(19) BUNDESREPUBLIK DEUTSCHLAND

① Offenlegungsschrift① DE 3501697 A1

(5) Int. Cl. 4: C 08 L 9/02 C 08 L 23/16

C 08 J 3/24

DEUTSCHES
PATENTAMT

(21) Aktenzeichen:(22) Anmeldetag:

P 35 01 697.3 19. 1.85

Offenlegungstag: 24. 7.86

(7) Anmelder:

Bayer AG, 5090 Leverkusen, DE

(72) Erfinder:

Brück, Dieter, Dipl.-Phys. Dr., 5000 Köln, DE; Casper, Rudolf, Dipl.-Chem. Dr., 5090 Leverkusen, DE; Oppenheimer-Stix, Christiane, Dipl.-Chem. Dr., 4150 Krefeld, DE; Szentiványi, Zsolt, Dipl.-Chem. Dr., 5090 Leverkusen, DE

(54) Kautschukmischungen und ihre Covulkanisate

Covulkanisate von Kautschukmischungen aus (1) 5 bis 50 Gew.-%, bezogen auf Gesamtpolymermenge, eines Butadien-Acrylnitril-Copolymerisates mit einem Acrylnitrilgehalt von 13 bis 24 Gew.-% und einem Mooney-Wert von 25 bis 100, (2) 75 bis 30 Gew.-%, bezogen auf Gesamtpolymermenge, eines Butadien-Acrylnitril-Copolymerisates mit einem Acrylnitrilgehalt von 32 bis 48 Gew.-% und einem Mooney-Wert von 25 bis 100 und (3) 20 bis 50 Gew.-%, bezogen auf Gesamtpolymermenge, eines Ethylen-Propylen-Dien-Copolymerisates mit einem Propylengehalt von 10 bis 50, einem Diengehalt von 5 bis 16 Gew.-% und einem Mooney-Wert von 50 bis 140, wobei das Dien Ethylidennorbornen oder Hexadien-1,4 ist, zeigen gute Kälteeigenschaften, Ölbeständigkeit, Ozonbeständigkeit, Abriebbeständigkeit und Beständigkeit bei dynamischen Belastungen.

Patentansprüche

- Kautschukmischungen aus (1) 5 bis 50 Gew.-%, be-1. zogen auf Gesamtpolymermenge, eines Butadien-Acrylnitril-Copolymerisates mit einem Acrylnitrilgehalt von 13 bis 24 Gew.-% und einem Mooney-Wert von 25 bis 100, (2) 75 bis 30 Gew.-%, 5 bezogen auf Gesamtpolymermenge, eines Butadien-Acrylnitril-Copolymerisates mit einem Acrylnitrilgehalt von 32 bis 48 Gew.-% und einem Mooney-Wert von 25 bis 100 und (3) 20 bis 50 Gew.-%, bezogen auf Gesamtpolymermenge, eines Ethylen-Propylen-10 Dien-Copolymerisates mit einem Propylengehalt von 10 bis 50, einem Diengehalt von 5 bis 16 Gew.-% und einem Mooney-Wert von 50 bis 140, wobei das Dien Ethylidennorbornen oder Hexadien-1,4 ist.
- 15 2. Kautschukmischungen nach Anspruch 1, wobei (1)
 einen Acrylnitrilgehalt 15 bis 20 Gew.-% und (2)
 einen Acrylnitrilgehalt von 37 bis 45 Gew.-% und
 einen Mooney-Wert von 50 bis 90 aufweisen.
- 3. Kautschukmischungen nach Anspruch 1, aus 10 bis 30 Gew.-% (1), 60 bis 40 Gew.-% (2) und 30 bis 50 Gew.-% (3).
 - 4. Kautschukmischungen nach Anspruch 1, wobei (3) einen Ethylengehalt größer 65 Gew.-% hat.
- 25 5. Covulkanisate aus den Kautschukmischungen nach Ansprüchen 1 bis 4.

BAYER AKTIENGESELLSCHAFT

5090 Leverkusen, Bayerwerk

Konzernverwaltung RP Patentabteilung

Jo/by-c 17.01.85

Kautschukmischungen und ihre Covulkanisate

Die Erfindung betrifft Kautschukmischungen aus Nitrilkautschuk (NBR) und Ethylen-Propylen-Terpolymerkautschuk (EPDM) und die daraus durch Vulkanisation hergestellten Covulkanisate.

5 EPDM/NBR-Mischungen sind beispielsweise aus Rubber Chem. Techn. 44, 1065-1079 (1971), US-PS 3 646 168, DE-OS 2 532 115 und FR-PS 1 555 597 bekannt. Diese Mischungen sind vielseitig anwendbar und zeigen attraktive Eigenschaftskombinationen der Ozonbeständigkeit, Ölbeständigkeit und guter Hoch- und Tieftemperatureigenschaften.

