

TEA6848HL

New in car entertainment car radio tuner IC with precision adjacent channel suppression (NICE-PACS)

Rev. 04 — 29 January 2010

Product data sheet

1. General description

The TEA6848HL is a single IC with car radio tuner for AM, FM and Weather Band (WB) intended for microcontroller tuning with the I²C-bus. It provides the following functions:

- AM double conversion receiver for LW, MW and SW (31 m, 41 m and 49 m bands)
 with IF1 = 10.7 MHz and IF2 = 450 kHz
- FM double conversion receiver with integrated image rejection for IF1 and for IF2 capable of selecting US FM, US weather, Europe FM, East Europe FM and Japan FM bands; fully integrated dynamic selectivity at 450 kHz FM IF2; FM demodulator with dynamic threshold extension; center frequency alignment of IF2 selectivity via the I²C-bus
- The tuning system includes VCO, crystal oscillator and PLL synthesizer on one chip

2. Features

- FM mixer 1 for conversion of FM RF (65 MHz to 108 MHz and US weather band) to IF of 10.7 MHz; the mixer provides inherent image rejection; for European and US FM band/WB (weather band) the mixer is driven with a 'high' injection Local Oscillator (LO); in Japan FM band and East Europe FM band the mixer is driven with a 'low' injection LO
- AM mixer 1 for conversion of AM RF to AM IF1 of 10.7 MHz
- LC tuner oscillator providing mixer frequencies for FM mixer and AM mixer 1
- AM mixer 2 for conversion of AM IF1 to AM IF2 of 450 kHz
- Crystal oscillator providing mixer frequencies for AM mixer 2 and FM mixer 2 and reference for synthesizer PLL, IF count, timing for Radio Data System (RDS) update and reference frequency for car audio signal processor ICs
- Fast synthesizer PLL tuning system with local control for inaudible RDS updating
- Timing function for RDS update algorithm and control signal output for car audio signal processor ICs (TEA688x, SAA77xx, TEF689x)
- Digital alignment circuit for bus controlled matching of oscillator tuning voltage to FM antenna tank circuit tuning voltage
- AGC PIN diode drive circuit for FM RF AGC; AGC detection at FM mixer input; the AGC PIN diode drive can be activated by the I²C-bus as a local function for search tuning; AGC threshold is a programmable and keyed function switchable via the I²C-bus
- FM IF linear amplifier with high dynamic input range
- FM mixer 2 for conversion of FM IF1 to FM IF2 of 450 kHz with inherent image rejection

New in car entertainment car radio tuner IC (NICE-PACS)

- Fully integrated dynamic selectivity and FM demodulator at IF2; improved sensitivity with dynamic threshold extension; center frequency of IF2 selectivity alignment via the I²C-bus
- Level detector for AM and FM with temperature compensated output voltage; starting point and slope of level output is programmable via the I²C-bus
- AM cascode AGC stage and RF PIN diode drive circuit; AGC threshold detection at AM mixer 1 and IF2 AGC input; threshold for detection at mixer 1 input is programmable via the I²C-bus
- AM IF2 AGC and demodulator
- AM AF output switchable to provide AM IF2 for AM stereo decoder
- AM noise blanker with detection at IF1 and blanking at AM IF2
- Software controlled flag output
- Buffer output for weather band flag
- Adjacent channel detector, modulation detector and frequency offset for instantaneous bandwidth control of the integrated filter
- Flag and voltage output indicating the actual bandwidth
- I²C-bus alignment of center frequency and gain variation as functions of bandwidth of the IF2 filter and center frequency of the offset detector

3. Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$V_{\text{DDA(n)}}$	analog supply voltages 1 to 4 and 6			8	8.5	9	V
I _{DDA(tot)}	total analog supply current	FM mode	[1]	45	56	67	mA
		AM mode	[1]	40	50	60	mA
V_{DDA5}	analog supply voltage 5			4.75	5	5.25	V
I _{DDA5}	analog supply current 5 for on-chip power supply	FM mode; Japan/East Europe band		-	7.4	-	mA
		AM mode		-	11	-	mA
V_{DDD}	digital supply voltage			4.75	5	5.25	V
I _{DDD}	digital supply current	FM mode; Europe/US band		21	26	31	mA
		AM mode		22	27	32	mA
T _{amb}	ambient temperature			-40	-	+85	°C
AM overa	ll system parameters; see Figure 12	and Figure 13					
f _{AM(ant)}	AM input frequency	LW		0.144	-	0.288	MHz
		MW		0.522	-	1.710	MHz
		SW		5.730	-	9.99	MHz
(S+N)/N	signal plus noise-to-noise ratio	$m = 0.3$; $B_{AF} = 2.15 \text{ kHz}$		-	59	-	dB
THD	total harmonic distortion	$m = 0.8$; $f_{mod} = 1 \text{ kHz}$		-	0.3	-	%
V _{sens(rms)}	sensitivity (RMS value)	m = 0.3; f_{mod} = 1 kHz; (S+N)/N = 26 dB; with European dummy aerial 15 pF/60 pF; B_{AF} = 2.15 kHz		-	45	-	μV

New in car entertainment car radio tuner IC (NICE-PACS)

Table 1. Quick reference data ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
FM overall	system parameters; see Figure 12	and <u>Figure 13</u>				
f _{FM(ant)}	FM input frequency		65	-	108	MHz
f _{FM(WB)(ant)}	FM weather band input frequency		162.4	-	162.55	MHz
(S+N)/N	signal plus noise-to-noise ratio	Δf = 22.5 kHz; de-emphasis = 50 μ s; B _{AF} = 300 Hz to 15 kHz	-	63	-	dB
THD	total harmonic distortion	$\Delta f = 75 \text{ kHz};$ with 2 × SFE10.7MS3	-	0.35	-	%
V _{sens(rms)}	sensitivity (RMS value)	Δf = 22.5 kHz; f_{mod} = 1 kHz; (S+N)/N = 26 dB; de-emphasis = 50 μ s; B_{AF} = 300 Hz to 15 kHz; with 75 Ω dummy antenna	-	1.4	2	μV

^[1] Sum of analog supply currents 1 to 4 and 6.

4. Ordering information

Table 2. Ordering information

Type number	Package				
	Name	Description	Version		
TEA6848HL	LQFP80	plastic low profile quad flat package; 80 leads; body $12 \times 12 \times 1.4$ mm	SOT315-1		

3 of 62

9 Block diagram

Fig 1. **Block diagram**

Product data sheet

Rev. 04

29

January

2010

New in car entertainment car radio tuner IC (NICE-PACS)

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
FMLIMDCFDB1	1	decoupling in-phase FM limiter
FMLIMDCFDB2	2	decoupling quadrature phase FM limiter
AMIF2DEC	3	decoupling for AM IF2 input
IREFFMIF2	4	reference current for FM IF2
AMNBHOLD	5	AM noise blanker threshold
AMIF2IN	6	AM IF2 input (450 kHz) for demodulator AGC and AM level detector

TEA6848HL_4 © NXP B.V. 2010. All rights reserved.

TEA6848HL **NXP Semiconductors**

New in car entertainment car radio tuner IC (NICE-PACS)

Table 3. Pin description ...continued

Product data sheet

Symbol	Pin	Description
IF1GND	7	AM IF1 ground
FMMIX2IN	8	FM mixer 2 input
COFFSET	9	DC feedback for offset compensation RDS mute
FMMIX2DEC	10	FM mixer 2 decoupling
IFCDAATEST	11	test pin for IF center DAA
IFAMPOUT	12	IF amplifier output (10.7 MHz)
V _{DDA1}	13	analog supply voltage 1 (8.5 V) for FM IF amplifier
IFAMPIN	14	FM IF amplifier and AM mixer 2 input (10.7 MHz)
IFAMPDEC	15	FM IF amplifier and AM mixer 2 decoupling
IF2FILQ	16	test output quadrature phase FM IF2 filter
IF2FILI	17	test output quadrature priase FM if 2 litter
MIX1OUT1	18	FM mixer and AM mixer 1 IF output 1 (10.7 MHz)
MIX1OUT2	19	FM mixer and AM mixer 1 IF output 2 (10.7 MHz)
	20	analog supply voltage 2 (8.5 V) for FM and AM RF
V _{DDA2} SWFLAG	21	output software programmable flag
AMMIX1DEC		
	22	AM mixer 1 decoupling
AMMIX1IN	23	AM mixer 1 input
VAMCASFB	24	feedback for cascode AM AGC
VAMCAS	25	cascode AM AGC
TAFAMAGC	26	AF time constant of AM front-end AGC
THFAMAGC	27	HF time constant of AM front-end AGC
IAMAGC	28	PIN diode drive current output of AM front-end AGC
$V_{ref(MIX)}$	29	reference voltage for FM RF mixer
FMMIXIN1	30	FM RF mixer input 1
RFGND	31	RF ground
i.c.	32	internal connection
FMMIXIN2	33	FM RF mixer input 2
WBFLAG	34	buffered weather band flag output
IFMAGC	35	PIN diode drive current output of FM front-end AGC
TFMAGC	36	time constant of FM front-end AGC
TKEYEDAGC	37	time constant of keyed FM front-end AGC
DAAOUT	38	output of digital auto alignment circuit for antenna tank circuit
DAATD	39	temperature compensation diode for digital auto alignment circuit for antenna tank circuit
DAAIN	40	input of digital auto alignment circuit for antenna tank circuit
i.c.	41	internal connection
V _{tune}	42	tuning voltage
CPOUT	43	charge pump output
V_{DDA3}	44	analog supply voltage 3 (8.5 V) for tuning PLL
FREF	45	reference frequency output for signal processor IC
V_{DDD}	46	digital supply voltage (5 V)
DGND	47	digital ground

6 of 62

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 3.
 Pin description ...continued

Symbol	Pin	Description
VCOGND	48	VCO ground
OSCFDB	49	VCO feedback
OSCTNK	50	VCO tank circuit
V_{DDA4}	51	analog supply voltage 4 (8.5 V) for VCO
MPXDCFDB	52	DC feedback for FM MPX signal path
AFSAMPLE	53	AF sample flag output for car audio signal processor IC
AFHOLD	54	AF hold flag output for car audio signal processor IC
TRDSMUTE	55	time constant for RDS update mute
AMAFIF2	56	AM demodulator AF output or IF2 output for AM stereo (multiplexed by I ² C-bus)
RDSMPX	57	MPX output for RDS decoder and signal processor (not muted)
FMMPX	58	FM demodulator MPX output
V_{DDA5}	59	analog supply voltage 5 (5 V) for on-chip power supply
MODDET	60	modulation detector input
V_{DDA6}	61	analog supply voltage 6 (8.5 V) for on-chip power supply
IFBWFLAG	62	FM IF2 bandwidth flag output
SDA	63	I ² C-bus data line input and output
SCL	64	I ² C-bus clock line input
V_{IFBW}	65	monitor voltage for FM IF2 bandwidth
IF2GND	66	AM IF2 ground
CINT	67	demodulator loop filter
MODETOUT	68	modulation detector output
TACD	69	adjacent channel detector time constant
V _{level(AMFM)}	70	level voltage output for AM and FM
XTAL1	71	crystal oscillator 1
XTALGND	72	crystal oscillator ground
XTAL2	73	crystal oscillator 2
V _{level(ACD)}	74	level voltage output for adjacent channel detector
ACDTHRES	75	adjacent channel detector threshold
IREF	76	reference current for power supply
AMMIX2OUT1	77	AM mixer 2 output 1 (450 kHz)
AMMIX2OUT2	78	AM mixer 2 output 2 (450 kHz)
CAGC	79	AM IF AGC capacitor/offset detector alignment (FM)
$V_{ref(lim)}$	80	limiter reference voltage

7. Functional description

7.1 Oscillators

7.1.1 VCO

The varactor tuned VCO provides the local oscillator signal for both FM and AM mixer 1. It has a frequency range of 162.9 MHz to 248.2 MHz.

New in car entertainment car radio tuner IC (NICE-PACS)

7.1.2 PLL

Fast synthesizer PLL tuning system with local control for inaudible RDS updating.

