3 (a) State the two conditions for an object to be in equilibrium.

2.

wi-antal by a

[2]

(b) A uniform beam AC is attached to a vertical wall at end A. The beam is held horizontal by a rigid bar BD, as shown in Fig. 3.1.

Fig. 3.1 (not to scale)

The beam is of length $0.40\,\mathrm{m}$ and weight W. An empty bucket of weight $12\,\mathrm{N}$ is suspended by a light metal wire from end C. The bar exerts a force on the beam of $33\,\mathrm{N}$ at 52° to the horizontal. The beam is in equilibrium.

(i) Calculate the vertical component of the force exerted by the bar on the beam.

component of the force = N [1]

(ii) By taking moments about A, calculate the weight W of the beam.

Init		The metal of the wire in (b) has a Young modulus of 2.0×10^{11} Pa. nitially the bucket is empty. When the bucket is filled with paint of weight 78 N, the strain of the wire increases by 7.5×10^{-4} . The wire obeys Hooke's law.	
	Calculate, for the wire,		
	(i)	the increase in stress due to the addition of the paint,	
	(ii)	increase in stress =	
		diameter = m [3]	
		[Total: 11]	