Supported Information

Application of Machine Learning to Fischer-Tropsch Synthesis for Cobalt Catalysts

Kirill Motaev¹, Maxim Molokeev¹,*, Bulat Sultanov³, Vladimir Kharitontsev¹, Alexey Matigorov¹, Mikhail Palianov¹, Nikita Azarapin¹,², Andrey Elyshev¹,³

¹Laboratory of Theory and Optimization of Chemical and Technological Processes, University of Tyumen, 625003, Tyumen, Russia

²Institute of Chemistry, University of Tyumen, 625003, Tyumen, Russia

³Laboratory of digital catalysis of Centre for Nature-Inspired Engineering, University of Tyumen, 625003, Tyumen, Russia

*E-mail: msmolokeev@mail.ru

Co, % dCo, nm BET, m^2/g

Figure S1. The statistic plots for all features and property of experiments under consideration.

Table S1. Dataset of 169 experiments with 16 feature parameters (green) and 6 property parameters (red)

N	Co, %	dCo, nm	BET, m^2/g	Pt,Au,Ru %	Ceol, %	Carbon, %	SiO2, %	Al2O3, %	Reference
1	13	15.7	173	0.2	0	0	0	84	1
2	13	14.2	169	0.2	0	0	5	79	1
3	13	15	164	0.2	0	0	10	74	1
4	13	18.7	161	0.2	0	0	15	69	1
5	10	12.7	763	0	0	0	90	0	2
6	10	12.7	763	0	0	0	90	0	2
7	10	10.9	720	0	0	0	85.5	0	2
8	10	10.9	720	0	0	0	85.5	0	2
9	10	8.3	650	0	0	0	91	0	2
10	10	8.3	650	0	0	0	91	0	2
11	10	7.3	615	0	0	0	67.5	0	2
12	10	7.3	615	0	0	0	67.5	0	2
13	10	7.8	550	0	0	0	45	0	2
14	10	7.8	550	0	0	0	45	0	2
15	10	19.5	320	0	0	0	90	0	2
16	10	19.5	320	0	0	0	90	0	2
17	10	15.6	316	0	0	0	85.5	0	2
18	10	15.6	316	0	0	0	85.5	0	2
19	10	10	308	0	0	0	91	0	2
20	10	10	308	0	0	0	91	0	2
21	10	12.7	296	0	0	0	67.5	0	2
22	10	12.7	296	0	0	0	67.5	0	2
23	10	11.5	296	0	0	0	45	0	2
24	10	11.5	296	0	0	0	45	0	2
25	15	19.3	158	0	0	85	0	0	3
26	15	19.3	156	0	0	85	0	0	3
27	15	18.1	167	0	0	85	0	0	3
28	15	16.5	173	0	0	85	0	0	3
29	15	9.4	141	0	0	85	0	0	4
30	15	10.1	132	0	0	85	0	0	4
31	15	11.3	102	0	0	85	0	0	4
32	1	4.9	235	0	0	99	0	0	5
33	5	3.6	235	0	0	95	0	0	5
34	10	3.9	235	0	0	90	0	0	5
35	15	4.2	235	0	0	85	0	0	5
36	20	5.3	235	0	0	80	0	0	5
37	40	10.5	235	0	0	60	0	0	5
38	20	5.2	178	0	0	80	0	0	6
39	20	4.8	587	0	0	80	0	0	6
40	20	5.1	854	0	0	80	0	0	6
41	10	6.2	607	0	0	0	90	0	7
42	20	11.4	508	0	0	0	80	0	7
43	30	13.8	421	0	0	0	70	0	7
44	40	17.6	350	0	0	0	60	0	7

45	20	9.5	498	1	0	0	79	0	7
46	20	5.9	476	0	0	0	78	0	7
47	20	6.8	443	1	0	0	77	0	7
48	20	14.1	262	0	0	0	80	0	7
49	20	18.3	198	0	0	0	80	0	8
50	19.95	17.2	193	0	0	0	79.95	0	8
51	19.9	17.3	1661	0	0	0	79.9	0	8
52	19.75	17.5	132	0	0	0	79.75	0	8
53	19.5	17.6	89	0	0	0	79.5	0	9
54	15	7.2	144	0	0	0	0	85	9
55	15	12.88	140	0	0	0	0	84.6	9
56	15	13.03	137	0	0	0	0	83.94	9
57	15	12.03	132	0	0	0	0	82.31	9
58	15	12.1	119	0	0	0	0	78.32	9
59	15	14.1	107	0	0	0	0	72.96	9
60	15	12.3	100	0	0	0	0	69.13	9
61	15	7.1	131.5	0	0	0	0	85	10
62	15	9.5	135	0	0	0	0	84.5	10
63	15	9.8	135.5	0	0	0	0	84	10
64	30	12.4	285	0	0	0	70	0	11
65	30	18.7	357	0	0	0	70	0	11
66	30	18.2	319	0	0	0	70	0	11
67	21.8	9.7	130	0	0	0	78.2	0	12
68	21.6	8.6	132	0	0	0.1	78.3	0	12
69	21.4	8.2	135	0	0	0.5	78.1	0	12
70	21.3	7.9	153	0	0	1	77.7	0	12
71	100	10.8	100	0	0	0	0	0	13
72	95	11.3	97	0	0	0	0	5	13
73	90	10.8	94	0	0	0	0	10	13
74	85	11.1	86	0	0	0	0	15	13
75	20	16.7	216	0	0	0	0	80	14
76	20	14.8	247	0	0	0	0	79.1	14
77	20	14.5	236	0	0	0	0	78.2	14
78	20	12.3	231	0	0	0	0	75.4	14
79	20	12	194	0	0	0	0	71	14
80	20	17.1	64	0	0	0	0	34	14
81	5	27.5	34.1	0	0	0	0	0	15
82	5	23.6	29.8	0	0	0	0	0	15
83	20	50.4	22.9	0	0	0	0	0	15
84	20	50.4	22.9	0	0	0	0	0	15
85	20	50.4	22.9	0	0	0	0	0	15
86	20	62.3	27.4	0	0	0	0	0	15
87	20	62.3	27.4	0	0	0	0	0	15
88	20	62.3	27.4	0	0	0	0	0	15
89	15	13.8	68	0	0	0	0	85	16
90	15	13.8	68	0	0	0	0	85	16
91	15	11.4	125	0	0	0	0	85	16
92	15	11.4	125	0	0	0	0	85	16

