Problem 1 Consider the function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \sinh(x) = \frac{e^x - e^{-x}}{2}$$

- 1. (5 points) Show that f is differentiable and strictly increasing for all $x \in \mathbb{R}$.
- 2. (5 points) The following MATLAB commands have been used to generate the plot in Figure 1.
 - >> k=21;
 >> x=single(linspace(-1,1,129)*2^-k);
 >> f=@(x)(exp(x)-exp(-x))/2;
 - >> plot(x,f(x))

Figure 1: An untrustworthy plot of the function f on an interval around zero.

Explain why this is clearly not an accurate representation of the graph of f on the interval $[-2^{-21}, 2^{-21}]$?

3. (5 points) Consider the nominator of f(x), i.e. the expression

$$N(x) = e^x - e^{-x}.$$

Show that we do not have to worry about catastrophic cancellation when $x>\frac{\log(2)}{2}$.

4. (2 points) Let p_n be the Taylor polynomial for f of order n at the point $x_0=0$. Show that

$$p_7(x) = x + \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{5040}.$$

5. (6 points) Show that

$$\frac{|f(x) - p_7(x)|}{|f(x)|} \le \frac{|x|^8}{8!}, \quad x > 0.$$

6. (2 points) Show that p_7 approximates f with a relative error τ which is smaller than the single precision round-off error, i.e. $u=2^{-24}$, on the interval $(0, \log(2)/2]$.

Problem 2 An infinitely differentiable function $f:[0,1]\to\mathbb{R}$ has been integrated numerically on the interval [0,1] using the standard trapezoidal rule T=T(h) and stepsizes $h=h(k)=2^{-k}$ for many different values of k. The results and some auxiliary calculations are given in the table below.

k	Th	(Th-T2h)/3	(T2h-T4h)/(Th-T2h)
24	-0.1056405560	-5.2828e-15	0.0674255692
23	-0.1056405560	-3.5620e-16	35.2987012987
22	-0.1056405560	-1.2573e-14	2.6405445180
21	-0.1056405560	-3.3200e-14	4.6455343458
20	-0.1056405560	-1.5423e-13	3.8538436160
19	-0.1056405560	-5.9439e-13	4.0087321291
18	-0.1056405560	-2.3828e-12	4.0049681024
17	-0.1056405560	-9.5428e-12	3.9991143549
16	-0.1056405559	-3.8163e-11	4.0001060634
15	-0.1056405558	-1.5266e-10	3.9999743333
14	-0.1056405554	-6.1062e-10	4.0000016515
13	-0.1056405535	-2.4425e-09	4.0000000947
12	-0.1056405462	-9.7699e-09	3.9999994938
11	-0.1056405169	-3.9080e-08	3.9999985076
10	-0.1056403996	-1.5632e-07	3.9999939668
9	-0.1056399307	-6.2527e-07	3.9999758652
8	-0.1056380549	-2.5011e-06	3.9999034071
7	-0.1056305516	-1.0004e-05	3.9996127750
6	-0.1056005394	-4.0012e-05	3.9984373960
5	-0.1054805023	-1.5999e-04	3.9935271855
4	-0.1050005413	-6.3891e-04	3.9703436822
3	-0.1030838038	-2.5367e-03	3.8067034455
2	-0.0954736974	-9.6565e-03	1.4391333304
1	-0.0665042792	-1.3897e-02	
0	-0.0248134239		

1. (5 points) Explain, why it is immediately clear that computed values of the tell-tale fraction

$$\frac{T_{2h} - T_{4h}}{T_h - T_{2h}}$$

are completely wrong for k > 19.

2. (4 points) Explain, why the expression

$$T_h - T_{2h}$$

cancelled catastrophically for large values of k.

3. (5 points) Explain why the computed approximations of the integral are inaccurate for small values of k.

- 4. (7 points) Determine the range of k where you are confident that you can trust the error estimates. Remember to justify your choice!
- 5. (5 points) Determine the smallest value of k from which the value of the integral can be approximated with a *relative* error which is smaller than $\tau=10^{-7}$.

Problem 3 Let $y \in (0,1)$ and consider the non-linear equation

$$g(y) = 0$$

where

$$g(y) = \frac{\sqrt{1 - y^2}}{y} - \tan(y).$$

- 1. (5 points) Show that this equation has at least one solution on the interval (0,1).
- 2. (5 points) Show that the solution is unique.
- 3. (7 points) Write down an iteration which is certain to converge to the solution, provided you begin with a good initial guess.
- 4. (8 points) The following table displays the results of applying Newton's method to the problem at hand.

n	x(n)	g(x(n))
0	5.00000000000000e-01	1.185748317725087e+00
1	7.003884584051097e-01	1.761416298335665e-01
2	7.389598589869100e-01	5.697906526650476e-04
3	7.390851339148572e-01	-3.182480501351392e-09
4	7.390851332151607e-01	-1.110223024625157e-16
5	7.390851332151607e-01	-1.110223024625157e-16
6	7.390851332151607e-01	-1.110223024625157e-16
7	7.390851332151607e-01	-1.110223024625157e-16
8	7.390851332151607e-01	-1.110223024625157e-16
9	7.390851332151607e-01	-1.110223024625157e-16

In exact arithmetic, Newton's iteration converges quadratically, and the number of correct digits should double for every iteration. Explain why the computed numbers stagnate after n=4.

Problem 4 The "rage" virus has escaped from the laboratory at the heart of the green zone in London and the zombies are attacking the civilian population. Table 1 gives the number of infected during the initial phase.

t (minutes)	infected
0	1
2	6
4	19
6	40
8	69

Table 1: The number of zombies as function of time during the first few minutes after the outbreak.

- 1. (8 points) Find a polynomial of degree at most 2 which fits the initial data.
- 2. (7 points) Estimate the rate of infection, i.e. new zombies/minute at t=8 minutes.
- 3. (10 points) The garrison has the capacity to kill 50 zombies/minute using conventional small arms. Assuming that our model continues to hold, at which time will it be impossible to stabilize the zombie population at a fixed number of individuals.