FERIENKURS EXPERIMENTALPHYSIK 1 2011

Übung 1 - Lösungsvorschlag

1. Wurf im Gravitationsfeld

Es gilt die Gleichung für die Bahnkurve einer Punktmasse im Schwerefeld

$$\vec{r}(t) = \vec{r}_0 + \vec{v}_0 t - \frac{1}{2} g t^2 \vec{e}_z$$

a) In unserem Fall gilt nun

$$\vec{r}_0 = \left(\begin{array}{c} 0 \\ 0 \\ z_0 \end{array} \right) \quad \text{und} \quad \vec{v}_0 = \left(\begin{array}{c} v_0 \\ 0 \\ 0 \end{array} \right)$$

also

$$\vec{r}(t) = \begin{pmatrix} v_0 t \\ 0 \\ z_0 - \frac{1}{2}gt^2 \end{pmatrix}$$

Nun interessiert uns der Zeitpunkt t_0 zu dem der Körper am Boden auftrifft, also $z(t_0) = 0$ gilt

$$0 = z_0 - \frac{1}{2}gt_0^2$$

$$\Rightarrow t_0 = \sqrt{\frac{2z_0}{g}} = \sqrt{\frac{2 \cdot 8m}{9,81m/s^2}} = 1.28 \text{ s}$$

Mit $v_0 = 30 \text{ km/h} = 8.33 \text{ m/s}$ ergibt sich daraus für den Ort

$$\vec{r}(t_0) = \begin{pmatrix} v_0 t_0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 10.67 \text{ m} \\ 0 \\ 0 \end{pmatrix}$$

b) Nun gelten folgende Anfangsbedingungen

$$\vec{r}_0 = \begin{pmatrix} 0 \\ 0 \\ z_0 \end{pmatrix}$$
 und $\vec{v}_0 = v_0 \begin{pmatrix} \cos \alpha \\ 0 \\ \sin \alpha \end{pmatrix}$

also gilt

$$\vec{r}(t) = \begin{pmatrix} v_0 t \cos \alpha \\ 0 \\ z_0 + v_0 t \sin \alpha - \frac{1}{2} g t^2 \end{pmatrix}$$

Wir suchen nun jene Anfangsgeschwindigkeit v_0 für die $\vec{r}(t) = (x_a, 0, 0)$, wobei $x_a = 10.67$ m gilt. Dazu ist folgendes Gleichungssystem zu lösen:

$$x_a = v_0 t \cos \alpha$$

$$0 = z_0 + v_0 t \sin \alpha - \frac{1}{2}gt^2$$

Elimination von t führt auf

$$x_a \tan \alpha + x_0 = \frac{x_a^2 g}{2v_0^2 \cos^2 \alpha}$$

$$\Rightarrow v_0 = \sqrt{\frac{x_a^2 g}{2\cos^2 \alpha (x_a \tan \alpha + x_0)}} = 8.56 \text{ m/s}$$

Für die Zeit t ergibt sich

$$t = \frac{x_a}{v_0 \cos \alpha} = 1.44 \text{ s}$$

c) Wir können dasselbe Gleichungssystem unter Berücksichtigung von $z_0 = 0$ verwenden, lösen diesmal allerdings nach α auf. Elimination von t ergibt

$$v_0 \sin \alpha = \frac{x_a g}{2v_0 \cos \alpha}$$

bzw.

$$\sin\alpha\cos\alpha = \frac{x_a g}{2v_0^2}$$

Dies kann nun über das Additionstheorem $2\sin(\alpha)\cos(\alpha) = \sin(2\alpha)$ gelöst werden. Dann gilt, dass zusätzlich zur daraus resultierenden Lösung auch die Lösung $180^{\circ} - \alpha$. Wir benutzen hier allerdings einen anderen Ansatz. Wir quadrieren und benutzen $\cos^2 \alpha + \sin^2 \alpha = 1$

$$\sin^2 \alpha - \sin^4 \alpha = \frac{x_a^2 g^2}{4v_0^4}$$

 $\min s := \sin \alpha \text{ gilt}$

$$s^2 - s + \frac{x_a^2 g^2}{4v_0^4} = 0$$

Die Lösung dazu lautet

$$s_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} - \frac{x_a^2 g^2}{4v_0^4}}$$

also

$$\sin \alpha_{1/2} = \sqrt{\frac{1}{2} \pm \sqrt{\frac{1}{4} - \frac{x_a^2 g^2}{4v_0^4}}}$$

