See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/241493113

Structural, electronic and magnetic properties of cementite-type Fe₃X (X=B, C, N) by first-principles calculations

ARTICLE in SOLID STATE SCIENCES · MARCH 2010

Impact Factor: 1.84 · DOI: 10.1016/j.solidstatesciences.2009.12.004

CITATIONS

11

READS

24

6 AUTHORS, INCLUDING:

Zhiqing Lv

Yan Shan University

31 PUBLICATIONS 246 CITATIONS

SEE PROFILE

Wan-tang Fu

Yan Shan University

55 PUBLICATIONS 374 CITATIONS

SEE PROFILE

Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Author's personal copy

Solid State Sciences 12 (2010) 404-408

Contents lists available at ScienceDirect

Solid State Sciences

journal homepage: www.elsevier.com/locate/ssscie

Structural, electronic and magnetic properties of cementite-type Fe_3X (X = B, C, N) by first-principles calculations $^{\circ}$

Z.Q. Lv^{a,b}, W.T. Fu^{a,*}, S.H. Sun^{a,c}, Z.H. Wang^a, W. Fan^a, M.G. Qv^a

- ^a State Key Laboratory of Metastable Material Science and Technology, Yanshan University, Qinhuangdao 066004, China
- ^b College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
- ^c College of Science, Yanshan University, Qinhuangdao 066004, China

ARTICLE INFO

Article history:
Received 6 August 2009
Received in revised form
18 November 2009
Accepted 3 December 2009
Available online 11 December 2009

Keywords: Electronic structure Magnetic properties First-principles Cementite Crystal structure

ABSTRACT

Using first-principles technique, the crystal structure of cementite-type Fe $_3$ N is predicted. The average magnetic moment (Ms) of cementite-type Fe $_3$ N is also predicted as 1.4929 $\mu_B/atom$. The Ms of Fe $_3$ N is bigger than that of Fe $_3$ C, but smaller than that of Fe $_3$ B. Fe Ms between two different Fe sites in Fe $_3$ N are different (2.0541 and 2.0139 μ_B), which indicates that Fe Ms are sensitive to the local short-range order in the cementite-type crystal. The Ms of B, C and N are -0.3525, -0.2474 and -0.1102 $\mu_B/atom$ in Fe $_3$ X (X = B, C, N), respectively. The chemical bonds of Fe $_3$ X (X = B, C, N) take on metallicity, covalence, and ionicity. The ionicity of Fe $_3$ X (X = B, C, N) strengthens and the covalence of Fe–X weakens, going from Fe $_3$ B, Fe $_3$ C to Fe $_3$ N.

© 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

As the cementite-type Fe_3X (X=B, C, N) with orthorhombic structure are the most important strengthening phases in carbon and alloy steels, the carburizing, boriding and nitriding technology are applied widely to improve the surface properties of the steels [1–3]. In some cases, Fe_3B and Fe_3N are also the important composition phases in the other ferromagnetic materials [4–6]. Although the structural, electronic, and magnetic properties of Fe_3N with hexagonal structure have been investigated [6,7], there are few reports on the properties of cementite-type Fe_3N . The investigations on the electronic structure and magnetic properties of Fe_3X (X=B, C, N) are a significant contribution to clarify the relationship between them and predict the properties of the cementite-type Fe_3N .

The present study aims to examine the electronic and magnetic properties of cementite-type Fe_3X (X = B, C, N) and to clarify the relationship between them by using the first-principles method. As

a result, the crystal structural, electronic and magnetic properties of the cementite-type Fe_3N are predicted.

2. Crystal structure and calculation details

All calculations were performed for cementite-type Fe_3X (where $X=B,\,C,\,N$) using CASTEP code [8] based on the Density-Function Theory (DFT) [9,10]. The electron–ion interactions are described by using the Vanderbilt ultrasoft pseudopotential (USPP) [11]. The exchange and correlation terms are treated by Generalized Gradient Approximation (GGA) in the scheme of Revised Perdew–Burke–Eruzer (RPBE) [12]. It is needed to mention that the used USPP should be compatible with the special type of GGA. For the Brillouin–Zone sampling, the Monkhorst–Pack Scheme [13] was adopted.

