Prof Mandeep Kaur

Consultation times:

• Monday: 11:30- 12:00

• Wednesday: 12:00- 13:00

Mandeep.kaur@wits.ac.za

Office: GateHouse- 508

Practical reports to be submitted in the box at ground floor of MCB in GateHouse on the due date or handed-over to your TA before leaving the lab, as announced.

Basic principles of drug discovery and development [electronic resource] / Benjamin E. Blass.


```
Author Blass, Benjamin, author.

Title Basic principles of drug discovery and development [electronic resource] / Benjamin E. Blass.

Shelf # RM 301.25 BLA

Imprint London, UK : Elsevier/AP, [2015]

©2015

Connect to
this title online. Multiple user license.

Copies

LOCATION SHELF NO STATUS

ONLINE (Bib) RM 301.25 BLA

ONLINE
```

1 copy being processed for Biophy Library.

```
Description 1 online resource

Note Online resource; title from PDF title page (EBSCO, viewed April 29, 2015).

Subject Drug development.

Drugs -- Design.

ISBN 9780124115255

012411525X
```


Basic Principles of Drug Discovery and Development

Author(s):

Benjamin Blass

ISBN: 978-0-12-411508-8

Add to Favorites

Copyright © 2015 Elsevier Inc. All rights reserved.

Table of Contents

Lecture and practical Schedule	Date
Lecture -1-2, Drug Discovery process, Methods and Principles	12 th September
Lecture- 3-4, Methods and Principles, How do drugs work	13 th
Methods and Principles and Introduction to practical 1	14 th
Practical -1	17 th
Lecture 5-6, How do drugs work	19 th
Lecture 7-8, How do drugs work	20 th
Lecture 9	21 st
Public holiday	24 th
Lecture 10-11, Cell culturing, Screening Assays	26 th
Lecture 12-13, Medicinal Chemistry	27 th
Lecture 14, Intro to practical-2	28 th
Practical -2	01st October
Lecture 14-16, Animal Models	03 rd
Lecture 17-18, Apoptosis	04 th
Lecture 19, Intro to practical 3	05 th
Practical -3	08 th
Revision	10 th
Test	11 th
Lecture 22- Drug Approvals and IP	12 th
Lecture 23- Drug toxicity, Pharmacogenetics and use of translational biomarkers	15 th
ADME	17 th
ADME	18th
ADME	19 th
Revision	22nd

Background of drug discovery and development

- Understand the broader concept of drug discovery and development.
- Explain different stages of drug development.
- Summarize methods and principles involved in the drug discovery process.
- Discuss the processes involved in target selection and hit identification.
- Compare properties of drug molecules to identify the clinical candidate.
- Explain different phases of clinical trials.
- Demonstrate knowledge of drug approval process.
- Use in silico example to demonstrate different phases of drug development.

Mechanisms of action of drugs

- Define the term 'druggable target'.
- Summarize known key drug targets (enzymes, GPCR, Ion channels, transporters) of drugs in the cell.
- Explain enzymatic mechanisms involved in drug action including substrate binding, enzyme catalysis etc.
- Show with diagrams how enzyme inhibitors work.
- Compare competitive and non-competitive inhibitors.
- Explain receptors and their functions.
- Explain structure of GPCRs and signalling pathways involved in their action.
- Summarize cAMP and IP₃ signaling pathways.
- Explain biology behind drug-receptor interactions
- Explain and compare agonists, antagonists with examples.
- Explain structure, function and gating mechanisms of Ion channels.
- List ways to modulate activity of ion channels.
- Define membrane transporter proteins.
- Differentiate between membrane transporter proteins and ion channels.
- Describe mechanisms involved in transporter inhibition by drugs.
- Explain therapeutic index.

Drug molecule screening methods including cell culturing

- Define bioassays and assay development.
- Differentiate between primary assays and secondary assays during drug screening process.
- Understand and differentiate between in vitro and in vivo screenings methods.
- Demonstrate understanding of biochemical and cell-based assays.
- Identify causes of assay variation.
- Explain high throughput screening methods.
- Underline importance of miniaturization and automation in drug screening.
- Comprehend mammalian cell culturing methods, instruments, and safety guidelines for performing cell-based assays in laboratory.
- Demonstrate knowledge of statistical parameters used during high throughput screening methods.
- Perform cell-based assays such as cell growth inhibition using trypan blue and cell death using apoptosis assay.
- Perform throughput assay in 96-well plate after treating cells with different concentrations of the test compounds.
- Perform statistical analysis to calculate percentage if viable cells after drug treatments, generate graphs based on data obtained.

Fate of a drug and Pharmacokinetics

- Outline the fate of drug in the body from intake till excretion.
- Differentiate between pharmacokinetics and pharmacodynamics.
- Explain ADME (Absorption, Distribution, metabolism and Excretion) processes.
- Explain with examples the physiological effects of ADME.
- List different enzyme involved in drug metabolism such as CYP450.
- Define terms related to drug such as clearance, volume of distribution, half-life and bioavailability.

