GAME PLAYING

CHAPTER 6

Outline

- \Diamond Games
- \Diamond Perfect play
 - minimax decisions
 - α – β pruning
- ♦ Resource limits and approximate evaluation
- \Diamond Games of chance
- ♦ Games of imperfect information

In a multiagent environments,

- Each agent needs to consider the actions of other agents and how they affect its own welfare.
- The unpredictability of these other agents can introduce contingencies into the agent's problem-solving process.
- In this chapter we cover competitive environments, in which the agents' goals are in conflict, giving rise to adversarial search problems—often known as games.

Mathematical game theory, a branch of economics, views any multiagent environment as a game, provided that the impact of each agent on the others is "significant," regardless of whether the agents are cooperative or competitive.1 In AI, the most common games are of a rather specialized kind—what game theorists call deterministic, turn-taking, two-player, zero-sum games of perfect information (such as chess). In our terminology, this means deterministic, fully observable environments in which two agents act alternately and in which the utility values at the end of the game are always equal and opposite. For example, if one player wins a game of chess, the other player necessarily loses. It is this opposition between the agents' utility functions that makes the situation adversarial.

Games vs. search problems

"Unpredictable" opponent \Rightarrow solution is a strategy specifying a move for every possible opponent reply

Time limits \Rightarrow unlikely to find goal, must approximate

Plan of attack:

- Computer considers possible lines of play (Babbage, 1846)
- Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
- Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
- First chess program (Turing, 1951)
- Machine learning to improve evaluation accuracy (Samuel, 1952–57)
- Pruning to allow deeper search (McCarthy, 1956)

Types of games

perfect information

imperfect information

deterministic	chance
chess, checkers,	backgammon
go, othello	monopoly
battleships,	bridge, poker, scrabble
blind tictactoe	nuclear war

We first consider games with two players, whom we call MAX and MIN for reasons that will soon become obvious. MAX moves first, and then they take turns moving until the game is over. At the end of the game, points are awarded to the winning player and penalties are given to the loser. A game can be formally defined as a kind of search problem with the following elements:

- S_0 : The **initial state**, which specifies how the game is set up at the start.
- PLAYER(s): Defines which player has the move in a state.
- ACTIONS(s): Returns the set of legal moves in a state.
- RESULT(s, a): The **transition model**, which defines the result of a move.
- TERMINAL-TEST(s): A **terminal test**, which is true when the game is over and false otherwise. States where the game has ended are called **terminal states**.
- UTILITY (s, p): A utility function (also called an objective function or payoff function), defines the final numeric value for a game that ends in terminal state s for a player p. In chess, the outcome is a win, loss, or draw, with values +1, 0, or ½. Some games have a wider variety of possible outcomes; the payoffs in backgammon range from 0 to +192. A zero-sum game is (confusingly) defined as one where the total payoff to all players is the same for every instance of the game. Chess is zero-sum because every game has payoff of either 0 + 1, 1 + 0 or ½ + ½. "Constant-sum" would have been a better term, but zero-sum is traditional and makes sense if you imagine each player is charged an entry fee of ½.

TERMINAL TEST
TERMINAL STATES

Game tree (2-player, deterministic, turns)

Figure 5.2 A two-ply game tree. The \triangle nodes are "MAX nodes," in which it is MAX's turn to move, and the ∇ nodes are "MIN nodes." The terminal nodes show the utility values for MAX; the other nodes are labeled with their minimax values. MAX's best move at the root is a_1 , because it leads to the state with the highest minimax value, and MIN's best reply is b_1 , because it leads to the state with the lowest minimax value.

Even a simple game like tic-tac-toe is too complex for us to draw the entire game tree on one page, so we will switch to the trivial game in above Figure. The possible moves for MAX at the root node are labeled a1, a2, and a3. The possible replies to a1 for MIN are b1, b2, b3, and so on. This particular game ends after one move each by MAX and MIN. (In game parlance, we say that this tree is one move deep, consisting of two half-moves, each of which is called a ply.) The utilities of PLY the terminal states in this game range from 2 to 14.

Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value = best achievable payoff against best play

Given a game tree, the optimal strategy can be determined from the **minimax value** of each node, which we write as MINIMAX(n). The minimax value of a node is the utility (for MAX) of being in the corresponding state, assuming that both players play optimally from there to the end of the game. Obviously, the minimax value of a terminal state is just its utility. Furthermore, given a choice, MAX prefers to move to a state of maximum value, whereas MIN prefers a state of minimum value. So we have the following:

```
\begin{aligned} & \text{MINIMAX}(s) = \\ & \begin{cases} & \text{UTILITY}(s) & \text{if Terminal-Test}(s) \\ & \max_{a \in Actions(s)} \text{MINIMAX}(\text{Result}(s, a)) & \text{if Player}(s) = \text{MAX} \\ & \min_{a \in Actions(s)} \text{MINIMAX}(\text{Result}(s, a)) & \text{if Player}(s) = \text{MIN} \end{cases} \end{aligned}
```


Figure 5.2 A two-ply game tree. The \triangle nodes are "MAX nodes," in which it is MAX's turn to move, and the ∇ nodes are "MIN nodes." The terminal nodes show the utility values for MAX; the other nodes are labeled with their minimax values. MAX's best move at the root is a_1 , because it leads to the state with the highest minimax value, and MIN's best reply is b_1 , because it leads to the state with the lowest minimax value.

Minimax algorithm

```
function MINIMAX-DECISION(state) returns an action
   inputs: state, current state in game
   return the a in Actions(state) maximizing Min-Value(Result(a, state))
function Max-Value(state) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for a, s in Successors(state) do v \leftarrow \text{Max}(v, \text{Min-Value}(s))
   return v
function MIN-VALUE(state) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow \infty
   for a, s in Successors(state) do v \leftarrow \text{Min}(v, \text{Max-Value}(s))
   return v
```

Complete??

Complete?? Only if tree is finite (chess has specific rules for this).

NB a finite strategy can exist even in an infinite tree!

Optimal??

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity??

This definition of optimal play for MAX assumes that MIN also plays optimally—it maximizes the worst-case outcome for MAX. What if MIN does not play optimally? Then it is easy to show that MAX will do even better. Other strategies against suboptimal opponents may do better than the minimax strategy, but these strategies necessarily do worse against optimal opponents.

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? $O(b^m)$

Space complexity??

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? $O(b^m)$

Space complexity?? O(bm) (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games \Rightarrow exact solution completely infeasible

But do we need to explore every path?

Why is it called $\alpha - \beta$?

 α is the best value (to MAX) found so far off the current path If V is worse than α , MAX will avoid it \Rightarrow prune that branch Define β similarly for MIN

The α - β algorithm

```
function ALPHA-BETA-DECISION(state) returns an action
   return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(a, state))
function Max-Value (state, \alpha, \beta) returns a utility value
   inputs: state, current state in game
             \alpha, the value of the best alternative for MAX along the path to state
             \beta, the value of the best alternative for MIN along the path to state
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for a, s in Successors(state) do
      v \leftarrow \text{Max}(v, \text{Min-Value}(s, \alpha, \beta))
      if v \geq \beta then return v
      \alpha \leftarrow \text{Max}(\alpha, v)
   return v
function MIN-VALUE(state, \alpha, \beta) returns a utility value
   same as MAX-VALUE but with roles of \alpha, \beta reversed
```

Properties of α - β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With "perfect ordering," time complexity = $O(b^{m/2})$ \Rightarrow **doubles** solvable depth

A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

Unfortunately, 35^{50} is still impossible!

The effectiveness of alpha-beta pruning is highly dependent on the order in which the states are examined. For example, in Figure (previous slides), we could not prune any successors of D at all because the worst successors (from the point of view of MIN) were generated first. If the third successor of D had been generated first, we would have been able to prune the other two. This suggests that it might be worthwhile to try to examine first the successors that are likely to be best.

