Exercise: estimate prior probabilities from training data

Example	Positive mammogram	Family history	alcohol	Cancer
1	Yes	Yes	Yes	yes
2	Yes	Yes	No	Yes
3	No	Yes	yes	Yes
4	Yes	No	No	No
5	Yes	No	Yes	No
6	No	No	Yes	No
7	No	No	No	No

Given the above training data set:

Calculate prior probability for each class: $P(C) = N_c/N$

P(cancer=yes)=?

P(cancer=no)=?

Exercise: estimate conditional probabilities from training data

Then calculate the conditional probabilities for each attribute

```
P(A_i | C_k) = |A_{ik}| / N_c E.g.

P(pos\_mammo=yes | cancer=yes) = ?

P(pos\_mammo=no | cancer=yes) = ?

P(pos\_mammo=yes | cancer=no) = ?

P(pos\_mammo=no | cancer=no) = ?
```

Exercise: estimate conditional probabilities from training data

```
Repeat for the "family_history" attribute:

P(family_history=yes | cancer=yes) = ?

P(family_history=no | cancer=yes) = ?

P(family_history=yes | cancer=no) = ?

P(family_history=no | cancer=no) = ?
```

Exercise: estimate conditional probabilities from training data

```
Repeat for the "Alcohol" attribute:

P(Alcohol= yes | cancer=yes) = ?

P(Alcohol= no | cancer=yes) = ?

P(Alcohol= yes | cancer=no) = ?

P(Alcohol= no | cancer=no) = ?
```

Given a test case (pos_mammo=yes, fam_hist=yes, alcohol=yes), what is the prediction, cancer or no cancer?

P(cancer | pos_mammo=yes, fam_hist=yes, alcohol=yes) vs.

P(no cancer | pos mammo=yes, fam hist=yes, alcohol=yes)

```
• P(cancer | pos mammo=yes, fam hist=yes, alcohol=yes)
  = P (pos mammo=yes | cancer) *
    P (fam hist=yes | cancer) *
    P (alcohol=yes | cancer ) *
    P (cancer) /
    P (pos mammo=yes, fam hist=yes, alcohol=yes)
  = (2/3 * 3/3 * 2/3 * 3/7) /
      P (pos mammo=yes, fam hist=yes, alcohol=yes)
  = (12/63)/
      P (pos mammo=yes, fam hist=yes, alcohol=yes)
```

• Similarly, P(no cancer | pos mammo=yes, fam hist=yes, alcohol=yes) = P (pos mammo=yes | no cancer) * P (fam hist=yes | no cancer) * P (alcohol=yes | no cancer) * P (no cancer) / P (pos mammo=yes, fam hist=yes, alcohol=yes) = (2/4 * 0/4 * 2/4 * 4/7) /P (pos mammo=yes, fam hist=yes, alcohol=yes) = (0) /P (pos mammo=yes, fam hist=yes, alcohol=yes)

- Prediction: cancer!
 - -12/63:0
 - Choose the decision with max posterior probability