Journal of Magnetic Resonance

EDITOR: Wallace S. Brey, Jr.

EDITORIAL BOARD:

E. Raymond Andrew
Edwin D. Becker
A. David Buckingham
S. M. Castellano
B. P. Dailey
P. Diehl
Richard Ernst
Ray Freeman

David M. Grant
R. K. Harris
K. H. Hausser
Paul S. Hubbard
Charles S. Johnson, Jr.
J. Jonas
Masaji Kubo
George C. Levy

Ralph Livingston Bruce McGarvey Rex E. Richards Max T. Rogers Thomas A. Scott Bernard L. Shapiro J. B. Stothers Robert L. Vold

Volume 27, 1977

ACADEMIC PRESS

New York and London

A Subsidiary of Harcourt Brace Jovanovich, Publishers

Copyright © 1977 by Academic Press, Inc.

ALL RIGHTS RESERVED

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the copyright owner.

CONTENTS OF VOLUME 27

Number 1, July 1977

VICTOR WRAY, LUDGER ERNST, AND ERNEST LUSTIG. The Complete 13 C, 19 F, and 1 H Spectral Analysis of the Fluorobenzenes $C_6H_nF_{6-n}$. III. The Remaining Members of the Series; INDO MO Calculations of J_{FH} , J_{FF} , J_{CH} , and J_{CF}	1
L. M. ISHOL AND T. A. SCOTT. Anisotropy of the Chemical Shift Tensor for Solid Nitrogen	23
A. A. V. Gibson, T. A. Scott, and Eiichi Fukushima. Anisotropy of the Chemical Shift Tensor for Solid Carbon Monoxide	29
D. T. Edmonds, S. D. Goren, A. A. L. White, and W. F. Sherman. Nuclear Quadrupole Resonance of $^2\mathrm{D}$ and $^{17}\mathrm{O}$ in Ices V, VI, VIII, and IX	35
J. Schriever, J. Joosting Bunk, and J. C. Leyte. Nuclear Magnetic Relaxation in Aqueous Solutions of Syndiotactic, Methylene Deuterated Poly(methacrylic acid). I. Methylene Deuteron Relaxation	45
J. L. RAGLE, E. L. REED, M. MOKARRAM, AND M. J. COMB. A Nuclear Quadrupole Double-Resonance Study of Orthorhombic DC1	59
LENNOX E. ITON. Nonlinear Magnetic Resonance Behavior and Reversible Adsorbed Gas Effects from Trace Ferromagnetism in Y-Zeolite	69
V. RUTAR, M. BURGAR, R. BLINC, AND L. EHRENBERG. ¹³ C NMR Determination of the Oil Composition in Individual Plant Seeds	83
Fuyuhiko Inagaki, Mitsuo Tasumi, and Tatsuo Miyazawa. Use of the Gd (fod) ₃ -Induced Changes of ¹ H Relaxation Times in Conformation Studies of the Complexes between Lanthanide Chelates and Borneols	91
P. Mansfield and A. A. Maudsley. Planar Spin Imaging by NMR	101
G. E. Jellison, Jr., S. A. Feller, and P. J. Bray. NMR Powder Patterns for Integer Spin Nuclei in the Presence of Asymmetric Quadrupole Effects .	121
MARY A. DUGAN AND JAY MARTIN ANDERSON. The Nuclear Magnetic Double Resonance Spectrum of Ammonia: An Unusual "Contraction"	133
COMMUNICATIONS J. R. ALGER AND J. H. PRESTEGARD. Investigation of Peptide Bond Isomerization by Magnetization Transfer NMR	137
ROBIN J. GOODFELLOW AND STEPHEN R. STOBART. Heteronuclear Magnetic Double-Resonance Spectra of Some Tin and Mercury Cyclopentadienyl Derivatives: Characteristics of Fast Exchange	143

