

Ayudantía 11

Reinforcement Learning

Daniel Florea

17 de noviembre 2023

¿En qué consiste?

"Consiste en el desarrollo de una política de comportamiento para un agente, que le permite el mapeo desde situaciones hacia acciones para maximizar una señal de recompensa."

Se centra en la interacción de un agente y su entorno

El agente ejecuta acciones dentro de un determinado entorno y este le responde a las acciones mediante una nuevo estado y una recompensa asociada a la calidad de esa acción.

https://miro.medium.com/v2/1*/cuAqiQ9/x1H_sBleAVVZg.png

Markov Decision Process

Trabajaremos los problemas tratandolos como un Markov Decision Process.

Un proceso de decisión de Markov supone la hipótesis Markoviana, la cual afirma que un estado siguiente del entorno solamente depende del estado anterior en el tiempo y la acción tomada.

Un MDP está compuesto por:

Un set finito de estados : s₁, ..., s_N

2. Un set de acciones : a_1 , ..., a_A

3. Un set de recompensas : $r_{1,1}$, ..., $r_{1,A}$, ..., $r_{N,1}$, ..., $r_{N,A}$

4. Un set de probabilidades de transición entre estados:

$$P_{ij}^k = P(s_j|s_i, a_k)$$

Markov Decision Process

SI es un MDP

Sacar una carta de un mazo durante una partida de blackjack

- La probabilidad de sacar una carta depende de todas las cartas extraídas anteriormente
- Las cartas se encuentran dadas vueltas, son todas visibles en un estado s₊

NO es un MDP

Sacar una carta de un mazo durante una partida de poker

- La probabilidad de sacar una carta depende de todas las cartas extraídas anteriormente
- Las cartas extraídas anteriormente no son visibles en un estado s₊

Política de comportamiento (π)

 El objetivo del agente es encontrar una política de comportamiento que le indique qué acción tomar en un instante determinado dado un estado del mundo s,

$$\pi(s_t) = a_t$$

• Diremos que una política π es óptima (π *) cuando maximiza la recompensa del agente a lo largo del tiempo, la llamada *value function*

$$V^*(s) = \max_{\pi} E\{\sum_{t=0}^{\infty} \gamma^t r_t^{\pi}\}$$

Value function

• La *value function* consiste en una estimación del retorno esperado que un agente puede obtener desde un cierto estado si sigue una política π

Value function

Una forma de reescribir la ecuación anterior a nivel de acción es la siguiente:

$$V^{*}(s) = \max_{a} \{R(s, a) + \gamma \sum_{s' \in S} P(s, a, s') V^{*}(s')\}$$

Recompensa del estado actual Recompensa futura esperada

Con P(s,a,s') la probabilidad de pasar desde un estado s a un estado s' al tomar la acción a

Esta es conocida como la Ecuación de Bellman

$$s_0 \stackrel{a_0}{\longrightarrow} s_1 \stackrel{a_1}{\longrightarrow} s_2 \stackrel{a_2}{\longrightarrow} \dots$$

Goal: Learn to choose actions that maximize

$$r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$
, where $0 \le \gamma < 1$

Desarrollo de una política π

 Una política óptima sería aquella que escoge siempre las acciones que maximizan el retorno esperado desde un cierto estado.

En otras palabras, escoge la siguiente acción mediante:

$$V^*(s) = \arg\max_{a} \{R(s, a) + \gamma \sum_{s' \in S} P(s, a, s') V^*(s')\}$$

¿Cómo estimamos el retorno esperado sin recorrer todo el problema recursivamente?

Buscamos la función de valor óptima resolviendo la ecuación de Bellman


```
Initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') end loop \hat{V}(s) := \max_{a} Q(s,a) end loop end loop return \{\hat{V}(s)\}
```



```
Initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') end loop \hat{V}(s) := \max_{a} Q(s,a) end loop end loop return \{\hat{V}(s)\}
```

(2,2)	(3,2)
(2,3)	
(2,4)	


```
Initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') end loop \hat{V}(s) := \max_{a} Q(s,a) end loop end loop return \{\hat{V}(s)\}
```


$$\gamma = 0.9$$


```
Initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') end loop \hat{V}(s) := \max_a Q(s,a) end loop end loop return \{\hat{V}(s)\}
```


$$\gamma = 0.9$$


```
Initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') end loop \hat{V}(s) := \max_{a} Q(s,a) end loop end loop return \{\hat{V}(s)\}
```

0 (2,2)	(3,2) O
0 (2,3)	
0 (2,4)	

$$\gamma = 0.9$$


```
Initialize V(s) arbitrarily loop until policy good enough \begin{array}{c} \text{loop for } s \in S \\ \text{loop for } a \in A \\ Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') \\ \text{end loop} \\ \hat{V}(s) := \max_{a} Q(s,a) \\ \text{end loop} \\ \text{end loop} \\ \text{end loop} \\ \text{return} \{\hat{V}(s)\} \end{array}
```

