Chapter

Contents

目录 Contents

CHAPTER.

Preliminaries: Set theory & categroies

• \times : set product;

1.1.2 disjoint union

 $\Gamma_{
m DEF}$ **Disjoint union**

 $S \coprod T$: 得到 $S \hookrightarrow T$ 的拷贝 $S' \hookrightarrow T'$, 且 $S' \cap T' = \emptyset$, 则 $S' \cup T' = S \coprod T$. 其中一种依赖于 set product

的实现:

$$\begin{cases} S' \coloneqq \{0\} \times S, \\ T' \coloneqq \{1\} \times T. \end{cases}$$

┙

┙

┙

1.1.3 set product

Set product

$$S \times T := \{ \{ \{ s \}, \{ s, t \} \} : s \in S \land t \in T \}.$$

将 $\{\{s\},\{s,t\}\}$ 写作 (s,t), 称为 pair.

1.1.4 等价关系

「DEF 等价关系

若 \mathcal{R} 是二元关系,则 a,b 满足关系 \mathcal{R} 写为:

 $a \mathcal{R} b$.

若关系 \sim 定义在集合 S 上满足:

- reflexivity: $(\forall a \in S)a \sim a$.
- symmetry: $(\forall a \in S)(\forall b \in S)a \sim b \implies b \sim a$.
- $\bullet \ \ transitivity: \ (\forall a \in S)(\forall b \in S)(\forall c \in S)a \sim b \wedge b \sim c \implies a \sim c.$

则称 \sim 是在集合 S 上的等价关系.

1.1.5 分划与等价类 (partition & equivalence class)

「_{DEF} 分划与等价类

• 分划是一个集合的集合,满足:

$$\begin{cases} (\forall a \in P)(\forall b \in P)a \cap b = \emptyset, \\ \bigcup_{a \in P} a = S. \end{cases}$$

则称 $P \neq S$ 的分划.

• 等价类:

$$[a]_{\sim} \coloneqq \{x \in S : x \in a\}.$$

称此为在 S 上 a 的等价类,由于等价类两两不交,且具有自反性,则 S 上某等价关系得到的所有等价类组成的集合是 S 的分划 \mathcal{P}_{\sim} .

1.1.6 集合商 (set quotient)

 $\Gamma_{
m DEF}$

集合商

┙

集合 S 与等价关系 \sim 的商定义为:

$$S/\sim := \mathcal{P}_{\sim}.$$

即 $a,b \in S$ 等价 \iff 商到同一个元素.

一个集合商的例子

定义 \mathbb{Z} 上的等价关系 \sim : $a \sim b \iff \frac{a-b}{2} \in \mathbb{Z}$,则:

$$\mathbb{Z}/\sim = \{[0]_{\sim}, [1]_{\sim}\}.$$

1.2

Functions between sets

SECTION

1.2.1 函数

 $\Gamma_{
m DEF}$

函数

• 函数的 Graph:

$$\Gamma_f \coloneqq \{(a,b) \in A \times B : b = f(a)\}.$$

且满足 $(\forall a \in A)(\exists ! b \in B)(a,b) \in \Gamma_f$,即 $(\forall a \in A)(\exists ! b \in B)f(a) = b$.

• 函数的图的表示:

$$\begin{cases} A \xrightarrow{f} B, \\ a \mapsto f(a) \end{cases}$$

1.2.2 Indentity function(id)

在集合 A 上有:

$$id_A: A \to A, (\forall a \in A) id_A(a) = a.$$

1.2.3 函数的 image

若 $S \subset A, f : A \to B$, 则:

$$f(S) := \{ b \in B : (\exists a \in S) f(a) = b \}.$$

则 f(A) 就是函数的 image, 记作 im f

1.2.4 函数的 restriction

记 $S \subset A$,则:

$$f|_S: S \to A, (\forall s \in S) f|_S(s) = f(s).$$

1.2.5 函数的复合 (composition)

$$A \xrightarrow{f} B$$

$$\downarrow^{g \circ f} \downarrow^{g}$$

$$C$$

此时称图是交换 (commutative) 的,因为图描述的所有从 A 到 C 的通路都会送 A 中的任意一个元素到相同的结果.

函数的复合满足结合律:

 $\mathbb{P} h \circ (g \circ f) = (h \circ g) \circ f.$

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D .$$

1.2.6 单射、全射、双射 (injections, surjections, bijections)

T_{DEF}

单射 (Injections, Inj)

 $f: A \to B$ 是单的若:

$$(\forall a' \in A)(\forall a'' \in A)a' \neq a'' \implies f(a') \neq f(a'').$$

实际上就是 $(\forall a' \in A)(\forall a'' \in A)f(a') = f(a'') \implies a' = a''$. 一般用箭头 $f: A \hookrightarrow B$ 表示.

 Γ_{DEF}

全射 (Surjections, Surj)

 $f: A \rightarrow B$ 是全的若:

$$(\forall b \in B)(\exists a \in A)f(a) = b.$$

此时 $\operatorname{im} f = B$. 一般用箭头 $f: A \to B$ 表示.

DEF

双射 (Bijections, Bij)

f 是双的当且仅当 f 又单又全, 一般用箭头 $f: A \overset{\sim}{\to} B$ 表示.

- 若 $\exists f: A \xrightarrow{\sim} B$, 则记此时 $A \cong B$, 若其中一个集合元素数量有限,则另一个也有限且两个集合元素数量相等.
- 集合 A 中的元素数量写作 |A|; 幂集写作 2^A .

1.2.7 单射、全射、双射的性质

• 双射有逆 (inverse):

THEOREM 1.2.1: 双射有逆

定义函数 $f: A \overset{\sim}{\to} B$,定义 $g: B \to 2^A, (\forall b \in B)g(b) = \{a: f(a) = b\}$,则由于 f 是单的,则 $(\forall a', a'' \in A)f(a') = f(a'') \implies a' = a'$,故 $(\forall b \in B)|g(b)| = 1$.故可以定义 $g': B \to A, (\forall b \in B)g(b) = a$,<u>st</u> f(a) = b,且是良定义的.此时 $g' \circ f = \mathrm{id}_A, f \circ g' = \mathrm{id}_B$,此称 g' 为 f 的逆,记为 f^{-1} .

双射的逆唯一:

PROOF 1.2.1: 双射的逆唯一

定义 $f: A \overset{\sim}{\to} B$ 的逆 g, g', 由于 $f \circ \mathrm{id}_A = f = \mathrm{id}_B \circ f$, 因此:

$$g = g \circ \operatorname{id}_B = g \circ (f \circ g') = (g \circ f) \circ g' = \operatorname{id}_A \circ g' = g'.$$

故唯一.

- 左逆与右逆 (Linv & Rinv) 若 $f:A\to B, g\circ f=\mathrm{id}_A$,则称 g 是 f 的左逆,同理有右逆. 如果 $A\neq\emptyset, f:A\to B$:
- \circ f 有 Linv \iff f 是单的.

PROOF 1.2.2

1. (\Longrightarrow) 若 f 有左逆, 设为 f^{-1} , 则:

$$(\forall a,b\in A \wedge a \neq b)f^{-1}(f(a)) = \operatorname{id}_A(a) = a \neq b = f^{-1}(f(b)).$$

若 $(\exists a, b \in A) f(a) = f(b)$, 则与上式矛盾, 故 f 是单的.

2. (\leftarrow) 若 f 是单的,有双射有逆那部分的讨论知道 $(\forall b \in \text{im } f) \exists ! a \in A \text{ st. } f(a) = b$,故定义:

$$g(b) \coloneqq \begin{cases} a, & \text{if } (\exists a \in A)b = f(a) \\ S, & \text{if } b \not \in \text{im } f. \end{cases}$$

则 g 满足 $g \circ f = \mathrm{id}_A$.

