DRUG CONTAINING CYCLIC AMINE DERIVATIVE

2. W3119-01

Patent number:

JP2169569

Publication date:

1990-06-29

inventor:

SUGIMOTO HACHIRO; TSUCHIYA YUTAKA; HIGURE

KUNIZO: KARIBE NORIO; IIMURA YOICHI; SASAKI ATSUSHI; YAMANISHI YOSHIHARU; OGURA HIROO; ARAKI SHIN; OZASA TAKASHI; KUBOTA ATSUHIKO;

OZASA MICHIKO; YAMATSU KIYOMI

Applicants

EISAI CO LTD

Classification:

- international:

A61K31/40; A61K31/435; A61K31/445; A61K31/47; A61K31/495; A61K31/55; C07D207/09; C07D211/08; C07D211/32; C07D211/40; C07D295/10; C07D401/00; C07D405/12; C07D413/06; C07D471/04; A61K31/40; A61K31/435; A61K31/445; A61K31/47; A61K31/495; A61K31/55; C07D207/00; C07D211/00; C07D401/00; C07D401/00; C07D401/00; C07D401/00; C07D401/00; C07D207/09; C07D211/08; C07D211/08; C07D207/09; C07D211/08; C07D211/08; C07D207/00;

C07D405/12; C07D413/06; C07D471/04

~ european:

Application number: JP19880324620 19881222 Priority number(s): JP19880324620 19881222

Report a data error here

Abstract of JP2169569

NEW MATERIAL:The compound of formula I [J is phenyl, pyridyl, indanyl, indanonyl, aikyl, etc.; B is group of formula II-formula V (R<2> is H or methyl; R<3> is H, aikyl, acyl, phenyl, etc.; R<4> is H, aikyl or phenyl; n is 0-10), etc.; T is N or C; Q is N, C or N-O; K is H, phenyl, arylaikyl, cinnamyl, aikyl, pyridylmethyl, acyl, etc.; q is 1-3] and its salt. EXAMPLE:1-Benzyl-4-[2-[(1-indanon)-2-yl]] ethylpiperidine hydrochioride. USE:It has strong acetylcholine esterase inhibiting action and choline acetyltranslerase activating action and is useful for the remedy and prevention of central nervous diseases. PREPARATION:A compound of formula I wherein B is group of formula V can be produced e.g. by reacting an acid halide of formula VI with a cyclic amine derivative of formula VII in an organic solvent in the presence of a desalting agent.

Data supplied from the esp@cenet database - Worldwide

爾日本園特許庁(JP)

①特許出單公開

◎ 公開特許公報(△) 平2-169569

@Int. Ct. *

識別紀号

庁内整理番号

每公開 平数2年(1990)8月29日

C 07 D 207/09 A 61 K 31/40 31/435

AAM

8742-4C

*

審査請求 未請求 請求項の数 2 (全54頁)

②発明の名称 環状アミン誘導体を含有する医薬

2049 NE 5663-324620

公出 数 昭63(1988)12月22日

 \mathbb{R} 28 茨城県牛久市柏田町3073-13 何祭 明 轸 恋 M 88 *** 8 * 茨城県牛久市栄町2-35-18 (M) 499 SS Ť 8 1 * *** 茨城県つくば市春日4-19-13 エーザイ紫山祭 茨蚊集つくば市参日 4-19-13 エーザイ熱山寮 40 83 X 383 83 夫 **(73)** 53 10 ** 茨城県つくば市天久保 2-23-5 メゾン学際103 ** 200 ア域集つくば市等日4-19-13 エーザイ紫山寮 (1) (1) 38 ₹<u>*</u> 统 1 X 蓬 3 茨城県電ケ崎市松栗3-2-4 **35** LL! 2 38 **6** 88 TO S 茨城県土浦市永岡1115-8 ******** 88 337 30 25 **勿出 狐** À エーザイ株式会社 東京都文京区小石川4丁目6番10号 例代 選 人 弁理士 古 答

W H W

し 発器の名称

最終質に続く

選出アミン誘導体を含有する医薬

- 2. 特許請求の範囲
- : 次の一般式

(X) # ...

」は(6)整換若しくは無整換の次に示す器:① フェエル器、②ビリジル器、②ビラジル器、③ キノリル器、③シタロヘキシル器、③キノキサ リル器又は①フリル器、

30フェニル基が服装されていてもよい。次の群から選択された一倍又は二倍の基;①インダニル、②インダニル、②インデニル、④インダンクメニル、④テトラロニル、
②ペンズスペロニル、@インダノリル、@北

(のほぼアミド化合物から誘導される一部の基。

幼伝級アルキル器。又は

(図式 ₹'-₹8*ξ8- (式中、₹'は水業原子又は低級アルコキシカルボニル器を意味する)
で示される器を意味する。

原子、短数アルキル器、アシル器、低級アルキ ルスルホエル器、置換されてもよいフェエル語 又はベンジル器を意味する)で示される器、式

ル基又はフェニル基を意味する)で示される器。

『 で示される器、式-0-E-88-(CN)』- で示される器、 ***

記-88-C-(CH),…で示される施、式-CH2-CD-NH-(CH),… 。

で示される器、式-(08,),-09-88-(08),-で示さ

Ç8

れる基、式-EF-(CH)。-- で米される基(以上の式

中、 nは 0 又は 1 ~10 の整数を意味する。 8°は 式 ~(CB)。で示されるアルキレン器が関係器を ***

特たないか、又は1つ又は1つ以上のメテル基を有しているような形で水器原子又はメテル基を意味する。)、式 =(E8-CH*C8)。 (式中、 hは1~3の整数を意味する)で示される基、式*C8-(C8)。(式中、 cは0又は1~9の整数を意味する)で示される基、式=(C8-C8)。(式中、 dは0又は1~5の整数を意味する)で示され

練する。

qは1~3の整数を意味する。

文中、 ******** は単結合若しくは二酸結合を象 味する。)

で表される様式アミン誘導体及びその薬理学的 に許容できる性を有効性分とするコリンアセチ ルトランスフェラーゼ散信作用に基づく概単の 治策・予防弱。

2 一般武

(武学、

がはフェニル器が覆換されていてもよい次の 器から選択された一倍又は二倍の器;①インダ ニル、②インダノニル、②インデニル、②イン デノニル、③インダンジオニル、⑥テトラロニ ル、①ベンズスペロニル、③インダノリル、③

で示される基、式 -CH=CH-C-NH-(CH,),-で示される基、式 -8H- で示される基、式 -8-で示される基、式 -8-で示される基、ジアルキルアミノアルキルカルボニル基又は複数アルコキシカルボニル基を激味する。

『は窓霧原子又は微器原子を放沫する。

9は黎潔原子、後郷原子文は全 ○8-0 で 所される器を意味する。

『は水蒸原子、蜜換若しくは無鑑換のフェニル系、フェニル系が蜜挽されてもよいアリール アルキル系、フェニル系が蜜挽されてもよいシ シナミル器、低級アルキル系、どりジルメテル 基、シクロアルキルアルキル系、アダマンタン メチル器、フリルメチル器、シクロアルキル器、 低級アルコキシカルボニル器又はアシル器を散

で示される器、式 -8-(CH),- (式中、8°は水条

原子、優級アルキル基、アシル基、優級アルキ ルスルガニル基、置換されてもよいフェニル基 又はベンジル基を意味する)で示される底。式

ル基又はフェニル基を意味する)で示される策、

『 で派される数、式-0-C-88-(C8)、-で米される数。 。。

で示される基、式~(C8,),-CQ-88-(C8),-で示さ 。

04 11 8 8 . X-(X-(CH).-TRENS (ULOX

中、 nは 0 又は 1 ~18 の 整数 を意味する。 8* は 式 ~(型)。~で示されるアルキレン器が整接基を g*

特だないか、又は1つ又は1つ返上のメチル基を有しているような形で水業原子又はメチル基を激味する。)、式=(CH-CH=CH)。 (式中、 bは1~3の整数を意味する)で示される器、式=(CH-CH)。-(式中、 sは0又は1~9の整数を影味する)で示される器、式=(CH-CH)。-(式中、 dは0又は1~5の整数を表端する)で示され

で示される数、全 -CH=CH-C-8H-(CH₂);- で赤き

3. 発明の詳細な数明

(産業上の利用分野)

本類領は、新展環状アミン誘導体を育効成分 とする医薬に関する。

(発明に至る背景及び後来技術)

選年人口が急級に増大する中で、アルソハイ マー型老年商品などの老年商品の治療法を確立 することが暴望されている。

しかしながら、現在のところ、差年痴呆を裏物で治療する試みは様々なされているが、これらの疾患に摂本的に有効とされる異素は今のところ存在しない。

これらの疾患の治療薬の解発は限々の方向から研究されているが、有力な方向としてアルツハイマー型差年痴呆は、脳のコリン作動性機能 低下を伴うことから、アセチルコリン前駆物質、アセチルコリンエステラーゼ限署列の方向から 脳発することが提案され、実際にも試みられている。代表的なものとして、抗コリンエステラーゼ阻署列として、フィブステグミン、テトラ

れる器、式・用・で示される器。式・0-で示される器、式・3-で示される器、ジアルキルアミソアルキルカルボニル蒸叉は低級アルコキシガルボニル器を繋破する。

『は窓郷原子又は後郷原子を意味する。

※は水無原子、置換若しくは無置換のフェニル器、フェニル器が置換されてもよいアリールアルキル器、フェニル器が置換されてもよいシンナミル器、低級アルキル器、ビリジルメチル器、シクロアルキル系、アダマンタンメチル器、プリルメチル器、シクロアルキル器、低級アルコキンカルボニル器又はアシル器を登録する。

eは1~3の整数を意味する。

で表される選択アミン誘導体及びその基理学的 に許容できる弦を有効成分とする誘文項 1 記載 の治療、予防剤。

ヒドロアミノアクリジンなどがあるが、これらの蒸剤は効果が十分でない、好ましくない調作 用があるなどの欠点を有しており、決定的な治 療薬はないのが現状である。

変に、数近コリンアセチルトランスフェラー ゼ(EhAT) 誠活作用もこれらの疾患の治察に有効 であることが注目されている。

そこで本発明者らは、この作用を有する化合物について長年にわたって鋭寒研究を盛ねてきた。

その結果、後で述べる一級式 (1) で示される環状アミン経導体が、所謂の目的を遂することが可能であることを見出した。

異体的には下記の機造式 (1) で巻される本 発明化合物は、優れたコリンアセチルトランス フェラーゼ(ChAT) 厳語作用を有し、気に強力か つ選択性の高い抗アセチルコリンエスチラーゼ 活性を育するため、脳内のアセチルコリンを増 騰すること、記憶隆春モデルで有効であること、 及び従来この分野で祝用されているフェゾスチ グミンと比較し、作用持線時間が長く、安全性 が高いという大きな特徴を有しており、本発明 の価値は極めて高い。

本発明化合物は、コリンアセチルトランスフェラーゼの認信作用に基づいて見出されたもので、従って中枢性コリン機能、即ち神経伝達物質としてのアセチルコリンの生体内の欠乏が原因とされる様々の疾患の治療・予防に有効である。

代表的なものとしては、アルソハイマー型老 年商品に代表される各種商品があるが、そのほ かハンチントン興路病、ビック病、海発性運動 異常症などを挙げることができる。

提って、本発明の目的は、医薬としてとりわけ中枢神経系の疾患の治療・予防に変効は新規 選供アミン誘導体を提供すること、この新規選 状アミン誘導体の製造方法を提供すること、及 びそれを有効成分とする医薬を提供することで ある。

(発明の機成及び対象)

(6) 式 R'-CH=CH- (式中、N'は水器原子又は低 級アルコキシカルボニル器を意味する) で示される器を意味する。

で所きれる器、式 -#-(CN),- (式中、8°は水素

原子、後継アルキル基、アンル基、低級アルキ ルヌルホニル基、微微されてもよいフェニル基 又はベンジル基を意味する)で示される基、文

ル蒸叉はフェニル蒸を意味する)で乗される蒸、

で示される差、式-0-0-48-408)。- で示される器。

本発明の目的化台物は、次の一般式(1)で 製される選択ではン誘導体及びその薬理学的に 誘金できる数である。

(文字。

」は個體機器もくは無酸機の次に米す基;① フェニル基、②ビリジル基、②ビリジル基、③ キノリル基、⑥シクロヘキシル基、⑥キノキサ リル級又は①フリル基、

(1)フェニル基が整換されていてもよい次の群から選択された一倍又は二倍の基;①インダニル、のインダニル、のインデニル、のインデニル、のインダンジオニル、のテトラロニル、のベンズスペロニル、のインダノリル、の式

(d) 選択するド化合物から誘導される一個の基。 (d) 低級すルキル基、又は

で示される器、式-(CP。),-CO-NH-(CH)、で示さ

中、 cは () 又は 1 ~ (() の整数を意味する。 R*は 式 ~(CH) u~で示されるアルキレン器が置換器を H2

持たないか、又は1つ又は1つ以上のメテル高を有しているような形で水薬原子又はメチル高を意味する。)、式。(C8-CH=CB)。- (式中、もは1~3の整数を意味する)で示される基、式=C4-(CB₂)。-(式中、cは0又は1~9の整数を意味する)で示される基、式。(CB-CB)。- (式中、dは0又は1~5の套数を意味する)で示され

で示される基、式 -CH=CS-Ĉ-NH-(CH₂)₂-で示される基、式 -B-で示される基、式 -B-で示される基、プアルキルアミノアルキルカルボニル基又は保装アルコキシカルボニル基を意味する。

Tは整器原子又は炭素原子を意味する。

※は水黒原子、置換若しくは無置換のフェニル器、フェニル器が置換されてもよいでリールフルギル器、フェニル器が置換されてもよいシンナミル器、低級アルギル器、ピリジルメテル器、シクロアルギルアルギル器、フリルメテル器、シクロアルギル器、従級アルコキシカルポニル器又はアシル器を選供する。

qは」~3の整数を繁味する。

エチルーミーメチルプロビル基などを意味する。 これらのうち好ましい基としては、メチル基、 エチル基、プロビル基、イソプロビル基などを 挙げることができ、数も好ましいものはメチル 基である。

まにおける「整後もしくは無整接の次に示す器:①フェニル器、②ピリジル器、③ピラジル器、③ピリリル器、③ピラジル器、④キノリル器、⑤キノリル器、⑤シクロヘキシル器、⑥キノキカリル器又は⑦フリル器」という定義において、登後器としては、メチル器、エチル器、ローブテル器などしては、メチル器、ローブテル器などの後級アルキル器:メトキン器など上記の低級アルキル器に対応する低級アルコキシカルボニル器、エトキシカルボニル器、インブロボキシカルボニル器、エトキシカルボニル器、インブロボキシカルボニル器、エトキシカルボニル器、インブロボキシカルボニル器、ローブロボキシカルボニル器、ローブチロキシカルボニル器など、上記の低級アルコキシ路に対応する低級アルコキシ

安中、 ****** は単結合著しくは二葉結合を意味する。〕

本発明化合物(1)における上記の定義にお いて、J. K. P., P にみられる低級アルキル墨と は、炭素数1~8の直鎖をしくは分枝状のアル キル器、例えばメチル器、エテル器、プロゼル 盔、イソプロビル盔、ブチル器、イソブテル器; sec ープチル墓、testープテル蓋、ベンチル器 (アミル器)、イソベンテル器、ネオベンテル 蓋、testーペンチル蓋、1ーメチルブチル蒸、 2-メチルブチル器、1,2 ークメチルプロビル 鑑、ヘキシル蒸、イソヘキシル蒸、ミーメチル ベンチル蒸、 2 …メチルベンチル器、 3 …メチ ルベンチル蒸、1.1 ージメデルブチル蒸、1.2 ージメテルブテル茲、3、8 ージメテルブテル器、 1.3 ージメチルプチル蒸、2.3 ージメチルプチ ル蒸、3.3 ージメチルブチル蒸、1ーエチルブ チル器。2ーエチルブチル器。1.1.2 ートリメ チルプロビル器、1,2,2 ートリスチルプロビル 蒸、1ーエチルー1ーメデルプロビル器、1ー

シカルガニル蒸してミノ蒸じせノ蒸袋アルキル アミノ墓:ジ链線アルキルアミノ墓;カルパモ イル器:アセチルアミノ器、プロビオニルアミ ノ墓、ブチリルアミノ墓、インブチリルアミノ 器、パンリルアミノ器、ピバロイルアミノ器な と、炭素数1~6の脂肪酸飽和モノカルギン酸 から指導されるアシルアミノ蒸;シクロヘキシ ルオキシカルボニル器はどのシクロアルキルオ キシカルポニル蒸;メテルアミノカルギニル蒸、 エチルアミノカルゼニル基などの張級アルキル アミノカルガニル器、メチルカルボニルまキシ 蓋、エチルカルボニルオキシ蓋、エープロビル カルボニルをキシ藁など前配に定義した紙様で ルキル器に対応する低級アルキルカルボニルオ キシ盤:トリフルオロメチル基などに代数され るハロゲン化道級アルキル器;水酸器;ホルミ 4篇:エトキシメテル器、メトキシメテル器。 メトキシエチル蒸などの低級アルコキン価級ア ルキル基などを挙げることができる。上記の置 **逸器の説明において、「低級アルキル器」、**

「係級アルコキシ掘」とは、前記の定義から派生する基をすべて含むものとする。置換基は順一又は異なる1~3個で関換されていてもよい。

変にフェニル器の場合は、次の如き場合も歴 後されたフェニル器に含まれるものとする。即

ボされる然、式-B- で示される器、式-CH,-NH-C-で示される器、式-CH,-G- で示される器、式 -CH,-30,- で示される器、式-CH-で示される器

又は式-CH₃-3- で示される基を意味する。 8は 炭素原子又は窒素原子を意味する。

これらのうち、フェニル基に好ましい置換基 としては、低級アルキル基、低級アルコキシ基、 ニトロ基、ハロゲン化低級アルキル基、低級ア

いる①~②について、その代表例を示せば以下 のとおりである。

ルコキシカルガエル器、ホルミル器、水酸器、低級アルコキシ銀級アルキル器、ハロゲン、ベンダイル器、ペンダルスルホニル器などを挙げることができ、緩慢器は同一叉は相関なって? つ以上でもよい。

ピリジル薬に好ましい器としては、低級アル キル基、アミノ器、ハロゲン原子などを挙げる ことができる。

ビラジル基に好ましい落としては、張級アルコキシカルボニル器、カルボキシル器、アシルアミノ器、カルバモイル器、シクロアルキルオキシカルボニル器などを挙げることができる。

家た、3としてのビリジル蒸は、2ービリジル蒸が緩ましく、ピラジル蒸は2ービラジル蒸が緩ましく、サノリル蒸は2ーキノリル蒸び緩ましく、サノリル蒸び緩ましく、サノキャリル蒸び緩ましく、サリル蒸び緩ましく、サリル蒸は2ータリル蒸が緩ましく、フリル蒸は2ーフリル蒸が緩ましい。

Jの定義において、例グループに記載されて

・上紀一選の式において、 tは 8 又は 1 ~ 4 の 整数を意味し、 8 は同一又は相異なる前紀した 」 (4)の定義における覆液器のうちしつ又は水器 原子を意味するが、好ましくは水器原子(無整 換)、伝級アルキル器又は低級アルコキン器を あげることができる。質に、フェニル謎の繰り あう炭素額でメチレンジオキシ器、エチレンジ オキシ器などのアルキレンジオキシ器で微微されていてもよい。

これらのうち殺も好ましい場合は、無魔旅行しくはメトキン基が1~3個魔旅されている場合である。

なお、上記のインダノリデニルは J回の定義 におけるフェニル基が置換されていてもよい二 倍の基の例である。すなわち J回の②のインダ ノエルから結蹊される代表的な二倍の差である。

