Thinking and Method of FAA

Jiete XUE

Otc
tober 7, 2025 - October 31, 2025

Contents

L	Basic Logic	1
2	Set Theory	1
3	Correspondence	2
1	Ordering	2
5	Rings and Modules	3
3	Filters	.5

1 Basic Logic

Iff. $P=Q=\neg R$ =True, $P\Rightarrow (Q\Rightarrow R)$ is False. This is equivalent to $(P\wedge Q)\Rightarrow R$. So in LEAN 4, you can see a goal in the form

$$a \to b \to c \to \dots$$

then you can use *intro* to get props. They have the relation and logically.

2 Set Theory

Definition 2.4.1 defines quantifiers, by 2.6.3 and 2.7.4, we can use set to understand quantifiers. Let us first consider

$$\forall x \in X, \forall y \in Y, P(x, y). \tag{2.1}$$

That is

$$X = \{x \in X \mid \forall y \in Y, P(x, y)\} = \bigcap_{y \in Y} \{x \in X \mid P(x, y)\}.$$
 (2.2)

That means

$$\forall y \in Y, \ X \subseteq \{x \in X \mid P(x,y)\}. \tag{2.3}$$

Thus,

$$\forall y \in Y, X = \{ x \in X \mid P(x, y) \}, \tag{2.4}$$

equivalent to

$$\forall y \in Y, \forall x \in X, P(x, y). \tag{2.5}$$

But if we consider

$$\forall x \in X, \exists y \in Y, P(x, y), \tag{2.6}$$

the situation becomes

$$X = \bigcup_{y \in Y} \{ x \in X \mid P(x, y) \}$$
 (2.7)

The union equals to X does not give enough information. Similarly, \exists, \forall, \dots can't go farther, too¹. But

$$\exists x \in X, \exists y \in Y, P(x, y) \tag{2.8}$$

is equivalent to

$$\bigcup_{y \in Y} \{x \in X \mid P(x,y)\} \neq \varnothing. \tag{2.9}$$

That means

$$\exists y \in Y, \{x \in X \mid P(x,y)\} \neq \varnothing. \tag{2.10}$$

Thus,

$$\exists y \in Y, \exists x \in X, P(x, y). \tag{2.11}$$

¹The intersection is not empty leads to any sets is not empty, but it is not equivalent, $\exists x \in X, \forall y \in Y, P(x, y) \Rightarrow \forall y \in Y, x \in X, P(x, y).$

3 Correspondence

For the similar reason, if f is a correspondence, then

$$f\left(\bigcup_{i\in I} A_i\right) = \bigcup_{i\in I} f\left(A_i\right),\tag{3.1}$$

$$f\left(\bigcap_{i\in I}A_i\right)\subseteq\bigcap_{i\in I}f\left(A_i\right).$$
 (3.2)

If in addition, f is injective, then

$$f\left(\bigcap_{i\in I} A_i\right) = \bigcap_{i\in I} f\left(A_i\right). \tag{3.3}$$

A conclusion: Let f, g be correspondences, if $f \circ g = \text{Id}$, $g \circ f = \text{Id}$, then f is a bijection and $f^{-1} = g$.

4 Ordering

Forgettable concepts: Well-ordered set 4.7.1, Order-complete 4.8.1

Problem 4.1 (Eg.)

$$m := \inf(A^{\mathbf{u}}) \in A^{\mathbf{u}}.$$

Proof. By definition, we only need to prove $\forall x \in A, \ x \leq m$. m is the max element in $(A^{\mathrm{u}})^l$, then we only need to prove $\forall x \in A, \ x \in (A^{\mathrm{u}})^l$. It is easy to check.

The power set with \subseteq forms a order-complete partially ordered set. If we want to construct a order-complete partially ordered set, we may consider build a relation between them. Knaster-Tarski fixed point theorem tell us a property of monotonic functions, and Dedekind-MacNeille theorem tell us how to do in detail.

5 Rings and Modules

Definition 5.1 (Unitary Ring)

A set A with "+" (communicative group), "*" (monoid²), and distributivity forms a unitary ring.

The homomorphism of unitary rings is the combination of groups and monoids.

