Survival Analysis of Heart Failure

Yonghan Qiu Mengzhao Xu Yuhua Liu

CONTENTS

01 [Introduction]

02 [Methodology]

(Analysis and Results)

04 [Conclusion]

Introduction

- Heart muscle doesn't pump blood as well as it should.
- Become a major public health problem, due to its increasing mortality rate.

 los (hospital length of stay in nights), age, gender, diabetes, hypertension, ihd (ischaemic heart disease), arrhythmias, obesity, and so on, totally 18 variables.

Heart Failure

Data Source

Potential risk factors

Survival Analysis

- Real hospital administrative data for England called Hospital Episodes Statistics.
- Preliminary analysis
- Kaplan-Meier Estimator
- Cox PH model
- AIC forward selection method
- Cox-Snell residual

Data Description

- 1000 heart failure patients
- ❖ 452 female and 548 male
- 492 dead and 508 alive at the end of the research
- ❖ 31 parameters in total, only 18 parameters interested
- death
- los: hospital length of stay in nights
- age: in years
- gender
- cabg: previous heart bypass
- diabetes: any type
- hypertension
- ihd: ischaemic heart disease
- arrhythmias
- copd: chronic obstructive lung disease

- obesity
- pvd: peripheral vascular disease
- valvular disease: disease of the heart valves
- pacemaker
- prior_appts_attended: number of outpatient appointments attended in the previous year
- prior_dnas: number of outpatient appointments missed in the previous year
- pci: percutaneous coronary intervention
- fu_time (follow-up time)

Statistic Techniques

➤ The Cox-proportional hazards model was used to research the relationships between the time to event outcome and a set of explanatory variables and test for the significance of these factors. The model has the form:

$$h(t|Z) = h_0(t)\exp(\beta Z)$$

➤ To estimate and compare the survival function S(t) for different levels of explanatory variables, we used the Kaplan-Meier (K-M) estimator. The definition is:

$$S(t) = \prod_{t_j \le t} \left(1 - \frac{d_j}{Y_j} \right), t_1 \le t$$

Statistic Techniques

➤ We used forward AIC to select the best Cox Regression model and plotted the Cox-Snell residual to check the overall fit of the model. The definition of the Cox-Snell residual is:

$$r_j = \widehat{H_0}(T_j) \exp(\widehat{\beta}^T Z_j)$$
 $j = 1, 2, ..., n$

where $Z_j = \left(Z_{j1}, \dots, Z_{jp}\right)^T$ are all fixed-time covariates. r_j are censored sample from exponential distribution, given the assumed Cox model holds and $\widehat{\beta}$, $\widehat{H_0}(t)$ close to the true values β , $H_0(t)$.

We also plotted $H_r(r_j)$ versus r_j . If the Cox model provides a good fit of the data, we expect a straight line through the origin with slope 1.

Preliminary Analysis

■ Baseline Characteristics of the Data

Continuous Variables							
	Dead(N=492)	Censored(N=508)					
Variable	Mean(Standard Deviation)						
age	82.175(8.788)	75.396(12.119)					
los	12.447(14.475)	9.154(10.180)					
prior_appts_attended	5.283(6.271)	5.785(7.344)					
prior_dnas	0.547(1.223)	0.457(0.985)					

