

Europäisches Patentamt **European Patent Office** Office européen des brevets

EP 0 499 273 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 13.11.2002 Bulletin 2002/46

(51) Int Cl.7: **G11C 7/00**, G11C 11/34, G11B 7/00, G11B 7/24

(21) Application number: 92102513.6

(22) Date of filing: 14.02.1992

(54) Congruent state changeable optical memory alloy and data carrier

Legierung mit kongruenter Zustandsänderung zur optischen Speicherung und Datenträger Alliage à mémoire et support de données optique à changement d'état congruent

(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(30) Priority: 15.02.1991 US 657170

(43) Date of publication of application: 19.08.1992 Bulletin 1992/34

(60) Divisional application: 99108310.6 / 0 951 011

(73) Proprietor: ENERGY CONVERSION DEVICES, Troy Michigan 48084 (US)

(72) Inventors:

Strand, David A. West Bloomfield, Michigan 48323 (US)

· Ovshinsky, Stanford R. Bloomfield Hills, Michigan 48013 (US) (74) Representative: Révy von Belvárd, Peter et al Büchel, von Révy & Partner Patentanwälte, Im Zedernpark **Bronschhoferstrasse 31** 9500 Wil (CH)

(56) References cited:

EP-A- 0 182 153 EP-A- 0 217 293 EP-A- 0 392 179

EP-A- 0 495 494

US-A- 4 924 436

 JPN J. APPLIED PHYSICS SUPPLEMENT 1989 vol. 28, no. 28-3, September 1989, KOBE JP pages 135 - 139 NISHIMURA ET AL. 'GE-TE-SB **BASED OVERWRITABLE PHASE CHANGE** OPTICAL DISK'

 OPTICAL DATA STORAGE 91 vol. 1499, 25 February 1991, COLORADO SPRINGS, USA pages 171 - 179 OHNO ET AL. 'ERASABLE **COMPACT DISK UTILIZING PHASE CHANGE** MATERIAL AND MULTI PULSE RECORDING METHOD'

Δ

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Field of the Invention

[0001] The invention disclosed herein relates to data storage devices where data is stored in a material that is reversibly switchable between detectable states in response to the input of energy.

Background of the Invention

[0002] Nonablative state changeable data storage systems, for example, optical data storage systems, record information in a state changeable material that is switchable between at least two detectable states by the application of energy such as, for example, projected optical beam energy, electrical energy, or thermal energy, thereto.

[0003] State changeable data storage material is typically incorporated in a data storage device having a structure such that the data storage material is supported by a substrate and protected by encapsulants. In the case of optical data storage devices, the encapsulants include, for example, anti-ablation materials and layers, thermal insulation materials and layers, anti-reflection materials and layers, reflective layers, and chemical isolation layers. Moreover, various layers may perform more than one of these functions. For example, anti-reflection layers may also be anti-ablation layers and thermal insulating layers. The thicknesses of the layers, including the layer of state changeable data storage material, are engineered to minimize the energy necessary for effecting the state change and to optimize the high contrast ratio, high carrier to noise to ratio, and high stability of state changeable data storage materials.

[0004] The state changeable material is a material capable of being switched from one detectable state to another detectable state or states by the application of, for example, projected beam energy, electrical energy, or thermal energy thereto. The detectable states of state changeable materials may differ in their morphology, surface topography, relative degree of order, relative degree of disorder, electrical properties, optical properties, including indices of refraction and reflectivity, or combinations of one or more of the foregoing. The state of the state changeable material is detectable by properties such as, for example, the electrical conductivity, electrical resistivity, optical transmissivity, optical absorption, optical refraction, optical reflectivity, or combinations thereof. That is, the magnitude of the detectable property will vary in a predictable manner as the state changeable material changes state.

[0005] Formation of the data storage device includes deposition of the individual layers by, for example, evaporative deposition, chemical vapor deposition, and/or plasma deposition. As used herein plasma deposition includes sputtering, glow discharge, and plasma assisted chemical vapor deposition.

[0006] Tellurium based materials have been utilized as state changeable materials for data storage where the state change is a structural change evidenced by a change in a physical property such as reflectivity. This effect is described, for example, in J. Feinleib, J. de-Neufville, S.C. Moss, and S.R. Ovshinsky, "Rapid Reversible Light-Induced Crystallization of Amorphous Semiconductors," "Appl. Phys. Lett., Vol. 18(6), pages 254-257 (Mar. 15, 1971), and in U.S. Pat. No. 3,530,441 to S.R. Ovshinsky for Method and Apparatus For Storing And Retrieving Of Information.

