Building CREST model: hydro-fabric, forcing, and settings

(Henry) Qing Yang, Ph.D.

Course timeline

15:30 - 17:30 GMT+3

3 Sessions (30-40 mins each), 2 breaks (5-10 mins each).

Outline:

- 1. CREST runtime data structure.
- 2. Two practical options for data preparation.
- 3. Hydro-fabric data sources.
- 4. Forcing data and connection setting.
- 5. Model settings.

CREST runtime data and settings:

https://github.com/QingYang6/CREST_tutorial/blob/main/Files_prepare.ipynb

Hydro-fabric: static hydro data

Categories	Data source	Options	Key data
Topography	HydroSHEDS https://www.hydroshedos.org/	3s (~90m) 15s (~450m) 30s (~900m)	DEM, Flow direction, Flow accumulation.
Soil Type	SoilGrids https://www.isric.org/e xplore/soilgrids	250m, 6 layers (0- 200cm)	SNDPPT, CLYPPT, SLTPPT, ORCDRC, BLD
Land Cover	MCD12Q1 Version 061 https://lpdaac.usgs.go v/products/mcd12q1v0 61/	500m, yearly	Web selection.
Outlets	User defined	shapefile	Better locate on stream network

Two practical options:

Option 1

- 1. Specify outlet point.
- 2. Watershed algorithm.
- 3. Crop operator.
- 4. Hydro-fabric in basin shape.

https://github.com/QingYang6/CREST_t utorial/blob/main/Files_prepare.ipynb

Option 2

- 1. Estimate basin bounds.
- 2. Crop operator.
- 3. Hydro-fabric in rectangle.

https://github.com/QingYang6/CRE ST tutorial/blob/main/Practice Hy drofabric.ipynb

Reproject all files to reference basin mask

- 1. Candidate mask: dem.tif, fdr.tif, fac.tif, stream.tif, refMask.tif.
- 2. Tools, QGIS, ArcGIS, or https://github.com/QingYang6/CREST_tutorial/blob/main/Files_prepare.ipynb Section 2.5

Topography

HydroSHED produced based on:

- 3s SRTM data.
- Error correction and void filling.
- Hydrological conditioning.
- Stream burning.

https://data.hydrosheds.org/file/technical-documentation/HydroSHEDS_TechDoc_v1_4.pdf

Topography

Files in basic folder:

- 1. dem.tif, download and crop.
- 2. fdr.tif, download and crop.
- 3. fac.tif, download and crop.
- 4. stream.tif, apply threshold to fac.tif.
- 5. refMask.tif, index mask generated based on dem.tif (fdr or fac also fine).
- 6. slope.def, copy from example.

https://github.com/QingYang6/CREST_tutorial/blob/main/Files_prepare.ipynb

SoilGrids

Produced based on:

- 1. Source data from World Soil Information Service, ancillary data from climatic, topographic, and land cover.
- 2. Machine learning model inference.

Soil profile to soil hydraulic properties

What we download from SoilGrids?

SNDPPT: Sand content percentage. CLYPPT: Clay content percentage. SLTPPT: Silt content percentage.

ORCDRC: Soil organic carbon density.

BLD: Bulk density.

Six layers from 0 to 200cm.

What we need for CREST?

Saturation, Field capacity, Water wilting point, Soil saturated conductivity, Moisture-tension coefficient, etc.

https://github.com/QingYang6/CREST_tutorial/blob/main/Files_prepare.ipynb

Section 2.2

Land Cover

For LCC.tif:

- 1. Download data from https://lpdaac.usgs.gov/products/mcd12q1v061/.
- 2. Merge files.
- 3. Crop to match with reference raster in the basic folder.

For IM.tif:

1. Derived from merged LCC file with impervious area identification.

https://github.com/QingYang6/CREST_tutorial/blob/main/Practice_Hydrofabric.ipynb

Forcing data

Variable name	Unit
total precipitation	mm
downward shortwave radiation	w/m²
downward longwave radiation	w/m²
ari temperature	Celsius
relative humidity	ratio
Pressure	Pa
10m u-component of wind	m/s
10m v-component of wind	m/s
leaf area index	index

https://github.com/QingYang6/CREST_tutorial/blob/main/Files_prepare.ipynb Section 3

Model settings

Example and explain:

- 1. Project control file, https://github.com/QingYang6/CREST_tutorial/blob/main/control_file_template/project_file.md.
- 2. Parameters file (soil and lcc), https://github.com/QingYang6/CREST tutorial/blob/main/control file template/parameters file.md.
- 3. Forcing control file, https://github.com/QingYang6/CREST_tutorial/blob/main/control_file_template/forcing_control_file.md.
- 4. Others could directly copy the example files without modification.