Resolução da Lista 6 de Mecânica Quântica I (F689, Turma B)

Pedro Rangel Caetano*

Universidade Estadual de Campinas, 10. semestre de 2017

Sumário

Exercício 2	4
Exercício 1	2

*Email: p.r.caetano@gmail.com

1. Dado a equação de autovalores para spin s=1, ache a representação matricial de S^2 , S_z , S_x e S_u .

$$S^{2}|s \, m_{s}\rangle = s(s+1)\hbar^{2}|s \, m_{s}\rangle \qquad S_{z}|s \, m_{s}\rangle = m_{s}\hbar|s \, m_{s}\rangle \tag{1}$$

siga o raciocínio feito na aula do dia 12 de junho e descrito nas notas de aula 22 a 24 que estão no link do curso nas páginas 217 a 219. A forma matricial de S_x é igual à de L_x dada no exercício 4 da Lista 5.

Resolução:

Quando s = 1, m_s pode assumir os valores 1, 0 e -1. Há portanto três autoestados simultâneos de S^2 e S_z :

$$|1\rangle \equiv |11\rangle$$
 $|0\rangle \equiv |10\rangle$ $|-1\rangle \equiv |1-1\rangle$

Lembremos agora como obter a representação de um operador A numa base ortonormal $|e_i\rangle$ de um espaço vetorial: se $|v\rangle = \sum v_i |e_i\rangle$ e $|w\rangle = A |v\rangle = \sum w_i |e_i\rangle$ temos

$$w_{i} = \langle e_{i} | w \rangle$$

$$= \langle e_{i} | A | v \rangle$$

$$= \sum_{j} \langle e_{i} | A | e_{j} \rangle v_{j}$$

$$= \sum_{j} A_{ij} v_{j}$$

ou seja, o elemento Aij da representação matricial de A é dado por

$$A_{ij} = \langle e_i | A | e_j \rangle$$

Começaremos então escrevendo a representação matricial de S^2 . Primeiramente, calculando S^2 nos vetores da base temos

$$S^2 |1\rangle = 2\hbar^2 |1\rangle$$
 $S^2 |0\rangle = 2\hbar^2 |0\rangle$ $S^2 |-1\rangle = 2\hbar^2 |-1\rangle$

A representação matricial de S^2 é portanto (lembrando que a base $\{|1\rangle, |0\rangle, |-1\rangle\}$ é ortonormal)

$$S^{2} = \begin{pmatrix} \langle 1 | S^{2} | 1 \rangle & \langle 1 | S^{2} | 0 \rangle & \langle 1 | S^{2} | -1 \rangle \\ \langle 0 | S^{2} | 1 \rangle & \langle 0 | S^{2} | 0 \rangle & \langle 0 | S^{2} | -1 \rangle \\ \langle -1 | S^{2} | 1 \rangle & \langle -1 | S^{2} | 0 \rangle & \langle -1 | S^{2} | -1 \rangle \end{pmatrix} = \begin{pmatrix} 2\hbar^{2} & 0 & 0 \\ 0 & 2\hbar^{2} & 0 \\ 0 & 0 & 2\hbar^{2} \end{pmatrix}$$

o que já era esperado pois a base que utilizamos é, por definição, a base comum de S^2 e S_z : S^2 e S_z devem portanto ser diagonais. Para S_z portanto obtemos

$$S_z |1\rangle = \hbar |1\rangle$$
 $S_z |0\rangle = 0\hbar |0\rangle$ $S_z |-1\rangle = -\hbar |-1\rangle$

logo

$$S_{z} = \begin{pmatrix} \langle 1 | S_{z} | 1 \rangle & \langle 1 | S_{z} | 0 \rangle & \langle 1 | S_{z} | -1 \rangle \\ \langle 0 | S_{z} | 1 \rangle & \langle 0 | S_{z} | 0 \rangle & \langle 0 | S_{z} | -1 \rangle \end{pmatrix} = \begin{pmatrix} \hbar & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\hbar \end{pmatrix}$$

