Additional Cheat Sheet

By Marcelo Moreno Porras - Universidad Rey Juan Carlos The Econometrics Cheat Sheet Project

OLS matrix notation

The general econometric model:

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + u_i$$

Can be written in matrix notation as:

$$y = X\beta + u$$

Let's call \hat{u} the vector of estimated residuals ($\hat{u} \neq u$):

$$\hat{u} = y - X\hat{\beta}$$

The **objective** of OLS is to **minimize** the SSR:

$$\min SSR = \min \sum_{i=1}^{n} \hat{u}_i^2 = \min \hat{u}^{\top} \hat{u}$$

• Defining $\hat{u}^{\top}\hat{u}$:

$$\hat{u}^{\top} \hat{u} = (y - X\hat{\beta})^{\top} (y - X\hat{\beta})$$
$$= y^{\top} y - 2\hat{\beta}^{\top} X^{\top} y + \hat{\beta}^{\top} X^{\top} X\hat{\beta}$$

• Minimizing $\hat{u}^{\top}\hat{u}$:

$$\frac{\partial \hat{u}^{\top} \hat{u}}{\partial \hat{\beta}} = -2X^{\top}y + 2X^{\top}X\hat{\beta} = 0$$
$$\hat{\beta} = (X^{\top}X)^{-1}(X^{\top}y)$$

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} n & \sum x_1 & \dots & \sum x_k \\ \sum x_1 & \sum x_1^2 & \dots & \sum x_1 x_k \\ \vdots & \vdots & \ddots & \vdots \\ \sum x_k & \sum x_k x_1 & \dots & \sum x_k^2 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \sum y \\ \sum y x_1 \\ \vdots \\ \sum y x_k \end{bmatrix}$$

The second derivative $\frac{\partial^2 \hat{u}^\top \hat{u}}{\partial \hat{\beta}^2} = X^\top X > 0$ (is a min.)

Variance-covariance matrix of β

Has the following shape:

$$\begin{aligned} & \operatorname{Var}(\hat{\beta}) = \hat{\sigma}_{u}^{2} \cdot (X^{\top}X)^{-1} \\ & = \begin{bmatrix} \operatorname{Var}(\hat{\beta}_{0}) & \operatorname{Cov}(\hat{\beta}_{0}, \hat{\beta}_{1}) & \dots & \operatorname{Cov}(\hat{\beta}_{0}, \hat{\beta}_{k}) \\ \operatorname{Cov}(\hat{\beta}_{1}, \hat{\beta}_{0}) & \operatorname{Var}(\hat{\beta}_{1}) & \dots & \operatorname{Cov}(\hat{\beta}_{1}, \hat{\beta}_{k}) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(\hat{\beta}_{k}, \hat{\beta}_{0}) & \operatorname{Cov}(\hat{\beta}_{k}, \hat{\beta}_{1}) & \dots & \operatorname{Var}(\hat{\beta}_{k}) \end{bmatrix} \end{aligned}$$

where: $\hat{\sigma}_u^2 = \frac{\hat{u}^\top \hat{u}}{n-k-1}$

The standard errors are on the diagonal of:

$$\operatorname{se}(\hat{\beta}) = \sqrt{\operatorname{Var}(\hat{\beta})}$$

Error measurements

- SSR = $\hat{u}^{\top}\hat{u} = y^{\top}y \hat{\beta}^{\top}X^{\top}y = \sum (y_i \hat{y}_i)^2$
- SSE = $\hat{\beta}^{\top} X^{\top} y n \overline{y}^2 = \sum (\hat{y}_i \overline{y})^2$
- SST = SSR + SSE = $y^{\top}y n\overline{y}^2 = \sum (y_i \overline{y})^2$

Variance-covariance matrix of u

Has the following shape:

$$Var(u) = \begin{bmatrix} Var(u_1) & Cov(u_1, u_2) & \dots & Cov(u_1, u_n) \\ Cov(u_2, u_1) & Var(u_2) & \dots & Cov(u_2, u_n) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(u_n, u_1) & Cov(u_n, u_2) & \dots & Var(u_n) \end{bmatrix}$$

Under no heteroscedasticity and no autocorrelation, the variance-covariance matrix:

Var
$$(u) = \sigma_u^2 \cdot I_n = \begin{bmatrix} \sigma_u^2 & 0 & \dots & 0 \\ 0 & \sigma_u^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_u^2 \end{bmatrix}$$
 I_n is an identity matrix of $n \times n$ elemen

where I_n is an identity matrix of $n \times n$ elements. Under heteroscedasticity and autocorrelation, the variance-covariance matrix:

$$\operatorname{Var}(u) = \sigma_u^2 \cdot \Omega = \begin{bmatrix} \sigma_{u_1}^2 & \sigma_{u_{12}} & \dots & \sigma_{u_{1n}} \\ \sigma_{u_{21}} & \sigma_{u_{2}}^2 & \dots & \sigma_{u_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{u_{n1}} & \sigma_{u_{n2}} & \dots & \sigma_{u_{n}}^2 \end{bmatrix}$$
where $\Omega \neq I$.

where $\Omega \neq I_n$.

- Heteroscedasticity: $Var(u) = \sigma_{u_i}^2 \neq \sigma_u^2$ Autocorrelation: $Cov(u_i, u_j) = \sigma_{u_{ij}} \neq 0, \ \forall i \neq j$

Variable omission

Most of the time, it is hard to get all relevant variables for an analysis. For example, a true model with all variables:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + v$$

where $\beta_2 \neq 0$, v is the error term and $Cov(v \mid x_1, x_2) = 0$. The model with the available variables:

$$y = \alpha_0 + \alpha_1 x_1 + u$$

where $u = v + \beta_2 x_2$.

Relevant variable omission can cause OLS estimators to be biased and inconsistent, because there is no weak exogeneity, $Cov(x_1, u) \neq 0$. Depending on the $Corr(x_1, x_2)$ and the sign of β_2 , the bias on $\hat{\alpha}_1$ could be:

$$|Corr(x_1, x_2) > 0 | Corr(x_1, x_2) < 0$$

 $|\beta_2| > 0 | (+) | bias | (-) | bias |$
 $|\beta_2| < 0 | (-) | bias | (+) | bias |$

- (+) bias: $\hat{\alpha}_1$ will be higher than it should be (it includes the effect of x_2) $\rightarrow \hat{\alpha}_1 > \beta_1$
- (-) bias: $\hat{\alpha}_1$ will be lower than it should be (it includes the effect of x_2) $\rightarrow \hat{\alpha}_1 < \beta_1$

If $Corr(x_1, x_2) = 0$, there is no bias on $\hat{\alpha}_1$, because the effect of x_2 will be fully captured by the error term, u.

Variable omission correction

Proxy variables

Is the approach when a relevant variable is not available because it is non-observable, and no data is available.

• A proxy variable is something related to the nonobservable variable that has data available.

For example, the GDP per capita is a proxy variable for life quality (non-observable).

Instrumental variables

When the variable of interest (x) is observable but **endogenous**, the proxy variables approach is no longer valid.

• An instrumental variable (IV) is an observable **variable** (z) that is **related** to the variable of interest that is endogenous (x), and meets the **requirements**:

$$\operatorname{Cov}(z, u) = 0 \to \operatorname{instrument}$$
 exogeneity $\operatorname{Cov}(z, x) \neq 0 \to \operatorname{instrument}$ relevance

Instrumental variables let the omitted variable into the error term, but instead of estimating the model by OLS, it utilizes a method that recognizes the presence of an omitted variable. It can also solve error measurement problems.

• Two-Stage Least Squares (TSLS) is a method to estimate a model with multiple instrumental variables. The Cov(z, u) = 0 can be relaxed, but there has to be a minimum number of variables that satisfy it.

The TSLS **estimation procedure** is as follows:

1. Estimate a model regressing x by z using OLS, obtaining \hat{x} :

$$\hat{x} = \hat{\pi}_0 + \hat{\pi}_1 z$$

2. Replace x by \hat{x} in the final model and estimate it by OLS:

$$y = \beta_0 + \beta_1 \hat{x} + u$$

There are some important things to know about TSLS:

- TSLS estimators are less efficient than OLS when the explanatory variables are exogenous; the **Hausman** test can be used to check this:

 H_0 : OLS estimators are consistent.

If H_0 is not rejected, the OLS estimators are better than TSLS and vice versa.

- When more instruments than endogenous variables are used, the model may be over-identified; the Sargan **test** can be used to check this:

 H_0 : All instruments are valid.

