Aufgabe zu Kandidatenschlüssel, Normalform, Synthesealgorithmus

Betrachten Sie ein abstraktes Relationenschema R(M, N, V, T, P, PN) mit den Funktionalen Abhängigkeiten 1

```
FA = \{ \{ M \} \rightarrow \{ M \}, \\ \{ M \} \rightarrow \{ N \}, \\ \{ V \} \rightarrow \{ T, P, PN \}, \\ \{ P \} \rightarrow \{ PN \}, \} \}
```

(a) Bestimmen Sie alle Kandidatenschlüssel.

V kommt auf keiner rechten Seite der Funktionalen Abhängigkeiten vor.

```
AttrHülle(R, \{V\}) = \{V, T, P, PN\} \neq R
AttrHülle(R, \{V, M\}) = \{V, M, N, T, P, PN\} = R
AttrHülle(R, \{V, P\}) = \{V, P, T, PN\} \neq R
V, M ist Schlüsselkandidat
```

(b) In welcher Normalform befindet sich die Relation?

1NF weil nichtprimäre Attribute von einer echten Teilmenge des Schlüsselkandidaten abhängen (z. B. $\{M\} \rightarrow \{N\}$).

- (c) Bestimmen Sie zu den gebenen Funktionalen Abhängigkeiten die kanonische Überdeckung.
 - (i) Linksreduktion

— Führe für jede funktionale Anhängigkeit $\alpha \to \beta \in F$ die Linksreduktion durch, überprüfe also für alle $A \in \alpha$, ob A überflüssig ist, d. h. ob $\beta \subseteq A$ ttrHülle $(F, \alpha - A)$.

Ø Nichts zu tun

(ii) Rechtsreduktion

— Führe für jede (verbliebene) funktionale Abhängigkeit $\alpha \to \beta$ die Rechtsreduktion durch, überprüfe also für alle $B \in \beta$, ob $B \in AttrH\"ulle(F - (\alpha \to \beta) \cup (\alpha \to (\beta - B)), \alpha)$ gilt. In diesem Fall ist B auf der rechten Seite überflüssig und kann eleminiert werden, d. h. $\alpha \to \beta$ wird durch $\alpha \to (\beta - B)$ ersetzt.

PN ist doppelt

AttrHülle
$$((R - \{V\} \rightarrow \{T, P, PN\}) \cup \{V\} \rightarrow \{T, P\}, \{V\}) = \{V, T, P, PN\}$$

FA = {
 { $M \} \rightarrow \{M \},$
 { $M \} \rightarrow \{N \},$
 { $V \} \rightarrow \{T, P \},$
 { $P \} \rightarrow \{PN \},$

¹https://db.in.tum.de/teaching/ws1415/grundlagen/Loesung08.pdf

(d) Falls nötig, überführen Sie die Relation verlustfrei und abhängigkeitsbewahrend in die dritte Normalform.

(i) Relationsschemata formen

— Erzeuge für jede funktionale Abhängigkeit $\alpha \to \beta \in F_c$ ein Relationenschema $\mathcal{R}_\alpha := \alpha \cup \beta$.

$$R_1(M, N)$$

 $R_2(V, T, P)$
 $R_3(P, PN)$

(ii) Schlüssel hinzufügen

— Falls eines der in Schritt 2. erzeugten Schemata R_{α} einen Schlüsselkandidaten von \mathcal{R} bezüglich F_c enthält, sind wir fertig, sonst wähle einen Schlüsselkandidaten $\mathcal{K} \subseteq \mathcal{R}$ aus und definiere folgendes zusätzliche Schema: $\mathcal{R}_{\mathcal{K}} := \mathcal{K}$ und $\mathcal{F}_{\mathcal{K}} := \emptyset$ —

```
R_1(\underline{M}, N)

R_2(V, T, P)

R_3(P, PN)

R_4(V, M)
```

(iii) Entfernung überflüssiger Teilschemata

— Eliminiere diejenigen Schemata R_{α} , die in einem anderen Relationenschema $R_{\alpha'}$ enthalten sind, d. h. $R_{\alpha} \subseteq R_{\alpha'}$.

Ø Nichts zu tun