

LM1117/LM1117I

800mA Low-Dropout Linear Regulator

General Description

The LM1117 is a series of low dropout voltage regulators with a dropout of 1.2V at 800mA of load current. It has the same pin-out as National Semiconductor's industry standard LM317.

The LM1117 is available in an adjustable version, which can set the output voltage from 1.25V to 13.8V with only two external resistors. In addition, it is also available in five fixed voltages, 1.8V, 2.5V, 2.85V, 3.3V, and 5V.

The LM1117 offers current limiting and thermal shutdown. Its circuit includes a zener trimmed bandgap reference to assure output voltage accuracy to within ±1%.

The LM1117 series is available in LLP, TO-263, SOT-223, TO-220, and TO-252 D-PAK packages. A minimum of $10\mu F$ tantalum capacitor is required at the output to improve the transient response and stability.

Features

- Available in 1.8V, 2.5V, 2.85V, 3.3V, 5V, and Adjustable Versions
- Space Saving SOT-223 and LLP Packages
- Current Limiting and Thermal Protection

Output Current
 Line Regulation
 Load Regulation
 0.2% (Max)
 0.4% (Max)

■ Temperature Range

 — LM1117
 0°C to 125°C

 — LM1117I
 −40°C to 125°C

Applications

- 2.85V Model for SCSI-2 Active Termination
- Post Regulator for Switching DC/DC Converter
- High Efficiency Linear Regulators
- Battery Charger
- Battery Powered Instrumentation

Typical Application

Active Terminator for SCSI-2 Bus

Fixed Output Regulator

 $^{^{}ullet}$ Required if the regulator is located far from the power supply filter.

10091928

Ordering Information NSC **Temperature Packaging Marking Package** Part Number **Transport Media** Range Drawing 3-lead 0°C to +125°C LM1117MPX-ADJ N03A Tape and Reel MP04A SOT-223 LM1117MPX-1.8 N₁₂A Tape and Reel LM1117MPX-2.5 N13A Tape and Reel LM1117MPX-2.85 N04A Tape and Reel N05A Tape and Reel LM1117MPX-3.3 Tape and Reel LM1117MPX-5.0 N06A -40°C to +125°C LM1117IMPX-ADJ N03B Tape and Reel LM1117IMPX-3.3 N05B Tape and Reel Tape and Reel LM1117IMPX-5.0 N06B 3-lead TO-220 0°C to +125°C LM1117T-ADJ T03B LM1117T-ADJ Rails LM1117T-1.8 LM1117T-1.8 Rails Rails LM1117T-2.5 LM1117T-2.5 Rails LM1117T-2.85 LM1117T-2.85 LM1117T-3.3 LM1117T-3.3 Rails LM1117T-5.0 LM1117T-5.0 Rails 3-lead TO-252 0°C to +125°C LM1117DTX-ADJ LM1117DT-ADJ Tape and Reel TD03B LM1117DTX-1.8 Tape and Reel LM1117DT-1.8 LM1117DTX-2.5 LM1117DT-2.5 Tape and Reel Tape and Reel LM1117DTX-2.85 LM1117DT-2.85 Tape and Reel LM1117DTX-3.3 LM1117DT-3.3 LM1117DTX-5.0 LM1117DT-5.0 Tape and Reel -40°C to +125°C LM1117IDTX-ADJ LM1117IDT-ADJ Tape and Reel LM1117IDTX-3.3 LM1117IDT-3.3 Tape and Reel LM1117IDTX-5.0 LM1117IDT-5.0 Tape and Reel 8-lead LLP 0°C to +125°C LM1117LDX-ADJ 1117ADJ Tape and Reel LDC08A 1117-18 Tape and Reel LM1117LDX-1.8 LM1117LDX-2.5 1117-25 Tape and Reel LM1117LDX-2.85 1117-28 Tape and Reel 1117-33 Tape and Reel LM1117LDX-3.3 LM1117LDX-5.0 1117-50 Tape and Reel -40°C to 125°C LM1117ILDX-ADJ 1117IAD Tape and Reel LM1117ILDX-3.3 1117133 Tape and Reel LM1117ILDX-5.0 1117|50 Tape and Reel TO-263 0°C to +125°C LM1117SX-ADJ LM1117SADJ Tape and Reel TS3B LM1117SX-2.85 LM1117S2.85 Tape and Reel LM1117SX-3.3 LM1117S3.3 Tape and Reel

LM1117SX-5.0

LM1117S5.0

Tape and Reel

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Maximum Input Voltage (V_{IN} to GND) 20V Power Dissipation (Note 2) Internally Limited

Junction Temperature (T_J) (Note 2) 150°C

Storage Temperature Range -65°C to 150°C Lead Temperature

TO-220 (T) Package 260°C, 10 sec SOT-223 (IMP) Package 260°C, 4 sec ESD Tolerance (Note 3) 2000V

Operating Ratings (Note 1)

Input Voltage (V_{IN} to GND) 15V

Junction Temperature Range (T_J)(Note 2)

