AD-774 267

EFFECTS OF HELICOPTER EXTERNAL LOADS ON SLING PROPERTIES

Arthur J. Gustafson, Jr., et al

Army Air Mobility Research and Development Laboratory Fort Eustis, Virginia

September 1973

AD 774 267

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

DOCUMENT CONTROL DATA - R & D (Security classification of titio, body of obstract and indusing smootation must be entered when the everall report is class I. ORIGINA NIMA ACTIVITY (Composes enthal) Rustis Directorate U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia 3. REPORT SECURITY CLASSIFICA Unclassified 34. GROUP 15. ARMY AIR Mobility Research and Development Laboratory, Fort Eustis, Virginia 3. REPORT VILLE EFFECTS OF RELICOPTER EXTERNAL LOADS ON SLING PROPERTIES 4. ORSCRIPTIVE NOTES (Type of report and Incl. info name) Arthur J. Gustafson, Jr. Edgar H. McIlwean Max E. Bryan Rugene A. Birocco 4. REPORT DATE September 1973 50. ORIGINATOR'S REPORT NUMBERS 6. ORIGINATOR'S REPORT NUMBERS M. ORIGINATOR'S	6/
Rustis Directorate U.S. Army Air Mobility Research and Development Laboratory, Port Eustis, Virginia Report vivle EFFECTS OF HELICOPTER EXTERNAL LOADS ON SLING PROPERTIES 4. DESCRIPTIVE NOTES (Type of report and Inc.: nire dures) Final Report S. Authoris (First name, middle initial, inst name) Arthur J. Gustafson, Jr. Edgar H. McIlwean Max E. Bryan Eugene A. Birocco 8. REPORT DATE September 1973 8. CONTRACT OR BRANT NO. A. PROJECT NO. C. Task 1F162203A43500 House Task AS70-11 d. 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. Ti. SUPPLEMENTARY NOTES 12. SPONDORING MILITARY ACTIVITY Rustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRACT Samples of webbing of the type currently used for slings to carry external care.	
Eustis Directorate U.S. Army Air Mobility Research and Development Laboratory, Port Eustis, Virginia Directory, Port Eustis Directory	
U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia REPORT TITLE EFFECTS OF HELICOPTER EXTERNAL LOADS ON SLING PROPERTIES 4. DESCRIPTIVE NOTES (Type of report and inc.: mire dotes) Final Report 8. AUTHORIS: (First name, middle initial, inst name) Arthur J. Gustafson, Jr. Edgar H. McIlwean Max E. Bryan Eugene A. Birocco 8. REPORT DATE September 1973 8. CONTRACT OR SRANT NO. 4. PROJECT NO. 6. Task 1F162203A43500 House Task AS70-11 4. 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Equation Directorate U.S. Army Air Mobility Réd Laborat Fort Eustis, Virginia 13. ABSYRACT Samples of webbing of the type currently used for slings to carry external ca	TION
Laboratory, Port Eustis, Virginia REPORT TITLE EFFECTS OF RELICOPTER EXTERNAL LOADS ON SLING PROPERTIES 4. DESCRIPTIVE NOTES (Type of report and fact introductor) Final Report 8. AUTHORIS) (First name, middle initial, inst name) Arthur J. Gustafson, Jr. Edgar H. McIlwean Max E. Bryan Eugene A. Birocco 8. REPORT DATE September 1973 8. CONTRACT OR SRANT NO. A. PROJECT NO. C. Task 1F162203A43500 House Task AS70-11 4. 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Eustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRACT Samples of webbing of the type currently used for slings to carry external care.	
EFFECTS OF RELICOPTER EXTERNAL LOADS ON SLING PROPERTIES 4. DESCRIPTIVE NOTES (Type of report and inc.: mire dutes) Final Report 5. AUTHORIS (First same, middle initial, inst name) Arthur J. Gustafson, Jr. Edgar H. McIlwean Max E. Bryan Eugene A. Birocco 5. REPORT DATE September 1973 6. CONTRACT OR SRANT NO. A. PROJECT NO. C. Task 1F162203A43500 House Task AS70-11 4. 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. ADSTRIBUTION STATEMENT Approved for Webbing of the type currently used for slings to carry external carry	
4. DESCRIPTIVE NOTES (Type of report and inclinive dates) Final Report 5. AUTHORIS (First name, middle initial, inst name) Arthur J. Gustafson, Jr. Edgar H. McIlwean Max E. Bryan Eugene A. Birocco 5. ARFORT DATE September 1973 50. CONTRACT OR SRAHT NO. 4. PROJECT NO. 5. Task 1F162203A43500 Rouse Task AS70-11 4. 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY EUSTIS Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRACT Samples of webbing of the type currently used for slings to carry external ca	
Final Report S. AUTHORIS) (First name, middle initial, inst name) Arthur J. Gustafson, Jr. Max E. Bryan Sugene A. Birocco S. REPORT DATE September 1973 So. CONTRACT OR SEANT NO. S. PROJECT NO. C. Task 1F162203A43500 House Task AS70-11 4. 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY EUST B. Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRACT Samples of webbing of the type currently used for slings to carry external ca	
S. AUTHORIS) (Pirel name, middle initial, inclinates) Arthur J. Gustafson, Jr. Edgar H. McIlwean Max E. Bryan Eugene A. Birocco 6. REPORT DATE September 1973 8. September 1973 8. CONTRACT OR SEANT NO. 6. PROJECT NO. 6. Task 1F162203A43500 House Task AS70-11 6. 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Eustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRACT Samples of webbing of the type currently used for slings to carry external ca	
Arthur J. Gustafson, Jr. Edgar H. McIlwean Rugene A. Birocco 8. REPORT DATE September 1973 8. CONTRACT OR SEART NO. 4. PROJECT NO. 5. Task 1F162203A43500 Rouse Task AS70-11 6. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 15. SUPPLEMENTARY NOTES 16. SPONSORINE MILITARY ACTIVITY ELISTS DIRECTORS 17. ABSYRACT 19. ABSYRACT 19. ABSYRACT Samples of webbing of the type currently used for slings to carry external carry.	
Max B. Bryan Bugene A. Birocco 1. RXPORT DATE September 1973 1. TOTAL NO. OF PAGES September 1973 1. TOTAL NO. OF PAGES September 1973 1. TOTAL NO. OF PAGES September 1973 1. SAMEDL Technical Report 73-91 1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY ELESTIS Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. Absyract Samples of webbing of the type currently used for slings to carry external carry	
September 1973 September 1973	
September 1973 88 6 60. CONTRACT OR SRANT NO. A. PROJECT NO. C. Task 1F162203A43500 House Task AS70-11 d. 19. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Eustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRACT Samples of webbing of the type currently used for slings to carry external car	
September 1973 88 6 60. CONTRACT OR SRANT NO. A. PROJECT NO. C. Task 1F162203A43500 House Task AS70-11 d. 19. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Eustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRACT Samples of webbing of the type currently used for slings to carry external car	
Se. CONTRACT OR SRANT NO. a. PROJECT NO. USAAMRDL Technical Report 73-91 c. Task 1F162203A43500 House Task AS70-11 d. 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Eustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRACT Samples of webbing of the type currently used for slings to carry external ca	
L. PROJECT NO. USAAMRDL Technical Report 73-91 a. Task 1F162203A43500 House Task AS70-11 d. 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Eustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. Absyract - Samples of webbing of the type currently used for slings to carry external ca	
c. Task 1F162203A43500 House Task AS70-11 d. 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Eustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRACT Samples of webbing of the type currently used for slings to carry external ca	
House Task AS70-11 d. 19. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Eustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRACT Samples of webbing of the type currently used for slings to carry external ca	
House Task AS70-11 4. 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Eustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRACT Samples of webbing of the type currently used for slings to carry external ca	
Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Eastis Directorate U.S. Army Air Mobility R&D Laborat Fort Eastis, Virginia 13. Absyract - Samples of webbing of the type currently used for slings to carry external ca	
Approved for public release; distribution unlimited. 11. SPONSORING MILITARY ACTIVITY Eustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSTRACT - Samples of webbing of the type currently used for slings to carry external ca	
It. SPONSORING MILITARY ACTIVITY Eustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRACT Samples of webbing of the type currently used for slings to carry external ca	
It. SPONSORING MILITARY ACTIVITY Eustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRACT Samples of webbing of the type currently used for slings to carry external ca	
Eustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRAC? Samples of webbing of the type currently used for slings to carry external ca	
Eustis Directorate U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSYRAC? Samples of webbing of the type currently used for slings to carry external ca	
U.S. Army Air Mobility R&D Laborat Fort Eustis, Virginia 13. ABSTRACT Samples of webbing of the type currently used for slings to carry external ca	·
Fort Eustis, Virginia 13. Absyract Samples of webbing of the type currently used for slings to carry external ca	
13. ABSYRACT - Samples of webbing of the type currently used for slings to carry external ca	ory
Samples of webbing of the type currently used for slings to carry external ca	
P Samples of webbing of the type currently used for slings to carry external call Army helicopters were tested to determine which environmental factors contrib	
I Army helicopters were tested to determine which environmental factors contrib	rgo by
fill with the thirty of the send was the land of the send of the s	irea co
premature failure of the webbing. The environmental factors included outdoor exposure, temperature, humidity, JP-4 and seawater immersion, sand, and vibra	+0×11
	LOLY
loading. Several types of nylon and Dacron were tested.	
The results of these tests indicate that outdoor exposure has a major effect webbing strength. The presence of sand between the years in the webbing prodearly failure. Shackle FSN 1670-090-5354 causes severe damage to slings under vibratory loading if used without a protective pad. Temperature, humidity, for seawater immersion, and indoor storage have a negligible effect on webbing st	uces r uel and

Recroduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield VA 22151

Unclassified

Unclassified

Security Classification LINK A LINK B -HOLE WT ROLE WT ROLE WT Sling properties Nylon and Dacron webbing Helicopter external loads Sling strength

Unclassified W Security Classification 10667-73

Task 1F162203A43500 House Task AS70-11 USAAMRDL Technical Report 73-91 September 1973

EFFECTS OF HELICOPTER EXTERNAL LOADS ON SLING PROPERTIES

Final Report

Ву

Arthur J. Gustafson, Jr. Max E. Bryan Edgar H. McIlwean Zugene A. Birocco

EUSTIS DIRECTORATE U.S. ARMY AIR MOBILITY RESEARCH AND DEVELOPMENT LABORATORY FORT EUSTIS, VIRGINIA

> Approved for public release; distribution unlimited.

