Domains and Fields

The integers have the following very nice "zero product property":

If a and b are integers and ab = 0, then either a = 0 or b = 0.

Recall that $\mathbb{Z}/(n)$ does not necessarily have this property. For instance, in $\mathbb{Z}/(6)$ we have $2 \neq 0$ and $3 \neq 0$, but $2 \cdot 3 = 0$. In this case we say that 2 and 3 are zero divisors in $\mathbb{Z}/(6)$.

Definition 1 (Zero Divisor). Let R be a ring.

- We say that a nonzero element $r \in R$ is a zero divisor if there is a nonzero element $s \in R$ such that rs = 0.
- We say that R is an integral domain, or simply domain, if R is commutative and does not contain any zero divisors.

Proposition 1 (Cancellation). Let R be a domain with $r, s, t \in R$. If rs = rt, then s = t.

Units and Fields

Definition 2 (Unit). Let R be a unital ring.

- We say that $u \in R$ is a unit if there is an element $v \in R$ such that $uv = vu = 1_R$.
- We say that R is a field if R is commutative and every nonzero element of R is a unit.

Proposition 2. Every field is also an integral domain.

Proposition 3. $\mathbb{Z}/(n)$ is a field if and only if n is prime.

Exercises

- 1. Ponder: Is the zero ring a domain?
- 2. Show that if R and S are nontrivial rings, then $R \oplus S$ is not a domain.
- 3. Show that every subring of a domain is a domain.
- 4. Show that every subring of a field is a domain.
- 5. Nilpotence. We say that an element r in a ring R is nilpotent if $r^n = 0$ for some natural number n.
- 6. Skew fields.
- 7. Every finite domain is a field. Let R be a *finite* integral domain. In this exercise we will show that R must be a field.

- (a) Let $r \in R$ be a nonzero element and define a mapping $\varphi_r : R \to R$ by $\varphi_r(x) = rx$. Show that φ_r must be injective.
- (b) Deduce that φ_r must be bijective.
- (c) Deduce that r must be a unit in R, and then that R must be a field.