Sorting

David Croft

Introduction

Stable sort

Selection sort

algorithms

Divide & Conquer

Divide & Conquer

Recap

Sorting algorithms

David Croft

Coventry University david.croft@coventry.ac.uk

November 20, 2015

Bubblesort
Stable sort
In-place

Selection sort

algorithms

Divide & Conqu

Comparing

Docan

1 Introduction

- 2 Bubblesort
 - Stable sort
 - In-place
- 3 Selection sort
- 4 Other algorithms
- 5 Quicksort
 - Divide & Conquer
- 6 Comparing
- 7 Recap

Sorting is one of the classic problems for learning algorithms.

- Requirement for everything.
- Obvious applications like sorting text, statistics (median calculations).
- Less obvious, sorting objects in games for FOV calculations.
- Route planning.

Bubblesort
Stable sort
In-place

Selection sort

Other algorithms

Divide & Conqui

Comparing

Recap

- Compares each item to the next in the sequence.
 - Swap items if in wrong order.

Other algorithms

Divide & Conque

Comparing

Recap

- Compares each item to the next in the sequence.
 - Swap items if in wrong order.

Bubblesort
Stable sort

Selection sort

Other algorithm:

Divide & Conque

Comparing

Recap

- Compares each item to the next in the sequence.
 - Swap items if in wrong order.

Bubblesort
Stable sort
In-place

Selection sort

Other algorithm:

Divide & Conque

Comparing

Recap

- Compares each item to the next in the sequence.
 - Swap items if in wrong order.

Bubblesort
Stable sort
In-place

Selection sort

Other algorithm

Divide & Conque

Comparing

Recap

- Compares each item to the next in the sequence.
 - Swap items if in wrong order.

Bubblesort

Iterating over the sequence once isn't typically enough.

Other algorithm

Divide & Conque

Camparina

Recap

Iterating over the sequence once isn't typically enough.

Bubblesort
Stable sort
In-place

Selection sort

Other algorithm

Divide & Conque

Iterating over the sequence once isn't typically enough.

Other algorithm

Divide & Conque

Comparir

Recap

Iterating over the sequence once isn't typically enough.

Bubble sort is what's known as an stable in-place sort. Stable meaning that equivalent elements do not change their relative orders.

- Not important if e.g. sorting people by height.
- Important if e.g. Stable sorting algorithms do not change the order of equivalent elements i.e. elements with the same value not have their relative orders changed after a stable sorting. With an unstable sorting algorithm the relative orders or equivalent elements can be changed. For some applications this is an important consideration. Imagine a queue in an emergency room. You want to treat the most serious conditions first, so you sort the people based on how bad their injury is. However, if two or more people have the same injury then they should get seen based on when they entered the queue.

In-place meaning that it only needs a small amount of additional memory in order to work.

- More memory efficient than the alternative.
- Can be important if...
 - ...dealing with large amounts of data.
 - ...have limited resources (i.e. embedded systems).
- Bubble sort only needs a few extra variables to swap the elements and to step through the sequence.

Other algorithms

Divide & Conque

Comparing

Recap

- Explained here to introduce you to sorting concepts.
 - In-place, stable.

Bubblesor Stable sort

Selection sor

Other algorithms

Divide & Conque

Comparin

Recar

- Explained here to introduce you to sorting concepts.
 - In-place, stable.
- Is rubbish.

- Explained here to introduce you to sorting concepts.
 - In-place, stable.
- Is rubbish.
 - Horrible performance, average is $O(n^2)$.

Bubblesort Stable sort In-place

Selection sort

Other algorithms

Divide & Conque

Comparing

Recar

- Explained here to introduce you to sorting concepts.
 - In-place, stable.
- Is rubbish.
 - Horrible performance, average is $O(n^2)$.
 - But best case is only O(n).

The time taken to sort a sequence depends on:

■ The starting order of the sequence.

For example, Bubblesorting a 100 elements:

So sorting algorithms have 3 O() values.

algorithms

Divide & Conqu

Comparing

The time taken to sort a sequence depends on:

■ The starting order of the sequence.

For example, Bubblesorting a 100 elements:

- Best case, are already sorted.
 - Iterate over sequence once.
 - 100 comparisons.

