Tutorial 1: Solutions

Exercise 1:

- 1. There exists a word ε such that for all words $w, \varepsilon * w = w = w * \varepsilon$, which one ?
- 2. Given $k \in \{1, ..., n + n'\}$, what is the k^{th} letter of the word w * w'?
- 3. Prove that concatenation is associative, which means that given three words w, w', and w'', we have (w * w') * w'' = w * (w' * w''). What is the 'key' argument?
- 4. Prove that concatenation is *cancelative* that is to say for all words w, w', and w'', we have

$$w*w' = w*w'' \Rightarrow w' = w''$$
 and $w'*w = w''*w \Rightarrow w' = w''$.

Solution: Given a word $w = w_1 \cdots w_n$, we write |w| = n for the size of w.

1. If
$$\varepsilon * w = w$$
, then $|\varepsilon * w| = |\varepsilon| + |w| = |w|$, so $|\varepsilon| = 0$.

The only word of length 0 is the empty word. We easily check that it satisfies the required equations.

$$\varepsilon =$$
 the empty word

2. Let
$$k \in \{1, \dots, n+n'\}$$
, then $(w*w')_k = \left\{ \begin{array}{ll} w_k & \text{if } 1 \leq k \leq n \\ w'_{k-n} & \text{if } n+1 \leq k \leq n+n' \end{array} \right.$

- 3. We want to prove that (w*w')*w'' = w*(w'*w''). To prove that two words are equal, we need:
 - to prove that they have the same length,
 - then prove that for every k smaller than the length, the k-th letter is the same.

First step:
$$|(w * w') * w''| = n + n' + n'' = |w * (w' * w'')|$$
.

Second step: Let $1 \le k \le n + n' + n''$, we need to prove that $((w*w')*w'')_k = (w*(w'*w''))_k$. We proceed by case disjunction. In each case, we compute separately $((w*w')*w'')_k$ and $(w*(w'*w''))_k$ using the formula of question 2), and check that they are equal.

(a) Case $1 \le k \le n$.

$$((w*w')*w'')_k = (w*w')_k$$
 because $1 \le k \le n + n'$
= w_k because $1 \le k \le n$

$$(w*(w'*w''))_k = w_k \qquad \text{because } 1 \le k \le n$$

(b) Case $n + 1 \le k \le n + n'$.

$$((w*w')*w'')_k = (w*w')_k \qquad \qquad \text{because } 1 \le k \le n+n'$$

$$= w'_{k-n} \qquad \qquad \text{because } n+1 \le k \le n+n'$$

$$(w * (w' * w''))_k = (w' * w'')_{k-n}$$
 because $n + 1 \le k \le n + n' + n''$
= w'_{k-n} because $1 \le k - n \le n'$

(c) Case $n + n' + 1 \le k \le n + n' + n''$.

$$((w*w')*w'')_k = w''_{k-n-n'}$$
 because $n + n' + 1 \le k \le n + n' + n''$

$$(w*(w'*w''))_k = (w'*w'')_{k-n}$$
 because $n+1 \le k \le n+n'+n''$
= $w''_{k-n-n'}$ because $n'+1 \le k-n \le n'+n''$

4. • Assume w*w'=w*w''. We want to prove that w'=w''. First, note that |w*w'|=|w|+|w'|=|w*w''|=|w|+|w''|. Thus, we have |w'|=|w''|. Let us write n=|w| and n'=|w'|=|w''|. Let $k\in\{1,\ldots,n'\}$, we want to show that $w'_k=w''_k$.

$$w'_k = (w * w')_{k+n}$$
 because $n + 1 \le k + n \le n + n'$
 $= (w * w'')_{k+n}$ because $w' = w''$
 $= w''_k$ because $n + 1 \le k + n \le n + n'$

• Assume w'*w=w''*w. By the same reasoning, |w'|=|w''|. Using the same notations, for $k\in\{1,\ldots,n'\}$, we have:

$$w'_k = (w' * w)_k = (w'' * w)_k = w''_k$$

Exercise 2:

- 1. Propose a definition for the concatenation L*L' of two languages L and L' over Σ
- 2. Prove that * is associative, that is to say, for all A, B, and C languages over Σ we have:

$$(A*B)*C = A*(B*C)$$

3. Prove that * distributes over \cup , that is to say, for all A, B, and C languages over Σ :

$$A*(B\cup C)=(A*B)\cup(A*C)\quad\text{and}\quad (B\cup C)*A=(B*A)\cup(C*A)$$

4. (a) Prove that for all A, B, and C languages over Σ we have:

$$A*(B\cap C)\subseteq (A*B)\cap (A*C)$$
 and $(B\cap C)*A\subseteq (B*A)\cap (C*A)$

- (b) Find a counter-example proving that the converse inclusions do not hold.
- 5. Recall that Σ is identified with the words of length 1. Complete the following sentences:

- (a) For $n \in \mathbb{N}$ (pay a special attention to the case n = 0), the language Σ^n is the set of \cdots
- (b) The language

$$\bigcup_{n\geqslant 0} \Sigma^n$$

is the set of \cdots

- 6. (a) Find three nonempty languages A, B, and C such that $A \neq B$ but A * C = B * C.
 - (b) Give a sufficient condition on A and B such that for all nonempty language C, we have $A*C \neq B*C$.