TABLE OF CONTENTS

		Page
ABSTI	ACT	iii
LIST	OF ILLUSTRATIONS	vi
LIST	OF TABLES	vii
INTRO	DUCTION	1
TEST	OBJECTIVES	2
TEST	METHODS	ر
	Ultimate Strength (Baseline) Tests	4
	Outdoor Exposure Tests	7
	Temperature/Humidity Exposure	8
	JP-4 Fuel Immersion Tests	8
	Seawater Immersion Tests	8
	Sand Abrasion Tests	8
	End-Condition-Effects Tests	9
	Viscoelastic Tests	ģ
		11
	Indoor Storage Tests	1.1
TEST	RESULTS	12
	Outdoor Exposure, Temperature/Humidity Cycling Tests	14
	JP-4 and Seawater Immer > 1 Tests	14
	Sand Abrasion Tests	14
	End-Condition-Effects Tests	14
	Viscoelastic Tests	16
		16
	Indoor Storage Tests	10
CONC	USIONS	17
RECO	MENDATIONS	18
LITE	ATURE CITED	19
APPE	DIX - Test Results	20
DIST	TRUTION	79

Preceding page blank

• •

LIST OF ILLUSTRATIONS

Figure		Page
1	Test Specimen Showing Doublers in Section That Fits in the Grips	4
2	Test Specimen Mounted in Test Fixture	5
3	Seq ence of Loading for Ultimate Strength Test	6
4	Close-up of Shackle FSN 1670-090-5354 Showing Surface Features Which Cause Damage to Webbing	10
5	View of Webbing Which Was Damaged by Shackle FSN 1670-090-5354	15
6	Plot of Viscoelastic Data, Type X Nylon Webbing	20
7	Plot of Viscoelastic Data, Type XIX Nylon Webbing	21
8	Plot of Viscoelastic Data, Type XXVI-R Nylon Webbing	22
9	Plc of Viscoelastic Data, Type XXVI-L Nylon Webbing	23
10	Plot of Viscoelastic Data, Type VI Dacron Webbing	24
11	Plot of Viscoelastic Data, Type V Dacron Webbing	25

LIST OF TABLES

<u>Table</u>		Page
I	List of Tests	3
II	Mean Temperature, Rainfall, and Cloud Cover for the Period April 1970 Through March 1971	7
III	Temperature/Humidity Cycle	8
IV	Summary of Effects of Environmental Conditions	12
V	Summary of Test Results	13
V I	Statistical Summary of Test Results	26
VII	Ultimate Strength, Type X Nylon Webbing	30
VIII	End-Condition Effect, Type X Nylon Webbing Looped Over a 1-Inch Shackle	31
IX	Outdoor Exposure, Type X Nylon Webbing	32
X	Temperature/Humidity Cycling, Type X Nylon Webbing	33
XI	JP-4 Fuel Immersion, Type X Nylon Webbing	34
XII	Seawater Immersion, Type X Nylon Webbing	34
XIII	Sand Abrasion, Type X Nylon Webbing	35
XIV	Viscoelastic Test, Type X Nylon Webbing, Gage Length J.125 Inches	36
χV	Ultimate Strength, Type XIX Nylon Webbing	37
XVI	End-Condition Effect, Type XIX Nylon Webbing Looped Over a 1-Inch Shackle	38
XVII	Outdoor Exposure, Type XIX Nylon Webbing	40
XVIII	Temperature/Humidity Cycling, Type XIX Nylon Webbing	41
XIX	JP-4 Fuel Immeration, Type XIX Mylon Webbing	42
XX	Seawater Immersion, Type XIX Mylon Webbing	43

<u>Table</u>		Page
xxI	Sand Abrasion, Type XIX Nylon Webbing	44
XXII	Viscoelastic Test, Type XIX Nylon Webbing, Gage Length 1.159 Inches	46
XXIII	Ultimate Strength, Type XXVI Nylon Webbing, Resin Coated .	47
xxiv	End-Condition Effect, Type XXVI Nylon Webbing, Resin Coated, Looped Over a 1-Inch Shackle	48
vxv	Outdoor Exposure, Type XXVI Nylon Webbing, Resin Coated	50
XXVI	Temperature/Humidity Cycling, Type XXVI Nylon Webbing, Resin Coated	51
XXVII	JP-4 Fuel Immersion, Type XXVI Nylon Webbing, Resin Coated	52
XXVIII	Seawater Immersion, Type XXVI Nylon Webbing, Resin Coated.	52
XXIX	Sand Abrasion, Type XXVI Nylon Webbing, Resin Coated	53
ххх	Viscoelastic Test, Type XXVI Nylon Webbing, Resin Coated, Gage Length 1.187 Inches	54
XXXI	Ultimate Strength, Type XXVI Nylon Webbing, Latex Coated .	55
XXXII	End-Condition Effect, Type XXVI Nylon Webbirg, Latex Costed, Looped Over a 1-Inch Shackle	57
IIIXXX	Outdoor Exposure, Type XXVI Nylon Webbing, Latex Coated	58
XXXIV	Temperature/Humidity Cycling, Type XXVI Nylon Webbing, Latex Coated	59
XXXV	JP-4 Fuel Immersion, Type XXVI Nylon Webbing, Latex Coated	60
XXXVI	Seawater Immersion, Type XXVI Nylon Webbing, Latex Coated.	60
IIVXXX	Sand Abrasion, Type XXVI Nylon Webbing, Latex Coated	61
XXXVIII	Viscoelastic Test, Type XXVI Nylon Webbing, Latex Coated, Gage Length 1.187 Inches	62
XXXXIX	Ultimate Strength, Type VI Dacron Webbing	63
XL	End-Condition Effect, Type VI Dacron Webbing Looped Over	64

Table		Page
XLI	Outdoor Exposure, Type VI Dacron Webbing	65
XLII	Temperature/Humidity Cycling, Type VI Dacron Webbing	ნი
XLIII	JP-4 Fuel Immersion, Type VI Dacron Webbing	67
XLIV	Seawater Immersion, Type VI Dacron Webbing	67
XTA	Sand Abrasion, Type VI Dacron Webbing	68
XLVI	Viscoelastic Test, Type VI Dacron Webbing, Gage Length 1.880 Inches	69
XLVII	Ultimate Strength, Type V Dacron Webbirg	70
XLVIII	End-Condition Effect, Type V Dacron Webbing Looped Over a l-Inch Shackle	71
XLIX	Outdoor Exposure, Type V Dacron Webbing	72
L	Temperature/Humidity Cycling, Type V Dacron Webbing	73
LI	JP-4 Fuel Immersion, Type V Dacron Webbing	74
LII	Seawater Immersion, Type V Dacron Webbing	74
LIII	Sand Abrasion, Type V Dacron Webbing	75
LIV	Viscoelastic Test, Type V Dacron Webbing, Gage Length 1.188 Inches	76
LV	Ultimate Strength After 1-Year Indoor Storage	77

INTRODUCTION

Slings and cargo nets are widely used to carry external loads on helicopters. Slings are light, flexible structures, well suited to this task. However, a current lack of acceptable criteria for the design and rating of slings and nets seriously inhibits their use. Insufficient knowledge of the external helicopter environment and of the dynamic loads developed is an area of particular concern. The result has been rigging difficulties and short usable life compared to aircraft capability.

Although the Army, as well as the other services, has performed a number of studies on slings, the broad range of problems associated with the Army's use of slings has not been simultaneously considered. The effort described in this report and the work done under contract with the Sikorsky Aircraft Division, United Aircraft Corporation, to establish design criteria for cypical sling configurations and to produce a comprehensive design guide for helicopter slings were undertaken to reduce current deficiencies.

TEST METHODS

A complex series of tests was conducted to provide a complete characterization of the webbing materials within the limitation of the laboratory equipment. The tests were set up to the extent possible to isolate the various parameters. Table I lists the number of tests conducted, sample sizes, and types of materials tested. Detailed descriptions of the tests follow.

Each type of webbing was tested for tensile ultimate strength in the "as-received" condition. This test became the standard for determining the effects of environmental factors or type of loading. The mean and standard deviation of the ultimate strength were calculated from the results of the standard tests and from the results of tests conducted on webbing that had been exposed to one of the environments listed in Table I. The two groups of data were compared by using a statistical technique (student's t distribution) that tests the hypothesis that two samples come from the same population. This test is used for small sample sizes (N < 30) and is equivalent to the more familiar "Z" parameter test used for large samples.

	TABLE I. LIST OF TESTS					
			Samp	le Size		
	Nylon, Type X	Nylon, Type XIX	Nylon, Type XXVI-R	Nylon, Type XXVI-L	Dacron, Type VI	Dacron, Type V
Baseline Test						
Ultimate Strength	15	15	15	28	15	16
Environmental Test						
Outdoor Exposure	12	12	10	12	12	10
Temperature/Humidity Cvcling	10	10	9	7	10	10
JP-4 Fuel Immersion	5	5	5	5	4	. 5
Seawater Immersion	4	5	5	5	5	4
Sand Exposure	10	27	10	10	10	14
End-Condition Effect	7	11	10	12	12	13
Viscoelastic Proper- ties	18	18	18	18	18	18
Indoor Storage	5	5	5	5	5	5

1.

ULTIMATE STRENGTH (BASELINE) TESTS

Ultimate strength tests were conducted on 5-foot-long webbing specimens that were fitted with nylon webbing doublers on each end (Figure 1). The specimens were mounted in the test fixture as shown in Figure 2. The sequence of loading the specimens is shown in Figure 3. The preload on each specimen was necessary because the 5-inch stroke limitation of the test machine (MTS Model 483.01) is less than the ultimate extension of the specimens.

Figure 1. Test Specimen Showing Doublers in Section That Fits in the Grips.

4

Figure 2. Test Specimen Mounted in Test Fixture.

KÛTE

CASE LENGTH IS 15 IN. (LENGTH OUT OF GRIPS).
LDADING FROM O-A WITH CROSSHEAD MOVEMENT,
FROM A-B WITH RAM. FROM C-B WITH CROSSHEAD.
FROM D-F WITH RAM.

LOADING RATES IN EACH SEGMENT WERE:

0-A & C-9 250 LB/SEC

A-B 5000 LB/SEC

0-F 7800 LB/SEC

Figure 3. Sequence of Loading for Ultimate Strength Test.

OUTDOOR EXPOSURE TESTS

Three groups (nominally five specimens each) of 5-foot-long webbing specimens were exposed outdoors for 16 weeks, 32 weeks, and 40 weeks, respectively. Each group was tested for ultimate strength after exposure. Mean temperature, rainfall, and cloud cover during the last periods are given in Table II.

	Tempera	ture (°F)	Rain (in.)	Cloud Cover		ean ture (°F)
Date	Max	Min	Max	(Tenths)	Max	Min
April 1970	86	38	3.39	6.4	67	48
May	89	41	4.76	6.2	76	57
June	96	55	3.65	6.2	83	65
July	92	64	7.82	6.3	85	71
August	94	60	1.86	6.4	84	67
September	93	49	3.82	5.6	79	61
October	83	37	1.32	4.7	69	51
November	72	25	3.53	5.4	61	43
December	70	25	3.25	5.8	49	32
January 1971	67	19	2.82	5.8	47	30
February	72	19	4.31	6.2	48	32
March	76	31	3.12	6.0	59	40

Temperature and Rainfall - actual values for 1970-1971 Cloud cover - mean value in tenths for years 1961-1970, between 0600-1800 LST

Mean temperature - average for years 1961-1970

TEMPERATURE/HUMIDITY EXPOSURE

Ten 5-foot-long webbing specimens for each type of webbing were exposed to the temperature/humidity test (less altitude simulation), as described in MIL-STD-810B. The temperature/humidity ranges for this test are presented in Table III.

