

# MACHINE

# LEARNING

# Model Selection Cheat Sheet

Save for later reference



#### TYPE OF PROBLEM

### SIZE & LINEARITY OF DATASET

### <u>Regression:</u>

- Linear Regression
- Ridge Regression
- Lasso Regression
- Decision Trees
- Random Forest
- Gradient Boosting

•

### **Classification:**

- Logistic Regression
- Decision Trees
- Random Forest
- Gradient Boosting
- Support Vector Machines
- k-Nearest Neighbors

### Clustering:

- K-Means
- Hierarchical Clustering
- DBSCAN

### **Time Series Forecasting:**

- ARIMA
- SARIMA
- Prophet (for seasonality)

### Size of Dataset

- Large Dataset:
  - Gradient Boosting
  - Random Forest
  - Deep Learning (Neural Networks)

### • Small/Medium Dataset:

- Linear Regression
- Support Vector Machines
- k-Nearest Neighbors
- Naive Bayes

### **Linearity of Data:**

- Linear Relationship:
  - Linear Regression
  - Ridge Regression
  - Lasso Regression
  - Support Vector Machines (linear kernel)

### • Non-linear Relationship:

- Decision Trees
- Random Forest
- Gradient Boosting
- Support Vector Machines (non-linear kernel)
- Neural Networks





### <u>Interpretability:</u>

- High Interpretability:
  - Linear Regression
  - Logistic Regression
  - Decision Trees
- Medium Interpretability:
  - Random Forest
  - Support Vector Machines
- Low Interpretability:
  - Neural Networks
  - Gradient Boosting

### <u> Handling High-</u> <u>Dimensional Data:</u>

- Feature Importance is Crucial:
  - Random Forest
  - Gradient Boosting
  - Lasso Regression (for feature selection)
- Many Features, Nonlinearity:
  - Support Vector Machines
  - Neural Networks

# Handling Categorical Variables:

- Categorical Features:
  - Decision Trees
  - Random Forest
  - Gradient Boosting
  - CatBoost (handles categorical features well)

# Handling Imbalanced Classes:

- Imbalanced Classes:
  - Random Forest
  - Gradient Boosting
  - Resampling
     Techniques
     (oversampling, undersampling)



## Computational Efficiency:

- Fast Training/Prediction:
  - Linear Regression
  - Naive Bayes
  - k-Nearest Neighbors
- Slower Training, High Accuracy:
  - Random Forest
  - Gradient Boosting
  - Neural Networks (with GPU)

### **Ensemble Methods:**

- High Accuracy, Robustness:
  - Random Forest
  - Gradient Boosting
  - XGBoost, LightGBM

### <u>Fast</u> <u>Training/Prediction:</u>

- Linear Regression
- Naive Bayes

# Moderate Time Complexity:

- Decision Trees
- Random Forest
- Gradient Boosting

# **High Time Complexity:**

- Support Vector Machines
- Neural Networks



#### **ONLINE LEARNING**

#### MODEL DEPLOYMENT

## Continuous Learning:

- Stochastic Gradient Descent
- Online Random Forest (if available)

### Ease of Deployment:

- Simpler Models (Linear Regression, Decision Trees)
- Frameworks with Low Latency Requirements (XGBoost, LightGBM)

#### HANDLING NON-NUMERIC DATA

## <u>Non-Numeric</u> <u>Features:</u>

- Decision Trees
- Random Forest
- Gradient Boosting
- Naive Bayes

# <u>Challenging</u> <u>Deployment:</u>

 Complex Models (Neural Networks, Gradient Boosting)

