Compact Operators

(1) Proportion:

Def: Linear operator $T: E \to F$. n.v.s. is Cpt.

if $T \in BE$ is relatively Cpt in Cf. IIIIF. $Pmk: T \in L(E,F)$. Otherwise $\exists (Xn)$. IIXnIISC.

but $T(Xn) \to \infty$. Contradict!

2.7. Finite-rank operator is cpt.

Denote: KcE. F) is set of all upt operators.

Prop, X. Y. n.v.s. Then T € K(X,Y) (=) T € K(X,Y).

Where T. X. Y are all completions of T. X.Y.

 $Pf((\Leftarrow)) \overline{\tau(Bx)} \subseteq \overline{\tau(Bx)} \cdot {}^{\circ}P^{\dagger}$ $(\exists) \overline{\tau(Bx)} \subseteq \overline{\tau(Bx)} = \overline{\tau(Bx)}$ $\subseteq \overline{\tau(Bx)} = \overline{\tau(Bx)} \cdot {}^{\circ}P^{\dagger}$

= qT, + T2 & K(E.F).

2') By totally bounded:

If $(T_n) \in K(E,F) \to T$. $\exists N$. $||T_{N-T}|| \le \frac{t}{2}$.

Since $\overline{T_{n}(B_E)} \subset \widetilde{V} B_{i}g_{i}$, $\frac{t}{2}) \Rightarrow \overline{T_{i}B_{E}} \subseteq \widetilde{V} B_{i}g_{i}$, \underline{t})

Cor. $(T_n) \subseteq L(E,F)$. $\lim_{t \to \infty} L(E,F)$.

RMK: i) Not every $T \in \mathcal{K}(E,F)$. Can be approxiby some seq of finite rank operators.

If F is Milkert space, it will hold: $\overline{T}(BE) \subseteq \widetilde{U}$ Began. Let h = space IAEI. $T_E = P_h \circ T$. $\Rightarrow ||T_L - T|| \leq 2L$ $since \exists k$. $T_X - T_K = P_h T_k - T_k X$.

ii) More general, it holds when F has Schandw basis. E is Banach space, e.g.

Lemma C Characterization of apt operator in Ly) $Tx = (\lambda, X, \dots \lambda_n X_n \dots) \text{ is apt operator of } L_p \in \{1 \le p \le n\} \iff \lambda_n \to 0.$

⇒ For E= F = Lp. Tn x = (\lambda, \times \lambda \times \lambda

 $T: X \xrightarrow{conti} F$. X is topo space. F is Banach.If Tcx) is relatively opt. Then T can be approxi. by nonlinear conti maps of finite rank.

If: Tcx) = V, Bcfi. t). Let $Tt = \frac{\sum_{i=1}^{\infty} 2icx_i fi}{\sum_{i=1}^{\infty} 2icx_i}$ Where $2icx_i = \max \{ t - 1| Tx - fi | 1| . 0 \}$ Ts conti. $||Tx - Tcx_i|| = || \frac{\sum_{i=1}^{\infty} 2icx_i}{\sum_{i=1}^{\infty} 2icx_i}|| 3s$ Ts conti. $||Tx - Tcx_i|| = || \frac{\sum_{i=1}^{\infty} 2icx_i}{\sum_{i=1}^{\infty} 2icx_i}|| 3s$

Prop. E. F. G are Brown spaces. T. $\in L(E_1F)$. $T_2 \in k(E_1F)$ $S_1 \in K(F_1G_1)$. $S_2 \in L(F_2G_1)$ Then $S_1 \circ T_2 \in k(E_1G_2)$ $Pf: | 1' \rangle | T_2(B_E) | = ||T_1|| . S_3 \circ T_3(B_E) = closed in apt set$ 2) $T_2(B_E) = V_1 B_2 G_1(C_1) : S_2 \circ T_2(B_E) = V_2 B_3 S_2 G_2(C_2) = ||S_2|| > 0$ $S_2 \circ T_2(B_E) \subseteq V_3 B_3 S_2 G_2(C_3) = ||S_2|| > 0$

1hm. TE KIE,F) = TEKIF*. E*).

If: (=) Test with LVn) $\subseteq B_{\xi^{\sharp}}$. Let $\xi : TCBE)$. Upt.

Demte $M = I \ g_n : \chi \in k \longrightarrow \langle V_n, \chi \rangle 3$.

