Basic R and Basic Concepts

Giacomo Lemoli*(gl1759@nyu.edu)

January 31, 2022

About R

- R is an object-oriented programming language
 - Data
 - Procedures
- Object's procedures can access and modify the data fields of objects.
- If you see a + means a parenthesis or bracket is open.
- R is case sensitive.
- Use / in path names. Not \.

Using Third-party Code

- Relevant commands are: install.packages and library
- Find the appropriate packages and commands with Google and via searching in R:

?covariance
??covariance
install.packages("sandwich")
library(sandwich)
library("sandwich")
require(sanwich)
sanwich::vcovHC
?vcovHC

Install from other sources

• If you want to install packages on GitHub:

```
require(devtools)
install_github("wch/ggplot2")
```

^{*}This note builds on and revises material created by Aaron Zhou

- If you have a complied package downloaded on your computer (tar.gz):
- Tools -> Install Packages -> Find the location
- R cmd install package name

Data types

- Character strings
- Double / Numeric numbers
- Logical true/false
- Factor unordered categorical variables

Character

```
my.name <- "Giacomo"
paste("My", "name", "is", "Giacomo")

## [1] "My name is Giacomo"
name.sentence <- pasteO("My", "name", "is", "Giacomo")
as.character(99)

## [1] "99"
class(my.name)

## [1] "character"</pre>
```

Numeric

```
num <- 99.867
class(num)

## [1] "numeric"

round(num, digits=2)

## [1] 99.87

as.numeric("99") + 1

## [1] 100
pi

## [1] 3.141593</pre>
```

```
exp(1)
```

```
## [1] 2.718282
```

Numeric

- sin, exp, log, factorial, choose, are some useful mathematical functions
- You probably noticed that "<-" is an assignment operator
- It lets you store objects and use them later on
- You can also use "="
- To remove something, rm(object)
- To remove everything that is stored use rm(list=ls())

Logical

• The logical type allows us to make statements about truth

```
2 == 4
## [1] FALSE
class(2==4)
## [1] "logical"
my.name != num
## [1] TRUE
"34" == 34
## [1] TRUE
```

Data Structures

• There are other ways to hold data, though:

• ==, !=, >, <, >=, <=, !, &, |, any, all, etc

- Vectors/Lists
- Matrices/Dataframes
- Array

Vectors

• Almost everything in R is a vector.

```
as.vector(4)
```

```
## [1] 4
## [1] 4
```

 $\bullet~$ We can combine elements in vectors with ${\tt c},$ for concatenate:

```
vec <- c("a","b","c")</pre>
vec
## [1] "a" "b" "c"
c(2,3,vec)
## [1] "2" "3" "a" "b" "c"
```

More Vectors

 $\bullet~$ We can index vectors in several ways

```
vec[1]
## [1] "a"
names(vec) <- c("first", "second", "third")</pre>
  first second third
##
     "a"
           "b" "c"
vec["first"]
## first
   "a"
```

Creating Vectors

```
vector1 <- 1:5
vector1
## [1] 1 2 3 4 5
vector1 \leftarrow c(1:5,7,11)
vector1
## [1] 1 2 3 4 5 7 11
vector2 \leftarrow seq(1, 7, 1)
vector2
## [1] 1 2 3 4 5 6 7
```

Creating Vectors

```
cbind(vector1, vector2)
##
        vector1 vector2
## [1,]
              1
## [2,]
              2
## [3,]
              3
## [4,]
              4
## [5,]
              5
## [6,]
              7
## [7,]
                      7
             11
rbind(vector1,vector2)
           [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## vector1
## vector2
                   2
                         3
                              4
                                   5
                                        6
                                             7
              1
```

Missingness

```
vec[1] <- NA
vec
##
    first second third
##
             "b"
                   "c"
       NA
is.na(vec)
## first second third
   TRUE FALSE FALSE
vec[!is.na(vec)] # vec[complete.cases(vec)]
## second third
      "b"
             "c"
##
```

Lists

• Lists are similar to vectors, but they allow for arbitrary mixing of types and lengths.

```
listie <- list(first = vec, second = num)
listie

## $first
## first second third
## NA "b" "c"
##
## $second
## [1] 99.867</pre>
```

Lists

```
listie[[1]]
  first second third
      NA
            "b"
listie$first
##
  first second third
##
     NA
          "b"
                  "c"
```

Basic Functions

```
a \leftarrow c(1,2,3,4,5)
## [1] 1 2 3 4 5
sum(a)
## [1] 15
max(a)
## [1] 5
min(a)
## [1] 1
```

Basic Functions

```
length(a)
## [1] 5
length <- length(a)</pre>
b <- seq(from=0,to=5,by=.5)</pre>
c \leftarrow rep(10,27)
d <- runif(100)</pre>
```

More later # Matrices $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ • A_{ij} • $A_{1,2} = 3$ • $A_{1,\cdot} = (1,3)$ A <- matrix(c(1,2,3,4),nrow=2,ncol=2)

[,1] [,2] **##** [1,] 1 3

```
## [2,] 2 4
A[1,2]

## [1] 3
A[1,]

## [1] 1 3
A[1:2,]

## [,1] [,2]

## [1,] 1 3
## [2,] 2 4
```

Matrix Operations

• Its very easy to manipulate matrices:

```
solve(A) #A^{-1}

## [,1] [,2]
## [1,] -2 1.5
## [2,] 1 -0.5

10*A

## [,1] [,2]
## [1,] 10 30
## [2,] 20 40
```

Matrix Operations

```
B<-diag(c(1,2)) #Extract or replace diagonal of a matrix
B

## [,1] [,2]
## [1,] 1 0
## [2,] 0 2

A%*%B

## [,1] [,2]
## [1,] 1 6
## [2,] 2 8</pre>
```

More Matrix Ops.

```
t(A) # A'

## [,1] [,2]

## [1,] 1 2

## [2,] 3 4
```

rbind(A,B) ## [,1] [,2] ## [1,] 1 3 ## [2,] 2 4 ## [3,] 1 0 ## [4,] 0 2

More Matrix Ops.

• How to generate the OLS estimates with X and Y?

Naming Things

```
rownames(A)
## NULL
rownames(A) <-c("a","b")
colnames(A) <-c("c","d")
A
## c d
## a 1 3
## b 2 4
A[,"d"]
## a b
## 3 4</pre>
```

Array

• An array is similar to a matrix in many ways

```
##
## , , 2
##
## [,1] [,2]
## [1,] 5 7
## [2,] 6 8
array1[,2,]

## [,1] [,2]
## [1,] 3 7
## [2,] 4 8
```

Dataframes

- The workhorse
- Basically just a matrix that allows mixing of types.
- R has a bunch of datasets

```
# data() gives you all the datasets
data(iris)
head(iris)
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
## 1
             5.1
                         3.5
                                      1.4
                                                 0.2 setosa
                         3.0
## 2
             4.9
                                      1.4
                                                 0.2 setosa
## 3
             4.7
                         3.2
                                     1.3
                                                 0.2 setosa
                                                 0.2 setosa
## 4
             4.6
                         3.1
                                      1.5
             5.0
                                      1.4
## 5
                         3.6
                                                 0.2 setosa
## 6
             5.4
                         3.9
                                      1.7
                                                 0.4 setosa
```

Dataframes

• But you will generally work with your own datasets

```
getwd()
## [1] "C:/Users/giaco/Dropbox/NYU/TA Work/Quant 2 Spring 2022/Lab material/lab1"
setwd("C:/Users/giaco/Dropbox/NYU/TA Work/Quant 2 Spring 2022/Lab material/lab1")
```

• R can read any number of file types (.csv, .txt, etc.)

```
#.CSV
dat.csv <- read.csv("http://stat511.cwick.co.nz/homeworks/acs_or.csv")</pre>
```

Dataframes

```
#STATA
require(foreign)
```

```
## Caricamento del pacchetto richiesto: foreign
dat.data <- read.dta("https://stats.idre.ucla.edu/stat/data/test.dta")</pre>
```

Dataframes

```
# add variables
dat.data[, "intercept"] <- rep(1, nrow(dat.data))</pre>
# change the name of a variable
names(dat.data)[6] <- "constant"</pre>
# delete variables
dat.data <- dat.data[, -6]</pre>
# sort on one variable
dat.data <- dat.data[order(dat.data[, "mpg"]), ]</pre>
# remove all missing values
dat.data.complete <- dat.data[complete.cases(dat.data), ]</pre>
# Or similarly
dat.dat.nona <- na.omit(dat.data)</pre>
dim(dat.data.complete)
## [1] 5 5
dim(dat.dat.nona)
## [1] 5 5
# select a subset
dat.data.subset <- dat.data[dat.data[, "make"] == "AMC", ]</pre>
dat.data.subset <- dat.data[1:3, ]</pre>
```

Objects

• Many functions will return objects rather than a single datatype.

```
# Remember to always set a seed when generating random numbers
set.seed(1)
X <- 1:100
Y <- rnorm(100,X)
out.lm <- lm(Y~X)
class(out.lm)
## [1] "lm"
predict(out.lm)
##
                       2
                                   3
                                                          5
                                                                                 7
            1
##
     1.131215
                2.130764
                            3.130313
                                       4.129862
                                                   5.129410
                                                              6.128959
                                                                         7.128508
##
                                  10
                                             11
                                                         12
                                                                    13
     8.128057
                9.127606 10.127155 11.126704 12.126253 13.125802 14.125351
##
##
           15
                       16
                                  17
                                             18
                                                         19
                                                                    20
```

##	15.124900	16.124449	17.123998	18.123547	19.123096	20.122645	21.122194
##	22	23	24	25	26	27	28
##	22.121742	23.121291	24.120840	25.120389	26.119938	27.119487	28.119036
##	29	30	31	32	33	34	35
##	29.118585	30.118134	31.117683	32.117232	33.116781	34.116330	35.115879
##	36	37	38	39	40	41	42
##	36.115428	37.114977	38.114526	39.114075	40.113623	41.113172	42.112721
##	43	44	45	46	47	48	49
##	43.112270	44.111819	45.111368	46.110917	47.110466	48.110015	49.109564
##	50	51	52	53	54	55	56
##	50.109113	51.108662	52.108211	53.107760	54.107309	55.106858	56.106407
##	57	58	59	60	61	62	63
##	57.105955	58.105504	59.105053	60.104602	61.104151	62.103700	63.103249
##	64	65	66	67	68	69	70
##	64.102798	65.102347	66.101896	67.101445	68.100994	69.100543	70.100092
##	71	72	73	74	75	76	77
##	71.099641	72.099190	73.098739	74.098288	75.097836	76.097385	77.096934
##	78	79	80	81	82	83	84
##	78.096483	79.096032	80.095581	81.095130	82.094679	83.094228	84.093777
##	85	86	87	88	89	90	91
##	85.093326	86.092875	87.092424	88.091973	89.091522	90.091071	91.090620
##	92	93	94	95	96	97	98
##	92.090169	93.089717	94.089266	95.088815	96.088364	97.087913	98.087462
##	99	100					
##	99.087011	100.086560					

plot(out.lm)

Residuals vs Leverage

summary(out.lm)

```
##
## Call:
## lm(formula = Y ~ X)
##
##
  Residuals:
##
        Min
                  1Q
                       Median
                                             Max
##
   -2.34005 -0.60584
                      0.01551
                               0.58514
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
  (Intercept) 0.131666
                          0.181897
                                      0.724
                                               0.471
## X
               0.999549
                          0.003127 319.640
                                              <2e-16 ***
##
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9027 on 98 degrees of freedom
## Multiple R-squared: 0.999, Adjusted R-squared: 0.999
## F-statistic: 1.022e+05 on 1 and 98 DF, p-value: < 2.2e-16
```

• Objects can have other data embedded inside them

out.lm\$coefficients

```
## (Intercept) X
## 0.1316657 0.9995489
```

Show results properly using stargazer.

```
library(stargazer)
##
## Please cite as:
  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
stargazer(out.lm) # This code gives you a latex code
##
## % Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harv
## % Date and time: lun, gen 31, 2022 - 10:45:55
## \begin{table}[!htbp] \centering
##
    \caption{}
##
    \label{}
## \begin{tabular}{@{\extracolsep{5pt}}lc}
## \\[-1.8ex]\hline
## \hline \\[-1.8ex]
## & \multicolumn{1}{c}{\textit{Dependent variable:}} \\
## \cline{2-2}
## \\[-1.8ex] & Y \\
## \hline \\[-1.8ex]
## X & 1.000$^{***}$ \\
   & (0.003) \\
##
##
    & \\
## Constant & 0.132 \\
##
   & (0.182) \\
##
   & \\
## \hline \\[-1.8ex]
## Observations & 100 \\
## R$^{2}$ & 0.999 \\
## Adjusted R$^{2}$ & 0.999 \\
## Residual Std. Error & 0.903 (df = 98) \\
## F Statistic & 102,169.400$^{***}$ (df = 1; 98) \\
## \hline
## \hline \\[-1.8ex]
## \textit{Note:} & \multicolumn{1}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
## \end{tabular}
## \end{table}
stargazer(out.lm, type = "text") # This gives you a table in text
##
##
                        Dependent variable:
##
                     -----
## -----
## X
                             1.000***
##
                              (0.003)
##
## Constant
                               0.132
```

You can always includes latex code directly.

Table 1:

	Dependent variable:
	Y
X	1.000***
	(0.003)
Constant	0.132
	(0.182)
Observations	100
\mathbb{R}^2	0.999
Adjusted R ²	0.999
Residual Std. Error	0.903 (df = 98)
F Statistic	$102,169.400^{***} (df = 1; 98)$
Note:	*p<0.1; **p<0.05; ***p<0.01

Control Flow

- loops
- if/else

Loops

- for loops a way to say "do this for each element of the index"
- "this" is defined in what follows the "for" expression

```
for(i in 1:5) {
  cat(i*10," ")
}
```

10 20 30 40 50

```
for(i in 1:length(vec)) {
   cat(vec[i]," ")
}

## NA b c

for(i in vec) {
   cat(i," ")
}

## NA b c
```

If/Else

```
if(vec[2]=="b") print("Hello World!")
## [1] "Hello World!"
if(vec[3]=="a") {
  print("Hello World!")
} else {
  print("!dlroW olleH")
}
## [1] "!dlroW olleH"
for(i in 2:length(vec)){
  if(vec[i]=="b") {
  print("Hello World!")
  else {
  print("!dlroW olleH")
}
## [1] "Hello World!"
## [1] "!dlroW olleH"
```

Functions

- Function perform a set of operations internally and return only the output we want
- They are especially useful when we want to reiterate the same actions without copying the same lines of code forever

```
# Simple function to estimate descriptive statistics
descr <- function(var){
   mean <- mean(var, na.rm=T)
   sd <- sd(var, na.rm=T)
   N <- length(var)
   return(round(c(mean, sd, N), 2))
}

# Apply it to our data
apply(dat.data[,c("mpg", "weight", "price")], 2, descr)</pre>
```

```
##
          mpg weight price
## [1,] 19.20 3250.00 5058.00
## [2,] 3.11 541.62 1606.72
## [3,] 5.00
                 5.00
                          5.00
Since data frames are R objects, we can code our own estimators (one of the reasons people like R).
# Function to compute OLS coefficients
ols <- function(X, y) {</pre>
  # Input: vector or matrix X, vector y
  # Returns: coefficient vector for OLS regression (X'X)^{-1}X'y
  # Create a column for the intercept
  if (!all(as.matrix(X)[,1] == 1)) \{X \leftarrow cbind(1, X)\}
  out <- solve(t(X) %*% X) %*% t(X) %*% y
  rownames(out) <- c('Intercept', rep('', nrow(out)-1 ))</pre>
  return( t(out) )
# Let's estimate regression coefficients by OLS
round(ols(X, Y), 4)
        Intercept
## [1,]
           0.1317 0.9995
lm(Y \sim X)
##
## Call:
## lm(formula = Y ~ X)
##
## Coefficients:
## (Intercept)
##
        0.1317
                      0.9995
```

Simulations

- A very important tool
- Theoretical properties of estimators can be better understood by observing them in simulated data
- For empirical researchers, simulating the DGP allows to study properties of research designs such as power (especially important when designing an experiment or study)
- So, if you don't understand something, simulation is a valid option

An example

Recall the Neyman estimator of the sampling variance of the difference in means:

$$\hat{V} = \frac{\hat{s}_{Y_1}^2}{n_1} + \frac{\hat{s}_{Y_0}^2}{n_0}$$

We have seen that, under random sampling from a super-population, this estimator is unbiased for the sampling variance of the difference in means given by both random sample variation **and** randomization within sample (Imbens and Rubin, Ch.6).

$$E[\hat{V}] = \frac{\sigma_{Y_1}^2}{n_1} + \frac{\sigma_{Y_0}^2}{n_0} = V[\bar{Y}_1 - \bar{Y}_0]$$

Moreover, if there is treatment effect heterogeneity (i.e. the unit-level treatment effects are not constant), it is a (upward) biased estimator of the sampling variance of difference in means given by randomization only, for a fixed sample (Imbens and Rubin Ch.6).

