UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL CURSO DE ENGENHARIA ELÉTRICA

3ª PROVA DE CIRCUITOS ELÉTRICOS II – ELT221 - PER VALOR: 30 PONTOS - DATA: 16/12/2020

(Prof. Tarcísio Pizziolo) – Horário: 9 h às 12 h

ALUNO:	Mat.:

QUESTÕES

1) (6 pts) Determine a tensão $v_0(t)$ no resistor de 0,4 Ω no circuito abaixo.

2) (6 pts) Seja o transformador ideal a seguir.

Determine a corrente $i_0(t)$ no estado permanente.

3) (6 pts) Seja o circuito.

Determine:

- a) (3 pts) Para que valor(es) de frequência w a tensão de saída v₀(t) em estado permanente será máxima?
- b) (3 pts) Qual o valor desta tensão máxima de saída?

4) (6 pts) Determinar a componente da 3ª harmônica da resposta $v_0(t)$ em estado permanente para o circuito RC dado v_g na forma de somatório da Série de Fourier. $v_g(t) = \frac{4V_m}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} sen(nw_0 t)$

5) (6 pts) Seja o circuito dado na Figura-1 a seguir.

Figura-1

A entrada $v_i(t)$ é dada por:

Calcule a potência média fornecida ao resistor $R=1\ \Omega$ no estado permanente até a 3^a harmônica com aproximação de 3 casas decimais.