### Imperial College London

# Scalable Systems for the Cloud

Fall 2018

Rack-scale Computing

Instructor: Dr. Jana Giceva

### What is a rack?

- How does it fit within a data-centre?
- What does it consists of? Which resources?
- How do we build it?
- Example rack-computers

## Rack-scale

What is a rack?



### Rack-scale

- What is a rack?
  - The rack is the new unit of deployment in data centres
  - Sweet spot between a single-server and cluster deployments
  - It has 42 units (rack-units RU) that host the compute resources



# What's in a Rack-scale computer?

- Rack-scale computer (pre-packaged)
- Compute:
  - standard compute
  - accelerators
- Storage:
  - hot / warm / cold disks
- Networking:
  - interconnect
  - software defined networking



Image source: Supermicro RSD

From server-centric to resource-centric datacentre design

Server-centric:



# From server-centric to resource-centric datacentre design

Towards resource-centric

- Past: physical aggregation
  - shared power, cooling, rack-management
- Now: fabric integration
  - fast rack-wide interconnect
- Future goal: resource disaggregation
  - pooled compute, storage, memory resources



## Today's scale within a rack computer

We already have scale within a rack itself.

| Machine                 | Core count |
|-------------------------|------------|
| AMD SeaMicro SM15000-64 | 2'048      |
| HP Moonshot Redstone    | 11'520     |
| Boston Viridis          | 7'680      |

| Machine                 | Memory   |
|-------------------------|----------|
| AMD SeaMicro SM15000-XE | 8 TB     |
| HP Moonshot Redstone    | 11.25 TB |

| Machine                 | Network      |
|-------------------------|--------------|
| EDR Mellanox            | 100 Gbps     |
| Intel silicon photonics | 100-400 Gbps |

And increasing *heterogeneity* of resources

AMD Rack P47 – 1 PetaFLOP of compute at FP32 single precision

| CPU               | GPU                 | Memory     | Network                         |
|-------------------|---------------------|------------|---------------------------------|
| 20x AMD EPYC 7601 | 80x Radeon Instinct | 10 TB DDR4 | 2x36 port EDR switch (100 Gbps) |

# Future: heterogeneous computing resources across the rack

- Accelerators
- Co-processors
- Intelligent storage
- Intelligent (active) memory
- Smart NICs
- In-network data processing

# Rack-scale computing

- How do we implement applications for a rack computer?
- How do we manage these resources?
- What is the failure model? How do we achieve fault tolerance?

# Data appliances – among the first rack-scale apps



#### Same Exadata Architecture

Complete | Optimized | Standardized | Hardened Database Platform

Oracle's Exadata rack-scale data analytics engine since 2008



#### **Standard Database Servers**

- 8x 2-socket servers → 192 cores, 2TB DRAM or
- 2x 8-socket servers → 160 cores, 4TB DRAM



#### Unified Ultra-Fast Network

- 40 Gb InfiniBand internal connectivity → all ports active
- 10 Gb or 1 Gb Ethernet data center connectivity

#### Scale-out Intelligent Storage Servers

- 14x 2-socket servers → 168 <u>faster</u> cores in storage
- 168 SAS disk drives → 672 TB HC or 200 TB HP
- 56 Flash PCI cards → 44 TB Flash + compression



ORACLE

<sup>6</sup> Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

# Data appliances – among the first rack-scale apps



IBM Netezza
Heterogeneous appliance
incorporating FPGA blades

Figure from 2011

# How do we program with remote memory?

## Parallel architectures





# Programming models

- Shared memory programming
  - shared address space
  - implicit communication
  - cache-coherent NUMA
  - e.g., pthreads or OpenMP
- (Partitioned) global address space
  - Remote Memory Access
  - Remote vs. local memory (e.g., ncc NUMA)
- Distributed memory programming
  - Explicit communication (e.g., with messages)
  - Message passing



## A popular approach – RDMA

What is RDMA?
Remote Direct Memory Access

RDMA is a hardware mechanism through which the network card can directly access all or parts of the main memory of a remote node without involving the processor.



# **RDMA** properties

- Bypass the CPU → low CPU utilization
- Bypass the OS kernel → no interrupts, no context switching
- Zero-copy data → low memory bus contention
- Message based transactions
- Asynchronous operations → overlap communication and computation

### Traditional TCP/IP sockets vs RDMA



src: InfiniBand Trade Association: Introduction to IB for end users

## "Expanding" the Memory hierarchy





Microsoft Research showed that using Remote Memory (and RDMA) improves the latency of TPC-H and TPC-DS queries by 2-100x

Li et al. [SIGMOD 2016]

### RDMA in research

High Performance Computing is the home research domain for RDMA

#### **Databases**

- Distributed transactions FaSST [OSDI'16], FaRM [NSDI'14, SOSP'15], DrTM [SOSP'15], Tell [SIGMOD'15], NAM-DB [VLDB'17]
- **RDMA KV-stores**RAMCloud [FAST'11, SOSP'11, SOSP'15], HERD [SIGCOMM'14], Pilaf [ATC'13]
- Distributed join processing
  Barthels et al. [SIGMOD'15], Frey et al. [ICDCS'10], Rödiger et al. [ICDE'16]
- Accelerating RDBMS with RDMA Li et al. [SIGMOD'16], BatchDB [SIGMOD'17]

### **Operating Systems**

Data-centres / Rack-scale computing: LITE [OSDI'17]

# Efficient way to access remote storage?

## What about remote storage?

Traditionally:

Accessing remote storage requires traversing the whole system stack.

But, hardware and software latencies are additive.



#### Future:

- Intelligent storage
- BlueDBM [ISCA'15]
- Ibex [VLDB'14]



11/10/2018 SSC