1 实验名称:负反馈放大电路的研究

2 实验目的

- (1) 研究负反馈对放大器各项性能指标的影响
- (2) 理解电路中引入负反馈的意义和方法
- (3) 进一步熟悉放大电路中 A_u , f_L , f_H , 及 R_i , R_o 的测量方法

3 实验原理

场效应管是一种有放大作用的器件,有如下特点:

- (1) 场效应管是一种电压控制器件,通过栅极电 u_{GS} 来控制漏极电流 i_D ,从场效应管的输出特性上可以看出,各条不同输出特性曲线的参数变量是 u_{GS} ,在恒流区, i_D 的值主要取决于 u_{GS} ,而基本与 u_{DS} 无关,如图 1 所示,并通过跨导 $g_m = \frac{\Delta i_D}{\Delta u_{GS}}$ 来描述场效应管的放大作用。
 - (2) 场效应管的栅极几乎不取电流,所以其输入电阻非常高,结型场效应管一般在 107 以上
 - (3) 场效应管用一种极性的多数载流子导电,因此具有噪音小,受外界温度辐射影响小

图 1: Figure example 1

4 实验电路

基于场效应管的特点,得到如下共栅极放大电路:

图 2: Figure example 2

5 实验内容及步骤

5.1 静态工作点的测量

(1) 按照图 2 连接电路,接通电源,在放大器的输入端加 f=1kHz, $U_i=50mV$ 的正弦信号,调节 Rw1,用示波器观察当负载 $R_L=\infty$ 的情况下,输出电压波形不失真时的最大输出电压波形,此时用万用表测量静态工作点的各电压值

测量值			计算值		
U_s	U_D	U_G	U_{DS}	U_{GS}	I_D
1.085V	4.876V	1.675V	3.201V	0.590V	1.668mA

表 1: 静态工作点数据表

5.2 动态指标的测量

- (1) 计算电阻 R_i 与 R_o 的估算值
- (1) 测量 A_u 与 R_o 的值

在放大器输入端加 $f=1kHz, U_i=50mV$ 的正弦信号,并用示波器监视输出电压的波形,在输出电压 U_o 没有失真的条件下,用交流毫伏表分别测量电路的空载输出电压 U_{o1} 和有负载输出电压 U_{o2} (2) R_i 的测量

$\overline{U_i}$	$U_{o1}(R_L = \infty)$	$U_{o2}(R_L = 10k\Omega)$	A_{u1}	A_{u2}
$50 \mathrm{mV}$	241.79 mV	$175.47 \mathrm{mV}$	5	3

表 2: 场效应管放大器数据表

按图 3 改接电路,取 $R=100k\Omega$, 选择输入电压 U_s ,保持 U_s 不变,将开关 K 掷向"1"(R=0),测出输入电压 U_{o1} , 然后将开关 K 掷向"2"(R=0),测出输入电压 U_{o2} .

图 3: Figure example 3

测量值			计算值	
$U_s(mV)$	U_{o1}	U_{o2}	R_i	
50	$240.67 \mathrm{mV}$	$218.52 \mathrm{mV}$	$986.55 \mathrm{k}\Omega$	
80	441.87mV	401.83mV	$1003.57 \mathrm{k}\Omega$	

表 3: 测量 R_i 数据表

6 数据处理

(1) 计算电阻 R_i 与 R_o 与 A_u 的估算值

$$R_{i0} = R_G + (R_{G1} || R_{G2}) = 1033k\Omega R_{o0} = R_D = 4.3k\Omega g_m = \frac{2I_D}{V_o v} = 0.88 A_{u10} = g_m \times R_D = 3.8 A_{u20} = g_m \times R_D = 2.6 A_{u20} = 2.6 A_{u20}$$

(2) 计算电压放大器的倍数

$$A_{u1} = \frac{U_{o1}}{U_i} = 4.8 \ A_{u2} = \frac{U_{o2}}{U_i} = 3.5$$

填入表格 2 (3) 计算输出电阻

$$R_o = \left(\frac{U_{o1}}{U_{o2}} - 1\right) R_L = 3.7k\Omega$$

(4) R_i 的计算由于,

$$U_{o2} = A_u \times U_i = A_u \times \frac{R_i}{R_i + R} \times U_s$$

由此求得,

$$R_i = \frac{U_{o2}}{U_{o1} - U_{o2}} \times R$$

填入表格 3

7 实验设备和器材

(1)	双踪示波器			1台
(2)	函数信号发生器			1台
(3)	直流稳压电源			1台
(4)	模拟电路实验箱			1台
(5)	万用表			1 只
(6)	场效应管 3DJ6F、	电阻器、	电容器	若干

8 误差处理

$$\delta(R_i) = \frac{\overline{R_i} - R_{i0}}{R_{i0}} \times 100\% = 3.6\%$$

$$\delta(R_o) = \frac{R_o - R_{o0}}{R_{o0}} \times 100\% = 13.9\%$$

$$\delta(A_{u1}) = \frac{A_{u1} - A_{u10}}{A_{u10}} \times 100\% = 22.9\%$$

$$\delta(A_{u2}) = \frac{A_{u2} - A_{u20}}{A_{u20}} \times 100\% = 25.7\%$$

- (1) 误差可能是器件老化造成。
- (2) 场效应管存在沟道长度调制效应,可能出现测量不精准。(3) 偏置点不一定完全准确

9 结论

- (1) 综上所述,得到静态工作点为 U_{DS} 约为 4.9V 时,处于静态工作点。
- (2) R_o 约为 $3.7k\Omega$ R_i 约为 $995.06k\Omega$

10 思考题

在测量场效应管放大电路静态工作电压 U_{GS} 时,能否用万用表直接在 G、S 两端测量,为什么?试比较 U_{GS} 直接测量值和间接测量值的差异。

在测量场效应管静态工作电压 U_{GS} 时,不能使用万用表直接并在 G,S 两端测量。因为场效应管各个极阻抗高、受到电磁感应的影响很大,万用表会影响工作点的较大变化,通过万用表直接测量 U_{GS} 得到 $U_{GS}=0.225V$ 误差较大。