מבנים אלגבריים (2) - 80446

מרצה: שי אברה

מתרגל: אור רז

סוכם עייי שריה אנסבכר

סמסטר בי תשפייד, האוניברסיטה העברית

תוכן העניינים

3	התחלה	1
4	הרחבות ספרביליות והרחבות נורמליות	2
4	ספרביליות פרחבות 2.1	
5	2.2 הרחבות נורמליות	
5	הרחבות גלואה	3
5		
5	. מתי פולינום נתון הוא ספרבילי?	
5	נספח: בניות בסרגל ובמחוגה	4
6	שאריות	5

בהכנת סיכום זה נעזרתי רבות בספר "מבנים אלגבריים" מאת: דורון פודר, אלכס לובוצקי ואהוד דה-שליט.

* * *

סביר להניח שהסיכומים שלי מכילים טעויות רבות - אני מוצא כאלה כל יום (רשימת טעויות נפוצות), אני מפציר בכם לעדכן אותי בכל טעות שאתם מוצאים (ממש כל טעות ללא יוצא מן הכלל); אתם מוזמנים להגיב על המסמכים ב-Google Drive, לשלוח לי דוא"ל או למלא פנייה באתר.

> : לסיכומים נוספים היכנסו אקסיומת השלמות - סיכומי הרצאות במתמטיקה https://srayaa.wixsite.com/math

1 התחלה

1 התחלה

.תהא \mathbb{E}/\mathbb{F} הרחבת שדות

 $\alpha^n\in\mathbb{F}$ ו $\mathbb{E}=\mathbb{F}(lpha)$ כך ש- $n\in\mathbb{N}$ ו בארה 1.1. $\mathbb{E}=\mathbb{F}(lpha)$ תיקרא הרחבה רדיקלית פשוטה אם קיימים $\alpha\in\mathbb{E}$ ו-n=1 במו כן, n=1 תיקרא הרחבה רדיקלית אם קיימים $\alpha=1$ אם $\alpha=1$ ו-n=1 תיקרא הרחבה רדיקלית אם קיימים $\alpha=1$ באר ו-n=1 ($\alpha=1$ ביימים $\alpha=1$ באר ו-n=1 באר ו

- מטרתנו היא לקבוע מתי ניתן לפתור פולינום נתון באמצעות חיבור, חיסור, כפל, חילוק והוצאת שורש; הצורה הפורמלית לומר זאת היא שהפולינום מתפצל בשדה הרחבה רדיקלית.
 - מטרה נוספת היא לקבוע מתי יש נוסחה קבועה לפתרון כל הפולינומים ממעלה כלשהי מעל שדה נתון.

הגדרה 1.2.

- . \mathbb{K} באמצעות f- מתפצל ב- ביש הרחבות שדות הדיקלים אם ניתן לפתרון באמצעות לפתרון באמצעות הדיקלים אם f- נאמר שפולינום ווער לפתרון באמצעות באמצעות לפתרון באמצעות הדיקלים אם f- נאמר שפולינום באמצעות הדיקלים אם הדיקלים הדיקלים אם הדיקלים אם הדיקלים אם הדיקלים אם הדיקלים הדי
 - f במו כן נאמר שפולינום \mathbb{E}_f הוא שדה הפיצול של Gal $(\mathbb{E}_f/\mathbb{F})$ היא פתיר שם $f\in\mathbb{F}[x]$ הוא שדה הפיצול של •

מסקנה 1.3. יהי $f\in \mathbb{F}[x]$ יהי שלה שלו, מתקיים אם שדה הפיצול את ב- \mathbb{E}_f את שדה הפיצול שלו, מתקיים אכיים $f\in \mathbb{F}[x]$ יהי פולינום ונסמן ב- \mathbb{E}_f את שדה הפיצול שלו, מתקיים היחבה רדיקלית.

