Analysis II - Vorlesungs-Script

Prof. Dr. Camillo De Lellis

Basisjahr 11 Semester I

Mitschrift:

Simon Hafner

Inhaltsverzeichnis

1	Metrik und Topologie des euklidischen Raumes		
	1.1	Konvergenz	3
	1.2	Ein bisschen mehr Topologie	5
	1.3	Stetigkeit	6
	1.4	lineare Abbildungen	7
	1.5	Mehr über stetige Funktionen	10
	1.6	Kompakte Menge	12

1 Metrik und Topologie des euklidischen Raumes

 $\mathbb{R}^n = \{(x_1, \cdots, x_n), x \in \mathbb{R}\} \text{ In } \mathbb{R}^n$:

- Norm (Euklidische)
- Abstand (Euklidische)
- Topologie

"Abstrakte Theorie"

- Normierte Vektorräume
- Metrische Räume
- Topologische Räume

Definition 1.1. Sei $x \in \mathbb{R}^n$ $(x = (x_1, \dots, x_n), x_i \in \mathbb{R})$

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2} = \sqrt{\sum_{i=1}^n x_i^2}$$

Intuitiv: ||x|| = "der Abstand zwischen x und 0"

Lemma 1.2. ||.|| erfüllt die Regeln

1.
$$||x|| \ge 0$$
 und $||x|| = 0 \iff x = 0$

2.
$$\|\lambda x\| = |\lambda| \|x\| \ \forall \lambda \in \mathbb{R}, \ \forall x \in \mathbb{R}$$

3.
$$||x + y|| \le ||x|| + ||y|| \ \forall x, y \in \mathbb{R}$$

Beweis. 1. ≥ 0 trivial

$$x = 0 \implies \sum x_i^2 = 0 \implies ||x|| = 0$$
$$x = 0 \iff x_i = 0 \forall i \iff \sum x_i^2 = 0 \iff ||x|| = 0$$

2.

$$\|\lambda x\| = \sqrt{\sum_{i=1}^{n} (\lambda x_i)^2} \sqrt{\lambda^2 (\sum x^2)} = |\lambda| \sqrt{\sum x^2} = |\lambda| \|x\|$$

$$|\lambda| = \frac{\|x\| |\lambda|}{\|x\|}$$

3.

$$\sum_{i=1}^{n} (x_i + y_i)^2 = \sum_{i=1}^{n} (x_i^2 + y_i^2 + 2x_i y_i) = ||x||^2 + ||y||^2 \underbrace{2 \sum_{i=1}^{n} (x_i^2 + y_i^2 + 2x_i y_i)}_{Skalar produkt}$$

 $\iff \underbrace{\|x+y\|^2} \le \|x\|^2 + \|y\|^2 + 2\|x\| \|y\|$

 $\iff \langle x, y \rangle \le ||x|| \, ||y||$

Satz 1.3. Cauchy-Schwartzsche Ungleichung

$$\sum_{i=1}^n x_i y_i \leq \sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}$$

Beweis. OBdA $y \neq 0$ (y = 0 trivial)

$$t \to g(t) = \sum_{i=1}^{n} (x_i + ty_i)^2$$
$$= \left(\sum_{i=1}^{n} x_i^2\right) + 2t \sum_{i=1}^{n} x_i y_i + t^2 \sum_{i=1}^{n} y_i^2$$
$$= \|x\|^2 + 2t \langle x, y \rangle + \|y\|^2 t^2$$

Sei
$$t_0 = \frac{\langle x, y \rangle}{\|y\|^2}$$
, dann $g(t_0) \geq 0$

$$0 \le g(t_0)$$

$$= ||x||^2 - 2\frac{\langle x, y \rangle^2}{||y||^2} + ||y||^2 \frac{\langle x, y \rangle^2}{||y||^4}$$

$$= ||x||^2 - \frac{\langle x, y \rangle^2}{||y||^2}$$

$$\implies \langle x, y \rangle \le ||x||^2 ||y||^2$$

$$\implies |\langle x, y \rangle| \le ||x|| ||y||$$

Definition 1.4. Ein normierter Vektorraum ist ein reeller Vektorraum V mit einer Abbildung $\|.\|:V\to\mathbb{R}$ so dass:

1.
$$||x|| \ge 0$$
 und $||x|| = 0 \iff x = 0$ (Nullvektor)

2.
$$\|\lambda x\| = |\lambda| \|x\| \ \forall \lambda \in \mathbb{R}, \ \forall x \in V$$

3.
$$||x + y|| \le ||x|| + ||y|| \ \forall x, y \in V$$

Beispiel 1.5. $V = \mathbb{R}^n$

$$||x||_p = \left(\sum |x_i|^p\right)^{\frac{1}{p}} \quad p \ge 1$$

p=2 euklidische Norm

Definition 1.6. Seien $x, y \in \mathbb{R}^n$. Die euklidische Metrik d(x, y) = ||x - y||

