# An Efficient CUDA Implementation of a Tree-Based N-Body Algorithm

Martin Burtscher
Department of Computer Science
Texas State University-San Marcos

## Mapping Regular Code to GPUs

- Regular codes
  - Operate on array- and matrix-based data structures
  - Exhibit mostly strided memory access patterns
  - Have relatively predictable control flow (control flow behavior is largely determined by input size)
- Many regular codes are easy to port to GPUs
  - E.g., matrix codes executing many ops/word
    - Dense matrix operations (level 2 and 3 BLAS)
    - Stencil codes (PDE solvers)



## Mapping Irregular Code to GPUs

- Irregular codes
  - Build, traverse, and update dynamic data structures (e.g., trees, graphs, linked lists, and priority queues)
  - Exhibit data dependent memory access patterns
  - Have complex control flow (control flow behavior depends on input values and changes dynamically)
- Many important scientific programs are irregular
  - E.g., data clustering, SAT solving, social networks, meshing, ...
- Need case studies to learn how to best map irregular codes

## **Example: N-Body Simulation**

- Irregular Barnes Hut algorithm
  - Repeatedly builds unbalanced tree & performs complex traversals on it
- Our implementation
  - Designed for GPUs (not just port of CPU code)
  - First GPU implementation of entire BH algorithm
- Results
  - GPU is 21 times faster than CPU (6 cores) on this code
  - GPU has better architecture for this irregular algorithm
  - NVIDIA GPU Gems book chapter (2011)

## Outline

- Introduction
- Barnes Hut algorithm
- CUDA implementation
- Experimental results
- Conclusions



## N-Body Simulation

- Time evolution of physical system
  - System consists of bodies
  - "n" is the number of bodies
  - Bodies interact via pair-wise forces

- RUG
- Many systems can be modeled in this way
  - Star/galaxy clusters (gravitational force)
  - Particles (electric force, magnetic force)



# Simple O(n<sup>2</sup>) n-Body Algorithm

Algorithm

```
Initialize body masses, positions, and velocities

Iterate over time steps {

    Accumulate forces acting on each body
    Update body positions and velocities based on force
}

Output result
```

- More sophisticated n-body algorithms exist
  - Barnes Hut algorithm
  - Fast Multipole Method (FMM)

## Barnes Hut Idea

- Precise force calculation
  - Requires  $O(n^2)$  operations  $(O(n^2)$  body pairs)
  - Computationally intractable for large n
- Barnes and Hut (1986)
  - Algorithm to approximately compute forces
    - Bodies' initial position and velocity are also approximate
  - Requires only  $O(n \log n)$  operations
  - Idea is to "combine" far away bodies
  - Error should be small because force is proportional to 1/distance<sup>2</sup>

## Barnes Hut Algorithm

- Set bodies' initial position and velocity
- Iterate over time steps
  - 1. Compute bounding box around bodies
  - Subdivide space until at most one body per cell
     Record this spatial hierarchy in an octree
  - 3. Compute mass and center of mass of each cell
  - 4. Compute force on bodies by traversing octree

    Stop traversal path when encountering a leaf (body) or an internal node (cell) that is far enough away
  - 5. Update each body's position and velocity

# **Build Tree (Level 1)**



Compute bounding box around all bodies → tree root

## **Build Tree (Level 2)**





## Build Tree (Level 3)





## **Build Tree (Level 4)**





## **Build Tree (Level 5)**





## Compute Cells' Center of Mass





For each internal cell, compute sum of mass and weighted average of position of all bodies in subtree; example shows two cells only

## **Compute Forces**





Compute force, for example, acting upon green body

# Compute Force (short distance)





Scan tree depth first from left to right; green portion already completed

# Compute Force (down one level)





Red center of mass is too close, need to go down one level

## Compute Force (long distance)





Blue center of mass is far enough away

## Compute Force (skip subtree)





Therefore, entire subtree rooted in the blue cell can be skipped

## Pseudocode

```
bodySet = ...
foreach timestep do {
  bounding box = new Bounding Box();
  foreach Body b in bodySet {
   bounding box.include(b);
  octree = new Octree(bounding box);
  foreach Body b in bodySet {
    octree.Insert(b);
  cellList = octree.CellsByLevel();
  foreach Cell c in cellList {
    c.Summarize();
  foreach Body b in bodySet {
   b.ComputeForce(octree);
  foreach Body b in bodySet {
   b.Advance();
```



## Complexity and Parallelism

```
bodySet = ...
foreach timestep do {
                                 // O(n log n) + fully ordered sequential
 bounding box = new Bounding Box();
 foreach Body b in bodySet {
                               // O(n) parallel reduction
   bounding box.include(b);
 octree = new Octree(bounding box);
 foreach Body b in bodySet {      // O(n log n) top-down tree building
   octree.Insert(b);
 cellList = octree.CellsByLevel();
  foreach Cell c in cellList {
                                 // O(n) + partially ordered bottom-up traversal
   c.Summarize();
 foreach Body b in bodySet {
                                // O(n \log n) fully parallel
   b.ComputeForce(octree);
 b.Advance();
```

## Outline

- Introduction
- Barnes Hut algorithm
- CUDA implementation
- Experimental results
- Conclusions



## Efficient GPU Code

- Coalesced main memory accesses
- Little thread divergence
- Enough threads per block
  - Not too many registers per thread
  - Not too much shared memory usage
- Enough (independent) blocks
  - Little synchronization between blocks
- Little CPU/GPU data transfer
- Efficient use of shared memory



## Main BH Implementation Challenges

- Uses irregular tree-based data structure
  - Load imbalance
  - Little coalescing
- Complex recursive traversals
  - Recursion not allowed\*
  - Lots of thread divergence
- Memory-bound pointer-chasing operations
  - Not enough computation to hide latency



## Six GPU Kernels

Read initial data and transfer to GPU for each timestep do {

- 1. Compute bounding box around bodies
- 2. Build hierarchical decomposition, i.e., octree
- 3. Summarize body information in internal octree nodes
- 4. Approximately sort bodies by spatial location (optional)
- 5. Compute forces acting on each body with help of octree
- 6. Update body positions and velocities

Transfer result from GPU and output

## **Global Optimizations**

- Make code iterative (recursion not supported\*)
- Keep data on GPU between kernel calls
- Use array elements instead of heap nodes
  - One aligned array per field for coalesced accesses



# Global Optimizations (cont.)

- Maximize thread count (round down to warp size)
- Maximize resident block count (all SMs filled)
- Pass kernel parameters through constant memory
- Use special allocation order
- Alias arrays (56 B/node)
- Use index arithmetic
- Persistent blocks & threads
- Unroll loops over children



## Kernel 1: Bounding Box (Regular)



- Fully coalesced
- Fully cached
- No bank conflicts
- Minimal divergence
- Built-in min and max
- 2 red/mem, 6 red/bar
- Bodies load balanced
- 512\*3 threads per SM

## Kernel 2: Build Octree (Irregular)

- Optimizations
  - Only lock leaf "pointers"
  - Lock-free fast path
  - Light-weight lock release on slow path
  - No re-traverse after lock acquire failure
  - Combined memory fence per block
  - Re-compute position during traversal
  - Separate init kernels for coalescing
  - 512\*3 threads per SM

Top-down tree building



## Kernel 2: Build Octree (cont.)

```
// initialize
cell = find insertion point(body); // no locks, cache cell
child = get insertion index(cell, body);
if (child != locked) { // skip atomic if already locked
 if (child == null) { // fast path (frequent)
   if (null == atomicCAS(&cell[child], null, body)) { // lock-free insertion
     // move on to next body
  } else { // slow path (first part)
   if (child == atomicCAS(&cell[child], child, lock)) { // acquire lock
     // build subtree with new and existing body
     flag = true;
 syncthreads(); // barrier
if (threadIdx == 0) threadfence(); // push data out if L1 cache
 syncthreads(); // barrier
if (flag) { // slow path (second part)
 cell[child] = new subtree; // insert subtree and release lock
 // move on to next body
```

## Kernel 3: Summarize Subtrees (Irregular)

#### Bottom-up tree traversal



- Scan avoids deadlock
- Use mass as flag + fence
  - No locks, no atomics
- Use wait-free first pass
- Cache the ready information
- Piggyback on traversal
  - Count bodies in subtrees
- No parent "pointers"
- 128\*6 threads per SM

## Kernel 4: Sort Bodies (Irregular)

#### Top-down tree traversal



- (Similar to Kernel 3)
- Scan avoids deadlock
- Use data field as flag
  - No locks, no atomics
- Use counts from Kernel 3
- Piggyback on traversal
  - Move nulls to back
- Throttle flag polling requests with optional barrier
- 64\*6 threads per SM

## Kernel 5: Force Calculation (Irregular)

#### Multiple prefix traversals



- Group similar work together
  - Uses sorting to minimize size of prefix union in each warp
  - Early out (nulls in back)
- Traverse whole union to avoid divergence (warp voting)
- Lane 0 controls iteration stack for entire warp (fits in shared mem)
- Avoid unneeded volatile accesses
- Cache tree-level-based data
- 256\*5 threads per SM

## **Architectural Support**

- Coalesced memory accesses & lockstep execution
  - All threads in warp read same tree node at same time
  - Only one mem access per warp instead of 32 accesses
- Warp-based execution
  - Enables data sharing in warps without synchronization
- RSQRTF instruction
  - Quickly computes good approximation of 1/sqrtf(x)
- Warp voting instructions
  - Quickly perform reduction operations within a warp

## Kernel 6: Advance Bodies (Regular)

- Optimizations
  - Fully coalesced, no divergence
  - Load balanced, 1024\*1 threads per SM



#### Outline

- Introduction
- Barnes Hut algorithm
- CUDA implementation
- Experimental results
- Conclusions



## **Evaluation Methodology**

- Implementations
  - CUDA: irregular Barnes Hut & regular  $O(n^2)$  algorithm
  - OpenMP: Barnes Hut algorithm (derived from CUDA code)
  - Pthreads: Barnes Hut algorithm (from SPLASH-2 suite)
- Systems and compilers
  - nvcc 4.0 (-O3 -arch=sm\_20 -ftz=true\*)GeForce GTX 480, 1.4 GHz, 15 SMs, 32 cores per SM
  - gcc 4.1.2 (-O3 -fopenmp\* -ffast-math\*)
     Xeon X5690, 3.46 GHz, 6 cores, 2 threads per core
- Inputs and metric
  - 5k, 50k, 500k, and 5M star clusters (Plummer model)
  - Best runtime of three experiments, excluding I/O

## Nodes Touched per Activity (5M Input)

- Kernel "activities"
  - K1: pair reduction
  - K2: tree insertion
  - K3: bottom-up step
  - K4: top-down step
  - K5: prefix traversal
  - K6: integration step
- Max tree depth ≤ 22
- Cells have 3.1 children

|          | neighborhood size |         |       |  |  |  |
|----------|-------------------|---------|-------|--|--|--|
|          | min               | max     |       |  |  |  |
| kernel 1 | 1                 | 2.0     | 2     |  |  |  |
| kernel 2 | 2                 | 13.2    | 22    |  |  |  |
| kernel 3 | 2                 | 4.1     | 9     |  |  |  |
| kernel 4 | 2                 | 4.1     | 9     |  |  |  |
| kernel 5 | 818               | 4,117.0 | 6,315 |  |  |  |
| kernel 6 | 1                 | 1.0     | 1     |  |  |  |

- Prefix  $\leq$  6,315 nodes ( $\leq$  0.1% of 7.4M)
- BH algorithm & sorting to minimize size of prefix union work well

#### Available Amorphous Data Parallelism



#### Runtime Comparison

- GPU BH inefficiency
  - 5k input too small for 5,760 to 23,040 threads
- BH vs.  $O(n^2)$  algorithm
  - Regular  $O(n^2)$  code is faster with fewer than about 15,000 bodies
- GPU vs. CPU (5M input)
  - 21.1x faster than OpenMP
  - 23.2x faster than Pthreads



## Kernel Performance for 5M Input

\$400 GPU delivers 228 GFlops/s on irregular code

|              | kernel 1 | kernel 2 | kernel 3 | kernel 4 | kernel 5 | kernel 6 | BarnesHut | O(n <sup>2</sup> ) |
|--------------|----------|----------|----------|----------|----------|----------|-----------|--------------------|
| Gflops/s     | 71.6     | 5.8      | 2.5      | n/a      | 240.6    | 33.5     | 228.4     | 897.0              |
| GB/s         | 142.9    | 26.8     | 10.6     | 12.8     | 8.0      | 133.9    | 8.8       | 2.8                |
| runtime [ms] | 0.4      | 44.6     | 28.0     | 14.2     | 1641.2   | 2.2      | 1730.6    | 557421.5           |

