P525/2 CHEMISTRY Paper 2

April./May. 2024

 $2\frac{1}{2}$ hours.

5.5

THE CHEMISTRY DEPARTMENT

2024

CHEMISTRY

END OF TERM I, Paper 2

2 hours 30 minutes

INSTRUCTIONS:

Attempt all questions in this paper.

Write the answers in the answer booklet(s) provided.

Begin each question on a fresh page.

Mathematical tables and graph papers are provided.

Non-programmable scientific calculators may be used.

Use equations where necessary to illustrate your answers.

- 1. The lowering in vapour pressure of a volatile solvent is a colligative property.
 - (a) (i) Define the term colligative property (01 mark)
 - (ii) State two other examples of colligative properties. (02 marks)
 - (iii) State Raoult's law of vapour pressure lowering. (01 mark)
 - (b) The vapour pressure of carbon disulphide at a certain temperature is $400\ mmHg$. At the same temperature, a solution of 5g of sulphur in $63\ cm^3$ of carbon disulphide has a vapour pressure of $392.58\ mmHg$. If the density of carbon disulphide at this temperature is $1.27g\ cm^{-3}$.
 - (i) Explain why a solution of sulphur in carbon disulphide has a lower vapour pressure than pure carbon disulphide.

(02 marks)

- (ii) Calculate the relative molecular mass of sulphur. (03 marks)
- (iii) Deduce the molecular formula of sulphur in carbon disulphide.

$$(C = 12, S = 32)$$
 (02 marks)

(c) The vapour pressure of different solutions of solute Y dissolved in solvent X at 40° C are shown in the table below.

Concentration of $Y(moldm^{-3})$	0.00	0.10	0.20	0.30	0.40	0.50
Vapour pressure of solution(kNm^{-2})	16.000	15.971	15.942	15.914	15.880	15.860

- (i) Plot a graph of lowering in vapour pressure($\triangle P$) against concentration of \mathbf{Y} . (04 marks)
- (ii) Use your graph in b(i) above to determine the relative molecular mass of solvent X if its density is $1.0gcm^{-3}$.

(03 marks)

(iii) State **two** assumptions made in b(ii) above. (02 marks)

- 2. (a) State what is meant by the following terms;
 - (i) Atomic radius (01 mark)
 - (ii) Ionisation energy (01 mark)
 - (b) Write equation to illustrate;
 - (i) first ionization energy of magnesium. (01 mark)
 - (ii) third ionization energy of aluminium. (01 mark)
 - (c) Briefly explain how atomic radius affects first ionisation energy. (04 marks)
 - (d) The table below shows some information about group VII elements and some period 3 elements.

Group VII			Period 3			
Element	Atomic radius	Ionic radius	Element	Atomic number	First ionization energy (kJmol ⁻¹)	
F	0.072	0.136	Na	11	496	
Cl	0.099	0.181	Mg	12	738	
Br	0.114	0.195	Al	13	578	
I	0.133	0.216	Si	14	786	

- (i) Explain why the ionic radius is larger than the atomic radius of the corresponding neutral atom for each element.

 (03 marks)
- (ii) Plot a graph of first ionization energy against atomic number of the period 3 elements. (03 marks)
- (iii) Explain the shape of the graph in b(ii) above. (06 marks)
- 3. (a) Define the terms;
 - (i) Functional group (01 mark)
 - (ii) Unsaturated hydrocarbon (01 mark)
 - (iii) Homologous series (01 mark)
 - (iv) Structural isomerism (01 mark)

- (b) Describe the **three** types of structural isomerism, giving a suitable example in each case. (06 marks)
- (c) A hydrocarbon Z, on complete combustion gave 0.63g of carbon dioxide and 0.26g of water. When 0.716g of Z was vapourised, it occupied a volume of 0.25 litres at s.t.p. Determine the;
- (i) empirical formula of Z.

(03 marks)

(ii) molecular formula of Z

(03 marks)

- (iii) Deduce the structural formulae and IUPAC names of any four possible isomers of Z. (04 marks)
- 4. (a) Define the terms;
 - (i) Radioactivity

(02 marks)

(ii) Nuclear stability

(02 marks)

(iii) Half-life

(02 marks)

- (b) State;
- (i) Graham's law of gaseous diffusion.

(01 mark)

(ii) Dalton's law of partial pressure.

(01 mark)

- (b) 250 cm³ of an alkene diffuse through a porous medium in 10 seconds and 716 cm³ of oxygen diffuse through the same medium in 25 seconds under the same conditions. Calculate the molecular mass of the alkene and deduce its structural formula.

 (3 $\frac{1}{2}$ marks)
- (c) (i) Explain why a mixture of ammonia and hydrogen chloride does not hold for Dalton's law of partial pressures. (2 $\frac{1}{2}$ marks) (ii) A mixture of 20% ammonia, 55% hydrogen and 25% nitrogen by volume has a pressure of $9.80 \times 10^4 Nm^{-2}$. Calculate the partial pressure of each gas. (03 marks)
- (d) The half life of a radioactive element is 150 seconds. What percentage of the isotope will remain after 600 seconds?

(03 marks)

END