Jの定義において、環状アミド化会物から誘
終される一級の高とは、例えばキナゾロン、テトラハイドロイソキノリンーオン、テトラハイドロイン・ファイン・マンなどを挙げることができ
るが、構造式中に環状アミドが存在すればは合ったの為に設定されない。単議もしくは指合へテロ議から誘導される環状アミドがありうるが、総合へテロ議からでは、フェエル議との結合へテロ議が好ましい。この場合、フェエル議との結合とデロ議が好ましい。この場合、フェエル議とのは後機数1~8の低級アルキル基、好ましくは

上記の式中で、式(i)、(i) における f は水素 原子又は返設アルキル基を意味し、式(b) にお ける f は水素原子又は低級アルコキシ蒸、式(a)、 (a) におけるff、ff は水素原子、低級アルキル 蒸、返級アルコキシ蒸、ff は水素原子又は低級 アルキル基を意味する。

なお、式(j)。(!) において、右側の環は?質

ノチル基、炭素数1~5の低級アルコキシ基、 好ましくはメトキシ基あるいはハロゲン原子に よって燃挽されていてもよい。

好せしい例を挙げれば次の通りである。

既であり、式(*) において有側の頭は8.異議である。

Jの上記の定義のうち最も好ましいものは、
フェニル窓が緊接されてもよいインダノンから 誘導される一部の基、深材でミド化合物から誘 課される一個の差である。

8の定義において、式 -(CH),-で示される器

は、8°が水素原子である場合は虫-(CH₁)。-で要 きれ、更にアルキレン鎖のいずれかの炭素原子 に1つ又はそれ以上のメテル器が結合していて もよいことを意味する。この場合、丹ましくは nは1~3である。

また、 8の一選の基において、基内にアミド 基を有する場合も好ましい器の一つである。

要に好ましい基としては、武*(CH-CH*CH)。 (式中、りは1~3の整数を整映する)で示される基、式*CH-(CH*)。-(式中、 Cは5 又は1~9の整数を意味する)で示される基、武*(CH-CH)。*(式中、 4は6 又は1~5 の整数を意味する) で示される器、式 -86- で示される器。式 -0-で示される器又は式 -3-で示される器をあげる ことができる。

げることができるが、特に許ましい強は式

※の定義における「蜜換又は無覆換のフェニル基」、「窓換もしくは無置換のフリールアルキル基」において、蜜換基は前記の Jの定義において(M)の①~①において定義されたものと同一のものである。

アリールアルキル蓋とは、フェエル環が上記

本発明において、変理学的に許容できる性とは、例えば協能塩、硫酸塩、臭化水蒸酸塩、築酸塩などの紙機能塩、糖酸塩、酢酸塩、トリフルギロ酢酸塩、マレイン酸塩、指石酸塩、メタンスルホン酸塩、ペンゼンスルホン酸塩、トルエンスルホン酸塩などの有機酸塩を挙げることができる。

また置換器の選択によっては、例えばナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、トリメテルアミン塩、トリエテルアミン塩、ビリジン塩、ピコリン塩、ジシクロヘキシルアミン塩、8.8°ージベンジルエテレンジアミン塩などの有機アミン塩、アンモニウム塩などを形成する場合もある。

なお、本発明化合物は、要換器の機類によっ では不斉送券を有し、光学異性体が存在しうる が、これらは本発駅の範囲に関することはいう までもない。

異体的な例を一つ這べれば、「かインダノン

の置換器で置換されるか、無置線のペンジル器、 フェネチル器などを意味する。

ビリジルメテル基とは異体的には、2-ビリ ジルメチル基、3-ビリジルメチル基、4-ビリジルメチル基はどを挙げることができる。

※については、フェニル器が置換されてもよ いアリールアルキル器、置換若しくは無置換の フェニル器、フェニル器が置換されてもよいシ ンナミル器が最も好ましい。

好ましいアリールアルキル基は、異体的には 例えばベンジル基、フェネチル基などをいい、 これらはフェニル基が従業数1~6の紙級アル コキン基、提業数1~6の紙級アルキル基、水 験器などで置換されていてもよい。

一一は単純会もしくは二級総合を意味する。 二数結合である場合の例をあげれば、上記で逐 ペたフェール線が関接されてもよいインダノン から誘導される二個の器の場合、すなわちイン ダノリデニル器である場合をあげることができ る。

各格を有する場合、不変炭素を有するので幾何 異性体、光学異性体、ジアステレオマーなどが 存在しうるが、何れも本発明の範囲に含まれる。

これらの定義を総合して特に好ましい化合物 群をあげれば次のとおりである。

〔式中、ジはフェニル基が製造されていてもよい次の群から選択された一個又は二個の為;①
インダニル、②インダノニル、③インデニル、
③インデノニル、③インダンジオニル、③チト
ラロニル、①ベンズスベロニル、②インダノリ

8.

8.7.0.0.X は前記と両線の意味を有する。〕 で数される環状で:ン又は薬理学的に許容できる塩。

上紀の」の定義中、幾も計ましい基としては、

フェニル器が蜜換されていてもよいイングノニ ル器、インダンジオニル器、インダノリデニル 器をあげることができる。また、この場合、フ エエル器は整接されていないか、周一又は相異 なる水酸盛、ハロゲン、医縁アルコキシ蓋で置 後されている場合が最も好ましい。低級アルコ キシ茶とは、炭素数1~6の例えばメトキシ茶。 エトキシ器、イソプロポキシ器、ロープロポキ シ蒸、カープトキシ蒸などをいい、1~4覆換 をとりうるが、2 置換の場合が好ましい。数も 好ましい場合はメトキシ器がる魔癖となってい る場合である。

(A) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(8) をあげることができる。

(武中、川はフェニル藻が魔物されていてもよ い次の繋から選択された一倍又は二個の器:①

(3) 世に会まれる化会物の中で更に好ましい 化合物数としては、次の一般式で数される化合 物(C) をあげることができる。

8- で示される器、釣ちピペリジンの場 合である。

(C) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(0) をおげることができる。

(玄中、がはフェニル器が置換されてもよいイ ングノニル、イングンジオニル、イングノリデ ニル器から選択された器を意味する。

インダニル、®インダノニル、®インデニル、 ラロエル、のペンズスペロエル、⑥インダノリ

--C9-C%- で示される基を繁味す Ė#.

8 ×

81 は式 - (C8) - (式中、 aは 8 又は 1 ~13 の

整数を意味する。別は式 - (CH) 、- で示されるア

ルキレン器が整接蓋を持たないか、又はしつ又 は1つ以上のメテル概を有しているような形で 水素原子又はメチル蒸を意味する。)で示され る器、式=(CB-CH=CH)。- (式中、)は1~3の整 数を意味する)で果される器、式=CH-(CB;)。-(式中、cは0叉は1~9の盤数を意味する) で示される甚又は式~(CB-CB)。~(式中、 dは D 又は1~5の整数を意味する)で示される器を 意味する。

T, G, q, K 注前配と開稿の意味を有する。]

※は置換着しくは無置換のフェニル系、置換 されてもよいアリールアルキル基、魔強されて もよいシンナミル蓋を意味する。

8 は前記と間線の意味を有する。)

本発明化合物の製造方法は職々考えられるが、 (式中、J, B', K は前距と同級の意味を有する。) 代表的な方法について述べれば以下の通りであ

(式中、n, 2°, 2′ は前記の繁味を有する)で示 される器を繁味する場合」

$$1-\frac{8}{6} \cdot \frac{8}{8} \cdot \frac{8}{10} \cdot \frac{(CA^{2})}{9} - k \qquad (IA)$$

(武中、1,8°,8°,0,7,0,q,K は前記の業殊を有 し、 Halikハロゲン原子を露転する。)

即ち、一般式(音)で表される酸パロゲン化 物と、一般式(Ⅱ)で表される環状アミン誘導 体を、例えば炭酸ナトリウム、炭酸カリウム、 水融化ナトリウム。水酸化カリウム、水素化ナ トリウム、トリエチルアミンなどの脱塩剤の存 在下に、クロロホルム、ベンゼン、トルエン。 ・ジオキャン、テトラハイドロフラン、ジメチル キルムアミド (DMF) などの有機熔落中、氷 冷、意識もしくは加熱により反応させ、容器に 目的物質の一つである化合物(F)を得ること ができる。

製造方法日

Jがキナゾロン、テトラハイドロイソキノリ シーオン、チトラハイドロベンゾジアゼピンー オン、ヘキサバイドロベンツアゾシンーオンか

(式中、8°,8° は水器原子、低級アルチル器、 佐級アルコキシ基、ハロゲン原子であり、 pは 1~3の複数であり、 2は式-CN:- で示される

新、又は武一年 (武中、8) は水素原子又は鉄級 アルキル器を示す」で示される器を意味する。 Hai, 8°, a, 7, 0, q, Kは前記の意味を有する。)

即ち、一般式 (V) で教きれる魔教-1.2.3. 4 ーテトラハイドロー88ー 1 ーベンツアゼピン - 2- まンを。例えばジメチルホルムアミド路 嶷中で、一般式 (別) で表される化合物と、例 えばナトリウムハイドライドの存在下に縮合し て、自約物質の一つである(四)を得ることが ా శ్వీం

製造方法C

1200 で示される器であり、

かつ 8が - (Eii) 。- で示される器である場合は次

ら選択された環状アミド化合物から誘導される 一個の器である場合は次のような方法でも製造 することができる。

$$8* (C8*)$$
, -4 $9-8$ (A1)

Ball to Z

(NE) (C8) x

の製造方法によっても製造できる。

即ち、なーハイドロキシメテルニコテン酸ラ クトン (値) と、一般式 (以) で激される化合 物とを、角法により反応せしめて、目的物質の 一つである一般式 (X) で衰される化合物を得 ることができる。反応蒸度は 200 七前級が好ま LW.

数赛方绘见

であり、 8が文 - (CH)。- で扱される器である場 2°

合 (8°,8° は約記の8°,8° の定義と簡様の意味 を有する。6,8°は前記と関様の意味を有する。) は次の製造方法によっても製造できる。

即ち、2.3 ーピラジルカルボン酸無水物(類)を、例えばイソプロピルアルロール中に加え選派する。アルコールを留去したのち、一般式(X)で要される化合物と、例えばテトラセドロフランなどの路線中反応させることにより、留的物質の一つである化合物(別)を得ること

$$\frac{8}{8}$$
, $\frac{8}{10}$ - $\frac{8}{$

即ち、一般式(X)で表される優換2.3 ージ ヒドロオキンピロロ(3.4-b) ペンゼンと、一級 式(Yi) で表される化合物とを、例えば水素化 ナトリウム存在下に、例えばジメチルホルムア ミドなどの治案中、加熱下に反応せしめて、目 的物質の一つである化合物(XI)を得ることが できる。

製 註 方 注 E

であり、8か至 -C888-(C8)。- で聚される際で 87

ある場合は次の製造方法でも製造することがで きる。

かできる。

製造方法的

ある場合は、次の方法によっても製造することができる。下記の式中、8¹⁰ は前記の「何の定義における微検器を意味する。

即ち、例えばテトラヒドロフランなどの恋故中で、ジイソブロビルアミン、カーブチルリチウム/ヘキャン溶液を加え、約-80 ℃の温度にて、一般式(深)で表されるでセトフェノンと、一般式(深)で表される化合物と総合し、化合物(類)を得る。これを、例えばトルエンなどの溶媒中で脱水した後、常法により透散量元すると、目的物質の一つである化合物(類)が得られる。製造方法。

本発明において、 Jが出て定義されるものの中で、フェニル基が製液されてもよい①インダニル、②インダンニル、②インダンジオニル、

$$1, -64^{4} - 0, -\left(\frac{64^{4}}{3} - 6\right) - 6$$
 (XI)

(式中、J'は Jが上記の定義である場合を示し、 8'は上記の Bの定義において最左端の武器原子 に結合している基を除いた器器を散味する。)

即ち、一般式(版)で表されるホスホナートに一般式(版)で表されるアルデヒド化合物を 版店せしめて (wittig反応)、目的物質の一つ である一般式(版)で表される化合物を得、次 いでこれを接触感光して目的物質の一つである 化合物(以取)を得ることができる。

Nittis反応を行う際の独立としては、例えば ナトリウムメテラート(MeONa) 、ナトリウムエ ◎テトラロニル、◎ペンズスペロニル又は@式

□(CH-CH=CH), □(式中、 0は 1 ~ 3 の数数を多映する)で示される基、式□CH-(CH₂), □(式中、 0は 0 又は 1 ~ 9 の数数を意味する)で示される 基、又は式□(CH-CH), □(式中、 6は 0 又は 1 ~ 多の数数を意味する)で示される差である場合 は、例えば次の二つの方法によって製造できる。

製造方法1

チラート(EtBRs)、 t-8vilX、NaB などを挙げることができる。この際路線としては、例えばテトラとドロフラン (THF)、ジメチルホルムアミド (DMF)、エーチル、エトロメタン、ジメチルスルホキシド (DMSO) はごを挙げることができる。また、反応温度は震温から180で程度が好ましい結果を与える。

接触還元を行う際は、例えばバラジウム炭素、 ラニーニッケル、ロジウム炭素などを触導とし で用いることが終ましい結果を与える。

高である場合を異体的に示せば、以下のとおり である。

る基(式中、811,812 は 5の定義のうち、阿一 又は相異なる水素原子、征級アルキル基、低級 アルコキシ基、ハロゲンである場合をいう)で あり、8か式-(CF₂)。で示される基(式中、 n は1~8で示される基を意味する)であり、柔

$$-\sqrt{(C8.)} - \text{chinamus} - \text{C8.}$$

$$\text{nonewasin, xwit-C8.} \sqrt{2} \sqrt{8}$$

(式中、81°,81° は、81′,81° と開榜の定義とする) で示される基である場合を異体的に示せば次の遊りである。

$$1, -ca \cdot -a \cdot - \left(\frac{(5a \cdot 1)}{9} - x\right)$$
 (XXII)

即ち、一般式 (双動)で表される置核岩しくは 無覆接のインダノンなどの化合物と一般式 (双) で表されるアルデヒド体と、常性によりアルド ール縮合を行い、目的物質の一つである一般式 (脚) で表される化合物を得る。

本度路は、例えばテトラヒドロフランほどの 密媒中でジインプロビルアミンとホーブテルへ キサン溶液によりリテウムジインプロビルアミ ドを生成させ、好ましくは約一部りの程度でこれに上記の一般式 (取引)で表される化合物を加える。次いで一般或 (取) で変されるアルデヒド体を加えて常法により反応せしめ、室温さで昇温させることによって結水させ、エノン体である一般式 (頭) で変される化合物を集る。

本反応の別方法として、商者 ((23)と(33)) をテトラヒドロフランなどの溶媒に溶解し、約 りでにて、例えばナトリウムメチラートなどの 塩基を加えて、窓道にて反応させることによる 方法によっても製造することができる。

上記の製造方法によって得られたエノン体 (類)を前紀に示したと問機の方法により還元 することにより、一般式 (質目)で表される化合 物を得ることができる。

あり、8が式-(CH,),-で示される基であり、式

製造方法1に記載したと同様に、一具体例を 赤せば次の遊りである。

る場合を異体的に示せば以下のとおりである。

熟 遊 方 绘 H

」がフェニル器の部分が凝壊されてもよいインダノリル器である場合は、以下の方法によって製造することができる。

野ち、化合物(取割) を 0 七一室温にて、例えば水素化ホワ素ナトリウムなどで差元することにより、目的物質の一つである化合物(取割)を得ることができる。この場合の溶解は、例えばメタノールなどが針ましい。

製造 方法 [

Jがフェエル系の部分が優換されていてもよ いインデニル基を示す場合は、以下の方法によ っても製造することができる。

取ち、化合物 (XIII)を常法により複数などの 存在下版水させて、目的物質の一つである化合物 (XIV)を得ることができる。

製造方法工

Jがフェニル基の部分が置換されていてもよ いインデノニル基を示す場合は、以下の方法に よっても製造することができる。

ランなどの溶液中、 1,8-ジアザビンクロ (3,4,0) ウンデクー (-x) (DBU) とともに 加熱蒸液することにより 8 - 複雑を行い、イン デノン化合物 (双面を得る。なお、上記のブロ ム体は、他のハロゲンでも反応は可能である。

なお、製造方法 G ~ J において、出発物質と して用いるインダノン類は市販品を用いるか又 は以下の方法により製造される。

一部ち、一般式 (XII)で表されるインダノン化 合物を、例えば四塩化炭素などの溶媒中。 8-プロムコハタ酸イミド (NBS) と過酸化ペン ソイルとともに加熱酸洗してプロム化し、次に このプロム体 (XII)を、例えばチトラヒドロフ

一方、アルデヒド体は例えば以下の方様によ り製造することができる。

XII

即ち上記の如く、式 (i) 又は式 (ii) で示される化合物を出発物質とし、これを上配の方法によりアルデヒド体とし、これを下記に示すウィテッと反応などを繰り返したり、組み合わせたりすることにより増設反応を行い、目的とする出発物質を得ることができる。

ウィテッと試策としては、例えば1炭素増長 のときはメトキシメテンントリフェニルホスホ ランを用い、2炭素増長のときはホルミルメチ シントリフェニルホスホランを用いる。

メトキシメテレントリフェニルホスホランは、 メトキシメテレントリフェニルホスホーウムクロライドとローブテルリテウムとから、例えばエーテル又はテトラヒドロフラン中で生成させる。この中にケトン体又はアルデヒド体を加えてメトキシビニル体とした後、微処理によってアルデヒドを会成することができる。

特定の場合の異体例を以下に示す。

素などが好ましい。

異 体 57 2

辺上のようにして得られる一級式(i)の化 合物及びその酸付加塩は各額老人生商呆底、特 にアルッハイマー型老年商果の治療に有用であ る。

一般式(1)で示される化合物及びその酸付加度の有用性を示すために、薬理試験結果を以下に説明する。

寒腺例1

In vitesでセチルコリンエステラーゼ阻塞作用

一方、カルミルメチレントリフェニルホスホ ランを用いる場合は、原料となるケトンは又は アルデモド体のエーテル、テトラヒドロフラン 又はベンゼン溶液中にウィテッと試薬を加え、 窒温から加熱器洗することによって合成するこ とができる。

このようにして合成した不飽和アルデヒド体は、必要により接触激光して飽和アルデヒド体とすることができる。この際の触媒としては、バラジウム投業、ラネーニッケル、ロジウム機

アセチルコリンエステラーゼ圏として、マウス圏ホモジネートを用いて、Blassらの方法のに準拠してエステラーゼ結准を測定した。マウス圏ホモジネートに、蒸箕としてアセテルチオコリン、被検体及びDTNBを添加し、インキュペーション後、産生したテオコリンがDTNBと反応し、生じる黄色医物を41%のにおける吸光皮変化として測定し、アセチルコリンエスチラーゼ活性を求めた。

機体のアセチルコリンエステラーゼ阻害活性 は50米阻害激度(IC。。)で表した。

結果を表しに示す。

1) Silman, E.L., Courtney, K.D., Andres, V. and Peatherstone, R.N. (1981) Broches, Phermacol., L. 38 ~05

変 (統 金)

注 会 数	40gH 等信 第	代告物	ACHERINA IN
1	8, 23	32	0. 8
*	9, 0053	35	0, 98082
\$	ä, 10	38	8. 9915
8	0, 637	39	6.15
- 8	6, 613	. 41	0,085
\$	0,051	- 43	9, 936
18_	6, 609	\$6	Q. 38
11	9, 088	58	0, 819
12	9. 940	82	9, 86
18	6, 626	84	1.0
14	9, 638	86	6,017
13	₫. 894	72	6, 0075
13	0, 852	75	0, 6016
18	9. 88	77	9, 18
19	0. 684	86	6, 28
36	0, 54	82	0.626
23	58	99	0,018
-2.3	0, 973	100	0,035
24	3. 1	108	9,085
28	38	111	0, 11
27	9.41	130	8, 19
36	0,001	134	2.8
31	0.094	188	0,084

