Dans cet énoncé, un *stable* désigne un sous-graphe complètement déconnecté. Un stable est *localement maximal* si tous les autres sommets sont connectés à celui-ci.

Théorème de Caro-Wei

Soit G = (S, A) un graphe quelconque.

Question 0 Donner un algorithme qui construit un stable localement maximal.

Question 1 Modifier l'algorithme précédent pour qu'il donne un stable localement maximal aléatoire choisi uniformément.

Pour v un sommet du graphe, note A_v la variable aléatoire indicatrice de l'événement "v fait partie du stable".

 $\ref{Question 2}$ Donner l'espérance de A_v pour $v \in S$.

On pose $d: S \to \mathbb{N}$ la fonction qui à un sommet associe son degré.

 \bigcirc Question 3 Montrer que G admet un stable H de taille

$$|H| = \sum_{v \in S} \frac{1}{1+d(v)}$$

Soit d_m le degré moyen d'un sommet de G.

 \bigcirc Question 4 En déduire que G admet un stable de taille

$$|S\frac{|}{1+d_m}|$$

Théorème de Tùran

Soit G=(S,A) un graphe n'admettant pas K_{r+1} comme sous-graphe. On pose $n\coloneqq |S|$ et $p\coloneqq |A|$.

Question 5 Montrer que $p \le \frac{n^2}{2} (1 - \frac{1}{r})$

Question 6 Montrer que si $\frac{n^2}{2}(1-\frac{1}{r}) \in \mathbb{N}$, alors la majoration précédente est optimale.