МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Параллельные алгоритмы»
Тема: Основы работы с процессами и потоками

Студент гр. 9304	Попов Д.С.
Преподаватель	Сергеева Е.И.

Санкт-Петербург

2022

Цель работы.

Ознакомиться с работой с процессами и потоками в языке программирования C++.

Задание.

Выполнить поэлементное сложение 2х матриц М*N

Входные данные: Две матрицы вводятся из файла или генерируются.

Результат: Сумма двух матриц записывается в файл

- 1. Выполнить задачу, разбив её на 3 процесса. Выбрать механизм обмена данными между процессами.
 - а. Процесс 1: заполняет данными входные матрицы (читает из файла или генерирует их некоторым образом).
 - b. Процесс 2: выполняет сложение
 - с. Процесс 3: выводит результат
- 2. Выполнить задачу, разбив её на 3 потока.
 - а. Поток 1: заполняет данными входные матрицы (читает из файла или генерирует их некоторым образом).
 - b. Поток 2: выполняет сложение
 - с. Поток 3: выводит результат
- 3. Разбить сложение на Р потоков.

Исследовать зависимость между количеством потоков, размерами входных данных и параметрами целевой вычислительной системы.

Выполнение работы.

Сложение матриц с помощью 3 процессов.

С помощью fork() порождаются процессы-потомки, которые почти идентичны потоку-родителю (не наследуются pid процесса, израсходованное время ЦП и т.п.). Весь код после fork() выполняется дважды, как в процессе-потомке, так и в процессе-родителе (чтобы не было дублирования, используется switch по pid процесса).

Для передачи данными между процессами использовалась разделяемая память, так как он самый быстрый (не приводит к переключению контекста между процессом и ядром). Для создание общей памяти использовалась функция mmap.

Сложение матриц с помощью 3 потоков.

Создание потоков происходит с помощью конструктора thread(), в который передается функция и необходимые параметры.

Примитивом синхронизации выступает condition_variable в связке с mutex, которые обеспечивают поочередное выполнение потоков.

Сложение матриц с помощью N процессов.

Для сложения с помощью N потоков используется массив потоков. Каждый поток суммирует определенный диапазон значений.

Исследование зависимости между количеством потоком, размерами входных данных и параметрами вычислительной системы.

В таблице 1 представлено сравнение размера входных данных и времени вычисления при выполнении в одном потоке:

Таблица 1 - Сравнение размера входных данных и времени вычисления

Время вычисления(милисек.)	Размер входных данных
11	1000 x 1000
204	5000 x 5000
806	10000 x 10000
1843	15000 x 15000

В таблице 2 представлено сравнение размера входных данных и времени вычисления при распределении на 5 потоков.

Таблица 2 - Сравнение размера входных данных и времени вычисления

Время вычисления(милисек.)	Размер входных данных
4	1000 x 1000
85	5000 x 5000
323	10000 x 10000
635	15000 x 15000

Выводы.

В ходе выполнения лабораторной работы была реализована программа на языке программировании С++, получены навыки работы с потоками и процессами, а так же было установлено, что разбиение вычислительных задач на несколько потоков, положительно сказывается на скорости выполнения программы.