

ETC3580: Advanced Statistical Modelling

Week 10: Nonparametric inference

Outline

- 1 General kernel form of linear smoothers
- 2 Inference for linear smoothers
- 3 Derivative estimation
- 4 Multidimensional smoothers

General kernel form of linear smoothers

Linear smoother

$$\hat{f}(x) = \sum_{j=1}^{n} w_j(x) y_j$$

■ Nadaraya-Watson smoothing:

$$w_{j}(x) = \frac{K\left(\frac{x-x_{j}}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right)}$$

■ Almost all smoothing methods can be written in this form for different functions $w_i(x)$

Example

Local polynomial estimator

Assume

$$f(u) = a_0 + a_1(u - x) + \cdots + a_p(u - x)^p$$
.

Then the coefficients, \hat{a}_i , are the values of a_i which minimise

WLS(x) =
$$\sum_{j=1}^{n} w_j(x) (y_j - a_0 - a_1(x_j - x) - \cdots - a_p(x_j - x)^p)^2$$

and $\hat{f}(x) = \hat{a}_0$. In matrix notation we can write

$$WLS(x) = (Y - Xa)'W(x)(Y - Xa)$$

where $[X]_{ji} = (x_j - x)^i$ and W(x) is the diagonal matrix with elements $w_i(x)$.

Local polynomial estimator

The minimizer of this function is

$$\hat{a} = (X'W(x)X)^{-1}X'W(x)Y.$$

Therefore,

$$\hat{f}(x) = [1, 0, ..., 0](X'W(x)X)^{-1}X'W(x)Y = \sum_{j=1}^{n} I_j(x)y_j$$

where

$$I_j(x) = [1, 0, \dots, 0](X'W(x)X)^{-1}[1, (x_j-x), \dots, (x_j-x)^p]w_j(x)$$

So a local polynomial is equivalent to a kernel

smoother but with an unusual weight function. We call the weights $l_j(x)$ the effective kernel at x. If p = 0, then $l_i(x) = w_i(x)$.

 A cubic smoothing spline can also be written as a kernel smoother with kernel function asymptotically equal to

$$K_s(u) = \frac{1}{2} \exp\left(-\frac{|u|}{h\sqrt{2}}\right) \sin\left(\frac{|u|}{h\sqrt{2}} + \frac{\pi}{4}\right).$$

Regression splines are linear models, and so fitted values can be written as

Therefore,

$$\hat{f}(x) = \mathbf{x}^{*'}(X'X)^{-1}X'\mathbf{Y} = \sum_{j=1}^{n} I_j(x)y_j$$

where

$$I_j(x) = \mathbf{x}^{*'}(X'X)^{-1}\mathbf{x}^{*'}$$

Outline

- 1 General kernel form of linear smoothers
- 2 Inference for linear smoothers
- 3 Derivative estimation
- 4 Multidimensional smoothers

Inference for linear smoothers

All of the methods we have looked at can be written in the form

$$\hat{f}(x) = \sum_{j=1}^{n} w_j(x) y_j.$$

Thus they are linear in the observations. The set of weights, $w_j(x)$, is known as the equivalent kernel at x. Let $\hat{f} = [\hat{f}(x_1), \hat{f}(x_2), \dots, \hat{f}(x_n)]'$. Then

$$\hat{f} = Sy$$

where $S = [w_j(x_i)]$ is an $n \times n$ matrix that we call a smoother matrix.

Inference for linear smoothers

- The rows of **S** are the equivalent kernels for producing fits at each of the observed values x_1, \ldots, x_n .
- Any reasonable smoother should preserve a constant function so that S1 = 1 where 1 is a vector of ones. This implies that the sum of the weights in each row is one.
- The matrix S is analogous to the hat matrix $X(X'X)^{-1}X'$ in a standard linear model.

Degrees of freedom

Want: Approximate df for our linear smoothers.

- high df for very wiggly smoothers
- low df for very smooth smoothers.
- Leasted with the rest in the second of the state of the second of the se

Any of these could be used for df of general linear smoother.

Estimating the variance

- Linear regression: error has $n \gamma$ df.
- Hence define df of error for a linear smoother as $n \gamma$ where $\gamma = \text{tr}(S)$.
- Assuming zero bias for smoother, an unbiased estimator of σ^2 is given by

$$\hat{\sigma}^2 = \frac{1}{n-\gamma} \sum_{j=1}^n (y_j - \hat{f}(x_j))^2.$$

Confidence intervals

$$Cov(\hat{f}) = SS'\sigma^2$$

Assuming negligible bias, approximate 95% CI for *f* are:

$$\hat{\mathbf{f}} \pm 1.96 \hat{\sigma} \sqrt{\operatorname{diag}(\mathbf{SS'})}$$
.

- Pointwise intervals. (i.e,. 95% CI for each value of x.)
- On average, true value of f(x) lies outside these intervals 5% of the time.

Approximate F tests

Approximate F tests using the approximate df.