Definition 5.2 (Division Ring & Field)

Let K be a unitary ring. We denote by K^{\times} the invertible elements of (K, \cdot) . If $K^{\times} = K \setminus \{0\}$ then we say that K is a division ring. If in addition, K is commutative, then we say that K is a **field**.

Definition 5.3 (Actions)

Set X, monoid G, We call **left action** of G on X any mapping

$$\phi: G \times X \to X$$
,

such that

- (1) $\phi(e, x) = x$, for any $x \in X$.
- $(2) \ \forall (a,b) \in G \times G, \forall x \in X,$

$$\phi(a*b,x) = \phi(a,\phi(b,x)).$$

If we let G be a group, then we get a equivalent relation like orbit³.

Definition 5.4 (Modules)

K: unitary ring. (V, +): abelian group. We call a **left K-module structure** any left action of (K, \cdot) on V.

$$\phi: K \times V \longrightarrow V$$

 $(1) \ \forall (a,b) \in K \times K, \forall x \in V,$

$$\phi(a+b,x) = \phi(a,x) + \phi(b,x).$$

(2) $\forall a \in K, \forall (x, y) \in V \times V$,

$$\phi(a, x + y) = \phi(a, x) + \phi(a, y).$$

(V,+) equipped with a left K-module structure is called a **left K-module**. If K is communitative, left and right K-modules structures have the same axioms: K-module structures. Left and right K-modules structures: K-modules. If K is a field, a K-module is called a **vector space** over K.

 $^{^{1}}$ "+" usually equipped with communicative law. So we say a communicative unitary ring means the "*" is communicative, in addition.

²"Unitary" refer to the unitary element.

³Denote as $\operatorname{orb}_{\phi}(x)$.

Definition 5.5 (Sub-K-modules)

V: left K-module, we call **left sub-K-module** of V any subgroup W of (V, +)if $\forall (a,x) \in K \times W, ax \in W$. (resp. right.)

Definition 5.6 (Homomorphism)

E, F be left-K-modules. We call homomorphism of left K-modules from E to F any mapping $f: E \to F$, such that

- (1) f is a homomorphism of groups from (E, +) to (F, +).
- (2) For any $(a, x) \in K \times E$, f(ax) = af(x).

If K is communitative, also called a K-linear mapping.

Definition 5.7 (Ideal)

Let A be a unitary ring. If a subset I of A is a left sub-A-module of A and a right sub-A-module of A, then we call I a **ideal** of A. If I is an ideal of A, then the composition laws of A define by passing to quotient a structure of unitary ring on the quotient mapping A/I. So that A/I becomes a quotient ring of A.

Definition 5.8 (Principal Ideal)

Let A be a communitative unitary ring. If an ideal of A is of the form

$$Ax : \{ax \mid a \in A\} \text{ with } x \in A.$$

We say that it is a **principal ideal**. If all ideals of A are principal, we say that A is a principal ideal ring.

Definition 5.9

Let V be a left K-module. For any family $\underline{x} := (x_i)_{i \in I} \in V^I$, we denote by

$$\varphi_{\underline{x}}:K^{\oplus I}\longrightarrow V$$

- the homomorphism sending $(a_i)_{i\in I}$ to $\sum_{i\in I} a_i x_i$. (1) Im (φ_x) is a left K-submodule of V, called the **left sub-K-module generated by** \underline{x} , denote as $\operatorname{Span}_K((x_i)_{i\in I})$. If φ_x is surjective, we say that $(x_i)_{i\in I}$ is a system of generators of V. $(\forall y \in V, \exists (a_i)_{i \in I} \in K^{\oplus I}, y = \sum_{i \in I} a_i x_i)$ Elements of $\operatorname{Span}_K((x_i)_{i\in I})$ are called **K-linear combinations** of $(x_i)_{i\in I}$.
- (2) If φ_x is injective, we say that $(x_i)_{i \in I}$ is **K-linearly independent**. $(\forall (a_i)_{i \in I} \in K^{\oplus I}, \sum_{i \in I} a_i x_i = 0 \to a_i = 0, \forall i \in I)$
- (3) If φ_x is an isomorphism, we say $(x_i)_{i\in I}$ is a **basis** of V. If V has at least a basis, we say that V is a free left K-module. If V has a system of generators $(x_i)_{i\in I}$ such that I is finite, we say that V is **finitely generated**, or is **finite** types.