化合物	ACEE 客框法	化合物	ACCENTAGE
188	0, 881	218	S, 8042
388	0.018	218	0.017
180	9, 82	217	0.14
181	8, 085	231	6, 633
198	0, 013	222	0, 611
193	8,2	223	0,0084
194	9, 089	224	6, 683
198	0.0071	225	9, 48,
198	0,0013	225	9, 9049
18?	9,38	227	6, 51
898	6, 8654	228	9, 002
199	9, 1123	833	0, 94
203	8, 999	230	6, 18
204	0, 635	231	0, 90%
205 -	0.014	238	8, 1
205	0, 41	E333	0.046
207	0, 043	234	0,6018
268	2, 982	235	0, 22
269	0, 43	238	0, 672
210	9.08	\$3B	9, 18
313	0, 5	240	9, 0988
217	\$. 95	241	9, 22
214	6, 8034	249	0. 82

実験例2

8× *1*** アセチルコリンエステラーゼ照響作用 ラットに接接体を経口投与し、その1時間後 に大脳半球を課取し、ホモジナイズ後、アセチルコリンエステラーゼ活性を認定した。ほお、 生質女婆水投与群を対照とした。

結集を表でに示す。

2 2

化合物物	用 数 (88/kg)	ACHE組書作用 (策)
Saline		8
	1	5 *
	3	17 **
4	10	39 **
	30	47 **
	10	5
15	39	
	100	18 **

莱毅多63

スコポラミンの受動回避学習微器に対する作用。"

Wistar系統性ラットを用い、装置としては Step through型の明確額を使用した。試行の1 時間制に検体を経口投手し、30分前にスコポラ ミンG、5ag/kg(ip)を処置した。訓練試行では明 窓に動物を入れ、暗室に入った直談にギロテン ドアを開め電気ショックを定のグリットから与 えた。8時間後に保持試行として再び動物を明 室に入れ、特室に入るまでの時間を測定し評価 した。

効果は生食投与群とスコポラミン投与群の反応時間の差を 100%とし後体により何%拮抗したか(Reverses)で表した。

*1 2.80%planecky & Jarvik: Ini, J. Neuropharmacci
5. 217 ~222 (1967)

結果を改るに示す。

※ 3

化合物剂	/# & (ng/kg)	Severse)
*	9, 125	55
· S	9, 25	35 °
13	0,25	-33
13	0, 5	27
ïs	1.0	51
į ū	2.0	30
19	9.5	37
13	10	3.9
73	0. S	83
13	1.0	38

XXX 4

ラット社児の脳神経無常の培養故びに神経細 独中コリンアセチルトランスフェラーゼ(CBAT) 活性の需要

2) P. Fonson : J. Seurechem., 24, 407-409 (1975)

Heftil らの方法に挙じてラット胎児の脳神経細胞の培養を行った。ウィスター系離性ラット17日齢の胎児大脳学課をトリブシン処理した。細胞数を2×16°個/0.5㎡に超難し、間時に複数化合物を添加してマイタロブレートに移し、37℃、5%COs-95%G。で7日期培養した。マイタロブレート中の培養神経細胞のcha7活性はPannus?の方法に挙じて別定した。神経細胞培養液に"C-Acetyl Coenzyne A を加えて1時間反応させ、生成した"C-Acetyl-chafine をチトラフェニルポロン存在下トルエンにて抽出し、彼体シンチレーションカウンターにで測定し、Cha7活性を求めた。 機体のCBa7数活作用はコントロール気で表した。

 F. Nefti, J. Haytikka, F. Eekerestein, H. Gasha, R. Neuman and M. Schwab, Neuroscience, 14, 55-68 (1985)

₹

化 会 物	コリンアセチルトランス フェラーゼ(CMT)気管運転	
	Canc.	X of Cont.
6 b	10-13	96
	10-4 8	314*
C8-0	10-1 N	318**
	18-, 8	181,
	18-0 1	188,
C838	1800 8	181
8	16-, 8	93
Ø-0-0-0	10-1 18	87**
	18-1-12	38**
Q	18 7 N	114
' \	{\$^* ¥	119**
	18-3 8	104
en etc n	39^* X	135*5
08,08,8 \$\dot - 030 \dot - 03	16-× ×	121*
CH,CH,6	10 x	138**
co 8	10-1 X	83
	19-5 %	\$5
C8.9	10-1 1	73**

《 会 物	コミンアセチ フェラーゼ	ルトランス (ChAT) 就活活性
	£ove;	≸ of Cont.
~, s 9	10~* 8	108
Ca, a C - Ca,	30°° ×	186
CR*0	16-8 M	110**
en 6	16-* ×	101
	10-* 3	185×*
C8 s 0	18-> ¥	85**
CN 5	36-7 %	188**
	10-* u	183
CK-8	10-1 8	88.
F8.8	19~* 18	161
O.eOc.	10-* ×	198
28,9	10; R	84
ma for in	18-' N	105**
CH. CH.O. CT - CH.OCH.O	16-4 8	33
CBS CBW CBS	16-4 N	79**

上記の選擇業績例から独力なアセチルコリン エステラーを記事作用及びコリンプセチルトラ ンスフェラーを被信作用を有していることが明 らかとされた。

本義領化会物(1)のうち。Jがフェニル選が関換されていてもよいインダノンから誘導される基である場合の化合物が最も好きしい。即ち、特に、Jがフェニル場が選換されていてもよいインダノンから誘導される基である場合の化合物は、提来のアセテルコリンエステラーゼ問書がとは構造を署しく異にすること、優れたコリンアセテルトランスフェラーゼ数活作用を考し、更に終力なアセテルコリンエステラーゼ観響作用を有し、ことのほか正作用一動作用中が大きいこと、作用持続が暴いこと、水溶性が高く、昆つ極めて変定な化合物であり、製料上有利であること、及び生体利用率が優れ、行うに対象の等数を含している。

従って、本発明の目的は、コリンアセチルトランスフェラーゼ厳活作用に基づいて緩々の施

果産、福血管建築協議症に有効な化合物を有効 成分とする新規な医薬を提供するにある。

なお、本義明化合物の代表的化合物(前記数 3の化合物版4、13、15、19、79)について、ラット における要性試験を行ったところ、いずれも約 100mx/kg以上で震算な要性を示さなかった。本 発明化合物は、コリンアセチルトランスフェラ 一を設施作用が有効なあらゆる概念に有効であ る。代表的な概念をあげれば、各種定人性病果 低;特にアルツハイマー型定年期果、罹卒中 (製出血、凝緩器)、凝動脈硬化症、関部外害 などに伴う凝血管障害;凝炎後適度、凝性麻痺 などに伴う性変力低下、言語检查、整欲低下、 情報等。配益降害、幻覚一度無疑懲、行動異 常などの治療、予防、緩解、改善などに有効である。

本発明化合物のコリンドセチルトランスフェ ラーゼ数活作用がこれらの展型に有効なのは、 上記の作用により場内のアセチルコリンが増数 されることに基づくものと考えられる。

更に、本発明化合物は強力かつ選択性の高い

抗コリンエステラーゼ作用を有するので、これ らの作用に基づく医薬としても有用である。

即ち、アルンハイマー製造年類素のほか、例 えばハンチントン類類例、ビック病、随発性異 常弦などにも有用である。

本発明化合物をこれらの医薬として使用する 場合は、経口数等若しくは非経口投等により没 与されるが、通常は都級内、皮下、筋肉内など 注射剤、坐薬若しくは舌下錠など非傷口投等に より投写される。役与量は、症状の程度;患者 の年令、性別、体質、感受性差;投与方法;投 与の時期、脂類、医薬製剤の性質、提剤、養領 ;有效成分の種類などによって異なり、等に能 定されないが、過常成人1日あたり約3.1~300 mg、肝ましくは約1~100mg であり、これを通 常1日1~4回にわけて投与する。

本発明化合物を製剤化するためには、製剤の 技術分野における通常の方法で注射剤、坐翼、 舌下盆、錠剤、カブセル剤などの刺翼とする。

注射剤を顕製する場合には、主薬に必要によ カpii線整剤、緩衝剤、整濁化剤、溶解補助剤。 安定化率、等級化額、保存例などを抵加し、常 法により参照、皮下、筋肉内注射剤とする。そ の際必要により常法により液結乾燥物とするこ とも可能である。

経際新としての例を挙げれば、例えばメチルセルロース、ポリソルベート80、ヒドロキシエチルセルロース、アラピアゴム、トラガント
※、カルボキシメチルセルロースナトリウム、
ポリオキシエチレンソルビタンモノラウレート
などを挙げることができる。

容解特別期としては、例えばポリオキシエチ レン硬化セマシ油、ポリソルベート30、二コ チン酸アミド、ポリオキシエテレンソルビタン モノラウシート、マグロゴール、ヒマシ油脂肪 酸エチルエステルなどを挙げることができる。

また変定化剤としては、例えば運硫酸ナトリウム、メタ運硫酸ナトリウム、エーテル等が、 深存剤としては、例えばバラオキシ変悪萎酸メ チル、バラオキシ変悪萎酸エチル、ソルビン酸、 フェノール、タシゾール、タロロクシゾールな どを挙げることができる。

第出版を採圧適額した後、残骸を塩化メチレンに溶解し、10%塩製一酢酸エチル溶液を加え、 さらに減圧激増して結晶を得た。これをメタノ ールー19% から再結晶化し、次の物性を育する 係組化合物().33 g (収率80%) を得た。

・触点(で):224 ~225

・元素分析像: 0:,8:,80・801 として

C 8 8

理验值(96) 74.68 7.63 3.79

東部(数 (96) 74.66 7,65 3.77

英 為 例 2-

<u>リーベンジルー 4 - 〔2 -- 〔(1 - インダノン</u>) <u>- 3 -- 4 リデニル〕)エチルビベリジン・塩酸</u> 滋

80%水路化ナトリウム0.38gをヘキサンにて 洗浄後、TMF 10mlを加えた。この中へ 8 むにて ジェチル1 -- インダノンー 8 -- イルホスホナー

(家籍例)

以下に実施例に従って本発明をさらに異体的に説明するが、本発明の技術的範囲がこれらの 実施例の範囲に接定されるものでないことはいうまでもない。

なお、下記の実施例において、RRE の値はす ペでクリー体での測定値を示す。

実 摘 例 1

<u>1 - ベンタル・4 - 〔8 - 〔(1 - インダノン)</u> - 2 - イル〕〕エチルビベリタン・塩酸塩

1ーベンジルー4ー(2ー((1ーインダノン)-2ーイリデニル))エチルビベリジン
0.37gをメタノール10mlに溶解し、5 %ロジウム一提案 0.1gを加えた。炭磁常圧にで24時間水素添加した後、触媒を練別し、複複を減圧激縮した。この残渣をシリカゲルカラム(塩化メチレン:メタノール= 208:1)にで機製し、

ト2.12gの7#タ 30≈1溶液を除下した。窒温にて 30分援押した後、再び0℃に冷却し、1ーベン グルーイーピベリジンアセトアルデモド3 43g の8MF 10ml 溶液を加えた。室温で2時間、58七 で2時間さらに2時間加熱激微した後、6℃に てメタノールと20%能製を加えた。10分後飽和 水酸化ナトリウム水溶液にて塩蒸佐とし、酢酸 エチルにて抽出した。有機器を飽和食塩水にて 佐夢した後、破骸マグネシウムで乾燥し、緩圧 繊維して得られた残渣をシリカゲルカラム(塩 従メチレン:メタノール=500 : 1) にて積製 した。露出液を減圧濃縮した後、残渣を塩化メ チレンに溶解し、10%塩酸一酚酸エチル溶液を 加北、瀬田織籍して標題化合物0.78g(収率27. %)を得た。なお、ジェチルトーインダノシー 2ーイルホスホナートを1.378回収した。

- · 分子式: C2.82.80 · NC!
- *H-NHK(COCl₃) & :1,10-2.13(7H,n) \ 2,25 (2H,t) \ 2,88(2H,bd) \ 3,48(2H,s) \ 6,72 -7,67(2H,n) \ 7,30(5H,s) \ 7,10-8,00

(58. 8)

x m m 3

1 - ベンジルー4 - [(5.8 - ジメトギシー! - インダノン) - 2 - イリデニル] メチルビベリジン・協制協

(8) <u>1-ベンジルー4-ビベリグンカルボアル</u> デヒドの合成

メトキシメチレントリフェニルホスホニウム クロライド26.0gを無水エーテル 200mlに影響 させ、1.6% ローブテルリテウムへキサン路液 を窓器にて譲下した。窓圏にて30分間選押した 後、0 でに冷却し、1 ーベンジルー 4 ーピベリ ドン 14.35gの無水エーテル30ml溶液を加えた。 窓型にて3時器護押した後不溶物を遮別し、違 被を継圧塗締した。これをエーテルに溶解し、

この皮がはアルゴン雰囲気下行った。

無水TBF 10sl 中にクインプロビルアミン2,05 *1を加え、さらにりでにて1.8% *-プチルリチ カムペキサン溶液9.1201を加えた。 0 でにて10 分援押した後、-78でまで冷却し、5,8 - ジメ トキシー 1 ーインダノン2.55gの無水7HP 30ml 溶液とヘキサメチルホスホルアミ Y2,31ciを加 えた。一73℃にて15分援搾した後、回で得た1 ーベンジルーミービベリジンカルボアルデヒド 2.70gの線水THF 30ml 溶液を加えた。窓温まで 徐々に昇湿し、さらに室湿にて 2 時間撹拌した 後、1%塩化アンモニウム水溶液を加え、有機 圏を分離した。水圏を酢酸エテルにて推出し、 さらに合わせた有機器を飽和食塩水にて洗浄し た。磁酸マグネシウムで乾燥後、減圧濃縮し、 得られた残惫をシリカゲルカラム(塩化メチレ ン:メタノール=500 : 1~100 : 1) にて精 製した。常出液を減圧液瘤した後、残密を塩化 メチシンに密解し、18%歳態…酢酸エチル溶液 を加え、さらに減圧激縮して結晶を得た。これ 18塩酸にて抽出した。さらに水酸化ナトリウム 水溶液にてp8-12 とした後、塩化メチレンにで 抽出した。硫酸マグネンウムにて乾燥後、緑圧 繊維し、得られた痰液をシリカゲルカラムにで 精製し、油状物質5.50g (収率38%) を得た。

これをメタノール40mlに溶解し、18度散40ml を加えた。3時間加熱選進した後、深圧溶除し、 機能を水に溶解後水酸化ナトリウム水溶液にて pH 18 とし、塩化メテレンにて抽出した。給和 食塩水にて洗浄後、硫酸マグネシウムにて乾燥 し、減圧緩縮して得られた残値をシリカゲルカ ラムにて精製し、環難化合物2.77g(収率54%) を始状物質とした得た。

- · 分子或: C; 88; 780
- 18 888 (CDC1₆) & : 1, 40 ~ 2, 40 (78, m) \ 2, 78 (28, de) \ 2, 45 (28, m) \ 7, 20 (58, m) \ 9, 51 (18, d)
- (b) 1-ペンジルー4-((5,5-ジノトキシー 1-インダノン)-2-イリデニル)メテル ビベリジン・盗器塩の合成

を選化メチレンー(PS から再結器化し、次の物性を有する標盤化合物3、40s (収率62%)を得た。

- · 触点 (で) ; 237 ~ 238 (分解)
- · 元素分析後: Co. Ho. HO: ・HC! として

C 8 3

理論值(%) 59.54 6.88 3.38

実施数 (96) 89,51 6.78 3.30

実 独 例 4

<u>| 1 - ベンジル - 4 - 5 (5,8 - ジメトキシー 1</u> <u>- インダノン) - 2 - イル] メチルピペリジン</u> ・塩穀塩

1 ーベングルー 4 ー ((5.8 ージチトキシー) ーインダノン) ー 2 ーイリデニル) メテルビベリジン(), 40 g をTHF 16 の1 に溶解し、10 %パラジウムー変素(), 94 g を加えた。盗風者圧にて 8 時間水漏溶加した後、独蹊を達明し、線液を減

圧凝縮した。この競技をシリカゲルカラム(塩化ノチレン:メタノール=50:1)にて精製し、 総出放を減圧激凝した後、競技を塩化メチレン に容解し、10%塩酸一酢酸エチル溶液を加え、 さらに減圧激縮して結晶を得た。これをエタノールーIFB から再結晶化し、次の物性を育する 機翻化合物0.95g(収率82%)を得た。

・独点(で):211 ~212 (分解)

· 元器分析数; Co. Ho. NO. · NCIとして

0 8 9

理論核 (%) 89,30 7,27 3.37

突然性 (%) 69,33 7.15 3.22

寒 海 粥 5

2 - (& - ((-ペンソルビベリゾン) エチル)
 -2.3 -ジヒドロー1-オキンピロロ(3, & -b)
 ビリゾン・二路穀塩

2--ヒトロキシメチルエコチン酸ラクトン12.6

除却下、缓押しながら水素化ナトリウム(66.9%) そ0.21 s 加える。その後、2.3 ージヒドロー5、 5 ージメトキンオキンピロロ [3,4 ーも] ベン ゼン1 s を加え、80 ℃で 4 時間獲押する。終了 後、8.5 を加え、クロロホルム抽出し、クロロ ホルム圏を水洗、乾燥(88.50。)、溶膜を留去し でソリカゲル綺麗すると目的物の抽状物を得る。 これを常法により複数 遠にすることによりタリーム色の結晶を約0.28 得た。

- · # F # : C, H, N, N, O; · 2 HC |
- · 'H-NM8 (COCI,) # ;

1.12~3.4(98, 5), 2.72 ~3.00(28, 5),

3.48(28,e), 3.82(28,t), 3.95(68,s),

4.28(2H, s), 8.90(1H, s), 7.28(8H, s)

莱油网7

<u>4-(8-(0-7ミノベンジル) エチル) - 1</u> -ベンジルビベミジン

g、4-(2-Tミノエチル) ベンジルビベラ ジン40 gをシールドチェーブ中で200 む、7時 関撲弁する。その後、シリカゲルカラムで構製 し、常法により複数塩にすることにより目的物 の二複数塩8.37gを得た。

・鞍点(で):143.5 ~145

・元素分析值:Co.HowN.O・28C1 として

C 8 8

理論性(%) 51.77 8.86 10.29

突跳悠(%) 51.49 8.68 9.98

X M M 6

□□ [3,4 - □] ベスモン・浮露滚 -3,3 - AF L □ -2, 2 - A Y F + A X + A E 5 - (4, - (1, - ストカル R × 1 カル) エキル)

2,3 ージヒドロー5,6 ージメトキンオキシビ ロロ (3,4 ーb) ベンゼン 9,5 g を触線数のヨ う化カリウムとともに887 に譲襲する。これを

これをメタノール100ml に容解し、10%パラジウム一揆器(含水)3gを用い4×g/cm² 圧力で水業器加を行い、器器化合物25,8gを得る。・分子式;Ca,Ha,B。

. 'H-NNR(COC1.) δ ; 1.0 ~2.1(98.0) . 2.64 (28.1) . 2.90(28.0) . 3.47(28.0) . 6.65 (28.0) . 7.30(58.0)

