Class 10: Structural Bioinformatics Pt.1

Cynthia Perez (A16393492)

PDB Statistics

The main repository of biomolecular structure info is the PDB <www.rcsb.org>. Let's see what the database contains. Go to "Analyze" > "PDB Statistics" > "by Experimental Method and Molecular Type". Read the csv file:

```
stats <- read.csv("pdb_stats.csv", row.names=1)
stats</pre>
```

	v	т.	MAD	M 7	NT .	0.1
	X.ray	EM	NMK	Multiple.methods	Neutron	utner
Protein (only)	161,663	12,592	12,337	200	74	32
Protein/Oligosaccharide	9,348	2,167	34	8	2	0
Protein/NA	8,404	3,924	286	7	0	0
Nucleic acid (only)	2,758	125	1,477	14	3	1
Other	164	9	33	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	186,898					
Protein/Oligosaccharide	11,559					
Protein/NA	12,621					
Nucleic acid (only)	4,378					
Other	206					
Oligosaccharide (only)	22					

We have to get rid of the commas in order to convert the vector from characters to numeric.

```
x <- stats$X.ray
sum(as.numeric(gsub(",", "", x)))</pre>
```

[1] 182348

We have a working snippet of code that can be turned into a function to work on more variables from the table of data.

```
sumcomma <- function(x){
  sum(as.numeric(gsub(",", "", x)))
}</pre>
```

Use the apply() function to use the sumcomma() on the entire dataset.

```
#apply the sumcomm() function to the stats dataset over columns
apply(stats, 2, sumcomma)
```

X.ray	EM	NMR	Multiple.methods
182348	18817	14173	230
Neutron	Other	Total	
79	37	215684	

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
#take the sum of the total to divide the sum of X.ray and EM by
n.total <- sumcomma(stats$Total)
#percentage of x.ray
(sumcomma(stats$X.ray)/n.total)*100</pre>
```

[1] 84.54406

```
#percentage of EM
(sumcomma(stats$EM)/n.total)*100
```

[1] 8.724337

Q2: What proportion of structures in the PDB are protein?

```
sumcomma(stats["Protein (only)",])/n.total
```

[1] 1.733072

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

In UniProt there are 248,805,744 entries which compared to PDB protein entries 186,898 means there are only $\sim 7\%$ of known sequences with a known structure

186898/248805744 *100

[1] 0.07511804

Visualizing the HIV-1 protease Structure

Mol*("mol-star") viewer is now everywhere. The homepage is https://molstar.org/viewer/

I want to insert my image from Mol* here

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

We need a better resolution. Hydrogens are too small to be seen so we only see the oxygen atom

Q5: There is a critical "conserved" water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have

Residue number 308

Q6: Generate and save a figure clearly showing the two distinct chains of HIV-protease along with the ligand. You might also consider showing the catalytic residues ASP 25 in each chain and the critical water (we recommend "Ball & Stick" for these side-chains). Add this figure to your Quarto document.

Figure 1: 1HSG structure with highlighted water and ASP 25 residues

Introduction to Bio3D in R

```
library(bio3d)

pdb <- read.pdb("1hsg")

Note: Accessing on-line PDB file</pre>
```

Call:

read.pdb(file = "1hsg")

```
Total Models#: 1
    Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
    Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 172 (residues: 128)
    Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
  Protein sequence:
     PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
     QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
     ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
     VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, segres, helix, sheet,
       calpha, remark, call
  head(pdb$atom)
 type eleno elety alt resid chain resno insert
                                                                  z o
1 ATOM
          1
                N < NA >
                         PRO
                                 Α
                                       1
                                           <NA> 29.361 39.686 5.862 1 38.10
                                       1
2 ATOM
          2
               CA <NA>
                         PRO
                                 Α
                                           <NA> 30.307 38.663 5.319 1 40.62
3 ATOM
          3
               C <NA>
                         PRO
                                       1 <NA> 29.760 38.071 4.022 1 42.64
                                 Α
          4
                         PRO
4 ATOM
                O <NA>
                                 Α
                                       1 <NA> 28.600 38.302 3.676 1 43.40
          5
                                       1 <NA> 30.508 37.541 6.342 1 37.87
5 ATOM
               CB <NA>
                         PRO
                                 Α
6 ATOM
               CG <NA>
                         PRO
                                           <NA> 29.296 37.591 7.162 1 38.40
 segid elesy charge
1 <NA>
               <NA>
           N
2 <NA>
           C
               <NA>
3 <NA>
           C <NA>
4 <NA>
           O <NA>
           C <NA>
5 <NA>
6 <NA>
               <NA>
```

```
pdbseq(pdb)[25]
 25
"D"
     Q7: How many amino acid residues are there in this pdb object?
198 amino acid residues
     Q8: Name one of the two non-protein residues?
HOH, MK1 > Q9: How many protein chains are in this structure?
2 A and B
Predicting Funcitonal Motions of a single strucutre
We can do a bioinformatics prediction of functional motions (felxibility/dynamics)
  pdb <- read.pdb("6s36")</pre>
  Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE
  pdb
       read.pdb(file = "6s36")
 Call:
   Total Models#: 1
     Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
     Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 244 (residues: 244)
     Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
```

Protein sequence:

MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG

+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call

m <- nma(pdb)

Building Hessian... Done in 0.044 seconds. Diagonalizing Hessian... Done in 0.487 seconds.

plot(m)


```
mktrj(m, file="adk_m7.pdb")
```

We download this file into Mol* to create an animation of the structure.