(19) World Intellectual Property Organization International Bureau

English

(43) International Publication Date 25 September 2003 (25.09.2003)

(10) International Publication Number WO 03/077859 A2

AGIK (51) International Patent Classification7;

(21) International Application Number: PCT/US03/07727

(22) International Filing Date: 12 March 2003 (12.03.2003)

(25) Filing Language: English

(30) Priority Data: 60/363,807 13 March 2002 (13.03.2002) US

(26) Publication Language:

(72) Inventors: and

(71) Applicant (for all designated States except US); MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

(75) Inventors/Applicants (for US only): EMINI, Emilio, A.

[US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-

0907 (US). SHIVER, John, W. [US/US]; 126 East Lin-

coln Avenue, Rahway, NJ 07065-0907 (US). CASIMIRO,

Danilo, R. [PH/US]: 126 East Lincoln Avenue, Rahway, NJ

07065-0907 (US). BETT, Andrew, J. [CA/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US), LIANG, Xiaoping [CA/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US), FU, Tong-Ming [US/US]: 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

(74) Common Representative: MERCK & CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU. AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU. CZ, DE, DK, DM, DZ, EC, EE, ES, FL GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX. MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ. VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM. ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES. FL FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO.

[Continued on next page]

(54) Title: METHOD OF INDUCING AN ENHANCED IMMUNE RESPONSE AGAINST HIV

(57) Abstract: An efficient means of inducing an immune response against human immunodeficiency virus (HIV) utilizing specific prime-boost regimes is disclosed. The specific prime-boost regimes employ a heterologous prime-boost protocol employing recombinant adenoviral vectors of alternative and distinct serotypes comprising exogenous genetic material encoding a common HIV antigen. Vaccines administered into living vertebrate tissue in accordance with the disclosed regimes, preferably a mammalian host. such as a human or a non-human mammal of commercial or domestic veterinary importance, express the HIV-1 antigen (e.g., Gag), inducing a cellular immune response which specifically recognizes HIV-1. It is believed that the disclosed prime/boost regime will offer a prophylactic advantage to previously uninfected individuals and/or provide a therapeutic effect by reducing viral load levels within an infected individual, thus prolonging the asymptomatic phase of HIV-1 infection.

SE, SI, SK, TR), OAPI patent (BF, BJ. CF, CG, CI. CM. For two-letter codes and other abbreviations, refer to the "Guid-GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

ance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 without international search report and to be republished upon receipt of that report

TITLE OF THE INVENTION

METHOD OF INDUCING AN ENHANCED IMMUNE RESPONSE AGAINST FIV

5 CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority to provisional application U.S. Serial No. 60/363,807, filed March 13, 2002, hereby incorporated by reference herein.

STATEMENT REGARDING FEDERALLY-SPONSORED R&D

Not Applicable

10

REFERENCE TO MICROFICHE APPENDIX

Not Applicable

15 FIELD OF THE INVENTION

The present invention relates to an enhanced means for inducing an immune response against human immunodeficiency virus ("HIV"). Recombinant adenovirus vehicles comprising exogenous genetic material encoding a common HIV antigen are employed in a heterologous prime-boost administration. More particularly,

- 20 recombinant adenovirus vehicles of alternative and distinct serotypes are employed in heterologous prime-boost immunization schemes. Applicants have found that administration of a recombinant adenoviral vehicle comprising exogenous genetic material encoding an HIV antigen followed by subsequent administration of a recombinant adenovirus of a different serotype comprising the antigen notably
- 25 amplifies the immune response from the initial administration(s). This amplification is, further, notably higher than that observed upon utilizing the same respective recombinant adenoviral vectors independently for both priming and boosting administrations of mammalian hosts. The amplified immune response which is particularly manifest in the cellular immune response is, further, capable of
- 30 specifically recognizing HIV. Viruses of use in the instant invention can be any replication-defective adenovirus, provided that the adenovirus of choice is capable of effecting expression of exogenous genetic material incorporated into the viral sequence. Based on the findings disclosed herein, it is believed that the disclosed prime/boost reeime will offer a prophylactic advantage to previously uninfected

individuals and/or provide a therapeutic effect by reducing viral load levels within an infected individual, thus prolonging the asymptomatic phase of HIV-1 infection.

BACKGROUND OF THE INVENTION

5

10

15

2.0

25

Human Immunodeliciency Virus-1 (HIV-1) is the etiological agent of acquired human immune deficiency syndrome (AIDS) and related disorders. HIV-1 is an RNA virus of the Retroviridae family and exhibits the 5'LTR-gag-pol-env-LTR 3' organization of all retroviruses. The integrated form of HIV-1, known as the provirus, is approximately 9.8 Kb in length. Each end of the viral genome contains flanking sequences known as long terminal repeats (LTRs). The HIV genes encode at least time proteins and are divided into three classes; the major structural proteins (Gag, Pol, and Env), the regulatory proteins (Tat and Rev); and the accessory proteins (Vpu, Vpr, Vif and Nef).

Effective treatment regimes for HIV-1 infected individuals have become available. However, these drugs will not have a significant impact on the disease in many parts of the world and they will have a minimal impact in halting the spread of infection within the human population. As is true of many other infectious diseases, a significant epidemiologic impact on the spread of HIV-1 infection will only occur subsequent to the development and introduction of an effective vaccine. There are a number of factors that have contributed to the lack of successful vaccine development to date. For instance, it is now apparent that in a chronically infected person there exists constant virus production in spite of the presence of anti-HIV-1 humoral and cellular immune responses and destruction of virally infected cells. As in the case of other infectious diseases, the outcome of disease is the result of a balance between the kinetics and the magnitude of the immune response and the pathogen replicative rate and accessibility to the immune response. Pre-existing immunity may be more successful with an acute infection than an evolving immune response can be with an established infection. A second factor is the considerable genetic variability of the virus. Although anti-HIV-1 antibodies exist that can neutralize HIV-1 infectivity in cell culture, these antibodies are generally virus isolate-specific in their activity. It has proven impossible to define serological groupings of HIV-1 using traditional methods. Rather, the virus seems to define a serological "continuum" so that individual neutralizing antibody responses, at best, are effective against only a handful of viral variants. Given this latter observation, it would be useful to identify

immunogens and related delivery technologies that are likely to elicit anti-HIV-1 cellular immune responses. It is known that in order to generate CTL responses antigen must be synthesized within or introduced into cells, subsequently processed into small peptides by the proteasome complex, and translocated into the endoplasmic reticulum/Golgi complex secretory pathway for eventual association with major histocompatibility complex (MHC) class I proteins. CD8+T lymphocytes recognize antigen in association with class I MHC via the T cell receptor (TCR) and the CD8 cell surface protein. Activation of naive CD8+ T cells into activated effector or memory cells generally requires both TCR engagement of antigen as described above as well as engagement of costimulatory proteins. Optimal induction of CTL responses usually requires "help" in the form of cytokines from CD4+T lymphocytes which recognize antigen associated with MHC class II molecules via TCR and CD4 engagement.

10

20

25

30

Adenoviral vectors have been developed as live viral vectors for the delivery 15 and expression of various foreign antigens including HIV and have proven to be effective in eliciting a significant CTL response in treated individuals. Adenoviruses are non-enveloped viruses containing a linear double-stranded genome of about 36 kb. The vectors achieve high viral titres, have a broad cell tropism, and can infect nondividing cells. Adenoviral vectors are very efficient gene transfer vehicles and are frequently used in clinical gene therapy studies. In addition, adenovirus has formed the basis of many promising viral immunization protocols.

European Patent Applications 0 638 316 (Published February 15, 1995) and 0 586 076 (Published March 9, 1994), (both assigned to American Home Products Corporation) describe replicating adenovirus vectors carrying an HIV gene, including env or gag. Various treatment regimes based on these vectors were used with chimpanzees and dogs, some of which included booster adenovirus or protein plus alum treatments.

Replication-defective adenoviral vectors harboring deletions, for instance, in the E1 region constitute a safer alternative to their replicating counterparts. Recent adenoviral vectors have incorporated the known packaging repeats into these vectors; e.g., see EP 0 707 071, disclosing, inter alia, an adenoviral vector deleted of E1 sequences from base pairs 459 to 3328; and U.S. Patent No. 6,033,908, disclosing, inter alia, an adenoviral vector deleted of base pairs 459-3510. The packaging efficiency of adenovirus has been taught to depend on the number of incorporated

individual A (packaging) repeats; see, e.g., Gräble and Hearing, 1990 J. Virol. 64(5):2047-2056; Gräble and Hearing, 1992 J. Virol. 66(2):723-731.

Adenovirus serotypes 5 and 6 have been disclosed and are publicly available (see, American Type Culture Collection ("ATCC") Accession Deposit Nos. VR-5 and 5 VR-6; respectively). The wildtype adenovirus serotype 5 sequence is, further, known and described in the art; see, Chroboczek et al., 1992 J. Virology 186:280-5. The complete sequence for adenovirus serotype 6, which is provided in Figures 11A-1 to 11A-14, was first disclosed in copending U.S. Provisional Application Serial No. 60/328,655, filed on October 11, 2001. Adenovirus serotype 6, as serotype 5, has been described previously in the literature; see Rowe et al., 1953 Proc. Soc. Exp. Biol. Med. 84:570; Rowe et al., 1955 Am. J. Hyg. 61:197-218; and Hierholzer et al., 1991 Arch. Virol. 121:179-97. Adenovirus serotypes other than Ad5 and Ad6 are also known and described in the literature.

10

15

20

25

Administration protocols employing viral vaccine vectors to date have employed various prime-boost inoculation schemes. Two general schemes frequently used are: (1) wherein both priming and boosting of the mammalian host is accomplished using the same virus vehicle, and (2) wherein the priming and boosting is carried out utilizing different vehicles not necessarily limited to virus vehicles. Examples of the latter are, for instance, a scheme composed of a DNA prime and viral boost, and one composed of a viral prime and a viral boost wherein alternate virus are used.

It would be of great import in the battle against AIDS to develop a prophylactic- and/or therapeutic-based HIV vaccine strategy capable of generating a strong cellular immune response against HIV infection. The present invention addresses and meets these needs by disclosing a heterologous prime-boost HIV immunization regime based on the administration of recombinant adenoviral vectors of alternative and distinct serotypes, wherein the recombinant adenoviral vectors comprise exogenous genetic material encoding a common HIV antigen. One aspect of the instant invention concerns heterologous immunization schemes employing recombinant adenoviral vectors derived from adenovirus serotypes 5, 6, and 35. A vaccine protocol in accords with this description, as far as Applicants are aware, has not been demonstrated for HIV. This vaccine prime-boost regime may be administered to a host, such as a human.

SUMMARY OF THE INVENTION

5

10

15

20

30

The present invention relates to an enhanced method for generating an immune response against human immunodeficiency virus ("HIV"). The method is based on the heterologous prime-boost administration of recombinant adenovirus vehicles of alternative and distinct serotypes comprising heterologous genetic material encoding an HIV antigen to effect a more pronounced immune response against HIV than that which can be obtained by either vector independently in a single modality prime-boost immunization scheme. In accordance with the disclosed methods, a mammalian host is first administered a priming dose comprising a recombinant adenoviral vector of a first serotype comprising a gene encoding an HIV antigen and, after a period of time, administered a boosting dose comprising a recombinant adenoviral vector of a second and different serotype carrying the gene encoding the HIV antigen. There may be a predetermined minimum amount of time separating the administrations, which time essentially allows for an immunological rest. In particular embodiments, this rest is for a period of at least 4 months. Multiple primings typically, 1-4, are usually employed, although more may be used. The length of time between priming and boost may typically vary from about four months to a year, but other time frames may be used. Applicants have found that boosting of the adenovirus-primed response with an adenovirus of an alternative and distinct serotype leads to a notably amplified immune response to the HIV antigen. Thus the instant invention relates to the administration of alternate serotype adenovirus HIV vaccines in accordance with the disclosed methods.

Accordingly, the instant invention relates to a method for inducing an enhanced immunological response against an HIV-1 antigen in a mammalian host comprising the steps of (a) inoculating the mammalian host with a recombinant adenoviral vector of a first serotype which is at least partially deleted in E1 and devoid of E1 activity comprising a gene encoding an HIV-1 antigen or an immunologically relevant modification thereof; and thereafter (b) inoculating the mammalian host with a boosting immunization comprising a recombinant adenoviral vector of a second and different serotype at least partially deleted in E1 and devoid of E1 activity comprising a gene encoding an HIV-1 antigen or immunologically relevant modification thereof.

The recombinant adenoviral vectors used in the immunization regimes of the present invention may comprise any replication-defective adenoviral vector which is

genetically stable through large-scale production and purification of the virus. In other words, a recombinant adenoviral vector suitable for use in the methods of the instant invention can be any purified recombinant replication-defective virus shown to be genetically stable through multiple passages in cell culture which remains so during large-scale production and purification procedures. Such a recombinant virus vector and harvested virus vaccine lends itself to large scale dose filling and subsequent worldwide distribution procedures which will be demanded of an efficacious monovalent or multivalent HIV vaccine. The present invention meets this basic requirement with description of an immunization regime which is based on the use of recombinant replication-defective adenovirus serotypes examples but not limitations of which include serotypes 5, 6, and 35.

Adenoviral vectors preferred for use in the immunization regimes of the instant invention are those that are at least partially deleted in E1 and devoid of E1 activity. Vectors in accordance with this description can be readily propagated in E1-complementing cell lines, such as PER.C6® cells.

10

15

20

25

The recombinant adenoviral vectors of use in the instant application whether intended as the priming or boosting vehicle must comprise a gene encoding an HIV antigen. In specific embodiments, the gene encoding the HIV antigen or immunologically relevant modification thereof comprises codons optimized for expression in a mammalian host (e.g., a human). Recombinant adenoviral vectors of use in the methods of the instant invention can comprise a gene expression cassette comprising (a) nucleic acid encoding an HIV antigen (e.g., an HIV protein) or biologically active and/or immunologically relevant portion thereof; (b) a heterologous (non-native) or modified native promoter operatively linked to the nucleic acid of part a); and, (c) a transcription termination sequence. A heterologous promoter can be any promoter under the sun (modified or not) which is not native to, or derived from, the virus in which it will be used.

HIV antigens of use in the instant invention include the various HIV proteins, immunologically relevant modifications, and immunogenic portions thereof. The present invention, thus, encompasses the various forms of codon-optimized HIV-1 gag (including but by no means limited to p55 versions of codon-optimized full length ("TL") Gag and tPA-Gag fusion proteins), HIV-1 pol, HIV-1 nef, HIV-1 env, fusions of the above constructs, and selected modifications of the above possessing immunological relevance. Examples of HIV-1 Gag, Pol, Env, and/or Nef fusion

proteins include but are not limited to fusion of a leader or signal peptide at the NH₂teriminal portion of the viral antigen coding region. Such a leader peptide includes but is not limited to a tPA leader peptide.

Recombinant viral vectors in accordance with the instant disclosure form an aspect of the instant invention. Other aspects of the instant invention are host cells comprising said adenoviral vectors; vaccine compositions comprising said vectors; and methods of producing the vectors comprising (a) introducing the adenoviral vector into a host cell which expresses adenoviral E1 protein, and (b) harvesting the resultant adenoviral vectors.

10

15

2.0

25

The present invention also relates to prime-boost regimes wherein the recombinant adenoviral vectors comprise various combination of the above HIV antigens. Such HIV immunization regimes will provide for an enhanced cellular immune response subsequent to host administration, particularly given the genetic diversity of human MHCs and of circulating virus. Examples, but not limitations, include viral vector-based multivalent vaccine compositions which provide for a divalent (e.g., gag and nef, gag and pol, or pol and nef components) or a trivalent vaccine (e.g., gag, pol and nef components) composition. Such a multivalent vaccine may be filled for a single dose or may consist of multiple inoculations of each individually filled component. To this end, preferred vaccine compositions of use in the methods of the instant application are recombinant adenovirus vectors comprising multiple, distinct HIV antigen classes. Each HIV antigen class is subject to sequence manipulation, thus providing for a multitude of potential vaccine combinations; and such combinations are within the scope of the present invention. The utilization of such combined modalities increase the probability of eliciting an even more potent cellular immune response when compared to inoculation with a single modality regime.

The concept of a "combined modality" as disclosed herein also covers the alternative mode of administration whereby multiple HIV-1 viral antigens may be ligated into a proper shuttle plasmid for generation of a recombinant viral vector comprising multiple open reading frames. For example, a trivalent vector may comprise a gag-pol-nef fusion, or possibly a "2+1" divalent vaccine comprising, for instance, a gag-pol fusion (i.e., codon optimized p55 gag and inactivated optimized pol) within the same backbone, with each open reading frame being operatively linked to a distinct promoter and transcription termination sequence. Alternatively, the

two open reading frames may be operatively linked to a single promoter, with the open reading frames operatively linked by an internal ribosome entry sequence (IRES).

Administration of the recombinant adenoviral vectors via the disclosed heterologous means provides for improved cellular-mediated immune responses; responses more pronounced than that afforded by single modality regimes. An effect of the improved vaccine should be a lower transmission rate to previously uninfected individuals (i.e., prophylactic applications) and/or reduction in the levels of the viral loads within an infected individual (i.e., therapeutic applications), so as to prolong the asymptomatic phase of HIV-1 infection. The administration, intracellular delivery and expression of the vaccine in this manner elicits a host CTL and Th response. The individual vaccinee or mammalian host (as referred to herein) can be a primate (both human and non-human) as well as any non-human mammal of commercial or domestic veterinary importance.

10

15

20

25

30

In light hereof, the present invention relates to methodology regarding administration of the recombinant adenoviral HIV vaccines to provide effective immunoprophylaxis, to prevent establishment of an HIV-1 infection following exposure to this virus, or as a post-HIV infection therapeutic vaccine to mitigate the acute HIV-1 infection so as to result in the establishment of a lower virus load with beneficial long term consequences. Such treatment regimes may include a monovalent or multivalent composition, and/or various combined modality applications. Therefore, the present invention provides for methods of using the disclosed HIV vaccine administration scheme within the various parameters disclosed herein as well as any additional parameters known in the art which, upon introduction into mammalian tissue, induces intracellular expression of the HIV antigen(s) and an effective immune response to the respective HIV antigen(s).

To this end, the present invention relates in part to methods of generating a cellular immune response in a vaccinee, preferably a human vaccinee, wherein the individual is given the recombinant adenovirus HIV vaccines in the manner described.

As used throughout the specification and claims, the following definitions and

"HAART" refers to -- highly active antiretroviral therapy --.

"first generation" vectors are characterized as being replication-defective.

They typically have a deleted or inactivated E1 gene region, and often have a deleted or inactivated E3 gene region as well.

"AEX" refers to Anion Exchange chromatography.

"QPA" refers to Quick PCR-based Potency Assay.

"bps" refers to base pairs.

5

10

15

20

25

30

"s" or "str" denotes that the transgene is in the E1 parallel or "straight" orientation.

"PBMCs" refers to peripheral blood monocyte cells.

"FL" refers to full length.

"FLgag" refers to a full-length optimized gag gene, as shown in Figure 2.

"Ad5-Flgag" refers to an adenovirus serotype 5 replication-deficient virus which carries an expression cassette which comprises a full length optimized gag gene under the control of a CMV promoter.

"Promoter" means a recognition site on a DNA strand to which an RNA polymerase binds. The promoter forms an initiation complex with RNA polymerase to initiate and drive transcriptional activity. The complex can be modified by activating sequences such as enhancers or inhibiting sequences such as silencers.

"Leader" means a DNA sequence at the 5' end of a structural gene which is transcribed along with the gene. This usually results in a protein having an N-terminal peptide extension, often referred to as a pro-sequence.

"Intron" means a section of DNA occurring in the middle of a gene which does not code for an amino acid in the gene product. The precursor RNA of the intron is excised and therefore not transcribed into mRNA or translated into protein.

"Immunologically relevant" or "biologically active," when used in the context of a viral protein, means that the protein is capable, upon administration, of eliciting a measurable immune response within an individual sufficient to retard the propagation and/or spread of the virus and/or to reduce the viral load present within the individual. The same terms, when used in the context of a nucleotide sequence, means that the sequence is capable of encoding for a protein capable of the above.

"Cassette" refers to a nucleic acid sequence which is to be expressed, along with its transcription and translational control sequences. By changing the cassette, a vector can express a different sequence.

"bGHpA" refers to a bovine growth hormone transcription terminator/polyadenylation sequence.

"tPAgag" refers to a fusion between the tissue plasminogen activator leader sequence and an optimized HIV gag gene.

Where utilized, "IA" or "inact" refers to an $\underline{inactivated}$ version of a gene (e.g. IApol).

"MCS" is "multiple cloning site".

5

10

15

20

25

30

"Ad5" is adenovirus of serotype 5.

"Ad6" is adenovirus of serotype 6.

In general, adenoviral constructs, gene constructs are named by reference to the genes contained therein. For example:

"Ad5 HIV-1 gag", also referred to as the original HIV-1 gag adenoviral vector, is a vector containing a transgene cassette composed of a hCMV intron A promoter, the full length version of the human codon-optimized HIV-1 gag gene, and the bovine growth hormone polyadenylation signal.

"MRK Ad5 HIV-1 gag" also referred to as "MRKAd5gag" or "Ad5gag2" is an adenoviral vector which is deleted of E1, and contains adenoviral base pairs 1-450 and 3511-3523, with a human codon-optimized HIV-1 gag gene in an E1 parallel orientation under the control of a CMV promoter without intron A. The construct also comprises a bovine growth hormone polyadenylation signal.

"pVIJnsHIVgag", also referred to as "HIVFLgagPR9901", is a plasmid comprising the CMV immediate-early (IE) promoter and intron A, a full-length codon-optimized HIV gag gene, a bovine growth hormone-derived polyadenylation and transcriptional termination sequence, and a minimal pUC backbone.

"pV1JnsCMV(no intron)-FLgag-bGHpA" is a plasmid derived from pV1JnsHIV gag which is deleted of the intron A portion of CMV and which comprises the full length HIV gag gene. This plasmid is also referred to as "pV1JnsHIVgag-bGHpA", pV1Jns-hCMV-FL-gag-bGHpA" and "pV1JnsCMV(no intron) + FLgag + bGHoA".

"pVIJnsCMV(no intron)-FLgag-SPA" is a plasmid of the same composition as pVIJnsCMV(no intron)-FLgag-bGHpA except that the SPA termination sequence replaces that of bGHpA. This plasmid is also referred to as "pVIJns-HIVgag-SPA" and pVIJns-hCMV-FLgag-SPA".

"pdelE1sp1A" is a universal shuttle vector with no expression cassette (i.e., no promoter or polyA). The vector comprises wildtype adenovirus serotype 5 (Ad5) sequences from bp 1 to bp 341 and bp 3524 to bp 5798, and has a multiple cloning site between the Ad5 sequences ending 341 bp and beginning 3524 bp. This plasmid is also referred to as the original Ad 5 shuttle vector.

"MRKpdelE1sp1A" or "MRKpdelE1(Pac/pLX/pack450)" or
"MRKpdelE1(Pac/pLX/pack450)Cla1" is a universal shuttle vector with no expression
cassette (i.e. no promoter or polyA) comprising wildtype adenovirus serotype 5 (Ad5)
sequences from bp 1 to bp 450 and bp 3511 to bp 5798. The vector has a multiple
cloning site between the Ad5 sequence ending 450 bp and beginning 3511 bp. This
shuttle vector may be used to insert the CMV promoter and the bGHpA fragments in
both the straight ("str". or E1 parallel) orientation or in the opposite (opp. or E1
antiparallel) orientation.

10

15

20

25

"MRKpdelE1(Pac/pIX/pack450)+CMVmin+BGHpA(str.)" is still another shuttle vector which is the modified vector that contains the CMV promoter (no intron A) and the bGHpA fragments. The expression unit containing the hCMV promoter (no intron A) and the bovine growth hormone polyadenylation signal has been inserted into the shuttle vector such that insertion of the gene of choice at a unique BgIII site will ensure the direction of transcription of the transgene will be Ad5 E1 parallel when inserted into the MRKpAd5(E1/E3+)Cla1 pre-plasmid.

"MRKpdelE1-CMV(no intron)-FLgag-bGHpA" is a shuttle comprising Ad5 sequences from base pairs 1-450 and 3511-5798, with an expression cassette containing human CMV without intron A, the full-length human codon-optimized HIV gag gene and bovine growth hormone polyadenylation signal. This plasmid is also referred to as "MRKpdelE1 shuttle+hCMV-FL-gag-BGHpA"

"MRKpAdHVE3+CMV(no intron)-FLgag-bGHpA" is an adenoviral vector comprising all Ad5 sequences except those nucleotides encompassing the B1 region (from 451-3510), a human CMV promoter without intron A, a full-length human codon-optimized HIV gag gene, and a bovine growth hormone polyadenylation signal. This vector is also referred to as "MRKpAdHVE3 + hCMV-FL-gag-BGHpA", "MRKpAd5HIV-1gag", "MRKpAd5gag", "pMRKAd5gag" or "pAd5gag2".

BRIEF DESCRIPTION OF THE FIGURES

20

Figure 1 shows the HIV-1 gag adenovector "Ad5 HIV-1 gag". This vector is disclosed in PCT International Application No. PCT/US00/18332 (WO 01/02607) filled July 3, 2000, claiming priority to U.S. Provisional Application Serial No. 60/142,631, filed July 6, 1999, and U.S. Application Serial No. 60/148,981, filed August 13, 1999, all three applications which are hereby incorporated by reference.

Figure 2 shows the nucleic acid sequence (SEQ ID NO: 1) of the optimized human $\rm HIV\text{-}1$ gag open reading frame.

Figure 3 shows diagrammatically the transgene construct disclosed in PCT

International Application No. PCT/US01/28861, filed September 14, 2001 in comparison with the original gag transgene. PCT International Application No. PCT/US01/28861 claims priority to U.S. Provisional Application Serial Nos. 60/233,180, 60/279,056, and 60/317,814, filed September 15, 2000, March 27, 2001, and September 7, 2001, respectively; the above applications all of which are hereby incorporated by reference.

Figure 4 shows the modifications made to the adenovector backbone of AdSHIV-1 gag in the generation of the vector disclosed in PCT International AdSHIV-2 of PCT/US01/28861 which is utilized in certain examples of the instant application.

Figure 5 shows the levels of Gag-specific T cells in rhesus macaques immunized with (a) two priming doses of 10e9 vp of MRKAd5 HIV-1 gag and a single booster shot with 10e9 vp MRKAd5 HIV-1 gag ("10e9 vp MRKAd5-10e9 vp MRKAd5"); (b) two priming doses of 10e9 pfu MRKAd6 HIV-1 gag and a single booster with 10e9 pfu MRKAd6 HIV-1 gag ("10e9 pfu MRKAd6-10e9 pfu

25 MRKAd6"); or (e) two priming doses of 10e9 vp of MRKAd5 HIV-1 gag followed by a single booster shot with 10e9 pfu MRKAd6 HIV-1 gag ("10e9 vp MRKAd5-10e9 pfu MRKAd6"). The levels expressed as number of spot-forming cells (SFC) per million PBMC are the mock-corrected values for each animal prior to the start of the immunization regimen ("Pre"); 4 weeks after the first priming dose ("Post Dose 1"); 4 weeks after the second priming dose ("Post Dose 2"); just prior to the boost ("Pre-Boost"); 4 weeks after the boost ("4 wks Post-Boost"); and 8 weeks after the boost ("8 wks Post-Boost").

Figure 6 shows the Gag-specific T cell responses induced by two priming doses of 10e7 vp dose of MRKAd5 HIV-1 gag (week 0; week 4) followed by

administration of 10e7 vp MRKAd6 HIV-1 gag at week 27. The levels provided are the mock-corrected levels for each animal prior to the start of the immunization regimen ("Pre"); 4 weeks after the first priming dose ("Post Dose 1"); 4 weeks after the second priming dose ("Post Dose 2"); just prior to the boost ("Pre-Boost"); 4 weeks after the boost ("4 wks Post-Boost"); and 8 weeks after the boost ("8wks Post-Boost"). One will note a significant increase compared to the levels just prior to the boost. MRKAd6 HIV-1 gag elicited a large amplification of the priming response. The post-boost increases shown are largely attributed to the expansion of memory T cells instead of priming of new lymphocytes.

Figure 7 shows the homologous recombination protocol utilized to recover pAdE1-E3 disclosed herein.

10

15

20

25

Figure 8 shows a restriction map of the pMRKAd5HIV-1gag vector.

Figures 9A-1 to 9A-45 show the nucleotide sequence of the pMRKAd5HIV-1gag vector (SEQ ID NO:2 [coding] and SEQ ID NO:3 [non-coding]).

Figure 10 shows the levels of Gag-specific antibodies in rhesus macaques immunized with (a) two priming doses of 10e9 vp of MRKAd5 HIV-1 gag and a single booster shot with 10e9 vp MRKAd5 HIV-1 gag ("10e9 vp MRKAd5-10e9 vp MRKAd5"), (b) two priming doses of 10e9 pfu MRKAd6 HIV-1 gag and a single booster with 10e9 pfu MRKAd6 HIV-1 gag ("10e9 pfu MRKAd6-10e9 pfu MRKAd6"), or (c) two priming doses of 10e9 vp of MRKAd5 HIV-1 gag followed by a single booster shot with 10e9 pfu MRKAd6 HIV-1 gag ("10e9 vp MRKAd5-10e9 pfu MRKAd6"). Shown are the geometric mean titers for each cohort at the start of the immunization regimen ("Pre"), 4 weeks after the first priming dose ("Wk 4"), 4 weeks after the second priming dose ("Wk 8"), just prior to the boost ("Pre-Boost"),

Figures 11A-1 to 11A-14 show the nucleic acid sequence for the Ad6 genome (SEO ID NO:5).

and 8 weeks after the boost ("Post-Boost").

Figure 12 shows the basic genomic organization of Ad6. The linear (35759 bp) double-stranded DNA genome is indicated by two parallel lines and is divided into 100 map units. Transcription units are shown relative to their position and orientation in the genome. Early genes (E1A, E1B, E2A/B, E3 and E4) are indicated by gray bars. Late genes (L1 to L5), indicated by black bars, are produced by alternative splicing of a transcript produced from the major late promoter (MLP) and all contain the tripartite leader (1, 2, 3) at their 5' ends.

Figure 13 shows the homologous recombination protocol utilized to recover pMRKAd6E1-.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

An enhanced means for generating an immune response against human immunodeficiency virus ("HIV") is described. The disclosed methods employ a combination of recombinant adenovirus gene delivery vehicles of alternative and distinct serotypes in the administration of exogenous genetic material encoding an HIV antigen (or antigens) of interest. In accordance with the methods of the instant invention, a priming dose of the HIV antigen(s) is first delivered with a recombinant adenoviral vector of a first serotype. This dose effectively primes the immune response so that, upon subsequent identification of the antigen in the circulating immune system, the immune response is capable of immediately recognizing and responding to the antigen within the host. The priming dose(s) is then followed up with a boosting dose of a second and different adenovirus serotype comprising exogenous genetic material encoding the antigen. In one aspect of the instant invention, a mammalian host is first administered a priming dose(s) comprising a recombinant adenoviral vector of serotype 5 or 6 and then administered a subsequent boosting dose(s) comprising a recombinant adenoviral vector of a different serotype (i.e., a serotype other than that used in the priming administration; examples, but not limitations of which include Ad35. Very specific embodiments encompassed herein are wherein (1) an Ad5-primed response is boosted with a recombinant Ad6 vehicle comprising an HIV antigen; (2) an Ad6-primed response is boosted with a recombinant Ad5 vehicle comprising an HIV antigen; (3) an Ad5/Ad6-primed response is boosted with a recombinant, Ad35-based vehicle; and (4) an Ad35-primed response is boosted with a recombinant, an Ad5/Ad6-based vehicle. As relates to HIV antigens, administration in accordance with the methods of the instant invention results in a significant non-additive synergistic effect which notably increases the immune response seen in inoculated mammalian hosts. The effects are particularly evident in the cellular immune responses generated following inoculation. The 30 disclosed immunization regime, thus, offers a prophylactic advantage to previously uninfected individuals and can offer a therapeutic effect to reduce viral load levels in those already infected with the virus, thus prolonging the asymptomatic phase of HIV-1 infection.

Accordingly, the instant invention relates to a method for inducing an enhanced immunological response against an HIV-1 antigen in a mammalian host comprising the steps of (a) inoculating the mammalian host with a recombinant adenoviral vector of a first serotype at least partially deleted in E1 and devoid of E1 activity comprising a gene encoding an HIV-1 antigen or immunologically relevant modification thereof; and thereafter (b) inoculating the mammalian host with a boosting immunization comprising a recombinant adenovirus vector of a second and distinct serotype at least partially deleted in E1 and devoid of E1 activity comprising a gene encoding an HIV-1 antigen or immunologically relevant modification thereof. Preferred embodiments of the instant invention employ adenoviral vectors which are replication-defective by reason of having a deletion in the E1 region which renders the vector devoid (or essentially devoid) of E1 activity. Adenovirus serotype 5 has been found to be a very effective adenovirus vehicle for purposes of effectuating sufficient expression of exogenous genetic material encoding HIV-specific antigens in order to provide for sufficient priming of the mammalian host immune response. It has further been found and disclosed herein that recombinant adenovirus serotype 6 is capable of very effectively boosting the adenovirus serotype 5-primed response. In an alternative scenario, recombinant adenovirus serotype 5 can be used to boost an adenovirus serotype 6-primed response. These findings have also been demonstrated with adenovirus vehicles of different subgroups, for instance, Ad5/6-prime (subgroup C)/Ad35-boost (subgroup B).

10

15

25

The wildtype adenovirus serotype 5 sequence is known and described in the art; see, Chroboczek et al., 1992 J. Virology 186:280, which is hereby incorporated by reference. Accordingly, a particular embodiment of the instant invention is an immunization scheme employing an adenovirus vehicle based on the wildtype adenovirus serotype 5 sequence in the priming or boosting administration; a virus of which is on deposit with the American Type Culture Collection ("ATCC") under ATCC Deposit No. VR-5. One of skill in the art can, however, readily identify alternative and distinct adenovirus serotypes (e.g., serotypes 2, 4, 6, 12, 16, 17, 24, 31, 33, and 42) and incorporate same in the disclosed heterologous prime-boost immunization schemes. The sequence of adenovirus serotype 6 (ATCC Deposit No. VR-6) is extremely homologous (approximately 98%) at the nucleic acid level to the approximate 36 kb sequences. The genomic organization of Ad6 is also very similar;

see Figure 12. Chimeric Ad5/Ad6 constructs which retain the scrotype-determining epitopes of cither Ad5 or Ad6 are also suitable for use in the instant invention; provided that the scrotype determining epitopes are distinct from the adenovirus vehicle used in combination therewith (i.e., that the determinants are distinct from the vehicle used in the priming dose if the chimera is utilized in the boosting dose, and vice versa). It is important to the overall functioning of the disclosed methods that the serotypes of the priming and boosting vectors be distinct.

Recombinant adenoviral vectors comprising deletions additional to that contained within the region of El are also contemplated for use within the methods of the instant invention. For example, vectors comprising deletions in both El and E3 are contemplated for use within the methods of the instant invention. Such a vector can accommodate a larger amount of foreign DNA (or exogenous genetic material).

10

15

20

25

30

Adenoviral vectors of use in the methods of the instant invention can be constructed using known techniques, such as those reviewed in Hitt et al., 1997 "Human Adenovirus Vectors for Gene Transfer into Mammalian Cells" Advances in Pharmacology 40:137-206, which is hereby incorporated by reference. Often, a plasmid or shuttle vector is generated which comprises sequence from the specific adenovirus of interest. This process is described in Hitt et al., supra.

Adenoviral pre-plasmids (e.g., pMRKAd5gag and pMRKAd6gag) can be generated by homologous recombination using adenovirus backbones (e.g., MRKAd5HVB3 and pMRKAd6EL-, an Ad6 genome plasmid) and the appropriate shuttle vector. The resultant plasmids in linear form, are capable of replication after entering the PER.C6® cells or other complementing cell line, and virus is produced. The infected cells and media are then harvested after viral replication is complete.

Viral vectors can be propagated in various E1 complementing cell lines, including the known cell lines 293 and PER.C6®. Both these cell lines express the adenoviral E1 gene product. PER.C6® is described in WO 97/00326 (published January 3, 1997) and issued U.S. Patent No. 6,033,908, both of which are hereby incorporated by reference. It is a primary human retinoblast cell line transduced with an E1 gene segment that complements the production of replication deficient (FG) adenovirus, but is designed to prevent generation of replication competent adenovirus by homologous recombination. Cells of particular interest have been stably transformed with a transgene that encodes the ADSE1A and E1B gene, like PER.C6®, from 459 by to 3510 by inclusive. 293 cells are described in Graham et al., 1977 J.

Gen. Virol 36:59-72, which is hereby incorporated by reference. As stated above, due consideration must be given to the adenoviral sequences present in the complementing cell line used. It is preferred that the sequences not overlap with that present in the vector if the possibility of recombination is to be minimized.

5

10

15

The recombinant adenoviral vectors of use in the instant invention comprise a gene encoding any antigen, but particularly, an HIV-1 antigen or an immunologically relevant modification thereof. HIV antigens of interest include, but are not limited to, the major structural proteins of HIV such as Gag, Pol, and Env, immunologically relevant modifications, and immunogenic portions thereof. The invention, thus, encompasses the various forms of codon-optimized HIV-1 gag (including but by no means limited to p55 versions of codon-optimized full length ("FL") Gag and tPA-Gag fusion proteins), HIV-1 pol, HIV-1 nef, HIV-1 env, and selected modifications of immunological relevance.

Exogenous genetic material encoding a protein of interest may exist in the form of an expression cassette. A gene expression cassette preferably comprises (a) a nucleic acid encoding a protein of interest; (b) a heterologous (non-native) or modified native promoter operatively linked to the nucleic acid encoding the protein; and (c) a transcription termination sequence.

The transcriptional promoter is preferably recognized by an eukaryotic RNA polymerase. In a preferred embodiment, the promoter is a "strong" or "efficient" 20 promoter. An example of a strong promoter is the immediate early human cytomegalovirus promoter (Chapman et al, 1991 Nucl. Acids Res. 19:3979-3986, which is incorporated by reference); in certain embodiments without intronic sequences. Specific embodiments of the instant invention employ human CMV promoters without intronic sequences, like intron A. Applicants have found that 25 intron A, a portion of the human cytomegalovirus promoter (hCMV), constitutes a region of instability for adenoviral vectors. CMV without intron A has been found to effectuate comparable expression capabilities in vitro when driving HIV gag expression and, furthermore, behaved equivalently to intron A-containing constructs in Balb/c mice in vivo with respect to their antibody and T-cell responses at both 30 dosages of plasmid DNA tested (20 µg and 200 µg). Those skilled in the art will appreciate that any of a number of other known promoters, such as the strong immunoglobulin, or other eukaryotic gene promoters may also be used, including the EF1 alpha promoter, the murine CMV promoter, Rous sarcoma virus (RSV)

10

15

20

25

30

In accordance with the methods of the instant invention, the expression of exogenous HIV genetic material should elicit potent and broad cellular immune responses against HIV that will either lessen the likelihood of persistent virus infection and/or lead to the establishment of a clinically significant lowered virus load subject to HIV infection or in combination with HAART therapy, mitigate the effects of previously established HIV infection (antiviral immunotherapy(ARI)). While any HIV antigen (e.g., gag, pol, nef, gp160, gp41, gp120, tat, rev, etc.) may be incorporated into the recombinant adenoviral vectors of use in the instant invention. preferred embodiments include the codon optimized p55 gag antigen, pol and nef. The adenoviral vehicles of the instant invention can utilize heterologous nucleic acid which may or may not be codon-optimized. In specific embodiments of the instant invention, the individual can be primed with an adenoviral vector comprising codonoptimized heterologous nucleic acid, and boosted with an adenovirus of an alternative serotype comprising non-codon-optimized nucleic acid. Administration of multiple antigens possesses the possibility for exploiting various different combinations of codon-optimized and non-codon-optimized sequences.

Sequences based on different Clades of HIV-1 are suitable for use in the instant invention, most preferred of which are Clade B and Clade C. Particularly preferred embodiments are those sequences (especially, codon-optimized sequences) based on consensus Clade B sequences. Preferred versions of the viral vaccines will encode modified versions of pol or nef. Preferred embodiments of the viral vaccines

carrying HIV envelope genes and modifications thereof comprise the HIV codonoptimized env sequences of PCT International Applications PCT/US97/02294 and PCT/US97/10517, published August 28, 1997 (WO 97/31115) and December 24, 1997, respectively: both documents of which are hereby incomporated by reference.

5

10

15

Sequences for many genes of many HIV strains are publicly available in GENBANK and primary, field isolates of HIV are available from the National Institute of Allergy and Infectious Diseases (NIAID) which has contracted with Quality Biological (Gaithersburg, MD) to make these strains available. Strains are also available from the World Health Organization (WHO), Geneva Switzerland. It is preferred that the gag gene be from an HIV-1 strain (CAM-1; Myers et al, eds. "Human Retroviruses and AIDS: 1995, IIA3-IIA19, which is hereby incorporated by reference). This gene closely resembles the consensus amino acid sequence for the clade B (North American/European) sequence. Therefore, it is within the purview of the skilled artisan to choose an appropriate nucleotide sequence which encodes a specific HIV gag antigen, or immunologically relevant portion thereof. A clade B or clade C based p55 gag antigen will potentially be useful on a global scale. A

clade C based p55 gag antigen will potentially be useful on a global scale. A transgene of choice for insertion into the vectors utilized within the disclosed methods is a codon-optimized version of p55 gag.

