Laboratoria Podstawy Elektroniki							
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.				
Informatyka	_	I	I1				
Temat Laboratorium	Numer lab.						
Rezonans w obwodach RLC				3.1			
Skład grupy ćwiczeniowej oraz numery indeksów							
Stanisław Jasiewicz(116753), Krzysztof Michalak(132281), Wojciech Regulski(132312), Ewa Rudol(132314)							
Uwagi			Ocena				

1 Cel

Obserwacja obwodu RLC pobudzanego wartościami częstotliwości od 1 do 15 kHz zasilanego napięciem sinusoidalnym.

2 Pomiary

- Wartości parametrów:

$$C_x = 13,6nF$$

$$L_1 = 77mH$$

$$R_1 = 985, 5\Omega$$

$$R_L = 121\Omega$$

- Schemat obwodu:

Rysunek 1: Szeregowy obwód RLC

- Tabela - pomiary

Częstotliwość	Napięcie na źródle	Napięcie na kon-	Napięcie na cewce	Napięcie na rezy-
pobudzenia [kHz]	zasilania [V]	densatorze [V]	[mV]	storze [V]
1,223	3,03	3,21	0,19	0,33
2,121	3,02	3,62	0,67	0,65
2,983	3,05	4,47	1,62	1,12
5,021	3,03	7,01	7,34	3,01
6,973	2,99	2,52	5,11	1,51
9,121	3,03	1,16	4,05	0,91
12,231	3,01	0,553	3,52	0,58
15,221	3,03	0,331	3,30	0,44

- Tabela - zagęszczenie pomiarów dla szczytowych wartości napięcia

Częstotliwość	Napięcie na źródle	Napięcie na kon-	Napięcie na cewce	Napięcie na rezy-
pobudzenia [kHz]	zasilania [V]	densatorze [V]	[mV]	storze [V]
4,512	3,02	7,24	6,12	2,80
4,976	3,02	7,07	7,27	3,01
5,239	3,02	6,43	7,32	2,88
6,221	3,02	3,73	6,00	1,99

Zależność napięcia na źrodle napięcia i elemntach RLC od częstotliwości

- Częstotliwość rezonansowa (U_R największe - z pomiarów): 4976 Hz Z obliczeń:

$$f = \frac{1}{2\pi\sqrt{LC}}$$
$$f = 4920Hz$$

Rysunek 2: Zrzut oscyloskopowy przebiegów napięcia zródła i prądu w obwodzie dla częstotliwości rezonansowej – wartości w tabelce wyżej

Rysunek 3: Zrzut oscyloskopowy przebiegów napięcia zródła i prądu w obwodzie dla częstotliwości niewiele wyższej niż rezonansowa – wartości w tabelce wyżej

Rysunek 4: Zrzut oscyloskopowy przebiegów napięcia zródła i prądu w obwodzie dla częstotliwości niewiele niższej niż rezonansowa – wartości w tabelce wyżej

- W przypadku częstotliwości wyższej niż rezonansowa obwód ma charakter indukcyjny, kąt przesunięcia fazowego jest większy od zera, więc natężenie prądu spóźnia się w fazie w stosunku do napięcia na zaciskach źródła. Przy niższej częstotliwości obwód ma charakter pojemnościowy, kąt przesunięcia fazowego jest mniejszy od zera, napięcie na zaciskach źródła spóźnia się w fazie w stosunku do natężenia prądu. Przy częstotliwości rezonansowej zachodzi rezonans napięć, kąt przesunięcia fazowego jest równy zero, napięcie na zaciskach źródła jest zgodne w fazie z natężeniem prądu.
- Dobroć elementu indukcyjnego:

$$Q_L = \frac{\omega_0 L}{R_L}$$

$$Q_L = \frac{2\pi * 4976Hz * 77mH}{2406\Omega}$$

$$Q_L \approx 1$$

- Wnioski:

Celem doświadczenia była obserwacja obwodu RLC pobudzanego kolejnymi wartościami częstotliwości od 1 do 15 kHz. Wynik tego badania stanowi natomiast częstotliwość charakterystyczna, którą możemy jednocześnie oznaczyć jako częstotliwość rezonansową. To dla niej reaktancja pojemnościowa (kondensator) i reaktancja indukcyjna (cewka) są sobie równe. Główną problematyką było zatem znalezienie częstotliwości, dla której zachodzi takowa kompensacja.

Po wykonaniu serii pomiarów, w dość prosty sposób dało się zauważyć, że w danym zakresie następuje zwiększenie się wartości napięcia na elementach RLC. Dla naszego zestawu elementów krzywe napięć osiągają wartości szczytowe w okolicach 5000 Hz. W tej okolicy zostały przeprowadzonego dodatkowe pomiary.

Dla ugruntowania naszych pomiarów dokonaliśmy też analizy wyników uzyskanych drogą teoretyczną. Dla danych częstotliwości obliczyliśmy R_L ($R_L = \omega L$, $\omega = 2\pi f$) oraz R_C ($R_C = 1/\omega C$) co pozwoliło na uzyskanie wartości zawady (, co z kolei dało nam wartości napięcia skutecznego:

$$I_s = \frac{U_s}{Zawada}$$

W kolejnym kroku pozostało pomnożyć wartości napięcia skutecznego z poszczególnymi oporami. Dla przykładu:

dla częstotliwości 2.983 kHz

$$R_L = 1442\Omega$$

$$R_C = 3925\Omega$$

$$Z = 2670\Omega$$

$$I_s = 0,001123A$$

$$U_R = 1,106V$$

$$U_L = 1,62V$$

$$U_C=4,408V$$

podczas, gdy odwołując się do pomiarów zgromadzonych w tabeli:

$$U_R = 1,12V$$

$$U_L = 1,62V$$

$$U_C = 4,47V$$

Można zatem stwierdzić, że pomiary zostały przeprowadzone z wysoka dokładnością, co może potwierdzać chociażby identyczny wynik dla napięcia na cewce.

3 Literatura

- [1] Horowitz P. Hill W., "Sztuka elektroniki", tomy 1. i 2. WKiŁ, Warszawa 2003r.
- [2] Resnick R., Halliday D., Walker J., "Podstawy fizyki", tom 3. PWN, Warszawa 2003r.
- [3] Watson J. "Elektronika", WKiŁ, Warszawa 1999r.
- [4] Nosal Z., Baranowski J. "Układy elektroniczne", WNT, Warszawa 2003r.