DevOps in the Cloud

茹云峰

@fengyuncrawl

2016.11.18

about me

c, php, python, go, erlang

热衷于搜索, 社交, 数据挖掘, 系统架构

DevOps 服务发现 (api gateway)

docker

集群资源管理

调度系统

分布式tracing

日志搜索

metric性能监控 autoscaling

单机时代 load → Nginx balance web Tomcat server → MySQL database

日志监控

Elasticsearch+Lo gstash+Kibana

替换成Rsyslog或者Nxlog

API Gateway

问题

Api太多管理复杂

service之间调用关系复杂(A->B->C)

压力测试复杂

部署复杂

无法追踪系统问题

分布式tracing/APM **Pinpoint** load java balance serviceA serviceB serviceC serviceD phpio/phptrace php serviceE cacheA cacheB serviceF open tracing db3 db4 db1 db2

挑战

能否替代单机版MySQL?

能否放弃数据库中间件和分库分表,并且保证跨行跨表事务?

像单机一样操作分布式关系型数据库

oltp

Tidb (测试中)

Trafodion (运维复杂)

CockroachDB(可用性不行)

trafodion

基于hbase/hadoop 分布式关系型数据 库

实时高并发

分布式跨行跨表 ACID

建议安装2.0.0最新 版以及hbase1.0

缺点: 运维复杂

olap

ClickHouse https://clickhouse.yandex

列式存储,实时分析, distributed joins, restful api,跨数据中心复制

Druid(聚合)

Apache Kylin (用空间换时间)

Kudu (兼有hbase and HDFS)

问题

上述架构的缺点: Load balance与后端web server强耦合,如果流量突发,需要经常修改config ip router

动态

https://github.com/weibocom/nginx-upsync-module

docker优缺点

优点:

进程级(轻量级)虚拟化

快速部署

缺点:

多租户安全性

网络

文件系统

有状态服务(数据库)不完善

docker网络

host

bridge

container

Calico

OpenVSwitch (配置复杂)

Weave, Flannel (性能差)

docker文件系统

挂载宿主机本地文件系统做持久化

挂载分布式块存储做共享持久化

有状态服务(数据库) 状态+存储是个挑战 如何高可用,如何分布式 存储?

CI/CD

访问控制

审计日志

web admin ui

https://github.com/vmware/harbor

Jenkins

云上系统

mesos+Marathon+docker

kubernetes+docker

dcos

目前不支持docker1.12

k8s集群自动化部署

Fully-Automated

Dependency	Current version
Kubernetes	1.4.5
Docker	1.11.2
Calico	1.6
Etcd (for Kubernetes)	3.0.13
Etcd (for Calico)	2.37

https://github.com/apprenda/kismatic

Tensorflow

深度学习

GPU

可扩展

模型并行

数据并行

https://github.com/douban/tfmesos

https://github.com/k8sp/k8s-tensorflow

Time Series metric DB

Prometheus push&pull

Prometheus

优点: 块压缩算法

timestamp数据通过double-delta转bit

value采用xor异或control bit 做转化

https://github.com/prometheus/promethe us/blob/d93f73874f71288f26142f5264ea e4585f14642b/storage/local/chunk/varbi t.go

缺点: 单机版

Decimal	Double Representation	XOR with previous
12	0x40280000000000000	
24	8x463886086666668	3×0010082003000000
15	0x402±00000000000000	0x001500000000000000
12	0x40288000000000000	9×8000000000000000000000000000000000000
35	0x4841898980389888	8x00698800000000000000000000000000000000
Decimal	Dauble Representation	XOR with previous
15.5	0x40210000000000000	
14.0625	0x402c2000000000000	8×00032900000000000
3.25	9x488a89888699988	9x992520000000000000
9.625	8x4821480980980999	9x002b40000000000000
13.1	0x402q333333333333	0x000b7333333333333

Prometheus分布式

1.分布式中间件(一致性hash)

2.pub-sub模式

https://github.com/digit alocean/vulcan

Auto Scaling

传统方法:基于规则模板 cpu util >80% memory >80% disk >80%

新方法: 机器学习预测

分类,回归

卡尔曼滤波预测

服务发现

Zookeeper

Etcd

Consul

SmartStack airbnb

结论

节约机器资源

高效运维

DevOps趋势

机器解决机器问题是未来

谢谢观赏

联系方式:

微信: fengyuncrawl