$$E_D[\hat{V}|S] = V_D[\bar{Y}_1 - \bar{Y}_0|S] + \frac{s_\rho^2}{n} \ge V_D[\bar{Y}_1 - \bar{Y}_0|S]$$

Let's observe these properties through simulation.

```
# Set seed
set.seed(123)
# Assume a large super population
N_pop <- 100000
# We simulate the potential outcomes for each observation
YO \leftarrow abs(rnorm(N_pop, mean = 5, sd = 2))
Y1 \leftarrow Y0 + rnorm(N_pop, 0, 5) + 4
# Note that the PATE is ~ 4 by construction
TE <- Y1 - Y0
(PATE <- mean(TE))
## [1] 4.026077
# Now, we extract a random sample from this super-population
# Say, our experimental sample
Nsample <- 1000
pop \leftarrow data.frame(Y0 = Y0, Y1 = Y1, TE = TE)
sample <- pop[sample(nrow(pop), size = Nsample),]</pre>
```

```
# What is the SATE?
(SATE <- mean(sample$TE))
## [1] 3.910847
# Now, we can simulate the randomization distribution over this sample.
\# In practice, we re-assign the treatment N times and at each iteration we compute an estimate
# for the SATE using the new **observed** values
# Number of iterations
Nboot <- 10000
# An empty vector where to store the estimates
dim <- vars <- rep(NA, Nboot)</pre>
# Start loop
for(i in 1:Nboot){
  # Treatment assignment to half units (complete randomization)
  sample$D <- 0
  sample$D[sample(Nsample, Nsample/2)] <- 1</pre>
  # Observed potential outcomes
  sample$Y <- sample$D*sample$Y1 + (1-sample$D)*sample$Y0</pre>
  # Compute simple difference in means (estimate for SATE) and store it
  dim[i] <- mean(sample$Y[sample$D==1]) - mean(sample$Y[sample$D==0])</pre>
  # Compute variance (estimate for V(SATE)) and store it
  vars[i] <- var(sample$Y[sample$D==1])/(Nsample/2) + var(sample$Y[sample$D==0])/(Nsample/2)</pre>
# We now have a simulated randomization distribution of differences in means
# We know this is unbiased for the SATE
mean(dim)
## [1] 3.905932
# What is the variance of this estimator in the randomization distribution?
var(dim)
## [1] 0.03920887
# What is the expected value of the variance estimator we computed?
mean(vars)
## [1] 0.06285642
# Finally, let's compute the sampling variance of DIM under both randomization and sampling distributio
# Here the simulation has two levels:
# (i) we do an outer loop where we randomly draw samples from the super population
# (ii) we do an inner loop where for each sample we compute the randomization distribution, as before
# Number of sample draws to do
Nsampling <- 20
```

```
# Matrices and vectors where to store the results
dim <- vars <- matrix(NA, Nsampling, Nboot)</pre>
# Begin loop
for(j in 1:Nsampling){
  # New random sample
  sample <- pop[sample(nrow(pop), size = Nsample),]</pre>
  # Inner loop: randomization distribution
    for(i in 1:Nboot){
      # Treatment assignment to half units (complete randomization)
      sample$D <- 0</pre>
      sample$D[sample(Nsample, Nsample/2)] <- 1</pre>
      # Observed potential outcomes
      sample$Y <- sample$D*sample$Y1 + (1-sample$D)*sample$Y0</pre>
      # Compute simple difference in means (estimate for SATE) and store it
      dim[j,i] <- mean(sample$Y[sample$D==1]) - mean(sample$Y[sample$D==0])</pre>
      \# Compute variance (estimate for V(SATE)) and store it
  vars[j,i] <- var(sample$Y[sample$D==1])/(Nsample/2) + var(sample$Y[sample$D==0])/(Nsample/2)</pre>
    }
}
# We know that the DIM is unbiased also for the PATE
mean(dim)
## [1] 4.059777
# What is the variance of this estimator in the sampling and randomization distribution?
var(as.vector(dim))
## [1] 0.06019168
# Note that we can also compute the "true" (theoretical) value
# using the population values
var(Y1)/(Nsample/2) + var(Y0)/(Nsample/2)
## [1] 0.06595247
# What is the expected value of the Neyman variance estimator?
mean(vars)
```

[1] 0.06691493

Note that under sampling and randomization distribution the variance of the DIM estimator is larger! In fact, we have two sources of uncertainty (or noise) to account for. But we are able to estimate it without bias using sample quantities.