Lab exercise 04

Exercise 1.

We make comparison with SGD classifier, train-test partition is used with percentage (0.99, 0.01).

	SGD		MLP: 5 neurons		MLP: 10 neurons		MLP: 15 neurons		MLP: 20 neurons	
	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
	accuracy	accuracy	accuracy	accuracy	accuracy	accuracy	accuracy	accuracy	accuracy	accuracy
Before	0.987071	0.96	0.100606	0.04	0.100707	0.030000	0.100606	0.04	0.100606	0.05
normalizing										
After	0.974545	0.93	0.920505	0.840000	0.984343	0.919999	0.987070	0.95	0.988080	0.909999
normalizing										
(130										
iterations)										
Time	1.491018 s		1.210842 s		1.359977 s		1.314998 s		2.123635 s	
After	0.975656	0.85	0.944040	0.809999	0.995858	0.96	0.997777	0.95	0.998787	0.940000
normalizing										
(250										
iterations)										
Time	2.992220 s		4.014692 s		4.055813 s		2.691710 s		2.549641 s	
After	0.974949	0.879999	0.962525	0.85	0.999191	0.93	0.999494	0.920000	1.0	0.909999
normalizing										
(400										
iterations)										
Time	2.182561 s		3.970130 s		4.027547 s		4.324236 s		7.001980 s	

Conclusions

As we can see from the table, it is necessary to normalize the data while working with MLP classifier. We can also notice that increasing the number of neurons makes the result better, but only until certain moment. In our case rather good results can be obtained with 10-15 neurons in the layer. Concerning time, it can be noted that sometimes we need more time to work with less number of neurons. The reason lies in the fact that for certain number of neurons process does not converge, therefore it takes more time. We can also see, that it is not necessary to take too many iterations, because it can lead to overtraining (as in the case with 20 neurons and 400 iterations).

Exercise 2.

130 iterations:

	Layer 2: 5 neurons	Layer 2: 10 neurons	Layer 2: 15 neurons	Layer 2: 20 neurons	
Layer 1: 5	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	
neurons	0.78686868686868	0.993333333333334	0.9994949494949494	0.9994949494949494	
	MLP test accuracy:	MLP test accuracy: 0.9	MLP test accuracy:	MLP test accuracy:	
	0.72	MLP average time:	0.9400000000000001	0.929999999999999	
	MLP average time:	1.393911647796631	MLP average time:	MLP average time:	
	1.0526331424713136		2.6541562557220457	2.7596498012542723	
Layer 1: 10	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	
neurons	0.9372727272727273	0.99818181818183	0.9994949494949494	0.9994949494949494	
	MLP test accuracy:	MLP test accuracy: 0.93	MLP test accuracy:	MLP test accuracy:	
	0.88000000000000001	MLP average time: 0.95		0.9400000000000001	
	MLP average time:	1.5316901206970215	MLP average time:	MLP average time:	
	1.2697892665863038		2.7261413097381593	2.719267463684082	
Layer 1: 15	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	
neurons	0.9434343434343434	0.9973737373737374	0.9994949494949494	0.9994949494949494	
	MLP test accuracy:	MLP test accuracy:	MLP test accuracy:	MLP test accuracy:	
	0.809999999999999	0.90999999999999	0.909999999999999	0.93	
	MLP average time:	MLP average time:	MLP average time:	MLP average time:	
	1.2670989036560059	1.5906025886535644	2.554352140426636	2.7849754810333254	
Layer 1: 20	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	
neurons	0.8938383838383837	0.9974747474747474	0.9994949494949494	0.9994949494949494	
	MLP test accuracy:	MLP test accuracy: 0.93	MLP test accuracy:	MLP test accuracy:	
	0.85	MLP average time:	0.919999999999999	0.94000000000000001	
		2.373381757736206			

MLP average time:	MLP average time:	MLP average time:
1.246848726272583	2.69682297706604	2.7055124759674074

250 iterations:

	Layer 2: 5 neurons	Layer 2: 10 neurons	Layer 2: 15 neurons	Layer 2: 20 neurons	
Layer 1: 5	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	
neurons	0.9053535353535354	0.9991919191919191	1.0	1.0	
	MLP test accuracy:	MLP test accuracy: 0.93	MLP test accuracy:	MLP test accuracy:	
	0.8400000000000001	MLP average time:	0.93	0.9200000000000000	
	MLP average time:	2.644731569290161	MLP average time:	MLP average time:	
	2.979155397415161		4.039958477020264	4.388377666473389	
Layer 1: 10	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	
neurons	0.4735353535353536	0.88565656565657	1.0	1.0	
	MLP test accuracy:	MLP test accuracy: 0.82	MLP test accuracy:	MLP test accuracy:	
	0.36	MLP average time:	0.919999999999999	0.96	
	MLP average time:	2.1534940242767333	MLP average time:	MLP average time:	
	2.1620946884155274		4.182448101043701	4.0920525074005125	
Layer 1: 15	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	
neurons	0.6157575757575757	0.9703030303030303	1.0	1.0	
	MLP test accuracy:	MLP test accuracy:	MLP test accuracy:	MLP test accuracy:	
	0.490000000000000005	0.869999999999999	0.889999999999999	0.9	
	MLP average time:	MLP average time:	MLP average time:	MLP average time:	
	1.8117749214172363	2.390315532684326	3.5060703277587892	3.584311056137085	
Layer 1: 20	Number of neurons: 5,	MLP train accuracy:	MLP train accuracy:	MLP train accuracy:	
neurons	20	0.99969696969698	1.0	1.0	
	MLP train accuracy:	MLP test accuracy: 0.89	MLP test accuracy:	MLP test accuracy:	
	0.3561616161616162	MLP average time:	0.919999999999999	0.929999999999999	
	MLP test accuracy:	3.804465961456299	MLP average time:	MLP average time:	
	0.33		4.703778457641602	4.407886791229248	
	MLP average time:				
	0.6531939029693603				
	0.0001000000000000000000000000000000000		I .		

Conclusions

In this case we use two layers. We can notice that increasing the number of iterations did not lead us to much better results and many of them are overtrained, and the time has increased. For our dataset 5 neurons are not enough, so a good solution will be to use, for example, (10, 20).

Exercise 3.

We will test the MLP classifier with 10 neurons on the first layer and 20 on the second.

 $max_iter = 130$

Conclusions

For all numbers of iterations we see more or less the same picture: MLP classifier is more prone to adapting to training data, therefore it gives perfect score for training data, but not so good for testing. I think it is more inclined to overtrain (at least, in this case). Also we can notice that

Exercise 4.

In the first picture you see the classifiers with learning_init_rate = [0.01, 0.1, 1, 10]. Last two are very bad because of too big learning rate. They just jump over the desired point. For the first one I set big number of iterations – 1000, for the second – 200. First one shows the average time of learning 19.1800655, the second – 2.688358.

In the second picture you see the classifiers with learning_init_rate = [0.01, 0.1, 0.15, 0.2]. As I mentioned earlier, first one is veeery slow, but not much more precise.

Next you see the plot of accuracy, depending on time of learning. I used here classifiers with learning_init_rate = [0.8, 0.4, 0.3, 0.25, 0.23, 0.21, 0.2, 0.1]

test

0.6 4.0 4.0

Conclusions

Too small learning rate is infeasible, because it takes very big amount of time to learn, but the outcome is not much better than for lower learning rates. On the other hand, too big learning rate makes the process faster, but from some point leads to the significant loss of accuracy because of jumping over the point. So, for this case I would define a range of rather efficient rates as something like [0.1, 0.2].

Exercise 5.

MLP1: without early_stopping

MLP2: validation_fraction = 0.1

MLP3: validation fraction = 0.2

MLP4: validation_fraction = 0.4

As I understood, validation fraction is a part of the training set that is used to check whether it is time to stop learning (if validation score is not improving), so it lies inside training data. But when we use train_test_split, we leave a part of dataset to

check the accuracy after learning, so this part doesn't affect the result.

At the picture we can see that with this option accuracy becomes a bit higher. About test and training scores:

- ✓ Starting from the partition (0.5, 0.5) accuracies of classifiers with early stopping almost does not increase, but before this point the curve is rather steep.
- ✓ Classifiers with early stopping do not reach such high scores in training, thus they are not going to overtrain.