CSCI5654 (Linear Programming, Fall 2013) Lecture-7

Duality

Linear Program (standard form)

maximize
$$c_1x_1+\cdots+c_nx_n$$

s.t. $a_{j1}x_1+\cdots+a_{jn}x_n\leq b_j$ $j\in\{1,2,\ldots,m\}$
 $x_1,\ldots,x_n\geq 0$

Problem has *n* variables and *m* constraints.

Example Problem

Bounds on Optimal Value of LP

maximize
$$x_1 + 2x_2$$

s.t. $x_1 \le 3$
 $x_2 \le 3$
 $-x_1 + x_2 \le 1$
 $x_1 + x_2 \le 5$
 $x_1, x_2 \ge 0$

Goal: Find lower and upper bounds on the solution to the LP.

Bounds

Lower Bound: Find a <u>feasible solution</u> \vec{x} .

Then \vec{x} is a lower bound on optimum. (why?).

Eg. $(x_1:3,x_2:2)$ is feasible.

Therefore, $z = x_1 + 2x_2 \ge 7$.

Upper Bounds: Can we find upper bounds to optimum?

Lecture 7

Example (continued)

Note:

$$\underbrace{x_1 \leq 3}_{C1} \land \underbrace{x_2 \leq 3}_{C2} \Rightarrow \underbrace{x_1 + 2x_2 \leq ???}_{z}.$$

Q: Using the inequality above what can you say about the solution to the LP?

Lecture 7

Example (continued)

Note:

$$\underbrace{x_1 \leq 3}_{C1} \land \underbrace{x_2 \leq 3}_{C2} \Rightarrow \underbrace{x_1 + 2x_2 \leq 3 + 2 \cdot 3 \leq 9}_{z}.$$

Q: Using the inequality above what can you say about the solution to the LP?

A: 9 is an upper bound to the solution (i.e., $z \le 9$).

Finding Upper Bounds

Strategy: Multiply constraint rows by positive quantities.

maximize
$$x_1 + 2x_2 \leftarrow \mathbf{z}$$
s.t. $x_1 \leq 3 \leftarrow \mathbf{C1}$
 $x_2 \leq 3 \leftarrow \mathbf{C2}$
 $-x_1 + x_2 \leq 1 \leftarrow \mathbf{C3}$
 $x_1 + x_2 \leq 5 \leftarrow \mathbf{C4}$
 $x_1, x_2 \geq 0$

- $C1 + 2 \cdot C2 \Rightarrow z \leq 9.$
- ▶ $2 \cdot C4 \Rightarrow z \leq 10$.
- **Question #1:** $-1 \cdot C3 + 3 \cdot C2 \Rightarrow z \le ?$
- ▶ Question #2: $2 \cdot C3 + C1 \Rightarrow z \le ?$
- Question #3: Can you think of other combinations?

Upper Bounds to LP Solution

maximize
$$c_1x_1 + \cdots + c_nx_n$$
 z

s.t. $a_{11}x_1 + \cdots + a_{1n}x_n \leq b_1 \leftarrow C1$
 $a_{21}x_1 + \cdots + a_{2n}x_n \leq b_2 \leftarrow C2$
 \vdots
 $a_{m1}x_1 \cdots + a_{mn}x_n \leq b_m \leftarrow Cm$
 $x_1, \dots, x_n \geq 0$

Consider y_1 C1 + y_2 C2 + \cdots + y_m Cm.

Q: What are the conditions on y_1, \ldots, y_m so that this combination upper bounds z?

Upper Bounds to LP Solution

Conditions:

$$a_{11}y_1 + a_{21}y_2 + \cdots + a_{m1}y_m \ge c_1$$

 $a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m \ge c_2$
 \vdots
 $a_{1n}y_1 + a_{1n}y_2 + \cdots + a_{mn}y_m \ge c_n$
 $y_1, y_2, \dots, y_m \ge 0$

Upper Bound: $b_1y_1 + \ldots + b_my_m$

Q: What values of y_1, \ldots, y_m can yield best bound on optimum??

Best upper bound on LP Solution

minimize
$$b_1y_1 + b_2y_2 + \cdots + b_my_m$$

s.t. $a_{11}y_1 + a_{21}y_2 + \cdots + a_{m1}y_m \ge c_1$
 $a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m \ge c_2$
 \vdots
 $a_{1n}y_1 + a_{1n}y_2 + \cdots + a_{mn}y_m \ge c_n$
 $y_1, y_2, \dots, y_m \ge 0$

Note: This is called the dual problem.

Dual Problem

Primal Problem: decision variables are x_1, \ldots, x_n .

maximize
$$c_1x_1+\cdots+c_nx_n$$

s.t. $a_{j1}x_1+\cdots+a_{jn}x_n\leq b_j$ $j\in\{1,2,\ldots,m\}$
 $x_1,\ldots,x_n\geq 0$

Dual Problem: decision variables are y_1, \ldots, y_m .

minimize
$$b_1y_1+\cdots+b_my_m$$

s.t. $a_{1j}y_1+\cdots+a_{mj}y_m\geq c_j$ $j\in\{1,2,\ldots,n\}$
 $y_1,\ldots,y_n\geq 0$

Dual Problem (matrix)

Primal LP:

max.
$$\vec{c} \cdot \vec{x}$$

s.t. $A\vec{x} \leq \vec{b}$
 $\vec{x} \geq 0$

Dual LP:

min.
$$\vec{b} \cdot \vec{y}$$

$$A^{\mathrm{T}} \vec{y} \geq \vec{c}$$

$$\vec{y} \geq 0$$

(dual in standard form)

Exercise: Use the information in this frame to prove:

The dual of dual problem is the same as the original primal problem.