In the calculations of Fe₃X (X = B, C, N), we used $5 \times 4 \times 6$ mesh of special k-points and the kinetic energy cutoff ($E_{\rm cut}$) $E_{\rm cut} = 500$ eV for the GGA calculations. Spin polarization is considered at each calculation. Each calculation was considered convergence when the maximum force on the atom was below 0.006 eV Å⁻¹ and the maximum displacement between cycles was below 2×10^{-4} Å. The cementite-type Fe₃X (X = B, C, N) crystallize in the orthorhombic space group Pnma (SP No. 62) with four formula units (Z = 4) per unit cell, where four iron atoms (FeI) in "special" positions, eight

 $^{^{\}mbox{\tiny $\dot{\gamma}$}}$ This work was supported by the Natural Science Foundation of China (No. 50671089 and No. 50471102).

^{*} Corresponding author. Tel.: +86 335 838 7472. E-mail address: wtfu@ysu.edu.cn (W.T. Fu).

Fig. 1. Crystal structure of cementite-type Fe_3X , showing the orthorhombic space lattice and the sixteen atoms basis.

iron atoms (FeII) are in "general" positions, and four nonmetal atoms (B, C, N) in the interstices [14]. A three-dimensional drawing of the unit cell is shown in Fig. 1.

3. Results and discussions

3.1. Structural properties of cementite-type Fe_3X (X = B, C, N)

The ground state properties of the cementite-type Fe_3X (X=B, C, N) are investigated from their total energy, which is calculated as a function of volume. When it is according to the Murnaghan equation of state [15], the equilibrium lattice constants and atomic positions can be obtained (see Table 1). It can be found that the GGA values of the lattice constants match fairly well with the experimental ones for Fe_3B [16] and Fe_3C [17]. The deviations between the experimental and theoretical values of cell volume are 0.32% and 0.28% for Fe_3B and Fe_3C , respectively. Based on the same method

Table 1 Experimental and calculated lattice constants a_0 , b_0 , c_0 (Å), v_0 (ų), ρ (g/cm³) and E_{cell} (eV) of Fe₃B, Fe₃C and Fe₃N.

	Fe ₃ B (Ref. [16])	Fe ₃ C (Ref. [17])	Fe₃N	
а	5.437 (5.433)	5.053 (5.082)	4.955	
b	6.710 (6.656)	6.775 (6.733)	7.124	
С	4.387 (4.454)	4.504 (4.521)	4.506	
Fe _I	0.02041, 0.25000,	0.03887, 0.25000,	0.05881, 0.25000,	
	0.88216	0.83490	0.81467	
Fe _{II}	0.17557, 0.44364,	0.17654, 0.43136,	0.17374, 0.42347,	
	0.35267	0.33139	0.31483	
X	0.38182, 0.25000,	0.37688, 0.25000,	0.38201, 0.25000,	
	0.07487	0.06203	0.06536	
V	160.055 (161.066)	154.258 (154.696)	159.067	
ρ	7.401 (7.355)	7.731 (7.709)	7.581	
E _{total} (cell)	-10 706.46	-11 013.76	-11 477.78	

the crystal structure of the cementite-type Fe_3N is predicted (shown in Table 1).

3.2. Electronic properties of cementite-type Fe_3X (X = B, C, N)

Considering the results obtained from the electronic structure of cementite-type Fe_3X (X=B, C, N) at equilibrium, the electronic properties of them from the plots of DOSs (density of states) are discussed. The site- and spin-projected DOSs are shown in Fig. 2 for Fe_3X (X=B, C, N) at theoretical equilibrium lattice constants. It can be seen that for Fe_3X (X=B, C, N), there are three regions: the lowest valence band, the upper valence band, and the conduction

Fig. 2. Calculated spin-polarized total density of states of (a) Fe₃B, (b) Fe₃C, (c) Fe₃N.

Fig. 3. Total electron density distribution map of the plane with Fe and X atoms of Fe₃X plotted from 0.01 (blue) to 1 (red) e Å⁻³, electron density values larger than 1 are not shown (a) Fe₃B, (b) Fe₃C, (c) Fe₃N. (For interpretation of the references to colour in this figure legend, the read is referred to the web version of this article.)

