CS 580: Algorithm Design and Analysis

Goal: find the maximum element (or one of them if multiple ones exist) using comparison queries.

Goal: find the maximum element (or one of them if multiple ones exist) using comparison queries.

Q: How many comparisons are needed?

Goal: find the maximum element (or one of them if multiple ones exist) using comparison queries.

Q: How many comparisons are needed?

A: Depends on the number of rounds allowed.

Algorithms in rounds

Algorithm that runs in k rounds can also be seen as: central machine issues in each round j a set of queries, one to each processor, then waits for the answers before issuing the next set of parallel queries in round j+1.

Query complexity in k rounds informs how many processors are needed to achieve a parallel time of k.

Why rounds?

- Minimizing the number of rounds is important when computation is done by many (small) computers that interact over a network - e.g. phones, laptops
- Scenarios where rounds are expensive: crowdsourcing, blockchain

Recall the comparison model

- An algorithm A in the comparison model gets input vector x
- A can do anything except open up the contents of the entries x_i
- Algorithm A has access to an oracle O that, given any query $x_i < x_j$? can return True/False (i.e., O does the work of inspecting the elements)

Algorithms with rounds

Input: vector $x = (x_1, ..., x_n)$

{Internal computation}

Submit set of queries S_1 to O, then get back the answers {Internal computation}

Submit set of queries S_2 to O, then get back the answers \dots

Submit set of queries S_k to O, then get back the answers {Internal computation}

Output

Goal: given input vector x and upper bound k on the allowed number of rounds of interaction, find the maximum element

- using as few comparisons as possible (count total)
- using at most k rounds of interaction with the oracle

Question: Given vector $x = (x_1, ..., x_n)$ and number $k \in \{1, ..., n\}$, how many comparisons do we need to find the maximum of x in k rounds?

Unlimited number of rounds (fully adaptive)?

Unlimited number of rounds (fully adaptive):

Upper bound:

Lower bound:

Unlimited number of rounds (fully adaptive):

- Upper bound: Go through each element and remember the max seen so far => n-1 comparisons.
- Lower bound:

Unlimited number of rounds (fully adaptive):

- Upper bound: Go through each element and remember the max seen so far => n-1 comparisons.
- Lower bound: If an element is not compared to anything, then it could be the maximum. The comparisons give a graph on n elements that must be connected => need at least n-1 comparisons.

Unlimited number of rounds (fully adaptive): $\Theta(n)$

- Upper bound: Go through each element and remember the max seen so far => n-1 comparisons.
- Lower bound: If an element is not compared to anything, then it could be the maximum. The comparisons give a graph on n elements that must be connected => need at least n-1 comparisons.

r = 1 rounds: How many comparisons?

r = 1 rounds:

Upper bound:

Lower bound:

r = 1 rounds:

Upper bound: Ask for all pairwise comparisons $\binom{n}{2}$ and output the maximum after receiving the answers.

Lower bound:

r = 1 rounds:

Upper bound: Ask for all pairwise comparisons $\binom{n}{2}$ and output the maximum after receiving the answers.

Lower bound: If even one comparison is missing, that can be enough to return the wrong maximum:

- Suppose there is a comparison missing between elements x_i and x_j in the input vector x.
- Then adversary can answer the queries so that x_i and x_j are greater than all the other elements -> not enough info to determine the max.

 $r = 1 \text{ rounds} : \Theta(n^2).$

Upper bound: Ask for all pairwise comparisons $\binom{n}{2}$ and output the maximum after receiving the answers.

