PELP1 - wykład 9

Pomiary napięć stałych i oporów

dr inż. Łukasz Maślikowski

Instytut Systemów Elektronicznych Politechnika Warszawska

28 kwietnia 2021

Spis treści

1 Pomiar napięć stałych

2 Pomiar oporu

Bezpośredni pomiar SEM źródła rzeczywistego

- Obciążenie źródła woltomierzem powoduje błąd systematyczny pomiaru napięcia E_T , zwany błędem metody pobrania
- $\Delta(E_T) \triangleq U E_T = \Delta E_T = -IR_W$
- $\delta(E_T) = \frac{-IR_W}{I(R_W + R_V)}$ $(\approx -\frac{R_W}{R_V} \text{ dla } R_W \ll R_V)$
- składowe niepewności: U, R_W , R_V bo $E_T = U(1 + \frac{R_W}{R_V})$

Ł. Maślikowski (ISE) PELP1 - wykład 9 3 / 11

Dobroć woltomierza

- współczynnik dobroci woltomierza κ to stosunek oporu wewnętrznego R_V do napięcia zakresowego $V_{\rm max}$
- $lue{}$ miernik LM-3 ma współczynnik $\kappa=1\,\mathrm{k}\Omega/\mathrm{V}$
- w miernikach elektromechanicznych zmiana zakresu pomiarowego polega na dodaniu do R_V szeregowego oporu R i powoduje zmianę oporu wewnętrznego na $R_V'=R_V+R$

$$V_{\rm max} = V_{\rm max}' \frac{R_V}{R_V + R} = V_{\rm max}' \frac{R_V}{R_V'} \qquad \Rightarrow \qquad \frac{R_V'}{V_{\rm max}'} = \frac{R_V}{V_{\rm max}} = \kappa$$

Kompensacyjny pomiar SEM źródła rzeczywistego

- wskaźnik zera to czuły woltomierz (amperomierz mógłby się zniszczyć)
- należy nastawić taką wartość E_r aby wskaźnik zera wskazał równowagę ($U_{\rm wsk} \approx 0 \to I \approx 0$)
- lacksquare gdy Ipprox 0, spadki napięć na R_W i $R_{
 m wsk}$ są pomijalne i $Upprox E_T$
- składowe niepewności: *U*, nieczułość wskaźnika zera

Ł. Maślikowski (ISE) PELP1 - wykład 9 5 / 11

Metoda podstawienia

- \blacksquare R_0 to precyzyjny opornik regulowany (dekadowy)
- lacktriangle obserwujemy wskazanie U woltomierza przy podłączonym oporze R_x
- lacktriangle zamiast R_x podłączamy opornik regulowany i ustawiamy taką wartość R_0 , aby wskazanie woltomierza również wynosiło U
- lacktriangle ani opory wewnętrzne źródła i woltomierza ani dokładność woltomierza nie mają wpływu na dokładność pomiaru R_x
- składowe niepewności: R_0 , zdolność rozdzielcza woltomierza

Ł. Maślikowski (ISE) PELP1 - wykład 9 6/11

Metoda techniczna z poprawnym pomiarem prądu

- powstaje dodatni systematyczny błąd pomiaru oporu: $R_M = \frac{U_V}{I} = \frac{U+U_A}{I} = R_x + R_A \quad \Rightarrow \quad \Delta(R_x) = R_M R_x = R_A$
- lacktriangle wymagana znajomość oporu amperomierza R_A
- \blacksquare błąd systematyczny względny $\delta(R_x) = \frac{R_A}{R_x}$ jest pomijalny gdy $R_A \ll R_x$
- \blacksquare składowe niepewności: U_V , I

Metoda techniczna z poprawnym pomiarem napięcia

powstaje ujemny systematyczny błąd pomiaru oporu:

$$G_M = \frac{I_A}{U} = \frac{I + I_V}{U} = G_x + G_V \quad \Rightarrow \quad \Delta(G_x) = G_M - G_x = G_V$$

- lacksquare wymagana znajomość oporu woltomierza R_V
- błąd systematyczny względny $\delta(G_x)=\frac{G_V}{G_x}=\frac{R_x}{R_V}$ jest pomijalny gdy $G_V\ll G_x$, czyli $R_V\gg R_x$,
- \blacksquare składowe niepewności: I_A , U

Omomierz cyfrowy - opory przewodów

- wymuszamy prąd i mierzymy napięcie
- \blacksquare korygujemy wpływ znanego oporu wewnętrznego woltomierza R_V $R_x = \frac{U}{I} = \frac{U}{J-U/R_V}$
- lacktriangle dla małych oporów istotny jest problem oporu przewodów ($pprox 0,1~\Omega$)
- zwarcie przewodów i wciśnięcie NULL spowoduje pomiar i zapamiętanie poprawki, uwzględnianej w wynikach kolejnych pomiarów
- lacksquare składowe niepewności: J, U_V

□ ▶ ◀♬ ▶ ◀ 볼 ▶ ◀ 볼 ▶ ♡ 역 ල 9 / 11

Omomierz cyfrowy - metoda czteroprzewodowa

- używamy dodatkowej pary przewodów
- \blacksquare jedną parą płynie cały prąd J i tam występują istotne spadki napięcia
- \blacksquare druga para podłączona jedynie do woltomierza i płynie nią znikomy prąd (ze względu na duży opór R_V)

Podobny sposób stosuje się w zasilaczach do dokładnej stabilizacji napięcia na zaciskach zasilanego obwodu.

mostek Wheatstone'a - metoda zerowa porównawcza

- lacksquare mostek jest w stanie równowagi gdy I=0 czyli $U_1=U_2$
- $lue{}$ wystąpi ona gdy w obu gałęziach stosunek podziału napięcia U dzielnikiem napięciowym jest taki sam

$$U_1 = U_2 \quad \Rightarrow \quad U \frac{R_2}{R_x + R_2} = U \frac{R_1}{R_0 + R_1} \quad \Rightarrow \quad R_x R_1 = R_0 R_2$$

- lacksquare gdy ustawimy R_0 zapewniające równowagę, $R_x=rac{R_0R_2}{R_1}$
- składowe niepewności: R_0 , R_1 , R_2 , nieczułość wskaźnika zera