NOTION D'IMPEDANCE

1 . Rappels et compléments

1 . 1 . Les caractéristiques des dipôles les plus communs

Un conducteur ohmique est un dipôle caractérisé par sa résistance R mesurée en ohms (Ω) .

Un condensateur est un dipôle caractérisé par sa capacité C mesurée en farads (F).

Une bobine est un dipôle caractérisé par sa résistance R mesurée en ohms (Ω) et par son inductance L mesurée en henry (H). Une bobine est constituée d'un enroulement de cuivre sur un noyau de fer doux.

On différencie les bobines parfaites ou idéales des bobines réelles : l'enroulement de cuivre possède obligatoirement une résistance (plus ou moins grande suivant la qualité de la bobine). La bobine réelle possède une inductance L et une résistance R, alors que la bobine idéale ne possède qu'une inductance L (R=0).

1.2. Rappel sur la représentation de Fresnel

Une tension alternative sinusoïdale s'écrit : $u = U\sqrt{2} \sin(\omega t + \varphi)$

avec u : valeur instantanée,

U: valeur efficace.

 U_M : valeur maximale ou amplitude, $U_M = U\sqrt{2}$,

 ω : pulsation (en rad/s), $\omega = 2\pi f$ (avec f fréquence en hertz (Hz)),

 φ : phase à l'origine (rad).

Par définition, le facteur de puissance (nombre sans unité) est donné par : cos φ.

1.3. Lois des tensions et des intensités

En régime sinusoïdal, les lois du courant sont vectorielles. Pour additionner des intensités ou des tensions, il faut tracer un diagramme de Fresnel.

2. Impédance

2.1. Définition

En régime sinusoïdal, le rapport $\frac{U}{I}$ ou $\frac{U_{M}}{I_{M}}$ s'appelle impédance et se note Z et s'exprime en Ω .

Remarque : en régime continu, le rapport précédent s'appelle résistance : $R = \frac{U}{I}$.

En régime sinusoïdal, on a pour :

- un conducteur ohmique de résistance $R : Z_R = R$,
- un condensateur de capacité $C: Z_C = \frac{1}{C\omega}$,
- une bobine idéale d'inductance L : $Z_L = L\omega$.

2 . 2 . Cas du conducteur ohmique

La tension instantanée $u_R(t)$ aux bornes d'un conducteur ohmique de résistance R, parcouru par un courant d'intensité instantanée i(t), s'écrit :

$$u_R(t)$$

$$u_R(t) = R \times i(t)$$
.

On en déduit que $u_R(t)$ et i(t) sont en phase, donc que l'angle entre \overrightarrow{I} et $\overrightarrow{U_R}$ est nul.

2.3. Cas du condensateur

La tension instantanée $u_C(t)$ aux bornes d'un condensateur est en retard de $\frac{\pi}{2}$ rad sur le courant d'intensité instantanée i(t).

On dit aussi que le déphasage de $u_C(t)$ par rapport à i(t) est de $-\frac{\pi}{2} \ rad.$

On en déduit que l'angle entre \overrightarrow{I} et $\overrightarrow{U_C}$ vaut $-\frac{\pi}{2}$ rad soit -90° .

2 . 4 . Cas de la bobine idéale

La tension instantanée $u_L(t)$ aux bornes d'une bobine idéale est en avance de $\frac{\pi}{2}$ rad sur le courant d'intensité instantanée i(t).

On dit aussi que le déphasage de $u_L(t)$ par rapport à i(t) est de $\frac{\pi}{2} \ rad.$

On en déduit que l'angle entre \overrightarrow{I} et $\overrightarrow{U_L}$ vaut $\frac{\pi}{2}$ rad soit 90°.

3 . Exemple de calcul d'impédance : cas de la bobine réelle

On assimile une bobine réelle à une bobine idéale d'inductance L en série avec un conducteur ohmique de résistance R

R

On souhaite calculer l'impédance Z d'une bobine réelle.

La tension \overrightarrow{U} aux bornes de la bobine réelle est donnée par $\overrightarrow{U} = Z \times \overrightarrow{I}$.

La tension $\overrightarrow{U_R}$ aux bornes du conducteur ohmique est donnée par $\overrightarrow{U_R}$ = $Z_R \times \overrightarrow{I}$,

soit
$$\overrightarrow{U_R} = R \times \overrightarrow{I}$$
.

La tension $\overrightarrow{U_L}$ aux bornes de la bobine idéale est donnée

par
$$\overrightarrow{U_L} = Z_L \times \overrightarrow{I}$$
 , soit $\overrightarrow{U_L} = L\omega \times \overrightarrow{I}$.

On peut écrire : $\overrightarrow{U} = \overrightarrow{U_R} + \overrightarrow{U_L}$.

On trace le diagramme de Fresnel pour calculer U.

On obtient un triangle rectangle dont les longueurs de deux des cotés sont connues : A l'aide du théorème de Pythagore, on peut déterminer la valeur de Z :

$$Z^{2} = R^{2} + (L\omega)^{2}$$

donc $Z = \sqrt{R^{2} + (L\omega)^{2}}$.

On a aussi :
$$\cos \phi = \frac{R}{Z}$$
 , donc $\cos \phi = \frac{R}{\sqrt{R^2 + \left(L\omega\right)^2}}$.

Application : déterminer l'impédance d'une bobine réelle d'inductance L=0.5~H et de résistance interne $R=50~\Omega$ utilisée sur un montage fonctionnant sur le secteur (f=50~Hz). En déduire le facteur de puissance, puis la phase à l'origine.

$$Z = \sqrt{50^2 + (0.5 \times 2\pi \times 50)^2}$$
, donc $Z = 165 \Omega$.

$$\cos \phi = \frac{50}{\sqrt{50^2 + \left(0.5 \times 2\pi \times 50\right)^2}} \,,\, donc \, \cos \phi = 0.303, \, donc \, \phi = 72.34^\circ.$$

3/4

NOTION D'IMPEDANCE : RESUME

	Impédance : Z	Facteur de puissance : cos φ	Déphasage : φ	Schéma
Conducteur ohmique	R	1	0	I I
Inductance	Lω	0	$\frac{\pi}{2}$	U _L
Condensateur	$\frac{1}{C\omega}$	0	$-\frac{\pi}{2}$	U _C I
Circuit RL	$\sqrt{R^2 + (L\omega)^2}$	$\frac{R}{Z}$	Valeur à calculer	U U U U U U U
Circuit RC	$\sqrt{R^2 + \left(\frac{1}{C\omega}\right)^2}$	$\frac{R}{Z}$	Valeur à calculer	U_R U_C U_C
Circuit RLC	$\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}$	$\frac{R}{Z}$	Valeur à calculer	$U_{\rm C}$ $U_{\rm L}$ $U_{\rm L}$ $U_{\rm R}$

Formules: $U = Z \times I$; $\omega = 2\pi f$.