Package 'brxx'

October 12, 2022

Type Package

Title Bayesian Test Reliability Estimation

Version 0.1.2
Author Joshua Ray Tanzer
Maintainer Joshua Ray Tanzer <jtanzer@lifespan.org></jtanzer@lifespan.org>
Description When samples contain missing data, are small, or are suspected of bias, estimation of scale reliability may not be trustworthy. A recommended solution for this common problem has been Bayesian model estimation. Bayesian methods rely on user specified information from historical data or researcher intuition to more accurately estimate the parameters. This package provides a user friendly interface for estimating test reliability. Here, reliability is modeled as a beta distributed random variable with shape parameters alpha=true score variance and beta=error variance (Tanzer & Harlow, 2020) <doi:10.1080 00273171.2020.1854082="">.</doi:10.1080>
Depends MCMCpack, GPArotation, TeachingDemos, blavaan, blme
Imports MASS, rstan
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2021-01-26 17:00:06 UTC
R topics documented:
bcor 2 bcov 3 bomega 4 bomega_general 5 brxx_Cor 5 brxx_Cor_general 6

2 bcor

	process scree																	
	standardize summarize .																	
	unpack																	14
Index																		15

bcor

bcor: Bayesian Estimation of The Correlation Matrix

Description

This function estimates coefficient omega internal consistency reliability.

Usage

```
bcor(data, iter, burn, seed, CI, S0, nu0, mu0)
```

Arguments

data	N by P data matrix.
iter	Number of iterations for the Gibbs sampler.
burn	Number of samples to burn in.
seed	Seed for the Gibbs sampler
CI	Credible interval quantile, as a decimal (ie, for 95 percent, 0.95).
S0	Prior variance covariance matrix.
nu0	Prior degrees of freedom for inverse Wishart prior distribution.
mu0	Prior means for each column.

Value

Returns median posterior estimates of the correlation matrix.

bcov 3

bcov: Bayesian Estimation of the Variance Covariance Matrix

Description

This function estimates the variance covariance matrix for a

Usage

```
bcov(data, iter, burn, seed, CI, S0, nu0, mu0)
```

Arguments

data	N by P data matrix.
iter	Number of iterations for the Gibbs sampler.
burn	Number of samples to burn in.
seed	Seed for the Gibbs sampler
CI	Credible interval quantile, as a decimal (ie, for 95 percent, 0.95).
SØ	Prior variance covariance matrix.
nu0	Prior degrees of freedom for inverse Wishart prior distribution.
mu0	Prior means for each column.

Value

Returns median posterior estimates of the variance covariance matrix.

4 bomega

bomega	bomega: Bayesian Estimation of Coefficient Omega

Description

This function estimates coefficient omega internal consistency reliability.

Usage

```
bomega(K, mod, alpha, beta, CI)
```

Arguments

K	The number of test items.
mod	A measurement model estimated as a bsem object by blavaan.
alpha	Prior true score variance.
beta	Prior error variance.
CI	Credible interval quantile, as a decimal (ie, for 95 percent, 0.95).

Value

Returns estimated median and quantile based credible limits for omega.

bomega_general 5

	omega_general: Bayesian Estimation of Coefficient Omega, General
--	--

Description

This function estimates coefficient omega internal consistency reliability.

Usage

```
bomega_general(lambda, psi, alpha, beta, CI)
```

Arguments

lambda vector of item loadings.

psi vector of item variances.

alpha Prior true score variance.

beta Prior error variance.

CI Credible interval quantile, as a decimal (ie, for 95 percent, 0.95).

Value

Returns estimated median and quantile based credible limits for omega.

Examples

brxx_Cor

brxx_Cor: Bayesian Estimation of Reliability from Correlation

Description

This function estimates reliability from a correlation

Usage

```
brxx_Cor(x, y, alpha, beta, iter, burn, seed, CI, S0, nu0, mu0, items)
```

6 brxx_Cor_general

Arguments

X	First variable.
у	Second variable.
alpha	Prior true score variance (covariance between tests)
beta	Prior error variance (product of standard deviations minus covariance)
iter	Number of iterations for the Gibbs sampler.
burn	Number of samples to burn in.
seed	Seed for the Gibbs sampler
CI	Credible interval quantile, as a decimal (ie, for 95 percent, 0.95).
SØ	Prior variance covariance matrix.
nu0	Prior degrees of freedom for inverse Wishart prior distribution.
mu0	Prior means for each column.
items	Number of test items.

Value

Returns median posterior estimates of the variance covariance matrix.

