

《初等概率论》 第 11 讲

邓婉璐

独立性的判定

多元正态分平 (高维选修)

收敛。

大数定律 (LLN)

中心极限定理 (CIT)

小结

作业

《初等概率论》第 11 讲

邓婉璐

清华大学 统计学研究中心

November 2, 2018

第 11 讲

独立性的判定

设随机向量 $\begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix}$ 有分布函数 $F(\mathbf{x}_1,\mathbf{x}_2)$ 、密度函数 $f(\mathbf{x}_1,\mathbf{x}_2)$ 、特征函数 $\phi(\mathbf{t}_1,\mathbf{t}_2)$; 又设 \mathbf{X}_i 的分布函数、密度函数、特征函数分别为 $F_i(\mathbf{x}_i)$, $f_i(\mathbf{x}_i)$ 和 $\phi_i(\mathbf{t}_i)$.

定理 1.1

随机向量 X_1 和 X_2 相互独立的充要条件 是下列条件之一成立:

- $F(\mathbf{x}_1, \mathbf{x}_2) = F_1(\mathbf{x}_1) F_2(\mathbf{x}_2);$
- **2** $f(\mathbf{x}_1, \mathbf{x}_2) = f_1(\mathbf{x}_1) f_2(\mathbf{x}_2);$

邓婉璐

多元正态分布 (高维选修)

大数定律 (LLN)

中心极限定理 (CLT)

(CLT)

作业

第 11 讲

邓婉璐

独立性的判定

多元正态分布 (高维选修)

收敛

大数定律 (LLN)

中心极限定理 (CLT)

小结 " .

作业

文义 2.1 (multivariate normal distribution)

设 $\boldsymbol{\mu} = (\mu_1, \mu_2, ..., \mu_n)^T$ 是 n 维常数列向量, \mathbf{B} 是 $n \times m$ 常数矩阵, $\varepsilon_1, \varepsilon_2, ..., \varepsilon_m$ 是相互独立且服从标准正态分布的随机变量. 如果

$$X = \mu + B\varepsilon$$

其中 $\boldsymbol{\varepsilon} = (\varepsilon_1, \varepsilon_2, ..., \varepsilon_m)^T$,就称 $\mathbf{X} = (X_1, X_2, ..., X_n)^T$ 服从n-维正态分布,记作 $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{B}\mathbf{B}^T)$. 特别地,当矩阵 $\mathbf{B}\mathbf{B}^T$ 退化时,还称相应的正态分布是退化的正态分布。

- \clubsuit 如果 \mathbf{X} 服从多元正态分布,则 \mathbf{X} 的任何分量 $(X_{j_1},...,X_{j_k})^{\mathrm{T}}$ 也服从 (多元) 正态分布.
- $\clubsuit \operatorname{Cov}(arepsilon, arepsilon) = \mathit{E}(arepsilon arepsilon^{\mathrm{T}})$ 是单位矩阵 \mathbf{I} ,所以

$$E(\mathbf{X}) = \boldsymbol{\mu} + \mathbf{B}E(\boldsymbol{\varepsilon}) = \boldsymbol{\mu};$$

$$\Sigma : \stackrel{\text{def}}{=} E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{\mathrm{T}}] = \mathbf{B}\mathbf{I}\mathbf{B}^{\mathrm{T}} = \mathbf{B}\mathbf{B}^{\mathrm{T}}.$$

邓婉璐

多元正态分布

多元正杰分布

《初等概率论》 **♣**ε 的特征函数 第 11 讲

$$\phi_{\varepsilon}(\mathbf{t}) = E \exp(i\mathbf{t}^{\mathrm{T}} \varepsilon) = \prod_{j=1}^{n} \exp(-t_{j}^{2}/2) = \exp(-\mathbf{t}^{\mathrm{T}} \mathbf{t}/2),$$

其中 $\mathbf{t} = (t_1, t_2, ..., t_n)^{\mathrm{T}} \in \mathbb{R}^n$.

♣ X 的特征函数

 $\phi_{\mathbf{X}}(\mathbf{t}) = E \exp(i\mathbf{t}^{\mathrm{T}}\mathbf{X}) = E \exp\left[i(\mathbf{t}^{\mathrm{T}}\boldsymbol{\mu} + \mathbf{t}^{\mathrm{T}}\mathbf{B}\boldsymbol{\varepsilon})\right]$

 $= \exp(i\mathbf{t}^{\mathrm{T}}\boldsymbol{\mu})E\exp\left[i(\mathbf{t}^{\mathrm{T}}\mathbf{B})\boldsymbol{\varepsilon}\right]$

 $= \exp \left[i \mathbf{t}^{\mathrm{T}} \boldsymbol{\mu} - \frac{1}{2} (\mathbf{t}^{\mathrm{T}} \mathbf{B}) (\mathbf{t}^{\mathrm{T}} \mathbf{B})^{\mathrm{T}} \right]$

 $= \exp \left| i \mathbf{t}^{\mathrm{T}} \boldsymbol{\mu} - \frac{1}{2} \mathbf{t}^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{t} \right|.$

♣ 从中可以看出, X 的期望和协方差矩阵唯一决定了 X 的特

征函数. 由于随机向量的特征函数与分布函数是相互唯一决 定的,所以 ${f X}$ 的分布由 ${m \mu}$ 和 ${f \Sigma}$ 唯一决定.用 ${f X}\sim {\cal N}({m \mu},{f \Sigma})$ 表示 X 服从均值是 μ ,协方差矩阵是 Σ 的正态分布.

