Extending Smoothed Particle Hydrodynamics Demonstration for HPC Education

Todd Hetrick UNC Charlotte Dr. Tyler Allen, College of Computing and Informatics

Introduction

Background

- TinyTitan is a 2D Smoothed Particle Hydrodynamics HPC Demonstration program originally developed at Oak Ridge Labs
- OpenMPI is used to run the SPH simulation in a distributed environment on a cluster of NVIDIA Jetson Nano embedded computer.

Intention

- A program that can give a visual connection to HPC concepts.
- Dynamic inputs will allow an interactive environment to further understanding of key HPC concepts

Goals

Add Dynamic particle count

- Add the ability to change the particle count while the simulation is running
- Real-time changes will demonstrate dynamic loading and work distribution.
- Does changing the particle count have a balanced impact on node performance?

Improve Foundation.

 Update foundational elements of the code in a way that facilitates future improvements and increases the flexibility of the code base.

Improve Understanding.

 Research and document the flow of particles throughout the SPH compute nodes.

Process

Add Dynamic Particles

- Modify GUI to allow the user to increase and decrease the number of particles currently in the simulation with keyboard inputs
- Add code to allow these dynamic requests to be communicated to the compute nodes
- Add code to the simulation nodes that increases and decreases the particle count.

Memory management

- Address consequences of adding particles to memory structures that were not intended to be dynamic.
- Verify that adding particles does not interfere with halo particles and neighboring calculations.
- Rewrite out of bounds transfer code to eliminate complexity and make particle memory accounting easier.

Testing and verification.

- Observe impact of dynamic particles on simulation FPS.
- Verify particles are redistributing throughout nodes and producing expected results.

particle lifecycle while crossing node boundaries

Challenges

Code Cleanup:

• Several incorrectly initialized variables created a series of cascading errors.

Rogue Particles

• Early attempts to add particles resulted in "rogue particles" that did not behave in the simulation correctly.

Particle transfer complexity

 Out Of Bounds transfers were made using custom MPI type, hiding important particle indexes.

particle memory accounting

Results

Dynamic Visualization

- Particles can be added or removed while the simulation is running.
- Users can see first hand the results on performance when adding particles as the FPS count changes under load

Improved Code

• A simplification of the out of bounds transfer process was implemented.

Conclusions

Dynamic particle loading.

 The ability to change the particle count during runtime opens up a wide array of testing and learning opportunities for HPC education.

Future.

 Other parameters within the simulation may bring additional educational benefit if they are made dynamic.