Twierdzenie. Liczba parami nieizomorficznych grafów na n wierzchołkach to $c_n = 2^{\binom{n}{2}(1-o(1))}$.

Dowód. Mamy $c_n \leq 2^{\binom{n}{2}}$, bo tyle jest wszystkich możliwych zbiorów krawędzi. Mamy też $c_n \geq \frac{2^{\binom{n}{2}}}{n!}$, bo każda klasa izomorficzności może mieć co najwyżej n! elementów (izomorfizm oznacza właściwie przepermutowanie wierzchołków, z tym że niektóre wierzchołki mogą pełnić tą samą funkcję). Korzystając z $n! \leq n^n$ mamy $\log c_n \geq \binom{n}{2} - n \log n = \frac{n^2}{2} (1 - \frac{1}{n} - \frac{2 \log n}{n})$, co kończy dowód.

Twierdzenie (Lemat o uściskach dłoni). W każdym grafie G zachodzi $\sum_{v \in V(G)} \deg_G(v) = 2 |E(G)|$.

Dowód. Zliczamy $\{(v,e):v\in V(G),e\in E(G),v\in e\}$ – każdy wierzchołek występuje stopień razy, każda krawędź dwa razy.

Definicja. Ciąg $d = (d_1, \ldots, d_n) \in \mathbb{N}^n$ nazywamy ciągiem grafowym, jeśli istnieje graf G, w którym d jest ciągiem stopni jego wierzchołków (dla dowolnego liniowego porządku na wierzchołkach).

Twierdzenie. Niemalejący ciąg $d=(d_1,\ldots,d_n)\in\mathbb{N}^n$ jest grafowy wtedy i tylko wtedy, gdy ciąg $d'=(d'_1,\ldots,d'_{n-1})$ jest grafowy, gdzie

$$d_i' = \begin{cases} d_i & i < n - d_n \\ d_i - 1 & i \ge n - d_n \end{cases}.$$

Daje to algorytm sprawdzania, czy zadany ciąg jest grafowy.

 $Dowód.\ (\Longrightarrow)$ Niech wierzchołki v_1,\ldots,v_n mają stopnie takie jak elementy d o odpowiednich indeksach. Rozważamy v_n . Jeśli jego sąsiedzi to $\{v_{n-1},\ldots,v_{n-d_n}\}$, to usuwamy go z grafu, otrzymując graf opisany ciągiem d'. W przeciwnym wypadku muszą istnieć takie indeksy i,j:i< j, że $v_iv_n\in E(G)$ i $v_jv_n\notin E(G)$. Mamy $d_i\leq d_j$, więc musi istnieć taki indeks k, że $v_iv_k\notin E(G)$ i $v_jv_k\in E(G)$. Za mieniamy krawędzie – z v_iv_n,v_jv_k robimy v_iv_k,v_jv_n , powstaje inny graf o ciągu wierzchołków d. Powtarzamy takie operacje aż sąsiedztwem v_n będzie $\{v_{n-1},\ldots,v_{n-d_n}\}$, wtedy usuwamy ostatni wierzchołek.

(\Leftarrow) Do grafu opisanego d' dodajemy wierzchołek o stopniu d_n i dołączamy go do wierzchołków o największych stopniach.

Daje nam to algorytm: ucinamy kolejne wierzchołki i zmniejszamy stopnie, jeśli w pewnym momencie się nie da, to ciąg nie jest grafowy, inaczej dochodzimy do ciągu zerowego i ciąg był grafowy.

Twierdzenie. Graf G zawiera cykl Eulera wtedy i tylko wtedy, gdy jest spójny i stopień każdego jego wierzchołka jest parzysty.

Dowód. (\Longrightarrow) Istnienie cyklu Eulera znaczy, że pomiędzy każdymi dwoma wierzchołkami jest spacer, a więc graf jest spójny. Do każdego wierzchołka wchodzimy i wychodzimy z niego po tyle samo razy, więc stopień każdego wierzchołka musi być parzysty.

