المستوى: سنة ثالثة ثانوي الشعبة: عت/تر/ريا سلسلة التمارين في مادة العلوم الفيزيائية

جمع وإعداد الأستاذ: مدور سيف الدين الوحدة 4: تطور جملة كيميائية نحو حالة التوازن

التمرين (1):

الأمونيا NH₃ أو الأمونياك يستخدم لعلاج الشعر حيث تعانى النساء من مشكلة تساقط الشعر ، والتي تعود لعدة أسباب منها الظروف البيئية أو استخدام مصففات الشعر الحرارية بإفراط . حيث أثبت محلول الأمونياك فاعلية فائقة في انبات الشعر بالإضافة إلى منحه الكثافة اللازمة لظهوره بشكل صحى ومتألق ، وذلك عن طريق رشه على الشعر بشكل يومي

دراسة المحلول المائى للأمونياك: -I

نعتبر محلولا مائيا (S_R) للأمونياك $(NH_3)(aq)$ حجمه V و تركيزه $(NH_3)(aq)$ للأمونياك الأمونياك نعتبر $K_e = 10^{-14}$ يعطى: الجداء الشاردي للماء الـ pH = 10.74 هذا المحلول القيمة pH = 10.74

- 1- أكتب معادلة تفاعل الأمونياك مع الماء .
 - 2- أنشئ جدول تقدم التفاعل .
- $au_f = rac{K_e}{C_p imes 10^{-pH}}$ لهذا التفاعل تكتب من الشكل التقدم النهائي $au_f = rac{K_e}{C_p imes 10^{-pH}}$ لهذا التفاعل تكتب من الشكل ب- أحسب قيمته ، ماذا نستنتج ؟
 - . عبر عن عبارة كسر التفاعل Q_{rf} عند التوازن بدلالة عبر عن عبارة كسر التفاعل Q_{rf}
 - (NH_4^+/NH_3) الثنائية pKa المثنائية -5

 $(H_3O^+(aq)+Cl^-(aq))$: معايرة محلول الأمونياك بواسطة محلول حمض كلور الماء

∧pH $V_B=20\ m$ د خجمه کالی نقوم بمعایرة محلول مائی للأمونیاك (S_B') خجمه الشكل (5) $\overline{V}_{\Lambda}(mL)$

و تركيزه C_B' بواسطة محلول حمض كلور الماء S_A ذي التركيز pH المولى $C_A = 2 \times 10^{-2} \, mol/l$ المولى

- 1- أكتب معادلة تفاعل المعايرة .
- 2- يمثل المنحنى في الشكل (5) تغير pH الخليط بدلالة الحجم V_A للمحلول S_A لحمض كلور الماء المضاف .
 - أ- حدد إحداثيات (pH_E, V_{AE}) نقطة التكافؤ
 - C'_R أحسب التركيز المولى
 - ت- عين معللا جوابك ، الكاشف المناسب لإنجاز
 - هذه المعايرة في غياب جهاز الـ pH متر .

الفينول فثالين	أزرق البروموتيمول	أحمر الكلوروفينول	الهيليانتين	الكاشف الملون
8.0 - 10	6 - 7.6	5.2 - 6.8	3.1 - 4.4	مجال التغير اللوني

المستوى: سنة ثالثة ثانوي سلسلة التمارين في مادة العلوم الفيزيائية الشعبة: ع ت / تر / ريا

الوحدة 4: تطور جملة كيميائية نحو حالة التوازن الوحدة 4: تطور جملة كيميائية نحو حالة التوازن

<u>التمرين (2) :</u>

يعتبر حمض البوتانويك C_3H_7COOH المعروف بحمض الزبدة ، أحد المركبات المسؤولة عن الرائحة القوية و الذوق الحار لبعض الأجبان والسمن ويوجد في الزيوت النباتية و الشحوم الحيوانية .

I دراسة تفاعل حمض البوتانويك مع الماء:

 $C=2\cdot 10^{-3}\ mol/L$ عند الدرجة $^{\circ}$ محلو لا مائيا (S) لحمض البوتانويك تركيزه المولى 25 $^{\circ}$ C محلو لا مائيا

PH=3.76 القيمة V=500~mL وحجمه V=500~mL أعطى قياس الـ أعطى المحلول أوحجمه

- 1- أكتب معادلة التفاعل لحمض البوتانويك مع الماء ؟
- 2- أنشئ جدو لا لتقدم التفاعل ، حدد قيمة التقدم الاعظمي Xmax ؟
 - $x_f = 8,68 \cdot 10^{-5} \ mol$ ؛ كحقق أن قيمة التقدم النهائي 3
 - ب نسبة التقدم النهائي χ_f ، ماذا تستنتج ?
- $(C_3H_7COOH/C_3H_7COO^-)$ أحسب قيمة ثابت التوازن K ، ماذا يمثل بالنسبة للثنائية -5
- 4- أحسب قيمة الـ PKa للثنائية $(C_3H_7COOH/C_3H_7COO^-)$ ، واستنتج النوع الكيميائي المتغلب في المحلول PKa

II - تحديد نسبة حمض البوتانويك في مادة الزبدة:

تصبح الزبدة سمنا اذا كانت النسبة المئوية لحمض البوتانويك المتواجدة فيه أكبر من 9 4 (أي يوجد أكثر من 9 4 حمض البوتانويك في 9 100 زبدة).

ندخل في كأس بيشر حجمه V=500~m كتلة g=5~g من زبدة مذابة ونضيف الماء المقطر ، نحرك الخليط (S_a) لحمض البوتانويك المتواجد في الزبدة كليا، نحصل على محلول مائي (S_a) لحمض البوتانويك تركيزه المولي (S_a) .

نعاير الحجم $V_a=20~mL$ من المحلول (S_a) بواسطة محلول مائي لهيدروكسيد الصوديوم $V_a=20~mL$ تركيزه المولي $C_b=5\cdot 10^{-3}~mol/L$ ، نستعمل كاشف ملون مناسب ، فنلاحظ أن لون الكاشف يتغير عند إضافة حجم $V_b=16~mL$.

