J.D (Ret . / Rev)

J.D (H.S)

Director

6	3	0			оппа	. A. C.	தர்வுச	ள் க	ഞ്ഞ		1		ì
Packet	No.			DEPA	RTMEN	•		_	-	ONS	}	0	- 1
0								7		L		<u> </u>	<u></u> J
_	HSE On Booklet Series												
Script P	cript No:												
0	8		Camp	No.	65						Α		
	விடைத்தாள் திருத்துவோர் நிறைவு செய்ய வேண்									ர டியை	ภ <u>B</u>	<u></u>	
	FOR THE USE OF EXAMINERS ONLY வினாளரியாக மொத்தம் பக்கவாரியாக மொத்தம்									1			
வினா	Questionwise Total									 សស់ស		ise Total பக்க	மதிப்
ពល់ Q.No.	பெண்கள் Marks	តស់ា Q.No.	பெண்கள் Marks	616581 Q.No.	பெண்கள் Marks	ereger Q.No.	பெண்கள் Marks	என் 9,No.	பெண்கள் Marks	6ातका Page No .	பெள்ளகள் Marks	676वण Page No.	பெண்கள் Marks
1		21		41	6	61	10	81		1	11.	21	-
2		22		42	31	62	(0/	82		2	2/2	22	
3	\	23	1	43	61	63	,	83		3	11	23	
4	\	24	1	44	6/	64	51	84		4	16	24	
5	\	25	1	45	2/	65	:	85		5	5	25	
6	0/	26	1	46	6/	66		86		6	(0.	26	
7		27	1	47	,	67	10	87		7	10	27	
8		28	\	48		68	4/	88		8	10	28	
9		29		49		69	-	89	·	9	10	29	,
10 `	\	30	\	50	_	70 	0	90		10	10	30	
11		31	\	51	6	71		91		11	0	31	<u></u>
12		32		52	0/	72		92	 	12	10	32	
13		33	1	53	3/	73	-	93		13 	9	33	
14	1	34	\	54	0/	74		94	<u> </u>	14	6	34	
15	9/	35	7	55		/ 75		95		1.5	8	35	
16	$\overline{}$	36		56	10'	, 76		96		16	b	36	·
17		37	\	57	101	, 77		97		17	6	37	
18		38	\	58	10	78 /		98	<u></u>	18	9	38	ļ
19	•/•/	39	\	59	10/	79	,	99		19	0	39	
20	6 \ /	40	__	60		80		100	 ,	20		40	
மௌத்தம் TOTAL	196	மொத்தம் TOTAL	zo	மொத்தம் TOTAL	84	மொத்தம் TOTAL	3.1	மொத்தம் TOTAL		மொத்தம் TOTAL	191	மௌத்தம் TOTAL	
வினாவாரியாக ஒட்டு மொத்தம் Question-wise Grand Total Page-wise Grand Total													
AE:)	8-333,9	5,000 Cp	\$13 ₋ 8-1	e fAcelf5	12	so: √	1908v		74/12	AN)	CE:	nato	45

மதிப்பெண்கள் பக்கம் / Marking Page

Bundle No:

AE:511

Total Marks

தோவு எழுதுபவர் செய்யக்கூடியவை மற்றும் செய்யக்கூடாதவை Do's & Dont's for Candidates

- 1. முகப்புச்சீட்டில் உரிய இடத்தில் கையொப்பமிட வேண்டும். Put your signature in the Top sheet in the appropriate place.
- 2. விடைத்தாளில் ஒரு பக்கத்திற்கு **20** முதல் **25** வரிகள் வரை எழுதவேண்டும். Write 20 to 25 lines in a page.
- 3. விடைத்தாளின் இருபுறத்திலும் எழுத வேண்டும். Write answers in both sides of paper.
- 4. செய்முறைகள் யாவும் விடைத்தாளின் பகுதியில் இடம் பெறவேண்டும். All rough works must be done on the lower part of the page:
- 5. சரியான வினா எண் தவறாமல் எழுத வேண்டும். வினா எண் எழுதாத மற்றும் தவறான வினா எண்கள் குறிப்பிடப்பட்டு எழுதப்பட்ட விடைகள் மதிப்பீடு செய்யப்படமாட்டாது. Write the question numbers without fail. Answers without question numbers and wrong question numbers will not be valued.
- 6. இரு விடைகளுக்கிடையே இடைவெளி விட்டு எழுத வேண்டும். Leave space between two answers.
- 7 வினாத்தாளின் வரிசை (A or B) மதிப்பெண்கள் பக்கத்தில் குறிக்கப்படல் வேண்டும் Question paper booklet series (A or B) should be mentioned in the Marking Page
- 8. விடைத்தாளில் நீலம்/கருப்புமை கொண்ட பேனாவால் விடைகளை தெளிவாக எழுத வேண்டும். Answers must be legibly written either in Blue or Black ink pen.
- 9. விடைத்தாளில் எழுதாத பக்கங்களில் குறுக்குக்கோடு இடவேண்டும். Cross the unwritten pages.

