Wine Scoring

Dataminig, Mid Sweden University, VT21 Vlad Iosif, Marcel Transier

The Data: Red Wine

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047	-0.682978	0.183006	-0.061668	0.124052
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026	0.234937	-0.260987	-0.202288	-0.390558
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947	-0.541904	0.312770	0.109903	0.226373
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.355283	-0.085652	0.005527	0.042075	0.013732
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.200632	-0.265026	0.371260	-0.221141	-0.128907
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.021946	0.070377	0.051658	-0.069408	-0.050656
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.071269	-0.066495	0.042947	-0.205654	-0.185100
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.000000	-0.341699	0.148506	-0.496180	-0.174919
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.341699	1.000000	-0.196648	0.205633	-0.057731
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.148506	-0.196648	1.000000	0.093595	0.251397
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.496180	0.205633	0.093595	1.000000	0.476166
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.185100	-0.174919	-0.057731	0.251397	0.476166	1.000000

The Data: Red Wine

Total Explained Variance: 55.18%

The Data: White Wine

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
fixed acidity	1.000000	-0.022697	0.289181	0.089021	0.023086	-0.049396	0.091070	0.265331	-0.425858	-0.017143	-0.120881	-0.113663
volatile acidity	-0.022697	1.000000	-0.149472	0.064286	0.070512	-0.097012	0.089261	0.027114	-0.031915	-0.035728	0.067718	-0.194723
citric acid	0.289181	-0.149472	1.000000	0.094212	0.114364	0.094077	0.121131	0.149503	-0.163748	0.062331	-0.075729	-0.009209
residual sugar	0.089021	0.064286	0.094212	1.000000	0.088685	0.299098	0.401439	0.838966	-0.194133	-0.026664	-0.450631	-0.097577
chlorides	0.023086	0.070512	0.114364	0.088685	1.000000	0.101392	0.198910	0.257211	-0.090439	0.016763	-0.360189	-0.209934
free sulfur dioxide	-0.049396	-0.097012	0.094077	0.299098	0.101392	1.000000	0.615501	0.294210	-0.000618	0.059217	-0.250104	0.008158
total sulfur dioxide	0.091070	0.089261	0.121131	0.401439	0.198910	0.615501	1.000000	0.529881	0.002321	0.134562	-0.448892	-0.174737
density	0.265331	0.027114	0.149503	0.838966	0.257211	0.294210	0.529881	1.000000	-0.093591	0.074493	-0.780138	-0.307123
рН	-0.425858	-0.031915	-0.163748	-0.194133	-0.090439	-0.000618	0.002321	-0.093591	1.000000	0.155951	0.121432	0.099427
sulphates	-0.017143	-0.035728	0.062331	-0.026664	0.016763	0.059217	0.134562	0.074493	0.155951	1.000000	-0.017433	0.053678
alcohol	-0.120881	0.067718	-0.075729	-0.450631	-0.360189	-0.250104	-0.448892	-0.780138	0.121432	-0.017433	1.000000	0.435575
quality	-0.113663	-0.194723	-0.009209	-0.097577	-0.209934	0.008158	-0.174737	-0.307123	0.099427	0.053678	0.435575	1.000000

The Data: White Wine

Total Explained Variance: 56.01%

Procedure

- python, sklearn, regression problem;
- split in 75% training, 25% test;
- grid search: tune hyperparameters:
 - 5 fold cross validation (20% of training).
- fixed seed on all stochastic procedures.

Grid search

SVM: procedure

- normalize data (0, 1);
- 3 different grid parameters;
 - 1 for each kernel:
 - rbf: C, gamma;
 - poly: C, gamma, degree, coef0;
 - sigmoid: C, gamma, coef0.

NN: procedure

- normalize data (-1, 1);
- tuning parameters one/two at a time;
- parameters tuned and order:
 - network structure + activation function (logistic, tanh, relu);
 - alpha;
 - beta;
 - batch size.

evaluation metrics

- MAD (medium absolute distance);
- accurracy with tollerance;
- REC curve.

Results: REC red wine

SVM (rbf)

- MAE: 0.501

- ACC(T=1): 0.898

• NN (relu)

- MAE: 0.526

- ACC(T=1): 0.892

Results: REC white wine

SVM (rbf)

- MAE: 0.491

- ACC(T=1): 0.882

• NN (relu)

- MAE: 0.599

- ACC(T=1): 0.827

Final considerations

- target quality score is subjective;
- results archieved are comparable or better than the available literature based on the dataset;
- with more computational power: bigger grid search can increase the NN performance.