

## **Description**

The VST04N014 **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of  $R_{\text{DS(ON)}}$  and  $Q_g$ . This device is ideal for high-frequency switching and synchronous rectification.

#### **General Features**

- $V_{DS}$  =40V, $I_D$  =170A  $R_{DS(ON)}$ =1.4m $\Omega$  (typical) @  $V_{GS}$ =10V
- Excellent gate charge x R<sub>DS(on)</sub> product(FOM)
- Very low on-resistance R<sub>DS(on)</sub>
- 175°C operating temperature
- Pb-free lead plating
- 100% UIS tested

# **Application**

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification





TO-247

Schematic Diagram

# **Package Marking and Ordering Information**

| <b>Device Marking</b> | Device    | Device Package | Reel Size | Tape width | Quantity |
|-----------------------|-----------|----------------|-----------|------------|----------|
| VST04N014-T7          | VST04N014 | TO-247         | -         | -          | -        |

## Absolute Maximum Ratings (T<sub>c</sub>=25 ℃unless otherwise noted)

| Parameter                                        | Symbol                           | Limit      | Unit |  |
|--------------------------------------------------|----------------------------------|------------|------|--|
| Drain-Source Voltage                             | V <sub>DS</sub>                  | 40         | V    |  |
| Gate-Source Voltage                              | V <sub>G</sub> s                 | ±20        | V    |  |
| Drain Current-Continuous (Silicon Limited)       | I <sub>D</sub>                   | 170        | А    |  |
| Drain Current-Continuous(T <sub>C</sub> =100 °C) | I <sub>D</sub> (100°C)           | 120        | Α    |  |
| Pulsed Drain Current (Package Limited)           | I <sub>DM</sub>                  | 680        | А    |  |
| Maximum Power Dissipation                        | P <sub>D</sub>                   | 250        | W    |  |
| Derating factor                                  |                                  | 1.67       | W/°C |  |
| Single pulse avalanche energy (Note 5)           | E <sub>AS</sub>                  | 1200       | mJ   |  |
| Operating Junction and Storage Temperature Range | T <sub>J</sub> ,T <sub>STG</sub> | -55 To 175 | °C   |  |

## **Thermal Characteristic**

| Thermal Resistance,Junction-to-Case <sup>(Note 2)</sup> | R <sub>0JC</sub> | 0.6 | °C/W |
|---------------------------------------------------------|------------------|-----|------|
|---------------------------------------------------------|------------------|-----|------|



# Electrical Characteristics (T<sub>C</sub>=25°C unless otherwise noted)

| Parameter                          | Symbol                                                       | Condition                                 | Min | Тур  | Max  | Unit |  |
|------------------------------------|--------------------------------------------------------------|-------------------------------------------|-----|------|------|------|--|
| Off Characteristics                |                                                              |                                           |     |      |      |      |  |
| Drain-Source Breakdown Voltage     | BV <sub>DSS</sub>                                            | V <sub>GS</sub> =0V I <sub>D</sub> =250µA | 40  |      | -    | V    |  |
| Zero Gate Voltage Drain Current    | I <sub>DSS</sub>                                             | V <sub>DS</sub> =40V,V <sub>GS</sub> =0V  | -   | -    | 1    | μA   |  |
| Gate-Body Leakage Current          | I <sub>GSS</sub>                                             | V <sub>GS</sub> =±20V,V <sub>DS</sub> =0V | -   | -    | ±100 | nA   |  |
| On Characteristics (Note 3)        |                                                              |                                           | •   |      |      |      |  |
| Gate Threshold Voltage             | $V_{GS(th)}$                                                 | $V_{DS}=V_{GS}$ , $I_{D}=250\mu A$        | 2.0 | 2.5  | 3.0  | V    |  |
| Drain-Source On-State Resistance   | R <sub>DS(ON)</sub>                                          | V <sub>GS</sub> =10V, I <sub>D</sub> =85A | -   | 1.4  | 1.7  | mΩ   |  |
| Forward Transconductance           | <b>g</b> FS                                                  | V <sub>DS</sub> =5V,I <sub>D</sub> =85A   | -   | 80   | -    | S    |  |
| Dynamic Characteristics (Note4)    |                                                              |                                           | •   |      |      |      |  |
| Input Capacitance                  | C <sub>lss</sub>                                             | .,                                        | -   | 5670 | -    | PF   |  |
| Output Capacitance                 | C <sub>oss</sub>                                             | $V_{DS}$ =20V, $V_{GS}$ =0V,<br>F=1.0MHz  | -   | 1930 | -    | PF   |  |
| Reverse Transfer Capacitance       | C <sub>rss</sub>                                             | r-1.0lvinz                                | -   | 62   | -    | PF   |  |
| Switching Characteristics (Note 4) | ·                                                            |                                           | •   |      |      |      |  |
| Turn-on Delay Time                 | t <sub>d(on)</sub>                                           | V <sub>DD</sub> =20V,I <sub>D</sub> =85A  | -   | 13.5 | -    | nS   |  |
| Turn-on Rise Time                  | t <sub>r</sub>                                               |                                           | -   | 7.2  | -    | nS   |  |
| Turn-Off Delay Time                | Delay Time $t_{d(off)}$ $V_{GS}$ =10V, $R_{G}$ =1.6 $\Omega$ |                                           | -   | 55   | -    | nS   |  |
| Turn-Off Fall Time                 | t <sub>f</sub>                                               |                                           | -   | 8.6  | -    | nS   |  |
| Total Gate Charge                  | Qg                                                           | V <sub>DS</sub> =20V,I <sub>D</sub> =85A, | -   | 88.6 | -    | nC   |  |
| Gate-Source Charge                 | Q <sub>gs</sub>                                              | $V_{DS}=20V,I_{D}=65A,$ $V_{GS}=10V$      | -   | 16   |      | nC   |  |
| Gate-Drain Charge                  | $Q_{gd}$                                                     | VGS-10V                                   | -   | 13   |      | nC   |  |
| Drain-Source Diode Characteristics | ·                                                            |                                           | •   |      |      |      |  |
| Diode Forward Voltage (Note 3)     | V <sub>SD</sub>                                              | V <sub>GS</sub> =0V,I <sub>S</sub> =85A   | -   |      | 1.2  | V    |  |
| Diode Forward Current (Note 2)     | Is                                                           |                                           | -   | -    | 170  | Α    |  |
| Reverse Recovery Time              | t <sub>rr</sub>                                              | $T_J = 25^{\circ}C, I_F = I_S$            | -   |      | 33   | nS   |  |
| Reverse Recovery Charge            | Qrr                                                          | $di/dt = 100A/\mu s^{(Note3)}$            | -   |      | 119  | nC   |  |

## Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board,  $t \le 10$  sec.
- 3. Pulse Test: Pulse Width  $\leq$  300 $\mu$ s, Duty Cycle  $\leq$  2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25  $^{\circ}\!\!\mathrm{C}$  ,V  $_{DD}$  =20V ,V  $_{G}$  =10V ,L=0.5mH ,Rg=25  $\Omega$







**Figure 1 Output Characteristics** 



**Figure 2 Transfer Characteristics** 



Figure 3 Rdson-Drain Current



Figure 4 Rdson-Junction Temperature



Figure 5 Gate Charge



Figure 6 Source- Drain Diode Forward













Figure 8 Safe Operation Area

Figure 10 Current De-rating



Figure 11 Normalized Maximum Transient Thermal Impedance