Colégio BBBB Bandeirantes BBBB BBBB

Caderno de Questões da Avaliação Especial (Ensino Médio)

Bimestre	Disciplina				P 161501	
1.0	Matemática	Matemática / Química				
Questões	Testes	Páginas	Turmas	Período	Data da Prova	
	01-16	6	1.a Série	M	17/03/2016	
			ende aos dados aci ções posteriores.	ma e, em caso negativ	o, solicite, imedia	atamente,
Aluno(a)				Turma	N.o	

Matemática

- 01. Após coleta de informações com adolescentes sobre a utilização dos aplicativos WhatsApp e Facebook para smartphone, observou-se que dos 500 adolescentes entrevistados:
 - 300 utilizam o WhatsApp
 - 380 utilizam o Facebook
 - 60 não utilizam nem WhatsApp e nem Facebook.

Nessas condições, o número de adolescentes que utilizam WhatsApp e Facebook é igual a:

- a. 240
- b. 180
- c. 120
- d. 100
- e. 80
- 02. (Insper–SP) Considere as duas afirmações seguintes, feitas a respeito de três conjuntos de números inteiros A, B e C:
 - I. Se x é elemento de A, então x é elemento de B.
 - II. x é um número par pertencente a B se, e somente se, x é elemento de C.

Para que as duas afirmações sejam verdadeiras para todo x inteiro, os conjuntos A, B e C podem ser dados por:

- a. $A = \{3, 4, 5, 10\}, B = \{3, 4, 5, 10\} e C = \{3, 4, 5, 10\}$
- b. $A = \{3, 4, 5, 10\}, B = \{3, 4, 10\} e C = \{4, 10\}$
- c. $A = \{3, 10\}, B = \{3, 4, 5, 10\} e C = \{4, 10\}$
- d. $A = \{3, 10\}, B = \{4, 10\} e C = \{4, 10\}$
- e. $A = \{3, 10\}, B = \{3, 4, 10\} e C = \{4, 5, 10\}$
- 03. (UFRS–2012) Sendo a, b, c números reais, considere as seguintes afirmações:
 - I. Se $a \neq 0$; $b \neq 0$ e a < b, então $\frac{1}{a} < \frac{1}{b}$
 - II. Se $c \neq 0$ então $\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$
 - III. Se $b \neq 0$ e $c \neq 0$ então (a : b) : c = a : (b : c)

Quais afirmações estão corretas?

- a. Apenas I
- b. Apenas II
- c. Apenas I e II
- d. Apenas I e III
- e. I, II, III.

p 2

04. Se x - y = 7 e $x \cdot y = 60$, o valor da expressão $x^2 + y^2$ é igual a:

a. 71

b. 53

c. 89

d. 109

e. 169

05. O terreno do colégio Bandeirantes situado na esquina das ruas Estela e Cubatão, que são perpendiculares, tem a forma de um triângulo, conforme figura abaixo.

As medidas dos lados do terreno são dadas pela tabela, também abaixo.

Lado	Medida (em metros)
$\overline{\mathrm{AB}}$	x-7
ĀC	x
$\overline{\mathrm{BC}}$	17

A área do terreno, em metros quadrados, é igual a:

a. 120

b. 60

c. 150

d. 85

e. 75

06. (FUVEST) Dois irmãos herdaram um terreno com a seguinte forma e medidas:

Para dividir o terreno em duas partes de mesma área, eles usaram uma reta perpendicular a \overline{AB} . Para que a divisão tenha sido feita corretamente a distância dessa reta ao ponto A, em metros, deverá ter sido:

a. 31

b. 32

c. 33

d. 34

e. 35

Aluno(a)	Turma	N.o	P 161501
			p 3

07. (UFBA-Adaptada) Na figura abaixo, todos os triângulos são retângulos e isósceles e ABCD é um quadrado. Nessas condições a razão $\frac{GH}{CE}$, é igual a:

- a. 2
- b. $2\sqrt{2}$
- c. 3
- d. $3\sqrt{2}$
- e. 4

08. (UNESP) Considere um quadrado ABCD cuja medida dos lados é 1dm. Seja P um ponto interior do quadrado e equidistante (mesma distância) dos vértices B e C e seja Q o ponto médio do lado $\overline{\rm AD}$. Se a área do quadrilátero ABPQ é o dobro da área do triângulo BCP, a distância do ponto P ao lado $\overline{\rm BC}$ é

