Finite Difference Discretization of Elliptic Equations: 1D Problem

Lectures 2 and 3

Poisson Equation in 1D

Model Problem

Boundary Value Problem (BVP)

$$-u_{xx}(x)=f(x)$$
 N1

$$oldsymbol{x} \in (0,1), \quad oldsymbol{u}(0) = oldsymbol{u}(1) = oldsymbol{0}, \quad f \in \mathcal{C}^0$$
 N2

N3

Describes many simple physical phenomena (e.g.):

- Deformation of an elastic bar
- Deformation of a string under tension
- Temperature distribution in a bar

Poisson Equation in 1D

Model Problem

Solution Properties

- The solution u(x) always exists
- ullet u(x) is always "smoother" than the data f(x)
- If $f(x) \geq 0$ for all x, then $u(x) \geq 0$ for all x
- $ullet ||u||_{\infty} \leq (1/8)||f||_{\infty}$

N7

• Given f(x) the solution u(x) is unique

N8

Finite Differences

Discretization

Subdivide interval (0,1) into n+1 equal subintervals

$$\Delta x = rac{1}{n+1}$$

$$egin{aligned} x_j &= j \Delta x, & \hat{u}_j pprox u_j \equiv u(x_j) \ \end{aligned}$$
 for $0 \leq j \leq n+1$

Finite Differences

Approximation

For example ...

$$egin{array}{lll} v''(x_j) &pprox & rac{1}{\Delta x}(v'(x_{j+1/2})-v'(x_{j-1/2})) \ &pprox & rac{1}{\Delta x}(rac{v_{j+1}-v_j}{\Delta x}-rac{v_j-v_{j-1}}{\Delta x}) \ &=& rac{v_{j+1}-2v_j+v_{j-1}}{\Delta x^2} \end{array}$$

for $\triangle x$ small

Finite Differences

Equations...

$$-u_{xx} = f$$
 suggests ...

$$-rac{\hat{oldsymbol{u}}_{j+1}-2\hat{oldsymbol{u}}_j+\hat{oldsymbol{u}}_{j-1}}{\Delta x^2}=f(x_j) \quad 1\leq j\leq n$$

$$\hat{\boldsymbol{u}}_0 = \hat{\boldsymbol{u}}_{n+1} = \boldsymbol{0}$$

$$\Longrightarrow$$

$$ig| A |\hat{oldsymbol{u}} = oldsymbol{f} ig|$$

Finite Differences

... Equations

$$A = rac{1}{\Delta x^2} egin{pmatrix} 2 & -1 & 0 & \cdots & 0 \ -1 & 2 & -1 & \cdots & dots \ 0 & \cdots & \cdots & dots & 0 \ dots & \cdots & -1 & 2 & -1 \ 0 & \cdots & 0 & -1 & 2 \end{pmatrix}, \;\; \hat{oldsymbol{u}} = egin{pmatrix} \hat{u}_1 \ \hat{u}_2 \ dots \ \hat{u}_{n-1} \ \hat{u}_n \end{pmatrix}, \;\; oldsymbol{\underline{f}} = egin{pmatrix} f(x_1) \ f(x_2) \ dots \ f(x_{n-1}) \ f(x_n) \end{pmatrix}$$

(Symmetric)

$$A \in
m I\!R^{n imes n}$$

$$\underline{\hat{u}},\ \underline{f}\in {
m I\!R}^n$$

Finite Differences

Solution

Is A non-singular?

For any
$$\underline{\boldsymbol{v}} = \{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n\}^T$$

$$\underline{v}^T \, A \, \underline{v} = rac{1}{\Delta x^2} (v_1^2 + \sum_{i=2}^n (v_i - v_{i-1})^2 + v_n^2)$$

Hence
$$|\underline{v}^T A \underline{v} > 0$$
, for any $\underline{v} \neq 0$ (A is SPD)

$$oldsymbol{A} \ oldsymbol{\hat{u}} = oldsymbol{f}$$

$$A \hat{\underline{u}} = f$$
: $\hat{\underline{u}}$ exists and is unique

N10

Finite Differences

Example...

$$-u_{xx}=(3x+x^2)e^x, \qquad x\in (0,1)$$

with

$$u(0) = u(1) = 0.$$

Take
$$n=5$$
, $\Delta x=1/6$...

