Can learn from observing the behavior of other non-learning agents (such as humans)
- 4. Disadvantages:
 - More complex and slower to converge.

Cliff walking

- 1. Need to go from S to G.
- 2. Actions are standard S,N,E,W
- 3. Reward is -1 for every move until goal is reached
- 4. In addition any move into "the cliff" results in a -100 reward and sends the agent back to the start.

- 1. In order to be able to estimate $\pi(a|s)$ from b(a|s) we require **coverage**. That is: $\pi(a|s) > 0 \implies b(a|s) > 0$
 - Implies that b(a|s) must be stochastic in actions not in $\pi(a|s)$
- 2. On the other hand $\pi(a|s)$ can be a deterministic greedy policy with respect to the current estimate of the action value function.
- 3. How to estimate action values for $\pi(a|s)$ from b(a|s)?
 - Importance sampling: weigh returns according to the relative probability of a trajectory occurring under the target and behavior policies.
- 4. Probability of a trajectory:

$$\begin{split} &P(A_t, S_{t+1}, A_{t+1}, \dots, S_T \mid S_t, A_{t:T-1} \sim \pi) \\ &= \pi(A_t \mid S_t) p(S_{t+1} \mid S_t, A_t) \times \pi(A_{t+1} \mid S_{t+1}) p(S_{t+2} \mid S_{t+1}, A_{t+1}) \dots p(S_T \mid S_{T-1}, A_{T-1}) \\ &= \prod_{k=t}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k) \end{split}$$

1. We then can define the relative probability of the trajectory under the target and behavior policies:

$$\rho_{t:T-1} = \frac{\prod_{k=t}^{T-1} \pi(A_k | S_k) p(S_{k+1} | S_k, A_k)}{\prod_{k=t}^{T-1} b(A_k | S_k) p(S_{k+1} | S_k, A_k)} = \frac{\prod_{k=t}^{T-1} \pi(A_k | S_k)}{\prod_{k=t}^{T-1} b(A_k | S_k)}$$

2. Using this we can calculate $V^{\pi}(s)$ given $V^{b}(s)$:

$$V^{b}(s) = \mathbb{E}_{b}(G_{t}|S_{t} = s)$$

$$V^{\pi}(s) = \mathbb{E}_{b}(\rho_{t:T-1} \times G_{t}|S_{t} = s)$$

3. Why does this work:

$$\mathbb{E}_{b}(\rho_{t:T-1} \times G_{t}|S_{t} = s) = \mathbb{E}_{b}\left(\frac{\prod_{k=t}^{T-1} \pi(A_{k}|S_{k})}{\prod_{k=t}^{T-1} b(A_{k}|S_{k})} \times G_{t} \middle| S_{t} = s\right) = \sum_{\{trajectories\}} \frac{\prod_{k=t}^{T-1} \pi(A_{k}|S_{k})}{\prod_{k=t}^{T-1} b(A_{k}|S_{k})} \times G_{t} \times \prod_{k=t}^{T-1} b(A_{k}|S_{k}) = \sum_{k=t}^{T-1} \pi(A_{k}|S_{k}) \times G_{t} = \mathbb{E}_{\pi}(G_{t}|S_{t} = s)$$

Ordinary importance sampling: $V^{\pi}(s) = \frac{\sum_{t \in \mathcal{T}(s)} \rho_{t:T(t)-1} \times G_t}{|\mathcal{T}(s)|}$

Weighted importance sampling: $V^{\pi}(s) = \frac{\sum_{t \in T(s)} \rho_{t:T(t)-1} \times G_t}{\sum_{t \in T(s)} \rho_{t:T(t)-1}}$

Where T(t) is the time of the end of an episode which step s_t is in, T(s) is all the times we visit state s (or only first visits), and G_t are the returns from t to T(t).

Use weighted importance sampling to ensure variance is finite.

