#### **BAB IV**

#### HASIL DAN PEMBAHASAN

#### A. Tahapan Penelitian

#### 1. Praproses data.

Data yang digunakan dalam penelitian ini yaitu 6 tahun terakhir (2006-2011) yang terdiri dari beberapa tabel antara lain tabel tahun, nama instansi, uraian, rincian item, dan rincian biaya. Adapun atribut tersebut yaitu :

#### a. Tahun.

Merupakan atribut yang berisi laporan tiap tahun di setiap laporan data anggaran dan pendapatan.

#### b. Nama instansi.

Merupakan atribut yang berisi nama-nama badan pemerintah yang tercantum pada kabupaten tersebut.

#### c. Uraian.

Merupakan atribut yang berisi item pendapatan, belanja tidak langsung dan belanja langsung.

#### d. Rincian item.

Merupakan atribut yang berisi rincian pembelanjaan dari transaksi pendapatan, belanja tidak langsung dan belanja langsung dari setiap instansi.

## e. Rincian biaya.

Merupakan atribut yang berisi jumlah keuangan dari setiap transaksi.

Hasil akhir dari seleksi atribut didapatkan 4 atribut yang telah relevan dan konsisten, tetapi hanya 2 atribut saja yang digunakan dalam proses *clustering* yaitu atribut uraian ( pendapatan, belanja langsung dan belanja tidak langsung ) dan rincian biaya. Karena informasi yang terkandung di dalamnya sudah mewakili informasi yang dibutuhkan untuk dijadikan indikator penentu dalam proses *clustering* menggunakan algoritma *K-Means*.

## 2. Cleaning data.

Dilakukan pembersihan data terhadap data yang memiliki redundant. Dalam dataset terdapat tabel tahun, nama instansi, rincian item dan rincian biaya, atribut yang dihapus yaitu (tabel tahun, nama instansi dan rincian item). Hal itu dilakukan karena data tersebut tidak akan memberikan informasi apapun jika dipertahankan.

Tabel 4.1 Contoh data yang redundant

| Tahun | Nama Instansi    | Rincian Item                                              |  |
|-------|------------------|-----------------------------------------------------------|--|
|       |                  |                                                           |  |
| 2007  | Dinas Pendidikan | <ul> <li>Hasil retribusi daerah</li> </ul>                |  |
|       |                  | <ul> <li>Belanja pegawai</li> </ul>                       |  |
|       |                  | o Program pelayanan administrasi                          |  |
|       |                  | perkantoran                                               |  |
|       |                  | o Program peningkatan sarana dan                          |  |
|       |                  | prasarana aparatur                                        |  |
|       |                  | <ul> <li>Program peningkatan disiplin aparatur</li> </ul> |  |
|       |                  | <ul> <li>Program peningkatan kapasitas sumber</li> </ul>  |  |
|       |                  | daya aparatur                                             |  |

## 3. Clustering menggunakan algoritma K-Means.

Berikut cara algoritma *K-Means* mempartisi dataset ke dalam *cluster*.

- **a.** Algoritma menerima jumlah *cluster* untuk mengelompokkan data. Dataset yang akan di*cluster* dijadikan sebagai nilai input.
- **b.** Algoritma membuat sebanyak k cluster awal (k = jumlah cluster yang terbentuk) dari dataset.
- c. Algoritma *K-Means* menghitung nilai rata-rata dari setiap *cluster* yang dibentuk dalam dataset. Sebagai contoh jika di dalam dataset terdapat record Q yang menerima nilai pendapatan, belanja tidak langsung dan belanja langsung, maka ditulis Q = {pendapatan, belanja tidak langsung, belanja langsung}. Jika nilai pendapatan 201.553, belanja tidak langsung 93.572, belanja langsung 129.828. Maka ditulis Q = {201.553, 93.572, 129.828}.
- d. *K-Means* menghitung ulang rata-rata dari semua *cluster*. Rata-rata dari setiap *cluster* adalah rata-rata dari semua record dalam *cluster*. Sebagai contoh, sebuah *cluster* berisi 3 record Q = {201.553, 93.572, 129.828}, dan R = {259.246, 101.397, 207.566}. Maka rata-rata dalam sebuah *record* dinyatakan sebagai, nilai rata-rata pendapatan pada record Q ditambahkan nilai rata-rata pendapatan pada *record* R, kemudian dibagi 2. Rata-rata pada pendapatan = (201.553 + 259.246)/2. Rata-rata pada belanja tidak langsung = (93.572 + 101.397)/2. Rata-rata pada belanja langsung = (129.828 + 207.566)/2. Rataan nilai itu akan menjadi pusat dari *cluster* yang baru.

- **e.** *K-Means* mengirimkan lagi setiap data *record* di dalam dataset ke salah satu dari *cluster* yang baru terbentuk.
- f. Hitung kembali pusat *cluster* dengan anggota *cluster* sebelumnya, hingga terbentuk *cluster* yang stabil dan prosedur *K-Means* selesai. *Cluster* stabil terbentuk saat iterasi dari *K-Means* tidak membuat *cluster* baru sebagai pusat *cluster*, yang mana nilai *cluster* baru sama dengan nilai *cluster* lama.
- g. Menghitung nilai SSE.

#### B. Tahap Analisis

Dalam penelitian ini penulis menentukan dahulu jumlah k, yaitu ada 3 (pendapatan, belanja tidak langsung dan belanja langsung).

Tabel 4.2 Data APBD Kabupaten XYZ 6 tahun terakhir

| Tahun | <b>Pendapatan</b> | Bela <mark>nja Tida</mark> k | <b>Belanja Langsung</b> |
|-------|-------------------|------------------------------|-------------------------|
|       | 11.               | Langsung                     |                         |
| 2006  | 201.553.514.383   | 93.572.060.106               | 129.828.573.884         |
| 2007  | 259.246.501.847   | 101.397.703.745              | 207.566.731.839         |
| 2008  | 323.651.578.493   | 140.833.244.772              | 219.186.897.446         |
| 2009  | 317.827.261.000   | 153.340.367.941              | 199.611.893.059         |
| 2010  | 326.719.642.227   | 176.183.064.040              | 152.491.575.430         |
| 2011  | 360.831.808.019   | 201.548.822.824              | 178.151.334.250         |

#### 1. Proses clustering dalam k-means.

Dalam tahap ini penulis menentukan nilai *centroid* menjadi 2 bagian, yaitu yang mempunyai 3 *centroid* serta 2 *centroid*. Hal ini dilakukan untuk mengetahui jumlah

centroid mana yang paling baik, karena dalam perumusan *K-Means* nilai *cluster* yang paling terkecil akan menjadi nilai *cluster* yang paling baik.

