

M/M/1

• A simple queueing model (M/M/1) queue:

Queueing system: buffer for queue + server for services

Assumptions

- (1) Customers arrive according to a Poisson distribution with parameter λt , where λ is the average number of arrivals per unit time.
 - Let X be the number of arrivals in (0, t) $P(X = k) = (\lambda t)^k \exp(-\lambda t)/k!, \text{ for } k = 0, 1, 2, \dots \text{ Its mean } = \lambda t$
 - Suppose we observe an arrival at t and the next arrival at $t + \tau$, where τ is a random variable, then

$$P(\tau > x) = P(\text{no arrival occurs in } (t, t + x))$$

= $P(X = 0 \text{ in time } (t, t + x))$
= $\exp(-\lambda x), x \ge 0$

$$\Rightarrow F_{\tau}(x) = P(\tau \le x) = 1 - P(\tau > x) = 1 - \exp(-\lambda x), \quad x \ge 0$$

$$\Rightarrow f_{\tau}(x) = \lambda \exp(-\lambda x), \quad x \ge 0$$

au has an exponential distribution with parameter λ (average number of customers arrived per unit time). Its mean $=\frac{1}{\lambda}$

Poisson process with parameter λ : probability of k events in (0, t):

$$P(X = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}.$$

In $(0, \Delta t)$, we have:

- Probability of 0 event: $\frac{(\lambda \Delta t)^0}{0!}e^{-\lambda \Delta t} = 1 \lambda \Delta t + o(\Delta t)$. Here $o(\Delta t)$ means higher order of Δt .
- Probability of 1 event: $\frac{(\lambda \Delta t)^1}{1!}e^{-\lambda \Delta t} = \lambda \Delta t + o(\Delta t)$.
- Probability of two or more events: $o(\Delta t)$.

When $\Delta t \to 0$, we can omit $o(\Delta t)$. So we have at most one event: the probability of no event is $1 - \lambda \Delta t$, and the probability of one event is $\lambda \Delta t$.

Assumptions (cont'd)

- (2) The single server takes a random length of time T_s to serve each customer and these times are independent random variables for different customers.
 - T_s has an exponential distribution with parameter μ

$$f_{T_s}(t) = \mu \exp(-\mu t), \quad t \ge 0$$

$$F_{T_s}(t) = 1 - \exp(-\mu t), \ t \ge 0$$

 μ : the average number of customers being served per unit time.

The mean of T_s is $\frac{1}{\mu}$.

So if the queue is always full, the departure process is Poisson!

Property of exponential distribution

$$P(t \le T_s \le t + \Delta t | T_s \ge t) = rac{P(t \le T_s \le t + \Delta t)}{P(T_s \ge t)}$$

For whatever time duration you have been waiting for the service to be finished, the probability that the service is finished within the next delta t duration is a constant. The constant depends only on delta t.

$$= \frac{F_{T_s}(t + \Delta t) - F_{T_s}(t)}{1 - F_{T_s}(t)}$$

$$= \frac{\exp(-\mu t)(1 - \exp(-\mu \Delta t))}{\exp(-\mu t)}$$

$$= 1 - \exp(-\mu \Delta t)$$

i.e., the probability of the completion of a service in the next Δt seconds is a constant, independent of how long the service has been going on. The service time has no memory!

Both random variables τ and T_s have no memory!

M/M/1 queue

• Summary: A single server queue with Poisson arrival and exponential service times is denoted as M/M/1 where M stands for Markov – a process with no memory.

Analysis of M/M/1 queue

• State S_n : there are n customers in the system (including the one being served, if any)

The process is called "birth - death" process.

From state S_n (n > 0), within very small Δt , there is at most one birth, and there is at most one death.

Probability of 0 birth: $1 - \lambda \Delta t$.

Probability of 1 birth: $\lambda \Delta t$.

Probability of 0 death: $1 - \mu \Delta t$.

Probability of 1 death: $\mu \Delta t$.

