PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-338255

(43)Date of publication of application: 27.11.2002

(51)Int.Cl.

CO3B 5/18

(21)Application number: 2002-014620

(71)Applicant: HOYA CORP

(22)Date of filing:

04.06.1993

(72)Inventor: IZUMITANI TETSUO

NAMIKI HIROJI

(54) METHOD FOR MANUFACTURING HIGHLY HOMOGENEOUS GLASS PRODUCT

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a method for of manufacturing glass products each having high homogeneity of a refractive index by taking advantage of the characteristic of the efficient production of optical glass intrinsically possessed by a continuous melting system with a relatively small-sized equipment. SOLUTION: This method for manufacturing the glass products includes a process step of melting glass raw materials, a process step of clarifying the molten glass, a process step of stirring the clarified glass, a process step of regulating the viscosity of the stirred glass and a process step of obtaining the glass products by forming the glass regulated in its viscosity, in which the process steps described above are continuously performed. The glass volume V in the state of stirring the clarified glass satisfies the following equation (3) in the relation with the volume (v) of the glass products and the average stagnation time of the molten glass in a mixing vessel is specified within 60 minutes. The equation (3) (where n

 ∞ -n0 is the fluctuation width of the refractive index n0 of the glass flowing into the stirring process step, n ∞ -n is the fluctuation width of the refractive index n ∞ of the glass flowing out of the stirring process step and within a range of $\le \pm 1 \times 10$ -6 and (f) is stirring efficiency).

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-338255 (P2002-338255A)

(43)公開日 平成14年11月27日(2002.11.27)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

C 0 3 B 5/18

C03B 5/18

審査請求 有 請求項の数4 OL (全 6 頁)

(21)出願番号

特願2002-14620(P2002-14620)

(62)分割の表示

特願平5-160275の分割

(22)出願日

平成5年6月4日(1993.6.4)

(71)出顧人 000113263

ホーヤ株式会社

東京都新宿区中落合2丁目7番5号

(72)発明者 泉谷 徹郎

東京都新宿区中落合2丁目7番5号 ホー

ヤ株式会社内

(72)発明者 並木 博治

東京都新宿区中落合2丁目7番5号 ホー

ヤ株式会社内

(74)代理人 110000109

特許業務法人特許事務所サイクス (外1

名)

(54) 【発明の名称】 高均質ガラス製品の製造方法

(57)【要約】

【課題】比較的小型の装置で、本来連続溶融方式が有している効率的な光学ガラスの生産という特徴を生かした、屈折率の均質度が高いガラス製品の製造方法の提供、【解決手段】 ガラス原料を溶融する工程、溶融したガラスを清澄する工程、清澄したガラスを撹拌する工程、機拌したガラスの粘度を調整する工程、及び粘度を調整したガラスを成形してガラス製品を得る工程を含み、かつ前記工程が連続的に行われるガラス製品の製造方法であって、前記清澄したガラスを撹拌する工程におけるガラス容量Vが、前記ガラス製品の容量vとの関係において下記式(3)を満たし、かつ攪拌槽における溶融ガラスの平均滞在時間を60分以下とする。

$$n_{\infty}-n=(n_{\infty}-n_{0})\exp(-f\frac{V}{v})$$
 (3)

(但し、 $n_{\infty} - n_0$ は撹拌工程に流入するガラスの屈折率 n_0 の変動幅、 $n_{\infty} - n$ は撹拌工程から流出するガラスの屈折率 n_{∞} の変動幅であって $\pm 1 \times 10^{-6}$ 以下の範囲、fは撹拌効率である。)

【特許請求の範囲】

【請求項1】 ガラス原料を溶融する工程、溶融したガラスを清澄する工程、清澄したガラスを撹拌する工程、 攪拌したガラスの粘度を調整する工程、及び粘度を調整 したガラスを成形してガラス製品を得る工程を含み、かつ前記工程が連続的に行われるガラス製品の製造方法であって、

前記清澄したガラスを撹拌する工程におけるガラス容量 Vが、前記ガラス製品の容量 v との関係において下記式 (3)を満たし、かつ攪拌槽における溶融ガラスの平均 滞在時間を60分以下とすることを特徴とする高均質ガラス製品の製造方法。

【式1】

$$n_{\omega} - n = (n_{\omega} - n_{0}) \exp(-f \frac{V}{V})$$
 (3)

(式 (3) 中、 $n_{\infty} - n_0$ は前記清澄したガラスを撹拌する工程に流入するガラスの屈折率 n_0 の変動幅であり、 $n_{\infty} - n$ は前記清澄したガラスを撹拌する工程から流出するガラスの屈折率 n_{∞} の変動幅であって $\pm 1 \times 1$ 0-6以下の範囲であり、fは攪拌効率である。)

