מתמטיקה בדידה 1 (0368-1118)

רון גולדמן

תוכן העניינים

2	מבוא ללוגיקה
2	מושגי יסוד בלוגיקה
3	תורת הקבוצות
3	תורת הקבוצות הנאיבית
4	פעולות על קבוצות
5	פרדוקס ראסל
6	תורת הקבוצות האקסיומטית
6	(Zermelo-Fraenkel) ZF אקסיומות
7	פעולות מוכללות על קבוצות
8	הזוג הסדור והמכפלה הקרטזית
9	יחסים
9	הגדרה ראשונית
10	פונקציות
14	יחסי שקילות
16	יחסי סדר
17	עוצמות
17	מושגי יסוד
18	לכסון
19	סדר של עוצמות
19	פעולות על עוצמות

מבוא ללוגיקה

מושגי יסוד בלוגיקה

 $arphi \in \{ ext{False, True} \}$ הוא פסוק אם arphi נאמר כי arphi הגדרה. יהי

 $f: \{ ext{False, True} \}^n o \{ ext{False, True} \}^m$ כך שך היא f היא קשר לוגי אם קיים וות הגדרה. נאמר כי פונקציה ל

 \neg : {False, True} \rightarrow {False, True} את טבלת האמת: \neg : {False, True}

x	$\neg x$		
False	True		
True	False		

נקרא שלילה.

: אמת טבלת את שמקיימים את שמקיימים $\lor,\land,\rightarrow,:\{{\sf False},{\sf True}\}^2\rightarrow\{{\sf False},{\sf True}\}$

x	y	$x \lor y$	$x \wedge y$	$x \to y$	$x \leftrightarrow y$
False	False	False	False	True	True
False	True	True	False	True	False
True	False	True	False	False	False
True	True	True	True	True	True

נקראים **או, וגם, גרירה** ו-אם ורק אם בהתאמה.

x=y אמת. נסמן x-y אם יש להם את אותה טבלת אמת. נסמן x-y אמל אמת. נסמן x-y יהיו

 \cdot : טענה. יהיו x,y,z פסוקים.אז

$$.x \wedge y = \neg (\neg x \vee \neg y)$$
 .1

$$.x \rightarrow y = \neg x \lor y$$
 .2

$$x \leftrightarrow y = (x \land y) \lor (\neg x \land \neg y)$$
 .3

$$(x \wedge y) \wedge z = x \wedge (y \wedge z)$$
 .4

$$.x \rightarrow y = \neg y \rightarrow \neg x$$
 .5

 $\varphi\left(x
ight)$ קיים מסומנים ב- \exists , בהתאמה. הם מקיימים כי לכל (x) תבנית פסוק שקול לוגית לכך שה בהתאמה. הם מקיימת $\varphi\left(x
ight)$ תבנית פסוק שקול לוגית לכך שעבור x כלשהו מתקיים (x).

, קשר לוגי $\varphi:\{ ext{False, True}\}^n o \{ ext{False, True}\}$ קשר לוגי ויהי $n\in\mathbb{N}$

- . אם לכל φ -ע טאוטולוגיה, $\varphi\left(x_{1},\ldots,x_{n}\right)$ מתקיים מתקיים x_{1},\ldots,x_{n} נאמר נאם לכל
- . אם לכל φ -ש פסוקים מתקיים $(\varphi(x_1,\ldots,x_n))$ פסוקים מתקיים x_1,\ldots,x_n טעירה.

 $n\in\mathbb{N}$ משפט (עיקרון האינדוקציה). תהי $arphi_n$ סדרת טענות. אם $arphi_0$ וגם לכל $arphi_i$ אזי $arphi_n$ לכל

משפט (עיקרון האינדוקציה השלמה). תהי $\{\varphi_n\}_{n\in\mathbb{N}}$ סדרת טענות. אם φ_0 וגם לכל $\{\varphi_n\}_{n\in\mathbb{N}}$ אזי תהי $\{\varphi_n\}_{n\in\mathbb{N}}$ אזי $\{\varphi_n\}_{n\in\mathbb{N}}$ אזי $\{\varphi_n\}_{n\in\mathbb{N}}$ אזי $\{\varphi_n\}_{n\in\mathbb{N}}$ אזי $\{\varphi_n\}_{n\in\mathbb{N}}$

תורת הקבוצות

תורת הקבוצות הנאיבית

הגדרה (נאיבית ולא פורמלית). קבוצה היא אוסף של עצמים ללא חזרות וללא חשיבות לסדר.

 $A = \{1,2,3,4\}$ היא קבוצה.

 $x \in A$ נסמן A נסמן געם x נמצא בקבוצה

A=B ונסמן, $\forall x.\,(x\in A\leftrightarrow x\in B)$ אם וות אם Bין. אוות אם רכי הקבוצות. נאמר כי הקבוצות. נאמר אם אוות אם ווסמן

 $A\subseteq B$ ונסמן, $\forall x.\,(x\in A o x\in B)$ אם B אם של\מוכלת בָ- A אם אם הגדרה. תהינה A,B קבוצות. נאמר כי A אם בנוסף $A\neq B$, ונסמן $A\neq B$, ונסמן A

 $A\subseteq C$ או $B\subseteq C$ וגם $A\subseteq B$ או $A\subseteq B$ טענה (טרנזיטיביות ההכלה). תהינה A,B,C או

הגדרה. הקבוצה \emptyset שמקיימת $x.x\notin\emptyset$ נקראת הקבוצה הריקה.

