Simulation de l'interprétation des images médicales par l'intelligence artificielle

IMANE BENRAZZOUK

PLAN

- Introduction
 - Classification traditionnelle des images
 - Présentation de la base de données
 - ✓ Traitement des images par filtres
 - ✓ Problématique
- Modèles intelligents et optimisations
- Comparaison et conclusion
- Annexes

INTRODUCTION

Classification traditionnelle des images

Présentation de la base de données

Exemple de cellule atteinte « infected »

Étiquette = 1

Exemple de cellule saine « control »

Étiquette = 0

Traitement des images

- Détection du contour par filtres de Sobel et Laplacien
- Détection des zones sombres (Thresholding)
- Lissage des images par le filtre Gaussien

Détection du contour

Filtre de Sobel

Détection du contour

Filtre Laplacien

Original

Laplacian

Détection des zones sombres (Thresholding)

Original

Threshold

Lissage des images

Filtre Gaussien

Problématique

Faire l'inventaire des caractéristiques des images s'avère très consumant, alors que le but est d'obtenir le résultat facilement, effectivement et immédiatement.

Méthode d'évaluation

+Matrice de confusion:

Réalité

	Sain 0	Infecté 1
Sain 0	True Negative	False Negative
Infecté 1	False Positive	True Positive

Solution: Modèle intelligent d'apprentissage approfondi

Répartition de la base de données

```
#splitting the dataset for the training
from sklearn.model selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(dataset, labels, test_size = 0.20, random_state = 0)
```

+ L'ensemble de test/validation constitue 20% de la base de données initiale.

Création du modèle

Essai#01

Essai#01

Essai#01

+ Précision générale = 68.96551847457886 %

+ Matrice de confusion: $\begin{pmatrix} 11 & 2 \\ 7 & 9 \end{pmatrix}$

Moyens d'optimisation de la précision des modèles intelligents

- o Ajouter plus de données; avoir une base de données large.
- Élargir le réseau des neurones par l'ajout de couches de convolution supplémentaires.
- Minimiser les valeurs du Dropout (20% ~ 50%).
- Augmenter la valeur du taux d'apprentissage (learning_rate ≥ 0,9).
- Pas de BatchNormalization(); empêche de traiter les données brutes.
- Cross Validation.

Optimisation#01

+Valeur du Dropout=20%=0.2 donne:

Précision générale = 75.86206793785095 %

Matrice de confusion: $\begin{pmatrix} 11 & 2 \\ 6 & 10 \end{pmatrix}$

Essai#02

Essai#02

Optimisation#02

- +Valeur du Dropout=20%=0.2.
- +Ajout de deux autres couches de convolution et inversion d'ordre.
 - Précision générale = 79.31034564971924 %
 - Matrice de confusion: $\begin{pmatrix} 10 & 3 \\ 4 & 12 \end{pmatrix}$

Essai#03

Comparaison et conclusion

Remarques et comparaison

- La valeur du Dropout a immédiatement augmenté la précision (de 68.96% à 75.86%; différence de 6,9).
- L'ajout des couches de convolution et l'inversion de leur ordre a généré une précision de 79.31% (différence de 3,45) et notamment une amélioration dans la performance du modèle concernant la détection des cellules infectées.

Conclusion

L'amélioration de ce modèle reste toujours possible; essayer les autres méthodes d'optimisation citées peut créer un véritable changement. Pourtant, seule configuration des compilateurs ou ordinateurs utilisés, reste le plus grand des inconvénients.

Présentation de la base de données

infected

Présentation de la base de données

control

ANNEXE#01: Figures

ANNEXE#02: Sobel & Laplacien

```
#SOBEL&&LAPLACIEN
img0 = cv2.imread(r"C:\Users\MonPc\Desktop\version 2.0\infected\download (3)2.jpg")
gray = cv2.cvtColor(img0, cv2.COLOR BGR2GRAY) #grayscale
img = cv2.GaussianBlur(gray,(3,3),0) #denoising
# convolution kernels
laplacian = cv2.Laplacian(img,cv2.CV 64F)
sobelx = cv2.Sobel(img,cv2.CV 64F,1,0,ksize=5) # x
sobely = cv2.Sobel(img,cv2.CV 64F,0,1,ksize=5) # v
plt.subplot(1,4,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(1,4,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(1,4,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(1,4,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()
```

ANNEXE#03: Thresholding

```
img=cv2.imread(r"C:\Users\MonPc\Desktop\version 2.0\infected\download (3)2.jpg")
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret,th=cv2.threshold(gray,150,255,cv2.THRESH_BINARY)
plt.subplot(1,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(1,2,2), plt.imshow(th, cmap = 'gray')
plt.title('Threshold'), plt.xticks([]), plt.yticks([])
✓ 1.4s
```

ANNEXE#04: Filtre Gaussien, sigma=3.0

ANNEXE#05: Filtre Gaussien, sigma=5.0

ANNEXE#06: Filtre Gaussien, sigma=1.0

ANNEXE#07: model_try_01.ipynb

```
#creatin za model
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(100, 100, 3), activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Conv2D(64, (3, 3), kernel_initializer='he uniform', activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Conv2D(128, (3, 3), kernel_initializer='he_uniform', activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
# model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
```

ANNEXE#09: model_try_02.ipynb

```
#creatin za model
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(100, 100, 3), activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Conv2D(64, (3, 3), kernel initializer='he uniform', activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Conv2D(128, (3, 3), kernel initializer='he uniform', activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
# model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(1))
model.add(Activation('sigmoid'))
```

ANNEXE#07: model_try_03.ipynb

```
#creatin za model
model = Sequential()
model.add(Conv2D(128, (3, 3), input_shape=(100, 100, 3), activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Conv2D(64, (3, 3), kernel_initializer='he_uniform', activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Conv2D(64, (3, 3), kernel initializer='he uniform', activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Conv2D(32, (3, 3), kernel initializer='he uniform', activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(1))
model.add(Activation('sigmoid'))
```

ANNEXE#10: ajout de BatchNormalization()

+Overfitting du modèle, de plus la précision reste la même.