So from S_n :

- To S_{n+1} : 1 birth & 0 death, with probability $\lambda \Delta t (1 \mu \Delta t) = \lambda \Delta t$.
- To S_{n-1} : 0 birth & 1 death, with probability $(1 \lambda \Delta t)\mu \Delta t = \mu \Delta t$.
- Remain at S_n : 0 birth & 0 death, or 1 birth & 1 death, with probability $(1 \lambda \Delta t)(1 \mu \Delta t) + \lambda \Delta t \cdot \mu \Delta t = 1 \lambda \Delta t \mu \Delta t$.

• Discrete-time Markov Chain

• Continuous-time birth-death process

State representation: birth–death process

• Let Y denote the time duration between adjacent state transitions, then $Y = \min(T_s, \tau)$ has an exponential distribution with parameter $(\lambda + \mu)$. (Proof it yourself. Hint: find the prob. of no arrival and no departure during $[t, t + \Delta t)$, given packet arrival and departure are independent processes.)

 $P(Y \le y) = P(\min(T_s, \tau) \le y) = 1 - P(\min(T_s, \tau) > y)$ = 1 - P(T_s > y)P(\tau > y) = 1 - [1 - P(T_s \le y)][1 - P(\tau \le y)].

- Y has no memory.
- Note: In a Poisson process, as t increases, the number of arrivals (or departures) also increases; in queueing system, as t increases, the number of customers in the system may increase (with new arrivals) or decrease (with new departures); therefore, S_n is not Poisson process.

Let $P_n(t)$ denote the probability that the system is in state n at time t, then

$$\begin{cases} P_n(t + \Delta t) &= P_n(t)(1 - \lambda \Delta t - \mu \Delta t) + P_{n-1}(t)\lambda \Delta t + P_{n+1}(t)\mu \Delta t, & n \ge 1 \\ P_0(t + \Delta t) &= P_0(t)(1 - \lambda \Delta t) + P_1(t)\mu \Delta t \\ \Rightarrow \end{cases}$$

$$\begin{cases} \frac{P_n(t+\Delta t) - P_n(t)}{\Delta t} &= -(\lambda + \mu) P_n(t) + \lambda P_{n-1}(t) + \mu P_{n+1}(t), & n \ge 1 \\ \frac{P_0(t+\Delta t) - P_0(t)}{\Delta t} &= -\lambda P_0(t) + \mu P_1(t) \end{cases}$$

Let $\Delta t \to 0$, we have

$$\begin{cases} P'_n(t) = -(\lambda + \mu)P_n(t) + \lambda P_{n-1}(t) + \mu P_{n+1}(t), & n \ge 1 \\ P'_0(t) = -\lambda P_0(t) + \mu P_1(t) \end{cases}$$

This indicates the fundamental recursive relationship of the "birth-death" process with "birth" parameter λ and "death" parameter μ .

Steady state solution

As $t \to \infty$, $P_n(t) \to P_n$, (not a function of t), i.e., $P'_n(t) = 0$, $P'_0(t) = 0$, (for irreducible Markov process),

$$\Rightarrow \begin{cases} (\lambda + \mu)P_n &= \lambda P_{n-1} + \mu P_{n+1}, & n \ge 1 \\ \lambda P_0 &= \mu P_1 \end{cases}$$
 Balance Condition

$$\Rightarrow \begin{cases} P_1 &=& \frac{\lambda}{\mu} P_0 = \rho P_0 \\ P_2 &=& \frac{\lambda}{\mu} P_1 = \rho^2 P_0 \\ \dots && \\ P_n &=& \frac{\lambda}{\mu} P_{n-1} = \rho^n P_0 \end{cases}$$

where $\rho = \frac{\lambda}{\mu}$ is called the traffic intensity or utilization factor. $\rho < 1$ is the stable requirement; otherwise, the queue length will keep on increasing to ∞ .

• Find P_0 :

Since
$$\sum_{i=0}^{\infty} P_i = 1$$
, we have $P_0(1 + \rho + \rho^2 + ...) = P_0 \frac{1}{1-\rho} = 1$, if $0 < \rho < 1$.

Thus, $P_0 = 1 - \rho$.

$$P_n = P_0 \rho^n = (1 - \rho) \rho^n$$
, for $n = 0, 1, 2, \dots$ — a geometric distribution.

• The average number of customers in the *system* is:

$$L = E[N] = \sum_{n=0}^{\infty} nP_n = \sum_{n=0}^{\infty} n(1-\rho)\rho^n = \frac{\rho}{1-\rho} = \frac{\lambda}{\mu-\lambda}$$

• The average number of customers in the *queue* is:

$$E[N_q] = \sum_{n=1}^{\infty} (n-1)P_n = \sum_{n=1}^{\infty} (n-1)(1-\rho)\rho^n$$
$$= (1-\rho)[\sum_{n=1}^{\infty} n\rho^n - \sum_{n=1}^{\infty} \rho^n] = \frac{\rho^2}{1-\rho} = \frac{\lambda^2}{\mu(\mu-\lambda)}$$

• The time that a customer must wait in the queue is denoted as T_q : If there are n customers in the system when a new customer arrives, then the customer will have to wait equal to $T_1 + T_2 + ... + T_n$, where $\{T_i\}$ is a set of independent and identical distributed (i.i.d.) random variables. The conditional PDF of T_q given n can be derived as $f_{T_q}(t|n) = \frac{\mu^n t^{n-1}}{(n-1)!} \exp(-\mu t), t \geq 0, n \geq 1$, which is a gamma distribution with parameters n and μ . [Proof is shown in next page.]

Derive $f_{T_q}(t|n)$

Let Y be the number of customers that have departed in (0, t)

$$F_{T_q}(t|n) = P(T_q \le t|n) = P(Y \ge n \text{ in}(0,t))$$
$$= \sum_{k=n}^{\infty} \frac{(\mu t)^k}{k!} \exp(-\mu t)$$

$$f_{T_q}(t|n) = \frac{\mathrm{d}}{\mathrm{d}t} F_{T_q}(t|n)$$

$$= \sum_{k=n}^{\infty} \left[\mu k \frac{(\mu t)^{k-1}}{k!} - \frac{\mu(\mu t)^k}{k!} \right] \exp(-\mu t)$$

$$= \sum_{k=n}^{\infty} \left[\mu \frac{(\mu t)^{k-1}}{(k-1)!} - \frac{\mu(\mu t)^k}{k!} \right] \exp(-\mu t)$$

$$= \frac{\mu^n t^{n-1}}{(n-1)!} \exp(-\mu t), \quad t \ge 0, n \ge 1.$$

To derive the distribution of T_q :

$$P(T_q > \tau) = \sum_{n=1}^{\infty} P(T_q > \tau | n) P_n$$

$$= \sum_{n=1}^{\infty} \int_{\tau}^{\infty} f_{T_q}(t|n) dt P_n$$

$$= \sum_{n=1}^{\infty} (1 - \rho) \rho^n \int_{\tau}^{\infty} \frac{\mu^n t^{n-1}}{(n-1)!} \exp(-\mu t) dt$$

$$= (1 - \rho) \rho \mu \int_{\tau}^{\infty} \sum_{n=1}^{\infty} \frac{(\rho \mu t)^{n-1}}{(n-1)!} \exp(-\mu t) dt$$

$$= (1 - \rho) \rho \mu \int_{\tau}^{\infty} \exp(\rho \mu t) \exp(-\mu t) dt$$

$$= \rho \exp(-(1 - \rho) \mu \tau), \quad \tau \ge 0$$

We can also directly calculate CDF of T_q (the probability of T_q less than or equal to tau). Then the summation of n should be from 0 to infinity. We can get the same CDF expression.

• The PDF of T_q is:

$$f_{T_q}(\tau) = \frac{\mathrm{d}}{\mathrm{d}\tau} [1 - P(T_q > \tau)] = \rho \mu (1 - \rho) \exp(-(1 - \rho)\mu\tau), \ \tau > 0$$

• Average queueing time:

$$E[T_q] = \int_0^\infty \tau f_{T_q}(\tau) d\tau = \int_0^\infty \tau \rho \mu (1 - \rho) \exp(-(1 - \rho)\mu\tau) d\tau$$
$$= \frac{\rho}{\mu (1 - \rho)} = \frac{\lambda}{\mu (\mu - \lambda)}, \quad \mu > \lambda$$

