

AD-A157 629

NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS ST
ALBANS RESERVOIR D. (U) CORPS OF ENGINEERS WALTHAM MA
NEW ENGLAND DIV SEP 78

1/1

UNCLASSIFIED

F/G 13/13

NL

DTIC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD-A157 629

RICHELIEU RIVER BASIN
FAIRFAX

ST. ALBANS RESERVOIR DAM (NORTH)
VT 00058

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

SEPTEMBER 1978

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

DTIC FILE COPY

85 07 01 119

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER VT 00058	2. GOVT ACCESSION NO. <i>A1-A 157 629</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) St. Albans Reservoir Dam (North) NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS		5. TYPE OF REPORT & PERIOD COVERED INSPECTION REPORT
7. AUTHOR(s) U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS DEPT. OF THE ARMY, CORPS OF ENGINEERS NEW ENGLAND DIVISION, NEDED 424 TRAPELO ROAD, WALTHAM, MA. 02254		12. REPORT DATE September 1978
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		13. NUMBER OF PAGES 46
16. SECURITY CLASS. (of this report) UNCLASSIFIED		
18a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report) APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) DAMS, INSPECTION, DAM SAFETY, Richelieu River Basin Fairfax VT.		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The dam is an earthfill dam about 1200 ft. long and 22 ft. high. It is small in size with a high hazard potential. The dam is judged to be in fair condition. There were several significant conditions noted. There are various remedial measures and recommendations which should be implemented by the owner.		

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
424 TRAPELO ROAD
WALTHAM, MASSACHUSETTS 02154

REPLY TO
ATTENTION OF:
NEDED-E

JUN 11 1979

Honorable Richard A. Snelling
Governor of the State of Vermont
State Capitol
Montpelier, Vermont 05602

Dear Governor Snelling:

I am forwarding for your use a copy of the St. Albans Reservoir Dam (North) Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. The report is based upon a visual inspection, a review of past performance, and a preliminary hydrological analysis. A brief assessment which emphasizes the inadequacy of the project spillway under test flood conditions is included at the beginning of the report.

The preliminary hydrologic analysis has indicated that the spillway capacity for the St. Albans Reservoir Dam (North) would likely be exceeded by floods greater than 15 percent of half the Probable Maximum Flood (1/2 PMF), the test flood for spillway adequacy. Screening criteria for initial review of spillway adequacy specifies that this class of dam, having insufficient spillway capacity to discharge the 1/2 PMF, should be adjudged as having a seriously inadequate spillway and the dam assessed as unsafe, non-emergency, until more detailed studies prove otherwise or corrective measures are completed.

The classification of "unsafe" applied to a dam because of a seriously inadequate spillway is not meant to indicate the same degree of emergency as would be associated with "unsafe" classification applied for a structural deficiency. It does mean, however, that based on an initial screening and preliminary computations there appears to be a serious deficiency in spillway capacity. This could render the dam unsafe in the event of a severe storm which would likely cause overtopping and possible failure of the dam, significantly increasing the hazard potential for loss of life downstream from the dam.

NEEDED-E

Honorable Richard A. Snelling

It is recommended that within twelve months from the date of this report the owner of the dam engage the services of a professional or consulting engineer to determine by more sophisticated methods and procedures the magnitude of the spillway deficiency. Based on this determination, appropriate remedial mitigating measures should be designed and completed within 24 months of this date of notification. In the interim a detailed emergency operation plan and warning system should be promptly developed. During periods of unusually heavy precipitation, round-the-clock surveillance should be provided.

I have approved the report and support the findings and recommendations described in Section 7, with qualifications as noted above. I request that you keep me informed of the actions taken to implement these recommendations since this follow-up is an important part of the non-Federal Dam Inspection Program.

A copy of this report has been forwarded to the Department of Water Resources, the cooperating agency for the State of Vermont. This report has also been furnished to the owner of the project, the City of St. Albans, St. Albans, Vermont 05478, ATTN: City Engineer.

Copies of this report will be made available to the public, upon request to this office, under the Freedom of Information Act, thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Department of Water Resources for the cooperation extended in carrying out this program.

Sincerely yours,

JOHN P. CHANDLER
Colonel, Corps of Engineers
Division Engineer

Accession For	X
NTIS GRAZI	
DTC TAB	
Unannounced	
Justification	
By	
Distribution	
Availability	
Dist	

A/

ST. ALBANS RESERVOIR DAM (NORTH)

VT00058

FAIRFAX, VERMONT

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

NATIONAL DAM INSPECTION PROGRAM
PHASE I INSPECTION REPORT

Identification No.: VT00058

Name of Dam: St. Albans Reservoir Dam (North)

Town: Fairfax

County and State: Franklin County, Vermont

Stream: Unknown

Date of Inspection: August 3, 1978

BRIEF ASSESSMENT

The St. Albans Reservoir Dam (North) is an earthfill dam, approximately 1200 feet long with a maximum height of approximately 22 feet. The dam serves as a drinking water supply for the City of St. Albans. Appurtenant to the dam is an intake and gate house, and a concrete spillway channel. Located just below the dam is the St. Albans Water Treatment Plant.

The high water level in the reservoir is controlled by the concrete spillway. Based on a size classification of "small" and a hazard classification of "high" (See Section I) in accordance with "Recommended Guidelines for Safety Inspection of Dams, Department of the Army, November 1976" the test flood for this dam is 1/2 the Probable Maximum Flood (P.M.F.). The test flood of 1/2 PMF, in this case 2430 cfs, overtops the dam by 1.5 feet. The spillway has a capacity without overtopping of 15.2% of the test flood. The drainage area for the dam is 1.8 square miles, with a normal impoundment surface area of 35 acres.

The dam is judged to be in fair condition. The following significant conditions were observed:

1. An active seep was found on the downstream face of the dam. The downstream slope of the dam in this area is unusually steep - 1.5H to 1V.
2. Within the last 10-15 years the dam has become heavily overgrown with brush and trees.
3. The dam has the potential of being overtopped by as much as 1.5 feet during the test flood of 1/2 PMF.

A detailed assessment and recommendations for remedial measures are contained in Chapter 7. In summary, it is recommended that the following investigations, and designs be prepared by a qualified engineer and that a contractor be hired to make the necessary repairs.

1. Investigation of the seep, and of seepage control measures.

2. Investigation of the materials forming the dam and analysis of the stability of the dam.
3. Investigate alternatives for protecting the dam from overtopping.

In addition, the Owner should implement a systematic maintenance program consisting of the following items:

1. Removal of trees and brush from the dam.
2. Plant and maintain grass on the downstream slope of the dam.
3. Patch and repair the concrete in the spillway.
4. Operate the valve in the gatehouse periodically.

John R. Spencer

This Phase I Inspection Report on St. Albans Reservoir Dam (North) has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

Charles G. Tiersch

CHARLES G. TIERSCH, Chairman
Chief, Foundation and Materials Branch
Engineering Division

Fred J. Ravens Jr.

FRED J. RAVENS, Jr., Member
Chief, Design Branch
Engineering Division

Saul Cooper

SAUL COOPER, Member
Chief, Water Control Branch
Engineering Division

APPROVAL RECOMMENDED:

Joe B. Fryar

JOE B. FRYAR
Chief, Engineering Division

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines and Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

TABLE OF CONTENTS

	<u>Page</u>
REVIEW BOARD PAGE	iii
PREFACE	iv
TABLE OF CONTENTS	v
TABLE OF CONTENTS	vi
TABLE OF CONTENTS	vii
OVERVIEW PHOTO	viii
LOCATION MAP	ix
REPORT	
SECTION 1 - PROJECT INFORMATION	1
1.1 GENERAL	1
a. Authority	1
b. Purpose	1
1.2 DESCRIPTION OF PROJECT	1
a. Location	1
b. Description of Dam and Appurtenances	1
c. Size Classification	2
d. Hazard Classification	2
e. Ownership	2
f. Operator	2
g. Purpose	3
h. Design and Construction History	3
i. Normal Operation Procedure(s)	3
1.3 PERTINENT DATA	3
a. Drainage Area	3
b. Discharge at Dam Site	3

	<u>Page</u>
c. Elevation	4
d. Reservoir	4
e. Storage	4
f. Reservoir Surface	4
g. Dam	4
i. Spillway	5
j. Regulating Outlets	5
SECTION 2 - ENGINEERING DATA	6
2.1 DESIGN	6
2.2 CONSTRUCTION	6
2.3 OPERATION	6
2.4 EVALUATION	6
a. Availability	6
b. Adequacy	6
c. Validity	6
SECTION 3 - VISUAL INSPECTION	7
3.1 FINDINGS	7
a. General	7
b. Dam	7
c. Appurtenant Structures	7
d. Reservoir Area	8
e. Downstream Channel	8
3.2 EVALUATION	8
SECTION 4 - OPERATIONAL PROCEDURES	9
4.1 PROCEDURES	9
4.2 MAINTENANCE OF DAM	9
4.3 MAINTENANCE OF OPERATING FACILITIES	9
4.4 DESCRIPTION OF WARNING SYSTEM IN EFFECT	9
4.5 EVALUATION	9
SECTION 5 - HYDRAULIC AND HYDROLOGIC EVALUATION	10
5.1 EVALUATION OF FEATURES	10
a. Design Data	10
b. Experience Data	10
c. Visual Observation	10
d. Overtopping Potential	10
e. Dam-Break Flood	10

SECTION 6: STRUCTURAL STABILITY

Evaluation of Structural Stability

a. Visual Observations

A possible stability problem was indicated by the active seep on the downstream slope of the dam. The seep area extending up to 8 feet above the toe showed at the time of the inspection a small amount of downslope movement. The downstream slope is very steep for an earth dam (about 1.5H to 1.0V). Such a slope is relatively more susceptible to erosion because the soil can move downslope more easily and also because the seepage paths are shorter than for an earth dam with conventional flatter slopes.

b. Design and Construction Data

The data available did not contain information about the cross section of the dam or the zonation and materials used to construct the dam. The high exit point of the observed seep is consistent with an homogeneous cross section with no internal drainage.

c. Operating Records

The records of previous inspections indicated the presence of wet areas along the toe of the dam but not of wet areas on the slope.

d. Post-Construction Changes

None of the available records indicate post-construction changes.

e. Seismic Stability

The dam is located in seismic zone No. 2 and in accordance with recommended Phase I guidelines does not warrant seismic analysis.

SECTION 5: HYDRAULIC/HYDROLOGIC

.1 Evaluation of Features

a. Design Data

No design data for the dam or spillway were available.

b. Experience Data

There are no records of high flow conditions at the site.

c. Visual Observations

The crest of the dam is irregular so that should overtopping occur, the low spots would be subjected to greater flow velocities and would increase the possibility of eroding a channel in the dam face. In addition, outflow from the dam must pass beneath State Route 104. A potential danger to the road exists at this location.

d. Overtopping Potential

Preliminary computations of the overtopping potential indicate that during the test flood (1/2 PMF), the spillway would not be capable of passing the discharge. The dam will overtop when the water surface elevation is greater than 749.5 feet MSL. The test flood water surface elevation is 751 feet MSL and would result in a maximum 1.5 foot surcharge over the dam. The average surcharge for the test flood is 0.7 feet MSL with approximately 960 feet of the dam being overtopped. Discharge for the test flood is 2530 cfs (1400 csm).

e. Dam-Break Flood

Analysis of the flood wave that would be generated by a dam burst was based on engineering judgment. Assuming a flood wave of two-thirds the height of the dam, a wave 15 feet high would be produced. Failure of this dam would probably result in major damage to Bridge 15 or State Route 104, 1500 feet downstream of the dam. While severance of the highway would not isolate anyone, the road is the prime route between St. Albans and Fairfax. Severe erosional damage would probably result at the treatment plant building which could result in at least temporary termination of its operation. Also, the lower reservoir could be damaged and possibly fail as well as a result of the North Reservoir bursting.

SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures

The level in the North Reservoir is maintained as high as possible by pumping out of the South Reservoir into the North Reservoir during dry periods. Approximately 4 million gallons of drinking water is withdrawn from the reservoir per day.

4.2 Maintenance of Dam

The only maintenance of the dam consists of mowing the crest of the dam from the Town road to the gatehouse.

4.3 Maintenance of Operating Facilities

The only maintenance of the operating facilities consists of cleaning the intake screens in the gatehouse.

4.4 Description of Warning System in Effect

None exists for this dam.

4.5 Evaluation

The maintenance presently being performed is insufficient to insure the safety of the dam. Recommendations for a maintenance program are outlined in Chapter 7.

set of relatively coarse screens to prevent fish and debris from entering the intake. The gatehouse is about 15 feet off-shore from the normal high water line. A concrete plank supported on railroad tracks provides access to the gatehouse.

The spillway channel carries water from the spillway crest, over the face of the dam and into a channel leading to the South Reservoir. The spillway channel is paved with concrete, and is in fair condition, especially considering its age. Cracking, weathering and some movement of the concrete paving has taken place, particularly along the construction joints. For the most part the cracks have been repaired with asphalt patch. There was one hole observed in the concrete paving (8-inch diameter) towards the lower section of the spillway.

The concrete retaining walls on either side of the spillway are also in fair condition. In several areas the retaining walls show evidence of lateral movement. There are trees and bushes growing next to the wall with branches overhanging the channel. A large willow tree growing out of the upstream slope of the dam has fallen across the spillway entrance and can present an obstruction to the flow.

d. Reservoir Area

The reservoir area is 35 acres at normal pool level (elevation 745). The surface area was assumed to increase at a rate of 1.07 acres per foot of increase in water surface elevation.

e. Downstream Channel

The downstream channel is concrete lined with laid-up stone sides. It was clear of obstructions and in generally good condition on the day of the inspection.

3.2 Evaluation

The dam is judged to be in fair condition. The seeps observed in the downstream face of the dam and the unchecked growth of trees on the downstream slope and crest can impair the safety of the dam in the near future. The significance of the seeps as it relates to the stability of the dam is discussed in Section 6.

Continued maintenance on the appurtenant structures is required to insure their safety. Specific maintenance items are detailed in Chapter 7.

SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General

The dam is judged to be in fair condition. An active seep was found on the downstream face. The upstream and downstream were found to be overgrown with trees, and the downstream face was unusually steep.

b. Dam

The exposed part of the upstream face of the dam consists of a vertical stone wall 5 to 6 feet in height below which there is a riprap covered slope. The stone wall is in good condition. Several willow trees with trunk diameters of up to 18 inches have grown out of the upstream slope and are now dying.

The crest of the dam is about 18 feet wide as measured next to the gatehouse. The crest is mowed between the road and the gatehouse. Between the gatehouse and the right abutment, there is a heavy growth of bushes and trees along the crest. No signs of erosion or cracks were observed.

The inclination of the downstream slope was measured near the gatehouse, and it is about 1.5H to 1.0V. There is a heavy growth of large trees and bushes while the ground surface is practically bare. The trees have trunk diameters up to about 12 inches. When walking on the slope, the ground surface appears soft. The soil exposed at the surface is a slightly organic silty sand or sandy silt. The ground surface at the toe of the dam and on the slope up to an elevation of about 8 feet above the toe is wet in an area opposite the gatehouse and for a distance of about 25 feet to the right. Although the rate of flow is small, there are some indications of downslope soil movement. At the location of the seep, the dam is about 22 feet high.

c. Appurtenant Structures

There are two structures appurtenant to the dam: the gatehouse and intake structure, and the spillway. The gatehouse is a brick masonry building which appears to have been constructed at the same time as the dam. Inside the gatehouse is the original intake to the water system which reportedly consists of a 16-inch elbow and gate valve. The gate valve has not been operated for several years. Incorporated into the upstream wall of the gatehouse, below the water level, are a

SECTION 2: ENGINEERING DATA

2.1 Design

There is no design information available for this dam.

2.2 Construction

There is no information on the construction other than the date of construction - 1895.

2.3 Operation

In general the operation of the dam involves keeping the reservoir level as high as possible. When the inflow into the reservoir is insufficient to keep the reservoir full, water is pumped from the South Reservoir into the North Reservoir.

2.4 Evaluation

a. Availability

The design and construction records for this dam are not available.

b. Adequacy

The lack of in-depth engineering data does not allow for a definitive review. Therefore the adequacy of this dam, structurally and hydraulically, cannot be assessed from the standpoint of review of design calculations, but must be based primarily on the visual inspection, past performance history and sound hydrologic and hydraulic engineering judgment.

c. Validity

Not applicable.

(5) Side Slopes

Upstream: 2.0H to 1.0 feet
Downstream: 1.5H to 1.0 feet

(6) Zoning

None known.

(7) Impervious Core

None known.

(8) Cutoff

None known.

(9) Grout Curtain

None known.

i. Spillway

The spillway is a concrete chute spillway, 450 feet in length and varying in width from 25 to 28 feet. The sidewalls of the chute vary from 1.4 to 4.7 feet in height and are concrete except for a 100-foot section of laid-up stone wall midway along the inside wall. The spillway crest is a triangular weir 27 feet in length and located at elevation 746.8 feet MSL.

Directly downstream of the spillway, the flow passes through a 17 x 5 foot pipe arch beneath State Route 104, and enters the southern reservoir.

j. Regulating Outlets

A 15" CMP conduit passes through the dam below the gate house. The pipe serves as a drain for the reservoir, but due to its size would not affect flood levels. A 16" supply line to the treatment building also exists. This pipe would also not affect flood levels.

3. Spillway Capacity

The capacity of the spillway at a reservoir elevation of 749.5 feet above MSL (the point at which the dam will overtop) is 385 cfs.

c. Elevation Data

	<u>Elevation (feet above MSL)</u>
Top of Dam (Maximum)	753.5
Test Flood (1/2 PMF)	751
Top of Dam (Minimum)	749.5
Spillway Crest	746.75
Normal Pool	745
Streambed at Centerline of Dam	+718

d. Reservoir Data

	<u>Feet</u>
Length of Test Flood Pool	2600+
Length of Normal Pool	2500

e. Storage Data

	<u>Acre-Feet</u>
Test Flood (1/2 PMF)	1168+
Top of Dam (Minimum)	1089+
Normal Pool	850

f. Reservoir Surface Area

	<u>Acres</u>
Test Flood (1/2 PMF)	41.5+
Top of Dam (Minimum)	40+
Normal Pool	35

g. Dam

(1) Type

Earth dam.

(2) Length

1200 feet (approximately)

(3) Height

22 feet.

(4) Top Width

18 feet.

g. Purpose

The St. Albans Reservoir is the primary water source for the City of St. Albans.

h. Design and Construction History

St. Albans Reservoir (North) was constructed in 1895 to augment the water stored in the St. Albans Reservoir (South). Originally water could be piped from the North Reservoir directly into the water system, or into the South Reservoir. In 1970 a water filtration plant was constructed just downstream of the dam. Presently water is piped from the North Reservoir directly to the filtration plant.

i. Normal Operation Procedure(s)

The operation is an integral part of the operation of the water filtration plant. The North Reservoir feeds directly into the filtration plant and is the primary water supply. When the level in the North Reservoir drops, water is pumped from the South Reservoir back up into the North Reservoir.

1.3 Pertinent Data

a. Drainage Area

The drainage basin of the northern St. Albans Reservoir lies within the towns of Fairfax, Fairfield and St. Albans, Vermont. The basin encompasses approximately 1.8 square miles and is roughly oval shaped with a general north-south trend.

The predominant soils within the drainage basin belong to the Lyman-Marlow-Peru, and the Marlow-Peru associations. These are soils which were formed in the upland glacial tills. Hydrologically, these soils can be classified as C soils.

The major water course within the drainage basin is an unnamed tributary to the Mill River.

b. Discharge at the Dam Site

1. Outlet Works

The primary outlet for the reservoir is a concrete chute spillway located at the western end of the main earthfill portion of the dam. In addition to the spillway, water can be released by means of a gated 15" CGMP which acts as a drain for the reservoir. Also, water can pass from a 16" pipe directly into the treatment plant.

2. Maximum Known Flood at Dam Site

No records nor recollections of any flooding having occurred at the site could be found.

slope. With the exception of a portion of the crest of the dam, both the upstream and downstream face of the dam are thickly overgrown with relatively new (5-20 years) growth.

There are two structures appurtenant to the dam. A brick gate-house houses the coarse screens, 16-inch valve and pipe elbow which constitute the intake to the water system. A concrete weir and spillway channel leading from the North Reservoir to the South reservoir carries the reservoir outflow during periods of high runoff. In addition there is a 12-inch pipe from the South Reservoir pump house which penetrates the dam near the left abutment. This pipe allows water to be pumped up from the South Reservoir to the North Reservoir.

c. Size Classification

St. Albans Reservoir Dam (North) impounds approximately 35 acres of water. The height of the dam is 22 feet. The normal pool storage volume is estimated to be 850 acre-feet although the dam is capable of storing about 1090 acre-feet of water just prior to overtopping. The Army Corps of Engineers recommends that dams having a storage volume of greater than 50 acre-feet but less than 1000 acre-feet and a height of more than 25 feet but less than 45 feet be classified as small. Although this dam may, just prior to overtopping, store slightly in excess of 1000 acre-feet it is classified as small due to the relatively low dam height and the fact that normal pool storage is below 1000 acre-feet.

d. Hazard Classification

A failure of St. Albans Reservoir (North) would immediately destroy the St. Albans water treatment plant, and potentially several houses adjacent to Route 104. Using engineering judgment it is predicted that failure of the North Reservoir would result in failure of the South Reservoir as well. The resulting flood wave would have the potentiality of causing the loss of more than twelve lives, and of causing serious damage to more than six homes. The hazard category is therefore high.

e. Ownership

The owner of the St. Albans Reservoir (North) is:

The City of St. Albans
St. Albans Water Department
St. Albans, Vermont 05478

Attention: City Manager

f. Operator

The dam is operated by the St. Albans Water Department. Contact Mr. William Scott, Public Works Director, City Hall, St. Albans, Vermont 05478. Telephone 802-524-4830.

