WO 2005/085245 PCT/GB2005/000885

CLAIMS:

5

10

15

20

25

30

35

1. A compound of formula (I):

$$\begin{array}{c|c}
R^{1'} & & & \\
X_{2} & & & \\
R^{1} & & & \\
X_{3} & & & \\
X_{4} & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{3} & & \\
N - N & \\$$

I

or a pharmaceutically acceptable salt thereof, wherein:

one of X₁, X₂, X₃ and X₄ is N and the others are C;

Y is -C(O)-, $-S(O)_2$ -, or -C(NH)-;

Z is C₁₋₄alkylene, oxygen, -(CH₂)_mO-, -O(CH₂)_m-, -NR-, -(CH₂)_mNR-,

-NR(CH₂)_m-, -(CH₂)_mS(O)₂-, or a bond;

m is 1, 2, 3, or 4;

R is C₀₋₄alkyl, C₀₋₄alkylaryl, or C₀₋₄alkylhetaryl;

R¹ and R¹ are each independently, halogen, hydroxy, cyano, C₀₋₄alkyl, C₁₋₄alkoxy, fluoromethyl, difluoromethyl, trifluoromethyl, ethenyl, or ethynyl;

R² is C_{0.4}alkyl, COOR⁶, COR⁶, C_{1.4}alkoxyC_{1.4}alkyl–, hydroxyC_{1.4}alkyl–, cycloalkylC_{0.4}alkyl–, arylC_{0.4}alkyl–, or hetarylC_{0.4}alkyl–, wherein any of the aryl or hetaryl rings are optionally substituted with 1-2 independent halogen, cyano, C_{1.4}alkyl, C_{1.4}alkoxy, –N(C_{0.4}alkyl)(C_{0.4}alkyl), –SO₂C_{1.4}alkyl, –SO₂N(C_{0.4}alkyl)(C_{0.4}alkyl), hydroxy, fluoromethyl, difluoromethyl, or trifluoromethyl substituents;

 R^3 is hydrogen, $-COOC_{0.4}$ alkyl, $C_{1.4}$ alkoxy, $C_{1.4}$ alkyl, aryl $C_{1.4}$ alkylthio-, $-C_{0.4}$ alkylaryl, $-C_{0.4}$ alkylhetaryl, $-C_{0.4}$ alkylcycloalkyl, or $-C_{0.4}$ alkylheterocyclyl, wherein any of the rings is optionally substituted with 1-3 independent halogen, cyano, $C_{1.4}$ alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, $-C_{0.4}$ alkylNHC(O)O($C_{1.4}$ alkyl), $-C_{0.4}$ alkylNR 7 R 8 , -C(O)R 9 , $C_{1.4}$ alkoxy $C_{0.4}$ alkyl-, $-COOC_{0.4}$ alkyl, $-C_{0.4}$ alkylNHC(O)R 9 , $-C_{0.4}$ alkylC(O)N(R 10)₂, $-C_{1.4}$ alkoxyC_{1.4}alkoxy, hydroxyC_{0.4}alkyl-, $-NHSO_2R^{10}$, $-SO_2(C_{1.4}$ alkyl), $-SO_2NR^{11}R^{12}$, 5- to 6-membered heterocyclyl, phenylC_{0.2}alkoxy, or phenylC_{0.2}alkyl substituents, wherein phenyl is optionally substituted with 1-2 independent halogen, cyano, $C_{1.4}$ alkyl, $C_{1.4}$ alkoxy, $-N(C_{0.4}$ alkyl)($C_{0.4}$ alkyl), $-SO_2C_{1.4}$ alkyl, $-SO_2N(C_{0.4}$ alkyl)($C_{0.4}$ alkyl), hydroxy, fluoromethyl, difluoromethyl, or trifluoromethyl substituents, or two bonds on a ring carbon of the heterocyclyl group optionally can form an oxo (=O) substituent;

or \mathbb{R}^3 is $-\mathbb{NR}^4(-\mathbb{C}_{0\rightarrow}alkyl\mathbb{R}^5)$;

 R^4 is $C_{0.3}$ alkyl, $-C_{2.3}$ alkyl- NR^7R^8 , $C_{3.6}$ cycloalkyl optionally substituted by hydroxy $C_{0.4}$ alkyl- further optionally substituted by hydroxy, $C_{1.2}$ alkoxy $C_{2.4}$ alkyl-, or $C_{1.2}$ alkyl- $S(O)_n$ - $C_{2.3}$ alkyl-;

n is 0, 1, or 2;

 R^5 is hydrogen, hydroxy C_{2-3} alkyl-, C_{1-2} alkoxy C_{0-4} alkyl-, or aryl, hetaryl, or heterocyclyl;