Examples

```
set.seed(999)
your_data=mvrnorm(n=15,mu=c(0,0),Sigma=matrix(c(4,5,5,9),nrow=2,ncol=2))
x=your_data[,1]
y=your_data[,2]
Mu0=c(0,0)
Sigma0=matrix(c(1,0.6,0.6,4),nrow=2,ncol=2)
Nu0=3-1
brxx_Cor(x=x,y=y,iter=5000,burn=2500,seed=999,CI=0.95,
mu0=Mu0,S0=Sigma0,nu0=Nu0,items=10)
```

brxx_Cor_general brxx_Cor_general: Bayesian Estimation of Reliability from Correlation, General Form

Description

This function estimates reliability from correlation given the correlation estimate.

Usage

```
brxx_Cor_general(cor, alpha, beta, CI, items)
```

brxx_general 7

Arguments

cor Correlation estimate.

alpha Prior true score variance.

beta Prior error variance.

CI Credible interval quantile, as a decimal (ie, for 95 percent, 0.95).

items Number of test items.

Value

Returns estimated median and quantile based credible limits for reliability.

Examples

```
brxx_Cor_general(cor=0.85,alpha=3.51,beta=1.75,CI=0.95,items=10)
```

brxx_general	brxx_general: Bayesian Estimation of Reliability from Variance Esti-
	mates

Description

This function estimates reliability from given true and error variance estimates.

Usage

```
brxx_general(a, b, alpha, beta, CI, items)
```

Arguments

a True score variance estimate.

b Error variance estimate.

alpha Prior true score variance.

beta Prior error variance.

CI Credible interval quantile, as a decimal (ie, for 95 percent, 0.95).

items Number of test items.

Value

Returns estimated median and quantile based credible limits for reliability.

8 brxx_ICC

Examples

```
a=18.7
b=3.3
alpha=3.51
beta=1.75
brxx_general(a=a,b=b,alpha=alpha,beta=beta,CI=0.95,items=10)
```

brxx_ICC

brxx_ICC: Bayesian Estimation of Reliability from ICC

Description

This function estimates reliability from intraclass correlation coefficient

Usage

```
brxx_ICC(mod, alpha, beta, CI, items)
```

Arguments

mod A mixed effects model object estimated by blmer.

alpha Prior true score variance (subject variance)

beta Prior error variance (residual variance)

CI Credible interval quantile, as a decimal (ie, for 95 percent, 0.95).

items Number of test items.

Value

Returns estimated median and quantile based credible limits for ICC.

```
\label{eq:continuous} your\_data\_wide=mvrnorm(20,c(0,0),matrix(c(1,0.8,0.8,1),nrow=2,ncol=2)) \\ your\_data\_long=c(as.vector(your\_data\_wide[,1]),as.vector(your\_data\_wide[,2])) \\ time=c(rep(0,20),rep(1,20)) \\ id=c(rep(1:20,2)) \\ mod=blmer(your\_data\_long~time+(1|id)) \\ brxx\_ICC(mod=mod,alpha=3.51,beta=1.75,CI=0.95,items=10) \\ \end{cases}
```

brxx_ICC_general 9

brxx_ICC_general	brxx_ICC_general: General Form	Bayesian	Estimation	of Reliability	from ICC,

Description

This function estimates reliability from intraclass correlation given correlation.

Usage

```
brxx_ICC_general(WS, Resid, alpha, beta, CI, items)
```

Arguments

WS	Within subjects variance estimate.
Resid	Residual variance estimate.
alpha	Prior true score variance.
beta	Prior error variance.
CI	Credible interval quantile, as a decimal (ie, for 95 percent, 0.95).
items	Number of test items.

Value

Returns estimated median and quantile based credible limits for reliability.

Examples

```
WS=20.4
Resid=3.6
alpha=3.51
beta=1.75
brxx_ICC_general(WS=WS,Resid=Resid,alpha=alpha,beta=beta,CI=0.95,items=5)
```

```
prep prep: Prepare Data File for Bayesian Analysis
```

Description

This function prepares data for analysis using Stan factor analysis code.

Usage

```
prep(data, nfactors, Prior)
```

10 process

Arguments

data N by P data matrix.

nfactors Number of factors to extract.

Prior Prior loading matrix.

Value

Returns a formatted data file for use with Stan MCMC sampler.

