UNIVERSIDAD NACIONAL DEL LITORAL

Facultad de Ingeniería y Ciencias Hídricas

Carrera: Ingeniería en Inteligencia Artificial

Materia: Introducción a los Sistemas Ciber-Físicos

Fecha de entrega: 20/11/2024

<u>Docentes</u>: Borzone Eugenio, Carrique Juan, Molas Giménez José Tomás, Zorzet Bruno Jose.

Alumnos: Berardi Agustín, Bonnin Alessio, Bonzi Fabricio, Carrara Ignacio, Costamagna Lautaro, Detzel Axel, Junges Marcos.

Resumen:	2
Desarrollo:	
Comparaciones de Sensores	
Consumo	
Gabinete	
Diagrama de Bloques:	11
Gemelo digital:	11
Diagrama de Estados	12
Diagrama de flujo	
Anexo:	
Experiencias Realizando el Trabajo	15

Resumen:

En este trabajo final para la materia de Introducción a los Sistemas Ciber Físicos, se nos propuso simular el diseño de un sistema de control automatizado para una compostadora. Para esto nos planteamos como objetivos diseñar un sistema con la capacidad de informar por medio de mensajes de texto el estado actual de la compostera, y en caso de que sea necesario indicar si necesita una intervención externa (agregar chips de poda, o yerba), ya sea por falta o abundancia de humedad o temperatura.

En primer lugar graficamos los diagramas de estado, flujo, y bloques para tener una mejor visión del sistema. Luego nos dedicamos a seleccionar los sensores y actuadores necesarios comparándolos entre ellos y eligiendo los que mejor se adapten a los requerimientos del proyecto, además de calcular su cantidad mediante los diagramas previamente hechos, calculamos su consumo total, y programamos un gemelo digital de la compostera en la plataforma Wowki para simular su comportamiento.

En conclusión optamos por un microcontrolador que es capaz de conectarse a internet para poder realizar notificaciones y un seguimiento mediante gráficos, siendo un interesante desafío para aprender sobre las conexiones WiFi y HTTP.

Desarrollo:

Sensores:

- Sensor de temperatura/humedad ambiental:

Se optó por elegir un sensor de temperatura que también sea capaz de medir la humedad. Esto permite un monitoreo más completo del ambiente, proporcionando datos esenciales tanto de temperatura como de humedad en un solo dispositivo, lo cual optimiza el espacio, simplifica la instalación y reduce los costos del sistema.

Comparaciones de Sensores

Característica/Parámetro	DHT22	DHT11	SHT31	BME280
Tamaño	14x18x5.5 mm o 22x28x5 mm	15.5x12x5.5 mm	2.5x2.5x0.9 mm	2.5x2.5x1.0 mm
Nivel de Acondicionamiento de Señal	Bajo; salida digital en bus único	Bajo; salida digital	Bajo; salida digital	Bajo; salida digital por I2C/SPI
Confiabilidad	Alta, compensación de temperatura y calibración en fábrica	Media	Muy alta, precisión superior	Muy alta, precisión superior
Robustez	Media, sensible a condiciones extremas de luz y químicos	Baja, limitado en rango de operación	Alta, apto para condiciones variables	Alta, apto para condiciones variables
Facilidad de Mantenimiento	Alta; fácil instalación y reemplazo	Alta	Media; requiere soldadura	Media; requiere soldadura
Costo	\$ 8.399,00	\$ 3.509,00	\$ 4.828,85	\$ 28.367

Teniendo en cuenta todas las variables, elegimos el sensor DHT22 debido a su relación de calidad y precio. A pesar de su sensibilidad a condiciones extremas, el DHT22 es una opción viable y rentable para este proyecto debido a su

rendimiento adecuado dentro de las condiciones de compostaje, donde la exposición a factores como luz intensa o productos químicos es limitada. Si bien el SHT31 podría ofrecer mayores ventajas en términos de robustez y precisión, el DHT22 cumple con los requisitos del proyecto sin los gastos adicionales de sensores más avanzados.