。 $f \in \mathbb{R}$ f Rinv $\iff f \in \mathbb{R}$ 是全的.

PROOF 1.2.3

只证明 (\leftarrow) 的部分,由于 f 是全的,定义:

$$g: B \to 2^A, b \mapsto \{a \in A: f(a) = b\}.$$

则 $(\forall b \in B)g(b) \neq \emptyset$, 定义:

$$h: B \to A, b \mapsto a \text{ st } a \in g(b).$$

这样定义的 h 可能有很多种, 但都满足其是 f 的右逆:

$$(\forall b \in B) h(b) \in g(b) \implies f \circ h(b) = \mathrm{id}_B \,.$$

。若 f 同时有左逆和右逆,则两个逆相同.

一些单射、全射的例子

投影

其中 π 是投影 (projection) 映射:

$$\pi_A((a,b)) \coloneqq a,$$

$$\pi_B((a,b)) \coloneqq b.$$

是全射.

• 与不交并的映射

若将 $A \amalg B$ 表示为 $A' \cup B'$,其中 $A' \overset{F_A}{\cong} A, B' \overset{F_B}{\cong} B$,则 $(\forall a \in A) f_A(a) \coloneqq F_A(a) \in A \amalg B$.

商

$$A \xrightarrow{f} A/\sim$$

• 函数的标准分解 (Canonical decomposition) 对函数 $f: A \to B$, 在 A 上建立等价关系:

$$a \sim b \iff f(a) = f(b).$$

则函数可以分解为:

其中 $\tilde{f}: A/\sim \to \operatorname{im} f, \tilde{f}([a]_{\sim}) \coloneqq f(a),$ 不难验证这是良定义的, 现在证明 \tilde{f} 是双射:

PROOF 1.2.4

只需证明 f 既是单射也是全射就可以了:

1. **inj**:

$$\tilde{f}([a]_{\sim}) = \tilde{f}([b]_{\sim}) \implies f(a) = f(b) \implies a \sim b \implies [a]_{\sim} = [b]_{\sim}.$$

2. **surj**:

$$(\forall b \in \operatorname{im} f) \exists a \in A \ \underline{\operatorname{st}} \ f(a) = b \ \Longrightarrow \ \tilde{f}([a]_{\sim}) = b.$$

1.3

→ 范畴 (Categories)

SECTION

一个范畴 c 包括:

• 一个类 Obj(C), 包括了对象 (object).

- 对任意两个对象 A, B 存在一个集合记为 $\operatorname{Hom}_{\mathbf{C}}(A, B)$ 包含了从 A 到 B 的全部态射 (morphisms), 态射和 Hom 满足以下特点:
- 。幺元的存在性

 $\forall A \in \mathbb{C}, \exists 1_A \in \operatorname{Hom}_{\mathbb{C}}(A, A) =: \operatorname{End}_{\mathbb{C}}(A), \text{ \mathfrak{R} $\not A in indentity.}$

。态射复合的存在性

若 $\exists f \in \operatorname{Hom}_{\mathbb{C}}(A,B), g \in \operatorname{Hom}_{\mathbb{C}}(A,B)$,则存在 f,g 决定的态射 $gf \in \operatorname{Hom}_{\mathbb{C}}(A,C)$,由于 Hom 是集合,因此存在函数:

$$\operatorname{Hom}_{\mathsf{C}}(A,B) \times \operatorname{Hom}_{\mathsf{C}}(B,C) \to \operatorname{Hom}_{\mathsf{C}}(A,C).$$

。态射复合的结合性

若 $f \in \operatorname{Hom}_{\mathbb{C}}(A, B), g \in \operatorname{Hom}_{\mathbb{C}}(B, C), h \in \operatorname{Hom}_{\mathbb{C}}(C, D),$ 则

$$(hg)f = h(gf).$$

这一性质导致态射图可交换.

。幺元律

$$\forall f \in \operatorname{Hom}_{\mathbb{C}}(A,B), f1_A = 1_B f = f.$$

一些范畴的小例子

- 1. 对象为集合、态射为集合函数的范畴, 记为 SET:
- Obj(SET) := 一个包含所有集合的类.
- $\operatorname{Hom}_{\operatorname{SFT}}(A,B) := B^A$.
- 2. 一个关于二元运算的范畴: 若S上的二元运算 \sim 满足:

$$(\forall a,b,c \in S) \begin{cases} a \sim a, \\ a \sim b \wedge b \sim c \implies a \sim c. \end{cases}$$

则定义 C .:

- $\mathrm{Obj}(\mathsf{C}_{\sim}) := S$.
- $\bullet \ \ \mathrm{Hom}_{\mathsf{C}_{\sim}}(A,B) \coloneqq \begin{cases} (A,B), & \text{if } A \sim B, \\ \emptyset, & \text{if } A \sim B. \end{cases}$

定义复合为:

$$\circ_{\mathsf{C}_\sim}: ((A,B),(B,C)) \mapsto (A,C).$$

则其为一个范畴.

• 一个特例,如果认为 $S=\mathbb{Z}$, \sim 为 \leqslant ,则态射图如下:

3. 由范畴诱导范畴

Slice CAT 考虑范畴 C 中的对象 A,接下来构建 C_A :

- 。 $\mathrm{Obj}(\mathsf{C}_A) \coloneqq \mathsf{C}$ 中所有到 A 的态射.
- $\circ \ \operatorname{Hom}_{\operatorname{C}_A}(f_1,f_2) = \{\sigma: f_1 = f_2\sigma\}.$

 C_A 中态射的复合取自 C 中的态射复合.

CoSlice CAT 同理,只不过将从到 A 变成了 A 到其他对象的态射.

Opp CAT

$$\begin{cases} \operatorname{Obj}(\mathsf{C}^{\operatorname{op}}) \coloneqq \operatorname{Obj}(\mathsf{C}), \\ \operatorname{Hom}_{\mathsf{C}^{\operatorname{op}}}(A,B) \coloneqq \operatorname{Hom}_{\mathsf{C}}(B,A). \end{cases}$$

1.3.1 态射们

 $\Gamma_{
m DEF}$

同构 (Isomorphisms)

若一个态射 $f \in \text{Hom}_{\mathbb{C}}(A, B)$ 满足:

$$\exists g \in \operatorname{Hom}_{\mathbb{C}}(B, A) \ \underline{st} \ gf = 1_A, fg = 1_B.$$

则 f 是一个同构, 此时记 g 为 f^{-1} , 如果 f 有左逆、右逆, 则它们必然相等 (唯一).

一些关于逆相关范畴的例子

- 一个同构都是 indentity 的例子, 用 (\mathbb{Z}, \leq) 定义的范畴.
- 一个每个态射都是同构的例子,用 $(\mathbb{Z},=)$ 定义的范畴.这种性质的范畴被称为广群 (Groupoids).

 $\Gamma_{
m DEF}$

自同构 (Automorphisms)

就是属于 End 的同构, 所有 A 的自同构组成的集合称为 $\mathrm{Aut}_{\mathbf{C}}(A)$.

• $f, g \in Aut_{\mathbb{C}}(A) \implies fg \in Aut_{\mathbb{C}}(A)$.

• $f \in Aut_{\mathbb{C}}(A) \implies f^{-1} \in Aut_{\mathbb{C}}(A)$.

Aut 是一个群 (Group).

 $\Gamma_{
m DEF}$

单态射 (Monomophisms, Monic)

┙

┙

即满足左消去律的态射:

$$\forall Z \in \mathrm{Obj}(\mathsf{C}), \forall a, b \in \mathrm{Hom}_{\mathsf{C}}(Z, A), f : A \to B$$

$$f$$
 is a monic \iff $(f \circ a = f \circ b \implies a = b)$

 Γ_{DEF}

全态射 (Epimorphisms, Epic)

满足右消去律的态射:

$$\forall Z \in \mathrm{Obj}(\mathsf{C}), \forall a,b \in \mathrm{Hom}_{\mathsf{C}}(B,Z), f: A \to B$$

$$f$$
 is an epic \iff $(a \circ f = b \circ f \implies a = b)$

在 SET 中, 单态射和全态射就是集合之间的单射和全射.