To compare two smooths:
$$(df = \gamma_1)$$

 $\hat{\mathbf{f}}_2 = \mathbf{S}_2 \mathbf{y}$ $(df = \gamma_2)$.

 γ_i = df = tr(2 $\mathbf{S}_i - \mathbf{S}_i \mathbf{S}_i'$) for each of the models i = 1, 2. Let RSS₁ and RSS₂ be residual sum of squares for each smoother.

$$\frac{(\mathrm{RSS}_1 - \mathrm{RSS}_2)/(\gamma_2 - \gamma_1)}{\mathrm{RSS}_2/(\mathrm{n} - \gamma_2)} \sim \mathrm{F}_{\gamma_2 - \gamma_1, \mathrm{n} - \gamma_2}.$$

■ Implemented by anova in R

Applications

Test for linearity

Let \hat{f}_1 represent a linear regression and we wish to test if the linearity is real by fitting a nonparametric nonlinear smooth curve \hat{f}_2 .

Applications

Test for linearity

Let \hat{f}_1 represent a linear regression and we wish to test if the linearity is real by fitting a nonparametric nonlinear smooth curve \hat{f}_2 .

Test for bias in residuals

After fitting a model, the residuals can be modelled as a function of the predictor variable. If the function is not significantly different from the zero function, there is no significant bias.

Bias and variance

The bias vector is $\mathbf{b} = \mathbf{f} - \mathbf{E}(\mathbf{S}\mathbf{y}) = \mathbf{f} - \mathbf{S}\mathbf{f} = (\mathbf{I} - \mathbf{S})\mathbf{f}$.

Then we can compute the mean square error as

MSE =
$$\frac{1}{n} \sum_{j=1}^{n} \text{Var}(\hat{f}_i) + \frac{1}{n} \sum_{j=1}^{n} b_i^2$$
$$= \frac{\text{tr}(SS')}{n} \sigma^2 + \frac{b'b}{n}$$

The first term measures variance while the second measures squared bias.

Smoothing is a bias-variance tradeoff

Find h which minimises cross-validation function

$$CV(h) = \frac{1}{n} \sum_{j=1}^{n} [\hat{f}_{j}(x_{j}) - y_{j}]^{2}$$

$$\hat{f}_j(x) = \frac{1}{1 - w_j(x)} \sum_{\substack{i=1 \ i \neq j}}^n w_i(x) y_i.$$

- residuals: $\hat{e}_j = y_j \hat{f}(x_j)$
- LOO residuals: $\hat{e}_{(j)} = y_j \hat{f}_j(x_j)$

Use same computational trick as for LM to avoid computing *n* separate smoothers.

$$\hat{e}_{(j)} = y_j - \hat{f}_j(x_j)$$

$$= y_j - \frac{1}{1 - w_j(x_j)} \sum_{\substack{i=1 \ i \neq j}}^n w_i(x_j) y_i.$$

$$= y_j - \frac{1}{1 - w_j(x_j)} \left(\hat{f}(x_j) - w_j(x_j) y_j\right)$$

$$= y_j \left(1 + \frac{w_j(x_j)}{1 - w_j(x_j)}\right) - \frac{1}{1 - w_j(x_j)} \hat{f}(x_j)$$

$$= y_j \left(\frac{1 - w_j(x_j) + w_j(x_j)}{1 - w_j(x_j)}\right) - \frac{1}{1 - w_j(x_j)} \hat{f}(x_j)$$

$$= \left(y_j - \hat{f}(x_j)\right) \frac{1}{1 - w_j(x_j)} = \frac{\hat{e}_j}{1 - w_j(x_j)}$$

$$CV(h) = \frac{1}{n} \sum_{i=1}^{n} \hat{e}_{(j)}^{2} = \frac{1}{n} \sum_{i=1}^{n} \hat{e}_{j}^{2} \left(1 - w_{j}(x_{j}) \right)^{-2}$$

$$CV(h) = \frac{1}{n} \sum_{j=1}^{n} \hat{e}_{(j)}^{2} = \frac{1}{n} \sum_{j=1}^{n} \hat{e}_{j}^{2} \left(1 - w_{j}(x_{j}) \right)^{-2}$$

CV(h) is a **penalized mean squared error**.

$$CV(h) = \frac{1}{n} \sum_{j=1}^{n} \hat{e}_{(j)}^{2} = \frac{1}{n} \sum_{j=1}^{n} \hat{e}_{j}^{2} \left(1 - w_{j}(x_{j}) \right)^{-2}$$

CV(h) is a **penalized mean squared error**.

Generalization:

Find *h* which minimises penalized MSE:

$$G(h) = \frac{1}{n} \sum_{j=1}^{n} [\hat{f}(x_j) - y_j]^2 p(w_j(x_j))$$

where p(u) is a penalty function.

CV:
$$p(u) = (1 - u)^{-2}$$
.

