Aaryan Dhawan

Fairfax, VA | aaryanvaldhawan@gmail.com | 703 409 7225 | https://aaryanvdhawan.github.io/https://www.linkedin.com/in/aaryan-dhawan-22b409250/ | github.com/aaryanvdhawan

Education/Affiliation

Virginia Tech, BS in Computer Engineering, Chip-Scale Integration **Virginia Tech**, M.Eng in Computer Engineering, VLSI and Design Automation **Virginia Tech**, Member of the BRICCS Research Group

August 2020 - May 2024 August 2024 - May 2026 Joined March 2025

- GPA: 3.7
- Coursework: Computer Architecture, VLSI circuit design, Digital/RTL design, Semiconductor manufacturing

Skills

C/C++, Verilog/SystemVerilog, Python, MIPS/RISC-V Assembly, Xilinx Vivado ML, Intel Quartus Prime, Cadence Virtuoso

Projects

RISC-V Pipeline RTL Design and Verification

Fall 2025

- Designing a 5-stage pipeline for the RISC-V ISA, supporting most RV32I Base Integer Instructions using SystemVerilog
- Planning to use Cadence Genus and Innovus to generate Digital IC layout for Performance, Power, Area optimization, JasperGold suite for verification

Spiking Neural Network, Reservoir Computing Learning Engine RTL Design

June 2025 - Present

- Identified areas for optimization in State-of-the-Art RTL design for hardware learning engines
- Implemented resources reduction techniques to improve overall power consumption and increased system throughput
- Researching further extensions and applications of the learning engine design

Hardware Friendly Learning Rule for Spiking Neural Network

April 2025 - Present

- Researching highly performative neural network learning rules, optimized for binary classification
- Applying learning rules in a hardware efficient manner for local learning in a novel design for a Spiking neural network dealing with uni-variate data sets

Izhikevich Spiking Neural Network for FPGAs,

Spring 2025

• Used a hardware-efficient Izhikevich neuron model to create two Spiking Neural Networks for Character Recognition; targeted fast inference performance and low resource utilization

Improving Graph Algorithm Performance through CPU Design

Fall 2024

- Led a group in researching how to improve performance of graph algorithm based applications through changes in processor architecture through the UC-Berkeley Chipyard framework
- Targeted low-power, mobile based CPUs and SoC architectures; Achieved 2/3x Speed Up over industry-standard designs

VLSI Circuit Design Projects

Fall 2023

- Series of VLSI circuit design projects using Cadence Virtuoso, revolving designing and testing integrated circuit schematics and layouts
- Ranging from basic logic gates to 16-bit Fast Adders and 12-bit Braun Multiplier layouts.

ReRAM Research Capstone Project

Fall 2023 - Spring 2024

- Led a senior level research group in understanding the thermodynamics and design of an experimental Resistive RAM chip. Assisted in model design in Ansys Workbench
- Developed Python based GUI to perform thermal analysis to validate experiments and visualize data