

#### **CAUSALITY**

# Models, Reasoning, and Inference Second Edition

Written by one of the preeminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, economics, philosophy, cognitive science, and the health and social sciences.

Judea Pearl presents a comprehensive theory of causality which unifies the probabilistic, manipulative, counterfactual, and structural approaches to causation and offers simple mathematical tools for studying the relationships between causal connections and statistical associations. The book opens the way for including causal analysis in the standard curricula of statistics, artificial intelligence, business, epidemiology, social sciences, and economics. Students in these fields will find natural models, simple inferential procedures, and precise mathematical definitions of causal concepts that traditional texts have evaded or made unduly complicated.

The first edition of *Causality* has led to a paradigmatic change in the way that causality is treated in statistics, philosophy, computer science, social science, and economics. Cited in more than 2,800 scientific publications, it continues to liberate scientists from the traditional molds of statistical thinking. In this revised edition, Pearl elucidates thorny issues, answers readers' questions, and offers a panoramic view of recent advances in this field of research.

Causality will be of interest to students and professionals in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.

Judea Pearl is professor of computer science and statistics at the University of California, Los Angeles, where he directs the Cognitive Systems Laboratory and conducts research in artificial intelligence, human reasoning, and philosophy of science. The author of *Heuristics* and *Probabilistic Reasoning*, he is a member of the National Academy of Engineering and a Founding Fellow of the American Association for Artificial Intelligence. Dr. Pearl is the recipient of the IJCAI Research Excellence Award for 1999, the London School of Economics Lakatos Award for 2001, and the ACM Alan Newell Award for 2004. In 2008, he received the Benjamin Franklin Medal for computer and cognitive science from the Franklin Institute.



#### Commendation for the First Edition

"Judea Pearl's previous book, *Probabilistic Reasoning in Intelligent Systems*, was arguably the most influential book in Artificial Intelligence in the past decade, setting the stage for much of the current activity in probabilistic reasoning. In this book, Pearl turns his attention to causality, boldly arguing for the primacy of a notion long ignored in statistics and misunderstood and mistrusted in other disciplines, from physics to economics. He demystifies the notion, clarifies the basic concepts in terms of graphical models, and explains the source of many misunderstandings. This book should prove invaluable to researchers in artificial intelligence, statistics, economics, epidemiology, and philosophy, and, indeed, all those interested in the fundamental notion of causality. It may well prove to be one of the most influential books of the next decade."

- Joseph Halpern, Computer Science Department, Cornell University

"This lucidly written book is full of inspiration and novel ideas that bring clarity to areas where confusion has prevailed, in particular concerning causal interpretation of structural equation systems, but also on concepts such as counterfactual reasoning and the general relation between causal thinking and graphical models. Finally the world can get a coherent exposition of these ideas that Judea Pearl has developed over a number of years and presented in a flurry of controversial yet illuminating articles."

- Steffen L. Lauritzen, Department of Mathematics, Aalborg University

"Judea Pearl's new book, *Causality: Models, Reasoning, and Inference*, is an outstanding contribution to the causality literature. It will be especially useful to students and practitioners of economics interested in policy analysis."

- Halbert White, Professor of Economics, University of California, San Diego

"This book fulfills a long-standing need for a rigorous yet accessible treatise on the mathematics of causal inference. Judea Pearl has done a masterful job of describing the most important approaches and displaying their underlying logical unity. The book deserves to be read by all statisticians and scientists who use nonexperimental data to study causation, and would serve well as a graduate or advanced undergraduate course text."

- Sander Greenland, School of Public Health, University of California, Los Angeles

"Judea Pearl has written an account of recent advances in the modeling of probability and cause, substantial parts of which are due to him and his co-workers. This is essential reading for anyone interested in causality."

- Brian Skryms, Department of Philosophy, University of California, Irvine



## **CAUSALITY**

# Models, Reasoning, and Inference Second Edition

Judea Pearl

University of California, Los Angeles





#### Cambridge **UNIVERSITY PRESS**

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #0506/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9780521895606

© Judea Pearl 2000, 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2000 8th printing 2008 Second edition 2009 Reprinted 2010 Reprinted with corrections 2013 6th printing 2019

Reprinted with corrections 2021

Reprinted 2022

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalog record for this publication is available from the British Library.

The Library of Congress has cataloged the first edition as follows: Pearl, Judea

Causality: models, reasoning, and inference / Judea Pearl.

p. cm.

ISBN 0-521-77362-8 (hardback) 1. Causation. 2. Probabilities. I. Title.

BD541.P43 2000

99-042108

ISBN 978-0-521-89560-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.



Development of Western science is based on two great achievements: the invention of the formal logical system (in Euclidean geometry) by the Greek philosophers, and the discovery of the possibility to find out causal relationships by systematic experiment (during the Renaissance).