In addition to a simple HTV antigen of interest being delivered by the

20 recombinant adenoviral vectors, two or more antigens can be delivered either via separate vehicles or delivered via the same vehicle. For instance, a priming dose in accordance with the instant invention can comprise a recombinant adenoviral vector of a first serotype comprising genes encoding both nef and pol or, alternatively, two or more alternative HIV-1 antigens. The boosting dose could then comprise a 25 recombinant adenoviral vector of a second and different serotype comprising the genes encoding both nef and pol (or whichever two or more HIV-1 antigens were used in the priming dose). In an alternative scenario, the priming dose can comprise a mixture of separate adenoviral vehicles each comprising a gene encoding for a different HIV-1 antigen. In such a case, the boosting dose could also comprise a 30 mixture of vectors each comprising a gene encoding for a separate HTV-1 antigen, provided that the boosting dose(s) administers recombinant viral vectors comprising genetic material encoding for the same or a similar set of antigens that were delivered in the priming dose(s). These divalent (e.g., gag and nef, gag and pol, or pol and nef components, for instance) or trivalent (e.g., gag, pol and nef components, for instance)

vaccines can further be administered by a combination of the techniques described above. Therefore, a preferred aspect of the present invention are the various vaccine formulations that can be administered by the methods of the instant invention. It is also within the scope of the present invention to embark on combined modality regimes which include multiple but distinct components from a specific antigen. The disclosed immunization regimes employing fusion constructs composed of two or more antigens are also encompassed herein. For example, multiple HIV-1 viral antigens may be ligated into a proper shuttle plasmid for generation of a pre-viral plasmid comprising multiple open reading frames. For example a trivalent vector may comprise a gag-pol-nef fusion, or possible a "2+1" divalent vaccine comprising, for instance, a gag-pol fusion (e.g.,, a codon optimized p55 gag and inactivated optimized pol) with each open reading frame being operatively linked to a distinct promoter and transcription termination sequence. Alternatively, the two open reading frames in the same construct may be operatively linked to a single promoter, with the open reading frames operatively linked by an internal ribosome entry sequence (IRES), as disclosed in International Publication No. WO 95/24485, which is hereby incorporated by reference. In the absence of the use of IRES-based technology, it is preferred that a distinct promoter be used to support each respective open reading frame, so as to best preserve vector stability. As examples, and certainly not as limitations, potential multiple transgene vaccines may include a three transgene vector such as that wherein a gagpol fusion and nef gene were included in the same vector with different promoters and termination sequences being used for the gagpol fusion and nef gene. Further, potential "2+1" divalent vaccines of the present invention might be wherein a construct containing gag and nef in the same construct with separate promoters and termination sequences is administered in combination with a construct comprising a pol gene with promoter and termination sequence. Fusion constructs other than the gag-pol fusion described above are also suitable for use in various divalent vaccine strategies and can be composed of any two HIV antigens fused to one another (e.g.,, nef-pol and gag-nef). These compositions are, as above, preferably delivered along with a viral composition comprising an additional HIV antigen in order to diversify the immune response generated upon inoculation. Therefore, a multivalent vaccine delivered in a single, or possibly second, viral vector is certainly contemplated as part of the present invention. It is important to note,

10

15

20

25

30

however, that in terms of deciding on an insert for the disclosed viral vectors, due

consideration must be given to the effective packaging limitations of the viral vehicle.

Adenovirus, for instance, has been shown to exhibit an upper cloning capacity limit of approximately 105% of the wildtype Ad5 sequence.

Regardless of the gene chosen for expression, it is preferred that the sequence be "optimized" for expression in a mammalian (e.g., human) cellular environment, particularly in the adenoviral constructs. A "triplet" codon of four possible nucleotide bases can exist in 64 variant forms. That these forms provide the message for only 20 different amino acids (as well as transcription initiation and termination) means that some amino acids can be coded for by more than one codon. Indeed, some amino acids have as many as six "redundant", alternative codons while some others have a 10 single, required codon. For reasons not completely understood, alternative codons are not at all uniformly present in the endogenous DNA of differing types of cells and there appears to exist variable natural hierarchy or "preference" for certain codons in certain types of cells. As one example, the amino acid leucine is specified by any of six DNA codons including CTA, CTC, CTG, CTT, TTA, and TTG (which 15 correspond, respectively, to the mRNA codons, CUA, CUC, CUG, CUU, UUA and UUG). Exhaustive analysis of genome codon frequencies for microorganisms has revealed endogenous DNA of E. coli most commonly contains the CTG leucinespecifying codon, while the DNA of yeast and slime molds most commonly includes a TTA leucine-specifying codon. In view of this hierarchy, it is generally held that 20 the likelihood of obtaining high levels of expression of a leucine-rich polypeptide by an E. coli host will depend to some extent on the frequency of codon use. For example, a gene rich in TTA codons will in all probability be poorly expressed in E. coli, whereas a CTG rich gene will probably highly express the polypeptide. Similarly, when yeast cells are the projected transformation host cells for expression 2.5 of a leucine-rich polypeptide, a preferred codon for use in an inserted DNA would be TTA.

The implications of codon preference phenomena on recombinant DNA techniques are manifest, and the phenomenon may serve to explain many prior failures to achieve high expression levels of exogenous genes in successfully transformed host organisms—a less "preferred" codon may be repeatedly present in the inserted gene and the host cell machinery for expression may not operate as efficiently. This phenomenon suggests that synthetic genes which have been designed to include a projected host cell's preferred codons provide a preferred form of foreign

genetic material for practice of recombinant DNA techniques. Thus, one aspect of this invention is a vaccine administration protocol wherein the recombinant adenoviral vectors (prime and boost vectors) specifically include a gene which is codon optimized for expression in a human cellular environment. As noted herein, a preferred gene for use in the instant invention is a codon-optimized HIV gene and, particularly, HIV gag, pol, env, or nef although, as stated above, the adenoviral vehicles of the instant invention can utilize heterologous nucleic acid which may or may not be codon-optimized. In specific embodiments of the instant invention, the individual can be primed with an adenoviral vector comprising codon-optimized heterologous nucleic acid, and boosted with an adenovirus of an alternative serotype comprising non-codon-optimized nucleic acid. Administration of multiple antigens possesses the possibility for exploiting various different combinations of codon-optimized and non-codon-optimized sequences.

10

30

A vaccine composition comprising the recombinant viral vectors either in the 15 priming or boosting dose in accordance with the instant invention may contain physiologically acceptable components, such as buffer, normal saline or phosphate buffered saline, sucrose, other salts and polysorbate. One preferred formulation has: 2.5-10 mM TRIS buffer, preferably about 5 mM TRIS buffer; 25-100 mM NaCl, preferably about 75 mM NaCl; 2.5-10% sucrose, preferably about 5% sucrose; 0.01 -2 mM MgCl₂; and 0.001%-0.01% polysorbate 80 (plant derived). The pH should range 20 from about 7.0-9.0, preferably about 8.0. One skilled in the art will appreciate that other conventional vaccine excipients may also be used it make the formulation. The preferred formulation contains 5mM TRIS, 75 mM NaCl, 5% sucrose, 1mM MgCl₂, 0.005% polysorbate 80 at pH 8.0. This has a pH and divalent cation composition 25 which is near the optimum for Ad5 and Ad6 stability and minimizes the potential for adsorption of virus to a glass surface. It does not cause tissue irritation upon intramuscular injection. It is preferably frozen until use.

The amount of viral particles in the vaccine composition to be introduced into a vaccine recipient will depend on the strength of the transcriptional and translational promoters used and on the immunogenicity of the expressed gene product. In general, an immunologically or prophylactically effective dose of $1x10^7$ to $1x10^{12}$ particles and preferably about $1x10^{10}$ to $1x10^{11}$ particles is administered directly into muscle tissue. Subcutaneous injection, intradermal introduction, impression through the skin, and other modes of administration such as intraperitoneal, intravenous, or inhalation

delivery are also contemplated. Parenteral administration, such as intravenous, intramuscular, subcutaneous or other means of administration of interleukin-12 protein, concurrently with or subsequent to parenteral introduction of the vaccine compositions of this invention is also advantageous.

5

10

15

20

25

30

The administration schemes of the instant invention are based on the priming of the immune response with an adenoviral vehicle of a first scrotype comprising a gene encoding an HIV antigen (or antigens) and, following a predetermined length of time, boosting the adenovirus-primed response with an adenoviral vehicle of a second and alternative serotype comprising the gene encoding the HIV antigen(s). Multiple primings, typically, 1-4, are usually employed, although more may be used. The length of time between prime and boost may typically vary from about four months to a year, but other time frames may be used. The booster dose may be repeated at selected time intervals.

A large body of human and animal data supports the importance of cellular immune responses, especially CTL in controlling (or eliminating) HIV infection. In humans, very high levels of CTL develop following primary infection and correlate with the control of viremia. Several small groups of individuals have been described who are repeatedly exposed to HIV but remain uninfected; CTL has been noted in several of these cohorts. In the SIV model of HIV infection, CTL similarly develops following primary infection, and it has been demonstrated that addition of anti-CD8 monoclonal antibody abrogated this control of infection and leads to disease progression.

The following non-limiting Examples are presented to better illustrate the invention.

EXAMPLE 1

HIV-1 Gag Gene

A synthetic gene for HIV gag from HIV-1 strain CAM-1 was constructed using codons frequently used in humans; see Korber et al., 1998 Human Retroviruses and AIDS, Los Alamos Nat'l Lab, Los Alamos, New Mexico; and Lathe, R., 1985 J. Mol. Biol. 183:1-12. Figure 2 illustrates the nucleotide sequence of the exemplified optimized codon version of full-length p55 gag. The gag gene of HIV-1 strain CAM-1 was selected as it closely resembles the consensus amino acid sequence for the clade

B (North American/European) sequence (Los Alamos HIV database). Advantage of this "oodon-optimized" HIV gag gene as a vaccine component has been demonstrated in immunogenicity studies in mice. The "codon-optimized" HIV gag gene was shown to be over 50-fold more potent to induce cellular immunity than the wild type HIV gag gene when delivered as a DNA vaccine.

A KOZAK sequence (GCCACC) was introduced proceeding the initiating ATG of the gag gene for optimal expression. The HIV gag fragment with KOZAK sequence was amplified through PCR from V1Ins-HIV gag vector. PVIInsHIV gag is a plasmid comprising the CMV immediate-early (IE) promoter and intron A, a full-length codon-optimized HIV gag gene, a bovine growth hormone-derived polyadenylation and transcriptional termination sequence, and a minimal pUC backbone; see Montgomery et al., 1993 DNA Cell Biol. 12:777-783, for a description of the plasmid backbone.

EXAMPLE 2

Generation of Adenoviral Serotype 5 Vector Constructs

A. Removal of the Intron A Portion of the hCMV Promoter

10

15

25

30

GMP grade pVIJnsHIV gag was used as the starting material to amplify the hCMV promoter. The amplification was performed with primers suitably positioned to flank the hCMV promoter. A 5' primer was placed upstream of the Msc1 site of the hCMV promoter and a 3' primer (designed to contain the Bg/II recognition sequence) was placed 3' of the hCMV promoter. The resulting PCR product (using high fidelity Taq polymerase) which encompassed the entire hCMV promoter (minus intron A) was cloned into TOPO PCR blunt vector and then removed by double digestion with Msc1 and Bg/II. This fragment was then cloned back into the original GMP grade pVIJnsHIV/gag plasmid from which the original promoter, intron A, and the gag gene were removed following Msc1 and Bg/II digestion. This ligation reaction resulted in the construction of a hCMV promoter (minus intron A) + bGHpA expression cassette within the original pVIJnsHIVgag vector backbone. This vector is designated pVIJnsCMV(no intron).

The FLgag gene was excised from pV IJnsHIVgag using $Bg\Pi$ digestion and the 1,526 bp gene was gel purified and cloned into pVIJnsCMV(no intron) at the $Bg\Pi$ site. Colonies were screened using Smal restriction enzymes to identify clones that carried the FLgag gene in the correct orientation. This plasmid, designated

pVIJnsCMV(no intron)-FLgag-bGHpA, was fully sequenced to confirm sequence integrity.

B. Construction of the Modified Shuttle Vector - "MRKpdelE1 Shuttle"

10

20

25

The modifications to the original Ad5 shuttle vector (pdeIE1sp1A; a vector comprising Ad5 sequences from base pairs 1-341 and 3524-5798, with a multiple cloning region between nucleotides 341 and 3524 of Ad5, included the following three manipulations carried out in sequential cloning steps as follows:

- (1) The left ITR region was extended to include the Pac1 site at the junction between the vector backbone and the adenovirus left ITR sequences. This allow for easier manipulations using the bacterial homologous recombination system.
- (2) The packaging region was extended to include sequences of the wild-type (WT) adenovirus from 342 bp to 450 bp inclusive.
- (3) The area downstream of pIX was extended 13 nucleotides (i.e., nucleotides 3511-3523 inclusive).
- 15 These modifications (Figure 4) effectively reduced the size of the E1 deletion without overlapping with any part of the E1A/E1B gene present in the transformed PER.C6[®] cell line. All manipulations were performed by modifying the Ad shuttle vector pdelE1sp1A.

Once the modifications were made to the shuttle vector, the changes were incorporated into the original Ad5 adenovector backbone pAdHVE3 by bacterial homologous recombination using *E. coli* BJ\$183 chemically competent cells.

C. Construction of Modified Adenovector Backbone

An original adenovector pADHVE3 (comprising all Ad5 sequences except those nucleotides encompassing the E1 region) was reconstructed so that it would

contain the modifications to the E1 region. This was accomplished by digesting the newly modified shuttle vector (MRKpdelE1 shuttle) with Pacl and BstZ1101 and isolating the 2,734 bp fragment which corresponds to the adenovirus sequence. This fragment was co-transformed with DNA from Cla1 linearized pAdHVE3 (E3+adenovector) into E. coli BJ5183 competent cells. At least two colonies from the

transformation were selected and grown in $Terrific^{DM}$ broth for 6-8 hours until turbidity was reached. DNA was extracted from each cell pellet and then transformed into $E.\ coli\ XL1$ competent cells. One colony from the transformation was selected and grown for plasmid DNA purification. The plasmid was analyzed by restriction digestions to identify correct clones. The modified adenovector was designated

MRKpAdHVE3 (E3+ plasmid). Virus from the new adenovector (MRKHVE3) as well as the old version were generated in the PER.C6® cell lines. In addition, the multiple cloning site of the original shuttle vector contained ClaI, BamHI, Xho I, EcoRV, HindIII, Sal I, and Bgl II sites. This MCS was replaced with a new MCS containing Not I, Cla I, EcoRV and Asc I sites. This new MCS has been transferred to the MRKpAdHVE3 pre-plasmid along with the modification made to the packaging region and pIX gene.

D. Construction of the new shuttle vector containing modified gag transgene – "MRKpdelE1-CMV(no intron)-FLgag-bGHpA"

The modified plasmid pV1InsCMV(no intron)-FLgag-bGHpA was digested with Msc1 overnight and then digested with Sf1 for 2 hours at 50°C. The DNA was then treated with Mungbean nuclease for 30 minutes at 30°C. The DNA mixture was desalted using the Qiaex II kit and then Klenow treated for 30 minutes at 37°C to fully blunt the ends of the transgene fragment. The 2,559 bp transgene fragment was then gel purified. The modified shuttle vector (MRKpdelE1 shuttle) was linearized by digestion with EcoRV, treated with calf intestinal phosphatase and the resulting 6,479 bp fragment was then gel purified. The two purified fragments were then ligated together and several dozen clones were screened to check for insertion of the transgene within the shuttle vector. Diagnostic restriction digestion was performed to identify those clones carrying the transgene in the E1 parallel orientation.

E. Construction of the MRK FG Adenovector

10

15

20

25

30

The shuttle vector containing the HIV-1 gag transgene in the E1 parallel orientation, MRKpdelE1-CMV(no intron)-FLgag-bGHpA, was digested with Pac1. The reaction mixture was digested with Bs/Z171. The 5,291 bp fragment was purified by gel extraction. The MRKpAdHVE3 plasmid was digested with Cla1 overnight at 37°C and gel purified. About 100 ng of the 5,290 bp shuttle +transgene fragment and -100 ng of linearized MRKpAdHVE3 DNA were co-transformed into E. coli BJ5183 chemically competent cells. Several clones were selected and grown in 2 ml Terrific™ broth for 6-8 hours, until turbidity was reached. The total DNA from the cell pellet was purified using Qiagen alkaline lysis and phenol chloroform method. The DNA was precipitated with isopropanol and resuspende in 20 μl dH₂0. A 2 μl aliquot of this DNA was transformed into E. coli XI-1 competent cells. A single colony from the transformation was selected and grown overnight in 3 ml LB +100 μg/ml ampicillin. The DNA was isolated using Qiagen columns. A positive clone

was identified by digestion with the restriction enzyme BstEII which cleaves within the gag gene as well as the plasmid backbone. The pre-plasmid clone is designated MRKpAdHVE3+CMV(no intron)-FLgag-bGHpA and is 37,498 bp in size.

F. Virus generation of an enhanced adenoviral construct — "MRK Ad5 HIV-lgag"

MRK Ad5 HIV-1 gag contains the hCMV(no intron)-FLgag-bGHpA transgene inserted into the new E3+ adenovector backbone, MRKpAdHVE3, in the E1 parallel orientation. We have designated this adenovector MRK Ad5 HIV-1 gag. This construct was prepared as outlined below:

5

10

15

25

30

The pre-plasmid MRKpAdHVE3+CMV(no intron)-FLgag-bGHpA was digested with Pac1 to release the vector backbone and 3.3 μg was transfected by the calcium phosphate method (Amersham Pharmacia Biotech.) in a 6 cm dish containing PER.C6® cells at ~60% confluence. Once CPE was reached (7-10 days), the culture was freeze/thawed three times and the cell debris pelleted. 1 ml of this cell lysate was used to infect into a 6 cm dish containing PER.C6® cells at 80-90% confluence. Once CPE was reached, the culture was freeze/thawed three times and the cell debris pelleted. The cell lysate was then used to infect a 15 cm dish containing PER.C6® cells at 80-90% confluence. This infection procedure was continued and expanded at passage 6. The virus was then extracted from the cell pellet by CsCl method. Two bandings were performed (3-gradient CsCl followed by a continuous CsCl gradient). Following the second banding, the virus was dialyzed in A105 buffer. Viral DNA was extracted using pronase treatment followed by phenol chloroform. The viral DNA was then digested with *HindIII* and radioactively labeled with [33P]dATP. Following gel electrophoresis to separate the digestion products the gel was dried down on Whatman paper and then subjected to autoradiography. The digestion products were compared with the digestion products from the pre-plasmid (that had been digested with Pac1/HindIII prior to labeling). The expected sizes were observed, indicating that the virus had been successfully rescued.

EXAMPLE 3

Generation of Adenoviral Serotype 6 Vector Constructs

A. Construction of Ad6 Pre-Adenovirus Plasmid

An Ad6 based pre-adenovirus plasmid which could be used to generate first generation Ad6 vectors was constructed taking advantage of the extensive sequence

homology (approx. 98%) between Ad5 and Ad6. Homologous recombination was used to clone wtAd6 sequences into a bacterial plasmid.

The general strategy used to recover pAd6E1-E3+ as a bacterial plasmid is illustrated in Figure 7. Cotransformation of BI 5183 bacteria with purified wt Ad6 viral DNA and a second DNA fragment termed the Ad5 ITR cassette resulted in the circularization of the viral genome by homologous recombination. The ITR cassette contains sequences from the right (bp 33798 to 35935) and left (bp 1 to 341 and bp 3525 to 5767) end of the Ad5 genome separated by plasmid sequences containing a bacterial origin of replication and an ampicillin resistance gene. The ITR cassette contains a deletion of E1 sequences from Ad5 342 to 3524. The Ad5 sequences in the ITR cassette regions of homology with the purified Ad6 viral DNA in which recombination can occur.

10

20

Potential clones were screened by restriction analysis and one clone was selected as pAd6E1-E3+. This clone was then sequenced in it entirety. pAd6E1-E3+ contains Ad5 sequences from bp 1 to 341 and from bp 3525 to 5548, Ad6 bp 5542 to 33784, and Ad5 bp 33967 to 35935 (bp numbers refer to the wt sequence for both Ad5 and Ad6). pAd6E1-E3+ contains the coding sequences for all Ad6 virion structural proteins which constitute its serotype specificity.

B. Construction of an Ad6 Pre-Adenovirus Plasmid containing the HIV-1 gag gene
(1) Construction of Adenoviral Shuttle Vector:

The shuttle plasmid MRKpdelE1(Pac/pIX/pack450)+CMVminFL-gag-BGHpA was constructed by inserting a synthetic full-length codon-optimized HIV-1 gag gene into MRKpdelE1(Pac/pIX/pack450)+CMVmin+BGHpA(str.).
MRKpdelE1(Pac/pIX/pack450)+CMVmin+BGHpA(str.) contains Ad5 sequences

25 from bp 1 to 5792 with a deletion of E1 sequences from bp 451 to 3510. The HCMV promoter and BGH pA were inserted into the E1 deletion in an E1 parallel orientation with a unique BgIII site separating them. The synthetic full-length codon-optimized HIV-1 gag gene was obtained from plasmid pV1Jns-HIV-FLgag-opt by BgIII digestion, gel purified and ligated into the BgIII restriction endonuclease site in

30 MRKpdelEI(Pac/pIX/pack450)+CMVmin+BGHpA(str.), generating plasmid MRKpdelEI(Pac/pIX/pack450)+CMVminFL-gag-BGHpA. The genetic structure of MRKpdelEI(Pac/pIX/pack450)+CMVminFL-gag-BGHpA was verified by PCR, restriction enzyme and DNA sequence analyses.

(2) Construction of pre-adenovirus plasmid:

10

15

20

2.5

30

Shuttle plasmid MRKpdelE1(Pac/pIX/pack450)+CMVminFL-gag-BGHpA was digested with restriction enzymes Pac1 and Bst1107I and then co-transformed into E. coli strain BJ5183 with linearized (Clal-digested) adenoviral backbone plasmid, pAd6E1-E3+. The genetic structure of the resulting pMRKAd6gag was verified by restriction enzyme and DNA sequence analysis. The vectors were transformed into competent E. coli XL-1 Blue for large-scale production. The recovered plasmid was verified by restriction enzyme digestion and DNA sequence analysis, and by expression of the gag transgene in transient transfection cell culture.

pMRKAd6gag contains Ad5 bp 1 to 450 and from bp 3511 to 5548, Ad6 bp 5542 to 33784, and Ad5 bp 33967 to 35935 (bp numbers refer to the wt sequence for both Ad5 and Ad6). In the plasmid the viral ITRs are joined by plasmid sequences that contain the bacterial origin of replication and an ampicillin resistance gene.

C. Generation of research-grade recombinant MRKAd6gag

To prepare virus for pre-clinical immunogenicity studies, the pre-adenovirus plasmid pMRKAd6gag was rescued as infectious virus in PER-C6® adherent monolayer cell culture. To rescue infectious virus, 10 µg of pMRKAd6gag was digested with restriction enzyme Pacl (New England Biolabs) and transfected into a 6 cm dish of PER-C6® cells using the calcium phosphate co-precipitation technique (Cell Phect Transfection Kit, Amersham Pharmacia Biotech Inc.). Pacl digestion releases the viral genome from plasmid sequences allowing viral replication to occur after entry into PER-C6® cells. Infected cells and media were harvested after complete viral cytopathic effect (CPE) was observed. The virus stock was amplified by multiple passages in PER-C6® cells. At the final passage virus was purified from the cell pellet by CsCl ultracentrifugation. The identity and purity of the purified virus was confirmed by restriction endonuclease analysis of purified viral DNA and by gag ELISA of culture supermatants from virus infected mammalian cells grown in vitro. For restriction analysis, digested viral DNA was end-labeled with P³³-dATP, size-fractionated by agarose gel electrophoresis, and visualized by autoradiography.

All viral constructs (adenovirus serotypes 5 and 6) were confirmed for Gag expression by Western blot analysis.

EXAMPLE 4

Immunization

Rhesus macaques were between 3-10 kg in weight. In all cases, the total dose of each vaccine was suspended in 1 mL of buffer. The macaques were anesthetized (ketamine/xylazine) and the vaccines were delivered intramuscularly ("i.m.") in 0.5-mL aliquots into both deltoid muscles using tuberculin syringes (Becton-Dickinson, Franklin Lakes, ND). Peripheral blood mononuclear cells (PBMC) were prepared from blood samples collected at several time points during the immunization regimen. All animal care and treatment were in accordance with standards approved by the Institutional Animal Care and Use Committee according to the principles set forth in the Guide for Care and Use of Laboratory Animals, Institute of Laboratory Animal Resources, National Research Council.

EXAMPLE 5

15

20

10

5

ELISPOT Assay

The IFN- γ ELISPOT assays for rhesus macaques were conducted following a previously described protocol (Allen et al., 2001 J. Virol. 75(2):738-749), with some modifications. For antigen-specific stimulation, a peptide pool was prepared from 20-amino acid ("aa") peptides that encompass the entire HIV-1 gag sequence with 10-aa overlaps (Sympep Corp., Dublin, CA). To each well, 50 μ L of $2-4 \times 10^5$ peripheral blood mononuclear cells (PBMCs) were added. The cells were counted using Beckman Coulter Z2 particle analyzer with a lower size cut-off set at 80 femtoliters ("fL"). Either 50 μ L of media or the gag peptide pool at 8 μ g/mL concentration per peptide were added to the PBMC. The samples were incubated at 37°C, 5% CO₂ for 20-24 hrs. Spots were developed accordingly and the plates were processed using custom-built imager and automatic counting subroutine based on the Image-Pro platform (Silver Spring, MD). The counts were normalized to 10^6 cell input.

EXAMPLE 6

30

25

Anti-p24 ELISA

A modified competitive anti-p24 assay was developed using reagents from the Coulter p24 Antigen Assay kit (Beckman Coulter, Fullerton, CA). Briefly, to a 250- μ L serum sample, 20 μ L of Lyse Buffer and 15 μ L of p24 antigen (9.375 pg) from the Coulter kit were added. After mixing, 200 μ L of each sample were added to wells

coated with a mouse anti-p24 mAb from the Coulter kit and incubated for 1.5 hr at 37°C. The wells were then washed and 200 μ L of Biotin Reagent (polyclonal anti-p24-biotin) from the Coulter kit was added to each well. After a 1 hr, 37°C incubation, detection was achieved using strepavidin-conjugated horseradish peroxidase and TMB substrate as described in the Coulter Kit. OD450nm values were recorded. A 7-point standard curve was generated using a serial 2-fold dilution of serum from an HIV-seropositive individual. The lower cut-off for the assay is arbitrarily set at 10 milli Merck units/mL (mMU/mL) defined by a dilution of the seropositive human serum. This cutoff falls at approximately 65% of the maximum bound control signal which corresponds to that obtained with the diluent control only and with no positive analyte.

5

10

EXAMPLE 7

Intracellular Cytokine Staining

To 1 ml of 2 x 106 PBMC/mL in complete RPMI media (in 17x100mm round 15 bottom polypropylene tubes (Sarstedt, Newton, NC)), anti-hCD28 (clone L293, Becton-Dickinson) and anti-hCD49d (clone L25, Becton-Dickinson) monoclonal antibodies were added to a final concentration of 1 µg/mL. For gag-specific stimulation, 10 μL of the peptide pool (at 0.4 mg/mL per peptide) were added. The tubes were incubated at 37 °C for 1 hr., after which 20 µL of 5 mg/mL of brefeldin A (Sigma) were added. The cells were incubated for 16 hours at 37 °C, 5% CO₂, 90% humidity. 4 mL cold PBS/2%FBS were added to each tube and the cells were pelleted for 10 min at 1200 rpm. The cells were re-suspended in PBS/2%FBS and stained (30 min, 4 °C) for surface markers using several fluorescent-tagged mAbs: 20 μL per tube anti-hCD3-APC, clone FN-18 (Biosource); 20 μL anti-hCD8-PerCP, 25 clone SK1 (Becton Dickinson); and 20 µL anti-hCD4-PE, clone SK3 (Becton Dickinson). Sample handling from this stage was conducted in the dark. The cells were washed and incubated in 750 µL 1xFACS Perm buffer (Becton Dickinson) for 10 minutes at room temperature. The cells were pelleted and re-suspended in PBS/2%FBS and 0.1 μg of FITC-anti-hIFN-γ, clone MD-1 (Biosource) was added. 30 After 30 minutes of incubation, the cells were washed and re-suspended in PBS. Samples were analyzed using all four color channels of the Becton Dickinson FACS Calibur instrument. To analyze the data, the low side- and forward-scatter lymphocyte population was initially gated and a common fluorescence cut-off for

cytokine-positive events was used for both $\mathrm{CD4}^*$ and $\mathrm{CD8}^*$ populations, and for both mock and gag-peptide reaction tubes of a sample.

EXAMPLE 8 Results

A. Immunization Regimen

Cohorts of 3-6 rhesus macaques were immunized following homologous and heterologous prime-boost regimens involving MRKAd5 and MRKAd6 vectors expressing the same codon-optimized HIV-1 gag. The immunization schedule is described in Table 1.

Table 1

5

10

15

20

25

30

Group	Prime	Boost (month 6)		
1	10e9 vp MRKAd5-HIVgag at week 0, 4	10e9 vp MRKAd5-HIVgag		
	10e9 vp MRKAd6-HIVgag at week 0, 4	10e9 vp MRKAd6-HIVgag		
- 1	10e9 vp MBKAd5-HIVgag at week 0 4	10e9 pfu MRKAd6-HIVgag		

B. T Cell Immune Responses

Vaccine-induced T cell responses against HIV-1 gag were quantified using IFN-gamma ELISPOT assay against a pool of 20-aa peptides that encompassed the entire protein sequence. The results are shown in Figure 5. They are expressed as the number of spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMCs) that responded to the peptide pool minus the mock control.

The Figure shows the T cell responses induced by two priming immunizations with 10e9 vp MRKAd5-HIVgag followed by a 10e9 vp MRKAd5-HIVgag booster after a long rest (a period of 20-23 weeks; 22 for the MRKAd6-MRKAd6 subjects; 22 for subjects 99D262, 99C117, and 99D227 of the MRKAd5-MRKAd5 group; and 23 for the remaining subjects). Administration of the same dose of MRKAd5 HIV-1 gag at approximately month 6 resulted in slight increases compared to the levels just prior to the boost; the post-boost levels were largely comparable to if not weaker than the peak levels before the boost. This is possibly due to the presence of neutralizing immunity generated against the vector by the first two immunizations. The responses after the boost did not surpass 500 gag-specific T cells per 10e6 PBMC, with a mean of 275 SFC/10e6 PBMC for all 6 monkeys. Similar results were observed when monkeys were given three of 10e9 vp MRKAd6 HIV-1 gag (at 0, 1, 6 months). In two out of the three monkeys, the post-boost levels did not surpass 500 SFC/10e6

PBMC. In contrast, when both modalities are combined in which animals were given two priming doses of 10e9 vp MRKAd5-HIVgag and a single booster shot of 10e9 pfu MRKAd6-HIVgag, the levels of gag-specific T cells increased to peak responses above 1000 SFC/10e6 PBMC for all 3 monkeys. The ability of MRKAd6-HIVgag to boost effectively MRKAd5-gag-primed immune responses more effectively is possibly due to the presence of neutralizing immunity generated against the MRKAd5 vector by the first two immunizations. The ability of Ad6 to boost primed responses was also evident using a lower priming dose of 10⁷ vp of MRKAd5 HIV-1 gag (Figure 6).

PBMCs from the vaccinees of the heterologous MRKAd5 prime-MRKAd6 boost regimen were analyzed for intracellular IFN-y staining after the priming immunizations (wk 13) and after the booster immunizations (wk 31). The assay provided information on the relative amounts of CD4* and CD8* gag-specific T cells in the peripheral blood (Table 2). The results indicated that heterologous prime-boost immunization approach was able to elicit in rhesus macaques both HIV-specific CD4+ and CD8+ T cells.

Table 2.

10

15

			Post Prime		Post Boost		
ſ	Prime	Boost	ID	%CD4+	%CD8+	%CD4+	%CD8+
İ	MRKAd5-HIVgag	MRKAd6-HIVgag	99C216	0.05	0.21	0.10	1.45
-	10^9 vp	10^9 pfu	99C231	0.03	0.10	0.16	1.41
1	wk 0 4	wk 27	99C132	0.00	0.02	0.04	0.15

20 Numbers reflect the percentages of circulating CD3+ lymphocytes that are either gag-specific CD4+ or gag-specific CD8+ cells. Notes when have been adherented. Notes contains an ingen-specific CD4+T cells above background + "Collected at w \$3 instead of wt. 31

25 C. Humoral Immune Responses

The p24-specific antibody titers were determined for each animal at several time points. The geometric mean titers for each cohort were calculated and shown in Figure 10. Two doses of MRKAd5 HIV-1 gag or MRKAd6 HIV-1 gag were able to induce moderate levels of anti-p24 antibodies (about 1000 mMU/mL).

30 Administration of the same viral vector booster resulted in 5-10 fold increase in the humoral immune responses. Boosting MRKAd5 HIV-1 gag primed monkeys with MRKAd6-gag resulted in a comparable in antibody levels. Boosting with the same virus can have its limitations, though, as the effect can be negatively impacted by any

significant neutralizing Ad5-specific activity. The booster effect of a non-matched Ad serotype, by contrast, would not be affected by any pre-existing neutralizing titers directed at Ad5.

EXAMPLE 9

Generation of a Completely Adenoviral Serotype 6 Vector Construct A. Construction of a Completely Ad6 Pre-Adenovirus Plasmid

An Ad6 based pre-adenovirus plasmid derived from Ad6 sequence and not constructed taking advantage of the homology between Ad5 and Ad6 can be generated and used to generate first generation Ad6 vectors. Homologous recombination is used to clone wtAd6 sequences into a bacterial plasmid.

The general strategy used to recover such a pMRKAd6E1- bacterial plasmid is illustrated in Figure 13. Basically, cottansformation of BJ 5183 bacteria with purified wt Ad6 viral DNA and a second DNA fragment termed the Ad6 ITR cassette would effectuate circularization of the viral genome by homologous recombination. The ITR cassette contains sequences from the right (bp 35460 to 35759) and left (bp 1 to 450 and bp 3508 to 3807) end of the Ad6 genome separated by plasmid sequences containing a bacterial origin of replication and an ampicillin resistance gene. These three segments were generated by PCR and cloned sequentially into pNEB193 (a commonly used commercially available cloning plasmid (New England Biolabs cat# N3051S) containing a bacterial origin of replication, ampicillin resistance gene and a multiple cloning site into which the PCR products are introduced), generating pNEBAd6-3 (the ITR cassette). The ITR cassette contains a deletion of E1 sequences from Ad5 451 to 3507. The Ad6 sequences in the ITR cassette provide regions of homology with the purified Ad6 viral DNA in which recombination can occur.

PMRKAd6E1- can then be used to generate first generation Ad6 vectors containing transgenes in E1 as described in the previous example.

EXAMPLE 10 In Vivo Immunogenicity

A. Immunization

5

10

15

20

25

30

Rhesus macaques were between 3-10 kg in weight. In all cases, the total dose of each vaccine was suspended in 1 mL of buffer. The macaques were anesthetized

(ketamine/xylazine) and the vaccines were delivered i.m. in 0.5-mL aliquots into both deltoid muscles using tuberculin syringes (Becton-Dickinson, Franklin Lakes, NJ). Peripheral blood mononuclear cells (PBMC) were prepared from blood samples collected at several time points during the immunization regimen. All animal care and treatment were in accordance with standards approved by the Institutional Animal Care and Use Committee according to the principles set forth in the Guide for Care and Use of Laboratory Animals, Institute of Laboratory Animal Resources, National Research Council.

B. ELISPOT Assay

10

15

20

30

The IFN-y ELISPOT assays for rhesus macaques were conducted following a previously described protocol (Allen et al., 2001 J. Virol, 75(2): 738-749), with some modifications. For antigen-specific stimulation, a peptide pool was prepared from 20aa peptides that encompass the entire HIV-1 gag sequence with 10-aa overlaps (Synpep Corp., Dublin, CA). To each well, 50 μL of 2-4 x 10^5 peripheral blood mononuclear cells (PBMCs) were added; the cells were counted using Beckman Coulter Z2 particle analyzer with a lower size cut-off set at 80 fL. Either 50 uL of media or the gag peptide pool at 8 µg/mL concentration per peptide were added to the PBMC. The samples were incubated at 37°C, 5% CO2 for 20-24 hrs. Spots were developed accordingly and the plates were processed using custom-built imager and automatic counting subroutine based on the ImagePro platform (Silver Spring, MD); the counts were normalized to 106 cell input.

C. Results

Rare Serotype Vaccine Vector as a Heterologous Booster. A cohort of three rhesus macaques was immunized initially with 3 doses (wk 0, 4, 16) of 108 vp of MRKAd5-gag. At wk 59, the animals received a booster vaccine of 1010 vp 25 Ad35\Delgag\Delta E4Ad5Orf6 (an Ad35 virus engineered to contain an E1 deletion (from Ad35 bps 457-3402); and a deletion of E4 Orf6 (from Ad35 bps 31912-34418) substituted with Ad5 Orf6). A separate cohort of naïve animals received a single dose of the booster vaccine. The results of the IFN-y ELISPOT analyses of PBMC collected during the course of the studies are shown in Table 3.

Table 2

Animal	Prime (Wk 0, 4, 16)	Boost (Wk 59)	P	re	Pri	me ^b	Pre-B	post*	Post-8	Baost ⁴
Ailmai	1111116 (1111 14, 10)	,	Mock*	Gag*	Mock_	Gag	Mock	Gag	Mock	Gag
Monkey 11	10° vo MRKAd5-gag	10 ⁹⁹ vp.Ad355E1gag5E4Ad5Od6	0	1	1	153	0	25	3	1120
Mankey 12	10° vo MRKAd5-gag	10 ⁹⁰ vp Ad35∆E1gag∆E4Ad5Orl6	4	6	3	269	0	23	- 1	659
Mankey 13	10 ⁸ vp MRKAd5-gag	10 ⁹¹ vp Ad35AE1gagAE4Ad5Onl6	1	3	3	150	0	10	1	439
Monkey 14	0008	10 [™] vp Ad35∆E1gsg∆E4Ad5Orl6	1	9	ND*	ND	ND	ND	0	20
Monkey 15	0000	10 ^{fC} vp Ad35AE1gagAE4Ad5Orl6	3	3	ND	ND	ND	ND	1	81
		10 ¹⁶ up AdSEAETgrockEAAdSOd8	0	6	ND	ND	ND	ND	0	48

It is apparent that Ad35-based HIV vectors can be utilized to amplify the existing pools of HIV-specific T cells. The increases in the levels of gag-specific 10 T cells from the pre-boost levels to those measured at 4 wks post boost were consistently larger than the levels induced by the same booster vaccine in naïve animals.

Mock, no peptide: gag, 20-mer peptide pool encompassing entire gag sequence Peak response after 2 or 3 doses of the priming vaccine Wk 59

⁴ wks after boost

[&]quot;ND, not determined

WHAT IS CLAIMED IS:

5

 A method for inducing an enhanced immunological response against an HIV-1 antigen in a mammalian host, said method comprising the steps of:

- (a) inoculating the mammalian host with a recombinant adenoviral vector of a first scrotype which is at least partially deleted in E1 and devoid of E1 activity comprising a gene encoding an HIV-1 antigen or immunologically relevant modification thereof; and thereafter
- (b) inoculating the mammalian host with a boosting immunization comprising a recombinant adenoviral vector of a second serotype which is at least partially deleted in E1 and devoid of E1 activity comprising a gene encoding the HIV-1 antigen or immunologically relevant modification thereof.
 - A method in accordance with claim 1 wherein the HIV-1 antigen is
 HIV-1 gag.
- 15 3. A method in accordance with claim 1 wherein the HIV-1 antigen is HIV-1 nef.
 - A method in accordance with claim 1 wherein the HIV-1 antigen is HIV-1 pol.
- A method in accordance with claim 1 wherein at least one gene
 encoding the HIV-1 antigen or immunologically relevant modification thereof comprises codons optimized for expression in a mammalian host.

6. A method in accordance with claim 1 wherein one or more of the recombinant adenoviral vectors comprise a gene expression cassette, said gene expression cassette which comprises:

- (a) a nucleic acid encoding an HIV-1 antigen;
- 5 (b) a heterologous promoter operatively linked to the nucleic acid encoding the antigen; and
 - (c) a transcription termination sequence.

- A method in accordance with claim 6 wherein the gene expression cassette in at least one of the recombinant adenoviral vectors is inserted into the E1 region.
 - A method in accordance with claim 6 wherein the promoter is an immediate early human cytomegalovirus promoter.
- A method in accordance with claim 6 wherein the transcription termination sequence is a bovine growth hormone polyadenylation and transcription
 termination sequence.
 - 10. A method for inducing an enhanced immunological response against an HIV-1 antigen in a mammalian host, said method comprising the steps of:
- (a) inoculating the mammalian host with a recombinant adenoviral vector of scrotype 5 at least partially deleted in E1 and devoid of E1 activity comprising a gene encoding an HIV-1 antigen or immunologically relevant modification thereof; and thereafter
 - (b) inoculating the mammalian host with a boosting immunization comprising a recombinant adenoviral vector of scrotype 6 at least partially deleted in E1 and

devoid of E1 activity comprising a gene encoding the HIV-1 antigen or immunologically relevant modification thereof.

- A method in accordance with claim 10 wherein the recombinant adenoviral vector of step (a) is deleted of base pairs 451-3510.
- 5 12. A method in accordance with claim 10 wherein the recombinant adenoviral vector of step (b) is deleted of base pairs 451-3507.
 - 13. A method in accordance with claim 10 wherein at least one gene encoding the HIV-1 antigen or immunologically relevant modification thereof comprises codons optimized for expression in a mammalian host.
 - A method in accordance with claim 10 wherein the HIV-1 antigen is
 HIV-1 gag.
 - A method in accordance with claim 10 wherein the HIV-1 antigen is
 HIV-1 nef.
 - A method in acccordance with claim 10 wherein the HIV-1 antigen is HIV-1 pol.
 - 17. A method in accordance with claim 10 wherein one or more of the recombinant adenoviral vectors comprise a gene expression cassette, said gene expression cassette which comprises:
 - (a) a nucleic acid encoding an HIV-1 antigen;

10

- 20 (b) a heterologous promoter operatively linked to the nucleic acid encoding the antigen; and
 - (c) a transcription termination sequence.

 $18. \qquad \text{A method in accordance with claim } 17 \text{ wherein the gene expression}$ cassette in at least one of the recombinant adenoviral vectors is inserted into the E1 $\stackrel{\cdot}{\text{region}}.$

 A method in accordance with claim 17 wherein the promoter is an immediate early human cytomegalovirus promoter.

5

10

15

- 20. A method in accordance with claim 17 wherein the transcription termination sequence is a bovine growth hormone polyadenylation and transcription termination sequence.
- 21. A method for inducing an enhanced immunological response against an HIV-1 gag antigen in a mammalian host, said method comprising the steps of:
 - (a) inoculating the mammalian host with a recombinant adenoviral vector of serotype 5 at least partially deleted in E1 and devoid of E1 activity comprising a gene encoding an HIV-1 gag antigen or immunologically relevant modification thereof; and thereafter
 - (b) inoculating the mammalian host with a boosting immunization comprising a recombinant adenoviral vector of serotype 6 at least partially deleted in E1 and devoid of E1 activity comprising a gene encoding the HIV-1 gag antigen or immunologically relevant modification thereof.
- 22. A method for inducing an enhanced immunological response against an HIV-1 antigen in a mammalian host, said method comprising the steps of:
 - (a) inoculating the mammalian host with a recombinant adenoviral vector of scrotype 5 at least partially deleted in E1 and devoid of E1 activity comprising a gene

encoding an HIV-1 antigen or immunologically relevant modification thereof; and

- (b) inoculating the mammalian host with a boosting immunization comprising a recombinant adenoviral vector of serotype 35 at least partially deleted in E1 and devoid of E1 activity comprising a gene encoding the HIV-1 antigen or immunologically relevant modification thereof.
- 23. A method in accordance with claim 22 wherein at least one gene encoding the HIV-1 antigen or immunologically relevant modification thereof comprises codons optimized for expression in a mammalian host.

