NOCIONES BÁSICAS

Un **grafo** es un par G=(V,A), donde V es un conjunto finito no vacío (a cuyos elementos llamaremos **vértices**) y A es una familia finita de pares no ordenados de vértices de V (a cuyos elementos llamaremos **aristas o arcos**). Un **grafo simple** es un par G=(V,A) donde V es un conjunto finito no vacío y A es un conjunto finito de pares no ordenados de vértices distintos de V.

Si $a=\{u,v\}$ es una arista de G escribiremos sólo a=uv, y diremos que **a** une los vértices **u** y **v**o que **u** y **v** son **extremos** de **a**. Una arista a=uu se llama **bucle**. Una arista que aparece repetida en A se llama **arista múltiple**.

(En otros textos llaman grafo al que aquí se denomina grafo simple, permitiendo la presencia de aristas múltiples en los multigrafos y de bucles en los seudografos).

Dos vértice son **adyacentes** si son extremos de una misma arista. Dos aristas son **adyacentes** si tienen un extremo común. Un vértice y una arista son **incidentes** si el vértice es extremo de la arista. Un vértice es **aislado** si no tiene otros vértices adyacentes.

Un **grafo completo** es un grafo simple en el que todo par de vértices está unido por una arista. (Se representa con K_n al grafo completo de n vértices).

Un grafo G=(V,A) se llama **bipartido** (o bipartito) si existe una partición de V, $V=X\cup Y$, tal que cada arista de G une un vértice de X con otro de Y. (Se designa por $K_{r,s}$ al **grafo bipartido completo** en que |X|=r e |Y|=s, y hay una arista que conecta cada vértice de X con cada vértice de Y)

El nº de vértices de un grafo G es su **orden** y el nº de aristas su **tamaño**. Designaremos el orden con n y el tamaño con q y utilizaremos la notación de grafo (n,q).

Dos grafos G=(V,A) y G'=(V',A') son **isomorfos** si existe una biyección $f:V\to V'$ que conserva la adyacencia. (Es decir, \forall u,v \in V, u y v son adyacentes en $G\Leftrightarrow f(u)$ y f(v) son adyacentes en G'.

Un **subgrafo** de G=(V,A) es otro grafo H=(V',A') tal que $V'\subseteq V$ y $A'\subseteq A$. Si V'=V se dice que H es un subgrafo **generador.**

GRADO

Se llama **grado** de un vértice v al número de aristas que lo tienen como extremo, (cada bucle se cuenta, por tanto, dos veces). Se designa por $\mathbf{d}(\mathbf{v})$

Un grafo regular es un grafo simple cuyos vértices tienen todos el mismo grado.

A la sucesión de los grados de los vértices de G se le denomina **sucesión de grados** del grafo G. Una sucesión de enteros no negativos se dice sucesión **gráfica** si es la sucesión de grados de un grafo simple. El menor término de la sucesión de grados es el grado mínimo de G y se designa por $\delta(G)$. El mayor es el grado máximo y se designa por $\Delta(G)$

Propiedades:

- 1) La relación entre los grados y el número de aristas en G es:
- $\sum_{v \in V} d(v) = 2|A|$
- 2) Hay grafos no isomorfos con la misma sucesión de grados
- 3) La sucesión $(d_1, d_2, ..., d_n)$ es la sucesión de grados de un grafo $\Leftrightarrow \sum d_k$ es par.
- 4) Para grafos simples se tiene que:

la sucesión no creciente $(s,t_1,...,t_s,d_1,...d_r)$ es gráfica \Leftrightarrow lo es la sucesión $(t_1-1,...,t_s-1,d_1,...d_r)$

MATRICES

La **matriz de adyacencia** de un grafo G con n vértices $\{v_1,...,v_n\}$ es la matriz nxn, $M(G)=(a_{ij})$, donde a_{ij} es el n^o de aristas que unen v_i con v_i .

La **matriz de incidencia** de un grafo **simple** G con n vértices $\{v_1,...,v_n\}$ y k aristas $\{e_1,...,e_k\}$ es la matriz nxk, $I(G)=(b_{ij})$, donde $b_{ij}=1$ si v_i es incidente con e_i y $b_{ij}=0$ en caso contrario.