[0007] Tellurium based state changeable materials, in general, are single or multi-phased systems and: (1) the ordering phenomena include a nucleation and growth process (including both or either homogeneous and heterogeneous nucleations) to convert a system of disordered materials to a system of ordered and disordered materials; and (2) the vitrification phenomena include melting and rapid quenching of the phase changeable material to transform a system of disordered and ordered materials to a system of largely disordered materials. The above phase changes and separations occur over relatively small distances, with intimate interlocking of the phases and gross structural discrimination, and are highly sensitive to local variations in stoichiometry. [0008] In chalcogenide type memory materials, the measures of performance include (1) the contrast ratio, that is, the difference in reflectivities of the states divided by the sums of the reflectivities of the states, and (2) the carrier to noise ratios of both (a) the "written" and (b) the "erased" states. The failure mode of the memory material is evidenced by the deterioration in the measures of performance with respect to the number of cycles. That is, failure may be evidenced by for example (1) a reduction in contrast ratio with increasing cycles, or by (2) a reduction in the written carrier to noise ratio or an increase in the erased carrier to noise ratio.

[0009] If the memory material is to be used as a "write once" medium, it is highly desirable that it have a relatively high glass transition temperature since this gives it good thermal stability over the life of the recording medium. Since, in many cases, it is customary to write or record onto a medium which is already in an amorphous first state by switching it to crystalline second state, the integrity of the recording depends on the ability of the amorphous second state to resist spontaneous or accidental crystallization into the written state. The higher the glass transition temperature of the recording medium is, the more likely the medium will resist undesirable crystallization when in the amorphous state, particularly when the recorded region consists of all alternating regions of recorded crystalline spots and un-altered amorphous species between. Of course, the crystallization temperature must not be so high or that recording sensitivity suffers.

[0010] In addition to write once materials, optical data storage systems may also employ erasable material which may be recorded upon, erased, rerecorded upon,

re-erased, etc. In this case, the phase changeable material must reversibly be able to change from the amorphous to the crystalline state, and back again, repeatedly. For erasable materials, additional considerations are important. Most significantly, through repeated cycle life (repeated vitrification and crystallization), prior art materials have shown a tendency to degrade over time. It is thought that important factors contributing to this degradation over cycle life are the tendency for inhomogeneities and inclusions to appear in the material. That is, after the material crystallizes and recrystallizes, regions of variable structure and composition may appear therein which were not present in the original material. Due to the thermal history of the material, the various components of which it is composed may selectively migrate, chemically bond, or substitute for other components in the crystal lattice. Moreover, some of the material may not properly vitrify, thus creating undesirable crystalline or non-crystalline inclusions. All of these factors can result in degraded performance.

[0011] These problems become particularly acute in typical tellurium based materials, such as tellurium-antimony-germanium systems because, depending upon the atomic percentages of each individual component within the material, these TAG systems can form a multitude of crystalline and amorphous phases. Thus, even though the as deposited material has a nominal composition of Te, Ge, Sb, the material, in its crystalline state, may comprise a plurality of crystalline phases of varying and unpredictable composition. That is, one crystalline phase may have proportionately much more tellurium, another much more germanium, etc. Because of this noncongruency of composition between the amorphous and crystalline states, such materials are prone to degrade over cycle life due to the reasons explained 35 above.

[0012] Furthermore, due to the multitude of crystalline phases, switching to the crystalline state includes atomic diffusion and is therefore relatively slow. Thus, switching speed is undesirably slow, and selecting a new composition to improve switching speed may compromise and the thermal stability of the material.

[0013] The desirability of congruency in composition between the crystalline and amorphous states has been described with respect to a binary optical memory material in U.S. Patent Nos. 4,876,667 and 4,924,436, both assigned to assignee of the present invention. Both referenced patents concern themselves with binary chalcogenide data storage material, namely antimony telluride/antimony selenide compositions. As described in the referenced patents, the telluride and the selenide are essentially compositionally congruent between the amorphous and crystalline states. This is so because the telluride/selenide compositions are substantially miscible in substantially all proportions. That is, each crystal has approximately the nominal composition of the as deposited material. This is so largely because, due to their atomic structure and valence characteristics, the tellurides and selenides are capable of substituting for each other in the crystal lattice over a wide range of compositions. However, this is known not to be the case for TeGeSb systems.

[0014] The desirability of maintaining compositional congruency while depositing the layer of memory material in tellurium-based memory materials has been recognized. See, for example, U.S. Patent No. 4,621,032, assigned to the assignee of the present invention. The reference discloses a method of depositing the layer of memory material by a congruent sublimation process wherein the sources or precursor materials are selected so as to maintain consistency in the deposited materials. However, this patent also teaches that there can be phase separation upon crystallization of the amorphous material into a crystalline and amorphous second phase, which phase separation necessarily entails the undesirable consequences noted above.