הגדרה 1.5. חבורת גלואה1

(פעולת החבורה היא הרכבה כמובן). $\mathrm{Gal}\left(\mathbb{E}/\mathbb{F}
ight):=\left\{arphi\in\mathrm{Aut}\left(\mathbb{E}
ight):arphi\mid_{\mathbb{F}}=\mathrm{Id}_{\mathbb{F}}
ight\}$ היא \mathbb{E}/\mathbb{F} היא

הערה: במקומות אחרים קוראים לקבוצה $\{ \varphi \in \operatorname{Aut} (\mathbb{E}) : \varphi \mid_{\mathbb{F}} = \operatorname{Id}_{\mathbb{F}} \}$ ומסמנים אותה במקומות אחרים קוראים לקבוצה $\{ \varphi \in \operatorname{Aut} (\mathbb{E}) : \varphi \mid_{\mathbb{F}} = \operatorname{Id}_{\mathbb{F}} \}$ ומסמנים אותה במקומות אחרים קוראים למקרה עבו \mathbb{E}/\mathbb{F} היא הרחבת גלואה (אנחנו גלואה (אנחנו נגדיר מהי הרחבת גלואה בהמשך).

. \mathbb{E} היא שדה המכיל את $\{x\in\mathbb{E}\mid \forall\sigma\in H\ \sigma\ (x)=x\}$, הקבוצה $H\leqslant\operatorname{Gal}(\mathbb{E}/\mathbb{F})$ היא שדה המכיל את

 \mathbb{E}^H ייקרא שדה השבת של \mathbb{E}^H , $\mathbb{E}^H:=\{x\in\mathbb{E}\mid \forall\sigma\in H\ \sigma\left(x\right)=x\}$ נסמן וסמן $H\leqslant\operatorname{Gal}\left(\mathbb{E}/\mathbb{F}
ight)$ ייקרא

הגדרה 1.8. התאמות גלואה

:התאמות גלואה של ההרחבה $\mathbb{E}/_{\mathbb{F}}$ הן שתי הפונקציות הבאות

- $\mathcal{F}: (H\leqslant \mathrm{Gal}\,(\mathbb{E}/\mathbb{F})) o \{\mathbb{K}\mid \mathbb{E}/\mathbb{K} \mid \mathbb{E}/\mathbb{K} \mid \mathbb{E}/\mathbb{K}) \}$ המוגדרת עייי (לכל $\mathcal{F}(H):=\mathbb{E}^H=\{x\in\mathbb{E}\mid orall x\in H \mid \sigma(x)=x\}$
- \mathbb{C}/\mathbb{F} של \mathbb{K} ביניים של לכל שדה ביניים של $\mathcal{G}:\{\mathbb{K}\mid \mathbb{E}/\mathbb{F} \mid \mathbb{E}/\mathbb{F} \mid \mathbb{K}\}
 ightarrow \{H\mid H\leqslant \operatorname{Gal}(\mathbb{E}/\mathbb{F})\}$ •

$$\mathcal{G}(\mathbb{K}) := \operatorname{Gal}(\mathbb{E}/\mathbb{K}) = \{ \sigma \in \operatorname{Aut}(\mathbb{E}) \mid \forall x \in \mathbb{K} \ \sigma(x) = x \}$$

כלומר \mathcal{G} ו- \mathcal{G} הן פונקציות בין תתי-החבורות של חבורת גלואה של ההרחבה, לבין קבוצת שדות הביניים של ההרחבה: \mathcal{G} מתאימה לכל תת-חבורה את שדה הביניים הגדול ביותר שנשמר תחת פעולתה, ו- \mathcal{G} מתאימה לכל שדה ביניים את תת-החבורה הגדולה ביותר שהשדה נשמר תחתיה. השאלה שנעסוק בה תהיה מתי \mathcal{G} ו- \mathcal{G} הופכיות זו לזו, כלומר מתי ש התאמה חח"ע ועל בין שדות הביניים של הרחבת שדות לבין תתי-החבורות של חבורת גלואה. או אז נוכל להשתמש בכלים החזקים שפיתחנו בקורס הקודם כדי לחקור את שדות הביניים, ולקבוע מתי ניתן לפתור את הפולינום שיצר את ההרחבה.