Nachteilig ist die mangelnde Festigkeit von Formkörpern aus derartigen, vulkanisierten Mischungen, die nicht nur niedriger als die Festigkeit des NBR, sondern auch niedriger als die Festigkeit des in dieser Hinsicht schlechteren EPDM ist. Dieser Nachteil kann nach Stand der Technik nur durch drastische Erhöhung des Dien-Anteils im EPDM oder durch spezielle Vulkanisationsbeschleuniger etwas gelindert werden.

15

In konventionellen Systemen war dieser Fehler auch 1977 noch nicht behoben (Gummi, Asbest, Kautschuk 30, 8/1977, Seiten 498 bis 504).

Aufgabe der Erfindung war es, EPDM/NBR-Mischungen bereitzustellen, die neben den geforderten Eigenschaften 5 der Ozonbeständigkeit, Ölbeständigkeit und guter Hochund Tieftemperatureigenschaften gute Festigkeit und dynamische Lebensdauer zeigen.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß man einen EPDM-Typ mit Ethylidennorbornen oder Hexadien-1,4 10 als Dien in bestimmten Mengen mit wenigstens zwei NBR-Typen unterschiedlichen Nitrilgehaltes abmischt.

Gegenstand der Erfindung sind daher Kautschukmischungen aus (1) 5 bis 50 Gew.-%, bezogen auf Gesamtpolymermenge, eines Butadien-Acrylnitril-Polymerisates mit einem Acrylnitrilgehalt von 13 bis 24, vorzugsweise 15 bis 20 Gew.-% und einem Mooney-Wert von 25 bis 100, (2) 75 bis 30 Gew.-%, bezogen auf Gesamtpolymermenge, eines Butadien-Acrylnitril-Polymerisates mit einem Acrylnitrilgehalt von 32 bis 48, vorzugsweise 37 bis 45 Gew.-% und einem Mooney-Wert von 25 bis 100, vorzugsweise 50 bis 90 und (3) 20 bis 50 Gew.-%, bezogen auf Gesamtpolymermenge, eines Ethylen-Propylen-Dien-Copolymerisates mit einem Propylengehalt von 10 bis 50, einem Diengehalt von 5 bis 16 Gew.-% und einem Mooney-Wert von 50 bis 25 140, wobei das Dien Ethylidennorbornen oder Hexadien-1,4 ist.

15

Vorzugsweise enthält die Mischung 10 bis 30 Gew.-% (1), 60 bis 40 Gew.-% (2) und 30 bis 50 Gew.-% (3), wobei insbesondere EPDM-Copolymerisate mit Mooney-Werten > 80 und Diengehalten > 8 Gew.-% oder EPDM-Copolymerisate mit Ethylengehalten > 65 Gew.-% eingesetzt werden.

Die Mischungen können übliche Mischungsbestandteile enthalten, die dem Fachmann bekannt sind. Es handelt sich beispielsweise um Füllstoffe, Weichmacher, Alterungsschutzmittel, Verarbeitungshilfsmittel, Pigmente, Säureakzeptoren und Vulkanisationschemikalien, wobei für die Vulkanisation der erfindungsgemäßen Kautschukmischung vorzugsweise Schwefel oder Schwefelspender verwendet werden.

15 An Schwefel werden dabei 0,1 bis 5, vorzugsweise 0,1 bis 1,8 Gew.-%, bezogen auf Polymer, an Schwefelspender 0,2 bis 8, bevorzugt 2 bis 4 Gew.-%, bezogen auf Polymer eingesetzt.

Geeignete Schwefelspender sind beispielsweise Tetra20 alkylthiuramdisulfide, Cycloalkylalkylthiuramdisulfide,
Arylalkylthiuramdisulfide, Tetraalkylthiuramtetrasulfide oder Morpholinyldithiobenzothiazol.

Ein weiterer Gegenstand der Erfindung sind Covulkanisate aus den vorgenannten Mischungen, die vorzugsweise durch Schwefelvulkanisation erhalten werden.

Die Covulkanisate besitzen gute Kälteeigenschaften, Ölbeständigkeit, Ozonbeständigkeit, Abriebbeständigkeit und Beständigkeit gegen dynamische Beanspruchung. Sie eignen sich z. B. als Schlauchdecken, Transportbanddecken oder Treibriemen.

Beispiel 1

Dieses Beispiel soll zeigen, daß ein NBR-EPDM-Verschnitt günstigere Festigkeiten und dynamische Lebensdauer (De Mattia) aufweist, wenn die NBR-Komponente aus zwei Nitrilkautschuken mit unterschiedlichem Nitrilgehalt 5 hergestellt worden ist (Angabe in Gew.-Teilen).

