Fun Summary

February 1, 2024

Contents

1	metric spaces 3					
	1.1	metric spaces	3			
	1.2	Topology in metric spaces	3			
	1.3	separability and completion	5			
	1.4	Continuity	5			
	1.5	Compact sets	6			
	1.6	Theorem of Baire	7			
2	Normal spaces and Banach spaces					
	2.1	definitions	8			
	2.2	Example: l^p -spaces	8			
	2.3	Finite dimensional normed spaces	9			
	2.4	On the closure of $\overline{B_1(0)}$	9			
3	A question from approximation theory					
	3.1	Theorem of Stone-Weierstrass	10			
	3.2	Applications	11			
4	Continuous linear maps 12					
	4.1	Continuity of linear maps	12			
	4.2	Operatornorm and dual space	13			
	4.3	Neumann series	13			
	4.3 4.4		13 14			
5	4.4	The dual space of l^p				
5	4.4	The dual space of l^p	14			
5	4.4 The 5.1	The dual space of l^p	14 14			
5	4.4 The 5.1 5.2	The dual space of l^p	14 14 15			
	4.4 The 5.1 5.2	The dual space of l^p	14 14 15 16			
	4.4 The 5.1 5.2 Hill	The dual space of l^p	14 14 15 16			
	4.4 The 5.1 5.2 Hill 6.1	The dual space of l^p Forem of Hahn-Banach Extension Theorem Separation Theorems Dert Spaces Inner product space Hilbert spaces	14 14 15 16 17			
	4.4 The 5.1 5.2 Hill 6.1 6.2 6.3	The dual space of l^p Forem of Hahn-Banach Extension Theorem Separation Theorems Dert Spaces Inner product space Hilbert spaces Orthonormal systems	14 14 15 16 17 17			
6	4.4 The 5.1 5.2 Hill 6.1 6.2 6.3	The dual space of l^p Forem of Hahn-Banach Extension Theorem Separation Theorems Foret Spaces Inner product space Hilbert spaces Orthonormal systems Ctral theorem for self-adjoint compact operators	14 14 15 16 17 17			

	7.3	Spectrum	21			
	7.4	Spectral theorem for self-adjoint compact operators	22			
8	Reproducing kernel Hilbert spaces					
	8.1	Definitions	22			
	8.2	Theorem of Moore-Aronszajn	23			
	8.3	An application	24			
9	Theorems on continuous linear maps 2-					
	9.1	uniform boundedness	24			
	9.2	open map theorem	25			
	9.3	Closed graph theorem	26			
	9.4	Consequences	27			
10	$\mathbf{D} \; L^p ext{-spaces}$					
	10.1	Definitions	27			
	10.2	Approximation in L^p	28			
	10.3	Separability of L^p	30			
	10.4	Dualspace of $L^p(\Omega)$, $p \in [1, \infty)$	30			
11	Refl	exive Spaces and Weak Convergence 3	1			
	11.1	Reflexive Spaces	31			
	11.2	weak convergence	32			
	11.3	Results on weak and weak*-compactness	33			
12	The	adjoint of an operator and Fredholm operators 3	4			
	12.1	Adjoint	34			
	12.2	Theorem of Arzelá-Ascoli	35			
	12.3	Projections	36			

1 metric spaces

1.1 metric spaces

Definition 1.1.1. A metric space is a non-empty set X together with a map

$$d: X \times X \to \mathbb{R}$$

$$(x,y) \mapsto d(x,y)$$

such that

1.
$$d(x,y) = 0$$
 iff $x = y$

2.
$$d(x,y) = d(y,x)$$

3.
$$d(x,z) \le d(x,y) + d(y,z) \ \forall x,y,z \in X$$

Remark 1.1.2. (d admits only positive values)

$$0 = d(x, x) \le d(x, y) + d(y, x) = 2d(x, y)$$

Example 1.1.3. 1. $d_2(x,y) = ||x-y||_2$

2.
$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{else} \end{cases}$$

Definition 1.1.4. (convergence)

A sequence $(x_n)_{n\in\mathbb{N}}$ in a metric space (X,d) is said to be convergent to $x\in X$ if

$$x_n \to x \text{ in } (X,d)$$

or

$$\lim_{n \to \infty} x_n = x \text{ in } (x, d)$$

1.2 Topology in metric spaces

Let (X, d) be a metric space.

Definition 1.2.1. 1. an open ball is defined by

$$B_r(x) = \{ y \in X : d(x, y) < r \}$$

- 2. $O \subset X$ is called open if $\forall y \in O$ there is r > 0 such that $B_r(y) \subset O$
- 3. $A \subset X$ is closed if $X \setminus A$ is open.

Theorem 1.2.2. (metric spaces are topological spaces)

Let \mathcal{T} be the set of open subsets of X. Then

- 1. $\varnothing, X \in \mathcal{T}$
- 2. if $U, V \in \mathcal{T}$, then $U \cup V \in \mathcal{T}$
- 3. if $\{U_i\}_{i\in I} \subset \mathcal{T}$, then $\bigcup_{i\in I} \in \mathcal{T}$

Remark 1.2.3. 1. \varnothing , X are closed

- 2. finite union of closed sets is closed
- 3. arbitrary intersections of closed sets is closed

Lemma 1.2.4. $A \subset X$ is closed iff \forall convergent sequences $(x_n)_{n \in \mathbb{N}} \subset A$ the limit point is in A.

Definition 1.2.5. For $M \subset X$ we define

$$\overline{M} = \bigcap_{A \supset M, \; A \text{ closed}}$$

as the closure of M and

$$M = \bigcup_{O \subset M, O \text{ open}}$$

as the interior of M.

 $\partial M = \overline{M} \setminus M$ is the boundary of M

Attention:

Define the closed ball as $\overline{B}_r(a) = \{y \in X : d(y, a) \leq r\}$. Then in general $\overline{B}_r(a) \neq \overline{B}_r(a)$. Example: Take $X \neq \emptyset$ and the trivial metric d. Then

$$B_1(a) = \{a\} = \overline{B_1(a)}$$

but $\overline{B}_1(a) = X$.

1.3 separability and completion

Let (X, d) be a metric space.

Definition 1.3.1. 1. $M \subset X$ is called dense in X if $\overline{M} = X$.

2. X is called separable if X has a countable dense subset.

Remark 1.3.2. M is dens in X iff

$$\forall x \in X \ \forall \varepsilon > 0 \ \exists y \in M \ \text{s.t.} \ d(x,y) < \varepsilon$$

Definition 1.3.3. 1. $(x_n)_{n\in\mathbb{N}}\subset X$ is called a Cauchy sequence if

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \text{ s.t. } m, n > N \text{ implies } d(x_n, x_m) < \varepsilon$$

2. A metric space in which all Cauchy sequences converge is called complete.

Example 1.3.4. 1. $(C^0([a,b],\mathbb{R}), d_{\infty})$ with $d_{\infty}(f,g) = \max_{x \in [a,b]} |f(x) - g(x)|$ is complete.

2. (\mathbb{R}^n, d_2) with $d_2(x, y) = ||x - y||_2$ is complete.

Lemma 1.3.5. Let (X,d) be a complete metric space and $\emptyset \neq A \subset X$. Then (A,d) is complete iff A is closed.

Definition 1.3.6. $A \subset X$ is called bounded if its diameter

$$diam(A) = \sup\{d(x, y) : x, y \in A\}$$

is finite.

Theorem 1.3.7. (X,d) is complete iff $\forall (F_n)_{n\in\mathbb{N}}$ sequences of closed subsets such that $F_{n+1} \subset F_n$ and $diam(F_n) \to 0$ then

$$\exists ! x_0 \in X \ s.t. \bigcap_{n \in \mathbb{N}F_n = \{x_0\}}$$

1.4 Continuity

Definition 1.4.1. Let $(X, d_x), (Y, d_y)$ be metric spaces and $f: X \to Y$. f is continuous in x_0 if

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{s.t.} \; \forall x \in X \; d_x(x, x_0) < \delta \; \text{implies} \; d_y(f(x), f(x_0)) < \varepsilon$$

With sequences:

$$\forall (x_n)_{n\in\mathbb{N}}\subset X\ x_n\to x_0\ \text{in}\ (X,d_x)\ \text{if it holds}\ (f(x_n))_{n\in\mathbb{N}}\subset Y,\ f(x_n)\to f(x_0)\ \text{in}\ (Y,d_y)$$

f is continuous if f is continuous in x_0 for all $x_0 \in X$.

In other words f is continuous if for all $O \subset Y$ open (closed) $f^{-1}(O)$ is open (closed) in X.

Special case: f is Lipschitz continuous if $\exists L > 0$ s.t.

$$d_{y}(f(x), f(y)) \le Ld_{x}(x, y) \ \forall x, y \in X$$

f is an isometric if $\forall x, y \in X$ it holds that $d_Y(f(y), f(x)) = d_x(x, y)$.

1.5 Compact sets

Definition 1.5.1. Let (X, d) be a metric space and $A \subset X$.

- 1. an open cover of A is a collection $\{U_i\}_{i\in I}$ where $I\neq\emptyset$ is an arbitrary index set of open subsets of X s.t. $A\subset\bigcup_{i\in I}U_i$.
- 2. A is compact if every open cover of A contains a finite subcover i.e. there is $N \in \mathbb{N}$ and indices $i_1, ..., i_N$ such that

$$A \subset U_1 \cup ... \cup U_N$$

- 3. A is sequentially compact if every sequence in A has a convergence subsequence in A.
- 4. A is called precompact or totally bounded if $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$ and $\exists x_1, ..., x_N \in X$ such that $A \subset \bigcup_{i=1}^N B_{\varepsilon}(x_i)$.

Theorem 1.5.2. Let (X, d) be a metric scape and $A \subset X$. The following are equivalent:

- 1. A is compact
- 2. A is sequentially compact
- 3. (A, d) is complete and A is precompact.

Remark 1.5.3. If A is precompact, then \overline{A} is precompact. Further, if (X, d) is complete and $A \subset X$ then A is precompact $\Leftrightarrow \overline{A}$ is compact.