unoccupied states. The lowest valence band ranging consists of a mixture of X (B, C, N) 2s and a small contribution from s, p and d states of metal atoms Fe. The upper valence band mainly constituted with the hybridization of X (B, C, N) 2p and metal atoms (Fe) 3d. Comparing the up with down densities, it can be seen that the up and down states are not symmetric for them, and Fe₃X (X = B, C, N) have magnetic characters. The magnetic characters of them are manifest in the two last parts from Fig. 2. Actually, the lowest valence band is almost symmetric, and it is near to the Fermi level that the up and down states are noticeably dissimilar for them. The energy gaps between the lowest valence band and the upper valence band are 1, 4 and 7.5 eV for cementite-type Fe₃B, Fe₃C and Fe₃N, respectively. This shows that the chemical bonds of Fe_3X (X = B, C, N) take on ionicity and the ionicity of Fe_-X strengthens from Fe-B, Fe-C to Fe-N. The main reason of the ionicity of Fe-X is the difference in electro-negativity between the comprising elements (Fe and X). In addition, no energy gap near to the Fermi level can be seen, and this indicates a metallic nature of Fe_3X (X = B, C, N). The bonding characters of the constituting elements can be described as a mixture of covalent-ionic and, due to the d-resonance in the vicinity of the Fermi level, partly metallic.

In Figs. 3 and 4, the electron density distribution map of the plane with Fe and X (B, C, N) atoms is plotted in two ways, the total

density map and the electron density difference map. The core regions of X (X = B, C, N) and Fe have the largest density from Fig. 3, which are mainly due to ionic core orbits. The covalent bonds of Fe-X can be found in Fig. 3, which were immersed in a metallic Fermi free electron gas. The covalence of Fe-X grows, going from Fe-N, Fe-C to Fe-B. The delocalized electron clouds represent the metallic bonds between the metal atoms and the highest energy level near the Fermi surface being occupied [18]. The electron density difference was determined as $\Delta \rho = \{\rho_{\rm crystal} - \sum \rho_{\rm at}\}$, where $\rho_{crystal}$ and ρ_{at} are the valence electron densities for Fe₃X (X = B, C, N) and the corresponding free atoms, respectively. It can be seen that the increment of valence electrons is concentrated on the X(X = B, C, N) atoms and the elongated contours correspond to the p-like orbits of X (X = B, C, N). In the interstitial regions, the increment of delocalized electrons is attributed to the metallic bonds. From Figs. 3 and 4, it is concluded that the chemical bonds of Fe_3X (X = B, C, N) take on metallicity and covalence, and the covalence of Fe-B is strongest and that of Fe-C is weakest in them.

The differences in electro-negativity between Fe and X result in the charge transfer in Fe₃X. For explaining the charge transfer and the ionicity of Fe–X, the Mulliken populations for Fe₃X were calculated. From the Mulliken population analysis for cementite (Fe₃C), the charges of C, Fe₁ and Fe₁₁ atoms distribute to -0.69,

Fig. 4. Electron density difference map of the plane with Fe and X atoms of Fe₃X plotted from -0.2 (blue) to 0.1 (red) e Å⁻³ (a) Fe₃B, (b) Fe₃C, (c) Fe₃N. (For interpretation of the references to colour in this figure legend, the read is referred to the web version of this article.)

Fig. 5. Calculated site- and spin-projected partial density of states of (a) Fe_3B , (b) Fe_3C , (c) Fe_3N .

+0.19 and +0.25, respectively [19]. As for Fe₃B, the charges of B, Fe₁ and Fe_{II} atoms are -0.73, +0.25 and +0.24, respectively; as for Fe₃N, the charges of N, Fe₁ and Fe_{II} atoms distribute to -0.67, +0.19 and +0.24. The values of charge transfer for Fe₃C, Fe₃B and Fe₃N are 0.69, 0.73 and 0.67, respectively. The calculated lengths of the Fe–B bonds are 2.08327, 2.10503 and 2.13917 Å respectively, and the corresponding overlapping-population values are 0.35, 0.31 and 0.25 in Fe₃B. The calculated lengths of the Fe–C bonds are 1.99094, 2.00195 and 2.00849 Å respectively, and the corresponding overlapping-population values are 0.30, 0.32 and 0.34 in Fe₃C. The calculated lengths of the Fe–N bonds are 1.95992,

Table 2Calculated effective charges Q^* , spin magnetic moments Ms, and DOS at the Fermi level (states/eV spin unit cell) for Fe₂B. Fe₂C and Fe₃N.

