Web Engineering 3 Vorlesung 1

Hochschule Zittau/Görlitz Christopher-Manuel Hilgner

Organisatorisches

- Vorlesungen + Seminar
- Projektarbeit im Laufe des Semesters
- Gruppenarbeit möglich für das Projekt
- Crossbeleg mit anderen Modulen wird empfohlen
- Beleg mit Verteidigung am Ende des Semesters
- Zur Abgabe gehören:
 - Beleg als PDF
 - Folien der Verteidigung
 - Alle Projektdateien, in einem Git Repository

Beleg

- Keine festgelegte Seitenanzahl (bei mir waren es damals 10-15 Seiten)
- Anforderungsanalyse
- Beschreibung der Umsetzung
- Gründe für Entscheidungen bei der Entwicklung darstellen
- Dokumentation der Software

Verteidigung

Dauer: ca. 20 Minuten

- Demonstration des finalen Projekts
- Umsetzung Vorstellung
 - Technologien
 - Struktur
- Kurz ausgewählte Programmbestandteile vorstellen, die als wichtig angesehen werden

Material

https://github.com/XPromus/we3-hszg

• Script, Folien, Beispielprojekte

Inhalte

- Entwicklung von Full-Stack Web Anwendungen
- Spring für Backend Entwicklung
- Docker/Podman zum Deployen von Anwendungen
- Frontend Frameworks wie Svelte, Vue oder React...
- Debugging Tools und Techniken
- Testing
- Authentication

Struktur einer Full-Stack Web App

Database

- Enthält alle zu speichernden Daten
- Manuelle Erstellung bzw. Konfigurierung nicht nötig
- Erstellung der Tabellen geschieht durch das Backend

In dieser Vorlesung kommt PostgreSQL zum Einsatz

Backend

- Definiert Datenstruktur mit Tabellen und Entities
- Bevölkert Datenbank mit Daten und liest Daten aus
- Enthält Business Logik der Anwendung
- Enthält REST Endpunkte mit Mappings für Http Funktionen

In dieser Vorlesung kommt Spring mit Kotlin zum Einsatz

Backend

Backend - Bestandteile

Repositories	Services	Controller
	mit DTOs und	
Lesen der und	Mappern	Erstellung der API
Schreiben auf die		Endpunkte über
Datenbank	Verarbeitung von	Mappings
	Daten und	
	allgemeine Logik der	
	Anwendung	

Backend - Gradle

- Automatisierung von Building, Testing und Deployment
- Verwaltet Abhängigkeiten
- Reproduzierbare Builds
- Erweiterbar durch Plugins
- Build Vorgang wird in der build.gradle(.kts) beschrieben

Backend - Gradle Projekt Struktur

```
™ Markdown
     project
        gradle
         gradlew
         gradlew.bat
         settings.gradle(.kts)
5
         subproject-a
6
         build.gradle(.kts)
         └─ src/
         subproject-b
         build.gradle(.kts)
10
11
           — src/
```

Frontend

- Interaktion durch den Nutzer
- Darstellung der vom Backend erhaltenen Daten
- Input für neue Daten

Frontend - Bestandteile

- Framework oder Vanilla
- CSS
- Build Tool
- Package Manager
- Weitere Dependencies für unterschiedliche Funktionalitäten

Frontend - Frameworks

In dieser Vorlesung kommt Svelte mit TypeScript zum Einsatz. Andere Frameworks werden auch kurz beleuchtet.

Frontend - Frameworks

- React
- Vue
- Angular

Frontend - Styling

Figure 1: Ergebnisse des State of CSS 2025

Frontend - Styling

- Tailwind CSS als Framework für das Styling
- Es stellt keine Komponenten sondern nur kleine Klassen bereit
- Näher an Vanilla CSS als Frameworks wie Bootstrap

- Überführen den geschriebenen Code in eine ausführbare Version für den Browser
- Viele Features von Frameworks werden nicht von Browsern unterstützt
- Build Tools überführen diesen Code in brauchbaren Code für den Browser

```
const App = () => <h1>Hello, World!</h1>;

wird zu

const App = () => React.createElement(
    'h1', null, 'Hello, World!'
);

'h1', null, 'Hello, World!'
```

Bundling

• Zusammenführen von einzelnen Modulen für effizienteres Ausführen im Browser

Transpilieren

• Kompatiblität zu älteren Browsern herstellen

Frontend - Package Manager

- Definierung der Abhängigkeiten durch eine JSON Datei
- Verwaltung der Abhängigkeiten mit Versionierung
- NPM Registry stellt Packages zum bereit (> 3.100.000)
- Auswahl: npm, yarn, bun, deno usw.
- Alle können die npm registry nutzen aber bieten unterschiedliche Vorteile in der Entwicklungserfahrung
- Vorteile bei npm Alternativen liegen oft in der Performance

It works on my machine

Containerization

- Erstellen von Umgebungen (Containern), die sich, unabhängig von ihrer Umgebung, immer gleich verhalten
- Ähnlich wie eine Virtuelle Maschine, allerdings ohne virtualisierung der Hardware
- Alle Container laufen über den gleichen Kernel -> Mehr Performance als mit VMs
- Software wird in diesen Containern deployed

Containerization - Bestandteile

Dockerfile

Beschreibt den Aufbau von einem Image

Image

Eine Abbildung der Software, die eingesetzt werden soll mit allen benötigten Abhängigkeiten.

Container

Die laufende Softwarem, basierend auf einem Image

Containerization Tools

Zwei Optionen für Containerization:

Figure 4: Podman

Versionierung mit Git

- Versionierung aller Dateien in einem Projekt
- Mit jedem Commit wird ein Snapshot vom aktuellen Stand gemacht
- Wenn keine Änderungen an einer Datei vorgenommen wurden wird auf den Snapshot mit der letzten Änderung verwiesen

Git Zustände

Modified

Datei wurde geändert aber noch in die Datenbank committed

Staged

 Modifizierte Datei wurde markiert, damit sie in den nächsten Commit Snapshot kommt

Committed

Daten wurde erfolgreich in der Datenbank gespeichert

Git Workflow

- 1. Modifizierung von Dateien
- 2. Nur Änderungen stagen, die Teil des nächsten Commits werden sollen
- 3. Ausführen eines Commits, welcher alle Änderungen in die Datenbank übernimmt, die als staged markiert wurden

Git - Online

GitHub

GitLab von der TU Chemnitz: https://gitlab.hrz.tu-chemnitz.de/