- 1. வினாத்தாளில் எந்தவித குறியீடும் இடக் கூடாது. No marking in the question paper.
- 2. விடைத்தாளை சேதப்படுத்தக் கூடாது. Don't damage the answer paper.
- 3. விடைத்தாளில் எந்த ஒரு பக்கத்திலும் தோவு எண்/பெயா் எழுதக்கூடாது. Don't write name, Register Number in any page of the answer book.
- 4: வண்ணக்கலர் கொண்ட பேனா/ பென்சில் எதையும் பயன்படுத்தக் கூடாது. Don't write with sketch / colour pencils.
- 5. விடைத்தாள் கோட்டின் இடது ஓரத்தில் எழுதக்கூடாது. Don't write on the left margin.
- 6. விடைத்தாள் புத்தகத்தின் எந்த தாளையும் கிழிக்கவோ/நீக்கவோ கூடாது. Don't tare / remove any page from the answer book.

भुक्ता

तक्ता.

Qn.No.

PART-A

1) (6,6)

2) 20 - My

2) y = ± 51/x

 $(3) w^{n-k}$

\5 (4) 1/2 ·

3) of order 1 and degree &

ه (۲۰ ا) (۵ ، ۵ ، ۲۰) د

8. 1) (-1/2 , -8)

(a. 4) (25, 1/6)

o. 4) The nows can have same runnicus.
Of the substance the first non-term

entry

1. 2) an asymptote parallel to y-axis.

. 2) 2/3

388-3-2

ស្សាស្វារ 616881. Qn.No.

3)
$$\frac{dw}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$$

$$21.$$
 3) $5\sqrt{3}$

$$(31. 2)(\log \Delta_2, \log \Delta_3)$$

$$86.$$
 2) $8(x) = 0$

40

4) $\frac{1}{n} \cos^{n-1} x \sin x + \left(\frac{n-1}{n}\right) + \frac{1}{n-2}$

PART-C

7

Let T be the temperature of coffee.

sussequet moore ent ed e

If
$$\frac{dT}{dt} = K(T-S)$$

Integrate

$$\int_{0}^{\infty} dT = \int_{0}^{\infty} K(T-S).$$

Temperature (T)	Time (t)
100	Ó
60	5
?	10

When
$$T = 100^{\circ} \text{ c}$$
, $\dot{x} = 0$, $s = 15^{\circ} \text{ c}$

When
$$T = 60^{\circ} \text{ c}$$
, $t = 5^{\circ}$, $s = 15^{\circ} \text{ c}$

$$= 85 \left(\frac{45}{85}\right)^2 + 15$$

ยญยุญเท 67600T. Qn.No.

.. Temperative after a surfacer T = 38.82°C interval of 5 minutes, is

q be a group under matrix multiplication.

Let
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $A = \begin{pmatrix} W & 0 \\ 0 & W^2 \end{pmatrix}$,

$$\mathbf{B} = \begin{pmatrix} \mathbf{w}^2 & \mathbf{o} \\ \mathbf{o} & \mathbf{w} \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} \mathbf{o} & \mathbf{i} \\ \mathbf{i} & \mathbf{o} \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} \mathbf{o} & \mathbf{w}^2 \\ \mathbf{w} & \mathbf{o} \end{pmatrix},$$

$$E = \begin{pmatrix} 0 & 0 \\ \omega^2 & 0 \end{pmatrix}$$

$$G = \{I, A, B, C, D, \in \}$$

The Cayley's Table is

4		<u></u>		<u> </u>		E
	I	Α	B	C	D	, ,,
	A	A	В	C	D	E
	В	B	RI	E	Ċ	D
	c	C	D	A	A	B
	D	D	E	18 A	BI	A A
	<u></u>	ϵ	C	В	XA	AI
						•

U CLOSURE AXIÓM:

All the 36 elements in the

coupey's table belongs to G

closure saion is Toure.

