Data sparsity problems

Cold start problem

– How to recommend new items? What to recommend to new users?

Straightforward approaches

- Ask/force users to rate a set of items
- Use another method (e.g., content-based, demographic or simply nonpersonalized) in the initial phase
- Default voting: assign default values to items that only one of the two users to be compared has rated (Breese et al. 1998)

Alternatives

- Use better algorithms (beyond nearest-neighbor approaches)
- Example:
 - In nearest-neighbor approaches, the set of sufficiently similar neighbors might be too small to make good predictions
 - Assume "transitivity" of neighborhoods

Example algorithms for sparse datasets

- Recursive CF (Zhang and Pu 2007)
 - Assume there is a very close neighbor n of u who however has not rated the target item i yet.
 - Idea:
 - lacktriangle Apply CF-method recursively and predict a rating for item i for the neighbor
 - Use this predicted rating instead of the rating of a more distant direct neighbor

	ltem1	Item2	Item3	Item4	Item5	
Alice	5	3	4	4	? 🗖	sim 0.05
User1	3	1	2	3	?	sim = 0.85
User2	4	3	4	3	5	Predict
User3	3	3	1	5	4	rating for
User4	1	5	5	2	1	User1

Graph-based methods (1)

- "Spreading activation" (Huang et al. 2004)
 - Exploit the supposed "transitivity" of customer tastes and thereby augment the matrix with additional information
 - Assume that we are looking for a recommendation for User1
 - When using a standard CF approach, User2 will be considered a peer for User1 because they both bought Item2 and Item4
 - Thus Item3 will be recommended to User1 because the nearest neighbor, User2, also bought or liked it

Graph-based methods (2)

"Spreading activation" (Huang et al. 2004)

- In a standard user-based or item-based CF approach, paths of length 3 will be considered that is, *Item3* is relevant for *User1* because there exists a three-step path (*User1-Item2-User2-Item3*) between them
- Because the number of such paths of length 3 is small in sparse rating databases, the idea is to also consider longer paths (indirect associations) to compute recommendations
- Using path length 5, for instance

Graph-based methods (3)

- "Spreading activation" (Huang et al. 2004)
 - Idea: Use paths of lengths > 3 to recommend items
 - Length 3: Recommend Item3 to User1
 - Length 5: Item1 also recommendable

More model-based approaches

Plethora of different techniques proposed in the last years, e.g.,

- Matrix factorization techniques, statistics
 - singular value decomposition, principal component analysis
- Association rule mining
 - compare: shopping basket analysis
- Probabilistic models
 - clustering models, Bayesian networks, probabilistic Latent Semantic Analysis
- Various other machine learning approaches

Costs of pre-processing

- Usually not discussed
- Incremental updates possible?

2000: Application of Dimensionality Reduction in Recommender System, B. Sarwar et al., WebKDD Workshop

- Basic idea: Trade more complex offline model building for faster online prediction generation
- Singular Value Decomposition for dimensionality reduction of rating matrices
 - Captures important factors/aspects and their weights in the data
 - factors can be genre, actors but also non-understandable ones
 - Assumption that k dimensions capture the signals and filter out noise (K = 20 to 100)
- Constant time to make recommendations
- Approach also popular in IR (Latent Semantic Indexing), data compression,...

Matrix factorization

■ Informally, the SVD theorem (Golub and Kahan 1965) states that a given matrix *M* can be decomposed into a product of three matrices as follows

$$M = U \times \Sigma \times V^T$$

- where U and V are called *left* and *right singular vectors* and the values of the diagonal of Σ are called the *singular values*
- We can approximate the full matrix by observing only the most important features – those with the largest singular values
- In the example, we calculate U, V, and Σ (with the help of some linear algebra software) but retain only the two most important features by taking only the first two columns of U and V^T

Example for SVD-based recommendation

• SVD: $M_k = U_k imes \Sigma_k imes V_k^T$

U _k	Dim1	Dim2
Alice	0.47	-0.30
Bob	-0.44	0.23
Mary	0.70	-0.06
Sue	0.31	0.93

	linator	Hard	Time	an Love	Womar
V_k^T				6	13
Dim1	-0.44	-0.57	0.06	0.38	0.57
Dim2	0.58	-0.66	0.26	0.18	-0.36

•	Prediction:	$\hat{r}_{ui} = \overline{r}_u + U_k(Alice) \times \Sigma_k \times V_k^T(EPL)$
		= 3 + 0.84 = <mark>3.84</mark>

\sum_{k}	Dim1	Dim2	
Dim1	5.63	0	
Dim2	0	3.23	

Discussion about dimensionality reduction (Sarwar et al. 2000a)

- Prediction quality can decrease because...
 - the original ratings are not taken into account
- Prediction quality can increase as a consequence of...
 - filtering out some "noise" in the data and
 - detecting nontrivial correlations in the data
- Depends on the right choice of the amount of data reduction
 - number of singular values in the SVD approach
 - Parameters can be determined and fine-tuned only based on experiments in a certain domain
 - Koren et al. 2009 talk about 20 to 100 factors that are derived from the rating patterns

Association rule mining

Commonly used for shopping behavior analysis

aims at detection of rules such as
"If a customer purchases beer then he also buys diapers in 70% of the cases"

Association rule mining algorithms

- can detect rules of the form X → Y (e.g., beer \rightarrow diapers) from a set of sales transactions D = $\{t_1, t_2, ... t_n\}$
- measure of quality: support, confidence
 - used e.g. as a threshold to cut off unimportant rules

