

RAO BAHADUR Y MAHABALESWARAPPA ENGINEERING COLLEGE, BELLARY

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

LAB MANNUAL

ARTIFICIAL AND MACHINE LEARNING LABORATORY SUB CODE- 18CSL76

VII SEM

ARTIFICIAL INTELLIGEN			DRATORY					
(Effective fr	om the academic yea							
Course Code	SEMESTER – VII 18CSL76	CIE Marks	10					
Number of Contact Hours/Week	0:0:2	SEE Marks	60					
Total Number of Lab Contact Hours	36	Exam Hours	03					
Total Number of Lab Contact Hours	Credits – 2	Lam Hours	03					
Course Learning Objectives: This cours		ible students to:						
Implement and evaluate AI and N	/II. algorithms in and I	Python programming	language					
Descriptions (if any):	and and an arrange and arrange	ymon programming.	·····gunge.					
Installation procedure of the required	software must be den	nonstrated, carried o	out in groups					
and documented in the journal.		,	g -					
Programs List:								
 Implement A* Search algorithm. 								
Implement AO* Search algorithm.								
	, I							
Candidate-Elimination algorithmto output a description of the set of all hypotheses consistent								
with the training examples.								
4. Write a program to demonstrate the v	working of the decision	n tree based ID3 algor	nthm. Use an					
appropriate data set for building the c sample.	secision tree and apply	y this knowledge tocia	issiry a new					
Build an Artificial Neural Network b	v implementing the R	ackpropagation algori	thm and test the					
same using appropriate data sets.	y implementing the D	ackpropagation argon	dilli and test the					
Write a program to implement the na	ïve Bavesian classifie	r for a sample training	data set stored					
as a .CSV file. Compute the accuracy								
7. Apply EM algorithm to cluster a set								
clustering using k-Means algorithm.								
on the quality of clustering. You can	add Java/Python ML	library classes/API in	the program.					
Write a program to implement k-Nea								
both correct and wrong predictions. J								
Implement the non-parametric Local			o fit data points.					
Select appropriate data set for your e		raphs						
Laboratory Outcomes: The student shot								
Implement and demonstrate AI as	nd ML algorithms.							
 Evaluate different algorithms 								

- Evaluate different algorithms.

Conduct of Practical Examination:

- Experiment distribution
 - For laboratories having only one part: Students are allowed to pick one experiment from the lot with equal opportunity.
 - o For laboratories having PART A and PART B: Students are allowed to pick one experiment from PART A and one experiment from PART B, with equal opportunity.
- Change of experiment is allowed only once and marks allotted for procedure to be made zero of the changed part only.
- Marks Distribution (Courseed to change in accoradance with university regulations)
 - q) For laboratories having only one part Procedure + Execution + Viva-Voce: 15+70+15 = 100 Marks
 - r) For laboratories having PART A and PART B
 - i. Part A Procedure + Execution + Viva = 6 + 28 + 6 = 40 Marks
 - ii. Part B Procedure + Execution + Viva = 9 + 42 + 9 = 60 Marks

Program 1.A* SEARCH ALGORITHM

```
"""Implement A* search algorithm"""
defaStarAlgo(start node, stop node):
open_set = set(start_node)
closed\_set = set()
  g = \{ \}
  parents = \{\}
  g[start node] = 0
  parents[start_node] = start_node
  while len(open set) > 0:
     n = None
     for v in open_set:
       if n == \text{None or } g[v] + \text{heuristic}(v) < g[n] + \text{heuristic}(n):
     if n == stop_node or Graph_nodes[n] is None:
       pass
     else:
       for (m, weight) in get_neighbours(n):
          if m not in open_set and m not in closed_set:
open_set.add(m)
            parents[m] = n
            g[m] = g[n] + weight
            if g[m] > g[n] + weight:
               g[m] = g[n] + weight
               parents[m] = n
            if m in closed_set:
closed_set.remove(m)
open_set.add(m)
     if n is None:
print('path does not exist!')
       return None
     if n == stop_node:
       path = []
       while parents[n] != n:
path.append(n)
          n = parents[n]
path.append(start_node)
path.reverse()
       print('path found: { }'.format(path))
       return path
open_set.remove(n)
closed_set.add(n)
print('path does not exist!')
  return None
defget_neighbours(v):
  if v in Graph_nodes:
```

```
return Graph_nodes[v]
  else:
      return None
def heuristic(n):
H_dist = {
      'A': 10,
      'B': 8,
      'C': 5,
      'D': 7,
      'E': 3,
      'F': 6,
      'G': 5,
      'H': 3,
      'I': 1,
      'J': 0
  return H_dist[n]
Graph_nodes = {
   'A': [('B', 6), ('F', 3)],
   'B': [('C', 3), ('D', 2)],
   'C': [('D', 1), ('E', 5)],
   'D': [('C', 1), ('E', 8)],
  'E': [('I', 5), ('J', 5)],
   'F': [('G', 1), ('H', 7)],
  'G': [('I', 3)],
   'H': [('I', 2)],
   'I': [('E', 5), ('J', 3)]
}
aStarAlgo('A', 'J')
```

