

Supervisor: Student: Student ID: Dr. Paul Kyberd Michael Watzko 1841795

Conception and realization of a distributed and automated computer vision pipeline

Project context

- Detecting vehicles in video footage using Computer Vision and Artificial Intelligence
- Tracking vehicles throughout the video to determine speed, size, acceleration, class, position and lane changes
- Export data for further traffic flow analysis (in other projects or for the customer)

Main Goal

 Automate manual workflow that distributes the workload onto servers and collects the data

Further Requirements and Objectives

- Automatically distribute jobs onto computing nodes
- Handle large files (4k video footage) and multiple projects
- Representation as multi-stage pipeline that can be paused at any stage and investigated, to re-do stages with optimized parameters
- Consider specific hardware requirements for CV and AI

Architecture, Design and Technologies

- Decentralized decision making
- Resilient against node failures
- Shared network filesystem for data, configuration and coordination
- Docker for easy installation of additional compute nodes

Challenges and Experimental Work

- · Finding a fitting network filesystem
- Solely depend on a shared filesystem for communication and coordination to strip down external (system) dependencies

Results

- Synchronous EventSystem with Boradcast functionality based on files on a shared filesystem
- Implementations of a timeout Mutex on-top of the EventSystem to lock projects throughout the whole system

Project Progress