Finite Differences

...Example

 $\hat{m{u}}$

Finite Differences

Convergence?

- 1. Does the discrete solution \hat{u} retain the qualitative properties of the continuous solution u(x)?
- 2. Does the solution become more accurate when $\Delta x \rightarrow 0$?
- 3. Can we make $|u(x_j) \hat{u}_j|$ for $0 \le j \le n+1$ arbitrarily small?

Properties of A^{-1}

Let

$$A^{-1}=\{lpha_{ij}\}_{1\leq i,j\leq n}$$

Non-negativity

N11

$$lpha_{ij} \geq 0,$$

$$\alpha_{ij} \geq 0$$
, for $1 \leq i, j \leq n$

Boundedness

N12

$$0 \leq \sum_{j=1}^{N} \alpha_{ij} \leq \frac{1}{8}$$

for
$$1 \le i \le n$$

Qualitative Properties of \hat{u}

$$f \geq 0 \rightarrow \hat{u} \geq 0$$

$$\underline{\hat{u}} = A^{-1} \underline{f}$$

If

$$f_i = f(x_i) \ge 0$$
, for $1 \le j \le n$

Then

$$\hat{m{u}}_i = \sum_{m{j}} lpha_{im{j}} f_{m{j}} \geq 0 \;, \qquad ext{for} \;\; 1 \leq i \leq n$$

Qualitative Properties of \hat{u}

Discrete Stability

$$\underline{\hat{u}} = A^{-1} \underline{f}$$

$$||\hat{\underline{u}}||_{\infty} = \max_i |\hat{u}_i| = \max_i (|\sum_j lpha_{ij} f_j|)$$

$$\leq \max_i (\sum_j lpha_{ij}) \max_i |f_i|$$

$$\leq rac{1}{8}||\underline{f}||_{\infty}$$

Truncation Error

For any $\mathbf{v} \in \mathcal{C}^4$ we can show that

N13

$$rac{v(x_{j+1}) - 2v(x_j) + v(x_{j-1})}{\Delta x^2} = v''(x_j) + rac{\Delta x^2}{12} v^{(4)}(x_j + heta \Delta x) \ -1 \leq heta \leq 1$$

Take
$$m{u}\equiv m{v}$$
 $(-m{u}''=m{f})$ $-rac{u(x_{j+1})-2u(x_{j})+u(x_{j-1})}{\Delta x^2}=f(x_{j})\underbrace{-rac{\Delta x^2}{12}u^{(4)}(x_{j}+ heta_{j}\Delta x)}_{m{ au_{j}}}$

Error Equation

Let
$$e_j=u(x_j)-\hat{u}_j$$
 be the discretization error. $-rac{u(x_{j+1})-2u(x_j)+u(x_{j-1})}{\Delta x^2}=f(x_j)+ au_j$ Subtracting $-rac{\hat{u}_{j+1}-2\hat{u}_j+\hat{u}_{j-1}}{\Delta x^2}=f(x_j)$ $-rac{e_{j+1}-2e_j+e_{j-1}}{\Delta x^2}= au_j, \qquad 1\leq j\leq n$ and $e_0=e_{n+1}=0$

Error Equation

$$A \underline{e} = \underline{\tau}$$

$$\underline{e} = egin{pmatrix} e_1 \ e_2 \ dots \ e_N \end{pmatrix}, \qquad \underline{ au} = rac{\Delta x^2}{12} egin{pmatrix} u^{(4)}(x_1 + heta_1 \Delta x) \ u^{(4)}(x_2 + heta_2 \Delta x) \ dots \ u^{(4)}(x_N + heta_N \Delta x) \end{pmatrix}$$

Convergence

Using the discrete stability estimate on $A = \underline{r}$

$$||\underline{e}||_{\infty} \leq \frac{1}{8}||\underline{\tau}||_{\infty}$$

or

$$\left|\max_{1\leq i\leq n}|u(x_i)-\hat{u}_i|\leq rac{\Delta x^2}{96}\max_{0\leq x\leq 1}|u^{(4)}(x)|
ight|$$

