POCHODNE

GRANICE POD. WYRAŻEŃ (x-_>0)

TOCHODIVE			Giantited 1 oz. Williams (W o)	
Funkcja	Pochodna	Uwagi	$\lim_{(x+1)^{\frac{1}{x}}} = \mathbf{e}$	<u>x>(+/-)</u> ∞
С	0	c<=>R	$\lim \frac{\sin x}{x} = 1$	$\lim \left(1 + \frac{1}{x}\right)^x = \mathbf{e}$
X ^a	ax ^{a-1}	a<=>R	$\lim \frac{tgx}{x} = 1$	$\lim (1 + \frac{a}{x})^x = e^a$
a ^x	a ^x lna	a>0, x<=>R	$\lim \frac{arcsinx}{x} = 1$	
e ^x	ex	x<=>R	$\lim \frac{arctgx}{x} = 1$	
$log_a x$	¹ / _{xlna}	0 <a≠1, x="">0</a≠1,>	$\lim \frac{e^x - 1}{x} = 1$	
lnx	1/ _x	x>0	$\lim \frac{\ln(x+1)}{x} = 1$	
sinx	cosx	x<=>R	$\lim \frac{a^x - 1}{x} = \ln a$	
cosx	-sinx	x<=>R	$\lim \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$	
tgx	1/ _{cos} x	x≠90	$\mathbf{Lim} \ \frac{(x+1)^a - 1}{x} = \mathbf{a}$	
ctgx	$-\binom{1}{\sin^2 x}$	x≠180		
arcsinx	$1/\sqrt{1-x^2}$	x<=>(-1;1)		
arccosx	$-(1/\sqrt{1-x^2})$	x<=>(-1;1)		
arctg	$^{1}/_{1+x}^{2}$	x<=>R		
arcctg	$-(^{1}/_{1+x}^{2})$	x<=>R		
·\ noloży	7			

<=> - należy.

$\int 0 dx = C$	$\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} +C, a \neq 0$
$\int dx = x + C$	$\int e^x = e^x + C$
$\int x dx = \frac{1}{2}x^2 + C$	$\int \frac{dx}{1+x^2} dx = \arctan x + C$
$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + C, n \neq 0$	$\int \frac{dx}{1 + (ax + b)^2} dx = \frac{1}{a} \arctan(ax + b) + C, a \neq 0$
$\int \frac{1}{x} dx = \ln x + C$	$\int \frac{dx}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C, \ a \neq 0$
$\int \frac{1}{x^2} dx = -\frac{1}{x} + C$	$\int \frac{dx}{a^2 - x^2} dx = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right + C, \ a > 0 \ i \ x \neq 0$
$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C$	$\int \frac{dx}{ax+b} dx = \frac{1}{a} \ln ax+b + C, a \neq 0$
$\int \sqrt{x} dx = \frac{2}{3} x \sqrt{x} + C$	$\int \frac{dx}{(ax+b)^2} dx = -\frac{1}{a(ax+b)} + C$
$\int \frac{dx}{\sqrt{x}} dx = 2 \sqrt{x} + C$	$\int \frac{1}{\sin^2 x} dx = -\cot x + C$
$\int (ax+b)dx = \frac{a}{2}x^2 +bx+C$	$\int \frac{1}{\cos^2 x} dx = tgx + C$
$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + C, a \neq 0, n \neq -1$	$\int \sin x dx = -\cos x + C$
$\int \sqrt{ax+b} dx = \frac{2}{3a}(ax+b) \qquad \sqrt{ax+b} +C, a\neq 0$	$\int \cos x dx = \sin x + C$
$\int \frac{1}{\sqrt{(ax+b)}} dx = -\frac{2\sqrt{ax+b}}{a} + C, a \neq 0$	$\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C, a \neq 0$
$\int \frac{dx}{\sqrt{1-(ax+b)^2}} dx = \frac{1}{a} \arcsin(ax+b) + C , a \neq 0$	$\int \cos(ax+b)dx = \frac{1}{a} \sin(ax+b) + C, a \neq 0$
$\int \frac{dx}{\sqrt{1 + (ax+b)^2}} dx = \frac{1}{a} \ln((ax+b) + \sqrt{(ax+b)^2 + 1}) , a \neq 0$	$\int \frac{1}{\sin^2(ax+b)} dx = \frac{-1}{a} \cot(ax+b) + C, a \neq 0$
$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C, \ a \neq 0$	$\int \frac{1}{\cos^2(ax+b)} dx = \frac{1}{a} \operatorname{tg}(ax+b) + C, a \neq 0$
$\int \frac{1}{\sqrt{1+x^2}} dx = \ln(x + \sqrt{x^2 + 1}) + C$	$\int \operatorname{arctgxdx} = \operatorname{xarctgx} - \ln \sqrt{x^2 + 1} + C$
$\int \frac{1}{\sqrt{x^2 - 1}} dx = \ln x + \sqrt{x^2 - 1} + C, x > 1$	$\int m^{ax+b} dx = \frac{m^{ax+b}}{alnm} + C, m \neq 1 i a \neq 0$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln x + \sqrt{x^2 - a^2} + C, \ a \neq 0$	$\int m^x dx = \frac{m^x}{lnm} + C, m \neq 1 \text{ i m} > 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C, a > 00$	$\int \ln x dx = x \ln x - c + C$