§6.1 Inner Product, Length, and Orthogonality

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n , then \mathbf{u} and \mathbf{v} are both $n \times 1$ matrices. The transpose of \mathbf{u} , \mathbf{u}^T , is a $1 \times n$ matrix so that $\mathbf{u}^T \mathbf{v}$ is a 1×1 matrix. The number $\mathbf{u}^T \mathbf{v}$ is called the inner product (dot product) of \mathbf{u} and \mathbf{v} and is written as $\mathbf{u} \cdot \mathbf{v}$.

If
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$, then

$$\begin{bmatrix} u_n \end{bmatrix} \qquad \begin{bmatrix} v_n \end{bmatrix}$$

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n.$$

The length (norm) of \mathbf{v} is the nonnegative scalar, $\|\mathbf{v}\|$, defined by $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$. Clearly, $\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$.

A unit vector is a vector whose length is one. Dividing a nonzero vector \mathbf{v} by its length (multiplying by $\frac{1}{\|\mathbf{v}\|}$) produces a unit vector \mathbf{u} because the length of \mathbf{u} is $\left(\frac{1}{\|\mathbf{v}\|}\right)\|\mathbf{v}\|$. The process of creating \mathbf{u} from \mathbf{v} is called normalizing \mathbf{v} and we consider \mathbf{u} to be in the same direction as \mathbf{v} .

If **u** and **v** are in \mathbb{R}^n , then the distance between **u** and **v**, denoted dist(**u**, **v**), is the length of the vector $\mathbf{u} - \mathbf{v}$. That is, dist(\mathbf{u}, \mathbf{v}) = $\|\mathbf{u} - \mathbf{v}\|$.

Extending the concept of perpendicular lines in traditional Euclidean geometry to \mathbb{R}^n .

In \mathbb{R}^2 or \mathbb{R}^3 consider two lines through the origin determined by vectors \mathbf{u} and \mathbf{v} . The two lines are geometrically perpendicular if and only if the distance from \mathbf{u} to \mathbf{v} is the same as the distance from \mathbf{u} to $-\mathbf{v}$. This is equivalent to the squares of the distances being the same.

Thus

$$[dist(\mathbf{u}, -\mathbf{v})]^{2} = \|\mathbf{u} - (-\mathbf{v})\|^{2}$$

$$= \|\mathbf{u} + \mathbf{v}\|^{2}$$

$$= (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})$$

$$= \mathbf{u} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v} + 2\mathbf{u} \cdot \mathbf{v}$$

$$= \|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2} + 2\mathbf{u} \cdot \mathbf{v}$$

and

$$[dist(\mathbf{u}, \mathbf{v})]^2 = \|\mathbf{u} - \mathbf{v}\|^2$$

$$= (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})$$

$$= \mathbf{u} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v} - 2\mathbf{u} \cdot \mathbf{v}$$

$$= \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\mathbf{u} \cdot \mathbf{v}$$

So the two squared distances are equal if and only if $2\mathbf{u} \cdot \mathbf{v} = -2\mathbf{u} \cdot \mathbf{v}$ which occurs only if $\mathbf{u} \cdot \mathbf{v} = 0$.

We now generalize the notion of perpendicularity (traditional geometry) to orthogonality (linear algebra) with the following:

Vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$.