P. Maurer

ENS Rennes

Recasages: 105, 106, 150.

Référence : FGN, Oraux X-ENS, Algèbre 1

Décomposition de Bruhat

Dans tout ce qui suit, \mathbb{K} est un corps, n un entier non nul. On commence par quelques rappels.

Définition 1. On appelle drapeau de \mathbb{K}^n toute suite $(0 = F_0 \subset \cdots \subset F_n)$ de sous-espaces vectoriels de \mathbb{K}^n telles que les inclusions soient strictes. Si de plus $\dim(F_i) = i$, on dit que le drapeau est complet. On note Drap l'ensemble des drapeaux complets de \mathbb{K}^n .

Notation 2. On appelle drapeau complet canonique le drapeau $C := \{0\} \subset \text{Vect}(e_1) \subset \cdots \subset \text{Vect}(e_1, ..., e_n)$, où $(e_1, ..., e_n)$ désigne la base canonique de \mathbb{K}^n .

Définition 3. On note $B_n(\mathbb{K})$ l'ensemble des matrices triangulaires inversibles de $GL_n(\mathbb{K})$.

Proposition 4. $B_n(\mathbb{K})$ est le stabilisateur de C pour l'action de $GL_n(\mathbb{K})$ sur Drap. En particulier, c'est un sous-groupe de $GL_n(\mathbb{K})$.

Démonstration. Soit $B \in B_n(\mathbb{K})$, et $j \in [1, n]$. On a :

$$Be_{j} = \sum_{i=1}^{n} b_{ij} e_{i}$$
$$= \sum_{i=1}^{j} b_{ij} e_{i} \in Vect(e_{1}, \dots, e_{j})$$

Par conséquent, $B(\text{Vect}(e_1, \ldots, e_j)) \subset \text{Vect}(e_1, \ldots, e_j)$. Comme B est inversible, il y a égalité des dimensions de ces deux sous-espaces, ils sont donc égaux. On en déduit B(C) = C donc B est inclu dans le stabilisateur de C.

Réciproquement, soit $A \in GL_n(\mathbb{K})$ tel que A(C) = C. D'une part, pour tout $j \in [1, n]$, on a :

$$Ae_j = \sum_{i=1}^n a_{ij}e_i$$

D'autre part, comme $A\left(\operatorname{Vect}(e_1,\ldots,e_j)\right)\subset\operatorname{Vect}(e_1,\ldots,e_j),\ Ae_j$ s'exprime comme combinaison linéaire de e_1,\ldots,e_j donc il existe $\lambda_{ij}\in\mathbb{K}$ tels que $Ae_j=\sum_{i=1}^j\lambda_{ij}e_i$. On en déduit que :

$$a_{ij} = \lambda_{ij}$$
 pour $i \le j$ et $a_{ij} = 0$ pour $i > j$

Donc $A \in B_n(\mathbb{K})$.

Définition 5. Soit $\lambda \in \mathbb{K}$, et $(E_{ij})_{1 \leq i,j \leq n}$ la base canonique de $\mathcal{M}_n(\mathbb{K})$.

On appelle matrice de transvection toute matrice de la forme $T_{ij}(\lambda) = I_n + \lambda E_{ij}$.

On appelle matrice de dilatation toute matrice de la forme $D_i(\alpha) = I_n + (\alpha - 1) E_{ii}$.

Proposition 6. Pour i < j, $T_{ij}(\lambda) \in B_n(\mathbb{K})$ et pour $\alpha \neq 0$, $D_{ij}(\alpha) \in B_n(\mathbb{K})$.

Démonstration. Trivial. □

Remarque 7. Multiplier par une matrice de transvection $T_{ij}(\lambda)$ à gauche (respectivement à droite) revient à faire l'opération sur les lignes $L_i \leftarrow L_i + \lambda L_j$ (respectivement sur les colones $C_j \leftarrow C_j + \lambda C_i$).