[0015] The article "Ge-Te-Sb Based Overwritable phase change Optical Dick" in Soc. Int. Symp. on Optical Memory, 1989 discloses binary chalcogenide alloy sys-

Summary of the Invention

[0016] Disclosed and claimed herein is a state changeable memory alloy changeable from a first state 😇 to a second state in response to the input of energy, said & alloy having a first detectable characteristic when in said (1) first state and a second detectable characteristic when 3 in said second state, and said first and second detectable characteristics selected from the group consisting of reflectivity, band gap, electrical resistance, optical absorption, magnetic susceptibility and thermal conductivity, wherein said first state is a disordered phase, said $\ensuremath{\mathcal{Z}}$ alloy being a chalcogenide material, and being characterized in that said alloy comprises at least three individually combined : elements forming at least a ternary system, having a single phase first state and said second state comprises

- (1) a single phase second state of the same composition as said first state so that said first and said second state are chemically congruent,
- (2) a plurality of second phases having similar crystallization temperatures and kinetics, including a main phase which is chemically congruent with said first phase.

[0017] The memory alloy of the present invention is a chalcogenide, optical memory alloy which exhibits compositional congruency between an amorphous and a crystalline state. The alloy material has a first detectable characteristic (typically, optical reflectivity) when in the amorphous state and a second detectable characteristic

•

when it is in the crystalline state. By using the method in a multilayer thin film optical structure, die direction of reflectivity change can be selected by appropriate choice of the memory material layer and other layer thicknesses. The material is capable of undergoing a congruent state change upon the application of projected beam energy thereto, most particularly, beam energy in the form of a laser beam.

[0018] In a write-once system, the material, which is typically amorphous in its as-deposited condition, may be switched typically only once into its crystalline state by a single application of laser light at an energy sufficient to crystallize or initiate crystallization of the material. In this manner, data is recorded onto the material. Alternatively, the material may be written on by switching it from the crystalline to the amorphous state. In erasable systems, the material must be capable of undergoing repeated switching between one state and another. In order to do this, the material is written on by crystallizing (or vitrifying) it with a laser beam at a first energy, and revitrified (or recrystallized) by erasing it with laser light of a second different energy. See, for example, U. S. Patent Nos. 4,667,309 and 4,744,055, both assigned to the assignee of the present invention.

[0019] The material claimed herein has the following 25 composition:

TeaGehSba

a, b and c being expressed in atomic percentages. A, b and c are selected such that the material maintains compositional congruency between the crystalline and amorphous states. More particularly, when the material is in the crystalline state it includes a major portion which has substantially the same composition as the material has when in the amorphous state and a minor portion which has the following composition:

TedGeSbf

d, e and f again being expressed in atomic percentages. The composition of the minor portion is not too far off the composition of the major portion. More particularly, the difference between a and d, b and e, and c and f total no more than 16 atomic percent. Thus, the amount of any single element in the minor portion can vary from the amount of the same element in the major portion by no more than 8 atomic percent.

[0020] A, b and c must be carefully selected in order to maintain the compositional congruency of the alloy between states. In particular, it has been found that compositional congruency is maintained if a is kept between 49 and 53, b is between 36 and 40, and c is between 7 and 11. It is also believed that compositional congruency is maintained when, for example, the following limitations are observed:

Te 47-53 Ge 48-43 Sb 3-7 or Te 47-53 Ge 31-36 Sb 15-21 or Te 47-53 Ge 15-21 Sb 31-36

[0021] Also claimed is a data carrier utilizing the alloy

material described above. The carrier comprises a substrate, a dielectric first encapsulating layer on the substrate, a memory layer formed of the alloy on the dielectric first encapsulating layer and a dielectric second encapsulating layer atop the memory layer. Optionally it may further include an optically reflective layer, preferably of antimony, between the alloy layer and the second encapsulating layer.

[0022] The data storage medium may be formed by depositing the materials to form a substantially uniform deposit thereof. The thickness of the deposit is chosen to give reflectivity and contrast as deemed best by the application.

5 Brief Description of the Drawings

[0023] This invention may be more particularly understood by reference to the following drawings in which:

FIGURE 1 is a partial cut-away isometric view, not to scale, with exaggerated latitudinal dimensions and vertical scale, of an optical data storage device constructed in accord with the teachings of the present invention;

FIGURE 2 is a detailed section of a part of the optical data storage device of FIGURE 1 showing the relationship of the various layers thereof:

FIGURE 3 is a representation of the relative reflectivity obtained by exposure to different laser powers at various pulse widths of a material encompassed by the claims of the present invention;

FIGURE 4 is a graph showing the plot of the carrierto-noise ratio versus the laser power used to make a recording on a material encompassed by the claims of the present invention;

FIGURE 5 is a graph with carrier-to-noise ratio plotted versus the record frequency for recordings made on a material encompassed by the claims of the present invention;

FIGURE 6 is a graph showing the rate of deposition of a material encompassed by the claims of the present invention evaporated from a TeGeSb alloy source plotted against time;

FIGURE 7 is a representation of an Auger electron spectroscopy profile of a material encompassed by the claims of the present invention;

FIGURE 8 is another Auger electron spectroscopy profile of another material encompassed by the claims of the invention; and

FIGURE 9 is a representation of an x-ray diffraction spectroscopy profile of the material of FIGURE 8.

Detailed Description of the Invention

[0024] Throughout the following detailed description, like reference numerals are used to refer to the same element shown in multiple figures thereof.

