Bounded Branching and Modalities in Non-Deterministic Planning

Blai Bonet

Departamento de Computación

Universidad Simón Bolívar

Caracas, Venezuela

Introduction

- We consider variations on the task of deciding the existence of solutions for non-deterministic planning problems:
 - Bounds in the number of branch points in a plan
 - Extensions of the description language with modal formulae
- The first applies to planning problems with complete and partial information; the first treatment of this problem appears to be [Meuleau & Smith, 2003]
- The second variation only applies to the case of planning problems with partial information

Goals of This Talk

- Make an overview of (some) known results about complexity of planning
- Motivate the relevance of proposed variations
- Make an overview of the new complexity results

Outline

- Planning with Complete Information
 - Classical (deterministic) planning
 - Non-deterministic planning (aka contingent planning)
 - Conformant and plans with bounded branching
- Planning with Partial Information
 - Contingent planning
 - Conformant and plans with bounded branching
- Two Special Cases

Background: Deterministic Models

- Understood in terms of:
 - \circ a discrete and finite state space S
 - ∘ an initial state s_0 ∈ S
 - \circ a non-empty set of goal states $G \subseteq S$
 - \circ actions $A(s) \subseteq A$ applicable in each state s
 - \circ a function that maps states and actions into states $f(a,s) \in S$
- **Solutions:** sequences (a_0, \ldots, a_n) of actions that "transform" s_0 into a goal state

Background: Description Language

- Propositional language used to compactly describe the transition function and the applicable actions
- States are valuations to propositional symbols
- We use an action language similar to that in [Rintanen, 2004]:
 - Actions are pairs \(\langle prec, effect \rangle \)
 - \circ prec is a propositional formula used to define A(s)
 - Effects include atomic effects, conditional effects and conjunctions
- Initial state defined by the set I of propositions that hold true
- Goal states defined by a propositional formula Φ_G

Example – Blocksworld (Deterministic)

- Propositions:
 - o Blocks' positions: {on-table(B),on(A,B),on-table(C)}
 - o Others: {clear(A),clear(C),empty-hand}

Example - Blocksworld (Deterministic)

- Propositions:
 - Blocks' positions: {on-table(B),on(A,B),on-table(C)}
 - o Others: {clear(A),clear(C),empty-hand}
- Actions:
 - o unstack(A,B):

 $\langle empty-hand \land clear(A) \land on(A,B), holding(A) \land clear(B) \land \neg on(A,B) \rangle$

- o pick(A): ⟨empty-hand ∧ clear(A) ∧ on-table(A), holding(A) ∧ ¬on-table(A)⟩
- stack(A,B): ⟨holding(A) ∧ clear(B), empty-hand ∧ on(A,B) ∧ ¬holding(A)⟩
- o drop(A): \langle holding(A), empty-hand \langle on-table(A) \langle ¬holding(A) \rangle

Example - Blocksworld (Deterministic)

- Propositions:
 - Blocks' positions: {on-table(B),on(A,B),on-table(C)}
 - o Others: {clear(A),clear(C),empty-hand}
- Actions:
 - o unstack(A,B):

```
\langle empty-hand \land clear(A) \land on(A,B), holding(A) \land clear(B) \land \neg on(A,B) \rangle
```

- o pick(A): ⟨empty-hand ∧ clear(A) ∧ on-table(A), holding(A) ∧ ¬on-table(A)⟩
- o stack(A,B): \langle holding(A) \langle clear(B), empty-hand \langle on(A,B) \langle ¬holding(A) \rangle
- o drop(A): \langle holding(A), empty-hand \langle on-table(A) \langle ¬holding(A) \rangle
- Plan: (unstack(A,B),drop(A),pick(B),stack(B,C),pick(A),stack(A,B))

Non-Deterministic Planning with Complete Information

- Non-deterministic planning deals with problems where actions might have more than one outcome (non-deterministic actions)
- After the application of an action, the agent observes the state of the system and chooses next action
- This is a branch point in the plan!
- Another possibility is to apply a sequence of actions blindly, make a single observation at the end, and then choose next sequence of actions
- This is also a branch point in the plan!
- It is a natural to ask whether there exist plans of bounded branching