5

- 10 24. A method in accordance with claim 22 wherein the HIV-1 antigen is HIV-1 gag.
 - $25. \hspace{0.5cm} A \hspace{0.1cm} method \hspace{0.1cm} in \hspace{0.1cm} accordance \hspace{0.1cm} with \hspace{0.1cm} claim \hspace{0.1cm} 22 \hspace{0.1cm} wherein \hspace{0.1cm} the \hspace{0.1cm} HIV\text{--}1 \hspace{0.1cm} antigen \hspace{0.1cm} is \hspace{0.1cm} HIV\text{--}1 \hspace{0.1cm} nef.$
 - A method in accordance with claim 22 wherein the HIV-1 antigen is HIV-1 pol.
 - 27. A method in accordance with claim 22 wherein one or more of the recombinant adenoviral vectors comprise a gene expression cassette, said gene expression cassette which comprises:
 - (a) a nucleic acid encoding an HIV-1 antigen;
- 20 (b) a heterologous promoter operatively linked to the nucleic acid encoding the antigen; and
 - (c) a transcription termination sequence.

28. A method in accordance with claim 27 wherein the gene expression cassette in at least one of the recombinant adenoviral vectors is inserted into the E1 region.

- A method in accordance with claim 27 wherein the promoter is an immediate early human cytomegalovirus promoter.
- A method in accordance with claim 27 wherein the transcription termination sequence is a bovine growth hormone polyadenylation and transcription termination sequence.

ORIGINAL ADENOVECTOR CONSTRUCT:

ORIGINAL HIV-1 gag ADENOVECTOR.

FIG.1

2/70

Sequence of the open reading frame for FL-gag (human codon optimized)

atqqqtqctaggqcttctqtqctqtctggtqgtqaqctggacaaqtqgqaqaaqatcagqctqagqcctggtqq caagaagaagtacaagctaaagcacattgtgtgggcctccagggagctggagaggtttgctgtgaaccctggc agetgaggtccctgtacaacacagtggctaccctgtactgtgtgcaccagaagattgatgtgaaggacaccaag gaggccctggagaagattgaggaggagcagaacaagtccaagaagaaggcccagcaggctgctgctggc acaggcaactccagccaggtgtcccagaactaccccattgtgcagaacctccagggccagatggtgcaccag gccatctcccccggaccctgaatgcctgggtgaaggtggtggaggaggagaaggccttctcccctgaggtgatccc $\verb|catg| ttctctg| cctg| tctg| agggtg| ccacccccagg| acctg| aacaccatgctg| aacaccatgtg| agggc| catc| tctg| tct$ aggetgccatgcagatgctgaaggagaccatcaatgaggaggctgctgagtgggacaggctgcatcctgtgc acgctggccccattgcccccggccagatgagggagcccaggggctctgacattgctggcaccacctccaccct ccaggagcagattggctggatgaccaacaacccccccatccctgtgggggaaatctacaagaggtggatcat $\verb|cccttcagggactatgtggacaggttctacaagaccctgagggctgagcaggcctcccaggaggtgaagaact| \\$ ggatgacagagaccetgetggtgcagaatgccaaccetgactgcaagaccatcetgaaggccetgggccctg ctgccaccctggaggagatgatgacagcctgccagggggtggggggccctggtcacaaggccagggtgctg gctgaggccatgtcccaggtgaccaactccgccaccatcatgatgcagaggggcaacttcaggaaccagag gaagacagtgaagtgcttcaactgtggcaaggtgggccacattgccaagaactgtagggcccccaggaaga ggcaaaatctggccctcccacaagggcaggcctggcaacttcctccagtccaggcctgagcccacagcccct agetgtacccctggcctccctgaggtccctgtttggcaacgacccctcctcccagtaaaataaagcccgggca gat

FIG.2

3/70

DIAGRAMMATIC REPRESENTATION OF THE ORIGINAL HIV-1 GAG TRANSGENE AND THE SERIES OF NEW TRANSGENE CONSTRUCTIONS.

FIG.3

MODIFICATIONS MADE TO THE CURRENT ADENOVECTOR BACKBONE IN THE GENERATION OF THE NEW VECTOR.

3511

FIG.7

	PacI
1	TICTTAATTA ACATCATCAA TAATATACCT TATTITTGGAT TGAAGCCAAT AAGAATTAAT TGTAGTAGTT ATTATATGGA ATAAAACCTA ACTICGGITA
51	ATGATAATGA GGGGGTGGAG TTTGTGACGT GGCGCGGGGC GTGGGAACGG TACTATTACT CCCCCACCTC AAACACTGCA CCGCGCCCCG CACCCTTGCC
101	GGCGGGTGAC GTAGTAGTGT GGCGGAAGTG TGATGTTGCA AGTGTGGCGG CCGCCCACTG CATCATCACA CCGCCTTCAC ACTACAACGT TCACACCGCC
151	AACACATGTA AGCGACGGAT GTGGCAAAAG TGACGTTTTT GGTGTGCGCC TTGTGTACAT TCGCTGCCTA CACCGTTTTC ACTGCAAAAA CCACACGCGG
201	GGTGTACACA GGAAGTGACA ATTTTCGCGC GGTTTTAGGC GGATGTTGTA CCACATGTGT CCTTCACTGT TAAAAGCGCG CCAAAATCCG CCTACAACAT
251	GTAAATTTGG GCGTAACCGA GTAAGATTTG GCCATTTTCG CGGGAAAACT CATTTAAACC CGCATTGGCT CATTCTAAAC CGGTAAAAGC GCCCTTTTGA
301	GAATAAGAGG AAGTGAAATC TGAATAATTT TGTGTTACTC ATAGCGCGTA CTTATTCTCC TTCACTTTAG ACTTATTAAA ACACAATGAG TATCGCGCAT
351	ATATTTGTCT AGGGCCGCG GGACTTTGAC CGTTTACGTG GAGACTCGCC TATAAACAGA TCCCGGCGCC CCTGAAACTG GCAAATGCAC CTCTGAGCGG
401	CAGGTGTTTT TCTCAGGTGT TTTCCGCGTT CCGGGTCAAA GTTGGCGTTT GTCCACAAAA AGAGTCCACA AAAGGCGCAA GGCCCAGTTT CAACCGCAAA
451	TATTATTATA GGCGGCCGCG ATCCATTGCA TACGTTGTAT CCATATCATA ATAATAATAT CCGCCGGCGC TAGGTAACGT ATGCAACATA GGTATAGTAT
501	ATATGTACAT TTATATTGGC TCATGTCCAA CATTACCGCC ATGTTGACAT TATACATGTA AATATAACCG AGTACAGGTT GTAATGGCGG TACAACTGTA
551	TGATTATTGA CTAGTTATTA ATAGTAATCA ATTACGGGGT CATTAGTTCA ACTAATAACT GATCAATAAT TATCATTAGT TAATGCCCCA GTAATCAAGT
601	TAGCCCATAT ATGGAGTTCC GCGTTACATA ACTTACGGTA AATGGCCCGC ATCGGGTATA TACCTCAAGG CGCAATGTAT TGAATGCCAT TTACCGGGCG
651	CTGGCTGACC GCCCAACGAC CCCCGCCCAT TGACGTCAAT AATGACGTAT GACCGACTGG CGGGTTGCTG GGGGCGGGTA ACTGCAGTTA TTACTGCATA
701	GITCCCATAG TAACGCCAAT AGGGACTITC CATTGACGTC AATGGGTGGA CAAGGGTATC ATTGCGGTTA TCCCTGAAAG GTAACTGCAG TTACCCACCT
751	GTATTTACGG TAAACTGCCC ACTTGGCAGT ACATCAAGTG TATCATATGC CATAAATGCC ATTTGACGGG TGAACCGTCA TGTAGTTCAC ATAGTATACG

801	CAAGTACGCC CCCTATTGAC GTCAATGACG GTAAATGGCC CGCCTGGCAT GTTCATGCGG GGGATAACTG CAGTTACTGC CATTTACCGG GCGGACCGTA
851	TATGCCCAGT ACATGACCTT ATGGGACTTT CCTACTTGGC AGTACATCTA ATACGGGTCA TGTACTGGAA TACCCTGAAA GGATGAACCG TCATGTAGAT
901	CGTATTAGTC ATCGCTATTA CCATGGTGAT GCGGTTTTGG CAGTACATCA GCATAATCAG TAGCGATAAT GGTACCACTA CGCCAAAACC GTCATGTAGT
951	ATGGGCGTGG ATAGCGGTTT GACTCACGGG GATTTCCAAG TCTCCACCCC TACCGCACC TATCGCCAAA CTGAGTGCCC CTAAAGGTTC AGAGGTGGGG
1001	ATTGACGTCA ATGGGAGTTT GTTTTGGCAC CAAAATCAAC GGGACTTTCC TAACTGCAGT TACCCTCAAA CAAAACCGTG GTTTTAGTTG CCCTGAAAGG
1051	AAAATGTCGT AACAACTCCG CCCCATTGAC GCAAATGGGC GGTAGGCGTG TTTTACAGCA TTGTTGAGGC GGGGTAACTG CGTTTACCCG CCATCCGCAC
1101	TACGGTGGGA GGTCTATATA AGCAGAGCTC GTTTAGTGAA CCGTCAGATC ATGCCACCCT CCAGATATAT TCGTCTCGAG CAAATCACTT GGCAGTCTAG
1151	GCCTGGAGAC GCCATCCACG CTGTTTTGAC CTCCATAGAA GACACCGGGA CGGACCTCTG CGGTAGGTGC GACAAAACTG GAGGTATCTT CTGTGGCCCT
1201	CCGATCCAGC CTCCGCGGCC GGGAACGGTG CATTGGAACG CGGATTCCCC GGCTAGGTCG GAGGCGCCGG CCCTTGCCAC GTAACCTTGC GCCTAAGGGG
1251	GTGCCAAGAG TGAGATCTAC CATGGGTGCT AGGGCTTCTG TGCTGTCTGG CACGGTTCTC ACTCTAGATG GTACCCACGA TCCCGAAGAC ACGACAGACC
1301	TGGTGAGCTG GACAAGTGGG AGAAGATCAG GCTGAGGCCT GGTGGCAAGA ACCACTCGAC CTGTTCACCC TCTTCTAGTC CGACTCCGGA CCACCGTTCT
1351	AGAAGTACAA GCTAAAGCAC ATTGTGTGGG CCTCCAGGGA GCTGGAGAGG TCTTCATGTT CGATTTCGTG TAACACACCC GGAGGTCCCT CGACCTCTCC
1401	TTTGCTGTGA ACCCTGGCCT GCTGGAGACC TCTGAGGGGT GCAGGCAGAT AAACGACACT TGGGACCGGA CGACCTCTGG AGACTCCCCA CGTCCGTCTA
1451	CCTGGGCCAG CTCCAGCCCT CCCTGCAAAC AGGCTCTGAG GACCTGAGGT GGACCCGGTC GAGGTCGGGA GGGACGTTTG TCCGAGACTC CTCGACTCCA
1501	CCCTGTACAA CACAGTGGCT ACCCTGTACT GTGTGCACCA GAAGATTGAT GGGACATGTT GTGTCACCGA TGGGACATGA CACACGTGGT CTTCTAACTA
1551	GTGAAGGACA CCAAGGAGGC CCTGGAGAAG ATTGAGGAGG AGCAGAACAA CACTTCCTGT GGTTCCTCCG GGACCTCTTC TAACTCCTCC TCGTCTTGTT
1601	GTCCAAGAAG AAGGCCCAGC AGGCTGCTGC TGGCACAGGC AACTCCAGCC CAGGTTCTTC TTCCGGGTCG TCCGACGACG ACCGTGTCCG TTGAGGTCGG

1651	AGGTGTCCCA GAACTACCCC ATTGTGCAGA ACCTCCAGGG CCAGATGGTG
	TCCACAGGGT CTTGATGGGG TAACACGTCT TGGAGGTCCC GGTCTACCAC
1701	CACCAGGCCA TCTCCCCCCG GACCCTGAAT GCCTGGGTGA AGGTGGTGGA GTGGTCCGGT AGAGGGGGGGC CTGGGACTTA CGGACCCACT TCCACCACCT
1751	GGAGAAGGCC TTCTCCCCTG AGGTGATCCC CATGTTCTCT GCCCTGTCTG CCTCTTCCGG AAGAGGGGAC TCCACTAGGG GTACAAGAGA CGGGACAGAC
1801	AGGGTGCCAC CCCCCAGGAC CTGAACACCA TGCTGAACAC AGTGGGGGGC TCCCACGGTG GGGGTCCTG GACTTGTGGT ACGACTTGTG TCACCCCCG
1851	CATCAGGCTG CCATGCAGAT GCTGAAGGAG ACCATCAATG AGGAGGCTGC GTAGTCCGAC GGTACGTCTA CGACTTCCTC TGGTAGTTAC TCCTCCGACG
1901	TGAGTGGAC AGCCTGCATC CTGTGCACGC TGGCCCCATT GCCCCCGGCC ACTCACCCTG TCCGACGTAG GACACGTGCG ACCGGGGTAA CGGGGGCCGG
1951	AGATGAGGGA GCCCAGGGCC TCTGACATTG CTGGCACCAC CTCCACCCTC TCTACTCCT CGGGTCCCCG AGACTGTAAC GACCGTGGTG GAGGTGGGAG
2001	CAGGAGCAGA TTGGCTGGAT GACCAACAAC CCCCCCATCC CTGTGGGGGA GTCCTCGTCT AACCGACCTA CTGGTTGTTG GGGGGGTAGG GACACCCCCT
2051	AATCTACAAG AGGTGGATCA TCCTGGGCCT GAACAAGATT GTGAGGATGT TTAGATGTTC TCCACCTAGT AGGACCCGGA CTTGTTCTAA CACTCCTACA
2101	ACTCCCCCAC CTCCATCCTG GACATCAGGC AGGGCCCCAA GGAGCCCTTC TGAGGGGGTG GAGGTAGGAC CTGTAGTCCG TCCCGGGGTT CCTCGGGAAG
2151	AGGGACTATG TGGACAGGTT CTACAAGACC CTGAGGGCTG AGCAGGCCTC TCCCTGATAC ACCTGTCCAA GATGTTCTGG GACTCCCGAC TCGTCCGGAG
2201	CCAGGAGGTG AAGAACTGGA TGACAGAGAC CCTGCTGGTG CAGAATGCCA GGTCCTCCAC TTCTTGACCT ACTGTCTCTG GGACGACCAC GTCTTACGGT
2251	ACCCTGACTG CAAGACCATC CTGAAGGCCC TGGGCCCTGC TGCCACCCTG TGGGACTGAC GTTCTGGTAG GACTTCCGGG ACCCGGGACG ACGGTGGGAC
2301	GAGGAGATGA TGACAGCCTG CCAGGGGGTG GGGGGCCCTG GTCACAAGGC CTCCTCTACT ACTGTCGGAC GGTCCCCCAC CCCCGGGAC CAGTGTTCCG
2351	CAGGGTGCTG GCTGAGGCCA TGTCCCAGGT GACCAACTCC GCCACCATCA GTCCCACGAC CGACTCCGGT ACAGGGTCCA CTGGTTGAGG CGGTGGTAGT
2401	TGATGCAGAG GGGCAACTTC AGGAACCAGA GGAAGACAGT GAAGTGCTTC ACTACGTCTC CCCGTTGAAG TCCTTGGTCT CCTTCTGTCA CTTCACGAAG
2451	AACTGTGGCA AGGTGGGCCA CATTGCCAAG AACTGTAGGG CCCCCAGGAA TTGACACCGT TCCACCCGGT GTAACGGTTC TTGACATCCC GGGGGTCCTT

2501	GAAGGGCTGC TGGAAGTGTG GCAAGGAGGG CCACCAGATG AAGGACTGCA CTTCCCGACG ACCTTCACAC CGTTCCTCCC GGTGGTCTAC TTCCTGACGT
2551	ATGAGAGGCA GGCCAACTTC CTGGGCAAAA TCTGGCCCTC CCACAAGGGC TACTCTCCGT CCGGTTGAAG GACCCGTTTT AGACCGGGAG GGTGTTCCCG
2601	AGGCCTGGCA ACTTCCTCCA GTCCAGGCCT GAGCCCACAG CCCCTCCCGA TCCGGACCGT TGAAGGAGGT CAGGTCCGGA CTCGGGTGTC GGGGAGGGCT
2651	GGAGTCCTTC AGGTTTGGGG AGGAGAAGAC CACCCCCAGC CAGAAGCAGG CCTCAGGAAG TCCAAACCCC TCCTCTTCTG GTGGGGGTCG GTCTTCGTCC
2701	AGCCCATTGA CAAGGAGCTG TACCCCCTGG CCTCCCTGAG GTCCCTGTTT TCGGGTAACT GTTCCTCGAC ATGGGGGACC GGAGGGACTC CAGGGACAAA
2751	GGCAACGACC CCTCCTCCA GTAAAATAAA GCCCGGGCAG ATCTGCTGTG CCGTTGCTGG GGAGGAGGGT CATTITATTT CGGGCCCGTC TAGACGACAC
2801	CCTTCTAGTT GCCAGCCATC TGTTGTTTGC CCCTCCCCCG TGCCTTCCTT GGAAGATCAA CGGTCGGTAG ACAACAAACG GGGAGGGGGC ACGGAAGGAA
2851	GACCCTGGAA GGTGCCACTC CCACTGTCCT TTCCTAATAA AATGAGGAAA CTGGGACCTT CCACGGTGAG GGTGACAGGA AAGGATTATT TTACTCCTTT
2901	TTGCATCGCA TTGTCTGAGT AGGTGTCATT CTATTCTGGG GGGTGGGGTG
2951	GGGCAGGACA GCAAGGGGGA GGATTTGGGAA GACAATAGCA GGCATGCTGG CCCGTCCTGT CGTTCCCCCT CCTAACCCTT CTGTTATCGT CCGTACGACC
3001	GGATGCGGTG GGCTCTATGG CCGATCGGCG CGCCGTACTG AAATGTGTGG CCTACGCCAC CCGAGATACC GGCTAGCCGC GCGGCATGAC TTTACACACC
3051	GCGTGGCTTA AGGGTGGGAA AGAATATATA AGGTGGGGGT CTTATGTAGT CGCACCGAAT TCCCACCCTT TCTTATATAT TCCACCCCCA GAATACATCA
3101	TTTGTATCTG TTTTGCAGCA GCCGCCGCCG CCATGAGCAC CAACTCGTTT AAACATAGAC AAAACGTCGT CGGCGGCGGC GGTACTCGTG GTTGAGCAAA
3151	GATGGAAGCA TTGTGAGCTC ATATTTGACA ACGCGCATGC CCCCATGGGC CTACCTTCGT AACACTCGAG TATAAACTGT TGCGCGTACG GGGGTACCCG
3201	CGGGGTGCGT CAGAATGTGA TGGGCTCCAG CATTGATGGT CGCCCCGTCC GCCCCACGCA GTCTTACACT ACCCGAGGTC GTAACTACCA GCGGGGCAGG
3251	TGCCCGCAAA CTCTACTACC TTGACCTACG AGACCGTGTC TGGAACGCCG ACGGGCGTTT GAGATGATGG AACTGGATGC TCTGGCACAG ACCTTGCGGC
3301	TTGGAGACTG CAGCCTCCGC CGCCGCTTCA GCCGCTGCAG CCACCGCCCG AACCTCTGAC GTCGGAGGCG GCGGCGAAGT CGGCGACGTC GGTGGCGGGC

0051	CGGGATTGTG ACTGACTTTG CTTTCCTGAG CCCGCTTGCA AACAGTGCAG
3351	GCCCTAACAC TGACTGAAAC GAAAGGACTC GGGCGAACGT TTGTCACGTC
3401	CTTCCCGTTC ATCCGCCCGC GATGACAAGT TGACGGCTCT TTTGGCACAA GAAGGGCAAG TAGGCGGGCG CTACTGTTCA ACTGCCGAGA AAACCGTGTT
3451	TTGGATTCTT TGACCCGGGA ACTTAATGTC GTTTCTCAGC AGCTGTTGGA AACCTAAGAA ACTGGGCCCT TGAATTACAG CAAAGAGTCG TCGACAACCT
3501	TCTGCGCCAG CAGGTTTCTG CCCTGAAGGC TTCCTCCCCT CCCAATGCGG AGACGCGGTC GTCCAAAGAC GGGACTTCCG AAGGAGGGGA GGGTTACGCC
3551	TTTAAAACAT AAATAAAAAA CCAGACTCTG TTTGGATTTG GATCAAGCAA AAATTTTGTA TTTATTTTTT GGTCTGAGAC AAACCTAAAC CTAGTTCGTT
3601	GTGTCTTGCT GTCTTTATTT AGGGGTTTTG CGCGCGCGGT AGGCCCGGGA CACAGAACGA CAGAAATAAA TCCCCCAAAAC GCGCGCGCCA TCCGGGCCCT
3651	CCAGCGGTCT CGGTCGTTGA GGGTCCTGTG TATTTTTTCC AGGACGTGGT GGTCGCCAGA GCCAGCAACT CCCAGGACAC ATAAAAAAGG TCCTGCACCA
3701	AAAGGTGACT CTGGATGTTC AGATACATGG GCATAAGCCC GTCTCTGGGG TTTCCACTGA GACCTACAAG TCTATGTACC CGTATTCGGG CAGAGACCCC
3751	TGGAGGTAGC ACCACTGCAG AGCTTCATGC TGCGGGGTGG TGTTGTAGAT ACCTCCATCG TGGTGACGTC TCGAAGTACG ACGCCCCACC ACAACATCTA
3801	GATCCAGTCG TAGCAGGAGC GCTGGGCGTG GTGCCTAAAA ATGTCTTTCA CTAGGTCAGC ATCGTCCTCG CGACCCGCAC CACGGATTTT TACAGAAAAGT
3851	GTAGCAAGCT GATTGCCAGG GGCAGGCCCT TGGTGTAAGT GTTTACAAAG CATCGTTCGA CTAACGGTCC CCGTCCGGGA ACCACATTCA CAAATGTTTC
3901	CGGTTAAGCT GGGATGGGTG CATACGTGGG GATATGAGAT GCATCTTGGA GCCAATTCGA CCCTACCCAC GTATGCACCC CTATACTCTA CGTAGAACCT
3951	CTGTATTTTT AGGTTGGCTA TGTTCCCAGC CATATCCCTC CGGGGATTCA GACATAAAAA TCCAACCGAT ACAAGGGTCG GTATAGGGAG GCCCCTAAGT
4001	TGTTGTGCAG AACCACCAGC ACAGTGTATC CGGTGCACTT GGGAAATTTG ACAACACGTC TTGGTGGTCG TGTCACATAG GCCACGTGAA CCCTTTAAAC
4051	TCATGTAGCT TAGAAGGAAA TGCGTGGAAG AACTTGGAGA CGCCCTTGTG AGTACATCGA ATCTTCCTTT ACGCACCTTC TTGAACCTCT GCGGGAACAC
4101	ACCTCCAAGA TTTTCCATGC ATTCGTCCAT AATGATGGCA ATGGGCCCAC TGGAGGTTCT AAAAGGTACG TAAGCAGGTA TTACTACCGT TACCCGGGTG
4151	GGGCGGCGCC CTGGGCGAAG ATATTTCTGG GATCACTAAC GTCATAGTTG CCCGCCGCCG GACCCGCTTC TATAAAGACC CTAGTGATTG CAGTATCAAC

4201	TGTTCCAGGA TGAGATCGTC ATAGGCCATT TTTACAAAGC GCGGGCGGAG ACAAGGTCCT ACTCTAGCAG TATCCGGTAA AAATGTTTCG CGCCCGCCTC
4251	GGTGCCAGAC TGCGGTATAA TGGTTCCATC CGGCCCAGGG GCGTAGTTAC CCACGGTCTG ACGCCATATT ACCAAGGTAG GCCGGGTCCC CGCATCAATG
4301	CCTCACAGAT TTGCATTTCC CACGCTTTGA GTTCAGATGG GGGGATCATG GGAGTGTCTA AACGTAAAGG GTGCGAAACT CAAGTCTACC CCCCTAGTAC
4351	TCTACCTGCG GGGCGATGAA GAAAACGGTT TCCGGGGTAG GGGAGATCAG AGATGGACGC CCCGCTACTT CTTTTGCCAA AGGCCCCATC CCCTCTAGTC
4401	CTGGGAAGAA AGCAGGTTCC TGAGCAGCTG CGACTTACCG CAGCCGGTGG GACCCTTCTT TCGTCCAAGG ACTCGTCGAC GCTGAATGGC GTCGGCCACC
4451	GCCCGTAAAT CACACCTATT ACCGGCTGCA ACTGGTAGTT AAGAGAGCTG CGGGCATTTA GTGTGGATAA TGGCCGACGT TGACCATCAA TTCTCTCGAC
4501	CAGCTGCCGT CATCCCTGAG CAGGGGGGCC ACTTCGTTAA GCATGTCCCT GTCGACGCA GTAGGGACTC GTCCCCCCGG TGAAGCAATT CGTACAGGGA
4551	GACTCGCATG TTTTCCCTGA CCAAATCCGC CAGAAGGCGC TCGCCGCCCA CTGAGCGTAC AAAAGGGACT GGTTTAGGCG GTCTTCCGCG AGCGGCGGGT
4601	GCGATAGCAG TTCTTGCAAG GAAGCAAAGT TTTTCAACGG TTTGAGACCG CGCTATCGTC AAGAACGTTC CTTCGTTTCA AAAAGTTGCC AAACTCTGGC
4651	TCCGCCGTAG GCATGCTTTT GAGCGTTTGA CCAAGCAGTT CCAGGCGGTC AGGCGGCATC CGTACGAAAA CTCGCAAACT GGTTCGTCAA GGTCCGCCAG
4701	CCACAGCTCG GTCACCTGCT CTACGGCATC TCGATCCAGC ATATCTCCTC GGTGTCGAGC CACTGGACGA GATGCCGTAG AGCTAGGTCG TATAGAGGAG
4751	GTTTCGCGGG TTGGGGCGGC TTTCGCTGTA CGGCAGTAGT CGGTGCTCGT CAAAGCGCCC AACCCCGCCG AAAGCGACAT GCCGTCATCA GCCACAGACA
4801	CCAGACGGGC CAGGGTCATG TCTTTCCACG GGCGCAGGGT CCTCGTCAGC GGTCTGCCCG GTCCCAGTAC AGAAAGGTGC CCGCGTCCCA GGAGCAGTCG
4851	GTAGTCTGGG TCACGGTGAA GGGGTGCGCT CCGGGCTGCG CGCTGGCCAG CATCAGACCC AGTGCCACTT CCCCACGCGA GGCCCGACGC GCGACCGGTC
4901	CCACGCGAAC TCCGACCAGG ACGACCACGA CTTCGCGACG GCCAGAAGUG
4951	GGACGCGCAG CCGGTCCATC GTAAACTGGT ACCACAGTAT CAGGTCGGGG
5001	TCCGCGGCGT GGCCCTTGGC GCGCAGCTTG CCCTTGGAGG AGGCGCCGCA AGGCGCCGCA CCGGGAACCG CGCGTCGAAC GGGAACCTCC TCCGCGGCGT

5051	CGAGGGGCAG TGCAGACTTT TGAGGGCGTA GAGCTTGGGC GCGAGAAATA GCTCCCCGTC ACGTCTGAAA ACTCCCGCAT CTCGAACCCG CGCTCTTTAT
5101	CCGATTCCGG GGAGTAGGCA TCCGCGCCGC AGGCCCCGCA GACGGTCTCG GGCTAAGGCC CCTCATCCGT AGGCGCGGCG TCCGGGGCGT CTGCCAGAGC
5151	CATTCCACGA GCCAGGTGAG CTCTGGCCGT TCGGGGTCAA AAACCAGGTT GTAAGGTGCT CGGTCCACTC GAGACCGGCA AGCCCCAGTT TTTGGTCCAA
5201	TCCCCCATGC TTTTTGATGC GTTTCTTACC TCTGGTTTCC ATGAGCCGGT AGGGGGTACG AAAAACTACG CAAAGAATGG AGACCAAAGG TACTCGGCCA
5251	GTCCACGCTC GGTGACGAAA AGGCTGTCCG TGTCCCCGTA TACAGACTTG CAGGTGCAGG CCACTGCTTT TCCGACAGGC ACAGGGGCAT ATGTCTGAAC
5301	AGAGGCCTGT CCTCGAGCGG TGTTCCGCGG TCCTCCTCGT ATAGAAACTC TCTCCGGACA GGAGCTCGCC ACAAGGCGCC AGAGGAGCA TATCTTTGAG
5351	GGACCACTCT GAGACAAAGG CTCGCGTCCA GGCCAGCACG AAGGAGGCTA CCTGGTGAGA CTCTGTTTCC GAGCGCAGGT CCGGTCGTGC TTCCTCCGAT
5401	AGTGGGAGGG GTAGCGGTCG TTGTCCACTA GGGGGTCCAC TCGCTCCAGG TCACCCTCCC CATCGCCAGC AACAGGTGAT CCCCCAGGTG AGCGAGGTCC
5451	GTGTGAAGAC ACATGTCGCC CTCTTCGGCA TCAAGGAAGG TGATTGGTTT CACACTTCTG TGTACAGCGG GAGAAGCCGT AGTTCCTTCC ACTAACCAAA
5501	GTAGGTGTAG GCCACGTGAC CGGGTGTTCC TGAAGGGGGG CTATAAAAGG CATCCACATC CGGTGCACTG GCCCACAAGG ACTTCCCCCC GATATTTTCC
55 51	GGGTGGGGGC GCGTTCGTCC TCACTCTCTT CCGCATCGCT GTCTGCGAGG CCCACCCCCG CGCAAGCAGG AGTGAGAGAA GGCGTAGCGA CAGACGCTCC
5601	GCCAGCTGTT GGGGTGAGTA CTCCCTCTGA AAAGCGGGCA TGACTTCTGC CGGTCGACAA CCCCACTCAT GAGGGAGACT TTTCGCCCGT ACTGAAGACG
5651	GCTAAGATTG TCAGTTTCCA AAAACGAGGA GGATTTGATA TTCACCTGGC CGATTCTAAC AGTCAAAGGT TTTTGCTCCT CCTAAACTAT AAGTGGACCG
5701	CCGCGGTGAT GCCTTTGAGG GTGGCCGCAT CCATCTGGTC AGAAAAGACA GGCGCCACTA CGGAAACTCC CACCGGCGTA GGTAGACCAG TCTTTTCTGT
5751	ATCTTTTTGT TGTCAAGCTT GGTGGCAAAC GACCCGTAGA GGGCGTTGGA TAGAAAAACA ACAGTTCGAA CCACCGTTTG CTGGGCATCT CCCGCAACCT
5801	GTCGTTGAAC CGCTACCTCG CGTCCCAAAC CAAAAACAGC GCTAGCCGCG
5851	GCTCCTTGGC CGCGATGTTT AGCTGCACGT ATTCGCGCGC AACGCACCGC CGAGGAACCG GCGCTACAAA TCGACGTGCA TAAGCGCGCG TTGCGTGGCG

5901	CATTCGGGAA	AGACGGTGGT	GCGCTCGTCG	GGCACCAGGT	GCACGCGCCA
	GTAAGCCCTT	TCTGCCACCA	CGCGAGCAGC	CCGTGGTCCA	CGTGCGCGGT
5951	ACCGCGGTTG	TGCAGGGTGA	CAAGGTCAAC	GCTGGTGGCT	ACCTCTCCGC
	TGGCGCCAAC	ACGTCCCACT	GTTCCAGTTG	CGACCACCGA	TGGAGAGGCG
6001	GTAGGCGCTC	GTTGGTCCAG	CAGAGGCGGC	CGCCCTTGCG	CGAGCAGAAT
	CATCCGCGAG	CAACCAGGTC	GTCTCCGCCG	GCGGGAACGC	GCTCGTCTTA
6051	GGCGGTAGGG	GGTCTAGCTG	CGTCTCGTCC	GGGGGGTCTG	CGTCCACGGT
	CCGCCATCCC	CCAGATCGAC	GCAGAGCAGG	CCCCCCAGAC	GCAGGTGCCA
6101	AAAGACCCCG	GGCAGCAGGC	GCGCGTCGAA	GTAGTCTATC	TTGCATCCTT
	TTTCTGGGGC	CCGTCGTCCG	CGCGCAGCTT	CATCAGATAG	AACGTAGGAA
6151	GCAAGTCTAG	CGCCTGCTGC	CATGCGCGGG	CGGCAAGCGC	GCGCTCGTAT
	CGTTCAGATC	GCGGACGACG	GTACGCGCCC	GCCGTTCGCG	CGCGAGCATA
6201		GGGGACCCCA CCCCTGGGGT			
6251	CATGCCGCAA	ATGTCGTAAA	CGTAGAGGGG	CTCTCTGAGT	ATTCCAAGAT
	GTACGGCGTT	TACAGCATTT	GCATCTCCCC	GAGAGACTCA	TAAGGTTCTA
6301	ATGTAGGGTA	GCATCTTCCA	CCGCGGATGC	TGGCGCGCAC	GTAATCGTAT
	TACATCCCAT	CGTAGAAGGT	GGCGCCTACG	ACCGCGCGTG	CATTAGCATA
6351	AGTTCGTGCG	AGGGAGCGAG	GAGGTCGGGA	CCGAGGTTGC	TACGGGCGGG
	TCAAGCACGC	TCCCTCGCTC	CTCCAGCCCT	GGCTCCAACG	ATGCCCGCCC
6401	CTGCTCTGCT	CGGAAGACTA	TCTGCCTGAA	GATGGCATGT	GAGTTGGATG
	GACGAGACGA	GCCTTCTGAT	AGACGGACTT	CTACCGTACA	CTCAACCTAC
6451	ATATGGTTGG	ACGCTGGAAG	ACGTTGAAGC	TGGCGTCTGT	GAGACCTACC
	TATACCAACC	TGCGACCTTC	TGCAACTTCG	ACCGCAGACA	CTCTGGATGG
6501	GCGTCACGCA	CGAAGGAGGC	GTAGGAGTCG	CGCAGCTTGT	TGACCAGCTC
	CGCAGTGCGT	GCTTCCTCCG	CATCCTCAGC	GCGTCGAACA	ACTGGTCGAG
6551	GGCGGTGACC	TGCACGTCTA	GGGCGCAGTA	GTCCAGGGTT	TCCTTGATGA
	CCGCCACTGG	ACGTGCAGAT	CCCGCGTCAT	CAGGTCCCAA	AGGAACTACT
6601	TGTCATACTT	ATCCTGTCCC	TTTTTTTCC	ACAGCTCGCG	GTTGAGGACA
	ACAGTATGAA	TAGGACAGGG	AAAAAAAAAGG	TGTCGAGCGC	CAACTCCTGT
6651	AACTCTTCGC	GGTCTTTCCA	GTACTCTTGG	ATCGGAAACC	CGTCGGCCTC
	TTGAGAAGCG	CCAGAAAGGT	CATGAGAACC	TAGCCTTTGG	GCAGCCGGAG
6701	CGAACGGTAA	GAGCCTAGCA	TGTAGAACTG	GTTGACGGCC	TGGTAGGCGC
	GCTTGCCATT	CTCGGATCGT	ACATCTTGAC	CAACTGCCGG	ACCATCCGCG

FIG.9A-8

6751	AGCATCCCTT TTCTACGGGT AGCGCGTATG CCTGCGCGGC CTTCCGGAGC TCGTAGGGAA AAGATGCCCA TCGCGCATAC GGACGCGCCG GAAGGCCTCG
6801	GAGGTGTGGG TGAGCGCAAA GGTGTCCCTG ACCATGACTT TGAGGTACTG CTCCACACCC ACTCGCGTTT CCACAGGGAC TGGTACTGAA ACTCCATGAC
6851	GTATTTGAAG TCAGTGTCGT CGCATCCGCC CTGCTCCCAG AGCAAAAAGT CATAAACTTC AGTCACAGCA GCGTAGGCGG GACGAGGGTC TCGTTTTTCA
6901	CCGTGCGCTT TTTGGAACGC GGATTTGGCA GGGCGAAGGT GACATCGTTG GGCACGCGAA AAACCTTGCG CCTAAACCGT CCCGCTTCCA CTGTAGCAAC
6951	AAGAGTATCT TTCCCGCGCG AGGCATAAAG TTGCGTGTGA TGCGGAAGGG TTCTCATAGA AAGGGCGCGC TCCGTATTTC AACGCACACT ACGCCTTCCC
7001	TCCCGGCACC TCGGAACGGT TGTTAATTAC CTGGGCGGCG AGCACGATCT AGGGCCGTGG AGCCTTGCCA ACAATTAATG GACCCGCCGC TCGTGCTAGA
7051	CGTCAAAGCC GTTGATGTTG TGGCCCACAA TGTAAAGTTC CAAGAAGCGC GCAGTTTCGG CAACTACAAC ACCGGGTGTT ACATTTCAAG GTTCTTCGCG
7101	GGGATGCCCT TGATGGAAGG CAATTTTTTA AGTTCCTCGT AGGTGAGCTC CCCTACGGGA ACTACCTTCC GTTAAAAAAT TCAAGGAGCA TCCACTCGAG
7151	TTCAGGGGAG CTGAGCCCGT GCTCTGAAAG GGCCCAGTCT GCAAGATGAG AAGTCCCCTC GACTCGGGCA CGAGACTTTC CCGGGTCAGA CGTTCTACTC
7201	GGTTGGAAGC GACGAATGAG CTCCACAGGT CACGGGCCAT TAGCATTTGC CCAACCTTCG CTGCTTACTC GAGGTGTCCA GTGCCCGGTA ATCGTAAACG
7251	AGGTGGTCGC GAAAGGTCCT AAACTGGCGA CCTATGGCCA TTTTTTCTGG TCCACCAGCG CTTTCCAGGA TTTGACCGCT GGATACCGGT AAAAAAGACC
7301	GGTGATGCAG TAGAAGGTAA GCGGGTCTTG TTCCCAGCGG TCCCATCCAA CCACTACGTC ATCTTCCATT CGCCCAGAAC AAGGGTCGCC AGGGTAGGTT
7351	GGTTCGCGGC TAGGTCTCGC GCGGCAGTCA CTAGAGGCTC ATCTCCGCCG CCAAGCGCCG ATCCAGAGCG CGCCGTCAGT GATCTCCGAG TAGAGGCGGC
7401	AACTTCATGA CCAGCATGAA GGGCACGAGC TGCTTCCCAA AGGCCCCCAT TTGAAGTACT GGTCGTACTT CCCGTGCTCG ACGAAGGGTT TCCGGGGGTA
7451	CCAAGTATAG GTCTCTACAT CGTAGGTGAC AAAGAGACGC TCGGTGCGAG GGTTCATATC CAGAGATGTA GCATCCACTG TTTCTCTGCG AGCCACGCTC
7501	CTACGCTCGG CTAGCCCTTC TTGACCTAGA GGGCGGTGGT TAACCTCCTC
7551	TGGCTATTGA TGTGGTGAAA GTAGAAGTCC CTGCGACGGG CCGAACACTC ACCGATAACT ACACCACTTT CATCTTCAGG GACGCTGCCC GGCTTGTGAG

7601	GTGCTGGCTT TTGTAAAAC GTGCGCAGTA CTGGCAGCGG TGCACGGGCT CACGACCGAA AACATTTTTG CACGCGTCAT GACCGTCGCC ACGTGCCCGA
7651	GTACATCCTG CACGAGGTTG ACCTGACGAC CGCGCACAAG GAAGCAGAGT CATGTAGGAC GTGCTCCAAC TGGACTGCTG GCGCGTGTTC CTTCGTCTCA
7701	GGGAATTTGA GCCCCTCGCC TGGCGGGTTT GGCTGGTGGT CTTCTACTTC CCCTTAAACT CGGGGAGCGG ACCGCCCAAA CCGACCACCA GAAGATGAAG
7751	GGCTGCTTGT CCTTGACCGT CTGGCTGCTC GAGGGGGAGTT ACGGTGGATC CCGACGAACA GGAACTGGCA GACCGACGAG CTCCCCTCAA TGCCACCTAG
7801	GGACCACCAC GCCGCGCGAG CCCAAAGTCC AGATGTCCGC GCGCGGCGGT CCTGGTGGTG CGGCGCGCCC GGGTTTCAGG TCTACAGGCG CGCCGCCA
7851	CGGAGCTTGA TGACAACATC GCGCAGATGG GAGCTGTCCA TGGTCTGGAG GCCTCGAACT ACTGTTGTAG CGCGTCTACC CTCGACAGGT ACCAGACCTC
7901	CTCCCGCGGC GTCAGGTCAG GCGGGAGCTC CTGCAGGTTT ACCTCGCATA GAGGGCGCCG CAGTCCAGTC
7951	GACGGGTCAG GGCGCGGGCT AGATCCAGGT GATACCTAAT TTCCAGGGGC CTGCCCAGTC CCGCGCCCGA TCTAGGTCCA CTATGGATTA AAGGTCCCCG
8001	TGGTTGGTGG CGGCGTCGAT GGCTTGCAAG AGGCCGCATC CCCGCGGCGC ACCAACCACC GCCGCAGCTA CCGAACGTTC TCCGGCGTAG GGGCGCCGCG
8051	GACTACGGTA CCGCGCGGCG GGCGGTGGGC CGCGGGGGTG TCCTTGGATG CTGATGCCAT GGCGCGCCCC CCGCCACCCG GCGCCCCCAC AGGAACCTAC
8101	ATGCATCTAA AAGCGGTGAC GCGGGCGAGC CCCCGGAGGT AGGGGGGGCT TACGTAGATT TTCGCCACTG CGCCCGCTCG GGGGCCTCCA TCCCCCCCGA
8151	CCGGACCCGC CGGGAGAGGG GGCAGGGGCA CGTCGGCGGC GCGCGCGGGC GGCCTGGGCG GCCCTCTCCC CCGTCCCCGT GCAGCCGCGG CGCGCCCCG
8201	AGGAGCTGGT GCTGCGCGC TAGGTTGCTG GCGAACGCGA CGACGCGGCG TCCTCGACCA CGACGCGCGC ATCCAACGAC CGCTTGCGCT GCTGCGCCGC
8251	GTTGATCTCC TGAATCTGGC GCCTCTGCGT GAAGACGACG GGCCCGGTGA CAACTAGAGG ACTTAGACCG CGGAGACGCA CTTCTGCTGC CCGGGCCACT
8301	GCTTGAACCT GAAAGAGAGT TCGACAGAAT CAATTTCGGT GTCGTTGACG CGAACTTGGA CTTTCTCTCA AGCTGTCTTA GTTAAAGCCA CAGCAACTGC
8351	GCGGCCTGGC GCAAAATCTC CTGCACGTCT CCTGAGTTGT CTTGATAGGC CGCCGGACCG CGTTTTAGAG GACGTGCAGA GGACTCAACA GAACTATCCG
8401	GATCTCGGCC ATGAACTGCT CGATCTCTTC CTCCTGGAGA TCTCCGCGTC CTAGAGCCGG TACTTGACGA GCTAGAGAAG GAGGACCTCT AGAGGCGCAG