第 11 讲

邓婉璐

独立性的判定

多无正态分布 (高维选修)

收敛性

人数定件 (LLN)

中心极限定理 (CLT)

小结

小结

定理 2.1

 $\mathbf{X} = (X_1, X_2, ..., X_n)^{\mathrm{T}} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ 的充要条件 是对任何 $\mathbf{a} = (a_1, a_2, ..., a_n)^{\mathrm{T}} \in \mathbb{R}^n$,

$$Y := \mathbf{a}^{\mathrm{T}} \mathbf{X} \sim \mathcal{N}(\mathbf{a}^{\mathrm{T}} \boldsymbol{\mu}, \, \mathbf{a}^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{a}).$$

证明. (\Longrightarrow) . Y 的特征函数

$$\phi_Y(t) = E \exp(itY) = E \exp\left[i(t\mathbf{a}^{\mathrm{T}})\mathbf{X}\right]$$
$$= \exp\left[it(\mathbf{a}^{\mathrm{T}}\boldsymbol{\mu}) - \frac{1}{2}t^2\mathbf{a}^{\mathrm{T}}\boldsymbol{\Sigma}\mathbf{a}\right].$$

(1)

所以 $Y \sim \mathcal{N}(\mathbf{a}^{\mathrm{T}}\boldsymbol{\mu}, \, \mathbf{a}^{\mathrm{T}}\boldsymbol{\Sigma}\mathbf{a}).$

$$(\longleftarrow)$$
 在 (1) 中取 $t=1$ 得

$$E\exp(i\mathbf{a}^{\mathrm{T}}\mathbf{X}) = \exp\left[i\mathbf{a}^{\mathrm{T}}\boldsymbol{\mu} - \frac{1}{2}\mathbf{a}^{\mathrm{T}}\boldsymbol{\Sigma}\mathbf{a}\right].$$

故 $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

《初等概率论》 第 11 讲

邓婉璐

独立性的判定

多元正态分布 (高维选修)

收敛性

(LLN)

(CLT)

小结

作业

定理 2.2

如果 $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, 则对任意常数矩阵 \mathbf{A} 和常数向量 \mathbf{b} , 只要 $\mathbf{b} + \mathbf{A} \mathbf{X}$ 有意义,则 $\mathbf{Y} = \mathbf{b} + \mathbf{A} \mathbf{X} \sim \mathcal{N}(\mathbf{b} + \mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\mathrm{T}})$.

证明. $\mathbf{Y}=\mathbf{b}+\mathbf{A}\mathbf{X}=(\mathbf{b}+\mathbf{A}\boldsymbol{\mu})+(\mathbf{A}\mathbf{B})\boldsymbol{\varepsilon},$ 即 \mathbf{Y} 服从多元正态分布. 计算其均值和协方差即可得.

定理 2.3

设 $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, 如果

$$\mathbf{X} = \left(\begin{array}{c} \mathbf{X}_1 \\ \mathbf{X}_2 \end{array} \right), \quad \boldsymbol{\mu} = \left(\begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array} \right), \quad \boldsymbol{\Sigma} = \left(\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma}_{22} \end{array} \right),$$

且 \mathbf{X}_1 , $\boldsymbol{\mu}_1$ 和方阵 Σ_{11} 的行数相同,则 \mathbf{X}_1 和 \mathbf{X}_2 独立,而且

$$\mathbf{X}_1 \sim \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11}), \quad \mathbf{X}_2 \sim \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22}).$$

邓婉璐

独立性的判定

多元正态分布 (高维选修)

收敛性

大数定律 (LLN)

中心极限定理 (CLT)

小结

作业

证明. X 的特征函数

$$\phi(\mathbf{t}) = \phi(\mathbf{t}_1, \mathbf{t}_2) = \exp\left[i\mathbf{t}^T\boldsymbol{\mu} - \frac{1}{2}\mathbf{t}^T\Sigma\mathbf{t}\right]$$

$$= \exp\left[i\mathbf{t}_1^T\boldsymbol{\mu}_1 - \frac{1}{2}\mathbf{t}_1^T\Sigma_{11}\mathbf{t}_1 + i\mathbf{t}_2^T\boldsymbol{\mu}_2 - \frac{1}{2}\mathbf{t}_2^T\Sigma_{22}\mathbf{t}_2\right]$$

$$= \exp\left[i\mathbf{t}_1^T\boldsymbol{\mu}_1 - \frac{1}{2}\mathbf{t}_1^T\Sigma_{11}\mathbf{t}_1\right] \times \exp\left[i\mathbf{t}_2^T\boldsymbol{\mu}_2 - \frac{1}{2}\mathbf{t}_2^T\Sigma_{22}\mathbf{t}_2\right]$$

$$= \phi_1(\mathbf{t}_1)\phi_2(\mathbf{t}_2).$$

故结论成立.

第 11 讲 邓婉璐

- |- xe->

多云正太公在

(高维选修)

大数定

中心极限定理 (CLT)

小结 作业

定理 2.4

如果 $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$,则 $(X_1, X_2, ..., X_n)$ 相互独立的充要条件 是 $\Sigma = \mathrm{diag}(\sigma_1^2, \sigma_2^2, ..., \sigma_n^2)$.

定理 2.5

当 Σ 正定时, $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ 有联合密度函数

$$f(\mathbf{x}) = \frac{1}{(\sqrt{2\pi})^n \sqrt{\det(\Sigma)}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right].$$

证明. 因为 Σ 是正定的,所以存在可逆方阵 \mathbf{B} 使得 $\Sigma = \mathbf{B}\mathbf{B}^{\mathrm{T}}$, 且 $\mathbf{X} = \boldsymbol{\mu} + \mathbf{B}\boldsymbol{\varepsilon}$, 其中 $\boldsymbol{\varepsilon} \sim \mathcal{N}(0,\mathbf{I})$. 易得 $\boldsymbol{\varepsilon}$ 的密度函数为

$$f_{\varepsilon}(\mathbf{y}) = \frac{1}{(\sqrt{2\pi})^n} \exp\left(-\frac{1}{2}\mathbf{y}^{\mathrm{T}}\mathbf{y}\right).$$

注意到
$$\{\mathbf{X}=\mathbf{x}\}=\{oldsymbol{arepsilon}=\mathbf{B}^{-1}(\mathbf{x}-oldsymbol{\mu})\},$$
 且映射: $\mathbf{v}=\mathbf{B}^{-1}(\mathbf{x}-oldsymbol{\mu})$