M sweisfies Ascoli Ihm : : M is upt. $\exists \ g_{nk} \longrightarrow g \ on \ k : (T^*Vn_k)$ is Lauchy.

(E) Then $T^{**} \in \mathcal{K} (E^{**}, F^{**})$ $T^{**} \cap BE = T_F \circ T \circ T^{*} \cap BE = T \cap BE = T$

Critelia: $T \in S \subset F$, If $T \in k \subset F$, Then, $N_{k} \rightharpoonup u$, in $\delta \subset F \not= \delta$. $\Rightarrow u \in have \quad Tu_{k} \rightarrow Tu \quad in F$. $Pf: (\Rightarrow) \quad | < T^{*}V, u_{k} - u > 1 \rightarrow 0$. $\forall v \in F^{*}$. $\therefore | < V, Tu_{k} - Tu > 1 \rightarrow 0$. $Tu_{k} \rightharpoonup Tu \quad in \quad F \subset F^{*}$.

IITUNII = C ⇒ Since TE K(E). ∃(TUNK)

TWAK → a. in F. .. a = Tn.

If TUn -x > Tn. Then I (Unk). H TUNK - TN11 = 10 > 0 But I (Trink) = (Trink). Trink -> Tr. Gontradices! (=) Converse holds when E is reflexive. Sinu for (m.) = BE. I (Max) weakly converges.

Prop. TERCE.F). RCT) is closed. Then T is finite rank.

> Pf. T= E -> RCT). (Brownh) surjective BLO : T(BE (0.1)) = BRUD (0.0). \$1.70. Then: Ben (0.0) is upt. dim (fers) < 00.

e he is Teles = Teles (2) Fredholm Alternative:

For TEXCEI. 2 = 0.

- West william B 1 NOXI-T) is finite Limensional
- @ Re XI-T) is closed. ReXI-T) = NCXZ-T*, +
- (3) NO XI-T) =0 () K(XI-T) = E.
- (4) lim N()z-T) = lim N()z-T*)

Remark: Consider the equation: In-Th=f. O is saging: The digenvalue & of T is finitely multiple. i.e. lim [n | Tu=lu] < 00. O is snying the equation Au-Tu=fis

solumble. iff f t NeXI-T*) +. For E is

Milbert space. \in f \in NA = \in 11 Tu=\lambda n3 +.

3) is snying if for 4ft E. The equation has solution. Then the solution is unique. We can denote it by M: (AI-T) f. formly.

In the case CAI-T) is BLO. By the opening mapping 7hm. AI-T bijective. borti.

Pf: WLOG. Let X=1. Since 7 & K(E).

O Printe $E_i = NcI-T$). TOBEN = BE_i BE, $\subseteq BE$: $BE_i = T(BE_i) \subseteq T(BE_i)$. $\overline{BE_i} \subseteq PT$ in NCI-T) : Limc NCI-T) $\subset P$

O Consider fn= Un-Tun → f.

Prove (Un) wor't be so far from NOI-T).

Since NOI-T) is reflexive: IVn. for Vun. St.

Lun. NOI-T) = IIMn-VnII. (Convex)

prove: (Un-Vn) is bounded.

Then apply T ∈ k(E). Find g ∈ E. g-Tg=f.

(a) By contradiction: $E_1 = (I-T)(E) \notin E$. $E_2 = (I-T)(E_1) \notin E_1$. Pennte $E_n = (I-T)^n E$. We have: $E_n \notin E_{nn}$. I $E_n S$ closed. $L_n S$. By Kiesz. Lumman $\exists (N_n) \subseteq E_1$, $N_n \in E_n$. St. prove: LTun) won't converge in E.

- (€) Sina ReI-T) is closed .: NeI-T*)=[0].

 T* € k(E*) -: K(I-T*)=E*. .: NeI-T)=[0].
- First prove: $L^* \leq L$, $L^* = \lim_{N \to \infty} N \in \mathbb{Z} \mathbb{Z}^*$). $L = \lim_{N \to \infty} L = \mathbb{Z}^*$ Since $R(Z-T) = \lim_{N \to \infty} -\mathbb{Z}^*$: it has codin = L^* .

