

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1969

The drying of marine sediments for water content determinations.

King, John David

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/12033

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NPS ARCHIVE 1969 KING, J.

> THE DRYING OF MARINE SEDIMENTS FOR WATER CONTENT DETERMINATIONS

> > by

John David King

United States Naval Postgraduate School

THESIS

THE DRYING OF MARINE SEDIMENTS

FOR WATER CONTENT DETERMINATIONS

by

John David King

October 1969

This document has been approved for public release and sale; its distribution is unlimited. The Drying of Marine Sediments

For Water Content Determinations

by

John David King Lieutenant, United States Navy B.S., Oregon State University, 1964

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OCEANOGRAPHY

from the

NAVAL POSTGRADUATE SCHOOL October 1969 NPS AICHTE 1969 KINDJ thesis 1445 2.1

A BSTRACT

The question pertaining to the acceptance of a standard drying temperature of 110 ± 5°C in making water content determinations of soils has been extended to the oven drying of marine sediments. The implementation of a temperature within the 130 to 150°C range ap- . pears to be just as adequate as the accepted standard for the drying of inorganic sediments and has the added advantage of shortening the drying time. Increasing the temperature above 150°C does not appreciably reduce the drying time and may begin to break down the less stable clay sediments such as montmorillonite. The water content determinations appear to fluctuate in a random manner with increase in drying temperature suggesting that the mineralogy of the sediments somehow controls water content. The concept of normalized water content is introduced and appears to be an invaluable aid in considering the relationships between water content, sample weight and drying time.

TABLE OF CONTENTS

			Page
I.	INI	RODUCTION	- 11
	Α.	GENERAL	- 11
	В.	SCOPE OF STUDY	11
	C.	SUMMARY OF PREVIOUS WORK	12
II.	PR	OCEDURE	14
	Α.	COLLECTION AND STOWAGE OF SAMPLES	14
	В,	EQUIPMENT USED	19
	С.	DRYING PROCEDURES	20
	D.	X-RAY DIFFRACTION	24
	Ε.	GRAIN SIZE ANALYSIS AND ORGANIC CARBON DETERMINATION	_ 25
III.	RE	SULTS	- 28
	Α.	DATA COMPUTATION	28
	В.	WATER CONTENT DEFINED	30
	C.	NORMALIZED WATER CONTENT	- 31
	D.	DATA REDUCTION	- 32
	E.	FINDINGS OF GRAIN SIZE ANALYSIS AND CARBON DETERMINATIONS	60
	F.	RESULTS OF X-RAY DIFFRACTION	68
IV.	СО	NCLUSION	73
V.	SU	GGESTED AREA FOR FUTURE RESEARCH	75
	Α.	DIFFERENTIAL THERMAL ANALYSIS	75
	В.	CONTINUATION OF WATER CONTENT STUDIES	76

C. X-RAY DIFFRACTION	. 76
APPENDIX	- 77
BIBLIOGRAPHY	107
INITIAL DISTRIBUTION LIST	109
FORM DD 1473	111

LIST OF TABLES

Table		Page
1	Tabulation of variables for least square regression line determinations	57
2	Least square regression line and correlation coefficient determined	58
3	Carbon determinations	68
4	Analysis of X-ray diffractograms	70
A - Z b	Tabulated data for water content determinations	78

LIST OF FIGURES

Figure		Page
1	Location of Seal Beach Samples	15
2	Location of Elkhorn Slough Samples	16
3	Location of Monterey Canyon and Buoy B Samples	. 17
4	Sample Data Sheet	- 29
5	Water Content vs Drying Time for Seal Beach No. 1	33
6	Normalized Water Content vs Drying Time for Seal Beach No. 1	35
7	Normalized Water Content vs Drying Time for Sea Beach No. 2	36
8	Normalized Water Content vs Drying Time for Elkhorn No. 1	. 37
9	Normalized Water Content vs Drying Time for Elkhorn No. 2	38
10	Normalized Water Content vs Drying Time for Monterey Canyon	39
11	Normalized Water Content vs Drying Time for Buoy B	40
12	Normalized Water Content vs Drying Time for Seal Beach No. 1 at a Drying Temperature of 90°C	41
13	Normalized Water Content vs Drying Time for Seal Beach No. 1 at a Drying Temperature of 150°C	42
14	Water Content vs Drying Temperature for a Sample Weight of 28 + 2g	44
15	Water Content vs Drying Temperature for a Sample Weight of 38 ± 2g	45
16	Water Content vs Drying Temperature for Seal Beach No. 1 and 2	46

17	Elkhorn No. 1 and 2	47
18	Water Content vs Drying Temperature for Monterey Canyon and Buoy B	48
19	Water Content vs Sample Weight for Seal Beach No. 1	51
20	Water Content vs Sample Weight for Seal Beach No. 2	52
21	Water Content vs Sample Weight for Elkhorn No. 1	53
22	Water Content vs Sample Weight for Elkhorn No. 2	54
23	Water Content vs Sample Weight for Monterey Canyon	55
24	Water Content vs Sample Weight for Buoy B	56
25	Grain Size Distribution for Seal Beach No. 1	61
26	Grain Size Distribution for Seal Beach No. 2	62
27	Grain Size Distribution for Elkhorn No. 1	63
28	Grain Size Distribution for Elkhorn No. 2	64
29	Grain Size Distribution for Monterey Canyon	65
30	Grain Size Distribution for Buoy B	66
31	Tertiary Classification Diagram	67
32.	Composite X-ray Diffractogram	69

ACKNOWLEDGMENTS

A sincere debt of gratitude is owed to Dr. R. J. Smith of the Department of Oceanography for suggesting this study. Without Dr. Smith's generous allotment of time, talent, and critical comments, successful completion of this study would not have been possible. Additionally, Mr. M. Hironaka and Mr. L. Nunes of the Naval Civil Engineering Laboratory at Port Hueneme, California, and The Inter Laboratory Committee on Facilities rendered valuable services in conducting the grain size analyses and carbon determinations. This work has been partially supported by the Naval Facilities Engineering Command.

I. INTRODUCTION

A. GENERAL

The testing procedures for the drying of terrestrial soils have been in existence for some time. However, it wasn't until 1963 that the final form of these procedures was adopted by the American Society for Testing and Materials (1964). Lack of standardized procedures in marine sedimentology has resulted in the adoption of the procedures commonly used in the water content studies for soils. Accordingly, the purpose of this study is to explore the universally accepted drying temperature of $110 \pm 5^{\circ}\text{C}$ (230 $\pm 9^{\circ}\text{F}$) in hopes of answering the question, "What is the best temperature to use in the drying of marine sediments?" In addition, an investigation of the variability of water content with parameters such as drying temperature and sample weight is considered.

B. SCOPE OF STUDY

The subsequent study of drying temperature was limited to the temperature range of from 90 to 170° C. In all, six sediments were tested over this temperature range. Grain size analyses and organic carbon determinations were conducted mainly to classify the sediments according to the Wentworth Scale. X-ray diffraction was utilized to better define the composition of the finer constituents.

C. SUMMARY OF PREVIOUS WORK

As mentioned previously, ASTM contains the now well accepted procedures for testing soils. Briefly it is indicated that soils obtained from the field will be oven dried at either 60° C (140°F) or $110 \pm 5^{\circ}$ C $(230 \pm 9^{\circ}\text{F})$ for a period of 12 hours or until a constant weight between successive weighings is achieved. That is, if one is concerned with the drying of organic soils (soils containing more than about 4% organic carbon by weight), the lower temperature of 60° C should be used. Otherwise a drying temperature of $110 \pm 5^{\circ}$ C is to be employed. These standards apply to the drying of soils for most of the standard engineering tests normally conducted. The more common tests normally conducted include grain size analysis, moisture or water content determination, and specific gravity measurement.

Especially of notable interest is the work of Lambe (1951).

Again a controlled constant temperature of 110°C is suggested.

However, the author is quick to note that there is nothing binding about 110°C which makes its selection as a drying temperature scientific. Lambe (1949) showed this in an earlier work where he plotted water content against drying temperature for five soils of extremely different structural characteristics. In all cases the water content was found to increase steadily with increase in drying temperature. The highly plastic soils such as Mexico City Clay and diatomaceous earth showed a rapid increase in water content

with the increase in drying temperatures for temperatures greater than 140°C. In contrast the Ottawa sand and the comparatively non-plastic Boston blue clay showed little increase in water content with increasing drying temperature over the entire temperature range of 60 to 200°C. Lambe further asks, "Just how 'dry' is a dry soil?" Most engineering specifications define dry weight of a soil as that weight obtained by heating the soil at 110°C until the weight reaches a constant value. The absorbed layer of water (hygroscopic water) surrounding finer grained soil constituents can be driven off only at temperatures much greater than 110°C. The majority of the water absorbed by a soil is, however, interstitial and may be successfully driven off by heating at a temperature of 110°C.

Unfortunately no published definitive procedures exist for the oven drying of marine sediments. Apparently the studies to date have been conducted utilizing the accepted drying temperature procedures for terrestrial soils. For example, Richards and Keller (1962) studied the variance of water content with depth of a long core taken off the coast of Nova Scotia employing the standard controlled drying temperature of 110°C. Since questions have been raised by at least one investigator concerning the best drying temperature for terrestrial soils, the present acceptance of the 110°C standard must also be questioned for the drying of marine sediments.

II. PROCEDURE

A. COLLECTION AND STOWAGE OF SAMPLES

A total of six samples were collected from four differing marine environments. The first two samples studied were inherited from a former student of the Naval Postgraduate School, Lieutenant R. A. Erchul. Lieutenant Erchul collected these samples in a lagoon at Seal Beach near Long Beach in southern California. The location of these samples as well as the location of the four remaining samples discussed below are given in Figures 1 through 3. The area of the lagoon sampled remains continuously submerged although the lagoon itself is subjected to tidal movements. These samples were stowed at room temperature in five gallon plastic containers in order to avoid the introduction of foreign material from oxidation of the container. For identification purposes these two samples were designated Seal Beach No. 1 and Seal Beach No. 2.

Two of the remaining samples studied were obtained by the author in the upper end of Elkhorn Slough, near Moss Landing in central California. The area sampled is typical of many estuarine environments. It has a fresh water source, Elkhorn Creek, flowing into the estuary from the east. Typically, the water level of the slough is controlled exclusively by the influence of the tides. Elkhorn Creek contributes little fresh water to the slough much of

Figure 1. Location of Seal Beach Samples

Figure 2. Location of Elkhorn Slough Samples

Figure 3. Location of Monterey Canyon and Buoy B Samples

the year with the notable exception of the release of runoff from adjacent farm lands during periods of heavy winter rains. The sampling area remains continuously submerged except during minus tides of less than -1.5 ft. These brief exposed periods occur only during spring tides or about 12 times per year. Salinity of the water in the upper end of the slough is essentially the same as that of the sea water immediately seaward thus insuring that this sediment is truly marine in nature. These samples were designated Elkhorn No. 1 and Elkhorn No. 2 and stowed at room temperature in one gallon plastic containers.

The fifth sample was obtained from the floor of Monterey submarine canyon in approximately 1060 meters of water. An Onorati gravity corer with a four inch diameter sampling tube was employed, utilizing the Naval Postgraduate School's oceanographic research vessel. A short core, approximately one foot in depth, was obtained and similarly placed in a one gallon plastic container, insuring that about one inch of in situ sea water covered the surface of the stowed sediment. A short core was necessary to eliminate, or at least to minimize, the variation of water content with core length since this aspect was not considered in this study.

An area of Monterey Bay near the seaward end of the outer boat channel leading to Monterey Harbor was selected for the sixth sample. Again the School's oceanographic research vessel was utilized, only this time a Smith-MacEntyre grab-type bottom

sampler was used to obtain the desired sample. This particular sampler was used in that it sacrifices vertical sample depth in lieu of lateral extent. That is, a hemispherical shaped sample having a surface area approximating 12 x 12 inches and having a maximum depth of 8 inches is obtained. Using this device, a suitable sample was obtained from a depth of 68 meters at a position immediately seaward of Buoy B (Figure 3). This sample again was stowed in a manner similar to the previous samples. Since biological activity was not of interest, stowing the samples at room temperature proved to be sufficient.

B. EQUIPMENT USED

The equipment used in the oven drying of the sediment samples consisted of a forced-air circulation oven, an analytical beam balance, and aluminum alloy drying tins. The characteristics and limitations of the basic components are listed as follows.

1. Forced-air Circulation Oven

Manufacturer and Model Number: Central Scientific Company, Model No. 95379.

Dimensions (inside): width, 16 inches; depth, 15 inches; height, 19 inches.

Temperature Range: 60 - 260°C

Control Sensitivity: + 0.5°C

Temperature Uniformity: at 100° C, $\frac{+}{-}1.0^{\circ}$ C; at 175° C, $\frac{+}{-}1.5^{\circ}$ C.

The oven is of double-wall construction with inner and outer walls separated by three inches of glass-wool insulation. A variable thermostat was used to control the inside air temperature. An inversion type thermometer was used to indicate the temperature at a particular drying level within the oven.

2. Analytical Balance

Manufacturer and Model Number: Mettler Instrument
Corporation, Model No. H6T Digital

Range: 0 - 160 g

Precision (standard deviation): ± 0.05 mg

Reliability: 0.1 mg

The balance is the beam type with symmetrical air damping and has a chrome-nickel-steel weighing pan.

3. Drying Tins

Size and description: The drying tins used were of 0.04 inch aluminum alloy construction measuring 1.95 inches inside diameter and 0.90 inches in height (without lid).