Day	Time (hr)	Temperature (^O F)	Relative Humidity (%)
through 5	0800-1600	-65	•
2 011204011 3	1600-0800	+160	95
6 and 7	0800-1600	+160	95
	1600-0800	+160	95
8 through 11	0800-1600	- 65	-
Ū	1600-0800	+160	95
12	0800-1600	-65	•
	1600-0800	-80	-
13 and 14	0800-1600	-80	**
	1600-0800	-80	-

JP-4 FUEL IMMERSION TESTS

The 5-foot-long webbing specimens were immersed in JP-4 fuel (MIL-T-5624) for 24 hours and then tested for ultimate strength.

SEAWATER IMMERSION TESTS

The 5-foot-long webbing specimens were immersed in seawater for 24 hours and then tested for ultimate strength. Tests were performed with the webbing both wet and dry.

SAND ABRASION TESTS

Six types of webbing were tested for effects of imbedded sand. The specimens for Type XIX webbing were divided into four groups. One group was tested untreated to serve as a baseline. The other three groups were treated with different sizes of sand: fine, medium, and coarse, respectively. The remaining webbing types were divided into two groups: untreated and treated with medium-grit sand only.

The specimens were 5 feet long, with doublers on each end, as shown in Figure 1. A 1-inch section of the webbing was imbedded with sand by rubbing the sand in with the fingers while flexing the webbing to assure penetration of the sand between strands.

The webbing was studied with high-speed photography during testing and was visually inspected after testing.

END-CONDITION-EFFECTS TESTS

Reference 3 reports the effects on webbing strength of looping webbing over pins of various diameters and pulling in tension to failure. These tests were similar except that a service shackle was used, and the loading consisted of mean and alternating loads instead of pure tension. The alternating loads were representative of typical rotor-induced vibrating loads.

Tests were made to determine the effect of mean and alternating loads on webbing looped once over a 1-inch shackle (FSN 1670-090-5354); see Figure 4. The test specimens were 6 feet long and were prepared in the same manner as the 5-foot-long specimen shown in Figure 1.

The mean and alternating loads and the frequency of the alternating loads were taken from Reference 4 and represent a loading condition found in service use, which is also within the frequency and stroke limitation of the test machine.

Each specimen was rested to failure or 10,000 cycles, whichever occurred first. Specimens that did not fail were tested in tension to determine residual ultimate strength.

VISCORLASTIC TESTS

A 100,000-pound-capacity closed-loop hydraulic test machine was used to perform the dynamic tests. Loads and elongation were recorded using a strip-chart recorder and an X-Y plotter. The loads were detected with a load cell mounted above the upper teardrop-type grip, and unit elongation was measured with an extensometer mounted on the specimen with a gage length of approximately 1-3/16 inches. Each specimen was loaded to six different predetermined loads and cycled ±10 percent of these values at rates of 3 hertz, 6 hertz, and 9 hertz for 100 cycles at each rate. Also, each specimen was loaded to 4,000 pounds prior to testing to obtain an initial stretching of the webbing.

The data recorded were gage length, mean load, alternating load, and alternating elongation. Using these data, the alternating strain and the spring constants were calculated at each load rate. Each specimen was tested by application of a mean load with an alternating load superimposed.

A major problem in conducting the viscoelastic tests was obtaining good decoupling of the test machine from the test specimen; that is, preventing

Figure 4. Close-up of Shackle FSN 1670-090-5354 Showing Surface Features Which Cause Damage to Webbing.

the specimen and test machine from acting as a spring-mass system. This was done in this test by the feedback control feature of the hydraulic test machine. Alternating load and frequency of oscillation were controlled by feedback loops, and the machine hydraulic flow capacity for effective control was not exceeded. The spring rates measured are considered to be accurate.

Spring rates may also be calculated by using the force-deflection data from the ultimate load tests. These data yield inaccurate spring rates for the following reasons:

- No effort was made to minimize machine-specimen interaction, and the hydraulic flow rate was outside the limits for effective control.
- * Exact lengths of the specimens were unknown due to stretching of the webbing in the grips.
- There was a tracking error of the pen recorder.

INDOOR STORAGE TESTS

The effect of indoor storage was measured by comparing the ultimate strength of untreated specimens tested at the beginning of this program and similar specimens tested 1 year late.

TEST RESULTS

A complete set of test data, as well as the detailed results of the t test, is given in the appendix. A qualitative summary of the effects of environmental conditions is given in Table IV, and a summary of test results is given in Table V.

		1	DOES ENVIRONMENT	AFFECT STRENGTH?		
Environment	Nylon, Type X	Nylon, Type XIV	Nylon, Type XXVI-R	Mylon, Type XXVI-L	Dacron, Type VI	Dacron, Type V
Outdoor Exposure	Yes	Yes	Yes	Yes	Yes	Yes
Temperature/Humidity Exposure	No	No	No	No	No	Ио
Seawater Immersion	Slightly	Slightly	Slightly	Slightly	Slightly	Slightl
JP-4 Fuel Immersion	Slightly	No	No	No	No	No
End-Condition (sta	Yes	Yes	Yes	Yes	Yes	Yes
Sand Exposure	Yes	Yes	Yes	Yes	Yes	Yes
Indoor Storage	Slightly	No	Slightly	Slightly	No	No

		TABLE V. SUN	SUPPARY OF TEST RESULTS	sults		
			MEAN BREAKING	STRENGTAM, KSI		
Test	Bylon, Type X	Mylon, Type XIX	WEBBLEG TIFE Wylon, Type XXVI-R Ty	Type XXVI-L	Dacron, Type V	Dacron, Type VI
How Material	10.80	11.95	17.26	16.85	12.30	20.21
Outdoor Exposure (32 weeks)	9.82	9.65	15.03	9.37	10.03	17.63
Temperature/Bunddity	10.38	12.07	17.18	16.89	12.50	19.54
Seawater Immeraton	9.38	10.98	16.03	16.82	12.80	19.54
JP-4 Puel Immersion	10.50	12.64	16.68	17.24	12.58	20.25
Ultimate Strength After Patigue Over 1-In. Shackle	S	28	а ч	16.27	11,90	21.10
Medium Mean Load	3.8	11.05	16.10	15.63	11.52	20.16
Migh Mean Load	7.20	8.20	12.10	11.75	8.30	17.42
Indoor Storage (1 yr)	01	11.26	16.58	16.79	12.38	19.02
	2,710	3,789	1,099	1,039	1,634	2,753
Send Abrasion (with send)	,	19	5	7	2	3
* See appendix.						

OUTDOOR EXPOSURE, TEMFERATURE/HUMIDITY CYCLING TESTS

The test results (appendix) show that outdoor exposure had a substantial effect on webbing strength, whereas gross temperature/humidity cycling had no effect on webbing strength. A major difference in the two exposures is the presence of sunlight in the outdoor test. It is known that ultraviolet radiation severely degrades the strength of nylon, and this appears to be the cause for the strength reduction associated with outdoor exposure.

JP-4 AND SEAWATER IMMERSION TESTS

Seawater immersion had a slight effect on webbing strength. JP-4 fuel immersion had no effect on webbing strength.

SAND ABRASION TESTS

The effect of sand embedded in webbing greatly reduces the strength of the webbing. An examination of partially failed slings and the failure modes revealed significant damage to the fibrils and strands due to the sand.

High-speed photographs taken during testing and a visual inspection made after testing clearly show that fibrils and yarns of the webbing are cut in a transverse direction by the sand particles from the scissor motion of the yarns upon application of the load. Abrasive action of the sand between adjacent yarns does not develop because there is very little relative motion between yarns in the longitudinal direction.

The statistical analysis of test data does not show the significance of the sand treatment because the standard deviation of the baseline sample is quite large. This large variability of the baseline test results was brought about by failure of the test specimens in the grips, whereas all specimens with sand failed in the 1-inch strip that contained the sand. It is concluded that the wide variation in strength of the baseline sample is due to grip effects and invalidates the statistical test.

END-CONDITION-EFFECTS TESTS

End conditions have considerable effect on webbing strength. It was discovered that the mold parting line and the embossed stock number on the shackle used for this test caused damage sufficient to initiate failure of the webbing (see Figure 3 for example). It was characteristic that the failure time from the first strand cut to complete separation of the webbing was shortest with increased mean load. Although some types of webbing performed better than others in this test, it was clear that protective measures must be used with end fittings to a type similar to shackle FSN 1670-090-5354.

Figure 5. View of Webbing Which Was Damaged by Shackle FSN 1670-090-5354.

VISCOBLASTIC TESTS

The results of the viscoelastic tests for the various types of webbing are plotted in the appendix.

INDOOR STORAGE TESTS

Test results show that indoor storage has a negligible effect on webbing strength.

CONCLUSIONS

It is concluded that:

- Outdoor exposure of slings made with nylon and Dacron webbing is a major cause of reduction in sling strength.
- 2. The presence of sand, either coarse or fine, between yarns in slings made with nylon and Dacron webbing will cause failure upon application of both steady and vibratory loads.
- Shackle PSN 1670-090-5354 causes severe damage to slings made with nylon and Dauron webbing under vibratory loading, if used wi nout a protective pad.
- Seawater, JP-4 fuel, temperature/humidity cycling, and indoor storage have negligible effects on the strength of slings made with nylon and Dacron webbing.

RECOMMENDATIONS

It is recommended that:

- Provisions be incorporated into the design of slings made with nylon and Dacron webbing for protection against sunlight and sand.
- 2. Slings made with nylon and Dacron webbing used with shackle FSN 1670-090-5354 (or equivalent) be protected with a pad, as shown in Reference 6.
- 3. Shackle FSN 1670-090-5354 be redesigned to have a smooth bearing surface.

