

DATA SCIENCE P3 | DAN KIM | 12.21.18

Reddit posts are all in disarray. We need to build a model that will accurately reclassify Reddit posts back to their respective subreddits.

How might we build the best classification model to determine which subreddit a given post came from?

To build an accurate classification model to distinguish whether a given post comes from the Nike or Adidas subreddit.

METHODOLOGY:

1. DATA COLLECTION - API APPROACH: NIKE AND ADIDAS

Null Values by DataFrame Column	
author	0
comments	0
created	0
score	0
subscribers	0
text 694	
title	0
url	0
subreddit 0	

Logistic Regression

Multinomial Naive Bayes

Decision Tree

Bagged Trees

Random Forests

Extra Trees

Best Models:

- Under CountVectorizer:
 - Logistic Regression
- Under TfidfVectorizer:
 - Random Forest

TfidfVectorizer - Logistic Regression Model	Performance (Lasso)	Performance (Ridge)
Training score	0.971	0.968
Testing score	0.754	0.762
CountVectorizer - Logistic Regression Model	Performance (Lasso)	Performance (Ridge)
CountVectorizer - Logistic Regression Model Training score	Performance (Lasso) 0.97	Performance (Ridge) 0.972

Parameters: Penalty = 'I1', 'I2' C = 50 tol = 0.0001

MODEL PERFORMANCE RANDOM FOREST

TfidfVectorizer - Random Forest Model	Performance
Training score	0.974
Testing score	0.766

Parar	neters:
n_est	timators = 200
criter	ion = gini
max_	depth = 1000

Performance	CountVectorizer - Random Forest Model
0.974	Training score
0.754	Testing score

The GridSearch gave us lower train and test scores despite selecting the optimal features to use in both our models.

GridSearch Model	Logistic Regression (Lasso)	Random Forest
Parameters Tested	penalty: [I1, I2]	n_estimators: [10, 50, 100]
	tol: [.0001, .001, .00001]	max_depth: [50, 100, 150]
	C: [1.0, 10.0, 50.0]	
Cross-Val Score	0.787	0.773
Train Score	0.935	0.948
Test Score	0.744	0.764

The GridSearch gave us lower train and test scores despite selecting the optimal features to use in both our models.

GridSearch Model	Logistic Regression (Lasso)	Random Forest
Parameters Tested	penalty: [I1, I2]	n_estimators: [10, 50, 100]
	tol: [.0001, .001, .00001]	max_depth: [50, 100, 150]
	C: [1.0, 10.0, 50.0]	
Cross-Val Score	0.787	0.773
Train Score	0.935	0.948
Test Score	0.744	0.764

SIGNIFICANT INSIGHTS

Top 10 words that distinguish a given post by Subreddit (not including 'nike' and 'adidas')

Nike	Adidas
ʻjordan'	'nmd'
ʻair'	'boost'
'af1'	'ultraboost'
ʻlike'	'dbz'
'swoosh'	'pick'
'kyrie'	'pants'
'lebron'	'return'
'kaepernick'	'yeezy'
'vapormax'	'love'
'sneakers'	'stripe'

NOTABLE OBSTACLES

Certain phrases and words are post agnostic.

Many posts did not have text in the body of the post. This poses issues if we want to lemmatize and vectorize the text and include it in our model.

CONCLUSION & RECOMMENDATIONS

Since the Logistic Regression model under the CountVectorizer transformer had the highest accuracy, we recommend employing this model going forward.

Include more features:

- Vectorized text body of post
- Dummied authors
- Weeks since creation
- Post score

Remove:

- Vectorized words that are in the title of the Subreddit (i.e. 'nike', 'adidas')
- Post agnostic words

Q & A

