Exercice 1:

Voici un questionnaire à choix multiples. Pour chaque question, entourer la (ou les) réponse(s) exacte(s).

A	Sur cette figure	AM = MB	BM = CM	(MA) et (BC) sont perpendiculaires
В	Sur cette figure	(BD) est la tangente en B au cercle €	EB = OB	(OE) et (BC) sont parallèles
С	LEO est un triangle rectangle en O alors	$tan(\widehat{LEO}) = \frac{EO}{LO}$	$tan(LEO) = \frac{LO}{EO}$	$sin(ELO) = \frac{EO}{LE}$
D	Sur cette figure A 17 cm C	RA = 8 cm	CAR ≈ 62°	ACR ≈ 35°
E	Sur cette figure 70° 24 cm	$AB = \frac{24}{\tan(70^\circ)}$	$\boxed{ AB = 24 \times tan(70^\circ) }$	$AC = \frac{24}{\cos(70^\circ)}$

Exercice 2:

On se place dans un repère orthonormé et on considère les quatre points :

$$A(1; -1), B(4; 0), C(5; -5) \text{ et } D(2; -6).$$

- 1. Montrer que le quadrilatère ABCD est un parallélogramme.
- 2. Calculer l'aire de ABCD.

1.
$$\overrightarrow{AB} \begin{pmatrix} 4-1 \\ 0+1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 et $\overrightarrow{DC} \begin{pmatrix} 5-2 \\ -5+6 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

Comme $\overrightarrow{AB} = \overrightarrow{DC}$, le quadrilatère ABCD est un parallélogramme.

2.
$$\overrightarrow{AD} \begin{pmatrix} 2-1 \\ -6+1 \end{pmatrix} = \begin{pmatrix} 1 \\ -5 \end{pmatrix} \operatorname{donc} \operatorname{det} (\overrightarrow{AB}; \overrightarrow{AD}) = 3 \times (-5) - 1 \times 1 = -16.$$

Aire $_{ABCD} = 16$.

Exercice 3:

A est un point situé à 5 cm de d'une droite d.

- a) Construire une figure au dos du sujet.
- b) Déterminer les points situés à 8 cm du point A et à 3,5 cm de la droite d : ${f I}$ ${f et}$ ${f J}$
- c) Construire les points M et N tels que :
 - M, N et A sont alignés ;
 - M et N sont situés aussi à 3,5 cm de d.

Exercice 4:

La pyramide du Louvre est une pyramide régulière à base carrée de 35,4 m de côté et de 21,6 m de hauteur. Elle est représentée ci-dessous par la pyramide SABCD.

Au regard de la figure ci-dessous, faire une phrase en utilisant l'expression : « projeté orthogonal »

- **a)** Calculer la longueur BD, en m. *Arrondir au dixième*.
- **b)** Déterminer la mesure, en degré, de l'angle SBO.

 Arrondir à l'unité.

c) En déduire la mesure, en degré, de l'angle $\widehat{\mathsf{BSD}}$. Arrondir à l'unité.

O est le projeté orthogonal de S sur (BD)

- a) ABCD est un carré de côté 35,4 m, d'après le théorème de Pythagore, $BD=35,4\sqrt{2}\approx50,1$ m.
- b) Dans SOB rectangle en O, $\tan \widehat{SBO} = \frac{SO}{OB} = \frac{21.6}{25.05}$ SO étant la hauteur de la pyramide et $OB = \frac{BD}{2}$. D'où $\widehat{SBO} \approx 41^{\circ}$.
- c) La pyramide est régulière donc \widehat{BSD} est isocèle en S d'où $\widehat{BSD} = 2 \times (90 41) = 98^{\circ}$