Information criterion

Compare models with different numbers of parameters (p). The general formula:

$$\operatorname{Cr}(p) = \log(\frac{\operatorname{SSR}}{n}) + c_n \varphi(p)$$

where:

- SSR from a model of order p.
- c_n is a sequence indexed by the sample size.
- $\varphi(p)$ is a function that penalizes large p orders.

It is interpreted as the relative amount of information lost by the model. The order p that min. the criterion is chosen. There are different $c_n \varphi(p)$ functions:

- Akaike: AIC(p) = $\log(\frac{SSR}{n}) + \frac{2}{n}p$
- Hannan-Quinn: $HQ(p) = \log(\frac{SSR}{n}) + \frac{2\log(\log(n))}{n}p$
- Schwarz / Bayesian: BIC(p) = $\log(\frac{SSR}{n}) + \frac{\log(n)}{n}p$ BIC(p) < HQ(p) < AIC(p)

The non-restricted hypothesis test

An alternative to the F test when there are few hypothesis to test on the parameters. Let β_i, β_i be parameters, $a, b, c \in \mathbb{R}$ are constants.

- $H_0: a\beta_i + b\beta_i = c$
- $H_1: a\beta_i + b\beta_i \neq c$

Under
$$H_0$$
:
$$t = \frac{a\hat{\beta}_i + b\hat{\beta}_j - c}{\operatorname{se}(a\hat{\beta}_i + b\hat{\beta}_j)}$$
$$= \frac{a\hat{\beta}_i + b\hat{\beta}_j - c}{\sqrt{a^2 \operatorname{Var}(\hat{\beta}_i) + b^2 \cdot \operatorname{Var}(\hat{\beta}_j) + 2ab \operatorname{Cov}(\hat{\beta}_i, \hat{\beta}_j)}}$$

If $|t| > |t_{n-k-1,\alpha/2}|$, there is evidence to reject H_0 .

ANOVA

Decompose SST:

Variation origin	Sum Sq.	$\mathrm{d}\mathrm{f}$	Sum Sq. Avg.
Regression	SSE	k	SSE/k
Residuals	SSR	n-k-1	SSR/(n-k-1)
Total	SST	n-1	

- $H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$
- $H_1: \beta_1 \neq 0$ and/or $\beta_2 \neq 0 \dots$ and/or $\beta_k \neq 0$ Under H_0 :

F =
$$\frac{\text{SSA of SSE}}{\text{SSA of SSR}} = \frac{\text{SSE}}{\text{SSR}} \cdot \frac{n-k-1}{k} \sim F_{k,n-k-1}$$

If $F > F_{k,n-k-1}$, there is evidence to reject H_0 .

Panel data

Observations on n entities over T periods.

$$y_{it} = X_{it}\beta + \alpha_i + u_{it}$$

 α_i represents the time-invariant unobserved heterogeneity.

Pooled OLS model

- Apply OLS to the data directly.
- Assumption: α_i is constant.

Fixed effects model (within estimator)

$$y_{it} - \overline{y}_i = (X_i - \overline{X}_{it})\beta + (\alpha_i - \overline{\alpha}_i) + (u_{it} - \overline{u}_i)$$

- Demeaning is performed to remove α_i .
- Control for unobserved entity-specific effects.
- Assumption: $Corr(X_{it}, \alpha_i) \neq 0$.

Least square dummy variable model (LSDV)

Dummy variables are added for each entity and/or time Let ξ, η be random variables, $a, b \in \mathbb{R}$ be constants, and P period to capture the fixed effects.

First difference model

$$y_{it} - y_{i,t-1} = (X_{it} - X_{i,t-1})\beta + (\alpha_i - \alpha_i) + (u_{it} - u_{i,t-1})$$

- First differences are performed to remove α_i .
- Assumption: $Corr(u_{it} u_{i,t-1} \mid X_{it} X_{i,t-1}) = 0.$

Random effects model

$$y_{it} = X_{it}\beta + \alpha_i + \epsilon_{it}$$
 where $u_{it} = \alpha_i + \epsilon_{it}$

• Assumption: $Corr(X_{it}, \alpha_i) = 0$.

