

기계요소설계1

제1장 기계설계 기초

- 1. 하중/응력/변형률
 - (1) 하중 (load)
 - 1) 정하중(=사하중): 물체에 작용하는 하중의 크기와 방향이 시간에따라 변하지 않는 하중
 - ① 수직하중(=법선하중): 단면에 대해 수직하게 작용 \sim 인장하중 (P_t) , 압축하중 (P_c)
 - ② 전단하중(=접선하중): 단면에 대하여 평행하게 작용
 - ③ 비틀림하중: 전단하중의 일종
 - ④ 굽힘하중: 수직하중의 일종

1. 하중/응력/변형률

- (1) 하중 (load)
 - 2) 동하중(=활하중): 물체에 작용하는 하중의 크기와 방향이 시간에 따라 변하는 하중
 - ① 반복하중: 하중의 크기와 방향이 일정하게 반복하는 하중 (=편진하중)
 - ② 교번하중: 하중의 크기와 방향이 주기적으로 변화하는 하중 즉, 인장력과 압축력이 주기적으로 반복 → 파괴를 일으키기 가장쉽다
 - ③ 변동하중: 진폭과 주기가 불규칙하게 변하는 하중
 - ④ 충격하중:짧은 시간에 갑자기 작용하는 하중
 - ⑤ 이동하중: 물체 위에서 이동하면서 작용하는 하중

1. 하중/응력/변형률

- (2) 응력(stress) $: \frac{P}{A}$ (N/㎡, Pa, kg_f /㎡)
 - ~ 단위 면적(A)당 작용하는 힘(P) 즉, 힘의세기

1) 수직응력 (σ)

- ① 인장응력 : $\sigma_t = \frac{P_t}{A}$
- ② 압축응력 : $\sigma_c = \frac{P_c}{A}$
- 2) 전단응력 (τ) : $\tau = \frac{P_S}{A}$

여기서 A: 파괴 가상면적

- (3) 변형률(strain, 변형도)
 - ~ 변형전의 치수에 대한 변형량의 비
 - 1) 종변형률(=세로변형률) : ε

$$\varepsilon = \frac{\lambda}{I}$$

여기서 λ : 종변형량 (큰길이-작은길이)

1. 하중/응력/변형률

2) 횡변형률(=가로변형률) : ε '

$$oldsymbol{arepsilon}' = rac{oldsymbol{\delta}}{d}$$

여기서 δ : 횡변형량 (큰직경-작은직경)

(4) 응력 변형률 선도

~ 기계 구조물에서 가장 널리 사용하는 연강의 인장시험 결과.

③ 잔류응력: 소성영역까지 변형시킨 후 하중을 제거해도 변형된 물체에 계속해서 남아있는 응력

- ④ 표면에 남아있는 인장 잔류응력은 피로수명 파괴 강도를 저하시킨다.
- B 금속 상(phase)의 변화나 물체내의 온도 구배에 영향을 받는다.
- © 풀림처리 또는 소성 변형을 추가하는 방법으로 감소 또는 제거시킬 수 있다.
- ① 실온에서도 충분한 시간을 두고 방치하면 줄일 수 있다.

- (5) 훅의 법칙 (Hook's las)
- ~ 탄성한도 내에서 응력과 변형률은 비례한다.

("연강"의 경우, 비례한도)

1) 수직응력 (σ) 인 경우 : $\sigma = \mathbf{E} \cdot \epsilon$

또한,
$$\sigma = \frac{P}{A} = E \cdot \frac{\lambda}{L}$$
 에서

$$\lambda = \frac{PL}{AE}$$

- 2) 전단응력 (τ) 경우 : $\tau = G \cdot \gamma$
- (6) 푸아송비 : μ 또는 ν

$$\mu(=\nu) = \frac{\varepsilon'}{\varepsilon} = \frac{1}{m} \le 0.5$$

(7) 허용응력 (σ_a) 과 안전률 (S)

1)허용응력 (σ_a) : 부품설계시 사용되는 응력의 최대 허용치

극한강도 (σ_u) > 항복점강도 (σ_{yp}) >

탄성한도 (σ_e) > 허용응력 (σ_a) \geq 사용응력 (σ_w)

2) 안전률(=안전계수 : S)

안전률 S =
$$\frac{$$
 기준강도 $}{$ 허용응력 (σ_a) > 1

여기서, 기준강도 선정: 사용상태에서의 부식, 하중의 종류나 성질,

부재의 형상, 온도의 영향(열응력) 재료의 성질 및 신뢰성, 수명,

충격등을 고려

① 항복점: 정하중이 작용하는 연강과 같은 연성 재료일때

② 극한강도: 정하중이 작용하는 주철과 같은 취성 재료일 때

③ 피로한도: 반복하중 작용시

④ 크리프한도: 고온에서 정하중이 작용할 때

⑤ 좌굴응력: 좌굴이 예상되는 긴 기둥(=장주)을 사용할 때

"강의 안전률(S)" 정하중 S=3

반복하중 S=5

교번하중 S=8

충격하중 S=12

① 항복점: 정하중이 작용하는 연강과 같은 연성 재료일때

② 극한강도: 정하중이 작용하는 주철과 같은 취성 재료일 때

③ 피로한도: 반복하중 작용시

④ 크리프한도: 고온에서 정하중이 작용할 때

⑤ 좌굴응력: 좌굴이 예상되는 긴 기둥(=장주)을 사용할 때

"강의 안전률(S)" 정하중 S=3

반복하중 S=5

교번하중 S=8

충격하중 S=12

(8) 응력집중

; 단면현상이 변하는 곳에서 응력이 집중되어 나타나는 현상 Ex) 노치, 구멍(hole), 키홈, 단(step), 등을 가공할 때

① 응력집중계수 :
$$lpha_k = rac{\sigma_{max}}{\sigma_{av}(=\sigma_n)}$$

 σ_{max} : 최대응력 $\sigma_{av}(=\sigma_n)$

 \rightarrow 응력집중계수 (α_k) 는 재료의 크기, 재질에는 관계가 없고, 노치의 현상 작용하는 하중의 종류에 따라 달라진다.