So sorting algorithms have 3 O() values.

■ The starting order of the sequence.

For example, Bubblesorting a 100 elements:

- Best case, are already sorted.
 - Iterate over sequence once.
 - 100 comparisons.
- Worst case, in reverse order.
 - Iterate over sequence 100 times.
 - 10,000 comparisons.

The time taken to sort a sequence depends on:

■ The starting order of the sequence.

For example, Bubblesorting a 100 elements:

- Best case, are already sorted.
 - Iterate over sequence once.
 - 100 comparisons.
- Worst case, in reverse order.
 - Iterate over sequence 100 times.
 - 10,000 comparisons.
- Average case, random order.
 - Somewhere in between.

So sorting algorithms have 3 O() values.

Other algorithms

Divide & Conque

Comparing

Reca

- Divides sequence into sorted and unsorted regions.
- Not stable.
- In place.
- Iterate over sequence.
- 2 For each element search the remaining elements on its right for the smallest value.
- 3 Swap smallest element with current element.

algorithm

Quicksort

Divide & Coriqu

Companing

- Iterate over sequence.
- For each element search the remaining elements on its right for the smallest value.
- 3 Swap smallest element with current element.

- Iterate over sequence.
- For each element search the remaining elements on its right for the smallest value.
- 3 Swap smallest element with current element.

Other algorithms

Quicksort

Divide & Coriqui

Comparing

Recap

- Iterate over sequence.
- For each element search the remaining elements on its right for the smallest value.
- 3 Swap smallest element with current element.

Other algorithm:

Divide & Conque

Camparina

Recar

Selection sort II

C A D B

i S
A C D B

- Iterate over sequence.
- For each element search the remaining elements on its right for the smallest value.
- 3 Swap smallest element with current element.

otner algorithm:

Divide & Conquer

Comparing

Docon

- 1 Iterate over sequence.
- For each element search the remaining elements on its right for the smallest value.
- 3 Swap smallest element with current element.

- Iterate over sequence.
- For each element search the remaining elements on its right for the smallest value.
- 3 Swap smallest element with current element.

- Iterate over sequence.
- For each element search the remaining elements on its right for the smallest value.
- 3 Swap smallest element with current element.

Bubblesort is $O(n^2)$. Selection sort is $O(n^2)$.

- Selection sort is generally faster than bubble.
 - But have same *O*() complexity.
 - WTF?
- O() notation describes how an algorithm will grow.
- Tricky for comparing relative performances.
- Selection sort typically does fewer comparisons and swaps than bubblesort.
 - Therefore faster.

Other algorithms

Many sorting algorithms

- Different trade-offs, performances. https://www.youtube.com/watch?v=ZZuD6iUe3Pc
- Some are just jokes.
- Bead
- 2 Bogo
- Bubble
- 4 Circle
- Cocktail
- 6 Comb
- 7 Counting
- 8 Cycle

- Gnome
- Heap
- Insert
- Merge
- Pancake
- Patience
- Permutation
- 16 Quick

- 17 Radix
- 18 Selection
- 19 Shell
- 20 Sleep
- 21 Stooge
- 22 Strand
- Tree

Bubblesort
Stable sort
In-place

Selection sor

algorithn

Quicksort
Divide & Conqu

Comparing

Recar

Neither bubble or selection sort are very good.

- Simple algorithms but slow.
- Not used in real life.

- Used in real life.
- Recursively breaks the sequence in half.
 - Divide & Conquer.

Quicksort

- Select a value from the sequence, this is the pivot.
- 2 Put all values < pivot in one group.
- 3 Put all values > pivot in another group.
- 4 Treat each group as a new sequence and repeat from step 1.

algorithm

Quicksort
Divide & Conque

Recap

- Select a value from the sequence, this is the pivot.
- Put all values < pivot in one group.</p>
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

algorithm

Quicksort
Divide & Conque

Comparing

Recap

- Select a value from the sequence, this is the pivot.
- 2 Put all values < pivot in one group.
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

algorithms Ouicksort

Divide & Conquer

- Select a value from the sequence, this is the pivot.
- Put all values < pivot in one group.</p>
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

algorithn

Quicksort
Divide & Conque

Comparing

- Select a value from the sequence, this is the pivot.
- Put all values < pivot in one group.</p>
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

algorithms Ouicksort

Divide & Conque

- Select a value from the sequence, this is the pivot.
- Put all values < pivot in one group.</p>
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

