Datapath Functional Units

Contents

- Comparator
- Funnel Shifter
- Multi Input Adder
- Multiplier
- Divider

Introduction

- Data path
 - Consists of functional units where all computations are carried out
 - Ex: Registers, multiplexers, bus, adders, multipliers, counter
- Control path
 - Consists of FSM and provide control signals to the data path in proper sequence
 - With the help of control signals various operations are carried out by the data path
 - Also takes inputs from the data path regarding status information

Introduction

- Illustrate data and control path
 - P = Q + R
 - S = P R

- Illustrate P * Q by repeated addition
- Assumption, Q is not zero
- Identify the functional blocks
- Design the FSM to implement the algorithm with the help of data path

Block Diagram

Control Path

Write HDLs and simulate

Comparators

• 0's detector: A = 00...000

• 1's detector: A = 11...111

• Equality comparator: A = B

Magnitude comparator: A < B

1's & 0's Detectors

• 1's detector: N-input AND gate

• 0's detector: NOTs + 1's detector (N-input NOR)

Equality Comparator

- Check if each bit is equal (XNOR, an equality detector gate)
- 1's detect on bitwise equality

Magnitude Comparator

- Compute B-A and look at sign
- $B-A = B + ^A + 1$
- For unsigned numbers, carry out is sign bit

Signed vs. Unsigned

- For signed numbers, comparison is harder
 - C: carry out
 - Z: zero (all bits of A-B are 0)
 - N: negative (MSB of result)
 - V: overflow (inputs had different signs, output sign ≠ B)

Considering B - A

Relation	Unsigned Comparison	Signed Comparison
A = B	Z	Z
$A \neq B$	\overline{Z}	\overline{Z}
A < B	$C \cdot \overline{Z}$	$\overline{S}\cdot\overline{Z}$
A > B	C	S
$A \le B$	C	\overline{S}
$A \ge B$	\overline{C} + Z	S + Z

Datapath

Shifters

- Logical Shift:
 - Shifts number left or right and fills with 0's
 - 1011 LSR 1 = 0101 1011 LSL1 = 0110
- Arithmetic Shift:
 - Shifts number left or right. Rt shift sign extends
- Rotate:
 - Shifts number left or right and fills with lost bits

Funnel Shifter

- A funnel shifter creates a 2N-1-bit input word Z from A then selects an N-bit field from this input word
- Selects N-bit field Y from 2N-bit input
 - Shift by k bits $(0 \le k < N)$

Funnel Shifter Design

Log N stages of 2-input muxes