LITERATURE CITED

- 1. Briczinski, S. J., and Karas, G. K.. CRITERIA FOR EXTERNALLY SUSPENDED HELICOPTER LOADS, Sikorsky Aircraft Division or United Aircraft Corporation; USAAMRDL Technical Report 71-61, Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, November 1971, AD 740772.
- 2. Huebner, W. E., DESIGN GUIDE FOR LOAD SUSPENSION POINTS, SLINGS, AND AIRCRAFT HARD POINTS, Sikorsky Aircraft Division of United Aircraft Corporation; USAAMRDL Technical Sport 2-36, Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, July 1972, AD 747814.
- 3. Maroney, Josef P., WEBBING-HARDWARE COMBINATION STUDY FOR THE AIRDROP ENGINEERING DIVISION, AMSRE-NIEL 810, U. S. Army Natick Laboratories, Natick, Massachusetts, July 1966.
- 4. Wilson, G., and Midgett, J., VERIFICATION FLIGHT TEST RESULTS OF THE PHASE III CH-47A HELICOPTER SLING LOAD CAPABILITY INVESTIGATION AND SLING LOAD MANUAL, Report No. 114-DV-008 (AF33(657) 1315/SRD14), The Boeing Company, Vertol Division, Morton, Pennsylvania, 1967.
- 5. Wilkinson, Robert A., THE EFFECT OF SOLAR RADIATION ON THE BREAKING STRENGTH Of OUTDOOR EXPOSED WEBBING, Materials Laboratory, Wright Air Development Center, WADC Technical keport 58-201, Wright-Patterson Air Force Base, Ohio, November 1958, AD 206893.
- 5. Department of the Army, AIR TRANSPORT OF SUPPLIES AND EQUIPMENT: HELI-COPTER EXTERNAL LOADS RIGGED WITH AIR DELIVERY EQUIPMENT, Technical Manual 55-450-11, pp. 6 and 8 (Figure 3), July 1966.

APPENDIX TEST RESULTS

Figure 6. Plot of Viscoelastic Data, Type X Nylon Webbing.

Figure 7. Plot of Viscoelastic Data, Type XIX Nylon Webbing.

Figure 8. Plot of Viscoelastic Data, Type XXVI-R Nylon Jebbing.

Figure 9. Plot of Viscoelastic Data, Type XXVI-L Nylon Webbing.

Figure 10. Plot of Viscoelastic Data, Type VI Dacron Webbing.

Figure 11. Plot of Viscoelastic Data, Type V Decron Webbing.

TABLE VI. STATISTICAL SUMMARY OF TEST RESULTS							
Test	Sample Size	Ultimate Strength Mean (kips)	Standard Deviation (kips)	Does Test Affect Strength?			
TYPE X - Nylon							
Ultimate Strength Before Exposure	15	10.8	.195	Baseline			
Post Outdoor Exposure (16 weeks)	7	9.71	.157	Yes			
Post Outdoor Exposure (32 weeks)	5	9.82	.148	Yes			
Post Temperature/Humidity	10	10.38	.072	Slightly			
Post Seawater Immersion	4	9.38	.165	Yes			
Post JP-4 Fuel Immersion	5	10.5	. 20	Slightly			
Post End Condition (Hean load 8.5K)	2	9,5	0	/ /es			
Post End Condition (Mean load 13.6K)	3	7.2	. 721	Yes			
Post End Condition (Mean load 2.5K)	2	9.8	.071	Slightly			
Post Indoor Storage (1 year)	5	10.34	.055	Slightly			
TYPE XIX - Nylon							
Ultimate Strength Before Exposure	15	11.95	.177	Baseline			
Post Outdoor Exposure (16 weeks)	5	10.5	.469	Yes			
Post Outdoor Exposure (32 weeks)	4	9.65	.52	Yes			
Post Outdoor Exposure (40 weeks))	8,9	.7	Yes			

TABLE VI - Continued						
Test	Sample Size	Ultimate Strength Mean (kips)	Standard Deviation (kips)	Does Test Affect Strength?		
Post Temperature/Humidity	10	12.07	. 172	No		
Post Seawater Immersion	5	10.98	. 192	Slightly		
Post JP-4 Fuel Immersion	5	12.64	.114	No		
Post End Condition (Mean load 2.77K)	4	11.28	.096	Slightly		
Post End Condition (Mean load 9.25K)	4	11.05	. 345	Yes		
Post End Condition (Mean load 14.8K)	3	8.2	.113	Yes		
Post Indoor Storage (1 year)	5	11.26	. 503	No		
TYPE XXIV - Nylon (Resin)						
Ultimate Strength Before Exposure	15	17.26	. 203	Beseline		
Post Outdoor Exposure (24 weeks)	5	16.02	.13	Yes		
Post Outdoor Exposure (32 weeks)	6	15.03	.683	Yes		
Post Temperature/Humidity	9	17.18	. 164	No		
Post Seavater Immersion	5	16.03	.12	Slightly		
Post JP-4 Fuel Immersion	5	16.68	.486	No		
Post End Condition (Nean load 4.08K)	4	16.88	.096	Yes		
Post End Condition (Nean load 13.6K)	4	16.10	.497	Yes		
Post End Condition (Nean load 21.75K)	2	12.10	. 101	Yes		
Post Outdoor Storage (1 year)	\$	15.58	. 356	Slightly		

TABLE VI - Continued						
Test	Sample Size	Ultimate Strength Mean (kips)	Standard Deviation (kips)	Does Test Affect Strength?		
TYPE XXVI - Nylon (Latex)						
Ultimate Strength Before Exposure	28	16.85	.403	Baseline		
Post Outdoor Exposure (32 weeks)	5	9.37	.368	Yes		
Post Outdoor Exposure (48 weeks)	3	9.8	.26 5	Yes		
Post Outdoor Exposure (64 weeks)	4	10.65	.379	Yes		
Post Temperature/Humidity	7	16.89	. 756	No		
Post Seawater Immersion	5	16.82	.227	Slightly		
Post JP-4 Fuel Immersion	5	17.24	.134	No		
Post End Condition (Mean load 3.75K)	4	16.27	,479	Slightly		
Post End Condition (Nean load 12.5K)	4	15.63	. 263	Yes		
Post End Condition (Rean load 20K)	4	11.75	. 284	Yes		
Post Indoor Storage (1 year)	5	16.79	. 346	Slightly		
TYPE VI - Dacron						
Vitimate Strength Before Exposure	15	20.21	.713	Baseline		
Post Outdoor Exposure (16 weeks)	5	18.64	.705	Yes		
Post Outdoor Exposure (32 weeks)	4	17.63	,≵5	Yes		
Post Outdoor Exposure (40 weeks)	3	17.17	. 764	Yes		
Post Temperature/Humidity	10	19.54	.664	No		
Post Seavater Innersion	5	19.54	1.58	No		

TABLE VI - Continued						
Test	Sample Size	Ultimate Strength Mean (kips)	Standard Deviation (kips)	Does Test Affect Strength?		
Post JP-4 Fuel Immersion	4	20,25	. 708	No		
Post End Condition (Mean load 4.38K)	4	21.10	. 337	No		
Post End Condition (Mean load 14.5K	4	20.16	. 373	No		
Post End Condition (Mean load 23.4K)	2	17.42	.247	Yes		
Post Indoor Storage (1 year)	5	19.02	. 792	No		
TYPE V - Dacron						
Ultimate Strength Before Exposure	16	12.3	.577	Baseline		
Post Outdoor Exposure (16 weeks)	2	10.95	.212	Yes		
Post Outdoor Exposure (32 weeks)	3	10.03	. 153	Yes		
Post Outdoor Exposure (40 weeks)	2	9.6	.141	Yes		
Post Temperature/Humidity	10	12.5	.116	No		
Post Seawater Immersion	4	12.8	.149	Yes		
Post JP-4 Fuel Immersion	5	12.58	.148	Yes		
Post End Condition (Nean load 2.7K)	4	11.9	.096	Чо		
Post End Condition (Nean load 9.0K)	4	11.52	.13	Slightly		
Post End Condition (Mean load 14.4K)	2	8.3	.566	Yes		
Poet Indoor Storage (1 year)	5	12.36	.217	₩o		

TABLE VII. ULTIMATE STRENGTH, TYPE X NYLON WEBBING					
Specimen No.	Ultimate Load (kips)	Ultimate Elongation (in.)			
4-19-86	10.70	7.35			
4-18-47	10.50	7,45			
4-23-70	10.50	7.45			
4-29-24	11.10	7.58			
4-32-85	11.00	7.35			
4-11-17	i1.70	7.00			
4-30-79	11.00	7,45			
4-3-26	10.70	7,38			
4-4-76	10.80	7.12			
4-20-42	10.80	7.25			
4-15-1	10.80	7.39			
4-2-41	11.00	7,35			
4-6-5	11.00	7.29			
4-13-59	11.00	7.12			
4-14-92	10.90	7,49			
	Mean 10.800	Mean 7,335			
	Std Dev 0.195	Std Dev 0.157			

TABLE VIII. END-CONDITION EFFECT, TYPE X NYLON WEBBING LOOPED OVER A 1-INCH SHACKLE

Specimen	Mean Load	Alternating Load	No. of	Ultimate Load*
No.	(kips)	(kips)	Cycles	(kips)
4-24-8	Ultimate	0	0	16.70
4-12-44	Ultimate	0	0	17.30
				Mean 17.000
				Std Dev 0.424
				**
4-10-30	13.6	0.7	10,000	8.00
4-33-18	13.6	0.7	10,000	6.60
4-21-21	13.6	0.7	10,000	7.00
				Hean 7.200
				Std Dev 0.721
4-28-37	2.55	0.7	10,000	9.80
4-31-102	2.55	0.7	10,000	9.90
				Mean 9.850
				Std Dev 0.071
4-9-39	8.50	e.7	10,000	9.60
k-7-31	8.50	0.7	10,000	9.60
				Nean 9.60
				Std Dev 0.00

^{*} Tensile tested looped over 1-inch shackle.

Tensile tested on single strap after fatigued.

TABLE IX. OUTDOOR EXFOSURE, TYPE X NYLON WEBBING					
Specimen No.	Exposure Time (wk)	Ultimate Load (kips)	Ultimate Elongation (in.)		
10-74	16	9.70	6.25		
10-97	16	9.80	6.41		
10-51	16	9.70	6.45		
10-52	16	9.40	6.00		
10-53	16	9.70	6.25		
:0-23	16	9.80	د.6		
10-87	16	9.90	6.53		
		Mean 9.914	Hean 6.324		
		Std Dev 0.157	Std Dev 0.175		
10-95	24	3 .80	6.10		
10-67	24	10,00	6.22		
10-40	24	9,60	5.85		
10-25	24	9.80	5.90		
10-46	24	9. 9 6	6.22		
		Hean 9.820	Hean 6.058		
		Std Dev 0,148	Std Dev 1.175		

TABLE X. TEMPERATURE/HUMIDITY CYCLING, TYPE X NYLON WEBBING Ultimate Load Ultimate Elongation Specimen No. (kips) (in.) 4-A-7 10.40 5.98 4-B-27 10.40 6.05 4-C-43 10.42 6.70 4-D-81 10.40 6.60 4-E-32 10.40 6.72 4-F-14 10.41 6.68 10.40 4-G-75 6.70 4 7-6 10.42 6.87 4-I-65 10.18 6.82 4-J-63 10.40 6.80 Mean 10.383 Mean 6.592

Std Dev 0.072

Std Dev 0.314

TABLE XI. JP-4 PUEL IMMERSION, TYPE X NYLON WEBBING				
Specimen No.	Ultimate Load (kips)	Ultimate Elongation (in.)		
4-45-13	10.70	6.55		
4-80-99	10.20	6.22		
4-94-50	10.60	6.15		
4-75-12	10.40	6.45		
4-20-112	10.60	6.15		
	Mean 10.500	Mean 6.304		
	Std Dev 0.200	Std Dev 0.185		