7.1.3 Crystal oscillator

The crystal oscillator provides a 20.5 MHz signal that is used for:

- Reference frequency for frequency synthesizer PLL
- Local oscillator for AM mixer 2 and FM mixer 2
- Reference frequency for the IF counter
- · Timing signal for the RDS update algorithm
- Reference frequency (75.368 kHz) for the TEA688x (Car Audio Signal Processor -CASP) or TEF689x (Car Radio Integrated Signal Processor - CRISP)

7.2 DAA

To reduce the number of manual alignments in production the following I²C-bus controlled Digital Auto Alignment (DAA) functions are included:

- FM RF DAA
 - 7-bit DAA circuitry for the conversion of the VCO tuning voltage to a controlled alignment voltage for the FM antenna tank circuit
- FM and AM level DAA
 - Level DAA circuitry for alignment of slope (3-bit) and starting point (5-bit) of the level curve
- IF2 center DAA
 - Center frequency alignment (7-bit) of integrated FM IF2 dynamic selectivity

7.3 FM signal channel

7.3.1 FM mixer 1

FM quadrature mixer converts FM RF (65 MHz to 108 MHz and weather band) to IF of 10.7 MHz. The FM mixer provides inherent image rejection and high RF sensitivity.

It is capable of tuning the US FM, US weather, Europe FM, Japan FM and East Europe FM bands:

- US FM = 87.9 MHz to 107.9 MHz
- US weather FM = 162.4 MHz to 162.55 MHz
- Europe FM = 87.5 MHz to 108 MHz
- Japan FM = 76 MHz to 91 MHz
- East Europe FM = 65 MHz to 74 MHz

7.3.2 Buffer output for weather band flag (pin WBFLAG)

The buffer output on pin WBFLAG is HIGH for weather band mode.

New in car entertainment car radio tuner IC (NICE-PACS)

7.3.3 FM keyed AGC

The AGC threshold is programmable and the keyed AGC function is switchable via the I²C-bus. AGC detection occurs at the input of the first FM mixer. If the keyed AGC function is activated, the AGC is keyed only by the narrow band level. The AGC PIN diode drive can be activated via the I²C-bus as a local function for search tuning. The AGC sources a constant 10 mA current into the FM PIN diode in AM mode.

7.3.4 FM IF amplifier

The FM IF amplifier provides 18 dB amplification with high linearity over a wide dynamic range.

7.3.5 FM mixer 2

The FM mixer 2 converts 10.7 MHz FM IF1 to 450 kHz FM IF2 in I and Q phase to achieve image rejection in the demodulator.

7.3.6 FM IF2 dynamic selectivity

The IF bandwidth of the FM IF2 is automatically adjusted depending on modulation and reception conditions. The center frequency of the selectivity is adjusted by a 7-bit instruction via the I²C-bus. The dynamic selectivity mode and three fixed bandwidths (60 kHz, 90 kHz and 130 kHz) can be selected via the I²C-bus. The IF2 bandwidth is set to 13 kHz in weather band mode.

7.3.7 FM quadrature demodulator

The FM quadrature demodulator is adjustment free.

7.3.8 Adjacent channel detector and threshold extension

In the event of breakthrough of a strong neighboring transmitter, the IF2 bandwidth is reduced dynamically. At low RF input voltages and low modulation levels the IF2 bandwidth is reduced to achieve improved sensitivity by demodulator threshold extension.

7.3.9 Bandwidth control 'active' flag (pin IFBWFLAG)

Flag output IFBW = 1 from pin IFBWFLAG indicates that the IF2 bandwidth is reduced.

7.3.10 Bandwidth control monitor voltage (pin V_{IFBW})

The actual bandwidth is indicated by a voltage at pin V_{IFBW} that is proportional, not linear, to the IF bandwidth.

7.4 AM signal channel

7.4.1 AM tuner including mixer 1 and mixer 2

The AM tuner is realized in a double conversion technique and is capable of selecting LW, MW and SW bands.

New in car entertainment car radio tuner IC (NICE-PACS)

AM mixer 1 converts AM RF to IF1 of 10.7 MHz, while AM mixer 2 converts IF1 of 10.7 MHz to IF2 of 450 kHz:

- LW = 144 kHz to 288 kHz
- MW = 530 kHz to 1710 kHz (US AM band)
- SW = 5.73 MHz to 9.99 MHz (including the 31 m, 41 m and 49 m bands)

7.4.2 AM RF AGC

The AM wideband AGC in front of the first AM mixer is realized first by a cascaded NPN transistor, which controls the transconductance of the RF amplifier JFET with 10 dB of AGC range. Second, an AM PIN diode stage with antenna type and frequency dependent AGC range is available. The minimum JFET drain source voltage is controlled by a DC feedback loop (pin VAMCASFB) in order to limit the cascode AGC range to 10 dB. If the cascode AGC is not required, a simple RF AGC loop is possible by using only a PIN diode. In this event pins VAMCASFB and VAMCAS have to be open-circuit. In FM mode, the cascade switches off the JFET bias current to reduce total power consumption. The PIN diode is biased by 1 mA in FM mode.

The AGC detection points for AM AGC are at the first AM mixer input (threshold programmable via the I²C-bus) and the IF2 AGC input (fixed threshold).

7.4.3 AM detector

The AM output provides either a detected AM AF or the corresponding AM IF2 signal. The IF2 signal can be used for AM stereo decoder processing. Soft mute function is controlled by the I²C-bus in AM mono mode.

7.4.4 AM noise blanker

The detection point for the AM noise blanker is the output stage of AM mixer 1, while blanking is realized at the output of the mixer 2.

Trigger sensitivity can be modified by adding an external resistor at pin AMNBHOLD.

7.5 FM and AM level detector

FM and AM level detectors provide the temperature compensated output voltage. The starting points and slopes of the level detector outputs are programmable via the l²C-bus.

7.6 IF2 filter gain alignment

The 4-bit filter gain alignment reduces the change in IF filter gain spread when the bandwidth is changed in dynamic mode from 155 kHz (maximum) to 25 kHz (minimum).

A frequency has to be chosen in the middle of European/US FM band, Japan band or OIRT band (for East Europe) and the IC has to be set into dynamic bandwidth mode (IF2 bandwidth is 155 kHz).

Setting and clearing the FMBW bit continuously allows the adjustment of the gain alignment to minimum change in AM/FM DC level.

New in car entertainment car radio tuner IC (NICE-PACS)

7.7 Frequency offset detector/alignment

A very strong undesired neighboring signal causes offset in the demodulator in case of a weak desired input signal.

The frequency offset detector reduces the bandwidth of the IF2 filter when the detected offset in the demodulator is too large.

There are four bits available for frequency offset detector alignment. Every band has to be aligned separately. Tuning has to be set to middle of the band, input signal unmodulated, bit IFBW = 1 (alignment voltage will be given to pin IFBWFLAG). The DC voltage at pin IFBWFLAG has to be aligned to the minimum value.

8. I²C-bus protocol

8.1 Data transfer mode and IC address

Table 4. IC address byte

IC address							
1	1	0	0	0	0	0/1[1]	R/W[2]

- [1] Defined by address pin FREF:
 - a) 1 = 1st IC address
 - b) 0 = 2nd IC address
- [2] Read or Write mode:
 - a) 0 = write operation to TEA6848HL
 - b) 1 = read operation from TEA6848HL

8.2 Write mode: data byte 0

Table 5. Format of data byte 0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AF	PLL14	PLL13	PLL12	PLL11	PLL10	PLL9	PLL8

TEA6848HL_4 © NXP B.V. 2010. All rights reserved.

New in car entertainment car radio tuner IC (NICE-PACS)

Table 6. Description of data byte 0 bits

Bit	Symbol	Description
7	AF	alternative frequency. If $AF = 0$, then normal operation. If $AF = 1$, then AF (RDS) update mode.
6 to 0	PLL[14:8]	setting of programmable counter of synthesizer PLL. Upper byte of PLL divider word.

8.3 Write mode: data byte 1

Table 7. Format of data byte 1

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PLL7	PLL6	PLL5	PLL4	PLL3	PLL2	PLL1	PLL0

Table 8. Description of data byte 1 bits

Bit	Symbol	Description
7 to 0	PLL[7:0]	setting of programmable counter of synthesizer PLL. Lower byte of PLL divider word.

8.4 Write mode: data byte 2

Table 9. Format of data byte 2

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MUTE	DAA6	DAA5	DAA4	DAA3	DAA2	DAA1	DAA0

Table 10. Description of data byte 2 bits

Bit	Symbol	Description
7	MUTE	FM audio mute. If MUTE = 0, then FM audio not muted. If MUTE = 1, then FM audio muted; writing to programmable divider and antenna DAA enabled.
6 to 0	DAA[6:0]	setting of antenna digital auto alignment

8.5 Write mode: data byte 3

Table 11. Format of data byte 3

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IFMT	FREF2	FREF1	FREF0	IFPR	BND1	BND0	AMFM

Table 12. Description of data byte 3 bits

Bit	Symbol	Description
7	IFMT	IF measuring time. If IFMT = 0, then IF measuring time is 20 ms. If IFMT = 1, then IF measuring time is 2 ms.
6 to 4	FREF[2:0]	reference frequency for synthesizer. These 3 bits determine the reference frequency, see <u>Table 13</u> .

New in car entertainment car radio tuner IC (NICE-PACS)

Table 12. Description of data byte 3 bits ...continued

Bit	Symbol	Description
3	IFPR	IF counter prescaler ratio. If IFPR = 0, then IF prescaler ratio is 40. If IFPR = 1, then IF prescaler ratio is 10.
2 and 1	BND[1:0]	band switch. These 2 bits select in FM mode band and local or distance, see <u>Table 14</u> ; in AM mode band and AM stereo, see <u>Table 15</u> .
0	AMFM	AM or FM switch. If AMFM = 0, then FM mode. If AMFM = 1, then AM mode.

Table 13. Reference frequency setting

FREF2	FREF1	FREF0	f _{ref} (kHz)
0	0	0	100
1	0	0	50
0	1	0	25
1	1	0	20
0	0	1	10
1	0	1	10
0	1	1	10
1	1	1	10

Table 14. FM mode

BND1	BND0	Frequency band	VCO divider	Charge pump current
0	0	FM standard	2	130 μA + 3 mA
0	1	FM Japan	3	130 μA + 3 mA
1	0	FM East Europe	3	1 mA
1	1	FM weather	1	300 μΑ

Table 15. AM mode

BND1	BND0	Frequency band	VCO divider	Charge pump current
0	0	AM SW mono	10	1 mA
0	1	AM SW stereo	10	1 mA
1	0	AM LW/MW mono	20	1 mA
1	1	AM LW/MW stereo	20	1 mA

8.6 Write mode: data byte 4

Table 16. Format of data byte 4

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
KAGC	AGC1	AGC0	AMSM/FMBW	LODX	FLAG	BW1	BW0

New in car entertainment car radio tuner IC (NICE-PACS)

Table 17. Description of data byte 4 bits

	•	
Bit	Symbol	Description
7	KAGC	keyed FM AGC. If KAGC = 0, then keyed FM AGC is off. If KAGC = 1, then keyed FM AGC is on.
6 and 5	AGC[1:0]	wideband AGC. These 2 bits set the start value of wideband AGC. For AM, see <u>Table 18</u> and for FM, see <u>Table 19</u> .
4	AMSM/FMBW	AM soft mute or FM bandwidth. AM mode: if AMSM/FMBW = 0, then AM soft mute is off; if AMSM/FMBW = 1, then AM soft mute is on. FM mode: see $\frac{\text{Table 20}}{\text{Table 20}}$.
3	LODX	local or distance. If LODX = 0, then distance mode is on. If $LODX = 1$, then local mode is on.
2	FLAG	software programmable flag. If FLAG = 0, then flag output pin SWFLAG is HIGH. If FLAG = 1, then flag output pin SWFLAG is LOW.
1 and 0	BW[1:0]	FM IF2 bandwidth setting. See Table 20.

Table 18. Setting of wideband AGC for AM (m = 0.3)

	•	
AGC1	AGC0	AM mixer 1 input voltage (peak value) (mV)
0	0	150
0	1	275
1	0	400
1	1	525

Table 19. Setting of wideband AGC for FM

AGC1	AGC0	FM RF mixer input voltage (RMS value) (mV)
1	1	3
1	0	6
0	1	9
0	0	12

Table 20. FM IF2 bandwidth setting

FMBW	BW1	BW0	FM IF2 bandwidth B _{-3dB}
0	0	0	dynamic mode
0	0	1	130 kHz fixed
0	1	0	90 kHz fixed
0	1	1	60 kHz fixed
1	0	0	25 kHz frequency offset alignment mode; bandwidth flag output switched to frequency offset detector alignment voltage

8.7 Write mode: data byte 5

Table 21. Format of data byte 5

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LST4	LST3	LST2	LST1	LST0	LSL2	LSL1	LSL0

New in car entertainment car radio tuner IC (NICE-PACS)

Table 22. Description of data byte 5 bits

Bit	Symbol	Description
7 to 3	LST[4:0]	setting of level DAA starting point. These 5 bits determine the offset of the level detector output voltage.
2 to 0	LSL[2:0]	setting of level DAA slope. These 3 bits determine the steepness of the level detector output voltage.

