874 J.C.S. Dalton

Structural Investigations of Nickel Complexes. Part I. Crystal and Molecular Structure of cis-Dichlorobis(1-benzyl- Δ^3 -phospholen)nickel(II)

By A. T. McPhail,* R. C. Komson, J. F. Engel, and L. D. Quin, Paul M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27706, U.S.A

The crystal and molecular structure of the title compound has been determined by single-crystal X-ray analysis with 3112 independent reflections and refined to R 0.095. The crystals are monoclinic, space-group $P2_1/c$, with a=10.40(2), b=12.91(2), c=18.00(3) Å, $\beta=112.67(10)^\circ$; Z=4. The molecule has approximate C_2 symmetry and co-ordination around the nickel atom is tetrahedrally distorted square planar with mean CI-Ni-P angles of 164.7°. A high trans-influence of the tertiary phosphine ligands is noted in the complex. The mean Ni-P [2·154(2) Å] and Ni-Cl [2·212(2) Å] bond lengths are respectively 0·12 shorter and 0·05 Å longer than the corresponding values derived from the sum of the covalent radii. The phospholen rings are puckered, mean C-P-C angle 94.0° ± 0.4°, and the mean phosphorus atom displacement from the best plane through the ring carbon atoms is 0.385 Å.

FOUR-CO-ORDINATE nickel(II) complexes of general formula $NiX_2(PR_3)_2$ (X = Cl, Br, or I; R = alkyl or aryl) have been the subject of numerous investigations. 1-3 Many of these complexes have been characterized by their magnetic and spectroscopic properties, and some of their detailed structures have been elucidated by single-crystal X-ray analysis.4-10 In general, dark red dichloro-complexes have been found to be square planar in their nickel-atom co-ordination, but an exception to the use of colour as a means of classification has been noted.9 With unidentate ligands the trans-configuration is adopted most frequently. We have subjected dichlorobis(1-benzyl- Δ^3 -phospholen)nickel(II) to singlecrystal X-ray analysis in order to examine the geometry around the nickel atom and to obtain molecular parameters for the heterocyclic ligand which is a liquid (b.p. 80—82°) at room temperature. The less frequently encountered cis square-planar ligand configuration which occurs in this complex permits an estimate of the transinfluence of the tertiary phosphine ligand on the nickelchlorine bonds.

EXPERIMENTAL

Preparation.—The addition, in one portion, of a solution of anhydrous nickel chloride (0.13 g, 1.00 mmol) in absolute ethanol (15 ml) to 1-benzyl- Δ^3 -phospholen ¹¹ (0·32 g, 1·82 mmol) in absolute ethanol (10 ml) produced a dark red solution which was subsequently stirred for 44 h. Removal of the ethanol yielded a dark red solid (0.35 g), m.p. 139— 141 °C, which was recrystallized from the minimum of ethanol to give dark red crystals (0.18 g), m.p. 146—148 °C.

Crystal Data.— $C_{22}H_{26}Cl_2NiP_2$, M = 481.7, Monoclinic, $a = 10.40(2), b = 12.91(2), c = 18.00(3) \text{ Å}, \beta = 112.67(10)^{\circ},$ $U = 2230 \,\text{Å}^3$, $D_{\rm m} = 1.45$, Z = 4, $D_{\rm c} = 1.44$, F(000) = 1.441000. Space-group $P2_1/c(C_{2h}^5)$ from systematic absences:

- G. Booth, Adv. Inorg. Chem. Radiochem., 1964, 6, 1.
 R. G. Hayter and F. S. Humiec, Inorg. Chem., 1965, 4, 1701.
- L. Sacconi, Transition Metal Chem., 1968, 4, 199.
 G. Giacometti, V. Scatturin, and A. Turco, Gazzetta, 1958, 88, 434; V. Scatturin and A. Turco, J. Inorg. Nuclear Chem., 1958, 8, 447.
- M. C. Browning, J. R. Mellor, D. J. Morgan, S. A. J. Pratt,
 L. E. Sutton, and L. M. Venanzi, J. Chem. Soc., 1962, 693.
 G. Garton, D. E. Henn, H. M. Powell, and L. M. Venanzi,
- J. Chem. Soc., 1963, 3625.

h0l when $l \neq 2n$, 0k0 when $k \neq 2n$. Cu- K_{α} radiation, $\lambda = 1.542 \text{ Å}; \ \mu(\text{Cu-}K_{\alpha}) = 47.5 \text{ cm}^{-1}.$

Crystallographic Measurements.—Unit-cell dimensions were evaluated from rotation photographs taken with $Cu-K_{\alpha}$ radiation and from precession photographs taken with Mo- K_{α} radiation ($\lambda = 0.7107 \,\text{Å}$). Intensity data for the 0—9kl layers were recorded by the equi-inclination multiplefilm Weissenberg method with $Cu-K_{\alpha}$ radiation. The intensities were estimated visually and were corrected for spot-shape, Lorentz, polarization, and rotation factors. In all, 3112 independent structure-amplitudes were derived.

