# Chapitre 7 Machines des Fluides

#### 7.1 Généralités

- → Pompes & Turbines ⇒ Turbomachines
- Pompes : ajoutent énergie au fluide (déplacer/augmenter pression)
- → Turbines : extraient énergie du fluide (fluide agit sur elles)
- → Fluide = gaz (ventilateur/moteur turbine à gaz ou compresseur)
- → Fluide = liquide (pompe/turbine centrale hydro-électrique)
- ▶ Principaux domaines d'utilisation des pompes :
  - Distribution & collecte des eaux
  - Irrigation
  - Lutte contre les incendies
  - Inondations
  - Transport des hydrocarbures
- Situations d'utilisation des pompes :
  - Gravité défavorable
  - Gravité favorable mais insuffisante pour fournir un débit nécessaire avec diamètre économique ou raisonnable
  - Pression locale insuffisante

## 7.1 Généralités

- ◆ Montage des pompes :
  - En aspiration (réservoir sous la pompe) : pompage en dépression
  - En charge (réservoir au-dessus de la pompe) : pompage en surpression



#### 7.1 Généralités

→ Pompe centrifuge (turbomachine la plus courante) : pompe à écoulement radial.



- Rotor (roue à aubes) à l'intérieur de volute/bâche spirale (partie fixe)
- Eau pénétrant radialement par la périphérie au centre du rotor est entraînée par les aubes et repoussée vers extérieur par force centrifuge
- Énergie cinétique → énergie de pression à la sortie de pompe

→ Il existe aussi des pompes hélico-centrifuge (écoulement mixte) & pompes à hélices (écoulement axial).

## 7.2 Courbes caractéristiques d'une pompe centrifuge

 ◆ Utilisation d'une pompe centrifuge nécessite connaissance de ses courbes caractéristiques : variation hauteur manométrique & rendement en f(x) du débit



- ◆ Courbe caractéristique Q H<sub>p</sub>
  - H<sub>p</sub> diminue avec Q pompé
  - Hauteur de fermeture : vanne de contrôle de **Q** fermée au complet.
  - **Q** de fonctionnement : vanne de contrôle de débit complètement ouverte.



◆ Courbe H<sub>p</sub> peut être calculée au moyen des lectures manométriques :

$$H_{\rm p} = \frac{P_{\rm s} - P_{\rm e}}{\rho g}$$

## 7.2 Courbes caractéristiques d'une pompe centrifuge

ullet Pour tracer la courbe  $Q-H_p$ , on a besoin de :



- Hauteur de fermeture (vanne complètement fermée)
- $\frac{1}{3}$  Q de fonctionnement
- $\frac{2}{3}$  Q de fonctionnement
- Q de fonctionnement

## 7.2 Courbes caractéristiques d'une pompe centrifuge

 $\rightarrow$  rendement ( $\eta$ ) d'une pompe

$$\eta = \frac{\text{Puissance hydraulique fournie}}{\text{Puissance absorbée}}$$
 
$$\eta = \frac{\rho g Q H_p}{P_{absorbée}}$$

• Courbe de rendement  $(\eta)$ 



◆ Puissance absorbée doit être mesurée & constitue une troisième courbe caractéristique d'une pompe.

#### 7.3 Association ou couplage des pompes

- Pour plusieurs considérations techniques & opérationnelles ⇒ pompes peuvent être groupés en série ou en parallèle.
- → Pompes en série : même débit dans les pompes ⇒ addition des pressions.



- Association des pompes en série ⇒ atteinte de grandes hauteurs d'élévation
- Puissance totale absorbée :

$$P_{T} = \rho g Q_{fonct} \left( \frac{H_1}{\eta_1} + \frac{H_2}{\eta_2} + \dots + \frac{H_n}{\eta_n} \right)$$

où  $\eta_1, \eta_2, ..., \eta_3$  sont les rendements respectifs des pompes correspondant aux hauteurs de fonctionnement  $H_1, H_2, ..., H_3$ .

## 7.3 Association ou couplage des pompes

Pompes en parallèle : points d'aspiration & de refoulement des pompes sont identiques.



- Association des pompes en parallèle  $\Rightarrow$  augmentation de débit
- Puissance totale absorbée :

$$P_{T} = \rho g H_{fonct} \left( \frac{Q_1}{\eta_1} + \frac{Q_2}{\eta_2} + \dots + \frac{Q_n}{\eta_n} \right)$$

où  $\eta_1$ ,  $\eta_2$ , ...,  $\eta_3$  sont les rendements respectifs des pompes correspondant aux débits de fonctionnement  $Q_1$ ,  $Q_2$ , ...,  $Q_3$ .

## 7.4 Ventilateur centrifuge

- Dispositif mécanique
  - pour déplacer air ou autres gaz
  - Augmente vitesse & volume du flux d'air
  - Utilise énergie cinétique des roues à aubes pour augmenter le volume du flux d'air
  - Déplace l'air radialement



- Caractéristiques de performance
  - Courbes de performance similaires à celles de pompe centrifuge
  - Existence d'un point d'opération
  - Détermination du point d'opération est essentielle pour un fonctionnement normal du ventilateur

#### **Exercice**

Une pompe à essence de rendement 67,4 % et de débit volumique 0,629 L/s assure le remplissage d'un réservoir d'automobile. La pompe aspire l'essence de masse volumique 750 kg/m³ à partir d'une grande citerne dont la surface libre située à une altitude  $z_1$  et une pression  $p_1 = p_{atm} = 1$  bar. On suppose que le niveau d'essence dans la citerne varie lentement ( $v_1 \approx 0$ ) La pompe refoule l'essence, à une altitude  $z_2$ , sous forme d'un jet cylindrique, en contact avec l'atmosphère à une pression  $p_2 = p_{atm} = 1$  bar, se déversant dans le réservoir de l'automobile à une vitesse  $v_2$ . La différence des cotes entre la section de sortie de la conduite et la surface libre de la citerne est  $p_2 = p_2 = 2$  m. La conduite a une longueur de 3,32 m et un diamètre de 2 cm. La viscosité dynamique de l'essence est 0,0006 Pa.s. L'accélération de la pesanteur est 9,8 m/s².

- 1) Déterminer la vitesse d'écoulement  $v_2$  de l'essence dans la conduite.
- 2) Calculer le nombre de Reynolds.
- 3) Déterminer la nature de l'écoulement.
- 4) Calculer le coefficient de perte de charge linéaire.
- 5) En déduire la perte de charge linéaire.
- 6) Appliquer le théorème de Bernoulli généralisé et calculer la puissance sur l'arbre de la pompe.