- 1- ضع رسما تخطيطيا لعملية المعايرة ؟
 - 2- أكتب معادلة تفاعل المعايرة ؟
 - \mathcal{C}_a أحسب التركيز المولي \mathcal{C}_a
- 4- أوجد كتلة حمض البوتانويك الموجودة في $m=5\ g$ من الزبدة ؟
 - 5- هل الزبدة المدروسة سمن ، علل اجابتك ؟
 - $M_{C_3H_7COOH} = 88 \ g/mol$ يعطى:

الوحدة 4: تطور جملة كيميائية نحو حالة التوازن

الشعبة: عت / تر / ريا جمع وإعداد الأستاذ: مدور سيف الدين

candia

التمرين (3):

 $C_3H_6O_3$ اللاكتوز هو السكر المميز للحليب و لكن تحت تأثير البكتيريا يتحول اللاكتوز الى حمض اللاكتيك - ${f I}$

وبتزايده تزداد حمضية الحليب و يصبح غير صالح للاستهلاك اذا تجاوزت حمضيته $^{
m o}D$

 $m{M}_{C_3H_6O_3} = m{90} \ g/mol$. والتي تعني أن $1 \ L$ من الحليب يحتوي على $1 \ g$ من حمض اللاكتيك $1 \ L$ من أجل التأكد أن الحليب Candia صالح للاستهلاك أم لا ، نجري التجربتين التاليتين :

 $C=0.01\,mol/L$ تركيزه $C_3H_6O_3$ تركيزه محلول مائي لحمض اللاكتيك والتجرية الأولى:

1- أكتب معادلة تفاعل حمض اللاكتيك مع الماء .

-2 أثبت أن قيمة pH يمكن حسابها بالعلاقة : (يهمل تركيز شوارد الهيدروكسيد -2

(1) الشكل
$$pH = log\left(\frac{\lambda_{H_3O^+} + \lambda_{C_3H_5O_3^-}}{\sigma}\right)$$

 σ قمنا بتحضير محاليل مائية لحمض اللاكتيك من المحلول السابق و في كل مرة كنا نقيس قيمة الناقلية النوعية $pH = f(log\sigma)$ وقيمة الدول الدراسة التجريبية مكنتنا من رسم المنحنى البياني $pH = f(log\sigma)$

 $C_3 H_5 O_3^-$ أ. حدد قيمة الناقلية النوعية الشاردية لـ $\lambda_{H_3 O^+} = 35 \; ms. \, m^2/mol$ حيث

 $\sigma=43.6\,m\text{S}/m$ ألمحلول المائي إذا علمت أpH المحلول المائي إذا علمت أ

. pH عبر عن نسبة التقدم النهائي au_f بدلالة كل من الـ au_f وتركيز المحلول au_f ، أحسب قيمته ، ماذا تستنتج .

5- أحسب قيمة كسر التفاعل في حالة توازن الجملة الكيميائية المدروسة .

 $.(C_3H_6O_3/C_3H_5O_3^-)$ الثنائية الثنائية وpKa استنتج قيمة -6

pHالحليب pH عند درجة $25^{\circ}\mathrm{C}$ القيمة: pH الحليب pH عند درجة $(C_3H_6O_3/C_3H_5O_3^-)$ في هذا الحليب.

الشكل (2)

1.59

0.5

التجربة الثانية : من أجل مراقبة الجودة نقوم بمعايرة pH مترية لحمض اللاكتيك الموجود في عينة من Candia حجمها $V_a=40\ ml$ بواسطة محلول هيدروكسيد الصوديوم تركيزه $V_a=40\ ml$ ، بناءا على النتائج تمكنا من رسم المنحنى البياني $C_b=0.04\ mol/L$ الموضح في الشكل $pH=f(V_b)$

- 1- أكتب معادلة تفاعل المعايرة الحادث.
 - 2- حدد احداثيات نقطة التكافؤ
- $.(C_3H_6O_3/C_3H_5O_3^-)$ عين قيمة pKa الثنائية -3
 - لحمض اللاكتيك C_a استنتج قيمة التركيز المولى C_a
- -5 هل الحليب المدروس Candia صالح للاستهلاك .

جمع وإعداد الأستاذ: مدور سيف الدين

الوحدة 4: تطور جملة كيميائية نحو حالة التوازن

التمرين (4) : ــ

 $K_e = 10^{-14}$:المعطيات:

بغرض تحضير محلول (S_1) لغاز الميثيل أمين $CH_3NH_{2(g)}$ نحل منه $1\ l$ في $1\ l$ من الماء المقطر -I

 $V_{M}=24\ l/mol$ هو شروط التجربة هو المحلول C_{1})، علما أن الحجم المولي في شروط التجربة هو C_{1}

2- اكتب المعادلة الكيميائية للتفاعل المنمذج للتحول الكيميائي الحاصل

. pH=11,3 أعطى القيمة pH المحلول (S_1) في الدرجة ومناس pH المحلول المحلول أعطى المحلول أعطى المحلول المحلول أعطى المحلول المحلول أعطى المحلول المحلو

أ- انشئ جدولا لتقدم التفاعل

ب-احسب النسبة النهائية للتقدم au_f ، ماذا تستنتج ؟

كلف الأستاذ في حصة للأعمال المخبرية فوج من التلاميذ لتحضير محلول (S_2) حجمه 100~ml وتركيزه المولي $C_2=2.10^{-3}~mol/l$

 (S_2) الخطوات العملية المتبعة لتحضير المحلول -4

5- ان قيمة المحلول (S_2) المحضر تساوي au_{2f} المحضر au_{2f} انقدم التفاعل.

 au_f ما تأثير الحالة الابتدائية للجملة على النسبة النهائية لتقدم التفاعل au_f

 $(CH_3NH_3^+/CH_3NH_2)$ الثنائية pKa الموضة عند ثابت الحموضة -7

 C_b تركيزه المولي $C_b = 50 \ ml$ تركيزه المولي -pH تركيزه المولي -pH تركيزه المولي -pH الشكل (1) بواسطة محلول لحمض كلور الماء -pH الحمض المضاف . $C_a = 0.1 \ mol/l$ الوسط التفاعلى بدلال الحجم -pH للحمض المضاف .

- 1- اكتب معادلة تفاعل المعايرة.
- \mathcal{C}_b عيّن احداثيات نقطة التكافؤ، واستنتج التركيز -2
 - pKa من قيمة على البيان تأكد من قيمة -3

للثنائية $(CH_3NH_3^+/CH_3NH_2)$ ، مع التوضيح.

- 4- انشئ جدول تقدم التفاعل.
- x_{eq} و V_b , C_b : عبر عن النسبة $\frac{[CH_3NH_2]_{eq}}{[CH_3NH_3^+]_{eq}}$ بدلالة

.pKa و اله pH و اله pH

استنتج قيمة x_{eq} عند التكافؤ ، واحسب نسبه -6

التقدم النهائي au_f لتفاعل المعايرة عند التكافؤ ، ماذا تستتج فيما يخص تفاعل المعايرة.

المستوى: سنة ثالثة ثانوي سلسلة التمارين في مادة العلوم الفيزيانية الشعبة: ع ت / تر / ريا

الوحدة 4: تطور جملة كيميائية نحو حالة التوازن عمور سيف الدين

التمرين (5):

حمض البنزويك C_6H_5COOH جسم أبيض صلب ، يستخدم بشكل واسع في المستحضرات التجميلية والأغذية والمشروبات الغازية والأشكال الصيدلانية كمادة حافظة رمزها E~210 واستخدم منذ أمد بعيد كمضاد فطري.

