Convergence d'une suite numérique

- Exercice 1 Soit (u_n) et (v_n) deux suites réelles convergeant vers ℓ et ℓ' avec $\ell < \ell'$. Montrer qu'à partir d'un certain rang : $u_{\scriptscriptstyle n} < v_{\scriptscriptstyle n}$.
- Soit $(u_n) \in \mathbb{Z}^{\mathbb{N}}$. Montrer que (u_n) converge si et seulement si (u_n) est stationnaire. Exercice 2
- Soit $(a,b) \in \mathbb{R}^2$, (u_n) et (v_n) deux suites telles que : $\begin{cases} n \in \mathbb{N}, u_n \leq a \text{ et } v_n \leq b \\ u_n + v_n \to a + b \end{cases}$ Exercice 3 Montrer que $\,u_{\scriptscriptstyle n} \to a \,\, {\rm et} \,\, v_{\scriptscriptstyle n} \to b \,.$
- Exercice 4 Soit (u_n) et (v_n) deux suites réelles que $(u_n + v_n)$ et $(u_n - v_n)$ convergent. Montrer que (u_n) et (v_n) convergent.
- Exercice 5 Soit (u_n) et (v_n) deux suites convergentes. Etudier $\lim_{n \to +\infty} \max(u_n, v_n)$.
- Soit (u_n) et (v_n) deux suites réelles telles que $u_n^2 + u_n v_n + v_n^2 \to 0$. Exercice 6 Démontrer que (u_n) et (v_n) convergent vers 0.
- Exercice 7 Soit (u_n) et (v_n) deux suites telles que $0 \le u_n, v_n \le 1$ et $u_n v_n \to 1$. Que dire de ces suites ?

Calculs de limites

Exercice 8 Déterminer la limite, si celle-ci existe, des suites (u_n) suivantes :

$$a) u_n = \left(1 + \frac{1}{n}\right)^n$$

b)
$$u_n = \frac{3^n - (-2)^n}{3^n + (-2)^n}$$

c)
$$u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$$
 d) $u_n = \frac{n - \sqrt{n^2 + 1}}{n + \sqrt{n^2 - 1}}$

d)
$$u_n = \frac{n - \sqrt{n^2 + 1}}{n + \sqrt{n^2 - 1}}$$

e)
$$u_n = \frac{1}{n^2} \sum_{k=1}^n k$$

$$f) u_n = \sqrt[n]{n^2}$$

Déterminer les limites des suites dont les termes généraux sont les suivants : Exercice 9

a)
$$u_n = \frac{1}{n} \left(\sin \frac{1}{n} \right)^{1/n}$$

b)
$$u_n = \left(\frac{n-1}{n+1}\right)^n$$

b)
$$u_n = \left(\frac{n-1}{n+1}\right)^n$$
 c) $u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$

Exercice 10 Déterminer par comparaison, la limite des suites (u_n) suivantes :

a)
$$u_n = \frac{\sin n}{n + (-1)^{n+1}}$$

$$b) u_n = \frac{n!}{n^n}$$

c)
$$u_n = \frac{n - (-1)^n}{n + (-1)^n}$$

$$d) u_n = \frac{e^n}{n^n}$$

e)
$$u_n = \sqrt[n]{2 + (-1)^n}$$

$$f) u_n = \sum_{k=1}^n \sqrt{k}$$

g)
$$u_n = \sum_{k=1}^n \frac{1}{n^2 + k^2}$$

h)
$$u_n = \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$$

i)
$$u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$$
.

Exercice 11 Déterminer les limites de :

a)
$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$
.

b)
$$S_n = \sum_{k=n+1}^{2n} \frac{1}{k^2}$$

c)
$$S_n = \sum_{k=0}^n (-1)^{n-k} k!$$

d)
$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}$$

$$\textit{Exercice 12} \quad \text{Comparer } \lim_{m \to +\infty} \lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^m, \ \lim_{n \to +\infty} \lim_{m \to +\infty} \left(1 - \frac{1}{n}\right)^m \text{ et } \lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^n.$$

- **Exercice 13** Soit (u_n) une suite de réels strictement positifs. On suppose $\sqrt[n]{u_n} \to \ell$.
 - a) Montrer que si $\ell < 1$ alors $u_n \to 0$.
 - b) Montrer que si $\ell > 1$ alors $u_n \to +\infty$.
 - c) Montrer que dans le cas $\ell = 1$ on ne peut rien conclure.