- ② 응력집중 경감법
 - ② 필렛(fillet)부의 곡률 반지름을 크게하거나 단면의 변화가 완만하게 변화하도록 테이퍼 지게한다.
 - B 축단부 가까이에 2~3단의 단부를 설치하여 응력의 흐름을 완만하게 한다.
 - © 단면변화 부분에 보강재를 설치하거나 숏피닝, 롤러, 압연처리 및 열처리를 한다.

- 4. 재료의 정역학
- ① 조합단면 ---직렬조합 단면 ---병렬조합 단면
- ④ 직렬조합단면

$$\sigma_1 = \frac{P}{A_1}$$

$$\sigma_2 = \frac{P}{A_2}$$

$$\lambda_1 = \frac{PL_1}{A_1E}$$

$$\lambda_2 = \frac{PL_2}{A_2E}$$

4. 재료의 정역학

® 병렬조합단면

$$\sigma_1 = \frac{PE_1}{A_1E_1 + A_2E_2}$$

$$\sigma_2 = \frac{PE_2}{A_1E_1 + A_2E_2}$$

변형률
$$\varepsilon = \varepsilon_1 = \varepsilon_2 = \frac{P}{A_1 E_1 + A_2 E_2}$$

변형량
$$\lambda = \varepsilon l = \frac{Pl}{A_1E_1 + A_2E_2}$$

② 열응력 🕶

$$\sigma = E \propto \Delta t$$

$$\varepsilon = \propto \Delta t$$

$$\lambda = \propto \Delta t l$$

$$P = E \propto \Delta t A$$

③ 수직응력(σ)에 의한 탄성에너지 (U)

$$U = \frac{1}{2}P\lambda = \frac{1}{2}P\frac{Pl}{AE} = \frac{P^2l}{2AE}$$

④ 내압을 받는 얇은 원통 🚧

원주방향응력
$$\sigma_1 = \frac{Pd}{2t}$$

세로방향(=축방향) 응력
$$\sigma_2 = \frac{Pd}{4t}$$

5. 공차와 끼워맞춤

① IT공차 등급의 적용 🗱

용도	구멍	축	
게이지공차	IT01~IT05	IT01~IT04	
끼워맞춤 기계부품 공차	IT06~IT10	IT05~IT09	
끼워맞춤이 없는 부분공차	IT11~IT18	IT10~IT18	

② 끼워맞춤 🕶

- A 헐거운 끼워맞춤: 틈새가 존재
- 1) 최대틈새:

구명의 최대치수-축의 최소치수

2) 최소틈새:

구멍의 최소치수-축의 최대치수

② 끼워맞춤

- ⓑ 억지끼워맞춤: 죔새가 존재
- 1) 최대죔새:

축의 최대치수-구멍의 최소치수

2) 최소죔새:

축의 최소치수 - 구멍의 최대치수

© 중간끼워맞춤: 틈새와 죔새가 모두 존재

- ③ 기하공차 🖊
 - ④ 도면에 지정되는 대상물의 모양/자세/위치의 편차 흔들림의 허용값 등을 표시한다.
 - B 특별한 지시가 없는 한 치수공차를 규제하지 않는다.
 - ② 기능상의 요구 호환성등에 의거하여 필요한 곳에만 지정한다.

* 기하공차의 종류와 기호 🗰

공차 종류	특성 종류	기호	데이텀 지시여부	참조
모양공차 (Form)	진직도(Straightness)		없음	18.1
	평면도(Flatness)		없음	18.2
	진원도(Roundness)	0	없음	18.3
	원통도(Cylindricity)	Ø	없음	18.4
	선의 윤곽도(Profile of line)		없음	18.5
	면의 윤곽도(Profile of surface)		없음	18.7
자세공차 (Orientation)	평행도(Parallelism)	//	필요	18.9
	직각도(Perpendicularity)	1	필요	18.10
	경사도(Angularity)		필요	18.11
	선의 윤곽도(Profile of line)	0	필요	
	면의 윤곽도(Profile of surface)	0	필요	
위치공차 (Location)	위치도(Position)	0	필요 또는 없음	18.12
	동심도(또는 동축도)	0	필요	18.13
	대칭도(Symmetry)	=	필요	18.14
	선의 윤곽도(Profile of line)		필요	18.6
	면의 윤곽도(Profile of surface)		붿요	18.8
흔들림 (Run-out)	원주 흔들림(Circular run-out)	Я	필요	18.15
	은 흔들림(Total run-out)	29	필요	18.16

④ 도면의 기호표시 🚧

- 지름:ø → 구의 지름:Sø
- 반지름: R → 구의 반지름: SR
- 정사각형의 변:□
- 이론적으로 정확한 치수:
- 두께:t
- 45°모따(떼)기: C
- 원호의 길이 : ^
- 참고치수:()

⑤ 강재기호

⚠ SS400 : 일반구조용 압연강재 / 최저인장강도= 400N/㎡ (=Mpa)

® SWC520C: 용접구조용 압연강재 / 최저인장강도 = 520N/㎡ (=Mpa)/ C종

© SCM3: 크롬-몰리브덴 강재 / 3종

⑩ SF400 : 탄소강 단조품 / 최저인장강도 400N/㎡ (=Mpa)

ⓒ SM30C: 기계구조용 탄소강재 / 탄소함유량 0.3%

⑥ SC360: 탄소강주강품 / 최저인장강도 360N/㎡ (=Mpa)

⑤ GC200: 최저인장강도 = 200N/㎡ (=Mpa)

⊕ BrC3: 청동주물 / 3종

제2장 나사(screw)

- 1. 나사
- (1) 나사의 일반적 사항

유효지름 :
$$d_e$$

리드각(=경사각, = 나선각) : λ

여기서 l: 리드(lead) - 나사를 1회전 시켰을

때 축 방향으로 나아간 거리

$$l = np$$

n = 출수 p = 피치(pitch)

