CMPT 210: Probability and Computing

Lecture 22

Sharan Vaswani

April 2, 2024

Recap

Tail inequalities bound the probability that the r.v. takes a value much different from its mean.

Markov's Theorem: If X is a non-negative random variable, then for all x > 0, $\Pr[X \ge x] \le \frac{\mathbb{E}[X]}{x}$.

Chebyshev's Theorem: For a r.v. X and all x > 0, $\Pr[|X - \mathbb{E}[X]| \ge x] \le \frac{\operatorname{Var}[X]}{x^2}$.

Claim: Let G_1, G_2, \ldots, G_n be pairwise independent random variables with the same mean μ and standard deviation σ . Define $S_n := \sum_{i=1}^n G_i$, then,

$$\Pr\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{1}{n} \left(\frac{\sigma}{\epsilon}\right)^2.$$

Claim: Let G_1, G_2, \ldots, G_n be pairwise independent random variables with the same mean μ and standard deviation σ . Define $S_n := \sum_{i=1}^n G_i$, then,

$$\Pr\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{1}{n} \left(\frac{\sigma}{\epsilon}\right)^2.$$

Proof: Let us compute $\mathbb{E}[S_n/n]$ and $Var[S_n/n]$.

$$\mathbb{E}[S_n] = \mathbb{E}\left[\sum_{i=1}^n G_i\right] = \sum_{i=1}^n \mathbb{E}[G_i] = n\mu \implies \mathbb{E}[S_n/n] = \frac{1}{n}\mathbb{E}[S_n] = \mu$$
(Using linearity of expectation)

$$Var[S_n] = Var\left[\sum_{i=1}^n G_i\right] = \sum_{i=1}^n Var[G_i] = n\sigma^2$$

(Using linearity of variance for pairwise independent r.v's)

$$\implies \operatorname{Var}[S_n/n] = \frac{1}{n^2} \operatorname{Var}[S_n] = \frac{\sigma^2}{n}$$

Using Chebyshev's Theorem,

$$\Pr\left[\left|\frac{S_n}{n} - \mathbb{E}\left[\frac{S_n}{n}\right]\right| \ge \epsilon\right] = \Pr\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{\mathsf{Var}[S_n/n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

Using Chebyshev's Theorem,

$$\Pr\left[\left|\frac{S_n}{n} - \mathbb{E}\left[\frac{S_n}{n}\right]\right| \ge \epsilon\right] = \Pr\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{\mathsf{Var}[S_n/n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

Hence, for arbitrary pairwise independent r.v's, if n increases, the probability of deviation from the mean μ decreases.

Using Chebyshev's Theorem,

$$\Pr\left[\left|\frac{S_n}{n} - \mathbb{E}\left[\frac{S_n}{n}\right]\right| \ge \epsilon\right] = \Pr\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{\mathsf{Var}[S_n/n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

Hence, for arbitrary pairwise independent r.v's, if n increases, the probability of deviation from the mean μ decreases.

Weak Law of Large Numbers: Let G_1, G_2, \ldots, G_n be pairwise independent variables with the same mean μ and (finite) standard deviation σ . Define $X_n := \frac{\sum_{i=1}^n G_i}{n}$, then for every $\epsilon > 0$,

$$\lim_{n\to\infty}\Pr[|X_n-\mu|\leq\epsilon]=1.$$

Using Chebyshev's Theorem,

$$\Pr\left[\left|\frac{S_n}{n} - \mathbb{E}\left[\frac{S_n}{n}\right]\right| \ge \epsilon\right] = \Pr\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{\mathsf{Var}[S_n/n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

Hence, for arbitrary pairwise independent r.v's, if n increases, the probability of deviation from the mean μ decreases.

Weak Law of Large Numbers: Let G_1, G_2, \ldots, G_n be pairwise independent variables with the same mean μ and (finite) standard deviation σ . Define $X_n := \frac{\sum_{i=1}^n G_i}{n}$, then for every $\epsilon > 0$,

$$\lim_{n\to\infty} \Pr[|X_n - \mu| \le \epsilon] = 1.$$

Proof: Follows from the theorem on pairwise independent sampling since $\lim_{n \to \infty} \Pr[|X_n - \mu| \le \epsilon] = \lim_{n \to \infty} \left[1 - \frac{\sigma^2}{n\epsilon^2}\right] = 1.$

If we know that the r.v X is (i) non-negative and (ii) $\mathbb{E}[X]$, we can use Markov's Theorem to bound the probability of deviation from the mean.

If we know that the r.v X is (i) non-negative and (ii) $\mathbb{E}[X]$, we can use Markov's Theorem to bound the probability of deviation from the mean.

