Inference in First-Order Logic

Chapter 9

ARTIFICIAL INTELLIGENCE

Overview of lecture

- Forward chaining
- Backward chaining

Forward chaining

- Forward chaining algorithm for propositional definite clauses in Chapter
 7
- Start with atomic sentences in knowledge base
- Apply Modus Ponens in forward direction
- Add new atomic sentences until no new inferences can be made
- First-order case

- Disjunctions of atomic sentences with exactly one atomic sentence that is positive
- Definite clause is
 - Atomic sentence or
 - Implication with condition a conjunction of positive atomic sentences and conclusion a single positive atomic sentence

Example of first-order definite clauses:

```
King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
```

- Can contain variables (implicitly universal quantified, not written)
- Definite clauses normal form for Generalized Modus Ponens

- The (American) law says that it is a crime for an American to sell weapons to hostile nations
- The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American
- Prove that Colonel West is a criminal

"it is a crime for an American to sell weapons to hostile nations"

American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x)

"Nono ... has some missiles"

 $\exists x \ Owns(Nono, x) \land Missile(x)$

"Nono ... has some missiles"

Owns(Nono, M_1) Missile(M_1)

"all of its missiles were sold to it by Colonel West"

Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West,x,Nono)

"Missiles are weapons"

 $Missile(x) \Rightarrow Weapon(x)$

"An enemy of America counts as hostile"

Enemy(x, America) \Rightarrow Hostile(x)

"West, who is American"

American(West)

Enemy(Nono, America)

American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x) (9.3)

Owns(Nono, M_1) (9.4)

 $Missile(M_1) (9.5)$

 $\mathsf{Missile}(\mathsf{x}) \land \mathsf{Owns}(\mathsf{Nono},\,\mathsf{x}) \Rightarrow$

Sells(West,x,Nono) (9.6)

 $Missile(x) \Rightarrow Weapon(x) \tag{9.7}$

Enemy(x, America) \Rightarrow Hostile(x) (9.8)

American(West) (9.9)

Enemy(Nono, America) (9.10)

- Datalog knowledge base
 - First-order definite clauses with no function symbols
- No new inferences possible fixed point
- Forward chaining is sound
 - Application of Modus Ponens
- Forward chaining is complete
 - For definite clauses knowledge base

 Ignore section on efficient forward chaining

 Algorithm works backwards from goal, through the rules, to obtain known facts to support the proof

 $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x) \qquad (9.3)$

```
Criminal(West)
```


 $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x) \qquad (9.3)$

 $Missile(x) \Rightarrow Weapon(x) \tag{9.7}$


```
Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West,x,Nono) (9.6)
Owns(Nono, M<sub>1</sub>) (9.4) and Missile(M<sub>1</sub>) (9.5)
```


Enemy(Nono, America) (9.10)

Criminal(West)	(x/West, y/M1, z/Nono)		
American(West)	Weapon(y)	Sells(West, M1, z)	Hostile(Nono)
{ z/Nono }	Enemy(Nono, America)		

{ y/M1}

 Ignore section from "Logic programming" to before "9.5 Resolution"

Announcements

- Theory quiz 7
 - Thursday, 28 October 2021
 - Forward and backward chaining
- Please remember to do Python practical assignment 5 (R05) on eFundi
 - The due date for the assignments is Thursday, 4 November 2021 at 18:00

