Rappel de cours

Definition 1. Soit E un K-espace vectoriel. Une partie F de E est appele un sous-espace vectoriel si :

- $0_E \in F$,
- $u + v \in F$ pour tous $u, v \in F$,
- $\lambda.u \in F$ pour tout $\lambda \in K$ et tout $u \in F$.

Definition 2. Une famille $\{v_1, v_2, \dots, v_p\}$ de E est une famille libre ou linéairement indépendante si toute combinaison linéaire nulle

$$\lambda_1 v_1 + \lambda_2 v_2 + \lambda_p v_p = 0$$

est telle que tous ses coefficients sont nuls, cest-à-dire

$$\lambda_1 = 0, \lambda_2 = 0, \dots, \lambda_p = 0$$

Definition 3. Soient v_1, \ldots, v_p des vecteurs de E. La famille $\{v_1, \ldots, v_p\}$ est une famille génératrice de l'espace vectoriel E si tout vecteur de E est une combinaison linéaire des vecteurs v_1, \ldots, v_p . Ce qui peut s'écrire aussi :

$$\forall v \in E, \exists \lambda_1, \dots, \lambda_p, v = \lambda_1 v_1 + \dots + \lambda_p v_p$$

Exercice 1

1-a

Il suffit de montrer les 3 conditions qui définissent un sous-espace vectoriel.

- $0_F \in F(\mathbb{R}, \mathbb{R})$. La fonction $0_F : x \to 0$ est continue sur \mathbb{R} , donc $0_F \in C(\mathbb{R}, \mathbb{R})$.
- Pour tout $u, v \in C(\mathbb{R}, \mathbb{R})$, $u + v \in C(\mathbb{R}, \mathbb{R})$, car la somme de 2 fonctions continues est une fonction continue
- Pour tout $\lambda \in \mathbb{R}$ et tout $u \in C(\mathbb{R}, \mathbb{R})$, $\lambda u \in C(\mathbb{R}, \mathbb{R})$ car la multiplication par une constante ne change pas la continuité d'une fonction.

Donc $C(\mathbb{R}, \mathbb{R})$ est un sous-espace vectoriel de $F(\mathbb{R}, \mathbb{R})$.

1-b

Notons $G(\mathbb{R}, \mathbb{R})$ l'ensemble des fonctions $f \in C(\mathbb{R}, R)$ qui sont dérivables et telles que : $\forall x \in \mathbb{R}, f'(x) + xf(x) = 0$. Il suffit de montrer les 3 conditions qui définissent un sous-espace vectoriel.

- $0_C \in C(\mathbb{R}, \mathbb{R})$. $0'_C(x) + x.0_C(x) = 0 + x.0 = 0$ donc $0_C \in G(\mathbb{R}, \mathbb{R})$
- Pour tout $u, v \in G(\mathbb{R}, \mathbb{R}), u'(x) + x.u(x) = 0$ et v'(x) + x.v(x) = 0. On a (u+v)'(x) + x.(u+v)(x) = u'(x) + v'(x) + x.u(x) + x.v(x) = 0 + 0 = 0. Donc $u + v \in G(\mathbb{R}, \mathbb{R})$.
- Pour tout $\lambda \in \mathbb{R}$ et tout $u \in G(\mathbb{R}, \mathbb{R})$, $(\lambda . u(x))' + x . (\lambda . u(x)) = \lambda . u'(x) + \lambda . x . u(x) = \lambda (u'(x) + x . u(x)) = \lambda . 0 = 0$ donc $\lambda . u \in G(\mathbb{R}, \mathbb{R})$.

Donc $G(\mathbb{R}, \mathbb{R})$ est un sous-espace vectoriel de $C(\mathbb{R}, \mathbb{R})$.

1-c

Notons $H(\mathbb{R}, \mathbb{R})$ l'ensemble des fonctions $f \in C(\mathbb{R}, R)$ telles que : $\forall x \in \mathbb{R}, 0 \le f(x) \le 1$. Il suffit de montrer les 3 conditions qui définissent un sous-espace vectoriel.

- $0_C \in C(\mathbb{R}, \mathbb{R})$. $0 \le 0_E(x) \le 1$
- Pour tout $u, v \in C(\mathbb{R}, \mathbb{R})$, $0 \le u(x) \le 1$ et $0 \le v(x) \le 1$. On a $(u+v)(x) = u(x) + v(x) \ge 1$. Donc $u+v \notin H(\mathbb{R}, \mathbb{R})$.
- Pour tout $\lambda \in \mathbb{R}$ et tout $u \in G(\mathbb{R}, \mathbb{R})$, $\lambda \cdot u(x) \geq 1$ lorsque $\lambda > 1$ donc $\lambda \cdot u \notin H(\mathbb{R}, \mathbb{R})$.

