INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT173

Quad D-type flip-flop; positive-edge trigger; 3-state

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT173

FEATURES

- · Gated input enable for hold (do nothing) mode
- · Gated output enable control
- Edge-triggered D-type register
- · Asynchronous master reset
- · Output capability: bus driver
- · I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT173 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT173 are 4-bit parallel load registers with clock enable control, 3-state buffered outputs (Q_0 to Q_3) and master reset (MR).

When the two data enable inputs $(\overline{E}_1 \text{ and } \overline{E}_2)$ are LOW, the data on the D_n inputs is loaded into the register

synchronously with the LOW-to-HIGH clock (CP) transition. When one or both \overline{E}_n inputs are HIGH one set-up time prior to the LOW-to-HIGH clock transition, the register will retain the previous data. Data inputs and clock enable inputs are fully edge-triggered and must be stable only one set-up time prior to the LOW-to-HIGH clock transition.

The master reset input (MR) is an active HIGH asynchronous input. When MR is HIGH, all four flip-flops are reset (cleared) independently of any other input condition.

The 3-state output buffers are controlled by a 2-input NOR gate. When both output enable inputs $(\overline{OE}_1 \text{ and } \overline{OE}_2)$ are LOW, the data in the register is presented to the Q_n outputs. When one or both \overline{OE}_n inputs are HIGH, the outputs are forced to a high impedance OFF-state. The 3-state output buffers are completely independent of the register operation; the \overline{OE}_n transition does not affect the clock and reset operations.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	DADAMETED	CONDITIONS	TYP	LINUT	
	PARAMETER	CONDITIONS	НС	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay	C _L = 15 pF; V _{CC} = 5 V			
	CP to Q _n		17	17	ns
	MR to Q _n		13	17	ns
f _{max}	maximum clock frequency		88	88	MHz
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	20	20	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz

 f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT173

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 2	$\overline{OE}_1, \overline{OE}_2$	output enable input (active LOW)
3, 4, 5, 6	Q ₀ to Q ₃	3-state flip-flop outputs
7	СР	clock input (LOW-to-HIGH, edge-triggered)
8	GND	ground (0 V)
9, 10	$\overline{E}_1, \overline{E}_2$	data enable inputs (active LOW)
14, 13, 12, 11	D ₀ to D ₃	data inputs
15	MR	asynchronous master reset (active HIGH)
16	V _{CC}	positive supply voltage

Quad D-type flip-flop; positive-edge trigger; 3-state

74HC/HCT173

FUNCTION TABLE

DECISTED OPERATING MODES		IN		OUTPUTS		
REGISTER OPERATING MODES	MR	СР	Ē ₁	E ₂	D _n	Q _n (register)
reset (clear)	Н	Х	Х	Х	Х	L
parallel load	L L	↑	I I	 	l h	L H
hold (no change)	L	X	h X	X h	X X	q _n q _n

3-STATE BUFFER OPERATING MODES	INPU [*]	OUTPUTS					
3-STATE BUFFER OPERATING MODES	Q _n (register)	ŌE ₁	OE ₂	Q_0	Q ₁	Q ₂	Q ₃
road	L	L	L	L	L	L	L
read	Н	L	L	Н	Н	Н	Н
diaphlad	Х	Н	Χ	Z	Z	Z	Z
disabled	X	X	Н	Z	Z	Z	Ζ

Notes

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - q = lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW-to-HIGH CP transition
 - X = don't care
 - Z = high impedance OFF-state
 - ↑ = LOW-to-HIGH CP transition