TABLE XII. SEAWATER IMMERSION, TYPE X NYLON WEBBING					
Specimen No.	Ultimate Load (kips)	Ultimate Elongation (in.)			
4-23-118	9.45	5.99			
4-46-19	9.40	6.12			
4-87-98	9.35	6.33			
4-125-88	9.30	6.33			
	Mean 9.375	Mean 6.192			
·	Std Dev 0.064	Std Dev 0.167			

TABLE XIII. SAND ABRASION, TYPE X NYLON WEBBING						
Specimen No.	Sand S ize	Mean Load (kips)	Alternating Load (kips)	Cycles to Failure		
4-26-16	No Sand	5.4	2.7	1,661		
4-17-96	11	5.4	2.7	3,585		
4-8-15	11	5.4	2.7	2,478		
4-5-61	"	5.4	2.7	2,014		
4-27-77	11	5.4	2.7	3,812		
				Mean 2,710		
				Std Dev 951		
4-1-60	Medium	5.4	2.7	10		
4-56-124	Medium	5.4	2.7	8		
4-54-50	Medium	5.4	2.7	4		
4-41-108	Medium	5.4	2.7	6		
4-52-117	Medium	5.4	2.7	8		
				Mean 7.200		
				Std Dev 2.280		

TABLE XIV. VISCOELASTIC TEST, TYPE X NYLON WEBBING, GAGE LENGTH 1.125 INCHES

		Gage	Mean	Alternating			Spring
Load	CPS	Length	Load	Load	Elongation	Strain	Constant
(kips)	(Hz)	(in.)	(kips)	(kips)	(in.)	10-3	(lb/in./in.)
1.31	3	1.197	1.29	0.28	0.0023	1.92	145,830
1.31	6	1.197	1.13	0.28	0.0023	1.92	145,830
1.31	9	1.197	1.05	0.28	0.0023	1.92	145,830
1.75	3	1.214	1.69	0.32	0.0025	2.06	155,340
1.75	6	1.214	1.49	0.36	0.0025	2.06	174,760
1.75	9	1.214	1.45	0.32	0,6∪25	2.06	155,340
2.19	3	1.225	2.23	0.44	0.0028	2.28	192,980
2.19	6	1.225	2.03	0.44	0.0030	2.45	175,920
2.19	9	1.225	1.99	0.46	0.0028	2.28	201,750
4.37	3	1.265	4.21	0.86	0.0038	3.00	286 ,6 60
4.37	6	1.265	4.09	0.88	0.0040	3.16	278,480
4.37	9	1.265	4.09	0.88	0.0038	3.00	293,330
6.55	3	1.303	6.35	1.32	0.0050	3.84	343,750
6.55	6	1.303	6.51	1.28	0.0053	4.07	314,500
6.55	9	1.303	6.55	1.24	0.0045	3,45	359,420

TABLE XV. ULTIMATE STRENGTH, TYPE XIX NYLON WEBBING				
Specimen No.	Ultimate Load (kips)	Ultima	te Elongation (in.)	
1-95-47	12.10		6.12	
1-113-26	12.10		6.00	
1-108-49	12.00		6.28	
1-56-42	11.70		5.52	
1-59-70	12.00		6.40	
1-92-85	12.00		6.46	
1-49-62	12.00		6.62	
1-122-1	12.00		6.32	
1-17-76	12.00		6.62	
1-62-24	12.00		6.42	
1-1-17	11.90		5.87	
1-15-41	12.00		6.40	
1-13-110	12.00		6.55	
1-10-86	12.00		6,62	
1-33-79	11.40		4.88	
	Mean 11.947	Mean	6.208	
	Std Dev 0.177	Std Dev	0.482	

14.

TABLE XVI. END-CONDITION EFFECT, TYPE XIX NYLON WEBBING LOOPED OVER A 1-INCH SHACKLE

Specimen No.	Mean Load (kips)	Alternating Load (kips)	No. of Cycles	Ultimate Load*
NO.	(KIPS)	(KIPS)	Cycles	(kips)
1-99-34	Ultimate	0	0	18.50
1-31-39	Ultimate	0	0	16.75
1-18 - 68	Ultimate	0	0	18.20
1-111-37	Ultimate	0	0	17.75
1-69-91	Ultimate	0	0	19.20
1-7-8	Ultimate	0	0	20.00
1-75-90	Ultimate	0	0	17.20
1-34-30	Ultimate	0	0	19.50
				Mean 18.387
				Srd Dev 1.137
				**
1-14-119	14.8	0.7	10,000	7.50
1-23-89	14.8	0.7	10,000	9.50
1-94-18	14.8	0.7	10,000	7.60
				Mean 8.200
				Std Dev 1.127
1-8-36	9,25	0.7	10,000	11.20
1-38-31	9.25	0.7	10,000	11.00
1-116-120	9.25	0.7	10,000	11.40
1-131-F	9.25	0.7	10 000	10.60
				Mean 11.050
				Std Dev 0.342

TABLE XVI - Continued					
Specimen No.	Mean Load (kips)	Alternating Load (kips)	No. of Cycles	Ultimate Load* (kips)	
1-129-D	2.78	0.7	10,000	11.30	
1-128-C	2.78	0.7	10,000	11.40	
1-130-E	2.78	0.7	10,000	11.20	
1-126-A	2.78	0.7	10,000	11.20	
				Mean 11.275	
				Std Dev 0.096	

^{*} Tensile tested looped over 1-inch shackle. ** Tensile tested on single strap after fatigued.

TABLE XVII. OUTDOOR EXPOSURE, TYPE XIX NYLON WEBBING

Specimen No.	Exposure Time (wk)	1	imate .oad .ips)	Elon	imate gation in.)
1-77-51	16		10,80		4.42
1-96-97	16		10.35		4.09
1-45-95	16		10.70		3.82
1-104-87	16		9.70		3.95
1-103-52	16		10.80		4.55
		Mean	10.470	Hean	4.166
		Std Dev	0.468	Std Dev	0.310
1-74-46	32		10.10		3.62
1-118-40	32		8.90		3.45
1-97-67	32		9.80		3.65
1-121-74	32		9.80		3.65
		Mean	9.650	Hear	3.592
		Std Dev	0.519	Std Des	0,096
1-44-53	40		9.70		3.85
1-12-25	40		8.60		3.70
1-123-23	40		8.40		3.48
		Hesn	8.900	Hest	3.677
		Std Dev	0.700	Std Dev	0.186

TABL	TABLE XVIII. TEMPERATURE/HUMIDITY CYCLING, TYPE XIX NYLON WEBBING			
Specimen No.	Ultimate Load (kips)	Ultimate Elongation (in.)		
1-114-3	12.15	5.95		
1-101-14	12.10	6.18		
1-106-65	12.17	6.48		
1-50-81	12.15	6.78		
1-40-43	12.03	6.74		
1-53-75	12.15	6.78		
1-46-6	12.18	7.00		
1-66-27	12.05	6.82		
1-80-32	11.60	5.80		
1-71-7	12.10	6,57		
	Mean 12.068	Neen 6,482		
	Std Dev 0.172	Std Dev 0.392		

TABLE XIX. JP-4 FUEL IMMERSION, TYPE XIX NYLON WEBBING				
Specimen No.	Ultimate Load (kips)	Ultimate Elongation (in.)		
1-112-99 1-39-112	12.45 12.70	5.43 5.95		
1-12-20 1-57-13 1-120-50	12.65 12.75 12.65	5.50 6.23 5.80		
X - 18V - JV	Nean 12.648 Std Dev 0.114	Hean 5.782 Std Dev 0.329		

15,

TABLE XX. SEAWATER IMMERSION, TYPE XIX NYLON WEBBING				
Specimen No.	Ultimate Load (kips)	Ultimate Elongation (in.)		
1-89-88	11,05	5.32		
1-124-29	11,10	5.78		
1-105-118	11,12	5.82		
1-36-98	10.65	5.15		
1-70-19	11.00	5.65		
	Hean 10,984	Mean 5.544		
	Std Dev 0,192	Std Dev 0.295		

TABLE XXI. SAND ABRASION, TYPE XIX NYLON WEBBING				
Specimen No.	Send Size	Mean Load (kips)	Alternating Load (kips)	Cycles to Failure
1-83-61	No Sand	6.0	3.0	500
1-68-77	u u	6.0	3.0	537
1-11-96	"	6.0	2.8	3,492
1-119-64	**	6.0	2.8	18,832
1-70-16	u.	6.0	2.8	5,692
1-28-66	H	6.0	2.8	2,526
1-4-56	11	6.0	2.8	3,287
1-30-122	11	6.0	2.8	1,758
1-19-113	11	6.0	2.8	1,391
1-48-115	11	6.0	2.8	1,910
1-5-116	h	6.0	2.8	1,757
				Mean 3,789
				Std Dev 5,203
1-52-121) gram fine	6.0	2.8	9
1-61-20	••	6.0	5'8	22
1-87-9	44	6.G	2.8	10
1-90-111		6.0	2,8	24
1-98-114	,,	6.0	2.8	27
1-72-123		6.0	2.8	23
				Mean 19.200
				Std Dev 7.079

1,

	TABLE XXI - Continued				
Specimen No.	Sand Size	Mean Load (kips)	Alternating Load (kips)	Cycles to Failure	
1-85-107	½ gram med	6.0	2.8	14	
1-117-101		6.0	2.8	8	
1-102-57	11	6.0	2.8	19	
1-82-117	14	6.0	2.8	6	
1-58-54	19	6.0	2.8	19	
				Mean 13.200	
				Std Dev 6.0 58	
1-25-22	gram coarse	6.0	2.8	10	
1-67-58	44	8.0	2.8	4	
1-55-125	"	6,0	2.8	j à	
1-78-124	64	6.0	7. 8	17	
1-35-45	**	6.0	2.8	9	
				Medn 11.800	
			namenaga akindudukan di katan andi katan	Std Dev 6.100	