《初等概率论》 第 11 讲 邓婉璐

独立性的判定

多元正态分布 (高维选修)

收敛性

大数定律 (LLN)

中心极限定型 (CLT)

小结

作业

是可逆的, 其雅克比行列式为

$$\left| \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \right| = |\mathbf{B}^{-1}| = \frac{1}{\sqrt{\det(\Sigma)}}.$$

因此, X 的密度函数为:

$$f(\mathbf{x}) = \frac{1}{(\sqrt{2\pi})^n} \exp\left\{-\frac{1}{2} [\mathbf{B}^{-1}(\mathbf{x} - \boldsymbol{\mu})]^{\mathrm{T}} [\mathbf{B}^{-1}(\mathbf{x} - \boldsymbol{\mu})]\right\} \left| \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \right|$$
$$= \frac{1}{(\sqrt{2\pi})^n \sqrt{\det(\Sigma)}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right].$$

《初等概率论》

邓婉璐

多元正杰分布

定理 2.6

证明. 令

设 $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $\det(\boldsymbol{\Sigma}) > 0$ 和分块矩阵

X。服从多元正态分布

 $\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix}, \quad \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \quad \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix},$

其中 X_1 , μ_1 和方阵 Σ_{11} 的行数相同,则在条件 $X_1 = x_1$ 下,

 $\mathcal{N}(\boldsymbol{\mu}_2 + \Sigma_{21}\Sigma_{11}^{-1}(\mathbf{x}_1 - \boldsymbol{\mu}_1), \ \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}).$

 $\begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{pmatrix} = \begin{pmatrix} I_{11} & 0 \\ -\Sigma_{21}\Sigma_{11}^{-1} & I_{22} \end{pmatrix} \begin{pmatrix} \mathbf{X}_1 - \boldsymbol{\mu}_1 \\ \mathbf{X}_2 - \boldsymbol{\mu}_2 \end{pmatrix}$

故 \mathbf{Y}_1 与 \mathbf{Y}_2 独立. 注意到 $\mathbf{Y}_2 = \mathbf{X}_2 - \boldsymbol{\mu}_2 - \Sigma_{21}\Sigma_{11}^{-1}\mathbf{Y}_1$,

 $\sim \mathcal{N}\left(0, \begin{pmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12} \end{pmatrix}\right)$

《初等概率论》

第 11 讲

邓婉璐

多元正杰分布

所以

想法就是构造新的与条件独立的随机 变量, 使得条件分布即为分布!

从而,

 $\mathbb{P}(\mathbf{X}_2 < \mathbf{x}_2 | \mathbf{X}_1 = \mathbf{x}_1)$

= $\mathbf{P}(\mathbf{Y}_2 + \boldsymbol{\mu}_2 + \Sigma_{21}\Sigma_{11}^{-1}(\mathbf{x}_1 - \boldsymbol{\mu}_1) \le \mathbf{x}_2|\mathbf{X}_1 = \mathbf{x}_1)$

 $\mathbf{X}_2 = \mathbf{Y}_2 + \boldsymbol{\mu}_2 + \Sigma_{21} \Sigma_{11}^{-1} (\mathbf{X}_1 - \boldsymbol{\mu}_1).$

 $= \mathbf{P}(\mathbf{Y}_2 + \boldsymbol{\mu}_2 + \Sigma_{21}\Sigma_{11}^{-1}(\mathbf{x}_1 - \boldsymbol{\mu}_1) \le \mathbf{x}_2|\mathbf{Y}_1 = \mathbf{x}_1 - \boldsymbol{\mu}_1)$

 $= \mathbf{P}(\mathbf{Y}_2 + \boldsymbol{\mu}_2 + \Sigma_{21}\Sigma_{11}^{-1}(\mathbf{x}_1 - \boldsymbol{\mu}_1) < \mathbf{x}_2).$

 $\mathbf{X} \mathbf{Y}_2 \sim \mathcal{N}(0, \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}),$ 故

 $|\mathbf{X}_2|_{\mathbf{x}_1=\mathbf{x}_1} \stackrel{d}{=} \mathbf{Y}_2 + \boldsymbol{\mu}_2 + \Sigma_{21} \Sigma_{11}^{-1} (\mathbf{x}_1 - \boldsymbol{\mu}_1)$ $\sim \mathcal{N}(\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(\mathbf{x}_1 - \mu_1), \ \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}).$

《初于概平论》 第 11 讲

邓婉璐

独互性的判定

多元正态分平 (高维选修)

收敛性

大数定律 (LLN)

中心极限定理 (CLT)

小结

作业

♣ A. 收敛模式 (mode of convergence)

设 $(\Omega, \mathscr{F}, \mathbb{P})$ 是概率空间, X_n 和 X 是随机变量,其分布函数分别为 $F_n(x)$ 和 F(x),即

$$F_n(x) = \mathbb{P}(X_n \le x), \quad F(x) = \mathbb{P}(X \le x).$$

定义 3.1 (数列的收敛)

设 $\{a_i\}$ 是实数列, a 为一实数, 如果对 $\forall \varepsilon > 0$, 存在正整数 N. 使得当 n > N 时, 有

$$|a_n - a| \le \varepsilon,$$

则称数列 a_n 收敛于 a,记作 $\lim_{n\to\infty} a_n = a$.

《初等概率论》 第 11 讲 邓婉璐

收敛性

定义 3.2 (convergence in distribution)

如果在 F(x) 的连续点 x, 有

$$\lim_{n\to\infty} F_n(x) = F(x),$$

则称 X_n 依分布收敛到 X(convergence in distribution), 记作 $X_n \xrightarrow{d} X$, 或者称 F_n 弱收敛到 F (weak convergence), 记作 $F_n \stackrel{w}{\longrightarrow} F$.

定义 3.3 (convergence in probability)

如果对 $\forall \varepsilon > 0$. 有

$$\lim_{n\to\infty} \mathbb{P}(|X_n - X| \ge \varepsilon) = 0,$$

则称 X_n 依概率收敛到 X(convergence in probability), 记作 $X_n \stackrel{p}{\longrightarrow} X$, $\not \propto X_n \to X$ in prob.

