Course Name:Linear Algebra

Course Code: MT 104

Instructor: Dr. Sara Aziz

saraazizpk@gmail.com

November 10, 2020

4.3 Linearly Independent Sets; Bases

- Linearly Independent Sets
 - Definition
 - Facts
 - Examples
- A Basis Set: Definition
- A Basis Set: Examples
 - Nul A: Examples and Theorem
 - Col A: Examples and Theorem
- The Spanning Set Theorem

Linearly Independent Sets

• A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in a vector space V is said to be **linearly independent** if the vector equation

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p=\mathbf{0}$$

has only the trivial solution $c_1 = 0, \dots, c_p = 0$.

 The set {v₁, v₂,..., v_p} is said to be linearly dependent if there exists weights c₁,..., c_p,not all 0, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p=\mathbf{0}.$$

The following results from Section 1.7 are still true for more general vectors spaces.

Fact 1

A set containing the zero vector is linearly dependent.

Fact 2

A set of two vectors is linearly dependent if and only if one is a multiple of the other.

Fact 3

A set containing the zero vector is linearly independent.

4

Example

$$\left\{ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 2 \\ 3 & 0 \end{bmatrix} \right\}$$
 is a linearly _____ set.

Example

$$\left\{ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 3 & 6 \\ 9 & 11 \end{bmatrix} \right\}$$
 is a linearly _____ set

since
$$\begin{bmatrix} 3 & 6 \\ 9 & 11 \end{bmatrix}$$
 is not a multiple of $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

Theorem (4)

An indexed set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ of two or more vectors, with $\mathbf{v}_1 \neq \mathbf{0}$, is linearly dependent if and only if some vector \mathbf{v}_j (j > 1) is a linear combination of the preceding vectors $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

Example

Let $\{\mathbf{p}_1, \, \mathbf{p}_2, \, \mathbf{p}_3\}$ be a set of vectors in \mathbf{P}_2 where $\mathbf{p}_1(t)=t$, $\mathbf{p}_2(t)=t^2$, and $\mathbf{p}_3(t)=4t+2t^2$. Is this a linearly dependent set?

Solution: Since $\mathbf{p}_3 = \dots \mathbf{p}_1 + \dots \mathbf{p}_2$, $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is a linearly ______ set.

Let H be the plane illustrated below. Which of the following are valid descriptions of H?

(a)
$$H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$$
 (b) $H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_3\}$

(c)
$$H = \operatorname{Span}\{\mathbf{v}_2, \mathbf{v}_3\}$$
 (d) $H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$

A basis set is an "efficient" spanning set containing no unnecessary vectors. In this case, we would consider the linearly independent sets $\{\mathbf{v}_1, \mathbf{v}_2\}$ and $\{\mathbf{v}_1, \mathbf{v}_3\}$ to both be examples of basis sets or bases (plural for basis) for H.

A Basis Set

Let H be a subspace of a vector space V. An indexed set of vectors $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a basis for H if

- i. β is a linearly independent set, and
- ii. $H = \operatorname{Span}\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$.

Example

Let
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Show that $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a basis for \mathbf{R}^3 . The set $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is called a

standard basis for R³.

Solutions: (Review the IMT, page 112)

Let
$$A = [\begin{array}{cccc} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{array}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

Since A has 3 pivots,

- the columns of A are linearly _____ by the IMT,
- and the columns of A _____ by IMT;
- therefore, $\{e_1, e_2, e_3\}$ is a basis for R^3 .

Example

Let $S = \{1, t, t^2, \ldots, t^n\}$. Show that S is a basis for \mathbf{P}_n .

Solution: Any polynomial in P_n is in span of S. To show that S is linearly independent, assume

$$c_0 \cdot 1 + c_1 \cdot t + \cdots + c_n \cdot t^n = \mathbf{0}.$$

Then $c_0 = c_1 = \cdots = c_n = 0$. Hence S is a basis for \mathbf{P}_n .

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$.

Is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ a basis for \mathbf{R}^3 ?

Solution: Let
$$A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3] = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{array} \right]$$
. By row reduction,

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} \backsim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 1 & 3 \end{bmatrix} \backsim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 5 \end{bmatrix}$$

and since there are 3 pivots, the columns of A are linearly independent and they span \mathbf{R}^3 by the IMT. Therefore $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ is a **basis** for \mathbf{R}^3 .