Recall: A compact \Rightarrow bounded and closed and $f: X \to Y$ continuous with $A \subset X$ compact, then f(A) is compact as well. Further, if $f: A \to \mathbb{R}$ is continuous and A is compact, then

$$\exists x_1, x_2 \in A \text{ s.t. } f(x_1) \le f(x) \le f(x_2) \ \forall x \in A$$

Theorem of Heine-Borel: $A \subset \mathbb{R}^n$ is compact iff A is closed and bounded.

1.6 Theorem of Baire

Theorem 1.6.1. Let (X,d) be a complete metric space and $\forall n \in \mathbb{N}$ consider $U_n \subset X$ open and dense. Then

$$\bigcap_{n\in\mathbb{N}}U_n$$

is dense in X.

Remark 1.6.2. 1. Completeness is in general necessary. Consider (\mathbb{Q}, d) and d(x, y) = |x - y|. Define a sequence x_n such that $\mathbb{Q} = \{x_n \ n \in \mathbb{N}\}$. Take $U_n = \mathbb{Q} \setminus \{x_n\}$ which is open and dense. Then

$$\bigcap_{n\in\mathbb{N}} U_n = \varnothing$$

Corollary 1.6.3. Let (X, d) be a complete metric space. Let $\forall n \in \mathbb{N}$, $A_n \subset X$ be closed and

$$X = \bigcup_{n \in \mathbb{N}} A_n$$

Then $\exists N \in \mathbb{N} \text{ s.t. } A_N \text{ has an interior point.}$

Remark 1.6.4. Theorem 1.6.1 is also called Baire category theory.

- In a metric space (X,d) $A \subset X$ is called nowhere dense if \overline{A} has no interior points.
- A is called of first category if $\exists (M_n)_{n\in\mathbb{N}}$ where $M_n\subset A$ nowhere dense s.t. $A=\bigcup_{n\in\mathbb{N}}M_n$
- A is called of second category if it is not of first category

Hence the theorem of Baire implies that every complete metric space is of second category.

2 Normal spaces and Banach spaces

Let X be a \mathbb{K} -vector space where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

2.1 definitions

Definition 2.1.1. A map $||\cdot||: X \to \mathbb{R}$ is called a norm on X if

- 1. $\forall x \in X, ||x|| \ge 0 \text{ and } ||x|| = 0 \text{ iff } x = 0$
- 2. $\forall \lambda \in \mathbb{K}$ and $\forall x \in X$ it holds that $||\lambda x|| = |\lambda| \cdot ||x||$
- 3. $\forall x, y \in X \text{ it holds } ||x + y|| \le ||x|| + ||y||$

The pair $(X, ||\cdot||)$ is called an normed space.

 $p: X \to \mathbb{R}$ is called a seminorm if $p(x) \geq 0 \ \forall x \in X$ and 2. and 3. are also satisfied.

Example 2.1.2. 1.
$$C^0([0,1];\mathbb{R})$$
 with $||f||_{\infty} = \max_{x \in [0,1]} |f(x)|$

- 2. more general for a compact metric space $K: C^0(K,\mathbb{R})$ with $||f||_{\infty} = \max_{x \in K} |f(x)|$
- 3. $C^1([0,1];\mathbb{R})$ with $p(f) = \max_{x \in [0,1]} |f'(x)|$
- 4. $\Omega \subset \mathbb{R}^n$ measurable. $L^1(\Omega) = \{f : \Omega \to \mathbb{R} : f \text{ integrable } \}$ with

$$p: L^{(\Omega)} \to \mathbb{R}: \ p(f) = \int_{\Omega} |f(x)| \, dx$$

then p is a seminorm.

Remark 2.1.3. Any normed space is a metric space via

$$d(x,y) = ||x - y||$$

All concepts from chapter 1 apply.

Lemma 2.1.4. Let $(X, ||\cdot||)$ be a normed space. Then X is called separable iff $\exists A \subset X$ countable such that s.t. $\overline{span\{A\}} = X$ where $span\{A\} = \{\sum_{i=1}^n \lambda_i x_i\}$ with $n \in \mathbb{N}$, $\lambda_i \in K$ and $x_i \in A$. Here the columne is defined w.r.t the norm.

Definition 2.1.5. A complete normed space is called a Banach space.

2.2 Example: l^p -spaces

We consider the vector space $\mathbb{K}^{\mathbb{N}}$ of sequences in in \mathbb{K} . Let $x = (x_n)_{n \in \mathbb{N}}$ and $y = (y_n)_{n \in \mathbb{N}}$. Define $x + y = (x_n + y_n)_{n \in \mathbb{N}}$ and $\lambda x = (\lambda x_n)_{n \in \mathbb{N}}$.

For $x \in \mathbb{K}^{\mathbb{N}}$ define

$$||x||_{l^p} = \left(\sum_{n=1}^{\infty} |x|^p\right)^{1/p}$$

for $1 \le p < \infty$ and

$$||x||_{l^{\infty}} = \sup_{n \in \mathbb{N}} |x_n|$$

else.

Define $l^p = \{x = (x_n)_{n \in \mathbb{N}} : ||x||_{l^p} < \infty\}$ for $1 \le p \le \infty$. We find that l^p is a subspace of $\mathbb{K}^{\mathbb{N}}$ and l^p is a normed space (for the triangle inequality use the Hölder inequality).

Theorem 2.2.1. For $1 \le p \le \infty$ l^p is a Banach space.

Lemma 2.2.2. For finite p, l^p is separable while l^{∞} is not.

2.3 Finite dimensional normed spaces

Let X be a vector space over \mathbb{K} . $\exists e_1, ..., e_n \in X$ s.t.

$$\forall x \in X; \ \exists \lambda_1, ..., \lambda_n \in \mathbb{K}: \ x = \sum_{i=1}^n \lambda_i x_i$$

For $p \in [1, \infty)$ we define

$$||x||_p = \left(\sum_{i=1}^n |\lambda_i|^p\right)^{1/p}$$

and for $p = \infty$

$$||x||_{\infty} = \max_{1 \le i \le n} |\lambda_i|$$

Definition 2.3.1. Two norms are equivalent in that

$$\alpha||\cdot||_1 \le ||\cdot||_2 \le \beta||\cdot||_1$$

Theorem 2.3.2. In a finite dimensional space, all norms are equivalent.

Theorem 2.3.3. Finite dimensional normed spaces are Banach spaces.

2.4 On the closure of $\overline{B_1(0)}$

Lemma 2.4.1 (Lemma of Riesz, Lemma of the almost orthogonal element). Let X be a normed space. $U \subset X$ a closed subspace of X s.t. $U \neq X$. Then $\forall \lambda \in (0,1) \exists x_{\lambda} \in X$ s.t. $||x_{\lambda}|| = 1$ and $dist(x_{\lambda}, U) \geq \lambda$.

Theorem 2.4.2. In a normed space X, $\overline{B_1(0)}$ is compact iff X is finite dimensional.

3 A question from approximation theory

3.1 Theorem of Stone-Weierstrass

Let X be a compact metric space. Then $(C^0(X), \mathbb{K}), ||\cdot||_{\infty}$, where $||f||_{\infty} = \max_{x \in X} |f(x)|$ is a Banach space.

Which property of $A \subset C^0(X, \mathbb{K})$ ensures that A is dense.

Definition 3.1.1. $A \subset C^0(X, \mathbb{K})$ is called subalgebra, if $\forall f, g, \in A$

- 1. $\lambda f + \mu g \in A$ (subspace)
- $2. f \cdot g \in A$

Example 3.1.2. • $\{p:[0,1]\to\mathbb{R}\}$ is a subalgebra of $C^0([0,1];\mathbb{R})$.

• $\{f: [-1,1] \to \mathbb{R}; f \text{ continuous and even}\}\ is\ a\ subalgebra.$

Remark 3.1.3. If A is a subalgebra, then \overline{A} is also a subalgebra.

Definition 3.1.4. Let $A \subset C^0(X)$ be a subalgebra.

- 1. A is called unital if $1 \in A$
- 2. A separates point if $x, y \in X$, $x \neq y$, $\exists f \in A \text{ s.t. } f(x) \neq f(y)$.
- 3. (if $\mathbb{K} = \mathbb{C}$) A is stable under conjuguation if from $f \in A$ we conclude that also $\overline{f} \in A$.

Remark 3.1.5. If A is unital then all constant functions are in A.

Lemma 3.1.6. Consider $f: [-1,1] \to \mathbb{R}$ where f(x) = |x|. Then \exists sequence of polynomials $(p_n)_{n \in \mathbb{N}}$ s.t.

$$p_n \to f$$

uniformly in [-1, 1].

Lemma 3.1.7. Let $A \subset C^0(X,\mathbb{R})$ be a unital subalgebra. Then

- 1. if $f \in A$ then $|f| \in \overline{A}$.
- 2. if $f, g \in A$ then $\max\{f, g\} \in \overline{A}$ and $\min\{f, g\} \in \overline{A}$

Theorem 3.1.8 (Stone-Weierstrass). Let A be a compact metric space. $A \subset C^0(X, \mathbb{K})$ is a unital subalgebra that separates points and if $\mathbb{K} = \mathbb{C}$ is stable under conjugation, then A is dense in $C^0(X, \mathbb{K})$ w.r.t $||\cdot||_{\infty}$.

3.2 Applications

Theorem 3.2.1 (Theorem of Weierstraß). Let [a,b] be a compact interval in \mathbb{R} , $f:[a,b] \to \mathbb{R}$ be a continuous function and $\varepsilon > 0$. Then $\exists p:[a,b] \to \mathbb{R}$ a polynomial s.t.

$$||p - f||_{\infty} = \sup_{x \in [a,b]} |p(x) - f(x)| < \varepsilon$$

Definition 3.2.2. A function $f: \mathbb{R} \to \mathbb{C}$ is periodic if

$$f(x+t) = f(x)$$

for a $t \in \mathbb{R}$ and all $x \in \mathbb{R}$.