【請求項2】 前記fが1である請求項1に記載の製造方法。

【請求項3】 前記 $n_{\infty} - n \dot{m} 1 \times 10^{-5}$ 以上である請求項 1×10^{-5} 以上である言葉

【請求項4】 前記ガラス製品の残留歪が4.25以下である請求項1~3のいずれか一項に記載の製造方法。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高均質ガラス製品の製造方法に関する。特には、屈折率の均質度が±1×10-6以下であることを要求されるレーザーガラスや光学ガラスの製造に有用な、高均質ガラス製品の製造方法に関する。

[0002]

【従来の技術】従来、高均質レーザーガラス等の高均質ガラスは、大型白金坩堝を用いて間歇的に溶融され製造されてきた。しかし、坩堝による溶融では生産性が悪く、コストが高価につき、数千枚というレーザーディスク(サイズか、例えば60×35×4.5cm)の製造には適さない方法であった。

【0003】一般に、光学ガラスの製造方法には、上記のような坩堝を用いる間歇溶融方式と、タンク炉という名称で代表される連続溶融方式がある。連続溶融方式は溶融槽の一端から原料を投入し、溶融したものを清澄槽に導き、脱ガス、脱泡の過程を経て撹拌部に送り込まれ、ここで脈理の消失がはかられ、最終端より連続的にガラスを取り出すものである。従って、連続溶融方式は、ガラスを効率よく、低いコストで製造するという点で間歇溶融方式より優れている。

【0004】しかし、このような光学ガラスの連続溶融

方式において、清澄過程を終えて均質化撹拌部に入ってくる溶融状ガラスの屈折率の変動は、±10×10⁻⁵から±100×10⁻⁵の範囲にある。そこで10⁻⁶オーダーの屈折率の均一性を有するガラスを得るには撹拌から流出に至る間に、このような大きな変動値を消去することが必要である。しかるに、従来の連続溶融装置では撹拌部の平均滞在時間が20分から長くとも60分程度で、溶融ガラスの脈理の消失に重点がおかれ、撹拌部に入ってくる屈折率の時系列的変動を大きく緩和することはできず、このような連続溶融装置によって大型高精度ガラスを得ることは困難であった。即ち、このような連続溶融方式では、10⁻⁵の均質度は到達されるが、10⁻⁶という高い均質度は得られなかった。

【0005】それに対して、本発明者等は、先に、本来連続溶融方式が有している効率的な光学ガラスの生産ができるという特徴を保持しながら大型高精度光学ガラスを生産する装置を発明した(特開昭60-81030号公報)。

【0006】通常の連続溶融装置では、前記のように均質化撹拌部の平均滞在時間を20分~60分程度にしている。一方、この装置では撹拌部の平均滞在時間を長時間に設定することで均質度の高い光学ガラスを得ている。すなわち、均質化撹拌部に流入してくる溶融ガラスの屈折率の変動値が±10×10⁻⁵以内の場合は100分の平均滞在時間を確保することによってその目的を達成した。【0007】

【発明が解決しようとする課題】ところが、確かに、この装置では、屈折率の均質度が10-6の光学ガラスが得られるのであるが、均質化撹拌部での平均滞在時間を長くすることにより、装置が大型化し、かつ生産性が低下するという問題があった。

【0008】そこで、本発明の目的は、比較的小型の装置で、本来連続溶融方式が有している効率的な光学ガラスの生産という特徴を生かした、屈折率の均質度が高いガラス製品の製造方法を提供することにある。

[0009]

【課題を解決するための手段】本発明は、ガラス原料を溶融する工程、溶融したガラスを清澄する工程、清澄したガラスを撹拌する工程、攪拌したガラスの粘度を調整する工程、及び粘度を調整したガラスを成形してガラス製品を得る工程を含み、かつ前記工程が連続的に行われるガラス製品の製造方法であって、前記清澄したガラスを撹拌する工程におけるガラス容量Vが、前記ガラス製品の容量vとの関係において下記式(3)を満たし、かつ攪拌槽における溶融ガラスの平均滞在時間を60分以下とすることを特徴とする高均質ガラス製品の製造方法に関する。

【式2】

$$n_{\infty} - n = (n_{\infty} - n_0) \exp(-f \frac{V}{V})$$
 (3)

但し、式(3)中、 $n_{\infty}-n_0$ は前記清澄したガラスを 撹拌する工程に流入するガラスの屈折率 n_0 の変動幅で あり、 $n_{\infty}-n$ は前記清澄したガラスを撹拌する工程か ら流出するガラスの屈折率 n_{∞} の変動幅であって $\pm 1 \times 10^{-6}$ 以下の範囲であり、fは攪拌効率である。