If 1줄나사 (n=1): l=p

2줄나사 (n=2) : l = 2p

 $: l \geq p$

$$tan\lambda = \frac{l}{\pi d_e}$$

If 1줄나사
$$(l=p)$$
: $tan\lambda = \frac{p}{\pi d_e}$

2줄나사(
$$l=2p$$
): $tan\lambda = \frac{2p}{\pi d_e}$

(2) 나사의 각부명칭

Cf. 수나사(bolt) - 호칭지름: 수나사의 바깥지름 암나사(nut) - 호칭지름: 결합되는 수나사의 바깥지름

Cf. 오른나사: 축방향에서 볼 때 시계방향 왼나사: 축방향에서 볼 때 반 시계방향

바깥지름 (=외경): $d_2 = d$

골지름: d_1

유효지름: d_e

(3) 나사의 종류와 용도

① 체결용(=결합용)나사: 주로 삼각나사가 사용

(A) 미터나사(M): 나사각 $\alpha = 60^{\circ}$

호칭치수:mm단위

종류: 미터보통나사 (ex. M20) - 바깥지름이 20mm 체결용

미터가는나사 (ex.M20x1.5) - 바깥지름이 20mm, 피치1.5mm

® 유니파이나사 (=ABC나사=세계표준나사:미국,영국,캐나다)

나사각 $\alpha = 60^{\circ}$

호칭치수: inch단위

종류: [유니파이 보통나사 (UNC) 유니파이 가는나사 (UNF): 인장강도가 더 크다

- © 관용나사(pipe screw) → 기밀유지, 누설방지용
 - → 파이프의 얇은 살두께에 사용
 - → 나사산의 높이를 낮게한다

(기밀유지, 누설방지를 위하여)

나사각 $\alpha = 55^{\circ}$

호칭치수: inch단위

종류: 「관용테이퍼나사: PT → 테이퍼 1/16

관용평행나사 : PF

@ 휘트워드 나사:영국 규격나사 -삼각

(= KS규격에서 1972년에 폐지)

나사각 $\alpha = 55^{\circ}$

호칭치수: inch단위

② 셀러나사:미국의 표준나사

나사각 $\alpha = 60^{\circ}$

호칭치수: inch단위

⑤ ISO나사: 국제 표준화 기구에 의해 재정된 나사

- - ② 운동용 나사 : 동력전달 및 힘의 전달용
 - ⓐ 사각나사 (=각나사)

$$h (= \triangle | = 0|) = \frac{h_2 - h_1}{2} = \frac{p}{2}$$

$$d_e = \frac{d_2 + d_1}{2}$$

- 축 방향의 큰 하중을 받아 운동 전달용으로 적합 (=추력: thrust, 스러스트)
- 하중의 방향이 일정하지 않아 교번하중일 때 효과적

B 사다리꼴 나사 (=애크미나사)

종류 미터계(TM): α = 30°

인치계(TW) : $\alpha = 29^{\circ}$

~ 양방향의 추력을 받아 정확한 운동을 전달하는데 적합

용도: 공작기계의 이송나사로 적합

© 둥근나사 (=너클나사, =전구나사, = 원형나사)

산마루와 골이 둥글게 되어있다.

→ 이물질의 침입을 방지하기 위하여 사용

→ 충격이 심한곳에 사용

→ 용도 : 전구나 호스연결용

③ 톱니나사

→ 축하중이 한쪽 방향으로만 받는 경우 사용.

→ 용도: 바이스, 프레스, 나사잭

€ 태핑나사: 끝부분이 '침탄처리 ' 가 되어있다.

→ 얇은판, 연한 금속에 암나사를 만들면서 조여지는 나사

- ⑤ 볼나사 : 수나사, 암나사 양쪽에 홈을 따서 홈 사이에 수많은 볼을 배치
 - → 구름접촉 (rolling contact)
 - → 장점: 나사의 효율이 매우 좋다(마찰이 매우 적다)

백레시를 작게 할 수 있다.

먼지에 의한 마모가 작다.

윤활에 주의를 주지 않아도 된다.

높은 정밀도를 오래 유지할 수 있다.

용도: NC공작기계, 항공기의 이송나사로 사용

→ 단점: 자동체결이 곤란하다

피치를 작게하는데 한계가 있다.

너트의 크기가 크게 된다.

고속으로 회전하면서 소음이 크다 가격이 비싸다.

나사의 구 분	the same of the sa	삼각나사	사각나사	사다리꼴나사	톱니나사	둥근나사
나사산의	모양	$\vee \vee$				\sim
사용의 선모 양		볼트 (수나사) 너트 (암나사) 볼트와 너트	프레스	선반의 리드 나사	기계 바이스	백열 전구의 나사
용도	Ē	일반 기계의 조립용	큰 힘을 전달하 는 프레스, 잭 등에 사용	•선반의 리드스크류 •스톱밸브의 밸브대	밀링 머신의 일감 고정	• 백열 전구의 끼움나사 • 시멘트 믹서 기계

2. 나사의 역학

P: 나사를 죄는 힘

P': 나사를 푸는 힘

(A) 나사를 죄는 힘

$$P = Qtan(\lambda + \rho)$$

여기서 1: 리드각

$$tan\lambda(\alpha) = \frac{l(p)}{\pi d_e}$$

마찰계수 $\mu = tan\rho$ (단, ρ =마찰각)

ⓑ 회전토크(=전달토크)
$$T=Prac{d_e}{2}=Qtan(\lambda(lpha)+
ho)rac{d_e}{2}$$

- ② 나사를 풀때
 - (A) 나사를 푸는 힘 $P' = Qtan(\rho \lambda(\alpha))$
- ③ 나사의 자립조건 (풀리지 않는 조건)

$$P' = Qtan(\rho - \lambda(\alpha))$$
에서

- **(A)** P'>0이면 $\rho \lambda > 0$ 즉, $\rho > \lambda$ (나사를 푸는데 힘이 소요된다)
- **B** P'=0이면 $\rho \lambda = 0$ 즉, $\rho = \lambda$

(나사가 풀리다가 임의의 위치에서 정지, 자동체결)

© P'<0이면 $\rho - \lambda < 0$ 즉, $\rho < \lambda$

(나사를 푸는데 힘이 전혀 들저 않고 저절로 풀린다.)

