## IST 782 Portfolio Milestone

M.S. Applied Data Science Syracuse University

## **Table of Contents**

- I. Introduction
  - i. Introduce myself
  - ii. Why data science
- II. Project 1: Health and fitness database
  - i. Project introduction
  - ii. Database development
  - iii. Progress dashboard
- III. Project 2: Machine learning with song data
  - i. Part I: predicting song popularity
    - a. Data collection
    - b. Exploratory data analysis
    - c. Data modeling
  - ii. Part II: creating song clusters
    - a. Data collection
    - b. Exploratory data analysis
    - c. Data modeling
- IV. Project 3: Cryptocurrency price prediction
  - i. Data collection
  - ii. Exploratory data analysis
- V. Conclusion
  - i. Reflection
  - ii. Gallery

# I. Introduction

## Introduce Myself

#### Educational background

- B.B.A. in Operations and Supply Chain Management
- University of Wisconsin Whitewater, December 2017

#### Work experience

| Position              | Company         | Location      | Time                |
|-----------------------|-----------------|---------------|---------------------|
| Solution Consultant   | Smith & Nephew  | Remote        | Aug 2021 - Present  |
| Global Demand Planner | Smith & Nephew  | Remote        | Nov 2020 – Aug 2021 |
| Supply Chain Planner  | Schreiber Foods | Green Bay, WI | Nov 2019 – Nov 2020 |
| Global Demand Planner | Smith & Nephew  | Austin, TX    | Apr 2018 – Nov 2019 |
| Supply Chain Intern   | Mahindra USA    | Houston, TX   | May 2017 – Aug 2017 |

#### Professional accomplishments

- 4x dean's list academic excellence award
- Co-treasurer and board member of campus APICS club
- 2nd place CSCMP supply chain case study competition
- APICS certified in production and inventory management (CPIM)
- Microsoft Excel Expert certification
- Amazon Warehouse Services (AWS) certified cloud practitioner
- Rapid Response certified contributor level 1
- Rapid Response certified author level 1



#### Skills

- F
- SQL
- Python
- Data Visualization
- Machine Learning
- Data Science
- Microsoft Excel
- Tableau
- Critical Thinking
- Team Leadership
- Public Speaking
- Analytic Problem Solving
- Alteryx
- Statistical Forecasting
- Supply Chain Analytics
- Amazon Web Services (AWS)
- Web Scraping

## Why Data Science

#### The supply chain industry needs data scientists

- Statistical forecasting
- Inventory optimization
- Complex supply networks
- Manufacturing automation
- Risk management
- Real time data processing
- Predictive analytics

#### Data science is a growing field

- Per LinkedIn, there has been a 650% increase in data science jobs since 2012
- IBM says the demand for data scientists will continue to be strong for years
- The U.S. Bureau of Labor Statistics expects 11.5 Mil new data science jobs through 2026
- In 2020, data scientist was listed as the third best job in America according to Glassdoor

#### Flextronics Pulse Center, Silicon Valley



# II. Project 1 Health and fitness database

## **Project Introduction**

Goal: create a database for storing fitness related data such as exercise history and nutrition logs and use it to enhance the client experience



## **Database Development**

**CLIENT:**A personal training client who is taking part in a weightlifting program and is using or did use the database for keeping track of their progression.

**MEASUREMENT:** a measurement taken by a client at a particular point in time

**MUSCLE GROUP:** a body part that is affected by lifting and can be measured

LIFT: a movement performed in a gym during a workout, that typically includes resistance, and impacts one or more muscle groups.

**SET:** a collection of repetitions

**WORKOUT:** a collection of sets

**GYM:** a facility that has the necessary equipment that can be used by a client to perform lifts

**NUTRITION LOG:** a diary that contains records of food or beverage items that are consumed

**FOOD ITEM:** an article of food or beverage that has calories and that is entered into the nutrition log

#### **Entity Relation Diagram**



## **Progress Dashboard**



Starting Weight as of: 10/5/2020 167.9 Current Weight as of: 12/7/2020 177.0

#### Week over Week Change Date Taken On Recorded Value % Difference 167.9 10/5/2020 10/12/2020 166.4 -0.9% 10/19/2020 2.2% 170.0 10/26/2020 169.0 -0.6% 11/2/2020 167.7 -0.8% 11/9/2020 172.1 2.6% 11/16/2020 178.5 3.7% 11/23/2020 173.2 -3.0% 11/30/2020 180.7 4.3% 12/7/2020 177.0 -2.0%