第 11 讲

邓婉璐

独互性的判定

多元正态分布 (高维选修)

收敛性

(LLN)

(CLT)

小结

作业

定义 3.4 (almost sure convergence)

如果

$$\mathbb{P}\Big(\lim_{n\to\infty}X_n=X\Big)=1,$$

则称 X_n 几乎处处收敛到 X(almost sure convergence),记作 $X_n \xrightarrow{\text{a.s.}} X$, 或 $X_n \to X$ a.s.

定义 3.5 (L_p convergence)

对p > 0,如果

$$\lim_{n \to \infty} E(|X_n - X|^p) = 0,$$

则称 X_n 在 L_p 下收敛到 X, 记作 $X_n \xrightarrow{L_p} X$, 或 $X_n \to X$ in L_p .

《初寺概率论》 第 11 讲

邓婉璐

立性的判定

多元正态分

14 06 h

大数定律 (LLN)

中心极限定型

小丝

作业

♣ B. 各种收敛之间的关系

第 11 讲

邓婉璐

性的判定

多元正态分布 (高维选修)

收敛性

(LLN) 中心切眼定程

(CLT)

作业

定理 3.1 (a.s. implies in prob.)

如果 $X_n \xrightarrow{\text{a.s.}} X$, 则 $X_n \xrightarrow{p} X$.

证明. 注意到, 对 $\forall \varepsilon > 0$,

$$\left\{\lim_{n\to\infty}X_n=X\right\}=\bigcup_{n\to\infty}^{\infty}\bigcap_{k=1}^{\infty}\left\{|X_k-X|<\varepsilon\right\}.$$

因此, 利用概率的连续型可得

$$\lim_{n\to\infty} \mathbb{P}(|X_n - X| \ge \varepsilon) \le \lim_{n\to\infty} \mathbb{P}(\bigcup_{k=n}^{\infty} |X_k - X| \ge \varepsilon)$$

$$= \mathbb{P}\Big(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{|X_k - X| \ge \varepsilon\}\Big)$$

$$= 1 - \mathbb{P}\Big(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \{|X_k - X| < \varepsilon\}\Big)$$

= 1 - 1 = 0.

邓婉璐

独立性的判定

收敛性

(LLN) 中心极限定

(CLI) 小结

作业

定理 3.2 (L_p implies in prob.)

如果 $X_n \xrightarrow{L_p} X$, 则 $X_n \xrightarrow{p} X$.

证明. 对 $\forall \varepsilon > 0$, 利用 Markov 不等式可得.

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| \ge \varepsilon) \le \lim_{n \to \infty} \frac{1}{\varepsilon^p} E(|X_n - X|^p) = 0.$$

文理 3.3 (in prob. implies in dist.)

如果 $X_n \stackrel{p}{\longrightarrow} X$, 则 $X_n \stackrel{d}{\longrightarrow} X$.

证明. 今 $F_n(x) = \mathbb{P}(X_n \leq x)$ 和 $F(x) = \mathbb{P}(X \leq x)$. 首先,

$$F_n(x) = \mathbb{P}(X_n \le x, |X_n - X| \le \varepsilon) + \mathbb{P}(X_n \le x, |X_n - X| > \varepsilon)$$

$$\le \mathbb{P}(X \le x + \varepsilon) + \mathbb{P}(|X_n - X| > \varepsilon)$$

$$= F(x + \varepsilon) + \mathbb{P}(|X_n - X| > \varepsilon).$$

《初等概率论》 第 11 讲

邓婉璐

独立性的判定

多元正态分平 (高维选修)

收敛性

(LLN) 中心极限定理

小结

作业

 $F_n(x)$

$$=1-\mathbb{P}(X_n>x)$$

$$-1-\mathbb{I}(\Lambda_n > x)$$

$$= 1 - \mathbb{P}(X_n > x, |X_n - X| \le \varepsilon) - \mathbb{P}(X_n > x, |X_n - X| > \varepsilon)$$

$$\geq 1 - \mathbb{P}(X > x - (X_n - X), |X_n - X| \leq \varepsilon) - \mathbb{P}(|X_n - X| > \varepsilon)$$

$$\geq 1 - \mathbb{P}(X > x - \varepsilon) - \mathbb{P}(|X_n - X| > \varepsilon)$$

$$= F(x-\varepsilon) - \mathbb{P}(|X_n - X| > \varepsilon).$$

因此,

$$F(x-\epsilon) - \mathbb{P}(|X_n - X| > \epsilon) \le F_n(x)$$

$$\leq F(x+\epsilon) + \mathbb{P}(|X_n - X| > \epsilon).$$

$$F(x - \epsilon) \le \liminf_{x} F_n(x) \le \limsup_{x} F_n(x) \le F(x + \epsilon).$$

第 11 讨邓婉璐

- |- ×c ×c

独立性的判定

多元正态分布 (高维选修)

收敛性

大数定律 (LLN)

中心极限定: (CLT)

小结

作业

如果 F(x) 在 x 处连续,则当 $\epsilon \downarrow 0$,有 $F(x-\epsilon) \uparrow F(x)$ 和 $F(x+\epsilon) \downarrow F(x)$. 所以

$$\lim_{n\to\infty} F_n(x) = F(x),$$

 Bp , $X_n \stackrel{d}{\longrightarrow} X$.

第 11 讲

邓婉璐

♣ C. 反例

例 3.1

 $X_n \xrightarrow{d} X \not\Rightarrow X_n \xrightarrow{p} X$.

解. $\{X_n\}$ 独立同分布 $\mathcal{N}(0,1)$, 则 $X_n \stackrel{a}{\longrightarrow} X_1$. 但是

$$\mathbb{P}(|X_n - X_1| > 1) = \mathbb{P}(|\mathcal{N}(0, 1)| > \frac{1}{\sqrt{2}}) > 0.$$

例 3.2

 $X_n \xrightarrow{d} C \iff X_n \xrightarrow{p} C$, 其中 C 为常数.

