DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

INTRODUCTION TO GEOTECHNICAL ENGINEERING LABORATORY

EXPERIMENTS 6-7 CONSTANT-HEAD AND VARIABLE-HEAD TESTS

Group 2

Scott Chen Jenna Manfredi Gila Rosenzweig Jake Sigman Eliyas Encarnacion

 $\begin{array}{c} {
m CE-331} \\ 4/14/23 \end{array}$

Professor Ng

Contents

Li	st of	Figures	2
1	Ove	erview	3
2	Res	ults	3
	2.1	Constant Head	3
	2.2	Variable Head	4
3	San	aple Calculations	5
	3.1	Hydraulic Gradient	5
	3.2	Velocity	5
	3.3	Coefficient of Permeability	5
	3.4	Coefficient of Permeability at 20°C	5
	3.5	Relative Density	5
	3.6	Darcy Coefficient of Permeability	6
	3.7	Absolute Permeability	6
4	App	pendix	7

CE-331	
Croup	2

List of Figures

Figure 1: H	ydraulio	Gradi	ent v	vs.	Vel	ocit	y a	t 2	0°C	Ο.		 									3
Figure 2: Ti	ime vs.	$\ln\left(\frac{h_o}{h_1}\right)$) .									 	•		 •						4

1 Overview

2 Results

The variable head test indicates, with a $k_p = 2.036 \times 10^{-5}$ at 20°C that the soil has low to very low permeability. The absolute permeability is so small as to be of magnitude on the order 10^{-10} ($\bar{K} = 3.27 \times 10^{-10}$), which indicates a degree of permeability that is so low as to be practically impermeable. The constant head test at all temperatures at which the readings were taken produces a permeability coefficient of $k_T = 0.021 = 2.1 \times 10^{-2}$, which is a medium degree of permeability. At 20°C, the coefficient is $k_{20} = 0.0196 = 1.96 \times 10^{-2}$, indicating a medium degree of permeability as well. The absolute permeability is on the order of magnitude of 10^{-7} , ($\bar{K} = 3.16 \times 10^{-7}$), indicating very low permeability.

2.1 Constant Head

Figure 1: Hydraulic Gradient vs. Velocity at 20°C

2.2 Variable Head

Figure 2: Time vs. $\ln\left(\frac{h_o}{h_1}\right)$

3 Sample Calculations

3.1 Hydraulic Gradient

$$HG = \frac{h}{L}$$

$$HG = \frac{4.199}{37.15} = \boxed{0.237}$$

3.2 Velocity

$$V = \frac{q}{A \times t}$$

$$V = \frac{25}{62.02 \times 180} = \boxed{0.00224 \text{ cm/s}}$$

3.3 Coefficient of Permeability

$$k_T = \frac{q \times L}{h \times A \times t}$$

$$k_T = \frac{25 \times 37.15}{4.199 \times 62.02 \times 180} = \boxed{0.0198}$$

3.4 Coefficient of Permeability at 20°C

$$k_{20} = k_T \left(\frac{\sigma_T}{\sigma_{20}}\right) \left(\frac{\gamma_{20}}{\gamma_T}\right)$$
$$k_{20} = 0.0198 \left(\frac{0.0009159}{0.0010005}\right) \left(\frac{62.3}{62.26}\right) = \boxed{0.018145}$$

3.5 Relative Density

$$D_f r = \frac{\frac{1}{\gamma_{dmin}} - \frac{1}{\gamma_{dnat}}}{\frac{1}{\gamma_{dmin}} - \frac{1}{\gamma_{dmax}}}$$

$$D_f = \frac{\frac{1}{88.4} - \frac{1}{89}}{\frac{1}{88.4}} - \frac{1}{99.6} = \boxed{6\%}$$

3.6 Darcy Coefficient of Permeability

$$k = 2.303 \left(\frac{a \times L}{A \times t}\right) \log_{10} \left(\frac{h_1}{h_2}\right)$$
$$k = 2.303 \left(\frac{0.063 \times 11.7}{78.54 \times 2100}\right) \log_{10} \left(\frac{1131.2}{734.2}\right) = \boxed{1.9 \times 10^{-6}}$$

3.7 Absolute Permeability

$$\bar{K} = \frac{\eta}{\gamma_w} \left(\frac{\eta_T}{\eta_{20}}\right) k$$

$$\bar{K} = \frac{0.001005}{62.3} \times \left(\frac{0.001005}{0.01056}\right) \times 1.9 \times 10^{-6} = \boxed{3.29 \times 10^{-10}}$$

Appendix

4/4/22, 3:18 PM Virtual Soils Lab | data sheets | exp 6 | constant head permeability test Load File: Load File View Directory Compute THE COOPER UNION Albert Nerken School of Engineering Soil Mechanics Laboratory Experiment No. 6 - Constant Head Permeability Test Date: 4/4/1224/4/122 Name: Group No.: Members Depth: Agronomic Name: Boring: Elevation Geological Region: Sample: Description: 10 Formulae: 1) $k_T = qI/hAt$ **2)** $k_{20} = k_T(\sigma_T/\sigma_{20})(\gamma_{20}/\gamma_t)$ 3) $D_r = ((1/\gamma_{d \text{ min}} - 1/\gamma_{d \text{ nat}})/(1/\gamma_{d \text{ min}} - 1/\gamma_{d \text{ max}}))*100\%$ k_T = coefficient of permeability, cm/s, as observed temperature k_{20} = coefficient of permeability corrected to 20°C m_T = absolute viscosity of liquid at T o C, in g-s/cm 2 m_{20} = absolute viscosity of liquid at 20°C, in g-s/cm² q = quantity of water collected, in cc L = distance the head loss h occurs in, or distance between h = head loss, in cm piezometer outlets, in cm D_r = relative density, in % A = cross-sectional area of sample, in cm^2 $\gamma_{\rm d\ max}$ = maximum dry unit weight, in pcf $\gamma_{\rm d~min}$ = minimum dry unit weight, in pcf $\gamma_{\text{d nat}}$ = natural, or compacted dry unit weight, in pcf γ_{20} = unit weight of liquid at 20°C, in g/cm³ γ_t = unit weight of liquid at T:C, in g/cm³ t = time to collect the water, q, in sec

Table 1 [Data Sheet (A)]: Sample Preparation Data

Determination Number:	1	2	3
Area of Sample, A (cm ²):	62.02		
Length of Sample, L' (cm):	37.15		
Distance Between Piezometers, L (cm):	17.70		
Total Volume of Sample, V _t (cc):	2304		
Weight of Container & Soil Before (g):	9201		
Weight of Container & Soil After (g):	5930		
Weight of Dry Soil Sample (g):	3271		
Specific Gravity, G _s :	2.66		
Dry Unit Weight of Sample (pcf):	89		
Max. Dry Unit Weight of Soil (pcf):	99.60		
Min. Dry Unit Weight of Soil (pcf):	88.40		
Relative Density, D _r (%):	6		
Void Ratio of Sample, e:	0.864988764044		
Porosity of Sample, n (%):	46.38037401195		

Table 2 [Data Sheet (B)]: Run Data

 $file: ///C: /Users/keith.ng/Downloads/Virtual\ Soils\ Lab/Constant\ Head\ Test/expframe 6_java.htm$

4/4/22, 3:18 PM Virtual Soils Lab | data sheets | exp 6 | constant head permeability test

