Practice Problems 13: Ratio and Root tests, Leibniz test

- 1. Determine the values of $\alpha \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \left(\frac{\alpha n}{n+1}\right)^n$ converges.
- 2. Consider $\sum_{n=1}^{\infty} a_n$ where $a_n > 0$ for all n. Prove or disprove the following statements.
 - (a) If $\frac{a_{n+1}}{a_n} < 1$ for all n then the series converges. (b) If $\frac{a_{n+1}}{a_n} > 1$ for all n then the series diverges.
- 3. Show that the series $\frac{1}{1^2} + \frac{1}{2^3} + \frac{1}{3^2} + \frac{1}{4^3} + \frac{1}{5^2} + \frac{1}{6^3} + \dots$ converges and that the root test and ratio test are not applicable.
- 4. Consider the rearranged geometric series $\frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \frac{1}{128} + \frac{1}{64}$... Show that the series converges by the root test and that the ratio test is not applicable.
- 5. Consider the series $\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{2^4} + \frac{1}{3^4} + \dots$ Show that the ratio test is not applicable. Further show that $(a_n)^{\frac{1}{n}}$ does not converge and that the root test given in Theorem 8 is applicable.
- (a) If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converges absolutely, show that $\sum_{n=1}^{\infty} a_n b_n$ converges abso-
 - (b) If $\sum_{n=1}^{\infty} a_n$ converges absolutely and (b_n) is a bounded sequence then $\sum_{n=1}^{\infty} a_n b_n$ converges absolutely.
 - (c) Give an example of a convergent series $\sum_{n=1}^{\infty} a_n$ and a bounded sequence (b_n) such that $\sum_{n=1}^{\infty} a_n b_n$ diverges.
- 7. In each of the following cases, discuss the convergence/divergence of the series $\sum_{n=1}^{\infty} a_n$ where a_n equals: (a) $\frac{n!}{e^{n^2}}$ (b) $\frac{n^2 2^n}{(2n+1)!}$ (c) $\left(1 - \frac{1}{n}\right)^{n^2}$ (d) $\frac{n^2}{3^n} \left(1 + \frac{1}{n}\right)^{n^2}$ (e) $\sin\left(\frac{(-1)^n}{n^p}\right), p > 0$ (f) $(-1)^n \frac{(\ln n)^3}{n}$ (g) $(-1)^n \left(n^{\frac{1}{n}} - 1\right)^n$ (h) $\frac{2^n + n^2 - \ln n}{n!}$ (i) $\frac{\cos(\pi n) \ln n}{n}$ (j) $\left(1 + \frac{2}{n}\right)^{n^2 - \sqrt{n}}$ (k) $\frac{n^2(2\pi + (-1)^n)^n}{10^n}$

- 8. (*) Let $a_n \in \mathbb{R}$ and $a_n > 0$ for all n.
 - (a) If $\frac{a_{n+1}}{a_n} \leq \lambda$ eventually for some $\lambda > 0$ then show that $a_n^{\frac{1}{n}} \leq \lambda + \epsilon$ eventually for every $\epsilon > 0$. Observe that if the ratio test (Theorem 7) gives the convergence of a series then the root test (Theorem 8) also gives the convergence, but the converse is not true (why?).
 - (b) If $\lim_{n\to\infty} a_n^{\frac{1}{n}} = \alpha$ and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \beta$, show that $\alpha \leq \beta$.
- 9. (a) (*) (Dirichlet test) Let $\sum_{n=1}^{\infty} a_n$ be a series whose sequence of partial sums is bounded. Let (b_n) be a decreasing sequence which converges to 0. Show that $\sum_{n=1}^{\infty} a_n b_n$ converges. Observe that Leibniz test is a particular case of the Dirichlet
 - (b) (*) (Abel's test) Let $\sum_{n=1}^{\infty} a_n$ be a convergent series and (b_n) be a monotonic convergent sequence. Show that $\sum_{n=1}^{\infty} a_n b_n$ converges.
 - (c) Show that the series $1 \frac{1}{2} \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \frac{1}{6} \frac{1}{7} + \dots$ converges whereas the series $1 + \frac{1}{2} \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \dots$ diverges.
 - (d) Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} (1 + \frac{1}{n})^n$, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \cos \frac{1}{n}$ and $\sum_{n=1}^{\infty} (-1)^n \frac{\tan^{-1} n}{1 + (-1)^n} \cos \frac{1}{n}$ converge.