C. DRYING PROCEDURES

The aforementioned six samples were sub-sampled and oven dried at 10°C increments over a range from 90 to 170°C. Four sub-samples of randomly varying weight between 20 and 50 grams were taken of each sediment for each of the ten degree temperature increments. Detailed procedures of the drying process follow. The drying tins were initially weighed on the analytical balance and

their respective weights recorded on the Water Content Data

Sheets, (Figure 4). In each tin was placed a random amount of sediment taken from the plastic stowage container. The tins were again weighed with the results recorded on the appropriate data sheet. During this time the oven was energized and had settled out at the predetermined drying temperature. When the oven had reached the desired temperature, plus approximately 4°C to compensate for a temperature drop due to the insertion of the samples, the tins were placed in the oven on the same level as the sensing tip of the inversion thermometer.

All experiments subsequently conducted included the placing of the sub-samples at the same predetermined level within the oven. This procedure was adopted to eliminate a possible temperature variability within the oven chamber. Additionally, the sensitivity and temperature uniformity within the oven with the thermometer set at different heights, was checked through the use of a highly sensitive potentiometer. A depth of 9.5 inches from the inside top of the oven was adopted for all tests conducted. This height was chosen because the results obtained using the independent temperature measuring device agreed most favorably with the manufacturer's specifications.

The first two hours of the drying period proved the most critical as to temperature fluctuation and regulation. As mentioned previously, the setting of the oven at a temperature about 4° C

above the desired drying temperature to compensate for the introduction of eight sub-samples appeared satisfactory. For example, if a drying temperature of 100°C was desired, the oven was preheated to a temperature of 104°C. Since most of the interstitial water is driven off in the first two hours, it was necessary to periodically check and correct the drying temperature by using the external thermostatic control on the oven. Checking the temperature every fifteen minutes and correcting for temperature fluctuation as necessary generally proved to be sufficient. The higher drying temperatures (150 to 170°C) necessitated ten minute checks, however, since most of the interstitial water is driven off in the first hour for this temperature range. The drying temperature was found to fluctuate very little after the first two hour period.

Lacking a definitive procedure concerning the periodic weighing of the hot sediment samples, a minimum period between successive weighings of one hour was adopted. Half-hour increments were attempted but it was found that the oven maintained a steady temperature for only about 20 minutes of the 30 minute interval. For lower drying temperatures, a two hour increment was found to be sufficient. Wherever possible, however, the one hour period was adhered to as this shorter time increment made it considerably easier to comprehend the relationship between water content and elapsed time.

An important aspect that had to be considered was the actual weighing of the hot samples. Obviously the covering of the hot tins with the tin lids and the subsequent placing of the samples in a desiccator to be cooled to room temperature before weighing was not consistent with this study. Had this procedure been used, the samples would have been subjected to a complete reheating after each weighing, which would have added appreciably to the time required to dry each sample. Opposed to this well-founded weighing procedure is the controversial hot weighing of samples. The disadvantage of unsymmetrical heating of the pan of the analytic balance, introduced by the hot sample technique, is well recognized (Lambe, 1951). During this study it was found that placing the first hot sample on the pan introduced an error of + 0.015 g, the error having been ascertained by removing the hot sample from the weighing pan and rebalancing the scale. This error was found to remain constant over the remaining sub-sample weighings. With this constant error established, results obtained using the hot sample technique were found to be compatible with those obtained using the standard desiccator or cool sample technique.

Establishment of an end point to the weighing process requires defining the dry weight of a sediment sample. As mentioned earlier, sample dry weight is generally defined as the weight achieved when two successive weighings yield the same result. For purposes of moisture content study, the American Society for Testing and

Materials (1964) stipulates that a balance sensitive to 0.01g is to be used. Thus a constant weight is achieved when two successive readings are identical to 0.01g. A balance sensitive to 0.00005g was used in the course of this study with the resultant weighings rounded to 0.001g. Although the established procedures requires an accuracy only to a hundredth, a sample was considered to be dry when successive weighings differed by no more than 0.003g. If a scale sensitive only to 0.01g were used, a difference of 0.003g would not be apparent. Thus the definition of dry weight remains as described by the classical literature, although a slightly higher degree of accuracy was employed in these studies.

After finding the dry weight of all eight sub-samples, the sample containers were washed in tap water, carefully dried, and reweighed. The reweighing of the tins after each washing was deemed necessary to eliminate the effect of corrosion and subsequent weight loss of the tins. Although the average weight loss per test was insignificant, i.e., - 0.0003g, its cumulative effect is significant. That is, the tin may loose as much as 0.010g after some thirty uses.

D. X-RAY DIFFRACTION

In the past, use of the X-ray diffractometer has proven to be valuable for identification of the constituents of finer grained marine sediments. In this study it was deemed important to determine if these fine grained sediments were clay-sized clastic mineral components or of true clay mineral composition.

1. Equipment Used

a. X-ray Diffractometer, Data Controler and Processor:

X-ray Tube: Copper target; maximum voltage, 50 KV; maximum amperage, 40 ma; Ka, 1.54178 A; Kg, , 1.39217 Å.

Goniometer Scanning Unit: Nickel filter.

Manufacturer: North American Phillips Company

(Norelco); Model No. 10243.

b. Calibration:

Silicon Powder Standard

2. Procedure

Slides of the six sediments were prepared and analyzed using the Naval Postgraduate School's X-ray diffraction equipment.

Initially a slide containing the manufacturer's silicon powder standard was run to check the alignment of the scanning unit. Each of the specially prepared blank aluminum holders was then loaded with untreated wet sample and singularly inserted in the scanning unit holder. A scanning rate of two degrees per minute over a range of from four to sixty degrees was used throughout the analysis.

E. GRAIN SIZE ANALYSIS AND ORGANIC CARBON DETERMINATION

Grain size analyses and organic carbon determinations were conducted on each of the six sediments by the Naval Civil Engineering Laboratory (NCEL) at Port Hueneme, California. The grain size distribution permits a classification of the sediment in terms of the sand-silt-clay ratio. The organic carbon test, which in

actuality is a by-product of the carbonate carbon test, gives the amount of organic matter present expressed as a percentage of the sample dry weight.

The equipment and procedures used in the grain size analyses follow the specifications delineated by the ASTM (1964). A standard set of square mesh sieves was used to classify the sand fraction.

The finer silt-clay fraction, collected on the bottom pan of the sieve set, was subjected to the hydrometer test. This procedure utilized a standardized Baumé hydrometer which was read at designated time intervals. The data obtained was then introduced into the computer program developed by M. Hironaka (1968). The output automatically plotted grain size distribution curves (Figures 25 through 30).

The organic carbon content is obtained together with the carbonate carbon analysis. The carbon fraction of a sediment sample is
composed of the carbonate carbon fraction and the organic carbon
fraction. A sample containing the total carbon fraction and the
necessary reagents and catalysts is first introduced into the LECO
carbon determination appraratus, oxidized by heating in a stream
of oxygen, and the total carbon content obtained by measurement of
the gas volume produced. A second cut of the same raw sample
is then mildly heated in dilute hydrochloric acid in order to remove
the carbonate content. This second sample is then rerun and the

non-carbonate carbon content is obtained. The three volumes therefore available are the total carbon, the organic carbon, and the carbonate carbon volumes.

III. RESULTS

A. DATA COMPUTATION

After several revisions the final form of the data sheet was adopted as shown in Figure 4. The title block of this sheet lists pertinent information pertaining to the identification of the sediment, drying temperature used, sample number of the sediment and the date and starting time of the drying test. The second line lists the dish numbers used. Where two sediments were dried simultaneously the first four dish numbers (dishes 1 through 4) were used exclusively for the first sediment listed in the title block. Dishes 5 through 8 were used for the second sediment. The weight of the tin and the wet sediment appear on the next line. This line further serves as the title head for the eight columns W. C. / N. W. Here N. W. stands for normalized water content while W. C. is the water content given by equation (1). Significant line headings were given numerical prefixes for ease of following through with the water content computations, i.e., Wt. of Dish + Wet Sed. is prefixed by the numerical designator (1). The column headings for the weighing number and the time of the weighing appear immediately beneath line (1) . Line (2) gives the weight of the tin (dish) and the dry sediment. The weight of the empty tin as measured at the beginning of the test appears on line (3). The weight of water, line (4), is the difference between the weight of the

Project: Water Content Study	ntent Stu	ρ		Sedi	Sediment:			۵	Date:		
Drying Temperature:	 v			Sam	Sample No.:			Ë	Time:		
Dish Number	-		2	м	4	2	۰		7	8	
(1)Wt. Dish+Wet Sed	₹ Z	X X X X									
(2) Wt. Dish + Dry Sed.											
3Wt. of Dish											
(4) Wto i Water, (1) -2											
(5W 1. of Dry Sed, 2-3)											
OWater Content, 45											

Figure 4. Sample Data Sheet

tin plus the wet sediment and the weight of the tin plus the dry sediment. The weight of the dry sediment line (5), is given by the difference between the quantities in lines (2) and (3). The final water content is shown on line (6), the last line on the sheet.

B. WATER CONTENT DEFINED

Classically, two well-known but differing concepts exist for the reporting of moisture content or water content, the terms being synonymous. The more commonly used of the definitions is that of the soil scientist. Basically then, water content is given by the ratio of the weight of water driven off from a given sample divided by the weight of the remaining dry soil (sediment). This ratio is then multiplied by 100, since this parameter normally appears as a percentage. Mathematically this relationship is given by:

W.C. =
$$\frac{\text{Weight of water}}{\text{Dry weight of soil}}$$
 = $\frac{\text{W}_{\text{S}} - \text{W}_{\text{D}}}{\text{W}_{\text{D}} - \text{W}_{\text{C}}}$ x 100% (1)

where:

W. C. = water content, in percentage

W_S = weight of container and moist sediment, in grams

W_D = weight of container and dry sediment, in grams

W_C = weight of container, in grams

The geologist's concept of water content is given by a similar relationship wherein the denominator of the ratio is the weight of the wet sediment, or mathematically:

W. C. =
$$\frac{\text{Weight of water}}{\text{Wet weight of soil}} = \frac{W_S - W_D}{W_S - W_C} \times 100\%$$
 (2)

where the quantities are the same as those given for equation (1). The soil scientist thus allows for water contents in excess of 100% while the geologist's concept restricts the maximum value for water content to 100%. For some applications the first of these two relationships is easier to use in that the denominator of dry weight of soil is a constant value, whereas the wet weight of soil is a non-fixed sum.

C. NORMALIZED WATER CONTENT

It is often advantageous to normalize data in order to minimize the effect of the uncontrolled variability of some of the inputs. A similar problem exists with the analysis of water content studies. That is, a way to minimize the variance of sediment composition and void structure must be devised if meaningful interpretations are to be obtained. The parameter of normalized water content has therefore been introduced and defined as the ratio of the water content at any given time divided by the final water content. The definition of water content as used by the soil scientist and as indicated by the American Society of Testing and Materials, equation (1), has been used exclusively in this study. Mathematically, normalized water content is expressed by the relationship:

$$N_{\bullet} W_{\bullet} = \frac{W_{\bullet} C_{\bullet}(t)}{W_{\bullet} C_{\bullet}}$$
(3)

where

N. W. = normalized water content (dimensionless)

W. C. (t) = water content at a given time, in percentage

W.C. = final water content, in percentage

The advantage of this concept is shown in the following discussion of the relationship between normalized water content and drying time.

D. DATA REDUCTION

1. Water Content versus Drying Time

Four different methods of organizing the data were considered. In that a primary consideration of this effort was the study of the 90 - 170° C temperature range in the hopes of reducing drying time, the first relationship dealt with was that of the water content versus drying time. A typical representation of this relationship is shown by Figure 5. From this data as presented it is difficult to determine a drying time to correspond with a drying temperature. For purposes of this consideration and the relationships that follow, the data is grouped conveniently into two distinct groups according to weight: $28 \pm 2g$ and $38 \pm 2g$. Hourly entries, therefore, appear in the N. W. /W. C. column of the data sheets of the appendix only where the data corresponds to the above grouping scheme. Although sample weight remains within a well-defined range, $38 \pm 2g$ in the case shown in Figure 5, the three variables of water content,

Water Content vs Drying Time for Seal Beach No. Figure 5.

drying time, and drying temperature still exist. One of these variables must therefore be normalized in order to obtain a relationship in terms of the other two.

2. Normalized Water Content Versus Drying Time

The normalized water content concept introduced earlier represents the water content at any time divided by the final total water content. Plots of normalized water content versus drying time are shown by Figures 6 through 11. Two variables, drying time and drying temperature, are therefore represented at the expense of restricting the variables of sample weight by using a weight grouping scheme and water content through the use of the normalization technique. It is readily seen from such a plot that the drying time is reduced considerably by increasing the drying temperature. A similar correlation is drawn for each group of four sub-samples at each drying temperature considered in this study. Figures 12 and 13 show the reduction in drying time with decrease in sample weight for a given drying temperature. The drying temperature and water content are therefore restricted in order that a relationship expressing drying time as a function of sample weight can be shown.

3. Comparison of Water Content and Drying Temperature

Lambe (1949) applied the relationships between water content and drying temperature to demonstrate that there is no

Normalized Water Content vs Drying Time for Seal Beach No. 1 Figure 6.

Normalized Water Content vs Drying Time for Seal Beach No. 2 Figure 7.

Normalized Water Content vs Drying Time for Elkhorn No. 1 Figure 8.

Normalized Water Content vs Drying Time for Elkhorn No. 2 Figure 9.

Normalized Water Content vs Drying Time for Monterey Canyon Figure 10.

Figure 11. Normalized Water Content vs Drying Time for Buoy B

Normalized Water Content vs Drying Time for Seal Beach No. 1 at a Drying Temperature of $90^{\circ}\mathrm{C}$ Figure 12.