Einsetzen der Werte ergibt $\alpha_1 = 16.43^{\circ}$ und $\alpha_2 = 73.57^{\circ}$

2. Masse rutscht auf Kugel

Auf die Masse wirken die radiale Komponente der Gravitationskraft $F_{G,r}$ und die Fliehkraft F_Z jeweils in entgegengesetzter Richtung.

$$F_{G,r} = mg\cos\theta \quad \text{und} \quad F_Z = m\frac{v^2}{R}$$

Zum Zeitpunkt des Lösens gilt nun $F_{G,r} = F_Z$. Zudem wurde bereits $\Delta E = mg(R - h)$ an potentieller Energie in kinetische umgewandelt, d.h.

$$mg\cos\theta = m\frac{v^2}{R}$$
$$\frac{1}{2}mv^2 = mg(R-h)$$

Aus der Beziehung $h = R \cos \theta$ folgt nun

$$\frac{1}{2}mv^{2} = mgR(1 - \cos\theta)$$

$$= mgR(1 - \frac{v^{2}}{Rg})$$

$$= mgR - mv^{2}$$

$$\frac{3}{2}mv^{2} = mgR$$

$$v = \sqrt{\frac{2}{3}Rg} = 5.72 \text{ m/s}$$

Für die Höhe h ergibt sich

$$h = R\cos\theta = R\frac{v^2}{Rg} = \frac{v^2}{g} = 3.33 \text{ m}$$

3. Planetenbewegungen

a) Es gilt die Gleichheit von Zentripetalkraft F_Z und Gravitationskraft F_G

$$F_{Z} = m_{E} \frac{v_{E}^{2}}{r_{E}} = G \frac{m_{E} m_{S}}{r_{SE}^{2}} = F_{G}$$

also

$$v_E^2 = G \frac{m_S}{r_{SE}}$$

Nach genau einem Jahr (Umlaufzeit $T_E=3.156\cdot 10^{-7}~\mathrm{s})$ hat die Erde die Strecke

 $2\pi r_{SE}$ zurückgelegt, also gilt

$$v_E^2 = \left(\frac{2\pi r_{SE}}{T_E}\right)^2$$

Gleichsetzen der beiden Ausdrücke für die Geschwindigkeit liefert

$$G\frac{m_S}{r_{SE}} = \left(\frac{2\pi r_{SE}}{T_E}\right)^2$$

$$\Rightarrow m_S = \frac{4\pi^2 r_{SE}^3}{G \cdot T_E^2} = 2.1 \cdot 10^{30} \text{ Kg}$$

b) Auf der Erdeoberfläche gilt

$$G\frac{m_E}{R_E^2} = g = 9.81 \text{ m/s}^2$$

also

$$m_E = \frac{gR_E^2}{G} = 5.97 \cdot 10^{24} \text{ kg}$$

c) Es gilt wieder Gleichheit von Zentripetalkraft und Gravitationskraft, diesmal allerdings für den Jupiter auf seiner Umlaufbahn

$$G\frac{m_S}{r_{SJ}} = v_J^2 = \left(\frac{2\pi r_{SJ}}{T_J}\right)^2$$

Wir lösen nach r_{SJ} auf

$$r_{SJ} = \left(\frac{Gm_S T_J^2}{4\pi^2}\right)^{\frac{1}{3}}$$

Mit dem Ergebnis aus a) und $T_J = 11.86 \cdot T_E$ ergibt sich:

$$r_{SJ} = 770 \cdot 10^6 \text{ km}$$

4. Drehmoment

Auf die Leiter wirken 3 Kräfte. Die Gravitationskraft $\vec{F_G}$ die in der Mitte der Leiter angreift. Die Kraft $\vec{F_1}$ welche die Wand auf die Leiter ausübt (diese hat aufgrund der Annahme einer rutschigen Wand nur eine Komponente senkrecht zur Wand) und die Kraft $\vec{F_2}$ welche der Boden auf die Leiter ausübt. Wenn die Leiter sich nicht bewegen soll, muss sowohl die Gesamtkraft als auch das gesamte Drehmoment verschwinden. Als Bezugspunkt wählen wir den Koordinatenursprung

$$0 \stackrel{!}{=} \vec{F_1} + \vec{F_2} + \vec{F_G} = \begin{pmatrix} F_{1x} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} F_{2x} \\ F_{2y} \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -mg \\ 0 \end{pmatrix}$$

Also gilt

$$F_{1x} = -F_{2x}$$

$$F_{2y} = mg$$

und mit den Angriffspunkten

$$\vec{r_1} = l \begin{pmatrix} 0 \\ \sin \alpha \\ 0 \end{pmatrix}$$
 $\vec{r_2} = l \begin{pmatrix} \cos \alpha \\ 0 \\ 0 \end{pmatrix}$ $\vec{r_m} = \frac{l}{2} \begin{pmatrix} \cos \alpha \\ \sin \alpha \\ 0 \end{pmatrix}$

für das Drehmoment

$$0 \stackrel{!}{=} \vec{D} = \vec{r_1} \times \vec{F_1} + \vec{r_2} \times \vec{F_2} + \vec{r_m} \times \vec{F_G}$$

$$0 \stackrel{!}{=} l \left[\begin{pmatrix} 0 \\ \sin \alpha \\ 0 \end{pmatrix} \times \begin{pmatrix} F_{1x} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} \cos \alpha \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} F_{2x} \\ F_{2y} \\ 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \cos \alpha \\ \sin \alpha \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ -mg \\ 0 \end{pmatrix} \right]$$
$$0 \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ F_{2y} \cos \alpha - F_{1x} \sin \alpha - \frac{1}{2} mg \cos \alpha \end{pmatrix}$$

also

$$F_{1x} = \frac{\cos \alpha}{\sin \alpha} \left(F_{2y} - \frac{1}{2} mg \right) = \frac{1}{\tan \alpha} \frac{1}{2} mg = \frac{mg}{2 \tan \alpha}$$

Die gesuchte Kraft die die Leiter auf die Wand ausübt ist die Gegenkraft

$$F_W = -\frac{mg}{2\tan\alpha}\vec{e_x}$$

Die Kraft mit der der Boden das Wegrutschen der Leiter verhindert ist die horizontale Komponente der Bodenkraft

$$F_B = \frac{mg}{2\tan\alpha}\vec{e_x}$$

5. Gravitaionsgesetz

a) Die Beschleunigung der kleinen Kugel ist

$$a = \frac{F}{m}$$

wobei F gegeben ist durch

$$F = G \frac{Mm}{r^2}$$

alos

$$a = \frac{GM}{r^2}$$

Diese Beschleunigung führt nach Ablauf der Zeit $t=1800~\mathrm{s}$ zur zurückgelegten horizontalen Strecke

$$s = \frac{1}{2}at^2 = 10.8 \text{ cm}$$

also

$$a = \frac{2s}{t^2} = 6.67 \cdot 10^{-8} \text{ m/s}^2$$

Dies ergibt mit M = 1000 kg und r = 1 m

$$G = \frac{ar^2}{M} = 6.67 \cdot 10^{-11} \text{ m}^3/\text{kg s}^2$$

b) Aus der Gravitationsbeschleunigung

$$g = \frac{GM_E}{R_E^2} = 9.81 \text{ m/s}^2$$

lässt sich mit einem Erdradius von $R_E=6378~{\rm km}$ und der in a) berechneten Gravitationskonstanten G die Erdmasse M_E berechnen

$$M_E = \frac{R_E^2 g}{G} = 5.98 \cdot 10^{24} \text{ kg}$$

Die mittlere Dichte der Erde ist somit

$$\rho = \frac{M}{V} = \frac{3M}{4\pi R_E^3} = 5500 \text{ kg/m}^3$$

6. Drehscheibe

a) Die Drehscheibe liege in der xy-Ebene und der Ursprung des Koordinatensystems sei im Mittelpunkt der Drehscheibe. Der Winkel zwischen Schiene und x-Achse sei ϕ .

