

Help sandipan_dey ~

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>MO Index</u>

★ Course / 3 Finger Exercises (FE) / 3.1 Finger Exercises 1 (FE1)

3.1.4 Finger Exercise: Python implementation for RHS of IVP

☐ Bookmark this page

Finger Exercises 1 due Aug 3, 2023 05:00 IST Completed

MO2.3 MO2.4

Let's consider how we might implement the calculation of $\underline{f}(\underline{u},t)$ for the following IVP with two states $\underline{u}=[v,w]$ for which the governing differential equations are

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -100v + w + t \tag{3.3}$$

$$\frac{\mathrm{d}w}{\mathrm{d}t} = -v + 2w - t^3 \tag{3.4}$$

where t is time. Write a function named evalf described by the doc string (see the provided Python code) which returns \underline{f} using our standard notation that $\mathrm{d}\underline{u}/\mathrm{d}t=f(\underline{u},t)$.

Problem: RHS of IVP (External resource) (5.0 / 5.0 points)

This will launch an external site that will require forwarding of your username.

Launch external site for submission and grading of Python code 🗷

SOLUTION: The solution will be available shortly after the due date in Section 3.2.4.

Previous
 Next >

© All Rights Reserved

edX

About
Affiliates
edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

Blog

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>