Albert Einstein (1953)

TO DANNY
AND THE GLOWING AUDACITY OF GOODNESS



## **Contents**

| Prefa | ice to                                                   | the First Edition                                           | page xv |  |
|-------|----------------------------------------------------------|-------------------------------------------------------------|---------|--|
| Prefa | ice to                                                   | the Second Edition                                          | xix     |  |
| 1     | Introduction to Probabilities, Graphs, and Causal Models |                                                             |         |  |
|       | 1.1                                                      | Introduction to Probability Theory                          |         |  |
|       |                                                          | 1.1.1 Why Probabilities?                                    | 1       |  |
|       |                                                          | 1.1.2 Basic Concepts in Probability Theory                  | 2       |  |
|       |                                                          | 1.1.3 Combining Predictive and Diagnostic Supports          | 6       |  |
|       |                                                          | 1.1.4 Random Variables and Expectations                     | 8       |  |
|       |                                                          | 1.1.5 Conditional Independence and Graphoids                | 11      |  |
|       | 1.2                                                      | Graphs and Probabilities                                    | 12      |  |
|       |                                                          | 1.2.1 Graphical Notation and Terminology                    | 12      |  |
|       |                                                          | 1.2.2 Bayesian Networks                                     | 13      |  |
|       |                                                          | 1.2.3 The <i>d</i> -Separation Criterion                    | 16      |  |
|       |                                                          | 1.2.4 Inference with Bayesian Networks                      | 20      |  |
|       | 1.3                                                      | Causal Bayesian Networks                                    | 21      |  |
|       |                                                          | 1.3.1 Causal Networks as Oracles for Interventions          | 22      |  |
|       |                                                          | 1.3.2 Causal Relationships and Their Stability              | 24      |  |
|       | 1.4                                                      | Functional Causal Models                                    | 26      |  |
|       |                                                          | 1.4.1 Structural Equations                                  | 27      |  |
|       |                                                          | 1.4.2 Probabilistic Predictions in Causal Models            | 30      |  |
|       |                                                          | 1.4.3 Interventions and Causal Effects in Functional Models | 32      |  |
|       |                                                          | 1.4.4 Counterfactuals in Functional Models                  | 33      |  |
|       | 1.5                                                      | Causal versus Statistical Terminology                       | 38      |  |
| 2     | A Theory of Inferred Causation                           |                                                             |         |  |
|       | 2.1                                                      | Introduction – The Basic Intuitions                         | 42      |  |
|       | 2.2                                                      | The Causal Discovery Framework                              | 43      |  |
|       | 2.3                                                      | Model Preference (Occam's Razor)                            | 45      |  |
|       | 2.4                                                      | Stable Distributions                                        | 48      |  |
|       | 2.5                                                      | Recovering DAG Structures                                   | 49      |  |
|       | 2.6                                                      | Recovering Latent Structures                                | 51      |  |
|       |                                                          |                                                             | vii     |  |



| viii |                                    |                                                          | Contents |  |  |
|------|------------------------------------|----------------------------------------------------------|----------|--|--|
|      | 2.7                                | Local Criteria for Inferring Causal Relations            | 54       |  |  |
|      | 2.8                                | Nontemporal Causation and Statistical Time               | 57       |  |  |
|      | 2.9                                | Conclusions                                              | 59       |  |  |
|      |                                    | 2.9.1 On Minimality, Markov, and Stability               | 61       |  |  |
| 3    | Caı                                | Causal Diagrams and the Identification of Causal Effects |          |  |  |
|      | 3.1                                | Introduction                                             | 66       |  |  |
|      | 3.2                                | Intervention in Markovian Models                         | 68       |  |  |
|      |                                    | 3.2.1 Graphs as Models of Interventions                  | 68       |  |  |
|      |                                    | 3.2.2 Interventions as Variables                         | 70       |  |  |
|      |                                    | 3.2.3 Computing the Effect of Interventions              | 72       |  |  |
|      |                                    | 3.2.4 Identification of Causal Quantities                | 77       |  |  |
|      | 3.3                                | Controlling Confounding Bias                             | 78       |  |  |
|      |                                    | 3.3.1 The Back-Door Criterion                            | 79       |  |  |
|      |                                    | 3.3.2 The Front-Door Criterion                           | 81       |  |  |
|      |                                    | 3.3.3 Example: Smoking and the Genotype Theory           | 83       |  |  |
|      | 3.4                                |                                                          | 85       |  |  |
|      |                                    | 3.4.1 Preliminary Notation                               | 85       |  |  |
|      |                                    | 3.4.2 Inference Rules                                    | 85       |  |  |
|      |                                    | 3.4.3 Symbolic Derivation of Causal Effects: An Example  | 86       |  |  |
|      |                                    | 3.4.4 Causal Inference by Surrogate Experiments          | 88       |  |  |
|      | 3.5                                | Graphical Tests of Identifiability                       | 89       |  |  |
|      |                                    | 3.5.1 Identifying Models                                 | 91       |  |  |
|      |                                    | 3.5.2 Nonidentifying Models                              | 93       |  |  |
|      | 3.6                                | Discussion                                               | 94       |  |  |
|      |                                    | 3.6.1 Qualifications and Extensions                      | 94       |  |  |
|      |                                    | 3.6.2 Diagrams as a Mathematical Language                | 96       |  |  |
|      |                                    | 3.6.3 Translation from Graphs to Potential Outcomes      | 98       |  |  |
|      |                                    | 3.6.4 Relations to Robins's <i>G</i> -Estimation         | 102      |  |  |
| 4    | Actions, Plans, and Direct Effects |                                                          |          |  |  |
|      | 4.1                                | Introduction                                             | 108      |  |  |
|      |                                    | 4.1.1 Actions, Acts, and Probabilities                   | 108      |  |  |
|      |                                    | 4.1.2 Actions in Decision Analysis                       | 110      |  |  |
|      |                                    | 4.1.3 Actions and Counterfactuals                        | 112      |  |  |
|      |                                    | Conditional Actions and Stochastic Policies              | 113      |  |  |
|      | 4.3                                | When Is the Effect of an Action Identifiable?            | 114      |  |  |
|      |                                    | 4.3.1 Graphical Conditions for Identification            | 114      |  |  |
|      |                                    | 4.3.2 Remarks on Efficiency                              | 116      |  |  |
|      |                                    | 4.3.3 Deriving a Closed-Form Expression                  |          |  |  |
|      |                                    | for Control Queries                                      | 117      |  |  |
|      |                                    | 4.3.4 Summary                                            | 118      |  |  |
|      | 4.4                                | The Identification of Dynamic Plans                      | 118      |  |  |
|      |                                    | 4.4.1 Motivation                                         | 118      |  |  |
|      |                                    | 4.4.2 Plan Identification: Notation and Assumptions      | 120      |  |  |