- a. $\frac{2}{5}$ dm
- b. $\frac{2}{3}$ dm
- c. $\frac{3}{5}$ dm
- d. $\frac{1}{2}$ dm
- e. $\frac{4}{7}$ dm

Química

09. (FUVEST–2016) Para que um planeta abrigue vida nas formas que conhecemos, ele deve apresentar gravidade adequada, campo magnético e água no estado líquido. Além dos elementos químicos presentes na água, outros também são necessários. A detecção de certas substâncias em um planeta pode indicar a presença dos elementos químicos necessário à vida. Observações astronômicas de cinco planetas de fora do sistema solar indicaram, neles, a presença de diferentes substâncias, conforme o quadro a seguir:

Planeta	Substâncias observadas	
1	tetracloreto de carbono (CCl_4), sulfeto de carbono (CS_2) e nitrogênio	
II	dióxido de nitrogênio (NO ₂), argônio e hélio	
III	metano, dióxido de carbono e dióxido de nitrogênio	
IV	argônio, dióxido de enxofre (SO ₂) e monóxido de dicloro (Cl ₂ O)	
V	monóxido de dinitrogênio (N ₂ O), monóxido de dicloro e nitrogênio	

Considerando as substâncias detectadas nesses cinco planetas, aquele em que há quatro elementos químicos necessários para que possa se desenvolver vida semelhante à da Terra é

- a. l.
- b. II.
- c. III.
- d. IV.
- e. V.
- 10. (UNICID) Com o intuito de verificar se uma pulseira é de prata pura, cuja densidade é 10,5 g/cm³, ou se apenas foi banhada neste metal, um estudante primeiramente determinou a massa da pulseira, encontrando o valor de 2,1 g. Em seguida, mergulhou-a em um cilindro graduado (proveta) contendo 5,0 mL de água. Caso a pulseira seja de prata pura, o nível da água na proveta, em mL, deverá elevarse até a marca de
 - a. 5.4
 - b. 6,0
 - c. 5,1
 - d. 5,5
 - e. 5.2
- 11. (IFSP–2012) Leia as afirmações sobre reciclagem de resíduos.
 - I. Cortados em lascas, os pneus velhos são transformados em pó de borracha, sendo purificado por um sistema de peneiras e moído até atingir a granulação desejada.
 - II. Na usina de fundição, a sucata de latas de aço é submetida a 1550 °C em fornos elétricos e, após atingir o ponto de fusão e chegar ao estado de líquido fumegante, o material obtido é moldado em tarugos ou placas metálicas.
 - III. Uma das etapas de reciclagem do papel contendo aparas proveniente de escritórios é o branqueamento com agentes alvejantes para retirar as tintas de impressão.

Das afirmações que se referem a fenômenos físicos, está correto apenas o contido em

- a. l.
- b. II.
- c. III.
- d. Le II.
- e. II e III.

Aluno(a)	Turma	N.o	P 161501
			p 5

12. (ETEC) O técnico em metalurgia é o profissional que planeja e supervisiona a produção de peças fundidas, bem como aplicação e tratamento dos metais e suas ligas e a execução das atividades de calderaria e soldagem.

Como exemplo de ligas temos o bronze, liga de cobre (Cu) e estanho (Sn), e a solda, liga de estanho e chumbo (Pb).

As ligas mencionadas no texto são exemplos de

- a. substâncias puras.
- b. substâncias simples.
- c. substâncias compostas.
- d. misturas de substâncias simples.
- e. misturas de substâncias compostas.
- 13. (FUVEST–2016/adaptada) Um dirigível experimental usa hélio como fluido ascensional e octano (C_8H_{18}) como combustível em seu motor, para propulsão. Suponha que, no motor, ocorra a combustão completa do octano:

$$C_8H_{18}(g) + \frac{25}{2}O_2(g) \rightarrow 8CO_2(g) + 9H_2O(g)$$

Para compensar a perda de massa do dirigível à medida que o combustível é queimado, parte da água contida nos gases de exaustão do motor é condensada e armazenada como lastro. O restante do vapor de água e o gás carbônico são liberados para a atmosfera.

Qual é a massa total de água produzida, no segundo experimento, segundo os dados da tabela abaixo?

	C ₈ H ₁₈ +	- <u>25</u> O ₂ -	→ 8CO ₂	+ 9H ₂ O
1.o experimento	114 g	400 g	352 g	m
2.o experimento	38 g	150 g		X

- a. 162 g
- b. 54 g
- c. 71 g
- d. 60,75 g
- e. 188 g
- 14. (UFRS-adaptado) O conhecimento sobre estrutura atômica evoluiu à medida que determinados fatos experimentais eram observados, gerando a necessidade de proposição de modelos atômicos com características que os explicassem.

