

https://journals.researchparks.org/index.php/IJOT e-ISSN: 2615-8140 | p-ISSN: 2615-7071 Volume: 5 Issue: 2 | February 2023

Физико-Химическая Свойства Нитрита Кальция

У. Р. Панжиев

доц. КИЭИ

3. Т. Рузиева

доц

А. Кудратов

магистрант ____***___

Сущность процесса получения нитрита кальция заключается в поглощении нитрозных газов, отбираемых после контактного аппарата, известковым молоком концентрацией 100-140 г/л. Реакции, протекающие при поглощении оксидов азота раствором гидроксида кальция, можно представить уравнениями:

 $Ca(OH)_2 + NO + NO_2 = Ca(NO_2)_2 + H_2O$

 $2Ca(OH)_2 + 2NO_2 = Ca(NO_3)_2 + Ca(NO_2)_2 + 2H_2O$

Поглощение оксидов азота известковым молоком имеет специфические особенности, заключающиеся в возможности образования двойной соли состава СаО·Са(NO₃)₂·2H₂O, которая вызывает загустевание, а при известных условиях даже затвердевание циркулирующего раствора.

В связи с этим образование двойной соли может вызвать большие затруднения при получении концентрированных растворов нитрит- нитратных солей кальция в процессе поглощения оксидов азота известковым молоком [1].

В технологическом процессе производства нитрита натрия одним из промежуточных продуктов является нитрит кальция.

Поэтому изучение плотности и вязкости водного раствора нитрита кальция является необходимым для суждения о его технологических свойствах.

Для исследования применяли нитрит кальция, синтезированный в лабораторных условиях [2].

Из синтезированного нитрита кальция готовили водные растворы концентрацией 5,6%; 8,4%; 11,2%; 20,0%; 40%; 50%; 60%. Эти концентрации были выбраны с учетом производственных условий.

Плотность растворов нитрита кальция определяли с помощью ареометра. На рис. 1 и на таблице - 1 представлены данные по определению плотности в зависимости от температуры и концентрации раствора нитрита кальция.

Результаты опытов показывают, что с увеличением температуры плотность растворов нитрита кальция уменьшается.

Для 5,6%-ной концентрации раствора нитрита кальция с повышением температуры в интервале $20-60^{9}$ С, плотность имеет значение 1050, 1043 и 1037 кг/м 3 . С увеличением температуры до 40 и 60° С по сравнению с температурой 20^{0} С плотность уменьшается соответственно на 7 и 13 кг/м³, т.е. в процентах это составляет 0,7% и 1,2%.

Для 8,4%-ной концентрации раствора с увеличением температуры плотность уменьшается соответственно на 5 и 13 кг/м 3 , что составляет также 0,5% и 1,2%.

© 2023, IJOT | Research Parks Publishing (IDEAS Lab) www.researchparks.org

https://journals.researchparks.org/index.php/IJOT e-ISSN: 2615-8140 | p-ISSN: 2615-7071 Volume: 5 Issue: 2 | February 2023

Для 11,2%-ной концентрации раствора с увеличением температуры плотность уменьшается соответственно на 7 и 10 кг/м^3 , что составляет 0,6% и 0,9%.

Таким образом, уменьшение плотности растворов нитрита кальция с увеличением температуры до 40° C незначительно и составляет 0,5-0,7%, до 60° C 0,9% - 1,2%.

Увеличение концентрации раствора нитрита кальция приводит к повышению плотности. При 20° C 8,4 и 11,2%-ные растворы имеют соответственно плотности 1081 и 1117 кг/м³, т.е. они увеличиваются относительно плотности 5,6%-ного раствора на 3 и 6 %.

При 40° С плотность имела соответственно значения 1076 и 1110 кг/м³, т.е. увеличение плотности относительно 5,6%-ного раствора составило 3,0 и 6,0%.

При 60° С плотность имела соответственно значения 1068 и 1107 кг/м³, т.е. уменьшение плотности относительно 5.6%-ного раствора составило 3.0 и 6.8 %.

Обобщая результаты, можно придти к заключению, что при 40^{0} С плотность 8,4 и 11,2%-ного раствора относительно 5,6%-ного раствора нитрита кальция увеличивается на 3,0%, а при 60^{0} С - на 6-6,8%.

Увеличение концентрации раствора нитрита кальция в пределах 20-60% приводит к повышению плотности до 1580 кг/м³ (табл. 4.3).

При 40° С 20 и 60% - ные растворы имеют соответственно плотности 1132 и 1580 кг/м³.

Таблица- 1. Значение плотности растворов нитрита кальция в зависимости от температуры и концентрации.

Концентрация растворов	Плотность растворов (кг/м 3) при температуре, 0 С				
нитрита кальция, %	20	40	60	80	
5,6	1050	1043	1037	1030	
8,4	1081	1076	1068	1062	
11,2	1117	1110	1107	1101	
20	1140	1132	1121	1115	
40	1351	1336	1321	1311	
50	1418	1413	1437	1425	
60	-	1580	1560	1541	

Результаты определения вязкости 5.6; 8.4 и 11.2%-ного растворов нитрита кальция в температурном интервале $20-60^{0}$ С приведены на рис. 1.

