Московский Физико-Технический Институт

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №3.2.1

Сдвиг фаз в цепи переменного тока

Автор: Ришат ИСХАКОВ 513 группа

Преподаватель: Александр Александрович КАЗИМИРОВ

13 января 2017 г.

1 Цель работы

Изучить влияние активного сопротивления, индуктивности и емкости на сдвиг фаз между током и напряжением в цепи переменного тока.

Экспериментальная установка

$$R_L=50.4$$
 Ом, при $u=10$ к Γ ц
$$L=50$$
 м Γ н
$$r=12.2$$
 Ом
$$C=0.5$$
 мк Φ
$$u=10$$
 к Γ ц

RC-цепь

Ток, текущий через RC цепочку, пропорционален напряжению на резисторе, и опережает напряжение на конденсаторе по фазе на $\pi/2$. В таком простом случае метод векторных диаграмм даёт простой результат для зависимости сдвига фаз от R:

$$\operatorname{tg}\varphi=\frac{1}{\Omega RC}$$

RL-цепь

Всё аналогично RC цепочке, только импеданс катушки теперь

$$Z_2 = j\omega L$$

поэтому ток отстаёт по фазе от напряжения, а рассчётная формула приобретает вид

$$\operatorname{tg}\varphi=\frac{\omega L}{R_{\sum}}$$

Теперь к споротивлению калибровочного резистора и резистора R добавится активное сопротивление катушки:

$$R_{\sum} = R + r + R_L,$$

где R_L – активное сопротивление катушки.

RCL-цепь

Комплексный импеданс RCL-цепочки:

$$Z = R + j\omega L - \frac{j}{\omega C}.$$

Сдвиг фаз между током и напряжением получим, взяв аргумент Z:

$$\operatorname{tg}\varphi = \frac{\omega L - \frac{1}{\omega C}}{R} = Q \frac{\left(\frac{\omega}{\omega_0}\right)^2 - 1}{\frac{\omega}{\omega_0}} = Q \frac{(1+x)^2 - 1}{1+x} \simeq 2xQ,$$

где $x=\Delta\omega/\omega_0=\Delta\nu/\nu_0$, и в последнем переходе пренебрегаем квадратичными по x членами. Измерив ширину графика w=2x на высоте $\varphi=\pi/4$ (tg $\varphi=1$), можем непосредственно измерить добротность контура:

$$Q = \frac{1}{w}$$

Фазовращатель

Разность фаз равна $\pi/2$, когда медиана 34 является и высотой, т.е. когда $\triangle 124$ — равнобедренный, откуда

2 Работа и измерения

RC-цепь

$$X_1 = \frac{1}{2\pi\nu C} = 31.8$$

R, Om	x	x_0	φ	$\operatorname{tg} \varphi$	R_{Σ} , Om	$1/(R_{\Sigma}\Omega C)$
0.0	1.9	5.0	1.2	2.5	12.2	2.6
3.0	1.8	5.0	1.1	2.1	15.2	2.1
5.0	1.7	5.0	1.1	1.8	17.2	1.9
8.0	1.6	5.0	1.0	1.6	20.2	1.6
10.0	1.5	5.0	0.9	1.4	22.2	1.4
20.0	1.2	5.0	0.8	0.9	32.2	1.0
30.0	1.0	5.0	0.6	0.7	42.2	0.8
40.0	0.8	5.0	0.5	0.5	52.2	0.6
50.0	0.7	5.0	0.4	0.5	62.2	0.5
60.0	0.6	5.0	0.4	0.4	72.2	0.4
80.0	0.5	5.0	0.3	0.3	92.2	0.3
110.0	0.4	5.0	0.3	0.3	122.2	0.3
230.0	0.2	5.0	0.1	0.1	242.2	0.1

Таблица 1: Полученные значения в RC-цепи

Найдем погрешности измерения величин:

$$\sigma_{\lg \varphi} = 0.1\pi \sqrt{\left(\frac{1}{x_0 \cos^2\left(\frac{\pi x}{x_0}\right)}\right)^2 + \left(\frac{x}{x_0^2 \cos^2\left(\frac{\pi x}{x_0}\right)}\right)^2}$$

