

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

FEBRUARY/MARCH/FEBRUARIE/MAART 2014

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 14 pages. *Hierdie memorandum bestaan uit 14 bladsye.*

NOTE:

- If a candidate answered a question TWICE, mark only the first attempt.
- If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out question.
- Consistent accuracy applies in ALL aspects of the marking memorandum.
- Assuming values/answers in order to solve a problem is unacceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE keer beantwoord het, merk slegs die eerste poging.
- As 'n kandidaat 'n antwoord deurgehaal en nie oorgedoen het nie, merk die deurgehaalde antwoord.
- Volgehoue akkuraatheid is DEURGAANS in ALLE aspekte van die memorandum van toepassing.
- Aanvaarding van waardes/antwoorde om 'n problem op te los, is onaanvaarbaar.

1.1	$Mean/Gemiddelde = \frac{\sum x}{n} = \frac{1522}{15} = 101,47$	✓ 1522 ✓ 101,47 (2)
1.2	Standard deviation/standaardafwyking = 19,07	√19,07 √2 decimal places (2)
1.3	lower quartile/onderste (eerste) kwartiel = 89 upper quartile/boonste (derde) kwartiel = 113	√ 89 √ 113 (2)
1.4	•	✓ M at 100 ✓ min = 58 and max = 145
	50 60 70 80 90 100 110 120 130 140 150	$ \begin{array}{c} \checkmark Q_1 = 89 \\ \text{and} \\ Q_2 = 113 \end{array} $ (3)
1.5	$(\overline{x} - 1\sigma; \overline{x} + 1\sigma) = (82,4; 120,54)$ $\therefore 2 \text{ days/dae}$ Answer only: full marks	√√ interval √ answer (3) [12]

2.1	TIME IN MINUTES	NUMBER OF CUSTOMERS (frequency)	CUMULATIVE FREQUENCY	✓ completing
	$0 < x \le 10$	12	12	frequency
	$10 < x \le 20$	79	91	column
	$20 < x \le 30$	93	184	✓ ✓ cumulative
	$30 < x \le 40$	48	232	frequency
	$40 < x \le 50$	29	261	
	$50 < x \le 60$	9	270	(3)
2.2				
	Cumulative free 300 270 240 210 210 150 150 90 60 30 0 10	20 30 40 Time (in minutes	50 60 70	✓ plot against upper limit ✓ cumulative frequency ✓ anchored ✓ smooth curve
		Time (in minutes	·) 	
2.3	Median time spent shop (Allow 24–25 minutes)	pping is approximately	25 minutes.	$\begin{array}{c c} & (4) \\ \hline \checkmark \checkmark \text{ answer} \\ & (2) \\ \hline \end{array}$
2.4	The data is skewed to the Die data is skeef na reg		kewed/	✓ correct skewness
				(1) [10]

3.1	(41; 26)	✓ correct outlier (1)
3.2	quadratic/kwadraties	✓ correct answer (1)
3.3	The younger or older the participants are, the longer they will take to complete the item. They do not have the required strength, fitness and stamina. Hoe jonger of ouer die deelnemers is, hoe langer sal hulle neem om die item te voltooi. Hulle het nie die vereiste krag, fiksheid en stamina (energie) nie. OR It would appear that swimmers close to 19 years completed the item in the shortest time. Swimmers of that age are normally in good physical condition and have lots of stamina.	✓ younger/older jonger/ouer ✓ lack of strength/ tekort aan krag (2) ✓ 19 years/jaar ✓ peak fitness/ top fiks (2)
	Dit wil voorkom of swemmers rondom 19 jaar die item in die kortste tyd voltooi het. Swemmers van daardie ouderdom is normaalweg in goeie fisiese kondisie en het baie energie en stamina.	
3.4.1	The standard deviation will become smaller/decrease./ Die standaardafwyking sal kleiner word/verminder.	✓ decrease/ verminder (1)
3.4.2	The mean will become smaller/decrease./ Die gemiddelde sal kleiner word/verminder.	✓ decrease/ verminder (1) [6]

