Licenciatura em Engenharia Informática

Algoritmos e Estruturas de Dados

speed run

João Catarino NMec: 93096 Rúben Garrido NMec: 107927 Nuno Vieira NMec: 107283

22 de novembro de 2022

1 Introdução

Este trabalho tem como objetivo desenvolver algoritmos que sejam capazes de encontrar o menor número de passos necessários para resolver o seguinte problema:

2 Soluções

A solução original utiliza uma função recursiva para verificar todas as combinações de passos a todas as velocidades possíveis dentro dos limites de cada casa, guardando sempre a melhor solução encontrada até ao momento. Esta possui um tempo de execução com ordem de grandeza 10^{154} (em anos) para a resolução do caso n=800. Com vista em obter a solução em tempo aceitável, criámos duas soluções capazes de o fazer na ordem dos microsegundos. A primeira altera apenas ligeiramente a solução original. A segunda é não recursiva e utiliza o princípio da solução anterior com algumas optimizações.

2.1 Original

A solução dada é uma solução recursiva que itera sobre todas as possibilidades de percurso, guardando a melhor solução até ao momento.

Esta parte das soluções de maior número de passos (menor velocidade por passo) para as de menor número de passos (maior velocidade por passo) dentro das regras do problema.

Pelo facto de a solução ser recursiva, à medida que o tamanho do problema aumenta, o número de chamadas recursivas também aumenta, o que leva a um tempo de execução exponencial. Por exemplo, a partir de n=35, o tempo de execução é superior a 1 segundo, pelo que esta não é, portanto, uma solução viável para o problema.

2.2 Original Improved

Esta solução introduz duas pequenas mudanças no código original, que, no entanto, geram alterações significativas no seu comportamento.

Em primeiro lugar, é introduzido controlo de fluxo através de um valor de retorno boolean (implementado como inteiro).

```
return 1;
}
return 0;
```

Se uma sequência de chamadas recursivas chegar a uma solução, a última chamada retorna 1.

```
if (solution_2_recursion(move_number + 1,position +
new_speed,new_speed,final_position))
    return 1;
```

Se for este o caso, as chamadas anteriores retornarão também 1. Isto significa que o programa grava apenas a primeira solução que encontrar.

```
// Solution found
if(position == final_position && speed == 1)
{
   solution_2.n_moves = move_number;
   return 1;
}
```


Tendo isto, torna-se imperativo que o programa encontre a melhor solução possível à primeira tentativa. Isto implica que o "carro" se mova o mais rápido possível em qualquer passo para obter o menor número de passos. A segunda alteração garante essa condição ao fazer com que o programa itere desde as maiores velocidades para as menores.

```
for(i = 0;i <= new_speed && new_speed <= max_road_speed[
position + i];i++)
;</pre>
```

2.3 Advance and retreat

Este algoritmo foi feito de raiz. Tem como princípio tentar a qualquer passo avançar com a velocidade mais alta. Em cada passo, a escolha de velocidade é representada por um incremento (-1, 0 ou 1). O programa começa sempre por tentar o maior incremento. Para verificar passos possíveis, utilizam-se os seguintes métodos:

Calcular a distância de paragem para cada velocidade possível em cada passo para evitar correr para além do fim do trajeto:

```
// Sum 1 to n: stopping distance going at speed n
static int sum1ton(int n)
{
   return n * (n + 1) / 2;
}

// Checks if it is possible to stop before or at finalpos going at
   speed from pos
static int valstop(int pos, int speed, int finalpos)
{
   return (pos + sum1ton(speed)) <= finalpos;
}</pre>
```

Verificar, a partir do incremento mais alto, se uma "passada" não quebra os limites de velocidade das casas pelas quais passaria:

```
// Checks if step from pos at speed breaks any of the intermediary
    speed limits
static int valstep(int pos, int speed)
{
    int end = pos + speed;
    for (; pos <= end && speed <= max_road_speed[pos]; pos++)
    ;
    return (pos > end);
}
```

Feito o passo, a escolha de incremento é guardada num array na posição associada ao número do passo. Desta forma, este array guarda as escolhas feitas até ao passo atual. Quando um passo é impossível de executar a qualquer das velocidades possíveis nesse passo, o algoritmo recua um passo e tenta reduzir o incremento de velocidade até que consiga avançar novamente. Não sendo possível avançar com nenhum dos incrementos, o programa recua novamente, e assim sucessivamente.