NATIONAL DAM INSPECTION PROGRAM
PHASE I INSPECTION REPORT
NAME OF DAM: ST. ALBANS RESERVOIR DAM (NORTH)

SECTION 1 - PROJECT INFORMATION

1.1 General

a. Authority

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Dufresne-Henry Engineering Corporation has been retained by the New England Division to inspect and report on selected dams in the State of Vermont. Authorization and notice to proceed were issued to Dufresne-Henry Engineering Corporation under a letter of May 26, 1978 from Ralph T. Garver, Colonel, Corps of Engineers. Contract No. DACW33-78-C-0341 has been assigned by the Corps of Engineers for this work.

b. Purpose

1. Perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.
2. Encourage and prepare the states to initiate quickly effective dam safety programs for non-Federal dams.
3. To update, verify and complete the National Inventory of dams.

1.2 Description of Project

a. Location

The St. Albans Reservoir is located in the Town of Fairfax, Franklin County, Vermont. The reservoir is about 3.5 miles south of St. Albans on Route 104, and is tributary to the Mill River.

b. Description of Dam and Appurtenances

The St. Albans Reservoir Dam is an earthfill dam which creates an impoundment which serves as the primary drinking water source for the City of St. Albans. The dam is riprapped on the upstream

ST. ALBANS NORTH RESERVOIR DAM

MAP SOURCE:

U.S. GEOLOGICAL SURVEY
ST. ALBANS QUADRANGLE
VERMONT
7.5 MIN SERIES
1:2400 1964

CLIENT NO	22-0556	DUFRESNE-HENRY ENGINEERING CORP.	
PROJ ENG	MRP	LOCATION MAP	
DRAWN BY	RB	ST. ALBANS NORTH RESERVOIR	
DATE	9-8-78	FAIRFAX	VERMONT
		AI 6014	

AERIAL PHOTOGRAPH
ST. ALBANS NORTH RESERVOIR DAM
FAIRFAX, VERMONT

	<u>Page</u>
SECTION 6 - STRUCTURAL STABILITY	11
6.1 EVALUATION OF STRUCTURAL STABILITY	11
a. Visual Observations	11
b. Design and Construction Data	11
c. Operating Records for the Dam	11
d. Post-Construction Changes	11
e. Seismic Stability	11
SECTION 7 - ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURES	12
7.1 DAM ASSESSMENT	12
a. Condition	12
b. Adequacy of Information	12
c. Urgency	12
d. Necessity for Additional Investigations	12
7.2 RECOMMENDATIONS	12
7.3 REMEDIAL MEASURES	13
a. Alternatives	13
b. O & M Maintenance & Procedures	13

APPENDIX A

Visual Inspection Check List

APPENDIX B

Project Records and Plans

APPENDIX C

Photographs

APPENDIX D

Hydraulic Computations

APPENDIX E

Information As Contained In The National Inventory Of Dams

SECTION 7: ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition

The visual inspection and operational record indicate that the dam is in fair condition. This condition, however, is judged to be deteriorating rapidly, due largely to lack of maintenance. The two areas of major concern in the near future are:

1. The seeps downslope movement on the downstream slope which could worsen and become a mode of failure for the dam.
2. The unchecked growth of trees on the downstream slope, crest, and upper part of the upstream slope. Rotting roots of dead trees can create channels for seepage through the dam.

b. Adequacy of Information

The information available on the design and construction of the dam is practically nil and thus assessment of the dam is based primarily on visual inspection.

c. Urgency

The recommendations presented in Section 7.2 concerning the seepage studies should be acted upon within one year of receipt of this Phase I Inspection Report.

d. Necessity for Additional Investigation

The owner should perform the additional investigations recommended in Section 7.2.

7.2 Recommendations

It is recommended that an engineer qualified in the design of earth dams be engaged to investigate and design the items listed below and that a contractor be hired to construct the recommended improvements in accordance with the design.

- a. The significance of the seep and the stability of the embankment should be investigated. Seepage control measures such as a toe drain or a downstream pervious shell should be considered to reduce or eliminate the danger of piping.

- b. Investigate and recommend the most feasible alternative for protecting the dam from overtopping.

7.3 Remedial Measures

a. Alternatives

Not applicable.

b. Operating and Maintenance Procedures

1. The following items should be incorporated into a systematic dam maintenance program to be performed by the owner.
 - (a) The trees and bushes growing on the dam should be removed periodically. The tree removal program should include those at the spillway entrance and immediately adjacent to the spillway channel.
 - (b) Grass should be planted and maintained on the downstream slope. It is expected that due to the steepness of the downstream slope, special precautions will be required to prevent erosion while the grass cover becomes established.
 - (c) The spillway paving should be maintained by patching as required. Holes in the spillway should be repaired to prevent erosion and undermining of the channel during heavy flow. The sections of the spillway retaining walls which have moved significantly out of alignment should be relocated or replaced.
 - (d) The valve in the gatehouse should be kept in an operating condition.
2. A system for warning downstream residents in the event of high water or an emergency condition should be developed and implemented.
3. A program of annual technical inspection should be established.

APPENDIX A

Visual Inspection Check List

VISUAL INSPECTION CHECK LIST
PARTY ORGANIZATION

PROJECT ST. ALBANS RESERVOIR DAM (NORTH) DATE August 3, 1978
TIME 10:30
WEATHER Thunder showers
W.S. ELEV. U.S. DN.S.
Within 1' of full

PARTY:

1.	<u>W. A. Henry</u>	D-H	6.	_____
2.	<u>J. R. Spencer</u>	D-H	7.	_____
3.	<u>E. J. Slavin</u>	D-H	8.	_____
4.	<u>G. Castro</u>	GEI	9.	_____
5.	_____	_____	10.	_____

	PROJECT FEATURE	INSPECTED BY	REMARKS
1.	_____	_____	_____
2.	_____	_____	_____
3.	_____	_____	_____
4.	_____	_____	_____
5.	_____	_____	_____
6.	_____	_____	_____
7.	_____	_____	_____
8.	_____	_____	_____
9.	_____	_____	_____
10.	_____	_____	_____

PERIODIC INSPECTION CHECK LIST

PROJECT ST. ALBANS RESERVOIR DAM (NORTH)DATE August 3, 1978

PROJECT FEATURE _____

NAME G. Castro

DISCIPLINE _____

NAME _____

AREA EVALUATED	CONDITION
<u>DAM EMBANKMENT</u>	
Crest Elevation	
Current Pool Elevation	
Maximum Impoundment to Date	
Surface Cracks	None apparent.
Pavement Condition	No pavement.
Movement or Settlement of Crest	None apparent.
Lateral Movement	None apparent.
Vertical Alignment	Surfaces too irregular to judge.
Horizontal Alignment	Surfaces too irregular to judge
Condition at Abutment and at Concrete Structures	Good.
Indications of Movement of Structural Items on Slopes	None apparent.
Trespassing on Slopes	None observed.
Sloughing or Erosion of Slopes or Abutments	None observed.
Rock Slope Protection - Riprap Failures	Riprap in good condition where observable.
Unusual Movement or Cracking at or near Toes	None observed.
Unusual Embankment or Downstream Seepage	Seep area about 25 feet long at toe and lower 8 feet of downstream slope.
Piping or Boils	None observed except minor piping in seep area.
Foundation Drainage Features	None apparent.
Toe Drains	None apparent.
Instrumentation System	None known.
Vegetation	Heavy tree and bush growth on crest, downstream slope and upper part of upstream slope.

PERIODIC INSPECTION CHECK LIST

PROJECT ST. ALBANS RESERVOIR DAM (NORTH) DATE August 3, 1978

PROJECT FEATURE Intake NAME J. R. Spencer

DISCIPLINE _____ NAME _____

AREA EVALUATED	CONDITION
<u>OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE</u>	
a. Approach Channel	
Slope Conditions	
Bottom Conditions	
Rock Slides or Falls	
Log Boom	
Debris	
Condition of Concrete Lining	
Drains or Weep Holes	
b. Intake Structure	
Condition of Concrete	
Stop Logs and Slots	

PERIODIC INSPECTION CHECK LIST

PROJECT ST. ALBANS RESERVOIR DAM (NORTH) DATE August 3, 1978PROJECT FEATURE Intake House NAME J. R. Spencer

DISCIPLINE _____ NAME _____

AREA EVALUATED	CONDITION
<u>OUTLET WORKS - CONTROL TOWER</u>	
a. Concrete and Structural	
General Condition	Concrete and brick structure, fair condition.
Condition of Joints	N/A
Spalling	Minor.
Visible Reinforcing	No.
Rusting or Staining of Concrete	Minor.
Any Seepage or Efflorescence	No.
Joint Alignment	N/A
Unusual Seepage or Leaks in Gate Chamber	None observed.
Cracks	Minor, in concrete foundation.
Rusting or Corrosion of Steel	N/A
b. Mechanical and Electrical	
Air Vents	N/A
Float Wells	N/A
Crane Hoist	N/A
Elevator	N/A
Hydraulic System	N/A
Service Gates	Gate not in operable condition; it is open.
Emergency Gates	
Lightning Protection System	N/A
Emergency Power System	N/A
Wiring and Lighting System	N/A

PERIODIC INSPECTION CHECK LIST

PROJECT ST. ALBANS RESERVOIR DAM (NORTH)DATE August 3, 1978PROJECT FEATURE Spillway ChannelNAME J. R. Spencer

DISCIPLINE _____

NAME _____

AREA EVALUATED	CONDITION
<u>OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL</u>	<u>SPILLWAY CHANNEL</u>
General Condition of Concrete	Good.
Rust or Staining	No.
Spalling	Yes, minor.
Erosion or Cavitation	One hole where erosion may be a problem.
Visible Reinforcing	
Any Seepage or Efflorescence	No.
Condition at Joints	Some heaving, but for the most part patched.
Drain Holes	
Channel	
Loose Rock or Trees Overhanging Channel	Yes, on both sides.
Condition of Discharge Channel	Good.

PERIODIC INSPECTION CHECK LIST

PROJECT ST. ALBANS RESERVOIR DAM (NORTH) DATE August 3, 1978PROJECT FEATURE _____ NAME G. Castro

DISCIPLINE _____ NAME _____

AREA EVALUATED	CONDITION
<u>OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS</u>	
a. Approach Channel	N/A
General Condition	N/A
Loose Rock Overhanging Channel	N/A
Trees Overhanging Channel	N/A
Floor of Approach Channel	N/A
b. Weir and Training or Sidewalls	Good condition.
General Condition of Concrete	Fair to good.
Rust or Staining	No.
Spalling	Yes, minor.
Any Visible Reinforcing	No.
Any Seepage or Efflorescence	No.
Drain Holes	N/A
c. Discharge Channel	
General Condition	Good.
Loose Rock Overhanging Channel	None.
Trees Overhanging Channel	Several, particularly at spillway entrance.
Floor of Channel	Paved, good condition.
Other Obstructions	None observed.

APPENDIX B

Project Records and Plans

1. A topographic survey of the dam was performed on 11/12/74 by the Vermont Department of Water Resources, and is available at their Montpelier Office.
2. Plans of the St. Albans Water Treatment Plant done in June 1969 are available from Whitman & Howard, Inc., 89 Broad Street, Boston, Massachusetts. These plans show the existing piping which is appurtenant to the dam.