[0025] Figures 1 and 2 show a projected beam data

35

storage device 1 having a substrate, for example a plastic substrate 11, a first encapsulating dielectric layer 21, for example a first germanium oxide encapsulating layer, a chalcogenide compound data storage medium layer 31, an antimony reflective layer 35, a second dielectric layer e.g., a second germanium oxide layer 41, and a second substrate, e.g., plastic substrate 51.

[0026] Figure 2 shows a section of the data storage device 1 of Figure 1 in greater detail. As there shown, the substrate 11 is a polymeric sheet, for example a polycarbonate sheet. The substrate 11 is a substantially optically invariant, optically isotropic, transparent sheet. The preferred thickness is of about 1.2 mm.

[0027] A top substrate 51 and encapsulant layer 41 is a film, sheet or layer 49, e.g. a photoinitiated polymerized acrylic sheet. Polymerized, molded, injection molded, or cast into the polymeric sheet 11, may be grooves. When grooves are present they may have a thickness from about 500 to about 1000 Angstroms. The film, sheet, or layer 49 may act as an adhesive layer holding the substrate 51 to the encapsulant 41. It has a thickness of from about 1 to about 200 microns and preferably from about 10 to about 100 microns.

[0028] Deposited atop the substrate 11 is a dielectric barrier layer 21. A similar dielectric encapsulating layer 41 lies between sheet 49 and optional antimony layer 35. The dielectric barrier layers 21, 41, for example, of germanium oxide, are each from about 500 to about 2000 Angstroms thick. Preferably they have an optical thickness of one-quarter times the laser wavelength times the index of refraction of the material forming the dielectric layers 21 and 41. The dielectric barrier layers 21, 41 have one or more functions. They can serve to optimize reflectivity and/or prevent agents which could chemically change the active layer from getting to the chalcogen active layer 31 and/or prevent the plastic substrates from deforming due to local heating of the chalcogenide layer 31, e.g., during recording or erasing.

[0029] Other dielectrics may provide the encapsulating layers 21,41. For example, the encapsulating layers may be silica, alumina, silicon nitride, or other dielectric. The composition of any of these materials may be layered or graded to avoid diffusion into the chalcogenide layer 31.

[0030] The chalcogenide compound data storage medium layer 31 is comprised of a congruent state changeable material which is capable of existing in at least an amorphous state and a crystalline state. The material has a first detectable characteristic, such as optical reflectivity, when in the crystalline state, and a second detectable characteristic, again such as optical reflectivity, when in the amorphous state. In one adaptation, the chalcogenide memory layer 31 is used as an anti-reflection coating for the antimony layer 35. The optical constants of the two layers are such that the thickness of the chalcogenide layer is chosen to be very thin (about 300 angstroms) to achieve maximum reflectivity contrast. Because the chalcogenide layer 31 is only partially

transmissive, the contribution of the antimony layer 35 to the total reflectivity increases when the chalcogenide layer 31 is thinner, which improves the contrast. The thickness of the antimony layer 35 is not as important, but best results are obtained when it is at least thick enough (also about 300 angstroms) to obtain its maximum reflectivity. When phase change chalcogenide alloy films are used in an anti-reflection optical structure, the direction of reflectivity change can be selected by appropriate choice of the chalcogenide layer thickness. In this case, the layer thickness is selected such that there is a measurable increase in reflectivity after the material has been crystallized. Typically, the reflectivity of the material after recording is 1 1/2 to 3 times that of the unrecorded spot, or even more. The antimony layer 35 also functions as a seed layer to initiate crystallization in the chalcogenide layer 31 when it is switched to the crystallized state. In this way, switching speed is in-

[0031] In general, it has been found that optimum material performance in terms of switching speed is achieved when tellurium comprises approximately 50 atomic percent of the material and germanium together with either antimony, bismuth or tin comprises the remainder. The generic formula for this improved material may be written Te₅₀(GeX)₅₀ where X equals Sb, Bi or Sn, it being understood that several percent deviation from the general formula may be tolerated without significant effect.

[0032] The Te-Ge system forms a rhombohedral crystalline phase and it is speculated that when the (GeX) the component is in an approximate 1:1 ratio with the Te, the crystal structure becomes face centered cubic and reversible, high speed switching is achieved.

[0033] In general, some germanium must be present to assure that the desired TeGe phase is developed; however, it has been found that Sb, Sn, Bi and the like a may substitute for a significant portion of the Ge while preserving the desired morphology.

[0034] One particular class of materials comprise Te₅₀(GeSb)₅₀ it has been found that in those instances where the Ge is present in a greater amount than the Sb, the material crystallizes into two phases having similar crystallization temperatures and kinetics. In those instances where the Sb is present in a higher amount than the Ge, crystallization tends to produce one phase. It has been found that the TeSb tends to produce nonequilibrium crystalline phases. In accord with the present invention, it has been found that presence of Ge in the system stabilizes the Te-Sb phase and enables the congruent crystallization of the material from the amorphous state.

