# International Rectifier

### IRLML2502PbF

#### HEXFET® Power MOSFET

- Ultra Low On-Resistance
- N-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching
- Lead-Free

#### Description

These N-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3™, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.







#### **Absolute Maximum Ratings**

|                                                                                         | Parameter                                        | Max.         | Units |
|-----------------------------------------------------------------------------------------|--------------------------------------------------|--------------|-------|
| V <sub>DS</sub>                                                                         | Drain- Source Voltage                            | 20           | V     |
| $I_D @ T_A = 25^{\circ}C$                                                               | Continuous Drain Current, V <sub>GS</sub> @ 4.5V | 4.2          |       |
| I <sub>D</sub> @ T <sub>A</sub> = 70°C Continuous Drain Current, V <sub>GS</sub> @ 4.5V |                                                  | 3.4          | Α     |
| I <sub>DM</sub>                                                                         | Pulsed Drain Current ①                           | 33           |       |
| P <sub>D</sub> @T <sub>A</sub> = 25°C                                                   | Power Dissipation                                | 1.25         | W     |
| P <sub>D</sub> @T <sub>A</sub> = 70°C                                                   | Power Dissipation                                | 0.8          | VV    |
|                                                                                         | Linear Derating Factor                           | 0.01         | W/°C  |
| $V_{GS}$                                                                                | Gate-to-Source Voltage                           | ± 12         | V     |
| T <sub>J,</sub> T <sub>STG</sub>                                                        | Junction and Storage Temperature Range           | -55 to + 150 | °C    |

#### **Thermal Resistance**

|                 | Parameter                    | Тур. | Max. | Units |
|-----------------|------------------------------|------|------|-------|
| $R_{\theta JA}$ | Maximum Junction-to-Ambient® | 75   | 100  | °C/W  |

