哈尔滨工业大学(深圳)

2024 年秋离散数学试题 答案

题目来源: Gaster 题解: Chi. Ya.

不保证回忆正确,也还没回忆完哈,要是谁能想起来的话可以私聊我。还差3,8,25,27 三个题。

一、选择题 (每题 1 分)

- 1. 下列选项正确的是 _____.
 - A. $p:\sqrt{2}$ 为无理数。 $q:\sqrt{3}$ 为有理数。则 $p\to q$ 为真命题
 - B. p: 2 > 3。 q: 3 < 4。则 $p \to q$ 为假命题
 - C. 一个命题逻辑的主(合取或析取)范式存在且唯一
 - D. 一个命题逻辑的(合取或析取)范式存在且唯一

A 选项, 真的推出假的, 是假命题。B 选项, 前件 p 为假, 是真命题。

故答案为: C

- 2. $A = \{\{a\}, 1, 3, 4\}, B = \{2, 3, 4, \{a\}\},$ 下列说法正确的是 ______.
 - A. $\{1\} \in A$
 - B. $\{a\} \subset B$
 - C. $\{3\} \in P(A \cap B)$
 - D. $\{1\} \subset P(A \oplus B)$

A 的元素是 $\{\{a\}, 1, 3, 4\}$, 没有 $\{1\}$ 这个元素, 所以 A 错误。

B 的元素是 2,3,4, $\{a\}$, 不包含 a (只包含 $\{a\}$ 这个集合), B 错误。

 $A \cap B = \{\{a\}, 1, 3, 4\} \cap \{2, 3, 4, \{a\}\} = \{3, 4, \{a\}\}$ 再看 $P(A \cap B)$ 。这是 $\{3, 4, \{a\}\}$ 的幂集,包含所有子集,例如 $\{3\}, \{4\}, \{\{a\}\}, \{3, 4\}, \dots$ 等。故 $\{3\} \in P(A \cap B)$ 为真。

 $A \oplus B = \{1, 2\}, \quad P(A \oplus B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ 错。

故答案为: C

- 3. 下列选项正确的是
 - A. t(s(r(R))) 一定是等价关系
 - B. s(r(t(R))) 一定不是等价关系

C.

D. 偏序关系是自反、对称、传递的

偏序关系是自反、反对称、传递的,而不是对称的。操作 r,s,t 中 r 不会破坏这几个操作已经获得的性质。那么对任何二元关系 R,把这三种性质补足就能得到等价关系。传递是最难满足的。自反放哪都可以。这里说得比较模糊,但是我觉得在这塞个证明有些大材小用了。所以像 tsr,trs,rts 这类写法最终必定是等价关系。剩下的那三个不保证出等价关系。

B 的反例: srt(等价关系) 是等价关系。

故答案为: A

4.	设 f 为 $A \to B$ 的函数, $S \subset A, T \subset B$,下列说法正确的是 A. f 满射的充要条件是 $f(A) = B$ B. f 单射的充要条件是 $f(f^{-1}(T)) = T$ C. f 有反函数则必有 $f(A) = B$ D. f 有反函数则 $f^{-1}(f(S)) = S$ 对于任何能实施逆运算的函数,都有 $f(f^{-1}(T)) \subseteq T$ 。C 选项, B 可能只是个陪领。D 选项:没上过这门课我暂时不能解释。
5.	下列可简单图化的度数列为 A. (4,4,4,4,2) B. (4,4,3,3,1) C. (4,4,3,3,2,1) D. (4,4,3,3,2,2) 检验是否为图的度数序列常用度数和的奇偶性判断:
	 A. (4,4,4,4,2) 和为 18,但这个包画不出来不信你自己画,能画出来给你竖大拇指。 B. (4,4,3,3,1) 之和为 15,是奇数,不可能成为简单图的度和。故不可图化。 C. (4,4,3,3,2,1) 之和为 17,是奇数,不可能成为简单图的度和。故不可图化。 D. (4,4,3,3,2,2) 和为 18,可图化。 故答案为: D
6.	设 n 为奇数且 $n \ge 2$,则 K_n A. 既是欧拉图又是哈密顿图 B. 是欧拉图但不是哈密顿图 C. 不是欧拉图但是哈密顿图 D. 既不是欧拉图也不是哈密顿图
	K_n 的每个顶点度是 $n-1$. 当 n 为奇数时, $n-1$ 为偶数,故是欧拉图。 完全图 $K_n (n \geq 3)$ 必是哈密顿图。 故答案为: A
7.	波兰表达式为/-*abc+/de*fg,则其逆波兰表达式为 A. a*b-c/d/e+f*g

