Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Электротехника»

О Т Ч Е Т ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

Исследование трехфазных электрических цепей

Группа *N3246*, поток ЭЛТЕХ. *N23 1.4.1 Вариант 28*

Работу выполнил: студент Суханкулиев М.

Дата защиты: 19.05.2025

Контрольный срок защиты: 19.05.2025

Оценка:

Количество баллов:

Санкт-Петербург 2025 г.

СОДЕРЖАНИЕ

Введение
Параметры источников и нагрузки для выполнения лабораторной работы4
1 Опытная проверка основных соотношений в трёхфазной цепи с нагрузкой,
включённой по схеме «звезда»5
1.1 Схема исследуемой цепи5
1.2 Расчётные формулы и расчёты. Сравнение результатов расчёта и эксперимента .5
1.3 Векторные диаграммы напряжений и токов приёмника для всех пунктов работы,
построенные по опытным данным
Выводы по работе
Список использованных источников

ВВЕДЕНИЕ

<u>Цель работы</u> – опытная проверка основных соотношений величин в трехфазной цепи для соединений приемников звездой при равномерной и неравномерной нагрузке фаз.

План работы:

Перечень опытов:

- 1. Симметричная нагрузка с нулевым проводом.
- 2. Симметричная нагрузка без нулевого провода.
- 3. Несимметричная нагрузка с нулевым проводом.
- 4. Несимметричная нагрузка без нулевого провода.
- 5. Обрыв линейного провода с нулевым проводом (обрыв линейного провода от источника, соответствующего «затемненной» фазе нагрузки).
- 6. Обрыв линейного провода без нулевого провода (обрыв линейного провода от источника, соответствующего «затемненной» фазе нагрузки).

ПАРАМЕТРЫ ИСТОЧНИКОВ И НАГРУЗКИ ДЛЯ ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

Параметры трехфазного источника:

$$E_{mA}=E_{mB}=E_{mC}=63.6396 \, \mathrm{B}$$
 $\omega=314.159 \, rac{\mathrm{pag}}{\mathrm{c}} (f=50 \, \Gamma \mathrm{H}),$ $\psi_A=0^\circ, \psi_B=-120^\circ, \psi_C=120^\circ,$

источники соединены «звездой».

Таблица 1 Возможные параметры нагрузки (*RL*-нагрузки):

N₂	z4	z8	z12
R , Ом	126	63	42
L , Гн	0.354	0.177	0.117

Таблица 2 Параметры нагрузки

№ вар.	для	опытов	1,2	для	я опытов	3,4	для опытов 5,6			
0 12 Bup.	z_a	z_b	\mathbf{z}_c	z_a	z_b	\mathbf{z}_c	z_a	z_b	\boldsymbol{z}_c	
28	z4	z4	z4	z8	z12	z4	8	z12	z4	

1 ОПЫТНАЯ ПРОВЕРКА ОСНОВНЫХ СООТНОШЕНИЙ В ТРЁХФАЗНОЙ ЦЕПИ С НАГРУЗКОЙ, ВКЛЮЧЁННОЙ ПО СХЕМЕ «ЗВЕЗДА»

1.1 Схема исследуемой цепи

 $R_{Nn} = 0.09 \, [{
m OM}] - {
m aktubes}$ сопротивление медного провода с площадью поперечного сечения $0.195 \, [{
m mm}^2]$ и длиной $1 \, [{
m M}]$.

Рисунок 1 – Схема замещения трёхфазной цепи с нагрузкой, соединённой по схеме «звезда»

1.2 Расчётные формулы и расчёты. Сравнение результатов расчёта и эксперимента

Выражения для расчётов в схеме «звезда»:

Напряжение смещения нейтрали:

$$U_{Nn} = \frac{E_A Y_a + E_B Y_b + E_C Y_c}{Y_a + Y_b + Y_c},$$

где $E_A = \underline{E}_A \cdot e^{j0^\circ}$, $E_B = \underline{E}_B \cdot e^{-j120^\circ}$, $E_C = \underline{E}_C \cdot e^{j120^\circ}$, \underline{E}_A , \underline{E}_B , \underline{E}_C — действующие значения ЭДС в фазах источника, Y_a , Y_b , Y_c — комплексные действующие значения проводимостей фаз.

