임베디드 기반 SW 개발 프로젝트 AURIX TC275 보드 PWM 사용

- Pulse Width Modulation 기반 모터 구동 -

현대자동차 입문교육 박대진 교수

모터 회전

DC 모터의 출력은 입력되는 전압 값에 따라 결 정된다.

모터쉴드는 디지털신호와 PWD 신호를 입력받 아 모터를 제어하는 아날로그 신호를 생성한 다.

Function	Motor shield	Shield buddy	
Direction	D12	P10.1	
PWM	D3	P2.1	
Brake	D9	P2.7	

Direction pin의 입력은 모터의 동작방향 Brake pin의 입력은 모터의 동작 여부 PWM pin의 입력은 모터의 동작 RPM을 결정

모터쉴드를 shield buddy에 장착하고, 모터 출 력단에 모터의 +,- 케이블을 연결한다. Shield buddy의 직류연결 단자나 모터쉴드의 Vin단자에 직류전원을 인가한다.

Function	Motor shield	Shield buddy	
Direction	D12	P10.1	
PWM	D3	P2.1	
Brake	D9	P2.7	


```
void initMotor(void)
    P10 IOCRO.U &= ~(0x1F << PC1_BIT_LSB_IDX);
    P02 IOCRO.U &= ~(0x1F << PC1_BIT_LSB_IDX);
    P02 IOCR4.U &= ~(0x1F << PC7 BIT LSB IDX);
    P10 IOCRO.U |= 0x10 << PC1 BIT LSB IDX;
    P02 IOCRO.U |= 0x11 << PC1 BIT LSB IDX;
    P02 IOCR4.U |= 0x10 << PC7 BIT LSB IDX;
```

Table 13-16 Port 10 Functions (cont'd)

Port I/	1/0	Pin Functionality	Associated	Port I/O Control Select.	
			Reg./ I/O Line	Reg./Bit Field	Value
P10.1	1	General-purpose input	P10_IN.P1	P10_IOCR0.	0XXXX _B
		GTM input	TIN103	PC1	
		QSPI1 input	MRST1A	1	
	GPT120 input T5EUDB		1		
	0	General-purpose output	P10_OUT.P1		1X000 _B
		GTM output	TOUT103		1X001 _B
	'	QSPI1 output MTSR1			1X010 _B
		QSPI1 output	MRST1]	1X011 _B
		MSC0	EN01]	1X100 _B
		VADC output	VADCG6BFL1	Ī	1X101 _B
		MSC0 output	END03	1	1X110 _B
		Reserved	_]	1X111 _B

P10.1, P2.7 pin은 digital output을 위해 0x10을 setting

P2.1 pin은 PWM output을 위해 0x11을 setting

Function	Motor shield	Shield buddy	
Direction	D12	P10.1	
PWM	D3	P2.1	
Brake	D9	P2.7	


```
GTM CMU FXCLK CTRL.U &= ~(0xF << FXCLK SEL BIT LSB IDX);
GTM CMU CLK EN.U |= 0x2 << EN FXCLK BIT LSB IDX;
GTM TOMO TGC1 GLB CTRL.B.UPEN CTRL1 |= 0x2;
GTM TOMO TGC1 ENDIS CTRL.B.ENDIS CTRL1 |= 0x2;
GTM TOMO TGC1 OUTEN CTRL.B.OUTEN CTRL1 |= 0x2;
GTM TOMO CH9 CTRL.B.SL |= 0x1;
GTM TOMO CH9 CTRL.B.CLK SRC SR |= 0x1;
GTM TOM0 CH9 SR0.U = 12500 - 1;
//GTM TOM0 CH9 SR1.U = 1250 - 1;
GTM TOUTSELO.U &= ~(0x3 << SEL1 BIT LSB IDX);
TOUTSELO → TOUT00 ~~ TOUT15
TOUTSEL1 → TOUT16 ~~ TOUT31
TOUTSEL2 → TOUT32 ~~ TOUT47
TOUTSEL3 → TOUT48 ~~ TOUT63
TOUTSEL4 → TOUT64 ~~ TOUT79
TOUTSEL5 → TOUT80 ~~ TOUT95
TOUTSEL6 → TOUT96 ~~ TOUT103
                                              ATOM ATOM
P00.12 TIN21
            TOUT21
                   TIM0 3 TIM1 3 TOM0 3
                                       TOM1 3
                                               2 3
                                                    3 3
                   TIM0_0 TIM1_0 TOM0_8
P02.0
      TIN0
            TOUT0
                                       TOM1 8
                                               ATOM ATOM
                                               0 0
           TOUT1
                   IM0 1 TIM1 1 TOM0 9
P02.1
      TIN1
                                        TOM1 9
                                               ATOM ATOM
                                               0_1
```


