Contents

1	TVM
	1.1 Goals
	1.2 Motivations
	1.3 Contributions

1 TVM

1.1 Goals

- Automatically generate deployable codes that are performance-competitive with state-of-art vendor-specific libraries.
- Through automatically generate codes, address the problem that handcrafting operator kernels for the massive space of backend specific operators and operator combinations.

1.2 Motivations

- Current deep learning framework relies on a computation graph representation.
- · Challenges and Goals
 - 1. High-level dataflow rewriting.
 - kernel fusion
 - data layout optimization
 - 2. Memory reuse across threads.
 - cooperation among threads on shared memory
 - 3. Tensorized computation intrinsics.
 - 4. Latency Hiding.

1.3 Contributions

- TVM separate the algorithm description, schedule, and hardware interface .
- · TVM presents two stage optimization
 - 1. computation graph level optimization
 - 1. operator fusion
 - 2. data layerout transformation
 - 2. tensor level optimization
 - 1. Tensor Expression Language takes cues from Halide.
 - descirbe both the users' intended compute description and the abstractions that the hardware exposes.
 - commutative reduction operator
 - high-order scan operator : to form recurrent computation
 - 2. introduce *schedule primitives* to decouple computation description and schedule.
 - adopt useful primitives from Halide and introduce new ones (?) to tackle the challenges introduced by GPU
 and specialized hardware accelerators.
 - 3. Nested parallelism with the cooperation
 - traditional solution for parallelism: shared-nothing nested parallelism (fork-join parallelism)
 - introduce the concept *memory scope* so that a stage can be marked as shared.
 - * the shared task needs to compute the dependencies of all the working threads.
 - * use persist threads
 - * memory synchronization barriers need to be properly inserted.
 - 4. Tensorization: (1) inputs are *ndarrays*; (2) dictate different data layout.
 - 1. challenges:
 - 1. DL workloads have high arithmetic intensity.
 - 2. cannot resort to a fixed set of primitives.
 - 2. separate the hardware interface from the schedule
 - declare the behavior of each new hardware intrinsic.

- 3. introduce a tensorize schedule primitive
 - replace a unit of computation with the corresponding tensor intrinsics.
- 5. Latency hiding: decoupled-access/execute the philosophy
 - 1. assume the hardware pipeline consists of memory and compute stages that can execute concurrently.
 - 2. use FIFO queues to implement explicit dependency tracking.
 - 3. introduce *virtual thread schedule primitive*: programming at low-level is difficult and painstaking.