BASES, SUBSPACES, AND CLOSED SETS

COLTON GRAINGER (MATH 6210 TOPOLOGY)

1. Assignment due 2018-09-10

- 1.1. The topology generated by a basis [1, No. 13.5]. We show that if \mathcal{A} is a basis for a topology on X, then the topology generated by the \mathcal{A} equals the intersection of all topologies on X that contain \mathcal{A} . Further, the same result holds if \mathcal{A} is a subbasis.
- 1.2. Incomparable topologies on R [1, No. 13.6]. We show two topologies on the real line are not comparable, namely \mathbf{R}_{ℓ} , the lower limit topology generated by half open intervals [a,b), and \mathbf{R}_{K} , the K-topology generated by the punctured open intervals $(a, b) \setminus \{n^{-1} : n \in \mathbb{N}\}.$
- 1.3. Partially ordering topologies by inclusion [1, No. 13.7]. We determine a partial ordering for the following topologies on R:
 - the standard topology
 - the *K*-topology
 - the finite complement topology
 - the upper limit topology
 - the topology generated by the rays $(-\infty, a)$
- 1.4. Countable bases for topologies on R [1, No. 13.8].
 - (a) We show that $\mathcal{B} = \{(a, b) : a < b \text{ and } a, b \in \mathbf{Q}\}$ is a countable basis for the standard topology on **R**.
 - (b) We'll demonstrate the collection $\mathscr{C} = \{[a,b) : a < b \text{ and } a,b \in \mathbf{Q}\}$ generates a topology distinct from the lower limit topology.
- 1.5. **Defining open sets in a subspace [1, No. 16.3].** Consider the set Y = [-1, 1] as a subspace of **R**. Which of the following sets are open in Y? in \mathbb{R} ?
 - $\{x: \frac{1}{2} < |x| < 1\}$
 - $\bullet \left\{ x : \frac{1}{2} < |x| \le 1 \right\}$
 - $\bullet \left\{ x : \frac{1}{2} \le |x| < 1 \right\}$

 - $\left\{x : \frac{1}{2} \le |x| \le 1\right\}$ $\left\{x : 0 < |x| < 1 \text{ and } \frac{1}{x} \notin \mathbf{N}\right\}$
- 1.6. **Open maps between spaces [1, No. 16.4].** Consider the space *X* and its subspace *Y*. We'll demonstrate that the projections

$$\pi_1: X \times Y \to X \text{ and } \pi_2: X \times Y \to Y$$

are open maps.

Date: 2018-09-01. Compiled: 2018-09-02.

1

1.7. A countable basis for \mathbb{R}^2 [1, No. 16.6]. We'll prove that the countable collection

$$\{(a, b) \times (c, d) : a < b \text{ and } c < d \text{ and } a, b, c, d \in \mathbf{Q}\}$$

is a basis for \mathbb{R}^2 .

- 1.8. Endowing a line with subspace topologies [1, No. 16.8]. Consider a straight line L in the plane. We'll describe the topological structure of L endowed with the subspace topology of $\mathbf{R}_{\ell} \times \mathbf{R}$ and $\mathbf{R}_{\ell} \times \mathbf{R}_{\ell}$ respectively.
- 1.9. Closed sets in subspaces [1, No. 17.2]. If A is closed in Y and Y is closed in X, then A is closed in X.
- 1.10. [1, No. 17.6]. Let A, B, and A_{α} denoted subsets of a space X.
 - (a) If $A \subset B$, then $\overline{A} \subset \overline{B}$.
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (c) $\overline{\cup A_{\alpha}} \supset \overline{\cup A_{\alpha}}$, and there's an example of proper containment.
- 1.11. Finite products of Hausdorff spaces [1, No. 17.11]. The product of two Hausdorff spaces is itself Hausdorff.
- 1.12. Characterizing topologies on R [1, No. 17.16].
 - (a) We have the following table for the closure of the set $K = \{1/n : n \in \mathbb{N}\}$ in each topology on **R**.

which topology on R ?	what is \overline{K} ?
standard	
K-topology	
finite complement	
upper limit	
generated by $(-\infty, a)$	

(b) Further, we'll distinguish the above spaces in terms of two separation axioms.

which topology on R ?	Hausdorff?	T_1 ?
standard		
K-topology		
finite complement		
upper limit		
generated by $(-\infty, a)$		

References

[1] J. R. Munkres, *Topology*, 2nd ed. Hardcover; Prentice Hall, Inc., 2000.