A-priori Error Estimate

Numerical Example

$$-u_{xx}=(3x+x^2)e^x, \;\; x\in (0,1), \;\; u(0)=u(1)=0$$

$$\Delta x = 1/6$$

$$\Delta x = 1/24$$

Numerical Example

EXAMPLE:
$$-u_{xx} = (3x + x^2)e^x$$
, $x \in (0, 1)$

n+1	$ \underline{oldsymbol{u}}-\underline{oldsymbol{\hat{u}}} _{\infty}$
3	0.0227
6	0.0059
12	0.0015
24	3.756e - 04
48	9.404e - 05
96	2.350e - 05
192	5.876e - 06

Asymptotically,

$$||\underline{u} - \hat{\underline{u}}||_{\infty} pprox C \Delta x^{lpha}$$

$$C = 0.216623$$

$$\alpha = 2.000$$

Summary

 For a simple model problem we can produce numerical approximations of arbitrary accuracy.

• An a-priori error estimate gives the asymptotic dependence of the solution error on the discretization size Δx .

Definitions

Generalizations

Consider a linear elliptic differential equation

$$\mathcal{L} u = f$$

and a difference scheme

$$\left|\hat{\mathcal{L}}|\hat{oldsymbol{\hat{u}}}=\hat{oldsymbol{f}}
ight|$$

Consistency

Generalizations

The difference scheme is **consistent** with the differential equation if:

For all smooth functions v

$$(\hat{\mathcal{L}} \underline{v} - \hat{f})_j - (\mathcal{L} v - f)_j \,
ightarrow 0, \quad ext{for } j = 1, \ldots, n$$

when $\Delta x \rightarrow 0$.

$$(\hat{\mathcal{L}}\underline{v} - \underline{\hat{f}})_j - (\mathcal{L}v - f)_j = \mathcal{O}(\Delta x^p)$$
 for all j
 $\Rightarrow p$ is order of accuracy

Truncation Error

Generalizations

$$(\hat{\mathcal{L}}\underline{u}-\hat{\underline{f}})_j-\underbrace{(\mathcal{L}u-f)_j}_{=0}= au_j, \quad ext{for } j=1,\ldots,n$$
 or, $\hat{\mathcal{L}}\underline{u}-\hat{\underline{f}}=\underline{ au}$.

The truncation error results from inserting the exact solution into the difference scheme.

Consistency
$$\Rightarrow ||\underline{\tau}||_{\infty} = \mathcal{O}(\Delta x^p)$$

Error Equation

Generalizations

Original scheme

$$\hat{\mathcal{L}} \ \underline{\hat{u}} = \underline{\hat{f}}$$

Consistency

$$\hat{\mathcal{L}}\;\underline{u} = \underline{\hat{f}} + \underline{\tau}$$

The error $\underline{e} = \underline{u} - \hat{\underline{u}}$ satisfies

$$\hat{\mathcal{L}}\underline{e} = \underline{\tau}$$
.

Stability

Generalizations

Matrix norm

$$||M||_{\infty} = \sup_{\underline{v} \in \mathbb{R}^n} \frac{||M\underline{v}||_{\infty}}{||\underline{v}||_{\infty}}$$

N14

The difference scheme is stable if

$$||\hat{\mathcal{L}}^{-1}||_{\infty} \leq C$$
 (independent of Δx)

Stability

Generalizations

$$egin{aligned} ||M||_{\infty} &= \sup\limits_{||\underline{v}||_{\infty}=1} ||M\underline{v}||_{\infty} \ &= \sup\limits_{||\underline{v}||_{\infty}=1} (\max\limits_{i} |\sum\limits_{j=1}^{n} m_{ij}v_{j}|) \ &= \max\limits_{i} (\sup\limits_{||\underline{v}||_{\infty}=1} |\sum\limits_{j=1}^{n} m_{ij}v_{j}|) \quad v_{j} = \operatorname{sign}(m_{ij}) \ &= \max\limits_{i} \sum\limits_{j=1}^{n} |m_{ij}| \quad ext{(max row sum)} \end{aligned}$$