ערך בוויקיפדיה: אווריסט גלואה. ¹

צריך להסביר שהאוטומורפיזמים מאפשרים לנו לחקור את הקשרים האלגבריים בין שורשי הפולינום היוצר את ההרחבה מבלי "ללכלד את הידיים".

 $\mathscr{G}\left(\mathbb{F}
ight)=\mathrm{Gal}\left(\mathbb{E}/\mathbb{F}
ight)$ ר- $\mathscr{G}\left(\mathbb{E}
ight)=\left\{\mathrm{Id}\right\}$, $\mathcal{F}\left(\left\{\mathrm{Id}\right\}
ight)=\mathbb{E}$ מסקנה 1.9. מחקיים

ולכן $\sigma\left(\sqrt[3]{2}\right)=\sqrt[3]{2}$ מתקיים $\sigma\in\operatorname{Gal}\left(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}\right)$ כך לדוגמה לכל $\mathcal{F}\left(\operatorname{Gal}\left(\mathbb{E}/\mathbb{F}\right)\right)=\mathbb{F}$ מתקיים $\sigma\in\operatorname{Gal}\left(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}\right)$ אין זה מוכרח שיתקיים $\sigma\in\operatorname{Gal}\left(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}\right)=\mathbb{Q}\left(\sqrt[3]{2}\right)$

. ויל הופכיות \mathcal{G} ו היא הרחבת גלואה ש $\mathbb{E}/_{\mathbb{F}}$ היא הופכיות או הגדרה 1.10. נאמר ש

. מו כן, אם \mathbb{F}/\mathbb{F} היא חבורה ציקלית/אבלית/פתירה אם היא חבורה ציקלית/אבלית/פתירה. \mathbb{F}/\mathbb{F} היא הרחבת גלואה נאמר ש \mathbb{F}/\mathbb{F} היא הרחבה ציקלית/אבלית/פתירה אם

בכיתה הגדרנו שהרחבת גלואה היא הרחבה נורמלית וספרבילית, אנחנו נראה בהמשך שאלה הן הגדרות שקולות.

. היא הרחבת גלואה \mathbb{E}/\mathbb{E} גם \mathbb{E}/\mathbb{E} היא הרחבת גלואה אם"ם לכל שדה ביניים \mathbb{E}/\mathbb{E} היא הרחבת גלואה.

2 הרחבות ספרביליות והרחבות נורמליות

.יהי \mathbb{F} שדה

2.1 הרחבות ספרביליות

הריבוי שונים, כלומר שפולינום היניאריים שונים, כלומר הפיצול שלו הוא מתפרק לגורמים ליניאריים שונים, כלומר הריבוי $f\in\mathbb{F}\left[x
ight]$ הוא הוא לכל אחד משורשיו הוא $f\in\mathbb{F}\left[x
ight]$

בהינתן הרחבת שדות \mathbb{E}/\mathbb{F} נאמר שאיבר \mathbb{E}/\mathbb{F} הוא שפרבילי, וכמו כן נאמר שפרבילי. הרחבה ספרבילית אם מפרבילי $\alpha\in\mathbb{F}$ הוא מפרבילית אם כל $\alpha\in\mathbb{E}$ היא $\alpha\in\mathbb{E}$

 $I_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight):=\left\{\hat{arphi}:\mathbb{E}\hookrightarrow\Omega\mid\hat{arphi}|_{\mathbb{F}}=arphi
ight\}$ נסמן \mathbb{E}/\mathbb{F} נסמן \mathbb{E}/\mathbb{F} שיכון, לכל הרחבה שיכון, לכל הרחבה Ω שיכון, לכל הרחבה $i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight)$, כלומר $i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight)$, הוא מספר השיכונים של \mathbb{E} ב- Ω המרחיבים את $i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight)$; כלומר $i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight)$, הוא מספר השיכונים של $i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight)$; כלומר $i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight)$ הוא מספר השיכונים של $i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight)$;

$$.arphi\left(f
ight):=\sum_{i=0}^{n}arphi\left(a_{i}
ight)\cdot x^{i}\in\Omega$$
 נסמן $f:=\sum_{i=0}^{n}a_{i}\cdot x^{i}\in\Omega$ לכל פולינום