2.4 Combined

Some text here

PDFs de soluções 3

3.1Original Improved

3.2Advance and retreat

3.3 Combined

4 Tempos de execução e estimativas

4.1 Original

Devido à complexidade do algoritmo, não foi possível obter tempos de execução para n=800, pelo que foi necessário recorrer a estimativas, utilizando o MATLAB.

Em primeiro lugar, procedeu-se ao ajuste de uma função exponencial aos tempos obtidos até n=50. Dado o enorme salto existente de n=50 para n=55, a função a ajustar teria de ser do tipo $a\times e^{bx}$. Assim, utilizando a Curve Fitting Toolbox do MATLAB, obteve-se, para o percurso gerado com o número mecanográfico 107927, a seguinte equação: $y=(6.231\times 10^{-8})\times e^{0.4869x}$.

Possuindo uma função exponencial que se ajusta aos valores obtidos, foi possível, portanto, estimar os tempos de execução para n=800. Deste modo, o tempo de execução previsto é de $9.233\,97\times10^{161}$ segundos, o que equivale a, aproximadamente, $2.968\,74\times10^{154}$ anos.

- (a) Tempos de execução obtidos e função exponencial ajustada.
- (b) Tempo de execução estimado, recorrendo à função ajudada em (a), para n = 800.

Figura 1: Tempos de execução para o algoritmo original.

4.2 Original Improved

Pelo facto de o algoritmo Original Improved efetuar cálculos em tempos com ordem de grandeza 10^{-6} , foi possível obter um tempo de execução para n=800.

Contudo, os valores até n=300 não são fiáveis para ajustar uma reta, pois são constituídos, na sua grande parte, por ruído. Este é causado pelo script de medição de tempo que, devido a questões de arquitetura, não consegue reportar valores temporais tão baixos.

A reta de ajuste foi obtida através da Curve Fitting Toolbox do MATLAB, ao qual se determinou a sua equação $y = (4.341 \times 10^{-9})x + (1.151 \times 10^{-6})$.

Figura 2: Tempos de execução e função exponencial ajustada.

4.3 Advance and retreat

Tal como a solução anterior, o algoritmo Advance and retreat efetua cálculos em tempos bastante baixos (ordem de grandeza 10^{-6}), até n=800. Assim, os valores iniciais de n constituem igualmente ruído.

A reta de ajuste foi obtida através da Curve Fitting Toolbox do MATLAB, ao qual se determinou a sua equação $y=(8.001\times 10^{-9})x+(1.912\times 10^{-6})$.

Figura 3: Tempos de execução e função exponencial ajustada.

4.4 Combined

Some text here

5 Código

5.1 Original Improved

```
#endif
#ifndef SOL2
// Sum 1 to n: stopping distance going at speed n
static int sum1ton(int n)
 return n * (n + 1) / 2;
// Checks if it is possible to stop before or at finalpos going at
    speed from pos
static int valstop(int pos, int speed, int finalpos)
 return (pos + sum1ton(speed)) <= finalpos;</pre>
#endif
#ifdef SOL2
// Improved version of original recursive func
static solution_t solution_2;
static double solution_2_elapsed_time; // time it took to solve the
    problem
static unsigned long solution_2_count; // effort dispended solving
  the problem
static int solution_2_recursion(int move_number,int position,int
   speed, int final_position)
  int i,new_speed;
  // record move
  solution_2_count++;
  solution_2.positions[move_number] = position;
  // Solution found
 if(position == final_position && speed == 1)
    solution_2.n_moves = move_number;
   return 1;
  // Try all legal speeds. Fastest first
  for(new_speed = speed + 1;new_speed >= speed - 1;new_speed--)
   if (new_speed >= 1 && new_speed <= _max_road_speed_ && position</pre>
   + new_speed <= final_position)</pre>
      for(i = 0;i <= new_speed && new_speed <= max_road_speed[</pre>
   position + i];i++)
      if(i > new_speed)
        if (solution_2_recursion(move_number + 1, position +
   new_speed , new_speed , final_position))
```


return 1;

