東大数学理科後期 2007 年度

1 問題1

xy 平面の曲線 $C: xy^2 = 4$ 上に 1 点 $P_0(x_0, y_0)$ $(y_0 > 0)$ をとる。 P_0 における C の接線と C との共有点のうち, P_0 と異なるものを $P_1(x_1, y_1)$ とする。また, P_1 における C の接線と C との共有点のうち, P_1 と異なるものを $P_2(x_2, y_2)$ とする。次の間に答えよ。

- 1. P_1 , P_2 の座標を y_0 を用いてあらわせ.
- 2. $\triangle P_0 P_1 P_2$ の面積を T とし、線分 $P_0 P_1$ 、 $P_1 P_2$ および曲線 C で囲まれた領域の面積を S とする. $\frac{T}{S}$ の値を求めよ.
- 3. $\angle P_0 P_1 P_2$ が直角となるような y_0 の値を求めよ.
- 4. 全問 (3) で求めた y_0 に対し、 $\triangle P_0 P_1 P_2$ の外接円の面積を求めよ。

2 問題 2

次の間に答えよ.

1. 実数を成分とする行列
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 $(a^2 + b^2 \neq 0)$ に対し
$$B = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} a & b \\ b & d \end{pmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix}^{-1}$$
 (1)

とおく.行列 B は $B=\begin{pmatrix} r & s \\ s & t \end{pmatrix}$ の形であることを示し,r+t, $rt-s^2$ を a,b,c を用いてあらわせ.

2. 前問 (1) において $r^2 + s^2 \ge a^2 + b^2$ が成り立つことを示せ.

3. 実数 a_n , b_n , c_n $(n = 0, 1, 2 \cdots)$ を次のように定める.

$$n = 0 \text{ O とき} \begin{pmatrix} a_0 & b_0 \\ b_0 & c_0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix},$$

$$n \ge 1 \text{ O とき} \begin{pmatrix} a_n & b_n \\ b_n & c_n \end{pmatrix} = \begin{pmatrix} a_{n-1} & b_{n-1} \\ -b_{n-1} & a_{n-1} \end{pmatrix} \begin{pmatrix} a_{n-1} & b_{n-1} \\ b_{n-1} & c_{n-1} \end{pmatrix} \begin{pmatrix} a_{n-1} & b_{n-1} \\ -b_{n-1} & a_{n-1} \end{pmatrix}$$

$$(3)$$

ア
$$\lim b_n = 0$$
を示せ

ア
$$\lim_{n \to \infty} b_n = 0$$
 を示せ、
イ $\lim_{n \to \infty} a_n$, $\lim_{n \to \infty} c_n = 0$ を求めよ.

問題 3 3

N を 2 以上の自然数とする. $x_1 \leq \cdots \leq x_N$ をみたす実数 x_1, \cdots, x_N に対し実数 k_n p_n , $q_n(n=0,1,2,\cdots)$ を次の手続きで定める.

A
$$k_0 = 1$$
, $p_0 = x_1$, $q_0 = x_N$

B
$$n$$
 が奇数のとき k_n は $x_i \leq \frac{p_{n-1}+q_{n-1}}{2}$ をみたす x_i の個数, $p_n=p_{n-1}$, $q_n=q_{n-1}$

$$C$$
 n が偶数 $(n \ge 2)$ のとき $k_n = k_{n-1}$, $p_n = \frac{1}{k_n} \sum_{i=1}^{k_n} x_i$, $q_n = \frac{1}{N - k_n} \sum_{i=k_n+1}^{N} x_i$.

ただし $k_n = 0$ または $k_n = N$ となったら、その時点で手続きを終了する。 $x_1 < x_N$ であ るとき,次の問に答えよ.

- 1. すべての自然数 n について $1 \le k_n \le N-1$ かつ $x_1 \le p_n < q_n \le x_N$ が成り立つ
- 2. 実数 J_n $(n=0,1,2,\cdots)$ を $J_n=\sum_{i=1}^{k_n}(x_i-p_n)^2+\sum_{i=k_n+1}^N(x_i-q_n)^2$ と定めると, 全ての自然数 n に対して $J_n \leq J_{n-1}$ が成り立つことを示せ.
- 3. n が十分大きいとき、 $J_n=J_{n-1}$ 、 $p_n=p_{n-1}$ 、 $q_n=q_{n-1}$ 、 $k_n=k_{n-1}$ が成り立 つことを示せ.