Table 23. Standard setting of data byte 5 bits

Setting of level DAA starting point					Setting of level DAA slope		
LST4	LST3	LST2	LST1	LST0	LSL2	LSL1	LSL0
1	0	0	0	0	1	0	0

8.8 Write mode: data byte 6

Table 24. Format of data byte 6

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TE	CF6	CF5	CF4	CF3	CF2	CF1	CF0

Table 25. Description of data byte 6 bits

Bit	Symbol	Description
7	TE	threshold extension. If $TE = 0$, then threshold extension is off. If $TE = 1$, then threshold extension is on.
6 to 0	CF[6:0]	setting of FM IF2 center frequency DAA. The content of CF6 to CF0 determines the center frequency of the 450 kHz filter.

8.9 Write mode: data byte 7

Table 26. Format of data byte 7

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FOF3	FOF2	FOF1	FOF0	FGN3	FGN2	FGN1	FGN0

Table 27. Description of data byte 7 bits

Bit	Symbol	Description
7 to 4	FOF[3:0]	frequency offset gain alignment
3 to 0	FGN[3:0]	IF2 filter gain alignment

8.10 Read mode: data byte 0

Table 28. Format of 1st data byte

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IFC7	IFC6	IFC5	IFC4	IFC3	IFC2	IFC1	IFC0

Table 29. Description of data byte 0 bits

Bit	Symbol	Description
7 to 0	IFC[7:0]	IF counter result. These bits contain the least significant 8 bits of the IF counter result.

New in car entertainment car radio tuner IC (NICE-PACS)

8.11 I²C-bus specification

Information about the I²C-bus can be found in the user manual *UM10204 "I²C-bus specification and user manual"*.

The standard I²C-bus specification is expanded by the following definitions.

IC addresses:

• 1st IC address C2H: 1100 001R/W

• 2nd IC address C0H: 1100 000R/W

Structure of the I²C-bus logic: slave transceiver with auto increment.

Subaddresses are not used.

A second I²C-bus address can be selected by connecting pin FREF via a 68 $k\Omega$ resistor to GND.

8.11.1 Data transfer

Data sequence: address, byte 0, byte 1, byte 2, byte 3, byte 4, byte 5, byte 6, and byte 7. The data transfer has to be in this order. The LSB = 0 indicates a WRITE operation to the TEA6848HL.

Bit 7 of each byte is considered the MSB and has to be transferred as the first bit of the byte.

The data becomes valid at the output of the internal latches with the acknowledge of each byte. A STOP condition after any byte can shorten transmission times.

When writing to the transceiver by using the STOP condition before completion of the whole transfer:

- The remaining bytes will contain the old information
- If the transfer of a byte is not completed, this byte is lost and the previous information is available

8.11.2 I²C-bus pull-up resistors

When the IC is used together with the TEA688x or TEF689x and both SCL and SDA lines are connected via the I²C-bus to the TEA688x or TEF689x, the pull-up resistors of the tuner IC should be connected to the digital supply voltage of the TEA688x or TEF689x. Otherwise an I²C-bus pull-down can occur switching off the tuner IC supply when the I²C-bus buffer interface of the TEA688x or TEF689x is enabled for data transfer to the tuner IC.

8.11.3 Restriction of the I²C-bus characteristic

At $-40~^{\circ}$ C the start of the acknowledge bit after transmitting the slave address exceeds the general requirement of $t_{HD;DAT} < 3.45~\mu s$. The start of acknowledge is $t_{ST;ACK} < 4.1~\mu s$ over the full temperature range from $-40~^{\circ}$ C to $+85~^{\circ}$ C. This will not influence the overall system performance, because the required set-up time $t_{SU;DAT} > 250~ns$ is fulfilled at any condition.

New in car entertainment car radio tuner IC (NICE-PACS)

8.11.4 Frequency setting

For new frequency setting, in both AM and FM mode, the programmable divider is enabled by setting bit MUTE = 1. To select an FM frequency, two I²C-bus transmissions are necessary:

First: bit MUTE = 1Second: bit MUTE = 0

8.11.5 Default settings

No default settings at power-on reset. One I²C-bus transmission is required to program the IC.

8.11.6 Timing requirements

Table 30. Timing requirements of I²C-bus software

9 14	
Function	Timing
Switching from FM to AM	400 ms (10 μ F at pin CAGC)
Switching from AM to FM	100 ms (10 μF at pin CAGC; wideband position has to be set for at least 100 ms to activate speed-up circuitry)
Start-up in FM mode	wideband position has to be set for at least 100 ms to activate speed-up circuitry
Switching to dynamic mode	500 μs (18 nF at pin TACD; wideband position has to be set for at least 500 μs to activate clamping circuitry at pin TACD)

9. Internal circuitry

Table 31. Equivalent pin circuits

Pin	Symbol	Equivalent circuit	
1	FMLIMDCFDB1		
2	FMLIMDCFDB2		L

17 of 62

New in car entertainment car radio tuner IC (NICE-PACS)

Table 31. Equivalent pin circuits ...continued

Pin	Symbol	Equivalent circuit
3	AMIF2DEC	
6	AMIF2IN	

4 IREFFMIF2

5 AMNBHOLD

7	IF1GND	
8	FMMIX2IN	
10	FMMIX2DEC	

New in car entertainment car radio tuner IC (NICE-PACS)

Table 31. Equivalent pin circuits ...continued

Pin	Symbol	Equivalent circuit
9	COFFSET	
		9 001aah266
11	IFCDAATEST	

12 IFAMPOUT

13	V_{DDA1}	
14	IFAMPIN	
15	IFAMPDEC	

New in car entertainment car radio tuner IC (NICE-PACS)

Table 31. Equivalent pin circuits ...continued

Pin	Symbol	Equivalent circuit
16	IF2FILQ	

17 IF2FILI

18	MIX1OUT1
19	MIX1OUT2

20	V_{DDA2}	
21	SWFLAG	

22	AMMIX1DEC	
23	AMMIX1IN	

20 of 62

New in car entertainment car radio tuner IC (NICE-PACS)

Table 31. Equivalent pin circuits ... continued

	1	
Pin	Symbol	Equivalent circuit
24	VAMCASFB	24 10 kΩ 001aah275
25	VAMCAS	25 1 kΩ 001aah276
26	TAFAMAGC	

27 THFAMAGC

28 IAMAGC

 $V_{ref(MIX)}$

TEA6848HL_4 © NXP B.V. 2010. All rights reserved.

New in car entertainment car radio tuner IC (NICE-PACS)

Table 31. Equivalent pin circuits ...continued

Pin	Symbol	Equivalent circuit
30	FMMIXIN1	
33	FMMIXIN2	

31	RFGND
32	i.c.
3/1	WRELAG

35 IFMAGC

36 TFMAGC

TEA6848HL **NXP Semiconductors**

New in car entertainment car radio tuner IC (NICE-PACS)

Table 31. Equivalent pin circuits ... continued

Table 31.	Equivalent pin circuits	
Pin	Symbol	Equivalent circuit
37	TKEYEDAGC	37 001aah285
38	DAAOUT	1 1 1
		38 Δ 36 kΩ Δ 001aah286
39	DAATD	1
		39 001aah287
40	DAAIN	(43)
		40 2.5 kΩ 1 001aah288

Product data sheet

i.c.

41

23 of 62

New in car entertainment car radio tuner IC (NICE-PACS)

Table 31. Equivalent pin circuits ...continued

Pin	Symbol	Equivalent circuit	
42	V_{tune}		
		1	
		(42)	
		- أنم	
		$ \uparrow $	
		<u> Т</u>	
		001aah289	

43 CPOUT

44	V_{DDA3}		
45	FREF		

46	V_{DDD}	
47	DGND	
48	VCOGND	
49	OSCFDB	
50	OSCTNK	Д
		1.1

New in car entertainment car radio tuner IC (NICE-PACS)

Table 31. Equivalent pin circuits ...continued

Pin	Symbol	Equivalent circuit
52	MPXDCFDB	

53 AFSAMPLE

54 AFHOLD

55 TRDSMUTE

56 AMAFIF2

New in car entertainment car radio tuner IC (NICE-PACS)

Table 31. Equivalent pin circuits ... continued

Pin	Symbol	Equivalent circuit
57	RDSMPX	

58 FMMPX

59	V_{DDA5}
60	MODDET

61	V_{DDA6}
62	IFBWFLAG

63 SDA

TEA6848HL_4 © NXP B.V. 2010. All rights reserved.

New in car entertainment car radio tuner IC (NICE-PACS)

Table 31. Equivalent pin circuits ...continued

Pin	Symbol	Equivalent circuit	
64	SCL	64 1 kΩ 001aah303	
65	V _{IFBW}	65 001aah304	
66	IF2GND		
67	CINT		

68 MODETOUT

69 TACD

27 of 62

New in car entertainment car radio tuner IC (NICE-PACS)

Table 31. Equivalent pin circuits ...continued

Pin	Symbol	Equivalent circuit
70	V _{level} (AMFM)	70 150 Ω 001aah308
71	XTAL1	
72	XTALGND	27.6 pF
73	XTAL2	71 20 kΩ 20 kΩ 73 10 kΩ
74	V _{level(ACD)}	
		8 kΩ 001aah310
75	ACDTHRES	
		75

76 IREF

TEA684BHL_4 © NXP B.V. 2010. All rights reserved.

New in car entertainment car radio tuner IC (NICE-PACS)

Table 31. Equivalent pin circuits ...continued

Pin	Symbol	Equivalent circuit
77	AMMIX2OUT1	
78	AMMIX2OUT2	

79 CAGC

 $V_{ref(lim)}$

New in car entertainment car radio tuner IC (NICE-PACS)

10. Limiting values

Table 32. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DDA1}	analog supply voltage 1 for FM IF amplifier		-0.3	+10	V
V_{DDA2}	analog supply voltage 2 for FM and AM RF		-0.3	+10	V
V_{DDA3}	analog supply voltage 3 for tuning PLL		-0.3	+10	V
V_{DDA4}	analog supply voltage 4 for voltage controlled oscillator		-0.3	+10	V
V_{DDA5}	analog supply voltage 5 for on-chip power supply		-0.3	+6.5	V
V_{DDA6}	analog supply voltage 6 for on-chip power supply		-0.3	+10	V
V_{DDD}	digital supply voltage		-0.3	+6.5	V
$\Delta V_{DD8.5\text{-}DD5}$	difference between any 8.5 V supply voltage and any 5 V supply voltage		[1] -0.3	-	V
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		-40	+85	°C
V_{ESD}	electrostatic discharge voltage		^[2] –200	+200	V
			<u>[3]</u> −2000	+2000	V

^[1] To avoid damage and wrong operation it is necessary to keep all 8.5 V supply voltages at a higher level than any 5 V supply voltage. This is also necessary during power-on and power-down sequences. Precautions have to be provided in such a way that interference cannot pull down the 8.5 V supply below the 5 V supply. In case that such precautions cannot be assured under all conditions, the maximum allowable time at which the 5 V supply may exceed the 8.5 V supply is 1 ms. The maximum allowable voltage difference in that case is 3 V.

- [2] Machine model (R = 0Ω , C = 200 pF).
- [3] Human body model (R = 1.5 k Ω , C = 100 pF).

11. Thermal characteristics

Table 33. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air	54	K/W
R _{th(j-c)}	thermal resistance from junction to case		9	K/W

12. Static characteristics

Table 34. Static characteristics

 $V_{DDA(n)} = 8.5 \text{ V}$; $V_{DDA5} = 5 \text{ V}$; $V_{DDD} = 5 \text{ V}$; $T_{amb} = 25 \text{ °C}$; tested in the circuit of <u>Figure 12</u> and <u>Figure 13</u>; unless otherwise specified.

-						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply vo	ltage					
$V_{DDA(n)}$	analog supply voltages 1 to 4 and 6		8	8.5	9	V
V_{DDA5}	analog supply voltage 5		4.75	5	5.25	V
V_{DDD}	digital supply voltage		4.75	5	5.25	V
Supply cu	rrent in FM mode					
I _{DDA(tot)}	total analog supply current		<u>[1]</u> 45	56	67	mA

TEA6848HL_4 © NXP B.V. 2010. All rights reserved.

