CS152-Homework6

Hongchen Cao 2019533114

2020.10.22

1

1.1

$$P = (\frac{M-1}{M})^{Q'}$$

1.2

$$P = (\frac{M-1}{M})^{Q'Q}$$

1.3

$$P = \frac{1}{2} \tag{1}$$

$$P = \frac{1}{2}$$

$$(\frac{M-1}{M})^{Q'Q} = \frac{1}{2}$$

$$(\frac{M-1}{M})^{cM} = \frac{1}{2}$$

$$((1-\frac{1}{M})^{M})^{c} = \frac{1}{2}$$

$$(\frac{1}{e})^{c} = \frac{1}{2}$$

$$(5)$$

$$(\frac{M-1}{M})^{cM} = \frac{1}{2} \tag{3}$$

$$((1 - \frac{1}{M})^M)^c = \frac{1}{2} \tag{4}$$

$$\left(\frac{1}{e}\right)^c = \frac{1}{2} \tag{5}$$

$$c = In(2) \tag{6}$$

$$P(CTP) = \frac{1}{|\mathcal{X}|} \cdot \sum_{x \in \mathcal{X}} P(CTP|x) \tag{7}$$

$$= \frac{1}{|\mathcal{X}|} \cdot \sum_{x \in \mathcal{X}} P(OP|h(x)) \frac{\frac{|\mathcal{X}|}{|\mathcal{Y}|} - 1}{\frac{|\mathcal{X}|}{|\mathcal{Y}|}}$$
(8)

$$= \frac{1}{|\mathcal{X}|} \cdot (1 - \frac{|\mathcal{Y}|}{|\mathcal{X}|}) \cdot \frac{|\mathcal{X}|}{|\mathcal{Y}|} \cdot \sum_{y \in \mathcal{Y}} P(OP|y) \tag{9}$$

$$\geq \frac{1}{|\mathcal{Y}|} \cdot (1 - \frac{|\mathcal{Y}|}{|\mathcal{X}|}) \cdot |\mathcal{Y}| \cdot \epsilon$$

$$\geq \frac{\epsilon}{2}$$
(10)

$$\geq \frac{\epsilon}{2} \tag{11}$$

Suppose we find a collision, so $\exists x \neq x' : h_2(x) = h_2(x')$.

Let $x = x_1 || x_2$ and $x' = x'_1 || x'_2$

Then we have

$$h_1(h_1(x_1)||h_1(x_2)) = h_1(h_1(x_1')||h_1(x_2'))$$

Let $a = h_1(x_1)||h_1(x_2)$ and $b = h_1(x_1')||h_1(x_2')$.

If $a \neq b$, we find collision for h_1 , which is impossible.

So a = b, then we have $h_1(x_1) = h_1(x_1')$ and $h_1(x_2) = h_1(x_2')$.

If $x_1 \neq x_1'$ or $x_2 \neq x_2'$, we find collision for h_1 , which is impossible.

So $x_1 = x'_1$ and $x_2 = x'_2$, then we have x = x'.

Thus, we get a contradiction.

Suppose we find a collision, so $\exists x \neq x' : h(x) = h(x')$.

There exists 2 cases:

1.
$$|x| = |x'| = tk$$

2. |x| = tk and |x'| = lk, we can suppose l > k

For case1:

From h(x) = h(x'), we have $\mathbf{Compress}(z_k) = \mathbf{Compress}(z'_k)$.

Because Compress is collision resistant, we have $z_k = z'_k$.

Then we have $g_{k-1}||x_k = g'_{k-1}||x'_k$ which means that $g_{k-1} = g'_{k-1}$ and $x_k = x'_k$.

Again, because Compress is collision resistant, we have $z_{k-1} = z'_{k-1}$ which means that $g_{k-2} = g'_{k-2}$ and $x_{k-1} = x'_{k-1}$.

Repeat the above steps, and finally we have $x_i = x_i'$ for $i \in [1..k]$ which means that x = x'.

Thus, we get a contradiction.

For case2:

From h(x) = h(x'), we have **Compress** $(z_k) =$ **Compress** (z'_k) .

Because Compress is collision resistant, we have $z_k = z'_l$.

Then we have $g_{k-1}||x_k = g'_{l-1}||x'_l|$ which means that $g_{k-1} = g'_{l-1}$ and $x_k = x'_l$.

Again, because Compress is collision resistant, we have $z_{k-1} = z'_{l-1}$ which means that $g_{k-2} = g'_{l-2}$ and $x_{k-1} = x'_{l-1}$.

Repeat the above steps, and finally we have $z_1 = z'_{l-k+1}$ which means $0^m = g'_{l-k} = \mathbf{Compress}(z'_{l-k})$.

However Compress is zero preimage resistant.

Thus, we get a contradiction.

Finally, for both case we get a contradiction so h is collision resistant.