- Ordinary importance sampling: unbiased, but variance is unbounded because ratios are unbounded
- Weighted importance sampling: biased, but bias converges to zero asymptotically and variance is bounded

- 1. Estimate the value of hitting for anything under 20, given a 50%-50% policy.
- 2. We do this just for one state: (13,2,1)

 $b(a \mid s) = [0.5 * H, 0.5 * S]$ for all S - hit or stand 50/50

3. Use both ordinary and weighted importance sampling

```
\rho_{t:T-1} = \frac{\prod_{k=t}^{T-1} \pi(A_k | S_k)}{\prod_{k=t}^{T-1} b(A_k | S_k)}
```

```
V^{\pi}(s) = \frac{\sum_{t \in \mathcal{T}(s)} \rho_{t:T(t)-1} \times G_t}{|\mathcal{T}(s)|} \text{ or }V^{\pi}(s) = \frac{\sum_{t \in \mathcal{T}(s)} \rho_{t:T(t)-1} \times G_t}{\sum_{t \in \mathcal{T}(s)} \rho_{t:T(t)-1}}
```

```
Estimation policy pi(a | s) = hit under 20, stand otherwise
Run an episode to estimate: (13, 2, 1) -> let's say we H -> 0 -> (18, 2, 1) -> H -> 0 -> (21, 2, 1) -> S -> 1 -> T
returns[13, 2, 1] = [return * rho]
Calculate rho = (1 * 1 * 1) / (0.5 * 0.5 * 0.5) = 8 therefore returns[13, 2, 1] = [1 * 8]
Vpi(13, 2, 1) = avg(returns[13,2,1]) = 8
Another episode: (13, 2, 1) -> S -> -1 -> T
rho = 0/0.5 = 0
returns[13, 2, 1] = [8 * 1, 0 * 1]
Vpi(13, 2, 1) = (8 + 0) / 2 = 4

For weighted importance sampling:
need to store an array of Rhos, and we have Rhos[13,2,1] = [8, 0]
V1(13, 2, 1) = 8 / 8 = 1
V2(13, 2, 1) = (8 + 0)/(8 + 0)
```

- 1. Estimate the value of hitting for anything under 20, given a 50%-50% policy.
- 2. We do this just for one state: (13,2,1)
- Use both ordinary and weighted importance sampling

$$\rho_{t:T-1} = \frac{\prod_{k=t}^{T-1} \pi(A_k | S_k)}{\prod_{k=t}^{T-1} b(A_k | S_k)} \qquad V^{\pi}(s) = \frac{\sum_{t \in \mathcal{T}(s)} \rho_{t:T(t)-1} \times G_t}{|\mathcal{T}(s)|} \text{ or }$$

$$V^{\pi}(s) = \frac{\sum_{t \in \mathcal{T}(s)} \rho_{t:T(t)-1} \times G_t}{\sum_{t \in \mathcal{T}(s)} \rho_{t:T(t)-1}}$$

Importance Sampling – Incremental Implementation

1. Instead of storing all possible returns we can use similar methods to those described in Chapter 2.

$$NewEstimate \leftarrow OldEstimate + StepSize[NewData - OldEstimate]$$

- 2. Ordinary Sampling:
 - $V_{n+1} = V_n + \frac{1}{n} [\rho G_n V_n]$
- 3. Weighted Sampling:
 - $V_n = \frac{\sum_{k=1}^{n-1} \rho_k G_k}{\sum_{k=1}^{n-1} \rho_k}, \quad n \ge 2$
 - Define: $C_{n+1} = C_n + \rho_{n+1}$
 - And therefore: $V_{n+1} = V_n + \frac{\rho_n}{c_n} [G_n V_n]$

Off Policy MC Prediction

Off-policy MC prediction (policy evaluation) for estimating $Q \approx q_{\pi}$

```
Input: an arbitrary target policy \pi
Initialize, for all s \in S, a \in A(s):
    Q(s,a) \in \mathbb{R} (arbitrarily)
    C(s,a) \leftarrow 0
Loop forever (for each episode):
     b \leftarrow any policy with coverage of \pi
     Generate an episode following b: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     W \leftarrow 1
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          W \leftarrow W \frac{\pi(A_t|S_t)}{b(A_t|S_t)}
          If W = 0 then exit For loop
```

Off Policy MC Prediction

Off-policy MC control, for estimating $\pi \approx \pi_*$ Initialize, for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$: $Q(s,a) \in \mathbb{R}$ (arbitrarily) $C(s,a) \leftarrow 0$ $\pi(s) \leftarrow \operatorname{arg\,max}_a Q(s, a)$ (with ties broken consistently) Loop forever (for each episode): $b \leftarrow \text{any soft policy}$ Generate an episode using b: $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ $W \leftarrow 1$ Loop for each step of episode, $t = T-1, T-2, \ldots, 0$: $G \leftarrow \gamma G + R_{t+1}$ $C(S_t, A_t) \leftarrow C(S_t, A_t) + W$ $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]$ $\pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$ (with ties broken consistently) If $A_t \neq \pi(S_t)$ then exit For loop $W \leftarrow W \frac{1}{b(A_t|S_t)}$