Out put

```
path found: ['A', 'F', 'G', 'I', 'J']
['A', 'F', 'G', 'I', 'J']
```

PROGRAM -2

A+O_* SEARCHALGORITHM

```
"""Recursive implementation of AO* algorithm"""
class Graph:
def init (self, graph, heuristicNodeList, startNode):
self.graph = graph
self.H = heuristicNodeList
self.start = startNode
self.parent = {}
self.status = \{\}
self.solutionGraph = { }
defapplyAOStar(self):
self.aoStar(self.start, False)
defgetNeighbors(self, v):
    return self.graph.get(v, ")
defgetStatus(self, v):
    return self.status.get(v, 0)
defsetStatus(self, v, val): # set the status of a given node
self.status[v] = val
defgetHeuristicNodeValue(self, n):
    return self.H.get(n, 0) # always return the heuristic value of a given node
defsetHeuristicNodeValue(self, n, value):
self.H[n] = value # set the revised heuristic value of a given node
defprintSolution(self):
    print("FOR GRAPH SOLUTION, TRAVERSE THE GRAPH FROM THE START NODE:",
self.start)
    print("-----")
    print(self.solutionGraph)
    print("-----")
defcomputeMinimumCostChildNodes(self, v): # Computes the Minimum Cost of child nodes of a
given node v
minimumCost = 0
costToChildNodeListDict = { }
costToChildNodeListDict[minimumCost] = []
    for nodeInfoTupleList in self.getNeighbors(v): # iterate over all the set of child node/s
      cost = 0
nodeList = []
      for c, weight in nodeInfoTupleList:
         cost = cost + self.getHeuristicNodeValue(c) + weight
nodeList.append(c)
```

```
if flag == True: # initialize Minimum Cost with the cost of first set of child node/s
minimumCost = cost
costToChildNodeListDict[minimumCost] = nodeList # set the Minimum Cost child node/s
         flag = False
       else: # checking the Minimum Cost nodes with the current Minimum Cost
         if minimumCost> cost:
minimumCost = cost
costToChildNodeListDict[minimumCost] = nodeList # set the Minimum Cost child node/s
    return minimumCost, costToChildNodeListDict[minimumCost] # return Minimum Cost and
Minimum Cost child node/s
defaoStar(self, v, backTracking): # AO* algorithm for a start node and backTracking status flag
    print("HEURISTIC VALUES :", self.H)
    print("SOLUTION GRAPH :", self.solutionGraph)
    print("PROCESSING NODE :", v)
    print("-----")
    if self.getStatus(v) \geq 0: # if status node v \geq 0, compute Minimum Cost nodes of v
minimumCost, childNodeList = self.computeMinimumCostChildNodes(v)
self.setHeuristicNodeValue(v, minimumCost)
self.setStatus(v, len(childNodeList))
       solved = True # check the Minimum Cost nodes of v are solved
       for childNode in childNodeList:
self.parent[childNode] = v
         if self.getStatus(childNode) != -1:
           solved = solved & False
       if solved == True: # if the Minimum Cost nodes of v are solved, set the current node status as
solved(-1)
self.setStatus(v, -1)
self.solutionGraph[
           v] = childNodeList # update the solution graph with the solved nodes which may be a
part of
         # solution
       if v != self.start: # check the current node is the start node for backtracking the current node
value
self.aoStar(self.parent[v],
                True) # backtracking the current node value with backtracking status set to true
       if not backTracking: # check the current call is not for backtracking
         for childNode in childNodeList: # for each Minimum Cost child node
self.setStatus(childNode, 0) # set the status of child node to 0(needs exploration)
self.aoStar(childNode,
                  False) # Minimum Cost child node is further explored with backtracking status as
false
h1 = {'A': 1, 'B': 6, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G': 5, 'H': 7, 'I': 7, 'J': 1, 'T': 3}
graph1 = {
  'A': [[('B', 1), ('C', 1)], [('D', 1)]],
```

```
'B': [[('G', 1)], [('H', 1)]],
'C': [[(J', 1)]],
'D': [[(E', 1), ('F', 1)]],
'G': [[(T', 1)]],
'G': [[(T', 1)]]
}
G1 = Graph(graph1, h1, 'A')
G1.applyAOStar()
G1.printSolution()

h2 = {'A': 1, 'B': 6, 'C': 12, 'D': 10, 'E': 4, 'F': 4, 'G': 5, 'H': 7} # Heuristic values of Nodes
graph2 = { # Graph of Nodes and Edges
'A': [[('B', 1), ('C', 1)], [('D', 1)]], # Neighbors of Node 'A', B, C & D with respective weights
'B': [[('G', 1)], [('H', 1)]], # Neighbors are included in a list of lists
'D': [[('E', 1), ('F', 1)]] # Each sublist indicate a "OR" node or "AND" nodes
}

G2 = Graph(graph2, h2, 'A') # Instantiate Graph object with graph, heuristic values and start Node
G2.applyAOStar() # Run the AO* algorithm
G2.printSolution() # Print the solution graph as output of the AO* algorithm search
```

OUTPUT:

```
HEURISTIC VALUES : {'A': 1, 'B': 6, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G':
5, 'H': 7, 'I': 7, 'J': 1, 'T': 3}
SOLUTION GRAPH : {}
PROCESSING NODE : A
HEURISTIC VALUES : {'A': 10, 'B': 6, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G':
5, 'H': 7, 'I': 7, 'J': 1, 'T': 3}
                : {}
SOLUTION GRAPH
PROCESSING NODE : B
HEURISTIC VALUES : {'A': 10, 'B': 6, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G':
5, 'H': 7, 'I': 7, 'J': 1, 'T': 3}
SOLUTION GRAPH : {}
PROCESSING NODE : A
HEURISTIC VALUES : {'A': 10, 'B': 6, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G':
5, 'H': 7, 'I': 7, 'J': 1, 'T': 3}
SOLUTION GRAPH
               : {}
PROCESSING NODE
HEURISTIC VALUES : {'A': 10, 'B': 6, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G':
8, 'H': 7, 'I': 7, 'J': 1, 'T': 3}
SOLUTION GRAPH : {}
PROCESSING NODE
HEURISTIC VALUES : {'A': 10, 'B': 8, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G':
8, 'H': 7, 'I': 7, 'J': 1, 'T': 3}
SOLUTION GRAPH : {}
PROCESSING NODE : A
HEURISTIC VALUES : {'A': 12, 'B': 8, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G':
8, 'H': 7, 'I': 7, 'J': 1, 'T': 3}
SOLUTION GRAPH : {}
PROCESSING NODE : I
HEURISTIC VALUES : {'A': 12, 'B': 8, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G':
8, 'H': 7, 'I': 0, 'J': 1, 'T': 3}
SOLUTION GRAPH : {'I': []}
PROCESSING NODE : G
HEURISTIC VALUES : {'A': 12, 'B': 8, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G':
1, 'H': 7, 'I': 0, 'J': 1, 'T': 3}
SOLUTION GRAPH
                : {'I': [], 'G': ['I']}
PROCESSING NODE : B
HEURISTIC VALUES : {'A': 12, 'B': 2, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G':
1, 'H': 7, 'I': 0, 'J': 1, 'T': 3}
SOLUTION GRAPH
                : {'I': [], 'G': ['I'], 'B': ['G']}
PROCESSING NODE : A
```

```
HEURISTIC VALUES : {'A': 6, 'B': 2, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G':
1, 'H': 7, 'I': 0, 'J': 1, 'T': 3}
SOLUTION GRAPH : {'I': [], 'G': ['I'], 'B': ['G']}
PROCESSING NODE : C
HEURISTIC VALUES : {'A': 6, 'B': 2, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G':
1, 'H': 7, 'I': 0, 'J': 1, 'T': 3}
SOLUTION GRAPH : {'I': [], 'G': ['I'], 'B': ['G']}
PROCESSING NODE : A
HEURISTIC VALUES : {'A': 6, 'B': 2, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G':
1, 'H': 7, 'I': 0, 'J': 1, 'T': 3}
SOLUTION GRAPH : {'I': [], 'G': ['I'], 'B': ['G']}
PROCESSING NODE : J
______
_____
HEURISTIC VALUES : {'A': 6, 'B': 2, 'C': 2, 'D': 12, 'E': 2, 'F': 1, 'G':
1, 'H': 7, 'I': 0, 'J': 0, 'T': 3}
SOLUTION GRAPH : {'I': [], 'G': ['I'], 'B': ['G'], 'J': []}
PROCESSING NODE : C
HEURISTIC VALUES : {'A': 6, 'B': 2, 'C': 1, 'D': 12, 'E': 2, 'F': 1, 'G':
1, 'H': 7, 'I': 0, 'J': 0, 'T': 3}
SOLUTION GRAPH : {'I': [], 'G': ['I'], 'B': ['G'], 'J': [], 'C': ['J']}
PROCESSING NODE : A
FOR GRAPH SOLUTION, TRAVERSE THE GRAPH FROM THE START NODE: A
{'I': [], 'G': ['I'], 'B': ['G'], 'J': [], 'C': ['J'], 'A': ['B', 'C']}
HEURISTIC VALUES : {'A': 1, 'B': 6, 'C': 12, 'D': 10, 'E': 4, 'F': 4, 'G':
5, 'H': 7}
SOLUTION GRAPH
PROCESSING NODE : A
HEURISTIC VALUES : {'A': 11, 'B': 6, 'C': 12, 'D': 10, 'E': 4, 'F': 4,
'G': 5, 'H': 7}
SOLUTION GRAPH
PROCESSING NODE : D
HEURISTIC VALUES : {'A': 11, 'B': 6, 'C': 12, 'D': 10, 'E': 4, 'F': 4,
'G': 5, 'H': 7}
SOLUTION GRAPH
                : {}
PROCESSING NODE
HEURISTIC VALUES : {'A': 11, 'B': 6, 'C': 12, 'D': 10, 'E': 4, 'F': 4,
'G': 5, 'H': 7}
SOLUTION GRAPH
                : {}
PROCESSING NODE
               : E
```

```
HEURISTIC VALUES : {'A': 11, 'B': 6, 'C': 12, 'D': 10, 'E': 0, 'F': 4,
'G': 5, 'H': 7}
SOLUTION GRAPH
               : {'E': []}
PROCESSING NODE : D
HEURISTIC VALUES : {'A': 11, 'B': 6, 'C': 12, 'D': 6, 'E': 0, 'F': 4, 'G':
5, 'H': 7}
SOLUTION GRAPH
               : {'E': []}
PROCESSING NODE : A
HEURISTIC VALUES : {'A': 7, 'B': 6, 'C': 12, 'D': 6, 'E': 0, 'F': 4, 'G':
5, 'H': 7}
              : {'E': []}
SOLUTION GRAPH
PROCESSING NODE : F
_____
HEURISTIC VALUES : {'A': 7, 'B': 6, 'C': 12, 'D': 6, 'E': 0, 'F': 0, 'G':
5, 'H': 7}
SOLUTION GRAPH
              : {'E': [], 'F': []}
PROCESSING NODE : D
HEURISTIC VALUES : {'A': 7, 'B': 6, 'C': 12, 'D': 2, 'E': 0, 'F': 0, 'G':
5, 'H': 7}
SOLUTION GRAPH
              : {'E': [], 'F': [], 'D': ['E', 'F']}
PROCESSING NODE : A
FOR GRAPH SOLUTION, TRAVERSE THE GRAPH FROM THE START NODE: A
{'E': [], 'F': [], 'D': ['E', 'F'], 'A': ['D']}
```

