Maxi Brandstetter, Felix Kirschner, Arne Heimendahl

University of Cologne

September 6, 2018

Outline

- 1 Local and quantum correlation matrices
 - Local correlation matrices

Definition

Let $(X_i)_{1 \leq i \leq m}$ and $(Y_j)_{1 \leq j \leq n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \leq 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

Definition

Let $(X_i)_{1 \leq i \leq m}$ and $(Y_j)_{1 \leq j \leq n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \leq 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

Set of all local correlation matrices: $LC_{m,n}$

Definition

Let $(X_i)_{1 \leq i \leq m}$ and $(Y_j)_{1 \leq j \leq n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \leq 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

Set of all local correlation matrices: $LC_{m,n}$

Lemma

$$LC_{m,n} = conv\{\xi \eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$$

No matter which probabilistic strategy there is a deterministic one which as at least as good as the one one chooses

$$\mathsf{LC}_{\textit{m},\textit{n}} = \mathsf{conv}\{\xi \eta^{\textit{T}} \, | \, \xi \in \{-1,1\}^{\textit{m}}, \eta \in \{-1,1\}^{\textit{n}}\}$$

$$LC_{m,n} \supset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$$

$$\mathsf{LC}_{m,n} = \mathsf{conv}\{\xi \boldsymbol{\eta}^{\mathsf{T}} \,|\, \xi \in \{-1,1\}^m, \boldsymbol{\eta} \in \{-1,1\}^n\}$$

$$\mathsf{LC}_{m,n} = \mathsf{conv}\{\xi \boldsymbol{\eta}^{\mathsf{T}} \,|\, \xi \in \{-1,1\}^m, \boldsymbol{\eta} \in \{-1,1\}^n\}$$

$$LC_{m,n} \supset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$$

 $\xi\eta^T\in LC_{m,n}$ for all $\xi\in\{-1,1\}^m,\eta\in\{-1,1\}^n$ (Choose $X_i\equiv\xi_i,\ Y_j\equiv\eta_j$)

Suffices to show that $LC_{m,n}$ is convex.

$$a_{ij}^{(k)} = \mathbb{E}[X_i^{(k)}Y_j^{(k)}]$$
 for $k \in \{0, 1\}$

Find $(X_i), (Y_j)$ with $|X_i|, |Y_j| \le 1$ almost surely such that

$$\beta a_{ij}^{(0)} + (1 - \beta) a_{ij}^{(1)} = \mathbb{E}[X_i Y_j]$$

for $\beta \in [0,1]$

$$\mathsf{LC}_{\textit{m},\textit{n}} = \mathsf{conv}\{\xi \eta^{\textit{T}} \, | \, \xi \in \{-1,1\}^{\textit{m}}, \eta \in \{-1,1\}^{\textit{n}}\}$$

$$LC_{m,n} \supset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$$

$$\xi\eta^T\in LC_{m,n}$$
 for all $\xi\in\{-1,1\}^m,\eta\in\{-1,1\}^n$ (Choose $X_i\equiv\xi_i,\ Y_j\equiv\eta_j$)

Suffices to show that $LC_{m,n}$ is convex.

$$a_{ij}^{(k)} = \mathbb{E}[X_i^{(k)}Y_j^{(k)}] \text{ for } k \in \{0, 1\}$$

Find $(X_i), (Y_j)$ with $|X_i|, |Y_j| \le 1$ almost surely such that

$$\beta a_{ij}^{(0)} + (1 - \beta) a_{ij}^{(1)} = \mathbb{E}[X_i Y_j]$$

for $\beta \in [0,1]$

Define a Bernoulli random variable α such that $\mathbb{P}(\alpha = 0) = \beta$, $\mathbb{P}(\alpha = 1) = 1 - \beta$ and set $X_i = X_i^{(\alpha)}, Y_i = Y_i^{(\alpha)}$