Logika

Paweł Rychlikowski

Instytut Informatyki UWr

29 maja 2021

Paradygmaty modelowania świata

- Bazujące na stanach: przeszukiwanie, MDP, gry
- Bazujące na zmiennych: CSP, sieci Bayesowskie (jeszcze przed nami)
- Bazujące na logice: logika zdaniowa, logiki modalne, logika 1-go rzędu

Zajmiemy się teraz logiką. Zaczniemy od logiki zdaniowej.

Logika zdaniowa

- zmienne zdaniowe (przyjmują wartości 0/1)
- spójniki: \vee , \wedge , \rightarrow , \leftrightarrow , \neg

Przykłady

- ullet pada $\land \neg$ mam-parasol \to jestem-mokry \lor mam-kurtkę

Model (logika zdaniowa)

- Modelem w logice zdaniowej jest przypisanie zmiennym wartości logicznych.
 - Ogólnie o modelu myślimy jako o naszej wizji świata.
- Interpretacją formuły przy zadanym modelu jest zdefiniowana rekurencyjnie wartość formuły:
 - I(a, w) = w(a), jeżeli a jest zmienną
 - $I(f_1 \vee f_2, w) = I(f_1, w) \vee I(f_2, w)$
 - (...) inne, podobne reguly
- Składnia (syntax) vs semantyka

Modele i formuły

Definicja

Formuła f jest **spełnialna**, czyli ma model, jeżeli istnieje takie w, ze I(f, w) = 1.

Uwaga

Takich przypisań jest skończenie wiele, stąd mamy prosty (wykładniczy) algorytm sprawdzania, czy formuła ma model (jest spełnialna)

Baza wiedzy

- Formuły to zdania opisujące świat.
- Naturalne jest myślenie o zbiorze takich formuł (do którego możemy dodawać nowe fakty).
- Taki zbiór często nazywamy bazą wiedzy.

Koniunkcyjna postać normalna

Definicje

- literał zmienna albo ¬ zmienna
- lacktriangle klauzula $I_1 \lor \cdots \lor I_n$ (gdzie I_i to literał)
- **3** formuła w CNF $c_1 \wedge \cdots \wedge c_n$, gdzie c_i jest klauzula

Dlaczego CNF jest fajna?

- Każdą formułę można przekształcić do CNF (czasem płacąc wykładniczym wzrostem jej długości, ćwiczenia)
- Koniunkcja klauzul = zbiór klauzul = baza wiedzy
- Jak mamy zbiór formuł (bazę wiedzy, niekoniecznie w CNF) to wykładniczość dotyczy pojedynczej formuły, a nie całej bazy.

CSP a spełnialność

- Sprawdzanie spełnialności formuły boolowskiej jest zadaniem rozwiązywania więzów (baza wiedzy = zbiór więzów)
- Nie dziwi zatem, że podstawowe algorytmy (stosowane w praktyce) są dość podobne (backtracking + propagacja).

Uwaga

Współczesne SAT-solvery radzą sobie z milionami klauzul i setkami tysięcy zmiennych

A NP-zupełność?

- Oczywiście problem CNF-SAT (spełnialności formuły w CNF) jest NP-zupełny.
- Nie spodziewamy się istnienia algorytmu wielomianowego (znane algorytmy mają pesymistyczny czas wykładniczy).

Pytanie

Dlaczego SAT-Solvery działają dobrze?

Pytanie jest trudne, i tak do końca nie ma odpowiedzi. Jedyne, co można powiedzieć, że widocznie znaczna część w praktyce spotykanych formuł jest w jakimś sensie łatwa.

Algorytm DPLL

- Algrytm Davisa-Putnama-Logemanna-Lovelanda (DPLL) jest algorytmem znajdującym spełniające podstawienie dla formuły CNF.
- Jest zupełny tzn. zawsze kończy się z prawidłowym wynikiem, może działać długo

Uwaga

Stanowi bazę współczesnych SAT-Solverów (z jednym usprawnieniem, o którym jeszcze powiemy).

Algorytm DPLL (2)

Definicje

- Klauzula jednostkowa (unit clause) klauzula zwierająca 1 literał
- Czysty literał literał, który występuja tylko jako pozytywny, lub tylko jako negatywny (czyli z jedną polaryzacją).

$$x_1 \land \neg x_2 \land (x_3 \lor x_4 \lor x_5) \land (\neg x_3 \lor \neg x_4 \lor x_5)$$

Algorytm DPLL (2)

Jakie wnioskowanie można przeprowadzić korzystając z tych pojęć:

- unit propagation klazule jednostkowe można spełnić na 1 sposób (spełniając literał), wstawiając wartość logiczną do innych klauzul możemy zrobić nowe klauzule jednostkowe.
- "Opłaca się" przypisywać czystym literałom wartość true (bo?).