Convergence

Generalizations

Error equation

$$\underline{e} = \hat{\mathcal{L}}^{-1} \, \underline{ au}$$

Taking norms

$$||\underline{e}||_{\infty} = ||\hat{\mathcal{L}}^{-1}\,\underline{ au}||_{\infty}$$

$$|\leq ||\hat{\mathcal{L}}^{-1}||_{\infty} ||\underline{ au}||_{\infty}$$

$$\leq \underbrace{||\hat{\mathcal{L}}^{-1}||_{\infty}\,C}_{C_1}\;\Delta x^p = C_1\;\Delta x^p$$

Generalizations

Consistency + Stability ⇒ Convergence

Convergence

 $||\underline{e}||_{\infty}$

Stability

 $||\hat{\mathcal{L}}^{-1}||_{\infty}$

Consistency

 $||\underline{\tau}||_{\infty}$

Model Problem

Statement

Find nontrivial (u, λ) such that

$$-u_{xx}=\lambda u, \qquad x\in (0,1)$$

$$u(0) = u(1) = 0;$$

denote solutions (u^k, λ^k) , $k = 1, 2, \ldots$, with

$$0 \leq \lambda^1 \leq \lambda^2 \leq \dots$$

N15

Application

Axially Loaded Beam

- ullet "Small" Deflection $egin{aligned} oldsymbol{EIu_{xx}} &= oldsymbol{M_{internal}} \end{aligned}$
- External Force $M_{external} = -Pu$

Equilibrium
$$\Rightarrow u_{xx} + \frac{P}{EI}u = 0$$

$$\lambda = P/EI$$

$$-u_{xx}=\lambda u, \qquad u(0)=u(1)=0$$

Exact Solution

$$-u_{xx}-\lambda u=0$$

 \Downarrow

$$u = A \sin \sqrt{\lambda} x + B \cos \sqrt{\lambda} x$$

$$u(0)=0\Rightarrow B=0$$

$$u(1)=0\Rightarrow A=0$$
 or $\lambda=k^2\pi^2, k=1,2,\ldots$

Exact Solution

Thus (choose A = 1)

$$\left.egin{aligned} u^k &= \sin k\pi x \ \lambda^k &= k^2\pi^2 \end{aligned}
ight\} \;\; k=1,2\ldots$$

Larger $k \Rightarrow$ more oscillatory $u^k \Rightarrow$ larger λ .

Exact Solution

Discrete Equations

Difference Formulas

$$-u_{xx}=\pmb{\lambda}\pmb{u}, \qquad \pmb{u}(0)=\pmb{u}(1)=\pmb{0}$$

$$\Delta x = rac{1}{n+1}$$

$$rac{-1}{\Delta x^2} (\hat{u}_{j-1} - 2\hat{u}_j + \hat{u}_{j+1}) = \hat{\lambda} \hat{u}_j, \qquad j = 1, \dots, n$$

$$\hat{\boldsymbol{u}}_0 = \hat{\boldsymbol{u}}_{n+1} = \boldsymbol{0}$$

Discrete Equations

Matrix Form

$$A = rac{1}{\Delta x^2} egin{pmatrix} 2 & -1 & 0 & \cdots & 0 \ -1 & 2 & -1 & \cdots & dots \ 0 & \cdots & \cdots & dots & 0 \ dots & \cdots & -1 & 2 & -1 \ 0 & \cdots & 0 & -1 & 2 \end{pmatrix}, \qquad \hat{\underline{u}} = egin{pmatrix} \hat{u}_1 \ \hat{u}_2 \ dots \ \hat{u}_{n-1} \ \hat{u}_n \end{pmatrix} \ n imes n & \mathsf{SPD} \end{pmatrix}$$

$$oldsymbol{A} \, \hat{oldsymbol{u}} = \hat{oldsymbol{\lambda}} \, \hat{oldsymbol{u}} \, \, \, \,
ightarrow \, \, \, \, \hat{oldsymbol{u}}^k, \hat{oldsymbol{\lambda}}^k, \, \, \, \, k = 1, 2, \ldots, n$$

N17

N18

Error Analysis

Analytical Solution: $\hat{\underline{u}}^k, \hat{\lambda}^k$...

