Correction Planche 3 2.3

Partie 1: Concentration d'une solution

1. Masse molaire du glucose

$$M(C_6H_{12}O_6) = 6 \times 12 + 12 \times 1 + 6 \times 16 = 72 + 12 + 96 = 180 \text{ g} \cdot \text{mol}^{-1}$$

$$M(C_6H_{12}O_6) = 180 \text{ g} \cdot \text{mol}^{-1}$$

2. Quantité de matière

$$n_{glucose} = \frac{m}{M} = \frac{30}{180} = 0.167 \text{ mol}$$

$$n_{glucose} = 0.167 \text{ mol}$$

3. Concentration si dissolution totale

$$C = \frac{n_{glucose}}{V} = \frac{0.167}{0.100} = 1.67 \text{ mol} \cdot \text{L}^{-1}$$

$$C = 1.67 \text{ mol} \cdot \text{L}^{-1} \text{ (si tout se dissout)}$$

4. Aspect de la solution

Comparaison avec la solubilité:

- Concentration calculée : $C = 1,67 \text{ mol} \cdot \text{L}^{-1}$
- Solubilité : $s = 5 \text{ mol} \cdot \text{L}^{-1}$

Comme C < s, tout le glucose se dissout.

La solution est limpide (pas de précipité)

5. Concentration réelle

Puisque tout se dissout :

$$C_{glucose} = 1,67 \text{ mol} \cdot \text{L}^{-1}$$

Partie 2: Tableau d'avancement

6. Tableau d'avancement complété

$\text{mol} \cdot \text{L}^{-1}$	$I_2(aq) +$	$2 S_2 O_3^{2-}(aq) =$	2 I ⁻ (aq) +	$S_4O_6^{2-}(aq)$
État initial	4.0×10^{-2}	4.0×10^{-2}	0	0
En cours	$4.0 \times 10^{-2} - x$	$4.0 \times 10^{-2} - 2x$	2x	x
État final	$4.0 \times 10^{-2} - x_f$	$4.0 \times 10^{-2} - 2x_f$	$2x_f$	x_f

7. Équimolaire ou stœchiométrique?

<u>Les concentrations initiales</u> sont égales : $[I_2]_0 = [S_2O_3{}^{2-}]_0 = 4.0 \times 10^{-2} \text{ mol} \cdot L^{-1}$

Le mélange est équimolaire

Mais les coefficients stechiométriques sont 1 et 2, donc :

Le mélange n'est PAS stœchiométrique

8. Réactif limitant

Pour I₂:
$$x_{max,1} = 4.0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$$

Pour S₂O₃²⁻: $4.0 \times 10^{-2} - 2x_{max,2} = 0 \Rightarrow x_{max,2} = 2.0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$

Le plus petit est $x_{max,2}$.

Le réactif limitant est $S_2O_3^{2-}$

9. Avancement volumique maximal

$$x_{max} = 2.0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$$

10. Composition finale

Avec $x_f = x_{max} = 2.0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$:

Lycée Jean Perrin PCSI - Colle de Chimie

$$\begin{split} [\mathrm{I}_2]_f &= 4.0 \times 10^{-2} - 2.0 \times 10^{-2} = 2.0 \times 10^{-2} \ \mathrm{mol} \cdot \mathrm{L}^{-1} \\ [\mathrm{S}_2\mathrm{O}_3^{2-}]_f &= 4.0 \times 10^{-2} - 2 \times 2.0 \times 10^{-2} = 0 \ \mathrm{mol} \cdot \mathrm{L}^{-1} \\ [\mathrm{I}^-]_f &= 2 \times 2.0 \times 10^{-2} = 4.0 \times 10^{-2} \ \mathrm{mol} \cdot \mathrm{L}^{-1} \\ [\mathrm{S}_4\mathrm{O}_6^{2-}]_f &= 2.0 \times 10^{-2} \ \mathrm{mol} \cdot \mathrm{L}^{-1} \end{split}$$

Réactif limitant :

— Pour I₂: $x_{max,1} = 4.0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$

— Pour $S_2O_3^{2-}$: $8.0 \times 10^{-2} - 2x_{max,2} = 0 \Rightarrow x_{max,2} = 4.0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$

Maintenant les deux donnent le même x_{max} : proportions stœchiométriques! Avec $x_f = 4.0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$:

$$\begin{split} [\mathrm{I}_2]_f &= 0 \\ [\mathrm{S}_2\mathrm{O}_3{}^{2^-}]_f &= 0 \\ [\mathrm{I}^-]_f &= 8.0 \times 10^{-2} \ \mathrm{mol} \cdot \mathrm{L}^{-1} \\ [\mathrm{S}_4\mathrm{O}_6{}^{2^-}]_f &= 4.0 \times 10^{-2} \ \mathrm{mol} \cdot \mathrm{L}^{-1} \end{split}$$

Les deux réactifs sont totalement consommés (proportions stechiométriques)