

Performance Analysis of Deep Learning Models for Biomedical Image Segmentation

Guide: Sowmya V (Assistant Professor, CEN) Co-Guide: Soman K P (Professor and HOD, CEN)

Sachin Saj T K (CB.EN.P2CEN18012)

M.Tech Project,

Computational Engineering and Networking

Amrita School of Engineering, Coimbatore, Tamil Nadu, India.

- Image Segmentation is the process of partitioning an image into multiple segments into much more easier analysis able form [1].
- Cancer refers to abnormal growth of cells, it can either be benign or malignant
- In our work, we considered **two types** of **cancer: a) Brain, b) Skin**.
- Skin cancer rates in India is high, when compared with other countries like Canada, USA and UK [3] and is caused by over exposure to ultraviolet rays or some genetic effect[3].
- Some different types of brain cancer: Gliomas (High Grade Glioma and Low Grade Glioma), Meningiomas, Pituitary adenomas, gets their name from the type of cells involved.

- Cancer can be cured easily, if it is found at earlier stages.
- With the **help of image segmentation**, it will be easy in **finding tumor shape**, **volume from medical imaging** and plan the **radiation treatment** for it accordingly.
- Since, **manual annotation** of this tumor region in medical imaging is **high time consuming** and is prone to **human errors** because of tumor having different sizes, shapes, contrast and locations[1].
- Thus, requires an accurate and reliable **automated segmentation techniques for segmenting this tumor from the medical imaging**, that can be useful for both **clinical** and **research purposes**[1].
- Since deep learning is promising in most of the areas in the recent years, thus motivated us to use this in such important bio-medical task.

Literature Review

1 A

A Conditional Adversarial Network for Semantic Segmentation of Brain Tumor [1]

- For brain tumor segmentation : Conditional GAN (cGAN)
- Dataset: Brats 2017 brain tumor dataset.
- They considered three subsections of tumors: whole, core and enhancing (in both LGG and HGG patients)
- Evaluation parameters: Dice score (similarity score)
- Achieved about 0.80, 0.54, 0.59 for whole, core and enhancing tumor respectively

2

Adversarial Learning with Multi-scale Loss for Skin Lesion segmentation [3]

- Skin lesion segmentation: Segmentor Adversarial Network (SegAN)
- Dataset: ISIC 2017 skin lesion dataset
- The skin cancer in ISIC is melanoma
- Dice score of 0.86.

3

Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm[2]

- Brain tumor image segmentation : U-Net.
- Dataset: Preprocessed version of BraTs 2015
- Considered Only LGG, 110 Subjects, Whole Tumor
- Dice score of 0.82

4

Skin lesion segmentation with deep learning[4]

- For Skin Lesion Segmentation, they used two architecture: a) TernausNet, b) DeepLabV3+.
- Dataset: ISIC 2018 Skin Cancer
- The evaluation parameter used is Jaccard Index.
- Data Augmentation: Rotation, Translation, Flipping etc.
- Model 1: Jaccard Index 0.821, Model 2: Jaccard Index 0.876

5

Skin Lesion Segmentation with C-Unet[5]

- For Skin Lesion Segmentation, they used C-UNet
- Dataset ISIC 2018 skin cancer.
- Data Augmentation: Histogram equalization (to enhance color contrast of the image)
- Evaluation parameter used is Dice Score and Jaccard Index.
- Jaccard Index: 0.775, Dice Score: 0.869

6

SegNet-Based Gland
Segmentation from Colon
Cancer Histology
Images[6]

- SegNet-based segmentation method for accurate segmenting the gland structures in colon cancer histology images.
- Dataset: Gland Segmentation Challenge in MICCAI 2015
- Data augmentation: random crop
- Evaluation parameter used Dice score and achieved 0.8636

• Can the SegNet and U-Net segmentation architectures be applied for brain tumor and skin lesion segmentation?

