

Representation

Markov Networks

General Gibbs Distribution

P(A,B,C,D) 1s this fully expressive? $(n^2) \cdot d^2 = O(n^2d^2)$ 有限 $n \cdot n \cdot p \cdot g \cdot d \cdot d \cdot g \cdot n \cdot d$ PANTALUMENTAL

Gibbs Distribution

• Parameters:

General factors $\phi_i(D_i)$

$$\Phi = \{\phi_i(D_i)\}$$

a ¹	b¹	c ¹	0.25
a^1	b¹	c ²	0.35
a¹	b ²	c ¹	0.08
a¹	b ²	c ²	0.16
a ²	b¹	c ¹	0.05
a ²	b¹	c ²	0.07
a ²	b ²	c ¹	0
a ²	b ²	c ²	0
a ³	b¹	c ¹	0.15
a ³	b¹	c ²	0.21
a ³	b ²	c ¹	0.09
a ³	b ²	c ²	0.18

iphne Koller

Set of factors Distribution

$$\begin{split} & \underline{\Phi} = \{\phi_1(\boldsymbol{D}_1), \dots, \phi_k(\boldsymbol{D}_k)\} \\ & \underbrace{\tilde{P}_{\Phi}(X_1, \dots, X_n)}_{\text{partition function}} & = \prod_{i=1}^{i=1} \underline{\phi_i(\boldsymbol{D}_i)} \quad \text{factor product} \\ & Z_{\Phi} = \sum_{X_1, \dots, X_n} \tilde{P}_{\Phi}(X_1, \dots, X_n) \\ & \underbrace{\tilde{P}_{\Phi}(X_1, \dots, X_n)}_{X_1, \dots, X_n} & = \frac{1}{Z_{\Phi}} \tilde{P}_{\Phi}(X_1, \dots, X_n) \end{split}$$

Induced Markov Network

$$\phi_1(A,B,C),\phi_2(B,C,D)$$

$$\Phi = \{\phi_1(\boldsymbol{D}_1), \dots, \phi_k(\boldsymbol{D}_k)\}\$$

Induced Markov network H_{Φ} has an edge $X_i - X_j$ whenever

两个相互影响如此外到精神。

Factorization

P factorizes over H if

there exist
$$\underline{\Phi}=\{\phi_1(m{D}_1),\dots,\phi_k(m{D}_k)\}$$
 that

such that

$$P=P_{\Phi}$$
 The induced graph for Φ

$$\phi_1(A,B), \phi_2(B,C), \phi_3(C,D), \phi_4(A,D), \phi_5(B,D)$$

 Influence can flow along any trail, regardless of the form of the factors

$$A \rightarrow C$$
.

Daphne Koller

Active Trails

• A trail $X_1 - ... - X_n$ is active given Z if no X_i is in Z

Summary

- Gibbs distribution represents distribution as a product of factors
- Induced Markov network connects every pair of nodes that are in the same factor
- Markov network structure doesn't fully specify the factorization of P
- · But active trails depend only on graph structure