Centers and automorphisms of PI quantum matrix algebras

arXiv: 2207.11956

AMS Special Session on Artin-Schelter Regular Algebras and Related Topics Fresno, CA May 6, 2023

> Jason Gaddis Miami University

Joint work with...

Thomas Lamkin UCSD

Setup

Let $\ensuremath{\Bbbk}$ be an algebraically closed field of characteristic zero.

Definition

Let $\mathbf{p}=(p_{ij})\in M_n(\Bbbk^{\times})$ be multiplicatively antisymmetric and let $\lambda\in \Bbbk^{\times}$.

The $(n \times n)$ multi-parameter quantum matrix algebra $\mathcal{O}_{\lambda,\mathbf{p}}(M_n(\Bbbk))$ is the \Bbbk -algebra generated by $\{x_{ij}\}_{1\leq i,j\leq n}$ subject to the relations

$$x_{lm}x_{ij} = \begin{cases} p_{li}p_{jm}x_{ij}x_{lm} + (\lambda - 1)p_{li}x_{im}x_{lj} & l > i, m > j \\ \lambda p_{li}p_{jm}x_{ij}x_{lm} & l > i, m \leq j \\ p_{jm}x_{ij}x_{lm} & l = i, m > j. \end{cases}$$

For $q \in \mathbb{k}^{\times}$, the single-parameter $\mathcal{O}_q(M_n(\mathbb{k}))$ is obtained from the above definition by setting $p_{ij} = q$ for i > j and $\lambda = q^{-2}$.

It is well-known that $\mathcal{O}_{\lambda,p}(M_n(\Bbbk))$ is Artin-Schelter regular of global and GK dimension n^2 . In particular, $\mathcal{O}_{\lambda,p}(M_n(\Bbbk))$ may be presented as an iterated Ore extension.

The quantum determinant

The quantum determinant of $\mathcal{O}_{\lambda,\mathbf{p}}(M_n(\mathbb{k}))$ is defined as

$$D_{\lambda,\mathbf{p}} = \sum_{\pi \in S_n} \left(\prod_{\substack{1 \leq i < j \leq n \\ \pi(i) > \pi(j)}} (-p_{\pi(i),\pi(j)}) \right) x_{1,\pi(1)} x_{2,\pi(2)} \cdots x_{n,\pi(n)}.$$

The element $D_{\lambda,p}$ is normal in $\mathcal{O}_{\lambda,p}(M_n(\mathbb{k}))$. In the single-parameter case it is central.

Automorphisms

The group of scalar automorphisms of $\mathcal{O}_q(M_n(\Bbbk))$ is denoted

$$\mathcal{G} = \{\sigma \in \operatorname{Aut}(\mathcal{O}_q(\mathit{M}_n(\Bbbk))) : \sigma(\mathit{x}_{ij}) = \alpha_{ij}\mathit{x}_{ij} \text{ for some } \alpha \in \Bbbk^\times\}.$$

Define $\tau \in Aut(\mathcal{O}_q(M_n(\Bbbk)))$ by $\tau(x_{ij}) = x_{ji}$.

The Launois-Lenagan conjecture

Let $q \in \mathbb{k}^{\times}$ be a nonroot of unity. Then $\operatorname{Aut}(\mathcal{O}_q(M_n(\mathbb{k}))) = G \rtimes \{\tau\}$.

- The case n = 2 was first proved by Alev and Chamarie.
- Launois and Lenagan proved the case n = 3, motivating the above conjecture.
- The conjecture was resolved by Yakimov.

Motivation

Does the Launois-Lenagan conjecture hold in the case that q is a root of unity? More generally, does it hold for PI multi-parameter quantum matrix algebras?

Discriminants

Let A be a k-algebra and C a central subalgebra which is a domain and such that A is finitely generated over C. Let F be a localization of C such that $A_F := A \otimes_C F$ is free (and finitely generated) over F. Set $w = \operatorname{rank}_F(A_F) < \infty$.

Left-multiplication gives a natural embedding

$$\operatorname{Im}:A \to A_F \to \operatorname{End}_F(A_F) \cong M_w(F).$$

The regular trace is then the composition

$$\operatorname{\mathsf{tr}}_{\operatorname{\mathsf{reg}}}:A \xrightarrow{\operatorname{\mathsf{Im}}} M_w(F) \xrightarrow{\operatorname{\mathsf{tr}}_{\operatorname{int}}} F.$$

If A is free over C of rank $w < \infty$, then the image of tr_{reg} is in C. Let $\{a_1, \ldots, a_w\}$ be a basis for A over C. The discriminant of A over C is

$$d(A/C) = \det(\operatorname{tr}_{\operatorname{reg}}(a_i a_j)_{i,j=1}^w) \in C.$$

Discriminants

Reflexive hull discriminant

Let A be a prime k-algebra that is free over its center Z and such that the image of tr is in Z. Suppose that $X = \operatorname{Spec} Z$ is an affine normal k-variety.

