Lesson 4: Job Search

Contents

	0.1	Key Terms	1
1	Ma	tching Function	1
	1.1	Job-Finding Rate (f)	2
	1.2	Vacancy-Filling rate (q)	2
	1.3	A look at f and q	2
	1.4	Steady-State	2
2	of h	sires can be defined as $f * U$	3
3	of s	eparations can be defined as $s*E$	3
4	Sup	pply of Vacancies	4
	4.1	Vacancy Supply curve	4
0.	1]	Key Terms	
	• U	- Number of unemployed persons	
	• E	- Number of employed persons	
		- Number of vacancies (job openings)	
		- Unemployment rate $(u = \frac{U}{LF} * 100)$	
		F - Labor force $(LF = E + U)$	
		- market tightness $(\theta = \frac{V}{U})$	
		ires - Unemployed workers who become employed	
		eparations - Employed workers who become unemployed	1 2 2 2 2 3
	• 1	illed - Vacancies that become someone who is employed	

1 Matching Function

The flow of hires in an economy can be defined by a matching function H(U, V) where an increase in unemployed or an increase in vacancies increases the number of hires (positively correlated).

Example:

$$H(U,V) = \gamma \sqrt{U} \sqrt{V}$$

where γ is a coefficient that determines the matching efficiency.

• Separations - Employed workers who turn into a vacancy

1.1 Job-Finding Rate (f)

The job-finding rate is defined as the probability that you find a job.

$$f = \frac{H(U, V)}{U}$$

Let us use our example:

$$f=\frac{\gamma\sqrt{U}\sqrt{V}}{U}$$

$$f=\frac{\gamma U^{1/2}V^{1/2}}{U}=\gamma U^{-1/2}V^{1/2}=\gamma\frac{V^{1/2}}{U^{1/2}}=\gamma\sqrt{\theta}$$

1.2 Vacancy-Filling rate (q)

The vacancy-filling rate is defined as the probability that a vacancy is filled by a firm within a given period.

$$q = \frac{H(U, V)}{V}$$

Let us use our example:

$$q = \frac{\gamma U^{1/2} V^{1/2}}{V^{1/2}} = \gamma U^{1/2} V^{-1/2} = \gamma (\frac{U}{V})^{1/2} = \gamma \frac{1}{\sqrt{\theta}} = \gamma (\theta)^{-1/2}$$

1.3 A look at f and q

Recall that θ is a measure of market tightness $(\frac{U}{V})$, so as θ increases the labor market becomes "tighter" (The ratio of vacancies to unemployed increases). If the labor market is tight:

- 1. It is easy for unemployed workers to find a job.
- 2. It is difficult for a firm to fill a vacancy

The two ways this can happen is either an increase in vacancies or a decrease in unemployed workers.

1.3.1 Averages

- $\frac{1}{f}$ = Average duration of unemployment
- $\frac{1}{a}$ = Average time it takes to fill a vacancy
- s = /fracseparationsE separation rate
- $\frac{1}{s}$ = Average duration of employment

1.4 Steady-State

Let's look back at the relationships between unemployment and employment:

1.

2 of hires can be defined as f * U

•
$$H(U,V) = f * U$$

2.

3 of separations can be defined as s * E

Steady-state of unemployment would be considered the natural rate of unemployment:

$$f * U = s * E$$

We can solve for the natural rate of unemployment u*:

$$u = \frac{U}{LF}$$

$$LF = E + U$$

$$f * U = E * s$$

$$f * U = (LF - U) * s$$

$$f * U = sLF - sU$$

$$sU + fU = sLF$$

$$\frac{(s + f)U}{LF} = s$$

$$u* = \frac{s}{(s + f)}$$

Since we solved the job-finding rate for theta we can write:

$$u* = \frac{s}{(s + f(\theta))}$$

Which can be used to plot the a Bevridge curve:

- ## Warning: Removed 90 rows containing missing values (geom_path).
- ## Warning: Removed 90 rows containing missing values (geom_path).
- ## Warning: Removed 90 rows containing missing values (geom_path).

4 Supply of Vacancies

A firm will open a vacancy if the marginal benefit of opening that vacancy is greater than or equal to the marginal cost of opening that vacancy. The firm earns a profit off a vacancy due to the output of the person they hire. The profit that the firm earns is $\pi = y - w$ where y is the output of the worker (MPL) and w is their wage (in each period).

If we recall $\frac{1}{s}$ is the average duration of a job and q is the probability of filling a vacancy (vacancy filling rate). This results in:

$$MB = q * (y - w) * \frac{1}{s}$$

Let us denote the cost of opening a vacancy (marginal cost) k. This means that any given firm will continue to open vacancies until:

$$k = q * (y - w) * \frac{1}{s}$$

This is called the vacancy supply condition (free-entry condition).

If we go back to our example we can plug in our value for q:

$$k = \gamma \frac{1}{\sqrt{\theta}} * (y - w) * \frac{1}{s}$$

4.1 Vacancy Supply curve