Normalized Water Content vs Drying Time for Seal Beach No. 1 at a Drying Temperature of $150^{\rm o}{\rm C}$ Figure 13.

justification to accepting a drying temperature of 110 ± 5°C for terrestrial soils. This approach is now extended to marine sediments. Again the two distinct sample weight groups mentioned earlier are considered. Composite line graphs for the two weight groups showing the relationship between water content and drying temperature for the six sediments studied are shown in Figures 14 and 15. Each data point represents the water content for a given sediment at a given drying temperature within the temperature range considered. For purposes of clarity and to show the correlation between the two weight groups concerning the relationship between water content and drying temperature, Figures 16 through 18 are plotted. These figures show that the behavior of water content with drying temperature is similar for the two sample weights considered. A few large differences in the value of water content obtained at a given temperature are readily seen, however. Figure 15, for example, shows the radically differing values of water content obtained for the two weight groups in the drying temperature range of 130 to 150°C for Elkhorn No. 2. If a large enough group of samples were considered for each weight group these extremes would probably be reduced such that a true general trend could be drawn for this relationship.

The maximum values of water content appear to occur at randomly differing drying temperatures for each of the sediments. This fact is not easily explained since Lambe found that the value obtained

Water Content vs Drying Temperature for a Sample Weight of 28 ± 2g Figure 14.

Water Content vs Drying Temperature for a Sample Weight of $38 \pm 2g$ Figure 15.

Figure 16. Water Content vs Drying Temperature for Seal Beach No. 1 and 2

Figure 17. Water Content vs Drying Temperature for Elkhorn No. 1 and 2

Figure 18. Water Content vs Drying Temperature for Monterey Canyon and Buoy B

for water content increased steadily with increase in the drying temperature. Again the relationship between the sediment structure and soluble salts appears to influence the value of water content obtained. This aspect is not completely understood although several investigators, namely Sullivan (1939) and Tschebotorioff (1955), have shown that certain ions such as Na⁺ tend to form a thick film of absorbed water around soil crystals. Since sea water has NaCl as its principal salt, the water content of a marine sediment is likely to be higher than that of a similarly structured terrestrial soil.

The above phenomenon accounts for the high water content of marine sediments, but does not satisfactorily explain the random behavior concerning the relationship between water content and drying temperature. The change in the chemistry and mineralogy that apparently occurs within a sediment when subjected to different drying temperatures is not clearly understood. The temperature dependent drying process possibly permits the exchange of certain ions within the sediment structure that would not occur under natural conditions. Grim (1962) has shown that the plastic clays such as montmorillonite and illite are most succeptable to ionic changes within their structure. Thus no satisfactory explanation as to the sporadic behavior of marine sediments when subjected to oven drying can be drawn from this consideration.

4. Water Content Versus Sample Weight

The final relationship considered was that of water content versus sample weight. A fairly large scattering of data points was obtained for this relationship. A straight least square regression line was fitted to the data as shown in Figures 19 through 24. These lines were determined by solving the following pair of simultaneous normal equations:

$$Y = a_0 N + a_1 \sum X$$

$$XY = a_0 \sum X + a_1 \sum X^2$$
(4)

where

X = sample weight

Y = water content

N = number of data points

a = Y - intercept

al = slope of the straight line

By tabulating and summing the individual quantities X, Y, XY, and X^2 the desired quantities, $\sum X$, $\sum Y$, $\sum XY$, $\sum X^2$ of Table 1 were determined. Substituting these results in equation (4) and solving the pair of normal equations simultaneously yielded an equation for the least square regression line of the form:

$$Y = a_0 + a_1 X \tag{5}$$

where

X, Y, a_0 and a_1 are as given for equation (4).

Figure 19. Water Content vs Sample Weight for Seal Beach No. 1

Figure 20. Water Content vs Sample Weight for Seal Beach No. 2

Figure 21. Water Content vs Sample Weight for Elkhorn No. 1

Figure 22. Water Content vs Sample Weight for Elkhorn No. 2

Figure 23. Water Content vs Sample Weight for Monterey Canyon

Figure 24. Water Content vs Sample Weight for Buoy B

42	0000/	1096	1948	1,884	1.2544	199//	1828	1569	10201	0000/	6046	/020/	1948	11025	9025	/020/	1.2544	8836	384079
Ŋ	3700	3636	3404	96.94	4368	42/2	94,0	3480	14/4	0024	4/04	4343	8404	4830	0954	6464	8099	5838	133302
X	69€1	69€1	1369	<i>ħħħ/</i>	1551	1551	009/	009/	1891	1921	1921	6481	96/	5//6	2304	7/01/2	3381	3844	50215
y	00/	86	92	155	112	80/	16	87	/0/	00/	26	/0/	26	501	36	/0/	112	46	2695
×	37	37	37	% R	33	33	94	94	//	45	75	43	*	8	88	64	59	62	(305)
y2	12544	4096	60901	0000/	19121	15376	10101	6046	1325	11025	8/00	11236	6046	13521	0000/	10401	8/00	11236	
×	4942	7525	2472	00/	899€	3472	2856	2716	3335	3045	9/92	3180	0162	3441	3300	3366	3/50	38/6	
χ²	184	53	2/9	729	482	482	484	784	148	148	148	006	006	196	1054	6801	1225	9621	
7	112	86	103	00/	131	7之/	707	26	5//	501	06	8	26	111	00/	102	06	90/	
×	22	23	*	27	8	8	8	8	8	82	82	æ	30	3/	24	33	35	×	

Tabulation of Variables for Least Square Regression Line Determination Table 1.

Least Square Regression Line is given by:

$$Y = a_0 N + a_1 \sum X$$

$$XY = a_0 \sum X + a_1 \sum X^2$$

$$(3697 = 36a_0 + 1305a_1) 36.25$$

$$\frac{133302 = 1305a_0 + 50215a_1}{134016 = 1305a + 47306a}$$

$$-\frac{133302 = -1305a_0 + 50215a}{814 = -2909a_1} \text{ or } a_1 = \frac{-814}{2909} = -0.280$$

$$133302 = 1305a_0 + 50215 (-0.280)$$
or $a_0 = \frac{133302 + 14060}{1305} = \frac{147362}{1305} = \frac{113.00}{1305}$

$$Y = -0.280X + 113.00$$

Correlation Coefficient is given by:

$$= \frac{N \sum XY - (\sum X)(\sum Y)}{\{[N \sum X^2 - (\sum X)^2][N \sum Y^2 - (\sum Y)^2]\}^{\frac{1}{2}}}$$

$$= \frac{36(133302) - (1305)(3697)}{\{[36(50215) - (1305)^2][36(384079) - (3697)^2]\}^{\frac{1}{2}}}$$

$$= \frac{4,798,872 - 4,824,585}{\{[1,807,740 - 1,703,025][13,826,844 - 13,667,809]\}^{\frac{1}{2}}}$$

$$= \frac{-25,713}{\{[104,715][159,035]\}^{\frac{1}{2}}}$$

$$= \frac{-25,713}{(16,653,350,025)^{\frac{1}{2}}}$$

$$= \frac{-25,713}{129,100}$$

-0.199

Table 2. Least square regression line and correlation coefficient determined.

A least square regression line then was determined for the relationship in question for each of the six sediments analyzed.

A measure of how well such a straight line relationship fits a given set of data is expressed by the correlation coefficient. Using the short computational formula of Spiegel (1961), the correlation coefficient r is given by:

$$r = \frac{N \sum XY - (\sum X)(\sum Y)}{[N \sum X^2 - (\sum X)^2][N \sum Y^2 - (\sum Y)^2]}$$
(6)

where the variables are as defined for equation (4). The correlation coefficient was determined to check the validity of the least square regression line representation for the indicated relationship. This coefficient was found to vary from a high of -0.786 to a low of -0.051. While the straight line relationship appears to fit the data quite well for several of the cases, it is inadequate for the others. It is unlikely that a second or third degree least square polynomial would fit the given data any better than the straight line relationship. This fact may be surmised from the discussion of the previous section where the role of the base exchange of ions was felt to control to some degree the water content of a given sub-sample. The treatment of this relationship demonstrates that water content apparently decreases with increase in sample weight. Possibly the dissolved salts play an important role here.

E. FINDINGS OF GRAIN SIZE ANALYSES AND CARBON DETERMINATIONS

The results of the grain size analyses are expressed as a function of grain size in millimeters and percent of dry fraction by weight as shown in Figures 25 through 30. These distribution curves were then analyzed to give the sand-silt-clay ratio using the Wentworth classification scale for demarcation. The results were then plotted on the tertiary diagram of Figure 31 based on the work of Shepard (1954). Each of the six sediment samples was therefore classified according to grain size. For example, Seal Beach No. 1 is classified as a clayey silt.

Findings of the carbon determinations are summarized in

Table 3. The results clearly show that organic matter was not
present in a significant quantity in the sediment samples tested.

Organic carbon was found to be considerably higher in the Elkhorn

No. 2 and Monterey Canyon samples then in the other four sediments

tested. The Elkhorn sample was suspected of having a higher

organic carbon content since it was obtained from a calm portion

of the estuary that had been collecting marine debris for some

time. Here bacteria have been permitted to act under ideal conditions reducing carbon particulate matter to clay and silt size

particles. A similar condition exists in the portion of Monterey

Canyon sampled. Additionally the canyon serves as the collecting

basin for the results of bacterialogical action that occur in shallower

Figure 25. Grain Size Distribution for Seal Beach No. 1

Figure 26. Grain Size Distribution for Seal Beach No. 2

Figure 27. Grain Size Distribution for Elkhorn No. 1

Figure 28. Grain Size Distribution for Elkhorn No. 2

Figure 29. Grain Size Distribution for Monterey Canyon

Figure 30. Grain Size Distribution for Buoy B

Figure 31. Tertiary Classification Diagram

water. The low concentration of carbonate carbon possibly suggests that little marine shell life exists in the areas sampled.

Sediment	Carbonate carbon (%)	Organic carbon (%)	Total carbon (%)
Seal Beach No. 1	0.17	0.48	0.65
Seal Beach No. 2	0.20	0.47	0.67
Elkhorn No. 1	0.07	0.59	0.66
Elkhorn No. 2	0.23	1.54	1.77
Monterey Canyon	0.52	1.24	1.76
Buoy B	0.11	0.35	0.46

Table 3. Results of Carbon Determinations

F. RESULTS OF X-RAY DIFFRACTION

A trace was obtained for each of the six sediments and is shown in Figure 32. Unfortunately only a few minerals could be identified. Identification of the clay fraction was possible in two of the six sediments studied. This result is not surprising since only three of the sediments contained a significant clay fraction, i.e., Seal Beach No. 1 and 2 and Monterey Canyon (Figures 25, 26 and 29). Table 4, listing the minerals found in each of the samples, facilitates interpretation of the composite diffractogram. The prominent peaks, where they first appear beginning with Seal Beach No. 1, are marked with the respective d-spacing in Angstroms (Å) centered over the spike. The d-spacings were found by converting the

Figure 32. Composite X-ray Diffractogram

SEDIMENT	MINERAL	d SPACING (Å)	REL. INT.(I/I _o)
	Kaolinite	6.70	100
		3.63	77
		4.39	34
	Quartz	3.29	100
		4.17	35
		1.81	17
Seal Beach No. 1	Apophylite	3.95	100
		2.93	80
		1.54	80
	Aragonite	3.46	100
		3.18	52
	Calcite	3.15	100
		2.11	18
	Kaolinite	6.80	100
		3.63	77
	Quartz	3.29	100
		4.11	35
		1.80	17
Seal Beach No. 2	Aragonite	3.48	100
	8	3.21	52
	Calcite	3.14	100
	0020100	2.26	18
		2.10	18
		0.00	100
	Quartz	3.30	100
		4.17 1.81	35 17
7111	0.1.1		
Elkhorn No. 1	Calcite	3.15	100
		2.25	18
		2.12	18

SEDIMENT	MINERAL	d SPACING (Å)	REL. INT.(I/I _o)
	Quartz	3.30	100
		4.17	35
		1.81	17
Elkhorn No. 2	Calcite	3.15	100
		2.25	18
		2.13	18
	Apophylite	3.90	100
		2.93	80
		1.66	80
	Quartz	3.30	100
	Quartz	4.19	35
		1.77	17
Monterey Canyon	Calcite	3.15	100
, ,		2.26	18
		2.12	18
	0	2 21	100
	Quartz	3.31 4.13	100 35
		1.80	17
		1.80	1 /
Buoy B	Aragonite	3,40	100
		1.97	65
		3.24	52
	Calcite	3.13	100
		2.25	18
		2,15	18

Table 4. Analysis of X-ray Diffractograms

Degrees -20 readings to equivalent d-spacing values by using a computerized print out.

As mentioned above, a significant clay fraction was identified in two of the samples. The non-plastic clay identified, kaolinite, is known to exist in the Seal Beach area. It is not unlikely that plastic clays may also exist in the Seal Beach samples and in the Monterey Canyon sample. Possible identification of these clay constituents was undoubtedly hampered by the presence of dominant minerals and the organic carbon and carbonate carbon fractions.

Even if the most elaborate sample preparations are used, identification of montmorillonite and illite, the most commonly found plastic marine clays, is difficult due to the comparatively weak peak intensities given on the diffractogram.

Worthy of mention was the fact that the minerals quartz and calcite were found in all of the samples studied. This is not surprising since these two minerals are very common in sediments of terriginous origin. The presence of aragonite in three of the samples was probably the result of the decomposition of marine shells. In conclusion Seal Beach No. 1 and 2 are probably of true clay mineral composition while the Monterey Canyon sample contains primarily clay sized clastic mineral components.

IV. CONCLUSION

It is possible to draw several conclusions from this study. Based on the findings of this study, it is concluded that temperatures in the range from 130 to 150°C are equally as acceptable as the standard drying temperature of 110 ± 5°C. The advantage of using a higher temperature is that an appreciable amount of time can be saved. It appears that temperatures in excess of 150°C do not appreciably further reduce the drying time. In drying sediments containing appreciable quantities of organic matter a temperature less than the boiling point of pure water should be used. This investigation confirms that there is no necessity toward using a temperature of 110°C for the drying of marine sediments in order to secure satisfactory results with inorganic sediments.

The water content of a marine sediment appears to vary depending on the drying temperature used. Perhaps the dissolved salt content plays an important role in controlling the water content of sediments. It is suspected that this interrelationship may be especially true for the fine grained, highly plastic sediments such as montmorillonite. Additionally, the water content of a given sample appears to decrease with an increase in sample weight. Perhaps this also is related to the dissolved salt content.

