EAR CANDY MEETINGS

DISTORSIÓN, ALIASING Y OVERSAMPLING

¿Y VOS QUIÉN SOS?

- Joaquin Saavedra
- Desarrollador de software de audio
- Técnico en Producción Musical y Técnico en Diseño de Sonido
- Estudiante de Ingeniería en Sistemas de Comunicación
- Docente Universidad ORT
- Técnico de sonido en vivo

¿POR QUÉ ELEGÍ ESTE TEMA?

- Importante como usuarios
- Importante como desarrolladores
- Marketing confunde
- Poco entendido

¿CUÁLES SON LOS OBJETIVOS?

- Entender como los procesos no lineales cambian el contenido armónico de una señal
- Presentar el problema: qué es el aliasing
- Mostrar "la solución": comprender qué es el oversampling y ayuda a disminuir el aliasing
- Comprender cuándo y cómo debemos usarlo

PROCESO DE CONVERSIÓN A/D

- Audio es analógico
- Queremos pasar el audio a digital:
 - A/D y luego D/A
- Muestreo (sampling)
 - Periodo (Ts) y frecuencia (Fs) de muestreo
 - Aliasing: Teorema Nyquist Shannon
 - Fs > 2Fmax

PROCESOS NO LINEALES

Tone (Not Distorted)

Tone (Distorted)

Fundamental Frequency = F1

DEMO: PLUGIN DISTORSION

- Ganancia de entrada
- Hard clip [-1, 1]
- Tangente hiperbólica

PLUGINS ¿QUÉ HAY?

- Analizadores (medidores)
 - Información de nivel en distintas unidades
 - Tempo detector o tempo tracker
 - Analizadores de frecuencia, RTA
 - Pitch tracker
 - Analizadores de imagen estéreo
- Efectos
 - Reverb
 - Delay and echo
 - Ecualizadores
 - Chorus
 - Flanger
 - Phaser

- Dinámicos
 - Compresor
 - Gate

- Compresor multibanda
- Limitador
- Envolventes
- Distorsion
- physical modeling
 - Amplificadores, pedales, micrófonos
- Pitch shift o corrector
- Correctivos y restauración
 - Noise reduction
 - De-hum
- Instrumentos virtuales
 - Sintetizadores
 - Samplers

ALIASING

Se produce cuando hay frecuencias mas altas de las representables por la frecuencia de muestreo

Fs > 2Fmax no se cumple!

ALIASING

- Filtro anti-alias
 - LPF antes del muestreo en Fmax
 - Fs > 2Fmax

ALIASING POR PROCESOS

- Ya tenemos nuestro audio grabado sin aliasing (porque usamos filtro anti-alias)
- El audio va hasta Fs / 2 (por ejemplo si trabajamos en 44.1 kHz va hasta 22.05 kHz)
- ▶ Tenemos componentes en 10 kHz
- Lo distorsionamos, limitamos, comprimimos, ... armónicos
- ▶ El tercer armónico es 30 kHz ●ALIASING!●
- Hay que usar oversampling

DEMO: ALIASING POR DISTORSION

- Objetivos
 - crear aliasing
 - escucharlo

RESAMPLING

- Proceso por el cual se pasa de una frecuencia de muestreo hacia otra
- Lo mejor seria no hacerlo, a veces es inevitable
- Es menos destructivo y màs liviano en numeros enteros
 - ▶ 44.1 kHz, 88.2 kHz, 176.4 kHz
 - ▶ 48 kHz, 96 kHz, 192 kHz
- Upsampling y downsampling

OVERSAMPLING

- La frecuencia original y la final es la misma
- Se sube (x2, x4, x8,...), se procesa, se filtra y se vuelve a bajar
- Evita aliasing debido a procesamientos que agregan armónicos
- Puede requerir bastante CPU, comparado con procesos simples

OVERSAMPLING

- Mejoramos el aliasing por procesos
- Costoso para CPU

DEMO: OVERSAMING

- Juce::dsp::oversampling
 - Factor (2,4,8,16)
 - Tipo de filtro

¿PREGUNTAS?

GRACIASI

- joacosaav@icloud.com
 - https://github.com/joaquinsaavedra