

CLAIMS:

1. A bleaching composition comprising:
 5 a) a monomer ligand, L, or transition metal catalyst thereof
 of a ligand having the formula (I):

- 10 wherein at least one of R1 and R2 is an optionally substituted tertiary amine of the form -C₂-C₄-alkyl-NR₇R₈, in which R₇ and R₈ are independently selected from the group consisting of straight chain, branched or cyclo C₁-C₁₂ alkyl, benzyl, the -C₂-C₄-alkyl- of the -C₂-C₄-alkyl-NR₇R₈
 15 may be substituted by 1 to 4 C₁-C₂-alkyl, or may form part of a C₃ to C₆ alkyl ring, and in which R₇ and R₈ may together form a saturated ring containing one or more other heteroatoms, the other of R₁ and R₂ being independently selected from:
 20 -C₂-C₄-alkyl-NR₇R₈ as defined above,
 -C₁-C₂₄-optionally substituted-alkyl,
 -C₆-C₁₀-aryl, -C₁-C₄-alkyl-C₆-C₁₀-aryl,
 a heterocycloalkyl: selected from the group consisting of: pyrrolinyl, pyrrolidinyl, morpholinyl, piperidinyl,
 25 piperazinyl, hexamethylene imine, 1,4-piperazinyl, tetrahydrothiophenyl, tetrahydrofuryl, tetrahydropyranyl,

and oxazolidinyl, wherein the heterocycloalkyl may be connected to the ligand via any atom in the ring of the selected heterocycloalkyl,

a -C1-C6-alkyl-heterocycloalkyl, wherein the

5 heterocycloalkyl of the -C1-C6-heterocycloalkyl is selected from the group consisting of: piperidinyl, piperidine, 1,4-piperazine, tetrahydrothiophene, tetrahydrofuran, pyrrolidine, and tetrahydropyran, wherein the heterocycloalkyl may be connected to the -C1-C6-alkyl via

10 any atom in the ring of the selected heterocycloalkyl,

a -C1-C6-alkyl-heteroaryl, wherein the heteroaryl of the -C1-C6-alkylheteroaryl is selected from the group consisting of: pyridinyl, pyrimidinyl, pyrazinyl, triazolyl, pyridazinyl, 1,3,5-triazinyl, quinolinyl, isoquinolinyl,

15 quinoxalinyl, imidazolyl, pyrazolyl, benzimidazolyl,

thiazolyl, oxazolidinyl, pyrrolyl, carbazolyl, indolyl, and isoindolyl, wherein the heteroaryl may be connected to the -C1-C6-alkyl via any atom in the ring of the selected heteroaryl and the selected heteroaryl is optionally

20 substituted by -C1-C4-alkyl, -C0-C6-alkyl-phenol, -C0-C6-alkyl-thiophenol, -C2-C4-alkyl-thiol, -C2-C4-alkyl-thioether, -C2-C4-alkyl-alcohol, -C2-C4-alkyl-amine, and a -C2-C4-alkyl-carboxylate;

25 R3 and R4 are independently selected from hydrogen, C1-C4-alkyl, phenyl, electron withdrawing groups and reduced products and derivatives thereof;

X is selected from: C=O, a ketal derivative of C=O, a

30 thioketal of derivative of C=O, and -[C(R6)₂]_y- wherein y takes a value 0 or 1; each R6 is independently selected

from hydrogen, hydroxyl, O-C1-C24-alkyl, O-benzyl, O-(C=O)-C1-C24-alkyl, C1-C24-alkyl;

z groups are same heteroaromatic groups, selected from the
5 group consisting of: pyridinyl; pyrimidinyl; pyrazinyl;
triazolyl; pyridazinyl; 1,3,5-triazinyl; quinolinyl;
isoquinolinyl; quinoxalinyl; imidazolyl; pyrazolyl;
benzimidazolyl; thiazolyl; oxazolidinyl; pyrrolyl;
carbazolyl; indolyl; and isoindolyl, and the selected Z is
10 optionally substituted by -C1-C4-alkyl;

b) the balance carriers and adjunct ingredients.

2. A bleaching composition according to claim 1, wherein z

15 is , wherein R is independently selected from:
hydrogen, F, Cl, Br, hydroxyl, C1-C4-alkyl-, -NH-CO-H, -NH-CO-C1-C4-alkyl, -NH2, -NH-C1-C4-alkyl, and C1-C4-alkyl.

3. A bleaching composition according to claim 2, wherein R
20 is H or -C1-C4-alkyl.

4. A bleaching composition according to claim 3, wherein R
is H.

25 5. A bleaching composition according to claim 1, wherein z
is selected from the group consisting of: benzimidazole,
thiazole, and imidazole.

