#load the dataset

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

import pandas as pd
import numpy as np
import sklearn
import matplotlib.pyplot as plt

data = pd.read_csv("/content/drive/MyDrive/Churn_Modelling.csv")

data.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	838
2	3	15619304	Onio	502	France	Female	42	8	1596
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	1255
4									•

Perform Below Visualization

#univariate Analysis for Numerical data

#Histogram
data['Age'].plot(kind='hist')

<matplotlib.axes._subplots.AxesSubplot at 0x7f7138b72e50>

```
#Box Plot
plt.boxplot(data['Tenure'])
```


#univariate Analysis for Categorical Data

```
#Bar Chart
df = pd.DataFrame(data)
X = list(df.iloc[:,0])
Y = list(df.iloc[:,1])
plt.bar(X,Y,color='g')
```

<BarContainer object of 10000 artists>

Bivariate Analysis

#Bivariate Analysis for Categorical Data
#Stacked Bar chart
plt.bar(data['Gender'],data['Geography'],color='r')

<BarContainer object of 10000 artists>

#Bivariate Analysis for Numerical Data
plt.scatter(data['Age'],data['CreditScore'],color='b')

<matplotlib.collections.PathCollection at 0x7f713858eb50>

Multivariate Analysis

#Multivariate Analysis for 2 Numerical and 1 Categorical Data
#Scatter Plot
import seaborn as sns
sns.catplot(data=data, x="Age", y="CreditScore", hue="Gender")

<seaborn.axisgrid.FacetGrid at 0x7f712a994b90>

#Multivariate Analysis for 2 Categorical and 1 Numerical Data
#Box Plot
sns.catplot(data=data, x="Geography", y="Age", hue="Gender", kind="box")

Question-4: Perform Descriptive Statistics on the dataset:

#Perform Descriptive Statistics on the Dataset

data.mean()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Droppi """Entry point for launching an IPython kernel.

RowNumber 5.000500e+03 CustomerId 1.569094e+07 CreditScore 6.505288e+02 Age 3.892180e+01 Tenure 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 dtype: float64

data.median()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Droppi """Entry point for launching an IPython kernel.

5.000500e+03 RowNumber CustomerId 1.569074e+07 CreditScore 6.520000e+02 Age 3.700000e+01 Tenure 5.000000e+00 Balance 9.719854e+04 NumOfProducts 1.000000e+00 HasCrCard 1.000000e+00 IsActiveMember 1.000000e+00 EstimatedSalary 1.001939e+05 0.000000e+00 Exited

dtype: float64

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balaı
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.0000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.8892
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.4052
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.0000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.0000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.5400
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.2400
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.0900
4						>

data.shape

(10000, 14)

Question-5: Handle the Missing values:

#Handling the missing values
data.isnull().sum()

RowNumber 0 CustomerId 0

0 Surname CreditScore 0 0 Geography Gender 0 0 Age Tenure 0 Balance 0 NumOfProducts 0 HasCrCard 0 IsActiveMember 0 EstimatedSalary 0 Exited 0 dtype: int64

Question-6: Find the outliers and replace the outliers:

```
#Find the OutLiers and replace the outliers
sns.boxplot(data['Age'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f7129b3ea10>

qnt=data.quantile(q=[0.25,0.75])
qnt

		RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	Has
0	.25	2500.75	15628528.25	584.0	32.0	3.0	0.00	1.0	
0	.75	7500.25	15753233.75	718.0	44.0	7.0	127644.24	2.0	
- ◀-									•

IQR = qnt.loc[0.75] - qnt.loc[0.25]
IQR

RowNumber 4999.5000 CustomerId 124705.5000 CreditScore 134.0000 Age 12.0000 Tenure 4.0000
Balance 127644.2400
NumOfProducts 1.0000
HasCrCard 1.0000
IsActiveMember 1.0000
EstimatedSalary 98386.1375
Exited 0.0000

dtype: float64

```
upper_extreme = qnt.loc[0.75]+1.5*IQR
upper_extreme
```

RowNumber 1.499950e+04 CustomerId 1.594029e+07 CreditScore 9.190000e+02 Age 6.200000e+01 Tenure 1.300000e+01 Balance 3.191106e+05 NumOfProducts 3.500000e+00 HasCrCard 2.500000e+00 IsActiveMember 2.500000e+00 EstimatedSalary 2.969675e+05 Exited 0.000000e+00

dtype: float64

