Foundations of Representation Theory

Lecture Notes in the Winter Term 2018/19

CONTENTS

1	Algebras and modules					
	1.1	Algebras - Basics				
	1.2	Quivers - Basics				

INTRODUCTION

These are my personal lecture notes for the lecture Foundations of Representation Theory held by Dr. Hans Franzen at the University of Bonn in the winter term 2018/19.

I try to update them on my website, https://pankratius.github.io.

Conventions: In this lecture, rings will always be unital, and ring homomorphisms f always fulfill f(1) = 1. Rings do not have to be commutative.

1.1 Algebras - Basics

Let k be a commutative ring.

Definition 1.1.1. A k-algebra A is a ring A, together with a structure of a k-module on A, such that

for all
$$a, b \in A, \lambda \in K$$
: $(\lambda a)b = a(\lambda b) = \lambda(ab)$ (*)

Definition 1.1.2. Let A, B be k-algebras. A **homomorphism of algebras** is a map $f: A \to B$ that is both k-linear and a ring homomorphism.

Remark 1.1.3. Let A be a ring. Define

$$Z(A) := \{ a \in A \mid \forall b \in A : ab = ba \},\$$

which is a commutative subring and is called the **center** of A.

Remark 1.1.4. Let A be a ring. Giving a k-algebra structure on A is the same as giving a ring homomorphism $k \to Z(A)$. More precisely:

- i) If A is a k-algebra, then $p:k\to A,\ \lambda\mapsto\lambda 1$ satisfies $\operatorname{Im} p\subseteq Z(A)$ and is a ring homomorphism. (the first statement follows from (*) and the second one from the fact that A has a k-module structure).
- ii) Let $\varphi: k \to Z(A)$ be a ring homomorphism. Define

$$\lambda a := \varphi(\lambda)a$$
,

for all $\lambda \in k$. This defines a k-algebra structure on A (Scalar multiplication with elements from k in A follows from the distributivity in A, and (*) since $\operatorname{Im}(\varphi) \subseteq Z(A)$).

iii) Let A, B be k-algebras and $f: A \to B$ a homomorphism of rings. Then f is a homomorphism of k-algebras if and only if the following diagram commutes:

Example 1.1.5. i) Let V be a k-module. Consider $\operatorname{End}_k(V)$. This has a ring structure given by

$$\operatorname{End}_k(V) \times \operatorname{End}_k(V) \to \operatorname{End}_k(V), \ (\phi, \psi) \mapsto \varphi \circ \psi.$$

Then $\operatorname{End}_k(V)$ is both a ring and a k-module, and becomes a k-algebra via

$$\varphi: k \to \operatorname{End}_k(V), \ \lambda \mapsto \lambda \operatorname{id}.$$

Note that $\operatorname{Im} \varphi \subseteq Z(A)$. If k is a field, then $Z(\operatorname{End}_k(V)) = \{\lambda \operatorname{id} \mid \lambda \in k\}$.

ii) Take $V = k^n$ (free module of rank n). Then $\operatorname{End}_k(V) \cong \operatorname{M}_n(k)$. Define

$$T_u := \{ n\varphi \in \mathcal{M}_n(k) \mid \varphi \text{ is upper triangular} \},$$

i.e. T_u presevers flags in k^n . Then T_u is a **subalgebra** of $M_n(k)$, i.e. is both a subring and a k-submodule of the original algebra.

- iii) Let G be a group. Define to be the **group algebra** of k[G] as follows:
 - As k-module, is defined as the free module on G,

$$k[G] := k^{(G)} = \{ \sum_{g \in G} \lambda_g g \mid \lambda_g \in k, \ \lambda_g \neq 0 \text{ for only finitely many } g \in G \}.$$

• Multiplication: Let $a:=\sum \lambda_g g, \ b=\sum \mu_g g$ and define:

$$ab := \sum_{g \in G, h \in G} \lambda_g \mu_h(gh) = \sum_{j \in G} \left(\sum_{gh=j} \lambda_g \mu_h \right) j.$$

This multiplication is associative, k-bilinear, distributive and $1|_{k[G]} = e$. In addition, (*) is satisfied.

1.2 Quivers - Basics

Definition 1.2.1. A quiver is a "directed graph". Formally, a quiver is a quadruple (Q_0, Q_1, s, t) consiting of sets Q_0 (vertices) and Q_1 (arrows) and maps $s: Q_1 \to Q_0, t: Q_1 \to Q_0$. For $\alpha \in Q_1$, we call $s(\alpha)$ the source of α and $t(\alpha)$ the target of α :

$$s(\alpha) \xrightarrow{\alpha} t(\alpha).$$

Example 1.2.2. i) $Q = (\{1\}, \emptyset, ...)$ is visualized as: 1

ii)
$$Q = (\{1\}, \{\alpha\}, ...)$$
 is visualized as $\begin{array}{c} \\ 1 \end{array} \longleftarrow$

iii)
$$Q = (\{1,2\}, \{\alpha, \beta\}, s(\alpha) = s(\beta) = 1, t(\alpha) = t(\beta) = 2)$$
 is visualized as $1 \xrightarrow{\alpha \atop \beta} 2$