[0035] The material of chalcogenide layer 31 is capable of undergoing a congruent state change upon the application of projected beam energy such as laser energy thereto. The material is a compound having the composition Te_aGe_bSb_c, a, b and c being expressed in atomic percentages and selected such that, when the

material is in the crystalline state, the material is substantially crystalline and includes a major crystal phase which has the same composition as the material has when in the amorphous state. The crystalline material may further includes a minor portion which has the composition ${\rm Te_dGe_eSb_f}$, d, e and f being expressed in atomic percentages, wherein the differences between a and d, b and e, and c and f respectively total not more than 16 atomic percent.

[0036] After experimenting with a range of optical recording film compositions, it has been experimentally determined that, where a is from 49 to 53 atomic percent, b is from 35 to 43 atomic percent and c is from 7 to 11 atomic percent, the compositions exhibit optimum performance when tested for sensitivity, and crystallization temperature, Tx.

[0037] Figure 3 is a representation of the relative reflectivity at different lasers powers of a material encompassed by the claims of the present invention. As shown in Figure 3, a material having a composition Te₅₃Ge₃₇Se₁₀ can exhibit a relative reflectivity between the unrecorded and recorded state of approximately 2.5 when the record laser power is at least 6 or 7 milliwatts. Figure 3 shows that the threshold record power using a laser pulse width of 100 nanoseconds is 6 to 7 milliwatts. As can be seen, the material of the present invention will switch from a first detectable state to a second detectable state upon the application of a recording laser pulse having a power of 6 to 7 milliwatts in a 100 nanosecond pulse.

[0038] Figures 4 and 5 are, respectively, graphs showing the plot of carrier to noise ratio versus, respectively, the record power and the record frequency for the Te₅₃Ge₃₇Se₁₀ material. A disk coated with this material shows over 53 dB carrier to noise ratio when recorded on at a laser power of 5.5 milliwatts (10 meters per second linear track velocity), as can be seen in Figure 4.

[0039] Figure 5 shows that this same material has a usable upper frequency of greater than 5 MHz at 10 m/s LTV, corresponding to a bit length of 0.84 microns. Since the frequency during testing was essentially determined by the limits of the optics of the dynamic tester used, it is expected that the fundamental resolution of the material of the present invention may be higher.

[0040] The following table shows experimentally determined crystallization temperatures for a range of compositions within the TeGeSb system. In particular, the material having a composition Te₅₃Ge₃₇Se₁₀ exhibited a crystallization temperature of 218° C.

TABLE 1

Sample Number	Composition			Тх
	Те	Ge	Sb	
E-1043	25	60	15	>250° C
E-1045	30	55	15	>250° C
E-1036	35	50	15	>250° C

TABLE 1 (continued)

10

Sample Number	Composition			Tx
	Те	Ge	Sb	
E-1038	40	45	15	>250° C
E-1039	45	40	15	>250° C
E-1051	50	35	15	208° C
E-1041	55	30	15	181° C
E-1044	60	25	15	178° C
E-1046	45	30	25	222° C
E-1047	47	33	20	222° C
E-1048	53	37	10	218° C
E-1049	36	39	5	201° C

On the basis of the experimental data, it is estimated that the thermal stability of optical films utilizing material of the present invention at 50° C. to be at least several decades.

[0041] Further experiments were conducted to determine the structure of one species of the claimed material. A bulk alloy having a nominal composition of Te51Ge40Sb9 and encompassed by the claims of the present invention was prepared. The bulk alloy was prepared by grinding together appropriate amounts of tellurium, germanium and antimony. This mixture was placed in a quartz ampule, which was subsequently evacuated and sealed. The ampule was heated at 850 C. for 1 1/2 hours, with a rocking motion used for agitation throughout the heating step. The alloy was cooled by a water quench, and the ampule then opened. It was then ground to a particle size of approximately 1/6 of a millimeter. A measured amount of the alloy was deposited by vacuum evaporation using a source temperature of approximately 520 C. The deposition was continued until the material in the deposition crucible was exhausted. As can be seen in Figure 6, it was found that the deposition rate versus time for this congruently state changeable material is linear, which is a necessary characteristic of a constant-composition sublimation (See U. S. Patent No. 4,621,032). A silicon wafer was exposed to the evaporant stream during the deposition. Figure 7 is an Auger electron spectroscopy profile which confirms that the composition of the deposited material is constant throughout the deposition.

