Pricing priorities in waitlists

Filip Tokarski Stanford GSB

January 5, 2025

Motivation

- Waitlists are a common alternative to market mechanisms
 - Used for affordable housing, daycare places, camping permits...
- Natural choice when we do not want to extract revenue from participants
- But using waitlists instead of prices causes allocative inefficiency...

Motivation

- We should consider intermediate options: waitlists with some partial pricing!

My question:

How to optimally combine waitlists with prices while recognizing that charging participants is undesirable?

Literature

- Mechanisms without money (Hylland and Zeckhauser, 1979; Budish, 2011)
 - This paper: money allowed but transfers undesirable
- Wasteful screening (Hartline and Roughgarden, 2008; Yang, 2021)
 - This paper: combining wasteful and non-wasteful screening
- Wait times 'acting as prices' (Barzel, 1974; Leshno, 2022; Ashlagi et al., 2022)
 - This paper: but waiting screens only on relative values...
 - \dots while money screens on absolute values

Model

Agents

- The designer distributes two kinds of goods, A and B
- Agents' values for A and B given by two-dimensional types $(a,b) \in [0,1]^2$
- A type-(a,b) agent who gets a good, pays p and waits t gets utility:

$$e^{-\rho \cdot t}(a-p)$$
 if she gets A , $e^{-\rho \cdot t}(b-p)$ if she gets B .

- NB: waiting delays receipt ⇒ waiting cost multiplies value for the good!

Arrivals

- At every time $\tau \in \mathbb{R}$, flow masses $\mu_A, \mu_B > 0$ of goods A and B arrive
 - Unit flow mass of goods arrives in total: $\mu_A + \mu_B = 1$
- At every time $\tau \in \mathbb{R}$, a unit flow mass of agents with types $(a,b) \sim F$ arrives
 - F has full support and a differentiable pdf f
- Total good arrival rate = agent arrival rate

Waitlists

- Separate first-come-first-serve waitlists for goods A and B
- The designer chooses:
 - 1. **Prices for joining** the two waitlists
 - 2. A menu of pay-to-skip options for each waitlist

- Arriving agents choose:
 - 1. At most one waitlist to join
 - 2. Whether they want some **pay-to-skip** option from their waitlist's menu

Steady state

- We will consider steady states of the waitlists
- In SS, all agents of the same type make the same choices
- Thus, the designer chooses **steady state allocations** of:
 - 1. Payments $p:[0,1]^2 \to \mathbb{R}_+$
 - 2. Wait-times $t:[0,1]^2\to\mathbb{R}_+$
 - 3. Goods: $x:[0,1]^2 \to \{A,B,\varnothing\}$

Designer's constraints

- Designer chooses allocation (p, t, x) subject to **IC**, **IR** and **supply** constraints:

for every
$$(a,b), (a',b') \in [0,1]^2, \quad U[a,b,(p,t,x)(a,b)] \ge U[a,b,(p,t,x)(a',b')]$$
 (IC)

for every
$$(a, b) \in [0, 1]^2$$
, $U[a, b, (p, t, x)(a, b)] \ge 0$

$$\int \mathbb{1}_{x(a,b)=A} dF(a,b) \leq \mu_a, \qquad \int \mathbb{1}_{x(a,b)=B} dF(a,b) \leq \mu_b$$

(IR)

(S)

Designer's objective

- In SS, objective can be written in terms of flows. Choose (p, t, x) to maximize:

$$\gamma \cdot R + W$$

- $\gamma \in [0,1]$ is the weight on revenue R:

$$R = \int p(a,b) \, \mathrm{d}F(a,b)$$

- W is the value for goods (net of payments) for agents getting them:

$$W = \int \underbrace{\mathbb{1}_{x(a,b)=A}(a-p(a,b))}_{\text{Agents getting good } A} + \underbrace{\mathbb{1}_{x(a,b)=B}(b-p(a,b))}_{\text{Agents getting good } B} dF(a,b)$$

Designer's objective

$$W = \int \underbrace{\mathbb{1}_{x(a,b)=A}(a-p(a,b))}_{\text{Agents getting good } A} + \underbrace{\mathbb{1}_{x(a,b)=B}(b-p(a,b))}_{\text{Agents getting good } B} dF(a,b)$$

- When allocating, designer cares about agents' values, but ${f not}$ when they arrived
- Counterintuitive implication: **no wait times** in the objective!
 - Indeed, an agent's utility is $e^{-\rho \cdot t}(a-p)$ not a-p(a,b)...
 - ... but giving it to her earlier pushes someone else back
- Also means the designer is indifferent about some types skipping ahead!

Feasible mechanisms

Who chooses which waitlist?

- When joining both waitlists costs money, some types do not participate (\emptyset)
- Types on the **boundary** g in different between their best options in both waitlists
- Types below g pick some option in A, types above g pick some option in B

Who chooses which waitlist?

- Offering different **pay-to-skip** options alters the shape of boundary g
- Indeed, the designer is indifferent about some types skipping ahead...
- ... and offers pay-to-skip options precisely to **deform the boundary** *g*...
- ... that is, to encourage certain types to join one or the other waitlist

Role of payments:

Two extreme cases

No payment benchmark

No payment benchmark

- Suppose joining is free and there are no pay-to-skip options
- Then everyone joins and wait-times 'clear the market'
- Type (a, b) chooses A if:

$$e^{-\rho \cdot t_A} \cdot a > e^{-\rho \cdot t_B} \cdot b$$

- Ratio $\frac{a}{b}$ determines choice of waitlist

Non-wasteful payments ($\gamma = 1$)

Non-wasteful payments ($\gamma = 1$)

Proposition 1

If payments are not wasteful ($\gamma = 1$), the optimal mechanism offers **no pay-to-skip** options and prices entry to only one waitlist. The price is chosen to **equate wait-times** in both waitlists.

- This achieves the first-best!
- A-goods go to those with **highest** a b

Role of payments: intuition

- Without payments, agents self-select only based on relative values
- Payments are wasteful, but let us screen on agents' absolute values

- In general, payments create a **better allocation** but **are wasteful**

General case $(\gamma \in [0, 1])$

General case

- Assumption: consider piece-wise continuously diff'able wait-time allocation rules

Theorem 1

The optimal mechanism prices entry to only one waitlist and offers finitely many pay-to-skip options.

Conjecture 1

For *sufficiently well-behaved distributions*, the optimal mechanism prices entry to only one waitlist and offers **no pay-to-skip options**.

- Conjecture 1 holds in simulations for uniform, normal, Beta, etc...

Proof intuition

Indirect utilities

- Agents in the A-region choose some pay-to-skip options in waitlist A...
- . . . and agents in the B-region choose one in waitlist B

Indirect utilities

- Agents in the A-region choose some pay-to-skip options in waitlist A...
- . . . and agents in the B-region choose one in waitlist B
- Moreover, agents' pay-to-skip choice in their waitlist **does not depend** on their value for the other good!
- Therefore, we can write indirect utilities cond. on joining waitlists A and B as $U_A(a), U_B(b)$

Indirect utilities

- $U_A(a), U_B(b)$ are the indirect utilities cond. on joining waitlists A and B
- We thus have two 1D screening problems (one for each wailtist)...
- ...connected by the boundary types' indifference conditions:

$$U_A(a_2) = U_B(g(a_2))$$

Proof strategy

- 1. Rewrite the problem in terms of U_A, U_B , and the g they induce
- 2. Fix any g and find the optimal U_A, U_B that implement it
- 3. Find the optimal g among optimally implemented boundaries

Objective in terms of U_A and U_B

1. Recall the objective is:

$$W = \int \underbrace{\mathbb{1}_{x(a,b)=A}(p(a,b)\cdot\gamma + a - p(a,b))}_{\text{Agents getting } A} + \underbrace{\text{Agents getting } B} dF(a,b)$$

2. To express p(a, b) using $U_A(a)$, notice that:

$$U_A(a) = e^{-\rho \cdot t(a,b)} (a - p(a,b))$$
 and $U'_A(a) = e^{-\rho \cdot t(a,b)}$

3. This gives $\frac{U_A(a)}{U_A(a)} = a - p(a,b)$ and thus:

$$W = \int \mathbb{1}_{x(a,b)=A} \left(a \cdot \gamma + (1-\gamma) \cdot \frac{U_A(a)}{U'_A(a)} \right) + \underbrace{\dots}_{\text{Agents getting } B} dF(a,b)$$

Optimal U_A, U_B inducing a given boundary

- Fix some boundary g
- Pick indirect utilities U_A , U_B to maximize the objective:

$$W = \int \mathbb{1}_{x(a,b)=A} \left(a \cdot \gamma + (1-\gamma) \frac{U_A(a)}{U_A'(a)} \right) + \mathbb{1}_{x(a,b)=A} \left(b \cdot \gamma + (1-\gamma) \frac{U_B(b)}{U_B'(b)} \right) dF(a,b)$$

- Subject to:
 - 1. U_A, U_B being convex, increasing, and Lipschitz
 - 2. U_A and U_B being 0 for lowest participating types
 - 3. Agents at the boundary being indifferent: $U_A(a) = U_B(g(a))$
- Can see that 'more convex' U_A , U_B bad for objective

How flat can we make U_A and U_B ?

- U_A more convex \rightarrow different wait-times \rightarrow larger payments!
- Role of payments: **affect area split** by deforming the boundary
- So pointless to charge more than required for particular area split!
- How flat can we make U_A and U_B ? Diff'ing boundary indifference gives:

$$U_A'(a) = U_B'(g(a)) \cdot g'(a)$$

- Wherever g(a) convex, set $U'_A(a)$ constant and $U'_B(b(a)) \propto g'(a)!$

Picking the optimal boundary

- These conditions tell us **how to optimally implement** each boundary *g*
- Now, look at any convex region of g...
- ... and find necessary conditions for the **optimal shape** of *g* on it
- Turns out the optimal g has to be linear on every such region!
- Else, there is an improving perturbation

Optimal boundaries

Entry price for only one waitlist Finite pay-to-skip options

Entry price for only one waitlist No pay-to-skip options

Conclusions

Conclusions

- The literature notes wait-times can to some extent 'act like prices'
- Distinguish waitlists (waiting delays receipt) and queues (waiting wastes time)
- For waitlists, wait-times only screen on relative preferences
- Payments screen on absolute preferences, and could be useful even when wasteful

Thank you!