Math 450b

Homework 2

Trevor Klar

February 6, 2018

1. Let U be an open set in \mathbb{R}^n and C be a closed set in \mathbb{R}^n , with $C \subset U$. Prove that U - C is open.

PROOF By definition of set subtraction, $U-C=U\cap C^{\complement}$, with U and C^{\complement} open. Thus, U-C is open.

2. (\square) Give the interior, exterior, and boundary for the following subsets of \mathbb{R}^n . No proofs, just give answers.

(a) $S = \{(x, y) : xy = 0\} \subset \mathbb{R}^2$ **Answer:** $\operatorname{int}(S) = \emptyset$, $\operatorname{bdy}(S) = S$, $\operatorname{ext}(S) = S^{\complement}$

(c) $S = \{(x, y, z) : x^2 + y^2 < 1 \text{ and } z = 0\} \subset \mathbb{R}^3$ **Answer:** $\operatorname{int}(S) = \emptyset$, $\operatorname{bdy}(S) = \{(x, y, z) : x^2 + y^2 \le 1 \text{ and } z = 0\}$, $\operatorname{ext}(S) = \{(x, y, z) : x^2 + y^2 > 1 \text{ or } z \ne 0\}$

(b) $S = \{(x, y) : xy \neq 0\} \subset \mathbb{R}^2$ **Answer:** $\operatorname{int}(S) = S$, $\operatorname{bdy}(S) = S^{\complement}$, $\operatorname{ext}(S) = \emptyset$

 $\begin{array}{ll} (\mathrm{d}) \;\; S = \{(x,y,z): x^2 + y^2 < 1\} \subset \mathbb{R}^3 \\ \mathbf{Answer:} \;\; \mathrm{int}(S) = S, \\ \mathrm{bdy}(S) = \{(x,y,z): x^2 + y^2 = 1\}, \\ \mathrm{ext}(S) = \{(x,y,z): x^2 + y^2 > 1\} \end{array}$

(e) $\{(x_1, \dots, x_n) : \text{each } x_i \in \mathbb{Q}\} \subset \mathbb{R}^n$ **Answer:** $\text{int}(S) = \emptyset$, $\text{bdy}(S) = \mathbb{R}^n$, $\text{ext}(S) = \emptyset$

This set is impossible to draw. I imagine it something like a dense infinite point grid, like a field of stars in space. Each element has infinitely many other elements surrounding it in every direction, as well as elements not in the set surrounding it in a similar way.

- 3. Decide if the following subsets of \mathbb{R}^n are closed, bounded, and compact.
 - (a) A finite set of points in \mathbb{R}^n .

Answer: Let S be such a set. S is bounded. To see this, let $r = \max\{||\mathbf{y}|| : \mathbf{y} \in S\}$. Since $S \subset \overline{B}(\mathbf{0}, r)$, we are done. S is also closed. To see this, let $\mathbf{x} \in S^{\complement}$, and let $r = \min(||\mathbf{x} - \mathbf{y}|| : \mathbf{y} \in S)$. Since $B(\mathbf{x}, r) \subset S^{\complement}$, we are done. Since S is closed and bounded, then it is compact by Heine-Borel.

(b) $\overline{B}(\mathbf{0}, 2) - B(\mathbf{0}, 1)$

Answer: $\overline{B}(\mathbf{0},2) - B(\mathbf{0},1) = \overline{B}(\mathbf{0},2) \cap B(\mathbf{0},1)^{\complement}$ and so is closed. Also, $\overline{B}(\mathbf{0},2) - B(\mathbf{0},1) \subset \overline{B}(\mathbf{0},2)$, and so is bounded. Thus, the set is closed and bounded, and so it is compact by Heine-Borel.

(c) $\{(x_1,\ldots,x_n)\in \overline{B}(\mathbf{0},1): x_n=0\}$

Answer: This is the *n*-dimensional version of problem 2(c). This set is closed, and is bounded by $\overline{B}(\mathbf{0},1)$. Thus, it is compact by Heine-Borel.

(d) $\{(x_1,\ldots,x_n)\in\overline{B}(\mathbf{0},10): \text{each } x_i\in\mathbb{Z}\}\subset\mathbb{R}^n$

Answer: This is a finite set, so it is closed, bounded, and compact by 3(a).