[0042] The bulk alloy described above has two phases, as revealed by x-ray diffraction studies and electron dispersive spectroscopy. The major phase has a composition of Te₅₂Ge₃₇Sb₁₁, which can be considered, within experimental error, to be the same composition as that of the bulk alloy. Also present is a second, minor phase having a nominal composition Te₅₁Ge₄₄Sb₅. The two phases have substantially similar crystallization temperatures and kinetics. The results of Auger electron spectroscopy and electron dispersive spectroscopy for the major phase of the material are shown, respectively, in Figures 8 and 9. Auger electron spectroscopy is a par-

ticular useful analytical tool for thin films deposited from a bulk source. Because of its depth profile and capabilities, it is possible to determine the composition of a film as it is being eroded away by ion milling. Thus, not only can the composition of the film be determined, but it can be seen how the composition changes over the depth of the film. As can be seen from Figure 8, beyond the first few tens of angstroms (which reflects contaminants that are introduced to the surface during normal sampling handling and storage), the composition of the film remains remarkedly consistent over the entire depth thereof.

[0043] It is believed that there are other distinct compositions within the TAG ternary system that form crystals including all three elements and having a composition similar to the composition of the bulk material. For example, the following composition will consistently crystallize from materials having elemental ratios of Te: Ge:Sb in this vicinity:

Te51 Ge44 Sb5 Te51 Ge32 Sb17 Te51 Ge17 Sb32

Again, it is expected that materials of this composition will exhibit superior performance characteristics.

[0044] It is, of course, possible that other ratios of the elements within the TAG ternary system may meet the limitations of the claims appended hereto. Furthermore, while the present invention has been described with respect to optical memory systems, it is not limited to such systems; rather, it also finds application in any system where energy is applied to change the state of the material in a predictable manner. Specifically, the memory material of the present invention may be utilized in a system wherein electrical energy or thermal energy is applied to the material to effect the state change. While the invention has been described with reference to a particular exemplifications and embodiments thereof, it is not intended to be limited to the exemplification and embodiments described. Rather, it is the claims appended hereto and all reasonable equivalents thereof which define the true scope of the present invention.

Claims

 A state changeable memory alloy changeable from a first state to a second state in response to the input of energy, said alloy having a first detectable characteristic when in said first state and a second detectable characteristic when in said second state, and said first and second detectable characteristics selected from the group consisting of reflectivity, band gap, electrical resistance, optical absorption, magnetic susceptibility and thermal conductivity, wherein said first state is a disordered phase, said alloy being a chalcogenide material, and being

characterized in that

said alloy comprises at least three individually combined elements forming at least a ternary system, having a single phase first state and said second state comprises either

 a single phase second state of the same composition as said first state so that said first and said second state are chemically congruent,

or

(2) a plurality of second phases having similar crystallization temperatures and kinetics, including a main phase which is chemically congruent with said first phase.

A state changeable memory alloy as claimed in claim 1, said alloy comprising at least Te, Ge and Sb.

characterized in that

said alloy has the general formula $Te_aGe_bSb_c$, wherein a is between 47 and 53, and

- (i) b is between 31 and 36 and c is between 15 and 21, or
- (ii) b is between 15 and 21 and c is between 31 and 36. or
- (iii) b is between 35 and 49 and c is between 3 and 11.
- An alloy as claimed in claim 2, characterized in that said alloy has the general formula Te_aGe_bSb_c, wherein a is between 49 and 53, b is between 36 and 40 and c is between 7 and 11.
- An alloy as claimed in claim 2, characterized in that said alloy has the general formula Te_aGe_bSb_c, wherein a is between 47 and 53, b is between 43 and 48 and c is between 3 and 7.
- 5. An alloy as claimed in claim 2,

characterized in that

said alloy has the general formula ${\sf Te_aGe_bSb_c}$, wherein a is between 49 and 53 and b is between 35 and 43 and c is between 7 and 11.

50 6. An alloy as claimed in one of the preceding claims, characterized in that

said alloy has the formula $Te_aGe_bSb_c$ wherein a, b and c are selected such that, when said material is in the crystalline state, it is substantially entirely crystalline and includes a major portion which has the same composition as the material has when in the amorphous state and a minor portion which has the composition $Te_dGe_eSb_f$, wherein d, e and f are

15

20

35

45

50

not too far off a, b and c, respectively.

 An alloy as claimed in claim 6, characterized in that the differences between a and d, b and e and c and f, respectively, total no more than 16.

 A state changeable memory alloy as claimed in claim 1, characterized in that said alloy has the formula Te₅₀(GeX)₅₀ wherein X is Sn or Bi.

- An alloy as claimed in one of the preceding claims, characterized in that said first state is an amorphous state and said second state is a crystalline state.
- 10. An alloy as claimed in one of the preceding claims, characterized in that said alloy is capable of changing from said first state to said second state in response to the input of optical, electrical or thermal energy.
- 11. A data carrier having an alloy as claimed in one of the preceding claims, and including a substrate (11), a dielectric first encapsulating layer (21) on the substrate (11), a memory layer (31) on the dielectric first encapsulating layer (21) and a dielectric second encapsulating layer (41) atop the memory layer (31), wherein the memory layer (31) is a non-ablative, congruent state change memory layer consisting of said alloy.
- 12. A carrier as claimed in claim 11, characterized in that an antimony layer (35) is placed in between said memory layer (31) and said second encapsulating layer (41) for initiating crystallization in said memory layer (31) and to contribute to the total reflectivity.