寒 路 例 8

3- [2-(1-ベンジル-4-ビベリジル) エチルー2-(18, 38) -キナブリンオン

4 - (8- (0-アミノベンジル) エチル)
- 1 - ベンジルビベリジン25.3g、1,1'-カル
ポニルジイミダゾール13g、メタノール100al
を12時間加熱器度を行う。反応後、水をあけ、
メテレンタロライドで抽出し、緑水醗酸マグネ
ンカムで乾燥し、溶薬を縁圧製出する。

この総法をシリカゲルカラムクロマトグラフィーにより得製(5%NeOH-CH₂Cl₂)し、酢酸エチルより、2個再結晶を行い複類化合物3.0 まを得る。

·分子式; [1:8:18:0]

- 'N - NUR (COCT₂) Ø ; 1.0 ~2.1(9H, m) . 2.7 -3.0(2H, m) . 3.2 ~3.6(4H, m) . 4.4 (2H, m) . 5.5 ~7.4(8H, m) . 7.75(1H, m)

せる。豫圧下溶媒を製出し、シリカゲルクロマトグラフィーで精製後、常法で盗鞭強とする。 ※養無非器質0.17gを得る(収率13.5%)。

·分子式;Ca.Na.NaO·SHCL

* 'H - NNR (CDC1₂) & : 1, 26 ~ 2. U2 (9H, m) . 2. 52 (3H, s) . 2. 78 ~ 2. 95 (2H, bd) . 3. 10 (2H. s) . 3. 48 (2H, m) . 3. 54 (2H, m) . 3. U1 (2H. bi) . 7. 14 ~ 7. 45 (9H, m)

突线 91 10

<u>1 - [4 - (| - ペンジルビペリジン) エチル]</u>
-1, 2, 3, 4 - テトラハイドロー5H-1-ベンツ
アゼピン-2-オン・塩酸塩

ナトリウムハイドライド6.27 8をジメチルホルムアミド (BMF)8.5m) に翻摘させ、氷浴下復搾する。これに1,2.3.4 ーテトラハイドロー58 ー1ーベンツアセピンー2ーオン8.60 8 をOMF

E 18 M 3

<u>1 - (f - (f - ベンジルビベタグン) エチル</u>
-1,2,3,4 - チトラハイドロー4-メチルー5
8- (j,4) - ベンゾジアゼビンー2-まン・三 塩酸塩

サトリウムハイドライド(0.35gをジメチルボルムアミド (088)(0.5m) に懸蔑させ、水冷下機件、これに1,2,3,4ーテトラハイドロー4ーメチルー58ー1,4ーベンツジアゼビンー2ーオン(0.52gを08年3m1に溶かして溶下し、窒息で30分類複样する。ここへ8ーベンジルー4ー(2ークロロエチル)ピベリジン塩酸塩(0.31gを08年3m1に溶かして溶下し、60~76℃で7時間複粋する。水水にあけ、塩化メチレンで抽出する。物和金塩水で洗い、硫酸マグネシウムで乾燥さ

401に密かして落下する。60℃で15分間加熱後、 水冷し、ドーペンジルー4ー(2ークロロエチル)ピペリジン複類図1.02gを加え、その後、 60℃で3時間30分復辞する。放冷後、水水にあけ、塩化メチレンで抽出する。水洗後、碗数マ グネシウムで乾燥させ、減圧下溶媒を留去する。 シリカゲルクロマト積盤後、常法で複類溢とし、 機能化合物1.40gを得る(収率54.3%)。

·分子式; Cs. Hs. N. B · NC1

突 施 河 11

 8 - [4 - (『ーペングルゼベリジル)エチル]
 -5.8.11.12 - チトラヒドログベンゾ (5.1) ア ソミン・6 - オン・塩酸塩

5.6.11,12ーチトラヒドロベンソ (8.1) Tソ ミンー6ーオン2.24 g と60%水溶化ナトリウム をジメチルフォルムアミド20m1に入れ、80でで 1時間加熱複雑後、1ーベンジルー4ークロロ エチルピベリジン 6.7 g を加え、さらに3.5~時 脳反応する。

反応液を水20mlにあけ、酢酸エテルで相出し、 飽和食塩水で洗浄し、硫酸マグネシウムで乾燥 し、減圧窒去する。

競技をシリカゲルカラムクロマトグラフィー により (5%%e0N is CH₂Cl₂) 精製分離し、構 級化合物0.6 gを得る。

- ·分子式: C..H.:N,0·HCI
- ·'H-NHH(COC1.) 8:1.1 ~2.2(9H, m) . 3.7 ~4.1(4H, m) . 4.15~4.5(2H, m) . 4.46 (2H, m) . 8.8 ~7.4(13H, m)

莱 務 例 12

10- (4'- (1'-ベンジルビベリジン) エチル) -19,11 - ジハイドロー5-メチル-58-ジベ ンソ (5,8) (1,4) ジアゼビン-11-オン・第

- ・分子式:0:,8:,13:0・361
- **H-HBH(CDC1*) & ; 1, 20-1, 91(11H, m) .

 2, 60-3, 00(2H, b*) . 3, 22(3H, m) . 3, 41

 (2H, s) . 6, 87-7, 98(3H, m) . 7, 08(9H, m) .

 7, 64(1H, dd)

莱 施 例 13

3… ((ぎー() ーベンジルビベリジン) ブロ ビオイル) アミノ) ー2 - ビラジンカルボン酸 イソブロビルエステル・塩酸塩

2.3 ーピラジンカルボン整無水物18gをイソ プロピルアルコール 200mlに加え1時間遷流す る。その後アルコールを留去し、得られる面体 を785 に溶解して4 ー (2 ー アミノエチル) ベ ンジルピペリジン30.6g、1 ーハイドロキンベ ンゾトリアゾル21gを加える。これを拘卸下、 撹拌し、8CC 88.7gを加え、窒極で1歳反応さ せる。減過後、785 を留去し、塩化メチレンを 級塩

ナトリウムハイドライド()25gをジメテルホルムアミド(88f)に発売させて水冷下燃搾する。ここへ。[0,11 ージハイドロー5ーメチルー6Hージベンド(0,6) (1,4) ージアゼピンー[1ー ** ン0.58gを08f 5の1に溶かして調下する。40~50℃で20分配撹拌し、次いで水冷して、4~(アミノエテル) ー1ーベンジルゼペリジン().71gを加え、45~65℃で8時間撹拌する。水水にあけて塩化メチレンで抽出する。乾和食塩水で有機屬を洗い、蒸酸マグネンウムで乾燥させた後、減圧下溶薬を溜出する。残液をシリカゲルカラムで終毀し、常法により蒸酸塩として緩緩化合物().78gを淡黄色非経気として得る(収率65.4%)

加える。これを飽和炭酸カリウム水溶液、食塩水で洗浄し、乾燥後、溶鉱留去する。さらにシリカゲルカラムで精製し、得られた結晶をエーナルーヘキサンで再結晶すると目的物の白い結 最8、81gを得た。これを常徳により複数塩とした。

·元素分析値: Cs.Hs.8.0。·8Cl·1/xH.Dとして

莱 糖 例 14

理論館(3)

38 88 88 (X)

2ーキノキサリンカルボン酸クロライド2g を1ー(ローメトキシペンジル) ー 4 ー ピペリジ ンエチルアミン2.52gをトリエチルアミン2g 存在下、窒息でTHF 中で反応させた。これを常 法により後処理してカラム精製することにより H-(4'-(1'-(p-メトキシベンジル) ピペリ ジン) エチル) -2-キノキサリンカルボン酸 アミド 2.38を答た。

これを18塩化メチレンに溶解し880により 脱メチル化反応を行い、カラム精製することに より生成物0.3 8を得た。これを複数塩とする ことによりケリーム色の結晶を8.8 8得た。

- ·分子定:C**8**8*0**8C1
- . '8 -- NAR (CDC1.) \$; 1.08 -- 1.92 (94.0) . 2.84 -- 3.18 (24.0) . 3.24 -- 3.84 (24.0) . 3.52 (24.5) . 5.60 (24.0) . 7.05 (24.0) . 7.17 (24.0) . 7.84 -- 8.14 (44.0) . 9.53 (14.0)

実 第 例 15

<u>※- {4' -()* -- ペンジルビベリジル) エチル}</u> -2-キノキサリンカルボン酸アミド

4-(8-ペンダイルピベリジル) 野製47 8 と 塩化チオエル 8 ml とペンゼン29 ml 中 2 時間加熱 置液後、液圧器 金する。

これをTHF 20mlに溶解し、水冷撹拌下アニリン1.85m、トリエテルアミン10m、THF 30ml内に溶加する。室蓋で約11時間反応した後、水にあけメチレンクロライドで抽出する。錐和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧溜去する。残渣をシリカゲルカラムタロマトグラフィーで精製(5%KeBH in CH₂Cl₂)し4ー(Hーベンソイルピベリジル)酢酸アニリドの.9 mを得る。

この4-(8-ベンゾイルピペリジル) 酢酸アニリド 9.9gをTHF 10mlに溶解し、水冷撹拌下、THF 30ml中リテクムアルミニウムハイドライド 0.38gを添下し、さらに1時間加熱環流する。 反応後、水を加え、沈額遠虫後、酢酸エテルで 物出し、総和虚塩水で洗浄し、無水硼酸マグネ シウムで乾燥し、端葉を縁圧留去し、1-ベンシルー4-(8'-フェニルアミノエチル) ピベ

1 ーベンジルー4 ーでミノエチルゼベリジン4.8 g、ピリジン80ml、4 ージメチルでミノビリジンを密羅、撹拌下、2 ーキノキサロイルクロライド40g加える。3時翻段形後、水にあけメチレンクロライドで抽出し、途和食塩水で洗浄後、無水硫酸マグネシカムで乾燥し、溶液を被圧酸去する。

この経済をシリカゲルカラムクロマトグラフ *一で精盤(5 %WeB#-ChaCis)し、酢酸エチ ルより再結器し、縲羅化合物3.0 gを得る。

- ·分子式:C,,H,,N,O, · HCI
- . 'N NMR (COC1₂) & : 1. 16 2. 20 (SH. m) . 2. 76 -3. 04(2H, m) . 3. 49 (2H, m) . 3. 48 - 3. 88 (2H, t) . 7. 13 - 7. 40 (SH. m) . 7. 70 - 8. 26 (4H. m) . 9. 54(1H. m)

異 施 例 18

<u> 1 - ベングルーミー(8 ーフェニルアミノエチ</u> ル)ビベリジン

リジン8.7 gを答る。

- ·分子式:Castivalia
- . 'B NNR (COCI.) & : 1.0 ~ 2.2(8h.m) . 2.85

 (2H.m) . 0.10(2H.t) . 3.44(2H.m) . 3.7

 (1H.bs) . 8.4 ~ 6.8(3H.m) . 7.0 ~ 7.4

 (TH.m)

英雄 例 17

リー(4、一(1、一ペンジルピペリジル)エテル)

アセトアニリド

1 ーペンジルー4 ー (**・フェニルアミ/エチル) ピベリジン0.7 g、トリエチルアミン2.0 g、THF 20mlを氷冷下接摔下、アセチルクロライド0.4 gを擦下する。

窓温で3時間反応後、水部がを加え、メテレンクロライドで抽出し、総和食塩水で洗浄後、 紙水破骸マダネシウムで乾燥し、溶蒸を凝圧器 法する。践後をカラムクロマトグラフィーで構 製 (5 % Me OH in ChyCle) し、問題化合物を得 50

- ·分子式;C, 28, 28, 0
- 'H NNA (COC) ,) & : 1, 0 -2, 1 (12H, a) , 2, 5 $\sim 3.0(28.m)$, 2.39(28.s) , 3.67(28.t) . 6.9 ~7.5(108.#)

X 36 5% 1 8

まー(3、5) ージメトキシフェニル) 一者ー(4) ー ()' -~>UNE~!UN) IFD) -4-7 ロロけい皮酸アミド・塩酸塩

1-4752-4-(8'-(3',5'-5/+ シフェニル) アミノエチル] ピペリジン 1.0g。 トリエチルアミン2.0 g、THP 20mlを水給撹拌 で、ローフロロけい皮製タロライド9.51g加え る。霊霊で2時間反応後水にあけ、酢酸エチル

下援終する。ここに、イソニコチン酸タロライ ド境際域3.85 g を加え、3 時間30分機拌する。 滅圧下溶燃を盤去し、シリカゲルカラムで精製 する。常法により二塩酸塩とし、核黄色非晶質 として0.75gを得る(収率73.0%)

- ·分子式: CasHasHaB · 2HCH
- * 'H-NN3(COCL₂) 8 (1,13~2,01(98,0), 2,81 (28, bd) , 3, 44(28, s) , 3, 88(28, bt) , 8.84~7.28(128,m) , 8.31(28,d)

寒 糖 祭 2 8

4~ (1~ベンジルゼベリジン) プロバンアニ リド・塩酸塩

アニリン 5.5g。トリエテルアミン1gを788 中に密解する。この中に機能下、4- (1-ペ ンジルピペリジン》プロピオン酸タロライドを 1g綴下し、窯墨で3時間反応させる。その後。 チルアミン1.5 g存在下 785中、窯墨で接捨し 溶媒を留去し、塩化メチレンを加え、水洗、

で抽出し、遊和食塩水で洗浄し、醤水硫酸マグ ネシウムで乾燥し、溶媒を減圧留去する。

この競技をシリカゲルカラムクロマトグラフ ィーにより類製(5 %MeOH in CH,Cl。)する。 常法により複酸塩として縲鰀化合物G.9 gを得

- ·分子式: Co. Ro. Ro Co. F · HCl
- ·'H-NHR(COCI,) 8 ; 1, 1 -2, 1(9H, s) , 2, 7 $\sim 3.0(28, 36)$, 3.51(28, 8), 3.83(88, 8). 8.1 -8.4(4H, m) . 8.8 -7.8(10H.m)

寒 為 例 19

#一(8′~(1′~ベンジルピペリジン)エチル) ードーフェニルニコテン数アミド・二塩酸塩

当一(4'()'…ベンダルビベリジン)エチル) アニリン6、78g、4ー(8、8 ージメチルアミノ) - ピリクン雑器盤をピリジン[fin]に溶かし、水冷

NaSO, で乾燥する。これを再び溶解を留去して シリカゲルカラム総製することにより質的物の 抽状物を得た。さらにこのものを常法に從い、 塩酸塩にすることにより出い結晶6.14gを得た。

- 触点 (な) : 197.5 ~198
- ・元素分析数:C., N., N., C. HCDとして

3 8 8

理験做 (96) 79,28 7,58 7,81

実制数(%) 70,50 7,58 7,93

寒 締 例 21

N- (3' - (1' - ベンジルビロリジン) メチル) ベンツアミド・塩酸塩

ペンジルクロライド9.74g。3- (2'-アミ ノメチルトーベンジルビロリジン1gをトリエ 一度応させた。これを常法により後処理しカラム 特製することにより、目的物を5.52g 得た。これを一般的方法により複数塩にした。

- ·分子式;C,,H,,N,0,HCl
- · 's-sur(cuci.) ð :

1,48~3,58(7H,m), 3,44(2H,d), 3,62(2 H,d), 7,04~3,88(10H,m)

実 緒 例 2.2

4 - (4° - (8 - ベンジル) ビベリジル) - 3 -ハイドロキシーゥーメトキシブテロフェノン

※業気液下、FRF 7el中にジイソプロビルア
くン2mlを加え、0 ℃にて、1.68 mープテルリ
チウムヘキサン溶液7.6ml を加え、10分階援幹
後、一78 ℃まで粉却してローメトキシアセトフ
ェノン1.65 g のTRF 10el溶液を加え20分間援押
する。さらに1 ーペンジルー4ーピペリジンカ
ルボアルヂヒド2.4 g のTRF 10el溶液を加え、

シpーメトキシブチロフェノン0.54 g、pートルエンスルホン数8.1 g。トルエン30mlで加熱 意託を5時間行う。反応後、炭酸カリウム水溶 液にあけ、メチレンクロライドで抽出し、無水 酸酸マグネシウムで乾燥し、液圧留去する。残 液をカラムクロマトグラフィーで緩緩(3 94 ke OH ーCH。Cl。)し、1 ーベンジルー4 ー [4 ー (p ーメトキシフェニル)ー4ーオキソブチル] ビ ペリジン0.45 g を得る。これを ke OH 20ml に溶解 し、10 96 パラジウムー炭素(含水)40 mg を加え る。変傷常圧で1.5 時間水素添加する。不溶物 を濾去し、減圧留去する。常法により塩酸塩と し、8 e OH ー IFE より結晶化し、模類化合物0.2 g を得る。

- ·分子式: C., H., NO, · HC!
- * 'H NSH (CDC1*) & ; 1.4 ~2.3(11H.m) . 2.4 ~2.7(2H.m) . 2.95(2H.m) . 3.55(2H.m) . 3.87(3H.m) . 8.83(2H.m) . 7.1 ~7.5(5H.m) . 7.94(2H.m)

莱 独 卵 24

10分間撹拌する。1%塩化アンモニウム水溶液 を加え、メテレンクロライドで輸出し、飽和食 塩水で洗浄し、無水磁能マグネシウムで乾燥後、 減圧製造する。残渣をシリカゲルカラムタロマ トグラフィーにより精製(5%%e0%-CK-CI,) により精製し、環路化合物2.0 gを得る。

·分子式;C::H::NO:

-'H-NNH(COCi,) & ; 1.0 -2.2(9H, m) . 2.8 -3.4(5H, m) . 3.43(2H, m) . 3.81(3H, s) . 4.1(1H) . 6.83(2H, d) . 7.17(5H, s) . 7.82(2H, d)

寒 施 粥 23

4 - [4'-8 -ベンジル) ピベリジル) - p -メトキンプテロフェノン・複数塩

ディーン・スターク装置を用い、4 ー (4 ー (3 ー ベンジル) ピペリジル) ー 3 ーハイドロキ

8-(4'-(1'-コンジルビベリジン) エチル)-3-フランカルボン製アミド・複数塩

4 -- (2 -- アモノエチル) -- 1 -- ペンジルビベリンン1、84g、炭酸カリウム2.37gをクロロホルム40ml、水40mlの混在に加え、水冷下1時間度沖する。有機器を分散し、結和食塩水で洗い、碳酸マグネンウムで乾燥させる。緑圧下溶媒を留去し、少りカゲルカラムで精製、常法で塩酸塩とし、淡黄色非晶質として様類化合物1、60gを得る(収率61、1%)

- ·分子式; C; sh, xh, 0, · KC1
- . 'H NNH (COCI.) # ; 1, 47 2, 10 (8 H, m) . 2, 81

 (2 H, bd) . 3, 25 2, 47 (4 H, m) . 5, 80 (1 H,

 bs) . 6, 51 (1 H, dd) . 7, 15 7, 10 (8 H, m) .