III دراسة تفاعل حمض البنزويك مع الماء:

 C_a تركيزه المولي C_6H_5COOH عند الدرجة V=100~mL تركيزه المولي V=100~mL تركيزه المولي عند الدرجة m=1.22~g بإذابة والماء المقطر فكانت قيمة الـ pH له pH=2.6~d

- 1- أكتب معادلة انحلال هذا الحمض في الماء ، وبين أن تفاعله مع الماء تفاعل حمض أساس
 - 2- أنشئ جدول لتقدم التفاعل
 - حسب قيمة C_a واستنتج نسبة التقدم النهائي au_{1f} وماذا يمكن قوله عن هذا الحمض C_a
 - pH_{1} و C_{a} بدلالة وارن عبارة كسر التفاعل عند التوازن والتفاعل عبارة Q_{rf}
- المحلول ع الكيميائي المتغلب في المحلول ، $(C_6H_5COOH/C_6H_5COO^-)$ ، واستنتج النوع الكيميائي المتغلب في المحلول PKa

$(Na^+ + OH^-)$ دراسة تفاعل حمض البنزويك مع الصودا -IV

نضع في بيشر حجما $V_a=20~mL$ من محلول حمض البنزويك ونضيف إليه حجما $V_b=10~mL$ من محلول الصودا تركيزه المولي $C_b=5.10^{-2}~mol/L$ فنجد أنه من أجل الحجم المضاف $C_b=5.10^{-2}~mol/L$

- 1- أكتب معادلة التفاعل المنمذج لهذا التحول الكيميائي.
- : الشكل عبارة au_{2f} نسبة التقدم النهائي في هذه الحالة يمكن كتابتها على الشكل au_{2f}

ا تستنتج - ماذا تستنتج -
$$au_{2f} = 1 - rac{10^{PH_2-14} \cdot (V_a + V_b)}{C_b V_b}$$

- 3- ما هو حجم الصودا الواجب اضافته لبلوغ نقطة التكافؤ
 - 4- أكتب ثابت التوازن K عندئذ وأحسب قيمته

 $M_{O} = 16 \ g/mol$ $M_{C} = 12 \ g/mol$ $M_{H} = 1 \ g/mol$ $Ke = 10^{-14}$: المعطيات

(les chaudieres) الهيدر ازين نوع كيميائي سائل صيغته الكيميائية N_2H_4 يستعمل في منع تآكل السخانات المائية وأنابيب التدفئة المركزية وذلك بإضافة كمية منه إلى الماء الموجود داخل السخان.

- ا- نحضر محلولا مائيا بإذابة mg 6,4 من الهيدر ازين النقية في ml الماء المقطر أعطى قياس الـ pH للمحلول pH $N_2H_{4(aq)}+H_2O_{(l)}==N_2H_{5\;(aq)}^++HO^-{}_{(aq)}\,$: القيمة 9,8 ، ينمذج التحول الكيميائي الحادث بالمعادلة
 - بين أن الهيدر ازين N_2H_4 يسلك سلوك أساس حسب برونشتد -1
 - 2- أنشئ جدول التقدم للتفاعل
 - حسب النسبة النهائية لتقدم التفاعل au_f ، ماذا تستنتج
 - $\frac{[N_2H_4]_f}{[N_2H_5^+]_f}$ ثم عين الصفة الغالبة في المحلول
 - $K = \frac{\tau_f}{1-\tau_f}[HO^-]_f$ أثبت أن ثابت التوازن K يعطى بالعبارة احسب قبمته

 $Ka(CH_3NH_3^+/CH_3NH_2)=1,9 imes10^{-11}$: هارن بين قوتي الأساسين $CH_3NH_3^+/CH_3NH_2$ و N_2H_4 علما أن الدناخذ عينة من ماء سخان التدفئة المركزية حجمها $V_h=25\ ml$ ثم نعاير ها بواسطة محلول حمض كلور الماء $V_h=10$

ترکیزه المولي mol/l ترکیزه المولی $C=5 imes 10^{-3}$ ، النتائج التجریبیة المحصل علیها مکنت من رسم ($H_3O^++Cl^-)_{aa}$

(1) الشكل $pH = f(V_a)$ الشكل المنحنى البياني

- 1- ارسم التركيب التجريبي للمعايرة الـ pH مترية
 - 2- اكتب معادلة تفاعل المعايرة
 - 3- عين احداثيات نقطة التكافؤ
 - 4- احسب كمية مادة الهيدر ازين في ماء السخان
- من المحلول الحمضي: $V_a=7,5\ ml$ من المحلول الحمضي أ- عين الصفة الغالبة
 - ب- احسب النسبة النهائية لتقدم التفاعل ماذا تستنتج
 - 6- "يمنع الهيدرازين كل من السخان المائي وشبكة التدفئة المركزية من التآكل"

اشرح هذه العبارة من وجهة النظر الكيميائية

 $pKa(N_2H_5^+/N_2H_4) = 8.1$ المعطيات:

 $Ke = 10^{-14}$ $M(N_2H_4) = 32 g/mol$

 $V_a(mL)$

0

المستوى: سنة ثالثة ثانوي تصحيح سلسلة التمارين في مادة العلوم الفيزيائية الشعبة: عت/تر/ريا جمع وإعداد الأستاذ: مدور سيف الدين الوحدة 4: تطور جملة كيميائية نحو حالة التوازن

العلامة عناصر الاجابة مجزأة مجموع التمرين (1): (07 نقاط): $NH_3 + H_2O === NH_4^+ + H_0^-$ 0.25 0.25 $\overline{n_0} = C.V$ حالة إبتدائبة $n = n_0 - x$ بوفرة $n = n_0 - x$ بوفرة x0,25 حالة انتقالية 2 جدول التقدم 0,5 0.25 حالة نهائبة العبارة: 0,25 $\tau_f = \frac{x_f}{x_{max}} \cdot \left| \tau_f = \frac{x_f}{x_{max}} = \frac{[HO^-]_f \cdot V}{C_B \cdot V} = \frac{\frac{K_e}{10^- pH}}{C_B} = \frac{K_e}{C_B \cdot 10^{- pH}}.$ 0,25 1,75 3 $\tau_f = \frac{10^{-14}}{2 \cdot 10^{-2} \times 10^{-10,74}} = 0.0274 < 1.$ قىمتە 0,25 نستنتج أن التفاعل غير تام 0.25 الاستنتاج والأساس NH_3 أساس ضعيف 0,25 $[HO^-]_f = \tau_f \cdot C_B \qquad [NH_3]_f = C_B - [HO^-]_f$ 0.25<u>0,</u>25 $\begin{array}{c|c}
0,25 & \\
0,25 & \\
0,25 & \\
0,25 & \\
\end{array} Qr_f = \frac{[NH_4^+]_f \cdot [HO^-]_f}{[NH_3]_f} = \frac{[HO^-]_f^2}{[NH_3]_f} = \frac{\tau_f^2 \cdot C_B^2}{C_B - [HO^-]_f} = \frac{\tau_f^2 \cdot C_B^2}{C_B - \tau_f \cdot C_B}.$ 4 كسر التفاعل 1.5 $\begin{vmatrix} 0.25 \\ 0.25 \end{vmatrix} Qr_f = \frac{\tau_f^2 \cdot c_B}{1 - \tau_f} = \frac{0.0274^2 \times 2 \cdot 10^{-2}}{1 - 0.0274} = \frac{1.55 \cdot 10^{-5}}{1.55 \cdot 10^{-5}}.$ $\begin{array}{ll}
0,25 \\
0,25
\end{array} Qr_f = K = \frac{[NH_4^+]_f \cdot [HO^-]_f}{[NH_3]_f} \times \frac{[H_3O^+]_f}{[H_3O^+]_f} = \frac{Ke}{Ka} \\
0,25 \quad Ka = \frac{Ke}{K} = \frac{10^{-14}}{1,55 \cdot 10^{-5}} = 6,45 \cdot 10^{-10}
\end{array}$ 1,25 pKa | 5 0,25 $pKa = -log.Ka = -log(1.55 \cdot 10^{-5}) = pKa = 9.2$ II $NH_3 + H_3O^+ = NH_4^+ + H_2O$ $pH_E = 5,63$ $V_{AE} = 15 \text{ mL}$ المعادلة 0,25 0,25 рΗ 0.25 0,25 $C'_B \cdot V_B = C_A \cdot V_{AE}$ $C'_B = \frac{C_A \cdot V_{AE}}{V_B} = \frac{2 \cdot 10^{-2} \cdot 15}{20}$. التركيز المولي 0,25 0,25 $C'_B = 1.5 \cdot 10^{-2} \ mol/l$ 1.5 2 5,63 الكاشف هو أ<u>حمر الكلوروفينول</u> 0.25 لأن قيمة pH_E تنتمي إلى مجال الكاشف 0,25 تغيره اللوني V_A 15 5 ثانوية: المجاهد قندوز علي ، سيدي خويلد _ ورقلة

الصفحة : 1 /7

المستوى: سنة ثالثة ثانوي تصحيح سلسلة التمارين في مادة العلوم الفيزيائية الشعبة: ع ت / تر / ريا

الوحدة 4: تطور جملة كيميائية نحو حالة التوازن جمع وإعداد الأستاذ: مدور سيف الدين

							سرين (<u>2) :</u>	الت
						قاط):	رين (2): (70 نا	التم
0,25	0,25	C_3H_7COOH +	$-H_2O ===$	$= C_3H_7COO^-$	$+ H_3 O^+$		المعادلة	1
	0,25	$n_0 = C.V$		0	0	ح إبتدائية		
0,75	0,25	$n = n_0 - x$	بوفرة	x	х	ح إنتقالية	جدول التقدم	2
0,73	0,23	$n_f = n_0 - x_f$		x_f	x_f	ح نهائية		
	0,25	$x_{max} = n_0 = 0$	$C \cdot V = 2 \cdot 1$	$10^{-3} \times 0.5 =$	$1\cdot 10^{-3}$	<mark>mol</mark>	التقدم الأعظمي	
0.25	0.25	$x_f = [H_3 O^+]_f$	$V = 10^{-p}$	$^H \cdot V = 10^{-3}$	^{5,76} · 0,5		ा नाना	
0,25	0,25	$x_f = 8.68 \cdot 10^{-3}$	⁻⁵ mol				التقدم النهائي	3
	0,25	$\tau_f = \frac{x_f}{x_{max}} = \frac{8.6}{1}$	$8.10^{-5} - 0$	0868 / 1				
0,75		$t_f - \frac{1}{x_{max}} - \frac{1}{1}$	$\frac{10^{-3}}{10^{-3}}$ – 0,	0000 < 1.			نسبة التقدم	4
0,73	0,25				1 -	نستنتج أن التف	نسب- التحدم	4
	0,25					وحمض البوتا		
	0,25	$K = \frac{[c_3 H_7 coo^{-}]}{[c_3 H_7 coo^{-}]}$	$f \cdot [H_3 O^+]_f$	$[C_3H_7COO^-]$	$ _f = H_3O$	f		
	0,20	$[C_3H_7CC]$	$[OH]_f$	$\lfloor C_3 H_7 COOH \rfloor$	$]_f = C -$	$[H_30^+]_f$		
		$K = \frac{[c_3 H_7 coo^-]_f}{[c_3 H_7 coo}$	$[H_3O^+]_f = [H_3O^+]_f$	$[I_30^+]_f^2 = 10^-$	·2pH _ 1	0 ^{-2×3,76}	12. **	
1,25	0,25			$\frac{1}{[H_3O^+]_f} - \frac{1}{C-1}$	$\frac{1}{10^{-pH}} - \frac{1}{2.10}$	$^{-3}$ $-10^{-3,76}$.	قيمة ثابت	5
	0,25	$K = 1,65 \times 10$					التوازن	
	0,25			الحموضة K_a لا		ثابت التوازن		
	0,25	$K = \frac{[C_3 H_7 COO^-]}{[C_3 H_7 COO^-]}$	$\frac{f \cdot [H_3 O^+]_f}{H_3 O^+} = \frac{1}{2}$	$K_a = 1.65 \times$	10^{-5} .			
	0.05	$[C_3H_7CO]$	0H] _f	α -/				
0.75	0,25	$pKa = -\log K$	$a = -\log($	$1,65 \times 10^{-}$	$^{5}) = > \frac{pk}{pk}$	a = 4,78	pKa قيمة	
0,75	0,25						النوع الغالب	6
	0,25	L_3H_7UU	الحمص 10H	يائي المتغلب هو	اللوع الكيم	н < рка	اللوع العالب	II
1	1						الديب	11
0,25	0,25		C-H-COI	OH + HO ⁻ =	- C - H - C O	$O^- + HO$	الرسم المعادلة	2
0,23	0,23		C3117CO		$C_b = C_b \cdot V_{bi}$			
	0,25	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						
0,5	0,25	حلحة مدرجة (محاول الصودا)	—		$\frac{C_b \cdot V_{bE}}{V_a} = \frac{1}{2}$		حساب التركيز	3
				$C_a =$	$4 \cdot 10^{-3}$	<mark>mol/l</mark>		
		حامل حامل		$n = \frac{n}{2}$	$\frac{n}{M}$ $n=0$	C.V		
٥٢	0,25	J		1	$C \cdot V \cdot M$		حساب الكتلة	
0,5	0,25					< 0,5 × 88	حساب الكتلة	4
		بيشر (محلول الحمض) + كاشف ملون	ل المستبور		$\frac{0,176 \ g}{}$. 0,0 00		
		\ \ \	الله الله		$\frac{m}{\sim} \times 100.$			
	0.25	قضيب ممغنط		1	m'	•		
0.75	0,25	خلاط مغناطيسي		$P = \frac{1}{2}$	$\frac{0,176}{5} \times 10$	0.	: 15:11	5
0,75	0,25			P=1	<mark>3,52 %</mark>	_	حساب النقاوة	3
	0,25	_				بما أن % 4 >		
				سمنا	روسة ليست	فإن الزبدة المد		

