Основы глубинного обучения

Лекция 8

Рекуррентные модели

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2025

Рекуррентные модели

- Последовательность: $x_1, x_2, ..., x_n, ...$
- Читаем слева направо
- h_t накопленная информация после чтения t элементов (вектор)

- Последовательность: $x_1, x_2, ..., x_n, ...$
- x_i либо one-hot вектор, либо векторное представление (word2vec, fasttext, ...)

- Последовательность: $x_1, x_2, ..., x_n, ...$
- Читаем слева направо
- h_t накопленная информация после чтения t элементов (вектор)
- $h_t = f(W_{xh}x_t + W_{hh}h_{t-1})$
- Если хотим что-то выдавать на каждом шаге: $o_t = f_o(W_{ho}h_t)$

- Типичный случай: $o_t \in \mathbb{R}^N$
- *N* размер словаря
- То есть предсказываем вероятность того, что здесь стоит конкретное слово
- Предсказываем следующее слово

- Типичный случай: $o_t \in \mathbb{R}^N$
- *N* количество частей речи
- POS tagging

Можно делать многослойные RNN

Примеры

```
PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.
Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.
DUKE VINCENTIO:
Well, your wit is in the care of side and that.
Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.
Clown:
Come, sir, I will make did behold your worship.
VIOLA:
I'll drink it.
```

Примеры

For $\bigoplus_{n=1,...,m}$ where $\mathcal{L}_{m_{\bullet}}=0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \operatorname{Spec}(R) = U \times_X U \times_X U$$

and the comparisoly in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, \ref{school} and the fact that any U affine, see Morphisms, Lemma $\ref{lem:school}$? Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $\operatorname{Spec}(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x,x',s''\in S'$ such that $\mathcal{O}_{X,x'}\to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\mathrm{GL}_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i>0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F}=U/\mathcal{F}$ we have to show that

$$\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

$$Arrows = (Sch/S)_{fppf}^{opp}, (Sch/S)_{fppf}$$

and

$$V = \Gamma(S, \mathcal{O}) \longmapsto (U, \operatorname{Spec}(A))$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.

The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{spaces, \acute{e}tale}$ which gives an open subspace of X and T equal to S_{Zar} , see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose $X = \lim |X|$ (by the formal open covering X and a single map $\underline{Proj}_X(A) = \operatorname{Spec}(B)$ over U compatible with the complex

$$Set(A) = \Gamma(X, \mathcal{O}_{X, \mathcal{O}_X}).$$

When in this case of to show that $Q \to C_{Z/X}$ is stable under the following result in the second conditions of (1), and (3). This finishes the proof. By Definition?? (without element is when the closed subschemes are catenary. If T is surjective we may assume that T is connected with residue fields of S. Moreover there exists a closed subspace $Z \subset X$ of X where U in X' is proper (some defining as a closed subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since $S = \operatorname{Spec}(R)$ and $Y = \operatorname{Spec}(R)$.

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a surjective étale morphism $U \to X$. Let $U \cap U = \coprod_{i=1,\dots,n} U_i$ be the scheme X over S at the schemes $X_i \to X$ and $U = \lim_i X_i$.

The following lemma surjective restrocomposes of this implies that $\mathcal{F}_{x_0} = \mathcal{F}_{x_0} = \mathcal{F}_{x_0} = \mathcal{F}_{x_0}$.

Lemma 0.2. Let X be a locally Noetherian scheme over S, $E = \mathcal{F}_{X/S}$. Set $\mathcal{I} = \mathcal{J}_1 \subset \mathcal{I}'_n$. Since $\mathcal{I}^n \subset \mathcal{I}^n$ are nonzero over $i_0 \leq \mathfrak{p}$ is a subset of $\mathcal{J}_{n,0} \circ \overline{A}_2$ works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that $\mathfrak p$ is the mext functor (??). On the other hand, by Lemma ?? we see that

$$D(\mathcal{O}_{X'}) = \mathcal{O}_X(D)$$

where K is an F-algebra where δ_{n+1} is a scheme over S.