New in car entertainment car radio tuner IC (NICE-PACS)

Table 34. Static characteristics ... continued

 $V_{DDA(n)} = 8.5 \text{ V}; V_{DDA5} = 5 \text{ V}; V_{DDD} = 5 \text{ V}; T_{amb} = 25 \text{ °C}; \text{ tested in the circuit of } \frac{Figure 12}{2} \text{ and } \frac{Figure 13}{2}; \text{ unless otherwise specified.}$

•							
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{DDD}	digital supply current	Europe/US band		21	26	31	mA
		Japan/East Europe band		26.5	33	39.5	mA
I _{DDA1}	analog supply current 1 for FM IF amplifier			5.5	7.3	8.8	mA
I _{DDA2}	analog supply current 2 for FM RF			4.2	5.2	6.2	mA
I _{DDA3}	analog supply current 3 for tuning PLL			3.2	4	4.8	mA
I _{DDA4}	analog supply current 4 for VCO			5.2	6.5	7.8	mA
I _{DDA5}	analog supply current 5 for on-chip	Europe/US band		-	3.8	-	mA
	power supply	Japan/East Europe band		-	7.4	-	mA
I _{DDA6}	analog supply current 6 for on-chip power supply			21.5	27	32.5	mA
I _{MIX1OUT1}	bias current of FM mixer output 1			4.8	6	7.2	mA
I _{MIX1OUT2}	bias current of FM mixer output 2			4.8	6	7.2	mA
Supply curr	ent in AM mode						
I _{DDA(tot)}	total analog supply current		[1]	40	50	60	mA
I _{DDD}	digital supply current			22	27	32	mA
I _{DDA1}	analog supply current 1 for AM mixer 2			100	120	140	μΑ
I _{DDA2}	analog supply current 2 for RF			1.4	1.8	2.2	mA
I _{DDA3}	analog supply current 3 for tuning PLL			1.8	2.2	2.6	mA
I _{DDA4}	analog supply current 4 for VCO			5	6.5	8	mA
I _{DDA5}	analog supply current 5 for on-chip power supply			-	11	-	mA
I _{DDA6}	analog supply current 6 for on-chip power supply			14	17.5	21	mA
I _{MIX1OUT1}	bias current of AM mixer 1 output 1			4.8	6	7.2	mΑ
I _{MIX1OUT2}	bias current of AM mixer 1 output 2			4.8	6	7.2	mA
I _{AMMIX2OUT1}	bias current of AM mixer 2 output 1			3.6	4.5	5.4	mA
I _{AMMIX2OUT2}	bias current of AM mixer 2 output 2			3.6	4.5	5.4	mA
On-chip pov	wer supply reference current generato	r: pin IREF					
V _{o(ref)}	output reference voltage	$R_{IREF} = 120 \text{ k}\Omega$		4	4.25	4.5	V
R _o	output resistance	$R_{IREF} = 120 \text{ k}\Omega$		-	10	-	kΩ
I _{o(max)}	maximum output current	$R_{IREF} = 120 \text{ k}\Omega$		-100	-	+100	nA

^[1] Sum of analog supply currents 1 to 4 and 6.

New in car entertainment car radio tuner IC (NICE-PACS)

13. Dynamic characteristics

Table 35. Dynamic characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Voltage contro	lled oscillator						
f _{osc}	oscillator frequency			162.9	-	248.2	MHz
C/N	carrier-to-noise ratio	$f_{OSC} = 200 \text{ MHz}; \Delta f = 10 \text{ kHz}$		-	97	-	$\frac{dBc}{\sqrt{Hz}}$
RR	$ \ \text{ripple rejection} \frac{\Delta f_{osc}}{f_{osc}} $	f_{ripple} = 100 Hz; $V_{DDA4(ripple)}$ = 100 mV (RMS); f_{osc} = 200 MHz		92	99	-	dB
Crystal oscilla	tor						
f _{xtal}	crystal frequency			-	20.5	-	MHz
C/N	carrier-to-noise ratio	f_{xtal} = 20.5 MHz; Δf = 10 kHz		-	112	-	$\frac{dBc}{\sqrt{Hz}}$
Circuit inputs: p	ins XTAL1, XTALGND and X	TAL2					
V _{o(osc)(rms)}	oscillator output voltage (RMS value)		[1]	80	100	160	mV
V _{XTAL1} , V _{XTAL2}	DC bias voltage			1.7	2.1	2.5	V
R _i	real part of input impedance	$V_{XTAL1} - V_{XTAL2} = 1 \text{ mV}$	[1]	-250	-	-	Ω
C _i	input capacitance		<u>[1]</u>	8	10	12	pF
Synthesizer							
Programmable	divider						
N _{prog}	programmable divider ratio			512	-	32767	
ΔN_{step}	programmable divider step size			-	1	-	
Charge pump: p	oin CPOUT						
I _{sink(cp1)} I	low charge pump 1 sink current	$0.4 \text{ V} < \text{V}_{\text{CPOUT}} < 7.6 \text{ V};$ data byte 3: bit 0 = 0, bit 1 = 1, bit 2 = 1 for FM weather band; $f_{\text{VCO}} > f_{\text{ref}} \times \text{divider ratio}$		-	300	-	μА
I _{source(cp1)I}	low charge pump 1 source current	$0.4 \text{ V} < \text{V}_{\text{CPOUT}} < 7.6 \text{ V};$ data byte 3: bit $0 = 0$, bit $1 = 1$, bit $2 = 1$ for FM weather band; $f_{\text{VCO}} < f_{\text{ref}} \times \text{divider ratio}$		-	-300	-	μА
lsink(cp1)h	high charge pump 1 sink current	$0.4~V < V_{CPOUT} < 7.6~V;$ data byte 3: bit 0 = 1, bit 1 = 1, bit 2 = 1; AM stereo mode; VCO divider = 10 (LW and MW); $f_{VCO} > f_{ref} \times$ divider ratio		-	1	-	mA
I _{source(cp1)h}	high charge pump 1 source current	$0.4 \text{ V} < \text{V}_{\text{CPOUT}} < 7.6 \text{ V};$ data byte 3: bit 0 = 1, bit 1 = 1, bit 2 = 1; AM stereo mode; VCO divider = 10 (LW and MW); $f_{\text{VCO}} < f_{\text{ref}} \times \text{divider ratio}$		-	-1	-	mA

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 35.
 Dynamic characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{sink(cp2)}	charge pump 2 sink current	$0.3 \text{ V} < \text{V}_{\text{CPOUT}} < 7.1 \text{ V};$ data byte 3: bit 0 = 0, bit 1 = 0, bit 2 = 0; FM standard mode; $f_{\text{VCO}} > f_{\text{ref}} \times \text{divider ratio}$	-	130	-	μА
I _{source(cp2)}	charge pump 2 source current	$0.3 \text{ V} < \text{V}_{\text{CPOUT}} < 7.1 \text{ V};$ data byte 3: bit 0 = 0, bit 1 = 0, bit 2 = 0; FM standard mode; $f_{\text{VCO}} < f_{\text{ref}} \times \text{divider ratio}$	-	-130	-	μА
Charge pum	p: pin V _{tune}					
I _{sink(cp3)}	charge pump 3 sink current	$0.4 \text{ V} < \text{V}_{\text{tune}} < 7.6 \text{ V}$; data byte 3: bit $0 = 0$, bit $1 = 0$, bit $2 = 0$; FM standard mode; $f_{\text{VCO}} > f_{\text{ref}} \times \text{divider ratio}$	-	3	-	mA
I _{source(cp3)}	charge pump 3 source current	$0.4 \text{ V} < \text{V}_{\text{tune}} < 7.6 \text{ V}$; data byte 3: bit $0 = 0$, bit $1 = 0$, bit $2 = 0$; FM standard mode; $f_{\text{VCO}} < f_{\text{ref}} \times \text{divider ratio}$	-	-3	-	mA
Antenna Dig	gital Auto Alignment (DAA)					
DAA input: p	in DAAIN					
I _{bias(cp)}	charge pump buffer input bias current	$V_{DAAIN} = 0.4 \text{ V to 8 V}$	-10	-	+10	nA
$V_{i(cp)}$	charge pump buffer input voltage		0	-	8.5	V
DAA output:	pin DAAOUT[2]					
$V_{o(AM)}$	DAA output voltage in AM mode	I _{DAAOUT} < 100 μA	-	-	0.3	V
$V_{o(FM)}$	DAA output voltage in FM mode	minimum value; data byte 2 = 1000 0000; $V_{DAAIN} = 0.5 \text{ V}$; $V_{DAATD} = 0.45 \text{ V}$	-	-	0.5	V
		maximum value; data byte 2 = 1111 1111; $V_{DAAIN} = 4.7 \text{ V}; V_{DAATD} = 0.45 \text{ V}$	8	-	8.5	V
		$V_{DAAIN} = 4 \text{ V}; V_{DAATD} = 0.45 \text{ V}$				
		data byte 2 = 1000 0000	-	0.65	-	V
		data byte 2 = 1100 0000	3.8	4	4.2	V
		$V_{DAAIN} = 2 \text{ V}; V_{DAATD} = 0.45 \text{ V}$				
		data byte 2 = 1101 0101	2.3	2.6	2.9	V
		data byte 2 = 1010 1010	1.2	1.4	1.6	V
$V_{o(n)}$	DAA output noise voltage	data byte 2 = 1100 0000; FM mode; $V_{DAAIN} = 4 \text{ V}$; $V_{DAATD} = 0.45 \text{ V}$; B = 300 Hz to 22 kHz	-	30	100	μV
$\Delta V_{o(T)}$	DAA output voltage variation with temperature	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C};$ data byte 2 = 1100 0000	-8	-	+8	mV

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 35.
 Dynamic characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$\Delta V_{o(step)}$	DAA step accuracy	n = 0 to 127; FM mode; V_{DAAOUT} = 0.5 V to 8 V; V_{DAAIN} = 2 V; V_{DAATD} = 0.45 V	0.5V _{LSB}	V_{LSB}	1.5V _{LSB}	mV
$\Delta V_{o(sink)}$	DAA output variation caused by sink current	$V_{DAAIN} = 4 \text{ V}; I_L = 50 \mu\text{A}$	$-V_{LSB}$	-	+V _{LSB}	
$\Delta V_{o(source)}$	DAA output variation caused by source current	$V_{DAAIN} = 4 \text{ V}; I_L = -50 \mu\text{A}$	$-V_{LSB}$	-	+V _{LSB}	
t _{st}	DAA output settling time	$V_{DAAOUT} = 0.2 \text{ V to } 8.25 \text{ V};$ $C_L = 270 \text{ pF}$	-	20	30	μS
RR	ripple rejection $\frac{V_{DAAOUT}}{V_{DDA3}}$	data byte 2 = 1010 1011; FM mode; $V_{DAAIN} = 4 V$; $V_{DAATD} = 0.45 V$; $f_{ripple} = 100 Hz$; $V_{DDA3(ripple)} = 100 mV (RMS)$	-	65	-	dB
C _L	DAA output load capacitance		-	-	270	pF
DAA tempera	ature compensation: pin DAAT	D				
I _{source}	compensation diode source current	$V_{DAATD} = 0.2 \text{ V to } 1.2 \text{ V}$	-50	-40	-30	μΑ
TC _{source}	temperature coefficient of compensation diode source current	V_{DAATD} = 0.2 V to 1.2 V; T_{amb} = -40 °C to +85 °C	-300	-	+300	$\frac{10^{-6}}{K}$
IF counter (F	FM IF2 or AM IF2 counter)					
N _{IF}	IF counter length for AM and FM		-	8	-	bit
Pins FMMIX2	2IN and FMMIX2DEC[3]					
V _{sens(rms)}	sensitivity voltage (RMS value)	FM mode	-	30	100	μV
N	counter result (decimal)	period = 2 ms;				
		$V_{\text{FMMIX2IN-FMMIX2DEC}} = 100 \mu\text{V}$				
		prescaler ratio = 10	-	90	-	
		prescaler ratio = 40	-	22	-	
		period = 20 ms;				
		$V_{\text{FMMIX2IN-FMMIX2DEC}} = 100 \mu\text{V}$				
		prescaler ratio = 10	-	132	-	
		prescaler ratio = 40	-	225	-	
	N and AMIF2DEC[4]					
V _{sens(rms)}	sensitivity voltage (RMS value)	AM mode; m = 0	-	30	70	μV
N	counter result (decimal)	period = 2 ms; $V_{AMIF2IN-AMIF2DEC}$ = 200 μV	-	132	-	
		period = 20 ms; $V_{AMIF2IN-AMIF2DEC}$ = 200 μV	-	40	-	

