$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{lpha} \sigma_{1}^{\#2}{}_{lpha} t_{1}^{\#1}{}_{lpha} t_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	0	0	0
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#2}_{+}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1+\alpha\beta}^{\#1}$	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
	$\begin{bmatrix} r_1^{\#1} + \alpha \beta \end{bmatrix}$	$r_{1}^{#2} + \alpha \beta$	$_{1}^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

$f_{1}^{\#2}$	0	0	0	0	0	0	0
$f_{1^-}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{2}k^{2}(r_{3}+2r_{5})$	0	0	0
$f_{1+lphaeta}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}_+$	$\frac{\sqrt{2} t_2}{3}$	$\frac{t_2}{3}$	$-rac{1}{3}$ I k t_2	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 (2 r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2}t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#_{1}} \uparrow^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{#2} +^{\alpha}$

Lagrangian density	$\frac{2}{3}t_2\;\omega_{\scriptscriptstyle K}^{\;\scriptscriptstyle K\lambda}\;\omega_{\scriptscriptstyle K\lambda}^{\;\prime}+\frac{1}{3}t_2\;\omega_{\scriptscriptstyle K\lambda}^{\;\prime}\;\omega^{\scriptscriptstyle K\lambda}^{\;\prime}+f^{\alpha\beta}\;\tau_{\alpha\beta}+\omega^{\alpha\beta\chi}\;\sigma_{\alpha\beta\chi}^{\;2}-\frac{1}{2}r_3\partial_{\scriptscriptstyle i}\omega^{\scriptscriptstyle K\lambda}^{\;\prime}\partial^{\scriptscriptstyle i}\omega_{\scriptscriptstyle \lambda}^{\;\alpha}-$	$r_5\partial_i\omega^{\kappa\lambda}_{\kappa}\partial^i\omega_{\alpha}^{\alpha} + \tfrac{1}{2}r_3\partial_\alpha\omega_{\alpha}^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda}_{} - r_5\partial_\alpha\omega_{\alpha}^{\alpha}_{\theta}\partial_\kappa\omega^{\theta\kappa\lambda}_{} - \tfrac{1}{2}r_3\partial_\theta\omega_{\alpha}^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda}_{} +$	$r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - \frac{1}{2} r_3 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - r_5 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} + r_3 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} +$	$2 r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} + \tfrac{1}{6} t_2 \partial^\alpha f_{\theta\kappa} \partial^\kappa f_\alpha^{\ \theta} - \tfrac{1}{6} t_2 \partial^\alpha f_{\kappa\theta} \partial^\kappa f_\alpha^{\ \theta} + \tfrac{1}{6} t_2 \partial^\alpha f_\lambda^{\ \lambda} \partial^\kappa f_{\alpha\lambda} +$	$\frac{1}{3}t_2 \omega_{_{I}\theta \kappa} \partial^{\kappa} f^{_{I}\theta} - \frac{2}{3}t_2 \omega_{_{I}\kappa\theta} \partial^{\kappa} f^{_{I}\theta} - \frac{1}{3}t_2 \omega_{_{\theta I}\kappa} \partial^{\kappa} f^{_{I}\theta} + \frac{2}{3}t_2 \omega_{_{\theta K I}} \partial^{\kappa} f^{_{I}\theta} -$	$rac{1}{6}t_2\partial^{lpha}f^{\lambda}_{}\partial^{\kappa}f_{lpha}-rac{1}{6}t_2\partial_{\kappa}f_{}^{}\partial^{\kappa}f_{}^{}+rac{1}{6}t_2\partial_{\kappa}f^{\lambda}_{}\partial^{\kappa}f_{}^{}\partial^{\kappa}f_{}^{}-4r_3\partial^{eta}\omega_{}^{\lambda\alpha}\partial_{\lambda}\omega_{lpha\beta}^{\prime}-$	$\tfrac{1}{2} r_3 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \beta} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa} + r_5 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \beta} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa} + \tfrac{1}{2} r_3 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa} - r_5 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa}$
--------------------	---	--	--	---	--	--	--

 $\sigma_{2}^{\#1}\alpha\beta\chi == 0$

 $\sigma_1^{\#2\alpha} == 0$

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

 $\tau_{1}^{\#2\alpha} == 0$

 $\tau_{0}^{\#2} == 0$

 $\tau_{0}^{\#1} == 0$

 $\tau_2^{\#1}\alpha\beta == 0$

SO(3) irreps

 $\sigma_{0}^{\#1} == 0$

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$

(No massive particles)