Program 3: For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

Algorithm:

```
G ← maximally general hypotheses in H
S ← maximally specific hypotheses in H
For each training example d=\langle x,c(x)\rangle
Case 1: If d is a positive example
       Remove from G any hypothesis that is inconsistent with d
       For each hypothesis s in S that is not consistent with d

    Remove s from S.

    Add to S all minimal generalizations h of s such that

                     h consistent with d
                      Some member of G is more general than h

    Remove from S any hypothesis that is more general than another hypothesis in S

Case 2: If d is a negative example
       Remove from S any hypothesis that is inconsistent with d
       For each hypothesis g in G that is not consistent with d

    Remove g from G.

           · Add to G all minimal specializations h of g such that
                  o h consistent with d
                   O Some member of S is more specific than h
           · Remove from G any hypothesis that is less general than another hypothesis in G
```

Program Code:

```
import random
import csv
```

```
def g_0(n):
    return ("?",)*n
def s_0(n):
    return ('0',)*n
```

```
ef more_general(h1, h2):
    more_general_parts = []
    for x, y in zip(h1, h2):
        mg = x == "?" or (x != "0" and (x == y or y == "0"))
        more_general_parts.append(mg)
    return all(more_general_parts)

11 = [1, 2, 3]
12 = [3, 4, 5]
list(zip(l1, 12))
```

```
def fulfills(example, hypothesis):
    ### the implementation is the same as for hypotheses:
    return more_general(hypothesis, example)

def min_generalizations(h, x):
    h_new = list(h)
    for i in range(len(h)):
        if not fulfills(x[i:i+1], h[i:i+1]):
            h_new[i] = '?' if h[i] != '0' else x[i]
    return [tuple(h_new)]
```

```
def get_domains(examples):
    d = [set() for i in examples[0]]
    for x in examples:
        for i, xi in enumerate(x):
            d[i].add(xi)
    return [list(sorted(x)) for x in d]
    get_domains(examples)
```

```
def candidate elimination(examples):
    domains = get domains(examples)[:-1]
    G = set([g 0(len(domains))])
    S = set([s 0(len(domains))])
    i=0
    print("\n G[{0}]:".format(i),G)
    print("\n S[{0}]:".format(i),S)
    for xcx in examples:
         i=i+1
         x_{\prime} cx = xcx[:-1]_{\prime} xcx[-1]
         if cx=='Y':
             G = \{g \text{ for } g \text{ in } G \text{ if } fulfills(x, g)\}
              S = generalize S(x, G, S)
         else: # x is negative example
              S = {s for s in S if not fulfills(x, s)}
              G = \text{specialize } G(x, \text{domains, } G, S)
         print("\n G[\{0\}]:".format(i),G)
         print("\n S[\{0\}]:".format(i),S)
    return
```

```
def generalize S(x, G, S):
    S prev = list(S)
    for s in S prev:
        if s not in S:
            continue
        if not fulfills(x, s):
            S.remove(s)
            Splus = min generalizations(s, x)
            S.update([h for h in Splus if
any([more general(g,h)
                                                 for q in G])])
            S.difference update([h for h in S if
                                  any([more general(h, h1)
                                       for h1 in S if h !=
h1])])
    return S
```

```
def specialize_G(x, domains, G, S):
    G_prev = list(G)
    for g in G_prev:
        if g not in G:
            continue
        if fulfills(x, g):
```

```
candidate_elimination(examples)
```

OUTPUT

```
G[0]: {('?', '?', '?', '?', '?', '?')}

S[0]: {('0', '0', '0', '0', '0', '0')}

G[1]: {('?', '?', '?', '?', '?', '?')}

S[1]: {('Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same')}

G[2]: {('?', '?', '?', '?', '?', '?')}

S[2]: {('Sunny', 'Warm', '?', 'Strong', 'Warm', 'Same')}

G[3]: {('Sunny', '?', '?', '?', '?'), ('?', 'Warm', '?', '?', '?', '?', '?', '?', 'Same')}

S[3]: {('Sunny', 'Warm', '?', 'Strong', 'Warm', 'Same')}

G[4]: {('Sunny', '?', '?', '?', '?'), ('?', 'Warm', '?', '?', '?', '?', '?')}

S[4]: {('Sunny', 'Warm', '?', 'Strong', '?', '?')}
```

Note: save the file c1.csv on desktop in your folder and change the path of file name in open() function in the program code

Program4: Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify new sample.