APPENDIX C
PHOTOGRAPHS

WATER MAIN FROM COUNTRY CLUB

WATER TREATMENT PLANT

NON-REFRESHMENT	ARMY ENGINEER, SANITATION DEPARTMENT WICHITA, KS
NATIONAL GUARD INSPECTION OF NON-REFRESHMENT	
JULY 1942	
LAWRENCE, KANSAS	

#1 SPILLWAY INLET.

#2 BOTTOM OF SPILLWAY.

3 19	0.02	0.00
3 20	0.02	0.00
3 39	0.02	0.00
3 40	0.02	0.00
3 50	0.02	0.00
4 10	0.02	0.00
4 23	0.02	0.00
4 32	0.02	0.00
4 43	0.02	0.00
4 50	0.02	0.00
4 60	0.02	0.00
5 10	0.02	0.00
5 20	0.02	0.00
5 30	0.02	0.00
5 40	0.02	0.00
6 10	0.02	0.00
6 20	0.05	0.03
6 30	0.05	0.03
6 40	0.05	0.03
6 50	0.05	0.03
6 60	0.05	0.03
7 10	0.05	0.03
7 20	0.05	0.03
7 30	0.05	0.03
7 40	0.05	0.03
7 50	0.05	0.03
7 60	0.05	0.03
8 10	0.05	0.03
8 20	0.05	0.03
8 30	0.05	0.03
8 40	0.05	0.03
8 50	0.05	0.03
8 60	0.05	0.03
9 10	0.05	0.03
9 20	0.05	0.03
9 30	0.05	0.03
9 40	0.05	0.03
9 50	0.05	0.03
9 60	0.05	0.03
10 10	0.05	0.03
10 20	0.05	0.03
10 30	0.05	0.03
10 40	0.05	0.03
10 50	0.05	0.03
10 60	0.05	0.03
11 10	0.05	0.03
11 20	0.05	0.03
11 30	0.05	0.03
11 40	0.05	0.03
11 50	0.05	0.03
11 60	0.05	0.03
12 10	0.30	0.28
12 20	0.30	0.28
12 30	0.30	0.28
12 40	0.30	0.28
12 50	0.30	0.28
12 60	0.30	0.28

SPILLWAY DESIGN FLOOD
SAINT ALBANS DAM SOUTH
PHASE I DAM SAFETY INVESTIGATION

JOB SPECIFICATION

NO	NAME	QUAN	TOAV	THR	LWIN	METAC	IPLT	IPAT	NSTAN
1		0	10	0	0	0	2	0	0
2	JOPER	NWT							
3									

SUB-AREA RUNOFF COMPUTATION

PROBABLE MAXIMUM 24-HOUR PRECIPITATION (INCHES) READING

ISTAN	ICOMP	TECON	ITAPE	JPLT	JPAT	NAME
1	0	0	0	0	0	1

HYDROGRAPH DATA

IMYDG	IMRG	TAPEA	SHAP	ISDA	TRSPC	RATIO	ISNOW	ISAME	LOCAL
1	1	1.03	0.0	1.03	1.00	0.500	0	0	0

PRECIP DATA

SPFE	PMS	R6	R12	R24	R48	R72	R96
0.0	1.00	0.00	1.00	0.00	0.0	0.0	0.0

LOSS DATA

STAKA	OLTRK	RTOK	EPAIN	STAKS	QTKN	STATL	CNSTL	ALSMX	RTIMX
0.0	0.0	1.00	0.0	0.0	1.00	0.34	0.12	0.0	0.0

RECEDITION DATA

STATUS	LAG#	LAGS	0.0	1.00	2.00	3.00	4.00	5.00
APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SNYDER CP AND TO ARE TCS 0.46 AND 0.61 INTERVALS								

UNIT HYDROGRAPH 35 END-OF-PERIOD GRADIENTS, LAG# 1.00 HOURS, CP# 0.68 VOL# 1.00

28.	104.	207.	521.	439.	538.	602.	628.	611.	545.
463.	393.	333.	243.	243.	206.	133.	147.	125.	106.
90.	76.	65.	55.	47.	39.	34.	28.	24.	25.
17.	15.	13.	11.	9.	6.	6.	6.	6.	6.

END-OF-PERIOD FLOW

TIME	RAIN	EXCS	COMP	U
1 0 10	0.02	0.00	0.	
1 0 20	0.02	0.00	0.	
1 0 30	0.02	0.00	0.	
1 0 40	0.02	0.00	0.	
1 0 50	0.02	0.00	0.	
1 1 00	0.02	0.00	0.	
1 1 20	0.02	0.00	0.	
1 1 30	0.02	0.00	0.	

DUFRESNE-HENRY ENGINEERING CORPORATION

SUBJECT STORAGE - DISCHARGE Relations
St Albans Reservoir (North)

SHEET NO. 4 OF 4
JOB NO. 27-0556

- Discharge Rating Curve for St. Albans Reservoir (North)

Surface Area at Normal Pool (Elev. 745) = 35 Acres

Storage at Normal Pool (Elev. 745) = 850 Acre Feet

Surface Area at Ele. 760 = 51 Acres

Storage at Ele. 760 = 1615 Acre Feet

A STORAGE IS ASSUMED TO BE AN AVERAGE OF 26.5 ACRE FEET ADDITIONAL STORAGE PER 0.5 FEET OF INCREASE IN WATER SURFACE ELEVATION.

Surf Face Elev (ft, msl)	STORAGE Ac Ft	Discharge cfs
15	850	0
16.75	943	0
17	956	10
18	1009	120
19	1062	285
19.5	1089	385
20	1115	565
21	1168	2105
22	1221	6850
23	1274	13735

ST. ALBANS RESERVOIR
(NORTH)

30 F4

△ Flow over dam top

○ Flow over dam top

□ Total Discharge

Water Surface Elevation (ft MSL)

1000	2000	3000	4000	5000	6000	7000	8000	9000	10000
11000	12000	13000	14000	15000	16000				

DISCHARGE (cfs)

DUFRESNE-HENRY ENGINEERING CORPORATION

NAMESUBJECT Rating Curve for Flow over the Dam
St. Albin, Superior, NorthSHEET NO. 2 OF 4
JOB NO. 22-0556

flow over the dam is treated as flow over a broad-crested weir. Breadth of weir = 20 feet. C values taken from Table 5-3 of King & Brater's Handbook of Hydraulics assuming 15 foot top width.

$$Q = CAH_{(\max)}^{1/2}$$

point (ft)	AREA A (sq. ft.)	Length L (ft.)	H _(max) (ft.)	C	DISCHARGE Q (cfs)
	44	125	0.5	2.7	85
	230	490	1.0	2.63	605
	627	963	1.5	2.635	2025
	1219	1143	2.0	2.63	4535
	1804	1198	2.5	2.63	7500
	3047	1238	3.5	2.63	15000

Normal Dam Flow + Spillway Flow

Water Surface Elevation (ft)	Spillway Discharge (cfs)	Discharge over Dam (cfs)	Total Discharge (cfs)
746.75	0	0	0
747	10	0	10
748	120	0	120
749	285	0	285
749.5	385	0	385
750	495	85	580
750.5	615	605	1220
751	740	2025	2765
751.5	875	4535	5410
752	1015	7500	8515
753	1320	15000	16320

DUFRESNE-HENRY ENGINEERING CORPORATION

E. J. Flavin

SUBJECT Spillway Rating Curve
ST. Albans Dam (1917)SHEET NO. 1 OF 4
JOB NO. 22-0556

The spillway weir can be considered to be a triangular weir, 27 feet in length, with a 5:1 downstream face. The best approximation for a value of C was taken from King & Brattin's Handbook of Hydraulics, Table 5-7 for heads greater than 0.7 feet and Table 5-6 for heads up to 0.7 feet.

$$Q = CLH^{3/2}$$

Irr. Surface elev. (ft.)	Weir Length L (ft.)	C	Head H (ft.)	Discharge Q (cfs)
416.75	—	—	0	—
47.0	27	3.08	0.25	10
48	27	3.13	1.25	120
49	27	3.13	2.25	285
49.5	27	3.13	2.75	385
50	27	3.13	3.25	495
51	27	3.13	4.25	740
52	27	3.13	5.25	1015
53	27	3.13	6.25	1320
54	27	3.13	7.25	1650
55	27	3.13	8.25	2000

* Elevation 749.5 is maximum elevation of dam.

DUFRESNE-HENRY ENGINEERING CORPORATION

Shaw _____

SUBJECT Hydrologic Data
St. Albans Reservoir NorthSHEET NO. 1 OF 1
JOB NO. 22-0556

Albans Reservoir North

Drainage Area : 1.83 sq. mi.

Pond Surface Area : 35 acres at elevation 746, 51 acres at elevation 760

Soils : Lyman, Marlow, Peru : Type C

Dam size : small

Hazard class : High

Test Flood : $\frac{1}{2} V$ PMF

Soil Retention Rate = 0.12 in/hr (Design of Small Dams pg 64)

$$t_p = 2.2 \left(\frac{L \cdot L_c}{\sqrt{s}} \right)^{0.37}$$

L = hydraulic length

L_c = centroid of stream @ (0.6 L)

s = Avg. slope (ft/mi)

$$t_p = 2.2 \left(\frac{2.4 \times 1.44}{\sqrt{208.3}} \right)^{0.37}$$

$$t_p = 1.3 \text{ hours}$$

$$t_p = \frac{t_p}{5.6} = 0.24 \text{ hours} = 14 \text{ minutes}$$

Note: For HEC-1 use 10 minute intervals over 24 hours.

EN NO	22-0556
• OJ ENG	JRS
-MAN BY	RB
	9-14-78

DUFRESNE-HENRY ENGINEERING CORP.
DRAINAGE AREA
ST. ALBANS RESERVOIR NORTH & SOUTH

A 6034

APPENDIX D

Hydraulic Computations

#9 WATER INTAKE STRUCTURE AND GATEHOUSE.

#10 UPSTREAM SLOPE FROM INTAKE STRUCTURE TO SPILLWAY.

#7 UPSTREAM SLOPE BY LEFT ABUTMENT SHOWING ALSO DISCHARGE FROM SOUTH RESERVOIR PUMPING STATION.

#8 UPSTREAM FACE SHOWING ALSO INTAKE STRUCTURE AND GATEHOUSE.

#5 DAM CREST NEAR CENTER LOOKING WEST.

#6 DAM CREST NEAR LEFT ABUTMENT LOOKING WEST.

#3 CONCRETE CHANNEL AND CULVERT UNDER HIGHWAY LEADING TO SOUTH RESERVOIR.

#4 ACTIVE SEEP ON DOWNSTREAM SLOPE OF DAM.