Lower bound: If even one comparison is missing, that can be enough to return the wrong maximum:

- Suppose there is a comparison missing between elements x_i and x_j in the input vector x.
- Then adversary can answer the queries so that x_i and x_j are greater than all the other elements -> not enough info to determine the max.

r = 2 rounds: How many comparisons?

r = 2 rounds. Upper bound:

r = 2 rounds. Upper bound:

Round 1. Divide the items into k groups of size n/k and select the max from each group => $\binom{n/k}{2}$ comparisons inside each group => at most $k*\frac{n^2}{k^2}$ comparisons overall.

r = 2 rounds. Upper bound:

Round 1. Divide the items into k groups of size n/k and select the max from each group => $\binom{n/k}{2}$ comparisons inside each group => at most $k*\frac{n^2}{k^2}$ comparisons overall.

r = 2 rounds. Upper bound:

Round 1. Divide the items into k groups of size n/k and select the max from each group => $\binom{n/k}{2}$ comparisons inside each group => at most $k*\frac{n^2}{k^2}$ comparisons overall.

Round 2. Select the maximum among the group maxima => round 1 protocol for finding the max of k elements => k^2 comparisons

r = 2 rounds. Upper bound:

Round 1. Divide the items into k groups of size n/k and select the max from each group => $\binom{n/k}{2}$ comparisons inside each group => at most $k*\frac{n^2}{k^2}$ comparisons overall.

Round 2. Select the maximum among the group maxima => round 1 protocol for finding the max of k elements => k^2 comparisons.

The total number of comparisons is at most $k * \frac{n^2}{k^2} + k^2$.

Set k to equalize the work for rounds 1 and 2:

$$k * \frac{n^2}{k^2} = k^2 \Rightarrow k = n^{2/3}.$$

Total number of comparisons is $2 \cdot k^2 = 2 \cdot n^{4/3}$.

r = 2 rounds. Upper bound: $O(n^{\frac{4}{3}})$

Round 1. Divide the items into k groups of size n/k and select the max from each group => $\binom{n/k}{2}$ comparisons inside each group => at most $k*\frac{n^2}{k^2}$ comparisons overall.

Round 2. Select the maximum among the group maxima => round 1 protocol for finding the max of k elements => k^2 comparisons.

The total number of comparisons is at most $k * \frac{n^2}{k^2} + k^2$.

Set k to equalize the work for rounds 1 and 2:

$$k * \frac{n^2}{k^2} = k^2 \Rightarrow k = n^{2/3}.$$

Total number of comparisons is $2 \cdot k^2 = 2 \cdot n^{4/3}$.

Proof: Consider graph on n vertices, one for each element. Draw an edge if a comparison query is asked b.w. those elements in round 1.

Proof: Consider graph on n vertices, one for each element. Draw an edge if a comparison query is asked b.w. those elements in round 1. Case 1: If the graph has more than $n^{\frac{4}{3}}$ edges, we are done.

Proof: Consider graph on n vertices, one for each element. Draw an edge if a comparison query is asked b.w. those elements in round 1.

Case 1: If the graph has more than $n^{\frac{7}{3}}$ edges, we are done.

Case 2: Otherwise, suppose it has $< n^{\frac{1}{3}}$ edges.

Proof: Consider graph on n vertices, one for each element. Draw an edge if a comparison query is asked b.w. those elements in round 1.

Case 1: If the graph has more than $n^{\frac{2}{3}}$ edges, we are done.

Case 2: Otherwise, suppose it has $< n^{\frac{1}{3}}$ edges.

Lemma 1: A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{8s}$.

Proof: Consider graph on n vertices, one for each element. Draw an edge if a comparison query is asked b.w. those elements in round 1.

Case 1: If the graph has more than $n^{\frac{7}{3}}$ edges, we are done.

Case 2: Otherwise, suppose it has $< n^{\frac{4}{3}}$ edges.

Lemma 1: A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{8s}$.

• The graph has < $n^{\frac{4}{3}}$ edges, by Lemma 1, it has an independent set U of size k such that

$$k \ge \frac{n^2}{8 * n^{\frac{4}{3}}} = \frac{n^{\frac{2}{3}}}{8}$$
 (*)

Proof: Consider graph on n vertices, one for each element. Draw an edge if a comparison query is asked b.w. those elements in round 1.

Case 1: If the graph has more than $n^{\frac{7}{3}}$ edges, we are done.

Case 2: Otherwise, suppose it has $< n^{\frac{2}{3}}$ edges.

Lemma 1: A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{8s}$.