PROOF 1.3.1: SET 中的单/全态射是集合之间的单/全射

(←), 只需考虑单/全射的左/右逆即可:

$$f\circ a=f\circ b\implies f^{-1}\circ f\circ a=f^{-1}\circ f\circ b\implies a=b.$$

 (\Longrightarrow) ,可以用反证法,若 f 是非单射但是是单态射,则 $\exists a \neq b(f(a) = f(b))$,考虑态射 $A: \{*\} \to a, B: \{*\} \to b$,则 $A \neq B \land f \circ A = f \circ B$,与单态射的定义矛盾.

类似的,若 $f:A\to B$ 是非全射且是全态射,则 $B\backslash \inf f\neq\emptyset$,定义态射 $X:B\to\{1\},Y:B\to\{0,1\},$ 且:

$$Y(y) \coloneqq \begin{cases} 1, & \text{if } y \in \text{im } f, \\ 0, & \text{if } y \notin \text{im } f. \end{cases}$$

则同样与全态射的定义矛盾.

注意! Iso 并不等于 Monic \land Epic! 具体例子可以见 (\mathbb{Z}, \leqslant) 所定义的范畴:每个 Hom 中只有一个态射,则必然左/右可消去,但只有 End 是同构。同时,Monic 的复合是 Monic, Epic 同理。

1.4

→ 泛性质 (Universal properties)

SECTION

泛性质与 I(nitial) / F(inal) 对象有关:

 $\Gamma_{
m DEF}$

I 对象与 F 对象

 $A \in \mathrm{Obj}(C)$,则 A 是 I的若:

$$(\forall Z \in \mathrm{Obj}(\mathsf{C}))|\mathrm{Hom}_{\mathsf{C}}(A,Z)| = 1.$$

A 是 F 的若:

$$(\forall Z \in \mathrm{Obj}(\mathsf{C}))|\mathrm{Hom}_{\mathsf{C}}(Z,A)| = 1.$$

若 I_1, I_2 是 C 上的 I/F 对象,则 $I_1 \cong I_2$.

1.4.1 泛性质与一些例子

泛性质长得像一个范畴的 I/F 对象, 比如:

空集的泛性质是「集合之间的映射」

因为以集合为对象、集合映射为态射的范畴 SET 中, 空集是 I 对象.

一些其他例子

• 集合商 A/\sim 的泛性质是从集合 A 到其他映射集合的映射,满足: "等价的 A 中元素有相同的像."即

$$A \xrightarrow{f} Z$$
, f st $a \sim b \implies f(a) = f(b)$.

以此为范畴 $\mathbf{C}_{A,\sim}$ 的 Obj,则态射为 $\mathrm{Hom}(f_1,f_2)=\{\sigma:\sigma f_1=f_2\}$,则考虑以下 cd:

$$A/\sim \xrightarrow{\exists !\, \sigma} Z$$

$$\pi \uparrow \qquad f_A \qquad \uparrow$$

其中 π 已给定(为商投影映射),则 A/\sim 是这个范畴的I对象.

PROOF 1.4.1

 $\forall a\in A$ 都有 $\sigma\pi(a)=f_A(a),$ 即 $\sigma([a]_\sim)=f_A(a),$ 此就相当于定义了 $\sigma($ 保证唯一),易证 σ 是 良定义的.

同时, im f 也是其 I 对象:

$$\lim_{f \to A} f \sim \xrightarrow{\exists ! \sigma'} Z$$

故由 I 对象的特点有 im $f \cong A/\sim$.

• 集合的积集合 A,B 的积的泛性质是一个集合到 A 和 B 的两个映射. 给出三元组 (Z,f_A,f_B) ,此为 C 的 Obj. 则其态射为:

$$\operatorname{Hom}((Z_1,f_A,f_B),(Z_2,g_A,g_B))\coloneqq \{\sigma:g_A\sigma=f_A\wedge g_B\sigma=f_B\}.$$

 $A \times B$ 是其 F 对象:

对 $\forall z \in Z$, 都有:

$$\begin{cases} \pi_A \sigma(z) = f_A(z), \\ \pi_B \sigma(z) = f_B(z). \end{cases}$$

故 $\sigma: z \mapsto (f_A(z), f_B(z))$,唯一.

定义 $A \times B$ 中的积 (product) 为 $C_{A,B}$ 那个的 F 对象 (若存在).

- 。 另一个例子, 在 \mathbb{Z} , \leq 定义的范畴中, $A \times B := \min(A, B)$.
- 余积 (Coproduct) 定义 A, B 余积 $A \coprod B$ 为 $C^{A,B}$ 中的 I 对象,则 SET 中的余积为两个集合的不交并.

PROOF 1.4.2

如图所示, 考虑 $A \coprod B$ 的一种实现:

$$A \cong A', B \cong B', A' \cap B' = \emptyset, A' \cup B' \cong A \coprod B.$$

则,
$$\begin{cases} \forall a \in A, \sigma I_A(a) = f_A(a) \\ \forall b \in B, \sigma I_B(b) = f_B(b) \end{cases}, \ \ \text{故}:$$

$$\sigma:a\mapsto \begin{cases} f_A\big(I_A^{-1}|_{A'}(a)\big), & \text{if } a\in A',\\ f_B\big(I_B^{-1}|_{B'}(b)\big), & \text{if } a\in B'. \end{cases}$$

• 纤维积 (Fiber product)

首先定义范畴 $C_{\alpha,\beta}$:

其 Obj 是如上三元组 (Z, f, g) 满足 $\alpha f = \beta g$. 其态射为

$$\mathrm{Hom}((Z_1,f_1,g_1),(Z_2,f_2,g_2))\coloneqq \{\sigma: f_1=f_2\sigma \wedge g_1=g_2\sigma\}.$$

看起来和 $C_{A,B}$ 很像,只不过交换图要求更高了。定义 A,B 的纤维余积 $A\times_C B$ 为此范畴的 F 对象。 SET 上的纤维积可以如下定义:

不妨设 $A\times_C B\subset A\times B$,由于态射图要交换,即 $\alpha\pi_A=\beta\pi_B$,故 $A\times_C B:=\{(x,y):\alpha(x)=\beta(y)\}$. 现在来证明 $A\times_C B$ 是终对象:

PROOF 1.4.3

对于 $\forall Z$,若存在 Z 到 A,B 的映射 f_A,f_B 满足 $\alpha f_A=\beta f_B$,则 $\exists ! \psi$ 满足 $f_A=\pi_A\psi \wedge f_B=\pi_B\psi$,不妨设 ψ 将 z 映射到 $(\psi_A(z),\psi_B(z))$.则易得 $\psi_A=f_A,\psi_B=f_B$,因此 ψ 是存在且唯一的.

• 纤维余积 (Fiber coproudct)

「_{DEF} 纤维余积

定义范畴 $C^{\alpha,\beta}$:

以上是 $C^{\alpha,\beta}$ 的 Obj, 其态射为定义为:

$$\mathrm{Hom}((Z_1,f_1,g_1),(Z_2,f_2,g_2))\coloneqq \{\sigma: \sigma f_1=f_2 \wedge \sigma g_1=g_2\}.$$

则纤维余积是这个态射的 1 对象.