Let U be an open subset of X such that $\operatorname{codim}(X \setminus U) = 2$. If if there exists an element $d \in Z$ such that the principal ideal (d) of Z agrees with d(A/C) on U, then

$$d(A/Z) =_{Z^{\times}} d.$$

\mathcal{P} -discriminants

Let A be a k-algebra with center Z. Let $\mathcal P$ be a property defined for k-algebras that is invariant under algebra isomorphisms. The $\mathcal P$ -locus of A is

$$L_{\mathcal{P}}(A) := \{ \mathfrak{m} \in \mathsf{Maxspec}(Z) \mid Z_{\mathfrak{m}} \text{ has property } \mathcal{P} \}.$$

The \mathcal{P} -discriminant ideal is

$$I_{\mathcal{P}}(A) := \bigcap_{\mathfrak{m} \in L_{\mathcal{P}}(A)} \mathfrak{m} \subseteq Z.$$

The 2×2 multi-parameter case

The relations in $M = \mathcal{O}_{\lambda,p}(M_2(\Bbbk))$ are

$$x_{12}x_{11} = p_{12}x_{11}x_{12} x_{21}x_{11} = (\lambda p_{21})x_{11}x_{21}$$

$$x_{22}x_{12} = (\lambda p_{21})x_{12}x_{22} x_{22}x_{21} = p_{12}x_{21}x_{22}$$

$$x_{21}x_{12} = (\lambda p_{21})p_{21}x_{12}x_{21} x_{22}x_{11} = x_{11}x_{22} + (\lambda - 1)p_{21}x_{12}x_{21}.$$

Theorem (G-Lamkin)

Suppose p_{12} and λp_{12} are roots of unity whose orders are relatively prime. Set $\ell = \text{lcm}(\text{ord}(p_{12}), \text{ord}(\lambda p_{21}))$.

• The algebra M is free over its center and

$$Z = \mathcal{Z}(M) = \mathbb{k}[x_{11}^{\ell}, x_{12}^{\ell}, x_{21}^{\ell}, x_{22}^{\ell}].$$

• The discriminant of M over Z is

$$d(M/Z) =_{\mathbb{R}^{\times}} (x_{12}x_{21}D_{\lambda,\mathbf{p}})^{\ell^{4}(\ell-1)}.$$

• The automorphism group of M satisfies the Launois-Lenagan conjecture. That is,

$$\operatorname{Aut}(M)=G\rtimes\{\tau\}.$$

Recall that $\mathcal{O}_q(M_n(\Bbbk))$ is generated by $\{x_{ij}\}_{1\leq i,j\leq n}$ subject to the relations

$$x_{ij}x_{kl} = \begin{cases} x_{kl}x_{ij} + (q - q^{-1})x_{il}x_{kj} & k > i, l > j \\ qx_{kl}x_{ij} & k > i, l = j \\ qx_{kl}x_{ij} & k = i, l > j \\ x_{ij}x_{lm} & k > i, l < j. \end{cases}$$

We study $\mathcal{O}_q(M_n(\Bbbk))$ under the hypothesis that $\operatorname{ord}(q) = m \geq 3$ is odd.

Our goal will be to give a full presentation for $Z=\mathcal{Z}(\mathcal{O}_q(M_n(\Bbbk)))$.

In the single-parameter case, the quantum determinant is central and

$$D:=D_q=\sum_{\pi\in S_n}(-q)^{l(\pi)}x_{1,\pi(1)}x_{2,\pi(2)}\cdots x_{n,\pi(n)}.$$

Let $I, J \subset \{1, \dots, n\}$ with $|I| = |J| = k \ge 1$. The (I, J)-quantum minor D(I, J) is the quantum determinant of the subalgebra generated by $\{x_{ij} \mid i \in I, j \in J\}$.

For $1 \le t \le n$, let

$$D(t) := D(\{1,\ldots,t\},\{n-t+1,\ldots,n\}).$$

Theorem (Jakobsen, Zhang)

Under the above hypotheses, Z is generated by the elements

$$x_{ij}^m$$
, D , $Y_{tr} := D(t)^r \tau (D(n-t)^{m-r})$

for $1 \le i, j, t \le n$ and $0 \le r \le m$.

Let $A_t = (x_{ij}^m)_{1 \le i \le t, n-t+1 \le j \le n}$ and $B_t = (x_{ij}^m)_{n-t+1 \le i \le n, 1 \le j \le t}$ for $1 \le t \le n$.

With respect to a certain monomial ordering \leq , the following families of elements form a Gröbner basis of the ideal I that they generate:

- $D^m \det(x_{ij}^m)$,
- $Y_{ti}Y_{tj} Y_{t,i+j} \det(B_{n-t})$ if i + j < m,
- $Y_{ti}Y_{tj} \det(A_t)\det(B_{n-t})$ if i + j = m,
- $Y_{ti}Y_{tj} Y_{t,i+j-m} \det(A_t)$ if i + j > m,

for $1 \le t \le n-1$.

