Zadanie 1. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że:

$$Pr(A) = \frac{2}{5}$$
,

$$\Pr(B|A) = \frac{1}{4}$$
,

$$\Pr(C|A\cap B)=\frac{1}{2}$$
,

$$\Pr(A \cup B) = \frac{6}{10},$$

$$\Pr(C|B) = \frac{1}{3}$$
.

Ile wynosi $Pr(A|B \cap C)$?

- $(A) \qquad \frac{2}{3}$
- (B) $\frac{3}{5}$
- (C) $\frac{1}{2}$
- (D) $\frac{3}{10}$
- (E) Podane informacje nie wystarczają do udzielenia odpowiedzi

Zadanie 2. Niech U_1, U_2, \ldots, U_n będzie próbą z rozkładu jednostajnego na przedziale (a,b). Rozważmy zmienne losowe $X=\min\{U_1,U_2,\ldots,U_n\}$ oraz $Y=\max\{U_1,U_2,\ldots,U_n\}$. Współczynnik korelacji liniowej Corr(X,Y) wynosi:

- (A) $-\frac{1}{n}$
- (B) $\frac{1}{n}$
- (C) $\frac{1}{n-1}$
- (D) $\frac{(b-a)^2}{n-1}$
- (E) 0

Zadanie 3. Niech $(X_1, Y_1), \ldots, (X_n, Y_n)$ będzie próbą niezależnych realizacji z dwuwymiarowego rozkładu normalnego o wektorze wartości oczekiwanych (μ_X, μ_Y) i macierzy kowariancji $\begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$.

Statystyka min
$$\left\{ \frac{1}{n} \cdot \sum_{i=1}^{n} X_{i}, \frac{1}{n} \cdot \sum_{i=1}^{n} Y_{i} \right\}$$

jest nieobciążonym estymatorem parametru $\min\{\mu_{\scriptscriptstyle X}\,,\,\mu_{\scriptscriptstyle Y}\,\}$:

- (A) dla każdego ρ
- (B) tylko, jeśli $\rho = 0$
- (C) tylko, jeśli $|\rho| = 1$
- (D) tylko, jeśli $\rho = 1$
- (E) nigdy

Zadanie 4. Zmienna losowa X ma rozkład logarytmiczno-normalny o gęstości prawdopodobieństwa

$$f_X(x) = \begin{cases} \frac{1}{\sqrt{2\pi}x} \cdot \exp\left[-\frac{1}{2} \cdot (\ln x - \mu)^2\right] & \text{dla } x > 0\\ 0 & \text{poza tym} \end{cases}$$

Wiadomo, że $\Pr(X \le q) = 0.6$ oraz $\Pr(X \le r) = 0.4$. Wynika stąd, że

(A)
$$E(X) = \sqrt{q \cdot r \cdot e}$$

(B)
$$E(\ln X) = \sqrt{q \cdot r}$$

Podane informacje są sprzeczne (C)

(D)
$$E(X) = \frac{q+r}{2}$$

(E)
$$E(X) = \sqrt{q \cdot r}$$

Zadanie 5. Zmienne losowe X_1, X_2, \dots, X_n są niezależne i mają jednakowy rozkład wykładniczy o gęstości:

$$f(x) = \begin{cases} e^{-x} & \text{dla } x > 0\\ 0 & \text{poza tym} \end{cases}$$

Zmienna losowa N jest niezależna od nich i ma rozkład geometryczny:

$$Pr(N = k) = (1 - q) \cdot q^{k}$$
 $k = 0, 1, ...$

Niech $S = \sum_{i=1}^{N} X_i$ będzie sumą losowej liczby zmiennych losowych (przyjmujemy że

$$\sum_{i=1}^{0} X_i = 0).$$

Dla każdego s > 0 prawdą jest, że:

(A)
$$Var(N|S=s) = E(N|S=s)-1$$

(B)
$$Var(N|S=s) = E(N|S=s)$$

(C)
$$Var(N|S=s) = Var(N) - [E(N|S=s)]^2$$

(D)
$$Var(N|S=s)=s\cdot q^2$$

(E)
$$Var(N|S=s) = s \cdot q$$

Zadanie 6. Zmienne losowe X_1, X_2, X_3, X_4 są niezależne i mają jednakowy rozkład normalny $N(0, \sigma^2)$. Prawdopodobieństwo $\Pr(X_1^2 - 5 \cdot X_2^2 < 5 \cdot X_3^2 - X_4^2)$ wynosi:

- (A) $\frac{4}{5}$
- (B) $\frac{4}{5} \cdot \left(1 \frac{1}{\sigma^2}\right)$
- (C) $\frac{5}{6}$
- (D) $\frac{1}{2}$
- (E) $\frac{5+\sigma^2}{6+\sigma^2}$

Zadanie 7. Niech $X_1, X_2, \ldots, X_{100}$ będzie próbą losową z rozkładu wykładniczego o nieznanej wartości oczekiwanej μ . Estymujemy μ na podstawie częściowej informacji o próbce, a mianowicie na podstawie tego, iż:

- 80 zmiennych (spośród wszystkich 100 z próbki) przybrało wartości poniżej 3,
- średnia arytmetyczna z tych 80-ciu wartości wynosi 2.

Oparty na tej informacji estymator Największej Wiarygodności parametru μ przybiera wartość:

- (A) $\frac{11}{4}$
- (B) 2
- (C) $\frac{5}{2}$
- (D) 3
- (E) nie można stosować metody NW, gdyż częściowo obserwowalne zmienne nie mają gęstości prawdopodobieństwa

Zadanie 8. Niech X_1, X_2, \dots, X_n będzie próbą losową z rozkładu Gamma o gęstości:

$$f(x) = \begin{cases} \frac{\lambda^p}{\Gamma(p)} \cdot x^{p-1} \cdot e^{-\lambda \cdot x} & \text{dla } x > 0\\ 0 & \text{poza tym} \end{cases}$$
 $p, \lambda > 0$

Zakładamy, że parametr λ jest znany, zaś p jest nieznane. Jednostajnie najmocniejszy test hipotezy

 H_0 : p = 2 przeciw hipotezie alternatywnej:

$$H_1: p > 2$$

na poziomie istotności α

- (A) ma obszar krytyczny postaci $X_1 + X_2 + \cdots + X_n > k$
- (B) ma obszar krytyczny postaci $\ln X_1 + \ln X_2 + \dots + \ln X_n > k$, gdzie k zależy od parametru λ i liczby α
- (C) ma obszar krytyczny postaci $\ln X_1 + \ln X_2 + \dots + \ln X_n > k$, gdzie k zależy od liczby α ale nie zależy od parametru λ
- (D) ma obszar krytyczny postaci $X_1^2 + X_2^2 + \dots + X_n^2 > k$
- (E) nie istnieje

Zadanie 9. Niech X_1, X_2, \ldots, X_n będzie próbą losową z rozkładu jednostajnego na odcinku (a, b), gdzie $0 \le a < b$. Rozważamy zagadnienie weryfikacji hipotezy

 H_0 : a = 0 przeciw hipotezie alternatywnej:

 $H_1: a > 0.$

Test ilorazu wiarygodności ma obszar krytyczny o postaci:

(A)
$$\frac{\overline{X}^2}{s^2} > k$$
, gdzie: $\overline{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$, $s^2 = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_i - \overline{X})^2$

(B)
$$\frac{M}{s} > k$$
, gdzie: $M = \max(X_1, X_2, ..., X_n)$, $s = \sqrt{s^2}$

(C)
$$\frac{m}{\overline{X}} > k$$
, gdzie: $m = \min(X_1, X_2, \dots, X_n)$

(D)
$$\frac{m}{M} > k$$
, gdzie m oraz M jak wyżej

(E)
$$\frac{M-m}{m} > k$$
, gdzie m oraz M jak wyżej

Zadanie 10. Łańcuch Markowa ma przestrzeń stanów $\{e_1,e_2,e_3,e_4,\}$ i macierz prawdopodobieństw przejścia:

[()	0	0	1]
1	l	0	0	0
0.	.5	0.2	0	0.3
)	1	0	0

Rozkład początkowy (w chwili 0) jest wektorem $\begin{bmatrix} 0.5 & 0 & 0.5 & 0 \end{bmatrix}$. Z jakim prawdopodobieństwem łańcuch znajduje się w chwili 100 (po stu przejściach) w stanie e_4 ?

- (A) 0.7
- (B) 0.8
- (C) 0.9
- (D) 0.65
- (E) 0

Egzamin dla Aktuariuszy z 16 listopada 1996 r.

Prawdopodobieństwo i statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI
Pasal	

Zadanie nr	Odpowiedź	Punktacja*
1	С	
2	В	
3	D	
4	A	
5	A	
6	C	
7	A	
8	В	
9	D	
10	D	
_		

11

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.