

Tangents and Normals:

Slope of the tangent to the curve at the point $P(x_1, y_1)$ is $\frac{dy}{dx} = \tan \alpha$,

where α is the angle which the tangent makes with +ve X-axis.

Slope of normal = $\frac{-1}{dy}$ ii.

iii. Equation of tangent: Equation of tangent at (x_1,y_1) to the curve y = f(x) is

$$y - y_1 = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x_1, y_1)} (x - x_1)$$

iv. **Equation of Normal:**

$$y - y_1 = \frac{-1}{\left(\frac{dy}{dx}\right)_{(x_1, y_1)}} (x - x_1)$$

- If tangent is parallel to X-axis, then $\alpha = 0$ or 180°
- $\tan \alpha = 0$
- $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
- If tangent is parallel to Y-axis, b. then $\alpha = 90^{\circ}$
- $\tan \alpha = \infty$

$$\therefore \frac{\mathrm{d}x}{\mathrm{d}y} = 0$$

- If the tangent line makes equal angles with the axes, $\alpha = \frac{\pi}{4} \text{ or } \frac{3\pi}{4}$
- $\tan \alpha = \pm 1$
- $\therefore \frac{dy}{dx} = \pm 1$

2. Rate Measure:

- If x and v denotes the displacement and velocity of a particle at any instant, then velocity is $\frac{dx}{dt}$.
- Rate of change of velocity w.r.t time is ii. called acceleration.

So
$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = v \cdot \frac{dv}{dx}$$

Approximation: 3.

If y = f(x) is a differentiable function of x and δx be a change in x.

Then, $f(x + \delta x) \approx f(x) + \delta x f'(x)$ OR If y = f(x) is a differentiable function and x = ais a point on its domain,

then $f(a + h) \approx f(a) + hf'(a)$, where h is very small.

- Error in $y = \delta y = \frac{dy}{dx} \cdot \delta x$ i.
- Relative error = $\frac{\delta y}{y}$
- Percentage error = $\frac{\delta y}{v} \times 100$

Rolle's theorem:

If a function f(x) is

- Continuous in [a, b]
- Derivable in (a, b)
- f(a) = f(b)then \exists at least one point c of x in the interval (a,b) such that f'(c) = 0.

Lagrange's Mean Value theorem: ii.

If a function f(x) is

- Continuous in [a,b] a.
- Derivable in (a, b) then \exists at least one point $c \in (a, b)$

$$\frac{f(b)-f(a)}{b-a}=f'(c).$$

Increasing and Decreasing function: 5.

Increasing Function:

Positive slope of tangent i.e. f'(x) > 0

$$if x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \ \forall \ x_1, x_2 \in (a, b)$$

Negative slope of tangent i.e. f'(x) < 0OR

A function f(x) is s.t.b decreasing on (a,b) if $x_1 < x_2 \Rightarrow f(x_1) > f(x_2) \ \forall \ x_1, x_2 \in (a, b)$

iii. A function f is s.t.b monotonic in an interval if it is either increasing or decreasing in that interval i.e.

Monotonic increasing	\Rightarrow	$f'(x) \ge 0$
Monotonic decreasing	\Rightarrow	$f'(x) \leq 0$
Constant	⇒	f'(x) = 0
apriliable of		$\forall x \in (a,b)$
Strictly increasing	\Rightarrow	f'(x) > 0
Strictly decreasing	\Rightarrow	f'(x) < 0

6. Maxima and Minima:

- i. Maxima: A function f(x) is s.t.b maximum at x = a if f'(a) = 0 and f''(a) < 0.
- ii. Minima: A function f(x) is s.t.b minimum at x = a if f'(a) = 0 and f''(a) > 0.
- iii. The values of x for which f'(x) = 0 are called stationary values or critical values of x.
- iv. Point of inflexion: If at point a, $\frac{dy}{dx} = 0$, $\frac{d^2y}{dx^2} = 0$ and $\frac{d^3y}{dx^3} \neq 0$, then x = a, is a point of inflexion (No minima or maxima).

Shortcuts

- 1. Length of tangent = $\left| \frac{y\sqrt{1+y_1^2}}{y_1} \right|$, where $y_1 = \frac{dy}{dx}$
- 2. Length of normal = $|y\sqrt{1+y_1^2}|$

3. Length of Subtangent =
$$\frac{y}{\frac{dy}{dx}}$$

4. Length of Subnormal =
$$\left| y \cdot \left(\frac{dy}{dx} \right) \right|$$

i.
$$x$$
-intercept = $x_1 - \frac{y_1}{\left(\frac{dy}{dx}\right)_{(x_1,y_1)}}$

ii.
$$y$$
-intercept = $y_1 - x_1 \left(\frac{dy}{dx}\right)_{(x_1, y_1)}$

- 6. If f(x) is increasing, then $f^{-1}(x)$ is also increasing.
- 7. If f(x) is decreasing, then $f^{-1}(x)$ is also decreasing.
- 8. If f(x) and g(x) are monotonic on [a, b], then g(f(x)) is also monotonic of same nature.
- 9. If y = f(x) is continuous function and its least value is m and greatest value is M, then $m \le f(x) \le M$.
- 10. Of all rectangles of a given perimeter, the square has the largest area.
- 11. A cone of maximum volume that can be inscribed in a sphere of a given radius r is of height $\frac{4r}{3}$.
- 12. Of all rectangles of a given area, the square has the least perimeter.
- 13. The height of cylinder of maximum volume inscribed in a sphere of radius r is $\left(\frac{2r}{\sqrt{3}}\right)$.
- 14. The semi vertical angle of a cone with given slant height and maximum volume is $\tan^{-1} \sqrt{2}$.
- 15. The greatest triangle inscribed in a given circle is equilateral.

Tangents and Normals:

Slope of the tangent to the curve at the point $P(x_1, y_1)$ is $\frac{dy}{dx} = \tan \alpha$,

where α is the angle which the tangent makes with +ve X-axis.

Slope of normal = $\frac{-1}{dy}$ ii.

iii. Equation of tangent: Equation of tangent at (x_1,y_1) to the curve y = f(x) is

$$y - y_1 = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x_1, y_1)} (x - x_1)$$

iv. **Equation of Normal:**

$$y - y_1 = \frac{-1}{\left(\frac{dy}{dx}\right)_{(x_1, y_1)}} (x - x_1)$$

- If tangent is parallel to X-axis, then $\alpha = 0$ or 180°
- $\tan \alpha = 0$
- $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
- If tangent is parallel to Y-axis, b. then $\alpha = 90^{\circ}$
- $\tan \alpha = \infty$

$$\therefore \frac{\mathrm{d}x}{\mathrm{d}y} = 0$$

- If the tangent line makes equal angles with the axes, $\alpha = \frac{\pi}{4} \text{ or } \frac{3\pi}{4}$
- $\tan \alpha = \pm 1$
- $\therefore \frac{dy}{dx} = \pm 1$

2. Rate Measure:

- If x and v denotes the displacement and velocity of a particle at any instant, then velocity is $\frac{dx}{dt}$.
- Rate of change of velocity w.r.t time is ii. called acceleration.

So
$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = v \cdot \frac{dv}{dx}$$

Approximation: 3.

If y = f(x) is a differentiable function of x and δx be a change in x.

Then, $f(x + \delta x) \approx f(x) + \delta x f'(x)$ OR If y = f(x) is a differentiable function and x = ais a point on its domain,

then $f(a + h) \approx f(a) + hf'(a)$, where h is very small.

- Error in $y = \delta y = \frac{dy}{dx} \cdot \delta x$ i.
- Relative error = $\frac{\delta y}{y}$
- Percentage error = $\frac{\delta y}{v} \times 100$

Rolle's theorem:

If a function f(x) is

- Continuous in [a, b]
- Derivable in (a, b)
- f(a) = f(b)then \exists at least one point c of x in the interval (a,b) such that f'(c) = 0.

Lagrange's Mean Value theorem: ii.

If a function f(x) is

- Continuous in [a,b] a.
- Derivable in (a, b) then \exists at least one point $c \in (a, b)$

$$\frac{f(b)-f(a)}{b-a}=f'(c).$$

Increasing and Decreasing function: 5.

Increasing Function:

Positive slope of tangent i.e. f'(x) > 0

$$if x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \ \forall \ x_1, x_2 \in (a, b)$$

Negative slope of tangent i.e. f'(x) < 0OR

A function f(x) is s.t.b decreasing on (a,b) if $x_1 < x_2 \Rightarrow f(x_1) > f(x_2) \ \forall \ x_1, x_2 \in (a, b)$

iii. A function f is s.t.b monotonic in an interval if it is either increasing or decreasing in that interval i.e.

