Elements of Information Theory

Update: Wednesday 5th February, 2020

Note 1: Preliminaries on Random Variables and Convexity

By: Behrooz Razeghi

In this note we will review some of the main definitions and properties of probability and convex analysis, and discuss Gaussian random variables and vectors.

1 Notation

A quick summary of the notation

- 1. Random Variable (object): capital letter, e.g. X, Y
- 2. Deterministic Value (object): small letter, e.g. x, y
- 3. Random Vector (object): capital bold letter, e.g. X, Y
- 4. Deterministic Vectors (objects): small bold letters, e.g. x, y
- 5. Alphabets (Sets): Calligraphic font, e.g. \mathcal{X}, \mathcal{Y}
- 6. Specific quantities/value: x, y, C, D, P

2 Measure Spaces

Definition 1. (Boolean algebras) Let Ω be a set. A Boolean algebra on Ω is a collection \mathcal{F} of Ω which obeys the following properties:

- (i) (Empty Set) $\emptyset \in \mathcal{F}$
- (ii) (Complement) If $E \in \mathcal{F}$, then the complement $E^c := \Omega$ E also lies in \mathcal{F} .
- (iii) (Finite Unions) $E_1, E_2 \in \mathcal{F}$, then $E_1 \cup E_2 \in \mathcal{F}$.

Note that the above definition is only assumed closure under *complement* and *finite union* Boolean operations. However, by using the de Morgan's laws of elementary set theory, one can easily verify other closure properties such as intersection $E_1 \cap E_2$, set difference $E_1 E_2$, and symmetric difference $E_1 \triangle E_2$.

Definition 2. (σ -algebras) Let Ω be a set. A σ -algebra on Ω is a collection \mathcal{F} of Ω which obeys the following properties:

- (i) (Empty Set) $\emptyset \in \mathcal{F}$
- (ii) (Complement) If $E \in \mathcal{F}$, then the complement $E^c := \Omega$ E also lies in \mathcal{F} .
- (iii) (Countable Unions) $E_1, E_2, ... \in \mathcal{F}$, then $\bigcup_{n=1}^{\infty} E_n \in \mathcal{F}$.

The pair (Ω, \mathcal{F}) of a set Ω together with a σ -algebra on that set, is refer as a measurable space.

Note: Using de Morgan's law, we see that σ -algebras are closed under countable intersections as well as countable unions.

Note: By padding a finite union into a countable union by using the empty set, we see that every σ -algebra is automatically a Boolean algebra.

Definition 3. (Finitely additive measure) Let \mathcal{F} be a Boolean algebra on a space Ω . An (unsigned) finitely additive measure μ on \mathcal{F} is a 'map' $\mu: \mathcal{F} \to [0, +\infty]$ that obeys the following axioms:

- (i) $(Empty Set) \mu(\emptyset) = 0.$
- (ii) (Finite Additivity) Whenever $E_1, E_2 \in \mathcal{F}$ are disjoint, then $\mu(E_1 \cup E_2) = \mu(E_1) + \mu(E_2)$.

Definition 4. (Countably additive measure) Let (Ω, \mathcal{F}) be a measurable space. An (unsigned) countably additive measure μ on \mathcal{F} , or measure for short, is a 'map' $\mu : \mathcal{F} \to [0, +\infty]$ that obeys the following axioms:

- (i) $(Empty Set) \mu(\emptyset) = 0.$
- (ii) (Countable Additivity) Whenever $E_1, E_2, ... \in \mathcal{F}$ are countable sequence of disjoint measurable sets, then $\mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n)$.

A triplet $(\Omega, \mathcal{F}, \mu)$, where (Ω, \mathcal{F}) is a measurable space and $\mu : \mathcal{F} \to [0, +\infty]$ is a countably additive measure, is known as a *measure space*.

Note: A measure space and a measurable space are distinct. A measurable space has the *capability* to be equipped with a measure, but a measure space is actually *equipped* with a measure.

3 Probability Spaces

Probability spaces is an important special type of measure spaces.

