Artificial Intelligence

Assignment 9

Claudia Schon

schon@uni-koblenz.de

Institute of Web Science and Technologies
Department of Computer Science
University of Koblenz-Landau

Submission until: 14.07.2022, 7:00 a.m.

Tutorial on: 14.07.2022 and 15.07.2022

GROUP HOLLERITH - SOLUTION

Group Members:

- 1. Saborni Shernaj Binte Elahi (220202426) (saborni@uni-koblenz.de)
- 2. M Rashedul Hasnat (220202415) (rhasnat@uni-koblenz.de)
- 3. Kamrun Nahar (220202410) (nahar@uni-koblenz.de)
- 4. Basitur Rahman Chowdhury (218100976) (bchowdhury@uni-koblenz.de)

1. Solution:

All extensions for the default theory T are:

$$\mathsf{E}_1 = \mathsf{C}_\mathsf{n}(\{\mathsf{a}\})$$

$$E_2 = C_n(\{\neg a\})$$

$$E_3 = C_n(\{b\})$$

$$E_4 = C_n(\{\neg b\})$$

$$E_5 = C_n(\{c\})$$

2. (1) Solution:

Let T = (W,D) with $W = \Phi$ and $D = \{true : a/\neg a\}$. The process tree in the following Figure shows that T has no extensions. Here, the default can be applied because there is no hindrance from assuming a. After applying the default, the negation of a is added to the current knowledge base, so the default validates its own application because both the "In" and the "Out"-set contain " $\neg a$ ". This example delineates that there may not always be an extension of a default theory.

Reference: https://www.csd.uoc.gr/~hy467/resources/p337-antoniou.pdf

2. (2) Solution:

Let T = (W, Δ) be a default theory with W = Φ and Δ = { δ_1 , δ_2 , δ_3 } with

$$\delta_1 = \frac{p:q}{q}$$
, $\delta_2 = \frac{p:\neg q}{\neg q}$, $\delta_3 = \frac{\neg p:r}{r}$

All three extensions are:

$$\mathsf{E}_1=\mathsf{C}_\mathsf{n}(\{\mathsf{q}\})$$

$$E_2 = C_n(\{\neg q\})$$

$$E_3 = C_n(\{r\})$$

3. SOLUTION:

Let α , $\beta 1$, $\beta 2$, γ be propositional logic formulae. Have to show that $\delta 1 = \frac{\alpha \colon \beta 1, \beta 2}{\gamma}$ and $\delta 2 = \frac{\alpha \colon \beta 1 \land \beta 2}{\gamma}$ are not equivalent. Here are two default theories $T_1 = (W, \{\delta'_1\})$ and $T_2 = (W, \{\delta'_2\})$ which do not have the same extensions (with δ'_i a default of the form of δ_i).

We know, a default is a semi-normal default, if it has the form like this:

Normal default theories are well-behaved, but are too restrictive for modeling. Semi-normal defaults can "implement" priorities between defaults.

$$\delta = \frac{\varphi \colon \psi_{1,...,\psi_n}}{\chi}$$

From default theory, If φ is known and ψ_1,\ldots,ψ_n can be consistently assumed, then conclude χ

Here, extension E:

- ϕ is known iff $\phi \in E$;
- $\psi 1, \ldots, \psi n$ can be consistently assumed iff $\neg \psi i \notin E, 1 \le i \le n$.

An extension $E \subseteq L(\Sigma, V)$ is characterized by the following properties:

- E contains all facts: W ⊆ E
- E is deductively closed: Cn(E) = E
- E is closed under default application, i. e. if $\delta = \frac{\varphi \colon \psi 1, ..., \psi n}{\chi} \in \Delta$ is applicable in E then $\chi \in E$ where: δ is applicable in E iff $\varphi \in E$ and $\neg \psi 1 \notin E$, . . . , $\neg \psi n \notin E$

Again, as per semi monotonicity, if T = (W, D) and T' = (W, D') be normal default theories s.t. $D \subseteq D'$. Then each extension of T is contained in an extension of T'. A default theory T = (W, D) is semi-normal, if all defaults in D are semi-normal. So, two default theories $T_1 = (W, \{\delta'_1\})$ and $T_2 = (W, \{\delta'_2\})$ do not have the same extensions.