0 (2,2)	(3,2) O
0 (2,3)	
0	

$$\gamma = 0.9$$

$$\gamma = 0.9$$


```
Initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') end loop \hat{V}(s) := \max_{a} Q(s,a) end loop end loop return \{\hat{V}(s)\}
```


$$\gamma = 0.9$$


```
Initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s')
```

$$Q([2,2],r) = R([2,2],r) + \gamma \cdot T([2,2],r,[3,2]) \cdot V_0([3,2])$$

$$\gamma = 0.9$$


```
Initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s')
```

$$Q([2,2],r) = R([2,2],r) + \gamma \cdot T([2,2],r,[3,2]) \cdot V_0([3,2])$$

$$= 1 + 0.9 \cdot 0.25 \cdot 0$$

$$= 1$$


```
Initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') end loop
```

$$Q([2, 2], r) = 1$$

 $Q([2, 2], l) = 0$
 $Q([2, 2], u) = 0$
 $Q([2, 2], d) = 0$


```
Initialize V(s) arbitrarily loop until policy good enough \begin{array}{c} \text{loop for } s \in S \\ \text{loop for } a \in A \\ Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') \\ \text{end loop} \\ \hat{V}(s) := \max_{a} Q(s,a) \end{array}
```

1 (2,2)	0 (3,2)
0 (2,3)	
0 (2.4)	

$$\gamma = 0.9$$


```
Initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') end loop \hat{V}(s) := \max_{a} Q(s,a)
```

$$Q([3, 2], r) = 1$$

 $Q([3, 2], l) = 0$
 $Q([3, 2], u) = 1$
 $Q([3, 2], d) = 1$


```
Initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') end loop \hat{V}(s) := \max_{a} Q(s,a)
```



```
Initialize V(s) arbitrarily loop until policy good enough \begin{array}{c} \text{loop for } s \in S \\ \text{loop for } a \in A \\ Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') \\ \text{end loop} \\ \hat{V}(s) := \max_{a} Q(s,a) \end{array}
```

1 (2,2)	(3,2) 1
0 (2,3)	
0 (2,4)	

$$\gamma = 0.9$$


```
Initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') end loop \hat{V}(s) := \max_{a} Q(s,a)
```

$$Q([2,3],r) = 0$$

 $Q([2,3],l) = 0$
 $Q([2,3],u) = 0$
 $Q([2,3],d) = 0$


```
Initialize V(s) arbitrarily loop until policy good enough \begin{array}{c} \text{loop for } s \in S \\ \text{loop for } a \in A \\ Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') \\ \text{end loop} \\ \hat{V}(s) := \max_{a} Q(s,a) \end{array}
```

1 (2,2)	(3,2) 1
0 (2,3)	
0 (2,4)	

$$\gamma = 0.9$$


```
Initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') end loop \hat{V}(s) := \max_{a} Q(s,a)
```

$$Q([2,4],r) = 0$$

 $Q([2,4],l) = 0$
 $Q([2,4],u) = 0$
 $Q([2,4],d) = 0$


```
Initialize V(s) arbitrarily loop until policy good enough loop for s \in S loop for a \in A Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') end loop \hat{V}(s) := \max_{a} Q(s,a) end loop end loop return \{\hat{V}(s)\}
```



```
Initialize V(s) arbitrarily loop until policy good enough \frac{\text{loop for } s \in S}{\text{loop for } a \in A} \\ Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \hat{V}(s') \\ \text{end loop} \\ \hat{V}(s) := \max_{a} Q(s,a) \\ \text{end loop} \\ \text{end loop} \\ \text{end loop} \\ \text{return} \{\hat{V}(s)\}
```

1 (2,2)	(3,2) 1
0 (2,3)	
0	

$$\gamma = 0.9$$

$$(\dots)$$

¿ Qué relación existirá entre a, b, c y d?

¿ Qué relación existirá entre a, b, c y d?

Para este caso en particular

Value iteration

En resumen:

- Value iteration busca actualizar la *value function* de cada estado, **utilizando la aproximación del instante de tiempo anterior**.
- La acción a ser ejecutada es definida como aquella que me otorgará el mayor retorno esperado en el futuro, como vimos anteriormente:

$$arg \max_{a} \{R(s, a) + \gamma \sum_{s' \in S} P(s, a, s') V^{*}(s')\}$$

- La ejecución del algoritmo se acaba cuando los valores de cada estado convergen en un valor fijo.
- El algoritmo nos garantiza **optimalidad** en la política encontrada :)

Actualizamos la política de comportamiento en cada iteración

(2,2)	(3,2)
(2,3)	
(2,4)	


```
Choose an arbitray policy \pi'
Loop \pi := \pi'
Compute value function of policy \pi:
\# solve \ linear \ equations
V_{\pi}(s) := R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_{\pi}(s')
Improve the policy at each state
\pi'(s) := \arg\max_{a} \left( R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V_{\pi}(s') \right)
until \pi = \pi'
```

(2,2)	(3,2)	
(2,3)	γ =	= 0.9
(2,4)	• $\pi(2,2)$	0.3 noise $0.3 roise$ $0.3 Right$ $0.3 Right$
		= Right $= Right$


```
Choose an arbitray policy \pi'
Loop \pi := \pi'
Compute value function of policy \pi:
\# solve \ linear \ equations
V_{\pi}(s) := R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_{\pi}(s')
Improve the policy at each state \pi'(s) := \arg\max_{a} \left( R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V_{\pi}(s') \right)
until \pi = \pi'
```