(\Leftarrow) Zwykłe przejście DFS: zaczynamy z dowolnego wierzchołka v, z każdego kolejnego wierzchołka można wyjść, bo po wejściu "wykorzystaliśmy" nieparzystą liczbę krawędzi, czyli jakieś zostały. Jedynym wyjątkiem jest wierzchołek v – w nim się w końcu zatrzymamy. Jeśli nie przeszliśmy wszystkimi krawędziami, to ze spójności istnieje odwiedzony wierzchołek w połączony z nieodwiedzonymi krawędziami. Zaczynamy w nim DFSa po tych krawędziach, z tych samych powodów skończymy go w w. Teraz wystarczy dołączyć nowe krawędzie do poprzedniego przejścia: przy napotkaniu w przechodzimy nowym przejściem kończącym się w w, potem kontynuujemy początkowe przejście. Taką operację powtarzamy, aż nie będzie już nieodwiedzonych krawędzi.

Twierdzenie (Dirac). Niech $n \in \mathbb{N}_3$ i niech G będzie n-wierzchołkowym grafem. Jeśli każdy jego wierzchołek na stopień co najmniej $\frac{n}{2}$, to w G istnieje cykl Hamiltona.

Dowód. Zauważmy, że G jest spójny – inaczej można go podzielić na co najmniej 2 składowe, z których któraś ma co najwyżej $\frac{n}{2}$ wierzchołków, więc te wierzchołki nie mogą mieć wymaganego stopnia. Rozważmy najdłuższą ścieżkę w grafie $x_1x_2...x_k$. Zauważmy, że jeśli $x_0x_k \in E(G)$, to jeśli na ścieżce leżą wszystkie

wierzchołki grafu, to mamy cykl Hamiltona. W przeciwnym razie istnieje pewien nieleżący na ścieżce wierzchołek y, który ze spójności jest z nią połączony w pewnym wierzchołku x_j . Ścieżka $y \dots x_j \dots x_k x_0 \dots x_{j-1}$ jest dłuższa od najdłuższej – sprzeczność. Dalej zakładamy, że $x_0x_k \notin E(G)$.

Wszyscy sąsiedzi x_0, x_k leżą na najdłuższej ścieżce (inaczej można wydłużyć). Z warunku ze stopniami wynika, że z co najmniej $\frac{n}{2}$ sąsiadów x_0 i co najmniej $\frac{n}{2}$ takich x_i , że x_{i-1} jest sąsiadem x_k ($x_0x_k \notin E(G)$, więc x_{i-1} jest dobrze zdefiniowane) jeden się powtarza i jest sytuacja jak na rysunku (mamy na takie wierzchołki n-1 możliwości, bo x_0 nie należy do żadnej z tych grup). Jeśli na tej ścieżce znajdują się wszystkie wierzchołki w grafie, to $x_ix_k\dots x_{i+1}x_0\dots x_i$ jest cyklem Hamiltona. Inaczej istnieje pewien nieleżący na ścieżce wierzchołek y, który ze spójności jest z nią połączony w pewnym wierzchołku x_j . Ścieżka $y\dots x_j\dots x_ix_k\dots x_{i+1}x_0\dots x_{j-1}$ (lub analogiczna , jeśli x_j leży za x_{i+1}) jest dłuższa niż najdłuższa ścieżka – sprzeczność.

Twierdzenie. Graf G jest dwudzielny \iff nie ma nieparzystego cyklu jako podgrafu \iff nie ma nieparzystego cyklu jako podgrafu indukowanego.

Dowód. (1 \implies 2) Gdyby w grafie dwudzielnym z $V(G) = A \sqcup B$ był cykl nieparzysty, to kolejne jego wierzchołki są na zmianę w A i B, jak wybierzemy wierzchołek z A to idąc po cyklu skończymy go na wierzchołku z A, który jest połączony z początkowym – sprzeczność.

 $(2 \implies 3)$ Jak nie ma cyklu jako podgrafu, to nie ma też cyklu jako podgrafu indukowanego.