Die Vektoren für Ort, Geschwindigkeit und Beschleunigung sind

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = r(t) \begin{pmatrix} \cos(\phi(t)) \\ \sin(\phi(t)) \\ 0 \end{pmatrix} = v_0 t \begin{pmatrix} \cos(\omega t) \\ \sin(\omega t) \\ \sin(\omega t) \\ 0 \end{pmatrix}$$

$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt} = \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \\ \dot{z}(t) \end{pmatrix} = v_0 \begin{pmatrix} \cos(\omega t) - \omega t \sin(\omega t) \\ \sin(\omega t) + \omega t \cos(\omega t) \\ 0 \end{pmatrix}$$

$$\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = \begin{pmatrix} \ddot{x}(t) \\ \ddot{y}(t) \\ \ddot{z}(t) \end{pmatrix} = v_0 \omega \begin{pmatrix} -2\sin(\omega t) - \omega t \cos(\omega t) \\ 2\cos(\omega t) - \omega t \sin(\omega t) \\ 0 \end{pmatrix}$$

b) Für die Kraft als Funktion der Zeit ergibt sich

$$\vec{F}(t) = m\vec{a}(t) = mv_0\omega \begin{pmatrix} -2\sin(\omega t) - \omega t\cos(\omega t) \\ 2\cos(\omega t) - \omega t\sin(\omega t) \\ 0 \end{pmatrix}$$

mit dem Betrag

$$F(t) = |\vec{F}(t)| = mv_0\omega\sqrt{(-2\sin(\omega t) - \omega t\cos(\omega t))^2 + (2\cos(\omega t) - \omega t\sin(\omega t))^2}$$

$$= mv_0\omega\sqrt{(4 + \omega^2 t^2)\sin^2(\omega t) + (4 + \omega^2 t^2)\cos^2(\omega t)}$$

$$= mv_0\omega\sqrt{4 + (\omega t)^2}$$

Für das Drehmoment erhält man

$$\vec{D}(t) = \vec{r}(t) \times \vec{F}(t) = v_0 t \begin{pmatrix} \cos(\omega t) \\ \sin(\omega t) \\ 0 \end{pmatrix} \times m v_0 \omega \begin{pmatrix} -2\sin(\omega t) - \omega t \cos(\omega t) \\ 2\cos(\omega t) - \omega t \sin(\omega t) \\ 0 \end{pmatrix}$$

$$= m v_0^2 \omega t [2\cos^2(\omega t) - \omega t \cos(\omega t) \sin(\omega t) + 2\sin^2(\omega t) + \omega t \cos(\omega t) \sin(\omega t)] \vec{e}_z$$

$$= 2m v_0^2 \omega t \vec{e}_z$$

mit dem Betrag

$$D(t) = |\vec{D}(t)| = 2mv_0^2 \omega t$$

c) Für den Drehimpuls gilt

$$\vec{L}(t) = \vec{r}(t) \times \vec{p}(t) = \vec{r}(t) \times m\vec{v}(t) = v_0 t \begin{pmatrix} \cos(\omega t) \\ \sin(\omega t) \\ 0 \end{pmatrix} \times mv_0 \begin{pmatrix} \cos(\omega t) - \omega t \sin(\omega t) \\ \sin(\omega t) + \omega t \cos(\omega t) \\ 0 \end{pmatrix}$$

$$= mv_0^2 t [\omega t \cos^2(\omega t) + \omega t \sin^2(\omega t)] \vec{e}_z = mv_0^2 \omega t^2 \vec{e}_z$$

mit dem Betrag

$$L(t) = |\vec{L}(t)| = mv_0^2 \omega t^2$$

7. Wechsel des Bezugssystems

a) Es gilt

$$z(t) = h - \frac{1}{2}gt^2$$

und beim Auftreffen auf dem Boden

$$0 \stackrel{!}{=} z(t_0) = h - \frac{1}{2}gt_0^2$$

$$\Rightarrow t_0 = \sqrt{\frac{2h}{g}} = 0.64 \text{ s}$$

- b) Fahrgast und Gegenstand befinden sich beide im Bezugssystem des Eisenbahnwagens. Der Fahrgast sieht einen "freien Fall ".
- c) Für die Bahnkurve des Gegenstandes gilt