The concept of a normalized water content proved to be a valuable aid in arriving at an elapsed time for a given drying temperature.

This concept is also useful in showing the relationship between sample weight and drying time for any one drying temperature. If the general nature of a sediment is known, appreciable time can be saved in the drying process by consulting the family of curves presented as to the relationship between normalized water content, sample weight and elapsed time.

The drying of sediments consisting primarily of plastic clays should be further investigated since it is known that such sediments (soils) break down at a relatively low temperature. If drying temperatures approaching the upper limit of the temperature range considered in this study were used in drying these clays, a greatly misleading value of water content may be subsequently reported. Sediments containing mostly montmorillonite, for example, should be dried with caution if using drying temperatures exceeding 150°C.

V. SUGGESTED AREAS FOR FUTURE RESEARCH

A fruitful portion of any noteworthy research endeavor is the recommendation of areas for future investigation. The following thoughts are interjected with the hope of providing the stimulus for future research projects.

A. DIFFERENTIAL THERMAL ANALYSIS

Differential thermal analyses (DTA) were not made on the samples studied for reasons of non-availability of the necessary equipment. DTA has two distinct applications in the field of marine sedimentology. Of primary interest, perhaps, is its use in determining the yield or ignition point of sediment samples. While sediments high in organic content have a low yield point (usually around 100°C) the non-plastic clays such as kaolinite have relatively high yield points (about 600°C) (Huber 1955). In conducting water content studies at temperatures in excess of 100°C it would be advantageous to know at what temperature the component structure begins to break down. This temperature would be available from DTA records. DTA is also of aid in the identification of the clay constituents. As was the case for spectrographic analysis, each mineral yields a unique trace. DTA, therefore, could be used in conjunction with X-ray diffraction to identify and classify the fine grained sediments of Monterey Bay.

B. CONTINUATION OF WATER CONTENT STUDIES

The study conducted here represents an area where continued investigation should be profitable. It would be advantageous to concentrate such a study on the finer grained sediments, particularly sediments containing a high percentage of true clay particles. The true clay sediments will likely take longer to dry than ones of higher clastic content. Careful attention should be devoted to the sub-sampling techniques in order to insure that representative materials are tested. Useful results concerning the water content-sample weight relationship could possibly be obtained by considering four distinct sub-sample weight groups of 10, 20, 30, and 40 grams. Sediments containing large amounts of organic matter should be studied in detail.

C. X-RAY DIFFRACTION

A joint study of the sediments of Monterey Bay as to water content and sediment structure would likely prove valuable toward better understanding the role that soluable salts play in controlling the water content of marine sediments. Methods of sample preparation should be exhausted in an effort to improve on the difficult task of identifying many of the highly plastic clays such as montmorillonite.

Proj	Project: Water Content Study	ontent Stuc	l,		Sediment:	ent:	Seal Beach #1	sh #1 82			Date: 4/21/69	69/	
Dryi	Drying Temperature: 90^{o} (J. 06 : 20			Sample No.:	N N	.: 888				Time: 0830		
Dish	Number	1	2		т		4	20	9		7	80	
Weigh, No.	Dish+Wet Sed	34.538 WC. 48.	C. 48. 482		41.603	4	57.986	32.721	34.848		59.405	53.620	
_	1020 (2.0)	24.760	35.850		30.910		45.310	22.490	3.030	525	48.630	43.540	83
2	1130 (3.0)	23.870	33.030	82 /3	38.940	88 4	06.14	21.670	27.130	1/8	042.44	39.730	50
~	1230 (4.0)	23.560	31.660	2,96	28.080	66	38.500	21.450	26.340	6,0	40.850	37.370	22
7	1330 (5.0)	23.490	30.940	93	27.680 /	%)	€.990	21.370	25.860	16	38.550	35.930	883
5	(0.9) OETI	23.450	30.430	96	7.430 /	989	36.010	21.350	25.540	22	37.050	34.940	865
9	1530 (7.0)	23.439	30.130	250/	7.30	104	35.390	21.223	25.310	85,	35.960	34.230	2% BLE
7	1630 (8.0)	23.430	29.970 /		27.210	10/	35.050	21.335	25.210	87.	35.400	33.830	1
8	1730 (9.0)	23.431	29.870	88	27.160 1	105	34.810	21.325	25.120	8%	34.920	33.500	86
6	0800 (23.5) 23.414	23.414	29.707	188	27.067	05/	34.442	21.321	24.937	28	34.201	33.024	97
2W1. Di	2Wt. Dish + Dry Sed.	23.430	29.707		27.067	,,,	34.442	21.325	24.937		10E.H	33.024	
3Wt. of Dish	Dish	12.059	11.986		12.263		13.119	11.997	12.221		11.995	11.883	
(W 1, of	4 W 1, of Water, (1-2)	//./08	18.675		14.536	, ,	23.544	004.11	016.6		102.52	20.596	
(5)W 1. of	SW 1. of Dry Sed (2)-(3)	11.371	17.621		13.807		22.323	9.338	12.716		22.206	21.141	
6Water	6Waier Content, (4)	6.76	105.8		105.2		105.3	122.4	78.0		113.4	97.5	

TABLE B

Proje	Project: Water Content Study	ontent Stuc	dy		Sediment:	e o t	: Eleborn #1	#1 82			Date: 7/9/69	69/	
Dryi	Drying Temperature: 90°	re: 90° C			Sample No.:	e No	989 ···				Time: 0835	5	
Dish	Number	-	2		8		4	2		9	7	80	
(1)Wt. Dis Weigh. Na	h+Wet Sed.— Time (Hrs)	74.645 W.C. 38.078	C. 38.078		54.739		44.502	38.578	7	42.489	19.867	49.216	9
,	00.1) 5560	38.920	22.860	54	49.730	32	39.680	31.720	53	€.700	4.140 25	5 44.140	0
2	1035 (2.0)	35.430	29.540	90/	047.440	3%	35.640	26.310 /	60	31.330	38.600 49	9 39.110	0
~	1235 (4.0)	22.700	28.590	22/	40.360	53	32.460	23.070 /	287/2	X,430	30.090 8	5 31.210	0
4	1335 (5.0)	32.663	28.583	00/	39.500	878	32.434	22.660 /	2 25/	25.570	28.440 92 145	5 29.550	0
5	1435 (6.0)	32.659	28.58/		39.417	818	32.430	22.520 %	99+	25.160	27.490 152	2 28.400	0
9	1535 (7.0)	35.656	28.580	2/30	39.405	818	32.436	22.475 9	994	24.997	26.990 156	3 27.740	0
7	1635 (8.0)	32.656	28.580	57/00	39.403	878	32.436	22.456 /	1532	046.45	26.803 99+	7 27.445	5
80	1735 (9.0)	35.656	28.580	27	39.403	88	32.427	22.450 /	1532	24.917	26.735 994	7 27.333	3
8	0900 (24.5)	32.648	28.575	100	39.391	8/38	32.421	22.432 /	153 2	24.879	26.644 198	8 27.213	2
Wt. Dis	2Wt. Dish+Dry Sed.	35.656	28.580		39.403		32.436	22.432	2	24.879	1119.92	27.213	2
3Wt. of Dish	Dish	12.054	11.980		12.259		12.114	166.11	_	12.217	066.11	11.878	8
W tof	(4) W 1, of Water, (1) -(2)	686.11	864.6		15.336		12.075	941.91		17.610	23.223	22.003	2
W 1. of	SW 1. of Dry Sed (2)-(3)	209.02	/6.600		27.144		30.312	10.541	/	12.662	14.654	15.335	5
Water	OWater Content, 45	1.85	57.2		9.95		4.65	153.0		133.0	158.2	143.7	7
						1			1				

TABLE C

Proj	Project: Water Content Study	ontent Study		Sediment:		Monterey (anyon & Bury	8 Kom	Date: 7/2	2/38/69
Drying	ing Temperature: 90°	re: 90° C		Sample No.:	10.: 989		S	Time: 0825	
Dish	Number	1	2	m	4	ın	۰	7	80
Weigh, No.	Dish+Wet Sed	41.829 W.C.	37.899	34.144	49.163	42.608	41.652	51.916	41.678
_	(0.1) 5260	× 340 46	31.710	3.000	44.980 23	€. 190	35.780 7	20 46.350 E	35.900
2	1025 (2.0)	31.000 90	28.820	24.350	40.830 44	33.650	32.930 8	42.380	35 33.290
5	1225 (4.0)	25.640/35	23.460	21.490	33.950 84	33.590	32.790 100	39.350	32.520
7	1325 (5.0)	24.630/43	22.880	21.310	2.20 94	33.587	32.786 100	39.348	5 32.519
5	1425 (6.0)	24.210/47	22.740	21.306	31.190 95	33.587	32.787 100	39.348	32.520
9	1525 (7.0)	24.100/48	22.690	21.283	20.570 99	33.583	32.783 100	39.342	5 32.517
7	1625 (8.0)	24.07/170.45	22.676	21.382	30.310 194	33.583	32.782 43	39.341	5 32.516
8	1725 (9.0)	24.067/148	22.676	21.283	30.260 99+	33.584	32.783 100	39.342	5 22.517
6	1125 (27.0) 24.05/148	24.051/18	22.665	21.276	30.217 1.05	33.578	32.777 100	39.333	5 22.510
3Wt. Dish + Dry	sh+Dry Sed.	24.051	22.665	21.276	30.217	33.583	22.783	39.342	32.517
3Wt. of Dish	Dish	12.053	11.980	12.258	12.112	066.11	12.215	11.989	11.877
(4) W 1, of	4 W 1, of Water, (1-2)	17.778	15.234	12.868	18.946	9.025	8.869	12.574	191.6
(5)W 1. of	SW 1.01 Dry Sed, 2-3 11.998	-	10.685	8.0.6	18.105	21.593	20.568	27.353	20.640
6Wate	(6) Water Content, 45	148.0	142.6	142.8	1.401	8.14	43.2	45.9	4.44

							TA	BLE	D						
		00													
7/31/69	0480														
Date:	Time: (7													
		9													
(anyor		2													
Sediment: Monteney (anyon	0/ ::	4													
Sediment	Sample No.:	е													
		2	50.386	29.305	29.196						39.196	11.980	21.090	21.090	122.5
ontent Study	re: 90° (-	49.893 W.C. 50.286	27.000	36.944						26.944	12.052	22.749	14.892	152.8
Project: Water Content Study	Drying Temperature:	Number	N+Wet Sed.— Time (Hrs)	1440 (6.0)	1440 (30.0) 26.944						(2Wt. Dish+Dry Sed.	ish	(1) W 1, of Water, (1) -(2)	SW 1.01 Dry Sed, 2-3 14.892	Owater Content, 45 152.8
Proje	Dryin	Dish N	(1)Wt. Dish+Wet	\	2						@Wt. Dist	3Wt. of Dish	4 W 1, of V	(5) W 1. of D	@Water

Proj	Project: Water Content Study	ontent Stud	A		Sediment:		Seal Beach #1	62		Date: 7/	69/41/2	
Dryi	Drying Temperature:	ire: /00°(Sample No.	: 98	6			Time: 08/5	15	
Dish	Number	-	2		m	4	2		9	7	80	
(1)Wt. Dis Weigh. No.	Dish+Wet Sed	51.60/ W.C. 48.664	1,48.664		42.233	41.057	48.976		58.88/	38.006	40.700	
_	(0.1) 5160	45.060	42.640	2	£.400	36.230	3/41.530	20,000	21.660	32 150	35.090	33
2	1015 (2.0)	38.980	37.120	63	31.760	31.430	72 35.040		73 44.910	27.940	37.240	
~	1215 (4.0)	33.870	31.880	92	28.560	26.750	93 25.250		37.590	25.090	26.680	97
7	1515 (7.0)	32.857	30.513	86	27.660	25.660	94 29.752	201 5	35.440	24.462	26.319	648 448/
5	1615 (8.0)	32.801	30.445	+66	27.586	25.613	11/4 29.747	7 /00	35.330	24.438	26.311	88
9	1715 (9.0)	22.773	30.415	+66 60 40 40 40 40 40 40 40 40 40 40 40 40 40	27.543	25.593	11523.744	700/	35.280	24.438	26.308	88 BLE
7	0815 (24.0) 32.721	32.721	30.365	00/	27.453	25.556 /	115 29.732	20/02/	35.203	24.407	26.295	88
Wt. Di	2Wt. Dish + Dry Sed.	32.721	30.365		27.453	25.556	29.732	23	35.203	24.407	26.295	
3Wt. of Dish	Dish	12.054	186.11		12.259	12.114	11.992	27	12.217	066-11	11.878	
Wtof	(4) W 1, of Water, (1) -(2)	18.880	18.299		14.780	15.501	14.244	1/1	23.678	13.599	14.405	
W 1. of	SW 1.01 Dry Sed (2-3) 20.667	299.00	18.384		15.193	13.445	18.840	Q	22.986	13.417	14.417	
Water	6Water Content, 45	6.16	9.66		4.79	115.2	102.2	<i>C</i> 1	103.1	101.2	99.9	
											-	