#### Electrical Characteristics @ T<sub>1</sub> = 25°C (unless otherwise specified)

| Lieutical orialacteristics & 1j = 25 o (unices otherwise specifica) |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                                                           | Min.                                                                                                                                                                                                                                                                                                                                                                                                                 | Тур.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Drain-to-Source Breakdown Voltage                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $V_{GS} = 0V, I_D = 250\mu A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Breakdown Voltage Temp. Coefficient                                 |                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reference to 25°C, I <sub>D</sub> = 1mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Static Drain-to-Source On-Registance                                |                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>GS</sub> = 4.5V, I <sub>D</sub> = 4.2A ②                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Static Dialitio-Source Off-Hesistatice                              |                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V <sub>GS</sub> = 2.5V, I <sub>D</sub> = 3.6A ②                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Gate Threshold Voltage                                              | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Forward Transconductance                                            | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $V_{DS} = 10V, I_D = 4.0A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Drain to Source Leakage Current                                     |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{DS} = 16V, V_{GS} = 0V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Drain-to-Source Leakage Current                                     |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V <sub>DS</sub> = 16V, V <sub>GS</sub> = 0V, T <sub>J</sub> = 70°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Gate-to-Source Forward Leakage                                      |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nΛ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V <sub>GS</sub> = -12V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Gate-to-Source Reverse Leakage                                      |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>GS</sub> = 12V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Total Gate Charge                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $I_D = 4.0A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Gate-to-Source Charge                                               |                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $V_{DS} = 10V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Gate-to-Drain ("Miller") Charge                                     |                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>GS</sub> = 5.0V ②                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Turn-On Delay Time                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{DD} = 10V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Rise Time                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $I_D = 1.0A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Turn-Off Delay Time                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                      | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $R_G = 6\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Fall Time                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $R_D = 10\Omega$ ②                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Input Capacitance                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                      | 740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{GS} = 0V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Output Capacitance                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $V_{DS} = 15V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Reverse Transfer Capacitance                                        |                                                                                                                                                                                                                                                                                                                                                                                                                      | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f = 1.0MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                     | Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance | Parameter   Min. Drain-to-Source Breakdown Voltage   20 Breakdown Voltage Temp. Coefficient   — Static Drain-to-Source On-Resistance   — Gate Threshold Voltage   0.60 Forward Transconductance   5.8 Drain-to-Source Leakage Current   — Gate-to-Source Forward Leakage   — Gate-to-Source Reverse Leakage   — Total Gate Charge   — Gate-to-Drain ("Miller") Charge   — Turn-On Delay Time   — Rise Time   — Turn-Off Delay Time   — Fall Time   — Input Capacitance   — Output Capacitance   — | Parameter         Min.         Typ.           Drain-to-Source Breakdown Voltage         20         —           Breakdown Voltage Temp. Coefficient         —         0.01           Static Drain-to-Source On-Resistance         —         0.050           Gate Threshold Voltage         0.60         —           Forward Transconductance         5.8         —           Drain-to-Source Leakage Current         —         —           Gate-to-Source Forward Leakage         —         —           Gate-to-Source Reverse Leakage         —         —           Total Gate Charge         —         8.0           Gate-to-Source Charge         —         1.8           Gate-to-Drain ("Miller") Charge         —         1.7           Turn-On Delay Time         —         7.5           Rise Time         —         10           Turn-Off Delay Time         —         54           Fall Time         —         26           Input Capacitance         —         740           Output Capacitance         —         90 | Parameter         Min.         Typ.         Max.           Drain-to-Source Breakdown Voltage         20 — —         —           Breakdown Voltage Temp. Coefficient         —         0.01 —           Static Drain-to-Source On-Resistance         —         0.035 0.045 —           Gate Threshold Voltage         0.60 —         1.2           Forward Transconductance         5.8 —         —           Drain-to-Source Leakage Current         —         1.0 —           Gate-to-Source Forward Leakage         —         -100           Gate-to-Source Reverse Leakage         —         100           Total Gate Charge         —         8.0 12           Gate-to-Source Charge         —         1.8 2.7           Gate-to-Drain ("Miller") Charge         —         1.7 2.6           Turn-On Delay Time         —         7.5 —           Rise Time         —         10 —           Turn-Off Delay Time         —         54 —           Fall Time         —         26 —           Input Capacitance         —         740 —           Output Capacitance         —         90 — | Parameter         Min.         Typ.         Max.         Units           Drain-to-Source Breakdown Voltage         20         —         —         V           Breakdown Voltage Temp. Coefficient         —         0.01         —         V°C           Static Drain-to-Source On-Resistance         —         0.035         0.045         —         Ω           Gate Threshold Voltage         0.60         —         1.2         V           Forward Transconductance         5.8         —         —         S           Drain-to-Source Leakage Current         —         1.0         —         μΑ           Gate-to-Source Forward Leakage         —         —         1.0         —         μΑ           Gate-to-Source Reverse Leakage         —         —         100         —         nA           Total Gate Charge         —         8.0         12         nC         —         nC           Gate-to-Source Charge         —         1.7         2.6         —         nC         —         nC           Gate-to-Drain ("Miller") Charge         —         1.7         2.6         —         ns         ns         ns         ns         ns         ns         ns         ns |  |

#### **Source-Drain Ratings and Characteristics**

|                 | Parameter                 | Min. | Тур. | Max. | Units | Conditions                                           |
|-----------------|---------------------------|------|------|------|-------|------------------------------------------------------|
| Is              | Continuous Source Current |      |      | 1.0  |       | MOSFET symbol                                        |
|                 | (Body Diode)              |      |      | 1.3  | A     | showing the                                          |
| I <sub>SM</sub> | Pulsed Source Current     |      |      | 33   | 1 ^   | integral reverse                                     |
|                 | (Body Diode) ①            |      |      | 33   |       | p-n junction diode.                                  |
| $V_{SD}$        | Diode Forward Voltage     |      |      | 1.2  | V     | $T_J = 25^{\circ}C$ , $I_S = 1.3A$ , $V_{GS} = 0V$ ② |
| t <sub>rr</sub> | Reverse Recovery Time     |      | 16   | 24   | ns    | $T_J = 25^{\circ}C, I_F = 1.3A$                      |
| Q <sub>rr</sub> | Reverse Recovery Charge   |      | 8.6  | 13   | nC    | di/dt = 100A/µs ②                                    |

#### Notes:

- $\ensuremath{\mathbb{O}}$  Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 )
- ② Pulse width  $\leq$  300 $\mu$ s; duty cycle  $\leq$  2%.