 7, 82 (1 H, dd)

英 第 77 2 5

<u>第一〔4' - (1' - ペンジルビベリジン)エチル)</u> ベンツアミド

8-(1-ラダマンタンメチル)-4-(2-アミノエチル)ピペリジン1.47g、炭酸カリウム8.73gをクロロホルム15mlと水15mlの混旋に 加え、水冷下激しく撹拌する。ここにペンソイルクロライド0.90gを接下し、室裏で一夜撹拌 する。有機器を分離し、水と飽和食塩水で洗い、 減酸マグネシウムで乾燥させ、溶媒を減圧下盤 去する。シリカゲルカラムで精製し、ペンゼン ーカーペキサンから再結晶し、後黄色板状晶と して緩緩化合物1.47gを得る〈収率72.6%)。

- · 分子式:CrsficeNeD
- 'N MNR (COC12) Ø : 1.29 2.28 (27H, m) ,

 2.72 (2H, bs) , 5.43 (2H, q) , 8.01 (1H, bs) ,

 7.31 7.43 (3H, m) , 7.67 (1H, dd)

法で複数核として複類化合物()、52gを黄色非晶 質として得る(収率37.6%)。

- ·分子式: Ca. Ha. Ra. O HCI
- · 'H NHR (COC), 8 ; 0, 97 ~ 3, 50 (83H, m) .
 7. 29 (5H, m)

寒 第 領 2 7

<u> 8- {8' - {1' - シタロヘキシルメチルビベリシル} エチル}8 -メチルベンズアミド・塩酸塩</u>

8-メチルー8- (4'-ピベリジルエチル) ベンズアミド3.6 g、シタロへキシルブロマイド1.2 g、炭酸水器ナトリウム2.0 g、メチルエチルケトン30a1を7時間加熱醤酸する。反応後、水に加え、酢酸エチルで抽出し、結构食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を瀬圧密金する。この残塩をシリカゲルカラムタロマトグラフィーにより復製(3 %4eOH-

実 給 例 2.6

8-メテルー8ー (4' - (1' - ベンジルピベリジン) エテル) ベンツアミド、塩酸塩

ナトリウムハイドライド().18 家をチトラハイドロフラン (THF) 2 mlに影響させ、水冷下浅井する。ここに 8 ー (4' ー (1' ー ペンジルビベリジン) エチル) ベンツアミド1.45 家をTHF 5 mlに協かしたものを滴下する。窓盤で 1 時間撹拌した後、再び水冷し、ヨウ化メチル().36mlを加え、一夜窓盤で撹拌する。水水にあけ、塩紙下クロロホルム抽出し、飽和食塩水で洗い、硫酸マグネンウムで乾燥させる。減圧下溶解を留まし、シリカゲルクロマトで精製する。().50 gの黄色油状物が繰られる (収率47.0%)。

また、メチル化されていない原料8、22gを回収した(回収率15,2%)。 降られた抽状物を含

C8,C1,) U、探题化合物0.3 多を集る。

- ·分子式;C:28:28:0·EU
- * '8-888(COCl*) & ; 0.8 -1.1(208.0) . 1.1 -1.6(48.0) . 1.8 -2.6(58.0) . 7.4 (58.0)

美 籍 绣 2 8

1-42/2/-4-(5.8-02)+*v-1 -12/2/2)-2-120-2+22-22

3.6-ジメトキシー 1 ーインダノン0.85 g と 1 ーベンゾイルー 4 ーピベリジンーカルボアル デヒド1.88 g を無水下HF 20 ml に溶解し、0 セにて38 %ナトリウムメテラート1.02 g を加えた、譲渡にて2時間後押した後、酢酸エチルにて発促し、路和会海水にて洗浄した。碳酸マグネンウムにて乾燥後、緩圧適縮し、得られた整 凌をシリカゲルカラムにて積緩し、1 ーベング

イルー 4 - ((5,5-ジメトキシー 1 - インダノン) - 2 - イリデエル] メチルピペリジン1.28 g (収率71%) を得た。

この化合物1、2)gをTHF 20m1 に溶解し、 10%パラジウムー提案 0、3gを加えた。室蓋常 圧にて1日水器添加した後、結蹊を譲削し、協 液を緩圧懲縮した。これを変化メテレンーペキ サンから再結晶化し、次の物性を寄する環題化 合物1、10g(収率89%)を得た。

・触点(で):151~152

・元嘉分析館:C*(82788) として

C H N

理論数(%) 73,26 6,92 3,56

突測数 (%) 73.30 6.85 3.32

寒 総 例 2.8

<u>4一(6.3ージメトキシー1ーインダノン)ー</u> 2-イル)メテルビベリジン・複雑塩

チルビベリジン・塩酸塩

4ー ((5,6ージメトキシー1ーインダノン)
ーマーイル) メチルピペリジン6、25gをTHP
Smに溶解し、トリエチルアミン6、29mに3 ー
フルオロベンジルブロミド0、13mに容加えた。 2
時間加絡選派した後、緑圧繊縮し、酢酸エチル
にて着釈し、18%炭酸ナトリウム水溶液、始和
食塩水にて洗浄した。硫酸マグネシウムにて乾
緑後、緑圧繊縮し、得られた残液をシリカゲル
カラムにて稀製した。さらに常法により複穀協
とし、塩化メチレンー「PEから再結晶化し、
次の物性を育する模類化合物の、27g(収率72%)
を得た。

・数点(セ):239~232 (分解)

· 元素分析鑑;Co.HroNOo - HCIとして

C B R

理論(数 (%) 88,43 8,74 3,23

実製館 (36) 88.18 8.79 3.11

1-ペンソイルー4-((5.8-ジメトキシー1-インダノン)-2-イル]メチルピベリジン9.00まをジオキサン90s1に熔解し、68塩酸90s1を加えた。10時間加熱蒸煮した後、減圧繊維し、水で希釈した後、酢酸エチルにて抽出した。水器を50%水酸化ナトリウム水溶液にで約12とした後、塩化メチレンにて抽出し、さらに動和食塩水にて洗浄した。碳酸マグネシウムにで乾燥、減圧緩縮し、得られた残渣を常法により壊壊などし、メタノールーエーテルから再結晶化し、次の物性を有する核態化合物6.36ま(収率85%)を得た。

・触点(な);249~250 (分解)

·元素分析機:C.B.888. · 8C1として

C H N

理動館(96) 52,67 7,42 4,30

要別位 (%) 62.75 7.31 4.52

実 施 例 3 0

1-(3-ブルオロベンジル)-4-((5.8-ジメトキシー1-インダノン)-2-4ル]メ

实施第31

<u>| 1 - ペンジルー 4 - [(5,8 - ジメトキシー 1 - インダノン) - 2 - イル] メチルビベラジン・</u>
2 複酸塩

5,6-ジメトキシー! ーインダノン1,80 g、パラホルムアルデヒド8,31g、1ーベンジルビベラジン8,90mlをエタノール30ml、水でmlに緩緩し、逸遠離を加えてm83とした。3時間加熱 最低した後、放冷し、白色固体を達削した。これを塩化メチレンにて懸濁させ、10%接酸ナトリウム水溶液と飽和食塩水にて液浄した。硫酸マグネンウムにて乾燥後、減圧濃縮し、得られた残酸をシリカゲルカラムにて精製した。さらに常法により複数塩とし、メタノールから再結晶化し、次の物性を有する機器化合物8,55g (収率23%)を集た。

· 触点(で):227~228 (分解)

· 元素分析額: C, : H, : N, C, · 2HC/として

C 8 8

理論数 (%) 56,78 8,88 8,15

突然後 (%) 80.31 6.95 6.08

W # W 32

4- ((5.8-ロメトキャー1-イングノン) -2-イル) メテルー1-エトキャカルボニルビ ベリジン

1 ーベンジルー 4 ー 〔(5,6ージノトキシー1 ーインダノン) ー 2 ーイル) メチルピペリジン 0,50 g をベンゼン 8 mi に溶解し、クロルギ酸エ ナル0,15 mi を加えた。 3 時間加熱選流した後、 誘粒エチルにて蒸釈し、飽和蒸製水、飽和食塩 水にて洗浄した。複数マグネシカムにて乾燥後、 緩圧機線し、湯られた程液を踏散エチルーへキ サンから再結晶化し、次の物性を有する模様化 合物0,45 g (収率94%)を得た。

この残骸をTHF 20s1 に溶解し、1.8 ーグ アザビックロ (5.4.0] ウンデター 7 ーエン 1.86s1を加えた。30分間加熱選抜した後、接圧 激縮し、詐餓エチルにて着釈し、絶和食塩水に て洗冷した。磁酸マグネンウムにて乾燥後、減 圧緩緩し、得られた残捨をシリカゲルカラムに て緩緩し、緩緩化合物1.12s (収率58%)を抽 状物質として得た。

- ·分子式: Cas#as#0。
- · 'H-NNR(COCIA) # :

1.23(3H, t), 1.41-2.90(11H, m), 3.84(3H, a), 3.88(3H, s), 4.10(2H, q), 5.60(1H, s), 0.97(1H, s), 7.08(1H, a)

菜油鲜34

1-ベンダルー4- ((),3-インダングネン) -2-イリアニル) メチルピベリジン

無水でHP 3ml中にジイソプロビルアミン

・触点(で):132 ~133

·元素分析値:CasHasWo として

0 8 8

理論盤(96) 88,46 7,53 3.88

英创馆 (96) 66.79 7.63 4.00

寒 篇 例 33

4- ((5.6-ジメトキシー) -- インデノン) ---- イル) /チルー] -- エトキンカルボニルビ ペリジン

4 - ((5,8-ジメトキシー1-インダノン)
-2-イル)メチルー1-エトキシカルボニルビベリジン3,008を四線化炭素30元に溶解し、ドープロムコハク酸イミド0,988と過酸化ベンソイル0,028を加えた。5時間加熱激視した後、四塩化炭素で滑釈し、飽和整額水、飽和食塩水にて洗浄した。硫酸マグネシウムにて充爆後、溶圧凝縮した。

0.17s1を加え、さらに 8 世にて 1.88 カーブチルリチウムへキサン溶液 9.75s1を加えた。 8 世にて10分間後許した後、一78 世まで冷却し、1.3 ーインダンジオン 8.18 の無水下HP 8n1 溶液とヘキサメチルホスホルアミ Y 9.21s1を加えた。一78 世にで15分間復計した後、1ーベンジルー 4 ービベリジンカルボアルデヒ Y 9.35 g の無水THF 3s1 溶液を加えた。室温まで涂々に発温し、さらに窒温にて一晩複計した後、塩化メチレンで若家し、総和金塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧緩縮し、等られた残渣を塩化メチレン・1 PEから再結晶化し、次の物性を有する裸態化合物 9.12 g (収率29%) を得た。

・離点 (な):173 ~174 (分解)

- 元素分析値: C1,18,180。 として

C B N

理論能 (%) 79.73 8.39 4.23

爽測號 (96) 79.43 8.20 4.31

美 終 例 3.5

1-ベンジルー4-((5,6-ジメトキシインデン) ー2-イル] メテルビベリジン・塩酸塩

CH.0 CH. - CH. - CH. - CH. - CH.

・数点 (で) 1218 ~217 (分解)

· 元素分析数 ; C., H., NO. · NCI として

C H N

理論数(%) 72.07 7.56 3.50 実制数(%) 71.82 7.68 3.33

<u>1-ペンジルー4ー [3- [(5,8-ジメトキシ</u> -1-インダノン) -2-イリデニル)] -ブ

- ·分子式:C:s82,803 · HCI
- · H-NNR(COCla) &:

1.10~3.00(13H.s), 2.45(2H.s), 3.50(2H.s), 3.90(3H.s), 3.95(3H.s), 6.58~7.20
(3H.s), 7.27(5H.s)

実務例37

<u>| --ベンジルー4 - (3 - ((5.8-ジノトキャー) - 1 - 4 ンダノン) - 2 - 4 ル)] プロビルビ</u>ベリシン・複数数

1ーペンジルー4ー (3 - ((5,6-ジメトキシー1-インダノン) - 2 - イリデニル]] ブロビルビベリジン0.40gをTHF 15ml に溶解し、10%パラジウムー炭素 0.1gを加えた。窓温常圧にて3時間水業添加した後、触謀を認別し、接液を減圧總額した。得られた残液をシリカゲルカラムにで精製し、常法により複酸塩とし、機磁化合物0.37g (収率84%) を抽状物質

ロビルビベリジン、複製塩

無水でHF 5ml中にジイソプロビルアミン 0.31mlを加え、さらに0 なにて 1.6% nープチ ルリチウムヘキサン熔板1,39×1を加えた。日で に τ 10分間援搾した後。-78むまで冷却し、 δ . 8 - ジメトキシー1-インダノン0,38gの無水 THF 5ml容赦とヘキサメチルガスホルアミド 0.35slを加えた。-78℃にて15分間撹拌した法。 3- (1-ペンジルー4-ピペリジン) プロピ オンアルデヒYO. SO g の無水THY 5xi 溶液を 加えた。霊器まで徐々に昇温し、さらに黒温に て3時間撹拌した後、酢酸エチルで希釈し、鯰 和食塩水にて洗浄した。酢酸マグネンウムにて 乾燥後、減圧激縮し、終られた凝液をシリカゲ ルカラムにて複数し、常法により遊数地とし、 模類化合物0.55g(収率81%)を抽状物質とし て得た。

として異た。

- ·分子式:CasHanNOa·FCL
- · 'B-NER (CUC) .) 8 :

1, 10-2, 30 (188, m). 3, 38, 3, 43 (tota) 28, mach s). 3, 85 (38, s). 3, 90 (38, s). 8, 77. 8, 83 (total 18, each s). 7, 85, 7, 10 (total 18, each s). 7, 18, 7, 20 (total 58, each s)

家籍第38~249

実施例1~37と阿縁にして合成した化合物を表5~10に示す。

*129 1	報 签 实	物 趣 化 学 笼 数 (数点、无象分析物、888 など)
38	CH.10 - CH.10 - CH.10 - CH.10	数点 (T) :243~248 (分級) 元素分析数 C 8 88. + 8C1 として) C
39	\$\delta\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	数点(t):198~197 元素分析数(c.H., M3・HC) として) (
40	04,0° → 101	数点(で);203-204 (分称) 元素分析をCa.8c,404,401 まして) で 変数数数 計算 計算 計算
	cx.o — cx.o — cx.o — cx.o	9-88 (CCL) (1.5) 2 48 (27.5) 3 81 (27.5) 1 85 (27.6) 1 85 (27.6) 6 25 (27.6) 7 6 22 (27.6) 7 25 (37.6) 27 X : C, M. M K(1
*8	01.1	H-MMM (CDC1,)

表 5 (新金)

		· · · · · · · · · · · · · · · · · · ·
英雄祭	* * *	物 理 化 学 领 数 (数点, 元素分析值、808 社ど)
8	C8.0 \$\frac{1}{2} \cap \cap \cap \cap \cap \cap \cap \cap	数点(で):201~202 (分解) 元素分析数(C.s.t., M.s.・配) もしつ で (
	C3,0 1 10 O-C4. O	'H-8MS (CDC), 0: 1:00—1:48(118.5), 1:50(21.5), 1:85(21.5), 1:51(31.5), 1:25(31.5), 8:51(31.5), 7:07 (10.5), 7:22(51.5)
45	68.0 TTO-08O · 801	数点 (セ) : 225~236 (分解) 元素分析値(Cs.Ha, NOs・NC) として) C N N 変数整備) 60 C3 6 5 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
45	CD-0-58-O - 80	 総会(で):[69~176 (分解) 元素分析数(CasHasMinital として) C n in i
45	C18,67 (7 - C18,- (7 - 180)	 (で):120~132 元条分析数(C.H., NO.・HC) さして) (本) (本) (本) (本) (本) (本) (本) (本) (本) (本)

突胎的	梯 進 式	物 選 化 学 復 数 (数点、元素分析後、ANG など)
48	ca,c C-ca,-O · acı	'H-WH (CDC),
49	CH. J -CHCHCHCHCHCHCHCH.	H-888 (CBC) 3 8 1 2 88 (CB bd) 2 56 (48 3) 1 60 (68 3) 2 88 (CB bd) 2 56 (48 3) 3 6 (68
59	CH-13 CH-CHCO-H	'H-NNG(COCI.) & : 1.17-201(148.5). 1.48(2H.5). 1.31(6H.5). (Sa. s)
Š	CH.0 - CH O-CH O - MCI	'8-MR(COC).
52	()-ç-ca+ca+ca+ ()+-ca+-() + - acı	数点(で):145~150 元素分析数(CK., NO・NCI として) で

表 5 (級 4)

,	······································	
RMA	之 兹 ೫	物 塩 化 辛 塩 数 (数点、光素分析数、888 など)
53	O-1203-03-03- (>3-03-() · NCI.	'H-NN (CCL)
234	Q-la-aaQ-aQ + aa	「#-## (CDC)) / : 1 10 - 2 10 (TB m) 、 2 38 (20 m) : 2 38 (20 m) : 1 10 - 2 00 (32 m) 1 10 - 2 00 (32 m) 分子式:C. *8***********************************
\$5	O-CCH., CH., CH., -O-CH., -O - 2851	株点(で):175~178 元素分析線(Co.85a8.0 · 28C)として) C
, xx	○ ^{l.l.}	'8-##E(CDC), 8 : 108-2 15(94 m), 2 35(24 m), 3 02(24 m), 1 25(14 m), 3 47(24 m), 4 10 -4 45(14 m), 1 21(54 m), 7 62(24 m), 8 70(24 m)
57	O-gar-cuss - ()-cu> () · 5uc:	'H-MAR (CBC), } & ; 1.10-2.10(TM.m), 2.25(2H.bd), 2.65(2H.bd), 2.45(2H.bs), 2.59 - 7.10(2H.m), 7.20(5H.s), 7.56(2H.bd), 8.57(2H.bd) 577-21: Cs.8s.8s0 - 2861

数 5 (88 8)

XXX	** **	物 章 化 学 類 数 (数点 ₂ 元素分析数、NSF など)
500	O-west, cuOx-cuO + 2000	数点(t):240~246.7 元余分析数(t,,,n,,n,c, 2001として) で
59	x>====================================	'H-NN (COL)
80	в.я -О-яясси, -Сх-сх, -О · яст	'8-885(COC), 8 ; 1, 12-2 25(73, 3), 2, 35(27, 5), 2, 74-3, 51(28, 21, 3, 50 (38, 3), 7, 29 (28, 2), 7, 71(28, 3), 1, 25 (21, 3)

****** 8

naz	. 8 2 %	物 題 化 学 性 数 (数点、元素分析数、8点 など)
\$ {	ÇÎy-cii,cii,-Ox-cii.∙O · 2#ci	MA (T):135~140 (AM) HAAMM(C::8::8,0; ZMC(2 UT) MAM(): 82,85
\$2	ÇÎ-a,a,-O-a,-O · ≥m;	### (*) : \$0~\$2 (3**) ###3###(c., *, #, 0 : 2001 & L T) ###3### (2)
63	J-a.aO+aO · **1	(*-880 (CDC),
64	thaman Cian O in m	'H-MMS(CSC1.)
85	ar Caran-Oxea-Oxea	**************************************

XMM	※ ※ ズ	物 強 化 学 独 政 (施京、元金分析後、888 など)
88	OC+0.0O-0O - 80	11-148 (CX), 1 ; 1 ; 1 ; 1 ; 2 ; 1 ; 1 ; 1 ; 1 ; 1 ;
		分子式 : C., 38.e.\$ - 8C\$
-67	CO-ca.caO-caO · zacı	'H-8NS (CDC) .) A . 1. 13-2. 26 (SK, a) . 2. 22-2. \$7 (SK, s) . 3. 45 (2K, 2) . 3. 55 (2K, s) . 2. 50-7. 20 (SK, a) . 7. 26 (SK, a)
		分子式:C., 8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
63	Q+a,a,-Q+a,-Q + кі	'N-NAME (COCI.) S: 1 10-2.16 (13 k.m). 2 15 -2.50 (2 k.m); 2 27 28 20, 30 -1 45 (4 k.m). 2 48 (3 k.m); 2 27 28 50, 30 -1 45 (4 k.m). 2 48 (3 k.m); 2 27
	*	分子式: C. eH. eH. e HCl
69	Chara-O-00-0	'S-RESCOCIA) & ; 1 18-12 16 (25.5); 1 45 (31.5); 2 45 (31.56); 1 35-15 12 (31.5); 1 45 (31.5); 1 40 (21.60); 1 36-7; 36 (31.5); 1 23 (31.5); 5-7-8: (C. N. 18.0: 85)
	and his	
40	a.csQcsQ CZ · sci	'H-MECCEL) &: 1.20—2.44(214.41, 3.44(24.4), 7.44 ~1.25 134.4)
		977 : C2082283 - BCl

发 多(被 参)

KMN	* * *	等 等 化 学 连 数 (数点、元素分析值、888 など)
***		'4-823 (CCC).) & ; 1 44-3 50 (158, s), 2, 95 (28, ba), 2, 56 (28, s). 1, 68-7, 45 (68, s)
	~ ~ ~	分子文; C2283,8828 - NCT 'B-888(CCC) J
72	79.03. (3-03. () - 301	'8-MER COC.)
	¥255 (A.A.)	分子式:Csellss8,0, · 801
**************************************	C8.08C8-08C	18-988 (CDC1.)
		∰FX : C.s.No.sN.O. · HCl
7.4		(H-max (CDC1.) 8: 1 18-2 08 (184 a). 2 98 (28 a). 5.80 (28 a). 4 98 (48 a). 7.08-7.36 (08 a)
		#####################################
75	darcus-Ox-cus-O	(H-NAR(COC),) 0; 122-22 161 163 163 164 -1 162 163
	· ***	OFT : C., Bark, B HCl

ZMZ	福 逸 坐	物 菜 化 等 钱 数 (数点、元素分析法、600 年之)
78	CR.O CH.CHCHCHCH.	'H-988 (CDC)
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	分子式; C,, N,, K, O, 、NCI
77.	08.0 XX Ca.co Ox-ca O · 801	(* + *** (***)
		分子式;C.,和.,8,0,,和2
78	0.0 X	'R-NEE COLL)
		分子式:CseRasKyCa・KCl
78	T, T - 2801	**************************************
-	ĊB _S CBs	分子类:C.aNas8aU · 28Cl

数 ?

