Zhengdong Zhang

Email: zhengz@uoregon.edu Course: MATH 649 - Abstract Algebra

Instructor: Professor Sasha Polishchuk

Homework - Week 3

ID: 952091294

Term: Spring 2025

Due Date: 23^{th} April, 2025

Problem 11.5.5

Let \mathbb{K}/\mathbb{k} be a Galois extension, and \mathbb{L} , \mathbb{M} be intermediate fields. Denote by $\mathbb{L}\vee\mathbb{M}$ the minimal subfield of \mathbb{K} containing \mathbb{L} and \mathbb{M} .

- (a) $(\mathbb{L} \cap \mathbb{M})^* = \langle \mathbb{L}^*, \mathbb{M}^* \rangle$.
- (b) $(\mathbb{L} \vee \mathbb{M})^* = \mathbb{L}^* \cap \mathbb{M}^*$.
- (c) Assume that \mathbb{L}/\mathbb{k} is normal. Then $Gal(\mathbb{L}\vee\mathbb{M}/\mathbb{M})\cong Gal(\mathbb{L}/(\mathbb{L}\cap\mathbb{M}))$.

Solution:

- (a) We know that $L \cap M \subseteq L$, by the Galois correspondence, we have $L^* \subseteq (L \cap M)^*$. Similarly, we can see that $M^* \subseteq (L \cap M)^*$. Note that $\langle L^*, M^* \rangle$ is the smallest subgroup containing L^* and M^* . This implies $(L \cap M)^*$ contains $\langle L^*, M^* \rangle$. On the other hand, suppose $a \in \mathbb{K}$ is fixed by every element in the group $\langle L^*, M^* \rangle$, so a is invariant under every element in L^* and M^* . This is the same as $a \in L$ and $a \in M$, so $a \in L \cap M$. This proves $\langle L^*, M^* \rangle^* \subseteq L \cap M$, by Galois correspondence, we have $(L \cap M)^* \subseteq \langle L^*, M^* \rangle$. Thus, we can conclude that $(L \cap M)^* = \langle L^*, M^* \rangle$.
- (b) By definition, we know that $L \vee M \supseteq L$ and $L \vee M \supseteq M$, by Galois correspondence, we have $(L \vee M)^* \subseteq L^*$ and $(L \vee M)^* \subseteq M^*$, so $(L \vee M)^* \subseteq L^* \cap M^*$. On the other hand, $L^* \cap M^* \subseteq L^*$ and $L^* \cap M^* \subseteq M^*$, by Galois correspondence, we have $(L^* \cap M^*)^* \supseteq L$ and $(L^* \cap M^*)^* \supseteq M$. Note that $L \vee M$ is the smallest subfield containing L and M, so $(L^* \cap M^*)^* \supseteq L \vee M$, by Galois correspondence, we have $L^* \cap M^* \subseteq (L \vee M)^*$. Thus, we can conclude that $(L \vee M)^* = L^* \cap M^*$.
- (c) Consider the field extension

Problem 11.5.6

Let \mathbb{K}/\mathbb{k} be a finite Galois extension and p be a prime number.

- (a) \mathbb{K} has an intermediate subfield \mathbb{L} such that $[\mathbb{K} : \mathbb{L}]$ is a prime power.
- (b) If \mathbb{L}_1 and $\mathbb{L}_{\mathbb{K}}$ are intermediate subfields with $[\mathbb{K} : \mathbb{L}_1]$, $[\mathbb{K} : \mathbb{L}_2]$ both p-powers, and $[\mathbb{L}_1 : \mathbb{k}]$, $[\mathbb{L}_2 : \mathbb{k}]$ both prime to p, then \mathbb{L}_1 is \mathbb{L}_1 is \mathbb{L} -isomorphic to \mathbb{L}_2 .

Solution:

Problem 11.5.7

Let $f \in \mathbb{k}[x]$, \mathbb{K}/\mathbb{k} be a splitting field for f over \mathbb{k} , and $G := \operatorname{Gal}(\mathbb{K}/\mathbb{k})$.

- 1. G acts on the set of the roots of f.
- 2. G acts transitively if f is irreducible.
- 3. If f has no multiple roots and G acts transitively then f is irreducible.

Solution:

Problem 11.6.2

Let \mathbb{k} be a field, p(x) be an irreducible polynomial in $\mathbb{k}[x]$ of degree n, and let \mathbb{K} be a Galois extension of \mathbb{k} containing a root α of p(x). Let $G = \operatorname{Gal}(\mathbb{K}/\mathbb{k})$, and G_{α} be the set of all $\sigma \in G$ with $\sigma(\alpha) = \alpha$. Then:

- (a) $[G: G_{\alpha}] = n;$
- (b) $G_{\alpha}^* = \mathbb{k}(\alpha)$;
- (c) If G_{α} is normal in G then p(x) splits in the fixed field of G_{α} .

Solution:

Problem 11.6.3

Let $\mathbb{k}(\alpha)/\mathbb{k}$ be a field extension obtained by adjoining a root α of an irreducible separable polynomial $f \in \mathbb{k}[x]$. Then there exists an intermediate field $\mathbb{k} \subseteq \mathbb{F} \subseteq \mathbb{k}(\alpha)$ if and only if $\operatorname{Gal}(f;\mathbb{k})$ is imprimitive (as a permutation group on the roots), in which case \mathbb{F} can be chosen so that $[\mathbb{F} : \mathbb{k}]$ is equal to the number of imprimitive blocks.

Solution:

Problem 11.6.6

Find all subfields of the splitting field of $x^3 - 7$ over \mathbb{Q} . Which of the subfields are normal over \mathbb{Q} ?

Solution:

Problem 11.6.7

Let \mathbb{K} be a splitting field for $x^4 + 6x^2 + 5$ over \mathbb{Q} . Find subfields of \mathbb{K} .

Solution: