/ MuSun / 262	2: kinetics			
🧊 🍃 👭 🐌 2	.62 🎳			
	20-Dec/07 12:38	Parent eLog: Author:	tishenko	
keywords				
tags				

rates

parameter	value (s^{-1})	
$\Lambda_{ m qd}$	$\varphi \times 3.7 \times 10^7$	
$\Lambda_{ m Q}$	8	
$\Lambda_{ m D}$	400	
$\Lambda_{ m dd}^{ m q}$	$\varphi \times 3.75 \times 10^6$	
$\Lambda_{ m dd}^{ m d}$	$\varphi \times 2.549 \times 10^6$	
$\Lambda_{ m f}$	0.26×10^{9}	
$\Lambda_{{ m He}\mu}$	0.036×10^{9}	
$\Lambda_{\mathrm{t}\mu}$	0.003×10^{9}	
$\Lambda_{ m He}$	2216	
$\Lambda_{ m t}$	10 (?)	
Λ_0	455162	

kinetic equations

$$\begin{cases} dN_{\mathrm{Q}} &= -N_{\mathrm{Q}}(\Lambda_{\mathrm{qd}} + \Lambda_{\mathrm{dd}}^{\mathrm{q}} + \Lambda_{\mathrm{Q}} + \Lambda_{0})dt + \frac{2}{3}N_{\mathrm{d}\mu\mathrm{d}}\Lambda_{\mathrm{f}}dt & (1a) \\ dN_{\mathrm{D}} &= -N_{\mathrm{D}}(\Lambda_{\mathrm{dd}}^{\mathrm{d}} + \Lambda_{\mathrm{D}} + \Lambda_{0})dt + N_{\mathrm{Q}}\Lambda_{\mathrm{qd}}dt + \frac{1}{3}N_{\mathrm{d}\mu\mathrm{d}}\Lambda_{\mathrm{f}}dt & (1b) \\ dN_{\mathrm{d}\mu\mathrm{d}} &= -N_{\mathrm{d}\mu\mathrm{d}}(\Lambda_{\mathrm{He}\mu} + \Lambda_{\mathrm{t}\mu} + \Lambda_{\mathrm{f}} + \Lambda_{0})dt + N_{\mathrm{D}}\Lambda_{\mathrm{dd}}^{\mathrm{d}}dt + N_{\mathrm{Q}}\Lambda_{\mathrm{dd}}^{\mathrm{q}}dt & (1c) \end{cases}$$

or

$$\begin{pmatrix}
dN_{\rm Q} &= -N_{\rm Q}\lambda_{\rm Q}dt + \frac{2}{3}N_{\rm d\mu d}\Lambda_{\rm f}dt & (2a) \\
dN_{\rm D} &= -N_{\rm D}\lambda_{\rm D}dt + N_{\rm Q}\Lambda_{\rm qd}dt + \frac{1}{3}N_{\rm d\mu d}\Lambda_{\rm f}dt & (2b) \\
dN_{\rm d\mu d} &= -N_{\rm d\mu d}\lambda_{\rm d\mu d}dt + N_{\rm D}\Lambda_{\rm dd}^{\rm d}dt + N_{\rm Q}\Lambda_{\rm dd}^{\rm q}dt & (2c)
\end{pmatrix}$$

where the following notations for disappearance rates were introduced:

$$\begin{array}{ll} \lambda_{\mathrm{Q}} &= \Lambda_{\mathrm{qd}} + \Lambda_{\mathrm{dd}}^{\mathrm{q}} + \Lambda_{\mathrm{Q}} + \Lambda_{0} \\ \lambda_{\mathrm{D}} &= \Lambda_{\mathrm{dd}}^{\mathrm{d}} + \Lambda_{\mathrm{D}} + \Lambda_{0} \\ \lambda_{\mathrm{d}\mu\mathrm{d}} &= \Lambda_{\mathrm{He}\mu} + \Lambda_{\mathrm{t}\mu} + \Lambda_{\mathrm{f}} + \Lambda_{0} \end{array}$$

solution of kinetic equations

Let's search the solution of the system of differential equations (2) in the form:

$$\begin{cases} N_{\mathbf{Q}}(t) = Q(t)e^{-\lambda_{\mathbf{Q}}t} & (3a) \\ N_{\mathbf{D}}(t) = D(t)e^{-\lambda_{\mathbf{D}}t} & (3b) \\ N_{\mathbf{d}\mu\mathbf{d}}(t) = M(t)e^{-\lambda_{\mathbf{d}\mu\mathbf{d}}t} & (3c) \end{cases}$$