RAX	# # #	物 理 化 学 曜 数 (数点、元素分析値、対策 年之)
86	G.cs○>-cs○ G.cs○>-cs○ - sci	'5-185(CDC))
\$}	('B-MBR(COCI.) & ; 1,12-2,12(SH.m). 2,75-3,00(2H.m). 2,59(2H m), 1,88(2H.m), 4,38(2H.m), 1,08-7,92(SH.m)
83	CLESSER. O-CA. O . MCI	'H-888 (CDC)
\$3	CHICOGEHICHICHICH.	'H-NNS(COCI-3 5; 9.85 (3h, b), 1.04-2.18 (13h, a), 3.58 -4.00 (2h, a), 4.28-4.55 (2h, a), 5.48 (2h, a), 5.48 (3h, b), 7.76 (3h, a), 7,48-7.72 (1h, a), 8.57 (3h, d), 8.77 (3h, a)

ZMA	将 後 ☆	物 類 化 学 似 数 (数点、光彩分析数、582 など)
84	Chancerca - Cran C - 40:	'a-mus (coci.) 8; 1.01-2.05(9x, m), 2.70-2.33(2x, m), 3.00- 2.13(2x, m), 3.4-2.33(2x, m), 3.00- 3.33(11, 0), 3.62(11, 0), 3.91(11, 0)
35	dit cosca*ca*-⊘s-ca*-⊘ · νιcα	(**-**********************************
88	ÇZC08803.03,-○8-08,-○ , ποι	'N-MAN COC()
87	Ç£#8€0€8, C8-€8-€8-€9- 3€8	
\$8	Cranci.ciOx-aiO . nci	'8-881 (CB()-)

数 7 (数 4)

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>
突线突	<b>第                                    </b>	物 理 化 學 挺 数 (別点、元素分析額、※第 写名)
<b>8</b> 3	Caronica.ca. Ca-ca. Ca.	'H-888(CCC),
23	(1,01)	'#-### (CCC )
Ģ1	Characa Carca O 1 110	'H-NNR(CDC1,) 8 ; 2.50-2.00(01, a); 3.14(3); 5.08-2.15(01, a); 3.14(3); 5.08-2.32(01, a); 3.14(3); 5.08(11, a); 3.28-2.32(01, a); 3.08(11, a); 3.08(
:: Z	CD-14-01-01-01-01-01-01-01-01-01-01-01-01-01-	'K-881(CBCL)
\$3	77 janca-101- (3-52) (3-540)	'H-BNR(CNI)

XXX	務 逢 式	物 照 化 学 優 数 (数点、元素分析性、898 など)
()) ())	J. Ima.a. Oa. O	<ul><li>株点(t):197.5~198.5</li><li>元無分析者(c,.8.,*3.6・380)として)</li><li>(c) (c) (c) (c) (c) (c) (c) (c) (c) (c)</li></ul>
35	Then.caOa-caOaca.	数素 (セ) ; \$74-\$75.5 元素分析数(C, 48, 48, 0, ・ NO よして) 理論(な) 65.37 6.53 12.71 対部数(X) 64.96 6.31 12.65 72.81, 0(X) 64.97 6.66 12.63

**3**5 8

		1
nex	<b>发 袋</b>	(数点、元素分析: ws 42)
38	CATCONNET  CATCONNET  ACT  ACT  ACT  ACT  ACT  ACT  ACT  A	**************************************
97	7	'8-988(CDC1.) 月: 1.38-2.08(38.5), 2.75(28.56), 3.04(38.56), 3.30(28.50), 7.17(58.5), 7.60-7.61(28.56), 7.66-7.82(28.5), 7.88-8.11(28.5), 7.83(18. 50-7末: 5.58.88.0 - 2853
58	0.1 Distriction C+01.0 (10)	'U-MAR(COCI,)
48	, O & C.	'8-881(COCI)
198	0 64-c4.04-04-04-04-04-04-04-04-04-04-04-04-04-0	'A-MM3(COC), 3 ; 1 1 - 2 2 (9 K. m), 2 7 - 3 3 (2 K. m), 2 48 (2 K. m), 2 3 9 (2 K. m), 8 8 - 7 4 (15 A. m) 3 7 x : C, 4 K, 8 K - 1 E1

<b>236</b>	<b>海 连 式</b>	物 羅 化 学 祖 数 (独点、元素分析像、2018 など)
101	сн.сп.мск.са, - Ск-ск О О	'B-MR2(CCC1,) & : -2.2(91, e). 2.7-3 ((28.5), 1.16(28.5), 1.16(28.5), 1.17.1(108.5)
192	(1,0 ) dd - (1,0 ) - (1,0 )	'H-MR(CECL)
193	C+,C+,C+,C+,C)  - 801	'H-SUS (CDCI,)
104	ся, смся, см. — С	'S-NAS(COC), 6: 1:4(25.5), 1:2(38.5), 2:1~1.0(28.5), 1:4(25.5), 7:22(58.5), 3:00(38.5), 2:3 -6:1(30.5), 7:22(58.5)
155	45-ma-C-a-C - m	9-848 (CCC1.) 6 1 68-2 18 (28.0) 3 48 (28. 1 18-2 14 (28.0) 1 68-2 18 (28.0) 3 48 (28. 4) 1 84-4 (28.0) 1 8 2 (18.0) 8 22-8 44 (28.0) 8 82 (18.0)

### 数 8 (新金)

REF	器 盗 戏	特 理 化 学 短 数 (独点、元素分析値、882 年2)
106	J	'H-MM(CDC) )
107	св. — } — мся, ся, — С х-св, — О . пст	'H-MHCCBC() ( ) ( ) ( ) ( 2 55~2 58 (2H m) ( 2 88 (3H m) ( ) 1 87 (3H m) ( ) 52~1 92 (3H m) ( ) 7 25 (5H m) ( ) ( ) 43 (5H m) ( ) 52~1 92 (3H m) ( ) 7 25 (5H m) ( ) 43 (5
108	C8.C3.C3C3()3-C3()	'8-848(COCI,)
103	01, >xcx,dcx,cx,-O+cn,-O / 2001	'8-988(COCI,) を; 1.0 ~2.198.m)、2.18(GN, s)、2.3~2.6(48.m)、 1.38(28.s)、2.4 ~2.8(28, m)、2.3~7.5(108.m) 分子式:C _{2.6} 8.18 ₄ 8.2 · 28Cl
350	CH.CH. O.CH. O. CH.CH. O. HEI	'a-ass(cocl) f; 1.17(3.1) 11~21(98.5), 25~19(28.5). 1.10(28.5), 11~18(28.5), 108(18.5). 1.19(100,5) 9:Fx:C,.8:28:0, 8:

REN	<b>多 差 文</b>	物 選 化 学 選 数 (経点、元素分析後、2011年42)
644 1-13 1-14 1-14	ся_сяся,ся,-С∗-си,-С ф	10-888 (CUC), 8, 2 8 (2H, e), 2 82 -2 88 (2H, e), 1 24 -1 81 (2H, e), 2 82 -2 88 (2H, e), 2 82 -2 88 (2H, e), 7 18
112	01, des. 01, - 101 - 101	'8-883 (CE(),) 8 ; 18 (98. a), 2,6-3,6 (28. a), 18 (28. a), 2,6-3,6 (28. a), 3,6-3,6 (28.
113	a,-aga,a,-()-a,-()	'H-MMR(CDCL) 6: 1 18-22 98(SUL®) 2 33(SR 840, 3 41(SM 8)) 2 78 (SR 80), 5 48(18, 48), 5 30(18, 46), 8 30 (18, 40), 6 33 -7, 40(10), 8) 分子文: C., H., M.O. MC1
estimate establishment of the state of the s	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	**-NES (COEL)
113	argara-Ora-O	'N-SES(CDC), &:   1   1   1   1   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   1   2   2

#### 22 2 (23) 45)

%15%	2 兹 路	物 窓 化 等 簡 数 (数点、元素分析物、892 など)
348 548 549	0-a-0-a-0	'8-888 (CEC)
	2882	分子式:Ca-4, 18,0、28E1
**************************************	0-laci, cir. O-cir. O . 2xci	'8-882 (CBC)
		#7:2: C. 48 v. 8:00 · 28C1
***		'8-888 (CDC 1.)
119	a. Ja., a (	'W-MME(CSC1)' & -2 109 m 2, 2 32 (311 2), 2 5 1 77 (32 5)', 1 (0 (22 5), 3 23 (22 4), 6 7 ~
128	CH.O CH.CH CHCHO - HCH	分子式:C.aHanasea.c. NC1  (1-AMA(CUCL))

AM (F)	* 3 %	物 意 化 幸 塩 数 (数点、光素分析物、約80 ほど)
12.	O-Crcs,-Cr-cs,-O - 2801	*#
322		'8-88 (CEC), 0; 2:96 (R bb, 3:81 (2R s), 1:107-2:35 (R s), 2:30 (R s), 1:14-7.11 (R s), 7:20 (R s), 7:30 (R s)
25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	O-deca,ca,-O+ca,-O + 2001 Q ica,	(18-888 (CDC) ,
124	Ö-101-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01- ○1-01	(P-NNF(COC);

#### **3**8 9

突絡例	**	物 灌 化 学 性 数 (数点,我类分析法。NM 42)
125		'8-MR (CCC), 8; 0 19-2 12(128.0), 2 52 -3 54(84.0), 1,00~ 7,52(104.0)
125	8,8 - Q-Č-1-C8,C8,- Q - 2KC1	'8-PMS(CDC:,) & ; 1 08-2:10(98, 6), 2.80-2:92(28, 0), 3:36(38, 0), 3:31-3:53(48, 6), 3:90(28, 9), 6:50(38, 0, 21-7:21(78, 6), 6), 50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38, 9), 6:50(38
127	О-С-я-сн,см,—Ся-сн,-О · мся	'H-888 (CDC), }
128	О-сяС-янся,сяСя-ся,-О нст	'n-was(COC(a) 2: 10 ~2 2(90, a): 2.7~2.0(20, a): 3.23(20, a): 1.50(20, a): 2.33(Ch. a): 5.3(50, a): 7.23(50, a): s): 7.3 ~7.7(00, a): 1.2(10, a): 7.23(50, a): 3.2(10, a): 7.23(50, a):
129	(B)-c-4-cs-cs(3-cs() - scs	'8-MM (CCC() 8; (7 V - (4) 1 10-2 05(17K a), 2 10 - 2 32(3h a), 2 96 1 36-1 130-1 52(3k a), 2 08-4 16(2(3), 7 36-1 78(3h a) DFM: (C.A.A.M.) - NCI
130	П-(-4-си,си,(-1-си,-(-) - пси	'8-NNH(COC), & ; 2,88-2,92(24,0), 3,12(38, 3), 3,46-2,64(44,0), 8,42(14,00), 7,00(14, 40, 7,28-7,45(64,0) 57-\$2:C,48,48,0,48(1

ymn	* 2 %	物 聚 化 学 怪 数 (数点、元素分析组、PRE など)
131	^Ĺ;-a.a(>-a.a-a-(> +a	'9-982 (CBC1.) # : 1 02-2 06 (99.6) 2 71-3 57 (98.4) 5.18- 6 58 (28.4) 7.10-7.55 (108.4)
	(8)	分子式; Ee, il pa Ng U· AC I
133	O-dates - Ox-ex-O + ser	'a-aus (cuc), } & : 1
		STIC : Castantylla / HCl
133		'H-WWR (CBC),
	C359	分子式; C: : Nx: N : 0 · NCi
134	O-gascarcar-Os-car-Aut - aci	'H-WWB (CDC), ) 3 1 30-2 34 (GM, a), 2 55 (GM, 24), 2 32 -2 50 1 44 a), 8 (8-8 28 (3-8), 7 30-8 62 (5-8), a)
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	分子式 : C, ,8, ,8, 0, + NC)
138	<u> </u>	"H-SER (COC).) 6; 11 -2 3 (SH, s); 2.8-3 ((SH, s), 2.60 (SH, s), 1.30 (SH, s)
	6113, cm	分子式;Coolloo50o·8C)
138	27 Leon'ar ○+0× ○ + 101	'#-8## (CDC)
	Vaca.	分子式:C298208206 · NCl

# 费 引 (統 會)

KEK	· 8 & x	作 選 化 学 笠 数 (機点、元素分析室、998 など)
137	\$\frace.co.\O \cdot\ nci	'H-SMS(CRC), \$ : (7 ) - 30 1 12 - 2 16(98 m), 2 75 - 3 (2H, bd), 3 48(2H, s), 3 32 - 3 90(2H, m), 3 92(3H, m), 4 32 - 7 40 (8H, m), 2 28(1H, bm), 14 0(1H, m)
*****	003,	ATX   Cishingson ICI
108		'H-NNG (COC)
		分子文: C., N., 8, 8, + 101
139	Acaignanicar-Os-car-O - acai	'H-MM2(CEC): 2; 11 -2 2(9H m); 2 7-1 0(4H m); 3 1-1 6 (2H m); 3 55(2H m); 5 5(1H); 7 30(10H, s)
***************************************		分子文;CzzNzzñzű·NC1
140	CH-CHANCELON, CH-CH-CH- O · HCI	'H-MAR(COCT.) 8: 1 1 -2 2(5% m), 2 7-1 0(2% m), 2 3-3 4 (2% m), 3 40(2% m), 5 9(1%, 5 39(1% d), 7 1 -7 8(11% m)
	The state of the s	97x:Cerfee8e0:3C1
141	L. L	'H-NN (COC1) 5 (29-48) 11-2200 a) 26-16(26 5a) 24(26 213,35-3,6(26,4) 3.90(36.9) 8,9-4.50
· · · · · · · · · · · · · · · · · · ·	ON BERT	分子式 ; C12825K2O2 + HC)

ANN.	2 %	物 強 代 学 恒 数 (独点、光素分析性、888 など)
142	(1.04. januaros, - (1.04. januar	'H-MAZ (CAC) . }
	~~	97£; C,,8,,8,,0, XC
143	ca,ca,ca,ca,-C»-ca,-O · acı	'8-888 (CDC). / ; L 17(3). J, 12 -2 1(3). 4; 1 11(3). 2; 2 ] -10 (3). 5). 1 ] -1 1(2). 4; 1 11(2). 2; 2 ] -10 (3). 7 21(5). 4;
		分子式: C, 5822855 · NCI
144:	Cacasca, Ca. Ca. Ca. Ca. Ca. Ca.	. 'H-MMM (CDCL)
	. 512	分子式:C,,B,e8,8-NCi
145		'8-888 (CDC),
	~ xxx ~ X	分子式:Coalloulla Ci
188		'H-MR2(CGC), } : 1
	*_B	分字式:Cz,kz,Mz

# 22 9 (32 9)

×××	<b>海 遊 式</b>	物 類 化 学 復 数 (際点、元素分析板、888 など)
347	0.8 CB, CB, CB, -	'8-886(CC),
145	ся, = сябяяся, ся, - 🔷 х-ся, - 🔷 х яся	14-988 (CBC1) 8; 13-21 (38-2) 2 1-21 (28-2); 2 1-24 (28-2) 3 47 (28-2) 5 52 (18-10); 2 2-21 (28-2) 7 2 3 (18-10) 57-25; 2 3 3 3 50 50 50
149	J-1-0-0-1-0	'%-mux(CDC), 8; 1,00~4,08(16km), 7,38(10km) 分子之;C::8::0::0:
150	J1-04-04	'H-mus(COC).) 8; 0.00-2.10(9H,m), 2.55-3.50(7H,m), 3.82(2H, e), 7.38(5H,s), 7.80(4H,ABQ) 分子之:C.,8,,m,0,+E)
432	J. J	**************************************

289	後 逢 矣	物 選 代 学 後 数 (数点、元素分析数、NM など)
63 63 63 63	4 10 - 0 - 10 - 10 - 10 - 10 - 10 - 10 -	'B-MBB(COC1.) & : 0.80-2.04(94.0), 2.48-2.88(28.0), 3.12- 3.52(48.0), 7.80-7.72(148.0)
123	Jan.c., - Ora, - No.	'8-M88(COC1,) 3: 1,01-2,01(198.m), 2,31(38.s), 2,63-3,04 (38.bg, 3,42(28.ba), 7,15(48.bs), 7,08(58 s) 分子式:C.,8-,8-8.8C1
53	√4	'n-ww(CCCi,)
7.27 7.27 7.27	Jå.a0-a.P	'H-MSE(COC1.)
156	J	数点(t):216~217 (分解) 元素分析数(f.,x,,x,f., +ft として) C

# 

KNA	· 德 选 55	物 第 化 学 恒 数 (股点、元素分析值、822 年生)
157		'H-BUS(CRC1 ₂ )
158	JENON,CO, -OX-COC < EL HOL	'H-BUR (COCI.) 8: - 2 28 (SH. 6). 2 76 (2H. 8d), 1 85 (SH. 6): 1 38 (SH. 6). 2 67 (2H. 8d), 1 82 (2H. 6): 1 38 (SH. 6). 2 67 (2H. 6d) SFF 2: 0 4H. 68 (SH. 6)
155	J. G., Cr. Cr. Cr. D. V. 1801	'8-84R(CRC);
⁻ 160	J. C.	'H-88R(CDCL) & ; 1 00-3 05(GL m), 2 08.7 12(sotal 3%, each 9), 2 82(2%, bd), 3 05 -3 43(2%, m), 3 44(2%, e), 4 47.4 55(sotal 3%, each s), 7,35(10%, s) \$\frac{1}{2} \mathrew \cdot \text{C}
(8)	Ca, ca, ca, - O-ca, - O . 301	'H-NME(CRC),) を: 1.00-2.03((M. e): 2.78(2H. bd), 2.88(3H. e): 1.00-2.03((M. e): 2.48(2H. e): 3.57(2H. e): 7.83((M. e): 4.58(2H. e): 3.57(2H. e):

