Lecture 16 Context Bounding Checkers I

Zvonimir Rakamarić University of Utah

Huge Number of Thread Schedules

Concurrent program with n threads where each thread has k instructions has

$$(n^*k)! / (k!)^n \ge (n!)^k$$

interleavings

- Exponential in both n and k!
- Example: 5 threads with 5 instruction each

$$25! / 5!^5 = 6.2336074e + 14$$

= 623 trillion interleavings

Java Path Finder (JPF)

- Program checker for Java
- Properties to be verified
 - Program assertions
 - LTL properties
- Depth-first and breadth-first search, heuristics
 - Uses static analysis techniques to improve the efficiency of the search
- Requires a complete Java program
 - Cannot handle native code

Combating State Space Explosion

- Symmetry reduction
 - Search equivalent states only once
- Partial order reduction
 - Do not search thread interleavings that generate equivalent behavior
- Static analyses
 - Reduce state space using static analyses
- User-provided restrictions
 - Manually bound variable domains, array sizes,...

This Time

- Context-bounded verification of concurrent programs
- Sequentialization of concurrent programs

Context-Bounded Verification

Context-Bounded Verification

- Many subtle concurrency errors are manifested in executions with few context switches
- Analyze all executions with few context switches

Context-Bounded Reachability Problem

- An execution is c-bounded if every thread has at most c contexts
- Does there exist a c-bounded execution from a state S to a state E?

CB Reachability is NP-Complete

Membership in NP

Witness is an initial state and n*c sequences each of length at most |L × G|

```
n = \# of threads, c = \# of contexts
```

L = # of program locations, G = # of global states

NP-hardness

Reduction from the CIRCUIT-SAT problem

Complexity of Safety Verification

	Unbounded	Context-bounded	
Finite-state systems	PSPACE complete	NP-complete	
Pushdown systems	Undecidable	NP-complete	

CHESS: Systematic Testing for Concurrency

- CHESS is a user-mode scheduler
- Controls all scheduling nondeterminism
 - Replace the OS scheduler
- Guarantees:
 - Every program run takes a different thread interleaving
 - Reproduce the interleaving for every run

CHESS Architecture

State-Space Explosion

- Number of executions is O(n^{nk})
- Exponential in both n and k
 - ▶ Typically: n < 10, k > 1000
- Limits scalability to large programs

Goal: Scale CHESS to large programs (large k)

Preemption-Bounding

- Prioritize executions with small # of preemptions
- ▶ Two kinds of context switches:
 - Preemptions forced by the scheduler
 - ▶ E.g., time-slice expiration
 - Non-preemptions a thread voluntarily yields
 - E.g., blocking on an unavailable lock, thread end

← non-preemption

Preemption-Bounding in CHESS

- The scheduler has a budget of c preemptions
 - Nondeterministically choose the preemption points
- Resort to non-preemptive scheduling after c preemptions
- Once all executions explored with c preemptions
 - Try with c+1 preemptions

Property 1: Polynomial Bound

- Terminating program with fixed inputs and deterministic threads
 - n threads, k steps each, c preemptions
- Number of executions $\leq n_k C_c^* (n+c)!$ = $O((n^2k)^c n!)$
- Exponential in n and c, but not in k!

- Choose c preemption points
- Permute n+c atomic blocks

Property 2: Simple Error Traces

- Finds smallest number of preemptions to the error
- Number of preemptions better metric of error complexity than execution length

Property 3: Coverage Metric

- If search terminates with preemption-bound of c, then any remaining error must require at least c+1 preemptions
- Intuitive estimate for
 - The complexity of the bugs remaining in the program
 - The chance of their occurrence in practice

Property 4: Many Bugs with Few Preemptions

Program	kLOC	Threads	Preemptions	Bugs
Work-Stealing Queue	1.3	3	2	3
CDS	6.2	3	2	I
CCR	9.3	3	2	2
ConcRT	16.5	4	3	4
Dryad	18.1	25	2	7
APE	18.9	4	2	4
STM	20.2	2	2	2
PLINQ	23.8	8	2	I
TPL	24.1	8	2	9

Coverage vs Preemption-Bound