Para calcular S_x e S_y , o truque é lembrar que os operadores de levantamento/abaixamento são escritos

$$S_+ = S_x + iS_y$$
 $S_- = S_x - iS_y$

Portanto

$$S_x = \frac{S_+ + S_-}{2}$$
 $S_y = \frac{S_+ - S_-}{2i}$

Basta portanto obter as representações matriciais de S_+ e S_- e conseguiremos as representações de S_x e S_y . Como

$$S_{\pm}\left|s\right.m_{s}\rangle=\sqrt{s(s+1)-m_{s}(m_{s}\pm1)}\hbar\left|s\right.m_{s}\pm1\rangle$$

temos

$$\begin{split} S_{+}\left|1\right\rangle &=0 \qquad S_{+}\left|0\right\rangle = \sqrt{2}\hbar\left|1\right\rangle \qquad S_{+}\left|-1\right\rangle = \sqrt{2}\hbar\left|-1\right\rangle \\ S_{-}\left|1\right\rangle &= \sqrt{2}\left|0\right\rangle \qquad S_{-}\left|0\right\rangle = \sqrt{2}\left|-1\right\rangle \qquad S_{-}\left|-1\right\rangle = 0 \end{split}$$

e, portanto

$$S_{+} = \begin{pmatrix} \langle 1 | S_{+} | 1 \rangle & \langle 1 | S_{+} | 0 \rangle & \langle 1 | S_{+} | -1 \rangle \\ \langle 0 | S_{+} | 1 \rangle & \langle 0 | S_{+} | 0 \rangle & \langle 0 | S_{+} | -1 \rangle \\ \langle -1 | S_{+} | 1 \rangle & \langle -1 | S_{+} | 0 \rangle & \langle -1 | S_{+} | -1 \rangle \end{pmatrix} = \begin{pmatrix} 0 & \sqrt{2}\hbar & 0 \\ 0 & 0 & \sqrt{2}\hbar \\ 0 & 0 & 0 \end{pmatrix}$$

$$S_{-} = \begin{pmatrix} \langle 1 | S_{-} | 1 \rangle & \langle 1 | S_{-} | 0 \rangle & \langle 1 | S_{-} | - 1 \rangle \\ \langle 0 | S_{-} | 1 \rangle & \langle 0 | S_{-} | 0 \rangle & \langle 0 | S_{-} | - 1 \rangle \\ \langle -1 | S_{-} | 1 \rangle & \langle -1 | S_{-} | 0 \rangle & \langle -1 | S_{-} | - 1 \rangle \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2}\hbar & 0 & 0 \\ 0 & \sqrt{2}\hbar & 0 \end{pmatrix}$$

Note duas coisas: primeiramente, só precisamos calcular uma dentre S_+ e S_- para obter a outra, pois, como $S_- = S_+^{\dagger}$, podemos obter a representação matricial de uma a partir da outra simplemente transpondo e conjugando. Ademais, note que S_+ possui apenas a diagonal imediatamente acima da diagonal principal preenchida (e S_- a diagonal imediatamente abaixo). Isto sempre acontece com os operadores levantamento e abaixamento (afinal, eles são operadores de levantamento e abaixamento!).

Agora, é imediato obter

$$S_{x} = \frac{S_{+} + S_{-}}{2} = \begin{pmatrix} 0 & \frac{\hbar}{\sqrt{2}} & 0\\ \frac{\hbar}{\sqrt{2}} & 0 & \frac{\hbar}{\sqrt{2}}\\ 0 & \frac{\hbar}{\sqrt{2}} & 0 \end{pmatrix}$$

e

$$S_{y} = \frac{S_{+} - S_{-}}{2i} = \begin{pmatrix} 0 & \frac{-i\hbar}{\sqrt{2}} & 0\\ \frac{i\hbar}{\sqrt{2}} & 0 & \frac{-i\hbar}{\sqrt{2}}\\ 0 & \frac{i\hbar}{\sqrt{2}} & 0 \end{pmatrix}$$

Note que S_x e S_y são hermiteanos, como necessariamente deveriam ser!

