Computação Gráfica Fase 3

Universidade do Minho Escola de Engenharia

TRABALHO REALIZADO POR:

Afonso Laureano Barros Amorim Gonçalo Martins dos Santos João Carlos Fernandes Novais Telmo José Pereira Maciel

Grupo 26

A97569 Afonso Amorim

A95354 Gonçalo Santos

A96626 João Novais

A96569 Telmo Maciel

$\mathbf{\acute{I}ndice}$

1	Introdução			2
2	Alte	Alterações na arquitetura do projeto		
	2.1	Comm	on	3
		2.1.1	MatrixOpp.cpp	3
		2.1.2	Classe Shape	3
		2.1.3	Classe Point	3
2.2 Generator		ator	3	
		2.2.1	Bezier.cpp	3
	2.3	Engine		3
		2.3.1	Parser.cpp	3
		2.3.2	Classe Group	4
		2.3.3	Classe Curve	4
		2.3.4	Classe Transformation	4
3	B Adição dos VBO			5
4 Alterações no cenário final				6
5	5 Conclusão			8

1 Introdução

Na terceira fase do trabalho prático de Computação Gráfica, foi proposto alterar o Generator de maneira a que implemente um novo tipo de modelo baseado em remendos de Bezier (conhecidos normalmente como *Bezier Patches*).

Também foi proposto alterar o Engine de maneira a suportar translações e rotações dinâmicas usando curvas de Catmull-Rom, e de forma a que o desenho dos modelos seja feito com VBOs.

Tivemos ainda que desenvolver um modelo dinâmico para o Sistema Solar incluindo um cometa cuja a trajetória é definida por uma curva de Catmull-Rom.

2 Alterações na arquitetura do projeto

Nesta parte do relatório, iremos resumir as alterações introduzidas na arquitetura do projeto para cumprir com o que era pedido.

2.1 Common

2.1.1 MatrixOpp.cpp

Este ficheiro foi adicionado de forma a permitir fazer as operações matemáticas sobre matrizes que necessitamos para calcular os pontos necessários para gerar os modelos através dos ficheiros .patch. Essas operações vão desde o produto vetorial de vetores quer de floats quer de *Points*, até a multiplicação de matrizes.

2.1.2 Classe Shape

De forma a auxliar o desenho por *VBO*s decidimos adicionar dois atributos a esta classe, chamados *vboStartIndex*, que representa o índice onde aparece o seu modelo no *VBO*, e *vboStopIndex*, que representa o índice onde começa o próximo modelo no *VBO*.

2.1.3 Classe Point

No que toca a esta classe, decidimos sobrecarregar os métodos * (com float) e + (com *Point*) para facilitar as operações sobre matrizes de objetos desta classe.

2.2 Generator

Nesta fase do trabalho, o Generator foi alterado para ser capaz de conveter um ficheiro com Bezier patches (extensão patch) num ficheiro de extensão 3d com todos os pontos necessários para desenhar a figura segundo um certo nível de tesselação.

2.2.1 Bezier.cpp

Ao generator, adicionamos o ficheiro **Bezier.cpp** que serve para gerar ficheiros da extensão 3d através de ficheiros da extensão patch. Passemos para a explicação da maneira de como esta conversão foi implementada.

Começa-se por fazer o parsing do ficheiro, guardando os índices dos patches num *vector* que contém *vector*s de inteiros. Os pontos de controlo são guardados num vetor.

A seguir, temos que calcular os pontos da curva de Bezier, percorrendo os vários patches guardados. Tendo em posse os pontos de controlo, inicializamos as matrizes de Bezier para estes (P e MxPxMT). Para gerar a grelha, demos valores às variáveis u e v, incrementando de acordo com o nível de tesselação e, em conjunto com as matrizes calculadas antes, podemos obter os pontos finais. Com esta grelha, podemos dividir cada um dos quadrados em dois triângulos e guardar esses pontos no ficheiro de extensão 3d.

2.3 Engine

No Engine, foi adicionada a renderização com os VBO's e ainda foi implementada a alteração de modo de visualização entre GL LINES ou GL SOLID, usando a tecla 'c'.

2.3.1 Parser.cpp

Tendo em conta que agora as translações e rotações são dinâmicas, o parser teve que sofrer umas alterações na maneira como realiza o seu parse nas transformações, havendo

agora uma função para o tratamento de translações (parseTranslation) e outra para o tratamento de rotações (parseRotation).

2.3.2 Classe Group

Na classe Group, adicionamos um array que utiliza memória estática, com espaço para 3 floats, que representa o antigo eixo y (y_0) , usado para alinhar o grupo caso ele esteja numa translação dinâmica.

2.3.3 Classe Curve

Adicionamos a classe Curve (subclasse de Transformation), que representa uma translação dinâmica sobre uma curva Catmull-Rom, e que usamos para retornar o ponto a que um modelo se encontra na mesma num determinado instante temporal.

2.3.4 Classe Transformation

Na classe Transformation, adicionamos 2 tipos de transformações: TimeTranslate e TimeRotate e ainda um campo do tipo float chamado time.

3 Adição dos VBO

Tal como foi dito na introdução, é pedido que nesta fase os modelos sejam desenhados através de VBOs, e esta secção tem como objetivo explicar a estratégia que seguimos para o fazer.

Adicionamos uma função chamada buildVBO. Nesta função começamos por definir um std::vector < float>, que vai conter a informação que será colocada na memória gráfica no VBO. De seguida iteramos sobre todos os modelos que estarão na cena e, caso os pontos necessários para o desenhar não estejam no VBO, estes são adicionados ao mesmo, e definimos o índice de início e de fim. Após isso colocamos esses indíces nas diferentes instâncias da classe Shape, e acabamos por colocar a informação no VBO

4 Alterações no cenário final

Para esta fase decidimos reduzir a distância a que cada planeta está do Sol para metade, e aumentamos a escala de cada um de forma a que sejam mais visíveis.

Fizemos ainda com que cada planeta rodasse sobre o seu próprio eixo e à volta do Sol, com uma escala temporal em que 1 décimo de segundo equivale a 1 dia (por exemplo, a órbita da Terra à volta do Sol demora 36.5 segundos).

Adicionamos ainda um cometa, que tem como modelo um bule, obtido através de curvas de Bezier.

Abaixo vamos deixar umas imagens do cenário e ainda um vídeo de demonstração.

Figure 1: Cenário visto de longe

Figure 2: Cenário visto de perto

5 Conclusão

Com a terceira fase do projeto concluída, conseguimos aplicar os conceitos lecionados nas aulas sobre curvas e superfícies cúbicas. Ainda tivemos a oportunidade de aplicar no trabalho os VBO's, conceito que já tinha sido usado e lecionado em aulas práticas.

Esperamos que, o trabalho desenvolvido nesta fase, sirva como uma ótima base para a implementação da fase final do projeto de Computação Gráfica.