

Twitter Airline Sentiment Dataset Prediction Using Text Analysis

COURSE PRESENTER

(DR. Omaima Fallatah)

Submitted by:

Name	ID		
Manar Ali Alsubhi	444003523		
Jana Abdulraouf Allihyani	444001382		

DEPARTMENT OF (INFORMATION SCIENCE-DATA SCIENCE) COLLEGE OF COMPUTER AND INFORMATION SYSTEMS UMM AL-QURA UNIVERSITY

Table of content

1.Introduction
2.ExploratoryDataAnalysis
3. Multinomial Naive Bayes algorithm

1. Introduction

Sentiment analysis is a crucial natural language processing (NLP) task that involves determining whether a piece of text expresses a positive, negative, or neutral sentiment, building a simple Naive Bayes model with Exploratory Data Analysis (EDA), model training, evaluation, and visualization using the provided dataset.

• Goals of the Study

- 1. **Understand User Sentiment:** Analyze how customers feel about airlines based on their tweets.
- 2. **Predict Trends:** Use sentiment analysis to anticipate changes in customer opinions over time.
- 3. **Enhance Marketing Strategies:** Determine positive feedback to leverage in marketing campaigns.

2.ExploratoryDataAnalysis

Dataset contains 15 columns.

- 1. tweet id
- 2. airline sentiment
- 3. airline_sentiment_confidence
- 4. negativereason
- 5. negativereason_confidence
- 6. airline
- 7. airline sentiment gold
- 8. name
- 9. negativereason_gold
- 10. retweet count
- 11. text
- 12. tweet coord
- 13. tweet_created
- 14. tweet_location
- 15. user timezone

The dataset:

Number of colums:15

Number of rows: 14640

• This shows how many rows have actual data (non-missing values) for each column:

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 14640 entries, 0 to 14639
    Data columns (total 15 columns):
                                     Non-Null Count Dtype
     # Column
     0 tweet id
                                     14640 non-null float64
        airline_sentiment
                                     14640 non-null object
        airline_sentiment_confidence 14640 non-null float64
                                     9178 non-null
        negativereason
                                                     object
        negativereason_confidence
                                     10522 non-null
                                                     float64
         airline
                                     14640 non-null
                                                     object
        airline_sentiment_gold
                                     40 non-null
                                                     object
                                     14640 non-null object
        name
     8 negativereason_gold
                                     32 non-null
                                                     object
        retweet_count
                                     14640 non-null
                                                     int64
     10 text
                                     14640 non-null
                                                     object
                                     1019 non-null
     11 tweet coord
                                                     object
     12 tweet_created
                                     14640 non-null
                                                     object
                                     9907 non-null
     13 tweet_location
                                                     object
                                     9820 non-null
     14 user timezone
                                                     object
    dtypes: float64(3), int64(1), object(11)
    memory usage: 1.7+ MB
```

tweet id, airline sentiment, and text have no missing values (14,640).

negativereason has only 9,178 non-null values, which means there are missing values in that column.

the data type of the information in each column:

- float64 is for numbers with decimals.
- int64 is for whole numbers.
- object is typically used for text data or mixed data types.
- The image shows the result of running value counts ()

This means that most of the tweet in the dataset express

Negative sentiments about the airlines

Sentiment Distribution

Sentiment Distribution per Airline

The chart helps to visually compare the sentiment for each airline

United has the highest number of negative tweets, indicating that it received a lot of criticism.

Data preprocessing:

Preprocessing is crucial for improving the performance of NLP models. We'll clean the text data by removing URLs, mentions, special characters, stopwords, and perform lemmatization.

```
nltk.download('stopwords')
ps = PorterStemmer()
all_stopwords = stopwords.words('english')
all_stopwords.remove('not')

corpus = []
for i in range(len(twt)):
    review = re.sub('[^a-zA-Z]', ' ', twt['text'][i])
    review = review.lower()
    review = review.split()
    review = review.split()
    review = [ps.stem(word) for word in review if word not in set(all_stopwords)]
    review = ' '.join(review)
    corpus.append(review)

proview = ' '.join(review)
    corpus.append(review)
```

This code cleans and preprocesses text data, making it easier to analyze by removing unnecessary words, converting text to lowercase, and reducing words to their root form.

<pre>print(corpus)</pre>	
	Ĺp
	_
☐ Each tweet has been converted to lowercase.	
☐ Stopwords (like "and," "the," "is") have been removed, except for "not," which was deliberately kept.	
☐ Words have been stemmed to their root form	
☐ Punctuation and non-alphabet characters have been removed.	

Bag Of Words (BOF)

Collection of text documents into a numerical matrix. Each row of the matrix corresponds to a document, and each column represents the frequency of a specific word (from the top 1,500 words). This numerical format is often used as input for machine learning models.

Splitting the Dataset

The cleaned text is now ready for further analysis, such as training a machine learning model

We divide the dataset into a training set to train (80% of the data) model and a testing (20% of the data). set to evaluate the model's performance.

Model Training

Train the Naive Bayes Model:

```
classifier = MultinomialNB()
classifier.fit(X_train, y_train)

# Predict the Test set results
y_pred = classifier.predict(X_test)

# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
```

build and evaluate a machine learning model for classification tasks using the Multinomial Naive Bayes algorithm.

Evaluate the Model

ccuracy: 0.7	precision	recall	f1-score	support
	precision	recall	11-30016	Support
Negative	0.83	0.87	0.85	1870
Neutral	0.59	0.54	0.56	614
Positive	0.71	0.66	0.68	444
accuracy			0.77	2928
macro avg	0.71	0.69	0.70	2928
weighted avg	0.76	0.77	0.77	2928

Insights

- 77% of the total predictions are correct.
- The model performs best in the "negative" class.
- Performance on the "neutral" class is lower compared to others.

Confusion Matrix Breakdown

Rows: Represent the actual classes.

Columns: Represent the predicted classes.

Negative Class: High accuracy in predicting negative samples.

Neutral Class: More confusion with the negative class, indicating it's harder to classify

Positive Class: Moderate confusion with negative samples, but better distinction from the neutral class.

Conclusion

The model performs well overall, particularly with the negative class, but there's room for improvement in distinguishing neutral samples.