Unit 1 Statistical Techniques I

MCQ (1 Marks)

- 1. The first three raw moments of a distribution are 0, 2.5, 0.7. Find the value of the second central moment: (CO1)
 - A. 0
 - B. 1
 - C. 2.5
 - D. 0.7
- 2. The first three central moments of a distribution are 0, 15, -31. Find the moment coefficient of skewness. (CO1)
 - A. 0.2847
 - B. 2.847
 - C. 28.47
 - D. 284.7
- 3. The mean of 200 items was 50. Later on it was discovered that two items were misread as 92 and 8 instead of 192 and 88. Find out the correct mean. (CO1)
 - A. 50.2-
 - B. 50.7
 - C. 50.4
 - D. 50.9
- 4. The spearman rank correlation coefficient is given by-(CO1)
 - A. $r = 1 6 \frac{\sum d^2}{n(n^2 1)}$
 - B. $r = 1 6 \frac{\sum d^2}{(n^2 + n)}$ C. $r = 1 \frac{\sum d^2}{n(n^2 1)}$ D. $r = 1 6 \frac{\sum d^2}{(n^3 1)}$
- 5. If the regression coefficients are 0.8 and 0.2, what would be the value of coefficient of correlation? (CO1)
 - A. 0.14
 - B. 0.8
 - e. 0.4
 - D. 0.02
- 6. Curve which are more sharply peaked that normal curve is called: (CO1)

00200 001

- A. Mesokurtic Curve
- B. Leptokurtic Curve
- C. Platykurtic Curve
- D. None of these.

7. Two lines of regression are x + 2y - 5 = 0, 2x + 3y - 8 = 0 then mean value of x and y are respectively: (CO1)

D. None of these.

Very Short Answer Type Questions (2 Marks)

8. Karl Pearson's coefficient of skewness of a distribution is 0.32, its standard deviation is 6.5 and mean is 29.6. Find the mode of the distribution. (CO1)

9. Write the angle between two lines of regression. (CO1)

$$tano = 1 - u^2 \left(\frac{\sigma \times \sigma g}{\sigma_{\chi^2} + \sigma g^2} \right)$$

10. Find the Arithmetic mean of the following data. (CO1)

Class interval N	0-10	10-20	20-305	30-40	40-50
Frequency	10	20	40	20	10

Solution:

$$A \cdot M = \underbrace{\text{Efixi}}_{\text{Efi}}$$

$$= \underbrace{2500}_{\text{L00}}$$

$$= \underbrace{25}_{\text{Ans}}.$$

11. Write the normal equation of $y = a + \frac{b}{x}$ (CO1)

Solution:
$$y = a + b$$

 $\leq y = na + b \leq x$
 $\leq \frac{y}{x} = \frac{a}{zx} + nb$ Ans,

Short Answer Type Questions (6 Marks)

12. The first four moments about the working mean 28.5 of a distribution are 0.294, 7.144, 42.409 and 454.98. Calculate the moments about mean and measures of the skewness and kurtosis of the distribution. (CO1)

measures of the skewness and kurtosis of the distribution. (CO1) $A = 20.5; \mu = 0.294; \mu = 7.144; \mu = 4.409$ Solution: $\mu = 0; \mu = \mu - \mu' = 7.0576$

$$\mu_3 = \mu_3' - 3\mu_2' \mu_3' + 2\mu_1'^3 = 36.1588$$

$$\mu_4 = \mu_4' - 4\mu_3' \mu_1' + 6\mu_2' \mu_1'^2 - 3\mu_1'^4 = 408.7895$$

①
$$Svm = \frac{\mu_3}{\sqrt{\mu_3}} = \frac{36.1588}{\sqrt{4.0576}} = 1.92970 =) & kewed$$

13. If the coefficient of correlation between two variables x and y is 0.5 and the acute angle between their lines of regression is $\tan^{-1}(3/5)$, show that $\sigma_x = \frac{\sigma_y}{2}.(\text{CO1})$ y = 0.5, $\phi = \frac{3}{4}$

Solution:
$$tano = 1 - x^2 \left(\frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} \right) = \frac{3}{5} = \frac{1 - \frac{1}{4}}{2} \left(\frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} \right)$$

$$\Rightarrow \frac{2}{5} = \frac{2}{3} \left(\frac{\sigma_{\chi} \sigma_{\chi}}{\sigma_{\chi} + \sigma_{\chi}^{2}} \right) \Rightarrow 2\sigma_{\chi}^{2} + 2\sigma_{\chi}^{2} - 5\sigma_{\chi} \sigma_{\chi} = 0.$$

$$0x - 20y = 0 \Rightarrow 0x = 20y$$

 $20x - 0y = 0 \Rightarrow 0x = 0y$
Hence, troved,

WORKBOOK NIET

14. By the method of least squares, fit the curve $y = ax + bx^2$ to the following data: (CO1)

V	11	2		1.3		<u> </u>			-
X V	1.8	5.1		8.9		14.1	19.	.8	
<u> </u>		110	- 13	T As	1	22	23	LRY	be4
$y = \alpha \times +b_{\alpha} = 2$ Solution:	1941=55742	256	×	9	24	1	1	0	
o -actor	121	0	1	1.0	7.0	4	1	B. F	1
Eyx = a 2x 2 62x3	1 18 013	2 -	Q	5.1	10.2	4	8	20,4	16
= 9x = a = x = + b = x 4	893.3=883	at !	3		26.7	9	27	80.1	101
29x = azx + 62x	gasp				56.4	16	64	225.6	256
1 XX				エルド		25	125		625
M=(1.512)x +	a=1:512	_	5	10 .0F	23.0	1	100	495	
(0.49) 22	16=0.40		15	49.7	194.1	55	225	8220	979
1 (0,43)			-	To the					

15. For two random variables, x and y with same mean, the two regression equations are y = ax + b and $x = \alpha y + \beta$. Show that $\frac{b}{\beta} = \frac{1-a}{1-\alpha}$. Also find

Common mean. (CO1) $\sqrt{z} = y = m$

16. Find the coefficient of correlation for the following data: (CO1)

 ma the co	0111010111	• •			` /	
X	10	14	18	22	26	30
Y	18	12	24	6	30	36

et $u = x - a$, Solution:
Hur = Hay
Zu3=19; Ev3=19
Huv = 6(12) - (-3)(-3)
V6(19)-9 V6(19)-9

2	1 4	(2-22)	U=x-22	(4-24)	1 = y - 24	uv
10	18	72	-3	-6	-1	3
14	12	-8	-2	-12	-2	4
10	્રુપ	-4	(The state)	0	10	0
22	6	0	0,0	-18	-3	0
26	30	4	,	6	土	7
30	36	- 6	2	12	2	4
- (-1-	XV	1 53	1	-3	12

WORKBOOK NIET

17. The following table gives age(x) in years of cars and annual maitenance(y) in hundered rupees: (CO1)

	1				
X	1	1 3	5	7	0
	15	10		,	9
l V	15	18	21	23	22
				20	22

Estimate the maintenance cost for a 4 year old car after finding the regression fy on xes $9 = \frac{24}{2} = \frac{32}{2} = 19.8$ (4-9) = phx(x-x)equation.

					-
	S	olution:	byx	=5(53)	0- (25)(99
214_	74	7	_ 0	5-(165)	0- (25)(95) -(25)2
1.	100		21	00 = 0	25
2 10	54 105	25	2	00	0-10
B. 7 2 2 1 1 1 1 1 1 1 1	1 1		5-K) (=	$\bigcirc = 0.9$	2(X-X)
7 23	198	81	4-1	9.8 = 0 .	95(x-5)
2 00	533	165	VA		
15133	1930		when?	c=04;	¥ 141
2 39	533	165	VA	e=04;	

y - 19.0 = 0.95(-1) $y = \frac{-0.35 + 19.8}{4}$ $y = \frac{-0.35 + 19.8}{4}$ Ans.

18. The first four moments of a distribution about 2 are 1,2.5,5.5 and 16 respectively. Calculate the four moments about mean and about the origin. A=2; H=+; H==2.5; H==5.5; H==16

Solution: about mean: 12=2・5-1=±・5 $\mu_1 = 2$, $\mu_2 = \mu_3 - 3\mu_3\mu_1 + 2\mu_1^3 = 5 - 5 - 3(2 - 3)(1) + 2 = 0$ $\mu_1 = 2 - 2$ $\mu_2 = 2 - 3\mu_3\mu_1 + 2\mu_1^3 = 5 - 5 - 3(2 - 3)(1) + 2 = 0$ $\mu_1 = 2 - 2$ $\mu_2 = 2 - 2$ $\mu_1 = 2 - 2$ $\mu_2 = 3 - 2$ $\mu_1 = 2 - 2$ $\mu_2 = 3 - 2$ $\mu_1 = 3 - 2$ $\mu_2 = 3 - 2$ $\mu_3 = 3 - 2$ $\mu_4 = 3 - 2$ $\mu_1 = 3 - 2$ $\mu_2 = 3 - 2$ $\mu_3 = 3 - 2$ $\mu_4 = 3 - 2$ $\mu_1 = 3 - 2$ $\mu_2 = 3 - 2$ $\mu_3 = 3 - 2$ $\mu_4 = 3 - 2$ $\mu_1 = 3 - 2$ $\mu_2 = 3 - 2$ $\mu_3 = 3 - 2$ $\mu_4 = 3 - 2$ $\mu_1 = 3 - 2$ $\mu_2 = 3 - 2$ $\mu_3 = 3 - 2$ $\mu_4 =$

about augrne 1===== 1 = 10.5 13=H3+3H2X+X3=0+3(1.5)(3)+33=40.5 WORKBOOK NIET = 6+0+6(1.5)(9)+34=168 14= H4+3H32+6H222+24

Long Answer Type Questions (10 Marks)

19. Find the moment coeff. of Skewness and kurtosis of the following data. (CO1)

Class- interval	0-10	10-20	20-30	30-40	40-50
Frequency	10	20	40	20	10

CT 0-10 10-20 20-30 30-40 40-50	10 20 40 20	35	300 1000 700	-10 -10	100	10000 9000	10000	4000 4000 4000 4000	20000	2000
40-50	100		3200	1000000		The second second	13-14	12000 c		

$$M = \frac{1}{2} \frac{1}{100} =$$

①
$$SKM = \frac{\mu_3}{J_{W}^3} = \frac{2000}{J_{W}^3} = \frac{20$$

$$3) \beta_{2} = \frac{\mu_{4}}{\mu_{2}^{2}} = \frac{36000}{120 \times 120} = 2.5 \times 3$$
WORKBOOK NIET

WORKBOOK NIET

20. The pressure of the gas corresponding to various volumes V is measures given by the following data

by the following	ing child				
V(cm ³)	50	60	70	90	100
P(kg cm ⁻²)	64.7	51.3	40.5	25.9	78

Fit the data to equation $PV^{\gamma} = C.$ (CO1)

ta to equation PV' = C.(COI) $PV'' = Je \Rightarrow log P + \gamma log V = log Je$ $log P = log e - \gamma log V$ $| J = log P | XY | X^2 | Y = A + BX$ $| J = 0109 3 \cdot 076 2 \cdot 0002$ $| J = 0109 3 \cdot 076 2 \cdot 0002$ $| J = 0109 3 \cdot 0108 2 \cdot 0002$ $| J = 0109 3 \cdot 0002$ | J =V P X=109V Y=109P XY X2 50647 1.6989 1.8109 3.0762.000 60 51.3 J. 7781 J. 7101 3.0403.1616 40.5 1. 8450 1.6074 2.965 3.4040 35.9 7.92113 7.4135 8.4613.8180 1.6920 3.784 4 100 9.2762 0.4336 15.626 172706

8.4336=5A+9.2762B. 15.626 = 9-27-62A+17.27-06B

21. Use the method of Least squares to fit the curve: $y = \frac{c_0}{x} + c_1 \sqrt{x}$ to the following data. (CO1)

X	0.1	0.2	0.4	0.5	1	2
У	21	11	7	6	5	6

y= = + 101/2 Solution: 三英二〇三大マヤビス大

		45			
X	1 8	1 - 7	1. 22	1000 ×	1 grz
O.T.	21	210	100	3.16	6.64
6.2	77	55	25	82.23	4.01
0.4	7	17.5	6.25	1,58	4.42
0.5	6	12	4	1,49	4,24
1	5	S day	The state of	A TOTAL	5
2	6	3	0.35	0.70	Bry B
4-2	56	302.5	136.5	10:08	33.63

$$302.5 = 0.00 (136.5) + 10.08.0$$

 $302.5 = 0.008.00 + 4.2.0$
 $1000000 + 4.2.0$

22. In a partially destroyed laboratory record of analysis of a correlation data, the following results only are legible: (CO1) Variance of x = 9.

Regression equations: 8x - 10y + 66 = 0.40x - 18y = 214.

What were (a) the mean values of x and y (b) the standard deviation of y and the coefficient correlation between x and y.

Regulation thes Produced at (2, y) &0,

@[Mean & (13,17) = \tau \tau = 13, \frac{1}{2} = 214 87-10y+66=0

$$0 = 10y - 66$$
 $0 = 10y - 66$
 $0 = 10y - 66$

$$\frac{10 \times 40}{8 \times 10} = 41$$

$$41 = 1.667 \times 4$$

correct

$$\sigma_{x}^{2}=9$$

So, standard divilation 06 79 Ps 4.

23. Find the multiple linear regressions of x on y and z from the data relating to three variables: (CO1)

th	iree va	riables: (C	O1)			112	15
Г	x	4	6	7	9	13	3
	y	15	12	8	6	4	1
	Z	30	24	20	14	10	4

	Solution						2
- 1	Solution	1 2	1 74	1 42	142	スス	7
x	9_	-	1	1525	450	120	300
4	FE	30	60	225		144	576
6	73	24	72	144	200	1 199	400
7	8	20	56	64	166	140	1
9	4	14	54	36	04	126	136
3	6		1 1	第一	40	130	100
73	4.44	70	52	76	12	60	16
15	3	4	45	9	2 Sun 4	Peter	7
54	48	702	339	494	1034	720	2180
9 11	- (0	100	009	E TOTAL STREET		V	

$$7 = 0 + by + cz$$

$$52 = 0a + b = y + c = zus institute$$

$$52y = a = y + b = y^2 + c = y^2$$

$$52z = a = z + b = y = c = z^2$$

$$52z = a = z + b = z + c = z^2$$

$$52z = a = z + b = z + c = z^2$$

$$52z = a = z + b = z + c = z^2$$

$$52z = a = z + b = z + c = z^2$$

$$52z = a = z + b = z + c = z^2$$

$$52z = a = z + b = z + c = z^2$$

$$52z = a = z + b = z + c =$$

24. Calculate the rank correlation coefficient between X and Y from the following data-(CO1)

X	15	20	27					
V	50	20	21	13	45	60	20	75
1	30	30	55	30	25	10	30	70

Solution:

A	B	RM	R(B)	de	di2
15	50	7	3	4	16
20	30	5.5	5	0,5	0,25
24	55	4	2	2	Ц
13	30	8	75 6	3	902= 5
45	25	3	7	= 4	46 H
60	10	2	8	-6	01.36
© 0	(F) (10)	5.5	605	0.5	0.25
75	700	WA 18	iomorie	NETTHIT	0
		00	10	2 7	81.5
	F = 3	2 (22-1) + 3	(39-1)	=2-5

$$J = \pm - \int_{0}^{6} \frac{(01.5 + 2.5)}{6(0^{2} - 0)}$$

•

25. The following results were obtained from record of age (x) and blood pressure (y) of a group of 10 men: (CO1)

x Mean 53 142

and $\sum (x - \bar{x})(y - \bar{y}) = 1220$ Variance 130 165

Find the appropriate regression equation and use it to estimate the blood

pressure of a man whose age is 45.

M = E(2-2) (y-8) Solution (y on 29: (y-y) = byx(x-x) =) byx = 310 y 7 = 53; g = 142 , oz = 130; og = 165

M= 7550 = 1550 10(1120)(185) = 150(11-40)(15184)

 $\frac{2}{1463.76} = 0.033.$

byx = 40 ya = (0:033) = 165 = 9:230

y-142=0.930 (x-53)

y-142 = 0,930 (45-53)

y=-7:504+142 y=134:496 Am.