Lecture 24: Likelihood ratio tests

Ciaran Evans

Likelihood ratio test

Let $X_1,...,X_n$ be a sample from a distribution with parameter $\theta \in \mathbb{R}^d$. We wish to test $H_0: \theta \in \Theta_0$ vs. $H_A: \theta \in \Theta_1$.

The **likelihood ratio test** (LRT) rejects H_0 when

$$\frac{\sup\limits_{\boldsymbol{\theta}\in\Theta_{1}}L(\boldsymbol{\theta}|\mathbf{X})}{\sup\limits_{\boldsymbol{\theta}\in\Theta_{0}}L(\boldsymbol{\theta}|\mathbf{X})}>k,$$

where k is chosen such that $\sup_{\theta \in \Theta_0} \beta_{LR}(\theta) \leq \alpha$.

Example: linear regression with normal data

Suppose we observe $(X_1, Y_1), ..., (X_n, Y_n)$, where $Y_i = \beta^T X_i + \varepsilon_i$ and $\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$. Partition $\beta = (\beta_{(1)}, \beta_{(2)})^T$. We wish to test $H_0: \beta_{(2)} = 0$ vs. $H_A: \beta_{(2)} \neq 0$.

Asymptotics of the LRT

Suppose we observe iid data $X_1,...,X_n$ from a distribution with parameter $\theta \in \mathbb{R}$, and we wish to test $H_0: \theta = \theta_0$ vs. $H_A: \theta \neq \theta_0$.

Theorem: Under H_0 ,

$$2\log\left(\frac{L(\widehat{\theta}_{MLE}|\mathbf{X})}{L(\theta_0|\mathbf{X})}\right) \stackrel{d}{\to} \chi_1^2$$

Generalization to higher dimensions

Suppose we observe iid data $X_1,...,X_n$ with parameter $\theta \in \mathbb{R}^d$. Partition $\theta = (\theta_{(1)},\theta_{(2)})^T$, with $\theta_{(2)} \in \mathbb{R}^q$. We wish to test

$$H_0: \theta_{(2)} = \mathbf{0}$$
 $H_A: \theta_{(2)} \neq \mathbf{0}$

Theorem: Under H_0 ,

$$2\log\left(\frac{\sup_{\theta}L(\theta|\mathbf{X})}{\sup_{\theta:\theta(2)=0}L(\theta|\mathbf{X})}\right) \stackrel{d}{\to} \chi_q^2$$