第六节

第三章

函数图形的描绘

- 曲线的渐近线
- 二、函数图形的描绘

一、曲线的渐近线

定义. 若曲线 C上的点M 沿着曲线无限地远离原点 时, 点 M 与某一直线 L 的距离趋于 0,则称直线 L 为 曲线C的<mark>新近线</mark>.

例如, 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

有渐近线

但抛物线 $v = x^2$ 无渐近线.

1. 水平与铅直渐近线

若 $\lim_{x \to b} f(x) = b$,则曲线 y = f(x) 有水平渐近线 y = b.

若 $\lim_{x \to \infty} f(x) = \infty$,则曲线 y = f(x)有垂直渐近线 $x = x_0$ $(\vec{\boxtimes} x \to x_0^+)$

例1. 求曲线 $y = \frac{1}{x-1} + 2$ 的渐近线. **解:** :: $\lim_{x \to \infty} (\frac{1}{x-1} + 2) = 2$

:. y = 2 为水平渐近线;

 $\lim_{x\to 1} (\frac{1}{x-1} + 2) = \infty$, $\therefore x = 1$ 为垂直渐近线.

2. 斜渐近线

若 $\lim [f(x)-(kx+b)]=0$, 则曲线 y=f(x)有 斜渐近线 y = kx + b.

 $\lim [f(x) - (kx + b)] = 0$

 $\lim_{x \to +\infty} \left[\frac{f(x)}{x} - k - \frac{b}{x} \right] = 0$

 $k = \lim_{x \to +\infty} \left[\frac{f(x)}{x} - \frac{b}{x} \right]$

 $k = \lim \frac{f(x)}{x}$

 $\begin{array}{c}
x \to +\infty & X \\
(\vec{y}x \to -\infty)
\end{array}$ $b = \lim [f(x) - kx]$ $x \to +\infty$ $(\vec{\mathbf{x}} x \to -\infty)$

例2. 求曲线 $y = \frac{x^3}{x^2 + 2x - 3}$ 的渐近线

#: $y = \frac{x^3}{(x+3)(x-1)}, \lim_{\substack{x \to -3 \\ (\text{iff} x \to 1)}} y = \infty,$

所以有铅直渐近线 x = -3 及 x = 1又因 $k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2}{x^2 + 2x - 3} = 1$

 $b = \lim_{x \to \infty} [f(x) - x] = \lim_{x \to \infty} \frac{-2x^2 + 3x}{x^2 + 2x - 3} = -2$

∴ y=x-2为曲线的斜渐近线.

二、函数图形的描绘

步骤:

- 1. 确定函数 y = f(x)的定义域,并考察其对称性及周
- 2. 求 f'(x), f''(x), 并求出 f'(x) 及 f''(x) 为 0 和不存在 的点;
- 3. 列表判别增减及凹凸区间,求出极值和拐点;
- 4. 求渐近线;
- 5. 确定某些特殊点,描绘函数图形.

例3. 描绘 $y = \frac{1}{3}x^3 - x^2 + 2$ 的图形. 解: 1) 定义域为 $(-\infty, +\infty)$,无对称性及周期性. 2) $y' = x^2 - 2x$, y'' = 2x - 2, 令 y' = 0, ⇔ x = 0, 2 ⇔ y'' = 0, ⇔ x = 13) $x = (-\infty, 0) = 0 = 0$, $\Rightarrow 0$, \Rightarrow

 例4. 描绘方程 $(x-3)^2 + 4y - 4xy = 0$ 的图形.

解: 1) $y = \frac{(x-3)^2}{4(x-1)}$, 定义域为($-\infty$,1),(1,+ ∞)

2) 求关键点

 \therefore 2(x-3) + 4y'-4y-4xy' = 0

$$\therefore y' = \frac{x-3-2y}{2(x-1)} = \frac{(x-3)(x+1)}{4(x-1)^2}$$

 $\therefore 2+4y''-8y'-4xy''=0$

$$y'' = \frac{1 - 4y'}{2(x - 1)} = \frac{2}{(x - 1)^3}$$

 $y = \frac{(x-3)^2}{4(x-1)}, \quad y' = \frac{(x-3)(x+1)}{4(x-1)^2}, \quad y'' = \frac{2}{(x-1)^3}$

又因 $\lim_{x \to \infty} \frac{y}{x} = \frac{1}{4}, \text{ 即 } k = \frac{1}{4}$ $b = \lim_{x \to \infty} (y - \frac{1}{4}x) = \lim_{x \to \infty} \left[\frac{(x-3)^2}{4(x-1)} - \frac{1}{4}x \right]$ $= \lim_{x \to \infty} \frac{-5x + 9}{4(x-1)} = -\frac{5}{4}$ $\therefore y = \frac{1}{4}x - \frac{5}{4}$ 为斜新近线 $y = \frac{(x-3)^2}{4(x-1)}$ $y' = \frac{(x-3)(x+1)}{4(x-1)^2}$ $y' = \frac{2}{(x-1)^3}$

6) 绘图 $\frac{x \left(-\infty,-1\right) - 1 \left(-1,1\right) \left(1,3\right) \left(3,+\infty\right)}{y \left(-2,-1\right) - 2 \left(-2,-1\right)}$ 铅直渐近线 x = 1 斜渐近线 $y = \frac{1}{4}x - \frac{5}{4}$ 特殊点 $\frac{x}{y} = \frac{0}{4} \cdot \frac{2}{4}$

- 4) 求渐近线 $\lim y = 0$
- ∴ y=0 为水平渐近线
- 5) 作图

内容小结

1. 曲线渐近线的求法

水平渐近线; 垂直渐近线;

斜渐近线

2. 函数图形的描绘 ——— 按作图步骤进行

思考与练习

(A) 没有渐近线;

(B) 仅有水平渐近线;

(C) 仅有铅直渐近线;

(D) 既有水平渐近线又有铅直渐近线.

提示: $\lim_{x \to \infty} \frac{1 + e^{-x^2}}{1 - e^{-x^2}} = 1$; $\lim_{x \to 0} \frac{1 + e^{-x^2}}{1 - e^{-x^2}} = \infty$

2. 曲线 $y = 1 - e^{-x^2}$ 的凹区间是 $\frac{(-1/\sqrt{2})}{\sqrt{2}}$,

凸区间是 $(-\infty, \frac{-1}{\sqrt{2}})$ 及 $(\frac{1}{\sqrt{2}}, +\infty)$

拐点为 $\frac{(\pm \frac{1}{\sqrt{2}}, 1 - e^{\frac{-1}{2}})}{1}$, 渐近线 y = 1.

$$y'' = 2e^{-x^2}(1-2x^2)$$

备用题 求笛卡儿叶形线 $x^3 + y^3 = 3axy$ 的渐近线.

备用题 求留卡儿叶形线
$$x^3 + y^3 = 3axy$$
 的新设解: 令 $y = tx$,代入原方程得曲线的参数方程:
$$x = \frac{3at}{1+t^3}, \quad y = \frac{3at^2}{1+t^3} \quad t \neq -1$$
 当 $x \to \infty$ 时 $t \to -1$,因

$$\lim_{x \to \infty} \frac{y}{x} = \lim_{t \to -1} \frac{3at^2}{1+t^3} / \frac{3at}{1+t^3} = -1$$

$$\lim_{x \to \infty} [y - (-x)] = \lim_{t \to -1} \left[\frac{3at^2}{1+t^3} + \frac{3at}{1+t^3} \right] = \lim_{t \to -1} \frac{3at(1+t)}{(1+t)(1-t+t^2)}$$

所以笛卡儿叶形线有斜渐近线 y = -x - a