Bouncee maths

Linear

Name	Function	Domain	Graph
In	f(x)=x	$0 \leq x \leq 1$	
Spike	$f(x)=2x \ g(x)=2(1-x)$	$0 \leq x \leq 0.5 \ 0.5 < x \leq 1$	

Sinus

Quadratic

Out
$$f(x)=1-(x-1)^2$$
 $0\leq x\leq 1$

InOut
$$f(x)=2x^2$$
 $0 \leq x \leq 0.5$ $0.5 < x \leq 1$

Spike
$$f(x) = 4x^2$$
 $0 \le x \le 0.5$ $0.5 < x \le 1$

Cubic

Name	Function	Domain	Graph
In	$f(x)=x^3$	$0 \leq x \leq 1$	
Out	$f(x)=1+(x-1)^3$	$0 \leq x \leq 1$	
InOut	$f(x) = 4x^3 \ g(x) = 1 + 4(x-1)^3$	$0 \leq x \leq 0.5 \ 0.5 < x \leq 1$	

Quartic

Name	Function	Domain	Graph
In	$f(x)=x^4$	$0 \leq x \leq 1$	

Out
$$f(x)=1-(x-1)^4$$
 $0\leq x\leq 1$

InOut
$$f(x) = 0.5 - 8(x - 0.5)^4$$
 $0 \le x \le 0.5$ $0.5 < x \le 1$

Spike
$$f(x) = 16x^4$$
 $0 \le x \le 0.5$ $0.5 < x \le 1$

Quintic

Spike

 $f(x)=32x^5$

 $\overrightarrow{g(x)} = -(2x-2)^5$

Name	Function	Domain	Graph
ln	$f(x)=x^5$	$0 \le x \le 1$	
Out	$f(x)=1+(x-1)^5$	$0 \le x \le 1$	
InOut	$f(x) = 16x^5 \ g(x) = 1 + 16(x-1)^5$	$0 \leq x \leq 0.5 \ 0.5 < x \leq 1$	

 $0 \le x \le 0.5$

 $0.5 < x \le 1$

Exponential

Name Function Domain

In
$$f(x)=1-\sqrt{1-x}$$

$$0 \le x \le 1$$

Graph

Out
$$f(x) = \sqrt{x}$$

$$0 \le x \le 1$$

InOut
$$f(x) = 0.5 - 0.5\sqrt{1-2x} \\ g(x) = 0.5 + 0.5\sqrt{2x-1}$$

$$0 \le x \le 0.5 \ 0.5 < x \le 1$$

Spike
$$f(x) = 1 - \sqrt{1-2x} \ g(x) = 1 + \sqrt{2x-1}$$

$$0 \le x \le 0.5$$

 $0.5 < x \le 1$

Circular

Name	Function	Domain	Graph
ln	$f(x)=1-\sqrt{1-x^2}$	$0 \leq x \leq 1$	

Out
$$f(x)=\sqrt{1-(x-1)^2}$$

$$0 \le x \le 1$$

InOut
$$f(x) = 0.5 - \sqrt{0.25 - x^2} \ g(x) = 0.5 + \sqrt{0.25 - (x-1)^2}$$

$$0 \le x \le 0.5$$

 $0.5 < x \le 1$

Spike
$$f(x)=1-\sqrt{1-4x^2} \ g(x)=1-\sqrt{2x-2}^2$$

$$0 \le x \le 0.5 \\ 0.5 < x \le 1$$

Bounce

s = 7.5625 (scalar that narrows parabola)

d = 2.75 (offset on the x axis)

Name	Function	Domain	Graph
In	$egin{aligned} f(x) &= 1 - s x^2 \ g(x) &= 1 - s (x - rac{1.5}{d})^2 - 0.75 \ h(x) &= 1 - s (x - rac{2.25}{d})^2 - \ -0.9375 \ i(x) &= 1 - s (x - rac{2.625}{d})^2 - \ -0.984375 \end{aligned}$	$egin{aligned} 0 & \leq x < rac{1}{d} \ rac{1}{d} & \leq x < rac{2}{d} \ rac{2}{d} & \leq x < rac{5}{4d} \end{aligned}$	
Out	$f(x) = sx^2 \ g(x) = s(x - rac{1.5}{d})^2 - 0.75 \ h(x) = s(x - rac{2.25}{d})^2 - 0.9375 \ i(x) = s(x - rac{2.625}{d})^2 - 0.984375$	$egin{array}{l} 0 \leq x < rac{1}{d} \ rac{1}{d} \leq x < rac{2}{d} \ rac{2}{d} \leq x < rac{5}{4d} \ rac{5}{4d} \leq x < 1 \end{array}$	
InOut	$f(x) = (1 - (s(1 - 2x - \frac{2.625}{d})^2 + +0.984375))/2$ $g(x) = (1 - (s(1 - 2x - \frac{2.5}{d})^2 + +0.9375))/2$ $h(x) = (1 - (s(1 - 2x - \frac{1.5}{d})^2 + 0.75))/2$ $i(x) = (1 - (s(1 - 2x)^2))/2$ $j(x) = (0.5 + (s(1 - 2x)^2))/2$ $k(x) = (0.5 + (s(1 - 2x - \frac{1.5}{d})^2 + 0.75))/2$ $l(x) = (0.5 + (s(1 - 2x - \frac{2.5}{d})^2 + +0.9375))/2$ $m(x) = (0.5 + (s(1 - 2x - \frac{2.625}{d})^2 + +0.984375))/25$	$0 \le x < rac{1}{2d}$ $rac{1}{2d} \le x < rac{1}{d}$ $rac{1}{d} \le x < d$ $d \le x < rac{2}{d}$ $rac{2}{d} \le x < rac{5}{4d}$ $rac{5}{4d} \le x < rac{5}{2d}$ $rac{5}{2d} \le x < 0.5$ $0.5 \le x < 1$	
Spike	$f(x) = 1 - (s(1 - 2x - \frac{2.625}{d})^2 + +0.984375)$ $g(x) = 1 - (s(1 - 2x - \frac{2.5}{d})^2 + +0.9375)$ $h(x) = 1 - (s(1 - 2x - \frac{1.5}{d})^2 + 0.75)$ $i(x) = 1 - (s(1 - 2x)^2)$ $j(x) = 1 - (s(1 - 2(1 - x) - \frac{1.5}{d})^2 + 0.75))$ $k(x) = 1 - (s(1 - 2(1 - x) - \frac{2.5}{d})^2 + +0.9375))$ $l(x) = 1 - (s(1 - 2(1 - x) - \frac{2.625}{d})^2 + +0.984375)$	$0 \le x < rac{1}{2d}$ $rac{1}{2d} \le x < rac{1}{d}$ $rac{1}{d} \le x < d$ $d \le x < rac{5}{4d}$ $rac{5}{4d} \le x < rac{5}{4d}$ $rac{5}{4d} \le x < rac{5}{2d}$ $rac{5}{2d} \le x < 0.5$ $0.5 \le x < 1$	

Elastic

Back

Polynomial shaping:

Inverted Cos

Double Cubic

Double Cubic Blend

Double Odd