# Gradient Descent for Risk Optimization

#### Michael

#### 1 Intuition Behind Gradient Descent

Although the term 'gradient descent' is very fancy, the idea and intuition behind this term is extremely simple. It is same for *convergence rate*. All you need to know is that what is the meaning of derivative.

The **derivative** of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Let's draw a table for this definition.

Table 1.1: Derivative

| Measures                | Input value  | Output value              |  |  |
|-------------------------|--------------|---------------------------|--|--|
| Sensitivity to          | Change       | Change                    |  |  |
| $\overline{\downarrow}$ | $\downarrow$ | $\overline{\hspace{1cm}}$ |  |  |
|                         | change rate  | change rate               |  |  |
|                         | $\downarrow$ | $\downarrow$              |  |  |
| Convergence Rate        |              |                           |  |  |

If you got the idea of table 1.1, you can stop reading the section 1 and jump to section 2 and 3. If not, allow me to spend a little more time to explain this.



Figure 1.1: Gradient Visualisation

Again, the derivative is not just about the measurement of change of input and output, it also reflects the sensitivity of those changes. Take a look the figure 1.1, tell me where both input (x) and output (y) are changing fast, and where both input (x) and output (y) are changing slowly<sup>1</sup>.

From the figure 1.1, we can see that in section A, both input (x) and output (y) are changing quite fast by measuring the differences. When it comes to section C and D, the changing rates for input-x and output-y are decreasing simultaneously. We also say that input x and output y have the same **convergence rate** intuitively<sup>2</sup>. For the **supervised learning** in *machine learning*, it starts to do optimization with the tool of convergence rate.

Now, let's check the formal definition of derivative. The slope m of the secant line is the difference between the y values of these points divided by the difference between the x values, that is,

$$m = \frac{\Delta f(x)}{\Delta x} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

Geometrically, the limit of the secant lines is the tangent line. Therefore, the limit of the difference quotient as h approaches zero, if it exists, should represent the slope of the tangent line to (x, f(x)). This limit is defined to be the derivative of the function f at x:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

With the riview of defintion of derivative, we are ready to apply the so called **gradient** descent algorithm to find the minimum of a function.

**Definition 1.1.** Gradient descent is a first-order iterative optimization algorithm for finding the minimum of a function.

Let's disentangle the convergence rate for the function  $y = \frac{1}{2}x^2 - 3x + 3$  in figure 1.1 by presenting the following table:

| Section | Points        | Change of $input(x)$ | Change of ouput $(y)$ | Convergence ratio |
|---------|---------------|----------------------|-----------------------|-------------------|
| A       | (-2, 11)      |                      |                       |                   |
|         | (0, 0)        | 2                    | 11                    | 11/2 = 5.5        |
| В       | (0,0)         |                      |                       |                   |
|         | (2,-1)        | 2                    | 1                     | 1/2 = 0.5         |
| С       | (2,-1)        |                      |                       |                   |
|         | (2.5, -1.375) | 0.5                  | 0.375                 | 0.375/0.5 = 0.75  |
| D       |               |                      |                       |                   |

Table 1.2: Show the gradient descent step by step

### 2 A Mathematical example

### 3 A Machine Learning Example

<sup>&</sup>lt;sup>1</sup>If we assume that speed of changing is measured by the difference between two values.

<sup>&</sup>lt;sup>2</sup>This is not formal mathematical definition.

## References