LM1117 0°C to 125°C LM1117I -40°C to 125°C

LM1117 Electrical Characteristics

Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, $0^{\circ}C$ to $125^{\circ}C$.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
V_{REF}	Reference Voltage	LM1117-ADJ				
		$I_{OUT} = 10 \text{mA}, V_{IN} - V_{OUT} = 2 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	1.238	1.250	1.262	V
		$10mA \le I_{OUT} \le 800mA, \ 1.4V \le V_{IN}-V_{OUT} \le 10V$	1.225	1.250	1.270	V
V _{OUT}	Output Voltage	LM1117-1.8				
		$I_{OUT} = 10 \text{mA}, V_{IN} = 3.8 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	1.782	1.800	1.818	V
		$0 \le I_{OUT} \le 800 \text{mA}, \ 3.2 \text{V} \le V_{IN} \le 10 \text{V}$	1.746	1.800	1.854	V
		LM1117-2.5				
		$I_{OUT} = 10 \text{mA}, V_{IN} = 4.5 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	2.475	2.500	2.525	V
		$0 \le I_{OUT} \le 800 \text{mA}, \ 3.9 \text{V} \le V_{IN} \le 10 \text{V}$	2.450	2.500	2.550	V
		LM1117-2.85				
		$I_{OUT} = 10 \text{mA}, V_{IN} = 4.85 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	2.820	2.850	2.880	V
		$0 \le I_{OUT} \le 800 \text{mA}, \ 4.25 \text{V} \le V_{IN} \le 10 \text{V}$	2.790	2.850	2.910	V
		$0 \le I_{OUT} \le 500 \text{mA}, V_{IN} = 4.10 \text{V}$	2.790	2.850	2.910	V
		LM1117-3.3				
		$I_{OUT} = 10 \text{mA}, V_{IN} = 5 \text{V T}_{J} = 25 ^{\circ}\text{C}$	3.267	3.300	3.333	V
		$0 \le I_{OUT} \le 800 \text{mA}, 4.75 \text{V} \le V_{IN} \le 10 \text{V}$	3.235	3.300	3.365	V
		LM1117-5.0				
		$I_{OUT} = 10 \text{mA}, V_{IN} = 7 \text{V}, T_{J} = 25 ^{\circ}\text{C}$	4.950	5.000	5.050	V
		$0 \le I_{OUT} \le 800 \text{mA}, 6.5 \text{V} \le V_{IN} \le 12 \text{V}$	4.900	5.000	5.100	V
ΔV_{OUT}	Line Regulation	LM1117-ADJ				
	(Note 6)	$I_{OUT} = 10 \text{mA}, \ 1.5 \text{V} \le V_{IN} - V_{OUT} \le 13.75 \text{V}$		0.035	0.2	%
		LM1117-1.8		1	6	mV
		$I_{OUT} = 0mA, 3.2V \le V_{IN} \le 10V$				
		LM1117-2.5		1	6	mV
		$I_{OUT} = 0mA, 3.9V \le V_{IN} \le 10V$				
		LM1117-2.85				
		$I_{OUT} = 0mA, 4.25V \le V_{IN} \le 10V$		1	6	mV
		LM1117-3.3				
		$I_{OUT} = 0mA, 4.75V \le V_{IN} \le 15V$		1	6	mV
		LM1117-5.0				
		$I_{OUT} = 0 \text{mA}, 6.5 \text{V} \le V_{IN} \le 15 \text{V}$		1	10	mV

LM1117 Electrical Characteristics (Continued)

Typicals and limits appearing in normal type apply for T_J = 25°C. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, 0°C to 125°C.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
ΔV_{OUT}	Load Regulation	LM1117-ADJ				
	(Note 6)	$V_{IN}-V_{OUT} = 3V, 10 \le I_{OUT} \le 800 \text{mA}$		0.2	0.4	%
		LM1117-1.8		1	10	mV
		$V_{IN} = 3.2V, \ 0 \le I_{OUT} \le 800 \text{mA}$				
		LM1117-2.5		1	10	mV
		$V_{IN} = 3.9V, \ 0 \le I_{OUT} \le 800 \text{mA}$				
		LM1117-2.85				
		$V_{IN} = 4.25V, \ 0 \le I_{OUT} \le 800 \text{mA}$		1	10	mV
		LM1117-3.3				
		$V_{IN} = 4.75V, \ 0 \le I_{OUT} \le 800 \text{mA}$		1	10	mV
		LM1117-5.0				
		$V_{IN} = 6.5V, \ 0 \le I_{OUT} \le 800 \text{mA}$		1	15	mV
V_{IN} - V_{OUT}	Dropout Voltage	I _{OUT} = 100mA		1.10	1.20	V
	(Note 7)	I _{OUT} = 500mA		1.15	1.25	V
		I _{OUT} = 800mA		1.20	1.30	V
I_{LIMIT}	Current Limit	V_{IN} - $V_{OUT} = 5V$, $T_J = 25$ °C	800	1200	1500	mA
	Minimum Load	LM1117-ADJ				
	Current (Note 8)	V _{IN} = 15V		1.7	5	mA
	Quiescent Current	LM1117-1.8		5	10	mA
		V _{IN} ≤ 15V				
		LM1117-2.5		5	10	mA
		V _{IN} ≤ 15V				
		LM1117-2.85				_
		V _{IN} ≤ 10V		5	10	mA
		LM1117-3.3		_		
		$V_{IN} \le 15V$		5	10	mA
		LM1117-5.0		_	40	
		$V_{IN} \le 15V$		5	10	mA
	Thermal Regulation	T _A = 25°C, 30ms Pulse		0.01	0.1	%/W
	Ripple Regulation	f_{RIPPLE} =1 20Hz, V_{IN} - V_{OUT} = 3V V_{RIPPLE} = 1 V_{PP}	60	75		dB
	Adjust Pin Current			60	120	μA
	Adjust Pin Current	10 ≤ I _{OUT} ≤ 800mA,				
	Change	$1.4V \le V_{IN} - V_{OUT} \le 10V$		0.2	5	μA
	Temperature Stability			0.5		%
	Long Term Stability	T _A = 125°C, 1000Hrs		0.3		%
	RMS Output Noise	Output Noise (% of V _{OUT}), 10Hz ≤ f ≤10kHz		0.003		%
	Thermal Resistance	3-Lead SOT-223		15.0		°C/W
	Junction-to-Case	3-Lead TO-220		3.0		°C/W
		3-Lead TO-252		10		°C/W
	Thermal Resistance	3-Lead SOT-223 (No heat sink)		136		°C/W
	Junction-to-Ambient	3-Lead TO-220 (No heat sink)		79		°C/W
	(No air flow)	3-Lead TO-252 (Note 9) (No heat sink)		92		°C/W
		3-Lead TO-263		55		°C/W
		8-Lead LLP(Note 10)		40		°C/W

