Barem

Examen / nr. 1 – Matematică – semian A

(2019-2020 / 20.01.2020)

Subjectul 1
a) Abordarea subiectului
$\frac{\partial f}{\partial x} = 2x + 2e^{2x} \left(y^2 + (z-1)^2\right) \dots 3$
$\frac{\partial f}{\partial y} = 2e^{2x}y \dots 3$ $\frac{\partial f}{\partial z} = 2e^{2x}(z-1) \dots 3$
b) $\frac{\partial^2 f}{\partial x^2} = 2 + 4e^{2x}(y^2 + (z - 1)^2)$, $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 4e^{2x}y$, $\frac{\partial^2 f}{\partial x \partial z} = \frac{\partial^2 f}{\partial z \partial x} = 4e^{2x}(z - 1)$
$\frac{\partial^2 f}{\partial y^2} = 2e^{2x}, \frac{\partial^2 f}{\partial y \partial z} = \frac{\partial^2 f}{\partial z \partial y} = 0, \frac{\partial^2 f}{\partial z^2} = 2e^{2x} \dots 3$
$\frac{\partial^2 f}{\partial y^2} = 2e^{2x}, \frac{\partial^2 f}{\partial y \partial z} = \frac{\partial^2 f}{\partial z \partial y} = 0, \frac{\partial^2 f}{\partial z^2} = 2e^{2x}.$ c) Rezolvarea sistemului $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} = 0$: $(x, y, z) = (0, 0, 1)$.
$\begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$
d) Determinarea Hessianului în punctul critic: $H_f(0,0,1) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
$H_{\!f}(0,0,1)$ pozitiv definită
Concluzie: (0, 0, 1) punct de minim local
Subiectul 2
a) Abordarea subiectului
$\frac{\partial f}{\partial x}(0,0) = f(x,0)' _{x=0} = 1.$
$\frac{\partial f}{\partial y}(0,0) = f(0,y)' _{y=0} = 0$
b) Calculul derivatei direcționale $\lim_{t \to 0} \frac{f(tu, tv)}{t} = \begin{cases} \lim_{t \to 0} \frac{(tu)^3}{t[(tu)^2 + (tv)^4]} = \lim_{t \to 0} \frac{u^3}{u^2 + t^2v^4} = u, & (u, v) \neq (0, 0); \\ 0, & (u, v) = (0, 0). \end{cases}$
c) Diferențiala Gâteaux în $(0,0)$ a lui f este funcția $\mathrm{D}f(0,0)$, cu $\mathrm{D}f(0,0)(u,v)$ = u
Aceasta este liniară, deci f este derivabilă Gâteaux în $(0,0)$
Subjectul 3
a) Abordarea subiectului
$\iint_{D} \frac{y}{x^{2}+y^{2}} dx dy = \int_{0}^{1} \left(\int_{-x}^{x^{2}} \frac{y}{x^{2}+y^{2}} dy \right) dx = \int_{0}^{1} \left(\frac{1}{2} \ln(x^{2}+y^{2}) \Big _{y=-x}^{y=x^{2}} \right) dx = \frac{1}{2} \int_{0}^{1} \left(\ln(x^{2}+x^{4}) - \ln(2x^{2}) \right) dx $ (*)
$= \frac{1}{2} \int_0^1 \left(\ln(1+x^2) - \ln 2 \right) dx = \frac{1}{2} \int_0^1 \left(x' \ln(1+x^2) \right) dx - \frac{\ln 2}{2} = \frac{1}{2} x \ln(1+x^2) \Big _0^1 - \frac{1}{2} \int_0^1 \frac{2x^2}{1+x^2} dx - \frac{\ln 2}{2} = \int_0^1 \left(\frac{1}{1+x^2} - 1 \right) dx = $ $= \arctan \left(x \right) \Big _0^1 - 1 = \frac{\pi}{4} - 1 \dots \dots$
Observație: Integrala din enunț este improprie, dar calculul de mai sus este transcrierea mai puțin riguroasă a calcului integralei atunci când înlocuim
0 cu $\varepsilon > 0$, iar apoi luăm $\varepsilon \to 0$. De altfel, funcția din integrala (*), deși nu este definită în 0, este mărginită, având de a face chiar cu o integrală Riemann.
b) Identificarea punctelor în care funcția nu este definită: $x=0$ și $x=1$
Aplicarea criteriului în α în $x=0$: $\ell=\lim_{x\searrow 0}\frac{\ln(1+x^2)}{x^p\sqrt{1-x}}x^\alpha=\lim_{x\searrow 0}\frac{\ln(1+x^2)}{x^2\sqrt{1-x}}x^{\alpha-p+2}=\lim_{x\searrow 0}x^{\alpha-p+2}\dots$ 3
Dacă luăm $\alpha = p - 2$, obținem $\ell = 1 \in (0, +\infty)$, deci $\int_0^{1/2} \frac{\ln(1+x^2)}{x^p \sqrt{1-x}} dx$ este convergentă dacă și numai dacă $p - 2 < 1$, adică
p < 3
p < 3
Dacă luăm $\alpha = \frac{1}{2}$, obținem $\ell = \ln 2 \in (0, +\infty)$, deci $\int_{1/2}^{1} \frac{\ln(1+x^2)}{x^2 \sqrt{1-x}} dx$ este convergentă, căci $\alpha < 1$
Concluzie: integrala este convergentă dacă și numai dacă $p < 3$
Puncte din oficiu:
Precizări: 1) Pantru orice coluție corectă chier diforită de con din barom ce coordă puncței corecnunzător.

- 1) Pentru orice soluție corectă, chiar diferită de cea din barem, se acordă punctaj corespunzător;
- 2) nota finală este 1/10 din punctajul total.