(e) $\{(x_1,\ldots,x_n)\in\overline{B}(\mathbf{0},10): \text{each } x_i\in\mathbb{Q}\}\subset\mathbb{R}^n$

Answer: This set is bounded but not closed, and since Heine-Borel is a biconditional, the set is not compact.

4. (a) (\square) Suppose A is a closed subset of \mathbb{R}^n , and $\mathbf{x} \notin A$. Prove that there is a $\delta > 0$ such that $||\mathbf{x} - \mathbf{y}|| \ge \delta$ for all $y \in A$.

PROOF Let $\mathbf{y} \in A$. Since A^{\complement} is open and $\mathbf{x} \in A^{\complement}$, there is some $\delta > 0$ such that $B(\mathbf{x}, r) \subset A^{\complement}$.

Let $\delta = r$. Since $\mathbf{y} \in A = (A^{\complement})^{\complement}$, then $\mathbf{y} \notin B(\mathbf{x}, \delta) = {\mathbf{z} \in \mathbb{R}^n : ||\mathbf{z} - \mathbf{x}|| < \delta}$, so $\mathbf{y} \in {\mathbf{z} \in \mathbb{R}^n : ||\mathbf{z} - \mathbf{x}|| < \delta}$, and we are done.

(b) Suppose that A and C are closed subsets of \mathbb{R}^n , with C compact, and $A \cap C = \emptyset$. Prove that there exists $\delta > 0$ such that $||\mathbf{x} - \mathbf{y}|| \ge \delta$ for all $\mathbf{y} \in A$ and $\mathbf{x} \in C$. (Hint: For each $\mathbf{w} \in C$, find an open ball such that this inequality holds for all $\mathbf{x} \in B(\mathbf{w}, r(\mathbf{w}))$.)

PROOF Since A is closed, then by 4(a), for each $\mathbf{w} \in C \subset A^{\complement}$, we can find some $r_{\mathbf{w}} > 0$ such that

$$||\mathbf{y} - \mathbf{w}|| \ge r_{\mathbf{w}}$$

for any $\mathbf{y} \in A$. Thus,

$$B\left(\mathbf{w}, \frac{r_{\mathbf{w}}}{2}\right) \subset B(\mathbf{w}, r_{\mathbf{w}}) \subset A^{\complement}.$$

Now, the collection $\{B\left(\mathbf{w},\frac{r_{\mathbf{w}}}{2}\right):\mathbf{w}\in C\}$ is an open cover of C, and since C is compact, there exists some finite subcollection $\{B\left(\mathbf{w}_{i},\frac{r_{\mathbf{w}_{i}}}{2}\right)\}_{i=1}^{N}$ which also covers C. Consider $B\left(\mathbf{w}_{k},\frac{r_{\mathbf{w}_{k}}}{2}\right)$ for some $k\in\{1,\ldots,N\}$. Now, for any $x\in B\left(\mathbf{w}_{k},\frac{r_{\mathbf{w}_{k}}}{2}\right)$, and any $y\in A$,

$$||\mathbf{w}_k - \mathbf{x}|| < \frac{r_{\mathbf{w}_k}}{2}.$$

And, by the Triangle Inequality,

$$||\mathbf{y} - \mathbf{x}|| \ge \underbrace{||\mathbf{y} - \mathbf{w}_k||}_{>r_{w_k}} - \underbrace{||\mathbf{w}_k - \mathbf{x}||}_{<\frac{r_{\mathbf{w}_k}}{2}}$$
 $> \frac{r_{\mathbf{w}_k}}{2}.$

Now, to obtain a lower bound that applies to any $\mathbf{x} \in C$, let

$$\delta = \min \left\{ \frac{r_{\mathbf{w}_i}}{2} : i \in \{1, \dots, N\} \right\}$$

Since every $\mathbf{x} \in C$ is an element of some $B\left(\mathbf{w}_i, \frac{r_{\mathbf{w}_i}}{2}\right)$, then for any $\mathbf{y} \in A, \mathbf{x} \in C$,

$$||\mathbf{y} - \mathbf{x}|| \ge \delta > 0$$

and we are done.

(c) (\square) Give a counterexample in \mathbb{R}^2 to part (b) when both A and B are closed, but neither is compact. **Answer:** Let $A = \{(x,y) : y = \sinh(x)\}$, and let $B = \{(x,y) : y = \cosh(x)\}$.