Introduction to Temporal Difference Learning

- Perhaps the most central and novel idea to reinforcement learning.
 - Combination of ideas from DP and Monte Carlo
 - Learns without a model (like MC), bootstraps (like DP)
- 2. Both TD and Monte Carlo methods use experience to solve the prediction problem (policy evaluation).
- 3. A simple every-visit MC method may be expressed as:

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \big(G_t - V^{\pi}(s_t)\big)$$

- α can be 1/n, or constant
- 4. Recall that in MC we need to wait until the end of the episode to update the value estimates.
- 5. The main idea in TD is to do an update every step.
- 6. Simplest TC method, TD(0):

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s))$$

7. Essentially, we are updating one guess based on another.

Backup Diagram

Backup Diagram – DP Update

$$V^{\pi}(s_t) = E_{\pi}[r_{t+1} + \gamma V^{\pi}(s_{t+1})] = \sum_{a} \pi(a|s_t) \sum_{s',r} p(s',r|s_t,a)(r + \gamma V^{\pi}(s'))$$

Backup Diagram – MC Update

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \big(G_t - V^{\pi}(s_t)\big)$$

 $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s))$

Backup Diagram – TD(0) Update

TD(0) for estimating V^{π}

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated
Algorithm parameter: step size \alpha \in (0,1]
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
      A \leftarrow action given by \pi for S
      Take action A, observe R, S'
      V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]
      S \leftarrow S'
   until S is terminal
```

TD methods bootstrap and sample

- 1. Bootstrapping: Update involves an estimate (a guess)
 - MC?
 - DP?
 - TD?
- 2. Sampling: update does not involve an expected value
 - MC?
 - DP?
 - TD?

DP

$$V^{\pi}(s_t) = E_{\pi}[r_{t+1} + \gamma V^{\pi}(s_{t+1})] = \sum_{a} \pi(a|s_t) \sum_{s',r} p(s',r|s_t,a)(r + \gamma V^{\pi}(s'))$$

MC

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \big(G_t - V^{\pi}(s_t)\big)$$

TD

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s))$$

Example: Grid World

$$\pi(a|s) = \{0.25, 0.25, 0.25, 0.25\} \forall s$$

$$V_{k+1}^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V_k^{\pi}(s')]$$

3.31	8.79	4.43	5.32	1.49
1.52	2.99	2.25	1.91	0.55
0.05	0.74	0.67	0.36	-0.40
-0.97	-0.44	-0.35	-0.59	-1.18
-1.86				

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

 V_0

-0.50	10.0	-0.25	5.00	-0.5	
-0.25	0.00	0.00	0.00	-0.25	
				-0.25	
				-0.25	
-0.50 -0.25 -0.25 -0.25 -0.5					
		v 1			

1.47	9.78	3.07	5.00	0.34
-0.48	2.19	-0.06	1.07	-0.48
-0.42	-0.06	0.00	-0.06	-0.42
	-0.11			
	-0.48			
0.01	0.10	7.7	0.10	0.01

9.57	3.75	4.95	0.67
2.07	1.42	0.99	-0.13
	2.07 0.37 -0.24	2.07 1.42 0.37 -0.05 -0.24 -0.14	9.57 3.75 4.95 2.07 1.42 0.99 0.37 -0.05 0.12 -0.24 -0.14 -0.24 -0.66 -0.57 -0.66

Example: Grid World $\pi(a|s) = \{0.25, 0.25, 0.25, 0.25\} \forall s$

Why?

dynamic programming

3.31	8.79	4.43	5.32	1.49
1.52	2.99	2.25	1.91	0.55
0.05	0.74	0.67	0.36	-0.40
-0.97	-0.44	-0.35	-0.59	-1.18
-1.86				

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s))$$

$$\alpha = 0.1, \gamma = 0.9$$

9.00	5.65	5.59	1.77
3.25	3.12	2.94	0.65
1.31	1.15	0.61	-0.48
-0.24	-0.13	-0.41	-0.89
-1.13	-0.91	-1.29	-1.75
	3.25 1.31 -0.24	3.25 3.12 1.31 1.15 -0.24 -0.13	3.25 3.12 2.94 1.31 1.15 0.61 -0.24 -0.13 -0.41

	(0,0) E					
	0	0	0	0	0	
	0	0	0	0	0	
	0	0	0	0	0	
	0	0	0	0	0	
	0	0	0	0	0	
,	V_0					

