Contents

1	01.1	4.21	1
	1.1	Automaton (automata)	1
	1.2	The Mathematics of Automata	1
		1.2.1 Mathematicians & History	1
		1.2.2 Sequential Logic	2
	1.3	Necessary Review	2
	1.4	Functions	2
	1.5	TODO Types of Functions - Definition & Logical Statement .	3
	1.6	Finite Automaton (Finite State Machine)	3

$1 \quad 01.14.21$

1.1 Automaton (automata)

- Self running machine requiring a continuous power source
 - Historically used power sources include water, steam, and electricity
- Course revolves around defining the mathematics powering machines

1.2 The Mathematics of Automata

1.2.1 Mathematicians & History

- Cantor defines sets as collections of objects
- Cantor also argues that infinites can be of different magnitudes there are infinitely more real numbers than natural numbers
- Goedel eventually derives his incompleteness theorem
 - No logical system that contains the natural numbers can prove its own soundness
 - Every sound logical system containing the natural numbers contains valid statements that cannot be proved or disproved
- In 1936, Turing proves The Halting Problem is not decidable, it is impossible

- The Halting Problem is an algorithm that can analyze any other algorithm and determine whether or not it goes into an infinite loop
- Turing creates the turing machine as an object consisting of sets and processes wherein the object can use any finite process to complete an action.
- Turing machine sets the basis for a computer, which leads to a series of important questions:
 - What can & can't a machine do?
 - What does it mean for a problem of be harder than another?
 - What does it mean for a machine to be more powerfule than another?

1.2.2 Sequential Logic

- Sentential Logic- based on boolean results
 - Predicated on AND, OR, NOT
 - XOR, XAND, etc. can be derived using the above

1.3 Necessary Review

- Textbook Ch. 0
- Logic Statements
- Set Theory
- Functions

1.4 Functions

- Functions something that maps objects from one set to another
- Given $f: a \rightarrow b$;
 - Everything in a is mapped to something in b
 - * For every x, such that x is an element of a, there exists a y, such that y is an element of b

- No one point in the domain can be mapped to two different points in the codomain
 - * Logically, you can't have a function that takes in one input and returns two different outputs
 - * If f maps x to y1 and to y2, y1 = y2

$$-1,y2[f(x)=y1^f(x)=y2 -> y1 = y2]$$

1.5 TODO Types of Functions - Definition & Logical Statement

- Injective Functions
- Surjective Functions
- Proof by Induction ()
- Proof by Contradiction (¬)

1.6 Finite Automaton (Finite State Machine)

- States are logical confirgurations
- States are generally based upon input
- Purpose of a state machine is to make a yes/no decision