Matrices à coefficients dans un corps fini

Ce problème sur des espaces de matrices à coefficients dans un corps fini est l'occasion de revoir les points de cours suivant :

- groupes finis, morphismes de groupes, théorème de Lagrange;
- carrés dans un corps fini;
- trace, déterminant et polynôme caractéristique d'une matrice;
- caractéristique d'un corps;
- corps finis à p éléments où p est un nombre premier;
- critère de primalité pour les nombres de Mersenne;
- actions de groupes et classes de similitudes de matrices.

Sur ces notions, on pourra consulter les ouvrages suivants.

- P. Boyer, J. J. Risler: Algèbre pour la licence 3. Groupes, anneaux, corps. Dunod (2006).
- F. Combes Algèbre et géométrie. Bréal (2003).
- J. P. ESCOFFIER. Toute l'algèbre de la licence. Dunod (2006).
- S. Francinou, H. Gianella, S. Nicolas: Exercices de mathématiques. Oraux X-ENS. Algèbre 1. Cassini (2001).
 - F. Liret. Arithmétique. Dundod (2011).
 - D. Perrin. Cours d'algèbre. Ellipses (1996).

Notations et rappels

Un corps est un anneau commutatif unitaire dans lequel tout élément non nul est inversible. Un corps est donc, a priori, commutatif.

Pour tout corps \mathbb{K} on note $\mathcal{M}_2(\mathbb{K})$ l'anneau des matrices d'ordre 2 à coefficients dans \mathbb{K} et $GL_2(\mathbb{K})$ le groupe multiplicatif des matrices inversibles d'ordre 2.

Pour toute matrice $M \in \mathcal{M}_2(\mathbb{K})$, on note $\det(M)$ son déterminant et $\operatorname{Tr}(M)$ sa trace.

Pour tout le problème, on note O la matrice nulle et I la matrice unité dans $\mathcal{M}_2(\mathbb{K})$.

Partie I

- 1. Soient G un groupe fini et $f:G\to G$ un morphisme de groupes.
 - (a) Montrer que, pour tout $y \in G$, on a :

$$\operatorname{card}\left(f^{-1}\left(\{y\}\right)\right) \leq \operatorname{card}\left(\ker\left(f\right)\right)$$

où on a noté:

$$f^{-1}(\{y\}) = \{x \in G \mid f(x) = y\}$$

(b) En déduire que si $g: G \to G$ est un autre un morphisme de groupes, on a alors :

$$\operatorname{card}\left(\ker\left(g\circ f\right)\right)\leq\operatorname{card}\left(\ker\left(f\right)\right)\operatorname{card}\left(\ker\left(g\right)\right)$$

2. Soit \mathbb{K} un corps fini à q éléments.

Pour tout diviseur d de q-1, on désigne par $f_d: \mathbb{K}^* \to \mathbb{K}^*$ le morphisme de groupes défini par :

$$\forall x \in \mathbb{K}^*, \ f_d(x) = x^d$$

- (a) Montrer que card $(\ker(f_d)) \leq d$.
- (b) Soit $d' = \frac{q-1}{d}$. Montrer que :

$$\forall x \in \mathbb{K}^*, \ f_d \circ f_{d'}(x) = f_{d'} \circ f_d(x) = 1$$

- (c) En déduire que card $(\ker(f_d)) = d$, puis que $\ker(f_d) = \operatorname{Im}(f_{d'})$.
- (d) On suppose que q est impair. En déduire que :

$$\left\{ x^{\frac{q-1}{2}} \mid x \in \mathbb{K}^* \right\} = \{-1, 1\}$$

et que :

$$\left\{ x \in \mathbb{K}^* \mid x^{\frac{q-1}{2}} = 1 \right\} = \left\{ x \in \mathbb{K}^* \mid \exists y \in \mathbb{K}^*, \ x = y^2 \right\}$$

- 3. Soit \mathbb{K} un corps.
 - (a) Montrer que :

$$\forall M \in \mathcal{M}_2(\mathbb{K}), \ M^2 = \text{Tr}(M) M - \det(M) I$$

(b) Exprimer, pour tout $M \in \mathcal{M}_2(\mathbb{K})$, $\operatorname{Tr}(M^2)$ en fonction de $(\operatorname{Tr}(M))^2$ et de det (M).

- (c) Soit $M \in \mathcal{M}_2(\mathbb{K})$ telle que det (M) = 1.
 - i. Montrer que $M + M^{-1} = \text{Tr}(M) I$.
 - ii. Montrer que $M^2 = M^{-2}$ si, et seulement si, Tr(M) = 0 ou $M^2 = I$.
 - iii. On suppose ici que \mathbb{K} est de caractéristique différente de 2. Montrer que M est d'ordre 4 si, et seulement si, $\operatorname{Tr}(M) = 0$.

