The Role of Algorithms in Computing

Data structures & algorithms (COSC202A)

Lecture 1

- Email me if you have any questions: <u>rahmed1@colgate.edu</u>
- Course schedule: Thursday 1:20-2:35 pm
- Office hours: Thursday 11:00-12:00 pm
- Email me if you need extra office hours
- Instructor room no.: 313A

Text book

- Algorithms
- Authors:
 - Robert Sedgewick
 - Kevin Wayne
- Availability: online
- Website:

https://algs4.cs.princeton.edu/home/

Another good resource

- Introduction to Algorithms
- Authors:
 - Thomas H. Cormen
 - Charles E. Leiserson
 - Ronald L. Rivest
 - Clifford Stein
- Availability: online

- Exams:
 - 45% mark
 - First midterm: Week 5
 - Second midterm: Week 10
 - Final exam
- Online quizzes:
 - 10% mark
 - A set of simple questions after 3-5 lectures
- Homeworks:
 - 45% mark
 - Implementation of lab assignments
 - o 10-11 homeworks, 5% mark each, will count best 9

Week	Topic
1	Intro
2	Basic data structures
3	Sorting
4	Divide and conquer
5	Binary search tree

Week	Topic
6	Tries (data structure for string operation)
7	Priority queue/heaps
8	Graphs, searching in graphs
9	Application of graph search
10	SP, MST, UF

Week	Topic
11	Max flow
12	Greedy algorithms
13	Dynamic programming
14	NP-completeness/reductions

Algorithm

Application

- Bioinformatics
- Information technology
- E-commerce
- ...
- Application in everywhere

Data structure

- Information access
- Modification
- Some common data structures:
 - Array
 - Link list
 - 0 ...

Problem classification

P vs. NP

- · P is definitely subset of NP
 - Every problem with poly-time solution is verifiable in poly-time
- Is it proper subset or equal?
 - No one knows the answer

- NP family has set of problems known as "NP-Complete"
 - Hardest problems in NP
 - No poly-time solution for NP-Complete problems yet

Efficiency

- Efficiency in terms of what?
 - Number of computation
 - Memory usage

Efficiency

- How many operations?
- Compute # operations in terms of the size of problem
- Is # operations proportional to problem size?
 - Then it is O(n) (say order n)
- We will discuss more about order notation in future.