Fatos observados

- I. Investigações sobre a natureza elétrica da matéria e descargas elétricas em tubos de gases rarefeitos.
- II. Determinação das Leis Ponderais das Combinações Químicas.
- III. Análise dos espectros atômicos (emissão de luz com cores características para cada elemento).
- IV. Estudos sobre radioatividade e dispersão de partículas alfa.

Características do Modelo Atômico

- 1. Átomos maciços, indivisíveis e indestrutíveis.
- 2. Átomos com núcleo denso e positivo, rodeado pelos elétrons negativos.
- 3. Átomos como uma esfera positiva onde estão distribuídas, uniformemente, as partículas negativas.
- 4. Átomos com elétrons movimentando-se ao redor do núcleo em trajetórias circulares denominadas níveis com valor determinado de energia.

p 6

A associação correta entre o fato observado e o modelo atômico proposto, a partir deste subsídio, é:

- a. I 3; II 1; III 4; IV 2
- b. I 1; II 2; III 4; IV 3
- c. I 3; II 1; III 2; IV 4
- d. I 4; II 2; III 1; IV 3
- e. I 1, II 3; III 4; IV 2
- 15. (UNESP–2016/adaptada) O ano de 2015 foi eleito como o Ano Internacional da Luz, devido à importância da luz para o Universo e para a humanidade. A iluminação artificial, que garantiu a iluminação noturna, impactou diretamente a qualidade de vida do homem e o desenvolvimento da civilização. A geração de luz em uma lâmpada incandescente se deve ao aquecimento de seu filamento de tungstênio provocado pela passagem de corrente elétrica, envolvendo temperaturas ao redor de 3000 °C.

Algumas informações e propriedades do isótopo estável do tungstênio estão apresentadas na tabela.

Símbolo	W	
Número atômico	74	
Número de massa	184	
Ponto de fusão	3422 °C	
Eletronegatividade (Pauling)	2,36	
Densidade	19,3 g . cm ⁻³	

A partir das informações contidas na tabela, é correto afirmar que o átomo neutro de tungstênio possui

- a. 73 elétrons.
- b. 6 camadas eletrônicas.
- c. 111 nêutrons.
- d. 184 prótons.
- e. 74 nêutrons.
- 16. (UNESP–2016) A luz branca é composta por ondas eletromagnéticas de todas as frequências do espectro visível. O espectro de radiação emitido por um elemento, quando submetido a um arco elétrico ou a altas temperaturas, é descontínuo e apresenta uma de suas linhas com maior intensidade, o que fornece "uma impressão digital" desse elemento.

Quando essas linhas estão situadas na região da radiação visível, é possível identificar diferentes elementos químicos por meio dos chamados testes de chama. A tabela apresenta as cores características emitidas por alguns elementos no teste de chama:

sódio	laranja	
potássio	violeta	
cálcio	vermelho-tijolo	
cobre	azul-esverdeada	

Em 1913, Neil Bohr (1885–1962) propôs um modelo que fornecia uma explicação para origem dos espectros atômicos. Nesse modelo, Bohr introduziu uma série de postulados, dentre os quais, a energia do elétron só pode assumir certos valores discretos, ocupando níveis de energia permitidos ao redor do núcleo atômico.

Considerando o modelo de Bohr, os diferentes espectros atômicos podem ser explicados em função

- a. do recebimento de elétrons por diferentes elementos.
- b. da perda de elétrons por diferentes elementos.
- c. das diferentes transições eletrônicas, que variam de elemento para elemento.
- d. da promoção de diferenes elétrons para níveis mais energéticos.
- e. da instabilidade nuclear de diferentes elementos.

Avaliação Especial (Ensino Médio)

Matemática

01. Alternativa a.

Seja x o número de adolescentes que utilizam os aplicativos WhatsApp e Facebook. Dispondo os dados em um diagrama de Euler-Venn obtem-se:

$$300 - x + x + 380 - x + 60 = 500$$
$$740 - x = 500$$
$$x = 240$$

02. Alternativa c.

- 1. x é elemento de A \Rightarrow x é elemento de B. Desta afirmação podemos concluir que A \subset B.
- 2. x é um número par pertencente a B \Leftrightarrow x é elemento de C. Pode-se dizer: x é elemento de C \Rightarrow x é par e pertence a B.

