

Nicolas Blin - Al DevTech nblin@nvidia.com

NVIDIA

CUDA C++

What to expect?

- Basic introduction to GPU Architecture
- GPU Memory and Programming Model
- CUDA C++ programming

GPU COMPUTING

CUDA KERNELS

- Parallel portion of application: execute as a kernel
 - Entire GPU executes kernel, many threads
- CUDA threads:
 - Lightweight
 - Fast switching
 - Tens of thousands execute simultaneously

CPU	Host	Executes functions
GPU	Device	Executes kernels

CUDA KERNELS: PARALLEL THREADS

- A kernel is a function executed on the GPU
 - Array of threads, in parallel
- All threads execute the same code, can take different paths
 - Each thread has an ID
 - Select input/output data
 - Control decisions

- •Threads are grouped into blocks
- •Blocks are grouped into a grid

- •Threads are grouped into blocks
- •Blocks are grouped into a grid
- A kernel is executed as a grid of blocks of threads

- •Threads are grouped into blocks
- •Blocks are grouped into a grid
- A kernel is executed as a grid of blocks of threads

KERNEL EXECUTION

CUDA Streaming Multiprocessor

CUDA-capable GPU

- Each thread is executed by a core
- Each block is executed by one SM and does not migrate
- Several concurrent blocks can reside on one SM depending on the blocks' memory requirements and the SM's memory resources
- Each kernel is executed on one device
- Multiple kernels can execute on a device at one time

TRANSPARENT SCALABILITY

TRANSPARENT SCALABILITY

TRANSPARENT SCALABILITY -

CUDA PROGRAMMING MODEL - SUMMARY

- A kernel executes as a grid of thread blocks
- A block is a batch of threads
 - Communicate through shared memory
- Each block has a block ID
- Each thread has a thread ID

GPU ARCHITECTURE

Two Main components

Global memory

Analogous to RAM in a CPU server

Accessible by both GPU and CPU

48GB with bandwidth currently up to 1 TB/s

Streaming Multiprocessors (SMs)

SMs perform the actual computations

Each SM has its own:

Control units, registers, execution pipelines, caches

- Thread
 - Registers

- Thread
 - Registers
- Thread
 - Local memory

- Thread
 - Registers
- Thread
 - Local memory
- Block of threads
 - Shared memory

- Thread
 - Registers
- Thread
 - Local memory
- Block of threads
 - Shared memory
- All blocks
 - Global memory

WHAT IS CUDA?

• CUDA Architecture

- Expose general-purpose GPU computing as first-class capability
- Retain traditional DirectX/OpenGL graphics performance

• CUDA C++

- •Based on industry-standard C++
- A handful of language extensions to allow heterogeneous programs
- •Straightforward APIs to manage devices, memory, etc.

CUDA C++: THE BASICS

- Terminology
 - Host The CPU and its memory (host memory)
 - Device The GPU and its memory (device memory)

Host

Device

HELLO, WORLD!

```
int main( void ) {
    printf( "Hello, World!\n" );
    return 0;
}
```

- This basic program is just standard C++ that runs on the *host*
- NVIDIA's compiler (nvcc) will not complain about CUDA programs with no device code
- At its simplest, CUDA C++ is just C++!

HELLO, WORLD! WITH DEVICE CODE

```
__global__ void kernel( void ) {
     printf( "Hello, World!\n" );
int main( void ) {
     kernel<<<1,1>>>();
     cudaDeviceSynchronize();
     return 0;
```

Two notable additions to the original "Hello, World!"

HELLO, WORLD! WITH DEVICE CODE

```
__global__ void kernel( void ) {
}
```

- •Keyword global in CUDA indicates that a function
 - Runs on the device
 - Called from host code
- •nvcc splits source file into host and device components
 - •NVIDIA's compiler handles device functions like kernel()
 - Standard host compiler handles host functions like main()
 - g++
 - Microsoft Visual C++

NVIDIA HPC SDK

- Comprehensive suite of compilers, libraries, and tools used to GPU accelerate HPC modeling and simulation application
- The NVIDIA HPC SDK includes the new NVIDIA HPC compiler supporting CUDA C and Fortran
 - The command to compile C++ code is 'nvc++'
 - Same compiler will be used for host & device code → more optimization opportunities

nvc++ main.cu

HELLO, WORLD! WITH DEVICE CODE

```
int main( void ) {
    kernel<<< 1, 1 >>>();
    printf( "Hello, World!\n" );
    return 0;
}
```

- •Triple angle brackets mark a call from *host* code to *device* code
 - Sometimes called a "kernel launch"
 - We'll discuss the parameters inside the angle brackets later

•This is all that's required to execute a function on the GPU!

A MORE COMPLEX EXAMPLE

- A simple kernel to add two integers:
- As before, global is a CUDA keyword meaning
 - add () will execute on the device ... so a, b, and c must point to device memory
 - •How do we allocate memory on the GPU?
 - add () will be called from the host

```
__global__ void add( int *a, int *b, int *c ) {
    *c = *a + *b;
}
```

CPU + GPU Physical Diagram

- CPU memory is larger, GPU memory has more bandwidth
- CPU and GPU memory are usually separate, connected by an I/O bus (traditionally PCIe)
- Any data transferred between the CPU and GPU will be handled by the I/O Bus
- The I/O Bus is relatively slow compared to memory bandwidth
- The GPU cannot perform computation until the data is within its memory

PROCESSING FLOW - STEP 1

PROCESSING FLOW - STEP 2

- 1. Copy input data from CPU memory to GPU memory
- 2. Load GPU program and execute, caching data on chip for performance

PROCESSING FLOW - STEP 3

CUDA UNIFIED MEMORY

Simplified Developer Effort

Commonly referred to as "managed memory."