المستوى: سنة ثالثة ثانوي تصحيح سلسلة التمارين في مادة العلوم الفيزيائية الشعبة: ع ت / تر / ريا الوحدة 4: تطور جملة كيميائية نحو حالة التوازن

		<u>.ن (3) :</u>	التمري
العلامة	عناصر الإجابة		
		ن (3) : (6 نقاط) :	التمري
		بة الأولى :	
0.25	$C_3H_6O_3 + H_2O = C_3H_5O_3^- + H_3O^+$	معادلة التفاعل	1
0.5	$\sigma = \lambda_{C_{3}H_{5}O_{3}^{-}}[C_{3}H_{5}O_{3}^{-}]_{f} + \lambda_{H_{3}O^{+}}[H_{3}O^{+}]_{f}$ $[C_{3}H_{5}O_{3}^{-}]_{f} = [H_{3}O^{+}]_{f}$ $\sigma = (\lambda_{C_{3}H_{5}O_{3}^{-}} + \lambda_{H_{3}O^{+}})[H_{3}O^{+}]_{f}$ $[H_{3}O^{+}]_{f} = \frac{\sigma}{(\lambda_{C_{3}H_{5}O_{3}^{-}} + \lambda_{H_{3}O^{+}})}.$ $pH = -log[H_{3}O^{+}]_{f} \stackrel{\text{dis}}{=} spH = -log\frac{\sigma}{(\lambda_{C_{3}H_{5}O_{3}^{-}} + \lambda_{H_{3}O^{+}})}.$ $pH = log\frac{(\lambda_{C_{3}H_{5}O_{3}^{-}} + \lambda_{H_{3}O^{+}})}{\sigma}.$	اثبات العلاقة	2
0.5	pH من العلاقة السابقة نجد: $pH = log(\lambda_{C_3H_5O_3^-} + \lambda_{H_3O^+}) - log\sigma$ $pH = log(\lambda_{C_3H_5O_3^-} + \lambda_{H_3O^+}) - log\sigma$ $pH = 1.59$ $pH = 1.59$ $mathrice$ ma	قيمة الناقلية النوعية الشاردية $\lambda_{C_3H_5O_3^-}$	3
0.25	: $\sigma=43.6mS/m=0.0436$ و منه $\sigma=-1.36$ و منه بكون $\sigma=-1.36$ و منه و منه بالاسقاط في البيان نجد بالاسقاط في البيان نجد		
0.5	$ au_f = rac{x_f}{x_{max}} \Longrightarrow au_f = rac{[H_3O^+]_f imes V}{C imes V} = rac{[H_3O^+]_f}{C} = rac{10^{-pH}}{C} .$ $ au_f = 0.13 < 1$ حمض ضعیف $C_3H_6O_3$ الاستنتاج : حمض اللاکتیك	نسبة التقدم النهائي بدلالة كل من الـ $ au_f$ و تركيز pH المحلول	4
0.5	$Q_{rf} = \frac{[C_3 H_5 O_3^-]_f \cdot [H_3 O^+]_f}{[C_3 H_6 O_3]_f}.$ $[C_3 H_5 O_3^-]_f = [H_3 O^+]_f = 10^{-pH}$ $[C_3 H_6 O_3]_f = \frac{n_0 - x_f}{V} = \frac{n_0}{V} - \frac{x_f}{V} = C - [H_3 O^+]_f = C - 10^{-pH}.$ $Q_{rf} = \frac{10^{-2pH}}{C_{-10^{-pH}}} \Longrightarrow Q_{rf} = \frac{1.81 \times 10^{-4}}{C_{-10^{-pH}}}.$	قيمة كسر التفاعل عند التوازن	5
0.25	$\mathrm{Q}_{rf}=K_a \Rightarrow pKa=-logK_a$ و منه $pKa=3.74$	استنتاج قیمة p	6
0.25	: فإن الأساس هو الغالب $pKa>pKa$ بما أن	تحديد الصفة	7
		بة الثانية:	التجرب
0.25	$C_3H_6O_3 + OH^- = C_3H_5O_3^- + H_2O$	معادلة التفاعل	1
ءة : 3 /7	سيدي خويلد ـ ورقلة الصف	: المجاهد قندوز علي ،	ثاثوية

الشعبة: ع ت / تر / ريا	تصحيح سلسلة التمارين في مادة العلوم الفيزيائية	المستوى : سنة ثالثة ثانوي
حمد ماعداد الأستاني مدمد سيف الدين	القرائيم النبين	المحدة 1 متطور حملة كرورائر تنجم حاا

0.25	الين لان	ينتمي الى مجال التغير اللوني pH_E الفينول فت	الكاشف المناسب	2
0.25	: عند التكافؤ يكون \mathcal{C}_a . $V_a=\mathcal{C}_b$. عند	$\Rightarrow C_a = \frac{C_b.V_{bE}}{V_a}$	قيمة التركيز	2
0.25	$C_a = \frac{0.04 \times 20}{40} = \frac{0.02 mol/l}{100}$	المولي \mathcal{C}_a	3	
0.25	$C_a = \frac{n}{V_a} = \frac{m}{M.V_a} \Longrightarrow m = C_a.M.V_a$	a.	حساب الكتلة	1
0.23	$m = 0.02 \times 90 \times 0.04 = 0.072$		المنحلة	4
	$m = 0.072 g \longrightarrow V_g = 0.04l$	بما أن حمضية الحليب في هذه الحالة هي		
0.5	$m' \longrightarrow V = 1l$	18° هي $1l$ (لان كتلة حمض اللاكتيك في	هل الحليب المدروس	5
0.5	$m' = \frac{0.072}{0.04} = 1.8g$	1.8g فعليه الحليب مازال صالح (صالح للإستهلاك	
	0.04	للاستهلاك .		