Solution:

- 1. $L * L' = \{w * w' \mid w \in L \text{ and } w' \in L'\}$
- 2. This is an equality between two sets: we proceed by double inclusion.
 - $(A*B)*C \subseteq A*(B*C)$:

Assume $w \in (A*B)*C$. By definition, w is of the form $w = w' * \gamma$ with $w' \in A*B$ and $\gamma \in C$. Since $w' \in A*B$, by definition again, $w' = \alpha*\beta$ with $\alpha \in A$ and $\beta \in B$. So, $w = (\alpha*\beta)*\gamma = \alpha*(\beta*\gamma)$ using the result of exercise 1, question 3. Then $w \in A*(B*C)$ since $\alpha \in A$ and $\beta*\gamma \in B*C$.

• $A*(B*C) \subseteq (A*B)*C$:

Assume $w \in (A*B)*C$. By unfolding the definitions, $w = \alpha*(\beta*\gamma)$, with $\alpha \in A, \beta \in B$, $\gamma \in C$. Using Ex.1, q.3, we have $w = (\alpha*\beta)*\gamma$. Therefore $w \in (A*B)*C$.

- 3. We show $A*(B\cup C)=(A*B)\cup (A*C)$ by double inclusion.
 - \subseteq : Let $w \in A * (B \cup C)$, i.e., $w = \alpha * w'$ with $\alpha \in A$ and $w' \in B \cup C$. We reason by case disjunction:
 - either $w' \in B$, in which case $w \in A * B \subseteq (A * B) \cup (A * C)$.
 - or $w' \in C$, in which case $w \in A * C \subseteq (A * B) \cup (A * C)$.

In both cases, we have proved $w \in (A * B) \cup (A * C)$.

- \supset : Let $w \in (A * B) \cup (A * C)$. We reason by case disjunction:
 - either $w \in A * B$, in which case $w = \alpha * \beta$ with $\alpha \in A$ and $\beta \in B \subseteq B \cup C$. So $w \in A * (B \cup C)$; or $w \in A * C$, in which case $w = \alpha * \gamma$ with $\alpha \in A$ and $\gamma \in C \subseteq B \cup C$. So $w \in A * (B \cup C)$. In both cases, we have $w \in A * (B \cup C)$.

Same reasoning for $(B \cup C) * A = (B * A) \cup (C * A)$.

- \subseteq : Let $w \in (B \cup C) * A$, i.e., $w = w' * \alpha$ with $\alpha \in A$ and $w' \in B \cup C$. Then either $w' \in B$ or $w' \in C$, and in both cases $w \in (B * A) \cup (C * A)$.
- \supseteq : Let $w \in (B*A) \cup (C*A)$. Then either $w \in B*A$ or $w \in C*A$, and in both cases $w \in (B \cup C)*A$.
- 4. a) Assume $w \in A * (B \cap C)$.

Then we have $w=\alpha*w'$ such that $\left\{ \begin{array}{ll} \alpha\in A & (1)\\ w'\in B & (2)\\ w'\in C & (3) \end{array} \right..$

By (1) and (2) we obtain $w \in A * B$, and by (1) and (3) we obtain $w \in A * C$. Therefore, $w \in (A * B) \cap (A * C)$.

- $(B \cap C) * A \subseteq (B * A) \cap (C * A)$: same reasoning.
- 4. b) We want to prove that there exist languages A, B, C such that $(A * B) \cap (A * C) \not\subseteq A * (B \cap C)$. Let us take the one letter alphabet $\Sigma = \{a\}$.

$$\operatorname{Take} \left\{ \begin{array}{l} A = \{a, \varepsilon\} \\ B = \{a\} \\ C = \{aa\} \end{array} \right.$$

Then $A * B = \{aa, a\}$ and $A * C = \{aaa, aa\}$, so $(A * B) \cap (A * C) = \{aa\}$.

But $B \cap C = \emptyset$, so $A * (B \cap C) = \emptyset$.

Thus, $(A * B) \cap (A * C) \not\subseteq A * (B \cap C)$.

For the other counter example, we can just take the same languages A, B and C, and check that $(B*A) \cap (C*A) \not\subseteq (B \cap C)*A.$

5. Given a language L, we define $L^n = \underbrace{L*\ldots*L}_{n \text{ times}}$.

By convention, we choose $L^0 = \{\varepsilon\}$. (The reason for this choice is that $\{\varepsilon\}$ is the neutral element for the * operation on languages. Thus, we get the inductive formula $L^{n+1} = L^n * L$ even for n = 0).

