Lecture 2.2: Matrices

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Contents

- 1. Matrix associated to a linear transformation
- 2. Matrix product

Matrix associated to a linear map

The key observation

- Let $L: \mathbb{R}^m o \mathbb{R}^n$ be a linear transformation.
- Let (e_1, \ldots, e_m) be the canonical basis of \mathbb{R}^m .

Then, for all $x = (x_1, \dots, x_m) \in \mathbb{R}^m$:

$$L(x) = L\left(\sum_{i=1}^{m} x_i e_i\right) = \sum_{i=1}^{m} x_i L(e_i).$$

The key observation

- Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation.
- Let (e_1, \ldots, e_m) be the canonical basis of \mathbb{R}^m .

Then, for all $x = (x_1, \dots, x_m) \in \mathbb{R}^m$:

$$L(x) = L(\sum_{i=1}^{m} x_i e_i) = \sum_{i=1}^{m} x_i L(e_i).$$

Conclusion: if you give me the vectors $L(e_1), \ldots, L(e_m) \in \mathbb{R}^n$ then, I can compute L(x) for any $x \in \mathbb{R}^m$.

« One needs $n \times m$ numbers to store a the linear map L on a computer »

Matrices

Definition

A $n \times m$ matrix is an array (of real numbers) with n rows and m columns. We denote by $\mathbb{R}^{n \times m}$ the set of all $n \times m$ matrices.

Canonical matrix of a linear map

We can encode a linear map $L: \mathbb{R}^m \to \mathbb{R}^n$ by a $n \times m$ matrix.

Definition

The canonical matrix of L is the $n \times m$ matrix (that we will write also L) whose columns are $L(e_1), \ldots, L(e_m)$:

$$L = \begin{pmatrix} | & | & | \\ L(e_1) & L(e_2) & \cdots & L(e_m) \\ | & | & | \end{pmatrix} = \begin{pmatrix} L_{1,1} & L_{1,2} & \cdots & L_{1,m} \\ L_{2,1} & L_{2,2} & \cdots & L_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ L_{n,1} & L_{n,2} & \cdots & L_{n,m} \end{pmatrix}$$

where we write
$$L(e_j) = \begin{pmatrix} L_{1,j} \\ L_{2,j} \\ \vdots \\ L_{n,j} \end{pmatrix}$$
 .

Example #1: identity matrix

The Identity map $\begin{array}{ccc} \operatorname{Id}: & \mathbb{R}^n & \to & \mathbb{R}^n \\ & x & \mapsto & x \end{array} \quad \text{is linear.}$

Exercise: what is the canonical matrix of Id?

Example #2: Homothety

Let $\lambda \in \mathbb{R}$. The homothety map of ratio λ :

$$H_{\lambda}: \mathbb{R}^n \to \mathbb{R}^n$$

$$x \mapsto \lambda x$$

is linear.

Exercise: what is the canonical matrix of H_{λ} ?

Example #3: rotations in \mathbb{R}^2

Let $\theta \in \mathbb{R}$. The rotation $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ of angle θ about the origin is linear.

Exercise: what is the canonical matrix of R_{θ} ?

Matrix product

Matrix product 8/12

Matrix-vector product

- We have seen: linear map → matrix
- We will see now: matrix → linear map

Definition

The linear transformation associated to a matrix $L \in \mathbb{R}^{n \times m}$ is the map

$$L: \mathbb{R}^m \to \mathbb{R}^n$$

$$x \mapsto Lx$$

where the "matrix-vector" product $Lx \in \mathbb{R}^n$ is defined by

$$(Lx)_i = \sum_{j=1}^m L_{i,j} x_j$$
 for all $i \in \{1, \dots, n\}$.

Matrix product 9/12

Visualizing the formula

$$(Lx)_i = \sum_{j=1}^m L_{i,j} x_j$$

Matrix product 10/12

Matrix product

Let $L \in \mathbb{R}^{n \times m}$ and $M \in \mathbb{R}^{m \times k}$.

Definition (Matrix product)

The matrix product LM is the $n \times k$ matrix of the linear map $L \circ M$. His coefficients are given by the formula:

$$(LM)_{i,j} = \sum_{\ell=1}^m L_{i,\ell} M_{\ell,j} \quad \text{for all} \quad 1 \leq i \leq n, \quad 1 \leq j \leq k.$$

Matrix product 11/12

Visualizing the formula

$$(LM)_{i,j} = \sum_{\ell=1}^{m} L_{i,\ell} M_{\ell,j}$$

Matrix product 12/12