Set		Sets Convex?	Comments
Convex hull: $ \bullet \text{ conv } C = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, 0 \leq 0 \leq 1, 1^T 0 = 1 \right\} $		Yes	 conv C will be the smallest convex set that contains C. conv C will be a finite set as long as C is also finite.
Affine hull:		Yes.	ullet A will be the smallest affine set that contains C .
• aff $C = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C \text{ for } i = 1, \dots, k, 1^T \mathbf{\theta} = 1 \right\}$			 Different from the convex set, θ_i is not restricted between 0 and 1 aff C will always be an infinite set. If aff C contains the origin, it
Conic hull:		Yes.	is also a subspace. • A will be the smallest convex conic that contains C .
Conic hull: • $A = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, \theta_i > 0 \text{ for } i = 1, \dots, k \right\}$			• Different from the convex and affine sets, θ_i does not need to sum up 1.
Ray:		Yes.	• The ray is an infinite set that begins in \mathbf{x}_0 and extends infinitely in direction of \mathbf{v} . In other words, it has a beginning, but it has no
$\bullet \ \mathcal{R} = \{ \mathbf{x}_0 + \theta \mathbf{v} \mid \theta \ge 0 \}$		V	end.
Hyperplane: • $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b \}$		Yes.	• It is an infinite set $\mathbb{R}^{n-1} \subset \mathbb{R}^n$ that divides the space into two halfspaces.
• $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^{T}(\mathbf{x} - \mathbf{x}_0) = 0 \}$ • $\mathcal{H} = \mathbf{x}_0 + a^{\perp}$			 \$a^{\perp} = \{ \mathbf{v} \ \mathbf{a}^{\perp} \mathbf{v} = 0 \}\$ is the set of vectors perpendicular to \$\mathbf{a}\$. It passes through the origin. \$a^{\perp} \text{ is offset from the origin by \$\mathbf{v}\$, which is any vector in \$\mathbf{U}\$.
Halfspaces:		Yes.	 a¹ is offset from the origin by x₀, which is any vector in H. They are infinite sets of the parts divided by H.
$\bullet \mathcal{H}_{-} = \left\{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \leq b \right\}$ $\bullet \mathcal{H}_{+} = \left\{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \geq b \right\}$			
• $\mathcal{H}_+ = \{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \ge b \}$ Euclidean ball:		Yes.	• $B(\mathbf{x}_c, r)$ is a finite set as long as $r < \infty$.
$\bullet B(\mathbf{x}_c, r) = \{\mathbf{x} \mid \mathbf{x} - \mathbf{x}_c _2 \le r\}$ $\bullet B(\mathbf{x}_c, r) = \{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{T} (\mathbf{x} - \mathbf{x}_c) \le r\}$			 x_c is the center of the ball. r is its radius.
• $B(\mathbf{x}_c, r) = {\mathbf{x}_c + r \mathbf{u} \mathbf{u} \le 1}$			
Ellipsoid: • $\mathcal{E} = \{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \}$		Yes.	 \mathcal{E} is a finite set as long as P is a finite matrix. P is symmetric and positive definite, that is, P = P^T > 0.
• $\mathcal{E} = \{\mathbf{x}_c + \mathbf{A}\mathbf{u} \mid \mathbf{u} \le 1\}$, where $\mathbf{A} = \mathbf{P}^{1/2}$.			 x_c is the center of the ellipsoid. The lengths of the semi-axes are given by √λ_i.
			• A is invertible. When it is not, we say that \mathcal{E} is a degenerated ellipsoid (degenerated ellipsoids are also convex).
Norm cone:		Yes.	• Although it is named "Norm cone", it is a set, not a scalar.
• $C = \{[x_1, x_2, \cdots, x_n, t]^T \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n, \mathbf{x} _p \le t\} \subseteq \mathbb{R}^{n+1}$			 The cone norm increases the dimension of x in 1. For p = 2, it is called the second-order cone, quadratic cone,
Proper cone: $K \subset \mathbb{R}^n$ is a proper cone when it has the following properties		Yes.	Lorentz cone or ice-cream cone. • The proper cone K is used to define the generalized inequality (or
• K is a convex cone, i.e., $\alpha K \equiv K, \alpha > 0$.			• The proper cone K is used to define the generalized inequality (or partial ordering) in some set S. For the generalized inequality, one must define both the proper cone K and the set S.