TABLE XXII. VISCOELASTIC TEST, TYPE XIX NYLON WEBBING. GAGE LENGTH 1.159 INCHES

-250		Gage	Mean	Alternating	100		Spring
Load	CPS	Length	Load	Load	Elongation	Strain	Constant
(kips)	(Hz)	(in.)	(kips)	(kr.ps)	(in.)	10-3	(lb/in./in.)
0.49	3	1.176	0.65	0.10	0.0010	0.85	117,650
0.49	6	1.176	0.44	0.10	0.0010	0.85	117,650
0.49	9	1.176	0.35	0.12	0.0012	1.02	117,650
1.46	3	1.237	1.38	0.32	0.0026	2.10	152,380
1.46	5	1.237	1.12	0.30	0.0026	2.10	142,860
1.46	9	1.237	1.16	0.30	0.0025	2.02	148,510
1.95	3	1.253	2.01	0.38	0.0027	2.15	174,740
1.95	6	1.253	1.83	0.40	0.0029	2.31	173,160
1.95	9	1.253	1.75	0.40	0.0030	2.39	167,360
2.44	3	1.270	2,44	0.48	0.0030	2.36	203,390
2.44	6	1,270	2.24	0.51	0.0035	2,75	185,450
2.44	q	1.270	2.22	0.51	0.0035	2.75	185.450
4.87	3	1.316	4.93	0.92	0.0037	2.82	326,240
4.87	6	1.314	4.91	0.96	0.0041	3.12	307,690
4.87	9	1.314	4,93	1.00	0.0042	3.20	312,500
7.30	3	1.342	7,36	1.36	0.0045	3.35	405,976
7.30	6	1.342	7.38	1,44	0.0049	3.65	394,520
7.30	Ģ	1.342	7.36	1.32	0,0046	3,43	384,840
7.30	,	1.32	.36	1,32	0.000	3.43	354,840

TABLE XXIII. ULTIMATE STRENGTH, TYPE XXVI NYLON WEBBING, RESIN COATED

Specimen No.		ate Load ips)		ltimate ongation (in.)
5-3 7- 47	17	.10		6.51
5-51 - 76	17	.05		6.41
5-84-85	17	. 10		6.49
5-39-110	17	.10		6,34
5-44-70	17	. 10		6,49
5-69-86	17	.05		6.09
5-13-17	17	.40		6.35
5-82-41	17	.40		5.43
5-9-79	17	.45		6.61
5-81-1	17	.10		6.35
5 -52-57	17	.35		6.36
5-28-82	17	.60		6,48
5-15-2	17	.60		6.60
5-7 - 107	17	.40		6.72
5-78-62	17	.10		6.44
	Mean 17	.260	Mean	6.378
	Std Dev 0	.20	Std Dev	0.300

TABLE XXIV. END-CONDITION EFFECT,
TYPE XXVI NYLON WEBBING, RESIN COATED,
LOOPED OVER A 1-INCH SHACKLE

Specimen No.	Mean Load (kips)	Alternating Load (kips)	No. of Cycles	Ultimate Load* (kips)
5-5-8	Ultimate	0	o	28.00
5-27-18	Ultimate	0	0	26.00
5-4-44	Ultimate	o	O	26.50
5-10-102	Ultimate	0	0	26.50
				Mean 26.75
				Std Dev 0.866
				**
5-95-34	4.08	0.7	10,000	17.00
5-83-66	4.08	0.7	10,000	16,80
5-112-31	4.08	0.7	10,000	16.80
5-110-54	4.08	0.7	10,000	16.90
·				Mean 16.875
				Std Dev 0.096
5-58-120	13.60	0.7	10,000	16.60
5-105-9	13.60	0.7	10,000	16.40
5-91-89	13.60	0.7	10,000	15.90
5-109-28	13.60	0.7	10,000	15.50
·				Mean 16.100
				Std Dev 0.497

TABLE XXIV - Continued					
Specimen No.	Mean Load (kips)	Alternating Load (kips)	No. of Cycles	Ultimate Load* (kips)	
5-76-30	21.75	0.7	10,000	12.60	
5-29-36	21.75	0.7	10,000	11.60	
				Mean 12.100	
				Std Dev 0.707	

^{*} Tensile tested looped over 1-inch shackle.
** Tensile tested on single strap after fatigued.

TABLE XXV. OUTDOOR EXPOSURE,
TYPE XXVI NYLON WEBBING, RESIN COATED

Specimen	Exposure Time	Ultimate Load	Ultimate Elongation (in.)
No.	(wk)	(kips)	(111.)
5-21-51	26	16.00	5.40
5-57-87	26	15.90	6.50
5-45-74	26	16.20	5.78
5-24-46	26	16.10	5.60
5-48-40	26	15.90	5.10
		Mean 16.020	Mean 5.676
		Std Dev 0.130	Std Dev 0.525
5-6-25	33	14.4	4.95
5-79-103	33	14.0	5.00
5-59-22	33	15.7	4.99
5-12-53	33	15.6	5.36
5 -63-6 4	33	15.3	5.20
		Mean 15.033	Mean 5.100
		Std Dev 0.683	Std Dev 0.175

TABLE XXVI. TEMPERATURE/HUMIDITY CYCLING, TYPE XXVI NYLON WEBBING, RESIN COATED				
Specimen No.	Ultimate Load (kips)	Ultima	te Elongation (in.)	
5-68-121	17.20		7.12	
5-60-27	17.10		6.95	
5-50-104	17.10		6.65	
5-16-84	17.30		7.12	
5-65-6	17,20		6.93	
5-31-117	16.80		6.62	
5-66-43	17.30		6.91	
5-53-91	17.30		6.78	
5-1-65	17.30		7.00	
	Mean 17.178	Mean	6.898	
	Std Dev 0.164	Std Dev	0.182	

15.

TABLE XXVII. JP-4 FUEL IMMERSION, TYPE XXVI NYLON WEBBING, RESIN COATED				
Specimen	Ultimate Load	Ultima	te Elongation	
No.	(kips)		(in.)	
5-62-112	16.50		5.85	
5-30-56	17.20		6.52	
5-36-109	17.20		6.12	
5-17-125	16.25		5.91	
5-35-12	16.25		ό. 05	
	Mean 16.680	Mean	6.090	
	Std Dev 0.486	Std Dev	0.263	

TABLE XXVIII. SEAWATER IMMERSION, TYPE XXVI NYLON WEBBING, RESIN COATED						
Specimen Ultimate Load Ultimate Elongati No. (kips) (in.)						
5-42-98	16.10	5.62				
5-3-29	16.15	5.76				
5-8-94	16.10	5.85				
5-23-88	15.90	5.88				
5-73-118	15.90	5.82				
	Mean 16.030	Mean 5.786				
	Std Dev 0.120	Std Dev 0.103				

TABLE	TABLE XXIX. SAND ABRASION, TYPE XXVI NYLON WEBBING, RESIN COATED							
Specimen No.	Sand Size	Mean Load (kips)	Alternating Load (kips)	Cycles to Failure				
5-18-114	No Sand	8.00	4.00	2,848				
5-64-10	н	8.00	4.00	3,442				
5-23-11	11	8.00	4.00	1,902				
5-20-80	"	8.00	4.00	545				
5-22-4	11	8.00	4.00	1,958				
				Mean 2,139				
				Std Dev 1,099				
5-61-10	Medium	8.00	4,00	9				
5-72-100	u	8.00	4.00	7				
5-75-11	ti	8.00	4.00	5				
5-70-38	11	8.00	4.00	4				
5-22-55	"	8.00	4.00	1				
				Mean 5.200				
				Std Dev 3.033				

TABLE XXX. VISCOELASTIC TEST,
TYPE XXVI NYLON WEBBING, RESIN COATED,
GAGE LENGTH 1.187 INCHES

		والمستوالية والمراجعين					
Load		Gage	Kean	Alternating			Spring
(kips)	CPS (Hz)	Length	Load (kips)	Load	Elongation	Strain	Constant
(1175)	(HZ)	(in.)	(KIPS)	(kips)	(in.)	10-3	(lb/in./in.)
0.66	3	1.237	0.76	0.06	0.00181	1.46	41,100
0.66	6	1.237	0.66	0.06	0.00161	1.33	45 110
0.00	٥	1.237	0.00	0.06	0.00161	15	45,112
€.66	9	1.237	0.62	0.97	0.00161	1.33	52,631
2.00	3	1,292	1.97	0.19	0,00321	2.51	75 602
2.00	,	1.292	1.97	0.19	0.00321	2.31	75,697
2.00	6	1.292	1.90	0.21	0.00351	2.70	77,777
2,00	9	1,292	1.88	0.20	0.00351	2,51	70 965
2.00	7	1.272	1.65	0.20	0.00331	2.31	79,882
2.66	3	1.315	2,64	0.26	0.00351	2.66	90,227
2.66	6	1,315	2.57	0.26	0.00351	2,66	97,745
2.00		1,313	4.31	V. 20	0.00351	₹,00	7/,/43
2,66	9	1.315	2.54	0.28	0.00371	2.80	100,000
3.32	3	1.331	3.29	0.32	0.00411	3.09	103,560
							·
3.32	6	1.331	3.23	0.34	0.00421	3.19	106,583
3,32	9	1.331	3.22	0.34	0.00421	3.19	106,583
6,65	3	1.381	6.60	0.64	0.00511	3.70	172,972
				3.3 4			7,6,7,2
6.65	6	1.381	6.36	0.64	0.00561	4,06	157,635
6.65	9	1.381	6.52	0.64	0.00541	3,89	164,524
10.00	3	1.409	9,95	0,96	0.00681	4.69	204,690
10.00	6	1.409	9.89	0.96	0.00641	4.52	212,389
10.00	9	1.409	9.86	0.94	0.00641	4.52	207,964

TABLE XXXI. ULTIMATE STRENGTH,
TYPE XXVI NYLON WEBBING, LATEX COATED

Specimen	Ultimate Load	Ultimate Elongation
No.	(kips)	(in.)
114-1	17.10	5.69
115-1	16.70	-
7 0-1	16.70	5.84
121-1	16.90	5.40
79-1	16.60	5.40
47-1	17.25	5.20
34-1	16.70	5.50
122-1	16.50	5.46
49-1	17.30	5.92
65-1	16.20	5.05
76-1	17.30	5.65
24-1	16.60	5.55
85-1	17.10	5.55
107-1	16.60	5.10
104-1	16.80	5.15
113-1	16.90	5.05
58-1	17.05	5.35
66-1	17.40	5.30
93-1	16.80	\$.20
84-1	17.20	5.38
28-1	17.60	5.70

The second secon

TABLE XXXI - Continued							
Specimen No.							
109-1	16.55		5.50				
64-1	17.10		5.50				
116-1	16.2		5.10				
17-1	16.0		5.55				
103-1	16.5		5.05				
83-1	17.5		5.95				
82-1	16.7		5.40				
	Hean 16,852	Hean	5.426				
	Std Dev 0,403	Std Dev	0.262				

TABLE XXXII. END-CONDITION EFFECT, TYPE XXVI NYLON WEBBING, LATEX COATED, LOOPED OVER A 1-INCH SHACKLE

Specimen No.	Mean Load (kips)	Alternating Load (kips)	No. of Cycles	Ultimate Load* (kips)
5-25	3.75			
		0.7	10,000	16.7
5-26	3.75	0.7	10,000	15.6
5-15	3.75	0.7	10,000	16.3
5-22	3.75	0.7	10,000	13.3
				Hean 16.275
				Std Dev 0.479
5.13	12.50	0.7	10,000	16.0
5-11	12.50	0.7	10,000	15.4
5-12	12.50	0.7	10,000	15.6
5-14	12.50	0.7	10,000	15.5
				Hean 15.625
				Std Dev 0.263
5-20	20.00	0.7	10,000	8.6
5-8	20.00	0.7	10,000	10.1
5-7	20.00	0.7	10,000	14.4
5-9	20.00	0.7	10,000	13.9
				Mean 11.750
				Std Dev 2.845

