ACH2024

Aula 17

Organização de arquivos: Árvores B (parte 1)

Profa. Ariane Machado Lima

Aulas passadas

- Leitura, escrita, buscas, etc., são realizadas por blocos.
- Os arquivos não são estáticos, eles crescem e diminuem
- Estratégias de alocação de blocos no disco e organização de registros pelos blocos devem considerar esse fato
 - **Sequencial** não ordenado (heap files)
 - Sequencial ordenado (sorted files)
 - Por listas ligadas
 - Indexado
 - Árvores B / B+
 - Hashing
- Para cada estratégia analisaremos complexidade de leitura sequencial, leitura aleatória (busca), inserção e remoção de registros
 - Complexidade em termos de número de número de seeks (estimado no pior caso pelo número de blocos a serem lidos); assume-se que o arquivo já foi aberto e que o cabeçalho do arquivo está em memória

EACH USI-

Alocação sequencial

Blocos alocados sequencialmente no disco (pelos cilindros)

Fonte: (TANEMBAUM, 2015)

Alocação por listas ligadas

Cada arquivo é uma lista ligada de blocos

Fonte: (TANEMBAUM, 2015)

Organização indexada multiníveis

	Sequencial		Ligada	Indexada	Indexada Multinível
	Não-Ordenado	Ordenado	Ordenado	Ordenado	Ordenado
Busca	O(b)	O(lg b)	O(b), O(lg b) só se usar FAT (discos pequenos)	O(log bi)	O(log fbi r¹)
Inserção**	O(1) se tiver espaço no final, O(b) c.c.	O(1) se tiver espaço no bloco, O(b) c.c.	O(1)	O(b+bi) = O(b)	O(b+bi) = O(b)
Remoção* , **	O(1)	O(1)	O(1)	O(1)	O(1)
Leitura ordenada	ω (b) (depende do alg de ord. externa)	O(b), O(1) se fizer a leitura toda de uma vez	O(b)	O(b+bi) = O(b)	O(b+bi) = O(b)
Mínimo/máximo	O(b)	O(1)	O(1)	O(1)	O(1)
Modificação**	O(1)	O(b) se no campo chave, O(1) c.c.	O(1)	O(b) se no campo chave, O(1) c.c.	O(b) se no campo chave, O(1) c.c.
* considerando uso	de bit de validade				
** considerando que	e já se sabe a localizaçã	ão do registro (busc	a já realizada)		

VELHO DILEMA ENTRE TEMPO DE BUSCA E DINAMISMO!

Lembrando de AED 1...

Busca binária (em um vetor):

-4, 2, 3, 5, 19, 21, 25

Árvores Binárias de Busca:

Podemos pensar em algo semelhante para melhorar o dinamismo dos **indices** múltiníveis?

Profa. Ariane Machado Lima

Podemos pensar em algo semelhante para melhorar o dinamismo dos índices múltiníveis?

- Árvores de busca n+1-árias!
- N = nr de registros representados em um nó da árvore (bloco), cada registro com uma chave k_i
- N+1 ponteiros para nós filhos contendo registros com chaves em cada intervalo
 O segredo será mantê-las balanceadas!

ÁRVORES B!!!

- Registros organizados pela árvore, assim como na árvore binária de busca
- Logo, se os registros possuem uma chave única, não há repetição de valores na árvore
- Abaixo é representada só a chave para simplificar a figura, mas na verdade deve conter, para cada chave k_i, o resto do registro (demais dados daquele item) ou um ponteiro p_i para o registro (k_i, p_i)

Árvore B Clássica

Como deve ser a estrutura de dados para essa árvore?

Lembrando que, para simplificar, estamos colocando só a chave do registro

```
typedef int TipoChave;
typedef struct str_no {
    TipoChave chave[MAX_CHAVES];
    struct str_no* filho[MAX_CHAVES+1];
    int numChaves;
    bool folha;
} NO;
```


Árvore B Clássica

Como deve ser a estrutura de dados para essa árvore?