Monotonic increasing	\Rightarrow	$f'(x) \ge 0$
Monotonic decreasing	\Rightarrow	$f'(x) \leq 0$
Constant	⇒	f'(x) = 0
apriliable of		$\forall x \in (a,b)$
Strictly increasing	\Rightarrow	f'(x) > 0
Strictly decreasing	\Rightarrow	f'(x) < 0

6. Maxima and Minima:

- i. Maxima: A function f(x) is s.t.b maximum at x = a if f'(a) = 0 and f''(a) < 0.
- ii. Minima: A function f(x) is s.t.b minimum at x = a if f'(a) = 0 and f''(a) > 0.
- iii. The values of x for which f'(x) = 0 are called stationary values or critical values of x.
- iv. Point of inflexion: If at point a, $\frac{dy}{dx} = 0$, $\frac{d^2y}{dx^2} = 0$ and $\frac{d^3y}{dx^3} \neq 0$, then x = a, is a point of inflexion (No minima or maxima).

Shortcuts

- 1. Length of tangent = $\left| \frac{y\sqrt{1+y_1^2}}{y_1} \right|$, where $y_1 = \frac{dy}{dx}$
- 2. Length of normal = $|y\sqrt{1+y_1^2}|$

3. Length of Subtangent =
$$\frac{y}{\frac{dy}{dx}}$$

4. Length of Subnormal =
$$\left| y \cdot \left(\frac{dy}{dx} \right) \right|$$

i.
$$x$$
-intercept = $x_1 - \frac{y_1}{\left(\frac{dy}{dx}\right)_{(x_1,y_1)}}$

ii.
$$y$$
-intercept = $y_1 - x_1 \left(\frac{dy}{dx}\right)_{(x_1, y_1)}$

- 6. If f(x) is increasing, then $f^{-1}(x)$ is also increasing.
- 7. If f(x) is decreasing, then $f^{-1}(x)$ is also decreasing.
- 8. If f(x) and g(x) are monotonic on [a, b], then g(f(x)) is also monotonic of same nature.
- 9. If y = f(x) is continuous function and its least value is m and greatest value is M, then $m \le f(x) \le M$.
- 10. Of all rectangles of a given perimeter, the square has the largest area.
- 11. A cone of maximum volume that can be inscribed in a sphere of a given radius r is of height $\frac{4r}{3}$.
- 12. Of all rectangles of a given area, the square has the least perimeter.
- 13. The height of cylinder of maximum volume inscribed in a sphere of radius r is $\left(\frac{2r}{\sqrt{3}}\right)$.
- 14. The semi vertical angle of a cone with given slant height and maximum volume is $\tan^{-1} \sqrt{2}$.
- 15. The greatest triangle inscribed in a given circle is equilateral.

Negative slope of tangent i.e. f'(x) < 0OR

A function f(x) is s.t.b decreasing on (a,b) if $x_1 < x_2 \Rightarrow f(x_1) > f(x_2) \ \forall \ x_1, x_2 \in (a, b)$

iii. A function f is s.t.b monotonic in an interval if it is either increasing or decreasing in that interval i.e.

Monotonic increasing	\Rightarrow	$f'(x) \ge 0$
Monotonic decreasing	\Rightarrow	$f'(x) \leq 0$
Constant	⇒	f'(x) = 0
apriliable of		$\forall x \in (a,b)$
Strictly increasing	\Rightarrow	f'(x) > 0
Strictly decreasing	\Rightarrow	f'(x) < 0

6. Maxima and Minima:

- i. Maxima: A function f(x) is s.t.b maximum at x = a if f'(a) = 0 and f''(a) < 0.
- ii. Minima: A function f(x) is s.t.b minimum at x = a if f'(a) = 0 and f''(a) > 0.
- iii. The values of x for which f'(x) = 0 are called stationary values or critical values of x.
- iv. Point of inflexion: If at point a, $\frac{dy}{dx} = 0$, $\frac{d^2y}{dx^2} = 0$ and $\frac{d^3y}{dx^3} \neq 0$, then x = a, is a point of inflexion (No minima or maxima).

Shortcuts

- 1. Length of tangent = $\left| \frac{y\sqrt{1+y_1^2}}{y_1} \right|$, where $y_1 = \frac{dy}{dx}$
- 2. Length of normal = $|y\sqrt{1+y_1^2}|$

