[Lab-5: CPU Scheduling]

Assignments:

1. To write a c program to simulate First Come First Serve (FCFS) algorithm.

process	p1	p2	р3	p4
Service Time	3	5	2	4

- Find the average waiting time and average turn-around time?
 (Assume that all the process arrived at time 0)
- Algorithm:
 - Step 1: Start the process
 - Step 2: Accept the number of processes in the ready Queue
 - Step 3: For each process in the ready \mathbf{Q} , assign the process name and the burst time
 - Step 4: Set the waiting of the first process as $_0$ and its burst time as its turnaround time
 - Step 5: for each process in the Ready Q calculate
 - a). Waiting time (n) = waiting time (n-1) + Burst time (n-1)
 - b).Turnaround time (n)= waiting time(n)+Burst time(n)
 - Step 6: Calculate
 - a) Average waiting time = Total waiting Time / Number of process
 - b) Average Turnaround time = Total Turnaround Time / Number of process
 - Step 7: Stop the process

2. Write a c program to simulate the SJF (Shortest Job First) algorithm.

Δ

Consider the following table with four processes and their service times.

Process	Burst Time (Service Time)
P_1	5
P_2	2
P_3	4
P	6

Assume that all processes are arrived at the same time. First process starts execution at time 0. Compute the following with SJF scheduling.

- (i) Waiting time of each process
- (ii) Turn around time of each process
- (iii) Average waiting time of processes
- (iv) Average turn around time of processes

Algorithm:

- Step 1: Start the process
- Step 2: Accept the number of processes in the ready Queue
- Step 3: For each process in the ready Q, assign the process id and accept the CPU burst time
- Step 4: Start the Ready Q according the shortest Burst time by sorting according to lowest to highest burst time.
- Step 5: Set the waiting time of the first process as $_0$ and its turnaround time as its burst time.
- Step 6: Sort the processes names based on their Burt time
- Step 7: For each process in the ready queue, calculate
 - a) Waiting time(n)= waiting time (n-1) + Burst time (n-1)
 - b) Turnaround time (n)= waiting time(n)+Burst time(n)
- Step 8: Calculate
 - c) Average waiting time = Total waiting Time / Number of process
 - d) Average Turnaround time = Total Turnaround Time / Number of process
- Step 9: Stop the process

3. Write a c program to simulate Shortest Remaining Time First (SRTF) algorithm.

Consider the following table

Process	Arrival Time	Service Time	
P_1	0	6	
P_2	1	3	
P_3	2	1	
P ₄	3	4	

Compute the following using the SRTF scheduling.

- (i) Waiting time of each process
- (ii) Turn around time of each process
- (iii) Average waiting time of processes
- (iv) Average turn around time of processes

Algorithm:

- 1- Traverse until all process gets completely executed.
 - a) Find process with minimum remaining time at every single time lap.
 - b) Reduce its time by 1.
 - c) Check if it's remaining time becomes 0
 - d) Increment the counter of process completion.
 - e) Completion time of current process = current_time +1;
 - f) Calculate waiting time for each completed process.

- g) Increment time lap by one.
- 2- Find turnaround time (waiting_time + burst_time).