Lemma 1.7. 1.
$$d(x,y) \ge 0$$
 und $d(x,y) = 0 \iff x = y$

2.
$$d(x,y) = d(y,x)$$

3.
$$d(x,z) \le d(x,y) + d(y,z)$$
 (Dreiecksungleichung)

Beweis.

$$\|x-z\| \leq \underbrace{\|x-y\|}_v + \underbrace{\|y-z\|}_w \quad v+w = x-z$$

$$\|v+w\| \leq \|v\| + \|w\|$$

Definition 1.8. Ein metrischer Raum ist eine Menge X mit einer Abbildung

$$d: X \times X \to \mathbb{R} \ (x,y) \mapsto d(x,y) \in \mathbb{R}$$

so dass

1.
$$d(x,y) \ge 0$$
 und $d(x,y) = 0 \iff x = y \ \forall x, y \in X$

2.
$$d(x,y) = d(y,x) \ \forall x, y \in X$$

3.
$$d(x,z) = d(x,y) + d(y,z) \ \forall x, y, z \in X$$

Lemma 1.9. Sei (V, ||.||) ein normierter Vektorraum. Dann sind V und d(x, y) = ||x - y|| ein metrischer Raum.

Definition 1.10. Die offene Kugel mit Radius r > 0 und Mittelpunkt $x \in \mathbb{R}^n$ ist die Menge

$$K_r(x) = \{ y \in \mathbb{R}^n, d(x, y) < r \}$$

Definition 1.11. Eine Menge heisst "Umgebung" von x, wenn V eine offene Kugel mit Mittelpunkt x enthält.

Definition 1.12. Eine Menge $U \in \mathbb{R}^n$ heisst offen falls $\forall x \in U$ ist U eine Umgebung von x

$$\forall x \in U \; \exists \; \text{eine Kugel} \; K_r(x) \in U$$

Bemerkung 1.13. Eine offene Kugel ist offen.

Satz 1.14. 1. \varnothing und \mathbb{R}^n sind offen

- 2. Der Schnitt endlich vieler offener Mengen ist auch offen.
- 3. Die Vereinigung einer beliebigen Familie offener Mengen ist auch offen.

Beweis. 1. \mathbb{R}^n trivialerweise offen, auch \varnothing

2. Sei $x \in U \cap \cdots \cap U_N$

$$\forall i \in \{1, \dots, N\} \ K_r(x) \subset U_i$$

Sei $r = \min\{r_i, \ldots, r_N\}$

$$\implies K_r(x) \subset U_i \forall i \implies K_r(x) \subset U_1 \cap \cdots \cap U_N$$

3. $\{U_{\lambda}\}_{{\lambda} \in \Lambda}$. Sei $U = \bigcup_{{\lambda} \in \Lambda} U_{\lambda}$

$$x \in U \implies x \in U_{\lambda}$$
 für ein $\lambda \in \Lambda$

$$\implies \exists K_r(x) \subset U_\lambda \subset U$$

Definition 1.15. Ein topologischer Raum ist eine Menge X und eine Menge O von Teilmengen von X so dass:

- 1. $\emptyset, X \in O$
- 2. $U_1 \cap \cdots \cap_N \in O$ falls $U_i \in O$
- 3. $\bigcap_{\lambda \in \Lambda} U_{\lambda} \in O$ falls $U_i \in O$

Satz 1.16. Sei (X, d) ein metrischer Raum

$$K_r(x) = \{ y = X : d(x, y) < r \}$$

Umgebungen und offene Mengen sind wie im euklidischen Fall. $O = \{ offene Menge \}$ definiert eine Topologie.

1.1 Konvergenz

Sei
$$\{x_k\}_{k\in\mathbb{N}}$$
 $x_k\in\mathbb{R}$ $x_k=(x_{k1},\cdots,x_{kn})$

Definition 1.17. Die Folge $\{x_k\}$ konvergiert gegen $x_\infty \in \mathbb{R}^n$ falls

$$\lim_{k \to \infty} d(x_k, x_\infty) = 0$$

$$\left(\lim_{k \to \infty} \|x_k, x_\infty\| = 0\right)$$

Dann schreiben wir

$$x_{\infty} = \lim_{k \to \infty} x_k$$

Satz 1.18.

$$x_k \to x_\infty \iff x_{ki} \to x_{\infty_i} \ \forall i \in \{1, \cdots, n\}$$

Beweis.

