Problem 1

Let $X = \{0, 1\}^n$. Show that the Hamming distance:

$$d_{H}: X \times X \to [0, \infty)$$

$$d_{H}\left((x_{j})_{j=1}^{n}, (y_{j})_{j=1}^{n}\right) = \left|\left\{j \mid x_{j} \neq y_{j}\right\}\right|$$

defines a metric on X.

Proof:

• Symmetry:

$$d_{H}\left((x_{j})_{j=1}^{n}, (y_{j})_{j=1}^{n}\right) = \left|\left\{j \mid x_{j} \neq y_{j}\right\}\right|$$

$$= \left|\left\{j \mid y_{j} \neq x_{j}\right\}\right|$$

$$= d_{H}\left((y_{j})_{j=1}^{n}, (x_{j})_{j=1}^{n}\right)$$

- Definiteness: it is only the case that $d_H(x_j, y_j) = 0$ if $x_j = y_j$ for all j, by the definition of the distance.
- Similarly, since $x_i = x_i$ for all j, $d_H(x_i, x_i) = 0$.
- Let $(x_j)_j$, $(y_j)_j$, and $(z_j)_j$ be sequences of bits. The set $\{j \mid x_j \neq z_j\}$ is formed by taking all the values $\{j \mid x_j \neq y_j\}$ along with $\{j \mid y_j \neq z_j\}$, net of particular indices where $x_j = z_j$, but $x_j \neq y_j$. Therefore,

$$d(x,z) \le d(x,y) + d(y,z).$$

Problem 2

If $\|\cdot\|$ are equivalent norms on a vector space V, show that the induced metrics d and d' are equivalent.

Proof: Let $\|\cdot\|$ and $\|\cdot\|'$ be equivalent norms. Then, $\exists c_1, c_2 \in \mathbb{R}$ such that $\|v - w\|' \le c_1 \|v - w\|$ and $\|v - w\| \le c_2 \|v - w\|'$. However, this is the exact same statement as $d(v, w) \le c_1 d'(v, w)$ and $d'(v, w) \le c_2 d'(v, w)$. Thus, d and d' are equivalent metrics.

Problem 3

Let $\{X_k, d_k\}$ be a sequence of metric spaces with uniformly bounded metrics. Let

$$X:=\prod_{k\geq 1}X_k$$

denote the product.

(a) Show that

$$D: X \times X \to [0, \infty)$$
$$D(x, y) := \sum_{k \ge 1} 2^{-k} d_k(x_k, y_k)$$

defines a metric on X.

(b) Consider the case where $\{X_k\} = \{0,2\}$ and $d_k(a,b) = |a-b|$ for every $k \ge 1$. We get the abstract Cantor set

$$\Delta := \prod_{k \ge 1} \{0, 2\};$$

$$\Delta := \prod_{k \ge 1} \{0, 2\};$$

$$D(x, y) := \sum_{k=1}^{\infty} 3^{-k} |x_k - y_k|.$$

Prove that D(x, z) = D(y, z) implies x = y.

Proof:

(i) Let D be defined as above. Then, $D((x_k)_k, (x_k)_k)$ is a sum of $d_k(x_k, x_k)$, all uniformly zero, meaning $D((x_k)_k, (x_k)_k) = 0$.

Similarly, $D((x_k)_k, (y_k)_k) = 0$ implies that $d_k(x_k, y_k) = 0$ for all x_k, y_k . Since d_k is a metric, this means $x_k = y_k$ for all k, implying that $(x_k)_k = (y_k)_k$.

Additionally, $d_k(x_k, y_k) = d_k(y_k, x_k)$, it is the case that $D((x_k)_k, (y_k)_k) = D((y_k)_k, (x_k)_k)$.

Finally, we must show the triangle inequality:

$$D((x_k)_k, (z_k)_k) = \sum_{k=1}^{\infty} 2^{-k} d_k(x_k, z_k)$$

$$\leq \sum_{k=1}^{\infty} 2^{-k} (d_k(x_k, y_k) + d(y_k, z_k))$$

$$= \sum_{k=1}^{\infty} 2^{-k} d_k(x_k, y_k) + \sum_{k=1}^{\infty} d(y_k, z_k)$$

$$= D((x_k)_k, (y_k)_k) + D((y_k)_k, (z_k)_k).$$

(ii) Suppose $x \neq y$. Let ℓ denote the smallest index where $x_{\ell} \neq y_{\ell}$. Suppose without loss of generality that $x_{\ell} = 2$ and $y_{\ell} = 0$. Then, $||x_{\ell} - z_{\ell}|| - |y_{\ell} - z_{\ell}|| = 2 \cdot 3^{-\ell}$. Additionally,

$$0 \le \sum_{k=\ell+1}^{\infty} 3^{-k} |x_k - z_k|$$

$$\le \sum_{k=\ell+1}^{\infty} 3^{-k} (2)$$

$$= \frac{2}{3\ell+1}$$

$$< \frac{2}{2\ell}.$$

Thus, $D(x, z) \neq D(y, z)$.

