Assumptions:

- 1. Y is convex, closed and free disposal
- 2. F is convex, continuous and increasing
- 3. f is concave, continuous and (strictly) increasing

Table 1: Producer Duality

	Table 1. I foducei Duai	10 <i>y</i>
Problem	$\max_{y \in \mathbb{R}^L} p \cdot y \text{ s.t. } F(y) \le 0$	$\min_{z \in \mathbb{R}^{L-1}_+} w \cdot z \text{ s.t. } f(z) \ge q$
FOC	$\frac{rac{\partial F}{\partial y_k}}{rac{\partial F}{\partial y_l}} = rac{p_k}{p_l}$	$ \min_{z \in \mathbb{R}_{+}^{L-1}} w \cdot z \text{ s.t. } f(z) \ge q $ $ \frac{\partial f}{\partial z_{k}} = \frac{w_{k}}{w_{l}} $
Value Function	Profit function: $\pi(p)$	Cost function: $c(w,q)$
		(a) $c(\lambda w, q) = \lambda c(w, q)$
Properties	(a) $\pi(\lambda p) = \lambda \pi(p)$	(b) concave function of w
	(b) convex function of p	(c) convex function of q
		(d) increasing in q
Solution	Supply correspondence: $y(p)$	Conditional factor demand correspondence: $z(w,q)$
	(a) $y(\lambda p) = y(p)$	(a) $z(\lambda w, q) = z(w, q)$
Properties	(b) Convex-valued	(b) Convex-valued
	(c) Single-valued, if Y strictly convex	(c) Single-valued, if f strictly concave
Comparative Statics	Hotelling's Identity	Shepard's Lemma
	$\frac{\partial \pi(p)}{\partial p_l} = y_l(p)$	$\frac{\partial c(w,q)}{\partial w_k} = z_k(w,q)$
	$Dy(p) = D^2\pi(p)$	$D_w z(w,q) = D_w^2 c(w,q)$
	positive semidefinite	negative semidefinite

Caveat: If the production set Y exhibits non-decreasing return to scale, then either $\pi(p)=0$ or $\pi(p)=+\infty$.

Table 2: Consumer Duality

	Table 2: Consumer l	Duanty
Problem	$\max_{x \ge 0} u(x) \text{ s.t. } p \cdot x \le y$	$\min_{x \ge 0} p \cdot x \text{ s.t. } u(x) \ge u$
FOC	$\frac{\partial u(x)}{\partial x_i} = \lambda p_i$	$\lambda \frac{\partial u(x)}{\partial x_i} = p_i$
Value Function	Indirect utility function: $u(p, y)$	Expenditure function: $e(p, u)$
	(a) continuous	(a) continuous
	(b) $v(\lambda p, \lambda y) = v(p, y)$	(b) $e(\lambda p, u) = \lambda e(p, u)$
Properties	(c) strictly increasing in y	(c) strictly increasing in v
	(d) nonincreasing in p	(d) nondecreasing in p
	(e) quasiconvex in p	(e) concave in p
Solution	Marshallian demand: $D(p, y)$	Hicksian demand: $h(p, u)$
	(a) upper semicontinuous	(a) upper semicontinuous
	(b) $D(\lambda p, \lambda y) = D(p, y);$	(b) $h(\lambda p, u) = h(p, u)$
	(c) budget balanceness:	(c) no excess utility:
Properties	$p \cdot x^* = y \ \forall x^* \in D(p, y)$	$u(x^h) = v \ \forall x^h \in h(p, u)$
	(d) convex-valued if $u(x)$ is quasiconcave;	(d) convex-valued if $u(x)$ is quasiconcave;
	(e) single-valued and continuous if $u(x)$ is strictly quasiconcave.	(e) single-valued and continuous if $u(x)$ is strictly quasiconcave
	Roy's Identity	Shepard's Lemma
	$d_i(p,y) = -\frac{\frac{\partial v(p,y)}{\partial p_i}}{\frac{\partial v(p,y)}{\partial y}}$	$h_i(p, u) = \frac{\partial e(p, u)}{\partial p_i}$
Duality	D(p,y) = h(p,v(p,y))	h(p,y) = D(p,e(p,u))
	v(p, e(p, u)) = u	e(p, v(p, y)) = y