	1	2
AND T	17	_
NBR II	-	60
NBR III	43	-
EPDM I	40	40
Ruß N 330	20	20
Ruß N 762	60	60
ZnO	5	5
Ether-Thioether 1)	10	10
Alkylsulfonsäure- 2) alkylphenylester	10	10
Styrolisiertes Diphenylamin	2	2
Zinksalz des 4- bzw. 5-Methyl- mercaptobenzthiazols	3	3
Stearinsäure	1	1
Ca-Stearat	1	1
Schwefel	1,8	1,8
Benzthiazyl-2-cyclohexyl- sulfenamid	1,2	1,2

1)	verwendet	wurde	Vulkanol	85	der	Bayer	AG
2)	verwendet	wurde	Vulkanol	SF	der	Bayer	AG

Le A 23 072

7 - &-

NBR I hat einen Acrylnitrilgehalt von 18 Gew.-%; eine Mooneyviskosität ML 1+4/100°C von 45 ME

NBR II hat einen Acrylnitrilgehalt von 34 Gew.-%; eine Mooneyviskosität ML 1+4/100°C von 65 ME

NBR III hat einen Acrylnitrilgehalt von 39 Gew.-%; eine Mooneyviskosität ML 1+4/100°C von 45 ME

EPDM I hat einen Gehalt an 5-Ethyliden-2-norbornen von 6 Gew.-% und an Ethylen von 48 Gew.-%. EPDM I ist ein statisches Copolymer mit schneller Vulkanisations-charakteristik und einer Mooney-Viskosität ML 1+4/100°C von 45 ME.

1	2
1,198	1,202
55	58
2 5	2,3
14,0	17,9
L60°C 25	min.
9,7	8,8
190	160
5,9	6,6
72	75
28	27
-36	-22
2,0	0,8
	2,5 14,0 160°C 25 9,7 190 5,9 72 28

Angewandete DIN Normen 53 504, 53 512, 53 505, 53 522

Beispiel 2

Dieses Beispiel soll zeigen, daß ein NBR-EPDM Verschnitt mit einer NBR-Komponente, die zwei NBR-Typen enthält, mit hochviskosen, extrem schnell vulkanisierenden EPDM-Typen noch verbesserbar ist, wobei ein hoher Ethylengehalt (Sequenztyp) vorteilhaft erscheint (Angaben in Gew.-Teilen).

	1	2	3	4	5	6
NBR I	17	17	17	17	17	17
NBR III	43	-	_	-	_	-
NBR IV	-	43	43	43	43	43
EPDM I	40	40	_	_	-	_
EPDM II	_	_	40	-	-	-
EPDM III	_	_	_	40	-	-
EPDM IV	-	_	_	-	40	-
EPDM V		_	_	-	-	40
Ruß N 330	20	20	20	20	20	20
Ruß N 762	60	60	60	60	60	60
ZnO	5	5	5	5	5	5
Ether-Thioether	10	10	10	10	10	10
Alkylsulfonsäure- alkylphenylester	10	10	10	10	10	10
Styrolysiertes Diphenylamin	2	2	2	2	2	2
Zinksalz des 4- bzw. 5- Methylmercaptobenzthia- zols	3	3	3	3	3	3
Stearinsäure	1	1	1	1	1	1
Ca-Stearat	1	1	1	1	1	1
Schwefel	1,8	1,8	1,8	1,8	1,8	1,8
Benzthiazyl-2-cyclo- hexylsulfenamid	1,2	1,2	1,2	1,2	1,2	1,2

EPDM II hat einen Gehalt an 5-Ethyliden-2-norbornen von 6 Gew.-%, an Ethylen von 48 Gew.-% und eine Mooney-viskosität ML 1+4/100°C von 70 ME.

EPDM III entspricht EPDM II, allerdings beträgt der 5 Mooney-Wert 110 ME.

EPDM IV enthält 6 Gew.-% 5-Ethyliden-2-norbornen und 67 Gew.-% Ethylen und hat einen Mooney-Wert von 85 ME.

EPDM V enthält 11 Gew.-% 5-Ethyliden-2-norbornen und 45 Gew.-% Ethylen und hat einen Mooney-Wert von 90 ME.

