Algorithm	Best Fit Situation	Advantage	Disadvantage
Random Forest	1. Suited for at almost	1. Can work in	6. Difficult to
	any machine	parallel	interpret
	learning problem	2. Susceptible to	7. Weaker on
	2. Ex. Bioinformatics	overfits	regression when
		3. Automatically	estimating
		handles	values at the
		missing values	extremities of
		if you impute	the distribution
		using a special	of response
		number	values
		4. No need to	8. Biased in
		transform any	multiclass
		variable	problems
		5. No need to	toward more
		tweak	frequent classes
		parameters	
Gradient Boosting	Apt at almost any	3. It can	7. It can overfit if
	machine learning	approximate	run for too
	problem	most nonlinear	many iterations
	2. Search engines	function	8. Sensitive to
	(solving the	4. Best in class	noisy data and
	problem of learning	predictor	outliers
	to rank)	5. Automatically	9. Doesn't work at
		handles	its best without
		missing values	parameter
		6. No need to	tuning
		transform any	
		variable	
Linear Regression	Baseline prediction	1. Simple to	1. You have to
	Econometric predictions	understand and explain	work hard to make it fit
	predictions	and explain	make it fit

	Modelling A. marketing responses	It seldom overfits 2. Using L1 & L2 regularization is effective in feature selection 3. Fast to train 4. Easy to train on big data thanks to its stochastic version	nonlinear functions 2. Can suffer from outliers
Support Vector Machine	 Character recognition Image recognition Text classification 	 Automatic nonlinear feature creation Can approximate complex nonlinear functions Works only with a portion of the examples (the support vectors) 	 Difficult to interpret when applying nonlinear kernels Suffers from too many examples, after 10,000 examples it starts taking too long to train
K Nearest Neighbor	 Computer vision Multilabel tagging Recommender systems Spell checking problems 	 Fast, lazy training Can naturally handle extreme multiclass problems (like tagging text) 	 Slow and cumbersome in the predicting phase Can fail to predict correctly due to the curse of dimensionality

Adaboost	Facedetection	1 Automatically	1. Sensitive to
		Automatically handles	
			noisy data and
		missing values	outliers
		2. No need to	2. Never the best
		transform any	in class
		variable	predictions
		3. It doesn't	
		overfit easily	
		4. Few	
		parameters to	
		tweak	
		5. It can leverage	
		many different	
		weak-learners	
Naive Bayes	Face recognition	Easy and fast	Strong and
	Sentiment analysis	to implement,	unrealistic
	3. Spam detection	doesn't require	feature
	4. Text classification	too much	independence
		memory and	assumptions
		can be used for	2. Fails estimating
		online learning	rare occurrences
		2. Easy to	3. Suffers from
		understand	irrelevant
		3. Takes into	features
		account prior	reacures
		knowledge	
		KIIOWIEUBE	
Neural	1. Image recognition	1. It can	1. It requires you
Networks	2. Language	approximate	to define a
	recognition and	any non-linear	network
	translation	function	architecture
	3. Speech recognition		
	1		

	A Vision recognition	2. Robust to	2. Difficult to tune
	4. Vision recognition	outliers	because of too
		3. It can work	
			many
		with image,	parameters and
		text and sound	you have also to
		data	decide the
			architecture of
			the network
			3. Difficult to
			interpret
			4. Easy to overfit
Logsitic	1. Ordering results by	1. Simple to	1. You have to
Regression	probability	understand	work hard to
	2. Modelling	and explain	make it fit non-
	marketing	2. It seldom	linear functions
	responses	overfits	2. Can suffer from
		3. Using L1 & L2	outliers
		regularization	
		is effective in	
		feature	
		selection	
		4. The best	
		algorithm for	
		predicting	
		probabilities of	
		an event	
		5. Fast to train	
		6. Easy to train on	
		big data thanks	
		to its stochastic	
		version	

SVD	Recommendation System	Can restructure data in a meaningful way	Difficult to understand why data has been restructured in a certain way
PCA	 Removing collinearity Reducing dimensions of the dataset 	1. Can reduce data dimensionality	1. Implies strong linear assumptions (components are a weighted summations of features)
K means	1. Segmentation	 Fast in finding clusters Can detect outliers in multiple dimensions 	 Suffers from multicollinearit Clusters are spherical, can't detect groups of other shape Unstable solutions, depends on initialization