SSD: Single Shot MultiBox Detector

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C.Berg
[arXiv][demo][code] (Mar 2016)

Slides by MíriamBellver Computer Vision Reading Group, UPC 28th October, 2016

Outline

- ▶ Introduction
- ▶ RelatedWork
- The Single-Shot Detector
- Conclusions

SSD: Single Shot MultiBox Detector

Object detection

Current object detection systems

Current object detection systems

Computationally too intensive and too slow for real-time applications

Faster R-CNN 7 FPS

Current object detection systems

Computationally too intensive and too slow for real-time applications

Faster R-CNN 7 FPS

SSD: First deep network based object detector that does **not resample pixels or features** for bounding box hypotheses and is **as accurate as approaches that do**.

Improvement in speed vs accuracy trade-off

Method	mAP	FPS	# Boxes
Faster R-CNN [2](VGG16)	73.2	7	300
Faster R-CNN [2](ZF)	62.1	17	300
YOLO [5]	63.4	45	98
Fast YOLO [5]	52.7	155	98
SSD300	72.1	58	7308
SSD500	75.1	23	20097

2. Related Work

SSD: Single Shot MultiBox Detector

Object detection with CNN's

▷ R-CNN

R-CNN: Regions with CNN features

Leveraging the object proposals bottleneck

▶ Fast R-CNN

Improving quality of proposals using CNNs

Low-level features object proposals

Proposals generated directly from a DNN

Faster R-CNN

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks Szegedy, C., Reed, S., Erhan, D., & Anguelov, D. (2014). Scalable, high-quality object detection.

Single-shot detectors

Instead of having two networks

Region Proposals Network + Classifier Network

In Single-shot architectures, bounding boxes and confidences for multiple categories are predicted directly with a single

network

e.g.: Overfeat, YOLO

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You only look once: Unified, real-time object detection Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013). Overfeat: Integrated recognition, localization and detection using convolutional networks.

Single-shot detectors

Main differences of SSD over YOLO and Overfeat:

Small **conv.filters** to predict object **categories and offsets in BBs locations**, using:

- separate predictors for different aspect ratios
- different feature maps to perform detection on multiple scales

Single-shot detectors

Contributions:

- A single-shot detector for multiple categories that is faster than state of the art single shot detectors (YOLO) and as accurate as Faster R-CNN
- Predicts category scores and boxes offset for a fixed set of default BBs.
- Predictions of different scales from feature maps of different scales, and separate predictions by aspect ratio
- End-to-end training and high accuracy, improving speed vs accuracy trade-off

Model

Multi-scale feature maps for detection: observe how conv feature maps decrease in size and allow predictions at multiple scales

Comparison to YOLO

Convolutional predictors for detection: We apply on top of each conv feature map a set of filters that predict detections for different aspect ratios and class categories

What is a detection?

Described by **four parameters** (center bounding box x and y, width and height)

Class category

For all categories we need for a detection a total of #classes + 4 values

Detector for SSD:

Each detector will output a single value, so we need (classes + 4) detectors for a detection

Detector for SSD:

Each detector will output a single value, so we need (classes + 4) detectors for a detection

BUT there are different types of detections!

Different "classes" of detections

aspect ratio 2: I for cats

aspect ratio 1:2 for cats

aspect ratio 1:1 for cats

Choosing scales and aspect ratios for default boxes:

- Feature maps from different layers are used to handle scale variance
- Specific feature map locations learn to be responsive to specific areas of the image and particular scales of objects

Detector for SSD:

Each detector will output a single value, so we need (classes + 4) detectors for a detection

as we have **#default boxes**, we need (classes + 4) x #default boxes detectors

Convolutional predictors for detection: We apply on top of each conv feature map a set of filters that predict detections for different aspect ratios and class categories

For each feature layer of $m \times n$ with p channels we apply kernels of $3 \times 3 \times p$ to produce either a score for a category, or a shape offset relative to a default bounding box coordinates

So, for each conv layer considered, there are

(classes + 4) x default boxes x m x n outputs

Training

SSD requires that ground-truth data is **assigned** to specific outputs in the fixed set of detector outputs

Matching strategy:

For each ground truth box we have to select from all the default boxes the ones that best fit in terms of location, aspect ratio and scale.

- ▶ We select the default box with best jaccard overlap.
- Default boxes with a jaccard overlap **higher than 0.5** are also selected

Training objective:

Similar to MultiBox but handles multiple categories.

$$L(x,c,l,g) = \frac{1}{N}(L_{conf}(x,c) + \alpha L_{loc}(x,l,g))$$
 confidence loss softmax loss localization loss Smooth L1 loss

N: number of default matched BBs x: is 1 if the default box is matched to a determined ground truth box, and 0 otherwise

I: predicted bb parameters

g: ground truth bb parameters

c: class

is 1 by cross-validation

Hard negative mining:

Significant imbalance between **positive** and **negative** training examples

- Use negative samples with **higher confidence score**
- ▶ Then the ratio of positive-negative samples is 3:1

Data augmentation:

Each training sample is randomly sampled by one of the following options:

- Use the original image
- Sample a path with a minimum jaccard overlap with objects

Visualizations

Google test on TF

5. Conclusions

SSD: Single Shot MultiBox Detector

Conclusions

- Single-shot object detector for multiple categories
- One key feature is to use multiple convolutional maps to deal with different scales
- More default bounding boxes, the better results obtained
- Comparable accuracy to state-of-the-art object detectors, but much faster

Thank you for your attention! Questions?