 $(3 \Longrightarrow 1)$ Zakładamy, że G jest spójny – inaczej można rozważać osobno spójne składowe. Bierzemy jego drzewo rozpinające T i ukorzeniamy je w wierzchołku r. Niech vTw oznacza ścieżkę w drzewie między v i w. Definiujemy $V_0 = \{v \in V(G) : rTv$ jest parzystej długości $\}$ oraz $V_1 = \{v \in V(G) : rTv$ jest nieparzystej długości $\}$. Daje nam to podział drzewa na kolejne poziomy, więc w drzewie nie ma krawędzi wewnątrz jednego z tych zbiorów. Jeśli wierzchołki x,y będące na poziomie tej samej parzystości łączy niedrzewowa krawędź e, to yTzTxe jest cyklem nieparzystym, gdzie z to najniższy wspólny przodek x i y (ścieżki $x \leadsto z$ i $z \leadsto y$ są tej samej parzystości). Jeśli ten cykl nie jest indukowany, to istnieją w nim dodatkowe krawędzie między wierzchołkami. Każda taka krawędź dzieli cykl na dwa cykle, z czego dokładnie jeden jest nieparzysty. Dla cyklu nieindukowanego rozważamy ten mniejszy cykl, powtarzamy to, aż dostaniemy cykl indukowany. Istnienie cyklu indukowanego daje sprzeczność, a więc podział $\{V_0, V_1\}$ dowodzi, że graf jest dwudzielny.

Definicja. Zbiór $M \subset E(G)$ nazywamy skojarzeniem w grafie G, jeśli $\forall_{e,f \in M} \ e \cap f = \emptyset$, czyli żadne dwie krawędzie z M nie mają wspólnego wierzchołka.

Definicja. Zbiór $U \subset V(G)$ nazywamy pokryciem wierzchołkowym w grafie G, jeśli $\forall_{e \in E(G)} \exists_{u \in U} \ u \in e$, czyli każda krawędź w grafie kończy się wierzchołkiem należącym do U.

Definicja. Dla grafu dwudzielnego o podziale $\{A, B\}$ i skojarzenia M w nim definiujemy ścieżkę alternującą jako nietrywialną ścieżkę zaczynającą się w pewnym nieskojarzonym $a \in A$ i idącą na zmianę nieskojarzonymi (z A do B) i skojarzonymi (z B do A) krawędziami. Ścieżka alternująca jest powiększająca, jeśli kończy się na $b \in B$ i b jest nieskojarzony (czyli nie można jej wydłużyć). Mając ścieżkę powiększającą P można zdefiniować większe skojarzenie M' = M xor E(P) (zamieniamy skojarzone i nieskojarzone krawędzie P, nieskojarzonych jest o jedną więcej).

Strona 2/7

Twierdzenie (König, 1931). Maksymalna liczność skojarzenia w grafie dwudzielnym jest równa minimalnej liczność pokrycia wierzchołkowego tego grafu.

Dowód. Niech G będzie grafem dwudzielnym z $V(G) = A \sqcup B$. Niech $\nu(G)$ oznacza maksymalną liczność skojarzenia, a vc(G) minimalną liczność pokrycia wierzchołkowego. Mamy $vc(G) \geq \nu(G)$, bo do pokrycia wierzchołkami każdej z krawędzi skojarzenia potrzebny jest nowy wierzchołek. Niech M będzie skojarzeniem o maksymalnej liczności. Znajdziemy pokrycie wierzchołkowe wielkości |M|, tym samym pokazując, że $vc(G) \leq |M| = \nu(G)$. Zdefiniujmy zbiór wierzchołków U: dla każdej krawędzi $ab \in M$ o $a \in A, b \in B$ jeśli istnieje ścieżka alternująca kończąca się w b, to $b \in U$, w przeciwnym wypadku $a \in U$. Mamy |U| = |M|, wystarczy pokazać, że U jest pokryciem wierzchołkowym.

Rozważmy dowolną krawędź $ab \in E(G)$ o $a \in A, b \in B$. Jeśli ab jest skojarzona, to któryś jej wierzchołek musi należeć do U. Zakładamy dalej, że ab jest nieskojarzona i $a \notin U$ (inaczej U pokrywa tę krawędź). Jeśli a i b są nieskojarzone, to dodanie ab do M zwiększa skojarzenie – sprzeczność. Jeśli a jest nieskojarzony i b jest skojarzony, to $b \in U$ (ścieżka ab jest alternująca). Jeśli a jest skojarzony z b' (wtedy $b' \in U$ z $a \notin U$ i istnieje ścieżka alternująca kończąca się na b'), to dla nieskojarzonego b można do ścieżki alternującej kończącej się na b' dołożyć a i b, tworząc ścieżkę powiększającą – sprzeczność. Dla skojarzonego b ta sama ścieżka jest alternująca, więc $b \in U$. Rozważyliśmy wszystkie przypadki, więc ostatecznie U jest pokryciem wierzchołkowym.