ASSOCIATIVE AXIOM:

Associative is always true

under Matrix multiplication.

: Associative axiom is true.

UN IDENTITY AXIOM!

I is the identity element

Identity axiom is time.

JY INVERSE AXIOM:

The inverse of A is A

Inverse of B is B

Inverse of C is II

Inverse of D is

Inverse of E is

: (G, *) fours a group.

64. Given,

$$U = \frac{x}{y^2} - \frac{y}{x^2}$$

To Verify

$$\frac{\partial^2 U}{\partial x \partial y} = \frac{\partial^2 U}{\partial y \partial x}$$

Let L.H.S =
$$\frac{\partial^2 v}{\partial x \partial y}$$

$$\frac{\partial^2 y}{\partial x} = \frac{\partial^2 y}{\partial x} \left(\frac{-x}{y^3} - \frac{1}{y^2} \right)$$

$$= \left(\frac{-1}{y^3} + \frac{1}{x^3}\right)$$

$$=\left(\frac{1}{x^3}-\frac{1}{y^3}\right)$$

$$\frac{1}{3x3y} = \left(\frac{1}{x^3} - \frac{1}{y^3}\right) - \boxed{1}$$

வினா 61'60**0**1'. Qn.No.

$$f(R) = \frac{\partial^2 u}{\partial y \partial x}$$

Let R. H. S =
$$\frac{\partial U}{\partial y \partial x}$$

$$= \frac{\partial}{\partial x} \left(\frac{x}{y^2} - \frac{y^2}{x^2} \right)$$

$$= \left(\frac{1}{y^2} + \frac{y}{x^3} \right)$$

$$= \left(\frac{1}{y^3} + \frac{1}{x^3} \right)$$

$$= \left(\frac{1}{x^3} - \frac{1}{y^3} \right)$$

$$\frac{1}{3}\frac{d^2v}{dydx} = \left(\frac{1}{x^3} - \frac{1}{y^3}\right) = 2$$

From 1 and 2,

$$\frac{\partial^2 \sigma}{\partial x \partial y} = \frac{\partial^2 \sigma}{\partial y \partial x \partial y}$$
Hence verified

56

$$x+y+2z=4,-0$$

$$3\chi + 3\gamma + 6Z = 12 - 3$$

using determinant method,

$$= 1(12-12)-1(12-12)+2(6-6)$$

$$=1(0)-1(0)+2(0)$$

$$\Delta = \delta$$

$$\Delta_{x} = \begin{vmatrix} 4 & 1 & 2 \\ 8 & 2 & 4 \\ 12 & 3 & 6 \end{vmatrix}$$

$$= 4(12-12)-1(48-48)+2(24-24)$$

$$\Delta y = \begin{vmatrix} 1 & 4 & 2 \\ 2 & 8 & 4 \end{vmatrix}$$

$$\begin{vmatrix} 3 & 12 & 6 \end{vmatrix}$$

$$= 1(48-48)-4(12-12)+2(24-24)$$

$$\Delta y = 0$$

$$\Delta z = \begin{vmatrix} 1 & 1 & 4 \\ 2 & 2 & 8 \end{vmatrix}$$

$$\Delta y = 0 / \Delta z = 0$$

All the minors of $\Delta, \Delta_X, \Delta_Y$

(Also, atteast one non-zero element is present $2 \neq 0$)

The system is consistent and it reduces to a single rostanos

$$x+y+2z=4$$

$$x=4-k_1-2k_2$$
The solution set is k
$$(4-k_1-2k_2, |k_1|, |k_2|)$$
Where $k_1, k_2 \in \mathbb{R}$

(S 8

given,

$$\vec{OA} = \vec{A} = \vec{31} + \vec{47} + 2\vec{k},$$

$$\overrightarrow{OB} = \overrightarrow{b} = 2\overrightarrow{l} - 2\overrightarrow{J} \cdot \overrightarrow{k}$$
, $\overrightarrow{OC} = \overrightarrow{c} = \overrightarrow{J} \cdot \overrightarrow{k}$.

