データマイニングと情報可視化

Week 5

稲垣 紫緒

いながき しお

理学研究院 物理学部門 / 共創学部 inagaki@phys.kyushu-u.ac.jp ウェスト1号館 W1-A823号室

授業計画

データマイニングの代表的な手法

(2) クラスター分析

似ているデータごとにデータをまとめて分類 →適切な商品を推奨できる

クラスター分析

クラスター=Cluster →房、集団、群れ

教師なし機械学習の一種 いくつのクラスターになるべきか、 といった答えはない。

階層型クラスター分析

非階層型クラスター分析

https://promote.list-finder.jp/article/marke_all/cluster-analysis/

クラスタ分析の適用例

https://bb-multi-tech.com/programing/scikit-learnk-means-clustering-npb/

	順 位	選手名	チー ム	打率	試合	打席 数	打 数	得点	安 打	二塁	 犠 打	犠飛	四球	敬遠	死 球	三振	併殺 打	出塁率	長打 率	year
0	1	今成 亮太	日本 八ム	1.000	1	1	1	1	1	1	 0	0	0	0	0	0	0	1.000	2.000	2010
1	1	渡部 龍一	日本 八ム	1.000	1	1	1	0	1	0	 0	0	0	0	0	0	0	1.000	1.000	2010
2	3	金澤岳	ロッ テ	0.571	6	7	7	0	4	0	 0	0	0	0	0	3	0	0.571	0.571	2010
3	4	青木 宣親	ヤクルト	0.358	144	667	583	92	209	44	 0.35					•	• •			
4	5	平野 恵一	阪神	0.350	139	593	492	77	172	22	 0.30) \		•	• • •			° ° ° °		
5 rc	ws ×	26 colum	nns								0.25 K% 0.20								• • •	
		野球	找選	手	の	能	力?	を	分	類	0.15		•						@ q	
											0.10		•		Ņ					
											0.05	0.2		0.3		0.4	0.		0.6	0.7

多変数の場合:乳がんデータ

https://qiita.com/kwi0303/items/5bb59482a8ad73c0a976

クラスター解析の手順

- (1)グループ分けの対象 サンプルを分類するのか、変数を分類するのか
- (2) 分類の形式(種類、生成) 階層的方法か非階層的方法か
- (3) 分類に用いる対象間の距離(類似度) ユークリッド距離、マハラノビス距離、コサイン距離 など
- (4) クラスターの合併方法 (クラスター間の距離の測定方法)

ウォード法、群平均法、最短距離法、最長距離法など

k-means法

nstep=9

クラスタ数=5

step 0 クラスタの数を決める

step 1 各点にランダムにクラスタを割り当てる

step 2 クラスタの重心を計算

変化あり 2 に戻る

step 3 点のクラスタを、 一番近い重心のクラスタに変更する

クラスタの 組み換えなし

終了

k-means法

クラスタが球形であり、 データのばらつきが等しい

サンプル間の距離

距離(distance) / 非類似度(dissimilarity) データやクラスタの似ていなさ

距離の公理

- (1) 距離はマイナスにはならない
- (2) 同一であれば距離はゼロ
- (3) 2つの距離はどちらから測っても同じ
- (4) 三角形の2辺の距離の合計は、 もう1辺の距離より大きい

サンプル間の距離測定方法

ユークリッド距離

$$\left[\sum_{k=1}^K (x_{ik} - x_{jk})^2\right]^{1/2}$$

一番よく使われる L_2 距離とも言う K次元空間の2点間の距離

例)
$$3次元$$

点 j
 (x_j, y_j, z_j)
点 i
 (x_i, y_i, z_i)

$$K=3$$

$$l = \left[\left(x_i - x_j \right)^2 + \left(y_i - y_j \right)^2 + \left(z_i - z_j \right)^2 \right]^{1/2}$$

k-means法

k-means法

メリット ビッグデータの分析◎ デメリット クラスタの数を 決めないといけない。 初期値に依存

修正モデル k-means++ 法 x-means法 が提案されている

エルボー法

クラスターの重心点とクラスター所属の各点の距離の総和

あまり減らなくなったところで決める

分析結果の初期値依存性

ヨビノリのk-means法の解説

■ヨビノリのk-means法の解説 https://www.youtube.com/watch?v=8yptHd0JDlw

■ k-means (k平均法)とは?【機械学習よくわかる用語集】 MATLAB Japan https://www.youtube.com/watch?v=Gg1xSvSY4YU

k-means++法

- (1)1つ目の点はランダムに選ぶ。
- (2)1つ目の点からできるだけ 遠いところに2つ目の点を選ぶ。
- (3)1つ目と2つ目からできるだけ 遠いところに3つ目の点を選ぶ
- (4) k 個の点を選ぶまで続ける

