Bounding Volume Hierarchies

Some Slides/Images adapted from Marschner and Shirley and David Levin

Announcements

Assignment 4 due 9 June

Has anyone experienced trouble compiling/running A4?

Bounding Volume Hierarchy

Review of Bounding Volumes and BVHs Constructing Object-Partitioning Hierarchies

AABB Trees

Space-Partitioning Hierarchies

Uniform Spatial Subdivision

Axis-Aligned Spatial Subdivision

Clarifications

On ray-box intersection

Note: I think the x pictures and y pictures are swapped

$$\max(t_{xmin}, t_{ymin}) < \min(t_{xmax}, t_{ymax})$$

$$\max(t_{xmin}, t_{ymin}) > \min(t_{xmax}, t_{ymax})$$

So the check would be: The ray intersects the box if

$$\max(t_{xmin}, t_{ymin}) < \min(t_{xmax}, t_{ymax})$$

Which is easily extended to 3D

Any Questions?

Bounding Volume Hierarchy

Bounding Volumes (BVs)

"Simple" geometry that fully encloses a collection of other geometry

https://en.wikipedia.org/wiki/Convex_hull

AABB Trees

http://allenchou.net/2014/02/game-physics-broadphase-dynamic-aabb-tree/

BVH Intersection Queries

```
intersect(bvNode, ray,t)
 if (bvNode== null || !bvNode.intersect(ray,t))
     return false;
 else
   i1=intersect(bvNode.left, ray,t1); //check left BV
   i2=intersect(bvNode.right, ray,t2); //check right BV
   if (i1 && i2) { t=min(t1,t2); return true; }
   if (i1) { t=t1; return true; }
   if (i2) { t=t2; return true; }
   return false;
```

BVH Distance Queries

```
minDistance(bvNode, point, currentMin)
d1=minDistance(bvNode.left, point, currentMin);
d2=minDistance(bvNode.right, point, currentMin);
 if(min(d1,d2) > currentMin) {
   return currentMin
 return min(d1,d2)
```


Spatial Data Structures

Basic Idea – asymptotic improvement in spatial queries by subdividing

Two types of subdivisions – object-based and spatial

Our object-based data structures will be boundary volume hierarchies or BVHs.

BVHs are hierarchies of BVs represented by trees

Spatial Data Structures

Basic Idea – asymptotic improvement in spatial queries by subdividing

Two types of subdivisions – object-based and *spatial*

Spatial subdivision divides **space** hierarchically and represents this as a tree.

Axis-Aligned Spatial Subdivision (Uniform)

Duplicate Triangle

Intersection Tests

Intersection Tests

Axis-Aligned Spatial Subdivision (Non-Uniform)

BSP Tree Octree

Constructing a k-d Tree

Constructing a k-d Tree

Constructing a k-d Tree

Constructing a k-d Tree

Constructing a k-d Tree

Depth First Search Again

If ray interacts with child node then recurse

Interactions are

Child contains ray origin point

Ray crossed into child node

Constructing a Quadtree

Constructing a Quadtree

Constructing a Quadtree

Done