ESTADISTICA II

PRIMER TRABAJO

3,3

PRESENTADO POR:

JUAN SIMÒN ZAPATA MONSALVE HAROLD JHOAN SANCHEZ VIVAS DIEGO ANDRES CASTAÑEDA URANGO JHON ALEXANDER VALENZUELA

DOCENTE: JULIETH VERONICA GUARIN ESCUDERO

INSTITUTO DE EDUCACIÓN EN INGENIERÍA FACULTAD DE MINAS – SEDE MEDELLÍN UNIVERSIDAD NACIONAL DE COLOMBIA 2023

Grupo 17 - Solución primer trabajo

De una total de 113 hospitales en estados unidos se tiene una muestra aleatoria de 64 hospitales, se muestra a continuación los primeros 10 registros

Table 1: Primeras observaciones base de datos

Y	X1	X2	X3	X4	X5
2.9	10.80	63.9	1.6	57.4	130
3.9	11.15	56.5	7.7	73.9	281
1.4	7.14	51.7	4.1	45.7	115
5.8	11.41	50.4	23.8	73.0	424
4.8	9.84	62.2	12.0	82.3	600
5.2	9.84	53.0	17.7	72.6	210
4.3	7.65	47.1	16.4	65.7	318
3.7	7.58	56.7	20.8	88.0	97
4.7	8.77	54.5	5.2	47.0	143
3.0	11.20	45.0	7.0	78.9	130

Tenenmos como variable de interés o variable respuesta Y Riesgo de infección, y como variables predictoras $\mathbf{X_1}$ Duración de la estadía, $\mathbf{X_2}$ Rutina de cultivos, $\mathbf{X_3}$ Número de camas, $\mathbf{X_4}$ Censo promedio diario y $\mathbf{X_5}$ Número de enfermeras.

Punto 1. Regresión Lineal Múltiple:

Con la información anterior se quiere modelar a \boldsymbol{Y} en función de las demás variables, de la forma:

$$Y=\beta_0+\beta_1X_1+\beta_2X_2+\beta_3X_3+\beta_4X_4+\beta_5X_5+\varepsilon$$

$$\texttt{Suppose}$$
 planteando el modelo tenemos la siguiente tabla que resume la información para cada parámetro:

Table 2: Resúmen del modelo

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-0.1650397	1.5436881	-0.1069126	0.9152273
X1	0.1424980	0.0885128	1.6099136	0.1128465
X2	0.0103015	0.0275102	0.3744615	0.7094266
X3	0.0469583	0.0138310	3.3951331	0.0012433
X4	0.0194602	0.0076270	2.5514789	0.0133855
X5	0.0008251	0.0006345	1.3004436	0.1985927

Así, el modelo con los coeficientes estimados es:

$$\widehat{Y} = -0.1650397 + 0.1424980X_1 + 0.0103015X_2 + 0.0469583X_3 + 0.0194602X_4 + 0.0008251X_5$$

Análisis de significancia de los parámetros.

Deseamos ver que parámetros son significativos individualmente en el modelo, así que se quiere probar el siguiente juego de hipótesis:

$$\begin{array}{ll} H_0: \beta_j = 0 \\ H_1: \beta_j \neq 0 \end{array} \quad \text{para} \quad j = 0, 1, \dots, 5.$$

60+

Teniendo en cuenta los valores-p de la primer tabla, podemos notar que las únicas variables significativas dentro del modelo son β_3 y β_4 son significativas cuando los demás parámetros están presentes.

- Sabiendo que $\beta_1,\ \beta_2$ y β_5 no son significativos, tampoco serán interpretables.
- β₃ = 0.0469583, El riesgo de infección aumentará en 0.0469583 unidades por cada unidad que aumente el número promedio de camas.
 β₄ = 0.0194602, El riesgo de infección aumentará en 0.0194602 unidades por cada unidad que aumente
- $\beta_4 = 0.0194602$, El riesgo de infección aumentará en 0.0194602 unidades por cada unidad que aumente el número promedio de pacientes.
- $\hat{\beta}_0$: Dado que ninguna variable tiene al cero dentro de su dominio, β_0 no es interpretable.

Significancia del modelo de regresión

Para estudiar la significancia de la regresión se plantea:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_5 = 0,$$
 vs.
 $H_1: Algún \beta_i \neq 0, j = 1, \dots, 5.$

Si tomamos en cuenta la información de la tabla ANOVA con ayuda de la función myAnova() se obtiene:

Table 3: Tabla ANOVA.

	$Sum_of_Squares$	DF	$Mean_Square$	F_Value	P_value
Model Error	54.6752 49.9697	5 58	10.935038 0.861546	12.6923	2.42589e-08

Como $V_p=2.42589e^{-08}<\alpha=0.05$ entonces se rechaza H_0 y se puede concluir que el modelo es significativo, por lo tanto, el riesgo de infección depende de al menos una de las cinco variables predictoras.

Interpretación del \mathbb{R}^2 :

20+

Del modelo obtenemos que $\mathbf{R^2} = \mathbf{0.5225}$, por lo tanto, el modelo planteado explica el 52.25% de la variabilidad total.

(cómo se calcula?

Punto 2. Todas las regresiones posibles.

20+

Para este punto se eligen las tres variables con el menor valor-p, por lo tanto se estudiará la significancia de los parámetros β_1 , β_3 y β_4 . Por lo tanto se quiere probar que:

 $H_0: \beta_1 = \beta_3 = \beta_4 = 0$

 $H_1: \beta_j \neq 0$, para algún j = 1, 3, 4.

Observando la tabla de todas las regresiones posibles, tenemos como filas de interés:

Table 4: Todas las regresiones posibles.

$\overline{\mathrm{GL}}$	R^2	R^2_{adj}	SSE	Ср	Variables	_	
1	0.370	0.359	65.970	16.572	Х3	_	
1	0.288	0.277	74.495	26.466	X4		
1	0.262	0.251	77.186	29.590	X1		
1	0.145	0.131	89.458	43.834	X5		
1	0.007	-0.009	103.891	60.587	X2		
2	0.459	0.441	56.606	7.703	X1 X3		
2	0.453	0.435	57.251	8.452	X2 X4	11	
2	0.415	0.396	61.168	12.998	X3 X5	5610	reporten Le cesdi.o
2	0.399	0.379	62.920	15.032	X1 X4	10(0	reporten Le
2	0.376	0.355	65.333	1×833	X2 X3		
2	0.375	0.354	65.405	17.916	X4 X5	ne	cesdivo
2	0.288	0.265	74.484	28.454	X1 X2		
2	0.288	0.265	74.493	28.465	X2 X4		
2	0.286	0.263	74,686	28.689	X1 X5		
2	0.149	0.121	89.067	45.381	X2 X5		
3	0.508	0.484	51.466	3.737	X1 X3 X4		
3	0.494	0.469	52.959	5.469	X3 X4 X5		
3	0.469	0.442	55.582	8.514	X1 X3 X5		
3	0.461	0.434	56.436	9.506	X2 X3 X4		
3	0.459	0/432	56.603	9.699	X1 X2 X3		
3	0.425	0.396	60.206	13.882	X1 X4 X5		
3	0.421	0.392	60.581	14.317	X2 X3 X5		
3	0.405	0.375	62.265	16.271	X1 X2 X4		
3	0.375	0.344	65.398	19.908	X2 X4 X5		
3	0.306	0.271	72.670	28.349	X1 X2 X5		
4	0.521	0.489	50.090	4.140	X1 X3 X4 X5		
4	0.509	0.475	51.427	5.691	X1 X2 X3 X4		
4	0.501	0.467	52.203	6.592	X2 X3 X4 X5		
4	0.469	0.433	55.578	10.510	X1 X2 X3 X5		
4	0.428	0.389	59.901	15.527	X1 X2 X4 X5		
5	0.522	0.481	49.970	6.000	X1 X2 X3 X4 X5	Ď •	a - 1a (= 1
							4 14 16

De la tabla de todas las regresiones posibles, nos interesan las filas 15,16, y 31 que corresponden a la información del modelo reducido. $Y = \beta_0 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$ Y el modelo completo en especial sus SSE, necesarios para calcular el estadístico de prueba F_0 :

$$F_{0} = \frac{[SSE(\beta_{0}, \beta_{2}, \beta_{5}) - SSE(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5})]/3}{MSE}$$

$$= \frac{[89.067 - 49.970]/3}{0.861546} = 15.1266831$$

Dado que $F_0 = 15.12668 > f_{0.05,3,58} = 2.7635518$, entonces rechazamos H_0 y concluimos que el conjunto de predictoras son significativamente distinto de cero. ise Lescartan?

Punto 3. Prueba de hipótesis lineal general

En un caso hipotético, es de interés para el hospital saber si el censo promedio diario es igual al número promedio de enfermeras y si la duración de la estadía y la rutina de cultivos presentan diferencias importantes en sus efectos:

$$H_0: \begin{cases} \beta_1 - \beta_2 = 0\\ \beta_3 - \beta_5 = 0 \end{cases}$$

si se analiza de la forma $H_0: \mathbf{L}\beta = 0$ se tiene que:

$$\mathbf{L} = \begin{bmatrix} 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 \end{bmatrix} \quad y \quad \underline{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{bmatrix}$$

Así el modelo nulo es

$$Y = \beta_0 + \beta_1(X_1 + X_2) + \beta_3(X_3 + X_5) + \varepsilon$$

Luego, se tiene que el estadístico de prueba está dado por:

$$F_0 = \frac{\frac{SSE(ModeloReducido) - SSE(ModeloCompleto)}{g.l(ModeloReducido) - g.l(ModeloCompleto)}}{MSE} = \frac{\frac{SSE(RM) - 49.9697}{61 - 58}}{0.861546}$$

Suprestos!

Punto 4.1 Supuestos del modelo

1450+ Primero se desea validar el supuesto de normalidad en los errores, yeamos el siguiente gráfico:

Normal Q-Q Plot of Residuals

No hacen et ana fisis grafico que et mais inportante 20+ Como $V_p > \alpha = 0.05$ se concluye que el supuesto de normalidad se cumple. Por otro lado, para el supuesto

20+

de varianza constante observemos el gráfico de los Residuales estudentizados vs. Valores ajustados.

Como no podemos observar un patrón notable en los residuales, podemos decir que los residuales tienen varianza constante. — 5 incompleto.

Punto 4.2 Observaciones Extremas

Teniendo en cuenta los distintos métodos para identificar observaciones extremas, como se ve en la siguiente tabla:

Table 5: Tabla de diagnósticos.

base.Y	res.stud	Cooks.D	hii	Dffits
2.9	-0.5031	0.0072	0.1458	-0.2065
3.9	-0.1523	0.0002	0.0554	-0.0366
1.4	-1.3080	0.0263	0.0844	-0.3995
5.8	1.0384	0.0125	0.0652	0.2743
4.8	0.3055	0.0027	0.1467	0.1257

Observaciones Influenciales.

El criterio del diagnóstico DFFITS (| $\mathbf{DFFITS}_i| > 2\sqrt{(\frac{6}{64})} = 0.6123724$),

¿Distantias de cook? Opt

De acuerdo a este criterio podemos ver que las observaciones 11, 17, 30 y 55 se consideran observaciones influenciales.

(Q¿ causan?

Datos Atípicos.

Un valor se considera atípico si -3 < residuales estudentizados < 3, por lo tanto según el gráfico no hay observaciones atípicas a considerar.

Puntos de balanceo.

De acuerdo con el Diagnóstico DFBETAS ($h_{ii} > 0.1875$) se sabe que las observaciones 11, 15, 17, 19, 30, 41, 55 y 56 se consideran puntos de balanceo.

Conclusiones.

(Causan?

2,50+

- Como a la luz de los residuales, el supuesto de normalidad y varianza constante se cumplen, se puede concluir que el modelo propuesto es apto para hacer estimaciones sobre la variable respuesta, sin embargo si observamos con detalle el coeficiente de determinación R^2 , El modelo propuesto solo explica el 52.25% de la variabilidad total y por lo tanto se podría ampliar la base de datos, estudiar la multicolinealidad o eliminar información redundante.
- Como se presenciaron observaciones influenciales y puntos de balanceo, se sugiere investigar dichas observaciones con el fin de determinar que tanto afectan al modelo y sus parámetros. Y si al corregirlas o eliminarlas el modelo podría mejorar.

N. hablan de validez