2022-2023 (2) 《计算机网络》作业

院_计算机_专业_ 奇安信_年级_2021_班次_1_姓名_ 朱宸扬 _ 学号__ 202183760012_

第一章 绪论

1. 试简述分组交换的要点。

采用存储转发技术,不需要建立连接,传输报文,有时延

2. 协议与服务有何区别? 有何关系?

协议是水平的, 服务是垂直的, 协议使得本层的能为上层提供服务, 要实现协议,

需要下一层的服务

3. 网络协议的三个要素是什么?各有什么含义?

语法: 数据与控制信息的结构或格式

语义:需要发出何种信息,完成何种动作以及做出何种响应

同步:事件实现顺序的详细说明

- 4. 收发两端之间的传输距离为 1000km, 信号在媒体上的传播速率为 $2 \times 10^8 m/s$ 。试计算以下两种情况的发送时延的传播时延:
 - (1) 数据长度为 10⁷bit,数据发送速率为 100kb/s。

发送时延=10^7/10k=100s 传播时延=10^6/2/10^8=0.005s

(2) 数据长度为 10³bit.数据发送速率为 1Gb/s。

发送时延=10^3/10^9=10^-6s 传播时延=10^6/2/10^8=0.005s

第二章 物理层

1. 物理层的接口有哪几个特性? 各包含什么内容?

机械特性: 指明接口所用接线器的形状和尺寸, 引脚数目和排列, 固定和锁定装置等

电气特性: 指明在接口电缆的各条线上出现的电压的范围

功能特性: 指明某条线上出现的某一电平的电压的意义

过程特性: 指明对于不同功能的各种可能事件的出现顺序

2. 用香农公式计算一下: 假定信道带宽为 3100Hz, 最大信息传输速率为 35kb/s, 那么若想使最大信息传输速率增加 60%。问信噪比 S/N 应增大到多少倍? 如果在刚才计算出的基础上将信噪比 S/N 再增大到 10 倍,问最大信息传输速率能否再增加 20%?

100倍

不能

3. 共有 4 个站进行码分多址 CDMA 通信。4 个站的码片序列为:

A:
$$(-1-1-1+1+1-1+1+1)$$
 B: $(-1-1+1-1+1+1+1-1)$

C:
$$(-1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1)$$
 D: $(-1 + 1 - 1 - 1 - 1 + 1 - 1)$

现收到这样的码片序列: (-1 +1 -3 +1 -1 -3 +1 +1)。问哪个站发送数据 了? 发送数据的站发送的 1 还是 0?

A:1 B:-1 C:0 D:1

AD 发的 1 B 发 0

第三章 数据链路层

1. 信道速率为 4kb/s。采用停止等待协议。传播时延 $t_p = 20$ ms,确认帧长度和处理时间均可忽略。问帧长为多少才能使信道利用率达到至少 50%。

t=2tp=40ms

T=4000*0.04=160b

2. 在选择重传 ARQ 协议中,设编号用 3bit。再设发送窗口 WT=6,而接收窗口 WR=3。试找出一种情况,使得在此情况下协议不能正常工作。

发送方: 01234567012345670

接收方: 01234567012345670

3. 在连续 ARQ 协议中,设编号用 3bit,而发送窗口 WT=8,试找出一种情况, 使得在此情况下协议不能正常工作。

发送方: 01234567012345670

接收方: 01234567012345670

4. 设卫星信道的数据速率是 1Mbit/s,取卫星信道的单程传播时延为 0.25 秒。每一个数据帧长为 2000bit,忽略误码率、确认帧长和处理时间。试计算下列情况下的信道利用率。

传播时延 250ms

发送时延 0.002s

发送周期 502ms

(1) 采用停-等协议。

Wt=1 y=1/251

(2) 采用连续 ARQ 协议, 窗口大小 WT = 7。

Wt=7 y=7/251

(3) 采用连续 ARQ 协议, 窗口大小 WT = 127。

Wt=127 y=127/251

(4) 采用连续 ARQ 协议, 窗口大小 WT = 255。

Wt=255 y=100%

5. HDLC 帧可分为哪几大类? 试简述各类帧的作用。

信息帧: 用于数据传输

监督帧: 用于数据流控制

无编号帧: 用于控制链路本身

6. 要发送的数据为 1101011011。采用 CRC 的生成多项式是 P(x)=x4+x+1 。试求应添加在数据后面的余数。

t=1/200000=5*10^-6

往返是 10^-5s

最短帧长 10*10^-6*10^9

8. 现有五个站分别连接在三个局域网上,并且用两个透明网桥连接起来,如下图所示。每一个网桥的两个端口号都标明在图上。在一开始,两个网桥中的转发表都是空的。以后有以下各站向其他的站发送了数据帧,即 H1 发送给H5,H3 发送给H2,H4 发送给H3,H2 发送给H1。试将有关数据填写在下表中

