Logistic Regression with Julia

ref. Logistic Regression for Classification

May 2022.

Table of Contents

```
Logistic Regression with Julia
```

Import the packages

Load the data

Logistic Regression Equation

Handling missing values

One Hot Encoding

Feature Selection

Check how the data is balanced

Split the Data

Build the model

Predictions

Accuracy

Confusion matrix

False negative rate

Class Imbalance and SMOTE

A new model

Accuracy

Confusion matrix

False negative rate

```
    begin
    using PlutoUI 
    PlutoUI.TableOfContents(indent=true, depth=4, aside=true)
```

Import the packages

```
    begin
    # importing the packages
    using DataFrames ✓ , CSV ✓ , GLM ✓ , Lathe ✓ , MLBase ✓
    using ClassImbalance ✓ , ROCAnalysis ✓
    end
```

Load the data

	Name	Author	User_Rating	Reviews	Price	Year	Gen
1	"10-Day Green Smoothie Cleanse"	"JJ Smith"	4.7	17350	8	2016	"non_fi
2	"11/22/63: A Novel"	"Stephen King"	4.6	2052	22	2011	"fiction
3	"12 Rules for Life: An Antidote to Cha	"Jordan B. Peterson"	4.7	18979	15	2018	"non_fi
4	"1984 (Signet Classics)"	"George Orwell"	4.7	21424	6	2017	"fiction
5	"5,000 Awesome Facts (About Everything	"National Geographic Kids"	4.8	7665	12	2019	"non_fi
6	"A Dance with Dragons (A Song of Ice a	"George R. R. Martin"	4.4	12643	11	2011	"fiction
7	"A Game of Thrones / A Clash of Kings	"George R. R. Martin"	4.7	19735	30	2014	"fiction

```
begin

df = CSV.read("./bestsellers.csv", DataFrame)

first(df, 7)
end
```

🕈 workbook.jl — Pluto.jl

Logistic Regression Equation

$$P = \frac{1}{1 + e^-(a + bX)}$$

Summary Statistics

	variable	mean	min	median	max	nuniqu
1	:Name	nothing	"10-Day Green Smoothie Cleanse"	nothing	"You Are a Badass: How to Stop Doubtin	351
2	:Author	nothing	"Abraham Verghese"	nothing	"Zhi Gang Sha"	248
3	:User_Rating	4.61836	3.3	4.7	4.9	nothing
4	:Reviews	11953.3	37	8580.0	87841	nothing
5	:Price	13.1	0	11.0	105	nothing
6	:Year	2014.0	2009	2014.0	2019	nothing
7	:Genre	nothing	"fiction"	nothing	"non_fiction"	2

Here we are going to use the :Genre as our target variable (the one we want to make a prediction for). We will need to *one-hot-encode* this variable.

```
▶ (550, 7)
- size(df)
```

Handling missing values

In this case we will drop all rows containing a missing value. Other more sophsiticated techniques are possible (imputing using the mean ...).

	Name	Author	User_Rating	Reviews	Price	Year	Ge
1	"10-Day Green Smoothie Cleanse"	"JJ Smith"	4.7	17350	8	2016	"non_f
2	"11/22/63: A Novel"	"Stephen King"	4.6	2052	22	2011	"ficti
3	"12 Rules for Life: An Antidote to Cha	"Jordan B. Peterson"	4.7	18979	15	2018	"non_f
4	"1984 (Signet Classics)"	"George Orwell"	4.7	21424	6	2017	"ficti
5	"5,000 Awesome Facts (About Everything	"National Geographic Kids"	4.8	7665	12	2019	"non_f
6	"A Dance with Dragons (A Song of Ice a	"George R. R. Martin"	4.4	12643	11	2011	"ficti
7	"A Game of Thrones / A Clash of Kings	"George R. R. Martin"	4.7	19735	30	2014	"ficti
8	"A Gentleman in Moscow: A Novel"	"Amor Towles"	4.7	19699	15	2017	"ficti
9	"A Higher Loyalty: Truth, Lies, and Le	"James Comey"	4.7	5983	3	2018	"non_f
0	"A Man Called Ove: A Novel"	"Fredrik Backman"	4.6	23848	8	2016	"ficti
: 1	nore						

```
▶ (550, 7)
- size(df) # there was no missing values actually!
```

One Hot Encoding

By one hot encoding the :Genre feature, we will get two new columns in our dataframe, namely:

- fiction
- non fiction

One-Hot Encoding

Vinita Silaparasetty

```
'LocalResource' **will not work** when you share the script/notebook with so meone else, _unless they have those resources at exactly the same location on their file system_.

## Recommended alternatives (images)

1. Go to [imgur.com](https://imgur.com) and drag&drop the image to the page.
Right click on the image, and select "Copy image location". You can now use the image like so: 'PlutoUI.Resource("https://i.imgur.com/SAzsMMA.jpg")'.

2. If your notebook is part of a git repository, place the image in the repository and use a relative path: 'PlutoUI.LocalResource("../images/cat.jpg")'.
```