Donc $H(\mathbb{R}, \mathbb{R})$ n'est pas un sous-espace vectoriel de $C(\mathbb{R}, \mathbb{R})$.

Exercice 2

2-a

Famille libre?

$$\lambda_1 v_1 + \lambda_2 v_2 = \lambda_1(3,5) + \lambda_2(7,-3) = 0$$

$$\begin{cases} 3\lambda_1 + 7\lambda_2 = 0 & (1) \\ 5\lambda_1 - 3\lambda_2 = 0 & (2) \end{cases}$$

$$\left\{ \begin{array}{l} 3\lambda_1+7\lambda_2=0\\ 0\lambda_1+44\lambda_2=0 & 5(1)-3(2) \end{array} \right.$$

On a $\lambda_2 = 0$ et $\lambda_1 = 0$. Donc, la famille est libre.

Famille génératrice?

$$\forall v = (x, y) \in E, \exists \lambda_1, \lambda_2, v = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1(3, 5) + \lambda_2(7, -3)$$

$$\begin{cases} 3\lambda_1 + 7\lambda_2 = x & (1) \\ 5\lambda_1 - 3\lambda_2 = y & (2) \end{cases}$$

$$\begin{cases} 3\lambda_1 + 7\lambda_2 = x & (1) \\ 0\lambda_1 + 44\lambda_2 = 5x - 3y & 5(1) - 3(2) \end{cases}$$

Il existe $\lambda_2 = \frac{5x-3y}{44}$ et $\lambda_1 = \frac{3x+y}{44}$. Donc, la famille est génératrice.

2-c

Famille libre?

$$\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = \lambda_1 (1, 2, 3) + \lambda_2 (4, 5, 6) + \lambda_3 (2, 1, 7) = 0$$

$$\begin{cases} 1\lambda_1 + 4\lambda_2 + 2\lambda_3 = 0 & (1) \\ 2\lambda_1 + 5\lambda_2 + 1\lambda_3 = 0 & (2) \\ 3\lambda_1 + 6\lambda_2 + 7\lambda_3 = 0 & (3) \end{cases}$$

$$\begin{cases} 1\lambda_1 + 4\lambda_2 + 2\lambda_3 = 0 & (1) \\ 0\lambda_1 - 3\lambda_2 - 3\lambda_3 = 0 & (2) - 2(1) = (4) \\ 0\lambda_1 - 6\lambda_2 + 1\lambda_3 = 0 & (3) - 3(1) = (5) \end{cases}$$

$$\begin{cases} 1\lambda_1 + 4\lambda_2 + 2\lambda_3 = 0 & (1) \\ 0\lambda_1 - 3\lambda_2 - 3\lambda_3 = 0 & (2) - 2(1) = (4) \\ 0\lambda_1 - 33\lambda_2 + 0\lambda_3 = 0 & 3(5) + (4) \end{cases}$$

On a $\lambda_2 = 0$, $\lambda_3 = 0$ et $\lambda_1 = 0$. Donc, la famille est libre.

Famille génératrice?

$$\forall v = (x, y, z) \in E, \exists \lambda_1, \lambda_2, \lambda_3, v = \lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = \lambda_1 (1, 2, 3) + \lambda_2 (4, 5, 6) + \lambda_2 (2, 1, 7)$$

$$\begin{cases} 1\lambda_1 + 4\lambda_2 + 2\lambda_3 = x & (1) \\ 2\lambda_1 + 5\lambda_2 + 1\lambda_3 = y & (2) \\ 3\lambda_1 + 6\lambda_2 + 7\lambda_3 = z & (3) \end{cases}$$

$$\begin{cases} 1\lambda_1 + 4\lambda_2 + 2\lambda_3 = x & (1) \\ 0\lambda_1 - 3\lambda_2 - 3\lambda_3 = y - 2x & (2) - 2(1) = (4) \\ 0\lambda_1 - 6\lambda_2 + 1\lambda_3 = z - 3x & (3) - 3(1) = (5) \end{cases}$$

$$\begin{cases} 1\lambda_1 + 4\lambda_2 + 2\lambda_3 = x & (1) \\ 0\lambda_1 - 3\lambda_2 - 3\lambda_3 = y - 2x & (4) \\ 0\lambda_1 - 33\lambda_2 + 0\lambda_3 = 3(z - 3x) + y - 2x = 3z - 11x + y & 3(5) + (4) \end{cases}$$

Il existe $\lambda_2=-\frac{3z-11x+y}{33},\ \lambda_3=\frac{5x-3y}{44}$ et $\lambda_1=\frac{3x+y}{44}.$ Donc, la famille est génératrice.