TABLE XXXIII. OUTDOOR EXPOSURE,
TYPE XXVI NYLON WEBBING, LATEX COATED

Specimen	Exposure Time	Ultimate Load	Ultimate Elongation
No.	(vk)	(kips)	(in.)
25- 9	32	9.70	7.16
46-9	32	9.66	7.78
23-9	32	8.80	7.35
53-9	32	9.60	7.46
74-9	32	9.53	7.30
		Mean 9.366	Mean 7.401
		\$2d Dev 0.368	Std Dev 0.233
52-9	48	10.40	7.65
67-9	48	10-40	7.45
40-9	48	11.20	7.67
95-9	48	10.60	7.55
		Hean 10.650	Mean 7.580
		Std Dev 0.379	Std Dev 0.101
51-9	64	9.70	7.5ü
87-9	64	10.10	7.52
97-9	64	9.60	7.57
		Mean 9,800	Hean 7.530
		Std Dev 0,265	Std Dev 0.036

TABLE XXXIV. TEMPERATURE/HUMIDITY CYCLING, TYPE XXVI NYLON WEBBING, LATEX COATED

Specimen	Ultimate Load	Ultimate Elongation
No.	(kips)	(in.)
5-2	15.20	5.50
3-2	17.00	7.05
7-2	17.20	6.88
43-2	17.20	7.08
75-2	17.40	7.00
32-2	17.20	7.30
27-2	17.00	6.42
	Mean 16.886	Mean 5.747
	Std Dev 0.756	Std Dev 0.613

TABLE XXXV. JP-4 FUEL IMMERSION, TYPE XXVI NYLON WEBBING, LATEX COATED						
Specimen Ultimate Load Ultimate Elon No. (kips) (in.)						
112-4	17.10	6.10				
50-4	17.10	6.45				
99-4	17.30	6.87				
12-4	17.30	6.35				
13-4	17.40	6.73				
	Mean 17.240	Mean 6.500				
	Std Dev 0.124	Std Dev 0.306				

TABLI	E XXXVI. SEAWATER IMMERSION TYPE XXVI NYLON W	Y. EBBING, LATEX COATED
Specimen Ng.	Ultimate Load (kips)	Ultimate Elongation (in.)
29-3	15.95	5.65
19-3	16.00	5.80
118-3	15.98	5.78
88-3	15.73	5.82
96~3	15.65	5.53
	Neat: 15,816	Nean 5.716
	Std Dev 0.227	Std Dev 0.123

TABLE XXXVII. SAND ABRASION,
TYPE XXVI NYLON WEBBING, LATEX COATED

Specimen No.	Sand Size	Mean Load (kips)	Alternating Load (kipa)	Cycles to Failure
71-7	No Sand	8.0	4.0	694
92-8	"	8.0	4.0	942
55-7	u	8.0	4.0	838
4-7	"	8.0	4.0	2,206
38-7	"	8.0	4.0	517
				Mean 1,039
				Std Dev 671
48-7	片 gram med	8.0	4.0	6
59-8		8.0	4.0	3
√5 ~8	"	8.0	4.0	8
22-8	"	8.0	4.0	10
60-8		8.0	4.0	6
			•	Mean 6.60
				Std Dev 2.608

TABLE XXXVIII. VISCOELASTIC TEST,
TYPE XXVI NYLON WEBBING, LATEX COATED,
GAGE LENGTH 1.187 INCHES

		Gage	Mean	Alternating			Spring
Load	CPS	Length	Load	Load	Elengation	Strain	Constant
(kips)	(Hz)	(in.)	(kips)	(kips)	(in.)	10-3	(lb/in./in.)
0.66	3	1.220	0.62	0.07	0.6020	1.64	42,682
0.66	6	1.220	0.62	0.08	0.0020	1.64	48, 789
0.66	9	1.220	0.62	0.08	0.0020	1 .6 4	48,780
2.00	3	1.270	2.00	0.18	0.0030	2.36	76,271
2.00	6	1.270	1.94	0.20	0.0030	2.35	84,745
2.00	9	1.276	1.92	0.20	0.0030	2.36	84,745
2.66	3	1.292	2.66	0.24	0.0035	2.71	88,560
2.66	6	1.292	2.64	0.26	0,0039	3.00	86,660
2.66	9	1.292	2.61	0.26	0.0038	2.90	99,655
3.32	3	1.304	3.29	0.30	0.0038	2.88	104,166
3.32	6	1.304	3.23	0.33	0.0046	3.53	93,484
3.32	9	1.304	3.22	0.33	0.0041	3.14	105,095
6.65	3	1.342	6.65	0.61	0.0050	3.73	163,539
6.65	6	1,342	6.63	0.62	0.0052	3.87	160,206
6.65	9	1.342	6.59	0.64	0.0047	3.50	182,857
10.00	3	1.381	9,96	0.88	0.0051	3.69	238,482
10.00	6	1.381	\$.92	0.96	0.0055	3.98	241,206
10.00	9	1.381	9.92	0.96	0.0052	3.76	255,319

TABLE XXXIX. ULTIMATE STRENGTH, TYPE VI DACRON WEBBING					
Specimen No.	Ultimate Load (kips)	Ultimate Elongation (in.)			
3-31-1	18.95		3.45		
3-68-86	21.00				
3-39-79	19.75		3.42		
3-14-62	20.50		3.58		
3-55-41	20.00		3.20		
3-111-70	19.50		3.60		
3-98-49	20,25		3.48		
3-54-110	20.25		3.52		
3-42-17	20.00		3.15		
3-106-24	20.00		3.35		
3-92-76	19.50		3.25		
3-12-26	20.50		3.45		
3-109-85	22.00		3.52		
3-7-47	20.50		3.40		
3-34-42	20.00		3.48		
	Mean 20.213	Mean	3.418		
	Std Dev 0.712	Std Dev	0.136		

TABLE XL. END-CONDITION EFFECT, TYPE VI DACRON WEBBING LOOPED OVER A 1-INCH SHACKLE

Specimen No.	Mean Load (kips)	Alternating Load (kips)	No. of Cycles	Ultimate Load* (kips)
3-70-9	Ultimate	0	0	29.50
3-56-31	Ultimate	o	0	29.00
				Mean 29.250
				Std Dev 0.354
				**
3-110-28	23.4	0.7	10,000	17.25
3-51-39	23.4	0.7	10,000	17.60
				Mean 17.425
		·		Std Dev 0.247
3-65-21	14.5	0.7	10,000	20.25
3-97-120	14.5	0.7	10,000	19.70
3-10-119	14.5	0.7	10,000	20.10
3-18-8	14.5	0.7	10,000	20.60
				Mean 20.162
				Std Dev 0.373
3-117-23	4.38	0.7	10,000	21.50
3-2-36	4.38	0.7	10,000	20.70
3-84-18	4.38	0.7	10,000	21.00
3-11-33	4.38	0.7	10,000	21.20
				Mean 21.100
				Std Dev 0.337

^{*} Tensile tested looped over 1-inch shackle.
** Tensile tested on single strap after fatigued.

TABLE XLI. OUTDOOR EXPOSURE, TYPE VI DACRON WEBBING						
Specimen No.	Exposure Time (wk)	Ultimate Load (kips)	Ultima	te Elongation (in.)		
3-88- 52	16	19.50		3.58		
3-72-51	16	19.20		3.15		
3-6-95	16	17.90		3.15		
3-61-87	16	18.20		3.25		
3-100-90	16	19.30		3.90		
		Mean 18.820	Mean	3.406		
		Std Dev 0.719	Std Dev	0.328		
3-96-74	32	17.50		3.00		
3-101-58	32	17.50		2.95		
3-53-67	32	17.50		2.85		
3-112-40	32	18.00		3.02		
		Mean 17.625	Mean	2.955		
		Std Dev 0.250	Std Dev	0.076		
3-29-53	40	16.50		2.75		
3-87-104	(١)	17.00		3.12		
3-3-25	40	18.00		3.42		
		Mean 17.167	Mean	3.097		
		Std Dev 0.764	Std Dev	0.336		

TABLE XLII. TEMPERATURE/HUMIDITY CYCLING,
TYPE VI DACRON WEBBING

Specimen	Ultimate Load	Ultimate Elongation
No.	(kips)	(in.)
3-89-117	20.20	4.26
3-75-7	20.00	4.14
3-114-43	19.50	3.74
3-99-27	19.70	4.06
3-94-3	19.40	3.80
3-103-32	20.00	4.06
3-44-14	19.00	3.80
3-104-65	19,20	3.76
3-16-81	20.30	4.86
3-27-6	18.10	3,66
	Mean 19.540	Mean 4.013
	Std Dev 0.664	Std Dev 0.357

TABLE XLIII. JP-4 FUEL IMMERSION, TYPE VI DACRON WEBBING					
Specimen No.	Ultimate Load (kips)	Ultimate Elongation (in.)			
3-49-50	20.80	4.75			
3- 73-99	20.70	5.00			
3-108-13	19.25	4.42			
3-64-12	20.23	4.75			
	Mean 20.245	Mean 4.730			
	Std Dev 0.708	Std Dev 0.238			

TABLE :	KLIV. SEAWATER IMMERSION,	TYPE VI DACRON WEBBING
Specimen No.	Ultimate Load (kips)	Ultimate Elongation (in.)
3-23-19	20.80	3.92
3-43-29	21.10	4.20
3-90-88	18.30	3.50
3-62-118	20.00	3.89
3-91-98	17.50	3.62
	Mean 19.540	Mean 3.826
	Std Dev 1.576	Std Dev 0.274

TABLE XLV. SAND ABRASION, TYPE VI DACRON WEBBING						
Specimen No.	Sand Size	Hean Load (kips)	Alternating Load (kips)	Cycles to Failure		
3-116-48	No Sand	10.00	2.60	529		
3-38-10	"	10.00	2.30	3,582		
3-47-55	11	10.00	2.30	4,400		
3-107-71	#1	10.00	2.30	3,874		
3-17-15	11	10.00	2.30	2,038		
3 -32-96	11	10.00	2.30	2,096		
				Mean 2,753		
				Std Dev 1,452		
3-28-61	⅓ gram med	10.00	2.30	2		
3-102-114	"	10.00	2.30	1		
3-4-77	k gram med	10.00	2.30	4		
3-58-38	н	10.00	2.30	4		
				Hean 2.750		
				Std Dev 1.500		

TABLE XLVI. VISCOBLASTIC TEST, TYPE VI DACRON WEBBING, GAGE LENGTH 1.880 INCHES

					and the second specific control of the second	Halestern Star	
	one	Gage	Mean Load	Alternating Load	71	Strain	Spring Constant
Load (kips)	CPS (Hz)	Length (in.)	(kips)	(kips)	Elongation (in.)	10-3	(lb/in./in.)
				\			
0.78	3	1.89	0.86	0.07	0.0006	0.32	220,820
0 .78	6	1.89	0.78	0.08	0.0006	0.32	252,365
0.78	9	1.89	0.78	0.07	0.0006	0.32	220,820
2.32	3	1.92	2.32	0.24	0.0015	0.78	307,298
2.32	6	1.92	2.12	0.24	0.0014	0.73	329,218
2.32	9	1.92	1.92	0.24	0.0014	0.73	329,218
3.10	3	1.93	3.11	0.29	0.0011	0.83	349,819
3.10	6	1.93	3.06	0.29	0.0015	0.78	373,230
3.10	9	1.93	3.06	0.31	0.0015	0.78	398,970
3.88	3	1.94	3.85	0.38	0.0020	1.03	368,574
3,88	6	1.94	3.81	υ .38	0.0018	0. 93	409,482
3,88	9	1.94	3.80	0.39	0.0016	0.82	472,727
7.75	3	1,98	7.74	0.74	0.0024	1.21	610,561
7.75	6	1.98	7.64	0.75	0.0028	1.41	530,410
7.73	9	1.98	7.63	0.76	0.0028	1.41	537,482
11.60	3	2.01	11.56	1.12	0.0030	1.49	750,167
11.60	6	2.01	11.50	1.08	0.0030	1.49	723,375
17.60	9	2.01	11.44	1.12	0.0032	1.59	703,517
							روبا است. بروسته به ما است. والا است بروستها است.

