

Data Analysis in Geoscience Remote Sensing Projects

Time series analyses

Dr. Hendrik Andersen | November 24, 2023

Typical questions in geoscience research, applications of remote sensing

Typical questions in geosciences

- What is the current state of the Earth system?
- How does the Earth system change?
- How are different components of the Earth system related?

Applications of remote sensing

- Observing the current state of the Earth system and recent changes
- Weather observations and short-term forecasting
- Analyzing relationships of observables within the Earth system to improve system understanding
- Combine with earth system models or use observations to evaluate them

Methods we will cover in this course

- Time series decomposition
- Temporal change (point) analyses
- Regression for sensitivity estimation and trend analysis
- Logistic regression for classification
- Machine learning models for regression/classification/sensitivity estimation

Methods we will cover in this course

- Time series decomposition
- Temporal change (point) analyses
- Regression for sensitivity estimation and trend analysis
- Logistic regression for classification
- Machine learning models for regression/classification/sensitivity estimation

Time series analyses in geosciences

What is a time series?

ightarrow A time series is an ordered sequence of data indexed by time

Time series analyses in geosciences

What properties do time series of geophysical parameters have?

Time series analyses in geosciences

What properties do time series of geophysical parameters have?

- Stationarity or trends (linear or nonlinear)
- Cyclical (seasonal cycle/diurnal cycle/multi-year (e.g. El Niño)/weekly cycle)
- residual noise (weather influences, measurement uncertainties)

Time series decomposition aims to separate the signal into different components, each representing an underlying pattern category.

Example time series: Mauna Loa CO₂ measurements

Time series decomposition

Karlsruhe Institute of Technology

Time series decomposition: How does it work?

Time series:

$$Y_{\nu} = T_{\nu} + S_{\nu} + R_{\nu}$$

Figure: https: //towardsdatascience.com/multi-seasonal-time-series-decomposition-using-mstl-in-python-136630e67530

Time series decomposition: How does it work?

Figure: https:

//towardsdatascience.com/multi-seasonal-time-series-decomposition-using-mstl-in-python-136630e67530

Time series decomposition: How does it work?

Figure: Cleveland et al. (1990)

Time series decomposition: How does it work?

Figure: Cleveland et al. (1990)

Time series decomposition: example

Figure 3. Trigonometric decomposition of the U.S. gasoline data. The within-sample RMSE was 279.9.

Figure: Livera et al. (2011)

- Using e.g. a LOESS filter in moving windows of different widths
- Estimate the trend from the data, then subtract it
- From the remaining anomalies, estimate the mean seasonality, then subtract it
- ightarrow This procedure decomposes the data into **trend**, **seasonality** and **residual** signals

What is this useful for?

Time series decomposition: summary

- Using e.g. a LOESS filter in moving windows of different widths
- Estimate the trend from the data, then subtract it
- From the remaining anomalies, estimate the mean seasonality, then subtract it
- → This procedure decomposes the data into **trend**, **seasonality** and **residual** signals

What is this useful for?

- Better understand the data
- Quantifying relationships between geophysical parameters
- Time series forecasting

Change point analyses

What type of changes can occur in time series of environmental parameters?

Change point analyses

What type of changes can occur in time series of environmental parameters?

Figure: https://www.iese.fraunhofer.de/blog/change-point-detection/

Change point analyses

What type of changes can occur in time series of environmental parameters?

Figure: https://www.iese.fraunhofer.de/blog/change-point-detection/

What type of changes can occur in time series of environmental parameters?

- Change in mean (trend/abrupt step changes)
- Change in variability (amplitude of seasonal cycle, white noise)
- Change in periodicity
- Change in pattern
- Change in a combination of the above

Change point analysis: Identify points (in time) when a signal changes

Figure: https://www.iese.fraunhofer.de/blog/change-point-detection/

Figure: https://www.iese.fraunhofer.de/blog/change-point-detection/

Example study

Figure: Cahill et al. (2015)

Change point analysis

- Detects (temporal) points of changes in time series
- Typically uses a moving window approach
- Designed specifically for a purpose, typically include significance estimation

Short summary

- lacktriangle Connection: Science question ightarrow RS data ightarrow methods
- Time series decomposition (different components)
- Change point analysis (different types of changes)