以下是 SET 上的纤维余积:

重点是要解决态射图的"交换性质",即 $(\forall z \in C)(f_A\alpha(z) = f_B\beta(z))$,同时, I_A 也会将同一个元素映射到同一个元素,故设定价关系:

$$a \sim_A b \iff \alpha(a) = \alpha(b).$$

故 $[a]_{\sim_A} \subset C$ 中的所有元素都会被映射到 $A \coprod_C B$ 中的同一个元素,若 $[a]_{\sim_A} \cap [b]_{\sim_B} \neq \emptyset$,则 这两个等价类中的元素也都会映射到 $A \coprod_C B$ 中的同一个元素,故考虑等价关系:

$$[a]_{\sim_A} \sim_C [b]_{\sim_B} \iff [a]_{\sim_A} \cap [b]_{\sim_B} \neq \emptyset,$$
$$[a]_{\sim_A} \sim_C [b]_{\sim_A} \iff a = b.$$

故考虑商集:

$$(C/\sim_A \coprod C/\sim_B)/\sim_C$$
.

则满足交换性质. 另若 $a \notin \operatorname{im} \alpha$,则可映射到自身(的等价类),因此可以认为:

$$A \coprod_C B \cong (C/\sim_A \coprod C/\sim_B)/\sim_C \cup ((A\backslash \operatorname{im} \alpha) \coprod (B\backslash \operatorname{im} \beta)).$$

另外一个不太明显的想法是直接在 $A \coprod B$ 上直接商:

考虑等价关系 \sim , 满足 $A \coprod B$ 被其商掉后的商集满足态射图的交换. 也就是说若 $\alpha^{-1}(z_1) \cap \beta^{-1}(z_2) \neq \emptyset$, 则这样 $z_1 \sim z_2$, 在商后会将 C 中的一大把元素映射到 $A \coprod B$ 中的一个元素.

$$\sim\coloneqq\begin{cases} (z_1,A)\sim(z_2,B) \iff \alpha^{-1}(z_1)\cap\beta^{-1}(z_2)\neq\emptyset,\\ (z_1,A)\sim(z_2,A) \iff z_1=z_2. \end{cases}$$

则 $A \coprod_C B \coloneqq A \coprod B/\sim$.

接下来我们知道对于 $\forall c \in C$,都有 $\alpha^{-1}(\alpha(c)) \cap \beta^{-1}(\beta(c)) \neq \emptyset$,也即 $J_A\alpha(c) \sim J_B\beta(c)$,因此在集合商之后有:

$$qJ_{A}\alpha(c)=qJ_{B}\beta(c) \implies I_{A}\alpha=I_{B}\beta.$$

其中, J_A, J_B 是不满足态射图的交换的,但最终 I_A 和 I_B 满足.接下来证明这是个 I 对象:

PROOF 1.4.4

设 $\psi:A \coprod_C B \to (Z,f_A,f_B)$,则有 $\psi I_A = f_A, \psi I_B = f_B$,故 $(x,A) \mapsto [(x,A)]_{\sim} \mapsto \psi([(x,A)]_{\sim}) = f_A(x)$,故:

$$\psi([x,?]_{\sim}) = f_{?}(x), ? \in \{A,B\}.$$

由于如果 $[x,A]\sim [y,B]$ $\implies \alpha^{-1}(x)\cap\beta^{-1}(y)\neq\emptyset \implies \forall m_1,m_2\in\alpha^{-1}(x)\cup\beta^{-1}(y),$ 则 m_1,m_2 在 Z 中的像都相同(由于态射图的交换性质),因此 $A\amalg_C B$ 的确为 I 对象.

如果是 $(C/\sim_A \coprod C/\sim_B)/\sim_C \cup ((A \setminus \operatorname{im} \alpha) \coprod (B \setminus \operatorname{im} \beta))$ 形状的纤维余积,则考虑

$$I_A: a \mapsto \begin{cases} \left[\left[\alpha^{-1}(a) \right]_{\sim_A} \right]_{\sim_C}, & \text{if } a \in \operatorname{im} \alpha, \\ a, & \text{otherwise.} \end{cases}$$

 I_B 同理. 则:

$$\psi: x \mapsto \begin{cases} \left[[x]_{\sim_?} \right]_{\sim_C}, & \text{if } x \in C/{\sim_A} \amalg C/{\sim_B}, \\ f_?(x), & \text{if } x \in (A \backslash \operatorname{im} \alpha) \amalg (B \backslash \operatorname{im} \beta). \end{cases}$$

Chapter

2

Group, first encounter

乐子. 一个群 (group) 是一个单对象广群的同态集 Aut.

2.1

SECTION

 $\Gamma_{
m DEF}$

群

群的定义

• 群 G 是一个集合,上面赋予了二元运算。 $_G:G\times G\to G$,满足结合律:

$$(\forall a,b,c \in G)a \circ_G b \circ_G c = a \circ_G (b \circ_G c).$$

• 存在幺元

$$(\exists e_G \in G)(\forall g \in G) \ \underline{st} \ g \circ_G e_G = e_G \circ_G g = g.$$

• 存在逆元

$$(\forall g\in G)(\exists g^{-1}\in G)g\circ_G g^{-1}=g^{-1}\circ_G g=e_G.$$

一些例子

比如 $(\mathbb{Z},+),(\mathbb{C},+),(\mathbb{Q}_{\neq 0},\times)$ 都是群.

可逆 $n \times n$ 实矩阵组成的群表示为 $\mathrm{GL}_n(\mathbb{R})$.

2.1.1 群的一些小性质

- 幺元唯一
- 逆元唯一

(由于结合律,记
$$g^n \coloneqq \underbrace{g \circ \cdots \circ g}_{n \text{ times}}, g^{-n} \coloneqq \underbrace{g^{-1} \circ \cdots \circ g^{-1}}_{n \text{ times}}),$$
 显然 $g^a g^b = g^{a+b}$.

如果是可交换群则用 + 表示定义在其上的运算.

群的消去律 由于群元素有逆,因此可以同时左/右消去.

2.1.2 阶

「DEF 群元素的阶

若 $g \in G, \exists n \in \mathbb{N}, g^n = e$, 则 $|g| \coloneqq \inf_{g^n = e} n$, 称为该元素在群 G 中的阶.

• $\mbox{y} \ g^n = e, \ \mbox{y} \ |g| \mid n.$

PROOF 2.1.1

考虑 $g^{n-|g|\left\lfloor \frac{n}{|g|} \right\rfloor}$.

- 如果群是有限的,那么 |G| 记为该群的阶.则 $|G| \ge |g|, \forall g \in G$. 群的阶在交换的前提下长得比较奇妙.以下是另一个重要的推论:
- 若 $g \in G$ 的阶为 n, 则对任意 $m \in \mathbb{N}_{>0}$:

$$|g^m| = \frac{\operatorname{lcm}(m, |g|)}{m} = \frac{|g|}{\gcd(m, |g|)}.$$

PROOF 2.1.2

若
$$(g^m)^n = g^{mn} = e$$
, 则:

$$|g|\mid mn \wedge m \mid mn \implies \inf mn = \operatorname{lcm}(m,|g|) \implies \inf n = \frac{\operatorname{lcm}(m,|g|)}{m} = \frac{|g|}{\gcd(m,|g|)}.$$

• 如果 gh = hg, 则 $|gh| \mid \operatorname{lcm}(|g|, |h|)$: 显然 $(gh)^N = g^N h^N \implies (gh)^{\operatorname{lcm}(|g|, |h|)} = e$.

2.1.3 一些总结

• 乘法表可以用来表示一些群:

从乘法表看出,单元素群(平凡群)、二元素、三元素群都只有一种结构.

