The first first state of the st

CLAIMS

What is claimed is:

1	1.	A method comprising:
2		receiving an application program;
3		compiling the application program into a first compiled version for execution by a
4		first processor;
5		executing the first compiled version using the first processor;
6		capturing profile data during the execution of the first compiled version; and
7		compiling the application program into a second compiled version for execution
8		by a second processor, the compiling of the second compiled version
9		including optimization based at least in part on the captured profile data.
1	2.	The method of claim 1, further comprising storing the profile data in a memory.
1	3.	The method of claim 1, further comprising executing the second compiled version
2		using the second processor.
1	4.	The method of claim 1, wherein the first compiled version is instrumented with
2		monitoring instructions to direct the capture of profile data.
1	5.	The method of claim 1, wherein the second processor is an embedded processor.
1	6.	The method of claim 5, wherein the second processor is not capable of capturing
2		profile data.

11

1	7.	The method of claim 5, wherein the second processor is not capable of generating
2		external communications.
1	8.	The method of claim 1, wherein the first processor is a host processor for a device
2		and wherein the device includes the second processor.
1	9.	The method of claim 1, wherein compiling the application program into a first
2		compiled version utilizes a first compiler and wherein compiling the application
3		program into a second compiled version utilizes a second compiler.
1	10.	The method of claim 1, wherein compiling the application program into a first
2		compiled version and compiling the application program into a second compiled
3		version are performed with a single compiler.
1	11.	A machine-readable medium having stored thereon data representing instructions
2		that, when executed by a processor, cause the processor to perform operations
3		comprising:
4		receiving an application program;
5		compiling the application program into a first compiled version for execution by a
6		first processor;
7		executing the first compiled version using the first processor;
8		capturing profile data during the execution of the first compiled version; and
9		compiling the application program into a second compiled version for execution
10		by a second processor, the compiling of the second compiled version

Docket No: 42390P11848 Express Mail No: EL 899343575 US

including optimization based at least in part on the captured profile data.

- 1 12. The medium of claim 11, wherein the instructions include instructions that, when
- 2 executed by a processor, cause the processor to perform operations comprising
- 3 storing the profile data in a memory.
- 1 13. The medium of claim 11, wherein the instructions include instructions that, when
- 2 executed by a processor, cause the processor to perform operations comprising
- 3 executing the second compiled version using the second processor.
- 1 14. The medium of claim 11, wherein the first compiled version is instrumented with
- 2 monitoring instructions to direct the capture of profile data.
- 1 15. The medium of claim 11, wherein the second processor is an embedded processor.
- 1 16. The medium of claim 15, wherein the second processor is not capable of
- 2 capturing profile data.
- 1 17. The medium of claim 15, wherein the second processor is not capable of
- 2 generating external communications.
- 1 18. The medium of claim 11, wherein the first processor is a host processor for a
- 2 device and wherein the device includes the second processor.
- 1 19. The medium of claim 11, wherein compiling the application program into a first
- 2 compiled version utilizes a first compiler and wherein compiling the application
- 3 program into a second compiled version utilizes a second compiler.

8

9

10

11

The medium of claim 11, wherein compiling the application program into a first compiled version and compiling the application program into a second compiled version are performed with a single compiler.

1 21. A system comprising:

- one or more memories, data being stored within the one or memories including a

 first compiler and a second compiler, the first compiler compiling an

 application program into a first compiled version;
- a host microprocessor, the host microprocessor executing the first compiled version, the host microprocessor capturing profile data during the execution of the first compiled version; and
 - a target processor, the second compiler compiling the application code into a second compiled version for execution by the target processor, the second compiled version being optimized based at least in part on the captured profile data.
- The system of claim 21, wherein the captured profile data is stored in the one or more memories.
- The system of claim 21, wherein the target microprocessor is an embedded microprocessor.
- The system of claim 23, wherein the target microprocessor does not have the capability of capturing a profile data.

1	25.	The system of claim 23, wherein the target microprocessor does not have the
2		capability of generating external communications.
1	26.	A method of optimizing the execution of a program by an embedded processor
2		comprising:
3		obtaining the program;
4		compiling the program to generate a first set of compiled code, the first set of
5		compiled code being instrumented to monitor the execution of the first set
6		of compiled code;
7		executing the first set of compiled code on a host processor, the host processor
8		being contained in a device that also contains the embedded processor;
9		capturing profile information during the execution of the first set of compiled
10		code and saving the profile information in a memory;
11		compiling the program to generate a second set of compiled code, the second set
12		of compiled code being optimized based at least in part on the captured
13		profile information; and
14		executing the second set of compiled code using the embedded processor.
1	27.	The method of claim 26, wherein the first set of compiled code is compiled
2		utilizing a first compiler and the second set of compiled code is compiled utilizing
3		a second compiler.
1	28.	The method of claim 26, wherein the first set of compiled code and the second set
2		of compiled code are compiled utilizing a single compiler.