Department of Computer Applications 23MX11 - MFCS-TWO Phase Simplex Method Steps involved:

- 1. Modify the constraints so that the right-hand side of each constraint is nonnegative.
- 2. Identify each constraint with ≥ or = constraint, add an artificial variable to each constraint.
- 3. Convert each inequality constraint to the standard form. If constraint is ≤ constraint, then add a slack variable. If constraint is ≥ constraint, subtract an excess variable.

[The above steps are very similar to BIG M Method]

4. For now, ignore the original LP's objective function. Instead solve an LP whose objective function is

Minimize W = (sum of all the artificial variables).

This is called the Phase I LP. The act of solving the Phase I LP will force the artificial variables to be zero. [Eliminate the artificial variable in the objective function row [W] by converting it to 0, before starting the simplex method for the above LPP]

Because each a_i [artificial variables] ≥ 0 , solving the Phase I LP will result in one of the following cases:

Case 1: If the optimal value of W is greater than zero, then the original LP has no feasible solution.

Case 2: If the optimal value of W is equal to zero, and no artificial variables are in the optimal Phase I basis; then drop all columns in the optimal Phase I tableau that corresponds to the artificial variables.

We now combine the original objective function with the constraints from the optimal Phase I tableau.

This yields the **Phase II LP**. The optimal solution to the Phase II LP is the optimal solution to the original LP.

Sample Problem

Maximize Z = 4x+5y

Subject to: $2x+3y \le 6$

 $3x+y \ge 3$

Covert the given LPP to standard form as shown below [adding surplus, slack and artificial variables – following the steps discussed]

Maximize Z = 4x+5y

Subject to:
$$2x+3y+s1 = 6$$

 $3x+y -s2+a=3$

s1 and s2 are the slack variables; "a" is the artificial variable.

Now, ignore the original LP's objective function. Instead solve an LP whose objective function

Then, Phase I LP will be as follows

Minimize W = a
Subject to:
$$2x+3y+s1 = 6$$

 $3x+y -s2+a=3$

Initial Simplex table for the Minimization problem is

	X	У	s1	s2	а	RHS	Ratio
s1	2	3	1	0	0	6	
а	3	1	0	-1	1	3	
W	0	0	0	0	1	0	

Now, eliminate the artificial variable in the objective function W row by converting it into 0. The resultant table is as given below. Solve this using the usual simplex method.

New W row =
$$\begin{bmatrix} 0 & 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$

-(-1) $\begin{bmatrix} 3 & 1 & 0 & -1 & 1 & 3 \end{bmatrix}$
= $\begin{bmatrix} 3 & 1 & 0 & -1 & 0 & 3 \end{bmatrix}$

The revised table for Phase I LPP is

	Х	у	s1	s2	а	RHS	Ratio
s1	2	3	1	0	0	6	
а	3	1	0	-1	1	3	
W	3	1	0	-1	0	3	

Apply simplex table for this as usual. Identify pivotal column by choosing the most Positive Coefficient – corresponds to x column and then pivotal element.

Pivotal Element

Most Positive Coefficient

New "a" row

[3 1 0 -1 1 3] ÷ 3
=
$$\begin{bmatrix} 1 & \frac{1}{3} & 0 & \frac{-1}{3} & \frac{1}{3} & 1 \end{bmatrix}$$
 [x -row]

New "s1" row

$$[2 \ 3 \ 1 \ 0 \ 0 \ 6]$$

$$-(2) \left[1 \ \frac{1}{3} \ 0 \ \frac{-1}{3} \ \frac{1}{3} \ 1\right]$$

$$= \left[0 \ \frac{7}{3} \ 1 \ \frac{2}{3} \ \frac{-2}{3} \ 4\right]$$

New "W" row

$$= [3 \quad 1 \quad 0 \quad -1 \quad 0 \quad 3]$$

$$-(3)[1 \quad \frac{1}{3} \quad 0 \quad \frac{-1}{3} \quad \frac{1}{3} \quad 1]$$

$$= [0 \quad 0 \quad 0 \quad 0 \quad -1 \quad 0]$$

Simplex table after this,

	Х	У	s1	s2	а	RHS	Ratio
s1	0	$\frac{7}{2}$	1	$\frac{2}{2}$	$\frac{-2}{2}$	4	
X	1	$\frac{3}{1}$	0	$\frac{3}{3}$	$\frac{3}{1}$	1	
W	0	0	0	0	-1	0	

Since there is no positive number in the objective row, STOP. The optimal basis s1 = 4 and x = 1. The optimal objective value W = 0 and "a" i not in the optimal Phase I basis. Therefore, it is Case 2

Hence, now generate Phase II initial tableau by changing the objective function row into the original objective function $(Z = 4 \times + 5 \text{ y})$. Also, drop the artificial column.