• Let W denote the mean time that a customer has to wait from the moment he arrives until he departures:

$$W = E[T_q + T_s] = E[T_q] + \frac{1}{\mu} = \frac{1}{\mu - \lambda}$$

• The mean number of customers in the system is

$$L = \frac{\lambda}{\mu - \lambda} = \lambda W \Rightarrow$$
 Little's Law

Little's Law

• "Little's Law" says that for any work-conserving queueing system, the average occupancy of the system, must equal the average delay for the system multiplied by the average arrival rate.

$$L$$
 ρ
 $1/3$ 0.25
 1 0.5
 0.75

$$L = \lambda W = \frac{\lambda}{\mu - \lambda} = \frac{\rho}{1 - \rho}$$
. (Draw the L vs. ρ figure yourself.)

• As the utilization increases, the delay increases correspondingly. At $\rho=0.5$, the average delay is twice the average transmission time, $(E[T_q]=E[T_s]).$

• The probability that the queue exceeds a specified number:

$$P(n > N) = \sum_{n=N+1}^{\infty} P_n = (1 - \rho) \sum_{n=N+1}^{\infty} \rho^n = \rho^{N+1}$$

$$N \quad P(n > N) \quad (\rho = 0.6)$$

- 1 0.36
- 3 0.13
- 9 0.0061
- 19 3.7×10^{-5}

Example 2.1

- In an M/M/1 queue, customers arrive at the rate of $\lambda=15$ per hour. What is the minimum server rate to ensure that
 - the server is idle at least 10% of the time?
 - the expected value of the queue length is not to exceed 10?
 - the probability that at least 20 people in the queue is at most 50%?

Solution

- For $P_0 \ge 0.1 \Rightarrow 1 \rho \ge 0.1 \Rightarrow \lambda/\mu \le 0.9$. Given $\lambda = 15$ per hour, $\mu \ge 16.67$ per hour.
- $E[N_q] = \frac{\rho^2}{1-\rho} = \frac{\lambda^2}{\mu(\mu-\lambda)} \le 10 \Rightarrow \mu \ge 16.375$ per hour.
- $P_n = (1 \rho)\rho^n$, n = 0, 1, 2, ... $P(n \ge 21) = \sum_{n=21}^{\infty} (1 - \rho)\rho^n \le 0.5$ $\Rightarrow \mu \ge 15 \exp(-\ln(0.5)/21)$

Note: for that at least 20 people in the queue, there are at least 21 people in the system.

Example 2.2

• Consider a packet transmission system whose arrival rate (in packet/sec) is $k\lambda$ (k > 1), and departure rate is $k\mu$ (service time is $1/k\mu$). What is the average number of packets in the system? What is the average delay per packet?

Solution

•
$$L = \frac{k\lambda}{k\mu - k\lambda} = \frac{\lambda}{\mu - \lambda}$$

• According to the Little's Law, the average delay per packet is $W = \frac{L}{k\lambda} = \frac{1}{k(\mu - \lambda)}$.

(Comments: Increasing the arrival and transmission rates by the same factor, the average delay is reduced by the factor, and the average number of customers in the system remains the same.)

M/M/1/N

• In M/M/1/N system, the maximum number of packets in the system is N (with a finite buffer holding at most N-1 packets):

$$\sum_{n=0}^{N} P_n = P_0 \sum_{n=0}^{N} \rho^n = P_0 \left[\frac{1 - \rho^{N+1}}{1 - \rho} \right] = 1$$

$$\Rightarrow P_0 = \frac{1 - \rho}{1 - \rho^{N+1}}$$

$$P_n = \frac{(1 - \rho)\rho^n}{1 - \rho^{N+1}}$$

• If $\rho^{N+1} << 1$, $P_n \approx (1-\rho)\rho^n$ (When (a) $N \to \infty$, or (b) $\rho \to 0$, M/M/1/N \to M/M/1)

Blocking probability of M/M/1/N

• With a finite buffer, the blocking probability $P_B = P_N = \frac{(1-\rho)\rho^N}{1-\rho^{N+1}}$

