AIME Problems 2019

AIME Problems 2019

AIME Problems 2019

2019 AIME II

1. Two different points, C and D, lie on the same side of line AB so that $\triangle ABC$ and $\triangle BAD$ are congruent with AB = 9, BC = AD = 10, and CA = DB = 17. The intersection of these two triangular regions has area $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

- 2. Lily pads $1, 2, 3, \ldots$ lie in a row on a pond. A frog makes a sequence of jumps starting on pad 1. From any pad k the frog jumps to either pad k+1 or pad k+2 chosen randomly with probability $\frac{1}{2}$ and independently of other jumps. The probability that the frog visits pad 7 is $\frac{p}{q}$, where p and q are relatively prime positive integers. Find p+q.
- 3. Find the number of 7-tuples of positive integers (a, b, c, d, e, f, g) that satisfy the following system of equations:

$$abc = 70$$

$$cde = 71$$

$$efq = 72.$$

- 4. A standard six-sided fair die is rolled four times. The probability that the product of all four numbers rolled is a perfect square is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m+n.
- 5. Four ambassadors and one advisor for each of them are to be seated at a round table with 12 chairs numbered in order 1 to 12. Each ambassador must sit in an even-numbered chair. Each advisor must sit in a chair adjacent to his or her ambassador. There are N ways for the 8 people to be seated at the table under these conditions. Find the remainder when N is divided by 1000.
- 6. In a Martian civilization, all logarithms whose bases are not specified are assumed to be base b, for some fixed $b \ge 2$. A Martian student writes down

$$3\log(\sqrt{x}\log x) = 56$$

$$\log_{\log x}(x) = 54$$

and finds that this system of equations has a single real number solution x > 1. Find b.

- 7. Triangle ABC has side lengths AB = 120, BC = 220, and AC = 180. Lines ℓ_A, ℓ_B , and ℓ_C are drawn parallel to $\overline{BC}, \overline{AC}$, and \overline{AB} , respectively, such that the intersections of ℓ_A, ℓ_B , and ℓ_C with the interior of $\triangle ABC$ are segments of lengths 55, 45, and 15, respectively. Find the perimeter of the triangle whose sides lie on lines ℓ_A, ℓ_B , and ℓ_C .
- 8. The polynomial $f(z) = az^{2018} + bz^{2017} + cz^{2016}$ has real coefficients not exceeding 2019, and $f\left(\frac{1+\sqrt{3}i}{2}\right) = 2015 + 2019\sqrt{3}i$. Find the remainder when f(1) is divided by 1000.
- 9. Call a positive integer n k-ii; pretty;/i; if n has exactly k positive divisors and n is divisible by k. For example, 18 is 6-pretty. Let S be the sum of the positive integers less than 2019 that are 20-pretty. Find $\frac{S}{20}$.
- 10. There is a unique angle θ between 0° and 90° such that for nonnegative integers n, the value of $\tan(2^{n}\theta)$ is positive when n is a multiple of 3, and negative otherwise. The degree measure of θ is $\frac{p}{q}$, where p and q are relatively prime positive integers. Find p+q.
- 11. Triangle ABC has side lengths AB = 7, BC = 8, and CA = 9. Circle ω_1 passes through B and is tangent to line AC at A. Circle ω_2 passes through C and is tangent to line AB at A. Let K be the intersection of circles ω_1 and ω_2 not equal to A. Then $AK = \frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

AIME Problems 2019

12. For $n \ge 1$ call a finite sequence (a_1, a_2, \ldots, a_n) of positive integers ji¿progressivej/i¿ if $a_i < a_{i+1}$ and a_i divides a_{i+1} for $1 \le i \le n-1$. Find the number of progressive sequences such that the sum of the terms in the sequence is equal to 360.

- 13. Regular octagon $A_1A_2A_3A_4A_5A_6A_7A_8$ is inscribed in a circle of area 1. Point P lies inside the circle so that the region bounded by $\overline{PA_1}$, $\overline{PA_2}$, and the minor arc $\widehat{A_1A_2}$ of the circle has area $\frac{1}{7}$, while the region bounded by $\overline{PA_3}$, $\overline{PA_4}$, and the minor arc $\widehat{A_3A_4}$ of the circle has area $\frac{1}{9}$. There is a positive integer n such that the area of the region bounded by $\overline{PA_6}$, $\overline{PA_7}$, and the minor arc $\widehat{A_6A_7}$ of the circle is equal to $\frac{1}{8} \frac{\sqrt{2}}{n}$. Find n.
- 14. Find the sum of all positive integers n such that, given an unlimited supply of stamps of denominations 5, n, and n + 1 cents, 91 cents is the greatest postage that cannot be formed.
- 15. In acute triangle ABC, points P and Q are the feet of the perpendiculars from C to \overline{AB} and from B to \overline{AC} , respectively. Line PQ intersects the circumcircle of $\triangle ABC$ in two distinct points, X and Y. Suppose $XP=10,\ PQ=25,\ \text{and}\ QY=15.$ The value of $AB\cdot AC$ can be written in the form $m\sqrt{n}$ where m and n are positive integers, and n is not divisible by the square of any prime. Find m+n.
 - AIME box—year=2019—n=II—before=—after= MAA Notice