ing five properties:

- 1. (S, +, 0) is a monoid, that is, it is closed under + [i.e., $a + b \in S$ for hilator, i.e., $a \cdot 0 = 0 \cdot a = 0$. all a, b, c in S], and 0 is an *identity* [i.e., a + 0 = 0 + a = a for all aall a and b in S], + is associative [i.e., a + (b + c) = (a + b) + c for in S]. Likewise, $(S, \cdot, 1)$ is a monoid. We also assume 0 is an anni-
- + is commutative, i.e., a+b=b+a, and idempotent, i.e., a+a=a.
- \dot{n} \dot{b} . distributes over +, that is, $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$.
- 4. If $a_1, a_2, \ldots, a_t, \ldots$ is a countable sequence of elements in S, associativity, commutativity, and idempotence apply to infinite as well then $a_1 + a_2 + \cdots + a_t + \cdots$ exists and is unique. Moreover,
- 5. · must distribute over countably infinite sums as well as finite ones as finite sums. (this does not follow from property 3). Thus (4) and (5) imply

$$\left(\sum_{i} a_{i}\right) \cdot \left(\sum_{j} b_{j}\right) = \sum_{i,j} a_{i} \cdot b_{j} = \sum_{i} \left(\sum_{j} (a_{i} \cdot b_{j})\right).$$

Example 5.9. The following three systems are closed semirings

1. Let $S_1 = (\{0, 1\}, +, \cdot, 0, 1)$ with addition and multiplication tables as

a countable sum is 0 if and only if all terms are 0. Then properties 1-3 are easy to verify. For properties 4 and 5, note that

- Let $S_2 = (R, MIN, +, +\infty, 0)$, where R is the set of nonnegative reals including $+\infty$. It is easy to verify that $+\infty$ is the identity under MIN and 0 the identity under +.
- Let Σ be a finite alphabet (i.e., a set of symbols), and let $S_3 =$ of symbols from Σ , including ϵ , the empty string (i.e., the string of $(F_{\Sigma}, \cup, \cdot, \emptyset, \{\epsilon\})$, where F_{Σ} is the family of sets of finite-length strings tenation.† The \cup identity is \emptyset and the identity is $\{\epsilon\}$. The reader may length 0). Here the first operator is set union and · dehotes set concaverify properties 1-3. For properties 4 and 5, we must observe that

countable unions behave as they should if we define $x \in (A_1 \cup A_2 \cup \cdots)$ if and only if $x \in A_i$ for some i. \square

 $a^* = 1 + a \cdot a^*$. Note that $0^* = 1^* = 1$. tion of a closed semiring assures that $a^* \in S$. Properties 4 and 5 imply nite sum $1 + a + a \cdot a + a \cdot a + a \cdot a + a \cdot a + \cdots$. Note that property 4 of the definidefine a^* to be $\sum_{i=0}^{\infty} a^i$, where $a^0 = 1$ and $a^i = a \cdot a^{i-1}$. That is, a^* is the infiof closed semirings. If $(S, +, \cdot, 0, 1)$ is a closed semiring, and $a \in S$, then we A unary operation, denoted * and called closure, is central to our analysis

and b's including the empty string. In fact, $F_{\Sigma} = \mathscr{P}(\Sigma^*)$, where $\mathscr{P}(X)$ denotes ample, $\{a, b\}^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$, that is, all strings of a's $\{\epsilon\} \cup \{x_1x_2 \cdots x_k | k \ge 1 \text{ and } x_i \in A \text{ for } 1 \le i \le k\} \text{ for all } A \in F_{\Sigma}.$ For ex-For S_1 , $a^* = 1$ for a = 0 or 1. For S_2 , $a^* = 0$ for all a in R. For S_3 , $A^* = 0$ **Example 5.10.** Let us refer to the semirings S_1 , S_2 , and S_3 of Example 5.9. the power set of set X. \square

closed semiring assure us that $c(\nu, w)$ will be well defined. cycles, there may be an infinity of paths between ν and $\dot{\nu}$, but the axioms of a an empty set of paths is 0 (the + identity of the semiring). Note that if G has refer to $c(\nu, w)$ as the *cost* of going from ν to w. By convention, the sum over $c(\nu, w)$ to be the sum of the labels of all the paths between ν and w. We shall path, taken in order. As a special case, the label of the path of zero length is define the label of a path to be the product (·) of the labels of the edges in the edge is labeled by an element of some closed semiring $(S, +, \cdot, 0, 1)$. We 1 (the · identity of the semiring). For each pair of vertices (ν, w) , we define Now, let us suppose we have a directed graph G = (V, E) in which each

sequently, c(w, w) = 1. label 0. However, the path of zero length from w to w has cost 1. Con- $1 \cdot 0 = 0$. In fact, every path of length greater than zero from w to w has label of the path v, w, x is $1 \cdot 1 = 1$. The simple cycle from w to w has label has been labeled by an element from the semiring S_1 of Example 5.9. The Example 5.11. Consider the directed graph in Fig. 5.17, in which each edge

and w. The basic unit-time steps of the algorithm are the operations +, \cdot , and We now give an algorithm to compute $c(\nu, w)$ for all pairs of vertices ν

Fig. 5.17 A labeled directed graph

[†] The concatenation of sets A and B, denoted $A \cdot B$, is the set $\{x | x = yz, y \in A \text{ and } z \in B\}$.

ministic finite automaton (see Hopcroft and Ullman [1969] or Aho and Ullman [1972]), as we shall discuss in Section 9.1. There, the vertices are states and the edge labels are symbols from some finite alphabet. The reader should not miss the analogy between such a situation and a nondeter-