	Name	Author	User_Rating	Reviews	Price	Year	Ger
1	"10-Day Green Smoothie Cleanse"	"JJ Smith"	4.7	17350	8	2016	"non_fi
2	"11/22/63: A Novel"	"Stephen King"	4.6	2052	22	2011	"fictio
3	"12 Rules for Life: An Antidote to Cha	"Jordan B. Peterson"	4.7	18979	15	2018	"non_fi
ŀ	"1984 (Signet Classics)"	"George Orwell"	4.7	21424	6	2017	"fictio
-	"5,000 Awesome Facts (About Everything	"National Geographic Kids"	4.8	7665	12	2019	"non_fi

```
▶ (550, 9)
- size(df) # 9 columns
```

```
▶[:Name, :Author, :User_Rating, :Reviews, :Price, :Year, :Genre, :non_fiction, :fiction]
- names(df)
```

Feature Selection

first(df, 5)

end

We are going to select the numerical features of our dataframe and :fiction as our target (which is derived form :Genre and one-hot-encoded)

	User_Rating	Reviews	Price	Year	fiction
1	4.7	17350	8	2016	false
2	4.6	2052	22	2011	true
3	4.7	18979	15	2018	false
4	4.7	21424	6	2017	true
5	4.8	7665	12	2019	false
6	4.4	12643	11	2011	true
7	4.7	19735	30	2014	true

```
    begin
    ndf = df[:, [:User_Rating, :Reviews, :Price, :Year, :fiction]]
    first(ndf, 7)
    end
```

Check how the data is balanced

```
• using FreqTables ✓

classes =

NamedArrays.NamedVector{Int64, Vector{Int64}, Tuple{OrderedCollections.OrderedDict{Bool, Int64}}}: [310, 240]

classes = freqtable(target_final[:fiction])
```

It looks like our dataset is slightly unbalanced with more non-fiction books than fiction books

Vinita Silaparasetty

```
'LocalResource' **will not work** when you share the script/notebook with so meone else, _unless they have those resources at exactly the same location on their file system_.

## Recommended alternatives (images)

1. Go to [imgur.com](https://imgur.com) and drag&drop the image to the page.
Right click on the image, and select "Copy image location". You can now use the image like so: 'PlutoUI.Resource("https://i.imgur.com/SAZSMMA.jpg")'.

2. If your notebook is part of a git repository, place the image in the repository and use a relative path: 'PlutoUI.LocalResource("../images/cat.jpg")

1. **Commended The same location of the page in the page.

1. **Commended The same location of the page in the page.

1. **Commended The same location of the page in the page.

2. **If your notebook is part of a git repository, place the image in the repository and use a relative path: 'PlutoUI.LocalResource("../images/cat.jpg")

2. **If your notebook is part of a git repository."
```

Split the Data

```
using Lathe ✓ .preprocess:TrainTestSplit
```

```
▶ ((410, 5), (140, 5))
 • begin
      train, test = TrainTestSplit(ndf, .75)
      size(train), size(test)
```

Build the model

```
fm = FormulaTerm
                         Response:
                                    fiction(unknown)
                          Predictors:
                                    User_Rating(unknown)
                                    Reviews(unknown)
                                    Price(unknown)
                                    Year (unknown)
       • fm = @formula(fiction ~ User_Rating + Reviews + Price + Year)
St \`ats \texttt{Models.Table} Regression \texttt{Model} \{\texttt{GeneralizedLinearModel} \{\texttt{GLM.GlmResp} \{\texttt{Vector} \{\texttt{Float64}\}, \texttt{Binomial} \{\texttt{Float64}\}, \texttt{LogitLink}\}, \texttt{(Institute of the first of the
fiction ~ 1 + User_Rating + Reviews + Price + Year
Coefficients:
                                                                                                                                                                                                                                    z Pr(>|z|)
                                                                                                    Coef.
                                                                                                                                              Std. Error
                                                                                                                                                                                                                                                                                                                    Lower 95%
                                                                                                                                                                                                                                                                                                                                                                                             Upper 95%
                                                                   227.78
                                                                                                                                         74.3908
                                                                                                                                                                                                                    3.06
2.31
                                                                                                                                                                                                                                                               0.0022
                                                                                                                                                                                                                                                                                                         81.9764
                                                                                                                                                                                                                                                                                                                                                                              373.583
(Intercept)
```

```
Ùser_Rating
               1.26959
                           0.550483
                                                0.0211
                                                         0.190664
                                                                        2.34852
               6.8363e-5
                           1.20317e-5
                                                         4.47812e-5
                                                                        9.19448e-5
Reviews
                                       5.68
                                                <1e-07
Price
              -0.0339151
                           0.0129206
                                                0.0087
                                                        -0.0592391
                                                                       -0.00859119
              -0.116349
                           0.0372802
                                                0.0018
                                                        -0.189417
                                                                       -0.0432808
 logit = glm(fm, train, Binomial(), LogitLink())
```

