Paradigm: Greedy

Offline Caching

R. Inkulu http://www.iitg.ac.in/rinkulu/

Description

Two level memory hierarchy comprising of main memory and cache wherein the main memory contains a set I of integers and cache can hold up to k integers such that k < |I|. Devise an eviction schedule that causes minimum number of cache misses to satisfy an input ordered sequence Q.

We do not consider loading an element from main memory to an empty entry in cache as a cache miss.

《ロト《書》《書》《書》 書 グへで (Offline Caching)

Greedy strategy that falters

evict least recently used: number of cache misses = 4

an optimal solution: number of cache misses = 2

 $Q:b,a,c,b,c,a,b. \qquad \text{ for all } b \in \mathbb{R} \text$

Greedy strategy for further exploration

Evict an element which occurs late (farthest) in future in the remaining part of input sequence.

an optimal solution: number of cache misses = 2

(Offline Caching) 4 / 18

Multiple optimal solutions possible

processed with the above greedy algorithm

Q: a, b, c, d, a, d, e, a, d, b, c.

Multiple optimal solutions possible (cont)

processed with some other algorithm

Q: a, b, c, d, a, d, e, a, d, b, c.

(Offline Caching) 6 / 18

Correctness

Greedy algorithm G does not incur more misses than any other optimal algorithm O.

- Let $a_1, \ldots, a_j, a_{j+1}, \ldots, a_n$ be the input sequence. If the eviction schedule S of O agrees with the eviction schedule S_G of G after processing a_j , then there exists an eviction schedule S' that agrees with S_G after processing a_{j+1} and incurs no more cache misses than S does.
- Applying this strategy inductively for at most n times, proves the optimality of S_G .

(Offline Caching) 7 / 18

Correctness

Let C_S , C_G be the caches of same size associated with algorithms O and G respectively. Suppose after processing a_j in $a_1, \ldots, a_j, \ldots, a_n$:

$$S: b_1, b_2, \dots, b_i$$

 $S_G: b_1, b_2, \dots, b_i$

Then the contents of C_S and C_G are same after processing a_j .

Correctness: Case (i)

$$Q: a_1, a_2, \ldots, a_j, a_{j+1} = c, \ldots, a_k, a_{k+1}, \ldots, a_n$$

	a
	f
	с
	e
C_S	h

	h
	e
	с
	f
C_G	a

a
f
С
e
h

h e c f

after processing a_j :

$$S:b_1,b_2,\ldots,b_i$$

 $S_G:b_1,b_2,\ldots,b_i$

after processing a_{j+1} :

$$S:b_1,b_2,\ldots,b_i$$

$$S_G:b_1,b_2,\ldots,b_i$$

9/18

Correctness: Case (ii)

$$Q: a_1, a_2, \ldots, a_j, a_{j+1} = t, \ldots, a_k, a_{k+1}, \ldots, a_n$$

	a
	b
	с
	d
C_{S}	h

	h
	d
	с
	b
C_G	a

 C_S

a		t
f		e
с		с
e		f
t	C_G	a

after processing a_j :

$$S: b_1, b_2, \dots, b_i$$

 $S_G: b_1, b_2, \dots, b_i$

after processing a_{j+1} : $S: b_1, b_2, \dots, b_i, h$

$$S: b_1, b_2, \ldots, b_i, h$$

 $S_G: b_1, b_2, \ldots, b_i, h$

10 / 18

Correctness: Case (iii)

$$Q: a_1, a_2, \ldots, a_j, a_{j+1} = t, \ldots, a_k, a_{k+1}, \ldots, a_n$$

	h
	e
	с
	f
$C_{\mathbf{G}}$	a

 C_S

after processing a_i :

 $S: b_1, b_2, \dots, b_i$ $S_G: b_1, b_2, \dots, b_i$ after processing a_{j+1} : $S: b_1, b_2, \dots, b_i, e$

 $S_G: b_1, b_2, \ldots, b_i, f$

The element f is farthest to a_{j+1} in the remaining sequence, when compared to e.

4 D > 4 B > 4 E > 4 E > 9 Q C

(Offline Caching) 11 / 18

Correctness via exchange argument: Handling Case (iii)

$$Q: a_1, a_2, \ldots, a_j, a_{j+1}, \ldots, a_k, a_{k+1}, \ldots, a_n$$

Construct S' which behaves same as G until a_{j+1} is processed; and, after processing the whole of Q, $|S'| \leq |S|$.