3. Length of Subtangent =
$$\frac{y}{\frac{dy}{dx}}$$

4. Length of Subnormal =
$$\left| y \cdot \left(\frac{dy}{dx} \right) \right|$$

i.
$$x$$
-intercept = $x_1 - \frac{y_1}{\left(\frac{dy}{dx}\right)_{(x_1,y_1)}}$

ii.
$$y$$
-intercept = $y_1 - x_1 \left(\frac{dy}{dx}\right)_{(x_1, y_1)}$

- 6. If f(x) is increasing, then $f^{-1}(x)$ is also increasing.
- 7. If f(x) is decreasing, then $f^{-1}(x)$ is also decreasing.
- 8. If f(x) and g(x) are monotonic on [a, b], then g(f(x)) is also monotonic of same nature.
- 9. If y = f(x) is continuous function and its least value is m and greatest value is M, then $m \le f(x) \le M$.
- 10. Of all rectangles of a given perimeter, the square has the largest area.
- 11. A cone of maximum volume that can be inscribed in a sphere of a given radius r is of height $\frac{4r}{3}$.
- 12. Of all rectangles of a given area, the square has the least perimeter.
- 13. The height of cylinder of maximum volume inscribed in a sphere of radius r is $\left(\frac{2r}{\sqrt{3}}\right)$.
- 14. The semi vertical angle of a cone with given slant height and maximum volume is $\tan^{-1} \sqrt{2}$.
- 15. The greatest triangle inscribed in a given circle is equilateral.

Tangents and Normals:

Slope of the tangent to the curve at the point $P(x_1, y_1)$ is $\frac{dy}{dx} = \tan \alpha$,

where α is the angle which the tangent makes with +ve X-axis.

Slope of normal = $\frac{-1}{dy}$ ii.

iii. Equation of tangent: Equation of tangent at (x_1,y_1) to the curve y = f(x) is

$$y - y_1 = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x_1, y_1)} (x - x_1)$$

iv. **Equation of Normal:**

$$y - y_1 = \frac{-1}{\left(\frac{dy}{dx}\right)_{(x_1, y_1)}} (x - x_1)$$

- If tangent is parallel to X-axis, then $\alpha = 0$ or 180°
- $\tan \alpha = 0$
- $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
- If tangent is parallel to Y-axis, b. then $\alpha = 90^{\circ}$
- $\tan \alpha = \infty$

$$\therefore \frac{\mathrm{d}x}{\mathrm{d}y} = 0$$

- If the tangent line makes equal angles with the axes, $\alpha = \frac{\pi}{4} \text{ or } \frac{3\pi}{4}$
- $\tan \alpha = \pm 1$
- $\therefore \frac{dy}{dx} = \pm 1$

2. Rate Measure:

- If x and v denotes the displacement and velocity of a particle at any instant, then velocity is $\frac{dx}{dt}$.
- Rate of change of velocity w.r.t time is ii. called acceleration.

So
$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = v \cdot \frac{dv}{dx}$$

Approximation: 3.

If y = f(x) is a differentiable function of x and δx be a change in x.

Then, $f(x + \delta x) \approx f(x) + \delta x f'(x)$ OR If y = f(x) is a differentiable function and x = ais a point on its domain,

then $f(a + h) \approx f(a) + hf'(a)$, where h is very small.

- Error in $y = \delta y = \frac{dy}{dx} \cdot \delta x$ i.
- Relative error = $\frac{\delta y}{y}$
- Percentage error = $\frac{\delta y}{v} \times 100$

Rolle's theorem:

If a function f(x) is

- Continuous in [a, b]
- Derivable in (a, b)
- f(a) = f(b)then \exists at least one point c of x in the interval (a,b) such that f'(c) = 0.

Lagrange's Mean Value theorem: ii.

If a function f(x) is

- Continuous in [a,b] a.
- Derivable in (a, b) then \exists at least one point $c \in (a, b)$

$$\frac{f(b)-f(a)}{b-a}=f'(c).$$

Increasing and Decreasing function: 5.

Increasing Function:

Positive slope of tangent i.e. f'(x) > 0

$$if x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \ \forall \ x_1, x_2 \in (a, b)$$

Tangents and Normals:

Slope of the tangent to the curve at the point $P(x_1, y_1)$ is $\frac{dy}{dx} = \tan \alpha$,

where α is the angle which the tangent makes with +ve X-axis.

Slope of normal = $\frac{-1}{dy}$ ii.

iii. Equation of tangent: Equation of tangent at (x_1,y_1) to the curve y = f(x) is

$$y - y_1 = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x_1, y_1)} (x - x_1)$$

iv. **Equation of Normal:**

$$y - y_1 = \frac{-1}{\left(\frac{dy}{dx}\right)_{(x_1, y_1)}} (x - x_1)$$

- If tangent is parallel to X-axis, then $\alpha = 0$ or 180°
- $\tan \alpha = 0$
- $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
- If tangent is parallel to Y-axis, b. then $\alpha = 90^{\circ}$
- $\tan \alpha = \infty$

$$\therefore \frac{\mathrm{d}x}{\mathrm{d}y} = 0$$

- If the tangent line makes equal angles with the axes, $\alpha = \frac{\pi}{4} \text{ or } \frac{3\pi}{4}$
- $\tan \alpha = \pm 1$
- $\therefore \frac{dy}{dx} = \pm 1$

2. Rate Measure:

- If x and v denotes the displacement and velocity of a particle at any instant, then velocity is $\frac{dx}{dt}$.
- Rate of change of velocity w.r.t time is ii. called acceleration.

