MISR *Eyjafjallajökull & Grimsvötn* Retrievals

Ralph Kahn & James Limbacher

NASA Goddard Space Flight Center

Eyjafjallajökull Volcano Ash Plume – MISR Aerosol Retrieval – April 19, 2010

Eyjafjallajökull Volcano MISR Stereo-Derived Plume Heights 07 May 2010 Orbit 55238 Path 216 Blks 40-43 UT 12:39

D. Nelson and the MISR Team, JPL and GSFC

Eyjafjallajökull Volcano MISR Stereo-Derived Plume Heights

07 May 2010 Orbit 55238 Path 216 Blks 40-43 UT 12:39

Height: Blue = Wind-corrected

D. Nelson and the MISR Team

Etna Volcano MISR Stereo-Derived Plume Heights

Oregon Fire Sept 04 2003

Orbit 19753 Blks 53-55 MISR Aerosols V17, Heights V13 (no winds)

Kahn, et al., JGR 2007

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)

MISR Aerosol Type Discrimination

January 2007

July 2007

Mixture Group

1-10 11-20 21- 31-40 41-50 51-62 63-70 71-74

Spherical, non-absorbing

Non-spherical

SEAC⁴RS – MISR Overview 19 August 2013

Passive-remote-sensing *Aerosol Type* is a *Total-Column-Effective*, *Categorical* variable!!

Single-scattering Phase Functions for Different Particle **Shapes**

Single-scattering Phase Functions for Different Particle Types

Figure 1. Single-scattering phase functions for six particle types (including two hydration states for sulfate particles) and thin cirrus, for MISR band 3 (672 nm effective wavelength). Detailed physical properties for these particles are given in Table 3. Superposed on this plot are the scattering angles sampled by the nine MISR cameras for a typical midlatitude case. Camera designations are "A," "B," "C," and "D" for the four pairs of cameras viewing at shallow through steep viewing angles, respectively, "f" for forward looking, "a" for aft-looking, and "An" for nadir-viewing cameras.

Mount Etna Plume Height and Eruption Style from MISR

Scollo, S. R.A. Kahn, D.L. Nelson, M. Coltelli, D.J. Diner, M.J. Garay, and V.J. Realmuto MISR observations of Etna volcanic plumes. J. Geophys. Res. 2012

Mount Etna 29 September 2006

MISR nadir-viewing, true-color image showing Etna, with stereo-derived plume height superposed

29 Sept. 2006 – MISR retrieved mostly small spherical particles, indicating a sulfate/water-dominated plume

MISR stereo heights for the ash-dominated plume on 30 December 2002

Indications of Eruption Strength:

- *Plume Height* from MISR stereo imaging
- Ash to Sulfate/Water particle AOD ratio from MISR-retrieved particle shape and size

Mount Etna Plume Height and Eruption Style from MISR

§Etna Eruption Time (UTC)	Mean AOD	AOD Range	AOD Sph.	AOD Sph.	Small	Med	Large
			Fraction	Fract.			
			Mean	Range			
<u>Ash</u> -Dominated, <u>Both</u> N	IISR & Surface	Most					
27 Oct 2002 at 10:00 ^{\$}	0.31	[0.04 0.58]	0.42	[0.1 1]	0.31	0.23	0.46
23 Dec 2002 at 09:54	0.11	[0.09 0.12]	0.43	[0.4 1]	0.40	0.11	0.49
30 Dec 2002 at 10:04 ^{\$}	0.11	[0.04 0.14]	0.76	[0 1]	0.35	0.16	0.49
Sulfate/Water-Dominated, Bo	oth MISR & Su	M					
29 July 2001 at 10:01	0.18	[0.15 0.25]	0.93	[0.6 1]	0.77	0.09	0.13
23 Nov 2002 at 09:42\$	0.13	[0.07 0.19]	0.97	[0.2 1]	0.56	0.24	0.20
08 Jan 2003 at 09:54	0.15	[0.13 0.16]	0.95	[0.8 1]	0.49	0.08	0.43
29 Sept 2006 at 09:52	0.22	[0.15 0.26]	0.87	[0.6 1]	0.75	0.13	0.12
16 Nov 2006 at 09:46	0.08	[0.05 0.13]	0.94	[0.6 1]	0.67	0.08	0.25
25 Nov 2006 at 09:46	0.10	[0.05 0.15]	1	[1 1]	0.61	0.03	0.36
Particle Type Surface Va							
23 May 2000 at 10:08\$	0.36	[0.26 0.38]	0.25	[0.2 0.4]	0.23	0.35	0.42
01 Jun 2000 at 10:02	0.14	[0.03 0.22]	0.89	[0.4 1]	0.72	0.15	0.13

