ÁLGEBRA LINEAR ALGORÍTMICA - UFRJ - PLE

ESTUDO DIRIGIDO 1: SEMANAS 1 E 2

Leia as instruções abaixo antes de começar o estudo dirigido:

- 1. não serão aceitas respostas sem justificativa;
- 2. o estudo dirigido pode ser feito usando um software (latex, word, jamboard...), mas você também pode escrever em **papel branco** com caneta **preta** e fotografar ou escanear o papel;
- 3. o arquivo deve então ser convertido em PDF;
- 4. o arquivo enviado tem que ser obrigatoriamente um PDF;
- 5. caso escreva em papel ou usando o Jamboard ou algo equivalente seja organizado e use letra legível;
- 6. o nome do arquivo PDF deve estar no formato seu primeiro nome_seu DRE_EDn.pdf
 - em que n é o número do estudo dirigido;
- 7. seu nome completo e DRE devem encabeçar a primeira página do PDF.

Além disso, o código de conduta apresentado junto com o programa do curso deve ser integralmente respeitado.

Questões sobre os temas da Semana 1

Questão 1. Sejam u e v vetores do plano.

- (a) Use as propriedades do produto interno para calcular $||u+v||^2$. Você deve indicar qual foi a propriedade utilizada em cada etapa do seu cálculo.
- (b) Sob que condições podemos afirmar que $||u+v||^2 = ||u||^2 + ||v||^2$?
- (c) O que (b) nos diz sobre a validade do teorema de Pitágoras?

Questão 2. Considere as retas 2x + 3y = 0 e 3x - 2y = 0.

(a) Ache um vetor normal a cada reta dada e calcule o ângulo entre eles.

(b) Ache um vetor diretor de cada reta dada e calcule o ângulo entre eles.

Questão 3. Sejam u e v vetores de normas 2 e 3, que formam com e_1 ângulos iguais a $\pi/3$ e $\pi/2$, respectivamente. Calcule:

- (a) o produto interno $\langle u | v \rangle$;
- (b) as coordenadas de u e v relativamente à base ε ;
- (c) as coordenadas de u + v relativamente à base ε .

Use o Maxima para calcular o cosseno do ângulo entre u + v com e_1 .

Questão 4. Se v = (-2,6) são as coordenadas de um vetor v em relação à base canônica, quais são as suas coordenadas relativamente à base ortonormal

$$\beta = \left\{ \frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2}}(1,-1) \right\},\,$$

cujos vetores também estão escritos em coordenadas na base canônica.

Questão 5.

Sejam u_1 e u_2 vetores do plano e U a matriz cuja primeira linha é u_1 e cuja segunda linha é u_2 . Prove que as seguintes afirmações são equivalentes:

- (a) u_1 e u_2 não são colineares;
- (b) $det(U) \neq 0$.

Questões sobre os temas da Semana 2

Questão 6. Determine a matriz de um operador linear $S: \mathbb{R}^2 \to \mathbb{R}^2$ que leve o quadrado de vértices

no paralelogramo de vértices

Questão 7. Seja P o operador do \mathbb{R}^2 que descreve a projeção ortogonal sobre uma reta ℓ . Determine a matriz de P na base canônica sabendo-se que P(1,1) = (10,15).

Questão 8. Seja R uma reflexão do plano. Sabendo-se que

$$R(1,3) = -\frac{1}{169}(241,477),$$

determine:

- (a) a reta em torno da qual se dá esta reflexão, isto é o espelho de R;
- (b) um vetor unitário perpendicular a esta reta;
- (c) a matriz de R.

Dica para (a): faça um desenho.

Questão 9. Sejam R_1 e R_2 as reflexões cujos espelhos são, respectivamente, as retas y = 2x e y = 7x.

- (a) Determine a matriz do operador $T = R_1 \circ R_2$ na base canônica.
- (b) Mostre que T é uma rotação e calcule o ângulo de rotação correspondente.

Questão 10. Prove que não existe uma rotação capaz de levar o sistema de eixos definido pela base canônica $\varepsilon = \{e_1, e_2\}$ do plano no sistema de eixos definido pela base $\beta = \{-e_1, e_2\}$.