10 NBR IV hat einen Acrylnitrilgehalt von 39 Gew.-% und eine Mooney-Viskosität ML 1+4/100°C von 65 ME.

Dichte /g/cm³/ Mischung ML 14		1 1,204 54	2 1,202 60	3 1,203 69	4 1,200 82	5 1,208 76	6 1,204 75
Vulkameter	160℃ t ₁₀ t ₉₀	3,0 16,6 25 mir	2,9 15,3	2,9 15,5	2,8 14,9	2,7 14,8	2,8 18,5
Vulkanisation Zugfestigkeit Bruchdehnung Spannung 100 Härte 23°C /S Elastizität 2	/MPa7 /%7 % /MPa7 hore A7	9,0 170 6,0 72 25	10,4 170 6,5 72 25	10,5 175 6,4 72 26	12,0 190 6,5 74 26	17,3 280 7,0 78 28	14,3 230 6,6 73 26
Dauerknickver Rißbildung St 23°C (De Matt	ufe 3	2,0	1,8	1,9	3,0	47,0	10,0

Le A 23 072

Beispiel 3

Dieses Beispiel belegt die aus technischer Sicht interessanten Zusammensetzungen. Die Versuche sind mit Hilfe einer Regressionsrechnung ausgewertet worden. Die Anforderungen an einen NBR-EPDM Verschnitt kann man am besten anhand folgender Kriterien charakterisieren:

- Gute Ozonbeständigkeit: Wird weitgehend durch den EPDM-Gehalt bestimmt (Abb. 1). Gewisse Verbesserungen sind durch Ozonschutzmittel und durch die Auswahl des EPDM-Typs noch erzielbar.
- Gute mechanische Eigenschaften, dynamische Tüchtigkeit (z.B. Lebensdauer) und gute Kälteeigenschaften
 (z.B. Brittelness Point): Diese Eigenschaften lassen
 sich nur durch die erfindungsgemäße optimale Auswahl
 und Zusammensetzung der Komponenten erreichen (Abb. 2).
- Ausreichende Quellbeständigkeit: Hier spielen die Phasenstruktur und die durchschnittliche Polarität (Abb. 3) eine Rolle (Angabe in Gew.-Teilen).

	, -	7	ო	4	വ	9	7	ω	6
NBR I	31	10	17	ო	11	24	10	17	24
NBR IV	34	09	38	62	48	46	20	28	36
EPDM IV	35	30	45	35	35	30	40	25	40
Die verwendete Rezeptur ist identisch m	mit der		Rezeptur	‡	Beispiel	el 2			
Dichte $(\sqrt{9}/m^3)$	1,2	0 1,2	1,1	9 1,2	11 1,2	1 1,2	0 1,2	0 1,2	1,20 1,21 1,19 1,21 1,21 1,20 1,20 1,21 1,20
Mischung ML 1+4/100°C /ME7	65	29	74	89	99	99	70	63	69
Vulkameter 160°C									
†† (**	2,3	2,2	2,2	2,2	2,2	2,2	2,2	2,3	2,6
t ₉₀	11,3	13,5	13,1	14,2	2 13,5	12,6	14,3	14,2	13,0
Vulkanisation 160°C 25 min.									
Zuafestickeit /MPa/	18,0	17,5	16,5	17,	2 17,5	5 17,7	18,0 17,5 16,5 17,2 17,5 17,7 18,1 17,5 16,4	17,5	16,4
Bruchdehnung /8/	323	262	290	281	310	307	309	315	283
Spanning 100 %/MPa7	5,1	6,2	5,9	6,2	2 5,7	7 5,8	9 6,0	5,2	6,1
Harte 23°C/Shore A/	74	74	92	75	73	74	74	72	74
Elastizität 23°C 287	34	30	33	29	31	32	31	29	33
Britt. Point $\sqrt{^6}$ C 7	-38	-36	-36	-28	-34	-40	-34	-34	-42
Ozonbeständigkeit Rißbeginn 1000 pphm,	Rel.	Feuchte	ite 45	æ	23 °C				
30 % Dehnung $\sqrt{\overline{h}}$ 7	24	9	96	ω	ω	7	12	7	24

Le A 23 072

5 6 7		57 54 90 85	4 14 11 46 13 42
4		49	4
т	3	47 66 75 104	
2	ບ	66 47 66 05 75 104	23°C 29
-	Kraftstoffquellung Kraftstoff 3, 48 h, 50°C	66 4	Dauerknickversuch, RiBbildung Stufe 3 bei 23°C (De Mattia) N $/ \bar{K} \bar{Z} / \bar{Z}$ 41 29
	ng Krafts		n, Rißbild
	ellur		cknickversuch Aattia) N <u>(K</u> z̃7

Le A 23 072

ĺ

-13-- Leerseite - -15-

Nummer: Int. Cl.⁴: Anmeldetag: Offenlegungstag: **35 01 697 C 08 L 9/02**19. Januar 1985
24. Juli 1986

