1 Vermessung der Schallgeschwindigkeit durch Variation der Frequenz

1.1 Versuchsberschreibung

In diesem Versuch werden wir die Schallgeschwindigkeit aus der Steigung der Geraden

$$f_n = \frac{n \cdot v}{2 \cdot L} \tag{1}$$

bestimmen. Dafür vermessen wir zunächst grob die Resonanzfrequenzen. Danach werden wir das gleiche noch einmal genau wiederholen, aber mit deutlich mehr Messpunkten um die jeweiligen Resonanzfrequenzen (siehe Bild), insgesamt 3 mal.

1.2 Versuchsaufbau und Durchführung

Verwendete Geräte:

- Frequenzgenerator
- Sensor-Cassy
- Richtmikrofon
- Lautsprecher
- Rohr $(0.425 m \pm 0.001 m (Messfehlerauf Massband))$
- Massband $(\sigma_{Massband} = 0.001 \, m)$

Wir haben unser Cassy mit folgenden Einstellungen verwendet:

- \bullet Kanal A / Spannung UA1 / $-10..10\,V$ /
- Kanal B / Timerbox / Frequenz fb1(E) / 5000 Hz / Torzeit: 1 s
- manuelle Messung
- Darstellung: X-Achse fb1 / Y-Achse Ua1

Den Frequenzgenerator haben wir wie folgt eingestellt:

- Signalform / \sim (Sinusschwingung)
- Bereich / $x1k(0.2 2.4x1 \,\text{kHz})$
- $\sigma_f = 10 \,\mathrm{Hz}$ (Abschätzung durch ungenaue Feinabstimmung, gerätbedingt)
- Offset / 0
- Amplitude / mittig

Die Raumtemperatur betrug 23° C.

Abbildung 1: Versuchsaufbau zur Messung der Schallgeschwindigkeit durch Variation der Resonanzfrequenzen

Durchführung:

Zunächst haben wir grob die Resonanzfrequenz bestimmt:

Abbildung 2: Grobe Vermessung der Resonanzfrequenzen - die deutlich ausgeprägten Peaks werden später genauer untersucht

Danach haben wir an den oben zu sehenden Peaks das ganze noch mal mit mehr Messpunkten in drei Messungen gemessen, exemplarisch siehe dazu folgende Abbildung:

Abbildung 3: genaue Vermessung der Peaks an einer Beispiel Messung

Die sich daraus ergebenen Daten sind unter Rohdaten aufgeführt.

1.3 Versuchsauswertung

1.3.1 Rohdaten

vermutete Resonanzfrequenz	400	800	1200	1600	2000	2400
Peak Messung I	416.0	822.5	1210.0	1608.0	2031.1	2433.4
$asym_r$ Peak Messung I	417.0	826.8	1212.6	1629.6	2041.4	2443.7
$asym_l$ Peak Messung I	404.9	798.2	1190.0	1573.9	2019.3	2425.5
Peak Messung II	420.7	822.1	1210.9	1620.0	2037.2	2446.7
$asym_r$ Peak Messung II	423.0	836.4	1216.5	1631.3	2047.8	2467.3
$asym_l$ Peak Messung II	404.3	797.5	1194.0	1612.3	2013.8	2421.3
Peak Messung III	416.1	800.1	1210.0	1612.0	2019.4	2433.4
$asym_r$ Peak Messung III	419.3	820.1	1223.0	1628.2	2029.3	2439.2
$asym_l$ Peak Messung III	405.0	791.5	1195.7	1608.0	2019.4	2425.5

Tabelle 1: Vermessung der Resonanzfrequenzen (alle Angaben in Hz)

1.3.2 Transformation der Rohdaten

vermutete Resonanzfrequenz	400	800	1200	1600	2000	2400
Mittelwert	412.92	812.80	1206.97	1614.70	2030.07	2437.33
$\sigma_{ar{M}}$	6.94	16.00	11.16	18.21	10.90	14.32

Tabelle 2: Mittelwerte und deren Fehler

Nachdem wir die Mittelwerte auf die einzelnen Resonanzfrequenzen und den Fehler auf den Mittelwert berechnet haben werden wir diese Daten für eine lineare Regression verwenden. Dabei tragen wir unsere Resonanzen gegen die Anzahl der Mittelwerte auf.

Abbildung 4: Lineare Regression, die Steigung gibt $\frac{v_{Schall}}{2 \cdot L}$ zurück

Mit einem $\chi^2 = 0.43$ ist unsere Anpassung sehr gelungen. Das spiegelt sich auch in unserem Residuenplot wieder:

Abbildung 5: Residuenplot (Werte-Fit), zeigt Güte der Anpassung

Die Residuen streuen gleichverteilt um 0. 5 von 6 Werten schneiden die Nulllinie mit ihren Fehlerbalken, das entspricht 83.3% der Werte die innerhalb von einem σ den Sollwert schneiden. Die Steigung der Linearen Regression gibt uns die Schallgeschwindigkeit mit dem Faktor $\frac{1}{2 \cdot L}$ wieder. Diesen entnehmen wir der Gleichung aus der Versuchsbeschreibung.

Die Fehler auf die Längenmessung und die Fehler auf die Mittelwerte unserer Resonanzfrequenzen haben wir wie folgt fortgepflanzt:

$$\sigma_v = \sqrt{f_R^2 \cdot \sigma_\lambda^2 + \lambda^2 \cdot \sigma_f^2} \tag{2}$$

mit

$$\sigma_{\lambda} = \sigma_{\bar{M}} \cdot \sqrt{2} \tag{3}$$

 \bar{M} und $\sigma_{\bar{M}}$ haben wir erhalten durch:

$$\bar{M} = \frac{\sum_{i=1}^{N} X_i}{N} \tag{4}$$

und

$$\sigma_{\bar{M}} = \frac{\sqrt{\frac{\sum_{i=1}^{N} X_i - \bar{M})^2}{N-1}}}{\sqrt{N}} \tag{5}$$

Nach der Korrektur erhalten wir einen Wert für v_{Schall} von $v_{Schall} = 343.46 \pm 2.08 \frac{m}{s}$.

1.4 Fazit

Unser Wert für v_{Schall} liegt innerhalb eines σ Abstand zum Literaturwert (bei $T=20^{\circ}$ C) $v_{Schall_{Luft}}=343\frac{m}{s}$. Unsere Fehlerabschätzungen führen zu einem relativen Fehler auf v_{Schall} von 0.58%, was, zusammen mit unserem $\chi^2=0.43$ und Residuenplot, der keine Systematiken aufweist, sondern eine gleichverteilte Streuung um 0 zeigt, auf eine sehr präzise Messung schließen lässt, mit der wir als Gruppe zufrieden sind.