The plane is in three-points

form

a iz

VECTOR EQUATION:

Let
$$\vec{a} = 3\vec{i} + 4\vec{j} + 2\vec{k}$$

வின் எண். **Qh.No**.

. The vector Equation is

$$\vec{\tau} = (1-s-t)\vec{a} + s\vec{b} + t\vec{c}$$

$$7 = (1-s-t)3\vec{i}+4\vec{j}+2\vec{k}+s(2\vec{i}-2\vec{j}-\vec{k})$$

more s, t are scalars.

U CARTESIAN EQUATION:

Let
$$(x_1, y_1, z_1)^{-1}(3, 4, 2)$$

$$t (x_1, y_1) = (2, -2, -1)$$

$$(x_2, y_2, z_2) = (2, -2, -1)$$

$$(x_2, y_2, z_3) = (7, 0)$$

.. The Cautesian Equation is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \end{vmatrix} = 0$$

$$\begin{vmatrix} x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix}$$

$$\begin{vmatrix} 2x-3 & y-4 & z-2 \\ 2-3 & -2-4 & -1-2 \\ 2-3 & -2-4 & 1-2 \end{vmatrix} = 0$$

$$\begin{vmatrix} x-3 & y-4 & z-2 \\ -6 & -3 \\ -1 & -4 & -1 \end{vmatrix} = 0$$

$$x-3(6-12)-(y-4)(1+12)+z-2(4+24)=0$$

 $x-3(-6)-y+4(13)+z-2(28)=0$
 $-6x+18-13y+52+28z-56=0$
 $-6x-13y+28z+60-56=0$
 $-6x-13y+28z+14=0$
 $(-)-=)6x+13y-28=14=0$ is the required Cautesian Equation of a plane

163

Given,

one of the symptote is

Another asymptote is $2\cancel{y} - \cancel{y} + \cancel{k}_1 = 0$

The points are (6,0) and (-3,0)

The combined equation of an asymptote is

(x+2y-5)(2x-y+ky)=0

AX13 52 52

Equation of a rectangular engrerbola is

$$(x+2y-5)(2x-2y+k1)+k2=0$$

(since, the combined equation of asymptotes and hyperbola differ only by a constant term)

point (6,0) passes through the equation,

$$(6+2(0)-5)(2(6)-0+ki)+k2=0$$

$$k_1 + k_2 = -12 - 0$$
.

point (-3,0) passes through the same equation,

equation,
$$(-3+2(0)-5)(2(-3)-0+k_1)+k_2=0$$

$$-8k_1+k_2=-48-2$$

$$0 \times 8 = -96$$

$$8 \times 7 + 8 \times 2 = -96$$

$$7 \times 8 \times 7 + 2 = -48$$

9 k2=

$$0 \Rightarrow k_1 + k_2 = -12$$

$$(2) =) -8k_1 + k_2 = -48$$

$$(+) (+) (+)$$

$$K_1 + K_2 = -12$$

The required equation of R.H is

$$(x+2y-5)(2x-y+4)-16=0$$

given,

$$x4 - x^3 + x^2 - x^2 + 1 = 0$$

$$= \frac{3^{4} - x^{4} - x^{3} + x^{4} = 0}{1 - x + x^{2} - x^{3} + x^{4}}$$

It in in G.P,

$$\gamma = \frac{t^2}{t_1}$$

$$S_n = \left(\frac{1-\gamma^n}{1-\gamma}\right)$$

$$=\left(\frac{1-x^{5}}{1-x}\right)$$

Here x + 1

$$\frac{1-x^5}{1-x} + 1$$

=
$$(\cos \pi + i \sin \pi)^{1/5}$$

Add 2kT

$$\varkappa = \left[\cos(\pi + 2k\pi) + i\sin(\pi + 2k\pi)\right]^{1/2}$$

=
$$\left[\cos \pi \left(2k+1\right) + i \sin \pi \left(2k+1\right)\right]^{1/5}$$

Apply De-Moivere's Aneovem,

=
$$\left[\cos \frac{\pi}{5}(2k+1) + i \sin \frac{\pi}{5}(2k+1)\right]$$

$$\varkappa = \frac{1}{5} \left(2k+1 \right)$$

Where k=0,1,2,3,...

put K=0, x = cis 17/5

v = 1, $\chi = cis 3\pi/5$

k=2, $\alpha=\cos 5\pi/5$

·: (cis 11 = 1)

[... (k=2) is not possible].

