Aprendiz de Machine Learning

Data Preprocessing

Continuous Variables

Standard Scaler

Scaling Alternatives

Sparse Data

- Data with many zeros
- Don't center: will destroy the sparnesess structure
- Use MaxAbsScaler:
 - don't center
 - only scale between [-1, +1]

Categorical Variables

Categorical Variables

```
import pandas as pd
df = pd.DataFrame({
   'boro': ['Manhattan', 'Queens', 'Manhattan', 'Brooklyn', 'Brooklyn', 'Bronx'],
   'salary': [103, 89, 142, 54, 63, 219],
   'vegan': ['No', 'No', 'No', 'Yes', 'Yes', 'No']})
```

	boro	salary	vegan
0	Manhattan	103	No
1	Queens	89	No
2	Manhattan	142	No
3	Brooklyn	54	Yes
4	Brooklyn	63	Yes
5	Bronx	219	No

Dummy Encoding

	boro	salary	vegan
0	Manhattan	103	No
1	Queens	89	No
2	Manhattan	142	No
3	Brooklyn	54	Yes
4	Brooklyn	63	Yes
5	Bronx	219	No

pd	od.get_dummies(df, columns=['boro'])						
	salary	vegan	boro_Bronx	boro_Brooklyn	boro_Manhattan	boro_Queens	
0	103	No	0	0	1	0	
1	89	No	0	0	0	1	
2	142	No	0	0	1	0	
3	54	Yes	0	1	0	0	
4	63	Yes	0	1	0	0	
5	219	No	1	0	0	0	

OneHotEncoder

```
import pandas as pd
 df = pd.DataFrame({'salary': [103, 89, 142, 54, 63, 219],
                              'boro': ['Manhattan', 'Queens', 'Manhattan',
                                           'Brooklyn', 'Brooklyn', 'Bronx']})
 ce = OneHotEncoder().fit(df)
 ce.transform(df).toarray()
array([[ 0., 0., 1., 0., 0., 0., 0., 1., 0., 0.],
         [ 0., 0., 0., 1., 0., 0., 1., 0., 0., 0.], [ 0., 0., 1., 0., 0., 0., 0., 1., 0.], [ 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0.], [ 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [ 1., 0., 0., 0., 0., 0., 0., 0., 0., 1.]])
```

Collinearity Problem

- Dummy variables are redundant
- Last one is a linear combination: 1 sum(others)
- Can drop one
- Keeping all can make the model more interpretable

All Variables

OneHotEncoder + ColumnTransformer

```
categorical = df.dtypes == object

preprocess = make_column_transformer(
    (StandardScaler(), ~categorical),
    (OneHotEncoder(), categorical))
```

ColumnTransformer

Thank You!