<u>Série n°4</u>

Organisation des données à l'exécution

Solution Exercice 2:

a. Contenu de la pile de données aux instructions L1, L2 et L3.

	••••
	I
	VR
	Tête
] - po:
Eléments de B1	élén
] -Poi
vr (B1)	élén
E	K
A	VR
Tête de pile PP	E
- pointe sur zone libre avant	A
allocation	Tête
-Pointe sur l'aprés dernier	-Poi
élément de B1 aprés allocation	élén
@ ZD de PP	\bigcirc Z

Eléments de B2
Eléments de B1
I
VR (B2)
Tête pile Bloc 1
- pointe sur l'aprés dernier
élément de B1 avant allocation
-Pointe sur l'aprés dernier
élément de B2 aprés allocation
K
VR (B1)
E
A
Tête de pile PP
-Pointe sur l'aprés dernier
élément de B1
@ ZD de PP

Eléments de B3
....

VR (B3)

Tête de Pile Bloc 2
- pointe sur zone libre avant allocation
-Pointe sur l'aprés dernier élément de B3 aprés allocation
Paramètres effectifs
Paramètres implicites
Tête de Pile X

Ø ZD de X

Ø ZD de PP

L1: ZD du PP

L2: ZD du PP

ZD de Proc X

b. Calcul des adresses absolues des variables de L3 : B3[I,1] := B1[I]+ A;

- @ A = c(activearea)+ Déplacrement de A / Début de la ZD du PP
- @ I = c(activearea)+ Déplacrement de I / Début de la ZD du PP
- @ B1[I] = c(activearea)+ Déplacrement de B1[1] / Début de la ZD du PP +

(I -1) * taille d'un élément

 $@>{\rm B3[I,1]} = {\rm c(active area)} + Open de B3[1,1] / Open de la ZD de X +$

[(I - 1) * 2 *k] * taille d'un élément