$$||x_k - x_\infty|| = \sqrt{\sum_{i=1}^n (x_{ki} - x_{\infty_i})^2} \ge |x_{ki} - x_{kinfty}| \ge 0$$

$$\implies 0 \le \lim_{k \to \infty} |x_{ki} - x_{kinfty}| \le \lim ||x_k - x_\infty|| = 0$$

$$||x_k - x_\infty|| = \sqrt{\sum_{i=1}^n \underbrace{(x_{ki} - x_{\infty_i})^2}_{\to 0}} \le \sum_{i=1}^n |x_{ki} - x_{\infty_i}|$$

$$\implies ||x_k - x_\infty|| \to 0$$

Eine alternative Formulierung: $\lim_{k \to \infty} x_k = \left(\lim_{k \to \infty} x_{k1}, \cdots, \lim_{k \to \infty} x_{kn}\right)$

Bemerkung 1.19.

$$\forall \varepsilon > 0 \exists N : ||x_k - x_\infty|| < \varepsilon \text{ falls } k \ge N$$

Für jede Umgebung U von x_{∞} fast alle $x_k \in U$.

Definition 1.20. Eine Folge $\{x_k\} \subset \mathbb{R}^n$ heisst Cauchy falls:

$$\forall \varepsilon > 0 \ \exists N : m, k \ge N \implies ||x_k - x_m|| < \varepsilon$$

Lemma 1.21. $\{x_k\} \subset \mathbb{R}^n$ konvergiert genau dann, wenn $\{x_k\}$ Cauchy ist.

Beweis.
$$\{x_k\}$$
 ist Cauchy $\Longrightarrow \left\{x_k\underbrace{i}_{\text{fixiert}}\right\}$ Cauchy!
$$|x_{ki} - x_{m_i}| \le ||x_k - x_m||$$

 $\implies \{x_k\}$ ist eine Cauchyfolge $\stackrel{\text{Erstes Semester}}{\implies} x_{ki}$ konvergiert $\stackrel{\text{Lemma 2}}{\implies} x_k$ konvergiert. x_k konvergiert \implies Cauchyfolge

$$\begin{split} x_{\infty} &= \lim_{k \to \infty} x_k \ \forall \varepsilon > 0 \ \exists N : \|x_k - x_{\infty}\| < \frac{\varepsilon}{2} \ \forall k \geq N \\ k, m \geq N \ \|x_k - x_m\| \leq \|x_k - x_{\infty}\| + \|x_{\infty} - x_m\| \leq d(x_k, x_{\infty}) + (x_{\infty}, x_m) \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

Bemerkung 1.22. In einem metrischen Raum, Cauchy \Leftarrow Konvergenz. Aber allgemein: Cauchy $\not\Longrightarrow$ Konvergenz. Falls Cauchy \Longrightarrow Konvergenz, dann ist der metrische Raum vollständig.

Definition 1.23. Eine Folge $\{x_k\} \subset \mathbb{R}^n$ heisst beschränkt falls $||x_k||$ beschränkt ist.

Satz 1.24. 1. Eine konvergente Folge ist beschränkt

2. (Bolzano-Weierstrass) $\{x_k\}$ beschränkt $\implies \exists \{x_{k_j}\}$ die konvergiert. Beweis.

 $\{x_k\}$ beschränkt $\Longrightarrow \{x_{k1}\}_{k\in\mathbb{N}}$ beschränkt

$$\implies \exists x_{k_j} : x_{k_j 1} \to x_1$$

Ich definiere $y_j = x_{k_j} \ y_{j1} \to x_1$

$$y_j$$
 beschränkt $\Longrightarrow \exists j_l : y_{j_l 2} \to x_2$

$$z_l := y_{j_l} \text{ und } z_{l1} \to x_1, x_{l2} \to x_2$$

 $\dots (n-2)$ Schritte. w_r Teilfolge von x_k mit $w_{ri} \to x_i$

$$w_r \to (x_1, \cdots, x_n)$$

1.2 Ein bisschen mehr Topologie

Definition 1.25. Eine Menge $G \subset \mathbb{R}^n$ heisst geschlossen falls $G^c := \mathbb{R}^n \setminus G$ eine offene Menge ist.

Bemerkung 1.26.

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

Satz 1.27. 1. \varnothing , \mathbb{R}^n sind abgeschlossen

- 2. G_1, \dots, G_N abgeschlossen $\implies G_1 \cup G_2 \cup \dots \cup G_N$ abgeschlossen
- 3. $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ abgeschlossen $\Longrightarrow \bigcap_{{\lambda}\in\Lambda} G_{\lambda}$ abgeschlossen.

Satz 1.28. $G \subset \mathbb{R}^n$ G ist abgeschlossen $\iff \forall$ jede konvergente $\{x_k\} \subset G$ gehört der Grenzwert zu G (gilt auch für metrische Räume).