Twierdzenie (Hall, 1935). Niech G będzie grafem dwudzielnym z podziałem $V(G) = A \sqcup B$. G zawiera skojarzenie nasycające A (zawierające każdy wierzchołek z A) wtedy i tylko wtedy, gdy $\forall_{S \subset A} |N_G(S)| \geq |S|$.

Dowód. (\Longrightarrow) Gdyby dla pewnego $S \subseteq A$ było $|N_G(S)| < |S|$, to nie wszystkie wierzchołki S mogą zostać skojarzone (bo potrzebują pary z $N_G(S)$, a ich jest za mało), więc nie ma skojarzenia nasycającego A.

(\Leftarrow) Rozważmy największe skojarzenie M w G i załóżmy nie wprost, że nie nasyca A. Istnieje więc pewne nieskojarzone $a \in A$. Niech $A' = \{x \in A : \text{ istnieje ścieżka alternująca z } a \text{ do } x\}$ oraz

 $B' = \{x \in B : \text{ istnieje ścieżka alternująca z } a \text{ do } x\}$. Jeśli B' zawiera nieskojarzony wierzchołek, to jest on końcem ścieżki powiększającej, co daje sprzeczność z maksymalnością M. Zatem wszystko w B' jest skojarzone i |A'| = |B'|, bo każdą ścieżkę alternującą kończącą się na czymś z B' można wydłużyć, dając element A', a każdy element A' leży na ścieżce alternującej, która krok wcześniej zawiera element B'. Mamy z założenia $|N_G(A" \cup \{a\})| \ge |A' \cup \{a\}| = |A'| + 1 = |B'| + 1$. Zatem sąsiedztwo $A' \cup \{a\}$ zawiera jakiś wierzchołek $b \notin B'$. Jeśli dla pewnego $a' \in A'$ istnieje krawędź a'b, to ścieżkę alternującą kończącą się na a' można rozszerzyć o b, co przeczy temu, że $b \notin B'$. Podobnie jeśli istnieje krawędź ab – sama ta krawędź jest ścieżką alternującą. Mamy więc sprzeczność z tym, że a jest nieskojarzone, co kończy dowód.

Definicja. Dla zadanego porządku liniowego na sąsiadach wierzchołków $(\leq_v)_{v\in V(g)}$, nazywanego preferencjami wierzchołków, skojarzenie M nazywamy stabilnym, gdy $\forall_{e\in E(G)\backslash M}\ \exists_{f\in M,v\in e\cap f}\ e<_v f$ dla każdej nieskojarzonej krawędzi istnieje powód nieskojarzenia – któryś z jej wierzchołków jest skojarzony z lepszą dla siebie krawędzią.

Twierdzenie (Gale-Shapley, 1962). Dla dowolnego grafu dwudzielnego G i dowolnych preferencji wierzchołków (\leq_v) $_{v\in V(q)}$ istnieje stabilne skojarzenie.

Dowód. Niech $V(G) = A \sqcup B$. Dla dwóch skojarzeń M, M' mówimy, że M jest lepsze od M', jeśli $\forall_{b \in B}$ ($\exists_{f' \in M'}$ $b \in f'$) \implies ($\exists_{f \in M}$ $b \in f \land f' \leq_b f$) (dla każdej krawędzi w M' istnieje nie gorsza krawędź w M).

Niech M będzie skojarzeniem w G. Mówimy, że $a \in A$ jest akceptowalny dla $b \in B$, jeśli $ab \in E(G) \setminus M$ i $\forall_{f \in M} \ b \in f \implies f <_b ab$ (jest lepszy od tego, z czym b jest aktualnie i dowolny jest lepszy od braku krawędzi). Mówimy, że $a \in A$ jest zadowolony, jeśli a jest nieskojarzony lub jest skojarzony (z krawędzią f) i dla każdego $b \in B$ takiego, że a jest akceptowalny dla b zachodzi $ab <_a f$ (a woli swojego od każdego, który by go chciał).