Predictions

```
predictions = predict(logit, test);
prediction_class = [x < 0.5 ? false : true for x ∈ predictions];</pre>
```

Accuracy

```
prediction_df = DataFrame(y=test.fiction, ŷ=prediction_class, prob_predicted=predictions);
prediction_df_correctly_classified = prediction_df.y .== prediction_df.ŷ;
accuracy = 0.6357142857142857
 accuracy = prediction_df_correctly_classified |> mean
```

Confusion matrix

We are going to use the ROC curve to evaluate the performance of our current model.

True Class

Positive Negative True Positive False Positive False Negative True Negative

`LocalResource` **will not work** when you share the script/notebook with so meone else, _unless they have those resources at exactly the same location on their file system_.

Recommended alternatives (images)

1. Go to imgur.com and drag&drop the image to the page. Right click on the image, and select "Copy image location". You can now use the image like so: `PlutoUI.Resource("https://i.imgur.com/SAzsMMA.jpg")`.

2. If your notebook is part of a git repository, place the image in the repository and use a relative path: `PlutoUI.LocalResource("../images/cat.jpg")`.

Vinita Silaparasetty

False negative rate

- $ndf_2 = hcat(X_2, y_2);$

```
0.5074626865671642
- false_negative_rate(confusion_matrix)
```

Now we are going to focus on the false negative and try to lower this rate.

Class Imbalance and SMOTE

```
NamedArrays.NamedVector{Int64, Vector{Int64}, Tuple{OrderedCollections.OrderedDict{Bool, Int64}}}: [310, 240]
- classes
```

Let's use the SMOTE technique. SMOTE stands synthetic minority over sampling technique.

```
. X<sub>2</sub>, y<sub>2</sub> = smote(
    ndf[!, [:User_Rating, :Reviews, :Price, :Year]], ndf.fiction,
    #! to tell that we do not want the selected features to be balanced
    k=1, pct_under=200, pct_over=100
    # the value chosen for the percentages are derived from the class imbalacne (classes)
    # thus 200 because max is 310 and minimum is 240 - with 200 we incraese the likelihood of achieving balance
    );

balanced_classes = freqtable(y<sub>2</sub>);
    # smote add some synthetic values - this is why we get 480 in both cases now
```

```
▶[:User_Rating, :Reviews, :Price, :Year, :target]
```

A new model

```
StatsModels.TableRegressionModel{GeneralizedLinearModel{GLM.GlmResp{Vector{Float64}, Binomial{Float64}, LogitLink}, (
target ~ 1 + User_Rating + Reviews + Price + Year
```

Coefficients:

(Intercept)	206.742	48.7467	4.24	<1e-04	111.201	302.284
User_Rating	1.64958	0.348258	4.74	<1e-05	0.967005	2.33215
Reviews	8.19437e-5	8.99482e-6	9.11	<1e-19	6.43142e-5	9.95732e-5
Price	-0.0459172	0.00936165	-4.90	<1e-06	-0.0642657	-0.0275687
Year	-0.10662	0.0244044	-4.37	<1e-04	-0.154452	-0.0587887

```
begin
fm2 = @formula(target ~ User_Rating + Reviews + Price + Year)
logit2 = glm(fm2, ndf2, Binomial(), LogitLink())
end
```

```
predictions<sub>2</sub> = predict(logit<sub>2</sub>, test);
```

```
- prediction₂_class = [x < 0.5 ? false : true for x ∈ predictions₂];</pre>
```

```
prediction2_df = DataFrame(y=test.fiction, ŷ=prediction2_class, prob_predicted=predictions2);
```

```
prediction2_df_correctly_classified = prediction2_df.y .== prediction2_df.ŷ;
```

Accuracy

```
accuracy<sub>2</sub> = 0.6642857142857143
• accuracy<sub>2</sub> = prediction<sub>2</sub>_df_correctly_classified |> mean
```

Confusion matrix

```
confusion<sub>2</sub>_matrix = MLBase.ROCNums{Int64}
    p = 67
    n = 73
    tp = 47
    tn = 46
    fp = 27
    fn = 20

confusion<sub>2</sub>_matrix = MLBase.roc(prediction<sub>2</sub>_df.y, prediction<sub>2</sub>_df.ŷ)
```

False negative rate

```
0.29850746268656714

• false_negative_rate(confusion2_matrix)
```