TABLE X	CLVII. ULTIMATE STRENGTH, TY	YPE V DACRON WEBBING
Specimen No.	Ultimate Load (kips)	Ultimate Elongation (in.)
2-105-86	10.30	2.65
2-46-76	12.50	3.02
2-39-70	12.50	3.38
2-35-47	12.60	2.90
2-92-42	12.40	3.50
2-36-1	12.60	3.15
2-63-62	12,40	3.30
2-94-26	12.40	3.25
2-70-24	12.30	3.22
2-17-85	12.30	3.22
2-36-1	12.60	3.15
2-103-41	12.40	3.10
2-112-17	12.50	3.15
2-89-110	12.50	3.28
2-116-103	11.60	2.97
2-15-79	12.50	3.15
	Mean 12.275	Mean 3.150
	Std Dev 0.577	Std Dev 0.199

TABLE XLVII. END-CONDITION EFFECT, TYPE V DACRON WEBBING, LOOPED OVER A 1-INCH SHACKLE

Specimen No.	Mean Load (kips)	Alternating Load (kips)	No. of Cycles	Ultimate Load* (kips)
2-160-121	Ultimate	0	0	18.60
2-79-122		0	0	17.40
	Ultimate			
2-83-35	Ultimate	0	0	18.20
				Mean 18.067
				Std Dev 0.611
				**
2-10-119	14.4	0.7	10,000	7.90
2-32-2	14.4	0.7	10,000	8.70
				Mean 8.300
				Std Dev 0.566
2-34-39	9.0	0.7	10,000	11.40
2-69-34	9.0	0.7	10,000	11.60
2-4-28	9.0	0.7	10,000	11.70
2-95-120	9.0	0.7	10,000	11.40
				Hean 11.525
				Std Dev 0.150
2-67-44	2.7	0.7	10,000	12.00
2-8-31	2.7	0.7	10,000	11.90
2-22-18	2.7	0.7	10,000	11.80
2-30-102	2.7	0.7	10,000	12.00
				Mean 11.925
				Std Dev 0.096
* Tanaila	tested looped by	er l-inch shackle.	<u> </u>	<u> </u>

^{*} Tensile tested looped over 1-inch shackle.
** Tensile tested on single strap efter fatigued.

TABLE XLIX. OUTDOOR EXPOSURE, TYPE V DACRON WEBBING						
Specimen No.	Exposure Time (wk)	Ultimate Load (kips)	Ultimate Elongation (in.)			
2-59-97	16	9.20	3.35			
2-113-72	16	8.90	2.98			
2-71-87	16	9.65	3.33			
2-80-52	16	11.10	3.62			
2-110-45	16	10.80	3.52			
		Mean 9.930	Hean 3.360			
		Std Dev 0.974	Std Dev 0.244			
2-111-46	32	10.00	2.85			
2-104-74	32	9.90	3.22			
2-105-125	32	10.20	3.32			
		Hean 10.033	Hean 3.130			
		Std Dev 0.153	Std Dev 0.248			
2-91-53	40	9.70	2.92			
2-13-23	40	9.50	3.00			
		Me4n 9.60	Nean 2.960			
		Std Dev 0.141	Std Dev 0.056			

TABLE L.	TEMPERATURE/HUMIDITY CYCLIN	NG, TYPE V DACRON WEBBING
Specimen No.	Ultimate Load (kips)	Ultimate Elongation (in.)
2-50-27	12.70	3.87
2-44-14	12.60	3.70
2-77-43	12.30	3.87
2-56-32	12.44	3.56
2-76-3	12.50	3.90
2-68-65	12.40	3.90
2-58-81	12.50	3.92
2-23-6	12-50	3.82
2-31-75	12.45	1,82
2-53-7	12.55	3.99
	Mean 12,499	Nean 3.835
	Std Dev 0.116	Std-Dev 0.123

	TABLE LIII. SAND ABRASION, TYPE V DACRON WEBBING					
Specimen No.	Sand Size	Mean Load (kips)	Alternating Load (kips)	Cyc.s to Failure		
2-107-59	No Sand	6.25	3.12	930		
2-55-5	"	6.25	3.12	420		
2-9-92	t t	6.25	3.1 2	3,596		
2-45-22	tt.	6.25	3.12	4,407		
2-6-60	51	6,25	3.12	134		
2-43-38	**	6.25	3.12	905		
2-47-55	**	6.25	3.12	3,108		
2-3-71	11	6,25	3.12	, 466		
2-73-77	H	6.25	3.12	741		
				Hean 1,634		
	,			Std 0ev 1,605		
2-115-48	h gram med	6,25	3.12	3		
2-101-16	**	6.25	3.12	i		
				Nean 2.000		
				SED Dev 1.410		
2-97-51	i gram med	6,25	3.12	2		
2-7-15	**	6.25	3.12	3		
2-75-96	44	6.25	3.12	3		
				Mesn 2.669		
				Std Dev 0.577		

TABLE LIV. VISCOELASTIC TEST, TYPE V DACRON WEBBING, GAGE LEMGTH 1.188 INCHES

<u></u>							
Load (kips)	CPS (Hz)	Gage Length (in.)	Mean Load (kips)	Alternating Load (kips)	Elongation (in.)	Strain 10 ⁻³	Spring Constant (lb/in./in.)
0.45	3	1.193	0.45	0.09	0.0005	0.42	214,800
0.45	6	1.193	0.50	0.09	0.0004	0.34	268,660
0.45	9	1.193	0.50	0.10	0.0005	0.42	238,660
1.35	3	1.210	1.39	Դ.28	0.0014	1.16	242,000
1.35	6	1.210	1.40	0.22	0.0011	0.91	242,020
1.35	9	1.210	1.37	0.26	0.0014	1.16	224,720
1.80	3	1.221	1.78	0.34	0.0015	1.23	276,870
1.80	ó	1.221	1.74	0.40	0.0018	1.47	271,370
1.80	9	1.221	1.67	0.38	0.0018	1,47	257,800
2.25	3	1.232	2.22	0.43	0.0018	1.46	294,320
2.25	6	1.232	2.15	0.43	0.0019	1.54	278,860
2.25	9	1.232	2.03	0.44	0.0020	1.62	271,100
4.50	3	1.266	4.47	0.86	0.0026	2.05	418,700
4.50	6	1.266	4.42	0.86	0.0028	2.21	388,790
4.50	9	1.266	4.37	0.86	0.0029	2.29	375,380
6.75	3	1.288	6.91	1,26	0.0036	2.76	455,860
6.75	6	1.288	6.71	1.50	0.0042	3.30	454,540
6.75	9	1.288	6.87	1.42	0.0041	3,15	450,510

TABLE LV. ULTIMATE STRENGTH AFTER 1-YEAR INDOOR STORAGE

Type Webbing	Specimen No.	Ultimate Elongation (in.)	Ultimate Load (kips)
Dacron Type V	2-2-10	5.4	12.3
Dacron Type V	2-66-80	6.1	12.3
Dacron Type V	2-52-69	6.5	12.1
Dacron Type V	2-29-11	6.6	12.6
Dacron Type V	2-40-100	6.3	12.6
		Mean 6.180	Mean 12.380
		Std Dev 0.476	Std Dev 0.217
Dacron Type VI	3-21-100	6.6	19.5
Dacron Type VI	3-105-82	7.1	20.0
Dacron Type VI	3-57-92	6.0	18.0
Dacron Type VI	3-95-60	7.3	19.1
Dacron Type VI	3-35-11	6.8	18.5
		Mean 6.760	Mean 19.020
		Std Dev 0.503	Std Dev 0.792
Nylon Type X	x-1	11.6	10.4
Nylon Type X	x-2	11.5	10.3
Nylon Type X	X-3	11.0	10.3
Nylon Type X	x-4	11.5	10.4
Nylon Type X	X- 5	13.6	10.3
		Mean 11.840	Mean 10.340
		Std Dev 1.011	Std Dev 0.055

TABLE LV - Continued				
Type Webbing	Specimen No.	Ultimate Elongation (in.)	Ultimate Load (kips)	
Nylon Type XIX	1-115-80	9.7	11.7	
Nylon Type XIX	1-42-10	9.3	11.5	
Nylon Type XIX	1-88-69	9.0	10.5	
Nylon Type XIX	1-26-4	9.4	11.0	
Nylon Type XIX	1-84-11	9.3	11.6	
		Mean 9.340	Mean 11.260	
		Std Dev 0.251	Std Dev 0.503	
Nylon Type XXVI-L	44-6	11.6	17.0	
Nylon Type XXVI-L	15-5	11.1	17.0	
Nylon Type XXVI-L	77- 5	11.3	16.8	
Nylon Type XXVI-L	1 6- 5	11.0	17.0	
Nylon Type XXVI-L	61-5	9.8	16.2	
		Mean 10.960	Mean 16.800	
		Std Dev 0.688	Std Dev 0.346	
Nylon Type XXVI-R	5-14-22	10.6	16.0	
Nylon Type XXVI-R	5-11-59	10.8	16.9	
Nylon Type XXVI-R	5-34-5	12.0	16.8	
Nylon Type XXVI-R	5-32-60	11.6	16.7	
Nylon Type XXVI-R	5-113-39	11.2	16.5	
		Mean 11.240	Mean 16.580	
		Std Dev 0.573	Std Dev 0.356	