Remark 3.2.3. If f is periodic with period t then $\tilde{f}: \mathbb{R} \to \mathbb{C}$ where $\tilde{f}(x) = f(t\frac{x}{2\pi})$ is periodic of period 2π .

Consider $C_{2\pi}^0(\mathbb{R}, \mathbb{C})$ the space of continuous 2π -periodic functions. We consider the span of $\{e^{ikx} = \cos(kx) + i\sin(kx), k \in \mathbb{Z}\}.$

Definition 3.2.4. A trigonometric polynomial is a function $f: \mathbb{R} \to \mathbb{C}$

$$f(x) = \sum_{k=-N}^{N} c_k \cdot e^{ikx}$$

with $c_k \in \mathbb{C}$

Theorem 3.2.5 (Approximation of periodic functions). Trigonometric polynomials are dense in $(C_{2\pi}^0(\mathbb{R},\mathbb{C}),||\cdot||_{\infty})$

Application to neural networks

The simplest case of a neural network has d inputs $x_1, ..., x_d$ and one output Z called a feed forward network. Each input influences the output and x_i might have a weight α_i associated to it. The output is a function in $x = (x_1, ..., x_d)$ and the weights $\alpha = (\alpha_1, ..., \alpha_d)$. For instance, the output is often of the form

$$Z = \sum_{i=1}^{d} \alpha_i x_i + b$$

where b is the bias of the network. To make the network slightly stronger, we add a intermediate layer $y = (y_1, ..., y_r)$ where each x_i is connected to each y_j with the associated weight $\gamma_{i,j}$. The y layer (often called activation) is the connected to the output Z as above

with weights α_j . We introduce the realtion

$$y_j = \Phi(\sum_{i=1}^d \gamma_{j,i} x_i + b)$$

for a measurable function Φ . Lastly, the output is then given by

$$Z = \sum_{j=1}^{r} \alpha_j y_j$$

Definition 3.2.6. 1. $A^d = \{a : \mathbb{R}^d \to \mathbb{R} : a(x9 = w^T x + b)\}$ where $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$.

- 2. given $\Phi: \mathbb{R} \to \mathbb{R}$ measurable $d \in \mathbb{N}$ define $\Sigma^d(\Phi) = \{f: \mathbb{R}^d \to \mathbb{R}: f(x) = \sum_{j=1}^N \alpha_j \Phi(a_j(x)) \text{ with } N \in \mathbb{N}, \alpha_j \in \mathbb{R}, a_j \in A^d\}$ as the set of single hidden layer feed forward networks.
- 3. A squashing function is a measurable non-decreasing function $\Phi: \mathbb{R} \to \mathbb{R}$ s.t. $\lim_{x \to -\infty} \Phi(x) = 0$ and $\lim_{x \to \infty} \Phi(x) = 1$.

Theorem 3.2.7 (Universal Approximation theorem of Hornik-Stinchcombe-White). Let Φ we a squashing function $K \subset \mathbb{R}^d$ compact $f: K \to \mathbb{R}$ continuous and $\varepsilon > 0$. Then $\exists g \in \Sigma^d(\Phi)$ s.t.

$$\sup_{x \in K} |f(x) - g(x)| < \varepsilon$$

4 Continuous linear maps

 $(X, ||\cdot||_X), (Y, ||\cdot||: Y)$ are K-Vector spaces with $K = \mathbb{R}$ or $K = \mathbb{C}$. $T: X \to Y$ is called linear if

$$T(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 T(x_1) + \lambda_2 T(x_2)$$

4.1 Continuity of linear maps

Definition 4.1.1. LEt $T: X \to Y$ be linear. Then T is bounded if $\exists C > 0$ s.t.

$$||Tx||_Y \le C||x||_X \ \forall x \in X$$

or equivalently

$$\sup_{x \in X \setminus \{0\}} \frac{||Tx||_Y}{||x||_X} \le C$$

which is also equivalent to

$$\sup_{x \in X, ||x||_X = 1} ||Tx||_Y \le C$$

Theorem 4.1.2. For $T: X \to Y$ linear, the following are equivalent:

- 1. T is continuous
- 2. T is continuous in 0
- 3. t is bounded

Lemma 4.1.3. Let X have infinite dimension. Then $\exists T: X \to \mathbb{K}$ linear and not bounded.

Definition 4.1.4. Define L(X,Y) as the set of linear continuous (\Leftrightarrow bounded) maps from X to Y. With the usual addition $((T_1 + T_2)(x) = T_1(X) + T_2(x))$ and the scalar multiplication $((\lambda(T)(x)) = \lambda T(x))$ this is a vector space. If X = Y we write L(X). For $T \in L(X,Y)$

$$\ker T = \{x \in X : Tx = 0\}$$

and

$$\Im(T) = \{ y \in Y : \exists x \in X : Tx = y \}$$

4.2 Operatornorm and dual space

Theorem 4.2.1. Let $X \neq \{0\}$.

• L(X,Y) with the operatornorm $||T|| = \sup_{x \in X \setminus \{0\}} \frac{||Tx||_Y}{||x||_X} = \sup_{x \in X, ||x||_X = 1} ||Tx||_Y$ is a normed space. We have

$$||Tx||_Y \le ||T||||x||_X$$

• If Y is a Banach space then L(X,Y) is a Banach space.

Definition 4.2.2. For a normed space $(X, ||\cdot||_{\infty})$ we define the dual space $X' = L(X, \mathbb{K})$. Remark 4.2.3. X' is a Banach space.

4.3 Neumann series

Lemma 4.3.1. Let X, Y, Z be three normed spaces. Let $T \in L(X, Y)$ and $S \in L(Y, Z)$. Then $S \circ T \in L(X, Z)$ and

$$||S \circ T|| \le ||S||||T||$$

Let $T: X \to Y$ be linear, bounded and bijective. Then $\exists T^{-1}: Y \to X$ linear.

Definition 4.3.2. Let X, Y be normed spaces.

- 1. $T \in L(X,Y)$ is bijective such that $T^{-1} \in L(Y,X)$ then T is called an isomorphism
- 2. X, Y are called isomorph if there is $T: X \to Y$ isomorphism.
- 3. $T \in L(X, Y)$ is called an Isometry if ||Tx|| = ||x||.
- 4. X, Y are called isometric isomorph if $\exists T \in L(X, Y)$ an isomorphism that is also an isometry.

Remark 4.3.3. The identity $I_x: X \to X$ with $x \mapsto x$ is in L(X). Then $T \in L(X)$ is an isomorphism iff $\exists S \in L(X)$ s.t. $S \circ T = I_x$ and $T \circ S = I_x$

Let $T \in L(X)$ s.t ||T|| < 1. Define $T^0 = I_x$, $T^n = T \circ T^{n-1}$. Obviously $T^n \in L(X)$ for all n. Now,

$$\left(\sum_{k=0}^{n} T^{k}\right)_{n \in \mathbb{N}} \subset L(X)$$

is a Cauchy sequence w.r.t. the operator norm. Hence, if X is a Banach-Space, so is L(X) and thus the series converges to a $S \in L(X)$. Furthermore

$$\sum_{k=0}^{\infty} ||T||^k = \frac{1}{1 - ||T||}$$

Finally, we can also note that $S = (I_x - T)^{-1}$.

Theorem 4.3.4 (Neumann series). Let X be a Banach-Space, $T \in L(X)$ with ||T|| < 1The $I_x - T$ is an isomorphism and

$$(I_x - T)^{-1} = \sum_{k=0}^{\infty} T^k$$

is in L(X). This is called the Neumann series.

4.4 The dual space of l^p

We only deal with $1 \le p < \infty$.

Theorem 4.4.1. Let $q \in (1, \infty]$ be s.t. $\frac{1}{p} + \frac{1}{q} = 1$. Then the dualspace $(l^p)'$ is isometric isomorph to l^q .

5 Theorem of Hahn-Banach

Let X be a vector space, $X \neq \{0\}$ over $\mathbb{K} = \mathbb{R}$.

5.1 Extension Theorem

Given $U \subset X$ subspace, $l: U \to \mathbb{R}$ linear, is there $L: X \to \mathbb{R}$ linear such that $L|_U = l$? For this we need Zorn's Lemma:

Definition 5.1.1. Let $M \neq \emptyset$ be a set and \leq be a partial order on M, i.e. \leq satisfies

- 1. reflexiv: $x \leq x \ \forall x \in M$
- 2. antisymmetric: $x \leq y$ and $y \leq x \Rightarrow x = y$
- 3. transitivity $x \leq y, y \leq z \Rightarrow x \leq z$

Then

- $A \subset M$ is called chain of totally ordered if $\forall x, y \in A$ either $x \leq y$ or $y \leq x$
- $b \in M$ is an upper bound for a chain A if $a \leq b$ for all $a \in A$
- $m \in M$ is called maximal element if

$$\forall x \in M \text{ s.t. } m \leq x \Rightarrow x = m$$

Lemma 5.1.2 (Zorn). Let $M \neq \emptyset$ and \leq be a partial order on M. If every chain in M has an upper bound in M, then there is a maximal element.

Definition 5.1.3. LEt X be a vector space. $p: X \to \mathbb{R}$ is called sublinear if

- 1. $p(\lambda x) = \lambda p(x)$ for all $x \in X, \lambda \geq 0$
- 2. $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$

Theorem 5.1.4 (Extension theorem of Hahn-Banach). Let X be a vecorspace over \mathbb{R} , $U \subset X$ a subspace and $U \neq X$. Let $p: X \to \mathbb{R}$ be a subspace $l: U \to \mathbb{R}$ be linear s.t. $l(x) \leq p(x) \ \forall x \in U$. Then $\exists L: X \to \mathbb{R}$ linear s.t. $L(x) \leq p(x) \ \forall x \in X$ and $L(x) = l(x) \ \forall x \in U$. L is called extension of l.

Consequences for normed spaces

Theorem 5.1.5. Let $(X, ||\cdot||_X)$, $U \subset X$ a subspace fo X, with $U \neq X$. Let $u' \in U' = L(U, \mathbb{R})$. Then $\exists x' \in X'$ s.t. $||x'||_{X'} = ||u'||_{U'}$ such that $x'(u) = u'(u) \ \forall u \in U$.