Примеры

```
* Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
static int indicate_policy(void)
 int error;
 if (fd == MARN EPT) {
     * The kernel blank will coeld it to userspace.
     */
   if (ss->segment < mem_total)</pre>
      unblock graph and set blocked();
    else
      ret = 1;
    goto bail;
  segaddr = in_SB(in.addr);
  selector = seg / 16;
  setup works = true;
  for (i = 0; i < blocks; i++) {</pre>
    seq = buf[i++];
   bpf = bd->bd.next + i * search;
    if (fd) {
      current = blocked;
  rw->name = "Getjbbregs";
  bprm self clearl(&iv->version);
  regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
  return segtable;
```

Развёртка RNN

•
$$h_t = f(W_{xh}x_t + W_{hh}h_{t-1})$$

•
$$o_t = f_o(W_{ho}h_t)$$

- $h_t = f(W_{xh}x_t + W_{hh}h_{t-1})$
- $o_t = f_o(W_{ho}h_t)$

- $h_t = f(W_{xh}x_t + W_{hh}h_{t-1})$
- $o_t = f_o(W_{ho}h_t)$

$$\frac{dL}{dW_{hh}} = \sum_{t=1}^{T} \frac{dL(y_t, o_t)}{dW_{hh}} = \sum_{t=1}^{T} \frac{dL(y_t, o_t)}{do_t} \frac{do_t}{dh_t} \frac{dh_t}{dW_{hh}}$$

$$\frac{dh_t}{dW_{hh}} = \frac{\partial h_t}{\partial W_{hh}} + \frac{\partial h_t}{\partial h_{t-1}} \frac{dh_{t-1}}{dW_{hh}}$$

$$= \frac{\partial h_{t}}{\partial W_{hh}} + \frac{\partial h_{t}}{\partial h_{t-1}} \left(\frac{\partial h_{t-1}}{\partial W_{hh}} + \frac{\partial h_{t-1}}{\partial h_{t-2}} \frac{dh_{t-2}}{dW_{hh}} \right)$$

$$= \frac{\partial h_{t}}{\partial W_{hh}} + \frac{\partial h_{t}}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial W_{hh}} + \frac{\partial h_{t}}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial h_{t-2}} \frac{dh_{t-2}}{dW_{hh}}$$

$$= \sum_{s=1}^{t} \left(\prod_{j=s+1}^{t} \frac{\partial h_j}{\partial h_{j-1}} \right) \frac{\partial h_s}{\partial W_{hh}}$$

•
$$h_t = f(W_{xh}x_t + W_{hh}h_{t-1})$$

•
$$o_t = f_o(W_{ho}h_t)$$

Проблемы с градиентами

$$\left(\prod_{j=s+1}^t rac{\partial h_j}{\partial h_{j-1}}
ight)$$
 — произведение большого количества матриц

- Либо взрывается, либо затухает
- Сигнал теряется по мере прохождения
- Не факт, что получится обучить зависимость финального вектора h_n от первых слов в тексте

LSTM (Long Short-Term Memory)

LSTM (Long Short-Term Memory)

GRU (Gated Recurrent Unit)

LSTM (Long Short-Term Memory)

- Позволяет предыдущему состоянию перейти в текущее без домножений на матрицы
- Модель сможет «протаскивать» информацию из начала текста в конец

- Типичный случай: $o_t \in \mathbb{R}^N$
- *N* количество частей речи
- POS tagging

Bidirectional LSTM

- Почему мы определяем часть речи только по предыдущим словам?
- Будем смотреть и на следующие слова

Bidirectional LSTM

Bidirectional LSTM

• Предсказание для слова строится по скрытым состояниям, учитывающим весь контекст

Seq2seq

Sequence to sequence

- Машинный перевод
- Суммаризация текста
- Генерация комментариев к коду
- Математические преобразования
- Смена стиля текста

Что делать, если длины входного и выходного текстов разные?

