Special Topic: Recommender Systems

Dong-Kyu Chae

PI of the Data Intelligence Lab @HYU
Department of Computer Science & Data Science
Hanyang University

Latent Factor Models

- □ So far...
 - We learned KNN-based methods for recommender systems
 - However, the methods are heuristic-based, using hand-crafted functions

Model-based methods

Latent factor models

Linear models: matrix factorization, SVD, ...

Non-linear models: Autoencoder, deep neural networks, ...

Latent Factor Models

■ What is latent factor?

□ A feature that describe characteristics of users and items hidden in data

Latent Factor Models

■ What is latent factor?

□ A feature that describe characteristics of users and items hidden in data

- Relationship between the latent factors and ratings
 - Assumption: a rating is a result of interaction between user latent factors and item latent factors

$$(x_0)^2 + (x_0)^2 + (x_0$$

$$[a, b, c, d, e] \times [a] = 3$$

linear interaction> <ratings>

■ Latent factor examples

□ We don't know the explicit meaning of each factor in the latent matrices

Approach

- \square "Learn" the latent factors, U and V, that may originate the ratings
- All the latent factors in U and V are model parameters
- It can be seen as factorization of the rating matrix into two "thin' matrices U and V

Rating prediction with the trained U and V

 \square We can reconstruct "dense" rating matrix through $U \cdot V^T$

Sall the values

	i_1	i_2	i_3	i ₄	<i>i</i> ₅	<i>i</i> ₆	i ₇	i_8	i ₉	i ₁₀	i ₁₁	i ₁₂
u_1	1		3		??	5			5		4	
u_2			5	4			4			2	1	3
u_3	2	4		1	2		3		4	3	5	
u_4		2	4		5			4			2	
u_5			4	3	4	2					2	5
u_6	1		3		3			2			4	

$$\tilde{r}_{ui} = U_u V_i^T = \sum_{f=1}^k U_{uf} V_{fi}^T$$

items

0.3

0.8

-0.7 1.2 -0.1

0.7 -0.6

-0.5

-1.0

0.9

-0.3

0.4

$$U_u$$
 = row u of U
 V_i^T = column i of V

0/21/ predicting

R	f	actor	S						
	0.1	-0.4	0.2						
	-0.5	0.6	0.5	1.1	-0.2	0.3	0.5	-2.0	
*	-0.2	0.3	0.5	-0.8	0.7	0.5	1.4	0.3	
nsa	1.1	2.1	0.3	2.1	-0.4	0.6	1.7	2.4	
	-0.7	2.1	-0.2						
	-1.0	0.7	0.3	J					

Objective function: minimizing the sum of squared error

$$\underset{U,V}{\operatorname{argmin}} \sum_{u=1}^{m} \sum_{i=1}^{n} y_{ui} (r_{ui} - U_{u}V_{i}^{T})^{2}$$

□ Practically: there is the overfitting issue

Objective function with the regularization term

The goodness of fit is to reduce the prediction error

Goodness of fit

□ The regularization term is used to alleviate the overfitting problem

Two ways to training the MF model

- Stochastic gradient descent (SGD)
 - Training U and V simultaneously
- Alternating least squares (ALS)
 - Fix one of U and V, and then optimize the other

(Review) Optimization

□ If the cost function E is simple:

□ You can directly find the optimal parameters via computing the points where the derivative of E becomes zero

$$\frac{\partial E}{\partial \mathbf{k}} = 0$$

□ If the cost function E is complex:

- Multiple model parameters...
- Model parameters are aligned with each other...
- We cannot directly solve the problem via

$$\frac{\partial E}{\partial \mathcal{B}} = 0$$

Stochastic Gradient Descent

Objective:

Goodness of fit

Regularization

$$\underset{U,V}{\operatorname{argmin}} \sum_{u=1}^{m} \sum_{i=1}^{n} y_{ui} (r_{ui} - U_{u} V_{i}^{T})^{2} + \lambda (||U||^{2} + ||V||^{2})$$

Process:

- Initialize U and V randomly Starting Position
- Repeat:
 - 1. Choose a pair (u, i) randomly
 - Then the loss on the chosen (u, i) is:

G =	$\frac{1}{2}((\boldsymbol{r_{ui}} - \boldsymbol{U_u}\boldsymbol{V_i^T})^2$	$^{2}+\lambda(\left \left U\right \right ^{2}+\left \left V\right \right ^{2}))$
	_	006

