|                       | Marwadi University                                                          |                            |
|-----------------------|-----------------------------------------------------------------------------|----------------------------|
| Marwadi<br>University | Faculty of Technology                                                       |                            |
| Oniversity            | Department of Information and Communication Technology                      |                            |
| Subject: Machine      | Aim: To obtain the best fit line over multiple feature scattered datapoints |                            |
| Learning (01CT0519)   | using Linear Regression                                                     |                            |
| Experiment No: 03     | Date: 03-09-2024                                                            | Enrollment No: 92200133030 |

Aim: To obtain the best fit line over multiple feature scattered datapoints using Linear Regression

**IDE:** Google Colab

#### **Theory:**

Multiple linear regression (MLR), also known simply as multiple regression, is a statistical technique that uses several explanatory variables to predict the outcome of a response variable. The goal of multiple linear regression is to model the linear relationship between the explanatory (independent) variables and response (dependent) variables. In essence, multiple regression is the extension of ordinary least-squares (OLS) regression because it involves more than one explanatory variable.

#### Formula and Calculation of Multiple Linear Regression

 $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip} + \epsilon$ 

where, for i = n observations:

 $y_i = \text{dependent variable}$ 

 $x_i = \text{explanatory variables}$ 

 $\beta_0 = \text{y-intercept (constant term)}$ 

 $\beta_p = \text{slope coefficients}$  for each explanatory variable

 $\epsilon =$  the model's error term (also known as the residuals)

## **Example of How to Use Multiple Linear Regression**

As an example, an analyst may want to know how the movement of the market affects the price of ExxonMobil (XOM). In this case, their linear equation will have the value of the S&P 500 index as the independent variable, or predictor, and the price of XOM as the dependent variable.

In reality, multiple factors predict the outcome of an event. The price movement of ExxonMobil, for example, depends on more than just the performance of the overall market. Other predictors such as the price of oil, interest rates, and the price movement of oil <u>futures</u> can affect the price of XOM and stock prices of other oil companies. To understand a relationship in which more than two variables are present, multiple linear regression is used.

Multiple linear regression (MLR) is used to determine a mathematical relationship among several random variables. In other terms, MLR examines how multiple independent variables are related to one dependent variable. Once each of the independent factors has been determined to predict the dependent variable, the information on the multiple variables can be used to create an accurate prediction on the level of effect they have

|                       | Marwadi University                                                          |                            |
|-----------------------|-----------------------------------------------------------------------------|----------------------------|
| Marwadi<br>University | Faculty of Technology                                                       |                            |
| Oniversity            | Department of Information and Communication Technology                      |                            |
| Subject: Machine      | Aim: To obtain the best fit line over multiple feature scattered datapoints |                            |
| Learning (01CT0519)   | using Linear Regression                                                     |                            |
| Experiment No: 03     | Date: 03-09-2024                                                            | Enrollment No: 92200133030 |

on the outcome variable. The model creates a relationship in the form of a straight line (linear) that best approximates all the individual data points.

## **Program (Code):**

- 1. Load the basic libraries and packages
- 2. Load the dataset
- 3. Analyse the dataset
- 4. Normalize the data
- 5. Pre-process the data
- 6. Visualize the Data
- 7. Separate the feature and prediction value columns
- 8. Write the Hypothesis Function
- 9. Write the Cost Function
- 10. Write the Gradient Descent optimization algorithm
- 11. Apply the training over the dataset to minimize the loss
- 12. Find the best fit line to the given dataset
- 13. Observe the cost function vs iterations learning curve

|                       | Marwadi University                                                          |                            |
|-----------------------|-----------------------------------------------------------------------------|----------------------------|
| Marwadi<br>University | Faculty of Technology                                                       |                            |
| Oniversity            | Department of Information and Communication Technology                      |                            |
| Subject: Machine      | Aim: To obtain the best fit line over multiple feature scattered datapoints |                            |
| Learning (01CT0519)   | using Linear Regression                                                     |                            |
| Experiment No: 03     | Date: 03-09-2024                                                            | Enrollment No: 92200133030 |

## **Results:**

To be attached with

a. Datapoints scattering (without best fit line)

## Multivariate Linear Regression



#### b. Data Statistics before Normalization

|             | Area        | Rooms     | Prices        |
|-------------|-------------|-----------|---------------|
| count       | 47.000000   | 47.000000 | 47.000000     |
| mean        | 2000.680851 | 3.170213  | 340412.659574 |
| std         | 794.702354  | 0.760982  | 125039.899586 |
| min         | 852.000000  | 1.000000  | 169900.000000 |
| 25%         | 1432.000000 | 3.000000  | 249900.000000 |
| 50%         | 1888.000000 | 3.000000  | 299900.000000 |
| <b>75</b> % | 2269.000000 | 4.000000  | 384450.000000 |
| max         | 4478.000000 | 5.000000  | 699900.000000 |

|                       | Marwadi University                                                          |                            |
|-----------------------|-----------------------------------------------------------------------------|----------------------------|
| Marwadi<br>University | Faculty of Technology                                                       |                            |
| Oniversity            | Department of Information and Communication Technology                      |                            |
| Subject: Machine      | Aim: To obtain the best fit line over multiple feature scattered datapoints |                            |
| Learning (01CT0519)   | using Linear Regression                                                     |                            |
| Experiment No: 03     | Date: 03-09-2024                                                            | Enrollment No: 92200133030 |

