Visión por Computador

Tatiana López Guevara Universidad Tecnológica de Pereira

Abril 27 de 2013

Problema 1

Demuestre que la intersección de 2 líneas l y l' en 2D está dada por:

$$x = l \times l'$$

Solución

Como el punto x pertenece a ambas líneas l y l', se cumple que:

$$x^T l = 0$$

$$x^T l' = 0$$
(1)

Al reemplazar en 1 se debe seguir cumpliendo la igualdad:

$$(l \times l')^T l = 0 (2)$$

$$(l \times l')^T l' = 0 \tag{3}$$

Sea $l = (l_a, l_b, 1)$ y $l' = (l_c, l_d, 1)$.

$$x^{T} = \begin{vmatrix} i & j & k \\ l_{a} & l_{b} & 1 \\ l_{c} & l_{d} & 1 \end{vmatrix}^{T} = (l_{b} - l_{d}, l_{c} - l_{a}, l_{a}l_{d} - l_{b}l_{c})$$
(4)

Evaluando sobre la primera línea (reemplazando 4 en 2) se tiene:

$$(l_b - l_d, l_c - l_a, l_a l_d - l_b l_c) \begin{pmatrix} l_a \\ l_b \\ 1 \end{pmatrix} = 0$$

$$l_a l_b - l_a l_d + l_b l_c - l_a l_b + l_a l_d - l_b l_c = 0$$

$$0 = 0$$

Ahora para la segunda línea se tiene:

$$(l_b - l_d, l_c - l_a, l_a l_d - l_b l_c) \begin{pmatrix} l_c \\ l_d \\ 1 \end{pmatrix} = 0$$

$$l_{d} \mathcal{L}_{c} - l_{d} \mathcal{L}_{d} + l_{c} \mathcal{L}_{d} - l_{d} \mathcal{L}_{d} + l_{d} \mathcal{L}_{d} - l_{d} \mathcal{L}_{c} = 0$$

$$0 = 0$$

Problema 2

Demuestre que la línea que une 2 puntos x y x' en 2D está dada por:

$$l = x \times x' \tag{1}$$

Solución

Como los puntos x y x' pertenecen a la línea l, se cumple que:

$$x^T l = 0$$

$$x^{'T} l = 0$$
(2)

Al reemplazar 1 en 2 se debe seguir cumpliendo la igualdad:

$$x^T(x \times x') = 0 \tag{3}$$

$$x^{'T}(x \times x') = 0 \tag{4}$$

Sea $x = (x_a, x_b, 1)$ y $x' = (x_c, x_d, 1)$.

$$l = \begin{vmatrix} i & j & k \\ x_a & x_b & 1 \\ x_c & x_d & 1 \end{vmatrix} = \begin{pmatrix} x_b - x_d \\ x_c - x_a \\ x_a x_d - x_b x_c \end{pmatrix}$$
 (5)

Evaluando el primer punto (reemplazando 5 en 3) se tiene:

$$(x_a, x_b, 1) \begin{pmatrix} x_b - x_d \\ x_c - x_a \\ x_a x_d - x_b x_c \end{pmatrix} = 0$$

$$\underline{x_ax_b} - \underline{x_ax_d} + \underline{x_bx_c} - \underline{x_ax_b} + \underline{x_ax_d} - \underline{x_bx_c} = 0$$

$$0 - 0$$

Ahora para el segundo punto se tiene:

$$(x_c, x_d, 1) \begin{pmatrix} x_b - x_d \\ x_c - x_a \\ x_a x_d - x_b x_c \end{pmatrix} = 0$$

$$x_{b}x_{c} - x_{c}x_{d} + x_{c}x_{d} - x_{d}x_{d} + x_{d}x_{d} - x_{b}x_{c} = 0$$

$$0 - 0$$

Problema 3

Demuestre que ante una transformación de punto x'=Hx, una cónica C transforma según:

$$C' = H^{-T}CH^{-1}$$

Solución

La expresión de un punto \boldsymbol{x} que pertenece a la cónica \boldsymbol{C} está dada por:

$$x^T C x = 0 (1)$$

y la transformación de un punto dada una homografía ${\cal H}$ es

$$x' = Hx$$
$$x = H^{-1}x'$$
 (2)

Reemplazando 2 en 1 se tiene:

$$(H^{-1}x')^{T}C(H^{-1}x') = 0$$

$$x'^{T}\underbrace{H^{-T}CH^{-1}}_{C'}x' = 0$$
(3)

Por comparación de 3 con 1 se obtiene:

$$C' = H^{-T}CH^{-1} (4)$$

Problema 4

Demuestre que el conjunto de transformaciones homogéneas de 3×3 en 2D, tal que la última fila está dada por [0,0,1] forma un grupo. Este

grupo se denomina el grupo afín AL(3).

Solución

Sean H, G e I elementos que pertenecen al grupo afin. Un grupo se define como un conjunto y un operador binario (\bullet) sobre los elementos dl conjunto tal que se cumplen las siguientes condiciones:

1. Conjunto cerrado con respecto al operador :

$$a, b \in S \leftrightarrow a \bullet b \in S$$

Al aplicar el operador matricial sobre H y G se obtiene el elemento J:

$$\begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} j_{11} & j_{12} & j_{13} \\ j_{21} & j_{22} & j_{23} \\ 0 & 0 & 1 \end{pmatrix}$$
(1)

Como se puede ver, este nuevo elemento también hace parte del grupo afin.

2. Operador asociativo:

$$a \bullet (b \bullet c) = (a \bullet b) \bullet c$$

El operador matricial es asociativo, es decir:

$$H \times (G \times I) = (H \times G) \times I$$

y por lo tanto esta propiedad queda demostrada inmediatamente.

3. El elemento identidad pertenece a S $(i \in S)$:

$$a \bullet i = i \bullet a = a , \forall a \in S$$

La matriz identidad I es:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{2}$$

Claramente se observa que la última fila de esta matriz es [0,0,1] y por lo tanto pertenece al grupo afín. Adicionalmente, del álgebra lineal se conoce que:

$$H \times I = I \times H = H$$

4. La inversa pertence al conjunto:

$$a \bullet a^{-1} = i \ \forall a \in S$$

Sea H:

$$\begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ 0 & 0 & 1 \end{pmatrix}$$

$$H^{-1} = \frac{1}{\det H} adj H \tag{3}$$

El determinante de H está dado por:

$$detH = |H| = 0 \times H_{31} + 0 \times H_{32} + 1 \times (h_{11}h_{22} - h_{12}h_{21})$$
$$= h_{11}h_{22} - h_{12}h_{21}$$
(4)

La última fila de la matriz adjunta de H está dada por $[H_{13}H_{23}H_{33}]$, donde:

$$H_{13} = (-1)^{1+3} \begin{vmatrix} h_{21} & h_{22} \\ 0 & 0 \end{vmatrix} = 0$$

$$H_{23} = (-1)^{2+3} \begin{vmatrix} h_{11} & h_{12} \\ 0 & 0 \end{vmatrix} = 0$$

$$H_{33} = (-1)^{3+3} \begin{vmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{vmatrix} = h_{11}h_{22} - h_{12}h_{21}$$
(5)

Reemplazando 4 y 5 en 3 se tiene que:

$$H^{-1} = \begin{pmatrix} h_{11}^{-1} & h_{12}^{-1} & h_{13}^{-1} \\ h_{21}^{-1} & h_{22}^{-1} & h_{23}^{-1} \\ 0 & 0 & 1 \end{pmatrix}$$
 (6)

La cual hace parte del grupo afín.

Problema 5

Demuestre que la submatriz superior izquierda de 2×2 en una transformación afin de 3×3 puede ser descrita como la composición de una rotación pura acompañada por un escalamiento anisotrópico.

Solución

Una transformación afín tiene la siguiente representación:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} A & \vec{t} \\ \vec{0}^T & 1 \end{pmatrix}$$

Donde A es una matriz de 2×2 no singular. Por lo tanto puede ser descompuesta mediante SVD de la siguiente forma:

$$A = UDV^{T}$$
$$A = (UV^{T})VDV^{T}$$

Sea

$$V^T \triangleq R(\phi)$$
$$UV^T \triangleq R(\theta)$$

Donde $R(\phi)$ y $R(\theta)$ son rotaciones en los ángulos (ϕ) y (θ) respectivamente. La matriz D es una matriz diagonal que contiene los valores propios λ_1 y λ_2 , así:

$$D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

Por lo tanto, la matriz A puede verse como una rotación por un ángulo ϕ , luego un escalamiento anisotrópico dado por los valores propios, una anti-rotación nuevamente por ϕ y finalmente otra rotación por un ángulo θ .

$$A = R(\theta)R(-\phi)DR(\phi) \tag{1}$$

Problema 6

Demuestre que una transformación afín puede transformar un círculo en una elipse, pero no puede transformar una elipse en una parábola.