- Arrival rate: λ packet/sec
- Blocking probability: P_B
- \bullet Departure rate: μ packet/sec
- Throughput $\lambda(1-P_B) = \mu(1-P_0)$

Queues with dependence on state of system

- Multi-server situation
- Customer arrival rate decreasing with queue occupancy to keep the average occupancy down

Queues with dependence on state of system

State representation: birth-death process

• λ and μ are function of n. The global balance equations for the steady-state probabilities P_n are

$$(\lambda_n + \mu_n)P_n = \mu_{n+1}P_{n+1} + \lambda_{n-1}P_{n-1}, \quad n \ge 1$$

$$\lambda_0 P_0 = \mu_1 P_1$$

$$\Rightarrow P_n = \frac{\lambda_0 \lambda_1 \dots \lambda_{n-1}}{\mu_1 \mu_2 \dots \mu_n} P_0$$

Multi-server case: M/M/N

N servers

$$\lambda_n = \lambda, \mu_n = \begin{cases} n\mu, & n \le N \\ N\mu, & n > N \end{cases}$$

$$P_n = \begin{cases} \left(\frac{\lambda}{\mu}\right)^n \frac{P_0}{n!}, & n \le N \\ \left(\frac{\lambda}{\mu}\right)^n N^{N-n} \frac{P_0}{N!}, & n > N \end{cases}$$

With the condition $\sum_{n=0}^{\infty} P_n = 1$, we obtain

$$P_{0} = \left[1 + \sum_{n=1}^{N-1} \left(\frac{\lambda}{\mu}\right)^{n} / n! + \sum_{n=N}^{\infty} \left(\frac{\lambda}{\mu}\right)^{n} \frac{N^{N-n}}{N!}\right]^{-1}$$

$$= \left[1 + \sum_{n=1}^{N-1} \rho^{n} / n! + \sum_{n=N}^{\infty} \rho^{n} \frac{N^{N-n}}{N!}\right]^{-1}$$

where $\rho = \frac{\lambda}{\mu}$.

If
$$N \to \infty$$
, $\sum_{n=0}^{\infty} P_n = P_0 \sum_{n=0}^{\infty} \frac{\rho^n}{n!} = P_0 \exp(\rho) = 1$
 $\Rightarrow P_0 = \exp(-\rho), P_n = \frac{\rho^n \exp(-\rho)}{n!}$

Queue with discouragement

• With infinite queue size, $\mu_n = \mu$, $\lambda_n = \frac{\lambda}{n+1}$. (As the queue size increase, the arrival rate drops accordingly), it can be derived:

$$P_n = \frac{\rho^n}{n!} P_0 = \frac{\rho^n}{n!} \exp(-\rho)$$
$$P_0 = \exp(-\rho)$$

Example

• Consider a M/M/m/m system (This model is in wide use in telephony or circuit switched networks). In this context, customers in the system correspond to active telephone conversations and the *m* servers represent a single transmission line consisting of *m* circuits. The principle quantity of interest here is the blocking probability, i.e., the steady-state probability that all circuits are busy, in which case an arriving call is refused service, and the blocked calls are lost.

Solution

State representation:

The balance condition is

$$\lambda P_{n-1} = n\mu P_n, n = 1, 2, ..., m.$$

$$P_n = P_0(\frac{\lambda}{\mu})^n \frac{1}{n!}, \quad n = 1, 2, ..., m.$$

Solving for P_0 in the equation $\sum_{n=0}^{m} P_n = 1$,

$$P_0 = \left[\sum_{k=0}^{m} \left(\frac{\lambda}{\mu}\right)^k \frac{1}{k!}\right]^{-1}$$

$$P_n = (\frac{\lambda}{\mu})^n \frac{1}{n!} \left[\sum_{k=0}^m (\frac{\lambda}{\mu})^k \frac{1}{k!} \right]^{-1}$$

The probability that an arrival will find all m servers busy and will therefore be lost is

$$P_m = (\frac{\lambda}{\mu})^m \frac{1}{m!} \left[\sum_{k=0}^m (\frac{\lambda}{\mu})^k \frac{1}{k!} \right]^{-1}$$

This equation is known as the **Erlang B formula**, and find wide use in evaluating the blocking probability of telephone system.