Explain why each of the following sets is **not** a basis for \mathbb{R}^3 .

(a)
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\7 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-3\\7 \end{bmatrix} \right\}$$

Example

(b)
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\}$$

Find a basis for Nul A where

$$A = \left[\begin{array}{cccc} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3 \end{array} \right].$$

Solution: Row reduce $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$:

$$\begin{bmatrix} 1 & 2 & 0 & 13 & 33 & 0 \\ 0 & 0 & 1 & -6 & -15 & 0 \end{bmatrix} \implies \begin{aligned} x_1 &= -2x_2 - 13x_4 - 33x_5 \\ x_3 &= 6x_4 + 15x_5 \\ x_2, x_4 \text{ and } x_5 \text{ are free} \end{aligned}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 - 13x_4 - 33x_5 \\ x_2 \\ 6x_4 + 15x_5 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -13 \\ 0 \\ 6 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -33 \\ 0 \\ 15 \\ 0 \\ 1 \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

Therefore $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a spanning set for Nul A. In the last section we observed that this set is linearly independent. Therefore $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for Nul A. The technique used here always provides a linearly independent set.

A basis can be constructed from a spanning set of vectors by discarding vectors which are linear combinations of preceding vectors in the indexed set.

Example

Suppose
$$\mathbf{v}_1 = \left[\begin{array}{c} -1 \\ 0 \end{array} \right], \, \mathbf{v}_2 = \left[\begin{array}{c} 0 \\ -1 \end{array} \right] \, \text{and} \, \, \mathbf{v}_3 = \left[\begin{array}{c} -2 \\ -3 \end{array} \right].$$

Solution: If x is in Span $\{v_1, v_2, v_3\}$, then

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 (____ \mathbf{v}_1 + ____ \mathbf{v}_2)$$

$$= ____ \mathbf{v}_1 + ___ \mathbf{v}_2$$

Therefore,

$$\mathsf{Span}\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\} = \mathsf{Span}\{\mathbf{v}_1,\mathbf{v}_2\}.$$

Theorem (5 The Spanning Set Theorem)

Let

$$S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$$

be a set in V and let

$$H = \operatorname{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_p\}.$$

- a. If one of the vectors in S say \mathbf{v}_k is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H.
- **b.** If $H \neq \{0\}$, some subset of S is a basis for H.

Find a basis for Col A. where

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 4 \\ 2 & 4 & -1 & 3 \\ 3 & 6 & 2 & 22 \\ 4 & 8 & 0 & 16 \end{bmatrix}.$$

Solution: Row reduce:

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 & \mathbf{b}_4 \end{bmatrix}$$

Note that

$$\mathbf{b}_2 = \mathbf{b}_1$$
 and $\mathbf{a}_2 = \mathbf{a}_1$ $\mathbf{b}_4 = 4\mathbf{b}_1 + 5\mathbf{b}_3$ and $\mathbf{a}_4 = 4\mathbf{a}_1 + 5\mathbf{a}_3$ \mathbf{b}_1 and \mathbf{b}_3 are not multiples of each other

 \mathbf{a}_1 and \mathbf{a}_3 are not multiples of each other \mathbf{a}_1 and \mathbf{a}_3 are not multiples of each other

Elementary row operations on a matrix do not affect the linear dependence relations among the columns of the matrix.

Therefore

$$\operatorname{Span} \{a_1, a_2, a_3, a_4\} = \operatorname{Span} \{a_1, a_3\}$$

and $\{a_1, a_3\}$ is a basis for Col A.

Theorem (6)

The pivot columns of a matrix A form a basis for Col A.

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ -4 \\ 6 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$. Find a basis for Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

Solution: Let

$$A = \left[\begin{array}{rrr} 1 & -2 & 3 \\ 2 & -4 & 6 \\ -3 & 6 & 9 \end{array} \right]$$

and note that

$$\operatorname{Col} A = \operatorname{Span} \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\}.$$

By row reduction,
$$A \sim \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
. Therefore a basis

for Span
$$\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$$
 is $\left\{ \begin{bmatrix} & & \\ & & \end{bmatrix}, \begin{bmatrix} & & \\ & & \end{bmatrix} \right\}$.