Enlace de compra:

- https://articulo.mercadolibre.com.ar/MLA-1771706022-sensor-dht22-humedad-relativa-y-temperatura-ar-duino-_JM#polycard_client=searchnordic&position=18&search_layout=grid&type=item&tracking_id=114c90d4-6d56-45e5-a48b-e08540d27ddb

Enlace con hoja de datos (datasheet):

- https://www.alldatasheet.com/datasheet-pdf/pdf/1132459/ETC2/DHT22.html
- Sensor de temperatura directa:

Se optó por incorporar un segundo sensor de temperatura para medir directamente la temperatura del compost, ya que el DHT22 solo mide la temperatura ambiental. El compost genera calor debido a las reacciones biológicas internas, por lo que es necesario un sensor adicional para obtener lecturas precisas de las condiciones internas del compost, lo que permitirá un monitoreo más completo y optimizado del proceso de compostaje.

Sensor	DS18B20	LM35	TMP36
Tipo de sensor	Digital	Analógico	Analógico
Rango de temperatura	-55°C a +125°C	-55°C a +150°C	-40°C a +125°C
Precisión	±0.5°C (de -10°C a +85°C)	±0.5°C	±1.0°C
Salida	Digital (1-Wire)	Analógica (voltaje)	Analógica (voltaje)
Resolución	9 a 12 bits (configurable)	N/A	N/A
Alimentación	3.0V a 5.5V	4.5V a 35V	1.7V a 40V

Consumo de energía	Bajo (1mA típico en reposo)	Bajo (1.5mA típicamente)	Bajo (typical 40µA)
Tiempo de respuesta	Lento (respuesta en varios milisegundos)	Rápido (respuesta en milisegundos)	Rápido (respuesta en milisegundos)
Facilidad de uso	Requiere un bus 1-Wire	Fácil de usar, solo requiere un ADC	Fácil de usar, solo requiere un ADC
Costo	Moderado	Bajo	Bajo

Se optó por el sensor DS18B20 para medir la temperatura en el compost debido a su precisión de ±0.5°C y un rango de medición de -55°C a +125°C, que es adecuado para las condiciones del compost. Su bajo consumo de energía lo hace ideal para aplicaciones a largo plazo, y su uso del protocolo 1-Wire permite conectar múltiples sensores a un solo pin del microcontrolador, facilitando la expansión del sistema. Además, su facilidad de integración con el ESP32 garantiza un desarrollo eficiente y rápido del sistema.

Enlace de compra:

 https://articulo.mercadolibre.com.ar/MLA-934234326-sensor-temperatura-ds18b20-cable-3-metros-sum ergible-nubbeo- JM#is_advertising=true&position=1&search_layout=grid&type=pad&tracking_id=90206 31c-76dd-4140-8624-38ad6313a545&is_advertising=true&ad_domain=VQCATCORE_LST&ad_position =1&ad_click_id=NzAyZmRhYzAtMGU4NC00NWFILWEyNWUtNDQ3YzVmNzUyNmE4

Enlace con hoja de datos (datasheet):

- https://www.alldatasheet.com/datasheet-pdf/pdf/58557/DALLAS/DS18B20.html

- Sensor de posición:

Se ha seleccionado un final de carrera para la detección del estado de la puerta (abierta o cerrada) debido a su simplicidad, precisión y confiabilidad. Este sensor mecánico ofrece una señal clara e inmediata al activarse, y no es afectado por interferencias o condiciones ambientales. Además, su implementación es económica y sencilla, sin necesidad de calibración ni ajustes complejos.