Objectives

- To do performance analysis of Segmentor Adversarial Network on both skin and brain cancer dataset
- 2 To Perform Image Segmentation task on both Skin and Brain cancer dataset with U-Net, SegNet
- Compare the results achieved from U-Net, SegNet and SegAN (Skin Lesion ISIC 2018)

Methodology

Dataset Description

BraTS 2017 Brain Tumor Dataset

- 135 Subjects High-Grade Glioma & 108 subjects of Low-Grade Glioma [8][9]
 - Each subject, consist 4 MRI scans: a) T1-Weighted, b) T1-Gd, c) T2-Weighted and d) T2-FLAIR and two segmentation labels: manual and computer-aided
- 3 ground truth labels: a) Whole Tumor, b) Core Tumor, c) Enhancing Tumor
- Each scan is **3D brain volume** (240x240x155)

Figure 2: Different types of MRI scans; T1-weighted, T2-weighted and FLAIR [1]

Figure 3: Four MRI scans from the same plane (top view) of a subject, a) T2-weighted, b) T2-FLAIR, c)T1-Gd, d) T1-weighted [1]

Figure 4: Ground truth labels, a) Whole Tumor, b) Core Tumor, c) Enhanced Tumor [1]

Dataset

Description

Dataset Description

Brain Tumor Dataset (Preprocessed BraTs 2015)

- Data obtained from The Cancer Imaging Archive
- **Dataset**: BraTs 2015 (Considered only *Low-Grade-Glioma*)
- 110 Subjects, Each subjects consists of 40-88 images(slices)
- **Tumor Considered:** Whole Tumor [2]
- **Preprocessed Data :**a) Skull Stripping, b) Histogram equalization (to normalize intensities)[2]

Figure 5: Sample data of brain tumor (preprocessed BraTs 2015)[2]

Dataset Description

Skin Lesion Dataset

- ISIC 2018, which consists of a) melanoma, b) nervus, c) seborrhoeic skin cancer [3][10]
- Provides **2594** images with corresponding ground truth labels.

Figure 6: Sample data of Skin Cancer (ISIC 2018)[3]

Fig 7: Flow chart for making the raw data into analysis able form.

Label Extraction

SegAN architecture for Bio-Medical Image Segmentation BraTs 2017 brain tumor dataset

Number Data Split Images	Epochs	Whole		Core		Active		
		Dice	Jaccard	Dice	Jaccard	Dice	Jaccard	
		500	0.2094	0.1599	0.2096	0.1592	0.1050	0.05
4000 90		750	0.2326	0.1746	0.2198	0.1711	0.1050	0.05
		1000	0.2450	0.1830	0.2356	0.1746	0.1152	0.06
	2000	1500	0.2591	0.1919	0.2496	0.1836	0.1300	0.07
		2000	0.2629	0.1946	0.2512	0.1862	0.1300	0.07
		2500	0.2656	0.1946	0.2512	0.1862	0.1350	0.07

Output

Table 1: SegAN results with BraTs 2017

Figure 9: Segmentation output of brain tumor with SegAN (best output)

SegAN architecture for Bio-Medical **Image Segmentation** of **ISIC 2018** Skin lesion data

]	Results		
Data Split	Epochs	Dice Score	Jaccard Index
	500	68.04	56.89
	750	68.04	56.89
90:10	1000	68.04	56.89
	1500	69.33	58.21
	2000	69.45	58.46
	2500	69.45	58.46

Table 2: SegAN results with ISIC 2018

Figure 10: Segmentation output of skin tumor with SegAN

U-Net architecture for Bio-Medical Image Segmentation of BraTs 2015 brain tumor processed data

Results				
Data & No of Images	Data Split	Epochs	Jaccard Index	Dice Score
Without Data	70:30	250	70.02	83.81
Augmentation 886 Images	80:20	250	70.03	83.80
ooo images	90:10	250	67.75	83.80
With Data	70:30	250	67.24	83.83
Augmentation 3544 Images		250	71.26	83.84
3344 Images	80:20	500	73.57	84.84
		1000	74.23	85.01
	90:10	250	68.83	83.86

Table 3: U-Net results with preprocessed BraTs 2015

Figure 11: Segmentation output of brain tumor with U-Net

U-Net architecture for Bio-Medical Image Segmentation of ISIC 2018 Skin Lesion data

Results				
Data & No of Images	Data Split	Epochs	Jaccard Index	Dice Score
Without Data	70:30	250	74.34	86.12
Augmentation 2594 Images	80:20	250	75.01	86.35
25)+ Images	90:10	250	72.67	86.23
With Data		250	74.32	86.43
Augmentation 10376 Images	80:20	500	75.67	86.54
10370 Illiages		1000	75.96	87.56

Table 4: U-Net results with ISIC 2018

Figure 12: Segmentation output of skin lesion with U-Net

SegNet architecture for Bio-Medical Image Segmentation of BraTS 2015 brain tumor processed data

Results					
Data & No of Images	Data S	Split	Epochs	Jaccard Index	Dice Score
Without Data	70:30		250	66.70	81.01
Augmentation 886 Images	80:20		250	70.09	82.00
ooo mages	90:10		250	67.74	80.01
With Data	80:20		250	69.77	83.96
Augmentation 3544 Images			500	71.01	83.96
3377 Images			1000	71.23	84.06

Table 5: SegNet results with preprocessed BraTs 2015

Output

Figure 13: Segmentation output of brain tumor with SegNet

SegNet architecture for Bio-Medical **Image Segmentation** of **ISIC 2018** Skin lesion data

Results					
Data & No of Images	Data S	Split	Epochs	Jaccard Index	Dice Score
Without Data	70:30		250	70.30	84.67
Augmentation 2594 Images	80:20		250	71.01	83.21
2574 Images	90:10		250	66.24	81.32
With Data	70:30		250	72.56	84.88
Augmentation 10376 Images			500	72.97	85.88
10370 Images			1000	73.01	85.98

Table 6: SegNet results with ISIC 2018

Figure 14: Segmentation output of skin lesion with SegNet

Comparison Study of **segmentation accuracy** with existing approaches

Architecture	Data Split	Epochs	Jaccard Index	Dice Score
SegAN	90:10	1000	56.89	68.04
SegNet	80:30	1000	73.01	85.98
U-Net	80:20	1000	75.96	87.56

Table 7: Results achieved by three architectures with ISIC 2018

Architecture	Data Split	Epochs	Jaccard Index	Dice Score
SegNet	70:30	1000	71.23	84.06
U-Net	80:20	1000	74.23	85.01

Table 8: Results achieved by two architectures with preprocessed BraTs 2015

Architecture (with ISIC 2018)	Jaccard Index	Dice Score
TernausNet [4]	82.1	-
DeepLabV3+ [4]	87.6	-
C-Unet [5]	77.5	86.5
SegAN	56.8	68.04
SegNet	73.01	85.98
U-Net	75.96	87.56

Table 9: Comparison of the proposed work with existing approaches (ISIC 2018)

Architecture (with Preprocessed BraTs 2015)	Jaccard Index	Dice Score
U-Net [2]	-	82
SegNet	71.23	84.06
U-Net	74.23	85.01

Table 10: Comparison of the proposed work with existing approaches (preprocessed BraTs 2015)

Comparison of **segmentation outputs** and **learnable parameters**

Architecture	Number of Learnable Parameters	Computation time (per epochs)
SegAN [2]	222,328,178,100 (222 billion) (approx.)	1,200sec (approx.)
SegNet [6]	33,393,669 (33 million)	41 sec
U-Net [7]	31,454,721 (31 million)	30 sec

Table 11: Comparison of learnable parameter for all three architectures

Figure 15: Comparison of segmentation output for all three architectures with ISIC 2018

- For Skin lesion segmentation (ISIC 2018): U-Net > SegNet > SegAN (in terms of Jaccard Index and Dice Score)
- For Brain tumor segmentation (Preprocessed BraTs 2015): U-Net > SegNet (in terms of Jaccard Index and Dice Score)
- When compared with state of the results for **ISIC 2018 dataset**, our proposed work was able to achieve comparable results in terms of **jaccard index** and in terms of **dice score** U-Net outperformed them.
- When compared with state of the results for **preprocessed BraTs 2015**, our **U-Net** (with addition of 2 convolutional layers at encoder & decoder) and **SegNet** both outperformed the existing approach.
- Number of Learnable parameters and computation time: SegAN > SegNet > U-Net
- In terms of segmentation output, **U-Net** gave the sharpest edge output (which is suitable for bio-medical image segmentation), where as **SegNet** output was smooth edged.

- Segmentation accuracy can be increased by doing more preprocessing techniques such as haarcascade, histogram equalization .
- The architectures such as **U-Net**, **C-UNet**, **DeepLabV3+**, **MobileNetV2**, **NasNet** is expected to increase the accuracy.

Paper (Presented)

• Sachin Saj, Sowmya V, Soman K P, "Performance Analysis of Segmentor Adversarial Network (SegAN) on Bio-Medical Images for Image Segmentation", The International Conference on Automation, Signal Processing, Instrumentation and Control (i'CASIC 2020), Springer Proceeding, 27 Feb 2020 (*Presented*)

Book Chapter (Submitted)

• Sachin Saj, Sowmya V, Soman K P, "Performance Analysis of Deep Learning Models for Biomedical Image Segmentation", Book on Deep Learning for Biomedical Application, CRC Press, 2020 (Book Chapter Submitted)