Review

- To find a basis for Nul A, use elementary row operations to transform [A 0] to an equivalent reduced row echelon form [B 0]. Use the reduced row echelon form to find parametric form of the general solution to Ax = 0. The vectors found in this parametric form of the general solution form a basis for Nul A.
- A basis for Col A is formed from the pivot columns of A.
 Warning: Use the pivot columns of A, not the pivot columns of B, where B is in reduced echelon form and is row equivalent to A.

4.4 Coordinate Systems

- Coordinate Systems
 - Definition: Coordinates and Coordinate Vector
 - Examples
- Change-of-Coordinates Matrix
 - Definition
 - Examples
- Parallel Worlds of \mathbb{R}^3 and \mathbb{P}_2
- Isomorphic

In general, people are more comfortable working with the vector space \mathbf{R}^n and its subspaces than with other types of vectors spaces and subspaces. The goal here is to *impose* coordinate systems on vector spaces, even if they are not in \mathbf{R}^n .

Theorem (7)

Let $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x}=c_1\mathbf{b}_1+\cdots+c_n\mathbf{b}_n.$$

Coordinates

Suppose $\beta = \{\mathbf{b_1}, \dots, \mathbf{b_n}\}$ is a basis for a vector space V and \mathbf{x} is in V. The coordinates of \mathbf{x} relative to the basis β (or the β -coordinates of \mathbf{x}) are the weights c_1, \dots, c_n such that

$$\mathbf{x}=c_1\mathbf{b}_1+\cdots+c_n\mathbf{b}_n.$$

Coordinate Vector

In this case, the vector in \mathbb{R}^n

$$\left[\mathbf{x}
ight]_{eta}=\left[egin{array}{c} c_1\ dots\ c_n \end{array}
ight]$$

is called the **coordinate vector of x** (**relative to** β), or the β – **coordinate vector of x**.

Let
$$\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$$
 where $\mathbf{b}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and let $E = \{\mathbf{e}_1, \mathbf{e}_2\}$ where $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Solution:

If
$$[\mathbf{x}]_{\beta} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
, then $\mathbf{x} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \end{bmatrix}$

If
$$[\mathbf{x}]_{\mathcal{E}} = \begin{bmatrix} 6 \\ 5 \end{bmatrix}$$
, then $\mathbf{x} =_{---} \begin{bmatrix} 1 \\ 0 \end{bmatrix} +_{---} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ \end{bmatrix}$.

From the last example,

$$\left[\begin{array}{c} 6 \\ 5 \end{array}\right] = \left[\begin{array}{cc} 3 & 0 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} 2 \\ 3 \end{array}\right].$$

For a basis $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, let

$$P_{\beta} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n] \quad \text{ and } \quad [\mathbf{x}]_{\beta} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Then

$$\mathbf{x} = P_{\beta} [\mathbf{x}]_{\beta}$$
.

We call P_{β} the change-of-coordinates matrix from β to the standard basis in \mathbb{R}^n . Then

$$[\mathbf{x}]_{\beta} = P_{\beta}^{-1}\mathbf{x}$$

and therefore P_{β}^{-1} is a **change-of-coordinates matrix** from the standard basis in \mathbb{R}^n to the basis β .

Let $\mathbf{b_1} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\beta = \{\mathbf{b_1}, \mathbf{b_2}\}$ and $\mathbf{x} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$. Find the change-of-coordinates matrix P_β from β to the standard basis in \mathbf{R}^2 and change-of-coordinates matrix P_β^{-1} from the standard basis in \mathbf{R}^2 to β .

Solution:

and so

$$P_{\beta}^{-1} = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{3} & 0 \\ -\frac{1}{3} & 1 \end{bmatrix}.$$

If
$$\mathbf{x} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$$
, then use P_{β}^{-1} to find $[\mathbf{x}]_{\beta} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$.

Solution:

$$[\mathbf{x}]_{\beta} = P_{\beta}^{-1}\mathbf{x} = \begin{bmatrix} \frac{1}{3} & 0 \\ -\frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 8 \end{bmatrix} = \begin{bmatrix} \end{bmatrix}$$

Coordinate mappings allow us to introduce coordinate systems for unfamiliar vector spaces.

