Quadratic Optimisation in Computer Vision Principal Component Analysis (PCA)

Tae-Kyun (T-K) Kim KAIST, Imperial College London

https://sites.google.com/view/tkkim/

Backgrounds: Linear algebra Optimisation

- Lagrange multipliers
- Gradient method

 Matrix and vector derivatives

Further reading: Chapter 12, C.M.Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Gradient-based optimisation

• In optimization, gradient method is an algorithm to solve problems of the form

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

with the search directions defined by the gradient of the function at the current point.

- Examples of gradient method are PCA, LDA, Kernel Machines, Neural Networks.
- Gradient descent (or ascent) is an iterative optimization algorithm for finding a local minimum (or maximum) of a function, taking steps proportional to the gradient at the current point.

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \gamma_i \nabla f(\mathbf{x}_i), i \ge 0$$

- When the function f is convex, all local minima are also global minima.
- A function is convex, if the line segment between any two points on the graph of the function lies above or on the graph.

Lagrange multipliers for constrained optimisation problems

• The **method of Lagrange multipliers** is a strategy for finding the local maxima/minima of a function subject to equality constraints.

maximize
$$f(X, y)$$

subject to $g(X, y) = 0$, or $g(X, y) = 0$

ullet The Lagrange function is $\mathcal{L}(x,y,\lambda) = f(x,y) - \lambda \cdot g(x,y)$

where λ is a constant.

ullet We solve $abla_{x,y,\lambda}\mathcal{L}(x,y,\lambda)=0$

$$egin{aligned} iggthapprox & iggraphi_{x,y} f(x,y) = \lambda
abla_{x,y} g(x,y) \ &
abla_{\lambda} \mathcal{L}(x,y,\lambda) = 0 woheadrightarrow g(x,y) = 0 \end{aligned}$$

Matrix and vector derivatives

• Matrix and vector derivatives are obtained first by element-wise derivatives and then reforming them into matrices and vectors.

$$\frac{\partial \mathbf{x}}{\partial t} = \begin{bmatrix} \frac{\partial x_1}{\partial t} \\ \vdots \\ \frac{\partial x_n}{\partial t} \end{bmatrix} \qquad \frac{\partial \mathbf{F}}{\partial t} = \begin{bmatrix} \frac{\partial F_{1,1}}{\partial t} & \cdots & \frac{\partial F_{1,m}}{\partial t} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{n,1}}{\partial t} & \cdots & \frac{\partial F_{n,m}}{\partial t} \end{bmatrix}$$

$$\frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

$$\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_m} \end{bmatrix} \qquad \frac{\partial f}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial f}{\partial X_{1,1}} & \cdots & \frac{\partial f}{\partial X_{n,1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial X_{1,m}} & \cdots & \frac{\partial f}{\partial X_{n,m}} \end{bmatrix}$$

Matrix and vector derivatives

Useful formula for linear and quadratic functions:

$$\frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}^T$$

$$\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}^T \mathbf{A}}{\partial \mathbf{x}^T} = \mathbf{A}$$

$$\frac{\partial \mathbf{x}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{x}^T (\mathbf{A}^T + \mathbf{A}) = \mathbf{x}^T \mathbf{A}^T + \mathbf{x}^T \mathbf{A}$$

By product rule: https://en.wikipedia.org/wiki/Matrix calculus

- PCA (also known as Karhunen-Loeve (KL) transform) is a technique for: dimensionality reduction, lossy data compression, feature extraction, and data visualisation.
- PCA is defined as the orthogonal projection of the data onto a lower dimensional linear space such that the variance of the projected data is maximised.

- Given a data set $\{\mathbf{x}_n\}$, n = 1,...,N and $\mathbf{x}_n \in \mathbb{R}^D$, our goal is to project the data onto a space of dimension M << D while maximising the projected data variance.
- For simplicity, M = 1. The direction of this space is defined by a vector $\mathbf{u}_1 \in \mathbb{R}^D$ s.t. $\mathbf{u}_1^\mathsf{T} \mathbf{u}_1 = 1$.
- Each data point \mathbf{x}_n is then projected onto a scalar value $\mathbf{u}_1^\mathsf{T}\mathbf{x}_n$.

• The mean is $\mathbf{u}_1^T\overline{\mathbf{x}}$, where $\overline{\mathbf{x}} = \frac{1}{N}\sum_{n=1}^N \mathbf{x}_n$.

• The variance is given by
$$\frac{1}{N}\sum_{n=1}^{N}\{\mathbf{u}_{1}^{T}\mathbf{x}_{n}-\mathbf{u}_{1}^{T}\overline{\mathbf{x}}\}^{2}=\mathbf{u}_{1}^{T}\mathbf{S}\mathbf{u}_{1}$$

where S is the data covariance matrix defined as

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^T.$$

- We maximise the projected variance $J = \mathbf{u}_1^\mathsf{T} \mathbf{S} \mathbf{u}_1$ with respect to \mathbf{u}_1 with the normalisation condition $\mathbf{u}_1^\mathsf{T} \mathbf{u}_1 = 1$.
- The Lagrange multiplier formulation is

$$L = \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 - \mathbf{u}_1^T \mathbf{u}_1).$$

• By setting the derivative with respect to \mathbf{u}_1 to zero, we obtain

$$\mathbf{S}\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$

 \longrightarrow \mathbf{u}_1 is an eigenvector of \mathbf{S} .

