Chapter 5: Manag	arklund, J. (2013). Business process modelling, simulation, and design. ging Process Flows Week 7		Book pg no
	Tools for Process Design Week 8 vsing Process Flows	Slide	
Lecture 7. Analy	ising Frocess Frows	pg no	
Process Throughput	 Inflow and Outflow rates typically vary over time (see figure on next slide) R_i(t) = Arrival/Inflow rate of jobs at time t R_o(t) = Departure/Outflow rate of finished jobs at time t IN = Average inflow rate over time OUT = Average outflow rate over time A stable system must have IN = OUT = λ 	9	149
	 - λ = the process flow rate in - λ = the process flow rate out - λ = process throughput 		
Work-In- Progress	Work-In-Process ("WIP") WIP(t) comprises all jobs that have entered the process but not yet left it including jobs waiting for the previous batch to be completed WIP(t) = Work in process at time t WIP(t) increases when R _i (t)>R _o (t) WIP(t) decreases when R _i (t) <r<sub>o(t) WIP = Average work in process over time</r<sub>	12	150
Cycle Time	Process Cycle Time The difference between a job's departure time and its arrival time = cycle time One of the most important attributes of a process Also referred to as throughput time The cycle time includes both value adding and non-value adding activity times Processing time Inspection time Transportation time Storage time Waiting time Cycle time is a powerful tool for identifying process improvement potential	16	152
Little's Law Formula	Little's Formula: WIP = λ·CT	17	153
Turnover ratio (Inventory)	Turnover ratio = 1/CT	17	153

Dowark		22	155
Rework	A B C D 20% Assuming a job is never reworked more than once CT = (1+r)T Assuming a reworked job is no different than a regular job CT = T/(1-r)	22	155
Multiple Paths	■ Assume that m different paths originate from a decision point - p _i = The probability that a job is routed to path i - T _i = The time to go down path i CT = p ₁ T ₁ +p ₂ T ₂ ++p _m T _m = ∑ _{i=1} ^m p _i T _i	28	156
Parallel Activities	F G M process segments in parallel T _i = Average process time for process segment i to be completed CT _{parallel} = Max{T ₁ , T ₂ ,, T _M }	31	157
Cycle Time Efficiency	Cycle Time Efficiency = Theoretical Cycle Time CT	33	159

Capacity Needs and Utilization, I	Step 1 – Calculate unit load for each resource ■ The total resource time required to process one job — N _i = Number of jobs flowing through activity i for every new job entering the process — T _i = The processing time for activity i in the current resource — M = Total number of activities using the resource Unit load for Resource = ∑M N _i · T _i	42	163
Capacity Needs and Utilization, II	Step 2 – Calculate the unit capacity The number of jobs per time unit that can be processed Unit capacity for resource j = 1 / Unit load for resource j Step 3 – Determine the resource pool capacity A resource pool is a set of identical resources available for use Pool capacity is the number of jobs per time unit that can be processed Let M = Number of resources in the pool Pool capacity = M*Unit capacity = M / Unit load	44	163
Capacity Needs and Utilization, III	Capacity is related to resources not to activities! The process capacity is determined by the bottleneck The bottleneck is the resource or resource pool with the smallest capacity (the slowest resource in terms of jobs/time unit) The slowest resource will limit the process throughput Capacity Utilization The theoretical process capacity is obtained by focusing on processing times as opposed to activity times Delays and waiting times are disregarded The actual process throughput ≤ The theoretical capacity! Capacity Utilization = Actual Throughput Theoretical Process Capacity	46	164
Theory of Constraints (TOC)I	Theory of Constraints (TOC) (I) ■ An approach for identifying and managing bottlenecks — To increase process flow and thereby process efficiency ■ TOC is focusing on improving the bottom line through — Increasing throughput — Reducing inventory — Reducing operating costs ⇒ Need operating policies that move the variables in the right directions without violating the given constraints ■ Three broad constraint categories 1. Resource constraints 2. Market constraints 3. Policy constraints	53	

Theory of Constraints	Theory of Constraints (TOC) (II)	54 Examples of	
(TOC)II Examples of Applying TOC Methodology pp. 55 onwards	 1. Identify the system's constraints 2. Determine how to exploit the constraints Choose decision/ranking rules for processing jobs in bottleneck 3. Subordinate everything to the decisions in step 2 4. Elevate the constraints to improve performance For example, increasing bottleneck capacity through investments in new equipment or labor 5. If the current constraints are eliminated return to step 1 Don't loose inertia, continuous improvement is necessary! See example 5.18, Chapter 5 in Laguna & Marklund 	Applying TOC Methodology pp. 55 onwards	

Week 8	Laguna, M., & Marklund, J. (2013). Business process modelling, simulation, and design. Chapter 4: Basic Tools for Process Design – This book is in the reading list		
	Types of Flow: 1.Work Flow (initiate, process and complete order) 2.Information Flow (transmit and receive order) 3.Materials Flow (manufacturing) 4.Customer Flow (service to customers) 5.Cash flow (payment)	6	
Material flows: Load- Distance analysis	 LD(i,j) = LD score between work stations i and j LD(i,j) = Load(i,j)*Distance(i,j) The LD score measures the attraction between two work stations (activities) The larger the traffic volume the higher the score and the higher the incentive to keep the work stations together The goal is to find a design that minimizes the total LD score (the sum of individual scores between work stations) The Load Matrix summarizes the load (flow rate = # of jobs) that needs to be shipped between each pair of work stations 	14	112
Workflow: Line Balancing	Line Balancing A useful approach when processing times are fairly constant — Should not be used when processing times display high variability The goal is to balance the capacity of the different workstations constituting the production line (the process) Procedure Specify sequential (precedence) relationships among the activities using a precedence diagram Use market demand to determine the line's desired cycle time per work station (C) C = Process time per day Market demand per day (in # of jobs)	39	127
Line Balancing	Line Balancing Procedure (continued) 3. Determine the theoretical minimum # of workstations (TM) TM = Sum of activity times C 4. Select a primary rule to assign activities to workstations and a secondary rule to break ties 5. Assign activities one at a time to workstation 1 as long as the sum of activity times ≤ C. Repeat this for workstations 2,3, Must satisfy the activities' precedence relationships 6. Evaluate the line efficiency = Total process time / (C *#stations) 7. Rebalance using a different priority rule in case the efficiency is unsatisfactory	40	127

Workflow: Cycle Time Efficiency	 Measured as the percentage of the total cycle time spent on value adding activities. 	53	?159
	Cycle Time Efficiency = $\frac{\text{Theoretical Cycle Time}}{\text{CT}}$		
	 Theoretical Cycle Time = the cycle time which we would have if only value adding activities were performed That is if the activity times, which include waiting times, are replaced by the processing times 		
Workflow: Capacity analysis	 Capacity is related to resources not to activities! The process capacity is determined by the bottleneck The bottleneck is the resource or resource pool with the smallest capacity (the slowest resource in terms of jobs/time unit) The slowest resource will limit the process throughput Capacity Utilization 	55	164
	 The theoretical process capacity is obtained by focusing on processing times as opposed to activity times Delays and waiting times are disregarded ⇒The actual process throughput		
	Capacity Utilization = $\frac{\text{Actual Throughput}}{\text{Theoretical Process Capacity}}$		