Recitation 11

Alex Dong

CDS, NYU

Fall 2020

Questions: Unconstrained Optimization

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice differentiable. Let $x, h \in \mathbb{R}^n$. True or False.

- 1. If f is convex, then $f(x+h) > f(x) + \langle \nabla f(x), h \rangle$.
- 2. If f is strictly convex, then $f(x+h) > f(x) + \langle \nabla f(x), h \rangle$.
- 3. If f is strongly convex, then $f(x+h) > f(x) + \langle \nabla f(x), h \rangle$.
- 4. If f is convex, then f cannot have saddle points.
- 5. If $\nabla f(x) = 0$, then x is a local minimum of f.
- 6. If $\nabla f(x) = 0$ and $H_f(x) \succeq 0$, then x is a local minimum of f.
- 7. If $\nabla f(x) = 0$ and $H_f(x) > 0$, then x is a local minimum of f.
- 8. If $\nabla f(x) = 0$ and f is convex, then x is a local minimum of f.

Solutions: Unconstrained Optimization

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice differentiable. Let $x, h \in \mathbb{R}^n$. True or False.

Solution

- 1. If f is convex, then $f(x+h) > f(x) + \langle \nabla f(x), h \rangle$. False, consider $f(x) = \langle x, w \rangle$ for some $w \in \mathbb{R}^n$.
- 2. If f is strictly convex, then $f(x+h) > f(x) + \langle \nabla f(x), h \rangle$. True. (From Lec 9)
- 3. If f is strongly convex, then $f(x+h) > f(x) + \langle \nabla f(x), h \rangle$. True, because strongly convex implies strictly convex
- 4. If f is convex, then f cannot have saddle points.

 True. If f had a saddle point, we could draw a chord below f on the "negative" side of the saddle.

Solutions: Unconstrained Optimization

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice differentiable. Let $x, h \in \mathbb{R}^n$. True or False.

Solution

- 5. If $\nabla f(x) = 0$, then x is a local minimum of f. False! Consider $f(x) = -x^2$.
- 6. If $\nabla f(x) = 0$ and $H_f(x) \succeq 0$, then x is a local minimum of f. False, consider $f(x) = -x^4$.
- 7. If $\nabla f(x) = 0$ and $H_f(x) \succ 0$, then x is a local minimum of f. True, this is exactly the condition we need for local minimums!
- 8. If $\nabla f(x) = 0$ and f is convex, then x is a local minimum of f. True, f being convex implies the Hessian is PSD everywhere.

Questions: Constrained Optimization

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice differentiable. Let $g(x) \leq 0$, and h(x) = 0 be two constraints. Let $x \in \mathbb{R}^n$ be in the feasible set.

True or False.

- 1. If f, g, h are convex, and $\nabla f(x) = 0$, then x is a local minimum.
- 2. If f, g, h are convex, and $\nabla f(x) = 0$, then x is a global minimum.
- 3. If x is a local minimum in the feasible set, then $\nabla f(x) = 0$.
- 4. (Ignoring h) If x is a local minimum in the feasible set, and g(x) < 0, then $\nabla f(x) = 0$.

Solutions: Constrained Optimization

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice differentiable. Let $g(x) \leq 0$, and h(x) = 0 be two constraints. Let $x \in \mathbb{R}^n$ be in the feasible set. True or False.

Solution

- 1. If f, g, h are convex, and $\nabla f(x) = 0$, then x is a local minimum. True! Since x is in the feasible set and $\nabla f(x) = 0$, and f is convex, then x is a local minimum.
- 2. If f, g, h are convex, and $\nabla f(x) = 0$, then x is a global minimum. True! Local minimums are global minimums since f is convex.
- 3. If x is a local minimum in the feasible set, then $\nabla f(x) = 0$. False, we could be limited by a constraint. Consider $f(x) = x^2$, $0 \ge g(x) = x + 1$.
- 4. (Ignoring h) If x is a local minimum in the feasible set, and g(x) < 0, then $\nabla f(x) = 0$.

 True! Since our constraint is not active, the lagrange multiplier

is 0.

Question : Constrained Optimization

Let
$$f(x,y) = x^2 - 10y$$
. Let $h(x,y) = x^2 + y^2 = 36$

1. Find the minimum of f constrained by h(x, y) = 0.

Solution: Constrained Optimization

Let
$$f(x,y) = x^2 - 10x + y^2 - 4y$$
. Let $h(x,y) = x^2 + y^2 = 26$

Solution

Since h is an active constraint, we can solve this by considering the following system of equations.

$$\nabla f(x,y) + \lambda \nabla g(x,y) = 0$$
 and $h(x,y) = 0$.

Now,
$$\nabla f(x,y) = \begin{bmatrix} 2x - 10 \\ 2y - 4 \end{bmatrix}$$
, $\nabla h(x,y) = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$.

This gives us a system of three equations and three unknowns.

$$2x - 10 + \lambda 2x = 0$$

$$2y - 2 + \lambda 2y = 0$$

$$x^2 + y^2 = 26$$

Solving this system of equations gives two combinations of (λ, x, y) $(\lambda, x, y) = (0, 5, 1)$, and $(\lambda, x, y) = (-2, -5, -1)$.

Note:
$$\nabla^2 f(x,y) = H_f(x,y) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
, so both points are local minima.

$$f(5,1) = -28, f(-5,-1) = 79$$