Комплексные действующие значения напряжений в фазах приемника:

$$U_a = E_A - U_{Nn}$$
, $U_b = E_B - U_{Nn}$, $U_c = E_C - U_{Nn}$

Комплексные действующие значения фазных токов и тока нейтрального провода:

$$I_a = U_a Y_a$$
, $I_b = U_b Y_b$, $I_c = U_c Y_c$, $I_{Nn} = I_a + I_b + I_c$

Активная мощность фаз приёмника:

$$P_a = \underline{U_a}\underline{I_a}\cos\varphi_a$$
, $P_b = \underline{U_b}\underline{I_b}\cos\varphi_b$, $P_c = \underline{U_c}\underline{I_c}\cos\varphi_c$

где $\varphi_a, \varphi_b, \varphi_c$ — разности фаз между током и напряжением в фазах приёмника.

Таблица 3

№	Вид нагрузки		U_a ,	U_b ,	U_c ,	I_a ,	I _b ,	I_c ,	P_a ,	P_b ,	P_c ,	U_{Nn} ,	I_{Nn} ,	Z_a ,	Z_b ,	Z_c ,
			В	В	В	A	A	Α	Вт	Вт	Вт	В	A	Ом	Ом	Ом
1	Симметричная нагрузка с	Изм	44,98	44,99	44,992	0,2656	0,2642	0,2669	8,8885	8,795	8,9757	0	0	169,3524	170,2877	168,5725
	нулевым проводом	Выч	45	45	45	0.268	0.268	0.268	9.0414	9.0414	9.0414	0	0	168.06	168.06	168.06
2	Симметричная нагрузка без	Изм	44,99	44,992	44,989	0,267	0,2654	0,266	8,9824	8,8751	8,9153	0	-	168,5019	169,5252	169,1316
2	нулевого провода	Выч	45	45	45	0.268	0.268	0.268	9.0414	9.0414	9.0414	0	-	168.06	168.06	168.06
3	Несимметричная нагрузка с	Изм	44,991	44,988	44,992	0,533	0,8032	0,2663	17,8976	27,0955	8,9354	0	0,4642	84,4109	56,011	168,9523
3	нулевым проводом	Выч	45	45	45	0.5355	0.8068	0.2679	18.0659	27.3203	9.038	≈ 0	0.4714	84.03	55.812	168.06
4	Несимметричная нагрузка без	Изм	46,9	34,16	56,7	0,44	0,6111	0,329	12,1968	15,6846	13,6384	13,1459	-	106,5909	55,8992	172,3404
	нулевого провода	Выч	46.9423	34.1753	56.7679	0.4451	0.6131	0.3381	15.664	15.7763	14.3892	13.1719	-	84.03	55.812	168.06
5	Обрыв линейного провода с	Изм	44,99	44,99	44,991	0	0,8	0,2671	0	26,88	8,9891	0	0,7034	œ	56,2375	168,4425
	нулевым проводом	Выч	45	45	45	0	0.8068	0.2679	0	27.3203	9.038	≈ 0	0.7129	∞	55.812	168.06
6	Обрыв линейного провода без	Изм	70,33	19,428	58,49	0	0,3484	0,3484	0	5,0981	15,2942	29,7981	-	œ	55,7635	167,8817
Ü	нулевого провода	Выч	70.3302	19.432	58.5103	0	0.3485	0.3485	0	5.096	15.3002	29.8463	1	8	55.812	168.06

Общие параметры для всех опытов:

$$E_A = E_B = E_C = \frac{E_m}{\sqrt{2}} = \frac{63.6396}{\sqrt{2}} \approx 45 \text{ [B]}$$

