Modéliser le comportement statique des systèmes mécaniques

Révision 1 – Résolution des problèmes de statique – Statique 2D

Sciences
Industrielles de
l'Ingénieur

TD 01

Modélisation d'un hayon de coffre électrique

Concours Centrale Supelec TSI 2013

Savoirs et compétences :

Mise en situation

Objectif
• Déterminer les caractéristiques du vérin à choisir pour répondre au cahier des charges : longueur du vérin en position coffre ouvert et coffre fermé, course du vérin, raideur du ressort équipant le vérin.

- Determiner le couple moteur maximal nécessaire pour le maintien en position du hayon.
- Déterminer le courant de pincement afin que l'effort de pincement soit inférieure à 40 N pendant 10 ms.

Caractéristiques géométriques du vérin

Question 1 Déterminer l'angle d'ouverture maximal.

D'une part, $x = d \sin 42 \simeq 0.67$ m. D'autre part, $\sin \alpha = \frac{1,8-0,7-x}{d} = 0,43$. Au final $\alpha = 25,5^{\circ}$.

L'angle d'ouverture est donc de 67,5°.

Question 2 Déterminer la longueur du vérin L en fonction de l'angle d'ouverture du coffre θ .

Correction

La longueur du vérin est donnée par la valeur de L. En réalisant la fermeture géométrique, on a $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0} \Leftrightarrow -a\overrightarrow{x_0} + b\overrightarrow{y_0} + c\overrightarrow{x_p} - L\overrightarrow{x_p} = \overrightarrow{0}$.

En projetant l'équation vectorielle dans \mathcal{R}_0 , on a :

$$\begin{cases} -a + c\cos\theta - L\cos\alpha = 0\\ b + c\sin\theta - L\sin\alpha = 0 \end{cases}$$

On a donc $L^2 = (-a + c \cos \theta)^2 + (b + c \sin \theta)^2$.

Question 3 Déterminer les valeurs extrêmes de L, ainsi que la course du vérin.

Correction

La longueur du vérin varie de $43.3\,\mathrm{cm}$ à $56.5\,\mathrm{cm}$ soit une course de $13.2\,\mathrm{cm}$.

Dimensionnement des caractéristiques du ressort

Question 4 Déterminer l'effort F exercé par chacun des vérins sur la porte de coffre en fonction de θ , α et des constantes du problème.

Correction

On isole le corps et le piston du vérin. L'ensemble est soumis à deux actions mécaniques (liaisons sphériques en A et C). D'après le PFS, cette action mécanique est donc suivant Ces deux actions mécaniques sont donc de même direction (le vecteur $\overrightarrow{x_{v}}$), de même norme et de sens opposé.

On isole le hayon h.

On réalise le BAME :

- action mécanique du vérin $v : {\mathscr{T}(v \to h)} =$ $F_{\nu}\overrightarrow{x_{\nu}}$ $\left\{\begin{array}{c} F_{\nu}x_{\nu} \\ \overrightarrow{0} \end{array}\right\}_{C};$ • action de la pesanteur : $\{\mathscr{T}(\text{pes} \rightarrow h)\} =$
- $\left\{\begin{array}{c} -Mg\overrightarrow{y_t} \\ \overrightarrow{0} \end{array}\right\}_G;$ action de la pivot en $B: \{\mathcal{T}(0 \to h)\}.$

On cherche à connaître l'action du vérin en fonction des actions de pesanteur. On réalise donc le théorème

2

du moment statique en
$$B$$
 en projection sur $\overrightarrow{z_0}$:
$$\left(\overrightarrow{0} + \overrightarrow{BC} \wedge F_v \overrightarrow{x_v} + \overrightarrow{0} + \overrightarrow{BG} \wedge -Mg \overrightarrow{y_t}\right) \cdot \overrightarrow{z_0} = \overrightarrow{0} \Rightarrow \left(c\overrightarrow{x_p} \wedge F_v \overrightarrow{x_v} + \lambda \overrightarrow{x_p} \wedge -Mg \overrightarrow{y_t}\right) \cdot \overrightarrow{z_0} = \overrightarrow{0}$$

$$\overrightarrow{y_v}$$
 $\overrightarrow{y_p}$ $\overrightarrow{y_t}$ $\overrightarrow{x_v}$ $\overrightarrow{x_p}$ $\overrightarrow{x_p}$ $\overrightarrow{x_t}$

$$\Leftrightarrow c F_v \sin(\alpha - \theta) - \lambda M g \cos \theta = 0$$

$$F_v = \frac{\lambda M g \cos \theta}{c \sin(\alpha - \theta)}.$$

Dans le cas où on considère les deux vérins, on aura $F_1 = F_2 = F_{\nu}/2$.

