Définitions de base

- **Modulation numérique** : Méthode pour transmettre des données numériques via un signal analogique.
- Signal porteur : Onde sinusoïdale de haute fréquence.

On module l'un des trois paramètres :

- \circ **Amplitude** \rightarrow ASK
- \circ Fréquence \rightarrow FSK
- \circ **Phase** \rightarrow PSK

♦ Modulation ASK (Amplitude Shift Keying)

Principe:

- L'information est codée en modifiant l'amplitude de la porteuse.
- Exemple:
 - o bit $0 \rightarrow$ amplitude faible ou 0
 - o bit $1 \rightarrow$ amplitude forte

\forall Types:

- **OOK** (**On-Off Keying**) : signal = 0 ou A
- MASK (M-ASK): plus de 2 niveaux d'amplitude (2ⁿ niveaux pour n bits)

▲□ Inconvénients :

- Sensible au bruit
- Performances faibles si M est grand
- Peu utilisé dans les systèmes modernes sauf pour des cas simples

♦ Modulation FSK (Frequency Shift Keying)

Principe:

- L'information est transmise en **changeant la fréquence** de la porteuse.
- Exemple :
 - o bit $0 \rightarrow$ fréquence f_1
 - o bit $1 \rightarrow$ fréquence f_2

\checkmark Types:

- **FSK-PD** (phase discontinue) : simple mais large bande passante
- FSK-PC (phase continue) : plus complexe, plus efficace spectr.
- MSK (Minimum Shift Keying) : cas particulier avec index de modulation $\mu = 0.5$
 - o Ex.: GMSK utilisé en GSM

Avantages:

- Bonne résistance au bruit
- Utilisé en télécommunications (modems, radio, etc.)

♦ Modulation PSK (Phase Shift Keying)

⊘ Principe:

- L'information est transmise en **changeant la phase** de la porteuse.
- Exemple (BPSK):
 - o bit 0 → phase 0°
 - bit $1 \rightarrow \text{phase } 180^{\circ}$

\checkmark Types:

- **BPSK** (2-PSK) : 1 bit par symbole
- **QPSK (4-PSK)**: 2 bits par symbole
- **M-PSK**: jusqu'à M=2ⁿ points de constellation sur un cercle

∆□ Sensible à :

- Bruits de phase
- Proximité des points de constellation quand M augmente

♦ Comparaison & Performances

Modulation Facilité Résistance au bruit Efficacité spectrale Complexité

ASK

Simple

Faible

Faible

Faible

Faible

Faible

Faible

Faible

Moyenne

Moyenne

Bonne

Bonne

Bonne

Moyenne

Moyenne

Moyenne

Moyenne

Moyenne

Moyenne

Moyenne

Moyenne

♦ Concepts utiles

- **Débit binaire** (**D**) = $1 / T_b$
- Rapidité de transmission (R) = 1 / T = D / n
- TEB (Taux d'erreur binaire) : mesure la qualité de transmission
- Capacité d'un canal (C) : $C = W \log_2(1 + P S / P N)$
- Efficacité spectrale : bits par seconde par