Partie II

Pour
$$a \in \mathbb{K}$$
, on note $B = \begin{pmatrix} 0 & a \\ 1 & 0 \end{pmatrix}$, $A = 2I + B$ et:

$$\mathbb{A}_a = \left\{ M \in \mathcal{M}_2(\mathbb{K}) \mid \exists (x, y) \in \mathbb{K}^2, \ M = xI + yB \right\}$$

Pour tout nombre premier $p \geq 2$, $\mathbb{F}_p = \frac{\mathbb{Z}}{p\mathbb{Z}}$ désigne le corps commutatif des classes résiduelles modulo p.

Pour tout entier relatif k, on note \overline{k} la classe de k modulo p.

Pour tout anneau unitaire \mathbb{A} , on note \mathbb{A}^{\times} le groupe multiplicatif des éléments inversibles de \mathbb{A} .

- 1. Montrer que \mathbb{A}_a est un sous-anneau commutatif de $\mathcal{M}_2(\mathbb{K})$ et que c'est aussi un sous \mathbb{K} -espace vectoriel dont on donnera une base.
- 2. Pour $\mathbb{K} = \mathbb{F}_p$, où p est un nombre premier, montrer que card $(\mathbb{A}_a) = p^2$.
- 3. Soit $\varphi: \mathbb{A}_a \to \mathbb{A}_a$ la symétrie par rapport à la droite de vecteur directeur I parallèlement à la droite de vecteur directeur B.

Montrer que φ est un isomorphisme d'anneaux.

- 4. Soit $M = xI + yB \in \mathbb{A}_a$.
 - (a) Calculer $M\varphi(M)$ en fonction de x et y.
 - (b) Montrer que $\det(M) = x^2 ay^2$.
 - (c) Montrer que $M \in \mathbb{A}_a^{\times}$ si, et seulement si, $\det(M) \neq 0$.
- 5. Montrer que \mathbb{A}_a est un corps si, et seulement si, a n'est pas un carré dans \mathbb{K} .
- 6. On suppose que $\mathbb{K} = \mathbb{R}$.

Montrer que, pour a < 0, \mathbb{A}_a est isomorphe au corps \mathbb{C} des nombres complexes.

- 7. On suppose que \mathbb{K} est de caractéristique différente de 2 et qu'il existe $b \in \mathbb{K}^*$ tel que $a = b^2$.
 - (a) Montrer qu'il existe $P \in GL_2(\mathbb{K})$ telle que :

$$PBP^{-1} = \left(\begin{array}{cc} b & 0\\ 0 & -b \end{array}\right)$$

- (b) En déduire que \mathbb{A}_a est isomorphe à l'anneau produit \mathbb{K}^2 .
- (c) Pour $\mathbb{K} = \mathbb{F}_p$, où p est un nombre premier impair, calculer card (\mathbb{A}_a^{\times}) .
- 8. On suppose que a=0.

- (a) Montrer que l'anneau \mathbb{A}_a n'est pas isomorphe à l'anneau produit \mathbb{K}^2 .
- (b) Pour $\mathbb{K} = \mathbb{F}_p$, où p est un nombre premier, calculer card (\mathbb{A}_a^{\times}) .
- 9. Pour $\mathbb{K} = \mathbb{F}_2$, montrer que les anneaux $\mathbb{A}_{\overline{0}}$ et $\mathbb{A}_{\overline{1}}$ sont isomorphes.
- 10. On suppose ici que $\mathbb{K} = \mathbb{F}_p$, où p est un nombre premier supérieur ou égal à 5 et on prend $a = \overline{3}$.

On considère la suite d'entiers $(T_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} T_0 = 2 \\ \forall n \in \mathbb{N}, \ T_{n+1} = 2T_n^2 - 1 \end{cases}$$

- (a) Montrer que la matrice A = 2I + B est inversible dans \mathbb{A}_a .
- (b) Montrer que, pour tout entier $n \in \mathbb{N}$, on a :

$$\operatorname{Tr}\left(A^{2^n}\right) = \overline{2}\overline{T_n}$$

- (c) Pour $n \geq 2$, montrer que p divise T_{n-2} si, et seulement si, $A^{2^{n-2}}$ est d'ordre 4 dans \mathbb{A}_a^{\times} .
- (d) Déduire, pour $n \geq 2$, que p divise T_{n-2} si, et seulement si, A est d'ordre 2^n dans \mathbb{A}_a^{\times} et qu'alors $2^n \leq p^2 1$.

Partie III

Dans ce qui suit, $\mathbb{K} = \mathbb{F}_p$ où p est un nombre premier impair.