 K is closed. K is solid. 			• $\mathbf{x} \leq \mathbf{y} \iff \mathbf{y} - \mathbf{x} \in K \text{ for } \mathbf{x}, \mathbf{y} \in S \text{ (generalized inequality)}$ • $\mathbf{x} < \mathbf{y} \iff \mathbf{y} - \mathbf{x} \in \text{int } K \text{ for } \mathbf{x}, \mathbf{y} \in S \text{ (strict generalized inequality)}.$
• K is pointed, i.e., $-K \cap K = \{0\}$.			• There are two cases where K and S are understood from context and the subscript K is dropped out:
			▶ When $S = \mathbb{R}^n$ and $K = \mathbb{R}^n_+$ (the nonnegative orthant). In this case, $\mathbf{x} \leq \mathbf{y}$ means that $x_i \leq y_i$.
			When $S = S^n$ and $K = S^n_+$ or $K = S^n_{++}$, where S^n denotes the set of symmetric $n \times n$ matrices, S^n_+ is the space of the
			positive semidefinite matrices, and S_{++}^n is the space of the positive definite matrices. S_{+}^n is a proper cone in S^n (??). In this case, $Y \geq X$ means that $Y - X$ is a positive semidefinite
			matrix. It is usual to denote $X > 0$ and $X \ge 0$ to mean than X is a positive definite and semidefinite matrix, respectively, where $0 \in \mathbb{R}^{n \times n}$ is a zero matrix.
			• Another common usage is when $S = \mathbb{R}^n$ and $K = \{\mathbf{c} \in \mathbb{R}^n \mid c_1 + c_2t + \dots + c_nt^{n-1} \geq 0, \text{ for } 0 \leq t \leq 1\}$. In this case,
			$\mathbf{x} \leq_K \mathbf{y}$ means that $x_1 + x_2t + \dots + x_nt^{n-1} \leq y_1 + y_2t + \dots + y_nt^{n-1}$. • The generalized inequality has the following properties:
			▶ If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{u} \leq_K \mathbf{v}$, then $\mathbf{x} + \mathbf{u} \leq_k \mathbf{y} + \mathbf{v}$ (preserve under addition).
			▶ If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{y} \leq_K \mathbf{z}$, then $\mathbf{x} \leq_K \mathbf{z}$ (transitivity). ▶ If $\mathbf{x} \leq_K \mathbf{y}$, then $\alpha \mathbf{x} \leq_K \mathbf{y}$ for $\alpha \geq 0$ (preserve under nonnega-
			tive scaling). $ > \mathbf{x} \leq_K \mathbf{x} \text{ (reflexivity)}. $
			▶ If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{y} \leq_K \mathbf{x}$, then $\mathbf{x} = \mathbf{y}$ (antisymmetric). ▶ If $\mathbf{x}_i \leq_K \mathbf{y}_i$, for $i = 1, 2,$, and $\mathbf{x}_i \to \mathbf{x}$ and $\mathbf{y}_i \to \mathbf{y}$ as $i \to \infty$, then $\mathbf{x} \leq_K \mathbf{y}$.
			• It is called partial ordering because $\mathbf{x} \not\succeq_K \mathbf{y}$ and $\mathbf{y} \not\succeq_K \mathbf{x}$ for many $\mathbf{x}, \mathbf{y} \in S$. When it happens, we say that \mathbf{x} and \mathbf{y} are not comparable
			(this case does not happen in ordinary inequality, $<$ and $>$). • $\mathbf{x} \in S$ is the <i>minimum</i> element of S if $\mathbf{x} \leq_K \mathbf{y}$ for every $\mathbf{y} \in S$.
			The set does not necessarily have a minimum, but the minimum is unique if it does. The same is true for <i>maximum</i> . The mathematical notation for that is $S \subseteq \mathbf{x} + K$, where $\mathbf{x} + K$ denotes all
			points that are comparable to \mathbf{x} and greater than or equal to \mathbf{x} (for the maximum, we have $S \subseteq \mathbf{x} - K$).