K=3, x= cis 4 11/8

K=14. 2 = cis 911/5

k = 5, $n = \frac{111}{5}$

The mosts of $34 - \chi^3 + \chi^2 + 1 = 0$ one (cis π/s , cis $3\pi/s$, cis $9\pi/s$,

cis 11 11/5)

Given,

semi-ellipse is a ceiling in a hallway.

us consider Equation of a semi-ellipse is

$$\frac{\chi^2}{a^2} + \frac{y^2}{b^2} = 1$$
Here $2\alpha = 20^4 \Rightarrow \alpha = 10$
 $b = 6$.

$$\frac{x^2}{10^2} + \frac{y^2}{6^2} = 1$$
 is the

The point (6, 41) passes through the equation

$$\frac{6^{2}}{10^{2}} + \frac{y_{1}^{2}}{6^{2}} = 1$$

$$\frac{36}{100} + \frac{y_{1}^{2}}{36} = 1$$

$$\frac{y_{1}^{2}}{36} = 1 - \frac{36}{100}$$

$$y_1^2 = \frac{100 - 36}{100} \times 36$$

$$= \frac{576}{25}$$

. Total Height of ceiling 4 bt from

: Height of cilling from 4 ft of either Holl is 16.8 ft.

57.

Let pand à be the points on the unit circle.

To presere:

cos (A+B) = cos A cos B sin A sin B

These the points makes the angles
A and B on the unit circle with
centre 0.

1000 = 100x + 100x 1000 = A+B.

clearly, the co-ordinates of p and are (cos A, sin A) and (cos B, sin B) and y axes have to and i

vectous respectively.

$$(\cos(A+B)=\overrightarrow{OP}\cdot\overrightarrow{OQ}$$

$$\overline{OP} \cdot \overline{QQ} = \overline{C} \quad \overline{C}$$

$$= 7(0) - 7(0) + k($$

வினா តស់ា. Qn.No.

PART-I

41.

$$e(A) = \begin{pmatrix} 0 & 1 & 2 & 1 \\ 2 & -3 & 0 & -1 \\ 1 & 1 & -1 & 0 \end{pmatrix}$$

It is in Echelon form $e(A) = 3^{4}.$

$$e(A) = 3^{\epsilon}$$

வினா ்என். Qn.No.

42

Let
$$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 3 & -1 \end{bmatrix}$$

$$A^{-1} = 1$$
 adj A^{-1}

$$|A| = \begin{vmatrix} 3 & 1 \\ 2 & -2 \end{vmatrix}$$

$$= 3(2-0)-1(-2-0)-1(4+2)$$

$$= \left| \begin{bmatrix} -2 & 0 \\ 2 & -1 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix} \right| = \left| \begin{bmatrix} 3 & -1 \\ 1 & -1 \end{bmatrix} - \left| \begin{bmatrix} 3 & -1 \\ 1 & -1 \end{bmatrix} - \left| \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix} - \left| \begin{bmatrix} 3 & -1 \\ 1 & -1 \end{bmatrix} - \left| \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix} - \left| \begin{bmatrix} 3 & -1 \\ 1 & -1 \end{bmatrix} - \left| \begin{bmatrix} 3 & -1 \\ 1 & -1 \end{bmatrix} - \left| \begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix} - \left| \begin{bmatrix} 3 & -1 \\ 1 & -$$

$$= \begin{bmatrix} (2-0) & -(-2-0) & (4+2) \\ -(-1+2) & (-3+1) & (6-1) \\ (0+2) & -(0+2) & (-6-2) \end{bmatrix}$$

$$A_{c} = \begin{cases} 2 & 2 & 6 \\ 1 & -2 & 5 \\ 2 & -2 & -8 \end{cases}$$

Transpose of Ac

$$= \begin{pmatrix} 2 & 1 & 2 \\ 2 & -2 & -2 \\ 6 & 5 & -8 \end{pmatrix}$$

-. adj
$$A = \begin{pmatrix} 2 & 4 & 2 \\ 2 & -2 & -2 \\ 6 & 6 & -8 \end{pmatrix}$$

$$|A^{-1}| = \frac{1}{2} \begin{pmatrix} 2 & 1 & 2 \\ 2 & -2 & -2 \\ 6 & 5 & -8 \end{pmatrix}$$

