Chapter 4 Guided 6

Professor George

May 4, 2021

\mathbf{A}

```
library(AER)
library(ggplot2)
library(gridExtra)
library(tidyverse)
library(pscl)
data('NMES1988')
NMES = NMES1988
names (NMES)
##
   [1] "visits"
                    "nvisits"
                                "ovisits"
                                            "novisits"
                                                         "emergency" "hospital"
  [7] "health"
                    "chronic"
                                "adl"
                                            "region"
                                                         "age"
                                                                     "afam"
## [13] "gender"
                    "married"
                                "school"
                                            "income"
                                                         "employed"
                                                                     "insurance"
## [19] "medicaid"
# Create a histogram of the visits
obsBar = ggplot(NMES,aes(x=visits))+
  geom_bar()
# Create a histogram of the poisson distribution using the mean
# of visits and the max of visits as a visual maximum
sum1<-NMES%>%
  summarise(lambda=mean(visits),
           maxvisits = max(visits))
sum1
##
      lambda maxvisits
## 1 5.774399
possible.values = with(sum1,0:maxvisits)
possible.values
  [1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
## [26] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
## [51] 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
## [76] 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
```

```
model.prob <- with(sum1,dpois(possible.values,</pre>
                                   lambda ))
# Look at the first few probabilities to see if they look
# realistic (0 to 1)
model.prob[1:10]
      \hbox{\tt [1]} \ \ 0.003106065 \ \ 0.017935659 \ \ 0.051783821 \ \ 0.099673473 \ \ 0.143888589 \ \ 0.166174012 
    [7] 0.159925829 0.131925068 0.095223490 0.061095376
pois.model = data.frame(possible.values,
                            model.prob)
# Make the 2nd histogram of the poisson
expData = ggplot(pois.model,aes(y=model.prob,
        x=possible.values))+
  geom_bar(stat='identity')
grid.arrange(obsBar,expData)
    600
 count
    400 -
    200 -
      0 -
                                    25
            0
                                                            50
                                                                                    75
                                                     visits
    0.15 -
qodel.prob
0.05 -
    0.00
                                    25
                                                            50
                                                                                    7<sub>5</sub>
```

We can see that the two distributions do not match!

\mathbf{B}

Fitting the indicated ZIP model

possible.values

```
# Terms on right side of | are those we are going to use
# for a logistic model where we are predicting the probability
# that an older adult does *not* go to a physician.
model1 <- zeroinfl(visits~chronic+health+insurance|</pre>
               chronic+insurance,data=NMES)
summary(model1)
##
## zeroinfl(formula = visits ~ chronic + health + insurance | chronic +
      insurance, data = NMES)
##
## Pearson residuals:
##
      Min
               1Q Median
                               3Q
                                     Max
## -3.9221 -1.2195 -0.4316 0.5598 24.1031
## Count model coefficients (poisson with log link):
                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   1.55878
                             0.01762 88.448
                                              <2e-16 ***
## chronic
                   0.11868
                             0.00462 25.691
                                               <2e-16 ***
                   0.29470
                             0.01729 17.043
## healthpoor
                                               <2e-16 ***
## healthexcellent -0.30482
                              0.03115 -9.786
                                               <2e-16 ***
## insuranceyes
                   0.14467
                             0.01631
                                      8.870 <2e-16 ***
##
## Zero-inflation model coefficients (binomial with logit link):
               Estimate Std. Error z value Pr(>|z|)
## chronic
               -0.56112
                           0.04334 -12.948 < 2e-16 ***
## insuranceyes -0.88314
                          0.09464 -9.332 < 2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Number of iterations in BFGS optimization: 11
## Log-likelihood: -1.651e+04 on 8 Df
coef(summary(model1))
## $count
                    Estimate Std. Error
                                         z value
##
                                                       Pr(>|z|)
## (Intercept)
                   1.5587819 0.017623698 88.448056 0.000000e+00
                   0.1186784 0.004619517 25.690656 1.486613e-145
## chronic
## healthpoor
                   0.2947028 0.017291255 17.043459 3.909129e-65
## healthexcellent -0.3048182 0.031147632 -9.786239 1.290055e-22
                   0.1446700 0.016309360 8.870367 7.290531e-19
## insuranceyes
##
## $zero
##
                 Estimate Std. Error
                                       z value
                                                   Pr(>|z|)
## (Intercept) -0.3742561 0.09212590 -4.062441 4.856218e-05
               -0.5611181 0.04333785 -12.947530 2.426374e-38
## chronic
```

insuranceyes -0.8831440 0.09463925 -9.331689 1.041975e-20

exp(coef(summary(model1))\$count)

```
##
                    Estimate Std. Error
                                              z value Pr(>|z|)
                                1.017780 2.585251e+38
## (Intercept)
                   4.7530279
## chronic
                   1.1260078
                                1.004630 1.436515e+11
                                1.017442 2.522784e+07
## healthpoor
                   1.3427272
                                                              1
                                1.031638 5.621995e-05
## healthexcellent 0.7372574
                                                              1
## insuranceyes
                   1.1556581
                                1.016443 7.117892e+03
                                                              1
```

exp(coef(summary(model1))\$zero)

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.6878008 1.096503 1.720696e-02 1.000049
## chronic 0.5705708 1.044291 2.382097e-06 1.000000
## insuranceyes 0.4134809 1.099262 8.857256e-05 1.000000
```

Interpretations

Poisson Part of Model

Chronic

After exp, 1.126

For a unit increase in the number of chronic conditions a older adult inclined to visit physicians has, holding health status and their status of private insurance constant, we expect an increase on average of 12.6% more visits to a physician.

Poor Health

After exponentiation, 1.34

We expect older adults who visit physicians to visit physicians 34% more on average if they have poor health vs average health, holding private insurance status and number of chronic conditions constant.

Logistic Part of Model

Intercept

After exponentiation, .688

For adults with 0 chronic conditions and no private health insurance, the odds of them not visiting a physician is about .688.

Thus the estimate of the probability they do not visit a physician is $\frac{.68}{1+.68} = .404$. And the probability they do visit a physician is 1-.404 = .596.

Insurance

After exponentiation with reference level as a "no", .413

This represents the change in the odds of someone not going to a physician when they have private insurance vs when they do not.

The odds that an older adult will not go to a physician when they have private insurance is .413 of the odds than when they do have insurance, holding chronic illnesses constant.

Note that it is *not* correct to do 1-.41 and reverse this statement since this is change in odds and not a probability.

This is very annoying/difficult to interpret. Let us instead recode our insurance variable so 1 is yes and 2 is no. Then refit.

```
# In order to get a coefficient of insurance that is easier to
# interpret, we can reorder that varible (change the regression
# reference level)
NMES$insurance = factor(NMES$insurance,levels = c("yes","no"))
str(NMES)
```

```
4406 obs. of 19 variables:
## 'data.frame':
## $ visits : int 5 1 13 16 3 17 9 3 1 0 ...
   $ nvisits : int 0 0 0 0 0 0 0 0 0 ...
## $ ovisits : int 0 2 0 5 0 0 0 0 0 ...
## $ novisits : int 0 0 0 0 0 0 0 0 0 ...
   $ emergency: int 0 2 3 1 0 0 0 0 0 ...
##
   $ hospital : int 1 0 3 1 0 0 0 0 0 0 ...
##
             : Factor w/ 3 levels "poor", "average", ...: 2 2 1 1 2 1 2 2 2 2 ...
## $ health
    ..- attr(*, "contrasts")= num [1:3, 1:2] 1 0 0 0 0 1
##
    ... - attr(*, "dimnames")=List of 2
##
##
    .....$ : chr [1:3] "poor" "average" "excellent"
    .. .. ..$ : chr [1:2] "poor" "excellent"
##
##
   $ chronic : int 2 2 4 2 2 5 0 0 0 0 ...
              : Factor w/ 2 levels "normal", "limited": 1 1 2 2 2 2 1 1 1 1 ...
##
              : Factor w/ 4 levels "northeast", "midwest", ...: 4 4 4 4 4 2 2 2 2 ...
##
   $ region
##
    ..- attr(*, "contrasts")= num [1:4, 1:3] 1 0 0 0 0 1 0 0 0 0 ...
     ... - attr(*, "dimnames")=List of 2
##
    ....$ : chr [1:4] "northeast" "midwest" "west" "other"
##
    .. .. ..$ : chr [1:3] "northeast" "midwest" "west"
             : num 6.9 7.4 6.6 7.6 7.9 6.6 7.5 8.7 7.3 7.8 ...
## $ age
              : Factor w/ 2 levels "no", "yes": 2 1 2 1 1 1 1 1 1 1 ...
##
   $ afam
##
   $ gender : Factor w/ 2 levels "female", "male": 2 1 1 2 1 1 1 1 1 1 ...
## $ married : Factor w/ 2 levels "no", "yes": 2 2 1 2 2 1 1 1 1 1 ...
## $ school : int 6 10 10 3 6 7 8 8 8 8 ...
             : num 2.881 2.748 0.653 0.659 0.659 ...
## $ income
   $ employed : Factor w/ 2 levels "no", "yes": 2 1 1 1 1 1 1 1 1 1 ...
## $ insurance: Factor w/ 2 levels "yes", "no": 1 1 2 1 1 2 1 1 1 1 ...
   $ medicaid : Factor w/ 2 levels "no","yes": 1 1 2 1 1 2 1 1 1 1 ...
```

```
head(NMES)
```

```
## visits nvisits ovisits novisits emergency hospital health chronic adl ## 1 \phantom{0} 0 \phantom{0} 0 \phantom{0} 1 average \phantom{0} 2 normal
```

```
## 2
         1
                  0
                                   0
                                             2
                                                       0 average
                                                                       2 normal
## 3
         13
                  0
                          0
                                             3
                                                                       4 limited
                                   0
                                                       3
                                                            poor
## 4
         16
                  0
                          5
                                   0
                                             1
                                                            poor
                                                                       2 limited
## 5
         3
                  0
                          0
                                   0
                                             0
                                                       0 average
                                                                       2 limited
## 6
         17
                  0
                          0
                                   0
                                             0
                                                            poor
                                                                       5 limited
    region age afam gender married school income employed insurance medicaid
##
## 1 other 6.9 yes
                       male
                                yes
                                         6 2.8810
                                                        yes
                                                                  yes
                                                                            no
## 2 other 7.4
                  no female
                                yes
                                        10 2.7478
                                                         no
                                                                  yes
                                                                            no
## 3 other 6.6 yes female
                                        10 0.6532
                                                                           yes
                                no
                                                         nο
                                                                  no
## 4 other 7.6
                 no
                       male
                                yes
                                         3 0.6588
                                                         no
                                                                  yes
                                                                            no
## 5 other 7.9
                  no female
                                         6 0.6588
                                yes
                                                                  yes
                                                                            no
                                                         no
## 6 other 6.6
                                         7 0.3301
                  no female
                                 no
                                                         no
                                                                   no
                                                                           yes
# Refint the model using the data after the reorder
model2 <- zeroinfl(visits~chronic+health+insurance|</pre>
                chronic+insurance,data=NMES)
summary(model2)
##
## Call:
## zeroinfl(formula = visits ~ chronic + health + insurance | chronic +
##
       insurance, data = NMES)
##
## Pearson residuals:
##
                1Q Median
       Min
                                3Q
                                       Max
## -3.9221 -1.2195 -0.4316 0.5598 24.1031
##
## Count model coefficients (poisson with log link):
##
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                    1.70345
                               0.01107 153.911
                                                 <2e-16 ***
## chronic
                    0.11868
                               0.00462 25.691
                                                  <2e-16 ***
## healthpoor
                    0.29470
                               0.01729 17.043
                                                  <2e-16 ***
## healthexcellent -0.30482
                               0.03115 -9.786
                                                  <2e-16 ***
## insuranceno
                   -0.14467
                               0.01631 -8.870
                                                 <2e-16 ***
##
## Zero-inflation model coefficients (binomial with logit link):
               Estimate Std. Error z value Pr(>|z|)
                           0.06722 -18.705
## (Intercept) -1.25740
                                             <2e-16 ***
## chronic
               -0.56112
                           0.04334 -12.948
                                              <2e-16 ***
## insuranceno 0.88314
                           0.09464
                                     9.332
                                             <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Number of iterations in BFGS optimization: 11
## Log-likelihood: -1.651e+04 on 8 Df
coef(summary(model2))
## $count
##
                     Estimate Std. Error
                                             z value
                                                           Pr(>|z|)
## (Intercept)
                    1.7034519 0.011067791 153.910736 0.000000e+00
## chronic
                    0.1186784 0.004619517 25.690655 1.486661e-145
```

0.2947028 0.017291255 17.043459 3.909145e-65

healthpoor

```
## healthexcellent -0.3048182 0.031147632 -9.786239 1.290053e-22
## insuranceno
              -0.1446700 0.016309360 -8.870367 7.290495e-19
##
## $zero
##
               Estimate Std. Error
                                   z value
                                              Pr(>|z|)
## (Intercept) -1.2574000 0.06722219 -18.705134 4.495986e-78
             -0.5611182 0.04333785 -12.947531 2.426332e-38
## insuranceno 0.8831440 0.09463925 9.331688 1.041976e-20
exp(coef(summary(model2))$count)
##
                 Estimate Std. Error
                                        z value Pr(>|z|)
                5.4928755 1.011129 6.959588e+66
## (Intercept)
## chronic
                 1.017442 2.522784e+07
## healthpoor
                 1.3427272
                                                      1
## healthexcellent 0.7372574
                           1.031638 5.621994e-05
                                                      1
## insuranceno
                0.8653078
                          1.016443 1.404910e-04
                                                      1
exp(coef(summary(model2))$zero)
              Estimate Std. Error
                                    z value Pr(>|z|)
## (Intercept) 0.2843925
                        1.069533 7.524253e-09
## chronic
             0.5705707
                        1.044291 2.382093e-06
                                                  1
1
```

Now let us interpret the coefficient for insurance.

Holding chronic illnesses constant, the odds that someone without insurance not visiting a physician is 2.42 higher than a person with private insurance.

\mathbf{C}

```
# Fit a standard poisson model
model2 <- glm(visits ~ insurance + chronic</pre>
                + health, data=NMES, family=poisson)
summary(model2)
##
## Call:
## glm(formula = visits ~ insurance + chronic + health, family = poisson,
##
       data = NMES)
##
## Deviance Residuals:
       Min
                10
                     Median
                                   30
                                           Max
## -6.2044 -1.9838 -0.7370
                               0.7142 16.1283
##
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
                   1.49598
                               0.01081 138.44 <2e-16 ***
## (Intercept)
```

```
## insuranceno
                -0.27862
                            0.01613 -17.27
                                            <2e-16 ***
## chronic
                 0.16728
                            0.00446 37.50
                                            <2e-16 ***
## healthpoor
                                            <2e-16 ***
                0.29043
                            0.01734
                                    16.75
## healthexcellent -0.35961
                            0.03025 -11.89
                                            <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
##
      Null deviance: 26943 on 4405 degrees of freedom
## Residual deviance: 24076 on 4401 degrees of freedom
## AIC: 36862
##
## Number of Fisher Scoring iterations: 5
# Conduct the voung test
vuong(model2,model1)
## Vuong Non-Nested Hypothesis Test-Statistic:
## (test-statistic is asymptotically distributed N(0,1) under the
## null that the models are indistinguishible)
## -----
##
               Vuong z-statistic
                                          H_A
                                                 p-value
## Raw
                      -18.18176 model2 > model1 < 2.22e-16
                      -18.15321 model2 > model1 < 2.22e-16
## AIC-corrected
## BIC-corrected
                      -18.06201 \mod 2 > \mod 1 < 2.22e-16
```

In all tests of the vuong test, the null is rejected. Our zero inflated poisson model is significantly better than our basic poisson model.