#### c. Data Statistics after Normalization

|             |    | Area          | Rooms         | Price         |
|-------------|----|---------------|---------------|---------------|
| cou         | nt | 4.700000e+01  | 4.700000e+01  | 47.000000     |
| mea         | an | 9.448707e-18  | 2.710598e-16  | 340412.659574 |
| sto         | d  | 1.010811e+00  | 1.010811e+00  | 125039.899586 |
| mi          | n  | -1.461049e+00 | -2.882690e+00 | 169900.000000 |
| 25°         | %  | -7.233261e-01 | -2.260934e-01 | 249900.000000 |
| <b>50</b> 9 | %  | -1.433229e-01 | -2.260934e-01 | 299900.000000 |
| 75°         | %  | 3.412850e-01  | 1.102205e+00  | 384450.000000 |
| ma          | X  | 3.150993e+00  | 2.430504e+00  | 699900.000000 |

## d. Learning Curve (Cost function vs iterations)



|                            | Marwadi University                                                          |                            |
|----------------------------|-----------------------------------------------------------------------------|----------------------------|
| Marwadi<br>University      | Faculty of Technology                                                       |                            |
| Oniversity                 | Department of Information and Communication Technology                      |                            |
| Subject: Machine           | Aim: To obtain the best fit line over multiple feature scattered datapoints |                            |
| <b>Learning (01CT0519)</b> | using Linear Regression                                                     |                            |
| Experiment No: 03          | Date: 03-09-2024                                                            | Enrollment No: 92200133030 |

| Obse | Observation and Result Analysis:    |  |  |  |  |
|------|-------------------------------------|--|--|--|--|
| a.   | Nature of the dataset               |  |  |  |  |
|      |                                     |  |  |  |  |
|      |                                     |  |  |  |  |
|      |                                     |  |  |  |  |
| b.   | During Training Process             |  |  |  |  |
|      |                                     |  |  |  |  |
|      |                                     |  |  |  |  |
|      |                                     |  |  |  |  |
| C.   | After the training Process          |  |  |  |  |
|      |                                     |  |  |  |  |
|      |                                     |  |  |  |  |
|      |                                     |  |  |  |  |
| d.   | Observation over the Learning Curve |  |  |  |  |
|      |                                     |  |  |  |  |
|      |                                     |  |  |  |  |

|                       | Marwadi University                                                          |                            |
|-----------------------|-----------------------------------------------------------------------------|----------------------------|
| Marwadi<br>University | Faculty of Technology                                                       |                            |
| Oniversity            | Department of Information and Communication Technology                      |                            |
| Subject: Machine      | Aim: To obtain the best fit line over multiple feature scattered datapoints |                            |
| Learning (01CT0519)   | using Linear Regression                                                     |                            |
| Experiment No: 03     | Date: 03-09-2024                                                            | Enrollment No: 92200133030 |

# **Post Lab Exercise:**

| a. | What is the difference between single and multiple variable linear regression                          |  |  |
|----|--------------------------------------------------------------------------------------------------------|--|--|
|    |                                                                                                        |  |  |
| b. | What does it mean for a multiple linear regression to be linear?                                       |  |  |
|    |                                                                                                        |  |  |
| c. | What is the use of Normalization?                                                                      |  |  |
|    |                                                                                                        |  |  |
| d. | Is there any change in the behavior of data before and after normalization? Prove using a toy example. |  |  |

|                       | Marwadi University                                                          |                            |
|-----------------------|-----------------------------------------------------------------------------|----------------------------|
| Marwadi<br>University | Faculty of Technology                                                       |                            |
| Oniversity            | Department of Information and Communication Technology                      |                            |
| Subject: Machine      | Aim: To obtain the best fit line over multiple feature scattered datapoints |                            |
| Learning (01CT0519)   | using Linear Regression                                                     |                            |
| Experiment No: 03     | Date: 03-09-2024                                                            | Enrollment No: 92200133030 |

## **Post Lab Activity:**

Consider any dataset from https://archive.ics.uci.edu/ml/datasets and perform the multiple variable linear regression analysis over the dataset and obtain the best fit line. Make sure that the dataset is not matching with your classmates. You can also select the dataset from other ML repositories with prior permission from your concerned subject faculty.