LM1117I Electrical Characteristics

Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, $-40^{\circ}C$ to $125^{\circ}C$.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Typ te 5) (Note 4)	Max) (Note 5)	Units
$V_{OUT} = \begin{cases} 10mA \le I_{OUT} \le 800mA, 1.4V \le V_{IN} \cdot V_{OUT} \\ \le 10V \end{cases} \\ V_{OUT} = \begin{cases} 10mA, V_{IN} = 5V, T_J = 25^{\circ}C \\ 0 \le I_{OUT} \le 800mA, 4.75V \le V_{IN} \le 10V \end{cases} \\ \frac{1}{3.1} = 10mA, V_{IN} = 7V, T_J = 25^{\circ}C \\ 0 \le I_{OUT} \le 800mA, 4.75V \le V_{IN} \le 12V \end{cases} \\ \frac{1}{3.1} = 10mA, V_{IN} = 7V, T_J = 25^{\circ}C \\ 0 \le I_{OUT} \le 800mA, 6.5V \le V_{IN} \le 12V \end{cases} \\ \frac{1}{3.1} = 10mA, V_{IN} = 10$			
$V_{\text{OUT}} = \begin{cases} & \leq 10V \\ & \text{Output Voltage} \\ & \text{IM1117I-3.3} \\ & \text{I}_{\text{OUT}} = 10\text{mA}, \text{V}_{\text{IN}} = 5\text{V}, \text{T}_{\text{J}} = 25\text{'C} \\ & 0 \leq I_{\text{OUT}} \leq 800\text{mA}, 4.75\text{V} \leq \text{V}_{\text{IN}} \leq 10\text{V} \\ & \text{IM1117I-5.0} \\ & \text{I}_{\text{OUT}} = 10\text{mA}, \text{V}_{\text{IN}} = 7\text{V}, \text{T}_{\text{J}} = 25\text{'C} \\ & 0 \leq I_{\text{OUT}} \leq 800\text{mA}, 6.5\text{V} \leq \text{V}_{\text{IN}} \leq 12\text{V} \\ & \text{4.8} \\ & \text{AV}_{\text{OUT}} \end{cases}$ Line Regulation (Note 6) $ \begin{cases} \text{LM1117I-ADJ} \\ \text{LOUT} = 10\text{mA}, 1.5\text{V} \leq \text{V}_{\text{IN}} \leq 13\text{V} \\ \text{LM1117I-3.3} \\ I_{\text{OUT}} = 0\text{mA}, 4.75\text{V} \leq \text{V}_{\text{IN}} \leq 15\text{V} \\ \text{LM1117I-3.3} \\ V_{\text{IN}} = 0\text{mA}, 0.5\text{V} \leq \text{V}_{\text{IN}} \leq 15\text{V} \\ \text{LM1117I-3.3} \\ V_{\text{IN}} = 4.75\text{V}, 0 \leq I_{\text{OUT}} \leq 800\text{mA} \\ \text{LM1117I-3.3} \\ V_{\text{IN}} = 4.75\text{V}, 0 \leq I_{\text{OUT}} \leq 800\text{mA} \\ \text{LM1117I-3.3} \\ V_{\text{IN}} = 6.5\text{V}, 0 \leq I_{\text{OUT}} \leq 800\text{mA} \\ \text{I}_{\text{OUT}} = 50\text{mA} \\ \text{I}_{\text{OUT}$	238 1.250	1.262	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200 1.250	1.290	V
$\begin{array}{c} I_{OUT} = 10 \text{mA}, V_{\text{IN}} = 5 \text{V}, T_{\text{J}} = 25 ^{\circ} \text{C} \\ 0 \leq I_{OUT} \leq 800 \text{mA}, 4.75 \text{V} \leq V_{\text{IN}} \leq 10 \text{V} \\ LM1117 -5.0 \\ I_{OUT} = 10 \text{mA}, V_{\text{IN}} = 7 \text{V}, T_{\text{J}} = 25 ^{\circ} \text{C} \\ 0 \leq I_{OUT} \leq 800 \text{mA}, 6.5 \text{V} \leq V_{\text{IN}} \leq 12 \text{V} \\ 4.9 \\ 4.8 \\ \Delta V_{\text{OUT}} \\ \text{Line Regulation} \\ \text{(Note 6)} \\ Im Interval of the control of the cont$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	267 3.300	3.333	V
$ \begin{array}{c} I_{OUT} = 10 mA, \ V_{IN} = 7V, \ T_{J} = 25^{\circ}C \\ 0 \leq I_{OUT} \leq 800 mA, 6.5 V \leq V_{IN} \leq 12 V \\ \hline \Delta V_{OUT} \\ \\ \Delta V_{OUT} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	168 3.300	3.432	V
$ \Delta V_{OUT} $			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	950 5.000	5.050	V