- a. Proses clustering dalam k-means dengan pengujian 3 nilai centroid dan 2 nilai centroid.
- 1) Perhitungan centroid awal.

Tahapan *clusterisasi* menggunakan algoritma *K-Means*, diawali dengan pembentukan *cluster* pada dataset yaitu 3 *cluster* dengan pengujian 2 parameter berupa 3 nilai *centroid* dan 2 nilai *centroid*.

a) Perhitungan centroid awal dengan 3 nilai centroid.

Cluster Nilai Pendapatan:

$$(C_0)$$
 201.553 + 259.246 = 230.399,5

$$(C_1)$$
 323.651 + 317.827 = 320.739

$$(C_2) \quad 326.719 + 360.831 \qquad = \qquad 343.775$$

<u>Cluster Nilai Belanja Tidak Langsung :</u>

$$(C_0)$$
 93.572 + 101.397 = 97.484,5

$$(C_1)$$
 140.833 + 153.340 = 147.086,5

$$(C_2) \quad 176.183 + 201.548 \qquad = \qquad 188.865,5$$

Cluster Nilai Belanja Langsung:

$$(C_0)$$
 129.828 + 207.566 = 168.697

$$(C_1)$$
 219.186 + 199.611 = 209.398,5

$$(C_2)$$
 152.491 + 178.151 = 165.321

b) Perhitungan centroid awal dengan 2 nilai centroid.

Cluster Nilai Pendapatan:

$$(C_0)$$
  $201.553 + 259.246 + 323.651 = 261.483,34$ 

$$(C_1)$$
 317.827 + 326.719 + 360.831 = 335.125,67

## Cluster Nilai Belanja Tidak Langsung:

$$(C_0) \ \ 93.572 + 101.397 + 140.833 \ \ = \ \ \ 111.934$$

3

$$(C_1) \ \ 153.340 + 176.183 + 201.548 \ = \ \ \ 177.023,67$$

3

## Cluster Nilai Belanja Langsung:

$$(C_0)$$
 129.828 + 207.566 + 219.186 = 185.526,67

3

$$(C_1) \quad \underline{199.611 + 152.491 + 178.151} = 176.751$$

**Tabel 4.3** Hasil perhitungan *centroid* setiap *cluster* pada pengujian 2 parameter

| Cluster          | H                           | 3 centroid | 3         | 2 ce       | ntroid         |
|------------------|-----------------------------|------------|-----------|------------|----------------|
|                  | $c_{\scriptscriptstyle{0}}$ | $C_1$      | $C_2$     | $C_0$      | $\mathbf{C_1}$ |
| Pendapatan       | 230.399,5                   | 320.739    | 343.775   | 261.483,34 | 335.125,67     |
| Belanja Tidak    | 97.484,5                    | 147.086,5  | 188.865,5 | 111.934    | 177.023,67     |
| Langsung         | 000                         | IVO        | 0         |            |                |
| Belanja Langsung | 168.697                     | 209.398,5  | 165.321   | 185.526,67 | 176.751        |

## 2) Proses perhitungan jarak.

Dalam langkah ini dilakukan proses perhitungan jarak untuk mengetahui masing — masing hasil jarak data pada jumlah k di setiap centroid.

Melakukan penghitungan untuk menentukan jarak setiap data dengan centroid awal, menggunakan rumus *euclidiance distance*.

#### a) Perhitungan jarak dengan 3 nilai centroid.

<u>Jarak antara data pertama dengan centroid pertama (C<sub>0</sub>) :</u>

$$d_{1,0} = \sqrt{(201.553 - 230.399,5)^2 + (93.572 - 97.484,5)^2 + (129.828 - 168.697)^2}$$
$$= 48.561,58$$

Jarak antara data pertama dengan centroid kedua (C1):

$$d_{1,1} = \sqrt{(201.553 - 320.739)^2 + (93.572 - 147.086,5)^2 + (129.828 - 209.398,5)^2}$$

$$= 152.972.44$$

Jarak antara data pertama dengan centroid ketiga (C2):

$$d_{1,2} = \sqrt{(201.553 - 343.775)^2 + (93.572 - 188.865,5)^2 + (129.828 - 165.321)^2}$$

$$= 174.836,21$$

Jarak antara data kedua dengan centroid pertama (C<sub>0</sub>):

$$d_{1,0} = \sqrt{(259.246 - 230.399,5)^2 + (101.397 - 97.484,5)^2 + (207.566 - 168.697)^2}$$

$$= 48.561,58$$

Jarak antara data kedua dengan centroid kedua (C<sub>1</sub>):

$$d_{1,1} = \sqrt{(259.246 - 320.739)^2 + (101.397 - 147.086,5)^2 + (207.566 - 209.398,5)^2}$$

$$= 76.630,79$$

## Jarak antara data kedua dengan centroid ketiga (C2):

$$d_{1,2} = \sqrt{(259.246 - 343.775)^2 + (101.397 - 188.865,5)^2 + (207.566 - 165.321)^2}$$
$$= 128.765,41$$

<u>Jarak antara data ketiga dengan centroid pertama (C<sub>0</sub>) :</u>

$$d_{1,0} = \sqrt{(323.651 - 230.399,5)^2 + (140.833 - 97.484,5)^2 + (219.186 - 168.697)^2}$$
$$= 114.560,35$$

Jarak antara data ketiga dengan centroid kedua (C1):

$$d_{1,1} = \sqrt{(323.651 - 320.739)^2 + (140.833 - 147.086,5)^2 + (219.186 - 209.398,5)^2}$$

$$= 11.974,19$$

Jarak antara data ketiga dengan centroid ketiga (C2):

$$d_{1,2} = \sqrt{(323.651 - 343.775)^2 + (140.833 - 188.865,5)^2 + (219.186 - 165.321)^2}$$
$$= 74.923,53$$