44

i given,

$$\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$$

To show:

$$(\vec{a} - \vec{a}) \times (\vec{b} - \vec{c}) = 0$$

$$[\vec{a} \times \vec{b} = 0 \text{ for parallel}]$$

$$(\vec{a} \times \vec{b}) - (\vec{a} \times \vec{c}) - (\vec{d} \times \vec{d}) + (\vec{d} \times \vec{c}) = 0$$

$$(\vec{a} \times \vec{b}) - (\vec{a} \times \vec{c}) - (\vec{c} \times \vec{d}) = 0$$

$$(\vec{a} \times \vec{b}) - (\vec{a} \times c) - (\vec{a} \times \vec{d}) - (\vec{c} \times \vec{d}) = 0$$

$$(\vec{a} \times \vec{b}) - (\vec{a} \times \vec{c}) + (\vec{b} \times \vec{d}) - (\vec{c} \times \vec{d}) = 0$$

$$\begin{array}{c}
0 = 0 \\
\vec{a} \times \vec{b} = \vec{c} \times \vec{d}
\end{array}$$

$$\begin{bmatrix}
\vec{a} \times \vec{b} = \vec{c} \times \vec{d}
\end{array}$$

$$\vec{a} \times \vec{c}$$
 and $\vec{b} - \vec{c}'$ are parallel

ii Given

$$a_1 = 2, -3, 1$$

$$\alpha_2 = 3, 1, -2$$

$$a_2 - a_1 = 1, \sqrt{4}, -3$$

$$\gamma = |a_2 - a_1| = \sqrt{1^2 + 4^2 + (-3)^2}$$

$$7 = \sqrt{26}$$

Direction cosines is
$$=\frac{1}{\sqrt{26}}$$
, $\frac{4}{\sqrt{26}}$, $\frac{3}{\sqrt{26}}$

$$\alpha^2 + \beta^2 - \alpha\beta = ?$$

$$= (-\sqrt{2} + i)^{2} + (-\sqrt{2} - i)^{2} - (-\sqrt{2} + i)(-\sqrt{2} + i)$$

$$\Rightarrow [-\sqrt{2}+i^{2}+a(-\sqrt{2})(i)] + [[-\sqrt{2})^{2}+(-i)^{2} \neq a(-\sqrt{2})(ti)]^{*}$$

$$= \Rightarrow [-\sqrt{2}+i^{2}+a(-\sqrt{2})(-i^{2})]$$

$$-(a+\sqrt{2}(-\sqrt{2})(-i^{2}))$$

$$\Rightarrow (2-1-2\sqrt{2}i)+(2+1+2\sqrt{2}i)-(2+1)$$

$$(1-252i)+(3+252i)-3$$

The points are (7+9i) A, (3+3i) & and.

To show:

points form a signt angled

spondint

$$|AB| = |A - B|$$

$$= |7 + 9i - 3 - 3i|$$

$$= |4 + 6i|$$

$$= \sqrt{4^2 + 6^2 i^2}$$

$$= \sqrt{16 + 36}$$

$$= \sqrt{-20}$$

$$|BC| = |B - C|$$

$$= |3 + 3i + 3 - 7i|$$

$$= |6 - 4i|$$

$$= \sqrt{36 + 16}$$

$$|BC| = \sqrt{52}$$

$$|CA| = |C - A|$$

$$= |-3 + \pi i - 7 - 9i|$$

$$= |-1 - 2i|$$

$$= \sqrt{12}i + 4$$

$$= \sqrt{12}i$$

$$|AB| = |A - B|$$

$$= |7 + 9i + 3 - 7i|$$

$$= |0 + 2i|$$

$$= \sqrt{100 + 4}$$

$$|AB| = \sqrt{104}$$

$$|BC| = |B - C|$$

$$= |-3 + 7i - 3 - 3i|$$

$$= |-6 + 9i|$$

$$= \sqrt{36 + 16}$$

$$|BC| = |C - A|$$

$$= |3 + 3i - 7 - 9i|$$

$$= |-4 - 6i|$$

51.

By Pythogorous theorem

104 = 104

. They fourm a viight angled

afonoire

Hence snowed.

