Assignment Project Exam Help

https://p. Rady Nicolese Ler com
University of Auckland

Add WeChat powcoder

- Assignment Project Exam Help

 Stopping failures
 - Elattps://powcoder.com
 - Add WeChat powcoder
 - **5** Byzantine agreement with authentication

Synchronous network model

- Even the simple stopping failure cannot be deterministically synchronic metals. Com
- FLP Fischer, Lynch and Patterson
 - In possibility of Wayne fired our Distributed Consensus with a Single Faulty Process
- Solutions for the asynchronous model use randomisation, failure detectors (partially synchronous model)

Stopping failures model

- A failed process can only stop sending messages, forever https://poweoden.com
- No possibility to send confusing messages
- (i.e. different messages to different directions)

 Add Western to Description of the property of the propert (not only when 3F < N - 1)

The Stopping agreement conditions – vs Byz

- Agreement: no two non-faulty processes ever decide on iffering sues powcoder.com
- Validity: if all non-faulty processes start with the same initial
- decision could be any of these (as long as it is consistent)

EIGStop

• EIG tree as in the EIGByz, F+1 messaging rounds

ASSIGNMENTE PROJECT NOTATION 1) SICIP

- Top-down val()'s as in the EIGByz, i.e. via messaging
- · https://powweoder.com
- Final decision: set W of all non-null val()'s in EIG tree
 - all values at all levels not just leaves

 Autobicated that as uned to powcoder
- If W is singleton, $W = \{v\}$, then the decision is v
- Otherwise, if W is mixed, $W = \{0, 1\}$, then the decision is v_0
 - no voting! no tie breaking

EIGStop example – assuming $v_0 = 1$; nulls as –

- Process #2 : init 0; decision $v_0 = 1$
- Interest in power der.com

EIGStop example – assuming $v_0 = 1$; nulls as -

- Process #2 : init 0; decision 0
- Interest in power ender com

EIGStop example – assuming $v_0 = 1$; nulls as -

 WHAT IF scenario – NOT supported by this EIGStop protocol Assignment Project Exam He Pro but would be allowed to recover and decide

- https://powcoder.com
- Process #1 : init 0; decision 0
- Process #2: init 0; decision 0
 Process #2: init 0; decision 0
 Process #2: init 0; decision 0
 Process #2: init 0; decision 0

OptEIGStop

Assignment Project Exam Help

- Each process sends out only two messages
- · listitipinitia/hocotwolchordesis.com
- Second: a different value, to all the processes

A Charles time it learns about a different value the learns about a different value th

EIGStop vs EIGByz vs 3PC – assuming $v_0 = 0$

	Initial	EIGStop	EIGByz	3PC	
1 4	0000	0	Q	0	
http	\$ 991	OWC	oder	. <u>@</u> C	\mathbf{m}
T	0011	0	0	0	
	0 1 1 1	0	1	0	
1 1		Cha	t that	x ¹	odor
Auc	0 0 0 X	Cara	t go	VV 0	Juci
	0 0 1 X	0	0	0	
	0 1 1 X	0	0	0	
	1 1 1 X	1	1	Λ	

EIGStop vs EIGByz vs 3PC – assuming $v_0 = 1$

	Initial	EIGStop	EIGByz	3PC	
1 44	0000	0	Q	0	
http	S 991	OWC	oder	. <u>@</u> C	m
I	001 🕇	1	1	0	
	0 1 1 1	1	1	0	
1 10	1111/	Cha	+ 1	T 10	odor
Auc	0 0 0 X	Cha	L 80	VV 0	Juei
	0 0 1 X	1	1	0	
	0 1 1 X	1	1	0	
	1 1 1 X	1	1	0	

Complexity

• EIGStop Assignment Project Exam Help

- Messages: $\mathcal{O}((f+1)n^2)$ messages
- https://powcoder.com

 EIGByz Additional requirement: n > 3f

Rounds: f + 1AddgesWichhatspowcoder

- 3PC:
 - Rounds: $\mathcal{O}(f+1)$
 - Messages: $\mathcal{O}(fn)$ messages

Byzantine agreement with authentication

• Assume that each process digitally signs its messages in a total

- Problem with certificate weaknesses: What if a powerful Byzantine faulty process is able to forge such signatures?
- Problem with authority: What if the certification authority itself is hacked or even turns into a Byzantine process?
- Anyway, assuming that such digital signatures are totally safe, Byzantine faulty nodes are not able to wreak much more havoc than a stopped process
- EIGStop can be adapted to solve the (slightly different) Byzantine agreement with authentication
- Faster/better/more general algorithms possible...