Substitution of expressions (3) into the system (2) gives:

$$\begin{cases} \dot{Q} = \frac{2}{3} \Lambda_{\rm f} M e^{-(\lambda_{\rm d}\mu_{\rm d} - \lambda_{\rm Q})t} & (4a) \\ \dot{D} = \Lambda_{\rm qd} Q e^{-(\lambda_{\rm Q} - \lambda_{\rm D})t} + \frac{1}{3} \Lambda_{\rm f} M e^{-(\lambda_{\rm d}\mu_{\rm d} - \lambda_{\rm D})t} & (4b) \\ \dot{M} = \Lambda_{\rm dd}^{\rm d} D e^{-(\lambda_{\rm D} - \lambda_{\rm d}\mu_{\rm d})t} + \Lambda_{\rm dd}^{\rm q} Q e^{-(\lambda_{\rm Q} - \lambda_{\rm d}\mu_{\rm d})t} & (4c) \end{cases}$$

The system of differential equations of first order (4) can be reduced to a single differential equation of third order (5)

$$\ddot{Q} + a_2 \ddot{Q} + a_1 \dot{Q} + a_0 Q = 0$$
 (5)

where

$$\begin{array}{ll} a_2 &= \lambda_{\rm D} - \lambda_{\rm d\mu d} - 2(\lambda_{\rm Q} - \lambda_{\rm d\mu d}) \\ a_1 &= (\lambda_{\rm d\mu d} - \lambda_{\rm Q})^2 - (\lambda_{\rm d\mu d} - \lambda_{\rm Q})(\lambda_{\rm d\mu d} - \lambda_{\rm D}) - \frac{2}{3}\Lambda_{\rm f}(\Lambda_{\rm dd}^{\rm q} + \frac{1}{2}\Lambda_{\rm dd}^{\rm d}) \\ a_0 &= \frac{2}{3}\Lambda_{\rm f}(\Lambda_{\rm dd}^{\rm q}(\lambda_{\rm Q} - \lambda_{\rm D}) - \Lambda_{\rm dd}^{\rm d}\Lambda_{\rm qd}) \end{array}$$

Let's search the solution of equation (5) in the form (6):

$$Q(t) = ce^{\alpha t} \tag{6}$$

Substitution of expression (6) into equation (5) results in following cubic equation for a:

$$\alpha^3 + a_2\alpha^2 + a_1\alpha + a_0 = 0 \tag{7}$$

The roots a_1 , a_2 , a_3 of equation (7) can be found using the Wiet's trigonometric formula:

$$\alpha_1 = -2\sqrt{q}\cos(\phi) - \frac{a_2}{3}$$

$$\alpha_2 = -2\sqrt{q}\cos(\phi + \frac{2}{3}\pi) - \frac{a_2}{3}$$

$$\alpha_3 = -2\sqrt{q}\cos(\phi - \frac{2}{3}\pi) - \frac{a_2}{3}$$

where

$$\begin{array}{rcl} q & = \frac{a_2^2 - 3a_1}{9} \\ r & = \frac{2a_2^3 - 9a_2a_1 + 27a_0}{54} \\ \phi & = \frac{\arccos\left(\frac{r}{\sqrt{q^3}}\right)}{3} \end{array}$$

Note that equation (7) has three different roots if $S=q^3-r^2$ is positive, which should always be the case in our problem (I guess). Otherwise, one should use other formulas for finding the roots of cubic equation.

Thus, the solution of eq. (5) has the following form:

$$Q(t) = c_1 e^{\alpha_1 t} + c_2 e^{\alpha_2 t} + c_3 e^{\alpha_3 t}$$

Which gives the following expressions for temporal evolution of the number of muons in Q or D states of µd atom or in dµd molecules:

$$N_{Q}(t) = (c_{1}e^{\alpha_{1}t} + c_{2}e^{\alpha_{2}t} + c_{3}e^{\alpha_{3}t})e^{-\lambda_{Q}t}$$

$$N_{D}(t) = (c_{1}r_{1}e^{\alpha_{1}t} + c_{2}r_{2}e^{\alpha_{2}t} + c_{3}r_{3}e^{\alpha_{3}t})e^{-\lambda_{Q}t}$$

