

Data Science and Machine Learning Capstone Project

Baye Teshager Asmamaw July 2022

OUTLINE

- Executive Summary
- Introduction
- Metholology
- Results
 - Visualization Charts
 - Dashboard
- **Discussion**
 - Findings & Implications
- Special Insight
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- This projects predicts the success probability of the first launch of a SpaceX Falcon 9 rocket using machine learning algorithms
- Data is collected through API request and Web Scraping
- Methodology
 - Data wrangling
 - EDA with visualization and SQL
 - Building interactive map with Folium
 - Deploying predictive analysis (Classification)
- Results indicated that as flights increase, success rate increases
- Prediction accuracy of 83% obtained from all models deployed can be evidence that there is plenty of room to compete with SpaceX if a company intends to.

INTRODUCTION

- Several companies are attempting to make space travel affordable for everyone
- SpaceX is the most successful, and one of the reasons is that their rocket launch is *relatively inexpensive*
- SpaceX advertises Falcon 9 rocket launches on its website, with a cost of only 62 million dollars
- The savings is because SpaceX can <u>reuse the first stage</u>
- Therefore, if we can determine if the first stage will land, we can determine the cost of a launch
- This project tries to determine the success of the first stage
 - analyzing data available from the SpaceX company website
 - deploying machine learning algorithms

METHODOLOGY

- Data collection
 - API requests
 - Web Scraping
- Data wrangling
- EDA with data visualization
- EDA with SQL
- Building an interactive map with Folium
- Building a Dashboard with Plotly Dash
- Predictive analysis (Classification)

RESULTS

Data Collection by API request

Sending API Request and obtaining response

Filtering dataset for Falcon 9 launches

GitHub link (click and follow)

https://github.com/BayeTechis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/1.%20Data%20Collection%20%20with%20API.jpynb

Data Collection by Web Scraping

Request the Falcon9 Launch Wiki page from its URL

Fill in the parsed launch record values into launch_dict, and create a dataframé

In [17]: N Out[17]:	<pre>df=pd.DataFrame(launch_dict) df.head()</pre>											
		Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
	0	1	CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success\n	F9 v1.0B0003.1	Failure	4 June 2010	18:45
	1	2	CCAFS	Dragon	0	LEO	NASA (COTS)\nNRO	Success	F9 v1.0B0004.1	Failure	8 December 2010	15:43
	2	3	CCAFS	Dragon	525 kg	LEO	NASA (COTS)	Success	F9 v1.0B0005.1	No attempt\n	22 May 2012	07:44
	3	4	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA (CRS)	Success\n	F9 v1.0B0006.1	No attempt	8 October 2012	00:35
	4	5	CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA (CRS)	Success\n	F9 v1.0B0007.1	No attempt\n	1 March 2013	15:10

GitHub link (click and follow)

https://github.com/BayeTechis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/2.%20Data%20Collection%20with%20Web%20Scraping.ipynb

Data Wrangling

Identify missing values and data types

Calculating number of occurrences and mission outcome

```
TASK 2: Calculate the number and occurrence of each orbit
         Use the method .value_counts() to determine the number and occurrence of each orbit in the column Orbit
In [ ]: # Apply value_counts on Orbit column
            df.Orbit.value_counts()
         TASK 3: Calculate the number and occurrence of mission outcome per orbit type
         Use the method .value_counts() on the column Outcome to determine the number of landing_outcomes .Then assign it to a variable
In []: 

# Landing outcomes = values on Outcome column
            landing_outcomes = df.Outcome.value_counts()
            landing outcomes
         True Ocean means the mission outcome was successfully landed to a specific region of the ocean while False Ocean means the mission outcome was
         unsuccessfully landed to a specific region of the ocean. True RTLS means the mission outcome was successfully landed to a ground pad False RTLS
         means the mission outcome was unsuccessfully landed to a ground pad. True ASDS means the mission outcome was successfully landed to a drone ship
         False ASDS means the mission outcome was unsuccessfully landed to a drone ship. None ASDS and None None these represent a failure to land
In [8]: M for i,outcome in enumerate(landing_outcomes.keys()):
                print(i,outcome)
            1 None None
            2 True RTLS
            3 False ASDS
            4 True Ocean
            5 False Ocean
            6 None ASDS
            7 False RTLS
         We create a set of outcomes where the second stage did not land successfully:
In [9]: M bad_outcomes=set(landing_outcomes.keys()[[1,3,5,6,7]])
   Out[9]: {'False ASDS', 'False Ocean', 'False RTLS', 'None ASDS', 'None None'}
```

