Harmonic Progression and Series MCQs: Exercises 0.1gray Expert Guy 6.10~&~6.11

Class 11 Mathematics (Part-I) Prepared for Entry Test Preparation

Multiple Choice Questions

1.	The 4t	h term	of the	H.P.	$\frac{1}{2}, \frac{1}{4}, \frac{1}{6}$	$\frac{1}{5}, \dots is$	s: (Ex.	6.10)
	a) $\frac{1}{8}$							
	b) $\frac{1}{10}$	<u></u>						
	c) $\frac{1}{12}$	2						
	d) $\frac{1}{14}$	ī						

- 2. The harmonic mean of 3 and 12 is: (Ex. 6.10)
 - a) 4
 - b) 5
 - c) 6
 - d) 7
- 3. The sum of the series 1 + 2 + 3 + ... + 10 is: (Ex. 6.11)
 - a) 45
 - b) 50
 - c) 55
 - d) 60
- 4. The 3rd term of the H.P. $\frac{1}{7}$, $\frac{1}{10}$, $\frac{1}{13}$, ... is: (Ex. 6.10)
 - a) $\frac{1}{13}$
 - b) $\frac{1}{16}$
 - c) $\frac{1}{19}$
 - d) $\frac{1}{10}$
- 5. The sum of the series $1^2 + 2^2 + 3^2 + \ldots + 5^2$ is: (Ex. 6.11)
 - a) 50
 - b) 55
 - c) 60
 - d) 65
- 6. The harmonic mean of 4 and 6 is: (Ex. 6.10)
 - a) 4.8
 - b) 5

- c) 5.2
- d) 4.5
- 7. The sum of the series $1+3+5+\ldots$ to 6 terms is: (Ex. 6.11)
 - a) 36
 - b) 30
 - c) 24
 - d) 18
- 8. The first H.M. between $\frac{1}{2}$ and $\frac{1}{8}$ is: (Ex. 6.10)
 - a) $\frac{1}{3}$
 - b) $\frac{2}{5}$
 - c) $\frac{1}{4}$
 - d) $\frac{2}{7}$
- 9. The sum of the series $1 \cdot 2 + 2 \cdot 4 + 3 \cdot 6 + \dots$ to 4 terms is: (Ex. 6.11)
 - a) 60
 - b) 56
 - c) 48
 - d) 40
- 10. If the 5th term of an H.P. is $\frac{1}{10}$ and the 8th term is $\frac{1}{16}$, the 3rd term is: (Ex. 6.10)
 - a) $\frac{1}{8}$
 - b) $\frac{1}{7}$
 - c) $\frac{1}{6}$
 - d) $\frac{1}{9}$
- 11. The sum of the series $1^2 + 3^2 + 5^2 + \dots$ to 4 terms is: (Ex. 6.11)
 - a) 50
 - b) 52
 - c) 48
 - d) 54
- 12. If a, b, c are in H.P., then $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in: (Ex. 6.10)
 - a) A.P.
 - b) G.P.
 - c) H.P.
 - d) None
- 13. The sum of the series $2 \cdot 1^2 + 4 \cdot 2^2 + 6 \cdot 3^2 + \dots$ to 3 terms is: (Ex. 6.11)

- a) 72
- b) 76
- c) 80
- d) 68
- 14. The second H.M. between 1 and $\frac{1}{7}$ is: (Ex. 6.10)
 - a) $\frac{1}{4}$
 - b) $\frac{1}{3}$
 - c) $\frac{2}{9}$
 - d) $\frac{1}{5}$
- 15. If the H.M. of two numbers is 4 and their A.M. is 5, the numbers are: (Ex. 6.10)
 - a) 2, 8
 - b) 3, 7
 - c) 4, 6
 - d) 1, 9
- 16. The sum of the series $1 \cdot 3 + 2 \cdot 5 + 3 \cdot 7 + \dots$ to n terms is: (Ex. 6.11)
 - a) $\frac{n(n+1)(4n+5)}{6}$
 - b) $\frac{n(n+1)(2n+3)}{3}$
 - c) $\frac{n(n+1)(2n+1)}{3}$
 - d) $\frac{n(2n^2+3n+1)}{2}$
- 17. If the 7th term of an H.P. is $\frac{1}{19}$ and the 10th term is $\frac{1}{28}$, the 12th term is: (Ex. 6.10)
 - a) $\frac{1}{34}$
 - b) $\frac{1}{32}$
 - c) $\frac{1}{36}$
 - d) $\frac{1}{38}$
- 18. The sum of the series $1^2 2^2 + 3^2 4^2 + \dots$ to 2n terms is: (Ex. 6.11)
 - a) -n(n+1)
 - b) -2n(n+1)
 - c) -n(2n+1)
 - d) $-n^2$
- 19. If a^2, b^2, c^2 are in A.P., then b + c, c + a, a + b are in: (Ex. 6.10)
 - a) A.P.
 - b) G.P.

