Homework 4

MAS4301

Carson Mulvey

NB 4.1 We claim that ϕ is an isomorphism. It suffices to show that ϕ is one-to-one, onto, and operation-preserving.

(One-to-one) Let $\pi_a, \pi_b \in \text{Perm}(A)$ satisfy $\phi(\pi_a) = \phi(\pi_b)$. Then

$$f^{-1} \circ \pi_a \circ f = f^{-1} \circ \pi_b \circ f$$

$$\implies (f \circ f^{-1}) \circ \pi_a \circ (f \circ f^{-1}) = (f \circ f^{-1}) \circ \pi_b \circ (f \circ f^{-1})$$

$$\implies \pi_a = \pi_b,$$

so ϕ is one-to-one.

(Onto) Now let $\pi' \in S_n$. We must find a $\pi \in \text{Perm}(A)$ such that $\phi(\pi) = \pi'$. If such a π were to exist, then

$$f^{-1} \circ \pi \circ f = \pi'$$

$$\implies (f \circ f^{-1}) \circ \pi \circ (f \circ f^{-1}) = f \circ \pi' \circ f^{-1}$$

$$\implies \pi = f \circ \pi' \circ f^{-1}.$$

But we see that since f maps from $\{1, 2, ..., n\}$ to A, it follows that $f \circ \pi' \circ f^{-1} \in \text{Perm}(A)$. Thus, taking $\pi = f \circ \pi' \circ f^{-1}$ as solved, we see that such a π always exists.

(Operation-preserving) Let π_a and π_b be in Perm(A). Then

$$\phi(\pi_a \circ \pi_b) = f^{-1} \circ \pi_a \circ \pi_b \circ f$$

$$= f^{-1} \circ \pi_a \circ (f \circ f^{-1}) \circ \pi_b \circ f$$

$$= (f^{-1} \circ \pi_a \circ f) \circ (f^{-1} \circ \pi_b \circ f)$$

$$= \phi(\pi_a) \circ \phi(\pi_b),$$

so ϕ is operation-preserving.

6.4 We have $U(8) = \{1,3,5,7\}$ and $U(10) = \{1,3,7,9\}$. Noting that $U(10) = \{3^0,3^1,3^3,3^2\} = \langle 3 \rangle$, we see that U(10) is cyclic. However, note that for U(8),

$$\langle 1 \rangle = \{1\},$$

$$\langle 3 \rangle = \{1, 3\},\,$$

$$\langle 5 \rangle = \{1, 5\},\,$$

$$\langle 7 \rangle = \{1, 7\}.$$

Since none of the elements of U(8) are generators, U(8) is not cyclic. By Theorem 6.3, a cyclic and noncyclic group cannot be isomorphic, so U(10) and U(8) cannot be isomorphic.

6.12 Suppose that $\alpha(g)=g^{-1}$ for all $g\in G$ is an automorphism. Then for $f,g\in G,$

$$fg = \alpha((fg)^{-1})$$
$$= \alpha(g^{-1}f^{-1})$$
$$= \alpha(g^{-1})\alpha(f^{-1})$$
$$= gf,$$

so G is abelian.

Now suppose that G is abelian. Since α^2 is an identity mapping, we

have $\alpha^{-1} = \alpha$, so α is a bijection. Also, for f and g in G, we have

$$\alpha(fg) = (fg)^{-1}$$

$$= g^{-1}f^{-1}$$

$$= f^{-1}g^{-1}$$

$$= \alpha(f)\alpha(g).$$

We see that α is operation-preserving, so α is an automorphism. \square

- **6.32** If $\phi(x) = 9x \pmod{50}$, then ϕ is an automorphism. Note that $\phi(7) = 63 \pmod{50} = 13$ holds.
- **6.34** We see that $\phi(k_1)$ and $\phi(k_2)$ are in $\phi(K)$ if $k_1, k_2 \in K$. Then, by operation preservation of an isomorphism, we have $\phi(k_1)\phi(k_2)^{-1} = \phi(k_1k_2^{-1})$. Since K is a subgroup, K is closed under both inverses and the group operation in G, so $k_1k_2^{-1} \in K$. Thus $\phi(k_1)\phi(k_2)^{-1}$ is in \bar{G} . Then since $\phi(k_1)$ and $\phi(k_2)$ being in \bar{G} implies that $\phi(k_1)\phi(k_2)^{-1}$ is in \bar{G} , by the One-Step Subgroup Test, $\phi(K)$ is a subgroup of \bar{G} .
- **6.42** Because ϕ^2 is an identity mapping, we have $\phi = \phi^{-1}$, so ϕ is a bijection. Also, for (a_1, a_2, \dots, a_n) and (b_1, b_2, \dots, b_n) in \mathbb{R}^n , we have

$$\phi((a_1, \dots, a_n) + (b_1, \dots, b_n)) = \phi((a_1 + b_1, \dots, a_n + b_n))$$

$$= (-a_1 - b_1, \dots, -a_n - b_n)$$

$$= (-a_1, \dots, -a_n) + (-b_1, \dots, -b_n)$$

$$= \phi((a_1, a_2, \dots, a_n)) + \phi((b_1, b_2, \dots, b_n)).$$

We see that ϕ preserves componentwise addition, so ϕ is an automorphism. Geometrically, ϕ represents a reflection over the origin. In \mathbb{R}^2 particularly, that is equivalent to a rotation by π radians.