Claim that

$$\hat{m{u}}^{m{k}} \equiv m{u}^{m{k}}$$

$$egin{align} \hat{u}_j^k &= u^k(x_j) = \sin(k\pi x_j) \ &= \sin(k\pi j\Delta x) = \sin(rac{k\pi j}{n+1}), \quad j=1,\ldots,n \ \end{gathered}$$

Note
$$\hat{u}_0^k = \hat{u}_{n+1}^k = 0$$
 since $\sin(0) = \sin(k\pi) = 0$.

Error Analysis

...Analytical Solution: $\hat{\underline{u}}^k, \hat{\lambda}^k$...

Error Analysis

...Analytical Solution: $\hat{\underline{u}}^k, \hat{\lambda}^k$...

What are $\hat{\lambda}^k$?

$$-rac{1}{\Delta x^2}\{\hat{m{u}}_{j-1}^k - 2\hat{m{u}}_j^k + \hat{m{u}}_{j+1}^k\}$$

$$=-rac{1}{\Delta x^2}\{\sin(k\pi(x_j-\Delta x))-2\sin(k\pi x_j)+\sin(k\pi(x_j+\Delta x))\}$$

$$=-rac{1}{\Delta x^2}\{\underbrace{\sin(k\pi x_j-k\pi\Delta x)+\sin(k\pi x_j+k\pi\Delta x)}_{2\cos(k\pi\Delta x)\sin(k\pi x_j)}-2\sin(k\pi x_j)\}$$

Error Analysis

...Analytical Solution: $\hat{\underline{u}}^k, \hat{\lambda}^k$

Thus:

$$-rac{1}{\Delta x^2}\{\hat{m{u}}_{j-1}^k - 2\hat{m{u}}_j^k + \hat{m{u}}_{j+1}^k\}$$

$$=-rac{1}{\Delta x^2}\{2\cos(k\pi\Delta x)\sin(k\pi x_j)-2\sin(k\pi x_j)\}$$

$$=rac{2}{\Delta x^2}\{1-\cos(k\pi\Delta x)\}\,\sin(k\pi x_j)\,.$$

 $\hat{oldsymbol{\lambda}}^k$

$$\hat{m{u}}_j^k$$

$$A \underline{\hat{u}}^k = \hat{\lambda}^k \underline{\hat{u}}^k$$

Error Analysis

Conclusions...

Low modes

For fixed k, $\Delta x \rightarrow 0$:

$$egin{align} \hat{\lambda}^k &= rac{2}{\Delta x^2} \{1 - \cos(k\pi\Delta x)\} \ &= rac{2}{\Delta x^2} \{1 - (1 - rac{1}{2}k^2\pi^2\Delta x^2 + \mathcal{O}(\Delta x^4))\} \ &= k^2\pi^2 + \mathcal{O}(\Delta x^2) \ \end{aligned}$$

second-order convergence, $\hat{\lambda}^k \rightarrow \lambda^k$.

Error Analysis

...Conclusions...

High modes:

For
$$k=n$$
,

$$\Delta x = rac{1}{n+1}$$

$$egin{align} \hat{\lambda}^n &= rac{2}{\Delta x^2}\{1-\cos(rac{n\pi}{n+1})\}\ &= 4(n+1)^2 \quad ext{as} \quad \Delta x o 0\ &
eq n^2\pi^2 = \lambda^n. \end{align*}$$

High modes $(k \approx n)$ are not accurate.

Error Analysis

...Conclusions...

Low modes vs. high modes Example : n = 19, $\Delta x = 1/20$

Error Analysis

...Conclusions...

Low modes vs. high modes

$$k \ll n$$

$$egin{aligned} \hat{u}^k & ext{resolved} \ \hat{oldsymbol{\lambda}}^k & ext{accurate} \ \hat{oldsymbol{\lambda}}^k - oldsymbol{\lambda}^k & \sim \mathcal{O}(oldsymbol{\Delta} oldsymbol{x^2}) \end{aligned}$$

$$\hat{u}^k$$
 not resolved $\hat{\lambda}^k$ not accurate $\hat{\lambda}^k - \lambda^k$ is $\mathcal{O}(1)$

BUT: as $\Delta x \to 0$, $n \to \infty$, so any fixed mode k converges.

Error Analysis

...Conclusions...