【0010】また、本発明の好ましい態様は、以下のとおりである。

- (a) 前記fが1である前記の製造方法。
- (b) 前記 $n_{\infty} n$ が 1×1 0^{-5} 以上である前記の製造方法。
- (c)前記ガラス製品の残留歪が4.25以下である前記の製造方法。

【0011】本発明は、ガラス製品となるべき流出ガラス量が、清澄したガラスを攪拌する工程(以下、「攪拌工程」ともいう)におけるガラス容量と所定の関係を満たし、かつ攪拌槽における溶融ガラスの平均多罪時間を60分以下とすることにより、装置を大型化することなく高均質ガラスを得ようとするものであり、本発明では連続溶融によって10-6という高均質度を達成することができる。以下本発明について説明する。

【0012】本発明の方法は、ガラス原料を溶融する工程、溶融したガラスを清澄する工程、清澄したガラスを 撹拌する工程、撹拌したガラスの粘度を調整する工程、 及び粘度を調整したガラスを成形してガラス製品を得る 工程を含み、かつ上記工程が連続的に行われるガラス製品の製造方法である。

【0013】ガラス原料を溶融する工程は、ガラス原料を加熱して溶融する工程である。ガラス原料は、ガラス製品の種類により適宜選択する。また、加熱条件は、ガラス原料組成により適宜決定できる。溶融したガラスを清澄する工程は、主に溶融したガラスから脱泡することを目的とする工程である。さらに、脱泡に加えて熱対流によりガラス中の脈理の溶融も一部行われる。

【0014】清澄したガラスを撹拌する工程では、主に、ガラス中の脈理の溶融が行われて、ガラスの均質化が図られる。撹拌したガラスの粘度を調整する工程では、ガラス製品の成形が容易になるように、溶融ガラスの温度を調整して粘度を調整する。粘度は、ガラスの種類やガラス製品の形状等により適宜決定される。粘度を調整したガラスは、成形型に鋳込み、成形後徐冷することによりガラス製品が得られる。徐冷条件は、ガラスの種類により適宜選択される。本発明のガラス製品の製造方法は、前記の工程が連続的に行われ、各工程には、溶融ガラスが連続的に流入し、かつ流出する。本発明においてガラス製品には特に制限はなく、高均質度が要求されるガラス製品であれば良い。

【0015】本発明の製造方法の第一の特徴は、上記撹拌工程におけるガラス容量Vを、最終的に得られる1つ

のガラス製品の容量 v との関係において、下記式 (3) を満たすことである。

【式3】

$$\mathbf{n}_{\omega} - \mathbf{n} = (\mathbf{n}_{\omega} - \mathbf{n}_{0}) \exp(-\mathbf{f} \frac{\mathbf{V}}{\mathbf{V}}) \tag{3}$$

但し、式(3)中、 $n_{\infty}-n_0$ は前記清澄したガラスを撹拌する工程に流入するガラスの屈折率 n_0 の変動幅であり、 $n_{\infty}-n$ は前記清澄したガラスを撹拌する工程から流出するガラスの屈折率 n_{∞} の変動幅であって $\pm 1 \times 10^{-6}$ 以下の範囲であり、fは攪拌効率である。

【0016】 攪拌工程におけるガラス容量Vが1つのガラス製品の容量vとの間に式(3)の関係を満たせば、屈折率の均質度が±1×10-6以下であるガラス製品が得られる。このことは、後の実施例において、各種のガラスについて実験的に得られた結果である。従って、効率良くガラス製品を製造するという観点からは、式

(3) における $n_{\infty}-n_0$ (清澄したガラスを撹拌する 工程に流入するガラスの屈折率 n_0 の変動幅) は、 1×10^{-6} 以上であることが好ましい(なお、前記容量の比(V/v)であれば、2. 3倍に近いことが好ましく、例えば 100 倍以下が好ましい)。尚、式(3)の $n_{\infty}-n_0$ を 1×10^{-6} 以上とすることにより屈折率の均質 度が $\pm 1\times 10^{-6}$ 以下であるガラス製品が得られること は、理論的にも裏付けられることである。この点について以下に説明する。