Exercice 14 Soit (u_n) une suite de réels strictement positifs. On suppose $\frac{u_{n+1}}{u_n} \to \ell$.

- a) Montrer que si $\ell < 1$ alors $u_n \to 0$.
- b) Montrer que si $\ell > 1$ alors $u_n \to +\infty$.
- c) Montrer que dans le cas $\ell = 1$ on ne peut rien conclure.

Exercice 15 Pour tout
$$n\in\mathbb{N}$$
 , on pose $S_n=\sum_{k=1}^n\frac{1}{n+k}$ et $S_n'=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$

- a) Etablir que pour tout p > 1, $\int_{p}^{p+1} \frac{\mathrm{d}x}{x} \le \frac{1}{p} \le \int_{p-1}^{p} \frac{\mathrm{d}x}{x}$. En déduire la limite de (S_n) .
- b) Etablir que $\,S_{2n}' = S_{n}\,.$ En déduire la limite de $\,(S_{n}')\,.$

Exercice 16 Soit
$$a \in \mathbb{R}$$
 et pour $n \in \mathbb{N}$, $P_n = \prod_{k=1}^n \cos \frac{a}{2^k}$.

Montrer que $\sin\left(\frac{a}{2^n}\right)P_n = \frac{1}{2^n}\sin a$ et déterminer $\lim_{n \infty} P_n$.

Exercice 17 Soit
$$p \in \mathbb{N} \setminus \{0,1\}$$
. Pour $n \in \mathbb{N}^*$ on pose $u_n = \binom{n+p}{n}^{-1}$ et $S_n = \sum_{k=1}^n u_k$.

- a) Montrer que $\forall n \in \mathbb{N}$, $(n+p+2)u_{n+2} = (n+2)u_{n+1}$.
- b) Montrer par récurrence $S_n = \frac{1}{p-1}(1-(n+p+1)u_{n+1})$.
- c) On pose $\forall n \in \mathbb{N}^* \ v_n = (n+p)u_n$. Montrer que (v_n) converge vers 0.
- d) En déduire $\lim S_n$ en fonction de p.

Suites monotones et bornées

Exercice 18 Soit (u_n) une suite croissante de limite ℓ . On pose $v_n = \frac{u_1 + \dots + u_n}{n}$.

- a) Montrer que (v_n) est croissante.
- b) Etablir que $v_{2n} \ge \frac{u_n + v_n}{2}$.
- c) En déduire que $v_n \to \ell$.

Exercice 19 Soit (u_n) une suite réelle convergente. Etudier la limite de la suite $v_n = \sup_{n > n} u_n$.

 $\textit{Exercice 20} \quad \text{Soit } (u_{\scriptscriptstyle n}) \ \text{ une suite r\'eelle born\'ee. On pose } v_{\scriptscriptstyle n} = \sup_{\scriptscriptstyle p \geq n} u_{\scriptscriptstyle n} \ \text{et } w_{\scriptscriptstyle n} = \inf_{\scriptscriptstyle p \geq n} u_{\scriptscriptstyle n} \,.$

Montrer que les suites (v_n) et (w_n) possèdent chacune une limite dans $\mathbb R$ et comparer celles-ci. En déduire que de toute suite réelle on peut extraire une suite convergente.

Exercice 21 Somme harmonique:

Pour tout
$$n \in \mathbb{N}$$
, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

Montrer que $\forall n \in \mathbb{N}^*, H_{2n} - H_n \geq \frac{1}{2}$. En déduire que $\lim_{n \infty} H_n = +\infty$.

Exercice 22 On pose
$$u_n = \frac{1 \times 3 \times 5 \times \cdots \times (2n-1)}{2 \times 4 \times 6 \times \cdots \times (2n)}$$
.

- a) Exprimer u_n à l'aide de factoriels.
- b) Montrer que (u_n) converge.
- c) Soit $v_n = (n+1)u_n^2$. Montrer que (v_n) converge. Déterminer $\lim u_n$.

Suites adjacentes

Exercice 23 Soit
$$\theta \in]0, \pi/2[$$
, $u_n = 2^n \sin \frac{\theta}{2^n}$, $v_n = 2^n \tan \frac{\theta}{2^n}$.

Montrer que les suites (u_n) et (v_n) sont adjacentes. Quelle est leur limite commune ?

Exercice 24 Pour tout
$$n \in \mathbb{N}^*$$
, on pose $S_n = \sum_{k=1}^n \frac{1}{k^2}$ et $S_n' = S_n + \frac{1}{n}$.

Montrer que les suites (S_n) et (S'_n) sont adjacentes.

On peut montrer que leur limite commune est $\pi^2/6$, mais c'est une autre histoire...

Exercice 25 Critère spécial des séries alternées ou critère de Leibniz.

Soit (u_n) une suite de réels décroissante et de limite nulle.

Pour tout
$$n \in \mathbb{N}$$
 , on pose $S_n = \sum_{k=0}^n (-1)^k u_k$.

Montrer que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes et en déduire que (S_n) converge.

Exercice 26 Irrationalité du nombre de Néper.

Soit
$$a_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $b_n = \sum_{k=0}^n \frac{1}{k!} + \frac{1}{n \cdot n!} = a_n + \frac{1}{n \cdot n!}$.

a) Montrer que (a_n) et (b_n) sont strictement monotones et adjacentes.

On admet que leur limite commune est $\,e\,$. On désire montrer que $\,e\not\in\mathbb{Q}\,$ et pour cela on raisonne

par l'absurde en supposant
$$e = \frac{p}{q}$$
 avec $p \in \mathbb{Z}, q \in \mathbb{N}^*$.

b) Montrer que $\,a_{\scriptscriptstyle q} < {\rm e} < b_{\scriptscriptstyle q}\,$ puis obtenir une absurdité.

Exercice 27 Moyenne arithmético-géométrique.

a) Pour
$$(a,b) \in \mathbb{R}^{+2}$$
, établir : $2\sqrt{ab} \le a+b$.

b) On considère les suites de réels positifs (u_n) et (v_n) définies par : $u_0 = a, v_0 = b$ et

$$\forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n v_n}, v_{n+1} = \frac{u_n + v_n}{2}.$$

Montrer que, pour tout $n \ge 1$, $u_n \le v_n$, $u_n \le u_{n+1}$ et $v_{n+1} \le v_n$.

c) Etablir que (u_n) et (v_n) convergent vers une même limite.

Cette limite commune est appelée moyenne arithmético-géométrique de a et b et est notée M(a,b).

- d) Calculer M(a,a) et M(a,0) pour $a \in \mathbb{R}^+$.
- e) Exprimer $M(\lambda a, \lambda b)$ en fonction de M(a, b) pour $\lambda \in \mathbb{R}^+$.

Suites extraites

- **Exercice 28** On suppose que (u_n) est une suite réelle croissante telle que (u_{2n}) converge. Montrer que (u_n) converge.
- Exercice 29 Soit (u_n) une suite complexe telle que $(u_{2n}), (u_{2n+1})$ et (u_{3n}) convergent. Montrer que (u_n)
- **Exercice 30** Justifier que la suite $(\cos n)$ diverge.
- $\textit{Exercice 31} \quad \text{Soit } (u_{\scriptscriptstyle n}) \ \text{ une suite r\'eelle telle que } \ \forall n,p \in \mathbb{N}^* \,, \ 0 \leq u_{\scriptscriptstyle n+p} \leq \frac{n+p}{nn} \,. \ \text{Montrer que } u_{\scriptscriptstyle n} \to 0 \,.$

Comparaison de suites numériques

Exercice 32 Classer les suites, dont les termes généraux, sont les suivants par ordre de négligeabilité :

a)
$$\frac{1}{n}, \frac{1}{n^2}, \frac{\ln n}{n}, \frac{\ln n}{n^2}, \frac{1}{n \ln n}$$

a)
$$\frac{1}{n}, \frac{1}{n^2}, \frac{\ln n}{n}, \frac{\ln n}{n^2}, \frac{1}{n \ln n}$$
 b) $n, n^2, n \ln n, \sqrt{n} \ln n, \frac{n^2}{\ln n}$.

Exercice 33 Trouver un équivalent simple aux suites (u_n) suivantes et donner leur limite :

a)
$$u_n = \frac{n^3 - \sqrt{n^2 + 1}}{\ln n - 2n^2}$$

b)
$$u_n = \frac{2n^3 - \ln n + 1}{n^2 + 1}$$

c)
$$u_n = \frac{\ln(n^2 + 1)}{n + 1}$$

d)
$$u_n = (n + 3 \ln n) e^{-(n+1)}$$

e)
$$u_n = \frac{n! + e^n}{2^n + 3^n}$$

f)
$$u_n = \frac{\sqrt{n^2 + n + 1}}{\sqrt[3]{n^2 - n + 1}}$$

Exercice 34 Trouver un équivalent simple aux suites (u_n) suivantes :

a)
$$u_n = \frac{1}{n-1} - \frac{1}{n+1}$$

b)
$$u_n = \sqrt{n+1} - \sqrt{n-1}$$

b)
$$u_n = \sqrt{n+1} - \sqrt{n-1}$$
 c) $u_n = \sqrt{\ln(n+1) - \ln(n)}$

$$d) \ u_n = \sin \frac{1}{\sqrt{n+1}}$$

e)
$$u_n = \ln\left(\sin\frac{1}{n}\right)$$

f)
$$u_n = 1 - \cos \frac{1}{n}$$
.

Exercice 35 Déterminer la limite des suites (u_n) suivantes :

a)
$$u_n = n\sqrt{\ln\left(1 + \frac{1}{n^2 + 1}\right)}$$
 b) $u_n = \left(1 + \sin\frac{1}{n}\right)^n$

$$\mathbf{b)} \ u_n = \left(1 + \sin\frac{1}{n}\right)^n$$

c)
$$u_n = \frac{n^{\sqrt{n+1}}}{(n+1)^{\sqrt{n}}}$$
.

Exercice 36 Pour $n \in \mathbb{N}$, on pose $u_n = 0! + 1! + 2! + \dots + n! = \sum_{i=0}^{n} k!$. Montrer que $u_n \sim n!$.

- **Exercice 37** On pose $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$.
 - a) Justifier que $\frac{1}{\sqrt{n+1}} \le 2(\sqrt{n+1} \sqrt{n}) \le \frac{1}{\sqrt{n}}$.
 - b) Déterminer la limite de (S_n) .
 - c) On pose $u_n = S_n 2\sqrt{n}$. Montrer que (u_n) converge.
 - d) Donner un équivalent simple de (S_n) .
- **Exercice 38** Soit (u_n) , (v_n) , (w_n) , (t_n) des suites de réels strictement positifs tels que $u_n \sim v_n$ et $w_n \sim t_n$. Montrer que $u_n + w_n \sim v_n + t_n$.
- **Exercice 39** Soit (u_n) une suite décroissante de réels telle que $u_n + u_{n+1} \sim \frac{1}{n}$.
 - a) Montrer que (u_n) converge vers 0^+ .
 - b) Donner un équivalent simple de (u_n) .

Etude de suites définies implicitement

- **Exercice 40** Montrer que l'équation $xe^x = n$ possède pour tout $n \in \mathbb{N}$, une unique solution x_n dans \mathbb{R}^+ . Etudier la limite de (x_n) .
- **Exercice 41** Soit n un entier naturel et E_n l'équation $x + \ln x = n$ d'inconnue $x \in \mathbb{R}^{+*}$.
 - a) Montrer que l'équation $\,E_{\scriptscriptstyle n}\,$ possède une solution unique notée $\,x_{\scriptscriptstyle n}\,.$
 - b) Montrer que la suite (x_n) diverge vers $+\infty$.
 - c) Donner un équivalent simple de la suite (x_n) .
- **Exercice 42** Soit n un entier naturel et E_n l'équation $x + \tan x = n$ d'inconnue $x \in]-\pi/2,\pi/2[$.
 - a) Montrer que l'équation E_n possède une solution unique notée x_n .
 - b) Montrer que la suite (x_n) converge et déterminer sa limite.
- **Exercice 43** Soit n un entier naturel non nul et E_n l'équation : $x^n \ln x = 1$ d'inconnue $x \in \mathbb{R}^+ *$.
 - a) Montrer que l'équation E_n admet une unique solution x_n , et que $x_n \ge 1$.
 - b) Montrer que la suite (x_n) est décroissante et converge vers 1.
- **Exercice 44** Soit $n \in \mathbb{N}^*$ et $E_n : x^n + x^{n-1} + \dots + x = 1$.
 - a) Montrer que l'équation E_n possède une unique solution x_n dans \mathbb{R}^+ et que $x_n \in \left[\frac{1}{2},1\right]$
 - b) Montrer que (x_n) converge.
 - c) Déterminer la limite de (x_n) .

Expression du terme général d'une suite récurrente

- **Exercice 45** Donner l'expression du terme général et la limite de la suite récurrente réelle $(u_n)_{n\geq 0}$ définie par :
 - a) $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = 2u_n + 1$
 - b) $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n + 1}{2}$.