 I complement $F \in L$. Se. $N \in \mathbb{Z} \mathbb{Z} = \mathbb{Z$

Permak: If E is separable Milbert space. for solve λu - T n = f. we can apply Special Decomposition on T. $u = \sum \langle u, c \rangle ei$. $f = \sum \langle f, c \rangle ei$ Solve $\langle u, e \rangle \rangle$. Check it's convergent by Bessel)

(3) Spectrum of Cpt Operators:

PUS: FOR $T \in \mathcal{L}(E)$, $E = E'^{k}$.

i) Presolvent zur: $e(T) = \{\lambda \in k \mid CT - \lambda I\}$ is bijection}.

ii) Spectrum OCT) = 1/ (CCT).

iii) EUCT) = IX + KI NO XI-T) = 1033.

Remark: $EV(T) \subseteq \sigma(T)$. If T is opt operator

Then $EV(T) = \sigma(T)$. But it will also

happen $EV(T) \nsubseteq \sigma(T)$. e.j. $d^2 \xrightarrow{T} d^2$. St. $T(\mu_1, \mu_2 \cdots \mu_n, \cdots) = (0, \mu_1, \mu_2 \cdots \mu_n, \cdots) \cdot (n e d^2)$ Then $EV(T) = \emptyset$. T isn't bijection. $0 \in \sigma(T)$.

1 Spectrul Radius:

· Pef: rcT) = lim 11T" 11" is spectral radius of T.

For E is Branch Span. TE SCEI. then

we have: ret) exists, and ret) = 11711

91: For an = log 117"11. We have Ritaj = Aiti

Vm, n. (nzm). An = Anter € 2Am+Ar m2+r

 $\frac{n}{n} = \frac{nr}{n} + \frac{nr}{n} \cdot 7nke \quad \text{sup} \quad \text{cfix m})$

: Sup an s am + sup as Take inf:

: lim n & inf m = supinf * = lim n

-: lim = inf m. .. lim 117"11" = 11711.

@ Polynomial on Operators:

For TELLEI. OLL) = Fatt.

Thm i) ac EVETI) = EVERITI)

ii) ac octi) = ocacti)

If E is Milbert Space. (ruther than Brank)

Then iii) $\alpha(EV(T)) = EV(\alpha(T))$ $iV) \alpha(\sigma(T)) = \sigma(\alpha(T))$

Pf: i) For $\forall \lambda \in \overline{b}\nu(T)$. $\alpha(\lambda) = \overline{a} \cdot (\lambda z - T)$. $\gamma(\lambda z - T) + 0 \Rightarrow N(\overline{a}(\lambda z - T)) \neq 0$.

ii) Similarly. Q(x) I-Q(T) = (λ I-T)· $\bar{\alpha}$ = $\bar{\alpha}$ (λ I-T) (λ I-T) isn't bijection. So Q(λ) I-Q(T).

iii) Lemmn. āct) his no real root. Then act)
is bijection.

Pf: $\overline{a}(t) = \overline{\Pi}(a_i t^2 + b_i)$. $b_i \neq 0$. $\forall 1 \leq i \leq k$.

For $a_i = T^2 + b_i = Y^2$. By $b_i = A_i + A_i = A_i + b_i = Y^2$. $= \{Y_i \in V_i, V_i > \{A_i \mid |T_i|^2 + b_i\}\} \mid V_i \mid |V_i| \mid |V_i| = Y^2 \mid |V_i| = Y^2$

For $\lambda \in \mathbb{E} \cup (\alpha \cup \tau)$. $\alpha \cup t \rightarrow \lambda$ will have real root.

Otherwise $\alpha \cup \tau \rightarrow \lambda \perp is$ bijection $\therefore \lambda \in \mathbb{E} \cup (\alpha \cup \tau)$ $\vdots \alpha \cup \tau \rightarrow \lambda \perp = \widehat{\alpha} \cup \tau \rightarrow \widehat{\tau} \cup \tau \rightarrow \iota \perp \lambda = 0$. $\vdots ti \in \mathbb{E} \cup \tau \rightarrow \ldots \rightarrow \lambda = 0$. $\lambda = 0$. $\lambda \in \mathbb{E} \cup \tau \rightarrow \iota = 0$.

(iv) Similarly argument: act)-AI = Ti(T-tiI) = = a Ti(T-tiI)

(3) Spectrum (CT):

Prop. $T \in L(E)$, Then $\sigma(T)$ is cpt. Besides. $\sigma(T) \subseteq [-11T11.11711]$. More precisely, we have: $\sigma(T) \subseteq [-11T11.11711]$. Lif $\sigma(T) \neq \emptyset$)

9f: 1°) For $|\lambda| > ||T||$. $|\lambda u - Tu = f|hms solution:$ (a) $u = \frac{T}{\lambda}u + \frac{1}{\lambda}f$. $\forall f \in E$.