《初等概率论》 第 11 讲 邓婉璐

.

独立性的判决 多元正态分布

收敛性

大数定律 (LLN)

(CLT)

作业

例 3.3

 $X_n \stackrel{p}{\longrightarrow} X \not\Rightarrow X_n \stackrel{L_p}{\longrightarrow} X.$

解. 取概率空间 $(\Omega, \mathscr{F}, \mathbb{P}) = ((0,1), \mathscr{B}((0,1)), \lambda)$. 定义

$$X_n(\omega) = \begin{cases} n, & \text{if } \omega \in (0, n^{-p}], \\ 0, & \text{if } \omega \in (n^{-p}, 1), \end{cases}$$
 (2)

且 $X \equiv 0$. 则,对 $\forall \varepsilon > 0$,当 $n \to \infty$,

$$\mathbb{P}(|X_n - 0| > \varepsilon) = \mathbb{P}(X_n > \varepsilon) = \mathbb{P}(X_n = n)$$
$$= \mathbb{P}(\{\omega : \omega \in (0, n^{-p}]\})$$
$$= \lambda((0, n^{-p}]) = n^{-p} \to 0.$$

但是 $E(|X_n - 0|^p) = 1.$

例 3.4

 $X_n \xrightarrow{L_p} X \Rightarrow X_n \xrightarrow{L_q} X (p < q).$

《初等概率论》

收敛性

例 3.5 第 11 讲 邓婉璐

 $X_n \xrightarrow{\text{a.s.}} X \Rightarrow X_n \xrightarrow{L_p} X$

解. 假设 $\{X_n\}$ 独立,且 X_n 定义如下:

 $\mathbb{P}(X_n = 0) = 1 - n^{-1}, \quad \mathbb{P}(X_n = 1) = n^{-1}.$

 $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \sum_{n=1}^{\infty} \frac{1}{n} = \infty.$

由 Borel-Cantelli 引理," $\{A_n\}$ 有无穷多个发生"的概率为 1.

则 $X_n \xrightarrow{L_1} 0$. 但是 $X_n \xrightarrow{\text{a.s.}} 0$. $\diamondsuit A_n = \{X_n = 1\}$, 则

解. X_n 的定义见 (2). 对 $\forall \omega \in \Omega$, 都有 $X_n(\omega) \to 0 \equiv X$. 但

 $E(|X_n - 0|^p) = 1.$

例 3.6

 $X_n \xrightarrow{L_p} X \not\Rightarrow X_n \xrightarrow{\text{a.s.}} X$

- 收敛性

第 11 讲

邓婉璐

独立性的判定

多元正态分2 (高维选修)

收敛性

大数定4 (LLN)

中心极限定理 (CLT)

(CLT)

41.55

作业

定理 3.4 (Continuous mapping theorem)

设 $\{X, X_n\}$ 是随机元序列,g连续,则

- \clubsuit 但是 $X_n \xrightarrow{L_p} X \Rightarrow g(X_n) \xrightarrow{L_p} g(X)$.

《初等概率论》 第 11 讲

邓婉璐

独立性的判定

多元正态分布 (高维选修)

收敛性

大数定律 (LLN)

中心极限定理 (CLT)

(CLT)

小结

作业

定理 3.5 (Slutsky's theorem)

假设 $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{p} c$, 则

- $2 X_n Y_n \stackrel{d}{\longrightarrow} cX;$

证明.【方法 1】逐条证明之.

【方法 2】(Coupling method) 先证明 $(X_n, Y_n) \xrightarrow{d} (X, c)$, 然后应用 "Continuous mapping theorem" g(x, y) = x + y; x/y, 即可得到结论.

《初等概率论》 第 11 讲

邓婉璐

独立性的判定

多元正态分布 (高维选修)

大数定律

中心极限定理

(CLT) 小结

作业

♣ 样本均值估计总体均值靠不靠谱?

假定 $X_1, X_2, ...$,是随机变量序列,令 $S_n = X_1 + ... + X_n$.

Questions

- \bullet $\frac{S_n}{b_n} a_n \stackrel{p}{\longrightarrow} 0$ 的 (充要) 条件是什么?
- ② $\frac{S_n}{b_n} a_n \stackrel{\mathrm{a.s.}}{\longrightarrow} 0$ 的 (充要) 条件是什么?

其中 $\{a_n\}$, $\{b_n\}$ 是非随机序列, 且 $0 < b_n \uparrow \infty$.

- ♣ 极限理论 (LLN, CLT, etc.) 的用处很多:
 - 为期望(或概率)和试验序列之间的联系提供了合理的解释;
 - ② 为序列和提供近似分布;
 - 3 在统计推断中发挥主要作用.

第 11 讲 邓婉璐

大数定律

定理 4.1 (Weak law of large numbers, WLLN) 设 $\{X_n\}$ 是独立同分布的随机变量序列,则存在实数列

{*a_n*} 使得

 $\frac{1}{n}\sum_{k=1}^{n}X_k - a_n \stackrel{p}{\longrightarrow} 0$

的充分必要条件是

此时, 可取 $a_n = E(X_1 I_{\{|X_1| < n\}})$.

推论 4.1

设 $\{X_n\}$ 是 i.i.d.,且 $E|X_1| < \infty$,则

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{p} EX_1.$$

 $n\mathbb{P}(|X_1| \ge n) \to 0.$

(3)

第 11 讲

邓婉璐

独立性的判定

(高维选修)

大数定律

(LLN) 中心极限定3

中心极限定理 (CLT)

小结

作业

$$\diamondsuit$$
 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \ a = EX_1. \$ 则 (3) 等价于: 对 $\forall \varepsilon,$
$$\lim_{n \to \infty} \mathbb{P}(|\bar{X}_n - a| \ge \varepsilon) = 0.$$

即:不论给定怎么小的 $\varepsilon>0$, \overline{X}_n 与 a 偏离有否可能达到 ε 或者更大呢?这是有可能!但是当 n 很大时,出现这种较大偏差的可能性很小,以致于当 n 很大时,我们有很大的 (然而不是百分之百的) 把握断言 \overline{X}_n 很接近 a.

