3.2. Підвищення узгодженості без участі експерта

Автоматичне коригування МПП

$$D^* = \left\{ \left(d_{ij}^*\right) \middle| i,j=1,...,n \right\}$$
 μ_{\max} - максимальне власне число D^*

$$d_{ij}^* = \left(d_{ij}\right)^{\alpha} \left(\frac{w_i}{w_j}\right)^{1-\alpha}$$
 $0 < \alpha < 1$

Тоді $\mu_{\max} \leq \lambda_{\max}$ і рівність т.т.т.к. D – узгоджена

Автоматичне коригування МПП

$$d_{ij}^* = \begin{cases} \alpha d_{ij} + (1-\alpha) \frac{w_i}{w_j}, & i = 1, 2, ..., n; j = i, i+1, ..., n \\ \frac{1}{\alpha d_{ji} + (1-\alpha) \frac{w_j}{w_i}}, & i = 2, 3, ..., n; j = 1, 2, ..., i-1 \end{cases}$$

Тоді $\mu_{\max} \leq \lambda_{\max}$ і рівність т.т.т.к. D – узгоджена

Автоматичне коригування МПП. Доведення теорем

Лема 1. Нехай
$$A = \left\{ \left(a_{ij} \right) \middle| i, j = 1, ..., n \right\}$$
 - додатна матриця тоді $\lambda_{\max} = \min_{x>0} \max_i \sum_{j=1}^n a_{ij} \frac{x_j}{x_i}$

Лема 2. Нехай
$$x$$
, y , u , $v > 0$, $u + v = 1$

Тоді $x^u y^v \le ux + vy$ і рівність т.т.т.к. $x = y$.

<u>Лема 1</u>. Нехай A>0 , λ_{\max} найбільше вл.число.

Тоді
$$\lambda_{\max} = \min_{x>0} \max_{i} \sum_{j=1}^{n} a_{ij} \frac{x_{j}}{x_{i}}$$

Доведення
$$\sum_{j=1}^n a_{ij} \frac{w_j}{w_i} = \frac{1}{w_i} \lambda_{\max} w_i = \lambda_{\max}$$
 $\max_i \sum_{j=1}^n a_{ij} \frac{w_j}{w_i} = \lambda_{\max}$

$$\max_{i} \sum_{j=1}^{n} a_{ij} \frac{w_{j}}{w_{i}} = \lambda_{\max}$$

Доведемо, що
$$\min_{x>0} \max_{i} \sum_{j=1}^{n} a_{ij} \frac{x_{j}}{x_{i}} \ge \lambda_{\max}$$

Зафіксуємо $\bar{w} > 0$

$$\{y(x) = (w_1 x_1, ..., w_n x_n)^T \mid x > 0\} \qquad y(x) > 0$$

$$\min_{y>0} \max_{i} \sum_{j=1}^{n} a_{ij} \frac{y_{j}}{y_{i}} = \min_{x>0} \max_{i} \sum_{j=1}^{n} a_{ij} \frac{w_{j} x_{j}}{w_{i} x_{i}}$$

Зафіксуємо
$$x > 0$$
 $X_{i^*} = \min_{i} X_{i} \Longrightarrow \max_{i} \sum_{j=1}^{i} c_{ij} \frac{X_{j}}{X_{i}} \ge \sum_{j=1}^{i} c_{i^*j} \frac{X_{j}}{X_{i^*}}$

$$\min_{x>0} \max_{i} \sum_{j=1}^{n} a_{ij} \frac{x_j}{x_i} = \min_{x>0} \max_{i} \sum_{j=1}^{n} c_{ij} \frac{x_j}{x_i} \ge \lambda_{\max}$$
 $\ge \sum_{j=1}^{n} c_{i^*j} = \lambda_{\max}$

Доведено

Автоматичне коригування МПП Теорема 1. Доведення

$$d_{ij}^* = \left(d_{ij}\right)^{\alpha} \left(\frac{w_i}{w_j}\right)^{1-\alpha} \qquad 0 < \alpha < 1$$

$$d_{ij}^* = \frac{w_i}{\omega_i} \alpha^{\alpha}$$

$$d_{ij} = \frac{w_i}{w_j} e_{ij} \qquad d_{ij}^* = \frac{w_i}{w_j} e_{ij}^{\alpha}$$

$$\lambda_{\max} = \sum_{j=1}^{n} e_{ij}$$
$$\lambda_{\max} \ge n$$

$$\mu_{\max} = \min_{x>0} \max_{i} \sum_{j=1}^{n} d_{ij}^{*} \frac{x_{j}}{x_{i}} \le \max_{i} \sum_{j=1}^{n} d_{ij}^{*} \frac{w_{j}}{w_{i}} = \max_{i} \sum_{j=1}^{n} e_{ij}^{\alpha} \le \max_{i} \sum_{j=1}^{n} (\alpha e_{ij} + 1 - \alpha)$$

$$=\alpha\lambda_{\max} + (1-\alpha)n \le \lambda_{\max}$$

рівність т.т.т.к.
$$\lambda_{\max} = n$$
 (D – узгоджена).