Definition 1.2.3. Let Q be a quiver such that both Q_0 and Q_1 are finite.

i) Let $\ell \in \mathbb{Z}_{\geq 1}$. A **path** of length ℓ is a sequence $\alpha_{\ell}...,\alpha_1$ of arrows, such that $t(\alpha_i) = s(\alpha_{i+1})$ for $1 \leq i \leq \ell - 1$,

$$\circ \xrightarrow{\alpha_1} \circ \xrightarrow{\alpha_2} \circ \dots \xrightarrow{\alpha_\ell} \circ$$

Define Q_{ℓ} to be the set of all paths of length ℓ .

Let $p: \alpha_{\ell}...\alpha_1$ be a path. Define $s(p) := s(\alpha_1)$ and $t(p) := s(\alpha_{\ell})$.

Formally define Q_0 to be the set of all paths of length zero. Denote by ε_i for $i \in Q_0$ the constant path at i. ε_i is called a **lazy path**. We set $s(\varepsilon_i) = t(\varepsilon_i) := i$.

- ii) Let $p = \alpha_{\ell}...\alpha_{i}$ and $q = \beta_{m}...\beta_{1}$ be paths of length ℓ and m respectively, with $\ell, m \geq 1$. If t(p) = s(q), then set $q \circ p := \beta_{m}....\beta_{1}\alpha_{\ell}...\alpha_{1}$. This is a path of length $\ell + m$. For p a path of length ≥ 0 and ε_{i} a lazy path:
 - if t(p) = i, set $\varepsilon_i \circ p := p$,
 - if s(p) = i, set $p \circ \varepsilon_i := p$.

In all others cases, the composition is not defined.

iii) Define

$$Q_* := \bigcup_{\ell > 0} Q_\ell,$$

the set of all paths. Define the **path-algebra** kQ:

- As a k-module, $kQ := k^{(Q_*)}$.
- Multiplication: Let $a = \sum \lambda_p p$, $b = \sum \mu_p p$. Define

$$ab := \sum_{p,q \in Q_*} \lambda_p \mu_q(p \cdot q),$$

where

$$p \cdot q := \begin{cases} p \circ q, & \text{if it is defined, i.e } t(q) = s(p) \\ 0, & \text{else} \end{cases}.$$

The multiplication is associative (due to the associativity of the composition of paths) and k-bilinear by definition. In addition, distributivity and (*) are fulfilled.

• The identity is given by $\sum \varepsilon_i$.

Example 1.2.4. i) Q = 1, then kQ = k.

ii)
$$Q = 1 \leftarrow$$
 , then $Q_* = \{\alpha^n \mid n \geq 0\}$ and $kQ = k[t]$.

iii)
$$Q = 1 \xrightarrow{\alpha \atop \beta} 2$$
. Then $Q_* = \{\varepsilon_1, \varepsilon_2, \alpha^n, \beta^n \mid n \geq 0\}$ and

$$kQ = k\varepsilon_1 \oplus k\varepsilon_2 \oplus k\alpha \oplus k\beta.$$

A multiplication table is given by

	ε_1	ε_2	α	β
ε_1	ε_1	0	0	0
$arepsilon_2$	0	ε_2	α	β
α	α	0	0	0
β	β	0	0	0

Lemma 1.2.5. Let k be a field, A a k-algebra and $n := \dim(A) < \infty$. Then there exists an injective homomorphism of k-algebras $\varphi : A \to M_n(k)$.

Proof. By choosing a basis of A, we get an isomorphism $\operatorname{End}_k(A) \cong \operatorname{M}_n(k)$. So it suffices to find an injective homomorphism of k-algebras $\varphi : A \to \operatorname{End}_k(A)$. Consider

$$\varphi: A \to \operatorname{End}_k(A), \ \varphi(a): A \to A, b \mapsto ab.$$

- $\varphi(a)$ is k-linear for all a by the distributivity in A and the condition (*).
- φ is k-linear by the distributivity in A and the condition (*).
- Let $a, a' \in A$. Then

$$\varphi(aa')(b) = (aa')(b) = a(a'b) = (\varphi(a) \circ \varphi(a'))(b).$$

Hence φ is indeed a homomorphism of k-algebras.

To show that φ is injective, let $a \in \ker \varphi$, hence ab = 0 for all $b \in A$. But in particular, 0 = a1 = a.

End of Lecture 1 -

INDEX

```
algebra, 1
arrows, 2

center, 1

group algebra, 2

homomorphism
  of algebras, 1

path, 3
  lazy, 3
 path-algebra, 3

quiver, 2

source, 2
 subalgebra, 2

target, 2

vertices, 2
```