Minimum Spanning Trees

Shusen Wang

Trees vs Graphs

Trees are undirected graphs

Trees do not have cycles

Trees do not have cycles

Trees are connected graphs

Definition of Trees

Trees are connected acyclic undirected graphs.

Number of Vertices and Edges

• If a tree has n vertices, then it has n-1 edges.

Number of Vertices and Edges

- Let n be the number of vertices.
- Less than n-1 edges
 - → Disconnected.
- More than n-1 edges
 - There is a cycle

Number of Vertices and Edges

- Let n be the number of vertices.
- Less than n-1 edges
 - → Disconnected
- More than n-1 edges
 - → There is a cycle.

- Input: a connected undirected graph with n vertices.
- Find such a subgraph:
 - Keep all the n vertices.
 - Keep n-1 edges.
 - The subgraph is connected.
- The subgraph is a spanning tree.

Original Graph

Original Graph

Spanning trees are not unique

Spanning trees are not unique

Minimum Spanning Trees

Minimum spanning tree is a spanning tree that minimizes the sum of weights.

Sum of weights is 16.

A graph may not have spanning tree

Application: Muddy City Problem

The muddy roads form a graph.

- The city has muddy roads.
- The mayor wants to pave roads.
- Constraints:
 - 1. Enough roads must be paved so that everyone can travel from his house to anyone else's house.
 - 2. The paving should cost as little as possible.

Application: Muddy City Problem

Not a spanning tree.

Application: Muddy City Problem

Spanning tree.

Summary

Trees vs Graphs

Trees are undirected graphs. An undirected graph may not be a tree.

Properties of trees:

- There is exactly one path between any two vertices.
- Trees do not have cycles.
- If there are n vertices, then there must be n-1 edges.

Input: A connected undirected graph.

- Keep all the n vertices.
- Keep a subset of n-1 edges.
- The subgraph must be connected and acyclic.

Output: The obtained subgraph is called spanning tree.

Minimum spanning tree: The spanning tree with the minimum sum of weights.

Thank You!