GTM 활성화 및 클락 설정을 동일하게 진행하 고 P2.1 핀의 TOM출력에 맞게 레지스터 선정 및 비트 위치 설정

P2.1핀은 TOM 9 채널의 TOUT01과 연결되어 있고 이는 TOUTSELO 레지스터에 위치하고 있 다.

TOUT01은 2번째 핀이다.

GTM CMU FXCLK CTRL.U &= ~(0xF << FXCLK SEL BIT_LSB_IDX); GTM CMU CLK EN.U |= 0x2 << EN FXCLK BIT LSB IDX; GTM TOMO TGC1 GLB CTRL.B.UPEN CTRL1 |= 0x2; GTM TOMO TGC1 ENDIS CTRL.B.ENDIS CTRL1 |= 0x2; GTM TOMO TGC1 OUTEN CTRL.B.OUTEN CTRL1 |= 0x2; GTM TOMO CH9 CTRL.B.SL |= 0x1; GTM TOMO CH9 CTRL.B.CLK SRC SR |= 0x1; GTM TOM0 CH9 SR0.U = 12500 - 1; //GTM TOM0 CH9 SR1.U = 1250 - 1; GTM TOUTSELO.U &= ~(0x3 << SEL1 BIT LSB IDX); GTM TOMI TGC0 GLB CTRL (i=0-2) TOMi TGC0 Global Control Register(08030H+i*800H) Reset Value: 000000000 31 30 29 28 27 26 25 24 23 22 21 20 UPEN_CT UPEN_CT UPEN_CT UPEN_CT UPEN_CT UPEN_CT UPEN_CT RL0 15 14 13 12 11 10 9 8 RST RST RST RST RST RST RST HOS _CH|_CH|_CH|_CH|_CH|_CH|_CH T_T RIG 5 4 3 2 1 GTM_TOMi_TGC0_ENDIS_CTRL (i=0-2) TOMi TGC0 Enable/Disable Control Register (08070_H+i*800_H) Reset Value: 000000000 25 24 23 22 21

TOM Global Channel Control (TGC0, TGC1)

25.11.2.1 Overview

There exist two global channel control units (TGC0 and TGC1) to drive a number of individual TOM channels synchronously by external or internal events

Each TGC[y] can drive up to eight TOM channels where TGC0 controls TOM channels 0 to 7 and TGC1 controls TOM channels 8 to 15.

The TOM submodule supports four different kinds of signalling mechanisms:

TOM 9 채널은 TGC1에서 drive한다 GTM_TOMO_TGC1에서 채널 9는 2번째 채널 이므로 CTRL1의 UPEN, ENDIS, OUTEN을 설정 하다.