Example

maximize
$$x_1 + 2x_2$$

s.t. $x_1 + 2x_2 \le 3 \leftarrow y_1$
 $x_2 \le 3 \leftarrow y_2$
 $-x_1 + x_2 \le 1 \leftarrow y_3$
 $x_1 + x_2 \le 5 \leftarrow y_4$
 $x_1, x_2 \ge 0$

Q: Write down the dual problem.

Example (dual)

min.
$$3y_1 + 3y_2 + y_3 + 5y_4$$

s.t. $y_1 - y_3 + y_4 \ge 1$
 $y_2 + y_3 + y_4 \ge 2$
 $y_1, y_2, y_3, y_4 \ge 0$

Dual optimal: $y_1 = 0, y_2 = 0, y_3 = \frac{1}{2}, y_4 = \frac{3}{2}$ yields optimal value 8.

Example (dictionary)

$$x_3 = 3 - x_1$$
 $x_4 = 3 - x_2$
 $x_5 = 1 + x_1 - x_2$
 $x_6 = 5 - x_1 - x_2$
 $z = 0 + x_1 + 2x_2$

Example (final dictionary)

$$\begin{aligned}
 x_1 &= 2 &+ \frac{x_5}{2} &- \frac{x_6}{2} \\
 x_2 &= 3 &- \frac{x_5}{2} &+ \frac{x_6}{2} \\
 x_3 &= \cdots \\
 x_4 &= \cdots \\
 \hline
 z &= 8 &- \frac{1}{2}x_5 &- \frac{3}{2}x_6
 \end{aligned}$$

Dual Certificate

Situation: I ask X to solve a large LP for me. After sometime X presents a solution $\vec{x} = (x_1^*, \dots, x_n^*)$ that is claimed to be optimal.

Q: How do I verify that X's solution is indeed optimal?

A1: OK solve the LP yourself!!

(not acceptable)

Dual Certificate

Situation: I ask X to solve a large LP for me. After sometime X presents a solution $\vec{x} = (x_1^*, \dots, x_n^*)$ that is claimed to be optimal.

Q: How do I verify that X's solution is indeed optimal?

A2: Provide dual variables \vec{y} : (y_1^*, \dots, y_n^*) .

- 1. Check primal feasibility of \vec{x} .
- 2. Check dual feasibility of \vec{y} .
- 3. Check that the objective values are the same.

Primal-Dual Certificate: In the presence of both, each solution can serve as a certificate to the optimality of the other.

Primal dual correspondences

Variable to constraint correspondence:

```
Dual variable (y_j) Primal constraint A_j \vec{x} \leq b_j
Primal variable (x_i) Dual constraint A \cdot_i \vec{y} \geq c_i
```

Correspondence in dictionary:

```
Dual variable y_j Primal slack variable x_{n+j}.
Primal variable (x_i) Dual dictionary slack variable y_{m+i}.
```

Strong Duality Theorem: If x_1^*, \ldots, x_m^* is primal optimal then there exists a dual optimal solution y_1^*, \ldots, y_m^* that satisifies

$$\sum_{i} c_i x_i^* = \sum_{j} b_j y_j^*.$$

(... if primal has optimal solution then the dual has optimum with the same value as primal).

Proof: This is theorem 5.1 in Chvátal (pages 58-59).

Example

Example (final dictionary)

$$\begin{aligned}
 x_1 &= 2 &+ \frac{x_5}{2} &- \frac{x_6}{2} \\
 x_2 &= 3 &- \frac{x_5}{2} &+ \frac{x_6}{2} \\
 x_3 &= \cdots \\
 x_4 &= \cdots \\
 z &= 8 &- \frac{1}{2}x_5 &- \frac{3}{2}x_6
 \end{aligned}$$

Insight: Dual variables correspond to primal slack variables.

$$x_3 \leftrightarrow y_1, x_4 \leftrightarrow y_2, x_5 \leftrightarrow y_3, x_6 \leftrightarrow y_4$$
.

Read off dual solution by from objective row of final dictionary:

$$y_1:0,y_2:0,y_3:\frac{1}{2},y_4:\frac{3}{2}$$
.

Proof of Strong Duality

Final Dictionary:

$$x_i = b_i + \sum_{j \in Independent} a_{ij}x_j$$

$$\vdots$$

$$z = z^* + c_1^*x_1 + \dots + c_{n+m}^*x_{n+m}$$

Note: $c_i^* = 0$ if $i \in Basis$ $c_i^* \le 0$ if $i \in Independent$.

Claim: Set variable $y_i = -(c_{n+i}^*)$. This is a dual feasible solution with optimal value z^* .

Relationship Between Primal/Dual

		Primal		
		Optimal	Infeasible	Unbounded
Dual	Optimal	Possible	Impossible	Impossible
	Infeasible	Impossible	Possible	Possible
	Unbounded	Impossible	Possible	Impossible

Primal and Dual Infeasible

Primal:

max.
$$x_2$$

s.t. $x_1 \leq -1$
 $-x_2 \leq -1$
 $x_1, x_2 \geq 0$

Dual:

min.
$$-y_1 - y_2$$

s.t. $y_1 \ge 0$
 $-y_2 \ge 1$
 $y_1, y_2 \ge 0$