Algorithm:

ID3 - Algorithm

ID3(Examples, TargetAttribute, Attributes)

- · Create a Root node for the tree
- If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the single-node tree Root, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target Attribute in Examples
- · Otherwise Begin
 - A ← the attribute from Attributes that best classifies Examples
 - The decision attribute for Root ← A
 - For each possible value, vi, of A,
 - Add a new tree branch below Root, corresponding to the test A = vi
 - · Let Examples, be the subset of Examples that have value vi for A
 - If Examples, is empty
 - Then below this new branch add a leaf node with label = most common value of TargetAttribute in Examples
 - Else below this new branch add the subtree
 ID3(Examples_{vi}, TargetAttribute, Attributes {A})
- · End
- Return Root

Program Code:

```
import pandas as pd
from pandas import DataFrame
df_tennis = DataFrame.from_csv('C:\\Users\\ISE\\Desktop\\Python-
Decision-Tree-Using-ID3-master\\PlayTennis.csv')
print("\n Given Play Tennis Data Set:\n\n", df_tennis)
df tennis.keys()[0]
```

Entropy of the Training Data Set

```
def entropy(probs):
    import math
    return sum( [-prob*math.log(prob, 2) for prob in probs] )

def entropy_of_list(a_list):
    from collections import Counter
    cnt = Counter(x for x in a list)
```

```
num_instances = len(a_list)*1.0
    print("\n Number of Instances of the Current Sub Class
is{0}:".format(num_instances ))
    probs = [x / num_instances for x in cnt.values()]
    print("\n Classes:",min(cnt),max(cnt))
    print(" \n Probabilities of Class {0} is
{1}:".format(min(cnt),min(probs)))
    print(" \n Probabilities of Class {0} is
{1}:".format(max(cnt),max(probs)))
    return entropy(probs) # Call Entropy :

print("\n INPUT DATA SET FOR ENTROPY CALCULATION:\n",
df_tennis['PlayTennis'])

total_entropy = entropy_of_list(df_tennis['PlayTennis'])

print("\n Total Entropy of PlayTennis Data Set:",total_entropy)
```

Information Gain of Attributes

```
def information_gain(df, split_attribute_name, target_attribute_name, trace=0):
    print("Information Gain Calculation of ",split_attribute_name)
    df_split = df.groupby(split_attribute_name)
    nobs = len(df.index) * 1.0
    df_agg_ent = df_split.agg({target_attribute_name : [entropy_of_list, lambda x: len(x)/nobs]
})[target_attribute_name]
    df_agg_ent.columns = ['Entropy', 'PropObservations']
    new_entropy = sum( df_agg_ent['Entropy'] * df_agg_ent['PropObservations'] )
    old_entropy = entropy_of_list(df[target_attribute_name])
    return old_entropy - new_entropy

print('Info-gain for Outlook is :'+str( information_gain(df_tennis, 'Outlook', 'PlayTennis')),"\n")

print('\n Info-gain for Humidity is: ' + str( information_gain(df_tennis, 'Humidity', 'PlayTennis')),"\n")

print('\n Info-gain for Wind is:' + str( information_gain(df_tennis, 'Wind', 'PlayTennis')),"\n")
print('\n Info-gain for Temperature is:' + str( information_gain(df_tennis, 'Temperature', 'PlayTennis')),"\n")
```

```
def id3(df, target_attribute_name, attribute_names, default_class=None):
    from collections import Counter
    cnt = Counter(x for x in df[target_attribute_name])

if len(cnt) == 1:
    return next(iter(cnt))

elif df.empty or (not attribute_names):
    return default_class
```

```
else:
        default class = max(cnt.keys())
        gainz = [information gain(df, attr, target attribute name) for
attr in attribute names] #
        index of max = gainz.index(max(gainz)) # Index of Best Attribute
        best attr = attribute names[index of max]
        tree = {best attr:{}}
        remaining attribute names = [i for i in attribute names if i !=
best attr]
        for attr val, data subset in df.groupby(best attr):
            subtree = id3(data subset,
                        target attribute name,
                        remaining attribute names,
                        default class)
            tree[best attr][attr val] = subtree
        return tree
```

ID3 Algorithm

Predicting Attributes

```
attribute_names = list(df_tennis.columns)
print("List of Attributes:", attribute_names)
attribute_names.remove('PlayTennis')
print("Predicting Attributes:", attribute names)
```

Tree Construction

```
from pprint import pprint
tree = id3(df_tennis,'PlayTennis',attribute_names)
print("\n\nThe Resultant Decision Tree is :\n")
pprint(tree)
attribute = next(iter(tree))
print("Best Attribute :\n",attribute)
print("Tree Keys:\n",tree[attribute].keys())
```

Classification Accuracy

```
def classify(instance, tree, default=None): # Instance of Play Tennis with
Predicted

attribute = next(iter(tree))
  print("Key:", tree.keys())
  print("Attribute:", attribute)

if instance[attribute] in tree[attribute].keys():
    result = tree[attribute][instance[attribute]]
```

```
print("Instance
Attribute:",instance[attribute],"TreeKeys:",tree[attribute].keys())
    if isinstance(result, dict):
        return classify(instance, result)
    else:
        return result
    else:
        return default
```

```
df_tennis['predicted'] = df_tennis.apply(classify, axis=1, args=(tree,'No')
    # classify func allows for a default arg: when tree doesn't have answer
for a particular
    # combitation of attribute-values, we can use 'no' as the default guess

print(df_tennis['predicted'])

print('\n Accuracy is:\n' + str(
sum(df_tennis['PlayTennis']==df_tennis['predicted'] ) /
(1.0*len(df_tennis.index)) ))

df_tennis[['PlayTennis', 'predicted']]
```

OUTPUT:

Information Gain Calculation of Outlook

O	vercast						
	PlayTennis	Outlook	Temperature	Humidity	Wind	predicted	
2	Yes	Overcast	Hot	High	Weak	Yes	
6	Yes	Overcast	Cool	Normal	Strong	Yes	