その後の手法は全く同じ。

https://www.medi-08-data-06.work/entry/kmeans

k-means++法

クラスタ中心からの距離

次にクラスタ中心を選ぶ確率

$$P = \frac{D(x)^2}{\sum D(x)^2}$$

2007年にDavid ArthurとSergei Vassilvitskiiによって提案 k-means法に比べて、 収束スピードに関しては2倍 誤差が1000分の1 from Wikipedia

https://www.medi-08-data-06.work/entry/kmeans_

k-means vs. k-means++

k-means

k-means++

クラスター分析

東京大学のデータサイエンティスト育成講座 Ch.9-2

クラスター=Cluster

→房、集団、群れ

階層型クラスター分析

非階層型クラスター分析

https://promote.list-finder.jp/article/marke_all/cluster-analysis/

最も近いクラスタを1つずつ併合していき クラスタリングを行う

- □ 階層型クラスター分析は結合されていく過程を一つひとつ確認できる
- □ 樹形図(dendrogram)を任意の高さで切ることによって、 欲しいクラスタ数に分類できる。

https://business.nikkeibp.co.jp/atclbdt/15/258678/071500002/?ST=print

Step 1

A~Eの点で最も距離の近い組み合わせはAとBです。 そこで、まずはAとBをくくります。 次にこの2点の代表点(例えば重心)を求め、(AB)の×とします。

Step 2

(AB)の重心x、C、D、Eの4点で、最も距離の近い組み合わせを見つけます。ここではCとDが最も近いことが分かるので、CとDをくくります。この代表点を(CD)の×とします。

Step 3

(AB)、(CD)、Eの3点で最も距離の近い組み合わせを見つけます。 ここでは(AB)と(CD)が最も近いことが分かるので、(AB)と (CD)をくくります。この代表値を(ABCD)の×とします。

Step 4

最後にEをくくり樹形図にすると右図のようになります。 この時、AとBの上にある直線が、AとBの距離を表し、CとDの上にあ る直線がCとDの距離を表します。

クラスタ間の距離測定方法

(1) ウォード法

→計算量は多いが分類感度がかなり良い。 そのため、よく用いられる。

(2) 群平均法

各クラスター同士で、全ての組み合わせのサンプル間距離の平均をクラスター間 距離とする手法。

→鎖効果や拡散現象を起こさないため、 用いられることが多い。

クラスタ間の距離測定方法

(3)最短距離法

- ・2つのクラスターのサンプル同士で 最も小さいサンプル間距離をクラス ター間の距離とする手法。
- →鎖効果により、クラスターが帯状に なってしまい、分類感度が低い。計算 量が少ない。

(4)最長距離法

- ・最短距離法の逆で各クラスター中、 最大のサンプル間距離をクラスター間 距離とする。
- →分類感度は高いが、クラスター同士 が離れてしまう拡散現象が生じる。計 算量が少ない。

■メリット

近いものから順番にくくるという方法をとるので、

あらかじめクラスター数を決め る必要がないことが最大の長所。

■デメリット

ビッグデータに不向き。

分析対象とするサンプルが膨大 になると、分類が困難な場合も。

https://promote.list-finder.jp/article/marke_all/cluster-analysis/

クラスタリング手法の比較

	階層型 樹形図を作る。 クラスタ間の距離の決め方 ウォード法, 群平均法, etc	非階層型 Hard:k-means法 Soft:混合ガウスモデル
ビッグデータへの 適応度		
クラスタ数	あとから自由に 変えられる (好きな大きさに分類できる)	基本的には 最初に決める (分類結果が初期に依存)

Scikit-learnで k-means法

k-means法解析の手順

- 1. scikit-learn のインポート
- 2. データの読み込み
- 3. headでデータの内容を確認
- 4. shapeでデータのサイズを確認
- 5. isnulで欠損値の確認→あれば削除(補完など。。)

- 6. インスタンスを作成
- 7. .fitを実行
- 8. .predictを実行
- 9. 可視化

大事なのはここ!!

