

Spark streaming and Spark R

TANG Gen

Outline

- Why Spark streaming?
- A simple example
- Architecture and abstraction
- Transformations and output operations
- Spark R

Why Spark streaming

 Many Big Data applications need to process large data steams in realtime

Website monitoring

From spark summit 2014

Why Spark streaming

Raw Data Streams

Distributed
Stream Processing
System

Processed Data

- Scales to hundreds of nodes
- Achieves low latency
- Efficiently recover from failures
- Integrates with batch and interactive processing

A simple example

/Localhost stream

```
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.Duration
import org.apache.spark.streaming.Seconds
import org.apache.spark._

val ssc = new StreamingContext(sc, Seconds(10))
val lines = ssc.socketTextStream("localhost", 9999)
val errorLines = lines.filter(_.contains("error"))
errorLines.print()
ssc.start()
ssc.start()
ssc.awaitTermination()
```

- Like Spark, StreamingContext is the entry point of Spark streaming
- .print() is an output operation of DStream. Without an action, we can not start a stream

/Architecture

High-level architecture

/Architecture

/Abstraction

- Spark Streaming runs a streaming computation as a series of ver small, deterministic batch jobs
- The programming abstraction in Spark Streaming is a discretized stream or a **DStream**, which is a sequence of RDDs, where each RDD has one time slice of the data in the stream

/Example

```
val ssc = new StreamingContext(sc, Seconds(10))
val lines = ssc.socketTextStream("localhost", 9999)
```


/Example

```
val ssc = new StreamingContext(sc, Seconds(10))
  val lines = ssc.socketTextStream("localhost", 9999)
     errorLines = lines.filter(_.contains("error"))
 Localhost
               Batch 1
                         Batch 2
                                    Batch 3
                                               Batch 4
  stream
           StreamingContext
                                    Batch 3
lines DStream
               Batch 1
                         Batch 2
                                               Batch 4
                filter
 errorLines
                         Batch 2
                                    Batch 3
               Batch 1
                                               Batch 4
 DStream
```

/Example

val errorLines = lines.filter(_.contains("error"))
errorLines.print()

Transformations and output operations

/Transformations

- There are two types of transformation
 - Stateless tranformations

Transformations and output operations /Output operations

- Output operations allow DStream's data to be pushed out external systems like a database or a file systems
- They trigger the actual execution of all the DStream transformations
- Without an output operation, a Spark streaming can not be started

Output operation	Description
print	Print the first ten elements
saveAsTextFiles()	Save the data in DStream as text file
saveAsObjectFiles()	Save the data in DStream as object file
saveAsHadoopFiles()	Save the data in DStream as hadoop file
foreachRDD()	Apply the function to every element in DStream

Spark streaming UI

/R vs. Python

- They are all developed by C
- They are have packages for almost all the topics in statistics and machine learning
- However, R is most used by statistician and Python by machine learner
- Python is easier to learn
- R has less code to write
- To my knowledge, R have a lot of package about time series, but python not

/R vs. Python

- R has a project on parallel calculation: RHadoop
 - It is Open-source at the begining
 - It is now owned by RevolutionAnalytics (brought by MS)
 - Strongly strongly not recommended
- For the python machine learner community, parallel calculation is not their focus
 - To my knowledge, there is no project as RHadoop

/MLlib on python vs. Spark R

/MLlib on python vs. Spark R

- There is no "True" development in Python API, all the machine learning algorithm is coded in Scala
- All the algorithm of statistics on Spark R will be developed in R

Case studies

/Spark at sharethrough

http://blog.cloudera.com/blog/2014/03/letting-it-flow-with-spark-streaming/

- Overcoming 3 major challenges encountered while developing production streaming jobs
- Write streaming applications the same way you write batch jobs, reusing code

Case studies

/Spark at sharethrough