결국, 나사의 자립조건은 즉, 저절로 풀리지 않기 위해서는 $P' \ge 0$

$$P \ge \lambda$$

또한 여기서
$$\mu = tan\rho$$
 , $tan\lambda = \frac{l(=np)}{\pi d_e}$

$$\stackrel{\frown}{=}, \mu \ge \frac{l(=np)}{\pi d_e}$$

(2)삼각나사

상당마찰계수
$$\mu' = \frac{\mu}{\cos\frac{\alpha}{2}} = tan\rho'$$

 $\alpha = 나사각$

 $\mu = 마찰계수$

 ρ' : 상당마찰각

(3)나사의 효율 (η)

$$\eta = \frac{\text{마찰이 없는 경우의 회전력}}{\text{마찰이 있는 경우의 회전력}} = \frac{Qtan\lambda}{Qtan(\lambda + \rho)}$$

$$\eta = \frac{\tan\lambda}{\tan(\lambda + \rho)}$$

단, $tan\lambda = \frac{l(=np)}{\pi d_e}$ $\mu = tan\rho$

우선, 나사의 효율이 최대가 되는 리드각

$$\lambda = \frac{\pi}{4} - \frac{\rho}{2} = 45^{\circ} - \frac{\rho}{2}$$

또한, 최대효율
$$\eta_{max} = tan^2 \left(45 - \frac{\rho}{2}\right)$$

그리고 나사의 자립 상태를 만족시키는 한계는 $\rho = \lambda$ 이므로

$$\eta = \frac{\tan \lambda}{\tan(\lambda + \rho)} = \frac{\tan \rho}{\tan(\rho + \rho)} = \frac{\tan \rho}{\tan 2\rho}$$

참고)
$$\tan(\alpha + \beta)$$

$$= \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}$$

$$=\frac{tan\rho}{(\frac{tan\rho+tan\rho}{1-tan\rho tan\rho})}=\frac{tan\rho(1-tan^2\rho)}{2tan\rho}=\frac{1}{2}(1-tan^2\rho)$$

$$\eta = \frac{tan\rho}{tan2\rho} = \frac{1}{2}(1 - tan^2\rho) < 0.5(= 50\%)$$

**

결국, 자립상태를 유지하는 나사의 효율은 0.5(=50%)이하이다.

② 삼각나사 \rightarrow 삼각나사는 사각나사에 비해 효율이 떨어짐 $(\rho \rightarrow \rho')$

$$\eta = \frac{\tan \lambda}{\tan(\lambda + \rho')}$$
 \Box , $\mu' = \frac{\mu}{\cos \frac{\alpha}{2}} = \tan \rho'$

- 3. 나사의 설계
- (1) 축방향 하중만 받는 경우 (ex: 아이볼트, 훅)
 - 바깥지름(=외경) $\sqrt[d]{\frac{2Q}{\sigma_a}}$ 단 σ_a : 허용인장응력
- (2) 축방향 하중과 비틀림을 동시에 받는 경우 (ex:나사잭, 압력용기)
 - 바깥지름(=외경) $\sqrt[d]{\frac{8Q}{3\sigma_a}}$ 단 σ_a : 허용인장응력
- 축에 인장응력 (σ_t) 과 비틀림 응력 (τ) 이 동시에 작용하면 우선, 최대 주응력설을 적용하면

최대인장응력
$$\sigma_{max}(=\sigma_e)=rac{1}{2}\sigma_t+rac{1}{2}\sqrt{{\sigma_t}^2+4 au^2}$$

또한 최대 전단응력설을 적용하면

최대전단응력
$$au_{max}(= au_e) = rac{1}{2}\sqrt{ au_t^2 + 4 au^2}$$

- 4. 볼트와 너트 (수나사, 암나사)
 - (1)볼트의 종류
 - ① 일반용(=죔용)볼트
 - ④ 관통볼트: 관통된 구멍에 볼트를 집어넣어 반대쪽에서 너트를 죄어 2개의 기계부품을 죄는 볼트. 일반적으로 널리사용
 - **☀☀☀®** 탭볼트 : 너트를 사용하지 않고 체결하는 상대쪽에 암나사를 내고 머리붙이 볼트를 나사 박음하여 체결하는 볼트
 - ★★★ ⓒ 스터드 볼트 : 볼트에 머리가 없으며 한쪽은 미리 박아놓고 대른쪽에 너트를 끼어죈다. 주로 자주 분해 결합하는 경우에 사용

(a) 관통 볼트

(b) 탭 볼트

(c) 스터드 볼트

(1)볼트의 종류

- ② 특수용 볼트
- ☀♠ 아이볼트: 무거운 물체를 달아 올리기 위해 훅(Hook)을 걸 수 있는 고리가 있는 볼트
 - → 볼트 머리부에 핀을 끼울 수 있는 구멍이 있어 자주 탈착하는 물체에 적합
- ★B T볼트: 공작기계의 테이블에 공작물을 고정할 때 사용
- ★© 기초볼트: 기계 구조물 등을 콘크리트 기초에 고정시키기 위하여 사용
- **★★**D 스테이볼트: 두 물체 사이의 간격을 일정하게 유지할 필요가 있을때 사용
 - ⑤ 리머볼트: 전단력을 받거나 두 부품사이의 관계 위치를 정확하게 유지할 필요가 있는 경우 사용
 - ① 충격볼트 (=연신볼트): 축의 단면적을 작게해서 늘어나기 쉽게하여 충격력을 흡수하는 볼트

- (2) 너트의 종류
 - A 사각너트: 사각모양, 목제 결합에 사용
 - ® 육각너트:육각모양,가장 널리사용
- **☀**ⓒ 캡너트 : 유체의 누설을 방지하기 위하여 사용
- ★★⑥ 와셔붙이 너트 (=플랜지너트): 너트의 밑면에 넓은 원형의 플랜지가 있는 너트
 - →볼트 구멍이 클 때, 접촉압력을 작게 하고자 할 때 사용
 - ® 둥근너트: 자리가 좁아 육각너트를 사용할 수 없는 경우에 쓰임

- (3) 작은나사와 세트 스크류(=멈춤나사)
- **★★**♠ 작은나사 : 일명 기계나사, 태핑나사라 한다.

호칭지름(=바깥지름) 1~9mm 에서 사용.

작은 부품이나 박판등에 사용

- → 머리의 홈을 중심선에 대하여 45° 방향의 굵은 실선을 그린다
- (B) 멈춤나사 (setscrew): 나사의 끝을 이용하여 축에 바퀴를 고정하거나 위치를 조정할때 사용
- (4) 스패너
 - A 종류: 양구스패너, 단구스패너
 - ⓑ 특징:개구부는 자루 중심선에서 15°기울인다.

(5)와셔 (washer)

; 볼트나 너트 등의 자리면과 죔부에 끼우는 얇은 강판

(용도)

- ① 볼트 구멍에 볼트 지름보다 매우 클 경우
- ② 내압력이 약한 목재나 고무 등에 볼트를 사용할 경우
- ③ 볼트 머리부분과 너트를 받치는 면에 요철이 심하거나 경사졌을 경우
- ④ 너트의 풀림을 방지할 경우

그림 2-30 와셔의 종류

- (6) 너트의 풀림방지법 (=나사의 풀림방지법)
 - A 와셔를 이용하는 방법
 - B 로크너트에 의한 방법: 가장많이 사용하는 방법
 - 두개의 너트를 조인 후 아래의 너트를 약간 풀어서 마찰 저항면을 엇갈리게 한 것.
 - ② 자동 죔 너트에 의한 방법
 - ① 분할핀이나 멈춤 나사(세트스크류)에 의한 방법
 - 볼트와 너트에 핀을 끼워 풀림을 방지
 - € 철사에 의한 방법 철사를 감아서 풀림을 방지
 - (F) 너트에 회전 방향에 의한 방법 자동차 바퀴의 고정 나사처럼 반대방향으로 너트를 조이면 풀림이 방지
 - ⑤ 플라스틱 플러그에 의한 방법 나사면에 플라스틱이 들어간 너트를 사용

(b) 로크 너트를 이용한 방법

(c) 자동 죔 너트를 이용한 방법 (d) 핀, 작은 나사, 멈춤 나사를 이용한 방법

(e) 철사를 이용한 방법

제3장 키,핀,코터

1. 키(key)

-회전체를 고정시키고 축과 회전체를 일체로 하여 회전을 전달시키는 결합용 기계요소

(1) 키의 종류 특징

- ① 묻힘키 (sunk key: 성크키)
 - ~축과 보스양쪽에 키홈이 있으며 가장 많이 사용. 키 윗면은 기울기가 1/100 이다.
- ② 안장키(saddlekey: 새들키)
 - 축의 키 홈을 가공하지 않는다.마찰력만으로 회전력 전달큰 힘 전달에는 적당하지 않다
- ③ 평키 (flat key: 납작키)
 - ~ 키가 닿는 면의 축을 평평하게 가공하는 것.

- ④ 안내키(=feather key:패더키, 미끄럼키)
 - ~ 키의 구배가 없는 키로써 보스가 축 방향으로
- 이동할 경우에 사용
- ⑤ 반달키 (Woodruffkey: 우드러프키)
 - ~ 축과 보스를 키웠을 때 위치가 자동 조정된다
 - ~ 축의 홈이 깊어서 축이 약해지는 결정이 있다.
 - ~ 60mm이하의 작은 축에 사용
 - ~ 테이퍼 축에 사용하면 편리
 - ~ 자동차 공작기계등에 사용
- ⑥ 원뿔키 (Cone key: 원추키)
 - ~ 축과 보스의 홈을 가공하지 않고 축에 편심되지 않고 임의의 위치에 고정할 수 있는 키

⑦ 접선키(tangential key)

- ~ 큰 동력을 전달
- ~ 역전을 가능하게 하기 위해 120°각도로 두 곳에 키를 설치
- ~ 만약 90 °로 배치하면 캐네디키라 한다
- ⑧ 둥근키(Pinkey: 핀키)
 - ~ 회전력이 극히 작은 곳에 사용
- ⑨ 스플라인 키
 - ~ 축에 여러 개의 (4~40개) 키 모양의 톱니를 같은 간격으로 깍아낸것
 - ~ 큰 토크를 전달, 축 방향으로 이동이 가능 미끄럼키와 같은 역할을 한다.
 - ~ 용도:선반의 변속장치나 자동차의 변속기, 클러치, 항공기, 공작기계 등의 속도 변환기구등에 사용

(a) 스플라인 축

(b) 보스

⑩세레이션

- ~ 스플라인보다 이가 작아 면압 강도가 크다
- ~ 축 방향으로 이동이 가능

• 전단력 회전력 토크의 크기

세 레 이 션 > 스 플 라 인 > 접 선 키 > 성 크 키 > 반 달 키 > 평 키 > 안 장 키 > 핀 키

<2> 키의 강도계산 ~ 묻힘키 (sunkkey)인 경우

① 전달토크
$$T=W\times \frac{D}{2}=\frac{H'}{\omega}$$

$$=716200\times \frac{H}{N}(PS)=97400\times \frac{H'}{N}$$

$$=\tau_a\cdot Z_p=\tau_a\cdot \frac{\pi d^3}{16}$$

동력
$$H = T \cdot \omega$$

$$T = \frac{H}{\omega}$$
단, $\omega = \frac{2\pi N}{60} \left(\frac{rad}{s}\right)$

