Regression Analysis

Predicting Company Popularity & Employee Satisfaction

Matias Beeck

The Questions

- How does the <u>amount of</u> <u>maternity leave</u> offered by a company affect it's reputation, popularity or employee satisfaction?
- What other company data could play into employee satisfaction?

			Maternity Leave	Paternity Leave		
Name ∨	Industry ∨	Paid (weeks) ∨	Unpaid (weeks) ∨	Paid (weeks) ∨	Unpaid (weeks) ~	Add a Tip
Netflix	Technology: Consumer Internet	52	0	52	0	0
Bill and Melinda Gates Foundation	Philanthropy	52	N/A	52	2	0
Army (British)	Government: Federal	39	13	2	N/A	0
Automattic, Inc.	Technology: Consumer Internet	32	0	N/A	N/A	0
Ford Motor	Automotive: Manufacturers	30	4	0	N/A	0
Zurich	Insurance: Life	29	N/A	0	N/A	0
Etsy	Technology: Consumer Internet	26	N/A	26	N/A	0

^{*}Fairygodboss.com crowd sourced maternity leave data

The Data

Scraping Company Data

Fairygodboss.com dataset:

- Maternity leave info for ~1700 companies
- Paid Maternity Leave (weeks)
- Unpaid Maternity Leave (weeks)
- Paid Paternity Leave (weeks)
- Unpaid Paternity Leave (weeks)
- Industry
- Linkedin Followers
- HQ Population data

Glassdoor data:

- Company Glassdoor rating (1-5)
- Revenue per year
- Employee number
- # of employee reviews
- CEO approval %
- Interview difficulty
- Interview experience (% of positive, neutral or negative)
- Year Founded (age)
- Headquarter Location

Exploring Dataset

Exploring Dataset: Dependent Variables

Linear Regression

Linear Regression: Kitchen Sink

- 1. Predicting "popularity" of companies
 - Dependent variable = Log of Linkedin followers per employee
 - Adjusted **R**² = **.174**

- 2. Predicting employee satisfaction
 - Dependent variable = Glassdoor rating (1-5)
 - What factors play into employees liking a company?
 - Adjusted **R**² = **.611**

Linear Regression: Predicting GD Rating

- Using all features
- Adjusted $R^2 = .611$
- Polynomial analysis using test, train ->
- Cross Validation (K-fold)
 - 5 folds = $.609 R^2$
 - 10 folds = $.601 R^2$

Linear Regression: "Improved" Model

• Removed:

- Industry dummy variables
- Number of employee reviews
- HQ population
- Transformed:
 - Log of employee count
- Adjusted $R^2 = .545$
- Cross Validation (K-fold)
 - 5 folds = $.545 R^2$
 - 10 folds = $.54 R^2$

	Dep. Variable:		gd_ra	gd_rating		R-squared:		
	Model:		OLS		Adj. R-squared:		0.545	
		coef	std err	t	P> t	[0.025	0.975]	
In	tercept	1.5964	0.123	12.980	0.000	1.355	1.838	
mat_paid	_weeks	0.0043	0.002	2.344	0.019	0.001	0.008	
gd_ceo_a	pproval	0.0159	0.001	26.398	0.000	0.015	0.017	
	co_age	0.0004	0.000	2.092	0.037	2.62e-05	0.001	
log_linkedin_fo	llowers	0.0342	0.006	5.916	0.000	0.023	0.046	
gd_interview_p	oos_per	0.0056	0.001	7.045	0.000	0.004	0.007	
gd_interview_d	lifficulty	0.1391	0.031	4.476	0.000	0.078	0.200	
1	revenue	-6.81e-12	3.35e-12	-2.032	0.042	-1.34e-11	-2.34e-13	
log_employe	ee_num	-0.0524	0.010	-5.105	0.000	-0.073	-0.032	

Linear Regression: Interpretation

- Predicting Glassdoor Rating
- Surprising:
 - Variation in paid maternity leave, company age & revenue explained little of variation in GD rating
 - Interview stats were somewhat important
- Most predictive power in model from CEO approval rate
 - Adjusted R² drops to .225 without it

Dep. Variable:	gd_rating	R-squared:	0.549
Model:	OLS	Adj. R-squared:	0.545

feature ahs coefficient

reature	abs_coemcient
gd_ceo_approval	0.60
gd_interview_pos_per	0.15
log_employee_num	0.14
log_linkedin_followers	0.13
gd_interview_difficulty	0.10
mat_paid_weeks	0.05
revenue	0.05
co_age	0.04

Linear Regression

Tech Industry Focus

Linear Regression: Tech Industry

• Removed:

- Company age
- Revenue
- Linkedin followers
- Adjusted $R^2 = .74$
- Cross Validation (K-fold)
 - 5 folds = $.73 R^2$
 - 10 folds = $.72 R^2$
- Most predictive power comes from CEO approval rate
 - Adjusted R² drops to .323 without it

<u> </u>	Dep. Variable:		gd_rating		R-squared:		0.738
	Model:		OLS A		dj. R-squared:		0.728
		coef	std err	t	P> t	[0.025	0.975]
	Intercept	0.9682	0.292	3.318	0.001	0.391	1.546
mat_	paid_weeks	0.0074	0.003	2.202	0.029	0.001	0.014
gd_c	eo_approval	0.0214	0.002	14.187	0.000	0.018	0.024
gd_intervi	ew_pos_per	0.0045	0.002	2.350	0.020	0.001	0.008
gd_intervie	ew_difficulty	0.4997	0.091	5.511	0.000	0.320	0.679
log_em	ployee_num	-0.1023	0.016	-6.253	0.000	-0.135	-0.070

Linear Regression: Tech Industry Lasso Coefficients

feature	abs_coefficient
gd_ceo_approval	0.70
log_employee_num	0.31
gd_interview_difficulty	0.26
gd_interview_pos_per	0.13
mat_paid_weeks	0.11

De	Dep. Variable:		gd_rating		R-squared:		0.738
	Model:		OLS A		dj. R-squared:		0.728
		coef	std err	t	P> t	[0.025	0.975]
Inter	cept	0.9682	0.292	3.318	0.001	0.391	1.546
mat_paid_w	eeks	0.0074	0.003	2.202	0.029	0.001	0.014
gd_ceo_appr	roval	0.0214	0.002	14.187	0.000	0.018	0.024
gd_interview_pos	_per	0.0045	0.002	2.350	0.020	0.001	0.008
gd_interview_diffic	culty	0.4997	0.091	5.511	0.000	0.320	0.679
log_employee_	num	-0.1023	0.016	-6.253	0.000	-0.135	-0.070

Next Steps

Challenges & Next Steps

- Explore the tech industry subset for potential interaction features
- Gather more companies for dataset
 - Eliminate maternity leave data altogether
 - Companies in dataset could be highly bias

Thanks!