Beweis. \Leftarrow Die rechte Eigenschaft gilt. Ziel: G^c ist offen. Sei $x \in G^c$: das Ziel ist eine Kugel $K_r(x) \in G^c$ zu finden. Widerspruchsbeweis: $K_{\frac{1}{j}}(x) \not\subset G^c$, $j \in \mathbb{N} \setminus \{0\}$

$$\implies \exists x_j \in K_{\frac{1}{j}}(x) \cap G \implies \{x_j\} \subset G \text{ und } x_j \to x$$

$$\{x_j\} \subset G \ x_j \to x \ x \notin G$$

 \implies d.h. G^c offen \implies falls $\{x_k\} \subset G$ und $x_k \to x$ dann $x \in G$ Widerspruch: G^c offen, aber $\exists \{x_k\} \subset G$ mit Grenzwert $x \notin G$, d.h. $x \in G^c$. Offenheit von G^c .

$$\implies \exists K_r(x) \subset G^c \implies K_r(x) \cap = \varnothing$$

d.h. $\exists N$ mit

$$||x_N - x|| < r \implies x_N \in K_r(x) \cap G$$

Beispiel 1.29. Eine offene Kugel ist nicht geschlossen.

$$K_r(x) = \{y : ||y - x|| < r\}$$

Sei $\{y_k\} \in K_r(x)$, (d.h. $||y_k - x|| < r$) mit $y_k \to y$ und ||y - x|| = r.

Definition 1.30. Sei $\overline{K_r(x)} := \{ y \in \mathbb{R}^n : ||y - x|| \le r \}.$

Übung 1.31. $\overline{K_r(x)}$ ist abgeschlossen

Definition 1.32. $x \in \mathbb{R}^n$ ist ein Randpunkt von M falls

$$\forall K_r(x) \ \exists y \in K_r(x) \cap M \ \text{und} \ \exists z \in K_r(x) \cap M^c$$

Definition 1.33. Sei M eine Menge in \mathbb{R}^n , dann ist der Rand von M

$$\partial M = \{x \in \mathbb{R}^n, \text{ Randpunkt von } M\}$$

Satz 1.34. $\partial M^c = \partial M$

- 1. $M \setminus \partial M$ ist die grösste offene Menge die in M enthalten ist.
- 2. $M \cup \partial \partial M$ ist die kleinste geschlossene Menge die M enthält.

Beweis. $M \setminus \partial M$ ist offen.

$$x \in M \setminus \partial M \implies x \in M \text{ und } \exists K_r(x) \text{ mit } K_r(x) \cap M^c = \emptyset$$

$$\implies K_r(x) \subset M$$

Sei $y \in K_r(x)$

$$\implies |y - x| = \rho < r$$

$$\implies K_{r-\rho}(y) \subset K_r(x) \subset M \implies y \in M, y \notin \partial M$$

$$K_r(x) \subset M \setminus \partial M$$

x ist beliebig $\implies M \setminus \partial M$ ist offen.

Sei $A \subset M$ eine offene Menge. Das Ziel ist $A \subset M \setminus \partial M$. Sei $x \in A$. Ziel: $(x \in M \setminus \partial M)$ $x \notin \partial M$.

$$A \text{ offen} \implies \exists K_r(x) \subset A \subset M \implies x \notin \partial M \implies A \subset M \setminus \partial M$$

1.3 Stetigkeit

Definition 1.35. Sei $f: \Omega_{\mathbb{C}\mathbb{R}^n} \to \mathbb{R}^k$. f ist stetig an der Stelle $x \in \Omega$ falls $\forall \{x_k\} \subset \Omega$ mit $x_k \to x$.

$$\lim_{k \to \infty} f(x_k) = f(x)$$

Lemma 1.36. Eine equivalente Definition:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : f(K_{\delta}(x) \cap \Omega) \subset K_{\varepsilon}(f(x))$$

Beweis. ε - $\delta \implies$ Folgendefinition. Sei $x_k \to x$. Ziel: $f(x_k) \to f(x)$

$$\forall \varepsilon > 0 \ \exists \ \text{mit} \ \underbrace{\frac{\|f(x_k) - f(x)\|}{d(f(x_k), f(x))}}_{f(x_k) \in K_{\varepsilon}(f(x))} < \varepsilon \ \forall k \geq N$$

$$\exists \delta > 0 \quad \underbrace{f(K_{\delta}(x)) \subset K_{\varepsilon}(f(x))}_{\exists \|x_k - x\| < \delta \ k \ge N}$$
$$x_k \in K_{\delta}(x) \implies f(x_k) \in K_{\varepsilon}(f(x))$$

Folgendefinition \implies $(\varepsilon$ - $\delta)$ -Defintion. Widerspruchsannahme:

$$\exists \varepsilon > 0 : f(K_{\delta}(x) \cap \Omega) \not\subset K_{\varepsilon}(f(x)) \ \forall \delta > 0$$

$$\implies \forall \delta > 0 \ \exists y_{\delta} \in K_{\delta}(x) \ \text{und} \ \|f(y_{\delta}) - f(x)\| \ge \varepsilon$$

