

Факультет экономики, менеджмента и бизнес-информатики

РАЗРАБОТКА ИНФОРМАЦИОННОЙ СИСТЕМЫ ДЛЯ ПОИСКА ИСПОЛНИТЕЛЕЙ ПО ТЕХНИЧЕСКОМУ ЗАДАНИЮ ПРИКЛАДНОГО ПРОЕКТА

Автор Соломатин Р. И. Научный руководитель Бузмаков А. В.

План доклада

- 1. Актуальность
- 2. Цели и задачи
- 3. Проектирование
- 4. Тесты
- 5. Результаты
- 6. Заключение

Актуальность

Каждый день выкладывается много тендеров. В ВШЭ много людей с разными компетенциями, и надо по текстовому описанию тендера понять, кто его сможет сделать.

Проблема и гипотеза

Проблема - автоматический поиск исполнителей под тендер, заданный текстовым описанием.

Гипотеза - можно ли автоматически на основании анализа текстов ВКР.

Существующие решения

- Много тендеров
- Много людей с разными компетенциями
- Тяжело масштабировать, потому что необходимо знать много про разных людей
- Тратится много времени

Цель

Цель работы – создать информационную систему для поиска исполнителя по текстовому описанию тендера.

Объект и предмет

Объект исследования - процесс <u>поиска исполнителей</u> по текстовому описанию <u>тендера</u>.

Предмет исследования - <u>автоматизация</u> процесса поиска исполнителей по текстовому описанию тендера.

Задачи

- Сбор данных
- Разработать информационную систему

Проектирование

Выбор технологий

Язык программирования		Предобученные модели	Работа с сайтом		Интерактивный режим
Python	++	++	+	+	+
C#	+	+	+	+	-
Java	+	+	+	+	-
JavaScript	+	+	+	+	?

База данных

Данные брались со сайта ВШЭ и помещались в базу данных

Описание алгоритма

На вход BERT'у подавались тексты BKP. Потом она обрабатывала тексты и возвращала предложения в своем векторном пространстве. Потом эти предложения кластеризовывались и находилось обобщение текста.

Подбор исполнителей

Все со всеми

Минимальная разность без повторов

Минимальная разность

Усреднение эмбеддингов

Расчет расстояний

- Модуль разницы элементов (Манхэтонновское расстояние)
- Квадрат разницы элементов (Евклидово расстояние)

Интерфейс

Введите текст:	Выберите функцию расстояния
	Эвклидово расстоян *
	Выберите функцию подбора
	Все со всеми
	Готово

Тестирование

Для одного из тестов была выбрана выпускная квалификационная работа Абросимовой П. С. с темой «Разработка средств автоматизации расширения онтологии на основе данных интернет-источников» руководителем была Лядова Л. Н.

Тип алгоритма	Манхэттоновское расстояние	Расстояние Евклида
Все со всеми	Кушев В. О.	Кушев В. О.
Поиск минимального с повторами	Кычкин А. В	Кычкин А. В
Поиск минимального без повторов	Божья-Воля А. А.	Божья-Воля А. А.
Усреднение эмбеддингов	Кузнецов Д. Б.	Кузнецов Д. Б.

РЕЗУЛЬТАТ

На основании текстового описания был произведён поиск путём расчёта расстояния между подаваемым текстом и профилем сотрудников. Было предложено несколько методов расчёта этого расстояния и было показано, что расстояние эвклида показало лучшее качество работы на нескольких примерах. На основании разработанной системы в дальнейшем требуется провести более детальное исселедование функций расстояния и выбрать ту, которая покажет наилучшее качество на большой выборке данных.

Спасибо за внимание

Готов ответить на ваши вопросы

E-mail: risolomatin@edu.hse.ru

Проблема и гипотеза

заданный текстовым описанием.

 \triangleright I

 \triangleright I

Существующие решения

- Много тендеров
- Много людей с разными компетенциями
- Тяжело масштабировать, потому что необходимо знать много про разных людей
- Тратится много времени

Объект и предмет

Объект исследования - процесс поиска исполнителей по текстовому описанию тендера.

Предмет исследования - автоматизация процесса поиска исполнителей по текстовому описанию тендера.

Проектирование

 \mathbb{N}

B

текстов ВКР.

Выбор технологий

		Предобученные		Работа с	Интерактивный
программирования	для МО	модели	Работа с сайтом	файлами	режим
Python	++	++	+	+	+
CM	+	+	+	+	-
Java	+	+	+	+	-
JavaScript	+	+	+	+	?

Проблема - автоматический поиск исполнителей под тендер,

Гипотеза - можно ли автоматически на основании анализа

 \triangleright I

 \triangleright I

11/19

Описание алгоритма

На вход BERT'у подавались тексты ВКР. Потом она обрабатывала тексты и возвращала предложения в своем векторном пространстве. Потом эти предложения кластеризовывались и находилось обобщение текста.

 \triangleright I

В Подбор исполнителей

Расчет расстояний

- Модуль разницы элементов (Манхэтонновское расстояние)
- Квадрат разницы элементов (Евклидово расстояние)

РЕЗУЛЬТАТ

На основании текстового описания был произведён поиск путём расчёта расстояния между подаваемым текстом и профилем сотрудников. Было предложено несколько методов расчёта этого расстояния и было показано, что расстояние эвклида показало лучшее качество работы на нескольких примерах. На основании разработанной системы в дальнейшем требуется провести более детальное исселедование функций расстояния и выбрать ту, которая покажет наилучшее качество на большой выборке данных

 \triangleright I