GPU chip is 2.7 to 23.5 times faster than CPU chip

|             | non-compliant fast single-precision version |          |          |          | IEEE 754-compliant double-precision version |          |          |          |          |          |          |          |
|-------------|---------------------------------------------|----------|----------|----------|---------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
|             | kernel 1                                    | kernel 2 | kernel 3 | kernel 4 | kernel 5                                    | kernel 6 | kernel 1 | kernel 2 | kernel 3 | kernel 4 | kernel 5 | kernel 6 |
| X5690 CPU   | 5.5                                         | 185.7    | 75.8     | 52.1     | 38,540.3                                    | 16.4     | 10.3     | 193.1    | 101.0    | 51.6     | 47,706.4 | 33.1     |
| GTX 480 GPU | 0.4                                         | 44.6     | 28.0     | 14.2     | 1,641.2                                     | 2.2      | 0.8      | 46.7     | 31.0     | 14.2     | 7,714.6  | 4.2      |
| CPU/GPU     | 13.1                                        | 4.2      | 2.7      | 3.7      | 23.5                                        | 7.3      | 12.7     | 4.1      | 3.3      | 3.6      | 6.2      | 7.9      |

- GPU hardware is better suited for running BH than CPU hw is
  - But more difficult and time consuming to program

#### Kernel Speedups

Optimizations that are generally applicable

|           | avoid    | rsqrtf | recalc. | thread | full multi- |
|-----------|----------|--------|---------|--------|-------------|
|           | volatile | instr. | data    | voting | threading   |
| 50,000    | 1.14x    | 1.43x  | 0.99x   | 2.04x  | 20.80x      |
| 500,000   | 1.19x    | 1.47x  | 1.32x   | 2.49x  | 27.99x      |
| 5,000,000 | 1.18x    | 1.46x  | 1.69x   | 2.47x  | 28.85x      |

Optimizations for irregular kernels

|           | throttling | waitfree | combined  | sorting of | sync'ed   |
|-----------|------------|----------|-----------|------------|-----------|
|           | barrier    | pre-pass | mem fence | bodies     | execution |
| 50,000    | 0.97x      | 1.02x    | 1.54x     | 3.60x      | 6.23x     |
| 500,000   | 1.03x      | 1.21x    | 1.57x     | 6.28x      | 8.04x     |
| 5,000,000 | 1.04x      | 1.31x    | 1.50x     | 8.21x      | 8.60x     |

#### Outline

- Introduction
- Barnes Hut algorithm
- CUDA implementation
- Experimental results
- Conclusions



# **Optimization Summary**

- Minimize thread divergence
  - Group similar work together, force synchronicity
- Reduce main memory accesses
  - Share data within warp, combine memory fences & traversals, re-compute data, avoid volatile accesses
- Implement entire algorithm on and for GPU
  - Avoid data transfers & data structure inefficiencies, wait-free pre-pass, scan entire prefix union

# **Optimization Summary (cont.)**

- Exploit hardware features
  - Fast synchronization and thread startup, special instructions, coalesced memory accesses, even lockstep execution
- Use light-weight locking and synchronization
  - Minimize locks, reuse fields, use fence + store ops
- Maximize parallelism
  - Parallelize every step within and across SMs

#### Conclusions

- Irregularity does not necessarily prevent high-performance on GPUs
  - Entire Barnes Hut algorithm implemented on GPU
    - Builds and traverses unbalanced octree
  - GPU is 22.5 times (float) and 6.2 times (double) faster than high-end hyperthreaded 6-core Xeon
- Code directly for GPU, do not merely adjust CPU code
  - Requires different data and code structures
  - Benefits from different algorithmic modifications

## Acknowledgments

- Collaborators
  - Ricardo Alves (Universidade do Minho, Portugal)
  - Molly O'Neil (Texas State University-San Marcos)
  - Keshav Pingali (University of Texas at Austin)

- Hardware and funding
  - NVIDIA Corporation