Nehmen wir $\delta = \frac{1}{i}$ und $x_j = \frac{y_1}{i}$

$$||x_j - x|| < \frac{1}{j} \text{ (weil } x_j \in K_{\frac{1}{j}}(x)\text{)}$$

$$||f(x_j) - f(x)|| = ||f(y_{\frac{1}{i}} - f(x))|| \ge \varepsilon$$

$$x_i \to x \text{ aber } f(x_i) \not\to f(x)$$

Definition 1.37. Die allgemeine Definition der Stetigkeit für metrische Räume: Seien (X,d) und (Y,\overline{d}) zwei metrische Räume. Sei $f:X\to Y$. f ist stetig an der Stelle x falls:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{mit} \ d(y, x) < \delta \implies d(f(y), f(x)) < \varepsilon$$

$$\iff f(K\delta(x)) \subset K_{\varepsilon}(f(x))$$

Definition 1.38. Eine $f: X \to Y$ heisst stetig falls f stetig an jeder Stelle $x \in X$ ist.

Satz 1.39. Sei $f: X \to Y$ ($(X, d), (Y\overline{d})$ metrische Räume) Dann:

- 1. Die Stetigkeit in $x \iff \forall$ Umgebung U von f(x) ist $f^{-1}(U)$ eine Umgebung von x.
- 2. Stetigkeit von $f \iff f^{-1}(U)$ ist offen $\forall U$ offen.

Beweis. 1. • Stetigkeit \Longrightarrow Umgebung. U Umgebung von f(x) \Longrightarrow $\exists \delta > 0$ mit $K_{\delta}(f(x)) \subset U$

$$\implies \exists \varepsilon > 0 : f(K_{\varepsilon}(x)) \subset K_{\delta}(f(x))$$

$$\implies f^{-1}(U) \supset f^{-1}(K_{\delta}(f(x))) \supset K_{\varepsilon}(x) \implies f^{-1}(U)$$
 Umgebung von U

• Umgebung \Longrightarrow Stetigkeit. Sei $\delta > 0$ $U = K_{\delta}(f(x))$. U Umgebung von f(x). $f^{-1}(U)$ ist eine Umgebung von x.

$$\implies \exists \varepsilon > 0 : K_{\varepsilon}(X) \subset f^{-1}(U)$$

$$\implies f(K_{\varepsilon}(x)) \subset U = K_{\delta}(f(x))$$

2. • Stetigkeit \implies offen. Sei U offen $\iff \forall y \in U$ ist U eine Umgebung von y

$$f^{-1}U\ni x\implies f(x)\in U\overset{\text{Stetigkeit in }}{\Longrightarrow}^xf^{-1}(U)$$
 ist eine Umgebung von x
$$\implies f^{-1}(U) \text{ ist offen}$$

• offen \implies Stetigkeit an jedem $x \in X$. Sei $x \in X$, $\delta > 0$, $K_{\delta}(f(x))$ ist offen

$$f^{-1}(K_{\delta}(f(x)))$$
 ist offen $\Longrightarrow x \in f^{-1}(K_{\delta}(f(x)))$
 $\Longrightarrow \exists \varepsilon > 0 : K_{\varepsilon}(x) \subset f^{-1}(K_{\delta}(f(x)))$
 $f(K_{\varepsilon}(x)) \subset K_{\delta}(f(x))$

1.4 lineare Abbildungen

Definition 1.40. Eine Abbildung $L:V\to W$ (V,W) Vektoren) heisst linear, falls

$$L(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 L(v_1) + \lambda_2 L(v_2) \ \forall v_1, v_2 \in V, \ \forall \lambda_1, \lambda_2 \in \mathbb{R}$$

$$L: \mathbb{R}^n \to \mathbb{R}^k \iff \exists \text{ eine Matrix } L_{ij}:$$

$$L(x) = \left(\sum_{j=1}^{n} L_{1j}x_{j}, \sum_{j=1}^{n} L_{2j}x_{j}, \cdots, \sum_{j=1}^{n} L_{kj}x_{j}\right)$$

Definition 1.41. Sei L_{ij} eine Matrix die die lineare Abbildung $L: \mathbb{R}^n \to \mathbb{R}^k$ darstellt. Die Hilbert-Schmidt Norm von L ist

$$||L||_{HS} = \sqrt{\sum_{i=1}^{k} \sum_{j=1}^{n} L_{ij}^2}$$

Bemerkung 1.42. $\{L: (L_{ij}n \times k \text{ Matrixen}\} \sim \mathbb{R}^{nk} \|.\|_{HS}$ ist die euklidische Norm.

Bemerkung 1.43. Sei $L: \mathbb{R}^n \to \mathbb{R}^k$ eine lineare Abbildung und $x \in \mathbb{R}^n$. Dann $||L(x)|| \le ||x|| \, ||L||_{HS}$.