6. A bleaching composition according claim 1, wherein one of R1 and R2 is -CH₃.

7. A bleaching composition according claim 1, wherein the
5 -C₂-C₄-alkyl-NR₇R₈ is selected from the group consisting of:
-CH₂CH₂-NR₇R₈, -CH₂CMe₂-NR₇R₈, -CMe₂CH₂-NR₇R₈, -CMeHCH₂-
NR₇R₈, -CMeHCM₂H-NR₇R₈, -CH₂CMeH-NR₇R₈, -CH₂CH₂CH₂-NR₇R₈, -
CH₂CH₂CMe₂-NR₇R₈, -CH₂CMe₂CH₂-NR₇R₈, -CH₂CH₂-NET₂, -CH₂CH₂-

N(i-Pr)₂,

, and ,

10.

8. A bleaching composition according claim 1, wherein X is selected from: C=O, and -[C(R₆)₂] wherein each R₆ is independently selected from hydrogen, hydroxyl, C₁-C₂₄-alkoxy and C₁-C₂₄-alkyl.

15

9. A bleaching composition according claim 1, wherein X, is selected from C=O, C(OH)₂, syn-CH(OH) and anti-CH(OH).

10. A bleaching composition according claim 1, wherein R₇
20 and R₈ are independently selected from the group consisting of -CH₃, -C₂H₅, -C₃H₇, -C₄H₉, -C₅H₁₁, -C₆H₁₃, and -CH₂C₆H₅.

11. A bleaching composition according according claim 1,
wherein at least one of R₇ and R₈ is an optionally
25 substituted alkyl chain of at least five carbon atoms.

12. A bleaching composition according to claim 7, wherein R7 and R8 are -CH₃, -CH₂CH₃, -CH(CH₃)₂ or together form a optionally substituted cyclic structure

selected from the group consisting of:

5

13. A bleaching composition according claim 1, wherein R1 is a C₂-C₄-alkyl-NR₇R₈.

10 14. A bleaching composition according claim 1, wherein R1 and R2 are independently C₂-C₄-alkyl-NR₇R₈.

15. A bleaching composition according claim 1, wherein -

NR₇R₈ is selected from group consisting of:

15

, and

16. A bleaching composition according claim 1, wherein R3 and R4 are selected from the group consisting of: -C(O)O-C₁-C₂₄-alkyl, -CH₂OOC(O)C₁-C₂₀-alkyl, benzyl ester, phenyl, 20 benzyl, CN, hydrogen, methyl, and C₁-C₄-OR wherein R is selected from the group consisting of H, C₁-C₂₄-alkyl or C(O)-C₁-C₂₄-alkyl.

- 40 -

17. A bleaching composition according claim 1, wherein: R3 = R4.
18. A bleaching composition according claim 1, wherein R3 and R4 are selected from the group consisting of -CH₂OH, and -C(O)O-C₁-C₆-alkyl.
19. A bleaching composition according claim 1, wherein R3 and R4 are selected from the group consisting of: -C(O)-O-CH₃, -C(O)-O-CH₂CH₃, and CH₂OH.
20. A bleaching composition according claim 1, wherein Y = 1.
- 15 21. A bleaching composition according claim 1, wherein X selected from the group consisting of: C=O, CH₂, C(OH)₂, *syn*-CHOR and *anti*-CHOR, wherein R is H, C₁-C₂₄-alkyl or C(O)-C₁-C₂₄-alkyl.
- 20 22. A bleaching composition according claim 1, wherein X is C=O or C(OH)₂.
23. A bleaching composition according to claim 1, wherein the ligand is:

wherein $-NR_6R_7$ is selected from the group consisting of -

24. A bleaching composition according to claim 1, wherein
5 the complex is of the general formula (A1):

in which:

10 M represents a metal selected from Mn(II)-(III)-(IV)-(V), Cu(I)-(II)-(III), Fe(II)-(III)-(IV)-(V), Co(I)-(II)-(III), Ti(II)-(III)-(IV), V(II)-(III)-(IV)-(V), Mo(II)-(III)-(IV)-(V)-(VI) and W(IV)-(V)-(VI);

X represents a coordinating species selected from any
15 mono, bi or tri charged anions and any neutral molecules
able to coordinate the metal in a mono, bi or tridentate
manner;

Y represents any non-coordinated counter ion;

a represents an integer from 1 to 10;

20 k represents an integer from 1 to 10;

n represents an integer from 0 to 10;

m represents zero or an integer from 1 to 20; and

L represents a ligand as defined in claims 1 to 22, or
its protonated or deprotonated analogue.

25

25. A bleaching composition according to claim 24, wherein
M represents a metal selected from Fe(II)-(III)-(IV)-(V).

- 42 -

26. A bleaching composition according to claim 25, wherein M represents a metal selected from Fe(II) and Fe(III).
27. A bleaching composition according to claim 26, wherein
5 the ligand is present in the form selected from the group consisting of [FeLCl]Cl and [FeL(H₂O)](BF₄)₂.