② 키의 호칭: $b \times h \times l$

- ③ 키의 강도
 - $oldsymbol{A}$ 키에 작용하는 전단응력 (au_k)

$$\tau_k = \frac{P}{A} = \frac{P}{bl} = \frac{(\frac{2T}{d})}{bl} = \frac{2P}{bld}$$

ⓑ 키에 작용하는 압축응력 (=면압강도 : σ_c)

$$\sigma_c = \frac{P}{A} = \frac{P}{tl} = \frac{(\frac{2T}{d})}{(\frac{h}{2} \times l)} = \frac{4T}{hld}$$

2. 핀(pin)

~ 핸들을 축에 고정할때나 부품을 설치 분해/조립할 때 사용하는 반 영구적인 결합

(1)핀의 종류

- ① 평행핀:기계부품을 조립/안내위치를 결정할 때 사용
- ▶★♥② 분할핀 (split pin : 스플릿핀) : 너트의 풀림방지 또는 핀이 빠지는 것을 방지
 - 호칭지름 : 핀 구멍의 지름으로 표시
 - ③ 테이퍼 핀:작은 핸들이나 축이음등을 축에 장치하는데 사용
 - -정밀한 위치를 결정할 때 사용
 - -호칭지름: 작은쪽의 지름으로 표시
 - ④ 스프링핀: 세로방향으로 쪼개져 있어서 구멍의 크기가 정확하지 않아도 해머로 때려서 박을 수 있다.
 - ⑤ 너클핀: 2개의 막대를 그 축을 포함하는 평면내에서 회전할 수 있게 연결

3. 코터 (cotter)

~ 축 방향에 인장 또는 압축이 작용하는 두 축을 연결하는 것으로 분해할 필요가 있는곳에 사용.

- ▼ 코터의 3요소:로드,코터,소켓
 - ① 코터의 자립조건

한쪽에 기울기가 있는 코터

$$\alpha \leq 2\rho$$

양쪽에 기울기가 있는 코터 $(\alpha = \alpha_1 = \alpha_2)$

$$\alpha \leq \rho$$

- ② 코터의 기울기 (=구배, 경사도)
 - ④ 일반적인것:1/20
 - B 반 영구적인것: 1/100
 - ⓒ 분해하기 쉬운것: 1/5~1/10
- ③ 코터의 전단응력 (τ)

$$\tau = \frac{P}{2bh}$$

b:코터의 네비

h: 코터의 높이

P: 코터에 작용하는 힘

- (2) 핀의 호칭법
- ★★ ① 평행핀:명칭,종류,형식, dxl,재질
 - ② 분할핀: 명칭, dxl, 재질
 - ③ 테이퍼핀: 명칭, 등급, dxl, 재질

제4장 리벳이음(rivet joint)

1. 리벳이음

- ① 장점
 - A 열응력에 의한 잔류응력이 생기지 않아 취성 파괴가 일어나지 않는다.
 - ® 구조물 등 현장 조립이 용이하다.
 - ② 용접이 곤란한 경 합금의 접합에 유리하다.
- ② 단점
 - 용접이음보다 효율이 낮다.즉 기밀, 수밀이 곤란하다.
 - ⓑ 길이 방향의 하중에는 약하다.
 - ⓒ 분해시에 파괴해야 한다.
 - ① 리벳이음시 소음이 많다.

<**2**> 리벳의 종류

① 머리 모양에 따른 분류 🟋

<2> 리벳의 종류

- ② 용도에 따른 분류
 - ♠ 보일러용 리벳: 기밀, 강도, 모두 필요시 → 보일러, 고압탱크에 사용
 - ❸ 저압용 리벳: 기밀만을 필요시 → 물탱크, 저압탱크 등에 사용
 - © 구조용 리벳 : 강도만을 필요시 → 철교, 차량, 선박등의 구조물에 사용
- ③ 제조 방법에 따른 분류
 - (A) 냉각 리벳: 리벳지름이 1~13mm 의 작업
 - ® 열간 리벳: 리벳지름이 10~44mm의 작업

<3> 리벳의 재료 🗱

~ 연강, 두랄루민, 알루미늄, 구리, 황동, 저탄소강, Ni강 등

2. 리벳 작업 🐦

<1> 리벳팅 (riveting)

- ① 리베팅: 가열된 섕크(shank)끝에 머리를 만드는 스냅(snap)을 대고 두드려서 제2의 리벳머리를 만드는 작업
- ② 리벳 구멍은 리벳 지름보다 1~1.5mm 정도 크게 뚫는다.
- ③ 리벳길이

$$l = t_t + (1.3 \sim 1.6)d$$

 t_t : 죔두께

(=강판 두께의 합)

d:리벳지름

- <**2**> 기밀/수밀 유지작업
 - ~ 가스, 액체가 새어나오는 것을 방지하는 작업
 - ① 코킹(Caulking)
 - ② 강판의 가장자리를 **75~85°** 경사시켜서 정으로 때려 밀착시켜서 틈을 없애는 반 영구적인 작업
 - ® 5mm이하의 얇은 강판은 곤란
 - ② 플러링 (fullering)
 - ② 강판과 같은 나비의 플러링 공구로 판재의 안쪽면을 완전히 밀착시키는 영구적인 작업
 - ® 5mm이하의 얇은 강판에 사용

- 3. 리벳이음의 강도
- **<1>** 리벳의 강도
- ~ 파괴의 견지에서 파악
 - A 리벳의 전단 (전단파괴)

$$P = \frac{\pi d^2}{4} \, \tau_r$$

- 양쪽 덮개판 맞대기 이음은 2곳이나 2배로 하지 않고 1.8배로 한다

$$P = 1.8 \times \frac{\pi d^2}{4} \tau_r$$

ⓑ 강판의 절단 (인장파괴)

© 리벳구멍의 압괴 (압축파괴)

