

로지스틱 회귀 모형과 서포트 벡터 머신을 이용한 개인 맞춤형 학습 가이드 추천 알고리즘 제안

최인재 1*, 장대일 1, 윤옥수 2, 박연숙 3, 문찬호 3, 이재화 3, 박영선 1

¹ 한양대학교 수학과 ² 목포해양대학교 교양과정부 ³ 오앤이교육 수학교육공학연구소

연구 배경

- 온라인 교육 플랫폼에서 지식 오류 상황에 따른 규칙 기반의 처방 학습 은 개인화된 맞춤형 가이드 제시를 하지 못하는 한계가 존재
- 오앤이교육의 학습 진행 과정을 통해 학습자의 지식 상황에 따라 인공 지능을 기반으로 학습 네비게이션을 제안
- 오앤이교육의 문항반응이론에 의한 추정 솔루션과 Q-matrix를 통해 도출되는 이상반응 변수를 추가한 개인화된 처방 학습 시스템에 인공지능을 결합한 최적의 학습 경로를 제시

연구 목적

- 본 연구를 통해 학습자의 지식이해상태와 각 지식 요인 별 문항 반응 이론에 따른 이상반응을 도출하여, 학습자 개인 맞춤형이 가능한 학습 지도를 추천
- 지식이해상태와 이상반응 변수에 따른 판정 지식 학습을 위한 학습 지도에서 인공 지능 기반의 최적의 경로를 제시

데이터 설명

- 학습자의 이전 학습 이력과 현재 단계에서 학습한 데이터를 통해서 판 정하고자 하는 지식 요인에 대한 학습 성취 여부 판단
- 1. Knowledge Map : 수학 교육과정에 필요한 지식 요인을 학년별/단원 별로 구분하여 모든 판본 별 두 지식 요인 간의 직접적인 인과관계(선 행되어야 할 지식)를 정의하여 포함 관계로 연결한 지식 지도
- 2. 지식이해상태: [측] 단계 진단 검사 후 학습자의 각 지식 요인 별 정답 률을 1과 0으로 구 분하고, 그 사이의 값을 가지는 경우 2로 구분한 것.
- 3. 이상반응 : [측] 단계 진단 검사에 Q-Metrics를 적용하여 학습자의 현재 지식이해상태와 가장 근접되는 정상 반응을 1 또는 0으로 나타낸 것
- 4. 최종 결정 : 판정 지식에 대한 Knowledge Map을 Rule 기반으로 학습한 뒤, 7문항의 Small Step 진단 검사를 통해 Mastery, Partial

									문항 번호	121030902514				
	지식이	판정 식요	인 이상법	이상반	등급	θ(THET A)	표준 오 차 (SE)	이질성 계수(zet a)		판정 지식	Level 1	Level 1	Level 1	
	해상태	의 [정답	(축) [를	8					학생	2104A112	16048121	21044112	2104A111	
학생1	2	0.8	35	1	1	3.5487	0.6310	2.8942	학생1	1	1.00	1.00	1.00	
학생2	2	0.7	19	1	1	3.1652	0.5897	1.9945	학생2	0	0.83	0.73	0.67	
학생3	2	0.6	35	1	3	1.5901	0.4312	2.3653	학생3	0	0.73	0.75	0.40	
I11180300096 I10050102096						121030908051								
Level 1	Leve	Level 2		Level 1 Lev		Level 2 Level 2		Level 2	Level 1	Level 2				
16048121 16048		48111 210		4112	15045123	15045131	21043131	21044111	2104A111	21044111	학생	최종	최종 결정	

1.00

1.00

1.00

1.00

1.00

1 1.00 1.00 1.00 <데이터예시 >

1.00

1.00

분석 방법

1.00

1.00

1.00

• 이전 학습 이력을 Q-matrix를 통해서 지식 이해상태와 이상반응 측정하여 2개의 그룹 으로 분리하여 그룹 별 모델링을 통한 최적 의 결로를 제시

1.00

1.00

- 기존 샘플에 노이즈를 추가한 샘플을 생성 하여 모형에 적합함으로써 종속변수를 얻는 방법으로 오버샘플링한 뒤, 최종 모델링 진 행
- 로지스틱 회귀 분석과 서포트 벡터 머신을 이용하여 판정 지식을 Master하기 위한 중 요도 높은 변수를 제시, 이를 통해 새로운 Learning Map 추천

지식이해상태, 이상반응을 통한 그룹별 1차 모델링 노이즈 추가한 샘플 생성 1차 모형에 적합하여 오버 샘플링 진행 추가된 샘플을 통한 최종 모델링 모델을 통한 지식 요인 별 중요도 추출 중요도에 따른 Learning Map 제시 < 분석 흐름도 >

학생1

학생2

학생3

Mastery

Mastery

Partial Mastery

1.00

1.00

1.00

분석 알고리즘

• 로지스틱 회귀 분석은 종속변수가 참일 확률을 거짓일 확률로 나는 odds(오즈)를 로그 변환하여 구한 logit(로짓)에 대한 회귀 분석을 진행하여 독립변수와의 관계를 파악

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

$$p = \frac{\exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n)}{1 + \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n)}$$

- 위식에서 회귀계수에 밑이 e인 지수를 취하면 오즈비를 얻고 이는 변수의 중요도를 나타냄
- 서포트 벡터 머신은 두 클래스를 분류하는 초평면(hyperplane)을 찾아 서 분류하는 머신러닝 기법
- 두 클래스와 초평면 간의 거리를 최대화는 하는 데이터를 서포트 벡터 (support vector)라고 하고, 일반적으로 고차원의 kernel function을 통해 비선형의 형태로 초평면을 추정하기 위해 Lagrngian multiplier를 사용
- 여유 변수(slack variable; ξ)를 통해 일정한 오분류를 허용하면서 두 클래스 사이의 거리인 ||w||를 최소화, C는 비용(cost)

$$\min_{w} \frac{\|w\|^2}{2} + C \sum_{i=1}^{n} \xi$$

분석 결과

- 그룹 별 로지스틱 회귀 모형과 서포트 벡터 머신을 통해 문항과 지식 요인 변수들의 중요도 추출 후 Learning Map 생성
- 그룹 별 두 모형이 제시하는 Learning Map에서 공통으로 추천하는 지 식 요인을 처방 학습으로 제시

< 그룹 별 로지스틱을 통한 Learning Map > 왼편 : 지식이해상태: 0, 이상반응: 1 오른편: 지식이해상태: 2, 이상반응: 1

< 그룹 별 SVM을 통한 Learning Map > 왼편 : 지식이해상태: 0, 이상반응: 1 오른편: 지식이해상태: 2, 이상반응: 1

• 두 모형의 Map을 종합하여 최종 Map을 제시한다.

요약 & 추후 연구

- 그룹 별, 모형 별 중요 변수로 학습자의 능력 변수 θ(THETA)가 항상 등 장하는 것으로 보아 학습자에 대한 정보 변수들을 이용한 추가적인 그 룹 세분화를 통한 개인 맞춤형 Learning Map 제시
- 시뮬레이션 데이터가 아닌 실제 학습자 데이터를 이용한 모형 사후 검 증을 통해 모형 안정성 확보
- · 본 논문은 중소기업기술정보진흥원의 지원을 받아 수행된 연구임(S2796484)