Structure Analysis.—Initial co-ordinates for the nickel atom were obtained from the three-dimensional Patterson map. With the assumption that the phosphorus and chlorine atoms were in a nearly square-planar arrangement around the nickel atom, several possible sets of trial coordinates were derived for these atoms. For each of these sets, however, R was ca. 0.6 when structure-factors were calculated. A three-dimensional nickel-phased F_o Fourier synthesis was then computed and this clearly revealed that the phosphorus and chlorine atoms deviated by substantial amounts from a regular square-planar geometry. Inclusion of the phosphorus and chlorine atoms, all weighted as chlorine, in the next structure-factor calculation reduced R to 0.40. A subsequent three-dimensional F_0 Fourier synthesis computed with the improved phase constants enabled the carbon atoms to be placed and permitted identification of the chlorine and phosphorus atoms which were appropriately weighted in all later calculations. For structurefactors calculated with all non-hydrogen atoms included, R was 0.23.

The positional and isotropic thermal parameters were then adjusted by three cycles of full-matrix least-squares calculations which reduced R to 0.144. Further refinement during which the nickel, chlorine, and phosphorus atoms were allowed to assume anisotropic temperature factors resulted in R 0.099 after five cycles. Approximate positions for the hydrogen atoms were then calculated using appropri-

⁷ P. L. Bellon, V. Albano, V. D. Bianco, F. Pompa, and V. Scatturin, *Ricerca sci.*, 1963, 33, 1213.

8 J. A. J. Jarvis, R. H. B. Mais, and P. G. Owston, J. Chem. Soc. (A), 1968, 1473.
9 G. R. Davies, R. H. B. Mais, and P. G. Owston, J. Chem. Soc. (A), 1967, 1750.
10 B. T. Kilbourn and H. M. Powell, J. Chem. Soc. (A), 1970, 1200.

¹¹ P. Coggon, J. F. Engel, A. T. McPhail, and L. D. Quin, J. Amer. Chem. Soc., 1970, **92**, 5779.

1972 875

ate angles and assuming C-H 1.07 Å. All 26 hydrogen atoms were found to lie in positive regions of the difference electron-density map, and they were then included in the

TABLE 1

Fractional atomic co-ordinates ($\times 10^4$) and thermal parameters, with estimated standard deviations in parentheses

ses			
x/a	v/b	z/c	$B/ m \AA^2$
•			*
			*
			*
			*
			*
			3.57(15)
			4.21(18)
			3.47(15)
			2.51(12)
			3.27(14)
			2.40(11)
/			3.33(14)
			4.31(18)
			5.20(22)
			4.42(19)
			3.37(15)
			3.27(14)
			3.71(14)
			3.18(14)
			2.37(11)
			2.43(11)
			2.45(11) $2.25(11)$
			2.58(12)
			3.27(14)
			4.19(18)
			3.14(14)
			2.62(12)
٠,	, ,	` '	, ,
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
			5.0
s	238	19	5.0
	x/a 2724(1) 1948(3) 2529(3) 2882(2) 3442(2) 1406(10) 1175(11) 1796(9) 2719(8) 4457(9) 5746(8) 6217(9) 7372(11) 8084(12) 7629(11) 6478(9) 4637(9) 5649(10) 5639(9) 4627(7) 2036(8) 1166(7) 1393(8) 629(9) -388(10) -650(9) 142(8) 53 168 178 196 374 226 426 426 453 571 769 891 815 616 512 404 634 633 402 511 254 144 212 80 -37 -138 -3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

* For the nickel, chlorine, and phosphorus atoms anisotropic temperature factors of the form $B\sin^2\theta/\lambda^2=b_{11}h^2+b_{22}k^2+b_{33}l^2+b_{12}hk+b_{13}hl+b_{23}kl$ were employed with parameters:

_						
	10^4 . b_{11}	10^{5} . b_{22}	10^{5} . b_{33}	10^{5} . b_{12}	$10^{5} \cdot b_{13}$	10^{5} . b_{23}
Ni	63(1)	261(6)	198(3)	-51(13)	317(9)	-52(7)
Cl	143(3)	517(11)	195(5)	-103(29)	391(17)	-138(12)
Cl′	163(3)	298(9)	409(9)	-240(26)	684(21)	-140(13)
P	53(2)	326(8)	199(5)	21(19)	294(13)	74(11)
P'	49(2)	269(8)	168(4)	-4(18)	273(12)	-11(10)
† Hydrogen-atom co-ordinates $\times 10^3$.						

structure-factor calculations at their computed positions but were not refined. When structure-factors were calculated R decreased to 0.095. Two further least-squares iterations on all the non-hydrogen atom parameters brought the refinement to convergence. The final value of Ris 0.095.

Theoretical atomic scattering factors for neutral atoms, 12 uncorrected for anomalous dispersion effects, were employed

TABLE 2 Interatomic distances (Å) and valency angles (°)