			• $\mathbf{x} \in S$ is the <i>minimal</i> element of S if $\mathbf{y} \leq_K \mathbf{x}$ only when $\mathbf{y} = \mathbf{x}$. The same is true for <i>maximal</i> . We can have many different minimal (maximal) elements. The mathematical notation for that
			is $(\mathbf{x} - K) \cap S = \{\mathbf{x}\}$, where $\mathbf{x} - K$ denotes all points that are comparable to \mathbf{x} and less than or equal to \mathbf{x} (for the maximal, we have $(\mathbf{x} + K) \cap S = \{\mathbf{x}\}$).
			• When $K = \mathbb{R}_+$ and $S = \mathbb{R}$ (ordinary inequality), the minimal is equal to the minimum and the maximal is equal to the maximum.
Dual cone:		Yes.	$ullet$ K^* is a cone, and it is convex even when the original cone K is
$\bullet \ K^* = \left\{ \mathbf{y} \mid \mathbf{x}^T \mathbf{y} \ge 0, \ \forall \ \mathbf{x} \in K \right\}$			nonconvex. • K^* has the following properties:
			$ ► K^* \text{ is closed and convex.} $ $ ► K_1 ⊆ K_2 \text{ implies } K_1^* ⊆ K_2^*. $
			 ▶ If K has a nonempty interior, then K* is pointed. ▶ If the closure of K is pointed then K* has a nonempty interior.
			▶ K^{**} is the closure of the convex hull of K . Hence, if K is convex and closed, $K^{**} = K$.
Polyhedra: $P = \{ \mathbf{x} \mid \mathbf{x}^{T} \mathbf{x} \in \mathbf{b}, i=1, \dots, \mathbf{x}^{T} \mathbf{x} = d, i=1, \dots, \mathbf{x}^{T} \mathbf{x} = d, i=1, \dots, \mathbf{x}^{T} \mathbf{x}^{T} \mathbf{x} = d, i=1, \dots, \mathbf{x}^{T} \mathbf$		Yes.	The polyhedron may or may not be an infinite set. Polyhedron is the result of the intersection of m helfmages and n
• $\mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{a}_{j}^{T} \mathbf{x} \leq b_{j}, j = 1, \dots, m, \mathbf{a}_{j}^{T} \mathbf{x} = d_{j}, j = 1, \dots, p \right\}$ • $\mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{A} \mathbf{x} \leq \mathbf{b}, \mathbf{C} \mathbf{x} = \mathbf{d} \right\}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \dots & \mathbf{a}_{n} \end{bmatrix}$	$[\mathbf{a}_m]^T$ and $[\mathbf{C}] = []$		 Polyhedron is the result of the intersection of m halfspaces and p hyperplanes. Subspaces, hyperplanes, lines, rays line segments, and halfspaces
$\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_m \end{bmatrix}^T$			 Subspaces, hyperplanes, lines, rays line segments, and halfspaces are all polyhedra. The nonnegative orthant, Rⁿ₊ = {x ∈ Rⁿ x_i ≤ 0 for i = 1,n} =
Simplex:		Yes.	$\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{I}\mathbf{x} \succeq 0\}, \text{ is a special polyhedron.}$
• $S = \text{conv } \{\mathbf{v}_m\}_{m=0}^k = \{\sum_{i=0}^k \theta_i \mathbf{v}_i \mid 0 \le \mathbf{\theta} \le 1, 1^T \mathbf{\theta} = 1\}$		168.	 Simplexes are a subfamily of the polyhedra set. Also called k-dimensional Simplex in Rⁿ.
• $S = \{\mathbf{x} \mid \mathbf{x} = \mathbf{v}_0 + \mathbf{V}\mathbf{\theta}\}, \text{ where } \mathbf{V} = \begin{bmatrix} \mathbf{v}_1 - \mathbf{v}_0 & \dots & \mathbf{v}_n - \mathbf{v}_0 \end{bmatrix} \in \mathbb{R}$ • $S = \{\mathbf{x} \mid \mathbf{A}_1\mathbf{x} \leq \mathbf{A}_1\mathbf{v}_0, 1^T\mathbf{A}_1\mathbf{x} \leq 1 + 1^T\mathbf{A}_1\mathbf{v}_0, \mathbf{A}_2\mathbf{x} = \mathbf{A}_2\mathbf{v}_0 \}$ (I			• The set $\{\mathbf{v}_m\}_{m=0}^k$ is a affinely independent, which means $\{\mathbf{v}_1 - \mathbf{v}_0, \dots, \mathbf{v}_k - \mathbf{v}_0\}$ are linearly independent.