# III. Project 2

Machine Learning with Song Data

## Part 1: Predicting Song Popularity

Goal: predict the popularity of songs based on audio features and other meta data

#### Real world application

- Data science is used in developing songs
- How do record labels produce hit song after hit song?
- They have figured out the "formula"

#### Questions to answer

- How have popular songs change overtime?
- Are there certain attributes that correlate with popular songs?
- Can the popularity of a song be predicted based on its attributes?



## **Data Collection**

Original dataset from Kaggle and then collected additional metadata through web scraping Wikipedia



## **Exploratory Data Analysis**

Song Decade







## **Data Modeling**

Type of problem: supervised regression



## Part 2: Creating Song Clusters

Goal: create clusters of songs based on their attributes

#### Real world application

- Music streaming services use machine learning to make recommendations
- Auto generating playlists
- Discovering new music

#### Questions to answer

- Is it possible to create song clusters based on their attributes?
- How do the clusters compare to genres?



## **Data Collection**

#### Sample random song from Spotify API

- Over 12,000 "pseudo" random songs via Spotify API
- There is no true random method for doing this
- Songs dating back from 1970 to present

#### Get audio features from Spotify API

Same audio features from part 1

#### Get the link to the song on Genius

- Find the correct link by web scraping a google search
- Conduct search for [Song Name] + "Genius.com"
- If there is one it appears in the top results

#### Get the lyrics for the song from Genius

- Web scrape the HTML code for the genius page
- Parse it to extract the text of the song lyrics





## **Exploratory Data Analysis**



-10

#### LDA Topic Modeling Results



## **Data Modeling**

Type of problem: unsupervised clustering

How the song sounds (audio features)





# IV. Project 3 Cryptocurrency Price Prediction

### **Data Collection**

#### Asset table

- Collected by web scraping Coinbase asset directory page
- This page has a list of all tradeable cryptocurrencies on Coinbase
- Currently about 165 cryptocurrencies that can be traded

#### Price table

- Collected through the yfinance Python package
- Historical price and volume data by day for all data available on Yahoo Finance

#### CoinMarket table

- Collected through the CoinMarketCap API
- Daily snapshots of circulating supply, max supply, and coin market cap rank
- Cannot get historical data can only take the daily snapshots

#### Youtube table

- Collected through Google Cloud / Youtube API
- Retrieve a count of published Youtube videos for crypto slugs by day
- Capped at 1000 per day (100 for 10 API keys), but can get historical data
- · Starting from the top down and building the history up overtime

#### Twitter table

- Collected through Twitter API
- Retrieve a count of Tweets that contain hashtag of the ticker by day
- Cannot get historical data without elevated access. Snapshot taken every day

#### Stocks table

- Collected through yfinance Python package
- Historical closing prices for all data available on Yahoo Finance

#### Google table

- Collected through pytrends python package
- Retrieve data from Google Trends about cryptocurrency searches by day
- Might need to use some extrapolation methods due to data availability

















#### **Database diagram**



## **Exploratory Data Analysis**







# V. Conclusion

### Reflection

#### Project I

#### Flexibility as a point of emphasis

- Once the database is developed it can be difficult to make changes
- But changes are bound to happen, so flexibility is important
- Discuss with stakeholders, put yourself in their shoes

#### Project II Part 1

#### Importance of data quality

- There is only so much that can be done to remedy bad data
- If the data that goes into a model is bad the data that comes out is also likely bad
- If the data scientist is involved in data collection, make sure its done right!

#### Project II Part 2

#### Dealing with ambiguity

- · Ambiguity is a reoccurring theme in data science, especially with text data
- Crowdsourcing is a good way to approach ambiguity
- Do not expect out of the box solutions to be enough, configure for the task at hand

## **Gallery**

A collection of other data visualizations I have created for assignments, labs, or projects outside of the 3 projects discussed in this presentation



## **End Presentation**