突旋纲	<b>海 炎 式</b>	物 理 化 学 (6 致 (数点、元类分析值、888 化芒)
785	. a.cha.caCa-caQ · aci	'4-888(CDC1.) & . 1 08-2 00(38, m), 2 03(38, m), 2 28 (28, 08) 2 38 1 3 (10024) 3H, each s), 2 06 -2 45 (28, m), 2 43 (38, m), 7 36 (58, m)
	7.43	分子式:ClaBas8.0 · HCI
163	Aa-afaraO-a-O	
	G.S CI.	分子式 : C. elies li di , · Kl
164	Ąto,a.⊙•a.⊤ . κι	'H-NXR(CEC1.) &: 1.00-2.08(109.5), E.722.08(5P.5), 3.33 (2H.55), 8.18(18.55), 7.01(74.55)
		分子式:CH.2.8.0, · HCl
185	J. J. 1801	'H-MS (CCC12)
	*	分子式; C, 48,48,60、801
186	1.0.0-0.0 · 20	(H-88 (CDC))
	4.0	10KS、D _e Ree, R., 52;众于长

# 30 9 ⁽(800 ±8)

RMR	* * *	数 理 化 学 領 数 (機点、元素分析等。88%など)
187	Jan. Cr. Cr Cr.	'H-MEX(COC), d ; 1.84—1.04(1H, d), 2.54—1.00(5H, d), 2.53 [2H, s], 1.01(1H, d), 1.27(5H, d), 1.58(2H, d), 8.44(1H, d)
	£2;	分子女;C+1851840·28C1
188	Aafain-O-a-O . nc	'H-MAR(COCT.) # ; 1.80-2.00(48.e), 2.83(28.bd), 3.24(28.bd), 1.45(28.e), 3.53(28.b), 3.25(18.bb), 7.27 (58.e), 7.77(48.AB4)
	948	分子式;CaaRanRaDa - HCl
189	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	'8-888 (CCC1.) \$ : 1 0 ~ 2 1 1 8
		分子式;Crafficefice(NCI
170	Ja. 000 . 161	'9-MR (CDC1)
	CH, 2005	分子式; C,, N,, N, 0, - NC!
***		"H-MRR (CSC)   3   1   72 ~ 2   55   55   3   1   44 (24   55   55   55   55   55   55   55
		#### : C., N., N. O · 2HC

ZNA	第 发 实	物 器 化 学 版 数 (後点、元素分析物、888 など)
172	\$10.00.00.00 . no	**- **** (CECL)
175	0,8 J ^E RHCH.CHCHCH(8)	'n-sus(coci) # : \$ 7 ~ 2 2 (200 a)
174	81800X87 - CHÁCH, CH	'H-8X8 (CDC1.) 8; L1 -2.1 (28.a), 2.7 -2.1 (58.a), 1.2-3.6 (68.a), 1.22 (28.a), 5.7 (38.a), 7.2-1.4 (68. >>+x: (2.184.0. + x: 1
175	a. (1)-180-101-01-01-01-01-01-01-01-01-01-01-01-0	'H-RNR(COCL) 8 : 1,16-1,26 (238 m), 1,40 -3 58 (28.m), 4 23 (21.m), 1,18 (58.m), 2,34 (28.6), 8,58 (28.6)
178	\$\f\(\alpha\c\-\C+\c\-\C\\\\\\\\\\\\\\\\\\\\\\\\\\\	'H-388(CDCL) # : 1 16-21 12(88.0)

### **数 9 (就 会)**

,	P	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
***	## ## ##	物 雅 化 学 性 数 (数点、元素分析性、2013 など)
177		'#-***(CDC1.)
44. \$	CH.	'H-MMS (CDC1.)
17.9	y,c Jacoba. Ca-caO 1001	'H-NNS(CM(1) 8; 1,06~2,00(91,m), 2,60~1,00(71,m), 3,45(28, m), 6,95(28,m), 7,25(32,m), 7,90(28,m) 97 xt; Cook, 48,070, 480
188	, Ja., O-08-O . 100	'A-MS(CSC())
181	101-csCs-csO - sci	*N-BAR(CDC), 8; 1.10-1.58(128,0), 2.30(28,0), 2.88(28,0), 2.23-3.44(48,0), 4.02(28,0), 6.88(28,0), 7.28(78,0) 57-X:(1,8,8,0,-8C)

# **3** (3**3 3**)

来签约。	線 遊 菜	物 班 化 学 街 数 (股点、元素分析像、NHR など)
182	хО-ся,о Обись,ся,-Сж-ся,-О - ₂₀₀₁	**
183	A) Exp. Ca. Ca	**H-BAR*(CDC1.) \$ : 1 04—1, 98 (74, m), 2 20—3, 80 (74, m), 8, 60— 1 24 (71, m), 8, 87 (24, 6)
384	cr.d-O-den.crOr-crO - rei	'H-BAS (COC) ) 8 ; 0.90~2.20((H.m), 2.60 ~3.30(EH.m), 2.25, 1.93(sotel H. each ba), 3.48, 1.55(sotal 25, each ba), 2.58(GH.m), 7.1H.7.21(total 5h, each s), 7.87(4H.ASZ) 分子式:Cyahash,0; *HCI
98	ca,ca,eca, 🔷 Ga,ca, 🔷 - ca, 🔷 - xei	11-88 (CCC), 2; 2 % -2 (SCC) 2; 1 % (M, s), 1 % (ZR s), 7, 21-7, 30 (GR s) 2 7 % (C1, s), 8, 0, - NC)

#### **22** 9 (82 8)

突旋例	* * *	物 題 化 学 恒 数 (数点、元素分析物、398 など)
# 55 E	4.20-04-Q · 80	#-NUM(CDC)
187	CS, CS-C-Q-CSCS, CS-CS-CS-CS-CS-CS	78-788 (CDC)。) 6: (2K.s), 1:40~2:28 (GM.s). 1:28 (ZM.bd), 3:08 (3K.s), 3:20 ~3:50 (ZM.s). 3:38 (ZM.bd), 3:08 (3K.s), 3:20 ~3:50 (ZM.s). 3:38 (ZM.s), 4:58 (IR.quirtei), 7:08 (4K.ABd); 1:28 (GM.s)  分子式: Cy:No.N.S., * **C1

,,	***************************************	
KR97	· · · · · · · · · · · · · · · · · · ·	物 器 化 学 语 数 (数点、无器分析器、形成 (42)
188	ca.a C	'8-%% (CCC)
***************************************		57-72 ; C2285 rNC2 - 3021
183		'8-832 (CBC)
	CR ₃ Ô	分子式;CookeoWookiCi
		(現代) (285~286 (分解)
198	1-51. (N-C). (A - ) (C)	元素分析板(0:08:000;・100) として)
330	CH.O. C.	
	201 2	<b>35</b> .51 (℃) ;193~199
191	CH.5 CH ()-CH () - NCI	元素分析館(C., 3,, ×0,・兆) として)
331		
	cu n n	<b>数点 (で): : 200~20</b> 1
198		元本分析数(C., S., M. ・80) として)

# 表 10 (数 s)

·····	the same of the sa	
来热剂	% <u>%</u> %	・ 物 理 化 学 質 数 (数点、元素分析後、888 など)
193	′\\$a.0-a.0 · m	'8-NSE(COC1) /; 1,85-2,15(SR, s), 2,55-3,43(SR, s), 3,48 (28, s), 7,28(SR, s), 7,23-1,43(3R, s)
		分子文:CzellseNOF・NC1
		総点(セ): 175~177
194	01. Y - C1 O-C1 O - 110	元素分析数(C.:H.::NO::HET として)
	^	触点 (で) ; 211~213 (分解)
198	Çå. ()-a. () ⋅ x0	元素分析数(CashanKG / NEI として)
5.50		
	25	MA (T) : 153~154
155	ca,a \(\sigma\) -ca, -(\sigma\)-ca, -(\sigma\)	元素分析官(C++8++85+として)
129		<b>ZNE</b> S 357 12 15
197	cu*a	雑点 (で) ; 170~171 (分解)
		元 <b>第分析数(Coolfoy8Goとして)</b>
391		
	NV	

実施例	# 32 式	物 理 化 学 纸 数 (数点、元素分析数、WF 化ど)
193	анала Д. ан. О-ан. О · вст	数点(で):175~175 元本分析数(C.,H.,NC.、HC) として) (C. H. N (C. H.
199		<ul> <li>(セ):236~237 (分解)</li> <li>元等分析を(Co.8,000,・NE) として)</li> <li>( 数数数)</li></ul>
250	\$\display \( \O \\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \	88点(て): 195~195 元素分析数(Cs., -NO・NCI として) 
801	\$\frac{1}{2}\tau_1 \cdot \tau_2 \tau_3 \cdot \tau_3 \tau_5 \tau_	'H-898(CMI,)
203	01;0000 m	'%-axe(CUC)  8:   1.17(SA.8)  1.2-2   10(SH.8)  2.50-2.83   CUL.8]  1.51(24.8)  1.51(18.6)  1.20(GH.8)   1.38-1.92(SA.6)   33-7x: C., 34: 40 + UC1

# 裁 15 (統 會)

		· · · · · · · · · · · · · · · · · · ·
RHN	<b>发 袋 袋</b>	物 理 化 学 恒 数 (数点、元素分析数、888 など)
		<b>観点 (で) : 126~127</b>
000		元素分析値(C.,4%,,400,・801 として)
203		
204	C8*0	'8-888 (CSC)
	CB ₈ U' *	5) FA : CordosNos - HCl
205	° 3,0	19-885 (CEC.) ( ) . 3, 45 (2H, s) . 3, 85 (GH,
	Chris	分子式:C25图2780x - NCI
208	^{(*,0} (La-O-o,-O - *0	'S-888(EX.) 6 . 1 10~1 12(28 a). 1.48 120~1 11(28 a). 1 12(28 a). 1.48 170.0. 1 11(28 a). 1 12(28 a). 8 89(14 a).
		分子式; C55856800~8C1
1387		'8-May (CDC).
	CH ₂ D	分子式(Cashasilla:HCl

XE.20191	<b>※ ※</b>	物 題 化 学 程 数 (数点、天繁分析器、2007年4月)
208	CS,N CH-CH-CH-CH-CH-MCI	(8-882 (COC). 8; 2 (8-3 82 (28 8) 3 50 (28 8). 3 68 (28 8). 3 90 (68 9). 3 53 (18 60). (18 9). 7 83 (88 9). 1 57 (18 9)
	CS ₂ 0	分子式;CpallpyRGe·HCl
309	CH-0 ⁻ CH-O-CH-O- HE7	'8-888(CDC);
		分子文: Coaffer 1000 · 1801
230	CH.0 2 - CH CH.	'N-MANY (CDCL)
		分子式;C.,,B.,,SB., ^ NC)
311	713-0-04-0 - HC1	1. 122. 55 (78. a), 2. 783. 02 (28. a), 3. 50 (21. s), 3. 52 (58. s), 8. 72 (18. d), 7. 051. 55 (38. a), 7. 22 (58. s)
		分子式; CH.: NOF - NCI
212	ст, Д ² -ст-О-ст, О · нст	'8-nw8(coci,) 3: 1,80-2,85(78,a), 2,38(30,a), 2,78-3,63 (30,a), 3,88(28,a), 3,57(28,a), 6,68(18,60), 1,38-7,80(38,a), 7,21(58,a)
		分子式;C ₂ ,N ₂ ,N ₂ 0 · NCI

# **20** 16 (**30**. **3**)

RHF	28 路	物 概 化 学 性 数 (融点、元素分析数、服6 など)
:313	<b>↑</b> \$0-0-00 ⋅ 1101	'8-888(COCL)
	Ċ8s	分子式; C,,8,,80・HE) 数点 (て):174~178
011		元 <b>3</b> 分析包(C., F., ND, として)
814		
		<b>独点 (た) ; 176~178</b>
215		元素分析館(C.o.H., NO,として)
		enes fin in in
	04,01,0 \ CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	総点(で):180~181
218		元素分析館(C.s.H., NDs・HC1 として)
53.0		
217		<b>施点 (セ) ; 228~230 (分解)</b>
		元素分析数(C), 1801 よして)

XRM	% & X	特 理 化 学 恒 数 (数点、元素分析值、### など)
278	\$\di-\(\)-01-\(\)-01-\(\)-01-\(\)	'N-MAXS(CDC)
		OFC: C., a., ko · kc)
		数点(で): 231~238 (分解) 元素分析数(C.a.,a.,a. RC) として)
213		
226	01-0-0-0 · *0	'H-888 (CBC).) & ; 1.26-2.60 (TR.o). 1.36 (HK.o). 2.70-2.97 (24.o). 3.46 (HR.o). 8.07 (HR.o), 7.21 (58.0). 7.21-7.81 (58.0)
	M. A	分子文: CasHas 80 + 808
	8	£4 (°) ; 170~171
221	CH.O - 1 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 104 - 1	元条分析数(C,+85,180, として)
222	ант Д_такачан, -О-са, -О · на	'8-888 (CCT), 8; 1 10~2 46 (138, m), 2,70 ~3,00 (25, m), 3,46 '25, s), 3,85 (26, s), 3,86 (36, s), 3,31 (36, s), 5,68 (18, t), 8,80 (16, s), 7,20 (68, s)
	CK*8	分子式:Ca+H++Nic · HCl

# 数 10 (総 台)

突胎界	海	物 雍 化 学 傑 敦 (数点、光素分析值、888 など)
223	CH.O CH.CH.CH.CH.CH.CH. (CH.CH. (CH.CH. (CH.CH.	'H-NAS (CCC)
	8	分子式; C. * l'** : M: · HC l 独点 (t) ; 180~185
224		元集分析象(CH.,MC.・MC) として) 「
335	ar.e C-aO-aO - 1101	'H-MMB(CDC1-) & : 1.18-2.50(158.0), 2.87(38.0), 2.93(38.0), 6.80(18.0), 7.80-1.23(68.0) 3-7-25: C.,8,880. MC1
238	cias Len, Oca, O	** (t) : 185-188 (#*)  *- 188 (t);
227	а.e Да. О-а. Ž · ка	融点(で);220~221 元素分析値(C.8.1.40、- HC1 として) 足 業務機(数) 42.33 [4] [4] 実務機(数) 42.33 [4] [4]

who.	22 E W	物 理 化 学 版 数 (数级、无案分析度、89% など)
238	a, La, O-a, B' na	数点(t):212~313 元素分析数(C.A.NO.: NCI として) (C.A.NO.: NCI として) (T) (T) (T) (T) (T) (T) (T) (T) (T) (T)
223	^{ся, о} ДЪся, О-ся, О-ея, - яел	数点(で):223~230 (分別) 元素分析数(C.43,45、+iC( として) に
239		'H-MM (CCC), 3; 1,00—2,50(140,5), 3,73(34,5), 3,35(34,5), 1,32(34,5), 6,32(14,5), 7,12(14,5), 7,22— 1,32(34,5) 3)FX; C,18:x8:0; (NC)
231	см. Д. си. О-си. Д ⁰⁰ . ж	数点(T);219~311 元素分析官(C.,3,,8,6,・8C) として) C 3 3 変数数 12-11 1-31 1-31
232	сэло <u>Д</u> а. О-ся. О- <b>хө.</b> - же	数点(で): 234~236 (分解): 元素分析を(C.45,#,G.+,#) として) C

# 表 10 (概 金)

<b>建設外</b>	· · · · · · · · · · · · · · · · · · ·	物 展 化 学 版 数 (数点、无器分析值、终3 など)
233	CH,0 CH,-O-CH,-O'H . NET	'H-MHECO() & : 1 10-1 13(14K-a), 1 53(2K-a), 1 34(2K-a), 1 31(3K-a), 6 35-7 03(1K-a)
	6930	分子式; C************************************
-	8	<b>競点(な): 345~348</b>
234	CH-D Y CH, (Y-CH, (Y-OH - HC)	元素分析後(C,, H,, M),・8C1 として)
40X	CRED TO SECUL ON CREATE	
	01.0 C1.0 C1.0 C1.0 C1.0 C1.0 C1.0 C1.0	(株成 (で) : 193~194
235		元素分析数(Cv.Ha.Mi.・)に( として)
190		C : 1 7888 N 7 7 1 1
	n	数点 (で) : 225~238 (分解)
238	CH.0 / -CHCH	元素分析数(C.,F., N), · NC) として)
232	CH'92 Arrive Arrive Arrive Arrive Vision	
237	03.0 J. O.	'H-MAR (CECT.) 8: 0.78~3.40(141.4), 3.40(24.5), 3.51(34.5), 3.91(34.5), 3.01(24.5), 5.78(14.5), 1.50~ 1.40(34.5), 1.05(14.5)
	CH/8.	分子此: C,, st., stC;

<b>8167</b> 1	* * *	物 思 化 学 恒 数 (数点、元素分析数、882 年生)
238	03,13	数数 (日):224~236 (分解) 元素分析数(こ,4,4,8,5,*, 28C)として) 正数(3) 50 91 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1
\$300 \$300 \$300 \$300 \$300 \$300 \$300 \$300	::	数点 (で) :252~258 (分解) 元素分析数(C8.,NG.、HC) として) - C H N N N N N N N N N N N N N N N N N N
240	64.671 Gr. O-63(B) · #07	触点 (t) ; 225~215 (分が) 元法分析性(C,18,180,1K) として) (
24;	a,o	融点(セ);226~227 (分解) 元素分析数(C.,4,180、+ MEL として) C
242	0.0 \$\frac{1}{10.0} \cdot \cdo	製点 (セ):243~245 (分解) 元素分析数(CH., M., - NC) として) 変数変数 (作)

# 数 10 (数 卷)

*XXX	8 2 %	数 強 化 学 恒 数 (発点、元数分析数、4977 年と)
245	CH.0 CH CH CH CH MC1	股点 (で) :191-193 元素分析性(C.,N.,NO,・NC) として) 
244	CH. S CH. CH CH CH CH CH HCI	数点(T):219~221 元素分析性(C.,H.,M.,   K  として) 理論を(X)
245	C8.48 - C8.4 - O8.8 - SEC1	'P-MME(D ₆ O)
246		
247	03,0 Z -03, -0-03, -0 -1101	数点 (で) ; 249~241 (分類) 元素分析数(CH.,NO.5.・HCI さして) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)

# 表 10 (総合)

XM97	器 送 文	物 理 代 学 仮 数 (数点、元素分析数、88% など)
	n.	<b>経点 (で) : 185~185 (分解)</b>
248	CB.0 ~ 1-1-1-CB. ~ . 28CI	元章分析数(Co.H., N., N., O. : 2HC(として)
\$12	CHILD TO SERVICE CONTRACTOR CONTR	
	S	MA (T) : 230~238 (4)88)
249	(CH,0) > 1 - CH -	元素分析器(I.s3.sN), · NC( として)
		<b>2823</b> 55 2 35 2 35 2 35 2 35 2 35 2 35 2 3

第1	TO!	<b>*</b>							
(H)	Int. (	31.		1	MBU!	E#		庁内整理番号	<del>♥</del>
Ä	81	K	31/445 31/47 31/495					7375-4C	C
C	07	4:	51/475 51/485 51/858 51/60 51/60 51/60 51/60 51/60 51/64		e co	4	H	7180-40 7180-40 6742-40 6742-40 6742-40 6742-40 8829-40	
<b>0</b> #	933	*	荒	水			鸙	医鍼県つく	くば市竹園 2-11-6 柏マンション401号
<b>0</b> %	58	**	Ŋ×	臣		赏	史	茨蚊県つ(1 206号	くば市事務 4-14-5 ヴィラ・エスポワール
@発	8,5	- 133°	E	<b>3</b>		黨	彦	茨城県つく	くば市並木4-15-1 ニユーライフ並木408
<b>%</b>	颖	*	小	鑵	美	警	~}*		〈ば市吾婁 4 - 14 - 5 ヴィラ・エスポワール
<b>%</b>	893	***	LLI	準		灣	¥	神奈川県鎌	鎌倉市今泉台7-23-7

```
【公報種別】特許法第17条の2の規定による補正の掲載
```

[鄱門区分]第3部門第2区分

[発行日] 平成9年(1997) 1月14日

[公開番号] 特辦平2-169569

[公開日] 平成2年(1990) 6月29日

【年通号数】公開特許公報2-1696

[出職番号] 特顯昭63-324620

### (国際特許分類第6版)

C070 207/09 A63K 31/40 AAA 31/435 33/445 33/47 31/495 33/55 C070 211/08. 211/40 295/10 401/00 405/32

413/06

471/04 104 (FI) C070 207/09 8217-4C A63X 31/40 AMA 33/435 9434-40 33/445 33/47 33/495 33/55.