Famille libre?

$$\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = \lambda_1 (1, 2, 3, 4) + \lambda_2 (2, 3, 4, 5) + \lambda_3 (4, 5, 6, 7) = 0$$

$$\begin{cases}
1\lambda_1 + 2\lambda_2 + 4\lambda_3 = 0 & (1) \\
2\lambda_1 + 3\lambda_2 + 5\lambda_3 = 0 & (2) \\
3\lambda_1 + 4\lambda_2 + 6\lambda_3 = 0 & (3) \\
4\lambda_1 + 5\lambda_2 + 7\lambda_3 = 0 & (4)
\end{cases}$$

Famille génératrice?

$$\forall v = (x, y, z) \in E, \exists \lambda_1, \lambda_2, \lambda_3, v = \lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = \lambda_1 (1, 2, 3, 4) + \lambda_2 (2, 3, 4, 5) + \lambda_3 (4, 5, 6, 7)$$

$$\begin{cases} 1\lambda_1 + 2\lambda_2 + 4\lambda_3 = x & (1) \\ 2\lambda_1 + 3\lambda_2 + 5\lambda_3 = y & (2) \\ 3\lambda_1 + 4\lambda_2 + 6\lambda_3 = z & (3) \\ 4\lambda_1 + 5\lambda_2 + 7\lambda_3 = w & (4) \end{cases}$$

Exercice 3

3-a

$$v = (1, -1) = \lambda_1 \cdot (1, 2) + \lambda_2 \cdot (5, 3) = (\lambda_1 + 5\lambda_2, 2\lambda_1 + 3\lambda_2)$$

$$\begin{cases} \lambda_1 + 5\lambda_2 = 1 & (1) \\ 2\lambda_1 + 3\lambda_2 = -1 & (2) \end{cases}$$

$$\begin{cases} \lambda_1 = 1 - 5\lambda_2 & (1) \\ 2 - 10\lambda_2 + 3\lambda_2 = -1 & (2) \end{cases}$$

$$\begin{cases} \lambda_1 = 1 - 5\lambda_2 & (1) \\ \lambda_2 = \frac{3}{7} & (2) \end{cases}$$

$$\begin{cases} \lambda_1 = 1 - 5\frac{3}{7} = \frac{7}{7} - \frac{15}{7} = \frac{-8}{7} & (1) \\ \lambda_2 = \frac{3}{7} & (2) \end{cases}$$

Dans la base \mathcal{B} , $v = (\frac{-8}{7}, \frac{3}{7})$.

3-b

$$v = (1+X)^3 = 1 + 3X + 3X^2 + X^3 = \lambda_1 + X\lambda_2 + X^2\lambda_3 + X^3\lambda_4$$

Dans la base $\mathcal{B}, v = (1, 3, 3, 1)$???

3-c

$$v = X^2 = \lambda_1 + (X+1)\lambda_2 + (X+1)^2\lambda_3 = \lambda_1 + \lambda_2 + \lambda_3 + X(\lambda_2 + 2\lambda_3) + X^2\lambda_3$$

Dans la base $\mathcal{B}, v = (1, -2, 1)$????

3-d

$$v = \cos^2 = \frac{1}{2}(1 + \cos_2) = \lambda_1 + \lambda_2 \cos + \lambda_3 \sin + \lambda_4 \cos_2 + \lambda_5 \sin_2 \frac{1}{2}$$

Dans la base $\mathcal{B}, v = (\frac{1}{2}, 0, 0, \frac{1}{2}, 0)$???

Exercice 4

On fixe x_2, x_3, x_4 et on regarde comment x_1 est impacté. Soit la base $((x_{11}, 1, 0, 0), (x_{12}, 0, 1, 0), (x_{13}, 0, 0, 1))$, pour vérifier $2x_1 + 3x_2 - x_3 + x_4 = 0$ il faut $x_{11} = \frac{-3}{2}$, $x_{12} = \frac{1}{2}$ et $x_{13} = -\frac{1}{2}$. Ceci est mécamiquement une base car les 3 vecteurs sont mutuellement indépendants.

