P-Channel Enhancement Mode MOSFET

Features

-20V/-50A,

$$\begin{split} R_{\rm DS(ON)} &= 13 \text{m}\Omega(\text{max.}) \text{ @ V}_{\rm GS} = -4.5 \text{V} \\ R_{\rm DS(ON)} &= 16 \text{m}\Omega(\text{max.}) \text{ @ V}_{\rm GS} = -2.5 \text{V} \end{split}$$

 $R_{DS(ON)} = 25m\Omega(max.) @ V_{GS} = -1.8V$

- Reliable and Rugged
- Lead Free and Green Devices Available (RoHS Compliant)

Applications

 Portable Equipment and Battery Powered Systems.

Pin Description

DFN3.3x3.3A-8_EP

P-Channel MOSFET

Absolute Maximum Ratings (T_A = 25°C Unless Otherwise Noted)

Symbol	Parameter	Rating	Unit		
V_{DSS}	Drain-Source Voltage	-20	V		
V_{GSS}	Gate-Source Voltage	±12			
I _D ^a	Continuous Drain Current (V _{GS} =-4.5V)	T _A =25°C	-11		
		T _A =70°C	-8.8		
I _{DM} ^a	Pulsed Drain Current (V _{GS} =-4.5V)	-44 *	A		
I _D c	Continuous Drain Current	T _C =25°C	-50		
		T _C =100°C	-22		
I _S ^a	Diode Continuous Forward Current	•	-10		
TJ	Maximum Junction Temperature	150	°C		
l _{AS} d	Avalanche Current, Single pulse	L=0.5mH	-12	Α	
E _{AS} d	Avalanche Energy, Single pulse	L=0.5mH	36	mJ	
T _{STG}	Storage Temperature Range	-55 to 150	°C		
P _D ^a	Maximum Power Dissipation	T _A =25°C	3.1	w	
		T _A =70°C	2		
P _D ^c	Maximum Power Dissipation	T _C =25°C	31.25	vv	
		T _C =100°C	12.5		
$R_{\theta JA}^{a,b}$	The word Designation to Ambient	t ≤ 10s	40	°CAM	
	Thermal Resistance-Junction to Ambient	Steady State	80	── °C/W	
R _{θJC} c	Thermal Resistance-Junction to Case	4	°C/W		

Note *: Package limited.

Note a : Surface Mounted on $1in^2$ pad area, $t \le 10$ sec.

Note b: Maximum under Steady State conditions is 75 °C/W.

Note c: The power dissipation P_D is based on $T_{J(MAX)}$ = 150°C, and it is useful for reducing junction-to-case thermal resistance ($R_{\theta JC}$) when additional heat sink is used.

Note d: UIS tested and pulse width limited by maximum junction temperature 150oC (initial temperature Tj=25oC).

2

XPN20L50

Electrical Characteristics (T_A = 25°C Unless Otherwise Noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit			
Static Characteristics									
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _{DS} =-250μA	-20	-	-	V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-16V, V _{GS} =0V	-	-	-1	μА			
		T _J =85°C	-	-	-30				
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{DS}=-250\mu A$	-0.5	-	-1	V			
I _{GSS}	Gate Leakage Current	V _{GS} =±12V, V _{DS} =0V	-	-	±10	μΑ			
R _{DS(ON)} ^e	Drain-Source On-state Resistance	V _{GS} =-4.5V, I _{DS} =-11A	1	10	13	mΩ			
		V _{GS} =-2.5V, I _{DS} =-6A	1	13	16				
		V _{GS} =-1.8V, I _{DS} =-1A	-	20	25				
Diode Cha	aracteristics				•				
V _{SD} e	Diode Forward Voltage	I _{SD} =-1A, V _{GS} =0V	-	-0.7	-1	V			
t _{rr} f	Reverse Recovery Time	1 444 -11 (-15 400 4) -	-	63	-	ns			
Q _{rr} f	Reverse Recovery Charge	I_{SD} =-11A, dI_{SD}/dt =100A/ μ s	-	54	-	nC			
Dynamic (Characteristics ^f			•					
C _{iss}	Input Capacitance	V _{GS} =0V,	-	1620	-	pF			
Coss	Output Capacitance	V _{DS} =-10V,	-	320	-				
C _{rss}	Reverse Transfer Capacitance	Frequency=1.0MHz	-	290	-				
t _{d(ON)}	Turn-on Delay Time	V_{DD} =-10V, R_{L} =10 Ω , I_{DS} =-1A, V_{GEN} =-4.5V, R_{G} =6 Ω	-	9	-	ns			
ţ,	Turn-on Rise Time		-	13	-				
t _{d(OFF)}	Turn-off Delay Time		-	26	-				
t _f	Turn-off Fall Time		-	167	-				
Gate Char	rge Characteristics ^f			•	•				
Q_g	Total Gate Charge		-	25	-	nC			
Q_gs	Gate-Source Charge	V _{DS} =-10V, V _{GS} =-4.5V, -I _{DS} =-11A	-	1.6	-				
Q _{gd}	Gate-Drain Charge	- ייטאַ ייזא 	-	11	-				
	-			•					

Note e : Pulse test; pulse width $\leq 300 \mu s$, duty cycle $\leq 2\%$.

Note f: Guaranteed by design, not subject to production testing.

3

Typical Operating Characteristics

Power Dissipation

T_i - Junction Temperature (°C)

Drain Current

T_i - Junction Temperature (°C)

Safe Operation Area

-V_{DS} - Drain - Source Voltage (V)

Thermal Transient Impedance

Square Wave Pulse Duration (sec)

Typical Operating Characteristics (Cont.)

Output Characteristics

Drain-Source On Resistance

Gate-Source On Resistance

Gate Threshold Voltage

Typical Operating Characteristics (Cont.)

Drain-Source On Resistance

T_i - Junction Temperature (°C)

Source-Drain Diode Forward

-V_{SD} - Source - Drain Voltage (V)

Capacitance

Gate Charge

Typical Operating Characteristics (Cont.)

Transfer Characteristics

 $V_{_{GS}}$ - Gate-Source Voltage (V)

Avalanche Test Circuit and Waveforms

Switching Time Test Circuit and Waveforms

