Arhitektura računara SIIT

Uvod

Pojam arhitekture računara

Program je:

- algoritam opisan jezikom računara
- niz instrukcija koje obavljaju određeni posao

Računar je mašina koja izvršava zadate instrukcije

Jezik računara (mašine) je **skup** jednostavnih **instrukcija** koje mogu da izvrše elektronska kola računara (procesor)

Dizajn skupa instrukcija i njihove implementacije predstavlja arhitekturu računara

Pojam arhitekture računara

- Posebni problemi upotrebe (programiranja) i pravljenja (implementacije) računara
- Način programiranja zavisi od osobina skupa naredbi arhitektura naredbi
- Implementacija arhitekture naredbi obuhvata organizaciju i realizaciju računara
- Arhitektura računara = arhitektura naredbi
 + implementacija

Strukturirana organizacija računara

Nivo 5	Nivo namenskih programskih jezika		
	Prevođenje (kompajler)		
Nivo 4	Nivo asemblerskog jezika		
	Prevođenje (asembler)		
Nivo 3	Nivo mašine operativnog sistema		
	Delimična interpretacija (operativni sistem)		
Nivo 2	Nivo arhitekture skupa instrukcija (ISA)		
	Interpretacija (mikroprogram)		
Nivo I	Nivo mikroarhitekture		
	Hardver		
Nivo 0	Nivo digitalne logike		

Primer algoritma - NZD

Euklidov algoritam:

a = n*NZDb = m*NZD

|a-b| = |n-m|*NZD

Programski kod:

```
int a = 12;
int b = 10;
while (a != b) {
    if (a > b)
        a = a - b;
    else
        b = b - a;
}
```

Proceduralni programski jezici

- Prosti tipovi podataka celi, realni, znakovni, logički
- Prosti (osnovni) tipovi osnova za složene tipove
- Operacije opisuju obradu podataka, odnosno rukovanje prostim tipovima
- Promenljive daju opštost obradi podataka, imaju ime, vrednost i tip, operacija dodele
- Promenljive, vrednosti prostih tipova i operacije su osnovni elementi imperativnih jezika
- Uopšteni model računara memorija i procesor

Memorija

- Sastavljena od niza lokacija
 - vrednost prosti tip
 - adresa numerička oznaka, broj ili labela simbolička oznaka
- Univerzalnost, višeznačna interpretacija
 - kodiranje naredbi i drugih tipova na opseg celobrojnih brojeva

```
There are only 10 types
of people in the world:
Those who understand binary
and those who don't.
```

Procesor

- Logička kola ili sklopovi izvršavaju operacije, realizuju funkcije
- Registri posebna memorija unutar procesora, označeni su posebnom oznakom
- Naredba = oznaka operacije + operandi
- Operandi su ili vrednosti prostih tipova ili adrese lokacija

Adresiranje

- Omogućava pristup operandima
- Ulazni i izlazni operandi (c = a + b, a = a + b)
 - neposredni (engl. immediate) konstante
 - direktni (engl. direct) promenljive prostih tipova
 - registarski (engl. register) promenljive prostih tipova
 - indirektni (engl. register indirect) pokazivačke prom.
 - indeksni (engl. indexed) promenljive složenih tipova

Skup naredbi

- Aritmetičke, relacione, logičke, upravljačke i naredbe prebacivanja (između registara i memorijskih lokacija)
- Aritmetičke: dovoljno celobrojno + i –
- Relacione: a ? b može pomoću a b

```
razlika 0
razlika različita od 0
razlika negativna
razlika negativna ili 0
razlika pozitivna
razlika pozitivna ili 0
```

- Logičke: I, ILI, NE, ekskluzivno ILI (EILI, XOR)
- Upravljačke: bezuslovna i uslovna izmena redosleda izvršavanja – realizacija alternativnog (selekcija) i repetativnog toka (iteracija) izvršavanja naredbi

Mašinske i asemblerske naredbe

- Mašinska naredba = kod naredbe
 + kodovi operanada
- Mašinski format naredbe
- Asemblerska naredba simbolička oznaka mašinske naredbe
- Mašinski i asemblerski jezik
- Asembler: asemblerski program u mašinski
- Prevodilac (kompajler): izvorni program u asemblerski (mašinski)

- Dovoljno je samo predstavljanje celih brojeva
- Binarni brojni sistem dva nivoa signala
- Podudarnost cifara binarnog brojnog sistema i logičkih vrednosti omogućava opisivanje aritmetičkih operacija logičkim funkcijama

a	b	a+b	Prenos
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

 $NI (NAND) : a \circ b \equiv \sim (a\&b)$

Univerzalno logičko kolo:

 $a \& b == (a \circ b) \circ (a \circ b)$

ILI: $a \mid b == (a \circ a) \circ (b \circ b)$

EILI (XOR): $a \land b == ((a \circ a) \circ b) \circ (a \circ (b \circ b))$

ENILI (IFF): $a \equiv b == (a \circ b) \circ ((a \circ a) \circ (b \circ b))$

- Tranzistor = fizička realizacija prekidača
 - ulaz
 - izlaz
 - upravljački izvod

(prekidačka funkcija)

a (V _I)	b (V ₂)	f(a, b) (V _{out})
0	0	1
0	Į	I
I	0	1
I	I	0

od vrednosti argumenata zavisi stanje

$$f(a, b) == a \circ b$$

- Kombinaciona i sekvencijalna kola
- Funkcije od kombinacionih, izlaz zavisi od ulaza
- Memorija od sekvencijalnih, izlaz zavisi od ulaza i stanja
- Lokacija = niz bitova (ćelija)
 - bit = flip-flop kolo, memoriše jednu logičku vrednost
- Lokacije organizovane u bajtove i reči

S	R	Q _{next}	Akcija
0	0	Q	Drži stanje
0	1	0	Reset
I	0	I	Set
I	I	X	Nije dozvoljeno

Osnovna logička kola

