#### Линейная алгебра 1 семестр Экзамен

#### Студенты ИС'а

время последней сборки: 6 января 2023 г. 13:39

"Спасибо всем за вклад в написание билетов".

#### Содержание

| 1         | Поле комплексных чисел.                                                                               | 3  |
|-----------|-------------------------------------------------------------------------------------------------------|----|
| 2         | Линейное пространство арифметических векторов. Определение, проверка аксиом.                          | 5  |
| 3         | Линейное пространство направленных отрезков с общим началом.<br>Определение, проверка аксиом.         | 6  |
| 4         | Матрицы. Определение. Арифметика матриц.                                                              | 7  |
| 5         | Определители. Свойства.                                                                               | 8  |
| 6         | Обратная матрица. Существование и единственность.                                                     | 11 |
| 7         | Определение СЛАУ. Совместность, определенность. Теорема Крамера.                                      | 12 |
| 8         | Линейная зависимость арифметических векторов. Линейная зависимость системы одного и двух векторов.    | 13 |
| 9         | Теоремы о линейно зависимых и независимых системах векторов.                                          | 14 |
| 10        | Базис. Определение, основные теоремы.                                                                 | 15 |
| 11        | Ранг матрицы. Элементарные преобразования.                                                            | 16 |
| <b>12</b> | Метод Гаусса (приведение матрицы к ступенчатому виду). Вычисление ранга.                              | 17 |
| 13        | Теория СЛАУ. Теорема Кронекера-Капелли. Два случая совместности (определенные и неопределенные СЛАУ). | 18 |

| 14 F        | Решение однородной СЛАУ. Структура решения неоднородной СЛАУ.                   | 19         |
|-------------|---------------------------------------------------------------------------------|------------|
| <b>15</b> J | Линейное координатное пространство. Базис, размерность.                         | 20         |
| 16 I        | Подпространство. Линейная оболочка.                                             | 21         |
| 17 I        | Изоморфизм линейных пространств.                                                | 22         |
|             | Пространство решений однородной СЛАУ. Фундаментальная система решений.          | 23         |
| 19 I        | Преобразование базиса и координат.                                              | 24         |
| 20 (        | Скалярное произведение и норма векторов. Ортонормированный базис.               | <b>2</b> 5 |
| 21 (        | Системы координат. Определение. Декартовы и полярная СК.                        | <b>26</b>  |
|             | Геометрический вектор в координатном пространстве. Определение, характеристики. | 27         |
| 23 I        | Произведения векторов и их приложения.                                          | 28         |
| 24 F        | Коллинеарность, компланарность, ортогональность векторов. Критерии.             | 29         |
| <b>25</b> 3 | Уравнения прямой на плоскости.                                                  | 30         |
| <b>26</b> 3 | Уравнения плоскости в пространстве.                                             | 31         |

#### 1 Поле комплексных чисел.

Множество — совокупность объектов с общим свойством.

Существуют бинарные и унарные операции над множествами. Бинарная принимает два аргумента и возвращает один результат, унарная аналогично принимает один аргумент и возвращает один результат.

**Алгебраическая операция** на множестве X — соответствие, при котором каждой паре элементов из множества X соответствует единственный элемент этого же множества.

Алгебраическая структура (Алгебраическая система в википедии) — называется объект, являющийся совокупностью непустого множества Aи непустого набора алгебраических операций  $f_1, f_2, \ldots, f_k, \ldots$ 

Из определения следует, что множество N с операцией — не является алгебраической структурой, так как — на таком множестве не замкнутая операция.

Алгебраические структуры далее классифицируются так:

- **Группой**  $(G,\oplus)$  называется алгебраическая система с одной бинарной алгебраической операцией
  - 1. Определена бинарная операция.