Linear inequalities in x Linear equalities in x	··		• $\mathbf{V} \in \mathbb{R}^{n \times k}$ is a full-rank tall matrix, i.e., rank $(\mathbf{V}) = k$. All its column vectors are independent. The matrix \mathbf{A} is its left pseudoinverse.
	` / - /	nd their implications regarding c	convexity
Function Union: $C = A \cup B$ Intersection: $C = A \cap B$	` / - /	Convex?	Comments
Affine function $f : \mathbb{R}^n \to \mathbb{R}^m$ • $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{x} \in \mathbb{R}^n$,	\mathbb{R}^n is a convex set, then its image	encompasses the linear function, $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$. The linear function
, == , ===			has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an
			affine function as a linear transformation plus a shift from the origin of b .
			 Similarly, the inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI) A(x) = x A + x + x A ∈ R
			• The linear matrix inequality (LMI), $\mathbf{A}(\mathbf{x}) = x_1 \mathbf{A}_1 + \dots + x_n \mathbf{A}_n \leq \mathbf{B}$, is a special case of affine function. In other words, $f(S) = \{\mathbf{x} \mid \mathbf{A}(\mathbf{x}) \leq \mathbf{B}\}$ is a convex set if S is convex. Many optimization
			problems can be formulated as LMI problems and solved optimally.
Perspective function $f: \mathbb{R}^{n+1} \to \mathbb{R}^n$ • $f(\mathbf{x}, t) = \mathbf{x}/t$, where $\mathbf{x} \in \mathbb{R}^n, t \in \mathbb{R}$.	Yes, if the domain $S \subseteq$ image $f(S) = \{f(\mathbf{x}) \mathbf{x} \in$	dom f is a convex set, then its $S \subseteq \mathbb{R}^n$ is also convex.	 dom f = Rⁿ × R₊₊ The perspective function decreases the dimension of the domain.
J () .)			 The perspective function decreases the dimension of the domain. Its effect is similar to the camera zoom. The inverse image is also convex, that is, if C⊆ Rⁿ is convex, then
	Projective (or linear-fractional) function, $f: \mathbb{R}^n \to \mathbb{R}^m$ Yes, if the domain $S \subseteq$		$f^{-1}(C) = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid \mathbf{x}/t \in C, t > 0\} \text{ is also convex.}$
Projective (or linear-fractional) function, $f : \mathbb{R}^n \to \mathbb{R}^m$ • $f = p \circ g$, i.e., $f(\mathbf{x}) = (p \circ g)(\mathbf{x}) = p(g(\mathbf{x}))$, where		dom f is a convex set, then its $S \subseteq \mathbb{R}^m$ is also convex.	fractional function.
$\Rightarrow g : \mathbb{R}^n \to \mathbb{R}^{m+1} \text{ is an affine function given by } g(\mathbf{x}) = \begin{bmatrix} \mathbf{A} \\ \mathbf{c}^{T} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \mathbf{b} \\ d \end{bmatrix}, \text{ being } \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m, \mathbf{c} \in \mathbb{R}^n, \text{ and} $			 dom f = {x ∈ Rⁿ c^Tx + d > 0} P(x) ⊂ Rⁿ⁺¹ is a ray set that begins at the origin and its last
$d \in \mathbb{R}$.			component takes only positive values. For each $\mathbf{x} \in \text{dom } f$, it is associated a ray set in \mathbb{R}^{n+1} in this form. This (projective) correspondence between all points in dom f and their respective
$ ightharpoonup p: \mathbb{R}^{m+1} \to \mathbb{R}^m$ is the perspective function.	1		correspondence between all points in dom f and their respective sets \mathcal{P} is a biunivocal mapping.