5.2 Advance and retreat

```
static void solve_2(int final_position)
 if(final_position < 1 || final_position > _max_road_size_)
   fprintf(stderr, "solve_2: bad final_position\n");
   exit(1);
 }
 solution_2_elapsed_time = cpu_time();
 solution_2_count = Oul;
 solution_2.n_moves = final_position + 100;
 solution_2_recursion(0,0,0,final_position);
 solution_2_elapsed_time = cpu_time() - solution_2_elapsed_time;
#endif
//
// Dynamic solution
#ifdef SOL3
static solution_t solution_3;
static double solution_3_elapsed_time; // time it took to solve the
    problem
static unsigned long solution_3_count; // effort dispended solving
   the problem
// Checks if step from pos at speed breaks any of the intermediary
   speed limits
static int valstep(int pos, int speed)
 int end = pos + speed;
 for (; pos <= end && speed <= max_road_speed[pos]; pos++)</pre>
  return (pos > end);
}
/* The solution works by increasing the speed as much as possible
 without overstepping the finalpos or breaking any speed limits.
   In a move, if any of the those two checks fail, the program
 attemps to mantain or decrease the speed of the car. If the two
 checks don't work for any of the possible speeds, the program
 moves back one step and retries it with the previous speed reduce
 by one.
static void solution_3_dynamic(int final_position)
  // Current move
 #define move solution_3.n_moves
  // Car position
  #define pos solution_3.positions[move]
  #define nextpos solution_3.positions[move+1]
```



```
// Current speed "choice"
  #define incmax incmaxes[move]
  // Stores the "choice" taken at every move (slowdown, cruise,
  int incmaxes[1 + final_position];
  // Current speed
  int speed = 0;
  pos = 0;
  move = 0;
  incmax = 1;
mainloop:
  while (pos != final_position)
    for (; incmax >= -1; incmax--)
      if (valstop(pos, speed + incmax, final_position) && valstep(
   pos, speed + incmax))
        {
          solution_3_count++;
          // Found valid step, take it
          speed += incmax;
          nextpos = pos + speed;
          move++;
          incmax = 1;
          // Jump to main loop to see if it reaches the
          // end or try the next one, avoiding the fail
          \ensuremath{//} state after the two fors
          goto mainloop;
       }
    }
      There are no possible steps in the current move,
      so lets try the previous move with it's speed reduced by one
      Move the program back one move by reverting
      the prev speed change and by decrementing the
      move count. Then, choose the next smaller speed.
    */
    move --;
    speed -= incmax;
    incmax --;
  }
}
static void solve_3(int final_position)
  if(final_position < 1 || final_position > _max_road_size_)
```


5.3 Combined

Code here

5.4 Ajuste dos dados obtidos utilizando o MATLAB

```
table = load("Path_to_file.txt"); % Change to appropriate file
n = table(:,1); % Road size
t = table(:,2); % Time to find a solution
% Original data plot
figure(1)
plot(n,t)
legend('Original curve')
% Curve fitting
hold on
f = fit(n,t,'exp1'); % Alternatively, one can launch the Curve
   Fitting Toolbox
plot(f,n,t)
title('Time as a function of road size')
xlabel('Road size')
ylabel('Time to find a solution (s)')
% Extend fitted curve on x-axis to [0,800]
x_fit = 0:800;
coefficients = coeffvalues(f); % Get fitted curve coefficients
y_fit = coefficients(1) * exp(coefficients(2)*x_fit); % Equation of
    fitted curve: a*exp(b*x)
figure(2)
plot(x_fit,y_fit)
xlim([0 850]) % Graph would look empty (due to exponential values)
   if no x-lim was applied
title('Time as a function of road size')
xlabel('Road size')
ylabel('Time to find a solution (s)')
```

