Unsupervised Anomaly Detection for Medical Images

CT Images

1. Introduction

1.1 Background

- **Anomaly Detection**: A process of identifying data points or patterns that deviate significantly from the norm or expected behavior, often indicating potential errors, outliers, or rare events.
- Importance of detecting anomalies in data:
 - Early identification of potential problems or issues
 - Enhancing data quality and accuracy
 - Improving decision-making based on data insights
 - Detection of fraud, system failures, or security breaches
- Types of Anomaly Detection:
 - Supervised Anomaly Detection: Uses labeled data (normal and anomalous instances) to train a model that can classify future instances as normal or anomalous.
 - **Unsupervised Anomaly Detection**: Does not require labeled data, instead relying on the intrinsic structure of the data to identify anomalies. It is particularly useful when labeled data is scarce or costly to obtain.
 - **Semi-supervised Anomaly Detection**: Combines elements of both supervised and unsupervised methods, using a small amount of labeled data to guide the identification of anomalies in the larger, unlabeled dataset.

van Hespen, K.M., Zwanenburg, J.J.M., Dankbaar, J.W. *et al.* An anomaly detection approach to identify chronic brain infarcts on MRI. *Sci Rep* **11**, 7714 (2021). https://doi.org/10.1038/s41598-021-87013-4

1.2 Applications

- Early disease detection
- Quality Assurance and artifacts identification
- Assisting in diagnosis and treatment planning
- Monitoring disease progression
- Identifying rare diseases or conditions

Artifacts Identification

1.3 Significance

- Improving patient outcomes
- Reducing the burden on healthcare professionals
- Enhancing the efficiency of healthcare systems
- Facilitating early intervention and personalized treatment

2. Methodology

2.1 Convolutional Autoencoder (CAE)

2.2 Scale Space Autoencoder (SSAE)

2.3 Fast Anoamly Detection GAN (f-AnoGAN)

2.4 Deep Autoencoding Gaussian Mixture Model (DAGMM)

3. Experiments

3.1 Dataset

- Images: 2D head CT scans
- Two class:
 - Normal: 100 images
 - Abnormal: 100 images
- Image size: 1x256x256

Normal **Abnormal**

3.2 Cross Validation Experiment

- 2x5 = 10 iterations
- Model with best validation AUC is evaluated on test set
- Threshold is determined using f1-score on validation set
- Final average performance on test set is reported

3.3 Implementation Details

Input images:

- Resized to: 64x64
- Intensity rescaled to: [0, 1]

Data augmentation:

- Random horizontal flip
- Random affine: rotation, translation, scaling, shearing
- Color jitter: brightness, contrast, satuation, hue

Convolutional blocks:

- Encoder block: Convolution + Batch Normalization + Leaky ReLU + Dropout
- Decoder block: Transpose Conv + Batch Normalization + Leaky ReLU + Dropout

Model training:

- Batch size: 30
- Optimizer: Adam
- Automatic mixed precision to speed up training

4. Results

4.1 Model Training

4.1 Model Training: f-AnoGAN Image Generation

f-AnoGAN: WGAN-GP

f-AnoGAN: Encoder

4.2 Anomaly Threshold Selection

4.3 Test Metrics Summary

Model	AUC	Accuracy	Recall	Precision	F1
CAE	0.78±0.09	0.74±0.04	0.93±0.05	0.77±0.04	0.84±0.02
SSAE	0.81±0.08	0.80±0.02	0.88±0.02	0.84±0.03	0.86±0.01
f-AnoGAN	0.87±0.06	0.86±0.02	0.93±0.02	0.88±0.01	0.91±0.01

4.4 Test Anomaly Histograms

f-AnoGAN

4.5 Test Image Reconstruction and Anomaly Prediction

CAE SSAE f-AnoGAN Test Image: Normal Reconstruction Prediction: Normal Test Image: Normal Reconstruction Prediction: Normal Test Image: Normal Reconstruction Prediction: Normal Test Image: Normal Reconstruction Prediction: Abnormal Test Image: Normal Prediction: Normal Test Image: Normal Reconstruction Reconstruction Prediction: Normal Test Image: Normal Reconstruction Prediction: Abnormal Test Image: Normal Prediction: Abnormal Test Image: Normal Prediction: Normal Reconstruction Reconstruction Test Image: Normal Prediction: Abnormal Reconstruction Test Image: Normal Reconstruction Prediction: Abnormal Test Image: Normal Reconstruction Prediction: Abnormal

True Negative

4.5 Test Image Reconstruction and Anomaly Prediction

SSAE f-AnoGAN CAE Test Image: Abnormal Reconstruction Prediction: Abnormal Test Image: Abnormal Reconstruction Prediction: Normal Test Image: Abnormal Reconstruction Prediction: Abnormal Test Image: Abnormal Reconstruction Prediction: Normal Test Image: Abnormal Reconstruction Prediction: Normal Test Image: Abnormal Reconstruction Prediction: Normal

