1次独立と1次従属 —3つの空間ベクトル

零ベクトルでない 3 つのベクトル a_1 , a_2 , a_3 が 1 次従属

 $\iff c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + c_3 \mathbf{a}_3 = \mathbf{0}$ を満たす実数 c_1, c_2, c_3 (ただし、すべて 0 でない) が存在する. (仮に $c_3 \neq 0$ とすると...)

 $\iff a_3 = b_1 a_1 + b_2 a_2$

 \iff ベクトル a_3 はベクトル a_1 , a_2 が生成する平面上にのっている.

零ベクトルでない 3 つのベクトル a_1 , a_2 , a_3 が 1 次独立

← どのベクトルも他の2つのベクトルが生成する平面にはのらない。

例題 (判定法)

例題 次の3つのベクトルが1次独立か1次従属か判定しなさい.

$$a_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}, \quad a_2 = \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}, \quad a_3 = \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$$

方針 $c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + c_3 \mathbf{a}_3 = \mathbf{0}$ を満たす実数 c_1, c_2, c_3 を求める.

 \iff 方程式 $xa_1 + ya_2 + za_3 = 0$ の解を求める.

$$xa_{1} + ya_{2} + za_{3} = x \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + y \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} + z \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$$
$$= \begin{pmatrix} 2x - 3y + z \\ 2x - 2z \\ x + y - 2z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

例題(判定法)

⇔ 次の方程式の解は?

$$\begin{pmatrix} 2 & -3 & 1 \\ 2 & 0 & -2 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad (Ax = \mathbf{0})$$

1次独立

 \iff 自明な解 (x = y = z = 0) しか持たない.

 \iff 行列 A の階数が 3 (= ベクトルの数, 行列の列の数).

 \iff 行列 A の行列式が 0 でない.

 \iff 行列 A は正則行列,つまり A の逆行列が存在する.

1次従属

 \iff 非自明な解をもつ \iff rank $A < 3 \iff \cdots$

例題 (判定法)

- 3個以上の平面ベクトル達はいつも1次従属.
- ◆ 4個以上の空間ベクトル達はいつも1次従属。

•

以上を参考にして、問題 1.10 をやってみよ。

問題 1.10 の解

- (1) 1 次従属 (2) 1 次独立
- (3) 1 次従属 (4) 1 次独立
- (5) 1 次従属