CAMINOS Y CONEXIÓN

Un **recorrido** en un grafo es una sucesión de vértices y aristas de la forma v_0 a₁ v_1 a₂... v_{k-1} a_k v_k donde la arista a_i une los vértices v_{i-1} y v_i . Éste es un recorrido de v_0 a v_k , de longitud k, siendo v_1 ,..., v_{k-1} los vértices interiores del camino. Si v_0 = v_k decimos que el recorrido es **cerrado** (en ocasiones se le llama circuito).

Un **camino** en un grafo es un recorrido en el que no se repiten vértices ni aristas. Un **ciclo** es un camino cerrado. Si existe un recorrido de v_0 a v_k entonces existe un camino de v_0 a v_k

Propiedades: 1) El nº de reco

- 1) El nº de recorridos de longitud k de v_i a v_j es el elemento ij de la matriz $M(G)^k$.
- 2) Un grafo G es bipartido \Leftrightarrow G no tiene ciclos de longitud impar.
- 3) Si G tiene sólo dos vértices impares existe un camino entre ellos.

Un **grafo** es **conexo** si para cada par de vértices **u** y **v** existe un camino de **u** a **v**. Si G es un grafo no conexo (o disconexo), cada uno de sus subgrafos conexos maximales se llama **componente conexa** de G. Designaremos por k(G) al nº de componentes conexas del grafo G

Un vértice **v** se llama **vértice-corte** (o punto de articulación) de G si el grafo G-{v} tiene más componentes conexas que G.

Una arista a de un grafo G se llama puente si G-{a} tiene más componentes conexas que G.

Los **bloques** de un grafo G son los subgrafos de G sin vértices-corte y maximales con respecto a esta propiedad.

Propiedades:

- 1) Una arista \mathbf{e} de un grafo conexo es un puente de $\mathbf{G} \Leftrightarrow \mathbf{la}$ arista \mathbf{e} no pertenece a ningún ciclo de \mathbf{G} .
- 2) Si dos bloques comparten un vértice, éste debe ser un vértice-corte

DIGRAFOS

Un **digrafo o grafo dirigido** es un par D=(V,A) donde V es un conjunto no vacío (a cuyos elementos llamaremos **vértices**) y A es una familia finita de pares ordenados de vértices de V (a cuyos elementos llamaremos **aristas o arcos**).

Un **digrafo simple** es un par D=(V,A) donde V es un conjunto no vacío y A es un conjunto finito de pares ordenados de vértices distintos de V.

Si a=(u,v) es un arco escribiremos a=uv, y diremos que u es **extremo inicial** de **a** y que v es **extremo final** de a.

Se llama **grado de entrada** de un vértice v al número de arcos que lo tienen como extremo final y se llama **grado de salida** de v al número de arcos que lo tienen como extremo inicial.

La **matriz de adyacencia** de un digrafo D con n vértices $\{v_1,...,v_n\}$ es una matriz nxn, $\mathbf{M}(\mathbf{D})=(a_{ij})$ donde a_{ij} es el número de arcos que tienen a v_i como extremo inicial y a v_j como extremo final.

Un **recorrido dirigido** en un digrafo es una sucesión de vértices y arcos de la forma $v_0e_1v_1e_2...v_{k-1}e_kv_k$, donde el arco e_i tiene como extremos inicial y final v_{i-1} y v_i , respectivamente. Si no se repiten ni vértices ni aristas se denomina **camino dirigido**. Dicho camino se llama camino de v_0 a v_k y su **longitud** es k.

Conexión. Grafos orientables.

Un digrafo D=(V,A) es **fuertemente conexo** si para todo par de vértices \mathbf{u} y \mathbf{v} existe un camino dirigido que va de \mathbf{u} a \mathbf{v} .

Dado un digrafo D, podemos considerar el grafo G no dirigido que se obtiene al sustituir cada arco (u,v) por la arista (u,v). Si este grafo es conexo, diremos que el digrafo D es **débilmente conexo**.

Si en un grafo G, no dirigido, (por ejemplo, las calles de una ciudad), se asigna un sentido a cada arista se obtiene una **orientación** de G. Necesitamos, naturalmente, que se pueda ir desde cualquier punto de la ciudad a cualquier otro, es decir, que el digrafo obtenido sea fuertemente conexo. Cuando ésto se puede conseguir decimos que G es un grafo **orientable**.