な刀	
田洋	

发送的帧	网桥 1 的转发表		网桥 2 的转发表		网桥 1 的处理 (转发? 丢弃?	网桥2的处理 (转发?丢
及达的恻	站地址	端口			弃? 登记?)	
H1 → H5	Mac1	1	Mac1	1	转发	转发
H3 → H2	Mac3	2	Mac3	1	转发	转发
H4 → H3	Mac4	2	Mac4	2	写入转发表丢 弃	转发
H2 → H1	Mac2	1			写入转发表丢 弃	接受不到

第四章 网络层

1. 试从多个方面比较虚电路和数据报这两种服务的优缺点。

虚电路需要连接,效率低,占用资源少,拥塞少

数据报相反

(有点类似电路交换和分组交换哈)

2. 一个 3200bit 长的 TCP 报文传到 IP 层,加上 160bit 的首部后成为数据报。 下面的互联网由两个局域网通过路由器连接起来。但第二个局域网所能传送 的最长数据帧中的数据部分只有 1200bit,因此数据报在路由器必须进行分 片。试问第二个局域网向其上层要传送多少比特的数据(这里的"数据"当然 指局域网看见的数据)?

1200-160=1040bit

3200/1040>3

1200*3+240=3840bit

3. 设某路由器建立了如下路由表(这三列分别是目的网络、子网掩码和下一跳路由器,若直接交付则最后一列表示应当从哪一个接口转发出去):

128.96.39.0	255.255.255.128	接口0
128.96.39.128	255.255.255.128	接口1
128.96.40.0	255.255.255.128	R2
192.4.153.0	255.255.255.192	R3
* (默认)		R4

现共收到 5 个分组, 其目的站 IP 地址分别为:

(1) 128.96.39.10

128.96.39.0 RO 转发

(2) 128.96.40.12

128.96.40.0 R2 转发

(3) 128.96.40.151

128.96.40.128 R3 转发

(4) 192.4.153.17

192.4.153.0 R3 转发

(5) 192.4.153.90

192.4.153.64 R4 转发

试分别计算其下一跳。

4. 一数据报长度为 4000 字节(固定首部长度)。现在经过一个网络传送,但此网络能够传送的最大数据长度为 1500 字节。试问应当划分为几个短些的数据报片? 各数据报片的数据字段长度、片偏移字段和 MF 标志应为何数值?

	总长度	数据长度	MF	片偏移
原始数据报	4000	3980	0	0
数据报片1	1500	1480	1	0
数据报片 2	1500	1480	1	185
数据报片3	1040	1020	0	370

5. 假定网络中的路由器 B 的路由表有如下的项目(这三列分别表示"目的网络"、 "距离"和"下一跳路由器")

N1 7 A

N2 2 C

N6 8 F

N8 4 E

N9 4 F

现在 B 收到从 C 发来的路由信息(这两列分别表示"目的网络"和"距离"):

N2 4

N3 8

N6 4

N8 3

N9 5

试求出路由器 B 更新后的路由表。

距离+1		B 更新后			
N2	5	N1	7	А	
N3	9	N2	5	С	
N6	5	N3	9	С	
N8	6	N6	5	С	
N9	6	N8	4	Е	
		N9	4	F	

6. 某公司网络如 图所示。IP 地址空间 192.168.1.0/24 被均分给销售部和技术部两个子网,并已分别为部分主机和路由器接口分配了 IP 地址,销售部子网的 MTU=1500B ,技术部子网的 MTU=800B 。

请回答下列问题。

(1)销售部子网的广播地址是什么?技术部子网的子网地址是什么?若每个主机仅分配一个IP地址,则技术部子网还可以连接多少台主机?