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 35.
 Dynamic characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Reference fr	requency for car signal proce	essor IC TEA688x and TEF689x[5]				
Reference fre	equency divider					
N _{ref}	crystal oscillator divider ratio		-	272	-	
f _{ref}	reference frequency	$f_{xtal} = 20.5 \text{ MHz}$	-	75.368	-	kHz
Voltage gene	erator: pin FREF					
$V_{o(p-p)}$	AC output voltage (peak-to-peak value)	not loaded	60	90	-	mV
Vo	DC output voltage		3.2	3.4	3.7	V
R _o	output resistance		-	-	50	kΩ
$R_{L(min)}$	minimum load resistance for first I ² C-bus address		1	-	-	ΜΩ
Weather bar	nd flag: pin WBFLAG					
I _{source(max)}	maximum source current		-	-5	-	mA
R _{i(shunt)}	internal shunt resistance to ground		-	50	-	kΩ
$V_{o(max)}$	maximum output voltage for FM mode	measured with respect to pin RFGND	0	-	0.2	V
V _o	output voltage for weather band mode	measured with respect to pin RFGND	4	-	5	V
AM signal cl	hannel					
AM RF AGC	stage (PIN diode drive)					
$V_{i(p)}$	RF input voltage for wideband AGC start level (peak value)	m = 0.3; data byte 4: bit $5 = 0$, bit $6 = 0$	-	150	-	mV
		m = 0.3; data byte 4: bit $5 = 1$, bit $6 = 0$	-	275	-	mV
		m = 0.3; data byte 4: bit $5 = 0$, bit $6 = 1$	-	400	-	mV
		m = 0.3; data byte 4: bit 5 = 1, bit 6 = 1	-	525	-	mV
AM IF AGC s	stage input: pin AMIF2IN					
$V_{i(p)}$	IF2 input voltage (peak value)	AGC start level	0.20	0.27	0.35	V
AM RF AGC	current generator output: pin IA	AMAGC				
I _{sink(max)}	maximum AGC sink current	$V_0 = 2.8 \text{ V}$	11	15	19	mA
I _{sink}	AGC sink current	FM mode	1	-	-	mA
R _o	output resistance	$I_0 = 1 \mu A$	0.5	-	-	$M\Omega$
Co	AM AGC current generator output capacitance		-	5	7	pF
RF cascode	AGC					
I _{cas(off)}	AM cascode off current	FM mode	-	-	100	nA

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 35.
 Dynamic characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Pin VAMCAS	SFB						
V _{cas(FB)}	cascode feedback voltage	V _{AMMIX1IN-AMMIX1DEC} above threshold; minimum gain		-	0.26	-	V
I _{cas(FB)}	cascode feedback sense current			0	-	1	μА
Pin VAMCAS	6						
V_{cas}	cascode voltage	V _{AMMIX1IN-AMMIX1DEC} below threshold; maximum gain		-	5	-	V
I _{cas}	cascode transistor base current capability			100	-	-	μΑ
AM mixer 1 (IF1 = 10.7 MHz)						
Mixer inputs:	pins AMMIX1DEC and AMMIX	(1IN					
R _i	input resistance		[6]	15	25	40	kΩ
C _i	input capacitance		[6]	2.5	5	7.5	pF
VI	DC input voltage			2.3	2.7	3.1	V
$V_{i(max)}$	maximum input voltage	1 dB compression point of V _{MIX1OUT1-MIX1OUT2} ; m = 0		500	-	-	mV
Mixer output	s: pins MIX10UT1 and MIX10U	JT2					
R _o	output resistance		[7]	100	-	-	kΩ
C _o	output capacitance		[7]	-	4	7	pF
$V_{o(max)(p-p)}$	maximum output voltage (peak-to-peak value)			12	15	-	V
I _{bias}	mixer bias current	AM mode		4.8	6	7.2	mA
Mixer							
gm(conv)	conversion transconductance I _{MIX10UT}			2.0	2.55	3.2	$\frac{mA}{V}$
	$\overline{V_{MIX1IN}}$						
gm(conv)(T)	conversion transconductance variation with temperature			-	-9 × 10 ⁻⁴	-	K ⁻¹
	$\frac{\Delta g_{m(conv)}}{g_{m(conv)} \times \Delta T}$						
IP3	3rd-order intermodulation	R_L = 2.6 kΩ (AC load between output pins); Δf = 300 kHz		135	138	-	dBμV
IP2	2nd-order intermodulation	R_L = 2.6 k Ω (AC load between output pins)		-	170	-	dBμV
$V_{i(n)(eq)}$	equivalent input noise voltage	band limited noise; R_{gen} = 750 Ω ; R_{L} = 2.6 k Ω (AC load between output pins)		-	5.8	8	$\frac{nV}{\sqrt{Hz}}$
F	noise figure of AM mixer 1			-	4.5	7.1	dB

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 35.
 Dynamic characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
AM mixer 2 (I	F2 = 450 kHz)						
Mixer inputs:	pins IFAMPIN and IFAMPDEC						
R _i	input resistance		[8]	-	330	-	Ω
C _i	input capacitance		[8]	-	5	7	pF
V _I	DC voltage			2.4	2.7	3	V
$V_{i(max)(p)}$	maximum input voltage (peak value)	1 dB compression point of VAMMIX2OUT1-AMMIX2OUT2		1.1	1.4	-	V
Mixer outputs	s: pins AMMIX2OUT1 and AMN	1IX2OUT2					
R _o	output resistance		[9]	50	-	-	kΩ
Co	output capacitance		[9]	-	4	7	pF
$V_{o(max)(p-p)}$	maximum output voltage (peak-to-peak value)	$V_{DDA6} = 8.5 \text{ V}$		12	15	-	V
I _{bias}	mixer bias current	AM mode		3.6	4.5	5.4	mA
Mixer							
g _{m(conv)}	conversion transconductance			1.3	1.6	1.9	$\frac{mA}{V}$
	$\frac{I_{AMMIX2OUT}}{V_{IFAMPIN}}$						
gm(conv)(T)	conversion			-	-9 × 10 ⁻¹	4 _	K ⁻¹
	transconductance variation with temperature						
	$\frac{\Delta g_{m(conv)}}{g_{m(conv)} \times \Delta T}$						
IP3	3rd-order intermodulation	R_L = 1.5 kΩ (AC load between output pins); Δf = 300 kHz		134	137	-	dBμV
IP2	2nd-order intermodulation	$R_L = 1.5 \text{ k}\Omega$ (AC load between output pins)		-	170	-	dBμV
	equivalent input noise $R_{gen} = 330 \Omega$; $R_L = 1.5 k\Omega$						
$V_{i(n)(eq)}$	equivalent input noise voltage	R_{gen} = 330 Ω; R_L = 1.5 kΩ (AC load between output pins)		-	15	22	$\frac{nV}{\sqrt{Hz}}$
				-	15 16	22 19.5	$rac{nV}{\sqrt{Hz}}$ dB
F	voltage			- -			
F I _L	voltage noise figure of AM mixer 2	(AC load between output pins) FM mode		-		19.5	dB
F I _L AM IF2 AGC	voltage noise figure of AM mixer 2 mixer leakage current	(AC load between output pins) FM mode		-		19.5	dB
F I _L AM IF2 AGC	voltage noise figure of AM mixer 2 mixer leakage current stage: pins AMIF2IN and AMIF	(AC load between output pins) FM mode 2DEC[4]		-		19.5	dB
F IL AM IF2 AGC	voltage noise figure of AM mixer 2 mixer leakage current stage: pins AMIF2IN and AMIF	(AC load between output pins) FM mode 2DEC[4] audio attenuation $\alpha = -10$ dB		-	16 -	19.5 10	dB μA
F I _L AM IF2 AGC V _i	voltage noise figure of AM mixer 2 mixer leakage current stage: pins AMIF2IN and AMIF	(AC load between output pins) FM mode E2DEC[4] audio attenuation $\alpha = -10$ dB data byte 4: bit 4 = 1; mute on		-	16 -	19.5 10 40	dB μA μV
F I _L AM IF2 AGC V _i	voltage noise figure of AM mixer 2 mixer leakage current stage: pins AMIF2IN and AMIF input voltage	(AC load between output pins) FM mode 2DEC[4] audio attenuation $\alpha = -10$ dB data byte 4: bit 4 = 1; mute on data byte 4: bit 4 = 0; mute off		- - -	16 - 25 6	19.5 10 40 10	dB μA μV μV
F IL AM IF2 AGC V _i V _{AGC(start)} V _{AGC(stop)}	voltage noise figure of AM mixer 2 mixer leakage current stage: pins AMIF2IN and AMIF input voltage AGC start voltage	(AC load between output pins) FM mode 2DEC[4] audio attenuation α = -10 dB data byte 4: bit 4 = 1; mute on data byte 4: bit 4 = 0; mute off input carrier voltage		-	16 - 25 6 14	19.5 10 40 10 30	dB μA μV μV μV
F IL AM IF2 AGC Vi VAGC(start) VAGC(stop) VAGC(ctrl)	voltage noise figure of AM mixer 2 mixer leakage current stage: pins AMIF2IN and AMIF input voltage AGC start voltage AGC stop voltage AGC control voltage	($ m AC$ load between output pins) FM mode 2DEC[4] audio attenuation $\alpha = -10$ dB data byte 4: bit 4 = 1; mute on data byte 4: bit 4 = 0; mute off input carrier voltage maximum input peak voltage $V_i = 1$ mV		- - -	16 - 25 6 14 - 4.3	19.5 10 40 10 30	dB μA μV μV μV V
V _{i(n)(eq)} F I _L AM IF2 AGC V _i V _{AGC(start)} V _{AGC(stop)} V _{AGC(ctrl)} ΔAGC R _i	voltage noise figure of AM mixer 2 mixer leakage current stage: pins AMIF2IN and AMIF input voltage AGC start voltage AGC stop voltage	(AC load between output pins) FM mode 2DEC[4] audio attenuation α = -10 dB data byte 4: bit 4 = 1; mute on data byte 4: bit 4 = 0; mute off input carrier voltage maximum input peak voltage		- - - 1 4.1	16 - 25 6 14 -	19.5 10 40 10 30 - 4.7	dB μA μV μV μV V

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 35.
 Dynamic characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
AM detector						
V _{sens(rms)}	sensitivity voltage (RMS value)	m = 0.3; f_{mod} = 400 Hz; B_{AF} = 2.15 kHz; R_{gen} = 2 kΩ	<u>[4]</u>			
		(S+N)/N = 26 dB	-	45	65	μV
		(S+N)/N = 46 dB	-	600	900	μV
(S+N)/N	maximum signal plus noise-to-noise ratio	m = 0.3; f_{mod} = 400 Hz; B_{AF} = 2.15 kHz; R_{gen} = 2 kΩ	-	60	-	dB
THD	total harmonic distortion	B_{AF} = 2.15 kHz; C_{AGC} = 10 $\mu F;$ $V_{AMIF2IN}$ = 100 μV to 250 mV (RMS)				
		$m = 0.8$; $f_{mod} = 400 Hz$	-	0.5	1	%
		$m = 0.8$; $f_{mod} = 100 Hz$	-	1.25	2.5	%
t _{sw}	FM to AM switching time	$V_{AMIF2IN}$ = 100 μ V; C_{AGC} = 10 μ F	-	1000	1500	ms
t _{st}	AM AGC settling time	$V_{AMIF2IN}$ = 100 μV to 100 mV	-	400	600	ms
		$V_{AMIF2IN}$ = 100 mV to 100 μ V	-	600	900	ms
Output: pin /	AMAFIF2					
$V_{o(rms)}$	AM IF2 output voltage (RMS value)	AM stereo; m = 0; data byte 3: bit 0 = 1, bit 1 = 1, bit 2 = 1				
		minimum at $V_{AMIF2IN} = 14 \mu V$	1.5	3	4.5	mV
		maximum at V _{AMIF2IN} = 5 mV	130	180	230	mV
		AM mono; m = 0.3; data byte 3: bit 0 = 1, bit 1 = 0, bit 2 = 1; f_{mod} = 400 Hz; $V_{AMIF2IN}$ = 100 μV to 500 mV (RMS)	200	250	300	mV
R _o	output resistance	data byte 3: bit 0 = 1, bit 1 = 1, bit 2 = 1; AM stereo	-	-	500	Ω
		data byte 3: bit $0 = 1$, bit $1 = 0$, bit $2 = 1$; AM mono	-	-	500	Ω
C _o	output capacitance	data byte 3: bit $0 = 1$, bit $1 = 0$, bit $2 = 1$	-	5	7	pF
Z_{L}	load impedance	data byte 3: bit $0 = 1$, bit $1 = 0$, bit $2 = 1$; AM mono	100	-	-	kΩ
		data byte 3: bit $0 = 1$, bit $1 = 1$, bit $2 = 1$; AM stereo	10	-	-	kΩ
RR	ripple rejection	$V_{DDA5(ripple)} = 100 \text{ mV (RMS)};$ $f_{ripple} = 100 \text{ Hz}$	-	24	-	dB
		$V_{DDA6(ripple)} = 100 \text{ mV (RMS)};$ $f_{ripple} = 100 \text{ Hz}$	-	26	-	dB