(2,2)	(3,2)
(2,3)	$\gamma = 0.9$
(2,4)	Policy (0.3 noise): $\pi(2,2) = \text{Right}$
	• $\pi(2,3) = \text{Right}$ • $\pi(2,4) = \text{Right}$

(2,2)	(3,2)	
(2,3)	γ =	= 0.9
(2,4)	• $\pi(2,2)$	0.3 noise $0.3 roise$ $0.3 Right$ $0.3 Right$
		= Right $= Right$

(2,2)	(3,2)	
(2,3)	γ =	= 0.9
(2,4)	$\bullet \ \pi(2,2)$	0.3 noise): $0 = Right$ $0 = Right$
	• $\pi(2.4)$	= Right


```
Choose an arbitray policy \pi'
Loop \pi := \pi'
Compute value function of policy \pi:
\# solve \ linear \ equations
V_{\pi}(s) := R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_{\pi}(s')
Improve the policy at each state \pi'(s) := \arg\max_{a} \left( R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V_{\pi}(s') \right)
until \pi = \pi'
```

(2,2)	(3,2)
(2,3)	
	$\gamma = 0.9$
(2,4)	Policy (0.3 noise):
	• $\pi(2,2) = \text{Right}$
	• $\pi(2,3) = \text{Right}$
	• $\pi(2,4) = \text{Right}$

$$V_{\pi}(s) := R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_{\pi}(s')$$

$$V([2,2]) = R([2,2],\pi) + \gamma($$

$$T([2,2],\pi,[3,2]) \cdot V([3,2]) +$$

$$T([2,2],\pi,[2,2]) \cdot V([2,2]) +$$

$$T([2,2],\pi,[2,3]) \cdot V([2,3])$$

(2,2)	(3,2)

(2,4)

 $\gamma = 0.9$

Policy (0.3 noise):

• $\pi(2,2) = \text{Right}$

• $\pi(2,3) = \text{Right}$

• $\pi(2,4) = \text{Right}$

$$V_{\pi}(s) := R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_{\pi}(s')$$

$$\begin{split} V([2,2]) &= R([2,2],\pi) + \gamma(\\ &\quad T([2,2],\pi,[3,2]) \cdot V([3,2]) + \\ &\quad T([2,2],\pi,[2,2]) \cdot V([2,2]) + \\ &\quad T([2,2],\pi,[2,3]) \cdot V([2,3]) \\) \end{split}$$

$$V([2,2]) = 1 + \gamma($$

 $0,7 \cdot V([3,2]) +$
 $0,2 \cdot V([2,2]) +$
 $0,1 \cdot V([2,3])$
)

(2,2)	(3,2)
(2.2)	

 $\gamma = 0.9$

(2,4)

Policy (0.3 noise):

- $\pi(2,2) = \text{Right}$
- $\pi(2,3) = \text{Right}$
- $\pi(2,4) = \text{Right}$
- $\pi(3,2) = \text{Stay}$

$$V_{\pi}(s) := R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_{\pi}(s')$$

$$V([2,2]) = 1 + \gamma (\qquad V([3,2]) = 1 + \gamma (\\ 0,7 \cdot V([3,2]) + \qquad 1 \cdot ([3,2]) \\ 0,2 \cdot V([2,2]) + \qquad) \\ 0,1 \cdot V([2,3]) \\)$$

$$V([2,3]) = 0 + \gamma (\qquad V([2,4]) = 0 + \gamma (\\ 0,8 \cdot V([2,3]) + \qquad 0,1 \cdot V([2,2]) + \\ 0,1 \cdot V([2,4]) \\)$$

(2,2)	(3,2)	
(2,3)	γ =	= 0.9
(2,4)		0.3 noise:
	• $\pi(2.3)$	= Right

• $\pi(2,4) = \text{Right}$

$$V_{\pi}(s) := R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_{\pi}(s')$$

$V_{\pi}(s) := R(s, \pi(s)) + \gamma \sum T(s, \pi(s), s') V_{\pi}(s')$
$s' {\in} S$

$$V([2,2]) = 9,289$$

 $V([2,3]) = 3,522$
 $V([2,4]) = 1,668$
 $V([3,2]) = 10$

(2,2) 9.289	(_{3,2}) 10	
(2,3)	γ =	= 0.9
(2,4) 1 .668	• $\pi(2,2)$	0.3 noise): = Right = Right
		= Right $= Right$

9.289	(3,2) 1 0	
(2,3)	$\gamma =$	= 0.9
(2,4) 1 .668	• $\pi(2,2)$	0.3 noise): = Right = Right
		= Right