2. Cohen, página 476, Complemento J_{IV}, exercício 1.

Precessão de Larmor

Considere uma partícula de spin 1/2 de momento magnético $\vec{M} = \gamma \vec{S}$. Os estados de spin são descritos na base de vetores $|+\rangle$ e $|-\rangle$, autovetores de S_z com autovalores $\hbar/2$ e $-\hbar/2$. No tempo t=0, o estado do sistema é

$$|\Psi(\mathsf{t}=\mathsf{0})\rangle = |+\rangle \tag{2}$$

Observação: na notação do Cohen $|+\rangle$ é o estado de spin up na direção z, ou sendo mais preciso, $|1/2|^2/2$.

Observação: na notação do Griffiths, $\gamma=\frac{qg_s}{2m}$, onde q é a carga, g_s é o fator giromagnético e m é a massa da partícula.

- (a) Se o observável S_x é medido no tempo t=0, quais resultados são possíveis e com quais probabilidades?
- (b) Em vez de medir o resultado no tempo t=0, o sistema é deixado evoluir sob a influência de um campo magnético na direção y, de módulo B_0 . Calcule na base $|+\rangle$, $|-\rangle$, o estado do sistema no instante t.
- (c) No tempo t, nós medimos os observáveis S_x , S_y e S_z . Quais são os valores destas quantidades que podemos encontrar e com quais probabilidades?
- (d) Qual é a relação entre B₀ e t para qual o resultado de uma das medidas é sem incerteza? Dê uma interpretação física desta condição.

Resolução:

(a) Como de costume, os valores possíveis são os autovalores do operador S_x e as respectivas probabilidades são obtidas pela projeção nos autovetores. Já esperamos que os autovalores sejam $\hbar/2$ e $-\hbar/2$, como os de S_z , mas podemos checar isto: o operador S_x é representado na base $\{|+\rangle$, $|-\rangle\}$ como

$$S_{x} = \frac{\hbar}{2}\sigma_{x} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Logo os autovalores são dados por

$$\begin{vmatrix} -s_x & \frac{\hbar}{2} \\ \frac{\hbar}{2} & -s_x \end{vmatrix} = 0$$
$$s_x^2 - \frac{\hbar^2}{4} = 0$$
$$\therefore s_x = \pm \frac{\hbar}{2}$$

Representando o autovetor associado a $\hbar/2$ como $|+\rangle_x$ (e o autovetor associado a $-\hbar/2$, $|-\rangle_x$) temos

$$S_{x} |+\rangle_{x} = \frac{\hbar}{2} |+\rangle_{x}$$

$$\frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \beta \\ \alpha \end{pmatrix}$$

Já impondo a normalização, temos portanto que $|+\rangle_x$ é representado na base de autovetores de S_z como

$$\begin{aligned} |+\rangle_{x} &= \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \\ &= \frac{1}{\sqrt{2}} |+\rangle + \frac{1}{\sqrt{2}} |-\rangle \end{aligned}$$

Procedimento semelhante para $|-\rangle_x$ fornece

$$\left|-\right\rangle_{\mathbf{x}} = \frac{1}{\sqrt{2}} \left|+\right\rangle - \frac{1}{\sqrt{2}} \left|-\right\rangle$$

