

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Programación Estructurada		

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Segundo	172024	101

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al alumno el conocimiento de este paradigma de programación y su aplicación a través de un lenguaje de alto nivel, proporcionando la solución de problemas tecnológicos y científicos

TEMAS Y SUBTEMAS

1. El lenguaje de Programación ANSI C.

- 1.1. Paradigmas de programación.
- 1.2. Introducción a la programación estructurada.
- 1.3. Estructura de un programa.
- 1.4. Tipos de datos.
- 1.5. Operadores.
- 1.6. Ejemplos de instrucciones de entrada y salida.

2. Estructuras de Control.

- 2.1. Secuencial.
- 2.2. Selectivas.
- 2.3. Iterativas.

3. Funciones.

- 3.1. Definición de funciones.
- 3.2. Funciones con paso de parámetros por valor.
- 3.3 Funciones con paso de parámetros por referencia.
- 3.4. Funciones recursivas.

4. Arregios.

- 4.1. Arreglos unidimensionales.
- 4.2. Arreglos bidimensionales.
- 4.3. Arreglos como parámetros.
- 4.4. Ordenamientos y búsquedas en arreglos.

5. Apuntadores.

- 5.1 Apuntadores.
- 5.2 Aritmética de apuntadores.
- 5.3 Memoria estática y dinámica.
- 5.4 Arreglos dinámicos de una y dos dimensiones.

6. Tipos de datos definidos por el programador.

- 6.1 Introducción al tipo de dato abstracto.
- 6.2 Implementación de un tipo de dato abstracto.
- 6.3 Tipos de datos definidos por el programador como parámetros.
- 6.4 Arreglos de tipos de datos definidos por el programador.

7. Archivos.

- 7.1 Texto y binarios.
- 7.2 Acceso secuencial y directo.

Universidad Tecnológica de la Mixteca Otro Des Para de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

ACTIVIDADES DE APRENDIZAJE

El profesor expondrá su clase a los alumnos y resolverá ejercicios referentes al tema, utilizando los medios audiovisuales disponibles en el Aula o Sala de Cómputo. Asimismo el alumno codificará programas de cómputo, y revisará bibliografía del tema.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Para aprobar el curso se realizaran tres evaluaciones parciales (50 %) y una evaluación final (50%) Cada evaluación consta un examen teórico, tareas y proyectos.

El examen tendrá un valor mínimo de 50%, las tareas y proyectos un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

1. Como programar en C/C++, P.J. Deitel y H.M. Deitel, Prentice Hall, 2003.

2. Programación en C. Metodología, Algoritmos y Estructura de Datos, L. Joyanes Aguilar e I. Zahonero, McGraw Hill, 2005.

3. How to program, P.J. Deitel and H.M. Deitel, Prentice Hall, 2003.

4. Problemas Resueltos de Programación en Lenguaje C, F. García, A. Calderón y J. Carretero, Paraninfo,

1. **El lenguaje en C,** B. Kernigham y D. Ritchie, Prentice Hall, 1991.

Programación en C, B. Gotfried, McGraw Hill, 1991.

- Introducción a la Programación Estructurada en C, G. Márquez, S. Osorio y N. Olvera, Pearson, 2011.
- Curso de Programación con C, J. Ceballos, MAcrobit/RAMA, Microsoft, 1990.

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en Computación o alguna árga afín.

ø. Bo.

DR. SALOMON GONZÁLEZ MARTÍNEZ C N JEFE DE CARRERATURA DE CARRERA INGENIERIA EN

FÍSICA A PLICA DA

DR. AGUSTIN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO

AUTORIZO

ACADÉMICA