Question Number		Scheme	Marks		
1.	(a)	Advantage: eg quicker/cheaper	B1		
		<u>Disadvantage</u> : eg doesn't give the full picture	B1	(2)	
	(<i>b</i>)	The register of pupils attending	B1	(1)	
	(c)	The individual pupils	B1	(1)	
			(4 marks)		
2.	(a)	$\begin{array}{cccc} & & \times & & \\ & \times & & \\ A & & B & R & & \\ & & & \end{array}$	B1, B1	(2)	
	(<i>b</i>)	$\int_{0}^{\infty} 0, x < 0$	M1 A1		
		$P(X \le x) = \int_0^x \frac{1}{12} dt = \frac{x}{\underline{12}} \qquad \therefore F(x) = \begin{cases} 0, & x < 0 \\ \frac{x}{12}, & 0 \le x \le 12 \\ 1, & x > 12 \end{cases}$	B1 ft (centre) B1 (ends)		
	(c)	$P(X < 4) = \frac{4}{12} = \frac{1}{3}$	B1 ft	(1)	
				(7 marks)	
3.	(a)	$P(SC) = \frac{3}{4}; P(HC) = \frac{1}{4}$ either	B1		
		Let <i>X</i> represent the number of HC chocolates			
		$\therefore X \sim B(20; 0.25)$ can be implied	B1		
		P(X = 10) = 0.9961 - 0.9861 = 0.0100 awrt 0.010	B1	(3)	
	(<i>b</i>)	$P(X < 5) = P(X \le 4)$	M1		
		= 0.4148 awrt 0.415	A1	(2)	
	(c)	Expected number = $np = 100 \times 0.25 = 25$	M1 A1	(2)	
				(7marks)	

_	stion nber	Scheme	Marks	
4.	(a)	$\overline{x} = \frac{0 \times 37 + 1 \times 65 + 2 \times 60 + \dots + 5 \times 12}{37 + 65 + 60 + \dots + 12} = \frac{500}{250} = 2$	M1 A1cso	(2)
	(b)	var = $\frac{\sum x^2}{250} - 2^2 = \frac{1478}{250} - 4 = 1.912$ (or $s^2 = 1.9196$)	M1 A1	(2)
	(c)	For a Poisson distribution the mean must equal the variance;		
		parts (a) and (b) are very close, so a Poisson might be a suitable model.	B1	(1)
	(<i>d</i>)	H_0 : $\mu = 2$; H_1 : $\mu < 2$	B1 B1	
		$X =$ number of errors over 4 pages. Under H ₀ $X \sim P_0(8)$;	M1	
		$P(X \le 3) = 0.0424$	M1 A1	
		This is less than 5% so a significant result and there is evidence that the secretary has improved.	A1 ft	(6)
			(11 m	arks)
5.	(a)	$H_0: p = 0.30$ $H_1: p < 30$	B1 B1	
		$X =$ number ordering vegetarian meal $X \sim B (20, 0.30)$ under H ₀		
		$P(X \le 3) = 0.1071 > 5\%$	M1, A1	
		∴ Not significant i.e. no reason to suspect proportion is lower	A1 ft	(5)
	(b)	$H_0: p = 0.10$ $H_1: p \neq 0.10$	B1 B1	
		$Y =$ number ordering vegetarian meal $Y \sim B(100, 0.10) \Rightarrow Y \approx P_0(10)$	M1	
		Need a, b such that $P(Y \le a) \approx 0.025$ and $P(Y \ge b) \approx 0.025$		
		From tables: $P(Y \le 4) = 0.0293$ and $P(Y \le 16) = 0.9730$	M1 A1	
		$\Rightarrow P(Y \ge 17 = 0.0270$	A1	
		$\therefore Y \le 4 \text{ and } Y \ge 17$		(6)
	(c)	Significance level is $0.0270 + 0.0293 = \underline{0.0563}$ (5.6%)	B1 ft	(1)
			(12 m	arks)

