

Mandy McClintock Machine Learning Project NYC Data Science Academy Feb 2021

# THE CHALLENGE

For the Ames housing dataset, predict Sale Price.

### Who **BENEFITS** from this task?

| Sellers               | It's important to know the value of your house. Rule #1: Do not overprice your home. | What work should I put into the house? Will it be worth it? |
|-----------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Real Estate<br>Agents | Support your client: seller or buyer. Maximize your commission.                      |                                                             |
| Buyers                | Negotiate with confidence!                                                           |                                                             |

## LET'S TALK ABOUT AMES, IA

Ames is a city in the state of Iowa.

- 🛆 Average Commute: **16 min**
- △ Median Household Income: \$48,105

36 parks, trails, an aquatic center, and ice skating rink





IG: @cityofames

# MORE ON AMES: MAJOR EMPLOYERS

- △ Mary Greeley Medical Center (1300)
- △ 3M (250-500)



IG: @iowastateu



@iowadot



@marygreeley100

# THE DATASET



- △ Load Dataset

1460 rows
81 columns

### 1. EXPLORATORY DATA ANALYSIS

## **Dependent Variable**



- △ Load Dataset

## 1. EXPLORATORY DATA ANALYSIS

## **Dependent Variable**



## 1. EXPLORATORY DATA ANALYSIS

△ Examine Data

Independent Variables



### 1. EXPLORATORY DATA ANALYSIS

#### 15 Homes Removed

△ Examine Data, looking for discrepancies, outliers

Removed <u>6 homes</u> because the Total Bedrooms Above Ground = 0

Removed <u>1 home</u> because Full Baths =0 (above ground or basement)

Removed <u>1 home</u> because Kitchen Above Ground = 0, but there was a Kitchen Quality entry = Typical Removed <u>1 home</u> because Basement Finish Type 2 is missing, but Basement Finish Type 2 Square Footage != 0

Removed <u>5 homes</u> because Masonry Veneer Type = None, but Masonry Veneer Area !=0

Removed <u>1 home</u> because it had no electrical information



### 1. EXPLORATORY DATA ANALYSIS

#### 4 additional Homes Removed

Examine Data, looking for discrepancies, outliers



Removed <u>4 homes</u> because Square Footage (above ground) are outliers

Z-scores > 4.5

## 1. EXPLORATORY DATA ANALYSIS

- - -LotFrontage
  - -MasVnrArea
  - -Bsmt variables
  - -Garage variables
  - -FireplaceQu
  - -Pool variables
  - -Alley
  - -Fence

△ Examine Data

## Home Size

### 1. EXPLORATORY DATA ANALYSIS



## 1. EXPLORATORY DATA ANALYSIS

Examine Data

# Curb Appeal



## 1. EXPLORATORY DATA ANALYSIS

△ Examine Data

# Curb Appeal



## 1. EXPLORATORY DATA ANALYSIS

## Location



## 1. EXPLORATORY DATA ANALYSIS

△ Examine Data

## Location



## 2. Feature Engineering

## 2. Feature Engineering

#### △ Select Features

 My goal was to reduce the number of features that I sent into the Model training step.

#### **Numerical Variables**

Metric - correlation between log of Sale Price and the independent variable.

Correlation threshold = 0.15

22 (out of 30) Numerical variables met the criteria

## 2. Feature Engineering

#### △ Select Features

 My goal was to reduce the number of features that I sent into the Model training step.

#### **Categorical Variables**

Procedure - Anova and effects size.

Anova p-value < 0.01 Effect size > 0.059

27 (49) categorical variables met the criteria

## 3. Preprocessing



## 4. Train the Models

| Model             | Туре       | Hyperparameters       |  |  |
|-------------------|------------|-----------------------|--|--|
| Linear Regression | Linear     | None                  |  |  |
| Lasso             | Linear     | λ = 0.001             |  |  |
| Ridge             | Linear     | λ = 0.01              |  |  |
| Elastic Net       | Linear     | λ = 0.006             |  |  |
| LIASIIC INCI      | Lilleai    | I1_ratio = 0.1        |  |  |
| Random Forests    | Non-linear | max_features = 6      |  |  |
|                   |            | n_estimators = 500    |  |  |
|                   |            | min_samples_split = 2 |  |  |
| Gradient Boosting | Non-linear | learning_rate = 0.01  |  |  |
|                   |            | n_estimators = 2000   |  |  |
|                   |            | max_features = 4      |  |  |
|                   |            | min_samples_split = 2 |  |  |



## **△** Evaluate Models

| Model       | RMSE<br>Logarithmic<br>Train | RMSE<br>Logarithmic<br>Test | RMSE<br>(dollars)<br>Train | RMSE<br>(dollars)<br>Test | r²<br>Train | r²<br>Test |
|-------------|------------------------------|-----------------------------|----------------------------|---------------------------|-------------|------------|
| Elastic Net | 0.1162                       | 0.1156                      | 20,786                     | 19,013                    | 0.92        | 0.91       |
| Lasso       | 0.1175                       | 0.1159                      | 21,073                     | 18,943                    | 0.91        | 0.90       |
| Ridge       | 0.1057                       | 0.1198                      | 19,509                     | 18,846                    | 0.93        | 0.90       |
| Random      |                              |                             |                            |                           |             |            |
| Forests     | 0.0526                       | 0.1272                      | 10,378                     | 20,689                    | 0.98        | 0.89       |
| Gradient    |                              |                             |                            |                           |             |            |
| Boosting    | 0.0830                       | 0.1281                      | 14,110                     | 21,137                    | 0.96        | 0.88       |
| Linear      |                              |                             |                            |                           |             |            |
| Regression  | 0.1063                       | nan                         | 19,621                     | nan                       | 0.93        | nan        |

#### **House Features**



#### **Increase** in Sale Price:

- Central Air
- High Quality Kitchen
- High Quality Heating System
- Fireplace

### **Home Size**



#### <u>Increase</u> in Sale Price:

- Home Square Footage
- Number of Bathrooms

An increase in <u>500 square feet</u> could result in an Sale Price increase of 7%.

An increase in <u>1 bathroom</u> could result in a Sale Price increase of 1%.

## Location



#### <u>Increase</u> in Sale Price:

Homes in the following neighborhoods:

> NridgHt NoRidge StoneBr Timber Somerst Veenker Crawfor

### Exterior



#### <u>Increase</u> in Sale Price:

- Exterior Brick Face
- Exterior Metal Siding
- Excellent Exterior Quality
- Wood Deck Square Footage

#### **Basement**



#### <u>Increase</u> in Sale Price:

- Larger Basement
- Larger Finished Basement
- Excellent Quality Basement

## Garage



#### **Increase** in Sale Price:

- Good or Average Garage Quality
- Larger Garage

# CONCLUSIONS

## Seller: Things to consider

- Update Heating System (2%)
- Update your Kitchen (4%)
- Add a Bathroom (1%)
- Improve the Exterior Quality (1%)
- Finish the Basement

My Future Work: Look into where the model is failing and flag homes for further analysis.

Goal: expand EDA and improve both the Feature Engineering and Feature Selection steps.

