Why this matters (intuition). In multivariate Gaussians, edges are about *direct* relationships after controlling for all other variables. The conditional law of a single coordinate X_i given the rest X_{-i} reveals which variables directly "enter" the model for X_i . Algebraically, this local behavior is encoded by the *i*th row/column of the precision matrix $\Omega = \Sigma^{-1}$.

Problem 1 (Neighborhood regression in the Gaussian case). Let $X = (X_1, ..., X_p)^{\top} \sim \mathcal{N}_p(0, \Sigma)$, and write $\Omega = \Sigma^{-1}$. For $i \in \{1, ..., p\}$, denote $-i = \{1, ..., p\} \setminus \{i\}$.

- (a) Conditional law of one node. Show that $X_i \mid X_{-i}$ is Gaussian with a linear mean in X_{-i} . Express the regression coefficients $\beta_{i \leftarrow -i} \in \mathbb{R}^{p-1}$ and the conditional variance $\sigma^2_{i\mid -i}$ in terms of Ω . (You may solve this in any valid way; in the sample solution we provide two derivations: (i) by completing the square, and (ii) via Schur complements.)
- (b) One neighbor at a time. Fix $j \neq i$. Prove that the coefficient of X_j in the mean of $X_i \mid X_{-i}$ equals zero if and only if $\Omega_{ij} = 0$. Then deduce (Gaussian case) that

$$\Omega_{ij} = 0 \quad \Longleftrightarrow \quad X_i \perp X_j \mid X_{-(i,j)}.$$

(c) **No neighbors** \Rightarrow **factorization.** Suppose every coefficient in the mean of $X_i \mid X_{-i}$ is zero (i.e., $\beta_{i \leftarrow -i} = 0$). Show that the joint density factorizes as $p(x) = p(x_i) p(x_{-i})$. Briefly interpret the implication for X_i relative to the rest.

Sample Solution. (a) Conditional law of one node. Two derivations.

Version (i): Completing the square (no block inverses). The joint density is $p(x) \propto \exp(-\frac{1}{2}x^{\top}\Omega x)$. Isolate the terms involving x_i :

$$x^{\top} \Omega x = \Omega_{ii} x_i^2 + 2x_i \sum_{j \neq i} \Omega_{ij} x_j + C(x_{-i}),$$

where $C(\cdot)$ is independent of x_i . For scalars A > 0, B, recall the identity

$$Ax^2 + 2Bx = A\left(x + \frac{B}{A}\right)^2 - \frac{B^2}{A}.$$

With $A = \Omega_{ii}$ and $B = \sum_{j \neq i} \Omega_{ij} x_j$, we obtain

$$X_i \mid X_{-i} \sim \mathcal{N}\left(-\frac{1}{\Omega_{ii}}\sum_{j\neq i}\Omega_{ij}X_j, \frac{1}{\Omega_{ii}}\right).$$

Writing the mean as $\beta_{i\leftarrow -i}^{\top} X_{-i}$ gives

$$\beta_{i \leftarrow -i} = -\frac{\Omega_{-i,i}}{\Omega_{ii}}, \qquad \sigma_{i|-i}^2 = \frac{1}{\Omega_{ii}} \ .$$

Version (ii): Schur complements and block inversion (fully defined). Reorder variables (if needed) so that coordinate i comes first. Partition

$$\Sigma = \begin{bmatrix} a & b^{\top} \\ b & C \end{bmatrix}, \quad with \ a = \Sigma_{ii} \in \mathbb{R}, \ b = \Sigma_{-i,i} \in \mathbb{R}^{p-1}, \ C = \Sigma_{-i,-i} \in \mathbb{R}^{(p-1)\times(p-1)}.$$

Definition (Schur complement). If C is invertible, the Schur complement of C in Σ is

$$S := a - b^{\mathsf{T}} C^{-1} b$$
 (a scalar here).

Block inversion formula. If C is invertible, then

$$\Sigma^{-1} = \begin{bmatrix} S^{-1} & -S^{-1}b^{\top}C^{-1} \\ -C^{-1}bS^{-1} & C^{-1} + C^{-1}bS^{-1}b^{\top}C^{-1} \end{bmatrix}.$$

Therefore (identifying $\Omega = \Sigma^{-1}$),

$$\Omega_{ii} = S^{-1}, \qquad \Omega_{-i,i} = -C^{-1}bS^{-1}.$$

For a multivariate normal, the standard conditional mean/variance in covariance form are

$$\mathbb{E}[X_i \mid X_{-i}] = \underbrace{b^{\top} C^{-1}}_{= \Sigma_{i,-i} \Sigma_{-i,-i}^{-1}} X_{-i}, \quad \text{Var}(X_i \mid X_{-i}) = S.$$

Equivalently, in precision form, by the identities above,

$$\beta_{i \leftarrow -i} = b^{\mathsf{T}} C^{-1} = \left(C^{-1} b \right)^{\mathsf{T}} = -\frac{\Omega_{-i,i}}{\Omega_{ii}}, \qquad \sigma_{i|-i}^2 = S = \frac{1}{\Omega_{ii}} \ .$$

(These expressions agree with Version (i).)

(b) One neighbor at a time; conditional independence. From part (a),

$$\beta_{i \leftarrow j} = -\frac{\Omega_{ij}}{\Omega_{ii}}.$$

Since $\Omega_{ii} > 0$, we have $\beta_{i \leftarrow j} = 0 \iff \Omega_{ij} = 0$. If $\Omega_{ij} = 0$, the conditional density $p(x_i \mid x_{-i})$ does not depend on x_j , hence $p(x_i \mid x_{-i}) = p(x_i \mid x_{-(i,j)})$, which is exactly $X_i \perp X_j \mid X_{-(i,j)}$. Conversely, in a Gaussian model the conditional mean is linear and unique; if $X_i \perp X_j \mid X_{-(i,j)}$, the coefficient of X_j must vanish, implying $\Omega_{ij} = 0$.

(c) No neighbors \Rightarrow factorization. If $\beta_{i \leftarrow -i} = 0$, then by (a) $\Omega_{-i,i} = 0$. Thus $x^{\top}\Omega x = \Omega_{ii}x_i^2 + x_{-i}^{\top}\Omega_{-i,-i}x_{-i}$ has no cross-terms x_ix_j , and

$$p(x) \propto \exp\left(-\frac{1}{2}\Omega_{ii}x_i^2\right) \cdot \exp\left(-\frac{1}{2}x_{-i}^{\top}\Omega_{-i,-i}x_{-i}\right) = p(x_i)p(x_{-i}).$$

Hence X_i is independent of X_{-i} .