

Желаем успехов!

- 1. Сторона куба равна 5. В центре каждой грани куба вырезают квадратную дырку размером $2 \times$ 2. Дырки сквозные, их стороны параллельны соответствующим рёбрам куба. Найди объем оставшейся части куба.
- 2. Рыбак находится на льдине, верхняя поверхность льдины находится над водой. Льдина имеет вид вертикального цилиндра. Определи наименьшую возможную площадь льдины, если масса рыбака — m, а толщина льдины — h. Плотность воды равна ρ_1 , плотность льда — ρ_2 , где $\rho_1 > \rho_2$. Ускорение свободного падения равно g.
- 3. В треугольнике $\triangle ABC$ сторона BC равна $2\sqrt{3}/3$. Медианы треугольника AA_1, BB_1, CC_1 пересекаются в точке O, и известно, что точки O, B_1, C_1, A лежат на одной окружности. Найди длину медианы AA_1 .
- 4. Подвешенному на нити шарику сообщили начальную скорость в горизонтальном направлении. Когда нить отклонилась на угол $\alpha = \pi/6$ от вертикали, ускорение шарика оказалось направленным горизонтально. Найди $\cos \beta$, где β — это угол максимального отклонения нити.

Суперфинал и финал

Желаем успехов!

- 1. Сторона куба равна 5. В центре каждой грани куба вырезают квадратную дырку размером $2 \times$ 2. Дырки сквозные, их стороны параллельны соответствующим рёбрам куба. Найди объем оставшейся части куба.
- 2. Рыбак находится на льдине, верхняя поверхность льдины находится над водой. Льдина имеет вид вертикального цилиндра. Определи наименьшую возможную площадь льдины, если масса рыбака — m, а толщина льдины — h. Плотность воды равна ρ_1 , плотность льда — ρ_2 , где $\rho_1 > \rho_2$. Ускорение свободного падения равно g.
- 3. В треугольнике $\triangle ABC$ сторона BC равна $2\sqrt{3}/3$. Медианы треугольника AA_1, BB_1, CC_1 пересекаются в точке O, и известно, что точки O, B_1, C_1, A лежат на одной окружности. Найди длину медианы AA_1 .
- 4. Подвешенному на нити шарику сообщили начальную скорость в горизонтальном направлении. Когда нить отклонилась на угол $\alpha = \pi/6$ от вертикали, ускорение шарика оказалось направленным горизонтально. Найди $\cos \beta$, где β — это угол максимального отклонения нити.

Турнир в 15:10, Прага, суперфинал: $\chi - \sigma$. Тарту, финал: $\pi - \xi$.

1. вырезаемая часть куба равна 60-16=44, оставшая часть куба равна 125-44=81

2.

$$mg + \rho_2 h Sg = \rho_1 h Sg$$
$$S = \frac{m}{h(\rho_1 - \rho_2)}$$

3. Углы $\angle OAB_1$ и $\angle OC_1B$ равны. Опираются на одну дугу.

Треугольники $\triangle OA_1C$ и $\triangle CA_1A$ подобны.

Пусть $OA_1 = x$, BC = a, тогда

$$\frac{x}{a/2} = \frac{a/2}{3x}$$

$$a = 2\sqrt{3}x$$

$$x = 1/3$$

Ответ: 1.

4. Второй закон Ньютона:

$$\frac{mv^2}{R} = T - mg\frac{\sqrt{3}}{2}$$

Горизонтальное ускорение:

$$mg = T\frac{\sqrt{3}}{2}$$

Получаем

$$\frac{v^2}{R} = \frac{2g}{\sqrt{3}} - g\frac{\sqrt{3}}{2}$$

Закон сохранения энергии

$$\frac{v^2}{2} + gR\left(1 - \cos\frac{\pi}{6}\right) = gR(1 - \cos\beta)$$

Делим на R/2 и подставляем:

$$\frac{v^2}{R} + 2g(1 - \sqrt{3}/2) = 2g(1 - \cos\beta)$$

Итого

$$\frac{2}{\sqrt{3}} - \frac{\sqrt{3}}{2} - \sqrt{3} = -2\cos\beta$$

$$\cos \beta = \frac{5\sqrt{3}}{12}$$