Ra	in							
	Play	Cennis	Outlook	Temperature	Humidity	Wind	predicted	
3		Yes	Rain	Mild	High	Weak	Yes	
4		Yes	Rain	Cool	Normal	Weak	Yes	
5		No	Rain	Cool	Normal	Strong	No	
9		Yes	Rain	Mild	Normal	Weak	Yes	
Su	nny							
	Play	Cennis	Outlook	Temperature	Humidity	Wind	predicted	
1		No	Sunny	Hot	High	Strong	No	
7		No	Sunny	Mild	High	Weak	No	
8		Yes	Sunny	Cool	Normal	Weak	Yes	
No	and	Yes (Classes:	PlayTennis Co	ounter({'}	<pre>/es': 2})</pre>)	
No	and	Yes (Classes:	PlayTennis Co	ounter({'}	Yes': 3,	'No': 1})	
No	and	Yes (Classes:	PlayTennis Co	ounter({'N	No': 2,	'Yes': 1})	
No and Yes Classes: PlayTennis Counter({'Yes': 6, 'No': 3})								
In	forma	ation	Gain Cal	culation of	Temperatu	ıre		

LayTennis	Outlook	Temperature	Humidity	Wind	predicted	
Yes	Rain	Cool	Normal	Weak	Yes	
No	Rain	Cool	Normal	Strong	No	
Yes	Overcast	Cool	Normal	Strong	Yes	
Yes	Sunny	Cool	Normal	Weak	Yes	
LayTennis	Outlook	Temperature	Humidity	Wind	predicted	
No	Sunny	Hot	High	Strong	No	
Yes	Overcast	Hot	High	Weak	Yes	
	Yes No Yes Yes ayTennis No	Yes Rain No Rain Yes Overcast Yes Sunny ayTennis Outlook No Sunny	Yes Rain Cool No Rain Cool Yes Overcast Cool Yes Sunny Cool ayTennis Outlook Temperature No Sunny Hot	Yes Rain Cool Normal No Rain Cool Normal Yes Overcast Cool Normal Yes Sunny Cool Normal ayTennis Outlook Temperature Humidity No Sunny Hot High	Yes Rain Cool Normal Weak No Rain Cool Normal Strong Yes Overcast Cool Normal Strong Yes Sunny Cool Normal Weak ayTennis Outlook Temperature Humidity Wind No Sunny Hot High Strong	Yes Rain Cool Normal Weak Yes No Rain Cool Normal Strong No Yes Overcast Cool Normal Strong Yes Yes Sunny Cool Normal Weak Yes ayTennis Outlook Temperature Humidity Wind predicted No Sunny Hot High Strong No

Mi	ld							
	Play	Tennis	Outlook	Temperature	Humidity	Wind	predicted	
3		Yes	Rain	Mild	High	Weak	Yes	
7		No	Sunny	Mild	High	Weak	No	
9		Yes	Rain	Mild	Normal	Weak	Yes	
No	and	Yes C	lasses:	PlayTennis Co	ounter({'Y	es ': 3	3, 'No': 1})	
No	and	Yes C	lasses:	PlayTennis Co	ounter({'N	o': 1	, 'Yes': 1})	
No	and	Yes C	lasses:	PlayTennis Co	ounter({'Y	es ': 2	2, 'No': 1})	
No	and	Yes C	lasses:	PlayTennis Co	ounter({'Y	es':	6, 'No': 3})	
In	forma	ation	Gain Cal	culation of	Humidity			
Hi	gh							
	Play	Tennis	Outlo	ok Temperatu	re Humidit	у 7	Wind predicted	
1		No	Sun	ny Ho	ot Hig	h St	rong No	
2		Yes	Overca	st Ho	ot Hig	h V	Weak Yes	
3		Yes	Ra	in Mil	ld Hig	h V	Weak Yes	

									_		_		
7		1	No.	Sui	nny		Mild	Hig	h	Wea	k	No	
No:	rmal												
	Play	[enni	ĹS	Outlo	ook	Tempera	ture	Humidit	У	Win	d pre	edicted	
4		Υe	es	Ra	ain		Cool	Norma	1	Wea	k	Yes	
5		1	No.	Ra	ain		Cool	Norma	1	Stron	g	No	
6		Υe	es	Overca	ast		Cool	Norma	1	Stron	g	Yes	
8		Υe	es	Sui	nny		Cool	Norma	1	Wea	k	Yes	
9		Υe	es	Ra	ain]	Mild	Norma	1	Wea	k	Yes	
No	and	Yes	Cl	asses:	Pla	ayTennis	Cour	nter({'N	o'	: 2, '	Yes'	2 })	
No	and	Yes	Cl	asses:	Pla	ayTennis	Cour	nter({'Y	es	': 4,	'No'	: 1})	
No	and	Yes	Cl	asses:	Pla	ayTennis	Cour	nter({'Y	es	': 6,	'No'	: 3})	
In:	forma	atior	n G	ain Ca	lcul	lation o	f Wi	ind					
St	rong												
	Play	[enn:	is	Outl	ook	Tempera	ture	Humidit	У	Win	d pr	edicted	
1		1	No	Su	nny		Hot	Hig	h	Stron	g	No	
5		1	No	R	ain		Cool	Norma	1	Stron	g	No	
6		Υe	es	Overc	ast		Cool	Norma	1	Stron	ıg	Yes	
We	ak												
	Play	[enn:	is	Outl	ook	Tempera	ture	Humidit	У	Wind	pred	icted	
2		Υe	es	Overc	ast		Hot	Hig	h	Weak		Yes	
3		Ye	es	R	ain		Mild	Hig	h	Weak		Yes	
4		Υe	es	R	ain		Cool	Norma	1	Weak		Yes	
7		1	No	Su	nny		Mild	Hig	h	Weak		No	
8		Ye	es	Su	nny		Cool	Norma	1	Weak		Yes	
9		Υe	es	R	ain		Mild	Norma	1	Weak		Yes	
No	and	Yes	Cl	asses:	Pla	ayTennis	Cour	nter({'N	lo '	: 2, '	Yes'	: 1})	
No	No and Yes Classes: PlayTennis Counter({'Yes': 5, 'No': 1})												
No	No and Yes Classes: PlayTennis Counter({'Yes': 6, 'No': 3})												
In	Information Gain Calculation of Temperature												
Co	ol												
-													

Pl	LayTennis	Outlook	Temperature	Humidity	Wind	predicted	
4	Yes	Rain	Cool	Normal	Weak	Yes	
5	No	Rain	Cool	Normal	Strong	No	
Mild	d						
Pl	LayTennis	Outlook	Temperature	Humidity	Wind pr	redicted	
3	Yes	Rain	Mild	High	Weak	Yes	
9	Yes	Rain	Mild	Normal	Weak	Yes	
No a	and Yes Cl	Lasses: I	PlayTennis Co	ounter({'Y	es': 1,	'No': 1})	
No a	and Yes Cl	Lasses: I	PlayTennis Co	ounter({'Y	es': 2})		
No a	and Yes Cl	Lasses: I	PlayTennis Co	ounter({'Y	es': 3,	'No': 1})	
Info	ormation (Gain Calo	culation of	Humidity			
High	ì						
Pl	LayTennis	Outlook	Temperature	Humidity	Wind pr	redicted	
3	Yes	Rain	Mild	High	Weak	Yes	
Norm	nal						