Multiplier par une matrice de dilatation $D_i(\alpha)$ à gauche (respectivement à droite) revient à faire l'opération sur les lignes $L_i \leftarrow \alpha L_i$ (respectivement sur les colones $C_i \leftarrow \alpha C_i$)

Définition 8. Soit (e_1, \ldots, e_n) la base canonique de \mathbb{K}^n . Pour $\sigma \in \mathcal{S}_n$, on note w_{σ} l'application linéaire donnée par $w_{\sigma}(e_i) = e_{\sigma(i)}$ pour tout $i \in [1, n]$.

Proposition 9. L'application $w: \sigma \mapsto w_{\sigma}$ est un morphisme de groupes injectif de S_n dans $GL_n(\mathbb{K})$.

On peut maintenant énoncer le théorème principal de ce développement :

Théorème 10. (Bruhat)

En notant, pour $\sigma \in S_n$, $B_n(\mathbb{K})$ w_{σ} $B_n(\mathbb{K})$:= $\{tw_{\sigma}s : t, s \in B_n(\mathbb{K})\}$, on a la décomposition :

$$\operatorname{GL}_n(\mathbb{K}) = \bigsqcup_{\sigma \in \mathcal{S}_n} B_n(\mathbb{K}) w_{\sigma} B_n(\mathbb{K})$$

Démonstration.

 $\[\]$ Soit $P = (p_{ij})_{1 \leq i,j \leq n} \in GL_n(\mathbb{K})$. D'après ce qui précède, il suffit de montrer que l'on peut partir de P et se ramener à une matrice de permutation w_{σ} en faisant des opération sur les lignes et sur les colones choisies pour que les matrices de transvection et dilatation associées soient bien dans $B_n(\mathbb{K})$.

• Comme P est inversible, sa première colone contient au moins un coefficient non nul : on note alors $\alpha_1 = \max\{i \in [1, n]: p_{i1} \neq 0\}$.

On fait alors les opérations sur les lignes $L_i \leftarrow L_i + \frac{p_{i1}}{p_{\alpha_{1}1}} L_{\alpha_{1}}$ pour tout $i < \alpha_{1}$, de manière à rendre tous les coefficients de la première colone nuls sauf celui de la $\alpha_{1}^{\text{ème}}$ ligne.

On effectue ensuite l'opération $C_1 \leftarrow \frac{1}{p_{\alpha_1 1}} C_1$ de manière à rendre le coefficient $p_{\alpha_1 1}$ égal à 1.

Enfin, on rend tous les coefficients de la $\alpha_1^{\text{ème}}$ ligne nuls sauf le premier, en faisant les opérations sur les colones $C_i \leftarrow C_i + p_{\alpha_1 i} C_1$ pour tout i > 1.

Ces opérations permettent de se ramener à une matrice de la forme suivante :

$$P_1 = \begin{pmatrix} 0 \\ \vdots & (*) \\ 0 \\ 1 & 0 & \cdots & 0 \\ 0 \\ \vdots & (*) \\ 0 \end{pmatrix}$$

- On a encore $P_1 \in GL_n(\mathbb{K})$, donc sa deuxième colone n'est pas nulle. En notant de la même manière $\alpha_2 = \max\{i \in [1, n]: p_{i2} \neq 0\}$, on a nécessairement $\alpha_2 \neq \alpha_1$ puisque $p_{\alpha_1 2} = 0$.
 - On peut ensuite effectuer des opérations sur les lignes et les colones de P_1 pour mettre des zéros sur la deuxième colone, la $\alpha_2^{\text{ème}}$ ligne, et mettre le coefficient $p_{\alpha_2,2}=1$. On remarque que ces opérations ne modifient pas la première colone ni la $\alpha_1^{\text{ème}}$ ligne.
- En répétant ainsi les opérations des étapes un et deux, on obtient $\alpha_1, \ldots, \alpha_n$ tous distincts dans $[\![1,n]\!]$ et une matrice $P_n = w_\sigma$ où la permutation σ est donnée par $\sigma(k) = \alpha_k$.

