Foundations of Machine Learning Al2000 and Al5000

FoML-19 Probabilistic Discriminative Models - Logistic Regression

> <u>Dr. Konda Reddy Mopuri</u> Department of AI, IIT Hyderabad July-Nov 2025

So far in FoML

- Intro to ML and Probability refresher
- MLE, MAP, and fully Bayesian treatment
- Supervised learning
 - a. Linear Regression with basis functions (regularization, model selection)
 - b. Bias-Variance Decomposition (Bayesian Regression)
 - c. Decision Theory three broad classification strategies
 - Probabilistic Generative Models Continuous & discrete data
 - (Linear) Discriminant Functions least squares solution, Perceptron

Probabilistic Discriminative Models

Classification Strategies

- Discriminant functions
 - \circ Direct functions of i/p to target $t=y(\mathbf{x},\mathbf{w})$
- Probabilistic Discriminant models
 - Posterior class probabilities

$$p(C_k/\mathbf{x})$$

- Probabilistic generative models
 - \circ Class-conditional models $p(\mathbf{x}/C_k)$
 - \circ Prior class probabilities $p(C_k)$

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)^T$$
 $\mathbf{t} = (t_1, t_2, \dots, t_N)^T$ $t_n \in \mathcal{C}_1, \mathcal{C}_2 = \{0, 1\}$

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)^T$$
 $\mathbf{t} = (t_1, t_2, \dots, t_N)^T$ $t_n \in \mathcal{C}_1, \mathcal{C}_2 = \{0, 1\}$

• Basis functions: $\phi = \phi(\mathbf{x}) = \left[\phi(\mathbf{x}), \phi(\mathbf{x}) - \phi(\mathbf{x}) \right]^{\mathsf{T}}$

ullet Probabilistic Discriminative Models: posteriors $\;p(\mathcal{C}_k|\phi)\;$ are nonlinear functions over a linear function of $\;\phi\;$

$$p(\mathcal{C}_1|\phi,\mathbf{w}) = y(\phi) = \sigma(\mathbf{w}^T\phi)$$
 $p(\mathcal{C}_2|\phi,\mathbf{w}) = |-\partial(\beta)| = |-\sigma(\mathbf{w}^T\phi)|$
 $p(t|\phi,\mathbf{w}) = |-\sigma(\mathbf{w}^T\phi)| + |-c(\mathbf{w}^T\phi)|$

yt (1-4)

- Probabilistic discriminative models need less parameters than the Generative models
 - Gaussian class conditional densities

2H + m(M+1) = m(M+5)Total:

Data-driven Intelligence & Learning Lab

Conditional likelihood of the data:

• Conditional likelihood of the data:
$$p(\mathbf{t}|\mathbf{X},\mathbf{w}) = \frac{N}{121} P(\mathbf{t}) \phi_i, \mathbf{w} = \frac{N}{121} Y_i \cdot (1-y_i)$$

• Minimizing the NLL:
$$E(\mathbf{w}) = -\int_{[i-1]}^{\infty} t_i \log y_i + (1-t_i) \log |1-y_i|$$

$$t_i = 1 - \log y_i$$

ti=0 -log (1-4i) భారతీయ సాంకేతిక విజ్ఞాన సంస్థ హైదరాబాద్ Data-driven Intelligence भारतीय प्रौद्योगिकी संस्थान हैदराबाद & Learning Lab Indian Institute of Technology Hyderabad

भः = निष्म

Cross-entropy loss

Next Learning the parameters of Logistic Regression

