

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №5 ПО ДИСЦИПЛИНЕ:

ОСНОВЫ ЭЛЕКТРОНИКИ

"БИПОЛЯРНЫЙ ТРАНЗИСТОР, ИССЛЕДОВАНИЕ ПО ПОСТОЯННОМУ ТОКУ"

Студент: Зернов Георгий Павлович	
Группа: ИУ7-34Б	
Вариант: 86	
Название предприятия: НУК ИУ МГТУ	им. Н. Э. Баумана
Студент	Зернов Г.П.
Преподаватель	Оглоблин Д.И.

Оглавление

ЦЕЛЬ ПРАКТИКУМА	3
ХОД РАБОТЫ	
Исследуемый транзистор	
Эксперимент 1	
Эксперимент 2	
Эксперимент 3	
ЗАКЛЮЧЕНИЕ	17

ЦЕЛЬ ПРАКТИКУМА

Получить навыки в использовании базовых возможностей программы Місгосар и знания при исследовании и настройке усилительных, ключевых и логических устройств на биполярных и полевых транзисторах.

ХОД РАБОТЫ

Исследуемый транзистор

В работе проводится исследование транзистора KT503v. Характеристики транзистора из библиотеки:

```
Вариант 86
.model KT503v NPN(Is=10.07f Xti=3 Eg=1.11 Vaf=60 Bf=250 Ise=100.2f
+ Ne=1.452 Ikf=.6117 Nk=.4667 Xtb=1.5 Br=1.7 Isc=47.49f Nc=1.715
+ Ikr=.7018 Rb=6 Rc=1.208 Cjc=23.66p Mjc=.33 Vjc=.75 Fc=.5
+ Cje=30.84p Mje=.33 Vje=.75 Tr=390.4n Tf=10.09n Itf=1 Xtf=2 Vtf=40)
```

Эксперимент 1

Соберём схему для получения входной и выходной BAX NPN транзистора:

С помощью режима DC Analyses получим BAX:

Выходной ВАХ:

Входной ВАХ:

Для транзистора KT503v

- максимальную мощность, рассеиваемую на коллекторе: 0.35Вт
- максимальный ток: 0.15А
- максимальное напряжение: 40В

Используя эти данные построим кривую максимальной мощности

На полученном графике построим нагрузочную прямую через точку (0, Imax) так чтобы она была касательной к кривой максимальной мощности.

На её середине возьмём рабочую точку с Upt = 4.65B Ipt = 0.075A.

Для неё найдём сопротивление обеспечивающее работу транзистора в ней, ток и напряжение базы.

$$Bf := 250$$

$$Ek := 9.3$$

$$Ik := \frac{Imax}{2} \quad Ik = 0.075$$

$$Uk := \frac{Ek}{2}$$
 $Uk = 4.65$

$$Rk := \frac{(Ek - Uk)}{Ik} \qquad Rk = 62$$

$$Ib := \frac{Ik}{Bf} \qquad \qquad Ib = 3 \times 10^{-4}$$

$$Ub := 0.760$$

Напряжение базы определяется по графику входной ВАХ как соответствующее току базы:

Эксперимент 2

Из закона Кирхгофа, используя ранее полученные данные и рабочую точку, рассчитаем сопротивление базы для каскада усиления:

$$Rb := \frac{(Ek - Ub)}{Ib}$$
 $Rb = 2.847 \times 10^4$

Соберём каскад (частота генератора 9кГц):

Так как расчёт приближённый, то изменим сопротивление так, чтобы напряжение коллектора было примерно равно половине напряжения источника:

С помощью режима Transient Analysis получим графики усиления сигнала

Рассчитаем коэффициент усиления, как отношение амплитуд:

$$K = 6B / 40 MB = 150$$

Рассчитаем схему с делителем напряжения:

Ep := 10

Ib =
$$3 \times 10^{-4}$$
 Ub := 0.760

Id := Ib·10 Id = 3×10^{-3}

R1 := 1 R3 := 1

Given

R1 + R3 = $\frac{Ep}{Id}$

$$\frac{R1}{R3} = \frac{(Ep - Ub)}{Ub}$$

R_res := Minerr(R1,R3)

R_res = $\begin{pmatrix} 3.08 \times 10^3 \\ 253.333 \end{pmatrix}$

Соберём схему:

Аналогично прошлой схеме изменим сопротивление так, чтобы напряжение коллектора было примерно равно половине напряжения источника:

С помощью режима Transient Analysis получим графики усиления сигнала:

Рассчитаем коэффициент усиления, как отношение амплитуд:

$$K = 6B / 40 MB = 150$$

Заметим, что коэффициенты усиления совпадают, что доказывает правильность расчётов.

Эксперимент 3

Проверим, влияние температуры на ВАХ транзистора. Используя

первую схему из эксперимента 1, проверим входную и выходную ВАХ для изменения температуры от 30 до -30 с шагом 5 градусов:

Температура изменяется от 30 до -30 с шагом 5.

Входной ВАХ:

Заметим, что при увеличении температуры, токи базы и коллектора увеличивается медленнее.

Проведём аналогичные измерения для схем без и с делителем напряжения из эксперимента 2.

Без делителя:

С делителем:

Проведём то же самое при значительном увеличении амплитуды. Получим графики:

Без делителя:

С делителем:

ЗАКЛЮЧЕНИЕ

Были выполнены все задачи, описанные выше, таким образом были получены и проанализированы характеристики транзистора.