Mathematics Department

sə _X :	Formula sheet provided
% ot-	Task weighting:
synem04	Marks available:
Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations	Special items:
Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters	Standard items:
No calculators nor classpads	Materials required:
	Number of questions:
zk:40 mins	Time allowed for this tas
Веsbouse	Т зѕk tуре:
Teacher name:	Student name:
12 Methods12	Course
DEETH MODERN SCHOOL ndependent Public School	

Note: All part questions worth more than 2 marks require working to obtain full marks.

1 | P a g e

Q1 (2, 3 & 3 = 8 marks) (3.1.7-3.1.8)

Determine $\frac{dy}{dx}$ for each of the following.(No need to simplify) $y = \frac{3}{x}$ a)

$$y = \frac{3}{x}$$

b)
$$y = (3x^2 + 4x)(5x - 1)$$

$$y = \frac{x+1}{5-x}$$

Q2 (2 & 3 = 5 marks) (3.1.8)

Consider $f(x) = (4x - 2)^x$. a) Determine f'(0)

- b) Determine the equation of the tangent at x = 0

Mathematics Department

Q3 (1, 1, 3 & 3 = 8 marks) (3.1.7-3.1.8, 3.1.15) Consider the following functions $\int ^{\mathcal{B}} ^{\mathcal{B}} ^{\mathcal{G}}$.

- X = X mathw (X) Y to a derivative definition the derivative of
- 0 = x when (x) g to derivative of
- c) Determine the derivative of $\int_{\mathbb{R}^{N}} g(x) \int_{\mathbb{R}^{N}} dx$

d) Determine the derivative of f(g(x)) when x = 0.

Mathematics Department Perth Modern

Q7 (4 marks) (3.1.16) Consider a hollow cylindrical container that has one open end. The surface area of the container is $50 \mathrm{cm}^2$. Determine the **exact** value of the radius of the closed end that maximises the volume. (Justify)

(Hint- refer to formula sheet)

Total surface area 50cm^2

6 P a g e

Q4 (2, 3 & 2 = 7 marks) (3.1.13 - 3.1.17)

The following is the graph of f'(x), the derivative of f(x).

- a) State the x values of all stationary points of f(x).
- b) State the nature of each stationary point above and justify.

c) State approximate x value for an infection point(s) and explain why.

Mathematics Department

The displacement of a body from the origin O, at time t seconds, is x metres where

$$x = \frac{t^3}{3} - \frac{5t^2}{2} + 6t + 1$$

a) Determine the time(s) that the velocity is zero metres/second.

b) Determine when the acceleration is zero.

Q6 (3 marks) (3.1.10)

The period T of a swinging pendulum of length I is given by $T=2\pi\sqrt{\frac{I}{10}}$

Using the increments formula, determine the approximate percentage change in T if I changes by 3%