8451	CGGCTCGCTC CACGGTGGCG GCGAGGTCGT TGGAAATGCG GGCCATGAGC GCCGAGCGAG GTGCCACCGC CGCTCCAGCA ACCTTTACGC CCGGTACTCG
8501	TGCGAGAAGG CGTTGAGGCC TCCCTCGTTC CAGACGCGGC TGTAGACCAC ACGCTCTTCC GCAACTCCGG AGGGAGCAAG GTCTGCGCCG ACATCTGGTG
8551	GCCCCCTTCG GCATCGCGGG CGCGCATGAC CACCTGCGCG AGATTGAGCT CGGGGGAAGC CGTAGCGCCC GCGCGTACTG GTGGACGCGC TCTAACTCGA
8601	CCACGTGCCG GGCGAAGACG GCGTAGTTTC GCAGGCGCTG AAAGAGGTAGGGTGCACGGC CCGCTTCTGC CGCATCAAAG CGTCCGCGAC TTTCTCCATC
8651	TTGAGGGTGG TGGCGGTGTG TTCTGCCACG AAGAAGTACA TAACCCAGCG AACTCCCACC ACCGCCACAC AAGACGGTGC TTCTTCATGT ATTGGGTCGC
8701	TCGCAACGTG GATTCGTTGA TATCCCCCAA GGCCTCAAGG CGCTCCATGG AGCGTTGCAC CTAAGCAACT ATAGGGGGTT CCGGAGGTTCC GCGAGGTACC
8751	CCTCGTAGAA GTCCACGGCG AAGTTGAAAA ACTGGGAGTT GCGCGCCGAC GGAGCATCTT CAGGTGCCGC TTCAACTTTT TGACCCTCAA CGCGCGGCTG
8801	ACGGTTAACT CCTCCTCAG AAGACGGATG AGCTCGGCGA CAGTGTCGCG TGCCAATTGA GGAGGAGGTC TTCTGCCTAC TCGAGCCGCT GTCACAGCGC
8851	CACCTCGCGC TCAAAGGCTA CAGGGGCCTC TTCTTCTTCT TCAATCTCCT GTGGAGCGCG AGTTTCCGAT GTCCCCGGAG AAGAAGAAGA AGTTAGAGGA
8901	CTTCCATAAG GGCCTCCCCT TCTTCTTCTT CTGGCGGCGG TGGGGGAGGG GAAGGTATTC CCGGAGGGGA AGAAGAAGAA GACCGCCGCC ACCCCCCCC
8951	GGGACACGGC GGCGACGACG GCGCACCGGG AGGCGGTCGA CAAAGCGCTC CCCTGTGCCG CCGCTGCTGC CGCGTGGCCC TCCGCCAGCT GTTTCGCGAG
9001	GATCATCTCC CCGCGGCGAC GGCGCATGGT CTCGGTGACG GCGCGGCCGT CTAGTAGAGG GGCGCCGCTG CCGCGTACCA GAGCCACTGC CGCGCCGGCA
9051	TCTCGCGGGG GCGCAGTTGG AAGACGCCGC CCGTCATGTC CCGGTTATGG AGAGCGCCCC CGCGTCAACC TTCTGCGGCG GGCAGTACAG GGCCAATACC
9101	GTTGGCGGGG GGCTGCCATG CGGCAGGGAT ACGCCGCTAA CGATGCATCT CAACCGCCCC CCGACGGTAC GCCGTCCCTA TGCCGCGATT GCTACGTAGA
9151	CAACAATTGT TGTGTAGGTA CTCCGCCGCC GAGGGACCTG AGCGAGTCCG GTTGTTAACA ACACATCCAT GAGGCGGCGG CTCCCTGGAC TCGCTCAGGC
9201	CATCGACCGG ATCGGAAAAC CTCTCGAGAA AGGCGTCTAA CCAGTCACAG GTAGCTGGCC TAGCCTTTTG GAGAGCTCTT TCCGCAGATT GGTCAGTGTC
9251	TCGCAAGGTA GGCTGAGCAC CGTGGCGGGC GGCAGCGGCC GGCGGTCGGG AGCGTTCCAT CCGACTCGTG GCACCGCCCG CCGTCGCCCG CCGCCAGCCC

9301	GTTGTTTCTG GCGGAGGTGC TGCTGATGAT GTAATTAAAG TAGGCGGTCT CAACAAAGAC CGCCTCCACG ACGACTACTA CATTAATTTC ATCCGCCAGA
9351	TGAGACGGCG GATGGTCGAC AGAAGCACCA TGTCCTTGGG TCCGGCCTGC ACTCTGCCGC CTACCAGCTG TCTTCGTGGT ACAGGAACCC AGGCCGGACG
9401	TGAATGCGCA GGCGGTCGGC CATGCCCCAG GCTTCGTTTT GACATCGGCG ACTTACGCGT CCGCCAGCCG GTACGGGGTC CGAAGCAAAA CTGTAGCCGC
9451	CAGGICTITG TAGTAGTCTT GCATGAGCCT TTCTACCGGC ACTTCTTCTT GTCCAGAAAC ATCATCAGAA CGTACTCGGA AAGATGGCCG TGAAGAAGAA
9501	CTCCTTCCTC TTGTCCTGCA TCTCTTGCAT CTATCGCTGC GGCGGCGGCG GAGGAAGGAG AACAGGACGT AGAGAACGTA GATAGCGACG CCGCCGCCGC
9551	GAGTITIGGCC GTAGGTGGCG CCCTCTTCCT CCCATGCGTG TGACCCCGAA CTCAAACCGG CATCCACCGC GGGAGAAGGA GGGTACGCAC ACTGGGGCTT
9601	GCCCCTCATC GGCTGAAGCA GGGCTAGGTC GGCGACAACG CGCTCGGCTA CGGGGAGTAG CCGACTTCGT CCCGATCCAG CCGCTGTTGC GCGAGCCGAT
9651	ATATGGCCTG CTGCACCTGC GTGAGGGTAG ACTGGAAGTC ATCCATGTCC TATACCGGAC GACGTGGACG CACTCCCATC TGACCTTCAG TAGGTACAGG
9701	ACAAAGCGGT GGTATGCGCC CGTGTTGATG GTGTAAGTGC AGTTGGCCAT TGTTTCGCCA CCATACGCGG GCACAACTAC CACATTCACG TCAACCGGTA
9751	AACGGACCAG TTAACGGTCT GGTGACCCGG CTGCGAGAGC TCGGTGTACC TTGCCTGGTC AATTGCCAGA CCACTGGGCC GACGCTCTCG AGCCACATGG
9801	TGAGACGCGA GTAAGCCCTC GAGTCAAATA CGTAGTCGTT GCAAGTCCGC ACTCTGCGCT CATTCGGGAG CTCAGTTTAT GCATCAGCAA CGTTCAGGCG
9851	ACCAGGTACT GGTATCCCAC CAAAAAGTGC GGCGGCGGCT GGCGGTAGAG TGGTCCATGA CCATAGGGTG GTTTTTCACG CCGCCGCCGA CCGCCATCTC
9901	GGGCCAGCGT AGGGTGGCCG GGGCTCCGGG GGCGAGATCT TCCAACATAA CCCGGTCGCA TCCCACCGGC CCCGAGGCCC CCGCTCTAGA AGGTTGTATT
9951	GGCGATGATA TCCGTAGATG TACCTGGACA TCCAGGTGAT GCCGGCGGCG CCGCTACTAT AGGCATCTAC ATGGACCTGT AGGTCCACTA CGGCCGCCGC
10001	GTGGTGGAGG CGCGCGGAAA GTCGCGGACG CGGTTCCAGA TGTTGCGCAG CACCACCTCC GCGCGCCTTT CAGCGCCTGC GCCAAGGTCT ACAACGCGTC
10051	CGGCAAAAAG TGCTCCATGG TCGGGACGCT CTGGCCGGTC AGGCGCCGCG GCCGTTTTTC ACGAGGTACC AGCCCTGCGA GACCGGCCAG TCCGCGCGCG
10101	AATCGTTGAC GCTCTAGACC GTGCAAAAGG AGAGCCTGTA AGCGGGCACT TTAGCAACTG CGAGATCTGG CACGTTTTCC TCTCGGACAT TCGCCCGTGA

	Y =
10151	CTTCCGTGGT CTGGTGGATA AATTCGCAAG GGTATCATGG CGGACGACCG GAAGGCACCA GACCACCTAT TTAAGCGTTC CCATAGTACC GCCTGCTGGC
10201	GGGTTCGAGC CCCGTATCCG GCCGTCCGCC GTGATCCATG CGGTTACCGC CCCAAGCTCG GGGCATAGGC CGGCAGGCGG CACTAGGTAC GCCAATGGCG
10251	CCGCGTGTCG AACCCAGGTG TGCGACGTCA GACAACGGGG GAGTGCTCCT GGCGCACAGC TTGGGTCCAC ACGCTGCAGT CTGTTGCCCC CTCACGAGGA
10301	TTTGGCTTCC TTCCAGGCGC GGCGGCTGCT GCGCTAGCTT TTTTGGCCAC AAACCGAAGG AAGGTCCGCG CCGCCGACGA CGCGATCGAA AAAACCGGTG
10351	TGGCCGCGC CAGCGTAAGC GGTTAGGCTG GAAAGCGAAA GCATTAAGTG ACCGGCGCGC GTCGCATTCG CCAATCCGAC CTTTCGCTTT CGTAATTCAC
10401	GCTCGCTCCC TGTAGCCGGA GGGTTATTTT CCAAGGGTTG AGTCGCGGGA CGAGCGAGG ACATCGGCCT CCCAATAAAA GGTTCCCAAC TCAGCGCCCT
10451	CCCCCGGTTC GAGTCTCGGA CCGCCCGGAC TGCGGCGAAC GGGGGTTTGC GGGGGCCAAG CTCAGAGCCT GGCCGGCCTG ACGCCGCTTG CCCCCAAACG
10501	CTCCCCGTCA TGCAAGACCC CGCTTGCAAA TTCCTCCGGA AACAGGGACG GAGGGCAGT ACGTTCTGGG GCGAACGTTT AAGGAGGCCT TTGTCCCTGC
10551	AGCCCCTTTT TTGCTTTTCC CAGATGCATC CGGTGCTGCG GCAGATGCGC TCGGGGAAAA AACGAAAAGG GTCTACGTAG GCCACGACGC CGTCTACGCG
10601	CCCCCTCCTC AGCAGCGGCA AGAGCAAGAG CAGCGGCAGA CATGCAGGGC GGGGGAGGAG TCGTCGCCGT TCTCGTTCTC GTCGCCGTCT GTACGTCCCG
10651	ACCCTCCCCT CCTCCTACCG CGTCAGGAGG GGCGACATCC GCGGTTGACG TGGGAGGGGA GGAGGATGGC GCAGTCCTCC CCGCTGTAGG CGCCAACTGC
10701	CGGCAGCAGA TGGTGATTAC GAACCCCCGC GGCGCCGGGC CCGGCACTAC GCCGTCGTCT ACCACTAATG CTTGGGGGCG CCGCGGCCCG GGCCGTGATG
10751	CTGGACTTGG AGGAGGGGA GGGCCTGGCG CGGCTAGGAG CGCCCTCTCC GACCTGAACC TCCTCCCGCT CCCGGACCGC GCCGATCCTC GCGGGAGAGG
10801	TGAGCGGCAC CCAAGGGTGC AGCTGAAGCG TGATACGCGT GAGGCGTACG ACTCGCCGTG GGTTCCCACG TCGACTTCGC ACTATGCGCA CTCCGCATGC
10851	TGCCGCGGCA GAACCTGTTT CGCGACCGC AGGGAGAGGA GCCCGAGGAG ACGGCGCGT CTTGGACAAA GCGCTGGCGC TCCCTCTCCT CGGGCTCCTC
10901	ATGCGGGATC GAAAGTTCCA CGCAGGGCGC GAGCTGCGGC ATGGCCTGAA TACGCCCTAG CTTTCAAGGT GCGTCCCGCG CTCGACGCCG TACCGGACTT
10951	TCGCGAGCGG TTGCTGCGC AGGAGGACTT TGAGCCCGAC GCGCGAACCG AGCGCTCGCC AACGACGCGC TCCTCCTGAA ACTCGGGCTG CGCGCTTGGC

11001	GGATTAGTCC CGCGCGCGCA CACGTGGCGG CCGCCGACCT GGTAACCGCA CCTAATCAGG GCGCGCGCGT GTGCACCGCC GGCGGCTGGA CCATTGGCGT
11051	TACGAGCAGA CGGTGAACCA GGAGATTAAC TITCAAAAAA GCTTTAACAA ATGCTCGTCT GCCACTTGGT CCTCTAATTG AAAGTTTTTT CGAAATTGTT
11101	CCACGTGCGT ACGCTTGTGG CGCGCGAGGA GGTGGCTATA GGACTGATGC GGTGCACGCA TGCGAACACC GCGCGCTCCT CCACCGATAT CCTGACTACG
11151	ATCTGTGGGA CTTTGTAAGC GCGCTGGAGC AAAACCCAAA TAGCAAGCCG TAGACACCCT GAAACATTCG CGCGACCTCG TTTTGGGTTT ATCGTTCGGC
11201	CTCATGGCGC AGCTGTTCCT TATAGTGCAG CACAGCAGGG ACAACGAGGC GAGTACCGCG TCGACAAGGA ATATCACGTC GTGTCGTCCC TGTTGCTCCG
11251	ATTCAGGGAT GCGCTGCTAA ACATAGTAGA GCCCGAGGGC CGCTGGCTGC TAAGTCCCTA CGCGACGATT TGTATCATCT CGGGCTCCCG GCGACCGACG
11301	TCGATTTGAT AAACATCCTG CAGAGCATAG TGGTGCAGGA GCGCAGCTTG AGCTAAACTA TTTGTAGGAC GTCTCGTATC ACCACGTCCT CGCGTCGAAC
11351	AGCCTGGCTG ACAAGGTGGC CGCCATCAAC TATTCCATGC TTAGCCTGGG TCGGACCGAC TGTTCCACCG GCGGTAGTTG ATAAGGTACG AATCGGACCC
11401	CAAGTTTTAC GCCCGCAAGA TATACCATAC CCCTTACGTT CCCATAGACA GTTCAAAATG CGGGCGTTCT ATATGGTATG GGGAATGCAA GGGTATCTGT
11451	AGGAGGTAAA GATCGAGGGG TTCTACATGC GCATGGCGCT GAAGGTGCTT TCCTCCATTT CTAGCTCCCC AAGATGTACG CGTACCGCGA CTTCCACGAA
11501	ACCTTGAGCG ACGACCTGGG CGTTTATCGC AACGAGCGCA TCCACAAGGC TGGAACTCGC TGCTGGACCC GCAAATAGCG TTGCTCGCGT AGGTGTTCCG
11551	CGTGAGCGTG AGCCGGCGGC GCGAGCTCAG CGACCGCGAG CTGATGCACA GCACTCGCAC TCGGCCGCCG CGCTCGAGTC GCTGGCGCTC GACTACGTGT
11601	GCCTGCAAAG GGCCCTGGCT GGCACGGGCA GCGGCGATAG AGAGGCCGAG CGGACGTTTC CCGGGACCGA CCGTGCCCGT CGCCGCTATC TCTCCGGCTC
11651	AGGATGAAAC TGCGCCCGCG ACTGGACGCG ACCCGGGGTT CGGCTGCGCG
11701	GGACCTCCGT CGACCCCGGC CTGGACCCGA CCGCCACCGT GGGCGCGCGC
11751	GACCGTTGCA GCCGCCGCAC CTCCTTATAC TGCTCCTGCT ACTCATGCTC
11801	CCAGAGGACG GCGAGTACTA AGCGGTGATG TITCTGATCA GATGATGCAA GGTCTCCTGC CGCTCATGAT TCGCCACTAC AAAGACTAGT CTACTACGTT

11851	GACGCAACGG ACCCGGCGGT GCGGGCGGCG CTGCAGAGCC AGCCGTCCGG CTGCGTTGCC TGGGCCGCCA CGCCCGCCGC GACGTCTCGG TCGGCAGGCC
11901	CCTTAACTCC ACGGACGACT GGCGCCAGGT CATGGACCGC ATCATGTCGC GGAATTGAGG TGCCTGCTGA CCGCGGTCCA GTACCTGGCG TAGTACAGCG
11951	TGACTGCGCG CAATCCTGAC GCGTTCCGGC AGCAGCCGCA GGCCAACCGG ACTGACGCGC GTTAGGACTG CGCAAGGCCG TCGTCGGCGT CCGGTTGGCC
12001	CTCTCCGCAA TTCTGGAAGC GGTGGTCCCG GCGCGCGCAA ACCCCACGCA GAGAGGCGTT AAGACCTTCG CCACCAGGGC CGCGCGCGTT TGGGGTGCGT
12051	CGAGAAGGTG CTGGCGATCG TAAACGCGCT GGCCGAAAAC AGGGCCATCC GCTCTTCCAC GACCGCTAGC ATTTGCGCGA CCGGCTTTTG TCCCGGTAGG
12101	GGCCCGACGA GGCCGGCCTG GTCTACGACG CGCTGCTTCA GCGCGTGGCT CCGGGCTGCT CCGGCCGGAC CAGATGCTGC GCGACGAAGT CGCGCACCGA
12151	CGTTACAACA GCGGCAACGT GCAGACCAAC CTGGACCGGC TGGTGGGGGA GCAATGTTGT CGCCGTTGCA CGTCTGGTTG GACCTGGCCG ACCACCCCCT
12201	TETECGCEGAG GCCGTGGCGC AGCGTGAGCG CGCGCAGCAG CAGGGCAACC ACACGCGCTC CGGCACCGCG TCGCACTCGC GCGCGTCGTC GTCCCGTTGG
12251	TGGGCTCCAT GGTTGCACTA AACGCCTTCC TGAGTACACA GCCCGCCAAC ACCCGAGGTA CCAACGTGAT TTGCGGAAGG ACTCATGTGT CGGGCGGTTG
12301	GTGCCGCGGG GACAGGAGGA CTACACCAAC TITGTGAGCG CACTGCGGCT CACGGCGCCC CTGTCCTCCT GATGTGGTTG AAACACTCGC GTGACGCCGA
12351	AATGGTGACT GAGACACCGC AAAGTGAGGT GTACCAGTCT GGGCCAGACT TTACCACTGA CTCTGTGGCG TTTCACTCCA CATGGTCAGA CCCGGTCTGA
12401	ATTITITCCA GACCAGTAGA CAAGGCCTGC AGACCGTAAA CCTGAGCCAG TAAAAAAGGT CTGGTCATCT GTTCCGGACG TCTGGCATTT GGACTCGGTC
12451	GCTTTCAAAA ACTTGCAGGG GCTGTGGGGG GTGCGGGCTC CCACAGGCGA CGAAAGTTTT TGAACGTCCC CGACACCCCC CACGCCCGAG GGTGTCCGCT
12501	CCGCGCACC GTGTCTAGCT TGCTGACGCC CAACTCGCGC CTGTTGCTGC GGCGCGCTGG CACAGATCGA ACGACTGCGG GTTGAGCGCG GACAACGACG
12551	TGCTAATAGC GCCCTTCACG GACAGTGGCA GCGTGTCCCG GGACACATAC ACGATTATCG CGGGAAGTGC CTGTCACCGT CGCACAGGGC CCTGTGTATG
12601	CTAGGTCACT TGCTGACACT GTACCGCGAG GCCATAGGTC AGGCGCATGT GATCCAGTGA ACGACTGTGA CATGGCGCTC CGGTATCCAG TCCGCGTACA
12651	GGACGAGCAT ACTITCCAGG AGATTACAAG TGTCAGCCGC GCGCTGGGGC CCTGCTCGTA TGAAAGGTCC TCTAATGTTC ACAGTCGGCG CGCGACCCCG

FIG.9A-15

12701	AGGAGGACAC GGGCAGCCTG GAGGCAACCC TAAACTACCT GCTGACCAAC TCCTCCTGTG CCCGTCGGAC CTCCGTTGGG ATTTGATGGA CGACTGGTTG
12751	CGGCGGCAGA AGATCCCCTC GTTGCACAGT TTAAACAGCG AGGAGGAGCG GCCGCCGTCT TCTAGGGGAG CAACGTGTCA AATTTGTCGC TCCTCCCC
12801	CATTITIGCGC TACGTGCAGC AGAGCGTGAG CCTTAACCTG ATGCGCGACG GTAAAACGCG ATGCACGTCG TCTCGCACTC GGAATTGGAC TACGCGCTGC
12851	GGGTAACGCC CAGCGTGGCG CTGGACATGA CCGCGCGCAA CATGGAACCG CCCATTGCGG GTCGCACCGC GACCTGTACT GGCGCGCGTT GTACCTTGGC
12901	GGCATGTATG CCTCAAACCG GCCGTTTATC AACCGCCTAA TGGACTACTT CCGTACATAC GGAGTTTGGC CGGCAAATAG TTGGCGGATT ACCTGATGAA
12951	GCATCGCGGG GCCGCCGTGA ACCCCGAGTA TTTCACCAAT GCCATCTTGA CGTAGCGCGC CGCCGCACCT TGGGGCTCAT AAAGTGGTTA CGGTAGAACT
13001	ACCCGCACTG GCTACCGCCC CCTGGTTTCT ACACCGGGGG ATTCGAGGTG TGGGCGTGAC CGATGGCGGG GGACCAAAGA TGTGGCCCCC TAAGCTCCAC
13051	CCCGAGGGTA ACGATGGATT CCTCTGGGAC GACATAGACG ACAGCGTGTT GGGCTCCCAT TGCTACCTAA GGAGACCCTG CTGTATCTGC TGTCGCACAA
13101	TTCCCCGCAA CCGCAGACCC TGCTAGAGTT GCAACAGCGC GAGCAGGCAG AAGGGGCGTT GGCGTCTGGG ACGATCTCAA CGTTGTCGCG CTCGTCCGTC
13151	AGGCGGCGCT GCGAAAGGAA AGCTTCCGCA GGCCAAGCAG CTTGTCCGAT TCCGCCGCGA CGCTTTCCTT TCGAAGGCGT CCGGTTCGTC GAACAGGCTA
13201	CTAGGCGCTG CGGCCCCGCG GTCAGATGCT AGTAGCCCAT TTCCAAGCTT GATCCGCGAC GCCGGGGCGC CAGTCTACGA TCATCGGGTA AAGGTTCGAA
13251	GATAGGGTCT CTTACCAGCA CTCGCACCAC CCGCCCGCGC CTGCTGGGCG CTATCCCAGA GAATGGTCGT GAGCGTGGTG GGCGGGCGCG GACGACCCGC
13301	AGGAGGAGTA CCTAAACAAC TCGCTGCTGC AGCCGCAGCG CGAAAAAAAC TCCTCCTCAT GGATTTGTTG AGCGACGACG TCGGCGTCGC GCTTTTTTTG
13351	CTGCCTCCGG CATTTCCCAA CAACGGGATA GAGAGCCTAG TGGACAAGAT GACGGAGGCC GTAAAGGGTT GTTGCCCTAT CTCTCGGATC ACCTGTTCTA
13401	GAGTAGATGG AAGACGTACG CGCAGGAGCA CAGGGACGTG CCAGGCCCGC CTCATCTACC TTCTGCATGC GCGTCCTCGT GTCCCTGCAC GGTCCGGGCG
13451	L GCCCGCCCAC CCGTCGTCAA AGGCACGACC GTCAGCGGGG TCTGGTGTGG CGGGCGGGTG GGCAGCAGTT TCCGTGCTGG CAGTCGCCCC AGACCACACC
1350	1 GAGGACGATG ACTCGGCAGA CGACAGCAGC GTCCTGGATT TGGGAGGGAG CTCCTGCTAC TGAGCCGTCT GCTGTCGTCG CAGGACCTAA ACCCTCCCTC

13551	TGGCAACCCG TTTGCGCACC TTCGCCCCAG GCTGGGGAGA ATGTTTAAA ACCGTTGGGC AAACGCGTGG AAGCGGGGTC CGACCCCTCT TACAAAATTT
13601	AAAAAAAAA GCATGATGCA AAATAAAAAA CTCACCAAGG CCATGGCACC
13651	GAGCGTTGGT TTTCTTGTAT TCCCCTTAGT ATGCGGCGCG CGGCGATGTA CTCGCAACCA AAAGAACATA AGGGGAATCA TACGCCGCGC GCCGCTACAT
13701	TGAGGAAGGT CCTCCTCCT CCTACGAGAG TGTGGTGAGC GCGGCGCCAG ACTCCTTCCA GGAGGAGGGA GGATGCTCTC ACACCACTCG CGCCGCGGTC
13751	TGGCGGCGGC GCTGGGTTCT CCCTTCGATG CTCCCCTGGA CCCGCCGTTT ACCGCCGCG CGACCCAAGA GGGAAGCTAC GAGGGGACCT GGGCGGAAAA
13801	GTGCCTCCGC GGTACCTGCG GCCTACCGGG GGGAGAAACA GCATCCGTTA CACGGAGGCG CCATGGACGC CGGATGGCCC CCCTCTTTGT CGTAGGCAAT
13851	CTCTGAGTTG GCACCCCTAT TCGACACCAC CCGTGTGTAC CTGGTGGACA GAGACTCAAC CGTGGGGATA AGCTGTGGTG GGCACACATG GACCACCTGT
13901	ACAAGTCAAC GGATGTGGCA TCCCTGAACT ACCAGAACGA CCACAGCAAC TGTTCAGTTG CCTACACCGT AGGGACTTGA TGGTCTTGCT GGTGTCGTTG
13951	TTTCTGACCA CGGTCATTCA AAACAATGAC TACAGCCCGG GGGAGGCAAG AAAGACTGGT GCCAGTAAGT TTTGTTACTG ATGTCGGGCC CCCTCCGTTC
14001	CACACAGACC ATCAATCTTG ACGACCGGTC GCACTGGGGC GGCGACCTGA GTGTGTCTGG TAGTTAGAAC TGCTGGCCAG CGTGACCCCG CCGCTGGACT
14051	AAACCATCCT GCATACCAAC ATGCCAAATG TGAACGAGTT CATGTTTACC TTTGGTAGGA CGTATGGTTG TACGGTTTAC ACTTGCTCAA GTACAAATGG
14101	AATAAGTTTA AGGCGCGGGT GATGGTGTCG CGCTTGCCTA CTAAGGACAA TTATTCAAAT TCCGCGCCCA CTACCACAGC GCGAACGGAT GATTCCTGTT
14151	TCAGGTGGAG CTGAAATACG AGTGGGTGGA GTTCACGCTG CCCGAGGGCA AGTCCACCTC GACTITATGC TCACCCACCT CAAGTGCGAC GGGCTCCCGT
14201	ACTACTCCGA GACCATGACC ATAGACCTTA TGAACAACGC GATCGTGGAG TGATGAGGCT CTGGTACTGG TATCTGGAAT ACTTGTTGCG CTAGCACCTC
14251	CACTACTTGA AAGTGGGCAG ACAGAACGGG GTTCTGGAAA GCGACATCGG GTGATGAACT TTCACCCGTC TGTCTTGCCC CAAGACCTTT CGCTGTAGCC
14301	L GGTAAAGTTT GACACCCGCA ACTTCAGACT GGGGTTTGAC CCCGTCACTG CCATTTCAAA CTGTGGGCGT TGAAGTCTGA CCCCAAACTG GGGCAGTGAC
1435	GTCTTGTCAT GCCTGGGGTA TATACAAACG AAGCCTTCCA TCCAGACATC CAGAACAGTA CGGACCCCAT ATATGTTTGC TTCGGAAGGT AGGTCTGTAG

14401	ATTTTGCTGC CAGGATGCGG GGTGGACTTC ACCCACAGCC GCCTGAGCAA TAAAACGACG GTCCTACGCC CCACCTGAAG TGGGTGTCGG CGGACTCGTT
14451	CTTGTTGGGC ATCCGCAAGC GGCAACCCTT CCAGGAGGGC TTTAGGATCA GAACAACCCG TAGGCGTTCG CCGTTGGGAA GGTCCTCCCG AAATCCTAGT
14501	CCTACGATGA TCTGGAGGGT GGTAACATTC CCGCACTGTT GGATGTGGAC GGATGCTACT AGACCTCCCA CCATTGTAAG GGCGTGACAA CCTACACCTG
14551	GCCTACCAGG CGAGCTTGAA AGATGACACC GAACAGGGCG GGGGTGGCGC CGGATGGTCC GCTCGAACTT TCTACTGTGG CTTGTCCCGC CCCCACCGCG
14601	AGGCGGCAGC AACAGCAGTG GCAGCGGCGC GGAAGAGAAC TCCAACGCGG TCCGCCGTCG TTGTCGTCAC CGTCGCCGCG CCTTCTCTTG AGGTTGCGCC
14651	CAGCCGCGGC AATGCAGCCG GTGGAGGACA TGAACGATCA TGCCATTCGC GTCGGCGCCG TTACGTCGGC CACCTCCTGT ACTTGCTAGT ACGGTAAGCG
14701	GGCGACACCT TTGCCACACG GGCTGAGGAG AAGCGCGCTG AGGCCGAAGC CCGCTGTGGA AACGGTGTGC CCGACTCCTC TTCGCGCGAC TCCGGCTTCG
14751	AGCGGCCGAA GCTGCCGCCC CCGCTGCGCA ACCCGAGGTC GAGAAGCCTC TCGCCGGCTT CGACGCGGG GGCGACGCGT TGGGCTCCAG CTCTTCGGAG
14801	AGAAGAAACC GGTGATCAAA CCCCTGACAG AGGACAGCAA GAAACGCAGT TCTTCTTTGG CCACTAGTTT GGGGACTGTC TCCTGTCGTT CTTTGCGTCA
14851	TACAACCTAA TAAGCAATGA CAGCACCTTC ACCCAGTACC GCAGCTGGTA ATGTTGGATT ATTCGTTACT GTCGTGGAAG TGGGTCATGG CGTCGACCAT
14901	CCTTGCATAC AACTACGGCG ACCCTCAGAC CGGAATCCGC TCATGGACCC GGAACGTATG TTGATGCCGC TGGGAGTCTG GCCTTAGGCG AGTACCTGGG
14951	TGCTTTGCAC TCCTGACGTA ACCTGCGGCT CGGAGCAGGT CTACTGGTCG ACGAAACGTG AGGACTGCAT TGGACGCCGA GCCTCGTCCA GATGACCAGC
15001	TTGCCAGACA TGATGCAAGA CCCCGTGACC TTCCGCTCCA CGCGCCAGAT AACGGTCTGT ACTACGTTCT GGGGCACTGG AAGGCGAGGT GCGCGGTCTA
15051	CAGCAACTTT CCGGTGGTGG GCGCCGAGCT GTTGCCCGTG CACTCCAAGA GTCGTTGAAA GGCCACCACC CGCGGCTCGA CAACGGGCAC GTGAGGTTCT
15101	GCTTCTACAA CGACCAGGCC GTCTACTCCC AACTCATCCG CCAGTTTACC CGAAGATGTT GCTGGTCCGG CAGATGAGGG TTGAGTAGGC GGTCAAATGG
15151	TCTCTGACCC ACGTGTTCAA TCGCTTTCCC GAGAACCAGA TTTTGGCGCG AGAGACTGGG TGCACAAGTT AGCGAAAGGG CTCTTGGTCT AAAACCGCGC
15201	CCCGCCAGCC CCCACCATCA CCACCGTCAG TGAAAACGTT CCTGCTCTCA GGGCGGTCGG GGGTGGTAGT GGTGGCAGTC ACTTTTGCAA GGACGAGAGT

15251	CAGATCACGG GACGCTACCG CTGCGCAACA GCATCGGAGG AGTCCAGCGA GTCTAGTGCC CTGCGATGGC GACGCGTTGT CGTAGCCTCC TCAGGTCGCT
15301	GTGACCATTA CTGACGCCAG ACGCCGCACC TGCCCCTACG TTTACAAGGC CACTGGTAAT GACTGCGGTC TGCGGCGTGG ACGGGGATGC AAATGTTCCG
15351	CCTGGGCATA GTCTCGCCGC GCGTCCTATC GAGCCGCACT TTTTGAGCAA GGACCCGTAT CAGAGCGGCG CGCAGGATAG CTCGGCGTGA AAAACTCGTT
15401	GCATGTCCAT CCTTATATCG CCCAGCAATA ACACAGGCTG GGGCCTGCGC CGTACAGGTA GGAATATAGC GGGTCGTTAT TGTGTCCGAC CCCGGACGCG
15451	TTCCCAAGCA AGATGTTTGG CGGGGCCAAG AAGCGCTCCG ACCAACACCC AAGGGTTCGT TCTACAAACC GCCCCGGTTC TTCGCGAGGC TGGTTGTGGG
15501	AGTGCGCGTG CGCGGGCACT ACCGCGCGCC CTGGGGCGCG CACAAACGCG TCACGCGCAC GCGCCCGTGA TGGCGCGCGG GACCCCGCCG GTGTTTGCGC
15551	GCCGCACTGG GCGCACCACC GTCGATGACG CCATCGACGC GGTGGTGGAG CGGCGTGACC CGCGTGGTGG CAGCTACTGC GGTAGCTGCG CCACCACCTC
15601	GAGGCGCGCA ACTACACGCC CACGCCGCCA CCAGTGTCCA CAGTGGACGC CTCCGCGCGT TGATGTGCGG GTGCGGCGGT GGTCACAGGT GTCACCTGCG
15651	GGCCATTCAG ACCGTGGTGC GCGGAGCCCG GCGCTATGCT AAAATGAAGA CCGGTAAGTC TGGCACCACG CGCCTCGGGC CGCGATACGA TTTTACTTCT
15701	GACGGCGGAG GCGCGTAGCA CGTCGCCACC GCCGCCGACC CGGCACTGCC CTGCCGCCTC CGCGCATCGT GCAGCGGTGG CGGCGGCTGG GCCGTGACGG
15751	GCCCAACGCG CGGCGGCGGC CCTGCTTAAC CGCGCACGTC GCACCGGCCG CGGGTTGCGC GCCGCCGC GGACGAATTG GCGCGTGCAG CGTGGCCGGC
15801	ACGGGCGGC ATGCGGGCCG CTCGAAGGCT GGCCGCGGGT ATTGTCACTG TGCCCGCCGG TACGCCCGGC GAGCTTCCGA CCGGCGCCCA TAACAGTGAC
15851	TGCCCCCCAG GTCCAGGCGA CGAGCGGCCG CCGCAGCAGC CGCGGCCATT ACGGGGGGTC CAGGTCCGCT GCTCGCCGGC GGCGTCGTCG GCGCCGGTAA
15901	AGTGCTATGA CTCAGGGTCG CAGGGGCAAC GTGTATTGGG TGCGCGACTC TCACGATACT GAGTCCCAGC GTCCCCGTTG CACATAACCC ACGCGCTGAG
15951	GGTTAGCGGC CTGCGCGTGC CCGTGCGCAC CCGCCCCCC CGCAACTAGA CCAATCGCCG GACGCGCAC GGCACGCGTG GGCGGGGGGC GCGTTGATCT
16001	TTGCAAGAAA AAACTACTTA GACTCGTACT GTTGTATGTA TCCAGCGGCG AACGTTCTTT TTTGATGAAT CTGAGCATGA CAACATACAT AGGTCGCCGC
16051	GCGGCGCGCA ACGAAGCTAT GTCCAAGCGC AAAATCAAAG AAGAGATGCT CGCCGCGCGT TGCTTCGATA CAGGTTCGCG TTTTAGTTTC TTCTCTACGA

16101	CCAGGTCATC GCGCCGGAGA TCTATGGCCC CCCGAAGAAG GAAGAGCAGG GGTCCAGTAG CGCGGCCTCT AGATACCGGG GGGCTTCTTC CTTCTCGTCC
16151	ATTACAAGCC CCGAAAGCTA AAGCGGGTCA AAAAGAAAAA GAAAGATGAT TAATGTTCGG GGCTTTCGAT TTCGCCCAGT TTTTCTTTTT CTTTCACTA
16201	GATGATGAAC TTGACGACGA GGTGGAACTG CTGCACGCTA CCGCGCCCAG CTACTACTTG AACTGCTGCT CCACCTTGAC GACGTGCGAT GGCGCGGGTC
16251	GCGACGGGTA CAGTGGAAAG GTCGACGCGT AAAACGTGTT TTGCGACCCG CGCTGCCCAT GTCACCTTTC CAGCTGCGCA TTTTGCACAA AACGCTGGGC
16301	GCACCACCGT AGTCTTTACG CCCGGTGAGC GCTCCACCCG CACCTACAAG CGTGGTGGCA TCAGAAATGC GGGCCACTCG CGAGGTGGGC GTGGATGTTC
16351	CGCGTGTATG ATGAGGTGTA CGGCGACGAG GACCTCCTTG AGCAGGCCAA GCGCACATAC TACTCCACAT GCCGCTGCTC CTGGACGAAC TCGTCCGGTT
16401	CGAGCGCCTC GGGGAGTTTG CCTACGGAAA GCGGCATAAG GACATGCTGG GCTCGCGGAG CCCCTCAAAC GGATGCCTTT CGCCGTATTC CTGTACGACC
16451	CGTTGCCGCT GGACGAGGGC AACCCAACAC CTAGCCTAAA GCCCGTAACA GCAACGGCGA CCTGCTCCCG TTGGGTTGTG GATCGGATTT CGGGCATTGT
16501	CTGCAGCAGG TGCTGCCCGC GCTTGCACCG TCCGAAGAAA AGCGCGGCCT GACGTCGTCC ACGACGGGCG CGAACGTGGC AGGCTTCTTT TCGCGCCGGA
16551	AAAGCGCGAG TCTGGTGACT TGGCACCCAC CGTGCAGCTG ATGGTACCCA TTTCGCGCTC AGACCACTGA ACCGTGGGTG GCACGTCGAC TACCATGGGT
16601	AGCGCCAGCG ACTGGAAGAT GTCTTGGAAA AAATGACCGT GGAACCTGGG TCGCGGTCGC TGACCTTCTA CAGAACCTTT TTTACTGGCA CCTTGGACCC
16651	GACCTCGGGC TCCAGGCGCA CGCCGGTTAG TTCGTCCACC GCGGCCCTGA
16701	CCCGCACGTC TGGCACCTGC AAGTCTATGG GTGATGGTCA TCGTGGTCAT
16751	AACGGTGGCG GTGTCTCCCG TACCTCTGTG TTTGCAGGGG CCAACGGAGT
16801	CGCCACCGCC TACGGCGCCA CGTCCGCCAG CGACGCCGGC GCAGGTTCTG
16851	GAGATGCCTC CACGTTTGCC TGGGCACCTA CAAAGCGCAA AGTCGGGGGG
16901	GGCGCCCGCG CCGTTCGAGG AAGTACGGCG CCGCCAGCGC GCTACTGCCC CCGCGGGCGC GGCAAGCTCC TTCATGCCGC GGCGGTCGCG CGATGACGGG

16951	GAATATGCCC TACATCCTTC CATTGCGCCT ACCCCCGGCT ATCGTGGCTA CTTATACGGG ATGTAGGAAG GTAACGCGGA TGGGGGCCCA TAGCACCGAT
17001	CACCTACCGC CCCAGAAGAC GAGCAACTAC CCGACGCCGA ACCACCACTG GTGGATGGCG GGGTCTTCTG CTCGTTGATG GGCTGCGGCT TGGTGGTGAC
17051	GAACCCGCCG CCGCCGTCGC CGTCGCCAGC CCGTGCTGGC CCCGATTTCC CTTGGGCGGC GGCGCAGCG GCAGCGGTCG GGCACGACCG GGGCTAAAGG
17101	GTGCGCAGGG TGGCTCGCGA AGGAGGCAGG ACCCTGGTGC TGCCAACAGC CACGCGTCCC ACCGAGCGCT TCCTCCGTCC TGGGACCACG ACGGTTGTCG
17151	GCGCTACCAC CCCAGCATCG TTTAAAAGCC GGTCTTTGTG GTTCTTGCAG CGCGATGGTG GGGTCGTAGC AAATTTTCGG CCAGAAACAC CAAGAACGTC
17201	ATATGGCCCT CACCTGCCGC CTCCGTTTCC CGGTGCCGGGG ATTCCGAGGA TATACCGGGA GTGGACGGCG GAGGCAAAGG GCCACGGCCC TAAGGCTCCT
17251	AGAATGCACC GTAGGAGGGG CATGGCCGGC CACGGCCTGA CGGGCGGCAT TCTTACGTGG CATCCTCCCC GTACCGGCCG GTGCCGGACT GCCCGCCGTA
17301	GCGTCGTGCG CACCACCGCG GGCGGCGCGC GTCGCACCGT CGCATGCGCG CGCAGCACGC GTGGTGGCCG CCGCCGCGC CAGCGTGGCA GCGTACGCGC
17351	GCGGTATCCT GCCCCTCCTT ATTCCACTGA TCGCCGCGGC GATTGGCGCC CGCCATAGGA CGGGGAGGAA TAAGGTGACT AGCGGCGCCG CTAACCGCGG
17401	GTGCCCGGAA TTGCATCCGT GGCCTTGCAG GCGCAGAGAC ACTGATTAAA CACGGGCCTT AACGTAGGCA CCGGAACGTC CGCGTCTCTG TGACTAATTT
17451	AACAAGTTGC ATGTGGAAAA ATCAAAATAA AAAGTCTGGA CTCTCACGCT TTGTTCAACG TACACCTTTT TAGTTTTATT TTTCAGACCT GAGAGTGCGA
17501	CGCTTGGTCC TGTAACTATT TTGTAGAATG GAAGACATCA ACTTTGCGTC GCGAACCAGG ACATTGATAA AACATCTTAC CTTCTGTAGT TGAAACGCAG
17551	TCTGGCCCCG CGACACGCCT CGCGCCCGTT CATGGGAAAAC TGGCAAGATA AGACCGGGGC GCTGTGCCGA GCGCGGGCAA GTACCCTTTG ACCGTTCTAT
17601	TCGGCACCAG CAATATGAGC GGTGGCGCCT TCAGCTGGGG CTCGCTGTGG AGCCGTGGTC GTTATACTCG CCACCGCGGA AGTCGACCCC GAGCGACACC
17651	AGCGGCATTA AAAATTTCGG TTCCACCGTT AAGAACTATG GCAGCAAGGC TCGCCGTAAT TTTTAAAGCC AAGGTGGCAA TTCTTGATAC CGTCGTTCCG
17701	CTGGAACAGC AGCACAGGCC AGATGCTGAG GGATAAGTTG AAAGAGCAAA GACCTTGTCG TCGTGTCCGG TCTACGACTC CCTATTCAAC TTTCTCGTTT
17751	ATTTCCAACA AAAGGTGGTA GATGGCCTGG CCTCTGGCAT TAGCGGGGTG TAAAGGTTGT TTTCCACCAT CTACCGGACC GGAGACCGTA ATCGCCCCAC