• By multiplying \mathbf{u}_1^T to both sides and using the condition $\mathbf{u}_1^T\mathbf{u}_1 = 1$, the variance is obtained by

$$\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 = \lambda_1.$$

- We obtain the maximum variance, when \mathbf{u}_1 is the eigenvector with the largest eigenvalue λ_1 .
- The eigenvector is also called the *principal component*.
- For the general case of an M dimensional subspace, we obtain the M eigenvectors \mathbf{u}_1 , \mathbf{u}_2 , ..., \mathbf{u}_M of the data covariance matrix \mathbf{S} corresponding to the M largest eigenvalues λ_1 , λ_2 ..., λ_M .

- Alternative (equivalent) formulation of PCA is to minimise the reconstruction error.
- We minimise the distortion measure (or reconstruction error)

$$J = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - \widetilde{\mathbf{x}_n}||^2.$$

where $\widetilde{\mathbf{x}}_n$ is the reconstruction of n-th data point $\mathbf{x}_n \in \mathbb{R}^D$.

• The solution is to choose the eigenvectors of the covariance matrix with M largest eigenvalues:

where
$$i = 1, ..., M$$
.

$$\mathbf{S}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

• The distortion measure (or reconstruction error) becomes $J = \sum_{i=M+1}^{D} \lambda_i$.

(Recap) PCA

- Principal components are the vectors in the direction of the maximum variance of the projection data.
- For given 2D data points, u1 and u2 are found as PCs.

- For dimension reduction,
 - Each 2D data point is transformed to a single variable z1 representing the projection of the data point onto the eigenvector u1.
 - The data points projected onto u1 has the max variance.
- PCA infers the inherent structure of high dimensional data.
- The intrinsic dimensionality of data is much smaller.

(Recap) PCA

- PCA (also known as Karhunen-Loeve transform) is a useful technique for:
 - feature extraction,
 - lossy data compression,
 - dimensionality reduction,
 - and data visualisation.

$$\widetilde{\mathbf{x}}_n = \overline{\mathbf{x}} + \sum_{i=1}^M a_{ni} \mathbf{u}_i$$

Low-dimensional computation of Eigenspace, when D>>N

Given a data set $\{\mathbf{x}_n\}$, n = 1,...,N and $\mathbf{x}_n \in \mathbb{R}^D$, our goal is to project the data onto a space of dimension M << D.

- We compute the eigenvectors \mathbf{u}_i of the matrix AA^T (for simplicity, instead of $S=(1/N)AA^T$).
- The matrix AA^T (DxD matrix) is typically very large (not practical).

We consider the matrix A^TA (NxN matrix) instead.

• Compute the eigenvectors \mathbf{v}_i of A^TA :

$$A^T A \mathbf{v}_i = \lambda_i \mathbf{v}_i$$

• What is the relationship between \mathbf{u}_i and \mathbf{v}_i ?

$$A^{T}Av_{i} = \lambda_{i}v_{i} \rightarrow AA^{T}Av_{i} = \lambda_{i}Av_{i} \rightarrow SAv_{i} = \lambda_{i}Av_{i}$$

 $\rightarrow Su_{i} = \lambda_{i}u_{i}$, where $u_{i} = Av_{i}$

• Thus, AA^T and A^TA have the same eigenvalues and their eigenvectors are related s.t. $\mathbf{u}_i = A\mathbf{v}_i$

Low-dimensional computation of Eigenspace, when D>>N

Note:

- 1: AA^T can have up to D eigenvalues and eigenvectors.
- 2: A^TA can have up to N (or N-1) eigenvalues and eigenvectors.
- 3: The M eigenvalues of A^TA (along with their corresponding eigenvectors) correspond to the M largest eigenvalues of AA^T (along with their corresponding eigenvectors).
- Compute the M best eigenvectors of AA^T : $\mathbf{u}_i = A\mathbf{v}_i$ (important: normalize \mathbf{u}_i such that $||\mathbf{u}_i|| = 1$)

Limitations of PCA

Unsupervised learning

• PCA finds the direction for maximum variance of data (unsupervised), while LDA (Linear Discriminant Analysis) finds the direction that optimally separates data of different classes (discriminative or supervised).

Linear model

- PCA is a linear projection method.
- When data lies in a nonlinear manifold, PCA is extended to Kernel PCA by the kernel trick.

Gaussian assumption

• PCA (Principal Component Analysis) models data as Gaussian distributions (2nd order statistics), whereas ICA (Independent Component Analysis) captures higher-order statistics.

Holistic bases

• PCA bases are holistic (cf. part-based) and less intuitive.