iv CONTENTS

BERNARD TIFFON AND DENIS CANS. Natural Abundance Determination of ¹³ C Chemical Shifts in the Gas Phase. Direct Gas Phase Measurements and Extrapolation from Liquid Phase Measurements	147
MANFRED HOLZ AND HERMANN WEINGÄRTNER. Magnetic Relaxation of Chloride Ions in Aqueous Solutions	153
Воок Review "Spin Labeling in Molecular Biology." G. I. Likhtenshtein	157
Number 2, August 1977	
MOTOMICHI INOUE. PMR Studies on the Single Crystal of a Pyrazine Complex with Copper(II) Nitrate	159
R. LAATIKAINEN. About the Reliability, Efficiency, and Meaning of the Error Estimates of a LAOCOON3-Type NMR Analysis System	169
ROBIN T. VOLLMER AND WILLIAM J. CASPARY. Computer Analysis of ESR Data. Integration for Concentration Determination and Resolution of Multiple- Component Spectra	181
Toshihiro Tsuneyoshi, Nobuo Nakamura, and Hideaki Chihara. Proton Magnetic Relaxation in Tetramethylammonium Chlorate	191
HORST OLOFF AND JÜRGEN HÜTTERMANN. Radiation Damage in Solid 5-Halouracils. Free Radicals in Single Crystals of 5-Chlorouracil and 5-Chlorouridine	197
CLAUDE R. LASSIGNE AND E. J. WELLS. NMR Relaxation Studies and Anisotropic Molecular Reorientation in Liquid Methyl Bromide	215
WILLIAM Z. PLACHY AND DAVID A. WINDREM. A Gas-Permeable ESR Sample Tube	237
J. D. Memory. Dependence of NMR Chemical Shift on Position with Respect to an Aromatic Ring	241
A. LECLERC AND A. MANOOGIAN. Analysis of the $^{53}\mathrm{Cr^{3+}}$ Spin-Hamiltonian Hyperfine Interaction Parameters A and B in Hydrated Crystals	245
JUN KIDA AND HISASHI UEDAIRA. Selective Measurements of the Self-Diffusion Coefficients in Acetic Acid—Water and Methanol—Water Systems by Pulsed-Gradient Fourier-Transform NMR	253
G. F. HATCH, D. ONDERCIN, T. SANDRECZKI, AND R. W. KREILICK. A Simple and Inexpensive Method for Calibration of Large Magnetic Field Sweeps .	261
Gerald A. Pearson. A General Baseline-Recognition and Baseline-Flattening Algorithm	265
S. Schäublin, A. Wokaun, and R. R. Ernst. Pulse Techniques Applied to Chemically Induced Dynamic Nuclear Polarization	273

CONTENTS

X-Ray and NQR Study	303
Bo Berglund and Jörgen Tegenfeldt. NMR Lineshape of an Exchanging Spin-1 Pair in a Solid. Application to the Deuteron Resonance in $\text{Li}_2\text{SO}_4\cdot \text{D}_2\text{O}$:	315
NORIMASA KAMEZAWA. The Structure of Spiral-Like Mesophases Studied by High-Resolution NMR of Dissolved Molecules	325
Communications David M. J. Lilley and Oliver W. Howarth. Empirical Investigation of the Spin-Echo Determination of Short T_2 Values in Proton-Decoupled 13 C NMR Application to the Study of Protein Mobility	335
V. M. Zatsepin and T. N. Khazanovich. Simple Quantum Model of $\mathrm{CH_2D}$ Groups Tunneling in Solids to Produce Two Minima in the Temperature Dependence of the Spin–Lattice Relaxation Time	339
BERND WRACKMEYER. The Problem of an Absolute Scale of Nitrogen Shielding	345
N. Dennis Chasteen. The Liquid Nitrogen Bubbling Problem in ESR .	349
WILLIAM L. EARL AND W. NEIDERBERGER. Proton Decoupling in ¹⁷ O Nuclear Magnetic Resonance	351
BOOK REVIEWS "NMR, Basic Principles and Progress. Volume 12: Chlorine, Bromine and Iodine NMR, Physico-Chemical and Biological Applications." Bjorn Lindman and Sture Forsen. Edited by P. Diehl, E. Fluck, and R. Kosfeld	355
"Theory and Applications of Molecular Paramagnetism." Edited by E. A. Boudreaux and L. N. Mulay	356 356
Number 3, September 1977	
M. A. Hemminga, P. A. de Jager, and A. Sonneveld. The Study of Flow by Pulsed Nuclear Magnetic Resonance. I. Measurement of Flow Rates in the Presence of a Stationary Phase Using a Difference Method	359
JÜRGEN K. DOHRMANN AND REINHARD BECKER. Electron Spin Resonance Study of Some Substituted 1-Hydropyridinyl Radicals in Solution	371
K. S. Bose, T. H. WITHERUP, AND E. H. ABBOTT. Tris(ethylenediamine)-chromium(III) Chloride as a Relaxation Reagent in Carbon-13 NMR and an Aid for Structure Determination in Aqueous Solution	385

