

# Learning-based Lossless Point Cloud Geometry Coding using Sparse Tensors

# Dat Thanh Nguyen and André Kaup





PAULO

#### Point Cloud Data



Point cloud Point cloud with color geometry

- Point clouds are sparse and irregular
- We losslessly encode point cloud geometry

## Point Cloud Geometry Representations



#### **Lossless Compression**

- Arithmetic coder: Based on p.d.f p of each symbol s
- Average bit per symbol:  $L = \sum_{s \in S} p(s)l(s)$
- Shannon theorem:  $L \ge H(p) = \sum_{s \in S} p(s) \log(s)$
- Sub-optimal lower bound:  $\tilde{L} = \sum_{s \in S} p(s) \log(\hat{p}(s))$ More likely symbols get fewer bits
- Minimize the bitrate by estimating p

### Causal Context Model



 Everytime a voxel is encoded, it is fed back into SparseVoxelDNN to predict the probability of the next voxel

**Bitstream** 

# Causality enforcement 0 0 0 Type B Type A mask mask No masks, violating type A and type B mask type A and type B mask on sparse tensors

- Filters are multiplied by the type A and type B mask
- Type A is applied on the first layer, type B masks are applied on the subsequence layers

## **System Overview**



# **Test Point Clouds** Microsoft Voxelized Upper Bodies (MVUB) MPEG 8i MPEG CAT1



