KDS 47 70 50 : 2019

건축기계설비

2019년 4월 8일 개정 http://www.kcsc.re.kr

건설기준 제정 또는 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설 공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복· 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 철도에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제·개 정 연혁은 다음과 같다.

건설기준	주요내용	제정 또는 개정 (년.월)
철도설계기준(건축편)	* 총칙, 건축계획, 건축설계, 건축구조, 건축기계설 비, 터널 방재설비, 조경, 검수시설 등 총 8장 구성 * 에너지 효율 및 절약형 설계, 친환경 및 신·재생에너지 활용 등을 통하여 미래지향적이고 녹색성장을 선도하는 저탄소 녹색건축물(green building)을 실현 * 여객 및 교통약자의 이동편의, 연계 교통체계 구축을 통한 환승편의 증진 등 이용자 중심의 철도역사 설계가 가능	제정 (2011.12)
철도설계기준(건축편)	• 향후 국내외 철도건설기술 발전 등 기술적 환경 변화에 대응할 수 있도록 하였으며 안전기준 강 화 및 그 동안 변경된 철도관련 상위법령, 규정, 기준 등의 개정된 내용을 반영	개정 (2015.12)
KDS 47 70 50 : 2016	• 건설기준 코드체계 전환에 따라 코드화로 통합 정비함	제정 (2016.6)
KDS 47 70 50 : 2019	• 철도 건설기준 적합성평가에 의해 코드를 정비함	개정 (2019.04)

제 정: 2016년 6월 30일 개 정: 2019년 04월 08일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 철도건설과

관련단체 : 한국철도시설공단 작성기관 : 한국철도기술연구원

목 차

1.	일반사항	1
	1.1 목적	1
	1.2 적용 범위	1
	1.3 참고 기준	1
	1.4 용어의 정의	1
	1.5 기호의 정의	1
	1.6 설계 고려사항	1
2.	조사 및 계획	2
	2.1 열환경 설비	2
	2.2 공기환경 설비	2
	2.3 빛환경설비	2
	2.4 음환경설비	2
3.	재료	2
4.	설계	2
	4.1 열원설비 및 공기정화 설비	2
	4.2 환기설비	3
	4.3 급·배수 위생설비	3
	4.4 오·폐수 처리설비	4
	4.5 소방설비	4
	4.6 자동제어설비	5
	4.7 이동편의시설	5
	4.8 스크린도어(PSD) ·····	6
	4.9 신·재생에너지설비	6

건축기계설비 KDS 47 70 50 : 2019

1. 일반사항

1.1 목적

- (1) 건축 환경의 요소(열, 공기, 빛, 음 등)를 종합 검토하여 건축물의 기능이 최적화 될 수 있도록 계획하여야 하며, 이용자의 생리 및 심리적 욕구에 부합하여야 한다.
- (2) 생활환경과 건축물의 기능 향상을 위하여 열원설비, 냉·난방설비, 공기조화설비, 환기설비, 급·배수설비, 위생설비, 오·폐수처리설비, 소방설비, 승강설비, 자동제어설비, 가스설비, 신·재생에너지설비, TAB(Testing, Adjusting & Balancing) 등을 환경친화적이며 에너지 절약적인 시스템으로 계획하여야 한다.

1.2 적용 범위

내용 없음

1.3 참고 기준

내용 없음

1.4 용어의 정의

내용 없음

1.5 기호의 정의

내용 없음

1.6 설계 고려사항

- (1) 건축물의 용도 및 규모에 따른 기계설비 시스템을 결정하여야 한다.
- (2) 각종 설비는 유지관리를 충분히 고려하여 추후 증설 및 개량에 필요한 공간 및 동선을 확보하고, 자연형 조절방식 우선 적용, 에너지 절약형 장비 및 시스템 선정 등 에너지 절약이 되도록 계획하여야 한다.
- (3) 각종 장비와 시스템에서 발생되는 소음 및 진동 등을 규제치 이하로 계획하여야 한다.
- (4) 대기, 수질, 방음, 방진 등 환경관리계획을 반영하여야 하며, 오·폐수 처리 등 환경오염원 배출시 관련규정 및 환경영향평가 이행사항을 충분히 검토하여 계획한다.
- (5) 설비는 건물의 특성 및 관리를 고려하여 그 기능이 발휘되도록 건축계획과 설비계획을 상호 조화롭고 경제적으로 계획하여야 한다.
- (6) 단열재는 표준시방서의 단열기준을 만족하고 환경보호를 고려하여 선정한다.
- (7) 설계단계 TAB는 건축물내 기계설비에 대하여 제 성능이 만족될 수 있도록 공기(냉·난방, 환기, 배연, 제연), 물분배계통, 소음, 진동, 자동제어계통 등에 대한 TAB 시행계획을 수립하여야 한다.