Resource limits

Standard approach:

- Use CUTOFF-TEST instead of TERMINAL-TEST e.g., depth limit (perhaps add quiescence search)
- Use EVAL instead of UTILITY
 i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10^4 nodes/second

- $\Rightarrow 10^6$ nodes per move $\approx 35^{8/2}$
- $\Rightarrow \alpha$ - β reaches depth 8 \Rightarrow pretty good chess program

Quiescence search --- Human players usually have enough intuition to decide whether to abandon a bad-looking move, or search a promising move to a great depth. A quiescence search attempts to emulate this behavior by instructing a computer to search "interesting" positions to a greater depth than "quiet" ones (hence its name) to make sure there are no hidden traps and, usually equivalently, to get a better estimate of its value.

Evaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, typically linear weighted sum of features

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

e.g., $w_1 = 9$ with

 $f_1(s) =$ (number of white queens) – (number of black queens), etc.

Digression: Exact values don't matter

Behaviour is preserved under any monotonic transformation of EVAL

Only the order matters:

payoff in deterministic games acts as an ordinal utility function

A monotonic transformation is a way of transforming one set of numbers into another set of numbers in a way that preserves the order of the numbers.

In economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. The ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask how much better it is.

23

Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are too good.

Go: human champions refuse to compete against computers, who are too bad. In go, b>300, so most programs use pattern knowledge bases to suggest plausible moves.

Nondeterministic games: backgammon

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling Simplified example with coin-flipping:

Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play

Just like MINIMAX, except we must also handle chance nodes:

```
EXPECTIMINIMAX(s) =
```

```
\begin{cases} \text{UTILITY}(s) & \text{if TERMINAL-TEST}(s) \\ \max_a \text{EXPECTIMINIMAX}(\text{Result}(s,a)) & \text{if PLAYER}(s) = \text{MAX} \\ \min_a \text{EXPECTIMINIMAX}(\text{Result}(s,a)) & \text{if PLAYER}(s) = \text{MIN} \\ \sum_r P(r) \text{EXPECTIMINIMAX}(\text{Result}(s,r)) & \text{if PLAYER}(s) = \text{CHANCE} \end{cases}
```

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice Backgammon \approx 20 legal moves (can be 6,000 with 1-1 roll)

depth
$$4 = 20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$$

As depth increases, probability of reaching a given node shrinks \Rightarrow value of lookahead is diminished

 α – β pruning is much less effective

 $\begin{aligned} TDGAMMON \text{ uses depth-2 search} &+ \text{ very good } Eval\\ &\approx \text{world-champion level} \end{aligned}$

Digression: Exact values DO matter

Behaviour is preserved only by positive linear transformation of Eval

Hence Eval should be proportional to the expected payoff

Games of imperfect information

E.g., card games, where opponent's initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game*

Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals*

Special case: if an action is optimal for all deals, it's optimal.*

GIB, current best bridge program, approximates this idea by

- 1) generating 100 deals consistent with bidding information
- 2) picking the action that wins most tricks on average

Example

Four-card bridge/whist/hearts hand, Max to play first

Example

Four-card bridge/whist/hearts hand, Max to play first

Example

Four-card bridge/whist/hearts hand, MAX to play first

In 3rd case no idea about the symbol of the card 1st card (4 dimond or hearts?)!

This tree explain what will happen after 3rd move- in left most path - its MIN's move and he put 4 dimond, so MAX will lose as he doesn't have diamond - so -1. In Next move MAX will win as MIN has 3 ♣ - eventually in total 0 for this path. In 2nd path, MAX will win both as MIN has 4 ♥. In 3rd path MAX will win both so +2 in total. Same for right side!!

Commonsense example

Road A leads to a small heap of gold pieces Road B leads to a fork:

take the left fork and you'll find a mound of jewels; take the right fork and you'll be run over by a bus.

