DSP UESTC 4005: Homework #chapter 7

Due on: May 26 2019 at 23:59:59

Instructor: Wenhui Xiong

Jiayi Feng

University of Electronic Science and Technology of China
7.6 coswork = 1(e than + e - than)
Time & sin wo N = of (ethon - e-fund)
y [n] = x[n] { 265 hon hep [n] + 20 non hep[n] }
= Xhj. zhipthj
Y(Z)= = { Hip (Z.emo) X (Zemo) + Hip (Z.emo). X(Z) +
Hip (Ze-Jwo) X(Z) + Hip(Ze-Jwo) X (Ze-Jwo))
-4 { Hep (Z.e-Two) X(ZeJ2wo) - Hep (ZeJwo) X(Z) + Hep (Z.e-Two) X(Z) + Hep (Z.e-Two) X (Z.e-J2wo)]
Hip (Z.e-Fue) X(Z) + Hip (Z.e-Fre) X (Z.e-Jour))
: H(Z)= = HLP(ZeTwo) + HLP(Ze-Two))

Fig. = 2
$$\frac{G(a)(b)}{(1+3Ga)}$$

-F(e^{Tw}) = e^{Tw} $\frac{G(c^{Tw})}{(1+3G(e^{Tw}))}$

= e^{Tw} $\frac{G(a^{Tw})}{(1+3e^{Tw})}$ $\frac{1}{2}$

= $\frac{1+2\delta G_{0}(g(u))}{(1+2\delta G_{0}(u))}$ $\frac{1}{2}$

= $\frac{1+2\delta G_{0}(u)}{(1+2\delta G_{0}(u))}$ $\frac{1}{2}$

= $\frac{1+2\delta G_{0}(u)}{(1+2\delta G_{0}(u))}$ $\frac{1+2\delta$

'n	University of Electronic Science and Technology of China $A_{2}(e^{Tw}) = \frac{d_{2} + d_{1} e^{-Tw} + e^{2Tw}}{l + d_{1} e^{-Tw} + d_{2}e^{2Tw}} = \frac{d_{2}e^{3w} + d_{1} + e^{-Tw}}{e^{Tw} + d_{1} + d_{2}e^{-Tw}}$	
	d1+ (d2+1)(05N + J(d2-1)olne)	
=	d. t(let) Cosn - J (de-Van	
.:	Q(w1=2tan-1 (\frac{(d2-1)\left nw}{d\tau \text{Cl_2+1/(ons)}})	
•:	$Cp(w) = \frac{-\theta w}{w} = \frac{-1}{w} \tan^{-1} \left(\frac{(dz^{-1}) \sin w}{dz^{-1} (dz^{-1}) \cos w} \right)$	
	(Bow =1	
	. Tolu 1= 8 = - 2(22-1)	
	1 . 2-8 .	
	$d_{i} = 2\left(\frac{2-8}{1+8}\right)$	
	dz= (2-5)(1-8)	
	S = -2(6-1)	
	ditdat	

$$\begin{aligned} & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \\ & \frac{\partial^{2} f}{\partial x^{$$