			•	·	((())
	p	. 2	-9/	pv (~~)	9v(pv(~9))
/_	_		F	T	
	- /		. —	X	
				F	
+				T	
F	·	F			
	•				

From D, the statement is

Tautology

[: All entries are 'T's]

មើល។ ពល់ម Qn.No.

52.

ĺ	_					
Andrew Later Date (1987)	Р	9	بو	PNC	~~	(PNQ) V (NY)
	7	T	T	T	F	T
	/T	Τ,	F	Т	T	T
	-(T	7	T	Ŧ	F	F
	T	#	F	F/	T	T
4	F	T	T	X	F	+
W	F	T	1=	+	<u></u>	T
		F	T	F	+	
and the second party of		 	F	干	T .	
		<u> </u>				•

5 L

given.

$$p=3/6$$
, $9=3/6$

$$=3/6$$
 $= 1/2, 0/=1/2$

variance = ?

$$= \frac{1}{2} \cdot \frac{1}{2}$$

$$= 2(1) \Rightarrow 2$$

$$P(2 \text{ odd}) = PP$$

$$= \frac{1}{2} \cdot \frac{1}{2}$$

$$= 1$$

$$p(x=x)$$

Mean =
$$\frac{2}{8}$$
 xi pi
= $o(1) + 1(2) + 2(1)^{-1}$
= $2+2$

variance =
$$\frac{2}{5} \pi_i^2 p_i$$

= $0^2(1) + 1^2(2) + 2^2(1)$
= $2+4$

$$(x_1, y_1, z_1) = (1, 1, -1)$$

$$(x_2, y_2, z_2) = (-1, 0, 1)$$

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{/2-z_1}{z_2-z_1}$$

$$\frac{2x-1}{-2} = \frac{y-1}{-1} = \frac{z+1}{2}$$

$$\frac{2i-1}{-2} = \frac{y-1}{-1} = \frac{1}{2}$$

$$\frac{x-1}{-2} = \frac{1}{2}$$

$$\mathcal{H} = 0$$

$$\frac{y-1}{-1} = \frac{1}{2}$$

$$y-1=\frac{-1}{2}$$

$$y = \frac{-1}{2} + \frac{1}{2}$$

$$= \frac{-1+2}{2}$$

The point of intersection is

a) Given,

Teransverse axis is parallel to y-axis

Equation of hyperbola is

$$\frac{(x-b)^{2}}{a^{2}} - (x-b)^{2} = 1$$

$$\frac{(y-5)^{2}}{a^{2}} - (2x-2)^{2} = 1$$

$$\frac{2}{e} = .15$$

$$2\frac{10}{0^2} = 15$$

$$\frac{20}{2} = 15$$

$$0e = 10$$

$$0 = \frac{10}{20}$$

$$0 = \frac{20}{20}$$

$$0$$

. Equation of Hyperbola is

$$\frac{x^{2}}{20/5} - \frac{y^{2}}{401/12} = 1$$

$$\frac{3x^{2}}{400} - \frac{4x^{2}}{401} = 1$$

$$(x+y)^2 \frac{dy}{dx} = a^2$$

$$\frac{dy}{dx} + \frac{1}{(x+y)^2} = \frac{a^{22}}{(x+y)^2}$$

Here
$$P = \frac{1}{(x+y)^2}$$
, $Q = \frac{\alpha^2}{(x+y)^2}$

$$= e^{\int \frac{1}{(y+y)^2}} \cdot dy$$

$$p.T = e^{-\frac{1}{(y+y)^3}(1+y)}$$

composite Function, C.F y {P·I) = $\int Q (I + I) dx + C$

$$y \cdot e^{-\frac{1}{2}} = \int \frac{\alpha^2}{(x+y)^2} e^{-\frac{1}{2}(x+y)^3} dx$$

$$y \cdot e^{-\frac{1}{2}(x+y)^3} = a^2\left(\frac{-\frac{1}{2}y}{(x+y)^3} \cdot e^{-\frac{1}{2}(x+y)^3}\right) + c$$

$$= a^{2} \left(\frac{+y-t}{(x+y)^{3}} e^{-\frac{4}{(x+y)^{3}}} \right) + c$$

$$(x+y)^2 \frac{dy}{dx} = a^2 / is$$

$$y \cdot e^{-\frac{1}{2}(x+y)^3} = a^2 \left(\frac{-y-t}{(x+y)^3} \cdot e^{-\frac{1}{2}(x+y)^3} \right) + C$$