Preliminary Analysis

■ Baseline Characteristics of the Data

	Categorical Variables							
Variable	Categories	Dead(N=492)	Censored(N=508)	Percentage of Dead (49.2%				
an dor	Female(1)	224(45.5%)	228(44.9%)	49.6%				
gender	Male(0)	268(54.5%)	280(55.1%)	48.9%				
oob a	Yes(1)	1(0.2%)	13(2.6%)	7.1%				
cabg	No(0)	491(99.8%)	495(97.4%)	49.8%				
diabetes	Yes(1)	129(26.2%)	154(30.3%)	45.6%				
diabetes	No(0)	363(73.8%)	354(69.7%)	50.6%				
hautauaiau	Yes(1)	300(61.0%)	321(63.2%)	48.3%				
hypertension	No(0)	192(39.0%)	187(36.8%)	50.7%				
الدحاة	Yes(1)	253(51.4%)	242(47.6%)	51.1%				
ihd	No(0)	239(48.6%)	266(52.4%)	47.3%				
	Yes(1)	231(47.0%)	259(51.0%)	47.1%				
arrhythmias	No(0)	261(53.0%)	249(49.0%)	51.2%				
	Yes(1)	127(25.8%)	115(22.6%)	52.5%				
copd	No(0)	365(74.2%)	393(77.4%)	48.2%				
ob oo!te.	Yes(1)	23(4.7%)	35(6.9%)	39.7%				
obesity	No(0)	469(95.3%)	473(93.1%)	49.8%				
d	Yes(1)	46(9.4%)	54(10.6%)	46.0%				
pvd	No(0)	446(90.6%)	454(89.4%)	49.6%				
velvuler dieses	Yes(1)	116(23.6%)	128(25.2%)	47.5%				
valvular_disease	No(0)	376(76.4%)	380(74.8%)	49.7%				
naaamaka.	Yes(1)	18(3.7%)	19(3.7%)	48.6%				
pacemaker	No(0)	474(96.3%)	489(96.3%)	49.2%				
	Yes(1)	10(2.0%)	19(3.7%)	34.5%				
pci	No(0)	482(98.0%)	489(96.3%)	49.6%				

Preliminary Analysis

Correlation

There is no high correlation existed

■ Survival Function and Cumulative Hazard Function

- We used K-M estimator and N-A estimator to study the survival probability and cumulative hazard rate of death time in the dataset.
- $\hat{S}(748) = 0.5004 > 0.5$ and $\hat{S}(749) = 0.4984 < 0.5$, so the median time $\hat{x}_{0.5} = 749$ days.

time	n.risk	n.event	surv	std.surv	cumhaz	std.chaz
0	1000	3	0.9970	0.00173	0.0030	0.00173
1	992	9	0.9880	0.00350	0.0121	0.00349
2	973	7	0.9808	0.00444	0.0193	0.00442
3	963	5	0.9758	0.00501	0.0245	0.00499
			•••••			
748	246	0	0.5004	0.03790	0.6911	0.03783
749	245	1	0.4984	0.03812	0.6951	0.03805
			•••••			
1104	2	0	0.0815	0.37498	2.4324	0.33947
1107	1	1	0.0000	Inf	3.4324	1.05605

Cox Model

We use all the variables to fit the Cox model and results are as follows. We can see age, los, gender, ihd and prior_dnas are significant variables and others are non-significant variables.

Variable	coef	exp(coef)	se(coef)	Z-value	p-value	Variable	coef	exp(coef)	se(coef)	Z-value	p-value
los	0.013	1.014	0.003	4.120	3.7e-05	copd	0.095	1.100	0.105	0.900	0.366
age	0.062	1.064	0.006	10.760	< 2e-16	obesity	0.108	1.114	0.224	0.480	0.629
gender	-0.283	0.754	0.096	-2.940	0.003	pvd	0.046	1.047	0.161	0.290	0.774
cabg	-1.839	0.159	1.007	-1.830	0.068	valvular_disease	0.191	1.211	0.109	1.760	0.079
diabetes	-0.012	0.988	0.113	-0.100	0.918	pacemaker	0.130	1.139	0.254	0.510	0.609
hypertension	-0.034	0.967	0.096	-0.360	0.722	prior_appts_attended	-0.007	0.993	0.008	-0.850	0.393
ihd	0.245	1.278	0.096	2.540	0.011	prior_dnas	0.134	1.144	0.039	3.420	0.001
arrhythmias	-0.152	0.859	0.095	-1.610	0.108	pci	-0.182	0.834	0.327	-0.560	0.579

■ Model Selection

• We used forward stepwise selection method for the Cox PH model to find the best model for the heart failure data.

Start: AIC=59	14	Step: AIC=5778		Step: AIC=5765		
Surv(fu_time, dea	Surv(fu_time, death) ~ 1 Survfu_		fu_time, death) ~ age		age + los	
Variables	AIC	Variables AIC		Variables	AIC	
age	5778	los	5765	prior_dnas	5755	
los	5891	prior_dnas	5767	ihd	5757	

Step: AIC=5	755	Step: AIC=57	48	Step: AIC=5745		
Surv(fu_time, death) ~ age + los + prior_dnas		Surv(fu_time, death) ~ age + los + prior_dnas + gender		Surv(fu_time, death) ~ age + los + prior_dnas + gender + ihd		
gender	5748	ihd	ihd 5745		5741	
ihd	5750	cabg 5745		arrhythmias 57		
•••••		•••••		•••••		

Step: AIC=574	1	Step: AIC=5740		Step: AIC=5739		
Surv(fu_time, death) ~ age + los + prior_dnas + gender + ihd + cabg		Surv(fu_time, death) ~ age + los + prior_dnas + gender + ihd +cabg + arrhythmias		Surv(fu_time, death) ~ age + los + prior_dnas + gender + ihd + cabg + arrhythmias + valvular_disease		
arrhythmias	5740	valvular_disease 5739		none>	5739	
valvular_disease 5740		none> 5740		copd 5740		

Model Selection

We got 8 risk factors for the final model: age, los, prior_dnas, gender, ihd, cabg, arrhythmias and valvular_disease.

```
h(t|\text{age, los, prior\_dnas, gender, ihd, cabg, arrhythmias, alvular\_disease}) = h_0(t)\exp(0.06195 \cdot \text{age} + 0.01355 \cdot \text{los} + 0.12041 \cdot \text{prior\_dnas} - 0.28157 \cdot \text{gender} + 0.23982 \cdot \text{ihd} - 1.81423 \cdot \text{cabg} - 0.16183 \cdot \text{arrhythmias} + 0.18865 \cdot \text{valvular\_disease})
```

Table 5. Parameter Estimates for the Final Cox Model

Variables	eta —coef	exp(coef)	se(coef)	Z-value	P-value
age	0.062	1.064	0.006	11.040	< 2e-16
los	0.014	1.014	0.003	4.290	1.8e-05
prior_dnas	0.120	1.128	0.036	3.380	0.001
gender	-0.282	0.755	0.095	-2.960	0.003
ihd	0.240	1.271	0.093	2.580	0.010
cabg	-1.814	0.163	1.004	-1.810	0.071
arrhythmias	-0.162	0.851	0.091	-1.770	0.076
valvular_disease	0.189	1.208	0.107	1.760	0.078

□ Cox-Snell Residual plot

- ➤ We conducted a Cox-Snell Residual plot to access the fitness of our model.
- From the plot, we see that the estimated cumulative hazards follow closely to the 45 degree straight line. Therefore, we can conclude that the model is a good fit.

☐ Highly Correlated Features

Let's focus on the highly correlated features with p-values <0.05 from the Cox PH model, including age, los, prior_dnas, gender, ihd.

 For age, splitting patients up by age groups shows a large difference between each age group. In particular, patients younger than 40 have a survival probability of 1.

For los, each groups also have obvious difference, but not as large as age, which is same to Table 5, as exp(coef) of age is 1.064 and exp(coef) of los is 1.014.

Highly Correlated Features

- For prior_dnas, when the number of appointments missed is less than 3, the survival curves don't have significant different, but if the number is more than 3, the survival probability is significant lower.
- For gender, the differences between the two curves here are not obvious, but the pvalue=0.003 tells a different story.
- For ihd, the two curves here are different obviously, and patients who don't have ischaemic heart disease have a higher survival probability.

Conclusion

on significant variables:

los, age, gender, ihd and prior_dnas

- 02 outputs:
 - □ Patients with high values of los(>61) and high values of prior_dnas(>3) have high death risks.
 - ☐ The death rate increases with growing age and los.
 - □ Patients with ihd (ischaemic heart disease) has significantly high mortality rate.
 - ☐ Even no significant differences in the plots were found between gender for death risks, the p-value showed it was significant actually.

Reference

- > Data from https://www.kaggle.com/datasets/jackleenrasmybareh/heart-failure
- Mayo Clinic. Heart failure. Retrieved from https://www.mayoclinic.org/diseases-conditions/heart-failure/symptoms-causes/syc-20373142
- > British Heart Foundation(2020). Heart failure: A blueprint for change.

