Cgsm User's Guide : An Overture Solver for the Solving the Equations of Solid Mechanics,

Bill Henshaw

Centre for Applied Scientific Computing, Lawrence Livermore National Laboratory, henshaw@llnl.gov

August 2, 2013

Contents

1	Nomenclature		1
2	Introduction 2.1 Basic steps		2 2
3	Sample command files for running cgsm		2
4	Options and parameters		2
5	User defined functions		2
6	Hints for running		2
7	Frequently ask questions		2
8	Governing Equations 8.1 Boundary conditions		2 2
1	Nomenclature		
	ho	density	(1)
	u_i	displacement vector	(2)
	ϵ_{ij}	strain tensor	(3)
	$ au_{ij}$	stress tensor	(4)
	λ	shear modulus, Lamé constant	(5)
	μ	Lamé constant	(6)

- $\mathbf{2}$ Introduction
- 2.1 Basic steps
- Sample command files for running cgsm 3
- Options and parameters 4
- User defined functions 5
- Hints for running 6
- Frequently ask questions 7
- Governing Equations 8

The equations of linear elasticity for a homogeneous isotropic material are governed by

$$\rho \partial_t^2 u_i = \partial_{x_i} \tau_{ij} + \rho f_i \tag{7}$$

$$\tau_{ij} = \lambda \partial_{x_k} u_k \delta_{ij} + 2\mu \epsilon_{ij} \tag{8}$$

$$\epsilon_{ij} = \frac{1}{2} (\partial_{x_j} u_i + \partial_{x_i} u_j) \tag{9}$$

or

$$\rho \partial_t^2 u_i = (\lambda + \mu) \partial_{x_i} \partial_{x_k} u_k + \mu \partial_{x_k}^2 u_i + \rho f_i$$

$$\rho \mathbf{u}_{tt} = (\lambda + \mu) \nabla (\nabla \cdot \mathbf{u}) + \mu \Delta \mathbf{u} + \rho \mathbf{f}$$
(10)

$$\rho \mathbf{u}_{tt} = (\lambda + \mu) \nabla (\nabla \cdot \mathbf{u}) + \mu \Delta \mathbf{u} + \rho \mathbf{f}$$
(11)

Boundary conditions 8.1

References