4.1	y = -3x + k $-3 = (-3)(-1) + k$ $k = -6$	OR	By inspection, using the gradient: $k = -6$	✓ substitution of (-1; -3) ✓ $k = -6$ (2)
4.2	$\frac{x_A + x_B}{2} = x_P$ $\frac{-1 + x_B}{2} = \frac{5}{2} \text{and}$ $x_B = 6$ $\therefore B (6; 5)$	$\frac{y_A + y_B}{2} = y_P$ $\frac{-3 + y_B}{2} = 1$ $y_B = 5$	By using or translation: B(6; 5)	✓ 6 ✓ 5
4.3	$m_{AB} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{5 - (-3)}{6 - (-1)}$ $= \frac{8}{7}$	$m_{\scriptscriptstyle AB}$	$x = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{1 - (-3)}{2,5 - (-1)}$ $= \frac{8}{7}$	✓ substitution ✓ gradient (2)

4 4		
4.4	$\tan \beta = m_{AD} = -3$	$ \begin{array}{l} \checkmark & \tan \beta = -3 \\ \checkmark & \beta = 108,43^{\circ} \end{array} $
	$\beta = 108,43^{\circ}$	
	$\tan \alpha = m_{AB} = \frac{8}{7}$	$\checkmark \tan \alpha = \frac{8}{7}$
	$\alpha = 48.81^{\circ}$	$\checkmark \alpha = 48.81^{\circ}$
	$\theta = 48.81$ $\theta = 108.43^{\circ} - 48.81^{\circ}$	
	$\theta = 59,62^{\circ}$	$\checkmark \theta = 59,62^{\circ}$
		$\sqrt{0-39,02}$ (5)
	OR	
	$\tan \beta = m_{AD} = -3$	$\sqrt{\tan \theta} = 2$
	$\beta = 108,43^{\circ}$	$ \begin{array}{l} \checkmark & \tan \beta = -3 \\ \checkmark & \beta = 108,43^{\circ} \end{array} $
	$\hat{CDO} = 18,43^{\circ}$,
	_	$\sqrt{\tan \alpha} = \frac{8}{7}$
	$\tan \alpha = m_{AB} = \frac{8}{7}$	/
	$\alpha = 48.81^{\circ}$	$\checkmark \alpha = 48.81^{\circ}$
	$\theta = 18,43^{\circ} + (90^{\circ} - 48,81^{\circ})$	
	$\theta = 59,62^{\circ}$	$\checkmark \theta = 59,62^{\circ}$
1.5		(5)
4.5	$AD = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	✓ substitution into
	$=\sqrt{(0+1)^2+(-6+3)^2}$	distance formula
	$=\sqrt{10}$	$\checkmark \sqrt{10}$
16	AC = 2 AD	(2)
4.6	$\begin{vmatrix} AC = 2 & AD \\ = 2\sqrt{10} \end{vmatrix}$	\checkmark AC = $2\sqrt{10}$
	$CB^{2} = AC^{2} + AB^{2} - 2AC.AB.\cos\theta$	✓ using cosine rule
	$= (2\sqrt{10})^2 + (\sqrt{113})^2 - 2(2\sqrt{10})(\sqrt{113})\cos 59,62^\circ$	✓ substitution
	= 84,998	✓ 84,998
	CB = 9,22 units.	√ 9,22 (5)
	OR	
	OK .	(((0(2-2)
	D(0; -6), A(-1; -3), AC = 2AD	$\checkmark \checkmark \checkmark C(-3;3)$ \checkmark substitution into
	So $x_c - x_A = 2(x_A - x_D)$ $x_C + 1 = 2(-1 - 0), x_C = -3$	distance formula
	$y_{\rm c} - y_{\rm A} = 2(y_{\rm A} - y_{\rm D})$ $y_{\rm C} + 3 = 2(-3 + 6), y_{\rm C} = 3$	√ 9,22 (5)
	The coordinates of C are $(-3; 3)$.	(5) [18]
	$CB = \sqrt{(6 - (-3))^2 + (5 - 3)^2}$	[10]
	= 9,22 units	