<u>Доведено</u>

Автоматичне коригування МПП Теорема 2. Доведення

Вправа:
$$\frac{1}{\alpha e_{ji} + (1 - \alpha)} \le \alpha e_{ij} + (1 - \alpha)$$

$$\mu_{\text{max}} = \min_{x>0} \max_{i} \sum_{j=1}^{n} d_{ij}^* \frac{x_j}{x_i} \le \max_{i} \sum_{j=1}^{n} d_{ij}^* \frac{w_j}{w_i} =$$

$$= \max_{i} \left(\sum_{j=1}^{i-1} \frac{1}{\alpha d_{ji} + (1-\alpha)(w_{j}/w_{i})} + \sum_{j=i}^{n} (\alpha d_{ij} + (1-\alpha)(w_{i}/w_{j})) \right) \left(\frac{w_{j}}{w_{i}} \right) =$$

$$\max_{i} \left(\sum_{j=1}^{i-1} \frac{1}{\alpha e_{ji} + (1-\alpha)} + \sum_{j=i}^{n} (\alpha e_{ij} + (1-\alpha)) \right) \leq \max_{i} \left(\sum_{j=1}^{i-1} (\alpha e_{ij} + (1-\alpha)) + \sum_{j=i}^{n} (\alpha e_{ij} + (1-\alpha)) \right) = \max_{i} \left(\sum_{j=1}^{i-1} (\alpha e_{ij} + (1-\alpha)) + \sum_{j=i}^{n} (\alpha e_{ij} + (1-\alpha)) \right) = \max_{i} \left(\sum_{j=1}^{i-1} (\alpha e_{ij} + (1-\alpha)) + \sum_{j=i}^{n} (\alpha e_{ij} + (1-\alpha)) + \sum_{j=i}^{n} (\alpha e_{ij} + (1-\alpha)) \right) = \max_{i} \left(\sum_{j=1}^{i-1} (\alpha e_{ij} + (1-\alpha)) + \sum_{j=i}^{n} (\alpha e_{ij} + (1$$

$$\max_{i} \sum_{j=1}^{n} (\alpha e_{ij} + (1 - \alpha)) = \alpha \lambda_{\max} + (1 - \alpha)n \le \lambda_{\max}$$

рівність т.т.т.к.
$$\lambda_{\max} = n$$
 (D – узгоджена).

<u>Доведено</u>

Алгоритм автоматичного коригування МПП без участі експерта

1)
$$0 < \alpha < 1$$
 $k = 0$ $D^{(0)} = (d_{ij}^{(0)}) = (d_{ij})$
2) $w^{(k)} = (w_1^{(k)}, \dots, w_n^{(k)})^T$ $D^{(k)}$

2)
$$w^{(k)} = \left(w_1^{(k)}, \dots, w_n^{(k)}\right)^T$$
 $D^{(k)}$

3) $CR^{(k)}$ Якщо $CR^{(k)} \le CR^{porog}$, перейти на крок 6, інакше - на крок 4

4)
$$D^{(k+1)} = \left(d_{ij}^{(k+1)}\right) \qquad d_{ij}^{(k+1)} = \left(d_{ij}^{(k)}\right)^{\alpha} \left(\frac{w_{i}^{(k)}}{w_{j}^{(k)}}\right)^{1-\alpha}$$

$$d_{ij}^{(k+1)} = \begin{cases} \alpha d_{ij}^{(k)} + (1-\alpha) \frac{w_{i}^{(k)}}{w_{j}^{(k)}}, & i = 1, 2, ..., n; \quad j = i, i+1, ..., n \\ \frac{1}{\alpha d_{ji}^{(k)} + (1-\alpha) \frac{w_{j}^{(k)}}{w_{i}^{(k)}}}, & i = 2, 3, ..., n; \quad j = 1, 2, ..., i-1 \end{cases}$$

- 5) k := k + 1 , перейти на крок 2
- 6) вивести $D^{(k)}$ $CR^{(k)} \leq CR^{porog}$