ENDIS_CT ENDIS_CT ENDIS_CT ENDIS_CT ENDIS_CT ENDIS_CT

RL3

RL2

ENDIS_CT

RL0

```
GTM CMU FXCLK CTRL.U &= ~(0xF << FXCLK SEL_BIT_LSB_IDX);
 GTM CMU CLK EN.U |= 0x2 << EN FXCLK BIT LSB IDX;
 GTM TOMO TGC1 GLB CTRL.B.UPEN CTRL1 |= 0x2;
 GTM TOMO TGC1 ENDIS CTRL.B.ENDIS CTRL1 |= 0x2;
 GTM TOMO TGC1 OUTEN CTRL.B.OUTEN CTRL1 |= 0x2;
GTM TOM0 CH9 CTRL.B.SL |= 0x1;
GTM TOMO CH9 CTRL.B.CLK SRC SR |= 0x1;
GTM TOM0 CH9 SR0.U = 12500 - 1;
 //GTM TOM0 CH9 SR1.U = 1250 - 1;
GTM TOUTSELO.U &= ~(0x3 << SEL1 BIT LSB IDX);
GTM_TOM0_CHx_CTRL (x=0-14)
TOM0 Channel x Control Register'
                       (08000_{H}+x*0040_{H})
                                         Reset Value: 00000800
               27 26 25 24 23 22 21
                                         20
                                        RST
                  OSM Rese TRIG
            SPE Rese
 Reserved GCM
                                         _cc
                                                Reserved
                      rved OUT
                                         UO
     14
        13
     CLK_SRC_SR
Field
                     Description
         Bits
                Type
         11
                     Signal level for duty cycle
                         Low signal level
                     If the output is disabled, the output TOM_OUT[x] is set
                     to inverse value of SL
```


TOM 9 채널 CTRL의 SL, CLK SRC SR에서 신 호값의 종류, clock cycle을 설정한다. Shadow register에 CMO 값을 설정한다.


```
//initERU();
initMotor();
initGTM();
initVADC();
//initButton();
GTM TOM0_TGC1_GLB_CTRL.U |= 0x1 << HOST_TRIG_BIT_LSB_IDX;</pre>
unsigned short duty = 0;
while(1)
   VADC startConversion();
    unsigned int adcResult = VADC readResult();
    duty = 12500 * adcResult / 4096;
    P10 OUT.U |= 0x1 << P1 BIT LSB IDX;
    P02 OUT.U |= 0x1 << P1 BIT LSB IDX;
    P02 OUT.U &= ~(0x1 << P7_BIT_LSB_IDX);
    GTM TOM0 CH9 SR1.U = duty;
return (1);
```

Init 함수 설정 및 TOM의 trigger event를 발생 시킨다.

가변저항의 아날로그 출력을 받아 ADC로 변 환 후 생성한 duty값을 모터쉴드로 전송한다.

결과, 가변저항의 저항 값에 따라 DC 모터의 RPM이 변경된다.

모터 회전방향 변경

Lab2: Motor 회전 Direction 조정

Direction pin의 입력은 모터의 동작방향 Brake pin의 입력은 모터의 동작 여부 PWM pin의 입력은 모터의 동작 RPM을 결정

모터쉴드를 shield buddy에 장착하고, 모터 출 력단에 모터의 +,- 케이블을 연결한다. Shield buddy의 직류연결 단자나 모터쉴드의 Vin단자에 직류전원을 인가한다.

Function	Motor shield	Shield buddy
Direction	D12	P10.1
PWIVI	D3	P2.1
Brake	D9	P2.7

1,0에 따라 방향 바뀜 (시계방향, 반 시계방향 → 테스트해서 확인바람)

Lab2: Motor Direction

PWIVIN.8	AKEF
PWML.1	P15.3
PWML.2	P15.2
PWML.3	P2.0
PWML.4	P2.1
PWML.6	P2.3
	PWML.1 PWML.2 PWML.3 PWML.4

스위치를 사용하여 push/pull 상태에 따라 방 향을 전환하게 한다.

이전 예제에서 사용한 SW2이 사용하는 핀 P2.1을 모터가 사용하고 있기 때문에, SW3을 사용한다.

SW3은 easyshield D3핀에 연결되어 있고 이는 shield buddy P2.0핀과 연결되어 있다.