比如独立同分布的 $X_i\sim B(1,0.5)$ (掷硬币), i=1,2,... 则下图给出了 $\bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$ 的一次实现.

《初等概率论》 第 11 讲

邓婉璐

独立性的判定

多元正态分平 (高维选修)

收敛。

大数定i (LLN)

中心极限定题

(CLT)

小结

《初等概率论》 第 11 讲

邓婉璐

独立性的判定 多元正态分布 (高维选修) 收敛性

大数定律 (LLN) 中心极限

中心极限定^理 (CLT) 小结

例 4.1

假设人群中学习过统计学的比例为 f. 我们随机抽取 n 个人,用 X_i 表示第 i 个人是否学习过统计学: 即如果学过,则 $X_i=1$; 否则 $X_i=0$. 则这 n 个人的样本中学习过统计学的比例为 $M_n=(X_1+...+X_n)/n$. 我们如何通过 M_n 得到对 f 的认识?

根据 WLLN,我们可以用 M_n 来近似估计 f. 不妨设我们的目标是得到误差率小于 1% 的 95% 置信区间,即:

$$P(|M_n - f| \ge 0.01) \le 0.05.$$

由切比雪夫不等式 (Chebyshev's inequality):

$$P(|M_n - f| \ge 0.01) \le \frac{\sigma_{M_n}^2}{0.01^2} = \frac{\sigma_x^2}{n(0.01)^2} \le \frac{1}{4n(0.01)^2}.$$

所以我们可以找一个保守的方法,即抽取 n = 50,000 的人,就可保证 $P(|M_n - f| > 0.01) < 0.05$.

《初等概率论》 第 11 讲

邓婉璐

独立性的判定

多元正态分析 (高维选修)

收敛性

大数定律 (LLN)

中心极限定理 (CLT)

小结

作业

定理 4.2 (Strong law of large numbers, SLLN)

设 $\{X_n\}$ 是独立同分布的随机变量序列,则

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{\text{a.s.}} C$$

的充分必要条件是 EX_1 存在, 且 $EX_1 = C$.

♣ 直观区别:

- 弱大数定律想证明:采样的次数越多,平均值接近真实期望值的可能性越来越大;
- ② 强大数定律想证明:采样的次数越多,平均值一定越来接近真实期望值;

第 11 讲

邓婉璐

计性的剩余

多元正态分平 (支维洗修)

收敛也

大数定律 (LLN)

中心极限定理 (CLT)

小结

作业

定理 4.3 (Marcinkiewicz SLLN(选修))

设 $\{X_n\}$ 是独立同分布的随机变量序列, 0 < r < 2, 则

$$\frac{1}{n^r} \sum_{k=1}^n (X_k - a) \xrightarrow{\text{a.s.}} 0$$

当且仅当是 $E(|X_1|^r)<\infty$ 存在,其中 $a=(EX_1)I_{\{1\leq r<2\}}+0I_{\{0\leq r<1\}}.$

定理 4.4 (Kolmogorov(选修))

设 $\{X_n\}$ 是独立的随机变量序列,有相同的期望 $\mu=EX_k$,

如果
$$\sum_{k=1}^{\infty} \frac{\operatorname{var}(X_k)}{k^2} < \infty, \qquad \text{则} \quad \frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{\text{a.s.}} \mu.$$

中心极限定理

假定 $X_1, X_2, ...,$ 是一列随机变量序列, 令 $S_n = X_1 + ... + X_n$.

第 11 讲 邓婉璐

Questions

 $oldsymbol{0}$ $oldsymbol{S_n}{l} - a_n \stackrel{d}{\longrightarrow} Y$ 的 (充要) 条件是什么?

其中 $\{a_n\}$, $\{b_n\}$ 是非随机序列,且 $0 < b_n \uparrow \infty$; Y 是非退化

的随机变量.

中心极限定理

定理 5.1 (Central limit theorem, CLT)

设 $\{X_n\}$ 是独立同分布的随机变量序列,其期望为 μ ,方差 为 $\sigma^2 < \infty$, 则

 $\frac{1}{\sigma\sqrt{n}}\sum_{k=1}^{n}(X_k-\mu)\stackrel{d}{\longrightarrow}\mathcal{N}(0,1).$

 \clubsuit 虽然在一般情况下很难求出 $X_1 + ... + X_n$ 的分布的确切形 式,但 n 较大时,可以通过 $\Phi(\cdot)$ 给出其近似值.

中心极限定理

《初等概率论》 第 11 讲

邓婉璐

独立性的判定

(高维选修)

大数定律

(LLN)

中心极限定理 (CLT)

小结

作业

证明. 令 $Y_k=(X_k-\mu)/\sigma$. 则 $\{Y_k\}$ 是独立同分布,共期望为0,方差为 1. 用 $\phi(t)=E\mathrm{e}^{\mathrm{i}tY_1}$ 表示 Y_1 的特征函数. 注意到

$$\phi'(0) = iEY_1 = 0, \quad \phi''(0) = i^2 EY_1^2 = -1.$$

利用 Taylor 展开, 可得

$$\phi(t) = \phi(0) + \phi'(0)t + \frac{1}{2}\phi''(0)t^2 + o(t^2).$$

所以 $\frac{1}{\sigma\sqrt{n}}\sum_{k=1}^{n}(X_k-\mu)$ 的特征函数为

$$\phi_n(t) = E \exp(it(Y_1 + \dots + Y_n)/\sqrt{n})$$

$$= [\phi(t/\sqrt{n})]^n$$

$$= \left(1 - \frac{t^2}{2n} + o(t^2/n)\right)^n$$

$$\to e^{-t^2/2}, \quad (n \to \infty)$$

由连续性定理 (Continuity theorem) 可知,结论成立.