Question 5 Déterminer la raideur k du ressort et sa longueur à vide L_0 de manière à obtenir une situation d'équilibre sur la plus grande plage de fonctionnement. Préciser votre démarche.

Si on isole la tige du vérin:

- en phase d'ouverture, le TRS s'exprime par : $F_m + F_r F_f F_h = 0 \Leftrightarrow F_r = F_f + F_h F_m$;
- en phase de fermeture, le TRS s'exprime par : $-F_m + F_r + F_f F_h = 0 \Leftrightarrow F_r = -F_f + F_h + F_m$;

La plage de fonctionnement la plus large est située entre $0.5\,\mathrm{m}$ et $0.56\,\mathrm{m}$. La pente est la même pour les 3 courbes. Elle est d'environ $k=\frac{100}{0,06}\simeq 1667\,\mathrm{N\,m^{-1}}$.

En phase de fermeture, lorsque le vérin est déployé, la précharge permettant d'assurer l'équilibre est d'environ 500 N. L'écrasement est donc de 300 mm environ.

Question 6 Déterminer le couple moteur maximal en phase d'ouverture puis en phase de fermeture.

Correction

En phase d'ouverture, le couple maximal est de $4\times 10^{-3}\,\mathrm{Nm}$. En phase de fermeture il est de $3.5\times 10^{-3}\,\mathrm{Nm}$.

Réglage de la fonction sécurité des personnes

Question 7 Déterminer l'expression littérale puis la valeur numérique de ΔF l'accroissement de la force qu'exerce chacun des vérins sur la porte de hayon.

Correction

On isole le hayon et on réalise le BAME. Le théorème du moment statique en B en projection sur $\overrightarrow{z_0}$:

$$(\overrightarrow{0} + \overrightarrow{BC} \wedge -2\Delta F \overrightarrow{x_{v}} + \overrightarrow{0} + \overrightarrow{BD} \wedge F_{\text{pinc}} \overrightarrow{y_{0}}) \cdot \overrightarrow{z_{0}} =$$

$$\overrightarrow{0} \Rightarrow (c \overrightarrow{x_{0}} \wedge -2\Delta F \overrightarrow{x_{v}} + d \overrightarrow{x_{0}} \wedge F_{\text{pinc}} \overrightarrow{y_{0}}) \cdot \overrightarrow{z_{0}} = \overrightarrow{0} \Rightarrow$$

$$-c2\Delta F \sin \alpha + d F_{\text{pinc}} = 0 \Rightarrow \Delta F = \frac{d F_{\text{pinc}}}{c2 \sin \alpha}.$$

$$AN : \text{Pour } \theta = 0, \tan \alpha = \frac{b}{-a+c} = \frac{0, 14}{-0, 55+0, 14} =$$

$$-0, 34 \Rightarrow \alpha \simeq -18, 8^{\circ}. \Rightarrow \Delta F = \frac{40}{2 \cdot 0, 14 \sin \alpha} = -443 \text{ N}.$$

La constante de couple du moteur est donnée par $K_t = 9.5 \times 10^{-3} \,\mathrm{NmA^{-1}}$.

Question 8 En déduire la valeur numérique de l'accroissement ΔC_m de couple moteur en fonction de la présence d'un obstacle. Déterminer l'intensité maximale du courant dans le moteur lors d'un pincement.

Correction

3

On a $|\Delta C_m| = \rho |\Delta F|$ avec $\rho = 7.89 \times 10^{-5}$ m. En conséquence : $|\Delta C_m| = 443 \cdot 7,89 \cdot 10^{-5} = 35$ mNm.

En fin de fermeture, $C_m = 2.5 \times 10^{-3} \,\text{Nm}.$ En conséquence $I_{\text{max}} = \frac{C_{\text{max}}}{K_t} = \frac{C_m + \Delta C_m}{K_t} = \frac{2.5 \times 10^{-3} \,\text{Nm}.}{2.5 \times 10^{-3} + 35 \cdot 10^{-3}} = 3.95 \,\text{A}.$