In the last lecture we introduced the harmonic solution and the scalar approximation.

In this lecture we will cover:

- ★ Phase, Phasors and Wavefronts
- Plane Waves
- ★ Spatial Frequency

Phase, Phasors and Phase Fronts

RECAP: In the SCALAR APPROXIMATION the HARMONIC SOLUTION is:

$$E = E_0 e^{i(K_0 \Gamma - Wt + Q_0)}$$

Spatial variation of phase

12 December 2019

12.52

In optics we often fix t (or average over t) but want to know how phase varies with r

e.g. Let
$$R = \{R_{3C}, O, O, S\}$$
 then shetch at $t=0$ becomes

	Phase and Complex Notation Optics 12 1 1-11
•	Make a two-component vector from amplitude Eo
	phase P
•	Can be represented using a two-component munber; complex
	Nunber
	SEE COMPLEX NUMBERS FN OPTICS notes in DUO"
	MATHS NOTES & BOOKS
	PROBLEM SHEET WP) & WORKSHOP
	Complex notation is a poweful mathematical shorthand

Phase in Complex Notation: Phasors

12 December 2019 13:17

Let's go:
$$\cos(z) = \frac{1}{2}$$

EULER'S FURMULA

$$\therefore \cos(\phi) = \frac{1}{2}(e^{i\phi} + e^{-i\phi}) \quad \phi = \underline{K} \cdot \underline{r} - \omega t + \phi_0$$

then
$$E = E_0 \cos(\phi) = E_+ + E_-$$

where
$$E_{+}=3E_{0}e^{i\phi}E_{-}=3E_{0}e^{-i\phi}$$

12 December		13:21								
From	M	non	90	we	wel	_ a	mathe	matic	al Short	ihund:
	E		E+		· · e	w	wite	E	= E ₀ e	i Ø
								E:	= Eocil	K.r-wt-
	wh	at c	bou	t e	he	5	?			
	λe	Sim	ply	inc	lud	e A	in a	re-	defined	Eo
	I,	tensi	ly		[=	12 C	E0 \E	2	modulus	squared plex field

Why have you done that?

12 December 2019

The reason we do this is to make the maths easier

(no really!)

Phase shifts become simple multiplications

example: consider & = EKoc, 0,05

at 6=0 and x=0, field is

E = Eo ei Øo

what is field $Q \propto = \propto ?$ $E' = E e^{i K_{5}(X)} = E_{0} e^{i (K_{5}(X) + \phi_{0})}$

in old notation we could not

easily write E in terms of

E as we have to charge agument

i.e ws (0.) -> ws (kxx-00)

4 Im(E)

Re(E)

see my extra notes on Duo

Wavefronts, plane and spherical waves

F2F 2.2 \$ 2.3

12 December 2019 14

A wavefront is a contour of constant phase

 $\phi = k.r - wt + \beta_0 = constant$

Example: Plane Waves

e.g. let
$$k = 2 K_{x}, 0, 03$$

$$E = E_0 e^{i(K_{xx} - wt)}$$

\$\phi\$ is independent of yell Z

.: wave pronts are planes in \(\frac{1}{2} \, \fra

yor 4 Z

This is an example of a SCALAR PLANE WAVE

Scalar Plane Waves

12 December 2019

14.32

General John: E= E0 C (K30 X + Kyy + KzZ)

PROPERTIES:

Aside: Spatial Frequency

Definition: Spatial frequency is the number of waves per unit length along a given direction

Spatial frequency

12 December 2019

F2F 1.9

Definition: Spatial frequency is the number of waves per unit length along a given direction

Example: Plant wave propagates at angle & wit 2 axis in x2 plane Along Z Spacing is & Coso Along or spacing is Sint SPATIFAL FREQUENCY UZ = COSO aliny Z along of Usc = Sin

LENGTH-1 DIMENSION OF U is

Spatial frequency

20 January 2020 16:57

Spatial pregnercy along a direction is related to the corresponding component of K