- $gG:=\{gh:h\in G\}=G$,实际上是群到群自身的映射 $I_g:G\to G$. 由群元素可逆易证. 以下是一些关于交换的例子:
- 若 gcd(|g|, |h|) = 1, 则 |gh| = |g||h|, 以下是一个典型的证明:

PROOF 2.1.3

考虑 $(gh)^{|gh|} = e \implies (gh)^{|gh| \cdot |h|} = e$, 即:

$$g^{|gh||h|} = e \implies |g| \mid |gh||h| \xrightarrow{\gcd(|h|,|g|)=1} |g| \mid |gh|.$$

同理 $|h| \mid |gh|$, 故 $lcm(|g|, |h|) \mid |gh|$, 又 $|gh| \mid lcm(|g|, |h|)$, 故 |gh| = |g||h|.

• 若一个交换群 G 有有限的阶,则设其元素阶的最大值为 |g|,则 $\forall h \in G(|h| \mid |g|)$,以下是另一个典型的证明:

PROOF 2.1.4

如果 $|h| \nmid |g|$,则 $\exists p \in \mathbb{P}$ <u>st</u> $|g| = p^m r$, $|h| = p^n s$, m < n, 否则 |h| 中所有质数的指数都不大于 |g|,即 $|h| \mid |g|$.

接下来考虑 $|g^{p^m}h^s|$, 使用上一个推论:

$$|g^{p^m}| = r, |h^s| = p^n.$$

由于 $gcd(p^n,r)=1$, 因为 $p\in\mathbb{P}$. 故 $|g^{p^m}h^s|=|g^{p^m}||h^s|=p^nr>|g|$, 矛盾!

2.2

一些群

SECTION

2.2.1 对称(置换)群 (symmetric groups)

 Γ_{DEF}

对称群

对称群是一个对集合 S_A 的置换 $\operatorname{Aut}_{\operatorname{SFI}}(S_A)$, 一个对 $\{1, \dots, n\}$ 的置换群记为 S_n .

很显然 $|S_n| = n!$, 这里指的是群元素数量而不是阶.

⑤ 低阶对称群们 S_2 只有两个元素 e, f:

$$e = (1, 2), f = (2, 1).$$

易证是交换的 (双元素群都是交换的)

 S_3 有六个元素:

$$\left\{ \begin{array}{ll} (1,2,3), & (2,1,3), & (3,2,1), \\ (1,3,2), & (3,1,2), & (2,3,1) \end{array} \right\}.$$

 S_3 是不交换的.

愛 群的生成初探 在 S_3 的例子中,令 x = (2,1,3), y = (3,1,2),则 S_3 中六各元素可以只用 x,y 表示:

$$S_3 = \{e, x, y, y^2, xy, xy^2\}.$$

其中 $x^2=e,y^3=e$. 我们称 $A\subset G$ 生成 G 若每个 G 中元素都可以表示成 A 中元素与 A 中元素的逆的乘积.

2.2.2 二面体群 (Dihedral groups)

 $\Gamma_{
m DEF}$

二面体群

一个正n 边形有以下2n 种对称情况:

- 绕中心旋转 $\frac{2i\pi}{n}$, 其中 $i\in\{0,1,\cdots,n-1\}$ 有 n 种.
- 若 $n \in \mathbb{O}$ dd,则有 n 种翻转(沿着中心与 n 个顶点的连线,同时也连接对应边的中点). 若 $n \in \mathbb{E}$ ven,则有 $\frac{n}{2}$ 种沿着中心到顶点的翻转, $\frac{n}{2}$ 种中心到边中点的翻转,总共 n 个.

故加起来总共有 2n 种对称性,因此二面体群记为 D_{2n} .

如果给每个顶点标号,则 $D_{2n}\subseteq S_n$. 一些特殊的情况是 $D_6=S_3, D_4=S_2$ (因为群元素数量相同).

2.2.3 循环群和一些同余算术 (Cyclic groups and modular arithmetic)

 Γ_{DEF}

循环群

建立在 Z 上的等价关系如下:

$$(\forall a,b \in \mathbb{Z}): a \equiv b \mod n \iff n \mid (b-a).$$

这称为 n 的 congruence modulo. 我们记商集 $\mathbb{Z}/\equiv_n=\mathbb{Z}/n\mathbb{Z}$.

则此是一个元素为同余等价类的集合:

$$[0]_n, \cdots, [n-1]_n.$$

定义此集合上的运算 +:

$$[a]_n + [b]_n := [a+b]_n.$$

(由于同余保持加法)这个运算是良定义的,在此运算的基础上,集合的单位元为 $[0]_n$, $[m]_n$ 的逆元为 $[-m]_m$,保持交换律、结合律,因此是个交换群,不妨记作 $\mathbb{Z}/n\mathbb{Z}$.

以下是一些推论:

- $|[m]_n| = \frac{n}{\text{lcm}(m,n)}$. 由于 $|g^m| = \frac{|g|}{\text{lcm}(|g|,m)}$, 因此将 $[m]_n$ 看成 $m[1]_n$ 即可.
- 在上面推论的前提下得到一个关于循环群的重要性质:

同余等价类 $[m]_n$ 可以生成整个 $\mathbb{Z}/n\mathbb{Z} \iff \gcd(m,n)=1$,因为阶刚好和群元素数量相等.

同余也保持乘法,但是没法在 $\mathbb{Z}/n\mathbb{Z}$ 上面建立群(因为有 $[0]_n$),因此考虑:

$$(\mathbb{Z}/n\mathbb{Z})^* := \{ [m]_n \in \mathbb{Z}/n\mathbb{Z} : \gcd(m, n) = 1 \}.$$

则 $((\mathbb{Z}/n\mathbb{Z})^*, \times)$ 是个群. 以下是一些证明:

• 首先证明这个集合关于乘法封闭:

$$\gcd(a,n)=1 \wedge \gcd(b,n)=1 \implies \gcd(ab,n)=1 \implies [ab]_n \in (\mathbb{Z}/n\mathbb{Z})^*.$$

• 群的单位元显然是 $[1]_n$,接下里是逆元的存在性:

由于 $\gcd(m,n)=1$,则 $[m]_n$ 可以生成整个 $\mathbb{Z}/n\mathbb{Z}$,故 $(\exists a\in\mathbb{N})a[m]_n=[1]_n \implies [am]_n=[1]_n$,因此 $[m]_n$ 在 $(\mathbb{Z}/n\mathbb{Z})^*$ 中的逆元为 $[a]_n$.

2.3

群范畴 GRP

SECTION

2.3.1 群同态 (Group homomorphisms)

r_{DEF}

群同态

群同态是一个态射:

$$\psi: G \to H$$
.

不妨再定义:

$$\psi \times \psi : G \times G \to H \times H, \psi \times \psi((a,b)) = (\psi(a), \psi(b)).$$

则满足下图交换的态射 ψ 就是 $G \to H$ 的群同态 $\in \operatorname{Hom}_{\operatorname{GRP}}(G,H)$:

$$\begin{array}{ccc} G \times G & \xrightarrow{\psi \times \psi} & H \times H \\ & & \downarrow^{\circ_G} & & \downarrow^{\circ_H} \\ G & \xrightarrow{\psi} & H \end{array}$$

为了使上图交换必须有:

即 $\psi(ab) = \psi(a)\psi(b)$: 群同态保持群结构.

 Γ_{DEF}

GRP

- Obj(GRP) := 所有的群.
- $\operatorname{Hom}_{\operatorname{GRP}}(G,H)\coloneqq$ 所有 $G\to H$ 的群同态.

