List 03. ARIMA model with Python

Nikita V. Artamonov

November 1, 2024

- #1. Let y_t be a natural logarithm of US GDP (quarterly data) from 1995 up to now
 - 1. Fitting of models of given order
 - (a) Fit the following models

Model	drift/trend	specification
$\overline{\text{ARIMA}(1,0,1)}$	+	$y_t = \alpha_0 + \alpha_1 t + \phi y_{t-1} + u_t + \theta u_{t-1}$
ARIMA(1,1,0)	+	$\Delta y_t = \alpha_0 + \phi \Delta y_{t-1} + u_t + \theta u_{t-1}$
ARIMA(1,1,1)	-	$\Delta y_t = \phi \Delta y_{t-1} + u_t + \theta u_{t-1}$
ARIMA(1,2,0)	-	$\Delta^2 y_t = \phi \Delta^2 y_{t-1} + u_t$

- (b) Perform diagnostics of each model
- (c) Perform cross-validation of each model. Which one is preferable?
- 2. Perform unit-root test and find an optimal integration order for y_t .
- 3. Fitting of the «optimal» model
 - (a) fit ARIMA of «optimal» order
 - (b) perform its diagnostic
 - (c) forecast for 10 periods forward.
- #2. Let y_t be a natural logarithm of US US M2 (monthly data) from 1995 up to now

- 1. Fitting of models of given order
 - (a) Fit the following models

Model	drift/trend
$\overline{\text{ARIMA}(2,0,2)}$	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	_
ARIMA(1,2,0)	-

- (b) Perform diagnostics of each model
- (c) Perform cross-validation of each model. Which one is preferable?
- 2. Perform unit-root test and find an optimal integration order for y_t .
- 3. Fitting of the «optimal» model
 - (a) fit ARIMA of «optimal» order
 - (b) perform its diagnostic
 - (c) forecast for 10 periods forward.

#3. Let y_t be a natural logarithm of US US M2 (weekly data) from 1995 up to now

- 1. Fitting of models of given order
 - (a) Fit the following models

Model	drift/trend
$\overline{\text{ARIMA}(3,0,2)}$	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	_
ARIMA(2,2,0)	-

- (b) Perform diagnostics of each model
- (c) Perform cross-validation of each model. Which one is preferable?

- 2. Perform unit-root test and find an optimal integration order for y_t .
- 3. Fitting of the «optimal» model
 - (a) fit ARIMA of «optimal» order
 - (b) perform its diagnostic
 - (c) forecast for 10 periods forward.
- #4. Let y_t be a 10-years rate (treasury securities with constant maturity monthly data) from 2000 up to now
 - 1. Fitting of models of given order
 - (a) Fit the following models

Model	drift/const
ARIMA(2,0,2)	-
ARIMA(2,0,2)	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	-
ARIMA(2,2,0)	_

- (b) Perform diagnostics of each model
- (c) Perform cross-validation of each model. Which one is preferable?
- 2. Perform unit-root test and find an optimal integration order for y_t .
- 3. Fitting of the «optimal» model
 - (a) fit ARIMA of «optimal» order
 - (b) perform its diagnostic
 - (c) forecast for 10 periods forward.
- #5. Let y_t be a 10-years rate (treasury securities with constant maturity daily data) from 2010 up to now
 - 1. Fitting of models of given order
 - (a) Fit the following models

Model	m drift/const
$\overline{\text{ARIMA}(3,0,2)}$	_
ARIMA(3,0,2)	+
ARIMA(3,1,0)	+
ARIMA(3,1,1)	_
ARIMA(2,2,0)	-

- (b) Perform diagnostics of each model
- (c) Perform cross-validation of each model. Which one is preferable?
- 2. Perform unit-root test and find an optimal integration order for y_t .
- 3. Fitting of the «optimal» model
 - (a) fit ARIMA of «optimal» order
 - (b) perform its diagnostic
 - (c) forecast for 10 periods forward.

#6. Let y_t be a 3-month rate (treasury bill, **monthly data**) from 2000 up to now

- 1. Fitting of models of given order
 - (a) Fit the following models

Model	drift/const
ARIMA(2,0,2)	-
ARIMA(2,0,2)	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	-
ARIMA(2,2,0)	-

- (b) Perform diagnostics of each model
- (c) Perform cross-validation of each model. Which one is preferable?
- 2. Perform unit-root test and find an optimal integration order for y_t .

- 3. Fitting of the «optimal» model
 - (a) fit ARIMA of «optimal» order
 - (b) perform its diagnostic
 - (c) forecast for 10 periods forward.
- #7. Let y_t be a 3-month rate (treasury bill, **daily data**) from 2010 up to now
 - 1. Fitting of models of given order
 - (a) Fit the following models

Model	m drift/const
$\overline{\text{ARIMA}(3,0,2)}$	-
ARIMA(3,0,2)	+
ARIMA(3,1,0)	+
ARIMA(3,1,1)	-
ARIMA(2,2,0)	-

- (b) Perform diagnostics of each model
- (c) Perform cross-validation of each model. Which one is preferable?
- 2. Perform unit-root test and find an optimal integration order for y_t .
- 3. Fitting of the «optimal» model
 - (a) fit ARIMA of «optimal» order
 - (b) perform its diagnostic
 - (c) forecast for 10 periods forward.
- #8. Let y_t be a natural logarithm of S&P (daily data) from 2010 up to now
 - 1. Fitting of models of given order
 - (a) Fit the following models

Model	drift/const
ARIMA(2,0,2)	-
ARIMA(2,0,2)	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	_
ARIMA(2,2,0)	-

- (b) Perform diagnostics of each model
- (c) Perform cross-validation of each model. Which one is preferable?
- 2. Perform unit-root test and find an optimal integration order for y_t .
- 3. Fitting of the «optimal» model
 - (a) fit ARIMA of «optimal» order
 - (b) perform its diagnostic
 - (c) forecast for 10 periods forward.
- #9. Write down specification the following model
 - 1. ARIMA(0,1,1) with and without drift
 - 2. ARIMA(0,1,2) with and without drift
 - 3. ARIMA(1,1,0) with and without drift
 - 4. ARIMA(2,1,0) with and without drift
 - 5. ARIMA(0,2,0) with and without drift
 - 6. ARIMA(1,2,0) with and without drift
 - 7. ARIMA(0,2,1) with and without drift