Commonsense example

Road A leads to a small heap of gold pieces

Road B leads to a fork:

take the left fork and you'll find a mound of jewels; take the right fork and you'll be run over by a bus.

Road A leads to a small heap of gold pieces

Road B leads to a fork:

take the left fork and you'll be run over by a bus; take the right fork and you'll find a mound of jewels.

Commonsense example

Road A leads to a small heap of gold pieces

Road B leads to a fork:

take the left fork and you'll find a mound of jewels; take the right fork and you'll be run over by a bus.

Road A leads to a small heap of gold pieces

Road B leads to a fork:

take the left fork and you'll be run over by a bus; take the right fork and you'll find a mound of jewels.

Road A leads to a small heap of gold pieces

Road B leads to a fork:

guess correctly and you'll find a mound of jewels; guess incorrectly and you'll be run over by a bus.

Proper analysis

* Intuition that the value of an action is the average of its values in all actual states is **WRONG**

With partial observability, value of an action depends on the information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as

- ♦ Acting to obtain information
- ♦ Signalling to one's partner
- ♦ Acting randomly to minimize information disclosure

^{*} On Day 1, B is the right choice; on Day 2, B is the right choice; on Day 3, the situation is the same as either Day 1 or Day 2, so B must still be the right choice. --- eventual death!!

Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about Al

- \Diamond perfection is unattainable \Rightarrow must approximate
- \diamondsuit good idea to think about what to think about
- \diamondsuit uncertainty constrains the assignment of values to states
- ♦ optimal decisions depend on information state, not real state

Games are to Al as grand prix racing is to automobile design

The pseudo-code for depth limited minimax with alpha—beta pruning is as follows:[13]	
Implementations of alpha—beta pruning can often be delineated by whether they are "fail-soft," or "fail-hard". With soft alpha—beta, the alphabeta function may return values (v) that exceed ($v < \alpha$ or $v > \beta$) the α and β bounds set	
its function call arguments. In comparison, fail-hard alpha—beta limits its function return value into the inclusive ra	-
of α and β . The main difference between fail-soft and fail-hard implementations is whether α and β are updated	90
before or after the cutoff check. If they are updated before the check, then they can exceed initial bounds and the	e
algorithm is fail-soft.	

```
function alphabeta(node, depth, \alpha, \beta, maximizingPlayer) is
    if depth = 0 or node is a terminal node then
         return the heuristic value of node
    if maximizingPlayer then
         value := -∞
         for each child of node do
             value := max(value, alphabeta(child, depth - 1, \alpha, \beta, FALSE))
             if value ≥ β then
                  break (* β cutoff *)
             \alpha := \max(\alpha, \text{ value})
         return value
    else
         value := +∞
         for each child of node do
             value := min(value, alphabeta(child, depth - 1, \alpha, \beta, TRUE))
             if value \leq \alpha then
                  break (* α cutoff *)
             \beta := \min(\beta, \text{ value})
         return value
```

```
(* Initial call *)
alphabeta(origin, depth, -∞, +∞, TRUE)
```

The following pseudocode illustrates fail-soft alpha-beta.

```
function alphabeta(node, depth, \alpha, \beta, maximizingPlayer) is
    if depth = 0 or node is a terminal node then
         return the heuristic value of node
    if maximizingPlayer then
         value := -∞
         for each child of node do
              value := max(value, alphabeta(child, depth - 1, \alpha, \beta, FALSE))
             \alpha := \max(\alpha, \text{ value})
              if value \geq \beta then
                  break (* β cutoff *)
         return value
    else
         value := +∞
         for each child of node do
              value := min(value, alphabeta(child, depth - 1, \alpha, \beta, TRUE))
              \beta := \min(\beta, \text{ value})
              if value \leq \alpha then
                  break (* α cutoff *)
         return value
```

```
(* Initial call *)
alphabeta(origin, depth, -∞, +∞, TRUE)
```