P]	LayTe	ennis	Outlo	ok !	Temperature	Humidity	Wind p	oredicted	
4		Yes	Rai	n	Cool	Normal	Weak	Yes	
LE			- D		G 1	N 1	G+	27 -	
5		N	o Ra	ain	Cool	Normal	Strong	No	
9		Ye	s Ra	ain	Mild	Normal	Weak	Yes	
No	and	Yes	Classes	S:	PlayTennis C	ounter({'}	/es ': 1})	
No	and	Yes	Classes	s: :	PlayTennis C	ounter({'}	Yes': 2,	'No': 1})	
No	and	Yes	Classes	S:	PlayTennis C	ounter({'}	Yes': 3,	'No': 1})	
Inf	forma	ation	Gain (Cal	culation of	Wind			
Sti	rong								
I	Play	enni	s Outlo	ook	Temperature	Humidity	Wind	predicted	
5		N	o Rā	ain	Cool	Normal	Strong	No	
Wea	ak								
I	Play	Cenni	s Outlo	ook	Temperature	Humidity	Wind p	redicted	
3		Ye	s Rā	ain	Mild	High	Weak	Yes	
4		Ye	s Rá	ain	Cool	Normal	Weak	Yes	
9		Ye	s Ra	ain	Mild	Normal	Weak	Yes	
No	and	Yes	Classes	s: :	PlayTennis C	ounter({'N	No': 1})		
No	and	Yes	Classes	s:	PlayTennis C	ounter({'}	res ': 3}))	
No	and	Yes	Classes	s:	PlayTennis C	ounter({'}	/es': 3,	'No': 1})	
Inf	forma	ation	Gain (Cal	culation of	Temperatu	ire		

	PlayTe	ennis	Outlook	Temperature	Humidity	Wind	predicted	
3		Yes	Rain	Mild	High	Weak	Yes	
4		Yes	Rain	Cool	Normal	Weak	Yes	
9		Yes	Rain	Mild	Normal	Weak	Yes	
No	o and Y	es C	lasses: 1	PlayTennis Co	ounter({'N	lo ': 1)	•)	
No	o and Y	es C	lasses: 1	PlayTennis Co	ounter({''	/es ': 3	3 })	
No	o and Y	es C	lasses: 1	PlayTennis Co	ounter({'}	/es ': 3	, 'No': 1})	
Ir	nformat	cion (Gain Cal	culation of	Temperati	ire		
Co	ool							
	PlayTe	ennis	Outlook	Temperature	Humidity	Wind	predicted	
8		Yes	Sunny	Cool	Normal	Weak	Yes	
Н	ot							
	PlayTe	ennis	Outlook	Temperature	Humidity	Wir	nd predicted	
1		No	Sunny	Hot	High	Stron	ng No	
M	ild							
	PlayTe	ennis	Outlook	Temperature	Humidity	Wind	predicted	

PlayTennis Outlook Temperature Humidity Wind predicted								
7 No Sunny Mild High Weak No								
No and Yes Classes: PlayTennis Counter({'Yes': 1})								
No and Yes Classes: PlayTennis Counter({'No': 1})								
No and Yes Classes: PlayTennis Counter({'No': 1})								
No and Yes Classes: PlayTennis Counter({'No': 2, 'Yes': 1})								
Information Gain Calculation of Humidity								
High								
PlayTennis Outlook Temperature Humidity Wind predicted								
1 No Sunny Hot High Strong No								
7 No Sunny Mild High Weak No								
Normal								
PlayTennis Outlook Temperature Humidity Wind predicted								
8 Yes Sunny Cool Normal Weak Yes								
No and Yes Classes: PlayTennis Counter({'No': 2})								
No and Yes Classes: PlayTennis Counter({'Yes': 1})								
No and Yes Classes: PlayTennis Counter({'No': 2, 'Yes': 1})								
Information Gain Calculation of Wind								

St	rong								
	Playl	Cenni	s	Outlook	Temperature	Humidity	Wind	d predicted	
1		N	lo	Sunny	Hot	High	Strong	g No	
We	ak								
	Playl	Cenni	S	Outlook	Temperature	Humidity	Wind p	predicted	
7		N	lo	Sunny	Mild	High	Weak	No	
8		Υe	s	Sunny	Cool	Normal	Weak	Yes	
No	and	Yes	Cl	asses:	PlayTennis Co	ounter({'N	o': 1}		
No	and	Yes	Cl	asses:	PlayTennis Co	ounter({'N	io': 1,	'Yes': 1})	
No	and	Yes	Cl	asses:	PlayTennis Co	ounter({'N	lo': 2,	'Yes': 1})	

Accuracy is : 0.75

Program5: Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets

Algorithm:

```
function BackProp (D, \eta, n_{in}, n_{hidden}, n_{out})
    D is the training set consists of m pairs: \{(x_i, y_i)^m\}
   \eta is the learning rate as an example (0.1) n_{\rm in}, n_{\rm hidden} e n_{\rm out} are the numbero of imput hidden and output unit of neural network
    Make a feed-forward network with n_{in}, n_{hidden} e n_{out} units
    Initialize all the weight to short randomly number (es. [-0.05 0.05])
     Repeat until termination condition are verifyed:
    For any sample in D:
           Forward propagate the network computing the output o_u of every unit u of the
           Back propagate the errors onto the network:
                                                                             \delta_k = o_k (1 - o_k)(t_k - o_k)
              – For every output unit k, compute the error \delta_k:
             – For every hidden unit h compute the error \delta_h: \delta_h = o_h (1 - o_h) \sum w_{kh} \delta_k
                                                            w_{ji} = w_{ji} + \Delta w_{ji},
                                                                                       where \Delta w_{ii} = \eta \delta_i x_{ii}
             - Update the network weight wii:
                                  (x_{ii} \text{ is the input of unit } j \text{ from coming from unit } i)
```

The Backpropagation Algorithm for a feed-forward 2-layer network of sigmoid units, the stochastic version