vi CONTENTS

HENRIK BILDSØE. Application of Density Matrix Formalism in NMI scopy. III. Selective Population Transfer Experiments in a ¹³ CH F	R Spectro- ragment .	393
ROLF SJÖBLOM AND JÖRGEN TEGENFELDT. The Effect of Rigid-Body on the Nuclear Magnetic Resonance Signal for Quadrupole, Shift, and Dipole–Dipole Interactions in Solids	Chemical	405
W. Lubitz, R. Biehl and K. Möbius. Sodium and Proton EN Triple-Resonance Experiments on Biphenyl and Fluorenone Io Solution	DOR and on Pairs in	411
FUMIKAZU HAYASHI, KAZUYUKI AKASAKA, AND HIROYUKI HATANO. Control of Adenosine-3':5'-cyclic Monophosphate in Solution. A of the NMR-DESERT Method with a Lanthanide Ion-Induced Shapes.	Application	419
ALICE J. DIGIOIA AND ROBERT L. LICHTER. Nitrogen-15 Magnetic Spectroscopy. Effect of Paramagnetic Relaxation Reagents of Chemical Shifts of Pyridines	on the 15N	431
V. M. MALHOTRA, H. D. BIST, AND G. C. UPRETI. Electron Par Resonance of Gd ³⁺ in Single Crystals of Some Lanthanide Hexahydrates.		439
I. D. CAMPBELL, C. M. Dobson, and R. G. Ratcliffe. Fourier Proton NMR in H ₂ O. A Method for Measuring Exchange and Rates.		455
PIER LUIGI NORDIO AND ULDERICO SEGRE. Magnetic Relaxation f Rank Interactions		465
J. A. Burt. The Influence of Quadratic and Quartic Field Inhomogene ECR Lineshape for a Cylindrical Cavity		475
A. W. K. KHANZADA AND C. A. McDowell. A Nuclear Magnetic Study of Some Solid Alkylamines and Their Clathrate Deuterates		483
GLENN T. PEARCE, WILLIAM E. GORE, AND ROBERT M. SILVERSTEIN. Spectra of Some Insect Pheromones and Related Compounds of Dioxabicyclo(3.2.1)octane System		497
COMMUNICATIONS WILLIAM B. GARA, BRIAN P. ROBERTS, CHRISTOPHER M. KIRK, GILBERT, AND RICHARD O. C. NORMAN. Radical Addition to Sulfite: A Trialkoxylsulfuranyloxy Radical	to Ethylene	509
Geoffrey Bodenhausen, Ray Freeman, and David L. Suppression of Artifacts in Two-Dimensional J Spectroscopy	. Turner.	511
J. W. Blunt and J. B. Stothers. The Influence of Methyl Group on Methyl Rotational Barriers as Estimated from ¹³ C Relax		515
Author Index for Volume 27		521
The Subject Index for Volume 27 will appear in the December 1977 is cumulative index for the year 1977.		

Information for Authors

The Journal of Magnetic Resonance includes original papers, both full articles and communications, dealing with the theory, techniques, methods of spectral analysis and interpretation, spectral correlations, and results of magnetic resonance spectroscopy and related fields. The Editor seeks the assistance of expert referees in the evaluation of manuscripts of articles, but he alone is responsible for the final decision concerning acceptance.

Original papers only will be considered. Manuscripts are accepted for review with the understanding that the same work has not been and will not be published nor is presently submitted elsewhere, and that all persons listed as authors have given their approval for the submission of the paper; further, that any person cited as a source of personal communications has approved such citation. Written authorization may be required at the Editor's discretion. Articles and any other material published in the *Journal of Magnetic Resonance* represent the opinions of the author(s) and should not be construed to reflect the opinions of the Editor(s) and the Publisher.

Communications are preliminary accounts of work of special importance or contain discussion of controversial subjects. Communications must be especially carefully and concisely prepared; since they may not be refereed, it is the responsibility of the author to ensure that the manuscript as originally submitted is free of typographical or substantive errors. To save time in publication, proofs of communications are not sent to the authors for correction.

Fifty reprints of each paper are supplied without charge, and additional reprints may be ordered on a form which is sent to the author. For articles, the reprints order form accompanies the galley proofs which the author receives. The Journal assesses no page or publication charges.

