I - Sens de variation d'une fonction affine

Exercice 1 : (Exerice corrigé.)

Déterminer le sens de variation de la fonction v définie sur \mathbb{R} par : v(x) = 2 - 5x.

Correction.

On reconnaît que v est une fonction affine, de la variations : forme v(x) = ax + b, avec a = -5 et b = 2.

On sait qu'une fonction affine est monotone sur \mathbb{R} .

Son sens de variation dépend du signe de a. Comme a=-5<0 , la fonction v est strictement décroissante sur \mathbb{R} .

On peut synthétiser cela dans un tableau de variations :

Exercice 2 : (Sens de variations simples.)

CSMH

- (a) Déterminer le sens de variation de la fonction v définie sur \mathbb{R} par : v(x) = -5 + 4x.
- (b) Dresser le tableau de variations de la fonction w définie sur [5; 10] par : w(x) = -7 + 5x.
- (c) Déterminer le sens de variation de la fonction u définie sur \mathbb{R} par : $u(x) = \frac{7-7x}{8}$.
- (d) Déterminer le sens de variation de la fonction g définie sur \mathbb{R} par : g(x) = 10 + 10x.
- (e) Dresser le tableau de variations de la fonction h définie sur [-7; -6] par : h(x) = x + 4.

II - Sens de variation d'une fonction polynome du second degré

Exercice 3 : (Exerice corrigé.)

On considère la fonction f définie sur \mathbb{R} par : $f(x) = 4x^2 - 40x + 8$.

Étudier les variations de f sur \mathbb{R} .

Correction.

 $f(x) = 4x^2 - 40x + 8$ est de la forme $ax^2 + bx + c$, avec a = 4, b = -40 et c = 8.

On a : a < 0 donc f(x) est décroissante puis croissante.

Exercice 4: ('Etude global du sens de variation)

- (a) On considère la fonction f définie sur \mathbb{R} par : f(x) = -2(x-3)(x-5). Étudier les variations de f sur \mathbb{R} .
- (b) On considère la fonction f définie sur \mathbb{R} par : $f(x) = -2x^2 10x 6$. Étudier les variations de f sur \mathbb{R} .
- (c) On considère la fonction f définie sur \mathbb{R} $\operatorname{par}: f(x) = -3\left(x \frac{5}{2}\right)^2 + \frac{103}{4}.$ Étudier les variations de f sur \mathbb{R} .
- (d) On considère la fonction f définie sur \mathbb{R} par : f(x) = -3(x-2)(x-6). Étudier les variations de f sur \mathbb{R} .
- (e) On considère la fonction f définie sur \mathbb{R} par : $f(x) = 3x^2 + 18x 3$. Étudier les variations de f sur \mathbb{R} .
- (f) On considère la fonction f définie sur \mathbb{R} par : $f(x) = -5(x-3)^2 + 47$. Étudier les variations de f sur \mathbb{R} .

III - Lecture graphique

Exercice 5 : (Répondre à ces questions par lecture graphique.)

★★☆☆

1. Quel est le signe du coefficient dominant de la fonction polynomiale du second degré représentée ci-dessous ?

2. Quel est le signe du coefficient dominant de la fonction polynomiale du second degré représentée ci-dessous ?

3. Quel est le signe du coefficient dominant de la fonction polynomiale du second degré représentée ci-dessous ?

4. Quel est le signe du coefficient dominant de la fonction polynomiale du second degré représentée ci-dessous ?

5. Quel est le signe du coefficient dominant de la fonction polynomiale du second degré représentée ci-dessous ?

6. Quel est le signe du coefficient dominant de la fonction polynomiale du second degré représentée ci-dessous ?

