Summer Term 2022 Course Handout Part II

Date: 28.5.2022

Course No. : PHY F215

Course Title : INTRODUCTION TO ASTRONOMY & ASTROPHYSICS

Instructor in Charge : Sarmistha Banik

Objectives & Scope of the Course:

The course aims to give Physics/non-Physics major students an elementary introduction and overview of Astronomy & Astrophysics. This is for students who were always curious about the sky out there but never had a chance to know it deeper. And of course, for students who want to pursue their career in Astro. The course covers a broad spectrum of topics, from the era of Kepler to recent observation of gravitational waves, using basic principles of physics, keeping rigorous mathematics to minimum. We plan to have some hands-on session with telescope.

Text Book: Fundamental Astronomy: Karttunen, H., Kröger, P., Oja, H., Poutanen, M., Donner, K.J **Detailed Course Plan:**

	Learning	Topics to be covered	Chapte
ure	objectives	Topico to de covereu	r in the
No.	objectives		Text
110.			Book
14- 5	Daria Carrant	Colortial according to a Court elletions Molorcours Magnitude	TB 2-
110 9	Basic Concept	Celestial coordinates, Constellations, Telescopes, Magnitude	
	of Astronomy	scale, Optical Thickness, HertzsprungRussell Diagram.	4,8
6-10	Radiation	Radiation of Atoms and Molecules, Brightness and Flux	TB-5,
	Mechanism &	Density, Photometric concepts, Polarization, Blackbody	class
	Stellar Spectra	Radiation, The Rayleigh–Jeans Approximation, Planck	notes
		Radiation Law, Temperature, Cosmic microwave radiation,	
		Radiative Transfer(Absorption, Emission Reflection from an	
		Opaque Body), Radiation from an Accelerated Charge.	
11 to	Celestial	Equations of Solution of the Equation of Motion Equation of	TB 6,
15	Mechanics	the Orbit and Kepler's First Law Orbital Elements Kepler's	class
		Second and Third Law Systems of Several Bodies, Orbit	notes
		Determination, Position in the Orbit, Escape Velocity, Virial	
		Theorem, The Jeans Limit	
16 to	Solar System	An overview of solar system, planets, minor bodies of solar	TB 7,
22	•	system, Energy sources of the sun, Internal Structure, The	12,
		Atmosphere, Solar Activity	class
			notes
23-	Binary stars,	Visual Binaries, Astrometric Binary Stars, Spectroscopic	TB 9,
24	Variable Stars	Binaries, Photometric Binary Stars	13
25-	Stellar	Evolutionary Time Scales, The Main Sequence Phase, The	TB 11,
26	Evolution	Giant Phase, The Final Stages of Evolution, Origin of the	class
	11 (Olwilli	Elements	notes
27 to	Compact Stars	Degenerate Fermi Gas, Equation of state, TOV equation.	TB 14,
2	Compact Stars	Degenerate remin das, Equation of state, 10 v equation.	111111111111111111111111111111111111111

White dwarf: Electron do mass limit Neutron star: composition field Pulsars: Discovery, rotat magnetic field strength, Pulsars and the Interste		White dwarf: Electron degeneracy pressure, Chandrasekhar mass limit Neutron star: composition, radius, maximum mass, magnetic field Pulsars: Discovery, rotation period, energy loss from a pulsar, magnetic field strength, ages of pulsars, Braking index, Pulsars and the Interstellar Medium, Pulsar Timing Black holes: Creation of black holes, black hole binaries,	class notes
		Gravitational evidence Gravitational waves, mergers of NS-NS.	
39 to 42	Project Presenta	Tippi cs to be given during course work	

5. Evaluation Scheme:

	Evaluation	Duration	Weight age	Date, Time	Nature of
			(%)		Component
1.	Mid-Sem	90 mins.	30.00%	24/06 3.30 -	Closed Book
				5.00PM	
3.	Quiz	50 minutes	10.00%		Open Book
4	Observation	NA	20.00%		Open Book
	Project/Seminar				
5	Comprehensive	180 mins.	40.00%	23/07 FN	Closed Book
	Examination				

6. Chamber Consultation Hour: TBA

- **7. Notices:** Notices for the course will be displayed on CMS.
- **8. Make-up Policy:** Make up for Mid-Sem and Compre will be given to emergency (hospitalization) case only, if forwarded by chief warden. Make up requests should reach the IC before the examination.
- **9. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge PHY F215