Neural Networks

ECE 4200

Plan

- Neural Networks
- Back propagation
- Multi-layer perceptron
- Training Neural Networks
- PyTorch: Tool we will use

Resources

- Mitchell: Old
- Derivation of back propagation

• Fei-Fei Li's class on CNN for visual recognition

Link:

http://vision.stanford.edu/teaching/cs231n/2017/syllabus.html

Neural Networks - History

40's, 70's, 90's,

2006 - Now

What is new ...?

Computational advances!

The Brain Connection

100B Neurons in human brain

Each connected to 10K others

Neuron switching time: 10^{-3} seconds

Computer switching time: 10^{-10} seconds

Brain works faster than these can explain, in a serial fashion

Brain is massively parallel

We have very little idea how brain really works - Sabuncu

Artificial Neural Networks

Densely interconnected set of simple units

Pros:

Best known performance in various tasks, eg, Image processing, speech

Very little knowledge is needed about how they work!

Cons:

Large training sets

Slow training

We do not understand how they work!

Do we want to know?? Adversarial examples

Possible Failures and challenges

Physical road signs with adversarial perturbation under different conditions

Stop Sign → Speed Limit Sign

Video sequences taken under different driving speeds

Stop Sign → Speed Limit Sign

Problems and directions

Self driving cars ...

Understanding the system is VITAL

One very active area: Generative Adversarial Networks

Take human image, perturb a little -> make a cat!!

Computational Graph

Consider a classic problem, regression.

Computational Graph

We want to do gradient descent

Functions, and networks will be super-complicated

What we want: $\nabla_{\overline{w}} L$

$$f(w_1, w_2, w_3) = (w_1 + w_2)w_3$$

What we want: $\frac{\partial f}{\partial w_1}$, $\frac{\partial f}{\partial w_2}$, $\frac{\partial f}{\partial w_3}$

$$f(w_1, w_2, w_3) = (w_1 + w_2)w_3$$

$$w_1 = -2, w_2 = 5, w_3 = -4$$

$$\frac{\partial f}{\partial w_1}$$
, $\frac{\partial f}{\partial w_2}$, $\frac{\partial f}{\partial w_3}$

$$\frac{\partial f}{\partial w_1} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial w_1}$$
$$\frac{\partial f}{\partial w_2} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial w_2}$$

Propagating the gradients back!

$$f(w_1, w_2, w_3) = (w_1 + w_2)w_3$$

$$w_1 = -2, w_2 = 5, w_3 = -4$$

$$q = w_1 + w_2$$
, $\frac{\partial q}{\partial w_1} = 1$, $\frac{\partial q}{\partial w_2} = 1$

$$f = qw_3, \frac{\partial f}{\partial q} = w_3, \frac{\partial f}{\partial w_3} = q$$

$$f(w_1, w_2, w_3) = (w_1 + w_2)w_3$$

$$w_1 = -2, w_2 = 5, w_3 = -4$$

$$q = w_1 + w_2$$
, $\frac{\partial q}{\partial w_1} = 1$, $\frac{\partial q}{\partial w_2} = 1$

$$f = qw_3, \frac{\partial f}{\partial q} = w_3, \frac{\partial f}{\partial w_3} = q$$

$$f(w_1, w_2, w_3) = (w_1 + w_2)w_3$$

$$w_1 = -2, w_2 = 5, w_3 = -4$$

$$q = w_1 + w_2, \frac{\partial q}{\partial w_1} = 1, \frac{\partial q}{\partial w_2} = 1$$

$$f = qw_3, \frac{\partial f}{\partial q} = w_3, \frac{\partial f}{\partial w_3} = q$$

$$f(w_1, w_2, w_3) = (w_1 + w_2)w_3$$

$$w_1 = -2, w_2 = 5, w_3 = -4$$

$$q = w_1 + w_2, \frac{\partial q}{\partial w_1} = 1, \frac{\partial q}{\partial w_2} = 1$$

$$f = qw_3, \frac{\partial f}{\partial q} = w_3, \frac{\partial f}{\partial w_3} = q$$

$$f(w_1, w_2, w_3) = (w_1 + w_2)w_3$$

$$w_1 = -2, w_2 = 5, w_3 = -4$$

$$q = w_1 + w_2$$
, $\frac{\partial q}{\partial w_1} = 1$, $\frac{\partial q}{\partial w_2} = 1$

$$f = qw_3, \frac{\partial f}{\partial q} = w_3, \frac{\partial f}{\partial w_3} = q$$

$$f(w_1, w_2, w_3) = (w_1 + w_2)w_3$$

$$w_1 = -2, w_2 = 5, w_3 = -4$$

$$q = w_1 + w_2, \frac{\partial q}{\partial w_1} = 1, \frac{\partial q}{\partial w_2} = 1$$

$$f = qw_3, \frac{\partial f}{\partial q} = w_3, \frac{\partial f}{\partial w_3} = q$$

$$f(w_1, w_2, w_3) = (w_1 + w_2)w_3$$

$$w_1 = -2, w_2 = 5, w_3 = -4$$

$$q = w_1 + w_2$$
, $\frac{\partial q}{\partial w_1} = 1$, $\frac{\partial q}{\partial w_2} = 1$

$$f = qw_3, \frac{\partial f}{\partial q} = w_3, \frac{\partial f}{\partial w_3} = q$$

$$f(w_1, w_2, w_3) = (w_1 + w_2)w_3$$

$$w_1 = -2, w_2 = 5, w_3 = -4$$

$$q = w_1 + w_2$$
, $\frac{\partial q}{\partial w_1} = 1$, $\frac{\partial q}{\partial w_2} = 1$

$$f = qw_3, \frac{\partial f}{\partial q} = w_3, \frac{\partial f}{\partial w_3} = q$$

