EXERCICES — CHAPITRE 9

Exercice 1 – Dans chacun des cas suivants, étudier le sens de variation de la suite (u_n) définie par

1. $\forall n \in \mathbf{N}^*, \quad u_n = \frac{1}{n},$

- $2. \ \forall n \in \mathbf{N}^*, \quad u_n = \frac{n^2 + 1}{n},$
- 3. $\forall n \in \mathbb{N}$, $u_n = \sqrt{n+3}$, 4. $\forall n \in \mathbb{N}^*$, $u_n = \frac{3^n}{n}$.

Exercice 2 – Dans chacun des cas suivants, étudier le sens de variation de la suite (u_n) définie par

1. $u_0 = 1$ et pour tout $n \in \mathbb{N}$,

 $u_{n+1} = u_n - u_n^2$

3. $u_0 = -1$ et pour tout $n \in \mathbb{N}$,

 $u_{n+1} = u_n + n^2 + 2n + 1,$

2. $u_0 = 1$ et pour tout $n \in \mathbb{N}$,

 $u_{n+1} = u_n + \frac{1}{1 + u_n^2}$

4. $u_0 = 0$ et pour tout $n \in \mathbb{N}$,

 $u_{n+1} = u_n + \sqrt{1 + u_n}$

Exercice 3 -

- 1. Soit (u_n) définie par $\forall n \in \mathbb{N}$, $u_n = -n + 4$.
 - (a) Établir le tableau de variation de la fonction f définie par f(x) = -x + 4.
 - (b) En déduire le sens de variation de la suite (u_n) .
- 2. Soit (v_n) définie par $v_0 = 1$ et $\forall n \in \mathbb{N}$, $v_{n+1} = -v_n + 4 = f(v_n)$.
 - (a) Calculer les six premiers termes de la suite.
 - (b) Que peut-on conjecturer quant au sens de variation de (v_n) ?

Exercice 4 – Soit (u_n) la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = -2u_n + 3n + 2$. On pose pour tout $n \in \mathbb{N}$, $v_n = u_n - n - \frac{1}{3}$.

- 1. Calculer u_1 , u_2 , u_3 , v_1 , v_2 et v_3 .
- 2. Démontrer que la suite (v_n) est géométrique.
- 3. Exprimer v_n en fonction de n.
- 4. Exprimer u_n en fonction de n.

Exercice 5 – On considère la suite (u_n) définie par $u_n = \frac{3n+1}{n+1}$ pour tout $n \in \mathbb{N}$.

- 1. Montrer que (u_n) est majorée par 3.
- 2. En déduire qu'elle est bornée.

Exercice 6 – En factorisant le numérateur par 2^n et le dénominateur par 3^n , étudier la convergence de la suite (u_n) définie pour tout $n \in \mathbb{N}$ par

$$u_n = \frac{2^n + 1}{3^n + 1}$$
.

Exercice 7 – On considère la suite (u_n) définie par $u_0 = \frac{1}{2}$ et $u_{n+1} = 2u_n - 1$ pour tout $n \in \mathbb{N}$.

- 1. On pose $v_n = u_n 1$ pour tout $n \in \mathbb{N}$. Montrer que (v_n) est géométrique.
- 2. Exprimer v_n puis u_n en fonction de n pour tout $n \in \mathbb{N}$.
- 3. Étudier la convergence de (v_n) et de (u_n) .

Exercice 8 – On considère la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = \sqrt{1 + u_n^2}$ pour tout $n \in \mathbb{N}$.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Montrer par récurrence que pour tout entier naturel n, u_n est égal à $\sqrt{1+n}$.
- 3. Étudier la convergence de (u_n) .

Exercice 9 – Soit (u_n) la suite définie par $u_0 = 16$ et pour tout entier $n \ge 0$, $u_{n+1} = 0.75 \times u_n$.

- 1. (a) Quelle est la nature de la suite (u_n) ?
 - (b) Exprimer, pour tout entier naturel n, u_n en fonction de n.
 - (c) Étudier la monotonie de la suite (u_n) .
- 2. On note S_n la somme des n+1 premiers termes de la suite (u_n) :

$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + u_2 + \dots + u_n.$$

- (a) Calculer S_4 .
- (b) Montrer que pour tout entier n, $S_n = 64(1 0.75^{n+1})$.
- (c) Vers quel réel tend S_n quand n tend vers $+\infty$?

Exercice 10 – En raison de l'évaporation, une piscine perd chaque semaine 3% de son volume d'eau. On remplit ce bassin avec 90m³ d'eau et, pour compenser la perte due à l'évaporation, on décide de rajouter chaque semaine 2.4m³ d'eau dans le bassin.

On note u_n le nombre de m³ d'eau contenus dans ce bassin au bout de n semaines. On a donc $u_0 = 90$ et, pour tout entier n, $u_{n+1} = 0.97 \times u_n + 2.4$.

- 1. On considère la suite (v_n) définie pour tout entier naturel n par $v_n = u_n 80$.
 - (a) Démontrer que la suite (v_n) est une suite géométrique dont on précisera le premier terme et la raison.
 - (b) Exprimer v_n en fonction de n. En déduire que pour tout entier naturel n, $u_n = 80 + 10 \times 0.97^n$.
- 2. Étudier la monotonie de la suite (u_n) .
- 3. Déterminer la limite de la suite (u_n) . Interpréter ce résultat.

Exercice 11 – On considère la suite (u_n) définie par $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + 2n + 3$.

- 1. Étudier la monotonie de la suite (u_n) .
- 2. Démontrer par récurrence que pour tout entier naturel n, $u_n > n^2$.
- 3. En déduire la limite de la suite (u_n) .

Exercice 12 – On considère la suite (u_n) définie par $u_0 = -2$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2}u_n + 3$.

- 1. Montrer que (u_n) est majorée par 6.
- 2. Montrer que (u_n) est croissante.
- 3. Que peut-on dire de la suite (u_n) ?
- 4. Montrer que la suite (v_n) définie par $v_n = u_n 6$ est géométrique. En déduire l'expression de u_n en fonction de n.
- 5. Déterminer la limite de (u_n) .

Exercice 13 – On considère la fonction g définie sur \mathbf{R} par $g(x) = x^2$. On définit la suite (u_n) par $u_0 = 0.7$ et $u_{n+1} = g(u_n)$ pour tout $n \in \mathbf{N}$.

- 1. Montrer par récurrence que $u_n \in]0;1[$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que (u_n) est décroissante.
- 3. En déduire que (u_n) converge et déterminer sa limite.

Exercice 14 – Soit f la fonction définie sur \mathbf{R} par $f(x) = (1-x)^3 + x$. On définit la suite $(a_n)_{n \in \mathbf{N}}$ en posant $a_{n+1} = f(a_n)$ pour tout $n \in \mathbf{N}$ et $a_0 = 0.4$.

- 1. Démontrer que pour tout entier naturel n, $0 < a_n < 1$.
- 2. Démontrer que (a_n) est croissante.
- 3. La suite (a_n) converge-t-elle? Si oui, déterminer sa limite.