MATH101 — Fiche 2 : Correction des exercices 5 et 6.

Exercice 5. 1. Puisque $(n+1)! = (n+1) \times n!$, nous avons

$$A = \frac{n+1}{(n+1)!} - \frac{1}{(n+1)!} = \frac{n}{(n+1)!} = \frac{1}{(n+1)(n-1)!},$$

$$B = \frac{n+1}{(n+1)!} + \frac{1}{(n+1)!} - \frac{n!}{(n+1)!} = \frac{n+2-n!}{(n+1)!}.$$

- 2. Notation: pour $n \in \mathbf{N}^*$ et $0 \le k \le n$, $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{k!}$.
 - (a) Pour $n \in \mathbf{N}^*$,

$$a = \binom{n}{0} = 1$$
, $b = \binom{n}{1} = n$, $c = \binom{n}{2} = \frac{n(n-1)}{2}$, $d = b = n$, $e = a = 1$.

(b) Soit $n \geq 2$ et $1 \leq k \leq n-1$. En réduisant au même dénominateur (n-k)!k!,

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(n-k)!(k-1)!} + \frac{(n-1)!}{(n-1-k)!k!} = \frac{k(n-1)!}{(n-k)!k!} + \frac{(n-k)(n-1)!}{(n-k)!k!},$$

$$= \frac{n(n-1)!}{(n-k)!k!} = \frac{n!}{(n-k)!k!} = \binom{n}{k}.$$

- 3. (a) Pour $n \in \mathbf{N}^*$, $a \in \mathbf{R}$, $b \in \mathbf{R}$, $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.
- (b) Le coefficient de x^6 dans le développement de $(x+2)^8$ est $\binom{8}{6}2^{8-6}=112$. Il est $\binom{7}{3}(-3)^{7-3}$ soit $35\times81=2835$ dans le développement de $(x^2-3)^7$ car $x^6=(x^2)^3$.
 - (c) Le coefficient de x^3y^7 dans le développement de $(x-y)^{10}$ est $\binom{10}{3}(-1)^7=-120$.
 - (d) Le coefficient de x^6y^7 dans le développement de $(2x-y)^{13}$ est $\binom{13}{6}2^6(-1)^7=-109824$.

Exercice 6. 1. « E est majoré » se traduit par : $\exists M \in \mathbf{R}, \forall x \in E, x \leq M$.

- « E n'est pas majoré » se traduit par : $\forall M \in \mathbf{R}, \exists x \in E, x > M$.
- 2. L'ensemble des minorants de a = -2 est $]-\infty, -2]$.
- 3. (a) A possède un plus grand élément $\max A = \frac{1}{2}$ (n=2) et un plus petit élément $\min A = -1$ (n=1). Par conséquent $\sup A = \frac{1}{2}$ et $\inf A = -1$.
- (b) B possède un plus grand élément $\max B = 1$ (x = 0) et $\sup B = \max B$. Par contre B ne possède pas de plus petit élément; on a $\inf B = 0$ et $0 \notin B$.