Опытные данные показывают, что с увеличением температуры вязкость растворов нитрита кальция понижается. Для 5,6%-ного раствора нитрита кальция с повышением температуры в интервале $20-60^{0}$ С, вязкость имеет значения 0,98; 0,92 и 0,85 мПа·с. С увеличением температуры до 40 и 60^{0} С по сравнению с температурой 20^{0} С вязкость уменьшается соответственно на 0,06 и 0,13 мПа·с, т.е. в процентах это составляет 6,0 и 13,3%.

https://journals.researchparks.org/index.php/IJOT e-ISSN: 2615-8140 | p-ISSN: 2615-7071 Volume: 5 Issue: 2 | February 2023

Рис. 1. Зависимость плотности (a) и вязкости (б) растворов нитрита кальция от температуры и концентрации.

Для 8,4%-ной концентрации раствора с увеличением температуры вязкость также уменьшается соответственно на 0,08 и 0,15 мПа·с, что составляет 5,8 и 13,5%. Для 11,2%-ной концентрации раствора с увеличением температуры вязкость аналогично уменьшается соответственно на 0,06 и 0,14 мПа·с, что составляет 5,6 и 13,0 %. Уменьшение вязкости растворов нитрита кальция с повышением температуры для 8,4 и 11,2%-ной концентрации по сравнению с 5,6%-ной концентрацией при 40° C составляет 5,8-6,5%, а для 60° C- 13,5-14,2%.

В таблице -2. представлены значения вязкости для концентрированных растворов нитрита кальция при различных температурах.

Концентрация Са	Вязкость (мПа \cdot с) при температуре, 0 С				
$(NO_2)_2$ %	20	40	60	80	
5,6	0,98	0,92	0,85	0,78	
8,4	1,05	0,97	0,9	0,84	
11,2	1,08	1,02	0,94	0,88	
20	2,09	2,07	2,05	2,04	
40	3,46	2,85	2,25	2,24	
50	4,75	3,53	2,33	2,31	

Таблица -2. Влияние температуры и концентрации на вязкость растворов нитрита кальция.

Из таблицы -2. видно, что повышение концентрации от 20 до 60% приводит к существенному увеличению вязкости. Так, 20% - ный раствор, синтезированный в лабораторных условиях, имеет вязкость 2,09, а 40%, 50%, 60%-ные растворы имеют вязкость 3,46; 4,75 мПа·с соответственно. При 60 и 80° С вязкость растворов изменяется незначительно с увеличением концентрации.

12,29

8,10

5,37

© 2023, IJOT | Research Parks Publishing (IDEAS Lab) www.researchparks.org

23,85

60

https://journals.researchparks.org/index.php/IJOT e-ISSN: 2615-8140 | p-ISSN: 2615-7071 Volume: 5 Issue: 2 | February 2023

Результаты, исследований показывают, что растворы низкой концентрации (до 20%) при температурах 20, 40,60 и 80° С обладают небольшой вязкостью. Для них характерна вязкость 2,09; 2,07; 2,05; 2,04 мПа·с соответственно, т.е. существенного изменения значения показателей не происходит.

Раствор нитрита кальция 40% - ной концентрации в отличии от 20% - ного раствора обладает наибольшей вязкостью. Так, вязкость этого раствора относительно предыдущего при температуре 20°C увеличивается на 39,6%, тогда как при 80°C эта разница составляет 8,83%. Дальнейшее увеличение концентрации до 50% также приводит к повышению вязкости раствора.

При 20^{0} С эта проба имеет вязкость на 56% больше, чем 20%- ный раствор и на 27,2% больше, чем 40% ный раствор. С увеличенном температуры эта разница незначительна и достигает 3% относительно 40% ного раствора и 11.7% относительно 20% - ного раствора при 80° C.

Результаты экспериментальных данных представлены в виде объемной политермы (рис. 1), позволяющей определить значения ρ_{α} и η во всем диапазоне изученных концентраций и температур путем графической интерполяции [3].

Для нахождения, например плотности раствора, содержащего в % $Ca(NO_2)_2$, при температуре с 0C необходимо из точки состава раствора (в) провести параллельную оси t^0 С линию до пересечения с проекцией изотермы (с) на основании политермы и из полученной точки (а) провести перпендикуляр до пересечения с поверхностью АВСД. Высота перпендикуляра аа' будет определять плотность раствора. В данном случае при 40° C равна 1336кг/м³.

Литература

- 1. Азимов Р.А. Физиологическая роль кальция в солеустойчивости хлопчатника Тошкент: Наука, 1973-
- 2. Атрошенко В.И. и др. Технология связанного азота. Киев. «Выш.школа». -1985. -327с.
- 3. Беглов Б.М., Намазов Ш.С., Дадаходжаев А.Т.и др. Нитрат кальция. Его свойства, получение и применение в сельском хозяйстве. Ташкент –«Мехнат», - 2001. - 280 с.