- c) H.P.
- d) None
- 20. The sum of the series $3 \cdot 2^2 + 5 \cdot 3^2 + 7 \cdot 4^2 + \dots$ to n terms is: (Ex. 6.11)
 - a) $\frac{n}{3}(n+1)(5n+7)$
 - b) $\frac{n}{3}(n+1)(3n+5)$
 - c) $\frac{n}{2}(n+1)(2n+3)$
 - d) $\frac{n}{2}(n+1)(4n+7)$

Solutions and Explanations

- 1. **Answer:** a $\frac{1}{8}$ Reciprocals: 2, 4, 6, ... (A.P., a = 2, d = 2). 4th term: $2 + (4-1) \cdot 2 = 8$. H.P. term: $\frac{1}{8}$. (Ex. 6.10)
- 2. **Answer:** c 6 H.M. = $\frac{2 \cdot 3 \cdot 12}{3+12} = \frac{72}{15} = \frac{24}{5} \approx 6$. (Ex. 6.10)
- 3. **Answer:** c 55 $S_{10} = \frac{10 \cdot 11}{2} = 55$. (Ex. 6.11)
- 4. **Answer:** a $\frac{1}{13}$ Reciprocals: 7, 10, 13, 3rd term: 13. H.P. term: $\frac{1}{13}$. (Ex. 6.10)
- 5. **Answer: b** 55 $S_5 = \frac{5 \cdot 6 \cdot 11}{6} = 55$. (Ex. 6.11)
- 6. **Answer: a 4.8** H.M. $=\frac{2\cdot 4\cdot 6}{4+6}=\frac{48}{10}=4.8$. (Ex. 6.10)
- 7. **Answer: a 36** Terms: $1, 3, 5, \dots$ (A.P., a = 1, d = 2). $S_6 = \frac{6}{2} \cdot (1 + 11) = 36$. (Ex. 6.11)
- 8. **Answer:** d $\frac{2}{7}$ Reciprocals: 2,...,8 (3 terms). $d = \frac{8-2}{2} = 3$. 2nd A.P. term: 2+3=5. H.M.: $\frac{1}{5}=\frac{2}{7}$. (Ex. 6.10)
- 9. **Answer:** a **60** $T_n = n \cdot 2n = 2n^2$. $S_4 = 2 \cdot \frac{4 \cdot 5 \cdot 9}{6} = 60$. (Ex. 6.11)
- 10. **Answer: b** $\frac{1}{7}$ Reciprocals in A.P.: a + 4d = 10, a + 7d = 16. Solve: d = 2, a = 2. 3rd term: $2 + 2 \cdot 2 = 6$. H.P. term: $\frac{1}{6}$. (Ex. 6.10)
- 11. **Answer: a 50** $T_n = (2n-1)^2$. $S_4 = 1^2 + 3^2 + 5^2 + 7^2 = 1 + 9 + 25 + 49 = 50$. (Ex. 6.11)
- 12. **Answer: a A.P.** By definition, if a, b, c are in H.P., their reciprocals are in A.P. (Ex. 6.10)
- 13. **Answer:** a **72** $T_n = 2n \cdot n^2 = 2n^3$. $S_3 = 2 \cdot (1^3 + 2^3 + 3^3) = 2 \cdot (1 + 8 + 27) = 72$. (Ex. 6.11)
- 14. **Answer:** d $\frac{1}{5}$ Reciprocals: $1, \dots, 7$ (4 terms). $d = \frac{7-1}{3} = 2$. 3rd A.P. term: $1 + 2 \cdot 2 = 5$. H.M.: $\frac{1}{5}$. (Ex. 6.10)
- 15. **Answer: b** 3, 7 a + b = 10, $\frac{2ab}{a+b} = 4 \implies ab = 20$. Solve: $x^2 10x + 20 = 0 \implies x = 3, 7$. (Ex. 6.10)

- 16. **Answer:** a $\frac{n(n+1)(4n+5)}{6}$ $T_n = n(2n+1)$. $S_n = 2 \cdot \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} = \frac{n(n+1)(4n+5)}{6}$. (Ex. 6.11)
- 17. **Answer: a** $\frac{1}{34}$ Reciprocals: $a+6d=19,\ a+9d=28.$ Solve: $d=3,\ a=1.$ 12th term: $1+11\cdot 3=34.$ H.P. term: $\frac{1}{34}.$ (Ex. 6.10)
- 18. **Answer:** $\mathbf{a} n(n+1) T_k = k^2 \text{ if } k \text{ odd}, -k^2 \text{ if } k \text{ even. } S_{2n} = (1^2 2^2 + 3^2 4^2 + \ldots) = n \cdot (1^2 2^2) = -n(n+1). \text{ (Ex. 6.11)}$
- 19. **Answer:** c **H.P.** If a^2, b^2, c^2 in A.P., then $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ in A.P., so b+c, c+a, a+b in H.P. (Ex. 6.10)
- 20. **Answer:** d $\frac{n}{2}(n+1)(4n+7)$ $T_n = (2n+1)(n+1)^2$. Split and sum: $S_n = \frac{n(n+1)(4n+7)}{2}$. (Ex. 6.11)