5.1	M(8;-4)	✓ coordinates
		(1)
5.2	$OM = \sqrt{(8-0)^2 + (-4-0)^2}$	✓ substitution into distance formula
	$=\sqrt{80}$ or $4\sqrt{5}$ units	$\checkmark \sqrt{80} \text{ or } 4\sqrt{5}$
		(2)
5.3	ON = OM - NM	$\checkmark ON = OM - NM$
	$=\sqrt{80}-\sqrt{45}$	✓ length of NM ✓ answer
	$=4\sqrt{5}-3\sqrt{5}$	(3)
	$=\sqrt{5}$ units	
5.4	$\hat{MTP} = 90^{\circ}$ (tangent/raaklyn \perp radius)	✓ Statement +
	∴ $\hat{OMT} = 90^{\circ}$ (alternate \angle 's /verwissellende \angle 'e; $\hat{TP} \mid OM$)	reason ✓ answer
<i></i>		(2)
5.5	$m_{MT}. m_{OM} = -1$	$\checkmark \checkmark m_{OM}$
	$m_{OM} = \frac{-4-0}{8-0} = -\frac{1}{2}$	$\sim m_{MT}$
	$m_{MT} = 2$ $m_{MT} = 2$ $V = 2x + c$	✓ substitution of
	y+4=2(x-8) $-4=2(8)+c$	m and $(8; -4)$ \checkmark equation MT
	y = 2x - 20 $c = -20$ $y = 2x - 20$	(5)
5.6	$\frac{y - 2x - 20}{(x - 8)^2 + (y + 4)^2} = 45$	
	$(x-8)^2 + (2x-20+4)^2 = 45$	
	$(x-8)^2 + (2x-16)^2 = 45$	✓ substitution
	$x^2 - 16x + 64 + 4x^2 - 64x + 256 - 45 = 0$	
	$5x^2 - 80x + 275 = 0$	✓ expansion ✓ standard form
	$x^2 - 16x + 55 = 0$	
	(x-11)(x-5) = 0	✓ factors
	x = 11	$\checkmark x = 11$
	y = 2(11) - 20	✓ substitution
	y = 2	· substitution
	∴ T(11; 2)	
		(6)
		[19]

6.1.1	Rotation by 90° anti-clockwise about the origin/ Rotasie van 90° antikloksgewys om die oorsprong.	✓ rotation/rotasie ✓ 90° anti- clockwise/ antikloksgewys
6.1.2	$(x;y) \to (y;x)$	$\begin{array}{c} (2) \\ \checkmark y \\ \checkmark x \end{array}$
6.1.3	P'(-3;-5)	\checkmark x value \checkmark y value (2)
6.2.1	Q'(-2;4)	\checkmark x value and y value (1)
6.2.2(a)	$(x;y) \to (2x;2y) \to (-2x;2y) \to (-2x+3;2y+1)$	$ \begin{array}{cccc} \checkmark & (2x;2y) \\ \checkmark & (-2x;2y) \\ \checkmark & (-2x+3;2y+1) \end{array} $ (3)
6.2.2(b)	$P'(6; 4) \rightarrow P''(-3; 5)$ $Q'(-2; 4) \rightarrow Q''(5; 5)$ $R'(-4; 2) \rightarrow R''(7; 3)$	$\checkmark P''(-3;5)$ $✓ Q''(5;5)$ $✓ R''(7;3)$ $✓ S''(5;1)$ $✓ joining the points$

6.2.3	Perimeter/Omtrek PQRS = $t \times$ Perimeter/Omtrek P"Q"R"S" Perimeter/Omtrek PQRS = $t \times 2$ Perimeter/Omtrek PQRS $\therefore \qquad t = \frac{1}{2}$	✓ 2 Perimeter PQRS/ 2 omtrek PQRS ✓ $\frac{1}{2}$
		(2) [17]

A regular octagon has 8 equal sides. Therefore each side subtends an angle of 45° at the centre of the octagon./'n Reëlmatige oktagoon het 8 gelyke sye. Dus elke sy onderspan 'n hoek van 45° by die middelpunt van die oktagoon.

Angle of rotation is/Hoek van rotasie is:

$$A\hat{O}B = 135^{\circ}$$

$$x' = x \cos \theta - y \sin \theta$$

$$= 8,42 \cos 135^{\circ} - 20,33 \sin 135^{\circ}$$

$$= -20.33$$

$$y' = y \cos \theta + x \sin \theta$$

$$= 20,33 \cos 135^{\circ} + 8,42 \sin 135^{\circ}$$

$$= -8,42$$
B (-20,33; -8,42)

OR

Draw a sketch:

 $\triangle AOC \equiv \triangle BOD (S; \angle; S \ or S; S; S)$ $\therefore B(-b; -a)$

$$\therefore$$
 B(-20,33; -8,42)

 $\checkmark \frac{360^{\circ}}{8} = 45^{\circ}$

✓ rotation of 135°/
rotasie van 135°

✓ substitution into correct formula

 $\sqrt{-20,33}$

✓ substitution into correct formula

 $\sqrt{-8,42}$

[6]

