

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Topología I Examen IV

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023-2024

Asignatura Topología I.

Curso Académico 2022-23.

Grado Doble Grado en Ingeniería Informática y Matemáticas¹.

Grupo Único.

Descripción Convocatoria Ordinaria.

Fecha 14 de enero de 2023.

Duración 3 horas.

Observaciones Todos los apartados de un mismo ejercicio tienen la misma puntuación.

¹El examen lo pone el departamento.

Ejercicio 1 (4.5 puntos). Para todo $R \ge 0$, consideramos el conjunto S_R dado por $S_R = \{x \in \mathbb{R}^2 \mid ||x|| = R\}$, donde $||\cdot||$ es la norma euclídea en \mathbb{R}^2 . Se considera la topología \mathcal{T} en \mathbb{R}^2 generada por la base $\mathcal{B} = \{S_R \mid R \ge 0\}$.

- 1. Estudiar cuándo el conjunto $\{x_0\}$, con $x_0 \in \mathbb{R}^2$ arbitrario, es cerrado en $(\mathbb{R}^2, \mathcal{T})$.
- 2. Demostrar que $(\mathbb{R}^2, \mathcal{T})$ es 1AN pero no es 2AN.
- 3. Calcular la clausura, el interior y la frontera en $(\mathbb{R}^2, \mathcal{T})$ del conjunto $A = \{(a,b) \in \mathbb{R}^2 \mid |b| < 1\}.$
- 4. Probar que A es conexo en $(\mathbb{R}^2, \mathcal{T})$ si y solo si existe $R \geq 0$ tal que $A \subset S_R$. Determinar las componentes conexas de $(\mathbb{R}^2, \mathcal{T})$.
- 5. Demostrar que A es compacto en $(\mathbb{R}^2, \mathcal{T})$ si y solo si existe $J \subset [0, +\infty[$ finito tal que $A \subset \bigcup_{R \in J} S_R$.

Ejercicio 2 (2.5 puntos). Enunciar y demostrar el teorema de Tichonov. Si se hace uso del lema del tubo, entonces éste debe ser enunciado y demostrado previamente.

Ejercicio 3 (3 puntos). Estudiar de forma razonada las siguientes cuestiones:

- 1. Decidir si los siguientes subespacios de $(\mathbb{R}^2, \mathcal{T}_u)$ son homeomorfos entre sí dos a dos o no:
 - a) $A_1 = \{x \in \mathbb{R}^2 \mid 1 < ||x|| < 4\},\$
 - b) $A_2 = \{x \in \mathbb{R}^2 \mid 1 \leqslant ||x|| \leqslant 4\},\$
 - $c) A_3 = \mathbb{R}^2 \setminus \{0\}.$
- 2. Sean $(X_1, \mathcal{T}_1), (X_2, \mathcal{T}_2)$ espacios topológicos. Para i = 1, 2, sea \mathcal{R}_i una relación de equivalencia en X_i tal que la proyección $p_i : (X_i, \mathcal{T}_i) \to (X_i/\mathcal{R}_i, \mathcal{T}/\mathcal{R}_i)$ es abierta. Demostrar que

$$(X_1 \times X_2)/\mathcal{R} \cong (X_1/\mathcal{R}_1, \mathcal{T}_1/\mathcal{R}_1) \times (X_2/\mathcal{R}_2, \mathcal{T}_2/\mathcal{R}_2),$$

donde \mathcal{R} es la relación de equivalencia en $X_1 \times X_2$ definida por

$$(x_1, x_2)\mathcal{R}(y_1, y_2) \iff x_1\mathcal{R}_1y_1 \ \mathrm{y} \ x_2\mathcal{R}_2y_2.$$

3. Sea $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ una aplicación entre espacios topológicos tal que f(A) es conexo en (Y,\mathcal{T}') para cada A conexo en (X,\mathcal{T}) . ¿Es f continua?