☞ Fonction logarithme 4

On considère la fonction suivante définie sur]0; $+\infty$ [:

$$g(x) = 3x + 4 - 7\ln(x)$$

- 1. Calculer la limite de g en 0^+
- **2.** Calculer la limite de g en $+\infty$
- 3. Calculer la dérivée de g.
- **4.** Déterminer le signe de g'(x).
- **5.** En déduire le tableau de variation de g(x).
- **6.** En déduire le nombre de solutions de g(x) = 0.

Logarithme TG

Correction:

1. On sait que:

$$\lim_{x \to 0^+} 3x + 4 = +4$$

$$\lim_{x \to 0^+} 7\ln(x) = -\infty \quad \text{par propriété du cours}$$

$$\operatorname{donc \, \lim_{x \to 0^+} 3x + 4 - 7\ln(x) = +\infty}$$

2.

$$\lim_{x\to +\infty} 3x + 4 = +\infty$$

$$\lim_{x\to +\infty} 7x \ln(x) = +\infty \quad \text{par propriété du cours}$$
 donc
$$\lim_{x\to +\infty} 3x + 4 - 7\ln(x) = +\infty \quad \text{par prépondérance de } x$$

3.

$$g'(x) = 3 - 7 \times \frac{1}{x}$$
$$= \frac{3x - 7}{x}$$

4.

$$g'(x) \ge 0 \Leftrightarrow x \ge \frac{c}{a}$$

5. On a:

x	C)		$\frac{c}{a}$		+∞
g'(x)			_	0	+	
g(x)		+∞		$11 + 7\ln\left(\frac{7}{3}\right)$		+∞

6. On a:

$$g\left(\frac{7}{3}\right) \approx 16.93108502271$$

Par conséquent, comme *g* est continue, on en déduit que la fonction ne s'annule pas.