Об автомодельных решениях задачи Стефана с бесконечным числом фазовых переходов

Панов Евгений Юрьевич

Новгородский государственный университет имени Ярослава Мудрого Секция: Уравнения в частных производных, математическая физика и спектральная теория

В области t, x>0 рассматривается задача Стефана для уравнения теплопроводности с фазовыми переходами при температурах $u_i>u_0$, $i\in\mathbb{N}$. Считаем, что $u_{i+1}>u_i$ $\forall i\in\mathbb{N}$ и что $\lim_{i\to\infty}u_i=u_*\leq +\infty$. Здесь i-ая фаза соответствует температурному интервалу (u_i,u_{i+1}) и характеризуется коэффициентами диффузии $a_i>0$ и теплопроводности $k_i>0$, $i\in\{0\}\cup\mathbb{N}$. На неизвестных линиях $x=x_i(t)$ фазовых переходов, где $u=u_i$, задается условие Стефана $d_ix_i'(t)+k_iu_x(t,x_i(t)+)-k_{i-1}u_x(x,x_i(t)-)=0$, $i\in\mathbb{N}$, $d_i\geq 0$. Ставятся также начальное и краевое условия $u(0,x)\equiv u_0$, $u(t,0)\equiv u_*$. Изучаются убывающие по $\xi=x/\sqrt{t}$ автомодельные решения $u=u(\xi)$. Оказалось, что условия Стефана на линиях фазовых переходов $\xi=\xi_i$ сводятся к равенствам $\frac{\partial}{\partial \xi_i}E(\bar{\xi})=0$, где

$$E(ar{\xi}) = -\sum_{i=0}^{\infty} k_i (u_{i+1} - u_i) \ln(F(\xi_i/a_i) - F(\xi_{i+1}/a_i)) + \sum_{i=1}^{\infty} d_i \xi_i^2/4$$
, $F(\mathbf{z}) = \frac{1}{\sqrt{\pi}} \int_0^{\mathbf{z}} \mathrm{e}^{-s^2/4} ds$ и $\xi_0 = -\frac{1}{\sqrt{\pi}} \int_0^{\mathbf{z}} \mathrm{e}^{-s^2/4} ds$ и $\xi_0 = -\frac{1}{\sqrt{\pi}} \int_0^{\mathbf{z}} \mathrm{e}^{-s^2/4} ds$ и $\xi_0 = -\frac{1}{\sqrt{\pi}} \int_0^{\mathbf{z}} \mathrm{e}^{-s^2/4} ds$

 $+\infty$. Этот функционал задан на выпуклом конусе $\{\bar{\xi}=(\xi_i)_{i\in\mathbb{N}}\in l_\infty\mid \xi_i>\xi_{i+1}>0\ \forall i\in\mathbb{N}\ \}$ и является коэрцитивным и строго выпуклым функционалом. Если $E(\bar{\xi})\not\equiv +\infty$, то существует единственная точка $\bar{\xi}^0$ глобального минимума функционала E. Координаты ξ_i^0 этой точки определяют решение нашей задачи. Показано, что в случае $E(\bar{\xi})\equiv +\infty$ решение может отсутствовать.