Program Code:

```
import numpy as np
\# X = (hours \ studying, \ hours \ sleeping), \ y = score \ on \ test,
xPredicted = 4 hours studying & 8 hours sleeping (input data for
prediction)
X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)
y = np.array(([92], [86], [89]), dtype=float)
xPredicted = np.array(([4,8]), dtype=float)
X = X/np.amax(X, axis=0)
xPredicted = xPredicted/np.amax(xPredicted, axis=0)
y = y/100 \# max test score is 100
class Neural Network(object):
    def init (self):
        self.inputSize = 2
        self.outputSize = 1
        self.hiddenSize = 3
        self.W1 = np.random.randn(self.inputSize, self.hiddenSize)
 (3x2) weight matrix from input to hidden layer
        self.W2 = np.random.randn(self.hiddenSize, self.outputSize)
 (3x1) weight matrix from hidden to output layer
    def forward(self, X):
        self.z = np.dot(X, self.W1)
        self.z2 = self.sigmoid(self.z) # activation function
```

```
self.z3 = np.dot(self.z2, self.W2) # dot product of hidden
layer (z2) and second set of 3x1 weights
        o = self.sigmoid(self.z3) # final activation function
        return o
    def sigmoid(self, s):
        return 1/(1+np.exp(-s))
    def sigmoidPrime(self, s):
        return s * (1 - s)
    def backward(self, X, y, o):
        self.o error = y - o # error in output
        self.o delta = self.o error*self.sigmoidPrime(o) # applying
derivative of sigmoid to error
        self.z2 error = self.o delta.dot(self.W2.T) # z2 error: how
much our hidden layer weights contributed to output error
       self.z2 delta = self.z2 error*self.sigmoidPrime(self.z2) #
applying derivative of sigmoid to z2 error
        self.W1 += X.T.dot(self.z2 delta) # adjusting first set
(input --> hidden) weights
        self.W2 += self.z2.T.dot(self.o delta) # adjusting second
set (hidden --> output) weights
    def train(self, X, y):
        o = self.forward(X)
        self.backward(X, y, o)
    def saveWeights(self):
        np.savetxt("w1.txt", self.W1, fmt="%s")
        np.savetxt("w2.txt", self.W2, fmt="%s")
    def predict(self):
        print("Predicted data based on trained weights: ")
        print("Input (scaled): \n" + str(xPredicted))
        print("Output: \n" + str(self.forward(xPredicted)))
NN = Neural Network()
for i in range(1000): # trains the NN 1,000 times
   print("# " + str(i) + "\n")
   print("Input (scaled): \n" + str(X))
   print("Actual Output: \n" + str(y))
   print("Predicted Output: \n" + str(NN.forward(X)))
   print("Loss: \n" + str(np.mean(np.square(y - NN.forward(X)))))
# mean sum squared loss
   print("\n")
   NN.train(X, y)
    NN.saveWeights()
    NN.predict()
```


Program5: Write a program to implement the naïve Bayesian classifier

for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

Bayesian Theorem:

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- P(h) = prior probability of hypothesis h
- P(D) = prior probability of training data D
- P(h|D) = probability of h given D
- P(D|h) = probability of D given h

Program Code:

```
import csv
import random
import math
def loadcsv(filename):
    lines = csv.reader(open(filename, "r"))
    dataset = list(lines)
    for i in range(len(dataset)):
           dataset[i] = [float(x) for x in dataset[i]]
    return dataset
def splitDataset(dataset, splitRatio):
    trainSize = int(len(dataset) * splitRatio)
    trainSet = []
    copy = list(dataset)
    while len(trainSet) < trainSize:</pre>
        index = random.randrange(len(copy)) # random index
        trainSet.append(copy.pop(index))
    return [trainSet, copy]
def separateByClass(dataset):
    separated = {}
    for i in range(len(dataset)):
        vector = dataset[i]
        if (vector[-1] not in separated):
            separated[vector[-1]] = []
        separated[vector[-1]].append(vector)
```

```
return separated
def mean(numbers):
   return sum(numbers)/float(len(numbers))
def stdev(numbers):
   avg = mean(numbers)
   variance
                      sum([pow(x-avq,2) for x]
              =
                                                            in
numbers])/float(len(numbers)-1)
   return math.sqrt(variance)
def summarize(dataset):
    summaries = [(mean(attribute), stdev(attribute))
                                                            for
attribute in zip(*dataset)]
   del summaries[-1]
   return summaries
def summarizeByClass(dataset):
    separated = separateByClass(dataset)
    summaries = {}
    for classValue, instances in separated.items():
        summaries[classValue] = summarize(instances)
    return summaries
def calculateProbability(x, mean, stdev):
   exponent
                                       math.exp(-(math.pow(x-
mean, 2) / (2*math.pow(stdev, 2)))
   return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent
def calculateClassProbabilities(summaries, inputVector):
   probabilities = {}
   for classValue, classSummaries in summaries.items():
        probabilities[classValue] = 1
        for i in range(len(classSummaries)):
           mean, stdev = classSummaries[i]
            x = inputVector[i]
           probabilities[classValue]
calculateProbability(x, mean, stdev)
   return probabilities
def predict(summaries, inputVector):
   probabilities = calculateClassProbabilities(summaries,
inputVector)
   bestLabel, bestProb = None, -1
    for classValue, probability in probabilities.items():
        if bestLabel is None or probability > bestProb:
           bestProb = probability
           bestLabel = classValue
   return bestLabel
def getPredictions(summaries, testSet):
   predictions = []
```

```
for i in range(len(testSet)):
       result = predict(summaries, testSet[i])
        predictions.append(result)
    return predictions
def getAccuracy(testSet, predictions):
   correct = 0
   for i in range(len(testSet)):
        if testSet[i][-1] == predictions[i]:
            correct += 1
    return (correct/float(len(testSet))) * 100.0
def main():
   filename
                      'C:\\Users\\ISE\\Desktop\\Python-naive-
                =
Bayesian-Classifier1-master\\pima-indians-diabetes.csv'
    splitRatio = 0.67
   dataset = loadcsv(filename)
   print("\n The length of the Data Set : ",len(dataset))
   print("\n The Data Set Splitting into Training and Testing
\n")
    trainingSet, testSet = splitDataset(dataset, splitRatio)
   print('\n Number of
                                     in Training
                              Rows
                                                       Set: { 0 }
rows'.format(len(trainingSet)))
   print('\n Number of
                              Rows in
                                            Testing
                                                       Set: { 0 }
rows'.format(len(testSet)))
   print("\n First Five Rows of Training Set:\n")
    for i in range (0,5):
       print(trainingSet[i],"\n")
   print("\n First Five Rows of Testing Set:\n")
   for i in range (0,5):
       print(testSet[i],"\n")
       summaries = summarizeByClass(trainingSet)
   print("\n Model Summaries:\n", summaries)
      predictions = getPredictions(summaries, testSet)
   print("\nPredictions:\n",predictions)
   accuracy = getAccuracy(testSet, predictions)
   print('\n Accuracy: {0}%'.format(accuracy))
main()
```

OUTPUT

Program 7: Apply **EM algorithm** to cluster a set of data stored in a .CSV file. Use the same data set for clustering using **k-Means algorithm**. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

Algorithm:

Expectation Maximization (EM) Algorithm

- · When to use:
 - Data is only partially observable
 - Unsupervised clustering (target value unobservable)
 - Supervised learning (some instance attributes unobservable)
- Some uses:
 - Train Bayesian Belief Networks
 - Unsupervised clustering (AUTOCLASS)
 - Learning Hidden Markov Models

