Prédiction multi-critères de défaillance des composants d'ascenseurs

Introduction

On cherche à prédire la probabilité de panne des pièces de 100 ascenseurs, chacun composé de 8 pièces distinctes. Pour chaque pièce, un **score de risque** est calculé à partir de trois critères :

- le temps écoulé depuis le dernier remplacement,
- le nombre de pannes récentes,
- l'historique global de pannes sur l'ensemble des ascenseurs.

Ces scores sont ensuite normalisés à l'aide de la fonction **softmax** pour obtenir des **probabilités relatives de panne**. Ces probabilités permettront d'optimiser la maintenance grâce à la bibliothèque DOcplex.

Ce document décrit la méthodologie de calcul des probabilités de panne des pièces d'ascenseur, en tenant compte de plusieurs facteurs techniques et historiques. Chaque pièce (ex. câble, moteur, etc.) est évaluée à travers une combinaison pondérée de trois indicateurs, puis ces scores sont transformés en probabilités via une fonction softmax, assurant une distribution normalisée des risques.

1 Étape 1 – Préparation des données

Les données sont extraites d'un fichier Excel contenant un historique des pannes sur les 10 dernières années. Chaque événement est caractérisé par :

- L'intervention,
- La date d'intervention,
- L'ascenseur concerné,
- La pièce concernée par l'intervention,
- Le nombre de pannes observées,
- La durée de vie estimée de la pièce,
- Le temps écoulé depuis son dernier remplacement.
- La localisation de l'ascenseur.

Les données sont triées chronologiquement et par ascenseur pour chaque intervention.

La figure ci-dessous illustre le contenu du fichier excel à soumettre sous python pour calculer les probabilités de pannes sur les différentes pièces des ascenseurs.

1	Event_ID	Date	ID_Ascenseur	Pièce	Nb_pannes	Durée de vie (heures)	Heures depuis dernier changement	Adresse
2	Event_0001	2015-01-01 00:00:00	A001	Moteur	2	13000	13574	Place de la République, 75011 Paris
3	Event_0002	2015-01-02 00:00:00	A001	Câbles	2	10000	13873	Place de la République, 75011 Paris
4	Event_0003	2015-01-03 00:00:00	A001	Câbles	1	10000	13137	Place de la République, 75011 Paris
5	Event_0004	2015-01-04 00:00:00	A001	Poulies	1	10000	4381	Place de la République, 75011 Paris
6	Event_0005	2015-01-05 00:00:00	A001	Portes	4	9000	8641	Place de la République, 75011 Paris
7	Event_0006	2015-01-06 00:00:00	A001	Portes	5	9000	9024	Place de la République, 75011 Paris
8	Event_0007	2015-01-07 00:00:00	A001	Système de contrôle	2	13000	8549	Place de la République, 75011 Paris
9	Event_0008	2015-01-08 00:00:00	A001	Système de contrôle	2	13000	15119	Place de la République, 75011 Paris
10	Event_0009	2015-01-09 00:00:00	A001	Freins	0	10000	14567	Place de la République, 75011 Paris
11	Event_0010	2015-01-10 00:00:00	A001	Capteurs	0	18000	13937	Place de la République, 75011 Paris
12	Event_0011	2015-01-11 00:00:00	A001	Batterie de secours	0	4000	5587	Place de la République, 75011 Paris
13	Event_0012	2015-01-12 00:00:00	A001	Batterie de secours	2	4000	5285	Place de la République, 75011 Paris
14	Event_0013	2015-01-13 00:00:00	A001	Batterie de secours	3	4000	5503	Place de la République, 75011 Paris
15	Event_0014	2015-01-14 00:00:00	A002	Moteur	1	13000	11064	Boulevard Jean Jaurès, 94200 lvry-sur-Seine
16	Event_0015	2015-01-15 00:00:00	A002	Câbles	0	10000	12343	Boulevard Jean Jaurès, 94200 lvry-sur-Seine
17	Event_0016	2015-01-16 00:00:00	A002	Poulies	4	10000	4701	Boulevard Jean Jaurès, 94200 Ivry-sur-Seine
18	Event_0017	2015-01-17 00:00:00	A002	Portes	4	9000	6465	Boulevard Jean Jaurès, 94200 Ivry-sur-Seine
19	Event_0018	2015-01-18 00:00:00	A002	Système de contrôle	3	13000	11655	Boulevard Jean Jaurès, 94200 Ivry-sur-Seine
20	Event_0019	2015-01-19 00:00:00	A002	Freins	2	10000	9337	Boulevard Jean Jaurès, 94200 lvry-sur-Seine

FIGURE 1 – Fichier Excel contenant un Historique des Pannes

2 Étape 2 – Calcul du ratio d'usure

Le ratio d'usure est défini comme :

$${\rm Ratio_usure} = \frac{{\rm Heures\ depuis\ dernier\ changement}}{{\rm Dur\'ee\ de\ vie\ (heures)}}$$

Ce ratio reflète le niveau d'usure de la pièce :

- Ratio < 0.6 : pièce relativement récente.
- Ratio entre 0.6 et 1 : proche de sa fin de vie.
- Ratio > 1 : dépassement de la durée de vie estimée.