- let
$$\sigma(X) = \frac{|\{x | x \subseteq ti, ti \in D\}|}{|D|}$$

- support =
$$\frac{\sigma(X \cup Y)}{|D|}$$
, confidence = $\frac{\sigma(X \cup Y)}{\sigma(X)}$

Recommendation based on Association Rule Mining

Simplest approach

transform 5-point ratings into binary ratings (1 = above user average)

Mine rules such as

- Item1 \rightarrow Item5

	Item1	Item2	Item3	Item4	Item5
Alice	1	0	0	0	?
User1	1	0	1	0	1
User2	1	0	1	0	1
User3	0	0	0	1	1
User4	0	1	1	0	0

support (2/4), confidence (2/2) (without Alice)

Make recommendations for Alice (basic method)

- Determine "relevant" rules based on Alice's transactions (the above rule will be relevant as Alice bought Item1)
- Determine items not already bought by Alice
- Sort the items based on the rules' confidence values

Probabilistic methods

Basic idea (simplistic version for illustration):

- given the user/item rating matrix
- determine the probability that user Alice will like an item i
- base the recommendation on such these probabilities

Calculation of rating probabilities based on Bayes Theorem

- How probable is rating value "1" for Item5 given Alice's previous ratings?
- Corresponds to conditional probability P(Item5=1 | X), where
 - X = Alice's previous ratings = (Item1 =1, Item2=3, Item3= ...)
- Can be estimated based on Bayes' Theorem

$$P(Y|X) = \frac{P(X|Y) \times P(Y)}{P(X)} \qquad P(Y|X) = \frac{\prod_{i=1}^{d} P(X_i|Y) \times P(Y)}{P(X)}$$

Assumption: Ratings are independent (?)

Calculation of probabilities in simplistic approach

	ltem1	Item2	Item3	Item4	Item5
Alice	1	3	3	2	?
User1	2	4	2	2	4
User2	1	3	3	5	1
User3	4	5	2	3	3
User4	1	1	5	2	1

$$P(X|Item5 = 1)$$

$$= P(Item1 = 1|Item5 = 1) \times P(Item2 = 3|Item5 = 1)$$

$$\times \textit{P(Item3} = 3 | \textit{Item5} = 1) \times \textit{P(Item4} = 2 | \textit{Item5} = 1) = \frac{2}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

$$\approx 0.125$$

$$P(X|Item5 = 2)$$

$$= P(Item1 = 1|Item5 = 2) \times P(Item2 = 3|Item5 = 2)$$

$$\times P(Item3 = 3|Item5 = 2) \times P(Item4 = 2|Item5 = 2) = \frac{0}{0} \times \cdots \times \cdots \times \cdots$$

= 0

More to consider

- Zeros (smoothing required)
- like/dislike simplification possible

Practical probabilistic approaches

- Use a cluster-based approach (Breese et al. 1998)
 - assume users fall into a small number of subgroups (clusters)
 - Make predictions based on estimates
 - probability of Alice falling into cluster c
 - probability of Alice liking item i given a certain cluster and her previous ratings
 - $P(C = c, v_1, ..., v_n) = P(C = c) \prod_{i=1}^n P(v_i | C = c)$
 - Based on model-based clustering (mixture model)
 - Number of classes and model parameters have to be learned from data in advance (EM algorithm)

Others:

- Bayesian Networks, Probabilistic Latent Semantic Analysis,
- Empirical analysis shows:
 - Probabilistic methods lead to relatively good results (movie domain)
 - No consistent winner; small memory-footprint of network model

Slope One predictors (Lemire and Maclachlan 2005)

- Idea of Slope One predictors is simple and is based on a popularity differential between items for users
- Example:

	ltem1	Item5
Alice	2	?
User1	1	2

- p(Alice, Item5) = 2 + (2 1) = 3
- Basic scheme: Take the average of these differences of the co-ratings to make the prediction
- In general: Find a function of the form f(x) = x + b
 - That is why the name is "Slope One"

RF-Rec predictors (Gedikli et al. 2011)

- Idea: Take rating frequencies into account for computing a prediction
- Basic scheme: $\hat{r}_{u,i} = \arg \max_{v \in R} f_{user}(u,v) * f_{item}(i,v)$
 - R: Set of all rating values, e.g., $R = \{1,2,3,4,5\}$ on a 5-point rating scale
 - $f_{user}(u, v)$ and $f_{item}(i, v)$ basically describe how often a rating v was assigned by user u and to item i resp.

Example:

	Item1	Item2	Item3	ltem4	Item5
Alice	1	1	?	5	4
User1	2		5	5	5
User2			1	1	
User3		5	2		2
User4	3			1	
User5	1	2	2		4

p(Alice, Item3) = 1

MAE

Metrics measure error rate

 Mean Absolute Error (MAE) computes the deviation between predicted ratings and actual ratings

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$$

Root Mean Square Error (RMSE) is similar to MAE,
but places more emphasis on larger deviation

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2}$$

Collaborative Filtering Issues

Pros:

- well-understood, works well in some domains, no knowledge engineering required
- Cons:

- requires user community, sparsity problems, no integration of other knowledge sources, no explanation of results
- What is the best CF method?
 - In which situation and which domain? Inconsistent findings; always the same domains and data sets; differences between methods are often very small (1/100)
- How to evaluate the prediction quality?
 - MAE / RMSE: What does an MAE of 0.7 actually mean?
 - Serendipity (novelty and surprising effect of recommendations)
 - Not yet fully understood
- What about multi-dimensional ratings?