Modelo de Final de Carrera	Tipo de Interruptor	Descripción	Ventajas	Desventaj as	Aplicación Típica
Omron D2FC-F-7N	Microswitch (normalmen te cerrado)	Interruptor compacto de alta fiabilidad. Usado comúnmente en computadoras y dispositivos electrónicos.	Alta fiabilidad , compacto y fácil de integrar	- No es adecuado para entornos de alta vibración.	Usado en sistemas pequeños, como controles de posición en robots o interruptores de límite en maquinaria.
Honeywell V15-1C25	Interruptor de palanca (normalmen te abierto)	Interruptor de palanca con gran capacidad de conmutación. Ideal para aplicaciones industriales.	Resistente a cargas altas, alta capacidad de conmutació n	- Tamaño más grande, lo que puede dificultar la integración en espacios reducidos.	Control de puertas automáticas o sistemas industriales.
Cherry D44X-CA	Interruptor de rodillo (normalmen te cerrado)	Interruptor con rodillo que proporciona mayor versatilidad en aplicaciones dinámicas.	Buena fiabilidad, funciona buen con superficies irregulares	- Puede ser más costoso que otros tipos.	Robots móviles y sistemas de transporte.

Se ha seleccionado el Honeywell V15-1C25, un interruptor de palanca ideal para el control de las tapas de la compostera. Este interruptor detectará la posición de las tapas superior e inferior, que se abren para agregar residuos o retirar el compost.

Enlace de compra:

- https://www.mouser.com/ProductDetail/Omron-Electronics/V-15-1C25?qs=jlWqeHNmHbTtgCADbVD4Y
https://www.mouser.com/ProductDetail/Omron-Electronics/V-15-1C25?qs=jlWqeHNmHbTtgCADbVD4Y
https://www.mouser.com/ProductDetail/Omron-Electronics/V-15-1C25?qs=jlWqeHNmHbTtgCADbVD4Y
https://www.mouser.com/ProductDetail/Omron-Electronics/V-15-1C25&utm_term=V-15-1C25&utm_content=Omron

Enlace con hoja de datos (datasheet):

Microcontrolador:

Elegimos el ESP32 para nuestro proyecto de compostaje debido a varias ventajas clave que ofrece. Primero, su conectividad Wi-Fi y Bluetooth permite subir los datos a la nube de manera sencilla y eficiente, algo esencial para el monitoreo remoto del proceso. Además, el alto rendimiento del ESP32, con su microprocesador de doble núcleo a 240 MHz, y su mayor capacidad de memoria en comparación con otras opciones como Arduino, nos permite manejar múltiples sensores y tareas de procesamiento sin problemas.

Característica	ESP32-WROOM-32	Arduino Uno
Microcontrolador	ESP32 (dual-core, Xtensa LX6)	ATmega328P
Memoria RAM	520 KB SRAM	2 KB SRAM
Conectividad	Wi-Fi, Bluetooth, BLE	Ninguna
Voltaje de operación	3.0 V ~ 3.6 V	5 V
Pines GPIO totales	25 utilizables (de 38 totales)	14 digitales, 6 analógicos
Pines PWM	Todos los GPIO	6 digitales
Pines ADC	18 (12 bits)	6 (10 bits)
Pines DAC	2 (salida analógica)	Ninguno
Comunicación serial	UART (3), SPI (4), I2C (2)	UART (1), SPI (1), I2C (1)
Consumo en reposo	<5 μΑ	~10 mA hasta <5 µA

Enlace de compra:

- https://articulo.mercadolibre.com.ar/MLA-886471349-led-rgb-difuso-5mm-alta-luminosidad-4-pines- JM ?searchVariation=67278015274#polycard_client=search-nordic&searchVariation=67278015274&position=2&search_layout=grid&type=item&tracking_id=2aca4ba4-00ba-4508-8af4-9c3fa8e46651

Actuadores::

Para los actuadores se optó utilizar un Led RGB por la versatilidad de colores que puede emitir al combinar las intensidades de los LEDs rojo, verde y azul. Esto permite una amplia gama de colores, a diferencia de un LED común que sólo emite luz de un color fijo.

