FMI, Info, Anul II, 2022-2023 Fundamentele Limbajelor de Programare

Model Examen

(S1) Găsiți cel mai general unificator, dacă există, aplicând algoritmul din curs, pentru termenii

$$f(x, g(x), h(a, g(y))), f(a, g(x), z), f(y, y, h(a, z)),$$

unde x, y, z sunt variabile, a este un simbol de constantă, g un simbol de funcție de aritate 1, h un simbol de funcție de aritate 2, iar f un simbol de funcție de aritate 3.

[1 punct]

Soluție:

S	R	
Ø	$u = f(x, g(x), h(a, g(y))), u = f(a, g(x), z), \ u = f(y, y, h(a, z))$	Rezolva u
Ø	$f(x,g(x),h(a,g(y))) \stackrel{.}{=} f(a,g(x),z), \ f(x,g(x),h(a,g(y))) \stackrel{.}{=} f(y,y,h(a,z))$	Descompune
Ø	$f(x,g(x),h(a,g(y))) \stackrel{.}{=} f(a,g(x),z), \ x \stackrel{.}{=} y, \ g(x) \stackrel{.}{=} y, \ h(a,g(y)) \stackrel{.}{=} h(a,z)$	Rezolva x
$x \doteq y$	$f(y,g(y),h(a,g(y))) \doteq f(a,g(y),z),g(y) \doteq y,h(a,g(y)) \doteq h(a,z)$	Ciclu y

Nu există cel mai general unificator pentru termenii din enunț deoarece, de exemplu, trebuie să găsim unificator pentru q(y) si y, dar y apare în q(y) si acesti termeni nu se pot unifica.

(S2) Găsiți o SLD-respingere pentru programul Prolog de mai jos și ținta ?- p(X),m(Y,X). Indicați la fiecare pas regula și substituția folosite pentru a aplica regula rezoluției. Puteți să vă ajutați în căutarea SLD-respingerii și de un arbore SLD (acesta nu trebuie să fie obligatoriu complet).

- (1) m(a,b).
- (2) f(a,b).
- (3) p(a).
- (4) p(X) := f(Y,X), p(Y).

[1.5 puncte]

Soluție:

Pe foaia de examen Mai întâi transformăm clauzele și ținta in forma normală conjunctivă.

• Deoarece (1)–(3) sunt fapte, doar clauza (4) trebuie transformată în

$$(4')p(X) \vee \neg f(Y,X) \vee \neg p(Y)$$

• Forma normal conjunctivă a țintei este $\neg p(X) \lor \neg m(Y,X)$.

Pe ciornă încercăm să construim o respingere SLD.

$$G_0 = \neg p(X) \vee \neg m(Y, X)$$

• încercăm să îl elaborăm pe $\neg p(X)$ folosind regula de rezoluție și clauza (3). p(X) și p(a) se unifică cu substituția $X \mapsto a$, deci

$$G_1 = \neg m(Y, a)$$

- încercăm să îl elaborăm pe $\neg m(Y, a)$ folosind regula de rezoluție și clauza (1). m(Y, a) și m(a, b) nu se unifică $(a \neq b)$ deci trebuie să reluăm
- nu mai avem alte clauze pentru capul m, deci trebuie să reluăm
- reîncercăm să îl elaborăm pe $\neg p(X)$, folosind regula de rezoluție și clauza (4') cu variabilele redenumite ca $p(X_1) \vee \neg f(Y_1, X_1) \vee \neg p(Y_1)$. p(X) și $p(X_1)$ se unifică cu substituția $X_1 \mapsto X$, deci

$$G_1 = \neg f(Y_1, X) \lor \neg p(Y_1) \lor \neg m(Y, X)$$

– încercăm să îl elaborăm pe $\neg f(Y_1, X_1)$ folosind regula de rezoluție și clauza (2). $f(Y_1, X)$ și f(a, b) se unifică cu substituția $X \mapsto b, Y_1 \mapsto a$, deci

$$G_2 = \neg p(a) \lor \neg m(Y, b)$$

* încercăm să îl elaborăm pe $\neg p(a)$ folosind regula de rezoluție și clauza (3). p(a) și p(a) se unifică cu substituția vidă, deci

$$G_3 = \neg m(Y, b)$$

· încercăm să îl elaborăm pe $\neg m(Y, b)$ folosind regula de rezoluție și clauza (1). m(Y, b) si m(a, b) se unifică cu substitutia $Y \mapsto a$ deci

$$G_4 = \square$$

Pe foaia de examen scriem doar secvența de derivări care conduce la o respingere:

	Ţinta	Clauza	Substituția
0	$\neg p(X) \lor \neg m(Y,X)$	$(4'): p(X_1) \vee \neg f(Y_1, X_1) \vee \neg p(Y_1)$	$X_1 \mapsto X$
1	$\neg f(Y_1, X) \lor \neg p(Y_1) \lor \neg m(Y, X)$	(2)	$X \mapsto b, Y_1 \mapsto a$
2	$\neg p(a) \lor \neg m(Y,b)$	(3)	
3	$\neg m(Y,b)$	(1)	$Y \mapsto a$
3		(1)	

Substituția finală se obține prin compunerea tuturor substituțiilor și selectarea doar a variabilelor care apar în tinta initială:

$$X \mapsto b, Y \mapsto a$$

(S3) Fie expresia $M := \lambda xyz.x(yz)$. Găsiți un tip τ astfel încât $\vdash M : \tau$ să fie o judecată validă. Puteți să folosiți fie sistemul $(\lambda \rightarrow)$ cu constrângeri, fie să alegeți niște tipuri pentru variabilele legate din M și apoi să folosiți sistemul $(\lambda \rightarrow)$.

[1.5 puncte]

Soluție:

Pe ciornă încercăm să găsim un tip pentru M și tipuri corespunzătoare pentru variabilele legate.

Urmărind regula de tipuri pentru λ , obțin că τ e de forma

$$\tau_X \to \tau_u \to \tau_z \to \tau_N$$

unde τ_N este tipul lui x(yz) în mediul $\Gamma = x \mapsto \tau_x, y \mapsto \tau_y, z \mapsto \tau_z$

Din regula de aplicare observăm că τ_x trebuie să fie de forma $\tau_P \to \tau_N$, unde τ_P este tipul lui yz în mediul Γ .

Din regula de aplicare observăm că τ_y trebuie să fie de forma $\tau_z \to \tau_P$.

Adunând cele de mai sus, trebuie să arătăm că:

$$\vdash \lambda x : \tau_P \to \tau_N . \lambda y : \tau_z \to \tau_P . \lambda z : \tau_z . x(yz) : (\tau_P \to \tau_N) \to (\tau_z \to \tau_P) \to \tau_z \to \tau_N$$

Pe foaia de examen e suficient să scriem:

$$\begin{array}{c} \sqrt{var} \frac{\sqrt{var} \frac{var} \frac{\sqrt{var} \frac{var} \frac{\sqrt{var} \frac{var} \frac{\sqrt{var} \frac{var} \frac{$$

Timp de lucru: 60 minute