Sketch drawn showing the equal parts **OR** proving the Δ 's \equiv \checkmark B(- b; - a) \checkmark - 20,33 \checkmark -8,42

[6]

0 1 1	2	
8.1.1	$\sin A = \frac{3}{5} \text{(given)}$	
	$\sin(-A)$	(aim A
	$=-\sin A$	✓ sin A
	$=-\frac{3}{5}$	✓ value
	 5	(2)
8.1.2	$\sin^2 A + \cos^2 A = 1$	
	$\cos^2 A = 1 - \frac{9}{25} = \frac{16}{25}$ $\cos A = -\frac{4}{5}$	$\checkmark \cos^2 A = \frac{16}{25}$
	$\cos A = -\frac{\pi}{5}$ $\tan A = \frac{\sin A}{\cos A}$	$\checkmark \cos^2 A = \frac{16}{25}$ $\checkmark \cos A = -\frac{4}{5}$
	$ \begin{aligned} \cos A \\ &= \frac{3}{5} \times -\frac{5}{4} \\ &= -\frac{3}{4} \end{aligned} $	✓ ratio (3)
	OR $x = -4$ $\tan A = -\frac{3}{4}$	✓ sketch in correct quadrant ✓ $x = -4$ ✓ ratio (3)
8.2.1	$\cos 214^{\circ}$ = $\cos (180^{\circ} + 34^{\circ})$ = $-\cos 34^{\circ}$	✓ - cos 34°
	=-p	$\sqrt{-p}$ (2)
8.2.2	cos 68°	
	$ = \cos[2(34^{\circ})] = 2\cos^2 34^{\circ} - 1 $	✓ cos [2(34°)]
	$= 2p^2 - 1$	$\checkmark 2p^2 - 1 \tag{2}$

8.2.3	gin 56°		
0.2.3	$\tan 56^\circ = \frac{\sin 56^\circ}{\cos 56^\circ}$		✓ identity
	$=\frac{\cos 34^{\circ}}{\cos 34^{\circ}}$		
	$=\frac{\cos 3}{\sin 34^{\circ}}$		✓ co-functions
			$\sqrt{1-\cos^2 34^\circ}$
	$=\frac{\cos 34^{\circ}}{\sqrt{1-\cos^2 34^{\circ}}}$		$\sqrt{1-\cos^2 34^\circ}$
	$=\frac{p}{\sqrt{1-p^2}}$		✓ answer
	V 1		(4)
	OR		
	$v^2 = 1 - n^2$	†	✓ sketch with 34°
	$y^2 = 1 - p^2$ $y = \sqrt{1 - p^2}$		1 2
		$\frac{1}{56}$ ° $_y$	$\checkmark y = \sqrt{1 - p^2}$
	$\therefore \tan 56^\circ = \frac{p}{\sqrt{1 - p^2}}$	34°	✓ 90° – 34° = 56°
	$\sqrt{1-p^2}$	p	✓ answer
8.3	$\cos 350^{\circ} \sin 40^{\circ} - \cos 440^{\circ} \cos 40^{\circ}$		(4)
8.3			✓ cos 10°
	$= \cos 10^{\circ} \sin 40^{\circ} - \cos 80^{\circ} \cos 40^{\circ}$ $= \cos 10^{\circ} \sin 40^{\circ} - \sin 10^{\circ} \cos 40^{\circ}$		✓ cos 80°
	$= \cos 10^{\circ} \sin 40^{\circ} - \sin 10^{\circ} \cos 40^{\circ}$ $= \sin 40^{\circ} \cos 10^{\circ} - \cos 40^{\circ} \sin 10^{\circ}$		✓ sin10°
	$= \sin(40^{\circ} - 10^{\circ})$ $= \sin(40^{\circ} - 10^{\circ})$		
	$= \sin 30^{\circ}$		✓ sin 30°
	1		
	$=\frac{1}{2}$	ND	✓ answer (5)
	0	PR	(3)
	$\cos 350^{\circ} \sin 40^{\circ} - \cos 440^{\circ} \cos 40^{\circ}$		100
	$= \cos 10^{\circ} \sin 40^{\circ} - \cos 80^{\circ} \cos 40^{\circ}$		✓ cos 10° ✓ cos 80°
	$= \cos 10^{\circ} \cos 50^{\circ} - \sin 10^{\circ} \sin 50^{\circ}$		✓ cos 50° and
	$=\cos(10^\circ + 50^\circ)$		sin 50°
	$=\cos 60^{\circ}$	NOTE: There are many	✓ cos 60°
	$=\frac{1}{-}$	solutions.	005 00
	$-\frac{1}{2}$		✓ answer
			(5) [18]
			[10]