Interatomic distances (A) and valency angles (°)					
with standard deviations in parentheses					
(a) Bonded distances					
Ni-Cl	$2 \cdot 216(2)$	Ni–Cl′	2.205(2)		
Ni-P	$2 \cdot 155(2)$	Ni-P'	$2 \cdot 153(2)$		
P-C(1)	1.833(10)	P'-C(1')	1.844(9)		
P-C(4)	1.857(8)	P'-C(4')	1.852(7)		
P-C(5) C(1)-C(2)	1.855(9) 1.524(14)	P'-C(5')	1.863(7) 1.515(13)		
C(2)-C(3)	1.314(14)	$C(1')\stackrel{\cdot}{-}C(2')$ $C(2')\stackrel{\cdot}{-}C(3')$	1.313(13) 1.301(13)		
C(3)-C(4)	1.530(12)	C(3')-C(4')	1.489(12)		
C(E)C(G)	1 400/10)	C(3')-C(4') C(5')-C(6') C(6')-C(7') C(6')-C(11')	1.492(11)		
C(6)-C(7)	1·492(12) 1·397(11) 1·390(12) 1·383(14) 1·400(16) 1·361(16) 1·387(14)	C(6')-C(7')	1.392(10)		
C(6)-C(11)	1.390(12)	C(6')-C(11')	1.396(11)		
C(7)-C(8)	1.383(14)	C(7')-C(8)'	1.383(12)		
C(8)-C(9) C(9)-C(10)	1.361(16)	C(8')-C(9') C(9')-C(10')	$1.384(13) \\ 1.415(13)$		
C(10)-C(11)	1.387(14)	C(10')-C(11')	1.354(12)		
			1 001(12)		
		oonded distances			
$Cl \cdots P'$	2.96	$C(4) \cdot \cdot \cdot C(4')$	3.38		
	2.97	$C(4) \cdot \cdot \cdot C(7)$	3.44		
$CI \cdot \cdot \cdot CI'$ $P \cdot \cdot \cdot P'$	3·24 3·26	$C(4') \cdot \cdot \cdot \cdot C(7')$	3.54		
	3·20 3·34	$C(4) \cdot \cdot \cdot C(11)$ $C(4) \cdot \cdot \cdot C(11)$	3·56 3·58		
$C(4') \cdot \cdot \cdot C(6')$	3.37	0(1) 0(11)	000		
(c) Intermolecul					
$C(7') \cdot \cdot \cdot \cdot C(7'1)$	3.45	$C(5') \cdot \cdot \cdot C(8'^{I})$	3.61		
$C(6') \cdot \cdot \cdot C(8'^{\mathbf{I}})$ $C(6') \cdot \cdot \cdot C(7'^{\mathbf{I}})$	3·49 3·51	$C(2') \cdots C(11'^{III})$	3·68		
$Cl(2) \cdot \cdot \cdot C(10^{\prime 11})$	3.59	$C(8) \cdot \cdot \cdot C(11^{\prime IV})$	3.69		
		C(11C(0)			
. , , ,		$C(7') \cdots C(8')$			
Roman nume	ral superscri	pts refer to the foll			
Roman nume ordinate transform	eral superscri	pts refer to the foll			
Roman nume ordinate transfor $I - x, 1 - x$	eral superscriptmations: $y, -z$	ipts refer to the foll $III 1 + x, y, z$	owing co-		
Roman nume ordinate transfor $I - x$, $I - II - x$, $-y$	eral superscriptions: $y, -z$ $y, -z$	pts refer to the foll	owing co-		
Roman nume ordinate transfor $I - x$, $I - II - x$, $-y$ (d) Valency ang	eral superscript rmations: y, -z z	into the following interpretation in the second se	owing co-		
Roman nume ordinate transformula $I - x$, $I - II - x$, $-y$ (d) Valency ang $Cl-Ni-P'$	eral superscriptmations: $y, -z$ $z = -z$ $z = -z$ $z = -z$	into the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, $\frac{1}{2}$ Cl'-Ni-P	eving co-		
Roman nume ordinate transformula transformul	eral superscriptmations: y, -z z = -z les z = -z	pts refer to the foll III $1 + x, y, z$ IV $1 + x, \frac{1}{2} - y, \frac{1}{2}$ Cl'-Ni-P P-Ni-P'	ewing co- + z 85.9(1) 98.3(1)		
Roman nume ordinate transformula $I - x$, $I - II - x$, $-y$ (d) Valency ang $Cl-Ni-P'$	eral superscriptmations: $y, -z$ $z = -z$ $z = -z$ $z = -z$	into the fold in	eving co-		