So
$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = v \cdot \frac{dv}{dx}$$

Approximation: 3.

If y = f(x) is a differentiable function of x and δx be a change in x.

Then, $f(x + \delta x) \approx f(x) + \delta x f'(x)$ OR If y = f(x) is a differentiable function and x = ais a point on its domain,

then $f(a + h) \approx f(a) + hf'(a)$, where h is very small.

- Error in $y = \delta y = \frac{dy}{dx} \cdot \delta x$ i.
- Relative error = $\frac{\delta y}{y}$
- Percentage error = $\frac{\delta y}{v} \times 100$

Rolle's theorem:

If a function f(x) is

- Continuous in [a, b]
- Derivable in (a, b)
- f(a) = f(b)then \exists at least one point c of x in the interval (a,b) such that f'(c) = 0.

Lagrange's Mean Value theorem: ii.

If a function f(x) is

- Continuous in [a,b] a.
- Derivable in (a, b) then \exists at least one point $c \in (a, b)$

$$\frac{f(b)-f(a)}{b-a}=f'(c).$$

Increasing and Decreasing function: 5.

Increasing Function:

Positive slope of tangent i.e. f'(x) > 0

$$if x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \ \forall \ x_1, x_2 \in (a, b)$$

Negative slope of tangent i.e. f'(x) < 0OR

A function f(x) is s.t.b decreasing on (a,b) if $x_1 < x_2 \Rightarrow f(x_1) > f(x_2) \ \forall \ x_1, x_2 \in (a, b)$

iii. A function f is s.t.b monotonic in an interval if it is either increasing or decreasing in that interval i.e.

Monotonic increasing	\Rightarrow	$f'(x) \ge 0$
Monotonic decreasing	\Rightarrow	$f'(x) \leq 0$
Constant	⇒	f'(x) = 0
apriliable of		$\forall x \in (a,b)$
Strictly increasing	\Rightarrow	f'(x) > 0
Strictly decreasing	\Rightarrow	f'(x) < 0

6. Maxima and Minima:

- i. Maxima: A function f(x) is s.t.b maximum at x = a if f'(a) = 0 and f''(a) < 0.
- ii. Minima: A function f(x) is s.t.b minimum at x = a if f'(a) = 0 and f''(a) > 0.
- iii. The values of x for which f'(x) = 0 are called stationary values or critical values of x.
- iv. Point of inflexion: If at point a, $\frac{dy}{dx} = 0$, $\frac{d^2y}{dx^2} = 0$ and $\frac{d^3y}{dx^3} \neq 0$, then x = a, is a point of inflexion (No minima or maxima).

Shortcuts

- 1. Length of tangent = $\left| \frac{y\sqrt{1+y_1^2}}{y_1} \right|$, where $y_1 = \frac{dy}{dx}$
- 2. Length of normal = $|y\sqrt{1+y_1^2}|$

3. Length of Subtangent =
$$\frac{y}{\frac{dy}{dx}}$$

4. Length of Subnormal =
$$\left| y \cdot \left(\frac{dy}{dx} \right) \right|$$

i.
$$x$$
-intercept = $x_1 - \frac{y_1}{\left(\frac{dy}{dx}\right)_{(x_1,y_1)}}$

ii.
$$y$$
-intercept = $y_1 - x_1 \left(\frac{dy}{dx}\right)_{(x_1, y_1)}$

- 6. If f(x) is increasing, then $f^{-1}(x)$ is also increasing.
- 7. If f(x) is decreasing, then $f^{-1}(x)$ is also decreasing.
- 8. If f(x) and g(x) are monotonic on [a, b], then g(f(x)) is also monotonic of same nature.
- 9. If y = f(x) is continuous function and its least value is m and greatest value is M, then $m \le f(x) \le M$.
- 10. Of all rectangles of a given perimeter, the square has the largest area.
- 11. A cone of maximum volume that can be inscribed in a sphere of a given radius r is of height $\frac{4r}{3}$.
- 12. Of all rectangles of a given area, the square has the least perimeter.
- 13. The height of cylinder of maximum volume inscribed in a sphere of radius r is $\left(\frac{2r}{\sqrt{3}}\right)$.
- 14. The semi vertical angle of a cone with given slant height and maximum volume is $\tan^{-1} \sqrt{2}$.
- 15. The greatest triangle inscribed in a given circle is equilateral.