Quicksort

Divide & Conque

- Select a value from the sequence, this is the pivot.
- 2 Put all values < pivot in one group.
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

algorithm

Quicksort
Divide & Conque

Comparing

- 1 Select a value from the sequence, this is the pivot.
- 2 Put all values < pivot in one group.
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

Select a value from the sequence, this is the pivot.

- Put all values < pivot in one group.
- Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

Quicksort III

algorithms

Quicksort
Divide & Conque

Recan

- Select a value from the sequence, this is the pivot.
- 2 Put all values < pivot in one group.
- 3 Put all values > pivot in another group.
- ☐ Treat each group as a new sequence and repeat from step 1.

Quicksort
Divide & Conque

Pocan

- Select a value from the sequence, this is the pivot.
- Put all values < pivot in one group.</p>
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

Divide & Conque

- Select a value from the sequence, this is the pivot.
- Put all values < pivot in one group.</p>
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

Quicksort III

- Select a value from the sequence, this is the pivot.
- Put all values < pivot in one group.
- Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

Ouicksort

Divide & Conque

- Select a value from the sequence, this is the pivot.
- Put all values < pivot in one group.</p>
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

Quicksort III

- Select a value from the sequence, this is the pivot.
- Put all values < pivot in one group.
- Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

algorithn

Quicksort
Divide & Conque

Comparing

Recan

- 1 Select a value from the sequence, this is the pivot.
- Put all values < pivot in one group.</p>
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

algorithm

Quicksort
Divide & Conque

Posan

- Select a value from the sequence, this is the pivot.
- 2 Put all values < pivot in one group.
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

algorithm

Quicksort
Divide & Conque

Recan

- Select a value from the sequence, this is the pivot.
- 2 Put all values < pivot in one group.
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

Ouicksort

Divide & Conque

Comparing

- 1 Select a value from the sequence, this is the pivot.
- Put all values < pivot in one group.</p>
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

Divide & Conque

Possa

- Select a value from the sequence, this is the pivot.
- Put all values < pivot in one group.</p>
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

Quicksort

Divide & Conque

Recap

Select a value from the sequence, this is the pivot.

24

- Put all values < pivot in one group.</p>
- 3 Put all values > pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

43

58

85

95

85

68

algorithm: Quicksort

Divide & Conqu

Compani

кеса

Quicksort is...

- ...sometimes in-place.
 - Depends on implementation.
- ...sometimes stable.
 - Depends on implementation.

Some issues with the original algorithms (1959).

- Choosing the pivot.
 - First element.
 - Middle element.
 - Average of first, middle and last.
- Repeated elements.
 - Fat partition.

Bubblesort Stable sort

Selection sort

Other algorithms

Divide & Conque

Comparing

Recai

Quicksort is a divide and conquer algorithm.

- Too hard to sort the whole sequence?
- Divide the problem.
 - Still too hard?
 - Divide the problem.
 - Still too hard?
 - Divide the problem.
 - Etc, etc, etc.

Naturally suited for parallelism.

ntroduction Bubblesort

Selection sor

Other algorithms Quicksort

Comparing

Reca

Have seen there are many ways to sort.

- Best sorting algorithm depends on multiple factors.
- Good in one situation is bad in another.
- Stability? In place?
- What are you sorting?
 - Linked lists?
 - Sequential memory (arrays)?
- Where are you sorting?
 - RAM?
 - EEPROM? cheap to read, expensive to write.
- \blacksquare Size of n.
 - Insertion sort with small *n*.
- Consistent performance.
 - Selection sort.

Introduction

Bubblesort

Stable sort In-place

Selection sor

algorithm

Quicksort

C----

Companing

Recan

Many sorting algorithms.

Sorting

David Croft

Introduction

Bubbleso Stable sort

Selection sort

Other

Quicksort

Divide & Conqu

Comparing

Recap

The End