Roman nume ordinate transformula $I - x$, $I - x$, $I - x$, $I - x$, $-y$. (d) Valency ang $Cl-Ni-P'$ $Cl-Ni-P'$ $Cl-Ni-P$ $Ni-P-C(1)$ $Ni-P-C(4)$	ral superscriptmations: y, -z -z les 85.4(1) 94.4(1) 164.3(1) 111.9(3) 124.0(2)	into the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, $\frac{1}{2} - y$ Cl'-Ni-P P-Ni-P' Cl'-Ni-P' Ni-P'-C(1') Ni-P'-C(4')	85.9(1) 98.3(1) 165.1(1) 112.2(3) 125.0(2)		
Roman nume ordinate transformula $I - x$, $I - III - x$, $-y$ (d) Valency ang $Cl-Ni-P'$ $Cl-Ni-Cl'$ $Cl-Ni-P$ $Ni-P-C(1)$ $Ni-P-C(5)$	ral superscriptmations: y, -z -z les 85.4(1) 94.4(1) 164.3(1) 111.9(3) 124.0(2) 115.5(3)	into the foll III $1 + x, y, z$ IV $1 + x, \frac{1}{2} - y, \frac{1}{2}$ Cl'-Ni-P P-Ni-P' Cl'-Ni-P' Ni-P'-C(1') Ni-P'-C(4') Ni-P'-C(5')	85.9(1) 98.3(1) 165.1(1) 112.2(3) 125.0(2) 114.6(2)		
Roman nume ordinate transformula transformul	ral superscriptmations: y, -z -z les 85.4(1) 94.4(1) 164.3(1) 111.9(3) 124.0(2) 115.5(3) 94.4(4)	into the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, \frac	85.9(1) 98.3(1) 165.1(1) 112.2(3) 125.0(2) 114.6(2) 93.5(4)		
Roman nume ordinate transformula $I - x$, $I - x$, $I - x$, $I - x$, $-y$. (d) Valency ang $Cl-Ni-P'$ $Cl-Ni-P'$ $Cl-Ni-P$ $Ni-P-C(1)$ $Ni-P-C(4)$ $Ni-P-C(5)$ $C(1)-P-C(4)$ $C(1)-P-C(4)$	ral superscriptmations: y, -z z - z les $85 \cdot 4(1)$ $94 \cdot 4(1)$ $164 \cdot 3(1)$ $111 \cdot 9(3)$ $124 \cdot 0(2)$ $115 \cdot 5(3)$ $94 \cdot 4(4)$ $105 \cdot 2(4)$	into the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, \frac	+ z 85.9(1) 98.3(1) 165.1(1) 112.2(3) 125.0(2) 114.6(2) 93.5(4) 105.2(4)		
Roman nume ordinate transformula $I - x$, $I - x$, $I - x$, $I - x$, $-y$. (d) Valency ang $Cl-Ni-P'$ $Cl-Ni-P'$ $Cl-Ni-P$ $Ni-P-C(1)$ $Ni-P-C(4)$ $Ni-P-C(5)$ $C(1)-P-C(5)$ $C(1)-P-C(5)$ $C(4)-P-C(5)$	ral superscriptmations: y, -z -z les 85.4(1) 94.4(1) 164.3(1) 111.9(3) 124.0(2) 115.5(3) 94.4(4) 105.2(4) 102.7(4)	into the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, \frac	85·9(1) 98·3(1) 165·1(1) 112·2(3) 125·0(2) 114·6(2) 93·5(4) 105·2(4) 103·1(3)		
Roman nume ordinate transformula transformul	ral superscriptmations: y, -z -z les $85 \cdot 4(1)$ $94 \cdot 4(1)$ $164 \cdot 3(1)$ $111 \cdot 9(3)$ $124 \cdot 0(2)$ $115 \cdot 5(3)$ $94 \cdot 4(4)$ $105 \cdot 2(4)$ $102 \cdot 7(4)$ $103 \cdot 8(6)$	into the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, $\frac{1}{2}$ Cl'-Ni-P P-Ni-P' Cl'-Ni-P'-C(1') Ni-P'-C(4') Ni-P'-C(5') C(1')-P'-C(5') C(1')-P'-C(5') P'-C(1')-C(2')	85·9(1) 98·3(1) 165·1(1) 112·2(3) 125·0(2) 114·6(2) 93·5(4) 103·2(4) 103·4(6)		
Roman nume ordinate transformula transformu	ral superscriptmations: y, -z -z les 85.4(1) 94.4(1) 164.3(1) 111.9(3) 124.0(2) 115.5(3) 94.4(4) 105.2(4) 102.7(4)	into refer to the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, $\frac{1}{2} - \frac{1}{2} - $	85·9(1) 98·3(1) 165·1(1) 112·2(3) 125·0(2) 114·6(2) 93·5(4) 105·2(4) 103·1(3)		
Roman nume ordinate transformular transform	ral superscriptmations: y, -z -z les 85.4(1) 94.4(1) 164.3(1) 111.9(3) 124.0(2) 115.5(3) 94.4(4) 105.2(4) 102.7(4) 103.8(6) 118.2(9) 116.1(8) 104.0(5)	into the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, \frac	85.9(1) 98.3(1) 165.1(1) 112.2(3) 125.0(2) 114.6(2) 93.5(4) 105.2(4) 103.1(3) 103.4(6) 118.0(8) 117.1(8) 104.6(5)		
