Lecture 2 Outline

- Signal Propagation Overview
- TX and RX Signal Models
 - Complex baseband models
- Path Loss Models
 - Free-space Path Loss
 - Ray Tracing Models
 - Simplified Path Loss Model
 - Empirical Models
- Log Normal Shadowing
- Combined Path Loss and Shadowing
- Model Parameters from Measurements

Pass Loss

• Pass loss: degradation of receive power with respect to the increasing transmitter-receiver distance

EM wave encounters an obstacle

- Reflection
- Diffraction
- Scattering
- Absorption

Reflection

• Wave hits an object with dimension much larger than the radio wavelength will be partially reflected off the surface of the object

Diffraction

 Apparent bending of waves around small obstacles and the spreading out of waves past small openings

Scattering

• EM wave scattered by particles that are much smaller in diameter than the wavelength

Absorption

- The absorption of EM wave is often called attenuation
- The energy of EM wave is taken up by some matter and transformed to other forms of energy, e.g., heat

Shadowing

• Shadowing: variation of receive signal power due to obstacles

Propagation Characteristics

- Path Loss (includes average shadowing)
- Shadowing (due to obstructions)
- Multipath Fading

-- small-scale propagation effect

Path Loss Modeling

- Maxwell's equations
 - Complex and impractical
- Free space path loss model
 - Too simple
- Ray tracing models
 - Requires site-specific information
- Simplified power falloff models
 - Main characteristics: good for high-level analysis
- Empirical Models
 - Don't always generalize to other environments

Representation of Bandpass Signals

• Bandpass signal:

$$s(t) = s_I(t)\cos(2\pi f_c t) - s_Q(t)\sin(2\pi f_c t)$$

- sI(t) is in-phase component, sQ(t) is quadrature component
- Define a complex signal: $u(t) = s_I(t) + js_O(t)$

$$s(t) = \text{Re}\{u(t)\}\cos(2\pi f_c t) - \text{Im}\{u(t)\}\sin(2\pi f_c t) = \text{Re}\{u(t)e^{j2\pi f_c t}\}$$

u(t) is called equivalent lowpass signal for
 s(t)

Free Space (LOS) Model

- Path loss and path gain:
 - Path loss:

$$P_{\rm r} = P_{\rm r} dB = 10$$

- Path gain:
- Power falls off: $P_C dR = -P_T dR =$

$$s(t) = \operatorname{Re}\{u(t)e^{j2\pi f_c t}\} \qquad r(t) = \operatorname{Re}\left\{\frac{\lambda\sqrt{G_l}e^{-j2\pi d/\lambda}}{4\pi d}u(t)e^{j2\pi f_c t}\right\}$$

- $\frac{P_r}{P_r} = \left[\frac{\sqrt{G_l}\lambda}{4\pi d}\right]^2$ Gl is the product of tx and rx antenna field radiation pattern in the LOS direction
- Proportional to 1/d2,

Ray Tracing Approximation

- Rx contains multipath signal components
- Ray tracing:
 - Assume a finite number of reflectors with known location and dielectric property
 - Then, the received signal from each signal component can be calculated
 - Typically includes reflected rays, can also include scattered and diffracted rays.
- Accurate for rural area, city street and indoor environment

Two Path Model

- Path loss for one LOS path and one ground (or reflected) bounce
- Delay spread: (x+x'-l)/c

$$P_r = P_t \left[\frac{\lambda}{4\pi} \right]^2 \left| \frac{\sqrt{G_l}}{l} + \frac{R\sqrt{G_r}e^{-j\Delta\phi}}{x + x'} \right|^2, \qquad \Delta\phi = \frac{2\pi(x + x' - l)}{\lambda} \approx \frac{4\pi h_t h_r}{\lambda d}$$

$$P_r pprox \left[rac{\lambda\sqrt{G_l}}{4\pi d}
ight]^2 \left[rac{4\pi h_t h_r}{\lambda d}
ight]^2 P_t = \left[rac{\sqrt{G_l}h_t h_r}{d^2}
ight]^2 P_t$$

Two Path Model

 Ground bounce approximately cancels LOS path above critical distance

$$P_r pprox \left[rac{\sqrt{G_l} h_t h_r}{d^2}
ight]^2 P_t$$
• Power falls off

- Proportional to d2 (small d
- Proportional to d4 (d>dc)
- Independent of I (f)

General Ray Tracing

- Models all signal components
 - Reflections
 - Scattering
 - Diffraction

- Requires detailed geometry and dielectric properties of site
 - Similar to Maxwell, but easier math.
- Computer packages often used

