Lifted First-Order Probabilistic Inference

Matthias Winges

Agenda

- i. Einführung/Problembeschreibung
- ii. Lösungsvorschläge
- iii. First-Order Probabilistic Models (FOPM)
- iv. Inference Problem
- v. First-Order Variable Elimination (FOVE)
- vi. Fazit & Ausblick

Einführung (1)

Schließen findet direkt auf first-order Ebene statt; Variablen werden nur instanziiert, wenn dies wirklich notwendig ist

Einführung (2)

- Schließen unter Wahrscheinlichkeiten ist schwieriger:
 - Es müssen alle Informationen genutzt werden und neue können alte Aussagen ändern
 - Gefahr Dinge doppelt zu zählen, wenn z.B. Information über Person A betrachtet wird und dann eine Information über Gruppe von Personen, in der A enthalten ist
 - Domänengröße kann Wahrscheinlichkeiten beeinflussen (z.B. Wahrscheinlichkeit, dass eine Person ein bestimmtes Verbrechen begangen hat)

Einführung (3)

- Probabilistic inference algorithms → deklarative Aussagen
- Oft bessere Repräsentation durch first-order Beschreibung

Einführung (3)

- Probabilistic inference algorithms → deklarative Aussagen
- Oft bessere Repräsentation durch first-order Beschreibung

```
■ Beispiel:

Aussagenlogik

if epidemic then sick(john) 0.7
if sick(john) then death(john) 0.4
if epidemic then sick(marry) 0.7
if sick(marry) then death(marry) 0.4
...

First-order logic

if epidemic then sick 0.7
if sick then death 0.4
```


Einführung (4)

Probabilistic inference algorithms kommen aus der KI

Bekannt durch grafische Modelle wie Bayessche oder Markov

Netze

bedingte Wahrscheinlichkeiten

 $P(X_i | Parents(X_i))$

Faktoren bzw. Potenzialfunktionen

$$\phi(Variablen(\alpha, \beta)) = \begin{cases} p, \alpha \land \beta \\ 1 - p, \alpha \land \neg \beta \\ q, sonst \end{cases}$$
oder

if α then β pelse q

Einführung (5)

- Problem bisheriger Algorithmen: first-order Repräsentation → Schließen (Inference) aber auf Basis aussagenlogischer Repräsentation
 - >,,probabilistic inference is NP-hard [...] research should be directed away from the search for a general, efficient probabilistic inference algorithm..." (G. F. Cooper)
- Hier dargestellter FOVE-Algorithmus:
 - ➤ Beschleunigung von Inference durch Ausnutzen der first-order Darstellung:
 - Generalisierung von variable elimination

Einführung (6)

- Beispiel, um Beschleunigung zu illustrieren:
 - Beispiel auf Folie 3 folgend: Abfrage, ob irgendeine Person stirbt

Einführung (6)

Beispiel, um Beschl Beispiel auf Folie X muss nicht n-mal e Person stirbt instanziiert werden → Algorithmen, welche dies erlauben werden als Lifted epiden voidemic Inference Algorithms bezeichnet sick(X) $sick(p_1)$ $sick(p_2)$ sick(p_n) death death first-order Aussagenlogik

Lösungsvorschläge (1)

- Erste Lösung: Algorithmus von Poole (2003)
 - → Inversion Elimination von Zufallsvariablen
 - Parametrisierte Zufallsvariablen stehen für alle ihre Instanzen
 - Aber: Nur gleich parametrisierte Zufallsvariablen können eliminiert werden
 - Beispiel: product(X,Y) kann eliminiert werden; company(X) nicht, da Y fehlt
- Lösung von Braz, Amir, Roth:
 - → Erweiterung um:
 - Counting Elimination
 - Inversion (bzw. Partial Elimination)

First-order variable elimination (FOVE)

Versuch des Lückenschlusses zwischen logischem und wahrscheinlichkeitsbasiertem Schließen

Lösungsvorschläge (1)

