Lambda Calculus 2

COS 441 Slides 14

read: 3.4, 5.1, 5.2, 3.5 Pierce

Lambda Calculus

- The lambda calculus is a language of pure functions
 - expressions: $e := x \mid x = e1 e2$
 - values: $v := \x.e$
 - call-by-value operational semantics:

$$\frac{}{(x.e) \text{ v} --> e [v/x]} \text{ (beta)}$$

$$\frac{e1 --> e1'}{e1 e2 --> e1' e2} \quad (app1) \qquad \frac{e2 --> e2'}{v e2 --> v e2'} \quad (app2)$$

- example execution: $(\x.x x) (\y.y) --> (\y.y) (\y.y) --> \y.y$

ENCODING BOOLEANS

the encoding:

$$tru = \t.\f. t$$

$$fls = \t.\f. f$$

 $test = \x.\then.\else. x then else$

Challenge

$$tru = \t.\f. t$$
 fls = \t.\f. f
test = \x.\then.\else. x then else

create a function "and" in the lambda calculus that mimics conjunction. It should have the following properties.

```
and tru tru -->* tru
and fls tru -->* fls
and tru fls -->* fls
and fls fls -->* fls
```

$$tru = \t.\f. t$$
 fls = \t.\f. f
and = \b.\c. b c fls

and tru tru

- -->* tru tru fls
- -->* tru

$$tru = \t.\f. t$$
 fls = \t.\f. f
and = \b.\c. b c fls

and fls tru

-->* fls tru fls

-->* fls

$$tru = \t.\f. t$$
 fls = \t.\f. f
and = \b.\c. b c fls

and fls tru

-->* fls tru fls

-->* fls

challenge: try to figure out how to implement "or" and "xor"

ENCODING PAIRS

- would like to encode the operations
 - create e1 e2
 - fst p
 - sec p
- pairs will be functions
 - when the function is used in the fst or sec operation it should reveal its first or second component respectively

create =
$$\x.\y.\b.$$
 b x y

$$fst = p. p tru$$
 $tru = x.y.x$

$$sec = p. p fls$$
 $fls = x.y.y$

```
create = \x.\y.\b. b x y

fst = \p. p tru tru = \x.\y.x

sec = \p. p fls fls = \x.\y.y

fst (create tru fls)

= fst ((\x.\y.\b. b x y) tru fls)
```

```
create = \x.\y.\b. b x y
fst = p. p tru
                            tru = \x.\y.x
sec = p. p fls
                              fls = \x.\y.y
fst (create tru fls)
= fst ((\x.\y.\b. b x y) tru fls)
-->* fst (\b. b tru fls)
= (\p.p tru) (\b. b tru fls)
--> (\b. b tru fls) tru
--> tru tru fls
= (\x.\y.x) tru fls
--> (\y.tru) fls
--> tru
```

NUMBERS

```
zero = \s.\z.z

one = \s.\z.s z

two = \s.\z.s (s z)

...

n = \s.\z.s (s (s (.... z)))

n of them
```

```
zero = \s.\z.z
one = \s.\z.s z
two = \s.\z.s (s z)
...
n = \s.\z.s (s (s (.... z)))
n of them

addone = \n.\s.\z.s (n s z)
```

```
zero = \s.\z.z
one = \s.\z.s z
two = \s.\z.s (s z)
...
n = \s.\z.s (s (s (.... z)))
n of them
addone = \n.\s.\z.s (n s z)
```

```
addone zero
== (\n.\s.\z.s (n s z)) (\s.\z.z)
--> \s.\z.s ((\s.\z.z) s z)
```

addone =
$$\n.\s.\z.s$$
 (n s z)

addone zero
== (\n.\s.\z.s (n s z)) (\s.\z.z)
--> \s.\z.s ((\s.\z.z) s z)
== \s.\z.s ((\z.z) z)
== \s.\z.s z
== one

evaluating underneith the lambda in the body of the expression yields semantically equivalent values, like in Haskell

```
zero = \s.\z.z
one = \sl z. \sl z
two = \sl z.s (s z)
     = \s.\z.s (s (s (.... z)))
               n of them
addone = \n.\s.\z.s (n s z)
```

can we code addition?

```
zero = \s.\z.z

one = \s.\z.s z

two = \s.\z.s (s z)

...

n = \s.\z.s (s (s (.... z)))

n of them
```

addone = $n.\s.\z.s$ (n s z)

can we code addition? we need to basically "stack" the s from the two numbers:

two ==
$$\s.\z.s$$
 (s z) three == $\s.\z.s$ (s (s z))

five == $\s.\z.s$ (s (s (s z)))

core of three in place of two's z

```
zero = \s.\z.z
one = \sl z. \sl z
two = \sl z.s (s z)
     = \s.\z.s (s (s (.... z)))
               n of them
addone = \n.\s.\z.s (n s z)
can we code addition?
\n.\m. ...
```

```
zero = \s.\z.z
 one = \sl z. \sl z
two = \sl z.s (s z)
                                                                     = \slash s. \s
                                                                                                                                                                                                              n of them
 addone = \n.\s.\z.s (n s z)
  can we code addition?
\n.\m.(\s.\z. ... )
```

```
zero = \s.\z.z
one = \sl z. \sl z
two = \sl z.s (s z)
     = \slashs.\z.s (s (s (.... z)))
               n of them
addone = n.\s.\z.s (n s z)
can we code addition?
n.\m.(\s.\z. n s m)
```

```
zero = \s.\z.z
one = \s.\z.sz
two = \sl z.s (s z)
     = \s.\z.s (s (s (.... z)))
               n of them
addone = \n.\s.\z.s (n s z)
                                          (\n.\m) two three
can we code addition?
                                          -->* \s.\z. two s three
                                           == \s.\z. s (s three)
                                           == \s.\z. s (s (\s.\z.s (s (s z))
```

