

# UNDERSTANDING LANDSLIDES: A GLOBAL CONCERN

#### What Are Landslides?

**Definition**: Landslides are the movement of rock, earth, or debris down a slope due to gravity.

**Types**: They can occur as rockfalls, deep failure of slopes, and shallow debris flows.

#### Recent Devastating Events

Kinnaur, India (August 2021): resulted in at least 13 fatalities.

Maharashtra, India: Monsoon-triggered landslides led to over 136 deaths

#### Global Impact

**Statistics**: Between 1998 and 2017, landslides affected **4.8 million** people caused over 18,000 fatalities worldwide.

**Frequency**: On average, thousands of deaths are attributed to landslides each year.

# OBJECTIVE:

Preprocess Satellite image

Extract Features from image

Training Machine Learning model based on given data

Give new Data to recognize if the area prone to landslide or not



# **DATASET**

- Landslide4Sense dataset has three splits
  - Training **3799**
  - Validation 245
  - Test **800**

Each image patch is a composite of 14 bands that include:

- Multispectral data
- Slope data
- Digital elevation model (DEM)





Multispectral data from Sentinel-2: B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11,



# **MULTISPECTRAL DATA**

- •B1: Coastal Aerosol, Ultra Blue, 443 nm<sup>1</sup>.
- •**B2**: Blue, Blue, 490 nm<sup>1</sup>.
- •B3: Green, Green, 560 nm<sup>1</sup>.
- •**B4**: Red, Red, 665 nm<sup>1</sup>.
- •**B5**: Vegetation Red Edge, VNIR, 705 nm<sup>1</sup>.
- •**B6**: Vegetation Red Edge, VNIR, 740 nm<sup>1</sup>.
- •B7: Vegetation Red Edge, VNIR, 783 nm<sup>1</sup>.
- •**B8**: NIR, NIR, 842 nm<sup>1</sup>.
- •B8a: Narrow NIR, VNIR, 865 nm<sup>1</sup>.
- •B9: Water Vapor, SWIR, 940 nm<sup>1</sup>.
- •**B10**: Cirrus, SWIR, 1375 nm<sup>1</sup>.
- •**B11**: SWIR, SWIR, 1610 nm<sup>1</sup>.
- •**B12**: SWIR, SWIR, 2190 nm<sup>1</sup>.



Natural Color (B4, B3, B2)



Short-Wave Infrared (B12, B8A, B4)



Vegetation Index VI =(B8-B4)/(B8+B4)



Color Infrared (B8, B4, B3)



Moisture Index (B8A-B11)/(B8A+B11)

#### **DEM (Digital Elevation Model)**

3D representation of a topographic surface

#### **Types of DEMs**:

- Digital Surface Model (DSM):
   Represents the Earth's surface and includes all objects on it.
- Digital Terrain Model (DTM):
   Represents the bare ground surface without any objects like plants and buildings.



Fig:DEM

# **SLOPE DATA**

- Gives information about steepness or gradient
- Quantifies the inclination of the terrain, indicating whether it is flat, gently sloping, or steep
- In a slope map:
  - Flat Areas shown in Gray.
  - Gentle Slopes: Represented in **green**, indicating a slight but noticeable incline.
  - Moderate Slopes: shown in yellow or orange.
  - Steep Slopes: Typically depicted in **red** or **brown**.



## **U-NET**

- CNN architecture for fast and precise segmentation of images.
- U-shaped Encoder and Decoder Architecture
- Left >> encoder network
- Right >> **Decoder Network**
- Skip Connections



## **EXAMPLE**

encoder receives the input image

extracts useful features from that image

decoder then up samples the features

we get a segmentation mask











#### **Evaluation:**

#### Normal(RGB) Image to NDVI image:





RGB NDVI





RGB Labelled Data

## visualization of training data



# performance metrics of the U-Net model











#### Values with Low precision and High recall





#### Values with High precision and Low recall









# **Final Prediction**



# THE FUTURE SCOPE AND APPLICATION

- Improved Accuracy and Efficiency
- Integration with Disaster Management Systems
- Precision Agriculture and Environmental Monitoring:
- Urban Planning and Infrastructure Development
- Climate Change Adaptation



# **Bibliography**

- 1.Smith, J. (2022). Advances in Satellite Image Analysis for Landslide Detection. Journal of Geospatial Research, 10(2), 45-62.
- 2.Brown, A., & Johnson, C. (2023). Deep Learning Approaches for Landslide Detection: A Review. International Conference on Machine Learning and Remote Sensing, Proceedings, 78-85.
- 3.Global Landslide Catalog. (2021). Retrieved from <a href="https://www.globallandslide.org/">https://www.globallandslide.org/</a>
- 4.Landslide4Sense Challenge. (2020). Official Website. Retrieved from

#### https://www.landslide4sense.com/

- 5.Chen, L., & Wang, Y. (2019). Application of Sentinel-2 Imagery in Landslide Detection: A Case Study in Mountainous Regions. Remote Sensing Letters, 11(5), 312-325.
- 6.UNet: Convolutional Networks for Biomedical Image Segmentation. (2015). Retrieved from https://arxiv.org/abs/1505.04597