Exercice 8

$$E + F = \{ v \in \mathbb{R}^3 : v = \lambda_{1e}u_1 + \lambda_{2e}u_2 + \lambda_{3e}u_3 + \lambda_{1f}u_4 + \lambda_{2f}u_5 \}$$

Il faut résoudre:

$$\begin{cases} \lambda_{1e} + \lambda_{2e} + 3\lambda_{3e} + \lambda_{1f} + \lambda_{2f} = 0 \\ 2\lambda_{1e} + 0\lambda_{2e} + 2\lambda_{3e} + \lambda_{1f} + 2\lambda_{2f} = 0 \\ 3\lambda_{1e} - \lambda_{2e} + 1\lambda_{3e} + \lambda_{1f} + 2\lambda_{2f} = 0 \end{cases}$$

$$\begin{vmatrix} 1 & 1 & 3 & 1 & 1 & 0 \\ 2 & 0 & 2 & 1 & 2 & 0 \\ 3 & -1 & 1 & 1 & 2 & 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} 1 & 0 & 1 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 2 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{vmatrix}$$

$$\begin{cases} \lambda_{1e} + \lambda_{3e} + \frac{1}{2}\lambda_{1f} = 0 \\ 2\lambda_{2e} + 2\lambda_{3e} + \frac{1}{2}\lambda_{1f} = 0 \\ \lambda_{2f} = 0 \end{cases}$$

 λ_{3e} , et λ_{1f} sont indéterminés, donc les vecteurs u_3 et u_4 peuvent s'exprimer en fonction des 3 autres vecteurs $(u_3 = u_1 + 2u_2)$ et $u_4 = 1/2.(u_1 + u_2)$. Donc la base de E + F est $\{u_1, u_2, u_5\}$.

$$E \cap F = \{ v \in \mathbb{R}^3 : v = \lambda_{1e}u_1 + \lambda_{2e}u_2 + \lambda_{3e}u_3 \wedge v = \lambda_{1f}u_4 + \lambda_{2f}u_5 \}$$

$$E \cap F = \{ v \in \mathbb{R}^3 : \lambda_{1e}u_1 + \lambda_{2e}u_2 + \lambda_{3e}u_3 - \lambda_{1f}u_4 - \lambda_{2f}u_5 = 0 \}$$

$$\begin{cases} \lambda_{1e} + \lambda_{2e} + 3\lambda_{3e} - \lambda_{1f} - \lambda_{2f} = 0 & (1) \\ 2\lambda_{1e} + 0\lambda_{2e} + 2\lambda_{3e} - \lambda_{1f} - 2\lambda_{2f} = 0 & (2) \\ 3\lambda_{1e} - \lambda_{2e} + 1\lambda_{3e} - \lambda_{1f} - 2\lambda_{2f} = 0 & (3) \end{cases}$$

$$\begin{vmatrix} 1 & 1 & 3 & -1 & -1 & 0 \\ 2 & 0 & 2 & -1 & -2 & 0 \\ 3 & -1 & 1 & -1 & -2 & 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} 1 & 1 & 3 & -1 & -1 & 0 \\ 0 & 1 & 2 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{vmatrix}$$

$$\begin{cases} \lambda_{1e} = -\lambda_{2e} - 3\lambda_{3e} + \lambda_{1f} + \lambda_{2f} & (1) \\ \lambda_{2e} = -2\lambda_{3e} + \frac{1}{2}\lambda_{1f} = 0 & (2) \\ \lambda_{2f} = 0 & (3) \end{cases}$$

$$\begin{cases} \lambda_{1e} = -\lambda_{2e} - 3\lambda_{3e} + (4\lambda_{3e} + 2\lambda_{2e} = \lambda_{2e} + \lambda_{3e} & (1) \\ \lambda_{1f} = 4\lambda_{3e} + 2\lambda_{2e} & (2) \\ \lambda_{2f} = 0 & (3) \end{cases}$$

La base est $\{x \in \mathbb{R}^3 : (\lambda_{2e} + \lambda_{3e})u_1 + \lambda_{2e}u_2 + \lambda_{2e}u_3\}$, $\{x \in \mathbb{R}^3 : (2\lambda_2 + 4\lambda_4, 2\lambda_2 + 4\lambda_4, 2\lambda_2 + 4\lambda_4)\} = \{x \in \mathbb{R}^3 : (1, 1, 1)\}$. QED