STSCI 5080 Homework 3

- Due is 10/11 (Th) in class.
- Write your name and NetID at the top of the first page, along with the assignment number.
- Use only the one side of the paper. Attach your pages with a staple at the top left corner.
- There are five problems. Each problem is worth 10 points.

Problems

- 1. Let X and Y be independent and continuous random variables with pdfs f_X and f_Y , respectively.
 - (a) Verify that the pdf of Z = -Y is $f_Z(z) = f_Y(-z)$. (Hint). Compute the cdf of Z and then differentiate it.
 - (b) Derive the pdf of W = X Y using the pdfs of X and Y. (Hint). The convolution formula.
 - (c) If $X, Y \sim Ex(1)$ i.i.d., then verify that the pdf of W = X Y is

$$f_W(w) = \frac{1}{2}e^{-|w|}, -\infty < w < \infty.$$

This is called the *Laplace* density or double exponential density.

- 2. Let X_1, \ldots, X_n be independent and continuous random variables with common pdf f.
 - (a) Using Rice 3.8.72, derive the joint pdf of $(X_{(1)}, X_{(n)})$.
 - (b) Find the joint pdf of $(X_{(1)}, X_{(n)})$ if the common distribution is the uniform distribution on [0, 1].
 - (c) Suppose that the common distribution of X_1, \ldots, X_n is the uniform distribution on [0,1]. In addition, let U be a uniform random variable on [0,1] independent of $(X_{(1)}, X_{(n)})$ (in the sense that the joint pdf is $f_{U,X_{(1)},X_{(n)}}(u,x,y) = f_U(u)f_{X_{(1)},X_{(n)}}(x,y)$ where f_U is the marginal pdf of U and $f_{X_{(1)},X_{(n)}}$ is the joint pdf of $(X_{(1)},X_{(n)})$). Then compute $P(X_{(1)} < U < X_{(n)})$.
- 3. Find the mean and variance of the Laplace density given in Problem 1 (c).
- 4. Let X be a random variable, and let g,h be non-decreasing functions on \mathbb{R} (a function g on \mathbb{R} is non-decreasing if whenever x < y, we have $g(x) \le g(y)$). Suppose that $E\{|g(X)|\} < \infty$, $E\{|h(X)|\} < \infty$, and $E\{|g(X)h(X)|\} < \infty$. Show that

$$E\{g(X)h(X)\} \ge E\{g(X)\}E\{h(X)\}.$$

This is called *Chebyshev's association inequality*.

(Hint). Let Y be a random variable independent of X and has the same pmf/pdf as X; consider the sign of

$${g(X) - g(Y)}{h(X) - h(Y)}.$$

- 5. Let (X,Y) be a uniform random vector on the disk $A = \{(x,y) \mid x^2 + y^2 \le 1\}$.
 - (a) Show that X and Y are not independent.
 - (b) Show that Cov(X, Y) = 0.