192.168.1.127

253-208=45 台

(2)假设主机 192.168.1.1 向主机 192.168.1.208 发送一个总长度为 1500B的 IP 分组, IP 分组的头部长度为 20B,路由器在通过接口 F1 转发该 IP 分组时进行了分片。若分片时尽可能分为最大片,则一个最大 IP 分片封装数据的字节数是多少?至少需要分为几个分片?每个分片的片偏移量是多少?

字节数 [(800-20)/8]*8=776

[(1500-20)/776]=2

第一个偏移量为0

第二个偏移量为 776/8=97

第五章 传输层

1. 一个 UDP 用户数据报的数据字段为 8192 字节。要使用以太网来传送。试问 应当划分为几个数据报片? 说明每一个数据报片的数据字段长度和片偏移 字段的值。

前五个 1480 字节 最后一个 800 字节 偏移字段值分别为 0,4180,2960,4440,5920,7400

2. 在 TCP 的拥塞控制中,什么是慢开始、拥塞避免、快重传和快恢复算法?这里每一种算法各起什么作用?"乘法减少"和"加法增大"各用在什么情况下?慢开始(Slow Start): 在开始传输数据包时,TCP 将初始窗口大小设为一个很小的值,然后对于每一个确认收到的数据包,窗口的大小就会加倍,直到达到一个阈值,当窗口大小达到该阈值时,就进入拥塞避免阶段。慢开始算法可以防止过多的数据拥塞网络。

拥塞避免(Congestion Avoidance):在拥塞避免阶段,TCP 采用"加法增大"算法来控制发送窗口的大小,每当收到一个确认 ACK 时,就增加 1MSS(最大报文段长度)的窗口大小。拥塞避免算法可以保持网络始终处于安全的状态。

快重传(Fast Retransmit):指当 TCP 发送数据时,如果接收方收到一个失序的数据包,则接收方会立即发送 ACK,这样发送方收到三个相同的 ACK 就会立即进行数据重传,而不必等待超时重传。这个过程称为快重传算法。

快恢复(Fast Recovery): 为了避免数据传输中时间阻塞, 当 TCP 接收到三个相同的 ACK 时, TCP 会将拥塞窗口减半然后跳转到快恢复状态, 在快恢复状态下, 将拥塞窗口加 1 并转到拥塞避免状态。

"乘法减少"和"加法增大"是 TCP 拥塞控制中的两种算法。在拥塞避免阶段,TCP 将拥塞窗口的增长速率用这两种算法相结合的方式来控制。当发生超时重传时,TCP 会将拥塞窗口大小减半,采用"乘法减少"算法;而在每收到一个 ACK 时,TCP 采用"加法增大"算法,每次增加 MSS 大小的窗口。这样可以避免网络出现拥塞,同时又能保证发送速度的高效性。

- 3. 假设图中的 H3 访问 Web 服务器 S 时, S 为新建的 TCP 连接分配了 20 KB(K=1024)的接收缓存,最大段长 MSS=1 KB,平均往返时间 RTT=200 ms。 H3 建立连接时的初始序号为 100,且持续以 MSS 大小的段向 S 发送数据, 拥塞窗口初始阈值为 32 KB; S 对收到的每个段进行确认,并通告新的接收窗口。假定 TCP 连接建立完成后, S 端的 TCP 接收缓存仅有数据存入而无数据取出。请回答下列问题。
 - (1) 在 TCP 连接建立过程中, H3 收到的 S 发送过来的第二次握手 TCP 段的 SYN 和 ACK 标志位的值分别是多少?确认序号是多少?

第二次握手 TCP 段的 SYN=1,ACK=1,确认序列是 101

(2) H3 收到的第 8 个确认段所通告的接收窗口是多少?此时 H3 的拥塞窗口变为多少?H3 的发送窗口变为多少?

12KB 9KB 9KB

(3) 当 H3 的发送窗口等于 0 时,下一个待发送的数据段序号是多少?H3 从发送第 1 个数据段到发送窗口等于 0 时刻为止,平均数据传输速率是多少(忽略段的传输延时)?

20*1024+101=20581

20KB*5*200ms=20.48kbps

(4)若 H3 与 S 之间通信已经结束,在 t 时刻 H3 请求断开该连接,则从 t 时刻起, S 释放该连接的最短时间是多少?

1.5*200ms=300ms