TEXT RETRIEVAL AND SEARCH ENGINES

The basic concepts, principles, and the major techniques in text retrieval, which is the underlying science of search engines.

Course author:

ChengXiang Zhai

University of Illinois at Urbana-Champaign & Coursera

Contents

1	Nat	ural Language Content Analysis	2
	1.1	An Example of NLP	2
	1.2	The State of the Art	2
	1.3	Recommended reading	2
2	Text Access		
	2.1	Two Modes of Text Access: Pull vs. Push	3
	2.2	Pull Mode: Querying vs. Browsing	3
	2.3	Recommended reading	3
3	Tex	t Retrieval Problem	4
	3.1	What Is Text Retrieval?	4
	3.2	Formal Formulation of TR	4
	3.3	How to Compute $R'(q)$	4
	3.4	Theoretical Justification for Ranking	5
	3.5	Recommended reading	5
4	Ove	erview of Text Retrieval Methods	5
	4.1	How to Design a Ranking Function	5
	4.2	Retrieval Models	5
	4.3	Common Ideas in State of the Art Retrieval Models	6
	4.4	Which Model Works the Best?	6
	4.5	Recommended reading	6
5	Vec	tor Space Retrieval Model: Basic Idea	7
	5.1	Vector Space Model (VSM): Illustration	7
	5.2	VSM Is a Framework	7
	5.3	What VSM Doesn't Say	7
6	Vector Space Retrieval Model: Simplest Instantiation		
	6.1	What VSM Doesn't Say	8
	6.2	Simplest VSM = Bit-Vector + Dot-Product + BOW	8
7	Vector Space Retrieval Model: Improved Instantiation		
	7.1	Improved VSM with Term Frequency (TF) Weighting	9
	7.2	IDF Weighting: Penalizing Popular Terms	9
	7.3	Adding Inverse Document Frequency (IDF)	9
8	Vec	tor Space Retrieval Model: TF Transformation	10
	8.1	Ranking Function with TF-IDF Weighting	10
	8.2	TF Transformation: BM25 Transformation	10
	8.3	Summary	10
9	Vector Space Retrieval Model: Doc Length Normalization		
	9.1		11
	9.2		11
	9.3		11
	9.4		12
	9.5		12
	9.6		13

1 Natural Language Content Analysis

NLP = Natural Language Processing

1.1 An Example of NLP

1.2 The State of the Art

1.3 Recommended reading

• Chris Manning and Hinrich Schütze, «Foundations of Statistical Natural Language Processing», MIT Press. Cambridge, MA: May 1999.

2 Text Access

2.1 Two Modes of Text Access: Pull vs. Push

- Pull Mode (search engines) Users take initiative
 - Ad hoc information need
- Push Mode (recommender systems)
 - Systems take initiative
 - Stable information need or system has good knowledge about a user's need

2.2 Pull Mode: Querying vs. Browsing

- Querying
 - User enters a (keyword) query
 - System returns relevant documents
 - Works well when the user knows what keywords to use
- Browsing
 - User navigates into relevant information by following a path enabled by the structures on the documents
 - Works well when the user wants to explore information, doesn't know what keywords to use, or can't conveniently enter a query

2.3 Recommended reading

• N. J. Belkin and W. B. Croft. 1992. «Information filtering and information retrieval: two sides of the same coin?» Commun. ACM 35, 12 (Dec. 1992), 29-38.

3 Text Retrieval Problem

3.1 What Is Text Retrieval?

TR = Text Retrieval¹

- Collection of text documents exists
- · User gives a query to express the information need
- Search engine system returns relevant documents to users
- Often called "information retrieval" (IR), but IR is actually much broader
- Known as «search technology» in industry

TR is an empirically defined problem:

- · Can't mathematically prove one method is better than another
- Must rely on empirical evaluation involving users!

3.2 Formal Formulation of TR

- Vocabulary: $V = \{w_1, w_2, ..., w_N\}$ of language
- Query: $q=q_1,\dots,q_m$, where $q_i\in V$
- **Document:** $d_i = d_{i1}, \dots, d_{im_i}$, where $d_{ij} \in V$
- Collection: $C = \{d_1, \dots, d_M\}$
- Set of relevant documents: $R(q) \subseteq C$
 - Generally unknown and user-dependent
 - Query is a «hint» on which doc is in R(q)
- **Task**: compute R'(q), an approximation of R(q)

