Assignment 4

Songtuan Lin u6162630

May 3, 2019

Question 1

(a)

According to the definition of conjugate function: $f^*(\mathbf{y}) = \sup_{\mathbf{x}} \{\mathbf{x}^T \mathbf{y} - f(\mathbf{x})\}$, for any \mathbf{y} and $\mathbf{x} \in \mathcal{D}$, we have:

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} \{ \mathbf{x}^T \mathbf{y} - f(\mathbf{x}) \}$$
$$\geq \mathbf{x}^T \mathbf{y} - f(\mathbf{x})$$

By moving the term $f(\mathbf{x})$ within above equation from right-hand side to left-hand side, we can verify that:

$$f^*(\mathbf{y}) + f(\mathbf{x}) \ge \mathbf{x}^T \mathbf{y}$$

(b)

By substituting y = 0 to $f^*(y)$, we have:

$$f^*(0) = \sup_{\mathbf{x}} \{-f(\mathbf{x})\}$$

We can multiple both side of above equation with -1, then, we get:

$$-f^*(0) = -\sup_{\mathbf{x}} \{-f(\mathbf{x})\}$$
$$= \inf_{\mathbf{x}} \{f(\mathbf{x})\}$$

(c)

We can write the conjugate function of $f(\mathbf{x})$ as:

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} \{ \sum_{i=1}^n (x_i y_i - \alpha_i \log x_i) \}$$

Suppose there exist a $\alpha_i \geq 0$, then, for any y_i , the term $x_i y_i - \alpha_1 \log x_i$ can always reach infinity, *i.e.* for any y_i , $(x_i y_i - \alpha_1 \log x_i) \rightarrow \infty$ when $x_i \rightarrow 0$. Hence, we can always choose a \mathbf{x} with $x_i \rightarrow 0$ and make $(x_i y_i - \alpha_1 \log x_i) \rightarrow \infty$, which means, $f^*(\mathbf{y}) < \infty$ if $\alpha_i < 0$ for each *i*.

Now we can start to discuss the domain of f^* under the situation $\alpha \prec 0$: Indeed, if there exist a $y_i > 0$, then, the term $x_i y_i - \alpha_1 \log x_i$ will goes to infinity when $x_i \to \infty$. This is because $x_i y_i \to \infty$ along with $x_i \to \infty$ and $-\alpha_i \log x_i$ always greater than zero. Based on this observation, we can conclude the domain of f^* is $\mathbf{y} \prec 0$.

Finally, we can start to find the conjugate function. We first notice that when $y_i < 0$ and $\alpha_i > 0$, the term $x_i y_i - \alpha_1 \log x_i$ is a concave function over x_i . As a result, the function $g(\mathbf{x}) = \sum_{i=1}^{n} (x_i y_i - \alpha_i \log x_i)$ is also concave as it is a non-negative sum of concave functions, which means, $g(\mathbf{x})$ will reach the maximum at the point \mathbf{x}^*

$$\nabla_{\mathbf{x}} q(\mathbf{x}^*) = 0$$

The above equation is equivalent to:

that satisfied:

$$y_i - \alpha_i \frac{1}{x_i} = 0 \quad i = 1, 2, \dots, n$$
 (1)

Solving Equation 1, we get:

$$x_i = \frac{\alpha_i}{y_i}$$

Therefore, the conjugate function is:

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} (g(\mathbf{x}))$$
$$= \sum_{i=1}^n (\alpha_i - \alpha_i \log \frac{\alpha_i}{y_i})$$

Question 2

(a)