Problem 4

Let $(V, \|\cdot\|)$ be a normed space, and suppose $E \subseteq V$. Show that the following are equivalent:

- (1) E is bounded diam $(E) < \infty$;
- (2) $\sup_{v \in E} ||v|| < \infty$;
- (3) there is an r > 0 such that $E \subseteq B(0, r)$.

Proof: (i) \Rightarrow (ii): Let *E* be bounded. Then,

$$\begin{split} ||v|| - ||w|| &\leq ||v - w|| \\ \sup_{v, w \in E} |||v|| - ||w|| &\leq \sup_{v, w \in E} ||v - w|| \\ \sup_{v \in E} ||v|| - \inf_{w \in E} ||w|| &\leq c \\ \sup_{v \in E} ||v|| &\leq c + \inf_{w \in E} ||w|| \,. \end{split}$$

- (ii) \Rightarrow (iii): Since, for $v \in E$, $\sup \|v\| < \infty$, if we set $r = \sup \|v\| + 1$, then $v \in B(0, r)$, meaning $E \subseteq B(0, r)$.
- (iii) \Rightarrow (i): Let E be such that $E \subseteq B(0,r)$ for some r. Then, $\forall v,w \in B(0,r)$, $\|v-w\| \leq 2r$, meaning that $\forall v,w \in E, \|v-w\| \leq 2r$, meaning diam $(E) < \infty$.

Problem 5

Let (X, d) be a metric space and suppose $A \subseteq X$. Show:

- (i) $\overline{A^c} = (A^\circ)^c$
- (ii) $(\overline{A})^c = (A^c)^\circ$

Proof:

- (i) We have previously established that $\overline{A^c} \subseteq (A^\circ)^c$. Let $x \in (A^\circ)^c$. Then, $x \notin A^\circ$, meaning $\forall \delta > 0$, $U(x, \delta) \cap A^c \neq \emptyset$. Thus, $x \in \overline{A^c}$.
- (ii) Let $x \in \overline{A}^c$. Then, $x \notin \overline{A}$, meaning $\exists \delta > 0$ such that $U(x, \delta) \cap A = \emptyset$. Thus, $U(x, \delta) \subseteq A^c$, meaning $x \in (A^c)^\circ$.

Let $x \in (A^c)^\circ$. Then, $\exists \delta > 0$ such that $U(x, \delta) \subseteq A^c$. Therefore, $U(x, \delta) \cap A = \emptyset$, meaning $x \notin \overline{A}$, so $x \in \overline{A}^c$.

Problem 6

In any metric space, show that open balls are open, closed balls are closed, and spheres are closed. Moreover, in a normed space, show that $\partial U(v,r) = \partial B(v,r) = S(v,r)$.

Proof:

- (i) Let $\delta > 0$, and $A = U(x, \delta)$ for some $x \in X$. Then, for any $y \in A$, set $\varepsilon = \min\{d(x, y), \delta d(x, y)\}$. Then, $U(y, \varepsilon) \subseteq A$.
- (ii) Let $M = B(x, \delta)$. Let $y \in M^c$. Set $\varepsilon = d(x, y) \delta$. Then, $U(y, \varepsilon) \subseteq M^c$, meaning M^c is open, and M is thus closed.
- (iii) Let $A = S(x, \delta)$ for some $\delta > 0$. Then, $A^c = U(x, \delta) \cup (B(x, \delta))^c$, meaning A^c is a union of open sets, which is open. Thus, A is closed.
- (iv) We have previously established that, in a normed space, $\overline{U(v,r)} = B(v,r)$. Therefore,

$$\partial U(v,r) = \overline{U(v,r)} \setminus U(v,r)^{\circ}$$

$$= \{x \mid d(x,v) \le r\} \setminus \{x \mid d(x,v) < r\}$$

$$= \{x \mid d(x,v) = r\}$$

$$= S(v,r).$$

Similarly, in a normed vector space, $B(v, r)^{\circ} = U(v, r)$. Therefore,

$$\partial B(v,r) = \overline{B(v,r)} \setminus B(v,r)^{\circ}$$

$$= \{x \mid d(x,v) \le r\} \setminus \{x \mid d(x,v) < r\}$$

$$= \{x \mid d(x,v) = r\}$$

$$= S(v,r).$$

Problem 7

Let (X, d) be a metric space, and suppose $A \subseteq X$. Show that the following are equivalent:

- (i) A is dense in X;
- (ii) For all $U \in \tau_X$, $U \cap A \neq \emptyset$;
- (iii) For all $x \in X$ and for all $\varepsilon > 0$, $U(x, \varepsilon) \cap A \neq \emptyset$;
- (iv) For all $x \in X$ and for all $\varepsilon > 0$, there is an $a \in A$ with $d(x, a) < \varepsilon$.