Roman nume ordinate transformular transform	ral superscriptmations: y, -z -z les $85 \cdot 4(1)$ $94 \cdot 4(1)$ $164 \cdot 3(1)$ $111 \cdot 9(3)$ $124 \cdot 0(2)$ $115 \cdot 5(3)$ $94 \cdot 4(4)$ $105 \cdot 2(4)$ $102 \cdot 7(4)$ $103 \cdot 8(6)$ $118 \cdot 2(9)$ $116 \cdot 1(8)$ $104 \cdot 0(5)$ $112 \cdot 5(6)$	into refer to the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, $\frac{1}{2}$ Cl'-Ni-P P-Ni-P' Cl'-Ni-P'-C(1') Ni-P'-C(4') Ni-P'-C(5') C(1')-P'-C(5') C(1')-P'-C(5') C(4')-P'-C(5') C(1')-C(2') C(1')-C(2')-C(3') P'-C(4')-C(3') P'-C(4')-C(3') P'-C(5')-C(6')	85.9(1) 98.3(1) 165.1(1) 112.2(3) 125.0(2) 114.6(2) 93.5(4) 103.1(3) 103.4(6) 118.0(8) 117.1(8) 104.6(5) 110.0(5)		
Roman nume ordinate transformation $I - x$, $1 - x$, $1 - x$, $-y$, $II - x$, $II -$	raal superscriptmations: y, -z -z les $85 \cdot 4(1)$ $94 \cdot 4(1)$ $164 \cdot 3(1)$ $111 \cdot 9(3)$ $124 \cdot 0(2)$ $115 \cdot 5(3)$ $94 \cdot 4(4)$ $105 \cdot 2(4)$ $102 \cdot 7(4)$ $103 \cdot 8(6)$ $118 \cdot 2(9)$ $116 \cdot 1(8)$ $104 \cdot 0(5)$ $112 \cdot 5(6)$ $121 \cdot 3(7)$	into refer to the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, $\frac{1}{2}$. Cl'-Ni-P P-Ni-P' Cl'-Ni-P' Ni-P'-C(1') Ni-P'-C(5') C(1')-P'-C(5') C(1')-P'-C(5') C(4')-P'-C(5') C(1')-C(2')-C(3') C(2')-C(3')-C(4') P'-C(5')-C(6')-C(6') C(5')-C(6')-C(6')	85·9(1) 98·3(1) 165·1(1) 112·2(3) 125·0(2) 114·6(2) 93·5(4) 103·1(3) 103·4(6) 118·0(8) 117·1(8) 104·6(5) 110·0(5) 121·2(6)		
Roman nume ordinate transformula transformu	raal superscriptmations: y, -z -z les $85 \cdot 4(1)$ $94 \cdot 4(1)$ $164 \cdot 3(1)$ $111 \cdot 9(3)$ $124 \cdot 0(2)$ $115 \cdot 5(3)$ $94 \cdot 4(4)$ $105 \cdot 2(4)$ $103 \cdot 8(6)$ $118 \cdot 2(9)$ $116 \cdot 1(8)$ $104 \cdot 0(5)$ $112 \cdot 5(6)$ $121 \cdot 3(7)$ $121 \cdot 3(7)$	into the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, $\frac{1}{2}$ Cl'-Ni-P P-Ni-P' Cl'-Ni-P'-C(1') Ni-P'-C(5') C(1')-P'-C(5') C(1')-P'-C(5') C(1')-P'-C(1')-C(2') C(1')-C(2')-C(1')-C(2')-C(1')-C(2')-C(1')-C(2')-C(3')-C(3')-C(3')-C(3')-C(5')-C(6')-C(6')-C(6')-C(6')-C(6')-C(7')-C(5')-C(6')-C(6')-C(7')-C(5')-C(6')-C(11')	85.9(1) 98.3(1) 165.1(1) 112.2(3) 125.0(2) 114.6(2) 93.5(4) 105.2(4) 103.1(3) 103.4(6) 118.0(8) 117.1(8) 104.6(5) 110.0(5) 121.2(6) 121.0(6)		
Roman nume ordinate transform $I - x$, $I - x$, $I - x$, $I - x$, $-y$. (d) Valency ang $Cl-Ni-P'$ $Cl-Ni-P'$ $Cl-Ni-P$ $Ni-P-C(1)$ $Ni-P-C(4)$ $Ni-P-C(5)$ $C(1)-P-C(5)$ $C(1)-P-C(5)$ $C(2)-C(3)$ $C(2)-C(3)$ $C(2)-C(3)$ $C(2)-C(3)$ $C(2)-C(3)$ $C(3)-C(4)$ $C(5)-C(6)$ $C(5)-C(6)$ $C(5)-C(6)$ $C(5)-C(6)$ $C(5)-C(6)$ $C(5)-C(6)$	ral superscriptmations: $y, -z$ les $85.4(1)$ $94.4(1)$ $164.3(1)$ $111.9(3)$ $124.0(2)$ $115.5(3)$ $94.4(4)$ $105.2(4)$ $102.7(4)$ $103.8(6)$ $118.2(9)$ $116.1(8)$ $104.0(5)$ $112.5(6)$ $121.3(7)$ $121.3(7)$ $117.4(7)$	into refer to the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, $\frac{1}{2} - \frac{1}{2} - $	85.9(1) 98.3(1) 165.1(1) 112.2(3) 125.0(2) 114.6(2) 93.5(4) 105.2(4) 103.1(3) 103.4(6) 118.0(8) 117.1(8) 104.6(5) 110.0(5) 121.2(6) 121.2(6) 121.2(6) 121.8(7)		
