ECOLE DES MÉTIERS DE LAUSANNE ECOLE SUPÉRIEURE

GÉNIE ÉLECTRIQUE

Système d'enregistrement de trajectoires de vol

Mini boîte noire

Auteur A. Zoubir Superviseur J. J. Moreno

3 juillet 2023

Table des matières

1		3						
	1.1	Choix	des composants importants	3				
		1.1.1	Centrale inertielle	3				
		1.1.2	GPS / GNSS	3				
		1.1.3	Microcontrôleur	3				
		1.1.4	Batterie, charge et régulation	3				
	1.2	Estima	ation des coûts					
2	Développement de la schématique 3							
	2.1	Dimen	nsionnements	3				
		2.1.1	Autonomie du système	3				
		2.1.2	Adaptation mécanique					
		2.1.3	Bus de communications					
		2.1.4	Périphériques	3				
		2.1.5	Chargeur de batterie	3				
		2.1.6	Synthèse et perspectives de l'étude					
3	Dév	eloppen	ment du PCB	3				
	3.1	Bill of	f materials	3				
	3.2	Mécan	nique du projet	3				
	3.3		ment des composants					
	3.4	Mécan	nique du PCB	3				
	3.5		ge					
4	Déve	eloppen	ment firmware	3				
5	Vali	dation d	du design	3				
	5.1	Liste d	de matériel	3				
	5.2	Contrô	ôle des alimentations	3				
	5.3	Comm	nunication UART	4				
	5.4	Comm	nunication SPI, carte SD	4				
6	Cara	actéristi	tiques du produit fini	4				
7	Con	clusion	l	5				
8	Bibl	iograph	hie	6				
Q	Δnn	AVAC		7				

1 Pré-étude

1.1 Choix des composants importants

- 1.1.1 Centrale inertielle
- 1.1.2 **GPS/GNSS**
- 1.1.3 Microcontrôleur
- 1.1.4 Batterie, charge et régulation
- 1.2 Estimation des coûts

2 Développement de la schématique

- 2.1 Dimensionnements
- 2.1.1 Autonomie du système
- 2.1.2 Adaptation mécanique
- 2.1.3 Bus de communications
- 2.1.4 Périphériques
- 2.1.5 Chargeur de batterie
- 2.1.6 Synthèse et perspectives de l'étude

3 Développement du PCB

- 3.1 Bill of materials
- 3.2 Mécanique du projet
- 3.3 Placement des composants
- 3.4 Mécanique du PCB
- 3.5 Routage

4 Développement firmware

- 5 Validation du design
- 5.1 Liste de matériel
- 5.2 Contrôle des alimentations

Méthode de mesure

Mesures

5.3 Communication UART

Méthode de mesure

Mesures

5.4 Communication SPI, carte SD

Méthode de mesure

Mesures

6 Caractéristiques du produit fini

7 Conclusion

8 Bibliographie

Références

[1] P. Kordowski, Z. Jakielaszek, M. Nowakowski, and A. Panas, "Miniaturized flight data recorder for unmanned aerial vehicles and ultralight aircrafts," in 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), pp. 484–488, 2018.

9 Annexes