	Fe ₃ B		Fe ₃ C		Fe ₃ N	
	Fe (4c)	Fe (8d)	Fe (4c)	Fe (8d)	Fe (4c)	Fe (8d)
Fe Q [*] (electron)						
S	0.2367	0.2329	0.2332	0.2316	0.2269	0.2194
p	0.3037	0.3198	0.3504	0.3152	0.3484	0.3180
d	4.5617	4.4453	4.4080	4.3736	4.4115	4.3787
Sum	5.1021	4.9980	4.9616	4.9204	4.9868	4.9161
Fe Q ₁ (electron)						
S	0.2375	0.2429	0.2498	0.2470	0.2473	0.2380
p	0.3685	0.4019	0.4474	0.3914	0.4570	0.4100
d	2.0391	2.2097	2.2459	2.2872	2.2284	2.2542
Sum	2.6451	2.8545	2.9431	2.9256	2.9327	2.9022
$Q^* = Q^*_{\uparrow} + Q^*_{\downarrow}$	7.7473	7.8525	7.9047	7.8460	7.9195	7.8183
$Ms = Q_{\uparrow}^* - Q_{\downarrow}^*$	2.4570	2.1435	2.0185	1.9948	2.0541	2.0139
	B Q _↑ * (electron)		C Q [*] (electron)		N Q [*] (electron)	
S	0.5576		0.7274		0.8453	
p	1.1283		1.4944		1.9306	
Sum	1.6859		2.2218		2.7759	
	Q_{\perp}^{*} (electron)		Q_{\downarrow}^{*} (electron)		Q_{\perp}^{*} (electron)	
S	0.6205		0.7518		0.8439	
р	1.4179		1.7174		2.0422	
Sum	2.0384		2.4692		2.8861	
$Q^* = Q^*_{\uparrow} + Q^*_{\bot}$	3.7243		4.6910		5.6620	
$Ms = Q_{\uparrow}^* - Q_{\downarrow}^*$	-0.3525		-0.2474		-0.1102	
$N(E_F)_{\uparrow}(cell)$	4.7885		4.5866		4.9285	
$N(E_F)^{\downarrow}(cell)$	8.8610		5.3696		8.2713	
$N(E_F)$ (total)	13.6495		9.9562		13.1998	

1.96349 and 1.97664 Å respectively, and the corresponding overlapping-population values are 0.30, 0.25 and 0.28 in Fe₃N. This indicates that the strong covalent bonding states exist in Fe₃X (X = B, C, N). The lengths of Fe–Fe bonds in Fe₃B, Fe₃C and Fe₃N are 2.45748–2.95550 Å, 2.45834–2.67174 Å and 2.47077–2.82024 Å, respectively. The variations of population values are 0.03–1, 0.06–1 and 0.03–1 in Fe₃B, Fe₃C and Fe₃N, respectively. There are no negative overlap population values of Fe–Fe bonds in Fe₃X (X = B, C, N), which indicates no repulsion force among these atoms.

3.3. Magnetic properties of cementite-type Fe_3X (X = B, C, N)

Fig. 5 shows the site- and spin-projected Partial Densities of States (PDOSs) for Fe₃X (X = B, C, N), respectively. For each case, the up and down total densities at each atom are shown separately. From Fig. 5, it can be found that the spin DOSs of Fe atom in Fe₃B, Fe₃C, Fe₃N are different. The effective charges Q^* , their spin components and the spin magnetic moments were calculated according to the Mulliken scheme for each atom in Fe₃X (X = B, C, N) from Fig. 5, which are listed in Table 2.

The average magnetic moments of the Fe₃B, Fe₃C and Fe₃N are 1.5979, 1.4402 and 1.4929 $\mu_B/$ atom, respectively. The results of Fe₃C and Fe₃B are similar to that in the literatures [19,20]. The average magnetic moment of cementite–Fe₃N (1.4929 $\mu_B/$ atom) is similar to that of ϵ -Fe₃N (1.44 $\mu_B/$ atom) [7]. The differences of Ms between Fe₃X mainly result from that of the spin density difference of Fe and X (X = B, C, N) in the three crystals (see Fig. 5). For cementite–type Fe₃B, the values of Fe Ms are 2.4570 and 2.1435 μ_B for Fel and Fell, respectively. For cementite–Fe₃C, the values of Fe Ms are 2.0185 and 1.9948 μ_B for Fel and Fell, respectively. For cementite–type Fe₃N, the values of Fe Ms are 2.0541 and 2.0139 μ_B for Fel and Fell, respectively. The magnetic character of Fe atom comes from the spin of 3d electrons. The spin density of Fe of Fe₃B is bigger in E_F (the Fermi level) than that of Fe₃C and Fe₃N. The values of atom Ms can be

