Lecture 16 – Equivalence of Pushdown Automata and Context-Free Grammars COSE215: Theory of Computation

Jihyeok Park

2023 Spring

A context-free grammar is a 4-tuple:

$$G = (V, \Sigma, S, P)$$

A pushdown automaton (PDA) is a finite automaton with a stack.

- Acceptance by final states
- Acceptance by empty stacks

Contents

1. Equivalence of PDA by Final States and Empty Stacks

PDA_{FS} to PDA_{ES} PDA_{ES} to PDA_{FS}

2. Equivalence of PDA and CFGs

CFGs to PDA_{ES} PDA_{ES} to CFGs

 PDA_{FS} \longrightarrow PDA_{ES} \longrightarrow CFG (by final states)

Contents

 Equivalence of PDA by Final States and Empty Stacks PDA_{FS} to PDA_{ES} PDA_{FS} to PDA_{FS}

 Equivalence of PDA and CFGs CFGs to PDA_{ES} PDA_{ES} to CFGs

PDA_{FS} to PDA_{ES}

Theorem (PDA_{FS} to PDA_{ES})

For a given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, \exists PDA P'. $L_F(P) = L_E(P')$.

PDA_{FS} to PDA_{ES}

Theorem (PDA_{FS} to PDA_{ES})

For a given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, \exists PDA P'. $L_F(P) = L_E(P')$.

PDA_{FS} to PDA_{ES}

Theorem (PDA_{FS} to PDA_{ES})

For a given PDA
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$$
, \exists PDA P' . $L_F(P) = L_E(P')$.

Define a PDA

$$P' = (Q \cup \{q'_0, q'_1\}, \Sigma, \Gamma \cup \{Z'\}, \delta', q'_0, Z', \varnothing)$$

where

$$\begin{array}{lll} \delta'(q'_0,\epsilon,Z') & = & \{(q_0,ZZ')\} \\ \delta'(q\in Q,a\in \Sigma,X\in \Gamma) & = & \delta(q,a,X) \\ \\ \delta'(q\in Q,\epsilon,X\in \Gamma) & = & \left\{ \begin{array}{ll} \delta(q,\epsilon,X)\cup\{(q'_1,\epsilon)\} & \text{if } q\in F \\ \delta(q,a,X) & \text{otherwise} \end{array} \right. \\ \delta'(q'_1,\epsilon,X\in \Gamma) & = & \{(q'_1,\epsilon)\} \\ \delta'(q'_1,\epsilon,Z') & = & \{(q'_1,\epsilon)\} \end{array}$$

PDA_{FS} to PDA_{ES} – Example

$$L_{F}(P) = L_{E}(P') = \{a^{n}b^{n} \mid n \geq 0\}$$

$$a [Z \to XZ]$$

$$a [X \to XX] \qquad b [X \to \epsilon]$$

$$P = \bigcap_{\substack{\epsilon \text{ start } [Z] \to \{Z\} \\ \epsilon [X \to X]}} q_{1} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon \text{ } [X \to X]}} q_{2} \bigcap_{\substack{\epsilon \text{ } [Z \to Z] \\ \epsilon$$

PDA_{FS} to PDA_{ES} – Example

PDA_{ES} to PDA_{FS}

Theorem (PDA_{ES} to PDA_{FS})

For a given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, \exists PDA P'. $L_E(P) = L_F(P')$.

PDA_{ES} to PDA_{FS}

Theorem (PDA_{ES} to PDA_{FS})

For a given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, $\exists PDA P'$. $L_E(P) = L_F(P')$.

PDA_{ES} to PDA_{FS}

Theorem (PDA_{ES} to PDA_{FS})

For a given PDA
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$$
, \exists PDA P' . $L_E(P) = L_F(P')$.

Define a PDA

$$P' = (Q \cup \{q_0', q_1'\}, \Sigma, \Gamma \cup \{Z'\}, \delta', q_0', Z', \{q_1'\})$$