KDS 47 70 50 : 2019 건축기계설비

(8) 철도건축물은 건축물의 에너지절약 설계기준과 공공기관 에너지이용 합리화 추진에 관한 규정에 따라 에너지절약적으로 계획하여야 하며, 관련규정에 의거 에너지효율화 등급 취득 대상일 경우에는 건축물 에너지효율등급 인증에 관한 규칙에 따른다.

2. 조사 및 계획

2.1 열환경 설비

- (1) 실내의 온도분포 및 기류의 차이가 최소화 할 수 있도록 계획하여야 한다.
- (2) 건축물의 열손실 방지를 위하여 건축물의 설비기준 등에 관한 규칙 및 건축물의 에너지절약 설계기준에 적합하게 계획한다.

2.2 공기환경 설비

- (1) 실내 공기질 기준은 다중이용시설 등의 실내공기질관리법 및 공중위생관리법의 관련 규정을 따른다.
- (2) 실내공기환경 유지에 필요한 외기도입량 및 환기횟수는 건축물의 설비기준 등에 관한 규칙의 관련규정을 따른다.

2.3 빛환경 설비

- (1) 조명방법은 다른 건축물과의 대비 및 균형을 고려하여 계획하되 천장높이, 자연채광 의 유무, 지상 출입구 등을 고려하여 계획하다.
- (2) 조도 기준은 여객설비, 화물설비, 사무소설비, 차량기지설비, 기기실설비 등 각 특성 및 공간에 적합하도록 소요조도를 계획하여야 한다.
- (3) 건물별, 사용 용도별로 소요조도, 조명방법 및 기구선정, 설비구분, 경관조명 등은 시스템분야와 협의하여야 한다.

2.4 음환경 설비

(1) 소음 및 진동이 유발되는 기계설비는 소음 및 진동 저감시설을 계획하여야 한다.

3. 재료

내용 없음

4. 설계

4.1 열원설비 및 공기조화설비

- (1) 공급이 가능한 에너지원을 파악하고, 생애주기비용(LCC)을 검토하며, 열원설비를 계획하여 설계한다.
- (2) 철도건축물은 공공기관 에너지이용합리화 추진에 관한규정에 의거 친환경 에너지 사

용 및 에너지 절감 설비를 계획하여 설계한다.

- (3) 시설물에 적합한 신ㆍ재생에너지 및 미활용에너지를 반영하여야 한다.
- (4) 콘코스, 대합실의 냉·온열원 및 환기설비계획은 역사 특성, 존(Zone)별 운전제어기능 확보, 공간별 설비효율 등을 고려하여 결정한다.
- (5) 쾌적한 실내 환경을 제공하기 위하여 온·습도, 청정도, 기류 등을 유지할 수 있도록 계획하며, 건축물의 규모, 특성, 기능에 적합하게 하여야 한다.
- (6) 덕트설비는 공조와 제연이 겸용될 경우 제연기능을 수행할 수 있도록 계획하여 설계 한다.
- (7) 공조부하 계산에 의한 장비선정은 사용연수에 따른 효율 감소를 고려하여 적정한 안 전율을 확보하고, 유지관리 등을 고려하여 대수분할을 검토하여야 한다.
- (8) 외기 설계조건은 국토교통부 고시 건축물의 에너지절약설계기준에 해당되는 대상 공간(사무소, 판매시설 등)은 지역에 따른 설계 외기 온·습도 조건을 이용하거나, 위험률 2.5%로 각 지역 설계 기준 값을 적용하여야 한다.
- (9) 공기조화 시스템의 냉·난방 부하는 관련규정을 준수하여 최대부하와 연간부하가 계 산되어야 한다.
- (10) 장비가 설치된 기능실(기계 및 전기 관련실, 신호 및 통신관련실)은 장비 기능에 이상이 없도록 적합한 시설물을 설계하여야 한다.
- (11) 공조 덕트는 설계풍량이 통과하는데 기준속도와 마찰저항 이하가 되도록 풍량, 내구성, 취출구 위치 등의 제반 사항을 고려하여 설계에 반영한다.
- (12) 제연설비에 사용되는 전동방화댐퍼는 충분한 내구성을 확보하여야 한다.
- (13) 공조배관은 유체의 종류, 시스템 압력, 온도 조건, 내구·내식성 등을 고려하고 적정 유속, 마찰저항이 최소화 되도록 관경, 재료, 신축이음, 점검·조작 밸브 등을 설계하여야 한다.