EACH

Aula de hoje

- Árvores-B:
- → definição
- → busca
- → inserção

Árvore B – Definição (notação usada pelo Cormen)

 \bullet Uma árvore B é uma árvore com as seguintes propriedades:

Vamos usar essa notação nas aulas!!!

- 1. Cada nó x contém os seguintes campos:
 - -n[x], o número de chaves atualmente armazenadas no nó x;
 - as n[x] chaves, armazenadas em ordem não decrescente, de modo que $key_1[x] \le key_2[x] \le \ldots \le key_{n[x]}[x]$;
 - -leaf[x], um valor booleano indicando se x é uma folha (TRUE) ou um nó interno (FALSE).
 - se x é um nó interno, x contém n[x] + 1 ponteiros $c_1[x], c_2[x], \ldots c_{n[x]+1}[x]$ para seus filhos.

2. As chaves $key_i[x]$ separam as faixas de valores armazenados em cada subárvore: denotando por k_i uma chave qualquer armazenada na subárvore com nó $c_i[x]$, tem-se

$$k_1 \le key_1[x] \le k_2 \le key_2[x] \le \ldots \le key_{n[x]}[x] \le k_{n[x]+1}$$

3. Todas as folhas aparecem no mesmo nível, que é a altura da árvore, h.

3. Todas as folhas aparecem no mesmo nível, que é a altura da árvore, h.

OBS: E se eu precisasse inserir o valor 1?

3. Todas as folhas aparecem no mesmo nível, que é a altura da árvore, h.

OBS: E se eu precisasse inserir o valor 1 ? Criaria um filho à esquerda de 2?

3. Todas as folhas aparecem no mesmo nível, que é a altura da árvore, h.

OBS: E se eu precisasse inserir o valor 1 ? Criaria um filho à esquerda de 2?

- 1-) Aumentaria a altura da árvore mesmo ela tendo espaço
- 2-) Feriria a definição 3...

- 4. Há um limite inferior e superior no número de chaves que um nó pode conter, expressos em termos de um inteiro fixo $t \geq 2$ chamado o grau mínimo (ou ordem) da árvore.
 - Todo nó que não seja a raiz deve conter pelo menos t-1 chaves. Todo nó interno que não seja a raiz deve conter pelo menos t filhos.
 - Todo nó deve conter no máximo 2t-1 chaves (e portanto todo nó interno deve ter no máximo 2t filhos). Dizemos que um nó está cheio se ele contiver exatamente 2t-1 chaves

Estrutura de uma árvore B

Árvore B - Observação

 Número máximo de chaves (e filhos) por nó deve ser proporcional ao tamanho da página. Valores usuais de 50 a 2000. Fatores de ramificação altos reduzem drasticamente o número de acessos ao disco.

Por exemplo, uma árvore B com fator de ramificação 1001 e altura 2 pode armazenar $\geq 10^9$ chaves. Uma vez que a raiz pode ser mantida permanentemente na memória primária, bastam dois acessos ao disco para encontrar qualquer chave na árvore.

Árvore B – altura máxima

• **Teorema:** Para toda árvore B de grau mínimo $t \ge 2$ contendo n chaves, sua altura h máxima será:

$$h \le log_t \frac{n+1}{2}$$

Demonstração: Se uma árvore B tem altura h:

- Sua raiz contem pelo menos uma chave e todos os demais nós contêm pelo menos t-1 chaves.
- Logo, há pelo menos 2 nós no nível 1, pelo menos 2t nós no nível 2, etc, até o nível h, onde haverá pelo menos $2t^{h-1}$ nós.
- Assim, o número n de chaves satisfaz a desigualdade:

$$n \ge 1 + (t-1) \sum_{i=1}^{h} 2t^{i-1} = 1 + 2(t-1) \frac{t^h - 1}{t-1} = 2t^h - 1$$