- Erste Lösung: Algorithmus von Poole
 - → Inversion Elimination von Zufal
 - Parametrisierte Zufallsvariablen stehe f
 - Aber: Nur gleich parametrisierte Zufalls werden
 - Beispiel: product(X,Y) kann eliminiert da Y fehlt

überlegene Performanz gegenüber exaktem aussagenlogischen Schließen ("propositional exact inference")

- Lösung von Braz, Amir, Roth:
 - → Erweiterung um:
 - Counting Elimination
 - Inversion (bzw. Partial Elimination)

First-order variable elimination (FOVE)

Versuch des Lückenschlusses zwischen logischem und wahrscheinlichkeitsbasiertem Schließen

Lösungsvorschläge (2)

■ Inversion Elimination auf Abfrage P(death) auf {epidemic 0,55; if epidemic then sick(X) 0,7 else 0,01; if sick(X) then death 0,55}

(I) Inversion elimination

Lösungsvorschläge (3)

- Poole
 - Oft ist man an groundings nicht interessiert und möchte Gruppen (z.B. von Personen) behandeln
 - ➤ First-Order Variable Elimination (FOVE)

First-Order Probabilistic Models (FOPM) (1)

Begriffe:

- Menge von Potenzialfkt./Faktoren, welche über parametrisierte Zufallsvariablen definiert sind → sog. parfactors
- Parametrisierte Zufallsvariable → atom (steht aber für ganze Klasse von Zufallsvariablen)
- Eine instanziierte Zufallsvariable → ground atom
- Parameter → logical variable

First-Order Probabilistic Models (FOPM) (2)

■ Parfactor g $\rightarrow (\phi_g, A_g, C_g)$

Potenzialfunktion über Atomen A_a

Instanziiert durch alle Substitutionen der logischen Variablen, welche Bedingungen C_q genügen

• Bedingung C = (F, V)

Bedingung auf Menge logischer Variablen, die instanziiert werden

First-Order Probabilistic Models (FOPM) (3)

■ Beispiel: $(\phi, (p(X), q(X,Y)), (X \neq a, \{X,Y\}))$

Substitution aller X, Y, für die Bedingung C erfüllt ist

Bedingung, dass X nicht a sein darf

- Potenzialfunktionen können verschieden spezifiziert sein
- >Z.B. als logische Formeln
 0,7: epidemic(D) => sick(P, D) steht für Φ(epidemic(D), sick(P, D)) mit Potenzial 0,7 für wahr
- Projektion von Bedingung C auf logische Variablen L: $C_{|L|}$ (wie etwa $X \neq a$)

First-Order Probabilistic Models (FOPM) (4)

- **C-atoms** (später einfach Atom genannt) eines parfactor: Menge instanziierter Zufallsvariablen (z.B. p(X,Y)) unter Bedingung (constraint z.B. $X \neq a$)
- $RV(\alpha)$ ((ground) random variable \rightarrow alle ground atoms):
 - \rightarrow $g\theta$ bezeichnet die Anwendung der Substitutionen auf g
 - ightarrow Menge der Bedingungen C_{g} werden auch mit Θ_{g} bezeichnet

Ein FOPM wird durch RV(G) beschrieben, mit G als Menge von parfactors

$$P(RV(G)) \propto \prod_{g \in G} \prod_{\theta \in \Theta_g} g\theta = \Phi(G)$$

Gemeinsame
Wahrscheinlichkeit
ist Produkt aller
Instanziierungen
aller parfactors

Inference Problem

- Gegeben:
 - Menge von Zufallsvariablen \rightarrow ground atoms, welche für Abfrage (Query) Q stehen
 - Model G
 - \succ Berechne Wahrscheinlichkeit für Q gegeben G
- D.h.:

$$P(Q) \propto \sum_{RV(G) \setminus Q} \Phi(G) \left[= \sum_{RV(G) \setminus Q} \left(\prod_{g \in G} \prod_{\theta \in \Theta_g} g \theta \right) \right]$$

- ullet $RV(G)\setminus Q$ ist die Summe über alle Zuweisungen zu Zufallsvariablen, die nicht in Abfrage Q vorkommen
- D.h. es gilt die Atome zu eliminieren → FOVE macht genau das!