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 35.
 Dynamic characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
AM IF2 level d	letector output: pin V _{level(AMFM}	; see <u>Figure 6</u>				
V _{level(AMFM)}	DC output voltage	$V_{AMIF2IN}$ = 10 μV to 1 V	0	-	7	V
		$V_{AMIF2IN}$ < 1 μ V; standard setting of level DAA	0.1	0.5	0.9	V
		V _{AMIF2IN} = 1.4 mV; standard setting of level DAA	1.6	2.2	2.8	V
$\Delta V_{\text{level}(AMFM)}$	step size for adjustment of level starting point	$V_{AMIF2IN} = 0 V$; standard setting of level slope	30	40	50	mV
V _{level(slope)}	slope of level voltage	$V_{AMIF2IN}$ = 140 μV to 140 mV; standard setting of level slope	650	800	950	$\frac{mV}{20 \ dB}$
ΔV_{step}	step size for adjustment of level slope	$V_{AMIF2IN} = 1.4 \text{ mV}$	45	60	75	$\frac{mV}{20 \ dB}$
B _{level(AMFM)}	bandwidth of level output voltage	V _{AMIF2IN} = 15 mV; standard setting of level DAA	200	300	-	kHz
R _o	output resistance		-	-	500	Ω
RR	$ \ \text{ripple rejection} \frac{V_{level}}{V_{DDA6}} \\$	$V_{DDA6(ripple)} = 100 \text{ mV (RMS)};$ $f_{ripple} = 100 \text{ Hz}$	-	36	-	dB
AM noise blan	ker; test signal and test circui	t; see <u>Figure 7</u>				
Threshold: pin	AMNBHOLD					
V _O	DC output voltage		4.3	4.6	5.1	V
t _{sup}	suppression time	$V_{pulse} = 200 \text{ mV (peak)};$ $V_{level(AMFM)} < 1.8 \text{ V}$	6	7.5	10	μS
f _{trigger}	trigger sensitivity frequency	$V_{pulse} = 200 \text{ mV (peak)};$ $V_{level(AMFM)} < 1.8 \text{ V}$	-	1000	-	Hz
		$V_{pulse} = 200 \text{ mV (peak)};$ $V_{level(AMFM)} > 2.2 \text{ V}$	-	-	100	Hz
		V _{pulse} = 20 mV (peak); V _{level(AMFM)} < 1.8 V	-	-	100	Hz
Noise detector	r output: pin TRDSMUTE					
I _{sink(AGC)}	AM noise blanker AGC sink current	V _{TRDSMUTE} = 3 V	35	50	65	μΑ
V_{AGC}	AM noise blanker AGC voltage	AM mixer 1 input $V_i = 0 V$	1.9	2.2	2.5	V
FM signal cha	annel					
FM RF AGC (F	FM distance mode; data byte	4: bit 3 = 0)				
Inputs: pins FI	MMIXIN1 and FMMIXIN2[10]					
$V_{i(RF)(rms)}$	RF input voltage for start of	data byte 4: bit 5 = 1, bit 6 = 1	-	3	-	mV
	wideband AGC (RMS value)	data byte 4: bit 5 = 0, bit 6 = 1	-	6	-	mV
	(Miles value)	data byte 4: bit 5 = 1, bit 6 = 0	-	9	-	mV
		data byte 4: bit $5 = 0$, bit $6 = 0$	-	12	-	mV
Pin TFMAGC						
R _{source}	source resistance		4	5	6	kΩ
FEA6848HL_4					© NXP B.V. 2010.	All rights reserve

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 35.
 Dynamic characteristics ...continued

Symbol	Parameter	Conditions	Min	Min Typ M		
V _{O(ref)}	DC output reference voltage	data byte 4: bit $5 = 0$, bit $6 = 0$; $V_{\text{FMMIXIN1-FMMIXIN2}} = 0 \text{ V}$	4.1	4.6	5.1	V
PIN diode drive	output: pin IFMAGC					
I _{sink(AGC)(max)}	maximum AGC sink current	$\begin{split} &V_{IFMAGC}=2.5 \text{ V;} \\ &V_{TFMAGC}=V_{O(ref)}-0.5 \text{ V;} \\ &\text{data byte 4: bit 5}=0, \text{ bit 6}=0, \\ &\text{bit 7}=0 \end{split}$	8	11.5	15	mA
I _{source} (AGC)(max)	maximum AGC source current	$\begin{split} &V_{IFMAGC} = 2.5 \text{ V;} \\ &V_{TFMAGC} = V_{O(ref)} + 0.5 \text{ V;} \\ &\text{data byte 4: bit 5 = 0, bit 6 = 0,} \\ &\text{bit 7 = 0} \end{split}$	–15	-11.5	-8	mA
I _{source(AGC)}	AGC source current	AM mode	-15	-11.5	-8	mΑ
		V _{IFMAGC} = 2.5 V; data byte 4: bit 3 = 1 (FM local)	-0.65	-0.5	-0.35	mA
Level voltage o	utput: pin V _{level(AMFM)}					
V_{th}	threshold voltage for narrow-band AGC	data byte 4: bit 5 = 0, bit 6 = 0, bit 7 = 1; keyed AGC	500	950	1400	mV
FM RF mixer						
Reference volta	age: pin V _{ref(MIX)}					
V_{ref}	reference voltage	FM mode	6.5	7.1	7.9	V
		AM mode	2.7	3.1	3.4	V
Inputs: pins FM	MIXIN1 and FMMIXIN2[10]					
$V_{i(RF)(max)}$	maximum RF input voltage	1 dB compression point of FM mixer output voltage (peak-to-peak value)	70	100	-	mV
$V_{i(n)(eq)}$	equivalent input noise voltage	$R_{gen} = 200 \Omega; R_L = 2.6 \text{ k}\Omega$	-	2.6	3.1	$\frac{nV}{\sqrt{Hz}}$
R _i	input resistance		1.4	2.8	4.2	kΩ
C _i	input capacitance		-	5	7	pF
Outputs: pins N	/IIX1OUT1 and MIX1OUT2					
R _o	output resistance		100	-	-	kΩ
Co	output capacitance		2	3.5	5	pF
I _{bias}	mixer bias current	FM mode	4.8	6	7.2	mA
$V_{o(max)(p-p)}$	maximum output voltage (peak-to-peak value)		3	-	-	V
FM mixer						
gm(conv)	conversion transconductance		8.5	12.5	18	$\frac{mA}{V}$
g _{m(conv)(T)}	conversion transconductance variation with temperature		-	−1 × 10 ^{−3}	-	K ⁻¹
F	noise figure		-	3	4.6	dB

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 35.
 Dynamic characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{gen(opt)}	optimum generator resistance		-	200	-	Ω
IP3	3rd-order intermodulation		113	116	-	dΒμV
IRR	image rejection ratio $V_{MIXIOUTwanted}$	$f_{RFwanted} = 87.5 \text{ MHz};$ $f_{RFimage} = 108.9 \text{ MHz}$	25	30	-	dB
V _{MIX1OUT image}		data byte 3 = X010 X110; $f_{RFwanted}$ = 162.475 MHz; $f_{RFimage}$ = 183.875 MHz; weather band mode; f_{ref} = 25 kHz	22	30	-	dB
IF amplifier						
G	gain	$R_L = 330 \Omega$; $V_{IFAMPIN} = 1 \text{ mV}$	^[8] 15	17	19	dB
F	noise figure		-	10	13	dB
IP3	3rd-order intermodulation		113	116	-	dΒμV
Inputs: pins I	IFAMPIN and IFAMPDEC[8]					
$V_{i(max)(p)}$	maximum input voltage (peak value)	200	-	-	mV	
$V_{i(n)(eq)}$	equivalent input noise voltage	$R_{gen} = 330 \Omega$; $R_L = 330 \Omega$	-	8	10	$\frac{nV}{\sqrt{Hz}}$
R _i	input resistance		270	330	390	Ω
C _i	input capacitance		-	5	7	pF
Output: pin I	FAMPOUT					
$V_{o(max)(p)}$	maximum output voltage (peak value)		1.2	1.5	-	V
R _o	output resistance		270	330	390	Ω
Co	output capacitance		-	5	7	pF
Tunable filte	er					
B _{max}	maximum bandwidth	data byte 4: bit 1 = 0, bit 0 = 0; dynamic mode	-	160	-	kHz
B _{min}	minimum bandwidth	data byte 4: bit $1 = 0$, bit $0 = 0$; dynamic mode; $V_{TACD} = 4.2 \text{ V}$	-	25	-	kHz
B ₁₃	bandwidth in weather band mode		-	13	-	kHz
B ₆₀	bandwidth in narrow band mode	data byte 4: bit 1 = 1, bit 0 = 1	-	60	-	kHz
B ₉₀	bandwidth in mid band mode	data byte 4: bit 1 = 1, bit 0 = 0	-	90	-	kHz
B ₁₃₀	bandwidth in wideband mode	data byte 4: bit 1 = 0, bit 0 = 1	-	130	-	kHz
Pin V _{IFBW}						
V _o	monitor output voltage for	fixed bandwidth = narrow	-	1.35	-	V
	IF2 bandwidth	fixed bandwidth = mid	-	0.94	-	V
		fixed bandwidth = wide		0.55		V

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 35.
 Dynamic characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R_o	output resistance		-	5	-	kΩ
Adjacent cha	nnel detector					
Modulation de	tector input: pin MODDET					
R _i	input resistance		-	42.4	-	kΩ
C _i	input capacitance		-	5	7	pF
Modulation de	tector output: pin MODETOUT	Γ				
R_o	output resistance		-	33.9	-	kΩ
Detector adjus	st: pin ACDTHRES					
R _i	input resistance		6.2	7.8	9.4	kΩ
Ci	input capacitance		-	5	7	pF
FM demodula	ator and level detector; see I	Figure 8 and Figure 9				
FM demodulat	tor					
FM mixer 2 inp	put: pins FMMIX2IN and FMM	IIX2DEC[3]				
V _{start(lim)(rms)}	start of limiting of RDS MPX output voltage (RMS value)	α_{AF} = -3 dB	-	4.5	-	μV
V _{o(sens)(rms)}	sensitivity for RDS MPX output voltage	Δf = 22.5 kHz; f_{mod} = 1 kHz; de-emphasis = 50 μs				
	(RMS value)	$R_{gen} = 165 \Omega; (S+N)/N = 26 dB$	-	11	-	μV
		(S+N)/N = 46 dB	-	90	-	μV
RDS MPX out	put: pin RDSMPX					
(S+N)/N	maximum signal plus noise-to-noise ratio of RDS MPX output voltage	Δf = 22.5 kHz; f_{mod} = 1 kHz; de-emphasis = 50 μ s; $V_{FMMIX2IN}$ = 10 mV	65	68	-	dB
THD	total harmonic distortion of RDS MPX output voltage	Δf = 75 kHz; f_{mod} = 1 kHz; de-emphasis = 50 μ s; $V_{FMMIX2IN}$ = 200 μ V to 800 mV	-	0.35	0.7	%
α_{AM}	AM suppression $\frac{V_{o(rms)}}{V}$	FM: Δf = 22.5 kHz; f_{mod} = 1 kHz; AM: m = 0.3; f_{mod} = 1 kHz; de-emphasis = 50 μ s				
	$V_{o(AM)(rms)}$	$V_{\text{FMMIX2IN}} = 30 \ \mu\text{V}$ to 70 μV	20	30	-	dB
		$V_{\text{FMMIX2IN}} = 70 \ \mu\text{V}$ to 500 μV	30	40	-	dB
		$V_{FMMIX2IN}$ = 500 μV to 300 mV	35	45	-	dB
		$V_{\text{FMMIX2IN}} = 300 \text{ mV to 1 V}$	30	40	-	dB
V _{o(rms)}	RDS MPX output voltage	$V_{FMMIX2IN}$ = 20 μV to 1 V	[3]			
	(RMS value)	$\Delta f = 5 \text{ kHz}$; $f_{\text{mod}} = 57 \text{ kHz}$	45	50	55	mV
		$\Delta f = 22.5 \text{ kHz}; f_{\text{mod}} = 1 \text{ kHz}$	205	230	255	mV
o(max)(rms)	maximum RDS MPX output current (RMS value)		100	-	-	μА
R _o	output resistance		-	-	500	Ω