B. ab*c-de/fg*+/

C./-*abc+/de*fg

D. gf*ed/+cba*-/

波兰表达式 /-*abc+/de*fg 的含义是:

$$[(a*b)-c]/[(d/e)+(f*g)]$$

故答案为:	В
-------	---

- 8. 下列关于平面图的说法正确的是 _____.
 - A. 平行边和环影响图的平面性
 - B. 若其不含 K_5 或 $K_{3,3}$,则其是可平面化的
 - C. 平面图的对偶图一定是连通的
 - D.
 - B 选项,如果含有对应同胚的也不能平面化。C 选项,注意无限面,因此对偶必连通。

故答案为: C

- 9. 下列关于二部图的说法正确的是 ______
 - A. 二部图的点着色数为 3
 - B. 若 p,q 都是偶数,则二部图 $K_{p,q}$ 是欧拉图
 - C. 二部图的完备匹配一定是最大匹配
 - D. 完备匹配的二部图中可能存在与两个非饱和点关联的边。

任何二部图都有 2 - 着色方案。 $K_{p,q}$ 若表示完全二部图。其任一顶点度都为对侧顶点数,因此:若 p,q 均为偶数且 p,q>0,则图中每个顶点度均为偶数,且该图连通 (若 $p,q\geq 1$)。故是欧拉图。可惜题里那个没说完全。若图中已经存在完备匹配,则至少一侧所有顶点都被匹配,这侧不再有非饱和点。不可能从这侧连出边。那侧的点间也没边。故 D 错误。

故答案为: C

- 10. 彼得松图的 $\alpha_0, \beta_0, \alpha_1, \beta_1$ 分别为 ______.
 - A. 6,4,5,5
 - B. 4,6,5,5
 - C. 5,5,6,4
 - D. 5,5,4,6

Petersen 图有 10 个顶点、15 条边。 β_0 是 4,Petersen 图中能找出 4 个互不相邻的点,找不出 5 个。 β_1 : Petersen 图存在完美匹配。 α_0 : 可用 6 个点覆盖全部边,5 个不够。 α_1 : 最小边覆盖数 = |V| —最大匹配数 = 10-5=5。

故答案为: A

- 二、判断题 (每题1分)
 - 11. {↑} 是完备集。

对。

故答案为: 对

12. 有 n 个变项的矛盾式的主合取范式有 2^n 个极大项。

嗯背。

故答案为: 对

13. A, B, C 为非空集合, $A \times B = A \times C$,则 B = C。

若 $A \times B = A \times C$ 且 $A \neq \emptyset$, 就可左消去 A, 从而得 B = C。

故答案为: 对

14. 对于一个集合而言,确定的关系 R 所决定的划分有无数个。

一个确定的关系 R 若是等价关系,它所决定的划分 (商集) 只有**唯一**一个。

故答案为: 错

15. $K_n (n \ge 1)$ 都是哈密顿图。

反例: *K*₁, *K*₂. 故答案为: 错

16. 连通图中若含有桥,则其不是哈密顿图。

如果有桥,设桥能将图分为两个连通分支 G,S。若从 G 出发,经过这条割边进入 S 后,就不能经过这条割边回到 G 中起点。

故答案为: 对

17. 若图 G 是平面图,则对 G 有 $m \leq 3n-6$ 。

需要是简单图,否则你可以往一个点上塞 100 个自环。

故答案为: 错

18. 欧拉图的对偶图是二部图。

若 G 是欧拉图,则 G^* 是二部图 (因为对偶中每个面次数均为偶数,故可化为二部图)。

故答案为: 对

19. 点覆盖集的补集是点独立集。

嗯背。

故答案为: 对

20. 连通图的最小生成树唯一。

最小生成树的权和是确定的,但是树本身不一定是确定的。

故答案为: 错

三、填空题 (每题 1 分)

21. 三命题变项的公式 A 满足 $A \Leftrightarrow M_2 \lor M_3 \lor M_4$,则 A 的主合取范式为 ______. 注意到 $M_2 = 0 + 1 + 0, M_3 = 0 + 1 + 1, M_4 = 1 + 0 + 0$ 。各个命题变项都可以取 0 或 1。因此恒真。

故答案为: 1

 $\cap \cup A = \cap (\{a,b\} \cup \{b\}) = a \cap b \quad \cup \cup A = \cup (\{a,b\} \cup \{b\}) = a \cup b \quad \cap \cap A = \cap (\{a,b\} \cap \{b\}) = b$ 于是

$$\cup \cup A - \cap \cap A = a - b.$$

再并,得到 a.

故答案为: [a]

23. *A* = {3,4,5,6,7,8,9,10}, R 为模 7 同余,则 *A/R* =____. 将 *A* 中元素依其 mod 7 的值进行分类:

$$3 \mapsto 3$$
, $4 \mapsto 4$, $5 \mapsto 5$, $6 \mapsto 6$, $7 \mapsto 0$, $8 \mapsto 1$, $9 \mapsto 2$, $10 \mapsto 3$.

