Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claim 1(currently amended): A compound of Formula (1)

$$R^5$$
 R^4
 R^3
 R^3
 R^2
 R^3

the stereoisomers and prodrugs thereof, and the pharmaceutically acceptable salts of said compounds, stereoisomers, and prodrugs, wherein:

W is oxygen, sulfur, -SO-, -S(O)₂, -CH₂-, -CF₂-, -CHF-, -C(O)-, -CH(OH)-, -NR^a, or -C(=CH₂)-;

 R^1 , R^2 , R^3 , and R^6 are each independently hydrogen, halogen, -(C_1 - C_8)alkyl, -CF₃, -O(C_1 - C_8)alkyl, or -CN;

 R^4 is hydrogen, -(C₁-C₁₂)alkyl substituted with zero to three substituents independently selected from Group V, -(C₂-C₁₂)alkenyl, -(C₂-C₁₂)alkynyl, halogen, -CN, -OR^b, -SR^c, -S(O)₂R^c, aryl, heteronryl, -(C₃-C₁₀)cycloalkyl, heterocycloalkyl, -S(O)₂NR^cR^d, -C(O)NR^cR^d, -C(O)OR^c, -NR^aC(O)R^d, -NR^aC(O)NR^cR^d, -NR^aS(O)₂R^d, or -C(O)R^c; or

R³ and R⁴ are taken together along with the carbon atoms to which they are attached to form a carbocyclic ring of formula -(CH₂)_i- or a heterocyclic ring of formula -(CH₂)_k-Q (CH₂)_k wherein Q is oxygen, sulfur, or NR⁰-; in which i is 3, 4, 5, or 6; k is 0,

1, 2, 3, 4, or 5; and 1 is 0, 1, 2, 3, 4, or 5; and wherein said carbocyclic ring and said heterocyclic ring are each is substituted with zero to four substituents independently selected from -(C₁-C₄)alkyl, -OR^b, oxo, -CN, phenyl, or -NR^aR^g;

R⁵ is hydroxy, -O(C₁-C₆)alkyl, -OC(O)R^f, fluorine, or -C(O)OR^c; or

R⁴-and-R⁵-are taken-together along with the carbon atoms to which-they are attached to form a heterocyclic ring selected from the group consisting of CR⁶-CR⁶-NH-, N-CR⁶-NH, CR⁶-CR⁶-O, CR⁶-CR⁶-S, CR⁶-N-NH, and CR⁶-CR⁶-CR⁶-N;

 R^a for each occurrence is independently hydrogen, or -(C_1 - C_6)alkyl substituted with zero or one -(C_3 - C_6)cycloalkyl or methoxy;

R^b for each occurence is independently hydrogen, -(C₁-C₁₂)alkyl substituted with zero to three substituents independently selected from Group V, aryl, heteroaryl, -(C₃-C₁₀)cycloalkyl, heteroayelealkyl, -C(O)NR^oR^d, or -C(O)R^f;

 R^c and R^d for each occurence are each independently hydrogen, - (C_1-C_{12}) alkyl substituted with zero to three substituents independently selected from Group VI, - (C_2-C_{12}) alkenyl, - (C_2-C_{12}) alkynyl, aryl, heteroaryl or, - (C_3-C_{10}) cycloalkyl, er heterocycloalkyl;

provided that when R^4 is the moiety $-SR^c$, $-S(O)R^c$, or $-S(O)_2R^c$, R^c is other than hydrogen; or

R⁶-and R^d-are taken together along with the atom(s) to which they are attached to form a 3 10 membered beterocylic ring which may optionally contain a second hoterogroup selected from oxygen, NR⁶, or sulfur; and wherein said heterocyclic ring is substituted with zero to four substituents independently selected from (C₁-C₄)alkyl, OR^b, oxe, CN, phenyl, or NR^aR^g;

 R^6 -for each occurence is hydrogen, CN, (C₁-C₁₀)alkyl-substituted with zero-to three substituents—independently—selected—from Group V,—(C₂-C₁₀)alkenyl,—(C₃-C₁₀)alkenyl, aryl, heteroaryl,—C(O) R^f ,—C(O) R^f ,—C(O) R^R , or—S(O) R^f ;

 R^f for each occurrence is independently -(C_1 - C_{10}) alkyl substituted with zero to three substituents independently selected from Group VI, -(C_2 - C_{12}) alkenyl, -(C_3 - C_{10}) cycloalkyl, or aryl[[,]] heteroaryl, or heterocycloalkyl;

 R^g for each occurrence is independently hydrogen, -(C_1 - C_6)alkyl, -(C_2 - C_6)alkenyl, aryl, -C(O) R^f , -C(O) R^f , -C(O) R^g , -S(O)₂ R^f , or -(C_3 - C_8)cycloalkyl;

