$\begin{array}{c} \textbf{Projeto Mathematical Ramblings} \\ \textbf{mathematical ramblings.blogspot.com} \end{array}$

 $S = \{u_i\}$ é linearmente dependente se, e somente se, um vetor é combinação linear dos demais.

Se S é LD, existe um escalar $a_j \neq 0$ tal que $a_1u_1 + \ldots + a_ju_j + \ldots + a_nu_n = 0$, logo

$$u_j = -a_j^{-1}a_1u_1 - \dots - a_j^{-1}a_{j-1}u_{j-1} - a_j^{-1}a_{j+1}u_{j+1} - \dots - a_j^{-1}a_nu_n$$

Ou seja, u_i é combinação linear dos demais.

Vamos supor agora que $u_j = a_1u_1 + \ldots + a_{j-1}u_{j-1} + a_{j+1}u_{j+1} + \ldots + a_nu_n$, donde

$$a_1u_1 + \ldots - u_j + \ldots a_nu_n = 0$$

Ou seja, $S \in LD$.

Quod Erat Demonstrandum.

Documento compilado em Saturday 19th October, 2024, 19:18, tempo no servidor.

Última versão do documento (podem haver correções e/ou aprimoramentos): "bit.ly/mathematicalramblings_public".

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

Licença de uso: Atribuição-NãoComercial-CompartilhaIgual (CC BY-NC-SA).