where

$$\delta'(q'_0, \epsilon, Z') = \{(q_0, ZZ')\}$$

$$\delta'(q \in Q, a \in \Sigma, X \in \Gamma) = \delta(q, a, X)$$

$$\delta'(q \in Q, \epsilon, X \in \Gamma) = \delta(q, a, X)$$

$$\delta'(q \in Q, \epsilon, Z') = \{(q'_1, \epsilon)\}$$

PDA_{ES} to PDA_{FS} – Example

$$L_{E}(P) = L_{F}(P') = \{a^{n}b^{n} \mid n \geq 0\}$$

$$P = \bigcap_{\substack{a \mid Z \to XZ \\ a \mid X \to XX \mid \\ \text{start } [Z] \longrightarrow q_{0}}} \bigcap_{\substack{\epsilon \mid Z \to Z \mid \\ \epsilon \mid X \to X \mid \\ q_{1} \longrightarrow q_{2} \\ \end{cases}} \overbrace{\{c \mid Z \to \epsilon\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid Z \to \epsilon \mid \\ q_{2} \longrightarrow q_{2}}} \overbrace{\{c \mid X \to X\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid X \to A}} \overbrace{\{c \mid X \to A\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid X \to A}} \overbrace{\{c \mid X \to A\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid X \to A}} \overbrace{\{c \mid X \to A\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid X \to A}} \overbrace{\{c \mid X \to A\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid X \to A}} \overbrace{\{c \mid X \to A\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid X \to A}} \overbrace{\{c \mid X \to A\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid X \to A}} \overbrace{\{c \mid X \to A\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid X \to A}} \overbrace{\{c \mid X \to A\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid X \to A}} \bigcap_{\substack{\epsilon \mid X \to A}} \overbrace{\{c \mid X \to A\}}_{q_{2}} \bigcap_{\substack{\epsilon \mid X \to A}} \bigcap_{\substack{\epsilon \mid$$

PDA_{ES} to PDA_{FS} – Example

$$L_{E}(P) = L_{F}(P') = \{a^{n}b^{n} \mid n \geq 0\}$$

$$P = \begin{cases} a[Z \to XZ] & b[X \to \epsilon] \\ & \epsilon[Z \to Z] & \\ & \epsilon[X \to X] & q_{1} \\ & \epsilon[X \to X] & q_{2} \end{cases}$$

$$start[Z] \xrightarrow{q_{0}} \begin{cases} a[Z \to XZ] & \epsilon[X \to \epsilon] \\ & a[X \to XX] & b[X \to \epsilon] \\ & a[X \to XX] & c[X \to \epsilon] \\ & c[X \to Z] & c_{2} \end{cases}$$

 $P' = \text{ start } [Z'] \longrightarrow (q'_0)_{\epsilon} \overline{[Z' \rightarrow ZZ']}$

 $\epsilon [Z' \to \epsilon]$

 $\epsilon [Z' \to \epsilon]$

Contents

1. Equivalence of PDA by Final States and Empty Stacks PDA_{FS} to PDA_{ES} PDA_{ES} to PDA_{FS}

 Equivalence of PDA and CFGs CFGs to PDA_{ES} PDA_{ES} to CFGs

CFGs to PDA_{ES}

Theorem (CFGs to PDA_{ES})

For a given CFG
$$G = (V, \Sigma, S, R)$$
, $\exists PDA P. L(G) = L_E(P)$.

Define a PDA

$$P = (\{q\}, \Sigma, V \cup \Sigma, \delta, q, S, \varnothing)$$

where

$$\delta(q, \epsilon, A \in V) = \{(q, \alpha) \mid A \to \alpha \in R\}$$

$$\delta(q, a \in \Sigma, a \in \Sigma) = \{(q, \epsilon)\}$$

CFGs to PDA_{ES} – Example

$$\begin{array}{lcl} \delta(q,\epsilon,A\in V) & = & \{(q,\alpha)\mid A\to\alpha\in R\} \\ \delta(q,a\in\Sigma,a\in\Sigma) & = & \{(q,\epsilon)\} \end{array}$$

Consider the following CFG:

$$\mathcal{S}
ightarrow \epsilon \mid a \mathcal{S} \mathbf{b} \mid b \mathcal{S} \mathbf{a} \mid \mathcal{S} \mathcal{S}$$

CFGs to PDA_{ES} – Example

$$\begin{array}{lcl} \delta(q,\epsilon,A\in V) & = & \{(q,\alpha)\mid A\to\alpha\in R\} \\ \delta(q,a\in\Sigma,a\in\Sigma) & = & \{(q,\epsilon)\} \end{array}$$

Consider the following CFG:

$$\mathcal{S}
ightarrow \epsilon \mid a \mathcal{S} b \mid b \mathcal{S} a \mid \mathcal{S} \mathcal{S}$$

Then, the equivalent PDA (by empty stacks) is:

$$\begin{array}{c}
\epsilon \ [S \to \epsilon] \\
\epsilon \ [S \to aSb] \\
\epsilon \ [S \to bSa] \\
\epsilon \ [S \to SS] \\
a \ [a \to \epsilon] \\
b \ [b \to \epsilon]
\end{array}$$

CFGs to PDA_{ES} – Example

$$\begin{array}{lcl} \delta(q,\epsilon,A\in V) & = & \{(q,\alpha)\mid A\to\alpha\in R\} \\ \delta(q,a\in\Sigma,a\in\Sigma) & = & \{(q,\epsilon)\} \end{array}$$

Consider the following CFG:

$$S
ightarrow \epsilon \mid aSb \mid bSa \mid SS$$

Then, the equivalent PDA (by empty stacks) is:

Theorem (PDA_{ES} to CFGs)

For a given PDA
$$P = (Q = \{q_0, \dots, q_{n-1}\}, \Sigma, \Gamma, \delta, q_0, Z, F), \exists CFG G. L_E(P) = L(G).$$

Theorem (PDA_{ES} to CFGs)

For a given PDA
$$P = (Q = \{q_0, \dots, q_{n-1}\}, \Sigma, \Gamma, \delta, q_0, Z, F), \exists CFG G. L_E(P) = L(G).$$