$$E_A = 45 \text{ [B]}$$

$$E_B = 45e^{-j120^\circ} \approx -22.5 - 38.9711j \text{ [B]}$$

$$E_C = 45e^{j120^\circ} \approx -22.5 + 38.9711j \text{ [B]}$$

$$Z_k = R_k + j\omega L_k$$

$$Y_k = \frac{1}{Z_k}$$

$$\begin{split} Z_{z4} &= 126 + j \cdot 314.159 \cdot 0.354 \approx 126 + 111.2123j \ [\text{OM}], \qquad |Z_{z4}| \approx 168.06e^{41.43j^\circ} \ [\text{OM}] \\ Z_{z8} &= 63 + j \cdot 314.159 \cdot 0.177 \approx 63 + 55.6061j \ [\text{OM}], \qquad |Z_{z8}| \approx 84.03e^{41.43j^\circ} \ [\text{OM}] \\ Z_{z12} &= 42 + j \cdot 314.159 \cdot 0.117 \approx 42 + 36.7566j \ [\text{OM}], \qquad |Z_{z12}| \approx 55.8126e^{41.19j^\circ} \ [\text{OM}] \\ Y_{z4} &= \frac{1}{126 + 111.2123j} \approx 0.0045 - 0.0039j \ [\text{CM}], \qquad |Y_{z4}| \approx 0.006e^{-40.91j^\circ} \ [\text{CM}] \\ Y_{z8} &= \frac{1}{63 + 55.6061j} \approx 0.0089 - 0.0079j \ [\text{CM}], \qquad |Y_{z8}| \approx 0.0119e^{-41.59j^\circ} \ [\text{CM}] \\ Y_{z12} &= \frac{1}{42 + 36.7566j} \approx 0.0135 - 0.0118j \ [\text{CM}], \qquad |Y_{z12}| \approx 0.0179e^{-41.16j^\circ} \ [\text{CM}] \\ \cos \varphi_{z} &= \frac{R_k}{|Z_k|} \\ \cos \varphi_{z4} &= \frac{126}{168.06} \approx 0.7497 \\ \cos \varphi_{z8} &= \frac{63}{84.03} \approx 0.7497 \\ \cos \varphi_{z12} &= \frac{42}{55.8126} \approx 0.7525 \end{split}$$

Также с подключенным нулевым проводом:

$$U_{Nn} = \frac{E_A Y_a + E_B Y_b + E_C Y_c}{Y_a + Y_b + Y_c + Y_{Nn}}, \qquad Y_{Nn} = \frac{1}{R_{Nn}} \approx 11.1111 \text{ [CM]}$$

Опыт 1:

Так как нагрузка симметричная, $U_{Nn}=0$ (смещения нет).

$$U_k = E_k$$

$$I_a = U_a Y_{z4} = 45(0.0045 - 0.0039j) \approx 0.2025 - 0.1756j \approx 0.268e^{-40.93j^{\circ}} [A]$$

$$I_b = U_b Y_{z4} = (-22.5 - 38.9711j)(0.0045 - 0.0039j) \approx -0.2532 - 0.0876j$$

$$\approx 0.2679e^{19.08j^{\circ}} [A]$$

$$I_c = U_c Y_{z4} = (-22.5 + 38.9711j)(0.0045 - 0.0039j) \approx 0.0507 + 0.2631j$$

 $\approx 0.2679e^{79.09j^{\circ}} [A]$
 $P_k = P_a = U_k I_k \cos \varphi_{z4} = 45 \cdot 0.268 \cdot 0.7497 \approx 9.0414 [BT]$

Опыт 2:

Поскольку нагрузка симметрична, ток в нейтрали все равно будет равен нулю, и напряжения в фазах будут такие же, как и в опыте 1. То есть нейтральный провод не влияет на режим работы при симметричной нагрузке.

Опыт 3:

$$Z_a = Z_{z8}, \qquad Z_b = Z_{z12}, \qquad Z_c = Z_{z4}$$

$$U_{Nn} = \frac{E_A Y_a + E_B Y_b + E_C Y_c}{Y_a + Y_b + Y_c + 11.1111} \rightarrow 0,$$

Так как проводимость нейтрального провода велика по сравнению с Y_a, Y_b, Y_c .

$$\begin{split} U_k &= E_k \\ I_a &= U_a Y_{z8} = 45 \cdot (0.0089 - 0.0079j) \approx 0.4005 - 0.3555j \approx 0.5355e^{-41.59j^\circ} \, [\mathrm{A}] \\ I_b &= U_b Y_{z12} = (-22.5 - 38.9711j) \cdot (0.0135 - 0.0118j) \approx -0.7636 - 0.2606j \approx \\ &\approx 0.8068e^{18.84j^\circ} \, [\mathrm{A}] \\ I_c &= U_c Y_{z4} = (-22.5 + 38.9711j) \cdot (0.0045 - 0.0039j) \approx 0.0507 + 0.2631j \\ &\approx 0.2679e^{79.09j^\circ} \, [\mathrm{A}] \\ I_{Nn} &= 0.4005 - 0.3555j - 0.7636 - 0.2606j + 0.0507 + 0.2631j = -0.3124 - 0.353j \\ &\approx 0.4714e^{48.49j^\circ} \, [\mathrm{A}] \\ P_a &= U_a I_a \cos \varphi_{z8} = 45 \cdot 0.5355 \cdot 0.7497 \approx 18.0659 \, [\mathrm{BT}] \\ P_b &= U_b I_b \cos \varphi_{z12} = 45 \cdot 0.8068 \cdot 0.7525 \approx 27.3203 \, [\mathrm{BT}] \\ P_c &= U_c I_c \cos \varphi_{z4} = 45 \cdot 0.2679 \cdot 0.7497 \approx 9.038 \, [\mathrm{BT}] \end{split}$$

Опыт 4

$$U_{Nn} = \frac{E_A Y_a + E_B Y_b + E_C Y_c}{Y_a + Y_b + Y_c} = \frac{45(0.0089 - 0.0079j) + (-22.5 - 38.9711j)(0.0135 - 0.0118j) + (-22.5 + 38.9711j)(0.0045 - 0.0039j)}{0.0089 - 0.0079j + 0.0135 - 0.0118j + 0.0045 - 0.0039j} = \frac{-0.0564 - 13.1718j \approx 13.1719e^{89.75j^{\circ}}}{13.1719e^{89.75j^{\circ}}} [B]$$

$$U_a = 45 - (-0.0564 - 13.1718j) = 45.0564 + 13.1718j \approx 46.9423e^{16.3j^{\circ}} [B]$$

$$U_b = -22.5 - 38.9711j - (-0.0564 - 13.1718j) = -22.4436 - 25.7993j$$

$$\approx 34.1953e^{48.98j^{\circ}} [B]$$

$$U_c = -22.5 + 38.9711j - (-0.0564 - 13.1718j) = -22.4436 + 52.1429j$$

$$\approx 56.7679e^{-66.71j^{\circ}} [B]$$

$$I_a = (45.0564 + 13.1718j)(0.0089 - 0.0079j) \approx 0.5051 - 0.2387j \approx 0.4451e^{-25.29j^{\circ}} [A]$$

$$I_b = (-22.4436 - 25.7993j)(0.0135 - 0.0118j) \approx -0.6074 - 0.0835j \approx 0.6131e^{7.83j^{\circ}} [A]$$

$$I_c = (-22.4436 + 52.1429j)(0.0045 - 0.0039j) \approx 0.1024 + 0.3222j \approx 0.3381e^{72.37j^{\circ}} [A]$$

Нейтрального провода нет \Rightarrow тока нейтрали I_{Nn} нет.

$$P_a = 46.9423 \cdot 0.4451 \cdot 0.7497 \approx 15.664 \text{ [BT]}$$

 $P_b = 34.1953 \cdot 0.6131 \cdot 0.7525 \approx 15.7763 \text{ [BT]}$
 $P_c = 56.7679 \cdot 0.3381 \cdot 0.7497 \approx 14.3892 \text{ [BT]}$

Опыт 5:

$$Z_a = \infty \Rightarrow Y_a = 0 \text{ (обрыв)}$$

$$U_{Nn} \approx 0$$

$$U_k = E_k$$

$$I_a = U_a Y_a = 0$$

$$I_b = U_b Y_{z12} = (-22.5 - 38.9711j)(0.0135 - 0.0118j) \approx -0.7636 - 0.2606j$$

$$\approx 0.8068 e^{18.84j^\circ} \text{ [A]}$$

$$I_c = U_c Y_{z4} = (-22.5 + 38.9711j)(0.0045 - 0.0039j) \approx 0.0507 + 0.2631j$$

$$\approx 0.2679 e^{79.09j^\circ} \text{ [A]}$$

$$I_{Nn} = 0 - 0.7636 - 0.2606j + 0.0507 + 0.2631j = -0.7129 + 0.0025j \approx 0.7129 e^{-0.2j^\circ} \text{ [A]}$$

$$P_a = 0$$

$$P_b = 45 \cdot 0.8068 \cdot 0.7525 \approx 27.3203 \text{ [BT]}$$

$$P_c = 45 \cdot 0.2679 \cdot 0.7497 \approx 9.038 \text{ [BT]}$$

Опыт 6:

Решение аналогично:

$$Y_a = 0, \qquad I_a = 0, \qquad P_a = 0$$

Только

 I_{Nn} нет.