If we know both (i) $\mathbb{E}[X]$ and (ii) Var[X], we can use Chebyshev's Theorem to bound the probability of deviation.

If we know that the r.v X is (i) non-negative and (ii) $\mathbb{E}[X]$, we can use Markov's Theorem to bound the probability of deviation from the mean.

If we know both (i) $\mathbb{E}[X]$ and (ii) Var[X], we can use Chebyshev's Theorem to bound the probability of deviation.

In many cases the random variable of interest is a sum of r.v's (e.g., for the voter poll application), and we can use the Chernoff bound to obtain tighter bounds on the deviation from the mean.

If we know that the r.v X is (i) non-negative and (ii) $\mathbb{E}[X]$, we can use Markov's Theorem to bound the probability of deviation from the mean.

If we know both (i) $\mathbb{E}[X]$ and (ii) Var[X], we can use Chebyshev's Theorem to bound the probability of deviation.

In many cases the random variable of interest is a sum of r.v's (e.g., for the voter poll application), and we can use the Chernoff bound to obtain tighter bounds on the deviation from the mean.

Chernoff Bound: Let T_1, T_2, \ldots, T_n be mutually independent r.v's such that $0 \le T_i \le 1$ for all i. If $T := \sum_{i=1}^n T_i$, for all $c \ge 1$ and $\beta(c) := c \ln(c) - c + 1$,

$$\Pr[T \ge c\mathbb{E}[T]] \le \exp(-\beta(c)\mathbb{E}[T])$$

If we know that the r.v X is (i) non-negative and (ii) $\mathbb{E}[X]$, we can use Markov's Theorem to bound the probability of deviation from the mean.

If we know both (i) $\mathbb{E}[X]$ and (ii) Var[X], we can use Chebyshev's Theorem to bound the probability of deviation.

In many cases the random variable of interest is a sum of r.v's (e.g., for the voter poll application), and we can use the Chernoff bound to obtain tighter bounds on the deviation from the mean.

Chernoff Bound: Let T_1, T_2, \ldots, T_n be mutually independent r.v's such that $0 \le T_i \le 1$ for all i. If $T := \sum_{i=1}^n T_i$, for all $c \ge 1$ and $\beta(c) := c \ln(c) - c + 1$,

$$\Pr[T \ge c\mathbb{E}[T]] \le \exp(-\beta(c)\,\mathbb{E}[T])$$

If $T_i \sim \text{Ber}(p)$ and are mutually independent, then $T_i \in \{0,1\}$ and we can use the Chernoff bound to bound the deviation from the mean for $T \sim \text{Bin}(n,p)$. In general, if $T_i \in [0,1]$, the Chernoff Bound can be used even if the T_i 's have different distributions!

Chernoff Bound – Binomial Distribution

 ${f Q}$: Bound the probability that the number of heads that come up in 1000 independent tosses of a fair coin exceeds the expectation by 20% or more.

Chernoff Bound - Binomial Distribution

 ${f Q}$: Bound the probability that the number of heads that come up in 1000 independent tosses of a fair coin exceeds the expectation by 20% or more.

Let T_i be the indicator r.v. for the event that coin i comes up heads, and let T denote the total number of heads. Hence, $T = \sum_{i=1}^{1000} T_i$. For all i, $T_i \in \{0,1\}$ and are mutually independent r.v's. Hence, we can use the Chernoff Bound.

Chernoff Bound - Binomial Distribution

 ${f Q}$: Bound the probability that the number of heads that come up in 1000 independent tosses of a fair coin exceeds the expectation by 20% or more.

Let T_i be the indicator r.v. for the event that coin i comes up heads, and let T denote the total number of heads. Hence, $T = \sum_{i=1}^{1000} T_i$. For all i, $T_i \in \{0,1\}$ and are mutually independent r.v's. Hence, we can use the Chernoff Bound.

We want to compute the probability that the number of heads is larger than the expectation by 20% meaning that c=1.2 for the Chernoff Bound. Computing $\beta(c)=c\ln(c)-c+1\approx 0.0187$. Since the coin is fair, $\mathbb{E}[T]=1000\,\frac{1}{2}=500$. Plugging into the Chernoff Bound,

$$\Pr[T \ge c\mathbb{E}[T]] \le \exp(-\beta(c)\mathbb{E}[T]) \implies \Pr[T \ge 1.2\,\mathbb{E}[T]] \le \exp(-(0.0187)(500)) \approx 0.0000834.$$

Chernoff Bound - Binomial Distribution

 ${f Q}$: Bound the probability that the number of heads that come up in 1000 independent tosses of a fair coin exceeds the expectation by 20% or more.