$ \begin{array}{c} \text{(Note 6)} & \begin{array}{c} \text{I}_{\text{OUT}} = 10\text{mA}, \ 1.5\text{V} \leq \text{V}_{\text{IN}}\text{-V}_{\text{OUT}} \leq 13.75\text{V} \\ \\ \text{LM1117I-3.3} \\ \text{I}_{\text{OUT}} = 0\text{mA}, \ 4.75\text{V} \leq \text{V}_{\text{IN}} \leq 15\text{V} \\ \\ \text{LM1117I-5.0} \\ \text{I}_{\text{OUT}} = 0\text{mA}, \ 6.5\text{V} \leq \text{V}_{\text{IN}} \leq 15\text{V} \\ \\ \text{LM1117I-4DJ} \\ \\ \text{V}_{\text{IN}}\text{-V}_{\text{OUT}} = 3\text{V}, \ 10 \leq \text{I}_{\text{OUT}} \leq 800\text{mA} \\ \\ \text{LM1117I-3.3} \\ \\ \text{V}_{\text{IN}} = 4.75\text{V}, \ 0 \leq \text{I}_{\text{OUT}} \leq 800\text{mA} \\ \\ \text{LM1117I-5.0} \\ \\ \text{V}_{\text{IN}} = 6.5\text{V}, \ 0 \leq \text{I}_{\text{OUT}} \leq 800\text{mA} \\ \\ \text{I}_{\text{OUT}} = 15\text{V} \\ \\ \text{Minimum Load} \\ \\ \text{Current (Note 8)} \\ \\ \text{V}_{\text{IN}} = 15\text{V} \\ \\ \\ \text{Quiescent Current} \\ \\ \text{UM1117I-3.3} \\ \\ \\ \text{V}_{\text{IN}} \leq 15\text{V} \\ \\ \\ \text{LM1117I-5.0} \\ \\ \\ \text{V}_{\text{IN}} \leq 15\text{V} \\ \\ \\ \text{LM1117I-5.0} \\ \\ \\ \text{V}_{\text{IN}} \leq 15\text{V} \\ \\ \\ \text{EM1117I-5.0} \\ \\ \\ \text{V}_{\text{IN}} \leq 15\text{V} \\ \\ \\ \text{EM1117I-5.0} \\ \\ \\ \text{V}_{\text{IN}} \leq 15\text{V} \\ \\ \\ \text{EM215} \\ \\ \text{Primal Regulation} \\ \\ \text{F}_{\text{RIPPLE}} = 1 \ 20\text{Hz}, \ \text{V}_{\text{IN}}\text{-V}_{\text{OUT}} = 3\text{V} \ \text{V}_{\text{RIPPLE}} \\ \\ \text{Adjust Pin Current} \\ \\ \text{Adjust Pin Current} \\ \\ \text{Adjust Pin Current} \\ \\ \text{Change} \\ \\ \text{Temperature Stability} \\ \\ \text{Long Term Stability} \\ \\ \text{Long Term Stability} \\ \\ \text{Thermal Resistance} \\ \\ \text{3-Lead SOT-223} \\ \\ \end{array} $	5.000	5.200	V
	0.035	0.3	%
$ \frac{\text{LM1117I-5.0}}{\text{l}_{\text{OUT}}} = \text{OmA}, 6.5 \text{V} \leq \text{V}_{\text{IN}} \leq 15 \text{V} $ $ \frac{\text{LOad Regulation}}{\text{(Note 6)}} = \frac{\text{LM1117I-ADJ}}{\text{V}_{\text{IN}} \cdot \text{V}_{\text{OUT}}} = 3\text{V}, 10 \leq \text{I}_{\text{OUT}} \leq 800 \text{mA} $ $ \frac{\text{LM1117I-3.3}}{\text{LM1117I-5.0}} = \frac{\text{MOMA}}{\text{LM1117I-5.0}} = \frac{\text{MOMA}}{\text{LM1117I-5.0}} = \frac{\text{MOMA}}{\text{LM1117I-5.0}} = \frac{\text{MOMA}}{\text{LM1117I-5.0}} = \frac{\text{MOMA}}{\text{LM1117I-5.0}} = \frac{\text{MOMA}}{\text{LM1117I-5.0}} = \frac{\text{MOMA}}{\text{LM1117I-6.0}} =$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	10	mV
$ \begin{array}{ c c c c c }\hline \Delta V_{OUT} & Load Regulation & LM1117I-ADJ & \\ & V_{IN}-V_{OUT} = 3V, \ 10 \le I_{OUT} \le 800mA & \\ \hline & LM1117I-3.3 & \\ & V_{IN} = 4.75V, \ 0 \le I_{OUT} \le 800mA & \\ \hline & LM1117I-5.0 & \\ & V_{IN} = 6.5V, \ 0 \le I_{OUT} \le 800mA & \\ \hline & I_{OUT} = 500mA & \\ \hline & I_{OUT} = 800mA & \\ \hline & I_{OUT} = 100mA & \\ \hline & I_{OUT} = 800mA & \\ \hline & I_{OUT} = 100mA & \\ \hline & $			
$ \begin{array}{ c c c c c }\hline \Delta V_{OUT} & Load Regulation & LM1117I-ADJ & \\ & V_{IN}-V_{OUT} = 3V, \ 10 \le I_{OUT} \le 800mA & \\ \hline & LM1117I-3.3 & \\ & V_{IN} = 4.75V, \ 0 \le I_{OUT} \le 800mA & \\ \hline & LM1117I-5.0 & \\ & V_{IN} = 6.5V, \ 0 \le I_{OUT} \le 800mA & \\ \hline & I_{OUT} = 500mA & \\ \hline & I_{OUT} = 800mA & \\ \hline & I_{OUT} = 100mA & \\ \hline & I_{OUT} = 800mA & \\ \hline & I_{OUT} = 100mA & \\ \hline & $	1	15	mV
$(Note 6) \begin{tabular}{l l l l l l l l l l l l l l l l l l l $			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.2	0.5	%
