9 Вектори

§9.1 Теорія

Означення 9.1. Орієнтований кут між векторами a і b: $\angle(a,b)$.

Вправа 9.1. Властивості орієнтованих кутів:

- $\angle(a,b) = -\angle(b,a);$
- $\angle(a,b) + \angle(b,c) = \angle(a,c);$

Означення 9.2. Скалярний добуток векторів a і b: $(a,b) = |a| \cdot |b| \cdot \cos \angle (a,b)$.

Вправа 9.2. Властивості скалярного добутку:

- (a, b) = (b, a) (симетричність);
- $(x_1+iy_1,x_2+iy_2)=x_1x_2+y_1y_2$ (координатний запис);
- $(\lambda a + \mu b, c) = \lambda(a, c) + \mu(b, c)$ (лінійність);
- $|(a,b)| \leqslant |a| \cdot |b|$ (нерівність Коші–Буняковського);
- $(a,b) = 0 \iff a \perp b$ (критерій ортогональності).

Означення 9.3. Псевдоскалярний добуток векторів a і b: $a \lor b = |a| \cdot |b| \cdot \sin(a, b)$.

Вправа 9.3. Властивості псевдоскалярного добутку:

- $a \lor b = -b \lor a$ (кососиметричність);
- $(x_1+iy_1,x_2+iy_2)=x_1y_2-x_2y_1$ (координатний запис);
- $(\lambda a + \mu b) \lor c = \lambda (a \lor c) + \mu (b \lor c)$ (лінійність);
- $a \lor b \le |a| \cdot |b|$ (нерівність не Коші–Буняковського);
- $(b-a) \lor (c-a)$ (подвоєна) орієнтована площа трикутника ABC.

Лема 9.1 (про проекції)

Задані два набори векторів. Відомо, що сума довжин проекцій першого набору на довільну пряму не більше суми довжин проекцій другого на ту ж пряму. Тоді сума довжин першого набору не перевищує суми довжин другого.

Зауваження 9.1 — Тим самим лема про проекції зводить задачу на площині до задачі на прямій, що зачасту спрощує її.

9 Вектори

Приклад 9.3

Всередині опуклого n-кутника $A_1 \dots A_n$ взята точка O така, що $\overline{OA_1} + \dots + \overline{OA_n} = 0$. Нехай $d = OA_1 + \dots + OA_n$. Доведіть, що периметр багатокутника не менше 4d/n для парних n, і не менше $4dn/(n^2-1)$ для непарних значень n.

Доведення. Насправді вже має бути зрозуміло, що достатньо довести аналогічну нерівність для проекцій на довільну пряму. Нехай проекції векторів $\overline{OA_1}, \ldots, \overline{OA_n}$ на пряму ℓ дорівнюють (з урахування знаку) a_1, \ldots, a_n . Розіб'ємо числа a_1, \ldots, a_n на лві групи: $x_1 \ge \ldots \ge x_k \ge 0$ і $0 \ge y'_{n-k} \ge \ldots \ge y'_1$. Позначимо $y_i = -y'_i$. Тоді $x_1 + \cdots + x_k = y_1 + \cdots + y_{n-k} = a$, а тому $x_1 \ge a/k$ і $y_1 \ge a/(n-k)$.

Периметру у проекції відповідає число $2(x_1+y_1)$. Сумі довжин у проекції відповідає число $x_1+\cdots+x_k+y_1+\cdots+y_{n-k}=2a$. А оскільки

$$\frac{2(x_1 + y_1)}{x - 1 + \dots + y_{n-k}} \geqslant \frac{2}{2a} \left(\frac{a}{k} + \frac{a}{n - k} \right) = \frac{n}{k(n - k)},$$

то залишається лише помітити, що величина k(n-k) набуває свого максимального значення при k=n/2 для парних n, і при k=(n-1)/2 для непарних.

§9.2.ii Простий рівень

Задача 9.1. Доведіть, що якщо один опуклий багатокутник лежить всередині іншого опуклого багатокутника, то периметр внутрішнього багатокутника не більше переметра зовнішнього багатокутника.

Задача 9.2. Сума довжин деяких векторів на площині дорівнює L. Доведіть, що з цих векторів можна обрати кілька векторів таким чином, аби довжина їхньої суми була не менше L/π .

Задача 9.3. Доведіть, що якщо довжини усіх сторін і діагоналей опуклого багатокутника менше d, то його периметр менше πd .

Задача 9.4. Довжина проекції замкненої опуклої кривої на довільну пряму дорівнює 1. Доведіть, що її довжина дорівнює π .

§9.2.iii Середній рівень

Задача 9.5. Опуклий 2n-кутник $A_1A_2\dots A_{2n}$ вписано у коло радіуса 1. Доведіть, що $|\overline{A_1A_2}+\overline{A_3A_4}+\dots+\overline{A_{2n-1}A_{2n}}|\leqslant 2.$

Задача 9.6. Нехай $a_1, a_2, \ldots, a_{2n+1}$ — вектори довжини 1. Доведіть, що у сумі $v = \pm a_1 \pm a_2 \pm \cdots \pm a_{2n+1}$ можна обрати знаки так, щоб виконувалася нерівність $|v| \leq 1$.

Задача 9.7. Дано кілька опуклих багатокутників, причому неможливо провести пряму так, щоб вона не пертинала жодного багатокутника, і по обидві сторони від неї лежав хоча б один багатокутник. Доведіть, що ці багатокутники можна оточити багатокутником, периметр якого не перевищує суми їхніх периметрів.

§9.2.iv Складний рівень

Задача 9.8. Доведіть, що в опуклому k-кутнику сума відстаней від довільної внутрішньої точки до сторін стала тоді й лише тоді, коли сума векторів одиничних зовнішній нормалей дорівнює нулеві.