Algorytm DPLL

Algorytm

Funkcja **DPLL**(Φ):

- jeśli Φ zawiera pustą klauzulę zwróć false
- dla każdej klazuli jednostkowej wykonaj unit propagation zmieniając Φ (do nasycenia)
- ustal wartości dla czystych literałów (zmieniając Φ)
- wybierz zmienną x (o nieokreślonej do tej pory wartości)
- zwróć **DPLL**($\Phi \land x$) or **DPLL**($\Phi \land \neg x$)

Oczywiście czasem wystarczy sprawdzić tylko jedną część rekurencyjnego wywołania!

O uczeniu klauzul

 Zauważmy, że jak w algorytmie DPLL osiągnęliśmy sprzeczność, to można myśleć, że "udowodniliśmy" twierdzenie (przy założeniu analizowanej formuły Φ):

$$(I_1 \wedge I_2 \wedge ... \wedge I_n) \rightarrow \mathsf{Fatsz}$$

gdzie l_i jest literałem użytym w i-tym momencie algorytmu (w propagacji lub w backtrackingu)

- Możemy zatem uznać, że udowodniliśmy twierdzenie: ze zbioru klauzul wynika ¬I₁ ∨ · · · ∨ ¬In
- Trochę długa formuła (i nieużyteczna w propagacji), algorytm próbuje zatem znaleźć możliwie krótki ciąg literałów o ustalonych wartościach, który sam z siebie implikuje Fałsz (i zapamiętać go na przyszłość)

Conflict-driven clause learning (CDCL)

W stosunku do DPLL mamy dwie istotne modyfikacje:

- Po dojściu do sprzeczności możemy dodać nową klauzulę, która podsumowuje przyczynę sprzeczności
- Przy nawrocie możemy cofnąć się do wcześniejszej zmiennej ("praprzyczyny sprzeczności")

Przykład działania CDCL

- Przeanalizujemy zaczerpnięty z Wikipedii przykład działania CDCL.
- Notacja:
 - Mamy literały: niezwartościowane, pozytywne oraz negatywne.
 - Mamy graf implikacji, w którym zapisujemy, jakie konsekwencje powodują nasze wybory
 - Wybory "dowolne" są brudnożółte.

Uwaga

Dla czytelności przykład nie uzględnia obsługi czystych literałów!

Step 2

Koniec części I

If a implies b, then b' implies a'

Step 12
$$x3=1 \land x7=1 \land x8=0 \rightarrow conflict$$

Not conflict $\rightarrow (x3=1 \land x7=1 \land x8=0)$ '
 $true \rightarrow (x3=1 \land x7=1 \land x8=0)$ '
 $(x3=1 \land x7=1 \land x8=0)$ '
 $(x3'+x7'+x8)$

Problem z CDCL

 Trzeba zarządzać "nowymi" klauzulami, monitorować ich przydatność, może kasować...

Uwaga

Obecnie jest to najbardziej efektywna metoda testowania spełnialności (i znajdowania podstawienia).

Alternatywa dla DPLL

 Wypada coś powiedzieć o drugim (również używanym) algorytmie, którym jest ...
 WalkSAT

Algorytm WalkSAT

- Zaczynamy od losowego przypisania zmiennym wartości logicznych.
- Jak wszystkie klauzule są spełnione (mają co najmniej 1 pozytywny literał), to koniec
- Wybierz losową klauzulę, która jest niespełniona
- Rzuć monetą (prawdopodobieństwo p):
 - Orzeł: zmień wartość jednej zmiennej z klauzuli (teraz jest spełniona!)
 - Reszka: zmień wartość tej zmiennej z klauzuli, która maksymalizuje: różnicę klauzul spełnionych i niespełnionych
- Po określonej liczbie zmian można zrobić restart, ewentualnie zwrócić stałą porażka.

Właściwości WalkSAT

- PLUS: Jak zakończy działanie z sukcesem, to formuła jest spełnialna (i znaleźliśmy podstawienie)
- PLUS: Mamy pełną kontrolę nad czasem działania
- MINUS: Nie możemy mówić o niespełnialności: porażka nic nie oznacza.

