

Paul Maden | April 2025

Introduction & Background

Who is ClimateWins?

ClimateWins is a European nonprofit aiming to understand and predict the effects of climate change particularly extreme weather events in Europe.

Why Machine Learning?

With limited resources and increasing data complexity, ML offers scalable ways to defect patterns and forecast trends critical for preparedness and risk reduction.

Project Goal

Use supervised machine learning models to explore historical weather data, test predicted algorithms and recommend an optimal model for forecasting climate related conditions.

Objective & Hypotheses

<u>Objective</u>: Use Machine Learning to predict and understand climate related patterns focusing on extreme weather event and long-term climate trends across Europe

Hypotheses:

1. ML can accurately predict extreme weather events (e.g. storms & heat waves) up to 48 hours in advance.

2. Prediction accuracy will vary by location and climate type, reflecting regional weather complexities.

3. ML can detect long term trends in temperature and precipitation patterns that correlate with effects in climate change.

Data Sources, Bias & Accuracy

<u>Data Source</u>: European Climate Assessment & Dataset (ECAD), containing historical data across 18 European weather stations (spanning 1880s – 2022). Variables Tracked: Daily Temperature, Wind Speed, Snowfall, Global Radiation, Precipitation, Humidity, etc.

<u>Biases</u>: Uneven station distribution (some regions may be over or underrepresented). There maybe missing values in older record and changes in measurement standards or equipment over time.

Overall accuracy: The long record span provides a strong historical insight. However, newer data is generally more consistent and complete. Also, preprocessing (e.g. normalization and interpolation) is used to improve readability.

Ethical Considerations in Machine Learning

<u>Human Oversight Needed:</u> Machine Learning must be reviewed by climate scientists or policymakers to ensure responsible applications.

<u>False Predictions</u>: False positive (e.g. predicting storms that don't happen v's false negative (failing to predict real dangers) could influence policy preparedness and public trust.

Ethics in Messaging: Predictions can influence migration, agriculture, insurance, and more messaging must be responsible and transparent.

Feature Optimization

Used feature *scaling and pruning* for improved accuracy.

ANN configuration tuning: Layers, nodes, tolerance, iterations.

Gradient descent to minimize loss during training.

Algorithm 1 – K-Nearest Neighbors (KNN)

Accuracy: 83-89%

Simple, nonparametric, effective for climate data. Sensitive to distance metrics and number of neighbors.

Algorithm 2 – Decision Tree

Accuracy: 46%

Overfitting likely due to complexity and depth.

Requires pruning for generalization and interpretability.

Algorithm 3 – Artificial Neural Network (ANN)

Accuracy:

51% training 49.8% testing.

Deep architecture with (50,50,60) performs best.

Requires tuning for tolerance and iteration limits.

Model Comparison & Insights

KNN:

Best performer on current data.

(Simple & effective with clean, structured data. Slow for large datasets).

ANN:

Better for complex patterns, needs more tuning.

(Great for nonlinear, complex trends).

Decision Tree:

Prone to overfitting, lowest accuracy.

(Easy to interpret, but over fits without pruning).

Below is the confusion matrix summarizing the model's classification performance across different weather stations:

Weather Station	True Negatives (TN)	True Positives (TP)	False Positive (FP)	False Negative (FN)	Accuracy Rate
Basel	3907	935	431	465	85%
Belgrade	3239	1303	537	439	84%
Budapest	3416	1410	484	408	85%
Debilt	4346	732	291	389	88%
Dusseldorf	4167	800	380	800	87%
Heathrow	4160	754	332	424	85%
Kassel	4635	607	252	316	90%
Ljubljana	3726	1132	469	411	86%
Maastricht	4249	820	313	356	88%
Madrid	2735	2250	433	322	87%
Munchenb	4222	768	324	400	88%
Oslo	4623	507	256	352	90%
Sonnblick	5738	0	0	0	100%
Stockholm	4450	588	316	308	89%
Valentia	5391	309	71	167	96%
Total					88.53%

The table below highlights the false negative rate (FNR) for each station, indicating the proportion of actual positive cases that were misclassified as negatives:

Weather Station	True Positives (TP)	False Negatives (FN)	False Negative Rate (FNR)
Basel	935	465	33.21%
Belgrade	1303	439	25.20%
Budapest	1410	408	22.44%
Debilt	732	389	34.70%
Dusseldorf	800	800	50.00%
Heathrow	754	424	35.99%
Kassel	607	316	34.24%
Ljubljana	1132	411	26.64%
Maastricht	820	356	30.27%
Madrid	2250	322	12.52%
Munchenb	768	400	34.25%
Oslo	507	352	40.98%
Sonnblick	0	0	nan%
Stockholm	588	308	34.38%
Valentia	309	167	35.08%

Summary

FOR IMMEDIATE USE (HIGHEST ACCURACY).

TUNE ANN FURTHER FOR COMPLEX, NON-LINEAR PATTERNS.

STANDARDIZE DATA, RETRAIN WITH NEW SAMPLES FOR BETTER GENERALIZATION.

Recommeded model: K-Nearest Neighbours (KNN) is recommended for initial deployment, due to its superior accuracy and performance on current weather data. Use it for short-term predictions (e.g., next 48–72 hours).

Next Steps

DEPLOY KNN WITH CROSS VALIDATION ACROSS MULTIPLE EUROPEAN REGIONS.

TRAIN **ANN** WITH TUNED PARAMETERS ON LONG-TERM DATASETS.

INTEGRATE
PREDICTION OUTPUT
INTO AN INTERACTIVE
DASHBOARD FOR
CLIMATEWINS
STAKEHOLDERS.

Thank You!

Questions?

Contact: wallmaden@hotmail.com

Presented by: Paul Maden

GitHub-Repo: Supervised-ML-Weather-Models