Non-Deterministic Models

- As deterministic models but transition function maps states and actions into **sets** of states $F(a,s)\subseteq S$
- There can be more than one initial state described by formula Φ_I
- Description language extended with non-deterministic effects
- Solutions cannot be sequences of actions!
- Solutions are tree-like structures called contingent plans

Example – Blocksworld (Non-Deterministic)

- New Action:
 - o unstack(A,B):

 $\langle empty-hand \land clear(A) \land on(A,B),$ $holding(A) \land clear(B) \land \neg on(A,B) \oplus$ $clear(B) \land on-table(A) \land \neg on(A,B) \rangle$

Example – Blocksworld (Non-Deterministic)

- New Action:
 - o unstack(A,B):

 $\langle empty-hand \land clear(A) \land on(A,B),$ $holding(A) \land clear(B) \land \neg on(A,B) \oplus$ $clear(B) \land on-table(A) \land \neg on(A,B) \rangle$

Contingent Plan:

Complexity of Deterministic and Non-Deterministic Planning

- PLAN-DET is PSPACE-Complete [Bylander, 1994]
- Deciding existence of solution for a contingent problem with full observability (i.e. PLAN-FO-CONT) is EXPTIME-complete
- Shown by [Rintanen, 2004] using Alternating TMs with polynomial space bound

Problem	Complete for	Reference
PLAN-DET	PSPACE	[Bylander, 1994]
PLAN-FO-CONT	EXPTIME	[Rintanen, 2004]

- Let's consider actions of the form:
 - \circ **drop(A)**: $\langle true, (holding(A) \rhd empty-hand \land on-table(A) \land \neg holding(A)) \rangle$

in which the precondition has been moved into a conditional effect

- Let's consider actions of the form:
 - o drop(A): ⟨true, (holding(A) ▷ empty-hand ∧ on-table(A) ∧ ¬holding(A))⟩
 in which the precondition has been moved into a conditional effect
- It's not hard to show that the plan:

```
pick(A),drop(A),pick(B),drop(B),pick(C),drop(C),pick(A),drop(A),
pick(B),drop(B),pick(C),drop(C),pick(B),stack(B,C),pick(A),stack(A,B)
```

achieves the goal (i.e. A on B on C) no matter what's the initial situation

- Let's consider actions of the form:
 - o drop(A): ⟨true, (holding(A) ▷ empty-hand ∧ on-table(A) ∧ ¬holding(A))⟩
 in which the precondition has been moved into a conditional effect
- It's not hard to show that the plan:

```
pick(A),drop(A),pick(B),drop(B),pick(C),drop(C),pick(A),drop(A),
pick(B),drop(B),pick(C),drop(C),pick(B),stack(B,C),pick(A),stack(A,B)
achieves the goal (i.e. A on B on C) no matter what's the initial situation
```

• This plan is called conformant [Goldman & Boddy, 1996; Smith & Weld, 1998]

- Let's consider actions of the form:
 - o drop(A): ⟨true, (holding(A) ▷ empty-hand ∧ on-table(A) ∧ ¬holding(A))⟩
 in which the precondition has been moved into a conditional effect
- It's not hard to show that the plan:

```
pick(A),drop(A),pick(B),drop(B),pick(C),drop(C),pick(A),drop(A),
pick(B),drop(B),pick(C),drop(C),pick(B),stack(B,C),pick(A),stack(A,B)
achieves the goal (i.e. A on B on C) no matter what's the initial situation
```

- This plan is called **conformant** [Goldman & Boddy, 1996; Smith & Weld, 1998]
- A conformant plan is a no-branch plan for a non-deterministic planning problem with full observability!!

Complexity of Conformant Planning

- Checking the existence of a conformant plan (i.e. PLAN-FO-CONF) is EXPSPACE-complete
- Shown by [Haslum & Jonsson, 1999] using Regular Expressions with Exponentiation and Non-deterministic Finite Automata with Counters

Problem	Complete for	Reference
PLAN-DET	PSPACE	[Bylander, 1994]
PLAN-FO-CONT	EXPTIME	[Rintanen, 2004]
PLAN-FO-CONF	EXPSPACE	[Haslum & Jonsson, 1999]

Plans of Bounded Branching

- Contingent and conformant planning are extreme points of a discrete yet infinite range of solution forms:
 - Conformant = No branch
 - Contingent = Unbounded branch
- In the middle, we can think of plans with no more than *k* branches