$$\begin{split} U_{Nn} &= \frac{E_B Y_b + E_C Y_c}{Y_b + Y_c} = \\ &= \frac{(-22.5 - 38.9711j)(0.0135 - 0.0118j) + (-22.5 + 38.9711j)(0.0045 - 0.0039j)}{0.0135 - 0.0118j + 0.0045 - 0.0039j} = \\ &\approx -22.5615 - 19.5392j \approx 29.8463e^{40.89j^{\circ}} \text{ [B]} \\ U_a &= 45 - (-22.5615 - 19.5392j) \approx 67.5615 + 19.5392j \approx 70.3302e^{16.13j^{\circ}} \text{ [B]} \\ U_b &= (-22.5 - 38.9711j) - (-22.5615 - 19.5392j) \approx 0.0615 - 19.4319j \\ &\approx 19.432e^{-89.82j^{\circ}} \text{ [B]} \end{split}$$

$$\begin{split} U_c &= (-22.5 + 38.9711j) - (-22.5615 - 19.5392j) \approx 0.0615 + 58.5103j \\ &\approx 58.5103e^{89.94j^\circ} \, [\text{B}] \\ I_b &= U_b Y_{z12} = (0.0615 - 19.4319j)(0.0135 - 0.0118j) \approx -0.2285 - 0.2631j \\ &\approx 0.3485e^{49.03j^\circ} \, [\text{A}] \\ I_c &= U_c Y_{z4} = (0.0615 + 58.5103j)(0.0045 - 0.0039j) \approx 0.2285 + 0.2631j \\ &\approx 0.3485e^{49.03j^\circ} \, [\text{A}] \\ P_b &= 19.432 \cdot 0.3485 \cdot 0.7525 \approx 5.096 \, [\text{Bt}] \\ P_c &= 58.5103 \cdot 0.3488 \cdot 0.7497 \approx 15.3002 \, [\text{Bt}] \end{split}$$

1.3 Векторные диаграммы напряжений и токов приёмника для всех пунктов работы, построенные по опытным данным

Значения U_{Nn} (фиолетовые) отображается как $-3U_{Nn}$.

Значения a, b, c – красный, синий, зеленый вектора соответственно.

Рисунок 2 — Векторные диаграммы U (слева) и I (справа) опыта 1 и 2

Рисунок 3 — Векторные диаграммы U и I опыта 3

Рисунок 4 — Векторные диаграммы U и I опыта 4

Рисунок 5 — Векторные диаграммы U и I опыта 5

Рисунок 6 — Векторные диаграммы U и I опыта 6

ВЫВОДЫ ПО РАБОТЕ

В лабораторной работе опытно подтверждены основные соотношения токов и напряжений в трехфазной цепи с нагрузкой, соединённой «звездой», при различных режимах нагрузки: симметричной, несимметричной, с нулевым и без нулевого провода.

При симметричной нагрузке напряжение нейтрали отсутствует, а подключение нулевого провода не влияет на параметры цепи. При несимметричной нагрузке напряжение нейтрали и токи в нейтральном проводе возникают и зависят от характеристик нагрузки и наличия нулевого провода.

Обрыв фазного провода приводит к значительным искажениям напряжений и токов, что подтверждается экспериментальными данными и векторными диаграммами, демонстрируя важность нулевого провода для стабильности цепи.

Расчётные значения токов, напряжений и мощностей хорошо согласуются с экспериментальными результатами, что свидетельствует о корректности используемых формул и методик.

Итог: нейтральный провод обязателен при несимметричной нагрузке. Он предотвращает перекосы напряжений и защищает оборудование. В симметричных системах можно обойтись без него.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Усольцев А.А. Общая электротехника: Учебное пособие. СПб: НИУИТМО, 2013. 305с. URL: ОБЩАЯ ЭЛЕКТРОТЕХНИКА Учебные издания НИУ ИТМО.
- Абдуллин А.А., Горшков К.С., Ловлин С.Ю., Поляков Н.А.,). Никитина М.В. Общая электротехника. Методические указания к лабораторному практикуму в программе LTspice: Учебно методическое пособие. Санкт-Петербург: Университет ИТМО, 2019. 52 с. URL: Общая электротехника. Методические указания к лабораторному практикуму в программе LTspice: Учебно-методическое пособие. Учебные издания НИУ ИТМО.