 $\emptyset\subseteq A$ טענה. לכל קבוצה A מתקיים

הגדרה (קבוצות מיוחדות). בקורס זה נניח את קיומן של מספר קבוצות:

- $\mathbb{N} riangleq \{0,1,2,\ldots\}$.1. המספרים הטבעיים:
- $\mathbb{N}^+ \triangleq \{1, 2, 3, \ldots\}$ ב. מטבעיים החיוביים: 2.
- $\mathbb{Z} riangleq \{0,1,-1,2,-2,\ldots\}$.3
- $x=rac{n}{m}$ כך שי $m\in\mathbb{N}^+$ ו ו $n\in\mathbb{Z}$ כל שי $x\in\mathbb{Q}$ כך אם $x\in\mathbb{Q}$.4
 - \mathbb{R} :המספרים הממשיים: 5
- z=-1 כאשר z=x+iyכך שָּ- $x,y\in\mathbb{R}$ כאשר ורק אם ורק אם קיימים. $z\in\mathbb{C}$ כאשר 6.

תורת הקבוצות הנאיבית

פעולות על קבוצות

אזי $A\subseteq\Omega$ - אזי A,B,Ω אזי אזי $A\subseteq\Omega$ - אזי אזי

:בי שמתקיים ב- $A\cap B$ כך שמתקיים .1

 $\forall x. x \in A \cap B \leftrightarrow (x \in A \land x \in B)$

: בד שמתקיים מסומן בּ- $A \cup B$ כך שמתקיים 2

 $\forall x. x \in A \cup B \leftrightarrow (x \in A \lor x \in B)$

 $A\cap B=\emptyset$ נאמר כי A וְ-B

 $A \setminus B$ מקיים: 3.

 $\forall x. x \in A \setminus B \leftrightarrow (x \in A \land x \notin B)$

 $A\Delta B$ - מוגדר להיות A ההפרש הסימטרי של A ון מסומן ב-A

$$A\Delta B \triangleq (A \setminus B) \cup (B \setminus A)$$

 $A_\Omega^c \triangleq \Omega \setminus A$ המשלים של A ביחס ל- Ω היא הקבוצה .5 $A^c = \overline{A} := A_\Omega^c$ כאשר Ω מובן מההקשר נסמן

טענה (תכונות של הפעולות הבסיסיות). תהינה A,B,C,Ω קבוצות כך ש- A,B,C,Ω מתקיים

.1

$$A \cap \emptyset = \emptyset$$
 $A \cup \emptyset = A$
 $A \cap A = A$ $A \cup A = A$

.2

$$A \setminus B \subseteq A$$
$$(A \setminus B) \cap B = \emptyset$$

.3

 $A \cap B \subseteq A \quad B \subseteq A \cup B$

אזי $A\subseteq B$ אזי

 $A \cap B = A \quad A \cup B = B$

תורת הקבוצות הנאיבית פרדוקס ראסל

- $B\subseteq C$ אם אם ורק אם $A\subseteq C$ אם $A\cup B\subseteq C$.4 $C\subseteq B$ אזי $C\subseteq A$ אזי $C\subseteq A\cap B$
 - 5. קומוטטיביות (חילופיות)

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

$$A\Delta B = B\Delta A$$

6. אסוציאטיביות (קיבוציות)

$$(A\cap B)\cap C=A\cap (B\cap C)$$

$$(A \cup B) \cup C = A \cup (B \cup C)$$

7. דיסטריבוטיביות (פילוג)

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

אזי , $B^c=B^c_\Omega$ יף, $A^c=A^c_\Omega$ כאשר (De-Morgan) פללי דה-מורגן.

$$A \setminus B = A \cap B^c$$

$$B \setminus A = B \cap A^c$$

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c A^c \cup B^c$$

$$(A^c)^c = A$$

.9

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

פרדוקס ראסל

הגדרה (עיקרון הקומפרהנסיה). תהי $arphi\left(x
ight)$ תכונה, הביטוי

$$A = \{x | \varphi(x)\}$$

היא קבוצה כך שמתקיים

$$\forall x.x \in A \leftrightarrow \varphi(x)$$

 $arphi\left(X
ight)=X
otin X$ בעיה (פרדוקס האסל). ניתן להגדיר תכונה ו $R=\{X\,|X
otin X\}$ זו קבוצה. אז לפי עיקרון הקומפרהנסיה ולכן R אינה קבוצה. זה סתירה ולכן

תורת הקבוצות האקסיומטית

(Zermelo-Fraenkel) ZF אקסיומות

אקסיומה (אקסיומת האקסטנציונליות). תהינה X,Y קבוצות.

$$\forall z. (z \in X \leftrightarrow z \in Y) \Rightarrow (X = Y)$$

אקסיומה (אקסיומת האיחוד). תהינה X,Y קבוצות.

. אז האיחוד $X \cup Y$ הוא קבוצה

אקסיומה (אקסיומת הקבוצה הריקה). קיימת קבוצה \emptyset שלא מכילה אף איבר.

אקסיומה (אקסיומת הזיווג). תהינה X,Y קבוצות.

אז $\{X,Y\}$ היא קבוצה.

. אקסיומה (אקסיומת הקומפרהנסיה המוגבלת). תהינה X קבוצה ו- $P\left(x
ight)$ תכונה

. אז $\{x \in X \mid P(x)\}$ היא קבוצה

X אקסיומה (אקסיומת ההחלפה). תהי f פונקציה על קבוצה

אז $\{f\left(x
ight)|x\in X\}$ אז

 $f\left(x
ight)=x\cup\{x\}$ אקסיומה (אקסיומת האינסוף). תהי f פונקציה כך שמתקיים אקסיומת האינסוף).