• The graph has < $n^{\frac{4}{3}}$ edges, by Lemma 1, it has an independent set U of size k such that

$$k \ge \frac{n^2}{8 * n^{\frac{4}{3}}} = \frac{n^{\frac{2}{3}}}{8}$$
 (*)

Make the items in U win all pairwise comparisons.

Proof: Consider graph on n vertices, one for each element. Draw an edge if a comparison query is asked b.w. those elements in round 1.

Case 1: If the graph has more than $n^{\frac{4}{3}}$ edges, we are done.

Case 2: Otherwise, suppose it has $< n^{\frac{2}{3}}$ edges.

Lemma 1: A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{8s}$.

• The graph has < $n^{\frac{4}{3}}$ edges, by Lemma 1, it has an independent set U of size k such that

$$k \ge \frac{n^2}{8 * n^{\frac{4}{3}}} = \frac{n^{\frac{2}{3}}}{8}$$
 (*)

• Make the items in U win all pairwise comparisons. These items must be compared in round 2 => at least $\binom{k}{2}$ comparisons in round 2.

Proof: Consider graph on n vertices, one for each element. Draw an edge if a comparison query is asked b.w. those elements in round 1.

Case 1: If the graph has more than $n^{\frac{\pi}{3}}$ edges, we are done.

Case 2: Otherwise, suppose it has $< n^{\frac{2}{3}}$ edges.

Lemma 1: A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{8s}$.

• The graph has $< n^{\frac{4}{3}}$ edges, by Lemma 1, it has an independent set U of size k such that

$$k \ge \frac{n^2}{8 * n^{\frac{4}{3}}} = \frac{n^{\frac{2}{3}}}{8}$$
 (*)

• Make the items in U win all pairwise comparisons. These items must be compared in round 2 => at least $\binom{k}{2}$ comparisons in round 2. Since $k \geq \frac{1}{8} * n^{\frac{2}{3}}$ by (*), round 2 makes $\Omega(n^{\frac{4}{3}})$ comparisons.

Proof of Lemma 1: A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{8s}$.

Proof of Lemma 1: A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{8s}$.

Since the number of edges is $\leq s \Rightarrow$ the sum of degrees is $\leq 2 \cdot s$.

Proof of Lemma 1: A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{g_c}$.

Since the number of edges is $\leq s \Rightarrow$ the sum of degrees is $\leq 2 \cdot s$.

Thus: the average degree is $\leq \frac{2 \cdot s}{n}$.

Proof of Lemma 1: A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{g_c}$.

Since the number of edges is $\leq s \Rightarrow$ the sum of degrees is $\leq 2 \cdot s$.

Thus: the average degree is $\leq \frac{2 \cdot s}{n}$.

Then not that many nodes can exceed this value by a lot.

Proof of Lemma 1: A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{g_c}$.

Since the number of edges is $\leq s \Rightarrow$ the sum of degrees is $\leq 2 \cdot s$.

Thus: the average degree is $\leq \frac{2 \cdot s}{n}$.

Then not that many nodes can exceed this value by a lot.

Let q be the number of nodes with degree $\geq 4 \cdot \frac{s}{n}$.

Proof of Lemma 1: A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{\alpha_c}$.

Since the number of edges is $\leq s \Rightarrow$ the sum of degrees is $\leq 2 \cdot s$.

Thus: the average degree is $\leq \frac{2 \cdot s}{n}$.

Then not that many nodes can exceed this value by a lot.

Let q be the number of nodes with degree $\geq 4 \cdot \frac{s}{n}$.

Upper bounding the sum of degrees of the q nodes by the upper bound on the sum of degrees, we get

$$q \cdot \left(4 \cdot \frac{s}{n}\right) \le 2 \cdot s \Rightarrow q \le \frac{n}{2}$$

Proof of Lemma 1: A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{\Omega_c}$.

Since the number of edges is $\leq s \Rightarrow$ the sum of degrees is $\leq 2 \cdot s$.

Thus: the average degree is $\leq \frac{2 \cdot s}{n}$.