9.1	$\cos(x - 45^\circ) = -2\sin x$	
7.1	$\cos(x^{\circ} + \sin x \sin 45^{\circ}) = 2\sin x$ $\cos x \cos 45^{\circ} + \sin x \sin 45^{\circ} = -2\sin x$	
		✓ expansion
	$\frac{\sqrt{2}}{2}\cos x + \frac{\sqrt{2}}{2}\sin x = -2\sin x$	$\sqrt{\frac{\sqrt{2}}{2}}$
		2
	$\sqrt{2}\cos x = (-4 - \sqrt{2})\sin x$	✓ simplification
	$\sqrt{2} = \frac{(-4 - \sqrt{2})\sin x}{\cos x}$	\checkmark dividing by $\cos x$
	$\tan x = \frac{\sqrt{2}}{-4 - \sqrt{2}} = -0.2612$	
	$\tan x = \frac{1}{-4 - \sqrt{2}} = -0,2612$	(4)
9.2	$\tan x = -0.2612$	
	$x = 165,36^{\circ} + 180^{\circ} k; k \in \mathbb{Z}$	✓ general solution
	14 (40 1(5 2(0	\checkmark values of x
	$x = -14,64^{\circ} \text{ or } 165,36^{\circ}$	$\sqrt{\text{values of } x}$ (3)
9.3	T (135°; 0)	\checkmark x value
		\checkmark y value
		(2)
9.4	$f(x) \ge g(x)$	(t1
	$-14,64^{\circ} \le x \le 165,36^{\circ}$ OR $x \in [-14,64^{\circ}; 165,36^{\circ}]$	✓ extreme values ✓ notation
		(2)
9.5	$-135^{\circ} < x < -90^{\circ}$ OR $x \in (-135^{\circ}; -90^{\circ})$	✓✓ extreme values
		✓ notation
0.6		(3)
9.6	$h(x) = \cos(x - 45^{\circ} - 45^{\circ})$	$\sqrt{\cos(x-90^\circ)}$
	$= \cos(x - 90^{\circ})$ Answer only: full marks	$\sqrt{\cos(x-90^\circ)}$
	$=\sin x$	$\sqrt{\sin x}$ (2)
		[16]
		[=*]

10.1	In ΔTRQ:	
	TR _ TQ	
	$\frac{TR}{\sin R\hat{Q}T} = \frac{TQ}{\sin Q\hat{R}T}$	✓ using sine rule
	$\frac{\text{TR}}{\sin 60^{\circ}} = \frac{k}{\sin[180^{\circ} - (\theta + 60^{\circ})]}$	✓ correct
	$\sin 60^{\circ} - \sin[180^{\circ} - (\theta + 60^{\circ})]$	substitution
	$TR = \frac{k \sin 60^{\circ}}{\sin[180^{\circ} - (\theta + 60^{\circ})]} or TR = \frac{k \sin 60^{\circ}}{\sin(120^{\circ} - \theta)}$	✓ rewrite TR as subject (3)
10.2	In ΔTRS:	
	$\frac{RS}{TR} = \sin R\hat{T}S$	✓ using sine ratio
	$RS = TR.\sin 60^{\circ}$	
	$= \frac{k \sin 60^{\circ}}{\sin[180^{\circ} - (\theta + 60^{\circ})]} \cdot \sin 60^{\circ}$	✓ substitution of TR
	$= \frac{k \sin 60^{\circ} - (\theta + 60^{\circ})}{\sin(120^{\circ} - \theta)} \cdot \sin 60^{\circ}$	✓ simplification
	$= \frac{k(\frac{\sqrt{3}}{2})^2}{\sin 120^{\circ} \cos \theta - \cos 120^{\circ} \sin \theta}$ $= \frac{3k}{\sin 120^{\circ} \cos \theta - \cos 120^{\circ} \sin \theta}$	✓ $k(\frac{\sqrt{3}}{2})^2$ or $\frac{3k}{4}$ ✓ expansion of denominator
	$= \frac{1}{4\left(\frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta\right)}$	✓ value of sin 120°
		✓ value of cos 120°
	$=\frac{3k}{2(\sqrt{3}\cos\theta+\sin\theta)}$	(7) [10]

