Short Introduction to Variational Autoencoders

Mauricio A. Álvarez

Topics on Deep Probabilistic Models

Acknowledgements

Contents

Autoencoders

Variational autoencoders

Contents

Autoencoders

Variational autoencoders

What is an autoencoder?

Architecture of an autoencoder

 $\textbf{Credit} \ \texttt{https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798}$

How to avoid naive solutions?

 A naive solution to the above problem would be to learn the identity transformation (copy the input to the output).

- We can avoid such naive solution using alternatives such us
 - The latent representations should have a smaller dimensionality than the input data.
 - We can learn a mapping from noisy inputs to the original inputs (denoising autoencoders).
 - Sparse autoencoders: we penalise the weights in the neural networks for the encoder and decoder.

Denoising autoencoders

Use cases

Data denoising.

Dimensionality reduction.

Contents

Autoencoders

Variational autoencoders

Autoencoders and variational autoencoders (I)

In an autoencoder, each input vector is mapped to a latent vector.

In a variational autoencoder (VAE), the input data is mapped to a latent probability distribution.

We can then use the latent probability distribution to generate "new inputs".

Autoencoders and variational autoencoders (II)

latent vector/variables

Autoencoder

Variational autoencoder

Variational autoencoder

Example MNIST