Error Analysis

...Conclusions

Condition Number of A

For a SPD matrix M, the condition number κ_M is given by

$$\kappa_{M} = \frac{\text{maximum eigenvalue of } M}{\text{minimum eigenvalue of } M}.$$

Thus, for our A matrix,

$$\kappa_A
ightarrow rac{4n^2}{\pi^2}$$
 as $\Delta x
ightarrow 0$

grows (in \mathbb{R}^1) as number of grid points squared. N20

Importance: understanding solution procedures.

Link to
$$-u_{xx}=f$$

...Discretization...

Recall:
$$-u_{xx} = f \implies$$

$$-rac{1}{\Delta x^2}(\hat{u}_{j-1}-2\hat{u}_j+\hat{u}_{j+1})=f_j, \quad j=1,\dots,n$$

$$\hat{\boldsymbol{u}}_0 = \hat{\boldsymbol{u}}_{n+1} = \boldsymbol{0}$$

or

$$A\hat{\underline{u}} = \underline{f}$$
 .

Link to $-u_{xx}=f$

...Discretization

Error equation: $\underline{e} = \underline{u} - \hat{\underline{u}}$

$$A\underline{e} = \underline{\tau},$$

$$| au_j| \leq \max_{x \in (0,1)} rac{\Delta x^2}{12} u^{(4)}(x) \equiv c_ au \Delta x^2, \; ext{ for } \; j=1,\ldots$$

 \rightarrow 0 as $\triangle x \rightarrow$ 0 (consistency).

Link to $-u_{xx}=f$

Norm Definition

We will use the "modified" | . | norm

N21

$$||\underline{v}||^2 \equiv \Delta x \sum_{i=1}^n \underline{v}^T \underline{v} \quad ext{for} \quad \underline{v} \in {
m I\!R}^n$$

$$\|\underline{v}\| = \sqrt{\Delta x} \|\underline{v}\|_2$$

Thus, from consistency

$$||\underline{ au}|| \leq c_{ au} \Delta x^2.$$

Link to $-u_{xx}=f$

∥·∥ Convergence...

Ingredients:

1. Rayleigh Quotient:

N22

$$\hat{m{\lambda}}^1 \leq rac{m{v}^T m{A} m{v}}{m{v}^T m{v}} \leq \hat{m{\lambda}}^n, \; ext{ for all } \; m{\underline{v}} \in {
m I\!R}^n$$

2. Cauchy-Schwarz Inequality:

N23

$$\underline{v}^T\underline{w} \leq (\underline{v}^T\underline{v})^{\frac{1}{2}} \ (\underline{w}^T\underline{w})^{\frac{1}{2}} \ ext{ for all } \ \underline{v} \in {\rm I\!R}^n$$

Link to
$$-u_{xx}=f$$

...|| · || Convergence...

Convergence proof:

$$A\underline{e} = \underline{ au}$$

$$\underline{e}^T A \underline{e} = \underline{e}^T \underline{\tau}$$

$$\underbrace{\hat{\lambda}^1(\underline{e}^T\underline{e})}_{\times \Delta x} \leq \underbrace{(\underline{e}^T\underline{e})^{\frac{1}{2}}}_{\Delta x^{1/2}}\underbrace{(\underline{\tau}^T\underline{\tau})^{\frac{1}{2}}}_{\Delta x^{1/2}}$$

$$\|\hat{oldsymbol{\lambda}}^1\|\underline{e}\|^2 \leq \|\underline{e}\| \|oldsymbol{ au}\|$$

Link to $-u_{xx}=f$

...|| · || Convergence...

$$\Rightarrow \|\underline{e}\| \leq rac{1}{\hat{oldsymbol{\lambda}}^1} \|oldsymbol{ au}\| \leq rac{c_ au}{\hat{oldsymbol{\lambda}}^1} \Delta x^2$$

N24 N25 N26

Link to
$$-u_{xx}=f$$

...| · | Convergence...

Alternative Derivation

Since N27

$$\|A^{-1}\|_2 = rac{1}{\hat{m{\lambda}}^1}$$

From error equation

$$||\underline{e}||_2 \leq ||A^{-1}||_2 ||\underline{\tau}||_2.$$

Multiplying by $\sqrt{\Delta x}$

$$||\underline{e}|| \leq \frac{1}{\hat{\lambda}^1} ||\underline{\tau}||.$$