Estructuras Algebraicas Primer examen parcial	1 ^{er} Apellido:	29 de marzo de 2022
•	2º Apellido:	Tiempo 2 h
Dpt. Matemática Aplicada a las T.I.C. E.T.S. de Ingenieros Informáticos	Nombre:	Calificación:
Universidad Politécnica de Madrid	Número de matrícula:	Camicación:

Para que sean consideradas como válidas, todas las respuestas deben estar adecuadamente justificadas. No está permitido el uso de dispositivos electrónicos.

Ejercicio 1. (2 puntos)

Sea (G,*) grupo y sea $a \in G$. Demuestra que si |a| = mn con $mcd\{m,n\} = 1$ entonces existen $b,c \in G$ tales que a = b*c siendo |b| = m y |c| = n.

Ejercicio 2. (2,5 puntos)

Sea (G, *) el grupo definido por la tabla anexa.

- a) Calcular el orden de cada elemento de G.
- b) Encontrar el centralizador de los elementos $3 \in G$ y $5 \in G$.
- c) Obtener el centro del grupo.
- d) Encontrar razonadamente un subgrupo propio no trivial de (G,*), que sea un subgrupo normal.
- e) Calcular la tabla del grupo cociente de (G,*) con el subgrupo normal encontrado en el apartado anterior.

	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	8	7	6	5	4	3
3	3	4	5	6	7	8	1	2
4	4	3	2	1	8	7	6	5
5	5	6	7	8	1	2	3	4
6	6	5	4	3	2	1	8	7
7	7	8	1	2	3	4	5	6
8	8	7	6	5	4	3	2	1

Ejercicio 3. (3 puntos)

Sea (G, *) grupo y sea $T = G \times G$.

- $a) \ \ \text{Demostrar que } D = \{(g,g) \in G \times G \, : \, g \in G\} \text{ es un grupo isomorfo a } (G,*).$
- b) Demostrar que si $D \subseteq T$ entonces (G, *) es abeliano.

Ejercicio 4. (2,5 puntos)

- a) Sea $a=(1,3,5)(1,2)\in S_9, b=(1,5,7,9)\in S_9$, calcular, en forma de producto de ciclos disjuntos, $a^{-1}ba$
- b) Sea (G,*) grupo abeliano finito, con $G=\{a_0,a_1,\cdots,a_n\}$. Dar la expresión más sencilla posible del elemento

$$(a_0*a_1*\cdots*a_n)^2$$

- c) Sea (G,*) grupo y sean $x,y\in G$ tales que $z=x*y\in Z(G)$ es un elemento del centro del grupo. Demostrar o refutar si se verifica que z=x*y=y*x
- d) Describir los factores invariantes de todos los grupos abelianos de orden 540.
- e) Estudiar cuales de los grupos descritos en el apartado anterior, tienen elementos de orden 20.

Soluciones

- 1. Consultar apuntes.
- 2. *a*) |1| = 1, |2| = 2, |3| = 4, |4| = 2, |5| = 2, |6| = 2, |7| = 4, |8| = 2.
 - b) $C(3) = \{1, 3, 5, 7\}, \qquad C(5) = \{1, 2, 3, 4, 5, 6, 7, 8\}$
 - c) $Z(G) = \{1, 5\}$
 - d) $C(3) \le G$ porque [G:C(3)] = 2
 - e) $G/C(3) = \{[1], [2]\}, \text{ siendo } [1] = \{1, 3, 5, 7\}, [2] = \{2, 4, 6, 8\}$ y

	[1]	[2]
[1]	[1]	[2]
[2]	[2]	[1]

- 3. a) (D,\cdot) es grupo por ser producto directo de grupos, y $\varphi:G\to D$ definida por $\varphi(g)=(g,g)$ es isomorfismo de grupos por verificarse las condiciones siguientes:
 - Está bien definida y es inyectiva: $\varphi(g)=\varphi(h) \Leftrightarrow (g,g)=(h,h) \Leftrightarrow g=h$
 - Es suprayectiva: $\forall (g,g) \in D$ se verifica que $g \in G$ y $\varphi(g) = (g,g)$
 - Conserva la operación: $\varphi(g*h) = (g*h, g*h) = (g,g) \cdot (h,h) = \varphi(g) \cdot \varphi(h)$
 - b) Si $D \unlhd T$ entonces para todo $(a,b) \in T$ y para todo $(g,g) \in D$ se verifica que $(a,b) \cdot (g,g) \cdot (a,b)^{-1} \in D$ $\Rightarrow (a*g*a^{-1},b*g*b^{-1}) \in D \Rightarrow a*g*a^{-1} = b*g*b^{-1} \Rightarrow (b^{-1}*a)*g = g*(b^{-1}*a).$ En particular, tomando b=e se tiene que para todos $a,g \in G$ se verifica que a*g=g*a, por tanto (G,*) es abeliano.
- 4. a) $a^{-1}ba = (3, 7, 9, 5)$
 - b) $(a_0 * a_1 * \cdots * a_n)^2 = e$
 - c) $z \in Z(G) \Rightarrow z * x = x * z \Rightarrow (x * y) * x = x * (x * y) \Rightarrow x * (y * x) = x * (x * y) \Rightarrow y * x = x * y$
 - d) $540 = 2^2 \cdot 3^3 \cdot 5$. \mathbb{Z}_{540} , $\mathbb{Z}_{180} \times \mathbb{Z}_3$, $\mathbb{Z}_{60} \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_{270} \times \mathbb{Z}_2$, $\mathbb{Z}_{90} \times \mathbb{Z}_6$, $\mathbb{Z}_{30} \times \mathbb{Z}_6 \times \mathbb{Z}_3$.
 - e) Tienen elementos de orden 20, los grupos: \mathbb{Z}_{540} , $\mathbb{Z}_{180} \times \mathbb{Z}_3$, $\mathbb{Z}_{60} \times \mathbb{Z}_3 \times \mathbb{Z}_3$.