11. Возведение множества в степень. Возведение множества в степень другого множества. Булеан. Свойства возведения множества в степень: $A^B \times A^C \cong A^{B \cup C}$ (для непересекающихся B и C); $A^C \times B^C \cong$ $(A \times B)^C$: $(A^B)^C \cong A^{B \times C}$ (для произвольных A, B, C).

Определение: Декартовой степенью A^n множества A называется множество кортежей длины n из элементов A.

Определение: Пусть A и B — два множества. Тогда множеством B^A называется множество всех отображений из A в B

Смысл определения: Если множество A состоит из n элементов, а множество B — из k элементов, то существует всего k^n различных отображений из A в B: действительно, есть по k вариантов значения для

Определение: $\mathit{Булеаном}$ множества A называется множество всех подмножеств множества A . Обозначение: $\mathcal{P}(A)$ или 2^A .

Свойства возведения множества в степень:

- 1. $A^B \times A^C \cong A^{B \cup C}$ (для непересекающихся B и C)
 - ▲ Неформально это утверждение означает, что определить функцию на несвязном объединении двух множеств это то же самое, что определить её на каждом из этих множеств по отдельности. Метафорически элемент $A^{B\cup C}$ есть набор контейнеров, помеченных элементами B или C. А $A^B\times A^C$ — это два набора контейнеров, в первом они помечены элементами B, а во втором — элементами C. Таким образом, достаточно один набор разбить на два.

Формально множество с левой стороны имеет вид $\{(f,g) \mid f: B \to A; g: C \to A\}$, а с правой - $\{h \mid h : B \cup C \to A\}$. Рассмотрим такое соответствие между этими множествами: $h \longmapsto (h|_B, h|_C)$. Его инъективность очевидна. Оно также является сюръективным так как $\forall (f,g) \in A^B \times A^C \quad \exists h \in A^{B \cup C}: h(x) = \left\{ \begin{array}{l} f(x), \text{ если } x \in B \\ g(x), \text{ если } x \in C \end{array} \right.$. Таким образом равномощность доказана.

$$h(x) = \left\{ egin{array}{ll} f(x), & \mbox{если } x \in B \\ g(x), & \mbox{если } x \in C \end{array}
ight.$$
 . Таким образом равномощность доказана. \blacksquare

- 2. $A^C \times B^C \cong (A \times B)^C$
 - ▲ Неформально утверждение означает, что пара функций это то же самое, что одна функция, принимающая значение среди пар. Это легко объяснить при помощи метафоры с контейнерами. Пара функций — это два набора контейнеров, индексированных элементами C. В каждом контейнере из первого набора лежит элемент A, а в каждом контейнере из второго набора — элемент B. Если переложить все элементы из контейнеров второго набора в соответствующие контейнеры из первого набора, то получится набор контейнеров с парами элементов A и B.

Формально пусть $F \in (A \times B)^C$. Это значит, что $F: C \to A \times B$. То есть каждому элементу $c \in C$ сопоставлена некоторая пара $(a,b) \in A \times B$. Вместо этого ему можно сопоставить отдельно элементы $a \in A$ и $b \in B$. Получится два отображения, первое отображает c в a, а второе -c в b, то есть пара отображений $(F_1, F_2) \in A^C \times B^C$. Можно сказать, что $F_i = pr_i \circ F$, где pr_i — проектор на i-ю координату: $pr_i(a_1, a_2) = a_i$. Легко понять, что разные F переводятся в разные пары (F_1, F_2) , и каждая пара получается из некоторой функции. Таким образом, эквивалентность установлена.

- 3. $(A^B)^C \cong A^{B \times C}$ (для произвольных A, B, C)
 - ▲ Третья эквивалентность означает, что функция двух аргументов есть то же самое, что отображение первого аргумента в функцию, зависящую от второго аргумента. Метафорически есть набор контейнеров, помеченных элементами C, в каждом из которых лежат контейнеры, помеченные элементами B, а уже в каждом из маленьких контейнеров лежит элемент A. Если убрать внешние контейнеры, но при этом перенести с них метки на внутренние, то получится набор контейнеров, помеченных элементами $B \times C$, что и требовалось.

Формально пусть $F \in (A^B)^C$, $F: C \to A^B$, то есть каждому элементу $c \in C$ сопосотавляется некоторая функция $G: B \to A$. Пусть $H \in A^{B \times C}$, $H: B \times C \to A$. Рассмотрим такое соответствие между этими множествами: $(F(x))(y) \longmapsto H(x,y)$. Нетрудно понять, что данное соответствие - это биекция