Solución

Partiendo de los siguientes hechos:

• La expresión para aplicar una transformación homogénea es:

$$C' = H^{-T}CH^{-1} (1)$$

• Como se vio en el punto anterior, la submatriz A de una transformación afín puede ser expresada como una rotación pura acompañada de un escalamiento anisotrópico.

$$A = R_{\theta} D R_{-\theta} R_{\phi}$$

$$A^{-1} = R_{-\phi} R_{\theta} D^{-1} R_{-\theta}$$

$$A^{-T} = R_{\theta} D^{-T} R_{-\theta} R_{\phi}$$
(2)

Donde D es la matriz de escalamiento anisotrópico y D^{-1} su inversa:

$$D\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \qquad D^{-1} = D^{-T} = \begin{pmatrix} \frac{1}{\lambda_1} & 0 \\ 0 & \frac{1}{\lambda_2} \end{pmatrix}$$

- Las cónicas que representan círculos, no se ven afectadas por las rotaciones.
- Se demostrará el caso no trasladado ya que la traslación no afecta el resultado obtenido.
- La ecuación general de un círculo en el origen está dada por

$$x^2 + y^2 = r^2$$

cuya representación en coordenadas homogéneas es:

$$C_c = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -r^2 \end{pmatrix}$$

• La ecuación general de una elipse en el origen y no rotada es:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Su representación en coordenadas homogéneas es:

$$C_{eh} = \begin{pmatrix} \frac{1}{a}^2 & 0 & 0\\ 0 & \frac{1}{b}^2 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

• La representación homogénea de la elipse se puede ver como la expresada en el punto anterior aplicando una rotación, así:

$$C_e = R_\theta C_{eh} R_{-\theta} \tag{3}$$

Parte 1

Una transformación afin puede transformar un círculo en una elipse.

El enunciado equivale a demostrar que:

$$H_A^{-T}C_cH_A - 1 \stackrel{?}{=} C_e$$

Reemplazando 2 en 4 tenemos:

$$R_{\theta} D^{-T} R_{-\theta} R_{\phi} C_c R_{-\phi} R_{\theta} D^{-1} R_{-\theta} \stackrel{?}{=} C_e$$

$$R_{\theta} \underbrace{D^{-T} C_c D^{-1}}_{} R_{-\theta} \stackrel{?}{=} C_e$$

$$D^{-T}C_cD^{-1} = \begin{pmatrix} \frac{1}{\lambda_1} & 0 & 0\\ 0 & \frac{1}{\lambda_2} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -r^2 \end{pmatrix} \begin{pmatrix} \frac{1}{\lambda_1} & 0 & 0\\ 0 & \frac{1}{\lambda_2} & 0\\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{\lambda_1}^2 & 0 & 0\\ 0 & \frac{1}{\lambda_2}^2 & 0\\ 0 & 0 & -r^2 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{a}^2 & 0 & 0\\ 0 & \frac{1}{b}^2 & 0\\ 0 & 0 & 1 \end{pmatrix} = C_{eh}$$

Por lo tanto,

$$R_{\theta}C_{eh}R_{-\theta} = C_e$$

Parte 2:

Una transformación afín no puede transformar una elipse en una parábola.

• La ecuación general de una parábola en el origen y no rotada es:

$$y^2 = ax$$
$$x^2 = by$$

Su representación en coordenadas homogéneas es:

$$C_{ph} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• La representación homogénea de la parábola se puede ver como la expresada en el punto anterior aplicando una rotación, así:

$$C_p = R_\theta C_{ph} R_{-\theta} \tag{4}$$

$$R_{\theta}D^{-T}R_{-\theta}R_{\phi}C_{e}R_{-\phi}R_{\theta}D^{-1}R_{-\theta} \stackrel{?}{=} C_{p}$$

$$R_{\theta}D^{-T}\underbrace{R_{-\theta}R_{\phi}R_{\theta'}C_{eh}R_{-\theta'}R_{-\phi}R_{\theta}}D^{-1}R_{-\theta} \stackrel{?}{=} C_{p}$$

$$R_{\theta}\underbrace{D^{-T}C'_{e}D^{-1}}_{C'_{ph}}R_{-\theta} \stackrel{?}{=} C_{p}$$

$$C'_{ph} \neq C_{ph}$$

La forma resultante no es como la de una parábola C_{ph} . Adicionalmente, la diagonal resultante de esta operación, se nota que los elementos quedan multiplicados cada uno por la inversa de los valores propios $\frac{1}{\lambda_1}^2$ y $\frac{1}{\lambda_1}^2$ respectivamente. Es decir, el escalamiento anisotrópico afecta ambos elementos de forma cuadrática y no sólo uno.

