

GAN-Based Training for Binary Classifier

Mini Project

Outline

- 1. Challenge Statement
 - 2. Implementation
- 3. Quality of learnt distribution
 - 4. Further considerations
 - 5. Model

Challenge Statement

The challenge is to use pictorial-based or raw data-based GAN to generate malign samples suitable for classifier training

Implementation (Trials)

- Classifiers
 - Linear Regression
 - Support Vector Machine (SVM)
 - Extra Trees
 - Random Forest
 - XGBoost
- GAN Models
 - CTGAN
 - CopulaGAN
 - Vanilla GAN (ReLU)
 - Vanilla GAN (LeakyReLU)
 - WGAN (LeakyReLU)
 - Pictorial GAN (CNNs)

Generators models performance

Median of Delta values:

CTGAN = 0.0153

COUPLAGAN = 0.0076

Vanilla GAN (Relu) = **0.0125**

Vanilla GAN (LeakyRelu) = 0.004

WGAN = 0.0078

0.0032

Extra 11003		
Before GAN	After GAN	Delta
12.978 %	11.698 %	0.013
10.26 %	11.239 %	0.01
12.978 %	10.761 %	0.022
10.26 %	11.698 %	0.14
11.239 %	11.239 %	0
		0.037

Extra Trees

Flow Chart

Learnt distribution: Kolmogorov-Smirnov

Fig 1: D-statistic i.e. the max distance between eCDFs

Fig 2: Statistical confidence in rejecting the null hypothesis

Learnt distribution: PCA

Fig 1: distribution of labels.

Fig 2: synthetic data projected onto PCA of real data.

LeakyReLU: Simple, PARametric GAN Model

- 1. Layer Features:
 - a. Dense
 - b. BatchNormalization
 - c. Dropout

Some considerations

- Outlier Detection & Removal
- Feature interactions (e.g. x_1^2 , x_2^2 , x_1x_2 , $sin(x_1)$, $sin(x_2)$)
- Explore other Activation Functions (e.g. <u>Bionodal Root Unit (BRU)</u>)

Implementation (Pictorial)

- Why consider pictorial? Why CNNs?
- How to transform tabular data to images
 - DeepInsight: kPCA/t-SNE
- From a 128 vector feature to 12x12x1 image
- Used conditional GAN to balance the dataset

From feature vector x to a feature matrix M [1].

- Tough problem to fine-tune (number of pixels, 1 vs. 3 channels, etc.)
- Tabular method achieves better performances (0.146)

Implementation (Pictorial)

Example of a malign synthetic image

The Team

ID:
100062301
100062314
100062324
100062327
100062328
100062332

Questions?