Let T_i be the indicator r.v. for the event that coin i comes up heads, and let T denote the total number of heads. Hence, $T = \sum_{i=1}^{1000} T_i$. For all i, $T_i \in \{0,1\}$ and are mutually independent r.v's. Hence, we can use the Chernoff Bound.

We want to compute the probability that the number of heads is larger than the expectation by 20% meaning that c=1.2 for the Chernoff Bound. Computing $\beta(c)=c\ln(c)-c+1\approx 0.0187$. Since the coin is fair, $\mathbb{E}[T]=1000\,\frac{1}{2}=500$. Plugging into the Chernoff Bound,

$$\Pr[T \ge c \mathbb{E}[T]] \le \exp(-\beta(c)\mathbb{E}[T]) \implies \Pr[T \ge 1.2 \, \mathbb{E}[T]] \le \exp(-(0.0187)(500)) \approx 0.0000834.$$

Comparing this to using Chebyshev's inequality,

$$\Pr[T \ge c\mathbb{E}[T]] = \Pr[T - \mathbb{E}[T] \ge (c - 1)\mathbb{E}[T]] \le \Pr[|T - \mathbb{E}[T]| \ge (c - 1)\mathbb{E}[T]] \\
\le \frac{\text{Var}[T]}{(c - 1)^2 (\mathbb{E}[T])^2} = \frac{1000 \frac{1}{4}}{(1.2 - 1)^2 (500^2)} = \frac{250}{0.2^2 500^2} = \frac{250}{10000} = 0.025.$$

Chernoff Bound – Lottery Game

Q: Pick-4 is a lottery game in which you pay \$1 to pick a 4-digit number between 0000 and 9999. If your number comes up in a random drawing, then you win \$5,000. Your chance of winning is 1 in 10000. If 10 million people play, then the expected number of winners is 1000. When there are 1000 winners, the lottery keeps \$5 million of the \$10 million paid for tickets. The lottery operator's nightmare is that the number of winners is much greater – especially at the point where more than 2000 win and the lottery must pay out more than it received. What is the probability that will happen? (Assume that the players' picks and the winning number are random, independent and uniform)

Chernoff Bound – Lottery Game

Q: Pick-4 is a lottery game in which you pay \$1 to pick a 4-digit number between 0000 and 9999. If your number comes up in a random drawing, then you win \$5,000. Your chance of winning is 1 in 10000. If 10 million people play, then the expected number of winners is 1000. When there are 1000 winners, the lottery keeps \$5 million of the \$10 million paid for tickets. The lottery operator's nightmare is that the number of winners is much greater – especially at the point where more than 2000 win and the lottery must pay out more than it received. What is the probability that will happen? (Assume that the players' picks and the winning number are random, independent and uniform)

Let T_i be an indicator for the event that player i wins. Then $T:=\sum_{i=1}^n T_i$ is the total number of winners. Using the independence assumptions, we can conclude that T_i are independent, as required by the Chernoff bound.

Chernoff Bound – Lottery Game

Q: Pick-4 is a lottery game in which you pay \$1 to pick a 4-digit number between 0000 and 9999. If your number comes up in a random drawing, then you win \$5,000. Your chance of winning is 1 in 10000. If 10 million people play, then the expected number of winners is 1000. When there are 1000 winners, the lottery keeps \$5 million of the \$10 million paid for tickets. The lottery operator's nightmare is that the number of winners is much greater — especially at the point where more than 2000 win and the lottery must pay out more than it received. What is the probability that will happen? (Assume that the players' picks and the winning number are random, independent and uniform)

Let T_i be an indicator for the event that player i wins. Then $T:=\sum_{i=1}^n T_i$ is the total number of winners. Using the independence assumptions, we can conclude that T_i are independent, as required by the Chernoff bound.

We wish to compute $\Pr[T \ge 2000] = \Pr[T \ge 2\mathbb{E}[T]]$. Hence c = 2 and $\beta(c) \approx 0.386$. By the Chernoff bound,

$$\Pr[T \ge 2\mathbb{E}[T]] \le \exp(-\beta(c)\mathbb{E}[T]) = \exp(-(0.386)1000) < \exp(-386) \approx 10^{-168}$$

For r.v's $T_1, T_2, \dots T_n$, if $T_i \in \{0, 1\}$ and $\Pr[T_i = 1] = p_i$. Define $T := \sum_{i=1}^n T_i$. By linearity of expectation, $\mathbb{E}[T] = \sum_{i=1}^n p_i$. For $c \ge 1$,

For r.v's $T_1, T_2, \ldots T_n$, if $T_i \in \{0, 1\}$ and $\Pr[T_i = 1] = p_i$. Define $T := \sum_{i=1}^n T_i$. By linearity of expectation, $\mathbb{E}[T] = \sum_{i=1}^n p_i$. For $c \ge 1$,

Markov's Theorem: $\Pr[T \ge c\mathbb{E}[T]] \le \frac{1}{c}$. Does not require T_i 's to be independent.