Determination Number:	1								
Run Number	Piezometer	Readings	Loss in Head, h (cm)	Hydraulic Gradient, i = h/L	Time, t (sec)	Quantity, q (cm ³)	Temperature, T (:C)	V=q/At @ T, :C (cm/sec)	V=q/At @ 20 :C (cm/sec)
	h ₁ (cm)	h ₂ (cm)							
1	107.6	103.4	4.199999999	0.237288135	180	25	23.7	0.0022394209	0.0020459623
2	104.5	93.0	11.5	0.649717514	180	72	23.7	0.0064495324	0.0058923716
3	103.2	89.0	14.20000000	0.802259887	180	93.5	23.7	0.0083754344	0.0076518992
4	101.5	83.0	18.5	1.045197740	180	119	23.0	0.0106596438	0.0099030079
5	98.4	73.9	24.5	1.384180790	180	157	21.9	0.0140635637	0.0134211038
6	95.5	63.1	32.4	1.830508474	180	206	21.2	0.0184528288	0.0179069395
7			NaN	NaN				NaN	NaN
8			NaN	NaN				NaN	NaN
9			NaN	NaN				NaN	NaN
10			NaN	NaN				NaN	NaN
11			NaN	NaN				NaN	NaN
12			NaN	NaN				NaN	NaN
13			NaN	NaN				NaN	NaN
14			NaN	NaN				NaN	NaN
15			NaN	NaN				NaN	NaN

Compute	Reset
Enter Group Number:	
Enter Filename to Save:	
Save I	File
View Dire	ectory

4/4/22, 3:18 PM

Virtual Soils Lab | data sheets | exp 7 | variable head permeability test

	Group#:	Load File:	Load File View Directory Compute
		Albert Nerker SOIL MECH	COPER UNION n School of Engineering ANICS LABORATORY draible Head Permeability Test
Name:			Date: 4/4/1224/4/122
Group No.: Members:			
Location:		Depth:	Horizon:
Boring:		Elevatio	Agronomic Name:
Geological Region:		Sample	
Description:		4	

Table 1 [Data Sheet (A)]: Sample Preparation Data

Determination Number:	1	2	3
Area of Permeameter, A (cm ²):	78.54		
Length of Sample, L (cm):	11.70		
Total Volume of Sample, V _t (cm ³):	918.918		
Weight of Permeameter & Sample (g):	4636		
Weight of Permeameter (g):	2739		
Weight of Soil Sample, W _t (g):	1897		
Water Content, w (%):	21.4		
Specific Gravity, G _s :	2.75		
Dry Unit Weight (pcf):	106.1100392430		
Void Ratio, e:	0.617189110701		
Porosity, n (%):	38.16431279539		

Table 2 [Data Sheet (B)]: Run Data

Determination Number:	1	Diameter of Standpipe, d, (cm):	0.283	Area of Standpipe, a, (cm ²):	0.062901753		
Run Number	Initial Standpipe Reading, h ₀ (cm)	Final Standpipe Reading, h ₁ (cm)	h ₀ /h ₁	Elapsed Time, t _T (sec)	Temperature, T (:C)	Elapsed Time, t ₂₀ (sec)	In(h ₀ /h ₁)
1	1131.2	1131.2	1	0	18.4	0	0
2	1131.2	1060.2	1.066968496	300	18.5	289.1971870	0.064821446
3	1131.2	997.2	1.134376253	600	18.5	578.3943740	0.126082943
4	1131.2	935.2	1.209580838	900	18.5	867.5915611:	0.190273884
5	1131.2	880.2	1.285162463	1200	18.5	1156.788748	0.250885140
6	1131.2	825.2	1.370819195	1500	18.5	1445.985935:	0.315408513
7	1131.2	786.2	1.438819638	1800	18.55	1737.323749	0.363823082
8	1131.2	734.2	1.540724598	2100	18.55	2026.877707	0.432252824

 ${\it file:///C:/Users/keith.ng/Downloads/Virtual\ Soils\ Lab/Variable\ Head\ Test/expframe7_java.htm}$

1/2

Table 6-1 Properties of distilled water $(\eta = \text{absolute})$

Temp., °C	Unit weight of water, g/cm ³	Viscosity of water, poise*
4	1.00000	0.01567
16	0.99897	0.01111
17	0.99880	0.01083
18	0.99862	0.01056
19	0.99844	0.01030
20	0.99823	0.01005
21	0.99802	0.00981
22	0.99780	0.00958
23	0.99757	0.00936
24	0.99733	0.00914
25	0.99708	0.00894
26	0.99682	0.00874
27	0.99655	0.00855
28	0.99627	0.00836
29	0.99598	0.00818
30	0.99568	0.00801