ASYMPTOTIC BODE PLOT CONSTRUCTION RULES

TRANSFER FUNCTION ELEMENT		GAIN	PHASE
Constant		constant 20 log K _B	constant 0° (-180° if negative gain)
Free "s"	्) Pole	-20 dB/dec crossing 0 dB $@$ $\omega = 1$	constant -90°
31	√ Zero	20 dB/dec crossing 0 dB @ 00 = 1	constant +90°
	Pole	constant 0 dB until corner frequency (σ) then -20 dB/dec	starts @ 0° and ends @ -90°
1st Order	>		-45°/dec starting at 0.1σ and ending at 10σ
			equals -45° at σ
6	Zero	constant 0 dB until corner frequency (σ) then +20 dB/dec	starts @ 0° and ends @ +90°
(a+1)	_		+45°/dec starting at 0.1 σ and ending at 10 σ
			equals +45° at σ
2	Pole	constant 0 dB until corner frequency (ω_{n}) then -40 dB/dec	starts @ 0° and ends @ -180°
. (2	$M_{\omega_n} = -20\log(2\zeta)$ at ω_n	-90°/dec starting at 0.1 ω_n and ending at 10 ω_n
2" Order		Resonance for $\zeta < 0.707$ such that:	equals -90° at ω_n
· ·		$a_r = a_n \sqrt{1 - 2\zeta^2}$; $M_r = -20\log(2\zeta\sqrt{1 - \zeta^2})$	
	Zero	constant 0 dB until corner frequency (\omega_n) then +40 dB/dec	starts @ 0° and ends @ +180°
$\left(\frac{s^2}{s^2} + \frac{2 \zeta s}{1} + 1\right)$	7_	$M_{\omega_n} = +20\log(2\zeta)$ at ω_n	+90°/dec starting at 0.1 ω_n and ending at 10 ω_n
(\omega_n^2 \omega_n)		Resonance for $\zeta < 0.707$ such that:	equals $+90^{\circ}$ at ω_n
		$a_r = a_n \sqrt{1 - 2\zeta^2}; M_r = +20\log(2\zeta\sqrt{1 - \zeta^2})$	

1. FND RED. 1285?

2. APPILOX. 300E PLOT.

FREQ. RESP -
$$G(j\omega) = \frac{j\omega+20}{(j\omega+1)(j\omega+7)(j\omega+50)}$$

USE ALLEBIZA TO LET (1/2) = a + bj

= - 132 + 800 j + 7 = (7-02) + 800 j

((7-102)+80i)(j0+50) = (7-102)j0 + 50(7-102)+802j2 +50(80i)

$$(350-582) + (3932-23);$$

$$(350-582) + (3932-23);$$

$$(350-582) - (3932-23);$$

DEMONINA ZOR

D = (350-5802)2+ (393 4- 13)2

NOMERATOR

$$+ \omega (350 - 583^{2}) + \omega (393\omega - \omega^{3})];$$

$$+ [\omega (350 - 583^{2}) + \omega (393\omega - \omega^{3})];$$

$$N = 20(350 - 583^{2}) + \omega (393\omega - \omega^{3})$$

APP ROXIMATE 1300E PLOT

$$(1)(7)(50) = \frac{20}{(7+1)(\frac{5}{7}+1)(\frac{5}{10}+1)}$$

1. BREAK FREQ. W=1, 7, 20, 50

2. FIND LONTIZIBUTION OF EACH COMPONENT.

CONSTANT 0° PHASE 2019 7.50 = -24,86 d3

7END MAY + 20 13 @ W220

DHAVE 00-2+600 13200 0=9-2 00=500

POLES MY -20 d3 (0) D= D*

PHASE - 00 -> -900 () 10=0.1100 -> 1000

CONSIDER PLOT EXAMPLES

$$CONSIDER$$
 $C(S) = \frac{10(S+1)}{(S+10)} = \frac{10/10(S+1)}{(S+10)}$

FREQ. RESPONSE FON
$$G(j\omega) = j\omega + 1$$

GENERATE A BODE PLOT CAPPIZOXIMATION)

CHECK MAG + PHASE AT LOW + HIGH FREQ.

*		

