7.64 a. The point estimated for the true proportion of flightless birds for the extinct species is $\hat{p}_1 = \frac{y_1}{n_1} = \frac{21}{38} = .5526$.

The point estimated for the true proportion of flightless birds for the nonextinct species is $\hat{p}_2 = \frac{y_2}{n_2} = \frac{7}{78} = .0897$.

7.72 The confidence interval for σ^2 is:

$$\frac{(n-1)s^2}{\chi^2_{\alpha/2}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}$$

8.20 We test:
$$H_0$$
: $\mu = 4$ H_a : $\mu < 4$

The test statistic is
$$t = \frac{\overline{y} - \mu_0}{s / \sqrt{n}} = \frac{2.413 - 4}{2.081 / \sqrt{26}} = -3.889$$

The small sample one-tailed rejection region requires $\alpha = .10$ in the upper tail of the t distribution with df = n = 1 = 26 - 1 = 25. From Table 7, Appendix B, $t_{.10} = -1.316$. The rejection region is t < 1.316.

8.24 a. Since it is desired to determine if the mean breaking strength is more than 2500 pounds per linear foot, we test the hypotheses:

$$H_0$$
: $\mu = 2500$

$$H_a$$
: $\mu > 2500$

The rejection region for a small-sample, one-tailed test requires $\alpha = .10$ in the upper tail