1	12 50	-0.39	0.28	502.
1	12 60	0.39	0.28	632.
1	13 10	0.36	0.34	780.
1	13 20	0.36	0.34	939.
1	13 30	0.36	0.34	1099.
1	13 40	0.36	0.34	1251.
1	13 50	0.36	0.34	1389.
1	13 60	0.36	0.34	1516.
1	14 10	0.44	0.42	1625.
1	14 20	0.44	0.42	1750.
1	14 30	0.44	0.42	1863.
1	14 40	0.44	0.42	1973.
1	14 50	0.44	0.42	2082.
1	14 60	0.44	0.42	2198.
1	15 10	-1.12	1.10	2311.
1	15 20	-1.12	1.10	2480.
1	15 30	-1.12	1.10	2711.
1	15 40	-1.12	1.10	3000.
1	15 50	-1.12	1.10	3314.
1	16 00	-1.12	1.10	3798.
1	16 10	0.41	0.39	4226.
1	16 20	0.41	0.39	4631.
1	16 30	0.41	0.39	4932.
1	16 40	0.41	0.39	5301.
1	16 50	0.41	0.39	5735.
1	17 00	0.41	0.39	5041.
1	17 10	0.33	0.31	4856.
1	17 20	0.33	0.31	4608.
1	17 30	0.33	0.31	4332.
1	17 40	0.33	0.31	4009.
1	17 50	0.33	0.31	3825.
1	18 00	0.33	0.31	3607.
1	18 10	0.03	0.01	3399.
1	18 20	0.03	0.01	3189.
1	18 30	0.03	0.01	2998.
1	18 40	0.03	0.01	2733.
1	18 50	0.03	0.01	2465.
1	19 00	0.03	0.01	2224.
1	19 10	0.03	0.01	1940.
1	19 20	0.03	0.01	1700.
1	19 30	0.03	0.01	1457.
1	19 40	0.03	0.01	1242.
1	19 50	0.03	0.01	1059.
1	20 00	0.03	0.01	905.
1	20 10	0.03	0.01	773.
1	20 20	0.03	0.01	662.
1	20 30	0.03	0.01	567.
1	20 40	0.03	0.01	486.
1	20 50	0.03	0.01	418.
1	21 00	0.03	0.01	340.
1	21 10	0.03	0.01	310.
1	21 20	0.03	0.01	289.
1	21 30	0.03	0.01	230.
1	21 40	0.03	0.01	197.
1	21 50	0.03	0.01	169.
1	22 00	0.03	0.01	146.
1	22 10	0.03	0.01	126.
1	22 20	0.03	0.01	109.
1	22 30	0.03	0.01	97.
1	22 40	0.03	0.01	88.
1	22 50	0.03	0.01	80.
1	22 60	0.03	0.01	73.
1	23 10	0.03	0.01	67.
1	23 20	0.03	0.01	62.
1	23 30	0.03	0.01	52.

(4)

SUM 21.36 18.48 129837.

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
CFS	5135.	3051.	902.	902.	129834.
INCHES	15.51	10.33	10.33	10.33	16.33
AC-FT	1519.	1169.	1764.	1764.	1769.

A scatter plot showing data points across a grid. The x-axis and y-axis both range from 10 to 60, with major tick marks every 10 units. Vertical grid lines are drawn at each integer value from 10 to 60. Similarly, horizontal grid lines are drawn at each integer value from 10 to 60. Data points are plotted as 'x' marks. A dense cluster of points is located near the center of the grid, specifically around the coordinates (30, 30). Another smaller cluster of points is located further to the right and slightly higher, around the coordinates (50, 50). The points are distributed more sparsely outside these central regions.

16 40.
18 50.
18 60.
19 10.
19 20.
19 30.
19 40.
19 50.
19 60.
20 10.
20 20.
20 30.
20 40.
20 50.
21 10.
21 20.
21 30.
21 40.
21 50.
21 60.
22 10.
22 20.
22 30.
22 40.
22 50.
22 60.
23 10.
23 20.
23 30.
23 40.
23 50.
23 60.

STATION NO.	RUNOFF MULTIPLIED BY 0.50					
	0"	0"	0"	0"	0"	0"
0	0	(9)	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
18	(27)	37	43	58	67	75
59	102	104	106	108	110	112
114	114	115	115	116	116	117
117	117	121	134	159	198	251
550	625	694	754	816	875	931
1155	1240	1355	1504	1687	1895	2118
2568	2521	2426	2344	2166	2033	1913
1484	1367	1242	1112	980	650	321
387	331	283	243	205	163	136
85	73	63	54	49	40	37
29	28	26	25	—	—	—

PEAK 0-MINUTE 24-HOUR 72-HOUR TOTAL VOLUME

CFS	INCHES	AC-FT	0-MINUTE	24-HOUR	72-HOUR	TOTAL VOLUME
2569	—	—	1525	451	451	6918
—	—	—	7.75	9.17	9.17	9.17
—	—	—	757	895	895	895

STATION 1

INFLUX & OUTFLOW AND OBSERVED FLOW

A 20x20 grid of black dots on a white background. The dots are arranged in a pattern that suggests a binary matrix or a sparse matrix representation. The dots are located at various coordinates, with a higher density of dots in the lower-right quadrant and a few isolated dots in the upper-left quadrant.

HYDROGRAPH ROUTING

PULS RESERVOIR ROUTING									
TESTAG	ICOMP	LECON	ITAPE	JPLT	JPRTR	INAME			
2	1	0	0	0	0	0			
		ROUTING DATA							
	GLOSS	CLOSS	Avg	IRES	ISAME				
	0.0	0.0	0.0	1	0				
	NSTPS	NSTUL	LAG	AMSKK	X	TSK	STCRA		
	0	0	0	0.0	0.0	-1			
STORAGE	850.	943.	956.	1009.	1062.	1089.	1108.	1221.	1274.
OUTFLDS	0.	0.	10.	123.	285.	385.	565.	6850.	13755.
	TIME	EUP	STDR	Avg	IN	EOP	OUT		
	1 0 10	943.	943.	0.	0.	0.	0.		
	1 0 20	—	943.	0.	0.	0.	0.		
	1 0 30	943.	943.	0.	0.	0.	0.		
	1 0 40	943.	943.	0.	0.	0.	0.		
	1 0 50	943.	943.	0.	0.	0.	0.		
	1 0 60	943.	943.	0.	0.	0.	0.		
	1 1 10	943.	943.	0.	0.	0.	0.		
	1 1 20	943.	943.	0.	0.	0.	0.		
	1 1 30	943.	943.	0.	0.	0.	0.		
	1 1 40	943.	943.	0.	0.	0.	0.		
	1 1 50	943.	943.	0.	0.	0.	0.		
	1 1 60	943.	943.	0.	0.	0.	0.		
	1 2 10	943.	943.	0.	0.	0.	0.		
	1 2 20	943.	943.	0.	0.	0.	0.		
	1 2 30	943.	943.	0.	0.	0.	0.		
	1 2 40	943.	943.	0.	0.	0.	0.		
	1 2 50	—	943.	0.	0.	0.	0.		
	1 2 60	943.	943.	0.	0.	0.	0.		
	1 3 10	943.	943.	0.	0.	0.	0.		
	1 3 20	943.	943.	0.	0.	0.	0.		
	1 3 30	943.	943.	0.	0.	0.	0.		
	1 3 40	—	943.	0.	0.	0.	0.		
	1 3 50	—	943.	0.	0.	0.	0.		
	1 3 60	943.	943.	0.	0.	0.	0.		
	1 4 10	943.	943.	0.	0.	0.	0.		
	1 4 20	—	943.	0.	0.	0.	0.		
	1 4 30	—	943.	0.	0.	0.	0.		
	1 4 40	—	943.	0.	0.	0.	0.		
	1 4 50	—	943.	0.	0.	0.	0.		
	1 4 60	943.	943.	0.	0.	0.	0.		
	1 5 10	943.	943.	0.	0.	0.	0.		
	1 5 20	—	943.	0.	0.	0.	0.		
	1 5 30	—	943.	0.	0.	0.	0.		
	1 5 40	—	943.	0.	0.	0.	0.		
	1 5 50	—	943.	0.	0.	0.	0.		
	1 5 60	943.	943.	0.	0.	0.	0.		
	1 6 10	943.	943.	0.	0.	0.	0.		
	1 6 20	—	943.	0.	0.	0.	0.		
	1 6 30	—	943.	0.	0.	0.	0.		
	1 6 40	—	943.	0.	0.	0.	0.		
	1 6 50	—	943.	0.	0.	0.	0.		

0 201	0 301	0 401	0 501	0 601	1 101	1 201	1 301	1 401
1 501	2 101	2 201	2 301	2 401	2 501	2 601	3 101	3 201
3 301	3 401	3 501	3 601	4 101	4 201	4 301	4 401	4 501
4 601	5 101	5 201	5 301	5 401	5 501	5 601	6 101	6 201
6 301	6 401	6 501	6 601	7 10C1	7 20C1	7 30C1	7 40C1	7 500
7 600	8 100	8 200	8 300	8 400	8 500	8 600	8 700	8 800
9 100	9 200	9 300	9 400	9 500	9 600	9 700	9 800	9 900

11	40.	1
11	50.	1
11	60.	1
12	10.	1
12	20.	1
12	30.	1
12	40.	1
12	50.	1
12	60.	1
13	10.	1
13	20.	1
13	30.	1
13	40.	1
13	50.	1
13	60.	1
14	10.	1
14	20.	1
14	30.	1
14	40.	1
14	50.	1
14	60.	1
15	10.	1
15	20.	1
15	30.	1
15	40.	1
15	50.	1
15	60.	1
16	10.	1
16	20.	1
16	30.	1
16	40.	1
16	50.	1
16	60.	1
17	10.	1
17	20.	1
17	30.	1
17	40.	1
17	50.	1
17	60.	1
18	10.	1
18	20.	1
18	30.	1
18	40.	1
18	50.	1
18	60.	1
19	10.	1
19	20.	1
19	30.	1
19	40.	1
19	50.	1
19	60.	1
20	10.	1
20	20.	1

0	201	1	301	2	401	3	501	4	601	5	701	6	801	7	901	8	101	9	201
0	301	1	401	2	501	3	601	4	701	5	801	6	901	7	101	8	201	9	301
0	401	1	501	2	601	3	701	4	801	5	901	6	101	7	201	8	301	9	401
0	501	1	601	2	701	3	801	4	901	5	101	6	1	7	2	8	3	9	
0	601	1	701	2	801	3	901	4	101	5	1	6	7	8	9	101	2	301	
0	701	1	801	2	901	3	101	4	1	5	6	7	8	9	101	3	201		
0	801	1	901	2	101	3	1	4	5	6	7	8	9	101	2	3	301		
0	901	1	101	2	201	3	301	4	401	5	501	6	601	7	701	8	801	9	901
0	101	1	201	2	301	3	401	4	501	5	601	6	701	7	801	8	901	9	101
0	201	1	301	2	401	3	501	4	601	5	701	6	801	7	901	8	101	9	201

COMBINE HYDROGRAPHS

-- COMBINED NORTH RESERVOIR OUTFLOW AND SOUTH RESERVOIR
ISTAQICOMP 1ECON ITAPE JPLT JPRT INAME
4 2 0 0 0 0 1

					SUM OF 2 HYDROGRAPHS AT							
					1.	1.	1.	1.	1.	1.	1.	1.
C	0.	0.	0.	0.	1.	1.	1.	1.	1.	1.	1.	1.
C	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.
C	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.
C	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.
C	17.	22.	25.	27.	29.	31.	32.	36.	35.	36.	36.	36.
C	37.	38.	39.	40.	42.	45.	48.	50.	53.	55.	55.	55.
C	58.	60.	63.	65.	67.	69.	72.	74.	76.	78.	78.	78.
C	80.	82.	88.	104.	132.	170.	210.	245.	274.	301.	301.	301.
C	330.	359.	393.	429.	464.	502.	544.	589.	639.	688.	688.	688.
C	746.	865.	1018.	1335.	1717.	2052.	2340.	2564.	2734.	2842.	2842.	2842.
C	3073.	3050.	2955.	2821.	2663.	2530.	2348.	2310.	2209.	2093.	2093.	2093.
C	1958.	1809.	1654.	1501.	1354.	1212.	1075.	942.	825.	716.	716.	716.
C	620.	565.	591.	516.	490.	463.	436.	411.	388.	375.	375.	375.
C	361.	347.	334.	321.	308.	295.	284.	274.	264.	255.	255.	255.
C	246.	237.	229.	220.								

	PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
C	CFS	3073.	1695.	516.	74279.
C	INCHES		6.62	8.42	8.62
C	AC-FIT	891.	1024.	1024.	1024.

21	60.1
22	16.1
22	20.1
22	36.1
22	40.1
22	50.1
22	60.1
23	15.1
23	20.1
23	30.1
23	40.1
23	50.1
23	60.1

INFLUENCE OF OUTFLYING AND INSECTICIDE FLICKS

RUNOFF MULTIPLIED BY 0.50

55 55 55 55 55 55 55 55 55

20 50.1
20 60.1
21 10.1
21 20.1
21 30.1
23 40.1
21 50.1
21 60.1
22 10.1
22 20.1
22 30.1
22 40.1
22 50.1
22 60.1
23 10.1
23 20.1
23 30.1
23 40.1
23 50.1
23 60.1

The figure consists of a grid of vertical lines and horizontal dots. The vertical lines are numbered from 1 to 20 at the bottom. The horizontal dots are arranged in groups, with each group containing 10 dots. The positions of the dots are indicated by 'X' marks on the vertical lines. For example, in the first group of dots, there are 'X' marks on lines 1, 2, 3, 6, 8, 10, 11, 12, 13, and 14. In the second group, there are 'X' marks on lines 1, 2, 3, 4, 5, 7, 9, 10, 11, and 12. This pattern repeats across all 20 groups.

•DVF•

STATION 3

INFLUENCE OF CULTIVATION AND CONSERVATION METHODS

1	4.30	-0.02	0.00
1	4.40	0.02	0.00
1	4.50	0.02	0.00
1	4.60	0.02	0.00
1	5.10	0.02	0.00
1	5.20	0.02	0.00
1	5.30	0.02	0.00
1	5.40	0.02	0.00
1	5.50	0.05	-0.04
1	6.00	0.05	-0.04
1	7.10	0.05	-0.04
1	7.20	0.05	-0.04
1	8.10	0.05	-0.04
1	8.20	0.05	-0.04
1	8.30	0.05	-0.04
1	8.40	0.05	-0.04
1	8.50	0.05	-0.04
1	8.60	0.05	-0.04
1	9.10	0.05	-0.04
1	9.20	0.05	-0.04
1	9.30	0.05	-0.04
1	9.40	0.05	-0.04
1	9.50	0.05	-0.04
1	9.60	0.05	-0.04
1	9.15	0.05	-0.04
1	10.10	0.05	-0.04
1	10.20	0.05	-0.04
1	10.30	0.05	-0.04
1	10.40	0.05	-0.04
1	10.50	0.05	-0.04
1	10.60	0.05	-0.04
1	11.10	0.05	-0.04
1	11.20	0.05	-0.04
1	11.30	0.05	-0.04
1	11.40	0.05	-0.04
1	11.50	0.05	-0.04
1	11.60	0.05	-0.04
1	12.10	0.35	0.28
1	12.20	0.35	0.28
1	12.30	0.30	0.23
1	12.40	0.30	0.23
1	12.50	0.30	0.23
1	12.60	0.35	0.28
1	13.10	0.36	0.34
1	13.20	0.36	0.34
1	13.30	0.36	0.34
1	13.40	0.36	0.34
1	13.50	0.36	0.34
1	13.60	0.36	0.34
1	14.10	0.44	0.43
1	14.20	0.44	0.43
1	14.30	0.44	0.43
1	14.40	0.44	0.43
1	14.50	0.44	0.43
1	14.60	0.44	0.43
1	15.10	1.12	1.11

SUB-AREA RUNOFF COMPUTATION

PROBABLE MAXIMUM 24-HOUR PRECIPITATION (SOUTH RE
1STAQ ICCMP RECON ITAPE JPRT INAME
3 0 0 0 0 1

IHYDQ IUNG TAREA SNAP TRSAU TRSPC RATIOU ISNOW ISAME LOCAL Q
1 1 0.45 0.0 0.45 1.00 0.0 0.0 0 0 0

SPEE PMS R6 R12 R24 R48 R72 R96
0.0 16.00 111.33 124.00 133.00 0.0 0.0 0.0

STKRR OLTMR RTOLR ERATN - LOSS DATA
0.0 0.0 1.00 0.0 STRKS RTOK CNSTL ALSMX RT1MHP
0.0 0.0 1.00 0.0 0.34 0.12 0.0 0.10

UNIT HYDROGRAPH DATA
TPe 0.67 CPn.68 NTAS 0

RECEDITION DATA
STATQ# 0-0 GKCNS 0.0 RTIORS 1.00
APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SNYHEA CP AND TP ARE TC# 4.59 AND RS 2.90 INTERVALS

UNIT HYDROGRAPH 19 END-OF-PERIOD ORIGINATES. LAG# 0.67 HOURS. CP# 0.68 VOL# 1.00
32. 115. 213. 243. 291. 237. 166. 116. 59.
42. 29. 21. 15. 10. 7. 5. 4. 3.

TIME	RAIN	EACS	CMP# 4
1 0 10	0.02	0.00	0.
1 0 20	0.02	0.00	0.
1 0 30	0.02	0.00	1.
1 0 40	0.02	0.00	1.
1 0 50	0.02	0.00	2.
1 1 00	0.02	0.00	2.
1 1 10	0.02	0.00	2.
1 1 20	0.02	0.00	3.
1 1 30	0.02	0.00	3.
1 1 40	0.02	0.00	3.
1 1 50	0.02	0.00	3.
1 2 00	0.02	0.00	3.
1 2 10	0.02	0.00	3.
1 2 20	0.02	0.00	3.
1 2 30	0.02	0.03	3.
1 2 40	0.02	0.00	3.
1 2 50	0.02	0.00	3.
1 3 00	0.02	0.00	3.
1 3 10	0.02	0.00	3.
1 3 20	0.02	0.00	3.
1 3 30	0.02	0.00	3.
1 3 40	0.02	0.00	3.
1 3 50	0.02	0.00	3.
1 4 00	0.02	0.00	3.
1 4 10	0.02	0.00	3.

20	40.
21	50.
21	60.
21	10.
21	20.
21	30.
21	40.
21	50.
21	60.
22	10.
22	20.
22	30.
22	40.
22	50.
22	60.
23	10.
23	20.
23	30.
23	40.
23	50.
23	60.

HYDROGRAPH ROUTING

PULS RESERVOIR ROUTING
ROUTING

ISTAN TCON ITAPE JPRT INAME

3 1 0 0 1

ROUTING DATA

GLOSS AVG IRES ISAME

0.0 0.0 1 0

NSTPS NSTDL

LAG AMSK X TSK STORA

0 0 0.0 0.0 -1.

STORAGE#

322. 417. 441.

55. 125.

458. 210.

475. 310.

492. 310.

509. 765.

226. 2350.

543. 4790.

560. 7745.

OUTFLOW#

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

6	63.	418.	20.
7	10	418.	23.
7	20	419.	26.
7	30	419.	28.
7	40	419.	30.
7	49	420.	32.
7	50	420.	33.
7	60	420.	33.
8	10	420.	34.
8	20	421.	35.
8	30	421.	36.
8	40	422.	37.
8	50	422.	39.
8	60	422.	40.
9	10	423.	41.
9	20	423.	44.
9	30	423.	46.
9	40	424.	49.
9	49	424.	51.
9	50	424.	51.
9	60	422.	12.
10	10	425.	13.
10	20	426.	14.
10	30	426.	15.
10	40	427.	16.
10	49	427.	17.
10	50	426.	25.
10	60	428.	54.
11	10	428.	57.
11	20	429.	59.
11	30	430.	61.
11	40	430.	64.
11	50	430.	66.
11	60	431.	67.
12	10	431.	79.
12	20	432.	81.
12	30	433.	85.
12	40	434.	96.
12	50	435.	118.
12	60	436.	151.
12	50	438.	190.
12	60	441.	227.
13	10	443.	259.
13	20	446.	289.
13	30	450.	316.
13	40	453.	344.
13	50	457.	376.
13	60	460.	411.
14	10	465.	446.
14	20	469.	483.
14	30	473.	523.
14	40	478.	567.
14	50	483.	614.
14	60	469.	663.
15	10	496.	717.
15	20	499.	806.
15	30	504.	941.
15	40	510.	1176.
15	50	516.	1526.
15	60	520.	1882.
16	10	523.	2196.
16	20	526.	2454.
16	30	528.	2384.
16	40	529.	2652.
16	50	530.	2813.
16	60	531.	2982.
17	10	530.	3061.
17	20	530.	3003.
17	30	529.	2868.
17	40	527.	2650.
			2744.
			2584.

STATION 5

00VF

INFLOW IN CFS AND OBSERVED FLOW IN CFS
400. 800. 1200. 1600. 2000. 2400. 2800. 3200.

1 0 101	1 0 201	1 0 301	1 0 401	1 0 501	1 0 601	1 1 101	1 1 201	1 1 301	1 1 401	1 1 501	1 1 601	2 1 01	2 2 01	2 2 301	2 2 401	2 2 501	2 2 601	3 1 01	3 2 01	3 3 01	3 3 401	3 3 501	3 3 601	4 1 01	4 2 01	4 3 01	4 4 01	4 4 501	4 4 601	4 5 501	4 5 601	4 6 01	4 7 1001	4 7 2001	4 7 3001	4 7 4001	4 7 5001	4 7 6001	4 8 1001	4 8 2001	4 8 3001	4 8 4001	4 8 5001	4 8 6001	4 9 1001	4 9 2001
1 0 101	1 0 201	1 0 301	1 0 401	1 0 501	1 0 601	1 1 101	1 1 201	1 1 301	1 1 401	1 1 501	1 1 601	2 1 01	2 2 01	2 2 301	2 2 401	2 2 501	2 2 601	3 1 01	3 2 01	3 3 01	3 3 401	3 3 501	3 3 601	4 1 01	4 2 01	4 3 01	4 4 01	4 4 501	4 4 601	4 5 501	4 5 601	4 6 01	4 7 1001	4 7 2001	4 7 3001	4 7 4001	4 7 5001	4 7 6001	4 8 1001	4 8 2001	4 8 3001	4 8 4001	4 8 5001	4 8 6001	4 9 1001	4 9 2001
1 0 101	1 0 201	1 0 301	1 0 401	1 0 501	1 0 601	1 1 101	1 1 201	1 1 301	1 1 401	1 1 501	1 1 601	2 1 01	2 2 01	2 2 301	2 2 401	2 2 501	2 2 601	3 1 01	3 2 01	3 3 01	3 3 401	3 3 501	3 3 601	4 1 01	4 2 01	4 3 01	4 4 01	4 4 501	4 4 601	4 5 501	4 5 601	4 6 01	4 7 1001	4 7 2001	4 7 3001	4 7 4001	4 7 5001	4 7 6001	4 8 1001	4 8 2001	4 8 3001	4 8 4001	4 8 5001	4 8 6001	4 9 1001	4 9 2001
1 0 101	1 0 201	1 0 301	1 0 401	1 0 501	1 0 601	1 1 101	1 1 201	1 1 301	1 1 401	1 1 501	1 1 601	2 1 01	2 2 01	2 2 301	2 2 401	2 2 501	2 2 601	3 1 01	3 2 01	3 3 01	3 3 401	3 3 501	3 3 601	4 1 01	4 2 01	4 3 01	4 4 01	4 4 501	4 4 601	4 5 501	4 5 601	4 6 01	4 7 1001	4 7 2001	4 7 3001	4 7 4001	4 7 5001	4 7 6001	4 8 1001	4 8 2001	4 8 3001	4 8 4001	4 8 5001	4 8 6001	4 9 1001	4 9 2001