 : ((4)	التمرين (

ثانوية : المجاهد قندوز علي ، سيدي خويلد – ورقلة

							نقاط)	رین (4) : رین (4): (06	
								<u>.I.</u>	
	0,25	$C_1 = \frac{n}{V} =$	$= \frac{V_g}{V_M.V} =$	$= \frac{240 \times 10^{-3}}{24 \times 1} = 10^{-3}$	<mark>-2</mark> mol/L.			حساب C_1 التركيز	1
	0,25	CH_3NH_2	$\frac{1}{2(g)} + H$	$O_2O_{(l)} = CH_3NH_2$	$\frac{1}{3(aq)} + OH$	_ (aq)		معادلة	2
		عادلة	الم	$CH_3NH_{2(g)} +$			$\frac{1}{(q)} + OH_{(aq)}^{-}$	أ/ جدول	
		الحالة	التقدم		دة بالمول mol			التقدم	
	0,25	الإبتدائية		C_1 . V		0	0		
		الانتقالية		$C_1.V-x$	بوفرة	х	х		
		النهائية	x_f	$C_1.V-x_f$	D.V.	x_f	χ_f		2
	0,25	$\tau_f = \frac{x_f}{x_{min}}$	$-=\frac{10H}{C}$	<u>r-],v</u> .	$\tau_f = \frac{10^{PH-2}}{c}$	$\frac{10^{11}}{10^{11}} = \frac{10^{11}}{10^{11}}$	 =	ب/ حساب	3
		$K_{e} = 0$	H^{-}][H_{3}	$[0^+] = 10^{-14}.$	0.19 < 1.	10	_	$ au_f$	
	0,25	=> [<i>OH</i>	$[-] = \frac{1}{[H]}$	$\frac{0^{-14}}{(20^{+})} =$	CH_3NH_2				
3,25	0,25	$\frac{10^{-14}}{10^{-PH}} =$	L	د ر	اساس تفحمه کے انتخاع تفحمت کر ہے ۔				
3,23				بتطبيق قانون التمديد	ا الواجب أخذه	V_1 المحلول الم	1- حساب حجم	الخطوات	4
	0,25		$C_1.V_1$	$_{1}=C_{2}.V_{2}=>V$	$V_1 = \frac{C_2 \cdot V_2}{C_1} =$	$\frac{2 \times 10^{-3} \times 10^{-3}}{10^{-2}}$	$\frac{00}{m} = 20 \ mL$	العملية	
	0.05	ر نسکبه	S_1 طول	جم $20~m$ من الم					
	0,25			من الماء المقطر			••		
				مع الرج والتحريك		المقطر الى	3 - نكمل بالماء		
	0,25	$\tau_{f2} = \frac{10}{}$	$\frac{C_{2}}{C_{2}} =$	$\frac{10^{10.9-14}}{2\times10^{-3}} = 0.39$	< 1.			$ au_{f2}$ حساب	
	0,25	CH_3NH	H_3^+ و OF	H^- طور باتجاه تشکل				$ au_f$ تأثير على	6
	0,25	$K_a = \frac{[H_3]}{}$	$[CH_3NH_3]$	$\frac{[3NH_2]_f}{[3]_f}$.		$\frac{[H_3O^+]_f[CH_3NH_2]}{[CH_3NH_2]}$	-3 J f	pK_a — Luna	7
	0,25	$[CH_3NH]$	$[_{2}]_{f} = \frac{1}{2}$	$\frac{2\cdot V_2}{V_2}$.	$=\frac{10^{-}}{}$	$\frac{PH(C_2-10^P)}{10^{PH-14}}$	$\frac{H-14}{}$.		
	0,25	(.2.V2-I	0H ⁻] _{f.V2} V2	•	$=\frac{10^{-}}{}$	$10^{10.9}(2\times10^{-3}$ $10^{10.9}$	7-1010.5 11)		

	ة:عت/ مدد مسينة		توى: سنة ثالثة	
ع الديس	مدور سيف		ده 4 : نطور ج مد	سوح=
		$[C_2 - [OH^-]_f = C_2 - 10^{PH-14}] = 1.91 \times 10^{-11}$		
		$[H_3O^+]_f = 10^{-PH} pK_a = -\log K_a$		
		$ [CH_3NH_3^+]_f = [OH^-]_f = 10^{PH-14} $		
			II.	
	0,25	$CH_3NH_{2(aq)} + H_3O_{(aq)}^+ = CH_3NH_{3(aq)}^+ + H_2O_{(l)}$	معادلة	1
	0,5		إحداثيات	2
	0,25	$PH=pK_a+lograc{[CH_3NH_2]}{[CH_3NH_3^+]}$. الدينا $PH=pK_a$ و عليه فإن $rac{VaE}{VaE}=rac{8}{2}=4$ سال	التأكد من قيمة pk_a	
1,25	0,25	عند نقطة نصف التكافؤ: $\frac{VaE}{2}$ يكون $PH = pK_a = PH$ يكون $PH = pK_a = 10.71$ نفس القيمة السابقة $[CH_3NH_2] = [CH_3NH_3^+]$	بيانيا	
		المعادلة $CH_3NH_{2(aq)} + H_3O_{(aq)}^+ = CH_3NH_{3(aq)}^+ + H_2O_{(l)}$	جدول تقدم	4
	0,25	كمية المادة بالمه ألى المسلم التقدم الحالة الحالة	المعايرة	
		بوفرة $C_a.V_a$ O الإبتدائية $C_a.V_a$		
		$ Y_{n} Y_{n} C_{n} V_{n} - Y_{n} C_{n} V_{n} - Y_{n} Y_{n} Y_{n} $		
		$\frac{c_b v_b - x_{eq}}{c_b v_b} = \frac{c_b v_b - x_{eq}}{c_b v_b}$	التعبير عن	5
	0,25	$\frac{[CH_3NH_2]}{[CH_3NH_3^+]} = \frac{\frac{C_b.V_b-x_{eq}}{V_T}}{\frac{x_{eq}}{V_T}} = \frac{C_b.V_b-x_{eq}}{x_{eq}} \dots \dots (1).$	$\frac{[CH_3NH_2]}{[CH_3NH_3^+]}$	
		$PH = pK_a + log \frac{[CH_3NH_2]}{[CH_3NH_2^+]} = > PH - pK_a = log \frac{[CH_3NH_2]}{[CH_3NH_2^+]}.$	التعبير عن	
	0,25	[3 3]	$\frac{[CH_3NH_2]}{[CH_3NH_2]}$	
		$=>\frac{[CH_3NH_2]}{[CH_3NH_3^+]}=10^{PH-pK_a}(2).$	$\left[CH_3NH_3^+ \right]$	
1,25		$\frac{C_b V_b - x_{eq}}{x_{eq}} = 10^{PH - pK_a} = x_{eq} = \frac{C_b V_b}{10^{PH} E^{-pK_a} + 1}$ من (1) و (2) نجد:	إستنتاج قيمة	6
	0,25	x_{eq} $x_{eq} = 10$ $x_{eq} = \frac{10^{PH_E - pK_a + 1}}{10^{PH_E - pK_a + 1}$	عند x_{eq}	
		$=\frac{1.6\times10^{-2}\times50\times10^{-3}}{10^{6.6-10.71}+1}=8\times10^{-4}mol.$	التكافؤ	
		x_{eq} x_{eq} x_{eq} 8×10^{-4}	$ au_f$ — Luna	
	0,25	$\tau_f = \frac{x_{eq}}{x_{max}} = \frac{x_{eq}}{c_b \cdot v_b} = \frac{8 \times 10^{-4}}{1.6 \times 10^{-2} \times 50 \times 10^{-3}} = 1.$	عند التكافؤ	
	0,25	نستنتج أن تفاعل المعايرة تفاعل تام.	الإستنتاج	
		, - 3; - 3 <u>C</u>		<u> </u>
			<u>رين (5) : _</u>	
		<u>.</u>	رین (5) (8 نقا	لتم
				_]
	0,2	$25 C_6H_5C00H_{(l)} + H_2O_{(l)} = C_6H_5C00_{(aq)}^- + H_3O_{(aq)}^+$		

