Problem 1 (50 pts): A 2-class training set is given in the following table. Each class contains 4 samples. Each sample indicates a coordinate in a 2-d space. All the following questions are based on this data set. Use pencil and paper and only resort to calculator when performing matrix calculations.

Class 1 Samples	Class 2 Samples
(1, 1)	(2, 3)
(1, 2)	(2, 2)
(2, 1)	(3, 3)
(1, 0)	(3, 0)

- a. If we need to reduce the dimension of the dataset from 2 to 1, find the projection direction using FLD. Show detailed steps, including class means, within-class scatter matrices, between class scatter matrix, etc.
- b. Sketch the isotropic contour of the two scatter matrices on the same figure as shown in the previous page.
- c. Sketch the projection vector on the same figure.
- d. Project the samples on w and provide the projected result. Mark the projected samples on the vector in the same figure.
- e. Based on the **projected** samples, classify a test sample $x=[2 \ 1.4]^T$ using two different classifiers (show details)
 - i) the minimum distance classifier, i.e., case 1 of discriminant function
 - ii) the kNN classifier with k=1.

Problem 2 (50 pts). Redo Problem 1 but using PCA for dimensionality reduction.

- a. If we need to reduce the dimension of the dataset from 2 to 1, find the projection direction using PCA. Show detailed steps, including how to calculate the covariance matrix of the entire dataset, perform eigenvalue decomposition on the covariance matrix.
- b. If only 1 dimension is kept, calculate how much error you would introduce.
- c. Sketch the isotropic contour of the covariance matrix on the same figure as shown in the previous page. Please use a different color.
- d. Sketch the projection vector (e_1) on the same figure.
- e. Project the samples on \mathbf{e}_1 and provide the projected result. Mark the projected samples on the vector in the same figure.
- f. Based on the **projected** samples, classify a test sample $x=[2 \ 1.4]^T$ using two different classifiers (show details)
 - i) the minimum distance classifier, i.e., case 1 of discriminant function
 - ii) the kNN classifier with k=1.