Analisando as possibilidades:

- a. Falsa, pois se $x \in C$, então x é par (afirmação 2). Não se verifica a afirmação (2) para x = 3.
- b. Falsa, para $5 \in A \in S \notin B$.
- c. Verdadeira, pois $A \subset B$ e se $x \in C$, x é par e pertence a B.
- d. Falsa, pois $3 \in A \in 3 \notin B (A \subset B)$
- e. Falsa, $A \subset B$, mas existe $x \in C$, x não é par.

03. Alternativa **b**.

- I. Falso. Supondo a = 2 e b = 5 temos 2 < 5 e $\frac{1}{2} > \frac{1}{5}$
- II. Verdadeiro. $\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$ é verdadeiro para todo $c \neq 0$
- III. Falso. Se a = 4; b = 2; c = 2

$$(4:2):2=2:2=1$$

$$4:(2:2)=4:1=4$$

Logo: $(a : b) : c \neq a : (b : c)$

04. Alternativa e.

Se
$$x - y = 7$$
, então $(x - y)^2 = 7^2$. Logo:
 $x^2 - 2xy + y^2 = 49$
 $x^2 + y^2 = 49 + 2xy$
 $x^2 + y^2 = 49 + 2 \cdot 60$
 $x^2 + y^2 = 49 + 120$
 $x^2 + y^2 = 169$

05. Alternativa **b**.

Como o triângulo é retângulo em A, aplicando o teorema de Pitágoras, temos:

$$(x-7)^2 + x^2 = 17^2 \Rightarrow x^2 - 7x - 120 = 0 \Rightarrow (x-15)(x+8) = 0$$

\Rightarrow x = 15 ou x = -8 (n\tilde{a}o conv\tilde{m})

Assim: AB = 8 m e AC = 15 m

Sendo S, a área do terreno, temos:

$$S = \frac{AB \cdot AC}{2} \Rightarrow S = \frac{8 \cdot 15}{2} \Rightarrow S = 60 \text{ m}^2$$

06. Alternativa d.

Sejam A_T a área total do terreno e A_1 a área destinada ao primeiro herdeiro.

1. Cálculo da área total (A_T) do terreno:

$$A_{T} = \frac{(76+60) \cdot 20}{2} \Rightarrow A_{T} = 1360 \text{ m}^{2}$$

2. Cálculo da distância (x) do ponto A, onde deve ser traçada a perpendicular a \overline{AB} .

Como:
$$A_1 = \frac{1}{2} \cdot A_T \Rightarrow 20 \cdot x = \frac{1}{2} \cdot 1360 \Rightarrow x = 34 \text{ m}$$

07. Alternativa e.

Sendo x a medida do lado do quadrado e sabendo que todos os triângulos da figura ao lado são retângulos e isósceles, temos:

$$AB = BC = CD = DA = x$$

Assim, AE = 2x, $BF = 3x \in CG = 4x$

1. Pitágoras no ΔCDE:

$$CE^2 = x^2 + x^2 \Rightarrow CE^2 = 2x^2 \Rightarrow$$

 $\Rightarrow CE = \sqrt{2} \cdot x$

2. Pitágoras no ΔCGH:

$$GH^{2} = (4x)^{2} + (4x)^{2} \Rightarrow$$
$$\Rightarrow GH^{2} = 32x^{2} \Rightarrow GH = 4\sqrt{2} \cdot x$$

Logo:
$$\frac{GH}{CE} = \frac{4\sqrt{2} \cdot x}{\sqrt{2} \cdot x} = 4$$

08. Alternativa a.

Seja x a distância de P ao lado \overline{BC} .

Como a área (ABPQ) = $2 \cdot \text{área (BCP)}$, temos:

$$\frac{(1+1-x)\cdot\frac{1}{2}}{2}=2\cdot\frac{1\cdot x}{2}$$

$$\frac{2-x}{2} = 2x \Rightarrow 4x = 2-x \Rightarrow 5x = 2 \Rightarrow x = \frac{2}{5}$$
 dm

Química

09. Alternativa c.

Considerando as substâncias detectadas nesses 5 planetas, aquele em que há 4 elementos químicos necessários para que possa se desenvolver vida semelhante à da Terra é o planteta III, onde foram observadas as substâncias: metano (CH_4) , dióxido de carbono (CO_2) e dióxido de nitrogênio (NO_2) . Os 4 elementos químicos são: carbono (C), hidrogênio (H), oxigênio (O) e nitrogênio (N). Esses 4 elementos são necessários para a vida na Terra.