Logistic regression

Binary (0, 1) dependent variable. Logit model:

$$P_{i} = \frac{1}{1 + e^{-(\beta_{0} + \beta_{1}x_{i} + u_{i})}} = \frac{e^{\beta_{0} + \beta_{1}x_{i} + u_{i}}}{1 + e^{\beta_{0} + \beta_{1}x_{i} + u_{i}}}$$
where $P_{i} = E(y_{i} = 1 \mid x_{i})$ and $(1 - P_{i}) = E(y_{i} = 0 \mid x_{i})$

The **odds ratio** (in favor of
$$y_i = 1$$
):
$$\frac{P_i}{1 - P_i} = \frac{1 + e^{\beta_0 + \beta_1 x_i + u_i}}{1 + e^{-(\beta_0 + \beta_1 x_i + u_i)}} = e^{\beta_0 + \beta_1 x_i + u_i}$$

Taking the natural logarithm of the odds ratio, the **logit**:

$$L_i = \ln\left(\frac{P_i}{1 - P_i}\right) = \beta_0 + \beta_1 x_i + u_i$$

 P_i is between 0 and 1, but 1 TP L_i goes from $-\infty$ to $+\infty$.

If L_i is positive, it means that when x_i increases, the probability of $y_i = 1$ increases, and vice versa.

Incorrect functional form

Ramsey's RESET (Regression Specification Error Test).

 H_0 : The model is correctly specified.

1. Estimate the original model and obtain \hat{y} and R^2 :

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k$$

- 2. Estimate a model adding powers of \hat{y} and obtain R_{new}^2 : $\tilde{y} = \hat{y} + \tilde{\gamma}_2 \hat{y}^2 + \dots + \tilde{\gamma}_l \hat{y}^l$

3. Test statistic, under
$$\gamma_2 = \cdots = \gamma_l = 0$$
 as H_0 :
$$F = \frac{R_{\text{new}}^2 - R^2}{1 - R_{\text{new}}^2} \cdot \frac{n - (k+1) - l}{l} \sim F_{l,n-(k+1)-l}$$
If $F > F_{l,n-(k+1)-l}$, there is evidence to reject H_0 .

Statistical definitions

denotes probability.

Mean
$$E(\xi) = \sum_{i=1}^{n} \xi_i \cdot P[\xi = \xi_i]$$

Sample mean:
$$E(\xi) = \frac{1}{n} \sum_{i=1}^{n} \xi_i$$

Properties of the mean:

- \bullet E(a) = a
- $E(\xi + a) = E(\xi) + a$
- $E(a \cdot \xi) = a \cdot E(\xi)$
- $E(\xi \pm \eta) = E(\xi) + E(\eta)$
- $E(\xi \cdot \eta) = E(\xi) \cdot E(\eta)$ only if ξ and η are independent.
- $E(\xi E(\xi)) = 0$
- $E(a \cdot \xi + b \cdot \eta) = a \cdot E(\xi) + b \cdot E(\eta)$

Variance
$$Var(\xi) = E[(\xi - E(\xi))^2]$$

Sample variance:
$$\operatorname{Var}(\xi) = \frac{\sum_{i=1}^{n} (\xi_i - \operatorname{E}(\xi))^2}{n-1}$$

Properties of the variance:

- Var(a) = 0
- $Var(\xi + a) = Var(\xi)$
- $Var(a \cdot \xi) = a^2 \cdot Var(\xi)$
- $Var(\xi \pm \eta) = Var(\xi) + Var(\eta) \pm 2 \cdot Cov(\xi, \eta)$
- $\operatorname{Var}(a \cdot \xi \pm b \cdot \eta) = a^2 \cdot \operatorname{Var}(\xi) + b^2 \cdot \operatorname{Var}(\eta) \pm 2ab \cdot \operatorname{Cov}(\xi, \eta)$

Covariance
$$\operatorname{Cov}(\xi, \eta) = \operatorname{E}\left[(\xi - E(\xi)) \cdot (\eta - E(\eta))\right]$$

Sample covariance:
$$\frac{\sum_{i=1}^{n} (\xi_i - E(\xi)) \cdot (\eta - E(\eta))}{n-1}$$

Properties of the covariance:

- $Cov(\xi, a) = 0$
- $Cov(\xi + a, \eta + b) = Cov(\xi, \eta)$
- $Cov(a \cdot \xi, b \cdot \eta) = ab \cdot Cov(\xi, \eta)$
- $Cov(\xi, \xi) = Var(\xi)$
- $Cov(\xi, \eta) = Cov(\eta, \xi)$

Hypothesis testing

	H_0 true	H_0 false
Reject H_0	False positive	True positive
	Type I Error (α)	$(1-\beta)$
Not reject H_0	True negative	False negative
	$(1-\alpha)$	Type II Error (β)

where $(1 - \alpha)$ is the confidence level, α is the significance level, C is the critical value, $(1 - \beta)$ is the statistical power.