Question Number	Scheme		Marks	
6. (a)	X = number of sheep per square	$X \sim P_0 (2.25)$	B1	(1)
(b)	$P(X = 0) = e^{-2.25} = 0.105399$	awrt <u>0.105</u>	B1	(1)
(c)	$P(X > 2) 1 - P(X \le 2), =1-e^{-2.25} \left[1 + 2.25 + \frac{(2.25)^2}{2!}\right]$		M1, M1 A1	
	1 - 0.60933 = 0.39066	awrt <u>0.391</u>	A1	(4)
(d)	Sheep would tend to cluster – no longer randomly scattered		B1	(1)
(e)	$Y \sim P_0(20) \Rightarrow \text{normal approx}, \ \mu = 20, \ \sigma = \sqrt{20}$		M1, A1	
	$P(Y < 15) = P(Y \le 14.5), = P\left(Z \le \frac{14.5 - 20}{\sqrt{20}}\right)$	$\pm \frac{1}{2}$	M1, M1	
	$= P(Z \le -1.2298)$		A1	
	= 1 - 0.8907 = 0.1093	AWRT <u>0.109</u>	M1 A1	(7)
			(14 marks)	

Question Number	Scheme	Marks	
7. (a)		B1, B1	
	$\frac{27}{20}$	B1	(3)
		$\left(\frac{1}{20}, \frac{27}{20}\right)$	
	x 3		
(b)	$E(X) = \int_{1}^{3} \frac{1}{20} x^{4} dx = \left[\frac{x^{5}}{100} \right]_{1}^{3} = \frac{242}{100} = \underline{2.42}$	M1 [M1] A1	(3)
(c)	$\sigma^2 = \int_1^3 \frac{1}{20} x^5 dx - \mu^2 = \left[\frac{x^6}{120} \right]_1^3 - \mu^2 = \frac{728}{120} - (2.42)^2 = 0.21026$	M1 [M1]	
	$\therefore \ \sigma = 0.459$	A1 cso	(3)
(d	$E(X) = \int_{1}^{3} \frac{1}{20} x^{4} dx = \left[\frac{x^{5}}{100}\right]_{1}^{3} = \frac{242}{100} = \underline{2.42}$ $\sigma^{2} = \int_{1}^{3} \frac{1}{20} x^{5} dx - \mu^{2} = \left[\frac{x^{6}}{120}\right]_{1}^{3} - \mu^{2} = \frac{728}{120} - (2.42)^{2} = 0.21026$ $\therefore \sigma = 0.459$ $P(X \le x) = \int_{1}^{x} \frac{1}{20} t^{3} dt = \left[\frac{t^{4}}{80}\right]_{1}^{x} = \frac{x^{4}}{80} - \frac{1}{80}$	$\mathbf{M1} \ [\mathbf{M1}]_{1}^{x} \ \mathbf{A1}$	cso
	$F(x) = \begin{cases} 0 & x \le 1\\ \frac{1}{80}(x^4 - 1) & 1 < x < 3\\ 1 & x \ge 3 \end{cases}$	B1 ft, centre B1 ends	(5)
(e)	$F(p) = 0.25 \Rightarrow \frac{1}{80} (p^4 - 1) = \frac{1}{4} : p^4 = 21 \Rightarrow p = 2.14$ $F(q) = 0.75 \Rightarrow \frac{1}{80} (q^4 - 1) = \frac{3}{4} : q^4 = 61 \Rightarrow q = 2.79$	M1 A1	
	$F(q) = 0.75 \Rightarrow \frac{1}{80} (q^4 - 1) = \frac{3}{4} : q^4 = 61 \Rightarrow q = 2.79$	A1	
	IQR= <u>0.65</u>	A1 ft	(4)
(f	IQR= $\frac{0.65}{1}$ IQR $\approx \frac{4}{3} \times 0.459 = \underline{0.612}$,	B1	
	Sensible comment, e.g. reasonable approximation or slight underestimate	B1	(2)
		(20 ma	rks)