EM for Estimating k Means

- Given:
 - Instances from X generated by mixture of k Gaussian distributions
 - Unknown means < μ₁,..., μ_k > of the k Gaussians
 - Don't know which instance x_i was generated by which Gaussian
- Determine:
 - Maximum likelihood estimates of < μ₁,...,μ_k >
- Think of full description of each instance as

```
y_i = \langle x_i, z_{i1}, z_{i2} \rangle where
```

- z_{ij} is 1 if x_i generated by jth Gaussian
- x_i observable
- z_{ij} unobservable

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
import pandas as pd
import numpy as np

iris = datasets.load_iris()
X = pd.DataFrame(iris.data)
X.columns =
['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']
y = pd.DataFrame(iris.target)
y.columns = ['Targets']
```

```
model = KMeans(n clusters=3)
model.fit(X)
plt.figure(figsize=(14, 14))
colormap = np.array(['red', 'lime', 'black'])
plt.subplot(2, 2, 1)
plt.scatter(X.Petal Length,
                                                 X.Petal Width,
c=colormap[y.Targets], s=40)
plt.title('Real Clusters')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.subplot(2, 2, 2)
plt.scatter(X.Petal Length,
                                                 X. Petal Width,
c=colormap[model.labels ], s=40)
plt.title('K-Means Clustering')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
from sklearn import preprocessing
scaler = preprocessing.StandardScaler()
scaler.fit(X)
xsa = scaler.transform(X)
xs = pd.DataFrame(xsa, columns=X.columns)
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n components=3)
gmm.fit(xs)
gmm y = gmm.predict(xs)
plt.subplot(2, 2, 3)
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[gmm y],
s = 40)
plt.title('GMM Clustering')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.show()
print('Observation: The GMM using EM algorithm based
clustering matched the true labels more closely than the
Kmeans.')
```

OUTPUT:

Program8 : Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.

KNN ALGORITHM

Training algorithm:

For each training example (x, f(x)), add the example to the list training_examples

Classification algorithm:

Given a query instance x_q to be classified,

- Let x₁...x_k denote the k instances from training examples that are nearest to x_q
- Return

$$\hat{f}(x_q) \leftarrow \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^k \delta(v, f(x_i))$$

where $\delta(a, b) = 1$ if a = b and where $\delta(a, b) = 0$ otherwise.

The k-Nearest Neighbor algorithm for approximating a discrete-valued function $f: \Re^n \to V$.

PROGRAM CODE:

```
from sklearn.datasets import load iris
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
from sklearn.model selection import train test split
iris dataset=load iris()
print("\n
            IRIS
                    FEATURES
                                     TARGET
                                              NAMES:
                                                        \n
iris dataset.target names)
for i in range(len(iris dataset.target names)):
print("\n[{0}]:[{1}]".format(i,iris_dataset.target names[i]))
print("\n IRIS DATA :\n",iris dataset["data"])
X train,
                X test,
                                y_train,
                                                y test
train test split(iris dataset["data"], iris dataset["target"],
random state=0)
print("\n Target :\n",iris dataset["target"])
print("\n X TRAIN \n", X train)
print("\n X TEST \n", X test)
print("\n Y TRAIN \n", y train)
```

```
print("\n Y TEST \n", y test)
kn = KNeighborsClassifier(n neighbors=1)
kn.fit(X train, y train)
x \text{ new} = \text{np.array}([[5, 2.9, 1, 0.2]])
print("\n XNEW \n", x new)
prediction = kn.predict(x new)
print("\n Predicted target value: {}\n".format(prediction))
print("\n Predicted feature name: {}\n".format
    (iris dataset["target names"][prediction]))
i=1
x = X \text{ test[i]}
x new = np.array([x])
print("\n XNEW \n", x new)
for i in range(len(X test)):
   x = X \text{ test[i]}
    x new = np.array([x])
    prediction = kn.predict(x new)
    print("\n
                Actual
                                      {0} {1},
                                                        Predicted
:{2}{3}".format(y test[i],iris dataset["target names"][y test[
i]],prediction,iris dataset["target names"][prediction]))
print("\n
                           TEST
                                                 SCORE [ACCURACY]:
{:.2f}\n".format(kn.score(X test, y test)))
```

Output:

```
Actual : 2 virginica, Predicted :[2]['virginica']
Actual : 1 versicolor, Predicted :[1]['versicolor']
Actual : 0 setosa, Predicted :[0]['setosa']
Actual : 2 virginica, Predicted :[2]['virginica']
Actual : 0 setosa, Predicted :[0]['setosa']
-----
Actual : 1 versicolor, Predicted :[2]['virginica']
TEST SCORE[ACCURACY]: 0.97
```

Program9: Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Algorithm

- 1. Read the Given data Sample to X and the curve (linear or non linear) to Y
- 2. Set the value for Smoothening parameter or Free parameter say τ
- 3. Set the bias /Point of interest set X0 which is a subset of X
- 4. Determine the weight matrix using:

$$w(x, x_o) = e^{-\frac{(x - x_o)^2}{2\tau^2}}$$

5. Determine the value of model term parameter β using :

$$\hat{\beta}(x_o) = (X^T W X)^{-1} X^T W y$$

6. Prediction = $x0*\beta$

Program code:

```
import numpy as np
from bokeh.plotting import figure, show, output_notebook
from bokeh.layouts import gridplot
from bokeh.io import push_notebook

output_notebook()
```

```
import numpy as np

def local_regression(x0, X, Y, tau):
    # add bias term
    x0 = np.r_[1, x0]
    X = np.c_[np.ones(len(X)), X]

xw = X.T * radial_kernel(x0, X, tau)

beta = np.linalg.pinv(xw @ X) @ xw @ Y

return x0 @ beta
```

```
def radial_kernel(x0, X, tau):
    return np.exp(np.sum((X - x0) ** 2, axis=1) / (-2 * tau * tau))
```

```
n = 1000
# generate dataset
X = np.linspace(-3, 3, num=n)
print("The Data Set ( 10 Samples) X :\n", X[1:10])
Y = np.log(np.abs(X ** 2 - 1) + .5)
print("The Fitting Curve Data Set (10 Samples) Y
:\n", Y[1:10])
# jitter X
X += np.random.normal(scale=.1, size=n)
print("Normalised (10 Samples) X :\n", X[1:10])
```

```
domain = np.linspace(-3, 3, num=300)
print(" Xo Domain Space(10 Samples) :\n",domain[1:10])

def plot_lwr(tau):
    prediction = [local_regression(x0, X, Y, tau) for x0 in domain]
    plot = figure(plot_width=400, plot_height=400)
    plot.title.text='tau=%g' % tau
    plot.scatter(X, Y, alpha=.3)
    plot.line(domain, prediction, line_width=2, color='red')
    return plot
```

Plotting the curves with different tau

```
# Plotting the curves with different tau
show(gridplot([
        [plot_lwr(10.), plot_lwr(1.)],
        [plot_lwr(0.1), plot_lwr(0.01)]
]))
```

Output:

