

AN3376 应用笔记

STM32F2x7 通过以太网实现在应用中编程 (IAP)

前言

本应用笔记的目标读者为使用 STM32F2x7 微控制器的开发者。它提供了如何使用 STM32F2x7 以太网接口实现在应用中编程 (IAP) 的解决方案。

在 LwIP TCP/IP 协议栈上提供了两种可行的解决方案:

- 使用 TFTP (简单文件传输协议)的 IAP
- 使用 HTTP (超文本传输协议)的 IAP

目录

1	IAP	IAP 概述				
	1.1	工作原理				
	1.2	使用 MCU 以太网接口实现 IAP5				
	1.3	在 STM32F2x7 上通过以太网实现 IAP				
		1.3.1 使用 TFTP 实现 IAP 的方法				
		1.3.2 使用 HTTP 实现 IAP 的方法				
2	使用	TFTP 实现 IAP7				
	2.1	TFTP 概述				
	2.2	在 STM32F2x7 上使用 TFTP 实现 IAP				
	2.3	使用软件				
3	使用	HTTP 实现 IAP10				
	3.1	HTTP 文件上传概述 10				
	3.2	在 STM32F2x7 上使用 HTTP 实现 IAP12				
	3.3	使用软件				
	3.4	已知限制				
		3.4.1 添加到二进制文件的额外字节14				
4	环境	15				
	4.1	MAC 和 IP 地址设置				
	4.2	STM322xG-EVAL 板上的跳线设置15				
	4.3	软件文件结构16				
	4.4	代码量测量				
	4.5	构建 IAP 映像				
5	版本	历史				

AN3376 表格索引

表格索引

表 1.	TFTP 操作码	. 7
	跳线配置	
表 3.	文件组织	16
表 4.	代码量 vs 配置选项	16
表 5.	文档修订历史	18

图片索引 AN3376

图片索引

图 1.	IAP 操作流程	5
图 2.	TFTP 包	7
	使用 TFTP 实现 IAP 的流程图	8
	TFTPD32 对话框	
图 5.	文件上传 HTML 格式的浏览器视图1	
	IE8 HTTP 头格式1	
图 7.	Mozilla Firefox HTTP 头格式1	1
	登录网页	2
	文件上传完成页面1	2
図 1∩	使田 HTTP 实现 IAP 的流程图 1	2

AN3376 IAP 概述

1 IAP 概述

1.1 工作原理

在应用中编程(IAP)是一种在现场通过 MCU 的通信接口(例如 UART,USB,CAN 和以太网等)进行固件升级的方式。

当启动微控制器时,您可以选择让它进入 IAP 模式以执行 IAP 代码,或者进入正常模式来开始执行应用代码。 IAP 代码和应用程序代码都在微控制器的嵌入式 Flash 中。通常 IAP 代码被存储在 MCU Flash 的前几页,用户应用代码占据剩余的 Flash 区域。

图 1 显示了 IAP 操作流程:

1.2 使用 MCU 以太网接口实现 IAP

当以太网可用时,它通常是在嵌入式应用中实现 IAP 功能的更好的接口。其优点是:

- 高速通信接口 (10/100 Mbit/s)
- 通过网络 (LAN 或者 WAN) 进行远程编程
- TCP/IP 协议栈上的标准应用协议 (例如 FTP、TFTP、HTTP) 可用于实现 IAP

IAP 概述 AN3376

1.3 在 STM32F2x7 上通过以太网实现 IAP

本应用笔记说明了两种使用以太网通信外设在 STM32F2x7 上实现 IAP 的解决方案:

- 使用 TFTP (简单文件传输协议)的 IAP
- 使用 HTTP (超文本传输协议)的 IAP

两种解决方案都运行在 LwIP 协议栈 (v1.3.2) 上,它是 TCP/IP 协议套件的一种轻量级实现。

1.3.1 使用 TFTP 实现 IAP 的方法

使用 TFTP 实现 IAP 的方法广泛应用于需要固件升级能力的嵌入式应用 (比如在嵌入式 Linux bootloader 中)。

TFTP 是工作在 UDP 传输层上的简单文件传输协议。它主要应用在 LAN 环境中。它基于客户端/服务器体系结构,其中客户端向文件服务器请求文件传输 (读或写操作)。

在这个例子中,服务器只处理来自 PC TFTP 客户端的写请求,所以在 LwIP 栈上实现了一个简单的 TFTP 服务器。

1.3.2 使用 HTTP 实现 IAP 的方法

使用 HTTP 协议进行固件升级没有使用 TFTP 常见, 但是当需要通过互联网进行远程编程时, 它是一种有用的解决方案。在这种情况下, 需要 TCP 传输协议来确保最优操作。

工作在 TCP上的 HTTP,提供了一种用 HTML 形式从 web 客户端 (Mozilla Firefox 或 Microsoft Internet Explorer) 发送二进制文件的方法,称作 HTTP 文件上传 (RFC 1867)。

本文档的下一部分给出了关于这两种 IAP 方法实现的详细信息并解释了如何使用这个软件。

AN3376 使用 TFTP 实现 IAP

2 使用 TFTP 实现 IAP

2.1 TFTP 概述

TFTP 是工作在 UDP 传输层上的简单文件传输协议。文件传输是从 TFTP 客户端发起的,TFTP 客户端向 TFTP 服务器发送读或写请求。当服务器响应该请求后,文件数据传输开始。数据按固定大小的数据块发送 (如 512 字节的数据块)。

必须在每个传输的数据块被接收端响应后,才能发送下一个数据块。回应机制通过随每个数据块同时发送的数据块编号来实现。数据块小于固定块大小表示文件传输结束。

图 2 说明了各类 TFTP 包的格式:

表 1 列出了 TFTP 操作码。

表 1. TFTP 操作码

操作码	操作
0x1	读请求(RRQ)
0x2	写请求 (WRQ)
0x3	数据
0x4	响应(ACK)
0x5	错误

2.2 在 STM32F2x7 上使用 TFTP 实现 IAP

该 IAP 实现包括一个 LwIP TCP/IP 栈上的 TFTP 服务器。该服务器响应从远程 TFTP 客户端 (PC) 接收的 WRITE 请求。 TFTP READ 请求被忽略。

服务器将接收到的数据块写入 MCU Flash (在用户 Flash 区域),而不是将接收的文件写入文件系统。

使用 TFTP 实现 IAP AN3376

注: 在本实现中,数据块大小固定为 512 字节。

图 3 给出了使用 TFTP 实现 IAP 操作的过程。

图 3. 使用 TFTP 实现 IAP 的流程图

AN3376 使用 TFTP 实现 IAP

2.3 使用软件

为了通过 TFTP 对 IAP 进行测试, 遵循如下步骤:

- 1. 在 STM322xG-EVAL 板上确保正确的跳线设置 (参见 表 2)。
- 在 main.h 文件中,取消注释选项 "USE_IAP_TFTP"。根据需求,您还可以取消注释 / 注 释其它选项,比如 "USE_DHCP" 或 "USE_LCD"。
- 重新编译软件。使用生成的 map 文件,确保 IAP 代码区域 (从地址 0x0 开始)和开始 于 USER FLASH FIRST PAGE ADDRESS (在 main.h 中定义)的用户 Flash 区域之 间没有重叠。
- 将程序下载到 STM32 Flash 中运行它。
- 按住 Kev 按钮的同时,按下并释放 Reset 键,进入 IAP 模式。
- 6. 若在 main.h 文件中定义了 "USE_LCD", LCD 屏幕上会显示消息,指示已经进入 IAP 模 式。如果采用了 DHCP(main.h 文件中定义了 USE_DHCP),LCD 屏幕上也会显示一 条消息,指示 DHCP IP 地址分配的成功或失败。
- 7. 分配完 IP 地址后 (动态或静态地址),用户可启动 IAP 进程。
- 8. 在 PC 上, 打开 TFTP 客户端 (例如, TFTPD32) 并配置 TFTP 服务器地址 (TFTPD32) 中的主机地址)。
- 9. 选择一个二进制映像下载到 STM32 Flash 中 (/project/binary 文件夹中提供了两个二进 制映像作为例子)。
- 10. 在 TFTPD32 应用程序上点击 "Put" 按钮, 启动一个文件写请求。
- 11. 如果定义了 USE_LCD, IAP 操作的进度会显示在 LCD 上。
- 12. 在 IAP 操作结束时,可以复位评估板来运行您刚才在 STM32 Flash 中编写的程序。
- 注: 在 USE_LCD 使能的情况下,如果出现连接问题,则 LCD 屏幕上会显示错误消息,指示连 接失败。

图 4. TFTPD32 对话框

使用 HTTP 实现 IAP AN3376

3 使用 HTTP 实现 IAP

3.1 HTTP 文件上传概述

RFC1867中定义了使用HTTP进行文件上传。该上传文件方法基于HTML表单。通常用HTML POST 方法代替 GET 来发送原始二进制数据。

下面是一个实现基于表单的文件上传的 HTML 代码示例:

图 5. 文件上传 HTML 表单的浏览器视图

浏览选择一个二进制文件上传,然后按下上传按钮发送它。

根据文件大小,数据以连续的 TCP 段形式发送给 Web 服务器。

注: 发送文件数据前, Web 客户端发送包括文件名、内容长度等信息的 HTTP 头数据,其中一些信息必须由 Web 服务器进行解析。

Web 客户端并不总是拥有相同的 HTTP 头格式。图 6 显示了 POST 请求的 Internet Explorer HTTP 头格式。图 7 显示了 Mozilla Firefox HTTP 头格式。

http Web 服务器必须能够处理这些不同格式。

477

AN3376 使用 HTTP 实现 IAP

图 6. IE8 HTTP 头格式

```
∃ Hypertext Transfer Protocol

⊕ POST /upload.cqi HTTP/1.1\r\n

   Accept: image/gif, image/jpeg, image/pjpeg, image/pjpeg, application/x-shockwave-flash, appl
   Referer: http://192.168.0.12/checklogin.cgi\r\n
   Accept-Language: en-us\r\n
   User-Agent: Mozilla/4.0 (compatible: MSIE 8.0: Windows NT 5.1: Trident/4.0: .NET CLR 1.1.432)
   Content-Type: multipart/form-data; boundary=-----7db28061402a2\r\n
   Accept-Encoding: gzip, deflate\r\n
   Host: 192.168.0.12\r\n
 □ Content-Length: 1965\r\n
     [Content length: 1965]
   Connection: Keep-Alive\r\n
   Cache-Control: no-cache\r\n
   \r\n
☐ MIME Multipart Media Encapsulation, Type: multipart/form-data, Boundary: "------
    [Type: multipart/form-data]
   First boundary: -----7db28061402a2\r\n
 ■ Encapsulated multipart part: (application/octet-stream)
     Content-Disposition: form-data; name="datafile"; filename="STM322xG_EVAL_SysTick.bin"\r\n
     Content-Type: application/octet-stream\r\n\r\n
   Last boundary: \r\n-----7db28061402a2--\r\n
```

图 7. Mozilla Firefox HTTP 头格式

```
∃ Hypertext Transfer Protocol

⊕ POST /upload.cgi HTTP/1.1\r\n

   Host: 192.168.0.13\r\n
   User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.2.3) Gecko/20100401 Firef
   Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
   Accept-Language: en-us, en; q=0.5\r\n
   Accept-Encoding: gzip, deflate\r\n
   Accept-Charset: ISO-8859-1, utf-8; q=0.7, *; q=0.7\r\n
   Keep-Alive: 115\r\n
   Connection: keep-alive\r\n
   Referer: http://192.168.0.13/checklogin.cgi\r\n
   Content-Type: multipart/form-data; boundary=----------114782935826962\r\n
 □ Content-Length: 1969\r\n
     [Content length: 1969]
■ MIME Multipart Media Encapsulation, Type: multipart/form-data, Boundary: "------
   [Type: multipart/form-data]
   First boundary: -----114782935826962\r\n
 ■ Encapsulated multipart part: (application/octet-stream)
     Content-Disposition: form-data; name="datafile"; filename="STM322xG_EVAL_Systick.bin \r\n
     Content-Type: application/octet-stream\r\n\r\n
   Last boundary: \r\n-----\r\n
```

使用 HTTP 实现 IAP AN3376

3.2 在 STM32F2x7 上使用 HTTP 实现 IAP

该 IAP 实现包括一个基于 LwIP 栈的 HTTP Web 服务器。

当在浏览器上输入 STM32 IP 地址时,将显示登录网页如图 8 所示。此登录网页限制只有授权用户可以进行 IAP 文件上传。

图 8. 登录网页

输入正确的用户 ID 和密码(在 main.h 文件中预定义的)并点击登录按钮。然后载入一个文件上传页面(参见85)。

- 注: 1 默认用户 ID 为: "user", 密码为 "stm32"。
 - 2 如果用户 ID 或密码不正确,登录网页将会重新加载。

成功登录后,浏览选择要加载进 STM32 Flash 的二进制文件。

注: 确保该二进制文件的大小不超出 STM32 用户 Flash 区域的总大小。

点击上传按钮(参见图 5)时,就向服务器发送了一个 POST 请求。此时服务器开始擦除所有的用户 Flash 区域并等待二进制文件的原始数据。然后接收到的数据将会被写入用户 Flash 区域。

请注意,要接收的数据总长度是从传输开始时发送的 HTTP 头数据中提取出来的。

在 IAP 操作结束时,一个网页指示 IAP 操作成功,网页上显示了一个可以复位 MCU 的按钮。

图 9. 文件上传完成页面

图 10 总结了使用 HTTP 实现 IAP 的方法。

AN3376 使用 HTTP 实现 IAP

使用 HTTP 实现 IAP AN3376

3.3 使用软件

为了通过 TFTP 对 IAP 进行测试,请遵循如下步骤

- 1. 在 STM322xG-EVAL 板上确保正确的跳线设置 (参见 表 2)。
- 2. 在 main.h 文件中,取消选项 "USE_IAP_HTTP" 的注释,并且根据需求您还可以取消注释 / 注释其它选项,比如 "USE_DHCP" 或 "USE_LCD"。
- 3. 重新编译软件。使用生成的 map 文件,确保 IAP 代码区域 (从地址 0x0 开始)和开始于 USER_FLASH_FIRST_PAGE_ADDRESS (在 main.h 中定义)的用户 Flash 区域之间没有重叠。
- 4. 将程序下载到 STM32Flash 中并运行它。
- 5. 按住 Key 按钮的同时,按下并释放 Reset 键,进入 IAP 模式。
- 6. 若在 main.h 文件中定义了 "USE_LCD",LCD 屏幕上会显示消息,指示已经进入 IAP 模式。同样在使用 DHCP(main.h 文件中定义了 USE_DHCP)的情况下,LCD 屏幕上也会显示一条消息,指示 DHCP IP 地址分配的成功或失败。
- 7. 分配完 IP 地址后 (动态或静态地址),用户可启动 IAP 进程。
- 8. 打开一个 web 客户端 (Mozilla Firefox 或 Microsoft Internet Explorer) 并输入 STM32 IP 地址。
- 9. 将会显示一个登录网页。在UserID字段中输入"user"并在Password字段中输入"stm32",然后按 Login 按钮。
- 10. 然后会加载 fileupload.html 网页。选择一个要加载进 STM32 Flash 的二进制映像,然后按 Upload 按钮开始 IAP 进程。
- 11. 如果定义了 USE_LCD, IAP 操作的进度会显示在 LCD 上。
- 12. 在 IAP 操作结束时,会加载一个新的网页,指示文件上传操作成功。
- 13. 可以按 "RESET MCU" 按钮复位 MCU 来运行您刚才在 STM32 Flash 中编写的程序。
- 注: 1 在 USE_LCD 使能的情况下,如果出现连接问题,则 LCD 屏幕上会显示错误消息,指示连接失败。
 - 2 *该软件已用下列* Web 客户端测试: Microsoft Internet Explorer 8 和 Mozilla Firefox 3.6。

3.4 已知限制

3.4.1 添加到二进制文件的额外字节

网络浏览器 (Microsoft Internet Explorer 或 Mozilla Firefox)会将一个随机边界标签 (根据 RFC 1521,不长于 72 字节)添加到上传的二进制文件末尾。在当前的 IAP 软件版本中,如果有足够的空间,该边界标签不会被移除而是存储在 Flash 中。如果空间不足,额外字节不写入 Flash 中,并不返回错误。

AN3376 环境

4.1 MAC 和 IP 地址设置

main.h 文件中定义了 MAC 和 IP 地址。

默认 MAC 地址固定为: 00:00:00:00:00:02。

IP 可以被设置为静态地址,也可以设置为由 DHCP 服务器分配的动态地址。默认静态 IP 地址设为: 192.168.0.10

您可以通过在 main.h 文件中使能 USE DHCP 来选择 DHCP 模式。

请注意,如果选择通过 DHCP 配置 IP 地址,但应用程序无法在它已经连接到的网络上发现 DHCP 服务器,则 IP 地址会自动设为静态地址 (192.168.0.10)。

4.2 STM322xG-EVAL 板上的跳线设置

若需运行软件,在 STM322xG-EVAL 板。

在 project\inc 文件夹下的 main.h 文件中选择 MII 或 RMII 配置。

例如,选择 RMII 模式:

//#define MII_MODE
#define RMII MODE

对于 MII 模式, PHY 时钟取自外部晶振;如果 main.h 文件中定义了 MII_MODE 和 PHY CLOCK MCO,则时钟由 STM32 经由 MCO 管脚提供。

- 注: 1 在 RMII 模式中,如 STM32F20x & STM32F21x 勘误手册(ES0005)第 2.6.5 节所述, PLL 限制导致无法使用 MCO 将 50 MHz 时钟输出到 PHY。在这种情况下,需要从外部提供 50MHz 时钟,在评估板 CN3 下方的 U3 处,焊接一个 50 MHz 振荡器 (参考 SM7745HEV-50.0M 或同类器件)并且将 JP5 跳线移除。该振荡器不随板提供。若需更详细信息,请参见 STM3220G-EVAL 评估板用户手册 UM1057。
 - 2 *在本文档中,"STM3*22xG-EVAL 板"指的是 STM3220G-EVAL 和 STM3221G-EVAL 板。

表 2. 跳线配置

跳线编号	MII 模式配置	RMII 模式配置	
JP5	1-2: 由外部晶振提供 25 MHz 时钟 2-3: 由 PA8 处脚 (MCO)提供的 25 MHz 时 钟	不适用	
JP6	2-3: 启用 MII 接口模式	1-2:启用 RMII 接口模式	
JP8	不连接:MII 接口模式被选中	连接:RMII 接口模式被选中	

环境 AN3376

4.3 软件文件结构

表 3 介绍了项目源文件:

表 3. 文件结构

文件名	说明
main.c	主应用文件
main.h	主配置文件
httpserver.c /.h	HTTP 服务器实现
tftpserver.c /.h	TFTP 服务器实现
flash_if.c /.h	高级闪存访问函数
netconf.c /.h	高级以太网接口函数
stm32f2x7_eth_bsp.c /.h	STM32F2x7 以太网硬件配置
stm32f2xx_it.c /.h	中断处理程序
fsdata.c	HTML 文件作为 ROM 文件系统
lwipopts.h	LwIP 配置选项

注: 表中未列出所用的标准固件库和 LwIP 栈的文件。

4.4 代码量测量

表 4 给出了根据 main.h 文件中不同的配置选项进行的代码量测量。

表 4. 代码量 vs 配置选项

代码量 (字节)	USE_IAP_TFTP	USE_IAP_HTTP	USE_LCD	USE_DHCP
13752	X			
21736	Х		X	
27264	Х		X	Х
25408		Х		
32512		Х	Х	
38440		X	X	Х
39928	Х	Х	X	X

注: 该软件使用 IAR EWARM v6.10 编译,对代码量进行了高度优化。

AN3376 环境

4.5 构建 IAP 映像

为了构建 IAP 映像 (将用 IAP 软件进行加载),请确保:

1. 被编译 / 链接的软件必须从用户 Flash 区域起始地址开始运行 (该地址应与 main.h 文件中的 USER_FLASH_FIRST_PAGE_ADDRESS 定义的地址相同)。

2. 向量表起始地址配置为用户 Flash 区域的起始地址。

向量表起始地址偏移有两种配置方法:

a) 在应用代码中,使用 misc.h/.c 驱动中的 "NVIC_SetVectorTable" 函数将向量表重新定位到应用程序的起始地址。

例如,将向量表起始地址位置设置为 0x08010000:

NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x10000);

- b) 通过修改 system_stm32f2xx.c 文件中定义的常量 "VECT_TAB_OFFSET"。 例如,将向量表起始地址位置设置为 0x08010000: #define VECT_TAB_OFFSET 0x10000
- 3. 编译后的软件大小不超出总的用户 Flash 区域。

使用 STM32F10xxx 的 USART 实现在应用中编程(AN3374)中的软件示例,提供了一个预 先配置的项目可以创建用 IAP 加载的应用程序。 版本历史 AN3376

5 版本历史

表 5. 文档版本历史

日期	版本	变更
2011 年 5 月 27 日	1	初始版本。
2011 年 10 月 19 日	2	更新了第 4.2 章节: STM322xG-EVAL 板上的跳线设置和表 2: 跳线配置。

重要通知 - 请仔细阅读

意法半导体公司及其子公司("ST")保留随时对 ST 产品和/或本文档进行变更、更正、增强、修改和改进的权利,恕不另行通知。买方在订货之前应获取关于 ST 产品的最新信息。 ST 产品的销售依照订单确认时的相关 ST 销售条款。

买方自行负责对 ST 产品的选择和使用, ST 概不承担与应用协助或买方产品设计相关的任何责任。

ST 不对任何知识产权进行任何明示或默示的授权或许可。

转售的 ST 产品如有不同于此处提供的信息的规定,将导致 ST 针对该产品授予的任何保证失效。

ST 和 ST 徽标是 ST 的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代本文档所有早期版本中提供的信息。

© 2015 STMicroelectronics - 保留所有权利

