Big Fun Agriculture

Overview

Problem Statement

Proposed System

Scope

Main Functionalities

System Overview

Reflection

Process

Technique

Challenges

Recommendations

Outstanding Issues

Closing

Problem Statement

- Inefficient crop disease management system at "Big fun agriculture"
- Manual methods are time consuming and prone to errors
- Lack of real time insights hinders effective decision making
- Makes it challenging to identify and treat diseases

Scope

Objectives:

- Identification of Diseased/Infected Crops
- Detailed Information on Infected Crops
- Integration with Existing Systems
- Database Maintenance

User Interaction & Interface:

User-Friendly GUI

Monitoring Crop Fields

Coverage Area

Main Goals:

- Early Detection & Prevention
- Improved Crop Yield & Quality

Out of Scope:

- Image Collection
- Hardware Failure
- Network Connectivity Issues

Disease Detection

Uses cameras and drones for timely identification of crop diseases, facilitating prompt intervention for crop health.

AI/ML

Employs advanced algorithms for precise crop disease diagnosis, enhancing decision-making efficiency.

Crop Disease Detection System

User-friendly interface

Facilitates easy interaction for staff and farmers, providing quick access to essential crop information.

Data Integration

Merges information seamlessly from various sources, enhancing decision-making with a comprehensive dataset

Main Functionalities

Al model focus on disease detection, treatment suggestion, crop monitoring and utilizing data model for training purposes.

Notify the user if any disease is detected and suggest information on available remedies and inventory status.

Receive images from drone and analyze it in real time with the help of Al

Three widgets for

accessing information on:

Inventory weather

Drone status

Main Page

ed,

Integration with Weather Forecasting

- Allow farmers to enhance their farm management decision
- Access to real time weather forecasting information
- Weather data accuracy will be within +/- 5% deviation
- Real-time updates every 15 minutes
- Forecasts up to 7 days ahead
- Weather data affects farmers decisions related to irrigation, planting, and pest control

Integration with Pesticide Inventory Systems

- Accurate information on available pesticides in the inventory
- Gives access to information about pesticides that are available
- Also provides their application rates on the crop
- Quantity (liters/gallons),
 Application Rate (liters/hectare)
- Real-time updates on pesticide availability
- Crucial for providing effective treatment for the identified disease.

Integration with Plant Diseases Library

- Plant Diseases Library interface is integrated with the software
- Provides access to a wide and comprehensive database of known plant diseases
- Help give accurate identification and treatment recommendations to farmers
- 95% accuracy in disease identification based on visual inputs given by the drones
- 1- 5 spectrum, 1 being healthy and 5 being the plant is beyond recovery
- Instant response time for disease identification and detection results

Integration with Drone Systems

- Integrates the software with the farmer's drone system
- Gives real time access to drones status
- Provides accurate information on Active drones on the field
- Units of measure is the number of active drones and number of inactive drones

System Overview - Architecture

System Overview Sequence Diagram

Use Case

System Overview - Domain Model

Reflection - Processes

- The Requirements Engineering Process
 - Elicitation
 - Analysis
 - Specification
 - Validation
 - Management

Reflection - Requirements Elicitation

- Collected information from stakeholders to identify and understand their needs and requirements for a system
- Achieved primarily through interviews and discussions with our client (Big Fun Agriculture)
- Gained crucial design information and developed mockups/prototypes

Reflection - Requirements Analysis

- Requirements were examined and refined to ensure that they are clear, complete and consistent
- Ambiguities and inconsistencies were clarified with the stakeholders
- Dependencies between requirements and the feasibility of implementing each requirement were verified
- Visual representations of the functionality of the system were developed (such as use case and sequence diagrams)

Reflection - Requirements Specification

- Outlines the requirements for the system in a clear, consistent and unambiguous manner
- Accomplished by the Software Requirements Specification document

NOVAFLECT

Crop Disease Surveying Drone Software

Software Requirements Specification For No Name Brands Software

Version 1.0

Reflection - Requirements Validation

- Confirming that the specified requirements represent the stakeholders' needs
- Accomplished through the Customer
 Feedback on the SRS 1.0 document

Smart Retail Inventory Management SRS V1 Client Feedback

Reflection - Requirements Management

- Maintaining effective communication with our client
- Implementing a version control system for documentation, tracking requirements over time
- Defining metrics to monitor progress on implementation
- Ensuring that all team members are aware of their roles and responsibilities

Reflection - Techniques

- Interviews with the client
- Mock-ups
- Brainstorming
- Use Case Diagram
- Flowcharts

Reflection - Challenges Encountered

Some challenges that we faced include:

- Vagueness and Ambiguity
- Time Constraints
- Scheduling Difficulties
- Providing concise and accurate information to our customer

Reflection - Discussion of Recommendations

- Improving clarity on implementation of machine learning for disease detection
- Making software support and updates a requirement rather than an attribute
- Removing mentions of unnecessary levels of design
- Specifying how non-functional attributes will be tested (such as security and reliability)
- Unable to address weather-related issues beyond previously stated solutions

Reflection - Discussion of Recommendations

ERROR

Oops! Something went wrong

We apologize for the inconvenience. Our team is aware of the issue and is working hard to fix it. In the meantime, please try closing the app and open it again to see if it resolves the problem. If the issue persists, feel free to contact our support team at [novaflect@email.com] for further assistance. Thank you for your patience!

ok

Reflection - Discussion of Recommendations

Outstanding Issues

- Technical ResourceConstraints
- Time-Driven Development
- Data Storage and
 Performance Optimization

SUMMARY

- Problem Analysis
- Refined Specifications
- API Integration
- Detecting crop disease
- Suggesting treatment
- Continuously Learning

