Optics and Waves

Lectures 5-6

- -Superposition of waves
- -Standing waves

Young and Freedman 15.6; 15.7; 15.8; 16.4; 16.5

The principle of superposition

When two waves y_1 and y_2 overlap, the displacement at any point on the string is:

$$y(x,t) = y_1(x,t) + y_2(x,t)$$

The wave equation is a linear equation, it contains the function y(x, t) only to the first power. Hence, if any two functions, $y_1(x, t)$ and $y_2(x, t)$ are the solutions of the wave equation, their sum is also a solution.

$$\frac{\partial^2 y(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2}$$

Standing Waves

What happens if a sinusoidal wave is reflected at a fixed end of a string?:

standing wav

We can derive a wave function for the standing wave by adding $y_1(x, t)$ and $y_2(x, t)$ for two waves with equal amplitude, period and wavelength travelling in opposite directions. (page 493 Young)

Incident wave: $y_1(x,t) = -A\cos(kx + \omega t)$ travels from right to left

Reflected wave: $y_2(x,t) = A\cos(kx - \omega t)$ travels from left to right

Waves reflected from a fixed end is inverted, hence change of sign for amplitude. We now add the two waves together.

$$y_{total} = y_1 + y_2 = A[-\cos(kx + \omega t) + \cos(kx - \omega t)]$$
A
B

Remember: $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ $y_{total} = A \left[-\cos(kx)\cos(\omega t) + \sin(kx)\sin(\omega t) \right] +$ $A \left[\cos(kx)\cos(\omega t) + \sin(kx)\sin(\omega t) \right]$

$$y_{total} = 2A\sin(kx)\sin(\omega t)$$

$$y_{total} = 2A\sin(kx)\sin(\omega t) = A[-\cos(kx + \omega t) + \cos(kx - \omega t)]$$

Nodes

Spatial nodes when:

$$\sin(kx) = 0$$

$$kx = n\pi$$

n = 0,1,2,3...

Nodes, independent of time

Each point moves up and down with amplitude $2A\sin(kx)$

$$y(x,t) = 2A\sin(kx)\sin(\omega t) = B(x)\sin(\omega t)$$

The wave does not propagate, it is stationary.

Note: standing waves are also solutions of the wave-equation

$$\frac{\partial y}{\partial x} = 2Ak\cos(kx)\sin(\omega t) \qquad \frac{\partial^2 y}{\partial x^2} = 2A(-k^2)\sin(kx)\sin(\omega t)$$

$$\frac{\partial y}{\partial t} = 2A\omega\sin(kx)\cos(\omega t) \qquad \frac{\partial^2 y}{\partial t^2} = 2A(-\omega^2)\sin(kx)\sin(\omega t)$$

$$\frac{\partial^2 y}{\partial t^2} = \frac{2A(-\omega^2)\sin(kx)\sin(\omega t)}{2A(-k^2)\sin(kx)\sin(\omega t)} = \frac{\omega^2}{k^2} = v^2$$

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

Standing waves; String with fixed ends. normal modes

What standing waves can we have?

$$y(x,t) = 2A\sin(kx)\sin(\omega t)$$

$$at x = 0; y = 0$$

at
$$x = L, y = 0$$
 at all times.
i.e. $kL = n\pi$ $(n = 1, 2, 3, ...)$
 $y(x,t) = 2A \sin\left(\frac{n\pi}{L}x\right) \sin \omega t$
 $\lambda = \frac{2\pi}{k} = \frac{2L}{n}$

1st thru 5th harmonics of a vibrating string
$$\lambda = \frac{2L}{n}, \quad L = n\frac{\lambda}{2}$$
1st thru 5th harmonics of a vibrating string
$$\lambda = \frac{2L}{1} = 2L$$

$$= L$$

$$\lambda = \frac{2L}{3}$$

$$\lambda = \frac{2L}{4} = \frac{L}{2}$$

Can you set up a standing wave on this string with $\lambda \neq \frac{2L}{2}$?

What conclusions can you make about the energy on the string?

Standing Wave Frequency

$$f_n = \frac{v}{\lambda_n} = \frac{v}{2L} = \frac{n}{2L}v$$

$$f_1 = \frac{v}{2L}$$
 is the first harmonic or fundamental.

 $f_2 = 2f_1$ is the second harmonic, 1st overtone.

 $f_3 = 3f_1$ is the third harmonic, 2nd overtone.

Each of the frequencies corresponds to a **normal mode** of the system.

For each normal mode, the corresponding frequency is also called the resonant frequency.

What happens if you drive/excite a system at its resonant frequency?

$$f_n = \frac{v}{\lambda_n} = \frac{n}{2L}v$$

To make high f, use shorter L, or high v.

High v is achieved with lighter strings or higher tension.

Basics of sound waves

$$s(x,t) = S_m \cos(kx - \omega t)$$

$$\Delta P(x,t) = \Delta P_m \sin(kx - \omega t)$$

Standing waves of sound

Note: if the boundary conditions are different then we get a different solution for the standing waves. E.g. String with one end free.

First harmonic

$$L=1/4\lambda_1, f_1=v/4L$$

 3^{rd} harmonic: L=3/4 λ_3 , f_3 =3v/4L=3 f_1

5th harmonic: L= $5/4\lambda_5$, $f_5=5v/4L=5f_1$

Where are the 2nd, 4th harmonics?

Even harmonics do not exist!