群同态的一些性质如下:

• 群同态保持逆、幺元和阶

PROOF 2.3.1: 群同态保持逆、幺元

。设 $f: G \to H$ 是群同态,则:

$$0_H\circ_H f(0_G)=f(0_G)=f(0_G\circ_G 0_G)=f(0_G)\circ_H f(0_G)\xrightarrow{\text{iff}\pm \text{iff}} f(0_G)=0_H.$$

$$\circ \ f(g) \circ_H f(g^{-1}) = f(g \circ_G g^{-1}) = f(0_G) = 0_H \implies f(g^{-1}) = f(g)^{-1}.$$

 Γ_{DEF}

群的直积 (Direct product)

按照集合积的方法有:

$$G\times H=\{(a,b):a\in G\wedge b\in H\}.$$

而 $G \times H$ 上的运算定义为:

$$\circ_{G\times H}: (G\times H)\times (G\times H)\to G\times H, ((a,b),(c,d))\mapsto (a\circ_G c,b\circ_H d).$$

同时还有两个标准投影:

PROOF 2.3.2: 群的直积就是 GRP 中两个群 G, H 的积:

存在唯一一个态射 $\psi_G imes \psi_H$ 满足条件. 证明与集合积的证明相同:

$$\begin{split} \psi_G \times \psi_H(ab) &= (\psi_G(ab), \psi_H(ab)) = (\psi_G(a)\psi_G(b), \psi_H(a)\psi_H(b)) \\ &= (\psi_G(a), \psi_H(a))(\psi_G(b), \psi_H(b)) = \psi_G \times \psi_H(a)\psi_G \times \psi_H(b) \end{split}$$

故该态射也是一个群同态.

群的余积一般表示为 G*H, 也被称为自由积 (free product), 此处按下不表.

⑤ 一些关于交换群的东西

T_{DEF} Ab

- Obj(Ab) := 所有的交换群.
- $\operatorname{Hom}_{\operatorname{Ah}}(G,H) := \operatorname{\mathfrak{M}} f G \to H \operatorname{\mathfrak{h}} H \operatorname{\mathfrak{h}} A = \operatorname$

这样一个范畴会比普通的 GRP 更为好看,一个特点是:

PROOF 2.3.3: Ab 中群的余积也是群的直积

考虑一下交换图:

其中 I_G, I_H 是嵌入映射 $I_G: g \mapsto (g, 0_H), I_H: h \mapsto (0_G, h)$. 则(由于图要交换):

$$\psi((g,0_H)) = f_G(g), \psi((0_G,h)) = f_H(h).$$

另外 ψ 是一个群同态, 因此有:

$$\psi((a,b)) = \psi((a,0_H) + (0_G,b)) = \psi((a,0_H)) + \psi((0_G,b)) = f_G(a) + f_H(b).$$

这是 ψ 唯一的定义 (若存在),接下来是要满足群同态的性质 (上面那个只是特殊的):

$$\begin{split} \psi((a,b)+(c,d)) &= \psi((a+c,b+d)) = f_G(a+c) + f_H(b+d) \\ &= f_G(a) + f_G(c) + f_H(b) + f_H(d) \\ &\xrightarrow{\underline{\varphi} \notin \mathbb{H}} f_G(a) + f_H(b) + f_G(c) + f_H(d) \\ &= \psi((a,b)) + \psi((c,d)). \end{split}$$

那的确是个群同态.

○ 不是任意两个非平凡群的直积.

不妨设 G, H 是非平凡的,且 $G \times H = \mathbb{Q}$,讨论群 $G \times \{0_H\}$ 和 $\{0_G\} \times H$,显然这俩群非平凡.则讨论集合 $G \times \{0_H\} \setminus \{0_{\mathbb{Q}}\}$,则必然非空,设 $\frac{a}{b} \in G \times \{0_H\} \setminus \{0_{\mathbb{Q}}\}, a \neq 0$,同理设 $\frac{c}{d} \in \{0_G\} \times H \setminus \{0_{\mathbb{Q}}\}, c \neq 0$,故 $ac = ad \cdot \frac{c}{d} = cb \cdot \frac{a}{b}$,故(由于 $G \times \{0_H\}, \{0_G\} \times H$ 是群,因此 $\frac{a}{b}, \frac{c}{d}$ 的倍数必然在对应的群里) $ac \in G \times \{0_H\} \cap \{0_G\} \times H = \{0_H, 0_G\} = 0_{\mathbb{Q}}$,则 ac = 0 矛盾!

因此 $G \times \{0_H\}$ 和 $\{0_G\} \times H$ 必然有一个是平凡的, 故 G.H 有一个是平凡的.

 $oldsymbol{2}$ • 存在这样的例子:H 非平凡, $G imes H \cong G$.

一个著名的例子是:

$$\mathbb{Z} \times \mathbb{Z}[x] \cong \mathbb{Z}[x].$$

该群同态为 $(n,(a_0,a_1,\cdots))\mapsto (n,a_0,a_1,\cdots)$. 易验证是可逆的群同态.

2.4

群同态们

SECTION

6 一些例子

- 由于群同态只需满足保持运算,那么将群 G 所有的元素全部映射到 0_H 的群同态 ψ 必然存在. 该群态可以分解为 G 到 GRP 中的 Z 对象、再从该 Z 对象到 H 的群同态的复合. 这种群同态被称为平方凡群同态.
- 指数 (Exponential) 群同态: $\epsilon_g: \mathbb{Z} \to G, n \mapsto g^n$, 注意到如果这个群同态是全射, 那么 G 中所有元素都可以用 g 的幂来表示, 即 g 生成了 G.
- 对待整数集, 有一个投影商映射: $\pi_n: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, a \to [a]_n$, 很显然这是全射, 因为 $a \to a[1]_n$, 而 $[1]_n$ 生成了整个 $\mathbb{Z}/n\mathbb{Z}$.
 - **肾 群同态与阶相关的例子** 注意到 $\psi(g^{|g|}) = \psi(0) = \psi(g)^{|g|} = 0$, 故 $|\psi(g)| \mid |g|$.

写 群同构

 $\Gamma_{
m DEF}$

群同构

群同构就是在 GRP 范畴中的同构,也就是群同态 ψ 必须要有一个群同态的逆 ψ^{-1} .

PROOF 2.4.1: 一个群同态是群同构与该群同态是双的相互蕴含

显然只有双射有逆, 因此只需证明该逆是群同态:

$$\psi^{-1}(AB) = \psi^{-1}(\psi(\psi^{-1}(A))\psi(\psi^{-1}(B))) = \psi^{-1}(\psi(\psi^{-1}(A)\psi^{-1}(B))) = \psi^{-1}(A)\psi^{-1}(B).$$

因此指数函数 $\exp:(\mathbb{R},+)\to(\mathbb{R}_{>0},\times)$ 实际上是一个群同构. 当然此时可以说 $(\mathbb{R},+)\cong(\mathbb{R}_{>0},\times)$.

T_{DEF}

循环群

一个群 G 是循环群若 $\exists n \in \mathbb{N}$ \underline{st} $G \cong C_n$ 或 $G \cong \mathbb{Z}$

群同构比普通的群同构保留了更多群的性质, 比如阶、交换性等等:

- $\stackrel{\sim}{f} H$, $\mathbb{M} (\forall g \in G)|g| = |f(g)|$.
- 若 G 交换, $G \cong H$, 则 H 也交换.

交换群上的群同态 此时 $f:G\to H$,可以诱导出一个群若 H 是交换的,这个群是 $\operatorname{Hom}_{\mathsf{GRP}}(G,H)$:

$$(\psi + \phi)(z) := \psi(z) + \phi(z).$$

现在要满足一些性质:

• 封闭性, 即 $\psi + \phi$ 也是群同态.:

$$(\psi + \phi)(a + b) = \psi(a + b) + \phi(a + b) = \psi(a) + \psi(b) + \phi(a) + \phi(b)$$

$$\xrightarrow{\underline{\Diamond \psi}} \psi(a) + \phi(a) + \psi(b) + \phi(b)$$

$$= (\psi + \phi)(a) + (\psi + \phi)(b).$$

• 结合律、逆元、单位元自然取自 H 中的. 因此整个群 $\operatorname{Hom}_{\mathsf{GRP}}(G,H)$ 都由交换群 H 诱导(与 G 是否交换无关).