 Ω ב- Ω ב- Ω שונים של (m_{lpha}) שונים השונים של השורשים השונים על (π 0 שונים על (π 1 שונים של (π 2 שונים של (π 3 שונים על (π 4 שונים של (π 5 שיכונים; לכל פולינום (π 5 שיכונים; של (π 7 שיכונים של (π 7 שיכונים; לכל פולינום (π 8 שיכונים של (π 9 שונים של (π 9 שונים של (π 9 שונים של (π 9 שיכונים; לכל פולינום (π 9 שיכונים של (π 9 שונים של (π 9 שיכונים) שיכונים; לכל פולינום (π 9 שיכונים של (π 9 שיכונים של (π 9 שיכונים) שיכונים; לכל פולינום (π 9 שיכונים של (π 9 שיכונים של (π 9 שיכונים) שיכונים של (π 9 שיכוני

. שיכונים $arphi_2:\mathbb{F}\hookrightarrow\Omega_1$ ו- $arphi_2:\mathbb{F}\hookrightarrow\Omega_1$ ויהיו $arphi_1:\mathbb{F}\hookrightarrow\Omega_1$ ויהיו $arphi_2:\mathbb{F}\hookrightarrow\Omega_1$ וי- $arphi_2:\mathbb{F}\hookrightarrow\Omega_1$ וי- $arphi_2:\mathbb{F}\hookrightarrow\Omega_1$ שיכונים $arphi_2:\mathbb{F}\hookrightarrow\Omega_1$ וי- $arphi_2:\mathbb{F}\hookrightarrow\Omega_1$ וי- $arphi_2:\mathbb{F}\hookrightarrow\Omega_1$ וי- $arphi_2:\mathbb{F}\hookrightarrow\Omega_1$ וי- $arphi_2:\mathbb{F}\hookrightarrow\Omega_1$ וי- $arphi_2:\mathbb{F}\hookrightarrow\Omega_1$ שיכונים איט מתקיימים שלושת הפסוקים הבאים:

$$i_{\varphi_1,\Omega_1}\left(\mathbb{E}/\mathbb{F}\right)=i_{\varphi_2,\Omega_2}\left(\mathbb{E}/\mathbb{F}\right)$$
.1

$$i_{\varphi_1,\Omega_1}(\mathbb{E}/\mathbb{F}) \geq 1$$
 .2

$$i_{arphi_1,\Omega_1}\left(\mathbb{E}/\mathbb{F}
ight)=i_{arphi_1,\Omega_1}\left(\mathbb{E}/\mathbb{K}
ight)\cdot i_{arphi_1,\Omega_1}\left(\mathbb{K}/\mathbb{F}
ight)$$
 .3

 $i\left(\mathbb{E}/\mathbb{F}
ight)$ יל לכל הרחבה סופית $\mathcal{G}:\mathbb{F}\hookrightarrow\Omega$ נסמן $i\left(\mathbb{E}/\mathbb{F}
ight):=i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight):=i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight)$ עבור שדה סגור אלגברית $i\left(\mathbb{E}/\mathbb{F}
ight):=i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight)$ נסמן $i\left(\mathbb{E}/\mathbb{F}
ight):=i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight):=i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight)$ עבור שדה סגור אלגברית הספרביליות של ההרחבה $i\left(\mathbb{E}/\mathbb{F}
ight):=i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight):=i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight)$ עבור שדה סגור אלגברית הספרביליות של ההרחבה $i\left(\mathbb{E}/\mathbb{F}
ight):=i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight):=i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight)$ עבור שדה סגור אלגברית הספרביליות של ההרחבה $i\left(\mathbb{E}/\mathbb{F}
ight):=i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight):=i_{arphi,\Omega}\left(\mathbb{E}/\mathbb{F}
ight)$

דרגת הספרביליות נקראת כך משום שהיא מודדת עד כמה כל הרחבה פשוטה ב"מגדלי" ההרחבות שיוצר את \mathbb{E}/\mathbb{F} היא ספרבילית (כמה שורשים שונים יש לפולינום המינימלי של יוצר ההרחבה).

