DAILY ASSESSMENT FORMAT

Date:	27/05/2020	Name:	Akshatha M Deshpande
Course:	DSP	USN:	4AL17EC006
Topic:	Fast Fourier Transforms ,FIR and IIR Filters,Implementation of signal Filtering signal using WT in Matlab,Short-time Fourier Transform and the Spectogram,Welch's method and windowing	Semester & Section:	6th Sem A sec
Github Repository:	AkshathaDeshpande		

Report – Report can be typed or hand written for up to two pages.

```
Laplace Fransform:
   clc:
   clear all;
   Syms Lft;
  f= (exp(-3*t) * sin(3*t))/t
   L = laplace(f)
Output -> aton (2/s+3)
  Inverse Laplace transform:
  cle;
   clear all;
   eyms F S
   F = 1(5 2 +1)
  ilaplace(f)
 output -> sint
 Fourier Transform 1-
              F(s) = \int_{\infty}^{\infty} f(x) e^{isx} dx \rightarrow FT
              F(x) = 1 SF(s) e-isx ds → IFT.
                 xp = ξ ηη, ων Pn N=2
          X_0 = X_0 e^{-j2\pi(0)(0)/2} + X_1 e^{-j2\pi(0)(0)/2}
          Xo = Xo +X1
 IJR Filter :-
* Consider system described by transfer function.

H(z) = \frac{b_3 z^3 + b_2 z^2 + b_1 z + b_0}{z^3 + a_2 z^2 + a_1 z + z_0}
* The corresponding difference equation is.
```

y[k]= -azy[k-1] - ajy[k-2] - agy[k-3] + bzf[k] +bzf[k-1] +b, f[k-2] +bof[k-3]

Shows the current olp is a function of current part input & part outputs.

x It's a recursive function.

Mavelet Transform :-

Resolution

Correlation:

Nowishing Moments:

Date: 27/05/2020 Name: Akshatha M Deshpande

Course: Python USN: 4AL17EC006

Topic: Graphical user interface Semester & 6th Sem A sec

with tkinter, Interacting Section:

with databases

AFTERNOON SESSION DETAILS

Image of session

Report – Report can be typed or hand written for up to two pages.

Graphical User Interfaces with Trinter:

- * Introduction to thinter
 - -> It works only offline, the online compilers doesn't support this function.
 - -> How to get started with tkinter.
- * Setting up a GOUT with widgets.
- * Connecting gui widgets with callback functions.
- * How to create a multi-widget GIVI (practice)

tip: Ikg=1000g 1kg=2.20462 pourds when multiples are required.

Interacting with databases:

- * Introduction to python withdod a with bases.
- * (onnecting & Inserting dad a
 - -> solite via python is used
 - -> How to view, delete and update the rows or columns in a table.
 - -> How to create a table.
- * How daselecting, inserting, deleting & updating
 - -> using different functions for different operations.
 - -> using .connect to connect, .commit
 - -> . close to close.
- * Introduction to post gre SQL psycopg 2
- * selecting, Inserting, deleting & updating in that
- * Quering data from a Myege database.

