

第四章二元关系和函数

关系的性质、关系的闭包

郝杰

haojie@bupt.edu.cn

北京邮电大学信息安全中心

关系的性质

- □ 自反性 (reflexive)
- □ 反自反性 (irreflexive)
- □ 对称性 (symmetric)
- □ 反对称性 (antisymmetric)
- □ 传递性 (transitive)

自反性与反自反性

定义

- □ 设R为A上的关系
 - 1) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \in R)$, 则称 R 在 A 上是自反的.
 - 2) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \notin R)$, 则称 R 在 A 上是反自反的.
- 实例:
- ightharpoonup 自反关系: A上的全域关系 E_A ,恒等关系 I_A 小于等于关系 I_A ,整除关系 I_A
- 反自反关系: 实数集上的小于关系幂集上的真包含关系

自反性与反自反性

例如: $A = \{1, 2, 3\}, R_1, R_2, R_3$ 是A上的关系, 其中 $R_1 = \{<1, 1>, <2, 2>\}$ $R_2 = \{<1, 1>, <2, 2>, <3, 3>, <1, 2>\}$ $R_3 = \{<1, 3>\}$

 R_2 自反,

 R_3 反自反,

 R_1 既不是自反也不是反自反的.

对称性与反对称性

定义

- \Box 设 R 为 A 上的关系
 - 1) 若 $\forall x \forall y (x, y \in A \land \langle x, y \rangle \in R \rightarrow \langle y, x \rangle \in R)$,则称 R 为 A上对称的关系.
 - 2) 若 $\forall x \forall y (x, y \in A \land \langle x, y \rangle \in R \land \langle y, x \rangle \in R \rightarrow x = y)$,则 称 R 为 A 上的反对称关系.

■ 实例:

- \triangleright 对称关系: 全域关系 E_4 , 恒等关系 I_4 和空关系 \emptyset .
- \triangleright 反对称关系: 恒等关系 I_a ,空关系 \emptyset .

对称性与反对称性

例如: $A = \{1,2,3\}, R_1, R_2, R_3 和 R_4 都是A上的关系,$

$$R_1 = \{<1,1>,<2,2>\}, R_2 = \{<1,1>,<1,2>,<2,1>\}$$

$$R_3 = \{<1,2>,<1,3>\}, R_4 = \{<1,2>,<2,1>,<1,3>\}$$

 R_1 对称、反对称.

 R_2 对称,不反对称.

 R_3 反对称,不对称.

 R_4 不对称、也不反对称.

传递性

定义

□ 设 R 为 A 上的关系,若 $\forall x \forall y \forall z \ (x, y, z \in A \land \langle x, y \rangle \in R \land \langle y, z \rangle \in R$

$$\rightarrow \langle x, z \rangle \in R$$
),

则称 R 是 A 上的传递关系.

■ 实例:

A上的全域关系 E_A ,恒等关系 I_A 和空关系 \varnothing . 小于等于关系,小于关系,整除关系,包含关系,真包含关系

传递性

例如: $A = \{1, 2, 3\}, R_1, R_2, R_3$ 是A上的关系, 其中

$$R_1 = \{<1, 1>, <2, 2>\}$$

$$R_2 = \{<1, 2>, <2, 3>\}$$

$$R_3 = \{<1,3>\}$$

 R_1 和 R_3 是A上的传递关系 R_2 不是A上的传递关系

■ 例: 判断下图中关系的性质, 并说明理由.

- (a) 不自反也不反自反;对称,不反对称;不传递.
- (b) 反自反,不是自反的;反对称,不是对称的; 是传递的.
- (c) 自反,不反自反,反对称,不是对称,不传递.

- □ 关系性质的充要条件
- 设R为A上的关系,则
 - 1) R 在 A 上自反当且仅当 $I_A \subseteq R$
 - 2) R 在 A 上反自反当且仅当 $R \cap I_A = \emptyset$
 - 3) R 在 A 上对称当且仅当 $R = R^{-1}$
 - 4) R 在 A 上反对称当且仅当 $R \cap R^{-1} \subseteq I_A$
 - 5) R 在 A 上传递当且仅当 $R^{\circ}R \subseteq R$

- □ R 在 A 上传递当且仅当 $R^{\circ}R$ $\subseteq R$
- ▶ 证明:

2018年秋季学期

- 若 R 在 A 上传递,则 R°R \subseteq R.
- \blacktriangleright 任取<x, y>,有
 <x, y>∈R°R \Rightarrow ∃ t (<x, t>∈R \land < t, y>∈R) \Rightarrow <x, y>∈R所以 R°R \subseteq R.
- 若 $R^{\circ}R \subseteq R$,则 R 在 A 上传递.
- ← 任取 $\langle x,y \rangle$, $\langle y,z \rangle \in R$, 有 $\langle x,y \rangle \in R \land \langle y,z \rangle \in R \Rightarrow \langle x,z \rangle \in R^{\circ}R \Rightarrow \langle x,z \rangle \in R$ 所以 R 在 A 上是传递的.

