h	J	7	
`	١,	1	

益

扬州大学试题纸

(2019-2020 学年第 2 学期)

班(年)级 课程 生物统计与试验设计

题目	_	1 1	111	四	五	六	七	八	总分
得分									

一、判断题(每小题2分,共20分)

- 1. 事件 A 与事件 B 积事件的概率,等于事件 A 与事件 B 的概率之积。(
- 2. 方差分析中*MS*_e 是总体误差方差的无偏估计。()
- 3. u 分布的平均数与中位数相等。()
- 4. 否定无效假设 H_0 可能犯 α 错误。(
- 5. 成对比较时不需要考虑 2 个样本的总体方差 σ_1^2 和 σ_2^2 是否相等。 ()
- 6. 单因素完全随机化试验数据可整理成两向分组方差分析资料模型。(
- 7. χ^2 分布的图形是左右不对称的。()
- 8. 离均差乘积和 SP 必然大于等于 0。 ()
- 9. 有 k 个样本平均数,而 k≥3,如果采用两两独立测验的方法,则会随 k 的增 加而增加犯 β 错误的概率。 ()
- 10. 线性相关系数的测验极显著,则一元线性回归必然也是极显著的。()

二、单项选择题(请将答案写入下方的表格内,每小题 2 分,共 20 分)

1	2	3	4	5	6	7	8	9	10

- 1. 参数 θ 的无偏估计值 $\hat{\theta}$ 是指 $\hat{\theta}$ () 总体参数 θ 。
- A. 不偏离于 B. 等于 C. 趋于 D. 期望值等于

- 2. 测定某样本二项成数是否显著小于某一定值时,用()。
- A. 左尾测验 B. 右尾测验 C. 两尾测验 D. 无法确定

- 3. 在一个二因素试验中, A 因素有 2 个水平, B 因素有 6 个水平, 重复 2 次, 则该试验有()个试验单元(小区)。
- A. 6
- B. 8
- C. 12
- D. 24

4. 根据统计数的概率分布, 使总体参数 θ 在 $\left[L_{1},L_{2}\right]$ 区间内的概率为 $1-\alpha$,则 $1-\alpha$ 叫 做参数 θ 的()。 A. 置信限 B. 置信概率 C. 显著水平 D. 置信区间 5. 二项分布的正态近似应用连续性矫正常数 0.5, 其正态标准离差的表达中, 错误的 A. $u_{c} = \frac{|Y - \mu| - 0.5}{\sigma}$ B. $u_{c} = \frac{Y - \mu}{\sigma} \pm 0.5$ C. $u_c = \frac{(Y - \mu) \mp 0.5}{\sigma}$ D. $u_c = \frac{(Y - np) \mp 0.5}{\sqrt{npq}}$ 6. 在一元线性回归分析中, $\sum (y-\hat{y})(\hat{y}-\overline{y})=($)。 C. U D. Q A. 0 B. SP 7. 已知某总体 $\sigma^2 = 100$, 当随机抽 n = 25 的样本时, 所得 $(\overline{y} - \mu) > 4$ 的概率约为 () 。 B. 0.025 C. 0.01 D. 0.005 A. 0.05 8. 若有两个样本, $n_1=6$, $n_2=7$, $s_1^2=15$, $s_2^2=18$,则 $s_{\bar{y}_1-\bar{y}_2}=$ () 。 B. 2.252 C. 2.269 D. 2.272 A. 2.214 9. Fisher 的有保护最小显著差数法又称为()。 B. SSR 法 C. q 法 A. PLSD 法 D. DLSD 法 10. 测验线性回归的显著性时, $t = (b - \beta)/s_h$ 遵循自由度为 () 的 t 分布。 A. n-1 B. n-2 C. n-m-1 D. n

1. 算术平均数 \overline{y} 的两个性质分别为_	和。
2. 常用变量转换方法有	_、和。
3. 已知某棉花品种纤维长度为一 N(2	9.8, 2.25)的总体,若以 <i>n</i> =10抽样,要在
0.05 水平上否定 H_0 : $\mu = 29.8$ 和 H_0	: μ≥29.8, 其接受区分别为
和。	
4. 测得某田水稻单株产量 $s = 3.5(g)$,	若在95%的置信度保证下,使得样本的
平均产量 \overline{y} 与整田的平均产量 μ 的相 四、计算题	l差不超过 1(g),需要调查株。
1. 在两个水稻品种的比较试验中,品	种 1 种植了 5 个小区,每小区产量为: 36.5
35, 40, 40.2, 38 (kg), 品种 2 种植	了 6 个小区,每小区产量为: 33,31,32
28, 27, 29 (kg)。问两玉米品种的产	量差异是否显著?(10分)

- 2. 有一水稻密度(设有 A_1 和 A_2 两个密度)和施肥量(设有 B_1 、 B_2 和 B_3 三个水平)的二因素试验,重复 2 次,随机区组设计,得各处理两次重复的总产量(kg)如下表。
 - (1) 请绘制出田间试验可能排布图(4分)
 - (2) 已知: $SS_T = 221$, $SS_R = 20$ 。试进行方差分析,并解释分析结果 (8分)。
 - (3) 试以 PLSD 法对各处理平均数进行多重比较(6分)。

处理	A_1B_1	A_1B_2	A_1B_3	A_2B_1	A_2B_2	A_2B_3
总和数	64	62	51	74	60	52

3. 测得一组双变量资料,得如下数据: n=10, $SS_x=2400$, $SS_y=310$,

$$SP = -600$$
, $\overline{x} = 20$, $\overline{y} = 9$.

试求: (1)
$$\hat{y} = a + bx$$
。 (6分)

- (2) $s_{y/x}$ 。 (2分)
- (3) $r和r^2$ 。 (4分)
- (4) 测验该线性回归方程的显著性。(4分)

可能用到的临界值: $t_{0.05/2,5}=2.571$; $t_{0.01/2,5}=4.032$; $t_{0.05/2,8}=2.306$; $t_{0.01/2,8}=3.355$;

 $t_{0.05/2,9} = 2.262 \; ; \quad t_{0.01/2,9} = 3.250 \; ; \quad F_{0.05,1,5} = 6.61 \; ; \quad F_{0.01,1,5} = 16.26 \; ; \quad F_{0.05,1,8} = 5.32 \; ; \quad F_{0.05,1,8}$

 $F_{0.01,1,8} = 11.26\;;\;\; F_{0.05,2,5} = 5.79\;;\;\; F_{0.01,2,5} = 13.27\;;\;\; F_{0.05,4,5} = 5.19\;;\;\; F_{0.01,4,5} = 11.39\;;\;\; F_{0.01,4,5} = 11.39\;$

 $F_{0.05,5,5} = 5.05$; $F_{0.01,5,5} = 10.97$.