74HC/HCT173

Quad D-type flip-flop; positive-edge trigger; 3-state

74HC/HCT173

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TEST CONDITIONS		
SYMBOL	PARAMETER				74HC	;			UNIT		WAVEFORMS	
STIMBUL	PARAMETER	+25			-40 to +85		-40 to +125		UNII	V _{CC} (V)	WAVEFORWIS	
		min.	typ.	max.	min.	max.	min.	max.		(-,		
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		55 20 16	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig.6	
t _{PHL}	propagation delay MR to Q _n		44 16 13	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7	
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE}_n to Q_n		52 19 15	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.8	
t _{PHZ} / t _{PLZ}	3-state output disable time \overline{OE}_n to Q_n		52 19 15	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.8	
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.6	
t _W	clock pulse width HIGH or LOW	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6	
t _W	master reset pulse width; HIGH	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7	
t _{rem}	removal time MR to CP	60 12 10	-8 -3 -2		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.7	
t _{su}	$\begin{array}{c} \text{set-up time} \\ \overline{E}_n \text{ to CP} \end{array}$	100 20 17	33 12 10		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.9	
t _{su}	set-up time D _n to CP	60 12 10	17 6 5		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.9	

Quad D-type flip-flop; positive-edge trigger; 3-state

74HC/HCT173

				-	Г _{ать} (°	C)				T CONDITIONS	
SYMBOL	PARAMETER				74HC	;					WAVEFORMS
STIMBUL	PARAMETER		+25		−40 t	o +85	-40 t	o +125	UNIT	V _{CC}	WAVEFORING
		min.	typ.	max.	min.	max.	min.	max.	1	(-,	
t _h	$\begin{array}{c} \text{hold time} \\ \overline{E}_{n} \text{ to CP} \end{array}$	0 0 0	-17 -6 -5		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.9
t _h	hold time D _n to CP	1 1 1	-11 -4 -3		1 1 1		1 1 1		ns	2.0 4.5 6.0	Fig.9
f _{max}	maximum clock pulse frequency	6.0 30 35	26 80 95		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.6

Quad D-type flip-flop; positive-edge trigger; 3-state

74HC/HCT173

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$\overline{OE}_{1,}\overline{OE}_{2}$	0.50
MR	0.60
$ \overline{E}_1,\overline{E}_2 $	0.40
D_n	0.25
D _n CP	1.00

Quad D-type flip-flop; positive-edge trigger; 3-state

74HC/HCT173

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	T _{amb} (°C)									T CONDITIONS			
SYMBOL	PARAMETER				74HC	Γ			UNIT	JNIT V WAVEFORM			
STIVIBUL	PARAWIETER	+25			-40 to +85		-40 to +125		UNII	V _{CC}	WAVEFORING		
		min.	typ.	max.	min.	max.	min.	max.		(',			
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		20	40		50		60	ns	4.5	Fig.6		
t _{PHL}	propagation delay MR to Q _n		20	37		46		56	ns	4.5	Fig.7		
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE}_n to Q_n		20	35		44		53	ns	4.5	Fig.8		
t _{PHZ} / t _{PLZ}	3-state output disable time \overline{OE}_n to Q_n		19	30		38		45	ns	4.5	Fig.8		
t _{THL} / t _{TLH}	output transition time		5	12		15		19	ns	4.5	Fig.6		
t _W	clock pulse width HIGH or LOW	16	7		20		24		ns	4.5	Fig.6		
t _W	master reset pulse width; HIGH	15	6		19		22		ns	4.5	Fig.7		
t _{rem}	removal time MR to CP	12	-2		15		18		ns	4.5	Fig.7		
t _{su}	set-up time \overline{E}_n to CP	22	13		28		33		ns	4.5	Fig.9		
t _{su}	set-up time D _n to CP	12	7		15		18		ns	4.5	Fig.9		
t _h	hold time E _n to CP	0	-6		0		0		ns	4.5	Fig.9		
t _h	hold time D _n to CP	0	-3		0		0		ns	4.5	Fig.9		
f _{max}	maximum clock pulse frequency	30	80		24		20		MHz	4.5	Fig.6		

74HC/HCT173

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.6 Waveforms showing the clock (CP) to output (Q_n) propagation delays, the clock pulse width, the output transition times and the maximum clock pulse frequency.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.7 Waveforms showing the master reset (MR) pulse width, the master reset to output (Q_n) propagation delays and the master reset to clock (CP) removal time.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.8 Waveforms showing the 3-state enable and disable times.

The shaded areas indicate when the input is permitted to change for predictable output performance.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.9 Waveforms showing the data set-up and hold times from input $(\overline{E}n, D_n)$ to clock (CP).

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.