T.D. I - Suites & Fonctions

I - Suites

I.1 - Suites classiques

Solution de l'exercice 1. On obtient $u_1 = 77$.

Solution de l'exercice 2.

- **1.** On obtient 2, $2^{3/2}$, $2^{7/4}$, $2^{15/8}$, $2^{31/16}$.
- 2.

$$v_{n+1} = \ln(u_{n+1}) - \ln(4)$$

$$= \frac{1}{2}\ln(4) + \frac{1}{2}\ln(u_n) - \ln(4)$$

$$= \frac{1}{2}v_n.$$

3.

$$v_n = \left(\frac{1}{2}\right)^n v_0$$
$$= \left(\frac{1}{2}\right)^n (-\ln 4).$$

Solution de l'exercice 3.

- 1. $\ell = 8$.
- **2.** $v_{n+1} = -\frac{1}{2}v_n$.
- 3. $v_n = -8\left(-\frac{1}{2}\right)^n$.
- **4.** $u_n = -8\left(-\frac{1}{2}\right)^n + 8 \to 8.$

Solution de l'exercice 4. $u_n = 4 \cdot 3^n - 2$.

I.2 - Sommes des termes

I.3 - Suites définies par récurrence

I.4 - Suites définies implicitement

Solution de l'exercice 13.

- **1.** Le résultat est trivial pour n = 0. On pose $f_n : x \mapsto x^5 + nx 1$. La fonction f_n est strictement croissante sur \mathbb{R}_+ et $f_n(0) = -1$, $f_n(1) = n \ge 0$. Ainsi, f_n admet un unique zéro compris dans l'intervalle [0, 1[.
- **2.** Comme $f_{n+1}(u_n) = u_n > 0$, alors $u_{n+1} < u_n$. Ainsi, (u_n) est décroissante et minorée donc convergente. Comme $u_n = \frac{1-u_n^5}{n}$ pour tout entier naturel n non nul, et (u_n) est bornée, alors (u_n) converge vers 0.
- 3. D'après la définition,

$$nu_n - 1 = u_n^5.$$

Ainsi, $nu_n \to 1$ et $u_n \sim \frac{1}{n}$. De plus,

$$u_n^5 + n\left(\frac{1}{n} + \varepsilon_n\right) - 1 = 0$$

$$n\varepsilon_n = -u_n^5$$

$$\sim -\frac{1}{n^5}$$

Finalement,

$$u_n = \frac{1}{n} - \frac{1}{n^6} + o\left(\frac{1}{n^6}\right).$$

Solution de l'exercice 14.

1. Comme $f'(x) = 1 - \frac{1}{x}$, on obtient le tableau de variations suivant.

T.D. I - Suites & Fonctions

x	0		1		$+\infty$
f'(x)		_	0	+	
f(x)	+∞ \		<u></u>		$+\infty$

En notant g la restriction de f à]0,1[, on obtient que $u_n=g^{-1}(n)$.

2. Comme g est décroissante, alors g^{-1} est décroissante et (u_n) est décroissante.

De plus, $\lim_{0^+} g = +\infty$, donc $\lim_{+\infty} g^{-1} = 0$. D'où, $\lim_{n \to +\infty} u_n = 0$.

- 3. Comme $u_n \ln(u_n) = n$, alors $u_n = e^{u_n} e^{-n} \sim e^{-n}$ car $u_n \to 0$.
- **4.** En reprenant ces équations, comme $u_n \to 0$,

$$u_n - e^{-n} = e^{-n} (e^{u_n} - 1)$$
$$\sim e^{-n} u_n$$
$$\sim e^{-2n}$$

Ainsi, $u_n = e^{-n} + e^{-2n} + o(e^{-2n})$.

II - Fonctions

II.1 - Calculs de développements limités

II.2 - Étude de courbes

Solution de l'exercice 22.

1. Notons f l'application proposée. La fonction f est définie et dérivable sur $]0, +\infty[$ et pour tout $x \in]0; +\infty[$,

$$f'(x) = \frac{1 - \ln(x)}{x^2}.$$

Ainsi, f est croissante sur]0, e[, décroissante sur $]e, +\infty[$, tend vers $-\infty$ en 0 et tend vers 0 en $+\infty$.

2. D'après l'étude précédente, f admet un maximum en e de valeur $\frac{1}{e}$. Par conséquent,

$$\frac{\ln \pi}{\pi} < \frac{\ln e}{e}$$

$$e \ln \pi < \pi \ln e \pi^{e}$$

$$< e^{\pi},$$

car la fonction exponentielle est croissante.

II.3 - Équations fonctionnelles

Solution de l'exercice 26. Analyse : Soit f satisfaisant les hypothèses de l'énoncé. Alors, $f(0)^2 = 2f(0)$, soit f(0) = 0 ou f(0) = 2.

- * Si f(0) = 0. Alors, pour tout réel x, $f(x) \cdot f(0) = f(x) + f(0)$, soit f(x) = 0 et f est la fonction nulle.
- * Si f(0) = 2. Alors, pour tout réel x, $f(x) \cdot 2 = f(x) + 2$, soit f(x) = 2 et f est la fonction constante égale à 2.

Synsthèse : Ces deux fonctions conviennent.