Consider the set of variables $V = \{S\} \cup \{A_{i,j}^X \mid 0 \le i, j < n \land X \in \Gamma\}.$

Theorem (PDA_{ES} to CFGs)

For a given PDA
$$P = (Q = \{q_0, \dots, q_{n-1}\}, \Sigma, \Gamma, \delta, q_0, Z, F), \exists CFG G. L_E(P) = L(G).$$

Consider the set of variables $V = \{S\} \cup \{A_{i,j}^X \mid 0 \le i, j < n \land X \in \Gamma\}$. Then, define a CFG:

• For all $0 \le j < n$,

$$S \to A_{0,j}^Z$$

• For all $q_i \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $X \in \Gamma$, consider any $(q_j, X_1 \cdots X_m) \in \delta(q_i, a, X)$ and $0 \le k_1, \cdots, k_m < n$. Then,

$$A_{i,k_m}^X \to a A_{j,k_1}^{X_1} A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m}$$

Theorem (PDA_{FS} to CFGs)

For a given PDA
$$P = (Q = \{q_0, \dots, q_{n-1}\}, \Sigma, \Gamma, \delta, q_0, Z, F), \exists CFG G. L_E(P) = L(G).$$

Consider the set of variables $V = \{S\} \cup \{A_{i,i}^X \mid 0 \le i, j < n \land X \in \Gamma\}$. Then, define a CFG:

• For all 0 < i < n,

$$S \to A_{0,j}^Z$$

• For all $q_i \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $X \in \Gamma$, consider any $(q_i, X_1 \cdots X_m) \in \delta(q_i, a, X)$ and $0 \le k_1, \cdots, k_m < n$. Then,

$$A_{i,k_m}^X o a \ A_{j,k_1}^{X_1} \ A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m}$$

Note that each variable $A_{i,i}^X$ generates all words that cause the PDA to go from state q_i to state q_i by popping X:

$$A_{i,i}^X \Rightarrow^* w$$

$$A_{i,j}^X \Rightarrow^* w$$
 if and only if $(q_i, w, X) \vdash^* (q_j, \epsilon, \epsilon)$

PDA_{ES} to CFGs – Example

$$S o A_{0,j}^Z \hspace{1cm} A_{i,k_m}^X o a \ A_{j,k_1}^{X_1} \ A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m}$$

Consider the following PDA (by empty stacks):

PDA_{ES} to CFGs – Example

$$S o A_{0,j}^Z \hspace{1cm} A_{i,k_m}^X o a \ A_{j,k_1}^{X_1} \ A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m}$$

Consider the following PDA (by empty stacks):

$$\begin{array}{cccc} a & [Z \to XZ] & \epsilon & [Z \to \epsilon] \\ a & [X \to XX] & b & [X \to \epsilon] \\ & & \epsilon & [Z \to Z] & & \\ \text{start } [Z] & & & q_0 & & q_1 \\ \end{array}$$

Then, the equivalent CFG is:

$$\begin{array}{l} S & \rightarrow A_{0,0}^{Z} \mid A_{0,1}^{Z} \\ A_{0,0}^{Z} \rightarrow a \; A_{0,0}^{X} \; A_{0,0}^{Z} \mid a \; A_{0,1}^{X} \; A_{1,0}^{Z} \mid A_{1,0}^{Z} \\ A_{0,1}^{Z} \rightarrow a \; A_{0,0}^{X} \; A_{0,1}^{Z} \mid a \; A_{0,1}^{X} \; A_{1,1}^{Z} \mid A_{1,1}^{Z} \\ A_{0,0}^{X} \rightarrow a \; A_{0,0}^{X} \; A_{0,0}^{X} \mid a \; A_{0,1}^{X} \; A_{1,0}^{X} \mid A_{1,0}^{X} \mid A_{1,1}^{X} \\ A_{0,1}^{X} \rightarrow a \; A_{0,0}^{X} \; A_{0,1}^{X} \mid a \; A_{0,1}^{X} \; A_{1,1}^{X} \mid A_{1,1}^{X} \\ A_{1,1}^{Z} \rightarrow \epsilon \\ A_{1,1}^{X} \rightarrow b \end{array}$$

PDA_{ES} to CFGs – Example

$$S o A_{0,j}^Z \hspace{1cm} A_{i,k_m}^X o a \ A_{j,k_1}^{X_1} \ A_{k_1,k_2}^{X_2} \cdots A_{k_{m-1},k_m}^{X_m}$$

Consider the following PDA (by empty stacks):

Then, the equivalent CFG is:

Summary

1. Equivalence of PDA by Final States and Empty Stacks

PDA_{FS} to PDA_{ES} PDA_{ES} to PDA_{FS}

2. Equivalence of PDA and CFGs

CFGs to PDA_{ES} PDA_{ES} to CFGs

$$PDA_{FS}$$
 \longrightarrow PDA_{ES} \longrightarrow CFG (by final states)

Next Lecture

• Deterministic Pushdown Automata (DPDA)

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr