Projete um circuito capaz de somar dois números de 1 bit

Projete um circuito capaz de somar dois números de 1 bit

Projete um circuito capaz de somar dois números de 1 bit

A _i	B _i	C _{in}	C _{out}	S _I
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Projete um circuito capaz de somar dois números de 1 bit

A _i	B _i	C _{IN}	C _{out}	Sı
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Faça um mapa de Karnaugh para saída S_I e outro para C_{OUT} e encontre as funções minimizadas

A _i	B _i	C _{IN}	C _{out}	S _I
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Ai	Bi			
Cin	00	01	11	10
	0	2	6	4
0	0	0	1	0
1	0	1	1	1

 C_out

A _i	B _i	C _{IN}	C _{OUT}	S _I
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 S_{i}

$$C_{out} = B_i.C_i + A_i.C_i + A_i.B_i$$

$$S_{i} = A_{i}.B_{i}.C_{i} + A_{i}.B_{i}.C_{i} + A_{i}.B_{i}.C_{i} + A_{i}.B_{i}.C_{i}$$

Somador Série de 2 Números de 2 bits

Somador Série de 2 Números de 2 bits

SOMADOR DE 1 BIT

A _i	B _i	C _{in}	C _{out}	Sı
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

SOMADOR DE 4 BITS

Para implementar um somador de 4 bits, isto é, somar dois números de 4 bits cada, podemos "cascatear" 4 blocos que projetamos conectando o Cout do menos significativo no Cin do mais significativo, como esquematizado abaixo:

Nós vamos utilizar somadores implementados em circuitos integrados de 4 bits (74LS283)

CASCATEAMENTO DE SOMADORES

Comparador de Magnitude de 4 Bits (7485)

Este dispositivo compara a magnitude de dois números binários de 4 bits. Possui entrada que permite cascatear os circuitos possibilitando comparar a magnitude de números de 8, 12, 16 bits...

CASCATEAMENTO DE COMPARADORES

