## **CSE472: Machine Learning**

### Instruction to train and evaluate:

### Step 1:

**Download Datasets.** Save them in a **Datasets** folder (which is the same directory as 1905065.ipynb). The final directory will look like this:



## Step 2:

## **Install Dependencies**

pip install scikit-learn, pip install pandas, pip install matplotlib, pip install scipy, pip install seaborn

#### Step 3:

#### Run 1905065.ipynb file.

- i) Give the short name for the dataset("telco", "adult", "credit") for which we will run our experiments in the 2nd last line of the first cell.
- ii) Give 'Information Gain' or 'correlation' in the top\_20\_feature\_selection\_process variable in the last line of the first cell.
- iii) By default '11' regularization is selected in the LogisticRegression class as the default argument. '12' can also be used here.

```
import pandas as pd
import numpy as np
from sklearn.utils import resample
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import accuracy_score, roc_auc_score, auc, confusion_matrix, f1_score, precisi
from sklearn.model_selection import train_test_split
from scipy import stats
import seaborn as sns
import matplotlib.pyplot as plt
np.random.seed(42)
#select dataset
dataset= "adult" # "adult" or "credit" or "telco"
top_20_feature_selection_process = 'Information Gain' # 'Information Gain' or 'correlation'
```

# **Performance Analysis:**

Learning Rate = 0.01 (constant), Number of Iteration = 1000(const)

**Dataset1: Telco Churn Dataset** 

**Metrics:** 

|                   | Accurac<br>y              | Sensitivit<br>y           | Specificit<br>y           | Precision                 | F1-score              | AUROC                     | AUPR                      |
|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|-----------------------|---------------------------|---------------------------|
| LR                | 0.794496<br>±<br>0.002863 | 0.500594<br>±<br>0.029526 | 0.900698<br>±<br>0.007711 | 0.645817<br>±<br>0.005803 | 0.56349 ±<br>0.017724 | 0.828284<br>±<br>0.000543 | 0.616401<br>±<br>0.003438 |
| Voting ensemble   | 0.79418                   | 0.502674                  | 0.899517                  | 0.643836                  | 0.564565              | 0.828567                  | 0.616611                  |
| Stacking ensemble | 0.785664                  | 0.486631                  | 0.89372                   | 0.623288                  | 0.546547              | 0.830463                  | 0.630463                  |

## **Violin plot for 9 Bagging LR learners:**





# **Dataset2: Adult Census Dataset Metrics:**

|                   | Accurac<br>y              | Sensitivi<br>ty           | Specifici<br>ty           | Precision             | F1-score                  | AUROC                     | AUPR                      |
|-------------------|---------------------------|---------------------------|---------------------------|-----------------------|---------------------------|---------------------------|---------------------------|
| LR                | 0.824854<br>±<br>0.000521 | 0.409668<br>±<br>0.004028 | 0.953279<br>±<br>0.000911 | 0.730637<br>± 0.00242 | 0.524964<br>±<br>0.003018 | 0.871252<br>±<br>0.000576 | 0.675452<br>±<br>0.000921 |
| Voting ensemble   | 0.82482                   | 0.409755                  | 0.953207                  | 0.730358              | 0.524979                  | 0.871296                  | 0.67561                   |
| Stacking ensemble | 0.836835                  | 0.519562                  | 0.934974                  | 0.711937              | 0.600724                  | 0.888824                  | 0.715227                  |

## Performance Improvement using Information gain top 20 feature selection:

|                   | Accurac<br>y              | Sensitivit<br>y       | Specificit<br>y           | Precision                 | F1-score                  | AUROC                     | AUPR                      |
|-------------------|---------------------------|-----------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| LR                | 0.825313<br>±<br>0.000465 | 0.427114<br>± 0.00418 | 0.948483<br>±<br>0.000833 | 0.719466<br>±<br>0.001624 | 0.536004<br>±<br>0.003018 | 0.869899<br>±<br>0.000707 | 0.678059<br>±<br>0.001196 |
| Voting ensemble   | 0.825251                  | 0.427491              | 0.948286                  | 0.71886                   | 0.536147                  | 0.869957                  | 0.67819                   |
| Stacking ensemble | 0.83967                   | 0.528951              | 0.935781                  | 0.71813                   | 0.609192                  | 0.889849                  | 0.719766                  |

# **Violin Plot 9 Bagging LR learners:**



Dataset 3: Credit Card Fraud Dataset (results showing for 20k negative samples) Metrics:

|                   | Accuracy          | Sensitivit<br>y   | Specificit<br>y | Precision | F1-score          | AUROC                     | AUPR                      |
|-------------------|-------------------|-------------------|-----------------|-----------|-------------------|---------------------------|---------------------------|
| LR                | 0.993894<br>± 0.0 | 0.736842<br>± 0.0 | 1.0 ± 0.0       | 1.0 ± 0.0 | 0.848485<br>± 0.0 | 0.965595<br>±<br>0.004848 | 0.863146<br>±<br>0.005573 |
| Voting ensemble   | 0.993894          | 0.736842          | 1.0             | 1.0       | 0.848485          | 0.967729                  | 0.865146                  |
| Stacking ensemble | 0.993894          | 0.747368          | 0.99975         | 0.986111  | 0.850299          | 0.967266                  | 0.869068                  |

# **Violin Plot 9 Bagging LR learners:**



## **Observation:**

- 1. Performance gets slightly improved when Information gain is used in place of correlation function to determine top 20 features (Dataset 2)
- 2. L1 regularization improves the performance on Dataset1 slightly.
- 3. Data is cleaned (duplication and NA removal) and then encoded with one hot encoding and scaled with standard scalar to get better performance