GitHub link (click and follow)

https://github.com/BayeTechis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/3.%20Data%20Wrangling.ipynb

Data Wrangling

Calculating label outcome

GitHub link (click and follow)

https://github.com/BayeTechis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/3.%20Data%20Wrangling.ipynb

EDA with Data Visualization

Flight number vs. Launch rate

Success rate vs. Orbit type

GitHub link (click and follow)

https://github.com/BayeTechis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/4.%20EDA%20with%20Visualization%20lab.ipynb

EDA with SQL

Query and result to count successful landing outcomes between 2010 and 2017

GitHub link (click and follow)

https://github.com/BayeTechis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/5.%20EDA%20with%20SQL.ipynb

Build an Interactive Map with Folium

Locating launch site near Huston

GitHub link (click and follow)

https://github.com/BayeTechis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/6.%20Interactive%20Visual%20Analytics%20with%20Folium%20lab.ipynb

Build an Interactive Map with Folium

Locating launch site near Florida

 By clicking on the marker clusters, successful landing (green) or failed landing (red) are displayed

GitHub link (click and follow)

https://github.com/BayeTechis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/6.%20Interactive%20Visual%20Analytics%20with%20Folium%20lab.ipynb

Building Dashboard with plotly dash

Total Success Launches By all sites

GitHub link (click and follow)

hthttps://github.com/BayeTechis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/2.%20Data%20Collection%20with%20Web%20Scraping.ipynb

Building Dashboard with plotly dash

Payload vs. Launch Outcome Scatter Plot

GitHub link (click and follow)

hthttps://github.com/BayeTechis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/2.%20Data%20Collection%20with%20Web%20Scraping.ipynb

Predictive Analysis (Classification)

Train, test data split and hyperparameter tuning

GitHub link (click and follow)

https://github.com/BayeTechis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/8.%20%20Predictive%20Analysis%20(Classification).jpynb

Predictive Analysis (Classification)

Confusion matrix

Model selection

GitHub link (click and follow)

https://github.com/BayeTechis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/8.%20%20Predictive%20Analysis%20(Classification).ipynb

Discussion

- As the number of flights increased, the success rate increased, and recently it has exceeded 80%
- Orbital types SSO, HEO, GEO, and ES-L1 have the highest success rate (100%)
- The launch site is close to railways, highways, and coastline, but far from cities
- KSLC-39A has the highest number of launch successes and the highest success rate among all sites
- The launch success rate of low weighted payloads is higher than that of heavy weighted payloads
- Models used in this project predicted the landing of first launch with predicted 83.33%

Special Insight

- Models used in this project predicted the landing of first launch with 83.33% accuracy. However, if we take a closer look only 50% of successful landings are accurately predicted. This is reflected in all models.
- The reason behind this could come from the fact that the data is biased toward unsuccessful landing. Y_train contains 24 successful and 48 unsuccessful data counts.
- The bias can be improved by oversampling (SMOTE)
- Doing SMOTE may also increase the model accuracy

CONCLUSION

Models used in this project predicted the landing of first launch with predicted 83.33%. Therefore; there is plenty of room for success if another company decides to with SpaceX

APPENDIX

GitHub link (click and follow)

hthttps://github.com/BayeTechis/Data-Science-and-Machine-Learning-Capstone-Project