

Identification de sous-structures optimales pour les graphes de flot

TIPE 2022 JOACHIM Julien 14160

Graphe de flot

Exemple de Graphe de flot a 5 sommets

Motivations

Angiographie

Arbre mort

Sommaire

Expérimentations

Méthode

Structure de graphe éfficace

Exemples de graphes optimaux

Description de graphes de flots optimaux

Premières Propriétes

Passage n à n-1

Passage n à n+1

I - Expérimentations - Resoude le probleme de R.M.

Algorithme de résolution

Entree: Ensemble de sommets V

- 1 Construire graphe complet G
- 2 Résoudre problème min-cost flow sur G
- 3 Emonder

Exemple de graphe complet

2: Cycle Canceling | Capacity/Cost Scaling

Implémentation de la structure de graphe de flot éfficace

	Matrice d'adjacence	Liste d'Adjacence	Foward and reverse star	(Dans ce rapport)
En memoire	$\Theta(n^2)$	$\Theta(n+m)$	$\Theta(n+m)$	$\Theta(n+m)$
Liste des predecesseurs et des successeurs	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$ (sous forme d'iterateur)
Existence d'un arc	$\Theta(1)$	$O(a_{max})$ ou a_{max} est l'arité maximale des sommets $O(n)$ pour une borne polynomiale	$\Theta(1)$	$\Theta(1)$
Ajout d'un arc	$\Theta(1)$	$O(a_{max})$ ou $O(n)$	_	$\Theta(1)$

Comparaison complexités temps et espace des structures de données classiques sur les graphes

.

Expérimentations

0.4040404040404

.

.

.

.

Structures auxilliaires

dynamic_array

Structure classique de tableau redimensionnable

Theta(n) espace

 ${\tt linked_array}$

Liste chainée "indicée"

Theta(n) space

Structure Linked_array

7

Pointeur vers la cellule suivante (ou precedente) dans la chaine

Une cellulle du tableau chaine avec son contenu \boldsymbol{x} et son indice fixe \boldsymbol{i}

Structure flow graph

A) Exemple de graphe

/	$\begin{array}{c} \mathrm{id} \ \mathrm{de} \\ \mathrm{l'arc} \ (i,j) \end{array}$	Queue i	Tete j	Capacite $u(i, j)$	Cout $c(i, j)$	Autres attributs			
	id : 0	3	4	4	6				
	id : 1	1	3	1	4				
	id : 2	0	2	3	5				
	id : 3	4	2	2	2				
	id: 4	2	1	4	1				
	id : 5	0	1	2	3				
(id 6	4	3	3	5				
	id 6	4	3	3	5				

B) Tableau des arcs

Schématisation de la structure flow_graph

Le tableau chainé forward_chain où les successeurs de chaques sommets sont enchainés consécutivement

Le tableau classique forward_range indiquant la plage des successeurs d'un sommet dans forward_chain

(C) forward_chain et forward_range associe

.

Description des solutions

.

.

.

.

.

.

.

Premières propriétes

Absence de cycle

Structure du Squelette

Premières propriétes

Propriétes de la fonction de cout

Pour les couts munis de l'inégalite triangulaire:

Premières propriétes

Propriétes de la fonction de cout

Graphe optimal Obtenu pour la norme N4

Passage de n à n-1

Algorithme de déscente

Initialisation

Soit $G' = (V', E') := (V', E \setminus \{ensemble des arcs impliquants v\})$

Pour tout $e \in E'$,

$$f(e) \leftarrow f^{\star}(e)$$

Execution

Pour tout $u \in Adj^+[v]$:

$$b(u) \leftarrow b(u) + f^*(u, v)$$

Pour tout $w \in Adj^-[v]$:

$$b(w) \leftarrow b(w) - f^*(v, w)$$

Complexité en O(m+n)