$V_{\text{IN}^{-}}V_{\text{OUT}} = 0.5 \text{V}, 0 \leq I_{\text{OUT}} \leq 800 \text{mA}$ $V_{\text{IN}^{-}}V_{\text{OUT}} = 0.5 \text{V}, 0 \leq I_{\text{OUT}} \leq 800 \text{mA}$ $I_{\text{OUT}} = 100 \text{mA}$ $I_{\text{OUT}} = 500 \text{mA}$ $I_{\text{OUT}} = 800 \text{mA}$ $I_{\text{OUT}} = 800 \text{mA}$ $I_{\text{OUT}} = 50 \text{V}, T_{\text{J}} = 25^{\circ}\text{C}$ $I_{\text{Minimum Load}} = 0.0 \text{Minimum Load} $ $I_{\text{Current (Note 8)}} = 0.0 \text{Minimum Load} $ $I_{\text{Current (Note 8)}} = 0.0 \text{Minimum Load} $ $I_{\text{UN}} = 15 \text{V}$ $I_{\text{Minimum Load}} = 0.0 \text{Minimum Load} $ $I_{\text{UN}} \leq 15 \text{V}$ $I_{\text{Minimum Load}} = 0.0 \text{Minimum Load} $ $I_{\text{Minimum Load}} = 0.0 \text{Minimum Load} $ $I_{\text{UN}} \leq 15 \text{V}$ $I_{\text{Minimum Load}} = 0.0 \text{Minimum Load} $ $I_{\text{Minimum Load}} = 0.0 M$			
$V_{\text{IN}} = 6.5 \text{V}, \ 0 \leq I_{\text{OUT}} \leq 800 \text{mA}$ $V_{\text{IN}} = 6.5 \text{V}, \ 0 \leq I_{\text{OUT}} \leq 800 \text{mA}$ $I_{\text{OUT}} = 100 \text{mA}$ $I_{\text{OUT}} = 500 \text{mA}$ $I_{\text{OUT}} = 800 \text{mA}$ $I_{\text{OUT}} = 800 \text{mA}$ $I_{\text{OUT}} = 50 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 10 \text{mA}$ $I_{\text{OUT}} = 10 \text{mA}$ $I_{\text{OUT}} = 10 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 10 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 10 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 10 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 10 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 10 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 10 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 15 \text{mA}$ $I_{\text{OUT}} = 10 \text{mA}$ $I_{\text{OUT}} = 1$	1	15	mV
$V_{\text{IN}} = 6.5 \text{V}, \ 0 \leq I_{\text{OUT}} \leq 800 \text{mA}$ $V_{\text{IN}} - V_{\text{OUT}}$ $OUT $			
$\begin{array}{c} V_{\text{IN}}\text{-}V_{\text{OUT}} \\ \hline \\ V_{\text{IN}}\text{-}V_{\text{OUT}} \\ \hline \\ \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	1	20	mV
$I_{\text{LIMIT}} = \text{S00mA}$ $I_{\text{OUT}} = \text{800mA}$ $I_{\text{OUT}} = \text{5V, T}_{\text{J}} = 25^{\circ}\text{C}$ Minimum Load Current (Note 8) Quiescent Current Uminimum Load Current (Note 8) Uminimum Load Current (Note 8) Uminimum Load Current (Note 8) $\text{Vin} = 15\text{V}$ LM1117I-3.3 $\text{Vin} \leq 15\text{V}$ LM1117I-5.0 $\text{Vin} \leq 15\text{V}$ $\text{Thermal Regulation}$ Ripple Regulation Ripple Regulation Ripple Regulation Ripple Regulation Ripple Regulation Ripple Regulation In the current $\text{Adjust Pin Current}$ $Adju$	1.10	1.30	V
$I_{\text{LIMIT}} \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	1.15	1.35	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.20	1.40	V
$\begin{array}{llllllllllllllllllllllllllllllllllll$		1500	mA
$\begin{array}{c cccc} Current & (Note \ 8) & V_{IN} = 15V \\ \hline Quiescent Current & LM1117I-3.3 \\ \hline V_{IN} \le 15V \\ \hline LM1117I-5.0 \\ \hline V_{IN} \le 15V \\ \hline Thermal Regulation & T_A = 25 ^{\circ}C, \ 30ms \ Pulse \\ \hline Ripple Regulation & f_{RIPPLE} = 1 \ 20Hz, \ V_{IN}-V_{OUT} = 3V \ V_{RIPPLE} \\ = 1V_{PP} \\ \hline Adjust \ Pin \ Current & 10 \le I_{OUT} \le 800mA, \\ Change & 1.4V \le V_{IN}-V_{OUT} \le 10V \\ \hline Temperature \ Stability & Long \ Term \ Stability & T_A = 125 ^{\circ}C, \ 1000Hrs \\ \hline RMS \ Output \ Noise & (\% \ of \ V_{OUT}), \ 10Hz \le f \le 10kHz \\ \hline Thermal \ Resistance & 3-Lead \ SOT-223 \\ \hline \end{array}$	1200	1300	111/4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.7	5	mA