Автоматичне коригування МПП. Збіжність алгоритму

Теорема 3 (Збіжність алгоритму). Для описаного алгоритму

$$CR^{(k+1)} \le CR^{(k)}$$
 $\lim_{k \to +\infty} CR^{(k)} = 0$

Доведення $\lambda_{\max}^{(k+1)} \le \lambda_{\max}^{(k)}$ $CR^{(k+1)} \le CR^{(k)}$
 $\lambda_{\max}^{(k)} \le \alpha \lambda_{\max}^{(k-1)} + (1-\alpha)n \le \alpha^2 \lambda_{\max}^{(k-2)} + \alpha(1-\alpha)n + (1-\alpha)n \le \dots$
 $\le \alpha^k \lambda_{\max}^{(0)} + (1-\alpha)n \sum_{i=0}^{k-1} \alpha^i = \alpha^k \lambda_{\max}^{(0)} + (1-\alpha)n \frac{1-\alpha}{1-\alpha}^k = \alpha^k \lambda_{\max}^{(0)} + (1-\alpha^k)n \xrightarrow[k \to \infty]{} n$
 $= \alpha^k \lambda_{\max}^{(0)} + (1-\alpha^k)n \xrightarrow[k \to \infty]{} n$
 $\lim_{k \to \infty} \lambda_{\max}^{(k)} = n$

$$\lim_{k \to \infty} CR^{(k)} = \lim_{k \to \infty} \frac{\lambda_{\max}^{(k)} - n}{(n-1)MRCI(n)} = 0$$

<u>Доведено</u>

Автоматичне коригування МПП. Критерії ефективності

Критерії ефективності підвищення узгодженості

$$\delta^{(k)} = \max_{i,j} \left\{ \left| d_{ij}^{(k)} - d_{ij}^{(0)} \right| \right\}$$

$$0.5 \le \alpha < 1$$

$$\sigma^{(k)} = \frac{1}{n} \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \left(d_{ij}^{(k)} - d_{ij}^{(0)} \right)^{2}}$$

прийнятне коригування - ?

3.3. Методи розрахунку ваг, стійкі до викидів в МПП

Означення

Означення. Стійким до викидів назвемо такий метод знаходження ваг з МПП, який призводить до ранжування, яке співпадає з ранжуванням, отриманим після знаходження викидів в цій МПП.

Приклад

(1	5	3	7	6	6	1/3	1/4
1/5	1	1/3	5	3	3	1/5	1/7
1/3	3	1	6	3	4	6	1/5
1/7	1/5	1/6	1	1/3	1/4	1/7	1/8
1/6	1/3	1/3	3	1	1/2	1/5	1/6
1/6	1/3	1/4	4	2	1	1/5	1/6
3	5	1/6	7	5	5	1	1/2
4	7	5	8	6	6	2	1

CR=0.170 > 0.1

GCI=0.529 > 0.370

Недопустимо висока неузгодженість МПП

EM	
0.173	3
0.054	5
0.188	2
0.018	8
0.031	7
0.036	6
0.167	4
0.333	1

RGMM	
0.175	2
0.063	5
0.149	4
0.019	8
0.036	7
0.042	6
0.167	3
0.350	1

Стійкі до		
Метод 1	Метод 2	
0.150	0.114	3
0.054	0.045	5
0.141	0.097	4
0.022	0.022	8
0.037	0.036	7
0.041	0.038	6
0.163	0.134	2
0.392	0.512	1

Приклад

$$\begin{pmatrix} 1 & 5 & 3 & 7 & 6 & 6 & 1/3 & 1/4 \\ 1/5 & 1 & 1/3 & 5 & 3 & 3 & 1/5 & 1/7 \\ 1/3 & 3 & 1 & 6 & 3 & 4 & 6 & 1/5 \\ 1/7 & 1/5 & 1/6 & 1 & 1/3 & 1/4 & 1/7 & 1/8 \\ 1/6 & 1/3 & 1/3 & 3 & 1 & 1/2 & 1/5 & 1/6 \\ 1/6 & 1/3 & 1/4 & 4 & 2 & 1 & 1/5 & 1/6 \\ 3 & 5 & 1/6 & 7 & 5 & 5 & 1 & 1/2 \\ 4 & 7 & 5 & 8 & 6 & 6 & 2 & 1 \end{pmatrix}$$

$$d_{73} := 6$$

$$d_{37} := \frac{1}{6}$$

CR=0.09 < 0.1

Знаходження викидів

k=1	CI=0.201
k=2	CI=0.266
k=3	CI=0.124
k=4	CI=0.272
k <i>=</i> 5	CI=0.280
k = 6	CI=0.276
k=7	CI=0.121
k = 8	CI=0.256

EM			
(після коригу	(після коригування)		
0.167	3		
0.060	5		
0.091	4		
0.019	8		
0.033	7		
0.040	6		
0.255	2		