True Positive

False Negative

4.6 Anomaly Segmentation

Test Image: Abnormal

Prediction: Abnormal

Test Image: Abnormal

Reconstruction

Test Image: Abnormal

Reconstruction

Prediction: Abnormal

Test Image: Abnormal

Reconstruction

Prediction: Abnormal

Prediction: Abnormal

4.7 Other Attempts

- Patch-wise training: no significant improvement
- Higher image resolution: performance degradation
- DAGMM: did not work on this dataset

5. Discussion

5.1 Dataset Limitation

- Insufficient images for training
 - Image resolution has to be reduced
 - Difficult to learn data distribution
 - GAN does not generate a diverse set of images
 - Solution: data augmentation
 - Affine transformation is very helpful
 - Excessive color jitter harms model performance
- Absence of Patient Information
 - Possibility of information leakage (images from the same person present in both training and inference sets)
 - Training with N, inference with N: biased towards better performance
 - Training with N, inference with A: biased towards worse performance
- Image noise and artifacts
 - Data preprocessing might help: noise reduction, brain segmentation, etc.

5.2 Model Analysis

- Convolutional autoencoder
 - Simple and fast to train
 - Cannot recover fine details
- Scale space autoencoder
 - Good reconstruction quality
 - Some abnormalities are recovered
- Fast anomaly detection GAN
 - Best reconstruction quality
 - Seldom recover anomalies
 - Slow to train
 - Requires more data for better generalizability

5.3 Image Reconstruction

- Reconstruction quality is sometimes sacrificed
 - Fine details cannot be recovered
- Find a balance between:
 - Better reconstruction quality => More likely to reconstruct anomalies
 - Worse reconstruction quality => Tend to lose fine details and small anomalies
- Reconstruction loss is averaged over the image:
 - Small abnormal regions are likely to be ignored (low image anomaly score)

Ultra-Widefield Images

Dataset: UWF Fundus Images

- Original resolution: 3072x3900x3 and 2048x2600x3
- Low resolution version: 307x390x3 and 205x260x3
- Empty blue channel

1. Supervised Classification

Experiment Setup

• Data split:

- Training: 60% good + 60% bad
- Validation: 20% good + 20% bad
- Test: 20% good + 20% bad

Data transformations:

- resize = T.Resize((224, 224))
- random_horizontal_flip = T.RandomHorizontalFlip(p=0.5)
- random_affine = T.RandomAffine(degrees=3, translate=(0.05, 0.05), scale=(0.95, 1.05))
- normalize = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

Experiment Setup

- Model: ImageNet pre-trained DenseNet121 + FC layers
- Training details:
 - Epochs: 500
 - Batch size: 64
 - Optimizer: SGD
 - Learning rate: 1e-3
 - Loss: weighted cross entropy

- Minimum validation loss is used to select the best model.
- Final test performance is reported on this best model:
 - Accuracy 0.75
 - Recall 0.66
 - Precision 0.63
 - F1 0.64
 - Specificity 0.80
 - AUC 0.86

Note: Test set loss/metrics are ploted here just for model/dataset evaluation purpose. Formally, they should not be.

- Implemented with https://github.com/jacobgil/pytorch-grad-cam
- Target layer is model.features[-1] except FullGrad
- Complete results stored in folder supervised\results\test

2. Unsupervised Learning: f-AnoGAN

Model Architecture: f-AnoGAN

Fig. 2. Components of the proposed anomaly detection framework training. *Wasserstein GAN (WGAN)* training yielding learned parameters for the generator (G) and discriminator (D). Three possible variants of *encoder training* with fixed parameters of G (and D) where only the encoder parameters are adapted. 1) *izi encoder training*: minimizing the loss \mathcal{L}_{izi} based on the residual of real input images and "reconstructed" images, 2) *izi_f encoder training*: jointly minimizing the loss \mathcal{L}_{izi} based on the residual of real input images and "reconstructed" images and the loss \mathcal{L}_{D} based on the residual on discriminator's features, and 3) *ziz encoder training*: minimizing the loss \mathcal{L}_{ziz} based on the residual of randomly sampled and reconstructed locations in z-space (latent space). (For interpretation of the references to color in the main text, the reader is referred to the web version of this article.)

Experiment Setup

Data split:

- Train: 60% good
- Validation: 20% good + 50% bad
- Test: 20% good + 50% bad

Data transformations:

- Size: 256x256
- Channels: 2 (blue channel removed)
- Pixel intensity: percentile 0-99.99 rescaled to [-1, 1]
- Augmentation
 - horizontal_flip = A.HorizontalFlip(p=0.5)
 - random_affine = A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.05, rotate_limit=3, p=0.5)

- The final GAN is selected to train the encoder.
- Encoder that results in the maximum validation AUC is chosen to form the best f-AnoGAN, which is then tested on test set.

Test set original image, reconstruction, and difference map

Good Image with Minimum Score

Good Image with Maximum Score

Poor Image with Minimum Score

Poor Image with Maximum Score

Difference

- Results reported on the best f-AnoGAN
- Complete results stored in folder fanogan\results\recons_test