□关系性质判别

	自反	反自反	对称	反对称	传递
表达式	$I_A \subseteq R$	$R \cap I_A = \emptyset$	$R=R^{-1}$	$R \cap R^{-1} \subseteq I_A$	$R^{\circ}R\subseteq R$
关系 矩阵	主対角线元素	主对角 线元素 全是0	矩阵 是 对称 矩阵	若 r_{ij} =1,且 $i \neq j$,则 r_{ji} =	对M ² 中1所 在位置, M中相应
关系图	全年1年1年1年1年1日	每个顶 点都没 有环	如果两个顶 点之间有边, 是一对方向 相反的边	是一条有 向边(无双	位置都是 1 如果顶点 x_i 到 x_j 有边, x_j 到 x_k 有边, 则从 x_i 到
			(无单边)	向边)	x_k 有边

关系性质的运算封闭性

	自反性	反自反性	对称性	反对称性	传递性
R_1^{-1}	$\sqrt{}$	\checkmark	$\sqrt{}$	V	$\sqrt{}$
$R_1 \cap R_2$	$\sqrt{}$	\checkmark	$\sqrt{}$	V	$\sqrt{}$
$R_1 \cup R_2$	$\sqrt{}$	\checkmark	$\sqrt{}$	×	×
R_1 - R_2	×	$\sqrt{}$	V	V	×
$R_1 \circ R_2$	$\sqrt{}$	×	×	×	×

闭包的定义

定义

- □ 设 R 为非空集合 A 上的关系, R 的自反 (对称或传递) 闭包是 A 上的关系 R', 使得 R' 满足以下条件:
 - 1) R'是自反的(对称的或传递的);
 - 2) $R \subseteq R'$;
 - 3) 对 A 上任何包含 R 的自反(对称或传递)关系 R'' 有 $R' \subseteq R''$.
- 一般将 R 的自反闭包记作 r(R), 对称闭包记作 s(R), 传递闭包记作 t(R).

■ 例如: 设 $A = \{a, b, c, d\}, R = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, d \rangle, \langle d, b \rangle\}, R 和 <math>r(R), s(R), t(R)$ 的关系图如下图所示.

闭包的构造方法

定理

- \square 设 R 为非空集合 A 上的关系,则有
 - $1) \quad r(R) = R \cup R^0;$
 - 2) $s(R) = R \cup R^{-1}$;
 - 3) $t(R) = R \cup R^2 \cup R^3 \cup \dots$
- ▶ 说明
 - 对于有穷集合A(|A|=n), 3)中的并最多不超过 R^n .
 - 若R是自反的,则 r(R)=R; 若R是对称的,则s(R)=R; 若R是传递的,则 t(R)=R.
- ➤ 传递闭包: Warshall算法

闭包的构造方法

□ 关系矩阵

- 关系R, r(R), s(R), t(R)分别对应M, M_r , M_s 和 M_t , 则
 - 1) $M_r = M + E$
 - 2) $M_s = M + M^T$
 - 3) $M_t = M + M^2 + M^3 + \dots$

上式中:

- E 是和 M 同阶的单位矩阵;
- M^T是 M 的转置矩阵;
- 矩阵的元素相加时使用逻辑加.

闭包的构造方法

□ 关系图

- - 1) 考察 G 的每个顶点, 如果没有环就加上一个环,最终得到 G_r .
 - 2) 考察G的每条边,如果有一条 x_i 到 x_j 的单向边,且 $i \neq j$,则在G中加一条 x_i 到 x_i 的反方向边,最终得到 G_s .
 - 3)考察G的每个顶点 x_i , 找从 x_i 出发的每一条路径, 如果从 x_i 到路径中任何结点 x_j 没有边,就加上这条边.当检查完所有的顶点后就得到图 G_i .

口作业

- **> 4.12**
- **> 4.14**