Obs: Usamos acima a igualdade: $\sum_{i=1}^{h} t^{i-1} = \frac{t^h - 1}{t - 1}.$

- Logo,

$$t^h \le (n+1)/2 \Rightarrow h \le \log_t(n+1)/2.$$

Operações Básicas em Árvores B

Criação de uma árvore B vazia

Criação de uma árvore B vazia

```
#define t 2
typedef int TipoChave;
typedef struct str_no {
    TipoChave chave[2*t-1];
    struct str_no* filhos[2*t];
    int numChaves;
    bool folha;
} NO;
typedef struct {
    NO* raiz;
} ArvB;
```


Criação de uma árvore B vazia

```
#define t 2
typedef int TipoChave;
typedef struct str_no {
    TipoChave chave[2*t-1];
    struct str_no* filhos[2*t];
    int numChaves;
    bool folha;
} NO;
typedef struct {
    NO* raiz;
} ArvB;
```

```
B-TREE-CREATE(T)

1 x \leftarrow \text{ALLOCATE-NODE}()

2 leaf[x] \leftarrow \text{TRUE}

3 n[x] \leftarrow 0

4 DISK\text{-WRITE}(x)

5 root[T] \leftarrow x
```


Criação de uma árvore B vazia

```
#define t 2
                                                     B-TREE-CREATE(T)
typedef int TipoChave;
                                                        x \leftarrow ALLOCATE-NODE()
typedef struct str_no {
    TipoChave chave[2*t-1];
                                                    2 leaf[x] \leftarrow TRUE
    struct str_no* filhos[2*t];
                                                    3 \quad n[x] \leftarrow 0
    int numChaves;
                                                    4 DISK-WRITE(x)
    bool folha;
                                                       root[T] \leftarrow x
} NO;
typedef struct {
                                  bool criaArvoreB(ArvB* T){
   NO* raiz;
                                    NO* x;
} ArvB;
                                     if(!(x = (NO^*) malloc(sizeof(NO)))) 
                                         /* msg erro e retorna false */
```


Profa. Ariane Machado Lima

retorna true;

escreveNoDisco(x); /*vamos abstrair isso*/

x->folha = true; x->numChaves = 0;

T->raiz = x;

OBS: sobre DISK-WRITE e DISK-READ

Criação de uma árvore B vazia

```
#define t 2
                                                    B-TREE-CREATE(T)
typedef int TipoChave;
                                                        x \leftarrow ALLOCATE-NODE()
typedef struct str_no {
                                   NO* é na verdade
    TipoChave chave[2*t-1];
                                                    2 leaf[x] \leftarrow TRUE
                                   o número do bloco
    struct str_no* filhos[2*t];
                                                       n[x] \leftarrow 0
                                   do disco
    int numChaves;
                                                        DISK-WRITE(x)
    bool folha;
} NO;
typedef struct {
                                  bool criaArvoreB(ArvB* T){
   NO* raiz;
                                    NO* x;
} ArvB;
void escreveNoDisco(NO* x){
  /* código específico */
```

Na verdade precisa saber onde escrever. Aqui tem que alocar um novo bloco no disco (ex: 350) e efetuar um seek(350*4Kb)+ write(x)

(assumindo tam do bloco = 4Kb)

 $root[T] \leftarrow x$ $if(!(x = (NO^*) malloc(sizeof(NO))))$ /* msg erro e retorna false */ x->folha = true; x - numChaves = 0;escreveNoDisco(x); /*vamos abstrair isso*/ T->raiz = x;retorna true;

• B-Tree-Search(x, k): tem como parâmetros um ponteiro para o nó x raiz de uma subárvore e uma chave k a ser procurada na subárvore. Se k está na subárvore, retorna o par ordenado (y, i) composto pelo ponteiro do nó y e o índice i tal que $key_i[y] = k$. Caso contrário, retorna NIL.