Simplified Path Loss Model

- Used when path loss dominated by reflections.
- Most important parameter is the path loss exponent **g**, determined empirically.

$$P_{-} = P_{-}K \left[\frac{d_0}{4\pi d_0}\right]^{\gamma}$$
 where $K \, dB = 20 \log_{10} \frac{\lambda}{4\pi d_0}$, is achieved from free-space model

Indoor Propagation Model

- Indoor model differ widely in the materials used for walls and floors, the layout of rooms, windows and obstructing objects
- Difficult to find generic models

$$P_r dBm = P_t dBm - P_L(d) - \sum_{i=1}^{N_f} FAF_i - \sum_{i=1}^{N_p} PAF_i$$

FAF: floor attenuation factor (8-20dB)

PAF: partition attenuation factor

Table 2.1: Typical partition losses	
Partition type	Partition loss (dB)
Cloth partition	1.4
Double plasterboard wall	3.4
Foil insulation	3.9
Concrete wall	13
Aluminum siding	20.4
All metal	26

Empirical Channel Models

- Cellular Models: Okumura model and extensions:
 - Empirically based (site/freq specific)
 - Awkward (uses graphs)
 - Hata model: Analytical approximation to Okumura
 - Cost 231 Model: extends Hata to higher freq. (2 GHz)
 - Walfish/Bertoni: extends Cost 231 to include diffraction
- WiFi channel models: TGn
 - Empirical model for 802.11n developed within the IEEE standards committee. Free space loss up to a breakpoint, then slope of 3.5. Breakpoint is empirically-based.

Commonly used in cellular and WiFi system simulations

Shadowing

- Models attenuation from obstructions
- Random due to random # and type of obstructions

$$p(\psi_{\mathrm{dB}}) = \frac{1}{\sqrt{2\pi}\sigma_{\psi_{\mathrm{dB}}}} \exp\left[-\frac{(\psi_{\mathrm{dB}} - \mu_{\psi_{\mathrm{dB}}})^2}{2\sigma_{\psi_{\mathrm{dB}}}^2}\right]$$

$$p(\psi) = \frac{\xi}{\sqrt{2\pi}\sigma_{\psi_{\mathrm{dB}}}\psi} \exp\left[-\frac{(10\log_{10}\psi - \mu_{\psi_{\mathrm{dB}}})^2}{2\sigma_{\psi_{\mathrm{dB}}}^2}\right], \quad \psi > 0,$$

- Typically follows a log-normal distribution
 - dB value of power is normally distributed
 - m=0 (mean captured in path loss), 4 dB<s<13 dB (empirical)
 - Central limit theorem can be used to explain this model

Combined Path Loss and Shadowing

• Linear Model: y lognormal

$$\frac{P_r}{-} = K/\sqrt{\frac{10\log K}{-10}}$$

$$\frac{P_{r/P}}{(dB)}$$

$$\frac{Slow}{-10}$$

$$\log d$$

dB Model

$$\frac{P_r}{P_t}(dB) = 10\log_{10}K - 10$$

Outage Probability

- Path loss: circular cells
- Path loss + shadowing: amoeba cells
 - Tradeoff between coverage and interference
- Outage probability
 - Probability received power below given minimum

$$P_{\text{out}}(P_{\min}, d) = p(P_r(d) < P_{\min})$$

$$p(P_r(d) \le P_{\min}) = 1 - Q\left(\frac{P_{\min} - (P_t + 10\log_{10}K - 10\gamma\log_{10}(d/d_0))}{\sigma_{\psi_{\text{dB}}}}\right)$$

$$Q(z) \stackrel{\triangle}{=} p(X > z) = \int_{z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^{2}/2} dy.$$

Cell Coverage Area

- Cell coverage area
 - % of cell locations at desired power
 - Increases as shadowing variance decreases
 - Large % indicates interference to other cells

Main Points

- Path loss models simplify Maxwell's equations
- Models vary in complexity and accuracy
- Power falloff with distance is proportional to d2 in free space, d4 in two path model
- Main characteristics of path loss captured in simple model Pr=PtK[d0/d]g
- Empirical models used in simulations
 - Low accuracy (15-20 dB std)
 - Capture phenomena missing from formulas
 - Can be awkward to use in analysis

Main Points

- Random attenuation due to shadowing modeled as log-normal (empirical parameters)
- Combined path loss and shadowing leads to outage and amoeba-like cell shapes
- Cellular coverage area dictates the percentage of locations within a cell that are not in outage

Assignment

- Read Chapter 2
- Homework: 2-2, 2-13, 2-17, 2-19