CSCE 633: Machine Learning

Lecture 35: Unsupervised Learning: K-means and Hierarchical Clustering

Texas A&M University

Bobak Mortazavi

Outline

- (Re-)Introducing unsupervised learning
- K-Means clustering
- Gaussian Mixture Models
- Training with Expectation Maximization

• Some slides adapted from Introduction to Statistical Learning, 2nd edition, James, Witten, Hastie, Tibshirani

Unsupervised learning

- Find patterns/structure/sub-populations in data "knowledge discovery"
- Training data does not contain outputs
- Less well-defined problem with no obvious error metrics
- Examples: topic modeling, market segmentation, handwritten digits, news stories, etc.

K-Means Clustering

- Input D = $\{x_i\}_{i=1}^N$, where $x_i \in \mathbb{R}^p$
- Output: Clusters μ_1, \dots, μ_K
- Decision: Define cluster membership, provide a cluster id assigned to each sample x $A(x_i) \in \{1, ..., K\}$
- Evaluation Metric: Distortion Measure

$$J = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{nk} \|x_i - \mu_k\|_2^2$$

Where $r_{nk} = 1$ if $A(x_i) = k$

• Intuition: Data points get assigned to cluster k if they are close to centroid μ_k

K-Means Clustering

- Input D = $\{x_i\}_{i=1}^N$, where $x_i \in \mathbb{R}^p$
- Output: Clusters μ_1, \dots, μ_K
- Decision: Define cluster mambarabin provide a cluster id assigned to each cample x

• Intuition: Data points get assigned to cluster k if they are close to centroid μ_k

K – means Algorithm

Optimization Function

$$\min_{r_{nk}} J = \min_{r_{nk}} \quad \sum_{i=1}^{N} \sum_{k=1}^{K} r_{nk} \|x_i - \mu_k\|_2^2$$

- Step 0: Initialize μ_k to some random values
- Step 1: Assume the current μ_k is fixed, minimize J over r_{nk} which leads to cluster assignment
- Step 2: Assume the fixed cluster assignment, update the cluster centroids as in

$$\mu_k = \frac{\sum r_{nk} \, x_n}{\sum r_{nk}}$$

• Step 3: decide to stop or return to step 1

Visualization of K-Means

Ways to Measure K-Means Fit

- Ideally, a good k-means clustering has small within-cluster variation.
- In other words, all elements within the cluster should be very similar.
- No guarantee a finished clustering is the optimal -> random restarts of the algorithm help identify.
- How do you know how many components, k, to use?

Another example

Another example

Another example: different starts

Discussion

- What are common examples of unsupervised learning you have interacted with?
- What are limitations of k-means clustering?
- Let's brainstorm ways around these limitations!

K-means limitations

- K-means requires us to pre-specify the number of clusters k.
- This can be a disadvantage if we choose the wrong k
- What if there were an alternative approach that does not pre-specify this?
- What would that look like? Would it be top-down or bottom up?

- Silhouette Score
 - For data point i in cluster C_I

•
$$a(i) = \frac{1}{|C_I|-1} \sum_{j \in C_I, i \neq j} d(i,j)$$

•
$$b(i) = \min_{J \neq I} \frac{1}{|C_I|} \sum_{j \in C_J} d(i, j)$$

•
$$s(i) = \frac{b(i)-a(i)}{\max(a(i),b(i))}$$

- Silhouette score
 - N Clusters = 2: 0.705
 - N Clusters = 2: 0.588
 - N Clusters = 2: 0.651
 - N Clusters = 2: 0.566
 - N Clusters = 2: 0.436

Hierarchical Clustering

- Bottom up or agglomerative clustering
- Hierarchical clustering is the most common type of this form of clustering
- Every element begins in its own cluster, and we take steps to group similar items together
- The algorithm ends when everything is one giant cluster

Hierarchical Clustering: Visualization

Group first two closest elements

Then the next two

Hierarchical Clustering

- Start with each point in its own cluster
- Identify the closest two clusters and merge them
- Repeat this process
- End when all points are in a single cluster
- Then define from Dendogram what ideal number of clusters you wish to keep

Another example

- Take the following example
- In reality it was created with three distributions
- However, you can see how a clustering algorithm will vary when you hide this information

Hierarchical Clustering Rather than K-Means

- This application still naturally illustrates 3 clusters
- However, you can also decide to view it as 2 clusters and as more clusters
- What would the within-cluster variance look if we used k-means?

Hierarchical Clustering: Methods of defining "closest"

- Methods by which we group things are called linkage
- Complete:
 - Maximal inter-cluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster
 A and the observations in cluster B, record the largest of these dissimilarities

Hierarchical Clustering: Methods of defining "closest"

- Methods by which we group things are called linkage
- Complete:
 - Maximal inter-cluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster
 A and the observations in cluster B, record the largest of these dissimilarities
- Single:
 - Minimal inter-cluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster
 A and the observations in cluster B, record the smallest of these dissimilarities

Hierarchical Clustering: Methods of defining "closest"

- Methods by which we group things are called linkage
- Complete:
 - Maximal inter-cluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster
 A and the observations in cluster B, record the largest of these dissimilarities
- Single:
 - Minimal inter-cluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster
 A and the observations in cluster B, record the smallest of these dissimilarities
- Average:
 - Mean inter-cluster dissimilarity
- Centroid:
 - Dissimilarity between the centroid for cluster A (a mean vector), and the centroid for cluster B.

Practical Issues

- We have talked about these as Euclidean distances, what if we use other distance metrics?
- Scaling matters, do we need to standardize features before we cluster?
- How many clusters do we chose?
- What features should we select specifically to drive clusters?

Takeaways

- Goals:
 - Understanding why we use unsupervised learning
 - Understanding the key differences between k-Means, hierarchical clustering, and GMM
 - Next Time: Understanding the Expectation Maximization approach to training