Ex: B-Tree-Search(T → raiz, 22)

Lembrando que nos pseudocódigos do Cormen os vetores começam em 1

- B-Tree-Search(x, k): tem como parâmetros um ponteiro para o nó x raiz de uma subárvore e uma chave k a ser procurada na subárvore. Se k está na subárvore, retorna o par ordenado (y, i) composto pelo ponteiro do nó y e o índice i tal que $key_i[y] = k$. Caso contrário, retorna NIL.
- \bullet Chamada inicial: B-Tree-Search (root[T],k).

```
B-TREE-SEARCH(x, k)
```

- $1 \quad i \leftarrow 1$
- 2 while $i \le n[x]$ and $k > key_i[x]$
- 3 do $i \leftarrow i + 1$

- B-Tree-Search(x, k): tem como parâmetros um ponteiro para o nó x raiz de uma subárvore e uma chave k a ser procurada na subárvore. Se k está na subárvore, retorna o par ordenado (y, i) composto pelo ponteiro do nó y e o índice i tal que $key_i[y] = k$. Caso contrário, retorna NIL.
- \bullet Chamada inicial: B-Tree-Search (root[T],k).

```
B-TREE-SEARCH(x, k)
```

- $1 \quad i \leftarrow 1$
- 2 while $i \le n[x]$ and $k > key_i[x]$
- 3 do $i \leftarrow i+1$
- 4 **if** $i \le n[x]$ and $k = key_i[x]$

- B-Tree-Search(x, k): tem como parâmetros um ponteiro para o nó x raiz de uma subárvore e uma chave k a ser procurada na subárvore. Se k está na subárvore, retorna o par ordenado (y, i) composto pelo ponteiro do nó y e o índice i tal que $key_i[y] = k$. Caso contrário, retorna NIL.
- \bullet Chamada inicial: B-Tree-Search (root[T],k).

```
B-TREE-SEARCH(x, k)

1 i \leftarrow 1

2 while i \leq n[x] and k > key_i[x]

3 do i \leftarrow i + 1

4 if i \leq n[x] and k = key_i[x]

5 then return (x, i)
```


- B-Tree-Search(x, k): tem como parâmetros um ponteiro para o nó x raiz de uma subárvore e uma chave k a ser procurada na subárvore. Se k está na subárvore, retorna o par ordenado (y, i) composto pelo ponteiro do nó y e o índice i tal que $key_i[y] = k$. Caso contrário, retorna NIL.
- \bullet Chamada inicial: B-Tree-Search (root[T],k).

```
B-TREE-SEARCH(x, k)

1 i \leftarrow 1

2 while i \leq n[x] and k > key_i[x]

3 do i \leftarrow i + 1

4 if i \leq n[x] and k = key_i[x]

5 then return (x, i)

6 if leaf[x]
```


Note que nesses pseudocódigos assume-se que as chaves e filhos começam na posição 1 !!!

Busca na árvore B

- B-Tree-Search(x, k): tem como parâmetros um ponteiro para o nó x raiz de uma subárvore e uma chave k a ser procurada na subárvore. Se k está na subárvore, retorna o par ordenado (y, i) composto pelo ponteiro do nó y e o índice i tal que $key_i[y] = k$. Caso contrário, retorna NIL.
- Chamada inicial: B-Tree-Search(root[T], k).

```
B-TREE-SEARCH(x, k)

1 i \leftarrow 1

2 while i \leq n[x] and k > key_i[x]

3 do i \leftarrow i + 1

4 if i \leq n[x] and k = key_i[x]

5 then return (x, i)

6 if leaf[x]

7 then return NIL

8 else DISK-READ(c_i[x])

9 return B-TREE-SEARCH(c_i[x], k)
```

Note que nesses pseudocódigos assume-se que as chaves e filhos começam na posição 1 !!!

Busca na árvore B

- B-Tree-Search(x, k): tem como parâmetros um ponteiro para o nó x raiz de uma subárvore e uma chave k a ser procurada na subárvore. Se k está na subárvore, retorna o par ordenado (y, i) composto pelo ponteiro do nó y e o índice i tal que $key_i[y] = k$. Caso contrário, retorna NIL.
- \bullet Chamada inicial: B-Tree-Search (root[T],k).

