

Provas de ingresso específicas para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica,

Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM

ENGENHARIA QUÍMICA E BIOLÓGICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

SOLUÇÃO DA PROVA MODELO 2016

Apenas são apresentadas as soluções. Respostas que exijam demonstrações ou desenvolvimento não são apresentadas.

Grupo 1

- **1.** (C)
- **2.** (C)
- **3.** (D)

Grupo 2

a) Recorrendo à regra de Ruffini

$$(x^3 - 3x^2 - 9x + 27) = (x - 3)(x^2 - 9)$$

logo os zeros são -3 e 3 (3 com multiplicidade 2).

b)

$$p(x)$$
 é crescente em:] $-\infty$, -1] \cup [3, $+\infty$ [

$$p(x)$$
 é decrescente em: $[-1,3]$

Grupo 3

- 1. Gráfico C
- **2.** (C)
- **3.** (C)

Grupo 4

- a) entre as duas cargas a igual distância de cada carga
- b) $F = 2,25 \times 10^9 \text{ N}$
- c) $F = 5,625 \times 10^9 \,\text{N}$

Grupo 5

- 1. (C) Quando átomos ou moléculas perdem ou ganham eletrões, transformam-se em iões.
- 2. (B) Os metais deste grupo têm propriedades semelhantes.
- 3. (B) A função da água é dissolver o soluto.
- 4. (D) Uma cetona.
- 5. (E) Pontos de ebulição.

Grupo 6

- a) $2 \text{ NaN}_3(s) \rightarrow 3 \text{ N}_2(g) + 2 \text{ Na}(s)$ (A)
 - $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$ (B)
- b) 1 mole de moléculas de N2 reage com 3 moles de moléculas de H2 para formar 2 moles de NH3.
- c) Reação (A).
- d) São formadas 12 moles de N₂.

Grupo 7

(Desenvolvimento)