Теоретический разнобой 4

- **1.** Последовательность $x_n y_n$ стремится к нулю. Верно ли, что либо x_n , либо y_n стремится к нулю?
- **2.** Найдите предел последовательностей: а) $1/(1\cdot 2) + 1/(2\cdot 3) + ... + 1/((n-1)\cdot n)$;
- 6) $\frac{P(n)}{G(n)}$, P(x), $G(x) \in \mathbb{R}[x]$;
- B) $\frac{P(n)}{a^n}$, $P(x) \in \mathbb{R}[x]$, a > 1.
- **3.** Докажите, что сходящаяся последовательность достигает либо своей верхней, либо своей нижней грани
- **4.** Докажите, что $f \in \mathbb{C}[x]$. Докажите, что f(x) имеет кратный корень тогда и только тогда, ктогда $(f,f') \neq 1$.
- **5.** Какое преобразоваение комплексной плоскости задано отображением $\forall z \neq 0$ $z \to \frac{1}{z}, 0 \to \infty, \infty \to 0$.

Определение 1. Множество X называется *плотным* в множестве Y, если всякая окрестность любой точки из Y содержит точку из X.

В листочке про кузнечиков мы доказали следующее утверждение

Теорема 1 (Одномерная теорема Кронекера). Если $\alpha > 0$ — иррациональное число, то множество $\{n\alpha\}$, $n \in \mathbb{N}$ плотно на отрезке [0,1].

Рассмотрим двумерный аналог: множество точек $(\{n\alpha\},\{n\beta\}), n \in \mathbb{N}$ в квадрате $[0,1] \times [0,1]$. Мы хотим доказать плотность этого множества.

- **6.** Докажите, что при иррациональном отношении α/β множество точек $(\{t\alpha\}, \{t\beta\}), t \in \mathbb{R}$ плотно в квадрате $[0,1] \times [0,1].$
- 7. Пусть $1, \alpha, \beta$ линейно независимы над \mathbb{Q} . Докажите, что для любого n число $\{n\alpha\}/\{n\beta\}$ иррационально.

Определение 2. Набор вещественных чисел x_1, \ldots, x_s линейно независимым над \mathbb{Q} , если равенство $\sum_{i=1}^s \alpha_i x_i = 0$, $\alpha_i \in \mathbb{Q}$ влечет равенство нулю всех α_i . (Например, независимость 1 и α означает иррациональность α

Теорема 2 (Двумерная теорема Кронекера). Пусть $1, \alpha, \beta$ линейно независимы над \mathbb{Q} . Докажите, что множество точек $(\{n\alpha\}, \{n\beta\})$ плотно в квадрате $[0,1] \times [0,1]$

Идея доказательства. Из задачи про кузнечиков следует, что существует для любого $\varepsilon > 0$ существует $k \in \mathbb{N}$ такое, что $(\alpha', \beta') = (\{k\alpha\}, \{k\beta\})$ отличается от (0,0) меньше чем на ε . Идея состоит в том, что взять этот маленький вектор (α', β') и при помощи него попасть с малую окрестность произвольной точки x_0, y_0 .

8. Приведите пример чисел α , β таких, что числа $1, \alpha, \beta$ линейно независимы над \mathbb{Q} .