    Например, сложение или умножение, поэтому обычно говорят, что "группа по сложению" или "группа по умножению"
  - 2. Операция является ассоциативной.
  - 3. Существует нейтральный элемент для данной операции в данном множестве. Для сложение  $\mathbb 0$ , так как  $\forall a \in G \, \mathbb 0 + a = a \in G$ . Для умножения  $\mathbb 1$ , так как  $\forall a \in G \, \mathbb 1 \cdot a = a \in G$ .
  - 4. Каждый элемент множества имеет обратный. Для структуры по сложению:  $\forall a \in G \, \exists a' \in G \, a' + a = \mathbb{0}$

Группа называется абелевой, если операция в ней коммутативна, т.е.

$$\forall x, y \in G \ x \oplus y = y \oplus x$$

- **Кольцом** называется непустое множество R с двумя заданными на нём бинарными операциями + (сложение) и · (умножение), которые обладают следующими свойствами:
  - \* Разумеется + и  $\cdot$  это просто обозначения некоторых операций, что-бы не писать операция 1.
    - 1. относительно сложения + множество R образует **абелеву** группу, называемую аддитивной группой кольца; нейтральный элемент этой группы называется нулём и обозначается  $\mathbb{O}$
    - 2. умножение · дистрибутивно относительно сложения: для любых  $a,b,c\in R$  имеют место соотношения

$$(a+b) \cdot c = a \cdot c + b \cdot c, c \cdot (a+b) = c \cdot a + c \cdot b$$

Если операция умножения коммутативна (ассоциативна), то кольцо называется коммутативным (ассоциативным).

• Полем называется коммутативное ассоциативное кольцо с единицей, в котором любой ненулевой элемент обратим.

#### 1.1 Поле комплексных чисел

**Поле комплексных чисел** — множеств упорядоченных пар  $\mathbb{C} = \{(x,y)|x,y\in\mathbb{R}\}$  Пусть  $z_1=(x_1,y_1), z_2=(x_2,y_2).$ 

• Введём +:

$$z_1 + z_2 = z_2 + z_1 = (x_1 + x_2, y_1 + y_2)$$

• Введём ::

$$z_1 \cdot z_2 = z_2 \cdot z_1 = (x_1 \cdot x_2 - y_1 \cdot y_2, x_1 \cdot y_2 + x_2 \cdot y_1)$$

• Пусть

$$\mathbb{O}_{\mathbb{C}} = (0,0), \mathbb{1}_{\mathbb{C}} = (1,0)$$

Множество  $(\mathbb{C},+,\cdot)$  является полем.

Пусть

$$i = (0, 1)$$

Тогда любое комплексное число можно обозначать так z = (a, b) == a + ib

$$i^2 = (0,1) \cdot (0,1) = \dots = -1$$

Отсюда получаем  $i = \sqrt{-1}$  — мнимая единица.

|   | ИТМО, Санкт-Петербург                          |
|---|------------------------------------------------|
| 2 | Линейное пространство арифметических векторов. |
|   | Определение, проверка аксиом.                  |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |
|   |                                                |

|   | ИТМО, Санкт-Петербург                        |
|---|----------------------------------------------|
| 3 |                                              |
|   | общим началом. Определение, проверка аксиом. |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |
|   |                                              |

| 4 | Матрицы. | Определение. | Арифметика матр | иц. |
|---|----------|--------------|-----------------|-----|
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |
|   |          |              |                 |     |

#### 5 Определители. Свойства.

Определитель (детерминант) — скалярная величина (число) характеризующая квадратную матрицу.

Она нужна, например, для получения обратной матрицы или для понятия обратима ли матрица, при решение СЛАУ и для много чего ещё, что мы даже не прошли.

Перестановка называется **четной**, если она содержит четное число инверсий элементов. Нечетная перестановка содержит нечетное число инверсий.

**Инверсия** — пара элементов, которые находятся вне их естественного порядка.  $(i < j \land a_i > a_j)$ 

 $(j_1, j_2, \ldots, j_n)$  перестановка чисел от 1 до n

$$det(A) = \sum_{(j_1, j_2, \dots, j_n)} (-1)^{N(j_1, j_2, \dots, j_n)} \cdot a_{1, j_1} \cdot a_{2, j_2} \cdot \dots \cdot a_{n, j_n} = \sum_{(j_1, j_2, \dots, j_n)} \left( (-1)^{N(j_1, j_2, \dots, j_n)} \cdot \prod_{i=1}^{i \leq n} a_{i, j_i} \right)$$

Где  $N(j_1, j_2, \dots, j_n)$  — количество инверсий перестановки. (в лекции говорили что берём + если чётная и — если не чётная, что собственно одно и тоже)

Говоря человеческим языком, по всем перестановкам номеров столбцов берём сумму от произведения чётности перестановки помноженную на произведение всех элементов матрицы с номерами  $a_{i,j_i}$  (номер столбца выбираем из перестановки под номером равным номеру строки).

