STA 243 Assignment 4.5

5.

(a) Generate a random sample of size n = 100 for the ZIP model using parameters p = 0.3 and $\lambda = 2$.

According to the question, $X_i = R_i Y_i$ where $Y_i's$ have a Poisson(λ) distribution and the $R_i's$ have a Bernoulli(p) distribution, all independent of each other.

first generate 100 $R_i \sim Bernoulli(p)$ and 100 $Y_i \sim Poisson(\lambda)$ and let $X_i = R_i Y_i$

(b)

i. $(\lambda | p, r, x)$ treating p, r, x as fixed in $f(p, \lambda, r, x)$

$$f(\lambda|p,r,x) \propto \lambda^{a-1} e^{-b\lambda} \prod_{i=1}^{n} e^{-\lambda r_i} \lambda^{x_i}$$
$$\propto \lambda^{a+\sum_{i} x_i - 1} e^{-(b+\sum_{i} r_i)\lambda}$$

which is the pdf of Gamma $(a + \sum_{i} x_i, b + \sum_{i} r_i)$ with shape and rate parameters.

ii. $(p|\lambda, r, x)$ treating λ, r, x as fixed in $f(p, \lambda, r, x)$

$$f(p|\lambda, r, x) \propto \prod_{i=1}^{n} p^{r_i} (1-p)^{1-r_i}$$

 $\propto p^{(\sum_{i} r_i + 1) - 1} (1-p)^{(n-\sum_{i} r_i + 1) - 1}$

which is the pdf of Beta($\sum_{i} r_i + 1, n - \sum_{i} r_i + 1$).

iii.

 $(r_i|\lambda, p) \sim Bernoulli(p)$ and $(x_i|r, \lambda, p) \sim Poisson(\lambda r_i)$ and etc.

 r_i 's are independent. x_i 's are independent.

$$f(r_{i}|\lambda, p, x) = \frac{f(r_{i}, x|\lambda, p)}{f(x_{i}|\lambda, p)}$$

$$= \frac{f(r_{i}, x, \lambda|p)}{f(x_{i}|\lambda, p)f(\lambda|p)}$$

$$= \frac{f(r_{i}, x, \lambda, p)}{f(x_{i}|\lambda, p)f(\lambda|p)f(p)}$$

$$= \frac{e^{-\lambda r_{i}}(\lambda r_{i})^{x_{i}}p^{r_{i}}(1-p)^{1-r_{i}}}{x_{i}!(f(x|\lambda, p)}$$

$$= \frac{e^{-\lambda r_{i}}(\lambda r_{i})^{x_{i}}p^{r_{i}}(1-p)^{1-r_{i}}}{x_{i}!(f(x|r_{i}=1, \lambda, p)p + f(x|r_{i}=0, \lambda, p))(1-p)}$$

so that

$$P(r_{i} = 1 | \lambda, p, x) = \frac{e^{-\lambda} \lambda^{x_{i}} p}{x_{i}! \left(\frac{(\lambda r_{i})^{x_{i}} e^{-\lambda r_{i}}}{x_{i}!} | r_{i} = 0(1 - p) + \frac{(\lambda r_{i})^{x_{i}} e^{-\lambda r_{i}}}{x_{i}!} | r_{i} = 1 p\right)}$$

$$= \frac{e^{-\lambda} p}{(r_{i})^{x_{i}} e^{-\lambda r_{i}} | r_{i} = 0(1 - p) + (r_{i})^{x_{i}} e^{-\lambda r_{i}} | r_{i} = 1 p)}$$

$$= \frac{e^{-\lambda} p}{I_{\{x_{i} = 0\}}(1 - p) + e^{-\lambda} p}$$

so that $(r_i|\lambda, p, x) \sim Bernoulli(\frac{e^{-\lambda}p}{I_{\{x_i=0\}}(1-p)+e^{-\lambda}p})$ (c).

Histogram of sample of lambda

Histogram of sample of p

bayesian confidence intervals,

for p

lower upper ## a=1,b=1 0.1644786 0.3293876 ## a=2,b=1 0.1644616 0.3293660 ## a=1,b=2 0.1688772 0.3349578 ## a=2,b=2 0.1654792 0.3306579

for λ

lower upper ## a=1,b=1 1.712693 2.898500 ## a=2,b=1 1.748036 2.944514 ## a=1,b=2 1.613526 2.730673 ## a=2,b=2 1.672202 2.816774

We can see that the true value for p = 0.3 and $\lambda = 2$ are included in the confidence intervals.