

Multi-layer Perceptron (MLP)

CS417 R. Hedjam

 MLP contains at least one hidden layer connecting the input to the output.

- Does the MLP solve non-linear problems?
- Non-linear problems are those for which the data from different classes cannot be separated by a linear boundary decision.
- Examples:

MLP with Step-wise or linear activation functions can't solve non-linear problems.

Perceptron vs MLP

• By connecting the artificial neurons in the network through non-linear activation functions and multi layers, we can create complex, non-linear decision boundaries that allow us to tackle problems where the different classes are not linearly separable.

Deal with non-linearity — Sigmoid function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$\det z = h(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + w_0$$

$$g(h(\mathbf{x})) = \frac{1}{1 + e^{-h(\mathbf{x})}}$$

$$= \frac{1}{1 + e^{-(\mathbf{w}^{\mathsf{T}} \mathbf{x} + w_0)}}$$

MLP with Sigmoid activation function

MLP – Prediction Error

Error: MLP with Sigmoid activation function

• Error between the predicted output and the true output.

$$E = \frac{1}{2} \sum_{i=1}^{N} \left(g(h(\mathbf{x}_i)) - y_i \right)^2$$

- How does the change in w affect the change in E?
 - → Compute the derivative of E with respect to w.

$$\begin{split} \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} &= \frac{\partial E(\mathbf{w})}{\partial g(h(\mathbf{x}))}.\frac{\partial g(h(\mathbf{x}))}{\partial \mathbf{w}} \\ \frac{\partial E(\mathbf{w})}{\partial g(h(\mathbf{x}))} &= g(h(x)) - y \\ \frac{\partial g(h(\mathbf{x}))}{\partial \mathbf{w}} &= \frac{1}{1 + e^{-(\mathbf{w}^{\top}\mathbf{x} + w_0)}}.(1 - \frac{1}{1 + e^{-(\mathbf{w}^{\top}\mathbf{x} + w_0)}}) \\ \mathbf{w}^{t+1} &= \mathbf{w}^t - \eta \frac{\partial E(\mathbf{w}^t)}{\partial \mathbf{w}^t} \quad \text{(Updating weights)} \end{split}$$

MLP – binary classification

• Predict either +1 or -1

MLP – binary classification – hot encoding

Example

Example

Example – Digit classification

0	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	0	0	0	1
0	1	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	1	0

Universal approximation theory

• A Neural network with at least one hidden layer and sigmoid activation functions can approximate any function (Cybenco).

A visual demo

http://playground.tensorflow.org/