3.3 How to Compute R'(q)

- Strategy 1: Document selection
 - $R'(q) = \{d \in C \mid f(d,q) = 1\}$, where $f(d,q) \in \{0,1\}$ is an indicator function or binary classifier
 - System must decide if a doc is relevant or not (absolute relevance)
- Strategy 2 (generally preferred): Document ranking
 - $R'(q) = \{d \in C \mid f(d,q) > \theta\}$, where $f(d,q) \in \Re$ is a relevance measure function; θ is a cutoff determined by the user
 - System only needs to decide if one doc is more likely relevant than another (relative relevance)

¹Retrieval - поиск

3.4 Theoretical Justification for Ranking

Probability Ranking Principle [Robertson 77]: Returning a ranked list of documents in descending order of probability that a document is relevant to the query is the optimal strategy under the following two assumptions:

- The utility of a document (to a user) is independent of the utility of any other document
- A user would browse the results sequentially

3.5 Recommended reading

- S.E. Robertson, «The probability ranking principle in IR». Journal of Documentation 33, 294-304, 1977
- C. J. van Rijsbergen, «Information Retrieval», 2nd Edition, Butterworth-Heinemann, Newton, MA, USA, 1979

4 Overview of Text Retrieval Methods

4.1 How to Design a Ranking Function

- Query: $q = q_1, ..., q_m$, where $q_i \in V$
- **Document**: $d = d_1, ..., d_n$, where $d_i \in V$
- Ranking function: $f(q, d) \in \mathfrak{R}$
- **Key challenge**: how to measure the likelihood that document d is relevant to query q
- **Retrieval model**: formalization of relevance (give a computational definition of relevance)

4.2 Retrieval Models

- Similarity-based models: f(q, d) = similarity(q, d)
 - Vector space model
- **Probabilistic models:** $f(d,q) = p(R = 1 \mid d,q)$, where $R \in {0,1}$
 - Classic probabilistic model
 - Language model
 - Divergence-from-randomness model
- Probabilistic inference model: $f(q, d) = p(d \rightarrow q)$
- Axiomatic model: f(q, d) must satisfy a set of constraints

4.3 Common Ideas in State of the Art Retrieval Models

State of the art ranking functions tend to rely on:

- Bag of words representation
- Term Frequency (TF) and Document Frequency (DF) of words
- Document length

4.4 Which Model Works the Best?

When optimized, the following models tend to perform equally well [Fang et al. 11]:

- Pivoted length normalization BM25
- · Query likelihood
- PL2

4.5 Recommended reading

- Hui Fang, Tao Tao, and Chengxiang Zhai. 2011. «Diagnostic Evaluation of Information Retrieval Models». ACM Trans. Inf. Syst. 29, 2, Article 7 (April 2011)
- ChengXiang Zhai, «Statistical Language Models for Information Retrieval», Morgan & Claypool Publishers, 2008. (Chapter 2)

5 Vector Space Retrieval Model: Basic Idea

VSM - Vector Space Model

5.1 Vector Space Model (VSM): Illustration

5.2 VSM Is a Framework

- · Represent a doc/query by a term vector
 - **Term**: basic concept, e.g., word or phrase
 - Each term defines one dimension
 - N terms define an **N-dimensional space**
 - Query vector: $q=(x_1, \dots x_N), x_i \in \Re$ is query term weight
 - **Doc** vector: $d=(y_1, \dots y_N), y_j \in \Re$ is doc term weight
- $relevance(q, d) \propto similarity(q, d) = f(q, d)$

5.3 What VSM Doesn't Say

- How to define/select the "basic concept" Concepts are assumed to be orthogonal
- How to place docs and query in the space (= how to assign term weights)
 - Term weight in query indicates importance of term
 - Term weight in doc indicates how well the term characterizes the doc
- How to define the similarity measure

6 Vector Space Retrieval Model: Simplest Instantiation

6.1 What VSM Doesn't Say

6.2 Simplest VSM = Bit-Vector + Dot-Product + BOW

$$\mathbf{q} = (x_1, \dots x_N) \qquad x_i, y_i \in \{0,1\}$$

$$\mathbf{d} = (y_1, \dots y_N) \qquad \mathbf{1}: \text{ word } W_i \text{ is present}$$

$$\mathbf{0}: \text{ word } W_i \text{ is absent}$$

$$Sim(q,d)=q.d=x_1y_1+...+x_Ny_N=\sum_{i=1}^Nx_iy_i$$

Simplest VSM:

- Dimension = word
- Vector = 0-1 bit vector (word presence/absence)
- Similarity = dot product
- f(q,d) = number of distinct query words matched in d

7 Vector Space Retrieval Model: Improved Instantiation

Improved VSM:

- Dimension = word
- Vector = TF-IDF weight vector
- Similarity = dot product

7.1 Improved VSM with Term Frequency (TF) Weighting

$$\mathbf{q} = (x_1, \dots x_N) \qquad \mathbf{x}_i = \mathbf{count of word } \mathbf{W}_i \mathbf{in query}$$

$$\mathbf{d} = (y_1, \dots y_N) \qquad \mathbf{y}_i = \mathbf{count of word } \mathbf{W}_i \mathbf{in doc}$$

$$Sim(q,d)=q.d=x_1y_1+...+x_Ny_N=\sum_{i=1}^Nx_iy_i$$

7.2 IDF Weighting: Penalizing Popular Terms

IDF — inverse document frequency

7.3 Adding Inverse Document Frequency (IDF)

8 Vector Space Retrieval Model: TF Transformation

8.1 Ranking Function with TF-IDF Weighting

$$f(q,d) = \sum_{i=1}^N x_i y_i = \sum_{w \in q \cap d} c(w,q) c(w,d) \log \frac{M+1}{df(w)}$$

- $w \in q \cap d$ all matched query (q) words in document (d)
- c(w,q) count of word w in document d
- M total number of documents in collection
- df(w) Doc Frequency (total number of documents containing word w)

8.2 TF Transformation: BM25 Transformation

BM = Best Matching

8.3 Summary

- Sublinear TF Transformation is needed to
 - capture the intuition of «diminishing return» from higher TF
 - avoid dominance by one single term over all others
- BM25 Transformation
 - has an upper bound
 - is robust and effective
- Ranking function with BM25 TF (k >= 0):

$$f(q,d) = \sum_{i=1}^N x_i y_i = \sum_{w \in q \cap d} c(w,q) \frac{(k+1)c(w,d)}{c(w,d)+k} \log \frac{M+1}{df(w)}$$

9 Vector Space Retrieval Model: Doc Length Normalization

9.1 Pivoted Length Normalization

Pivoted length normalizer: use average doc length as «pivot»². Normalizer = 1 if |d| = average doc length (avdl).

9.2 State of the Art VSM Ranking Functions

Pivoted Length Normalization VSM [Singhal et al 96]:

$$f(q,d) = \sum_{w \in q \cap d} c(w,q) \frac{\ln[1 + \ln(1 + c(w,d))]}{1 - b + b \frac{|d|}{avd!}} \log \frac{M+1}{df(w)}$$

BM25/Okapi [Robertson & Walker 94]:

$$f(q,d) = \sum_{w \in q \cap d} c(w,q) \frac{(k+1)c(w,d)}{c(w,d) + k\left(1 - b + b\frac{|d|}{avdl}\right)} \log \frac{M+1}{df(w)}$$

9.3 Further Improvement of VSM?

- Improved instantiation of dimension?
 - stemmed words, stop word removal, phrases, latent semantic indexing (word clusters), character n-grams, ...
 - bag-of-words with phrases is often sufficient in practice
 - Language-specific and domain-specific tokenization is important to ensure "normalization of terms"
- Improved instantiation of similarity function?
 - cosine of angle between two vectors?
 - Euclidean?
 - dot product seems still the best (sufficiently general especially with appropriate term weighting)

² Pivot - стержень; точка опоры, вращения

9.4 Further Improvement of BM25

- BM25F [Robertson & Zaragoza 09]
 - Use BM25 for documents with structures («F»=fields)
 - Key idea: combine the frequency counts of terms in all fields and then apply BM25 (instead of the other way)
- BM25+ [Lv & Zhai 11]
 - Address the problem of over penalization of long documents by BM25 by adding a small constant to TF
 - Empirically and analytically shown to be better than BM25

9.5 Summary of Vector Space Model

- Relevance(q,d) = similarity(q,d)
- Query and documents are represented as vectors
- Heuristic³ design of ranking function
- Major term weighting heuristics
 - TF weighting and transformation
 - IDF weighting
 - Document length normalization
- BM25 and Pivoted normalization seem to be most effective

³Heuristic - эвристический

9.6 Recommended reading

- A.Singhal, C.Buckley, and M.Mitra. «Pivoted document length normalization». In Proceedings of ACM SIGIR 1996.
- S. E. Robertson and S. Walker. «Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval», Proceedings of ACM SIGIR 1994.
- S. Robertson and H. Zaragoza. «The Probabilistic Relevance Framework: BM25 and Beyond», Found. Trends Inf. Retr. 3, 4 (April 2009).
- Y. Lv, C. Zhai, «Lower-bounding term frequency normalization». In Proceedings of ACM CIKM 2011.