 $f\left(Y\right)\in X$ אז $Y\in X$ הם אם $\emptyset\in X$ יף כך X קניימת קבוצה

אקסיומה (אקסיומת קבוצת החזקה). תהי X קבוצה.

.(Power set of X) איז $\mathcal{P}\left(X
ight)=\{Y\mid Y\subseteq X\}$ היא קבוצה שנקראת קבוצת החזקה של

.טענה. תהינא A,B קבוצות

 $A \subseteq B \leftrightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$.1

 $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$ אם ורק אם $A \subseteq B \lor B \subseteq A$.2

אקסיומה (אקסיומת הרגולריות). תהיX קבוצה לא ריקה.

 $Z \notin Y$ מתקיים $Z \in X$ סיים $Y \in X$

תכונה. $P\left(x\right)$ ותהי קבוצה Ω , תהי קבוצה תכונה.

 $y \in A$ אם ורק אם P(y/x) אז $A = \{x \in \Omega | P(x)\}$ אם

פעולות מוכללות על קבוצות

. תהי קבוצה. מאקסיומות ZF, כל איברי F קבוצות בעצמן ולכן הפעולות מוגדרות מוגדרות היטב.

 \cdot מוגדר להיות: F מוגדר להיות: האיחוד המוכלל

$$\bigcup F \triangleq \{x \mid \exists A \in F. x \in A\}$$

סימון. תהי Iקבוצה אזי לכל קבוצה, קבוצה I

$$\bigcup_{i \in I} A_i \triangleq \{x \mid \exists i \in I. x \in A_i\}$$

:בפרט עבור $I=\mathbb{N}$ נסמן

$$\bigcup_{i\in\mathbb{N}} A_i \triangleq \bigcup_{i=0}^{\infty} A_i$$

 $I=\mathbb{Z},\mathbb{N}^+,\ldots$ באותו אופן מכלילים את מכלילים אופן

 \cdot היות: החיתוך המוכלל של איברי F מוגדר להיות

$$\bigcap F \triangleq \{x \mid \forall A \in F. x \in A\}$$

סימון. תהי I קבוצה, אם לכל $i \in I$ סימון. תהי

$$\bigcap_{i \in I} A_i \triangleq \{x \mid \forall i \in I. x \in A_i\}$$

:בפרט עבור $I=\mathbb{N}$ נסמן

$$\bigcap_{i\in\mathbb{N}} A_i \triangleq \bigcap_{i=0}^{\infty} A_i$$

 $I=\mathbb{Z},\mathbb{N}^+,\ldots$ באותו אופן מכלילים את מכלילים אופן

.טענה. $\bigcap F$ קבוצות טענה.

טענה. תהי B קבוצה, ותהי A_i , $i \in I$ שלכל קבוצה קבוצה $i \in I$

$$B \cap \left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} (B \cap A_i)$$
$$B \cup \left(\bigcap_{i \in I} A_i\right) = \bigcap_{i \in I} (B \cup A_i)$$

אזי $A_i \subseteq \Omega$, $i \in I$ כך שלכל Ω קבוצה קיימת קבועה

$$\overline{\bigcup_{i \in I} A_i} = \bigcap_{i \in I} \overline{A_i}$$
$$\overline{\bigcap_{i \in I} A_i} = \bigcup_{i \in I} \overline{A_i}$$

הזוג הסדור והמכפלה הקרטזית

. תהינה x,y קבוצות הגדרה.

 $.\langle x,y
angle riangleq \{\{x\}\,,\{x,y\}\}$ נגדיר את הזוג הסדור להיות

טענה (תכונת הזוג הסדור). תהינה a,b,c,d קבוצות. אזי

$$\langle a, b \rangle = \langle c, d \rangle \iff a = c \land b = d$$

. תהינה A,B קבוצות הגדרה.

המכפלה הקרטזית $A \times B$ מוגדרת להיות

$$A \times B \triangleq \{ \langle a, b \rangle | a \in A \land b \in B \}$$

טענה. לכל $A \times B$ קבוצות, $A \times B$ קבוצה.

טענה. תהי A קבוצה. אזי

$$\emptyset \times A = A \times \emptyset = \emptyset$$

טענה. תהינה A,B קבוצות. אזי

$$(A \times B = B \times A) \iff (A = B \vee A = \emptyset \vee B = \emptyset)$$

 $\pi_1\left(z
ight),\pi_2\left(z
ight)$ מקיים: על הקואורדינטה $\pi_1\left(z
ight),\pi_2\left(z
ight)$ קבוצות. ההיטל של $z=\langle x,y
angle$ על הקואורדינטה הראשונה והשנייה מסומן ב-

$$\pi_1(z) \triangleq x$$

$$\pi_2(z) \triangleq y$$

 $z = \langle \pi_1(z), \pi_2(z) \rangle$ כלומר,

סימון. יהי \mathbb{N}^+ נגדיר

$$[n] = \left\{ i \in \mathbb{N}^+ \mid 1 \le i \le n \right\}$$

נסמן. נסמן a_1, a_2, \dots, a_n הגדרה. תהינה

$$\langle a_1, a_2, \dots, a_n \rangle \triangleq \langle a_1, \langle a_2, \langle \dots, \langle a_{n-1}, a_n \rangle \rangle \rangle$$