《初等概率论》

第 11 讲

中心极限定理

例 5.1

假设人群中学习过统计学的比例为 f. 我们随机抽取 n 个人,用 X_i 表示第 i 个人是否学习过统计学: 即如果学过,则 $X_i=1$; 否则 $X_i=0$. 则这 n 个人的样本中学习过统计学的比例为 $M_n=(X_1+...+X_n)/n$. 我们如何通过 M_n 得到对 f 的认识?

作为对比,我们的目标仍然是得到误差率小于 1% 的 95% 置信区间,即: $P(|M_n-f| \geq 0.01) \leq 0.05$.

则利用中心极限定理,我们可以得到比切比雪夫不等式更精确的推断:

$$P(|M_n - f| \ge 0.01) = P(|\frac{X_1 + \dots + X_n - nf}{\sqrt{n}\sigma}| \ge \frac{0.01\sqrt{n}}{\sigma_x})$$

$$\approx P(|Z| \ge \frac{0.01\sqrt{n}}{\sigma_x}) \le P(|Z| \ge 0.02\sqrt{n}),$$

共中 $Z \sim \mathcal{N}(0,1)$. 取 $n = (\frac{1.96}{0.02})^2 = 9604$ 即可.

邓婉璐 独立性的判

多元正志分布 (高维选修) 收敛性

大数定律 (LLN) **中心极限定理**

小结作业

作业

中心极限定理

《初等概率论》 第 11 讲

邓婉璐

独立性的判定

多元正态分布 (高维选修)

仪奴怛

大数定律 (LLN)

中心极限定理 (CLT)

作业

♣ 应用到二项分布上

设 $X_i \sim B(1,p), \ i=1,2,..., \ i.i.d.$. 令 $S_n=X_1+...+X_n$. 例如,n=36, p=0.5.

p = 0.3, p = 0.3.

- $P(S_n \le 21) = P(S_n < 22)$. 用哪个做正态估计,21 还是 22?
- 单点估计为 0? $P(S_n = 19) \approx 0$

中心极限定理

第 11 讲

邓婉璐

中心极限定理

定理 5.2 (de Moivre-Laplace, CLT, 1716)

设 $S_n \sim B(n, p)$, n 充分大, k 和 m 是非负整数, 则

$$\mathbb{P}(k \le S_n \le m) \approx \Phi\left(\frac{m - np}{\sqrt{np(1 - p)}}\right) - \Phi\left(\frac{k - np}{\sqrt{np(1 - p)}}\right).$$

其修正形式【近似更为精确】:

$$\mathbb{P}(k \le S_n \le m) \approx \Phi\left(\frac{m+0.5-np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{k-0.5-np}{\sqrt{np(1-p)}}\right).$$

更重要的是:修正形式可以计算单点概率 $\mathbb{P}(S_n = k)$.

《初等概率论》 第 11 讲

邓福思

主 地 仏 樹 奈

多元正态分布

st 64 .

大数定⁴ (LLN)

中心极限定5

小结

作业

《初等概率论》 第 11 讲

邓福思

主 地 仏 樹 奈

多元正态分石

14 At .

大数定 (LLN)

中心极限定式

小结

作业

《初等概率论》 第 11 讲

邓福思

独立性的判定

多元正态分平

收敛。

大数定^在 (LLN)

> P 心板限定5 CLT)

小结

作业

《初等概率论》 第 11 讲

邓婉璐

中心极限定理

例 5.2

设 $S_n \sim B(36, 0.5)$, 求概率 $\mathbb{P}(S_n \leq 21)$.

解. 其精确的概率为:

$$\mathbb{P}(S_n \le 21) = \sum_{k=0}^{21} {36 \choose k} 0.5^{36} = 0.8785.$$

利用中心极限定理,若端点不经修正,则近似概率为:

$$\mathbb{P}(S_n \le 21) \approx \Phi\left(\frac{21 - np}{\sqrt{np(1-p)}}\right) = \Phi((21 - 18)/3) = 0.8413.$$

修正之后的近似为:

$$\mathbb{P}(S_n \le 21) \approx \Phi\left(\frac{21.5 - np}{\sqrt{np(1-p)}}\right) = \Phi(1.17) = 0.8789995.$$

男: $\mathbb{P}(S_n = 19) = 0.1251$, $\mathbb{P}(S_n = 19) \approx 0.124$.

第 11 讲

邓婉璐

独立性的判定 多元正态分布 (高维选修)

火数定征

中心极限定理 (CLT)

小结

例 5.3

设某地区内原有一家小型电影院,因不敷需要,拟筹建一所较大型的. 设据分析,该地区每日平均看电影者约有 n=1600 人,且预计新电影院建成开业后,平均约有 3/4 的观众将去这新电影院。现该影院在计划其座位数时,要求座位数尽可能多,但"空座达到 200 或更多"的概率又不超过 10%. 问设多少座位为好?

解. 设把每日看电影的人排号为 1,2,...,1600,且令 $X_i=1$ 如果第 i 个观众去新电影院,否则 =0, i=1,...,1600. 则按照假定有 $\mathbb{P}(X_i=1)=3/4$, $\mathbb{P}(X_i=0)=1/4$. 又假定各观众去不去电影院是独立选择,则 $X_1,X_2,...,X_{1600}$ 是独立随机变量. 现设座位数为 m,则按要求

$$\mathbb{P}(X_1 + \dots + X_{1600} < m - 200) < 0.1$$

在这个条件下,取 m 最大. 这显然就是在上式取等号时,因 为 $np=1600\times 3/4=1200,\, \sqrt{np(1-p)}=10\sqrt{3},\, {\rm fr}$ 以,

《初等概率论》 第 11 讲

邓婉璐

独立性的判定

多元正态分布 (高维选修)

大数定律

中心极限定理

中心被限定。 (CLT)

作业

按照修正近似公式, m 应满足条件

$$\Phi((m-200+0.5-1200)/(10\sqrt{3})) = 0.1$$

当 $\Phi(x) = 0.1$ 时,x = -1.2816. 由

$$\frac{m - 200 + 0.5 - 1200}{10\sqrt{3}} = -1.2816$$

得 $m = 1377.31 \approx 1377.$

最 从上述定理与实例中可以看出,当 $n \to \infty$,正态近似就会越精确,但是在实践中,样本量 n 是固定的,有限的. 所以须知道 n 多大时正态近似的结果是可信的. 很遗憾,没有简单普遍的准则来判断. 这要依赖于 X_i 的分布是否与正态分布接近,特别地,还依赖于 X_i 的分布是否对称. 比如 $X_i \sim \mathcal{U}(-1,1)$ 或 $\mathcal{E}(\lambda)$. 进一步,使用正态近似计算 $\mathbb{P}(S_n \leq c)$ 的时候,其近似程度与 c 的值有关,一般说来,如果 c 在 S_n 均值的附近,其精度会更高一些.