Corollary 5.1.6. Let $(X, ||\cdot||_X)$, $U \subset X$ be a subspace of X and $x_0 \in X$ s.t. $dist(x_0, U) > 0$. Then $\exists x' \in X'$ s.t. $x'|_U = 0 \ \forall u \in U$ and $x'(x_0) = dist(x_0, U)$ with $||x'||_{X'} = 1$.

Corollary 5.1.7. Let $X, ||\cdot||_X$ and $x_0 \in X$.

1. if $x_0 \neq 0$ then $\exists F \in X'$ with $||F||_{X'} = 1$ and $F(x_0) = ||x_0||_X$ In particular, for $x \in X$

$$||x||_X = \sup_{F \in X', ||F||_{X'}=1} |F(x)|$$

- 2. If $F(x_0) = 0$ for all $F \in X'$, then $x_0 = 0$. In particular, X' separates points of X.
- 3. $U \subset X$ subspace. Then U is dense in X iff if for $x' \in X'$ s.t. $x'_{|_U} = 0$ it follows x' = 0.

5.2 <u>Separation Theorems</u>

Definition 5.2.1. Let X be a vectorspace over \mathbb{R} . $A \subset X$ is called convex, if

$$\forall x, y \in A, \ \lambda x + (1 - \lambda)y \in A, \ \forall \lambda \in [0, 1]$$

Lemma 5.2.2. Let $C \subset X$ open and convex with $O \in C$. Define $p_C : X \to \mathbb{R}$ such that $p_C(x) = \inf\{\lambda > 0 \text{ s.t. } \frac{x}{\lambda} \in C\}$. This is called the Minkowski functional. Then p_C is sublinear and $C = \{x \in X : p_C(x) < 1\}$.

Lemma 5.2.3. Let $(X, ||\cdot||)$ be a normed space and $A \subset X$ be convex and open, $A \neq \emptyset$ and $x_0 \in X \setminus A$, then $\exists F \in X'$ s.t.

$$F(x) < F(x_0) \ \forall x \in A$$

Definition 5.2.4. Let $X \neq \{0\}$ be a \mathbb{R} -vector space.

- 1. $H = \{x \in X : f(x) = \alpha\}$ with $f : X \to \mathbb{R}$ linear, $\alpha \in \mathbb{R}$
- 2. $A, B \subset X$ are separated by an affine hyperplane H if $H = \{f = \alpha\}$ and $f(a) \le \alpha \le f(b) \ \forall a \in A \ \forall b \in B$.
- 3. $A, B \subset X$ are strictly separated by an affine Hyperplane H if $\exists \varepsilon > 0$ s.t. $f(a) + \varepsilon \le \alpha \le f(b) \varepsilon$.

Theorem 5.2.5 (Separation Theorem of Hahn-Banach). Let $(X, ||\cdot||)$, A, B convex, $A \neq \emptyset$, $b \neq \emptyset$, $A \cap B = \emptyset$ and A or B should be open.. Then $\exists F \in X'$ and $\delta \in \mathbb{R}$ s.t.

$$F(a) < \delta < F(b) \ \forall a \in A, b \in B$$

Theorem 5.2.6. Let $(x, ||\cdot||)$, A, B convex subsets $A \neq \emptyset$, $B \neq \emptyset$, $A \cap B = \emptyset$. Let A be closed and B be compact. Then $\exists F \in X', \exists \varepsilon > 0$ s.t. $F(a) + \varepsilon \leq F(b) - \varepsilon \ \forall a \in A, b \in B$.

6 Hilbert Spaces

Let X be a vector space over \mathbb{K} where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

6.1 Inner product space

Definition 6.1.1. A map $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{K}$ is an inner product on X, if

- 1. $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$
- 2. $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$
- 3. $\langle x, y \rangle = \overline{\langle x, y \rangle}$
- 4. $\langle x, y \rangle \geq 0$ and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

The pair $(X, \langle \cdot, \cdot \rangle)$ is called an inner product space also called a pre-Hilbert-space. An inner product is a symmetric bilinear form if $\mathbb{K} = \mathbb{R}$ and a sesquilinear form if $\mathbb{K} = \mathbb{R}$.

Theorem 6.1.2 (Cauchy-Schwartz-inequality). In an inner product space we have

$$|\langle x, y \rangle| \le \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}$$

Theorem 6.1.3. For an inner product space X we define $||\cdot||: X \to [0, \infty)$ by $||x|| = \sqrt{\langle x, x \rangle}$. This is a norm.

Definition 6.1.4. Let X be an inner product space. Then $x, y \in X$ are orthogonal if $\langle x, y \rangle = 0$. This is written as $x \perp y$.

Corollary 6.1.5. If $x \perp y$, then

$$||x + y||^2 = ||x||^2 + ||y||^2$$

Theorem 6.1.6. A normed space is an inner product space, iff $\forall x, y \in X$ the norm satisfies

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

6.2 Hilbert spaces

Definition 6.2.1. Is an inner product space complete w.r.t. to the induced norm, we call it Hilbert space.

Theorem 6.2.2 (projection theorem). Let X be a Hilbert space, $A \subset X$ non-empty, convex and closed. Then $\forall x \in X$

$$\exists ! y \in A \text{ s.t. } ||x - y|| = dist(x, A)$$

y is called the best approximation or projection of x in A.

Theorem 6.2.3 (Characterisation of the bes approximation). Let X be an inner product space, $A \subset X$, $A \neq \emptyset$ and convex and $x \in X$. Then y is the best approximation of x in A iff

$$\Re\langle x-y,z-y\rangle \le 0 \ \forall z \in A$$

Definition 6.2.4. Let X be an inner product space, $A \subset X$, then

$$A^{\perp} = \{ x \in X : x \perp y \ \forall y \in A \}$$

the orthogonal complement of A.

Remark 6.2.5. A^{\perp} is a closed subspace. If $(x_n)_{n\in\mathbb{N}}\subset A^{\perp}$, $x_n\to x$ in X, $\forall n\in\mathbb{N}$ we have $\langle x_n,y\rangle=0\ \forall y\in A$. Moreover $A\subset (A^{\perp})^{\perp}$.

Theorem 6.2.6. Let X be a Hilbert space, $U \subset X$ closed subspace. Then

$$\forall x \in X \; \exists ! u \in U \; s.t. \; ||x - u|| = dist(x, U) = \inf_{z \in U} ||z - u||$$

We have $x - u \in U^{\perp}$ and $X = U \oplus U^{\perp}$, meaning that x = u + v, $u \in U$, $v \in U^{\perp}$ uniquely. The u is called the orthogonal projection of x in U.

Theorem 6.2.7 (Riesz-Fréchet). Let $X \neq \{0\}$ be a Hilbert space. $\forall F \in X' \exists ! y \in X \text{ s.t.}$ $F(x) = \langle x, y \rangle$. Moreover, $||F||_{X'} = ||y||_X$. Equivalently

$$J: X \to X', \ (Jy)(x) = \langle x, y \rangle$$

is a bijective, anti-linear isometry. In particular, if X' is a Hilbert space, the dual is also a Hilbert space.

6.3 Orthonormal systems

Let $(X\langle\cdot,\cdot\rangle)$ be an inner product space.

Definition 6.3.1. Let $I \neq \emptyset$ be an index set. A family of vectors $(e_k)_{k \in I} \subset X$ is called an orthonormal system (ONS) if

$$\langle e_i, e_j \rangle = \delta_{i,j}$$

Theorem 6.3.2 (Schmidt Orthogonalisation theorem). Let $\{x_i : i \in I\} \subset X, I \subset \mathbb{N}$ be linearly independent vectors. Then $\exists ONS \{e_i : i \in I\} \text{ s.t.}$

$$span\{x_i : i \in I\} = span\{e_i : i \in I\}$$

Lemma 6.3.3 (Bessel's inequality). Let $\{e_1,...,e_n\}$ be an ONS. $Y = span\{e_1,...,e_n\}$. Then $\forall x \in X$

$$\inf_{y \in Y} ||x - y||^2 = ||x - \sum_{i=1}^n \langle x_i, e_i \rangle||^2 = ||x||^2 - \sum_{i=1}^n |\langle x_i, e_i \rangle|^2 \ge 0$$

Definition 6.3.4. If $I \subset \mathbb{N}$, $(e_n)_{n \in I}$ ONS, then $\langle x, e_n \angle$ is called the *n*-th Fourier coefficient. of x. W.r.t. $(e_n)_{n \in I}$.

Definition 6.3.5. An ONS $(e_n)_{n\in\mathbb{N}}$, $I\subset\mathbb{N}$ is called complete in X if

$$\overline{span\{e_n : n \in I\}} = X$$

Theorem 6.3.6. Any separable Hilbert space X has a complete ONS.

Lemma 6.3.7. Let X be a Hilbert space, $(e_n)_{n\in\mathbb{N}}$ an ONS. Then $\exists y \in X \text{ s.t. } y = \sum_{n\in\mathbb{N}} \langle x, e_n \rangle e_n$.

Theorem 6.3.8. Let X be a Hilbert space of infinite dimension, $(e_n)_{n\in\mathbb{N}}$ an orthonormal system. Then the following are equivalent.

- 1. $(e_n)_{n\in\mathbb{N}}$ is complete
- 2. if $x \in X$ s.t. $\langle x, e_n \rangle = 0 \ \forall n \in \mathbb{N}$, then x = 0
- 3. $\forall x \in X, \ x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n \ (Fourier \ series \ of \ x)$
- 4. $\forall x \in X$, $||x||^2 = \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2$.

Corollary 6.3.9. Any separable infinite-dimensional Hilbert space is isometrically isomorphic to ℓ^2 .

7 Spectral theorem for self-adjoint compact operators

We only deal with Hilbert spaces.

