CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 31

Posted Friday 21 March 2014. Due 1pm Friday 28 March 2014.

31. [25 points]

Let

$$H_D^1(0,1) = \{ w \in H^1(0,1) : w(0) = w(1) = 0 \}$$

and let the inner product $a(\cdot,\cdot):H^1_D(0,1)\times H^1_D(0,1)\to\mathbb{R}$ be defined by

$$a(v,w) = \int_0^1 v'(x)w'(x) dx.$$

Let N be a positive integer, let $h = \frac{1}{N+1}$ and let $x_k = kh$ for k = 0, 1, ..., N+1. Let the continuous piecewise linear hat functions $\hat{\phi}_j \in H_D^1(0,1)$ be such that

$$\hat{\phi}_{j}(x) = \begin{cases} \frac{(x - x_{j-1})}{h} & \text{if } x \in [x_{j-1}, x_{j}), \\ \frac{(x_{j+1} - x)}{h} & \text{if } x \in [x_{j}, x_{j+1}), \\ 0 & \text{otherwise,} \end{cases}$$

for $j=1,\ldots,N$. Also, let the continuous piecewise quadratic functions $\phi_j\in H^1_D(0,1)$ be such that

$$\phi_j(x) = \begin{cases} \frac{(x - x_{j-1})(2x - x_{j-1} - x_j)}{h^2} & \text{if } x \in [x_{j-1}, x_j), \\ \frac{(x_j + x_{j+1} - 2x)(x_{j+1} - x)}{h^2} & \text{if } x \in [x_j, x_{j+1}), \\ 0 & \text{otherwise,} \end{cases}$$

for $j=1,\ldots,N$ and let the continuous piecewise quadratic bubble functions $\psi_j\in H^1_D(0,1)$ be such that

$$\psi_{j}(x) = \begin{cases} \frac{4(x - x_{j-1})(x_{j} - x)}{h^{2}} & \text{if } x \in [x_{j-1}, x_{j}), \\ 0 & \text{otherwise,} \end{cases}$$

for j = 1, ..., N + 1.

(a) By hand, obtain formulas for

i.
$$a(\phi_i, \phi_k)$$
 for $j, k = 1, ..., N$;

ii.
$$a(\psi_i, \psi_k)$$
 for $j, k = 1, ..., N + 1$;

iii.
$$a(\phi_i, \psi_k)$$
 for $j = 1, ..., N$ and $k = 1, ..., N + 1$.

Your final answers should be in terms of h and you must clearly state which values of j and k each formula you obtain is valid for. For example, if you were asked to obtain formulas for $a\left(\widehat{\phi}_{j},\widehat{\phi}_{k}\right)$

for $j,k=1,\dots,N$ then an acceptable way to present the answer would be: For $j,k=1,\dots,N,$

$$a\left(\widehat{\phi}_{j}, \widehat{\phi}_{k}\right) = \begin{cases} \frac{2}{h} & \text{if } k = j, \\ -\frac{1}{h} & \text{if } |j - k| = 1, \\ 0 & \text{otherwise.} \end{cases}$$