ComS 474 Homework 7

Sean Gordon

Nov 20, 2020

1 K-means

- 1) $X_i \in cluster1$ if $dist(X_i, C_1) < dist(X_i, C_2)$, meaning $||X_i C_1||^2 < ||X_i C_2||^2$, else $X_i \in cluster2$
- 2) Step 1: For a point x, calculate the euclidean distance d_i to each centroid C_i .
 - Step 2: Select the smallest d_i and record the index i.
 - Step 3: Assign x to the cluster of the respective centroid C_i .
 - Step 4: Repeat steps 1-3 for all points in X.

Using the steps above, it can be found that each cluster contains the points below:

Cluster 1: [0, 4, 5], Cluster 2: [1, 2, 3]

These values were calculated using the CLOSEST(X, C) function in kmeans.py.

- 3) Step 1: For a centroid C, calculate the arithmetic mean M for all points in its cluster.
 - Step 2: Assign C the calculated value M.
 - Step 3: Repeat this for all centroids C.

$$C_1 = \frac{(-0.57, 0.87, -0.89) + (-0.28, 0.25, -1.54) + (-1.18, 1.26, -0.33)}{3} \Rightarrow C_1 = (-0.6767, 0.7933, -0.92)$$

$$C_1 = \frac{(0.04, -0.76, 0.41) + (0.55, -0.38, 0.56) + (-0.65, -1.66, 0.35)}{3} \Rightarrow C_1 = (-0.02, -0.9333, 0.44)$$

2 Single-linkage clustering

•		(1)	(2)	(3)	(4)	(5)	(6)
	(1)	0	2.17232594	2.21797205	2.8186699	0.94392796	0.91531415
	(2)	2.17232594	0	0.65345237	1.13564959	2.2192341	2.47313566
4)	(3)	2.21797205	0.65345237	0	1.7670597	2.34431227	2.54452353
	(4)	2.8186699	1.13564959	1.7670597	0	2.71239746	3.0446182
	(5)	0.94392796	2.2192341	2.34431227	2.71239746	0	1.81499311
	(6)	0.91531415	2.47313566	2.54452353	3.0446182	1.81499311	0

5) As clusters 2 and 3 have the shortest distance between them (0.6534), they should be merged.

		(1)	(2)	(3)	(4)	(5)	(6)
-	(1)	0	2.17232594	2.21797205	2.8186699	0.94392796	0.91531415
۵)	(2)	2.17232594	0	0.65345237	1.13564959	2.2192341	2.47313566
6)	(3)	2.21797205	0.65345237	0	1.7670597	2.34431227	2.54452353
	(4)	2.8186699	1.13564959	1.7670597	0	2.71239746	3.0446182
	(5)	0.94392796	2.2192341	2.34431227	2.71239746	0	1.81499311
	(6)	0.91531415	2.47313566	2.54452353	3.0446182	1.81499311	0

	(1)	(2, 3)	(4)	(5)	(6)
(1)	0	2.17232594	2.8186699	0.94392796	0.91531415
(2, 3)	2.17232594	0	1.13564959	2.2192341	2.47313566
(4)	2.8186699	1.13564959	0	2.71239746	3.0446182
(5)	0.94392796	2.2192341	2.71239746	0	1.81499311
(6)	0.91531415	2.47313566	3.0446182	1.81499311	0

	(1, 6)	(2, 3)	(4)	(5)
(1, 6)	0	2.17232594	2.8186699	0.94392796
(2, 3)	2.17232594	0	1.13564959	2.2192341
(4)	2.8186699	1.13564959	0	2.71239746
(5)	0.94392796	2.2192341	2.71239746	0

	(1, 5, 6)	(2, 3)	(4)
(1, 6)	0	2.17232594	2.71239746
(2, 3)	2.17232594	0	1.13564959
(4)	2.71239746	1.13564959	0

Dendrogram:

3 DBSCAN

- 7) Neighbors = $\{B, C, D, G\}$.
- 8) A sample is a core point if its number of neighbors > T.

```
B has 1 neighbor A. C has 3 neighbors A, E, F.
```

D has 1 neighbor A. G has 4 neighbors A, H, I, J.

As the only neighbor of A that has > 3 neighbors is G, G is the only neighbor of A that is a core point.

```
9) C=\{A\}

C=\{A,B,C,D,G\} Added from A

C=\{A,B,C,D,G,H,I,J\} Added from G

C=\{A,B,C,D,G,H,I,J,K\} Added from I

C=\{A,B,C,D,G,H,I,J,K,L,N\} Added from K
```

10)

Algorithm 1: Shortened DBSCAN Pseudocode.

```
Data: X: samples, T:, a threshold
```

```
1 Initialize cluster index i \leftarrow 1;
2 foreach sample x \in X do
       if x are NOT assigned to a cluster then
           Seed set of cluster i: S \leftarrow x;
 4
           while S \neq \emptyset do
 5
               y \leftarrow one element of S;
 6
               if |N(y)| > T then
 7
                   Assign y to cluster i;
 8
                   S \leftarrow S \cup N(y);
 9
               end
10
               Remove y from S;
11
           end
12
           i++;
13
       end
14
15 end
```