7.1 Adjoint in Hilbert spaces

Let $(X, \langle \cdot, \cdot \rangle)$, $(Y, \langle \cdot, \cdot \rangle)$, $T \in L(X, Y)$. Let $y \in Y$. Consider the map

$$X \ni x \mapsto \langle Tx, y \rangle_Y$$

This map is linear and bounded.

$$|\langle Tx, y \rangle_Y| \stackrel{CS}{\leq} ||Tx||_Y ||y||_Y \leq ||T||||x||_X ||y||_Y$$

Thus it is an element of X'. By the theorem of Riesz-Fréchet

$$\exists ! T^*y \in X \text{ s.t. } \langle x, T^*y \rangle_X = \langle Tx, y \rangle_Y \ \forall x \in X$$

This defines a map $T^*: Y \to X$ with $y \mapsto T^*y$.

Definition 7.1.1. T^* is the Hilbert space adjoint of T.

Lemma 7.1.2. $T^* \in L(Y, X)$ and $||T^*|| = ||T||$.

Lemma 7.1.3. Let $(X, \langle \cdot, \cdot \rangle_X)$, $(Y, \langle \cdot, \cdot \rangle_Y)$, $(Z, \langle \cdot, \cdot \rangle_Z)$ be Hilbert spaces. Let $T \in L(X, y)$, $S \in L(Y, Z)$ and $\lambda \in \mathbb{K}$. Then

1.
$$(S \circ T)^* = T^*S^*$$

2.
$$(\lambda T)^* = \overline{\lambda} T^*$$

3.
$$(T^*)^* = T$$

Definition 7.1.4. Let $(X, \langle \cdot, \cdot \rangle_X)$ be a Hilbert space and $T \in L(X)$. T is called self-adjoint if $T^* = T$

Lemma 7.1.5. • If $\mathbb{K} = \mathbb{C}$, T is self-adjoint $\Leftrightarrow \langle Tx, x \rangle_X \in \mathbb{R} \ \forall x \in X$

• If T is self-adjoint, then $||T|| = \sup_{x \in X, ||x||_X = 1} |\langle Tx, x \rangle|$

7.2 compact operators

Here X, Y can be only Banach spaces and $X, Y \neq \{0\}$.

Definition 7.2.1. $f: X \to Y$ is compact if f maps bounded sets in precompact sets.

Lemma 7.2.2. Let $T: X \to Y$ be linear. Then T is compact iff $T(B_1(0))$ is precompact in Y.

Notation: $K(X,Y) = \{T : X \to Y \text{ linear and compact}\}$ and K(X) = K(X,X). Remark 7.2.3. $T \in K(X,Y) \Rightarrow T \in L(X,Y)$.

- **Lemma 7.2.4.** 1. $T \in L(X,Y)$, $S \in L(Y,Z)$. If T or S is compact, then the composition is compact.
 - 2. K(X,Y) is a closed subspace of L(X,Y). In particular K(X,Y) is a Banach space.
- **Definition 7.2.5.** Let H be a Hilbert space and $T \in L(X)$. Then T is called self-adjoint if

$$\langle Tx, y \rangle = \langle x, Ty \rangle \ \forall x, y \in X$$

• Let X, Y be Banach spaces then, $T \in L(X, Y)$ compact $\Leftrightarrow T(B_1(0))$ is precompact.

Lemma 7.2.6. $T \in L(X,Y)$ is compact iff $\forall (x_n)_{n \in \mathbb{N}} \subset X$ bounded $(T(x_n))_{n \in \mathbb{N}}$ admits a convergent subsequence.

7.3 Spectrum

Let X be a Banach space.

Definition 7.3.1. Let $T \in L(X)$.

• the resolvent set of T is

$$\rho(T) = \{\lambda \in \mathbb{K} : (\lambda \cdot Id - T)^{-1} \in L(X)\} \subset \mathbb{K}$$

while $\sigma(T) = \mathbb{K} \setminus \rho(T)$ is the spectrum of T.

- the resolvent map $R: \rho(T)toL(X)$ is defined by $\lambda \mapsto (\lambda Id T)^{-1}$
- the spectrum of T is divided into

$$\sigma(T) = \sigma_p(T) \cup \sigma_C(T) \cup \sigma_r(T)$$

where

- $-\sigma_P(T) = \{\lambda \in \sigma(T) : \ker(\lambda Id T) \neq \{0\}\} \text{ is the point spectrum}$ $-\sigma_C(T) = \{\lambda \in \sigma(T) \setminus \sigma_P(T) : Im(\lambda Id T) \neq X \text{ but } \overline{Im(\lambda Id T)} = X\}$ $-\sigma_r(T) = \sigma(T) \setminus (\sigma_P(T) \cup \sigma_C(T)).$
- the elements of the point spectrum are called eigenvalues and $x \in X \setminus \{0\}$: $(I\lambda Id T)(x) = 0$ is called eigenvector associated of λ .

Theorem 7.3.2. For $T \in L(X)$

- 1. $\rho(T)$ is open.
- 2. $\sigma(T)$ is compact and

$$\sup_{\lambda \in \sigma(T)} |\lambda| \le \lim_{m \to \infty} ||T^m||^{\frac{1}{m}} = r(T)$$

is the spectral radius. In particular $r(T) \leq ||T||$

7.4 Spectral theorem for self-adjoint compact operators

Let X be a Hilbert space.

Lemma 7.4.1. Let $T \in K(X)$ self-adjoint. Then ||T|| or -||T|| is an eigenvalue of T.

Lemma 7.4.2. Let $T \in L(X)$ be self-adjoint. Then all eigenvalues are real and eigenvectors corresponding to different eigenvalues are orthogonal.

Lemma 7.4.3. Let $T \in L(X)$. If $M \subset X$ is a closed subspace s.t. $TM \subset M$, then M^{\perp} is invariant under T^* .

Theorem 7.4.4. Let X be a Hilbert space, $T \in K(X)$ self-adjoint. Then \exists ONS $(\phi_n)_{n \in I} \subset X$, $I \subset \mathbb{N}$, and $\exists (\lambda_n)_{n \in I} \subset \mathbb{R}$ s.t. $\forall x \in X$

$$Tx = \sum_{n \in I} \lambda_n \langle x, \phi_n \rangle \phi_n$$

In particular $T\phi_n = \lambda_n \phi_n \ \forall n \in \mathbb{N}$. If I is infinite, then $\lambda_n \to 0$.

Corollary 7.4.5. Let X be a separable Hilbert space with dim $X = \infty$ and $T \in K(X)$ self-adjoint. Then \exists a complete ONS $(e_n)_{n \in \mathbb{N}}$ of eigenvectors of T. In particular $\forall x \in X$

$$Tx = \sum_{n=1}^{\infty} \lambda_n \langle x, e_N \rangle e_n$$

with λ_n being the corresponding eigenvalue to e_n .

8 Reproducing kernel Hilbert spaces

8.1 Definitions

Here, we again use $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Further $X \neq \emptyset$ is simply a set. Also

$$F(X, \mathbb{K}) = \{ f : X \to \mathbb{K} \text{ a map} \}$$

This is a vector space.

Definition 8.1.1. $H \subset F(X, \mathbb{K})$ is a reproducing kernel Hilbert space (RKHS) on X if

- 1. H is a subspace of $F(X, \mathbb{K})$
- 2. $\exists \langle \cdot, \cdot \rangle : H \times H \to \mathbb{K}$ inner product, s.t. $(H, \langle \cdot, \cdot \rangle)$ is a Hilbert space
- 3. $\forall x \in X$ the linear map $E_x : H \to \mathbb{K}$ with $E_x(f) = f(x)$ (the evaluation operator) is well-defined and bounded.

Let $\Omega \subset \mathbb{R}^n$ open, $H = L^2(\Omega)$ is not a RKHS since evaluation at a point does not make sense for $f \in L^2(\Omega)$.

If H is a RKHS, the evaluation operator $E_x \in H' \ \forall x \in X$. For $x \in X$, by Riesz-Fréchet $\exists ! k_x \in H \text{ s.t. } E_x(F) = \langle f, k_x \rangle \ \forall f \in H$.

Definition 8.1.2. The function

$$K: X \times X \to \mathbb{K}$$

$$(x,y) \mapsto \langle k_u, k_x \rangle$$

is called reproducing kernel of H.

Remark 8.1.3. For $x, y \in X$ and $\mathbb{K} = \mathbb{C}$

$$K(x,y) = \langle k_y, k_x \rangle = \overline{\langle k_x, k_y \rangle} = \overline{K(y,x)}$$

while if $\mathbb{K} = \mathbb{R}$ the kernel is symmetric. Further

$$||E_x||^2 = ||k_x||^2 = \langle k_x, k_x \rangle = K(x, x) \ge 0$$

8.2 Theorem of Moore-Aronszajn

Lemma 8.2.1. Let H be a RKHS on X with kernel K. Then $\forall n \in \mathbb{N}$ and $\forall \{x_1, ..., x_n\} \subset X$ the matrix

$$(K(x_i,x_j))^n$$

is a positive semidefinite matrix, i.e.

$$\sum_{i,j=1}^{n} \alpha_j K(x_j, x_i) \overline{\alpha_i} \ge 0 \ \forall \alpha \in \mathbb{K}^n$$

Theorem 8.2.2 (Moore-Aronszajn). Let $X \neq \emptyset$, $K: X \times X \to \mathbb{K}$ s.t.

1. if
$$\mathbb{K} = \mathbb{C} K(x,y) = \overline{K(y,x)}$$
 and if $\mathbb{K} = \mathbb{R} K(x,y) = K(y,x)$

2. K is positive semidefinite

Then there exists a (unique) RKHS on K with kernel K. Notation: H(K).

8.3 An application

Interpolation: Let $\{x_1, ..., x_n\} \subset X$ be distinct points. $\lambda_1, ..., \lambda_n \in \mathbb{C}$ not necessarily distinct. Let H be a RKHS on X.

AIM: Find $f \in H$ s.t. the least square error

$$J(f) = \sum_{i=1}^{n} |f(x_i) - \lambda_i|^2$$

is minimal at f and among all minimizers we want the one with minimal norm.