 $i\in [n]$ אז לכל $b=\langle a_1,a_2,\ldots,a_n
angle$ אם

$$\pi_i(b) = a_i$$

טענה. יהי a_1,b_1,\ldots,a_n,b_n לכל . $2\leq n\in\mathbb{N}$ מתקיים

$$\langle a_1, \ldots, a_n \rangle = \langle b_1, \ldots, b_n \rangle \iff \forall i \in [n] . a_i = b_i$$

 A_1,\ldots,A_n נגדיר: תהינה תהינה

$$A_1 \times \ldots \times A_n \triangleq A_1 \times (A_2 \times \ldots \times A_n)$$

$$\triangleq A_1 \times (A_2 \times \ldots \times A_n)$$

כלומר

$$A_1 \times \ldots \times A_n \triangleq \{\langle a_1, \ldots, a_n \rangle | \forall i \in [n] . a_i \in A_i \}$$

אם או גסמן . $A_i=A$, $i\in[n]$ נסמן כך אם קבוצה אם קיימת

$$A^n \triangleq A_1 \times \ldots \times A_n$$

יחסים

הגדרה ראשונית

 $R\subseteq A imes B$ קבוצות. אוגות סדורים A,B מ-A מים הוא קבוצה של זוגות סדורים A,B קבוצות. אוגות A=B נאמר כי A יחס מעל A אם A=B נאמר A, אם A=B אם עבור A מתקיים A

 I_A מסומן ומוגדר על ידי: יחס הזהות על A מסומן A ומוגדר על ידי

$$I_A \triangleq \{\langle a, a \rangle \mid a \in A\}$$

 $R\subseteq A_1 imes\dots imes A_n$ הוא תת קבוצה A_1,\dots,A_n הגדרה. יהי יחס 1 יחס 1 יחס מקומי על קבוצות יחסים 1 2 יחס 1 יחסים 1 יחסים

.Bל-א מ-א יחס מ $S\subseteq A\times B$ יהינה קבוצות, קבוצות, A,Bיחס מ-Aיחס ההמוך ל-Bהיחס ההפוך ל-Bהיחס ההפוך ל-

$$S^{-1} \triangleq \{ \langle b, a \rangle \in B \times A \, | \langle a, b \rangle \in S \}$$

הגדרה. תהינה B-ל ומ-B-ל ומ-B-ל

$$R \circ S \triangleq \{\langle a,c \rangle \in A \times C \mid \exists b \in B. \, \langle a,b \rangle \in S \land \langle b,c \rangle \in R \}$$

טענה. יהיו R יחסים מעל קבוצה S-ן אזי

$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}$$

יחסים פונקציות

A יחס מעל קבוצה R טענה. יהי

$$.R\circ I_A=I_A\circ R=R$$
 אזי

A יחס מעל $R\subseteq A^2$ יחס מעל א קבוצה, ויהי

:ההרכבה של R עם עצמו $n\in\mathbb{N}^+$ עם עצמו R ההרכבה אל

$$R^{(n)} = \begin{cases} R^{(n-1)} \circ R & n > 1\\ R & n = 1 \end{cases}$$

טענה. יהי R יחס מעל קבוצה A ויהיו ויהי R יחס מעל

$$R^{(m)} \circ R^{(n)} = R^{(m+n)}$$

 $R \subseteq A \times B$ הגדרה. תהינה A, B קבוצות, ויהי

אם A- אם R .1

$$\forall a \in A. \exists b \in B. \langle a, b \rangle \in R$$

הוא חד ערכי אם R .2

$$\forall a \in A. \forall b_1, b_2 \in B. (\langle a, b_1 \rangle \in R \land \langle a, b_2 \rangle \in R) \rightarrow b_1 = b_2$$

 $S\subseteq A imes B, R\subseteq B imes C$ טענה. תהינה A,B,C קבוצות, ויהיו

- A. מלא ב-A מלא ב-A מלא ב-A מלא ב-A מלא ב-A
 - ערכי. אם R,S חד ערכיים, אז R,S חד ערכי.

פונקציות

תרכי. A מקבוצה A מקבוצה A מקבוצה A מקבוצה A מקבוצה לברה. יחס אורה. יחס הוא פונקציה אם ורק אם A הוא פונקציה אם ורק אם

$$(\forall a \in A. \exists b \in B. \langle a, b \rangle \in f) \land (\forall a \in A. \forall b_1, b_2 \in B. (\langle a, b_1 \rangle \in f \land \langle a, b_2 \rangle \in f) \rightarrow b_1 = b_2)$$

או באופן שקול אם ורק אם

$$\forall a \in A. \exists ! b \in B. \langle a, b \rangle \in f$$

ערכי. אם הוא חלקית החלקית קונקציה מקבוצה A מקבוצה Rיחס יחס הגדרה. יחס א

סימון.

a. וש-a, ווא התמונה של a, ווא התמונה של a

פונקציות

 B^A או A o B נסמן בָ-B או A o B או 2.

 $A \to B \subseteq \mathcal{P}(A \times B)$. טענה. תהינה A, B קבוצות

. תהי f פונקציה תהי f

A הוא $f\in A
ightarrow B$ של (domain) הוא .1

סימון.

$$\operatorname{Dom}(f) \triangleq \{ a \in A \mid \exists b \in B. \langle a, b \rangle \in f \}$$
$$\triangleq \{ \pi_1(z) \mid z \in f \}$$

אם f של (range) אם מקראת נקראת B אם .2

$$\forall x \in \text{Dom}(f) . f(x) \in B$$

מוגדרת באופן הבא $f \in A o B$ מוגדרת התמונה של

$$\operatorname{Im}(\mathbf{f}) \triangleq \{ y \in B \mid \exists x \in \operatorname{Dom}(f) . y = f(x) \}$$
$$\triangleq \{ f(x) \mid x \in \operatorname{Dom}(f) \}$$

. Im $(f)\subseteq B$ אם ורק אם f מענה. קבוצה אם היא טווח של פונקציה אם טענה.

