HW#1 Tianpu Zhac (a) Ainitial = NL2 Ame-year, = N, L, = Ainitial (assume that A are-year denotes the total chip area, which is fixed. N: number of transitions after 1 year in the total area, L: length of each transistor) Given that H of transisters per unit area doubles per two years. Assume every year the growth rate in number is the same, then $\binom{N_1}{N} = 2 \implies N_1 = N/2$ rate of growth in 2 years $N_1 L_1^2 = N L^2 \Rightarrow L_1^2 = N_1 L^2 \Rightarrow L_1 / L = \sqrt{N_1} = 1/24$ the annual scaling factor is 5= 1/2 = 1/214 (b) L2014 = 18.4 nm, so L2012 = L2014 S = L2014 * 127/4

= 5.47 nm

this predicted gate length is much shafter than the number in the report.

#2 (1)
$$F = \overline{(AB+C)D}$$
 $F = \overline{(AB+C)D} \rightarrow \text{ to be realized with PDW}$
 $= ABD + CD$

the corresponding CMaS circuit:

 $+VD$
 $A - d = B - d = D - d = D$
 $C - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = B - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D - d = D$
 $A - d = D$

(2)
$$F = \overline{(A+B)(BC+D)}$$

 $F = (A+B)(BC+D)$
 $= ABC+AD+BBC+BD = A(BC+D)+B(C+D)$
 $= ABC+AD+BBC+BD = A(BC+D)+B(C+D)$
 $= ABC+AD+BBC+BD = A(BC+D)+B(C+D)$

Look at PDN: the function is $f_{PDN} = (A+B)(C+D)(E+F+GH)$ $f = f_{PDN} = (A+B)(C+D)(E+F+GH)$ Verify: the PUN function is $f_{PUN} = \overline{AB} + \overline{CD} + \overline{EF}(\overline{G}+\overline{H})$ Verify: $f_{PDN} = (A+B) + \overline{(C+D)} + \overline{(E+F+GH)}$ $= \overline{AB} + \overline{CD} + \overline{EF}(\overline{G}+\overline{H})$ $= \overline{AB} + \overline{CD} + \overline{EF}(\overline{G}+\overline{H})$ $= f_{PUN}$ $= f_{PUN}$

ABCD	Oc	01	11	10
00		1	1	
01		1		
11	1	1	1	1
10				

(a) prime implicants

ABCO	Oc	01	11	10	
00		1	1	2	
01	4	1	3		
11	1	1	1	1	1
10					

List of all prime implicants:

1: AB

2: A'BD

3: A'C'D

4: BC'D

(b) Essential prime implicants are: 1: AB, and 2: A'B'D

they (a) map mo-MIT to A.B.C.D=

9 [00] - of 1s all 1 10 11 11 10 11 11 10 11 11 10 11 11 1	M 	ABCD 0001 0101	grap by number	0001
		10 (($\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$	1011

Find prime implicants

these are all prime implicants:

B'C'D + A'C'D + A'BD+ ABD+ ABD

+ ABC+ ACD+ BCD