Jarak antara data keempat dengan centroid pertama (C<sub>0</sub>):

$$d_{1,0} = \sqrt{(317.827 - 230.399,5)^2 + (153.340 - 97.484,5)^2 + (199.611 - 168.697)^2}$$
$$= 108.254,7$$

## Jarak antara data keempat dengan *centroid* kedua (C<sub>1</sub>):

$$d_{1,1} = \sqrt{(317.827 - 320.739)^2 + (153.340 - 147.086,5)^2 + (199.611 - 209.398,5)^2}$$

$$= 11.974,19$$

<u>Jarak antara data keempat dengan centroid ketiga (C<sub>2</sub>) :</u>

$$d_{1,2} = \sqrt{(317.827 - 343.775)^2 + (153.340 - 188.865,5)^2 + (199.611 - 165.321)^2}$$
$$= 55.777,81$$

Jarak antara data kelima dengan centroid pertama (C<sub>0</sub>):

$$d_{1,0} = \sqrt{(326.719 - 230.399,5)^2 + (176.183 - 97.484,5)^2 + (152.491 - 168.697)^2}$$

$$= 125.433,39$$

<u>Jarak antara data kelima dengan centroid kedua (C<sub>1</sub>)</u> :

$$d_{1,1} = \sqrt{(326.719 - 320.739)^2 + (176.183 - 147.086,5)^2 + (152.491 - 209.398,5)^2}$$

$$= 64.193,69$$

Jarak antara data kelima dengan centroid ketiga(C2).

$$d_{1,2} = \sqrt{(326.719 - 343.775)^2 + (176.183 - 188.865,5)^2 + (152.491 - 165.321)^2}$$
$$= 24.826,64$$

## <u>Jarak antara data keenam dengan centroid pertama (C<sub>0</sub>) :</u>

$$d_{1,0} = \sqrt{(360.831 - 230.399,5)^2 + (201.548 - 97.484,5)^2 + (178.151 - 168.697)^2}$$
$$= 167.125,6$$

<u>Jarak antara data keenam dengan centroid kedua (C<sub>1</sub>) :</u>

$$d_{1,1} = \sqrt{(360.831 - 320.739)^2 + (201.548 - 147.086,5)^2 + (178.151 - 209.398,5)^2}$$
$$= 74.497,18$$

Jarak antara data keenam dengan centroid ketiga (C2):

$$d_{1,2} = \sqrt{(360.831 - 343.775)^2 + (201.548 - 188.865,5)^2 + (178.151 - 165.321)^2}$$
$$= 24.826,64$$

# b) Perhitungan jarak dengan 2 nilai centroid.

Jarak antara data pertama dengan centroid pertama (C<sub>0</sub>):

$$d_{1,0} = \sqrt{(201.553 - 261.483,34)^2 + (93.572 - 111.934)^2 + (129.828 - 185.526,67)^2}$$

$$= 83.851,95$$

Jarak antara data pertama dengan centroid kedua (C1):

$$d_{1,1} = \sqrt{(201.553 - 335.125,67)^2 + (93.572 - 177.023,67)^2 + (129.828 - 176.751)^2}$$

$$= 164.339,91$$

## <u>Jarak antara data kedua dengan centroid pertama (C<sub>0</sub>) :</u>

$$d_{1,0} = \sqrt{(259.246 - 261.483,33)^2 + (101.397 - 111.934)^2 + (207.566 - 185.526,67)^2}$$

$$= 24.530,92$$

<u>Jarak antara data kedua dengan centroid kedua (C<sub>1</sub>) :</u>

$$d_{1,1} = \sqrt{(259.246 - 335.125,67)^2 + (101.397 - 177.023,67)^2 + (207.566 - 176.751)^2}$$

$$= 111.475.03$$

Jarak antara data ketiga dengan centroid pertama (C<sub>0</sub>)

$$d_{1,0} = \sqrt{(323.651 - 261.483,33)^2 + (140.833 - 111.934)^2 + (219.186 - 185.526,67)^2}$$

$$= 76.373,57$$

<u>Jarak antara data ketiga dengan centroid kedua (C<sub>1</sub>):</u>

$$d_{1,1} = \sqrt{(323.651 - 335.125,67)^2 + (140.833 - 177.023,67)^2 + (219.186 - 176.751)^2}$$

$$= 56.939,98$$

Jarak antara data keempat dengan centroid pertama (C<sub>0</sub>):

$$d_{1,0} = \sqrt{(317.827 - 261.483,33)^2 + (153.340 - 111.934)^2 + (199.611 - 185.526,67)^2}$$

$$= 71.326,25$$

## Jarak antara data keempat dengan *centroid* kedua (C<sub>1</sub>):

$$d_{1,1} = \sqrt{(317.827 - 335.125,67)^2 + (153.340 - 177.023,67)^2 + (199.611 - 176.751)^2}$$

$$= 37.185,21$$

<u>Jarak antara data kelima dengan centroid pertama (C<sub>0</sub>) :</u>

$$d_{1,0} = \sqrt{(326.719 - 261.483,33)^2 + (176.183 - 111.934)^2 + (152.491 - 185.526,67)^2}$$

$$= 97.339,52$$

Jarak antara data kelima dengan centroid kedua (C<sub>1</sub>):

$$d_{1,1} = \sqrt{(326.719 - 335.125,67)^2 + (176.183 - 177.023,67)^2 + (152.491 - 176.751)^2}$$

$$= 25.689,03$$

Jarak antara data keenam dengan centroid pertama (C<sub>0</sub>):

$$d_{1,0} = \sqrt{(360.831 - 261.483,33)^2 + (201.548 - 111.934)^2 + (178.151 - 185.526,67)^2}$$

$$= 133.996,38$$

Jarak antara data keenam dengan centroid kedua (C<sub>1</sub>):

$$d_{1,1} = \sqrt{(360.831 - 335.125,67)^2 + (201.548 - 177.023,67)^2 + (178.151 - 176.751)^2}$$

$$= 35.555,12$$

**Tabel 4.4** Hasil perhitungan jarak data pada nilai k dengan masing-masing centroid setiap *cluster* 

| Data | 3 centroid     |                |            | 2 сег      | ntroid     |
|------|----------------|----------------|------------|------------|------------|
|      | C <sub>0</sub> | C <sub>1</sub> | $C_2$      | $C_0$      | $C_1$      |
| 1    | 48.561,58      | 152.972,44     | 174.836,21 | 83.851,95  | 164.339,91 |
| 2    | 48.561,58      | 76.630,79      | 128.765,41 | 24.530,92  | 111.475.03 |
| 3    | 114.560,35     | 11.974,19      | 74.923,53  | 76.373,57  | 56.939,98  |
| 4    | 108.254,7      | 11.974,19      | 55.777,81  | 71.326,25  | 37.185,21  |
| 5    | 125.433,39     | 64.193,69      | 24.826,64  | 97.339,52  | 25.689,03  |
| 6    | 167.125,60     | 74.497,18      | 24.826,64  | 133.996,38 | 35.555,12  |