Theorem 8.3.1. Let H be a RKHS on X. $\{x_1, ..., x_n\} \subset X$ distinct points in X. $A := (K(x_i, x_j))$ a $n \times n$ -matrix. $v = (\lambda_1, ..., \lambda_n)^T \in \mathbb{K}^n$. Then $\exists w \in \mathbb{K}^n$ s.t. $v - Aw \in \ker(A)$ and

$$H\ni f:=\sum_{i=1}^n w_i k_{x_i}$$

satisfies

$$J(f) = \inf_{g \in H} J(g)$$

We have $k_{x_i} = K(\cdot, x_i)$ and f is the unique minimizer of minimal norm.

9 Theorems on continuous linear maps

9.1 uniform boundedness

We need the theorem of Baire a lot in this chapter, so we recall it.

Theorem 9.1.1 (Baire's theorem). Let (X, d) be a complete metric space and $(U_n)_{n \in \mathbb{N}}$ s.t. $U_n \subset X$ is open and dense $\forall n \in \mathbb{N}$. Then

$$\bigcap_{n\in\mathbb{N}}U_n$$

is dense in X.

Corollary 9.1.2. Let (X,d) be a complete metric space, $(A_n)_{n\in\mathbb{N}}$ s.t. A_n closed $\forall n\in\mathbb{N}$ and $X=\bigcup_{n\in\mathbb{N}}A_n$. Then $\exists N\in\mathbb{N}$ s.t. A_N has an interior point.

Theorem 9.1.3 (uniform boundedness principle). Let $X \neq \emptyset$ be a complete metric space, Y a normed space. Let $F \subset C^0(X,Y)$ s.t.

$$\sup_{f \in F} ||f(x)||_Y < \infty \ \forall x \in X$$

Then $\exists x_0 \in X \text{ and } \exists r_0 > 0 \text{ s.t.}$

$$\sup_{x \in \overline{B_{r_0}(x_0)}} \sup_{f \in F} ||f(x)||_Y < \infty$$

Theorem 9.1.4 (Banach-Steinhaus). Let X Banach space, Y normed space, $\mathcal{T} \subset L(X,Y)$ family such that

$$\sup_{T \in \mathcal{T}} ||Tx||_Y < \infty \ \forall x \in X$$

Then \mathcal{T} is a bounded set in L(X,Y) i.e.

$$\sup_{T \in \mathcal{T}} ||T||_{L(X,Y)} < \infty$$

Lemma 9.1.5. Let X be a Banach space, Y a normed space, $(T_n)_{n\in\mathbb{N}} \subset L(X,Y)$ s.t. $\forall x \in X$, $T_n x$ converges in Y. Then $T: X \to Y$ with $x \mapsto \lim_{n\to\infty} T_n x$ is linear and continuous.

9.2 open map theorem

Definition 9.2.1. Let (X, d_X) , (Y, d_Y) be open metric spaces and $f: X \to Y$. Then f is called open if $\forall U \in X$ open $f(U) \subset Y$ is open.

Remark 9.2.2. Let $f: X \to Y$ be bijective. Then f is an open map iff f^{-1} is continuous. Attention: f continuous and bijective $\implies f^{-1}$ is continuous. A counterexample is $f: [0,1] \cup (2,3] \to [0,2]$ where

$$f(x) = \begin{cases} x, & x \in [0, 1] \\ x - 1, & x \in (2, 3] \end{cases}$$

Lemma 9.2.3. Let $T: X \to Y$ be linear, X, Y normed spaces.

- 1. T is open iff $\exists \delta > 0$ s.t. $T(B_1(0)) \supset B_{\delta}(0)$
- 2. $T open \Rightarrow T is surjective$

Theorem 9.2.4 (open map theorem). If X, Y are Banach spaces, $T \in L(X,Y)$ s.t. T surjective, then T is open.

Theorem 9.2.5 (theorem of the inverse). Let X, Y be Banach-spaces, $T \in L(X,Y)$ bijective, then T^{-1} is continuous and in fact $T^{-1} \in L(Y,X)$.

Corollary 9.2.6. Let X, Y be Banach. Then any bijective map $T \in L(X,Y)$ is an isomorphism.

Remark 9.2.7. $T \in L(X)$ where X Banach then

$$\rho(T) = \{ \lambda \in \mathbb{K} : (\lambda ID - T)^{-1} \in L(X) \} = \{ \lambda \in \mathbb{K} : \lambda Id - T \text{ bijective} \}$$

Theorem 9.2.8. Let X, Y be Banach. Then $S = \{T \in L(X, Y) : T \text{ surjective}\}$ is open in L(X, Y).

9.3 Closed graph theorem

We work with the graph of an operator. Recall that, given $(X, ||\cdot||_X), (Y, ||\cdot||_Y)$, we can look at the normed space $X \times Y$ equipped with $||(x,y)||_{X\times Y} = ||x||_X + ||y||_Y$.

Definition 9.3.1. Let $T: X \to Y$ linear.

- 1. $G(T) = \{(x, y) \in X \times Y : y = Tx\}$ is the graph of T
- 2. T is called a closed linear operator if G(T) is closed.

Remark 9.3.2. • If X, Y) are Banach spaces, then so is $X \times Y$

• G(T) is a subspace of $X \times Y$ and in particular a Banach space

Lemma 9.3.3. T is a closed linear operator $\iff \forall (x_n)_{n\in\mathbb{N}} \subset X \text{ s.t. } x_n \to x \text{ and } Tx_n \to y, \text{ then necessarily } Tx = y.$

Theorem 9.3.4 (closed graph theorem). Let X and Y Banach, $T: X \to Y$ linear. Then T is a linear closed operator iff T is continuous (bounded).

Remark 9.3.5. If X, Y Banach, $T: X \to Y$ linear, then T is continuous

- iff $\forall (x_n)_{n\in\mathbb{N}}\subset X$ s.t. $x_n\to x$ in X then $Tx_n\to Tx$ in Y
- iff $\forall (x_n)_{n\in\mathbb{N}} \subset X$ s.t. $x_n \to x$ and $Tx_n \to y$.

Definition 9.3.6. Let X, Y be normed spaces and $D \subset X$ a subspace. $T : D \to Y$ linear is called closed if $\forall (x_n)_{n \in \mathbb{N}} \subset D$ s.t. $x_n \to x$ and $Tx_n \to y$ then $x \in D$ and Tx = y.

Lemma 9.3.7. Let X, Y be Banach spaces, $D \subset X, T : D \to Y$ linear and closed. Define

$$||\cdot||_T:D\to[0,\infty)$$

where

$$||x||_T = ||x||_X + ||Tx||_Y$$

called the graph norm. Then $||\cdot||_T$ is a norm, $(D||\cdot||_T)$ is a Banach space and

$$T: (D, ||\cdot||_T) \to (Y, ||\cdot||_Y)$$

is continuous.

9.4 Consequences

A central question in mathematics concerns the solvability of equations. Let X, Y be any sets and $f: X \to Y$. Given $y \in Y$ is there an $x \in X$ s.t. f(x) = y?.

Here x and Y are normed spaces and $T: X \to Y$ linear. The open map theorem implies that for Banach spaces X and Y, $T: X \to Y$ linear bijective and continuous, then $T^{-1}: Y \to X$ is also continuous. As a consequence, the solution of Tx = y depends continuously on Y. Further $\{T \in L(X,Y): T \text{ surjective}\}$ is open in L(X,Y), when X and Y are Banach. With the Neumann series, we get

Theorem 9.4.1. If X, Y Banach,

$$A = \{T \in L(X,Y) : T \text{ is an isomorphism}\}\$$

is open in L(X,Y). I.e. if $T \in L(X,Y)$ isomorphism $\Rightarrow \exists \rho > 0$ s.t. $\forall S \in L(X,Y)$ s.t. $||S-T|| < \rho$ then S is an isomorphism.

10 L^p -spaces

10.1 Definitions

Let $(\Omega, \mathcal{A}, \mu)$ be a measure space.

Definition 10.1.1.

$$\mathcal{L}^p(\Omega,\mu) = \{ f \in \mathcal{M}(\Omega,\mathbb{R}) : |f|^p \ \mu - \text{integrable} \}$$

for $1 \le p < \infty$ and

$$\mathcal{L}^{\infty} = \{ f \in \mathcal{M}(\Omega, \mathbb{R}) : \exists N \in \mathcal{A} : \mu(N) = 0 : \sup_{x \in \Omega \setminus N} |f(x)| < \infty \}$$

We define the functions

$$||f||_p = \left(\int_{\Omega} |f(x)|^p d\mu\right)^{1/p}$$

and

$$||f||_{\infty} = \operatorname{esssup}|f| = \inf_{N \in \mathcal{A}, \mu(N) = 0} \left(\sup_{x \in \Omega \setminus N} |f(x)| \right)$$

Lemma 10.1.2. For $p \in [1, \infty]$, $\mathcal{L}^p(\Omega, \mu)$ are vector spaces. The Hölder and Minkowski inequalities hold. But $||f||_p = 0 \Rightarrow f \equiv 0$. In general, only f = 0 μ -a.e.

We define the equivalence relation \sim : $f \sim g$ iff $f = g \mu$ -a.e.

Definition 10.1.3. For $p \in [1, \infty]$

$$L^p(\Omega, \mu) = \mathcal{L}^p / \sim = \{ [f] : f \in \mathcal{L}^p \}$$

Theorem 10.1.4 (Fischer-Riesz). For $p \in [1, \infty]$, $(L^p(\Omega, \mu), ||\cdot||_p)$ is a Banach space. For p = 2, L^2 is a Hilbert space where

$$\langle f, g \rangle = \int_{\Omega} f(x)g(x) \, d\mu(x)$$

Remark 10.1.5. If $(f_k)_{k\in\mathbb{N}}$ Cauchy in $(L^p(\Omega,\mu),||f||_p)$ then $\exists f\in L^p(\Omega,\mu)$ s.t. $f_k\to f$ in $L^p(\Omega,\mu)\not\Rightarrow f_k\to f$ pointwise μ -a.e.

But \exists subsequence $f_{k_i} \to f$ μ -a.e.

10.2 Approximation in L^p

In \mathbb{R}^n with Lebesgue measure: $\Omega \subset \mathbb{R}^n$ measurable, $L^p(\Omega) = L^p(\Omega, \lambda^n)$.