טענה (עקרון האקסטנציונליות עבור פונקציות). תהינה f,g פונקציות. אזי

$$f = g \iff ((\mathrm{Dom}\,(f) = \mathrm{Dom}\,(g)) \land \forall x \in \mathrm{Dom}\,(f) \, . f(x) = g(x))$$

f:A o B לעיתים נכתוב $f\in A o B$ סימון. במקום לכתוב

נסמן ,f:A o B נסמן.

$$f(a) = \iota b \in B. \langle a, b \rangle \in f$$

איוטא - היחיד שמקיים.

יסימון (דרכים לרישום פונקציות). תהינה A,B קבוצות. כל פונקציה $f\in A o B$ ניתנת לרישום באופנים הבאים:

1. כיחס (קבוצת זוגות סדורים)

$$f = \{\langle x, y \rangle \in A \times B | y = f(x) \}$$

מתקיים $x \in A$ מתקיים אז לכל t אם אם מתקיים .2

$$f(x) = t$$

(lambda) כתיב למדא (3

: מתאר את הפונקציה (אולי פונקציה חלקית) מתאר את מתאר את $\lambda x \in A.t$ אם הוא ביטוי אז

יחסים פונקציות

A או) תחומה הוא

 $(t\left(s/x
ight)$ את את את את שמציבים בו במקום ל שמציבים את את את את את את $s\in A$ את את (ב

 \cdot יגי: תהי קבוצה A וביטוי t, אזי

: כלל lpha לפונקציות.

$$\lambda y \in A.t = \lambda x \in A.t(x/y)$$

:כלל β לפונקציות 2

$$(\lambda x \in A.t)(s) = t(s/x)$$

:סלל η לפונקציות 3

$$\lambda x \in \mathrm{Dom}\left(f\right).t\left(x\right) = t$$

הגדרה. בהינתן פונקציה f:A o B וקבוצה $X\subseteq A$ התמונה של X תחת f מסומנת על ידי וקבוצה הגדרה.

$$f[X] \triangleq \{f(a) | a \in X\}$$

ומוגדרת על ידי $f^{-1}[Y]$ מסומנת על ידי f:A o B וקבוצה f:A o B ומוגדרת על ידי

$$f^{-1}[Y] \triangleq \{x \in A \mid f(x) \in Y\}$$

הגדרה (הרכבת פונקציות). אם $g\circ f$ אז g:B o Cי וf:A o B היא הפונקציה

$$g \circ f \triangleq \lambda a \in A.g(f(a))$$

טענה (הרכבה היא אסוציאטיבית). תהינה f:A o B, g:B o C, h:C o D אז

$$h \circ (g \circ f) = (h \circ g) \circ f$$

הגדרה. תהא f:A o B פונקציה. g:B o A פונקציה. f:A o B אם מתקיים

$$g \circ f = I_A$$

וגם

$$f \circ g = I_B$$

 $.g \triangleq f^{-1}$ מסמנים

משפט (יחידות הפונקציה ההופכית). תהינה A,B קבוצות ותהי f:A o B. אם ל-f קיימת פונקציה הופכית g אז היא יחידה. הגדרה. תהא f:A o B פונקציה.

יחסים פונקציות

תיקרא אם מתקיים (חח"ע) אם מתקיים f .1

$$\forall x_1, x_2 \in A. f(x_1) = f(x_2) \to x_1 = x_2$$

ניסוח שקול (קונטרפוזיציה)

$$\forall x_1, x_2 \in A. x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$$

אם מתקיים B אם מתקיים f .2

$$\forall y \in B. \exists x \in A. f(x) = y$$

ניסוח שקול

$$B \subseteq \operatorname{Im}(f)$$

fהיחס ההפוך ל-, ויהי f:A o B היחס ההפוך ל-, ויהי

- תה"ע אם ורק אם f^{-1} חד ערכי. f .1
- $.oldsymbol{B}$ -ם אם f^{-1} מלא B על f .2

g:B o Cין f:A o B טענה. תהינה A,B,C סענה. תהינה

- ע. אם $g \circ f$ אם $g \circ f$ חח"ע.
- C על $g\circ f$ אז $G\circ g$ על .2 על .2

Aהיא f:A o B אם f:A o B היא איווג מ-f:A o B

.משפט. תהינה A,B קבוצות

g:B o A היא זיווג מ-A ל-B אם ורק אם קיימת ל-f:A o B

הערה. לכן קוראים לזיווג גם פונקציה הפיכה.