#### 3) Melakukan iterasi.

Berdasarkan cara kerja algoritma *K-Means* setelah ditentukan nilai *k* lalu menghitung nilai *centroid* dan jarak antar data pada setiap masing-masing *centroid*. Dalam tahap ini dilakukan perhitungan kembali nilai *centroid* pada masing-masing *cluster* yang dinamakan *iterasi*, hingga nilai *centroid* tidak berubah dari sebelumnya.

## a) Perhitungan iterasi pertama pada cluster pendapatan dengan 3 nilai centroid.

Tabel 4.5 Perhitungan iterasi pertama pada cluster pendapatan

| <b></b> | Data Ke- | Centroid       |                |                |
|---------|----------|----------------|----------------|----------------|
| Tahun   | Data Ke- | $\mathbf{C_0}$ | $\mathbf{C_1}$ | $\mathbf{C_2}$ |
| 2006    | 201.553  | 48.561,58      | 152.972,44     | 174.836,21     |
| 2007    | 259.246  | 48.561,58      | 76.630,79      | 128.765,41     |
| 2008    | 323.651  | 114.560,35     | 11.974,19      | 74.923,53      |
| 2009    | 317.827  | 108.254,7      | 11.974,19      | 55.777,81      |
| 2010    | 326.719  | 125.433,39     | 64.193,69      | 24.826,64      |
| 2011    | 360.831  | 167.125,60     | 74.497,18      | 24.826,64      |

o *centroid* pertama  $(C_0)$ 

2

= 230.399,5

o centroid kedua (C<sub>1</sub>)

$$=323.651+317.827$$

2

= 320.739

o centroid ketiga (C2)

$$=326.719+360.833$$

2

= 343.755

# b) Perhitungan *iterasi* pertama pada cluster belanja tidak langsung dengan 3 nilai centroid.

**Tabel 4.6** Perhitungan *iterasi* pertama pada *cluster* belanja tidak langsung

| Tahun    | Data Ke-  | Centroid       |            |                |
|----------|-----------|----------------|------------|----------------|
| 1 alluli | Data IXC- | $\mathbf{C_0}$ | $C_1$      | $\mathbf{C_2}$ |
| 2006     | 93.572    | 48.561,58      | 152.972,44 | 174.836,21     |
| 2007     | 101.397   | 48.561,58      | 76.630,79  | 128.765,41     |
| 2008     | 140.833   | 114.560,35     | 11.974,19  | 74.923,53      |
| 2009     | 153.340   | 108.254,7      | 11.974,19  | 55.777,81      |
| 2010     | 176.183   | 125.433,39     | 64.193,69  | 24.826,64      |
| 2011     | 201.548   | 167.125,60     | 74.497,18  | 24.826,64      |

Hitung kembali centroid

o centroid pertama (C<sub>0</sub>)

$$=93.572 + 101.397$$

2

= 97.484,5

o centroid kedua (C<sub>1</sub>)

$$= 140.833 + 153.340$$

2

= 147.086,5

o *centroid* ketiga (C<sub>2</sub>)

$$= 176.183 + 201.548$$

2

= 188.865,5

c) Perhitungan iterasi pertama pada cluster belanja langsung dengan 3 nilai centroid.

Tabel 4.7 Perhitungan iterasi pertama pada cluster belanja langsung

|       |          | IF         | Centroid   |                   |
|-------|----------|------------|------------|-------------------|
| Tahun | Data Ke- | $C_0$      | Cı         | C <sub>2</sub>    |
| 2006  | 129.828  | 48.561,58  | 152.972,44 | 174.836,21        |
| 2007  | 207.566  | 48.561,58  | 76.630,79  | 128.765,41        |
| 2008  | 219.186  | 114.560,35 | 11.974,19  | 74.923,53         |
| 2009  | 199.611  | 108.254,7  | 11.974,19  | <b>55.7</b> 77,81 |
| 2010  | 152.491  | 125.433,39 | 64.193,69  | 24.826,64         |
| 2011  | 178.151  | 167.125,60 | 74.497,18  | 24.826,64         |

Hitung kembali centroid

o centroid pertama (C<sub>0</sub>)

$$= 129.828 + 207.566$$

2

= 168.697

o *centroid* kedua (C<sub>1</sub>)

$$= 219.186 + 199.611$$

2

= 209.398,5

o *centroid* ketiga (C<sub>2</sub>)

$$= 152.491 + 178.151$$

2

= 165.321

Karena pada *iterasi* pertama nilai *centroid* pusat tidak berubah sama dengan nilai *centroid* sebelumnya, maka proses *iterasi* dihentikan.

JEGER,

## d) Perhitungan iterasi pertama pada cluster pendapatan dengan 2 nilai centroid.

Tabel 4.8 Perhitungan iterasi pertama pada cluster pendapatan

|       | 4        | Centroid       |                |
|-------|----------|----------------|----------------|
| Tahun | Data Ke- | $\mathbf{C_0}$ | C <sub>1</sub> |
| 2006  | 201.553  | 83.851,95      | 164.339,92     |
| 2007  | 259.246  | 29.476,38      | 111.475,02     |
| 2008  | 323.651  | 76.373,54      | 56.939,99      |
| 2009  | 317.827  | 71.326,24      | 37.185,20      |
| 2010  | 326.719  | 97.339,51      | 25.689,03      |
| 2011  | 360.831  | 133.996,37     | 35.555,12      |

o centroid pertama (C<sub>0</sub>)

$$= 201.553 + 259.246$$

2

= 230.399,5

o centroid kedua (C<sub>1</sub>)

$$= 323.651 + 317.827 + 326.719 + 360.831$$

= 332.257

e) Perhitungan iterasi pertama pada cluster belanja tidak langsung dengan 2 nilai centroid.