Example

Standard basis for \mathbf{P}_2 : $\{\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3\}=\{1,t,t^2\}$. Polynomials in \mathbf{P}_2 behave like vectors in \mathbf{R}^3 . Since

$$a+bt+ct^2 =$$
___ $\mathbf{p}_1 +$ ___ $\mathbf{p}_2 +$ ___ \mathbf{p}_3 , $\begin{bmatrix} a+bt+ct^2 \end{bmatrix}_{\beta} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

We say that the vector space \mathbf{R}^{3} is *isomorphic* to \mathbf{P}_{2} .

Vector Space R³

Vector Form:
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Vector Addition Example

$$\begin{bmatrix} -1\\2\\-3 \end{bmatrix} + \begin{bmatrix} 2\\3\\5 \end{bmatrix} = \begin{bmatrix} 1\\5\\2 \end{bmatrix}$$

Vector Space P₂

Vector Form:
$$a + bt + bt^2$$

Vector Addition Example

$$\begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix} \qquad \begin{pmatrix} -1+2t-3t^2 \end{pmatrix} + \begin{pmatrix} 2+3t+5t^2 \end{pmatrix}$$
$$= 1+5t+2t^2$$

Isomorphic

Informally, we say that vector space V is **isomorphic** to W if every vector space calculation in V is accurately reproduced in W, and vice versa.

Assume β is a basis set for vector space V. Exercise 25 (page 223) shows that

• a set $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ in V is linearly independent if and only if $\left\{ [\mathbf{u}_1]_\beta , [\mathbf{u}_2]_\beta , \dots, [\mathbf{u}_p]_\beta \right\}$ is linearly independent in \mathbf{R}^n .

Use coordinate vectors to determine if $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is a linearly independent set: $\mathbf{p}_1 = 1 - t$, $\mathbf{p}_2 = 2 - t + t^2$, $\mathbf{p}_3 = 2t + 3t^2$.

Solution: The standard basis set for P_2 is $\beta = \{1, t, t^2\}$. So

$$\left[\mathbf{p_1}
ight]_{eta} = \left[\qquad
ight], \, \left[\mathbf{p_2}
ight]_{eta} = \left[\qquad
ight], \, \left[\mathbf{p_3}
ight]_{eta} = \left[\qquad
ight]$$

Then

$$\left[\begin{array}{ccc} 1 & 2 & 0 \\ -1 & -1 & 2 \\ 0 & 1 & 3 \end{array}\right] \sim \cdots \sim \left[\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right]$$

By the IMT, $\left\{ \left[\mathbf{p}_{1}\right]_{\beta}, \left[\mathbf{p}_{2}\right]_{\beta}, \left[\mathbf{p}_{3}\right]_{\beta} \right\}$ is linearly _____ and therefore $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ is linearly _____.

Coordinate vectors also allow us to associate vector spaces with subspaces of other vectors spaces.

Example

Let
$$\beta = \{\mathbf{b_1}, \mathbf{b_2}\}$$
 where $\mathbf{b_1} = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$.

Let
$$H = \operatorname{span}\{\mathbf{b}_1, \mathbf{b}_2\}$$
. Find $[\mathbf{x}]_{\beta}$, if $\mathbf{x} = \begin{bmatrix} 9 \\ 13 \\ 15 \end{bmatrix}$.

Solution: (a) Find c_1 and c_2 such that

$$c_1 \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 13 \\ 15 \end{bmatrix}$$

Corresponding augmented matrix:

$$\begin{bmatrix} 3 & 0 & 9 \\ 3 & 1 & 13 \\ 1 & 3 & 15 \end{bmatrix} \backsim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore
$$c_1=$$
 \ldots and $c_2=$ \ldots and so $[\mathbf{x}]_{\beta}=$ $\bigg[$

$$\begin{bmatrix} 9 \\ 13 \\ 15 \end{bmatrix} \text{ in } \mathbf{R}^3 \text{ is associated with the vector } \begin{bmatrix} 3 \\ 4 \end{bmatrix} \text{ in } \mathbf{R}^2$$

H is isomorphic to \mathbb{R}^2