```
lower_extreme = qnt.loc[0.25]-1.5*IQR
lower extreme
```

RowNumber -4.998500e+03 CustomerId 1.544147e+07 CreditScore 3.830000e+02 Age 1.400000e+01 Tenure -3.000000e+00 Balance -1.914664e+05 NumOfProducts -5.000000e-01 HasCrCard -1.500000e+00 IsActiveMember -1.500000e+00 EstimatedSalary -9.657710e+04 Exited 0.000000e+00

dtype: float64

```
df2 = data[(data['Age']<upper_extreme['Age']) & (data['Age']>lower_extreme['Age'])]
```

data.shape

(10000, 14)

df2.shape

(9589, 14)

```
sns.boxplot(df2['Age'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f7124cd43d0>

Question-7: Check for Categorical columns and perform Encoding:

#Check for Categorical columns and perform encoding
#Categorical are Geography and Gender
from sklearn.preprocessing import LabelEncoder

```
le=LabelEncoder()
df2['Geography'] = le.fit_transform(df2['Geography'])
df2['Gender'] = le.fit_transform(df2['Gender'])
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarnir A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCopyWarnir A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
This is separate from the ipykernel package so we can avoid doing imports until

```
df2.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ba
Ques	tion-8: split the	data into dep	endent ar	nd independen	t variables:				
	1 4	10041011	1 1111	000	4	U	→ 1	ı	OOO

x.head()

Х

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ba
0	1	15634602	Hargrave	619	0	0	42	2	
1	2	15647311	Hill	608	2	0	41	1	838
2	3	15619304	Onio	502	0	0	42	8	1596
3	4	15701354	Boni	699	0	0	39	1	
4	5	15737888	Mitchell	850	2	0	43	2	1255
4									•

Question-9: Scale the independent variables:

```
/usr/local/lib/python3.7/dist-packages/sklearn/preprocessing/_data.py:220: RuntimeWar
```

mean_ = np.nanmean(X, axis)
/usr/local/lib/python3.7/dist-packages/numpy/lib/nanfunctions.py:1671: RuntimeWarning

keepdims=keepdims)
/usr/local/lib/python3.7/dist-packages/sklearn/preprocessing/_data.py:228: RuntimeWar

mean_1 = np.nanmean(Xr, axis=0)

/usr/local/lib/python3.7/dist-packages/sklearn/preprocessing/_data.py:236: UserWarnir "Numerical issues were encountered "

/usr/local/lib/python3.7/dist-packages/sklearn/preprocessing/_data.py:247: RuntimeWar
mean_2 = np.nanmean(Xr, axis=0)

/usr/local/lib/python3.7/dist-packages/sklearn/preprocessing/_data.py:255: UserWarnir "Numerical issues were encountered "

```
[nan, nan, nan, ..., nan, nan, nan],
...,
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, nan, nan, nan]])
```

```
x =pd.DataFrame(x, columns =[names])
```

x.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bala
0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1
3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1
4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1
4									•

Question-10: split the data into training and testing:

```
#split The data into Training and Testing
```

```
from sklearn.model_selection import train_test_split
```

```
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2)
```

x_train

		RowNumber	Custo	merId		Surname	CreditS	core	Geograp	hy	Gender	Age	Ter
	2508	2509	156	61974		Pirozzi		677		0	1	46	
y_tra	in												
	2508	158531.01											
	1292	74275.08											
	2861	89566.64	·										
	2512	116912.45											
	3721	88783.59											
	4390	148579.43											
	7721	42581.09											
	4213	94767.77											
	1216	41139.05											
	4194	195771.95											
	Name:	EstimatedSa	lary,	Length:	7671,	dtype:	float64						

x_test

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	
4429	4430	15686463	Fu	626	0	1	38	7	1,
8377	8378	15567147	Ratten	802	2	1	40	4	
7357	7358	15570947	Bruny	615	2	0	29	7	1،
4680	4681	15729582	Fu	676	1	1	48	3	1
1069	1070	15628674	ladanza	844	0	1	40	7	1
5121	5122	15708422	Hsiung	677	2	0	35	0	
1570	1571	15607133	Shih	717	2	0	49	1	1
1789	1790	15773017	Todd	763	2	0	37	6	
5039	5040	15775490	Downie	660	0	0	38	5	1
2841	2842	15748473	Curnow	801	0	1	38	5	
1918 rows × 13 columns									
4									•

y_test

4429	52795.56
8377	81908.09
7357	126396.01
4680	101397.86
1069	31904.31
	• • •
5121	76637.38
1570	124532.90
1789	149705 25

5039 195906.59 2841 66256.27

Name: EstimatedSalary, Length: 1918, dtype: float64

Colab paid products - Cancel contracts here