Linear Systems TTK4115

Helicopter Lab Report

Bernt Johan Damslora (nr. 759477) Didrik Rokhaug (nr. 759528)

October 13, 2016

Contents

1	Part 1	1
2	Part 2: Monovariable Control	1
	2.1 Problem 1	1

1 Part 1

To find a model of the system we started with Newton's 2nd law for rotation, which states that

$$\sum \tau = J * \alpha \tag{1}$$

where τ is the external torque, I is the moment of inertia, and α is the angular acceleration. Using this for each of the three axis gives

$$J_p\ddot{p} =$$

2 Part 2: Monovariable Control

2.1 Problem 1

2.1.1 Controllability

We look at the controllability matrix:

References