Unendliche Reihen

Def Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge komplexer Zahlen. Bilden wir eine neue Folge nach der Vorschrift $s_n := a_1 + ... + a_n, n \in \mathbb{N}$, so ist

$$s_1 = a_1,$$

 $s_2 = a_1 + a_2,$
...
 $s_n = a_1 + ... + a_n,$
...

Die Folge $(s_n)_{n\in\mathbb{N}}$ wird in dem Fall als Reihe von $(a_n)_{n\in\mathbb{N}}$ bezeichnet. Man schreibt $\sum_{n=1}^{\infty} a_n$ für die Folge $(s_n)_{n\in\mathbb{N}}$. Die Glieder s_n dieser Folge heißen Partialsummen (oder Teilsummen). Konvergiert die Folge $\left(\sum_{k=1}^{n} a_k\right)_{n\in\mathbb{N}}$ der Partialsummen gegen s, sagt man "die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert gegen s".

Schreibweise: $\sum_{k=1}^{\infty} a_k = s$.

s heißt die Summe der Reihe. Eine nichtkonvergente Reihe wird divergent genannt.

Satz 3.1 (Rechenregeln für Reihen) Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ zwei konvergente Reihen. Dann konvergieren die Reihen $\sum_{k=1}^{\infty} (a_k + b_k)$ und $\sum_{k=1}^{\infty} (ca_k)$, wobei c eine Konstante ist, und es gilt

1)
$$\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k$$
,

2)
$$\sum_{k=1}^{\infty} (ca_k) = c \sum_{k=1}^{\infty} a_k$$
.