1. Präsenzübung – Theoretische Grundlagen der Informatik 3

WS 2012/2013

Stand: 23.10.2012

Aufgabe 1:

Auf der Insel Trufa leben zwei Volksstämme: Die Trus, die immer die Wahrheit sagen, und die Fas, die immer lügen.

Ein Reisender trifft drei Bewohner A, B und C der Insel, die ihm Folgendes mitteilen:

- (i) A sagt: "B und C sagen genau dann die Wahrheit, wenn C die Wahrheit sagt."
- (ii) B sagt: "Wenn A und C die Wahrheit sagen, dann ist es nicht der Fall, dass A die Wahrheit sagt, wenn B und C die Wahrheit sagen."
- (iii) C sagt: "B lügt genau dann, wenn A oder B die Wahrheit sagen."

Formalisieren Sie die Aussagen der drei Bewohner in der Aussagenlogik und verwenden Sie Ihre Formalisierung um zu entscheiden, zu welchen der beiden Volksstämme die drei Bewohner gehören.

Aufgabe 2:

Geben Sie an, ob die folgenden Formeln allgemeingültig, erfüllbar oder unerfüllbar sind (mit Begründung).

- (i) $(X \to Y) \to X$.
- (ii) $(\neg X \lor Y) \to (Y \to X)$.
- (iii) $(\neg X \lor Y) \to (X \to Y)$.

Aufgabe 3:

Sei $\Sigma := \text{AVar} \cup \{\}, (, \neg, \land, \lor, \rightarrow, \leftrightarrow, \top, \bot\}$ das Alphabet der Aussagenlogik.

Für ein Wort $w \in \Sigma$ definieren wir

- $|w|_v$ als die Anzahl der in w vorkommenden Variablen und
- für $* \in \{$), (, \neg , \land , \lor , \leftarrow , \leftarrow , \top , \bot $\}$, definieren wir $|w|_*$ als die Anzahl der Positionen in w an denen * steht.

Beispiel: Sei $w=(X_1\vee X_2)\wedge (\neg X_1\vee X_3)$. Dann ist $|w|_v=4$ und z. B. $|w|_\vee=2$.

Wir definieren nun eine Funktion $f: \Sigma^* \to \mathbb{N}$ durch

$$f(w) := |w|_{\perp} + |w|_{\top} + |w|_{v} + 0 \cdot |w|_{\neg} - (|w|_{\lor} + |w|_{\land} + |w|_{\rightarrow} + |w|_{\leftrightarrow}) - 2 \cdot |w|_{\downarrow} + 2 \cdot |w|_{\downarrow}$$

Das heißt, wir summieren über alle in w vorkommenden Symbole, wobei Variablen sowie \bot, \top als Wert 1 zählen, die Negation 0, binäre Verknüpfungen jeweils -1, öffnende Klammern 2 und schließende -2.

- Bestimmen Sie den Wert f(w) des Wortes $w := ((X_1 \vee X_3) \wedge (X_4 \to X_3))$
- Beweisen Sie folgende Aussage: Ist $w \in \Sigma^*$ eine syntaktisch korrekte aussagenlogische Formel, dann ist f(w) = 1.

Aufgabe 4:

Für $c, i \in \mathbb{N}_0$ bezeichnen wir mit c_i das i-te Bit in der Binärdarstellung von c, beginnend von rechts. Beispiel (42 ist in binär 101010):

$$42_0 = 0$$

$$42_1 = 1.$$

Sei $n \in \mathbb{N}$ beliebig. Geben Sie für jedes $i \in \{0, 1, \dots, n\}$ eine Formel φ_i an mit der Eigenschaft, dass für alle $a \in \mathbb{N}_0$ mit $a < 2^n$ gilt:

$$\varphi_i(a_{n-1}, a_{n-2}, \dots, a_0)$$

ist wahr ist genau dann, wenn $(\overline{a}+1)_i=1$, wobei \overline{a} das binäre Komplement von a ist (eingeschränkt auf n Bits). Zum Beispiel ist für n=7 und a=42 die Zahl $(\overline{a}+1)$ in binär 1010110. Die Formel φ_i definiert also das i-te Bit des 2er-Komplements der n-stelligen Binärzahl a.