(2,2) 9.289	(3,2) 10	
(2,3) 3.522	$\gamma =$	= 0.9
(2,4) 1 .668	• $\pi(2,2)$	0.3 noise $= Right$ $= Right$
	• $\pi(2,4)$	= Right = Stay

$$rg \max \left(R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V_{\pi}(s') \right)$$

$$\underset{a}{\operatorname{arg max}} \left(R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V_{\pi}(s') \right)$$

$$\begin{aligned} right &\to 1 + 0.9 \cdot (0.7 \cdot 10 + 0.2 \cdot 9.289 + 0.1 \cdot 3.522) = 9.289 \\ left &\to 0 + 0.9 \cdot (0.8 \cdot 9.289 + 0.1 \cdot 10 + 0.1 \cdot 3.522) = 7.90506 \\ up &\to 0 + 0.9 \cdot (0.8 \cdot 9.289 + 0.1 \cdot 10 + 0.1 \cdot 3.522) = 7.90506 \\ down &\to 0 + 0.9 \cdot (0.7 \cdot 3.522 + 0.2 \cdot 9.289 + 0.1 \cdot 10) = 4.79088 \end{aligned}$$

$$\underset{a}{\operatorname{arg max}} \left(R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V_{\pi}(s') \right)$$

$$right \rightarrow 0 + 0.9 \cdot (0.8 \cdot 3.522 + 0.1 \cdot 9.289 + 0.1 \cdot 1.668) = 3.52197$$

$$left \rightarrow 0 + 0.9 \cdot (0.8 \cdot 3.522 + 0.1 \cdot 9.289 + 0.1 \cdot 1.668) = 3.52197$$

$$up \rightarrow 1 + 0.9 \cdot (0.7 \cdot 9.289 + 0.2 \cdot 3.522 + 0.1 \cdot 1.668) = 7.63615$$

$$down \rightarrow 0 + 0.9 \cdot (0.7 \cdot 1.668 + 0.2 \cdot 3.522 + 0.1 \cdot 9.289) = 2.52081$$

1.668

1 0110) (010 110100)

- $\pi(2,2) = \text{Right}$
- $\pi(2,3) = \text{Right}$
- $\pi(2,4) = \text{Right}$
- $\pi(3,2) = \text{Stay}$

$$\underset{a}{\operatorname{arg\,max}} \left(R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V_{\pi}(s') \right)$$

$$right \rightarrow 0 + 0.9 \cdot (0.9 \cdot 1,668 + 0.1 \cdot 3,522) = 1,66806$$

$$left \rightarrow 0 + 0.9 \cdot (0.9 \cdot 1,668 + 0.1 \cdot 3,522) = 1,66806$$

$$up \rightarrow 1 + 0.9 \cdot (0.7 \cdot 3,522 + 0.3 \cdot 1,668) = 3,66922$$

$$down \rightarrow 0 + 0.9 \cdot (0.9 \cdot 1,668 + 0.1 \cdot 3,522) = 1,66806$$

- $\pi(2,3) = \text{Right}$
- $\pi(2,4) = \text{Right}$
- $\pi(3,2) = \text{Stay}$

$$t = 1$$

Policy (0.3 noise):

•
$$\pi(2,2) = \text{Right}$$

•
$$\pi(2,3) = \text{Up}$$

•
$$\pi(2,4) = Up$$

$$\pi(3,2) = \text{Stay}$$

•
$$\pi(3,2) = \text{Stay}$$


```
Choose an arbitray policy \pi'
Loop
            \pi := \pi'
            Compute value function of policy \pi:
                     #solve linear equations
                     V_{\pi}(s) := R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_{\pi}(s')
            Improve the policy at each state
                     \pi'(s) := \arg\max\left(R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V_{\pi}(s')\right)
until \pi = \pi'
```


•
$$\pi(3,2) = \text{Stay}$$

$$\left(\ldots\right)$$

En resumen:

- Policy iteration busca actualizar la *política de comportamiento* de cada estado, **utilizando la aproximación del instante de tiempo anterior**.
- La acción a ser ejecutada es definida como aquella que me otorgará el mayor retorno esperado en el futuro, como vimos anteriormente:

$$\arg\max_{a}(R(s,\pi(s)) + \gamma \sum_{s' \in S} T(s,\pi(s),s')V_{\pi}(s'))$$

- La ejecución del algoritmo se acaba cuando los valores de cada estado convergen en un valor fijo y la política nueva es idéntica a la anterior.
- El algoritmo nos garantiza **optimalidad** en la política encontrada :)

Estimamos la calidad de cada par estado-acción en base a experiencia


```
Initialize Q(s,a) arbitrarily

Repeat (for each episode):

Initialize s

Repeat (for each step of episode):

Choose a from s using policy derived from Q

Take action a, observe r, s'

Update

Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]

s \leftarrow s';

Until s is terminal
```


	Izquierda	Derecha
Q-Value	0	0

	Izquierda	Derecha
Q-Value	-5	0

	Izquierda	Derecha
Q-Value	-5	0

	Izquierda	Derecha
Q-Value	-5	+5

	Izquierda	Derecha
Q-Value	-5	+5

Los principales componentes de Q-Learning son:

o Una **tabla de estados** (Q-Table) **Q**: En ella almacenamos la calidad estimada de cada par estado-acción

	Izquierda	Derecha
Q-Value	0	0

Los principales componentes de Q-Learning son:

Una **tabla de estados** (Q-Table) **Q**: En ella almacenamos la calidad estimada de cada par estado-acción

	Izquierda	Derecha
Q-Value	0	0

o Una **tasa de exploración ε**: Qué tanto queremos que el agente explore/explote la política actual

Con probabilidad € elegimos una acción random, si no, elegimos la que tenga mejor calidad asociada en Q para el estado actual s,

Q-Learning

Los principales componentes de Q-Learning son:

• Una **tabla de estados** (Q-Table) **Q**: En ella almacenamos la calidad estimada de cada par estado-acción

	Izquierda	Derecha
Q-Value	0	0

o Una **tasa de exploración ε**: Qué tanto queremos que el agente explore/explote la política actual

Con probabilidad ϵ elegimos una acción random, si no, elegimos la que tenga mejor calidad asociada en Q para el estado actual s_t

o Una **tasa de aprendizaje α**: Qué tanto consideramos nueva información a nuestro conocimiento

$$Q[x_t, a_t] = (1 - \alpha) \cdot Q[x_t, a_t] + \alpha \cdot (R_t + \gamma \cdot argmaxQ[x_{i+1}])$$

Q-Learning

Los principales componentes de Q-Learning son:

Una **tabla de estados** (Q-Table) **Q**: En ella almacenamos la calidad estimada de cada par estado-acción

	Izquierda	Derecha
Q-Value	0	0

o Una **tasa de exploración ε**: Qué tanto queremos que el agente explore/explote la política actual

Con probabilidad ϵ elegimos una acción random, si no, elegimos la que tenga mejor calidad asociada en Q para el estado actual s_t

o Una **tasa de aprendizaje α**: Qué tanto consideramos nueva información a nuestro conocimiento

$$Q[x_t, a_t] = (1 - \alpha) \cdot Q[x_t, a_t] + \alpha \cdot (R_t + \gamma \cdot argmaxQ[x_{i+1}])$$

• Un conjunto de **estados del entorno S** = $[s_1, s_2, ..., s_n]$

Q-Learning

Los principales componentes de Q-Learning son:

• Una **tabla de estados** (Q-Table) **Q**: En ella almacenamos la calidad estimada de cada par estado-acción

	Izquierda	Derecha
Q-Value	0	0

O Una **tasa de exploración ε**: Qué tanto queremos que el agente explore/explote la política actual

Con probabilidad ϵ elegimos una acción random, si no, elegimos la que tenga mejor calidad asociada en Q para el estado actual s_t

o Una **tasa de aprendizaje α**: Qué tanto consideramos nueva información a nuestro conocimiento

$$Q[x_t, a_t] = (1 - \alpha) \cdot Q[x_t, a_t] + \alpha \cdot (R_t + \gamma \cdot argmaxQ[x_{i+1}])$$

- Un conjunto de **estados del entorno S** = $[s_1, s_2, ..., s_n]$
- Un conjunto de **acciones** entre cuales elegir $\mathbf{A} = [a_1, a_2, ..., a_k]$

Q-Learning: Un ejemplo práctico

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$
 $\gamma = 0.9$

El juego acaba si el lagarto cae en la casilla del pájaro o bien come los 5 grillos.

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$

$$\gamma = 0.9$$

S _t	Arriba	Abajo	Izq.	Der.
(0,0)	-1	0	-1	0
(0,1)	-1	0	0	0
(0,2)	-1	0	0	-1
(1,0)	0	0	-1	0
(1,1)	0	0	0	0
(1,2)	0	0	0	-1
(2,0)	0	-1	-1	0
(2,1)	0	-1	0	0
(2,2)	0	-1	0	-1

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$
 $\gamma = 0.9$

= 0.4

0.3 < 0.4, por lo que explotamos

Buscamos el movimiento de mejor valor Q:

S _t	Arriba	Abajo	Izq.	Der.
(2,0)	0	-1	-1	0

Como son idénticos, tomamos uno aleatorio

$$A_0$$
 = Derecha

$$R_1 = -1$$

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$

$$\alpha = 0.5$$

$$\gamma = 0.9$$

$$Q[x_t, a_t] = (1 - \alpha) \cdot Q[x_t, a_t] + \alpha \cdot (R_t + \gamma \cdot argmaxQ[x_{i+1}])$$

Q[(2,0), der] = $(1 - 0.5) \cdot Q[(2,0), der] + 0.5 \cdot (-1 + 0.9 \cdot argmax Q[(2,1), :])$

Q[(2,0), der] = $0.5 \cdot 0 + 0.5 \cdot (-1 + 0.9 \cdot 0)$

 $Q[(2,0), der] = 0.5 \cdot -1$

Q[(2,0), der] = -0.5

Q-Table anterior

S _t				
(2,0)	0	-1	-1	0
(2,1)	0	-1	0	0

(2,0)	0	-1	-1	-0.5
(2,1)	0	-1	0	0

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$
 $\gamma = 0.9$

S _t	Arriba	Abajo	Izq.	Der.
(0,0)	-1	0	-1	0
(0,1)	-1	0	0	0
(0,2)	-1	0	0	-1
(1,0)	0	0	-1	0
(1,1)	0	0	0	0
(1,2)	0	0	0	-1
(2,0)	0	-1	-1	-0.5
(2,1)	0	-1	0	0
(2,2)	0	-1	0	-1

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$
 $\gamma = 0.9$

= 0.7

0.3 < 0.7, por lo que explotamos

Buscamos el movimiento de mejor valor Q:

S _t	Arriba	Abajo	Izq.	Der.
(2,1)	0	-1	0	0

Como son idénticos, tomamos uno aleatorio

$$R_2 = -10$$

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$
 $\gamma = 0.9$

$$Q[x_t, a_t] = (1 - \alpha) \cdot Q[x_t, a_t] + \alpha \cdot (R_t + \gamma \cdot argmaxQ[x_{i+1}])$$

Q[(2,1), arr] = $(1 - 0.5) \cdot Q[(2,1), arr] + 0.5 \cdot (-10 + 0.9) \cdot argmax Q[(1,1), :])$

 $Q[(2,1), arr] = 0.5 \cdot 0 + 0.5 \cdot (-10 + 0.9 \cdot 0)$

 $Q[(2,1), arr] = 0.5 \cdot -10$

Q[(2,1), arr] = -5

Q-Table anterior

S _t	1	1	←	\rightarrow
(1,1)	0	0	0	0
(2,1)	0	-1	0	0

(1,1)	0	0	0	0
(2,1)	-5	-1	0	0

Q-Learning:

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$

 $\gamma = 0.9$

S _t	Arriba	Abajo	Izq.	Der.
(0,0)	-1	0	-1	0
(0,1)	-1	0	0	0
(0,2)	-1	0	0	-1
(1,0)	0	0	-1	0
(1,1)	0	0	0	0
(1,2)	0	0	0	-1
(2,0)	0	-1	-1	-0.5
(2,1)	-5	-1	0	0
(2,2)	0	-1	0	-1

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$

**	

S _t	Arriba	Abajo	lzq.	Der.
(0,0)	-1	0	-1	0
(0,1)	-1	0	0	0
(0,2)	-1	0	0	-1
(1,0)	0	0	-1	0
(1,1)	0	0	0	0
(1,2)	0	0	0	-1
(2,0)	0	-1	-1	-0.5
(2,1)	-5	-1	0	0
(2,2)	0	-1	0	-1

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$

$$\alpha = 0.5$$

Con probabilidad ϵ = 0.3 vamos a elegir un movimiento aleatorio.

= 0.9

0.3 < 0.9, por lo que explotamos

Buscamos el movimiento de mejor valor Q:

S _t	Arriba	Abajo	Izq.	Der.
(2,0)	0	-1	-1	-0.5

En este caso, corresponde a arriba (no podemos ir abajo o izq)

$$A_0 = Arriba$$

$$R_1 = -1$$

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$

$$\alpha = 0.5$$

$$\gamma = 0.9$$

$$Q[x_t, a_t] = (1 - \alpha) \cdot Q[x_t, a_t] + \alpha \cdot (R_t + \gamma \cdot argmaxQ[x_{i+1}])$$

Q[(2,0), arr] = $(1 - 0.5) \cdot Q[(2,0), arr] + 0.5 \cdot (-1 + 0.9) \cdot argmax Q[(1,0), :]$

Q[(2,0), arr] = $0.5 \cdot 0 + 0.5 \cdot (-1 + 0.9 \cdot 0)$

 $Q[(2,0), arr] = 0.5 \cdot -1$

Q[(2,0), arr] = -0.5

Q-Table anterior

S _t	1	ļ	←	\rightarrow
(2,0)	0	-1	-1	-0.5
(1,0)	0	-1	0	0

(2,0)	-0.5	-1	-1	-0.5
(1,0)	0	-1	0	0

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$
 $\gamma = 0.9$

= 0.2

0.3 > 0.2, por lo que exploramos

Elegimos una acción aleatoria (y válida)

$$A_1 = Arriba$$

$$R_2 = 1$$

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$

$$\alpha = 0.5$$

$$\gamma = 0.9$$

$$Q[x_t, a_t] = (1 - \alpha) \cdot Q[x_t, a_t] + \alpha \cdot (R_t + \gamma \cdot argmaxQ[x_{i+1}])$$

Q[(1,0), arr] = $(1 - 0.5) \cdot Q[(1,0), arr] + 0.5 \cdot (1 + 0.9 \cdot argmax Q[(0,0), :])$

Q[(1,0), arr] = $0.5 \cdot 0 + 0.5 \cdot (1 + 0.9 \cdot 0)$

 $Q[(1,0), arr] = 0.5 \cdot 1$

Q[(1,0), arr] = 0.5

Q-Table anterior

S _t				
(0,0)	-1	0	-1	0
(1,0)	0	0	-1	0

(0,0)	-1	0	-1	0
(1,0)	0.5	0	-1	0

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$
 $\gamma = 0.9$

= 0.5

0.3 < 0.5, por lo que explotamos

Buscamos el movimiento de mejor valor Q:

S _t	Arriba	Abajo	Izq.	Der.
(0,0)	-1	0	-1	0

Como son idénticos, tomamos uno aleatorio

$$A_2$$
 = Abajo

$$R_3 = -1$$

Estado Recompensa 1 Grillo +1 5 Grillos +10 Pájaro -10 Vacío -1

$$\epsilon = 0.3$$

$$\alpha = 0.5$$

$$\gamma = 0.9$$

Actualizamos Q

$$Q[x_t, a_t] = (1 - \alpha) \cdot Q[x_t, a_t] + \alpha \cdot (R_t + \gamma \cdot argmaxQ[x_{i+1}])$$