De plus, les opérations effectuée sont équivalentes à la multiplication à gauche et à droite par des matrices de transvection et de dilatations du type $T_{ij}(\lambda)$ avec i < j et $D_i(\alpha)$ avec $\alpha \neq 0$ qui sont donc des éléments du sous-groupe $B_n(\mathbb{K})$.

On a donc, pour $T_1, T_2 \in B_n(\mathbb{K})$, l'égalité $P = T_1 w_{\sigma} T_2$, ce qui montre l'existence de la décomposition de Bruhat.

 $\boxed{!}$ On suppose qu'il existe $\sigma, \tau \in \mathcal{S}_n$ et T_1, T_2, T_1', T_2' tels que $P = T_1 w_{\sigma} T_2 = T_1' w_{\tau} T_2'$.

On a alors ${T_1'}^{-1}T_1w_\sigma=w_\tau T_2' T_2^{-1}$. En posant $S={T_1'}^{-1}T_1$ et $Q=T_2'T_2^{-1}$, on a :

$$Q = w_{\tau^{-1}} Sw_{\sigma}$$

Supposons par l'absurde que $\sigma \neq \tau$. Il existe $i \in [1, n]$ tel que $\sigma(i) < \tau(i)$. On a alors :

$$S(i,i) = Q(\tau(i),\sigma(i)) = 0 \text{ car } Q \in B_n(\mathbb{K})$$

Ceci contredit que $S \in B_n(\mathbb{K})$ (puisque S est triangulaire supérieure et inversible, ses coefficients diagonaux doivent être tous non nuls).

Ainsi, $\sigma = \tau$ donc la décomposition est unique.

Corollaire 11. $GL_n(\mathbb{K})$ agit sur Drap × Drap et l'action possède n! orbites.

Démonstration. $GL_n(\mathbb{K})$ agit transitivement sur Drap. On a vu que le stabilisateur pour cette action est $B_n(\mathbb{K})$, donc on a Drap $\simeq GL_n(\mathbb{K})/B_n(\mathbb{K})$.

Soit $(\overline{A}, \overline{B}) \in GL_n(\mathbb{K})/B_n(\mathbb{K}) \times GL_n(\mathbb{K})/B_n(\mathbb{K})$. D'après le théorème de décomposition de Bruhat, il existe $\sigma \in \mathcal{S}_n$ et $B_1, B_2 \in B_n(\mathbb{K})$ tels que $A^{-1}B = B_1 w_{\sigma} B_2$. On a alors :

$$\begin{split} (\overline{A}, \overline{B}) &= A \cdot (\overline{I_n}, \overline{A^{-1}B}) \\ &= A \cdot (\overline{I_n}, \overline{B_1} \underline{w_{\sigma} B_2}) \\ &= AB_1 (\overline{B_1^{-1}}, \overline{w_{\sigma} B_2}) \\ &= AB_1 (\overline{I_n}, \overline{w_{\sigma}}) \quad \text{car } B_1^{-1}, B_2 \in B_n(\mathbb{K}) \end{split}$$

Donc chaque orbite contient un élément de la forme $(\overline{I_n}, \overline{w_{\sigma}})$.

Supposons par l'absurde qu'il existe $\tau, \sigma \in \mathcal{S}_n$ tel que $(\overline{I_n}, \overline{w_\sigma})$ et $(\overline{I_n}, \overline{w_\tau})$ soient dans la même orbite. Dans ce cas, il existe $A \in \operatorname{GL}_n(\mathbb{K})$ tel que $A \overline{I_n} = \overline{I_n}$ et $A \overline{w_\sigma} = \overline{w_\tau}$, donc on a $A \in B_n(\mathbb{K})$ et $A w_\sigma = w_\tau B$ pour un certain $B \in B_n(\mathbb{K})$. D'après l'unicité de la décomposition de Bruhat, $\sigma = \tau$.

On en déduit que chaque orbite contient exactement un élément de la forme $(\overline{I_n}, \overline{w_{\sigma}})$, donc le nombre d'orbite est $|S_n| = n!$.

Référence

S. Francinou, H. Gianella, S. Nicolas, Oraux X-ENS, Algèbre 1, Cassini, p. 349.