(alternativamente podemos lembrar que, já que $|+\rangle_x$ e $|-\rangle_x$ devem ser ortogonais, basta trocar o sinal de uma das componentes para obter um a partir do outro). Como em t=0 a partícula esta no estado $|+\rangle$, temos que a probabilidade de obter o valor $\hbar/2$ para uma medida de S_x é

$$\begin{split} \mathfrak{P}\left[S_{x}=\hbar/2\right] &= |_{x}\langle +|+\rangle|^{2} \\ &= \left|\left[\frac{1}{\sqrt{2}}\langle +|+\frac{1}{\sqrt{2}}\langle -|\right]|+\rangle\right|^{2} \\ &= \frac{1}{2} \end{split}$$

e a probabilidade de obter o valor $-\hbar/2$ por sua vez vale

$$\begin{split} \mathfrak{P}\left[S_{x} = -\hbar/2\right] &= |_{x}\langle -|+\rangle|^{2} \\ &= \left| \left[\frac{1}{\sqrt{2}} \langle +| -\frac{1}{\sqrt{2}} \langle -| \right] |+\rangle \right|^{2} \\ &= \frac{1}{2} \end{split}$$

(b) Começamos lembrando que a energia potencial de uma particula com momento magnético \vec{M} num campo magnético \vec{B} é dada por $-\vec{M} \cdot \vec{B}$. A energia potencial neste caso vale, portanto, $-\gamma B_0 S_y$. O Hamiltoniano da partícula é, então¹

$$H = -V = \gamma B_0 S_y$$

Os autoestados de H são então $|+\rangle_y$ e $|-\rangle_y$, os autovetores de S_y . Na base destes autovetores, o Hamiltoniano é representado como

$$H = \frac{\gamma B_0 \hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} E_+ & 0 \\ 0 & E_- \end{pmatrix}$$

A vantagem de trabalhar na base de autoestados é que a evolução temporal é simples: se em t = 0 o sistema esta no estado $\alpha |+\rangle_y + b |-\rangle_y$, no tempo t sabemos que ele estará no estado $\alpha e^{-\frac{iE_+t}{\hbar}} |+\rangle_y + b e^{-\frac{iE_-t}{\hbar}} |-\rangle_y$. Para obter o estado do sistema no instante t temos então que

- Escrever o estado do sistema em t=0 na base de autovetores de S_y , a base de autoestados de H;
- Nesta nova base, calcular o estado do sistema no tempo t e, por fim;
- Reescrever o estado do sistema na base original

Para realizar essas mudanças de base precisamos calcular os autovetores de S_y na base de S_z . Lembrando que a representação de S_y nesta base é

$$S_{y} = \frac{\hbar}{2}\sigma_{y} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

temos que o autovetor $|+\rangle_{y}$ pode ser calculado por

$$S_{y} |+\rangle_{y} = \frac{\hbar}{2} |+\rangle_{y}$$

$$\frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

$$\begin{pmatrix} -i\beta \\ i\alpha \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

¹Onde foi parar a energia cinética? Neste caso a dinâmica dos graus de liberdade ligados à translação é desacoplada da dinâmica dos graus de liberdade de spin. Podemos resolvê-los separadamente, portanto. A situação é de certa forma análoga à separação de variáveis ao resolver uma EDP.

já normalizando o vetor, encontramos então

$$|+\rangle_{y} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} |+\rangle + \frac{i}{\sqrt{2}} |-\rangle$$

Procedendo analogamente, ou utilizando a condição de ortogonalidade, temos que $|-\rangle_y$ é dado por

$$\begin{aligned} |-\rangle_{y} &= \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} \end{pmatrix} \\ &= \frac{1}{\sqrt{2}} |+\rangle - \frac{i}{\sqrt{2}} |-\rangle \end{aligned}$$

Para expressar $|+\rangle$ na base de S_y , lembremos agora a identidade

$$1 = |+\rangle_{u u}\langle +|+|-\rangle_{u u}\langle -|$$

de onde obtemos

$$|+\rangle = 1 |+\rangle = {}_{y}\langle +|+\rangle |+\rangle + {}_{y}\langle -|+\rangle |-\rangle$$