| Cont | ents |                                                                                                                                                                                                                    | 1X                |  |  |  |
|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
|      | 4.5  | <ul> <li>4.4.3 Plan Identification: The Sequential Back-Door Criterion</li> <li>4.4.4 Plan Identification: A Procedure</li> <li>Direct and Indirect Effects</li> <li>4.5.1 Direct regress Total Effects</li> </ul> | 121<br>124<br>126 |  |  |  |
|      |      | 4.5.1 Direct versus Total Effects  4.5.2 Direct Effects Definition and Identification                                                                                                                              | 126               |  |  |  |
|      |      | <ul><li>4.5.2 Direct Effects, Definition, and Identification</li><li>4.5.3 Example: Sex Discrimination in College Admission</li></ul>                                                                              | 127<br>128        |  |  |  |
|      |      | 4.5.4 Natural Direct Effects                                                                                                                                                                                       | 130               |  |  |  |
|      |      | 4.5.5 Indirect Effects and the Mediation Formula                                                                                                                                                                   | 132               |  |  |  |
| 5    | Caı  | Causality and Structural Models in Social Science and Economics                                                                                                                                                    |                   |  |  |  |
|      |      | Introduction                                                                                                                                                                                                       | 134               |  |  |  |
|      |      | 5.1.1 Causality in Search of a Language                                                                                                                                                                            | 134               |  |  |  |
|      |      | 5.1.2 SEM: How Its Meaning Became Obscured                                                                                                                                                                         | 135               |  |  |  |
|      |      | 5.1.3 Graphs as a Mathematical Language                                                                                                                                                                            | 138               |  |  |  |
|      | 5.2  | Graphs and Model Testing                                                                                                                                                                                           | 140               |  |  |  |
|      |      | 5.2.1 The Testable Implications of Structural Models                                                                                                                                                               | 140               |  |  |  |
|      |      | 5.2.2 Testing the Testable                                                                                                                                                                                         | 144               |  |  |  |
|      |      | 5.2.3 Model Equivalence                                                                                                                                                                                            | 145               |  |  |  |
|      | 5.3  | Graphs and Identifiability                                                                                                                                                                                         | 149               |  |  |  |
|      |      | 5.3.1 Parameter Identification in Linear Models                                                                                                                                                                    | 149               |  |  |  |
|      |      | 5.3.2 Comparison to Nonparametric Identification                                                                                                                                                                   | 154               |  |  |  |
|      |      | 5.3.3 Causal Effects: The Interventional Interpretation of                                                                                                                                                         |                   |  |  |  |
|      |      | Structural Equation Models                                                                                                                                                                                         | 157               |  |  |  |
|      | 5.4  | Some Conceptual Underpinnings                                                                                                                                                                                      | 159               |  |  |  |
|      |      | 5.4.1 What Do Structural Parameters Really Mean?                                                                                                                                                                   | 159               |  |  |  |
|      |      | 5.4.2 Interpretation of Effect Decomposition                                                                                                                                                                       | 163               |  |  |  |
|      |      | 5.4.3 Exogeneity, Superexogeneity, and Other Frills                                                                                                                                                                | 165               |  |  |  |
|      | 5.5  | Conclusion                                                                                                                                                                                                         | 170               |  |  |  |
|      | 5.6  | Postscript for the Second Edition                                                                                                                                                                                  | 171               |  |  |  |
|      |      | 5.6.1 An Econometric Awakening?                                                                                                                                                                                    | 171               |  |  |  |
|      |      | 5.6.2 Identification in Linear Models                                                                                                                                                                              | 171               |  |  |  |
|      |      | 5.6.3 Robustness of Causal Claims                                                                                                                                                                                  | 172               |  |  |  |
| 6    | Sim  | Simpson's Paradox, Confounding, and Collapsibility                                                                                                                                                                 |                   |  |  |  |
|      | 6.1  | Simpson's Paradox: An Anatomy                                                                                                                                                                                      | 174               |  |  |  |
|      |      | 6.1.1 A Tale of a Non-Paradox                                                                                                                                                                                      | 174               |  |  |  |
|      |      | 6.1.2 A Tale of Statistical Agony                                                                                                                                                                                  | 175               |  |  |  |
|      |      | 6.1.3 Causality versus Exchangeability                                                                                                                                                                             | 177               |  |  |  |
|      |      | 6.1.4 A Paradox Resolved (Or: What Kind of Machine Is Man?)                                                                                                                                                        | 180               |  |  |  |
|      | 6.2  | Why There Is No Statistical Test for Confounding, Why Many                                                                                                                                                         |                   |  |  |  |
|      |      | Think There Is, and Why They Are Almost Right                                                                                                                                                                      | 182               |  |  |  |
|      |      | 6.2.1 Introduction                                                                                                                                                                                                 | 182               |  |  |  |
|      |      | 6.2.2 Causal and Associational Definitions                                                                                                                                                                         | 184               |  |  |  |
|      | 6.3  |                                                                                                                                                                                                                    | 185               |  |  |  |
|      |      | 6.3.1 Failing Sufficiency via Marginality                                                                                                                                                                          | 185               |  |  |  |
|      |      | 6.3.2 Failing Sufficiency via Closed-World Assumptions                                                                                                                                                             | 186               |  |  |  |



| X |     |         |                                                           | Contents |
|---|-----|---------|-----------------------------------------------------------|----------|
|   |     | 6.3.3   | Failing Necessity via Barren Proxies                      | 186      |
|   |     |         | Failing Necessity via Incidental Cancellations            | 188      |
|   | 6.4 |         | versus Incidental Unbiasedness                            | 189      |
|   |     | 6.4.1   | Motivation                                                | 189      |
|   |     | 6.4.2   | Formal Definitions                                        | 191      |
|   |     | 6.4.3   | Operational Test for Stable No-Confounding                | 192      |
|   | 6.5 | Confo   | unding, Collapsibility, and Exchangeability               | 193      |
|   |     | 6.5.1   | Confounding and Collapsibility                            | 193      |
|   |     | 6.5.2   | Confounding versus Confounders                            | 194      |
|   |     | 6.5.3   | Exchangeability versus Structural Analysis of Confounding | 196      |
|   | 6.6 | Conclu  | asions                                                    | 199      |
| 7 | The | Logic   | of Structure-Based Counterfactuals                        | 201      |
|   | 7.1 | Structu | ural Model Semantics                                      | 202      |
|   |     | 7.1.1   | Definitions: Causal Models, Actions, and Counterfactuals  | 202      |
|   |     | 7.1.2   | Evaluating Counterfactuals: Deterministic Analysis        | 207      |
|   |     |         | Evaluating Counterfactuals: Probabilistic Analysis        | 212      |
|   |     |         | The Twin Network Method                                   | 213      |
|   | 7.2 |         | eations and Interpretation of Structural Models           | 215      |
|   |     | 7.2.1   | Policy Analysis in Linear Econometric Models:             |          |
|   |     |         | An Example                                                | 215      |
|   |     |         | The Empirical Content of Counterfactuals                  | 217      |
|   |     |         | Causal Explanations, Utterances, and Their Interpretation | 221      |
|   |     |         | From Mechanisms to Actions to Causation                   | 223      |
|   |     |         | Simon's Causal Ordering                                   | 226      |
|   | 7.3 |         | natic Characterization                                    | 228      |
|   |     |         | The Axioms of Structural Counterfactuals                  | 228      |
|   |     |         | Causal Effects from Counterfactual Logic: An Example      | 231      |
|   |     |         | Axioms of Causal Relevance                                | 234      |
|   | 7.4 |         | ural and Similarity-Based Counterfactuals                 | 238      |
|   |     |         | Relations to Lewis's Counterfactuals                      | 238      |
|   |     |         | Axiomatic Comparison                                      | 240      |
|   |     |         | Imaging versus Conditioning                               | 242      |
|   |     |         | Relations to the Neyman–Rubin Framework                   | 243      |
|   |     | 7.4.5   | Exogeneity and Instruments: Counterfactual and            |          |
|   |     |         | Graphical Definitions                                     | 245      |
|   | 7.5 |         | ural versus Probabilistic Causality                       | 249      |
|   |     | 7.5.1   | The Reliance on Temporal Ordering                         | 249      |
|   |     | 7.5.2   | The Perils of Circularity                                 | 250      |
|   |     | 7.5.3   | Challenging the Closed-World Assumption, with Children    | 252      |
|   |     | 7.5.4   | Singular versus General Causes                            | 253      |
|   |     | 7.5.5   | Summary                                                   | 256      |
| 8 | _   |         | Experiments: Bounding Effects and Counterfactuals         | 259      |
|   | 8.1 | Introdu |                                                           | 259      |
|   |     | 8.1.1   | Imperfect and Indirect Experiments                        | 259      |
|   |     | 8.1.2   | Noncompliance and Intent to Treat                         | 261      |



