Lecture Notes to Fundamental Concepts in Algebraic $\begin{array}{c} \textbf{Geometry} \\ \textbf{Spring 2020, Hebrew University of Jerusalem} \end{array}$

Ariel Schnidman Typed by Elad Tzorani

Contents

Preface				
	Technicalities	iii		
1	Sheaves	2		
	1.1 Basic Definitions	2		

Preface

Technicalities

These aren't formal notes related to the course and henceforward there is absolutely no guarantee that the recorded material is in correspondence with the course expectations, or that these notes lack any mistakes. In fact, there probably are mistakes in the notes! I would highly appreciate if any comments or corrections were sent to me via email at tzorani.elad@gmail.com. Elad Tzorani.

Goals of Algebraic Geometry

The main goals of algebraic geometry are the following.

- To classify algebraic varieties up to birational isomorphism. Either by enumeration of the varieties or classification by properties.
- Be able to tell whether two algebraic varieties are (birationally) isomorphic. This is done through different tools:
 - Cohomology (related to the Hodge Conjecture).
 - Vector bundles (related to K-theory).
 - Algebraic Cycles (subvarieties).
 - Coherent sheaves (derived category).
 - Topology.

Chapter 1

Sheaves

1.1 Basic Definitions

Let $X \in \mathbf{Top}$.

Definition 1.1.1. Let \mathbf{Top}_X be the category of open sets on X with inclusions as morphisms.

Notation 1.1.2. Denote by Ab the category of abelian groups.

Definition 1.1.3 (Presheaf). A presheaf (of groups) on X is a contravariant functor

$$F \colon \mathbf{Top}_X \to \mathbf{Ab}.$$

Concretely, to give a presheaf we must give the following:

- 1. For each $U \subseteq X$ open, an abelian group F(U).
- 2. For inclusion $V \hookrightarrow U$ of open sets, a group homomorphism $F_{U,V} \colon F(U) \to F(V)$.

Under the conditions:

- 1. $F_{U,U} = id_{F(U)}$.
- 2. If $W \hookrightarrow V \hookrightarrow U$ then $W \hookrightarrow U$ so the induced maps

$$F\left(U\right) \longrightarrow F\left(V\right) \longrightarrow F\left(W\right)$$

commute.

Examples. 1. Let

$$F(U) := \operatorname{Hom}(U, \mathbb{R}) = \{f \colon U \to \mathbb{R}\}.$$

If $V \subseteq U$ are open,

$$\begin{array}{c} F\left(U\right) \xrightarrow{F_{U,V}} F\left(V\right) \\ f \mapsto f|_{V} \end{array}.$$

This is actually also a presheaf of rings on X.

2. The constant presheaf: Let $A \in \mathbf{Ab}$ and define

$$F(U) := A, \quad F_{U,V} = \mathrm{id}_A.$$

3. Let k be an algebraically closed field and X an algebraic variety over k. We can think $X \subseteq \mathbb{P}^n_k$. Define $\mathcal{O}_X(U) := \{f \colon U \to k \mid f \text{ is regular}\}$. By "regular" we mean that for all $P \in U$ there's a neighbourhood $V \subseteq U$ of P such that

$$f|_V = \frac{g}{h}$$

with $g, h \in k[x_0, \dots, x_n]$.

4. Let
$$X = \mathbb{P}^1$$
. Then $\mathcal{O}_{\mathbb{P}^1}\left(\mathbb{P}^1\right) = k$. Also $\mathcal{O}_{\mathbb{P}^1}\left(\mathbb{P}^1 \setminus \{0\}\right) = \left\{\frac{g(x,y)}{h(x,y)} \mid \substack{g,h \in k[x,y] \\ \forall (x,y) \neq (0,1) \colon h(x,y) \neq 0}\right\} = \left\{\frac{g(x,y)}{x^{\deg(g)}}\right\}$.

Definition 1.1.4 (Section, Restriction). For any F as above, $s \in F(U)$ is called a **section**. $F_{U,V}(s)$ is written as $s|_{V}$ and called **restriction of** s **to** V.

Definition 1.1.5 (Global Section). $F(X) := \Gamma(X, F)$ is the *global section of* F.

Remark 1.1.6. Why "section"? Think about $\mathcal{O}_X(U)$ and view the diagram

$$U \times k \longrightarrow X \times k$$

$$\tilde{s} \subset \downarrow^{\pi_U} \qquad \qquad \downarrow^{\pi}$$

$$U \hookrightarrow X$$

and call $X \times k$ the **trivial line bundle**.

Take $s \in \mathcal{O}_X(U)$ which induces a map

$$\tilde{s} \colon U \to U \times k$$

 $x \mapsto (X, s(x)).$

Then \tilde{s} is a section of π over U in the sense that $\pi_U \circ \tilde{s} = \mathrm{id}_U$.

The idea of sheaves is that global sections are difficult to study topologically, but F(U) is easier to study for U small, and computation on smaller U can imply properties of F(U).