Tabel 4.9 Perhitungan iterasi pertama pada cluster belanja tidak langsung

|       |          | Cen            | troid          |
|-------|----------|----------------|----------------|
| Tahun | Data Ke- | $\mathbf{C_0}$ | C <sub>1</sub> |
| 2006  | 93.572   | 83.851,95      | 164.339,92     |
| 2007  | 101.397  | 29.476,38      | 111.475,02     |
| 2008  | 140.833  | 76.373,54      | 56.939,99      |
| 2009  | 153.340  | 71.326,24      | 37.185,20      |
| 2010  | 176.183  | 97.339,51      | 25.689,03      |
| 2011  | 201.548  | 133.996,37     | 35.555,12      |

 $\circ$  *centroid* pertama ( $C_0$ )

$$=93.572+101.397$$

2

= 97.484,5

o centroid kedua (C<sub>1</sub>)

$$= 140.833 + 153.340 + 176.183 + 201.548$$

= 167.976

f) Perhitungan iterasi pertama pada cluster belanja langsung dengan 2 nilai centroid.

Tabel 4.10 Perhitungan iterasi pertama pada cluster belanja langsung

| 68    | 177      | Centroid       |                           |  |
|-------|----------|----------------|---------------------------|--|
| Tahun | Data Ke- | $\mathbf{C_0}$ | $\mathbf{c}_{\mathbf{i}}$ |  |
| 2006  | 129.828  | 83.851,95      | 164.339,92                |  |
| 2007  | 207.566  | 29.476,38      | 111.475,02                |  |
| 2008  | 219.186  | 76.373,54      | 56.939,99                 |  |
| 2009  | 199.611  | 71.326,24      | 37.185,20                 |  |
| 2010  | 152.491  | 97.339,51      | 25.689,03                 |  |
| 2011  | 178.151  | 133.996,37     | 35.555,12                 |  |

centroid pertama (C<sub>0</sub>)

$$= 129.828 + 207.566$$

2

= 168.697

- centroid kedua (C1)
  - = 219.186 + 199.611 + 152.491 + 178.151

= 187.359,8

Karena nilai centroid dari hasil iterasi pertama berbeda dari nilai centroid awal, maka dilakukan lagi iterasi kedua.

Jarak antara data pertama dengan centroid pertama (C

$$d_{1,0} = \sqrt{(201.553 - 230.399.5)^2 + (93.572 - 97.484.5)^2 + (129.828 - 168.697)^2}$$

$$= 48.561.58$$

Jarak antara data pertama dengan *centroid* kedua (C<sub>1</sub>):

$$d_{1,1} = \sqrt{(201.553 - 332.257)^2 + (93.572 - 167.976)^2 + (129.828 - 187.359,8)^2}$$
$$= 161.026,08$$

<u>Jarak antara data kedua dengan centroid pertama (C<sub>0</sub>) :</u>

$$d_{1,0} = \sqrt{(259.246 - 230.399,5)^2 + (101.397 - 97.484,5)^2 + (207.566 - 168.697)^2}$$

$$= 48.561,88$$

<u>Jarak antara data kedua dengan centroid kedua (C<sub>1</sub>) :</u>

$$d_{1,1} = \sqrt{(259.246 - 332.257)^2 + (101.397 - 167976)^2 + (207.566 - 187.359,8)^2}$$

$$= 100.854,65$$

Jarak antara data ketiga dengan centroid pertama (C<sub>0</sub>):

$$d_{1,0} = \sqrt{(323.651 - 230.399,5)^2 + (140.833 - 97.484,5)^2 + (219.186 - 168.697)^2}$$

$$= 114.560,35$$

<u>Jarak antara data ketiga dengan centroid kedua (C<sub>1</sub>):</u>

$$d_{1,1} = \sqrt{(323.651 - 332.257)^2 + (140.833 - 167.976)^2 + (219.186 - 187.359,8)^2}$$

$$= 42.704,95$$

Jarak antara data keempat dengan *centroid* pertama (C<sub>0</sub>):

$$d_{1,0} = \sqrt{(317.827 - 230.399,5)^2 + (153.340 - 97.484,5)^2 + (199.611 - 168.697)^2}$$
$$= 108.254,70$$

<u>Jarak antara data keempat dengan centroid kedua (C<sub>1</sub>) :</u>

$$d_{1,1} = \sqrt{(317.827 - 332.257)^2 + (153.340 - 167.976)^2 + (199.611 - 187.359,8)^2}$$

$$= 23.927,58$$

<u>Jarak antara data kelima dengan centroid</u> pertama (C<sub>0</sub>):

$$d_{1,0} = \sqrt{(326.719 - 230.399,5)^2 + (176.183 - 97.484,5)^2 + (152.491 - 168.697)^2}$$

$$= 125.433,39$$

Jarak antara data kelima dengan centroid kedua (C<sub>1</sub>):

$$d_{1,1} = \sqrt{(326.719 - 332.257)^2 + (176.183 - 167.976)^2 + (152.491 - 187.359,8)^2}$$

$$= 36.247,17$$

Jarak antara data keenam dengan centroid pertama (C<sub>0</sub>):

$$d_{1,0} = \sqrt{(360,831 - 230.399.5)^2 + (201.548 - 97.484.5)^2 + (178.151 - 168.697)^2}$$
$$= 167125,60$$

Jarak antara data keenam dengan centroid kedua (C1):

$$d_{1,1} = \sqrt{(360.831 - 332.257)^2 + (201.548 - 167.976)^2 + (178.151 - 187.359,8)^2}$$

$$= 45.037,26$$

**Tabel 4.11** Hasil perhitungan jarak data terhadap masing-masing nilai *centroid* untuk dijadikan sebagai perhitungan

| Data ke - | C <sub>0</sub> | $C_1$      |
|-----------|----------------|------------|
| 1         | 48.561,58      | 161.026,08 |
| 2         | 48.561,88      | 100.854,65 |
| 3         | 114.560,35     | 42.704,95  |
| 4         | 108.254,70     | 23.927,58  |
| 5         | 125.433,39     | 36.247,17  |
| 6         | 167.125,60     | 45.037,26  |

