2/2

-1/2

2/2

0/2

2/2

2/2

complémentaire

Verzotti Thibaut Note: 10/20 (score total : 10/20)

+295/1/3+

QCM THLR 2	
Nom et prénom, lisibles :	Identifiant (de haut en bas):
VERZOTTI THIBAUT	
	2 0 1 2 3 4 5 6 7 8 9
plutôt que cocher. Renseigner les champs d'identité sieurs réponses justes. Toutes les autres n'en ont qu plus restrictive (par exemple s'il est demandé si 0 e pas possible de corriger une erreur, mais vous pouv incorrectes pénalisent; les blanches et réponses mul	dans les éventuels cadres grisés « ». Noircir les cases e. Les questions marquées par « ^ » peuvent avoir plu- l'une; si plusieurs réponses sont valides, sélectionner la st nul, non nul, positif, ou négatif, cocher nul). Il n'est rez utiliser un crayon. Les réponses justes créditent; les ltiples valent 0. et: les 1 entêtes sont +295/1/xx+···+295/1/xx+.
Q.2 Pour toute expression rationnelle e , on a $e+e$ $\emptyset \equiv \emptyset + e \equiv e$. Note that we have $\emptyset = \emptyset$ variable \emptyset faux Q.3 Pour toute expression rationnelle e , on a $\emptyset e \equiv \emptyset = \emptyset$.	 est toujours récursif est toujours récursivement énumérable peut n'être inclus dans aucun langage dénoté par une expression rationnelle
☐ faux ■ vrai	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$.
Q.4 Pour toutes expressions rationnelles e, f , on a $(e+f)^* \equiv (e^*f^*)^*$.	vrai 📓 faux
☐ faux 🔀 vrai	Q.9 L'expression Perl '[-+]?[0-9]+(,[0-9]+)?(e[-+]?[0-9]+)' n'engendre pas :
Q.5 À quoi est équivalent ε^* ?	☐ '42e42'
\square \emptyset \blacksquare ε \square Σ^{\star}	(42,42e42)
 Q.6 Un langage quelconque n'est pas nécessairement dénombrable peut n'être inclus dans aucun langage dénoté par une expression rationnelle 	Q.10 \triangle Soit A, L, M trois langages. Parmi les propositions suivantes, lesquelles sont suffisantes pour garantir $L = M$?
est toujours inclus (⊆) dans un langage ra- tionnel	$\{a\} \cdot L = \{a\} \cdot M \qquad \text{(a)} \forall n > 1, L^n = M^n$ $AL = AM$
HONDEL	AL = AM

Fin de l'épreuve.