1	10	1000
1	11	20.
1	12	20.CI
1	13	30.01
1	14	40.CI
1	15	50.21
1	16	60.01
1	17	60.01
1	18	10.01
1	19	20.CI
1	20	20.CI
1	21	30.01
1	22	40.CI
1	23	50.01
1	24	60.01
1	25	10.01
1	26	20.01
1	27	30.01
1	28	40.01
1	29	50.01
1	30	60.01
1	31	70.01
1	32	80.01
1	33	90.01
1	34	10.01
1	35	20.01
1	36	30.01
1	37	40.01
1	38	50.01
1	39	60.01
1	40	70.01
1	41	80.01
1	42	90.01
1	43	10.01
1	44	20.01
1	45	30.01
1	46	40.01
1	47	50.01
1	48	60.01
1	49	70.01
1	50	80.01
1	51	90.01
1	52	10.01
1	53	20.01
1	54	30.01
1	55	40.01
1	56	50.01
1	57	60.01
1	58	70.01
1	59	80.01
1	60	90.01
1	61	10.01
1	62	20.01
1	63	30.01
1	64	40.01
1	65	50.01
1	66	60.01
1	67	70.01
1	68	80.01
1	69	90.01
1	70	10.01
1	71	20.01
1	72	30.01
1	73	40.01
1	74	50.01
1	75	60.01
1	76	70.01
1	77	80.01
1	78	90.01
1	79	10.01
1	80	20.01
1	81	30.01
1	82	40.01
1	83	50.01
1	84	60.01
1	85	70.01
1	86	80.01
1	87	90.01
1	88	10.01
1	89	20.01
1	90	30.01
1	91	40.01
1	92	50.01
1	93	60.01
1	94	70.01
1	95	80.01
1	96	90.01
1	97	10.01
1	98	20.01
1	99	30.01
1	100	40.01
1	101	50.01
1	102	60.01
1	103	70.01
1	104	80.01
1	105	90.01
1	106	10.01
1	107	20.01
1	108	30.01
1	109	40.01
1	110	50.01
1	111	60.01
1	112	70.01
1	113	80.01
1	114	90.01
1	115	10.01
1	116	20.01
1	117	30.01
1	118	40.01
1	119	50.01
1	120	60.01
1	121	70.01
1	122	80.01
1	123	90.01
1	124	10.01
1	125	20.01
1	126	30.01
1	127	40.01
1	128	50.01
1	129	60.01
1	130	70.01
1	131	80.01
1	132	90.01
1	133	10.01
1	134	20.01
1	135	30.01
1	136	40.01
1	137	50.01
1	138	60.01
1	139	70.01
1	140	80.01
1	141	90.01
1	142	10.01
1	143	20.01
1	144	30.01
1	145	40.01
1	146	50.01
1	147	60.01
1	148	70.01
1	149	80.01
1	150	90.01
1	151	10.01
1	152	20.01
1	153	30.01
1	154	40.01
1	155	50.01
1	156	60.01
1	157	70.01
1	158	80.01
1	159	90.01
1	160	10.01
1	161	20.01
1	162	30.01
1	163	40.01
1	164	50.01
1	165	60.01
1	166	70.01
1	167	80.01
1	168	90.01
1	169	10.01
1	170	20.01
1	171	30.01
1	172	40.01
1	173	50.01
1	174	60.01
1	175	70.01
1	176	80.01
1	177	90.01
1	178	10.01
1	179	20.01
1	180	30.01
1	181	40.01
1	182	50.01
1	183	60.01
1	184	70.01
1	185	80.01
1	186	90.01
1	187	10.01
1	188	20.01
1	189	30.01
1	190	40.01
1	191	50.01
1	192	60.01
1	193	70.01
1	194	80.01
1	195	90.01
1	196	10.01
1	197	20.01
1	198	30.01
1	199	40.01
1	200	50.01
1	201	60.01
1	202	70.01
1	203	80.01
1	204	90.01
1	205	10.01
1	206	20.01
1	207	30.01
1	208	40.01
1	209	50.01
1	210	60.01
1	211	70.01
1	212	80.01
1	213	90.01
1	214	10.01
1	215	20.01
1	216	30.01
1	217	40.01
1	218	50.01
1	219	60.01
1	220	70.01
1	221	80.01
1	222	90.01
1	223	10.01
1	224	20.01
1	225	30.01
1	226	40.01
1	227	50.01
1	228	60.01
1	229	70.01
1	230	80.01
1	231	90.01
1	232	10.01
1	233	20.01
1	234	30.01
1	235	40.01
1	236	50.01
1	237	60.01
1	238	70.01
1	239	80.01
1	240	90.01
1	241	10.01
1	242	20.01
1	243	30.01
1	244	40.01
1	245	50.01
1	246	60.01
1	247	70.01
1	248	80.01
1	249	90.01
1	250	10.01
1	251	20.01
1	252	30.01
1	253	40.01
1	254	50.01
1	255	60.01
1	256	70.01
1	257	80.01
1	258	90.01
1	259	10.01
1	260	20.01
1	261	30.01
1	262	40.01
1	263	50.01
1	264	60.01
1	265	70.01
1	266	80.01
1	267	90.01
1	268	10.01
1	269	20.01
1	270	30.01
1	271	40.01
1	272	50.01
1	273	60.01
1	274	70.01
1	275	80.01
1	276	90.01
1	277	10.01
1	278	20.01
1	279	30.01
1	280	40.01
1	281	50.01
1	282	60.01
1	283	70.01
1	284	80.01
1	285	90.01
1	286	10.01
1	287	20.01
1	288	30.01
1	289	40.01
1	290	50.01
1	291	60.01
1	292	70.01
1	293	80.01
1	294	90.01
1	295	10.01
1	296	20.01
1	297	30.01
1	298	40.01
1	299	50.01
1	300	60.01
1	301	70.01
1	302	80.01
1	303	90.01
1	304	10.01
1	305	20.01
1	306	30.01
1	307	40.01
1	308	50.01
1	309	60.01
1	310	70.01
1	311	80.01
1	312	90.01
1	313	10.01
1	314	20.01
1	315	30.01
1	316	40.01
1	317	50.01
1	318	60.01
1	319	70.01
1	320	80.01
1	321	90.01
1	322	10.01
1	323	20.01
1	324	30.01
1	325	40.01
1	326	50.01
1	327	60.01
1	328	70.01
1	329	80.01
1	330	90.01
1	331	10.01
1	332	20.01
1	333	30.01
1	334	40.01
1	335	50.01
1	336	60.01
1	337	70.01
1	338	80.01
1	339	90.01
1	340	10.01
1	341	20.01
1	342	30.01
1	343	40.01
1	344	50.01
1	345	60.01
1	346	70.01
1	347	80.01
1	348	90.01
1	349	10.01
1	350	20.01
1	351	30.01
1	352	40.01
1	353	50.01
1	354	60.01
1	355	70.01
1	356	80.01
1	357	90.01
1	358	10.01
1	359	20.01
1	360	30.01
1	361	40.01
1	362	50.01
1	363	60.01
1	364	70.01
1	365	80.01
1	366	90.01
1	367	10.01
1	368	20.01
1	369	30.01
1	370	40.01
1	371	50.01
1	372	60.01
1	373	70.01
1	374	80.01
1	375	90.01
1	376	10.01
1	377	20.01
1	378	30.01
1	379	40.01
1	380	50.01
1	381	60.01
1	382	70.01
1	383	80.01
1	384	90.01
1	385	10.01
1	386	20.01
1	387	30.01
1	388	40.01
1	389	50.01
1	390	60.01
1	391	70.01
1	392	80.01
1	393	90.01
1	394	10.01
1	395	20.01
1	396	30.01
1	397	40.01
1	398	50.01
1	399	60.01
1	400	70.01
1	401	80.01
1	402	90.01
1	403	10.01
1	404	20.01
1	405	30.01
1	406	40.01

RUNOFF SUMMARY. AVERAGE FLOW

	PEAK	6-HOUR	24-HOUR	72-HOUR	AHEA
HYDROGRAPH AT ROUTED TO	1 2	256. 252.	1525. 1372.	451. 403.	1.63 1.63
HYDROGRAPH AT 2 COMBINED ROUTED TO	3 4 5	612. 3073. 3060.	398. 1695. .1665.	113. 516. 480.	.645 .26 .26

APPENDIX E

Information as Contained in the National Inventory of Dams

STATE NUMBER	STATE DIVISION	STATE COUNTY UNIT	COUNTY DIST.	NAME	WORTH	WEST	DAY	MO	YEAR
V.T.	S.E. NED	V.T.	0111.01	SAIN T ALBANS RESERVOIR DAM (NORTH)	4449.5	7303.0	29 SEP 76		

POPULAR NAME	NAME OF IMPOUNDMENT	
	SAINT ALBANS RESERVOIR (NORTH)	

(1)	(2)	(3)	(4)	RIVER OR STREAM	NEAREST DOWNSTREAM CITY-TOWN-VILLAGE		DIST. FROM DAM (M.I.)	POPULATION	
02 01	MILL RIVER	NORTH FAIRFAX					0	40	

(1)	(2)	(3)	(4)	TYPE OF DAM	YEAR COMPLETED	PURPOSES	STRUCTURAL HEIGHT	HYDRAULIC HEAD	IMPOUNDING CAPACITIES (MAXIMUM VOLUME IN ACRES)	DIST OWN FED R PRV/FED SCD A VER/DATE
RP/C	1895	35	27	1168	820	NED	N	N	N	020G170