Trudność/łatwość wariantów CNF

- Jak już mówiliśmy, nie jest to w pełni satysfakcjonująco rozwiązane.
- Przedstawimy parę spostrzeżeń o formułach losowych

Uwaga

Formuły w CNF możemy łatwo parametryzować. Mają one prostą strukturę, daną przez:

- Liczbę różnych zmiennych
- Liczbę klauzul
- Maksymalną wielkość klauzuli

Losowe CNF

Rozważmy prawdopodobieństwo spełnialności formuły 3-CNF, w zależności od liczby klauzul oraz liczby zmiennych.

- Dużo zmiennych –
- Dużo klauzul –

Losowe CNF

Rozważmy prawdopodobieństwo spełnialności formuły 3-CNF, w zależności od liczby klauzul oraz liczby zmiennych.

- Dużo zmiennych łatwo spełnialna
- Dużo klauzul –

Losowe CNF

Rozważmy prawdopodobieństwo spełnialności formuły 3-CNF, w zależności od liczby klauzul oraz liczby zmiennych.

- Dużo zmiennych łatwo spełnialna
- Dużo klauzul trudno spełnialna

Losowe CNF. Prawdopodobieństwo spełnienia

- Dużo zmiennych: może wiele z jedną polaryzacją?
- Dużo zmiennych: może dłuższe klauzule (a do spełnienia wystarczy 1 literał)
- Dużo klauzul a każda musi być spełniona

Losowe CNF. Czas trwania

Punkt krytyczny w okolicy m/n = 4.3

Wykorzystanie logiki zdaniowej

- Zadania z więzami realizowane za pomocą logiki zdaniowej
 Przykład: obrazki logiczne
- Algorytmy planowania
 Przeszukiwanie specjalnej przestrzeni stanów, w której dozwolone ruchy opisane są formułami
- Agenty hybrydowe (przeplatanie wnioskowania z innymi metodami)

Obrazki logiczne jako CNF-SAT

Przykładowa reprezentacja

- Mamy zmienne (binarne) odpowiadające polom,
- Mamy zmienne typu: w wierszu 5 jest układ 00111001100

Co dalej?

Formuly

- W każdym wierszu (bądź kolumnie) jest jeden ze zgodnych ze specyfikacją układów (długa alternatywa)
- Formuły "tłumaczące" zmienne wierszowe na zmienne związane z polami:

$$W_{01101110} \rightarrow \neg X_0 \wedge X_1 \wedge X_2 \wedge \neg X_3 \wedge X_4 \wedge X_5 \wedge X_6$$

(to jest skrót dla n formuł typu $W_{01101110} o L_i$)

Opisywanie akcji za pomocą formuł

Uwaga

Mamy czas, czyli $t \in 0, ..., T-1$. Używamy zmiennych mówiących o stanie świata w momencie t i o akcji w momencie t. Opisujemy mechanikę świata językiem logiki.

Określamy zmienne prawdziwe w czasie 0,

 $\mathsf{stoje}\text{-}\mathsf{przed}\text{-}\mathsf{sklepem}_0 \land \mathsf{pusta}\text{-}\mathsf{torba}_0 \land \mathsf{pelen}\text{-}\mathsf{portfel}_0 \land \dots$

 Określamy cel (czyli co chcemy uzyskać w czasie T) – czas T musimy zgadnąć, czyli inaczej mówiąc sprawdzać kolejne wartości, aż do skutku.

 $\mathsf{stoje}\text{-}\mathsf{przed}\text{-}\mathsf{sklepem}_{\mathcal{T}} \land \neg \mathsf{pusta}\text{-}\mathsf{torba}_{\mathcal{T}} \land \neg \mathsf{pe}\mathsf{fen}\text{-}\mathsf{portfel}_{\mathcal{T}}$

Opisywanie akcji za pomocą formuł

Uwaga techniczna

Formuły zapisujemy często w bogatszym języku, zakładając, że system sam je przekształci do CNF-u.

Warunki wstępne i końcowe poleceń

 $\mathsf{strzelam}_t o \mathsf{mam} ext{-}\mathsf{tuk}_t \wedge \mathsf{mam} ext{-}\mathsf{strza}\mathsf{i} \mathsf{e}_t \wedge \neg \mathsf{mam} ext{-}\mathsf{strza}\mathsf{i} \mathsf{e}_{t+1}$

Opisywanie akcji za pomocą formuł (2)

Frame axioms (świat się za bardzo nie zmienia).
 Przykład:

$$\mathsf{smok}\text{-}\mathsf{śpi}_t \land \mathsf{czytam}\text{-}\mathsf{gazet} \mathsf{e}_t \to \mathsf{smok}\text{-}\mathsf{śpi}_{t+1}$$

(to dla wszystkich niewpływających na siebie par zmienna-stanu, akcja)

Explanatory frame axioms

```
\mathsf{smok}\text{-}\mathsf{śpi}_t \land \neg \mathsf{smok}\text{-}\mathsf{śpi}_{t+1} \to \big(\mathsf{rzucam}\text{-}\mathsf{gramat}_t \lor \mathsf{gram}\text{-}\mathsf{na}\text{-}\mathsf{puzonie}_t \lor \ldots
```

Informacja, że w każdym czasie wykonuję akcję (i tylko jedną
 - łatwa do zakodowania w CNF.

Algorytm SATPLAN

- Zasadniczo właśnie go opisaliśmy
- Powtórka: opisujemy świat, szukamy spełnialności formuły dla kolejnych T, jak znajdziemy, wypisujemy wartościowania, z którego odczytujemy sekwencję akcji.

Koniec części II

Sposób definiowania logiki (ogólnie)

Musimy podać 3 składniki:

- Składnię jak pisac formuły
- Semantykę co znaczą formuły, kiedy są prawdziwe
- Reguły wnioskowania jak z prawdziwych formuł wnioskować inne, również prawdziwe

Logiki mają różną siłę wyrazu i dają procedury o różnej złożoności (musimy **balansować** pomiędzy siłą wyrazu a obliczeniową trudnością logiki)

Reguły wnioskowania

Uwaga

Reguły wnioskowania dotyczą syntaktyki, nie semantyki.

Nasłynniejsza reguła wnioskowania

Reguła **modus ponens**: dla dowolnych zmiennych zdaniowych p i q

$$\frac{p, \ p \to q}{q}$$

Można ją uogólnić do większej liczby przesłanek

$$\frac{p_1,\ldots,p_n,\ p_1\wedge\cdots\wedge p_n\to p_{n+1}}{p_{n+1}}$$

Reguły wnioskowania

Ogólna postać reguły wnioskowania jest następująca:

$$\frac{f_1,\ldots,f_n}{g}$$

Algorytm wnioskowania

Wnioskowanie w przód (forward inference)

Powtarzaj, aż do momentu, gdy nie da się zmienić Bazy wiedzy:

- Wybierz $\{f_1, \ldots, f_k\} \subseteq \mathcal{KB}$
- Jeżeli istnieje reguła:

$$\frac{f_1,\ldots,f_n}{g}$$

dodaj g do Bazy wiedzy

Definicja

Jeżeli powyższy algorytm dodaje f w którymś momencie do bazy wiedzy, wówczas piszemy $KB \vdash f$

2 proste uwagi o wnioskowaniu

- Wnioskowanie w tył: Zaczynamy od tego, co chcemy udowodnić (od naszego celu).
- Możemy myśleć o dowodzeniu twierdzeń jako o zadaniu przeszukiwania.
 - (przestrzenią stanów są zbiory aksjomatów i dowiedzionych formuł, celem zbiór zawierający docelowe twierdzenie)

Wynikanie

Przypomnienie

Formuła definiuje zbiór modeli \mathcal{M} , dla których jest ona prawdziwa. Podobnie można mówić o zbiorze modeli dla bazy wiedzy (czyli koniunkcji formuł).

Definicja

Mówimy $KB \models \phi$ wtedy i tylko wtedy, gdy każdy model KB będzie modelem ϕ ($\mathcal{M}(KB) \subseteq \mathcal{M}(\phi)$).

Wynikanie i dowodzenie

Definicja 1

Logika jest **poprawna**, jeżeli $M \vdash \phi$ implikuje $M \models \phi$

Definicja 2

Logika jest **zupełna**, jeżeli $M \models \phi$ implikuje $M \vdash \phi$

Uwaga

Poprawność jest konieczna, zupełność – porządana.

Zupełność i poprawność

• The truth, the whole truth, and nothing but the truth.

Przykład. Zupełność (?) modus ponens

Modus ponens nie jest zupełny

Przykład

 $\mathcal{KB} = \{\mathsf{deszcz}, \mathsf{deszcz} \lor \mathsf{śnieg} \to \mathsf{mokry}\}$

Mokry jest prawdziwe, ale niedowodliwe.