Enlace de compra:

https://articulo.mercadolibre.com.ar/MLA-855272996-pack-10-leds-rgb-5mm-4-pines-arduino-electronica
 _JM?searchVariation=55805308124#polycard_client=search-nordic&searchVariation=55805308124&position=4&search_layout=grid&type=item&tracking_id=cb187df5-8b4c-4fd1-ab2a-ddccd55df964

Consumo

Mínimo: 1,52 mWh

Máximo: 1,66 mWh

Promedio: 1,59 mWh

Calculamos la capacidad de la batería necesaria para que resista una semana sin ser recargada (será calculada con el consumo máximo):

mWh por día: 1,66 mWh x 24 = 39,84 mWh

mAh: 39,82 mWh/3,6 V = 11 mAh

Para los 7 días: 11 mAh x 7 = 77 mAh

La estrategia de recarga de la batería es recargar las baterías mientras se utilizan otras, se podrían utilizar unas como las siguientes que tienen una buena capacidad para el proyecto:

Enlace de compra:

https://www.mercadolibre.com.ar/pila-bateria-pack-megalite-doble-aa-36v-600 mah-recargable/p/MLA28410934#polycard_client=search-nordic&wid=MLA13 96949447&sid=search&searchVariation=MLA28410934&position=3&search_l ayout=stack&type=product&tracking_id=7c5e9611-27df-40b7-b8e5-01907f37 e624

Gabinete

Para el gabinete donde se van a instalar los componentes, nos decidimos por una caja de paso para instalaciones eléctricas externas, de manera que los componentes queden protegidos al ambiente externo.

Como los únicos componentes que tendrían que ir en el gabinete son la placa ESP 32 (54,4mmx27,9mm) y las baterías con su cableado correspondiente para alimentar al microcontrolador, el cual calculamos que puede tomar alrededor de 50mm, concluimos que con una caja de paso de 150x150 iba a ser más que suficiente y permitirá también agregar más componentes si fuera necesario.

Enlace de compra:

 https://articulo.mercadolibre.com.ar/MLA-719938840-caja-paso-derivacion-plastica-estanca-ip65-150x1
 50x104mm-_JM#polycard_client=search-nordic&position=24&search_layout=grid&type=item&tracking_i d=a56f8217-d065-404a-bbf2-7c79377b8c21

Diagrama de Bloques:

Gemelo digital:

Enlace del gemelo digital: https://wokwi.com/projects/415015562959266817

Enlace de video de muestra: https://youtu.be/C5W -WWeNQs

Diagrama de Estados

Diagrama de flujo

Referencias

B010_E1 Datasheet - Mouser Electronics. *Datasheet: B010_E1*. Disponible en: https://www.mouser.com/datasheet/2/307/B010_E1-3446697.pd

DS18B20 Datasheet - Dallas Semiconductor. *Datasheet: DS18B20 - Programmable Resolution 1-Wire Digital Thermometer*. Disponible en: https://www.alldatasheet.com/datasheet-pdf/pdf/58557/DALLAS/DS18B20.html

DHT22 Datasheet -ETC2. *Datasheet: DHT22 - Digital Temperature and Humidity Sensor*. Disponible en: https://www.alldatasheet.com/datasheet-pdf/pdf/1132459/ETC2/DHT22.html

Naylamp Mechatronics. Tutorial Sensor Digital de Temperatura DS18B20. Disponible en: https://naylampmechatronics.com/blog/46 tutorial-sensor-digital-de-temperatura-ds18b20.ht ml

Herramientas de Ingeniería. Cálculo en línea: Duración de Baterías. Disponible en: https://www.herramientasingenieria.com/onlinecalc/spa/duracion-baterias/duracion-baterias.

Anexo:

Experiencias Realizando el Trabajo

En el momento en que se nos otorgó el proyecto final para la materia Introducción a los Sistemas Ciber-Físicos, nuestro grupo comenzó con una proyección general de cómo queríamos que el sistema automatizado de la compostadora funcionara al finalizar. Entre las primeras ideas surgió la posibilidad de automatizar el proceso de compostaje utilizando un motor que moviera y aireara los materiales. Además, consideramos integrar un sistema que agregue automáticamente chips de poda o yerba, cuando sea necesario. Sin embargo, al avanzar en el proyecto, nos dimos cuenta de que no teníamos siquiera el sistema de monitoreo con los sensores.