REMARKS

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)	(34)	(35)	(36)	(37)	(38)	(39)	(40)	(41)	(42)	(43)	(44)	(45)	(46)	(47)	(48)	(49)	(50)	(51)	(52)	(53)	(54)	(55)	(56)	(57)	(58)	(59)	(60)	(61)	(62)	(63)	(64)	(65)	(66)	(67)	(68)	(69)	(70)	(71)	(72)	(73)	(74)	(75)	(76)	(77)	(78)	(79)	(80)	(81)	(82)	(83)	(84)	(85)	(86)	(87)	(88)	(89)	(90)	(91)	(92)	(93)	(94)	(95)	(96)	(97)	(98)	(99)	(100)	(101)	(102)	(103)	(104)	(105)	(106)	(107)	(108)	(109)	(110)	(111)	(112)	(113)	(114)	(115)	(116)	(117)	(118)	(119)	(120)	(121)	(122)	(123)	(124)	(125)	(126)	(127)	(128)	(129)	(130)	(131)	(132)	(133)	(134)	(135)	(136)	(137)	(138)	(139)	(140)	(141)	(142)	(143)	(144)	(145)	(146)	(147)	(148)	(149)	(150)	(151)	(152)	(153)	(154)	(155)	(156)	(157)	(158)	(159)	(160)	(161)	(162)	(163)	(164)	(165)	(166)	(167)	(168)	(169)	(170)	(171)	(172)	(173)	(174)	(175)	(176)	(177)	(178)	(179)	(180)	(181)	(182)	(183)	(184)	(185)	(186)	(187)	(188)	(189)	(190)	(191)	(192)	(193)	(194)	(195)	(196)	(197)	(198)	(199)	(200)	(201)	(202)	(203)	(204)	(205)	(206)	(207)	(208)	(209)	(210)	(211)	(212)	(213)	(214)	(215)	(216)	(217)	(218)	(219)	(220)	(221)	(222)	(223)	(224)	(225)	(226)	(227)	(228)	(229)	(230)	(231)	(232)	(233)	(234)	(235)	(236)	(237)	(238)	(239)	(240)	(241)	(242)	(243)	(244)	(245)	(246)	(247)	(248)	(249)	(250)	(251)	(252)	(253)	(254)	(255)	(256)	(257)	(258)	(259)	(260)	(261)	(262)	(263)	(264)	(265)	(266)	(267)	(268)	(269)	(270)	(271)	(272)	(273)	(274)	(275)	(276)	(277)	(278)	(279)	(280)	(281)	(282)	(283)	(284)	(285)	(286)	(287)	(288)	(289)	(290)	(291)	(292)	(293)	(294)	(295)	(296)	(297)	(298)	(299)	(300)	(301)	(302)	(303)	(304)	(305)	(306)	(307)	(308)	(309)	(310)	(311)	(312)	(313)	(314)	(315)	(316)	(317)	(318)	(319)	(320)	(321)	(322)	(323)	(324)	(325)	(326)	(327)	(328)	(329)	(330)	(331)	(332)	(333)	(334)	(335)	(336)	(337)	(338)	(339)	(340)	(341)	(342)	(343)	(344)	(345)	(346)	(347)	(348)	(349)	(350)	(351)	(352)	(353)	(354)	(355)	(356)	(357)	(358)	(359)	(360)	(361)	(362)	(363)	(364)	(365)	(366)	(367)	(368)	(369)	(370)	(371)	(372)	(373)	(374)	(375)	(376)	(377)	(378)	(379)	(380)	(381)	(382)	(383)	(384)	(385)	(386)	(387)	(388)	(389)	(390)	(391)	(392)	(393)	(394)	(395)	(396)	(397)	(398)	(399)	(400)	(401)	(402)	(403)	(404)	(405)	(406)	(407)	(408)	(409)	(410)	(411)	(412)	(413)	(414)	(415)	(416)	(417)	(418)	(419)	(420)	(421)	(422)	(423)	(424)	(425)	(426)	(427)	(428)	(429)	(430)	(431)	(432)	(433)	(434)	(435)	(436)	(437)	(438)	(439)	(440)	(441)	(442)	(443)	(444)	(445)	(446)	(447)	(448)	(449)	(450)	(451)	(452)	(453)	(454)	(455)	(456)	(457)	(458)	(459)	(460)	(461)	(462)	(463)	(464)	(465)	(466)	(467)	(468)	(469)	(470)	(471)	(472)	(473)	(474)	(475)	(476)	(477)	(478)	(479)	(480)	(481)	(482)	(483)	(484)	(485)	(486)	(487)	(488)	(489)	(490)	(491)	(492)	(493)	(494)	(495)	(496)	(497)	(498)	(499)	(500)	(501)	(502)	(503)	(504)	(505)	(506)	(507)	(508)	(509)	(510)	(511)	(512)	(513)	(514)	(515)	(516)	(517)	(518)	(519)	(520)	(521)	(522)	(523)	(524)	(525)	(526)	(527)	(528)	(529)	(530)	(531)	(532)	(533)	(534)	(535)	(536)	(537)	(538)	(539)	(540)	(541)	(542)	(543)	(544)	(545)	(546)	(547)	(548)	(549)	(550)	(551)	(552)	(553)	(554)	(555)	(556)	(557)	(558)	(559)	(560)	(561)	(562)	(563)	(564)	(565)	(566)	(567)	(568)	(569)	(570)	(571)	(572)	(573)	(574)	(575)	(576)	(577)	(578)	(579)	(580)	(581)	(582)	(583)	(584)	(585)	(586)	(587)	(588)	(589)	(590)	(591)	(592)	(593)	(594)	(595)	(596)	(597)	(598)	(599)	(600)	(601)	(602)	(603)	(604)	(605)	(606)	(607)	(608)	(609)	(610)	(611)	(612)	(613)	(614)	(615)	(616)	(617)	(618)	(619)	(620)	(621)	(622)	(623)	(624)	(625)	(626)	(627)	(628)	(629)	(630)	(631)	(632)	(633)	(634)	(635)	(636)	(637)	(638)	(639)	(640)	(641)	(642)	(643)	(644)	(645)	(646)	(647)	(648)	(649)	(650)	(651)	(652)	(653)	(654)	(655)	(656)	(657)	(658)	(659)	(660)	(661)	(662)	(663)	(664)	(665)	(666)	(667)	(668)	(669)	(670)	(671)	(672)	(673)	(674)	(675)	(676)	(677)	(678)	(679)	(680)	(681)	(682)	(683)	(684)	(685)	(686)	(687)	(688)	(689)	(690)	(691)	(692)	(693)	(694)	(695)	(696)	(697)	(698)	(699)	(700)	(701)	(702)	(703)	(704)	(705)	(706)	(707)	(708)	(709)	(710)	(711)	(712)	(713)	(714)	(715)	(716)	(717)	(718)	(719)	(720)	(721)	(722)	(723)	(724)	(725)	(726)	(727)	(728)	(729)	(730)	(731)	(732)	(733)	(734)	(735)	(736)	(737)	(738)	(739)	(740)	(741)	(742)	(743)	(744)	(745)	(746)	(747)	(748)	(749)	(750)	(751)	(752)	(753)	(754)	(755)	(756)	(757)	(758)	(759)	(760)	(761)	(762)	(763)	(764)	(765)	(766)	(767)	(768)	(769)	(770)	(771)	(772)	(773)	(774)	(775)	(776)	(777)	(778)	(779)	(780)	(781)	(782)	(783)	(784)	(785)	(786)	(787)	(788)	(789)	(790)	(791)	(792)	(793)	(794)	(795)	(796)	(797)	(798)	(799)	(800)	(801)	(802)	(803)	(804)	(805)	(806)	(807)	(808)	(809)	(810)	(811)	(812)	(813)	(814)	(815)	(816)	(817)	(818)	(819)	(820)	(821)	(822)	(823)	(824)	(825)	(826)	(827)	(828)	(829)	(830)	(831)	(832)	(833)	(834)	(835)	(836)	(837)	(838)	(839)	(840)	(841)	(842)	(843)	(844)	(845)	(846)	(847)	(848)	(849)	(850)	(851)	(852)	(853)	(854)	(855)	(856)	(857)	(858)	(859)	(860)	(861)	(862)	(863)	(864)	(865)	(866)	(867)	(868)	(869)	(870)	(871)	(872)	(873)	(874)	(875)	(876)	(877)	(878)	(879)	(880)	(881)	(882)	(883)	(884)	(885)	(886)	(887)	(888)	(889)	(890)	(891)	(892)	(893)	(894)	(895)	(896)	(897)	(898)	(899)	(900)	(901)	(902)	(903)	(904)	(905)	(906)	(907)	(908)	(909)	(910)	(911)	(912)	(913)	(914)	(915)	(916)	(917)	(918)	(919)	(920)	(921)	(922)	(923)	(924)	(925)	(926)	(927)	(928)	(929)	(930)	(931)	(932)	(933)	(934)	(935)	(936)	(937)	(938)	(939)	(940)	(941)	(942)	(943)	(944)	(945)	(946)	(947)	(948)	(949)	(950)	(951)	(952)	(953)	(954)	(955)	(956)	(957)	(958)	(959)	(960)	(961)	(962)	(963)	(964)	(965)	(966)	(967)	(968)	(969)	(970)	(971)	(972)	(973)	(974)	(975)	(976)	(977)	(978)	(979)	(980)	(981)	(982)	(983)	(984)	(985)	(986)	(987)	(988)	(989)	(990)	(991)	(992)	(993)	(994)	(995)	(996)	(997)	(998)	(999)	(1000)
-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	--------

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)	(34)	(35)	(36)	(37)	(38)	(39)	(40)	(41)	(42)	(43)	(44)	(45)	(46)	(47)	(48)	(49)	(50)	(51)	(52)	(53)	(54)	(55)	(56)	(57)	(58)	(59)	(60)	(61)	(62)	(63)	(64)	(65)	(66)	(67)	(68)	(69)	(70)	(71)	(72)	(73)	(74)	(75)	(76)	(77)	(78)	(79)	(80)	(81)	(82)	(83)	(84)	(85)	(86)	(87)	(88)	(89)	(90)	(91)	(92)	(93)	(94)	(95)	(96)	(97)	(98)	(99)	(100)
-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	-------

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)	(34)	(35)	(36)	(37)	(38)	(39)	(40)	(41)	(42)	(43)	(44)	(45)	(46)	(47)	(48)	(49)	(50)	(51)	(52)	(53)	(54)	(55)	(56)	(57)	(58)	(59)	(60)	(61)	(62)	(63)	(64)	(65)	(66)	(67)	(68)	(69)	(70)	(71)	(72)	(73)	(74)	(75)	(76)	(77)	(78)	(79)	(80)	(81)	(82)	(83)	(84)	(85)	(86)	(87)	(88)	(89)	(90)	(91)	(92)	(93)	(94)	(95)	(96)	(97)	(98)	(99)	(100)
-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	-------

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)	(34)	(35)	(36)	(37)	(38)	(39)	(40)	(41)	(42)	(43)	(44)	(45)	(46)	(47)	(48)	(49)	(50)	(51)	(52)	(53)	(54)	(55)	(56)	(57)	(58)	(59)	(60)	(61)	(62)	(63)	(64)	(65)	(66)	(67)	(68)	(69)	(70)	(71)	(72)	(73)	(74)	(75)	(76)	(77)	(78)	(79)	(80)	(81)	(82)	(83)	(84)	(85)	(86)	(87)	(88)	(89)	(90)	(91)	(92)	(93)	(94)	(95)	(96)	(97)	(98)	(99)	(100)
-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	-------

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)	(34)	(35)	(36)	(37)	(38)	(39)	(40)	(41)	(42)	(43)	(44)	(45)	(46)	(47)	(48)	(49)	(50)	(51)	(52)	(53)	(54)	(55)	(56)	(57)	(58)</
-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	--------

END

FILMED

9-85

DTIC