Then not that many nodes can exceed this value by a lot.

Let q be the number of nodes with degree $\geq 4 \cdot \frac{s}{n}$.

Upper bounding the sum of degrees of the q nodes by the upper bound on the sum of degrees, we get

$$q \cdot \left(4 \cdot \frac{s}{n}\right) \le 2 \cdot s \Rightarrow q \le \frac{n}{2}$$

Let W = set of nodes with degree $\leq 4 \cdot \frac{s}{n}$.

Proof of Lemma 1: A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{\Omega_c}$.

Since the number of edges is $\leq s \Rightarrow$ the sum of degrees is $\leq 2 \cdot s$.

Thus: the average degree is $\leq \frac{2 \cdot s}{n}$.

Then not that many nodes can exceed this value by a lot.

Let q be the number of nodes with degree $\geq 4 \cdot \frac{s}{n}$.

Upper bounding the sum of degrees of the q nodes by the upper bound on the sum of degrees, we get

$$q \cdot \left(4 \cdot \frac{s}{n}\right) \le 2 \cdot s \Rightarrow q \le \frac{n}{2}$$

Let W = set of nodes with degree $\leq 4 \cdot \frac{s}{n}$. We get $|W| \geq \frac{n}{2}$.

Proof of Lemma 1 (cont): A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{8s}$.

Recap: W = set of nodes with degree $\leq 4 \cdot \frac{s}{n}$. Also $|W| \geq \frac{n}{2}$. Select independent set from W greedily: select a node, eliminate all its neighbours, repeat.

What is an upper bound on how many nodes each removal eliminates?

Proof of Lemma 1 (cont): A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{8s}$.

Recap: W = set of nodes with degree $\leq 4 \cdot \frac{s}{n}$. Also $|W| \geq \frac{n}{2}$.

Select independent set from W greedily: select a node, eliminate all its neighbours, repeat.

Each removal eliminates $\leq 4 \cdot \frac{s}{n}$ vertices, but W has at least $\frac{n}{2}$ nodes

Proof of Lemma 1 (cont): A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{8s}$.

Recap: W = set of nodes with degree $\leq 4 \cdot \frac{s}{n}$. Also $|W| \geq \frac{n}{2}$.

Select independent set from W greedily: select a node, eliminate all its neighbours, repeat.

Each removal eliminates $\leq 4 \cdot \frac{s}{n}$ vertices, but W has at least $\frac{n}{2}$ nodes

=> the number of iterations is at least...?

Proof of Lemma 1 (cont): A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{8s}$.

Recap: W = set of nodes with degree $\leq 4 \cdot \frac{s}{n}$. Also $|W| \geq \frac{n}{2}$.

Select independent set from W greedily: select a node, eliminate all its neighbours, repeat.

Each removal eliminates $\leq 4 \cdot \frac{s}{n}$ vertices, but W has at least $\frac{n}{2}$ nodes => the number of iterations is at least:

$$\frac{|W|}{\max \# \text{ vertices removed per round}} = \frac{n/2}{4 \cdot \frac{s}{n}} = \frac{n^2}{8s}.$$

Proof of Lemma 1 (cont): A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{8s}$.

Recap: W = set of nodes with degree $\leq 4 \cdot \frac{s}{n}$. Also $|W| \geq \frac{n}{2}$.

Select independent set from W greedily: select a node, eliminate all its neighbours, repeat.

Each removal eliminates $\leq 4 \cdot \frac{s}{n}$ vertices, but W has at least $\frac{n}{2}$ nodes => the number of iterations is at least:

$$\frac{|W|}{\max \# \text{ vertices removed per round}} = \frac{n/2}{4 \cdot \frac{s}{n}} = \frac{n^2}{8s}.$$

Thus the graph has an independent set of size at least $\frac{n^2}{8s}$. This completes the proof of the lemma.

Exercise.

Upper bound:

 Divide the elements into groups of k [TBD] and find the maximum element in each group

Upper bound:

• Divide the elements into groups of k [TBD] and find the maximum element in each group -> in round 1 can obtain the maximum y_i for each group i. We get $k*\frac{n^2}{k^2}=\frac{n^2}{k}$ comparisons in round 1.