First-Order Variable Elimination Algorithm (FOVE) (1)

Lösen durch Elimination:

→ Ziel von FOVE

→ Wie geht das?

First-Order Variable Elimination Algorithm (FOVE) (1)

Lösen durch Elimination:

$$P(Q) \propto \sum_{RV(G)\setminus Q} \Phi(G)$$

■ Zur Elimination einer Menge Atome in E → Aufteilen der Summe

$$= \sum_{RV(G)\backslash Q\backslash RV(E)} \sum_{RV(E)} \Phi(G_E) \Phi(G_{\overline{E}})$$

$$= \sum_{RV(G)\backslash Q\backslash RV(E)} \Phi(G_{\overline{E}}) \sum_{RV(E)} \Phi(G_{E})$$

- Substitution von $\sum_{RV(E)} \Phi(G_E)$ durch Potenzialfunktion eines parfactors $\Phi(g')$
- ightharpoonupReduktion des Modells auf $G' = G_{\overline{E}} \cup \{g'\}$ ightharpoonup weniger Zufallsvariablen

$$P(Q) \propto \sum_{RV(G) \setminus Q \setminus RV(E)} \Phi(G_{\overline{E}} \cup \{g'\}) = \sum_{RV(G') \setminus Q} \Phi(G')$$

First-Order Variable Elimination Algorithm (FOVE) (1)

Lösen durch Elimination:

$$P(Q) \propto \sum_{RV(G)\setminus Q} \Phi(G)$$

Zur Elimination einer Menge Atome in

$$= \sum_{RV(G)\backslash Q\backslash RV(E)} \sum_{RV(E)} \Phi(G_E)$$

$$= \sum_{RV(G)\backslash Q\backslash RV(E)} \Phi(G_{\overline{E}}) \sum_{RV(E)} \Phi(G_{E})$$

→Herausforderung:
parfactor g' finden
→Durch INVERSION
ELIMINATION
→Durch COUNTING
ELIMINATION

• Substitution von $\sum_{RV(E)} \Phi(G_E)$ durch Potenzialfunktion eines parfactors $\Phi(g')$

ightharpoonupReduktion des Modells auf $G' = G_{\overline{E}} \cup \{g'\} \rightarrow$ weniger Zufallsvariablen

$$P(Q) \propto \sum_{RV(G) \setminus Q \setminus RV(E)} \Phi(G_{\overline{E}} \cup \{g'\}) = \sum_{RV(G') \setminus Q} \Phi(G')$$

First-Order Variable Elimination Algorithm (FOVE) (2)

- FOVE allgemein:
 - Problem exponentieller Laufzeit (entsprechend Anzahl Zufallsvariablen)
 - Lösung: Unabhängigkeit nutzen → Variable Elimination (VE)
 - FOVE ist eine Generalisierung von VE
 - ➤ **Vorteil von VE**: Elimination eines Atoms mit seinen Bedingungen entfernt alle groundings. Kosten unabhängig von Anzahl der groundings!
- Vorbedingungen:
 - Das Modell muss bzgl. Abfrage Q shattered sein
 - ullet Teilmodell G muss durch parfactor g ersetzbar sein (**Fusion**)

First-Order Variable Elimination Algorithm (FOVE) (3)

Shattering:

- Der FOVE Algorithmus nimmt an, dass das FOPM zerrüttet ("shattered") bzgl. Anfrage Q ist
- Es muss für jedes Paar (p,q) in G gelten:
 - Groundings RV(p) und RV(q) sind identisch oder disjunkt
 - (p,q) muss in jedem parfactor identisch sein, oder darf niemals instanziiert werden

Beispiel:

- Beliebtheit einer Veranstaltung über Zusagen vorhersagen
 - Zusagen, Absagen und keine Antworten → Parfactors dafür definiert
 - FOVE zerlegt ("shatters") nun n Personen in Gruppen n+, n₁ und n₀

First-Order Variable Elimination Algorithm (FOVE) (3)

Shattering:

- Der FOVE Algorithmus nimmt an, dass das FOPM zerrüttet ("shattered") bzgl. Anfrage Q ist
- Es muss für jedes Paar (p,q) in G gelten:
 - Groundings RV(p) und RV(q) sind identisch oder disjunkt
 - (p,q) muss in jedem parfactor identisch sein, oder terf niemals instanziiert werden sonst lässt

sich Summe nicht aufteilen...