Patentansprüche

1. Datenaufzeichnungslegierung mit modifizierbaren Zuständen, welches unter Energieeinwirkung von einem ersten Zustand in einen zweiten Zustand übergehen kann, wobei die Legierung im ersten Zustand eine erste erkennbare Eigenschaft und im zweiten Zustand eine zweite erkennbare Eigenschaft besitzt, und wobei jene erste und zweite Eigenschaft aus der Gruppe: Reflexionsvermögen, verbotener Bandabstand, elektrischer Widerstand, optische Absorption, magnetische Suszeptibilität, und Wärmeleitfähigkeit auswählbar sind, und der erste Zustand eine ungeordnete Phase ist, wobei die Legierung aus einem Chalcogenid besteht, dadurch gekennzeichnet, dass die Legierung zumindest drei individuell kombinierte Elemente umfasst, die ein tertiäres System bilden, mit einem ersten Zustand in Form einer Monophase und einem zweiten Zustand in Form von entweder

- (1) einer Monophase als zweiten Zustand, deren chemische Zusammensetzung zu der des ersten Zustands identisch ist, sodass der erste und der zweite Zustand chemisch kongruent sind, oder
- (2) einer Mehrzahl von zweiten Phasen mit im wesentlichen ähnlicher Kristallisierungskinetik und -temperatur mit einer Hauptphase die der besagten ersten Phase chemisch kongruent ist
- Legierung nach Anspruch 1, bestehend zumindest aus Te, Ge und Sb, dadurch gekennzeichnet, dass die Legierung der allgemeinen Formel Te_aGe_bSb_c entspricht, in der a zwischen 47 und 53 ist und
 - (i) b zwischen 31 und 36 und c zwischen 15 und 21 ist, oder
 - (ii) b zwischen 15 und 21 und c zwischen 31 und 36. oder
 - (iii) b zwischen 35 und 48 und c zwischen 3 und 11 ist.
- Legierung nach Anspruch 2, dadurch gekennzeichnet, dass die Legierung der allgemeinen Formel Te_aGe_bSb_c entspricht, wobei a zwischen 49 und 53, b zwischen 36 und 40 und c zwischen 7 und 11 ist.
- Legierung nach Anspruch 2, dadurch gekennzeichnet, dass die Legierung der allgemeinen Formel Te_aGe_bSb_c entspricht, wobei a zwischen 47 und 53, b zwischen 43 und 48 und c zwischen 3 und 7 ist.
- Legierung nach Anspruch 2, dadurch gekennzeichnet, dass die Legierung der allgemeinen Formel Te_aGe_bSb_c entspricht, wobei a zwischen 49 und 53, b zwischen 35 und 43 und c zwischen 7 und 11 ist.
- 6. Legierung nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass die Legierung der allgemeinen Formel Te_aGe_bSb_c entspricht, dass a, b und c derart ausgewählt sind, dass die Legierung im kristallinen Zustand im wesentlichen vollständig kristallin ist, und eine dominierende Partie aufweist, deren Zusammensetzung mit der im amorphen Zustand gleich ist, und mit einer minoritären Partie der Zusammensetzung Te_d-Ge_eSb_f, wobei d, e und f von a, b und c nicht sehr

unterschiedlich sind.

- Legierung nach Anspruch 6, dadurch gekennzeichnet, dass die Unterschiede von jeweils a und d, b und e sowie c und f nicht grösser sind als 16.
- Datenaufzeichnungslegierung mit modifizierbaren Zuständen nach Anspruch 1, dadurch gekennzeichnet, dass die Legierung der allgemeinen Formel Te₅₀(GeX)₅₀ entspricht, wobei X Sn oder Bi ist.
- Legierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Zustand ein amorpher Zustand und der zweite Zustand ein kristalliner Zustand ist.
- 10. Legierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Legierung f\u00e4hig ist von einem ersten Zustand zu einem zweiten Zustand \u00fcberzugehen unter Einbringung von optischer, elektrischer oder thermischer Energie.
- 11. Datenträger mit einer Legierung nach einem der vorhergehenden Ansprüche, mit einem Substrat (11), einer ersten dielektrischen Umgebungsschicht (21) auf dem Substrat, einer Speicherschicht (31) auf der ersten dielektrischen Umgebungsschicht (21), einer zweiten Umgebungsschicht (41) über der Speicherschicht (31), wobei die Speicherschicht (31) eine kongruente, nicht ablative, aus der Legierung bestehende Speicherschicht mit modifizierbaren Zuständen ist.
- 12. Datenträger nach Anspruch 11, dadurch gekennzeichnet, dass eine Schicht aus Antimon (35) zwischen der Speicherschicht (31) und der zweiten umgebenden Schicht (41) vorgesehen ist, zur Favorisierung des Kristallisierungsvorgangs in der Speicherschicht (31) und zur Erhöhung des Gesamtreflexionsvermögens.