17801	GTGGACCTGG CCAACCAGGC AGTGCAAAAT AAGATTAACA GTAAGCTTGA CACCTGGACC GGTTGGTCCG TCACGTTTTA TTCTAATTGT CATTCGAACT
17851	TCCCCGCCCT CCCGTAGAGG AGCCTCCACC GGCCGTGGAG ACAGTGTCTC AGGGGCGGGAG GGGCATCTCC TCGGAGGTGG CCGGCACCTC TGTCACAGAG
17901	CAGAGGGGCG TGGCGAAAAG CGTCCGCCGC CCGACAGGGA AGAAACTCTG GTCTCCCCGC ACCGCTTTTC GCAGGCGCGG GGCTGTCCCT TCTTTGAGAC
17951	GTGACGCAAA TAGACGAGCC TCCCTCGTAC GAGGAGGCAC TAAAGCAAGG CACTGCGTTT ATCTGCTCGG AGGGAGCATG CTCCTCCGTG ATTTCGTTCC
18001	CCTGCCCACC ACCCGTCCCA TCGCGCCCAT GGCTACCGGA GTGCTGGGCC GGACGGGTGG TGGGCAGGGT AGCGCGGGTA CCGATGGCCT CACGACCCGG
18051	AGCACACAC CGTAACGCTG GACCTGCCTC CCCCCGCCGA CACCCAGCAG TCGTGTGTGG GCATTGCGAC CTGGACGGAG GGGGCGGGT GTGGGTCGTC
18101	AAACCTGTGC TGCCAGGCCC GACCGCCGTT GTTGTAACCC GTCCTAGCCG TTTGGACACG ACGGTCCGGG CTGGCGGCAA CAACATTGGG CAGGATCGGC
18151	CGCGTCCCTG CGCCGCCGC CCAGCGGTCC GCGATCGTTG CGGCCCGTAG GCGCAGGGAC GCGGCGCGCG GGTCGCCAGG CGCTAGCAAC GCCGGGCATC
18201	CCAGTGGCAA CTGGCAAAGC ACACTGAACA GCATCGTGGG TCTGGGGGTG GGTCACCGTT GACCGTTTCG TGTGACTTGT CGTAGCACCC AGACCCCCAC
18251	CAATCCCTGA AGCGCCGACG ATGCTTCTGA TAGCTAACGT GTCGTATGTG GTTAGGGACT TCGCGGCTGC TACGAAGACT ATCGATTGCA CAGCATACAC
18301	TGTCATGTAT GCGTCCATGT CGCCGCCAGA GGAGCTGCTG AGCCGCCGCG ACAGTACATA CGCAGGTACA GCGGCGGTCT CCTCGACGAC TCGGCGGCGC
18351	CGCCCGCTTT CCAAGATGGC TACCCCTTCG ATGATGCCGC AGTGGTCTTA GCGGGCGAAA GGTTCTACCG ATGGGGAAGC TACTACGGCG TCACCAGAAT
18401	CATGCACATC TCGGGCCAGG ACGCCTCGGA GTACCTGAGC CCCGGGCTGG GTACGTGTAG AGCCCGGTCC TGCGGAGCCT CATGGACTCG GGGCCCGACC
18451	TGCAGTTTGC CCGCGCCACC GAGACGTACT TCAGCCTGAA TAACAAGTTT ACGTCAAACG GGCGCGGTGG CTCTGCATGA AGTCGGACTT ATTGTTCAAA
18501	AGAAACCCCA CGGTGGCGCC TACGCACGAC GTGACCACAG ACCGGTCCCA TCTTTGGGGT GCCACCGCGG ATGCGTGCT CACTGGTGTC TGGCCAGGGT
18551	GCGTTTGACG CTGCGGTTCA TCCCTGTGGA CCGTGAGGAT ACTGCGTACT CGCAAACTGC GACGCCAAGT AGGGACACCT GGCACTCCTA TGACGCATGA
18601	CGTACAAGGC GCGGTTCACC CTAGCTGTGG GTGATAACCG TGTGCTGGAC GCATGTTCCG CGCCAAGTGG GATCGACACC CACTATTGGC ACACGACCTG

18651	ATGGCTTCCA CGTACTTTGA CATCCGCGGC GTGCTGGACA GGGGCCCTAC TACCGAAGGT GCATGAAACT GTAGGCGCCG CACGACCTGT CCCCGGGATG
18701	TTTTAAGCCC TACTCTGGCA CTGCCTACAA CGCCCTGGCT CCCAAGGGTG AAAATTCGGG ATGAGACCGT GACGGATGTT GCGGGACCGA GGGTTCCCAC
18751	CCCCAAATCC TTGCGAATGG GATGAAGCTG CTACTGCTCT TGAAATAAAC GGGGTTTAGG AACGCTTACC CTACTTCGAC GATGACGAGA ACTTTATTTG
18801	CTAGAAGAAG AGGACGATGA CAACGAAGAC GAAGTAGACG AGCAAGCTGA GATCTTCTTC TCCTGCTACT GTTGCTTCTG CTTCATCTGC TCGTTCGACT
18851	GCAGCAAAAA ACTCACGTAT TTGGGCAGGC GCCTTATTCT GGTATAAATA CGTCGTTTTT TGAGTGCATA AACCCGTCCG CGGAATAAGA CCATATTTAT
18901	TTACAAAGGA GGGTATTCAA ATAGGTGTCG AAGGTCAAAC ACCTAAATAT AATGTTTCCT CCCATAAGTT TATCCACAGC TTCCAGTTTG TGGATTTATA
18951	GCCGATAAAA CATTTCAACC TGAACCTCAA ATAGGAGAAT CTCAGTGGTA CGGCTATTTT GTAAAGTTGG ACTTGGAGTT TATCCTCTTA GAGTCACCAT
19001	CGAAACAGAA ATTAATCATG CAGCTGGGAG AGTCCTAAAA AAGACTACCC GCTTTGTCTT TAATTAGTAC GTCGACCCTC TCAGGATTTT TTCTGATGGG
19051	CAATGAAACC ATGTTACGGT TCATATGCAA AACCCACAAA TGAAAATGGA GTTACTTTGG TACAATGCCA AGTATACGTT TTGGGTGTTT ACTTTTACCT
19101	GGGCAAGGCA TTCTTGTAAA GCAACAAAAT GGAAAGCTAG AAAGTCAAGT CCCGTTCCGT AAGAACATTT CGTTGTTTTA CCTTTCGATC TTTCAGTTCA
19151	GGAAATGCAA TTTTTCTCAA CTACTGAGGC AGCCGCAGGC AATGGTGATA CCTTTACGTT AAAAAGAGTT GATGACTCCG TCGGCGTCCG TTACCACTAT
19201	ACTTGACTCC TAAAGTGGTA TTGTACAGTG AAGATGTAGA TATAGAAACC TGAACTGAGG ATTTCACCAT AACATGTCAC TTCTACATCT ATATCTTTGG
19251	CCAGACACTC ATATTTCTTA CATGCCCACT ATTAAGGAAG GTAACTCACG GGTCTGTGAG TATAAAGAAT GTACGGGTGA TAATTCCTTC CATTGAGTGC
19301	AGAACTAATG GGCCAACAAT CTATGCCCAA CAGGCCTAAT TACATTGCTT TCTTGATTAC CCGGTTGTTA GATACGGGTT GTCCGGATTA ATGTAACGAA
19351	TTAGGGACAA TTTTATTGGT CTAATGTATT ACAACAGCAC GGGTAATATG AATCCCTGTT AAAATAACCA GATTACATAA TGTTGTCGTG CCCATTATAC
19401	GGTGTTCTGG CGGGCCAAGC ATCGCAGTTG AATGCTGTTG TAGATTTGCA CCACAAGACC GCCCGGTTCG TAGCGTCAAC TTACGACAAC ATCTAAACGT
19451	AGACAGAAAC ACAGAGCTTT CATACCAGCT TTTGCTTGAT TCCATTGGTG TCTGTCTTTG TGTCTCGAAA GTATGGTCGA AAACGAACTA AGGTAACCAC

19501	ATAGAACCAG GTACTITICT ATGTGGAATC AGGCTGTTGA CAGCTATGAT TATCTTGGTC CATGAAAAGA TACACCTTAG TCCGACAACT GTCGATACTA
19551	CCAGATGTTA GAATTATTGA AAATCATGGA ACTGAAGATG AACTTCCAAA GGTCTACAAT CTTAATAACT TTTAGTACCT TGACTTCTAC TTGAAGGTTT
19601	TTACTGCTTT CCACTGGGAG GTGTGATTAA TACAGAGACT CTTACCAAGG AATGACGAAA GGTGACCCTC CACACTAATT ATGTCTCTGA GAATGGTTCC
19651	TAAAACCTAA AACAGGTCAG GAAAATGGAT GGGAAAAAGA TGCTACAGAA ATTTTGGATT TTGTCCAGTC CTTTTACCTA CCCTTTTTCT ACGATGTCTT
19701	TTTTCAGATA AAAATGAAAT AAGAGTTGGA AATAATTTTG CCATGGAAAT AAAAGTCTAT TTTTACTTTA TTCTCAACCT TTATTAAAAC GGTACCTTTA
19751	CAATCTAAAT GCCAACCTGT GGAGAAATTT CCTGTACTCC AACATAGCGC GTTAGATTTA CGGTTGGACA CCTCTTTAAA GGACATGAGG TTGTATCGCG
19801	TGTATTTGCC CGACAAGCTA AAGTACAGTC CTTCCAACGT AAAAATTTCT ACATAAACGG GCTGTTCGAT TTCATGTCAG GAAGGTTGCA TTTTTAAAGA
19851	GATAACCCAA ACACCTACGA CTACATGAAC AAGCGAGTGG TGGCTCCCGG CTATTGGGTT TGTGGATGCT GATGTACTTG TTCGCTCACC ACCGAGGGCC
19901	GCTAGTGGAC TGCTACATTA ACCTTGGAGC ACGCTGGTCC CTTGACTATA CGATCACCTG ACGATGTAAT TGGAACCTCG TGCGACCAGG GAACTGATAT
19951	TGGACAACGT CAACCCATIT AACCACCACC GCAATGCTGG CCTGCGCTAC ACCTGTTGCA GTTGGGTAAA TTGGTGGTGG CGTTACGACC GGACGCGATG
20001	CGCTCAATGT TGCTGGGCAA TGGTCGCTAT GTGCCCTTCC ACATCCAGGT GCGAGTTACA ACGACCCGTT ACCAGCGATA CACGGGAAGG TGTAGGTCCA
20051	GCCTCAGAAG TTCTTTGCCA TTAAAAACCT CCTTCTCCTG CCGGGCTCAT CGGAGTCTTC AAGAAACGGT AATTTTTGGA GGAAGAGGAC GGCCCGAGTA
20101	ACACCTACGA GTGGAACTTC AGGAAGGATG TTAACATGGT TCTGCAGAGC TGTGGATGCT CACCTTGAAG TCCTTCCTAC AATTGTACCA AGACGTCTCG
20151	TCCCTAGGAA ATGACCTAAG GGTTGACGGA GCCAGCATTA AGTTTGATAG AGGGATCCTT TACTGGATTC CCAACTGCCT CGGTCGTAAT TCAAACTATC
20201	CATTTGCCTT TACGCCACCT TCTTCCCCAT GGCCCACAAC ACCGCCTCCA GTAAACGGAA ATGCGGTGGA AGAAGGGGTA CCGGGTGTTG TGCCGGAGGT
20251	CGCTTGAGGC CATGCTTAGA AACGACACCA ACGACCAGTC CTTTAACGAC GCGAACTCCG GTACGAATCT TTGCTGTGGT TGCTGGTCAG GAAATTGCTG
20301	TATCTCTCCG CCGCCAACAT GCTCTACCCT ATACCCGCCA ACGCTACCAA ATAGAGAGGC GGCGGTTGTA CGAGATGGGA TATGGGCGGT TGCGATGGTT

20351	CGTGCCCATA TCCATCCCCT CCCGCAACTG GGCGGCTTTC CGCGGCTGGG GCACGGGTAT AGGTAGGGGA GGGCGTTGAC CCGCCGAAAG GCGCCGACCC
20401	CCTTCACGCG CCTTAAGACT AAGGAAACCC CATCACTGGG CTCGGGCTAC GGAAGTGCGC GGAATTCTGA TTCCTTTGGG GTAGTGACCC GAGCCCGATG
20451	GACCCTTATT ACACCTACTC TGGCTCTATA CCCTACCTAG ATGGAACCTT CTGGGAATAA TGTGGATGAG ACCGAGATAT GGGATGGATC TACCTTGGAA
20501	TTACCTCAAC CACACCTTTA AGAAGGTGGC CATTACCTTT GACTCTTCTG AATGGAGTTG GTGTGGAAAT TCTTCCACCG GTAATGGAAA CTGAGAAGAC
20551	TCAGCTGGCC TGGCAATGAC CGCCTGCTTA CCCCCAACGA GTTTGAAATT AGTCGACCGG ACCGTTACTG GCGGACGAAT GGGGGTTGCT CAAACTTTAA
20601	AAGCGCTCAG TTGACGGGGA GGGTTACAAC GTTGCCCAGT GTAACATGAC TTCGCGAGTC AACTGCCCCT CCCAATGTTG CAACGGGTCA CATTGTACTG
20651	CAAAGACTGG TTCCTGGTAC AAATGCTAGC TAACTATAAC ATTGGCTACC GTTTCTGACC AAGGACCATG TTTACGATCG ATTGATATTG TAACCGATGG
20701	AGGGCTTCTA TATCCCAGAG AGCTACAAGG ACCGCATGTA CTCCTTCTTT TCCCGAAGAT ATAGGGTCTC TCGATGTTCC TGGCGTACAT GAGGAAGAAA
20751	AGAAACTTCC AGCCCATGAG CCGTCAGGTG GTGGATGATA CTAAATACAA TCTTTGAAGG TCGGGTACTC GGCAGTCCAC CACCTACTAT GATTTATGTT
20801	GGACTACCAA CAGGTGGGCA TCCTACACCA ACACAACAAC TCTGGATTTG CCTGATGGTT GTCCACCCGT AGGATGTGGT TGTGTTGTTG AGACCTAAAC
20851	TTGGCTACCT TGCCCCCACC ATGCGCGAAG GACAGGCCTA CCCTGCTAAC AACCGATGGA ACGGGGGTGG TACGCGCTTC CTGTCCGGAT GGGACGATTG
20901	TTCCCCTATC CGCTTATAGG CAAGACCGCA GTTGACAGCA TTACCCAGAA AAGGGGATAG GCGAATATCC GTTCTGGCGT CAACTGTCGT AATGGGTCTT
20951	AAAGTITCTT TGCGATCGCA CCCTTTGGCG CATCCCATTC TCCAGTAACT TTTCAAAGAA ACGCTAGCGT GGGAAACCGC GTAGGGTAAG AGGTCATTGA
21001	TTATGTCCAT GGGCGCACTC ACAGACCTGG GCCAAAACCT TCTCTACGCC AATACAGGTA CCCGCGTGAG TGTCTGGACC CGGTTTTGGA AGAGATGCGG
21051	TTGAGGCGGG TGCGCGATCT GTACTGAAAA CTCCACCTAG GGTACCTGCT
21101	CGGGTGGGAA GAAATACAAA ACAAACTTCA GAAACTGCAC CAGGCACACG
21151	ACCAGCCGCA CCGCGGCGTC ATCGAAACCG TGTACCTGCG CACGCCCTTC TGGTCGGCGT GGCGCCGCAG TAGCTTTGGC ACATGGACGC GTGCGGGAAG

21201	TCGGCCGGCA ACGCCACACA ATAAAGAAGC AAGCAACATC AACAACAGCT AGCCGGCCGT TGCGGTGTTG TATTTCTTCG TTCGTTGTAG TTGTTGTCGA
21251	GCCGCCATGG GCTCCAGTGA GCAGGAACTG AAAGCCATTG TCAAAGATCT CGGCGGTACC CGAGGTCACT CGTCCTTGAC TTTCGGTAAC AGTTTCTAGA
21301	TGGTTGTGGG CCATATTTTT TGGGCACCTA TGACAAGCGC TTTCCAGGCT ACCAACACCC GGTATAAAAA ACCCGTGGAT ACTGTTCGCG AAAGGTCCGA
21351	TTGTTTCTCC ACACAAGCTC GCCTGCGCCA TAGTCAATAC GGCCGGTCGC AACAAAGAGG TGTGTTCGAG CGGACGCGGT ATCAGTTATG CCGGCCAGCG
21401	GAGACTGGGG GCGTACACTG GATGGCCTTT GCCTGGAACC CGCACTCAAA CTCTGACCCC CGCATGTGAC CTACCGGAAA CGGACCTTGG GCGTGAGTTT
21451	AACATGCTAC CTCTTTGAGC CCTTTGGCTT TTCTGACCAG CGACTCAAGC TTGTACGATG GAGAAACTCG GGAAACCGAA AAGACTGGTC GCTGAGTTCG
21501	AGGTTTACCA GTTTGAGTAC GAGTCACTCC TGCGCCGTAG CGCCATTGCT TCCAAATGGT CAAACTCATG CTCAGTGAGG ACGCGGCATC GCGGTAACGA
21551	TCTTCCCCCG ACCGCTGTAT AACGCTGGAA AAGTCCACCC AAAGCGTACA AGAAGGGGGC TGGCGACATA TTGCGACCTT TTCAGGTGGG TTTCGCATGT
21601	GGGGCCCAAC TCGGCCGCCT GTGGACTATT CTGCTGCATG TTTCTCCACG CCCCGGGTTG AGCCGCCGA CACCTGATAA GACGACGTAC AAAGAGGTGC
21651	CCTTTGCCAA CTGGCCCCAA ACTCCCATGG ATCACAACCC CACCATGAAC GGAAACGGTT GACCGGGGTT TGAGGGTACC TAGTGTTGGG GTGGTACTTG
21701	CTTATTACCG GGGTACCCAA CTCCATGCTC AACAGTCCCC AGGTACAGCC GAATAATGGC CCCATGGGTT GAGGTACGAG TTGTCAGGGG TCCATGTCGG
21751	CACCCTGCGT CGCAACCAGG AACAGCTCTA CAGCTTCCTG GAGCGCCACT GTGGGACGCA GCGTTGGTCC TTGTCGAGAT GTCGAAGGAC CTCGCGGTGA
21801	CGCCCTACTT CCGCAGCCAC AGTGCGCAGA TTAGGAGCGC CACTTCTTTT GCGGGATGAA GGCGTCGGTG TCACGCGTCT AATCCTCGCG GTGAAGAAAA
21851	TGTCACTTGA AAAACATGTA AAAATAATGT ACTAGAGACA CTTTCAATAA ACAGTGAACT TTTTGTACAT TTTTATTACA TGATCTCTGT GAAAGTTATT
21901	AGGCAAATGC TITTATTTGT ACACTCTCGG GTGATTATTT ACCCCCACCC TCCGTTTACG AAAATAAACA TGTGAGAGCC CACTAATAAA TGGGGGTGGG
21951	AACGGCAGAC GCGGCAAATT TITAGTTTCC CCAAGACGGC GCGTAGCGAT
22001	TGCGCCACTG GCAGGGACAC GTTGCGATAC TGGTGTTTAG TGCTCCACTT ACGCGGTGAC CGTCCCTGTG CAACGCTATG ACCACAAATC ACGAGGTGAA

22051	AAACTCAGGC ACAACCATCC GCGGCAGCTC GGTGAAGTTT TCACTCCACA TTTGAGTCCG TGTTGGTAGG CGCCGTCGAG CCACTTCAAA AGTGAGGTGT
22101	GGCTGCGCAC CATCACCAAC GCGTTTAGCA GGTCGGGCGC CGATATCTTG CCGACGCGTG GTAGTGGTTG CGCAAATCGT CCAGCCCGCG GCTATAGAAC
22151	AAGTCGCAGT TGGGGCCTCC GCCCTGCGCG CGCGAGTTGC GATACACAGG TTCAGCGTCA ACCCCGGAGG CGGGACGCGC GCGCTCAACG CTATGTGTCC
22201	GTTGCAGCAC TGGAACACTA TCAGCGCCGG GTGGTGCACG CTGGCCAGCA CAACGTCGTG ACCTTGTGAT AGTCGCGGCC CACCACGTGC GACCGGTCGT
22251	CGCTCTTGTC GGAGATCAGA TCCGCGTCCA GGTCCTCCGC GTTGCTCAGG GCGAGAACAG CCTCTAGTCT AGGCGCAGGT CCAGGAGGCG CAACGAGTCC
22301	GCGAACGGAG TCAACTTTGG TAGCTGCCTT CCCAAAAAGG GCGCGTGCCC CGCTTGCCTC AGTTGAAACC ATCGACGGAA GGGTTTTTCC CGCGCACGGG
22351	AGGCTTTGAG TTGCACTCGC ACCGTAGTGG CATCAAAAGG TGACCGTGCC TCCGAAACTC AACGTGAGCG TGGCATCACC GTAGTTTTCC ACTGGCACGG
22401	CGGTCTGGGC GTTAGGATAC AGCGCCTGCA TAAAAGCCTT GATCTGCTTA GCCAGACCCG CAATCCTATG TCGCGGACGT ATTTTCGGAA CTAGACGAAT
22451	AAAGCCACCT GAGCCTTTGC GCCTTCAGAG AAGAACATGC CGCAAGACTT TTTCGGTGGA CTCGGAAACG CGGAAGTCTC TTCTTGTACG GCGTTCTGAA
22501	GCCGGAAAAC TGATTGGCCG GACAGGCCGC GTCGTGCACG CAGCACCTTG CGGCCTTTTG ACTAACCGGC CTGTCCGGCG CAGCACGTGC GTCGTGGAAC
22551	CGTCGGTGTT GGAGATCTGC ACCACATTTC GGCCCCACCG GTTCTTCACG GCAGCCACAA CCTCTAGACG TGGTGTAAAG CCGGGGTGGC CAAGAAGTGC
22601	ATCTTGGCCT TGCTAGACTG CTCCTTCAGC GCGCGCTGCC CGTTTTCGCT TAGAACCGGA ACGATCTGAC GAGGAAGTCG CGCGCGACGG GCAAAAGCGA
22651	CGTCACATCC ATTICAATCA CGTGCTCCTT ATTITATCATA ATGCTTCCGT GCAGTGTAGG TAAAGTTAGT GCACGAGGAA TAAATAGTAT TACGAAGGCA
22701	GTAGACACTT AAGCTCGCCT TCGATCTCAG CGCAGCGGTG CAGCCACAAC CATCTGTGAA TTCGAGCGGA AGCTAGAGTC GCGTCGCCAC GTCGGTGTTG
22751	GCGCAGCCCG TGGGCTCGTG ATGCTTGTAG GTCACCTCTG CAAACGACTG CGCGTCGGGC ACCCGAGCAC TACGAACATC CAGTGGAGAC GTTTGCTGAC
22801	CAGGTACGCC TGCAGGAATC GCCCCATCAT CGTCACAAAG GTCTTGTTGC GTCCATGCGG ACGTCCTTAG CGGGGTAGTA GCAGTGTTTC CAGAACAACG
22851	TGGTGAAGGT CAGCTGCAAC CCGCGGTGCT CCTCGTTCAG CCAGGTCTTG ACCACTTCCA GTCGACGTTG GGCGCCACGA GGAGCAAGTC GGTCCAGAAC

22901	CATACGGCCG CCAGAGCTTC CACTTGGTCA GGCAGTAGTT TGAAGTTCGC GTATGCCGGC GGTCTCGAAG GTGAACCAGT CCGTCATCAA ACTTCAAGCG
22951	CTTTAGATCG TTATCCACGT GGTACTTGTC CATCAGCGCG CGCGCAGCCT GAAATCTAGC AATAGGTGCA CCATGAACAG GTAGTCGCGC GCGCGTCGGA
23001	CCATGCCCTT CTCCCACGCA GACACGATCG GCACACTCAG CGGGTTCATC GGTACGGGAA GAGGGTGCGT CTGTGCTAGC CGTGTGAGTC GCCCAAGTAG
23051	ACCGTAATIT CACTITCCGC TITCGCTGGGC TCTTCCTCTT CCTCTTGCGT TGGCATTAAA GTGAAAGGCG AAGCGACCCG AGAAGGAGAA GGAGAACGCA
23101	CCGCATACCA CGCGCCACTG GGTCGTCTTC ATTCAGCCGC CGCACTGTGC GGCGTATGGT GCGCGTGAC CCAGCAGAAG TAAGTCGGCG GCGTGACACG
23151	GCTTACCTCC TTTGCCATGC TTGATTAGCA CCGGTGGGTT GCTGAAACCC CGAATGGAGG AAACGGTACG AACTAATCGT GGCCACCCAA CGACTTTGGG
23201	ACCATTTGTA GCGCCACATC TTCTCTTTCT TCCTCGCTGT CCACGATTAC TGGTAAACAT CGCGGTGTAG AAGAGAAAGA AGGAGCGACA GGTGCTAATG
23251	CTCTGGTGAT GGCGGGCGCT CGGGCTTGGG AGAAGGGCGC TTCTTTTCT GAGACCACTA CCGCCCGCA GCCCGAACCC TCTTCCCGCG AAGAAAAAGA
23301	TCTTGGGCGC AATGGCCAAA TCCGCCGCCG AGGTCGATGG CCGCGGGCTG AGAACCCGCG TTACCGGTTT AGGCGGCGGC TCCAGCTACC GGCGCCCGAC
23351	GGTGTGCGCG GCACCAGCGC GTCTTGTGAT GAGTCTTCCT CGTCCTCGGA CCACACGCGC CGTGGTCGCG CAGAACACTA CTCAGAAGGA GCAGGAGCCT
23401	CTCGATACGC CGCCTCATCC GCTTTTTTGG GGGCGCCCGG GGAGGCGGCG GAGCTATGCG GCGGAGTAGG CGAAAAAACC CCCGCGGGCC CCTCCGCCGC
23451	GCGACGGGGA CGGGGACGAC ACGTCCTCCA TGGTTGGGGG ACGTCGCGCC CGCTGCCCT GCCCCTGCTG TGCAGGAGGT ACCAACCCCC TGCAGCGCGG
23501	GCACCGCGTC CGCGCTCGGG GGTGGTTTCG CGCTGCTCCT CTTCCCGACT CGTGGCGCAG GCGCGAGCCC CCACCAAAGC GCGACGAGGA GAAGGGCTGA
23551	GGCCATTICC TTCTCCTATA GGCAGAAAAA GATCATGGAG TCAGTCGAGA CCGGTAAAGG AAGAGGATAT CCGTCTTTTT CTAGTACCTC AGTCAGCTCT
23601	AGAAGGACAG CCTAACCGCC CCCTCTGAGT TCGCCACCAC CGCCTCCACC TCTTCCTGTC GGATTGGCGG GGGAGACTCA AGCGGTGGTG GCGGAGGTGG
23651	CTACGGCGGT TGCGCGGATG GTGGAAGGGG CAGCTCCGTG GGGGCGAACT
23701	GGAGGAGGAA GTGATTATCG AGCAGGACCC AGGTTTTGTA AGCGAAGACG CCTCCTCCTT CACTAATAGC TCGTCCTGGG TCCAAAACAT TCGCTTCTGC

23751	ACGAGGACCG CTCAGTACCA ACAGAGGATA AAAAGCAAGA CCAGGACAAC TGCTCCTGGC GAGTCATGGT TGTCTCCTAT TTTTCGTTCT GGTCCTGTTG
23801	GCAGAGGCAA ACGAGGAACA AGTCGGGCGG GGGGACGAAA GGCATGGCGA CGTCTCCGTT TGCTCCTTGT TCAGCCCGCC CCCCTGCTTT CCGTACCGCT
23851	CTACCTAGAT GTGGGAGACG ACGTGCTGTT GAAGCATCTG CAGCGCCAGT GATGGATCTA CACCCTCTGC TGCACGACAA CTTCGTAGAC GTCGCGGTCA
23901	GCGCCATTAT CTGCGACGCG TTGCAAGAGC GCAGCGATGT GCCCCTCGCC CGCGGTAATA GACGCTGCGC AACGTTCTCG CGTCGCTACA CGGGGAGCGG
23951	ATAGCGGATG TCAGCCTTGC CTACGAACGC CACCTATTCT CACCGCGCGT TATCGCCTAC AGTCGGAACG GATGCTTGCG GTGGATAAGA GTGGCGCGCA
24001	ACCCCCCAAA CGCCAAGAAA ACGGCACATG CGAGCCCAAC CCGCGCCTCA TGGGGGGTTTT GCGGTTCTTT TGCCGTGTAC GCTCGGGTTG GGCGCGGAGT
24051	ACTICTACCC CGTATTTGCC GTGCCAGAGG TGCTTGCCAC CTATCACATC TGAAGATGGG GCATAAACGG CACGGTCTCC ACGAACGGTG GATAGTGTAG
24101	TTTTTCCAAA ACTGCAAGAT ACCCCTATCC TGCCGTGCCA ACCGCAGCCG AAAAAGGTTT TGACGTTCTA TGGGGATAGG ACGGCACGGT TGGCGTCGGC
24151	AGCGGACAAG CAGCTGGCCT TGCGGCAGGG CGCTGTCATA CCTGATATCG TCGCCTGTTC GTCGACCGGA ACGCCGTCCC GCGACAGTAT GGACTATAGC
24201	CCTCGCTCAA CGAAGTGCCA AAAATCTTTG AGGGTCTTGG ACGCGACGAG GGAGCGAGTT GCTTCACGGT TTTTAGAAAC TCCCAGAACC TGCGCTGCTC
24251	AAGCGCGCGC CAAACGCTCT GCAACAGGAA AACAGCGAAA ATGAAAGTCA TTCGCGCGCC GTTTGCGAGA CGTTGTCCTT TTGTCGCTTT TACTTTCAGT
24301	CTCTGGAGTG TTGGTGGAAC TCGAGGGTGA CAACGCGCGC CTAGCCGTAC GAGACCTCAC AACCACCTTG AGCTCCCACT GTTGCGCGCG GATCGGCATG
24351	TAAAACGCAG CATCGAGGTC ACCCACTTTG CCTACCCGGC ACTTAACCTA ATTTTGCGTC GTAGCTCCAG TGGGTGAAAC GGATGGGCCG TGAATTGGAT
24401	CCCCCAAGG TCATGAGCAC AGTCATGAGT GAGCTGATCG TGCGCCGTGC GGGGGGTTCC AGTACTCGTG TCAGTACTCA CTCGACTAGC ACGCGGCACG
24451	GCAGCCCCTG GAGAGGGATG CAAATTTGCA AGAACAAACA GAGGAGGGCC CGTCGGGGAC CTCTCCCTAC GTTTAAACGT TCTTGTTTGT CTCCTCCCGG
24501	ATGGGCGTCA ACCGCTGCTC GTCGATCGCG CGACCGAAGT TTGCGCGCTC
24551	CCTGCCGACT TGGAGGAGCG ACGCAAACTA ATGATGGCCG CAGTGCTCGT GGACGGCTGA ACCTCCTCGC TGCGTTTGAT TACTACCGGC GTCACGAGCA

24601	TACCGTGGAG CTTGAGTGCA TGCAGCGGTT CTTTGCTGAC CCGGAGATGC ATGGCACCTC GAACTCACGT ACGTCGCCAA GAAACGACTG GGCCTCTACG
24651	AGCGCAAGCT AGAGGAAACA TTGCACTACA CCTTTCGACA GGGCTACGTA TCGCGTTCGA TCTCCTTTGT AACGTGATGT GGAAAGCTGT CCCGATGCAT
24701	CGCCAGGCCT GCAAGATCTC CAACGTGGAG CTCTGCAACC TGGTCTCCTA GCGGTCCGGA CGTTCTAGAG GTTGCACCTC GAGACGTTGG ACCAGAGGAT
24751	CCTTGGAATT TTGCACGAAA ACCGCCTTGG GCAAAACGTG CTTCATTCCA GGAACCTTAA AACGTGCTTT TGGCGGAACC CGTTTTGCAC GAAGTAAGGT
24801	CGCTCAAGGG CGAGGCGCGC CGCGACTACG TCCGCGACTG CGTTTACTTA GCGAGTTCCC GCTCCGCGCG GCGCTGATGC AGGCGCTGAC GCAAATGAAT
24851	TITCTATGCT ACACCTGGCA GACGGCCATG GGCGTTTGGC AGCAGTGCTT AAAGATACGA TGTGGACCGT CTGCCGGTAC CCGCAAACCG TCGTCACGAA
24901	GGAGGAGTGC AACCTCAAGG AGCTGCAGAA ACTGCTAAAG CAAAACTTGA CCTCCTCACG TTGGAGTTCC TCGACGTCTT TGACGATTTC GTTTTGAACT
24951	AGGACCTATG GACGGCCTTC AACGAGCGCT CCGTGGCCGC GCACCTGGCG TCCTGGATAC CTGCCGGAAG TTGCTCGCGA GGCACCGGCG CGTGGACCGC
25001	GACATCATTT TCCCCGAACG CCTGCTTAAA ACCCTGCAAC AGGGTCTGCC CTGTAGTAAA AGGGGCTTGC GGACGAATTT TGGGACGTTG TCCCAGACGG
25051	AGACTICACC AGICAAAGCA TGITGCAGAA CTITAGGAAC TITATCCTAG TCTGAAGTGG TCAGITTCGT ACAACGTCTT GAAATCCTTG AAATAGGATC
25101	AGCGCTCAGG AATCTTGCCC GCCACCTGCT GTGCACTTCC TAGCGACTTT TCGCGAGTCC TTAGAACGGG CGGTGGACGA CACGTGAAGG ATCGCTGAAA
25151	GTGCCCATTA AGTACCGCGA ATGCCCTCCG CCGCTTTGGG GCCACTGCTA CACGGGTAAT TCATGGCGCT TACGGGAGGC GGCGAAACCC CGGTGACGAT
25201	CCTTCTGCAG CTAGCCAACT ACCTTGCCTA CCACTCTGAC ATAATGGAAG GGAAGACGTC GATCGGTTGA TGGAACGGAT GGTGAGACTG TATTACCTTC
25251	ACGTGAGCGG TGACGGTCTA CTGGAGTGTC ACTGTCGCTG CAACCTATGC TGCACTCGCC ACTGCCAGAT GACCTCACAG TGACAGCGAC GTTGGATACG
25301	ACCCCGCACC GCTCCCTGGT TTGCAATTCG CAGCTGCTTA ACGAAAGTCA TGGGGCGTGG CGAGGGACCA AACGTTAAGC GTCGACGAAT TGCTTTCAGT
25351	AATTATCGGT ACCTITGAGC TGCAGGGTCC CTCGCCTGAC GAAAAGTCCG TTAATAGCCA TGGAAACTCG ACGTCCCAGG GAGCGGACTG CTTTTCAGGC
25401	CGGCTCCGGG GTTGAAACTC ACTCCGGGGC TGTGGACGTC GGCTTACCTT GCCGAGGCCC CAACTTTGAG TGAGGCCCCG ACACCTGCAG CCGAATGGAA

25451	CGCAAATTTG TACCTGAGGA CTACCACGCC CACGAGATTA GGTTCTACGA GCGTTTAAAC ATGGACTCCT GATGGTGCGG GTGCTCTAAT CCAAGATGCT
25501	AGACCAATCC CGCCCGCTA ATGCGGAGCT TACCGCCTGC GTCATTACCC TCTGGTTAGG GCGGGCGGAT TACGCCTCGA ATGGCGGACG CAGTAATGGG
25551	AGGGCCACAT TCTTGGCCAA TTGCAAGCCA TCAACAAAGC CCGCCAAGAG TCCCGGTGTA AGAACCGGTT AACGTTCGGT AGTTGTTTCG GGCGGTTCTC
25601	TTTCTGCTAC GAAAGGACG GGGGGTTTAC TTGGACCCCC AGTCCGGCGA AAAGACGATG CTTTCCCTGC CCCCCAAATG AACCTGGGGG TCAGGCCGCT
25651	GGAGCTCAAC CCAATCCCCC CGCCGCCGCA GCCCTATCAG CAGCAGCCGC CCTCGAGTTG GGTTAGGGGG GCGGCGGCGT CGGGATAGTC GTCGTCGGCG
25701	GGGCCCTTGC TTCCCAGGAT GGCACCCAAA AAGAAGCTGC AGCTGCCGCC CCCGGGAACG AAGGGTCCTA CCGTGGGTTT TTCTTCGACG TCGACGGCGG
25751	GCCACCCACG GACGAGGAGG AATACTGGGA CAGTCAGGCA GAGGAGGTTT CGGTGGGTGC CTGCTCCTCC TTATGACCCT GTCAGTCCGT CTCCTCCAAA
25801	TGGACGAGGA GGAGGAGGAC ATGATGGAAG ACTGGGAGAG CCTAGACGAG ACCTGCTCCT CCTCCTCCT TACTACCTTC TGACCCTCTC GGATCTGCTC
25851	GAAGCTTCCG AGGTCGAAGA GGTGTCAGAC GAAACACCGT CACCCTCGGT CTTCGAAGGC TCCAGCTTCT CCACAGTCTG CTTTGTGGCA GTGGGAGCCA
25901	CGCATTCCCC TCGCCGGCGC CCCAGAAATC GGCAACCGGT TCCAGCATGG GCGTAAGGGG AGCGGCCGCG GGGTCTTTAG CCGTTGGCCA AGGTCGTACC
25951	CTACAACCTC CGCTCCTCAG GCGCCGCGG CACTGCCCGT TCGCCGACCC GATGTTGGAG GCGAGGAGTC CGCGGCGGCC GTGACGGGCA AGCGGCTGGG
26001	AACCGTAGAT GGGACACCAC TGGAACCAGG GCCGGTAAGT CCAAGCAGCC TTGGCATCTA CCCTGTGGTG ACCTTGGTCC CGGCCATTCA GGTTCGTCGG
26051	GCCGCCGTTA GCCCAAGAGC AACAACAGCG CCAAGGCTAC CGCTCATGGC CGGCGCAAT CGGGTTCTCG TTGTTGTCGC GGTTCCGATG GCGAGTACCG
26101	GCGGGCACAA GAACGCCATA GTTGCTTGCT TGCAAGACTG TGGGGGCAAC CGCCCGTGTT CTTGCGGTAT CAACGAACGA ACGTTCTGAC ACCCCCGTTG
26151	ATCTCCTTCG CCCGCCGCTT TCTTCTCTAC CATCACGGCG TGGCCTTCCC TAGAGGAAGC GGGCGGCGAA AGAAGAGATG GTAGTGCCGC ACCGGAAGGG
26201	GGCATTGTAG GACGTAATGA TGGCAGTAGA GATGTCGGGT ATGACGTGGC
26251	GCGGCAGCGG CAGCAACAGC AGCGGCCACA CAGAAGCAAA GCCGACCGGA CGCCGTCGCC GTCGTTGTCG TCGCCGGTGT GTCTTCGTTT CCGCTGGCCT

26301	TAGCAAGACT CTGACAAAGC CCAAGAAATC CACAGCGGCG GCAGCAGCAG ATCGTTCTGA GACTGTTTCG GGTTCTTTAG GTGTCGCCGC CGTCGTCGTC
26351	GAGGAGGAGC GCTGCGTCTG GCGCCCAACG AACCCGTATC GACCCGCGAG CTCCTCCTCG CGACGCAGAC CGCGGGTTGC TTGGGCATAG CTGGGCGCTC
26401	CTTAGAAACA GGATTTTCC CACTCTGTAT GCTATATTTC AACAGAGCAG GAATCTTTGT CCTAAAAAGG GTGAGACATA CGATATAAAG TTGTCTCGTC
26451	GGGCCAAGAA CAAGAGCTGA AAATAAAAAA CAGGTCTCTG CGATCCCTCA CCCGGTTCTT GTTCTCGACT TTTATTTTTT GTCCAGAGAC GCTAGGGAGT
26501	CCCGCAGCTG CCTGTATCAC AAAAGCGAAG ATCAGCTTCG GCGCACGCTG GGGCGTCGAC GGACATAGTG TTTTCGCTTC TAGTCGAAGC CGCGTGCGAC
26551	GAAGACGCGG AGGCTCTCTT CAGTAAATAC TGCGCGCTGA CTCTTAAGGA CTTCTGCGCC TCCGAGAGAA GTCATTTATG ACGCGCGACT GAGAATTCCT
26601	CTAGTTTCGC GCCCTTTCTC AAATTTAAGC GCGAAAACTA CGTCATCTCC GATCAAAGCG CGGGAAAGAG TTTAAATTCG CGCTTTTGAT GCAGTAGAGG
26651	AGGGGCCACA CCCGGCGCCA GCACCTGTTG TCAGCGCCAT TATGAGCAAG TCGCCGGTGT GGGCCGCGGT CGTGGACAAC AGTCGCGGTA ATACTCGTTC
26701	GAAATTCCCA CGCCCTACAT GTGGAGTTAC CAGCCACAAA TGGGACTTGC CTTTAAGGGT GCGGGATGTA CACCTCAATG GTCGGTGTTT ACCCTGAACG
26751	GGCTGGAGCT GCCCAAGACT ACTCAACCCG AATAAACTAC ATGAGCGCGG CCGACCTCGA CGGGTTCTGA TGAGTTGGGC TTATTTGATG TACTCGCGCC
26801	GACCCCACAT GATATCCCGG GTCAACGGAA TACGCGCCCA CCGAAACCGA CTGGGGTGTA CTATAGGGCC CAGTTGCCTT ATGCGCGGGT GGCTTTGGCT
26851	ATTCTCCTGG AACAGGCGGC TATTACCACC ACACCTCGTA ATAACCTTAA TAAGAGGACC TTGTCCGCCG ATAATGGTGG TGTGGAGCAT TATTGGAATT
26901	TCCCCGTAGT TGGCCCGCTG CCCTGGTGTA CCAGGAAAGT CCCGCTCCCA AGGGGCATCA ACCGGGCGAC GGGACCACAT GGTCCTTTCA GGGCGAGGGT
26951	CCACTGTGGT ACTTCCCAGA GACGCCCAGG CCGAAGTTCA GATGACTAAC GGTGACACCA TGAAGGGTCT CTGCGGGTCC GGCTTCAAGT CTACTGATTG
27001	TCAGGGGCGC AGCTTGCGGG CGGCTTTCGT CACAGGGTGC GGTCGCCCGG AGTCCCCGCG TCGAACGCCC GCCGAAAGCA GTGTCCCACG CCAGCGGGCC
27053	L GCAGGGTATA ACTCACCTGA CAATCAGAGG GCGAGGTATT CAGCTCAACG CGTCCCATAT TGAGTGGACT GTTAGTCTCC CGCTCCATAA GTCGAGTTGC
2710	ACGAGTCGGT GAGCTCCTCG CTTGGTCTCC GTCCGGACGG GACATTTCAG TGCTCAGCCA CTCGAGGAGC GAACCAGAGG CAGGCCTGCC CTGTAAAGTC