Penalized MSE

Examples:

Shibata's selector
$$p(u) = 1 + 2u$$

Generalized cross-validation $p(u) = (1 - u)^{-2}$
Akaike's information criterion $p(u) = \exp(2u)$
Finite prediction error $p(u) = (1 + u)/(1 - u)$
Rice's T $p(u) = (1 - 2u)^{-1}$

- Goal is to penalize small bandwidths.
- $w_j(x_j) \to 1$ as $h \to 0$ and $w_j(x_j) \to 0$ as $h \to \infty$.
- Different *p*(*u*) almost equal for large *h* but penalize small *h* differently.

Penalized MSE

- mgcv::gam function uses GCV.
- If \hat{h} is minimising bandwidth of G(h) and \hat{h}_0 is MSE optimal bandwidth, then

$$\frac{\mathsf{MSE}(\hat{h})}{\mathsf{MSE}(\hat{h}_0)} \overset{p}{ o} 1$$
 and $\frac{\hat{h}}{\hat{h}_0} \overset{p}{ o} 1$

Outline

- 1 General kernel form of linear smoothers
- 2 Inference for linear smoothers
- 3 Derivative estimation
- 4 Multidimensional smoothers

Derivative estimation

$$\hat{f}(x) = \sum_{j=1}^{n} w_j(x) y_j$$
 \Rightarrow $\hat{f}^{(k)}(x) = \sum_{j=1}^{n} w_j^{(k)}(x) y_j$.

- if $w_j(x)$ is not smooth, then $w_j^{(k)}(x)$ will have some discontinuities.
- To obtain smooth estimate of $\hat{f}^{(k)}(x)$, we need $w_j(x)$ to have continuous derivatives up to order k. This rules out many of the standard kernel weighting functions.

Derivative estimation

For an asymptotically unbiased estimator of f'(x), we require $\sum_{j=1}^{n} w_j^{(1)}(x) = 0$

and
$$\sum_{j=1}^{n} w_{j}^{(1)}(x)(x-x_{j}) = 1.$$

- Local polynomials of degree $p \ge 1$ will satisfy these constraints.
- So will cubic splines (of any flavour)
- But not kernel smooths.

Derivative estimation

For an asymptotically unbiased estimator of f''(x), we require $\sum_{j=1}^{n} w_{j}^{(2)}(x) = 0$

$$\sum_{j=1}^{n} w_j^{(2)}(x)(x - x_j) = 0$$
and
$$\sum_{j=1}^{n} w_j^{(2)}(x)(x - x_j)^2 = 2.$$

- Local polynomials of degree $p \ge 2$ will satisfy these constraints.
- So will cubic splines (of any flavour)
- But not kernel or locally linear smoothers.

Outline

- 1 General kernel form of linear smoothers
- 2 Inference for linear smoothers
- 3 Derivative estimation
- 4 Multidimensional smoothers

Multidimensional kernel smoothing

If $m \ge 2$ predictors, need to fit surface rather than line.

Multidimensional kernel smoothing

$$\hat{f}(z) = \sum_{j=1}^{n} w_j(z) y_j$$
 where $w_j(z) = \frac{K_m(z - x_j)}{\sum_{j=1}^{n} K_m(z - x_j)}$.

z and x_j are m-dimensional vectors and $K_m(u)$ is an m-dimensional function.

Product kernel: $K_m(\mathbf{u}) = \prod_{i=1}^m \frac{1}{h_i} K(u_i/h_i)$ where K(u) is univariate kernel and h_i is smoothing parameter in ith dimension.

Multidimensional distance: $K_m(\mathbf{u}) = \frac{1}{h}K(\|\mathbf{u}\|/h)$ where $\|\mathbf{u}\|$ is distance metric (e.g. Euclidean distance). Only one smoothing parameter, h, used.

Multidimensional kernel smoothing

- If multidimensional distance used, it is usually necessary to standardise each predictor by dividing by its standard deviation or some other measure of spread.
- If m = 1, both methods give the standard univariate results.

Local polynomial surfaces

Locally weighted lines generalise easily to higher dimensions.

- Instead of computing local lines, compute a local plane.
- If predictors are w and v, local plane is computed using multiple regression on w and v.
- Local quadratic surfaces computed using multiple regression on w, v, wv, w^2 and v^2 .

```
fit \leftarrow loess(y \sim x + z, span)
```

Bivariate smoothing

Bivariate splines

Smoothing splines can be generalized to thin-plate splines in two dimensions.

Minimize

$$\sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2 + \lambda \iint \left[\left(\frac{\partial^2 f}{\partial x_1^2} \right) + 2 \left(\frac{\partial^2 f}{\partial x_1 \partial x_2} \right) + \left(\frac{\partial^2 f}{\partial x_2^2} \right) \right] dx_1 dx_2.$$

In R:

```
library(mgcv)
fit <- gam(y ~ s(x, z), data)
vis.gam(fit)</pre>
```

Bivariate smoothing

```
library(mgcv)
smod <- gam(sr ~ s(pop15, ddpi), data=savings)</pre>
```