4.2 환기설비

- (1) 건물의 용도 및 기능에 적합한 환기방식을 결정하고, 배출방향의 설정, 오염계통 구획, 실내공기질 유지기준, 환기 풍속 등을 고려하여 설계한다.
- (2) 지하역사 환기설비와 기타역사 대합실은 기계환기설비를 설치하고, 각 실의 필요 환 기량, 설비의 구조 및 설치 기준은 건축물의 설비기준 등에 관한 규칙에 적합하도록 설계하여야 하며, 세균 등에 의한 실내 감염방지시설을 설치하여야 한다.
- (3) 특수 장소(전기실, 화장실, 축전지실, 주차장, 휴게실, 기계실 등)는 풍량계산 결과에 의한 환기량을 각 기능에 적합하도록 반영하여야 한다.
- (4) 오염계통(화장실, 주방 등)의 배기는 분리하여 별도 배출하여야 한다.
- (5) 화장실 환기는 충분한 용량을 확보하도록 하여야 하며, 배출된 공기는 재유입되지 않도록 하여야 한다.

4.3 급·배수 위생설비

KDS 47 70 50 : 2019 건축기계설비

(1) 건축물의 급수는 시수인입을 원칙으로 하며, 지하수를 사용할 경우 음용수에 적합하 도록 정수처리 시설 등을 반영하여야 한다.

- (2) 위생용수, 청소용수 등 비음용수는 시수, 지하수, 우수저장시설 설치 등 생애주기비용 (LCC)을 비교 분석하여 선정한다.
- (3) 모든 배관은 종류별로 분류하고 이송 도중 수질이 오염되지 않도록 관련기기, 재질, 시스템을 선정하고, 급·배수 등의 용도로 쓰이는 배관설비의 설치 및 기준은 건축물 의 설비기준 등에 관한 규칙에 적합하도록 설계하여야 한다.
- (4) 사용장소에서 적정한 수량과 수압을 확보할 수 있도록 설계하여야 한다.
- (5) 급수용 노출배관, 급탕배관은 외측벽에 매립되지 않도록 계획하고, 방동 및 방로용 보온을 하여야 하며, 동해가 예상되는 지역은 별도의 동해방지시설을 설계하여야 한다.
- (6) 배수설비는 기구 접속부 트랩설치 및 중력배수를 원칙으로 하며, 고형물 및 오염물질이 배출되는 곳은 용도에 맞는 분리기를 거친 후 배수하여야 한다.
- (7) 급수펌프 설비는 적정 용량으로 분할 설치하고 반드시 예비품을 확보하여야 하며, 배수펌프는 배수수량의 100% 용량으로 2대 1조로 교번운전 하도록 설계하여야 한다.
- (8) 위생기구는 청결하고 내구성 있는 제품으로 시공 및 유지관리가 원활하도록 설계하고, 여객용 소변기·세면기는 절수가 되도록 전자감응장치(전기식)를 설치하여야 한다.