Korollar 1.44. Sei L wie oben, dann ist L stetig.

Beweis. Sei
$$x_k \to x$$
. Ziel $L(x_k) \to L(x)$

$$||L(x_k) - L(x)|| = ||L(x_k - x)|| \le ||x_k - x|| ||L||_{HS} \to 0$$

$$\implies ||L(x_k) - L(x)|| \to 0$$

$$\implies \text{Stetigkeit}$$

Beweis. Beweis von 1.36: L(x) = y

$$||L(x)||^{2} = \sum_{i=1}^{k} y_{i}^{2}$$

$$= \sum_{i=1}^{k} \left(\sum_{j=1}^{n} L_{ij} x_{j}\right)^{2} \overset{\text{Cauchy-Schwartz}}{\leq} \sum_{i=1}^{k} \left(\sum_{j=1}^{n} L_{ij}^{2}\right) \left(\sum_{j=1}^{n} x_{j}\right)^{2}$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{n} L_{ij}^{2} ||x||^{2} = ||x||^{2} \left(\sum_{i=1}^{k} \sum_{j=1}^{n} L_{ij}^{2}\right)$$

$$||x||^{2} ||L||_{\text{HS}}^{2} \implies ||L(x)|| \leq ||x|| ||L||_{\text{HS}}$$

Definition 1.45. Sei $L:V\to W$ eine lineare Abbildung wobei $(V,\|.\|_V)$ und $(W,\|.\|_W)$ zwei endlich-dimensionierte Vektorräume sind. Die Operatornorm von L ist:

$$\|L\|_{L(V,W)} := \sup_{\|v\|_{V} \le 1} \|L(v)\|_{W}$$

Satz 1.46. $\|.\|_{L(V,W)}$ ist eine Norm und

$$||L(v)||_W \le ||L||_{L(V,W)} ||v||_V$$

Deswegen: jede lineare Abbildung $L: V \to W$ ist stetig.

Beweis. Der Kern ist die folgende Eigenschaft:

$$||L||_{L(V,W)} < +\infty$$

Wenn das gilt dann:

1.

$$\underbrace{\|L\|_{L(V,W)}}_{\mathrm{Kern}} \ \ \mathrm{und} \ \ \|L\|_{L(V,W)} = 0 \iff L = 0$$

 \Leftarrow einfach. Sei $||L||_{L(V,W)} = 0$. Dann sei $v \in V$.

$$\begin{aligned} v &= 0 \implies L(v) = 0 \\ v &\neq 0 \ z \frac{v}{\|v_V\|} \implies \|z\|_V = 1 \\ \|L(z)\|_W &\leq \sup_{\|y\|_V \leq 1} \|L(v)\|_W = 0 \\ \implies L(z) &= 0 \implies L(v) = L\left(\|v\|_V z\right) = \|v\|_V L(z) = 0 \end{aligned}$$

2.

$$\begin{split} \|\lambda L\|_{L(V,W)} &= |\lambda| \, \|L\|_{L(V,W)} \\ \|\lambda L\|_{L(V,W)} &= \sup_{\|y\|_{V} \le 1} \|\lambda L(v)\|_{W} \\ &= \sup_{\|y\|_{V} \le 1} |\lambda| \, \|L(v)\|_{W} \\ &= |\lambda| \, \sup_{\|y\|_{V} \le 1} \|L(v)\|_{W} \\ &= |\lambda| \, \|L\|_{L(V,W)} \end{split}$$

3.

$$\begin{split} \|L + L'\|_{L(V,W)} \\ &= \sup_{\|y\|_{V} \le 1} \|(L + L')(v)\|_{L(V,W)} \\ &= \sup_{\|y\|_{V} \le 1} \|L(v) + L'(v)\|_{L(V,W)} \\ &\leq \sup_{\|y\|_{V} \le 1} (\|L(v)\|_{W} + \|L'(v)\|_{W}) \\ &\leq \sup_{\|y\|_{V} \le 1} \|L(v)\|_{W} + \sup_{\|y\|_{V} \le 1} \|L'(v)\|_{W} \\ &= \|L\|_{L(V,W)} + \|L'\|_{L(V,W)} \end{split}$$

Wenn v_1, \dots, v_n Basis für V, w_1, \dots, w_k Basis für W. Die lineare Abbildung $E_{ij}(v_i) = w_j$, $E_{ij}(v_l) = 0$ falls $l \neq i$ ist eine Basis für $L(V, W) \implies L = \sum_{i,j} \lambda_{ij} E_{ij}$

 $(V,\|.\|) \ (W,\|.\|) \ L:V\to W \ \|L\|_{L(V,W)}:=\sup_{\|v\|_{V}\le 1}\|L(v)\|_{W} \eqno(1)$

 $\begin{array}{l} \textbf{Satz 1.47.} \ \textit{Falls} \ \dim(V), \ \dim(V) < +\infty, \ \|L\|_{L(V,W)} < +\infty \ \textit{Wahr ohne Beweis} \\ \textit{in V und deswegen $L(V,W)$, } \ \|.\|_{L(V,W)} \ \forall v \in V, \ \forall L \in L(V,W) \end{array}$

$$||L(v)||_{W} \le ||L||_{L(V,W)} ||v||_{V} \tag{2}$$

Aus 2 folgt dass L stetig ist wenn $||L||_{L(V,W)} < +\infty$.