Portanto, conjugando as expressões para $|+\rangle_y$ e $|-\rangle_y$ obtidas

$$\begin{split} |+\rangle &= \left[\frac{1}{\sqrt{2}}\left\langle +|+\rangle + \frac{\mathfrak{i}}{\sqrt{2}}\left\langle -|+\rangle \right]|+\rangle_{\mathfrak{y}} + \left[\frac{1}{\sqrt{2}}\left\langle +|-\rangle - \frac{\mathfrak{i}}{\sqrt{2}}\left\langle -|-\rangle \right]|-\rangle_{\mathfrak{y}} \right. \\ &= \frac{1}{\sqrt{2}}\left|+\rangle_{\mathfrak{y}} + \frac{1}{\sqrt{2}}\left|-\rangle_{\mathfrak{y}} \right. \end{split}$$

Já expressamos $|\Psi(t=0)\rangle$ na base de S_y . Seguindo com nosso plano, podemos agora calcular $|\Psi(t)\rangle$ nesta base

$$\begin{split} |\Psi(t)\rangle &= \frac{1}{\sqrt{2}}e^{-iE_+t/\hbar} \left|+\right\rangle_y + \frac{1}{\sqrt{2}}e^{-iE_-t/\hbar} \left|-\right\rangle_y \\ &= \frac{1}{\sqrt{2}}e^{-\gamma B_0t/2} \left|+\right\rangle_y + \frac{1}{\sqrt{2}}e^{\gamma B_0t/2} \left|-\right\rangle_y \end{split}$$

Por fim, resta-nos reexpressar este estado na base de S_z:

$$\begin{split} |\Psi(t)\rangle &= \frac{1}{\sqrt{2}}e^{-\gamma B_0t/2}\left[\frac{1}{\sqrt{2}}\left|+\right\rangle + \frac{\mathfrak{i}}{\sqrt{2}}\left|-\right\rangle\right] + \frac{1}{\sqrt{2}}e^{\gamma B_0t/2}\left[\frac{1}{\sqrt{2}}\left|+\right\rangle - \frac{\mathfrak{i}}{\sqrt{2}}\left|-\right\rangle\right] \\ &= \frac{1}{2}\left(e^{-\gamma B_0t/2} + e^{\gamma B_0t/2}\right)\left|+\right\rangle + \frac{1}{2\mathfrak{i}}\left(e^{\gamma B_0t/2} - e^{-\gamma B_0t/2}\right)\left|-\right\rangle \\ &= \cos\frac{\gamma B_0t}{2}\left|+\right\rangle + \sin\frac{\gamma B_0t}{2}\left|-\right\rangle \\ &= \cos\omega t\left|+\right\rangle + \sin\omega t\left|-\right\rangle \end{split}$$

(c) Os valores que podemos encontrar são os autovalores dos observáveis: $+\hbar/2$ e $-\hbar/2$. Como já obtemos $|\Psi(t)\rangle$ e as expressões das bases de S_x e S_y em termos da base de S_z , tudo o que nos resta são contas corriqueiras. Começando com S_x , podemos calcular as probabilidades

$$\begin{split} \mathfrak{P}\left[S_x = \frac{\hbar}{2}\right] &= |_x \langle + |\Psi(t)\rangle|^2 \\ &= \left|\left[\frac{1}{\sqrt{2}} \langle + | + \frac{1}{\sqrt{2}} \langle - |\right] \left[\cos \omega t \left| + \right\rangle + \sin \omega t \left| - \right\rangle\right]\right|^2 \\ &= \left|\frac{\cos \omega t}{\sqrt{2}} + \frac{\sin \omega t}{\sqrt{2}}\right|^2 \\ &= \frac{1}{2} \left[1 + \sin \gamma B_0 t\right] \end{split}$$

e

$$\mathcal{P}\left[S_{x} = -\frac{\hbar}{2}\right] = 1 - \mathcal{P}\left[S_{x} = -\frac{\hbar}{2}\right]$$
$$= \frac{1}{2}\left[1 - \sin\gamma B_{0}t\right]$$