Beispiel:

- Beliebtheit einer Veranstaltung über Zusagen vorhersagen
 - Zusagen, Absagen und keine Antworten → Parfactors dafür definiert
 - FOVE zerlegt ("shatters") nun n Personen in Gruppen n+, n₁ und n₀

First-Order Variable Elimination Algorithm (FOVE) (4)

• Fusion: Ersetzung von G durch parfactor g . D.h. $fs(G) = (\phi', A_G, C_G)$

$$\begin{split} &\Phi(G) = \prod_{g \in G} \prod_{\underline{\theta} \in \Theta_g} \phi_g(A_g \, \theta) = \prod_{g \in G} \prod_{\underline{\theta} \in \Theta_G} \phi_g(A_g \, \theta)^{|\Theta_g|/|\Theta_G|} \\ &= \prod_{\theta \in \Theta_G} g \in G \phi_g(A_g \, \theta)^{|\Theta_g|/|\Theta_G|} = \prod_{\theta \in \Theta_G} \phi'(A_G \, \theta) = \Phi(fs(G)) \end{split}$$

- Menge von parfactors G wird durch einzelnen ersetzt ($f\!s(G)$)
- \bullet Ersetzung von Lösungen unter Bedingungen Θ_g durch Lösungen unter allgemeiner Bedingung Θ_G .
 - ➤ Dies ermöglicht Schreibweise mit einem Produkt, da gleiche Bedingungen genutzt werden

First-Order Variable Elimination Algorithm (FOVE) (5)

• Inversion Elimination:

- Summe aus Produkten → Produkt aus Summen (daher der Name)
- Menge $\{e\}$ mit LV(e) = LV(g) $\theta_1,...,\theta_n = \Theta_g$

$$\begin{split} \sum_{RV(e)} & \Phi(g) = \sum_{RV(e)} \prod_{\theta \in \Theta_g} \phi_g(A_g \theta) \\ &= \sum_{e \theta_1} ... \sum_{e \theta_n} \phi_g(A_g \theta_1) ... \phi_g(A_g \theta_n) \\ &= \sum_{e \theta_1} \phi_g(A_g \theta_1) ... \sum_{e \theta_n} \phi_g(A_g \theta_n) \\ &= (\sum_{e \theta_1} \phi_g(A_g \theta_1)) ... (\sum_{e \theta_n} \phi_g(A_g \theta_n)) \\ &= (\sum_{e \theta_1} \phi_g(A_g \theta_1)) ... (\sum_{e \theta_n} \phi_g(A_g \theta_n)) \end{split}$$

$$\begin{split} &= \prod_{\theta \in \Theta_g} \sum_{e\theta} \phi_g(A_g \theta) = \prod_{\theta \in \Theta_g} \sum_{e\theta} \phi_g(A'\theta, e\theta) \\ &= \prod_{\theta \in \Theta_g} \sum_{e} \phi_g(A'\theta, e) = \prod_{\theta \in \Theta_g} \phi'(A'\theta) \\ &= \bigoplus_{\theta \in \Theta_g} \sum_{e} \phi_g(A'\theta, e) = \prod_{\theta \in \Theta_g} \phi'(A'\theta) \\ &= \Phi(g') \end{split}$$

First-Order Variable Elimination Algorithm (FOVE) (6)

• Counting Elimination:

- \blacktriangleright Anwendung, wenn kein Atom e in G, das die Bedingungen erfüllt
- ullet Auf jeder Menge E möglich, welche nicht aus ground-atoms besteht
- |E| > 1, da sonst Inversion anwendbar
- A' verbleibende ground-atoms
- Auch hier geht es darum einen parfactor zu finden...

$$\sum_{RV(E)} \Phi(g) = \sum_{RV(E)} \prod_{\theta \in \Theta_g} \phi_g(E\theta, A')$$

- $g' = (\phi', A', T)$ ist ein solcher parfactor
- ullet Er definiert eine Potenzialfunktion ϕ' für A'.

First-Order Variable Elimination Algorithm (FOVE) (7)

Counting Elimination:

➤ Beispiel: mit binären Werten

$$\sum_{RV(p(X))} \prod_{X,Y} \phi(p(X), p(Y))$$

$$= \sum_{RV(p(X))} \phi(0,0)^{|(0,0)|} \phi(1,0)^{|(1,0)|} \phi(1,0)^{|(1,0)|} \phi(1,1)^{|(1,1)|}$$

- Potenzen sind die Anzahl möglicher Werte für X und Y
- Kombinatorisch können Größen dieser Gruppen berechnet werden

First-Order Variable Elimination Algorithm (FOVE) (8)

Der Algorithmus ...durch sukzessive Eliminationen

- Atom wählen
- Test, ob Inversion möglich (effizientester Fall)
- Wenn nein:
 - ullet Atome zu E hinzufügen, bis G_E parfactor, in dem alle Atome mit logischen Variablen Teil von E sind (Forderung von Counting Elimination)
 - Möglichst viele Inversions finden bevor Counting Elimination ausgeführt wird

First-Order Variable Elimination Algorithm (FOVE) (9)

FOVE(G,Q)

- G = Menge von parfactors
- Q = Teilmenge von RV(G)
- > Q shattered gegenüber Q (Vorbedingung)
- (1) Wenn RV(G) = Q, Return (G)
- (2) WÄHLE_ELIMINATION(G, Q) \rightarrow (E, {L₁,..., L_k})
- (3) Fusion: parfactors $g_E = fs(G_E)$
- (4) **ELIMINIERE**(g_E , E) \rightarrow es entsteht G'
- (5) Return(FOVE(G', Q))

WÄHLE_ELIMINATION(G, Q)

- Wähle e aus A_G\Q
- $g = fs(G_e)$
- Wenn LV(e) = LV(g) und {e} unäre Menge
 - Return({e}, LV(e))
- Sonst E ← {e}
 - Solange E ≠ non-ground atoms von G_E
 - $E = E \cup \text{non-ground atoms von } G_E$
- Return(E, fs(G_E))

ELIMINIERE(g_F, E)

- Wenn Inversion möglich, dann führe Inversion durch
- Sonst: Counting Elimination

Algorithmus

//Modell = Abfrage → damit schon beantwortet

 $//G' = G_F \cup \{g'\}$

//Fusion

Fazit

- Modellbeschreibungen oft first-order
- Meist werden sie dann auf propositionale Ebene herunter gebrochen und mit einem propositionalen Algorithmus gelöst
- FOVE ist eine Generalisierung von VE
- FOVE eliminiert nacheinander Zufallsvariablen
- FOVE behält die first-order Struktur bei, was die Berechnung beschleunigt
- FOVE kann auf mehr Fälle angewendet werden als Algorithmus von Poole

Ausblick (1)

- Counting Elimination ist teurer als Inversion, sollte aber auch seltener vorkommen
 - Es existieren aber vermutlich bessere Methoden, welche es zu finden gilt...
- Es existieren bereits Erweiterungen:
 - ➤ C-FOVE verbessert Laufzeit durch Einsatz von Counting Formulas
 - ➤ Sie fassen Abhängigkeiten zwischen großen Mengen an Variablen kompakt zusammen (anwendbar, wenn es nur auf Anzahl der Instanzen ankommt → z.B. ist eine Veranstaltung überfüllt?)
- Weitere Forschung mit folgender Zielrichtung:
 - >Approximative Inference
 - ➤ Abfragen mit Nicht-ground-atoms

Ausblick (2)