Definition 10.2.1. For $f:\Omega\to\mathbb{R}$ continuous

$$\operatorname{supp}(f) = \overline{\{x \in \Omega : f(x) \neq 0\}}$$

is called the support of f.

Definition 10.2.2. Let $C_0^0(\Omega, \mathbb{R}) = \{f : \Omega \to \mathbb{R} : f \text{ is continuous and } supp(f) = k \text{ compact and } \exists \Omega' \subset \Omega \text{ open s.t. } k \subset \Omega' \}$ the space of continuous functions with support compactly contained in Ω .

Theorem 10.2.3. Let $\Omega \subset \mathbb{R}^n$ open, $1 \leq p < \infty$. Then $C_0^0(\Omega)$ is dense in $L^p(\Omega)$

Definition 10.2.4. Similarly we define

$$C_0^k = \{ f : \Omega \to \mathbb{R} : f \in C^k(\Omega) \text{ and } f \in C_0^0(\Omega; \mathbb{R}) \}$$

the space of k-times continuously differentiable functions with compact support in Ω and $C_0^{\infty}(\Omega) = \bigcap_{k \in \mathbb{N}} C_0^k(\Omega)$ called the set of test functions.

Definition 10.2.5. Define $\phi : \mathbb{R}^n \to \mathbb{R}$ where

$$\phi(x) = \begin{cases} c \cdot \exp(-\frac{1}{1 - ||x||^2}), & ||x|| < 1\\ 0, & \text{otherwise} \end{cases}$$

Where c > 0 is s.t.

$$\int_{\mathbb{R}^n} \phi(x) \, dx = 1$$

Further, for $\varepsilon > 0$, $\phi_{\varepsilon} : \mathbb{R}^n \to \mathbb{R}$ is defined by

$$\phi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \phi\left(\frac{x}{\varepsilon}\right)$$

Then $\int_{\mathbb{R}^n} \phi_{\varepsilon}(x) dx = 1$.

Definition 10.2.6. For $f \in L^1(\Omega)$, $\varepsilon > 0$ and $f_{\varepsilon} : \mathbb{R}^n \to \mathbb{R}$ be defined by

$$f_{\varepsilon}(x) = \int_{\Omega} \phi_{\varepsilon}(x-y) f(y) dy$$

called the smoothing of f.

Remark 10.2.7. This is an example of a convolution. For $f, g: \mathbb{R}^n \to \mathbb{R}$ integrable

$$\int_{\mathbb{R}^n} f(x - y)g(y) \, dy = f * g(x) = g * f(x)$$

is the convolution of f and g

Lemma 10.2.8. Let $\Omega \subset \mathbb{R}^n$ open $f \in L^1(\Omega)$, $\varepsilon > 0$. Then $f\varepsilon \in C^{\infty}(\mathbb{R}^n)$. If $supp(f) = k \subset \Omega$ compact then for $\varepsilon < dist(k, \partial\Omega)$, $f_{\varepsilon} \in C_0^{\infty}(\Omega)$.

Theorem 10.2.9. Let $\Omega \subset \mathbb{R}^n$ be open.

- 1. If $f \in C^0(\Omega)$, $K \subset \Omega$ compact, $f_{\varepsilon} \to f$ uniformly on K.
- 2. If $f \in L^p(\Omega)$, $p \in [1, \infty)$, then $||f_{\varepsilon}||_p \leq ||f||_p$ and $f_{\varepsilon} \to f$ in $L^p(\Omega)$.

Corollary 10.2.10. Let $\Omega \subset \mathbb{R}^n$ be open. Then $C_0^{\infty}(\Omega)$ is dense in $L^p(\Omega)$, $1 \leq p < \infty$. I.e.

$$\overline{C_0^{\infty}(\Omega)}^{||\cdot||_p} = L^p(\Omega)$$

Remark 10.2.11 (Dirac Sequences). $(\phi_k)_{k\in\mathbb{N}}\subset C^{\infty}(\mathbb{R}^n)$ s.t.

- $\int \phi_k dx = 1$
- $\forall \varepsilon > 0 \lim_{k \to \infty} \int_{\mathbb{R}^n \setminus B_{\varepsilon}(0)} \phi_k dx = 0$

allow for a generalization of the above theorem.

Definition 10.2.12. $L^p_{loc}(\Omega) = \{ f \in L^0(\Omega) : f \in L^p(K) \text{ for all compact sets } K \subset \Omega \}.$ And further $L^0(\Omega)$ is the space of equivalence classes of a.e. equal measurable functions from $\Omega \to \mathbb{R}$.

Theorem 10.2.13 (Fundamental Lemma in the calculus of variations). Let $\Omega \subset \mathbb{R}^n$ open, $f \in L^1_{loc}(\Omega)$ and

$$\int_{\Omega} f(x)\phi(x)dx = 0 \ \forall \phi \in C_0^{\infty}(\Omega)$$

then $f \equiv 0$ a.e.

10.3 Separability of L^p

Theorem 10.3.1. Let $\Omega \subset \mathbb{R}^n$ be open, $p \in [1, \infty)$. Then $L^p(\Omega)$ is separable.

10.4 Dualspace of $L^p(\Omega), p \in [1, \infty)$

Similar to l^p . Let $q \in (1, \infty]$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$, $\Omega \subset \mathbb{R}^n$ open. Let $g \in L^q(\Omega)$.

$$T_g: L^p(\Omega) \to \mathbb{R}, \ T_g(f) = \int_{\Omega} f(x)g(x)dx$$

Then, by Hölder,

$$T_g \in L^p(\Omega)', ||T_g||_{L^p(\Omega)} \le ||g||_q$$

Theorem 10.4.1. Let $\Omega \subset \mathbb{R}^n$ open, $p \in [1, \infty)$ and $q \in (1, \infty]$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$. Then $J: L^q(\Omega) \to L^p(\Omega)$ with $g \mapsto T_g$ is an isometric isomorphism.

Theorem 10.4.2. Let $(\Omega, \mathcal{A}, \mu)$ be a σ -finite measure space and $\nu : \mathcal{A} \to \mathbb{R}$ a bounded signed measure, i.e.

- $\nu(\varnothing) = 0$
- ν is σ -additive

• the total variation

$$||\nu||_{var} = \sup\{\sum_{k=1}^{n} |\nu(E_i)| : n \in \mathbb{N} \text{ and } E_1, ..., E_n \in \mathcal{A} \text{ are pairwise disjoint sets}\}$$

is finite

Then the following are equivalent:

1.
$$\exists ! f \in L^1(\Omega, \mu) \text{ s.t. } \nu(A) = \int_A f \, d\nu$$

2. ν is absolutely continuous w.r.t. μ , i.e.

$$\forall A \in \mathcal{A} : \mu(A) = 0 \Rightarrow \nu(A) = 0$$

Remark 10.4.3. In 1, one often uses the notation $f = \frac{d\nu}{d\mu}$ and calls this function Radon-Nikodym derivative of ν w.r.t. μ .

11 Reflexive Spaces and Weak Convergence

11.1 Reflexive Spaces

Let $X \neq \{0\}$ be a normed space and X' be its dual.

Definition 11.1.1. $X'' = (X')' = L(X', \mathbb{K})$ is the bi-dualspace of X.

There is a natural map between X and X". This is $i_X: X \to X$ ", defined by

$$x \mapsto i_X(x) \in X''$$
, i.e. $i_X(x) : X' \to \mathbb{K}$

That is $i_X(x)(f) = f(x) \, \forall f \in X'$.

 i_X is linear and bounded.

Definition 11.1.2. $i_X: X \to X''$ as above is called canonical evaluation map.

Lemma 11.1.3. i_X is a linear isometry.

Definition 11.1.4. A normed space X is called reflexive if its canonical evaluation map is surjective.

Lemma 11.1.5. X reflexive $\implies X$ Banach.

Theorem 11.1.6. Let $\Omega \subset \mathbb{R}^n$ open, $1 . Then <math>L^p(\Omega)$ is reflexive.

Corollary 11.1.7. Every Hilbertspace is reflexive.

Theorem 11.1.8. Let X be a Banach space.

- 1. If $T: X \to Y$ is an isomorphism, then X is is reflexive iff Y is reflexive.
- 2. closed subspaces of reflexive spaces are reflexive.
- 3. X is reflexive iff X' is reflexive.

11.2 weak convergence

Definition 11.2.1. A sequence $x_n \subset X$ converges weakly to $x \in X$ if

$$\forall f \in X' : f(x_n) \to f(x) \ n \to \infty$$

in \mathbb{K} .

NOTATION: $x_n \rightharpoonup x$ in X.

Remark 11.2.2. 1. the weak limit is unique.

- 2. if $x_n \to x$ in X then $x_N \rightharpoonup x$ in X.
- 3. in X Hilbert space, $x_n \rightharpoonup x$ in X iff $\langle x_n, y \rangle_X \rightarrow \langle x, y \rangle_X$.
- 4. closed subsets are not weakly closed.

Definition 11.2.3. Let X be a normed space.

- 1. $M \subset X$ is called weakly sequentially compact if $\forall (x_n)_{n \in \mathbb{N}}$ there exists a weakly convergent subsequence with weak limit in M.
- 2. $M \subset X$ is called weakly closed if $\forall (x_n)_{n \in \mathbb{N}}$ s.t. $x_n \rightharpoonup x$ in X, we have $x \in M$.

Definition 11.2.4. 1. $(f_n)_{n\in\mathbb{N}}\subset X'$ is weakly*-convergent to $f\in X'$ if $f_n(x)\to f(x)\ \forall x\in X$. NOTATION: $f_n\stackrel{*}{\rightharpoonup} f$.

2. $M \subset X'$ is weakly*-sequentially compact if $\forall (f_n)_{n \in \mathbb{N}}$ there exists a subsequence f_{n_k} and $\exists f \in X'$ s.t. $f_{n_k} \stackrel{*}{\rightharpoonup} f$.

