

AD-/ DA-omvandlare rapport Laboration 3

Joel Månbrant, Sanchir Tumentsetseg

7 juni 2024

ELG-A02 Digitalteknik Fakulteten för hälsa-, teknik- och naturvetenskap

Innehåll

1	Resultat					
	1.1	Frågor uppgift 1	2			
	1.2	Svar uppgift 1	2			
	1.3	Frågor uppgift 2	3			
	1 /	Svar uppgift 2	3			

1 Resultat

Tabell 1: Uppgift 1, DA-omvandlare

Digital ins	ignal	Analog utspänning, V		
Decimalt	Binärt	Avläst	Ideal, teoretisk	Differens
0	0	0,00107	0	0,001
63	111111	2,473	2,47	0,003
127	1111111	4,985	4,98	0,005
191	10111111	7,491	7,49	0,001
255	11111111	9,999	10	-0,001

1.1 Frågor uppgift 1

- 1. Hur stor är kretsens upplösning mätt i volt?
- 2. Har kretsen något offset-fel?
- 3. Har kretsen något skalfaktorfel?
- 4. Har kretsen något linearitetsfel?
- 5. Sänk Vref till -5V. Vad händer?

1.2 Svar uppgift 1

Kretsens upplösning bestäms av den inmatade spänningen och antalet bitar/resistorer som ingår i kretsen. Uppläsningenn beräknas sedan med formeln Upplösning = $V_{ref}/2^N$ där $V_{ref}=10V$ och N= antal bitar. Då vi jobbar med 8st. bitar och en inmatad spänning på 10V så kommer upplösningen bli. $10/2^8=0,0390625$ eller avrundat 39mV.

När vi studerar tabellen så ser vi att differensen mellan det teoretiska och det avlästa värdet är så litet att det kan försummas. Vi drar därför slutsatsen att det varken kan finnas offset-fel, skalfaktorfel eller linearitetsfel.

Om vi sänker V_{ref} till 5V istället för 10 så är det endast upplösningen som ändras från 39mV till 20mV, med andra ord så halveras de analoga utsignalerna i V till hälften så stora då de binära värdena förblir de samma.

Tabell 2: Uppgift 2, AD-omvandlare

Analog insignal, V	Digital värde				
	Binärt	Decimalt			
Kolumn1	Avläst	Avläst2	Ideal, teoretisk	Differens (Avläst - Ideal)	
0	0	0	0	0	
1,25	1000000	64	63	1	
2,5	10000000	128	127	1	
3,75	11000000	192	191	1	
5	11111111	255	255	0	

1.3 Frågor uppgift 2

- 1. Vad händer om frekvensen sänks till 1Hz och spänningen varieras?
- 2. Hur stor är kretsens upplösning mätt i volt?
- 3. Har kretsen något offset-fel?
- 4. Har kretsen något skalfaktorfel?
- 5. Har kretsen något linearitetsfel?

1.4 Svar uppgift 2

Spänningens variation påverkar den analoga signalens styrka och kan därför bli svår att översätta till binärt om referensspäningen V_{ref} är för liten, dock var detta inget som märktes under laborationen. Frekvensen eller uppdateringen av signalen påverkar inte vad för signal som skickas men blev svårare att läsa när den endast var 1Hz istället för 1000Hz.

Upplösningen beräknas likadant som i uppgift 1 alltså Upplösning = $V_{ref}/2^N$ vilket nu blir $5/2^8 = 0,01953125$ eller avrundat till 20mV.

Då Differensen även i denna uppgift var så liten så kan vi konstatera att det inte finns något offset-fel, skalfaktorfel eller linearitetsfel.