Bootstrapping

Problem - Asymptotic approximations to the distributions of test statistics do not work on small samples.

Solution - Bootstrap is sampling with replacement. The observed data is treated like a population, and multiple samples are extracted to recalculate an estimator or test statistic multiple times (improves accuracy).

VAR (Vector Autoregressive)

A VAR model captures **dynamic interactions** between time series. The VAR(p):

$$y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + B x_t + C D_t + u_t$$

where

- $y_t = (y_{1t}, \dots, y_{Kt})^{\top}$ is a vector of K observable endogenous time series.
- A_i 's are $K \times K$ coefficient matrices.
- $x_t = (x_{1t}, \dots, x_{Mt})^{\top}$ is a vector of M observable exogenous time series.
- B is a $K \times M$ coefficient matrix.
- D_t is a vector that contains all deterministic terms: a constant, linear trend, seasonal dummy, and/or any other user-specified dummy variables.
- C is a coefficient matrix of suitable dimension.
- $u_t = (u_{1t}, \dots, u_{Kt})^{\top}$ is a vector of K white noise series.

Stability condition:

$$\det(I_K - A_1 z - \dots - A_n z^p) \neq 0 \quad \text{for} \quad |z| < 1$$

this is, there are **no roots** in and on the complex unit circle.

For example, a VAR model with two endogenous variables (K = 2), two lags (p = 2), an exogenous contemporaneous variable (M = 1), a constant (const) and a trend (Trend_t):

$$\begin{bmatrix} y_{1t} \\ y_{2t} \end{bmatrix} = \begin{bmatrix} a_{11,1} & a_{12,1} \\ a_{21,1} & a_{22,1} \end{bmatrix} \cdot \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \end{bmatrix} + \begin{bmatrix} a_{11,2} & a_{12,2} \\ a_{21,2} & a_{22,2} \end{bmatrix} \cdot \begin{bmatrix} y_{1,t-2} \\ y_{2,t-2} \end{bmatrix} + \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} \cdot \begin{bmatrix} x_t \end{bmatrix} + \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \cdot \begin{bmatrix} const \\ Trend_t \end{bmatrix} + \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$$

Visualizing the separate equations:

 $y_{1t} = a_{11,1}y_{1,t-1} + a_{12,1}y_{2,t-1} + a_{11,2}y_{1,t-2} + a_{12,2}y_{2,t-2} + b_{11}x_t + c_{11} + c_{12}\mathrm{Trend}_t + u_{1t} \\ y_{2t} = a_{21,1}y_{2,t-1} + a_{22,1}y_{1,t-1} + a_{21,2}y_{2,t-2} + a_{22,2}y_{1,t-2} + b_{21}x_t + c_{21} + c_{22}\mathrm{Trend}_t + u_{2t} \\ \mathrm{If} \ \mathrm{there} \ \mathrm{is} \ \mathrm{a} \ \mathrm{unit} \ \mathrm{root}, \ \mathrm{the} \ \mathrm{determinant} \ \mathrm{is} \ \mathrm{zero} \ \mathrm{for} \ z = 1; \ \mathrm{then} \ \mathrm{some} \ \mathrm{or} \ \mathrm{all} \ \mathrm{variables} \ \mathrm{are} \\ \mathrm{integrated}, \ \mathrm{and} \ \mathrm{a} \ \mathrm{VAR} \ \mathrm{model} \ \mathrm{is} \ \mathrm{no} \ \mathrm{longer} \ \mathrm{appropriate} \ \mathrm{(it} \ \mathrm{becomes} \ \mathrm{unstable}).$

SVAR (Structural VAR)

In a VAR model, causal interpretation is not explicit, and results are sensitive to variable ordering. A SVAR extends VAR by imposing theory-based restrictions on A and/or B matrices. This can enable causal interpretation and shock analysis without reliance on arbitrary ordering.

