Comp 232 Robert Mearns

1. Define the operations on a set:

Final result is shaded area below

Term	Symbol	Set Builder expression	Venn Diagram
Compliment of A compare to S	S - A	{x (x∈S) ∧ (x∉A)}	SA
Compliment of A compare to U	U-A denoted	$ \{x \mid (x \in U) \land (x \notin A) \} $ $ \equiv $ $ \equiv \{x \mid \neg(x \in A)\} $	A
Intersection	A∩B	$\{x \mid (x \in A) \land (x \in B)\}$	U A B
Union	A∪B	$\{x \mid (x \in A) \lor (x \in B)\}$	A B U

Ex 1: let
$$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
, $A = \{4, 5, 6, 7\}$, $B = \{0, 5, 6\}$, $C = \{8, 9\}$
 $A - B = \{4, 7\}$
 $\bar{A} = \{0, 1, 2, 3, 8, 9\}$
 $A \cap B = \{5, 6\}$
 $B \cap C = \{\} = \emptyset$
 $B \cup C = \{0, 5, 6, 8, 9\}$

Ex 2: The Cardinality of Two Sets

$$|A \cup B| \neq |A| + |B|$$
 Why?

We are counting elements in the Intersection twice.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

or $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

$$|A \cap B| = 0$$

A, B are called Disjoint sets

Ex 3: Let A be the set of students in the class who have taken Calculus, B be the set of students in class who have taken Matrices. n(A) = 15, n(B) = 13, $n(A \cap B) = 5$

$$n(A \cup B) = 15 + 13 - 5 = 23$$

n(A U B) is the count of the number of student who have taken Calculus or Matrices or both.

- 2. Equivalence between the three systems: Logic symbols, Boolean Algebra symbols, Set symbols
 - a) Recall from the Table of Set operations that:

Compliment involves Not: $\bar{A} = \{x \mid \neg(x \in A)\} = \{x \mid (x \notin A)\}$

<u>Intersection</u> involves <u>And</u>: $A \cap B = \{x \mid (x \in A)\} \land (x \in B)\}$

Union involves OR: $A \cup B = \{x \mid (x \in A)\} \lor (x \in B)\}$

b) This leads to the following equivalences:

Word	Set notation	Logic notation	Boolean Algebra Notation
Not	Ā	¬A	
And	$A \cap B$	A∧B	A*B = AB
Or	A∪B	A∨B	A+B

c) This leads to the equivalence of the logic properties previously developed. The properties table is summarized on the next slide.

It needs to be completed (see p 27 & 130 of Rosen Text 7th ed.)

d) Summary of Equivalent Notations:

Logic symbols	Set symbols	Boolean Algebra	
$\neg (A \land B) \equiv \neg A \lor \neg B$ $\neg (A \lor B) \equiv \neg A \land \neg B$	$\frac{\overline{(A \cap B)}}{\overline{(A \cup B)}} =$	$\frac{\overline{p} \ \overline{q}}{p+q} =$	DeMorgan's Rules
$A \wedge B \equiv A \vee B \equiv$	A ∩ B = A U B =	p q = q p $p + q = q + p$	Commutative
$C \wedge (A \wedge B) \equiv$ $C \vee (A \vee B) \equiv$	$C \cap (A \cap B) =$ $C \cup (A \cup B) =$	c (p q) = (c p) q c+(p+q) = (c+p)+q	Associative
$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$ $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$	$A \cap (B \cup C) =$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	p (q + r) = p + (q r) = (p+q)(p+r)	Distributive
$A \wedge A \equiv A \vee A \equiv$	A \cap A = A \cup A =	p p = p $p + p = p$	Idempotent
$A \wedge \mathbf{T} \equiv A \vee \mathbf{F} \equiv$	$A \cap U = $ $A \cup \Phi = $	p * 1 = p $p + 0 = p$	Identites
$A \wedge \mathbf{F} \equiv A \vee \mathbf{T} \equiv T$	$A \cap \Phi =$ $A \cup U = \cup$	p * 0 = p + 1 = 1	Domination
$A \land \neg A \equiv F$ $A \lor \neg A \equiv T$	$A \cap \overline{A} = \emptyset$ $A \cup \overline{A} = \emptyset$	$p \overline{p} = 0$ $p + \overline{p} = 1$	Negation

3. Verification of set expressions

a) Notation: Uppercase letters and { } brackets are read as "set":