Revendications

tible de passer d'un premier état à un second état en réaction à l'injection d'énergie, ledit alliage ayant une première caractéristique détectable dans ledit premier état et une seconde caractéristique détectable dans ledit second état, ladite première et ladite seconde caractéristiques détectables sont sélectionnées parmi le groupe composé comme suit : pouvoir réfléchissant, largeur de bande interdite, résistance électrique, absorption optique, susceptibilité magnétique et conductivité thermique, tandis que ledit premier état est une phase désordonnée, ledit alliage étant un ma-

1. Alliage d'emmagasinage d'état modifiable, suscep-

tériau du type chalcogenure, caractérisé en ce que ledit alliage comporte au moins trois éléments combinés individuellement, formant un système tertiaire, ayant en tant que pre-

mier état une phase unique, ledit second état comportant soit

(1) un second état en phase unique dont la composition chimique est identique à celle du premier état, de sorte que les premier et second états sont chimiquement congruent, ou

(2) une pluralité de phases secondaires ayant des cinétiques et des températures de cristallisation similaires, y inclus une phase principale dont la composition est chimiquement congruente à ladite première phase.

2. Alliage d'emmagasinage d'état modifiable selon la revendication 1,

caractérisé en ce, ledit alliage est de la formule générale ${\rm Te_aGe_bSb_c}$, où a est compris entre 47 et 53 et

(i) b est compris entre 31 et 36 et c est compris entre 15 et 21,

ou

(ii) b est compris entre 15 et 21 et c est compris entre 31 et 36,

ou

(iii) b est compris entre 35 et 48 et c est compris entre 3 et 11.

3. Alliage selon la revendication 2,

caractérisé en ce que

ledit alliage est de la formule générale $\mathrm{Te_aGe_bSb_c}$, où a est compris entre 49 et 53, b est compris entre 36 et 40 et c est compris entre 7 et 11.

4. Alliage selon la revendication 2,

caractérisé en ce que

ledit alliage est de la formule générale Te_aGe_bSb_c, où a est compris entre 47 et 53, b est compris entre 43 et 48 et c est compris entre 3 et 7.

5. Alliage selon la revendication 2,

caractérisé en ce que

ledit alliage est de la formule générale Te_aGe_bSb_c, où a est compris entre 49 et 53, b est compris entre 35 et 43 et c est compris entre 7 et 11.

50 6. Alliage selon l'une des revendications précédentes caractérisé en ce que

ledit alliage est de la formule Te_aGe_bSb_c où a, b e c sont sélectionnés pour que, avec ledit matériau à l'état cristallin, il soit plus ou moins entièrement cristallin et comprenne une portion majoritaire de la même composition que le matériau à l'état amorphe et une portion minoritaire de la composition Te_dGe_eSb_t, où d, e et f ne sont pas trop éloignés respective-

45

ment de a, b et c.

7.	Alliage selon la revendication 6,	
	caractérisé en ce que	
	les différences entre a et d, b et e, et c et f, respec-	5
	tivement ne dénassent nas 16	

Alliage d'emmagasinage d'état modifiable selon la revendication 1,
 caractérisé en ce que.
 ledit alliage est de la formule Te₅₀(GeX)₅₀ où X est
 Sn ou Bi

9. Alliage selon l'une des revendications précédentes, caractérisé en ce que
15 ledit premier état est un état amorphe et ledit second état est un état cristallin.

10. Alliage selon l'une des revendications précédentes, caractérisé en ce que ledit alliage est susceptible de passer d'un premier état à un second état en réaction à l'injection d'énergie optique, électrique ou thermique.

11. Support de données comportant un alliage selon l'une des revendications précédentes, comprenant un substrat (11) une première couche enrobante diélectrique (21) sur le substrat (11), une couche d'emmagasinage (31) sur la première couche enrobante diélectrique (21) et une seconde couche enrobante diélectrique (41) au sommet de la couche d'emmagasinage (31), tandis que la couche d'emmagasinage (31) est une couche d'emmagasinage d'état modifiable, congruente et non ablative, constituée dudit alliage.

12. Support selon la revendication 11, caractérisé en ce que

une couche d'antimoine (35) est placée entre ladite couche d'emmagasinage (31) et ladite seconde couche enrobante (41) pour provoquer la cristallisation dans ladite couche d'emmagasinage (31) et contribuer au pouvoir réfléchissant total.

50

45

55

<u>FIG-l</u>

FIG-2

EP 0 499 273 B1

FIG - 5

EP 0 499 273 B1

This Page Blank (uspto)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS
| IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
| FADED TEXT OR DRAWING
| BLURRED OR ILLEGIBLE TEXT OR DRAWING
| SKEWED/SLANTED IMAGES
| COLOR OR BLACK AND WHITE PHOTOGRAPHS
| GRAY SCALE DOCUMENTS
| LINES OR MARKS ON ORIGINAL DOCUMENT
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
| OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (USpto)