Zbudujemy ciąg coraz lepszych skojarzeń takich, że każdy $a \in A$ jest zadowolony. Zaczynamy od $M = \emptyset$. Mając zadane skojarzenie M_i jeśli istnieje w nim nieskojarzone $a \in A$, które jest akceptowalne dla niepustego zbioru wierzchołków, to budujemy M_{i+1} , dodając do $M_i \leq_a$ -maksymalną krawędź ab taką, że a jest akceptowalny dla b i usuwając przedtem istniejąca w M krawędź przyległą do b (o ile b był skojarzony).

Kolejne ciągi są coraz lepsze, więc taki proces się zatrzyma (wierzchołki w B mają coraz mniej akceptowalnych wierzchołków z A). Jednocześnie wierzchołki z A zawsze są zadowolone. Po zakończonym procesie otrzymamy skojarzenie M, w którym albo każde $a \in A$ jest skojarzone (więc z zadowolenia nie istnieje $b \in B$ takie, że a woli b od swojego skojarzonego wierzchołka i b woli a od swojego) albo istnieją nieskojarzone wierzchołki w A, które wtedy nie są akceptowalne dla żadnego wierzchołka B. W obu przypadkach skojarzenie jest stabilne.

Twierdzenie (Tutte, 1947). Niech odd(H) oznacza liczbę nieparzystych spójnych składowych w H. Graf G ma skojarzenie doskonałe wtedy i tylko wtedy, gdy $\forall_{S \subset V(G)}$ odd $(G - S) \leq |S|$.

Dowód. (\Longrightarrow) W skojarzeniu doskonałym każda nieparzysta składowa musi mieć jakiś wierzchołek skojarzony z czymś z reszty grafu, czyli z S, zatem jeśli istnieje skojarzenie doskonałe, to S musi być w stanie przyjąć co najmniej jedną krawędź z każdej takiej składowej.

 (\Leftarrow) Nie wprost zakładamy, że G nie ma doskonałego skojarzenia. Chcemy pokazać, że istnieje zły zbiór $S\subseteq V(G)$, czyli jaki, że $\mathrm{odd}(G-S)>|S|$. Zauważmy, że dla dowolnej krawędzi e i grafu G'=G+e zachodzi $\mathrm{odd}(G'-S)\le \mathrm{odd}(G-S)$, bo każda nieparzysta składowa G' składa się z połączonych składowych G, z których co najmniej jedna musi być nieparzysta. Zatem wystarczy rozważyć G będące maksymalnym krawędziowo grafem bez skojarzenia doskonałego i spełniającym zadany warunek, bo w pozostałych grafach wykazana sprzeczność będzie tym mocniejsza.

Jeśli w maksymalnym krawędziowo G istnieje zły zbiór S, to nie może być w nim skojarzenia doskonałego, a więc G zawiera wszystkie możliwe krawędzie niezmniejszające odd(G-S), czyli dla S zachodzi:

Wszystkie spójne składowe G-S to kliki i każdy wierzchołek $v \in S$ sąsiaduje z każdym wierzchołkiem w grafie. (*)

Z kolei dla zbioru $S \subseteq V(G)$ spełniającego (*) możemy pokazać, że albo S, albo \emptyset jest zły. Jeśli G zawiera parzyście wiele wierzchołków, to możemy zrobić rozdzielne doskonałe skojarzenia na wszystkich parzystych składowych (to kliki, więc można łączyć dowolnie i skojarzenie na pewno istnieje), a w nieparzystych składowych po jednym wierzchołku skojarzyć z czymś z S i potem podobnie doskonale skojarzyć S i wszystkie nieparzyste składowe osobno (z parzystości |V(G)| w S zostanie parzyście wiele wierzchołków). Utworzyliśmy doskonałe skojarzenie, co dowodzi, że G ma nieparzystą liczbę wierzchołków, ale wtedy zbiór \emptyset jest zły G musi zawierać co najmniej jedną nieparzystą składową.

Zatem istnienie zbioru spełniającego (*) jest równoważne z istnieniem złego zbioru. Pokażemy, że $S = \{v \in V(G) : N_G[v] = V(G)\}$ spełnia (*). Załóżmy nie wprost, że nie spełnia, czyli w pewnej składowej G - S istnieje para wierzchołków $\{a, a'\}$ taka, że $aa' \notin E(G)$ (druga część warunku (*) jest spełniona z definicji S). Składowa jest spójna, więc istnieje w niej najkrótsza ścieżka $abc \dots a'$, dla której $ab, bc \in E(G)$ i $ac \notin E(G)$ (być może c = a'). Zachodzi $b \notin S$, a więc z definicji S istnieje w grafie $d \in V(G)$ taki, że $bd \notin E(G)$. Z maksymalności G graf G + ac ma doskonałe skojarzenie M_1 , a graf G + bd ma doskonałe skojarzenie M_2 .

Niech F będzie grafem na V(G) którego krawędzie należą do dokładnie jednego z M_1, M_2 . E(F) zawiera ac i bd, a graf F jest sumą rozłącznych cykli (w których krawędzie są na zmianę w M_1 i M_2), bo każdy wierzchołek ma stopień 2 lub 0. Rozważmy cykl C zawierający bd. Jeśli nie ma w nim ac, to wystarczy wziąć na C krawędzie z M_1 , a na reszcie grafu krawędzie z M_2 – w ten sposób uzyskujemy skojarzenie doskonałe (nie bierzemy żadnej z krawędzi ac, bd). Jeśli C zawiera ac, to zauważmy, że C jest parzysty (dowolny wierzchołek ma z jednej strony krawędź z M_1 , a z drugiej z M_2 , ale one występują na zmianę). Konstruujemy skojarzenie doskonałe: bierzemy krawędź ba, jeśli odległość między a i b na C (nie przechodząc przez c) jest nieparzysta. W przeciwnym wypadku bierzemy krawędź bc (wtedy odległość między c i b jest nieparzysta). Dla ustalenia uwagi powiedzmy, że wzięliśmy ba. Graf indukowany na $C \setminus \{b,a\}$ jest dwoma rozdzielnymi ścieżkami parzystej długości. Na każdej bierzemy krawędzie z tego skojarzenia, które zawiera ich końce. Na reszcie grafu bierzemy dowolne ze skojarzeń M_1 i M_2 . W ten sposób pokazaliśmy, że G ma skojarzenie doskonałe, co dało sprzeczność z tym, że S nie spełnia (*). Zatem spełnia, czyli istnieje zbiór zły.

Definicja. Niech G będzie grafem i $A, B \subseteq V(G)$. A-B ścieżką nazywamy ścieżkę $P = (v_0, \dots, v_k)$ taką, że $V(P) \cap A = \{v_0\}$ i $V(P) \cap B = \{v_k\}$.

Definicja. Niech G będzie grafem i $A, B \subseteq V(G)$. A-B separatorem nazywamy zbiór X taki, że każda A-Bścieżka zawiera wierzchołek z X.

Twierdzenie (Menger, 1927). Niech G będzie grafem i $A, B \subseteq V(G)$. Minimalna wielkość A-B separatora w G jest równa maksymalnej liczbie parami rozłącznych A-B ścieżek.

Dowód. Oznaczmy minimalną wielkość A-B separatora w G przez k=k(A,B,G). Musi być ona nie mniejsza niż liczba parami rozłącznych A-B ścieżek, bo separator musi zawierać co najmniej po wierzchołku z każdej z nich.

Niech $\mathcal P$ będzie rodziną A-B ścieżek w G. Mówimy, że $\mathcal Q$ rozszerza $\mathcal P$, jeśli $\bigcup_{P\in\mathcal P}V(P)\cap A\subsetneq\bigcup_{Q\in\mathcal Q}V(Q)\cap A$ i $\bigcup_{P\in\mathcal P}V(P)\cap B\subsetneq\bigcup_{Q\in\mathcal Q}V(Q)\cap B$, czyli ścieżki w $\mathcal Q$ mają takie same początki i końce, co te w $\mathcal P$ i jeszcze

jakieś nowe. Pokażemy, że jeśli $|\mathcal{P}| < k$, to istnieje \mathcal{Q} rozszerzające \mathcal{P} – będzie można zwiększać rozmiar \mathcal{P} aż do k, wiec największa rodzina rozłącznych A-B ścieżek bedzie miała co najmniej k elementów.

Ustalmy G oraz A. Przeprowadzimy indukcję po $\left| \bigcup_{P \in \mathcal{P}} V(P) \right|$. Baza dla $\mathcal{P} = \emptyset$ oczywiście zachodzi (gdyby nie istniała A-B ścieżka, to separatorem byłby zbiór pusty). Jeśli $|\mathcal{P}| < k$, to końców ścieżek w B jest za mało, aby tworzyły separator. Zatem istnieje A-B ścieżka R omijająca $\bigcup V(P)\cap B$. Powiedzmy, że jej

ostatni punkt wspólny ze ścieżkami z \mathcal{P} to x i leży na ścieżce P (jeśli taki punkt nie istnieje, to R jest nowa rozłaczna ścieżka). Oczywiście $x \notin B$.

Oznaczmy przez vT fragment ścieżki T od wierzchołka v do jej końca. Analogicznie Tv. Niech $B' = B \cup V(xP \cup xP)$ xR) oraz $\mathcal{P}' = \mathcal{P} \setminus \{P\} \cup \{Px\}$. Mamy $|\mathcal{P}'| = |\mathcal{P}|$ oraz $\left| \bigcup_{P' \in \mathcal{P}'} V(P') \right| < \left| \bigcup_{P \in \mathcal{P}} V(P) \right|$ i $k(A, B', G) \ge k(A, B, G)$ (bo $B \subseteq B'$), zatem z założenia indukcyjnego istnieje rodzina \mathcal{Q}' rozszerzająca \mathcal{P}' . Niech $Q, Q' \in \mathcal{Q}'$ będą ścieżkami kończącymi się odpowiednio w xi pewnym $y\notin \ \bigcup \ V(P')$

Jeśli $y \in B' \setminus V(xP \cup xR)$, to po wydłużeniu Q o fragment xP otrzymujemy rodzinę rozszerzającą \mathcal{P} . Dalej zakładamy, że $y \in xP$ lub $y \in xR$. Jeśli $y \in xP$, to rozszerzamy Q o xR, a Q' o yP. W przeciwnym wypadku rozszerzamy Q o xP, a Q' o yR. W obu przypadkach otrzymujemy rodzinę rozszerzającą \mathcal{P} , co kończy dowód.

Definicja. Siecią przepływową nazywamy piątkę (V, E, s, t, c), gdzie:

- (V, E) jest grafem skierowanym (czyli $E \subseteq V \times V$)
- $\bullet \; s,t \in V$ są wyszczególnionymi wierzchołkami, snazywamy źródłem, może być tylko początkiem krawędzi, t nazywamy ujściem, może być tylko końcem krawędzi

• c jest funkcją $c: E \to \mathbb{N}_1$ zwaną funkcją przepustowości

Definicja. Dla zadanej sieci przepływowej (V, E, s, t, c) przepływem całkowitoliczbowym nazywamy funkcję $f: E \to \mathbb{N}$ spełniającą warunki:

- warunek przepustowości: $f(u,v) \leq c(u,v)$ dla każdej krawędzi $(u,v) \in E$
- warunek zachowania przepływu (prawo Kirchoffa): $\sum_{u:(u,v)\in E} f(u,v) = \sum_{w:(v,w)\in E} f(v,w) \text{ dla każdego}$ wierzchołka $v\in V\setminus\{s,t\}$

Wartością przepływu nazywamy wartość $\operatorname{val}(f) = \sum_{v:(s,v) \in E} f(s,v).$

Definicja. Przekrojem w sieci przepływowej (V, E, s, t, c) nazywamy każdą parę (S, T), gdzie $S, T \subset V$ stanowią rozkład V oraz $s \in S, t \in T$. Przepustowość przekroju definiujemy jako

$$c(S,T) = \sum_{\substack{(u,v) \in E: \\ u \in S, v \in T}} c(u,v),$$

a dla zadanego przepływu f przepływem przez przekrój nazywamy wartość

$$f(S,T) = \sum_{\substack{(u,v) \in E: \\ u \in s, v \in T}} f(u,v) - \sum_{\substack{(v,u) \in E: \\ u \in s, v \in T}} f(v,u).$$

Twierdzenie. Niech f będzie dowolną funkcją przepływu w sieci (V, E, s, t, c). Dla każdego przekroju (S, T) zachodzi: $f(S,T) \leq c(S,T)$ oraz val(f) = f(S,T) (w szczególności: przepływ każdego przekroju jest taki sam).

Dowód. Pierwsza własność wynika z wprost definicji przepustowości i przepływu. Drugą własność udowadniamy indukcyjnie po liczbie wierzchołków S: dla |S|=1 mamy $S=\{s\}$, wtedy teza zachodzi z definicji val(f). Rozważmy przekrój (S,T) z $|S|\geq 2$. Niech $x\in S: x\neq s.$ $(S',T')=(S\setminus\{x\},T\cup\{x\})$ jest przekrojem o mniejszym pierwszym zbiorze, indukcyjnie val(f)=f(S',T'). Jest $S'\cup T=V\setminus\{x\}$, więc mamy

$$f(S',T') - f(S,T) = \sum_{\substack{(u_1,x) \in E \\ u_1 \in S'}} f(u_1,x) - \sum_{\substack{(x,v_1) \in E \\ v_1 \in S'}} f(x,v_1)$$

$$+ \sum_{\substack{(u_2,x) \in E \\ u_2 \in T}} f(u_2,x) - \sum_{\substack{(x,v_2) \in E \\ v_2 \in T}} f(v,v_2)$$

$$= \sum_{\substack{u:(u,x) \in E}} f(u,x) - \sum_{\substack{(x,v_1) \in E}} f(x,v) = 0,$$

co kończy dowód.

Definicja. Przekrój (S', T') w sieci przepływowej nazywamy minimalnym, jeśli zachodzi

$$c(S', T') = \min \{c(S, T) : (S, T) \text{ jest przekrojem}\}.$$

Przepustowość minimalnego przekroju ogranicza z góry wartość funkcji przepływu, bo $c(S,T) \ge f(S,T) = \text{val}(f)$.

Definicja. Niech \mathbb{S} będzie siecią przepływową, a f przepływem w niej. Ścieżką powiększającą przepływ f w sieci \mathbb{S} nazywamy ciąg v_1, v_2, \ldots, v_k , spełniający dla każdego $i \in [k-1]$ warunek: albo $(v_i, v_{i+1}) \in E$ oraz $f(v_i, v_{i+1}) < c(v_i, v_{i+1})$ (krawędź zgodna ze ścieżką), albo $(v_{i+1}, v_i) \in E$ oraz $f(v_{i+1}, v_i) > 0$ (krawędź przeciwna do ścieżki)

Jeśli istnieje ścieżka powiększająca od s do t, to przepływ f można powiększyć o pewną wartość val ≥ 1 , zwiększając o nią przepływ na krawędziach zgodnych ze ścieżką i zmniejszając na przeciwnych do ścieżki.

Twierdzenie (Ford-Fulkerson, 1962). Niech $\mathbb{S} = (V, E, s, t, c)$ będzie siecią przepływową a f przepływem w niej. następujące warunki są równoważne:

- \bullet f jest przepływem maksymalnym
- ullet w sieci nie istnieje ścieżka powiększająca od s do t
- dla $S = \{v \in V : \text{ istnieje ścieżka powiększająca od } s \text{ do } v\}$ i $T = V \setminus S$ para (S,T) jest przepływem o f(S,T) = c(S,T)

Dowód. (1 \implies 2) Istnienie ścieżki powiększającej od s do t gwarantuje, że można powiększyć przepływ.

 $(2\Longrightarrow 3)$ Mamy $t\notin S$ oraz $s\in S$ (ścieżka powiększająca może być trywialna), więc (S,T) jest przekrojem. Dla każdej krawędzi $(u,v)\in E$ takiej, że $u\in S,v\in T$ zachodzi f(u,v)=c(u,v), bo inaczej ścieżkę powiększająca od s do u można rozszerzyć o tę krawędź, co przeczy $v\notin S$. Z tych samych powodów dla każdej krawędzi $(v,u)\in E$ takiej, że $u\in S,v\in T$ zachodzi f(v,u)=0. Zatem z definicji przepływu przez przekrój i przepustowości przepływu mamy f(S,T)=c(S,T).

 $(3 \implies 1)$ Mamy val $(f) = f(S,T) \le c(S,T)$, więc równość zamiast nierówności gwarantuje, że przepływ jest maksymalny.