Definition 5.10 (Rank)

Let K be a division ring and V is a left K-module of finite type. We denote by rk(V) the least cardinality of the bases V, called the rank of V. If K is a field, then $\operatorname{rk}(V)$ is also denoted as $\dim(V)$, called the **dimension** of V. If $f:W\longrightarrow V$ is a homomorphism of left K-modules, the rank of f is defined as the rank of Im(f), denoted as rk(f).

Definition 5.11 (Algebra)

Let K be a communicative unitary ring. If A is a K-module equipped with a composition law

$$A \times A \longrightarrow A$$
,

$$(a,b) \longmapsto ab.$$

such that $(A, +, \cdot)$ forms a unitary ring, such that

$$\forall \lambda \in K, \forall (a, b) \in A \times A, \ \lambda (ab) = (\lambda a) b = a (\lambda b).$$

Then we say that A is a **K-Algebra**.

Definition 5.12 (Sub-algebra)

Let A be a K-algebra. If B is a subset of A which is a sub-K-module and a unitary subring of A, we say that B is a **sub-K-algebra** of A.

Theorem 5.1 (Rank–Nullity Theorem)

$$A: V \longrightarrow W, \dim(V) = n, \dim(W) = m, A \in M_{m,n},$$

$$n = \dim(\ker(A)) + \dim(\operatorname{Im}(A)).$$

6 Filters

Definition 6.1

Let X be a set. We call **filter** on X any non-empty subset \mathcal{F} of $\wp(X)$ this satisfies:

- (1) $\forall (V_1, V_2) \in \mathcal{F}^2, V_1 \cap V_2 \in \mathcal{F}$.
- (2) $\forall V \in \mathcal{F}, \forall W \in \wp(X), \text{ if } V \subseteq W, \text{ then } W \in \mathcal{F}.$

Definition 6.2

Let S be a subset of $\wp(X)$. We denote by \mathcal{F}_S the intersection of all filters containing S. It is thus the least filter containing S. We call it the filter generated by S.

Definition 6.3

We say that a subset S of $\wp(X)$ is a **filter basis** if, for any $(A,B) \in S \times S$, there exists $C \in S$, such that $C \subseteq A \cap B$.

If S is a filter basis, then

$$\mathcal{F}_S = \{ U \in \wp(X) \mid \exists A \in S, A \subseteq U \}.$$

If S is a subset of $\wp(X)$, then

$$\mathcal{B}_S := \{ A_1 \cap \dots \cap A_n \mid n \in \mathbb{N}, \ (A_1, \dots, A_n) \in S^n \}$$

is a filter basis containing S. Moreover, $\mathcal{F}_S = \mathcal{F}_{\mathcal{B}_S}$.

¹If $n \in \mathbb{N}_{\geq 1}$ and $(A_1, \dots, A_n) \in S^n, \exists C \in S \text{ such that } C \subseteq A_1 \cap \dots \cap A_n.$

Definition 6.4

Let X be a set and $f: X \longrightarrow G$ be a mapping. For any $U \in \wp(X)$, we define

$$f^s(U) := \sup_{x \in U} f(x) = \sup f(U).$$

$$f^{i}(U) := \inf_{x \in U} f(x) = \inf f(U).$$

If $U \neq \emptyset$, $f^s(U) \geq f^i(U)$. Let \mathcal{F} be a filter on X. We define

$$\limsup_{\mathcal{F}} f := \inf_{U \in \mathcal{F}} f^s(U).$$

$$\liminf_{\mathcal{F}} f := \sup_{U \in \mathcal{F}} f^i(U).$$

They are called the **superior limit** and the **inferior limit** of f along \mathcal{F} . If

$$\liminf_{\mathcal{F}} f = \limsup_{\mathcal{F}} f,$$

we say that f has a limit along \mathcal{F} , and we denote $\lim_{\mathcal{F}} f$ this value.

Definition 6.5

Let (G,*) be a group, and \leq be a partial order on G. If

$$\forall (a, b, c) \in G^3, a < b \Rightarrow a * c < b * c \text{ and } c * a < c * b,$$

we say that $(G, *, \leq)$ is a **partially ordered group**. If in addition \leq is a total order, we say that $(G, *, \leq)$ is a **totally ordered group**. (Resp. semigroup, monoid.)