Whats Hidden in a Randomly Weighted Neural Network? ¹

March 12, 2020

▶ Authors took a randomly initialized model.

- ► Authors took a randomly initialized model.
- ► Then they trained a binary mask for this model to extract a good subnetwork.

- Authors took a randomly initialized model.
- ▶ Then they trained a binary mask for this model to extract a good subnetwork.
- ▶ The performance of this subnetwork turned out to be very good.

- Authors took a randomly initialized model.
- Then they trained a binary mask for this model to extract a good subnetwork.
- ▶ The performance of this subnetwork turned out to be very good.

Figure: Since we have combinatorial number of subnetworks and modern models have millions of parameters we are likely to find a good one.

1. Initialize the model randomly

- 1. Initialize the model randomly
- 2. Associate a score s_{uv} with each synapse $u \rightarrow v$.

- 1. Initialize the model randomly
- 2. Associate a score s_{uv} with each synapse $u \rightarrow v$.
- 3. Use weights that have top k% scores for forward pass.

- 1. Initialize the model randomly
- 2. Associate a score s_{uv} with each synapse $u \rightarrow v$.
- 3. Use weights that have top k% scores for forward pass.
- 4. Use straight-through estimator (STE) to train the scores.

- 1. Initialize the model randomly
- 2. Associate a score s_{uv} with each synapse $u \rightarrow v$.
- 3. Use weights that have top k% scores for forward pass.
- 4. Use straight-through estimator (STE) to train the scores.

Normally, input at neuron v is computed as:

$$\mathcal{I}_{v} = \sum_{(u,v)\in\mathcal{E}} w_{uv} \mathcal{Z}_{u} \tag{1}$$

- 1. Initialize the model randomly
- 2. Associate a score s_{uv} with each synapse $u \rightarrow v$.
- 3. Use weights that have top k% scores for forward pass.
- 4. Use straight-through estimator (STE) to train the scores.

Normally, input at neuron v is computed as:

$$\mathcal{I}_{v} = \sum_{(u,v)\in\mathcal{E}} w_{uv} \mathcal{Z}_{u} \tag{1}$$

When we learn scores, we compute it as:

$$\mathcal{I}_{v} = \sum_{u \in \mathcal{V}^{(\ell-1)}} w_{uv} \mathcal{Z}_{u} h\left(s_{uv}\right), \qquad h(s_{uv}) = \begin{cases} 1, \text{if } s_{uv} \text{ is in top-k scores,} \\ 0, \text{otherwise} \end{cases}$$
(2)

- 1. Initialize the model randomly
- 2. Associate a score s_{uv} with each synapse $u \rightarrow v$.
- 3. Use weights that have top k% scores for forward pass.
- 4. Use straight-through estimator (STE) to train the scores.

Normally, input at neuron v is computed as:

$$\mathcal{I}_{v} = \sum_{(u,v)\in\mathcal{E}} w_{uv} \mathcal{Z}_{u} \tag{1}$$

When we learn scores, we compute it as:

$$\mathcal{I}_{v} = \sum_{u \in \mathcal{V}^{(\ell-1)}} w_{uv} \mathcal{Z}_{u} h(s_{uv}), \qquad h(s_{uv}) = \begin{cases} 1, \text{ if } s_{uv} \text{ is in top-k scores,} \\ 0, \text{ otherwise} \end{cases}$$
(2)

And we update it via STE:

$$\tilde{\mathbf{s}}_{uv} = \mathbf{s}_{uv} - \alpha \frac{\partial \mathcal{L}}{\partial \mathcal{I}_{v}} \mathbf{w}_{uv} \mathcal{Z}_{u} \tag{3}$$

▶ Imagine, we have a non-differentiable function $f(\theta)$

- ▶ Imagine, we have a non-differentiable function $f(\theta)$
 - ▶ for example, thresholding 5% of the highest values
- ▶ Imagine, we use it in the computation of some complex function $L(f(\theta), x)$.

- ▶ Imagine, we have a non-differentiable function $f(\theta)$
 - ▶ for example, thresholding 5% of the highest values
- ▶ Imagine, we use it in the computation of some complex function $L(f(\theta), x)$.
 - for example, classification loss on a batch x.

- ▶ Imagine, we have a non-differentiable function $f(\theta)$
 - ▶ for example, thresholding 5% of the highest values
- ▶ Imagine, we use it in the computation of some complex function $L(f(\theta), x)$.
 - for example, classification loss on a batch x.
- ▶ STE is a trick to compute the gradients w.r.t. to θ through f:

- ▶ Imagine, we have a non-differentiable function $f(\theta)$
 - ▶ for example, thresholding 5% of the highest values
- ▶ Imagine, we use it in the computation of some complex function $L(f(\theta), x)$.
 - for example, classification loss on a batch x.
- ▶ STE is a trick to compute the gradients w.r.t. to θ through f:
 - ▶ During forward pass, use $f(\theta)$ as is.