【0017】クーパー〔Alped R.Coopar: J.am. Cer S ∞ , 42 (1959)93〕によれば、完全混合槽を無数に並べると、流出液はピストン流になり、槽の数が1個の時に完全混合は得られる。そこで撹拌槽は1個とし、槽の容積(槽内のガラス容量)と製品の容積の均質度に及ぼす影響を考察した。流入するガラスの屈折率を n_0 、流出するガラスの屈折率を n_∞ 、槽の容積をV、製品の容積をV、製品の容積をV、製品の容積をV、製品の容積をV、製品の容積をV、製品の容積をV、製品の容積をV、製品の容積をV、関子的率をV、以下の式(V0 で与えられる。

[0018]

【式4】

$$\frac{\mathbf{n} - \mathbf{n_0}}{\mathbf{n_0} - \mathbf{n_0}} = 1 - \exp(-\frac{\mathbf{t}}{\tau}) \tag{1}$$

【0019】ここで τ は製品の平均滞在時間で、流出速度をRとすれば、 $\tau = v/R$ で与えられる。容量vのガラス製品の均質度を 10^{-6} にするために、槽中に滞在するべき時間を tとすれば、 $t/\tau = V/v$ となり、式

(1)から以下の式(2)が導かれる。

[0020]

【式5】

$$\frac{n - n_0}{n_{\infty} - n_0} = 1 - \exp(-\frac{V}{V})$$
 (2)

【0021】さらに撹拌効率fを考慮すると以下の式(3)が得られる。

[0022]

【式6】

$$n_{\infty} - n = (n_{\infty} - n_0) \exp(-f \frac{V}{V})$$
 (3)

【0023】 $n_{\infty}-n=10^{-6}$ 、 $n_{\infty}-n_{0}=10^{-5}$ 、 f=1とすれば、V/v=2. 30となる。 $n_{\infty}-n_{0}=100\times10^{-5}$ であれば、V/v=6. 9となる。例えば、流入ガラスの屈折率変動が 10^{-5} のとき、流動ガラスの屈折率変動を 10^{-6} にするには、槽と製品容積の比を2. 30倍にすればよいことを示す。また、 100×10^{-5} の屈折率変動があれば、槽と製品容量の比を6. 9倍にすればよいことを示す。

【0024】本発明の製造方法の第二の特徴は、攪拌槽における溶融ガラスの平均滞在時間を60分以下とすることである。上述のとおり、特開昭60-81030号公報に記載の大型高精度光学ガラスの製造装置では、均質化攪拌部に流入してくる溶融ガラスの屈折率の変動値が±10×10⁻⁵以内の場合は100分以上、±100×10⁻⁵の場合は100分の平均滞在時間を確保することによって初めてその目的を達成することができる。これに対し、本発明の製造方法では、従来の連続溶融装置の攪拌部で採用されている平均滞在時間(20分~60分程度)と同程度の時間で、高均質ガラス製品を製造する。本発明の製造方法は、小型の製造装置を使用して実施することができるという利点がある。

【0025】次に本発明で使用される装置を図1に示す 概略説明図に基づいて説明する。本発明で使用される装置は、ガラス原料10を溶融する溶融槽1、溶融槽1からの溶融したガラス11を清澄する清澄槽2、清澄槽2からのガラス12を攪拌する撹拌槽3及び攪拌槽3からのガラス13の粘度を調整する作業槽4、及び作業槽4からのガラスを成形する成形型5を含む。前記溶融ガラスは、清澄槽2、撹拌槽3及び作業槽4を連続的に移動するようにパイプ20~21で連絡されている。本発明で使用される装置は、成形型5の容量と撹拌槽3内におけるガラス容量とが上式(3)の関係を満たす。それにより、屈折率の均質度が±1×10-6以下である高均質ガラス製品が得られる。尚、成形型5の容量とは成形さ

れるガラス製品14の容量に相当する。

【0026】尚、図1は概略説明図であって、装置の各 部分は、各部分の機能を考慮して適宜変更することが可 能である。ガラス原料10は溶融槽1において加熱溶融 され、次いでスロート6を通って清澄槽2に移動する。 清澄槽2では、熱対流によってガラス11は弱く攪拌さ れ、それにより脱泡され、かつガラス中の脈理の溶融も 一部行われる。清澄槽2からは、パイプ20を通して攪 拌機7を備えた攪拌槽3に移動する。攪拌槽3ではガラ ス12を攪拌してガラス中の脈理の溶融が行われて、ガ ラスの均質化が図られる。次いで、ガラスはパイプ21 を通して作業槽4に移動する。作業槽4では、成形が容 易になるようにガラス13の粘度を調整する。粘度を調 整したガラスは、成形型5に鋳込み、次いで徐冷するこ とによりガラス製品14が得られる。なお、溶融ガラス の流出及び停止は、ヒーター8によって流出パイプ22 を加熱又は冷却することによって操作することができ

[0027]

【実施例】以下、実施例により本発明をさらに具体的に 説明する。

【0028】実施例1(光学ガラスLaC10の場合)ガラスとしては、光学ガラスLaC10(La2 O3、B2 O3、RO(RO=CaO、MgO等の2価金属の酸化物)系ガラス)を用いた。溶融槽、清澄槽、撹拌槽及び作業槽を有する連続溶融炉において、撹拌槽の容量5.3リットル、引上げ速度278ml/min、撹拌時の粘性3.5poise、撹拌回転数100rpmの条件でガラス製品を得た。尚、キャストされたガラスは残留歪を除き、ガラス構造温度を一定にするために精密徐冷がなされた。転移温度Tgで約60時間保持し、0.25℃/hrの冷却速度でTg-100℃まで冷却

し、その後割れないように冷却された。実験結果を表1 に示す。V/v=10. 4において均質度1. 25×1 0^{-6} が得られた。

[0029]

【表1】

ガラス容積	寸法	V/v -f	均質度	残留歪
170m1	80 φ ×35	31.1	0.84×10 ⁻⁶	3.4
256	95	20.7	1.12×10 ⁻⁸	3.6
341	110	15.5	1.25×10 ⁻⁸	3.2
427	125	12.4	1.48×10⁻°	2.2
512	135	10.4	1.25×10 ⁻⁴	3.2

【0030】実施例2 (光学ガラスF2の場合) ガラスとしては、光学ガラスF2 (PbO、SiO₂、 アルカリ系ガラス)を用いた。溶融槽、清澄槽、撹拌槽 及び作業槽を有する連続溶融炉において、撹拌槽の大き さ14.2リットル、引上げ速度386ml/min、 撹拌回転数 40 r p m、撹拌時の粘性 220 p o i s e の条件でガラス製品を得た。なお、これらのガラスは均質度測定のために実施例 1 と同様に精密徐冷がなされた。実験結果を表 2 に示す。V/v=2. 35 において均質度 1. 75×10^{-6} が得られた。

【0031】 【表2】

ガラス容積	寸法	V/v f	均質度	残留歪
0.75	90×70	18.9	0.84×10 ⁻⁸	1.51
1.10	110×70	12.9	1.60	2.63
1.54	130×70	9.2	1.71	2.58
1.89	145×72	7.5	1.85	2.23
2.45	160 × 79	5.8	1.20	2.96
1.75	170×77	8.1	1.63 ·	2.50
2.95	180×78	4.8	1.96	1.53
. 3.78	200×76	3.7	1.97	2.80
6.04	310×80	2.35	1.75	2.63
9.69	420×70	1.46	3.17	2.85

【0032】実施例3(BK7の場合)

ガラスとしてはBK7(SiO_2 、 B_2O_3 、アルカリ系ガラス)を用いた。溶融槽、清澄槽、撹拌槽及び作業槽を有するに連続溶融炉において、撹拌槽の容量18.2リットル、引上げ速度364m1/min、撹拌回転数50rpm、撹拌時の粘性280poiseの条件でガラス製品を得た。なお、これらのガラスは均質度測定のために実施例1と同様に精密徐冷がなされた。実験結果を表3に示す。V/v=3.71において1.38×10-6の均質度のガラスが得られた。

[0033]

【表3】

ガラス容積	寸法。	V/v f	均質度	残留歪 mm/cm
0.77	130 × 58	23.6	2.19×10 ⁻⁴	2.11
1.66	170×73	10.9	1.77	3.34
1.86	180 × 73	9.78	1.97	2.95
2.42	204×74	7.50	1.57	3.08
4.90	310×65	3.71	1.38	2.80
9.69	420 × 70	1.87	3.55	4.13
10.75	470 × 62	1.69	3.04	4.25
11.97	470×69	1.5	2.02	4.04

[0034]

【発明の効果】本発明によって10-6という高均質ガラスが連続溶融方式により、効率的に製造することが可能となった。その結果、高均質ガラスのコストの低下と、納期の短縮化を図ることができる。

【図面の簡単な説明】

【図1】本発明の装置の概略説明図である。

【符号の説明】

- 1 溶融槽
- 2 清澄槽
- 3 撹拌槽
- 4 作業槽
- 5 成形型
- 6 スロート
- 7 撥拌機
- 8 ヒーター
- 10 ガラス原料
- 11~13 溶融ガラス
- 14 ガラス製品
- 20~21 連絡パイプ
- 22 流出パイプ

【図1】

【手続補正書】

【提出日】平成14年7月25日(2002.7.2

5)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】発明の名称

【補正方法】変更

【補正内容】

【発明の名称】 高均質ガラス製品の製造方法