	X	у	s1	s2	RHS	Ratio
s1	0	$\frac{7}{3}$	1	$\frac{2}{3}$	4	
X	1	$\frac{1}{3}$	0	$\frac{-1}{3}$	1	
Z	-4	-5	0	0	0	

Now, apply the Simplex method for this objective function and find the optimal solution.

	X	y	s1	s2	RHS	Ratio
s1	0	7	1	2	4	12
		3		3		7
X	1	1	0	- 1	1	3
		3		3	•	
Z	-4	-5	0	0	0	

New "s1" row

New "x" row

$$\begin{bmatrix} 1 & \frac{1}{3} & 0 & \frac{-1}{3} & 1 \end{bmatrix}$$

$$-(\frac{1}{3}) \begin{bmatrix} 0 & 1 & \frac{3}{7} & \frac{2}{7} & \frac{12}{7} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & \frac{-1}{7} & \frac{-3}{7} & \frac{3}{7} \end{bmatrix}$$

New "Z" row
$$= \begin{bmatrix} -4 & -5 & 0 & 0 & 0 \end{bmatrix}$$

$$-(5) \begin{bmatrix} 0 & 1 & \frac{3}{7} & \frac{2}{7} & \frac{12}{7} \end{bmatrix}$$

$$= \begin{bmatrix} -4 & 0 & \frac{15}{7} & \frac{10}{7} & \frac{60}{7} \end{bmatrix}$$

	X	у	s1	s2	RHS	Ratio
V	0	1	3	2	12	
,			$\frac{\overline{7}}{7}$	$\frac{\overline{7}}{7}$	7	
X	1	0	<u>-1</u>	<u>-3</u>	3	
X			7	7	7	
Z	-4	0	15	10	60	
_			7	7	7	

No changes required in the "x" and "y" rows

Changes in the Z row only

New "Z" row

$$= \begin{bmatrix} -4 & 0 & \frac{15}{7} & \frac{10}{7} & \frac{60}{7} \end{bmatrix}$$

$$-(1) \begin{bmatrix} 1 & 0 & \frac{-1}{7} & \frac{-3}{7} & \frac{3}{7} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & \frac{11}{7} & \frac{-2}{7} & \frac{72}{7} \end{bmatrix}$$

Current simplex table after this iteration is

	X	y	s1	s2	RHS	Ratio
V	0	1	3	2	12	
,			$\frac{\overline{7}}{7}$	$\frac{\overline{7}}{7}$	7	
Y	1	0	-1	-3	3	
			7	7	$\overline{7}$	
7	0	0	11	-2	72	
_		-	7	7	7	

New y row =
$$\begin{bmatrix} 0 & 1 & \frac{3}{7} & \frac{2}{7} & \frac{12}{7} \end{bmatrix} \times \frac{7}{2}$$

= $\begin{bmatrix} 0 & \frac{7}{2} & \frac{3}{2} & 1 & 6 \end{bmatrix}$ [s2 - row]

New x row =
$$\begin{bmatrix} 1 & 0 & \frac{-1}{7} & \frac{-3}{7} & \frac{3}{7} \end{bmatrix}$$

 $-(\frac{-3}{7}) \begin{bmatrix} 0 & \frac{7}{2} & \frac{3}{2} & 1 & 6 \end{bmatrix}$
 $= \begin{bmatrix} 1 & \frac{3}{2} & \frac{1}{2} & 0 & 3 \end{bmatrix}$

New Z row =
$$\begin{bmatrix} 0 & 0 & \frac{11}{7} & \frac{-2}{7} & \frac{72}{7} \end{bmatrix}$$

 $-(\frac{-2}{7}) \begin{bmatrix} 0 & \frac{7}{2} & \frac{3}{2} & 1 & 6 \end{bmatrix}$

	X	У	s1	s2	RHS
s2	0	7	3	1	6
		$\overline{2}$	$\overline{2}$		
X	1	3	1	0	3
		$\frac{1}{2}$	2		
Z	0	1	2	0	12

There is no negative coefficient in the Z row. Stop the iteration. Optimal solution obtained for Z as follows

$$Z = 12$$
; $x = 3$ and $y = 0$; $s2 = 6$

Any Questions