0.335

Стійкі до викидів (до коригування)			
Метод 1	Метод 2		
0.150	0.114	3	
0.054	0.045	5	
0.141	0.097	4	
0.022	0.022	8	
0.037	0.036	7	
0.041	0.038	6	
0.163	0.134	2	
0.392	0.512	1	

Метод 1

Означення:

Теоретичною матрицею парних пропорцій $U = \{(u_{ij}) \mid i, j = 1...n\}$

називається
$$u_{ij} = \frac{w_i}{w_i + w_j} = \frac{w_i / w_j}{1 + w_i / w_j}$$

Означення:

Емпіричною матрицею парних пропорцій $Z = \{(z_{ij}) \mid i, j = 1...n\}$

називається
$$z_{ij} = \frac{d_{ij}}{1 + d_{ij}}$$

Властивості $Z: z_{ij} \in (0,1)$ $z_{ij} + z_{ji} = 1$ $z_{ij} - z_{ii} = z_{ii} - z_{ji}$

$$z_{ij} + z_{ji} = \frac{d_{ij}}{1 + d_{ij}} + \frac{1/d_{ij}}{(d_{ij} + 1)/d_{ij}} = 1$$

Твердження. Z менш чутлива до впливу викидів в МПП $\,D\,$.

Метод 1

$$\begin{aligned} w_{i} + w_{i} + \dots + w_{i} &= nw_{i} & i &= 1, \dots, n \\ \frac{w_{i}}{w_{i} + w_{1}} (w_{i} + w_{1}) + \frac{w_{i}}{w_{i} + w_{2}} (w_{i} + w_{2}) + \dots + \frac{w_{i}}{w_{i} + w_{n}} (w_{i} + w_{n}) &= nw_{i} & i &= 1, \dots, n \end{aligned}$$

$$\begin{cases} \frac{w_{1}}{w_{1} + w_{1}} (w_{1} + w_{1}) + \frac{w_{1}}{w_{1} + w_{2}} (w_{1} + w_{2}) + \dots + \frac{w_{1}}{w_{1} + w_{n}} (w_{1} + w_{n}) &= nw_{1} \\ \dots \\ \frac{w_{n}}{w_{n} + w_{1}} (w_{n} + w_{1}) + \frac{w_{n}}{w_{n} + w_{2}} (w_{n} + w_{2}) + \dots + \frac{w_{n}}{w_{n} + w_{n}} (w_{n} + w_{n}) &= nw_{n} \end{cases}$$

$$\begin{cases} \left(u_{11} + \sum_{j=1}^{n} u_{1j} \right) w_{1} + u_{12}w_{2} + \dots + u_{1n}w_{n} &= nw_{1} \\ \dots \\ u_{n1}w_{1} + u_{n2}w_{2} + \dots + \left(u_{nn} + \sum_{j=1}^{n} u_{nj} \right) w_{n} &= nw_{n} \end{cases}$$

$$(U + diag(Ue))w = nw$$

$$e = (1 \dots 1)^{T}$$

$$(Z + diag(Ze))\hat{w} = \lambda_{\max}\hat{w}$$

Етапи методу 1

1 Побудувати матрицю парних пропорцій $Z = \{(z_{ij}) \,|\, i,j=1...n\}$ $z_{ij} = \frac{d_{ij}}{1+d_{ij}}$

- 2 Розв'язати систему $(Z + diag(Ze))\hat{w} = \lambda_{\max}\hat{w}$
 - $\hat{\mathcal{W}}$ вектор ваг, стійкий до викидів

Метод 2

Оптимізаційний метод

Означення: Z - узгоджена, якщо $(z_{ij} = u_{ij}) \Leftrightarrow (\varepsilon_{ij} = 0)$ $\forall i, j = 1,...,n$

$$\|\mathbf{E}\|^2 = \sum_{i,j=1}^n \left(z_{ij} \left(\hat{w}_i + \hat{w}_j \right) - \hat{w}_i \right)^2 \longrightarrow \min$$

при обмеженні

 $\hat{w}^T \hat{w} = 1$ - умова нормування до одиниці

$$z_{ij} \in (0,1) \qquad z_{ij} + z_{ji} = 1$$

Метод 2

Етапи методу 2

1 Побудувати матрицю парних пропорцій $Z = \{(z_{ij}) | i, j = 1...n\}$

$$z_{ij} = \frac{d_{ij}}{1 + d_{ij}}$$

2 Побудувати матрицю $C = \{(c_{ij}) | i, j = 1...n\}$

$$c_{ij} = z_{ij}z_{ji} = z_{ij}(1 - z_{ij})$$

3 Розв'язати систему $2\left(diag(Z^TZ)-C\right)\hat{w}=\lambda\hat{w}$

 \hat{w} - власний вектор, що відповідає **мінімальному** власному числу λ