The original problem can be expressed as:

$$\min_{x} \quad \sum_{i=1}^{n} |x - b_i|$$

with the objective function $f(x) = \sum_{i=1}^{n} |x - b_i|$ and domain $x \in \mathcal{R}$. Indeed, we can reorder the terms within f(x) as:

$$f(x) = |x - b_1^*| + |x - b_2^*| + \dots + |x - b_n^*|$$

Where $b_1^*, b_2^* \cdots b_n^*$ is a reordered sequence generated from $b_1, b_2 \cdots b_n$ and satisfied $b_i^* \leq b_j^*$ if i < j. By observing f(x), we noticed that when x satisfied $b_i^* \leq x < b_{i+1}^*$, there is:

$$f(x) = (x - b_1^*) + (x - b_2^*) + \dots + (x - b_i^*) + (b_{i+1}^* - x) + (b_{i+2}^* - x) + \dots + (b_n^* - x)$$

$$= (2i - n)x + (b_{i+1}^* + b_{i+2}^* + \dots + b_n^*) - (b_1^* + b_2^* + \dots + b_i^*)$$

$$= (2i - n)x + \sigma$$

Where we have defined $\sigma=(b_{i+1}^*+b_{i+2}^*+\cdots+b_n^*)-(b_1^*+b_2^*+\cdots+b_i^*)$. By observing f(x), we first notice that when $i\leq \frac{n}{2},\ f(x)$ is always a non-increasing function and when $i>\frac{n}{2},\ f(x)$ is always non-decreasing. Additionally, i is the index and hence, it must be an integer. Therefore, we can conclude that:

- 1. f(x) is non-increasing when $i \leq \lfloor \frac{n}{2} \rfloor$.
- 2. f(x) is non-decreasing when $i \geq \lceil \frac{n}{2} \rceil$.

Furthermore, since $i \leq \lfloor \frac{n}{2} \rfloor$ corresponding to the interval $x < b^*_{\lfloor \frac{n}{2} \rfloor + 1} = b^*_{\lceil \frac{n}{2} \rceil}$ and $i \geq \lceil \frac{n}{2} \rceil$ corresponding to the interval $x \geq b^*_{\lceil \frac{n}{2} \rceil}$, we can conclude that f(x) is non-increasing when $x < b^*_{\lceil \frac{n}{2} \rceil}$ and is non-decreasing when $x \geq b^*_{\lceil \frac{n}{2} \rceil}$. As a result, f(x) reach the minimum at the optimal point $x = b^*_{\lceil \frac{n}{2} \rceil}$.

(b)

We first notice that the function $||x\mathbf{1} - \mathbf{b}||_2$ have the same optimal point as $||x\mathbf{1} - \mathbf{b}||_2^2$, which means, they both reach the minimum at the same point x. Therefore, we can find this optimal point by solving the optimal problem:

$$\min_{x} \quad \|x\mathbf{1} - \mathbf{b}\|_{2}^{2}$$

Which is the same as:

$$\min_{x} \quad \sum_{i=1}^{n} (x - b_i)^2$$

It is easy to verify that the function $f(x) = \sum_{i=1}^{n} (x - b_i)^2$ is convex by checking $\nabla_x^2 f(x) = 2n > 0$. Therefore, according to the first-order condition, f(x) will reach the minimum at the optimal x^* which satisfied:

$$\nabla_x f(x^*) = \sum_{i=1}^n 2(x^* - b_i)$$

The solution of this equation is:

$$x^* = \frac{1}{n} \sum_{i=1}^n b_i$$

Hence, the optimal point for the original problem is also $x^* = \frac{1}{n} \sum_{i=1}^{n} b_i$.

(c)

By using the similar method as in (a), we can reorder the elements within **b** and reform the problem as:

$$\min_{x} \quad \max_{i} \{|x - b_1^*|, |x - b_2^*|, \cdots, |x - b_n^*|\}$$

We first check the situation that $x \leq b_1^*$, we have:

$$||x\mathbf{1} - \mathbf{b}||_{\infty} = \max\{b_1^* - x, b_2^* - x, \dots, b_n^* - x\}$$

