

Prof. Dr. Christoph Scholl Tobias Seufert Freiburg, 21. Juni 2023

Technische Informatik Musterlösung zu Übungsblatt 9

Hinweis: Auf diesem Blatt befindet sich eine "Bonusaufgabe". Diese Aufgabe zählt nicht in die Gesamtheit der Aufgaben, bei sinnvoller Bearbeitung wird sie jedoch zur Menge der sinnvoll bearbeiteten Aufgaben gerechnet.

Aufgabe 1 (3+1+2) Punkte

- a) Zeichnen Sie den 4-Bit-Carry-Ripple-Addierer CR_4 über der Bibliothek $BIB = \mathbb{B}_1 \cup \mathbb{B}_2$. Verwenden Sie dabei keine hierarchischen Teilschaltkreise.
- b) Kennzeichnen Sie den längsten Pfad in ihrem Schaltkreis und geben Sie dessen Tiefe an.
- c) Bestimmen Sie für jedes Gatter des ermittelten Schaltkreises den Wert des Gatterausganges für die Belegung

$$b_3 = 1, b_2 = 1, b_1 = 0, b_0 = 1, a_3 = 1, a_2 = 0, a_1 = 0, a_0 = 1, c_{-1} = 0.$$

Lösung:

Siehe Abbildung 1.

Allgemein gilt $depth(CR_n) = 3 + 2(n-1)$. Hier: $depth(CR_4) = 3 + 2(4-1) = 9$. Siehe auch Pfad.

Aufgabe 2 (3+3) Punkte)

Ein *n*-Bit Inkrementer INC_n berechnet die Funktion $inc_n : \mathbb{B}_{n+1} \mapsto \mathbb{B}_{n+1}$, $inc_n(a_{n-1}, \ldots, a_0, c) = (s_n, \ldots, s_0)$ mit $\langle s_n, \ldots, s_0 \rangle = \langle a \rangle + c$. In der Vorlesung wurde vorgestellt, wie man einen *n*-Bit Inkrementer nach dem beim *n*-Bit Carry-Ripple-Addierer verwendeten Schema konstruieren kann.

- a) Konstruieren Sie nun einen schnelleren n-Bit Inkrementer CSA- INC_n auf Basis des in der Vorlesung vorgestellten n-Bit Conditional-Sum-Addierers. Geben Sie hierzu die Basiszelle CSA- INC_1 und den rekursiven Aufbau von CSA- INC_n für n > 1 an. n sei hierbei eine Zweierpotenz, d. h. $n = 2^k$ für $k \in \mathbb{N}$.
- b) Geben Sie die Tiefe Ihres n-Bit Inkrementers CSA- INC_n an, und beweisen Sie Ihre Aussage. Geben Sie die Kosten Ihres n-Bit Inkrementers CSA- INC_n nur asymptotisch an, und begründen Sie lediglich kurz.

Abbildung 1: 4-Bit-Carry-Ripple-Addierer

Lösung:

Punkte: $CSA - INC_1$ [1]; $CSA - INC_n$ [2]

Tiefe [1.5 P]

 $\begin{aligned} depth(CSA-INC_1) &= depth(HA) = 1 \\ depth(CSA-INC_n) &= depth(MUX_{n/2+1}) + depth(CSA-INC_{n/2}) = 3 + depth(CSA-INC_{n/2}) = 3 + 3 + depth(CSA-INC_{n/2-1}) = \dots = 3 + \dots + 3 + depth(CSA-INC_{n/2k}) \text{ (mit k mal 3)} &= k \cdot 3 + depth(CSA-INC_1) = 1 + 3 \cdot k = 1 + 3 \cdot \log n \end{aligned}$

Kosten [1.5 P] $C(CSA - INC_n) \in O(n^{log(3)})$, wie $C(CSA_n)$: gleiche Konstruktion, der Unterschied ist der Grunbaustein (n=1) der aus einem Halbaddierer statt einem Volladdierer besteht, sprich 2 statt 5 Gatter. C(1) = C(HA) = 2

$$C(CSA - INC_n) = 3 \cdot C(CSA - INC_{n/2}) + C(MUX_{n/2+1}) = 3 \cdot C(CSA - INC_{n/2}) + 3 \cdot n/2 + 4$$

Aufgabe 3 (3 Punkte)

In der Vorlesung wurde $\operatorname{sext}(y) := y_{23}^8 y$ mit $y \in \mathbb{B}^{24}$ als die Sign Extension von y definiert. Betrachten Sie hier den allgemeinen Fall für $y \in \mathbb{B}^n$ mit $y = y_{n-1} \dots y_0$. Dann ist die Sign Extension von y um k Bits definiert als: $\operatorname{sext}_k(y) := y_{n-1}^k y$

Beweisen Sie, dass $[y]_2 = [\text{sext}_k(y)]_2$ gilt.

