CHAPITRE 5

RELATION ENTRE DEUX VARIABLES CONTINUES:

LE COEFFICIENT R DE PEARSON

INTRODUCTION

• Étudier UNE variable à la fois = statistique univariée.

Étudier le comportement simultané de DEUX variables = statistique
bivariée.

EXEMPLE: Y A-T-IL UN LIEN ENTRE LES NOTES AUX COURS DE MATH ET DE FRANÇAIS?

i	Math (X _i)	Français (Z _i)
1	8.5	7.0
2	4.0	6.0
3	4.5	5.5
4	6.0	6.0
5	3.5	4.5
6	6.5	6.0
7	7.0	6.5
8	5.0	5.5
9	7.5	6.5
10	7.5	6.5

REPRÉSENTATION GRAPHIQUE

REPRÉSENTER GRAPHIQUEMENT LA RELATION ENTRE LES COURS DE MATH ET DE FRANÇAIS

• Nuage de points

Le nuage peut-il être simplifié par une droite?

REPRÉSENTER GRAPHIQUEMENT LA RELATION ENTRE LES COURS DE MATH ET DE GÉO

i	$math(X_i)$	$geographie(W_i)$
1	8.5	0.5
2	4.0	7.0
3	4.5	6.5
4	6.0	6.0
5	3.5	6.5
6	6.5	2.5
7	7.0	3.0
8	5.0	5.0
9	7.5	2.5
10	7.5	2.5

Nuage de points

Relation linéaire

REPRÉSENTER GRAPHIQUEMENT LA RELATION ENTRE LES COURS D'ÉDUCATION PHYSIQUE ET D'ANGLAIS

i	education physique (V_i)	Anglais (V _i)
1	5.5	10
2	9.0	5
3	6.0	6
4	6.0	7
5	6.5	5
6	6.5	8
7	8.0	7
8	8.5	9
9	8.5	8
10	9.0	9

ERRATUM: même lettre pour anglais et éducation physique

Pas de relation

RELATION ENTRE LE NOMBRE D'HEURES D'ÉTUDES ET LA RÉUSSITE

Le nuage peut-il être simplifié par une droite?

REPRÉSENTATION ALGÉBRIQUE DE LA RELATION LINÉAIRE

RAPPEL CALCULER LA MOYENNE ET L'ÉCART-TYPE DES DEUX SÉRIES SUIVANTES:

i	Math (X _i)	Français (Z _i)
1	8.5	7.0
2	4.0	6.0
3	4.5	5.5
4	6.0	6.0
5	3.5	4.5
6	6.5	6.0
7	7.0	6.5
8	5.0	5.5
9	7.5	6.5
10	7.5	6.5

•
$$\bar{X}=6$$

•
$$\overline{Y}=6$$

•
$$S_X^2 = 2.55$$

•
$$S_Y^2 = 2$$

CALCUL DE LA COVARIANCE ENTRE DEUX COURS

$$S_{XY} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n}$$

LIMITE DE LA COVARIANCE

$$S_{XY} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n}$$

• Mesurez la relation entre la longueur et la largeur des 5 objets suivants:

Objet	Longueur	Largeur
1	2	1
2	4	3
3	6	4
4	8	7
5	10	8
Moyenne:	6	4,6

$$S_{XY} = 72000$$

LIMITE DE LA COVARIANCE

$$S_{XY} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n}$$

• Mesurez la relation entre la longueur et la largeur des 5 objets suivants:

Objet	Longueur	Largeur
1	200	100
2	400	300
3	600	400
4	800	700
5	1000	800
Moyenne:	600	460

LIMITES DE LA COVARIANCE

 On étudie deux fois les 5 mêmes objets → la relation entre l et L est donc la même

• Pourtant, la mesure de covariance diffère

→ La mesure de covariance dépend de l'unité de mesure

SOLUTION = CORRÉLATION

- Mesure standardisée de la covariance
- Mesure comprise entre -1 et 1

$$r_{XY} = \frac{S_{XY}}{S_X S_Y}$$

Objet	Longueur	Largeur	Objet	Longueur	Largeur
1	2	1	1	200	100
2	4	3	2	400	300
3	6	4	3	600	400
4	8	7	4	800	700
5	10	8	5	1000	800
Moyenne:	6	4,6	Moyenne:	600	460