The strategy would be to make the contents of $C_{S'}$ same as C_S as early as possible; till that state is achieved, we need to ensure S' does not incur more cache misses than S.

		_	
	a		h
	f		e
	С		С
	t		t
$C_{\mathbf{S}}$	h	C _S ,	a

after processing a_{j+1} :

$$S: b_1, b_2, \dots, b_i, e$$

 $S' = S_G: b_1, b_2, \dots, b_i, f$

12 / 18

Correctness: Subcase (iii)(a)

$$Q: a_1, a_2, \ldots, a_i, a_{i+1}, \ldots, a_k, a_{k+1}, \ldots, a_n$$

Cache misses due to elements in a_{j+2}, \ldots, a_{k-1} causing eviction of elements other than f in S, and none of these elements equal to e; $a_k \neq e$ causing the eviction of f in C_S :

after processing a_{k-1} : $S: b_1, b_2, \ldots, b_i, e, \ldots$

$$S': b_1, b_2, \ldots, b_i, \epsilon, \ldots, S': b_1, b_2, \ldots, b_i, f, \ldots,$$

 $\begin{array}{c|c} & a' \\ & a_k \\ & c' \\ & t' \\ & h' \end{array}$

after processing a_k :

$$S: b_1, b_2, ..., b_i, e, ..., f$$

 $S': b_1, b_2, ..., b_i, f, ..., e$
 $|S| = |S'|$

Correctness: Subcase (iii)(b)

$$Q: a_1, a_2, \ldots, a_j, a_{j+1}, \ldots, a_k = e, a_{k+1}, \ldots, a_n$$

Cache misses due to elements in a_{i+2}, \ldots, a_{k-1} causing eviction of elements other than f in S, and none of these elements equal to e; $a_k = e$ causing the eviction of f in C_S :

 C_S

h' Cs.

14 / 18

after processing a_{k-1} :

$$S: b_1, b_2, \ldots, b_i, e, \ldots,$$

$$S': b_1, b_2, \ldots, b_i, \epsilon, \ldots, S': b_1, b_2, \ldots, b_i, f, \ldots,$$

after processing a_k :

$$S: b_1, b_2, \dots, b_i, e, \dots, f$$

 $S': b_1, b_2, \dots, b_i, f, \dots$
 $|S| - 1 = |S'|$

Correctness: Subcase (iii)(c)

$$Q: a_1, a_2, \ldots, a_j, a_{j+1}, \ldots, a_k, a_{k+1}, \ldots, a_n$$

Cache misses due to elements in a_{j+2}, \ldots, a_{k-1} causing eviction of elements other than f in S, and none of these elements equal to e; and $a_k = e$ causing the eviction of c' in C_S :

	a,
	f
	c,
	ť
$C_{\mathbf{S}}$	h'

	h'
	e
	c,
	ť,
C _S .	a [']

15 / 18

after processing a_{k-1} :

$$S: b_1, b_2, \ldots, b_i, e, \ldots,$$

Cs.

$$S': b_1, b_2, \ldots, b_i, f, \ldots,$$

after processing a_k :

$$S: b_1, b_2, \dots, b_i, e, \dots, c'$$

 $S': b_1, b_2, \dots, b_i, f, \dots, |S| - 1 = |S'|$

Correctness: Subcase (iii)(c) (cont)

$$Q: a_1, a_2, \ldots, a_i, a_{i+1}, \ldots, a_k, a_{k+1}, \ldots, a_l, a_{l+1}, \ldots, a_n$$

after processing a_k :

$$S: b_1, b_2, \dots, b_i, e, \dots, c'$$

 $S': b_1, b_2, \dots, b_i, f, \dots,$

It is guaranteed that $|S'| \leq |S|$:

For $a_l = f$, evict c' in S'.

Whenever f is evicted in S, evict c' in S'.

Does not matter if nothing of this sort happens as |S| - 1 = |S'|.

4 D > 4 B > 4 E > 4 E > 9 Q P

16 / 18

Correctness: Subcase (iii)(d)

$$Q: a_1, a_2, \ldots, a_j, a_{j+1}, \ldots, a_k, a_{k+1}, \ldots, a_n$$

Cache misses due to elements in a_{j+2}, \ldots, a_{k-1} causing eviction of elements other than f in S, and none of these elements equal to e; and $a_k = f$.

This case never occur as e must occur before we encounter f.

In other words, by the time we encounter f, three subcases together ensure $C_S = C_{S'}$.

(Offline Caching) 17 / 18

Analysis

Homework!