MANAGED MEMORY

Limitations

Disadvantage:

- The programmer will almost always be able to get better performance by manually handling data transfers. Just Too Late
- Memory allocation/deallocation takes longer with managed memory

Advantage:

- Handling explicit data transfers between the host and device (CPU and GPU) can be difficult
- This allows the developer to concentrate on parallelism and think about data movement as an optimization

CUDA MANAGED MEMORY

Usefulness

- Use modern C++17 parallel algorithm seamlessly on the GPU:
 - Do all allocations using managed memory
 - Call to all C++ algorithms (reduce, scan, transform...) with std::par
 - Compile with nvc++ and the correct flags

nvc++ -stdpar=gpu program.cu -o program

CUDA MANAGED MEMORY

Usefulness

nvc++ -stdpar=gpu program.cu -o program

```
int main(int argc, char* argv[]) {
    std::vector<int> vec(...) // Allocated on the CPU
    std::reduce(std::par, vec.begin() , vec.end()); // Automatically copied and computed on the GPU
    cpu_computation(vec); // Rest of the complex CPU code kept unchanged
}
```

MEMORY MANAGEMENT

- Host and device memory are distinct entities
- Basic CUDA API for dealing with explicity device memory management
 - •cudaMalloc(), cudaFree(), cudaMemcpy()
 - •Similar to their C equivalents, malloc(), free(), memcpy()
- CUDA API for using Unified memory is
 - C API: cudaMallocManaged(), cudaFree()
 - * For this session we will be making use of Unified Memory

A MORE COMPLEX EXAMPLE: MAIN()

```
int main( void ) {
    int *a, *b, *c;
    int size = sizeof( int );
    cudaMallocManaged( &a, size );
    cudaMallocManaged( &b, size );
    cudaMallocManaged( &c, size );
    add<<< 1, 1 >>>( a, b, c );
    cudaFree( a ); cudaFree( b );
    cudaFree( c );
    return 0;
```

PARALLEL PROGRAMMING IN CUDA

- •But wait...GPU computing is about massive parallelism
- •So how do we run code in parallel on the device?
- •Solution lies in the parameters between the triple angle brackets:

Instead of executing add() once, add() executed N times in parallel

PARALLEL PROGRAMMING IN CUDA

- •With add () running in parallel...let's do vector addition
- •Terminology: Each parallel invocation of add() referred to as a block
- •Kernel can refer to its block's index with the variable
 - •C: blockIdx.x
- Each block adds a value from a[] and b[], storing the result in c[]:
- •By using blockIdx.x to index arrays, each block handles different indices

PARALLEL PROGRAMMING IN CUDA

```
__global__ void add( int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

Block 0

$$c[0] = a[0] + b[0];$$

Block 2

$$c[2] = a[2] + b[2];$$

Block 1

$$c[1] = a[1] + b[1];$$

Block 3

$$c[3] = a[3] + b[3];$$

This is what runs in parallel on the device

THREADS

- •Terminology: A block can be split into parallel *threads*
- •Let's change vector addition to use parallel threads instead of parallel blocks:
- •We use threadIdx.x instead of blockIdx.x in add()

```
__global__ void add( int *a, int *b, int *c) {
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}
```

USING THREADS AND BLOCKS

- We've seen parallel vector addition using
 - Many blocks with 1 thread apiece
 - •1 block with many threads
- Let's adapt vector addition to use lots of both blocks and threads
- After using threads and blocks together, we'll talk about why threads
- First let's discuss data indexing...

INDEXING ARRAYS WITH THREADS AND BLOCKS

- •No longer as simple as just using threadIdx.x or blockIdx.x as indices
- To index array with 1 thread per entry (using 8 threads/block)

•If we have M threads/block, a unique array index for each entry given by

INDEXING ARRAYS: EXAMPLE

•In this example, the red entry would have an index of 21:

ADDITION WITH THREADS AND BLOCKS

• The blockDim.x is a built-in variable for threads per block:

```
int index= threadIdx.x + blockIdx.x * blockDim.x
```

• So what changes in main() when we use both blocks and threads?

```
__global___ void add( int *a, int *b, int *c ) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;

    c[index] = a[index] + b[index];
}
```

PARALLEL ADDITION (BLOCKS/THREADS): MAIN ()

```
#define N (2048*2048)
#define THREADS_PER_BLOCK 512

add<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>> ( a, b, c );
```

CUDA SPEEDUP: cuOpt

Traveling Salesman Problem: shortest path to visit a set of points

Vehicle routing problem (VRP): multiple vehicles, weight & time constraints...

NP-Hard problem with factorial complexity:

100 cities → more paths to test than the number of atoms in the universe

CUDA SPEEDUP

REFERENCES

https://developer.nvidia.com/hpc-sdk

Have fun practicing with CUDA

DLI course will allow you to practice easily and without needing a GPU:

https://courses.nvidia.com/courses/course-v1:DLI+T-AC-01+V1/

