NOKIA Bell Labs

Category: Presentation/Poster

RF-eye: Multidimensional Tensor Sensing for RF Tomography

Anwar Walid

Nokia-Bell Labs

Xiao-Yang Liu,

Columbia University

Tao Deng

University of Electronic Science and Technology

Abstract

- RF-eye: RF Tomography
 - Infer space information from RF signals.
 - Image a space, monitor human movements.
- What is the human need you are addressing?
 - Intelligent office: detect gestures and translate to actions (e.g. light control).
 - Watch a baby's room, monitor elderly's fall, or control with gestures (interactive games in VR).
 - Non-intrusive monitoring (no cameras or wearables required).

RF-eye by: imaging a space using RF signals

Vision

- Our vision and unique perspective.
 - RF-eye by tomography: using RF transmissions to sample the room space of interest.
 - A multidimensional tensor sensing problem for space reconstruction.
- Current approaches and differences
 - Compressive sensing [1]: solves a linear inverse problem, which involves huge vectors
 - --> Low-rank tensors (our approach): higher resolution & computationally more efficient.
 - RF-Capture [2]: sends a radio signal that bounces off a person and back to the device to generate heat maps.
 - --> Imaging (our approch): higher resolution.
- [1] Matsuda, Takahiro, et al. "Multi-dimensional wireless tomography using tensor-based compressed sensing." Wireless Personal Communications 96.3 (2017): 3361-3384.
- [2] Fadel Adib, Dina Katatbi. Capturing the human figure through a wall. ACM Transactions on Graphics (TOG), 34(6), 219, 2015.

A fine-grained and efficient solution

Impact

- How will your solution affect/change the world/Nokia?
 - Smart home, smatspaces, and healthcare.
 - Intelligent office: automatic control (light, temperature).
- How does this fit into future X? Which domain?
 - Augmented Human

Results

- Our Work
 - Capture the latent structures of physical objects with transform-based tensor model.
 - Use RF transmissions to sample the room space of interest.
 - Formulate the RF tomography as a tensor sensing problem.
 - An optimized alternating minimization algrithm to do the imaging task.
- We tested our scheme, based on a data set, including 50 IKEA 3D models [3].

Nokia Internal

[3] Joseph J.L., Hamed P., and Antonio T.. Parsing IKEA objects: fine pose estimation," International Conference on Computer Vision, 2013

Efficient multidimensional tensor sensing

Simulation Results

- Model verification
 - Only lower ranks needed in both Frequency and DCT domains. (size: 60 x 60 x 15)
 - Thus, we use the transform-based tensor model.
- We tested our scheme based on a data set including 50 IKEA 3D models [3].

Low-rank representation in transform domains, e.g., FFT and DCT.

Fig. 4: RSEs vs sampling rates.

Fig. 5: Alt-Min with FFT.

Fig. 6: Alt-Min with DCT.

High accuracy, fast convergence.

Next Steps

- We would like to implement a prototype system with wifi access points (30~50).
- Key technology developement: Multi-person recognition and localization; human imaging; monitor breathing and heart rate, emotion recognition, etc.

Nokia Internal

- Identify key gaps/missing elements/risks
 - multiple wifi access points are required.
 - more wireless signals in a room.