Proof:

- (i) \Leftrightarrow (iii): $\overline{A} = X \Leftrightarrow \forall x \in \overline{A}, \forall \varepsilon > 0, U(x, \varepsilon) \cap A \neq \emptyset \Leftrightarrow \forall x \in X, \forall \varepsilon > 0, U(x, \varepsilon) \cap A \neq \emptyset$.
- $\text{(iii)} \Leftrightarrow \text{(iv)} \colon \forall x \in X, \forall \varepsilon > 0, U(x, \varepsilon) \cap A \neq \emptyset \Leftrightarrow \forall x \in X, \exists a \in A \ni a \in U(x, \varepsilon) \Leftrightarrow \forall x \in x, \exists a \in a \ni d(x, a) < \varepsilon.$
- (iii) \Rightarrow (ii): Suppose $\forall x \in x, U(x, \varepsilon) \cap A \neq \emptyset$. Then, since $U(x, \varepsilon) \subseteq U$ for some $U \in \tau_X$, it is the case that $U \cap A \neq \emptyset$.
- (ii) \Rightarrow (iii): Since $U(x,\varepsilon) \in \tau_X$, it is the case that for any $x \in X$ and any $\varepsilon > 0$, $U(x,\varepsilon) \cap A \neq \emptyset$.

Problem 8

Let $U \subseteq \mathbb{R}$ be an open set. For each $x \in U$, we put

$$I_x := \bigcup \{(a, b) \mid -\infty \le a < b \le \infty, x \in (a, b) \subseteq U\}.$$

- (i) Show that I_x is an open interval contained in U with $x \in I_x$.
- (ii) Given $x, y \in U$, show that $I_X = I_V$ or $I_X \cap I_V = \emptyset$.
- (iii) Prove that $U = \bigsqcup_{i \in J} I_j$, where J is a countable set and I_j are open intervals.

Proof of (i): By construction, $x \in I_x$, as $x \in (a, b)$ for all (a, b) that satisfy inclusion into I_x . Additionally, since $x \in U$, $\exists \delta_x$ such that $(x - \delta_x, x + \delta_x) \subseteq U$. Since I_x is the union of all such intervals, it must be the case that $(x - \delta_x, x + \delta_x) \subseteq I_x$, meaning I_x is an interval by the characterization of intervals.

Proof of (ii): Suppose that $\exists a_1, b_1$ such that $x \in (a_1, b_1)$ and $y \in (a_1, b_1)$. Then, it must be the case that $(a_1, b_1) \subseteq I_X$ and $(a_1, b_1) \subseteq I_Y$. Thus, $I_X \subseteq I_Y$ and $I_Y \subseteq I_X$, meaning $I_X = I_Y$.

If $\nexists (a, b)$ that satisfy the condition, then it must be the case that $\exists \delta_1$ and δ_2 such that $(x - \delta_1, x + \delta_1) \subseteq U$ and $(y - \delta_2, y + \delta_2) \subseteq U$, but $(x - \delta_1, x + \delta_1) \cap (y - \delta_2, y + \delta_2) = \emptyset$. Therefore, $I_y \cap I_x = \emptyset$.

Problem 9

Show that c_0 with $\|\cdot\|_{\mathcal{U}}$ is separable.

Proof: Let $z \in c_0$. Set $\varepsilon_1 > 0$, then finding N_1 large such that for all $n > N_1$, $z_n < \varepsilon_1$. Set $z' \in c_{00}$ to be equal to z on $1, \ldots, N_1$ and equal to 0 for all $n > N_1$.

Recall that for

$$E_n = \left\{ \sum_{k=1}^n \alpha_k e_k \mid \alpha_k \in \mathbb{Q} \right\},$$

$$E = \left\{ \int_{-\infty}^{\infty} E_n \right\},$$

E is dense in c_{00} , meaning that there exists some $w \in c_{00}$ such that $||z' - w|| < \varepsilon$ for any $\varepsilon > 0$. However, since z' = z for all n from $1, \ldots, N_1$, and the index of $||z||_{u}$ is contained in $1, \ldots, N_1$, this means $||z - w|| < \varepsilon$, meaning E is dense in c_0 .

Since E is countable, this means c_0 is countable.

Problem 10

Let $\mathcal C$ denote the Cantor set. Show that $\mathcal C$ is nowhere dense.

Proof: We know that C is closed, meaning all we need show is that $C^0 = \emptyset$.

Suppose toward contradiction that \mathcal{C}^0 is not empty. Then, $\exists x \in \mathcal{C}$ and $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subseteq \mathcal{C}$.

Find m so large such that $3^{-m} < \varepsilon$. Then, $(x - \varepsilon, x + \varepsilon)$ must be contained in a subinterval with length $\frac{1}{3^m}$. However, $2\varepsilon > \frac{1}{3^m}$, and every subinterval in the element C_m has length $\frac{1}{3^m}$.