Possibly useful equations for Q1-3

Laplace Transform Pairs

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$\mathbf{F}(\mathbf{s}) = \mathcal{L}\{\mathbf{f}(\mathbf{t})\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
δ(t)	1	$\frac{1}{\beta - \alpha} \left(e^{-\alpha t} - e^{-\beta t} \right) u(t)$	$\frac{1}{(s+\alpha)(s+\beta)}$
u(t)	$\frac{1}{s}$	sin ωt u(t)	$\frac{\omega}{s^2 + \omega^2}$
tu(t)	$\frac{1}{s^2}$	cos ωt u(t)	$\frac{s}{s^2 + \omega^2}$
$\frac{t^{n-1}}{(n-1)!}u(t), n = 1,2,$	$\frac{1}{s^n}$	$\sin(\omega t + \theta)u(t)$	$\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$
$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\cos(\omega t + \theta)u(t)$	$\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$
$te^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^2}$	$e^{-\alpha t} \sin \omega t u(t)$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t), n = 1,2,$	$\frac{1}{(s+\alpha)^n}$	$e^{-\alpha t}\cos\omega t u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$

Laplace Transform Operations

Operation	f(t)	F(s)
Addition	$f_1(t) \pm f_2(t)$	$F_1(s) \pm F_2(s)$
Scalar Multiplication	kf(t)	kF(s)
Time Differentiation	$\frac{\mathrm{df}}{\mathrm{dt}}$ $\mathrm{d}^2\mathrm{f}$	$sF(s) - f(0^-)$
	$\frac{d^2f}{dt^2}$	$s^2F(s) - sf(0^-) - f'(0^-)$
	$\frac{\overline{dt^2}}{\frac{d^3f}{dt^3}}$	$s^3F(s) - s^2f(0^-) - sf'(0^-) - f''(0^-)$
Time Integration	$\int_{0^{-}}^{t} f(t) dt$	$\frac{1}{s}F(s)$
	$\int_{-\infty}^{t} f(t) dt$	$\frac{1}{s}F(s) + \frac{1}{s} \int_{-\infty}^{0^{-}} f(t) dt$
Convolution	$f_1(t) * f_2(t)$	$F_1(s)F_2(s)$
Time Shift	$f(t-a)u(t-a), a \ge 0$	e ^{-as} F(s)
Frequency Shift	f(t)e ^{-at}	F(s+a)
Frequency Differentiation	-tf(t)	$\frac{\mathrm{dF(s)}}{\mathrm{ds}}$
Frequency Integration	$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(s) ds$
Scaling	$f(at), a \ge 0$	$\frac{1}{a}F\left(\frac{s}{a}\right)$
Initial Value	f(0+)	$\lim_{s\to\infty} F(s)$
Final Value		$\lim_{s\to 0} sF(s)$
	f(∞)	$s \to 0$ All poles of sF(s) in LHP
Time Periodicity	f(t) = f(f + nT), n = 1,2,	$\frac{1}{1 - e^{-Ts}} F_1(s)$
		Where $F_1(s) = \int_{0^-}^T f(t)e^{-st} dt$

TURN OVER

Possibly useful equations for Q4-6

Resonance

For parallel RLC circuits:
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
, $\alpha = \frac{1}{2RC}$, $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$, $Q_0 = R\sqrt{\frac{c}{L}}$

For series RLC circuits:
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
, $\alpha = \frac{R}{2L}$, $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$, $Q_0 = \frac{1}{R}\sqrt{\frac{L}{C}}$

Bode plots

$$\mathbf{H}(\mathbf{s}) = 1 + \frac{\mathbf{s}}{a} \to H_{dB} = 20 \log_{10} \sqrt{1 + (\frac{\omega}{a})^2}, \quad \angle (H(j\omega) = \tan^{-1} \frac{\omega}{a})$$

$$\mathbf{H}(\mathbf{s}) = \frac{1}{1 + \frac{\mathbf{s}}{a}} \to H_{dB} = -20 \log_{10} \sqrt{1 + (\frac{\omega}{a})^2}, \quad \angle (H(j\omega) = -\tan^{-1} \frac{\omega}{a})$$

$$\mathbf{H}(\mathbf{s}) = 1 + 2\xi (\frac{\mathbf{s}}{\omega_0}) + (\frac{\mathbf{s}}{\omega_0})^2 \to H_{dB} = 20 \log_{10} |1 + j2\xi (\frac{\omega}{\omega_0}) - (\frac{\omega}{\omega_0})^2|,$$

$$\angle (H(j\omega) = \tan^{-1} \frac{2\xi (\frac{\omega}{\omega_0})}{1 - (\frac{\omega}{\omega_0})^2}$$

Fourier

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right)$$

$$a_0 = \frac{1}{T} \int_0^T f(t) dt, \quad a_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega_0 t) dt, \quad b_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega_0 t) dt$$

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}, \quad c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-jn\omega_0 t} dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} F(j\omega) d\omega, \quad F(j\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} f(t) dt$$

f(t)	F(jω)	f(t)	F(jω)
$\delta(t-t_0)$	$e^{-j\omega t_0}$	sgn(t)	2
			jω
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	u(t)	$\pi\delta(\omega) + \frac{1}{\omega}$
			$\pi\delta(\omega) + \frac{1}{j\omega}$
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$	$e^{-\alpha t}u(t)$	1
			$\overline{\alpha + j\omega}$
1	$2\pi\delta(\omega)$	$[e^{-\alpha t}\cos(\omega_d t)]u(t)$	$\alpha + j\omega$
			$(\alpha + j\omega)^2 + \omega_d^2$

End of Examination