## International TOR Rectifier

### IRLML2502PbF



Fig 1. Typical Output Characteristics



Fig 2. Typical Output Characteristics



Fig 3. Typical Transfer Characteristics



**Fig 4.** Normalized On-Resistance Vs. Temperature



**Fig 5.** Typical Capacitance Vs. Drain-to-Source Voltage



**Fig 7.** Typical Source-Drain Diode Forward Voltage



**Fig 6.** Typical Gate Charge Vs. Gate-to-Source Voltage



Fig 8. Maximum Safe Operating Area



**Fig 9.** Maximum Drain Current Vs. Case Temperature



Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International

TOR Rectifier



Fig 11. On-Resistance Vs. Gate Voltage

Fig 12. On-Resistance Vs. Drain Current

# International TOR Rectifier

### IRLML2502PbF

#### Micro3™ Package Outline

Dimensions are shown in millimeters (inches)



| DIM | INC         | HES   | MILLIMETERS |      |  |
|-----|-------------|-------|-------------|------|--|
|     | MIN         | MAX   | MIN         | MAX  |  |
| Α   | .032        | .044  | 0.82        | 1.11 |  |
| A1  | .001        | .004  | 0.02        | 0.10 |  |
| В   | .015        | .021  | 0.38        | 0.54 |  |
| С   | .004        | .006  | 0.10        | 0.15 |  |
| D   | .105        | .120  | 2.67        | 3.05 |  |
| е   | .0750 BASIC |       | 1.90 BASIC  |      |  |
| e1  | .0375       | BASIC | 0.95 BASIC  |      |  |
| Е   | .047        | .055  | 1.20        | 1.40 |  |
| Н   | .083        | .098  | 2.10        | 2.50 |  |
| L   | .005        | .010  | 0.13        | 0.25 |  |
| θ   | 0°          | 8°    | 0°          | 8°   |  |



- NOTES:
  1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
  2. CONTROLLING DIMENSION: INCH.
  3 DIMENSIONS DO NOT INCLUDE MOLD FLASH.

International IOR Rectifier

#### Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)



#### Micro3 (SOT-23/TO-236AB) Part Marking Information





PART NUMBER CODE REFERENCE:

A= IRLML2402

B = IRLML2803 C = IRLML6302

D = IRLML5103 E = IRLML6402

F = IRLML6401

G= IRLML2502 H = IRLML5203

Note: A line above the work week (as shown here) indicates Lead-Free.

| YEAR | Υ | WORK<br>WEEK | W |
|------|---|--------------|---|
| 2001 | 1 | 01           | Α |
| 2002 | 2 | 02           | В |
| 2003 | 3 | 03           | С |
| 1994 | 4 | 04           | D |
| 1995 | 5 |              |   |
| 1996 | 6 |              |   |
| 1997 | 7 |              |   |
| 1998 | 8 | 1            | 1 |
| 1999 | 9 | 7            | 7 |
| 2000 | 0 | 24           | X |
|      |   | 25           | Υ |
|      |   | 26           | Z |
|      |   |              |   |

W= (27-52) IF PRECEDED BY ALETTER

| YEAR | Υ | WORK<br>WEEK | W   |
|------|---|--------------|-----|
| 2001 | Α | 27           | Α   |
| 2002 | В | 28           | В   |
| 2003 | С | 29           | С   |
| 1994 | D | 30           | D   |
| 1995 | E |              |     |
| 1996 | F |              |     |
| 1997 | G |              |     |
| 1998 | Н | 1            | - 1 |
| 1999 | J | 7            | 1   |
| 2000 | K | 50           | X   |
|      |   | 51           | Υ   |
|      |   | 52           | Z   |
|      |   |              |     |

#### Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)



Data and specifications subject to change without notice.



IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 11/04