Вычисление определителя которое все использует, так как предыдущее требует порядка  $\mathcal{O}(n! \cdot n)$  операций.

Формула разложением по строке:

$$A = (a_{11}) = a_{11}$$

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{21} \cdot a_{12}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$det(A) = \sum_{i=1}^{n} (-1)^{1+j} a_{1,j} M_{1,j}$$

 $M_{i,j}$  минор элемента  $a_{i,j}$  — это определитель полученный вычёркиванием i-ой строки и j-го столбца матрицы A при сохранение порядка остальных элементов.

Для фиксированного 
$$i$$
 (строки)  $det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{1,j} M_{i,j}$ 

Свойства с доказательствами:

- 1. Если в матрице есть нулевая строка, то определитель равен 0.
  - Посчитаем определитель по строке там где находятся нули, и тогда у нас получается сумма 0 по формуле.
- $2. \ det(A) = det(A^T)$

Докажем по индукции: пусть  $det(A) = det(A^T)$  для матриц порядка n-1 — верно.

Докажем для матрицы порядка n:

Помогите, я реально не понимаю, что за логика в вики написанная.

3. Перестановка строк местами меняет только знак определителя.

Для n=1 не имеет смысла, далее докажем по индукции: База n=2 выполняется по определению, пусть мы доказали для n-1 выполняется утверждение. Пусть i,j номера строк, тогда B матрица полученная из A если поменять строки i и j местами, а k номер строки отличный от i и j. Тогда распишем определитель по строке k:  $det(B) = (-1)^{k+1}b_{k,1} \cdot det(B_{k,1}) + (-1)^{k+2}b_{k,2} \cdot det(B_{k,2}) + \cdots + (-1)^{k+n}b_{k,n} \cdot det(B_{k,n}) =$ 

Воспользуемся двумя простыми утверждениями:

- $b_{k,z} = a_{k,z}$  так как мы не изменяли данную строку.
- $det(B_{k,z})$  это определитель матрицы размера (n-1) на (n-1), содержащий строки i и j, по индукции уже знаем, что  $det(B_{k,z}) = -det(A_{k,z})$ .

Получаем, что = 
$$(-1)^{k+1}b_{k,1}$$
· $-det(A_{k,1})$ + $(-1)^{k+2}b_{k,2}$ · $-det(A_{k,2})$ +···+ $(-1)^{k+n}b_{k,n}$ · $-det(A_{k,n})$  =  $-det(A)$ .

4. Определитель матрицы, которая содержит две одинаковые строки, равен 0.

Поменяем две равные строки. Тогда A и полученная A' не различимы, а следовательно по определению det(A) = det(A'). По свойству 3 получим, что det(A) = -det(A'). Итого получаем, что det(A) = -det(A) = 0.

5. Вынос константы у строки

Распишем определитель по данной строке, вынесем константу за скобку.

- 6. Определитель матрицы, которая содержит две пропорциональные строки, равен 0. По свойству 5 выносим константу у одной из этих двух строк, чтобы получить равные строки, и по свойству 4 получаем что определитель равен  $c \times 0 = 0$ .
- 7. \* не было на лекции \*, но очень важное

Если к строке k добавить последовательность чисел b длины n, то определитель будет равен сумме определителей исходной матрицы и матрицы у которой заменили k-ую строку на последовательность чисел.

Расписывание определителя по k-ой строке.

A'' матрица полученная из A прибавлением к строке k последовательности b.

$$det(A'') = \sum_{j=1}^{n} (-1)^{k+j} (a_{k,j} + b_j) M_{k,j} =$$

$$= \sum_{j=1}^{n} (-1)^{k+j} a_{k,j} M_{k,j} + \sum_{j=1}^{n} (-1)^{k+j} b_j M_{k,j} =$$

$$= det(A) + det(A')$$
(1)

Где A' — в матрице A заменили k-ую строку на последовательность b.

8. \* не было на лекции \*, но очень важное

Определитель не изменится, если к элементам любой его строки прибавить соответствующие элементы другой строки.

Пусть A' матрица полученная из A путём замены данной строки на другую строку.

Пусть A'' матрица полученная из A складывания одной строки с другой.

По свойству 4 получаем, что det(A') = 0

Из свойства 7 следует, что det(A'') = det(A) + det(A') = det(A).

Комбинируя свойства выше доказывается, что можно добавлять не только одну стоку один раз, но и любое произвольное количество раз, так как по свойству 6 в доказательстве выше det(A')=0.

9. Если есть строка, которая является линейной комбинацией других двух строк, то определитель равен 0.

$$l_z = \alpha l_i + \sigma l_i$$

Из следствия свойства 8 получается что определитель такой матрицы будет таким-же как и определитель матрицы, в которой строка z равна  $\alpha l_i$  + по свойству 4 получаем что определитель такой матрицы равен 0.

10.  $det(A \cdot B) = det(A) \cdot det(B)$ 

Это мы точно не умеем доказывать((( TODO напишите если умеете)

link1

link2

| 6 | Обратная | матрица. | Существование | и единственность. |
|---|----------|----------|---------------|-------------------|
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |
|   |          |          |               |                   |

| 7 | Определение СЛАУ. | Совместность, | определенность. |
|---|-------------------|---------------|-----------------|
|   | Теорема Крамера.  |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |
|   |                   |               |                 |

8 Линейная зависимость арифметических векторов. Линейная зависимость системы одного и двух векторов.

|   |          | VI        | ТМО, Санкт-Петер | оург          |  |
|---|----------|-----------|------------------|---------------|--|
| 9 | Теоремы  | о линейно | зависимых        | и независимых |  |
|   | системах | векторов. |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |
|   |          |           |                  |               |  |

| 10 | Базис. | Определение, | основные | теоремы. |
|----|--------|--------------|----------|----------|
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |
|    |        |              |          |          |

| 11 | Ранг | матрицы. | Элементарные | преобразования. |
|----|------|----------|--------------|-----------------|
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |
|    |      |          |              |                 |

|    | ИТМО, Санкт-Петербург                           |
|----|-------------------------------------------------|
| 12 | Метод Гаусса (приведение матрицы к ступенчатому |
|    | виду). Вычисление ранга.                        |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |
|    |                                                 |

13 Теория СЛАУ. Теорема Кронекера-Капелли. Два случая совместности (определенные и неопределенные СЛАУ).

| 14 Решение однородной СЛАУ. Структура реш неоднородной СЛАУ. |      |
|--------------------------------------------------------------|------|
|                                                              | ения |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |
|                                                              |      |

| <u> </u> | NTMO, C              |                 | Danzes |
|----------|----------------------|-----------------|--------|
| 5        | Линейное координатно | е пространство. | разис, |
|          | размерность.         |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |
|          |                      |                 |        |

| 16 | Подпространство. Линейная оболочка. |
|----|-------------------------------------|
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |
|    |                                     |

| 17 | Изоморфизм линейных пространств. |
|----|----------------------------------|
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |
|    |                                  |



| Преобразование базиса и координат. |                                    |
|------------------------------------|------------------------------------|
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    |                                    |
|                                    | Преобразование базиса и координат. |

| Линейная алгебра 1 семестр Экзамен<br>ИТМО, Санкт-Петербург |                                          |  |  |
|-------------------------------------------------------------|------------------------------------------|--|--|
| 20                                                          | Скалярное произведение и норма векторов. |  |  |
|                                                             | Ортонормированный базис.                 |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |
|                                                             |                                          |  |  |





| 23 | Произведения | векторов | и их приложения. |  |
|----|--------------|----------|------------------|--|
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |
|    |              |          |                  |  |

| $\overline{24}$ | ИТМО, Санкт-Петербург                                               |  |  |  |
|-----------------|---------------------------------------------------------------------|--|--|--|
| <b>4</b> 4      | Коллинеарность, компланарность, ортогональность векторов. Критерии. |  |  |  |
|                 | векторов. Критерии.                                                 |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |
|                 |                                                                     |  |  |  |

| <b>25</b> | Уравнения прямой на плоскости. |
|-----------|--------------------------------|
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |
|           |                                |

| <b>26</b> | Уравнения плоскости в пространстве. |
|-----------|-------------------------------------|
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |
|           |                                     |