27151	ATCGGCGGCG CCGGCCGCTC TTCATTCACG CCTCGTCAGG CAATCCTAAC TAGCCGCCGC GGCCGGCGAG AAGTAAGTGC GGAGCAGTCC GTTAGGATTG
27201	TCTGCAGACC TCGTCCTCTG AGCCGCGCTC TGGAGGCATT GGAACTCTGC AGACGTCTGG AGCAGGAGAC TCGGCGCGAG ACCTCCGTAA CCTTGAGACG
27251	AATTTATTGA GGAGTTTGTG CCATCGGTCT ACTTTAACCC CTTCTCGGGA TTAAATAACT CCTCAAACAC GGTAGCCAGA TGAAATTGGG GAAGAGCCCT
27301	CCTCCCGGCC ACTATCCGGA TCAATTTATT CCTAACTTTG ACGCGGTAAA GGAGGGCCGG TGATAGGCCT AGTTAAATAA GGATTGAAAC TGCGCCATTT
27351	GGACTCGGCG GACGGCTACG ACTGAATGTT AAGTGGAGAG GCAGAGCAAC CCTGAGCCCC CTGCCGATGC TGACTTACAA TTCACCTCTC CGTCTCGTTG
27401	TGCGCCTGAA ACACCTGGTC CACTGTCGCC GCCACAAGTG CTTTGCCCGC ACGCGGACTT TGTGGACCAG GTGACAGCGG CGGTGTTCAC GAAACGGGCG
27451	GACTCCGGTG AGTTTTGCTA CTTTGAATTG CCCGAGGATC ATATCGAGGG CTGAGGCCAC TCAAAACGAT GAAACTTAAC GGGCTCCTAG TATAGCTCCC
27501	CCCGGCGCAC GGCGTCCGGC TTACCGCCCA GGGAGAGCTT GCCCGTAGCC GGGCCGCGTG CCGCAGGCCG AATGGCGGGT CCCTCTCGAA CGGGCATCGG
27551	TGATTCGGGA GTITACCCAG CGCCCCCTGC TAGTTGAGCG GGACAGGGGA ACTAAGCCCT CAAATGGGTC GCGGGGGACG ATCAACTCGC CCTGTCCCCT
27601	CCCTGTGTTC TCACTGTGAT TTGCAACTGT CCTAACCCTG GATTACATCA GGGACACAAG AGTGACACTA AACGTTGACA GGATTGGGAC CTAATGTAGT
27651	AGATCTITGT TGCCATCTCT GTGCTGAGTA TAATAAATAC AGAAATTAAA TCTAGAAACA ACGGTAGAGA CACGACTCAT ATTATTTATG TCTTTAATTT
27701	ATATACTEGE GCTCCTATCG CCATCCTGTA AACGCCACCG TCTTCACCCG TATATGACCC CGAGGATAGC GGTAGGACAT TTGCGGTGGC AGAAGTGGGC
27751	CCCAAGCAAA CCAAGGCGAA CCTTACCTGG TACTTTTAAC ATCTCTCCT GGGTTCGTTT GGTTCCGCTT GGAATGGACC ATGAAAATTG TAGAGAGGGA
27801	CTGTGATTTA CAACAGTTTC AACCCAGACG GAGTGAGTCT ACGAGAGAAC GACACTAAAT GTTGTCAAAG TTGGGTCTGC CTCACTCAGA TGCTCTCTTG
27851	CTCTCCGAGC TCAGCTACTC CATCAGAAAA AACACCACCC TCCTTACCTG GAGAGGCTCG AGTCGATGAG GTAGTCTTTT TTGTGGTGGG AGGAATGGAC
27901	CCGGGAACGT ACGAGTGCGT CACCGGCCGC TGCACCACAC CTACCGCCTG GGCCCTTGCA TGCTCACGCA GTGGCCGGCG ACGTGGTGTG GATGGCGGAC
27951	ACCGTANACC AGACTITITC CGGACAGACC TCAATAACTC TGTTTACCAG TGGCATTIGG TCTGAAAAAG GCCTGTCTGG AGTTATTGAG ACAAATGGTC

28001	AACAGGAGGT GAGCTTAGAA AACCCTTAGG GTATTAGGCC AAAGGCGCAG TTGTCCTCCA CTCGAATCTT TTGGGAATCC CATAATCCGG TTTCCGCGTC
28051	CTACTGTGGG GTTTATGAAC AATTCAAGCA ACTCTACGGG CTATTCTAAT GATGACACCC CAAATACTTG TTAAGTTCGT TGAGATGCCC GATAAGATTA
28101	TCAGGTTTCT CTAGAATCGG GGTTGGGGTT ATTCTCTGTC TTGTGATTCT AGTCCAAAGA GATCTTAGCC CCAACCCCAA TAAGAGACAG AACACTAAGA
28151	CTITATTCTT ATACTAACGC TTCTCTGCCT AAGGCTCGCC GCCTGCTGTG GAAATAAGAA TATGATTGCG AAGAGACGGA TTCCGAGCGG CGGACGACAC
28201	TGCACATTTG CATITATTGT CAGCTTTTTA AACGCTGGGG TCGCCACCCA ACGTGTAAAC GTAAATAACA GTCGAAAAAT TTGCGACCCC AGCGGTGGGT
28251	AGATGATTAG GTACATAATC CTAGGTTTAC TCACCCTTGC GTCAGCCCAC TCTACTAATC CATGTATTAG GATCCAAATG AGTGGGAACG CAGTCGGGTG
28301	GGTACCACCC AAAAGGTGGA TTTTAAGGAG CCAGCCTGTA ATGTTACATT CCATGGTGGG TTTTCCACCT AAAATTCCTC GGTCGGACAT TACAATGTAA
28351	CGCAGCTGAA GCTAATGAGT GCACCACTCT TATAAAATGC ACCACAGAAC GCGTCGACTT CGATTACTCA CGTGGTGAGA ATATTTTACG TGGTGTCTTG
28401	ATGAAAAGCT GCTTATTCGC CACAAAAACA AAATTGGCAA GTATGCTGTT TACTTTTCGA CGAATAAGCG GTGTTTTTGT TTTAACCGTT CATACGACAA
28451	TATGCTATTT GGCAGCCAGG TGACACTACA GAGTATAATG TTACAGTTTT ATACGATAAA CCGTCGGTCC ACTGTGATGT CTCATATTAC AATGTCAAAA
28501	CCAGGGTAAA AGTCATAAAA CTTTTATGTA TACTTTTCCA TTTTATGAAA GGTCCCATTT TCAGTATTTT GAAAATACAT ATGAAAAGGT AAAATACTTT
28551	TGTGCGACAT TACCATGTAC ATGAGCAAAC AGTATAAGTT GTGGCCCCCA ACACGCTGTA ATGGTACATG TACTCGTTTG TCATATTCAA CACCGGGGGT
28601	CAAAATTGTG TGGAAAACAC TGGCACTTTC TGCTGCACTG CTATGCTAAT GTTTTAACAC ACCTTTTGTG ACCGTGAAAG ACGACGTGAC GATACGATTA
28651	TACAGTGCTC GCTTTGCTCT GTACCCTACT CTATATTAAA TACAAAAGCA ATGTCACGAG CGAAACCAGA CATGGGATGA GATATAATTT ATGTTTTCGT
28701	GACGCAGCTT TATTGAGGAA AAGAAAATGC CTTAATTTAC TAAGTTACAA CTGCGTCGAA ATAACTCCTT TTCTTTTACG GAATTAAATG ATTCAATGTT
28751	TCGATTACAG TGGTGATTGA CGAAATGAGC GACGAACGTT TTGTTTAAGT
28801	AAAAGTTAGC ATTATAATTA GAATAGGATT TAAACCCCCC GGTCATTTCC TITTCAATCG TAATATTAAT CTTATCCTAA ATTTGGGGGG CCAGTAAAGG

28851	TGCTCAATAC CATTCCCCTG AACAATTGAC TCTATGTGGG ATATGCTCCA ACGAGTTATG GTAAGGGGAC TTGTTAACTG AGATACACCC TATACGAGGT
28901	GCGCTACAAC CTTGAAGTCA GGCTTCCTGG ATGTCAGCAT CTGACTTTGG CGCGATGTTG GAACTTCAGT CCGAAGGACC TACAGTCGTA GACTGAAACC
28951	CCAGCACCTG TCCCGCGGAT TTGTTCCAGT CCAACTACAG CGACCCACCC GGTCGTGGAC AGGGCGCCTA AACAAGGTCA GGTTGATGTC GCTGGGTGGG
29001	TAACAGAGAT GACCAACACA ACCAACGCGG CCGCCGCTAC CGGACTTACA ATTGTCTCTA CTGGTTGTGT TGGTTGCGC GGCGGCGATG GCCTGAATGT
29051	TCTACCACAA ATACACCCCA AGTTTCTGCC TTTGTCAATA ACTGGGATAA AGATGGTGTT TATGTGGGGT TCAAAGACGG AAACAGTTAT TGACCCTATT
29101	CTTGGGCATG TGGTGGTTCT CCATAGCGCT TATGTTTGTA TGCCTTATTA GAACCCGTAC ACCACCAGAA GGTATCGCGA ATACAAACAT ACGGAATAAT
29151	TTATGTGGCT CATCTGCTGC CTAAAGCGCA AACGCGCCCG ACCACCCATC AATACACCGA GTAGACGACG GATTTCGCGT TTGCGCGGGC TGGTGGGTAG
29201	TATAGTCCCA TCATTGTGCT ACACCCAAAC AATGATGGAA TCCATAGATT ATATCAGGGT AGTAACACGA TGTGGGTTTG TTACTACCTT AGGTATCTAA
29251	GGACGGACTG AAACACATGT TCTTTTCTCT TACAGTATGA TTAAATGAGA CCTGCCTGAC TTTGTGTACA AGAAAAGAGA ATGTCATACT AATTTACTCT
29301	CATGATTCCT CGAGTTTTTA TATTACTGAC CCTTGTTGCG CTTTTTTGTG GTACTAAGGA GCTCAAAAAT ATAATGACTG GGAACAACGC GAAAAAACAC
29351	CGTGCTCCAC ATTGGCTGCG GTTTCTCACA TCGAAGTAGA CTGCATTCCA GCACGAGGTG TAACCGACGC CAAAGAGTGT AGCTTCATCT GACGTAAGGT
29401	GCCTTCACAG TCTATTTGCT TTACGGATTT GTCACCCTCA CGCTCATCTG CGGAAGTGTC AGATAAACGA AATGCCTAAA CAGTGGGAGT GCGAGTAGAC
29451	CAGCCTCATC ACTGTGGTCA TCGCCTTTAT CCAGTGCATT GACTGGGTCT GTCGGAGTAG TGACACCAGT AGCGGAAATA GGTCACGTAA CTGACCCAGA
29501	GTGTGCGCTT TGCATATCTC AGACACCATC CCCAGTACAG GGACAGGACT CACACGCGAA ACGTATAGAG TCTGTGGTAG GGGTCATGTC CCTGTCCTGA
29551	ATAGCTGAGC TTCTTAGAAT TCTTTAATTA TGAAATTTAC TGTGACTTIT TATCGACTCG AAGAATCTTA AGAAATTAAT ACTTTAAATG ACACTGAAAA
29601	GACGACTAAT AAACGTGGGA TAGACGCAAA ACAAGGGGCT GGAGGTTCGG
29651	TCAAAGACAT ATATCATGCA GATTCACTCG TATATGGAAT ATTCCAAGTT AGTTTCTGTA TATAGTACGT CTAAGTGAGC ATATACCTTA TAAGGTTCAA

29701	GCTACAATGA AAAAAGCGAT CTTTCCGAAG CCTGGTTATA TGCAATCATC CGATGTTACT TTTTTCGCTA GAAAGGCTTC GGACCAATAT ACGTTAGTAG
29751	TCTGTTATGG TGTTCTGCAG TACCATCTTA GCCCTAGCTA TATATCCCTA AGACAATACC ACAAGACGTC ATGGTAGAAT CGGGATCGAT ATATAGGGAT
29801	CCITGACATT GGCTGGAACG CAATAGATGC CATGAACCAC CCAACTTTCC GGAACTGTAA CCGACCTTGC GTTATCTACG GTACTTGGTG GGTTGAAAGG
29851	CCGCGCCCGC TATGCTTCCA CTGCAACAAG TTGTTGCCGG CGGCTTTGTC GGCGCGGGCG ATACGAAGGT GACGTTGTTC AACAACGGCC GCCGAAACAG
29901	CCAGCCAATC AGCCTCGCCC ACCTTCTCCC ACCCCCACTG AAATCAGCTAGGTCGGTTAG TCGGAGCGGG TGGAAGAGGG TGGGGGTGAC TTTAGTCGAT
29951	CTTTAATCTA ACAGGAGGAG ATGACTGACA CCCTAGATCT AGAAATGGAC GAAATTAGAT TGTCCTCCTC TACTGACTGT GGGATCTAGA TCTTTACCTG
30001	GGAATTATTA CAGAGCAGCG CCTGCTAGAA AGACGCAGGG CAGCGGCCGA CCTTAATAAT GTCTCGTCGC GGACGATCTT TCTGCGTCCC GTCGCCGGCT
30051	GCAACAGCGC ATGAATCAAG AGCTCCAAGA CATGGTTAAC TTGCACCAGT CGTTGTCGCG TACTTAGTTC TCGAGGTTCT GTACCAATTG AACGTGGTCA
30101	GCAAAAGGGG TATCTTTTGT CTCGTAAAGC AGGCCAAAGT CACCTACGAC CGTTTTCCCC ATAGAAAACA GAGCATTTCG TCCGGTTTCA GTGGATGCTG
30151	AGTAATACCA CCGGACACCG CCTTAGCTAC AAGTTGCCAA CCAAGCGTCA TCATTATGGT GGCCTGTGGC GGAATCGATG TTCAACGGTT GGTTCGCAGT
30201	GAAATTGGTG GTCATGGTGG GAGAAAAGCC CATTACCATA ACTCAGCACT CTTTAACCAC CAGTACCACC CTCTTTTCGG GTAATGGTAT TGAGTCGTGA
30251	CGGTAGAAAC CGAAGGCTGC ATTCACTCAC CTTGTCAAGG ACCTGAGGAT GCCATCTTTG GCTTCCGACG TAAGTGAGTG GAACAGTTCC TGGACTCCTA
30301	CTCTGCACCC TTATTAAGAC CCTGTGCGGT CTCAAAGATC TTATTCCCTT GAGACGTGGG AATAATTCTG GGACACGCCA GAGTTTCTAG AATAAGGGAA
30351	TAACTAATAA AAAAAATAA TAAAGCATCA CTTACTTAAA ATCAGTTAGC ATTGATTATT TTTTTTTATT ATTTCGTAGT GAATGAATTT TAGTCAATCG
30401	AAATTTCTGT CCAGTTTATT CAGCAGCACC TCCTTGCCCT CCTCCCAGCT TTTAAAGACA GGTCAAATAA GTCGTCGTGG AGGAACGGGA GGAGGGTCGA
30451	CTGGTATTGC AGCTTCCTCC TGGCTGCAAA CTTTCTCCAC AATCTAAATG GACCATAACG TCGAAGGAGG ACCGACGTTT GAAAGAGGTG TTAGATTTAC
30501	GAATGTCAGT TTCCTCTGT TCCTGTCCAT CCGCACCCAC TATCTTCATG CTTACAGTCA AAGGAGGACA AGGACAGGTA GGCGTGGGTG ATAGAAGTAC

30551	TTGTTGCAGA TGAAGCGCGC AAGACCGTCT GAAGATACCT TCAACCCCGT AACAACGTCT ACTTCGCGCG TTCTGGCAGA CTTCTATGGA AGTTGGGGCA
30601	GTATCCATAT GACACGGAAA CCGGTCCTCC AACTGTGCCT TITCTTACTC CATAGGTATA CTGTGCCTTT GGCCAGGAGG TTGACACGGA AAAGAATGAG
30651	CTCCCTTTGT ATCCCCCAAT GGGTTTCAAG AGAGTCCCCC TGGGGTACTC GAGGGAAACA TAGGGGGTTA CCCAAAGTTC TCTCAGGGGG ACCCCATGAG
30701	TCTTTGCGCC TATCCGAACC TCTAGTTACC TCCAATGGCA TGCTTGCGCT AGAAACGCGG ATAGGCTTGG AGATCAATGG AGGTTACCGT ACGAACGCGA
30751	CAAAATGGGC AACGGCCTCT CTCTGGACGA GGCCGGCAAC CTTACCTCCC GTTTTACCCG TTGCCGGAGA GAGACCTGCT CCGGCCGTTG GAATGGAGGG
30801	AAAATGTAAC CACTGTGAGC CCACCTCTCA AAAAAACCAA GTCAAACATA TTTTACATTG GTGACACTCG GGTGGAGAGT TTTTTTGGTT CAGTTTGTAT
30851	AACCTGGAAA TATCTGCACC CCTCACAGTT ACCTCAGAAG CCCTAACTGT TTGGACCTTT ATAGACGTGG GGAGTGTCAA TGGAGTCTTC GGGATTGACA
30901	GGCTGCCGCC GCACCTCTAA TGGTCGCGGG CAACACACTC ACCATGCAAT CCGACGGCGG CGTGGAGATT ACCAGCGCCC GTTGTGTGAG TGGTACGTTA
30951	CACAGGCCCC GCTAACCGTG CACGACTCCA AACTTAGCAT TGCCACCCAA GTGTCCGGGG CGATTGGCAC GTGCTGAGGT TTGAATCGTA ACGGTGGGTT
31001	GGACCCCTCA CAGTGTCAGA AGGAAAGCTA GCCCTGCAAA CATCAGGCCC CCTGGGGAGT GTCACAGTCT TCCTTTCGAT CGGGACGTTT GTAGTCCGGG
31051	CCTCACCACC ACCGATAGCA GTACCCTTAC TATCACTGCC TCACCCCCTT GGAGTGGTGG TGGCTATCGT CATGGGAATG ATAGTGACGG AGTGGGGGAA
31101	TAACTACTGC CACTGGTAGC TTGGGCATTG ACTTGAAAGA GCCCATTTAT ATTGATGACG GTGACCATCG AACCCGTAAC TGAACTTTCT CGGGTAAATA
31151	ACACAAAATG GAAAACTAGG ACTAAAGTAC GGGGCTCCTT TGCATGTAAC TGTGTTTTAC CTTTTGATCC TGATTTCATG CCCCGAGGAA ACGTACATTG
31201	AGACGACCTA AACACTITIGA CCGTAGCAAC TGGTCCAGGT GTGACTATTA TCTGCTGGAT TTGTGAAACT GGCATCGTTG ACCAGGTCCA CACTGATAAT
31251	ATAATACTTC CTTGCAAACT AAAGTTACTG GAGCCTTGGG TTTTGATTCA TATTATGAAG GAACGTTTGA TTTCAATGAC CTCGGAACCC AAAACTAAGT
31301	GITCCGTTAT ACGTTGAATT ACATCGTCCT CCTGATTCCT AACTAAGAGT
31351	AAACAGACGC CTTATACTTG ATGTTAGTTA TCCGTTTGAT GCTCAAAACC TTTGTCTGCG GAATATGAAC TACAATCAAT AGGCAAACTA CGAGTTTTGG

31401	AACTAAATCT AAGACTAGGA CAGGGCCCTC TTTTTATAAA CTCAGCCCAC TTGATTTAGA TTCTGATCCT GTCCCGGGAG AAAAATATTT GAGTCGGGTG
31451	AACTTGGATA TTAACTACAA CAAAGGCCTT TACTTGTTTA CAGCTTCAAA TTGAACCTAT AATTGATGTT GTTTCCGGAA ATGAACAAAT GTCGAAGTTT
31501	CAATTCCAAA AAGCTTGAGG TTAACCTAAG CACTGCCAAG GGGTTGATGT GTTAAGGTTT TTCGAACTCC AATTGGATTC GTGACGGTTC CCCAACTACA
31551	TTGACGCTAC AGCCATAGCC ATTAATGCAG GAGATGGGCT TGAATTTGGT AACTGCGATG TCGGTATCGG TAATTACGTC CTCTACCCGA ACTTAAACCA
31601	TCACCTAATG CACCAAACAC AAATCCCCTC AAAACAAAAA TTGGCCATGG AGTGGATTAC GTGGTTTGTG TTTAGGGGAG TTTTGTTTTT AACCGGTACC
31651	CCTAGAATTT GATTCAAACA AGGCTATGGT TCCTAAACTA GGAACTGGCC GGATCTTAAA CTAAGTTTGT TCCGATACCA AGGATTTGAT CCTTGACCGG
31701	TTAGTITTGA CAGCACAGGT GCCATTACAG TAGGAAACAA AAATAATGAT AATCAAAACT GTCGTGTCCA CGGTAATGTC ATCCTTTGTT TTTATTACTA
31751	AAGCTAACTT TGTGGACCAC ACCAGCTCCA TCTCCTAACT GTAGACTAAA TTCGATTGAA ACACCTGGTG TGGTCGAGGT AGAGGATTGA CATCTGATTT
31801	TGCAGAGAAA GATGCTAAAC TCACTTTGGT CTTAACAAAA TGTGGCAGTC ACGTCTCTTT CTACGATTTG AGTGAAACCA GAATTGTTTT ACACCGTCAG
31851	AAATACTTGC TACAGTTTCA GTTTTGGCTG TTAAAGGCAG TTTGGCTCCA TTTATGAACG ATGTCAAAGT CAAAACCGAC AATTTCCGTC AAACCGAGGT
31901	ATATCTGGAA CAGTICAAAG TGCTCATCTT ATTATAAGAT TTGACGAAAA TATAGACCTT GTCAAGTTTC ACGAGTAGAA TAATATTCTA AACTGCTTTT
31951	TGGAGTGCTA CTAAACAATT CCTTCCTGGA CCCAGAATAT TGGAACTTTA ACCTCACGAT GATTTGTTAA GGAAGGACCT GGGTCTTATA ACCTTGAAAT
32001	GAAATGGAGA TCTTACTGAA GGCACAGCCT ATACAAACGC TGTTGGATTT CTTTACCTCT AGAATGACTT CCGTGTCGGA TATGTTTGCG ACAACCTAAA
32051	ATGCCTAACC TATCAGCTTA TCCAAAATCT CACGGTAAAA CTGCCAAAAG TACGGATTGG ATAGTCGAAT AGGTTTTAGA GTGCCATTTT GACGGTTTTC
32101	TAACATTGTC AGTCAAGTTT ACTTAAACGG AGACAAAACT AAACCTGTAA ATTGTAACAG TCAGTTCAAA TGAATTTGCC TCTGTTTTGA TTTGGACATT
32151	GTGATTGGTA ATGTGATTTG CCATGTGTCC TTTGTCCTCT GTGTTGAGGT
32201	AGTGCATACT CTATGTCATT TTCATGGGAC TGGTCTGGCC ACAACTACAT TCACGTATGA GATACAGTAA AAGTACCCTG ACCAGACCGG TGTTGATGTA

32251	TAATGAAATA TTTGCCACAT CCTCTTACAC TTTTTCATAC ATTGCCCAAG ATTACTTTAT AAACGGTGTA GGAGAATGTG AAAAAGTATG TAACGGGTTC
32301	AATAAAGAAT CGTTTGTGTT ATGTTTCAAC GTGTTTATTT TTCAATTGCA TTATTTCTTA GCAAACACAA TACAAAGTTG CACAAATAAA AAGTTAACGT
32351	GAAAATTICA AGTCATTTTT CATTCAGTAG TATAGCCCCA CCACCACATA CTTTTAAAGT TCAGTAAAAA GTAAGTCATC ATATCGGGGT GGTGGTGTAT
32401	GCTTATACAG ATCACCGTAC CTTAATCAAA CTCACAGAAC CCTAGTATTC CGAATATGTC TAGTGGCATG GAATTAGTTT GAGTGTCTTG GGATCATAAG
32451	AACCTGCCAC CTCCCTCCCA ACACACAGAG TACACAGTCC TTTCTCCCCG TTGGACGGTG GAGGGAGGGT TGTGTGTCTC ATGTGTCAGG AAAGAGGGGC
32501	GCTGGCCTTA AAAAGCATCA TATCATGGGT AACAGACATA TTCTTAGGTG CGACCGGAAT TTTTCGTAGT ATAGTACCCA TTGTCTGTAT AAGAATCCAC
32551	TTATATTCCA CACGGTTTCC TGTCGAGCCA AACGCTCATC AGTGATATTA AATATAAGGT GTGCCAAAGG ACAGCTCGGT TTGCGAGTAG TCACTATAAT
32601	ATAAACTCCC CGGGCAGCTC ACTTAAGTTC ATGTCGCTGT CCAGCTGCTG TATTTGAGGG GCCCGTCGAG TGAATTCAAG TACAGCGACA GGTCGACGAC
32651	AGCCACAGGC TGCTGTCCAA CTTGCGGTTG CTTAACGGGC GGCGAAGGAG TCGGTGTCCG ACGACAGGTT GAACGCCAAC GAATTGCCCG CCGCTTCCTC
32701	AAGTCCACGC CTACATGGGG GTAGAGTCAT AATCGTGCAT CAGGATAGGG TTCAGGTGCG GATGTACCCC CATCTCAGTA TTAGCACGTA GTCCTATCCC
32751	CGGTGGTGCT GCAGCAGCGC GCGAATAAAC TGCTGCCGCC GCCGCTCCGT GCCACCACGA CGTCGTCGCG CGCTTATTTG ACGACGGCGG CGGCGAGGCA
32801	CCTGCAGGAA TACAACATGG CAGTGGTCTC CTCAGCGATG ATTCGCACCG GGACGTCCTT ATGTTGTACC GTCACCAGAG GAGTCGCTAC TAAGCGTGGC
32851	CCCGCAGCAT AAGGCGCCTT GTCCTCCGGG CACAGCAGCG CACCCTGATC GGGCGTCGTA TTCCGCGGAA CAGGAGGCCC GTGTCGTCGC GTGGGACTAG
32901	TCACTTAAAT CAGCACAGTA ACTGCAGCAC AGCACCACAA TATTGTTCAA AGTGAATTTA GTCGTGTCAT TGACGTCGTG TCGTGGTGTT ATAACAAGTT
32951	TTAGGGTGTC ACGTTCCGCG ACATAGGTTT CGAGTACCGC CCCTGGTGTC
33001	TTGGGTGCAC CGGTAGTATG GTGTTCGCGT CCATCTAATT CACCGCTGGG
33051	CTCATAAACA CGCTGGACAT AAACATTACC TCTTTTGGCA TGTTGTAATT GAGTATTTGT GCGACCTGTA TTTGTAATGG AGAAAACCGT ACAACATTAA

33101	CACCACCTCC CGGTACCATA TAAACCTCTG ATTAAACATG GCGCCATCCA GTGGTGGAGG GCCATGGTAT ATTTGGAGAC TAATTTGTAC CGCGGTAGGT
33151	CCACCATCCT AAACCAGCTG GCCAAAACCT GCCCGCCGGC TATACACTGC GGTGGTAGGA TTTGGTCGAC CGGTTTTTGGA CGGGCGGCCG ATATGTGACG
33201	AGGGAACCGG GACTGGAACA ATGACAGTGG AGAGCCCAGG ACTCGTAACC TCCCTTGGCC CTGACCTTGT TACTGTCACC TCTCGGGTCC TGAGCATTGG
33251	ATGGATCATC ATGCTCGTCA TGATATCAAT GTTGGCACAA CACAGGCACA TACCTAGTAG TACGAGCAGT ACTATAGTTA CAACCGTGTT GTGTCCGTGT
33301	CGTGCATACA CTTCCTCAGG ATTACAAGCT CCTCCCGCGT TAGAACCATA GCACGTATGT GAAGGAGTCC TAATGTTCGA GGAGGGCGCA ATCTTGGTAT
33351	TCCCAGGGAA CAACCCATTC CTGAATCAGC GTAAATCCCA CACTGCAGGG AGGGTCCCTT GTTGGGTAAG GACTTAGTCG CATTTAGGGT GTGACGTCCC
33401	AAGACCTCGC ACGTAACTCA CGTTGTGCAT TGTCAAAGTG TTACATTCGG TTCTGGAGCG TGCATTGAGT GCAACACGTA ACAGTTTCAC AATGTAAGCC
33451	GCAGCAGCGG ATGATCCTCC AGTATGGTAG CGCGGGTTTC TGTCTCAAAA CGTCGTCGCC TACTAGGAGG TCATACCATC GCGCCCAAAG ACAGAGTTTT
33501	GGAGGTAGAC GATCCCTACT GTACGGAGTG CGCCGAGACA ACCGAGATCG CCTCCATCTG CTAGGGATGA CATGCCTCAC GCGGCTCTGT TGGCTCTAGC
33551	TGTTGGTCGT AGTGTCATGC CAAATGGAAC GCCGGACGTA GTCATATTTC ACAACCAGCA TCACAGTACG GTTTACCTTG CGGCCTGCAT CAGTATAAAG
33601	CTGAAGCAAA ACCAGGTGCG GGCGTGACAA ACAGATCTGC GTCTCCGGTC GACTTCGTTT TGGTCCACGC CCGCACTGTT TGTCTAGACG CAGAGGCCAG
33651	TCGCCGCTTA GATCGCTCTG TGTAGTAGTT GTAGTATATC CACTCTCTCA AGCGGCGAAT CTAGCGAGAC ACATCATCAA CATCATATAG GTGAGAGAGT
33701	AAGCATCCAG GCGCCCCCTG GCTTCGGGTT CTATGTAAAC TCCTTCATGC TTCGTAGGTC CGCGGGGGAC CGAAGCCCAA GATACATTTG AGGAAGTACG
33751	GCCGCTGCCC TGATAACATC CACCACCGCA GAATAAGCCA CACCCAGCCA CGGCGACGGG ACTATTGTAG GTGGTGGCGT CTTATTCGGT GTGGGTCGGT
33801	ACCTACACAT TCGTTCTGCG AGTCACACAC GGGAGGAGCG GGAAGAGCTG TGGATGTGTA AGCAAGACGC TCAGTGTGTG CCCTCCTCGC CCTTCTCGAC
33851	CTTCTTGGTA CAAAAAAAA AATAAGGTTT TCTAATAGGT TTTGGAGTTT
33901	ATGAAGATCT ATTAAGTGAA CGCGCTCCCC TCCGGTGGCG TGGTCAAACT TACTTCTAGA TAATTCACTT GCGCGAGGGG AGGCCACCGC ACCAGTTTGA

33951	CTACAGCCAA AGAACAGATA ATGGCATTTG TAAGATGTTG CACAATGGCT GATGTCGGTT TCTTGTCTAT TACCGTAAAC ATTCTACAAC GTGTTACCGA
34001	TCCAAAAGGC AAACGGCCCT CACGTCCAAG TGGACGTAAA GGCTAAACCC AGGTTTTCCG TTTGCCGGGA GTGCAGGTTC ACCTGCATTT CCGATTTGGG
34051	TTCAGGGTGA ATCTCCTCTA TAAACATTCC AGCACCTTCA ACCATGCCCA AAGTCCCACT TAGAGGAGAT ATTTGTAAGG TCGTGGAAGT TGGTACGGGT
34101	AATAATTCTC ATCTCGCCAC CTTCTCAATA TATCTCTAAG CAAATCCCGA TTATTAAGAG TAGAGCGGTG GAAGAGTTAT ATAGAGATTC GTTTAGGGCT
34151	ATATTAAGTC CGGCCATTGT AAAAATCTGC TCCAGAGCGC CCTCCACCTT TATAATTCAG GCCGGTAACA TTTTTAGACG AGGTCTCGCG GGAGGTGGAA
34201	CAGCCTCAAG CAGCGAATCA TGATTGCAAA AATTCAGGTT CCTCACAGAC GTCGGAGTTC GTCGCTTAGT ACTAACGTTT TTAAGTCCAA GGAGTGTCTG
34251	CTGTATAAGA TTCAAAAGCG GAACATTAAC AAAAATACCG CGATCCCGTA GACATATTCT AAGTTTTCGC CTTGTAATTG TTTTTATGGC GCTAGGGCAT
34301	GGTCCCTTCG CAGGGCCAGC TGAACATAAT CGTGCAGGTC TGCACGGACC CCAGGGAAGC GTCCCGGTCG ACTTGTATTA GCACGTCCAG ACGTGCCTGG
34351	AGCGCGGCCA CTTCCCCGCC AGGAACCATG ACAAAAGAAC CCACACTGAT TCGCGCCGGT GAAGGGGCGG TCCTTGGTAC TGTTTTCTTG GGTGTGACTA
34401	TATGACACGC ATACTCGGAG CTATGCTAAC CAGCGTAGCC CCGATGTAAG ATACTGTGCG TATGAGCCTC GATACGATTG GTCGCATCGG GGCTACATTC
34451	CTTGTTGCAT GGGCGGCGAT ATAAAATGCA AGGTGCTGCT CAAAAAATCA GAACAACGTA CCCGCCGCTA TATTTTACGT TCCACGACGA GTTTTTTAGT
34501	GGCAAAGCCT CGCGCAAAAA AGAAAGCACA TCGTAGTCAT GCTCATGCAG CCGTTTCGGA GCGCGTTTTT TCTTTCGTGT AGCATCAGTA CGAGTACGTC
34551	ATAMAGGCAG GTAAGCTCCG GAACCACCAC AGAAAAAGAC ACCATTTTTC TATTTCCGTC CATTCGAGGC CTTGGTGGTG TCTTTTTCTG TGGTAAAAAG
34601	TCTCAAACAT GTCTGCGGGT TTCTGCATAA ACACAAAATA AAATAACAAA AGAGTTTGTA CAGACGCCCA AAGACGTATT TGTGTTTTAT TTTATTGTTT
34651	AAAACATITA AACATTAGAA GCCTGTCTTA CAACAGGAAA AACAACCCTT TITTGTAAAT TTGTAATCTT CGGACAGAAT GTTGTCCTTT TTGTTGGGAA
34701	TATTCGTATT CTGCCTGATG CCGGTACGGC CGCACIGGCA IIIIIIIGAC
34751	GTCACCETGA TTAAAAAGCA CCACCGACAG CTCCTCGGTC ATGTCCGGAG CAGTGGCACT AATTTTTCGT GGTGGCTGTC GAGGAGCCAG TACAGGCCTC

34801	TCATAATGTA AGACTCGGTA AACACATCAG GTTGATTCAC ATCGGTCAGT AGTATTACAT TCTGAGCCAT TTGTGTAGTC CAACTAAGTG TAGCCAGTCA
34851	GCTAAAAAGC GACCGAAATA GCCCGGGGGA ATACATACCC GCAGGCGTAG CGATTTTTCG CTGGCTTTAT CGGGCCCCCT TATGTATGGG CGTCCGCATC
34901	AGACAACATT ACAGCCCCCA TAGGAGGTAT AACAAAATTA ATAGGAGAGA TCTGTTGTAA TGTCGGGGGT ATCCTCCATA TTGTTTTAAT TATCCTCTCT
34951	AAAACACATA AACACCTGAA AAACCCTCCT GCCTAGGCAA AATAGCACCC TTTTGTGTAT TTGTGGACTT TTTGGGAGGA CGGATCCGTT TTATCGTGGG
35001	TCCCGCTCCA GAACAACATA CAGCGCTTCC ACAGCGGCAG CCATAACAGT AGGGCGAGGT CTTGTTGTAT GTCGCGAAGG TGTCGCCGTC GGTATTGTCA
35051	CAGCCTTACC AGTAAAAAAG AAAACCTATT AAAAAAACAC CACTCGACAC GTCGGAATGG TCATTTTTC TTTTGGATAA TTTTTTTGTG GTGAGCTGTG
35101	GGCACCAGCT CAATCAGTCA CAGTGTAAAA AAGGGCCAAG TGCAGAGCGA CCGTGGTCGA GTTAGTCAGT GTCACATTTT TTCCCGGTTC ACGTCTCGCT
35151	GTATATATAG GACTAAAAAA TGACGTAACG GTTAAAGTCC ACAAAAAACA CATATATATC CTGATTTTT ACTGCATTGC CAATTTCAGG TGTTTTTTGT
35201	CCCAGAAAAC CGCACGCGAA CCTACGCCCA GAAACGAAAG CCAAAAAACC GGGTCTTTTG GCGTGCGCTT GGATGCGGGT CTTTGCTTTC GGTTTTTTGG
35251	CACAACTTCC TCAAATCGTC ACTTCCGTTT TCCCACGTTA CGTCACTTCC GTGTTGAAGG AGTTTAGCAG TGAAGGCAAA AGGGTGCAAT GCAGTGAAGG
35301	CATITTAAGA AAACTACAAT TCCCAACACA TACAAGTTAC TCCGCCCTAA GTAAAATTCT TTTGATGTTA AGGGTTGTGT ATGTTCAATG AGGCGGGATT
35351	AACCTACGTC ACCCGCCCG TTCCCACGCC CCGCGCCACG TCACAAACTC TTGGATGCAG TGGGCGGGGC AAGGGTGCGG GGCGCGGTGC AGTGTTTGAG
35401	CACCCCCTCA TTATCATATT GGCTTCAATC CAAAATAAGG TATATTATTG GTGGGGAGT AATAGTATAA CCGAAGTTAG GTTTTATTCC ATATAATAAC
	PacI
35451	ATGATGTTAA TTAAGAATTC GGATCTGCGA CGCGAGGCTG GATGGCCTTC TACTACAATT AATTCTTAAG CCTAGACGCT GCGCTCCGAC CTACCGGAAG
35501	CCCATTATGA TTCTTCTCGC TTCCGGCGGC ATCGGGATGC CCGCGTTGCA GGGTAATACT AAGAAGAGCG AAGGCCGCCG TAGCCCTACG GGCGCAACGT
35551	GGCCATGCTG TCCAGGCAGG TAGATGACGA CCATCAGGGA CAGCTTCAAG CCGGTACGAC AGGTCCGTCC ATCTACTGCT GGTAGTCCCT GTCGAAGTTC

35601	GCCAGCAAAA GGCCAGGAAC CGTAAAAAGG CCGCGTTGCT GGCGTTTTTC CGGTCGTTTT CCGGTCCTTG GCATTTTTCC GGCGCAACGA CCGCAAAAAG
356 51	CATAGGCTCC GCCCCCCTGA CGAGCATCAC AAAAATCGAC GCTCAAGTCA GTATCCGAGG CGGGGGGACT GCTCGTAGTG TTTTTAGCTG CGAGTTCAGT
35701	GAGGTGGCGA AACCCGACAG GACTATAAAG ATACCAGGCG TTTCCCCCTG CTCCACCGCT TTGGGCTGTC CTGATATTTC TATGGTCCGC AAAGGGGGAC
35751	GAAGCTCCCT CGTGCGCTCT CCTGTTCCGA CCCTGCCGCT TACCGGATAC CTTCGAGGGA GCACGCGAGA GGACAAGGCT GGGACGGCGA ATGGCCTATG
35801	CTGTCCGCCT TTCTCCCTTC GGGAAGCGTG GCGCTTTCTC ATAGCTCACG GACAGGCGGA AAGAGGGAAG CCCTTCGCAC CGCGAAAGAG TATCGAGTGC
35851	CTGTAGGTAT CTCAGTTCGG TGTAGGTCGT TCGCTCCAAG CTGGGCTGTGGACATCCATA GAGTCAAGCC ACATCCAGCA AGCGAGGTTC GACCCGACAC
35901	TGCACGAACC CCCCGTTCAG CCCGACCGCT GCGCCTTATC CGGTAACTAT ACGTGCTTGG GGGGCAAGTC GGGCTGGCGA CGCGGAATAG GCCATTGATA
35951	CGTCTTGAGT CCAACCCGGT AAGACACGAC TTATCGCCAC TGGCAGCAGC GCAGAACTCA GGTTGGGCCA TTCTGTGCTG AATAGCGGTG ACCGTCGTCG
36001	CACTGGTAAC AGGATTAGCA GAGCGAGGTA TGTAGGCGGT GCTACAGAGT GTGACCATTG TCCTAATCGT CTCGCTCCAT ACATCCGCCA CGATGTCTCA
36051	TCTTGAAGTG GTGGCCTAAC TACGGCTACA CTAGAAGGAC AGTATTTGGT AGAACTTCAC CACCGGATTG ATGCCGATGT GATCTTCCTG TCATAAACCA
36101	ATCTGCGCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG TTGGTAGCTC TAGACGCGAG ACGACTTCGG TCAATGGAAG CCTTTTTCTC AACCATCGAG
36151	TTGATCCGGC AAACAAACCA CCGCTGGTAG CGGTGGTTTT TTTGTTTGCA AACTAGGCCG TTTGTTTGGT GGCGACCATC GCCACCAAAA AAACAAACGT
36201	AGCAGCAGAT TACGCGCAGA AAAAAAGGAT CTCAAGAAGA TCCTTTGATC TCGTCGTCTA ATGCGCGTCT TTTTTTCCTA GAGTTCTTCT AGGAAACTAG
36251	TITITCTACGG GGTCTGACGC TCAGTGGAAC GAAAACTCAC GTTAAGGGAT AAAAGATGCC CCAGACTGCG AGTCACCTTG CTTTTGAGTG CAATTCCCTA
36301	TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC CTTTTAAATC AAACCAGTAC TCTAATAGTT TTTCCTAGAA GTGGATCTAG GAAAATTTAG
36351	AATCTAAAGT ATATATGAGT AAACTTGGTC TGACAGTTAC CAATGCTTAA TTAGATTTCA TATATACTCA TTTGAACCAG ACTGTCAATG GTTACGAATT
36401	TCAGTGAGGC ACCTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT AGTCACTCCG TGGATAGAGT CGCTAGACAG ATAAAGCAAG TAGGTATCAA

36451	GCCTGACTCC CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC CGGACTGAGG GGCAGCACAT CTATTGATGC TATGCCCTCC CGAATGGTAG
36501	TGGCCCCAGT GCTGCAATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG ACCGGGGTCA CGACGTTACT ATGGCGCTCT GGGTGCGAGT GGCCGAGGTC
36551	ATTTATCAGC AATAAACCAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT TAAATAGTCG TTATTTGGTC GGTCGGCCTT CCCGGCTCGC GTCTTCACCA
36601	CCTGCAACTT TATCCGCCTC CATCCAGTCT ATTAATTGTT GCCGGGAAGC GGACGTTGAA ATAGGCGGAG GTAGGTCAGA TAATTAACAA CGGCCCTTCG
36651	TAGAGTAAGT AGTTCGCCAG TTAATAGTTT GCGCAACGTT GTTGCCATTG ATCTCATTCA TCAAGCGGTC AATTATCAAA CGCGTTGCAA CAACGGTAAC
36701	CTACAGGCAT CGTGGTGTCA CGCTCGTCGT TTGGTATGGC TTCATTCAGC GATGTCCGTA GCACCACAGT GCGAGCAGCA AACCATACCG AAGTAAGTCG
36751	TCCGGTTCCC AACGATCAAG GCGAGTTACA TGATCCCCCA TGTTGTGCAA AGGCCAAGGG TTGCTAGTTC CGCTCAATGT ACTAGGGGGT ACAACACGTT
36801	AAAAGCGGTT AGCTCCTTCG GTCCTCCGAT CGTTGTCAGA AGTAAGTTGG TTTTCGCCAA TCGAGGAAGC CAGGAGGCTA GCAACAGTCT TCATTCAACC
36851	CCGCAGTGTT ATCACTCATG GTTATGGCAG CACTGCATAA TTCTCTTACT GGCGTCACAA TAGTGAGTAC CAATACCGTC GTGACGTATT AAGAGAATGA
36901	GTCATGCCAT CCGTAAGATG CTTTTCTGTG ACTGGTGAGT ACTCAACCAA CAGTACGGTA GGCATTCTAC GAAAAGACAC TGACCACTCA TGAGTTGGTT
36951	GTCATTCTGA GAATAGTGTA TGCGGCGACC GAGTTGCTCT TGCCCGGCGT CAGTAAGACT CTTATCACAT ACGCGCTGG CTCAACGAGA ACGGGCCGCA
37001	CAACACGGGA TAATACCGCG CCACATAGCA GAACTTTAAA AGTGCTCATC GTTGTGCCCT ATTATGGCGC GGTGTATCGT CTTGAAATTT TCACGAGTAG
37051	ATTGGAAAAC GTTCTTCGGG GCGAAAACTC TCAAGGATCT TACCGCTGTT TAACCTTTTG CAAGAAGCCC CGCTTTTGAG AGTTCCTAGA ATGGCGACAA
37101	GAGATCCAGT TCGATGTAAC CCACTCGTGC ACCCAACTGA TCTTCAGCAT CTCTAGGTCA AGCTACATTG GGTGAGCACG TGGGTTGACT AGAAGTCGTA
37151	CTITIACTIT CACCAGCGTT TCTGGGTGAG CAAAAACAGG AAGGCAAAAT GAAAATGAAA GTGGTCGCAA AGACCCACTC GTTTTTGTCC TTCCGTTTTA
37201	GCCGCAAAAA AGGGAATAAG GCCGACACGG AAATGTTGAA TACTCATACT CGGCGTTTTT TCCCTTATTC CCGCTGTGCC TTTACAACTT ATGAGTATGA
37251	CTTCCTTTTT CAATATTATT GAAGCATTTA TCAGGGTTAT TGTCTCATGA GAAGGAAAAA GTTATAATAA CTTCGTAAAT AGTCCCAATA ACAGAGTACT