Рис. 1: График зависимости $\operatorname{tg} \varphi = f[1/\Omega CR_{\Sigma}]$

RL-цепь

$$X_2 = 2\pi\nu L = 3231.1$$

R, Om	x	· ·	(0	$\operatorname{tg} \varphi$	R_{Σ}	$\Omega L/R_{\Sigma}$
		x_0	φ	<u> </u>		,
0.0	2.4	5.0	1.5	15.9	62.6	51.6
400.0	2.2	5.0	1.4	5.2	462.6	7.0
800.0	2.0	5.0	1.3	3.1	862.6	3.7
1200.0	1.8	5.0	1.1	2.1	1262.6	2.6
1600.0	1.6	5.0	1.0	1.6	1662.6	1.9
2000.0	1.4	5.0	0.9	1.2	2062.6	1.6
2400.0	1.3	5.0	0.8	1.1	2462.6	1.3
3000.0	1.1	5.0	0.7	0.8	3062.6	1.1

Таблица 2: Полученные значения в RL-цепи

Рис. 2: График зависимости $\operatorname{tg} \varphi = f[\Omega L/R_{\Sigma}]$

RCL-цепь

			ı	ı	
Сопротивление	ν , к Γ ц	x_0	x	φ	$nu\nu_0$
	1020.0	2.4	0.2	0.26	1.01
	1040.0	2.0	0.4	0.55	1.03
	1060.0	2.0	0.4	0.63	1.05
	1080.0	2.2	0.6	0.86	1.07
	1100.0	2.0	0.6	0.94	1.09
R = 0 Om	1200.0	1.8	0.7	1.22	1.19
	990.0	2.0	0.2	0.31	0.98
	960.0	2.0	0.4	0.63	0.95
	930.0	2.4	0.6	0.79	0.92
	900.0	2.0	0.6	0.94	0.89
	850.0	2.0	0.8	1.26	0.84
	1020.0	4.0	0.1	0.08	1.01
	1040.0	4.0	0.2	0.16	1.03
	1060.0	4.0	0.3	0.24	1.05
	1080.0	4.0	0.4	0.31	1.07
	1100.0	4.0	0.5	0.39	1.09
	1160.0	4.0	0.7	0.55	1.15
R = 100 Om	1200.0	4.1	0.9	0.69	1.19
	990.0	4.0	0.2	0.12	0.98
	960.0	3.4	0.2	0.18	0.95
	950.0	4.0	0.3	0.24	0.94
	930.0	3.0	0.4	0.42	0.92
	900.0	4.0	0.6	0.47	0.89
	850.0	4.0	0.8	0.63	0.84

Таблица 3: Полученные значения при изучении зависимости фазы от $\frac{\nu}{\nu_0}$

Рис. 3: График зависимости $\varphi=f[\nu/\nu_0]$ для R=0 Ом

Рис. 4: График зависимости $\varphi=f[
u/
u_0]$ для R=100 Ом

Из графика R = 0 Ом добротность равна:

$$Q_0 = 7 \pm 1$$

Из графика R = 100 Ом добротность равна:

$$Q_{100} = 2 \pm 1$$

Можно рассчитать её, выразив через параметры цепочки:

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

$$Q_{\text{Teop, 0}} = 7.4$$

$$Q_{\text{Teop, }100} = 2.5$$

3 Вывод

На данной лабораторной работе была изучена зависимость сдвига фаз между током и напряжением от сопротивления в цепи в RC, RL, контурах. Была определена добротность колебательного контура, снята зависимость сдвига фаз от частоты вблизи резонанса.

Для RC контура практический график довольно точно совпадает с теоретическим, однако в RL контуре значения отличаются на 20%. Ошибка связана с неправильной установкой частоты (10 к Γ ц вместо 1 к Γ ц), вследствие чего изменилось и реактивное сопротивление цепи. Точнее говоря, оно стало настолько большим, что диапазон изменения $\operatorname{tg} \varphi$ повысился и сильно увеличилась погрешность измерения.

После изменения частоты на $1\ \mathrm{k}\Gamma$ ц при измерении добротности колебательного контура получились достаточно точные значения, теоретические и практические совпали с учетом погрешности.