Concepts involved in drug toxicity, Pharmacogenetics and use of translational biomarkers

- Define maximum tolerable dose of a compound.
- List types of toxicities (cardiac, liver, nervous system etc.) with examples.
- Explain why different individuals respond differently when given same drug.
- Define pharmacogenetics with example.
- Define the term 'Biomarker'.
- Demonstrate knowledge of use of biomarkers to advance drug development process.

Drug approval

- Demonstrate understanding of the drug approval process
- Understand intellectual property issues around drug development.

From The Lab To Your Medicine Cabinet:

A Pharmaceutical Drug's Journey

Drug Repurposing

	Novel Drug	Drug Repositioning	Drug Repurposing
Cost	>\$1 Billion	\$300 Million	\$ 250K
Time to Get to Market	13-15 Years	6.5 years	3 Years
Success Rate	1 in 10,000	4 in 10	3 in 10

The Drug Development Process

- The development process is difficult, time consuming, and expensive
- Project teams = key functional unit
 - Looking for individuals desiring team success

Discovery Pre-Clinical Clinical Post-Marketing

2-4 years 1-2 years 1-4 years

The Food and Drug Administration

Regulates
Pharmaceutical Market

Ensuring Human Safety & Efficacy Federal Food, Drug, and Cosmetic Act

Where do we start?

- Identify disease (metabolic diseases, inflammation, neuroscience) or indication (diabetes, rheumatoid arthritis, Alzheimer's) class
 - New Target Idea!

Formation of discovery project team

 <u>Biology</u> experts share knowledge of target and develop tools to further study

 <u>Chemistry</u> engages to identify lead chemical matter to interact with desired target (receptor, enzyme, etc.)

- ADME experts understand what body does to the drug
- <u>Toxicology</u> experts evaluate the safety
- Pharmaceutical Sciences Expertise in formulation & drug delivery

Target Identification

 As disease biology is more fully understood, new potential drug intervention points are identified (receptors, enzymes, ionchannels, circulating agonists, etc.)"

Target Validation

Clinical Proof of Concept (POC) = Right Target + Right Drug

- Evaluate target and confirm its role in the disease state
- Avoid research paths that lead to dead ends

Creation of New Drug Molecule

- Where do chemical starting points (leads) come from?
 - High Throughput screening
 - Competitor information
 - Literature
 - Academia
 - Computer-Assisted Drug Design (CADD)

Lead Optimization

- Chemically-related series that survive initial screening are then optimized to IMPROVE their safety and efficacy
- Structure-Activity Relationship (SAR) with chemical structure of a current drug

Candidate Selection Stage of Drug Discovery

Drug Substance Scale-Up

Chemical engineers and industrial chemists make enough drug to use up through early clinical studies

The Preclinical Stage

Pre-Clinical Testing

- Evaluate 1–3 best compounds
- Higher TI ratio = safer medication

Therapeutic Index (TI) =

Drug concentration associated with safety finding

Drug concentration associated with predicted human efficacy

IND Application

- FDA must approve prior to First-in-Human (FIH) clinical trial
- Contains:
 - Acute toxicity of drug substance in at least 2 species of animal
 - Short-term toxicity studies
 - Pharmacological profile of drug substance

IND Application

Sufficient data on safety & efficacy

Implication on human pharmacology

Protocols describing clinical studies in detail

Results from preclinical testing

Manufacture & analysis of chemical composition

Describe the qualification of personnel

Phases of Clinical Trials

- First-in-human (FIH) dosing to healthy volunteers
- Administration of single escalating doses of drug to a small number of subjects
- Short-term multiple doses
 (2 weeks)
- 10-15 volunteers
- Assess safety & PK

- First dosing to patients
- Fewer dosages studied than in Phase I
- First evaluation of efficacy
- Safety profile & PK monitored.
- 20-100 subjects studied
- Assess Proof-of-Concept

- Test effectiveness of drug for particular indication(s) in patients
- Common effects documented in larger population
- > 1,000 subjects
- Finalize prescribing label

- Post-marketing approval studies
- Additional information about effectiveness and safety
- 300-3000 volunteers

New Drug Application

Proposed labeling details for the product

Results on safety & efficacy of the drug

Results from clinical trials

Details on long-term studies and postmarketing surveillance

Method of manufacture of drug and quality control analysis

FDA Review of NDA

Pharmacology/Toxicology Review

Chemistry Review

Clinical Review

Statistician

Biopharmaceutical Review

Microbiological Review

- The FDA approval process may take 6-18 months.
 - FDA establishes the final label of new drug.
- Sponsor must file separately in every global region or country.

Where do YOU fit in?

- Chemists
 - Medicinal, Synthetic, Analytical, Computational
- Biochemists
- Biologists
- Pharmacologists
- Pharmaceutical Scientists
 - Formulation, Physical Pharmacy, Pharmacokinetics
- M.D.s, Pharmacists, Nurses
- Mathematicians

- Automation experts
- Toxicologists
- Report Writers
- Human Resources
- Business
- Managers
- Animal Experts
- Regulatory Experts
- Marketing
- Sales