定义首项为 1 且公比为正数的等比数列为"M-数列".

- (1) 已知等比数列 $\{a_n\}(n \in N^*)$ 满足: $a_2a_4 = a_5, a_3 4a_2 + 4a_1 = 0$ 求证: 数列 $\{a_n\}$ 为" M-数列"
- (2) 已知数列 $\{b_n\}(n \in N*)$ 满足: $b_1 = \frac{1}{S_1} = \frac{2}{b_n} \frac{2}{b_{n+1}}$,其中 S_n 为数列 $\{b_n\}$ 的前 n 项和.
 - ① 求数列 $\{b_n\}$ 的通项公式;
 - ② 设 m 为正整数, 若存在" M-数列" $\{c_n\}(n \in N*)$, 对任意正整数 k, 当 $k \leq m$ 时, 都有 $c_k \leq b_k \leq c_{k+1}$ 成立, 求 m 的最大值.