Examples

```
set.seed(999)
your_data=data.frame(mvrnorm(n=20, mu=c(0, 0, 0, 0, 0),
                           2,4,2,2,2,
                                          2,2,4,2,2,
                                          2,2,2,4,2,
                                          2,2,2,2,4),
                                        nrow=5, ncol=5)))
colnames(your_data)=c("x1","x2","x3","x4","x5")
your_data_miss=matrix(ncol=5,nrow=20)
for (i in 1:20){
for (p in 1:5){
  your_data_miss[i,p]=ifelse(runif(1,0,1)<0.2,NA,your_data[i,p])</pre>
}
}
formatted_data=prep(your_data_miss,nfactors=3)
```

process

process: rotates and calulates reliability for Stan output

Description

This function processes Stan loading matrix data.

Usage

```
process(Loading_Matrix, Format, Rotate)
```

Arguments

```
 \begin{tabular}{ll} Loading\_Matrix & S by $P*Q$ matrix of loading samples. \\ Format & list formatted data file provided for Stan \\ \end{tabular}
```

Rotate If Q>1, rotation (for options, see GPArotation package)

scree 11

Value

Returns rotated loadings, uniqueness, communality, and reliability.

Examples

scree

scree: Scree Plot with Pairwise Complete Cases

Description

This function provides a scree plot when data may be missing.

Usage

```
scree(data)
```

Arguments

data

N by P data matrix.

Value

Returns eigenvalues and scree plot.

12 standardize

```
your_data_miss=matrix(ncol=5,nrow=20)
for (i in 1:20){
  for (p in 1:5){
    your_data_miss[i,p]=ifelse(runif(1,0,1)<0.2,NA,your_data[i,p])
  }
}
scree(your_data_miss)</pre>
```

standardize

standardize: Standardization of Data Matrix

Description

This function standardizes an N by P data matrix, as is strongly recommended before using any of the brxx reliability estimation functions

Usage

```
standardize(data)
```

Arguments

data

N by P data matrix.

Value

Returns an item level standardized data matrix.

summarize 13

summarize summari tiles	ze: Summarize Stan output as median, SD, and HPD quan-
----------------------------	--

Description

This function converts raw MCMC sample data into matrix formatted summaries

Usage

```
summarize(Samples, nrow, ncol, CI)
```

Arguments

Samples S by theta matrix of sampled parameter estimates.

nrow Number of rows of target summary matrix
ncol Number of columns of target summary matrix

CI Creddible interval quantile, as a decimal (ie, for 95 percent, 0.95)

Value

Returns median, SD, and HPD CI limits

```
## Not run:
your_data_s=standardize(your_data)
formatted_data=prep(your_data_s,nfactors=3)
out=sampling(model, data=formatted_data, iter=5000, seed=999)
res=as.matrix(out)
unpacked=unpack(Samples=res,Format=formatted_data)
processed=process(Loading_Matrix=unpacked$Loading_Matrix,
                 Format=formatted_data,
                 Rotate="oblimin")
summarize(processed$Loadings,
         nrow=Formatted_data$P,
         ncol=Formatted_data$Q)$Table
summarize(processed$Communality,
         nrow=Formatted_data$P,
         ncol=1)$Table
summarize(processed$Uniqueness,
         nrow=Formatted_data$P,
         ncol=1)$Table
summarize(processed$G_Factor,
         nrow=Formatted_data$P,
         ncol=1)$Table
summarize(processed$Interfactor_Correlations,
```

14 unpack

```
nrow=Formatted_data$Q,
ncol=Formatted_data$Q)$Table
summarize(processed$Omega,
nrow=1,
ncol=1)$Table
summarize(unpacked$Tau_Matrix,
nrow=Formatted_data$P,
ncol=1)$Table
## End(Not run)
```

unpack

unpack: Unpack Stan output for factor analysis samples from Stan

Description

This function unpacks raw Stan samples output.

Usage

```
unpack(Samples, Format)
```

Arguments

Samples S by theta matrix of sample parameter estimates.

Format list formatted data file provided for Stan

Value

Returns four matrices:

- 1). S by Q latent score matrix, x.
- 2). S by Q*P loading matrix, lambda.
- 3). S by P mean matrix, tau.
- 4). S by P loading variance matrix, alpha.

```
## Not run:
your_data_s=standardize(your_data)
formatted_data=prep(your_data_s,nfactors=3)
out=sampling(model, data=formatted_data, iter=5000, seed=999)
res=as.matrix(out)
unpacked=unpack(Samples=res,Format=formatted_data)
## End(Not run)
```

Index

```
bcor, 2
bcov, 3
bomega, 4
bomega_general, 5
brxx_Cor, 5
brxx_Cor_general, 6
brxx_general, 7
brxx_ICC, 8
brxx_ICC_general, 9
prep, 9
process, 10
scree, 11
standardize, 12
summarize, 13
unpack, 14
```