$$N_{d\mu d}(t) = \frac{3}{2}\frac{1}{\Lambda_{f}}(\alpha_{1}c_{1}e^{\alpha_{1}t} + \alpha_{2}c_{2}e^{\alpha_{2}t} + \alpha_{3}c_{3}e^{\alpha_{3}t})e^{-\lambda_{Q}t}$$
(8)

where

$$\begin{split} r_1 &= \frac{1}{\Lambda_{\rm dd}^{\rm d}} \left(\frac{3}{2} \frac{1}{\Lambda_{\rm f}} \alpha_1 (\alpha_1 + \lambda_{\rm d\mu d} - \lambda_{\rm Q}) - \Lambda_{\rm dd}^q \right) \\ r_2 &= \frac{1}{\Lambda_{\rm dd}^{\rm d}} \left(\frac{3}{2} \frac{1}{\Lambda_{\rm f}} \alpha_2 (\alpha_2 + \lambda_{\rm d\mu d} - \lambda_{\rm Q}) - \Lambda_{\rm dd}^q \right) \\ r_3 &= \frac{1}{\Lambda_{\rm dd}^{\rm d}} \left(\frac{3}{2} \frac{1}{\Lambda_{\rm f}} \alpha_3 (\alpha_3 + \lambda_{\rm d\mu d} - \lambda_{\rm Q}) - \Lambda_{\rm dd}^q \right) \end{split}$$

The coefficients c_1 , c_2 , c_3 can be found from initial conditions (9) of the problem (1):

$$\begin{cases} N_{\rm Q}(t=0) &= \frac{2}{3}N_0\\ N_{\rm D}(t=0) &= \frac{1}{3}N_0\\ N_{\rm d\mu d}(t=0) &= 0 \end{cases}$$
(9)

This gives the following expressions:

$$c_{3} = \frac{1}{3} N_{0} \frac{(\alpha_{1} - \alpha_{2}) + 2(\alpha_{2}r_{1} - \alpha_{1}r_{2})}{(\alpha_{2} - \alpha_{3})r_{1} - (\alpha_{1} - \alpha_{3})r_{2} + (\alpha_{1} - \alpha_{2})r_{3}}$$

$$c_{2} = \frac{\frac{2}{3}\alpha_{1}N_{0} - c_{3}(\alpha_{1} - \alpha_{3})}{\alpha_{1} - \alpha_{2}}$$

$$c_{1} = \frac{2}{3}N_{0} - c_{2} - c_{3}$$

$$(10)$$

The differential equation (11) describes the number of muons in Heµ molecule:

$$dN_{\text{He}\mu} = -N_{\text{He}\mu}(\Lambda_0 + \Lambda_{\text{He}})dt + N_{\text{d}\mu\text{d}}\Lambda_{\text{He}\mu}dt \qquad (11)$$

with initial condition $\,N_{{
m He}\mu}(t=0)=0$. It has the following solution:

$$N_{\text{He}\mu}(t) = \frac{3\Lambda_{\text{He}\mu}}{2} \left[\frac{\alpha_{1}c_{1}}{\Lambda_{0} + \Lambda_{\text{He}} + \alpha_{1} - \lambda_{\text{Q}}} (e^{(\alpha_{1} - \lambda_{\text{Q}})t} - e^{-(\Lambda_{0} + \Lambda_{\text{He}})t}) + \frac{\alpha_{2}c_{2}}{\Lambda_{0} + \Lambda_{\text{He}} + \alpha_{2} - \lambda_{\text{Q}}} (e^{(\alpha_{2} - \lambda_{\text{Q}})t} - e^{-(\Lambda_{0} + \Lambda_{\text{He}})t}) + \frac{\alpha_{3}c_{3}}{\Lambda_{0} + \Lambda_{\text{He}} + \alpha_{3} - \lambda_{\text{Q}}} (e^{(\alpha_{3} - \lambda_{\text{Q}})t} - e^{-(\Lambda_{0} + \Lambda_{\text{He}})t}) \right]$$

$$(12)$$

Attachments:

	file	size
25.53	<u>.root</u>	3703
	c2.pnq	8440
	fig.png	16539
\mathbf{L}	fig.tex	49
OQ.	<u>killme.ps</u>	20080
O++	<u>kinetics.C</u>	12385
OQ.	<u>kinetics.eps</u>	11143
	kinetics.fig	3774
O++	<u>kinetics_test.C</u>	1272
	*	

Ó	simul.C 3084
100	simul e 0 01 1e16.root 3745
¢	solve.C 9838
	solve.C.01 3808
/e	.ogs/MuSun/000262/attachments