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} v_0 t \\ 0 \\ h - \frac{1}{2}gt^2 \end{pmatrix}$$

daraus folgt

$$x(t) = v_0 t$$

$$z(t) = h - \frac{1}{2}gt^2$$

Elimination von t liefert

$$z(x) = h - \frac{1}{2}g\frac{x^2}{v_0^2}$$

Die Bedingung z(x) = 0 liefert das Auftreffen am Boden bei

$$x = \sqrt{\frac{2hv_0^2}{g}} = 17.7 \text{ m}$$

Die Bahnkurve entspricht einem horizontalen Wurf mit Starthöhe 2 m und einem 17.7 m entfernten auftreffen am Boden.

8. Corioliskraft

a)
$$\vec{F}_C = 2m(\vec{v} \times \vec{\omega})$$

Die Corioliskraft zeigt in die Bildebene hinein.

b) Die Kraft zeigt nach Osten. Für die Winkelgeschwindigkeit der Erde gilt:

$$|\omega| = \frac{2\pi}{T} = 7.27 \cdot 10^{-5} \text{ s}^{-1}$$

Mit einer Fluggeschwindigkeit von $v_0 = 900 \text{ km/h} = 250 \text{m/s}$ und einer Masse von $m = 75 \cdot 10^3 \text{ kg}$ ergibt sich eine Kraft von

$$|\vec{F}_C| = 2m|\vec{v}||\vec{\omega}|\sin\phi = 2030.23 \text{ N}$$

wobei $\phi = 48.133^{\circ}$ benutzt wurde, da 60' genau 1° entsprechen (also 8' = 0.133°)

- c) Alle Körper treffen östlich des mit einem Lot ermittelten Punktes auf.
- d) In einem raumfesten Bezugssystem wirkt die Corioliskraft auf die östliche Schiene und drückt diese nach Osten, denn es gilt

$$\vec{F}_C = 2m(\vec{v} \times \vec{\omega})$$

Im Falle des sich mit v nach Norden bewegenden Zuges am Breitengrad ϕ ergibt sich eine Kraft von

$$|\vec{F}_C| = 2m\omega v \sin\phi = 2 \cdot 100 \cdot 10^3 \text{ kg} \cdot \frac{2\pi}{8600 \text{ s}} \cdot 55.56 \text{ m/s} \cdot \sin 48^\circ = 600 \text{ N}$$

Die Zentrifugalkraft bei der Fahrt durch eine Kurve mit Radius r ist

$$F_Z = m \frac{v^2}{r}$$

9

d.h. der Kurvenradius den der Zug fahren müsste, um dieselbe Kraft auf die Schienen auszuüben wie F_C , wäre

$$r = \frac{mv^2}{F_C} = 513 \text{ km}$$

und die Wirkung der Corioliskraft auf die Schienen kann somit vernachlässigen werden.

9. Ball gegen Wand

Da der Ball elastisch an der Wand abprallt (Masse der Wand unendlich) kann die Situation als schräger Wurf betrachtet werden. Wenn also a der Abstand von Startpunkt zur Wand und b der Abstand von Auftreffpunkt zur Wand ist können wir schreiben

$$x(t_0) = a + b = v_0 \cos(\alpha)t_0$$
 und $z(t_0) = 0 = v_0 \sin(\alpha)t_0 - \frac{1}{2}gt_0^2$

Elimination von t_0 liefert

$$a+b = v_0 \cos(\alpha) \frac{2v_0 \sin(\alpha)}{g}$$
$$b = \frac{2v_0^2 \cos(\alpha) \sin(\alpha)}{g} - a = 8.71 \text{ m}$$