• NMF (Non-negative Matrix Factorisation) yields bases, which capture local facial

Original

components.

D.Lee and S.Seung (1999). "Learning the parts of objects by nonnegative matrix factorization". *Nature* 401 (6755): 788–791.

Uniform prior on the subspace

- A subspace is spanned by the orthonormal bases i.e. eigenvectors computed from the covariance matrix.
- It interprets each observation with the uniform prior on the subspace.
- PPCA (Probabilistic PCA): It estimates the probability of generating each observation with Gaussian distribution,

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

PCA vs PPCA

Face Recognition vs Object Categorisation

- Both are as multi-class classification problems.
- Classes are different object categories in object categorisation, while classes are different person identities in face recognition.

Face Recognition vs Object Categorisation

- Intraclass and Interclass variations in object categorisation are wider, compared to face recognition.
- We extract representations/features that minimise intraclass variations and maximise interclass variations for a classification problem.
- Bag of Words (BoW) is one of dominating-arts for feature extraction for generic object categorisation, while subspace/manifolds are standard techniques for face image analysis.
- Using more advanced classifiers (Support Vector Machine/Randomised Forests/Convolutional Neural Network, cf. NN (Nearest Neighbour) classifier) often improves recognition performance.

• Alternative (equivalent) formulation of PCA is to minimise the reconstruction error. Given a data set $\{\mathbf{x}_n\}$, n=1,...,N and $\mathbf{x}_n \in \mathbb{R}^D$, we consider an orthonormal set of D-dimensional basis vectors $\{\mathbf{u}_i\}$, i=1,...,D (when the data covariance matrix is of full rank) s.t.

$$\mathbf{u}_i^T \mathbf{u}_j = \delta_{ij}.$$
 $\delta_{i,j} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$

Each data point is represented by a linear combination of the basis vectors

$$\mathbf{x}_n = \sum_{i=1}^D \alpha_{ni} \mathbf{u}_i.$$

• The coefficients $\alpha_{ni} = \mathbf{x}_n^T \mathbf{u}_i$, and without loss of generality we have

$$\mathbf{x}_n = \sum_{i=1}^D \left(\mathbf{x}_n^T \mathbf{u}_i \right) \mathbf{u}_i.$$

• Our goal is to approximate the data point using M << D. Using M-dimensional linear subspace, we write each data point as

$$\widetilde{\mathbf{x}}_n = \sum_{i=1}^M z_{ni} \mathbf{u}_i + \sum_{i=M+1}^D b_i \mathbf{u}_i.$$

where b_i are constants for all data points.

• We minimise the distortion measure (or reconstruction error)

$$J = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - \widetilde{\mathbf{x}_n}||^2.$$

with respect to $\mathbf{u}_{i'}$ $\mathbf{z}_{ni'}$ b_{i} .

• Setting the derivative with respect to z_{nj} to zero, from the orthonormality conditions, we have

$$z_{nj} = \mathbf{x}_n^T \mathbf{u}_j$$

where j = 1, ..., M.

• Setting the derivative of J w.r.t. b_i to zero gives

$$b_j = \overline{\mathbf{x}}^T \mathbf{u}_j$$

where j = M + 1, ..., D.

• We substitute for z_{ni} and b_{ii} , then we have

$$\mathbf{x}_n - \widetilde{\mathbf{x}}_n = \sum_{i=M+1}^D \left\{ (\mathbf{x}_n - \overline{\mathbf{x}})^T \mathbf{u}_i \right\} \mathbf{u}_i.$$

- We see that the displacement vectors lie in the space orthogonal to the principal subspace, as it is a linear combination of u_i , where i = M + 1, ..., D.
- We further get

$$J = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=M+1}^{D} (\mathbf{x}_n^T \mathbf{u}_i - \overline{\mathbf{x}}^T \mathbf{u}_i)^2 = \sum_{i=M+1}^{D} \mathbf{u}_i^T \mathbf{S} \mathbf{u}_i.$$

• Consider a two-dimensional data space i.e. D=2 and a one-dimensional principal subspace M=1. Then, we choose \mathbf{u}_2 that minimises

$$\widetilde{J} = \mathbf{u}_2^T \mathbf{S} \mathbf{u}_2 + \lambda_2 (1 - \mathbf{u}_2^T \mathbf{u}_2).$$

- Setting the derivative w.r.t. \mathbf{u}_2 to zero yields $\mathbf{S}\mathbf{u}_2 = \lambda_2 \mathbf{u}_2$
- We therefore obtain the minimum value of J by choosing \mathbf{u}_2 as the eigenvector corresponding to the smaller eigenvalue.
- We choose the principal subspace by the eigenvector with the larger eigenvalue.

• The general solution is to choose the eigenvectors of the covariance matrix with *M* largest eigenvalues:

$$\mathbf{S}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

where i = 1, ..., M.

• The distortion measure (or reconstruction error) becomes

$$J = \sum_{i=M+1}^{D} \lambda_i.$$