เทลา	+^ \	112
UUUA	$I \leftarrow V$	/14
$\smile \bowtie \smile \lnot \lnot$	A III	
-1	مساباتا م	./0
	Updą	Update v

	المخط	T. CICO		-T
•	e_{u_j}	$= r_{ui} -$	U_u	V_i^{I}

$$V_{i} \leftarrow U_{u} + \eta \left(e_{ui} V_{i}^{T} - \lambda U_{u} \right)$$

$$V_{i} \leftarrow V_{i} + \eta \left(e_{ui} U_{u} - \lambda V_{i} \right)$$

•
$$V_i \leftarrow V_i + \eta(\underline{e_{ui}U_u} - \lambda V_i)$$

• Update U_{ij} and V_{ij} iteratively.

0.1	-0.4	0.2
-0.5	0.6	0.5
-0.2	0.3	0.5
1.1	2.1	0.3

1.1	2.1	0.3
-0.7	2.1	-0.2
-1.0	0.7	0.3

1.1	-0.2	0.3	0.5	-2.0
-0.8	0.7	0.5	1.4	0.3
2.1	-0.4	0.6	1.7	2.4

They are the partial derivative of U_u and V_i .

Alternating Least Squares

□ Fix one, then the loss surface becomes simple

Alternating Least Squares

ALS

Objective:

Goodness of fit

Regularization

$$\underset{U,V}{\operatorname{argmin}} \sum_{u=1}^{m} \sum_{i=1}^{n} y_{ui} (r_{ui} - \bigcup_{i} V_{i}^{T})^{2} + \lambda (\left|\bigcup_{i}\right|^{2} + \left||V|\right|^{2})$$

- Procedure
 - 1. Initialize the user latent factors U randomly
 - 2. For each item i_i let r_i be the vector of ratings of that item. Compute:

$$V_i = (U^T U + \lambda I)^{-1} U^T r_i \quad \text{(here, U is constant)}$$
3. For each user u_i let r_u be the vector of ratings of that item. Compute:

$$U_{u} = (V^{T}V + \lambda I)^{-1}V^{T}r_{u} \quad \text{(here, } V \text{ is constant)}$$

4. Repeat 2), 3) until convergence

□ SGD VS ALS

Putting Bias to Prediction

- □ Idea: The user rating consists of four parts:
 - \square μ : Global average for all ratings
 - \Box b_u : User bias for ratings
 - \Box b_i : Item bias for ratings
 - $\bigcup U_u V_i^T$: Interaction between user u and item i

Example

- □ Global average $\mu = 3.7$
- □ You are a critical reviewer: Your ratings are 1 star lower than the mean: $b_{x} = -1$
- □ Star Wars is the popular movie: This gets a mean rating of 0.5 higher than average movie: $b_i = +0.5$

Putting Bias to Prediction

Objective:

Goodness of fit

$$\underset{U,V,b_{u},b_{i}}{\operatorname{argmin}} \sum_{u=1}^{m} \sum_{i=1}^{n} y_{ui} \left(r_{uj} - \left(\mu + b_{u} + b_{i} + U_{u}V_{i}^{T} \right) \right)^{2}$$

$$+\lambda \left(\sum_{u=1}^{m} ||U_{u}||^{2} + \sum_{i=1}^{n} ||V_{i}||^{2} + \sum_{u=1}^{m} ||b_{u}||^{2} + \sum_{i=1}^{n} ||b_{i}||^{2} + \right)$$

Regularization

Solve: stochastic gradient descent

Results

Finally....

Finally....

Netflix Prize Home Rules Leaderboard Update Download

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 ‡ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand	Prize - RMSE = 0.8567 - Winning To	eam: BellKor's Pragn	natic Chaos	
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11
Progr	ess Prize 2008 - RMSE = 0.8627 - W	inning Team: BellKo	r in BigChaos	
13	xiangliang	0.8642	9.27	2009-07-15 14:53:22
14	Gravity	0.8643	9.26	2009-04-22 18:31:32
15	Ces	0.8651	9.18	2009-06-21 19:24:53
16	Invisible Ideas	0.8653	9.15	2009-07-15 15:53:04
17	Just a guy in a garage	0.8662	9.06	2009-05-24 10:02:54
18	J Dennis Su	0.8666	9.02	2009-03-07 17:16:17
19	Craig Carmichael	0.8666	9.02	2009-07-25 16:00:54
20	acmehill	0.8668	9.00	2009-03-21 16:20:50

Finally....

□ \$1 Million Awarded Sept 21st 2009

Thank You