O planeta I possui as substâncias: tetracloreto de carbono (CCl_4), sulfeto de carbono (CS_2) e nitrogênio (N_2).

O planeta II possui as substâncias: dióxido de nitrogênio (NO₂), argônio (Ar) e hélio (He).

O planeta IV possui as substâncias: argônio (Ar), dióxido de enxofre (SO_2) e monóxido de dicloro (Cl_2O).

O planeta V possui as substâncias: monóxido de dinitrogênio (N_2O) , monóxido de dicloro (Cl_2O) e nitrogênio (N_2) .

10. Alternativa **e**.

10,5 g — 1 cm³
2,1 g — V
$$V = 0.2 \text{ cm}^3$$

Portanto, o novo nível de água na proveta será 5.0 mL + 0.2 mL = 5.2 mL.

11. Alternativa d.

No fenômeno físico não ocorre reação química. São fenômenos físicos: I e II.

- I. Fenômeno físico: cortados em lascas, os pneus velhos são transformados em pó de borracha, sendo purificado por um sistema de peneiras e moído até atingir a granulação desejada.
- II. Fenômeno físico (mudança de estado): Na usina de fundição, a sucata de latas de aço é submetida a 1550 °C em fornos elétricos e, após atingir o ponto de fusão e chegar ao estado de líquido fumegante, o material obtido é moldado em tarugos ou placas metálicas.
- III. Fenômeno químico (ocorre reação química): Uma das etapas da reciclagem do papel contendo aparas provenientes de escritórios é o branqueamento com agentes alvejantes para retirar as tintas de impressão.

12. Alternativa d.

Tanto o bronze como a solda são misturas de duas substâncias simples.

bronze: cobre (Cu) e estanho (Sn).

solda: estanho (Sn) e chumbo (Pb).

13. Alternativa **b**.

Para determinar a massa de água no 2.o experimento, têm que ser calcular a massa de água no 1.o experimento. Para isso, utiliza-se a Lei de Lavoisier:

$$114 g + 400 g = 352 g + m$$

$$m = 162 g$$

Antes de calcular a massa X do 2.o experimento, é necessário verificar se não há nenhum reagente em excesso. Para isso, utiliza-se a Lei de Proust.

C ₈ H ₁₈	25/2 O ₂
114 g	400 g
38 g	150 g

Mutiplicando-se os valores:

$$114 \text{ g} \times 150 \text{ g} = 17100$$

$$38 \text{ g x } 400 \text{ g} = 15200$$

Conclui-se que 150 g está em excesso.

Portanto, para calcular o valor de X, utiliza-se a relação.

$C_8H_{18} + 25/2 O_2 \rightarrow 8 CO_2 + 9H_2O$			
114 g			162 g
38 g			Х

$$X = 54 \, q$$

14. Alternativa **a**.

Fatos observados	Características do Modelo Atômico		
I. Investigações sobre a natureza elétrica da matéria e descargas elétricas em tubos de gases rarefeitos.	1. Átomos maciços, indivisíveis e indestrutíveis.		
II. Determinação das Leis Ponderais das Combinações Químicas.	2. Átomos com núcleo denso e positivo, rodeado pelos elétrons negativos.		
III. Análise dos espectros atômicos (emissão de luz com cores características para cada elemento).	3. Átomos como uma esfera positiva onde estão distribuidas, uniformemente, as partículas negativas.		
IV. Estudos sobre radioatividade e dispersão de partículas alfa.	4. Átomos com elétrons movimentando-se ao redor do núcleo em trajetórias circulares – denominadas níveis – com valor determinado de energia.		

15. Alternativa **b**.

```
^{184}_{74}W
Z = 74 \text{ (número atômico)}
A = 184 \text{ (número de massa)}
prótons = 74
elétrons = 74
nêutrons = 110
K = 2 \quad L = 8 \quad M = 18 \quad N = 32 \quad O = 12 \quad P = 2
Possui 6 \text{ camadas eletrônicas.}
```

16. Alternativa c.

Os elétrons, quando ativados para um nível mais energético ao redor do núcleo, tendem a voltar para um nível menos energético com emissão de ondas eletromagnéticas que podem corresponder a uma determinada frequência dentro do espectro da luz visível.

Cada elemento irá emitir ondas eletromagnéticas com comprimentos de onda diferentes implicando cores diferentes no seu espectro.

Nota: no teste de chama, o sódio emite ondas eletromagnéticas principalmente de cor amarela.