Digital Systems

Digital HW design with VHDL in a nutshell

Telecom Paris

2021-03-12

Outline

1 Introduction

Telecom Paris

Section 1

Introduction

Digital hardware: 2 types of hardware primitives

Combinatorial gates

- inverters, and, or, xor, 1-bit full adders, 1-bit multiplexers
- inputs ⇒ boolean computation ⇒ outputs
- inputs change ⇒ electrical signals propagate
- propagation delay
 - performance
 - critical path
 - maximum clock frequency
- no loops

Digital hardware: 2 types of hardware primitives

Memory elements

- latches, D-flip-flops, RAMs...
- data inputs, control inputs and data outputs
- do not react immediately to any inputs changes
- react on a particular combination of control inputs
- example: rising-edge triggered D-flip-flop (DFF)
 - clock input
 - data input
 - clock rising edge ⇒ data input sampled
 - data output = currently sampled input
 - data output stable until next rising edge of clock
 - even if the data input changes in between
- think of a digital camera
 - clock = press button
 - data input = scene
 - data output = displayed picture

Example of a sequential circuit

Reusing the same hardware

Example of a sequential circuit

Pipelined circuit

7/9

2021-03-12

Synchronous process

Output signals are register outputs

```
process(clock)
begin
  if rising_edge(clock) then
   o <= f(i);
  end if;
end process;</pre>
```


Synchronous process

Output signals cannot be combinatorial outputs

```
process(clock)
begin
  if rising_edge(clock) then
   o <= f(i);
  end if;
end process;</pre>
```