Já para S_y:

$$\begin{split} \mathfrak{P}\left[S_y = \frac{\hbar}{2}\right] &= \left|{}_y\langle +|\Psi(t)\rangle\right|^2 \\ &= \left|\left[\frac{1}{\sqrt{2}}\langle +|-\frac{i}{\sqrt{2}}\langle -|\right]\left[\cos\omega t\,|+\rangle + \sin\omega t\,|-\rangle\right]\right|^2 \\ &= \left|\frac{\cos\omega t}{\sqrt{2}} - \frac{i\sin\omega t}{\sqrt{2}}\right|^2 \\ &= \frac{1}{2} \end{split}$$

e portanto

$$\mathcal{P}\left[S_y = \frac{\hbar}{2}\right] = \frac{1}{2}$$

Por fim, temos para S_z :

$$\mathcal{P}\left[S_z = \frac{\hbar}{2}\right] = |\langle +|\Psi(t)\rangle|^2$$

$$= |\langle +|\left[\cos \omega t |+\right\rangle + \sin \omega t |-\rangle|^2$$

$$= \cos^2 \frac{\gamma B_0 t}{2}$$

$$\mathcal{P}\left[S_z = -\frac{\hbar}{2}\right] = \sin^2\frac{\gamma B_0 t}{2}$$

(d) Para que o resultado de uma medida seja sem incerteza, a probabilidade de obtê-la deve ser exatamente 1. Das expressões deduzidas no item anterior, notamos que tanto para S_x quanto para S_z esta condição pode ser satisfeita. Para que uma medida de S_x resulte $\hbar/2$ ou $-\hbar/2$ com certeza, é necessário que

$$\gamma B_0 t = \frac{\pi}{2} + 2n\pi$$
 ou $\gamma B_0 t = \frac{3\pi}{2} + 2n\pi$

Por outro lado, para que uma medida de S_z resulte $\hbar/2$ ou $-\hbar/2$ com certeza, devemos ter

$$\gamma B_0 t = 2n\pi$$
 ou $\gamma B_0 t = (2n+1)\pi$

O que todas estas relações tem em comum é que, a cada intervalo de tempo de T = $\frac{2\pi}{\gamma B_0}$ elas se repetem. Este tempo é justamente o período de precessão. Classicamente, quando aplicamos um campo magnético $\vec{B} = B_0 \hat{y}$ a um sistema com momento de dipolo $\vec{M} = \gamma L_z \hat{z}$, este sistema sofre um torque $\vec{\tau} = \vec{M} \times \vec{B} = \gamma B_0 L_z \hat{x}$. Como este torque é perpendicular ao momento angular L_z , este momento precessiona ao redor do eixo y, com velocidade angular de precessão

$$\omega_{p} = \frac{\tau}{L_{z}} = \gamma B_{0}$$

O período de precessão é portanto

$$T = \frac{2\pi}{\omega_p} = \frac{2\pi}{\gamma B_0}$$

O que coincide exatamente com o período que encontramos acima. Na transição de clássico para quântico, o que acontece é que a maneira correta de interpretar a precessão é diferente: agora pensamos na precessão do valor esperado do observável \vec{S} . Ocorre que, no caso que estamos tratando, quando os valores esperados das componentes S_x ou S_z são $\pm\hbar/2$ não pode haver incerteza (por exemplo, note que se o valor esperado de S_x for $\hbar/2$, sendo este valor dado por $\langle S_x \rangle = \mathcal{P}[S_x = \hbar/2]\frac{\hbar}{2} + \mathcal{P}[S_x = -\hbar/2]\frac{-\hbar}{2}$ é claro que a probabilidade de obter o resultado $\hbar/2$ deve ser 1). Para uma discussão mais detalhada, recomendo consultar a seção 4.4.2 do Griffiths.