1. Soit:

$$F: \mathbb{A}_a \to \mathbb{A}_a$$

$$M \mapsto M^p$$

- (a) Montrer que l'application F est un morphisme d'anneaux et une application \mathbb{F}_p linéaire.
- (b) Montrer que $F(B) = a^{\frac{p-1}{2}}B$.
- (c) On suppose que $a = \overline{0}$. Montrer que F est un projecteur, dont on déterminera le noyau et l'image.
- (d) On suppose qu'il existe $u \in \mathbb{F}_p^*$ tel que $a = u^2$. Montrer que F est l'application identique.
- (e) Dans ce qui suit, on suppose que a n'est pas un carré dans \mathbb{F}_p .
 - i. Montrer que $F = \varphi$.
 - ii. Soit $P(X) = X^2 uX + v$ un polynôme à coefficients dans \mathbb{F}_p . Montrer que, si $M \in \mathbb{A}_a$ est une racine de P, alors F(M) est aussi une racine de P.

En déduire que, si $M \in \mathbb{A}_a$ est une racine de P et si P est irréductible dans $\mathbb{F}_p[X]$, on a alors $uI = M + M^p$ et $vI = M^{p+1}$.

iii. Montrer que, pour tout $M \in \mathbb{A}_a$, on a $M^{p+1} = \det(M) \cdot I$.

2. On suppose de plus que $a=\overline{3},$ que $\overline{2}$ est un carré dans \mathbb{F}_p et que $\overline{3}$ n'en est pas un. On pose C=B+I.

Montrer que $\overline{2}A = C^2$, $C^{p+1} = -\overline{2}I$ et $A^{\frac{p+1}{2}} = -I$.

Partie IV

On suppose désormais, jusqu'à la fin de cette partie, que le nombre premier p est supérieur ou égal à 5 et de la forme $p = 2^m - 1$.

- 1. Montrer que m est un nombre premier impair.
- 2. En déduire que 3 divise p-1.
- 3. Déduire qu'il existe dans \mathbb{F}_p^* un élément b d'ordre 3.
- 4. Vérifier que $(\overline{2}b + \overline{1})^2 = -\overline{3}$.
- 5. Établir que $-\overline{1}$ n'est pas un carré dans \mathbb{F}_p^* .
- 6. Déduire que $\overline{3}$ n'est pas un carré dans \mathbb{F}_p^* .
- 7. Démontrer que $\overline{2}$ est un carré dans \mathbb{F}_p^* .
- 8. Établir le critère de primalité suivant : « Soit q un entier supérieur ou égal à 3. Alors $2^q 1$ est premier si, et seulement si, $2^q 1$ divise T_{q-2} ».
- 9. Décomposer T_3 en facteurs premiers.

Partie V

Dans cette partie, le corps de base est \mathbb{F}_p où p est un nombre premier impair.

Soit $a \in \mathbb{F}_p^*$ qui n'est pas un carré dans \mathbb{F}_p . D'après II-5, \mathbb{A}_a est un corps, qu'on note \mathbb{K} dans la suite.

1.

(a) Démontrer que l'application :

$$F: \mathbb{F}_p \to \mathbb{K}$$
$$x \mapsto x \cdot I$$

est un morphisme de corps injectif.

On identifie ainsi \mathbb{F}_p à un sous-corps de \mathbb{K} .

- (b) Démontrer que pour tout $x \in \mathbb{F}_p$, $x \cdot I$ est un carré dans \mathbb{K} .
- (c) Soit $P(X) = X^2 + cX + d$ un polynôme unitaire de degré 2 à coefficients c et d dans \mathbb{F}_p .

Démontrer que ce polynôme est scindé dans $\mathbb{K}[X]$.

- 2. On considère le groupe $GL_2(\mathbb{F}_p)$ des matrices 2×2 inversibles, à coefficients dans \mathbb{F}_p .
 - (a) Déterminer le cardinal de $GL_2(\mathbb{F}_p)$.
 - (b) Soit $M \in \mathcal{M}_2(\mathbb{F}_p)$. Démontrer que M est semblable à une matrice de l'un des quatre types suivants :

- i. Une matrice de la forme $\begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$, $x \in \mathbb{F}_p$;
- ii. une matrice de la forme $\begin{pmatrix} x & 1 \\ 0 & x \end{pmatrix}$, $x \in \mathbb{F}_p$;
- iii. une matrice de la forme $\left(\begin{array}{cc} x & 0 \\ 0 & y \end{array}\right),\, x,y\in \mathbb{F}_p,\, x\neq y\,;$
- iv. une matrice de la forme $\begin{pmatrix} x & uy \\ y & x \end{pmatrix}$, $x \in \mathbb{F}_p$, $y \in \mathbb{F}_p^*$ où $u \in \mathbb{F}_p^*$ n'est pas un carré dans \mathbb{F}_p .

Indication: on pourra considérer les valeurs propres de M dans \mathbb{F}_p ou dans \mathbb{K} .

- (c) Déterminer, pour chacun des types ci-dessus, le nombre de classes de similitude de ce type.
- (d) Déterminer, pour chaque classe de similitude de $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$, le cardinal de celle-ci.