| Conte | ents                                                        |                                          |                                                         | xi  |  |
|-------|-------------------------------------------------------------|------------------------------------------|---------------------------------------------------------|-----|--|
|       | 8.2                                                         | Bound                                    | ing Causal Effects with Instrumental Variables          | 262 |  |
|       |                                                             | 8.2.1                                    | Problem Formulation: Constrained Optimization           | 262 |  |
|       |                                                             | 8.2.2                                    | Canonical Partitions: The Evolution of                  |     |  |
|       |                                                             |                                          | Finite-Response Variables                               | 263 |  |
|       |                                                             | 8.2.3                                    | Linear Programming Formulation                          | 266 |  |
|       |                                                             | 8.2.4                                    | The Natural Bounds                                      | 268 |  |
|       |                                                             | 8.2.5                                    | Effect of Treatment on the Treated (ETT)                | 269 |  |
|       |                                                             | 8.2.6                                    | Example: The Effect of Cholestyramine                   | 270 |  |
|       | 8.3                                                         | Counte                                   | erfactuals and Legal Responsibility                     | 271 |  |
|       | 8.4                                                         | A Test                                   | for Instruments                                         | 274 |  |
|       | 8.5                                                         | A Baye                                   | esian Approach to Noncompliance                         | 275 |  |
|       |                                                             | 8.5.1                                    | Bayesian Methods and Gibbs Sampling                     | 275 |  |
|       |                                                             | 8.5.2                                    | The Effects of Sample Size and Prior Distribution       | 277 |  |
|       |                                                             | 8.5.3                                    | Causal Effects from Clinical Data with Imperfect        |     |  |
|       |                                                             |                                          | Compliance                                              | 277 |  |
|       |                                                             | 8.5.4                                    | Bayesian Estimate of Single-Event Causation             | 280 |  |
|       | 8.6                                                         | Conclu                                   | ision                                                   | 281 |  |
| 9     | Probability of Causation: Interpretation and Identification |                                          |                                                         |     |  |
|       | 9.1                                                         | Introdu                                  |                                                         | 283 |  |
|       | 9.2                                                         | Necess                                   | ary and Sufficient Causes: Conditions of Identification | 286 |  |
|       |                                                             | 9.2.1                                    | Definitions, Notation, and Basic Relationships          | 286 |  |
|       |                                                             | 9.2.2                                    | Bounds and Basic Relationships under Exogeneity         | 289 |  |
|       |                                                             | 9.2.3                                    | Identifiability under Monotonicity and Exogeneity       | 291 |  |
|       |                                                             | 9.2.4                                    | Identifiability under Monotonicity and Nonexogeneity    | 293 |  |
|       | 9.3                                                         | -                                        | les and Applications                                    | 296 |  |
|       |                                                             | 9.3.1                                    | Example 1: Betting against a Fair Coin                  | 296 |  |
|       |                                                             | 9.3.2                                    | Example 2: The Firing Squad                             | 297 |  |
|       |                                                             | 9.3.3                                    | Example 3: Was Radiation the Cause of Leukemia?         | 299 |  |
|       |                                                             | 9.3.4                                    | Example 4: Legal Responsibility from Experimental and   |     |  |
|       |                                                             |                                          | Nonexperimental Data                                    | 302 |  |
|       |                                                             | 9.3.5                                    | Summary of Results                                      | 303 |  |
|       | 9.4                                                         |                                          | ication in Nonmonotonic Models                          | 304 |  |
|       | 9.5                                                         | Conclu                                   | sions                                                   | 307 |  |
| 10    | The                                                         | Actual (                                 | Cause                                                   | 309 |  |
|       | 10.1                                                        | Introdu                                  | action: The Insufficiency of Necessary Causation        | 309 |  |
|       |                                                             | 10.1.1                                   | Singular Causes Revisited                               | 309 |  |
|       |                                                             | 10.1.2                                   | Preemption and the Role of Structural Information       | 311 |  |
|       |                                                             | 10.1.3                                   | Overdetermination and Quasi-Dependence                  | 313 |  |
|       |                                                             | 10.1.4                                   | Mackie's INUS Condition                                 | 313 |  |
|       | 10.2                                                        | 2 Production, Dependence, and Sustenance |                                                         |     |  |
|       | 10.3                                                        | Causal                                   | Beams and Sustenance-Based Causation                    | 318 |  |
|       |                                                             | 10.3.1                                   | Causal Beams: Definitions and Implications              | 318 |  |
|       |                                                             | 10.3.2                                   | Examples: From Disjunction to General Formulas          | 320 |  |
|       |                                                             | 10.3.3                                   | Beams, Preemption, and the Probability of               |     |  |
|       |                                                             |                                          | Single-Event Causation                                  | 322 |  |