$\begin{array}{c} V_{\text{IN}} \leq 15 V \\ \\ \text{LM1117I-5.0} \\ V_{\text{IN}} \leq 15 V \end{array}$ Thermal Regulation $\begin{array}{c} T_{\text{A}} = 25^{\circ}\text{C}, 30\text{ms Pulse} \\ \\ \text{Ripple Regulation} \end{array}$ $\begin{array}{c} f_{\text{RIPPLE}} = 1 20\text{Hz}, V_{\text{IN}}\text{-}V_{\text{OUT}} = 3V V_{\text{RIPPLE}} \\ \\ = 1 V_{\text{PP}} \end{array}$ Adjust Pin Current $\begin{array}{c} 10 \leq I_{\text{OUT}} \leq 800\text{mA}, \\ \text{Change} \\ 1.4V \leq V_{\text{IN}}\text{-}V_{\text{OUT}} \leq 10V \end{array}$ Temperature Stability $\begin{array}{c} I_{\text{A}} = 125^{\circ}\text{C}, 1000\text{Hrs} \\ \\ \text{RMS Output Noise} \end{array}$ RMS Output Noise $\begin{array}{c} (\% \text{of } V_{\text{OUT}}), 10\text{Hz} \leq f \leq 10\text{kHz} \\ \\ \text{Thermal Resistance} \end{array}$	1.7		IIIA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	15	mA
$\begin{array}{c} V_{\text{IN}} \leq 15 \text{V} \\ \hline \text{Thermal Regulation} & T_{\text{A}} = 25^{\circ}\text{C}, 30 \text{ms Pulse} \\ \hline \text{Ripple Regulation} & f_{\text{RIPPLE}} = 1 20 \text{Hz}, V_{\text{IN}}\text{-}V_{\text{OUT}} = 3 \text{V} V_{\text{RIPPLE}} \\ & = 1 V_{\text{PP}} \\ \hline \text{Adjust Pin Current} & 10 \leq I_{\text{OUT}} \leq 800 \text{mA}, \\ \hline \text{Change} & 1.4 \text{V} \leq V_{\text{IN}}\text{-}V_{\text{OUT}} \leq 10 \text{V} \\ \hline \text{Temperature Stability} \\ \hline \text{Long Term Stability} & T_{\text{A}} = 125^{\circ}\text{C}, 1000 \text{Hrs} \\ \hline \text{RMS Output Noise} & (\% \text{of} V_{\text{OUT}}), 10 \text{Hz} \leq \text{f} \leq 10 \text{kHz} \\ \hline \text{Thermal Resistance} & 3\text{-Lead SOT-223} \\ \hline \end{array}$	- 3	13	IIIA
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	5	15	- m A
Ripple Regulation $ \begin{array}{ll} f_{RIPPLE} = 1 \ 20 \text{Hz}, \ V_{\text{IN}} \text{-}V_{\text{OUT}} = 3 \text{V} \ V_{\text{RIPPLE}} \\ = 1 \text{V}_{PP} \end{array} $ Adjust Pin Current $ \begin{array}{ll} Adjust \ Pin \ Current \\ Adjust \ Pin \ Current \\ Change \\ 1.4 \text{V} \leq \text{V}_{\text{IN}} \text{-}V_{\text{OUT}} \leq 10 \text{V} \\ \hline \text{Temperature Stability} \\ Long \ Term \ Stability \\ \hline RMS \ Output \ Noise \\ \hline \text{Thermal Resistance} \\ \end{array} $ $ \begin{array}{ll} f_{RIPPLE} = 1 \ 20 \text{Hz}, \ V_{\text{IN}} \text{-}V_{\text{OUT}} = 3 \text{V} \ V_{\text{RIPPLE}} \\ \hline \text{40} \\ \hline $		15	mA
$= 1 V_{PP}$ Adjust Pin Current Adjust Pin Current $10 \le I_{OUT} \le 800 \text{mA},$ Change $1.4 V \le V_{IN} - V_{OUT} \le 10 V$ Temperature Stability $Long Term Stability$ $T_A = 125^{\circ}C, 1000 \text{Hrs}$ RMS Output Noise $(\% \text{ of } V_{OUT}), 10 \text{Hz} \le f \le 10 \text{kHz}$ Thermal Resistance 3-Lead SOT-223	0.01	0.1	%/W
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	50 75		dB
	60	120	μΑ
Long Term Stability $T_A = 125^{\circ}C$, 1000Hrs RMS Output Noise (% of V_{OUT}), 10Hz \leq f \leq 10kHz Thermal Resistance 3-Lead SOT-223	0.2	10	μΑ
RMS Output Noise (% of V_{OUT}), $10Hz \le f \le 10kHz$ Thermal Resistance 3-Lead SOT-223	0.5		%
RMS Output Noise (% of V_{OUT}), $10Hz \le f \le 10kHz$ Thermal Resistance 3-Lead SOT-223	0.3		%
Thermal Resistance 3-Lead SOT-223	0.003		%
	15.0		°C/W
OUTOUR TO TO THE PART TO 1/2/2/2	10	+	°C/W
Thermal Resistance 3-Lead SOT-223 (No heat sink)	136		°C/W
,			
Junction-to-Ambient 3-Lead TO-252 (No heat sink)(Note 9) No air flow) 8-Lead LLP(Note 10)	92		°C/W