 $m{E}$ הגדרה. תהי $A\subseteq E$ תת"ק של $A\subseteq E$ תת"ק של הפונקציה האופיינית של

$$\chi_{\mathbf{A}}^{(E)} \triangleq \lambda x \in E. \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

 $E o \{0,1\}$ טענה. לכל קבוצה E קיים זיווג מ- $\mathcal{P}\left(E
ight)$ ל-

ומוגדר על ידי $f|_{m{C}}$ מסומן $f|_{m{C}}$ ומוגדר על ידי f:A o B הגדרה. צמצום של פונקציה

$$f|_{C} \triangleq \lambda x \in C.f(x)$$

f[C]טענה. אם $G \to C$ זיווג מ- $C \subseteq A$ זיווג $f:A \to B$ טענה. אם

יחסי שקילות

הפונקציה הפונקציה A,B,C הפונקציה הגדרה.

$$G = \lambda f \in A \to (B \to C) . \lambda \langle a, b \rangle \in A \times B. (f (a)) (b)$$

.UnCurry וההופכית שלה נקראת Curry נקראת נקראת

יחסי שקילות

הגדרה. יחס S בקבוצה A (או מעל קבוצה A נקרא סימטרי אם

 $\forall a, b.aSb \rightarrow bSa$

 $S^{-1}=S$ טענה. יחס אם הוא סימטרי אם הוא סימטרי טענה.

הגדרה. יחס S בקבוצה A נקרא טרנזיטיבי אם

 $\forall a, b, c.aSb \land bSc \rightarrow aSc$

 $S \circ S \subseteq S$ טענה. יחס יחס טרנזיטיבי אם טרנזיטיבי הוא

הגדרה. יחס S בקבוצה A נקרא רפלקסיבי אם

 $\forall a \in A.aSa$

 $I_A\subseteq S$ טענה. יחס אם רפלקסיבי הוא הוא רפלקסיבי אם בקבוצה

. נקרא יחס שקילות אם הוא רפלקסיבי, סימטרי וטרנזיטיבי E יחס אזרה. יחס E

A יחסי שקילות בקבוצה R,S טענה. יהיו

אנ $R \circ S$ יחס שקילות. $R \circ S = S \circ R$ אם

A יחס שקילות בקבוצה E יהי

מחלקת השקילות של איבר $a\in A$ מסומנת ב- $[a]_E$ ומוגדרת על ידי

$$[a]_E = \{b \in A \,|\, aEb\} \subseteq A$$

:טענה. יהי E יחס שקילות בקבוצה A התנאים הבאים שקולים

- aEb .1
- $[a]_E = [b]_E$.2
- $[a]_E\cap [b]_E
 eq \emptyset$.3

A בקבוצה בקבוצה שקילות בקבוצה הגדרה.

קבוצת המנה של A לפי E מסומנת ב-A/E ומוגדרת על ידי

$$A/E \triangleq \{[a]_E | a \in A\} \subseteq \mathcal{P}(A)$$

יחסי שקילות

הנאים הבאים: שמקיימת את התנאים חלוקה של (partition) A היא קבוצה ההי חלוקה של $\Pi\subseteq\mathcal{P}\left(A\right)$ היא קבוצה (partition)

1. אין חלקים ריקים:

 $\emptyset \notin \Pi$

:A מכסה את כל Π .2

 $\forall a \in A. \exists M \in \Pi. a \in M$

ניסוח שקול:

 $A \subseteq \bigcup \Pi$

3. החלקים זרים:

 $\forall M_1, M_2 \in \Pi. M_1 \neq M_2 \to M_1 \cap M_2 = \emptyset$

או באופן שקול (קונטרפוזיציה):

 $\forall M_1, M_2 \in \Pi. M_1 \cap M_2 \neq \emptyset \to M_1 = M_2$

A משפט. תהי קבוצה

- A בקבוצה A/E היא חלוקה של .1
 - A חלוקה של חלוקה חל .2 היחס S_Π שמוגדר על ידי

 $S_{\Pi} = \{ \langle a, b \rangle \in A \times A \mid \exists M \in \Pi . a \in M \land b \in M \}$

הוא יחס שקילות.

טענה. לכל חלוקה Π של קבוצה A אם

 $S_{\Pi} = \{ \langle a, b \rangle \in A \times A \mid \exists M \in \Pi. a \in M \land b \in M \}$

 $A/S_{\Pi}=\Pi$ אז מתקיים

A משפט. תהא קבוצה

בין קבוצת יחסי השקילות ב-A לקבוצת החלוקות של A קיים γ יווג.

 $(a,x)\in S$ - כך ש $X\in X$ נקראת מערכת נציגים של יחס שקילות אם לכל $A\in A$ קיים ויחיד אונקראת מערכת נציגים של יחס שקילות

הגדרה. תהינא לא תלויה בנציג ביחס $S\subseteq A^2$ הקילות ויחס שקילות הגדרה. תהינא לא תלויה בנציג ביחס ל- $S\subseteq A^2$ אם

 $\forall x, y \in A.xSy \rightarrow f(x) = f(y)$

יחסי סדר

יחסי סדר

סימון. מקובל לסמן:

- $. \le -$ יחס סדר חלש ב $. \ge .$
- .<-2. יחס סדר חזק ב-

הגדרה. יחס S בקבוצה A נקרא אנטי-סימטרי אם

 $\forall a, b.aSb \land bSa \rightarrow a = b$

טענה. אם יחס S בקבוצה A הוא סימטרי וגם אנטי-סימטרי אז

 $S \subseteq I_A$

. נקרא יחס סדר חלש אם הוא טרנזיטיבי, רפלקסיבי ואנטי-סימטרי להגדרה. נחס בקבוצה א נקרא יחס סדר חלש אם הוא הגדרה. יחס

A יחס סדר חלש בקבוצה S יהי

אם S- יקרא מינימלי ליקר $b \in A$ אם .1

 $\forall a \in A.a \neq b \rightarrow \neg aSb$

אם S- יקרא מקסימלי ביחס לי $b\in A$ אם .2

 $\forall a \in A.a \neq b \rightarrow \neg bSa$

אם S- יקרא איבר גדול ביותר איבר $b\in A$ אם 3.

