Algebra Theory

Notion Definition/Method to prove

Semigroup Composition Law

Monoid Composition Law and Associativity

Group Composition Law, Associativity and Neutral element

Abelian Group and commutativity

Group

Equivalence Relation Reflexivity, transitivity and symmetry

Partition $\forall i \in I \cup A_i = A \land \forall i, j \in I A_i \cap A_i = \emptyset$

Ring $(R,+,\cdot)$ $\stackrel{\bullet}{\Box}$ $\stackrel{R,+\dot{\iota}}{\dot{\iota}}$ A. Group, (R,\cdot) semigroup and Distributive

Law

x(y+z)=xy+xz and (y+z)x=yx+zx

Unitary Ring Ring and (R, \cdot) - monoid

Division Ring Ring and (R, \cdot) - group

Field Ring and (R, \cdot) - abelian group

Integral $\forall x, y \in R, xy = 0 \square x = 0 \lor y = 0$ domain

Subgroup $H \square H \neq \emptyset \land \forall x, y \in H, x \cdot y \in H \land \forall x \in H, x^{-1} \in H$

Subring $A = A \neq \emptyset \land 0 \in A \land \forall x, y \in A, x-y \in A \land \forall x, y \in A, x \cdot y \in A$

Subfield $A \square card(A) \ge 2 \land 0, 1 \in A \land i$

 $\forall x, y \in A, x-y \in A \land \forall x, y \in A, x \cdot y^{-1} \in A$

Homomorphi sm For groups: $f(x \cdot y) = f(x) \cdot f(y)$

	For rings: $f(x \cdot y) = f(x) \cdot f(y)$ and $f(x+y) = f(x) + f(y)$
K-vector space	$k(vI+v2) = k \cdot vI + k \cdot v2 \wedge (kI+k2) \cdot v = kI \cdot v + k2 \cdot v \wedge c$
	$(k1 \cdot k1) \cdot v = k1 \cdot (k2 \cdot v) \wedge 1 \cdot v = v$
Subspace	$S \supseteq S \neq \emptyset \land \forall v1, v2 \in S, v1 + v2 \in S \land \forall k \in K, \forall v \in S, k \cdot v \in S$
Linear map	$f(vI+v2)=f(vI)+f(v2)\wedge f(k\cdot v)=k\cdot f(v)$
Izomorphism	Bijective linear map
Endomorphis m	Linear map with $V = V^{'}$
Automorphis m	Bijective endomorphism
Linear independece	$kI \cdot vI + \dots + kn \cdot vn = 0 \square kI = k2 = \dots = kn = 0$
Basis	Linear independence and Generator
Generator	$\langle x \rangle = \cap \{ S \leq_K V, x \leq S \}$
Image of f	$Imf = [f(x) \in R \lor x \in R]$
Kernel of f	$Kerf = [x \in R \lor f(x) = 0]$