Roman nume ordinate transform ordinate transform I $-x$, I $-x$, I $-x$, $-y$ (d) Valency ang Cl-Ni-P' Cl-Ni-Cl' Cl-Ni-P Ni-P-C(1) Ni-P-C(4) Ni-P-C(5) C(1)-P-C(5) C(1)-P-C(5) P-C(1)-C(2)-C(3) C(2)-C(3)-C(4)-C(3) P-C(5)-C(6)-C(7) C(5)-C(6)-C(7) C(5)-C(6)-C(7) C(5)-C(6)-C(7) C(5)-C(6)-C(11) C(7)-C(6)-C(11) C(7)-C(6)-C(11) C(7)-C(6)-C(11) C(6)-C(7)-C(8)	raal superscriptmations: y, -z -z les $85 \cdot 4(1)$ $94 \cdot 4(1)$ $164 \cdot 3(1)$ $111 \cdot 9(3)$ $124 \cdot 0(2)$ $115 \cdot 5(3)$ $94 \cdot 4(4)$ $105 \cdot 2(4)$ $103 \cdot 8(6)$ $118 \cdot 2(9)$ $116 \cdot 1(8)$ $104 \cdot 0(5)$ $112 \cdot 5(6)$ $121 \cdot 3(7)$ $121 \cdot 3(7)$	into refer to the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, $\frac{1}{2}$ Cl'-Ni-P P-Ni-P' Cl'-Ni-P' Cl''Ni-P'-C(1') Ni-P'-C(5') C(1')-P'-C(5') C(1')-P'-C(5') C(1')-P'-C(5') C(1')-C(2')-C(1')-C(2')-C(1')-C(2')-C(1')-C(2')-C(3')-C(4')-P'-C(5')-C(6')-C(1')-C(5')-C(6')-C(6')-C(6')-C(11') C(5')-C(6')-C(11') C(7')-C(6')-C(11') C(7')-C(8')-C(8')-C(9')	85.9(1) 98.3(1) 165.1(1) 112.2(3) 125.0(2) 114.6(2) 93.5(4) 105.2(4) 103.1(3) 103.4(6) 118.0(8) 117.1(8) 104.6(5) 110.0(5) 121.2(6) 121.0(6)		
Roman nume ordinate transform ordinate transform I $-x$, 1 $-x$, 2 II $-x$, $-y$ (d) Valency ang Cl-Ni-P' Cl-Ni-Cl' Cl-Ni-P Ni-P-C(1) Ni-P-C(5) C(1)-P-C(5) C(1)-P-C(5) C(4)-P-C(5) C(1)-C(2)-C(3)-C(4)-C(3)-C(4)-C(5)-C(6)-C(6)-C(6)-C(6)-C(6)-C(6)-C(7)-C(6)-C(7)-C(6)-C(7)-C(6)-C(11) C(7)-C(6)-C(11) C(7)-C(6)-C(11) C(7)-C(8)-C(9) C(8)-C(9)-C(10)	raal superscriptmations: $y, -z$ $-z$ les $85 \cdot 4(1)$ $94 \cdot 4(1)$ $164 \cdot 3(1)$ $111 \cdot 9(3)$ $124 \cdot 0(2)$ $115 \cdot 5(3)$ $94 \cdot 4(4)$ $105 \cdot 2(4)$ $102 \cdot 7(4)$ $103 \cdot 8(6)$ $118 \cdot 2(9)$ $116 \cdot 1(8)$ $104 \cdot 0(5)$ $112 \cdot 5(6)$ $121 \cdot 3(7)$ $121 \cdot 3(7)$ $121 \cdot 3(7)$ $121 \cdot 9(8)$ $118 \cdot 8(9)$ $120 \cdot 4(11)$	ints refer to the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, $\frac{1}{2} - \frac{1}{2} - $	85.9(1) 98.3(1) 165.1(1) 112.2(3) 125.0(2) 114.6(2) 93.5(4) 103.1(3) 103.4(6) 118.0(8) 117.1(8) 110.0(5) 121.2(6) 121.0(6) 117.8(7) 120.9(7) 120.5(8) 118.9(9)		
Roman nume ordinate transformula transformu	ral superscriptmations: $y, -z$ $-z$ les $85 \cdot 4(1)$ $94 \cdot 4(1)$ $164 \cdot 3(1)$ $111 \cdot 9(3)$ $124 \cdot 0(2)$ $115 \cdot 5(3)$ $94 \cdot 4(4)$ $102 \cdot 7(4)$ $103 \cdot 8(6)$ $118 \cdot 2(9)$ $116 \cdot 1(8)$ $104 \cdot 0(5)$ $112 \cdot 3(7)$ $121 \cdot 3(7)$ $121 \cdot 9(8)$ $118 \cdot 8(9)$	into refer to the foll III $1 + x$, y , z IV $1 + x$, $\frac{1}{2} - y$, $\frac{1}{2}$ Cl'-Ni-P P-Ni-P' Cl'-Ni-P' Cl''Ni-P'-C(1') Ni-P'-C(5') C(1')-P'-C(5') C(1')-P'-C(5') C(1')-P'-C(5') C(1')-C(2')-C(1')-C(2')-C(1')-C(2')-C(1')-C(2')-C(3')-C(4')-P'-C(5')-C(6')-C(1')-C(5')-C(6')-C(6')-C(6')-C(11') C(5')-C(6')-C(11') C(7')-C(6')-C(11') C(7')-C(8')-C(8')-C(9')	85·9(1) 98·3(1) 165·1(1) 1125·0(2) 114·6(2) 93·5(4) 103·1(3) 103·4(6) 118·0(8) 117·1(8) 104·(5) 110·0(5) 121·0(6) 121·0(6) 117·8(7) 120·9(7) 120·5(8)		