《初等概率论》 第 11 讲

邓婉璐

3 - 1 - X A 3

(高维选修)

收敛作

大数定符 (LLN)

中心极限定理 (CLT)

小结 作业

♣ 二项分布的泊松估计与正态估计

回忆之前讲过的二项分布可用泊松分布近似 (矩母函数推导).

- 说明泊松分布=正态分布?

事实上,对二项分布 B(n,p):

- 若 p 固定, $n \to \infty$: 可用正态分布近似. (若 p 接近 $\frac{1}{2}$, 则较小的 n 就很近似了; 若 p 接近 0 或 1,则需较大的 n 才有比较好的近似.
- 若 np 固定,大小适当, $n \to \infty$, $p \to 0$; 可用泊松分布近似.

实际应用中 (举例):

- 若 p = 1/10, n = 500: 可用正态分布近似.
- 若 p = 1/100, n = 100; 可用泊松分布近似.

第 11 讲

邓婉璐

立性的判定

多元正态分布 (支维洗修)

收敛也

大数定律 (LLN)

中心极限定理 (CLT)

小结

作业

定理 5.3 (Lyapunov, CLT (选修))

设 $\{X_n\}$ 是独立的随机变量序列,如果存在 $\delta > 0$,使得

$$\lim_{n \to \infty} \frac{1}{B_n^{2+\delta}} \sum_{k=1}^n E(|X_k - EX_k|^{2+\delta}) = 0,$$

其中 $B_n^2 = \sum_{k=1}^n \text{var}(X_k)$,则

$$\frac{1}{B_n} \sum_{k=1}^n (X_k - EX_k) \xrightarrow{d} \mathcal{N}(0,1).$$

《初等概率论》

第 11 讲 邓婉璐

中心极限定理

定理 5.4 (Lindeberg-Feller, CLT (选修))

满足

$$\mathcal{L}_n$$

并且中心极限定理 中心极限定理

$$\frac{1}{B_{m}}$$

$$\lim_{n-}$$

$$\lim_{n \to \infty} \frac{1}{B_n^2} \sum_{k=1}^n E\left\{ (X_k - EX_k)^2 I_{\{|X_k - EX_k| > \varepsilon B_n\}} \right\} = 0.$$
♣ 条件 (4) $\iff \lim_{n \to \infty} \max_{1 \le k \le n} \frac{\sigma_k^2}{B_n^2} = 0$ (Feller 条件)

设 $\{X_n\}$ 是独立的 r.v.s.,则:方差序列 $\{\sigma_k^2 := var(X_k)\}$

 $B_n^2 = \sum_{k=0}^{\infty} \operatorname{var}(X_k) \to \infty, \quad \frac{\sigma_n^2}{R^2} \to 0$ (4)

 $\frac{1}{B_n} \sum_{k=1}^{n} (X_k - EX_k) \xrightarrow{d} \mathcal{N}(0,1)$

成立的充分必要条件是 Lindeberg 条件成立, 即: 对 $\forall \varepsilon > 0$,

小结

《初等概率论》 第 11 讲

邓婉璐

独立性的判定

多元正态分布 (高维选修)

收敛也

(LLN)

(CLT)

小结

知识点

- 极限定理 (均值、分布): 大数定律、中心极限定理
- ullet 不同收敛性的定义 (不要求掌握相关定理的证明、不要求掌握 L_p 收敛)
- 多种独立性的判定法则

技巧

- 用连续分布函数近似表达离散分布函数时,需适当修正
- 不等式控制偏差范围.
- 在不失一般性情况下 (WLOG), 利用标准化形式证明, 可简化证明
- 利用随机变量特征函数(或矩母函数、概率母函数)的极限确认随机变量极限的分布

《初等概率论》 第 11 讲 邓婉璐

电立性的判定

多元正态分布 (高维选修) 收敛性

大数定律 (LLN) 中心切暇 定:

P心极限定理 CLT)

小结

作业

打*的题目是选做,不算成绩,因而不必写入作业;

- 教材第5章5,6*;9,10,11,14*.
- 设 $(X,Y) \sim \mathcal{N}(\mu,\Sigma)$, 且二维矩阵 Σ 正定,求 X+Y 与 X-Y 独立的充分必要条件.
- 若 $X_n \stackrel{p}{\longrightarrow} Y_1, X_n \stackrel{p}{\longrightarrow} Y_2$, 证明 $Y_1 = Y_2, a.s.$.
- $\not = X_n \stackrel{p}{\longrightarrow} X$, $Y_n \stackrel{p}{\longrightarrow} Y$, $\not = \emptyset$ $X_n + Y_n \stackrel{p}{\longrightarrow} X + Y$.
- 设全世界有 n 个家庭,每个家庭有 k 个小孩的概率都是 p_k . 设 p_k 满足 $\sum_{k=0}^c p_k = 1$. 如果各个家庭的小孩数是 相互独立的,计算一个小孩来自有 k 个小孩的家庭的概率.
- 利用中心极限定理证明 $\lim_{n\to\infty}e^{-n}\sum_{k=0}^n \frac{n^k}{k!}=\frac{1}{2}$.

《初等概率论》 第 11 讲

邓婉涛

立性的刺激

多元正态分平(方始洪体)

收敛小

大数定律 (LLN)

中心极限定数 (CLT)

小结

作业

Thank you!