Bemerkung 1.48. $||L||_{L(V,W)}$ ist die optimale Konstante in 2.

Beweis. Falls $||v||_V = 1$

$$\iff \|L(v)\|_{W} \le \|L\|_{L(V,W)} = \sup_{\|v\|_{V} \le 1} \|L(v)\|_{W}$$

Die Ungleichung ist eine direkte Folgerung von 1

$$\|v\|_V = 0 \implies L(v) = 0 \implies \|L(v)\|_W) = 0 \implies 2$$

$$||v||_{V} > 0$$

$$\begin{split} \tilde{v} &:= \frac{v}{\|v\|_V} \implies \|\tilde{v}\|_V) \frac{\|v\|_V}{\|v\|_V} = 1 \\ & \|L(\tilde{v})\|_W \leq \|L\|_{L(V,W)} \\ & \left\| \frac{1}{\|v\|_V} L(v) \right\|_W = \frac{1}{\|v\|_V} \|L(v)\|_W \\ & \implies \frac{\|L(v)\|_W}{\|v\|_V} \leq \|L\|_{L(V,W)} \end{split}$$

Beweis. $\varepsilon - \delta$ Stetigkeit. $v, \varepsilon > 0$. Suche $\delta > 0$ mit

$$||v'-v||_V < \delta \implies ||L(v')-L(v)||_W < \varepsilon$$

Linearität von ${\cal L}$

$$\implies ||L(v') - L(v)||_W = ||L(v' - v)||_W$$

und aus??

$$\begin{split} \|L(v'-v)\| &\leq \underbrace{\|L\|_{L(V,W)}}_{<\varepsilon} \underbrace{\|v'-v\|_{V}}_{<\varepsilon} \\ \implies \delta &= \frac{\varepsilon}{\|L\|_{L(V,W)}} \end{split}$$

 \implies Ungleichung erfüllt.

Bemerkung1.49. $V=\mathbb{R}^n,\; \|.\|_V$ euklidische Norm. $W=\mathbb{R}^k$ mit euklidischer Norm.

$$\begin{split} \|L\|_{L(V,W)} &\leq \|L\|_{\mathrm{HS}} \\ L: \mathbb{R}^n \to \mathbb{R}^k \quad \text{linear} \\ \|L\|_{\mathrm{HS}} &= \sqrt{\sum_{i,j} L_{ij}^2} \\ \|L\|_{L(V,W)} := \sup_{\sum_{i=1}^n v_i^2 \leq 1} \sqrt{\sum_{j=1}^k \left(\sum_{i=1}^n L_{jiv_i}\right)^2} \end{split}$$

1.5 Mehr über stetige Funktionen

Regeln für stetige Funktionen

Regel 1 Seien $f: X \to Y$, $g: X \to Y$. X: topologischer Raum, metrischer Raum, normierter Vektorraum, \mathbb{R}^n V ist ein normierter Vektorraum (\mathbb{R}^k). Falls f, g stetig sind, ist auch f + g stetig.

$$V = \mathbb{R} \ fg, \, \frac{f}{g} \ (g \neq 0)$$
 stetig

$$V = \mathbb{R}$$
 $fg(x) = \sum_{i=1}^{n} f_i(x)g_i(x)$

Beweis. Im Fall X Teilmenge von \mathbb{R}^n

$$\underbrace{\left\{x^k\right\}}_{\subset X} x^k \to x \in X$$

Stetigkeit von f und $g: g(x^k) \to g(x), f(x^k) \to f(x)$.

$$g(x^{k}) = (g_{1}(x^{k}), \dots, g_{m}(x^{k}))$$

$$g(x) = (g_{1}(x), \dots, g_{m}(x))$$

$$f(x^{k}) = (f_{1}(x^{k}), \dots, f_{m}(x^{k}))$$

$$f(x) = (f_{1}(x), \dots, f_{m}(x))$$

$$(g+f)(x^{k}) = (g_{1}(x^{k}) + f_{1}(x^{k}), \dots, g_{m}(x^{k}) + f_{m}(x^{k}))$$

$$\to g_{1}(x) + f_{1}(x), \dots, g_{m}(x) + f_{m}(x) = (g+f)(x)$$

$$x^{k} \to x \in X \implies (f+g)(x^{k}) \to (f+g)(x).$$

 $\mathbf{Regel}\ \mathbf{2}\quad \mathrm{Seien}\ X,Y,Z$ topologische Räume. Seien $f:X\to Y$ und $g:Y\to Z$ stetig

$$g \circ f : \underbrace{X \to Z}_{x \mapsto g(f(x))}$$

Beweis. Sei U eine offene Menge in Z.