Hinweis: Beachten Sie, dass es sich hier um die Zweier-Komplement-Darstellung handelt!

Lösung:

Es sollen hier zwei Lösungsmöglichkeiten betrachtet werden:

(1) Zurückführung auf Sign Extention um 1 Bit:

Lemma: Sei $a \in \mathbb{B}^n$, $a = a_{n-1} \dots a_0$. Dann gilt $[a] = [a_{n-1}a]_2$. Beweis:

$$[a_{n-1}a]_2 = -a_{n-1} \cdot 2^n + \sum_{i=0}^{n-1} a_i \cdot 2^i = -a_{n-1} \cdot 2^n + \left(a_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} a_i \cdot 2^i\right) = -a_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} a_i \cdot 2^i = [a]_2$$

Damit: $[y]_2 = [y_{n-1}^1 y]_2 = [y_{n-1}^2 y]_2 = \dots = [y_{n-1}^k y]_2 = [\text{sext}_k(y)]_2$.

(2) Direkter Beweis:

Sei $y \in \mathbb{B}^n$, $y = y_{n-1} \dots y_0$

$$[\operatorname{sext}_{k}(y)]_{2} = \underbrace{[y_{n-1} \dots y_{n-1}]}_{k-mal} y]_{2} = \sum_{i=0}^{n-2} y_{i} \cdot 2^{i} + \sum_{i=n-1}^{n+k-2} y_{n-1} \cdot 2^{i} - y_{n-1} \cdot 2^{n+k-1}$$

$$= \sum_{i=0}^{n-2} y_{i} \cdot 2^{i} + y_{n-1} \cdot \left(\sum_{i=0}^{n+k-2} 2^{i} - \sum_{i=0}^{n-2} 2^{i}\right) - y_{n-1} \cdot 2^{n+k-1}$$

$$= \sum_{i=0}^{n-2} y_{i} \cdot 2^{i} + y_{n-1} \cdot \left(\frac{2^{n+k-1} - 1}{2 - 1} - \frac{2^{n-1} - 1}{2 - 1}\right) - y_{n-1} \cdot 2^{n+k-1}$$

$$= \sum_{i=0}^{n-2} y_{i} \cdot 2^{i} + y_{n-1} \cdot 2^{n+k-1} - y_{n-1} \cdot 2^{n-1} - y_{n-1} \cdot 2^{n+k-1}$$

$$= \sum_{i=0}^{n-2} y_{i} \cdot 2^{i} - y_{n-1} \cdot 2^{n-1}$$

$$= [y]_{2}$$

Punkte: Rechnung mit der Interpretationsfunktion [1.5]; Wiederanwendung bis [y] = [sext(y)] [0.5], für direkten Beweis [2], falls nicht allgemein gezeigt [-1]

Aufgabe 4 (Bonusaufgabe: 3 Punkte)

Addieren Sie die folgenden Paare von 6-Bit Zweierkomplementzahlen mit der in der Vorlesung gezeigten Methode. Ist das Ergebnis nicht als 6-Bit Zweierkomplementzahl darstellbar, so geben Sie dies explizit an und begründen Sie.

- a) $[100000]_2$ und $[011111]_2$
- b) [100000]₂ und [100000]₂
- c) $[010001]_2$ und $[011011]_2$

Lösung:

a)
$$[100000]_2 + [011111]_2$$
: $a_n \neq b_n$
 $\begin{array}{r} 100000 & = -32 \\ +011111 & = 31 \\ \hline (\ddot{\text{U}}\text{bertrag}) \ 000000 \\ \hline = (0)111111 & = -1 \end{array}$

```
b) [100000]_2 und [100000]_2: a_n = b_n \wedge b_n \neq s_n
\frac{100000}{+100000} = -32
\frac{(\ddot{\text{U}}\text{bertrag}) \ 100000}{-1000000} = 0
\Rightarrow \ddot{\text{U}}\text{berlauf}
7 Bits nötig.

c) [010001]_2 und [011011]_2: a_n = b_n \wedge b_n \neq s_n
\frac{010001}{+011011} = 27
\frac{(\ddot{\text{U}}\text{bertrag}) \ 010011}{-10001} = (0)101100 = -20
\Rightarrow \ddot{\text{U}}\text{berlauf}
7 Bits nötig.
```

Abgabe: 28. Juni 2023, $13^{\underline{00}}$ über das Übungsportal