- Rezaei M., Harmuth K., Gierke W., Kellermeier T., Fischer M., Yang H., Meinel C, " A Conditional Adversarial Network for Semantic Segmentation of Brain Tumor", International MICCAI Brainlesion Workshop, Springer. pp. 241–252, 2018.
- Yuan Xue, Tao Xu and Xiaolei Huang, "Adversarial Learning with Multi-scale Loss for Skin Lesion segmentation", 15th International Symposium on Biomedical Imaging, IEEE, April 2018.
- Mateusz Buda, Ashirbani Saha, "Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm", Computers in Biology and Medicine, Elsever, 2019.
- Jane Lameski, Andrej Jovanov, Eftim Zdravevski,"Skin Lesion segmentation with deep learning", EUROCON 2019 -18th International Conference on Smart Technologies IEEE,2019
- Junyan Wu, Eric Z.Chen,"Skin Lesion Segmentation with C-UNet", 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)IEEE, 2019

- Jing Tang, Jun Li, "Segnet-Based Gland Segmentation from Colon Cancer Histology Images", The 33rd Youth Academic Annual Conference of Chinese Association of Automation, IEEE, 2018
- Olaf Ronneberger, Philpp Fischer, "U-Net Convolution Networks for Biomedical Image Segmentation", International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2015.
- Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, et al. "The Multimodal Brain Tumor Image Segmentation Benchmark (brats)", IEEE transactions on medical imaging, IEEE transactions, 2014
- S Bakas, H Akbari, A Sotiras, M Bilello, M Rozyeki, JS Kirby, "Advancing the cancer genome atlas glioma MRI collection with expert segmentation labels and randomic features, Scientific data, Nature, 2017
- Noel Codella, Veronica Rotemberg, Philipp Tschandil, M Emre Celebi, Stephen Susza, David Gutman, Brian Helba, et. Al, "Skin Lesion Analysis towards Melonama detection 2018: A Challenge hosted by the international skin imaging collaboration (isic). arXiv preprint arXiv:1902.03368, 2019

Backup Slides

Evaluation Metrics

- The most commonly used evaluation parameters for image segmentation task is :a) Dice Score, and b) Jaccard Index
- Both of this parameters are used in finding the similarity/overlap between the image samples: a) Predicted image sample by the architecture, and b) ground truth image (ranges from 0-1)

$$Dice = \frac{2|P \cap T|}{|P| + |T|} = \frac{2|P \cdot T|}{|P|^2 + |T|^2}$$
 Eq. (1)

$$Jaccard = \frac{|P \cap T|}{|P \cup T|} = \frac{|P \cap T|}{|P| + |T| - |P \cap T|} = \frac{|P.T|}{|P|^2 + |T|^2 + |P.T|}$$
 Eq.(2)

$$Jaccard = \frac{Dice}{2 - Dice}$$
 Eq.(3)

School of Engineering

(7). Isda I Aturt brusson

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} = > \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$
sum of elements

 $|P|^2 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix} \Rightarrow$

Jaccard
= 1P.T1

1P1' + 1T1'+ 1P.T1
= 9
9+11-9

Architecture

Segmentor Adversarial Network (SegAN)

- **SegAN** architecture consists of two parts: **Segmentor and Critic**.
- Segmentor is an encoder-decoder network. Which is used to **generate label map** corresponding to the input.
- The Critic is used to distinguish between types of inputs: original image masked by ground truth label and original image masked by predicted label from segmentor. [2]
- The training of **Segmentor** aims at **minimizing** the multi-scale loss function and training of **Critic** aims at **maximizing** the multi-scale loss function. [2]

Figure 1:SegAN Architecture [2]

Architecture

U-Net Architecture

- U-Net is **an encoder-decoder** network
- The architecture contains **two paths**. First path is the **contraction path** (also called as the encoder) which is used to capture the context in the image. It is stack of convolutional and maxpooling layers.
- The second path is called as decoder which is more or less **symmetric expanding path** (that's why the architecture is U-shaped. which is used to enable precise localization using transposed convolutions .[7]

Figure 2: U-Net Architecture [7]

ArchitectureSegNet Architecture

Figure 3: SegNet Architecture [6]

- SegNet is an encoder-decoder network
- There are **13 convolution layers** in **encoding** network as well in **decoding** network.
- Each colored box denotes different operations such as a) blue box: Conv+BN+ReLU, b) green box: MaxPooling, c) red box: Up sampling, and d) yellow box: pixel-wise softmax layer.
- Maxpooling indices is transferred from **encoder network** to **up sampling layer** of **decoder network**

Figure 12. The Complete Transposed Convolution Operation

Figure 6. Max-Unpooling Upsampling