故答案为: {{7}, {8}, {9}, {3,10}, {4}, {5}, {6}}.

24. 已知自然数集的基数为 \aleph_0 ,即 $card(\mathbb{N}) = \aleph_0$ 。写出一个与 \mathbb{N} 等势的集合:______. 你随便写哈。

故答案为: $\mathbb{Z}, \mathbb{N}^*, \mathbb{Q}, \mathbb{P}, \mathbb{Z} \times \mathbb{Z}$

25.

26. K_{2n} 至少加上 ______ 几条边后是欧拉图。

为了使 K_{2n} 成为欧拉图,必须将每个顶点的度数变成偶数。初始时每个顶点度数均为奇数。 $m \ n \$ 个边即可。

故答案为: 7

27.

$$\sum_{v \in V} \deg v \ = \ 2 \, (n-c), \quad \sum_{v \in V} (\deg v - 2) \ = \ -2 \, c,$$

其中 c 为该森林的分支数 (分量数)。7 个叶子 (1 度) 贡献 $\sum (\deg -2) = 7 \times (1-2) = -7$; 5 个 2 度顶点贡献总和 $5 \times (2-2) = 0$; 1 个 3 度顶点贡献 3-2=1; 其余都是 4 度顶点 (4-2=2)。假设只有 1 个 4 度顶点。这些已知顶点度的 $\sum (\deg -2) = -7 + 0 + 1 + 2 = -4$ 。若不存在更多顶点,则

$$\sum_{v \in V} (\deg v - 2) = -4 = -2c \quad \Rightarrow \quad c = 2.$$

再数顶点共 14 个。由森林的边数公式 m=n-c,可知边数 = 14-2=12,总度和 = 24,吻合。不用再试了。

故答案为: 2,14

29. 平面图有 3 个连通分支,n = 5, m = 7,则面数为 _____.

欧拉公式推广版:

$$V + F - E = 1 + C$$
, $\mbox{$\mathbb{H}5$} + F - 7 = 1 + 3$

故答案为: 6

30. 以下 12 阶图的点色数为 ______; 边色数为 _____。

图中有三角 K_3 ,色数至少为 3。下面会给出一个可行的 3 - 染色方案。接下来考虑其边色数。记该图的最大度数为 $\Delta=4$. 根据 Vizing 定理,可知图的边色数要么是 $\Delta=4$,要么是 $\Delta+1=5$. 在该图上尝试构造一个 4-色的边染色,发现可行,因此该图边色数就是 4.

故答案为: 3,4

四、简答题 (70 分)

- 31. (14 分) 张三、李四、王五完成一项任务, 试用主析取范式给出派遣方案。要求:
 - (1) 张三去则王五也去;
 - (2) 李四去则王五不去;
 - (3) 王五不去则张三去或者李四去。

设如下命题: p: 张三去, q: 李四去, r: 王五去。

根据要求可以列出以下条件:

1. 张三去则王五也去: $p \rightarrow r$

2. 李四去则王五不去: $q \rightarrow \neg r$

3. 王五不去则张三去或者李四去: $\neg r \to (p \land \neg q) \lor (\neg p \land q)$ 【注:按照朴素的中文表述理解,这里的或严格来说应是异或。不过你写 $\neg r \to (p \lor q)$ 对最后的结果没影响。】

p	q	r	违反条件
0	0	0	谁也没派出,不合题意
0	0	1	\checkmark
0	1	0	\checkmark
0	1	1	q ightarrow eg r
1	0	0	p ightarrow r
1	0	1	\checkmark
1	1	0	p ightarrow r
1	1	1	q ightarrow eg r

对着真值表,得到最终的主析取范式:

 $(\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (p \land \neg q \land r)$

32. (14 分) 设 G 为 n 阶 m 条边的无向连通图,用数学归纳法证明 $m \ge n-1$ 。

基础: 当 n=1 时,图 G 只有一个顶点且连通,不存在边,故 m=0,而 n-1=0,因此 $m=0\geq 0=n-1$ 成立。

归纳: 假设当图的顶点数为 k ($1 \le k < n$) 时,若该图是连通的,则其边数 $m' \ge k - 1$ 成立。 现在考虑顶点数为 k + 1 的情形。

设 G 为含有 k+1 个顶点的连通图。从图中任取一个顶点 v。若去掉 v 以及以 v 为端点的所有边后,记剩下的图为 G'. 那么 G' 至少有k 个顶点. 可惜此时 G' 不一定是连通的。不过可以说,在 G' 中至少存在一个连通分量 G'_1 ,它包含了 k 个顶点或者更少个。我们形式化的说明这个部分:

情况 1: 如果 G' 依然连通 (这时 G' 就是 k 阶连通图),根据归纳假设,G' 的边数满足

$$m' > k - 1$$
.