 $\forall a \in A.aRb$

אם S- יקרא איבר קטן ביותר ביחס ל $b\in A$ איבר 4

 $\forall a \in A.bRa$

הגדרה. יחס S בקבוצה A נקרא אנטי-סימטרי חזק אם

 $\forall a, b.aSb \rightarrow \neg bSa$

. הגדרה. יחס בקבוצה A נקרא יחס סדר חזק אם הוא טרנזיטיבי ואנטי-סימטרי חזק

הגדרה.

היחס סדר (חלש) S בקבוצה A נקרא נקרא מדר מלא אם .1

 $\forall a, b \in A.aSb \lor bSa$

נקרא יחס סדר הזק A בקבוצה A נקרא נקרא בקבוצה S

 $\forall a, b \in A.aSb \lor bSa \lor a = b$

הערה.

- .1 לעיתים במקום מלא אומרים לינארי/קווי או יחס סדר טוטאלי (total).
 - 2. יחס סדר מלא זה לא שקול ליחס סדר שהוא יחס מלא.

עוצמות

מושגי יסוד

f:A o B נקראות שוות עוצמה אם קיים זיווג A,B נקראות אחרה. שתי קבוצות אחרה. מימון. $A\sim B$

הגדרה. קבוצה A נקראת **סופית** אם קיים $n\in\mathbb{N}$ כך שמתקיים

$$A \sim \{k \in \mathbb{N} \mid 1 \le k \le n\}$$

הגדרה. קבוצה שאינה סופית נקראת **אינסופית**.

n=0 הערה. \emptyset סופית כי עבור

$$\{k \in \mathbb{N} \mid n \le k \le 0\} = \emptyset$$

 $\emptyset:\emptyset\to\emptyset$ ולכן זיווג הוא

.טענה. תהינא A,B קבוצות

 $.
eg A \sim B$ אז $B \subset A$ - אם A סופית ו

.טענה. היחס * הוא החס שקילות

* - צריך להגדיר פורמלית את הקבוצה שבה הוא יחס.

 \sim של * של היא מחלקת שקילות של היא הגדרה. עוצמה

A סימון. |A| זו העוצמה של

|A| = |B| כלומר $A \sim B$ אם ורק

נגדיר $n\in\mathbb{N}^+$ לכל ומספרים הטבעיים). לכל

$$0 \triangleq |\emptyset|$$
$$n \triangleq |\{k \in \mathbb{N} | k < n\}|$$

טענה. תהינה $A \sim A'$ קבוצות. אם A, B' זרות ו- A', B' זרות ו- A, B קבוצות. אם A, B, A', B' טענה. תהינה

$$A \cup B \sim A^{'} \cup B^{'}$$

עוצמות

לכסון

 \mathbb{N} הגדרה. העוצמה של הקבוצה \mathbb{N} תסומן \mathbb{N} ותיקרא אלף אפס.

 $|A|=leph_0$ הגדרה. קבוצה A תיקרא בת-מניה אם

 $B'\subset B$ -טענה. לכל קבוצה בת מניה B קיימת הקיומת לכל קבוצה בת מניה לכל סענה.

: טענה. מתקיים

$$\forall k \in \mathbb{N}^+. \left| \mathbb{N}^k \right| = \aleph_0 . \mathbf{1}$$

$$|\mathbb{Q}| = |\mathbb{Z}| = \aleph_0$$
 .2

 $\mathbf{k}=|\mathbb{R}|$ ותיקרא עוצמת הרצף. $\mathbf{k}=|\mathbb{R}|$ תסומן

a < b טענה. יהיו $a, b \in \mathbb{R}$ כך שמתקיים

$$|[a,b]| = |[a,b)| = |(a,b)| = |(a,b)|$$

 $A \in B$ כך שלכל $f: B o \bigcup B$ היימת פונקציה אז קיימת לא ריקה אל קבוצה לא ריקה לא קבוצה תהא קבוצה לא הבחירה). תהא לה קבוצה לא הייקה של קבוצה לא הייקה לא הי

z: משפט. נניח כי מערכת האקסיומות ZF קונסיסטנטית. אזי

- .1 מערכת אקסיומות קונסיסטנטית. $ZFC = ZF \cup AC$ (גדל).
 - מערכת אקסיומות קונסיסטנטית. $ZF \cup \neg AC$ (בהן) .2

 $oldsymbol{a}$ משפט. תהי קבוצה A, אז הבאים שקולים:

- .1 קיימת $B\subseteq A$ בת מניה.
- $A^{'}\sim A$ כך ש-2 כ $A^{'}\subset A$ קיימת.
 - .אינסופית A .3

B שאנו שנו שנוינים להוכיח שהיא אינה מעוצמה של קבוצה A שאנו מעוניינים להוכיח שהיא אינה מעוצמה של אלגוריתם שלגוריתם (לכסון). נניח שנתונה לנו קבוצה

- f:B o A איווג קיים וולכן מעוצמה א מעוצמה מיים מיווג 1.
- f שתלויה ב- באופן שתהיה שונה מכל איבר בתמונה של .2
- A = f(x)-ט כך $x \in B$ כך שקיים לכך שנראה סתירה בכך שנראה בכך שנראה f-ט גראה ש-f

 $|A| \neq |\mathcal{P}(A)|$ מתקיים A מתקיים לכל יותר לכל

עוצמות סדר של עוצמות

סדר של עוצמות

A,B הגדרה. תהינה A,B קבוצות. נאמר כי $|m{A}| \leq |m{B}|$ אם קיימת פונקציה חח"ע

טענה. ההגדרה לעיל טובה (לא תלויה בנציג).