4.4 오·폐수 처리설비

- (1) 오·폐수 처리 등 환경오염원 배출시설은 관련규정 및 환경영향평가 이행에 적합한 구조 및 설비를 충분히 검토하여 설계한다.
- (2) 오수량 산정은 건축물의 용도별 오수발생량 및 정화조 처리대상인원 산정방법에 따라 건축물 용도에 따른 총변기수 또는 면적에 따른 정화조처리대상인원수와 1일 오수발 생량 등을 고려하여 산출한다.
- (3) 오수처리시설은 구조, 규격, 재질 및 성능기준이 인증된 완성품을 우선 선정하고, 부 득이한 경우 콘크리트 구조물로 설치하며, 제품의 설치기준 등은 하수도법 등 관련규 정에 의한다.
- (4) 오수펌프는 탈착장치를 구비하고 펌프의 배출용량은 30분 이내에 배출할 수 있는 용량으로 하고 예비펌프를 설치하여야 한다.
- (5) 지하역사 등 토목구조물과 연계될 경우에 구조물 및 관리층 등은 노반분야와 협의하여 반영한다.

4.5 소방설비

- (1) 소방설비는 소방 관련규정의 특정소방대상물의 소방시설 적용기준에 따라 소화설비, 경보설비, 피난설비, 소화용수설비, 소화활동설비 등을 소방 관련규정 및 철도시설의 기술기준 및 철도안전법 시행규칙 및 도시철도건설규칙에 따라 설치한다.
- (2) 경보설비(자동화재탐지설비 등), 유도등, 비상조명등, 비상콘센트, 비상방송설비, 무선

통신보조설비 등은 시스템분야와 협의하여 그 반영 결과를 확인하여야 한다.

- (3) 전기실, 통신실, 신호기계실 등 전기 장비가 설치되는 공간은 재해로 인한 피해가 최소화 되도록 한국소방산업기술원(KFI)인증을 받은 소화약제를 사용하고, 근무자가 상주하는 곳은 CO2 소화약제 사용을 금한다.
- (4) 동파가 우려되는 장소에는 동파방지시설을 설치하여야 한다.
- (5) 제연설비 설치대상인 철도건축물(지하·선상·선하역사 등)의 대합실과 지하역사의승 강장(스크린도어 적용 경우)은 제연경계보, 제연경계벽으로 제연구역을 구획하고 화재 발생시 연기제어가 가능하도록 예상제연구역을 설정하여야 한다.
- (6) 연면적 3만 제곱미터 이상의 대규모 철도시설은 소방시설공사업법에 의하여 성능위주 설계를 시행하며, 세부절차와 방법은 소방시설등의 성능위주 설계 방법 및 기준에 따라야 하고, 관련기준은 소방 관련규정 및 미국방화협회(NFPA)에 의한다.
- (7) 연결송수구는 소방차가 쉽게 접근할 수 있고 노출된 장소에 설치하여야 한다.
- (8) 지하역사는 화재 및 피난안전성분석 결과에 따라 환기, 제연, 배연설비와 소방설비를 설계하며, 본선 터널방재(기계)설비와의 연동운전을 고려하여 설계한다.

4.6 자동제어설비

- (1) 철도건축물의 자동제어설비는 용도, 목적, 규모에 접합하고 경제적인 운전이 되도록 하여야 하며, 터널방재설비와의 연계운전 및 제어를 위하여 상호 호환성을 갖도록 설계한다.
- (2) 비상시 신속한 대응이 가능하도록 하며, 안전성 및 경제성을 갖추어야 한다.
- (3) 관리 및 보수가 용이하고 필요시 종합관제실 등에 집중화하여 효율적인 관리가 될 수 있도록 하여야 한다.

4.7 이동편의시설

교통약자의 이동편의 증진법, 장애인·노인·임산부 등의 편의증진보장에 관한 법률 등에 의하여 승강설비 등을 설치하여야 한다.