| xii |       |            |                                                           | Contents |
|-----|-------|------------|-----------------------------------------------------------|----------|
|     |       | 10.3.4 H   | Path-Switching Causation                                  | 324      |
|     |       | 10.3.5     | Temporal Preemption                                       | 325      |
|     | 10.4  | Conclusi   | ons                                                       | 327      |
| 11  | Refle | ctions, El | aborations, and Discussions with Readers                  | 331      |
|     | 11.1  | Causal,    | Statistical, and Graphical Vocabulary                     | 331      |
|     |       | 11.1.1     | Is the Causal-Statistical Dichotomy Necessary?            | 331      |
|     |       | 11.1.2     | <i>d</i> -Separation without Tears (Chapter 1, pp. 16–18) | 335      |
|     | 11.2  | Reversi    | ing Statistical Time (Chapter 2, p. 58–59)                | 337      |
|     | 11.3  | Estimat    | ting Causal Effects                                       | 338      |
|     |       | 11.3.1     | The Intuition behind the Back-Door Criterion              |          |
|     |       |            | (Chapter 3, p. 79)                                        | 338      |
|     |       | 11.3.2     | Demystifying "Strong Ignorability"                        | 341      |
|     |       | 11.3.3     | Alternative Proof of the Back-Door Criterion              | 344      |
|     |       | 11.3.4     | Data vs. Knowledge in Covariate Selection                 | 346      |
|     |       | 11.3.5     | Understanding Propensity Scores                           | 348      |
|     |       | 11.3.6     | The Intuition behind do-Calculus                          | 352      |
|     |       | 11.3.7     | The Validity of G-Estimation                              | 352      |
|     | 11.4  | Policy 1   | Evaluation and the do-Operator                            | 354      |
|     |       | 11.4.1     | Identifying Conditional Plans (Section 4.2, p. 113)       | 354      |
|     |       | 11.4.2     | The Meaning of Indirect Effects                           | 355      |
|     |       | 11.4.3     | Can $do(x)$ Represent Practical Experiments?              | 358      |
|     |       | 11.4.4     | Is the $do(x)$ Operator Universal?                        | 359      |
|     |       | 11.4.5     | Causation without Manipulation!!!                         | 361      |
|     |       | 11.4.6     | Hunting Causes with Cartwright                            | 362      |
|     |       | 11.4.7     | The Illusion of Nonmodularity                             | 364      |
|     | 11.5  | Causal     | Analysis in Linear Structural Models                      | 366      |
|     |       | 11.5.1     | General Criterion for Parameter Identification            |          |
|     |       |            | (Chapter 5, pp. 149–54)                                   | 366      |
|     |       | 11.5.2     | The Causal Interpretation of Structural Coefficients      | 366      |
|     |       |            | Defending the Causal Interpretation of SEM (or, SEM       |          |
|     |       |            | Survival Kit)                                             | 368      |
|     |       | 11.5.4     | Where Is Economic Modeling Today? – Courting              |          |
|     |       |            | Causes with Heckman                                       | 374      |
|     |       | 11.5.5     | External Variation versus Surgery                         | 376      |
|     | 11.6  |            | ons and Confounding (Chapter 6)                           | 380      |
|     |       | 11.6.1     | Simpson's Paradox and Decision Trees                      | 380      |
|     |       | 11.6.2     | Is Chronological Information Sufficient for               |          |
|     |       |            | Decision Trees?                                           | 382      |
|     |       | 11.6.3     | Lindley on Causality, Decision Trees, and Bayesianism     | a 384    |
|     |       | 11.6.4     | Why Isn't Confounding a Statistical Concept?              | 387      |
|     | 11.7  | The Ca     | lculus of Counterfactuals                                 | 389      |
|     |       | 11.7.1     | Counterfactuals in Linear Systems                         | 389      |
|     |       |            | The Meaning of Counterfactuals                            | 391      |
|     |       | 11.7.3     | _                                                         | 393      |



| Contents      |                                                            |     |  |
|---------------|------------------------------------------------------------|-----|--|
| 11.8          | 11.8 Instrumental Variables and Noncompliance              |     |  |
|               | 11.8.1 Tight Bounds under Noncompliance                    | 395 |  |
| 11.9          | More on Probabilities of Causation                         | 396 |  |
|               | 11.9.1 Is "Guilty with Probability One" Ever Possible?     | 396 |  |
|               | 11.9.2 Tightening the Bounds on Probabilities of Causation | 398 |  |
| Epilogue T    | he Art and Science of Cause and Effect                     |     |  |
| A pub         | lic lecture delivered in November 1996 as part of          |     |  |
| the UC        | CLA Faculty Research Lectureship Program                   | 401 |  |
| Bibliography  |                                                            | 429 |  |
| Name Index    |                                                            | 454 |  |
| Subject Index |                                                            |     |  |



### **Preface to the First Edition**

The central aim of many studies in the physical, behavioral, social, and biological sciences is the elucidation of cause–effect relationships among variables or events. However, the appropriate methodology for extracting such relationships from data – or even from theories – has been fiercely debated.

The two fundamental questions of causality are: (1) What empirical evidence is required for legitimate inference of cause–effect relationships? (2) Given that we are willing to accept causal information about a phenomenon, what inferences can we draw from such information, and how? These questions have been without satisfactory answers in part because we have not had a clear semantics for causal claims and in part because we have not had effective mathematical tools for casting causal questions or deriving causal answers.

In the last decade, owing partly to advances in graphical models, causality has undergone a major transformation: from a concept shrouded in mystery into a mathematical object with well-defined semantics and well-founded logic. Paradoxes and controversies have been resolved, slippery concepts have been explicated, and practical problems relying on causal information that long were regarded as either metaphysical or unmanageable can now be solved using elementary mathematics. Put simply, causality has been mathematized.

This book provides a systematic account of this causal transformation, addressed primarily to readers in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Following a description of the conceptual and mathematical advances in causal inference, the book emphasizes practical methods for elucidating potentially causal relationships from data, deriving causal relationships from combinations of knowledge and data, predicting the effects of actions and policies, evaluating explanations for observed events and scenarios, and – more generally – identifying and explicating the assumptions needed for substantiating causal claims.

Ten years ago, when I began writing *Probabilistic Reasoning in Intelligent Systems* (1988), I was working within the empiricist tradition. In this tradition, probabilistic relationships constitute the foundations of human knowledge, whereas causality simply provides useful ways of abbreviating and organizing intricate patterns of probabilistic relationships. Today, my view is quite different. I now take causal relationships to be the

χv



xvi

#### Preface to the First Edition

fundamental building blocks both of physical reality and of human understanding of that reality, and I regard probabilistic relationships as but the surface phenomena of the causal machinery that underlies and propels our understanding of the world.

Accordingly, I see no greater impediment to scientific progress than the prevailing practice of focusing all of our mathematical resources on probabilistic and statistical inferences while leaving causal considerations to the mercy of intuition and good judgment. Thus I have tried in this book to present mathematical tools that handle causal relationships side by side with probabilistic relationships. The prerequisites are startlingly simple, the results embarrassingly straightforward. No more than basic skills in probability theory and some familiarity with graphs are needed for the reader to begin solving causal problems that are too complex for the unaided intellect. Using simple extensions of probability calculus, the reader will be able to determine mathematically what effects an intervention might have, what measurements are appropriate for control of confounding, how to exploit measurements that lie on the causal pathways, how to trade one set of measurements for another, and how to estimate the probability that one event was the actual cause of another.

Expert knowledge of logic and probability is nowhere assumed in this book, but some general knowledge in these areas is beneficial. Thus, Chapter 1 includes a summary of the elementary background in probability theory and graph notation needed for the understanding of this book, together with an outline of the developments of the last decade in graphical models and causal diagrams. This chapter describes the basic paradigms, defines the major problems, and points readers to the chapters that provide solutions to those problems.

Subsequent chapters include introductions that serve both to orient the reader and to facilitate skipping; they indicate safe detours around mathematically advanced topics, specific applications, and other explorations of interest primarily to the specialist.

The sequence of discussion follows more or less the chronological order by which our team at UCLA has tackled these topics, thus re-creating for the reader some of our excitement that accompanied these developments. Following the introductory chapter (Chapter 1), we start with the hardest questions of how one can go about discovering cause-effect relationships in raw data (Chapter 2) and what guarantees one can give to ensure the validity of the relationships thus discovered. We then proceed to questions of identifiability - namely, predicting the direct and indirect effects of actions and policies from a combination of data and fragmentary knowledge of where causal relationships might operate (Chapters 3 and 4). The implications of these findings for the social and health sciences are then discussed in Chapters 5 and 6 (respectively), where we examine the concepts of structural equations and confounding. Chapter 7 offers a formal theory of counterfactuals and structural models, followed by a discussion and a unification of related approaches in philosophy, statistics, and economics. The applications of counterfactual analysis are then pursued in Chapters 8-10, where we develop methods of bounding causal relationships and illustrate applications to imperfect experiments, legal responsibility, and the probability of necessary, sufficient, and single-event causation. We end this book (Epilogue) with a transcript of a public lecture that I presented at UCLA, which provides a gentle introduction to the historical and conceptual aspects of causation.



Preface to the First Edition

Readers who wish to be first introduced to the nonmathematical aspects of causation are advised to start with the Epilogue and then to sweep through the other historical/conceptual parts of the book: Sections 1.1.1, 3.3.3, 4.5.3, 5.1, 5.4.1, 6.1, 7.2, 7.4, 7.5, 8.3, 9.1, 9.3, and 10.1. More formally driven readers, who may be anxious to delve directly into the mathematical aspects and computational tools, are advised to start with Section 7.1 and then to proceed as follows for tool building: Section 1.2, Chapter 3, Sections 4.2–4.4, Sections 5.2–5.3, Sections 6.2–6.3, Section 7.3, and Chapters 8–10.

I owe a great debt to many people who assisted me with this work. First, I would like to thank the members of the Cognitive Systems Laboratory at UCLA, whose work and ideas formed the basis of many of these sections: Alex Balke, Blai Bonet, David Chickering, Adnan Darwiche, Rina Dechter, David Galles, Hector Geffner, Dan Geiger, Moisés Goldszmidt, Jin Kim, Jin Tian, and Thomas Verma. Tom and Dan have proven some of the most basic theorems in causal graphs; Hector, Adnan, and Moisés were responsible for keeping me in line with the logicist approach to actions and change; and Alex and David have taught me that counterfactuals are simpler than the name may imply.

My academic and professional colleagues have been very generous with their time and ideas as I began ploughing the peaceful territories of statistics, economics, epidemiology, philosophy, and the social sciences. My mentors—listeners in statistics have been Phil Dawid, Steffen Lauritzen, Don Rubin, Art Dempster, David Freedman, and David Cox. In economics, I have benefited from many discussions with John Aldrich, Kevin Hoover, James Heckman, Ed Leamer, and Herbert Simon. My forays into epidemiology resulted in a most fortunate and productive collaboration with Sander Greenland and James Robins. Philosophical debates with James Woodward, Nancy Cartwright, Brian Skyrms, Clark Glymour, and Peter Spirtes have sharpened my thinking of causality in and outside philosophy. Finally, in artificial intelligence, I have benefited from discussions with and the encouragement of Nils Nilsson, Ray Reiter, Don Michie, Joe Halpern, and David Heckerman.

The National Science Foundation deserves acknowledgment for consistently and faithfully sponsoring the research that led to these results, with special thanks to H. Moraff, Y. T. Chien, and Larry Reeker. Other sponsors include Abraham Waksman of the Air Force Office of Scientific Research, Michael Shneier of the Office of Naval Research, the California MICRO Program, Northrop Corporation, Rockwell International, Hewlett-Packard, and Microsoft.

I would like to thank Academic Press and Morgan Kaufmann Publishers for their kind permission to reprint selected portions of previously published material. Chapter 3 includes material reprinted from *Biometrika*, vol. 82, Judea Pearl, "Causal Diagrams for Empirical Research," pp. 669–710, Copyright 1995, with permission from Oxford University Press. Chapter 5 includes material reprinted from *Sociological Methods and Research*, vol. 27, Judea Pearl, "Graphs, Causality, and Structural Equation Models," pp. 226–84, Copyright 1998, with permission from Sage Publications, Inc. Chapter 7 includes material reprinted from *Foundations of Science*, vol. 1, David Galles and Judea Pearl, "An Axiomatic Characterization of Causal Counterfactuals," pp. 151–82, Copyright 1998, with permission from Kluwer Academic Publishers. Chapter 7 also includes material reprinted from *Artificial Intelligence*, vol. 97, David Galles and Judea Pearl, "Axioms

© in this web service Cambridge University Press

www.cambridge.org

x vii



xviii

Preface to the First Edition

of Causal Relevance," pp. 9–43, Copyright 1997, with permission from Elsevier Science. Chapter 8 includes material modified from *Journal of the American Statistical Association*, vol. 92, Alexander Balke and Judea Pearl, "Bounds on Treatment Effects from Studies with Imperfect Compliance," pp. 1171–6, Copyright 1997, with permission from the American Statistical Association.

The manuscript was most diligently typed, processed, and illustrated by Kaoru Mulvihill. Jin Tian and Blai Bonet helped in proofing selected chapters. Matt Darnell did a masterful job of copyediting these pages. Alan Harvey has been my consoling ombudsman and virtual editor throughout the production process.

Finally, my humor and endurance through the writing of this book owe a great debt to my family – to Tammy, Danny, Michelle, and Leora for filling my heart with their smiles, and to my wife Ruth for surrounding me with so much love, support, and meaning.

J. P. Los Angeles August 1999



#### **Preface to the Second Edition**

It has been more than eight years since the first edition of this book presented readers with the friendly face of causation and her mathematical artistry. The popular reception of the book and the rapid expansion of the structural theory of causation call for a new edition to assist causation through her second transformation – from a demystified wonder to a commonplace tool in research and education. This edition (1) provides technical corrections, updates, and clarifications in all ten chapters of the original book, (2) adds summaries of new developments and annotated bibliographical references at the end of each chapter, and (3) elucidates subtle issues that readers and reviewers have found perplexing, objectionable, or in need of elaboration. These are assembled into an entirely new chapter (11) which, I sincerely hope, clears the province of causal thinking from the last traces of controversy.

Teachers who have taught from this book before should find the revised edition more lucid and palatable, while those who have waited for scouts to carve the path will find the road paved and tested. Supplementary educational material, slides, tutorials, and homework can be found on my website, http://www.cs.ucla.edu/~judea/.

My main audience remain the students: students of statistics who wonder why instructors are reluctant to discuss causality in class; students of epidemiology who wonder why elementary concepts such as confounding are so hard to define mathematically; students of economics and social science who question the meaning of the parameters they estimate; and, naturally, students of artificial intelligence and cognitive science, who write programs and theories for knowledge discovery, causal explanations, and causal speech.

I hope that each of these groups will find the unified theory of causation presented in this book to be both inspirational and instrumental in tackling new challenges in their respective fields.

J. P.

Los Angeles

July 2008

Homework problems and solutions to several chapters of this book are available at http://bayes.cs.ucla.edu/BOOK-2K/CAUSALITY-SOLUTIONS/

J. P.

Los Angeles

January 2021

xix