 $n.\m.(\s.\z. n s m)$

```
zero = \s.\z.z
one = \sl z. \sl z
two = \sl z.s (s z)
     = \slash z.s (s (s (.... z)))
               n of them
addone = n.\s.\z.s (n s z)
can we code addition?
n.\m.(\s.\z. n s (m s z))
```

try multiplication, subtraction (harder!) on your own

OTHER OPERATIONAL SEMANTICS

Other Operational Semantics

- We have seen one way to evaluate lambda terms
 - left-to-right, call-by-value operational semantics:

$$\frac{-\frac{e1 --> e1'}{(x.e) \ v --> e \ [v/x]}}{\frac{e1 \ e2 --> e1' \ e2}} \ (app1) \qquad \frac{\frac{e2 \ --> e2'}{v \ e2 \ --> v \ e2'}}{(app2)}$$

Other Operational Semantics

- We have seen one way to evaluate lambda terms
 - left-to-right, call-by-value operational semantics:

$$\frac{-\frac{e1 --> e1'}{(x.e) \ v --> e \ [v/x]}}{\frac{e1 \ e2 --> e1' \ e2}} \ (app1) \qquad \frac{\frac{e2 \ --> e2'}{v \ e2 \ --> v \ e2'}}{(app2)}$$

– right-to-left, call-by-value operational semantics:

$$\frac{e2 --> e2'}{e1 \ e2 --> e1 \ e2'} \ \ (app1')$$
 (beta)
$$\frac{e1 --> e1'}{e1 \ v --> e1' \ v} \ \ (app2')$$

Other Operational Semantics

- We have seen one way to evaluate lambda terms
 - left-to-right, call-by-value operational semantics:

$$\frac{-\frac{e1 --> e1'}{(x.e) \ v --> e \ [v/x]}}{\frac{e1 \ e2 --> e1' \ e2}} \ (app1) \qquad \frac{-\frac{e2 --> e2'}{v \ e2 --> v \ e2'}}{(app2)}$$

call-by-name operational semantics (more similar to Haskell):

$$(x.e) e1 --> e [e1/x]$$
 (beta-name) $e1 --> e1'$ (app1)

Call-by-Name vs. Call-by-Value

An example:

$$loop = (\x.x x) (\x.x x)$$
$$(\x.\y.y) loop$$

Under call-by-value:

$$(\x.\y.y) loop --> (\x.\y.y) loop --> (\x.\y.y) loop --> (\x.\y.y) loop --> (\x.\y.y) loop$$

Under call-by-name:

$$(\x.\y.y)$$
 loop --> \y.y

Call-by-name terminates strictly more often

Full Beta Reduction

 Full beta reduction will evaluate any function application anywhere within an expression, even inside a function body before the function has been called:

$$\frac{e1 --> e1'}{e1 \ e2 --> e1' \ e2} \ (app1) \ \frac{e2 --> e2'}{e1 \ e2 --> e1 \ e2'} \ (app2)$$

 Full beta is useful not for computing but for reasoning about which programs are equivalent to which other ones

Full Beta Reduction

 Full beta reduction will evaluate any function application anywhere within an expression, even inside a function body before the function has been called:

$$\frac{e1 --> e1'}{e1 \ e2 --> e1' \ e2} \ (app1) \ \frac{e2 --> e2'}{e1 \ e2 --> e1 \ e2'} \ (app2)$$

- Full beta is useful not for computing but for reasoning about which programs are equivalent to which other ones
- Full beta is highly non-deterministic -- lots of different reductions could apply at any point

Full-Beta Reduction

- Recall reasoning about the church encoding of numbers
- We used full beta to reason about equivalence:

$$s.\z.s((\s.\z.z) s z) --> \s.\z.s((\z.z) z) --> \s.\z.s z == one$$

SUMMARY

We can encode many objects

- loops
- if statements
- booleans
- pairs
- numbers
- and many more:
 - lists, trees and datatypes
 - exceptions, loops, ...
 - **–** ...
- the general trick:
 - values (true, false, pairs) will be functions
 - construct these functions so that they return the appropriate information when called by an operation

Summary

- The Lambda Calculus involves just 3 things:
 - variables x, y, z
 - function definitions \x.e
 - function application e1 e2
- Despite its simplicity, despite the apparent lack of if statements or loops or any data structures other than functions, it is Turing complete
- Church encodings are translations that show how to encode various data types or linguistic features in the lambda calculus