VETTORI GEOMETRICI.

Osservazioni

- 1. Ripassare il concetto di vettore e la sua scrittura per componenti.
- 2. Ricordarsi che

$$\vec{u}//\vec{v} \Leftrightarrow \vec{u} = k\vec{v}, k \in \mathbb{R} \Leftrightarrow rk \begin{pmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \end{pmatrix} \leq 1$$

(l'ultima equivalenza è stata dimostrata lavorando sui ranghi). Cosa capita se uno dei due fosse il vettore nullo?

3. Ricordarsi che, dati due vettori non paralleli \vec{u} e \vec{v} , allora

$$\vec{t}$$
 è complanare a \vec{u} e $\vec{v} \Leftrightarrow \vec{t} = a\vec{u} + b\vec{v}, a, b \in \mathbb{R} \Leftrightarrow rk \begin{pmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ t_x & t_y & t_z \end{pmatrix} \leq 2$

(l'ultima equivalenza è stata mostrata lavorando sui ranghi). Ricordarsi cosa succede se i primi due vettori fossero paralleli.

ESERCIZIO 1 Siano dati i vettori $\vec{v} = (2, 0, 1)$ e $\vec{w} = (-1, 2, 3)$. Controllare che non siano paralleli e verificare se $\vec{t} = (3, 2, 5)$ è complanare ai precedenti. In caso affermativo calcolare i coefficienti a e b della combinazione lineare. Ripetere l'esercizio con $\vec{t} = (1, 2, 3)$.

Svolgerlo in due modi: (i) con la def. di complanarità ottenendo subito a e b; (ii) con la riduzione per righe della matrice delle componenti mostrando che si può risalire ad a e b dai coefficienti della riduzione.

Osservazione. Ricordarsi la corrispondenza tra coppie di punti e vettore.

ESERCIZIO 2 (Variazione sul tema del precedente) Verificare se i quattro punti $A=(0,1,0),\ B=(0,1,-1),\ C=(2,0,0),\ D=(-2,2,0)$ sono complanari.

Osservazione. Ripassare il prodotto scalare e le principali proprietà.

ESERCIZIO 3 Trovare i vettori complanari a $\vec{u} = \vec{i} - \vec{k}$ e $\vec{v} = \vec{i} + \vec{j}$ e ortogonali a $\vec{u} + \vec{v}$.

ESERCIZIO 4 Trovare l'angolo formato dai vettori $\vec{u} = \vec{i} + \vec{j}$ e $\vec{w} = 2\vec{i} + \vec{j} + \vec{k}$. Determinare poi un vettore \vec{t} ortogonale ad entrambi e di modulo unitario.

ESERCIZIO 5 Siano $\vec{u} = (1, 3, -1)$ e $\vec{v} = (1, -1, 0)$. Scomporre \vec{u} su \vec{v} e su una direzione ortogonale a \vec{v} .

ESERCIZIO 6 Scomporre $\vec{u}=(1,3,1)$ lungo $\vec{v}=(1,-1,0)$ e lungo $\vec{w}=(3,1,1)$.

Osservare che, perchè abbia senso l'esercizio, i tre vettori devono risultare complanari. Si può risolvere chiedendo \vec{u} combinazione lineare dei precedenti.

ESERCIZIO 7 Siano dati i tre vettori:

$$\vec{u} = a\vec{i} + 2\vec{j} + b\vec{k}, \quad \vec{v} = (1-b)\vec{i} + b\vec{j} + 2\vec{k} \quad e \quad \vec{w} = b\vec{i} + b\vec{j} + 2\vec{k}.$$

Determinare i valori dei parametri reali a e b affinchè $\vec{u} + \vec{v}$ sia parallelo a \vec{w} . Svolgerlo usando la condizione $\vec{t}//\vec{w} \Leftrightarrow \vec{t} \times \vec{w} = 0$ e mostrare che equivale alla proporzionalità delle componenti.

ESERCIZIO 8 QUIZ.

Q1. Nello spazio dei vettori applicati in O, sono dati i vettori:

$$\vec{u} = 3\vec{i}, \vec{v} = 7\vec{i} + \vec{j}, \vec{w} = \vec{i} + 2\vec{j} - 3\vec{k}.$$

Quali delle seguenti affermazioni è vera?

- 1. $\vec{u}, \vec{v}, \vec{w}$ non sono complanari;
- 2. \vec{w} è ortogonale al prodotto vettoriale di \vec{v} con \vec{u} ;
- 3. \vec{w} è ortogonale a $\vec{u} + \vec{v}$;
- 4. esistono valori di $a, b \in \mathbb{R}$ per cui $\vec{w} = a\vec{u} + b\vec{v}$.
- Q2. Nello spazio dei vettori applicati in O, sono dati i vettori:

$$\vec{u} = \vec{i} - \vec{j} + 3\vec{k}, \vec{v} = \vec{j} - 2\vec{k}, \vec{w} = 3\vec{i} - 6\vec{j} - 3\vec{k}.$$

Quali delle seguenti affermazioni è vera?

- 1. $\vec{u}, \vec{v}, \vec{w}$ sono complanari;
- 2. \vec{w} è parallelo a \vec{v} ;

- 3. $\vec{u} \in \vec{w}$ formano un angolo acuto;
- 4. \vec{w} è parallelo a $\vec{u} \times \vec{v}$.
- Q3. Sia \vec{v} un vettore non nullo. Quali delle seguenti affermazioni è vera?
 - 1. L'equazione $\vec{v} \times \vec{x} = \vec{x} \times \vec{v}$ ha $\vec{x} = \vec{0}$ come unica soluzione;
 - 2. se \vec{w} è un vettore, allora $\vec{v} \vec{w}$ e $\vec{v} + \vec{w}$ sono perpendicolari se e solo se $|\vec{v}| = |\vec{w}|;$
 - 3. l'equazione $\vec{v} \times \vec{x} = \vec{w}$ ha soluzione per ogni scelta di \vec{w} ;
 - 4. esiste un versore \vec{u} tale che il triangolo di lati \vec{v} e \vec{u} ha area $2|\vec{v}|$.

ESERCIZIO 9 Utilizzando le operazioni note tra vettori calcolare:

- 1. l'area del parallelogramma individuato dai tre punti (non allineati) $A(1,0,-1),\,B(3,3,3),\,C(4,1,2).$
- 2. il volume del tetraedro di vertici (non complanari) A, B, C come nel punto precedente, e quarto vertice D(0, 0, 0).