 $f^{'}:A^{'} o B^{'}$ קיימת פונקציה $A^{'}\in |A|\,,B^{'}\in |B|$ חח"ע אז לכל קבוצות A,B מתקיים כי אם קיימת A,B חח"ע.

:טענה. תהיינה A,B קבוצות, אז הבאים שקולים

- $|A| \le |B|$.1
- $.B^{'} \sim A$ כך ש- $B^{'} \subseteq B$.2
- A על g:B o A או שקיימת פונקציה $A=\emptyset$.3

|A|
eq |B| וגם $|A| \le |B|$ אם מתקיים $|A| \le |B|$ וגם A,B הגדרה. תהינא

טענה. היחס \geq בין עוצמות הוא יחס סדר מלא.

 $|A| \leq |B|$ אז $A \subseteq B$ טענה. תהינא A, B קבוצות. אם

משפט (קנטור-שרדר-ברנשטיין). תהינה A,B קבוצות.

$$|A| = |B| \iff |A| \le B \land |B| \le |A|$$

 $A \sim B \sim C$ אז $A \sim C$ ו- $A \subseteq B \subseteq C$ משפט (סנדוויץ'). תהינה A, B, C קבוצות. אם

 $|A/T| \leq |A|$ אז שקילות. או $T \in \mathcal{P}\left(A \times A\right)$ טענה. תהי קבוצה א

|A|>|A| משפט. לכל קבוצה A מתקיים $|\mathcal{P}\left(A
ight)|=2^{|A|}$ משפט. לכל קבוצה א

פעולות על עוצמות

:הגדרה. תהיינה A,B קבוצות. נגדיר

- $|A|+|B|=|(A imes\{0\})\cup(B imes\{1\})|$ עבור אות, ניתן להגדיר עבור קבוצות עבור עבור עבור עבור אות. עבור אות, ניתן להגדיר אורות, ניתן להגדיר ווח. אורות. עבור אורות. עבור אורות. עבור קבוצות אורות, ניתן להגדיר ווח.
 - $|A| \cdot |B| \triangleq |A \times B|$.2
 - $|A|^{|B|} \triangleq |B o A|$.3

טענה. ההגדרה לעיל טובה (לא תלויה בנציגים).

טענה (זהויות שימושיות).

- $.\aleph_0 + \aleph_0 = \aleph_0$.1
 - $.\aleph + \aleph_0 = \aleph$.2
 - $.\aleph + \aleph = \aleph$.3

עוצמות פעולות על עוצמות

 $.\aleph^{\aleph_0}=\aleph$.4

 \cdot יטענה (חשבון עוצמות). תהינא a,b,c עוצמות. אזי

1. קומוטטיביות:

$$a + b = b + a$$
$$a \cdot b = b \cdot a$$

2. אסוציאטיביות:

$$(a+b) + c = a + (b+c)$$
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

3. דיסטריבוטיביות:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

4. קיום עוצמה אדישה לחיבור:

$$a+0=0+a=a$$

5. קיום עוצמה אדישה לכפל:

$$a \cdot 1 = 1 \cdot a = a$$

6. תכונות נוספות:

$$a \cdot 0 = 0 \cdot a = 0$$
$$a^{1} = a$$
$$a^{0} = 1$$
$$1^{a} = 1$$

$$a \neq 0$$
 אז .7

$$0^a = 0$$

:בנוסף

$$0^0 = 1$$

עוצמות פעולות על עוצמות

8. חוקי חזקות:

$$a^{c} \cdot b^{c} = (a \cdot b)^{c}$$
$$a^{b} \cdot a^{c} = a^{b+c}$$
$$(a^{b})^{c} = a^{b \cdot c}$$

אז $b \leq d$ רו $a \leq c$ אז אז מונוטוניות: אם .9

$$a+b \le c+d$$
$$a \cdot b \le c \cdot d$$
$$a^b \le c^d$$

. $\left|A^k\right|=|A|^k$: מתקיים A מתקיים אולכל הכל ולכל לכל לכל אולכל אינסופית a עוצמות. אם אינסופית אוa,b אוינסופית טענה. תהינא a,b עוצמות. אם אינסופית ו

$$a + b = a$$

 $|\bigcup_{i\in I}A_i|\leq leph_0$ אז $|A_i|\leq leph_0$ משפט. תהא $|A_i|\leq leph_0$ אז אז היא בת מניה. קבוצה, ותהי $|A_i|\leq lpha_0$ אז אז אז $|A_i|\leq lpha_0$ אז משפט. תהא $|A_i|\leq lpha_0$ אז היא בת מניה. פורמלית:

$$|\{X \in \mathcal{P}(\mathbb{N}) | |X| \in \mathbb{N}\}| = \aleph_0$$

: טענה. קבוצת תתי הקבוצות האינסופיות של $\mathbb N$ היא מעוצמת הרצף. פורמלית

$$|\{X \in \mathcal{P}(\mathbb{N}) | |X| \notin \mathbb{N}\}| = \aleph$$

. טענה. יהי Σ א"ב סופי. אז קיימת $f\in\mathbb{N} o \{0,1\}$ טענה. יהי א שיב מעל א יכולה לחשב. אייב סופי. אז קיימת