

The world is data rich!

Astronomy

Social Networks

Healthcare

Banking

Genomics

Weather measurements

Dogs and Cats

Product recommendation

Images from amazon.com

ML depends on

• Statistics: Probability theory, Sampling

• Mathematics: Linear Algebra, Multivariate Calculus,....

• Computer Science: Data structures, Programming

• Some domain knowledge.

Machine Learning

Definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure if its performance at tasks in T, as measured by improves with experience E"

Regression

Supervised

Classification

Supervised

Clustering

Unsupervised

Dimensionality reduction

Features

Iris dataset

INPUTS

Sepal Length	Sepal Width	Petal Length	Petal Width
(cm)	(cm)	(cm)	(cm)
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5	3.6	1.4	0.2
5.4	3.9	1.7	0.4
4.6	3.4	1.4	0.3
5	3.4	1.5	0.2
4.4	2.9	1.4	0.2

OUTPUTS Species

Species	
Iris Setosa	0
Iris Virginica	1
Iris Versicolor	2

Training and Test data

- Training data: Used for training the ML algorithm.
- Test data: Used for assessing the performance of the ML algorithm.

Model selection

- Inductive bias of the ML algorithm.
- Hypothesis class (of functions) H.

- Very complex hypothesis could lead to overfitting.
- Model selection \rightarrow choosing the right \mathbb{H} .

Generalization

- Larger class of functions \to more complexity of the hypothesis class $\mathcal{C}(\mathbb{H})$.
- Objective: Good prediction at unobserved locations \rightarrow good **generalization**.

Probabilistic modelling

• Many cases of supervised learning need estimation of the distribution $p(y|\mathbf{x})$ over possible outputs y for input \mathbf{x} .

- Expected value of the output is the mean of the distribution.
- Gives an estimate of the uncertainty of predictions.
- Two major types of probabilistic modelling approaches:
 - Discriminative modelling: The conditional distribution $p(y|\mathbf{x})$ is estimated directly. The distribution $p(\mathbf{x})$ is not modelled. For example, using $p(y|\mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta}^{\mathrm{T}}\mathbf{x}, \sigma^2)$ to model regression problem.
 - Generative modelling: The conditional distribution $p(y|\mathbf{x})$ is estimated using the joint distribution $p(y,\mathbf{x})$ and the distribution $p(\mathbf{x})$ as $p(y|\mathbf{x},\boldsymbol{\theta})$ = $p(y,\mathbf{x}|\boldsymbol{\theta})/p(\mathbf{x}|\boldsymbol{\theta})$. These type of approaches model both y and \mathbf{x} .