```
--1--
SELECT * FROM state_climate
LIMIT 5;
--2--Write a query that returns the state, year, tempf or tempc, and running_avg_temp (in either
Celsius or Fahrenheit) for each state.
SELECT state, year, tempf,
 AVG(tempf) OVER
 (PARTITION BY state
 ORDER BY year) AS running_avg_temp
FROM state_climate
LIMIT 5;
--3--Write a guery that returns state, year, tempf or tempc, and the lowest temperature
(lowest temp) for each state.
SELECT state, year, tempf,
 FIRST_VALUE(tempf) OVER (
 PARTITION BY state
 ORDER BY tempf
 ) AS lowest temp
FROM state_climate
LIMIT 5;
--4--write a query that returns state, year, tempf or tempc, except now we will also return the
highest temperature (highest_temp) for each state.
SELECT state, year, tempf,
 LAST_VALUE(tempf) OVER (
 PARTITION BY state
 ORDER BY tempf
 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
 ) AS highest temp
FROM state_climate
LIMIT 5;
--5--Write a guery to select the same columns but now you should write a window function
that returns the change_in_temp from the previous year
SELECT state, year, tempf,
 tempf - LAG(tempf, 1, tempf) OVER
 (PARTITION BY state
 ORDER BY year) AS change_in_temp
FROM state climate
ORDER BY change_in_temp DESC
LIMIT 5;
--6--Write a query to return a rank of the coldest temperatures on record
SELECT RANK() OVER (ORDER BY tempf ASC)
AS coldest_rank,
year, state, tempf
FROM state_climate
LIMIT 10;
--7--Modify your coldest_rank query to now instead return the warmest_rank for each state
SELECT RANK() OVER(
```

PARTITION BY state

ORDER BY tempf DESC) AS warmest_rank, year, state, tempf FROM state_climate LIMIT 10;

--8--write a query that will return the average yearly temperatures in quartiles instead of in rankings for each state
SELECT NTILE(4) OVER(
PARTITION BY state
ORDER BY tempf ASC) AS quartile,
year, state, tempf
FROM state_climate
LIMIT 5;

--9--Lastly, we will write a query that will return the average yearly temperatures in quintiles (5). The top quintile should be the coldest years overall, not by state.

SELECT NTILE(5) OVER(ORDER BY tempf ASC) AS quintile, year, state, tempf FROM state_climate LIMIT 5;

state	year	tempf	tempc
Alabama	1895	61.64166667	16.46759259
Alabama	1896	64.26666667	17.92592593
Alabama	1897	64.19166667	17.88425926
Alabama	1898	62.98333333	17.21296296
Alabama	1899	63.1	17.2777778
state	year	tempf	running_avg_temp
Alabama	1895	61.64166667	61.64166667
Alabama	1896	64.26666667	62.95416667
Alabama	1897	64.19166667	63.36666667
Alabama	1898	62.98333333	63.270833335
Alabama	1899	63.1	63.236666668
state	year	tempf	lowest_temp
Alabama	1976	60.675	60.675
Alabama	1968	61.0	60.675
Alabama	1940	61.175	60.675
Alabama	1983	61.19166667	60.675

Alabama		1958	61.21666667	60.675
state	year		tempf	highest_temp
Alabama		1976	60.675	65.70833333
Alabama		1968	61.0	65.70833333
Alabama		1940	61.175	65.70833333
Alabama		1983	61.19166667	65.70833333
Alabama		1958	61.21666667	65.70833333
state	year		tempf	change_in_temp
North Dakota		1952	40.63333333	5.01666666
Minnesota		2015	43.49166667	4.85
Montana		1900	42.85	4.75
Michigan		1998	48.25	4.71666667
Wisconsin		1998	47.3	4.65833333
coldest_rank	year		state	tempf
	1	1950	North Dakota	34.9
4	2	1951	North Dakota	35.61666667
(3	1917	Minnesota	35.675
4	1	1916	North Dakota	35.73333333
Ļ	5	1917	North Dakota	35.91666667
	6	1899	North Dakota	36.25
-	7	1896	North Dakota	36.425
8	3	1950	Minnesota	36.45833333
(9	1904	Maine	36.51666667
(9	1996	North Dakota	36.51666667
warmest_rank	year		state	tempf
	1	1921	Alabama	65.70833333
4	2	1927	Alabama	65.58333333
	3	2019	Alabama	65.375
4	1	2016	Alabama	65.34166667
Į	5	1911	Alabama	65.325
(3	1922	Alabama	65.16666667
-	7	1998	Alabama	65.125

8	1933	Alabama	65.1
9	2017	Alabama	65.03333333
10	1925	Alabama	64.95833333
quartile	year	state	tempf
1	1976	Alabama	60.675
1	1968	Alabama	61.0
1	1940	Alabama	61.175
1	1983	Alabama	61.19166667
1	1958	Alabama	61.21666667
quintile	year	state	tempf
1	1950	North Dakota	34.9
1	1951	North Dakota	35.61666667
1	1917	Minnesota	35.675
1	1916	North Dakota	35.73333333
1	1917	North Dakota	35.91666667