Not allowed by boundary conditions

Not practical for string instruments: High Tension not possible, only low f.

Sound waves in a pipe/tube

For pipes with one end closed, there are only odd harmonics $(f_1, f_3, f_5, ...)$, no even harmonics $(f_2, f_4, f_6...)$

Estimate the frequency of the lowest note produced by a flute

Waves in pipes

Real soundsnote

http://newt.phys.unsw.edu.au/jw/brassacoustics.html

String with one end free

First harmonic

$$L=1/4\lambda_1$$
, $f_1=v/4L$

 3^{rd} harmonic: L=3/4 λ_3 , f_3 =3v/4L=3 f_1

Standing waves

- 1. Know how to add two travelling waves to make a standing wave.
- 2. Understand what is a normal mode and how to obtain the frequency of a normal mode.

- 3. Boundary conditions causing the missing harmonics.
 - 4. Energy in a standing wave.

Optics and Waves

Lecture 7

- -Energy carried by a wave
- -Power of a wave

Energy in waves

Travelling waves (on a string): μ , T

Kinetic energy of element, dx, of string: $\Delta KE = \frac{1}{2}(\mu dx)\left(\frac{dy}{dt}\right)^2$

$$\Delta KE = \frac{1}{2}(\mu dx) \left(A\omega \sin(kx - \omega t)\right)^2 = \frac{1}{2}\mu A^2 \omega^2 \sin^2(kx - \omega t) dx$$

Strain energy (PE associated with stretching the string from dx to dl)

$$(dl)^{2} = (dy)^{2} + (dx)^{2} = (dx)^{2} \left(1 + \left(\frac{dy}{dx}\right)^{2}\right)$$

$$dl = dx \left(1 + \left(\frac{dy}{dx}\right)^{2}\right)^{1/2} = dx \left(1 + \frac{1}{2}\left(\frac{dy}{dx}\right)^{2}\right) \quad \text{if gradient is small}$$

Extension of string:

$$dl = dx = \frac{1}{dx} \left(\frac{dy}{dx} \right)^2$$

Strain Energy in

$$= \frac{T}{2} dx A^2 k^2 \sin^2(\frac{1}{2} u v^2 dx A^2)$$

$$\Delta U = \frac{1}{2} \mu v^2 dx A^2$$

Since:
$$\omega = vk$$

So the strain en Diagram below

PE max as string is stretched most here

$$\Delta E = \Delta KE + \Delta U = \mu A^2 \omega^2 \sin^2(kx - \omega t) dx$$

Time average of energy for dx

$$\langle dE \rangle = \frac{1}{2} \mu A^2 \omega^2 dx$$

Power: energy flow per unit time:

$$P_{aver} = \frac{\langle dE \rangle}{dt} = \frac{1}{2} \mu A^2 \omega^2 \frac{dx}{dt} = \frac{1}{2} \mu A^2 \omega^2 v$$

Another way of working out the energy. We can treat the wave as a large number of harmonic oscillators: each with a mass μdx , oscillating with amplitude A and angular frequency ω

The energy (KE+PE) for an oscillator is
$$\frac{1}{2}(\mu dx)A^2\omega^2$$
 So the energy contained in one wavelength is
$$\frac{1}{2}\lambda\mu A^2\omega^2$$

This amount of energy is transported in time T(period), so the power is

$$\frac{1}{2}\lambda\mu A^{2}\omega^{2}/T = \frac{1}{2}\mu A^{2}\omega^{2}(\lambda/T) = \frac{1}{2}\mu A^{2}\omega^{2}v$$

Energy in standing waves

$$\Delta KE = \frac{1}{2} \mu \left(\frac{dy}{dt}\right)^2 dx$$

$$\Delta U = \frac{1}{2}T\left(\frac{dy}{dx}\right)^2 dx$$

 $y = 2A\sin(kx)\sin(\omega t)$

1,1

$$\Delta KE = \frac{1}{2}\mu(2A)^2(\omega)^2\sin^2(kx)\cos^2(\omega t)dx^{-20}$$

$$\Delta U = \frac{1}{2}T(2A)^2 (k)^2 \cos^2(kx)\sin^2(\omega t) dx$$

$$= \frac{1}{2}\mu(2A)^2(\omega)^2\cos^2(kx)\sin^2(\omega t)dx$$

For an arbitrary point at x,

The energy (KE+PE) over a length dx

$$\Delta KE + \Delta U = \frac{1}{2}\mu(2A)^2(\omega)^2[\cos^2\omega t\sin^2(kx) + \sin^2\omega t\cos^2(kx)]dx$$

Averaging over one cycle/period, T:

$$<\Delta KE + \Delta U> = \frac{1}{2}\mu(2A)^{2}(\omega)^{2}[\frac{1}{2}\sin^{2}(kx) + \frac{1}{2}\cos^{2}(kx)]dx$$

$$= \mu(A)^2 (\omega)^2 dx$$

Energy stored in one wavelength: $\mu A^2 \omega^2 \lambda$

This is twice of that a travelling wave. $\frac{1}{2} \lambda \mu A^2 \omega^2$

Energy scales with ω^2

Wavelength, and thus frequency, is quantized! Energy is quantized.

Chladni Plates normal modes

Drumhttps://www.youtube.com/watch?v=v4ELxKKT5Ry

Another interesting site if you have ten minutes to spare:

http://www.youtube.com/watch?v=67NPGP5A2EI

Chladni: German Physicist and Musician