2.5

──→ 自由群 (Free groups)

SECTION

2.5.1 自由群的描述和泛性质

自由群是一个群以"特定的方式"包含了某个没有**任何结构的**集合 A. 下面是一个例子:

$$\mathcal{F}(\{a\})\coloneqq\{a^n:n\in\mathbb{Z}\}\cong\mathbb{Z}.$$

故 {*} 的自由群是一个无限循环群. 而空集 Ø 的自由群则是任意的平凡群.

⑤ 自由群的泛性质 自由群是这样一个范畴 \mathcal{F}^A 中的 I 对象,这个范畴可以如下定义:

 \mathcal{F}^{A}

 $\bullet \ \operatorname{Hom}_{\mathcal{F}^A}(j_1,j_2)\coloneqq \{\sigma: \sigma j_1=j_2 \wedge \sigma \in \operatorname{Hom}(\mathsf{GRP})\}.$

以下是一个对 $\mathcal{F}(\{a\})$ 同构与 \mathbb{Z} 的验证:

对 $\mathcal{F}(\{a\})$ 同构与 \mathbb{Z} 的验证

a 必然是被映射到 $\mathbb Z$ 中的 '1', 代表着 a^1 , 而接下来, 由于 ψ 是群同态, 因此 $n\in\mathbb Z$ 会被映射到 $f(a)^n$. 这样就决定了 ψ 的整个 Graph.

2.5.2 自由群的具体构造

由于集合 A 没有任何结构,我们不妨认为 A 中元素在自由群里的逆元不存在于 A 中(其实存在也无所谓).以下将给出一个自由群的具体构造:

「DEF

- 1. 给定一个新的集合 $A^{-1} \overset{f}{\cong} A, f: a \mapsto a^{-1}$,此时只是记号阶段,只有这些到了自由群里才会真正起到"逆"的作用.
- 2. 给出"字 (Word)"的定义:

我们可以将 W(A) 定义如下:

$$W(A) \coloneqq \{ f \in \operatorname{Hom}_{\operatorname{SFT}}(\{1, \cdots, n\}, A) : n \in \mathbb{N} \}.$$

其实就是用 A 中元素组合而成的有限字串. 其中 n 被称为字串的长度, 我们不妨用 L(w) 来表示字串 w 的长度.

顺带一提的是,长度为0的字串也算,称为空字串.

3. 字串里面有些特殊的存在, 比如:

$$xyy^{-1}x \neq x^2$$
.

在群里我们认为是相同的,我们可以将其商掉,但为了方便我们构造个函数来解决这一困扰:

构造"约化"函数 $r:W(A)\to W(A)$,它的作用是从左到右找到第一个 aa^{-1} 或者 $a^{-1}a$ 的组合,然后将它删去. 显然有以下两点:

- 如果 r(w) = w, 则我们认为这个字串已经被化简到最简了.
- $r^{\lfloor L(w)/2 \rfloor}(w)$ 必然是最简的,因为如果连续有效化简 $\left\lfloor \frac{L(w)}{2} \right\rfloor$ 那么多次,则字串的长度会被减到小于零,矛盾.

那不妨定义 $R: W(A) \to W(A), w \mapsto r^{\lfloor L(w)/2 \rfloor}(w).$

4. 解下来我们认为将 W(A) 中的元素全部 R 之后就可以得到自由群, 即 $\operatorname{im} R$. 定义自由群上的运算:

$$a \sim b := R(ab)$$
.

这里的 ab 指的是字符串接合.

$$ab: n \mapsto \begin{cases} a(n), & \text{if } n \leqslant L(a), \\ b(n), & \text{if } L(a) + L(b) \geqslant n > L(a). \end{cases}$$

接下来是验证:

- 结合律. 这个是明显的, 因为只需一次 R 就可以化到最简.
- 幺元就是空字符串.
- 逆元就是将每一个元素都变成其"逆"然后再将字符串顺序颠倒.

这样就给出了对任意一个集合 A, 其自由群的定义.

PROOF 2.5.1: 自由群的泛性质

不妨考虑 $\mathcal{F}(A)$ 的超集 W(A), 由于交换性, 必然有:

$$\psi j(a) = f(a) \implies \psi(j_a) = f(a).$$

其中 $j_a:1\to a$. 同时,由于是群同态有

$$\psi\bigg(\sum_{i=1}^n j_{a_i} \bigg) = \prod_{i=1}^n f(a_i).$$

而 W(A) 中的所有元素都可以用 $\sum_{i=1}^{n} j_{a_i}$ 来表示,因此将 ψ 限制到 $\mathcal{F}(A)$ 上即可.

只可意会的二阶自由群 Cayley 图

2.5.3 自由交换群 (Free abelian group)

自由交换群和自由群类似, 只不过群变成了交换群:

考虑 $\mathbb Z$ 的 n 次直积(在交换的前提下记为直和) $\mathbb Z^{\oplus n}$,则面对元数数量为 n 的群 A 时, $\mathbb Z^{\oplus n} \cong \mathcal F^{\mathrm{ab}}(A)$.

PROOF 2.5.2: $\mathbb{Z}^{\oplus |A|} \cong \mathcal{F}^{ab}(A)$

$$\begin{array}{ccc}
\mathbb{Z}^{\oplus |A|} & \xrightarrow{\psi} & G \\
\downarrow \uparrow & & \downarrow f \\
A & & \downarrow f
\end{array}$$

j 定义为:

$$j:a_i\mapsto (\underbrace{0,\cdots,1}_i,\cdots,0).$$

则我们可以仿照自由群那样让 j(a) 生成整个群(其实上也的确如此):

$$+_{\mathbb{Z}^{\oplus |A|}}: ((m_1,\cdots,m_n),(k_1,\cdots,k_n)) \mapsto (m_1+k_1,\cdots,m_n+k_n).$$

因此:

$$(m_1,\cdots,m_n)=\sum_{1\leqslant i\leqslant n}m_ij(a_i).$$

由于图表的交换性, 那么有:

$$\psi\bigg((\underbrace{0,\cdots,1}_{i},\cdots,0)\bigg)=f(a_{i}).$$

和群同态的性质——

$$\psi((m_1,\cdots,m_n))=\prod_{1\leqslant i\leqslant n}f(a_i)^{m_i}.$$

最后验证这确实是个群同态:

$$\begin{split} \psi((m_1,\cdots,m_n)+(k_1,\cdots,k_n)) &= \psi((m_1+k_1,\cdots,m_n+k_n)) \\ &= \prod_{1\leqslant i\leqslant n} f(a_i)^{m_i+k_i} \\ &\stackrel{\text{Abelian}}{=} \prod_{1\leqslant i\leqslant n} f(a_i)^{m_i} \prod_{1\leqslant i\leqslant n} f(a_i)^{k_i} \\ &= \psi((m_1,\cdots,m_n)) \psi((k_1,\cdots,k_n)) \end{split}$$

在此之上, 我们定义针对集合的群直和:

 Γ_{DEF}

首和

设 H 是一个交换群, A 是一个集合, 则 $\operatorname{Hom}_{\operatorname{SFT}}(A,H)=H^A$ 是一个交换群. 直和是 H^A 的子集, 定义如下:

$$H^{\oplus A} := \{ f \in H^A : |\{ a \in A : f(a) \neq 0_H \}| < \infty \}.$$

这解决了不可数集合的自由群问题,如下:

• 定义 $J_a:A\to H^{\oplus A},x\mapsto \begin{cases} 1, & \text{if }x=a,\\ 0, & \text{if }x\neq a. \end{cases}$ 则我们可以将 $H^{\oplus A}$ 中的元素以下表示:

$$\sum_{a \in A} m_a J_a.$$

则显然有 $\psi:\sum_{a\in A}m_aJ_a\mapsto\sum_{a\in A}m_af(a)$.

当然 m_a 只有有限个不为零.

