STAT 134: Section 17

Adam Lucas

November 9, 2022

Conceptual Review

- a. For $X \sim \text{Exp}(\lambda)$, a > 0, what is the distribution of aX? If $X \sim \text{Exp}(\lambda)$, $Y \sim \text{Exp}(\mu)$, and X, Y are independent, what is $\mathbb{P}(X < Y)$?
- b. For two discrete random variables X and Y, what do we mean by the conditional distribution of Y given X = x? What is an expression for the conditional expectation of Y given X = x?

Problem 1: Convolution of Uniforms

Let $X \sim \text{Unif (0,1)}$, and $Y \sim \text{Unif (0,2)}$, independent of each other. Find the density of Z = X + Y, using the convolution formula.

Problem 2: A Conditional Expectation

Throw a fair, six–sided die until you get a "6." Denote by *T* the number of throws (including the final throw which produced a "6").

Make an educated guess: What is the conditional expectation of T, given that all the throws resulted in even numbers?

Now, consider the related scenario. Throw a fair, six–sided die until you get a number which is not 2 or 4.

- a. What is the expected number of throws (including the final throw), *S*?
- b. Call the result of the *i*th throw X_i . What is the expected value of S, given $X_S = 6$?
- c. Revise your guess to the bolded question above.