4 נספח: בניות בסרגל ובמחוגה

2.2 הרחבות נורמליות

שורש f- שיש ל-f, כך שיש ל-f, כך שיש ל-f, כך שיש ל-f, כך שיש ל-f, הרחבת תהא שורש הרחבת שורש ל-f, הרחבת שדות, נאמר שf-f היא הרחבת שורש ל-f היא הרחבת שדות, נאמר שf-f היא הרחבת שורש ל-f

 $\mathbb E$ מסקנה 2.3. תהא $\mathbb E/\mathbb F$ הרחבת שדות, $\mathbb E/\mathbb F$ היא הרחבה נורמלית אם"ם לכל $\alpha\in\mathbb E$ הפולינום המינימלי של

3 הרחבות גלואה

3.1 המשפט היסודי של תורת גלואה

. הגדרה וספרבילית שהרחבת אם היא הרחבת הרחבת שדות \mathbb{E}/\mathbb{F} היא הרחבת שהרחבת נורמלית הגדרה מאדרה שהרחבת שדות

3.2 מתי פולינום נתון הוא ספרבילי?

. הגדרה שלו היא שלה שלה משוכלל אם כל הרחבה אלגברית שלו היא ספרבילית. הגדרה האמר ש- \mathbb{F}

הערה: במקומות אחרים אומרים על שדה כזה שהוא מושלם.

$$.f'\left(x
ight):=\sum_{i=0}^{n-1}\left(i+1
ight)\cdot a_{i+1}\cdot x^{i}$$
 יהי (3.3. יהי $f\left(x
ight):=\sum_{i=0}^{n}a_{i}\cdot x^{i}\in\mathbb{F}\left[x
ight]$ פולינום, פולינום הנגזרת פולינום הנגורת או

נשים לב: כשi מופיע בחזקה (i+1) הוא איבר ב- \mathbb{N}_0 , ואילו כאשר הוא מופיע במקדמי הפולינום (i+1) הוא היבר ב-i+1 מופיע בחזקה (i+1) הוא איבר ב-i+1, בפרט ייתכן שמקדמים יתאפסו (אם (i+1) ראשוני) וכתוצאה מכך יתקיים (i+1) הוא איבר ב-i+1.

 $.\mathbb{F}$ שענה. לכל שדה הרחבה $\mathbb{F}^{\text{sep}}_{\mathbb{E}}$ גם $\mathbb{F}^{\text{sep}}_{\mathbb{E}}$ הוא שדה הרחבה של

4 נספח: בניות בסרגל ובמחוגה

יש לכתוב פרק זה

5 שאריות

הגדרה 5.1. הדיסקרימיננטה

: כך שמתקיים מתקיים $\alpha_1,\alpha_2,\ldots,\alpha_{\deg f},c\in\mathbb{E}$ ויהיו הפיצול של שדה הפיצול ו- \mathbb{E} פולינום ו

$$f(x) = c \cdot \prod_{i=1}^{\deg f} (x - \alpha_i)$$

f היא הדיסקרימיננטה של

$$\Delta f = \prod_{i < j \le \deg f} \left(\alpha_i - \alpha_j\right)$$

מה!!!

 $\mathbb{Q}\left(\sqrt[n]{a}, \mathrm{cis}\left(rac{2\pi}{n}
ight)
ight)$ הוא $x^n-a\in\mathbb{Q}\left[x
ight]$ שדה הפיצול של , $a\in\mathbb{F}$ ולכל $n\in\mathbb{N}$ למה 5.2.

n מדרגה העדרה הציקלוטומי ייקרא $\mathbb{Q}\left(\mathrm{cis}\left(\frac{2\pi}{n}\right)\right)$ השדה האיקלוטומי מדרגה.