Goal: 730+ Gaussi Tlanen best time: estimated # of solutions to whice eggs over finite fields

This time come: proved by bows. Projective solutions aly us (90,0) ho (ax, ex, a ?). Fernat were: x3+y3=1 honogeneous: x3+y1+2>=>

Cause's The Let Mp bette hunder of projective Solutions to the equation X3+y3+ 23 = 0. with XITIZE FP.

a) if $p \neq 1 \pmod{3}$ than $M_p = p + 1$. b) if $p \equiv 1 \pmod{3}$ than there are integers A and B s.t. 4p = A2+27B2

AB unique up to signs. We can choose the sign of A so that A = 1 mod 3

Mp = >+1+A.

Note: if p = 1 mod 3 than A = 1 mod 3 1. A = ±1 mol 3 so lay replacing A with - A we commerce A = 1 mod 7.

Tp = {0,1, -, p-1} Fp = {1, --, p-1} Fact: It, is a cyclic group of order p-1. Ex 15 * gm = 2. 2, 2=+, 2'=3 2"=1 Proof a 7. 111.

Proof of bauss's The Part (A).

Assume that p \$1 mod 3.

So 3 does not divide the order p-1 of Fp.

It follows that the map $x \mapsto x^3$ is an isomorphism from ITp* to itself.

Ex. p = 5. F* $0^3 = 0$, $1^3 = 1$, $2^2 = 3$ $3^2 = 2$ $4^3 = 4$

When $p \neq 1 \mod 3$ every element of \mathbb{F}_p has a unique cube root. Thus the number of colutions to $\chi^3 + y^2 + z^3 = 0$ is equal to the # of solutions to $\chi + y + z = 0$, \longrightarrow a like in the projective plane, so it has p+1 solutions in \mathbb{F}_p . $M_p = p+1$.

Proof of (b).

Assume $p \equiv 1 \mod 3$. p = 3m + 1Since 3 has divide the order of Fp the map $K \rightarrow X^3$ is a homomorphism but with one-to-me nor onto.

The image of $X \rightarrow X^3$ is R. R has index R in R. $R = \{x^2 : x \in Fp * \}$.

The hermal of $X \rightarrow X^3$ has three elements: $(x^2 + x^2)$ with $x^3 = 1$

Ex. p=12 the $p=\{\pm 1,\pm 5\}$ and the bound of $x \rightarrow x^2$ is $\{1,3,9\}$ Floats of R one called whice residues. Let S and T be the offer 2 cosets of [R] in $[F_p^*]$ $[E_R]$. If we take any $s \in [F_p^*]$ $s \notin [R]$ then S = s[R] and $T = s^2[R]$. $[T \in F_p^*]$ [S] then we can choose S = 2. $[S] = \{ \pm 2, \pm 10 \}$ $[T = \{ \pm 4, \pm 7 \}$

In smed Itp is a disjoint union

It = {0} U Z US UT.

The under of elevents in early of P,S,T is un.

Note: P = -P (if RER Han - - + PR)

S = -S

T = -T

New Symptol []

Suppose X,Y,Z are subsite of TFp.

Let [XYZ] denote the number of fright (x,y,Z)

S.t. xeX, yeY, teZ and **+y+2 = 0.

What is Mp in tens of the symbol?

First Consider solutions to $\chi^2 + \chi^2 + \chi^2 = 0$ where home are

200. Then the one [RRR] solutions (12 = only).

But for each cube there are 3 field clusts that give that

when: So there are 27[1212] solution s.t. $\chi_{1}\gamma_{1}$ that

200. [Horsen, we but want only projective solution. We need to

get Mid of ($\alpha \chi_{1} \alpha \chi_{1} \chi_{2}$) Then are p-1 multiplied p=3m+1 p-1=3m

27[422] - 9[222] solution to x3+3+23=0 x17,7 +0. Case 2: if one of x1412 = 0, say 2 1 Km He often comit also le 2000. Leme une don't allow [0,90]. Pich anything wourses for x, then there are 3 posse is le value for y. $y^3 = -x^2 + y = -x - x - x - x$ The the are 3(p-1) triples (X1410) s.t. x3 ty = 0. Symutric Son (19,2) (0,7,2) S 9 (p-1) tople (xy12) 1.t. x3+y3+23=0. So there are p-1 houltipliers ? (p-1) = 9 projective solutions. with I word. O. Mp = 9[RRR] + 9. = 9([RRR] +1). Marullos propulis of brailed: [XY(Zuw)] = [XYZ]+[XTW]. ; F ZOW = Ø., [XYZ] = [aX, aY, cZ] a + 0.[XYZ] = [ZYX] = [YXZ] = ~~~~ Fr = 303 URUSUT [RR F] = m2 [12/2 303] + [Rea] + [RAS] + [RAT] = m?

[1212] 03] + [201] + [201] + [207] = m²

[1212] 03] + [201] + [201] + [207] = m²

[1212] 03] + [1202] + [1557] + [177] = m².

[1212] 03] + [1202] + [1557] + [177] = m².

Som shipping

m + [12122] = [1275].

Beautiful formla; Mp = 9[1275].