Proyecto BlockiA

Presentación Capstone

Cliente:

Condominio SPA

Integrantes

Sebastian Constanzo

Cargo

Nicolas Fuenzalida Cargo

Hildebrando Fuentes

Cargo

Descripción del proyecto

Problema o dolor

- En muchas comunidades residenciales, como condominios, pasajes o villas, la seguridad de los accesos es limitada. Los sistemas actuales para la apertura de portones suelen ser básicos, basándose principalmente en controles manuales o llaves electrónicas simples. Esto genera varias dificultades:
- No existe un control efectivo que impida que personas no autorizadas ingresen a la comunidad.
- No se puede registrar con certeza quién abre o deja abierto un portón, lo que dificulta la trazabilidad de accesos.
- La dependencia de la acción humana incrementa el riesgo de errores, como dejar un portón abierto sin supervisión.
- Este conjunto de problemas representa un riesgo de seguridad importante, especialmente en zonas con alta densidad de residentes o con antecedentes de ingreso no autorizado

Descripción del proyecto

Propuesta de solución

- Se propone desarrollar un sistema informático inteligente para la apertura y cierre automatizado de portones, integrando tecnología de detección de imágenes mediante cámaras y una aplicación móvil. Las principales funcionalidades serían:
- Cierre automático del portón: Si un residente deja el portón abierto más tiempo del establecido (por ejemplo, entre 10 y 15 minutos), el sistema lo cierra automáticamente.
- Registro de identidad del usuario: Cada interacción con el sistema (apertura o cierre)
- Reducción de riesgos de ingreso no autorizado
- En conjunto, el sistema permite controlar los accesos de manera más eficiente, segura y confiable, mejorando la experiencia de los residentes y aportando evidencia en caso de incidentes.

Objetivos

Objetivos generales

Implementar un sistema informático amigable y seguro que facilite el control de acceso en comunidades residenciales, mejorando la experiencia de usuario y aumentando la seguridad.

Objetivos específicos

- Incrementar la seguridad en comunidades residenciales mediante la automatización de portones, reduciendo la posibilidad de ingresos indebidos.
- Ofrecer a comunidades residenciales una solución tecnológica de bajo costo y alta eficiencia, contribuyendo a mejorar su calidad de vida y seguridad

Alcance del proyecto

El proyecto contempla diseño, desarrollo e implementación de un sistema informático de control de acceso vehicular en comunidades residenciales, como condominios pasajes y villas, el sistema incluye:

- Desarrollo de una aplicación móvil de control de acceso con funciones de apertura de portón
- Integración con cámaras con detección de imagen para activar el cierre automático del portón al detectar el ingreso de un vehículo.
- Registro de identidad de usuario mediante autentificación en la aplicación (correo Gmail)
- Generar registros de accesos para trazabilidad y control.
- Pruebas funcionales en un entorno simulado (maqueta de portón, y servo motor con Arduino)

Limitaciones del proyecto

- No se incluye la instalación física de portones ni cámaras; el proyecto se limita al desarrollo del sistema.
- No se contempla integración con sistemas de seguridad externos.
- Se desarrollará solo para Android, sin versiones para iOS u otras plataformas.

Metodología de trabajo para el desarrollo del proyecto

El proyecto se desarrollará bajo metodología ágil Scrum, que permite:

- Gestión flexible y adaptativa del proyecto, ajustando prioridades según resultados y retroalimentación.
- Desarrollo iterativo, con ciclos cortos (sprints) de entrega de funcionalidades, facilitando pruebas tempranas y corrección de errores.
- Colaboración constante entre los miembros del equipo, asegurando que el producto final cumpla con los objetivos planteados y se mantenga alineado con las necesidades de seguridad de la comunidad.

Prototipos

Para el desarrollo del sistema, se contempla tanto la programación móvil como la construcción de la maqueta física que simule el entorno de operación: Framework principal: Ionic con angular material para facilitar el desarrollo multiplataforma
Lenguaje de programación: JavaScript
Backend: Node.js, para gestionar lógica del servidor
API: Google APIS para autentificación de usuarios
Para la realización de maqueta en entorno simulado se usará

- Arduino (Por definir modelo)
- Servomotores
- Modulo SIM800L GSM
- Portón de material impresión 3d
- Cámara de grabación (opciones de copilot: ESP32-CAM)

Realese del proyecto

El proyecto se desarrollará bajo metodología ágil Scrum, que permite:

- Gestión flexible y adaptativa del proyecto, ajustando prioridades según resultados y retroalimentación.
- Desarrollo iterativo, con ciclos cortos (sprints) de entrega de funcionalidades, facilitando pruebas tempranas y corrección de errores.
- Colaboración constante entre los miembros del equipo, asegurando que el producto final cumpla con los objetivos planteados y se mantenga alineado con las necesidades de seguridad de la comunidad.

Tecnologías utilizadas

Framework principal: Ionic con angular material para facilitar el desarrollo multiplataforma

Lenguaje de programación: JavaScript

Backend: Node.js, para gestionar lógica del servidor

API: Google APIS para autentificación de usuarios

Para la realización de maqueta en entorno simulado se usará

- Arduino UNO
- Servomotores
- Módulo SIM800L GSM
- Portón de material impresión 3d
- Cámara de grabación (ESP32-CAM)

Arquitectura

GRACIAS