Además de cubrir los requisitos mínimos del proyecto, decidimos incluir un toque personal: la implementación de un sistema de notificaciones conectado a WiFi. Este sistema, configurado para enviar mensajes a través de Telegram, permite notificar a Rubén, cada vez que el compostador requiera algún tipo de mantenimiento o reposición de materiales. Este enfoque no sólo automatiza parte del trabajo, sino que también mejora la comodidad y eficiencia del cuidado de la compostadora. Mediante el WiFi también pudimos conectar al microcontrolador a un servidor para que actualice sus datos y se tenga un seguimiento de los mismos mediante gráficos.

A lo largo del desarrollo del proyecto, enfrentamos diversos desafíos técnicos y organizativos. Uno de los mayores obstáculos fue coordinar las ideas y expectativas de los integrantes del grupo. La distribución de tareas representó un desafío particular, ya que cada miembro tenía enfoques diferentes. También debimos aprender a realizar diagramas de estado y flujo, comprender sus diferencias y utilizarlos de una buena manera en el diseño del sistema.

En conclusión, este proyecto nos dejó bastantes aprendizajes. Desde el manejo de sensores y microcontroladores hasta la importancia de una buena comunicación en equipo. Este trabajo nos brindó la oportunidad de aplicar

conocimientos teóricos en un entorno práctico, desafiandonos a buscar soluciones innovadoras.

Dibujo inicial de la compostadora, con el mezclado automático y el depósito de chips de poda.

Calculos del consumo:

DS18B20:

Vmin: 3 V Vmax: 5,5 V

mA: 1,5

Potencia min: 3 V x 0,0015 A = 4,5 mW

Reposo: 3 V x 0.000005 A = 0,015 mW

Potencia max: 5,5 V x 0,0015 A = 8,25 mW

Reposo: 5,5 V x 0.000005 A = 0,0275 mW

DHT22:

Vmin: 2,2

Vmax: 5,5

mA: 1,5

Potencia min: 2,2V x 0,0015 A = 3,3 mW

Reposo: 2,2V x 0.000005 A = 0,011 mW

Potencia max: 5,5 V x 0,0015 A = 8,25 mW

Reposo: 5,5 V x 0.000005 A = 0,0275 mW

Led RGB:

Potencia: 300 mWh

ESP 32:

Vmin: 3

Vmax: 3,6

mA: 80

Potencia min: 3 V x 0,08 A = 240 mW

Reposo: $3 V \times 0.000005 A = 0,015 mW$

Potencia max: 3,6 V x 0,08 A = 288 mW

Reposo: $3.6 \text{ V} \times 0.000005 \text{ A} = 0.018 \text{ mW}$

Consumo total:

- Consumo con final de carrera presionado:

Minimo:

4,5 mWh + 3,3 mWh + 300 mWh + 240 mWh = 547,8 mWh

Aproximadamente: 550 mWh

Reposo: 0.015 mWh + 0.011 mWh + 0.015 mWh = 0.04 mWh

Maximo:

8,25 mWh + 8,25 mWh + 300 mWh + 288 mWh = 604,5 mWh

Aproximadamente 600 mWh

Reposo: 0.0275 mW + 0.0275 mW + 0.018 mW = 0.07 mWh

El sensado del sistema tarda alrededor de 2 segundos, posteriormente está en reposo 10 minutos por lo que el consumo es infimo en ese período, por lo que en una hora el sistema estaría activo 10 segundos aproximadamente, por lo tanto los otros 50 segundos estaría en reposo $(5 \ \mu A)$:

Minimo: $(550 \text{ mWh} / 3600) \times 10 (0.04 \text{ mWh} / 3600) \times 50 = 1.52 \text{ mWh}$

Maximo: $(600 \text{ mWh} / 3600) \times 10 + (0.07 \text{ mWh} / 3600) \times 50 = 1.66 \text{ mWh}$

Promedio: (1,52 mWh + 1,66 mWh)/2 = 1,59 mWh