Remark 11.2.5. 1. weak*-limtis are unique

2. given $(f_n)_{n\in\mathbb{N}}\subset X'$ s.t. $f_n\to f$ then $f_n\stackrel{*}{\rightharpoonup} f$.

Remark 11.2.6. Let $f_n)_{n\in\mathbb{N}}\subset X'$.

1. $f_n \rightharpoonup f$ in $X' \Rightarrow f_n \stackrel{*}{\rightharpoonup} f$ in X'.

2. If X is reflexive then $f_n \rightharpoonup f$ in $X' \Leftrightarrow f_n \stackrel{*}{\rightharpoonup} f$ in X'.

Theorem 11.2.7. Let X be a normed space. Then

- weakly convergent sequences are bounded.
- If X is a Banach space, then weakly*-convergent sequences in X' are bounded.

Lemma 11.2.8. Let X be a normed space.

- if $x_n \rightharpoonup x$ in X, then $||x||_X \le \liminf_{n \to \infty} ||x_n||_X$.
- if $f_n \stackrel{*}{\rightharpoonup} f$ in X', then $||f||_{X'} \le \liminf_{n \to \infty} ||f_n||_{X'}$.

We say that the norm is weakly lower semi-continuous.

11.3 Results on weak and weak*-compactness

Theorem 11.3.1. Let $(X, ||\cdot||)$ be separable. Then, any bounded sequence in X' admits a weakly*-convergent subsequence. In particular,

$$\overline{B_1(0)} \subset X'$$

is weakly*-sequentially compact.

Lemma 11.3.2. Let X be a normed space.

- 1. if X' is separable \Rightarrow X is separable
- 2. if X is reflexive: X' is separable iff X is separable

Theorem 11.3.3. Let X be reflexive. Then any bounded sequence in X admits a weakly convergent subsequence.

Theorem 11.3.4. Let $XM \subset X$ be convex and closed. Then M is weakly sequentially closed.

Corollary 11.3.5 (Lemma of Mazur). Let X be a normed space. $(x_k)_{k\in\mathbb{N}}\subset X$ with $x_k\rightharpoonup x$ in X, then

$$x \in \overline{span\{x_k\}}$$

Theorem 11.3.6. Let X be a reflexive Banach space, $M \subset X$ with $X \neq \emptyset$ closed and convex. Let $f: M \to \mathbb{R}$ s.t.

$$\forall (x_k)_{k\in\mathbb{N}} \ s.t. \ x_k \rightharpoonup x \ in \ X$$

then

$$f(x) \le \liminf_{n \to \infty} f(x_n)$$

(weakly lower semi-continuous) and coercive, i.e. $f(x) \to \infty$ if $||x|| \to \infty$. Then f attains its minimum in M.

12 The adjoint of an operator and Fredholm operators

12.1 Adjoint

Definition 12.1.1. Let $(X, ||\cdot||_X), (Y, ||\cdot||_Y), T \in L(X, Y)$. Then $T': Y' \to X'$ s.t. $(T'y')(x) = y'(Tx) \ \forall x \in X \ \forall y' \in Y'$ is the adjoint of T.

Remark 12.1.2. If X and Y Hilbert spaces, $T \in L(X,Y)$, then $T': Y' \to X'$ and T^* are two different operators called adjoints. By Riesz we get $J_X: X \to X'$ and $J_Y: Y \to Y'$. Thus

$$T^* = J_X^{-1} \circ T' \circ J_Y$$

Lemma 12.1.3. Let X, Y, Z be normed spaces, $T, T_1, T_2 \in L(X, Y), S \in L(Y, Z)$. Let $\alpha, \beta \in \mathbb{K}$. Then

- 1. $T' \in L(Y', X')$ and ||T'|| = ||T||
- 2. $(\alpha T_1 + \beta T_2)' = \alpha T_1' + \beta T_2'$
- 3. $(S \circ T)' = T' \circ S'$
- 4. $T'' \circ i_X = i_Y \circ T$ in L(X, Y'')

Definition 12.1.4. Let X be a normed space, $U \subset X$ a subspace and $Z \subset X'$ a subspace. Then

$$U^{\perp} = \{ x' \in X' : x'(u) = 0 \ \forall u \in U \} \subset X'$$

$$Z_{\perp} = \{ x \in X : x'(x) = 0 \ \forall x' \in Z \} \subset X$$

are called annihilators of U and Z respectively.

Remark 12.1.5. U^{\perp} and Z_{\perp} are closed subspaces of X' and X respectively.

Lemma 12.1.6. Let X be a normed space, $U \subset X$. Then

$$(U^{\perp})_{\perp} = \overline{U}$$

Theorem 12.1.7. Let X, Y be normed spaces and $T \in L(X, Y)$. Then

1.
$$\ker T' = (R(T))^{\perp} \text{ and } \ker T = (R(T'))_{\perp}$$

2.
$$\overline{(R(T))} = (\ker T')_{\perp}$$

Remark 12.1.8. If X is a Hilbert space and U a subspace. Then U^{\perp} defines two things,

- the orthogonal complement of U, that is a subspace of X
- the annihilator of U, a subspace of X'

The notation is consistent, since these two spaces can be identified using the map given by Riesz-representation theorem.

Remark 12.1.9. By the last theorem, if $T \in L(X,Y)$ and R(T) is closed, then

$$R(T) = (\ker T')_{\perp}$$

That means that for $y \in Y$ the following are equivalent

- $\exists X \text{ s.t. } Tx = y$
- for $y' \in Y'$ s.t. T'y' = 0 we have y'(y) = 0.

Theorem 12.1.10. If X and Y are Banach spaces and $T \in L(X,Y)$ then T is an isomorphism iff T' is an isomorphism. Moreover $(T')^{-1} = (T^{-1})'$.

12.2 Theorem of Arzelá-Ascoli

Let (X, d) be a compact metric space, Y is a Banach space, $C^0(X, Y)$ with $||f||_{\infty} = \max_{x \in X} ||f(x)||$.

Theorem 12.2.1. $(C^0(X,Y),||\cdot||_{\infty})$ is a Banach space.

The goal is to understand compact subsets of $(C^0(X, \mathbb{K}^n), ||\cdot||_{\infty})$.

Definition 12.2.2. $S \subset C^0(X,Y)$ is pointwise bounded if

$$\forall x \in X \; \exists M_x > 0: \; ||f(x)||_Y \le M_x \; \forall f \in A$$

It is uniformly bounded if M is independent of x.

A is equicontinuous if

$$\forall \varepsilon > 0 \exists \delta > 0: \ \forall x, y \in X: \ d_x(x, y) < \delta \text{ we have } ||f(x) - f(y)||_Y < \varepsilon \ \forall f \in A$$

Lemma 12.2.3. If $A \subset C^0(X,Y)$ is pointwise bounded and equicontinuous, then A is uniformly bounded.

Theorem 12.2.4 (Arzelá-Ascoli). Let X be a compact metric space, $A \subset C^0(X, \mathbb{K}^n)$. Then A is precompact iff A is pointwise bounded and equicontinuous.

Remark 12.2.5. As a consequence, if $(f_n)_{n\in\mathbb{N}}\subset C^0(X,\mathbb{K}^n)$ that is pointwise bounded and equicontinuous the there is a subsequence $(f_{n_i})_{j\in\mathbb{N}}$ and

$$\exists f \in C^0(X, \mathbb{K}^n) \ s.t. \ f_{n_j} \to f \ in \ C^0(X, \mathbb{K}^n)$$

Theorem 12.2.6 (Schauder). Let X, Y be Banach spaces. Then

$$T \in K(X,Y) \iff T' \in K(Y',X')$$

12.3 Projections

Let X be a vector space.

Definition 12.3.1. A linear map $P: X \to X$ is a projection if $P^2 = P \circ P = P$.

Lemma 12.3.2. Let $P: X \to X$ be linear. Then

- 1. P is a projection \iff P = Id on R(P).
- 2. If P is a projection, then $X = \ker P \oplus R(P)$
- 3. If P is a projection, then Id P is also a projection.
- 4. Let $Y \subset X$ be a subspace. Then $\exists P : X \to X$ s.t. R(P) = Y.

Let $(X, ||\cdot||)$ be a normed space.

Definition 12.3.3. In $(X, ||\cdot||)$, $\mathcal{P}(X) = \{P \in L(X) : P^2 = P\}$ is the set of linear continuous projections.

Remark 12.3.4. Let $P \in \mathcal{P}(X)$. Then

- 1. $\ker P$ is closed.
- 2. R(P) is closed.
- 3. $X = \ker P \oplus R(P)$ as a topological sum, that is $x_n \to x$ in X iff $Px_n \to Px$ in (P) and $x_n Px_n \to x Px$ in $\ker P$.

Theorem 12.3.5 (Theorem of closed complement). Let X be a Banach space, Y, Z subspaces, s.t. $X = Y \oplus Z$ in an algebraic sense. Then $\exists P \in \mathcal{P}(X)$ with R(P) = Y and $\ker P = Z$ iff Y and Z are closed.

Then $X = Y \oplus Z$ is also in the topological sense and Z is called the complement of Y in X.

Definition 12.3.6. Let X be a vector space, $U \subset X$ a subspace. We define the relation $x \sim y$ if $x - y \in U$ or $\exists u \in U$ s.t. x = y + u. Then

$$X/U = \{ [x] | x \in X \}$$

is called the Quotient space.

Lemma 12.3.7. If $U \subset X$ is closed in $(X, ||\cdot||)$. Then we define the norm

$$||[x]||_{X/U} = dist(x, U)$$

If X is Banach, then X/U equipped with this norm is Banach as well.

Definition 12.3.8. If $U \subset X$ is a closed subspace s.t. $\dim X/U < \infty$, then $\operatorname{codim} U = \dim X/U$ is the codimension of U in X.

Theorem 12.3.9. Let X be Banach, $U \subset X$ closed subspace with codim $U = n < \infty$.

1. Then $\exists V \subset X \text{ subspace with } \dim V = n \text{ s.t.}$

$$X = U \oplus V$$

In particular $\exists P: X \to X$ continuous projection with R(P) = U.

2. $dim U^{\perp} = codim \ U = n$