Q[(0,0), ab] = $(1 - 0.5) \cdot Q[(0,0), ab] + 0.5 \cdot (-1 + 0.9 \cdot argmax Q[(1,0), :])$

 $Q[(0,0), ab] = 0.5 \cdot 0 + 0.5 \cdot (-1 + 0.9 \cdot 0.5)$

 $Q[(0,0), ab] = 0.5 \cdot (-1 + 0.45)$

Q[(0,0), ab] = -0.275

Q-Table anterior

S _t				
(0,0)	-1	0	-1	0
(1,0)	0.5	0	-1	0

(0,0)	-1	-0.275	-1	0
(1,0)	0.5	0	-1	0

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$
 $\gamma = 0.9$

= 0.1

0.3 > 0.1, por lo que exploramos

Elegimos una acción aleatoria (y válida)

$$A_3$$
 = Derecha

$$R_4 = -10$$

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$
 $\gamma = 0.9$

$$Q[x_t, a_t] = (1 - \alpha) \cdot Q[x_t, a_t] + \alpha \cdot (R_t + \gamma \cdot argmaxQ[x_{i+1}])$$

Q[(1,0), der] = $(1 - 0.5) \cdot Q[(1,0), der] + 0.5 \cdot (-10 + 0.9 \cdot argmax Q[(1,1), :])$

 $Q[(1,0), der] = 0.5 \cdot 0 + 0.5 \cdot (-10 + 0.9 \cdot 0)$

 $Q[(1,0), der] = 0.5 \cdot -10$

Q[(1,0), der] = -5

Q-Table anterior

S _t	1	↓	←	\rightarrow
(1,0)	0.5	0	-1	0
(1,1)	0	0	0	0

(1,0)	0.5	0	-1	-5
(1,1)	0	0	0	0

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$

$$\alpha = 0.5$$

S _t	Arriba	Abajo	Izq.	Der.
(0,0)	-1	-0.275	-1	0
(0,1)	-1	0	0	0
(0,2)	-1	0	0	-1
(1,0)	0.5	0	-1	-5
(1,1)	0	0	0	0
(1,2)	0	0	0	-1
(2,0)	-0.5	-1	-1	-0.5
(2,1)	-5	-1	0	0
(2,2)	0	-1	0	-1

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$

$$\alpha = 0.5$$

Con probabilidad ϵ = 0.3 vamos a elegir un movimiento aleatorio.

= 0.7

0.3 < 0.7, por lo que explotamos

Buscamos el movimiento de mejor valor Q:

S _t	Arriba	Abajo	Izq.	Der.
(2,0)	-0.5	-1	-1	-0.5

Como son idénticos, tomamos una aleatoria

$$A_0 = Derecha$$

$$R_1 = -1$$

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$

$$\alpha = 0.5$$

Actualizamos Q

$$Q[x_t, a_t] = (1 - \alpha) \cdot Q[x_t, a_t] + \alpha \cdot (R_t + \gamma \cdot argmaxQ[x_{i+1}])$$

Q[(2,0), der] = $(1 - 0.5) \cdot Q[(2,0), der] + 0.5 \cdot (-1 + 0.9 \cdot argmax Q[(2,1), :])$

 $Q[(2,0), der] = 0.5 \cdot -0.5 + 0.5 \cdot (-1 + 0.9 \cdot 0)$

 $Q[(2,0), der] = -0.25 + 0.5 \cdot -1$

Q[(2,0), der] = -0.75

Q-Table anterior

S _t				
(2,0)	-0.5	-1	-1	-0.5
(2,1)	-5	-1	0	0

(2,0)	-0.5	-1	-1	-0.75
(2,1)	-5	-1	0	0

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$
 $\gamma = 0.9$

= 0.4

0.3 < 0.4, por lo que explotamos

Buscamos el movimiento de mejor valor Q:

S _t	Arriba	Abajo	Izq.	Der.
(2,1)	-5	-1	0	0

Como son idénticos, tomamos una aleatoria

$$R_2 = 10$$

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$

$$\alpha = 0.5$$

$$\gamma = 0.9$$

$$Q[x_t, a_t] = (1 - \alpha) \cdot Q[x_t, a_t] + \alpha \cdot (R_t + \gamma \cdot argmaxQ[x_{i+1}])$$

Q[(2,1), der] = $(1 - 0.5) \cdot Q[(2,1), der] + 0.5 \cdot (10 + 0.9 \cdot argmax Q[(2,2), :])$

 $Q[(2,1), der] = 0.5 \cdot 0 + 0.5 \cdot (10 + 0.9 \cdot 0)$

 $Q[(2,1), der] = 0.5 \cdot 10$

Q[(2,1), der] = 5

Q-Table anterior

S _t	↑	ļ	←	\rightarrow
(2,1)	-5	-1	0	0
(2,1)	0	-1	0	-1

(2,1)	-5	-1	0	5
(2,1)	0	-1	0	-1

Q-Learning:

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$

$$\gamma = 0.9$$

S _t	Arriba	Abajo	Izq.	Der.
(0,0)	-1	-0.275	-1	0
(0,1)	-1	0	0	0
(0,2)	-1	0	0	-1
(1,0)	0.5	0	-1	-5
(1,1)	0	0	0	0
(1,2)	0	0	0	-1
(2,0)	-0.5	-1	-1	-0.75
(2,1)	-5	-1	0	5
(2,2)	0	-1	0	-1

