

Causality

Importance of Random Assignment

Null:

 In the population, the distributions of the birth weights of the babies in the two groups are the same. (They are different in the sample just due to chance.)

Alternative:

 In the population, the babies of the mothers who smoked weigh less, on average, than the babies of the non-smokers.

Causality

Randomized Controlled Experiment

- Sample A: control group
- Sample B: treatment group
- If the treatment and control groups are selected at random, then you can make causal conclusions.
- Any difference in outcomes between the two groups could be due to
 - chance
 - the treatment

(Demo)

Before the Randomization

- In the population there is one imaginary ticket for each of the 31 participants in the experiment.
- Each participant's ticket looks like this:

Potential Outcome

Potential Outcome

Outcome if assigned to treatment group

Outcome if assigned to control group

The Data

16 randomly picked tickets show:

Outcome if assigned to control group

The remaining 15 tickets show:

Outcome if assigned to treatment group

The Hypotheses

• Null:

- In the population, the distribution of all potential control scores is the same as the distribution of all potential treatment scores.
- Or; the treatment has no effect

• Alternative:

 In the population, more of the potential treatment scores are 1 (pain improves) than the potential control scores.

Random Assignment & Shuffling

An Error Probability

Can the Conclusion be Wrong?

Yes.

	Null is true	Alternative is true
Test favors the null		
Test favors the alternative		

An Error Probability

- The cutoff for the P-value is an error probability.
- If:
 - your cutoff is 5%
 - and the null hypothesis happens to be true
- then there is about a 5% chance that your test will reject the null hypothesis.