TABLE F

Proj	Project: Water Content Study	ontent Study			Sediment:	int: Elshown #1	m #1 82		Dafe:	69/8/1	
Dry	Drying Temperature:	100° (Sample No.	No.: 8 & 8	90		Time:	0825	
Dish	Number	+	2	_	м	4	ις.	٥	7	80	
Weigh, No.	Dish+Wet Sed	45.160 W.C. 46.1	61,	~	36.457	61.799	52.867	34.688	47.403	36.762	
_	(0.1) 5260	38.300	39.340	24 25	30.640	39 56.620	048.44	27.390	016.04	45 30.960	28
2	1025 (2.0)	33.950	35.100	52 2	27.780	96 51.720	37.390	22.850	35.020	\$9 25.680	_
~	1125 (3.0)	32.350	33.500		27.270 100	016.74	32.840	21.430	024.05	080 22 080	24
7	1425 (6.0)	22.303	33.452	00 59 2,	00/ 092.75	00 43.766	28.451	20.838	26.339	147 21.680	875
5	(525 (7.0)	32.303	33.452		27.260 16	69 43.763	28.399	20.834	26.275	99 21.678	275
9	1625 (8.0)	22.303	33.451		27.259 16	192.54 19	28.383	20.833	26.256	994 21.678	BLE 8%
7	1725 (9.0)	32.30/	33.449	700 59 E	27.258 100	43.759	28.376	20.831	26.245	148 21.676	275
∞	0810 (23.8)	32.293	33.441		27.252 16	100 43.744	28.352	28.02	36.22/	700 21.666	27,00
DW4. Di	(2) Wt. Dish + Dry Sed.	32.303	33.452	2	27.260	43.759	28.376	20.831	36.245	21.678	
3Wt. of Dish	Dish	12.055	186.11	,	13.361	12.115	11.994	12.219	166.11	11.879	
(1) W (2)	(1) W 1, of Water, (1) -(2)	12.867	12.678	0,	6.197	18.050	164.45	13.868	21.182	15.096	
(5) W 1. of	SW 1. of Dry Sed (2-3)	20.248	21.371	//	14.999	31.644	16.382	8.612	14.254	6.799	
@Wate	OWater Content, (4)	63.7	59.5		61.2	27.0	149.0	0.191	148.5	154.0	
											1

Proj	Project: Water Content Study	ontent Stuc	ly.		Sediment:	enf.:		Monterey (anyon & Gwy	Buy B	Da	Date: 7/25/69	69	
Drying	ing Temperature :) .00/ :are	()		Sample	N N			,	Time	ne: 08/5		
Dish	Number	-	2		8		4	2	•		7	8	
Weigh, No.	Wt. Dish+Wet Sed eigh,Na, Time (Hrs)	31.939 WC.	C. 38.853		47.521	7	43.386	43.094	959.14	3	46.152	5/. 320	
,	0915 (1.0) 25.410	25.410	32.450	53	056.14	33	39.290	€. 180	35.000	33.23	40.400	049.94	81
<i>C</i> 1	1015 (2.0) 21.040	21.040	26.600	_	¥.330	36	34.840	33.790	32.530	23	£.490	42.170	7%
3	1115 (3.0) 19.820	19.820	23.710	25/	31.650	76/2/	€ 060.0€	33.780	32.520 19	100 35	35.900	39.450	2007
7	1215 (4.0) 19.760	19.760	22,880	<u>2</u> 5/	28.480	16/	28.150	33.775	32.517	45 3	35.896	39.260	83
5	1315 (5.0) 19.759	19.759	22.825	00/ 03//	27.000 /2	145	26.510	33.773	32.514 19	100/45/35	35.893	39.258	\$
9	1415 (6.0) 19.760	19.760	22.823	/00 /48	26.530	144/	26.000	33.774	32.514 19	100/45/35	35.894	39.256	83
7	1615 (8.0) 19.757	19.757	22.819	00/ 00/	26.458	37,	25.950	33.774	32.515 1	45 35	35.894	39.25	87
8	1715 (9.0) 19.757	19.757	22.818	84/ 80/	26.455	188/	25.948	33.774	32.515 1	100 35	35.893	39.255	\$3
6	1315 (29.0) 19.754	19.754	22.813	833	% tht '	8,8	25.938	33.770	32.510 "	45 35	35.887	39.248	8/3
2Wt. Dis	2Wt. Dish + Dry Sed.	19.757	22.8/8	2-	26.455	- 1	25.948	33.774	32.514	35	35.894	39.255	
3Wt. of Dish	Dish	12.052	11.979		12.258	_	12.112	066.11	12.215	1	11.988	11.876	
(4) W t. of	(3W 1, 01 Water, (1)-(2) 12, 182	12.182	16.035		51.066		17.438	0.320	6.142	0/	10.258	12.065	
(5) W 1. of	SW 1.01 Dry Sed, 2-3 7.707	7.707	10.839		14.197		13.836	71.774	85°02	15.	23.906	27.379	
(6) Water	6 Water Content 45 158.0	158.0	147.8	0.5	148.5		1.921	42.8	45.0		42.9	/.44	

TABLE H

				12	90	860	543	88	BLE 85	H 88	875	83					
69,		ω	41.955	29.910	28.040	27.050 /	26.736	26.628 11	26.5%	36.576 11	26.562 11	36.552 //	26.562	11.882	15.393	14.680	8.401
Date: 4/16/69	Time: 08/5	7	31.980	21.320	21.060	21.010	21.010	51.009	21.005	21.006	20.665	20.990	20.995	11.994	10.985	100.6	122.0
٥	jee.																
		9	36.746	72 25.700	3 24.660	3 24.318	3 24.245	4 24.238	4 24.225	4 24.223	1 24.221	24.210	24.221	12,221	12.523	12.000	104.3
1 #1 82		S.	411.15	36.710 7	34.570 88	33.210 39	22.580 93	32.291 994	2.201 994	22.156 994	32.130 994	32.124 100	32.111	966.11	18.986	20.134	4.46
Seal Beach #1	98				83	94 3	98	98 3	66	96/	_ ,	700/	3	,	7/	4	
	9 :	4	54.480	40.230	36.820	¥.820	33.885	33.494	33.403	33.382	33.36	33.351	33.36	12.119	711.14	21.247	99.3
Sediment:	Sample No.				0 /95		00//	00/6	3 /11/		00/ 0	3/100	0	3	,	7	0
Sec	Sar	е	42.881	29.250	27.370	26.840	26.794	26.789	26.783	181.92	26.780	26.763	26.780	12.263	101.91	14.517	0.111
		2	W.C. 33.977	22.840	22.400	22.361	22.355	22.353	22.352	22.350	22.350	22.341	22.350	11.985	11.627	30.365	112.3
tudy	110°C		X X														
Project: Water Content Study	re: //	-	50.316	1020 (2.0) 43.790	1115 (3.0) 40.450	1215 (4.0) 38.580	1315 (5.0) 37.560	1415 (6.0) 37.167	1515 (7.0) 37.025	1615 (8.0) 36.950	1715 (9.0) 36.921	0745 (23.5) 36.871	36.871	12.058	23.441	24.813	94.5
ater C	peratu		Sed (Hrs)	(2.0)	(3.0)	(4.0)	(2.0)	(0.9)	(2.0)	(8.0)	(0.6)	(23.5)			0-0	120	1,405
ect: We	Orying Temperature:	Number	h+Wet Time	0201	1115	1215	1315	1415	1515	1912	1715	5420	sh+Dry	Dish	Water,(Dry Sec	r Conte
Proj	Dry	Dish	Weigh, No. Time (`	2	5	7	5	9	7	80	6	(2) Wt. Dish + Dry Sed.	3Wt. of Dish	(W t. of Water, () -(2)	SW 1.01 Dry Sed (2) 3 24.8/3	Owaler Content, DE

Proj	Project: Water Content Study	ontent Stud		Sedime	Sediment: 8/bh. m #/	C & 1# c			Date: 4/2	09/11/7
Q	Drving Temperature: //o	00//				5			1:: 00 30	10/9
)		212	١٠٠٠ ١					2
Dish	Number	-	2	м	4	ιC		9	7	89
Weigh, No. Time	sh+Wet Sed	58.82 W.C.	30.638	34.667	57.362	47.17		42.195	50.488	32.108
\	1030 (2.0)		22.380	24.400 8	43.030	76 27.530	1/8/	26.380	35.480 6	04.02 96
2	1230 (4.0)	39.070	22.374	24.385 18	100 37.970 99	99+ 23.560	152	24.010	38.240 /1	142 20.060
3	1330 (5.0)	39.005	22.372	24.380 18	37.960	99+ 23.510	55.00	74.00/	27.670 /4	145 20.056
7	1430 (6.0)	38.988	22.371	24.378 10	37.955	75 23.510	100/	23.995	27.631 99	44 20.054
5	1530 (7.0)	£.986	22.371	24.378 10	37.954	23.509	100	23.995	27.611 /14	146 20.053
9	1730 (9.0)	38.977	22.370	24.376 18	85 37.954 1	75 23.509	1,000	23.996	27.611 14	146 20.053
3Wt. Dish+Dry	sh+Dry Sed.	38.986	22.371	24.378	37.955	23.510		23.995	119.12	750.02
3Wt. of Dish	Dish	12.057	186.11	12.263	12.118	11.995		12.230	11.992	//.88/
(4) W 1, of	(1) W 1, of Water, (1) -(2)	048.61	8.267	10.389	19.415	17.614		18.300	22.877	12.058
(5)W 1.0f	SW 1.01 Dry Sed, 2-3	26.93	10.387	12.115	25.837	11.515		11.795	15.618	8.173
(6) Wate	(Water Content, 45	73.8	79.7	9.48	75.3	153.0		154.5	146.2	147.3

TABLE J

Proj	Project: Water Content Study	ontent Study		Sediment:	nt: Nonterey	Monteney Canyon & Buoy	8 tim	Date: 7/16/69	69/
Dryi	Drying Temperature:	110° (Sample No.	No.: 383			Time: 0800	
Dīsh	Number	1	2	٣	4	2	•	7	89
(1)Wt. Dis Weigh, No.	Dish+Wet Sed	46.353 W.C.	35.408	40.005	42.835	40.662	63.058	58.7//	48.965
`	000 8:000		38 27.520	33.600	59 37.420	22.670 85	54.930	21.060	42.580 30
2	1000 (2.0) 31.070	31.070 69	23.030	27.830	78 32.620	31.330 94	060.64	45.880	36.170 91
2	1100 (3.0) 27.230	27.230 86	21.230	24.550 /	329.200	31.327 100	024.74	098.44	37.350 294
7	1300 (5.0) 24.700	24.700 174	20.690	23.120 9	025.35.520	31.325 160	9/4.24	14.851	7.343/98
5	1400 (6.0) 24.656		99+20.685	23.106 /	014.92.951	31.324 100	41.4.64	848.44	37.341 100
9	1500 (7.0) 24.647		(7520.683	23.102 /	1,5626.393	31.324 1000	47.412	44.847	37.340 100
7	1600 (8.0) 24.645		75/20.682	23.100 /	156.26.389	31.323 100	114.74	948.44	37.340 100
8	1700 (9.0) 24.643	24.643 100	20.680	23.099 /	156.26.387	31.322 100	0/4.24	548.44	37.339 100
6	0745 (23.8)24.628	24.628 100	029.02	23.087 /	1,56 26. 372	31.316 100	47.400	44.834	37.330 100
(2) W +. Di	3Wt. Dish + Dry Sed.	24.643	20.680	23.099	26.387	31.322	014.74	44.845	37.339
3Wt. of Dish	Dish	12.054	186.11	12.360	12.114	11.992	12.216	066.11	11.877
(4) W 1, of	(W 1, 0 ! Water, () -() 2/.7/0	21.710	14.738	16.906	16.258	9.340	15.648	13.876	959.11
(5) W 1. of	3W 1.01 Dry Sed (2-3) 12. 589	12.589	8.699	10.839	14.273	19.330	35.194	32.855	25.462
@Water	GWater Content, 45 175.2	175.2	9.691	156.2	0.4//	48.2	5.44	45.2	45.7

Prog	Project: Water Content Study	ontent Stud	,	Sediment:	nt: Seal Deach #1	ach #1 \$ 2		Date: 4/7/69	69/
Dry	Drying Temperature:	02/	ر. ــــــــــــــــــــــــــــــــــــ	Sample No.	No.: 282		•	Time: //28	~
Dīsh	Number	-	2	е	4	2	۰	7	80
(1)Wt. Dish+Wet	sh+Wet Sed Time (Hrs)	51.398 W.C.	38.587	40.144	53.053	63.080	43.560	49.453	53.798
`	(0.1) 8221	51.980	3.280	32.650 5	55 45.880 35 53 45.880 35	53.650	35.310 60	33.620	50 47.040
<i>C</i> 1	1338 (2.0) 44.770	44.770	x.000	27.900 87	7 38.070 74	46.230	28.690 1.10	34.430	83 38.720
~	022.01 40.230	40.730	25.370	26.500 9	7 34.30 93	42.180	26.480 127	3.570 13	3 54.740
7	1528 (4.0)	अ.य.	25.2%	26,426 100	7 32.932 99	39.530	25.822 131	30.430 106	5 32.595
5	1628 (5.0)	37.010	25.272	26.416 190	7 32.560 100	37.967	25.748 1.32	80/ 180.0E	3 31.617
9	1728 (6.0)	£.730	25.360	26.407 792	7 32.507 101	37.473	25.736 1.32	801 810.0x 99+	8 31.432
7	0828 (21.0) 26.610	26.610	25.254	26.393 100	7 32.477 101	37.280	25.725 1.32	801 996.62 3	8 31.365
②Wt. Dish+Dry	sh+Dry Sed.	35.610	25.254	26.393	32.477	37.380	25.725	29.366	31.365
3Wt. of Dish	Dish	15.061	11.988	12.265	12.122	866.11	12.24	11.997	11.885
(4) W 1, of	4 W 1, of Water, (1-2)	24.788	13.333	13.751	20.576	25.800	17.845	19.487	22.633
(5) W 1. of	SW 1.01 Dry Sed, 2-3-34. 549	24.549	13.366	14.138	20.355	25.382	13.501	17.969	19.480
@Wate	Owater Content, 45 101.0	0.70/	700.5	4.76	101.2	102.1	132.2	108.5	1.16.5