= $b_n^* - x$
 $\geq b_n^* - b_1^*$

It can be seen that under this situation, $||x\mathbf{1} - \mathbf{b}||_{\infty}$ reach the minimum $b_n^* - b_1^*$ when $x = b_1^*$. After that, we can check the situation that $b_1^* \le x \le b_i^*$, we have:

$$||x\mathbf{1} - \mathbf{b}||_{\infty} = \max\{x - b_1^*, x - b_2^*, \cdots, x - b_{i-1}^*, b_i^* - x, b_{i+1}^* - x, \cdots, b_n^* - x\}$$
$$= \max\{x - b_1^*, b_n^* - x\}$$

We first notice that the above equation hold for any b_i^* , hence, we can expand this equation to the condition that $b_1^* \le x \le b_n^*$:

$$||x\mathbf{1} - \mathbf{b}||_{\infty} = \max\{x - b_1^*, b_n^* - x\}$$

Furthermore, we realize that when $x > \frac{b_1^* + b_n^*}{2}$, $x - b_1^* > b_n^* - x$ and when $x \le \frac{b_1^* + b_n^*}{2}$, $x - b_1^* \le b_n^* - x$. Therefore, we have:

$$||x\mathbf{1} - \mathbf{b}||_{\infty} = \begin{cases} b_n^* - x & x \le \frac{b_1^* + b_n^*}{2} \\ x - b_1^* & x > \frac{b_1^* + b_n^*}{2} \end{cases}$$

Hence, $\|x\mathbf{1} - \mathbf{b}\|_{\infty}$ reach the minimum value $\frac{b_n^* - b_1^*}{2}$ at $x = \frac{b_n^* + b_1^*}{2}$. Finally, we can check the situation that $x \ge b_n^*$. Under this situation, $\|x\mathbf{1} - \mathbf{b}\|_{\infty}$ has the minimum $b_n^* - b_1^*$. Since $\frac{b_n^* - b_1^*}{2} < b_n^* - b_1^*$, we can then conclude that for any $x \in \mathcal{R}$, the optimal point for function $\|x\mathbf{1} - \mathbf{b}\|_{\infty}$ is:

$$x = \frac{b_n^* + b_1^*}{2}$$

with the optimal value $\frac{b_n^* - b_1^*}{2}$.

(d)

As the similar method been used in (b), we can first find the optimal point for the optimal problem:

$$\min_{x} \quad \|x\mathbf{a} - \mathbf{b}\|_{2}^{2}$$

Which is equivalent to the problem:

$$\min_{x} \quad \sum_{i} (a_i x - b_i)^2$$

It is easy to verify that the function $f(x) = \sum_{i} (a_i x - b_i)^2$ is convex as $\nabla_x^2 f(x) = \sum_{i} 2a_i^2 > 0$. Therefore, the optimal point x^* must satisfied the first-order condition:

$$\nabla_x f(x^*) = \sum_i 2a_i(a_i x - b_i)$$
$$= 0$$

The solution of this equation is:

$$x^* = \frac{\sum_i a_i b_i}{\sum_i a_i^2}$$

Which means, the optimal point of the original problem is $x^* = \frac{\displaystyle\sum_i a_i b_i}{\displaystyle\sum_i a_i^2}$.

Q3

(a)

We can first the Lagrangian as:

$$\mathcal{L}(\mathbf{x}, \mathbf{r}) = \sum_{i} \phi(r_i) - \nu^T (\mathbf{r} - \mathcal{A}\mathbf{x} + \mathbf{b})$$
$$= \sum_{i} \phi(r_i) - \nu^T \mathbf{r} + \nu^T \mathcal{A}\mathbf{x} - \nu^T \mathbf{b}$$

According to the Lagrangian, we can further write the Lagrange Dual Function as:

$$g(\nu) = \inf_{\mathbf{r}, \mathbf{x}} \{ \sum_{i} \phi(r_i) - \nu^T \mathbf{r} + \nu^T \mathcal{A} \mathbf{x} - \nu^T \mathbf{b} \}$$