Group V is halogen, -CF₃, -OCF₃, -OH, oxo, -(C₁-C₆)alkoxy, -CN, aryl, heteroaryl, -(C₃-C₁₀)cycloalkyl, heterocycloalkyl, -SR^f, -S(O)₂R^f, -S(O)₂R^f, -S(O)₂NR^aR^f, -NR^aR^g, or -C(O)NR^aR^f;

Group VI is halogen, hydroxy, oxo, -(C₁-C₆)alkoxy, aryl, heteroaryl, -(C₃-C₈)cycloalkyl, heterocycloalkyl, -CN, or -OCF₃;

provided that when R^4 is $-(C_1-C_{12})$ alkyl substituted with zero to three substituents independently selected from Group V, wherein said Group V substituent is oxo, said oxo group is substituted on a carbon atom other than the C_1 carbon atom in $-(C_1-C_{12})$ alkyl;

aryl for each occurence is independently phenyl or naphthyl substituted with zero to four substituents independently selected from halogen, $-(C_1-C_6)$ alkyl, -CN, $-SR^f$, $-S(O)_2R^f$, $-(C_3-C_6)$ cycloalkyl, $-S(O)_2NR^aR^f$, $-NR^aR^g$, $-C(O)NR^aR^f$, $-OR^b$, - perfluoro- $-(C_1-C_4)$ alkyl, or $-COOR^f$;

provided that when said substituent(s) on aryl are $-SR^f$, $-S(O)_2R^f$, $-S(O)_2R^g$, $-S(O)_2NR^aR^f$, $-NR^aR^g$, $-C(O)NR^aR^f$, $-OR^b$, or $-COOR^f$, said substituents R^b , R^f , and R^g , are other than aryl or heteroaryl;

heteroaryl for each occurence is independently a 5, 6, 7, 8, or 9-membered monocyclic or bicyclic ring having from one to three-heteroatems selected from O, N, or S;

wherein in said bieyelic ring, a monosyelic heteroaryl ring is fused to a benzene ring or to another heteroaryl ring, and having zero to three substituents-independently selected from halogen, (C₄-C₄)alkyl, CF₃, OR^b, NR^bR^g, or COOR^f;

provided that when said substituent(s) on-heteroaryl—are NR^aR^g; OR^b, or COOR said substituents R^b, R^f, and R^g, are other than aryl or heteroaryl;

heterocycloalkyl for each occurence is independently a 5, 6, 7, 8, or 9 membered monocyclic or bicyclic cycloalkyl ring having from one to three heteroatoms selected from exygen, -NR⁹, or sulfur, and having zero to four-substituents independently selected from -(C₁-C₄)alkyl, OR^b, exo, -CN, phenyl, or -NR^aR^g; and

X is

with the provise that when W-is-oxygen, sulfur, SO, or SO2, then X is not represented by

Claim 2(original): A compound according to claim 1 wherein W is oxygen.

Claim 3(currently amended): A compound according to claim 1 wherein:

 R^1 is located at the 3-position and R^2 is located at the 5-position, wherein R^1 and R^2 are each independently hydrogen, -(C_1 - C_6)alkyl, halogen, or -CN;

R³ is hydrogen, -(C₁-C₄)alkyl or halogen;

 R^4 is --(C₁-C₁₀)alkyl substituted with zero to three substituents independently selected from fluoro, hydroxy, oxo, aryl, heteroaryl, or -(C₃-C₈)cycloalkyl, er heterocycloalkyl, -S(O)₂NR^eR^d, -C(O)NR^eR^d, -S(O)₂R^e, -(C₃-C₈)cycloalkyl, heterocycloalkyl, -C(O)R^e, -OR^b, -SR^e, -S(O)R^e, -NR^aC(O)R^d, -NR^aC(O)NR^eR^d, or -NR^aS(O)₂R^d; or

R^e and R^d are taken together along with the atom(s) to which they are attached to form a 3-10 membered heterocylic ring which may optionally contain a second heterogroup selected from exygen, NR⁶, or sulfur, and wherein the heterocyclic ring is substituted with zero to four substituents independently selected from -(C₁-C₄)alkyl, OR^b, exe, CN, phenyl, or NR⁶R^g, or