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 35.
 Dynamic characteristics ...continued

Symbol Parameter		Conditions	Min	,,		Unit
C _L	load capacitance		-	-	50	pF
В	bandwidth RDS MPX output	$C_L = 0 \text{ pF}; R_L > 20 \text{ k}\Omega$	200	300	-	kHz
PSRR	power supply ripple rejection	f_{ripple} = 100 Hz to 20 kHz	-	40	-	dB
FM MPX outp	ut: pin FMMPX[3]					
(S+N)/N	maximum signal plus noise-to-noise ratio of FM MPX output voltage	Δf = 22.5 kHz; f_{mod} = 1 kHz; de-emphasis = 50 μ s; $V_{FMMIX2IN}$ = 10 mV	65	68	-	dB
THD	total harmonic distortion of FM MPX output voltage	Δf = 75 kHz; f_{mod} = 1 kHz; de-emphasis = 50 μ s; $V_{FMMIX2IN}$ = 200 μ V to 800 mV	-	0.1	0.3	%
$lpha_{AM}$	AM suppression $\frac{V_{o(rms)}}{V_{o(rms)}}$	FM: Δf = 22.5 kHz; f_{mod} = 1 kHz; AM: m = 0.3; f_{mod} = 1 kHz; de-emphasis = 50 μs				
	$\overline{V}_{o(AM)(rms)}$	$V_{FMMIX2IN}$ = 30 μV to 70 μV	20	30	-	dB
		$V_{FMMIX2IN}$ = 70 μV to 500 μV	30	40	-	dB
		$V_{FMMIX2IN}$ = 500 μV to 300 mV	35	45	-	dB
		$V_{FMMIX2IN}$ = 300 mV to 1 V	30	40	-	dB
$V_{o(rms)}$	FM MPX output voltage (RMS value)	Δf = 22.5 kHz; f_{mod} = 1 kHz; $V_{FMMIX2IN}$ = 20 μV to 1 V	205	230	255	mV
		Δf = 1.5 kHz; f_{mod} = 1 kHz; $V_{FMMIX2IN}$ = 20 μV to 1 V; weather band mode	150	230	310	mV
I _{o(max)}	maximum FM MPX output current		100	-	-	μА
В	bandwidth FM MPX output	$C_L = 0 \text{ pF}; R_L > 20 \text{ k}\Omega$	200	-	-	kHz
PSRR	power supply ripple rejection	f_{ripple} = 100 Hz to 20 kHz	-	40	-	dB
R_L	load resistance		20	-	-	kΩ
R _o	output resistance		-	-	500	Ω
C _L	load capacitance		-	-	50	pF
t _{sw}	AM to FM switching time	$V_{FMMIX2IN} = 100 \mu V$	-	100	150	ms
MPX mute						
$lpha_{mute}$	muting depth	data byte 2: bit 7 = 1 (mute)	60	80	-	dB
V _{offset(DC)}	DC offset during RDS update mute pin FMMPX $\Delta V = V_{muted} - V_{notmuted}$		-30	-	+30	mV
RDS update:	pin TRDSMUTE					
V _{TRDSMUTE}	voltage at pin TRDSMUTE	no mute	5.2	5.7	6.2	V
		mute	0.7	1.2	1.7	V
I _{dch}	discharge current	$V_0 = 3 V$; data byte 2: bit $7 = 1$	24	32	38	μΑ
I _{ch}	charge current	$V_0 = 3 \text{ V}$; data byte 2: bit $7 = 0$	-38	-32	-24	μΑ

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 35.
 Dynamic characteristics ...continued

 $V_{DDA(n)} = V_{MIX10UT1} = V_{MIX10UT2} = V_{AMMIX20UT1} = V_{AMMIX20UT2} = 8.5 \text{ V}; V_{DDD} = V_{DDA5} = 5 \text{ V}; T_{amb} = 25 ^{\circ}\text{C}; tested in the circuit of Figure 12 and Figure 13; all AC values are given in RMS; unless otherwise specified.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
FM IF level de	etector output: pin V _{level(AMFM)}	[3]				
V _{level(AMFM)}	DC output voltage	$V_{\text{FMMIX2IN}} = 10 \ \mu\text{V}$ to 1 V	0	-	7	V
		$V_{FMMIX2IN}$ < 1 $\mu V;$ standard setting of level DAA	0.1	0.35	0.9	V
		V _{FMMIX2IN} = 1 mV; standard setting of level DAA	1	1.5	2.1	V
$\Delta V_{level(AMFM)}$	step size of starting point adjustment	data byte 5: bit $2 = 1$, bit $1 = 0$, bit $0 = 0$	30	40	50	mV
V _{level(slope)}	slope of level voltage	$V_{FMMIX2IN} = 1 \text{ mV to } 300 \text{ mV};$	650	800	950	$\frac{mV}{20 \ dB}$
	$rac{\Delta V_{level(AMFM)}}{\Delta V_{FMMIX2IN}}$	standard setting of level slope				20 dB
ΔV_{step}	step size of slope adjustment	$V_{\text{FMMIX2IN}} = 1 \text{ mV}$	45	60	75	$\frac{mV}{20 \ dB}$
B _{level(AMFM)}	bandwidth of level output voltage	V _{FMMIX2IN} = 10 mV; standard setting of level DAA	200	300	-	kHz
I _{source}	output source current		-	-	-300	μΑ
I _{sink}	output sink current		50	-	-	μΑ
R _o	output resistance		-	-	500	Ω
RR	ripple rejection	$f_{ripple} = 100 \text{ Hz};$ $V_{DDA6(ripple)} = 100 \text{ mV (RMS)}$	-	40	-	dB
Pin V _{level(ACD)}						
R _o	output resistance		6.4	8	9.6	$k\Omega$
RDS update						
Output: pin AF	FHOLD					
I _{sink(max)}	maximum sink current	after first bus transmission with data byte 0: bit $7 = 1$ (start of RDS update); $V_0 = 0.5 \text{ V}$	1.0	1.2	1.4	mA
Output: pin AF	FSAMPLE					
$I_{sink(max)}$	maximum sink current	no RDS update in progress; V _o = 0.5 V	1.0	1.2	1.4	mA

[1] Measured between pins XTAL1 and XTAL2.

$$[2] \quad \text{DAA conversion gain formula:} \quad V_{DAAOUT} = \left[2\times\left(0.75\times\frac{n}{128}+0.125\right)\times\left(V_{DAAIN}+V_{DAATD}\right)\right] - V_{DAATD} \text{ ; where n = 0 to 127.}$$

- [3] Input parameters of FM mixer 2 measured between pins FMMIX2IN and FMMIX2DEC.
- [4] Input parameters of AM IF2 measured between pins AMIF2IN and AMIF2DEC.
- [5] Reference frequency pin FREF: R_{ext} = 68 k Ω connected to ground activates the 2nd I²C-bus address.
- [6] Input parameters of AM mixer 1 measured between pins AMMIX1DEC and AMMIX1IN.
- [7] Output parameters of FM mixer and AM mixer 1 measured between pins MIX1OUT1 and MIX1OUT2.
- [8] Input parameters of AM mixer 2 measured between pins IFAMPIN and IFAMPDEC.
- [9] Output parameters of AM mixer 2 measured between pins AMMIX2OUT1 and AMMIX2OUT2.
- [10] Input parameters of FM mixer measured between pins FMMIXIN1 and FMMIXIN2.

44 of 62

New in car entertainment car radio tuner IC (NICE-PACS)

- (1) AF: $f_{IF} = 450 \text{ kHz}$; m = 0.3; $f_{mod} = 1 \text{ kHz}$; soft mute off.
- (2) AF: f_{IF} = 450 kHz; m = 0.3; f_{mod} = 1 kHz; soft mute on.
- (3) Noise: unweighted B = 2.15 kHz; soft mute off.
- (4) Noise: unweighted B = 2.15 kHz; soft mute on.
- (5) Level detector output voltage, default setting.
- (6) THD: m = 0.8.

Fig 5. Signal, (S+N)/N, THD and level voltage for AM mode as a function of AMIF2IN voltage

- (1) Level DAA setting byte 5 = FFH.
- (2) Level DAA setting byte 5 = 84H (standard setting).
- (3) Level DAA setting byte 5 = 00H.

Fig 6. AM level voltage

45 of 62

New in car entertainment car radio tuner IC (NICE-PACS)

46 of 62

New in car entertainment car radio tuner IC (NICE-PACS)

- (1) Output voltage for FMMPX and RDSMPX: $f_{IF} = 10.7$ MHz; $\Delta f = 22.5$ kHz; $f_{mod} = 1$ kHz.
- (2) Noise: unweighted B = 250 Hz to 15 kHz with de-emphasis 50 μ s for FMMPX.
- (3) Noise: unweighted B = 250 Hz to 15 kHz with de-emphasis 50 μ s for RDSMPX.
- (4) THD for FMMPX and RDSMPX.
- (5) Level for standard setting of level DAA, byte 5 = 84H.

Fig 9. Signal, (S+N)/N, THD and level voltage for FM mode as a function of FMMIX2IN voltage

14. Overall system parameters

Table 36. Overall system parameters

 T_{amb} = 25 °C; see <u>Figure 12</u> and <u>Figure 13</u>; all AC values are given in RMS; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
AM overall	system parameters					
f _{AM(ant)}	AM input frequency	LW	0.144	-	0.288	MHz
		MW	0.522	-	1.710	MHz
		SW	5.730	-	9.99	MHz
(S+N)/N	signal plus noise-to-noise ratio	$m = 0.3$; $B_{AF} = 2.15 \text{ kHz}$	-	59	-	dB
THD	total harmonic distortion	$m = 0.8$; $f_{mod} = 1 \text{ kHz}$	-	0.3	-	%
V _{sens(rms)}	sensitivity (RMS value)	m = 0.3; f_{mod} = 1 kHz; (S+N)/N = 26 dB; with European dummy aerial 15 pF/60 pF; B_{AF} = 2.15 kHz	-	45	-	μV
FM overall	system parameters					
f _{FM(ant)}	FM input frequency		65	-	108	MHz
f _{FM(WB)(ant)}	FM weather band input frequency		162.4	-	162.55	MHz

TEA6848HL **NXP Semiconductors**

New in car entertainment car radio tuner IC (NICE-PACS)

Table 36. Overall system parameters ...continued

 T_{amb} = 25 °C; see <u>Figure 12</u> and <u>Figure 13</u>; all AC values are given in RMS; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
(S+N)/N	signal plus noise-to-noise ratio	Δf = 22.5 kHz; de-emphasis = 50 $\mu s;$ B_{AF} = 300 Hz to 15 kHz	-	63	-	dB
THD	total harmonic distortion	$\Delta f = 75 \text{ kHz}$; with 2 × SFE10.7MS3	-	0.35	-	%
V _{sens(rms)}	sensitivity (RMS value)	Δf = 22.5 kHz; f_{mod} = 1 kHz; (S+N)/N = 26 dB; de-emphasis = 50 μs ; B_{AF} = 300 Hz to 15 kHz; with 75 Ω dummy antenna	-	1.4	2	μV

15. Application information

Table 37. List of components for application and test circuits (Figure 10, Figure 11, Figure 12 and Figure 13)