				: (رین (5) (8 نقاط)	التم		
						I		
	0,25	$C_6H_5COOH_{(l)} + H_2O_{(l)}$	$C_6H_5COOH_{(l)} + H_2O_{(l)} = C_6H_5COO^{(aq)} + H_3O^+_{(aq)}$					
	0,25	$C_6H_5COOH = C_6H_5CO$	$00^{-} + H^{+}$	حدث تُبَادل بروتوني	المعادلة	1		
	0,23	$H_2O + H^+ = H_3O^+$						
		$C_6H_5COOH_{(l)} + H_2O_{(l)}$	$= C_6 H_5 COO^{(aq)}$	$+ H_3 O^+_{(aq)}$				
5.25	0,25	C_aV_a	0	0	جدول التقدم	2		
5,25	0,23	$C_aV_a - X_t$	X_t	X_t	جدون التعدم			
		$C_a V_a - X_f$	X_f	X_f				
	0,25	$C_a = \frac{n}{V} = \frac{m}{M \cdot V} = \frac{1,22}{122 \cdot 0,1} = \frac{1}{122 \cdot 0,1}$	= <mark>0,1 mol/l</mark>		C_a — ω			
	0,25	$C_a = V = M \cdot V = 122 \cdot 0,1$	<u> </u>		$c_a - c_a$	3		
	0,75	$\tau_{1f} = \frac{X_f}{X_{max}} = \frac{[H_3 O^+]_f}{C_a} = \frac{[H_3 O^+]_f}{C_a}$	$\frac{10^{-PH}}{C_a} = \frac{10^{-2.6}}{0.1} = 0$,025 => <mark>2,5%</mark>	$ au_{1f}$ جساب			

الصفحة : 5 /7

ثانوية: المجاهد قندوز علي ، سيدي خويلد _ ورقلة

الشعبة: ع ت / تر / ريا	تصحيح سلسلة التمارين في مادة العلوم الفيزيائية	المستوى: سنة ثالثة ثانوي
جمع وإعداد الأستاذ: مدور سيف الدين	حالة التوازن	الوحدة 4: تطور جملة كيميائية نحو

سيب سيد		جمع وإعداد الاسد	ليميانيه نحو حانه اللوازن		-J-'		
	0,25	وانحلاله في الماء جزئي	نقول عنه حمض ضعیف و $ au_{1f} < 1$	الاستتتاج			
	0,25 0,25 0,25 0,25	$[H_3O^+]_f = [C_6H_5COO^-]_f = [C_6H_5COOH]_f = C_a - [H_3O]_f$ $Q_{rf} = \frac{[C_6H_5COO^-]_f \cdot [H_3O^+]_f}{[C_6H_5COOH]_f} = 0$ $Q_{rf} = \frac{6.5 \cdot 10^{-5}}{10^{-5}}$	$[0^+]_f$	كسر التفاعل	4		
	0,5 0,5	$Q_{rf} = K = Ka = 6.5 \cdot 10^{-5}$ $PKa = -\log(Ka) = -\log(Ka)$		PK_a حساب			
	0,25 0,25 0,25	$PKa > PKa + log \frac{[C_6H_5COO^-]_f}{[C_6H_5COOH]_f}$	$\log(1) > \log \frac{[C_6 H_5 COO^-]_f}{[C_6 H_5 COOH]_f}$ $1 > \frac{[C_6 H_5 COO^-]_f}{[C_6 H_5 COOH]_f}$ $\frac{[C_6 H_5 COOH]_f}{[C_6 H_5 COOH]_f} > \frac{[C_6 H_5 COO^-]_f}{[C_6 H_5 COOH]_f}$	استنتاج	5		
	0,25	ة)	$[C_6H_5COOH]_f > [C_6H_5COO^-]_f$ الحمض هو المتغلب (صفة حمضية سائدة)				
					II		
	0,25	$C_6H_5COOH_{(aq)} + OH^{(aq)}$	$= C_6 H_5 COO^{(aq)} + H_2 O_{(aq)}$	المعادلة	1		
	$\begin{array}{c c} 0,25 \\ 0,25 \end{array} \tau_{2f} = \frac{x_f}{x_{max}}$		$X_{max} = C_b V_b$ $ au_{2f} = rac{C_b V_b - 10^{PH-14} (V_a + V_b)}{C_b V_b}$ $ au_{2f} = 1 - rac{10^{PH-14} (V_a + V_b)}{C_b V_b}$	العبارة	2		
2,75	0,25	$X_{f} = C_{b}V_{b} - [OH^{-}]_{f}(V_{a} + V_{b})$ $X_{f} = C_{b}V_{b} - 10^{PH-14}(V_{a} + V_{b})$ $\tau_{2f} = 1 - \frac{10^{PH-14}(V_{a} + V_{b})}{C_{b}V_{b}} = 1 - \frac{10^{PH-14}(V_{b} + V_{b})}{C_{b}V_{b}} = 1 - 10$	$-\frac{10^{3,7-14}(0,02+0,01)}{(5\cdot10^{-2}\cdot0,01)} = 0,99 \approx 1$				
, -	0,25		ومنه نستنتج أن تفاعل المعايرة تفاعل تام				
	0,25 0,25	$\begin{vmatrix} C_a V_a = C_b V_{bE} \\ V_{bE} = \frac{C_a V_a}{C_b} = \frac{0.1 \cdot 20}{5 \cdot 10^{-2}} = 40 \text{ m}$	$C_{a}V_{a} = C_{b}V_{bE}$ $V_{bE} = \frac{C_{a}V_{a}}{C_{b}} = \frac{0.1 \cdot 20}{5 \cdot 10^{-2}} = \frac{40 \text{ mL}}{10^{-2}}.$ $K = \frac{[C_{6}H_{5}COO^{-}]_{f}}{[C_{6}H_{5}COOH]_{f} \cdot [OH^{-}]_{f}} = \frac{[C_{6}H_{5}COO^{-}]_{f}}{[C_{6}H_{5}COOH]_{f} \cdot [OH^{-}]_{f}} \times \frac{[H_{3}O^{+}]_{f}}{[H_{3}O^{+}]_{f}}.$ $K = \frac{Ka}{Ke} = \frac{6.5 \cdot 10^{-5}}{10^{-14}} = \frac{6.5 \cdot 10^{9}}{10^{-14}}$				
	0,25 0,25	$K = \frac{[C_6 H_5 COO^-]_f}{[C_6 H_5 COOH]_f \cdot [OH^-]_f} = \frac{1}{[C_6 H_5 COOH]_f \cdot [OH^-]_f} = \frac{1}{[C_6 H_5 COOH]_f \cdot [OH^-]_f} = \frac{1}{[C_6 H_5 COO^-]_f} = \frac{1}{[C_6 H_5 COO^$	$\frac{[C_6 H_5 COO^-]_f}{H_5 COOH]_f \cdot [OH^-]_f} \times \frac{[H_3 O^+]_f}{[H_3 O^+]_f}.$	ثابت التوازن	4		