By inspecting the Lagrange Dual Function, we can find that if $\nu^T \mathcal{A} \neq 0$, $g(\nu)$ can easily approach to $-\infty$ as $\mathbf{x} \to \infty$ or $-\infty$. Therefore, the first condition that ν need to satisfied is:

$$\nu^t \mathcal{A} = 0 \tag{2}$$

Therefore, the Lagrange Dual Function can be simplified as:

$$g(\nu) = \inf_{\mathbf{r}} \{ \sum_{i} \phi(r_i) - \nu^T \mathbf{r} - \nu^T \mathbf{b} \}$$
$$= \inf_{\mathbf{r}} \{ \sum_{i} \phi(r_i) - \nu^T \mathbf{r} \} - \nu^T \mathbf{b}$$
$$= \inf_{\mathbf{r}} \{ \sum_{i} (\phi(r_i) - v_i r_i) \} - \nu^T \mathbf{b}$$

As a result, the first thing we need to do to construct the Dual Problem is to solve $\inf_{\mathbf{r}} \{ \sum (\phi(r_i) - v_i r_i) \}$. In

order to do so, we first notice that the element r_i within \mathbf{r} is independent with each other, therefore, we can first find the minimum of each single term: $\phi(r_i) - v_i r_i$ and then sum them together. Indeed, we can discuss the minimum of $\phi(r_i) - v_i r_i$ based on the following three cases:

1. $r_i \leq -1$: Under this condition, the term $\phi(r_i) - v_i r_i$ become:

$$\phi(r_i) - v_i r_i = -r_1 - 1 - \nu_i r_i$$

= $(-\nu_i - 1)r_i - 1$

Based on this equation, it is easy to find out that of $\nu_i \geq -1$, $\phi(r_i) - v_i r_i$ reach the minimum ν_i at $r_i = -1$. By contrast, if $\nu_i < -1$, $\phi(r_i) - v_i r_i \to -\infty$ as $r_i \to -\infty$. Therefore, the second condition that ν must satisfied is: For each ν_i :

$$\nu_i \ge -1 \tag{3}$$

2. $r_i \ge 1$: Under this condition, the term $\phi(r_i) - v_i r_i$ become:

$$\phi(r_i) - v_i r_i = (1 - \nu_i) r_i - 1$$

By inspecting this equation, if $\nu_i \leq 1$, $\phi(r_i) - v_i r_i$ has the minimum $-\nu_i$ at the point $r_i = 1$. By contrast, if $\nu_i > 1$, $\phi(r_i) - v_i r_i$ goes to $-\infty$ along with $r_i - \infty$. As a result, the third condition that ν must satisfied is: For each ν_i

$$\nu_i \le 1 \tag{4}$$

3. $-1 \le r_i \le 1$: Under this condition, the term $\phi(r_i) - v_i r_i$ become:

$$\phi(r_i) - v_i r_i = -\nu_i r_i$$

Indeed, under this condition, it is straightforward to figure out the minimum of $\phi(r_i) - v_i r_i$ is either ν_i or $-\nu_i$ according to the sign of ν_i .

As a result, we can find the minimum of $\phi(r_i) - v_i r_i$ over the entire range of r_i by combining the above three conditions:

$$\inf_{r_i} \{ \phi(r_i) - v_i r_i \} = \min\{ -\nu_i, \nu_i \}$$

$$= -|\nu_i|$$
(5)

With the constrain:

$$-1 \le \nu_i \le 1$$

Which is equivalent to:

$$|\nu_i| \le 1 \tag{6}$$

and

$$\nu^T \mathcal{A} = 0 \tag{7}$$

As a result, the Dual Function, according to Equation 5, 6 and 7, can be written as:

$$g(\nu) = \sum_{i} -|\nu_{i}| - \nu^{T} \mathbf{b}$$

$$= -\|\nu\|_{1} - \nu^{T} \mathbf{b}$$
(8)