Problema 7

Derive una expresión para la cónica C que resulta de intersectar una cuádrica Q con un plano π . ¿Cómo se relacionan las coordenadas de la cónica C en 2D con respecto al sistema de coordenadas 3D que comparten Q y π ?.

Solución

La intersección de una cuádrica Q y un plano π es una cónica. Dados 3 puntos no colineales $A,B,C\in\pi$, todo punto x de π está dado por la

combinación lineal de éstos 3:

$$x = \alpha A + \beta B + \gamma C$$

$$= \begin{pmatrix} A & B & C \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

Sea $M_{4,3}$ una matriz de transformación que relaciona las coordenadas de un punto p en P2 a un punto x en P3.

$$x_{4,1} = M_{4,3}p3, 1$$

En la intersección, los puntos \boldsymbol{x} también pertenecen a la cónica, es decir:

$$x^TQx = 0$$

$$(pM)^TQ(pM) = 0$$

$$p^T \underbrace{M^TQM}_{\text{De la forma }x^TCx} p = 0$$

$$C=M^TQM$$

La relación de la cónica con respecto a la cuádrica se da a través de la matriz ${\cal M}.$

Problema 8

Derive una expresión para la cónica que resulta de intersectar una esfera con un plano π_∞ . Esta cónica se conoce como la cónica absoluta Ω_∞ . Describa una aplicación práctica de esta entidad geométrica.

Solución

La ecuación de una esfera en coordenadas homogéneas es:

$$x_1^2 + x_2^2 + x_3^2 + dx_1x_4 + ex_2x_4 + fx_3x_4 + gx_4^2 = 0$$
 (1)

Todo punto $x \in \pi_{\infty}$ tiene 0 en el último elemento $(x_4 = 0)$, por lo tanto la ecuación 1 queda reducida a:

$$x_1^2 + x_2^2 + x_3^2 = 0$$

$$\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} I_{3,3} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

Se define entonces la cónica absoluta como todos los puntos imaginarios que intersectan a cualquier esfera:

$$\Omega_{\infty} = I_{3,3}$$

Una vez identificada Ω_{∞} en una proyectividad, se pueden medir ángulos y longitudes relativas sobre ésta. Adicionalmente, al ser invariante ante transformaciones similares, esta cónica se emplea para remover la afinidad.

Problema 10

Demuestre que en 3D dos planos paralelos se intersectan en una línea que está en π_{∞} .

Solución

Dos planos π_1 y π_2 son paralelos si tienen el mismo vector normal $\vec{n_{3,1}}$, es decir, pueden ser expresados como:

$$\pi_1 = \left(\begin{array}{c} n\vec{3},1\\ d_1 \end{array}\right) \qquad \pi_2 = \left(\begin{array}{c} n\vec{3},1\\ d_2 \end{array}\right)$$
 (1)

Donde $d_1 \neq d_2$ son las distancias del origen a los planos 1 y 2 respectivamente.

Sea X un punto que pertenece a la intersección de ambos planos:

$$X = \left(\begin{array}{c} \vec{x_{3,1}} \\ x_4 \end{array}\right)$$

$$\begin{array}{ll} \pi_1 X = 0 & \pi_2 X = 0 \\ \vec{n_{3,1}} x_{3,1} + d_1 x_4 = 0 & \vec{n_{3,1}} x_{3,1} + d_2 x_4 = 0 \end{array}$$

Igualando ambas ecuaciones se tiene:

$$d_1x_4 = d_2x_4$$

La condición $d_1 \neq d_2$ debe cumplirse porque de lo contrario se estaría hablando del mismo plano. Por lo tanto, única solución a esta ecuación se da cuando el componente x_4 es 0. Es decir, los puntos de la línea formada por la intersección de ambos planos son de la forma:

$$X = \left(\begin{array}{c} \vec{x_{3,1}} \\ 0 \end{array}\right)$$

Que pertenecen al plano al infinito.

$$\pi_{\infty}X = \left(\begin{array}{ccc} 0 & 0 & 0 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ 0 \end{array}\right) = 0$$