For r.v's $T_1, T_2, \ldots T_n$, if $T_i \in \{0, 1\}$ and $\Pr[T_i = 1] = p_i$. Define $T := \sum_{i=1}^n T_i$. By linearity of expectation, $\mathbb{E}[T] = \sum_{i=1}^n p_i$. For $c \ge 1$,

Markov's Theorem: $\Pr[T \ge c\mathbb{E}[T]] \le \frac{1}{c}$. Does not require T_i 's to be independent.

Chebyshev's Theorem:

$$\Pr[T - \mathbb{E}[T] \ge x] \le \Pr[|T - \mathbb{E}[T]| \ge x] \le \frac{\mathsf{Var}[T]}{x^2}$$

$$\implies \Pr[T - \mathbb{E}[T] \ge (c - 1)\mathbb{E}[T]] \le \frac{\mathsf{Var}[T]}{(c - 1)^2 (\mathbb{E}[T])^2} \qquad (x = (c - 1)\mathbb{E}[T])$$

For r.v's $T_1, T_2, \ldots T_n$, if $T_i \in \{0, 1\}$ and $\Pr[T_i = 1] = p_i$. Define $T := \sum_{i=1}^n T_i$. By linearity of expectation, $\mathbb{E}[T] = \sum_{i=1}^n p_i$. For $c \ge 1$,

Markov's Theorem: $\Pr[T \ge c\mathbb{E}[T]] \le \frac{1}{c}$. Does not require T_i 's to be independent.

Chebyshev's Theorem:

$$\Pr[T - \mathbb{E}[T] \ge x] \le \Pr[|T - \mathbb{E}[T]| \ge x] \le \frac{\text{Var}[T]}{x^2}$$

$$\implies \Pr[T - \mathbb{E}[T] \ge (c - 1)\mathbb{E}[T]] \le \frac{\text{Var}[T]}{(c - 1)^2 (\mathbb{E}[T])^2} \qquad (x = (c - 1)\mathbb{E}[T])$$

If the T_i 's are pairwise independent, by linearity of variance, $\text{Var}[T] = \sum_{i=1}^n p_i (1 - p_i)$. Hence, $\text{Pr}[T \ge c\mathbb{E}[T]] \le \frac{\sum_{i=1}^n p_i (1 - p_i)}{(c-1)^2 \left(\sum_{i=1}^n p_i\right)^2}$. If for all i, $p_i = 1/2$, then, $\text{Pr}[T \ge c\mathbb{E}[T]] \le \frac{1}{(c-1)^2 n}$.

For r.v's $T_1, T_2, \ldots T_n$, if $T_i \in \{0, 1\}$ and $\Pr[T_i = 1] = p_i$. Define $T := \sum_{i=1}^n T_i$. By linearity of expectation, $\mathbb{E}[T] = \sum_{i=1}^n p_i$. For $c \ge 1$,

Markov's Theorem: $\Pr[T \ge c\mathbb{E}[T]] \le \frac{1}{c}$. Does not require T_i 's to be independent.

Chebyshev's Theorem:

$$\Pr[T - \mathbb{E}[T] \ge x] \le \Pr[|T - \mathbb{E}[T]| \ge x] \le \frac{\operatorname{Var}[T]}{x^2}$$

$$\implies \Pr[T - \mathbb{E}[T] \ge (c - 1)\mathbb{E}[T]] \le \frac{\operatorname{Var}[T]}{(c - 1)^2 (\mathbb{E}[T])^2} \qquad (x = (c - 1)\mathbb{E}[T])$$

If the T_i 's are pairwise independent, by linearity of variance, $\text{Var}[T] = \sum_{i=1}^n p_i (1-p_i)$. Hence, $\Pr[T \ge c\mathbb{E}[T]] \le \frac{\sum_{i=1}^n p_i (1-p_i)}{(c-1)^2 \left(\sum_{i=1}^n p_i\right)^2}$. If for all i, $p_i = 1/2$, then, $\Pr[T \ge c\mathbb{E}[T]] \le \frac{1}{(c-1)^2 n}$.

Chernoff Bound: If T_i are mutually independent, then,

$$\Pr[T \ge c \mathbb{E}[T]] \le \exp(-\beta(c) \mathbb{E}[T]) = \exp\left(-\left(c \ln(c) - c + 1\right) \left(\sum_{i=1}^{n} p_i\right)\right). \text{ If for all } i, \ p_i = 1/2,$$

$$\Pr[T \ge c \mathbb{E}[T]] \le \exp\left(-\frac{n(c \ln(c) - c + 1)}{2}\right).$$