Proje	Project: Water Content Study	ontent Stud	dy	Sediment:	1: Elstorn #1	#182		Date: 5/6/69	69
Drying	ng Temperature:	ire: 120°	0	Sample No.:	10:: 787			Time: 0830	
Dish	Number	que.	2	м	4	ı	•	7	æ
Weigh No	Time (Hrs)	49.070 W.C.	WC. 45.293	092.09	35.456	52.357	53.156	42.049	37.212
,	1030 (2.0) 35.780		23	45.790	26.410 99	33.230 (11)	33.760	25.870 130	1,30 23.920
2	1230 (4.0) 35.736	35.736 100	R	44.413	26.408 100 6	29.351	134 28.820	24.460 100	22.150
5	1330 (5.0) 35.736		56 32.174	44.413	36.406 100	100 29.251 100	182.88 451	74, 455 1/4/	22.142
7	1430 (6.0) 35.736	-	56 32.174	114.44	26.406 100	100 3.251 100	1,34 28.784	24.454 100	22.141
5	1530 (7.0) 35.734		56 32.173	1/14.44/	36.405 100	100/ 67.85 E9 00/	100 28.784	24.455 /4/	22.141
9	1630 (8.0) 35.734	35.734 100	6 32.173	114.411	26.405 100	100 29.249 100	1,34 28.783	74.454 141	141 22.141
(3Wf. Dish+Dry	th+Dry Sed.	35.736	32.174	1/4.4/1	36.406	3.251	28.784	74.424	22.141
3Wt.of	Dish	12.056	11.982	15.201	12.115	11.993	12.219	11.992	11.879
(W. t. of	(W. t. of Water, () -() 13.334	13.334	13.119	16.349	9.050	23.107	24.372	17.595	12.071
(5)W 1. of	5W 1.01 Dry Sed, 2-3.680	23.680	261.02	32.150	14.291	17.248	16.565	12.462	10.262
ØWater	OWater Content, (45)	4.95	0.09	50.9	63.4	134.0	147.0	141.2	147.0

TABLE M

Proj	Project: Water Content Study	ontent Stu	dy		Sedin	Sediment: //br	rtene,	Monteney Canyon & Gwy	& Gu	B for	Date: 7/	7/18/69	
Drying	ing Temperatu	Temperature: $/20^{\circ}$	<u></u>		Samp	Sample No.:	585				Time: 08/0	0/	
Dish	Number	1	2		е	4		Z.		٥	7	-	80
Weigh, No.	1)Wt. Dish+Wet Sed	139.359 W	W.C. 40.7	219	35.866	60.746		826.94	7	46.188	40.962	77	42.129
_	09.06 (1.01) 01.500		30.9	940 87	26.960	53.600	75,80 80,75	37.650	2000	×.770	32.410	79 35	35.030
2	1010 (2.0) 25.580	25.580	25.3	300 92	21.830	46.630		36.370	+56 +66	35.440	31.020.18	50/32	32.690
8	1210 (4.0) 23.475	23.475	74.0'	070 /00	21.225	35.490	25/01/34	78.361	20/3	35.430	31.022 /	55 55	32.683
7	1310 (5.0) 23.471	23.471	24.0'	070 /00	21.236	32.780	90 94	36.363	00/	35.432	31.024 19	52 23	32.685
5	1410 (6.0) 23.469	23.469	24.00	00/ 690	422.12	31.220	30 /3/ oc	18.36	27,7	35.430	31.021	60/25	32.682
9	1510 (7.0) 23.467	23.467	24.0x	00/ /30	27.223	30.945	45 138	€.360	27,7	35.430	31.021	523	32.681
7	1610 (8.0) 23.465	23.465	74.0x	065 /38	17.75/	30.918	95/ 8/	35.358	£/8	35.438	31.020 16	52,	32.680
8	1710 (9.0) 23.466	23.466	24.00	00/ 990	27.225	30.912	00/	36.358	8/3	35.427	31.020 16	52 33	32.680
(2) Wt. Dish + Dry	Sed.	23.465	24.00	065	122.12	30.912	,5	¥.361		35.430	31.021	32	32.682
3Wt.of	Dish	12.053	11.980	80	12.259	12.113	Š	166.11		12.216	11.989	//	11.877
(4) W 1, of	4W 1, of Water, (1)-(2) 15.894	15.894	16.654	24	14.644	28.832		10.01		10.761	246.6	9	9.449
(5) W 1. of	SW 1.01 Dry Sed (2)-(3/1.4/2	11.412	12.00	085	8.962	18.799		24.370	. (23.214	19.032	9	20.805
6Wate	Owater Content 45 139.2	139.2	138.0	0	163.5	158.8	8	43.7		46.3	52.3	7	45.7

Proj	Project: Water Content Study	ontent Study		Sediment:		Seal Beach #1 82		Date: 4/15/69	69/	
Drying	ing Temperatu	Temperature: 130°		Sample No.:	No.: 585			Time: 0835		
Dish	Number	1	2	٣	4	S	•	7	ω	
(1)Wt. Dis Weigh. No.	h+Wet Sed Time (Hrs)	40.550 W.C.	W.C. 74. 334	48.779	70.960	112.84	060.69	45.337	41.089	
_	1035 (2.0) 24.670 98	24.670 129	26.960	31.050 108	54.250	32.930 80	53.730	30.190	28.160	86
2	1235 (4.0) 24.380	24.380 100	45.140	28.730 99+ 41.090	060.14	28.920 99+	99+ 43.330	27.940	26.090 /	99
~	1435 (6.0) 24.377	24.377 1.32	091.44	28.721 100	39.859	28.903 100	100 41.123	27.931	26.063 /	88
7	1535 (7.0) 24.377	4.37 132	941.14	28.721 100	39.847	28.903 1.00	41.097	27.931	26.063/	88
5	1635 (8.0) 24.377	24.377 (132	541.44	28.720 100 122	100 39.846	28.902 117	960.14	27.931	26.064	88
(2) W1. Di	(2Wf. Dish+Dry Sed.	24.377	971.14	28.721	39.847	28.903	41.097	27.931	26.063	
3Wt. of Dish	Dish	12.059	11.985	12.264	12.119	966.11	12.221	11.995	11.882	
(M tof	(4) W. of Water, (1) -(2) 16.173	16.173	30.188	20.058	31.113	19.808	27.993	17.342	15.036	
(5) W 1. of	5W 1.01 Dry Sed, 2-3/8	12.318	32.161	16.457	27.738	16.907	28.876	15.936	14.181	
@Wate	OWater Content, 45 131.0	131.0	93.8	122.0	112.2	117.1	97.0	108.9	1.901	
										1

TABLE O

Proj	Project: Water Content Study	ontent Stud	*		Sediment:		hom	Elshorn #1 & 2			Date: 5,	5/2/69		
Drying	ng Temperature :	ire: 130°	<u>ر</u>		Sample No.:		686				Time: //	1125		
Dish	Number	-	2		ж	4	-1	2		9	7		80	
(1)Wt. Dish+Wet Weigh, No. Time (sh+Wet Sed	52.687 W	W.C. 50.954		42.077	35.040		61.270	3	32.817	57.077	1	¥.984	
_	1225 (1.0) 42.070	42.070	40.250	8/	32.560	29.520		52 49.820	3,	23.350	47.380	823	28.500	383
2	1325 (2.0)	37.320	37.660	99+	99+ 30.720	28.480		99 41.380	2	21.090	39.510	128	23.410	2%
3	1525 (4.0)	37.295	37.649	52	30.707	38.471	00/ /2	34.738	R	20.986	32.432	28	22. 578	8%
7	1625 (5.0)	37.391	37.646	92/	30.705	28.468	88 1/00	34.710	2	20.983	32.276	66/3	22.574	8%
5	1725 (6.0)	37.288	37.643	52	30.702	28.465	55 /00	34.700	7	x.979	32.257	99+	22.570	925
9	0800 (20.5) 37.380	37.380	37.636	52	30.698	28.463	53 /00	34.690	7	20.979	32.243	700/	22.567	9,75
(2) Wt. Dish + Dry	Sed.	37.288	37.643		30.702	28.465	55	34.700	Z	20.979	32.257		22.570	
3Wt. of Dish	Dish	12.055	11.983		12.36/	12.115	/5	11.393	7/	12.219	11.992		11.879	
(W 1, of	(4 W. t. of Water, (1 -(2) 15.399	15.399	13.32/		11.375	9.575	75	26.570	7	11.838	24.820		4/4.4/	
(5)W 1.0f	5W 1.01 Dry Sed, 2-323	25.233	25.660		144.81	16.350	12	22.707	-5	8.780	20.265		10.691	
6Wale	(Waier Content, 45 6/.0	0.19	51.9		9.19	28.6	9	117.0		135.0	122.3		134.9	

TABLE P

Proj	Project: Water Content Study	ontent Stuc	dy.		Sediment:	ent.		Monterey Canyon & Bury	S Buo	17 8	O	Date: 7/11/69	69/	
Drying	ng Temperature :	ire: 130°)		Sample No.:	e No	: 181				-	Time: 08/5		
Dish	Number	-	2		٣		4	'n		٥		7	æ	
Weigh, No.	h+Wet Sed Time (Hrs)	42.536 W.C.	C. 39.287		52.799	1	37.212	40.746	52	52.109	8	056.99	53.757	
	0915 (1.0) 32.120	32.130	29.140	63	060.14	69	26.630	32.020 9	068-14 44		2000	57.840	45.500	
2	1015 (2.0) 24.510	24.510	24.420	92 (33	32.400	188	86 23.320	31.957 19	th 33.	39.908	58	700 50.550	061.14	
5	1115 (3.0) 23.160	23.160	23.16	th/ 09/	29.420	99+	22,330	31.954 19	700 39.905		88	262.64 94	41.181	
7	1215 (4.0) 23.152	23.152	23.125	/60/	29.255	/00/	22.318	31.954 19	100/ 39,	39.900 11	7 99	062.64 94	41.177	
5	1315 (5.0) 23.150	23.750	23.123	54/	29.251	1,00/	22.3/6	31.954 19	100/4/4	39.900	88	062.64 94	41.177	
9	1515 (7.0) 23.146	23.146	23.118	142	29.245	88	22.314	31.954 19	100/ 39	39.899 11	88	100 49.788	9/1.14	BLE
7	1615 (8.0)	23.147	23.120	34/ 00/	29.245	33/20	100 22.314	31.951 16	100/ 144 39.	39.896	75/35/35/	49.785	41.174	P
(2) W +, Di	(2Wt. Dish + Dry Sed.	23.146	23.118		29.245	_ ()	22.314	31.954	39.	39.900	4	49.790	41.177	
3Wt. of Dish		12.054	1.981		12.259		12.114	11.992	12,	12.217		066.11	878.11	
(4) W 1, of	(W. t. of Water, () -() 19.390	19.390	16.179		23.554		14.898	8.792	12.	12.309		17.160	12.580	J
(5)W 1.0f	5W 1. of Dry Sed, 2-3/1.992	11.092	11.137		926.91		002.00	19.962	8	26.683	57	37.800	29.299	
@Wate	OWater Content, 45 175.0	175.0	145.1		138.9		1.941	7.44	7	45.7		45.4	43.0	

TABLE Q

Proj	Project: Water Content Study	ontent St	ndy	1		Sediment:	ent.	Seal Deach #1	ach #1 &	~		Date: 4/	4/2/69	
Dryi	Drying Temperature:	ob/ : ===	0			Sample No.:	S S	181:				Time: 1/22	22	
Dish	Number	-		2		т		4	r.		۰	7		8
(1)Wt. Dish+Wet Weigh, No. Time	sh+Wet Sed.— Time (Hrs)	13.726	N.C.	51.175		42.311	5	51.073	50.076		52.551	45.529	147.	47.605
,	1222 (1.0) 30.390		33	33.010	53	31.960	~	38.930	33.980	32	40.150	Ø.440	55.55	×.340
2	1322 (2.0) 26.430		98	32.670	97,	27.260	3	32.570	33.500	25	33.100	$\alpha t \cdot \alpha$		31.120
3	1427 (3.0) 25.809		(00/	30.920	797	26.834	×	30.516	30.730	93	30.504	35.445		29.631
7	1525 (4.0) 25.801		00/0	30.896	/02/	26.831	~	30.486	199.00	00/	30.516	28.362 11	100 29	29.609
5	1625 (5.0) 25.791		(00/	30.830 V	00/	26.830	<u>e.</u>	30.483	199.00	00/	30.510	38.357 11	100/00/29	29.592
9	1725 (6.0) 25.791		(00/	30.889 /	00/	X.830	R	30.482	€59.0€	00/	30.500	38.352 11	100 23	165.62
7	0825 (21.0)25.790		(00/ (0/	30.884	707	128.92	R	30.477	30.643	00/	30.492	28.346 11	100 23	29.586
(2) Wt. Dish+Dry	Sed.	25.791	,,,	30.890		26.830	×	30.483	30.661		30.500	34.352	23.	29.592
3Wt. of	Dish	12.061		11.988		12.36	,	12.122	12.000		12.225	11.997)	11.885
(M tof	(W. t. of Water, () -() 13.935	13.935	(1)	20.285		15.481	7	20.590	20.015	4	22.051	17.17	/8	18.013
(5)W 1. of	5W 1.01 Dry Sed, 2-3 13.730	13.730	Š	18.902		14.564	2	18.361	18.661		18.275	16.355	17.	17.707
6Water	Owater Content, 45 101.5	101.5		7.70		106.2		112.1	(07.5		121.0	105.0	9/	8.101