93	15	8.7	137	0	0	0	0	85	16
94	15	8.7	137	0	0	0	0	85	16
95	15	16.7	13	0	0	0	0	85	16
96	15	16.7	13	0	0	0	0	85	16
97	15	8.6	145	0	0	0	0	85	16
98	15	8.6	145	0	0	0	0	85	16
99	15	8	178	0	0	0	0	85	16
100	15	8	178	0	0	0	0	85	16
101	7.2	6.8	400	0	0	92.8	0	0	17
102	8	14.6	438	0	0	92	0	0	17
103	12.1	32.4	460	0	0	87.9	0	0	17
104	3.9	15.9	418	0	0	84	0	0	17
105	7.2	6.8	400	0	0	92.8	0	0	17
106	7.2	6.8	400	0	0	92.8	0	0	17
107	7.2	6.8	400	0	0	92.8	0	0	17
108	7.2	6.8	400	0	0	92.8	0	0	17
109	7.2	6.8	400	0	0	92.8	0	0	17
110	20	39	153	0	0	0	80	0	18
111	10	33	82	0	0	0	40	0	18
112	6.67	25	45	0	0	0	26.63	0	18
113	5	26	36	0	0	0	20	0	18
114	15	9.6	120.5	0	0	85	0	0	19
115	15	10.1	115	0	0	84.8	0	0	19
116	7.5	9.6	118	0	0	87.5	0	0	19
117	51.5	9.1	337.6	0	0	48.5	0	0	20
118	60	9.3	104.8	0	0	0	0	40	20
119	38.8	7.1	181.1	0	0	0	0	61.2	20
120	55.4	7.2	120.3	0	0	0	0	44.6	20
121	15	9	35.5	0.5	0	0	0	0	21
122	15	3.4	57.7	0.5	0	0	0	0	21
123	15	6.4	50.7	0.5	0	0	0	0	21
124	15	1.2	69.7	0.5	0	0	0	0	21
125	10	12.2	48	0	0	0	0	0	22
126	10	12.2	48	0	0	0	0	0	22
127	10	12.2	48	0	0	0	0	0	22
128	10	9.4	112	0	0	0	0	90	22
129	10	9.4	112	0	0	0	0	90	22
130	11.7	14.8	342.5	0	20	0	68.3	0	23
131	7.9	14.6	367	0	50	0	42.1	0	23
132	3.6	13.9	361	0	80	0	16.4	0	23
133	15.7	23.3	300	0	84.3	0	0	0	23
134	10	11	154	0	0	0	0	90	24
135	7.5	17	158	0	0	0	0	90	24
136	5	7	166	0	0	0	0	90	24
137	2.5	4	165	0	0	0	0	90	24
138	19.5	9	294	0	0	0	0	80.5	25
139	19.8	7.8	341	0	0	0	0	80.15	25
140	20	8.3	322	1	0	0	0	79	25
•			~						

141	20	7.5	324	1	0	0	0	79	25
142	20	8	407	1	0	0	0	78.95	25
143	20.3	9.1	314	0	0	0	0	79.65	25
144	20	9.1	314	1	0	0	0	78.95	25
145	20	9.1	314	1	0	0	0	78.95	25
146	15	15.3	694	0	0	85	0	0	26
147	15	15.3	986	0	0	85	0	0	26
148	10	2.8	312	0	0	0	90	0	27
149	10	5.2	427	0	0	0	90	0	27
150	10	5.4	407	0	0	0	90	0	27
151	15	14.3	408	0	85	0	0	0	28
152	15	12.9	332	0	85	0	0	0	28
153	15	5.6	376	0	85	0	0	0	28
154	15	5.6	376	0	85	0	0	0	28
155	15	5.6	376	0	85	0	0	0	28
156	15	5.6	376	0	85	0	0	0	28
157	15	11.7	217	0	0	0	0	85	29
158	15	9.15	215	0	0	0	0	85	29
159	15	10.575	225	0	0	0	0	85	29
160	15	16.05	201	0	0	0	0	85	29
161	15	10.65	186.5	0	0	0	0	85	29
162	15	10.9	165	0	0	0	0	85	30
163	15	6.2	168.8	0.5	0	0	0	84.5	30
164	15	7.5	167.5	0.5	0	0	0	83.5	30
165	20	15.3	723	20	0	0	80	0	31
166	20	14.7	702	20	0	0	80	0	31
167	20	15.6	786	20	0	0	80	0	31
168	20	15.1	722	20	0	0	80	0	31
169	20	15.3	572	20	0	0	80	0	31

N	TiO2, %	SiC, %	Other, %	Т, К	Р Мра	H2/CO	GHSV, L*h-1*g-1	m(cat), g
1	0	0	3	493	2.4	2	2.0	3.00
2	0	0	3	493	2.4	2	2.0	3.00
3	0	0	3	493	2.4	2	2.0	3.00
4	0	0	3	493	2.4	2	2.0	3.00
5	0	0	0	493	2	2	2.0	2.50
6	0	0	0	503	2	2	2.0	2.50
7	4.5	0	0	493	2	2	2.0	2.50
8	4.5	0	0	503	2	2	2.0	2.50
9	9	0	0	493	2	2	2.0	2.50
10	9	0	0	503	2	2	2.0	2.50
11	22.5	0	0	493	2	2	2.0	2.50
12	22.5	0	0	503	2	2	2.0	2.50
13	45	0	0	493	2	2	2.0	2.50
14	45	0	0	503	2	2	2.0	2.50
15	0	0	0	493	2	2	2.0	2.50

4.0	•	•	•	500	•	2	2.0	2.50
16	0	0	0	503	2	2	2.0	2.50
17	4.5	0	0	493	2	2	2.0	2.50
18	4.5	0	0	503	2	2	2.0	2.50
19	9	0	0	493	2	2	2.0	2.50
20	9	0	0	503	2	2	2.0	2.50
21	22.5	0	0	493	2	2	2.0	2.50
22	22.5	0	0	503	2	2	2.0	2.50
23	45	0	0	493	2	2	2.0	2.50
24	45	0	0	503	2	2	2.0	2.50
25	0	0	0	493	2	2	3.0	1.00
26	0	0	0	493	2	2	3.0	1.00
27	0	0	0	493	2	2	3.0	1.00
28	0	0	0	493	2	2	3.0	1.00
29	0	0	0	498	2	2	2.4	3.00
30	0	0	0	498	2	2	2.4	3.00
31	0	0	0	498	2	2	2.4	3.00
32	0	0	0	493	0.1	2	1.2	2.00
33	0	0	0	493	0.1	2	1.2	2.00
34	0	0	0	493	0.1	2	1.2	2.00
35	0	0	0	493	0.1	2	1.2	2.00
36	0	0	0	493	0.1	2	1.2	2.00
37	0	0	0	493	0.1	2	1.2	2.00
38	0	0	0	498	2	2	6.8	0.80
39	0	0	0	498	2	2	6.8	0.80
40	0	0	0	498	2	2	6.8	0.80
41	0	0	0	493	2	2	13.5	1.00
42	0	0	0	493	2	2	13.5	1.00
43	0	0	0	493	2	2	13.5	1.00
44	0	0	0	493	2	2	13.5	1.00
45	0	0	0	493	2	2	13.5	1.00
46	0	0	2	493	2	2	13.5	1.00
47	0	0	2	493	2	2	13.5	1.00
48	0		0					
		0		493	2	2	2.0	1.00
49	0	0	0	523	2	2	2.0	1.50
50	0	0	0.1	523	2	2	2.0	1.50
51	0	0	0.2	523	2	2	2.0	1.50
52	0	0	0.5	523	2	2	2.0	1.50
53	0	0	1	523	2	2	2.0	1.50
54	0	0	0	503	1	2	1.9	6.00
55	0	0	0.4	503	1	2	1.9	6.00
56	0	0	1.06	503	1	2	1.9	6.00
57	0	0	2.69	503	1	2	1.9	6.00
58	0	0	6.68	503	1	2	1.9	6.00
59	0	0	12.04	503	1	2	1.9	6.00
60	0	0	15.87	503	1	2	1.9	6.00
61	0	0	0	453	1	2	2.8	6.00
62	0	0	0.5	453	1	2	2.8	6.00
63	0	0	1	453	1	2	2.8	6.00

