Lecture 5.1: Continuous Random Variables

2013/09/30

Announcement

- ▶ What: Brunch for women & female-identifying students interested in possibly majoring in mathematics or physics.
- ▶ When: Saturday, Oct 12 2013
- Who: Specifically women and female-identifying persons in mathematics and physics are invited. Male students are welcome to attend as well.
- ▶ Where: TBD

Contact Rachel Pincus rpincus@reed.edu for more info.

Previously... Poisson Distribution

A discrete random variable X is said to have the Poisson distribution with parameter $\mu>0$ if

$$f(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

for $x = 0, 1, \dots$ for $\lambda > 0$.

Goals for Today

- Probability density function
- ► Expected Value

From Lecture 3.3: Cumulative Distribution Function

The distribution function (AKA cumulative distribution function) of a random variable X is a function $F: \mathbb{R} \longrightarrow [0,1]$ given by $F(x) = \mathbb{P}(X \le x)$

A function F(x) is a CDF for some random variable X if and only if it satisfies the following properties

- $\lim_{x \to -\infty} F(x) = 0$
- ▶ $\lim_{h\to 0^+} F(x+h) = F(x)$ (right continuous)
- ▶ a < b also implies $F(a) \le F(b)$

Probability Density Function

Probability Density Function

Two definitions

Probability Density Function

Expected Value

Let c be a constant and

$$f(x) = \begin{cases} 0 & \text{for } x \le 0 \\ c(x^2 + 1) & \text{for } 0 < x < 1 \\ 0 & \text{for } x \ge 1 \end{cases}$$

- 1. Find *c*.
- 2. Find $\mathbb{P}(.25 < X \le .50)$.
- 3. Find $\mathbb{P}(.25 < X < .50)$.
- 4. Find *F*.
- 5. Find $\mathbb{E}(X)$ and σ^2 .

Next Time

► Midterm Review