WO 2005/085245 PCT/GB2005/000885

wherein a heterocyclic nitrogen-containing R^5 ring optionally is mono-substituted on the ring nitrogen with C_{1-4} alkyl, benzyl, benzoyl, C_{1-4} alkyl-C(O)-, $-SO_2C_{1-4}$ alkyl, $-SO_2N(C_0$ - $_4$ alkyl)(C_{0-4} alkyl), C_{1-4} alkoxycarbonyl, or aryl(C_{1-4} alkoxy)carbonyl; and wherein the R^5 rings are optionally mono-substituted on a ring carbon with halogen, cyano, C_{1-4} alkyl-C(O)-, C_{1-4} alkyl- SO_2 -, C_{1-4} alkyl, C_{1-4} alkoxy, hydroxy, $-N(C_{0-4}$ alkyl)(C_{0-4} alkyl), hydroxy C_{0-4} alkyl-, or C_{0-4} alkyl-alkyl-, provided that no quaternised nitrogen is included; or two bonds on a ring carbon of the heterocyclyl group optionally can form an oxo (=O) substituent;

R⁶ is C₁₋₄alkyl, aryl, or hetaryl;

5

10

15

20

25

30

40

R7 and R8 are independently C0-4alkyl, C3-6cycloalkyl, or CO(C1-4alkyl);

R⁹ is C₁₋₄alkyl, or C₃₋₆cycloalkyl;

R¹⁰ is C_{0.4}alkyl, or C_{3.6}cycloalkyl; and

 R^{11} and R^{12} are independently $C_{0.4}$ alkyl or together with the nitrogen to which they are attached may form a 4- to 6-membered heterocycle;

provided there are no nitrogen-oxygen, nitrogen-nitrogen, oxygen-oxygen or nitrogen-halogen bonds in the grouping -Y-Z-R³.

- 2. A compound according to claim 1, or a pharmaceutically acceptable salt thereof, wherein X₃ is N.
- 3. A compound according to claim 1, or a pharmaceutically acceptable salt thereof, wherein X_1 is N.
 - 4. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein Y is -C(O)- or $-S(O)_2$ -.
 - 5. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein Z is C_{1-4} alkylene, oxygen, $-(CH_2)_mO$ -, -NR- or a bond.
 - 6. A compound according to any one of the preceding claims 1, or a pharmaceutically acceptable salt thereof, wherein R¹ and R^{1'} are each independently, hydrogen or halogen.
 - 7. A compound according to claim 6, or a pharmaceutically acceptable salt thereof, wherein one of R^1 and R^1 is hydrogen and the other is 5-chloro.
- 8. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein R² is hydrogen.
 - 9. A compound according to any one of the preceding claims, or a pharmaceutically acceptable salt thereof, wherein R³ is hydrogen, -NR⁴R⁵, -NR⁴(-C₁₋₄alkylR⁵), aryl, hetaryl, or heterocyclyl wherein any of the rings is optionally substituted as defined in claim 1.
 - 10. A compound of formula (I) as defined in any one of Examples 1 to 25, or a pharmaceutically acceptable salt thereof.

A pharmaceutical composition comprising a compound according to any one of claims 11. 1 to 10, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

- A method for the treatment of a disease or condition in which glycogen phosphorylase 12. plays a role comprising a step of administering to a subject in need thereof an effective amount of a compound according to any one of claims 1 to 10, or a pharmaceutically acceptable salt thereof.
- A method for the treatment of hyperglycemia or diabetes comprising a step of 13. administering to a subject in need thereof an effective amount of a compound according to any one of claims 1 to 10, or a pharmaceutically acceptable salt thereof.
- A method for the prevention of diabetes in a human demonstrating pre-diabetic 14. hyperglycemia or impaired glucose tolerance comprising a step of administering to a subject in need thereof an effective prophylactic amount of a compound according to any one of claims 1 to 10, or a pharmaceutically acceptable salt thereof.
- A method for the treatment of hypercholesterolemia, hyperinsulinemia, hyperlipidemia, 15. hypertension, atherosclerosis or tissue ischemia, or achieving cardioprotection or inhibition of abnormal cell growth, comprising a step of administering to a subject in need thereof an effective amount of a compound according to any one of claims 1 to 10, or a pharmaceutically acceptable salt thereof.
 - A compound of formula (IV): 16.

25

5

10

15

20

30

$$R^{1'} X_{1} X_{1} X_{1} Y_{1} Y_{$$

wherein R¹, R¹, R², X₁, X₂, X₃ and X₄ are as defined in claim 1, or a protected derivative thereof.