obtained from the deviation between the up spin occupied state and down spin occupied state. The spin magnetic moment of Fe for Fe₃B is bigger than that for Fe₃N and Fe₃C, so the Ms of Fe₃B is stronger than Fe₃N and Fe₃C. The Ms of Fe₃C is smaller than that of Fe₃N, because the Ms of N ($-0.1102~\mu_B$) is bigger than that of C atom $(-0.2474 \mu_B)$ in the crystal. The Fe Ms between two different Fe sites in cementite-type Fe₃X are also different, which indicates that the Fe Ms are sensitive to the local short-range order in the crystals. Similar difference was also found in the literature [19], while the values of moments in Fe are different. The corresponding Q^* for Fe atoms in Fe₃X (X = B, C, N) are similar, but that for B, C and N are different (see Table 2). The corresponding Q* for N is bigger than that for B and C in Fe₃X (X = B, C, N). This indicates that the ionicity of cementite-type Fe₃N is stronger than Fe₃C and Fe₃B, and that of Fe₃B is weakest in them. This result accords with the DOSs analyses.

4. Conclusion

In summary, a completely theoretical analysis of the structural, electronic and magnetic properties of cementite-type Fe_3X (X = B. C, N) has been presented using first-principles technique. The internal positions of atoms within the unit cell were optimized and the ground state properties such as lattice parameter and the final enthalpy of cementite-type Fe_3X (X = B, C, N) were calculated. The calculated equilibrium structural parameters of Fe₃C and Fe₃B are in agreement with the experimental results. Using the same method the crystal structure of the cementite-type Fe₃N is predicted. From the calculated results, it is confirmed that the bonds of cementitetype Fe_3X (X = B, C, N) are the unusual mixtures of metallicity, covalence, and ionicity. The ionicity of cementite-type Fe₃N is the strongest and the covalence of cementite-type Fe₃B is the strongest in them. The cementite-type Fe_3X (X = B, C, N) are ferromagnetic phases, and the average magnetic moment of cementite-type Fe₃N is predicted as 1.4929 μ_B/atom. The Ms of Fe₃N is bigger than that of Fe₃C, but smaller than that of Fe₃B. Fe moments between two different Fe sites are different in cementite-type Fe_3X (X = B, C, N), which indicates that the Fe moments are sensitive to the local short-range order in the cementite-type crystals.

References

- [1] M.J. Baldwin, S.C. Haydon, M.P. Fewell, Surf. Coat. Technol. 97 (1997) 97.
- M.I. Ismail, S.S. Iskander, E.B. Saleh, Surf. Technol. 12 (1981) 341-349.
- B. Selçuk, R. Ipek, M.B. Karami, et al., J. Mater. Process. Technol. 103 (2000) 310.
- S.D. Li, H. Bi, G.Z. Xie, et al., J. Magn. Magn. Mater. 282 (2004) 202.
- S. Hirosawa, H. Kanekiyo, T. Miyoshi, et al., J. Alloys Compd. 408-412 (2006) 260.
- [6] D. Li, Z.D. Zhang, W.F. Li, et al., J. Magn. Magn. Mater. 307 (2006) 128-133.
- [7] A. Houari, S.F. Matar, M.A. Belkhir, M. Nakhl, Phys. Rev. B 75 (2007) 064420.
- Matterials Studio, Version 2.1.5. Accelrys Inc., 2002. [9] W. Kohn, L.J. Sham, Phys.Rev. 140 (1965) A1133
- [10] P. Hohenberg, W. Kohn, Phys.Rev. 136 (1964) B384.
- [11] D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.
- [12] B. Hammer, L.B. Hansen, J.K. Norskov, Phys. Rev. B 59 (1999) 7413.
- [13] H.J. Monkhorst, J.D. Pack, Phys. Rev.B. 13 (1976) 5188.
- [14] R. Wyckoff, Crystal Structure. Inter Science, New York, 1964, 564.
- F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30 (1944) 244.
- [16] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.

- [17] I.G. Wood, L. Vocadlo, K.S. Knight, et al., J. Appl. Crystallogr. 37 (2004) 82.
 [18] B. Xiao, J. Feng, C.T. Zhou, J.D. Xing, et al., Chem. Phys. Lett. 459 (2008) 129.
 [19] Z.Q. Lv, F.C. Zhang, S.H. Sun, et al., Comput. Mater. Sci. 44 (2008) 690–694.
- [20] W.Y. Ching, Y.N. Xu, B.N. Harmon, et al., Phys. Rev. B 42 (1990) 44.