Thursday June 23, 2016 Lecture 23

Basics of Counting

684

Notables

- Homework #13
 - □ Page 405, Problems 2 and 6
 - □ Page 432, Problem 16
 - Page 581, Problems 2, 6, and 8
 - □ Page 606, Problem 3
 - □ Page 615, Problem 2
 - Page 616, Problems 24, and 36
 - Due Wednesday June 29
- Read Chapter 9

5

Permutation & Combination

Туре	Replacement Allowed?	Formula for r-p/c of n
r-permutation	No	n!/(n - r)!
r-combination	No	C(n, r) = n!/r!(n-r)!
<i>r</i> -permutation	Yes	n ^r
r-combination	Yes	C(n+r-1, r) = (n+r-1)!/r!(n-1)!

Classification of Occupancy Problems

Distinguished balls?	Distinguished Cells?	Can Cells be empty	No. of ways to place r balls in n cells
r	n		
Yes	Yes	Yes	n^r
Yes	Yes	No	n!S(r,n)
Yes	No	Yes	S(r,1)+ S(r,2)+ S(r,3)+ + S(r,n)
Yes	No	No	S(r,n)
No	Yes	Yes	C(n + r - 1, r)
No	Yes	No	C(r-1,n-1)

Stirling Number of the second kind

 $S(r,n) = \frac{1}{n!} \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)^{r}$

Examples

- Q1: How many bit strings contain exactly n-1 1's and r zeros?
 - □ Answer: C(n+r-1, r) = C(n+r-1, n-1)
 - □ Example of such a string with n = 4 and r = 7
 - **001000100**
- Q2: In how many ways can we fill n distinguished cells with r undistinguished balls, when empty cells are allowed?
- Transformation from Q1 to Q2:
 - □ The 1's partition the bit strings into *n* "regions" as follows: region 1 region 1.... region 1 region Note that there are *n* regions. Let each regions correspond to a unique cell. The content of each region corresponds to the balls in the corresponding cell.

5

Example

- Let $S = \{1, 2, 3, 4, 5, 6, 7\}$ and $T = \{a, b, c\}$. How many onto functions $f : S \rightarrow T$ are there?
 - Solution: This is the same as placing r=7 distinguished balls into n=3 distinguished cells, where a cell cannot be empty. So, the answer is: 3!S(7,3) = 1806

9

Example

How many nonnegative integer solutions are there to the equation: $x_1 + x_2 + x_3 + x_4 = 17$?

Ė

Example

How many nonnegative integer solutions are there to the equation: $x_1 + x_2 + x_3 + x_4 = 17$

Solution: This corresponds to placing r = 17 indistinguished balls into n = 4 distinguished cells where a cell could be empty. So, it is

 $C(n+r-1,r) = \frac{(n+r-1)!}{r!(n-1)!} = \frac{(4+17-1)!}{17!(4-1)!} = \frac{20!}{17!3!} = 1140$

5

Example

How many positive integer solutions are there to the equation: $x_1 + x_2 + x_3 + x_4 = 17$?

Ĭ,

Example

How many positive integer solutions are there to the equation: $x_1 + x_2 + x_3 + x_4 = 17$

Solution: This corresponds to placing r = 17 indistinguished balls into n = 4 distinguished cells where a cell cannot be empty. So, it is

$$C(r-1,n-1) = \frac{(r-1)!}{(n-1)!(r-n)!} = \frac{(17-1)!}{3!(17-4)!} = \frac{16!}{3!13!} = 560$$

5

Example

How many integer solutions are there to the equation: $x_1 + x_2 + x_3 + x_4 = 17$ with the constraints $x_1 \ge 1$, $x_2 \ge 2$, $x_3 \ge 3$, $x_4 \ge 5$?

5

Example

How many integer solutions are there to the equation: $x_1 + x_2 + x_3 + x_4 = 17$ with the constraints $x_1 \ge 1$, $x_2 \ge 2$, $x_3 \ge 3$, $x_4 \ge 5$?

Solution: This corresponds to placing

$$r = 17 - (1 + 2 + 3 + 5) = 6$$

indistinguished balls into n = 4 distinguished cells where a cell could be empty. So, it is

$$C(n+r-1,r) = \frac{(n+r-1)!}{r!(n-1)!} = \frac{(4+6-1)!}{6!(4-1)!} = \frac{9!}{6!3!} = 84$$

5

Example

- How many nonnegative integers less than 100 have the sum of their digits equal to 15?
 - Solution

Want to find integer solutions to x+y = 15 where $0 \le x \le 9$ and $0 \le y \le 9$.

Note that

Solution $(x \le 9 \land y \le 9)$

- = Unrestricted Solution Solution ($\neg (x \le 9 \land y \le 9)$)
- = Unrestricted Solution Solution ($\neg (x \le 9) \lor \neg (y \le 9)$)
- = Unrestricted Solution Solution ($(x > 9) \lor y > 9$))
- = Unrestricted Solution Solution(x > 9) Solution(y > 9)
- C(2+15-1,15)-2*C(2+5-1,5)=4.

5

696

Example

How many integer solutions are there to the equation:

$$x_1 + x_2 + x_3 + x_4 + x_5 = 21$$

with the constraints

$$0 \le x_1 \le 3$$
, $1 \le x_2 < 4$, $x_3 \ge 15$, $x_4 \ge 0$, $x_5 \ge 0$?

5

Solution: First let's impose the restrictions that $x_2 \ge 1$ and $x_3 \ge 15$.

Then the problem reduces to counting the number of solutions to $x_1 + x_2 + x_3 + x_4 + x_5 = 5$ with the constraints $0 \le x_1 \le 3$, $0 \le x_2 \le 2$, $x_3 \ge 0$, $x_4 \ge 0$, $x_5 \ge 0$.

Note that the restrictions $x_1 \le 3$ and $x_2 \le 2$ cannot be violated simultaneously.

If we count the number of solutions to $x_1 + x_2 + x_3 + x_4 + x_5 = 5$, substract the number of its solutions in which $x_1 \ge 4$, and substract the number of its solutions in which $x_2 \ge 3$, then we will have the answer.

ď,

698

There are C(5+5-1,5) = C(9,5) = 126 solutions of the unrestricted equation.

Applying the first restriction reduces the equation to

$$x_1 + x_2 + x_3 + x_4 + x_5 = 1$$
, which has

$$C(5+1-1,1) = C(5,1) = 5$$
 solutions.

Applying the second restriction reduces the equation to

$$x_1 + x_2 + x_3 + x_4 + x_5 = 2$$
, which has

$$C(5+2-1,2) = C(6,2) = 15$$
 solutions.

Therefore, the answer is 126-5-15=106.

5

Generalized Permutations

- Question: How many different strings can be made by reordering the letters in the word MISSISSIPPI
 - $\hfill\Box$ The answer is not the number of permutations of 11 objects as the objects are not all distinct.
- The following two problems are equivalent
 - The number of different permutations of n objects, where there are n_i objects of type i, i = 1,2,...,k. Note that $n = n_1 + n_2 + ... + n_k$
 - The number of ways to distribute n distinguishable objects into k distinguishable cells so that n_i objects are placed into box i, i = 1,2,..., k

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$

5

00