

射频功率分配/合成器设计、仿真与测试

一、实验目的

- 1. 了解功率分配器的原理及基本设计方法;
- 2. 掌握威尔金森功分器的结构、工作原理及 S 参量;
- 3. 了解利用 ADS 进行电路优化仿真的基本步骤及方法;
- 4. 掌握利用 ADS 微带线计算工具 LinCalc 计算、设计微带线;
- 5. 了解利用 ADS 在电路板级进行电路仿真的方法与步骤。

二、实验内容

设计一微带结构的威尔金森功分器。

中心频率: 2GHz+学号后两位倒数, 带宽: 60MHz, 输出端口功率比: 2: 1,

频带内输入端口的回波损耗: S_{11} <-20dB, S_{22} <-20dB, S_{33} <-20dB,

隔离度: **S**₃₂<-20dB,频带内插入损耗: **S**₂₁>-3.1dB,**S**₃₁>-3.1dB,

板材参数:

H: 基板厚度(1.5 mm) Er:基板相对介电常数(2.65)

Mur:磁导率(1) Cond:金属电导率(5.88E+7)

Hu:封装高度(1.0e+33 mm) T:金属层厚度(0.035 mm)

TanD:损耗角正切(1e-4) Roungh:表面粗糙度(0 mm)

三、威尔金森功分器原理

威尔金森功分器的结构图如图 1 所示。

图 1 威尔金森功分器结构图

信号从端口 1 输入,端口 2 和端口 3 获得相等功率。如果端口 2 和端口 3 失配,电阻 $R=2Z_0$ 可以起到很好的隔离作用。

下述公式推导参考文献 1。

考虑一般情况(比例分配输入功率)下,设三号端口 P_3 和二号端口 P_2 的输出功率比为 k^2 ,即

$$k^2 = \frac{P_3}{P_2} \tag{1}$$

由于一号端口到二号端口与一号端口到三号端口的线长度相等, 故二号端口的电压 U_2 与三号端口的电压 U_3 相等,即 U_2 = U_3 。二号端口与三号端口的输出功率与电压的关系为

$$\begin{cases}
P_2 = \frac{U_2^2}{Z_2} \\
P_3 = \frac{U_3^2}{Z_2}
\end{cases}$$
(2)

将上式代入(1),得

$$\frac{U_3^2}{Z_3} = k^2 \frac{U_2^2}{Z_2} \tag{3}$$

即

$$Z_2 = k^2 Z_3 \tag{4}$$

式中, Z₂、Z₃为二号端口和三号端口的输入阻抗, 若选

$$\begin{cases}
Z_2 = kZ_0 \\
Z_3 = \frac{Z_0}{k}
\end{cases}$$
(5)

则可以满足式(2-21)。为了保证一号端口匹配,应有

$$\frac{1}{Z_0} = \frac{Z_2}{Z_{02}^2} + \frac{Z_3}{Z_{03}^2}
\frac{1}{Z_0} = \frac{k Z_0}{Z_{02}^2} + \frac{Z_3}{k Z_{03}^2}$$
(6)

同时考虑到

$$\frac{Z_{02}^2}{Z_2} = k^2 \frac{Z_{03}^2}{Z_3} \tag{7}$$

则

$$\frac{1}{Z_0} = (k^{-2} + 1)\frac{Z_3}{Z_{03}^2} = (k^{-2} + 1)\frac{Z_0}{K_{03}^2}$$
(8)

所以

$$Z_{03} = \sqrt{\frac{1+k^2}{k^3}} Z_0$$

$$Z_{02} = \sqrt{k(1+k^2)}$$
(9)

为了实现二号端口和三号端口的隔离,即二号端口或三号端口的反射波不会 进入三号端口或者二号端口,可选

$$R = kZ_0 + \frac{Z_0}{k} = \frac{1 + k^2}{k} Z_0 \tag{10}$$

在等功率分配的情况下,即在 P2=P3, k=1,于是

$$\begin{cases} Z_2 = Z_3 = Z_0 \\ Z_{02} = Z_{03} = \sqrt{2}Z_0 \\ R = 2Z_0 \end{cases}$$

四、功分器原理图及版图

1. 确定功分器指标

中心频率 2.68GHz, 功率分配 2:1, 优化功分器 S 参数。

图 2 威尔金森功分器

取 $Z_0=50$ Ω,那么 $Z_{02}=51.49$ Ω, $Z_{03}=103$ Ω, $Z_{04}=59.46$ Ω, $Z_{05}=42.04$ Ω, $Z_{05}=109$ Ω。

2. 原理图设计

3. 利用 LineCalc 计算微带线参数(以 $Z_0 = 50\Omega$ 为例)

对于其余阻抗、采用类似方法、改变其值即可以自动生成线宽和线长。

4. 结合第3步结果,在原理图中改变线宽及线长,设置优化目标

5. 进行优化仿真

可以看出, S_{11} 、 S_{22} 、 S_{21} 都满足要求,但是 S_{32} 未能满足要求。可能优化初值设置不合适,或者边界设置的太窄,导致优化结果不够理想。

6. 生成版图

五、课堂功分器测量记录

频率	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2
(GHz)															
回损	-20.86	-26.489	-26.601	-34.004	-29.204	-25.689	-23.651	-23.324	-23.617	-24.167	-26.007	-28.041	-28.634	-26.804	-25.619
	20.00	20.403	20.001	34.004	25.204	25.005	25.051	25.524	25.017	24.107	20.007	20.041	20.034	20.004	25.015
(dB)															
驻波	1.198	1.099	1.041	1.072	1.110	1.141	1.146	1.141	1.132	1.105	1.083	1.077	1.096	1.111	1.131
支 路	-3.103	-3.070	-3.072	-3.075	-3.076	-3.019	-3.078	-3.018	-3.133	-3.202	-3.301	-3.145	-3.132	-3.009	-3.065
1															
插损															
(dB)															
支路	-149.655	-168.895	171.981	152.765	133.066	113.385	93.542	74.391	55.036	35.762	16.540	-3.494	-23.575	-42.991	-64.300
1															
相移															
支路	-3.098	-3.070	-3.069	-3.071	-3.081	-3.024	-3.089	-3.028	-3.213	-3.300	-3.151	-3.133	-3.019	-3.074	-3.076
	-3.096	-3.070	-3.069	-3.071	-3.061	-5.024	-3.069	-3.020	-3.213	-3.300	-3.131	-3.133	-5.019	-3.074	-5.076
2															
插 损															
(dB)															
支 路	-149.291	-168.554	172.491	153.300	133.675	114.026	94.221	75.192	55.870	36.701	17.585	-2.453	-22.536	-41.941	-63.872
2															
相移															
隔离	-24.901	-33.691	-34.830	-27.341	-24.890	-23.751	-24.624	-26.592	-29.381	-31.681	-30.401	-28.275	-26.634	-25.931	-24.824
度															
(dB)															

参考文献

1 杭州电子科技大学 不等分微带功分器设计 2011.3