

FUN with Flags STATS

Jan van Grimbergen, Jonathan Bobak

06.01.2025

Random Variables and Density Functions

Our experiment can be described with three random variables

Distributions

- Discrete Distributions
- Continuous Distributions

Distributions And Descriptive Statistic

Discrete

$$\mu = E[X] = \sum_{i} x_i p_i$$

$$\sigma^2 = Var[X] = \sum_{i} (x_i - E[X])^2 p_i$$

Continuous

$$\mu = E[X] = \int_{-\infty}^{\infty} x f(x) dx$$
$$\sigma^2 = Var[X] = \int_{-\infty}^{\infty} (x - E[X])^2 f(x) dx$$

Approx Expectation Value and Variance From Measurements

Random variable X with measurements $y_1, y_2, y_3, ..., y_m$

$$E[X] \approx \hat{\mu} = \frac{1}{m} \sum_{i=1}^{m} y_i$$

$$Var[X] \approx \hat{\sigma}^2 = \frac{1}{m-1} \sum_{i=1}^{m} (x_i - \hat{\mu})^2$$

Law of Large Numbers

$$\hat{\mu} \xrightarrow{m \to \infty} \mu$$

$$\hat{\sigma} \xrightarrow{m \to \infty} \sigma$$

Short Trip Back To Python

Some Very Important Parameter

0.75	0.38	 0.63
0.15	0.89	 0.58
0.3	0.90	 0.87

Does \nearrow or \nearrow have a significant effect on

- Want to test if the expected value of cells treaded with or or differ significantly from the control group.
- Question: Is the measured difference bigger than you would expect under randomness?
- Assume that X, Y and Z are normally distributed.

A common assumption with real-world data that comes from the Central Limit Theorem

Testing - Errors

Does have a significant effect on (Can we reject the Null Hypothesis?

Null Hypothesis: $\mu_Y = \mu_Z$

Alternative hypothesis: $\mu_Y \neq \mu_Z$

Figure 3.1 Type I and Type II errors

	Null Hypothesis: True	Alternative Hypothesis: True
Can not reject Null Hypothesis	Correct Decision	Type 2 Error
Have to reject Null Hypothesis	Type 1 Error	Correct Decision

- The Type 1 Error is controlled to occure with a probability of at most $100 * \alpha$ (α is called the significance level of the test)
- We reject the Null Hypothesis if the probability p to observe the measured differences or a more extreme one in μ_Y and μ_Z is less than α . p is called the p-value. It is common to use $\alpha = 0.05$.
- How to calculate the p-value?

Testing - Welch's t-Test

How to calculate the p-value?

- The test statistic transforms the observed data into a space that follows a known distribution.
- This allows us to calculate the probability of obtaining the observed value or a more extreme one under the null hypothesis (p-value)

$$t = \frac{\widehat{\mu_Y} - \widehat{\mu_Z}}{\sqrt{\widehat{\sigma_Y}^2 + \widehat{\sigma_Z}^2}} \qquad v \approx \frac{(\frac{\widehat{\sigma_Y}^2}{m_Y} + \frac{\widehat{\sigma_Z}^2}{m_Z})^2}{(\frac{\widehat{\sigma_Y}^2}{m_Y})^2 + (\frac{\widehat{\sigma_Z}^2}{m_Z})^2}$$

This test statistic t follows a student's t-distribution with v degrees of freedom

Testing - A very small excerpt

The correct test depends on your data and your knowledge

Test Name	Parametric/Non-Parametric	Distributional Assumptions	Data Level/Requirements	Application
Student's t-test (independent samples)	Parametric	Data in both groups are normally distributed, equal variances	Continuous data, homogeneous variances	Comparing the means of two independent groups
Welch's t-test (independent samples)	Parametric	Data in both groups are normally distributed, unequal variances allowed	Continuous data, no homogeneity of variance required	Comparing the means of two independent groups when variances differ
Mann-Whitney U-test (Wilcoxon rank-sum)	Non-Parametric	No normality assumption, similar shape of distributions recommended	Ordinal or continuous data not necessarily normally distributed	Comparing central tendencies of two independent groups
Wilcoxon signed-rank test (paired)	Non-Parametric	No normality assumption, data are paired	Ordinal or continuous data, paired measurements	Comparing two measurements from the same individuals (e.g., before and after)

Multiple Hypothesis Testing

Let us assume we do 100 independent tests with $\alpha = 0.05$ how big is the probability of observing at least one type 1 error ?

$$P = 1 - (1 - \alpha)^{100} = 1 - 0.95^{100} = 0.994 = 99\%$$

One approach: Benjamin Hochberg

Let assume those are the ordered p-Values of the tests

$$p_1 \le p_2 \le p_3 \le \dots \le p_{m-1} \le p_m$$

Search last i such that $p_i \leq \frac{i}{m}\alpha$. Reject only hypothesis with $j \leq i$

BH Controls the FDR:

$$E[FDR] = \frac{m_0 \alpha}{m} \le \alpha$$
 with m_0 is the count of real true null hypothesis.

Correlation: Relationship Between Variables UKD Universitätsklinikum Düsseldorf

Correlation $p_{X,Y}$ measures the **strength** and direction of the linear relationship between two random Variables *X* and *Y*.

$$p_{X,Y} = rac{E[(X - E[X])(Y - E[Y])]}{\sqrt{Var(X)Var(Y)}} egin{dcases} p_{X,Y} = 1 &\Rightarrow ext{Perfect positive linear relationship} \ p_{X,Y} = 0 &\Rightarrow ext{No linear relationship} \ p_{X,Y} = -1 &\Rightarrow ext{Perfect negative linear relationship} \end{cases}$$

!Correlation does not prove that *X* causes *Y*!

Simple Linear Regression

A statistical method to explore linear relationships between a random variable Y and an other random variables $X_1, X_2, ..., X_m$.

Find
$$\beta_i$$
 such that: $Y = \beta_0 + \sum_{i=1}^m \beta_i X_i + \varepsilon$

- From measured data, a model is derived that minimizes the deviations (residuals) between predictions and observations.
- Minimization is achieved using the least squares method, which reduces the sum of squared residuals.

Testing the significance of β_i (t-test for coefficients)

$$Y = \beta_0 + \sum_{i=1}^{m} \beta_i X_i + \varepsilon$$

Null Hypothesis: $\beta_i = 0$

Alternative Hypothesis: $\beta_i \neq 0$

 $\hat{\beta}_i$ is the estimated value from the model.

$$t = \frac{\hat{\beta}_i}{SE(\hat{\beta}_i)} \quad SE(\hat{\beta}_i) = \sqrt{\sigma^2 (X^T X)^{-1}_{jj}} \quad \sigma^2 = \frac{\sum_{i=1}^n (y_i - \widehat{y_i})^2}{n - m - 1} \quad \widehat{y}_i = \beta_0 + \sum_{i=1}^m \beta_i x_i$$

t follows a Students t-distribution with n-m-1 degrees of freedom

R^2 - Value

 \mathbb{R}^2 is the proportion of the variation in the dependent variable that is predictable from the independent variables

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y_{i}})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y_{i}})^{2}}$$

 R^2 = 1: Perfect Explanation By the Model

 R^2 = 0: Model just uses the mean

