RISC-V 讲义第6章 P15-P20:

6.6, 6.13, 6.16, 6.24, 6.26, 6.29

6.6 某机器字长 16 位,采用单字长指令,每个地址码 6 位。试采用操作码扩展技术,设计 14 条二地址指令,80 条一地址指令,60 条零地址指令。请给出指令编码示意图。

6.6 答案:

● 14条双地址指令:

操作码(4位) 地址码A1(6位) 地址码A2(6位) 操作码:0000~1101

● 80 条单地址指令:

操作码(10位) 地址码 A(6位) 操作码:1110××××××(64 条中可选择前 63 条)

1111××××××(64条中可选择前 17条)

● 60条零地址指令:

操作码(16 位)

操作码: 1111111111×××××× (64 条中选择 60 个编码即可) 其他编码方案,只要符合操作码扩展技术都可以

6.13 选择题:

答案: ADBAD CADAC ACCC

6.16 假设相对寻址的转移指令占两个字节,第一个字节是操作码和寻址方式,第二个字节是相对偏移量,用**补码**表示。若当前转移指令的第一字节所在地址为 0019H,且 CPU 每取出一个字节指令便会自动执行 (PC) +1 —> PC 操作。请问:若当前指令分别是相对转移指令 JMP 0006H 和 JMP 0025H 时,转移指令第二字节的内容是什么?

6.16 答案:

EA=PC+Disp, 因为 PC=001BH, 所以:

对于 JMP 0006H: EA=0006H, Disp=EA-PC=EBH;(正确应该是 8 位,但若写成 FFEBH 也算对)对于 JMP 0025H: EA=0025H, Disp=EA-PC=0AH;(正确应该是 8 位,但若写成 000AH 也算对)

6.24

6.24 答案:

(1)

指令助记符		助记符	源操作数寻址方式	目的操作数寻址方式	
MOV1 DR, #DATA		#DATA	立即寻址	寄存器寻址	
MOV2	[A],	SR	寄存器寻址	直接寻址	
MOV3	DR,	SR	寄存器寻址	寄存器寻址	
ADD1	DR,	SR	寄存器寻址	寄存器寻址	
ADDA DD		[CD]	寄存器寻址和寄存器间接寻址	寄存器寻址	
ADD2	DK,	[SR]	(至少写出寄存器间接寻址)	可行命寸址	
ADD2 DD			寄存器寻址和间接寻址	寄存器寻址	
ADD3	DK,	OR, [[A]]	(至少写出间接寻址)	可付价寸址	

SUB	DR,	[SI+A]	寄存器寻址和变址寻址 (至少写出变址寻址)	寄存器寻址
JMP	DISP		相对寻址	
HALT				

(2) 执行了3条指令停止。

指令	пь <i>> т /-/</i> -/-	:	源操作数信息		
序号	助记符	寻址方式	EA	操作数	执行结果
1	MOV1 R1, #23H	立即寻址		23H	(R1)=23H
2	ADD3 R1, [[12H]]	间接寻址	10H	80H	(R1)=A3H
3	SUB R1, [SI+01H]	变址寻址	11H	90H	(R1)=13H
4	HALT				

- (3)程序是一个死循环,将内存地址 50H 开始的单元内容进行累加,循环往复。 (注:若将#80 看成#80H,将答案写成内存地址 80H 开始,则不扣分)
- (4) MOV 指令都是 MOV1,第一条 ADD 是 ADD2,第二条 ADD 指令是 ADD1。

(5)

助记符	指令码 (二进制或十六进制)		
MOV1 DO #0	0000 0000B 或 00H		
MOV1 R0,#0	0000 0000B 或 00H		
	0000 0001B 或 01H		
MOV1 R1,#80	0101 0000B 或 50H		
	(注: 若写成 1000 0000B 或 80H,则不扣分)		
MOV1 D2 #1	0000 0010B 或 02H		
MOV1 R2,#1	0000 0001B 或 01H		
L: ADD2 R0,[R1]	0100 0100B 或 44H		
ADD1 R1,R2	0011 1001B 或 39H		
JMP L	1100 0000B 或 C0H		
JIVIF L	1111 1100B 或 FCH (注: 偏移量为-4 的补码)		

(6) 因为 OP 是 4 位,所以该指令系统最多有 16 条指令。但是可以发现 MOV1、ADD3、SUB 只有 DR 一个寄存器,JMP 和 HALT 指令没有寄存器,因此可以通过指令操作码扩展技术,将不用的 SR 字段扩充为 OP2 字段:

双寄存器的单字指令:

OP (4位)	SR (2位)	DR (2位)
0001: MOV2 (单寄存器 SR)		
0010: MOV3		
0011: ADD1		
0100: ADD2		

单寄存器的双字指令:

1 10 4:						
	OP2					
	01: MOV1	DD (0 Pr)				
0000	10: ADD3	DR (2位)				
	11: SUB					
A/ DATA / DISP						

无寄存器的指令: JMP 双字, HLT 单字。

0000	00	OP3 00: JMP				
A/ DATA / DISP						

0000	00	OP3 01: HLT

这样总共可有双寄存器指令15条+单寄存器指令3条+无寄存器指令4条=22条。答案不唯一。

6.26 设某 8 位模型计算机的双字指令格式如下:

OP (4位)	MOD (2位)	RD (2位)			
ADDR/ DATA / DISP/PORTAR					

单字指令格式同上述指令格式的第一字,其中,RD 为目的寄存器号,MOD 为寻址方式码字段,指令第二字为地址、数据或偏移量;源操作数由 MOD 字段和指令第二字共同确定。变址寻址默认使用 SI(R2)变址寄存器。除了 HALT 和 INC 指令为单字指令外,其他指令均为双字指令;各字段解释如下:

指令助记符	OP	指令助记符	OP	MOD	寻址方式	RD	寄存器
MOV	0000	ADD	0100	00	立即寻址	00	R0
SUB	0001	JMP	1000	01	直接寻址	01	R1
INC	0010			10	变址寻址	10	R2(SI)
IN	0011	HALT	1111	11	相对寻址	11	R3

内存地址的部分单元内容如下:

单元地址	内容	单元地址	内容	单元地址	内容
16H	22H	20H	01H	24H	49H
17H	90H	21H	30H	25H	09H
18H	10H	22H	15H	26H	55H

19H	F9H	23Н	16H	27H	00H
1911	гуп	23H	16H	2/H	UUH

已知一段程序中有6条指令,其中L0和L1是标号。

L0: 指令1

指令 2

L1: 指令3

OUT [00H], R1

INC R2

JMP L1 ; 相对寻址

(1) 若变址寄存器(SI) = 10H,此时启动程序从 L0(地址为 20H)开始执行,则程序执行的前三条指令如下表,请填写完整。

指令序号	助记符		从公公田		
		寻址方式	EA	源操作数	执行结果
1					
2					
3					

- (2) 设该机有一个标志寄存器 FR, 其高 4 位为 0, 低 4 位分别为 CF、OF、ZF、SF。 执行上述三条指令后, FR 寄存器的值是多少?
 - (3) 写出指令 INC R2 机器码。
- (4) 无条件转移指令JMP L1 第一个字的地址是多少?按照相对寻址方式,其 8 位二进制偏移量(指令第二字)是多少?

6.26 答案:

指令	TL > = 6/5	源操作数信息			И. /-: /-: П	
序号	助记符	寻址方式	EA	源操作数	执行结果	
1	MOV R1, 30H	立即寻址		30H	(R1) = 30H	
2	SUB R1, [16H]	直接寻址	16H	22H	(R1) = 0EH	
3	ADD R1, [SI+09H]	变址寻址	19H	F9H	(R1) = 07H	

(2) FR寄存器的值是 08H 或 00001000B 。

(答案解析: 00001110+11111001=0000 0111; CF=1, OF=0, ZF=0, SF=0)

(3) 指令INC R2机器码为 0010**10B=22H/26H/2AH/2EH。

(答案解析:上述任一一个答案都对)

(4) JMP L1指令第一个字的地址是 29H 或 00101001B;

8位二进制偏移量是 F9H 或 11111001B 。

(答案解析:指令1/2/3都是双字指令,L0标号是20H,L1标号是24H,OUT指令在26H、27H单元,INC指令是单字,在28H单元,JMP指令则在29H、2AH单元。

故: JMP L1第一个字的地址是29H。

按照相对寻址方式,跳转时PC的值为2BH,与目标地址L1=24H相差-7,[-7]补=F9H,8位二进制偏移量是F9H。)

6.29 有一小段 RV32I 的汇编程序如下:

lui t1, 0xFFFF0;

lw t0, 0x100(s2);

and t0, t0, t1

addi t0, t0, 0x555

sw t0, 0x100(s2);

假设寄存器 s2 的内容是 0020 0000H, 完成以下问题:

- (1) 写出每条指令的指令格式类型。
- (2) 哪几条是只有寄存器类型的操作数的指令? 哪几条是有立即数类型操作数的指令? 哪几条是有存储器类型操作数的指令?
- (3) 请写出5条汇编指令对应的机器指令代码。
- (4) 请描述程序段的功能。
- (5) 如果 Mem32[0020 0100H]=12345678H,上述程序执行后,该单元内容是多少?
- (6) 假设最后一条指令,变为 sw t0, 0x800(s2),则该指令的目的操作数 EA 是多少?

6.29 答案:

_	H22 1-1	(1)		(2)		(2)	(1)	(5)
	. 题目	(1)		(2)		(3)	(4)	(5)
比人	序列					指令代码	程序功能	初始: Mem[0020 0100H]=
1日之	厅"则	式	器操作数	操作数	操作数			12345678H
lui	t1,0xFFFF0	U		$\sqrt{}$		ffff0337h	将内存单元	t1=ffff0000h
lw	t0,0x100(s2)	I			√	10092283	00200100H的	t0=12345678h
and	t0,t0,t1	R	√			0062f2b3	内容,高16位	
addi	t0,t0,0x555	I		√				t0=12340555h
sw	t0,0x100(s2)	S			√	10592023	变为 0555H	Mem[0020 0100H]=12340555h

(6) EA=(s2)+SE32(0x800)= 0020 0000h+ffff f800=001f f800h.