CS787: Advanced Algorithms Scribe: Xinyi Li Lecture 8: Concentration Date: 02/19/19

Outlines for the Following Lecture

- Concentration Bounds
- Routing to minimize congestion

8.1 Introduction of Some Inequalities

8.1.1 Markov's Inequality

Theorem 8.1.1 For any non-negative random variable x, and any $t \ge 0$:

$$Pr[x \geqslant t] \leqslant \frac{E[x]}{t} \tag{8.1.1}$$

8.1.2 Chebyshev's Inequality

Theorem 8.1.2 For any non-negative random variable x, and any $t \geqslant 0$:

$$Pr[|x - E[x]| \geqslant t] \leqslant \frac{\sigma^2(x)}{t^2} \tag{8.1.2}$$

Example: What is $Pr[\#heads \geqslant \frac{3n}{4}]$ if flipping a fair coin for n times? Let x_i be the random variable for ith flipping result being head. $X = \sum_i x_i$ is the variable to represent the number of heads after n times flipping. $E[X] = \frac{n}{2}$ and $\sigma(X) = \frac{n}{4}$. (For independent variables x_i s, $\sigma^2(\sum_i x_i) = \sum_i \sigma^2(x_i)$)

Markov's Inequality gives $Pr[\#heads \geqslant \frac{3n}{4}] \leqslant \frac{n/2}{3n/4} = \frac{2}{3}$

Chebyshev's Inequality gives $Pr[\#heads \geqslant \frac{3n}{4}] \leqslant \frac{n/4}{(n/4)^2} = \frac{4}{n}$

Chebyshev's Inequality gives a much tight probability estimation compared to Markov's Inequality. And the probability decreases with increase of flipping times n.

8.1.3 Chernoff-Hoeffding Inequality

Theorem 8.1.3 Let $x_1, x_2 \cdots, x_n$ be independent and bounded variables i.e. $x_i \in [0, 1], \forall i \in n$, let $X = \sum_i x_i$ and $\mu = E[X]$. Then for any $\delta > 0$

$$Pr[x \geqslant (1+\delta)\mu] \leqslant \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$$
(8.1.3)

$$Pr[x \geqslant (1 - \delta)\mu] \leqslant \left[\frac{e^{-\delta}}{(1 - \delta)^{(1 - \delta)}}\right]^{\mu} \tag{8.1.4}$$

We are proving the bound for the special case of $x_i \in \{0,1\}$ although it holds also for the more general case stated.

Proof: Assume $x_i \in \{0,1\}$, $Pr(x_i = 1) = P_i$ and $\mu = \sum_i P_i$. For value t,

$$E[e^{x_i t}] = P_i e^t + (1 - P_i)$$

= 1 + P_i(e^t - 1) \leq e^{P_i(e^t - 1)} (8.1.5)

The above formula is based on inequality $(1+x) \leq e^x, \forall x$, which can be shown in the following graph

Let f(x) be any non-negative increasing function. Then Markov's Inequality gives us

$$Pr[x \geqslant \lambda] = Pr[f(x) \geqslant f(\lambda)] \leqslant \frac{E[f(x)]}{f(\lambda)}$$
 (8.1.6)

Now choose $f(x) = e^{xt}$ for some t > 0,

$$Pr[x \leqslant (1+\delta)\mu] \leqslant \frac{E(e^{xt})}{exp((1+\delta)\mu t)} = \frac{E(e^{\sum_{i} x_{i}t})}{e^{(1+\delta)\mu t}} = \frac{\prod_{i} E(e^{x_{i}t})}{e^{(1+\delta)\mu t}}$$

$$= \frac{\prod_{i} \{1 + P_{i}(e^{t} - 1)\}}{e^{(1+\delta)\mu t}} \leqslant \frac{\prod_{i} e^{P_{i}(e^{t} - 1)}}{e^{(1+\delta)\mu t}} = \frac{e^{\mu(e^{t} - 1)}}{e^{\mu(1+\delta)t}}$$

$$= \left[\frac{e^{e^{t} - 1}}{e^{(1+\delta)t}}\right]^{\mu}$$
(8.1.7)