C070 211/08 9284-40 9784-4C 213/40 295/30 9283-40 401/00 7602-4C 405/12 7602-4C 413/06 7602-4C

104 H 7602-4C

471/04

### TH ME MY IE W

*****

条件音差音 聚

) 参数章表示

2. 美丽亚名林

飛れてくつ終済なそま有する巡察

2 接流电量表效

**本部との製造 物料出版人** 

经金额帐户 电三天

A. 徐 隆 人

(8888) 紫霉士 各 等

*\$11* 

28 (62)8663-7808 (ft)

5. 资源交易效

務額養金文

S. BEONE

C 28. 00 38.302

でかずルコリンエステラーゼ緊等数の河南から附後でることが 接着され、実際にも試みられている。代表的なものとして、框 コリンエステラーゼ視器解として、フィブステグミン、デトラ ドドコアミノアクリンなどがあるが、これらの裏別は効果が 十分でない、好ましくない異体質があるなどのか点を寄してお も、決定的な許確確はないのが強なである。

変に、表面ロリンタセテルトランスフェラーゼ(CAA)経着作 おもこれらの疾気の治療におめであることが差別されている。

そこで本発酵者もは、この作用も有する配合物について基準 にわたって蒸煮等用を置いてきた。

その前隔、後で基べる機差が(i)で示される時代でにいる 機体が、所謂の目的を施することが可能であることを異常した。

収集的には下窓の機造式(1)であされる本条例に金額は、 優れたロリンドマテルトランスフェラーゼ(EMT)経済物類を有 し、質に強力かつ選択他の高い族ダセテルロリンエステラーゼ 活性を育するため、認内のアロテルロリンを増盤すること、配 虚解等をデルで言葉であること、及び認識にの分野で視問され ているフェザステクとンと比較し、作用特級特別が最く、安全 性が無いという文きな特徴を有しており、本意明の演繹は振め

本祭際化を敬は、コリンマをテルトランスフェラーゼの教徒 作機に載づいて気物をむたらので、後って中枢性コリン素器、 概ち物数伝達物質としてのアセテルコリンの生体内の外でが原 後とされる様々の気象の形象・予念に有象である。

代数的なものとしては、アルツハイマー蒸電単衡製に代資き

#### 1998 SES SSS

#### に 薬物の名称

機能でミン語基体を含むする影楽

#### 2. 物外需求の影響

#### え 次の幾度式

で表される環境でミン約等体<u>来は</u>その高限学的に許多できる 塩皂有効感覚とするコリンプセテルトランスフェラー型解析 作用に基づく最悪の治療・予解剤。

#### 3 養殖の器数な説明

#### (報念法の利用方質)

本題明は、新規環状アニン誘導体を有効成分とする低差に発 する。

#### (義務に至る智分及が従来技術)

海洋人口が急激に換えする中で、アルジハイマー製品年齢系 などの選供製造の物盤施予機立することが過度されている。

しかしながら、現在のところ、選挙要素を基準で治療する終 みは独々なされているが、これらの衰退に基本的に有効とされ る業別は今のところ存在しない。

これらの銀巻の治療薬の開発は数々の方式から研究されているが、有力な方式としてするツバイマー型等母素最后、初のコリン作験性機能数でを作うことから、アセチルコリン筋験構造。

れる各種変異があるが、そのほかハンチントン類酸解, ビック 際、激素性種類異常なはそを強けることができる。

接って、本務等の当的は、覆蓋としてよりわけ中枢神経系の 無難の持難・予防に有効な新規感染でもン語等体を接続するこ と、この複数増大でもン語等体の影波方法を接続すること、及 びそれを有効率分とする電影を接続することである。

#### (発明の構改及び類果)

本義明的自然在合物は、故心等差式(T)で送される環状で そり需要な又はその象理学的に答案である第である。

本発明において、高原学的に対象である場とは、例えば複数 塩、酸機塩、真成素素酸塩、機構塩などの無底酸塩、繊酸塩、 新酸塩、トリコルまの耐酸塩、マレイン酸塩、蒸石酸塩、メダ ソスルボン酸塩、ベンゼンスルボン酸塩、トルエンスルボン酸 塩などの有機酸塩を挙げることができる。

なお、本務等化合物は、不再放散を対するので機関表性体、 光学異数体、ファステレオマーなどが存在しまるが、質れもが 発質の報酬に含まれる。

本発明化合物の製造方法は機々考えられるが、代数的な方法 について途べれば以下の乗りてある。

### XXXXA

32.75

即ち、教教女(日) や数まれるホスキナートに発達な(日) で数まれるアルチとド北台物を認識せらめて(**1:13資本)。 数数式(日) で数される化合物を持、おいてこれを複数差形して数的物質の化を物(日) を答ることができる。

(19)

郷ち、編巻式(V)で築される 8.8ージメトキシー・ーイングノンと構造式(II)で表されるアルダヒド本を、常然によりアルドール総合を行い、調金式(IV)で設される化合物を得る。本気溶は、例えばテトラヒドロフランなどの窓路中でフィンプロピルマミンとカープテルペキャン総数によりオテウムジャンプロピルマミンとカープテルペキャン総数によりオテウムジャンではどれてミドを全成させ、将ましくは約-80での温度でこれに上記の接法式(V)で表される 6.8ージメトキシー・ニーイングノンを加える。次いで落造式(II)で載されるアルデヒド海を設えて言葉により投資せらめ。常歴まて丹盛させることによって観念ませ、エノン体である接受式(IV)で表される化合物を持る。

本反応の紹方性として、異常く(V)と()())をテトラドドロフランなどの接端に解解し、物で包にて、遅んはテトリウムメデリートなどの選挙を加えて、実施にて反応をせることによる形法によっても関係することができる。

上近の裏地方法によって多られたエノン体(17)を変更に示したと異義の方法により発光することにより、接触式(1)で 機なれる化を物を得ることができる。

なお、製造方法人~目において、無限物質として無いるイン ダノラ類は常服品を附いるが支は以下の方法により製造される。 888 などを挙げることができる。この機能鑑えしては、飲えば デトラとドロフラン(ではり)、ジメデルホルムアミド(ひは り)、エーテル、エトロメタン、ジメデルスルキキンド(ひは ちの)などを挙げることができる。また、仮容能選は電磁から 100 で複数が終ましい始集を与える。

※参数地を行う等は、終えばバタジウム機能、ラエーエッケル、ロフウム機能はどを触線として高いることが好ましい機能を受ける。

#### **显淡五蕊**是

035,0

一方、アルデヒドルは例えば以下の方法により凝棄することができる。

等と主張の知く、式(1)であされる化合物を出場物質とし、 これを主義の方法によりてもずれずはますることにより、異な とする出類物質を答案ことができる。

ウィテッセ数器としては、微えばメタキシメチジントリフェ エルルスもランを思いる。

メトキシメダレンドリフェニルやスカランは、メトキシメチレントリフェニルやスポニウムタロライドとロープテルリチウムとから、機工第二一テル関係テトラヒドロフラン中で転嫁をせる。このでにケトン格を加え、微鏡選によってアルゲヒドを会議することができる。

以上のようにして写られる物造成(())の代合物及びその物 対距接は各種者人性有象征、等にアルフハイマー型名字類集の 分類に再発である。

複数或(1) 它原本机る化合物及び毛の物料超级の有限性を 添すために、凝凝解物质を設置に接続する。

#### 

Is vitto7 ttal 1 vil 2 ft - VESCE

化合物	(#8/hg)	1000 10 10 10 10 10 10 10 10 10 10 10 10
Saline		0
	-3	5 *
*****		\$7.00
water as	Tÿ.	36 **
	38	47 **

### 医腺腺素

### <u> スコポラミンの受動回激学習常餐に似する作品…</u>

等3818/高線株でかりを高い、展落としては3189(Attouth版の 密緒所を整確した。独行の1時間窓に放体を終口数心し、20分 者にスコポラミン3.5m/kg(3)を表慮した。高級副行では明確 に動物を入れ、確認に入った返送にデロデンドアを関め電気シ コッチを体のグリットから与えた、も時間後に体的設計として 等び動物を残空に入れ、確定に入るまでの時間を創度し評価した。 たこ

数集は先食授与終止スコポラミン投与群の製造時期の発売180 水とし後終により何米数銭したか(Reveyses)で扱した。

*1 2. Bokolanecky & Jervik: ist. J. New-ephermacki $g_{\rm c}$  217~22 2(1887)

**粉菜を獲るに吊す。** 

マセチルコリンエステラ・ビ婆として、アウス級ホモワネートをおいて、Ellossの方法*** に締約してエステラーゼ活性を製置した。マウス級ホモロネートに、蒸婆としてアセテルデオロリン、接級体及びDTNBを超越し、インキュペーション後、無無したデオロリンがひてNBと認識し、生じる資金維然を利加るにおける優先度数化として過速し、アセテルコリンエステラーゼ消性を変めた。

後生のアセテルロリンスステラーゼ報告法法は39回報等機数 (15:こ)で変した。

数基金数1次示字。

 Bilman, G.L., Courtney, S.A., Andres, V. and Peachers tone, R.E. (1981) Biochem. Pharmacul., 7, 88 —95

往 会 物	ACCESS SE SE
-------	--------------

252

#### *******

Bx 対Vs アヤチルコリンエステラーダ素素症機

ラットに被抗体を終り設率し、その1時期後に大阪半等を整 激し、おモジナイズ強、アセテルゴリンエステラーゼ器係を数 定した。なお、生場な温水及与罪を対策と対応とした。

4.女气以多套多原路。

**	3

化合物	(3) <b>(2)</b> (3) (3) (3)	Reye7588
東 <b>越</b> 第:	9.125	58
40.30 to 30.00	0.25	36

#### 突線影片

コリンアセチルトランスフェラーゼ(ChAT)緊要措施の概定

ラット対象の際市等和級の注意をひに神経和級中のリンアセ サルトランズフェラーゼ(SME)活送の概念

発行()" らの方法に挙じてラット特別の数数級級級の表案 を行った。ウィスター系数数ラット)(日数の数臭大級年級を しまプシン処理した、頻数数を名×10°個人見名がに調整し、 関数に数数化合物を添加してマイクロブレートに移し、37℃, 5%CS。-55%6、ウ?約所差差した。マイクロブレート中の奈美 神経極難のたれが無性はForecus**の方法に挙じて測定した。特 類類認分差別に「C-Acesyl Coessyste A を加えて 3 時間気息 をせ、無成した「C-Acesyl Coessyste A を加えて 3 時間気息 でも、無成した「C-Acesyl Coessyste A を加えて 3 時間気息 のたました。5%Aである次のた。数体の公式が治疗を注 コントロール状で表した。5%を次くに係す。

1) P. Maill. I. Maglikka, F. Estanastela, S. Scahn. R. Mes Mas gad S. Schwah, Maurestiesde, 14, 557-85(1925) 2) P. Fyenum : J. Naurochem., 24, 487-498 (1975) ₹¥ 4

80 è 😘		\$}9927.9·6 KKKK
	Ésac.	% of East.
8 a.	10-6 %	\$8
cu.a	15.0 %	1340
ca.e	15-2 N	11817

上級の高級務務的から始めたするがルコリンエステラーが数 審存無及びコリンでがきみトランスフェラーが減衰作無を対し ていることが概らかとられた。

本発明化合物(目)は、後来のアセチルコリンエステラーゼ 温密級とは構造を受しく美にすること、優れたコリンフセチル トランスフェラーゼ級特性を有し、反に数点なアセチルコリ ンエステラーゼ級特性を有し、ことのほか生作第一関作用率 が大会いこと、外無性級が長いこと、外接性が無く、見つ緩め て安定な化合物であり、影響上向等であること、最近生体制度 単か優れ、注では pass effect を受けにく(、ほつ影内等行性 もよいなどの物類を有している。

数々て、本意別の言的は、コミンアセチルトランスフェラー が緊急作品に基づいて報々の総系度、高度管理書籍を注に有効 な化金物を有効成分とする新規な高限を提供するにある。

なお、本業等化合物について、テットにおける場合結構を行ったよころ、約1900g/kgが上で高減な高性を挙さなかった。本 発現化合物は、エリンアセチルトランスフェラー状態発作器が 有如本本的中华及然江南的下的名。代数的红度是含为时代は、各种基人性的系统:特にアルマハイマー聚集年度及。每年中 (数目取、数模案)、路勒殊进化学、汤姆外含化之仁许多额应 各种等:数类性发化。服性解释化之仁许多性多为实下。在这种 专、其故性下、性端体等、运动环境、运生一多数状态、行动是 常性与心物性、子的、我群、政治化艺仁有的中央表。

本選別化会報のコリンアセチルトランスフェラーは試験作品 がこれらの映画に可能はのは、上記の作用により販内のアセテ ルコリンが構塑されることに基づくものと考えられる。

変に、本義務化会物は数点かつ選択性の減い扱コリンエステ ラーギ作用を有するので、これらの作用に基づく器塞としても 有力である。

報告、アルコハイマー製造機構築のほか、例えばハンキントン解験機、どっり級、製造性異常能などにも有限である。

本発展化表物をこれらの影響として容易する場合は、総合投 与者しくは発起に発生により数与されるが。教育は静観内、変 下、節本内など依頼期、光素等しくは苦干燥など幹疑に思与に より被与される。数与監信、症状の機能:患者の折合、散源。 体質、過受性差:或与方法:致与の特別、損害、凝棄契別の性 質、轉輯、強類:有能成分の複類などによって異なり、特に契 定されないが、過度成人:因為たり的2:1~280 mg、損ましく は約1~199mg であり、これを過度:日:~4回にわけて致与 する。

本養學企会物を整新化するためには、資源の技術分析における も適常の方法で在新鮮、金墨、宮子威、佐奈、カブセル所など

#### OMMETS.

接対象を緊要する場合には、出来に必要により20級整額、優 養無、緊痛化解、溶解確認制、資産化制、等級化制、銀序部は どを添加し、発表による影動、投下、影内内性射解とする。そ の概念表により常然による高級転換物とすることも可能である。

数素数としての例を挙げれば、例えばメテルセパロース、ボ リマルペートをも、セドロギジエテルセルロース、アラビアゴ ム、トラガントを、カルボキシメチルセルローステトリウム、 ポリカキシエテレンソルビタンモノラウシートなどを挙げるこ とができる。

被解補助剤としては、例えばおうオキンエテレン機能セマツ 油。ボリンルベート88、エコテン機でもド、ボリオキシエテ レンソルビタンキメラウレート、マグロゴール、ヒマシ被緊急 数エチルエステルなどを挙げることができる。

また安定的料としては、例えば関係機かりのウム、メタ整設 機かりのウム、エーナル等が、機が無としては、例えばパラボ キン対数等機メチル、パラオキン対象機能エテル、ソルビン機、 フェノール、クロゾール、クロロタンブールなどを挙げること ができる。

### (家 銭 報)

設下に実施的に残って本意明をさらに最終的に提明するが、 本業界の技術的機器がこれらの機械例の機器に限定されるもの でないことはいうまでもない。

なる、下窓の実施系において、1882 の窓はすべてフリー杯で の製造機を示す。

#### X # 6 1

W 1-TYZS-1-EXTZYZKÄTÄILKOŠĀ

3をキシステレントリフェエルポスポニウムタロライド
28.08を探水エーテル 280mlに影響させ、 3.68 カープチルリテウムペキャン溶影を容成にて数下込た、姿態にて知分類 復作した後、 6 でに必知し、1 ーペンタル・4 ーピペリドン14.25gの知がエーテル80mlを放を加えた。 8 級にて3 時間 復作した故不俗物を認知し、直接を経度機能した。これをエーテルに影解し、18温度にて禁患した。 キらに水散化ナトリウム水溶液にて約 32 とした後、後化メテレンにて給出した。減速マグネシウムにて衰壊化、減化機能し、将られた残然をシリカイルのでは衰退、減圧機能し、将られた残然をシリカイルの方式にて衰壊し、微化物質3.30g(収率38米)を発た。

これをメタリールが対に容解し、38億額4081を加えた。3 特額加熱環流した後、施田機器し、機械を水に溶解後水線化 ナトリウム水解板に下出 43 とし、機化メテレンにて検出し た、銀線会高水にて発浄金、機関マグネンウムにて開港し、 概集務務して待られた残場をシリカゲルカラムにて接着し。 機械内分替2.77g(数率5(※)を放放機関とした移た。

- 985.16.3 : 太子会。
- · 'U-888(C\$C(5) & . 1,40~2.40(78.0), 2.73(28.61) , 8.40(28.5), 7.20(28.5), 8.5)(18.5)
- ※ 3 ベンタネーを一((3 8 2 x 5 をシー) インダンン)- 3 4 9 デニル) メデルとベリジン・協議協の会系

この反応はアルゴン数数数下行った。

参水で評 19ml中にジイングロゼルアミン2.08mlを加え、お らにもではて1.88 aープテルリテウムペキテン容線 8.12mlを Mit, othtiogmalan, - 78th thmu. Le ーヴメトキシー1ーインダノン2 85gの数次787 80gl答旅と ヘキサメテルもスポルアミドにおめる飲えた。 ~78年にて35 会装棒した袋、脚で得た!- ペンタル・オーゼペリタンカル ボアルデヒド2.76gの報水TSF 30ml電波を加えた、放送まで 数々に葬墓し、さらに演纂にて2時報復弊した他、18級作 アンモニウム水溶液を抑え、有数器を分離した。水器を酢類 立それにて協会し、さらに合わせた可機器を影響機器をにて 後歩した。厳酷マグネンウムで乾燥色、蒸圧機能し、巻られ 大機能をジリカダルカラム(選化メチレン:メタノール×500 ; i ~100 : )) にて物類した。商品報金級圧機論した数。 技術を強化メデシンに溶解し、10%基数・動数エテル溶液を 強え、さらに選出機械して結為を得た。これを構造メチレン 一個名 から海輪系化し、液の物性を含する繁殖性合物に40g (資本32%) を終た。

C 8 8 18:18:18: (M) 89: 80 7: 20 8: 27 28:18: (M) 89: 20 7: 16 8: 22

部級人代議人 古 各 ■

- · 数点(C): 237 ~ 238 (分解)
- · 素素分数数: C.S., M. · BC1として

6 B N

整路性(86) 88,46 8.82 8.88

数据数(M) 68.51 8.78 5.30

#### K...K...K...L

数後後:で移られた(一つンジルーなー((8.8 ージメトキシー3ーインダノン)・2・イリデエル)メデルビベリジン
0.40gをFEF(8点に放影し、19所パラジウムー炭素に83gを数えた。幸政高圧にても物質主席発動した後、地数を経済施した。 2の残差をジリカゲバカラム(磁化メデレン:メタノール=50:(1)にて開発し、容異度を経済機能した後、残益を塩化メテレンに発酵し、16%基数一動験エチル溶液を加え、そらに減圧機能して結晶を存在。これをエタノールー195 から同結晶化し、次の物性を育する機能化合物の36g(収率原金)を存在。

- · 務点 (で) : 311 ~ 312 (分解)
- · 元素分析位: 5::il::x85: 861として