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$
 $\gamma = 0.9$

= 0.2

0.3 > 0.2, por lo que exploramos

Elegimos una acción aleatoria (y válida)

$$A_0$$
 = Derecha

$$R_1 = -1$$

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$

$$\alpha = 0.5$$

$$Q[x_t, a_t] = (1 - \alpha) \cdot Q[x_t, a_t] + \alpha \cdot (R_t + \gamma \cdot argmaxQ[x_{i+1}])$$

Q[(2,0), der] = $(1 - 0.5) \cdot Q[(2,0), der] + 0.5 \cdot (-1 + 0.9 \cdot argmax Q[(2,1), :])$

 $Q[(2,0), der] = 0.5 \cdot -0.75 + 0.5 \cdot (-1 + 0.9 \cdot 5)$

 $Q[(2,0), der] = -0.375 + 0.5 \cdot 3.5$

Q[(2,0), der] = 1.375

Q-Table anterior

S _t	1	1	←	\rightarrow
(2,0)	-0.5	-1	-1	-0.75
(2,1)	-5	-1	0	5

(2,0)	-0.5	-1	-1	1.375
(2,1)	-5	-1	0	5

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$
 $\gamma = 0.9$

= 0.9

0.3 < 0.9, por lo que explotamos

Buscamos el movimiento de mejor valor Q:

S _t	Arriba	Abajo	Izq.	Der.
(2,1)	-5	-1	0	5

En este caso, corresponde a derecha

$$A_2$$
 = Derecha

$$R_2 = 10$$

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$
 $\alpha = 0.5$
 $\gamma = 0.9$

$$Q[x_t, a_t] = (1 - \alpha) \cdot Q[x_t, a_t] + \alpha \cdot (R_t + \gamma \cdot argmaxQ[x_{i+1}])$$

Q[(2,1), der] = $(1 - 0.5) \cdot Q[(2,1), der] + 0.5 \cdot (10 + 0.9 \cdot argmax Q[(2,2), :])$

 $Q[(2,1), der] = 0.5 \cdot 5 + 0.5 \cdot (10 + 0.9 \cdot 0)$

 $Q[(2,1), der] = 2.5 + 0.5 \cdot 10$

Q[(2,1), der] = 7.5

Q-Table anterior

S _t	1	ļ	←	\rightarrow
(2,1)	-5	-1	0	5
(2,1)	0	-1	0	-1

(2,1)	-5	-1	0	7.5
(2,1)	0	-1	0	-1

Estado	Recompensa
1 Grillo	+1
5 Grillos	+10
Pájaro	-10
Vacío	-1

$$\epsilon = 0.3$$

$$\alpha = 0.5$$

$$\gamma = 0.9$$

S _t	Arriba	Abajo	Izq.	Der.
(0,0)	-1	-0.275	-1	0
(0,1)	-1	0	0	0
(0,2)	-1	0	0	-1
(1,0)	0.5	0	-1	-5
(1,1)	0	0	0	0
(1,2)	0	0	0	-1
(2,0)	-0.5	-1	-1	1.375
(2,1)	-5	-1	0	7.5
(2,2)	0	-1	0	-1

Grafiquemos la política actual

S _t	Arriba	Abajo	Izq.	Der.
(0,0)	-1	-0.275	-1	0
(0,1)	-1	0	0	0
(0,2)	-1	0	0	-1
(1,0)	0.5	0	-1	-5
(1,1)	0	0	0	0
(1,2)	0	0	0	-1
(2,0)	-0.5	-1	-1	1.375
(2,1)	-5	-1	0	7.5
(2,2)	0	-1	0	-1

Q-Learning:

Un millón de iteraciones más tarde

Grafiquemos la política tras 1 millón de simulaciones:

S _t	Arriba	Abajo	lzq.	Der.
(0,0)	-1	4.58	-1	4.58
(0,1)	-1	-10	5.122	6.2
(0,2)	-1	8	4.58	-1
(1,0)	5.122	6.2	-1	-10
(1,1)	0	0	0	0
(1,2)	6.2	10	-10	-1
(2,0)	4.58	-1	-1	8
(2,1)	-10	-1	6.2	10
(2,2)	0	-1	0	-1

En resumen:

- Q-Learning busca continuamente asignar y **actualizar** un valor de *calidad* a cada par estado-acción.
- La acción a ser ejecutada es definida como aquella que tiene mayor calidad asociada en la tabla al estado actual, dado por:

$$a_t = arg \max(Q[s_t,:])$$

- El algoritmo puede acabar tras un número *k* de partidas jugadas o bien bajo un criterio de convergencia de los valores en la Q-Table
- El algoritmo nos garantiza **optimalidad** en la política encontrada *(pero ojo, solo en t* $\rightarrow \infty$)
- Normalmente solemos variar el parámetro ϵ a lo largo de la ejecución, partiendo desde un valor alto para **promover la exploración temprana**, hacia uno bajo, **promoviendo la explotación tardía**

Ayudantía 11

Reinforcement Learning

Daniel Florea

17 de noviembre 2023