FIG.9A-44

53/70

37301	GCGGATACAT	ATTTGAATGT	ATTTAGAAAA	ATAAACAAAT	AGGGGTTCCG
	CGCCTATGTA	TAAACTTACA	TAAATCTTTT	TATTTGTTTA	TCCCCAAGGC
37351	CGCACATTTC	CCCGAAAAGT	GCCACCTGAC	GTCTAAGAAA	CCATTATTAT
	GCGTGTAAAG	GGGCTTTTCA	CGGTGGACTG	CAGATTCTTT	GGTAATAATA
37401	CATGACATTA	ACCTATAAAA	ATAGGCGTAT	CACGAGGCCC	TTTCGTCTTC
	GTACTGTAAT	TGGATATTTT	TATCCGCATA	GTGCTCCGGG	AAAGCAGAAG
37451	AAGAATTGGA TTCTTAACCT	TCCGAATTCT AGGCTTAAGA	TAAT ATTA		

FIG.9A-45

FIG.10

1 CATCATCAAT	ΛΛΤΔΤΔΟΟΤΤ	ATTTTGGATT	GAAGCCAATA	TGATAATGAG	GGGGTGGAGT
C1 TTOTOLOGIC	CCCCCCCCCCC	TGGGAACGGG	GCGGG LGACG	TAGTAGTGTG	GUGGAAGIGI
121 GATGTTGTAA	GTGTGGGGA	ACACATGTAA	GCGCCGGATG	TGGTAAAAGT	GACGTTTTTG
101 CTCTCCCCCC	CTCTACACGG	GAAGTGACAA	11111(35(36)3	(allia AGGCC	GATGITGIAG
OAL TAAATTTCCC	CCTAACCAAG	TAATATTTGG	CCATTICGC	GGGAAAACTG	AA LAAGAGGA
201 ACTCAAATCT	CAATAATTCT	CTCTTACTCA	TAGCGCGTAA	TATTIGICIA	6666666666
361 CACTITGACC	GTTTACGTGG	AGACTCGCCC	AGGIGIIIII	CICAGGIGII	TICCGCGTTC
AND COCCUTOAAAC	TTCCCCCTTTT	ATTATTATAG	LCAGC LGACG	CGCAGIGIAI	TIATACCCUG
ADI TEACTTCCTC	AAGAGGCCAC.	TCTTGAGTGC	CAGCGAGTAG	AGITTICICC	TUUGAGUUGU
EA1 TOCOACACOC	CCACTGAAAA	TGAGACATAL	TATCTGCCAC	GUAGGIGIIA	LIACCGAAGA
COL ANTOCCCCCC	ACTOTITICS	ACCAGCTGAT	CGAAGAGGTA	CIGGCIGAIA	AICHICCACC
CC1 TOOTACCCAT	TTTGAACCAC	CTACCCTTCA	CGAACTGTAT	GALLIAGACG	GALGGLLLL
701 CCAACATCCC	A A C C A C C A C C	CGGTTTCGCA	GATTLLLCCC	GAGICIGIAA	
701 0040044000	ATTCACTTAT	TCACTTTTCC	GCCGGCGCCC	GGT ICICCIDE	AGULGUU I UA
OA1 COTTTCCCCC	CAGCCCCGAGC	AGCCGGAGCA	GAGAGCCIIG	GGTCCGGTTT	CTATGCCAAA
001 CCTTCTCCCC	CACCTCATCG	ATCTTACCTG	CCACGAGGCL	COLLI I LUCAU	CCAGIGACGA
OCT CONCONTONA	CACCCTGAGG	AGTITGTGTT	AGATIAIGIG	GAGCACCCCG	GGCACGGIIG
1001 CACCTCTTCT	CATTATCACC	GGAGGAATAC	GGGGGACUUA	GATALIA	GIILGUIIIG
1001 CTATATGAGG	ACCTGTGGCA	TGTTTGTCTA	CAGTAAGTGA	AAAAIIAIGG	GCAGIGGGIG
11/1 ATAGAGTGGT	GGGTTTGGTG	TGGTAATTIT	THITTAATI	IIIACAGIII	IGIGGIIIAA
1201 AGAATTTTGT	ATTGTGATTT	TTTAAAAGGT	CCTGTGTCTG	AACCTGAGCC	1 GAGCCCGAG
1261 CCAGAACCGG	AGCCTGCAAG	ACCTACCCGG	CGTCCTAAAT	I GG I GCC I GC	I A I UU I GAGA
1201 CCCCCCACAT	CACCTGTGTC	TAGAGAATGC	AATAGTAGTA	CGGATAGCTG	I GAL I CCGG I
1201 CCTTCTAACA	CACCTCCTGA	GATACACCCG	GTGGTCCCGC	TGTGCCCCAT	TAAACCAGTT
1441 CCCCTCAGAG	TTCCTCCCCC	TCGCCAGGCT	GTGGAATGTA	I CGAGGAC I I	GCTTAACGAG
1EO1 TOTOCCOAAC	CTTTGGACTT	GAGCTGTAAA	CGCCCCAGGC	CATAAGGIGI	AAACCIGIGA
1EG1 TTCCCTCTCT	CCTTAACGCC	TTTGTTTGCT	GAATGAGTIG	AIGIAAGIII	AATAAAGGGT
1621 CACATAATGT	TTAACTTGCA	TGGCGTGTTA	AATGGGGCGG	GGCTTAAAGG	GIAIAIAAIG
1681 CCCCCTGGGC	 TAATCTTGGT 	TACATCTGAC	CICAIGGAGG	CIIGGGAGIG	IIIGGAAGAI
1741 TITTCTGCTG	TGCGTAACTT	GCTGGAACAG	AGCTCTAACA	GIACCICIIG	GIIIIGGAGG
1001 TITCTCTCCC	COTOTTOCA 2	GGCAAAGTTA	GTCTGCAGAA	. TTAAGGAGGA	TACAAGTGG
1061 CAATTTCAAG	ACCTTTTGAA	ATCCTGTGGT	GAGCTGTTTG	ATTCTTTGAA	C GGG CAC
1001 CACCCCCTT	TTCCAAGAGAA	GGTCATCAAG	ACTITIGGATI	TTTCCACACC	
1001 CCCCCTCCTC	1 TTCCTTTTT	GAGTITTATA	AAGGATAAAT	GGAGCGAAGA	AAUUUATUTU
2041 ACCCCCCCCCC	r Acctactaga	TTTTCTGGCC	AIGCAICIGI	GGAGAGCGG	GGTGAGACAC
2101 AAGAATCGCC	TGCTACTGTT	GTCTTCCGTC	CGCCCGGCAA	I AA I ACCGAC	GUAUUAUCAA
2161 CAGCAGGAGG	AAGCCAGGCG	GCGGCGGCGG	CAGGAGCAGA	GULLATGGAA	LUCUAGAGAGU
2021 CCCCTCCAC	· CTCCCCAATC	· AATGTTGTAC	AGGTGGCTGA	ACTGILICCA	GAACIGAGAC
2201 CCATTTTAM	CATTAACGAG	CATGGGCAGG	GGCTAAAGGG	i GGTAAAGAAG	a GAGGGGGGGG
22 41 CTTCTGAGG	~ TACAGAGGAG	: GCTAGGAAT(: TAACIIIIAG	i CITAATGACC	. AGALALLUIL
2401 CTCACTCTC	T TACTTTTCAG	CAGATTAAGG	ATAATIGUGU	; IAA IGAGUII	GAILIGUIGG
DAGI CCCACAACT	A TTCCATAGAG	: CAGCTGACCA	CHACIGGCI	GLAGULAGG	i GAIGAIIIIG
OFOI ACCACCCTA	T TACCCTATAT	CCAAAGGTGG	CACITAGGC	: AGATIGLAAG	1 IACAAGALIA
OFOI CCAAACTIC	Τ ΛΛΛΤΛΤΓΔΩΩ	: AATTGIIGCI	ACALLICIGO	i GAALGGGGLL	, GAGGIGGAGA
2641 TAGATACGG	A GGATAGGGT	GCCTTTAGAT	GIAGCAIGA	AAAIAIGIGG	a ccaaaaaa lac

2701 TTGGCATGGA CGGGGTGGTT ATTATGAATG TGAGGT	ITAC TGGTCCCAAT TTTAGCGGTA
2761 CGGTTTTCCT GGCCAATACC AATCTTATCC TACACG	GTGT AAGCTTCTAT GGGTTTAACA
2821 ATACCTGTGT GGAAGCCTGG ACCGATGTAA GGGTTCG	
2881 GGAAGGGGT GGTGTGTCGC CCCAAAAGCA GGGCTTC	CAAT TAAGAAATGC CTGTTTGAAA
2941 GGTGTACCTT GGGTATCCTG TCTGAGGGTA ACTCCA	GGGT GCGCCACAAT GTGGCCTCCG
3001 ACTGTGGTTG CTTTATGCTA GTGAAAAGCG TGGCTG	TGAT TAAGCATAAC ATGGTGTGTG
3061 GCAACTGCGA GGACAGGGCC TCTCAGATGC TGACCT	GCTC GGACGGCAAC TGTCACTTGC
3121 TGAAGACCAT TCACGTAGCC AGCCACTCTC GCAAGG	CCTG GCCAGTGTTT GAGCACAACA
3181 TACTGACCCG CTGTTCCTTG CATTTGGGTA ACAGGA	GGG GGTGTTCCTA CCTTACCAAT
3241 GCAATTTGAG TCACACTAAG ATATTGCTTG AGCCCG	AGAG CATGTCCAAG GTGAACCTGA
3301 ACGGGGTGTT TGACATGACC ATGAAGATCT GGAAGG	TGCT GAGGTACGAT GAGACCCGCA
3361 CCAGGTGCAG ACCCTGCGAG TGTGGCGGTA AACATA	TTAG GAACCAGCCT GTGATGCTGG
3421 ATGTGACCGA GGAGCTGAGG CCCGATCACT TGGTGC	TGGC CTGCACCCGC GCTGAGTTTG
3481 GCTCTAGCGA TGAAGATACA GATTGAGGTA CTGAAA	
3541 GAAAGAATAT ATAAGGTGGG GGTCTCATGT AGTTTT	GTAT CTGTTTTGCA GCAGCCGCCG
3601 CCATGAGCGC CAACTCGTTT GATGGAAGCA TTGTGA	GCTC ATATTTGACA ACGCGCATGC
3661 CCCCATGGGC CGGGGTGCGT CAGAATGTGA TGGGCT	
3721 TGCCCGCAAA CTCTACTACC TTGACCTACG AGACCG	
3781 CAGCCTCCGC CGCCGCTTCA GCCGCTGCAG CCACCG	CCCG CGGGATTGTG ACTGACTTTG
3841 CTTTCCTGAG CCCGCTTGCA AGCAGTGCAG CTTCCC	GTTC ATCCGCCCGC GATGACAAGT
3901 TGACGGCTCT TTTGGCACAA TTGGATTCTT TGACCC	GGGA ACTTAATGTC GTTTCTCAGC
3961 AGCTGTTGGA TCTGCGCCAG CAGGTTTCTG CCCTGA	
4021 TITAAAACAT AAATAAAAAC CAGACTCTGT TTGGAT	
4081 TCTTTATTTA GGGGTTTTGC GCGCGCGGTA GGCCCG	GGAC CAGCGGTCTC GGTCGTTGAG
4141 GGTCCTGTGT ATTTTTTCCA GGACGTGGTA AAGGTG	
4201 CATAAGCCCG TCTCTGGGGT GGAGGTAGCA CCACTG	CAGA GCIICAIGCI GCGGGGIGGI
4261 GTTGTAGATG ATCCAGTCGT AGCAGGAGCG CTGGGC	
4321 TAGCAAGCTG ATTGCCAGGG GCAGGCCCTT GGTGTA	
4381 GGATGGGTGC ATACGTGGGG ATATGAGATG CATCTT	
4441 GTTCCCAGCC ATATCCCTCC GGGGATTCAT GTTGTG	CAGA ACCACCAGCA CAGIGIAICC
4501 GGTGCACTTG GGAAATTTGT CATGTAGCTT AGAAGG	AAAI GCGIGGAAGA ACIIGGAGAC
4561 GCCCTTGTGA CCTCCAAGAT TTTCCATGCA TTCGTC	LATA ATGATGGCAA TGGGCCCACG
4621 GGCGGCGCC TGGGCGAAGA TATTTCTGGG ATCACT	
4681 GAGATCGTCA TAGGCCATTT TTACAAAGCG CGGGCG	
4741 GGTTCCATCC GGCCCAGGGG CGTAGTTACC CTCACA	
4801 TTCAGATGGG GGGATCATGT CTACCTGCGG GGCGAT	
4861 GGAGATCAGC TGGGAAGAAA GCAGGTTCCT AAGCAG	
4921 CCCGTAAATC ACACCTATTA CCGGCTGCAA CTGGTA 4981 ATCCCTGAGC AGGGGGGCCA CTTCGTTAAG CATGTC	
5041 CAAATCCGCC AGAAGGCGCT CGCCGCCCAG CGATAG 5101 TTTCAACGGT TTGAGGCCGT CCGCCGTAGG CATGCT	
5161 CAGGCGGTCC CACAGCTCGG TCACGTGCTC TACGGC	
5221 TTTCGCGGGT TGGGGCGGCT TTCGCTGTAC GGCAGT	ACTO COMPONENT TATOTOCICA
5281 AGGGTCATGT CTTTCCACGG GCGCAGGGTC CTCGTC	AGCG TAGTCTGGGT CACGGTGAAG
5341 GGGTGCGCTC CGGGTTGCGC GCTGGCCAGG GTGCGC	TTGA GCCTGGTCCT GCTGGTGCTG
2241 addiagnosic endallacae aciadeceda alacae	i ar adordanosi dordandora

FIG.11A-2

E 401	AAGCGCTGCC	CCTCTTCCCC	CTGCGCGTCG	GCCAGGTAGC	ATTTGACCAT	GGTGTCATAG
5401	TCCAGCCCCT	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	COCCTTGGCG	CGCAGCTTGC	CCTTGGAGGA	GGCGCCGCAC
5401	GAGGGGCAGT	CCACACTTT	AAGGGCGTAG	AGCTTGGGCG	CGAGAAATAC	CGATTCCGGG
EE01	GAGTAGGCAT	CCGCGCCCA	GGCCCCGCAG	ACGGTCTCGC	ATTCCACGAG	CCAGGTGAGC
2201	TCTGGCCGTT	CGGGGTCAAA	AACCAGGTTT	CCCCCATGCT	TTTTGATGCG	TTTCTTACCT
E701	CTCCTTTCCA	TGAGCCGGTG	TCCACGCTCG	GTGACGAAAA	GGCTGTCCGT	GILLLLGIAI
5761	ACAGACTTGA	GAGGCCTGTC	CTCGAGCGGT	GTTCCGCGGT	CCTCCTCGTA	TAGAAACTCG
5/01	GACCACTCTG	AGACGAAGGC	TCGCGTCCAG	GCCAGCACGA	AGGAGGCTAA	GTGGGAGGGG
5001	TAGCGGTCGT	TGTCCACTAG	GGGGTCCACT	CGCTCCAGGG	TGTGAAGACA	CATGTCGCCC
5001	TCTTCGGCAT	CAAGGAAGGT	GATTGGTTTA	TAGGTGTAGG	CCACGTGACC	GGGTGTTCCT
6001	GAAGGGGGGC	TATAAAAGGG	GGTGGGGGCG	CGTTCGTCCT	CACTCTCTTC	CGCATCGCTG
6061	TCTGCGAGGG	CCAGCTGTTG	GGGTGAGTAC	TCCCTCTCAA	AAGCGGGCAT	GACTTCTGCG
6101	CTAAGATTGT	CAGTTTCCAA	AAACGAGGAG	GATTTGATAT	TCACCTGGCC	CGCGGTGATG
6101	CCTTTGAGGG	TECCCECETC	CATCTGGTCA	GAAAAGACAA	TCTTTTTGTT	GTCAAGCTTG
0101	GTGGCAAACG	ACCCGTAGAG	GGCGTTGGAC	AGCAACTTGG	CGATGGAGCG	CAGGGTTTGG
6201	TTTTTGTCGC	CATCGGCGCG	CTCCTTGGCC	GCGATGTTTA	GCTGCACGTA	TTCGCGCGCA
6361	ACGCACCGCC	ATTCGGGAAA	GACGGTGGTG	CGCTCGTCGG	GCACTAGGTG	CACGCGCCAA
6/21	CCCCCCTTCT	GCAGGGTGAC	AAGGTCAACG	CTGGTGGCTA	CCTCTCCGCG	TAGGCGCTCG
6421	TTGGTCCAGC	AGAGGCGGCC	GCCCTTGCGC	GAGCAGAATG	GCGGTAGTGG	GTCTAGCTGC
65/1	GTCTCGTCCG	GGGGGTCTGC	GTCCACGGTA	AAGACCCCGG	GCAGCAGGCG	CGCGTCGAAG
6601	TAGTCTATCT	TGCATCCTTG	CAAGTCTAGC	GCCTGCTGCC	ATGCGCGGGC	GGCAAGCGCG
6661	CGCTCGTATG	GGTTGAGTGG	GGGACCCCAT	GGCATGGGGT	GGGTGAGCGC	GGAGGCGTAC
6721	ATGCCGCAAA	TGTCGTAAAC	GTAGAGGGGC	TCTCTGAGTA	TTCCAAGATA	TGTAGGGTAG
6791	CATCTTCCAC	CGCGGATGCT	GGCGCGCACG	TAATCGTATA	GTTCGTGCGA	GGGAGCGAGG
69/1	AGGTCGGGAC	CGAGGTTGCT	ACGGGCGGGC	TGCTCTGCTC	GGAAGACTAT	CTGCCTGAAG
6001	ATCCC ATCTC	AGTTGGATGA	TATGGTTGGA	CGCTGGAAGA	CGTTGAAGCT	GGCGICIGIG
6961	AGACCTACCG	CGTCACGCAC	GAAGGAGGCG	TAGGAGTCGC	GCAGCTTGTT	GACCAGCTCG
7021	CCCCTCACCT	GCACGTCTAG	GGCGCAGTAG	TCCAGGGTTT	CCTTGATGAT	GICATACTIA
7081	TECTGTCCCT	TITTITCCA	CAGCTCGCGG	TTGAGGACAA	ACTCTTCGCG	GTCTTTCCAG
7141	TACTCTTGGA	TCGGAAACCC	GTCGGCCTCC	GAACGGTAAG	AGCCTAGCAT	GTAGAACTGG
7201	TTGACGGCCT	GGTAGGCGCA	GCATCCCTTT	TCTACGGGTA	GCGCGTATGC	CTGCGCGGCC
7261	TTCCGGAGCG	AGGTGTGGGT	GAGCGCAAAG	GTGTCCCTAA	CCATGACTIT	GAGGTACTGG
7321	TATTTGAAGT	CAGTGTCGTC	GCATCCGCCC	TGCTCCCAGA	GCAAAAAGTC	CGTGCGCTTT
7381	TTGGAACGCG	GGTTTGGCAG	GGCGAAGGTG	ACATCGTTGA	AGAGTATCTT	TCCCGCGCGA
7441	GGCATAAAGT	TGCGTGTGAT	GCGGAAGGGT	CCCGGCACCT	CGGAACGGTT	GTTAATTACC
7501	TEGGCGGCGA	GCACGATCTC	GTCAAAGCCG	TTGATGTTGT	GGCCCACAAT	GTAAAGTTCC
7561	AAGAAGCGCG	GGATGCCCTT	GATGGAAGGC	AATTTTTAA	GTTCCTCGTA	GGTGAGCTCT
7621	TCAGGGGAGC	TGAGCCCGTG	CTCTGAAAGG	GCCCAGTCTG	CAAGATGAGG	GTTGGAAGCG
7681	ACGAATGAGC	TCCACAGGTC	ACGGGCCATT	· AGCATTTGCA	GGTGGTCGCG	AAAGGTCCTA
7741	AACTGGCGAC	CTATGGCCAT	TTTTTCTGGG	GTGATGCAGT	AGAAGGTAAG	CGGGTCTTGT
7801	TOCCAGOGGT	CCCATCCAAG	GTCCGCGGCT	- AGGTCTCGCG	CGGCGGTCAC	TAGAGGCTCA
7961	TOTOGGGGGG	ACTTCATGAC	CAGCATGAAG	GGCACGAGCT	GCTTCCCAAA	GGCCCCCATC
7021	CAAGTATAGG	TCTCTACATO	: GTAGGTGACA	AAGAGACGCT	CGGTGCGAGG	ATGCGAGCCG
7091	ATCCCCAAGA	ACTEGATET	: CCGCCACCAG	TTGGAGGAGT	GGCTGTTGAT	G I GG I GAAAAG
8041	TAGAAGTCCC	TGCGACGGG	CGAACACTCG	TGCTGGCTTT	TGTAAAAACG	TGCGCAGTAC

	TGGCAGCGGT	OCACOCCTC	TACATCCTCC	ACCACCTTCA	CCTGACGACC	GCGCACAAGG
8101	AAGCAGAGAGTG	CALGUGULIG	CCCCTCCCCT	CCCCCCTTTC	CCTGGTGGTC	TTCTACTTCG
8161	GCTGCTTGTC	GGAATITGAG	TOCCTCCTCC	ACCCCACTTA	CCCTCCATCC	GACCACCACG
8221	CCGCGCGAGC	CITUALCUIT	CATCTCCCCC	CCCCCCCCTC	CCACCTTCAT	GACAACATCG
8281	CCGCGCGAGC	CCAAAGICCA	COTCTCCACC	Tececece	TCACCTCACC	CEGEAGCTCC
8341	CGCAGA I GGG	AGCIGICCAI	COCCOTOAGC	CCCCCCCTA	CCTCCACCTC	ATACCTGATT
8401	TGCAGGTTTA	CCTCGCATAG	CCGGGTCAGG	COTTOCAACA	CCCCCCATCC	CCCCCCCCCC
8461	TCCAGGGGCT	GGTTGGTGGC	GGCGTCGATG	GCTTGCAAGA	CCTTCCATCA	TCCATCTAAA
8521	ACTACGGTAC	CGCGCGGCGG	GCGG I GGGCC	GCGGGGGGG	CCTTGGATGA	CCCACACCCCC
8581	AGCGGTGACG	CGGGCGGGCC	CCCGGAGGTA	GGGGGGGGCTC	OTOCCCCCC	ACCTTCCTCC
8641	GCAGGGGCAC	GTCGGCGCCG	CGCGCGGGCA	GGAGCTGGTG	CIGUGUGUGG	AGGITGCIGG
8701	CGAACGCGAC	GACGCGGCGG	TTGATCTCCT	GAATCTGGCG	CCTCTGCGTG	TOCTTOACCO
8761	GCCCGGTGAG	CTTGAACCTG	AAAGAGAGTT	CGACAGAATC	AATTICGGTG	ATOTOGOGO A
8821	CGGCCTGGCG	CAAAATCTCC	TGCACGTCTC	CIGAGIIGIC	1 I GA I AGGCG	ATCTUBLICA
8881	TGAACTGCTC	GATCTCTTCC	TCCTGGAGAI	CICCGCGICC	GGCTCGCTCC	ACGGTGGTGG
8941	CGAGGTCGTT	GGAGATGCGG	GCCATGAGCI	GCGAGAAGGC	GIIGAGGCCI	ACCTOCATION
9001	AGACGCGGCT	GTAGACCACG	CCCCCTTCGG	CATCGCGGGC	GUGCA I GACU	ALCIGUGUGA
9061	GATTGAGCTC	CACGTGCCGG	GCGAAGACGG	CGTAGTTTCG	CAGGCGCTGA	AAGAGGTAGT
9121	TGAGGGTGGT	GGCGGTGTGT	TCTGCCACGA	AGAAGTACAT	AACCCAGCGC	TOO A COCCCA
9181	ATTCGTTGAT	ATCCCCCAAG	GCCTCAAGGC	GCTCCATGGC	CICGIAGAAG	1 CLAUGUCGA
9241	AGTTGAAAAA	CTGGGAGTTG	CGCGCCGACA	CGGTTAACTC	CICCICCAGA	AGACGGATGA
9301	GCTCGGCGAC	AGTGTCGCGC	ACCTCGCGCT	CAAAGGCTAC	AGGGGCCTCT	1011011011
9361	CAATCTCCTC	TTCCATAAGG	GCCTCCCCTT	CTICTICTIC	166666666	ATCATCTCCC
9421	GGACACGGCG	GCGACGACGG	CGCACCGGGA	GGCGGTCGAC	AAAGCGCTCG	ATCATCTCCC
9481	CGCGGCGACG	GCGCATGGTC	TCGGTGACGG	CGCGGCCGTT	CICGCGGGGG	CGCAGTIGGA
9541	AGACGCCGCC	CGTCATGTCC	CGGTTATGGG	TTGGCGGGGG	GCTGCCGTGC	GGCAGGGATA
9601	CGGCGCTAAC	GATGCATCTC	AACAATTGTT	GTGTAGGTAC	TUUGUUAUUG	AGGGACCIGA
9661	GCGAGTCCGC	ATCGACCGGA	TCGGAAAACC	TCTCGAGAAA	GGCGTCTAAC	CAGTCACAGT
9721	CGCAAGGTAG	GCTGAGCACC	GTGGCGGGCG	GCAGCGGGCG	GCGG I CGGGG	1161110166
9791	CGGAGGTGCT	GCTGATGATG	TAATTAAAGT	AGGCGGTCTT	GAGACGGCGG	ATGGTCGACA
9841	GAAGCACCAT	GTCCTTGGGT	CCGGCCTGCT	GAATGCGCAG	GCGG TCGGCC	ATGCCCCAGG
9901	CTTCGTTTTG	ACATCGGCGC	AGGTCTTTGT	AGTAGTCTIG	CATGAGCCTT	TCTACCGGCA
9961	CTTCTTCTTC	TCCTTCCTCT	TGTCCTGCAT	CTCTTGCATC	TATCGCTGCG	GCGGCGGCGG
10021	AGTTTGGCCG	TAGGTGGCGC	CCTCTTCCTC	CCATGCGTGT	GACCCCGAAG	CCCCTCATCG
10081	GCTGAAGCAG	GGCCAGGTCG	GCGACAACGC	GCTCGGCTAA	TATGGCCTGC	IGCACCIGCG
101/11	TGAGGGTAGA	CTGGAAGTCG	TCCATGTCCA	CAAAGCGGTG	GIAIGCGCCC	GIGIIGAIGG
10201	TGTAAGTGCA	GTTGGCCATA	ACGGACCAGT	TAACGGTCTG	GTGACCCGGC	I GCGAGAGCI
10261	CGGTGTACCT	GAGACGCGAG	TAAGCCCTTG	AGTCAAAGAC	GTAGICGIIG	CAAGTCCGCA
10321	CCAGGTACTG	GTATCCCACC	: AAAAAGTGCG	GCGGCGGCTG	GUGGTAGAGG	GGCCAGCGTA
10381	GGGTGGCCGG	GGCTCCGGGG	GCGAGGTCTT	CCAACATAAG	GCGATGATAT	CCGTAGATGT
10441	. ACCTGGACAT	CCAGGTGATG	CCGGCGGCGC	TGGTGGAGGC	GUGUGGAAAG	TCACGGACGC
10501	GGTTCCAGAT	GTTGCGCAGC	: GGCAAAAAGI	GCTCCATGGT	CGGGACGCTC	IGGUUGGIUA
10001	CCCCCCCCCCC	CTCGTTGACG	CTCTAGACCG	TGCAAAAGGA	GAGCCTGTAP	GLUGUGLAL IL
10621	TTCCGTGGTC	TGGTGGATAA	ATTCGCAAG6	GTAICAIGG	GGACGACCGC	GGIICGAACC
10001	CCCCATCCCC	· rrctrrccrr	: TGATCCAIG	: GGLLACCGC		ACCCAGGIGI
10743	L GCGACGTCAG	ACAACGGGGG	AGCGCTCCT	T TGGCTTCCT	I CCAGGCGCG	GCGGATGCTG

10001	CCCTACCTIT	TTTGGCCACT	COCOCOCO	GGCGTAAGCG	GTTAGGCTGG	AAAGCGAAAG
10001	CATTAACTCC	CTCCCTCCCT	GTAGCCGGAG	GGTTATTTTC	CAAGGGTTGA	GTCGCGGGAC
10001	CCCCCCTTCC	ACTUTUCGGC	CGGCCGGACT	GCGGCGAACG	GGGGTTTGCC	TCCCCGTCAT
10001	CCCCGGTTCG	CCTTCCAAAT	TCCTCCGGAA	ACAGGGACGA	GCCCCTTTTT	TGCTTTTCCC
11041	ACATCCATCC	GCTGCTGCGG	CAGATGCGCC	CCCCTCCTCA	GCAGCGGCAA	GAGCAAGAGC
11101	AGATGCATCC	ATGCAGGGCA	CCCTCCCCTT	CTCCTACCGC	GTCAGGAGGG	GCAACATCCG
11161	CCCCTCACCC	GGCGGCAGAT	GGTGATTACG	AACCCCCGCG	GCGCCGGACC	CGGCACTACT
11221	TECACTTECA	GGAGGGCGAG	GCCTGGCGC	GGCTAGGAGC	GCCCTCTCCT	GAGCGACACC
11201	CAACCCTCCA	CCTGAAGCGT	GACACGCGCG	AGGCGTACGI	GCCGCGGCAG	AACCIGIIIC
112/1	CANGGGTGCA	GGGAGAGGAG	CCCGAGGAGA	TGCGGGATCG	AAAGTTCCAT	GCAGGGCGCG
11/01	ACTTCCCCCA	TEECCTEAAC	CGCGAGCGGT	TGCTGCGCGA	GGAGGACTTT	GAGCCCGACG
11401	CCCCCACCCC	CATTACTCCC	GCGCGCGCAC	ACGTGGCGGC	CGCCGACCTG	GTAACCGCGT
11501	ACCACCACAC	CCTCAACCAG	GAGATTAACT	TTCAAAAAAG	CTTTAACAAC	CACGTGCGCA
11521	CCCTTCTCCC	GCGCGAGGAG	GTGGCTATAG	GACTGATGCA	TCTGTGGGAC	TTTGTAAGCG
116/1	CCCTCCACCA	AAACCCAAAT	AGCAAGCCGC	TCATGGCGCA	GCTGTTCCTT	ATAGTGCAGC
11701	ACACCA CCCA	CVVCCVCCCV	TTCAGGGATG	CGCTGCTAAA	CATAGTAGAG	CCCGAGGGCC
11761	CCTCCCTCCT	CCATTTGATA	AACATTCTGC	AGAGCATAGT	GGTGCAGGAG	CGCAGCTTGA
11021	CCCTCCCTCA	CAAGGTGGCC	GCCATTAACT	ATTCCATGCT	CAGTCTGGGC	AAGTTTTACG
11001	CCCCCAAGAT	ATACCATACC	CCTTACGTTC	CCATAGACAA	GGAGGTAAAG	ATCGAGGGGT
11001	TCTACATCCC	CATEGCECTE	AAGGTGCTTA	CCTTGAGCGA	CGACCTGGGC	GTTTATCGCA
12001	ACCACCCCAT	CCACAAGGCC	GTGAGCGTGA	GCCGGCGGCG	CGAGCTCAGC	GACCGCGAGC
12001	TCATCCACAC	CCTCCAAAGG	GCCCTGGCTG	GCACGGGCAG	CGGCGATAGA	GAGGCCGAGT
12101	CCTACTTTCA	CCCCCCCCCC	GACCTGCGCT	GGGCCCCAAG	CCGACGCGCC	CTGGAGGCAG
12121	CTCCCCCCCC	ACCTECECTE	GCGGTGGCAC	CCGCGCGCGC	TGGCAACGTC	GGCGGCGTGG
12201	ACCAATATCA	CCACCACCAT	GAGTACGAGC	CAGAGGACGG	CGAGTACTAA	GCGGTGATGT
12241	TTCTCATCAC	ATCATCCAAC	ACGCAACGGA	CCCGGCGGTG	CGGGCGGCGC	TGCAGAGCCA
12301	CCCCTCCCC	CTTAACTCCA	CGGACGACTG	GCGCCAGGTC	ATGGACCGCA	TCATGTCGCT
12301	CACTCCCCCC	AACCCTGACG	CGTTCCGGCA	GCAGCCGCAG	GCCAACCGGC	TCTCCGCAAT
12421	TCTCCAACCC	CTCCTCCCC	CGCGCGCAAA	CCCCACGCAC	GAGAAGGTGC	TGGCGATCGT
12501	AAACCCCCTC	CCCCVVVVV	GGGCCATCCG	GCCCGATGAG	GCCGGCCTGG	TCTACGACGC
12541	CCTCCTTCAG	CCCCTCCCTC	GTTACAACAG	CAGCAACGTG	CAGACCAACC	TGGACCGGCT
12601	CCTCCCCCAT	CTCCCCCACC	CCGTGCCGCA	GCGTGAGCGC	GCGCAGCAGC	AGGGCAACCT
12701	CCCCTCCATC	CTTCCACTAA	ACGCCTTCCT	GAGTACACAG	CCCGCCAACG	TGCCGCGGGG
12721	ACACCACCAC	TACACCAACT	TTGTGAGCGC	ACTGCGGCTA	ATGGTGACTG	AGACACCGCA
120/1	ACAGGAGGAG	TATCAGTCCG	GGCCAGACTA	TTTTTTCCAG	ACCAGTAGAC	AAGGCCTGCA
12041	CACCCTAAAC	CTGAGCCAGG	CTTTCAAGAA	CTTGCAGGGG	CTGTGGGGGG	TGCGGGCTCC
12061	CACAGGCGAC	CHARGORAG	TGTCTAGCTT	GCTGACGCCC	AACTCGCGCC	TGTTGCTGCT
12001	CACAGGGGGG	CCCTTCACGG	ACAGTGGCAG	CGTGTCCCGG	GACACATACC	TAGGTCACTT
12021	CCTCACACTG	TACCECEAGE	CCATAGGTCA	GGCGCATGTG	GACGAGCATA	CTTTCCAGGA
121/11	CATTACAACT	GTTAGCCGAGG	CGCTGGGGCA	GGAGGACACG	GGCAGCCTGG	AGGCAACCCT
12201	CAACTACCTG	CTGACCAACC	GGCGGCAAAA	AATCCCCTCG	TTGCACAGTT	TAAACAGCGA
12261	CCACCACCCC	ATTTTCCCCT	ATGTGCAGCA	GAGCGTGAGC	CTTAACCTGA	TGCGCGACGG
13321	CCTAACGCCC	AGCGTGGCGC	TGGACATGAC	: CGCGCGCAAC	ATGGAACCGG	GCAIGIAIGC
13381	CTCAAACCGG	COGTTTATOA	ATCGCCTAA7	GGACTACIIG	CATOGOGOGO	i CCGCCGIGAA
13441	CCCCGAGTAT	TTCACCAATO	CCATCTTGA	CCCGCACTGG	CTACCGCCCC	CTGGTTTCTA

10501	0.000000000	TTCCACCTCC	CCCACCCTAA	CGATGGATTC	CTCTGGGACG	ACATAGACGA
13501	CACCCTCTTT	TCCCCCCAAC	CCCAGACCCT	GCTAGAGTTG	CAACAACGCG	AGCAGGCAGA
13201	CAGCGTGTTT	CCAAACCAAA	CCTTCCCCAC	CCCAACCACC	TTGTCCGATC	TAGGCGCTGC
13021	00000000000	TCACATCCTA	CTACCCCATT	TCCAACCTTG	ATAGGGTCTC	TTACCAGCAC
13681	TOOCACCACC	CCCCCCCCCC	TCCTCCCCGA	CCACCACTAC	CTAAACAACT	CGCTGCTGCA
13/41	TUGUALUALU	CALALACAACC	TOCCTOCCCC	CTTTCCCAAC	AACGGGATAG	AGAGCCTAGT
13801	GCCGCAGCGC	AOTA CATOCA	ACACCTATCC	CCACCACCAC	AGGGATGTGC	CCGCCCCCCC
13861	GGACAAGATG	AGTAGATGGA	CCCACCACCC	TCACCCCCCT	CTGGTGTGGG	AGGACGATGA
13921	CCCGCCCACC	CGTCGTCAAA	TOTTCCATT	CCCACCCACT	CCCAACCCGT	TTCCACACCT
13981	CTCGGCAGAC	GACAGCAGCG	TOTTLEAAAA	AAACCATCAT	GGCAAACCCGT	AAACTCACCA
14041	TCGCCCCAGG	CTGGGGAGAA	IGITITAAAA	TATTOCCCTT	GCAAAATAAA	CCCCCCAT
14101	AGGCCATGGC	ACCGAGCGTT	GGTTTTCTTG	TATICCCCTI	AGTATGCGGC	CACTCCCCCC
14161	GTATGAGGAA	GGTCCTCCTC	CCTCCTACGA	GAGCGTGGTG	AGCGCGGCGC	CCCCCTACCT
14221	GGCGCTGGGT	TCACCCTTCG	AIGCICCCCI	GGACCCGCCG	TTCGTGCCTC	TATTCCACAC
14281	GCGGCCTACC	GGGGGGAGAA	ACAGCATCCG	TIACICIGAG	TTGGCACCCC	ACTACCACAA
14341	CACCCGTGTG	TACCTTGTGG	ACAACAAGTC	AACGGATGTG	GCATCCCTGA	ALTACCAGAA
14401	CGACCACAGC	AACTTTCTAA	CCACGGTCAT	TCAAAACAAT	GACTACAGCC	CadadadaAdaC
14461	AAGCACACAG	ACCATCAATC	TTGACGACCG	GTCGCACTGG	GGCGGCGACC	TGAAAACCAT
14521	CCTGCATACC	AACATGCCAA	ATGTGAACGA	GTTCATGTTT	ACCAATAAGT	I I AAGGCGCG
14581	GGTGATGGTG	TCGCGCTCGC	TTACTAAGGA	CAAACAGGTG	GAGCTGAAAT	ACGAG I GGG I
14641	GGAGTTCACG	CTGCCCGAGG	GCAACTACTC	CGAGACCATG	ACCATAGACC	TTATGAACAA
14701	CGCGATCGTG	GAGCACTACT	TGAAAGTGGG	CAGGCAGAAC	GGGGTTCTGG	AAAGCGACAT
14761	CGGGGTAAAG	TTTGACACCC	GCAACTTCAG	ACTGGGGTTT	GACCCAGTCA	CTGGTCTTGT
14821	CATGCCTGGG	GTATATACAA	ACGAAGCCTT	CCATCCAGAC	ATCATTTTGC	TGCCAGGATG
14881	CGGGGTGGAC	TTCACCCACA	GCCGCCTGAG	CAACTTGTTG	GGCATCCGCA	AGCGGCAACC
14941	CTTCCAGGAG	GGCTTTAGGA	TCACCTACGA	TGACCTGGAG	GGTGGTAACA	TTCCCGCACT
15001	GTTGGATGTG	GACGCCTACC	AGGCAAGCTT	GAAAGATGAC	ACCGAACAGG	GCGGGGGTGG
15061	CGCAGGCGGC	GGCAACAACA	GTGGCAGCGG	CGCGGAAGAG	AACTCCAACG	CGGCAGCTGC
15121	GGCAATGCAG	CCGGTGGAGG	ACATGAACGA	TCATGCCATT	CGCGGCGACA	CCTTTGCCAC
15181	ACGGGCGGAG	GAGAAGCGCG	CTGAGGCCGA	GGCAGCGGCC	GAAGCTGCCG	CCCCCGCTGC
15241	GGAGGCTGCA	CAACCCGAGG	TCGAGAAGCC	TCAGAAGAAA	CCGGTGATTA	AACCCCTGAC
15301	AGAGGACAGC	AAGAAACGCA	GTTACAACCT	AATAAGCAAT	GACAGCACCT	TCACCCAGTA
15361	CCGCAGCTGG	TACCTTGCAT	ACAACTACGG	CGACCCTCAG	GCCGGGATCC	GCTCATGGAC
15421	CCTGCTTTGC	ACTCCTGACG	TAACCTGCGG	CTCGGAGCAG	GTATACTGGT	CGTTGCCCGA
15/181	CATGATGCAA	GACCCCGTGA	CCTTCCGCTC	CACGCGCCAG	ATCAGCAACT	TTCCGGTGGT
15541	GGGCGCCGAG	CTGTTGCCCG	TGCACTCCAA	GAGCTTCTAC	AACGACCAGG	CCGTCTACTC
15601	CCAGCTCATC	CGCCAGTTTA	CCTCTCTGAC	CCACGTGTTC	AATCGCTTTC	CCGAGAACCA
15661	GATTTTTGGCG	CGCCCGCCAG	CCCCCACCAT	CACCACCGTC	AGTGAAAACG	TTCCTGCTCT
15721	CACAGATCAC	GGGACGCTAC	CGCTGCGCAA	CAGCATCGGA	GGAGTCCAGC	GAGTGACCAT
15721	TACTGACGC	AGACGCCGCA	CCTGCCCCTA	CGTTTACAAG	GCCCTGGGCA	TAGTCTCGCC
159/11	ATOTANAO	TCGAGCCGCA	CTTTTTGAGC	AAGCATGTCC	ATCCTTATAT	CGCCCAGCAA
15001	TAACACAGGC	TEGECCTEC	GCTTCCCAAG	CAAGATGTTT	GGCGGGGCCA	AGAAGCGCTC
15061	CGACCAACAC	CCAGTGCGCG	TGCGCGGGCA	CTACCGCGCG	CCCTGGGGCG	CGCACAAACG
16021	CGCCGCACAC	GGGCGCACCA	CCGTCGATGA	CGCCATCGAC	GCGGTGGTGG	AGGAGGCGCG
16021	CAACTACACE	CCCACGCCGC	CGCCAGTGTC	CACCGTGGAC	GCGGCCATTC	AGACCGTGGT
16141	CAACTACACC	CGCCGCTACE	CTAAAATGAA	GAGACGGCGG	AGGCGCGTAG	CACGTCGCCA
10141	LUGUGGGAGGG	, budbudbirnot				