# g) Perhitungan iterasi kedua pada cluster pendapatan dengan 2 nilai centroid.

Tabel 4.12 Perhitungan iterasi kedua pada cluster pendapatan

| 1     | ALE      | Cen            | troid      |
|-------|----------|----------------|------------|
| Tahun | Data Ke- | $\mathbf{C_0}$ | $C_1$      |
| 2006  | 201.553  | 48.561,58      | 161.026,08 |
| 2007  | 259.246  | 48.561,88      | 100.854,65 |
| 2008  | 323.651  | 114.560,35     | 42.704,95  |
| 2009  | 317.827  | 108.254,70     | 23.927,58  |
| 2010  | 326.719  | 125.433,39     | 36.247,17  |
| 2011  | 360.831  | 167.125,60     | 45.037,26  |

## Hitung kembali centroid

o centroid pertama (C<sub>0</sub>)

$$=$$
 201.553 + 259.246

2

= 230.399,5

o *centroid* kedua (C<sub>1</sub>)

$$= 323.651 + 317.827 + 326.719 + 360.831$$

4

= 332.257

# h) Perhitungan *iterasi* kedua pada *cluster* belanja tidak langsung dengan 2 nilai centroid.

**Tabel 4.13** Perhitungan *iterasi* kedua pada *cluster* belanja tidak langsung

|       |          | Centroid   |                |  |
|-------|----------|------------|----------------|--|
| Tahun | Data Ke- | $C_0$      | $\mathbf{C_1}$ |  |
| 2006  | 93.572   | 48.561,58  | 161.026,08     |  |
| 2007  | 101.397  | 48.561,88  | 100.854,65     |  |
| 2008  | 140.833  | 114.560,35 | 42.704,95      |  |
| 2009  | 153.340  | 108.254,70 | 23.927,58      |  |
| 2010  | 176.183  | 125.433,39 | 36.247,17      |  |
| 2011  | 201.548  | 167.125,60 | 45.037,26      |  |

## Hitung kembali centroid

o centroid pertama (C<sub>0</sub>)

$$= 93.572 + 101.397$$

2.1

o centroid kedua (C<sub>1</sub>)

$$= 140.833 + 153.340 + 176.183 + 201.548$$

4

## i) Perhitungan iterasi kedua pada cluster belanja langsung dengan 2 nilai centroid.

**Tabel 4.14** Perhitungan *iterasi* kedua pada *cluster* belanja langsung

|       |          | Centroid       |                |  |
|-------|----------|----------------|----------------|--|
| Tahun | Data Ke- | $\mathbf{C_0}$ | $\mathbf{C_1}$ |  |
| 2006  | 129.828  | 48.561,58      | 161.026,08     |  |
| 2007  | 207.566  | 48.561,88      | 100.854,65     |  |
| 2008  | 219.186  | 114.560,35     | 42.704,95      |  |
| 2009  | 199.611  | 108.254,70     | 23.927,58      |  |
| 2010  | 152.491  | 125.433,39     | 36.247,17      |  |
| 2011  | 178.151  | 167.125,60     | 45.037,26      |  |

Hitung kembali centroid

o centroid pertama (C<sub>0</sub>)

$$= 129.828 + 207.566$$

2

= 168.697

o centroid kedua (C<sub>1</sub>)

$$= 219.186 + 199.611 + 152.491 + 178.151$$

4

= 187.359,8

Karena hasil nilai *centroid* pada *iterasi* kedua sama dengan hasil *iterasi* pertama, maka perhitungan dihentikan.

Tabel 4.15 Hasil akhir perhitungan iterasi dengan 3 nilai centroid dan 2 nilai centroid

|         |                 | Centroid       |                |                |                |                |  |
|---------|-----------------|----------------|----------------|----------------|----------------|----------------|--|
| Iterasi | Iterasi Cluster |                | 3              |                |                | 2              |  |
|         |                 | $\mathbf{C_0}$ | $\mathbf{C_1}$ | $\mathbf{C_2}$ | $\mathbf{C_0}$ | $\mathbf{C_1}$ |  |
| Pertama | Pendapatan      | 230.399,5      | 320.739        | 343.755        | 230.399,5      | 332.257        |  |
|         | Belanja         | 97.484,5       | 147.086,5      | 188.865,5      | 97.484,5       | 167.976        |  |
|         | Tidak           |                |                |                |                |                |  |
|         | Langsung        |                |                |                |                |                |  |
|         | Belanja         | 168.697        | 209.398,5      | 165.321        | 168.697        | 187.359,8      |  |
|         | Langsung        |                |                |                |                |                |  |
| Kedua   | Pendapatan      |                |                |                | 230.399,5      | 332.257        |  |
|         | Belanja         |                |                |                | 97.484,5       | 167.976        |  |
|         | Tidak           |                |                | 200            | -              |                |  |
|         | Langsung        | -1             | EG             | FA             |                |                |  |
|         | Belanja         | L              |                | ーイ             | 168.697        | 187.359,8      |  |
|         | Langsung        | Co             | 9              |                |                |                |  |

## 4) Menghitung nilai SSE

Dalam tahap ini akan dilakukan perhitungan nilai *centroid* dari hasil *iterasi*, jika hasil nilai *SSE*-nya semakin kecil maka akan semakin baik hasil clusteringnya. Akan ada 2 pengujian parameter dalam menghitung nilai *SSE*, hasilnya akan dijadikan sebagai penentu *cluster* mana yang paling baik.

# a) Perhitungan nilai SSE pada 3 nilai centroid.

$$SSE = (48.561,58^2 + 48.561,58^2) + (11.974,19^2 + 11.974,19^2) + (24.826,64^2 + 24.826,64^2)$$

= 6.235.940.663,88

#### b) Perhitungan nilai SSE pada 2 nilai centroid.

$$SSE = (48.561,58^2 + 48.561,58^2) + (42.704,95^2 + 23.927,58^2 + 36.247.17^2 + 45.037,26^2)$$

= 10.454.908.064,67

Setelah dihitung ternyata nilai *SSE* pada 3 *centroid* yang paling kecil dibandingkan dengan 2 *centroid*, bisa disimpulkan bahwa *cluster* dengan 3 *centroid* yang paling baik dan dijadikan sebagai *cluster* yang terbaik dalam penulisan ini.