All manuscripts and books for review should be sent to the Editor, Wallace S. Brey, Department of Chemistry, University of Florida, Gainesville, Florida 32611.

Arrangement of the Paper

If the paper is lengthy, it should be divided into sections, although it is preferred that the sections not be numbered. Tables are numbered consecutively with *Arabic* numerals and are to be mentioned in order in the text. Each table should be supplied with a title. Figures are also numbered consecutively with *Arabic* numerals and are mentioned in order in the text. Each regular article requires an abstract which should describe concisely the substantive content, the conclusions reached, and the contributions of the research described. Since the abstract may be used directly by Chemical Abstracts and other abstracting services, it must be self-contained, having no references to formulas, equations, or bibliographic citations which appear in the body of the manuscript.

Literature references are cited in numerical order in the test by *in-line*, *parenthesized*, italic numerals. References to "unpublished" or "to be published" work from the author's laboratory should not be given. However, dissertations may be cited, or papers actually accepted may be referred to as "in press" if the name of the journal is included.

Authors are urged to give careful thought to the logical construction of the manuscript, so that explanatory or parenthetical footnotes need not be employed—where possible, such material should be incorporated in the text. Any footnotes which are indispensable are not intermixed with references, but are indicated in the text by consecutive, superscript numerals, and each footnote will then appear in the print at the bottom of the page on which it is cited. Equation numbers are given in *square* brackets to the right of the equation, and references in the text to equations should be in the form "Eq. [3]."

Form of Manuscript

Manuscripts should be submitted in triplicate. The *original typewritten copy* should be supplied; mimeo, electrostatic and similar process reproductions are not usually sufficiently clear. All of the typing must be *double-spaced*, including that of abstract, references, and footnotes, on one side of good quality paper approximately 22×28 cm $(8.5 \times 11 \text{ in.})$ in dimensions. The first line of each paragraph is indented.

Each page of the manuscript should be numbered. The first page contains the article title, the author's name, and affiliation. At the bottom of this page should appear any footnotes to the title (indicated by

superscript *, †, ‡); the number of manuscript pages, figures, and tables should also be noted. The second page should contain the abstract of 50–200 words.

Symbols and Abbreviations. The American Chemical Society's Handbook for Authors, 1967 edition, or the Style Manual of the American Institute of Physics should be followed for standard abbreviations, names and symbols for units. Mathematical equations or symbols must be typewritten whenever possible. Greek letters may be identified in pencil in the margin. The author of any manuscript in which there are mathematical equations or symbols is urged to supply a list of these on a separate sheet for the assistance of the printer in selecting the proper type. The list will not appear in print.

References. References to the literature should be cited in order in the text by in-line, parenthesized numerals. The references themselves are to be typed doubled-spaced on a separate sheet in numerical order. Each reference contains the author's initials, last name, journal name, volume, initial page number and year in parentheses, in that order. The name of the journal is abbreviated in the style of Chemical Abstracts' Service Source Index (1969 Edition). For book references, the form is author's name, name of the book in quotation marks, editor's name (if any), edition if other than the first, chapter or page number, publisher's name, place of publication, and year of publication.

Footnotes. Any footnotes which are included are numbered in a sequence separate from the references and must be typed in the manuscript on a separate page.

Tables. Tables should be laid out carefully, so that mimimum space is used and entries are accurately grouped and clearly labeled. Usually, a table should be arranged vertically, with more rows than columns. Vertical lines are not used to separate the columns. Each table is numbered with an Arabic numeral, provided with a title, and typed on a separate sheet of paper. Footnotes to the table are placed directly below it and are indicated by superscript, lower-case, italic letters (a, b, c). Tables that are longer than two manuscript pages will be reproduced photographically, and should therefore be typed in the exact form desired. All such tables should be carefully checked since errors cannot be corrected in proof.

Figures. Figures must be carefully drawn in black, waterproof drawing ink, to draftsman's standards, with lettering by stencil or drawing machine. Freehand, penciled, or typewritten lettering is not acceptable. Lettering should include numerical scales and units required for the two axes, and should be large enough to be legible after reduction by 50–60%. The illustration copy should be on sheets of the same size as that on which the manuscript is typed. Smaller figures may be mounted on sheets of the required size, and larger originals may be handled by supplying glossy, high-contrast, photographic reductions. The original and two duplicates of each figure are required..

Diagrams. Ink drawings should be supplied for any complex molecular formulas or diagrams involving material which the printer cannot readily set in type.