 $^{^\}S$ AOD Sph. Fraction Mean = Mean MISR-retrieved green band AOD value attributed to spherical particles AOD Sph. Fract. Range = Range of MISR-retrieved green band AOD fraction attributed to spherical particles Small = MISR-retrieved green-band AOD fraction of particles having small size (<0.35 μm radius) Med = MISR-retrieved green-band AOD fraction of particles having medium size (0.35 < 0.7 μm radius) Large = MISR-retrieved green-band AOD fraction of particles having large size (>0.7 μm radius) § Volcanic ash detected by MODIS

MISR Research Aerosol Retrieval MISR components & Mixtures

32 Components, 1200 mixing groups, 343200 mixtures

#	Component Name	r ₁ (μm)	(µm)	r _c (μm)	σ	SSA (446)	SSA (558)	SSA (672)	SSA (866)	AOT(446)/ AOT(558)	AOT(672)/ AOT(558)	AOT(867)/ AOT(558)	g (558)	Particle Size/ Shape Category
						Spheri	ical Non-	Absorbi	ng Optica	al Models ¹				
1	sph_nonabsorb_0.12	0.003	0.75	0.06	1.70	1.00	1.00	1.00	1.00	1.54	0.66	0.35	0.61	Small Spherical
2	sph_nonabsorb_0.26	0.005	1.70	0.12	1.75	1.00	1.00	1.00	1.00	1.18	0.82	0.58	0.72	Small Spherical
3	sph_nonabsorb_0.57	800.0	3.81	0.24	1.80	1.00	1.00	1.00	1.00	0.98	0.99	0.91	0.72	Medium Spherical
4	sph_nonabsorb_1.28	0.013	8.88	0.50	1.85	1.00	1.00	1.00	1.00	0.96	1.04	1.10	0.73	Large Spherical
5	sph_nonabsorb_2.80	0.022	19.83	1.00	1.90	1.00	1.00	1.00	1.00	0.98	1.02	1.05	0.77	Large Spherical
						Sph	erical Al	bsorbing	Optical 1	Models ¹				
6	sph_abs_0.12_ssa_green_ 0.80_steep	0.003	0.75	0.06	1.70	0.82	0.80	0.77	0.72	1.47	0.70	0.40	0.61	Small Spherical very strongly absorbing
7	sph_abs_0.12_ssa_green_ 0.85_steep	0.003	0.75	0.06	1.70	0.87	0.85	0.83	0.79	1.49	0.69	0.39	0.61	Small Spherical strongly absorb- ing
8	sph_abs_0.12_ssa_green_ 0.90_steep	0.003	0.75	0.06	1.70	0.91	0.90	0.89	0.85	1.51	0.68	0.38	0.61	Small Spherical moderately ab- sorbing
9	sph_abs_0.12_ssa_green_ 0.95_steep	0.003	0.75	0.06	1.70	0.96	0.95	0.94	0.92	1.52	0.67	0.36	0.61	Small Spherical weakly absorb- ing
10	sph_abs_0.26_ssa_green_ 0.80_steep	0.005	1.69	0.12	1.75	0.79	0.80	0.80	0.79	1.17	0.84	0.61	0.75	Small Spherical very strongly absorbing
11	sph_abs_0.26_ssa_green_ 0.85_steep	0.005	1.69	0.12	1.75	0.84	0.85	0.85	0.84	1.17	0.83	0.60	0.74	Small Spherical strongly absorb- ing
12	sph_abs_0.26_ssa_green_ 0.90_steep	0.005	1.69	0.12	1.75	0.89	0.90	0.90	0.90	1.18	0.83	0.59	0.73	Small Spherical moderately ab- sorbing
13	sph_abs_0.26_ssa_green_ 0.95_steep	0.005	1.69	0.12	1.75	0.95	0.95	0.95	0.95	1.18	0.82	0.58	0.73	Small Spherical weakly absorb- ing
14	sph_abs_0.57_ssa_green_ 0.80_steep	800.0	3.81	0.24	1.80	0.77	0.80	0.82	0.84	0.98	0.99	0.91	0.78	Medium Spheri- cal very strongly absorbing
15	sph_abs_0.57_ssa_green_ 0.85_steep	0.008	3.81	0.24	1.80	0.82	0.85	0.87	0.89	0.98	0.99	0.91	0.76	Medium Spheri- cal strongly ab- sorbing
16	sph_abs_0.57_ssa_green_ 0.90_steep	0.008	3.81	0.24	1.80	0.88	0.90	0.91	0.93	0.98	0.99	0.91	0.75	Medium Spher- ical moderately absorbing

