進捗報告

1 今週行ったこと

• 初期個体について、機器ごとに起動・停止状態を決めてから初期解を作成し、cmaesの実験を 回した.

2 問題設定

ガスタービン一台,ボイラー台,ターボ式冷凍機一台,蒸気吸収式冷凍機二台の5つの機器からなる24時刻運用問題である. 120次元の変数xが存在するが,24時刻としてそれぞれ5つの機器の熱生成量及びガス消費量を表すためである.以下の表1に変数説明を表す.

表 1: 変数説明

変数	変数の定義域	変数の意味
x_t	1.5~5.0	ターボ式冷凍機の熱生成量
x_{s1}	4.5~15.0	蒸気吸収式冷凍機1の熱生成量
x_{s2}	4.5~15.0	蒸気吸収式冷凍機2の熱生成量
x_g	1103~3679	ガスタービンのガス消費量
x_b	8.02~803	ボイラーのガス消費量

なお,変数の定義域は動かした場合のものであり, 停止している場合は当然0となる.

2.1 CMA-ESでの実行可能解の探索

CMA-ESを用いて実行可能解を見つけられるか実験した.なお、実験パラメータは表2の通りである.

表 2: 実験パラメータ

表 2: 実験ハフメータ		
パラメータ	値	
sigma(初期標準偏差)	3.0	
入力変数の次元	120	
最大世代数	2532	
一世代の個体数	2400	
ρ(ペナルティ関数の係数)	1e+12	

機器の起動・停止状態を制約違反が許される形に したうえで、初期解を設定し実験を行った。図1,2 にそれぞれ目的関数とy軸が片対数の制約違反関数 の遷移を示す。

図 1: 目的関数 (seed=0)

図 2: 制約違反関数 (seed=0)

前回の実験では x_g が全て0 になっていたが、今回は初期で決めた x_g が起動している部分に関しては探索が行われた.

表 3: 実験結果

手法	目的関数値	制約違反合計
CMA-ES (前回)	4787932.943	3.65e-12
CMA-ES (今回,seed=4)	4661992.871	3.78e-11
既知解	3999635.845	6.43e-12

また、seed を変更したモデルは以下の図 $3\sim$ 図 10 のようになった.

図 3: 目的関数 (seed=1)

図 4: 制約違反関数 (seed=1)

図 5: 目的関数 (seed=2)

図 6: 制約違反関数 (seed=2)

図 7: 目的関数 (seed=3)

図 8: 制約違反関数 (seed=3)

図 9: 目的関数 (seed=4)

図 10: 制約違反関数 (seed=4)

前回のものと比較して一つの局所解に陥ることは 防げたが、依然として他の機器については全て起動 しており、途中で起動・停止状態を変えるアルゴリ ズムを作る必要がある.

3 今後の展望

• 起動停止状態を柔軟に変えることのできるプログラムの作成