With the constrains: $|\nu_i| \le 1$ for each ν_i and $\nu^T \mathcal{A} = 0$. Furthermore, since for each ν_i in ν , there is $|\nu_1| \le 1$, we can rewrite this constrain as $||\nu||_{\infty} \le 1$. As a result, the dual problem is:

$$\max_{\nu} - \|\nu\|_1 - \nu^T \mathbf{b}$$
s.t.
$$\|\nu\|_{\infty} \le 1$$

$$\nu^T A = 0$$

(b)

As what we did in (a), we can first construct the Lagrangian:

$$\sum_{i} \phi(r_i) - \nu^T \mathbf{r} + \nu^T \mathcal{A} \mathbf{x} - \nu^T \mathbf{b}$$

and the Lagrange Dual Function:

$$g(\nu) = \inf_{\mathbf{r}} \{ \sum_{i} (\phi(r_i) - v_i r_i) \} - \nu^T \mathbf{b}$$

with constrain:

$$\nu^T \mathcal{A} = 0$$

Indeed, in order to find the minimum of $\sum_{i} (\phi(r_i) - v_i r_i)$, we can also start with finding the minimum of each $\phi(r_i) - \nu_i r_i$ and then summing them together. As in (a), we also separate the discussion into following cases:

1. $r_i \leq -1$: Under this condition, the term $\phi(r_i) - \nu_i r_i$ becomes:

$$\phi(r_i) - \nu_i r_i = (-2 - \nu_i)r_i - 1$$

By inspecting this equation, we can find out that if $\nu_i \geq -2$, $\phi(r_i) - \nu_i r_i$ reach the minimum $\nu_i + 1$ at point $r_i = -1$. By contrast, if $\nu_i < -2$, $\phi(r_i) - \nu_i r_i$ will goes to $-\infty$ along with $r_i \to -\infty$. Therefore, for each ν_i , it must satisfied:

$$\nu_i > -2 \tag{9}$$

2. $r_i \geq 1$: Under this condition, the term $\phi(r_i) - \nu_i r_i$ becomes:

$$\phi(r_i) - \nu_i r_i = (2 - \nu_i) r_i - 1$$

By inspecting this equation, we can find out that if $\nu_i \leq 2$, $\phi(r_i) - \nu_i r_i$ reach the minimum at point $r_i = 1$. By contrast, if $\nu_i > 2$, $\phi(r_i) - \nu_i r_i$ goes to $-\infty$ along with $r_i \to \infty$. Therefore, for each ν_i , it also need to satisfied:

$$\nu_i \le 2 \tag{10}$$

3. $-1 \le r_i \le 1$: Under this condition, the term $\phi(r_i) - \nu_i r_i$ becomes:

$$\phi(r_i) - \nu_i r_i = r_i^2 - \nu_i r_i \tag{11}$$

We first notice that if we do not consider the range of r_i , $r_i^2 - \nu_i r_i$ will reach the minimum $-\frac{\nu_i^2}{4}$ at the point $r_i = \frac{\nu_i}{2}$. Indeed, from constrain 9 and 10, we have $-2 \le \nu_i \le 2$. Therefore,

$$-1 \le \frac{\nu_i}{2} \le 1$$

which located inside out assumption range of r_i . Hence, $\phi(r_i) - \nu_i r_i$ reach the minimum $-\frac{\nu_i^2}{4}$ at the point $r_i = \frac{\nu_i}{2}$.

We can construct the minimum of $\phi(r_i) - \nu_i r_i$ over the entire range of r_i by combining the above three cases:

$$\inf_{r_i} \{ \phi(r_i) - \nu_i r_i \} = \min \{ \nu_i + 1, 1 - \nu_i, -\frac{\nu_i^2}{4} \}$$

with the constrain $-2 \le \nu_i \le 2$ and $\nu^T \mathcal{A} = 0$. Indeed, we can plot the graph for these three terms as: