2023 年春季《高等微积分 2》期末考试试卷

2023年6月12日9:00-11:00

本试卷分两页, 共七道试题, 其中第 1 题 10 分, 其余每题 15 分.

- 1 (1) 叙述高斯 (Gauss) 公式与斯托克斯 (Stokes) 公式.
 - (2) 给定 \mathbb{R}^3 上的向量场 $\mathbf{F} = (\cos x \sin y \cos z, \sin x \cos y \cos z, \sin x \sin y \sin z)$, 判断是 否存在光滑函数 $\phi(x, y, z)$, 使得 $\nabla \phi = \mathbf{F}$. 若不存在, 请说明理由; 若存在, 请找出 ϕ .
- 2 (1) 求出二元函数 $f(x,y) = 3xy x^3 y^3 + 3$ 的所有极值点.
 - (2) 设 $\mathbf{a} = (a_1, \dots, a_n)$ 是光滑函数 $f(x_1, \dots, x_n)$ 在约束条件 $x_1 + \dots + x_n = 0$ 下的条件极大值点. 证明:

 $\frac{\partial f}{\partial x_1}(\mathbf{a}) = \frac{\partial f}{\partial x_2}(\mathbf{a}) = \dots = \frac{\partial f}{\partial x_n}(\mathbf{a}).$

3 (1) 在区间 [0,1) 上求解常微分方程初值问题:

$$\begin{cases} y'' - y = 4e^{-x} \\ y(0) = 0, \\ y'(0) = 0. \end{cases}$$

(2) 设 $f: \mathbb{R} \to \mathbb{R}$ 是 C^1 光滑映射, 且满足

$$f(x) = x^2 + \int_0^x (x - t)f'(t)dt, \quad \forall x \in \mathbb{R}.$$

请确定 f(x), 需要证明你的结论.

4 (1) 设 L 为 \mathbb{R}^3 中的曲线, 其上有如下对称性: 设线性映射 $\Phi:\mathbb{R}^3\to\mathbb{R}^3$ 为

$$\Phi(x, y, z) = (a_{11}x + a_{12}y + a_{13}z, a_{21}x + a_{22}y + a_{23}z, a_{31}x + a_{32}y + a_{33}z)$$

其中 $A = (a_{ij})$ 是正交矩阵, 即满足 $A^T A = I_3$. 已知 Φ 将 L 双射成 L 自身. 证明: 对任何连续函数 $f: \mathbb{R}^3 \to \mathbb{R}$ 有

$$\int_{L} f ds = \int_{L} \left(f \circ \Phi \right) ds.$$

(2) 设曲线 $L = \{(x, y, z) | x^2 + y^2 + z^2 = 1, x + 2y + z = 0\}$. (利用对称性) 计算第一型曲线积分

$$\int_{L} (2x^2 + x + y^2 + y)ds.$$

5 (1) 令 $[0,1]^n = \{(x_1,\ldots,x_n)|0 \le x_i \le 1, i=1,\ldots,n\}$, 求如下 n 重积分的值:

$$\int \cdots \int_{[0,1]^n} \frac{x_1 + \cdots + x_n}{n} dx_1 \cdots dx_n.$$

(2) 设 $f: \mathbb{R} \to \mathbb{R}$ 是连续函数, 令 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$. 令 u = x + y, v = y 结合换元公式证明:

$$\iint_D f\left(\frac{x+y}{2}\right) dxdy = \int_0^1 u f\left(\frac{u}{2}\right) du + \int_1^2 (2-u) f\left(\frac{u}{2}\right) du.$$

6 设函数 f(x), g(x) 在 $(-\infty, +\infty)$ 上具有连续的二阶导数, f(0) = g(0) = 1, 且对 Oxy 平面上任何定向的简单闭曲线 C 都有

$$\int_C \left[y^2 f(x) + 2ye^x - 8yg(x) \right] dx + 2 \left[yg(x) + f(x) \right] dy = 0.$$

求函数 f(x), g(x).

7 (1) 设 $S \in \mathbb{R}^3$ 中封闭的光滑曲面,取指向外部的定向,每点 $(x,y,z) \in S$ 处 S 的单位外法向量为 $\mathbf{n}(x,y,z)$,记 S 围成的区域为 Ω .证明:对 Ω 上的光滑函数 f,g,有

$$\iint_{S} f \frac{\partial g}{\partial \mathbf{n}} dS = \iiint_{\Omega} (\nabla f \cdot \nabla g + f \Delta g) \, dx dy dz,$$

其中 $\frac{\partial g}{\partial \mathbf{n}}$ 表示 g 对方向 \mathbf{n} 的方向导数, $\Delta g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} + \frac{\partial^2 g}{\partial z^2}$.

(2) 设 S,Ω 如前一小问所述, 已知坐标原点在 S 的内部. 用 r 表示每点 (x,y,z) 到原点的距离, 即 $r = \sqrt{x^2 + y^2 + z^2}$. 设光滑函数 u 在 Ω 中每点处都满足 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$. 利用第 (1) 小问的结论, 计算如下积分

$$I = \iint_{S} \left[u \frac{\partial}{\partial \mathbf{n}} \left(\frac{1}{r} \right) - \frac{1}{r} \cdot \frac{\partial u}{\partial \mathbf{n}} \right] dS.$$