Tabel 4.16 Hasil perhitungan nilai SSE dengan 3 nilai centroid dan 2 nilai centroid

| (   | 107   | . 🔎                    | Centroid  | - III .                   | 10   |
|-----|-------|------------------------|-----------|---------------------------|------|
| SSE | 1 4   | 3                      |           | 2                         |      |
| 1   | 6.235 | 5.940. <mark>66</mark> | 3,88 10.4 | 454.9 <mark>08.</mark> 06 | 4,67 |

## 2. Pola hasil clustering dengan K-Means.

Algoritma *K-means* dalam proses *clustering* pada data pendapatan, belanja tidak langsung serta belanja langsung digunakan untuk pembentukan nilai *clustering* dan karakteristik dari setiap *cluster* yang akan menemukan nilai *centroid / means* ( rata-rata ) sehingga akan terbentuk jarak pada setiap data yang akhirnya akan terbentuk nilai anggota pada setiap *cluster*.

Setelah terbentuk nilai anggota pada masing-masing *cluster*, maka akan terlihat *cluster* nilai pendapatan, belanja tidak langsung dan belanja langsung di setiap tahunnya. Dengan membandingkan data asli dari nilai pendapatan, belanja tidak langsung dan belanja

langsung sebelum di *cluster*. Nilai anggota tersebut yang akan digunakan dalam melakukan *estimasi* nilai pendapatan, belanja tidak langsung dan belanja langsung pada waktu yang akan datang. Berikut data APBD sebelum di *cluster*:

**Tabel 4.17** Data APBD sebelum di *cluster* 

| Tahun | Pendapatan      | Belanja Tidak   | Belanja         |
|-------|-----------------|-----------------|-----------------|
|       |                 | Langsung        | Langsung        |
| 2006  | 201.553.514.383 | 93.572.060.106  | 129.828.573.884 |
| 2007  | 259.246.501.847 | 101.397.703.745 | 207.566.731.839 |
| 2008  | 323.651.578.493 | 140.833.244.772 | 219.186.897.446 |
| 2009  | 317.827.261.000 | 153.340.367.941 | 199.611.893.059 |
| 2010  | 326.719.642.227 | 176.183.064.040 | 152.491.575.430 |
| 2011  | 360.831.808.019 | 201.548.822.824 | 178.151.334.250 |

Data APBD setelah di cluster:

## 1) Nilai anggota pada cluster pertama (C<sub>0</sub>)

**Tabel 4.18** Nilai anggota pendapatan, belanja tidak langsung dan belanja langsung pada (C<sub>0</sub>)

| Tahun | Pendapatan Pendapatan | Belanja Tidak<br>Langsung | Belanja Langsung   |
|-------|-----------------------|---------------------------|--------------------|
| 2006  | Rp 201.553.514.383    | Rp 93.572.060.106         | Rp 129.828.573.884 |
| 2007  | Rp 259.246.501.847    | Rp 101.397.703.745        | Rp 207.566.731.839 |

## 2) Nilai anggota pada cluster kedua (C<sub>1</sub>).

**Tabel 4.19** Nilai anggota pendapatan, belanja tidak langsung dan belanja langsung pada  $(C_1)$ 

| Tahun | Pendapatan         | Belanja Tidak      | Belanja Langsung   |
|-------|--------------------|--------------------|--------------------|
|       |                    | Langsung           |                    |
| 2008  | Rp 323.651.578.493 | Rp 140.833.244.772 | Rp 219.186.897.446 |
| 2009  | Rp 317.827.261.000 | Rp 153.340.367.941 | Rp 199.611.893.059 |

#### 3) Nilai anggota pada *cluster* ketiga (C<sub>2</sub>).

**Tabel 4.20** Nilai anggota pendapatan, belanja tidak langsung dan belanja langsung pada  $(C_2)$ 

| Tahun | n Pendapatan Belanja Tidak |                    | Belanja Langsung   |
|-------|----------------------------|--------------------|--------------------|
|       |                            | Langsung           |                    |
| 2010  | Rp 326.719.642.227         | Rp 176.183.064.040 | Rp 152.491.575.430 |
| 2011  | Rp 360.831.808.019         | Rp 201.548.822.824 | Rp 178.151.334.250 |

Berdasarkan hasil *clustering* dengan *K-Means*, maka didapatkan pola hasilnya dari setiap *cluster*. Berikut penjelasan dari masing-masing *cluster* pada setiap anggota *cluster*:

- a) Anggota data pada *cluster* pertama (C<sub>0</sub>) mempunyai karakteristik nilai pendapatan sebesar Rp 201.553.514.383,- sampai Rp 259.246.501.847,-. Nilai belanja tidak langsung Rp 93.572.060.106,- sampai Rp 101.397.703.745,-. Nilai belanja langsung Rp 129.828.573.884,- sampai Rp 207.566.731.839,-.
- b) Anggota data pada *cluster* kedua (C<sub>1</sub>) mempunyai karakteristik nilai pendapatan sebesar Rp 323.651.578.493,- sampai Rp 317.827.261.000,-. Nilai belanja tidak langsung Rp 140.833.244.772,- sampai Rp 153.340.367.941,-. Nilai belanja langsung Rp 219.186.897.446,- sampai Rp 199.611.893.059,-.
- c) Anggota data pada *cluster* ketiga (C<sub>2</sub>) mempunyai karakteristik nilai pendapatan sebesar Rp 326.719.642.227,- sampai Rp 360.831.808.019,-. Nilai belanja tidak langsung Rp 176.183.064.040,- sampai Rp 201.548.822.824,-. Nilai belanja langsung Rp 152.491.575.430,- sampai Rp 178.151.334.250,-.

Setelah seluruh nilai anggota pada *cluster* terbentuk maka akan diketahui termasuk kedalam *cluster* berapa nilai pendapatan, belanja tidak langsung dan belanja langsung pada *record* data selanjutnya. Hanya dengan mengetahui nilai pendapatan, maka dapat diketahui *estimasi* nilai belanja tidak langsung dan belanja langsung pada lembaga pemerintahan tersebut. Berikut data APBD pada tahun 2012.