Practice Problems 13: Hints/Solutions

- 1. Since $\left|\frac{\alpha n}{n+1}\right| \to \alpha$, by the root test, the series converges for $|\alpha| < 1$ and diverges for $|\alpha| > 1$. For $|\alpha| = 1$, the series diverges because $\left(\frac{n}{n+1}\right)^n \to \frac{1}{e} \neq 0$.
- 2. (a) For $a_n = \frac{1}{n}$, $\frac{a_{n+1}}{a_n} < 1$ for all n but $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
 - (b) If $\frac{a_{n+1}}{a_n} > 1$ then $a_n \to 0$. Hence $\sum_{n=1}^{\infty} a_n$ diverges.
- 3. By the comparison test (with $\frac{1}{n^2}$) the series converges.
- 4. The *n*th term a_n is $\frac{1}{2^n}$ if *n* is odd and $\frac{1}{2^{n-2}}$ if *n* is even. Since the consecutive ratio alternate in value between $\frac{1}{8}$ and 2, the ratio test is not applicable. However $a_n^{\frac{1}{n}} \to \frac{1}{2}$.
- 5. Observe that $(\left(\frac{3}{2}\right)^n)$ and $(\left(\frac{2}{3}\right)^n)$ are subsequences of $(\frac{a_{n+1}}{a_n})$; and $(\frac{3}{2})^n \to \infty$ $(\frac{2}{3})^n \to 0$. Therefore the ratio test (Theorem 7) is not applicable. But a_n can be either $3^{-\frac{n}{2}}$ or $2^{-\frac{n+1}{2}}$. Since $(3^{-\frac{n}{2}})^{\frac{1}{n}} \to \frac{1}{\sqrt{3}}$ and $(2^{-\frac{n+1}{2}})^{\frac{1}{n}} \to \frac{1}{\sqrt{2}}$, $a_n^{\frac{1}{n}} < L$ eventually for some L satisfying $\frac{1}{\sqrt{2}} < L < 1$. Hence the root test (Theorem 8) is applicable and the series converges.
- 6. (a) Since $b_n \to 0$, $|a_n b_n| \le |a_n|$ eventually. Use the comparison test.
 - (b) Let $|b_n| \leq M$ for some M. Then $|a_n b_n| \leq M|a_n|$. Use the comparison test.
 - (c) Consider $a_n = \frac{(-1)^n}{n}$ and $b_n = (-1)^n$.
- 7. (a) Converges by the Ratio test.
 - (b) Converges by the Ratio test.
 - (c) Converges by the Root test: $(1-\frac{1}{n})^n \to \frac{1}{e}$ (If $y=(1-\frac{1}{n})^n$ then $\ln y=\frac{\ln(1-\frac{1}{n})}{\frac{1}{2}}\to -1$).
 - (d) Converges by the Root test: $a_n^{\frac{1}{n}} \to \frac{e}{3} < 1$.
 - (e) Converges by Leibniz test: $\sin(\frac{(-1)^n}{n^p}) = (-1)^n \sin(\frac{1}{n^p})$.
 - (f) Converges by Leibniz test: If $f(x) = \frac{(\ln x)^3}{x}$ then f'(x) < 0 for all $x > e^3$.
 - (g) Converges absolutely by the Root test.
 - (h) Converges: By the LCT test with $\frac{2^n}{n!}$ and then the Ratio test for $\sum_{n=1}^{\infty} \frac{2^n}{n!}$.
 - (i) Converges by Leibniz test: $\cos(\pi n) = (-1)^n$.
 - (j) Diverges because $\left(1+\frac{2}{n}\right)^{n^2-\sqrt{n}} \nrightarrow 0$ as $\left(1+\frac{2}{n}\right) > 1$.
 - (k) Converges absolutely: Use $|a_n| \leq \frac{n^2(2\pi+1)^n}{10^n}$ and then the Ratio test.
- 8. (a) Suppose $\frac{a_{n+1}}{a_n} \leq \lambda$ for all $n \geq N$ for some N. Then for all $n \geq N$,

$$a_n = \frac{a_n}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \dots \frac{a_{N+1}}{a_N} a_N \le \lambda^{n-N} a_N.$$

Therefore $a_n^{\frac{1}{n}}=(\lambda^{1-\frac{N}{n}})a_N^{\frac{1}{n}}\leq \lambda+\epsilon$ eventually for any $\epsilon>0$ as $a_N^{\frac{1}{n}}\to 1$.

Suppose the Ratio test (Theorem 7) implies the convergence of a series $\sum_{n=1}^{\infty} a_n$. Then there exists a λ such that $0 < \lambda < 1$ and $\frac{a_{n+1}}{a_n} \le \lambda$ eventually. Then, by the previous part, $a_n^{\frac{1}{n}} \le \lambda + \frac{(1-\lambda)}{2} < 1$ eventually. Therefore the Root test (Theorem 8) implies the convergence of the series. The converse is not true (See Problem 5).

- (b) Follows from (a).
- 9. (a) Compare the Dirichlet Test with Problem 15 of the Practice Problems 11. Repeat the steps (a)-(c) given in the problem mentioned above by taking b_n in place of $\frac{1}{n}$.
 - (b) Compare Abel's Test with Problem 15 of the Practice Problems 11. Repeat the steps (a)-(c) given in the problem mentioned above by taking b_n in place of $\frac{1}{n}$. In Abel's test (b_n) could be increasing. However, the proofs of the steps (a)-(c) go through.
 - (c) Apply the Dirichlet test or consider the sequence of partial sums.
 - (d) Apply Abel's test.