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

6

Note 2: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Note 3: For testing purposes, ESD was applied using human body model, $1.5k\Omega$ in series with 100pF.

Note 4: Typical Values represent the most likely parametric norm.

Note 5: All limits are guaranteed by testing or statistical analysis.

Note 6: Load and line regulation are measured at constant junction room temperature.

Note 7: The dropout voltage is the input/output differential at which the circuit ceases to regulate against further reduction in input voltage. It is measured when the output voltage has dropped 100mV from the nominal value obtained at $V_{IN} = V_{OUT} + 1.5V$.

Note 8: The minimum output current required to maintain regulation.

Note 9: Minimum pad size of 0.038in²

Note 10: Thermal Performance for the LLP was obtained using JESD51-7 board with six vias and an ambient temperature of 22°C. For information about improved thermal performance and power dissipation for the LLP, refer to Application Note AN-1187.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

LM1117-ADJ Ripple Rejection vs. Current

Temperature Stability

1009192

75 100 125 150

Adjust Pin Current

LM1117-2.85 Load Transient Response

Temperature (°C)

-2

-50 -25

0 25 50

LM1117-5.0 Load Transient Response

LM1117-2.85 Line Transient Response

10091910

Typical Performance Characteristics (Continued)

LM1117-5.0 Line Transient Response

Application Note

1.0 EXTERNAL CAPACITORS/STABILITY

1.1 Input Bypass Capacitor

An input capacitor is recommended. A 10µF tantalum on the input is a suitable input bypassing for almost all applications.

1.2 Adjust Terminal Bypass Capacitor

The adjust terminal can be bypassed to ground with a bypass capacitor (C_{ADJ}) to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. At any ripple frequency, the impedance of the C_{ADJ} should be less than R1 to prevent the ripple from being amplified:

$$1/(2\pi^*f_{RIPPLE}^*C_{ADJ}) < R1$$

The R1 is the resistor between the output and the adjust pin. Its value is normally in the range of 100-200 Ω . For example, with R1 = 124 Ω and f_{RIPPLE} = 120Hz, the C_{ADJ} should be > 11 μ F.

1.3 Output Capacitor

The output capacitor is critical in maintaining regulator stability, and must meet the required conditions for both minimum amount of capacitance and ESR (Equivalent Series Resistance). The minimum output capacitance required by the LM1117 is $10\mu F$, if a tantalum capacitor is used. Any increase of the output capacitance will merely improve the loop stability and transient response. The ESR of the output capacitor should range between 0.3Ω - 22Ω . In the case of the adjustable regulator, when the C_{ADJ} is used, a larger output capacitance (22µf tantalum) is required.

2.0 OUTPUT VOLTAGE

The LM1117 adjustable version develops a 1.25V reference voltage, $V_{\rm REF}$, between the output and the adjust terminal. As shown in *Figure 1*, this voltage is applied across resistor R1 to generate a constant current I1. The current $I_{\rm ADJ}$ from the adjust terminal could introduce error to the output. But since it is very small (60µA) compared with the I1 and very constant with line and load changes, the error can be ig-

nored. The constant current I1 then flows through the output set resistor R2 and sets the output voltage to the desired level.

For fixed voltage devices, R1 and R2 are integrated inside the devices.

FIGURE 1. Basic Adjustable Regulator

3.0 LOAD REGULATION

The LM1117 regulates the voltage that appears between its output and ground pins, or between its output and adjust pins. In some cases, line resistances can introduce errors to the voltage across the load. To obtain the best load regulation, a few precautions are needed.

Figure 2, shows a typical application using a fixed output regulator. The Rt1 and Rt2 are the line resistances. It is obvious that the $\rm V_{LOAD}$ is less than the $\rm V_{OUT}$ by the sum of the voltage drops along the line resistances. In this case, the load regulation seen at the $\rm R_{LOAD}$ would be degraded from the data sheet specification. To improve this, the load should be tied directly to the output terminal on the positive side and directly tied to the ground terminal on the negative side.

FIGURE 2. Typical Application using Fixed Output
Regulator

When the adjustable regulator is used (*Figure 3*), the best performance is obtained with the positive side of the resistor R1 tied directly to the output terminal of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 5V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of 0.05Ω x $I_{\rm L}$. If R1 (=125 Ω) is connected near the load, the effective line resistance will be 0.05Ω (1+R2/R1) or in this case, it is 4 times worse. In addition, the ground side of the resistor R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

FIGURE 3. Best Load Regulation using Adjustable Output Regulator

4.0 PROTECTION DIODES

Under normal operation, the LM1117 regulators do not need any protection diode. With the adjustable device, the internal resistance between the adjust and output terminals limits the current. No diode is needed to divert the current around the regulator even with capacitor on the adjust terminal. The adjust pin can take a transient signal of ±25V with respect to the output voltage without damaging the device.

When a output capacitor is connected to a regulator and the input is shorted to ground, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and rate of decrease of $V_{\rm IN}$. In the LM1117 regulators, the internal diode between the output and input pins

can withstand microsecond surge currents of 10A to 20A. With an extremely large output capacitor (\geq 1000 μ F), and with input instantaneously shorted to ground, the regulator could be damaged.

In this case, an external diode is recommended between the output and input pins to protect the regulator, as shown in *Figure 4*.

