Linear Representations of Finite Groups by Serre Exercises completed by Caitlin Beecham

Exercise 3.1

Show directly, using Schur's Lemma, that each irreducible representation of an abelian group, finite or not, has degree 1.

Consider an irreducible representation (ρ, V) of G. Now, G abelian implies that (for fixed $g \in G$) $\rho_g \rho_h = \rho_h \rho_g$ for all $h \in G$. Thus, we may apply Schur's lemma to conclude that $\rho_g = \lambda_g I$ is a scalar multiple of the identity. This applies for all $g \in G$ meaning that $\rho_g = \lambda_g I$ for all $g \in G$. However, this provides a contradiction unless dim(V) = 1 since otherwise $span(\{e_1\}) \subseteq V$ is a proper non-trivial subrepresentation.

Exercise 3.2

Let ρ be an irreducible representation of G of degree n and character χ ; let C be the center of G (i.e. the set of $s \in G$ such that st = ts for all $t \in G$), and let c be its order.

(a) Show that ρ_s is a homothety for each $s \in C$. [Use Schur's Lemma]. Deduce from this that $|\chi(s)| = n$ for all $s \in C$.

Well, for $s \in C$ we have that $\rho_s \rho_h = \rho_h \rho_s$ for all $h \in G$ which implies by Schur's lemma that $\rho_s = \lambda_s I$ is a scalar multiple of the identity for all $s \in C$. The proof of Proposition 1 part (ii) on page 11 shows that $|\lambda_s| = 1$ (here || denotes complex modulus). Thus, $|\chi(s)| = |\lambda(s)| n = n$.

- (b) Prove the inequality $n^2 \leq g/c$. Note that $\sum_{s \in G} |\chi(s)|^2 = g$ and $\sum_{s \in C} |\chi(s)|^2 + \sum_{s \in G \setminus C} |\chi(s)|^2 = cn^2 + \sum_{s \in G \setminus C} |\chi(s)|^2$. So, $cn^2 \leq g$ which proves the claim.
- (c) Show that, if ρ is faithful (i.e. $\rho_s \neq 1$ for $s \neq 1$), the group C is cyclic. It suffices to show that $\{\lambda_s : s \in C\}$ is cyclic. Note that since C is a group we have that $\{\rho_s : s \in C\}$ is a group and thus $\{\lambda_s : s \in C\} \subseteq \{z \in \mathbb{C} : |z| = 1\}$ is also a group. I claim that any finite subgroup of $\{z \in \mathbb{C} : |z| = 1\}$ is cyclic. Of course, any finite group is finitely generated, so assume for contradiction that $\{\lambda_s : s \in C\}$ has a generating set of minimum size $\langle \lambda_{s_1}, \ldots, \lambda_{s_j} \rangle$ of at least two elements $(j \geq 2)$. Then, note that $\lambda_{s_1} = \zeta_{ord(s_1)}^{r_1}$ for some r_1 coprime to $ord(s_1)$. Likewise $\lambda_{s_2} = \zeta_{ord(s_2)}^{r_2}$ for some r_2 coprime to s_2 . Then, note that we have that $\lambda_{s_1} = \zeta_{ord(s_1)ord(s_2)}^{r_1ord(s_2)}$ and $\lambda_{s_2} = \zeta_{ord(s_1)ord(s_2)}^{r_2ord(s_1)}$. Now, by Bezout's identity there exist $a, b \in \mathbb{Z}$ such that $ar_1ord(s_2) + br_2ord(s_1) = gcd(r_1ord(s_2), r_2ord(s_1))$. Furthermore, for all $m \in \mathbb{Z}$ we have that $mgcd(r_1ord(s_2), r_2ord(s_1)) = mar_1ord(s_2) + mbr_2ord(s_1)$ meaning that $\zeta_{ord(s_1)ord(s_2)}^{mgcd(r_1ord(s_2), r_2ord(s_1))} = \zeta_{ord(s_1)ord(s_2)}^{mar_1ord(s_2) + mbr_2ord(s_1)} = (\zeta_{ord(s_1)ord(s_2)}^{r_1ord(s_2)})^{ma} (\zeta_{ord(s_1)ord(s_2)}^{r_2ord(s_1)})^{mb}$ or in other words that

$$\langle \zeta_{ord(s_1)ord(s_2)}^{gcd(r_1ord(s_2),r_2ord(s_1))} \rangle \subseteq \langle \zeta_{ord(s_1)ord(s_2)}^{r_1ord(s_2)}, \zeta_{ord(s_1)ord(s_2)}^{r_2ord(s_1)} \rangle = \langle \lambda_{s_1}, \lambda_{s_2} \rangle.$$

Furthermore

$$\lambda_{s_1} = (\zeta_{ord(s_1)ord(s_2)}^{gcd(r_1ord(s_2),r_2ord(s_1))})^{\frac{r_1ord(s_2)}{gcd(r_1ord(s_2),r_2ord(s_1))}}$$

and

$$\lambda_{s_2} = (\zeta_{ord(s_1)ord(s_2)}^{gcd(r_1ord(s_2),r_2ord(s_1))})^{\frac{r_2ord(s_1)}{gcd(r_1ord(s_2),r_2ord(s_1))}},$$

implying that

$$\lambda_1, \lambda_2 \in \zeta_{ord(s_1)ord(s_2)}^{gcd(r_1ord(s_2), r_2ord(s_1))}$$

which means

$$\langle \zeta_{ord(s_1)ord(s_2)}^{gcd(r_1ord(s_2),r_2ord(s_1))} \rangle = \langle \lambda_{s_1},\lambda_{s_2} \rangle.$$

So, we have obtained a contradiction, namely that

$$\langle \lambda_{s_1}, \lambda_{s_2}, \lambda_{s_3}, \dots, \lambda_{s_j} \rangle = \langle \zeta_{ord(s_1)ord(s_2)}^{gcd(r_1ord(s_2), r_2ord(s_1))}, \lambda_{s_3}, \dots, \lambda_{s_j} \rangle,$$

which is impossible since we said that $\lambda_{s_1}, \lambda_{s_2}, \lambda_{s_3}, \dots, \lambda_{s_j}$ was a generating set for $\{\lambda_s : s \in C\}$ of minimum size. Thus, C is cyclic.

Exercise 3.3