Denote $Sv = \frac{T}{\lambda}V + \frac{f}{\lambda}$, is a contraction.

2) ECT) is open:

If $\lambda_0 \in ECT$. For $\lambda \in R$, $f \in E$.

Then = f has solution \Leftrightarrow Then = $f + (\lambda - \lambda_0)u$.

1. e. $u = (T - \lambda_0)^T (f + (\lambda - \lambda_0)u)$ Then = f | $(T - \lambda_0)^T (f + (\lambda - \lambda_0)u)$ Then = f | f

3') For $\alpha(\tau) = T^n$. Since $\delta(\tau)^n \leq \delta(\tau^n)$. $\delta(\tau)^n \leq \left[I - \|T^n\|, \|T^n\| \right].$ $i.e. \quad \delta(\tau) \leq \left[I - \|T^n\|^{\frac{1}{n}}, \|T^n\|^{\frac{1}{n}} \right] \text{ for } n \to \infty.$

Car. List (Ao, 607) > 1167-2, I)11 > 1 . 4 x, E ect).

From (#).

Thm. TE KLE). dim E = 00. Then

- i) 06 86T)
- ii) (1)/803 = EVCTO/101.
- iii) One of following cases will happen:

 (A) 8(T) = 503. (b) 5(T)/603 is finite.

 (C) 5(T)/60) is constable, tend to 0. [All can conclude: \lambda n >0)

The EXTRE GARAGES IN 11 THE TREE

- Pf: i) If $0 \in L(T)$. Then T is bijution. $Z = T \circ T' \in k(E). \quad BE \text{ is } Cpt. \Rightarrow Aim E < \infty.$
 - ii) For A to. Apply Fredholm Alternative.
 - iii) Lemma. Te kies, $(\lambda_n) \in \sigma(\tau)/s_0$. Aistinct. $\lambda_n \rightarrow \lambda$. Then $\lambda = 0$. ci.e. $\forall \lambda \in \sigma(\tau)/s_0$. λ is

 isolated point)

Pf: Find (en). St. Ten=Antn. for each λn .

Denote $E_n = span (Ck3)^n$. closed. $E_n \nsubseteq E_{n+1}$.

Apply Ries& Lemma. $\exists (un) \cdot |unn| = 1$. Ackn. $E_{n+1} \not= 1$ $\therefore (T-\lambda_n I) E_n \subseteq E_{n+1}$. Check: $\prod \frac{TU_n}{\lambda_n} - \frac{TU_n}{\lambda_n} \prod_{j=1}^n I$ Since $(\frac{U_n}{\lambda_n})$ will be bounded. if $\lambda \neq 0$.

then $(\frac{Tu_n}{\lambda_n})$ admits a convergant subseq.

 \Rightarrow 60T) \cap I $|\lambda| \ge \frac{1}{n}$ is finite or empty. Otherwise. Apply $\sigma(T)$ is $cpt: \exists \lambda n \rightarrow \lambda \neq 0$.

Remark: $\forall (\pi n) \rightarrow 0$. We can construct $T \in k(E)$. St. $\sigma(T) = (\sigma(n) \cup \{0\}, \ e : g, \ let \ E = d^2$. $T(u_1...u_n...) = (q_1u_1, q_2u_2...q_nu_n...) \cdot G k(d)$ $T_n = (q_1u_1...q_nu_n.o.o...) \cdot 11T_n - T11 - 0 : T is apt.$

(4) Spectrul Decomposition of

Self-Adjonint Cpt Operators:

· Suppose E = H'' Milbert space on real.

Def: $T \in L \in H$ is said to be self-adjoint if $T \in T$. i.e. $(T \cap H) = (H \cap H) \cdot H \cap H$.

Pfor TELCHS is self-adjoint. Let:

m=inf(Tn,u). M= Smp(Tn,u). Then,

ney

ney

im=i

f(T) \in Em,m]. m, M \in \in(T). ||T||= max \in(I) \in)

pf: i) For \lambda \in Em, M]. Apply Lax-Milgin

Pf: 1') For $\lambda \in Cm, MJ'$. Apply Lax-Milgrom

Check $\lambda I - T / T - \lambda I$. is bijection.

2) Consider Ren.v) = C MM-Tn.v).