							<u>مرين (6) :</u>	الند
						قاط):	رين (6) : (70 نا	التم
								I
0,25	0,25	$N_2H_4 + H^+ = I$	$N_2 H_5^{+}$				الأساس	1
	$N_2H_4 + H_2O ==$	$N_2H_5^+$ -	+ <i>HO</i> −	حالة الجملة				
		$n_0 = \frac{m}{M}$.		0	0	الابتدائية		
0,25	0,25	$n = n_0 - x$	بوفرة	n = x	n = x	الانتقالية	جدول التقدم	2
		$n_f = n_0 - x_f$	بوا	$n_f = x_f$	$n_f = x_f$	النهائية		
1,25	0,25	$x_{max} = n_0 = \frac{m}{M}$	$=\frac{6,4.10^{-3}}{32}$	$= \frac{2.10^{-2}}{}$	<mark>t mol</mark> .		نسبة التقدم	3

الشعبة: ع ت / تر / ريا	تصحيح سلسلة التمارين في مادة العلوم الفيزيائية	المستوى : سنة ثالثة ثانوي

جمع وإعداد الاستاذ: مدور سيف الدين الوحدة 4: تطور جملة كيميائية نحو حالة التوازن 0,25 $x_f = \overline{[HO^-]}.V = \frac{K_e}{[H_3O^+]}.V = \frac{10^{-14}}{10^{-pH}} = 10^{-4.2} \times 0.1.$ 0,25 $x_f = 6.31.10^{-6} \text{ mol}$ $x_f = 6.31.10^{-6} \text{ mol}$ $\begin{array}{c|c} 0,25 \\ 0,25 \\ \end{array}$ $au_f = rac{x_f}{x_{max}} = rac{6,31.10^{-6}}{2.10^{-4}} = rac{0,031}{1.000} < 1.$ 0,25 $pH = pka + log \frac{[N_2H_4]_f}{[N_2H_5^+]_f}. \quad log \frac{[N_2H_4]_f}{[N_2H_5^+]_f} = pH - pka.$ 0.25 $\frac{[N_2H_4]_f}{[N_2H_4]_f} = 10^{nH-nHc}$ $\frac{[N_2H_4]_f}{[N_2H_5^+]_f} = 10^{pH-pka}. \qquad \frac{[N_2H_4]_f}{[N_2H_5^+]_f} = 10^{9,8-8,1}.$ 0,25 0.75 النسية 4 $0.25 \quad \frac{[N_2H_5]_f}{[N_2H_4]_f} = \frac{50}{50}. \quad [N_2H_4]_f = 50[N_2H_5^+]_f. \quad \frac{[N_2H_4]_f}{[N_2H_5]_f} = \frac{x_f}{V}. \quad K = \frac{[N_2H_5]_f [HO^-]_f}{[N_2H_4]_f}.$ $0.25 \quad [N_2H_4]_f = \frac{x_f}{V}. \quad \tau_f = \frac{x_f}{x_{max}} = \frac{x_f}{n_0} = x_f = \tau_f. n_0.$ $0.25 \quad K = \frac{x_f [HO^-]_f}{n_0 - x_f}. \quad K = \frac{\tau_f [HO^-]_f}{1 - \tau_f}. \quad K = \frac{0.031.6,31.10^{-5}}{1 - 0.031} = 2.10^{-6}.$ عبارة K 0.75 5 حساب K $pka = -\log ka = -\log 1,9.10^{-11} = 10,72$ قوة الأساسين الأساس CH_3NH_2 أقوى من الأساس N_2H_4 لأن N_2H_4 0.5 0,25 $(8,1 < 10,7) pka_{N_2H_4} < pka_{CH_3NH_2}$ II 1 - سحاحة 2 - بيشر 3 - مخلاط 4 - حامل الرسم 0,5 1 1 البيانات 0.5 متر \overline{pH} متر $N_2H_4 + H_3O^+ = N_2H_5^+ + H_2O$ 0,25 المعادلة 2 0,25 0.25 $pH_E = 5.5$, $Va_E = 10 \ ml$ الاحداثبات 3 0.5 0,25 $n_b = n_a = C.Va_E = 5.10^{-3}.0,01$ 4 كمبة المادة 0,25 0,25 $n_h = 5.10^{-5} \, mol$ Va = 7.5 = pH = 7.6أ ـ الصفة 0.25 الصفة الحمضية + N2H5 هي الغالبة لأن الغالبة 0.25 $\tau_f = \frac{x_f}{x_{max}}. \quad \begin{aligned} pH &< pka & 7.6 < 8.1 \\ x_{max} &= C_a. V_a = 5.10^{-3}.7,510^{-3} \\ x_{max} &= 3,75.10^{-5} \ mol \end{aligned}$ هو المتفاعل المحد H_3O^+ 5 1 0,25 $n(H_3O^+) = Ca.Va - x_f$ $x_f = Ca.Va - n(H_3O^+)$ $x_f = C_a.V_a - [H_3O^+].(V_a + V_b)$ $\dot{x_f} = 3.75. \, 10^{-5} - (10^{-7.6}. (7.5 + 25)10^{-3}) = \frac{3.74. \, 10^{-5}}{3.75. \, 10^{-5}} \approx \frac{1}{3.75. \, 10^{-5}}$ in the second of the second contract 0.25 الهيدر ازين يتفاعل مع H_3O^+ المسببة لتأكل السخان المائي 0,25 0.25 6