R/Finance 2015

May 29 & 30, Chicago, IL, USA

Network analysis of the Hungarian interbank lending market

Edina Berlinger, BCE Gergely Daroczi, CARD.com

Importance

- Partner risk
 Loans without collateral
- Systemic risk
 Large banks act as intermediary
- Pre-crisis regulation
 Early warning system on SIFIs

Data

- National Bank of Hungary
- Jan 2003 Jan 2012 (including Sept 2008)
- 55 Hungarian banks
- 92,619 interbank lending transactions:
 - Lender
 - Borrower
 - Loan amount
 - Interest rate
 - Maturity
 - Date

Monthly aggregation (!)

Lender	Borrower	Amount	Date
1	2	10	Jan 2013
1	3	5	Jan 2013
2	0 1 0 0	50 50	Jan 2013
2	3	8	Jan 2013
3	1	5	Jan 2013
3	2	12	Jan 2013
1	6	4	Jan 2013
1	4	8	Jan 2013
2	4	8	Jan 2013
6	2	6	Jan 2013
9		15	Jan 2013
5	2	5	Jan 2013
7	6	2	Jan 2013
4	8	42	Jan 2013

Factors contributing to systemic risk

- Size
- Interconnectedness
- Lack of substitutes
- Cross-juridictional activity
- Complexity of the activities

Basel Committee on Banking Supervision (2011)

Total volume

Average amount

Interest rate

Number of transactions

Factors contributing to systemic risk

- Size
- Interconnectedness
- Lack of substitutes
- Cross-juridictional activity
- Complexity of the activities

Basel Committee on Banking Supervision (2011)

Introduction to network analysis

Lender	Borrower	Amount	Date
1	2	10	Jan 2013
1	3	5	Jan 2013
2	1	50.00	Jan 2013
2	3	8	Jan 2013
3	1	5	Jan 2013
3	2	12	Jan 2013
1	6	4	Jan 2013
1	4	8	Jan 2013
2	4	8	Jan 2013
6	2	6	Jan 2013
9	1	15	Jan 2013
5	2	5	Jan 2013
7	6	2	Jan 2013
4	8	42	Jan 2013

Introduction to network analysis

Network centrality metrics

- Density
- Degree in/out
- Betweeness
- Closeness
- Transitivity
- Average path length
- Eigenvalue

Average density

Average degree

Average betweenness

Average closeness

Interconnectedness

- General, aggregated network centrality metrics
- Core/periphery models
 - Binary
 - Three layers
 - Continuous
 - Symmetric or asymmetric
- Simulation, infection models

Core, semi-periphery, periphery

- 1. Define every node as **semi-periphery**
- 2. Define all non-connected nodes as exit
- 3. Look for largest complete sub-graph of
 - a) the directed graph
 - b) the undirected graph (if 3a failed)
 - c) <u>core</u> nodes found
- 4. Temporarily merge all core nodes into one
- 5. Look for the largest sets of independent nodes
 - a) remove sets which include the core node
 - b) if empty, repeat 5 for smaller sets of independent nodes
 - c) choose the set(s) with the minimal degree
 - d) sample (if multiple sets found)
 - e) **periphery** nodes found

Introduction to network analysis

Lender	Borrower	Amount	Date
1	2	10	Jan 2013
1	3	5	Jan 2013
2	1	50 .0 .	Jan 2013
2	3	8	Jan 2013
3	1	5	Jan 2013
3	2	12	Jan 2013
1	6	4	Jan 2013
1	4	8	Jan 2013
2	4	8	Jan 2013
6	2	6	Jan 2013
9		15	Jan 2013
5	2	5	Jan 2013
7	6	2	Jan 2013
4	8	42	Jan 2013

Introduction to network analysis

Every node is semi-periphery

Non-connecting nodes

Largest complete sub-graph

Largest set of independent nodes

Coreness: before the Lehman-fall

Coreness: after the Lehman-fall

Coreness and degree

Average degree

Coreness and closeness

Coreness and betweeness

http://bit.ly/rfin2015-hunbanks

Bank	Partner	A. V	Amount \$		Interest 🏺
All	All	All		All	
10	20		6.6		8.8
10	45		1.9		8.5
11	20		1		8.8
12	15		7.8		8.6
12	20		1.5		8.8
12	21		10		8.1
12	5		26.1		8.4
15	18		4.5		8.8
16	28		2.5		8.5
2	20		21.1		9.1
21	44		9		9
21	39		5.6		8.5
23	20		4.4		8.5
23	28		0.5		8.6
25	15		4.4		8
			Previous 1 2	3 4 5	11 Next

Data	Volume metrics	Network r	metrics	Flow of funds	Graph
Number	of transactions	158			
	Minimal amount	0.06			
	Average amount	4.790443			
	Maximum amount	32.2			
	Overall amount	756.89			

Volume metrics

Network metrics

Flow of funds

Graph

Bank	С	SP	Р
С	110.20	100.60	35.11
SP	159.48	120.80	40.62
Р	77.73	112.35	0.00

Data

R packages

- data.table (1.9.4)
- reshape2 (0.8.5)
- ggplot2 (1.0.1)
- RColorBrewer (1.1-2)
- igraph (0.7.1)
- shiny (0.12.0)
- visNetwork (0.0.3)
- pander (0.5.3)

Q&A

Edina Berlinger

edina.berlinger@

uni-corvinus.hu

Gergely Daroczi

gergely.daroczi@ card.com

