Lecture 20: Single Proportion Test

Chapter 6.1

1/10

Question for Today

According to a poll done by the New York Times/CBS News in June 2012, only about 44% of the American public approved of the Supreme Court's performance.

The sample proportion $\hat{p} = 0.44$ is point estimate of p: the true proportion of the American public who approves.

What are some next things to ask?

- ▶ What was n?
- ▶ What is the SE of $\hat{p} = 44\% = 0.44$?
- ▶ What is the sampling distribution of \hat{p} ?

Question for Today	
	3 / 10
Conditions for Sampling Dist'n of $\hat{\rho}$ Being Nearly Norm:	al.

What p to use?

Back to Poll

According to a poll done by the New York Times/CBS News in June 2012, only about 44% of the American public approved of the Supreme Court's performance.

The sample proportion $\hat{p} = 0.44$ is point estimate of p: the true proportion of the American public who approves.

Confidence Intervals

7/10

Hypothesis Tests

Thomas Carcetti is running for mayor of Baltimore. His campaign manager claims he has more than 50% support of the electorate.

The Baltimore Sun collects a random sample of n=500 likely voters and finds that 52% support him. Does this provide convincing evidence for the claim of Carcetti's manager at the 5% significance level?

9/10

Next Time

Same as with the jump from

$$\mu$$
 to $\mu_1 - \mu_2$

i.e. from one to two-sample tests for means, we make the jump from $% \left(1\right) =\left(1\right) \left(1\right)$

$$p$$
 to $p_1 - p_2$

i.e. from one to two-sample tests for proportions.