而从 G' 到 G,为了恢复 v,至少要添上一条边把 v 与 G' 中的某个顶点连接起来,使得 G 连 通。因此 G 的边数

$$m \ge m' + 1 \ge (k - 1) + 1 = k$$
.

因此 $m \ge k = (k+1) - 1$. 归纳成立。

情况 2: 如果 G' 不连通,那么为保证 G 原先是连通的,顶点 v 必须至少与 G' 中每个连通分支都有边。设 G' 有 r 个连通分量,分别记为 G'_1, G'_2, \ldots, G'_r ,其中每个 G'_i 至少包含一个顶点,总顶点数为 k。根据归纳假设,若取 G'_i 各自都连通,则

$$m_i' \ge |V(G_i')| - 1.$$

将所有分量合并,G' 的边数 $m' = \sum_{i=1}^r m_i'$. 此时,从G' 到G,要使所有分量与v 都相连,需要至少v 条边。因此

$$m = m' + r = \sum_{i=1}^{r} m'_i + r \ge \sum_{i=1}^{r} (|V(G'_i)| - 1) + r.$$

而

$$\sum_{i=1}^{r} |V(G_i')| = k.$$

因此

$$m \geq \sum_{i=1}^{r} (|V(G'_i)| - 1) + r = \left(\sum_{i=1}^{r} |V(G'_i)|\right) - r + r = k.$$

同理可知 $m \ge k = (k+1) - 1$.

综上,在 n=1 时成立,且由 k 推至 k+1 也成立。由数学归纳法可知:对于连通的 n 阶图 G,一定有 $m \ge n-1$ 。

33. (14 分) 一幼儿园有 9 名新来的小朋友,每天中午围成圆桌就餐,每天小朋友相邻的人都不相同,试用图论求最多能坚持几天这种做法。

将 9 名小朋友视为图中的 9 个顶点。每天围成一个圆桌就餐,相当于在 9 个顶点上选出一个 哈密顿圈。每天的相邻关系对应于这个闭路上的边。如果我们把所有天的座位相邻关系都画 到一张 9 阶完全图 K_9 上,那么每天就餐的圆桌就是 K_9 的一个哈密顿圈。

题目要求每天小朋友相邻的人都不相同,相当于这些哈密顿圈必须边两两不重叠。也就是说, 我们需要在 K_9 中寻找最多个互不重叠的哈密顿圈。

事实上这个 K_9 是 8-正则图,而每个哈密顿圈占用 9 条边,每个边上都是 2 度。其实就是对 K_9 施 2 因子的生成子图分解。那么能分解出的理论上限就是 4 组圈。说人话就是 9 个人的 小团体,一个人左右的人天天不一样,这种情况最多持续 4 天,8 个人。下面给出一种完全 分解方案。

为了方便你看清, 我给你拆开了:

4.

34. (14 分) 设 n 阶无向简单图 G 的阶数 $n \ge 11$,求证 G 和 \overline{G} 中至少有一个图是不可平面的。 假设 G 和 \overline{G} 同时是可平面的。则根据面数公式,G 和 \overline{G} 的边数必须满足以下不等式:

$$m \le 3n - 6, \overline{m} \le 3n - 6.$$

将两式相加得: $C_n^2 \leq 2(3n-6)$.

即

$$\frac{n(n-1)}{2} \le 2(3n-6).$$

移项整理得:

$$n^2 - 13n + 24 \le 0.$$

解此不等式可得:

$$2<\frac{13-\sqrt{73}}{2}\leq n\leq \frac{13+\sqrt{73}}{2}<11.$$

矛盾。故原命题成立。

35. (14 分) 计算机学院有 7 门选修课, 有不同学生选修, 其中: 1 和 2, 1 和 3, 1 和 4, 1 和 7, 2 和 3, 2 和 4, 2 和 5, 3 和 4, 3 和 5, 3 和 6, 4 和 5, 5 和 6, 5 和 7, 6 和 7 有学生同时 选修。为了保证每名同学都可以参加每门课的考试,试给出一种利用最少个时间段进行考试 的时间安排方案。

把这7门选修课看成一个无向图的7个顶点;凡是有学生同时选修的两门课之间就画一条边。 问题就转化成点着色问题。

注意到: 1, 2, 3, 4 这四个顶点两两相连: (1,2), (1,3), (1,4), (2,3), (2,4), (3,4). 存在 K_4 子 图。它们恰好构成了一个 K_4 。因此至少需要 4 种颜色。

下面我们给出一种可行的 4-着色方案, 如下所示:

这意味着可以把课程分成4个时间段,每个时段的课互不冲突。

时段 1:1,5 时段 2:2,6 时段 3:3,7