Thus:

- (a) The language Σ^n is the set of all words of length n.
- (b) The language $\bigcup_{n=0}^{\infty} \Sigma^n$ is the set of all words on Σ : $\bigcup_{n=0}^{\infty} \Sigma^n = \Sigma^*$.
- 6. a) Let us take the alphabet $\Sigma = \{a, b\}$. We give three counter-examples, there are many others.

$$A_1 = \{a, \varepsilon\} \qquad A_2 = \{a, ab\} \qquad A_3 = \Sigma^*$$

$$B_1 = \{\varepsilon\} \qquad B_2 = \{a, aabba, abb\} \qquad B_3 = \Sigma^* \setminus \{ab\}$$

$$C_1 = \{a\}^* \qquad C_2 = \Sigma^* \qquad C_3 = \{\varepsilon, ab\}$$

Remark: B_1 is a non-empty language, since it contains one element, the empty word. The only empty language is \emptyset .

We can check that:

- $A_1 * C_1 = B_1 * C_1 = \{a\}^*$.
- $A_2 * C_2 = B_2 * C_2 = \{aw \mid w \in \Sigma^*\}.$
- $A_3 * C_3 = B_3 * C_3 = \Sigma^*$.
- 6. b) Some possible conditions:
 - "The smallest word(s) of A and the smallest word(s) of B have different sizes." Written formally: $\min_{w \in A} |w| \neq \min_{w \in B} |w|$.
 - "The words of A and B begin with different letters." Formally: for all $w = w_1 \cdots w_n \in A$, for all $w' = w'_1 \cdots w'_{n'} \in B$, $w_1 \neq w'_1$.
 - $A \cap B = \varnothing$ (proving that this condition works is a bit difficult! Hint: look at the words of minimum length in A, B and C).

Try it yourself before reading the following. Take $a \in A, b \in B, c \in C$ with minimum length if their respective sets. Then a*c has minimal length in A*C and b*c has minimum length in B * C.

First case : $|a*c| \leq |b*c|$. Then if $a*c \in B*C$, then we have equality, otherwise b*c does not have minimum length. Then a*c = b'*c' for some $b' \in B, c' \in C$. We have $|c'| \geq |c|$ since c has minimum length. Then

$$|b'| + |c'| = |b' * c'| = |a * c| = |b * c| \le |b| + |c| = |a| + |c|$$

and using minimality of the length

$$|a| = |b'|$$
 and $|c'| = |c|$

and finally we get a = b' and c = c'. We get $a \in B$ which is a contradiction.

Second case : |a*c| > |b*c|. If $b*c \in A*C$ we get a contradiction with the minimality of a*c.

In both cases we saw that there is a elements that is in one of the sets and not the other one. Then $A*C \neq B*C$.

Exercise 3:

- 1. Suppose that $\Sigma = \{0, 1\}$. Give a finite rewriting system \mathcal{P} such that for all words $w \in \{0, 1\}^*$:
 - if some 0 occurs in w, then $w \to^* 0$
 - $-w \rightarrow^* 1$ in all other cases.
- 2. Suppose that $\Sigma = \{0, \dots, n-1\}$ for $n \in \mathbb{N} \setminus \{0\}$. Give a rewriting system \mathcal{P} such that for all words $w \in \{0, \dots, n-1\}^*$ of length ℓ , we have $w \to^* k \in \{0, \dots, n-1\}$, the word of length 1 whose unique letter is the sum of the letter of w modulo n, i.e.

$$k = (w_1 + \cdots + w_\ell) \mod n$$
.

Solution:

- 1. Take $\mathcal{P} = \{00 \to 0, 01 \to 0, 10 \to 0, 11 \to 1, \varepsilon \to 1\}.$
- 2. Take $\mathcal{P} = \{pq \to (p+q \bmod n) \mid p, q \in \Sigma\} \cup \{\varepsilon \to 0\}.$

Exercise 4: Given two nonempty sets A and B, define a bijection between $\mathfrak{P}(A \times B)$ and $(\mathfrak{P}(B))^A$. **Solution:** We define the following map

$$\begin{array}{cccc} \varphi: & \mathfrak{P}(A\times B) & \longrightarrow & (\mathfrak{P}(B))^A \\ X & \longmapsto & a\mapsto \{b\mid (a,b)\in X\} \end{array}$$

Thus, given $X \subseteq A \times B$, $\varphi(X)$ is a function from A to $\mathfrak{P}(B)$ defined as $\varphi(X)(a) = \{b \mid (a,b) \in X\}$. To show that φ is bijective, we prove that the following map is the inverse of φ :

$$\begin{array}{ccc} \psi: & (\mathfrak{P}(B))^A & \longrightarrow & \mathfrak{P}(A \times B) \\ f & \longmapsto & \{(a,b) \mid b \in f(a)\} \end{array}$$

• Let $X \subseteq A \times B$.

$$\psi \circ \varphi(X) = \{(a,b) \mid b \in \varphi(X)(a)\}$$
$$= \{(a,b) \mid (a,b) \in X\}$$
$$= X$$

• Let $f:A \to \mathfrak{P}(B)$. We want to show $\varphi \circ \psi(f)=f$, i.e., $(\varphi \circ \varphi(f))(a)=f(a)$ for all $a \in A$. So, assume $a \in A$.

$$(\varphi \circ \psi(f))(a) = \{b \mid (a,b) \in \psi(f)\}$$
$$= \{b \mid b \in f(a)\}$$
$$= f(a)$$