I - Exercice résolu

Exercice 1 : (Résolution d'équation trigonométrique.)

Énoncé:

Résoudre l'équation $\sin(x) = -\frac{1}{2}$:

- 1. Sur l'intervalle $[-\pi; \pi[$.
- 2. En écrivant l'ensemble des solutions dans \mathbb{R} .

Correction:

1. Solutions dans $[-\pi; \pi[$

Nous cherchons les angles $x \in [-\pi; \pi[$ tels que $\sin(x) = -\frac{1}{2}$.

On sait que $sin(\frac{\pi}{6}) = \frac{1}{2}$

Or la fonction sinus est impaire donc $sin(-\frac{\pi}{6}) = -\frac{1}{2}$

Et on sait que $sin(x) = sin(\pi + x)$

Donc, $sin(\frac{-\pi}{6}) = sin(\pi + \frac{-\pi}{6}) = sin(-\frac{5\pi}{6})$

Conclusion: Les solutions dans $[-\pi; \pi[$ sont :

$$x \in \left\{ -\frac{5\pi}{6}; -\frac{\pi}{6} \right\}.$$

2. Ensemble solutions dans $\mathbb R$

La fonction sin(x) est 2π -périodique.

• Si $x_1 = -\frac{5\pi}{6}$ est une solution, alors toutes les solutions associées sont données par :

$$x = -\frac{5\pi}{6} + 2k\pi, \quad k \in \mathbb{Z}.$$

• Si $x_2 = -\frac{\pi}{6}$ est une solution, alors toutes les solutions associées sont données par :

$$x = -\frac{\pi}{6} + 2k\pi, \quad k \in \mathbb{Z}.$$

Conclusion: L'ensemble des solutions dans \mathbb{R} est :

$$x \in \left\{-\frac{5\pi}{6} + 2k\pi; -\frac{\pi}{6} + 2k\pi \mid k \in \mathbb{Z}\right\}.$$

II - Exercices d'application

Exercice 2 : (Résolution d'équation trigonométrique.)

★★☆☆

Résoudre les équations suivante sur l'intervalle $[-\pi;\pi[$.

1.
$$\cos(x) = -\frac{1}{2}$$

3.
$$\sin(x) = -\frac{\sqrt{2}}{2}$$

2.
$$\sin(x) = \frac{\sqrt{3}}{2}$$

4.
$$\cos(x) = \frac{\sqrt{3}}{2}$$

Exercice 3 : (Résolution d'équation trigonométrique.)

Résoudre les équations trigonométriques suivantes sur l'intervalle $[-\pi;\pi[$ puis en déduire les solutions générales sur \mathbb{R} .

1.
$$\sin(x) = \frac{\sqrt{2}}{2}$$
,

3.
$$\sin(x) = -\frac{1}{2}$$
,

2.
$$\cos(x) = -\frac{\sqrt{3}}{2}$$
,

4.
$$\cos(x) = \frac{1}{2}$$
.

Exercice 4: (Résolution d'équation trigonométrique.)

Résoudre les équations trigonométriques suivantes sur l'intervalle $[-\pi;\pi[$ puis en déduire les solutions générales sur \mathbb{R} .

1.
$$2\sin(x) = 1$$
,

3.
$$\sqrt{2}\sin(x) = -2$$
,

2.
$$2\cos(x) = -\sqrt{3}$$
,

4.
$$10\cos(x) = 5$$
.

$\textbf{Exercice 5:} \ (\textit{R\'esolution d\'equation trigonom\'etrique.})$

Résoudre les équations trigonométriques suivantes sur l'intervalle $[-\pi;\pi[$ puis en déduire les solutions générales sur \mathbb{R} .

1.
$$\cos(2x) = \frac{1}{2}$$
,

3.
$$\cos(-3x) = -\frac{\sqrt{3}}{2}$$
,

2.
$$\sin(4x) = -\frac{\sqrt{2}}{2}$$
,

4.
$$\sin(10x) = \frac{1}{2}$$
.

Exercice 6 : (Résolution d'équation trigonométrique.)

Résoudre les équations trigonométriques suivantes sur l'intervalle $[-\pi;\pi[$ puis en déduire les solutions générales sur \mathbb{R} .

1.
$$2\sin\left(x + \frac{\pi}{4}\right) - 1 = 0$$

3.
$$\sin\left(2x - \frac{\pi}{4}\right) = \frac{1}{2}$$

2.
$$1 - \sqrt{2}\cos\left(\frac{\pi}{3} - x\right) = 0$$

4.
$$\cos\left(2x - \frac{\pi}{3}\right) = \frac{1}{2}$$