Proj	Project: Water Content Study	ontent Stuc	dy		Sediment:	ent:	Cleborn #1	#182			Date: 4/30/69	69/
Drying	ing Temperature :	oh/ := 140°			Sample No.:	Š.	787:				Time: 1125	
Dīsh	Number	-	2		е		4	5		9	7	80
Weigh, Na	Wt. Dish+Wet Sed	4/./4 WC	C. 51.323		52.043	7	41.822	39.703		44.188	52.264	46.685
,	1225 (1.0) 30.380	30.380 %	8 41.820	67	39.640	,,	30.950	28.630	22	22.320	40.750 49	35.680
2	1325 (2.0) 30.180	30.180 100	37.400	99+	£.320	,,	30.100	24.270 /	3.38	26.300	32.390 (30	28.740
~	1425 (3.0) 30.175	30.175 100	37.382	900/	€.310	(2)	30.094	7 941.45	88	25.400	28.880 /4/	27.010
7	1525 (4.0) 30.175	30.175 100	37.380	55	£.309	3	₹0.034	24.142 /	8,8	25.397	28.658 99+	26.390
5	1625 (5.0) 30.173	30.173 100	37.377	55	36.306	3	30.091	7/141/42	88	25.395	38.648 100	28.987
9	1725 (6.0) 30.172		37.376	55	36.305	3	30.0€	24.139 100	88	25.392	28.643 1/00	26.983
7	1300 (24.5)30.164	30.164 100	37.365	/00/	36.292		30.082	74.130 /	88/	25.380	28.625 100	26.970
2Wt. Dish+Dry	sh+Dry Sed.	30.173	37.377		36.306	-	30.091	141.42	.,	25.395	28.643	26.987
3Wt. of Dish	Dish	12.055	11.983		12.261		12.116	11.993		12.218	11.992	11.879
4Whof	(4) W. of Water, (1) -(2) 10.971	10.971	13.946		15.737		11.731	15.562		18.793	23.621	19.698
(5) W 1. of	5W 1.01 Dry Sed 2-3/8. //8	18.118	25.394		24.045	×	18.975	12.148		13.177	16.651	15.108
@Wate	OWater Content, 45 60.4	4.09	55.0		65.4		61.9	1.38.1		142.8	145.0	130.3

TABLE S

Proj	Project: Water Content Study	ontent Stud	*		Sediment:		eney	Monteney carpon & way	8 4	s tion		Date: 7/17/69	69/	
Dryi	Drying Temperature:	ire: 140°	ري		Sample No.:	No.: 4 &	7				-	Time: 08/0		
Dish	Number	-	2		e e	4		2		9		7	80	
(1)Wt. Dish+Wet Weigh, No. Time (sh+Wet Sed	32.644 W.C.	x. 39.627		46.683	52.412		40.247		49.887		35.876	48.896	
_	0910 (1.0) 21.710		27.690	1000 1000 1000	34.170	062.14	35	31.860	466	9.050	83	28.120	3.520	
2	1010 (2.0) 20.30	00. so	23.500	98	26.830	33.500	99	31.849	00/ 57/	8.705	27	38.108	36.645	
5	1210 (4.0) 20.296	30.396	23.130	/88 /#8	25.966	29.068	194	31.846	23	8.699	00/	38.105	¥.6%	
7	1510 (6.0) 20.293	20.293	23.126	83	25.961	29.059	97/	31.843	00/	38.696	27/00/	28.103	€.633	
5	1610 (7.0) 20.292	20.292	23.125	83	25.961	23.058	97,	31.843	27 00/	38.695	700/	28.103	₹9.6%	
												,		
2Wt. Dish+Dry	Sed.	20.293	23.126		25.961	29.059		31.843		38.696		28.103	36.633	
3Wt. of Dish	Dish	12.053	11.980		12.259	12.113		166.11		12,216		11.989	11.877	
(1) M (1) 01	(W 1, of Water, () -(2, 35/	12.351	105.91		20.722	23.363		8.404		181.11		7.773	12.263	
(5)W 1. of	5W 1.01 Dry Sed, 2-3 8.240	8.240	9/1.11		13.702	946.91		19.852		26.480		411.91	24.756	
(6) Water	OWater Content, 450.	1.051	148.2		151.1	139.7		42.3		42.2		48.2	9.67	

Proj	Project: Water Content Study	Content Stu	ybu			Sediment:	11: Seal Beach #1 & 2	each #1	62		Date: 4/8/69	69
Dryi	Drying Temperature:		150°C			Sample No.:	No.: 3 & 3	00			Time: 1230	
Dish	Number	-		2		æ	4		r.	9	7	80
Weigh, No. Time	Sh+Wet Sed. Time (Hrs)	55.032 N	W.C.	1.371	7	44.033	47.322	49.705	50.	65.382	14.87	55.037
\	1330 (1.0) 42.630		8	200	77 3.	33.530	34.900 6	67 38.670		5, 53.270	x. 550 68	42.350
2	1430 (2.0) 35.060	35.060	74.	200/	122 23	28.560	30.940 g	89 32.190		42.570	31.000 97	35.180
3	1530 (3.0) 33.480	33.480	24.	672	75 75/00/	28.190	30.685 994	0 30.236	£ 107	37.820	30.447 102	33.115
7	1630 (4.0) 33.455	33.455	7	24.665 12	75/00 15/00 15/00	28.188	30.668 100	1,00 06	30.193 100	37.479	30.427 102	33.080
5	1730 (5.0) 33.455	33.455	75	24.661 12	124 25/	28.177	30.656 9	90 30.190	00/ 06	37.455	30.424 102	33.067
9	0830 (20.0)33.432	133.432	×	650	75 75/ 00/	38.166	30.654 19	90 30.1	70/ 67	30.179 107 37.445	30.412 102	100 33.058
2Wt. Dish+Dry	sh+Dry Sed.	33.455	K	199.42	38	38. 177	35.656	€ 190	06	37.455	30.427	33.067
3Wt. of Dish	Dish	12.059	//	.986	.4	2.265	12.121	11.997	26	12.223	966-11	11.883
(M to	(W 1, of Water, () -() 21.577	21.577	15	15.710	15	7.856	999.9/	19.515		27.827	18.837	21.970
(5) W 1, of	5W 1.01 Dry Sed, 2-321. 394	175.120	12	12.675	15	15.912	18.535	18.193	93	25.232	18.431	21.184
@Water	OWater Content, 45 100.7	1.00.7		1.74.1		6.66	4.06	1.07.4	4.	110.2	102.1	103.9

TABLE U

Proj	Project: Water Content Study	ontent Stud	dy		Sediment:	ent:	Cleborn #1 &	#1 \$ 2			Date: 4/2	69/62/4	
Dryi	Drying Temperature:	ire: 150°	ر		Sample No.:	No.	: 343				Time: 1230	a	
Dish	Number	-	2		8		4	2		9	7	80	
(1)Wt. Dish+Wet Weigh, No. Time	sh+Wet Sed	W 944.8	W.C. 53.533		38.861	5	59.917	39.790		35.467	100.64	58.606	10
_	1330 (1.0) 26.400		010	85	27.590	4 66	48.630	27.190/	80/05/	23.700	35.660 60	0 45.730	
2	1430 (2.0) 26. 300	26.30	38.230	73.4	1 0EL LE	1,00/	42.570	24.060 /	800	21.630	27.870 /4	95 36.270	0
5	1530 (3.0) 26.370	26.370	38.225	230	712.72 85	00 4.	72 42.530	24.048	88	459.12	25.710 17.52	31.250	
7	1630 (4.0) 26.368	26.368	38.223	838	100 27.716	00 4.	72 42.538	24.046	00/	21.623	26.700 199	9 31.067	_
5	1730 (5.0) 26.36	26.36	38.221	351 198 3	7.714	00 4.	100 42.524	7, 140.42	88	129.12	26.698 15	752 31.062	01
9	0800 (17.5)26.362	26.362	38.210	23,00	7.708	72 4	72 42.510	24.032	38	130 21.611	25.680 102	100 31.047	
2Wt. Dish+ Dry	sh+Dry Sed.	26.36	JX. 22/	- 1	27.714	7,	42.524	74.044		21.621	26.698	31.062	2
3Wt. of Dish	Dish	12.056	11.984		12.362	,	12.117	11.394		12.219	11.992	11.880)
(4) W 1, of	(W. t. of Water, () -() 10.000	10.000	15.312		11.147		17.493	15.746		13.846	22.303	27.545	2
(5)W 1.0f	5W 1.01 Dry Sed, 2 3/10	14.310	26.237		15.452	R	30.407	12.050		9.405	702.41	19.182	0
6Water	OWater Content, 45	70.3	7.85		72.2		57.5	130.8		147.0	151.6	143.7	7
									1				

Proj	Project: Water Content Study	ontent Stud	dy	Sediment:		Monteney (anyon & Buory	Buoy B	Date: 7/15/69	69/
Drying	ng Temperature :	ire: 150° (C	Sample No.:	No.: 282			Time: 0830	
Dish	Number	-	2	٣	4	S.	9	7	œ
Weigh, Na	h+Wet Sed Time (Hrs)	35.112 W	WC. 40. 503	37.910	47.830	37.630	56.871	58.220	41.005
	0930 (1.0) 24.370	24.370	28.140	26.110 (38	37.270	50 29.360	44.540 88	046.94	31.740 99+
2	1030 (2.0) 20.750	20.750	24.410	22.340 /00	3.30	29.351	42.715 100	905.44	31.655 100
~	1130 (3.0) 20.720	20.720	0/4.4%	22. 332 /00	×.30	29.352	42.714 40	105°# 04'	31.655 100
7	1330 (5.0) 20.716	20.716	24.406	22.328 /00	5 26.321 100	29.350	42.710 40	005.44.500	31.652 100
5	1430 (6.0) 20.715	20.715	24.405	22.327 1/00	26.320	100 29.349	42.709 100	005.44	31.652 100
									1
(2) Wt. Dish+Dry	Sed.	20.720	24.410	22.332	26.321	29.352	42.714	44.500	31.655
3Wt. of Dish		12.054	11.980	12.259	12.114	866.11	12.217	066-11	11.877
(4) W 1, of	(W. t. of Water, () -() /4. 398	14.398	16.093	15.578	21.509	8.278	14.157	13.720	9.350
(5)W 1. of	5W 1. of Dry Sed, 2-3 8.668	8.668	12.430	10.073	14.207	17.354	₹64.0€	22.510	19.778
(6) Water	OWater Content, 45 166.0	0.99/	13.5	155.0	151.2	47.7	40.4	42.2	47.3

Proj	Project: Water Content Study	ontent Stud	٨	Sediment:		Seal Beach #1 & 2		Date: 4/9/69	69
Dryi	Orying Temperature:	re: 160°(Ç	Sampl	Sample No.: 48	7		Time: //30	
Dish	Number	-	2	е	4	S.	۰	7	80
(1)Wt. Dis Weigh. No.	(1)Wt. Dish+Wet Sed Weigh, No. Time (Hrs)	54.295 N.W.	114.8.	41.527	48.888	35.292	211.19	49.623	46.683
_	1230 (1.0) 40.910	40.910	25.960	29.470	288 79 36.150	67 23.910 103 46.880	46.880	35.640 79	33.030
2	1330 (2.0) 33.880	33.880	24.030	27.670	98 31.340	99 23.078 100	37.850	29.940 110	38.500
3	1430 (3.0) 33.500	33.500	24.016	27.636	90 31.228	23.073	35.308	39.784 93+	38.374
7	1530 (4.0)	33.500	24.016	27.635	31.229	92 23.069 110	35.274	29.774 100	28.359
5	1630 (5.0)	33.499	24.015	27.635	100 31.238	92 23.064 110	35.271	29.770 1/00	28.359
(2) Wf. Dis	(2)Wf. Dish + Dry Sed.	33.500	910.42	27.636	31.238	23.064	35.274	477.62	28.359
3Wt. of Dish	Dish	12.060	11.987	12.265	12.121	11.998	12.223	966.11	11.884
(W 1, of	4W1.01 Water, (1)-(2) 20.795	20.795	12.395	13.891	17.660	12.238	24.843	19.849	18.324
(5) W 1. of	5W 1. of Dry Sed, 2-3 21. 440	21.440	12.039	15.371	19.107	11.066	23.051	17.778	17.475
6Water	OWater Content, 45	97.0	103.2	89.8	92.3	9.011	112.1	111.7	105.0

TABLE X

Pro	Project: Water Content Study	ontent Stud			Sediment:	1: Elston #1 82	#1 82		Date:	5/2/69	3	
Dry	Orying Temperature:	ure: 160°	Č		Sample No.:	10.: 585	1		Time:	0///		
Dish	Number	-	2		е	4	2	9	7		00	
(1)Wt. Dis	1)Wt. Dish+Wet Sed Weigh, Na. Time (Hrs)	749.017 W.C. 40.	140.580	14	41.209	54.806	47.814	32.599	45.463		47.619	
`	1210 (1.0) 35.820	35.820 94	29.810 99+ 29.240	61 3	340	42.150	33.330 7	019.02 26	31.520	7.6	₹.580	
2	1310 (2.0)	1310 (2.0) 35.065 99+	3.792 100 29.175	6/ 3	. 175	39.720	27.050 99+ 20.380	3.30.380	26.560	466	28.040	
5	1410 (3.0)	1410 (3.0) 35.061 100	29.790 100 29.173	00 33	. 173	39.716	26.985 100 20.377	3 20.377	26.547	88	27.864	
7	1510 (4.0)	1510 (4.0) 35.060 100	00/ 682.62	00 33	29.172	39.713	26.983 100	3 20.377	26.545	86	27.862	
5	1610 (5.0)	1610 (5.0) 35.056 (61	29.785 100	66 39	29.170	39.711	26.978 1.00	3 20.374	26.540	8%	27.856	
(2) W f. Di	(2) Wt. Dish + Dry Sed.	35.060	29.789	82	24.172	39.713	26.983	20.377	26.545		27.862	
3W1.01	Dish	12.055	11.982	1/2	12.260	12.115	11.993	12.218	11.991		11.879	
(M Col	(W to 1 Water, () -() 13.96/	13.961	10.795	12	12.039	15.095	20.836	12.225	18.923		19.763	
5W 1.01	5W 1.01 Dry Sed, 2-32.005	23.005	17.807	9/	16.912	27.598	14.990	8.159	14.554		15.987	
6Wate	(Water Content, 45 60.7	2.09	60.7		71.2	54.7	139.2	150.0	1.00.1		123.6	
										1		