Upper bound:

- Divide the elements into groups of k [TBD] and find the maximum element in each group -> in round 1 can obtain the maximum y_i for each group i. We get $k*\frac{n^2}{k^2}=\frac{n^2}{k}$ comparisons in round 1.
- By 2 round protocol, the maximum of the y_i 's can be obtained using $2\cdot k^{\frac{4}{3}}$ comparisons in the remaining two rounds.

Upper bound:

- Divide the elements into groups of k [TBD] and find the maximum element in each group -> in round 1 can obtain the maximum y_i for each group i. We get $k*\frac{n^2}{k^2}=\frac{n^2}{k}$ comparisons in round 1.
- By 2 round protocol, the maximum of the y_i 's can be obtained using $2\cdot k^{\frac{4}{3}}$ comparisons in the remaining two rounds.
- The total number of comparisons is $\leq \frac{n^2}{k} + 2 \cdot k^{\frac{4}{3}}$.

Upper bound:

- Divide the elements into groups of k [TBD] and find the maximum element in each group -> in round 1 can obtain the maximum y_i for each group i. We get $k*\frac{n^2}{k^2}=\frac{n^2}{k}$ comparisons in round 1.
- By 2 round protocol, the maximum of the y_i 's can be obtained using $2 \cdot k^{\frac{4}{3}}$ comparisons in the remaining two rounds.
- The total number of comparisons is $\leq \frac{n^2}{k} + 2 \cdot k^{\frac{4}{3}}$.
- By setting $k=n^{\frac{6}{7}}$, we get at most $\frac{n^2}{k}+k^{\frac{4}{3}}=3\cdot n^{\frac{8}{7}}\in O(n^{\frac{8}{7}})$ comparisons.

Lower bound:

 Use same technique as for r=2 rounds: assume the first round uses at most k comparisons (if it uses less we are done).

Lower bound:

- Use same technique as for r=2 rounds: assume the first round uses at most k comparisons (if it uses less we are done).
- Find large independent set S (By Lemma 1, can find of size $\geq \frac{n^2}{8 \cdot k}$)

Recall Lemma 1: A graph with n nodes and fewer than s edges has an independent set of size at least $\frac{n^2}{8s}$.

- Use same technique as for r=2 rounds: assume the first round uses at most k comparisons (if it uses less we are done).
- Find large independent set S (By Lemma 1, can find of size $\geq \frac{n^2}{8 \cdot k}$)
- By applying the lower bound for r=2 rounds, it follows we need at

least
$$\left(\frac{n^2}{8k}\right)^{4/3}$$
 comparisons to find the max in S in 2 rounds.

- Use same technique as for r=2 rounds: assume the first round uses at most k comparisons (if it uses less we are done).
- Find large independent set S (By Lemma 1, can find of size $\geq \frac{n^2}{8 \cdot k}$)
- By applying the lower bound for r=2 rounds, it follows we need at $\left(\frac{n^2}{8k}\right)^{4/3} \text{ comparisons to find the max in S in 2 rounds.}$
- Thus any 3 round protocol uses either $\geq k$ comparisons in the first round or $\geq \left(\frac{n^2}{8k}\right)^{4/3}$ in the next 2 rounds.

- Use same technique as for r=2 rounds: assume the first round uses at most k comparisons (if it uses less we are done).
- Find large independent set S (By Lemma 1, can find of size $\geq \frac{n^2}{8 \cdot k}$)
- By applying the lower bound for r=2 rounds, it follows we need at $\left(\frac{n^2}{8k}\right)^{4/3} \text{ comparisons to find the max in S in 2 rounds.}$
- Thus any 3 round protocol uses either $\geq k$ comparisons in the first round or $\geq \left(\frac{n^2}{8k}\right)^{4/3}$ in the next 2 rounds.
- By setting $k = n^{8/7}$, we get a lower bound of $\Omega(n^{8/7})$.