in all the structure-factor calculations. For the leastsquares calculations the weighting scheme $\sqrt{w}=1$ for $|F_0| \leqslant 19.0$ and $\sqrt{w} = 19.0/|F_0|$ for $|F_0| > 19.0$ was used,

^{12 &#}x27;International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

J.C.S. Dalton

and this gave a satisfactory analysis of $\left< w \Delta^2 \right>$ over ranges of $|F_0|$ and sin $\theta.*$

TABLE 3

Displacements (Å) of relevant atoms from selected planes. Atoms not included in the derivation of the plane are italicized

Plane (A):

Cl 0.289, Cl' -0.288, P 0.289, P' -0.288, Ni 0.009

Plane (B)

C(1) 0·002, C(2) -0·005, C(3) 0·005, C(4) -0·002, P-0·388, $Ni\ 0·623$

Plane (C):

C(1') 0.001, C(2') -0.001, C(3') 0.001, C(4') 0.000, P' -0.382, Ni 0.617

Plane (D):

C(6) -0.004, C(7) 0.004, C(8) 0.002, C(9) -0.008, C(10) 0.009, C(11) -0.003, C(5) 0.069, C(4') 3.463

Plane (E):

C(6') 0.000, C(7') -0.008, C(8') 0.003, C(9') 0.010, C(10') -0.019, C(11') 0.014, C(5') 0.060, C(4) 3.431

Plane (F):

Ni 0.000, Cl 0.000, Cl' 0.000, P 0.584, P' - 0.553

Plane (G):

Ni 0.000, P 0.000, P' 0.000, Cl 0.585, Cl' -0.546

Angles (°) between plane normals:

(A)–(B)	40.0	(\mathbf{B}) $-(\mathbf{E})$	9.3
(A)-(C)	40.7	(C)-(D)	10.3
(A) - (D)	$50 \cdot 1$	(C)-(E)	18.6
(A)-(E)	18.6	(D)-(E)	13.7
(B)-(C)	17.8	(F)–(G)	20.4
$(\mathbf{B})-(\mathbf{D})$	18.4	` , ` ,	

RESULTS AND DISCUSSION

Final atomic positional and thermal parameters together with their standard deviations are listed in Table 1. Views of the molecular conformation are shown in Figures 1 and 2 with the atomic numbering scheme used being given in the former. Interatomic distances and valency angles are provided in Table 2. The packing of molecules is illustrated by Figure 3; there are no abnormally short intermolecular separations. Deviations of selected atoms from the best planes calculated through various groups of atoms are given in Table 3.

The crystal comprises discrete molecular units which have approximate C_2 symmetry, and the geometry around the nickel atom is best described as tetrahedrally-distorted square planar. There are significant deviations from ideal angles of 90° subtended at the nickel atom. Enlargement of the Cl–Ni–Cl′ and P–Ni–P′ angles to 94·4 and 98·3 \pm 0·1°, respectively, may be ascribed to ligand–ligand repulsions which would be expected to be greater between the bulkier phospholen ligands than between the chlorine atoms. The nickel atom lies close (Δ 0·009 Å) to the plane calculated through the phosphorus and chlorine atoms which are essentially

all equidistant ($\Delta \pm 0.29$ Å) from this plane. The Cl-Ni-P and Cl'-Ni-P' angles of 164·3 and 165·1 \pm 0·1°, depart significantly from ideal linear geometry. A number of X-ray structure determinations have revealed that low-spin four-co-ordinate nickel(II) complexes exist

Figure 1 The molecular structure viewed in projection along b

preferentially with either perfectly planar or slightly distorted planar geometry about the nickel atom. Highly significant deviations from linearity have been observed with bidentate ligands in biacetylbis(mercaptoethylimine)nickel(II), 13 173°, and di-iodo[ethylenebis(oxyethylene)]bis(diphenylphosphine)nickel(II) 4 where

Figure 2 The molecular structure viewed in projection along a

I-Ni-I is 162·1° and P-Ni-P 143·5°. The deviations noted in the present work are the largest yet found where unidentate ligands are involved. Further evidence for the severity of the non-bonded phospholen-phospholen interactions is contained in the pattern of angles around the phosphorus atoms where mean Ni-P-C(4) and Ni-P'-C(4') angles are 124·5° in contrast to Ni-P-C(1) and Ni-P'-C(1') angles, mean 112·1°. In the absence

^{*} Observed and calculated structure-factors are listed in Supplementary Publication No. SUP 20304 (18 pp., 1 microfiche). For details of Supplementary Publications see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.

 $^{^{13}}$ Q. Fernando and P. J. Wheatley, Inorg. Chem., 1965, $\boldsymbol{4},$ 1726.

¹⁴ P. Dapporto and L. Sacconi, J. Chem. Soc. (A), 1971, 1914.

1972

of non-bonded intramolecular repulsions the exocyclic Ni-P-C angles would be expected to be approximately equal.

The mean Ni-P and Ni-Cl bond lengths are 2·154(2) and 2·212(2) Å. The former distance is significantly shorter than the Ni-P length of 2·250(2) Å in square-planar trans-dichlorobis(1-phenyl-4,4-dimethoxyphos-phorinan)nickel(II) ¹⁵ while the Ni-Cl distance is significantly longer than the corresponding length [2·171(2) Å]

is $2\cdot287(2)$ Å, whereas in cis-Pd(PMe₂Ph)₂Cl₂ ²⁰ the Pd-P and Pd-Cl lengths are $2\cdot260(2)$ and $2\cdot362(\text{Å})$. In trans-Pt(PEt₃)₂Cl₂ ²¹ Pt-P is $2\cdot298(2)$ Å and Pt-Cl $2\cdot294(9)$ Å while in cis-Pt(PMe₃)₂Cl₂ ²² the corresponding distances are $2\cdot247(8)$ and $2\cdot376(9)$ Å.

