Module: Algèbre 3

Niveau: 2ème année Classe Préparatoire

Année universitaire: 2023/2024

Série de TD N°5: Réduction des endomorphismes "cas trigonalisation"

Exercice 1

Soit $M \in M_4(\mathbb{R})$ définie par

$$M = \left(\begin{array}{cccc} 1 & -2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 2 & -1 & 1 \end{array}\right)$$

- 1. La matrice M est-elle trigonalisable? Justifier.
- 2. Trigonaliser M.
- 3. Calculer $M^n, n \in \mathbb{N}^*$

Exercice 2 (Concours ESTIN 2022-2023)

Soit $A_m \in M_3(\mathbb{R})$ donnée par:

$$A_m = \begin{pmatrix} 2 & m^2 & 2m^2 \\ -1 & -2 & -2 \\ 1 & 2 & 3 \end{pmatrix}, \quad m \in \mathbb{R}.$$

- 1) Montrer que $P_{A_m}(\lambda) = -(1+\lambda)(2-m-\lambda)(2+m-\lambda)$.
- 2) Pour quelles valeurs de m la matrice A_m est diagonalisable?
- 3) On pose m = -1 et on note par A la matrice A_{-1} .
 - (a) Diagonaliser la matrice A en une matrice diagonale $D = P^{-1}AP$ (en ordonnant les valeurs propres par ordre croissant).
 - (b) Calculer A^{-1} en utilisant le Théorème de Cayley-Hamilton.
- 4) Déduire la solution du système différentiel suivant:

$$\begin{cases} x^{'}(t) = 2x(t) + y(t) + 2z(t) \\ y^{'}(t) = -x(t) - 2y(t) - 2z(t) \\ z^{'}(t) = x(t) + 2y(t) + 3z(t) \end{cases}$$