(c) 리벳 또는 리벳 구멍의 압축

④ 판이 리벳의 폭으로 갈라지는 경우

② 판의 가장자리가 갈라지는 경우

(2) 리벳의 직경(d)와 피치(p)의 설계

$$P = \tau \cdot \frac{\pi d^2}{4} \cdot n \quad ---- \quad \boxed{)}$$

$$P = \sigma_t \cdot (p - d) \cdot t \quad ---- 2$$

$$P = \sigma_c \cdot d \cdot t \cdot n \quad ----- \quad \text{3}$$

우선 ①=③ 식에서
$$au\cdot rac{\pi d^2}{4}\cdot n = \sigma_c\cdot d\cdot t\cdot n$$
 리벳지름 $d=rac{4\sigma_c t}{\pi au}$

우선 ①=② 식에서
$$\tau \cdot \frac{\pi d^2}{4} \cdot n = \sigma_t \cdot (p-d) \cdot t$$

리벳지름
$$p = d + \frac{\tau \cdot \pi \cdot d^2 \cdot n}{4 \cdot \sigma_t \cdot t}$$

(3) 리벳이음의 효율

$$P = \tau \cdot \frac{\pi d^2}{4} \cdot n \qquad \boxed{1}$$

$$P = \sigma_t \cdot (p - d) \cdot t \qquad \boxed{2}$$

$$P = \sigma_c \cdot d \cdot t \cdot n \qquad \boxed{3}$$

ⓐ 강판의 효율 (η_t) "인장"의 견지에서 파악

$$\eta_t = \frac{1 \text{피치내의 리벳 구멍이 있는 경우 인장강도}}{1 \text{피치내의 리벳 구멍이 없는 경우 인장강도}}$$

$$= \frac{\sigma_t \cdot (p-d) \cdot t}{\sigma_t \cdot p \cdot t} = \frac{p-d}{p} = \boxed{1 - \frac{d}{p}}$$

B 강판의 효율 $(\eta_s) \sim "전단"의 견지에서 파악$

$$\eta_s = \frac{1 \text{ III 기내의 리벳 구멍이 있는 경우 인장강도}}{1 \text{ III 기내의 리벳 구멍이 없는 경우 인장강도}}$$

$$=\frac{\tau \cdot \frac{\pi d^2}{4} \cdot n}{\sigma_t \cdot p \cdot t} = \boxed{\frac{\tau \cdot \pi \cdot d^2 \cdot n}{4 \cdot \sigma_t \cdot p \cdot t}}$$

5장 용접이음(Welding joint)

- 1. 용접이음의 개요
 - (1)용접이음의 장단점
 - 1)장점
 - ① 이음효율이 높다
 - ② 중량을 경감시킬 수 있다.
 - ③ 재료가 절약된다.
 - ④ 기밀성, 수밀성이 우수하다.
 - ⑤ 판 두께에 제한이 없다.
 - ⑥ 공정수가 적어진다.
 - ⑦ 제품의 성능과 수명이 향상된다.

2) 단점

- ① 진동을 감소 시키기 어렵다.
- ② 용접부의 비파괴 검사가 어렵다.
- ③ 용접자의 기술에 의해 용접 신뢰도가 좌우된다.
- ④ 열을 받기 때문에 변형이나 잔류응력이 있다.
- ♣️→용접 중 변형을 방지하려면 '가접'을 한다
 - →용접 후 변형을 방지하려면 '피닝(peening)'을 한다
 - → 잔류응력을 없애려면 풀림(Annealing)처리 해야한다.

피닝(peening)

용접부 표면을 끝이 둥근 해머 등으로 연속해서 두드리는 것.

(2) 용접이음의 종류

① 그루브용접(groove weld): 접합하는 모재사이의 홈을 그루브(groove)라 하며 그루브 부분에 행하는 용접

→ 종류 : H형, I형, J형, K형, L형, U형, V형, X형

- ② 필렛용접(fillet weld): 직교하는 2개의 면을 결합하는 용접. 용접부의 단면 모양은 삼각형이다.
 - → 겹치기 이음, T형 이음, 모서리 이음 등에 사용

(2) 용접이음의 종류

- ③ 비드용접(bead weld): 용접 홈을 가공하지 않고 두 판을 맞대어 그 위에 그대로 비드(bead)를 용착시켜 용접하는 방법
- ④ 플러그 용접(plug weld): 접합할 모재의 한쪽에 구멍을 뚫고 판의 표면까지 용접하여 다른 쪽 모재와 접합하는 용접
- ⑤ 슬롯용접(slot weld): 플러그 용접의 둥근 구멍 대신에 가늘고 긴 홈의 비드를 붙이는 용접

(3) 용접이음의 효율(η)

$$\eta = \frac{8\text{접부의 강도 (인장강도,전단강도)}}{\text{모재의 강도 (인장강도,전단강도)}} = k_1 \times k_2$$

2. 용접이음의 강도설계

<1> 맞대기 용접이음

① 인장응력

$$\sigma_t = \frac{P}{A} = \frac{P}{al} = \frac{P}{tl}$$

② 굽힘응력

$$\sigma_b = \frac{M}{Z} = \frac{M}{(\frac{la^2}{6})} = \frac{6M}{la^2} = \frac{6M}{lt^2}$$

<2> 필렛 용접이음(fillet weld joint)

① 전면(앞면) 필렛 용접이음

$$a = h\cos 45^{\circ} = \frac{h}{\sqrt{2}} = 0.707 h$$

① 인장응력 (용접이 두군데 있으므로) x2

$$\sigma_t = \frac{P}{A} = \frac{P}{2al} = \frac{P}{2h \cos 45^{\circ} l} = \frac{0.707P}{hl}$$

② 전단응력

$$\tau = \frac{P}{A} = \frac{P}{2al} = \frac{P}{2h \cos 45^{\circ} l} = \frac{0.707P}{hl}$$

② 측면(옆면) 필렛 용접이음

전단응력

$$\tau = \frac{P}{A} = \frac{P}{2al} = \frac{P}{2h \cos 45^{\circ} l} = \frac{0.707P}{hl}$$