これはいつもの手順

(1) scikit-learn のインポート

from sklearn.cluster import KMeans

Numpy, Pandasの時と一緒

(2) データの読み込み

乱数を使って サンプルデータを 生成することもある。

■ CSV ファイルの読み込み

df = pd.read_csv('data/w5_rep_lattice.csv')

1列目をインデックスに入れるかどうか、オプションで指定できます。

https://note.nkmk.me/python-pandas-read-csv-tsv/

(2) データの読み込み

■ Scikit-learnのサンプルデータの読み込み

アヤメのデータや、乳がんのデータなど、いろいろあります。

from sklearn import datasets

iris = datasets.load_iris()

このままだとirisはBunch型という 変数になります。

iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)

試しにtype(iris) と実行してみましょう。 Bunch型のままでも解析できるのですが、 DataFrameで統一しました。

そのため、この行を使って、 DataFrameに変換しています。

データの構成

■ iris.data: 説明変数 (アヤメのデータ)

- sepal length: 花のがくの長さ
- sepal width: 花のがくの幅
- petal length: 花弁の長さ
- petal width: 花弁の幅
- iris.feasure names: 説明変数のindex
- iris.target:目的変数(アヤメの種類) →答え合わせに使う

(3) headでデータの内容を確認

df.head()

で、データの中身を確認。

```
1 iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)
2 iris_df.head()
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

(4) shapeでデータのサイズを確認

df.shape

でDataFrameのサイズを確認。

df.isnull()

でそれぞれの列にいくつNaNがあるか確認。

(5) 欠損値の確認→あれば削除

それぞれの列にいくつNaNがあるか

df.isnull().sum()

欠損値が一つでもあれば、その行を削除

df = df.dropna(how='any')

本当は、この後、

df.isnull().sum()

をもう一回やって、欠損値が本当になくなったことを確認したほうがいい。

df.shape

をもう一回やって、欠損値削除後のデータサイズも確認したほうがいい。

欠損値の取り扱い@Pandas

データに欠けてる値(空白や異常値)があった場合 ファイルをまとめて分析する前に、 データ処理を行います。

* 欠損値があるか確認 / Check if there are NaN

- * 補完 / Complement
- * 置換 / Replace: 0や平均値で置換
- * 抽出 / Extract

(6)データを可視化してチェック

いくつのクラスタに分けたらいいか、 プロットして確認する

k-means法では、 クラスタの数を最初に 自分で決めないといけない。 だいたいのあたりを付けて おこう。

(6)データを可視化してチェック

0: Setosa
1: Versicolor
2: Versinica

4次元のデータを2次元面内に射影してみているので、 2変数で見たときに混ざっているからと言って、使わないほうがいいとも限らない。 いろいろな組み合わせで、うまく分類できるかどうか試してみるとよい。 答えがない場合も、ぼんやりクラスタが見えるかどうか、可視化して確認する。

(7)インスタンスを作成

kmeans = KMeans(n_clusters=3, init="random")

クラスタの数を最初に

自分で決めないといけない

オプション

- n_clusters: クラスタの数
- max_iter: 学習のループ回数
- init: 平均の初期値の決め方
- n_jobs: k-meansを何並列にするか(-1ならばpcのコア数分だけ並列して くれます)

オプションの詳細はこちら(演習問題からもリンク張ってあります)

https://pythondatascience.plavox.info/scikit-learn/%E3%82%AF%E3%83%A9%E3%82%B9%E3%82%BF%E5%88%86%E6%9E%90-k-means

(8) .fitを実行

#k-means法を実行

kmeans.fit(X)

Xにデータを入れます。

大事なポイント!!!

DataFrameのままだと.fitに入れられないので、.valuesを使って、Numpy array に変換しておきます。

クラスタリングは、使う変数を自分で選んでもよい。

kmeans.fit(iris_df.values[:,0:4])

(9) .predictを実行

クラスター番号を予測 / Predict the cluster number.

y_pred = kmeans.predict(X)

Xにデータを入れます。

(10) 解析後: 可視化

分類したデータを可視化して確認 →クラスタごとに色分けしてプロット

k-means法解析の手順

- 1. scikit-learn のインポート
- 2. データの読み込み
- 3. headでデータの内容を確認
- 4. shapeでデータのサイズを確認
- 5. isnullで欠損値の確認→あれば削除(補完など。。)

- 6. 可視化
- 7. インスタンスを作成
- 8. .fitを実行
- 9. .predictを実行
- 10.可視化

これはいつもの手順

大事なのはここ!!