Check it's linear. sym. ren.n) > 0.

[acn.v) | = aten.v) atev.v). by Crnvhy

Since ac.,) is scalar product.

: [Tu-mn] = C C mn-Tn.u)

If m & Cet). Consider (un). cTmn.un) -> m.

Then un -> 0. Contradict. (m is pnalogous.)

39 Denote M: max [1M1. Im13. 11711 > M is obvious.

Conversely. Consider paralogram law:

4 c Tu, v) = c Tintus, urv) - c Tin-vs. u-vs

- : $4|(Tu,v)| \leq M|u+v|^2 m|u-v|^2 \leq 2M \in |u+v|^2 + |u-v|^2$ i.e. $|(Tu,v)| \leq M \in |u|^2 + |v|^2$, let $u = \pi n$. $\pi = \frac{|v|}{|w|} \cdot COptimal$: $|(Tu,v)| \leq |u||v||M$:: $M \geq ||T||$. M = ||T||.
- Or. TELCH). Sulf-adjoint. St. OCT)=10].

 Then 7=0
- @ 7hm. Suppose U is separable Milbert space. If T is self-adjoint opt operator. Then there exists Wilbert basis composed of eigenvectors of T.
 - Pf: 19) EVCT) is countrible.

 Otherwise, there exists [ni]iez. unmassach.

 Tni = lini. .: [ni]iez is l.i.
 - 2') Imppose EVCT) = (\lambda n) nozt. (distinct)

 Dente Eo = NCT). En = NC \lambda n-T). fin (En) < 00. n to.

 Check (En) noon are mutually orthogonal.
 - - 4º) Gastruct orthonormal Basis for each En. 120.

(5) Application in integrable

operators

(1) Proporties:

Busides. Acts & CIA.67. (K& Loca.65). Still how)

Winder the Condition above, if kcs,t) = kct.s). then A is self-adjoint.

If: 1) Acfs $\in L^2(nb)$ c A is well-det) $|A(f)| = ||K||_{L^{\infty}} \int_{n}^{n} f(t) dt$ $= ||K||_{\infty} ||f||_{2} \sqrt{b-n} < \infty.$

2') A is BLD:

|| Af||_{1}^{2} = \int_{0}^{6} \[\int_{0}^{6} \kess. \displays \int \frac{1}{2} \kess. \displays \] \[\int_{0}^{6} \kess. \displays \int \frac{1}{2} \kess. \displays \kess. \displays. \]

\[\int C \left| \frac{1}{2} \cdot \chook \text. \text. \displays \left| \frac{1}{2} \cdot \chook \text. \displays \displays \text. \displays \left| \frac{1}{2} \cdot \chook \text. \displays \text. \displays \left| \frac{1}{2} \cdot \chook \text. \displays \displays \text. \displays \displays \text. \displays \din \displays \displays \dinta \displays \dinta \displays \displays \displays \dinta \displa

3') Acto is conti:

1 Acfoctio - Acfoctio 1 & Salkes, to - kes, will for 1 As ₹ Ellfll Jb-A. Siku En.b7 is cpt.

4") A E X (X):

For CANDAGET. HANILEC.

< M < 00. Yn. Then 1 Acquis 1 = 11 kla 119 all - Jo-n

1 Acgrictis - Acgrictes) | = Ji-A 11f11. Snp 1 kcs.t.) - kcs.t.)

.. By Astoli Thm. (Agn) admits a convergent subseq.

5) If k(5,7) = k(1,5):

< Axing > = \int A(x)(t) not) At = \int_a^b \int_a^b k(s,t) \chi(s) got) As At = In xess In ketissycholes = < x. Ays. By Fubini Thm.

(2) Cor. Store of the waster and in my (1 comes Under the assumption above (0.0) For a x & X. 3 Z & X. St. X = AZ. Suppose (Ma) heat = (Xx)xezi U (Zx)xezt. St. AXx = Axx. Azx = 0. Thrn.

Il (X.1) > 1:ct > 1 Converges.

Pf: = 1 < x, 9 :> 9 : 1 = = 1 < AZ, 9 :> 9 : 1 = = 1 < Z, An :> 9 : 1 = = | < Z, 1 > \in | = = | < Z, 1 > \in | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \frac{m}{n} | < Z, 1 > \in | = \fr

By Bussel. Ilezinist unverges.

femore: RIA) is set of both Func. Its depenposition can be l'annages.