Theorem (G-Lamkin)

Assume $m \ge 3$ is odd. Let

$$T = k[x_{ij}^m, Y_{tr}, D \mid 1 \le i, j \le n, 1 \le t \le n - 1, 1 \le r \le m - 1]$$

and let R = T/I. Then $Z \cong R$. Additionally,

- 1. Z is not Gorenstein.
- 2. $\mathcal{O}_q(M_n(\mathbb{k}))$ is not projective over Z.
- 3. $\mathcal{O}_q(M_n(\mathbb{k}))$ is not Azumaya over Z.

Automorphisms of $\mathcal{O}_q(M_n(\mathbb{k}))$

Theorem (G-Lamkin)

There are automorphisms ϕ and ψ of $\mathcal{O}_q(M_n(\Bbbk))$ given by

$$\phi: x_{ij} \mapsto \begin{cases} x_{11} + D(\{2, \dots, n\}, \{2, \dots, n\})^{m-1} & i = j = 1 \\ x_{ij} & (i, j) \neq (1, 1), \end{cases}$$

$$\psi: x_{ij} \mapsto \begin{cases} x_{ij} & (i, j) \neq (n, n) \\ x_{nn} + D(\{1, \dots, n-1\}, \{1, \dots, n-1\})^{m-1} & i = j = n. \end{cases}$$

The proper subgroup of $\operatorname{Aut}(\mathcal{O}_q(M_n(\Bbbk)))$ generated by ϕ and ψ is isomorphic to a free group on two generators.

Automorphisms of $\mathcal{O}_q(M_2(\mathbb{k}))$

An automorphism of a polynomial ring $A = F[x_1, \dots, x_t]$ over a field F is elementary if it is of the form

$$(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n)\mapsto (x_1,\ldots,x_{i-1},\alpha x_i+f,x_{i+1},\ldots,x_n),$$

for some $0 \neq \alpha \in F$ and $f \in F[x_1, \dots, \hat{x_i}, \dots, x_n]$. An automorphism of A is tame if it is a composition of elementary automorphisms. An automorphism which is not tame is called wild.

- If n = 1, 2, then every automorphism of A is tame (Jung, van der Kulk)
- When n = 3, Umirbaev and Shestakov proved the Nagata automorphism is wild.

Theorem (G-Lamkin)

There is an automorphism of $\mathcal{O}_q(M_2(\Bbbk))$ which reduces to a wild automorphism of $\Bbbk[x_{12}, x_{21}, x_{11}^m]$.

Automorphisms of $\mathcal{O}_q(M_2(\Bbbk))$

Theorem (G-Lamkin)

If
$$\sigma \in Aut(\mathcal{O}_q(M_2(\Bbbk)))$$
, then $\sigma((x_{12}, x_{21})) = (x_{12}, x_{21})$.

Sketch of proof

• Let $R = \mathbb{k}[x_1, \dots, x_r]/I$. and let \mathfrak{m} be a maximal ideal in R. The embedding dimension of $R_{\mathfrak{m}}$ is minimal number of generators for \mathfrak{m} . Hence,

$$\operatorname{edim}(R_{\mathfrak{m}})=\dim_{\Bbbk}(m/m^2).$$

• If $J_{\mathfrak{m}}$ denotes the Jacobian matrix of I evaluated mod \mathfrak{m} , then

$$\operatorname{rank}(J_{\mathfrak{m}}) = r - \dim_{\Bbbk}(\mathfrak{m}/\mathfrak{m}^2) = r - \operatorname{edim}(R_{\mathfrak{m}}),$$

• Let $\mathcal P$ be the property of being a local ring with embedding dimension $\operatorname{ord}(q)+3$. We compute the $\mathcal P$ -discriminant ideal of $\mathcal O_q(M_2(\Bbbk))$.

Automorphisms of certain subalgebras of $\mathcal{O}_q(M_3(\Bbbk))$

Using techniques similar to the above, we can establish the automorphism groups of certain subalgebras of $\mathcal{O}_q(M_3(\Bbbk))$.

The subalgebra $B_1 = \langle x_{ij} \rangle_{1 \leq i \leq 2, 1 \leq j \leq 3}$ is isomorphic to $\mathcal{O}_q(M_{2,3}(\Bbbk))$, i.e., the 2×3 quantum matrix algebra. The center of B_1 is polynomial and $\operatorname{Aut}(B_1) = \operatorname{Aut}_{\operatorname{gr}}(B_1)$.

Like B_1 , the subalgebra $C=\langle x_{ij}\rangle_{i+j\geq 4}$ is another 6-generated subalgebra of $\mathcal{O}_q(M_3(\Bbbk))$. The center of C is polynomial and $\operatorname{Aut}(C)=\operatorname{Aut}_{\operatorname{gr}}(C)$.

We do not know if there are any 7- or 8-generated subalgebras of $\mathcal{O}_q(M_3(\mathbb{k}))$ which have polynomial centers, though we suspect not.

On the other hand, the subalgebras

$$B_2 = \langle B_1 \cup x_{31} \rangle$$
 and $B_3 = \langle B_2 \cup x_{32} \rangle$

have non-graded automorphisms. In fact, if q is a root of unity then $\operatorname{Aut}(B_2)$ (properly) contains a contains a free group on two generator.

Thank You!