16201	CCGCCGCCGA	CCCGGCACTG	CCGCCCAACG	CGCGGCGGCG	GCCCTGCTTA ACCGCGCACG	ì
16261	TCGCACCGGC	CGACGGGCGG	CCATGCGAGC	CGCTCGAAGG	CTGGCCGCGG GTATTGTCAC)
16321	TGTGCCCCCC	AGGTCCAGGC	GACGAGCGGC	CGCCGCAGCA	GCCGCGGCCA TTAGTGCTAT	Γ
16381	GACTCAGGGT	CGCAGGGGCA	ACGTGTACTG	GGTGCGCGAC	TCGGTTAGCG GCCTGCGCGT	Ī
16441	GCCCGTGCGC	ACCCGCCCCC	CGCGCAACTA	GATTGCAATA	AAAAACTACT TAGACTCGTA	4
16501	CTGTTGTATG	TATCCAGCGG	CGGCGGCGCG	CATCGAAGCT	ATGTCCAAGC GCAAAATCAA	4
16561	AGAAGAGATG	CTCCAGGTCA	TCGCGCCGGA	GATCTATGGC	CCCCCGAAGA AGGAAGAGCA	4
16621	GGATTACAAG	CCCCGAAAGC	TAAAGCGGGT	CAAAAAGAAA	AAGAAAGATG ATGATGATGA	4
16681	TGAACTTGAC	GACGAGGTGG	AACTGTTGCA	CGCGACCGCG	CCCAGGCGAC GGGTACAGTG	ì
16741	GAAAGGTCGA	CGCGTAAGAC	GTGTTTTGCG	ACCCGGCACC	ACCGTAGTCT TTACGCCCGG	à
					GTGTACGGCG ACGAGGACCT	
					GGAAAGCGGC ATAAGGACAT	
16921	GCTGGCGTTG	CCGCTGGACG	AGGGCAACCC	AACACCTAGC	CTAAAGCCCG TGACACTGCA	4
16981	GCAGGTGCTG	CCCGCGCTTG	CACCGTCCGA	AGAAAAGCGC	GGCCTAAAGC GCGAGTCTGG	à
					CAGCGACTGG AAGATGTCTT	
17101	GGAAAAHATG	ACCGTGGAGC	CTGGGCTGGA	GCCCGAGGTC	CGCGTGCGGC CAATCAAGCA	4
					ATACCCACCA CCAGTAGCAC	
17221	TAGTATTGCC	ACTGCCACAG	AGGGCATGGA	GACACAAACG	TCCCCGGTTG CCTCGGCGGT	Γ
17281	GGCAGATGCC	GCGGTGCAGG	CGGCCGCTGC	GGCCGCGTCC	AAGACCTCTA CGGAGGTGCA	4
					CCGCGCCGTT CAAGGAAGTA	
					CCTTCCATCG CGCCTACCCC	
					ACTACCCGAC GCCGAACCAC	
					CTGGCCCCGA TTTCCGTGCG	
17581	CAGGGTGGCT	CGCGAAGGAG	GCAGGACCCT	GGTGCTGCCA	ACAGCGCGCT ACCACCCCAG	à
17641	CATCGTTTAA	AAGCCGGTCT	TTGTGGTTCT	TGCAGATATG	GCCCTCACCT GCCGCCTCCG	à
					AGGGCATGG CCGGCCACGG	
					CGCGCGTCGC ACCGTCGCAT	
17821	GCGCGGCGGT	ATCCTGCCCC	TCCTTATTCC	ACTGATCGCC	GCGGCGATTG GCGCCGTGCC	2
17881	CGGAATTGCA	TCCGTGGCCT	TGCAGGCGCA	GAGACACTGA	TTAAAAACAA GTTACATGTG	à
					GTCCTGTAAC TATTTTGTAG	
18001	AATGGAAGAC	ATCAACTTTG	CGTCACTGGC	CCCGCGACAC	GGCTCGCGCC CGTTCATGGG	i
					GCCTTCAGCT GGGGCTCGCT	
					TATGGCAGCA AAGCCTGGAA	
					CAAAATTTCC AACAAAAGGT	
					CTGGCCAACC AGGCAGTGCA	
18301	AAATAAGATT	AACAGTAAGC	TTGATCCCCG	CCCTCCCGTA	GAGGAGCCTC CACCGGCCGT	ļ
					CGACCCGACA GGGAAGAAAC	
					GCACTAAAGC AAGGCCTGCC	
18481	CACCACCCGT	CCCATCGCGC	CCATGGCTAC	CGGAGTGCTG	GGCCAGCACA CACCCGTAAC	,
18541	GCTGGACCTG	CUTCCCCCCG	CUGACACCCA	GUAGAAACCT	GTGCTGCCAG GCCCGTCCGC	í
18601	CGTTGTTGTA	ACCCGICCTA	GCCGCGCGTC	CCTGCGCCGC	GCCGCCAGCG GTCCGCGATC	
18661	GTTGCGGCCC	GTAGCCAGTG	GCAACTGGCA	AAGCACACTG	AACAGCATCG TGGGTTTGGG	a T
18721	GGTGCAATCC	CTGAAGCGCC	GACGATGCTT	CIGATAGCIA	ACGTGTCGTA TGTGTGTCAT	
18781	GIAIGCGICC	ATGTCGCCGC	CAGAGGAGCT	CTTACATCCA	CGCGCGCCCG CTTTCCAAGA	١.
18841	TGGCTACCCC	TICGATGATG	CCGCAGIGGI	CITACATGCA	CATCTCGGGC CAGGACGCCT	1

18901	CGGAGTACCT	GAGCCCCGGG	CTGGTGCAGT	TCGCCCGCGC	CACCGAGACG	TACTTCAGCC
18961	TGAATAACAA	GTTTAGAAAC	CCCACGGTGG	CGCCTACGCA	CGACGTGACC	ACAGACCGGT
	CTCAGCGTTT					
19081	AGGCGCGGTT	CACCCTAGCT	GTGGGTGATA	ACCGTGTGCT	AGACATGGCT	TCCACGTACT
19141	TTGACATCCG	CGGCGTGCTG	GACAGGGGCC	CTACTTTTAA	GCCCTACTCT	GGCACTGCCT
19201	ACAACGCACT	GGCCCCCAAG	GGTGCCCCCA	ACTCGTGCGA	GTGGGAACAA	AATGAAACTG
19261	CACAAGTGGA	TGCTCAAGAA	CTTGACGAAG	AGGAGAATGA	AGCCAATGAA	GCTCAGGCGC
19321	GAGAACAGGA	ACAAGCTAAG	AAAACCCATG	TATATGCCCA	GGCTCCACTG	TCCGGAATAA
	AAATAACTAA					
19441	AAGAAATTTT	CGCAGACAAA	ACTITITCAAC	CTGAACCACA	AGTAGGAGAA	TCTCAATGGA
19501	ACGAAGCGGA	TGCCACAGCA	GCTGGTGGAA	GGGTTCTTAA	AAAGACAACT	CCCATGAAAC
	CCTGCTATGG					
	AACAAAATGG					
19681	CCACAAATGA	AGTTAACAAT	ATACAACCAA	CAGTTGTATT	GTACAGCGAA	GATGTAAACA
	TGGAAACTCC					
19801	TCATGCTTGG	ACAACAAGCA	ATGCCAAACA	GACCAAATTA	CATTGCTTTT	AGAGACAATT
	TTATTGGTCT					
	CGCAGTTGAA					
19981	TGCTTGATTC	AATTGGCGAC	AGAACAAGAT	ACTITICAAT	GTGGAATCAA	GCTGTTGACA
20041	GCTATGATCC	AGATGTCAGA	ATTATTGAGA	ACCATGGAAC	TGAGGATGAG	TIGCCAAATI
20101	ATTGCTTTCC	TCTTGGTGGA	ATTGGGATTA	CTGACACTTT	TCAAGCIGII	AAAACAACTG
20161	CTGCTAACGG	GGACCAAGGC	AATACTACCT	GGCAAAAAGA	TICAACATTI	GCAGAACGCA
	ATGAAATAGG					
	GAAATTTCCT					
	CCAATGTGGA					
20401	CTCCTGGGCT	TGTAGACTGC	TACATTAACC	TTGGGGCGCG	CIGGICICIG	GACTACATGG
20461	ACAACGTTAA	TCCCTTTAAC	CACCACCGCA	ATGCGGGCCT	GCGTTACCGC	TCCATGIIGT
20521	TGGGAAACGG	CCGCTACGTG	CCCTTTCACA	TTCAGGTGCC	CCAAAAGTTT	TITIGCCALIA
20581	AAAACCTCCT	CCTCCTGCCA	GGCTCATACA	CATATGAATG	GAACTTCAGG	AAGGATGIIA
20641	ACATGGTTCT	GCAGAGCTCT	CTGGGAAACG	ACCTTAGAGT	TGACGGGGCT	AGCATTAAGT
	TTGACAGCAT					
	TGGAAGCCAT					
20821	CCAACATGCT	ATATCCCATA	CCCGCCAACG	CCACCAACGT	GCCCATCTCC	ATCCCATCGC
	GCAACTGGGC					
	CCCTGGGATC					
21001	GAACCTTCTA	TCTTAATCAC	ACCTTTAAGA	AGGTGGCCAT	TACTITTGAC	TCTTCTGTTA
21061	GCTGGCCGGG	CAACGACCGC	CTGCTTACTC	CCAATGAGTT	TGAGAT LAAG	CGCTCAGTTG
21121	ACGGGGAGGG	CTATAACGTA	GCTCAGTGCA	ACATGACAAA	GGACTGGTTC	CTAGTGCAGA
21181	TGTTGGCCAA	CTACAATATT	GGCTACCAGG	GCTTCTACAT	TCCAGAAAGC	TACAAAGACC
21241	GCATGTACTC	GTTCTTCAGA	AACTTCCAGC	CCATGAGCCG	GCAAGTGGTG	GACGATACTA
21301	AATACAAAGA	TTATCAGCAG	GTIGGAATTA	TCCACCAGCA	TAACAACTCA	GGCTTCGTAG
21361	GCTACCTCGC	TCCCACCATG	CGCGAGGGAC	AAGCTTACCC	CGCTAATGTT	CUCTACCCAC
21421	TAATAGGCAA	AACCGCGGTT	GATAGTATTA	CCCAGAAAAA	GILICTTIGC	GAUCGCACCC
21481	TGTGGCGCAT	CCCCTTCTCC	AGTAACTITA	IGTCCATGGG	IGCGCTCACA	GAUCTGGGCC
21541	AAAACCTTCT	CTACGCAAAC	LCCGCCCACG	CGCTAGACAT	GACCITIGAG	GIGGAICCCA

21601	TGGACGAGCC	CACCCTTCTT	TATGTTTTGT	TTGAAGTCTT	TGACGTGGTC	CGTGTGCACC
21661	AGCCGCACCG	CGGCGTCATC	GAGACCGTGT	ACCTGCGCAC	GCCCTTCTCG	GCCGGCAACG
21721	ΔΤΑΊΑΛΑΊΑ	AAGAAGCAAG	CAACATCAAC	AACAGCTGCC	GCCATGGGCT	CCAGTGAGCA
21781	GGAACTGAAA	GCCATTGTCA	AAGATCTTGG	TTGTGGGCCA	TATTTTTTGG	GCACCTATGA
21841	CAAGCGCTTC	CCAGGCTTTG	TTTCCCCCACA	CAAGCTCGCC	TGCGCCATAG	LIAACACGGC
21001	CGGTCGCGAG	ACTGGGGGGG	TACACTGGAT	GGCCTTTGCC	TGGAACCCGC	GCTCAAAAAC
21961	ATGCTACCTC	TTTGAGCCCT	TTGGCTTTTC	TGACCAACGT	CTCAAGCAGG	HIACCAGII
22021	TGAGTACGAG	TCACTCCTGC	GCCGTAGCGC	CATTGCCTCT	TCCCCCGACC	GCTGTATAAC
22081	GCTGGAAAAG	TCCACCCAAA	GCGTGCAGGG	GCCCAACTCG	GCCGCCTGTG	GCCTATICTG
22141	CTGCATGTTT	CTCCACGCCT	TTGCCAACTG	GCCCCAAACT	CCCATGGATC	ACAACCCCAC
22201	CATGAACCTT	ATTACCGGGG	TACCCAACTC	CATGCTTAAC	AGTCCCCAGG	TACAGCCCAC
22261	CCTGCGCCGC	AACCAGGAAC	AGCTCTACAG	CTTCCTGGAG	CGCCACTCGC	CCTACTTCCG
22321	CAGCCACAGT	GCGCAAATTA	GGAGCGCCAC	TTCTTTTTGT	CACTTGAAAA	ACATGTAAAA
22381	ATAATGTACT	AGGAGACACT	TTCAATAAAG	GCAAATGTTT	TTATTTGTAC	ACTCTCGGGT
22441	GATTATTTAC	CCCCACCCTT	GCCGTCTGCG	CCGTTTAAAA	ATCAAAGGGG	TTCTGCCGCG
22501	CATCGCTATG	CGCCACTGGC	AGGGACACGT	TGCGATACTG	GTGTTTAGTG	CTCCACTTAA
22561	ACTCAGGCAC	AACCATCCGC	GGCAGCTCGG	TGAAGTTTTC	ACTCCACAGG	CTGCGCACCA
22621	TCACCAACGC	GTTTAGCAGG	TCGGGCGCCG	ATATCTTGAA	GTCGCAGTTG	GGGCCTCCGC
22681	CCTGCGCGCG	CGAGTTGCGA	TACACAGGGT	TACAGCACTG	GAACACTATC	AGCGCCGGGT
22741	GGTGCACGCT	GGCCAGCACG	CTCTTGTCGG	AGATCAGATC	CGCGTCCAGG	TCCTCCGCGT
22801	TGCTCAGGGC	GAACGGAGTC	AACTTTGGTA	GCTGCCTTCC	CAAAAAGGGT	GCATGCCCAG
22861	GCTTTGAGTT	GCACTCGCAC	CGTAGTGGCA	TCAGAAGGTG	ACCGTGCCCA	GTCTGGGCGT
22921	TAGGATACAG	CGCCTGCATG	AAAGCCTTGA	TCTGCTTAAA	AGCCACCTGA	GCCTTTGCGC
22981	CTTCAGAGAA	GAACATGCCG	CAAGACTTGC	CGGAAAACTG	ATTGGCCGGA	CAGGCCGCGT
23041	CATGCACGCA	GCACCTTGCG	TCGGTGTTGG	AGATCTGCAC	CACATTTCGG	CCCCACCGGI
23101	TCTTCACGAT	CTTGGCCTTG	CTAGACTGCT	CCTTCAGCGC	GCGCTGCCCG	TTTTCGCTCG
23161	TCACATCCAT	TTCAATCACG	TGCTCCTTAT	TTATCATAAT	GCTCCCGTGT	AGACACTTAA
23221	GCTCGCCTTC	GATCTCAGCG	CAGCGGTGCA	GCCACAACGC	GCAGCCCGTG	GGCTCGTGGT
23281	GCTTGTAGGT	TACCTCTGCA	AACGACTGCA	GGTACGCCTG	CAGGAATCGC	CCCATCATCG
23341	TCACAAAGGT	CTTGTTGCTG	GTGAAGGTCA	GCTGCAACCC	GCGGTGCTCC	TCGTTTAGCC
23401	AGGTCTTGCA	TACGGCCGCC	AGAGCTTCCA	CTTGGTCAGG	CAGTAGCTTG	AAGTTTGCCT
23461	TTAGATCGTT	ATCCACGTGG	TACTTGTCCA	TCAACGCGCG	CGCAGCCTCC	AIGCCCIICI
23521	CCCACGCAGA	CACGATCGGC	AGGCTCAGCG	GGTTTATCAC	CGTGCTTTCA	CITICCECTI
23581	CACTGGACTC	TTCCTTTTCC	TCTTGCATCC	GCATACCCCG	CGCCACTGGG	TCGTCTTCAT
23641	TCAGCCGCCG	CACCGTGCGC	TTACCTCCCT	TGCCGTGCTT	GATTAGCACC	GGTGGGTTGC
23701	TGAAACCCAC	CATTTGTAGC	GCCACATCTT	CTCTTTCTTC	CTCGCTGTCC	ACGA I CACCI
23761	CTGGGGATGG	CGGGCGCTCG	GGCTTGGGAG	AGGGGCGCTT	CTTTTCTT	TIGGACGCAA
23821	TGGCCAAATC	CGCCGTCGAG	GTCGATGGCC	GCGGGCTGGG	TGTGCGCGGC	ACCAGCGCAT
23881	CTTGTGACGA	GTCTTCTTCG	TCCTCGGACT	CGAGACGCCG	CCTCAGCCGC	111111111111111111111111111111111111111
23941	GCGCGCGGGG	AGGCGGCGGC	GACGGCGACG	GGGACGAGAC	GICCICCATG	TOCCOACTOO
24001	. GTCGCGCCGC	ACCGCGTCCG	CGCTCGGGGG	1GGTTTCGCG	CIGCICCICI	TCCCGACTGG
24061	CCATTTCCTT	CTCCTATAGG	CAGAAAAAGA	TCATGGAGTC	AGTUGAGAAG	CCCCCTACCA
24121	TAACCGCCCC	CTTTGAGTTC	GCCACCACCG	CUTCUACCGA	CATTATCCAC	GCGCCTACCA
24181	. CCTTCCCCGT	CGAGGCACCC	CCGCTTGAGG	AGGAGGAAG I	LATIATUGAG	CAGGACCCAG
24241	L GTTTTGTAAG	i cgaagacgac	GAAGATCGCT	CAGTACCAAC	AGAGGATAAA	AAGCAAGACC

24201	ACCACCACCC	AGAGGCAAAC	GAGGAACAAG	TOGGGCGGGG	GGACCAAAGG	CATGGCGACT
24301	ACCTAGATGT	GGGAGACGAC	GTGCTGTTGA	AGCATCTGCA	GCGCCAGTGC	GCCATTATCT
24301	CCCACCCCTT	GCAAGAGCGC	AGCGATGTGC	CCCTCGCCAT	AGCGGATGTC	AGCCTTGCCT
24421	ACCAACGCGTT	CCTGTTCTCA	CCCCCCCTAC	CCCCCAAACG	CCAAGAAAAC	GGCACATGCG
24401	ACCUMACGCCA	GCGCCTCAAC	TTCTACCCCG	TATTTGCCGT	GCCAGAGGTG	CTTGCCACCT
24541	ATCACATCTT	TTTCCAAAAC	TGCAAGATAC	CCCTATCCTG	CCGTGCCAAC	CGCAGCCGAG
24661	CCCACATOTT	GCTGGCCTTG	CGGCAGGGCG	CTGTCATACC	TGATATCGCC	TCGCTCGACG
24721	AAGTGCCAAA	AATCTTTGAG	GGTCTTGGAC	GCGACGAGAA	GCGCGCGGCA	AACGCTCTGC
24721	AACAAGAAAA	CAGCGAAAAT	GAAAGTCACT	GTGGAGTGCT	GGTGGAACTT	GAGGGTGACA
24941	ACCCCCCCCCT	AGCCGTGCTG	AAACGCAGCA	TCGAGGTCAC	CCACTITGCC	TACCCGGCAC
24041	TTAACCTACC	CCCCAAGGTT	ATGAGCACAG	TCATGAGCGA	GCTGATCGTG	CGCCGTGCAC
24901	CACCCCTAGG	GAGGGATGCA	AACTTGCAAG	AACAAACCGA	GGAGGGCCTA	CCCGCAGTTG
25021	CCCATCACCA	GCTGGCGCGC	TGGCTTGAGA	CGCGCGAGCC	TGCCGACTTG	GAGGAGCGAC
25021	CCAACCTAAT	GATGGCCGCA	GTGCTTGTTA	CCGTGGAGCT	TGAGTGCATG	CAGCGGTTCT
25141	TTCCTCACCC	GGAGATGCAG	CGCAAGCTAG	AGGAAACGTT	GCACTACACC	TTTCGCCAGG
25141	CCTACCTCCC	CCAGGCCTGC	ΔΔΔΑΤΙΤΟΓΔ	ACGTGGAGCT	CTGCAACCTG	GTCTCCTACC
25201	TTCCAATTIT	GCACGAAAAC	CECCTTEGEC	AAAACGTGCT	TCATTCCACG	CTCAAGGGCG
25201	Accecce Cente	CGACTACGTC	CGCGACTGCG	TITACITATI	TCTGTGCTAC	ACCTGGCAAA
25321	CCCCCATCCC	CGTGTGGCAG	CAGTGCCTGG	AGGAGCGCAA	CCTGAAGGAG	CTGCAGAAGC
25301	TECTAMAGEA	AAACTTGAAG	GACCTATGGA	CGGCCTTCAA	CGAGCGCTCC	GTGGCCGCGC
25501	ACCTEGEGGA	CATTATCTTC	CCCGAACGCC	TGCTTAAAAC	CCTGCAACAG	GGTCTGCCAG
25561	ACTTCACCAC	TCAAAGCATG	TTGCAAAACT	TTAGGAACTT	TATCCTAGAG	CGTTCAGGAA
25621	TTCTCCCCCC	CACCTGCTGT	GCGCTTCCTA	GCGACTTTGT	GCCCATTAAG	TACCGTGAAT
25691	CCCCTCCCCC	GCTTTGGGGT	CACTGCTACC	TTCTGCAGCT	AGCCAACTAC	CTTGCCTACC
257/1	ACTCCGACAT	CATGGAAGAC	GTGAGCGGTG	ACGGCCTACT	GGAGTGTCAC	TGTCGCTGCA
25901	ACCTATGCAC	CCCGCACCGC	TCCCTGGTCT	GCAATTCACA	ACTGCTTAGC	GAAAGTCAAA
25861	TTATCGGTAC	CTTTGAGCTG	CAGGGTCCCT	CGCCTGACGA	AAAGTCCGCG	GCTCCGGGGT
25001	TGAAACTCAC	TCCGGGGCTG	TGGACGTCGG	CTTACCTTCG	CAAATTTGTA	CCTGAGGACT
25081	ACCACGCCCA	CGAGATTAGG	TTCTACGAAG	ACCAATCCCG	CCCGCCAAAT	GCGGAGCTTA
26041	CCCCCCCC	CATTACCCAG	GGCCACATCC	TTGGCCAATT	GCAAGCCATT	AACAAAGCCC
26101	CCCAAGAGTT	TCTGCTACGA	AAGGGACGGG	GGGTTTACTT	GGACCCCCAG	TCCGGCGAGG
26161	ACCTCAACCC	AATCCCCCCG	CCGCCGCAGC	CCTATCAGCA	GCCGCGGGCC	CTTGCTTCCC
26221	AGGATGGCAC	CCAAAAAGAA	GCTGCAGCTG	CCGCCGCCGC	CACCCACGGA	CGAGGAGGAA
26281	TACTEGGACA	GTCAGGCAGA	GGAGGTTTTG	GACGAGGAGG	AGGAGATGAT	GGAAGACTGG
26341	GACAGCCTAG	ACGAGGAAGC	TTCCGAGGCC	GAAGAGGTGT	CAGACGAAAC	ACCGTCACCC
26401	TOGGTOGCAT	TCCCCTCGCC	GGCGCCCCAG	AAATCGGCAA	CCGTTCCCAG	CATTGCTACA
26/161	ACCTCCGCTC	CTCAGGCGCC	GCCGGCACTG	CCCGTTCGCC	GACCCAACCG	TAGATGGGAC
26521	ACCACTGGAA	CCAGGGCCGG	TAAGTCTAAG	CAGCCGCCGC	CGTTAGCCCA	AGAGCAACAA
26581	CAGCGCCAAG	GCTACCGCTC	GTGGCGCGTG	CACAAGAACG	CCATAGTTGC	TTGCTTGCAA
26641	GACTGTGGGG	GCAACATCTC	CTTCGCCCGC	CGCTTTCTTC	TCTACCATCA	CGGCGTGGCC
26701	TTCCCCCGTA	ACATCCTGCA	TTACTACCGT	CATCTCTACA	GCCCCTACTG	CACCGGCGGC
26761	AGCGGCAGCA	ACAGCAGCGG	CCACGCAGAA	GCAAAGGCGA	CCGGATAGCA	AGACTCTGAC
26821	AAAGCCCAAG	AAATCCACAG	CGGCGGCAGC	AGCAGGAGGA	GGAGCACTGC	GTCTGGCGCC
26881	CAACGAACCC	GTATCGACCC	GCGAGCTTAG	AAACAGGATT	TTTCCCACTC	TGTATGCTAT
26941	ATTTCAACAG	AGCAGGGGCC	AAGAACAAGA	GCTGAAAATA	AAAAACAGGT	CTCTGCGCTC
200 /1						

27001 CCTCACCCGC AGCTGCCTGT	ATCACAAAAG	CGAAGATCAG	CTTCGGCGCA CGCTGGAAGA
27061 CGCGGAGGCT CTCTTCAGCA	AATACTGCGC	GCTGACTCTT	AAGGACTAGT TTCGCGCCCT
27121 TTCTCAAATT TAAGCGCGAA	AACTACGTCA	TCTCCAGCGG	CCACACCCGG CGCCAGCACC
27181 TGTCGTCAGC GCCATTATGA	GCAAGGAAAT	TCCCACGCCC	TACATGTGGA GTTACCAGCC
27241 ACAAATGGGA CTTGCGGCTG	GAGCTGCCCA	AGACTACTCA	ACCCGAATAA ACTACATGAG
27301 CGCGGGACCC CACATGATAT	CCCGGGTCAA	CGGAATCCGC	GCCCACCGAA ACCGAATTCT
27361 CCTCGAACAG GCGGCTATTA	CCACCACACC	TCGTAATAAC	CTTAATCCCC GTAGTTGGCC
27421 CGCTGCCCTG GTGTACCAGG	AAAGTCCCGC	TCCCACCACT	GTGGTACTTC CCAGAGACGC
27481 CCAGGCCGAA GTTCAGATGA	CTAACTCAGG	GGCGCAGCTT	GCGGGCGGCT TTCGTCACAG
27541 GGTGCGGTCG CCCGGCAGG	GTATAACTCA	CCTGAAAATC	AGAGGGCGAG GTATTCAGCT
27601 CAACGACGAG TCGGTGAGCT	CCTCTCTTGG	TCTCCGTCCG	GACGGGACAT TTCAGATCGG
27661 CGGCGCTGGC CGCTCTTCAT	TTACGCCCCG	TCAGGCGATC	CTAACTCTGC AGACCTCGTC
27721 CTCGGAGCCG CGCTCCGGAG	GCATTGGAAC	TCTACAATTT	ATTGAGGAGT TCGTGCCTTC
27781 GGTTTACTTC AACCCCTTTT	CTGGACCTCC	CGGCCACTAC	CCGGACCAGT TTATTCCCAA
27841 CTTTGACGCG GTAAAAGACT	CGGCGGACGG	CTACGACTGA	ATGACCAGTG GAGAGGCAGA
27901 GCAACTGCGC CTGACACACC	TCGACCACTG	CCGCCGCCAC	AAGTGCTTTG CCCGCGGCTC
27961 CGGTGAGTTT TGTTACTTTG	AATTGCCCGA	AGAGCATATC	GAGGGCCCGG CGCACGGCGT
28021 CCGGCTCACC ACCCAGGTAG	AGCTTACACG	TAGCCTGATT	CGGGAGTTTA CCAAGCGCCC
28081 CCTGCTAGTG GAGCGGGAGC	GGGGTCCCTG	TGTTCTGACC	GTGGTTTGCA ACTGTCCTAA
28141 CCCTGGATTA CATCAAGATC	TITGTTGTCA	TCTCTGTGCT	GAGTATAATA AATACAGAAA
28201 TTAGAATCTA CTGGGGCTCC	TGTCGCCATC	CTGTGAACGC	CACCGTTTTT ACCCACCCAA
28261 AGCAGACCAA AGCAAACCTC	ACCTCCGGTT	TGCACAAGCG	GGCCAATAAG TACCTTACCT
28321 GGTACTTTAA CGGCTCTTCA	TITGTAATIT	ACAACAGTTT	CCAGCGAGAC GAAGTAAGTT
28381 TGCCACACAA CCTTCTCGGC	TTCAACTACA	CCGTCAAGAA	AAACACCACC ACCACCCTCC
28441 TCACCTGCCG GGAACGTACG	AGTGCGTCAC	CGGTTGCTGC	GCCCACACCT ACAGCCTGAG
28501 CGTAACCAGA CATTACTCCC	ATTITCCCAA	AACAGGAGGT	GAGCTCAACT CCCGGAACTC
28561 AGGTCAAAAA AGCATTTTGC	GGGGTGCTGG	GATTTTTTAA	TTAAGTATAT GAGCAATTCA
28621 AGTAACTCTA CAAGCTTGTC	TAATTTTTCT	GGAATTGGGG	TCGGGGTTAT CCTTACTCTT
28681 GTAATTCTGT TTATTCTTAT	ACTAGCACTT	CTGTGCCTTA	GGGTTGCCGC CTGCTGCACG
28741 CACGTTTGTA CCTATTGTCA	GCTTTTTAAA	CGCTGGGGGC	GACATCCAAG ATGAGGTACA
28801 TGATTTTAGG CTTGCTCGCC	CTTGCGGCAG	TCTGCAGCGC	TGCCAAAAAG GTTGAGTTTA
28861 AGGAACCAGC TTGCAATGTT	ACATTTAAAT	CAGAAGCTAA	TGAATGCACT ACTCTTATAA
28921 AATGCACCAC AGAACATGAA	AAGCTTATTA	TTCGCCACAA	AGACAAAATT GGCAAGTATG
28981 CTGTATATGC TATTTGGCAG	CCAGGTGACA	CTAACGACTA	TAATGTCACA GTCTTCCAAG
29041 GTGAAAATCG TAAAACTTTT	ATGTATAAAT	TTCCATTTTA	TGAAATGTGC GATATTACCA
29101 TGTACATGAG CAAACAGTAC	AAGTTGTGGC	CCCCACAAAA	GTGTTTAGAG AACACTGGCA
29161 CCTTTTGTTC CACCGCTCTG	CTTATTACAG	CGCTTGCTTT	GGTATGTACC TTACTTTATC
29221 TCAAATACAA AAGCAGACGC	AGTTTTATTG	ATGAAAAGAA	AATGCCTTGA TTTTCCGCTT
29281 GCTTGTATTC CCCTGGACAA	TTTACTCTAT	GTGGGATATG	CGCCAGGCGG GAAAGATTAT
29341 ACCCACAACC TTCAAATCAA	ACTITICCTGG	ACGTTAGCGC	CTGACTTCTG CCAGCGCCTG
29401 CACTGCAAAT TTGATCAAAC	CCAGCTTCAG	CTTGCCTGCT	CCAGAGATGA CCGGCTCAAC
29461 CATCGCGCCC ACAACGGACT	ATCGCAACAC	CACTGCTACC	GGACTAAAAT CTGCCCTAAA
29521 TTTACCCCAA GTTCATGCCT	TTGTCAATGA	CTGGGCGAGC	TTGGGCATGT GGTGGTTTTC
29581 CATAGCGCTT ATGTTTGTTT	GCCTTATTAT	TATGTGGCTT	ATTTGTTGCC TAAAGCGCAG
29641 ACGCGCCAGA CCCCCCATCT	ATAGGCCTAT	CATTGTGCTC	AACCCACACA ATGAAAAAAT

29701	TCATAGATTG	GACGGTCTCA	AACCATGTTC	TCTTCTTTTA	CAGTATGATT	AAATGAGACA
29761	TGATTCCTCG	AGTCCTTATA	TTATTGACCC	TTGTTGCGCT	TTTCTGTGCG	TGCTCTACAT
29821	TGGCTGCGGT	CGCTCACATC	GAAGTAGATT	GCATCCCACC	TTTCACAGTT	TACCTGCTTT
29881	ACGGATTTGT	CACCCTTATC	CTCATCTGCA	GCCTCGTCAC	TGTAGTCATC	GCCTTCATTC
29941	AGTTCATTGA	CTGGATTTGT	GTGCGCATTG	CGTACCTTAG	GCACCATCCG	CAATACAGAG
30001	ACAGGACTAT	AGCTGATCTT	CTCAGAATTC	TTTAATTATG	AAACGGATTG	TCACTTTTGT
30061	TTTGCTGATT	TTCTGCGCCC	TACCTGTGCT	TTGCTCCCAA	ACCTCAGCGC	CTCCCAAAAG
30121	ACATATTTCC	TGCAGATTCA	CTCAAATATG	GAACATTCCC	AGCTGCTACA	ACAAACAGAG
30181	CGATTTGTCA	GAAGCCTGGT	TATACGCCAT	CATCTCTGTC	ATGGTTTTTT	GCAGTACCAT
30241	TTTTGCCCTA	GCCATATACC	CATACCTTGA	CATTGGTTGG	AATGCCATAG	ATGCCATGAA
	CCACCCTACT					
	TCAGCCTCGC					
	AGATGACTGA					
	AAAGGCGCAA					
	ACCTGCACCA					
	AAAAAACCAC					
	TGCTTATGGT					
	GCCTGCACTT					
	GCATTAGAGA					
	ATCAGTCAGC					
	CTGGTATTTC					
	TTCCTCATGT					
	CAGACCGTCT					
	AACTGTGCCT					
	CGGAGTGCTT					
	AAAAATGGGC					
	TGTTTCTCAA					
31321	TACAGTCAGC	TCAGGCGCCC	TAACCATGGC	CACAACTTCG	CCTTTGGTGG	TCTCTGACAA
	CACTCTTACC					
	TACCAAAGAG					
	CTCTGCCACT					
	TGGTAGTCTG					
	CAAAATTGGC					
	TCAGGGGGTT					
	TGATACATCT					
	TCCTAACCAA					
	CGCAATAACA					
	TCCCATAAAA					
	AAAACTTGGA					
	CAATGACAGA					
	AGATAAAGAC					
	TGTTTCAGCT					
	AAACTTGGTT					
	ACAGTATTGG					
32341	TGGGTTTATG	CCAAACCTAA	AAGCTTACCC	AAAAACTCAA	AGTAMAACTG	CAAAAAGTAA

32401 TATTGTTAGC	CAGGTGTATC	TTAATGGTGA	CAAGTCTAAA	CCATTGCATT	TTACTATTAC
32461 GCTAAATGGA	ACAGATGAAA	CCAACCAAGT	AAGCAAATAC	TCAATATCAT	TCAGTTGGTC
32521 CTGGAACAGT	GGACAATACA	CTAATGACAA	ATTTGCCACC	AATTCCTATA	CCTTCTCCTA
32581 CATTGCCCAG	GAATAAAGAA	TCGTGAACCT	GTTGCATGTT	ATGTTTCAAC	GTGTTTATTT
32641 TTCAATTGCA	GAAAATTTCA	AGTCATTTTT	CATTCAGTAG	TATAGCCCCA	CCACCACATA
32701 GCTTATACTA	ATCACCGTAC	CTTAATCAAA	CTCACAGAAC	CCTAGTATTC	AACCTGCCAC
32761 CTCCCTCCCA	ACACACAGAG	TACACAGTCC	TTTCTCCCCG	GCTGGCCTTA	AACAGCATCA
32821 TATCATGGGT	AACAGACATA	TTCTTAGGTG	TTATATTCCA	CACGGTCTCC	TGTCGAGCCA
32881 AACGCTCATC	AGTGATGTTA	ATAAACTCCC	CGGGCAGCTC	GCTTAAGTTC	ATGTCGCTGT
32941 CCAGCTGCTG	AGCCACAGGC	TGCTGTCCAA	CTTGCGGTTG	CTCAACGGGC	GGCGAAGGAG
33001 AAGTCCACGC	CTACATGGGG	GTAGAGTCAT	AATCGTGCAT	CAGGATAGGG	CGGTGGTGCT
33061 GCAGCAGCGC	GCGAATAAAC	TGCTGCCGCC	GCCGCTCCGT	CCTGCAGGAA	TACAACATGG
33121 CAGTGGTCTC	CTCAGCGATG	ATTCGCACCG	CCCGCAGCAT	AAGGCGCCTT	GTCCTCCGGG
33181 CACAGCAGCG	CACCCTGATC	TCACTTAAGT	CAGCACAGTA	ACTGCAGCAC	AGTACCACAA
33241 TATTGTTTAA	AATCCCACAG	TGCAAGGCGC	TGTATCCAAA	GCTCATGGCG	GGGACCACAG
33301 AACCCACGTG	GCCATCATAC	CACAAGCGCA	GGTAGATTAA	GTGGCGACCC	CTCATAAACA
33361 CGCTGGACAT	AAACATTACC	TCTTTTGGCA	TGTTGTAATT	CACCACCTCC	CGGTACCATA
33421 TAAACCTCTG	ATTAAACATG	GCGCCATCCA	CCACCATCCT	AAACCAGCTG	GCCAAAACCT
33481 GCCCGCCGGC	TATGCACTGC	AGGGAACCGG	GACTGGAACA	ATGACAGTGG	AGAGCCCAGG
33541 ACTCGTAACC	ATGGATCATC	ATGCTCGTCA	TGATATCAAT	GTTGGCACAA	CACAGGCACA
33601 CGTGCATACA	CTTCCTCAGG	ATTACAAGCT	CCTCCCGCGT	CAGAACCATA	TCCCAGGGAA
33661 CAACCCATTC	CTGAATCAGC	GTAAATCCCA	CACTGCAGGG	AAGACCTCGC	ACGTAACTCA
33721 CGTTGTGCAT	TGTCAAAGTG	TTACATTCGG	GCAGCAGCGG	ATGATCCTCC	AGTATGGTAG
33781 CGCGTGTCTC	TGTCTCAAAA	GGAGGTAGGC	GATCCCTACT	GTACGGAGTG	CGCCGAGACA
33841 ACCGAGATCG	TGTTGGTCGT	AGTGTCATGC	CAAATGGAAC	GCCGGACGTA	GTCATATTTC
33901 CTGAAGCAAA	ACCAGGTGCG	GGCGTGACAA	ACAGATCTGC	GTCTCCGGTC	TCGTCGCTTA
33961 GCTCGCTCTG	TGTAGTAGTT	GTAGTATATC	CACTCTCTCA	AAGCATCCAG	GCGCCCCCTG
34021 GCTTCGGGTT	CTATGTAAAC	TCCTTCATGC	GCCGCTGCCC	TGATAACATC	CACCACCGCA
34081 GAATAAGCCA	CACCCAGCCA	ACCTACACAT	TCGTTCTGCG	AGTCACACAC	GGGAGGAGCG
34141 GGAAGAGCTG	GAAGAACCAT	GTTTTTTTT	TTTATTCCAA	AAGATTATCC	AAAACCTCAA
34201 AATGAAGATC	TATTAAGTGA	ACGCGCTCCC	CTCCGGTGGC	GTGGTCAAAC	TCTACAGCCA
34261 AAGAACAGAT	AATGGCATTT	GTAAGATGTT	GCACAATGGC	TTCCAAAAGG	CAAACTGCCC
34321 TCACGTCCAA	GTGGACGTAA	AGGCTAAACC	CTTCAGGGTG	AATCTCCTCT	ATAAACATTC
34381 CAGCACCTTC	AACCATGCCC	AAATAATTTT	CATCTCGCCA	CCTTATCAAT	ATGTCTCTAA
34441 GCAAATCCCC	: AATATTAAGT	CCGGCCATTG	TAAAAAATCTG	CTCCAGAGCG	CCCTCCACCT
34501 TCAGCCTCAA	GCAGCGAATC	ATGATTGCAA	AAATTCAGGT	TCCTCACAGA	CCTGTATAAG
34561 ATTCAAAAGC	GGAACATTAA	CAAAAATACC	GCGATCCCGT	AGGTCCCTTC	GCAGGGCCAG
34621 CTGAACATAA	TCGTGCAGGT	CTGCACGGAC	CAGCGCGGCC	ACTTCCCCGC	CAGGAACCAT
34681 GACAAAAGAA	. CCCACACTGA	TTATGACACG	CATACTCGGA	GCTATGCTAA	CCAGCGTAGC
34741 CCCGATGTAA	GCTTGTTGCA	TGGGCGGCGA	TATAAAATGC	AAGG FACTGC	TCAAAAAA TC
34801 AGGCAAAGCC	TCGCGCAAAA	AAGCAAGCAC	ATCGTAGTCA	IGCICATGCA	GATAAAGGCA
34861 GGTAAGTTCC	GGAACCACCA	CAGAAAAAAGA	CACCATITIT	CTCTCAAACA	IGICIGCGGG
34921 TTCCTGCATA	AACACAAAAT	AAAATAACAA	AAAAAAAAA	ACATITAAAC	ATTAGAAGCC
34981 TGTNTTACAA	CAGGAAAAAC	AACCCTTATA	AGCATAAGAC	GGACTAUGGC	CATGUUGGCG
35041 TGACCGTAAA	AAAACTGGTC	ACCGTGATTA	. Aaaagcacca	CCGACAGITC	CILGGILAIG

68/70

35101 TCCGGAGTCA TAATGTAAGA CTCGGTAMAC ACATCAGGTT GGTTAACATC GGTCAGTGCT
35161 AAAAAGCGAC CGAAATAGCC CGGGGGAATA CATACCGGCA GGCGTAGAGA CAACATTACAC
35221 GCCCCCATAG GAGGTAACA CAACATTAACA GACGAGAAAAA ACACATAAAC ACCTGAAAAAA
35281 CCCTCCTGCC TAGGCAAAAT AGCACCCTC CGCTCCAGAA CAACATAAAC ACCTGAAAAA
35281 CCGGCAGCCA TAACAGTCAG CCTTACCAGT AAAAAAACC TATTAAAAAAC ACCATCAGC
35401 ACGGCACCAG CTCAATCAGT CACAGTGTAA AAAGGGCCAA GTACAGAGGC AGTATATATA
35461 GGACTAAAAA ATGACGTAAC GGTTAAAGTC CACAAAAAAC ACCACTGCAGCCGC
35201 ACGCCACCCAA CTCAATCAGT CACAGTGTAA AAAGAGCCAA CACAAAAAC CCCCCAGCAACCA
35521 ACCTACCCC ACACACAACA GCCAAAAAAC CACAAAAAC CACCACGAAAAC
35531 TCCCAGGAT ACGTCACTTC CCATTTTAAA AAAAAACTAC ATTCCCATT CACATCCGTT
35581 TCCCACGAT ACGTCACTTC CCATTTTAAA AAAAAACTAC ATTCCCATT ACATGCAAGT
35641 TACTCCGCCC TAAAACCTAC GTCACCCCC CCCTCCCCAC CCCCCGCC CCCGCACCCGA
35701 CTCCACCCCC TCATTATACTA TTGGCTTCA ATCCAAAATA AGGTATATTA TTGATGATG

FIG.11A-14