$$(g \circ f)^{-1}(U) = \underbrace{f^{-1}(\underline{g^{-1}(U)})}_{\text{offen}}$$

Definition 1.50. Sei $f: X \to \mathbb{R}$.

$$||f|| = \sup_{x \in X} ||f(x)||$$

 $f: X \rightarrow V, \, V, \|.\|_V$ normierter Vektorraum

$$\|f\|=\sup_{x\in X}\|f(x)\|_V$$

Bemerkung 1.51. X Menge, $V, \|.\|$ ein normierter Vektorraum.

$$F := \{ f : X \to V \} \quad \text{mit} \quad ||f||$$

Dann ist $F,\|.\|$ ist ein normierter Vektorraum.

Definition 1.52. Eine Folge von Funktionen

$$f^k: X \to V$$

konvergiert gleichmässig gegen f falls

$$||f^k - f|| \to 0$$

Bemerkung 1.53. $x \in X$

$$||f^k(x) - f(x)||_V \le ||f^k - f||$$

Folgerung f^k konvergiert gleichmässig

$$\implies f^k(x) \to f(x) \ \forall x$$

Satz 1.54. Sei X ein metrischer Raum und $f^k: X \to V$ eine Folge die gleichmässig gegen f konvergiert. Dann ist f stetig.

Beweis. Seien $x \in X$ und $\varepsilon > 0$.

Ziel $\exists \delta > 0 \text{ so dass}$

$$d(x,y) < \delta \implies ||f(x) - f(y)|| < \varepsilon$$

 $\exists N \text{ so dass}$

$$||f - f^k|| < \frac{\varepsilon}{3}$$
 falls $k \ge N$

 f^N ist stetig: $\exists \delta > 0$:

$$\begin{aligned} d(x,y) &< \delta \implies \left\| f^N(x) - f^N(y) \right\| < \frac{\varepsilon}{3} \\ d(x,y) &< \delta \\ \left\| f(x) - f(y) \right\| &= \left\| (f(x) - f^N(x)) + (f^N(x) - f^N(x)) + (f^N(y) - f(y)) \right\|_V \\ &\leq \left\| f(x) - f^N(x) \right\|_V + \left\| f^N(x) - f^N(y) \right\|_V + \left\| f^N(y) - f(y) \right\|_V \\ &< \left\| f^N - f \right\| + \frac{\varepsilon}{3} + \left\| f^N - f \right\| \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \end{aligned}$$

1.6 Kompakte Menge

Definition 1.55. Eine Menge $K \subset \mathbb{R}^n$ heisst kompakt falls K abgeschlossen und beschränkt ($\iff \exists B_R(0) : K \subset B_R(0)$) ist.

Satz 1.56. Sei $k \subset \mathbb{R}^n$.

$$K \ kompakt \iff \forall \left\{x^j\right\} \subset K \ \exists x^{j_l}$$

 x^{j_l} ist eine Teilfolge, die gegen $x \in K$ konvergiert. $K \implies Sei \{x^j\}$ eine Folge

$$x^j \in K \subset B_R(0) \implies ||x^j|| < R$$

 $\exists x^{j_l} \to x \in \mathbb{R}^n$, die abgeschlossenheit von $K \implies x \in K$. Folgenkriterium \implies Abgeschlossenheit und Beschränktheit.

$$nicht\ abgeschlossen \implies \exists x^j \subset K \ mit\ x^j \to \not\in K$$

$$Folgenkompaktheit \implies \exists x^{j_l} \rightarrow y \in K$$

Widerspruch (weil x und y sind in derselben Menge) Sei K nicht beschränkt.

$$\forall j \in \mathbb{N} \ B_j(0) \not\supset K$$
$$\exists x^j \in K \setminus B_j(0) \implies ||x^j|| \ge j$$

Wenn $x^{j_l} \to x$

$$||x^{j_{l}}|| \le ||x|| + ||x^{j_{l}} - x||$$

$$||x|| \le ||x^{j_{l}}|| + ||x - x^{j_{l}}||$$

$$||x|| - ||x^{j_{l}}||| \le ||x - x^{j_{l}}||$$

$$\implies ||x^{j_{l}}|| \to ||x||$$

$$||x^{j_{l}}|| = j_{l} \to +\infty$$

 $\implies Widerspruch$