- Approximative Inference:
 - Benutzer kann zwischen Genauigkeit und Effizienz wählen (→ trade off)
 - Grundlage ist probabilistische Datenbank (keine first-order Repräsentation)
 - Verwendung von speziellen Graphen
 - I. Ähnlichkeiten werden erkannt und für lifting genutzt → Partitionierung des Graphen
 - ➤ Pfadlängen im Graph können als Parameter vom Anwender angepasst werden
 - II. Distanzmaße werden genutzt, um Ähnlichkeiten festzustellen
 - Distanzmaße sind frei definierbar

III.Variation von VE

Nicht über alle Faktoren multiplizieren, sondern über Teilmengen

Literatur

- L. Getoor und B. Taskaar. **Introduction to Statistical Relational Learning**. *MIT Press, 2007*
- R. de Salvo Braz, E. Amir und D. Roth. Lifted First-Order Probabilistic Inference.
 Department of Computer Science, University of Illionois, 2007
- R. de Salvo Braz, E. Amir und D. Roth. MPE and Partial Inversion in Lifted Probabilistic Variable Elimination. Department of Computer Science, University of Illionois, 2006
- D. Poole. **First-Order Probabilisitic Inference**. Department of Computer Science, University of British Columbia, 2003
- K. Kersting, B. Milch, L. S. Zettlemoyer, M. Haimes und L. P. Kaelbling. Reasoning about Large Populations with Lifted Probabilistic Inference. MIT CSAIL, Cambridge, 2007
- K. Kersting, B. Milch, L. S. Zettlemoyer, M. Haimes und L. P. Kaelbling. Lifted
 Probabilistic Inference with Counting Formulas. MIT CSAIL, Cambridge, 2008
- G. F. Cooper. The Computational Complexity of Probabilistic Inference Using Baysian Belief Networks. Knowledge Systems Laboratory, Stanford, 1990
- P. Sen, A. Deshpande, L. Getoor. Bisimulation-based Approximative Lifted Inference. Computer Science Department, University of Maryland

Danke für Eure Aufmerksamkeit

First-Order Variable Elimination Algorithm (FOVE) (Anhang 1)

Counting Elimination:

- Gegeben:
 - Unabhängige Atome (z.B. $p(X_1), p(X_2)$) unter einer Bedingung C \rightarrow d.h. Wahl einer Substitution hat keine Auswirkung auf andere mögliche Substitutionen
- Multinomialer Zähler:
 - a sei Atom \rightarrow multinomialer Zähler N_a ist ein Vektor, dessen Werte $N_{a,j}$ angeben, wie viele Instanzen von a den j-ten Wert in D_a haben
 - Multinomialkoeffizient ist eine Verallgemeinerung des Binomialkoeffizienten und gibt Anzahl der Zuweisungen in RV(a) an

$$\overrightarrow{N}_a! = \frac{(\overrightarrow{N}_{a,1} + ... + \overrightarrow{N}_{a,|D_a|})!}{\overrightarrow{N}_{a,1}!...\overrightarrow{N}_{a,|D_a|}!} \qquad \overrightarrow{\overrightarrow{N}}_A \text{ ist Z\"{a}hler f\"{u}r Menge A von Atomen} \\ \prod_{a \in A} \overrightarrow{\overrightarrow{N}}_a! = \overrightarrow{\overrightarrow{N}}_A!$$

First-Order Variable Elimination Algorithm (FOVE) (Anhang 2)

- Counting Elimination-Theorem:
 - **Counting elimination** bringt Verbesserungen der Performanz, da das Iterieren über Zuweisungen exponentiell ist in RV(E), während es über Gruppen von Zuweisungen polynomial ist.
 - g sei shattered parfactor
 - $\mathsf{E} = \{E_1, ..., E_k\} \subset A_g$
 - RV(E) disjunkt zu $RV(A_g \setminus E)$ → wir bezeichnen $A_g \setminus E$ mit A'
 - \blacksquare A' sind alle ground atoms, in denen jedes Paar unabhängig ist gegeben Bedingung C_{q}
 - Dann gilt:

$$\sum_{RV(E)} \prod_{\theta \in \Theta_g} \phi(A_g \theta) = \sum_{\overrightarrow{N}_E} \overrightarrow{N}_E! \prod_{v \in D_E} \phi(v, A')^{\prod_{i=1}^k \overrightarrow{N}_{E_i, v_i}}$$

First-Order Variable Elimination Algorithm (FOVE) (Anhang 3)

G a set of parfactors, $Q \subseteq RV(G)$, G shattered against Q If RV(G) = Q, return G. 2. $(E, \{L_1, ..., L_k\}) \leftarrow CHOOSE\text{-}ELIMINATION(G, Q)$. q_E ← fs(G_E). 4. $G' \leftarrow ELIMINATE(q_E, E)$. Return FOVE(G' ∪ G¬E, Q). FUNCTION ELIMINATE $(q, E, \{L_1, ..., L_k\})$ 1. If k = 0 (no inversion) return SUMMATION-WITHOUT-INVERSION(q, E). E₁ ← {e ∈ E : LV(e) ∩ L₁ ≠ ∅} (get inverted atoms). 3. Return $\bigcup_{C_1 \in U_L(C_2)} ELIMINATE$ -GIVEN-UNIFORMITY $(g, E_1, C_1, \{L_2, \dots, L_k\})$.

Algorithmus

```
FUNCTION ELIMINATE-GIVEN-UNIFORMITY (g, E_1, C_1, \{L_2, ..., L_k\})
```

- Choose θ₁ ∈ [C₁] (bind inverted logical variables arbitrarily).
- 2. $G' \leftarrow ELIMINATE(q\theta_1, E_1\theta_1, \{L_2, ..., L_k\}).$
- 3. $G'' \leftarrow \bigcup_{g'\theta_1 \in G'} (\phi_{g'}, A_{g'}, C_1 \wedge C_{g'}).$

FUNCTION FOVE(G, Q)

Return ∪_{g"∈G"} SIMPLIFICATION(g")

FUNCTION SUMMATION-WITHOUT-INVERSION (q, E)

- 1. If $E = \{E_1, ..., E_k\}$ atoms are independent given C_g and $A_g \setminus E$ is ground return $(\sum_{\vec{N}_E} \vec{N}_E! \prod_v \phi_g(v, A_g \setminus E)^{\prod_{i=1}^k \vec{N}_{E_i,v_i}}, A_g \setminus E, \top)$ 2. Return $(\sum_{RV(E)} \prod_{\theta \in \Theta_g} \phi_g(A_g\theta_g), A_g \setminus E, C_g)$ (propositional elimination).

Notation:

- LV(α): logical variables in object α.
- gθ: parfactor (φ_q, A_qθ, C_qθ).
- U_L(C_q): USCP of L with respect to C_q
- C_{1L}: constraints projected to a set of logical variables L.
- G_E: subset of parfactors G which depend on RV(E).
- G_{¬E}: subset of parfactors G which do not depend on RV(E).
- T: tautology constraint.

FUNCTION CHOOSE-ELIMINATION(G, Q)

- Choose e from A_G \ Q.
- g ← fs(G_e).
- 3. If LV(e) = LV(g) and $\forall e' \in A_g RV(e') \neq RV(e)$ return ($\{e\}, LV(e)$) (inversion eliminable).
- E ← {e}.
- 5. While $E \neq$ non-ground atoms of G_E $E \leftarrow E \cup \text{ non-ground atoms of } G_E.$
- Return (E, GET-SEQUENCE-OF-INVERSIONS(fs(G_E))).

FUNCTION GET-SEQUENCE-OF-INVERSIONS(q)

- If there is no L₁ set of invertible logical variables in q return 0.
- 2. Choose $\theta_1 \in [C_{q|L_1}]$.
- 3. $\{L2, ..., L_k\} \leftarrow GET\text{-}SEQUENCE\text{-}OF\text{-}INVERSIONS(g\theta_1).$
- Return {L₁, L₂, . . . , L_k}.

One possible way of choosing an elimination.

