Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	03October 2022
Team ID	PNT2022TMID48349
Project Name	A Novel Method For Handwritten Digit
	Recognition System
Maximum Marks	4 Marks

Functional Requirements:

Following are the functional requirements of the proposed solution.

Functional Requirement and description :
Image data : Handwritten digit recognition is the ability of a computer to recognize
the human handwritten digits from different sources like images, papers, touch
screens, etc and classify them into 10 predefined classes(0-9). This has been a
topic of boundless-research in the field of deep learning.
Digit _Classifier_ Model : Use the MNIST database of handwritten digits to train a
convolutional network to predict the digit given an image. First obtain the training
and validation model.
MNIST dataset: The MNIST dataset is an acronym that stands for the modified
National Institute of Standards and Technology dataset. It is a dataset of 60,000
small square 28 *28 pixel greyscale images of handwritten single digits between 0
and to 9.
abe = 5 $ abe = 0$ $ abe = 4$ $ abe = 1$ $ abe = 9$
<i>5 0 9 7 9</i>
abe = 2 $ abe = 1$ $ abe = 3$ $ abe = 1$ $ abe = 4$
2 1 3 1 4
label = 3 label = 5 label = 3 label = 6 label = 1
3 3 6

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR	Non-Functional Requirement
No.	
NFR-1	Usability: Handwritten digit recognition is one of the practically important issues in
	pattern recognition applications. The applications of digit recognition include in
	postal mail sorting, bank check processing ,form data entry and etc.

NFR-2	Reliability:
	 The system not only produces a classification of the digit but also a rich
	description of the instantiation parameters.
	The generative models can perform recognition driven segmentation
	The method invokes a relatively.
NFR-3	Performance: The neural network uses the examples to automatically infer rules
	for recognizing handwritten digits. Furthermore, by increasing the number of
	training examples, the network can learn more about handwriting, and so improve
	it's accuracy. There are a number of ways and algorithms to recognize handwritten
	digits ,including Deep Learning/CNN, SVM, Gaussian Naive Bayes, KNN, Decision
	Trees, Random Forests etc.
NFR-4	Accuracy: Optical Character Recognition (OCR) technology provides higher than
	99% accuracy with typed characters in high-quality images. However, the diversity
	in human writing types, spacing differences and irregularities of handwriting causes
	less accurate character recognition.