Forage Task-2. woodship would red tours.

Role:

- Use GuntI tools to delop predictive model.

- Define plan to evaluate model performance

* Predictive modeling:

() using historical data to forecast future outcomes

Use GenAI for predictive modeling How GenAI helfus?

O Selecting the right model type:

Decision trees-good for explaining why prediction was made:

logistic regression - useful for predicting binary outcomes (eq:-delinquent vs non-delinquent) models use

· Neural Networks - Effective for complex patterns but harden to interpret.

2 Grenerating model code without coding:

@ Evaluating model performance:

·Suggest evaluation métrics (eg, accuracy precision, recall).

. Indespret results and suggest improvements .. Highlight potential bias

* legistic Regression; predicts probability of an event occuring, whether

a customer will er wort become delinquent. It assigns a probability score (0 to 1), where a thershold (eg: 0.5)

determines dossification.

wood in the the.

8 Beobs &

4 Tringgers

druce

20/11

oskbench here.

1) 1

. Works well with standard dots · Great for binary predictions · Nat special

Copowerful for complex patterns but hardy to interfruit. * Neural Networks; Is they dotet complex relationships byw usuables La their decision making is less transporent (black box).

· More accurate on large datasets

· Uncouer deep patterns

· can predict long term trends.

* Evaluating Model Performance: Suffer I amos worth evaluating model acusacy kuliability considering bias, explainability Kfairness.

(1) Key Metrics for Model evaluation:

- @ Accuracy Measures overall correctners of model by dividing correct judictions by the total number of cases.
 - 6 Precision (positive predictive value) Evaluates how many of the customers predicted to be delinquent actually are
- @ Recall Consitiuity):- Measures how many actual delinquent customers were correctly identified by the model thigh recall is important when missing a delinquent customer could went un financial loss. Misserger allegel + guidade guebalality of an

determines dissilication.

sustained will be wort become delinquent of assigner

e pubolity see (0 to), where a trushed (eg -0)

1. Key me

Each metric multiple me

- · Acc prec
- Pred prec
- Rec corr delir
- AUC Asse delin rank
 - Con help one

ranc

2. What to

If your mod

interfret ariables

tiber &

1. Key metrics for model evaluation

Each metric provides a different perspective on model effectiveness. It's important to use multiple metrics together rather than relying on a single score:

- Accuracy Measures the overall correctness of the model by dividing correct predictions by the total number of cases.
- **Precision (positive predictive value)** Evaluates how many of the customers predicted to be delinquent actually are.
- Recall (sensitivity) Measures how many actual delinquent customers were correctly identified by the model. High recall is important when missing a delinquent customer could result in financial loss.
- **F1 score** A weighted balance between precision and recall. It is useful when both false positives and false negatives are costly.
- AUC-ROC curve (area under the receiver operating characteristic curve) –
 Assesses how well the model distinguishes between delinquent and non-delinquent customers. A score close to 1 means the model is highly effective at ranking risk levels, while a score near 0.5 suggests the model is no better than random guessing.
- Confusion matrix A visual breakdown of actual vs. predicted classifications. It
 helps diagnose specific types of errors and determine whether the model is favoring
 one outcome over another.

2. What to do if model performance is poor

If your model is not performing well, there are several ways to improve it:

airability

odel by the

vatis

tual lifed l when

- Feature engineering Adjust the dataset by adding or removing variables that may be impacting model predictions. For example, including customer tenure or past delinquency trends may enhance predictive power.
- Rebalancing the dataset If the dataset is highly skewed (e.g., 95% nondelinquent, 5% delinquent), oversampling delinquent cases or undersampling nondelinquent cases can improve results.
- Trying different models Some algorithms work better with certain data structures. If logistic regression is underperforming, a decision tree may provide better results.
- Hyperparameter tuning Fine-tuning model parameters, such as adjusting the threshold for delinquency classification, can improve precision and recall scores.

Bias

Bias occurs when a model systematically favors or disadvantages certain groups, often due to historical inequalities or imbalanced data.

Common causes of bias:

- **Historical bias** If past lending decisions were unfair, the model may replicate those patterns.
- Selection bias If the dataset does not represent all customer demographics equally, predictions may be inaccurate for some groups.
- Proxy bias Certain variables (e.g., ZIP code) may unintentionally act as proxies for protected characteristics like race or gender.

Explainability

Explainability ensures that decision-makers can understand and justify a model's predictions.

- Decision trees and logistic regression are more interpretable and show clear decision paths.
- Neural networks are highly complex and function as "black boxes," making explainability difficult.
- Analysts use tools like SHAP (Shapley Additive Explanations) to break down how different factors contribute to predictions.

Fa

A fa

Ut

1.1

2.

Aff

at may

ng non-

ride

the ores.

, often

е

es for

WC

Fairness

A fair model should:

- Avoid systematic disadvantages for certain demographic groups.
- Be tested for disparate impact to ensure fairness.
- Use diverse and representative training data to prevent reinforcing biases.

Utilizing GenAl tools to generate model code and refine predictions

- 1. How GenAl assists in model development
 - Generating a model framework A user can request a logistic regression model
 for predicting delinquency, and GenAl will provide an initial code structure.
 However, it is essential to review, test, and refine the code to ensure correctness
 and efficiency.
 - Feature selection assistance GenAl can recommend which variables to include based on the dataset. However, analysts must verify that these selections do not introduce bias or proxy discrimination.
 - Hyperparameter tuning Analysts can optimize model performance by asking for parameter adjustments. While GenAl can suggest modifications, empirical testing and expert judgment are necessary to validate improvements.
- 2. Refining and improving model predictions

After generating a model, it's crucial to **refine predictions** to ensure accuracy and fairness. GenAl tools can:

- Suggest modifications to improve precision and recall.
- Evaluate model outputs and identify overfitting or biases.
- Generate alternative models to compare performance.