TABLE Y 11.876 48.668 37.645 37.066 37.064 37.062 37.064 25.188 37.050 11.604 1.9 0 Date: 7/21/69 825 700 88 34 36.635 7.724 31.615 99+ 28.920 100 8.912 116.88.911 28.911 11.989 6.922 45.6 12 31.605 100 28.911 Time: 7 509.18 24 45 31.604 100 31.596 α 31.605 8.649 19.390 40.254 12.215 9.44 9 Sediment: Monteney (anyon & Buoy 623 34.595 134 39.875 55 40.115 34.120 135 39.874 39.862 107 39.876 39.876 27.886 51.461 11.585 9.14 11.990 S 34.072 136 686 40.430 51.840 12.113 71.974 63.918 34.087 29.831 136.0 4 Sample No.: 163 21.982 22.770 22.002 7.743 169.5 163 22.005 23.124 163 22.002 12.259 13.099 35.101 23.121 163 22.000 m 287 26.940 23.130 11.980 23.099 11.14 (1)Wt. Dish+Wet Sed. -- W.C. W.C. W.C. Weigh. No. | Time (Hrs) | 32.1/7 N.W. 41.285 23.124 163.0 18.161 ~ Project: Water Content Study 1,0091 19.668 12.053 0355 (1.0) 20.420 835 (24.0) 19.653 (5) W 1, of Dry Sed, (2) (3) 7.6/5 163.7 1025 (2.0) 19.670 1125 (3.0) 19.668 1225 (4.0) 19.666 (W. t. of Water, (-2) /2. 449 Drying Temperature: 6Water Content (45) 2 Wt. Dish + Dry Sed. (1)Wt. Dish+Wet Sed. Number 3)Wt. of Dish Dish O^1 7 5

Sediment: Seal Beach #1 & 2 Date: 4/18/69	Sample No.: 7 & 7	3 4 5 6 7 8		85 30.050 91 40.660 46.580 28.900 91 32.130 36.630 78	99+ 28.600 102 34.950 37.110 27.380 100 28.630 32.170 99	97 28.595 102 34.889 34.515 27.378	97 28.584 102 34.872 34.490 27.376 100 28.614 32.138 100	100 28.581 100 34.475 27.376 100 28.612 32.138			28.584 34.869 34.475 27.376 28.614 32.138	12.264 12.120 11.997 12.222 11.995 11.883	16.697 20.900 26.382 15.548 16.792 20.309	16.320 22.749 22.478 15.154 16.619 20.255	
ch #1 82		S.	60.837	46.580	37.110		34.490	34.475				11.997			
		4	55.773	40.660	34.950	34.889	34.872	₩.869			34.869	12.130	20.900	22.749	
Sediment	Sample N	m	45.281	30.0€0	28.600 /	28.595 100	38.584	38.581			28.584	12.364		16.320	
		2	W.C. 48.867	33.510 85	30.680 99+	30.676 V97	30.674 197	30.670 197			30.670	11.986	18.197	18.684	1
ntent Study	(c) /70° (1	52.174 W.C.	€.980	33.620	33.587	33.581	33.578			33.578	12.058			2 70
Project: Water Content Study	g Temperature :	Number	Dish+Wet Sed.	1240 (1.0) 5	1340 (2.0) 3	1440 (3.0) 3	1540 (4.0) 3	1640 (5.01)			Sed.		(W to 1 Water, () - () 18.596	SW 1.01 Dry Sed, 2-3 21. 520	70
Projec	Drying	Dish	Weigh, Na	,	2	3	7	5			2Wt. Dish+Dry	3Wt. of Dish	4 Kof W	(5) W 1. of D	(

TABLE Za 154.2 22.060 15.665 22.070 37.725 22.990 22.065 22.060 10.179 22.057 /88.// œ Date: 4/23/69 Time: 12/5 182.81 14/ 11.993 28.836 18.800 18.790 970.01 18.789 18.730 6.799 18.731 147.7 2 87 8/2 /ħ/ 00/ 00/ 00/ 70 25.000 30.159 129 23.430 23.428 30.230 194 23.436 39.206 23.427 12.220 15.773 0.141 23.427 11.207 9 62/ 00/ 38, 37.280 30.156 128.5 11.995 53.525 30.156 23.369 0 30.151 18.161 S 3 Sediment: Whom #1 28 99 37.970 7031.516 100/2031.514 45.434 1000 7031.517 31.516 12.118 13.918 19.398 71.8 Sample No.: 99+ 31.360 31.247 12.362 70.3 419.44 31.330 99+ 31.252 31.247 31.247 13.367 18.985 m 88 28 8,8 34.070 34.053 34.058 35.490 11.984 65.5 14.466 Time (Hrs) 33.3/3 N.W. 48.5/7 34.051 22.067 34.051 7 Project: Water Content Study 02/ 1315 (1.0) 24.410 1515 (3.0) 24.403 12.056 72.2 24.402 8.911 1415 (2.0) 24.410 1615 (4.0) 24.402 5W 1.01 Dry Sed (2-3/2, 346 704.40 Drying Temperature: 6Water Content, 45 4W tof Water, (1-2) 2Wt. Dish + Dry Sed. (715 (5.0) 1)Wt. Dish+Wet Sed. Number 3Wt. of Dish Weigh, No. Dish \sim 3 7 5

TABLE Zb

Proj	Project: Water Content Study	ontent Stud	۲	Sedime	nt: Monter	Sediment: Monteney Canyon & Buoy	Buoy B	Date: 7/22/69	69/2	
Dryi	Drying Temperature:	ire: 170°C	C	Sample No.:	No.: 787	7		Time: 0830	(
Dīsh	Number	-	2	m	4		•	7	80	
Weigh, No. Time	Time (Hrs)	13.03/ W	WC. 35.006	41.957	52.700	40.565	50.880	48.346	39.038	
_	0930 (1.0) 19.810		22.390	27.180 115		6031.924 PQ+ 39.016	39.016	98 37.396	30.604	
2	1030 (2.0) 19.553	19.553	21.560	25.200 13	29.340	14/31.917 100 38.996 994 37.384	38.996 9g	4 37.384	30.598	
5	1130 (3.0) 19.550	19.550	21.559	25.196 13		15/31.915 100	188-18 44 88-993 44	7.381	30.595	
7	1430 (6.0) 19.543	19.543	21.552	25.187 13		15,31.913 144	38.989 100	4 37.377	30.593	
										AD.
(2) Wt. Dish+Dry	Sed.	19.550	21.559	25.196	28.304	31.915	38.993	37.381	30.595	
3Wt. of Dish		12.052	11.979	12.258	12.113	166.11	12.26	11.988	11.877	
(4) W 4.01	(W to ! Water, () - () 13.48/	13.481	13.447	192.91	24.396	8.652	11.891	10.965	8.433	
(5)W 1. of	5W 1.01 Dry Sed, 2-3 7. 498	2.498	9.580	12.938	161.91	19.924	26.777	25.393	18.718	
@Water	(Water Content, 45 179.8	179.8	140.5	129.5	150.8	43.5	44.5	43.2	45.0	
										1

Corrections Applied to Certain Data Sheets

- 1. Monterey Canyon & Buoy B, Drying Temperature = 90°C: Scale out of balance by - 0.003g on weighing number 6.
 - Sub-sample dish number 4 contained granidorite pebbles -- sample rerun as shown in Table D.
- 2. Monterey Canyon & Buoy B, Drying Temperature = 120°C: Scale out of balance by + 0.002g on weighing number 4.
- 3. Monterey Canyon & Buoy B, Drying Temperature = 130°C: Scale out of balance by + 0.002g on weighing number 7.

BIBLIOGRAPHY

- 1. Akroyd, T. N. W., "Laboratory Testing in Soil Engineering", Foulis for Soil Mechanics Ltd., London, 1957.
- 2. Earth Manual, 1st ed., p. 34 35 and 439 442, United States

 Department of the Interior, Bureau of Reclamation, 1960.
- 3. Grim, R.E., Applied Clay Mineralogy, McGraw Hill, 1962.
- 4. <u>Inorganic Index to the Powder Diffraction File</u>, American Society for Testing and Materials, 1968.
- 5. Judd, W. R. and Krynine, D. P., <u>Principles of Engineering</u>

 <u>Geology and Geotechnics</u>, lst ed., p. 15 22, McGraw
 Hill, 1957.
- 6. Kaolin Clays and Their Industrial Uses, 2nd ed., p. 155,

 J. M. Huber Corporation, New York, New York, 1955.
- 7. Keller, G. H. and Richards, A. F., "Water Content Variability in a Silty Clay Core from off Novia Scotia", Limnology and Oceanography, v. 7, no. 3, p. 426 427, July 1962.
- 8. Lambe, T. W., Soil Testing for Engineers, p. 8 14, Wiley and Sons Inc., 1951.
- 9. Lambe, T. W., "How Dry is a 'Dry' Soil?", Proceedings of the Highway Research Board, 1949.
- 10. Naval Facilities Engineering Command Technical Report
 R566, Computer Reduction of Data from Engineering Tests
 on Soils and Ocean Sediments, by M. Hironaka, p. 7 8,
 February 1968.
- 11. Procedures for Testing Soils, 4th ed., p. 124 129, American Society for Testing and Materials, 1964.
- 12. Shepard, F. P., "Nomenclature Based on Sand-silt-clay Ratios", Journal of Sedimentary Petrography, v. 24, p. 151 158, 1954.
- 13. Shepard, F. P., Submarine Geology, 2nd ed., p. 103, Harper and Row, 1963.

- 14. Spiegel, M.R., Schaum's Outline of Theory and Problems of Statistics, 1st ed., p. 217 245, McGraw Hill, 1961.
- 15. Sullivan, J. D., "Physico-chemical Control of Properties of Clays", Transactions Electrochemical Society, 1939.
- 16. Tschebotarioff, Gregory P., Soil Mechanics, Foundations, and Earth Structures, 1st ed., 5th prt., p. 36 39, McGraw Hill, 1955.

INITIAL DISTRIBUTION LIST

		No. Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314	20
2.	Library, Code 0212 Naval Postgraduate School Monterey, California 93940	2
3.	Department of Oceanography (Code 58) Naval Postgraduate School Monterey, California 93940	1
4.	Professor R. J. Smith Department of Oceanography (Code 58) Naval Postgraduate School Monterey, California 93940	3
5.	Lieutenant John D. King, USN Class 30, U. S. Naval Destroyer School Newport, Rhode Island 02840	2
6.	Professor R. S. Andrews Department of Oceanography (Code 58) Naval Postgraduate School Monterey, California 93940	1
7.	Oceanographer of the Navy The Madison Building 732 N. Washington Street Alexandria, Virginia 22314	1
8.	Naval Oceanographic Office Attn: Library Washington, D. C. 20390	1
9.	Director, Maury Center for Ocean Studies Naval Research Laboratory Washington, D. C. 20390	1
10,	Office of Naval Research Department of the Navy Attn: Geophysics Branch (Code 416) Washington, D. C. 20360	1

11.	Commanding Officer	1
	U. S. Naval Civil Engineering Laboratory	
	Port Hueneme, California 93041	
12.	Professor J. R. Clark	1
	Department of Material Science & Chemistry	
	Naval Postgraduate School	
	Monterey, California 93940	
13.	Mr. James F. Halsey	1
	Director Theoretical and Applied Mechanics	
	URS Research Company	
	1811 Trousdale Drive	
	Burlingame, California 94010	
14.	Mr. J. B. Rodgers	1
	Agricultural Engineering Department	
	Oregon State University	
	Corvallis, Oregon 97331	

The question pertaining to the acceptance of a standard drying temperature of $110 \pm 5^{\circ}$ C in making water content determinations of soils has been extended to the oven drying of marine sediments. The implementation of a temperature within the 130 to 150° C range appears to be just as adequate as the accepted standard for the drying of inorganic sediments and has the added advantage of shortening the drying time. Increasing the temperature above 150° C does not appreciably reduce the drying time and may begin to break down the less stable clay sediments such as montmorillonite. The water content determinations appear to fluctuate in a random manner with increase in drying temperature suggesting that the mineralogy of the sediments somehow controls water content. The concept of normalized water content is introduced and appears to be an invaluable aid in considering the relationships between water content, sample weight and drying time.

Command.

13. ABSTRACT

The Drying of Marine Sediments for Water Content Determinations. Temperatures above 150°C break down clay sediments. Normalized water content introduced. Role that soluble salts play in controlling water content discussed.	Security Classification	1.151	K A		K P	1 100	
The Drying of Marine Sediments for Water Content Determinations. Temperatures above 150°C break down clay sediments. Normalized water content introduced. Role that soluble salts play in controlling water content discussed.	KEY WORDS					-	K C
Content Determinations. Temperatures above 150°C break down clay sediments. Normalized water content introduced. Role that soluble salts play in controlling water content discussed.				HOLE	***	KOLE	W
Content Determinations. Temperatures above 150°C break down clay sediments. Normalized water content introduced. Role that soluble salts play in controlling water content discussed.	The Drying of Marine Sediments for Water						the ex
Temperatures above 150°C break down clay sediments. Normalized water content introduced. Role that soluble salts play in controlling water content discussed.							
Sediments. Normalized water content introduced. Role that soluble salts play in controlling water content discussed.	Content Determinations.	1					
sediments. Normalized water content introduced. Role that soluble salts play in controlling water content discussed.	Tomporatures above 150°C break down alow						
Normalized water content introduced. Role that soluble salts play in controlling water content discussed.							
Role that soluble salts play in controlling water content discussed.	sediments.						
Role that soluble salts play in controlling water content discussed.	Names lined matery content introduced						
water content discussed.	Normanzed water content introduced.						
water content discussed.	Dala that calchla calta plantin controlling						
	water content discussed.						
						-	
						-	
					t		
			-				
		1	- 1				
						1 - 0	
	t						

DD FORM 1473 (BACK)
5/N 0101-807-6821

112

Unclassified
Security Classification

thesk445
The drying of marine sediments for water

3 2768 002 10870 6
DUDLEY KNOX LIBRARY