Symbol	Parameter	Туре	Manufacturer
C1	capacitor for VCO tuning	270 pF; type NP0	-
L1	10.7 MHz IF coil	P7 PSG P826RC 5134N=S	TOKO
L2	450 kHz IF coil	P7PSGAE-5078D=S	TOKO
L3	oscillator coil	E543SNAS-02010	TOKO
L4	FM image rejection	611SNS-1066Y	TOKO
L5	FM input transformer	369INS-3076X	TOKO
L6	FM antenna coil	LQN1HR50; 215 nH	Murata
L7	PIN diode bias	LQN1HR21; 500 nH	Murata
L8	connection image reject	wire 10 mm/printed coil	-
L9	AM input	388BN-1211Z	токо
R4	resistor for stabilizer	3.3 kΩ; RC12G	BC Components
-	crystal 20.5 MHz	LN-G102-587	NDK

New in car entertainment car radio tuner IC (NICE-PACS)

New in car entertainment car radio tuner IC (NICE-PACS)

New in car entertainment car radio tuner IC (NICE-PACS)

16. Test information

New in car entertainment car radio tuner IC (NICE-PACS)

New in car entertainment car radio tuner IC (NICE-PACS)

Table 38. DC operating points

Symbol	Pin	Unloaded DC voltage (V)					
		AM mode			FM mode		
		Min	Тур	Max	Min	Тур	Max
FMLIMDCFDB1	1	floating			3.7	4.2	4.8
FMLIMDCFDB2	2	floating			3.7	4.2	4.8
AMIF2DEC	3	2.4	2.7	3.2	floating		
IREFFMIF2	4	0			0.4	0.55	0.7
AMNBHOLD	5	4.3	4.6	5.1	8	8.4	-
AMIF2IN	6	2.4	2.7	3.2	floating		
IF1GND	7	external 0			external 0		
FMMIX2IN	8	0	0.1	-	1.5	1.8	2.1
COFFSET	9	floating			3.5	4	4.5
FMMIX2DEC	10	0	0.1	-	1.5	1.8	2.1
IFCDAATEST	11	0			0		
IFAMPOUT	12	7.2	7.9	-	2.4	3	3.6
V_{DDA1}	13	external 8.	5		external 8.5		
IFAMPIN	14	2.4	2.7	3	1.5	2	2.5
IFAMPDEC	15	2.4	2.7	3	1.5	2	2.5
IF2FILQ	16	0			0		
IF2FILI	17	0			0		
MIX1OUT1	18	external 8.	5		external 8.5		
MIX1OUT2	19	external 8.	5		external 8.5		
V_{DDA2}	20	external 8.	5		external 8.5		
SWFLAG	21	open-colle	ctor		open-collector		
AMMIX1DEC	22	2.3	2.75	3.1	floating		
AMMIX1IN	23	2.3	2.75	3.1	floating		
VAMCASFB	24	3.7	4.3	4.9	0	0.1	0.2
VAMCAS	25	4.5	5	5.5	0	0.1	1
TAFAMAGC	26	0	2.8	4.6	0 (no WB)	0.3 (no WB)	0.5 (no WB)
THFAMAGC	27	2.5	2.8	3.1	floating		
IAMAGC	28	8.5 (extern	al biasing)		1	2	3
$V_{ref(MIX)}$	29	2.7	3.1	3.4	6.5	7.1	7.9
FMMIXIN1	30	1	1.3	1.6	2.3	2.8	3.3
RFGND	31	external 0			external 0		
i.c.	32	-			-		
FMMIXIN2	33	1	1.3	1.6	2.3	2.8	3.3
WBFLAG	34	0			4 (WB)	4.5 (WB)	5 (WB)
					- (FM)	< 0.5 (FM)	- (FM)
IFMAGC	35	5 (external	application)		0.1 (external biasing)	-	4 (external biasing)
TFMAGC	36	7.5	8	8.3	3.9	4.6	5.3
TKEYEDAGC	37	floating			1	-	7

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 38.
 DC operating points ...continued

Symbol	Pin	Unloaded	Unloaded DC voltage (V)							
		AM mode			FM mode	FM mode				
		Min	Тур	Max	Min	Тур	Max			
DAAOUT	38	-	0.2	0.3	0.2	-	8.25			
DAATD	39	floating			0.2	-	1.5			
DAAIN	40	0	-	8.5	0	-	8.5			
i.c.	41	-			-					
V _{tune}	42	0	-	8.5	0	-	8.5			
CPOUT	43	0	-	8.5	0	-	8.5			
V_{DDA3}	44	external 8.	5		external 8.5					
FREF	45	3.2	3.4	3.7	3.2	3.4	3.7			
V_{DDD}	46	external 5			external 5					
DGND	47	external 0			external 0					
VCOGND	48	external 0			external 0					
OSCFDB	49	2.2	2.8	3.4	2.2	2.8	3.4			
OSCTNK	50	5	6.1	7.2	5	6.1	7.2			
V_{DDA4}	51	external 8.	5		external 8.5					
MPXDCFDB	52	-			2	2.4	2.8			
AFSAMPLE	53	0	0.2	0.5	0	0.2	0.5			
AFHOLD	54	open-colle	ctor 5		open-collector					
TRDSMUTE	55	1.7	2.2	2.7	0.7 (muted)	1.2 (muted)	1.7 (muted)			
					5.2 (not muted)	5.7 (not muted)	6.2 (not muted			
AMAFIF2	56	4	4.3	4.6	floating 3.3					
RDSMPX	57	0			3.2	4	4.8			
FMMPX	58	0	0.5	1	3.2	4	4.8			
V_{DDA5}	59	external 5			external 5					
MODDET	60	0			2	2.5	3			
V_{DDA6}	61	external 8.	5		external 8.5					
IFBWFLAG	62	open-colle	ctor 8.5		3 (IFBW = 1)	3.3 (IFBW = 1)	4.1 (IFBW = 1)			
SDA	63	4.8	5	5.2	4.8	5	5.2			
SCL	64	4.8	5	5.2	4.8	5	5.2			
V_{IFBW}	65	0	0.1	-	0.5	-	4			
IF2GND	66	external 0			external 0					
CINT	67	0			3.2	4	4.8			
MODETOUT	68	0			2	3	4			
TACD	69	0			3.2	3.6	4			
V _{level(AMFM)}	70	0	-	7	0	-	7			
XTAL1	71	1.7	2.1	2.5	1.7	2.1	2.5			
XTALGND	72	external 0			external 0					
XTAL2	73	1.7	2.1	2.5	1.7	2.1	2.5			
V _{level(ACD)}	74	0.5	1	2	0.3	0.5	0.8			
ACDTHRES	75	0.37	-	0.4	0.37	-	0.4			

 TEA6848HL_4
 © NXP B.V. 2010. All rights reserved.

New in car entertainment car radio tuner IC (NICE-PACS)

 Table 38.
 DC operating points ...continued

Symbol	Pin	Unloaded DC voltage (V)							
		AM mode			FM mode				
		Min	Тур	Max	Min	Тур	Max		
IREF	76	4	4.25	4.5	4	4.25	4.5		
AMMIX2OUT1	77	external 8.5	external 8.5			external 8.5			
AMMIX2OUT2	78	external 8.5	5		external 8.5				
CAGC	79	3.6	4.3	4.8	1.7	2.5	3.3		
V _{ref(lim)}	80	0.5	0.8	1.2	3.6	4.2	4.8		

TEA6848HL

New in car entertainment car radio tuner IC (NICE-PACS)

17. Package outline

LQFP80: plastic low profile quad flat package; 80 leads; body 12 x 12 x 1.4 mm

SOT315-1

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	H _D	HE	L	Lp	٧	w	у	Z _D ⁽¹⁾	Z _E ⁽¹⁾	θ
mm	1.6	0.16 0.04	1.5 1.3	0.25	0.27 0.13	0.18 0.12	12.1 11.9	12.1 11.9	0.5	14.15 13.85	14.15 13.85	1	0.75 0.30	0.2	0.15	0.1	1.45 1.05	1.45 1.05	7° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT315-1	136E15	MS-026				00-01-19 03-02-25	

Fig 14. Package outline SOT315-1 (LQFP80)

TEA6848HL_4 © NXP B.V. 2010. All rights reserved.

New in car entertainment car radio tuner IC (NICE-PACS)

18. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365* "Surface mount reflow soldering description".

18.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

18.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- · Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

18.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

New in car entertainment car radio tuner IC (NICE-PACS)

18.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 15</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 39 and 40

Table 39. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)					
	Volume (mm³)					
	< 350	≥ 350				
< 2.5	235	220				
≥ 2.5	220	220				

Table 40. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C) Volume (mm³)					
	< 350	350 to 2000	> 2000			
< 1.6	260	260	260			
1.6 to 2.5	260	250	245			
> 2.5	250	245	245			

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 15.

New in car entertainment car radio tuner IC (NICE-PACS)

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

New in car entertainment car radio tuner IC (NICE-PACS)

19. Abbreviations

Table 41. Abbreviations

Acronym	Description
AF	Audio Frequency
AGC	Automatic Gain Control
CASP	Car Audio Signal Processor
CRISP	Car Radio Integrated Signal Processor
DAA	Digital Auto Alignment
HF	High Frequency
I ² C-bus	Inter IC bus
IF	Intermediate Frequency
LO	Local Oscillator
LW	Long Wave
MPX	MultiPleX
MW	Medium Wave
NICE	New In Car Entertainment
PACS	Precision Adjacent Channel Suppression
PLL	Phase-Locked Loop
RDS	Radio Data System
RF	Radio Frequency
SW	Short Wave
VCO	Voltage-Controlled Oscillator
WB	Weather Band

20. Revision history

Table 42. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
TEA6848HL_4	20100129	Product data sheet	-	TEA6848HL_3
TEA6848HL_3	20080214	Preliminary data sheet	-	TEA6848HL_2
TEA6848HL_2	20041112	Objective specification	-	TEA6848HL_1
TEA6848HL_1	20041022	Objective specification	-	-

New in car entertainment car radio tuner IC (NICE-PACS)

21. Legal information

21.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

21.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

21.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

21.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

22. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

New in car entertainment car radio tuner IC (NICE-PACS)

23. Contents

1	General description 1	8.9	Write mode: data byte 7	
2	Features	8.10	Read mode: data byte 0	
3	Quick reference data 2	8.11	I ² C-bus specification	
4	Ordering information 3	8.11.1	Data transfer	
5	Block diagram 4	8.11.2	I ² C-bus pull-up resistors	
_	-	8.11.3	Restriction of the I ² C-bus characteristic	
6	Pinning information	8.11.4	Frequency setting	
6.1	Pinning	8.11.5	Default settings	
6.2	Pin description 5	8.11.6	Timing requirements	
7	Functional description 7	9	Internal circuitry	
7.1	Oscillators	10	Limiting values	
7.1.1	VCO	11	Thermal characteristics	30
7.1.2	PLL	12	Static characteristics	30
7.1.3	Crystal oscillator	13	Dynamic characteristics	32
7.2	DAA 8	14	Overall system parameters	
7.3 7.3.1	FM signal channel	15		
7.3.1	Buffer output for weather band flag	-	Application information	
1.5.2	(pin WBFLAG) 8	16	Test information	
7.3.3	FM keyed AGC	17	Package outline	
7.3.4	FM IF amplifier	18	Soldering of SMD packages	
7.3.5	FM mixer 2	18.1	Introduction to soldering	
7.3.6	FM IF2 dynamic selectivity 9	18.2	Wave and reflow soldering	5
7.3.7	FM quadrature demodulator9	18.3	Wave soldering	5
7.3.8	Adjacent channel detector and threshold	18.4	Reflow soldering	58
	extension	19	Abbreviations	60
7.3.9	Bandwidth control 'active' flag	20	Revision history	60
	(pin IFBWFLAG)9	21	Legal information	
7.3.10	Bandwidth control monitor voltage	21.1	Data sheet status	
	(pin V _{IFBW})	21.2	Definitions	
7.4	AM signal channel 9	21.3	Disclaimers	
7.4.1	AM tuner including mixer 1 and mixer 2 9	21.4	Trademarks	
7.4.2	AM RF AGC	22	Contact information	
7.4.3	AM detector			
7.4.4	AM noise blanker	23	Contents	62
7.5	FM and AM level detector			
7.6	IF2 filter gain alignment 10			
7.7	Frequency offset detector/alignment 11			
8	l ² C-bus protocol			
8.1	Data transfer mode and IC address 11			
8.2	Write mode: data byte 0			
8.3	Write mode: data byte 1			
8.4	Write mode: data byte 2 12			
8.5	Write mode: data byte 3 12			
8.6	Write mode: data byte 4			
8.7	Write mode: data byte 5			
8.8	Write mode: data byte 6			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com