C 4	0	0	0	F02	2.00	2	7.0	0.20
64	0	0	0	503	2.06	2	7.0	0.30
65	0	0	0	503	2.06	2	7.0	0.30
66	0	0	0	503	2.06	2	7.0	0.30
67	0	0	0	478	2	2	2.8	1.00
68	0	0	0	478	2	2	2.8	1.00
69	0	0	0	478	2	2	2.8	1.00
70	0	0	0	478	2	2	2.8	1.00
71	0	0	0	503	2	2	8.0	0,1
72	0	0	0	503	2	2	8.0	0,1
73	0	0	0	503	2	2	8.0	0,1
74	0	0	0	503	2	2	8.0	0,1
75	0	0	0	493	2	2	2.0	0,1
76	0	0	0.9	493	2	2	2.0	0,1
77	0	0	1.8	493	2	2	2.0	0,1
78	0	0	4.6	493	2	2	2.0	0,1
79	0	0	9	493	2	2	2.0	0,1
80	0	0	46	493	2	2	2.0	0,1
81	0	95	0	523	2	2	6	5
82	0	95	0	523	2	2	6	5
83	0	80	0	493	2	2	6	5
84	0	80	0	508	2	2	6	5
85	0	80	0	523	2	2	6	5
86	0	80	0	493	2	2	6	5
87	0	80	0	508	2	2	6	5
88	0	80	0	523	2	2	6	5
89	0	0	0	488	2	2	1.25	1.6
90	0	0	0	498	2	2	1.25	1.6
91	0	0	0	488	2	2	1.25	1.6
92	0	0	0	498	2	2	1.25	1.6
93	0	0	0	488	2	2	1.25	1.6
94	0	0	0	498	2	2	1.25	1.6
95	0	0	0	488	2	2	1.25	1.6
96	0	0	0	498	2	2	1.25	1.6
97	0	0	0	488	2	2	1.25	1.6
98	0	0	0	498	2	2	1.25	1.6
99	0	0	0	488	2	2	1.25	1.6
100	0	0	0	498	2	2	1.25	1.6
101	0	0	0	513	2	1	4	0.4
101	0	0	0	513	2	1	4	0.4
102	0	0	0	513	2	1	4	0.4
104	0	0	0	513	2	1	3.3	0.4
105	0	0	0	513	2	1	3.3	0.4
106	0	0	0	513	2	1	5.3	0.4
107	0	0	0	513	2	1	8	0.4
108	0	0	0	493	2	1	3.3	0.4
109	0	0	0	493	2	1	3.3	0.4
110	0	0	0	493	2	2	1	0.3
111	0	0	50	493	2	2	1	0.3

440	•	•	66.7	400	2	2		0.0
112	0	0	66.7	493	2	2	1	0.3
113	0	0	75	493	2	2	1.0	0.30
114	0	0	0	523	2	2	6.3	4.00
115	0	0	0.2	523	2	2	6.3	4.00
116	0	0	5	523	2	2	6.3	4.00
117	0	0	0	503	2	2	11.3	0.25
118	0	0	0	503	2	2	11.3	0.25
119	0	0	0	503	2	2	11.3	0.25
120	0	0	0	503	2	2	11.3	0.25
121	0	0	84.5	493	1	2	3.76	0.5
122	0	0	84.5	493	1	2	3.76	0.5
123	0	0	84.5	493	1	2	3.76	0.5
124	0	0	84.5	493	1	2	3.76	0.5
125	0	0	90	493	2	2	1.54	3
126	0	0	90	493	2	2	0.77	3
127	0	0	90	503	2	2	0.77	3
128	0	0	0	493	2	2	0.77	3
129	0	0	0	503	2	2	0.77	3
130	0	0	0	523	2	2	12	0.5
131	0	0	0	523	2	2	12	0.5
132	0	0	0	523	2	2	12	0.5
133	0	0	0	523	2	2	12	0.5
134	0	0	0	513	2	2	6.7	0.0123
135	0	0	2.5	513	2	2	6.7	0.0123
136	0	0	5	513	2	2	6.7	0.0123
137	0	0	7.5	513	2	2	6.7	0.0123
138	0	0	0	493	2	2	2.6	0.5
139	0	0	0.05	493	2	2	2.6	0.5
140	0	0	0.03	493	2	2	7	0.5
141	0	0	0	493	2	2	7	0.5
141	0	0	0.05	493	2	2	7	0.5
	0	0						
143			0.05	493	2	2	2.6	0.5
144	0	0	0.05	493	2	2	7	0.5
145	0	0	0.05	493	2	2	2.6	0.5
146	0	0	0	503	2	2	0.5	3
147	0	0	0	503	2	2	0.5	3
148	0	0	0	493	1	1.8	1.8	1
149	0	0	0	493	1	1.8	1.8	1
150	0	0	0	493	1	1.8	1.8	1
151	0	0	0	503	1	2	8	1
152	0	0	0	503	1	2	8	1
153	0	0	0	483	1	2	8	1
154	0	0	0	493	1	2	8	1
155	0	0	0	503	1	2	8	1
156	0	0	0	513	1	2	8	1
157	0	0	0	483	1	2	4	0.5
158	0	0	0	483	1	2	4	0.5
159	0	0	0	483	1	2	4	0.5

160	0	0	0	483	1	2	4	0.5
161	0	0	0	483	1	2	4	0.5
162	0	0	0	493	2.2	2	1.82	15
163	0	0	0	493	2.2	2	5.9	15
164	0	0	1	493	2.2	2	0.78	15
165	0	0	0	503	2	2	6.75	0.4
166	0	0	0	503	2	2	6.75	0.4
167	0	0	0	503	2	2	6.75	0.4
168	0	0	0	503	2	2	6.75	0.4
169	0	0	0	503	2	2	6.75	0.4

N	CO(conv)	CH4	CO2	C2-C4	C5+	Mult
1	54.0	20.9	2.6	3.4	73.1	39.4686
2	71.0	24.0	2.3	3.4	70.3	49.9272
3	78.0	19.3	1.2	5.0	74.5	58.1334
4	57.0	22.3	0.9	4.5	72.4	41.2395
5	27.3	8.6	0.6	8.4	82.4	22.50629
6	30.4	9.8	0.7	9.6	79.8	24.26569
7	31.4	7.7	0.4	7.5	84.4	26.50499
8	44.4	9.3	0.5	8.0	82.2	36.48437
9	66.5	7.2	0.3	5.5	87.0	57.84684
10	75.3	8.7	0.7	6.0	84.6	63.72344
11	42.5	9.0	0.7	9.3	81.1	34.45079
12	55.9	10.9	0.8	10.3	78.0	43.58192
13	34.3	11.0	0.8	11.1	77.1	26.44519
14	53.0	12.4	0.9	11.5	75.2	39.87079
15	13.4	18.1	0.2	35.2	46.5	6.236041
16	17.7	11.0	0.4	16.8	71.8	12.71587
17	16.4	17.6	0.8	19.5	62.1	10.18941
18	24.0	16.9	1.1	18.2	63.8	15.31849
19	25.5	15.4	0.9	16.0	67.8	17.27721
20	37.0	14.8	1.1	13.5	70.6	26.11485
21	21.8	19.7	1.0	20.4	59.0	12.85846
22	34.7	15.6	1.1	13.1	70.2	24.3504
23	17.1	29.3	1.0	34.9	34.8	5.94952
24	28.8	21.7	1.2	21.7	55.4	15.94088
25	22.0	6.4	1.0	2.4	90.2	19.844
26	25.2	7.8	1.2	3.1	87.9	22.1508
27	27.5	8.1	1.7	4.5	85.7	23.5675
28	30.1	9.5	2.5	6.8	81.2	24.4412
29	53.8	15.4	0.0	32.5	52.1	28.0298
30	52.3	13.8	0.0	30.5	55.7	29.10791
31	48.3	11.5	0.0	26.8	61.7	29.8011
32	2.0	55.0	3.0	29.0	13.0	0.26
33	13.0	34.0	6.0	14.0	46.0	5.98
34	25.0	36.0	6.0	14.0	44.0	11
35	30.0	46.0	9.0	18.0	27.0	8.1

36 39.0 53.0 12.0 16.0 19.0 7.41 37 20.0 55.0 9.0 18.0 18.0 3.6 38 64.0 10.6 0.3 2.0 87.1 55.73823 39 40.0 15.2 0.0 2.5 82.3 32.91291 40 60.0 18.9 0.0 3.3 77.8 46.66667 41 13.2 26.7 5.9 23.8 43.6 5.749389 42 23.1 19.3 1.2 15.6 63.9 14.76848 43 33.1 21.1 1.1 15.3 62.5 20.69159 44 30.1 18.4 0.7 14.7 66.2 19.93714 45 43.0 13.9 1.3 11.5 73.2 31.49654 46 13.2 18.6 3.3 35.4 42.7 5.642553 47 11.5 19.5 4.4 33.8 42.3 4.859465 48 17.7 16.9 5.7 18.0 59.4
38 64.0 10.6 0.3 2.0 87.1 55.73823 39 40.0 15.2 0.0 2.5 82.3 32.91291 40 60.0 18.9 0.0 3.3 77.8 46.66667 41 13.2 26.7 5.9 23.8 43.6 5.749389 42 23.1 19.3 1.2 15.6 63.9 14.76848 43 33.1 21.1 1.1 15.3 62.5 20.69159 44 30.1 18.4 0.7 14.7 66.2 19.93714 45 43.0 13.9 1.3 11.5 73.2 31.49654 46 13.2 18.6 3.3 35.4 42.7 5.642553 47 11.5 19.5 4.4 33.8 42.3 4.859465 48 17.7 16.9 5.7 18.0 59.4 10.51981 49 94.4 18.4 5.7 6.8 69.1 65.21697 50 39.6 11.9 8.1 25.1 54
39 40.0 15.2 0.0 2.5 82.3 32.91291 40 60.0 18.9 0.0 3.3 77.8 46.66667 41 13.2 26.7 5.9 23.8 43.6 5.749389 42 23.1 19.3 1.2 15.6 63.9 14.76848 43 33.1 21.1 1.1 15.3 62.5 20.69159 44 30.1 18.4 0.7 14.7 66.2 19.93714 45 43.0 13.9 1.3 11.5 73.2 31.49654 46 13.2 18.6 3.3 35.4 42.7 5.642553 47 11.5 19.5 4.4 33.8 42.3 4.859465 48 17.7 16.9 5.7 18.0 59.4 10.51981 49 94.4 18.4 5.7 6.8 69.1 65.21697 50 39.6 11.9 8.1 25.1 54.8 21.71382 51 27.6 24.1 30.7 23.6
40 60.0 18.9 0.0 3.3 77.8 46.66667 41 13.2 26.7 5.9 23.8 43.6 5.749389 42 23.1 19.3 1.2 15.6 63.9 14.76848 43 33.1 21.1 1.1 15.3 62.5 20.69159 44 30.1 18.4 0.7 14.7 66.2 19.93714 45 43.0 13.9 1.3 11.5 73.2 31.49654 46 13.2 18.6 3.3 35.4 42.7 5.642553 47 11.5 19.5 4.4 33.8 42.3 4.859465 48 17.7 16.9 5.7 18.0 59.4 10.51981 49 94.4 18.4 5.7 6.8 69.1 65.21697 50 39.6 11.9 8.1 25.1 54.8 21.71382 51 27.6 24.1 30.7 23.6 21.6 5.952566 52 29.2 24.9 32.0 26.5 <t< td=""></t<>
41 13.2 26.7 5.9 23.8 43.6 5.749389 42 23.1 19.3 1.2 15.6 63.9 14.76848 43 33.1 21.1 1.1 15.3 62.5 20.69159 44 30.1 18.4 0.7 14.7 66.2 19.93714 45 43.0 13.9 1.3 11.5 73.2 31.49654 46 13.2 18.6 3.3 35.4 42.7 5.642553 47 11.5 19.5 4.4 33.8 42.3 4.859465 48 17.7 16.9 5.7 18.0 59.4 10.51981 49 94.4 18.4 5.7 6.8 69.1 65.21697 50 39.6 11.9 8.1 25.1 54.8 21.71382 51 27.6 24.1 30.7 23.6 21.6 5.952566 52 29.2 24.9 32.0 26.5 16.6 4.860054 53 32.6 24.9 32.5 27.2
42 23.1 19.3 1.2 15.6 63.9 14.76848 43 33.1 21.1 1.1 15.3 62.5 20.69159 44 30.1 18.4 0.7 14.7 66.2 19.93714 45 43.0 13.9 1.3 11.5 73.2 31.49654 46 13.2 18.6 3.3 35.4 42.7 5.642553 47 11.5 19.5 4.4 33.8 42.3 4.859465 48 17.7 16.9 5.7 18.0 59.4 10.51981 49 94.4 18.4 5.7 6.8 69.1 65.21697 50 39.6 11.9 8.1 25.1 54.8 21.71382 51 27.6 24.1 30.7 23.6 21.6 5.952566 52 29.2 24.9 32.0 26.5 16.6 4.860054 53 32.6 24.9 32.5 27.2 15.3 5.000135 54 32.1 16.2 1.1 5.0 <
43 33.1 21.1 1.1 15.3 62.5 20.69159 44 30.1 18.4 0.7 14.7 66.2 19.93714 45 43.0 13.9 1.3 11.5 73.2 31.49654 46 13.2 18.6 3.3 35.4 42.7 5.642553 47 11.5 19.5 4.4 33.8 42.3 4.859465 48 17.7 16.9 5.7 18.0 59.4 10.51981 49 94.4 18.4 5.7 6.8 69.1 65.21697 50 39.6 11.9 8.1 25.1 54.8 21.71382 51 27.6 24.1 30.7 23.6 21.6 5.952566 52 29.2 24.9 32.0 26.5 16.6 4.860054 53 32.6 24.9 32.5 27.2 15.3 5.000135 54 32.1 16.2 1.1 5.0 77.7 24.92024 55 32.1 18.5 1.5 4.3 <t< td=""></t<>
44 30.1 18.4 0.7 14.7 66.2 19.93714 45 43.0 13.9 1.3 11.5 73.2 31.49654 46 13.2 18.6 3.3 35.4 42.7 5.642553 47 11.5 19.5 4.4 33.8 42.3 4.859465 48 17.7 16.9 5.7 18.0 59.4 10.51981 49 94.4 18.4 5.7 6.8 69.1 65.21697 50 39.6 11.9 8.1 25.1 54.8 21.71382 51 27.6 24.1 30.7 23.6 21.6 5.952566 52 29.2 24.9 32.0 26.5 16.6 4.860054 53 32.6 24.9 32.5 27.2 15.3 5.000135 54 32.1 16.2 1.1 5.0 77.7 24.92024 55 32.1 18.5 1.5 4.3 75.7 24.26494 56 35.6 19.1 1.7 4.0 <td< td=""></td<>
45 43.0 13.9 1.3 11.5 73.2 31.49654 46 13.2 18.6 3.3 35.4 42.7 5.642553 47 11.5 19.5 4.4 33.8 42.3 4.859465 48 17.7 16.9 5.7 18.0 59.4 10.51981 49 94.4 18.4 5.7 6.8 69.1 65.21697 50 39.6 11.9 8.1 25.1 54.8 21.71382 51 27.6 24.1 30.7 23.6 21.6 5.952566 52 29.2 24.9 32.0 26.5 16.6 4.860054 53 32.6 24.9 32.5 27.2 15.3 5.000135 54 32.1 16.2 1.1 5.0 77.7 24.92024 55 32.1 18.5 1.5 4.3 75.7 24.26494 56 35.6 19.1 1.7 4.0 75.1 26.7082 57 24.7 20.5 1.8 4.7 7
46 13.2 18.6 3.3 35.4 42.7 5.642553 47 11.5 19.5 4.4 33.8 42.3 4.859465 48 17.7 16.9 5.7 18.0 59.4 10.51981 49 94.4 18.4 5.7 6.8 69.1 65.21697 50 39.6 11.9 8.1 25.1 54.8 21.71382 51 27.6 24.1 30.7 23.6 21.6 5.952566 52 29.2 24.9 32.0 26.5 16.6 4.860054 53 32.6 24.9 32.5 27.2 15.3 5.000135 54 32.1 16.2 1.1 5.0 77.7 24.92024 55 32.1 18.5 1.5 4.3 75.7 24.26494 56 35.6 19.1 1.7 4.0 75.1 26.7082 57 24.7 20.5 1.8 4.7 73.1 18.02419 58 15.8 21.5 1.2 5.0 72
47 11.5 19.5 4.4 33.8 42.3 4.859465 48 17.7 16.9 5.7 18.0 59.4 10.51981 49 94.4 18.4 5.7 6.8 69.1 65.21697 50 39.6 11.9 8.1 25.1 54.8 21.71382 51 27.6 24.1 30.7 23.6 21.6 5.952566 52 29.2 24.9 32.0 26.5 16.6 4.860054 53 32.6 24.9 32.5 27.2 15.3 5.000135 54 32.1 16.2 1.1 5.0 77.7 24.92024 55 32.1 18.5 1.5 4.3 75.7 24.26494 56 35.6 19.1 1.7 4.0 75.1 26.7082 57 24.7 20.5 1.8 4.7 73.1 18.02419 58 15.8 21.5 1.2 5.0 72.4 11.41797
48 17.7 16.9 5.7 18.0 59.4 10.51981 49 94.4 18.4 5.7 6.8 69.1 65.21697 50 39.6 11.9 8.1 25.1 54.8 21.71382 51 27.6 24.1 30.7 23.6 21.6 5.952566 52 29.2 24.9 32.0 26.5 16.6 4.860054 53 32.6 24.9 32.5 27.2 15.3 5.000135 54 32.1 16.2 1.1 5.0 77.7 24.92024 55 32.1 18.5 1.5 4.3 75.7 24.26494 56 35.6 19.1 1.7 4.0 75.1 26.7082 57 24.7 20.5 1.8 4.7 73.1 18.02419 58 15.8 21.5 1.2 5.0 72.4 11.41797
49 94.4 18.4 5.7 6.8 69.1 65.21697 50 39.6 11.9 8.1 25.1 54.8 21.71382 51 27.6 24.1 30.7 23.6 21.6 5.952566 52 29.2 24.9 32.0 26.5 16.6 4.860054 53 32.6 24.9 32.5 27.2 15.3 5.000135 54 32.1 16.2 1.1 5.0 77.7 24.92024 55 32.1 18.5 1.5 4.3 75.7 24.26494 56 35.6 19.1 1.7 4.0 75.1 26.7082 57 24.7 20.5 1.8 4.7 73.1 18.02419 58 15.8 21.5 1.2 5.0 72.4 11.41797
50 39.6 11.9 8.1 25.1 54.8 21.71382 51 27.6 24.1 30.7 23.6 21.6 5.952566 52 29.2 24.9 32.0 26.5 16.6 4.860054 53 32.6 24.9 32.5 27.2 15.3 5.000135 54 32.1 16.2 1.1 5.0 77.7 24.92024 55 32.1 18.5 1.5 4.3 75.7 24.26494 56 35.6 19.1 1.7 4.0 75.1 26.7082 57 24.7 20.5 1.8 4.7 73.1 18.02419 58 15.8 21.5 1.2 5.0 72.4 11.41797
51 27.6 24.1 30.7 23.6 21.6 5.952566 52 29.2 24.9 32.0 26.5 16.6 4.860054 53 32.6 24.9 32.5 27.2 15.3 5.000135 54 32.1 16.2 1.1 5.0 77.7 24.92024 55 32.1 18.5 1.5 4.3 75.7 24.26494 56 35.6 19.1 1.7 4.0 75.1 26.7082 57 24.7 20.5 1.8 4.7 73.1 18.02419 58 15.8 21.5 1.2 5.0 72.4 11.41797
52 29.2 24.9 32.0 26.5 16.6 4.860054 53 32.6 24.9 32.5 27.2 15.3 5.000135 54 32.1 16.2 1.1 5.0 77.7 24.92024 55 32.1 18.5 1.5 4.3 75.7 24.26494 56 35.6 19.1 1.7 4.0 75.1 26.7082 57 24.7 20.5 1.8 4.7 73.1 18.02419 58 15.8 21.5 1.2 5.0 72.4 11.41797
53 32.6 24.9 32.5 27.2 15.3 5.000135 54 32.1 16.2 1.1 5.0 77.7 24.92024 55 32.1 18.5 1.5 4.3 75.7 24.26494 56 35.6 19.1 1.7 4.0 75.1 26.7082 57 24.7 20.5 1.8 4.7 73.1 18.02419 58 15.8 21.5 1.2 5.0 72.4 11.41797
54 32.1 16.2 1.1 5.0 77.7 24.92024 55 32.1 18.5 1.5 4.3 75.7 24.26494 56 35.6 19.1 1.7 4.0 75.1 26.7082 57 24.7 20.5 1.8 4.7 73.1 18.02419 58 15.8 21.5 1.2 5.0 72.4 11.41797
55 32.1 18.5 1.5 4.3 75.7 24.26494 56 35.6 19.1 1.7 4.0 75.1 26.7082 57 24.7 20.5 1.8 4.7 73.1 18.02419 58 15.8 21.5 1.2 5.0 72.4 11.41797
56 35.6 19.1 1.7 4.0 75.1 26.7082 57 24.7 20.5 1.8 4.7 73.1 18.02419 58 15.8 21.5 1.2 5.0 72.4 11.41797
57 24.7 20.5 1.8 4.7 73.1 18.02419 58 15.8 21.5 1.2 5.0 72.4 11.41797
58 15.8 21.5 1.2 5.0 72.4 11.41797
50
59 7.2 19.9 1.4 4.9 73.8 5.277602
60 6.3 20.8 1.5 4.7 73.1 4.568366
61 35.3 12.1 0.0 10.5 77.3 27.30879
62 37.9 9.9 0.0 8.8 81.3 30.83401
63 39.7 8.6 0.0 7.9 83.5 33.137
64 28.0 25.0 3.0 14.0 58.0 16.24
65 29.0 32.0 2.0 12.0 54.0 15.66
66 28.0 32.0 6.0 13.0 49.0 13.72
67 41.0 8.1 0.7 6.7 84.5 34.645
68 49.6 4.2 0.0 3.4 92.4 45.8304
69 50.8 4.8 0.2 4.1 90.9 46.1772
70 56.7 7.9 0.5 6.3 85.3 48.3651
71 8.3 2.9 0.0 9.5 87.6 7.2708
72 89.6 3.5 20.4 5.1 71.0 63.5825
73 78.9 2.8 14.0 5.1 78.2 61.66819
74 11.4 5.0 0.0 7.1 87.9 10.0206
75 25.9 9.6 0.0 8.8 81.6 21.1344
76 20.5 10.6 0.0 7.7 81.7 16.7485
77 21.8 7.1 0.0 5.8 87.1 18.9878
78 29.9 4.3 0.0 5.8 89.9 26.8801
79 30.2 5.1 0.0 7.0 87.9 26.5458
80 17.6 7.4 0.0 9.4 83.2 14.6432
81 35.4 0 1.06 3.24 95.7 33.8778
82 22.2 0 1.22 4.74 94.04 20.87688
83 34.1 0 0.64 3.39 95.97 32.72577

84	44.6	0	0.53	3.2	96.27	42.93642
85	53.9	0	0.64	8.53	90.83	48.95737
86	31.1	0	0.22	0.96	98.82	30.73302
87	39.4	0	0.41	0.44	99.16	39.06904
88	50.9	0	0.27	1.57	98.16	49.96344
89	41.5	8.9	0.3	5.7	85.1	35.3165
90	56.4	11.5	0.5	8.2	79.8	45.0072
91	53.3	8.5	0.4	6.3	84.8	45.1984
92	73.2	10.2	0.8	7.5	81.5	59.658
93	43.6	9.1	0.4	7.4	83.1	36.2316
94	67.9	11.6	0.7	10.4	77.3	52.4867
95	30.4	8.4	0.2	6.8	84.6	25.7184
96	42.6	9.2	0.4	7.3	83.1	35.4006
97	41.3	9.4	0.7	7.7	82.2	33.9486
98	61.2	12	0.7	10.3	77	47.124
99	34.4	12.3	0.8	9.3	77.6	26.6944
100	43.9	14.5	0.9	10.9	73.7	32.3543
101	19.7	17.08292	2.497502	14.08591	66.33367	13.06773
102	12.1	46.19141	4.589844	16.11328	33.10547	4.005762
103	10.5	49.3	4.9	17.4	28.4	2.982
104	9.9	22.8	3.6	17.9	55.7	5.5143
105	23.6	16.71672	2.602603	13.21321	67.46747	15.92232
106	14.8	19.1	2.7	14.7	63.5	9.398
107	9.9	21.22122	4.704705	16.71672	57.35736	5.678378
108	9.4	12.08791	2.097902	10.48951	75.32468	7.080519
109	14.2	22.28856	2.288557	16.1194	59.30348	8.421095
110	24.2	12.8	1.4	13.1	72.7	17.5934
111	37.3	7.9	1	10.2	80.9	30.1757
112	36.2	9.2	1.3	12.8	76.7	27.7654
113	32.6	9.6	0.9	13.3	76.2	24.8412
114	57.6	8.358209	0.497512	8.855721	82.28856	47.39821
115	71.3	8.477842	3.660886	9.055877	78.80539	56.18825
116	65.1	8.276534	2.629017	9.152872	79.94158	52.04197
117	16.8	19.56947	2.152642	8.610568	69.66732	11.70411
118	35.5	7.876371	0.299103	4.386839	87.43769	31.04038
119	33.5	7.577268	0.299103	4.087737	88.03589	29.49202
120	62.6	12.15415	1.185771	5.83004	80.83004	50.5996
121	15.3	14.39842	1.282051	7.39645	76.92308	11.76923
122	29.2	17.50246	1.671583	8.751229	72.07473	21.04582
123	22.2	15.87771	1.380671	8.77712	73.9645	16.42012
124	43.2	18.50394	1.673228	11.12205	68.70079	29.67874
125	22.00	11	1.073228	5	83	18.26
126	50.00	9	1	4	86	43
127	83.00	11	2	5	82	68.06
128	9.00	5.050505	4.040404	2.020202	88.88889	8
129	11.00	8	6	4	82	9.02
130	40.20	15.50234	0.626056	8.645533	75.22608	30.24088
131	22.20	18.52219	0.950872	12.87639	67.65055	15.01842
101	22.20	10.52215	0.550072	12.07000	07.05055	13.01072

132	6.90	26.21686	1.068461	22.85319	49.8615	3.440443
133	22.00	29.60689	0.980295	22.87355	46.53926	10.23864
134	52.50	11.03647	0.767754	9.021113	79.17466	41.5667
135	34.40	15.20693	0.673725	13.57074	70.5486	24.26872
136	13.20	36.58071	2.387775	21.01242	40.0191	5.282521
137	7.10	30.85714	4.095238	19.2381	45.80952	3.252476
138	21.70	13.9	0	16.2	69.9	15.1683
139	31.40	15.4	0	16	68.6	21.5404
140	18.90	12.7	0	14.2	73.1	13.8159
141	17.70	11.5	0	11.8	76.7	13.5759
142	22.80	10.7	0	12.3	77	17.556
143	24.50	11.4	0	13.2	75.4	18.473
144	9.60	14.2	0	14.6	71.2	6.8352
145	24.80	12.61261	0	12.81281	74.57457	18.49449
146	29.70	24.20136	3.194579	14.13359	58.47047	17.36573
147	73.10	18.41851	3.567985	9.739634	68.27387	49.9082
148	12.00	20	0	15	65	7.8
149	37.00	9.760956	0	9.561753	80.67729	29.8506
150	55.00	15.04514	0	11.2337	73.72116	40.54664
151	12.50	17.28272	0.0999	16.18382	66.43357	8.304196
152	14.30	20.77922	0.0999	20.67932	58.44156	8.357143
153	6.50	10.38961	0.0999	10.08991	79.42058	5.162338
154	11.20	14.48551	0.0999	13.88611	71.52847	8.011189
155	13.70	14.48551	0.0999	14.78521	70.62937	9.676224
156	18.90	27.37263	0.0999	23.67632	48.85115	9.232867
157	21.70	11.25	0	13.74	75.01	16.27717
158	21.30	12.97	0	14.14	72.89	15.52557
159	19.60	12.38	0	15.01	72.61	14.23156
160	19.30	12.10268	0	15.62218	72.27514	13.9491
161	16.50	14.23	0	14.14	71.63	11.81895
162	51.50	8.848942	0.67534	10.29894	80.17678	41.29104
163	47.00	7.870738	0.872324	8.713323	82.54362	38.7955
164	42.50	13.28644	2.305588	9.876905	74.53107	31.6757
165	69.00	20.33564	1.1846	10.56269	67.91708	46.86278
166	72.90	18.69436	1.088032	11.27596	68.94164	50.25846
167	72.30	16.28825	1.283317	8.094768	74.33366	53.74324
168	70.10	14.25743	0.990099	7.029703	77.72277	54.48366
169	73.80	17.3399	1.477833	9.359606	71.82266	53.00512

Python3 code for Decision Tree:

import pandas as pd
from sklearn import tree
dataframe = pd.read_excel("Data.xlsx", header=0) # load dataset from Excel
data = dataframe.values
X, Y = data[:,:-1], data[:,-1]
feature_data=dataframe.columns
feature_list=feature_data[:-1]
model = tree.DecisionTreeRegressor(max_depth=3) # Decision Tree Model
model.fit(X,Y)
dot_data = tree.export_graphviz(model, out_file='DecisionTree.txt', feature_names=feature_list, filled=True, rounded=True, special_characters=True)
input('Press Enter to exit...')

Python3 code for Random Forest:

```
from numpy import mean, std
                                                                  # Used modules
import pandas as pd
from sklearn.model selection import cross val score, RepeatedKFold, train test split
from sklearn.ensemble import RandomForestRegressor
from sklearn.inspection import permutation importance
from sklearn.metrics import mean absolute error
                                                                         # Read dataset for model
dataframe = pd.read excel('Data.xlsx', header=0)
building from Data.xlsx
feature list=dataframe.columns[:-1]
Xr, Yr = dataframe.values[:, :-1], dataframe.values[:, -1]
(X,Xtest,Y,Ytest) = train_test_split(Xr,Yr,test_size=0.3,random_state=100)
                                                                                  # Splitting dataset
to training (70%) and test (30%)
                                                                   # Regression Random Forest Model
model = RandomForestRegressor()
cv = RepeatedKFold(n_splits=5, n_repeats=10, random_state=1)
                                                                                 # Cross-validation
n scores = cross val score(model, Xr, Yr, scoring='neg mean absolute error', cv=cv, n jobs=-1,
error score='raise')
print('MAE cross validation: %.3f (%.3f)' % (-mean(n_scores), std(n_scores))+'\n')
model.fit(X, Y)
                                      # Fit the model on the training dataset
print('MAE(training dataset): %.3f' % (mean absolute error(Y,model.predict(X))))
print('MAE(test dataset) : %.3f' % (mean absolute error(Ytest,model.predict(Xtest)))+'\n')
importances = permutation_importance(model, X, Y,
scoring='neg mean squared error').importances mean # Importance parameters estimation
print('Importances of parameters:')
i = 0
for ind in importances:
j+=1
print('Parameter '+str(j)+' ('+feature list[j-1]+'): '+str(round(100*ind/sum(importances)))+' %')
input('P.S.: Obtained parameters can vary from run to run. Press Enter to exit...')
```

REFERENCES

- (1) Yaghoobpour, E.; Zamani, Y.; Zarrinpashne, S.; Zamaniyan, A. Fischer–Tropsch Synthesis: Effect of Silica on Hydrocarbon Production over Cobalt-Based Catalysts. *Chemical Papers* **2019**, *73* (1), 205–214. https://doi.org/10.1007/s11696-018-0565-9.
- (2) Wu, H.; Yang, Y.; Suo, H.; Qing, M.; Yan, L.; Wu, B.; Xu, J.; Xiang, H.; Li, Y. Effect of TiO2 Promotion on the Structure and Performance of Silica-Supported Cobalt-Based Catalysts for Fischer-Tropsch Synthesis. *J Mol Catal A Chem* **2014**, *390*, 52–62. https://doi.org/10.1016/j.molcata.2014.03.004.
- (3) Vosoughi, V.; Badoga, S.; Dalai, A. K.; Abatzoglou, N. Effect of Pretreatment on Physicochemical Properties and Performance of Multiwalled Carbon Nanotube Supported Cobalt Catalyst for Fischer-Tropsch Synthesis. *Ind Eng Chem Res* **2016**, *55* (21), 6049–6059. https://doi.org/10.1021/acs.iecr.5b04381.
- (4) Nakhaei Pour, A.; Housaindokht, M. R.; Kamali Shahri, S. M. Fischer-Tropsch Synthesis over Cobalt/CNTs Catalysts: Functionalized Support and Catalyst Preparation Effect on Activity and Kinetic Parameters. *Ind Eng Chem Res* **2018**, *57* (41), 13639–13649. https://doi.org/10.1021/acs.iecr.8b02485.
- (5) Chernyak, S. A.; Selyaev, G. E.; Suslova, E. V.; Egorov, A. V.; Maslakov, K. I.; Kharlanov, A. N.; Savilov, S. V.; Lunin, V. V. Effect of Cobalt Weight Content on the Structure and Catalytic Properties of Co/CNT Catalysts in the Fischer–Tropsch Synthesis. *Kinetics and Catalysis* **2016**, *57* (5), 640–646. https://doi.org/10.1134/S0023158416050062.
- (6) Fu, T.; Jiang, Y.; Lv, J.; Li, Z. Effect of Carbon Support on Fischer-Tropsch Synthesis Activity and Product Distribution over Co-Based Catalysts. *Fuel Processing Technology* **2013**, *110*, 141–149. https://doi.org/10.1016/j.fuproc.2012.12.006.
- (7) Martínez, A.; López, C.; Márquez, F.; Díaz, I. Fischer-Tropsch Synthesis of Hydrocarbons over Mesoporous Co/SBA-15 Catalysts: The Influence of Metal Loading, Cobalt Precursor, and Promoters. *J Catal* **2003**, *220* (2), 486–499. https://doi.org/10.1016/S0021-9517(03)00289-6.
- (8) Dai, Y.; Yu, F.; Li, Z.; An, Y.; Lin, T.; Yang, Y.; Zhong, L.; Wang, H.; Sun, Y. Effect of Sodium on the Structure-Performance Relationship of Co/SiO2 for Fischer-Tropsch Synthesis. *Chin J Chem* **2017**, *35* (6), 918–926. https://doi.org/10.1002/cjoc.201600748.
- (9) Zhang, Y.; Xiong, H.; Liew, K.; Li, J. Effect of Magnesia on Alumina-Supported Cobalt Fischer-Tropsch Synthesis Catalysts. *J Mol Catal A Chem* **2005**, *237* (1–2), 172–181. https://doi.org/10.1016/j.molcata.2005.04.057.
- (10) Bao, A.; Liew, K.; Li, J. Fischer-Tropsch Synthesis on CaO-Promoted Co/Al2O3 Catalysts. *J Mol Catal A Chem* **2009**, *304* (1–2), 47–51. https://doi.org/10.1016/j.molcata.2009.01.022.
- (11) Bartolini, M.; Molina, J.; Alvarez, J.; Goldwasser, M.; Pereira Almao, P.; Zurita, M. J. P. Effect of the Porous Structure of the Support on Hydrocarbon Distribution in the Fischer-Tropsch Reaction. *J Power Sources* **2015**, *285*, 1–11. https://doi.org/10.1016/j.jpowsour.2015.03.081.
- (12) Huang, J.; Qian, W.; Ma, H.; Zhang, H.; Ying, W. Highly Selective Production of Heavy Hydrocarbons over Cobalt-Graphene-Silica Nanocomposite Catalysts. *RSC Adv* **2017**, *7* (53), 33441–33449. https://doi.org/10.1039/c7ra05887j.

- (13) Koo, H. M.; Ahn, C. II; Lee, D. H.; Roh, H. S.; Shin, C. H.; Kye, H.; Bae, J. W. Roles of Al2O3 Promoter for an Enhanced Structural Stability of Ordered-Mesoporous Co3O4 Catalyst during CO Hydrogenation to Hydrocarbons. *Fuel* **2018**, *225*, 460–471. https://doi.org/10.1016/j.fuel.2018.03.175.
- (14) Park, S. J.; Cho, J. M.; Ahn, C. II; Lee, Y. J.; Jun, K. W.; Cho, B. G.; Bae, J. W. Roles of Phosphorous-Modified Al2O3 for an Enhanced Stability of Co/Al2O3 for CO Hydrogenation to Hydrocarbons. *J Mol Catal A Chem* **2017**, *426*, 177–189. https://doi.org/10.1016/j.molcata.2016.11.013.
- (15) De La Osa, A. R.; De Lucas, A.; Díaz-Maroto, J.; Romero, A.; Valverde, J. L.; Sánchez., P. FTS Fuels Production over Different Co/SiC Catalysts. *Catal Today* **2012**, *187* (1), 173–182. https://doi.org/10.1016/j.cattod.2011.12.029.
- (16) Wang, D.; Chen, C.; Wang, J.; Jia, L.; Hou, B.; Li, D. High Thermal Conductive Core-Shell Structured Al2O3@Al Composite Supported Cobalt Catalyst for Fischer-Tropsch Synthesis. *Appl Catal A Gen* **2016**, *527*, 60–71. https://doi.org/10.1016/j.apcata.2016.08.027.
- (17) Valero-Romero, M. J.; García-Mateos, F. J.; Kapteijn, F.; Rodríguez-Mirasol, J.; Cordero, T. Fischer-Tropsch Synthesis over Lignin-Derived Cobalt-Containing Porous Carbon Fiber Catalysts. *Appl Catal B* **2023**, *321*. https://doi.org/10.1016/j.apcatb.2022.122078.
- (18) Wang, D.; Chen, L.; Li, G.; Wang, Z.; Li, X.; Hou, B. Cobalt-Based Fischer-Tropsch Synthesis: Effect of the Catalyst Granule Thermal Conductivity on the Catalytic Performance. *Molecular Catalysis* **2021**, *502*. https://doi.org/10.1016/j.mcat.2021.111395.
- (19) Gu, B.; Peron, D. V.; Barrios, A. J.; Virginie, M.; La Fontaine, C.; Briois, V.; Vorokhta, M.; Šmíd, B.; Moldovan, S.; Koneti, S.; Gambu, T. G.; Saeys, M.; Ordomsky, V. V.; Khodakov, A. Y. Bismuth Mobile Promoter and Cobalt-Bismuth Nanoparticles in Carbon Nanotube Supported Fischer-Tropsch Catalysts with Enhanced Stability. *J Catal* **2021**, *401*, 102–114. https://doi.org/10.1016/j.jcat.2021.07.011.
- (20) Zhao, N.; Chen, Y.; Li, X.; Nisa, M. U.; Jiang, X.; Dai, L.; Li, Z. Preparation of High Performance Co3O4/Al2O3 Catalysts by Doping Al into ZIF-67: Effect of Al Sources on Fischer-Tropsch Synthesis. *Appl Surf Sci* **2021**, *570*. https://doi.org/10.1016/j.apsusc.2021.151127.
- (21) Han, Y.; Xiao, G.; Chen, M.; Chen, S.; Zhao, F.; Zhang, Y.; Li, J.; Hong, J. Effect of Support Modification and Precursor Decomposition Method on the Properties of CoPt/ZrO2 Fischer–Tropsch Catalysts. *Catal Today* **2021**, *375*, 1–9. https://doi.org/10.1016/j.cattod.2020.04.035.
- (22) Munirathinam, R.; Pham Minh, D.; Nzihou, A. Hydroxyapatite as a New Support Material for Cobalt-Based Catalysts in Fischer-Tropsch Synthesis. *Int J Hydrogen Energy* **2020**, *45* (36), 18440–18451. https://doi.org/10.1016/j.ijhydene.2019.09.043.
- (23) Chen, Y.; Zhang, J.; Jiang, X.; Wei, L.; Li, Z.; Liu, C. Nano-ZSM-5 Decorated Cobalt Based Catalysts for Fischer-Tropsch Synthesis to Enhance the Gasoline Range Products Selectivity. *J Taiwan Inst Chem Eng* **2020**, *116*, 153–159. https://doi.org/10.1016/j.jtice.2020.11.007.
- (24) Griboval-Constant, A.; Butel, A.; Ordomsky, V. V.; Chernavskii, P. A.; Khodakov, A. Y. Cobalt and Iron Species in Alumina Supported Bimetallic Catalysts for Fischer-Tropsch Reaction. *Appl Catal A Gen* **2014**, 481, 116–126. https://doi.org/10.1016/j.apcata.2014.04.047.
- (25) Mohammadnasabomran, S.; Tavasoli, A.; Zamani, Y.; Márquez-Álvarez, C.; Pérez-Pariente, J.; Martínez, A. Influence of Amines in the Synthesis and Properties of Mesostructured Aluminas and Assessment as

- Supports for Co-Based Fischer-Tropsch Synthesis Catalysts. *Fuel Processing Technology* **2020**, *205*. https://doi.org/10.1016/j.fuproc.2020.106433.
- (26) Chen, L.; Song, G.; Fu, Y.; Shen, J. The Effects of Promoters of K and Zr on the Mesoporous Carbon Supported Cobalt Catalysts for Fischer-Tropsch Synthesis. *J Colloid Interface Sci* **2012**, *368* (1), 456–461. https://doi.org/10.1016/j.jcis.2011.11.030.
- (27) Okoye-Chine, C. G.; Mbuya, C. O. L.; Ntelane, T. S.; Moyo, M.; Hildebrandt, D. The Effect of Silanol Groups on the Metal-Support Interactions in Silica-Supported Cobalt Fischer-Tropsch Catalysts. A Temperature Programmed Surface Reaction. *J Catal* **2020**, *381*, 121–129. https://doi.org/10.1016/j.jcat.2019.10.036.
- (28) Liu, C.; Chen, Y.; Zhao, Y.; Lyu, S.; Wei, L.; Li, X.; Zhang, Y.; Li, J. Nano-ZSM-5-Supported Cobalt for the Production of Liquid Fuel in Fischer-Tropsch Synthesis: Effect of Preparation Method and Reaction Temperature. *Fuel* **2020**, *263*. https://doi.org/10.1016/j.fuel.2019.116619.
- (29) Liu, C.; Li, J.; Zhang, Y.; Chen, S.; Zhu, J.; Liew, K. Fischer-Tropsch Synthesis over Cobalt Catalysts Supported on Nanostructured Alumina with Various Morphologies. *J Mol Catal A Chem* **2012**, *363–364*, 335–342. https://doi.org/10.1016/j.molcata.2012.07.009.
- (30) Ma, W.; Jacobs, G.; Qian, D.; Ji, Y.; Klettlinger, J. L. S.; Hopps, S. D.; Davis, B. H. Fischer-Tropsch Synthesis: Synergistic Effect of Hybrid Pt-Cd Additives on a 15%Co/Al2O3 Catalyst. *Appl Catal A Gen* **2020**, *600*. https://doi.org/10.1016/j.apcata.2020.117610.
- (31) Li, X.; Chen, Y.; Nisa, M. U.; Li, Z. Combating Poison with Poison—Irreducible Co2SiO4 as a Promoter to Modify Co-Based Catalysts in Fischer-Tropsch Synthesis. *Appl Catal B* **2020**, *267*. https://doi.org/10.1016/j.apcatb.2019.118377.