```
In [26]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeRegressor # Menggunakan DecisionTreeRe
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import accuracy_score
In [11]: train_data = pd.read_excel('[Dataset]_Train_(Keryawan).xlsx')
test_data = pd.read_excel('[Dataset]_Test_(Karyawan).xlsx')
```

```
In [12]: print("Training Data:")
    print(train_data.head())
    print("\nTest Data:")
    print(test_data.head())
```

Training Data:

Employee_ID Gende	er Age	Education_Le	vel Relations	hip_Status	Hometo
wn \ 0 EID_23371	F 42.0		4	Married	Frankl
in 1 EID_18000 ld	M 24.0		3	Single	Springfie
2 EID_3891 on	F 58.0		3	Married	Clint
3 EID_17492 on	F 26.0		3	Single	Leban
4 EID_22534 ld	F 31.0		1	Married	Springfie
0 1 2 3 Human Resource M	I Logistic Qualit	s y t	ill_possess Conceptual Analytical Conceptual Behavioral Conceptual	Time_of_ser	vice \ 4.0 5.0 27.0 4.0 5.0
Time_since_promotion Compensation_and_Benefits Work_Life_balance					
\	4 4 3 4	• •	typ typ typ typ	e2 e2 e2	3.0 4.0 1.0 1.0 3.0
VAR1 VAR2 0 4 0.7516 1. 1 3 -0.9612 -0. 2 4 -0.9612 -0. 3 3 -1.8176 -0. 4 1 0.7516 -0.	.4537 2 .4537 3 .4537 N .4537 2	.0 4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	5 3 5 3 3 3	0.1841 0.0670 0.0851 0.0668 0.1827	
Test Data:					
Employee_ID Gende	er Age	Education_Le	el Relations	hip_Status	Hometo
0 EID_22713 ld	F 32.0		5	Single	Springfie
1 EID_9658 on	M 65.0		2	Single	Leban
2 EID_22203 ld	M 52.0		3	Married	
3 EID_7652 on	M 50.0		5	Single	Washingt
4 EID_6516 in	F 44.0		3	Married	Frankl
Unit Decision_skill_possess Time_of_service Time_since_promotion					
\ 0 R&D		nceptual	7.0		4
1 IT 2 Sales		irective	41.0		2
<pre>2 Sales 3 Marketing</pre>		irective alytical	21.0 11.0		3 4
4 R&D		nceptual	12.0		4

Pay_Scale Compensation_and_Benefits Work_Life_balance VAR1

```
AR2 \
         0 ...
                      4.0
                                               type2
                                                                   1.0
                                                                           3 -0.9
         612
                                                                           4 -0.9
         1
           . . .
                      1.0
                                               type2
                                                                   1.0
         612
         2
                      8.0
                                                                   1.0
                                                                           4 -0.1
                                               type3
         048
         3
                      2.0
                                               type0
                                                                   4.0
                                                                           3 -0.1
           . . .
         048
                                                                           4 1.6
         4 ...
                      2.0
                                               type2
                                                                   4.0
         081
                   VAR4 VAR5 VAR6
                                    VAR7
              VAR3
         0 -0.4537
                    2.0
                                        4
                            1
                                  8
         1
           0.7075
                    1.0
                            2
                                  8
                                        2
                                  9
                                        3
         2 0.7075
                    2.0
                            1
                                  8
         3 0.7075
                    2.0
                            2
                                        3
                                  7
         4 0.7075
                            2
                                        4
                    2.0
         [5 rows x 23 columns]
In [13]: | train_data.dropna(inplace=True)
         test_data.dropna(inplace=True)
In [15]: |print(train_data.columns)
         print(test_data.columns)
         s',
                'Time_of_service', 'Time_since_promotion', 'growth_rate', 'Travel_R
         ate',
                'Post_Level', 'Pay_Scale', 'Compensation_and_Benefits',
                'Work_Life_balance', 'VAR1', 'VAR2', 'VAR3', 'VAR4', 'VAR5', 'VAR
         6',
                'VAR7', 'Attrition_rate'],
               dtype='object')
         Index(['Employee_ID', 'Gender', 'Age', 'Education_Level',
                'Relationship Status', 'Hometown', 'Unit', 'Decision skill posses
         s',
                'Time_of_service', 'Time_since_promotion', 'growth_rate', 'Travel_R
         ate',
                'Post_Level', 'Pay_Scale', 'Compensation_and_Benefits',
                'Work_Life_balance', 'VAR1', 'VAR2', 'VAR3', 'VAR4', 'VAR5', 'VAR
         6',
                'VAR7'],
               dtype='object')
In [20]: | train data = train data.drop(columns=['Employee ID'])
         test_data = test_data.drop(columns=['Employee_ID'])
```

```
In [21]: label_encoders = {}
for column in train_data.select_dtypes(include=['object']).columns:
    le = LabelEncoder()
    train_data[column] = le.fit_transform(train_data[column])
    if column in test_data.columns:
        test_data[column] = le.transform(test_data[column])
    label_encoders[column] = le
```

```
In [22]: scaler = StandardScaler()
    X_train = scaler.fit_transform(train_data.drop(columns=['Attrition_rate']))
    X_test = scaler.transform(test_data)
    y_train = train_data['Attrition_rate']
```

```
In [23]: sns.histplot(train_data.iloc[:, 0], kde=True)
   plt.title('Distribusi Fitur 1')
   plt.show()
```


0.4

0.6

Gender

0.8

1.0

500

0.0

0.2

```
In [24]: sns.boxplot(x=train_data.iloc[:, 1])
    plt.title('Boxplot Fitur 2')
    plt.show()
```

Boxplot Fitur 2


```
In [29]: y_train_class = (train_data['Attrition_rate'] > 0.5).astype(int)
```

Out[29]: DecisionTreeClassifier

```
In [31]: model = DecisionTreeClassifier(random_state=42)
model.fit(X_train, y_train_class)
```

Out[31]: DecisionTreeClassifier

```
In [32]: y_pred_class = model.predict(X_test)
```

```
In [33]: accuracy = accuracy_score(y_train_class[:len(y_pred_class)], y_pred_class)
print(f"Accuracy: {accuracy}")
```

Accuracy: 0.8371391641533822

```
In [35]: | cm = confusion_matrix(y_train_class[:len(y_pred_class)], y_pred_class)
         print("Confusion Matrix:\n", cm)
         Confusion Matrix:
          [[1920 232]
          [ 146
                  23]]
In [36]: | accuracy = accuracy_score(y_train_class[:len(y_pred_class)], y_pred_class)
         print(f"Accuracy: {accuracy}")
         Accuracy: 0.8371391641533822
In [39]: | accuracy = accuracy_score(y_train_class[:len(y_pred_class)], y_pred_class)
         precision = precision_score(y_train_class[:len(y_pred_class)], y_pred_class]
         recall = recall_score(y_train_class[:len(y_pred_class)], y_pred_class, aver
         print(f"Accuracy: {accuracy}")
In [40]:
         print(f"Precision: {precision}")
         print(f"Recall: {recall}")
         Accuracy: 0.8371391641533822
         Precision: 0.8682316643334852
         Recall: 0.8371391641533822
In [41]: | sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
         plt.xlabel('Predicted')
         plt.ylabel('Actual')
         plt.title('Confusion Matrix')
         plt.show()
                                 Confusion Matrix
                                                                            1750
                                                                            1500
                           1920
                                                      232
                                                                           1250
                                                                           1000
                                                                           - 750
                                                       23
                            146
                                                                            500
 In [ ]:
```