Definition 5. (Probability Space) A probability space is a measurable space $(\Omega, \mathcal{F}, \mathsf{P})$ of total measure 1, i.e., $\mathsf{P}(\Omega) = 1$. The measure P is known as a probability measure.

Let us to interpret the components Ω , \mathcal{F} and P in probability theory:

- The space Ω is known as *sample space*, and is interpreted as the set of all possible states (outcomes) $\omega \in \Omega$ that a random system (nature) could be in.
- The event space \mathcal{F} is a σ -algebra, and is interpreted as the set of all possible events $E \in \mathcal{F}$ that one can measure.
- The probability measure $P(\cdot)$ of an event is a mapping that assigns to each event a real number that follows the foundational axioms of measure and probability theory.

Example: Let $\Omega = \{1, 2, ..., 6\}$. The following are σ -algebra on Ω :

- $\mathcal{F}_1 = \{\emptyset, \{1\}, \{2, ..., 6\}, \Omega\}.$
- $\mathcal{F}_2 = \{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}.$
- $\mathcal{F}_3 = \{\emptyset, \{1, 2, 3\}, \{4, 5, 6\}, \Omega\}.$

Example: Let $\Omega = [0, 1]$ and $E_1, ..., E_n$ be a family of disjoint intervals in Ω such that $E_1 \cup E_2 \cup ... \cup E_n = \Omega^{-1}$. The following is a σ -algebra on Ω :

$$\mathcal{F}_4 = \{\emptyset, E_1, ..., E_n, E_1 \cup E_2, ..., E_1 \cup E_2 \cup E_3, ..., \Omega\}.$$

Note that there are 2^n events in total in \mathcal{F}_4 .

¹The set $\{E_1, E_2, ..., E_n\}$ is also called a partition of Ω .

4 Discrete Random Variables

In discrete probability theory, the sample space is finite $(\Omega = \{\omega_1, \omega_2, ..., \omega_n\})$ or at most countable $(n = \infty)$. The *atomic events* are the events that contain only a single sample point, e.g. $\{\omega_i\}$. Let denote by p_i the numbers (probabilities) that the probability measure $P(\cdot)$ assigns to the atomic event $\{\omega_i\}$, i.e. $p_i = P(\{\omega_i\})$, for i = 1, 2, ..., n. It turns out that p_i can completely determine the probabilities of all events.

A discrete random variable is a mapping from the sample space Ω into the real numbers. For example, let $\Omega = \{\omega_1, \omega_2, ..., \omega_6\}$, we might define $X(\omega_i) = i, i = 1, ..., 6$. So, the set of possible values of the random variables is $X(\Omega) = \{1, 2, ..., 6\}$. The set $X(\Omega)$ is called alphabet of X.

The probability distribution of a random variable X, denoted by $P_X(\cdot)$, is the mapping from $X(\Omega)$ into the interval [0,1] such that

$$P_X(x) \triangleq \Pr\left(\{\omega : X(\omega) = x\}\right), \ \forall x \in X(\Omega).$$
 (1)

Usually, P_X is called the probability mass function (p.m.f) of X. For ease of notation, p.m.f is simply expressed as:

$$P_X(x) = \Pr\left[X = x\right]. \tag{2}$$

Let us $X_1, X_2, ..., X_n$ are random variables with alphabets $\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_n$, respectively. Their joint probability distribution (or joint p.m.f) is defined as the mapping from $\mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_n$ into interval [0, 1] such that

$$P_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = \Pr[X_1 = x_1, X_2 = x_2, \dots, X_n = x_n].$$
 (3)

From the definition, $P_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) \ge 0$ and $\sum_{x_1} \sum_{x_2} \cdots \sum_{x_n} P_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = 1$. If $X_1,X_2,...,X_n$ are statistically independent, then $P_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P_{X_1}(x_1) \cdot P_{X_2}(x_2) \cdots P_{X_n}(x_n)$, $\forall x_i \in \mathcal{X}_i, i = 1,2,...,n$.

- 5 Continuous Random Variables
- 6 Gaussian Random Variables
- 7 Gaussian Vectors
- 8 Convexity