B-TREE-SEARCH(x, k)

```
i \leftarrow 1
                                while i \leq n[x] and k > key_i[x]
Na verdade precisa saber
                                     do i \leftarrow i + 1
de onde ler (ex bloco
                                if i \leq n[x] and k = key_i[x]
             efetuar
981)
                         um
                                                                   3
                                   then return (x, i)
seek(981*4Kb) + read(4kb)
                                if leaf[x]
(assumindo tam do bloco =
                                                                          15
                                   then return NIL
4Kb)
      disciplina
                     vamos 8
Na
                                   else DISK-READ(c_i[x])
abstrair isso também.
                                        return B-TREE-SEARCH(c_i[x], k)
```

Note que nesses pseudocódigos assume-se que as chaves e filhos começam na posição 1 !!!

Busca na árvore B

- B-Tree-Search(x, k): tem como parâmetros um ponteiro para o nó x raiz de uma subárvore e uma chave k a ser procurada na subárvore. Se k está na subárvore, retorna o par ordenado (y, i) composto pelo ponteiro do nó y e o índice i tal que $key_i[y] = k$. Caso contrário, retorna NIL.
- \bullet Chamada inicial: B-Tree-Search (root[T],k).

B-TREE-SEARCH(x, k)

Ex: B-Tree-Search(T → raiz, 22)

Complexidade:

```
1 i \leftarrow 1

2 while i \leq n[x] and k > key_i[x]

3 do i \leftarrow i + 1

4 if i \leq n[x] and k = key_i[x]

5 then return (x, i)

6 if leaf[x]

7 then return NIL
```

else DISK-READ $(c_i[x])$

return B-TREE-SEARCH $(c_i[x], k)$

Note que nesses pseudocódigos assume-se que as chaves e filhos começam na posição 1 !!!

Busca na árvore B

- B-Tree-Search(x, k): tem como parâmetros um ponteiro para o nó x raiz de uma subárvore e uma chave k a ser procurada na subárvore. Se k está na subárvore, retorna o par ordenado (y, i) composto pelo ponteiro do nó y e o índice i tal que $key_i[y] = k$. Caso contrário, retorna NIL.
- \bullet Chamada inicial: B-Tree-Search (root[T],k).

Ex: B-Tree-Search(T → raiz, 22)

```
Complexidade: O(log_t n)
```

```
B-TREE-SEARCH(x, k)

1 i \leftarrow 1

2 while i \leq n[x] and k > key_i[x]

3 do i \leftarrow i + 1

4 if i \leq n[x] and k = key_i[x]

5 then return (x, i)

6 if leaf[x]

7 then return NIL
```

else DISK-READ $(c_i[x])$

return B-TREE-SEARCH $(c_i[x], k)$

Inserção em árvore B As inserções ocorrem sempre nas folhas

Seria aqui, mas este nó está cheio... O que fazer?

meio)

E se quisesse inserir F?

E se quisesse inserir F?

O nó pai estaria cheio, mas não tenho ponteiro para subir para ele para quebrá-lo em dois...

Então, sempre que descemos na árvore para achar onde inserir, se encontro um nó cheio já quebro

(e) F inserted

57

As inserções ocorrem sempre nas folhas

Resolvendo o problema do nó cheio...

Porque se ele estava cheio já foi dividido

• Divisão de um nó na árvore:

B-Tree-Split-Child(x, i, y): tem como entrada um nó interno x não cheio, um índice i e um nó y tal que $y = c_i[x]$ é um filho cheio de x. O procedimento divide y em 2 e ajusta x de forma que este terá um filho adicional.

O que precisa fazer?

O que precisa fazer?

Aloca e inicializa z

Ajusta y

Ajusta x

Aloca e inicializa z

1
$$z \leftarrow ALLOCATE-NODE()$$

2
$$leaf[z] \leftarrow leaf[y]$$

$$3 \quad n[z] \leftarrow t-1$$

4 for
$$j \leftarrow 1$$
 to $t-1$

do
$$key_j[z] \leftarrow key_{j+t}[y]$$

if not $leaf[y]$

7 then for
$$j \leftarrow 1$$
 to t

8 do
$$c_i[z] \leftarrow c_{i+t}[y]$$

Aloca e inicializa z

B-TREE-SPLIT-CHILD (x, i, y)