- В конце входного текста ставим специальный токен <EOS>
- Прогоняем входной текст через RNN
- Скрытое состояние после всего текста «контекст»
- Контекст передаётся в RNN, которая генерирует выходной текст
- Используется Beam Search

Beam Search

- Выбираем В вариантов для первого слова по максимальной вероятности
- Для каждого рассматриваем все возможные варианты для следующего слова, оставляем В наиболее вероятных вариантов
- И так далее

Beam Search

Seq2seq Machine Translation

- Четырёхслойные LSTM в качестве кодировщика и декодировщика
- В каждом слое скрытые векторы размерности 1000
- Каждое слово описывается векторным представлением размерности 1000
- Входной текст подаётся «наоборот» тогда первое слово входного текста оказывается ближе к первому слову выходного в нашей архитектуре

Проблемы seq2seq-архитектуры

- Нужно сжать весь текст в один вектор
- Теряется информация о первых словах
- Декодер тоже может терять информацию по мере генерации последовательности

• Может, нам поможет BiLSTM?

Проблемы seq2seq-архитектуры

- Нужно сжать весь текст в один вектор
- Теряется информация о первых словах
- Декодер тоже может терять информацию по мере генерации последовательности

- Можно использовать BiLSTM, но тогда будет теряться информация о словах в середине
- И непонятно, как им декодировать

Механизм внимания

Seq2seq

- Читаем текст слева направо, собираем информацию о словах внутри скрытого вектора h_t
- Вряд ли можно уместить полный смысл текста в одном векторе
- Скрытый вектор всего входного текста «бутылочное горлышко» в такой архитектуре

- При генерации всех выходов мы используем одну и ту же информацию о входном тексте
- Это мало чем отличается от seq2seq-архитектуры
- Хочется, чтобы каждое выходное слово могло «обращать внимание» на «свои» входные слова

- Надо зафиксировать раз и навсегда, как i-е входное слово влияет на t-е выходное слово
- Эти влияния очень зависят от конкретных текстов
- Надо вычислять $lpha_{it}$ в зависимости от данных

- Есть проблема с тем, что веса $lpha_{it}$ могут принимать совершенно любые значения
- Почему это проблема?
 - Масштаб c_t может зависеть от длины входной последовательности
 - Скорее всего, все веса будут сильно ненулевыми, то есть все входные слова будут влиять на все выходные слова

softmax

$$(a_1, ..., a_n) \to \left(\frac{\exp(a_1)}{\sum_{i=1}^n \exp(a_i)}, ..., \frac{\exp(a_n)}{\sum_{i=1}^n \exp(a_i)}\right)$$

- [-5, 1, 10] -> [0, 0, 1]
- [1, 1, 1] -> [0.33, 0.33, 0.33]
- [1, 2, 0] -> [0.24, 0.67, 0.09]

Механизм внимания

Трансформер: основы selfattention

Механизм внимания

Как усилить архитектуру?

- Мы почему-то читаем входной текст слева направа
- Есть варианты с двунаправленными кодировщиками, но всё ещё мы пытаемся имитировать поведение людей
- Долой эти аналогии!

Кодировщик

- Начнём с качественного прочтения входного текста
- Попробуем обогатить каждое входное слово информацией обо всём тексте
- Назовём это «вниманием на себя» (self-attention)

$$\tilde{X}_t = \sum_{i=1}^{\infty} \lambda_{it} X_{i}$$

- Мы подмешиваем к слову t информацию из слова i на основе сходства этих слов
- Наверное, мы хотим смешивать информацию более хитро например, смотреть на слова той же части речи или той же части предложения

- Будем для каждого слова x_i обучать три вектора:
 - Запрос (query) $q_i = W_Q x_i$
 - Ключ (key) $k_i = W_K x_i$
 - Значение (value) $v_i = W_V x_i$
- «Важность» слова x_i для слова x_j : $\langle q_j, k_i \rangle$

• Вклад слова x_i в новое представление слова x_j :

$$\alpha_{ij} = \frac{\exp\left(\frac{\langle q_j, k_i \rangle}{\sqrt{d}}\right)}{\sum_{p=1}^{n} \exp\left(\frac{\langle q_j, k_p \rangle}{\sqrt{d}}\right)}$$

- d размерность векторов q_j и k_i
- n число слов во входной последовательности

Новое представление слова x_i :

$$\widetilde{x_j} = \sum_{i=1}^n \alpha_{ij} v_i$$

- Кодировщик задаётся тремя мини-моделями, вычисляющими по вектору слова векторы запроса, ключа и значения
- Каждая мини-модель линейный слой