Lab2: Motor Direction

```
void initButton(void)
    P02 IOCRO.U &= ~(0x1F << PC1 BIT LSB IDX);
    P02 IOCR0.U |= 0x02 << PC1_BIT_LSB_IDX;
void initButton(void)
                   *(0x1F << PC0 BIT LSB IDX);
    P02 IOCR0.U &=
    P02 IOCR0.U |= (x02 << PC0_BIT_LSB_IDX;
```

```
#define PC0 BIT LSB IDX
                             11
#define PC1 BIT LSB IDX
#define PC2 BIT LSB IDX
                             19
```


Field	Bits	Туре	Description
PC0, PC1, PC2, PC3	[7:3], [15:11], [23:19], [31:27]	rw	Port Control for Port n Pin 0 to 3 This bit field determines the Port n line x functionality (x = 0-3) according to the coding table (see Table 13-5).
0	[2:0], [10:8], [18:16], [26:24]	r	Reserved Read as 0; should be written with 0.

Iable	3-14	FULL 02 FULLCHOLIS			
Port	I/O	Pin Functionality	Associated	Port I/O Control Select.	
Pin			Reg./ I/O Line	Reg./Bit Field	Value
P02.0	ı	General-purpose input	P02_IN.P0	P02_IOCR0.	DXXXX
		GTM input	TIN0	PC0	
		SCU input	REQ6		
		CCU60 input	CC60INA		
		CCU61 input	CC60INB		
		CIF input	CIFD0		
		ASCLIN2 input	ARX2G		
	0	General-purpose output	P02_OUT.P0		1X000 _B
		GTM output	TOUT0		1X001 _B
		ASCLIN2 output	ATX2		1X010 _B
		QSPI3 output	SLSO31		1X011 _B
		DSADC output	DSCGPWMN		1X100 _B

Table 13-14 Port 02 Functions

CAN node 0 output

ERAY output

CCU60 output

P2.0핀의 GPIO 인풋을 관리하는 레지스터는 P2.1핀과 동일한 P02 IOCRO이다.

TXDCAN0

TXDA

CC60

1X101_R

1X110_R

1X111_R

PO2 IOCRO의 PCO 영역을 수정한다. PCO 비트 인덱스를 코드에 define하고 스위치 인덱스를 수정한다.

Lab2: Motor Direction

```
initMotor();
 initGTM();
 initVADC();
 initButton();
 duty = 12500 * adcResult / 4096;
 if( (P02 IN.U & (0x1 << P0 BIT LSB IDX)) == 0)
     P10 OUT.U |= 0x1 << P1 BIT LSB IUX;
 else
     P10 OUT.U &= ~(0x1 << P1 BIT LSB IDX);
 P02 OUT.U |= 0x1 << P1 BIT LSB IDX;
 P02 OUT.U &= ~(0x1 << P7_BIT_LSB_IDX);
#define P0 BIT LSB IDX
                               0
#define P1 BIT LSB IDX
#define P2 BIT LSB IDX
                             24 23 22 21 20
                                0
P15 | P14 | P13 | P12 | P11 |
                    P10
                         P9
                             P8
                                 P7
                                                              P0
```

initButton()을 main에 추가한다

읽어야할 pin이 1에서 0으로 바뀌었으므로 값 을 읽는 레지스터의 비트 위치를 PO로 변경한 다.

버튼의 push/pull 상태에 따라 모터의 동작 방 향이 변경된다.

Shield Pin Collision 이슈

(HAT보드 위헤 모터 쉴드 하나 더 적층할 경우 일부 기능 제약)

Channel	Motor Parameter	Pin Motorshield	Easy shield Parametor	Pin Easy shield	Pin Shield buddy
	Direction	D12	LED2	D12	P10_1
А	Speed(PWM)	D3	SW2	D3	P2_1
	Break	D9	RGB(R)	D9	P02_7
В	Direction	D13	LED1	D13	P10_2
	Speed(PWM)	D11	RGB(B)	D11	P10_3
	Break	D8	Ultrasonic	D8	P02_6

Motorshield와 easy shield간에 공유하는 핀의 목록이다. 공유하는 핀 사이에 겹치는 동작은 사용할 수 없다.

감사합니다. 휴식~~