- 1 $z \leftarrow ALLOCATE-NODE()$
- 2 $leaf[z] \leftarrow leaf[y]$
- $3 \quad n[z] \leftarrow t-1$
- 4 for $j \leftarrow 1$ to t-1
- 5 **do** $key_j[z] \leftarrow key_{j+t}[y]$ 6 **if** not leaf[y]
- 7 then for $j \leftarrow 1$ to t
- 8 $\operatorname{do} c_{i}[z] \leftarrow c_{i+t}[y]$

Aloca e inicializa z

Ajusta y

B-TREE-SPLIT-CHILD (x, i, y)

- $z \leftarrow ALLOCATE-NODE()$
- $leaf[z] \leftarrow leaf[y]$
- $n[z] \leftarrow t 1$
- for $j \leftarrow 1$ to t-1
- **do** $key_j[z] \leftarrow key_{j+t}[y]$ **if** not leaf[y]

 $n[y] \leftarrow t-1$

- then for $j \leftarrow 1$ to t
- 8
- **do** $c_j[z] \leftarrow c_{j+t}[y]$ 9

Aloca e inicializa z

Ajusta y

 $y = c_i[x]$

 T_1 T_2 T_3 T_4

 $z=c_{i+1}[x]$

 $T_5 T_6 T_7 T_8$


```
B-TREE-SPLIT-CHILD (x, i, y)
```

1
$$z \leftarrow ALLOCATE-NODE()$$

2
$$leaf[z] \leftarrow leaf[y]$$

$$n[z] \leftarrow t-1$$

4 for
$$j \leftarrow 1$$
 to $t - 1$
5 do $key_j[z] \leftarrow key_{j+t}[y]$

 $n[y] \leftarrow t - 1$

7 then for
$$j \leftarrow 1$$
 to t

8
$$\operatorname{do} c_{j}[z] \leftarrow c_{j+t}[y]$$

Aloca e inicializa z

Ajusta x

 $z=c_{i+1}[x]$

 $T_5 T_6 T_7 T_8$

9

B-TREE-SPLIT-CHILD (x, i, y)1 $z \leftarrow \text{ALLOCATE-NODE}()$ 2 $leaf[z] \leftarrow leaf[y]$ 3 $n[z] \leftarrow t - 1$ 4 $\mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ t - 1$ 5 $\mathbf{do} \ key_j[z] \leftarrow key_{j+t}[y]$ 6 $\mathbf{if} \ \text{not} \ leaf[y]$ 7 $\mathbf{then} \ \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ t$ 8 $\mathbf{do} \ c_j[z] \leftarrow c_{j+t}[y]$ 9 $n[y] \leftarrow t - 1$

for $j \leftarrow n[x] + 1$ downto i + 1

do $c_{j+1}[x] \leftarrow c_j[x]$

Aloca e inicializa z

———— Ajusta y

12
$$c_{i+1}[x] \leftarrow z$$

13 **for** $j \leftarrow n[x]$ **downto** i
14 **do** $key_{j+1}[x] \leftarrow key_{j}[x]$
15 $key_{i}[x] \leftarrow key_{t}[y]$
16 $n[x] \leftarrow n[x] + 1$

 $x \qquad \text{veying the } \\ \cdots \qquad N \qquad W \qquad \cdots$ $y = c_i[x] \qquad \qquad$

 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8

Ajusta x

 $y = c_i[x]$ $P \quad Q$ $T_1 \quad T_2$

18 DISK-WRITE(z) 19 DISK-WRITE(x)

10

11

17

DISK-WRITE(y)

Note que nesses pseudocódigos assume-se que as chaves e filhos começam na posição 1 !!!