2.5.4 子群 (Subgroups)

 Γ_{DEF}

子群

群 (H, •) 是 G 上的子群若存在一个单射的群同态:

$$i: H \hookrightarrow G$$
.

另一个看待子群的方法是考虑 G 的子集:

• $H \neq G$ 的非空子集, 则 $H \neq G$ 的子群当且仅当:

$$(\forall a, b \in H)ab^{-1} \in H.$$

PROOF 2.5.3

1. (\Leftarrow) 由于 H 非空, 则 $\exists h \in H$, 故有:

$$e_G = hh^{-1} \in H$$
.

同时 $\forall a \in H \implies ea^{-1} \in H \implies a^{-1} \in H$, 即 H 对逆运算封闭.

 $\forall a,b\in H\implies ab=a(b^{-1})^{-1}\in H,$ 故 H 对群乘法封闭,剩下的结合律什么的继承自 G ,综上,H 是群.

2. (⇒) 显然.

一些关于子群的东西

1. 若 $\{H_a\}_{a\in A}$ 书 G 上的子群族,则

$$H = \bigcap_{a \in A} H_a.$$

也是一个子群.

PROOF 2.5.4

 $g,h \in H \implies (\forall a \in A)g, h \in H_a \implies (\forall a \in A)gh^{-1} \in H_a \implies gh^{-1} \in H.$

2. 如果 $\psi: G \to G'$ 是一个群同态, $H \not\in G'$ 中的子群, 则

$$\psi^{-1}(H)\coloneqq\{g\in G:\psi(g)\in H\}.$$

也是一个子群.

PROOF 2.5.5

只需要证明 $\forall a,b \in \psi^{-1}(H)$ 都有 $ab^{-1} \in \psi^{-1}(H)$, 即 $\psi(ab^{-1}) \in H$. 这是显然的,因为 $\psi(ab^{-1}) = \psi(a)\psi(b)^{-1} \in H$,因为 H 是子群.

- 3. 两个特殊的子群设 $\psi: G \to G'$ 是群同态,则 $\operatorname{im} \psi, \ker \psi$ 都是子群.
- $\ker \psi := \psi^{-1}(e_{C'})$, 由于 $\{e_{C'}\}$ 是一个子群, 因此有上面的证明知晓 $\ker \psi$ 是子群.
- $\operatorname{im} \psi$ 是子群,因为若 $a,b \in \operatorname{im} \psi \implies \exists A,B \in G, \psi(A) = a,\psi(B) = b$,则 $ab^{-1} = \psi(A)\psi(B) = \psi(AB^{-1}) \in \operatorname{im} \psi$.
- $\ker \psi$ 的泛性质:

考虑这个范畴 C, 则 $\ker \psi$ 是 C 的 F 对象:

- $\circ \ \operatorname{Obj}(\mathsf{C}) = \{(K,a) \mid a: K \to G \land \psi a = e_{K \to G'}\}.$
- $\circ \ \operatorname{Hom}_{\mathsf{C}}((K_1,a_1),(K_2,a_2)) = \{\sigma: a_2\sigma = a_1\}.$

其中 i 是嵌入映射,将 $\ker \psi$ 中的元素映射到 G 中的相同元素,又 $\psi a=e_{K\to G'}$,则 $\operatorname{im} a\subset \ker \psi$.则:

$$if(x) = f(x) \implies f(x) = a(x), \forall x \in K.$$

即 ψ 与 a 将 K 中的元素映射到分别属于 G 和 $\ker \psi$ 的同一元素.

4. 由子集生成的子群设 $A \subset G$, 由自由群的泛性质:

则 $\operatorname{im}\psi$ 是子群,将这个群记为 $\langle A \rangle$,或者 $\Big\langle \{a_i\}_{a_i \in A} \Big\rangle$.

• (A) 是所有包含 A 的子群之交.

$$\langle A \rangle = \bigcap_{H \text{ is subgroup of } G, A \subset H} H$$

PROOF 2.5.6

显然, $\langle A \rangle$ 是包含 A 的子群, 只需证明其最小即可.

$$\begin{array}{ccc} \mathcal{F}(A) & \stackrel{\psi}{\longrightarrow} & \operatorname{im} \psi \\ & & \downarrow^f \\ A & \stackrel{\longleftarrow}{\longleftarrow} & H \end{array}$$

只需证明 f 是单射即可,其中 $\psi:\mathcal{F}(A)\to \mathrm{im}\,\psi, a_1\sim a_n\mapsto \prod_{i=1}^n a_i, f\left(\prod_{i=1}^n a_i\right)=\prod_{i=1}^n a_i\in H.$ 由于 f 将 $\prod_{i=1}^n a_i\in H$ 映为自身,故为单射.

5. 一些关于循环群的讨论

T DEF

有限生成 (Finitely generate)

 $_{\perp}$

一个群 G 若是有限生成的,若存在一个有限子集 A 使得 $G\cong \langle A\rangle$. 换言之,由于 |A| 有限,则可以用:

$$\mathcal{F}(\{1,\cdots,|A|\}) \twoheadrightarrow G.$$

这样一个全态射来判定.

• 对于循环群 Z, 其子群必然是循环群, 或者是平凡群.

PROOF 2.5.7

若 G 是 $\mathbb Z$ 的子群,则必然非空,若 G 非平凡,则必然存在 $g\in G\land d>0$,设 $a=\inf_{g\in G,\,g>0}g$,则必然有 $a\mathbb Z\subset G$,现在证明 $G\subset a\mathbb Z$.

设 $h \in G$, 将 h 分解为:

$$h = ka + b$$
.

其中 $k \in \mathbb{Z}, b \in \{0, \dots, a-1\}$. 又 $a \in G$, 则 $h-k \cdot a \in G \implies b \in G$, 若 b > 0 则与 a 的 inf 条件矛盾,故 b = 0,因此 $a \mid h \implies G \subset a\mathbb{Z}$.

• 若 $G \subset \mathbb{Z}/n\mathbb{Z}$ 的一个子群,则G是由某个 $[d]_n$ 生成的循环群.

PROOF 2.5.8

上面已经证明 $\mathbb Z$ 的子群都是循环群,考虑商映射 $\pi_n\mathbb Z\to\mathbb Z/n\mathbb Z$ 这样一个群同态,由于 G 是子群,因此 $\pi_n^{-1}(G)$ 是 $\mathbb Z$ 的子群,即 $\pi_n^{-1}(G)$ 是循环群,则必然由某个 d 生成(包括 d=0),因此:

$$\begin{split} G &= \pi_n(G) = \{\pi_n(g): g \in G\} = \{\pi_n(kd): d \in \mathbb{Z}\} \\ &= \{n[d]_n: n \in \mathbb{Z}\} = \langle [d]_n \rangle. \end{split}$$

6. GRP 中的单态射

上面三者是等价的:

PROOF 2.5.9

A. 不妨认为存在两个态射 i,e:

$$\ker \psi \xrightarrow{e} G \xrightarrow{\psi} G'$$

其中 i 是恒等映射, e 是平凡群态射. 则由单同态有:

$$i, e \in \ker \psi \implies \psi i = \psi e \implies i = e.$$

也就是 $\ker \psi$ 中所有元素都是 e_G .

B. 若 $\ker \psi = e_G, \ \, 则 \,\, \psi(g_1) = \psi(g_2) \implies \psi(g_1) \psi(g_2)^{-1} = e_G', \,\,$ 然后

$$\psi(g_1g_2^{-1})=e_G' \implies g_1g_2^{-1} \in \ker \psi \implies g_1=g_2.$$

即 $\psi(g_1)=\psi(g_2)\implies g_1=g_2,$ 因此 ψ 是单的.

C. 在 SET 里面, 单射必然是单态射, 而 GRP 是 SET 的子范畴, 证毕.