- (1) 엘리베이터 계획 및 설계
 - ① 수송능력 및 규격은 15인승 이상을 기준으로 한다.
 - ② 출입문의 폭은 0.8 m 이상을 표준으로 한다.
- (2) 에스컬레이터 계획 및 설계
 - ① 에스컬레이터는 유효폭 1,200 mm 을 기본으로 하며, 이용객이 적거나 부득이한 경우에는 유효폭 800 mm 이상으로 할 수 있다.
 - ② 에스컬레이터의 속도는 30 m/min 이하의 속도 가변형으로 한다.
 - ③ 방향전환이 가능한 가역방식 에스컬레이터로 하여야 한다.
- (3) 이동편의 시설 설치장소의 영상감시(CCTV) 설비(녹화설비 포함)는 시스템분야와 협의 하여 설계에 반영되도록 한다.

KDS 47 70 50: 2019 건축기계설비

4.8 스크린도어(PSD)

(1) 광역철도 승강장에는 철도시설의 기술기준 및 철도안전법 시행규칙 및 도시철도건설 규칙에 의하여 승객의 안전사고 방지 및 공기질 개선을 위하여 스크린도어(PSD: Platform Screen Doors)를 설치하며, 고속철도·일반철도는 그 필요성 여부를 검토 후 스크린도어를 설치할 수 있다.

4.9 신·재생에너지설비

(1) 저탄소 녹색성장 기본법 및 신에너지 및 재생에너지 개발·이용·보급 촉진법 등에 따라 신·재생에너지 설비를 반영하고, 소규모 건축물에서도 신·재생에너지 및 미활용에너지 설비를 적극 반영하여야 한다.

4.10 침수 및 전원설비

- (1) 다량의 유입수가 예상될 경우 저수시간은 30분 기준, 배수펌프 용량은 50%이상 할증을 고려하여 펌프설비를 설계하여야 한다.
- (2) 화재발생, 침수 등 비상 상황에 대비하여 운전정지로 혼란이 일어나지 않도록 중요도 가 높은 순서대로 부하의 자동제어가 신속 정확하게 이루어질 수 있도록 설계하여야 한다.
- (3) 건물에 사용되는 전력공급시설의 용량 및 규격, 침수에 대비한 배전반 설치 높이 등은 시스템 분야와 협의하고 설계에 반영하여야 한다.

건축기계설비 KDS 47 70 50 : 2019

집필위원

성 명	소 속	성 명	소 속
황선근	한국철도기술연구원	신지훈	한국철도기술연구원

자문위원

성 명	소 속	성 명	소 속

국가건설기준센터 및 건설기준위원회

성 명	소 속	성 명	소 속
이용수	한국건설기술연구원	정혁상	동양대학교
구재동	한국건설기술연구원	구자안	한국철도공사
김기현	한국건설기술연구원	김석수	㈜수성엔지니어링
김태송	한국건설기술연구원	김재복	㈜태조엔지니어링
김희석	한국건설기술연구원	소민섭	회명정보통신㈜
류상훈	한국건설기술연구원	여인호	한국철도기술연구원
원훈일	한국건설기술연구원	이성혁	한국철도기술연구원
주영경	한국건설기술연구원	이승찬	㈜평화엔지니어링
최봉혁	한국건설기술연구원	이진욱	한국철도기술연구원
허원호	한국건설기술연구원	이찬우	한국철도기술연구원
		최상철	㈜한국건설관리공사
		최찬용	한국철도기술연구원

중앙건설기술심의위원회

성 명	소 속	성 명	소 속
김현기	한국철도기술연구원	최상현	한국교통대학교
이광명	성균관대학교	정광섭	포스코건설
신수봉	인하대학교	손성연	씨앤씨종합건설(주)
이용재	삼부토건(주)		

국토교통부

성 명	소 속	성 명	소 속
임종일	철도건설과	홍석표	철도건설과
문재웅	철도건설과		

KDS 47 70 50 : 2019 건축기계설비

2019년 04월 08일 개정

소관부서 국토교통부 철도건설과

관련단체 한국철도시설공단

34618 대전광역시 동구 중앙로 242 한국철도시설공단

Tel: 1588-7270 http://www.kr.or.kr

작성기관 한국철도기술연구원

16105 경기도 의왕시 철도박물관로 176 한국철도기술연구원

Tel: 031-460-5000 http://www.krri.re.kr

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

Tel: 031-910-0444 E-mail: kcsc@kict.re.kr

http://www.kcsc.re.kr