Aloca e inicializa z

Ajusta y

B-TREE-SPLIT-CHILD
$$(x, i, y)$$

1 $z \leftarrow \text{ALLOCATE-NODE}()$
2 $leaf[z] \leftarrow leaf[y]$
3 $n[z] \leftarrow t - 1$
4 $\textbf{for } j \leftarrow 1 \textbf{ to } t - 1$
5 $\textbf{do } key_j[z] \leftarrow key_{j+t}[y]$
6 $\textbf{if not } leaf[y]$
7 $\textbf{then for } j \leftarrow 1 \textbf{ to } t$
8 $\textbf{do } c_j[z] \leftarrow c_{j+t}[y]$
9 $n[y] \leftarrow t - 1$

10 for $j \leftarrow n[x] + 1$ downto i + 111 do $c_{j+1}[x] \leftarrow c_j[x]$

12 $c_{i+1}[x] \leftarrow z$ 13 **for** $j \leftarrow n[x]$ **downto** i14 **do** $key \dots [x] \leftarrow ke$

14 **do** $key_{j+1}[x] \leftarrow key_{j}[x]$ 15 $key_{i}[x] \leftarrow key_{t}[y]$ 16 $n[x] \leftarrow n[x] + 1$

17 DISK-WRITE(y) 18 DISK-WRITE(z)

19 DISK-WRITE(x)

Ajusta x

 T_1 T_2 T_3 T_4

Profa. Ariane Machado Lima

```
B-TREE-SPLIT-CHILD(x, i, y)
      z \leftarrow ALLOCATE-NODE()
     leaf[z] \leftarrow leaf[v]
     n[z] \leftarrow t-1
     for j \leftarrow 1 to t-1
            do key_i[z] \leftarrow key_{i+t}[y]
      if not leaf [y]
          then for j \leftarrow 1 to t
 8
                      do c_i[z] \leftarrow c_{j+t}[y]
 9
      n[y] \leftarrow t - 1
10
      for j \leftarrow n[x] + 1 downto i + 1
11
            do c_{j+1}[x] \leftarrow c_j[x]
      c_{i+1}[x] \leftarrow z
13
     for j \leftarrow n[x] downto i
14
            do key_{i+1}[x] \leftarrow key_i[x]
15
     key_i[x] \leftarrow key_i[y]
```

$x \quad \text{wey keylti}$ $\cdots \quad N \quad W \quad \cdots$ $y = c_i[x]$ $P \quad Q \quad R \quad S \quad T \quad U$

 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8

COMPLEXIDADE:

16 $n[x] \leftarrow n[x] + 1$

DISK-WRITE(y)

DISK-WRITE(z)DISK-WRITE(x)

17

18

B-TREE-SPLIT-CHILD(x, i, y) $z \leftarrow ALLOCATE-NODE()$ $leaf[z] \leftarrow leaf[v]$

$n[z] \leftarrow t-1$ for $j \leftarrow 1$ to t-1

5 **do**
$$key_j[z] \leftarrow key_{j+t}[y]$$

6 **if** not $leaf[y]$

7 then for
$$j \leftarrow 1$$
 to t

8
$$\operatorname{do} c_{j}[z] \leftarrow c_{j+t}[y]$$

$$9 \quad n[y] \leftarrow t - 1$$

10 for
$$j \leftarrow n[x] + 1$$
 downto $i + 1$

11 **do**
$$c_{j+1}[x] \leftarrow c_j[x]$$

12
$$c_{i+1}[x] \leftarrow z$$

13 **for** $j \leftarrow n[x]$ **downto** i

13 Ioi
$$j \leftarrow n[x]$$
 downto i
14 do $key \dots [x] \leftarrow ke$

14 **do**
$$key_{j+1}[x] \leftarrow key_j[x]$$

15 $kev_i[x] \leftarrow kev_i[y]$

15
$$key_i[x] \leftarrow key_i[y]$$

16 $n[x] \leftarrow n[x] + 1$

10
$$n[x] \leftarrow n[x] +$$

17 DISK-WRITE(v

18 DISK-WRITE
$$(z)$$

19 DISK-WRITE(
$$x$$
)

COMPLEXIDADE:

SEEKS:
$$O(1) - 3$$
 mais precisamente

T5 T6 T7 T8

 T_1 T_2 T_3 T_4

Continua na próxima aula

Referências

Livro do Cormen: cap 18 (3ª ed.)

Livro do Drozdek (4ª ed) cap 7

