Proofs0

Benjamin Katz

January 2022

1 Simple Example

Theorem: If x is an odd integer, x+1 is even.

- Let x = 2a 1 where $a \in Z$
- Since $\frac{2a-1}{2} = a \frac{1}{2}$, and $a \frac{1}{2}$ is not an integer, x does not provide an integer value when being divided by 2 and is therefore odd
- x + 1 = 2a and $\frac{2a}{2} = a$ where $a \in Z$
- Because x + 1 is divisable by 2 it is therefore an even number
- QED

2 Induction I

Theorem: For all natural numbers n, $3|(n^3 - n)$

- Base case: For $3|(k^3-k)$ let ${\bf k}=0,\,3|(0^3-0)$ gives us $\frac{0}{3}=0$ so P(0) is true
- Inductive Hypothesis: Lets assume P(k) is true $3|(k^3-k)$ for all values of k
- Inductive step: Lets prove that P(k+1) is true $((k+1)^3 (k+1)) = k^3 + 3k^2 + 3k k$ A three is factorable from part of the equation $3k^2 + 3k = 3(k^2 + k)$ and therefore $3|(3k^2 + 3k)$ $3|(k^3 - k)$ through the inductive hypothesis
- P(k+1) is true
- This completes the proof by induction
- QED

3 Induction II

Theorem: For all natural numbers n > 1, $n! < n^n$

- Base case: let $n = 2, 2! < 2^2$ therefore P(2) is true
- Inductive Hypothesis: Lets assume P(k) is true where $P(k) = k! < k^k$
- Inductive Step: Lets prove that P(k+1) is true $(k+1)! < (k+1)^{(k+1)}$ $(k+1)*k! < (k+1)^{(k+1)}$ Divide both sides by (k+1) $k! < (k+1)^k$ if $k! < k^k$ is true due to the inductive hypothesis and $k^k < (k+1)^k$ is true then $k! < (k+1)^k$ is true due to the transitive property of inequalities
- We have therefore proven the inductive step and P(k+1) is true
- This Completes the proof by induction
- QED