中国矿业大学 2019 ~ 2020 学年第 二 学期

《空间解析几何及向量代数》测试题

(考试时间: 100 分钟 考试方式: 闭卷)

			,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	
院系	班级		姓名		学号	
题 号 一	二三三	四	五	六	七	总分
得分						
阅卷人						
一、填空题(每人	卜题 4 分,共 20 ;	分)				
1. 设向量 \vec{a} = (1,3,	$-2)$, $\vec{b} = (1,1,0)$,贝	$\vec{a} \cdot \vec{b} = $				
2. 求两平面 <i>x</i> + 2	$v - z - 3 = 0 \pm 12$	c + v + z	x + 5 = 0 的	本角是		
2. 次例 田 x - 2	y 2 3 — 0 үн 2х	11 9 1 2	т 5 — О ду	大用足		·
3. 曲线 $\begin{cases} x = 0 \\ z = y^2 \end{cases}$ (0 \le)	ś z ≤ 1) 绕 z 周旋转	专一周刑		专曲面方程	星式	
4. 求两平行面 3x +	-6y - 2z + 14 = 0	= 3x + 6	y-2z-7	=0之间的	距离	
5. 点 (-1,2,0) 在平	\overline{z} in $x + 2y - z + 1$	= 0上的	的投影点是	:		
二、单项选择题	(每小题 4 分,本	题共2	0分)			
1. 设 \vec{a} , \vec{b} , \vec{c} 为非零	之向量,且 $\vec{a} \cdot \vec{b} = 0$), $\vec{a} \times \vec{c}$	= 0,则()		
(A) $\vec{a} // \vec{b} \perp \vec{b} \perp \vec{c}$;						
(C) $\vec{a}/\!/\vec{c} \perp \vec{b} \perp \vec{c}$;	(D) $\vec{a} \perp \vec{c}$]	$\perp b'/ \vec{c}$.				
2. 设 \vec{a} , \vec{b} 为非零向量		$= \left \vec{a} + \vec{b} \right $,则必有	()		
$(A) \ \vec{a} - \vec{b} = \vec{0};$	$(B) \ \vec{a} + \vec{b} = \vec{0};$;				
$(C) \ \vec{a} \cdot \vec{b} = 0;$	$(D) \ \vec{a} \times \vec{b} = \vec{0} .$					
3. 平面 π: 4x – 2y	v + z - 2 = 0 与直	〔线 <i>L</i> : <	$\begin{cases} x + 3y + 2 \\ 2x - y - 1 \end{cases}$	2z + 1 = 0 $10z + 3 = 0$,则().
(A) L 平行于 π ;						
4. 直线 $L_1: \frac{x-1}{1} =$	$\frac{y-5}{-2} = \frac{z+8}{1} = I$	$L_2:\begin{cases} x-2 \\ 2y-1 \end{cases}$	y = 6 $+ z = 3$	(英角是)	
$(A) \frac{\pi}{2}; \qquad (B) \frac{\pi}{2}$	$\frac{\tau}{3}$; (C) $\frac{\pi}{4}$;	(D	$\frac{\pi}{6}$.			

第1页共4页

中国矿业大学

诚信关乎个人一生,公平竞争赢得尊重。

以下行为是严重作弊行为学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊 3. 团伙作弊。

- 5. 已知平面通过点 (k, k, 0) 与 (2k, 2k, 0), 其中 $k \neq 0$, 且垂直于xoy 平面,则该平面的一般式方程 Ax + By + Cz + D = 0 的系数必满足 ().
- (A) A = -B, C = D = 0; (B) B = -C, A = D = 0;
- (C) A = -C, B = D = 0; (D) A = C, B = D = 0
- 三、(10 分) $|\overrightarrow{a}| = 2, |\overrightarrow{b}| = 1, \overrightarrow{a} = \overrightarrow{b}$ 夹角为 $\frac{\pi}{3}$, 求 $|\overrightarrow{a} + \overrightarrow{b}|$ 。

四、(10 分) 一平面通过点(1,2,3),它在正x轴,正y轴上的截距相等,且z轴上截距为正,问此平面在三坐标面上截距为何值时,它与三个坐标平面围成的四面体的体积最小?并写出平面方程。

诚信关乎个人一生,公平竞争赢得尊重。

以下行为是严重作弊行为学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊 3. 团伙作弊。

五、(10 分) 求过点 $p_0(-1,2,-3)$ 且平行于平面 $\Pi:6x-2y-3z+2=0$,又与直线 $\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-3}{-5}$ 相交的直线方程。

六、 (15 分)求过点(1,2,1)而与直线 $l_1:\begin{cases} x+2y-z+1=0\\ x-y+z-1=0 \end{cases}$, $l:\begin{cases} 2x-y+z=0\\ x-y+z=0 \end{cases}$ 平行的平面方程。

诚信关乎个人一生,公平竞争赢得尊重。

以下行为是严重作弊行为学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊 3. 团伙作弊。

七、 (15 分) 求直线 $l: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$ 在平面 $\pi: x-y+2z-1=0$ 上的投影直线 l_0 的方

程,并求 l_0 绕y轴旋转一周所成曲面的方程。