Spatial Models of Majority Rule

1

Recap

- For group choices between two alternatives, we have two Theorems that seem to support the use of majority rule (Condorcet's Jury Theorem and May's Theorem).
- With three or more alternatives, Condorcet's Paradox shows that pairwise majority voting may produce cycles / intransitivities.
- Other rules (e.g. Borda, Condorcet) can produce transitive rankings, but have other "flaws" (e.g. dependence on "irrelevant alternatives")
- Arrow's "Impossibility Theorem" suggests that there is no "good solution" to this.
- According to Buchanan, the source of this impossibility is a fundamental conflict between the collectivist concept of "group rationality" and an individualist perspective on democracy.

Ways to achieve 'possibility' results

- Relaxing axioms (e.g. IIA)
 - Various 'scoring rules' (e.g. Borda) satisfy remaining axioms.
 - These rules are often susceptible to strategic manipulation.
- Restricting the domain
 - Arrow requires that one rule must handle all possible constellations of preferences.
 - In practice, some preference constellations may seem more plausible than others.
 - In particular, this will be true if the options under consideration are related to one another in a way that allows us to imagine them occupying points in a "space" of policy alternatives.

One dimensional policy space

 Many issues are such that options can be ordered in a natural[†] way (small - big, left - right,...)

Rambo	Die Hard	When Harry Met Sally	Titanic

Single peaked preferences

 Often, each individual will have a favorite option, and other options are less preferred the farther away they are.

Rambo	Die Hard	When Harry Met Sally	Titanic
\odot	\odot	\odot	\odot

Framework:

N voters I=1,...,N (N odd) Set of alternatives $X\subseteq \mathbb{R}$ Individual preferences \succ_i (strict)

Definition: Voter i has single peaked preferences if there exists an option x_i^* such that for any two options y and z,

If
$$x_i^* \ge z > y$$
 then $z \succ_i y$

and

If
$$y > z \ge x_i^*$$
 then $z \succ_i y$

We call x_i^* i's 'ideal point'.

Example: Distance preferences

$$u_i(x) = -|x - x_i^*|$$

$$u_i(x) = -(x - x_i^*)^2$$

Examples: Single peaked?

Lemma: Let a < b < c. If voter *i* has single peaked preferences, then either $b \succ_i a$ or $b \succ_i c$ (or both).

(I.e. the 'middle' option cannot be the worst - for any voter who has single peaked preferences.)

Proof: At home! (Hint: Suppose $a \succ_i b$ then where can x_i^* (not) lie and what does this imply about the statement $b \succ_i c$?)

Definition: Suppose that all N voters have single peaked preferences over $X \subseteq \mathbb{R}$. Denote their ideal points by $(x_1^*,...,x_N^*)$. Mr. m is a median voter if

$$\#\{i\in I: x_i^*\geq x_m^*\}\geq \frac{N}{2}$$
 and $\#\{i\in I: x_i^*\leq x_m^*\}\geq \frac{N}{2}$

Black's Median Voter Theorem: Suppose that all voters have single peaked preferences over $X \subseteq \mathbb{R}$. Let m be a median voter. Then, option x_m^* is not defeated by any other option in a pairwise majority vote. That is, the median voter's ideal point is a *Condorcet winner*.

Proof: At home!

Black's Single-Peakedness Theorem: Suppose that all voters have single peaked preferences over $X \subseteq \mathbb{R}$. Then, pairwise majority voting over all alternatives gives rise to a rational preference relation.

Proof: Suppose that all voters have single peaked preferences over $X \subseteq \mathbb{R}$. Consider 3 options a, b, and c, and let $x \succ_M y$ stand for 'a majority prefers x over y'. Suppose that $a \succ_M b$, $b \succ_M c$. We need to show that $a \succ_M c$.

- Since all preferences are single peaked, there exists $\hat{x} \in \{a, b, c\}$ which no individual ranks last among the three. (See Lemma above)
- Suppose $\hat{x} = a$.
 - Since $b \succ_M c$, then a majority of voters have individual preference relations $a \succ_i b \succ_i c$ or $b \succ_i a \succ_i c$. In *both* cases, $a \succ_i c$, and so $a \succ_M c$.
- Suppose $\hat{x} = b$.
 - Since $a \succ_M b$, then for a majority of voters $a \succ_i b \succ_i c$, and so $a \succ_M c$.
- Suppose $\hat{x} = c$.
 - Since $b \succ_M c$, then for a majority of voters $b \succ_i c \succ_i a$, and so $b \succ_M a$. This contradics $a \succ_M b$, thus $\hat{x} \neq c$.
- \Rightarrow If all voters have single peaked preferences, then whenever $a \succ_M b$ and $b \succ_M c$, we have $a \succ_M c$.

(Note: The proof suggests that the 'social preference' generated by pairwise majority voting will never place the 'middle' option last. I.e. above we saw that c cannot be the 'middle' option.)

 Consider an economy inhabited by multiple households, each with preferences represented by

$$U(x,\ell) = x - \frac{1}{2}\ell^2$$

where x is consumption and ℓ is labor.