For example, a basic SVAR(p) model:

$$\mathsf{A}y_t = \mathsf{A}[A_1, \dots, A_p]y_{t-1} + \mathsf{B}\varepsilon_t$$

where:

- $u_t = \mathsf{A}^{-1}\mathsf{B}\varepsilon_t$
- A, B are $(K \times K)$ matrices.

VECM (Vector Error Correction Model)

If **cointegrating relations** are present in a system of variables, the VAR form is not the most convenient. It is better to use a VECM, that is, the levels VAR, subtracting y_{t-1} from both sides. The VECM(p-1):

$$\Delta y_t = \Pi y_{t-1} + \sum_{i=1}^{p-1} \Gamma_i \Delta y_{t-i} + B x_t + C D_t + u_t$$

where:

- $\Delta y_t = (\Delta y_{1t}, \dots, \Delta y_{Kt})^{\top}$ is a vector of K observable endogenous time series.
- Πy_{t-1} is the **long-term** part.

$$\Leftrightarrow \Pi = -(I_K - A_1 - \dots - A_p) \text{ for } i = 1, \dots, p - 1$$

- $\Rightarrow \Pi = \alpha \beta$
- $\diamond \alpha$ is the **loading matrix** $(K \times r)$. It represents the speed of adjustment.
- $\diamond \beta$ is the **cointegration matrix** $(K \times r)$.
- $\diamond \beta^{\top} y_{t-1}$ is the **cointegrating equation**. It represents the long-run equilibrium.
- $\diamond \operatorname{rk}(\Pi) = \operatorname{rk}(\alpha) = \operatorname{rk}(\beta) = r$ is the **cointegrating rank**.
- $\Gamma_i = -(A_{i+1} + \cdots + A_p)$ for $i = 1, \dots, p-1$ are the **short-term** parameters.
- x_t , B, C, D_t and u_t are as in VAR.

For example, a VECM with three endogenous variables (K = 3), two lags (p = 2) and two cointegrating relations (r = 2):

$$\Delta y_t = \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + u_t$$

where:

$$\Pi y_{t-1} = \alpha \beta^\top y_{t-1} = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \\ \alpha_{31} & \alpha_{32} \end{bmatrix} \begin{bmatrix} \beta_{11} & \beta_{21} & \beta_{31} \\ \beta_{12} & \beta_{22} & \beta_{32} \end{bmatrix} \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \\ y_{3,t-1} \end{bmatrix} = \begin{bmatrix} \alpha_{11}ec_{1,t-1} + \alpha_{12}ec_{2,t-1} \\ \alpha_{21}ec_{1,t-1} + \alpha_{22}ec_{2,t-1} \\ \alpha_{31}ec_{1,t-1} + \alpha_{32}ec_{2,t-1} \end{bmatrix}$$

$$ec_{1,t-1} = \beta_{11}y_{1,t-1} + \beta_{21}y_{2,t-1} + \beta_{31}y_{3,t-1}$$

$$ec_{2,t-1} = \beta_{12}y_{1,t-1} + \beta_{22}y_{2,t-1} + \beta_{32}y_{3,t-1}$$

and

$$\Gamma_1 \Delta y_{t-1} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix} \begin{bmatrix} \Delta y_{1,t-1} \\ \Delta y_{2,t-1} \\ \Delta y_{3,t-1} \end{bmatrix} \quad u_t = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

Visualizing the separate equations

$$\Delta y_{1t} = \alpha_{11}ec_{1,t-1} + \alpha_{12}ec_{2,t-1} + \gamma_{11}\Delta y_{1,t-1} + \gamma_{12}\Delta y_{2,t-1} + \gamma_{13}\Delta y_{3,t-1} + u_{1t}$$

$$\Delta y_{2t} = \alpha_{21}ec_{1,t-1} + \alpha_{22}ec_{2,t-1} + \gamma_{21}\Delta y_{1,t-1} + \gamma_{22}\Delta y_{2,t-1} + \gamma_{23}\Delta y_{3,t-1} + u_{2t}$$

$$\Delta y_{3t} = \alpha_{31}ec_{1,t-1} + \alpha_{32}ec_{2,t-1} + \gamma_{31}\Delta y_{1,t-1} + \gamma_{32}\Delta y_{2,t-1} + \gamma_{33}\Delta y_{3,t-1} + u_{3t}$$