17	sph_abs_0.57_ssa_green_ 0.95_steep	0.008	3.81	0.24	1.80	0.94	0.95	0.96	0.96	0.98	0.99	0.91	0.74	Medium Spher- ical weakly ab- sorbing
18	sph_abs_1.28_ssa_green_ 0.80_steep	0.013	8.88	0.50	1.85	0.77	0.80	0.83	0.86	0.96	1.04	1.09	0.78	Large Spherical very strongly absorbing
19	sph_abs_1.28_ssa_green_ 0.85_steep	0.013	8.88	0.50	1.85	0.82	0.85	0.87	0.90	0.96	1.04	1.09	0.77	Large Spherical strongly absorb- ing
20	sph_abs_1.28_ssa_green_ 0.90_steep	0.013	8.88	0.50	1.85	0.88	0.90	0.92	0.93	0.96	1.04	1.09	0.76	Large Spherical moderately ab- sorbing
21	sph_abs_1.28_ssa_green_ 0.95_steep	0.013	8.88	0.50	1.85	0.94	0.95	0.96	0.97	0.96	1.04	1.10	0.74	Large Spherical weakly absorb- ing
#	Component Name	r ₁ (µm)	r ₂ (µm)	r _c (µm)	σ	SSA (446)	SSA (558)	SSA (672)	SSA (866)	AOT(446)/ AOT(558)	AOT(672)/ AOT(558)	AOT(867)/ AOT(558)	g (558)	Particle Size/ Shape Category
						Sph	erical Al	sorbing	Optical M	fodels ¹				
22	sph_abs_2.80_ssa_green_ 0.80_steep	0.022	19.83	1.00	1.90	0.77	0.80	0.82	0.85	0.98	1.02	1.05	0.83	Large Spherical very strongly absorbing
23	sph_abs_2.80_ssa_green_ 0.85_steep	0.022	19.83	1.00	1.90	0.83	0.85	0.87	0.89	0.98	1.02	1.05	0.81	Large Spherical strongly absorb- ing
24	sph_abs_2.80_ssa_green_ 0.90_steep	0.022	19.83	1.00	1.90	0.88	0.90	0.91	0.93	0.98	1.02	1.05	0.80	Large Spherical moderately ab- sorbing
25	sph_abs_2.80_ssa_green_ 0.95_steep	0.022	19.83	1.00	1.90	0.94	0.95	0.96	0.97	0.98	1.02	1.05	0.79	Large Spherical weakly absorb- ing
							Dust Gr	ains Opti	cal Mode	ls ¹				
26	dust_grains_hl	0.10	1.0	0.50	1.50	0.92	0.98	0.99	1.00	0.90	1.07	1.08	0.71	Weakly absorbing grains
27	dust_grains_h4	0.10	1.0	0.50	1.50	0.72	0.91	0.98	0.99	0.90	1.07	1.10	0.72	Moderately absorbing grains
28	dust_grains_h10	0.10	1.0	0.50	1.50	0.98	0.80	0.94	0.98	1.05	1.09	1.16	0.72	Strongly absorb- ing grains
							Dust Sph	eroid Op	tical Mod	lel ¹				
29	dust_spheroids	0.10	6.0	1.00	2.00	0.81	0.90	0.97	0.98	0.99	1.02	1.05	0.77	Coarse Dust Spheroids
							Cirrus	Optical :	Models ^{1,1}	2				
30	Baum_cirrus_ De = 10 µm	2.0	9500.0	5.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.79	Cirrus
31	Baum_cirrus_ De=40 µm	2.0	9500.0	20.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.81	Cirrus
32	Baum_cirrus_ De = 100 µm	2.0	9500.0	50.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.87	Cirrus