- The price of consumption is 1, and each household earns some wage ω , where ω differs among households. It is distributed according to a cdf $F(\omega)$.
- Consider a *linear* tax system consisting of a single tax rate t applied to all income, as well as a transfer b paid to each household.
- \bullet Then a household who works for ℓ hours and earns wage ω achieves utility

$$U(b + (1 - t)\omega \ell, \ell) = b + (1 - t)\omega \ell - \frac{1}{2}\ell^2$$

- Questions to analyse:
 - What tax system (combination b and t) would be chosen using majority rule?
 - In particular: How does the chosen tax system depend on the distribution of wages?

- Steps in the analysis
 - (1) Derive labor supply for any given combination (t, b)
 - (2) Restrict attention to feasible systems, where b is fully funded ⇒ one dimensional space of alternatives

$$t \in [0, 1]$$

- (3) Derive a consumer's *indirect* utility from a given tax system.
- (4) Check that preferences (indirect utility) are single peaked
- (5) Apply median voter theorem \Rightarrow median voter's preferred policy

- Labor supply: $\ell(t, \omega) = (1 t)\omega$
- Feasibility: $b = t(1-t)E(\omega^2)$
- Indirect utility: $v_{\omega}(t) = t(1-t)E(\omega^2) + \frac{1}{2}(1-t)^2\omega^2$
- Is this single peaked? (Unique maximum + increasing before, decreasing after?)

$$v'_{\omega}(t) = (1 - t) \left(E(\omega^2) - \omega^2 \right) - tE(\omega^2)$$

If $\omega^2 > E(\omega^2)$, $v_\omega(t)$ is strictly decreasing on [0,1] and the unique max occurs at t=0.

$$v_{\omega}^{\prime\prime}(t) = -2E(\omega^2) + \omega^2$$

If $\omega^2 < E(\omega^2)$, $v_{\omega}(t)$ is strictly concave on [0,1]. and the unique max occurs at $t = \frac{E(\omega^2) - \omega^2}{2F(\omega^2) - \omega^2}$.

Thus, preferences over t are single peaked.

 By the median voter theorem, the unique stable outcome of majority voting is the median voter's ideal t:

$$t^* = \max\left\{0, \frac{E(\omega^2) - \omega_m^2}{2E(\omega^2) - \omega_m^2}\right\}$$

$$t^* = \max\left\{0, \frac{E(\omega^2) - \omega_m^2}{2E(\omega^2) - \omega_m^2}\right\}$$

Interpretation

- The degree or redistribution depende on the relationship between the (squared) *median* wage level ω_m^2 and the *average* (squared) wage level $E(\omega^2)$.
- Thus it depends on how skewed the wage distribution is.
- In most countries, median wages are significantly below mean wages, such that t* would be positive.

 The model predicts that the degree of redistribution in a democracy depends on the difference between the median and mean wage.

Single peaked preferences in multiple dimensions

Black's Theorems assume that options can be aligned in a single dimension. Complications arise if we make the (more realistic) assumption that policies are multi-dimensional.

Assume: Options are $x_j \in \mathbb{R}^L$ and voters have preferences $v_i(x) : \mathbb{R}^L \to \mathbb{R}$.

Example: Distance preferences in \mathbb{R}^2 :

$$u(x_1, x_2, x_{1i}, x_{2i}) = -\sqrt{(x_1 - x_{1i})^2 + (x_2 - x_{2i})^2}$$

Single peaked (distance) preferences in 2 dimensions

- Circular indifference curves
- Preferred-to sets: areas inside IC through given point

Pareto improvements (2 voters)

- Intersection of preferred-to sets
- Mutually agreeable alternatives

Pareto optimal points (2 voters)

- Intersection of preferred-to sets is empty
- Indifference curves are tangent

Pareto set (2 voters)

- Set of points such that 2 individuals would not mutually prefer another point.
- For any point not on this line, there exist other points that both prefer.

Three individuals and majority rule

- Note that no point is in all three Pareto sets.
- Therefore any point can be defeated under majority rule.

Three individuals and majority rule

- Points outside triangle are not Pareto efficient (Why?)
- ⇒ These points can be defeated even under unanimity rule

Three individuals and majority rule

- Points inside triangle are Pareto efficient (Why?)
- They are stable under unanimity rule, but unstable under majority rule.

Conclusions from our example

- No point is 'stable' under majority rule.
- For any point, there exists a majority coalition which prefers some other point.
- Graphically: no single point is located on all three 2-person 'Pareto sets'

Exercise (now)

 Find an arrangement of three voter ideal points such that there does exist a stable point under majority rule!

Generalization

Theorem (McKelvey 1979): Suppose voters have single peaked preferences in more than two dimensions. Then, the existence of a Condorcet winner is *extremely* unlikely (i.e. occurs only under very special arrangements of ideal points).

Instability, agenda setting, and the importance of institutions

- McKelvey (1979) shows that, in general, one can move from any point in the space to any other point by some sequence of pairwise votes.
- An agenda setter can therefore construct a sequence of votes such that her ideal point is reached (provided others vote 'sincerely' at each stage).
- More generally, the outcomes produced by majoritarian institutions strongly depend on the procedures employed (rules governing the sequence of alternatives, opportunities to introduce amendments, etc.).

Literature

- (* = required, !=highly recommended)
 - (*) Sheple, K. Analyzing Politics, Chapter 5 (Semesterapparat)

MCKELVEY, R. 1979. Intransitivities in multidimensional voting models and some implications for agenda control. *Journal of Economic Theory*