3 Étape 3 – Normalisation des pannes récentes

Chaque événement inclut un champ Nb_pannes, indiquant le nombre de pannes récentes sur la pièce. Pour le rendre comparable à travers tous les ascenseurs et pièces, on applique une normalisation min-max :

$$Nb_pannes_norm = \frac{Nb_pannes}{max(Nb_pannes)}$$

Cela permet d'évaluer l'intensité locale des pannes, indépendamment de leur volume absolu.

4 Étape 4 – Normalisation de la mémoire historique

La mémoire historique représente le nombre cumulé de pannes antérieures sur la même pièce du même ascenseur. Elle est calculée comme suit :

$$cum pannes = cumsum(Nb pannes) - Nb pannes (actuel)$$

On applique également une normalisation min-max :

$$mem_pannes_norm = \frac{cum_pannes}{max(cum_pannes)}$$

Ce score donne du poids à l'historique à long terme : plus une pièce est fréquemment en panne, plus elle est suspecte.

5 Étape 5 – Score global par pièce

On combine les trois indicateurs via une moyenne pondérée pour obtenir un score de risque :

```
\begin{aligned} &\text{score} = \alpha \cdot \text{ratio\_usure} + \beta \cdot \text{nb\_pannes\_norm} + \gamma \cdot \text{mem\_pannes\_norm} \\ &\text{Avec}: \\ &-\alpha = 0.6 \text{ (usure)} \\ &-\beta = 0.2 \text{ (pannes récentes)} \\ &-\gamma = 0.2 \text{ (mémoire historique)} \end{aligned}
```

6 Étape 6 – Sélection des derniers états

Pour chaque paire (ID_Ascenseur, Pièce), on conserve uniquement la ligne la plus récente. Cela garantit que le calcul des probabilités repose sur les dernières données disponibles, évitant les redondances passées.

7 Étape 7 – Application de la fonction softmax

Une fois les scores globaux obtenus pour toutes les pièces d'un même type, on applique la fonction softmax pour transformer ces scores en probabilités :

$$Softmax(s_i) = \frac{e^{s_i}}{\sum_{j} e^{s_j}}$$

Cela a plusieurs avantages:

- Les probabilités sont toutes comprises entre 0 et 1,
- La somme des probabilités par type de pièce est exactement égale à 1,
- Les scores sont transformés de manière exponentielle, ce qui renforce les différences relatives.

Écriture des probabilités

Une fois les probabilités calculées, les résultats sont écrits dans un fichier CSV. Le fichier contient l'ascenseur, sa localisation, la pièce concernée, la probabilité qu'elle tombe en panne et une explication interprétant cette valeur.

La figure ci-dessous illustre le contenu du fichier format CSV contenant les probabilités de pannes sur les différentes pièces des ascenseurs.

Exemple d'application

Supposons que nous disposions des données suivantes pour trois câbles provenant de trois ascenseurs différents (dernières observations) :

1	ID_Ascenseur	Pièce	Adresse	Probabilité de panne		Explication
2	A001	Batterie de secours	Place de la République, 75011 Paris	0	,0111	Dépasse durée de vie : risque de panne élevé
3	A001	Capteurs	Place de la République, 75011 Paris	0	,0107	Dépasse durée de vie : risque de panne élevé
4	A001	Câbles	Place de la République, 75011 Paris	0	,0094	Fin de vie proche : risque de panne moyen
5	A001	Freins	Place de la République, 75011 Paris	0	,0094	Fin de vie proche : risque de panne moyen
6	A001	Moteur	Place de la République, 75011 Paris	0	,0098	Fin de vie proche : risque de panne moyen
7	A001	Portes	Place de la République, 75011 Paris	0	,0091	Fin de vie proche : risque de panne moyen
8	A001	Poulies	Place de la République, 75011 Paris		0,007	Changé récemment : risque de panne faible
9	A001	Système de contrôle	Place de la République, 75011 Paris	0	,0096	Dépasse durée de vie : risque de panne élevé
10	A002	Batterie de secours	Boulevard Jean Jaurès, 94200 lvry-sur-Seine	0	,0117	Dépasse durée de vie : risque de panne élevé
11	A002	Capteurs	Boulevard Jean Jaurès, 94200 lvry-sur-Seine	0	,0078	Changé récemment : risque de panne faible
12	A002	Câbles	Boulevard Jean Jaurès, 94200 Ivry-sur-Seine	0	,0123	Dépasse durée de vie : risque de panne élevé
13	A002	Freins	Boulevard Jean Jaurès, 94200 Ivry-sur-Seine	0	,0084	Fin de vie proche : risque de panne moyen
14	A002	Moteur	Boulevard Jean Jaurès, 94200 Ivry-sur-Seine	0	,0069	Changé récemment : risque de panne faible
15	A002	Portes	Boulevard Jean Jaurès, 94200 Ivry-sur-Seine	0	,0073	Fin de vie proche : risque de panne moyen
16	A002	Poulies	Boulevard Jean Jaurès, 94200 Ivry-sur-Seine	0	,0106	Fin de vie proche : risque de panne moyen
17	A002	Système de contrôle	Boulevard Jean Jaurès, 94200 lvry-sur-Seine	0	,0101	Fin de vie proche : risque de panne moyen
18	A003	Batterie de secours	Avenue Charles de Gaulle, 92200 Neuilly-sur-Seine	0	,0114	Dépasse durée de vie : risque de panne élevé
19	A003	Capteurs	Avenue Charles de Gaulle, 92200 Neuilly-sur-Seine		0,013	Dépasse durée de vie : risque de panne élevé
20	A003	Câbles	Avenue Charles de Gaulle, 92200 Neuilly-sur-Seine	0	,0117	Dépasse durée de vie : risque de panne élevé

FIGURE 2 – Fichier Excel contenant un Historique des Pannes

Ascenseur	Pièce	Ratio usure	Nb pannes	Pannes cumulées
005	Câble	0.8	2	4
017	Câble	1.2	1	6
029	Câble	0.5	3	2

Étape 1 – Normalisations

— Nb_pannes_norm :
$$\max = 3 \Rightarrow [0.67, 0.33, 1.00]$$

— cum pannes norm : $\max = 6 \Rightarrow [0.67, 1.00, 0.33]$

Étape 2 – Score pondéré (avec
$$\alpha = 0.6, \beta = 0.2, \gamma = 0.2$$
)

$$Score_{005} = 0.6 \times 0.8 + 0.2 \times 0.67 + 0.2 \times 0.67 = 0.76$$

$$Score_{017} = 0.6 \times 1.2 + 0.2 \times 0.33 + 0.2 \times 1.00 = 1.006$$

$$Score_{029} = 0.6 \times 0.5 + 0.2 \times 1.00 + 0.2 \times 0.33 = 0.566$$

Étape 3 – Application du softmax

$$\exp(\text{scores}) = [e^{0.76}, e^{1.006}, e^{0.566}] \approx [2.14, 2.73, 1.76]$$

Somme totale =
$$2.14 + 2.73 + 1.76 = 6.63$$

Probabilités =
$$\left[\frac{2.14}{6.63}, \frac{2.73}{6.63}, \frac{1.76}{6.63}\right] \approx [0.323, 0.412, 0.265]$$

Interprétation

- Le câble de l'ascenseur **017** a la probabilité la plus élevée (41,2%) de tomber en panne. Cela s'explique par une usure importante (1.2) et un historique de pannes élevé.
- L'ascenseur **005** présente un risque intermédiaire (32,3%), lié à une usure moyenne et des antécédents non négligeables.
- L'ascenseur **029**, malgré des pannes récentes nombreuses, reste le moins critique (26,5%), en raison d'une faible usure et peu d'historique.

Conclusion

Cette méthode permet de **prioriser les risques de panne** à un niveau très granulaire, **pièce par pièce**, en tenant compte de plusieurs dimensions complémentaires :

- de l'usure en temps réel, mesurée par le ratio entre le temps écoulé depuis le dernier remplacement et la durée de vie théorique de la pièce;
- de la **récence des problèmes**, via le nombre de pannes récentes normalisé sur l'ensemble des ascenseurs ;
- de la **mémoire des incidents passés**, intégrant les données historiques cumulées pour chaque type de pièce.

En combinant ces facteurs à l'aide d'un score pondéré, puis en appliquant une **fonction softmax** par type de pièce, nous obtenons une **distribution de probabilités** cohérente et interprétable. Chaque valeur ainsi obtenue représente la probabilité relative qu'une pièce donnée soit la prochaine à tomber en panne.

Ce modèle offre ainsi une vision prédictive opérationnelle, utile pour orienter les décisions de maintenance préventive. En couplant cette analyse probabiliste avec l'optimiseur DOcplex, il devient possible de formuler et résoudre des problèmes d'affectation ou de planification, en tenant compte des ressources (réparateurs, pièces, temps), des contraintes (horaires, priorité, distance), et de l'incertitude liée aux défaillances.

Ainsi, cette approche croise le diagnostic prédictif basé sur les données avec l'optimisation mathématique pour concevoir des stratégies de maintenance plus intelligentes, ciblées et efficientes à l'échelle de l'ensemble des ascenseurs.