 R^3 and R^4 are taken together along with the carbon atoms to which they are attached to form a carbocyclic ring of formula - $(CH_2)_i$ - or a heterocyclic ring of formula - $(CH_2)_k$ -Q $(CH_2)_i$ - wherein Q is -O-, S or NR^a -; in which i is 3, 4, 5 or 6; k is 0, 1, 2, 3, 4 or 5; and 1 is 0, 1, 2, 3, 4 or 5; and wherein said carbocyclic ring and said heterocyclic ring are is each substituted with zero to four substituents independently selected from - (C_1-C_4) alkyl, $-OR^b$, oxo, -CN, phenyl, or -NR^aR^g;

provided that when R^4 is $-(C_1-C_{10})$ alkyl substituted with zero to three substituents, said oxo group is substituted on a carbon atom other than the C_1 carbon atom in $-(C_1-C_{10})$ alkyl;

R⁵ is -OH, -OC(O)R^f, -C(O)OR^c, or -F; wherein R^f is-(C₁-C₁₀)alkyl substituted with zero to three substituents independently selected from Group VI;

R⁶ is hydrogen, halogen or -(C₁-C₄)alkyl; and

X is

Claim 4(currently amended): A compound according to claim 3 wherein

R¹ and R² are each independently hydrogen, -(C₁-C₆)alkyl, halogen, or -CN;

R³ is hydrogen;

 R^4 is $-(C_1-C_{10})$ alkyl substituted with zero to three substituents independently selected from fluoro, hydroxy, oxo, aryl, heteroaryl, or $-(C_3-C_8)$ cycloalkyl, erheterocycloalkyl, $-S(O)_2NR^cR^d$, $-C(O)NR^cR^d$, $-S(O)_2R^c$, $-(C_3-C_8)$ cycloalkyl, heterocycloalkyl, $-C(O)R^c$, $-OR^b$, $-SR^c$, $-S(O)R^c$, $-NR^aC(O)R^d$, $-NR^aC(O)NR^cR^d$, or $-NR^aS(O)_2R^d$; er

R°-and Rd-are taken together along with the atom(s) to which they are attached to form a 3-10 membered heterocylic ring which may optionally contain a second heterogroup selected from exygen, -NR°-, or sulfur; and wherein the heterocyclic ring is substituted with zero to four substituents independently selected from -(C₄-C₄)alkyl, -ORb, exo, -CN, phenyl, or -NR°R;

 R^5 is -OH, fluoro, or -OC(O) R^f wherein R^f is-(C₁-C₁₀)alkyl substituted with zero to three substituents independently selected from Group VI; and R^6 is hydrogen.

Claim 5(currently amended): A compound according to claim 4 wherein R¹ and R² are both methyl, bromo, or chloro;

 R^4 is $-(C_1-C_{10})$ alkyl, substituted with zero to two substituents independently selected from fluoro, hydroxy, oxo, aryl, heteroaryl, or $-(C_3-C_8)$ cycloalkyl, or heterocycloalkyl, $-S(O)_2NR^cR^d$, $-C(O)NR^cR^d$, $-S(O)_2R^c$, $-(C_3-C_8)$ cycloalkyl, heterocycloalkyl, $-C(O)R^c$, $-OR^b$, $-SR^c$, $-S(O)R^c$, $-NR^aC(O)R^d$, $-NR^aC(O)NR^cR^d$, or $-NR^aS(O)_2R^d$; or

Re and Re are taken together along with the atom(s) to which they are attached to form a 3-10 membered heterocylic ring which may optionally contain a second heterogroup selected from exygen, NRe, or sulfur, and wherein the heterocyclic ring is substituted with zero to four substituents independently selected from (C₁-C₄)alkyl, ORb, exo, CN, phonyl, or NR*R*; and

 R^5 is -OH.

Claim 6(currently amended): A compound selected from the group consisting of:

2-[3,5-dichloro-4-(4-hydroxy-3-isopropyl-phenoxy)-benzyl]-

[1,2,4]oxadiazolidine-3,5-dione;

2-[4-(3-isopropyl-4-methoxy-phenoxy)-3,5-dimethyl-benzyl]-

[1,2,4]oxadiazolidine-3,5-dione; and;

2-[4-(4-hydroxy-3-isopropyl-phenoxy)-3,5-dimethyl-benzyl]-

[1,2,4]oxadiazolidine-3,5-dione; and

5 [4 (4 hydroxy-3 isopropyl phenoxy)-3,5-dimethyl-phenyl]-2,4-dihydro-[1,2,4]triazol 3 one, the stereoisomers and prodrugs thereof, and the pharmaceutically acceptable salts of said compounds, stereoisomers, and prodrugs.

Claims 7-17(previously cancelled)

Claim 18 (original): A pharmaceutical composition comprising a compound of Formula (I), a stereoisomer or prodrug thereof, or a pharmaceutically acceptable salt of said compound, stereoisomer or prodrug, as defined in claim 1.

Claims 19-25 (previously cancelled)
Claims 26 and 27 (cancelled)