Задачи по Математическим основам анализа данных

Артамонов Н.В.

4 марта 2025 г.

Содержание

1	Работа с массивами (матричный анализ)			1
	1.1	Опера	щии с матрицами	1
		1.1.1	Скалярное умножение и сложение	1
		1.1.2	Умножение метриц	4
		1.1.3	Обратная матрица	١
		1.1.4	Матричные уравнения	(
		1.1.5	Определитель	8

1 Работа с массивами (матричный анализ)

1.1 Операции с матрицами

1.1.1 Скалярное умножение и сложение

№1. Рассмотрим матрицы

$$A = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 2 & 3 \\ 1 & -1 & 0 \\ 2 & -2 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & 1 \\ 2 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 0 & -1 \\ -1 & -2 & 2 \\ 1 & -1 & 2 \\ 0 & 3 & -1 \end{pmatrix}$$

Вычислите

$$2A+B$$
 $A-2C$ $4B-A-C$ $C-2A+4B$

№2. Рассмотрим матрицы

$$A = \begin{pmatrix} 2 & 1 & 5 \\ 3 & 4 & 3 \\ 1 & 2 & 0 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 1 & 0 \\ 2 & 5 & 2 \\ 4 & 3 & 2 \\ 3 & 4 & 1 \\ 1 & 3 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 5 & 2 & 3 \\ 2 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$

Вычислите

$$A + 3B$$
 $3B - 2C$ $2B - C + 3A$ $2C + 3A - 5B$

№3. Рассмотрим матрицы

$$A = \begin{pmatrix} -1 & 2 & 2 & 1 & 0 \\ 1 & 0 & -2 & 1 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 0 & 1 & 3 & 2 \\ -1 & 0 & 2 & 1 & -3 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 1 & -1 & -2 \end{pmatrix}$$

Вычислите

$$3A-B$$
 $2A-C$ $2B-C+3A$ $B-2A+C$

1.1.2 Умножение метриц

Замечание: через \odot будем обозначать $npoussedenue\ Adamapa$ для матриц

№4. Для следующим матриц вычислите $A \odot B$, если операция определена

1.
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
 $B = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix}$

2.
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$

3.
$$A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & 2 & -1 & 0 \end{pmatrix} B = \begin{pmatrix} -1 & 1 & 1 & 2 \\ 0 & 1 & 2 & -2 \end{pmatrix}$$

4.
$$A = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \\ -2 \end{pmatrix} B = \begin{pmatrix} 0 \\ 2 \\ -1 \\ 1 \\ 0 \end{pmatrix}$$

№5. Для матрицы $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ вычислите

$$A\odot A \qquad A^{\top}\odot A \qquad A\odot A\odot A \qquad A\odot A^{\top}\odot A \qquad A\odot A^{\top}\odot A^{\top}$$

№6. Для матрицы $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ вычислите

$$A\odot A \qquad A^{\top}\odot A \qquad A\odot A\odot A \qquad A\odot A^{\top}\odot A \qquad A\odot A^{\top}\odot A^{\top}$$

№7. Рассмотрим матрицы

$$A = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 2 & 3 \\ 1 & -1 & 0 \\ 2 & -2 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & 1 \\ 2 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 0 & -1 \\ -1 & -2 & 2 \\ 1 & -1 & 2 \\ 0 & 3 & -1 \end{pmatrix}$$

Вычислите

$$A \odot B \odot C$$
 $A \odot B - C$ $2B \odot C - A$ $2A \odot B - 3B \odot C$

№8. Рассмотрим матрицы

$$A = \begin{pmatrix} 2 & 1 & 5 \\ 3 & 4 & 3 \\ 1 & 2 & 0 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 1 & 0 \\ 2 & 5 & 2 \\ 4 & 3 & 2 \\ 3 & 4 & 1 \\ 1 & 3 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 5 & 2 & 3 \\ 2 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$

Вычислите

$$A\odot B\odot C$$
 $2A\odot B-C$ $B\odot C+2A$ $3A\odot B-2B\odot C$

№9. Рассмотрим матрицы

$$A = \begin{pmatrix} -1 & 2 & 2 & 1 & 0 \\ 1 & 0 & -2 & 1 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 0 & 1 & 3 & 2 \\ -1 & 0 & 2 & 1 & -3 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 1 & -1 & -2 \end{pmatrix}$$

Вычислите

$$A \odot B \odot C$$
 $2A \odot C - B$ $B \odot C - 2B$ $3A \odot C - 2A \odot C$

№10. Для следующим матриц вычислите произведении AB и BA, если операции определены

1.
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
 $B = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix}$

2.
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \end{pmatrix}$

3.
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$

4.
$$A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix} B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \\ 0 & 1 \\ 1 & -1 \end{pmatrix}$$

5.
$$A = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix} B = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

№11. Для следующим матриц вычислите произведении $A^{\top}B, AB^{\top}, B^{\top}A$ и $BA^{\top},$ если операции определены

1.
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
 $B = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix}$

2.
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$

№12. Рассмотрим матрицы

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

Вычислите

$$AC - B$$
 $BA + C$ $(B + C)A$ $C(A - B)$ $AB - BC$ ABC

№13. Рассмотрим матрицы

$$A = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Вычислите

$$AB-C$$
 $BC+A$ $A(B+C)$ $(2A-3B)C$ $AB+BC$ ABC

№14. Для матрицы
$$A=\begin{pmatrix}1&1\\1&0\end{pmatrix}$$
 вычислите A^2,A^3,A^4

№15. Для матрицы
$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$
 вычислите A^2, A^3, A^4

1.1.3 Обратная матрица

№16. Найдите обратную к следующим матрицам или покажите, что обратная не существует

$$\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix} \qquad
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix} \qquad
\begin{pmatrix}
2 & 1 \\
3 & 0
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 1 \\
2 & 2
\end{pmatrix} \\
\begin{pmatrix}
2 & 1 \\
5 & 3
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 3 \\
2 & 5
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 1 \\
0 & 0
\end{pmatrix} \qquad
\begin{pmatrix}
2 & 2 \\
4 & 3
\end{pmatrix} \qquad
\begin{pmatrix}
3 & 2 \\
5 & 3
\end{pmatrix}$$

№17. Найдите обратную к следующим матрицам или покажите, что обратная не существует

$$\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\qquad
\begin{pmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{pmatrix}
\qquad
\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{pmatrix}
\qquad
\begin{pmatrix}
3 & 0 & 2 \\
0 & 1 & 1 \\
5 & 0 & 3
\end{pmatrix}
\qquad
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}$$

1.1.4 Матричные уравнения

№18. Решите матричное уравнение AX = B для следующих матриц

1.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

2.
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$

4.
$$A = \begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 & 2 & 1 \\ 2 & 0 & 1 & -1 \end{pmatrix}$$

№19. Решите матричное уравнение AX=B для следующих матриц

1.
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$

2.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & -1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

№20. Решите матричное уравнение XA = B для следующих матриц

1.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

2.
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

4.
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

№21. Решите матричное уравнение $A_1XA_2 = B$ для следующих матриц

1.
$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

2.
$$A_1 = \begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$

3.
$$A_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

4.
$$A_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 2 & 3 \end{pmatrix}$

5.
$$A_1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}$

1.1.5 Определитель

№22. Вычислите определитель следующих матриц

$$\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \qquad \begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix} \qquad \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \qquad \begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

№23. Вычислите определитель следующих матриц

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$