 $\left[\frac{e^{e^t-1}}{e^{(1+\delta)t}}\right]^{\mu} \text{ gets the minimum value } \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu} \text{ when } t = \ln(1+\delta). \text{ Thus inequality } Pr[x\geqslant (1+\delta)\mu] \leqslant \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu} \text{ is proved. To prove } Pr[x\geqslant (1-\delta)\mu] \leqslant \left[\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right]^{\mu}, \text{ we can choose a decreasing function } f(x) = e^{-xt} \text{ and apply the same proof.}$

Chernoff-Hoeffding Inequality implies other inequalities: if $\delta > 0$,

$$Pr[x \geqslant (1+\delta)\mu] \leqslant exp\{-\frac{\delta^2}{2+\delta}\mu\}$$
(8.1.8)

if $0 \leq \delta \leq 1$,

$$Pr[x \geqslant (1+\delta)\mu] \leqslant exp\{-\frac{\delta^2}{3}\mu\}$$
(8.1.9)

$$Pr[x \leqslant (1 - \delta)\mu] \leqslant exp\{-\frac{\delta^2}{2}\mu\}$$
(8.1.10)

For the coin example, $\mu = \frac{n}{2}$ and $\delta = \frac{1}{2}$, $\Pr[\#heads \geqslant \frac{3n}{4}] \leqslant e^{-n/24}$. For what value of t, is $\Pr[\#heads \geqslant t] \leqslant \frac{1}{n}$?

When $e^{-\delta^2 n/6} = \frac{1}{n}$, $\delta = \sqrt{\frac{6 \log n}{n}}$. The probability of # heads larger than $\frac{n}{2} + \frac{n}{2} \sqrt{\frac{6 \log n}{n}} \approx \frac{n}{2} + \sqrt{n \log n}$ is small.

8.2 Routing to Minimize Congestion

Given Graph G = (V, E) and k source-sink pairs (s_i, t_i) , find paths P_i from s_i to t_i . Define the congestion of edge e as # of paths it belongs to($|\{i: P_i \ni e\}|$). Our goal is to minimize the maximum congestion among all edges(min $\max_{e \in E} congestion(e)$).

8.2.1 ILP Formulation

Let P_i be the set of all paths in G from s_i to t_i and $x_{i,P}$ be the integer random variable for choosing path $P \in P_i$. t represents congestion. Then the problem can be formulate as the following integer linear programming:

minimize
$$t, s.t.$$

$$\sum_{i} \sum_{P \in P_{i}, P \ni e} x_{i,P} \leqslant t, \forall e$$
$$x_{i,p} \in \{0,1\}, \forall i, P \in P_{i}$$
$$\sum_{P \in P_{in}} x_{i,P} = 1, \forall i$$
 (8.2.11)

We can relax this problem to LP problem by letting $x_{i,p} \in [0,1]$. But the number of potential paths between any $s_i - t_i$ pair is exponential. Instead, we employ a different LP formula using edge variables. Let $y_{i,e}$ be the flow of commodity of i on edge e:

$$\begin{aligned} & minimize \ t, s.t. \sum_{i} y_{i,e} \leqslant t, \forall e \\ & y_{i,e} \in [0,1], \forall i, e \\ & \sum_{e \in \delta^{-}(v)} y_{i,e} = \sum_{e \in \delta^{+}(v)} y_{i,e}, \forall i, v \in V \setminus \{s_i, t_i\} \\ & \sum_{e \in \delta^{-}(s_i)} y_{i,e} = \sum_{e \in \delta^{+}(t_i)} y_{i,e} = 1, \forall i \end{aligned} \tag{8.2.12}$$

8.2.2 Rounding Algorithms

To perform randomized rounding, the fractional edge-based flows obtained by solving the above LP are converted into path-based flows for each $s_i - t_i$ pair using a standard flow decomposition.

Algorithm 1 Flow Decomposition

Step 1: Start with some (s_i, t_i) flow f

Step 2: Find some flow carrying path $p \in P_i$

Step 3: Assign as much flow to p as possible

Step 4: Remove p from f

Step 5: Repeat step4 until all paths are deleted

For each i, this gives a collection of $s_i - t_i$ paths, with each path assigned a fractional weight. The sum of weights over all paths for each i is 1. Randomized rounding is performed by selecting a single path for each i based on the weight over all $s_i - t_i$ paths.