The present work represents the first X-ray analysis of a phospholen, either complexed or as the free phosphine. The phospholen rings are puckered with a mean phosphorus atom displacement of 0.385 Å from the mean

FIGURE 3 The crystal structure viewed in projection along b

in this same complex. From the sum of the single-bond covalent radii ¹⁶ (taking 1·17 Å as the best estimate for square-planar Ni^{II}, this being the mean of values suggested recently ^{9,10}), the predicted lengths would be Ni-P 2·27, Ni-Cl 2·16 Å. Thus the highly significant differences between these values and those found in the present work (ΔNi-P +0·12, ΔNi-Cl -0·05 Å) are in the direction which would be expected on the basis of a strong trans-influence of the phosphorus which tends to weaken the bond trans to it.¹⁷ Similar differences in metal-halogen and metal-phosphorus bond lengths between cis- and trans-square-planar Pd^{II} and Pt^{II} complexes have been reported. In trans-Pd(PMe₂Ph)₂I₂ ¹⁸ Pd-P is 2·333(7) Å and in trans-Pd(Me₂SO)₂Cl₂ ¹⁹ Pd-Cl

plane through the ring carbon atoms. The C(1)-P-C(4) and C(1')-P'-C(4') angles at $94\cdot4$ and $93\cdot5\pm0\cdot4^\circ$ do not differ significantly and their mean value, $94\cdot0^\circ$, is intermediate between the corresponding internal angles in the doubly unsaturated (phosphole) ring, $90\cdot7^\circ$ in 1-benzylphosphole 11 and $90\cdot5-91\cdot3^\circ$ in dicyanotris-(5-methyl-5*H*-dibenzophosphole)nickel(II) and dicyanotris-(5-ethyl-5*H*-dibenzophosphole)nickel(II), 23 and the saturated (phospholan) ring value of $96\cdot6^\circ$ in bis(tetramethylene)diphosphine disulphide. The pattern of angles at phosphorus conforms to that generally encountered in other metal-phosphine complexes. All the C-P-C angles ($94\cdot4$, $105\cdot2$, $102\cdot7$, $93\cdot5$, $105\cdot2$, and $103\cdot1^\circ$, mean $100\cdot7^\circ$) are significantly less than the tetrahedral

¹⁵ A. T. McPhail, J. J. Breen, J. C. H. Steele, jun., and L. D. Ouin, unpublished results.

Quin, unpublished results.

16 L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960.

¹⁷ A. Pidcock, R. E. Richards, and L. M. Venanzi, J. Chem. Soc. (A), 1966, 1707; L. M. Venanzi, Chem. in Britain, 1968, 4, 162.

N. A. Bailey and R. Mason, J. Chem. Soc. (A), 1968, 2594.
 M. J. Bennett, F. A. Cotton, and D. L. Weaver, Acta Cryst., 1967. 23, 788.

²⁰ L. L. Martin and R. A. Jacobson, *Inorg. Chem.*, 1971, **10**, 795.

²¹ G. G. Messmer and E. L. Amma, *Inorg. Chem.*, 1966, 5, 1775.

²² G. G. Messmer, E. L. Amma, and J. A. Ibers, *Inorg. Chem.*, 1967, 6, 725.

H. M. Powell, D. J. Watkin, and J. B. Wilford, J. Chem. Soc. (A), 1971, 1803.
 J. D. Lee and G. W. Goodacre, Acta Cryst., 1969, B25, 2127.

J.C.S. Dalton

value $(109^{\circ}\ 28')$ while all the Ni-P-C angles $(111\cdot9, 124\cdot0, 115\cdot5, 112\cdot2, 125\cdot0,$ and $114\cdot6^{\circ},$ mean $117\cdot2^{\circ})$ exceed this value.

Phosphorus—carbon bond lengths range from 1.833 to 1.863 Å, mean 1.851, which is close to the sum of the covalent radii 16 (1.87 Å), and not significantly different from the corresponding values reported for other molecules. 11,15,25 The mean $C(sp^3)$ — $C(sp^2)$ single-bond length, 1.507 Å, and the mean aromatic C-C bond length, 1.387 Å, agree satisfactorily with accepted values. 26 The mean carbon—carbon double-bond length in the phospholen ring, 1.308 Å, is not significantly different from that of 1.334 Å in ethylene. 27

Atoms C(5) and C(5') are displaced by small amounts from the planes calculated through the carbon atoms of

²⁵ A. T. McPhail, J. J. Breen, and L. D. Quin, J. Amer. Chem. Soc., 1971, 93, 2574; A. T. McPhail, J. J. Breen, J. H. Somers, J. C. H. Steele, jun., and L. D. Quin, Chem. Comm., 1971, 1020.

the phenyl rings to which they are bonded. These deviations presumably arise in order to gain relief from non-bonded interactions between the phenyl groups and the phospholen moieties. The dihedral angle between the planes through C(1)—(4) and C(6')—(11') is $9\cdot3^{\circ}$, and between the planes through C(1')—(4') and C(6)—(11) the corresponding angle is $10\cdot3^{\circ}$.

Calculations were carried out on the IBM 360/75 at the Triangle Universities Computation Centre, Research Triangle Park, North Carolina, and supported in part by the U.S. National Science Foundation. We thank the National Cancer Institute for a Public Health Research Grant (to L. D. Q.).

[1/2021 Received, 29th October, 1971]

Chem. Soc. Special Publ., No. 11, 1958; No. 18, 1965.
 L. S. Bartell and R. A. Bonham, J. Chem. Phys., 1957, 27, 1414