VIT UNIVERSITY, ANDHRA PRADESH School of CSE

CSE3008 - Introduction to Machine Learning Lab Experiment-5

(Random Forest - Classification Algorithms)
Faculty-Dr. B. SRINIVASA RAO

Name-Neeraj Guntuku R.No-18MIS7071 Slot-L55+L56

Date-27 February 2021

- Random Forest for Classification

Import Libraries

[1] import numpy as np import matplotlib.pyplot as plt import pandas as pd

Importing Dataset

```
[2] dataset = pd.read_csv("bill_authentication.csv")
```

[3] dataset.head()

	Variance	Skewness	Curtosis	Entropy	Class
0	3.62160	8.6661	-2.8073	-0.44699	0
1	4.54590	8.1674	-2.4586	-1.46210	0
2	3.86600	-2.6383	1.9242	0.10645	0
3	3.45660	9.5228	-4.0112	-3.59440	0
4	0.32924	-4.4552	4.5718	-0.98880	0

Preparing Data For Training

```
[4] X = dataset.iloc[:, 0:4].values
y = dataset.iloc[:, 4].values
```

[5] from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

Feature Scaling

```
[6] # Feature Scaling
    from sklearn.preprocessing import StandardScaler

sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
```

X_test = sc.transform(X_test)

```
Training the Algorithm

[7] from sklearn.ensemble import RandomForestClassifier
    classifier = RandomForestClassifier(n_estimators = 50)
    classifier.fit(X_train, y_train)
    y_pred = classifier.predict(X_test)
```

```
Evaluating the Algorithm
```

```
[8] from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
    result = confusion_matrix(y_test, y_pred)
    print("Confusion Matrix:")
    print(result)

Confusion Matrix:
    [[155     2]
        [ 2 116]]
```

```
[9] result1 = classification_report(y_test, y_pred)
    print("Classification Report:",)
    print (result1)
    Classification Report:
                  precision recall f1-score
                                                  support
               0
                       0.99
                                 0.99
                                           0.99
                                                      157
               1
                       0.98
                                 0.98
                                           0.98
                                                      118
                                                      275
        accuracy
                                           0.99
                                 0.99
                       0.99
                                           0.99
                                                      275
       macro avg
    weighted avg
                       0.99
                                 0.99
                                           0.99
                                                      275
```

```
[10] result2 = accuracy_score(y_test,y_pred)
    print("Accuracy:",result2)

Accuracy: 0.9854545454545455
```