Ex:{ $x \mid x \in (A \cap B)$ } is "set of x such that x is contained in the intersection of sets A, B"

b) Summary of equivalent statements:

c) Method 1 Use: LHS set = RHS set iff [LHS set \subseteq RHS set and RHS set \subseteq LHS]

d) Method 2 Use Set-Builder notation without assuming set identities

Ex: Show that:
$$\overline{A} \cup B = A \cap \overline{B}$$

$$\overline{A} \cup B = \{x \mid x \notin (\overline{A} \cup B)\}$$

$$= \{x \mid \neg [x \in (\overline{A} \cup B)]\}$$

$$= \{x \mid \neg [x \in \overline{A}] \lor (x \in B)\}$$

$$= \{x \mid \neg [(x \notin A) \lor (x \in B)]\}$$

$$= \{x \mid \neg [\neg (x \in A) \lor (x \in B)]\}$$

$$= \{x \mid [(x \in A) \land \neg (x \in B)]\}$$

$$= \{x \mid (x \in A) \land (x \notin B)\}$$

$$= \{x \mid x \in A \land x \in B\}$$

$$= \{x \mid x \in A \land x \in B\}$$

Def. of ∉

Def. of Union

Def of Compliment

Def of ∉

De Morgan

Def. of ∉

Def of Compliment

Def. of Intersection

QED

4. Applications: Representing sets with Boolean strings

Ex 1: Consider data kept by a provincial government concerning 5 cities and their total property evaluation in millions of dollars, number of properties and the tax rate per 100\$ evaluation. Universal set is U = {A,B,C,D,E}.

Sets are represented by bit strings: (i) Bit string 11111 rep. U (ii) Bit string 11001 rep.

	String	City A	City B	City C	City D	City E
$1m$ \$ < eval $\leq 5m$ \$	B_1	1	0	0	0	0
$5m$ \$ < eval $\leq 15m$ \$	B_2	0	0	1	0	0
eval > 15m\$	B_3	0	1	1	0	1
$0 < \# \text{ properties} \le 300$	B_4	0	0	1	1	0
$300 < \# \text{ prop} \le 1000$	B_5	1	1	0	0	1
1 \$ < tax rate ≤ 1.30 \$	B_6	0	1	1	0	0
1.30\$ < tax rate	B_7	1	0	0	1	1

a) Form set S_a : designates cities with (1m\$< eval \leq 5m\$) and (300 <# prop \leq 1000) and (tax rate >1.30\$) We need bit string B_a = bit-wise And with = 10000 \rightarrow = {A}?

	String	City A	City B	City C	City D	City E
$1m$ \$ < eval $\leq 5m$ \$	B_1	1	0	0	0	0
$5m$ \$ < eval $\leq 15m$ \$	B_2	0	0	1	0	0
eval > 15m\$	B_3	0	1	1	0	1
$0 < \# \text{ properties} \le 300$	B_4	0	0	1	1	0
$300 < \# \text{ prop} \le 1000$	B_5	1	1	0	0	1
1 \$ < tax rate ≤ 1.30 \$	B_6	0	1	1	0	0
1.30\$ < tax rate	B_7	1	0	0	1	1

b) Form the set S_b that designates cities with 5m\$ < eval \leq 15m\$ or tax rate \geq 1.30\$

We need bit string B_b = bit-wise Or with or = 10111 \rightarrow = {A, C, D, E}

c) Form the set S_c that designates cities with missing total evaluation data

We need bit string $B_c=\operatorname{Not} B_1$ and $\operatorname{Not} B_2$ and $\operatorname{Not} B_3=\operatorname{Not}(\text{ or or })$ Not (bit-wise Or with) = = 00010 \rightarrow = {D}

Ex 2: Adapt the above procedure to find the set S_d that designates cities that have more than one total evaluation

Ex 3: Consider data collected concerning the population in various postal codes designated by the Boolean strings below:

First Letter of Postal code	A	В	G	Н	I	J	M	T
U designates the Universal set U =	1	1	1	1	1	1	1	1
$B_1 =$	0	1	0	1	1	0	0	0
B_1 designates postal codes where population ≤ 1 million								
$B_2 =$	1	0	0	0	0	1	0	0
B_2 designates postal codes where								
1 million $<$ pop. \le 2 million								
$B_3 =$	0	0	1	0	1	0	1	1
B_3 designates postal codes where								
2 million $<$ pop. \le 3 million								
$B_4 =$	0	0	1	0	0	1	0	0
B_4 designates postal codes where the majority of population speak French								

Form a Boolean string B_i for each condition below and using the results write the final set S_i :

- a) Universal set
- b) Set where (1 million < pop. \le 3 million)
- c) (Majority speak French) and (2 million < pop. ≤ 3 million)
- d) A set that designates if there is some postal code where pop. has been omitted (data error)
- e) A set that designates if a postal code exists in more than one pop. size (data error)