FIGURE 4. Regulator with Protection Diode

5.0 HEATSINK REQUIREMENTS

When an integrated circuit operates with an appreciable current, its junction temperature is elevated. It is important to quantify its thermal limits in order to achieve acceptable performance and reliability. This limit is determined by summing the individual parts consisting of a series of temperature rises from the semiconductor junction to the operating environment. A one-dimensional steady-state model of conduction heat transfer is demonstrated in *Figure 5*. The heat generated at the device junction flows through the die to the die attach pad, through the lead frame to the surrounding case material, to the printed circuit board, and eventually to the ambient environment. Below is a list of variables that may affect the thermal resistance and in turn the need for a heatsink.

neatsink.	
R ^e JC (Component Variables)	R^{θ} CA (Application Variables)
Leadframe Size & Material	Mounting Pad Size, Material, & Location
No. of Conduction Pins	Placement of Mounting Pad
Die Size	PCB Size & Material
Die Attach Material	Traces Length & Width
Molding Compound Size and Material	Adjacent Heat Sources
	Volume of Air
	Ambient Temperatue
	Shape of Mounting Pad

FIGURE 5. Cross-sectional view of Integrated Circuit Mounted on a printed circuit board. Note that the case temperature is measured at the point where the leads contact with the mounting pad surface

The LM1117 regulators have internal thermal shutdown to protect the device from over-heating. Under all possible operating conditions, the junction temperature of the LM1117 must be within the range of 0°C to 125°C. A heatsink may be required depending on the maximum power dissipation and maximum ambient temperature of the application. To determine if a heatsink is needed, the power dissipated by the regulator, P_{D} , must be calculated:

$$I_{IN} = I_L + I_G$$

$$P_D = (V_{IN} - V_{OUT})I_L + V_{IN}I_G$$

Figure 6 shows the voltages and currents which are present in the circuit.

FIGURE 6. Power Dissipation Diagram

The next parameter which must be calculated is the maximum allowable temperature rise, $T_{\rm R}({\rm max})$:

$$T_{R}(max) = T_{J}(max) - T_{A}(max)$$

where $T_J(max)$ is the maximum allowable junction temperature (125°C), and $T_A(max)$ is the maximum ambient temperature which will be encountered in the application.

Using the calculated values for $T_{R}(\text{max})$ and $P_{D},$ the maximum allowable value for the junction-to-ambient thermal resistance (θ_{JA}) can be calculated:

$$\theta_{JA} = T_R(max)/P_D$$

If the maximum allowable value for θ_{JA} is found to be $\geq \! 136^{\circ}\text{C/W}$ for SOT-223 package or $\geq \! 79^{\circ}\text{C/W}$ for TO-220 package or $\geq \! 92^{\circ}\text{C/W}$ for TO-252 package, no heatsink is needed since the package alone will dissipate enough heat to satisfy these requirements. If the calculated value for θ_{JA} falls below these limits, a heatsink is required.

As a design aid, *Table 1* shows the value of the θ_{JA} of SOT-223 and TO-252 for different heatsink area. The copper patterns that we used to measure these θ_{JA} s are shown at the end of the Application Notes Section. *Figure 7* and *Figure 8* reflects the same test results as what are in the *Table 1*

Figure 9 and Figure 10 shows the maximum allowable power dissipation vs. ambient temperature for the SOT-223 and TO-252 device. Figures Figure 11 and Figure 12 shows the maximum allowable power dissipation vs. copper area (in²) for the SOT-223 and TO-252 devices. Please see AN1028 for power enhancement techniques to be used with SOT-223 and TO-252 packages.

*Application Note AN-1187 discusses improved thermal performance and power dissipation for the LLP.

TABLE 1. θ_{JA} Different Heatsink Area

Layout	Copper Area		Thermal Resistance		
	Top Side (in ²)*	Bottom Side (in²)	(θ _{JA} , °C/W) SOT-223	(θ _{JA} , °C/W) TO-252	
1	0.0123	0	136	103	
2	0.066	0	123	87	
3	0.3	0	84	60	
4	0.53	0	75	54	
5	0.76	0	69	52	
6	1	0	66	47	
7	0	0.2	115	84	
8	0	0.4	98	70	
9	0	0.6	89	63	
10	0	0.8	82	57	
11	0	1	79	57	
12	0.066	0.066	125	89	
13	0.175	0.175	93	72	

TABLE 1. θ_{JA} Different Heatsink Area (Continued)

Layout	Copper Area		out Copper Area Thermal Resistance		Resistance
14	0.284	0.284	83	61	
15	0.392	0.392	75	55	
16	0.5	0.5	70	53	

^{*}Tab of device attached to topside copper

FIGURE 7. θ_{JA} vs. 1oz Copper Area for SOT-223

FIGURE 8. θ_{JA} vs. 2oz Copper Area for TO-252

FIGURE 9. Maximum Allowable Power Dissipation vs.
Ambient Temperature for SOT-223

FIGURE 10. Maximum Allowable Power Dissipation vs.
Ambient Temperature for TO-252

FIGURE 11. Maximum Allowable Power Dissipation vs. 1oz Copper Area for SOT-223

FIGURE 12. Maximum Allowable Power Dissipation vs. 2oz Copper Area for TO-252

FIGURE 13. Top View of the Thermal Test Pattern in Actual Scale

FIGURE 14. Bottom View of the Thermal Test Pattern in Actual Scale

Typical Application Circuits

Adjusting Output of Fixed Regulators

5V Logic Regulator with Electronic Shutdown*

Regulator with Reference

 $^{^{*}\,\}mathrm{C}_{\mathrm{Adj}}$ is optional, however it will improve ripple rejection.

1009192

1.25V to 10V Adjustable Regulator with Improved Ripple Rejection

Typical Application Circuits (Continued)

* Select for charge rate.

Battery Backed-Up Regulated Supply

10091932

Low Dropout Negative Supply

18

TS3B (Rev F)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

TAPPERED-

3-Lead TO-263 NS Package Number TS3B

Notes

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor

Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.cc

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560