11 1 1	(())	√ √
11.1.1	$f(x) = y = 3 - 2\sin^2 x$	$-2 \le -2\sin^2 x \le 0$
	$0 \le \sin^2 x \le 1$	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
	$-2 \le -2\sin^2 x \le 0$	$1 \le 3 - 2\sin^2 x \le 3$
	$1 \le 3 - 2\sin^2 x \le 3$	(4)
	$1 \le y \le 3$ OR $y \in [1; 3]$	
	OR	✓ rewriting
	$f(x) = y = 3 - 2\sin^2 x$	$\sqrt{\cos 2x + 2}$
	$=2+(1-2\sin^2 x)$	$\sqrt{-1} \le \cos 2x \le 1$
	$=\cos 2x + 2$	$1 \le \cos 2x + 2 \le 3$
	$-1 \le \cos 2x \le 1$	(4)
	$1 \le \cos 2x + 2 \le 3$	
	$1 \le y \le 3 \mathbf{OR} y \in [1 \ ; \ 3]$ \mathbf{OR}	
	$f(x) = y = 3 - 2\sin^2 x$	✓ rewriting
	$= 3 - 2(1 - \cos^2 x)$	\checkmark 1+2cos ² x
		$\checkmark 0 \le 2\cos^2 x \le 2$
	$=1+2\cos^2 x$	✓
	$0 \le 2\cos^2 x \le 2$	$1 \le 1 + 2\cos^2 x \le 3$
	$1 \le 1 + 2\cos^2 x \le 3$	(4)
	$1 \le y \le 3$ OR $y \in [1; 3]$	
11.1.2	f has a minimum when $\sin^2 x = 1$	$\sqrt{\sin^2 x} = 1$
	$\therefore \sin x = \pm 1$	✓ 90°
	$\therefore x = 90^{\circ} or -90^{\circ}$	√ -90°
	OR	(3)
	f has a minimum when $\cos 2x = -1$	
	$\therefore 2x = 180^{\circ} or -180^{\circ}$	$\sqrt{\cos 2x} = -1$
	$\therefore x = 90^{\circ} or -90^{\circ}$	✓ 90° ✓ –90°
		(3)
11.2.1	$LHS = 1 - \cos 2Q$	
	$=1-(1-2\sin^2 Q)$	
	$= 2\sin^2 Q$	✓ identity
	= RHS	(1)
11.2.2(a)	$LHS = \sin 2R$	√
	$= \sin 2[180^{\circ} - (P+Q)]$	$R = 180^{\circ} - (P + Q)$
	$= \sin[360^{\circ} - 2(P+Q)]$	260° 2(B+0)
	$=-\sin 2(P+Q)$	$360^{\circ} - 2(P+Q)$ $\checkmark - 2(P+Q)$
	$=-\sin(2P+2Q)$	2(1 1 2)
	= RHS	(3)
	— IUID	

11.2.2(b)	$LHS = \sin 2P + \sin 2Q + \sin 2R$	
	$= \sin 2P + \sin 2Q - \sin(2P + 2Q)$	✓ substitution
	$= \sin 2P + \sin 2Q - [\sin 2P \cos 2Q + \cos 2P \sin 2Q]$	✓ expansion
	$= \sin 2P + \sin 2Q - \sin 2P \cos 2Q - \cos 2P \sin 2Q$	
	$= \sin 2P(1 - \cos 2Q) + \sin 2Q(1 - \cos 2P)$	✓ factorising
	$= \sin 2P(2\sin^2 Q) + \sin 2Q(2\sin^2 P)$	✓ substitution
	$= 2\sin P\cos P.2\sin^2 Q + 2\sin Q\cos Q.2\sin^2 P$	✓ identities
	$= 4\sin P\sin Q(\sin Q\cos P + \cos Q\sin P)$	✓ factorising
	$= 4\sin P\sin Q(\sin(Q+P))$	
	$= 4\sin P\sin Q(\sin[180^\circ - (Q+P)])$	$\int [180^{\circ} - (Q+P)]$
	$=4\sin P\sin Q\sin R$	
	=RHS	(7)
		[18]

TOTAL/TOTAAL: 150