번호	단 면 형	A	I	Z	k ²
17		$-\frac{\pi}{4}d^3$	$\frac{\pi}{64}d^4$	$\frac{\pi}{32}d^3$	$\frac{1}{16}d^2$
18		$-\frac{\pi}{4}(d_t^2-d_1^2)$	$\frac{\pi}{64}(d_2^4-d_1^4)$	$\frac{\pi}{32} \times \frac{d_2^4 - d_1^4}{d_2} = 0.8d_m^{-2}t$ $(t/d_m 가 작을 경우)$	$\frac{1}{16}(d_2^{-2}+d_1^{-2})$
19	2r 8	$\frac{\pi}{2}r^2$	$\left(\frac{\pi}{8} - \frac{8}{9\pi}\right)r^4$ $= 0.1098r^4$	$e_1 = 0.5756 r$ $e_2 = 0.4244 r$ $Z_1 = 0.1968 r^3$ $Z_2 = 0.2587 r^3$	$\frac{9\pi^2 - 64}{36\pi^2}r^2 = 0.0697r^2$ $(k = 0.264r)$
20		$\frac{\pi}{2}(p_2^2-p_0^2)$	0.1098 ($r_2^4 - r_1^4$) - 0.283 $r_2^2 r_1^2 (r_2 - r_1)$ $r_2 + r_1$ $\Rightarrow 0.3tr_n^3$ (t/r_n 가 작을 경우)	$e_2 = \frac{4(r_2^2 + r_2r_1 + r_1^2)}{3m(r_2 + r_1)}$ $e_1 = r_2 - e_2$	$\approx 0.096r_m^2$ $(k \approx 0.31r_m)$

③ 원형단면의 필렛용접

$$A = \frac{\pi\{(D+2a)^2 - D^2\}}{4}$$

$$\frac{\mathsf{a}}{I(단면2차)} = \frac{\pi\{(D+2a)^4 - D^4\}}{64}$$

$$I_P = \frac{\pi\{(D+2a)^4 - D^4\}}{32}$$

$$y_{max} = \frac{D + 2a}{2}$$

$$P = \sigma_t A = \sigma_t \frac{\pi \{ (D + 2a)^2 - D^2 \}}{4}$$

® 비틀림 모멘트(T)가 작용하는 경우

$$T = \tau Z_p = \tau \frac{I_P}{y_{max}} = \tau \times \frac{\pi \{(D + 2a)^4 - D^4\}}{32} \times \frac{2}{(D + 2a)}$$

© 굽힘 모멘트(M)가 작용하는 경우

$$M = \sigma Z = \sigma \frac{I}{y_{max}} = \sigma \times \frac{\pi \{(D + 2a)^4 - D^4\}}{64} \times \frac{2}{(D + 2a)}$$

제6장 축(shaft)

- 1. 축의 일반적인 사항
 - <1> 축의 종류
 - ① 사용 목적에 따른 분류
 - ♠ 차축 : 주로 굽힘만 받는다→종류 : 정지차축, 회전차축
 - B 스핀들축: 주로 비틀림만 받는다. 형상치수가 정확, 정밀하다Ex) 공작기계용
 - © 전동축: 주로 굽힘과 비틀림을 동시에 받는다 Ex) 동력전달용

→전동축의 동력 전달순서 : 주축 → 선축→ 중간축

주축:전동기에서 직접 동력을 받는 축

선축: 각 공장으로 분배하는 역할

중간축: 각기계에 동력을 전달

- ② 모양에 의한 분류 (종류)
 - @ 직선 축:흔히 많이 사용되는 곧은 축
 - ⑤ 크랭크 축: 직선운동과 회전운동을 상호 변환하는데 사용하는 축으로 곡선으로 구성되어 있는 축
 - © 플렉시블 축: 축이 자유롭게 휠 수 있도록 강선을 2중 또는 3중으로 감은 나사 모양의 축 휨성을 이용하여 충격을 완화하는데 널리 사용

(2) 축의 재료

- ~ 일반적으로 탄소강이 가장 널리사용
 - ① 저하중용: 연강, 경강
 - ② 고속, 고하중용: 단강, Ni강, Ni-Cr강, Cr-Mo강 Ni-Cr-Mo강

- (3) 축의 설계에 고려해야 할 사항
- ~ 강성, [굽힘강성(=쳐짐, 변형), 비틀림변형], 강도, 부식, 진동 열팽창, 열응력, 응력집중

2. 축의 강도에 의한 설계(1)비틀림만 받는 경우

$$T = \tau_a Z_p$$

- ① 중실원 축 : $\sqrt[3]{\frac{16T}{\pi \tau_a}}$
- ② 중공원 축: $\sqrt[3]{\frac{16T}{\pi \tau_a(1-x^4)}}$

(b) 중공축

$$Z_p = \frac{\pi d^3}{16}$$

$$Z_p = \frac{\pi(d_2^4 - d_1^4)}{16}$$

$$=\frac{\pi d_2^3(1-x^4)}{16}$$

- 2. 축의 강도에 의한 설계
 - (2) 굽힘만 받는 경우

$$M = \sigma_a Z$$

- ① 중실원 축: $\sqrt[3]{\frac{32M}{\pi\sigma_a}}$
- ② 중공원 축: $\sqrt[3]{\frac{32M}{\pi\sigma_a(1-x^4)}}$

단,
$$x$$
: 내외경비 $x = \frac{d_1}{d_2}$

(3) 비틀림과 굽힘을 동시에 받는 경우

상당비틀림 모멘트 :
$$T_e = \sqrt{M^2 + T^2}$$

상당굽힘 모멘트 :
$$M_e = \frac{1}{2} \left(M + \sqrt{M^2 + T^2} \right) = \frac{1}{2} \left(M + Te \right)$$

• 비틀림 모멘트 (Torque) : T

① 동력
$$H' = T\omega = FV \rightarrow V = \frac{s(거리)}{t(시간)}$$

$$\rightarrow$$
1W=1J/s 1kW=1kJ/s

$$\omega = \frac{2\pi N}{60} \, (\text{rad/s})$$