satisfies a quadratic inequality and is bounded above by M:

$$\alpha ||x||^{2} \leq a(x,x) \leq C||x|| ||y_{0}|| + ||\ell|| ||x|| + ||\ell|| ||y_{0}||$$

$$\implies \alpha ||x||^{2} - (C||y_{0}|| + ||\ell||) ||x|| - ||\ell|| ||y_{0}|| \leq 0$$

$$\iff ||x||^{2} - \beta ||x|| - \gamma \leq 0$$

$$\implies ||x|| \leq \frac{1}{2} (\beta + \sqrt{\beta^{2} + 4\gamma}) = M.$$

Consequently, if $x \in X$, ||x|| > M, then $f(x, y_0) > 0$ and the compactness condition in Theorem 14 is satisfied. Since f(x, x) = 0 for any $x \in X$, (A) of Theorem 14 is impossible, and (B) holds, i.e., $f(\bar{x}, y) = a(\bar{x}, \bar{x} - y) - \ell(\bar{x}) + \ell(y) \le 0$ for some $\bar{x} \in X$ and all $y \in X$ and the proof of the existence is complete.

The uniqueness follows at once from the bilinearity and the coercivity of the form a as follows: if $a(\bar{x}_i, \bar{x}_i - y) - \ell(\bar{x}_i) + \ell(y) \leq 0$ for two elements $\bar{x}_i \in X, i = 1, 2$, and all $y \in X$, then adding $a(\bar{x}_1, \bar{x}_1 - \bar{x}_2) \leq \ell(\bar{x}_1) - \ell(\bar{x}_2)$ to $a(\bar{x}_2, \bar{x}_2 - \bar{x}_1) \leq \ell(\bar{x}_2) - \ell(\bar{x}_1)$ gives $0 \leq \alpha ||\bar{x}_1 - \bar{x}_2||^2 \leq a(\bar{x}_1 - \bar{x}_2, \bar{x}_1 - \bar{x}_2) \leq 0$, i.e., $\bar{x}_1 = \bar{x}_2$.

The coincidence $(\mathcal{N}, \mathcal{N}^{-1})$ (Theorem 12) can be expressed in analytical terms as a second alternative for nonlinear systems of inequalities as follows:

Theorem 17 Let X and Y be two convex subsets of topological vector spaces and let $f, g: X \times Y \longrightarrow \mathbb{R}$ be two functions satisfying:

- (i) $f(x,y) \leq g(x,y)$ for all $(x,y) \in X \times Y$;
- (ii) $x \mapsto f(x,y)$ is quasiconcave on X, for each fixed $y \in Y$;
- (iii) $y \mapsto f(x,y)$ is l.s.c. and quasiconvex on Y, for each fixed $x \in X$;
- (iv) $x \mapsto g(x,y)$ is u.s.c. and quasiconcave on X, for each fixed $x \in X$;
- (v) $y \mapsto g(x,y)$ is quasiconvex on Y, for each fixed $x \in X$.
- (vi) Given $\lambda \in \mathbb{R}$ arbitrary, assume that either Y is compact, or X is compact, or there exist a compact subset K of X and a convex compact subset C of Y such that for any $x \in X \setminus K$ there exists $y \in C$ with $g(x,y) < \lambda$.