- ▶ Imagine, we have a non-differentiable function $f(\theta)$
 - ▶ for example, thresholding 5% of the highest values
- ▶ Imagine, we use it in the computation of some complex function $L(f(\theta), x)$.
 - for example, classification loss on a batch x.
- ▶ STE is a trick to compute the gradients w.r.t. to θ through f:
 - ▶ During forward pass, use $f(\theta)$ as is.
 - ▶ During backward pass, replace $f(\theta)$ with just θ !

- ▶ Imagine, we have a non-differentiable function $f(\theta)$
 - ▶ for example, thresholding 5% of the highest values
- ▶ Imagine, we use it in the computation of some complex function $L(f(\theta), x)$.
 - for example, classification loss on a batch x.
- ▶ STE is a trick to compute the gradients w.r.t. to θ through f:
 - ▶ During forward pass, use $f(\theta)$ as is.
 - ▶ During backward pass, replace $f(\theta)$ with just θ !
 - ▶ I.e. we compute the loss using the real value $f(\theta)$, but "remove" gradients from chain-rule multiplication that we cannot compute

- ▶ Imagine, we have a non-differentiable function $f(\theta)$
 - ▶ for example, thresholding 5% of the highest values
- ▶ Imagine, we use it in the computation of some complex function $L(f(\theta), x)$.
 - for example, classification loss on a batch x.
- ▶ STE is a trick to compute the gradients w.r.t. to θ through f:
 - ▶ During forward pass, use $f(\theta)$ as is.
 - ▶ During backward pass, replace $f(\theta)$ with just θ !
 - ▶ I.e. we compute the loss using the real value $f(\theta)$, but "remove" gradients from chain-rule multiplication that we cannot compute
 - ▶ Imagine that $L(f(\theta), x) = a(f(\theta(s)), x)$, then:

$$\partial_{\theta} L = \frac{\partial L}{\partial a} \frac{\partial a}{\partial f} \frac{\partial f}{\partial \theta} \frac{\partial \theta}{\partial s} \approx \frac{\partial L}{\partial a} \frac{\partial a}{\partial f} \frac{\partial \theta}{\partial s}$$

- ▶ Imagine, we have a non-differentiable function $f(\theta)$
 - ▶ for example, thresholding 5% of the highest values
- ▶ Imagine, we use it in the computation of some complex function $L(f(\theta), x)$.
 - for example, classification loss on a batch x.
- ▶ STE is a trick to compute the gradients w.r.t. to θ through f:
 - ▶ During forward pass, use $f(\theta)$ as is.
 - ▶ During backward pass, replace $f(\theta)$ with just θ !
 - ▶ I.e. we compute the loss using the real value $f(\theta)$, but "remove" gradients from chain-rule multiplication that we cannot compute
 - ▶ Imagine that $L(f(\theta), x) = a(f(\theta(s)), x)$, then:

$$\partial_{\theta} L = \frac{\partial L}{\partial a} \frac{\partial a}{\partial f} \frac{\partial f}{\partial \theta} \frac{\partial \theta}{\partial s} \approx \frac{\partial L}{\partial a} \frac{\partial a}{\partial f} \frac{\partial \theta}{\partial s}$$

The best explanation of STE:

Authors tried two different initializations:

Authors tried two different initializations:

▶ Kaiming Normal (for ReLU it is $\mathcal{D}_{\ell} = \mathcal{N}(0, \sqrt{2/n_{\ell-1}})$)

Authors tried two different initializations:

- ▶ Kaiming Normal (for ReLU it is $\mathcal{D}_{\ell} = \mathcal{N}(0, \sqrt{2/n_{\ell-1}})$)
- \blacktriangleright Signed Constant: set each weight to $\sigma,$ then randomly choose its +/- sign

Method	Model	Initialization	% of Weights	# of Parameters	Accuracy
Learned Dense Weights (SGD)	ResNet-34 [8]	-	-	21.8M	73.3%
	ResNet-50 [8]	-	-	25M	76.1%
	Wide ResNet-50 [28]	-	-	69M	78.1%
edge-popup	ResNet-50	Kaiming Normal	30%	7.6M	61.71%
	ResNet-101	Kaiming Normal	30%	13M	66.15%
	Wide ResNet-50	Kaiming Normal	30%	20.6M	67.95%
edge-popup	ResNet-50	Signed Constant	30%	7.6M	68.6%
	ResNet-101	Signed Constant	30%	13M	72.3%
	Wide ResNet-50	Signed Constant	30%	20.6M	73.3%

Figure: ImageNet results (with k = 30%)

Varying % of remaining weights

Figure: Varying % of remaining weights for AlexNet for CIFAR-10. Maximum in the middle since $\binom{n}{k}$ is maximized at $k \approx n/2$

Varying width of a specific layer

Figure: Varying width of a layer for AlexNet for CIFAR-10

► Random weights with a good connectivity pattern work as good as trained weights.

- Random weights with a good connectivity pattern work as good as trained weights.
- Signed Constant init works better than Kaiming Normal init, which means that precise weights values are not important. We just need magnitudes and a connectivity pattern.

- Random weights with a good connectivity pattern work as good as trained weights.
- Signed Constant init works better than Kaiming Normal init, which means that precise weights values are not important. We just need magnitudes and a connectivity pattern.
- ► HAT-algorithm for CL is not "fair"?