MATH 644

CHAPTER 3

SECTION 3.2: LOCAL BEHAVIOR

CONTENTS

Analytic Functions Are Open Maps	\mathbf{z}
Analytic Functions Are Locally One	e-To-One 3

Created by: Pierre-Olivier Parisé Spring 2023

ANALYTIC FUNCTIONS ARE OPEN MAPS

DEFINITION 1. A continuous function $f:\Omega\subset\mathbb{C}$, where Ω is open, is an **open map** if $U\subset\Omega$ is open, then f(U) is open.

THEOREM 2. A non-constant analytic function defined on a region is an open map.

Proof.

te:	
• An open map always satisfies the maximum modulus principle.	

ANALYTIC FUNCTIONS ARE LOCALLY ONE-TO-ONE

DEFINITION 3. A function f is **one-to-one** if f(z) = f(w) only when z = w.

THEOREM 4. If f is analytic at z_0 with $f'(z_0) \neq 0$, then there is an r > 0 such that f is one-to-one on $\{z : |z - z_0| < r\}$.

Proof.

Note:

- The function $f(z) = e^z$ gives an example of an analytic function which is locally one-to-one, but globally infinite-to-one! The equation $w = e^z$ has infinitely many solutions.
- Theorem 2 and Theorem 4 show that if f is analytic at z_0 with $f'(z_0) \neq 0$, then f is a homeomorphism of a neighborhood of z_0 onto a neighborhood of $f(z_0)$.