I	Name:	Roll no.:	
For questions 1 - 10, p	rovide very short and to-the-poi	nt answers.	
(b) Based on this cond	on stating the condition for stab lition, discuss in brief what part ne ROC of the Laplace transform	of the complex s-plane sho	0.5 mark uld neces- 1.5 mark
,) is sampled with a frequency of ed signal with proper labels on		frequency 2 marks
-	le for sampling where the Nyqu original spectrum, and the spec		
4. If the Nyquist rate Why?	for sampling a signal $x(t)$ is ω	, what is the Nyquist rate	for $x^2(t)$. 2 marks

IC 260: Signals and Systems (Feb - June, 2017) - End Sem (Marks: 30)

5. If the Nyquist rate for sampling a signal $x(t)$ is ω , what is the Nyquist rate for $x(t)\cos(\omega_o t)$ Why? 2 marks
6. Show that the DTFT of any discrete-time signal is periodic. State the period. 2 marks
7. A right-sided but a non-causal signal is to be transformed to a causal signal by performing some operation. 2 mark a) Suggest such an operation. b) How would it affect the ROC?
8. What is the condition on the poles of Laplace transform for a system which is both stable and causal. Why? 2 mark (Hint: Consider your answer in question 1)
9. Prove the time-shifting property of Fourier transform using the convolution property. 2 marks

10. For a discrete-time signal, considering the DTFT, if the region close to $\omega=0$ corresponds to low-frequency, the region close to which value of ω corresponds to high-frequency? 1 mark

11. Given the frequency response of a system as

$$H(j\omega) = \frac{j\omega + 2}{-\omega^2 + 4j\omega + 3}$$

(a) Find the impulse response h(t).

 $3~\mathrm{marks}$

(b) Provide the differential equation between input and output.

1 mark

- 12. A causal and stable LTI system has an input $x[n] = (4/5)^n u[n]$ and the corresponding output is $y[n] = n(4/5)^n u[n]$.
- (a) Determine the frequency response $H(e^{j\omega})$ for the system S.
- (b) Determine a difference equation relating the input and output.

2 marks 1 mark 13. Given a Laplace transform X(s) as

$$X(s) = \frac{s-1}{s^2 + 3s + 2}$$

Provide the various possible time-domain functions which can correspond to this Laplace transform. Justify your answers.

4 marks