Tabel 4.21 Nilai anggota pendapatan 2012

| Tahun | <b>Pendapatan</b>  |  |
|-------|--------------------|--|
| 2012  | Rp 394.083.451.404 |  |

Misalkan *record* data pada tabel diatas dimasukkan kedalam tabel yang berisi hasil perhitungan dari *clustering* menggunakan *K-Means*, maka akan bisa diestimasi nilai belanja tidak langsung dan belanja langsung.

Tabel 4.22 Contoh nilai outlier

| Tahun | Data<br>ke- | Pendap <mark>atan</mark>  | Belanja <mark>T</mark> idak<br>Langsung | Belanja<br>Langsung   | Clus<br>ter    |
|-------|-------------|---------------------------|-----------------------------------------|-----------------------|----------------|
| 2010  | 5           | Rp<br>326.719.642.<br>227 | Rp<br>176.183.064.040                   | Rp<br>152.491.575.430 | $C_2$          |
| 2011  | 6           | Rp<br>360.831.808.<br>019 | Rp<br>201.548.822.824                   | Rp<br>178.151.334.250 | $\mathbf{C}_2$ |
| 2012  | 7 = x       | Rp<br>394.083.451.<br>404 |                                         |                       | ?              |

Berdasarkan nilai pendapatan, dapat diketahui termasuk dalam *cluster* berapa data APBD yang selanjutnya. Jika data APBD 2012 mempunyai nilai pendapatan = Rp 394.083.451.404,- , maka bisa di estimasi nilai belanja tidak langsung Rp =

199.533.334.595,76,- – Rp 203.564.311.052,24,- serta estimasi nilai belanja langsung = Rp 176.135.846.021,76,- – Rp 180.166.822.478,24,-. Maka dapat diketahui record data tersebut termasuk dalam cluster (C<sub>2</sub>). Hal ini didasari atas kedekatan jarak data sebelumnya dengan data yang baru ( data x ).

Tabel 4.23 Contoh estimasi nilai outlier

| Data<br>ke- | Pendapatan                  | Belanja Tidak<br>Langsung | Belanja Langsung    | Cluster |
|-------------|-----------------------------|---------------------------|---------------------|---------|
| 5           | Rp                          | Rp 176.183.064.040        | Rp 152.491.575.430  | $C_2$   |
|             | 326.719.642.<br>227         | NEG                       | EP                  |         |
| 6           | Rp                          | Rp 201.548.822.824        | Rp 178.151.334.250  | $C_2$   |
|             | 360.831.808.                | 5                         |                     |         |
|             | 019                         |                           | (1)                 |         |
| 7 = x       | Rp                          | Rp =                      | Rp =                | $C_2$   |
|             | 39 <mark>4</mark> .083.451. | 199.533.334.595,76,-      | 176.135.846.021,76, |         |
|             | 404                         | – Rp                      | - – Rp              |         |
|             | 10                          | 203.564.311.052,24        | 180.166.822.478,24  | - //    |
|             | 0.                          | (estimasi)                | (estimasi)          | - 1     |

## 3. Flowchart clustering K-Means.



Gambar 4.1 Flowchart K-Means

#### C. Desain Hasil

a.

1. Hasil implementasi input data parameter k dan x.

Penerapan Algoritma K-Means Untuk Clustering Data
Anggaran Pendapatan Belanja Daerah
Kabupaten XYZ

Paramaler
Jumlah k : 3
Jumlah Data : 6
Centroid : 3

Gambar 4.2 Implementasi input data parameter k dan x dengan 3 nilai centroid



Gambar 4.3 Implementasi input data parameter k dan x dengan 2 nilai centroid

2. Hasil implementasi input data nama k.

Dengan 3 nilai centroid. a. Penerapan Algoritma K-Means Untuk Clustering Data ı Pendapatan Belanja Daerah Masukan Nama (k)-Kabupaten XYZ 1. pendapatan 2. belanja tidak langsung 3. belanja langsung Gambar 4.4 Implementasi input data nama k dengan 3 nilai centroid Dengan 2 nilai centroid. b. Penerapan Algoritma K-Means Untuk Clustering Data ı Pendapatan Belanja Daerah Masukan Nama (k)-NO NAMA Kabupaten XYZ 1. pendapatan 2. belanja tidak langsung 3. belanja langsung

**Gambar 4.5** Implementasi input data nama k dengan 2 nilai centroid

## 3. Implementasi input data APBD.

a. Dengan 3 nilai centroid.



Gambar 4.6 Implementasi input data APBD dengan 3 nilai centroid



Gambar 4.7 Implementasi input data APBD dengan 2 nilai centroid

4. Hasil implementasi tampilan proses hasil perhitungan centroid.

a. Dengan 3 nilai centroid.



Gambar 4.8 Implementasi tampilan proses hasil perhitungan dengan 3 nilai centroid



Gambar 4.9 Implementasi tampilan proses hasil perhitungan dengan 2 nilai centroid

5. Hasil implementasi perhitungan jarak data ke centroid.

a. Dengan 3 nilai centroid.



Gambar 4.10 Implementasi tampilan perhitungan jarak data dengan 3 nilai centroid



Gambar 4.11 Implementasi tampilan perhitungan jarak data dengan 2 nilai centroid

#### 6. Hasil implementasi iterasi.

a. Dengan 3 nilai centroid.



Gambar 4.12 Implementasi tampilan iterasi dengan 3 nilai centroid



**Gambar 4.13** Implementasi tampilan *iterasi* dengan 2 nilai *centroid*, dan iterasi harus dilanjutkan



Gambar 4.14 Implementasi tampilan akhir iterasi dengan 2 nilai centroid

- 7. Hasil implementasi niai SSE.
- a. Dengan 3 nilai centroid.



Gambar 4.15 Implementasi tampilan nilai SSE dengan 3 nilai centroid



Gambar 4.16 Implementasi tampilan nilai SSE dengan 2 nilai centroid

#### 8. Hasil implementasi laporan data mining.

a. Dengan 3 nilai centroid.



Gambar 4.17 Implementasi laporan data mining dengan 3 nilai centroid



Gambar 4.18 Implementasi laporan data mining dengan 2 nilai centroid

## 9. Hasil implementasi nilai estimasi.



Gambar 4.19 Implementasi tampilan nilai estimasi

