Part III Algebraic Number Theory 2014

Contents

1	Ded	Dedekind domains						
	1.1	Introduction	_					
		Basics						
	1.3	Dedekind domains						

iv CONTENTS

Chapter 1

Dedekind domains

1.1 Introduction

These are lecture notes for the 2014 Part III Algebraic Number Theory course taught by Dr. Jack Thorne, these notes are part of Mjolnir.

The recommended books are:

- H. P. F. Swinnerton-Dyer A Brief Guide to Algebraic Number Theory
- Serge Lang Algebraic Number Theory

Generated: May 21, 2015, 07:04:50 (Z)

1.2 Basics

Definition 1.2.1 (Number fields). A **number field** K is a finite degree field extension of \mathbb{Q} .

Definition 1.2.2 (Integral elements). If K is a number field and $\alpha \in K$ then we say α is **integral** if there exists a $f \in \mathbf{Z}[x]$ monic with $f(\alpha) = 0$.

If α is integral than $\mathbf{Z}[\alpha] \subset K$ is finitely generated. Conversely if $\alpha \in K$ and $\mathbf{Z}[\alpha]$ is a finitely generated **Z**-module then α is integral over K. (If $\mathbf{Z}[\alpha]$ is spanned by $f_1(\alpha), \ldots, f_k(\alpha)$ $f_i \in \mathbf{Z}[x]$ then for any $n > \max \deg f_i$ we can write $\alpha^n = \sum_{i=1}^k a_i f_i(\alpha)$ for some $\alpha_i \in \mathbf{Z}$. This implies that α is a zero of $x^n - \sum_{i=1}^k a_i f_i(x) \in \mathbf{Z}[x]$. We have shown that if $\alpha, \beta \in K$ are integral over \mathbf{Z} then so are $\alpha \pm \beta$ and $\alpha\beta$ (as it is easy to see $\mathbf{Z}[\alpha, \beta]$ is a finitely generated \mathbf{Z} -module).)

Definition 1.2.3 (Rings of integers). If K is a number field let \mathcal{O}_K be the **ring of integers**, defined by

$$\mathcal{O}_K = \{ \alpha \in K : \alpha \text{ integral over } \mathbf{Z} \}.$$

This is the integral closure of \mathbf{Z} in K.

1.3 Dedekind domains

Let R be an integral domain, K = Frac(R).

Definition 1.3.1 (Dedekind domains). We then say that R is a **dedekind domain** if it is

- 1. Noetherian,
- 2. integrally closed in K,
- 3. and in it every non-zero prime is maximal.

Exercise 1.3.2. Show that every PID is a dedekind domain.

Definition 1.3.3 (Fractional ideals). If R is a dedekind domain we call every finitely generated R-submodule of K a fractional ideal.

This definition includes ideals $I \subset R$.

Proposition 1.3.4. Let R be a dedekind domain and let \mathcal{I} be the set of non-zero fractional ideals of R, then \mathcal{I} is a group under multiplication.

Proof. We deonte ideals of R by $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \subset R$ and (non-zero) prime ideals by $\mathfrak{p}, \mathfrak{q}, \mathfrak{r} \subset R$. Multiplication is given by

$$\mathfrak{ab} = \left\{ \sum a_i b_i : a_i \in \mathfrak{a}, \, b_i \in \mathfrak{b} \right\}.$$

Then the identity for this operation is (1) = R. The key part of this proof is the construction of inverses.

Claim 1.3.5. For any non-zero ideal $\mathfrak{a} \subset R$ there exist non-zero prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_m \subset R$ such that $\mathfrak{p}_1 \cdots \mathfrak{p}_m \subset \mathfrak{a}$.

Proof. Suppose not, then we can find an $\mathfrak{a} \subset R$ which is maximal among such ideals having this property (as R is noetherian). Then \mathfrak{a} is not prime, as otherwise the claim is clearly true, so there exists some $\alpha, \beta \in R$ with $\alpha\beta \in \mathfrak{a}$ but $\alpha, \beta \notin \mathfrak{a}$. So we have that $\mathfrak{a} \subseteq \mathfrak{a} + (\alpha)$ and $\mathfrak{a} \subseteq \mathfrak{a} + (\beta)$. By the maximality of \mathfrak{a} we can find $\mathfrak{p}_1 \cdots \mathfrak{p}_m \subseteq \mathfrak{a} + (\alpha)$ and $\mathfrak{q}_1 \cdots \mathfrak{q}_n \subseteq \mathfrak{a} + (\beta)$ but now

$$\mathfrak{p}_1 \cdots \mathfrak{p}_m \mathfrak{q}_1 \cdots \mathfrak{q}_n \subseteq (\mathfrak{a} + (\alpha))(\mathfrak{a} + (\beta)) \subseteq \mathfrak{a} + (\alpha\beta) \subseteq \mathfrak{a},$$

contradiction. \Box

Claim 1.3.6. For any non-zero prime ideal $\mathfrak{p} \subset R$ there exists $\delta \in K \setminus R$ such that $\delta \mathfrak{p} \subseteq R$.

Proof. Choose $\beta \in \mathfrak{p} \setminus \{0\}$ and an expression $\mathfrak{p}_1 \cdots \mathfrak{p}_m \subseteq (\beta)$ with \mathfrak{p}_i non-zero prime ideals and m minimal. Then there exists i such that $\mathfrak{p}_i \subset R$ otherwise for all i there is some $\alpha_i \in \mathfrak{p}_i \setminus \mathfrak{p}$, in which case $\alpha_1 \cdots \alpha_m \in \mathfrak{p}_1 \cdots \mathfrak{p}_m \subseteq (\beta) \subseteq \mathfrak{p}$, a contradiction