Université Dr.Moulay Tahar de Saida. Faculté des Sciences

DÉPARTEMENT DE MATHÉMATIQUES

Concours d'accès à l'Ecole doctorale Modèles stochastiques, Statistique et Applications 1^{ere} Epreuve: Statistique Para.-NonPara. Sujet 2

12 NOVEMBRE 2013

Durée: 1H30

Exercice 1. (10 points)

Soit $X_1, X_2, ... X_n$ un n-échantillon de loi \mathbb{P}_{θ} . On considère G_1 et G_2 deux estimateurs, sans biais pour le parmètre θ de carré sommable.

- (1) Déterminer une forme linéaire de G_1 et G_2 qui soit un estimateur sans biais de θ et qui ait la plus petite variance possible.
- (2) Que devient le résultat de la question précédente si G_2 est un estimateur de variance minimum. En particulier, calculer le coefficient de corrélation de G_1 et G_2 .

Exercice 2. (10 points)

Soit $X_1, X_2, \dots X_n$ un n-échantillon de X de densité f. On considère l'estimateur à noyau de f, noté f_n défini par

$$f_n(x) = \frac{1}{nh_n} \sum_{i=1}^n K\left(\frac{x - X_i}{h_n}\right)$$

- (1) Supposons que f est de classe C^2 et K est un noyau symétrique, pair, continu et à support compact, calculer le biais de $f_n(x)$.
- (2) Montrer que cet estimateur converge en moyenne quadratique et préciser son erreur quadratique.
- (3) Trouver la valeur de h_n qui minimise la partie dominante de cette erreur.
- (4) Trouver la valeur exacte de h_n lorsque l'échantillon suit une loi normal.