Plans of Bounded Branching

- Contingent and conformant planning are extreme points of a discrete yet infinite range of solution forms:
 - Conformant = No branch
 - Contingent = Unbounded branch
- In the middle, we can think of plans with no more than k branches
- Checking the existence of a contingent plan with at most k branches (i.e. PLAN-FO-CONT-k) is EXPSPACE-complete
- Proof similar to Haslum & Jonsson's for conformant planning

Problem	Complete for	Reference
PLAN-DET	PSPACE	[Bylander, 1994]
PLAN-FO-CONT	EXPTIME	[Rintanen, 2004]
PLAN-FO-CONF	EXPSPACE	[Haslum & Jonsson, 1999]
PLAN-FO-CONT-k	EXPSPACE	New

Problems with Partial Information

- Arise when the agent cannot fully observe the state of the system
- The agent receives some information after the execution of an action:
 - Full (the state is revealed)
 - Partial (e.g. the truth value of a proposition is revealed)
 - Null
- After the feedback is received, the agent chooses the next action
- This is a branch-point in the plan!

Example – Blocksworld (Partial Information)

- Observables: $Z = \{ clear(A), clear(B), clear(C) \}$
- Current Knowledge: Block A is clear
- Contingent Plan:

Another Example – Game of Mastermind

- A simple game played by a codemaker and codebreaker:
 - Codemaker chooses a secret code at the beginning
 - Codebreaker must discover the code by making guesses
- Each guess answered with two tokens of information:
 - the number of matches in the guess
 - the number of "near" matches in the guess

Another Example – Game of Mastermind

- A simple game played by a codemaker and codebreaker:
 - Codemaker chooses a secret code at the beginning
 - Codebreaker must discover the code by making guesses
- Each guess answered with two tokens of information:
 - the number of matches in the guess
 - the number of "near" matches in the guess
- The dynamics of the game can be modeled as a non-deterministic planning problem with partial information (the secret code is unknown)

Another Example – Game of Mastermind

- A simple game played by a codemaker and codebreaker:
 - Codemaker chooses a secret code at the beginning
 - Codebreaker must discover the code by making guesses
- Each guess answered with two tokens of information:
 - the number of matches in the guess
 - the number of "near" matches in the guess
- The dynamics of the game can be modeled as a non-deterministic planning problem with partial information (the secret code is unknown)
- However, the goal of the game (which is to know the secret code) cannot be expressed in the language
- A modal formula is needed to represent such a goal!!

Mastermind: 3 colors, 3 pegs

• Contingent Plan:

Mastermind: 3 colors, 3 pegs

Contingent Plan:

- We can also compute a conformant plan for this task!
- The following plan discovers the secret code no matter what's its value

$$guess(2,0,0)$$
, $guess(2,1,0)$, $guess(2,2,1)$.

Complexity of Planning with Partial Information

- Checking the existence of a contingent plan (i.e. PLAN-PO-CONT) is 2EXPTIME-complete
- Shown by [Rintanen, 2004] using Alternating TMs with exponential space bound
- Checking the existence of conformant plans for partially observable problems with modal formulae is 2EXPSPACE-complete
- Shown using automatas with counters of double exponential capacity
- Checking the existence of plans with bounded number of branchs has same complexity of the conformant task

Problem	Complete for	Reference
PLAN-PO-CONT	2EXPTIME	[Rintanen, 2004]
PLAN-PO-CONF	2EXPSPACE	New
PLAN-PO-CONT-k	2EXPSPACE	New

Two Special Cases

- Existence of plans of bounded branching of polynomial length (either full or partial observable case):
 - Can be done with QBFs!
 - \circ Indeed, checking the existence of a plan with at most k branches is in Σ^p_{2k+4}

Two Special Cases

- Existence of plans of bounded branching of polynomial length (either full or partial observable case):
 - Can be done with QBFs!
 - \circ Indeed, checking the existence of a plan with at most k branches is in Σ_{2k+4}^p
- Existence of conformant plans for partially observable problems without modal formulae is EXPSPACE-complete

Summary

- Considered two variations on the existence of plans:
 - Plans of bounded branching for full and partially observable problems
 - Extension of description language with modalities for planning with incomplete information
- Analyzed and derived tight bounds on the complexity of novel decision problems