07 May 2010 Orbit 55238 Path 216 Blks 40-43 UT 12:39

Plume Particles

- Distinct from background
 - -- larger, darker
 - -- much higher AOD
- Non-spherical dominated
- Brighten downwind
- Tend to decrease in size downwind

3.3 km retrievals

(AOD, particle properties)
07 May 2010 Orbit 55238 Path 216 Blks 40-42 UT 12:39

4.4 km retrievals

(AOD, particle properties)
07 May 2010 Orbit 55238 Path 216 Blks 40-42 UT 12:39

4.4 km retrievals

MISR Research Aerosol Retrievals 16 April 2010 Orbit 54931 Path 197 Blk 49 UT 10:45

- 1-2 days downwind of Iceland volcano source
- Distinctly *high AOD* (peak >1.25)
- Retrieved ~50% AOD non-spherical dust grains
- *Medium* particles ~ no "cirrus"
- Model *back-trajectory needed* to identify plume confidently

3.3 km retrievals

Grimsvötn Volcano

19 April 2010 Orbit 54976 Path 218 Blks 39-42 UT 12:51

MINX Stereo Height Map

(AOD, particle properties)

19 April 2010 Orbit 54976 Path 218 Blks 39-42 UT 12:51

MISR Summary

- Weekly global coverage good primarily for retrospective analysis, but not for real-time analysis in most cases
- AOD, Plume Height, Ash/Sulfate (aerosol type) are all available from MISR where coverage of volcanic plumes exists
- Free troposphere aerosols tend to be transported long distances in relatively thin layers of relative atmospheric stability
- Good optical analogs for volcanic ash at visible wavelengths are needed as input to the satellite retrievals

Remote-sensing Analysis

- Retrieval Validation
- Assumption Refinement

Suborbital

snapshots; aerosol amount & aerosol type maps,

plume & layer heights

Aerosol-type
Predictions;
Meteorology;
Data integration

CURRENT STATE

- Initial Conditions
- Assimilation

Regional Context

targeted chemical & microphysical detail

point-location time series

Model Validation

- Parameterizations
- Climate Sensitivity
- Underlying mechanisms

Must <u>stratify</u> the global satellite data to treat appropriately situations where **different physical mechanisms** apply

space-time interpolation,

Aerosol Direct & Indirect Effects

calculation and prediction

Adapted from: Kahn, Survy. Geophys.

Backup Slides

Grimsvötn Volcano

MINX Stereo Heights & Winds

19 April 2010 Orbit 54976 Path 218 Blks 39-42 UT 12:51

Maximum / Median height estimates: 3.393 / 2.378 km

(AOD, particle properties)

19 April 2010 Orbit 54976 Path 218 Blks 39-42 UT 12:51

