

NucE 497: Reactor Fuel Performance

Lecture 39: Final lecture

April 28th, 2017

Michael R Tonks

Mechanical and Nuclear Engineering

Today we will discuss exam 2, look at results from the final project, and conclude the course

- Module 1: Fuel basics
- Module 2: Heat transport
- Module 3: Mechanical behavior
- Module 4: Materials issues in the fuel
- Module 5: Materials issues in the cladding
- Module 6: Accidents, used fuel, and fuel cycle

First, lets review the course

- I hope to use MATLAB again in
 - a) About five minutes, I love it
 - b) A week or two, it can be a pain, but it can be useful
 - c) In about three months, summer is for playing not for MATLAB
 - d) A thousand years or so
- Fuel performance is determined by
 - a) (Efficiency with which heat is transported to the coolant
 - b) Reactor operating time
 - c) Coping time in the case of an accident
 - d) How good the reactor looks on TV

Remember to do the SRTE for this course

- You will earn extra credit on the final project
 - If 80% of you complete it, you will get +1%
 - If 90% of you complete it, you will get +2%
 - If 95% of you complete it, you will get +3%

The scores on Exam 2 on average were better than Exam 1

- The average score was 82% with a standard deviation of 14%
 - Problem 1: μ = 80%
 - Problem 2: μ = 77%
 - Problem 3: μ = 86%
 - Problem 4: μ = 82%

The goal of the project was to create and use a simple fuel performance code

You had the option to create a 1.5D code, a 2D RZ code with smeared pellets, or a 2D RZ code with discrete pellets.

You modeled a fuel rodlet with ten UO₂ pellets and surrounded by a zircaloy cladding:

Here is the general description of the project operating conditions:

The power will linearly increase for 3 hrs before reaching its maximum value, resulting from a fission rate of 2.75×10¹³ neutron/cm²s. Power will hold there for 2 years.

The linear heat rate will vary axially according to the equation:

$$LHR\left(\frac{z}{Z_o}\right) = LHR^o \cos\left[\frac{\pi}{2\gamma}\left(\frac{z}{Z_o} - 1\right)\right] = LHR^o F\left(\frac{z}{Z_o}\right)$$

Where

- LHR⁰ is the centerline linear heat rate (z = Z0)
- $\gamma = (Z_{ex} + Z_o)/Z_o$ where Z_{ex} is the extrapolation distance
- γ ≈ 1.3

Here is the general description of the project operating conditions (cont):

- $T_{cool,in} = 580 \text{ K}$,
- $\dot{m} = 0.25 \text{ kg/s}$
- Cpw= 4200 J/kgK

The coolant temperature along the length of the rodlet using the equation from slide 18 of lecture 7:

$$T_{cool} - T_{cool}^{in} = \frac{2\gamma}{\pi} \frac{Z_0 L H R^0}{\dot{m} C_{pw}} \left(\sin\left(\frac{\pi}{2\gamma}\right) + \sin\left(\frac{\pi}{2\gamma} \left(\frac{z}{Z_0} - 1\right)\right) \right)$$

Case 1: Burnup independent properties

2000

1600

NucE 497

Reactor Fuel Performance

2D Smeared

Case 2: Burnup dependent properties for two years

1.5-D multiple slice approach

MOOSE

2000

1800

1600

1400

1200

1000

800

400 200

Case 2: Burnup dependent properties for two years

Case 3: LOCA and melting

Reactor fuel performance directly impacts reactor efficiency and safety

- The performance of the fuel is determined by
 - How efficiently it heats the coolant
 - Avoiding unplanned shutdowns (maximizing operating time)
 - Providing maximum coping time in an accident
- The primary quantities of interest are the
 - Fuel centerline temperature
 - Cladding stress

What impacts the fuel centerline temperature at the beginning of life?

Reactor Fuel Performance

What impacts the fuel centerline temperature after two years in a reactor?

What impacts the cladding temperature at the beginning of life?

What impacts the cladding stress after two years in a reactor?

Final life lesson: I'm used to school, but how do I know what to I do when I get a job?

- In school I have clear (or sometimes not so clear) assignments telling me what to do. What do you have in a job?
- In school, you have to turn in assignments by specific dates. What do you have in a job?
- In school, if I don't know how to do something, I go ask the professor. What should I do in a job?
- In school, there are rules I have to follow and if I don't, I get in trouble. Jobs also have rules, what happens if I don't follow them?