lecture 3 Combinationa) logic 1

Let A, B be binary variables ("boolean")

1 = true, 0 = false

Notation: $A \cdot B \equiv A \text{ and } B$ $A + B \equiv A \text{ or } B$ $\overline{A} \equiv n \cdot b + A$

ľ	A	В	A·B	A + B
	0	0	0	0
	0	(0	
	l	D	Õ	1
,	1	1		

ĺ	A	A	
	0		
	1	\Diamond	
_			

				(exclusive or
		NAND	NOR	XOR
A	B	A·B	A+B	A DB
D	0	l	1	0
	\	1	O	1
1	0	Ţ	0)
l	1	0	0	0

There are $2^{4} = 16$ boolean functions $\{: \{0,1\} \times \{0,1\} \longrightarrow \{0,1\}$

We typically only work with the 5 shown above.

A B	1 1/2 1/3	- , .	416
00			
0 (
10			
, ,			

Laws of Boolean Algebra

identity
$$A + O = A$$
 $A \cdot I = A$
inverse $A + \overline{A} = I$ $A \cdot \overline{A} = O$

one and zero
$$A+1=1$$
 $A\cdot 0=0$
commutative $A+B=B+A$ $A\cdot B=B\cdot A$
associative $(A+B)+c=A+(B+c)$ $(A\cdot B)\cdot c=A\cdot (B\cdot c)$
associative $A\cdot (B+c)$ $A+(B\cdot c)$
 $A+(B\cdot c)$
 $A+(B\cdot c)$
 $A+(B\cdot c)$

de Morgan
$$(\overline{A+B}) = \overline{A \cdot B}$$
 $\overline{A \cdot B} = \overline{A} + \overline{B}$

Example

	A	BC	У
	0	00	
١	0	0 1	
l	0000	1 0	
١	0	1 1	
١	1	0 0	
	l	0 1	
	ı	0)	
	l	1 1	
	l.		

$$Y = \overline{A \cdot B \cdot C} \cdot (A \cdot B + A \cdot C)$$

$$B \subset A \cdot B \cdot C \overline{A \cdot B \cdot C} A \cdot B A \cdot C A \cdot B + A \cdot C$$

A B C A.B.C A.B.C A.B A.C A.B.+ A.	. C }
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

$$Y = \overline{A \cdot B \cdot C} \cdot (A \cdot B + A \cdot C)$$

$$= A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C}$$

For 3 variables A,B,C, we can have up to $2^3 = 8$ terms in the sum. of products representation

$$Y = f(A, B, C, D, E)$$

$$y = \overline{A \cdot B \cdot C \cdot D \cdot E} + \overline{A \cdot B \cdot C \cdot D \cdot E} + \overline{A \cdot B \cdot C \cdot D \cdot E} + etc$$

$$Z = \overline{A \cdot B \cdot C} + \overline{A \cdot B \cdot C} + \overline{A \cdot B \cdot C}$$

$$\overline{Z} = (\overline{A} \cdot B \cdot C + A \cdot B \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot \overline{C})$$

$$= (\overline{A} \cdot B \cdot C) \cdot (\overline{A} \cdot B \cdot \overline{C}) \cdot (\overline{A} \cdot \overline{B} \cdot \overline{C})$$

$$= (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + C)$$

$$= (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + C)$$

$$= (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + C)$$

$$= (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + C)$$

$$= (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + C)$$

$$= (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + C)$$

$$= (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + C)$$

$$= (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + C)$$

$$= (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + C)$$

$$= (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + C)$$

How to write 2 as a product of sums?

$$\overline{Z} = \overline{A \cdot B \cdot C} + \overline{A \cdot B \cdot C}$$

$$\frac{1}{2} = \left(A+B+\overline{C}\right) \cdot \left(A+\overline{B}+C\right) \cdot \left(\overline{A}+B+\overline{C}\right) \cdot \left(\overline{A}+\overline{B}+\overline{C}\right)$$

$$\gamma = A \cdot \widehat{B} \cdot C + \widehat{A}$$

TA	В	\subset	A=B-C	A	Y
0		0	0		1
0	0	\	Ď	1	1
0	1	Õ	O]	l
0			0])
1	0	ð	0	0	0
,	Ó	1	(0]
1	0) 		0	0
1	l				
L L		1	6	0	U
1			1		

$$A \rightarrow O \rightarrow A + B$$

XoR

$$A \rightarrow B$$

$$y = \overline{A} \cdot B + A \cdot \overline{B} = A \oplus B$$

$$\beta_1$$
 β_2 γ_2

$$Y = \overline{S} \cdot A + S \cdot B$$

A	A.	Yz	Y))
00	0	00	0	l
1	0	0	0	0
ado	lr455		da	fu

The order of variables matters.

Programmable Logic Array (PLA)

Y₁ = F₁(A,B,C,...)

$$\lambda^{\prime} = \lambda^{\prime} (A'B'C' \cdots)$$

Suppose you need some circuit that computes these functions.

Write each function as a sum of products.

- start with fully connected circuit (say 8 input variables and 12 output variables) and then "cut the wires" to produce particular functions

- cheaply mass produced (Texas Instruments, National Semi conductors.)