

Departamento de Informática Mecánica del Continuo

Trabajo Práctico Número 3: Tensiones

- 1. Tome una tiza y rómpala,
 - a. Por flexión
 - b. Por torsión.

La forma en que rompe la tiza será diferente en cada caso. ¿Porqué? ¿Se puede predecir el modo de falla? ¿La superficie de rotura?

2. La figura muestra agua en un reservorio. En un punto *P*, consideremos las superficies *A-A*, *B-B*, etc. Dibuje los vectores de tensión que actúan sobre estas superficies. Considere todas las posibles superficies que pasen por *P*. ¿Cuál es el lugar geométrico de todos los vectores de tensión?

Rta: una esfera.

3. El agua de un reservorio desborda por un vertedero. Considere un punto próximo a la pared superior del vertedero, digamos a 10 cm sobre el mismo. Considere nuevamente todas las superficies que pasan por este punto y describa los vectores de tensión que actúan sobre estas superficies. ¿Es nuevamente el lugar geométrico de estos vectores una esfera?

Considere ahora una sucesión de puntos que se acerca de la superficie de superior del vertedero, digamos a distancias 1 cm, 0,1 cm, 0,01 cm, 0,001 cm, etc. ¿Esperaría usted que el lugar geométrico de los vectores de tensión cambie cuando la distancia se hace muy pequeña? Preste atención a la viscosidad del agua.

4. Las componentes del tensor de tensiones en un cierto punto de un cuerpo, pueden ser presentadas como una matriz:

$$\begin{array}{cccc}
 x & y & z \\
 x & 0 & 1 & 2 \\
 y & 1 & 2 & 0 \\
 z & 0 & 1
\end{array}$$

¿Cuál es el vector de tensión que actúa en el lado externo (el lado opuesto al origen) del plano siguiente, que pasa por el punto en cuestión?

$$x + 3y + z = 1$$

¿Cuáles son las componentes normales y tangenciales del vector de tensión en este plano?

5. Un cuerpo sometido a la siguiente distribución de tensiones, ¿se encuentra en equilibrio en ausencia de cargas de cuerpo?

$$\sigma_x = 3x^2 + 4xy - 8y^2$$
 $\tau_{xy} = -\frac{1}{2}x^2 - 6xy - 2y^2$
 $\sigma_y = 2x^2 + xy + 3y^2$ $\sigma_z = \tau_{xz} = \tau_{yz} = 0$

6. Si el estado de tensiones en un punto (x_0, y_0, z_0) es

$$\left(\sigma_{ij} \right) = \begin{pmatrix} 100 & 0 & 0 \\ 0 & 50 & 0 \\ 0 & 0 & -100 \end{pmatrix}$$

hallar el vector de tensiones y la magnitud de la tensión normal y la tensión de corte actuando en el plano $x-x_0+y-y_0+z-z_0=0$.

- 7. El conjunto de ocho planos con direcciones normales $(\pm 1, \pm 1, \pm 1)$, en donde se elige uno de los signos + o en cada caso, e.g. (+1, +1, -1) corresponde al plano x+y-z=0, es llamado conjunto de *planos octaédricos*. Sea un estado de tensión en un punto dado por τ_{ij} , con $\tau_{ij}=0$ cuando $i\neq j$. Determinar el vector de tensiones y la tensión de corte actuando en cada uno de los planos octaédricos.
- 8. Flujo Couette. El espacio entre dos cilindros concéntricos está lleno con un fluido. El cilindro interno está fijo, en tanto el cilindro externo rota con una velocidad angular ω rad/seg. Si el torque medido en el cilindro interno es T, ¿cuánto vale el torque medido en el cilindro exterior? ¿Porqué?

9. Enrolle una hoja de papel formando un cilindro circular de radio del orden de 3 a 5 cm. Este tubo puede soportar una compresión axial apreciable.

Coloque el tubo sobre la mesa y comprimalo axialmente con la palma de la mano. El cilindro fallará en un modo llamado *pandeo*. Describa la forma del pandeo. ¿Qué tan grande es la carga de pandeo comparada con la resistencia del papel en compresión si se pudiera evitar el pandeo?

Como la hoja de papel no se desgarra después del pandeo, ni se estira, la *métrica* de la superficie deformada es idéntica a aquélla original. Por lo tanto, la transformación del cilindro a la superficie pandeada es una transformación *isométrica*.

Es sabido en geometría diferencial que si una superficie puede transformarse isométricamente en otra, su curvatura total debe ser la misma en puntos correspondientes. La curvatura total es el producto de las curvaturas principales. Para una hoja de papel plana, la curvatura total es cero; lo mismo debe ocurrir para la superficie post-pandeo. De esta manera se puede concluir que la superficie post-pandeo está compuesta por áreas de curvatura total cero, en otras términos, en porciones triangulares planas que están ensambladas entre sí en forma de diamante. Compare esta afirmación con sus resultados experimentales.

Nota: El tema de este problema es de gran interés en ingenierías aeronáutica y astronáutica, y en todos los casos en donde se busca construir estructuras livianas y delgadas. El estudio de la estabilidad elástica es determinante para diseñar estas estructuras.

10. Considere un estado bidimensional de tensiones en una placa delgada en la cual $\sigma_z = \tau_{zx} = \tau_{zy} = 0$. Las ecuaciones de equilibrio actuando en la placa con cargas distribuidas de cuerpo X,Y (constantes) son

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + X = 0, \quad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + Y = 0.$$

Mostrar que estas ecuaciones se satisfacen idénticamente si σ_x , σ_y , τ_{xy} se derivan de una función arbitraria $\Phi(x,y)$ en la forma

$$\sigma_{x} = \frac{\partial^{2} \Phi}{\partial y^{2}}, \quad \sigma_{y} = \frac{\partial^{2} \Phi}{\partial x^{2}}, \quad \tau_{xy} = -\frac{\partial^{2} \Phi}{\partial x \partial y} - Xy - Yx$$

Luego, las ecuaciones de equilibrio pueden ser satisfechas por infinitas soluciones distintas. Veremos más adelante la forma de elegir de entre éstas soluciones, aquéllas que corresponden al problema particular en análisis.

Realice un programa en Matlab u Octave, en donde se grafiquen los campos de tensiones para las funciones $\Phi(x,y)$ siguientes en una región rectangular. Asuma cargas de cuerpo nulas. Elija valores arbitrarios. Interprete los resultados.

a.
$$\Phi(x, y) = ax^2 + bxy + cy^2$$

i.
$$a \neq 0$$
, $b = c = 0$

ii.
$$b \neq 0$$
, $a = c = 0$

iii.
$$c \neq 0$$
, $a = b = 0$

b.
$$\Phi(x, y) = ax^3 + bx^2y + cxy^2 + dy^3$$

i.
$$d \neq 0$$
, $a = b = c = 0$

ii.
$$a \ne 0$$
, $b = c = d = 0$

iii.
$$b \neq 0$$
, $a = c = d = 0$