Découverte de l'algorithmique et de la programmation

Informatique

TP 14

Parcours d'un labyrinthe

Exercice 1 - Génération et parcours de labyrinthe - Travail préliminaire

Génération d'une grille

Soit une grille rectangulaire $n \times p$ constituée de n colonnes et de p lignes contenant toutes les arêtes possibles. On modélise cette grille par un graphe dont l'ensemble des sommets est donné par les couples (i,j) tels que $i \in [0,n[$ et $j \in [0,p[$. Les voisins d'un sommet (i,j) sont ceux situés en haut, en bas, à droite et à gauche s'ils existent (par exemple, le sommet (0,0) a comme voisin les sommets (0,1) et (1,0)).

FIGURE 1 – Grille (5,3) et grille (2,2)

Le graphe est implémenté par un dictionnaire d'adjacence où les clés sont les tuples, coordonnées d'un sommet. La valeur associée est une liste des sommets voisins.

Ainsi, la grille 2 × 2 sera modélisée par le graphe suivant :

$$G2 = \{(0,0):[(0,1),(1,0)], (0,1):[(0,0),(1,1)], (1,0):[(0,0),(1,1)], (1,1):[(0,1),(1,0)]\}.$$

Question 1 Écrire la fonction creer_graphe(n:int, p:int) -> dict permettant de créer le graphe d'une grille de n colonnes et p lignes.

On souhaite afficher ce graphe en utilisant matplotlib. Pour cela, on va commencer par tracer chacune des arêtes puis chacun des sommets.

Question 2 Écrire la fonction get_sommets(G:dict) -> (list,list) renvoyant deux listes les_x et les_y contenant respectivement les abscisses des sommets et les ordonnées des sommets.

Question 3 Écrire la fonction trace_sommets(G:dict) -> None qui affiche les sommets en utilisant un point rouge ('r.') ou cercle rouge ('ro').

Question 4 Écrire la fonction get_aretes(G:dict) -> list renvoyant la liste des arêtes du graphe sous la forme d'une liste de listes de tuples. Une arête est donc une liste de sommets où les sommets sont des tuples. Les arêtes ne devront être présentes qu'une fois.

Par exemple: get_aretes(G2) peut renvoyer la liste suivante:

[[(0,0),(0,1)],[(0,0),(1,1)],[(0,1),(1,1)],[(1,0),(1,1)]] (l'ordre des arêtes et des sommets peut être complètement différent).

1

Informatique

Question 5 Écrire la fonction trace_aretes(G:dict) -> None qui affiche les arêtes en utilisant un trait bleu. Exemple: pour tracer l'arête [(0,2),(1,2)], il faut utiliser l'instruction plt.plot([0,1], [2,2], 'b').

Question 6 Écrire la fonction trace_graphe(G:dict) -> None qui permet de tracer les sommets au dessus des arêtes.

FIGURE 2 - Grille 10 colonnes 8 lignes

Génération d'un labyrinthe

Dans notre cas, résoudre le labyrinthe consiste en partir du sommet (0,0) (sommet en bas à gauche) et à se déplacer sur les arêtes dans le but d'atteindre le sommet en haut à droite. Pour générer un labyrinthe, nous allons réalisé un parcours de la grille G (en largeur ou en profondeur). Le labyrinthe sera lui-même un graphe noté L. À chaque fois qu'on **empilera ou enfilera** un **sommet non visité**, on ajoutera une arête entre ce sommet et le sommet père à L.

Question 7 Écrire la fonction ajouter_arete(G:dict, s1:tuple, s2: tuple) -> None qui permet d'ajouter l'arête ([s1,s2]) au graphe G. Il faudra vérifier que les sommets n'existent pas déjà...

Donner un exemple

Question 8 Écrire la fonction parcours_largeur(G:dict, s:tuple) -> dict qui permet de créer un labyrinthe en largeur à partir d'un graphe G. Tracer le labyrinthe obtenu.

Question 9 Écrire la fonction parcours_profondeur(G:dict, s:tuple) -> dict qui permet de créer un labyrinthe en profondeur à partir d'un graphe G. Tracer le labyrinthe obtenu.

FIGURE 3 – Labyrinthes en largeur et en profondeur

Comme vous pouvez le constater, le coté aléatoire de ces labyrinthes est discutable :). Il est possible de mélanger une liste en utilisant le module random : random.shuffle(voisins) permet de mélanger la liste de tuples voisins .

Question 10 Écrire les fonctions labyrinthe_largeur(G:dict, s:tuple) -> dict et labyrinthe_profondeur permettant de prendre cette remarque en compte. Quelle fonction permet d'obtenir un labyrinthe acceptable?

FIGURE 4 – Labyrinthe 10x8

Résolution d'un labyrinthe

Il est possible de résoudre le labyrinthe en utilisant un parcours en largeur ou un parcours en profondeur.

Question 11 Écrire la fonction resolution_largeur(G:dict, s:tuple) -> list qui permet de résoudre le labyrinthe en utilisant un parcours en largeur. Cette fonction renvoie la liste des sommets permettant d'atteindre le sommet en haut à droite depuis le sommet en bas à gauche.

Question 12 Afficher en trait épais noir la solution donnée par le parcours en largeur.

Question 13 Répondre aux mêmes questions en utilisant un parcours en profondeur.