 $\textbf{\textit{Exercice 46}} \quad \text{Soit } (x_n) \text{ et } (y_n) \text{ deux suites réelles telles que } \forall n \in \mathbb{N}, x_{n+1} = \frac{x_n - y_n}{2} \text{ et } y_{n+1} = \frac{x_n + y_n}{2}.$

En introduisant la suite complexe de terme général $z_n = x_n + i.y_n$, montrer que les suites (x_n) et (y_n) convergent et déterminer leurs limites.

 $\textit{Exercice 47} \quad \text{Soit } (z_{\scriptscriptstyle n}) \ \text{ une suite complexe telle que } \ \forall n \in \mathbb{N}, z_{\scriptscriptstyle n+1} = \frac{1}{3}(z_{\scriptscriptstyle n} + 2\overline{z}_{\scriptscriptstyle n}) \,.$

Montrer que (z_n) converge et exprimer sa limite en fonction de z_0 .

- **Exercice 48** Soit (u_n) et (v_n) les suites déterminées par $u_0=1$, $v_0=2$ et pour tout $n\in\mathbb{N}$: $u_{n+1}=3u_n+2v_n \text{ et } v_{n+1}=2u_n+3v_n \text{ .}$
 - a) Montrer que la suite $(u_n v_n)$ est constante.
 - b) Prouver que (u_n) est une suite arithmético-géométrique.
 - c) Exprimer les termes généraux des suites (u_n) et (v_n) .
- *Exercice 49* Soit $\rho > 0$ et $\theta \in]0,\pi[$.

On considère la suite complexe (z_n) définie par $z_0=\rho \mathrm{e}^{\mathrm{i}\theta}$ et $\forall n\in\mathbb{N}, z_{n+1}=\frac{z_n+\left|z_n\right|}{2}$.

- a) Exprimer z_n sous forme d'un produit.
- b) Déterminer $\lim_{n\to+\infty} z_n$.

Suites récurrentes linéaire d'ordre 2

Exercice 50 Donner l'expression du terme général de la suite récurrente complexe $(u_n)_{n\geq 0}$ définie par :

$$u_0 = 0, u_1 = 1 + 4i \; \text{ et } \; \forall n \in \mathbb{N}, u_{n+2} = (3 - 2i)u_{n+1} - (5 - 5i)u_n \,.$$

- Exercice 51 Donner l'expression du terme général des suites récurrentes réelles suivantes :
 - a) $(u_n)_{n\geq 0}$ définie par $u_0=1,u_1=0$ et $\forall n\in\mathbb{N},u_{n+2}=4u_{n+1}-4u_n$
 - b) $(u_n)_{n\geq 0}$ définie par $u_0=1, u_1=-1$ et $\forall n\in \mathbb{N}, 2u_{n+2}=3u_{n+1}-u_n$
 - c) $(u_n)_{n\geq 0}$ définie par $u_0=1,u_1=2$ et $\forall n\in\mathbb{N},u_{n+2}=u_{n+1}-u_n$.
- **Exercice 52** Soit $\theta \in \mathbb{R}$. Déterminer le terme général de la suite réelle $(u_{_n})$ définie par :

$$u_0 = u_1 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+2} + 2\cos\theta u_{n+1} + u_n = 0$.

Etude de suites récurrentes

- $\textbf{\textit{Exercice 53}} \quad \text{Soit } a \in \mathbb{R}^{+*} \text{ . On definit une suite } (u_n) \text{ par } u_0 = a \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \sqrt{\sum_{k=0}^n u_k} \text{ .}$
 - a) Déterminer la limite de (u_n) .
 - b) Déterminer la limite de $u_{n+1} u_n$.
- **Exercice 54** On considère la suite (u_n) définie pour $n \ge 1$ par $u_n = \sqrt{n + \sqrt{(n-1) + \dots + \sqrt{2 + \sqrt{1}}}}$
 - a) Montrer que (u_n) diverge vers $+\infty$.
 - b) Exprimer u_{n+1} en fonction de u_n .
 - c) Montrer que $\,u_{\scriptscriptstyle n} \leq n\,$ puis que $\,u_{\scriptscriptstyle n} \leq \sqrt{n+2\sqrt{n-1}}\,$.

- d) Donner un équivalent simple de (u_n) .
- e) Déterminer $\lim_{n \to +\infty} u_n \sqrt{n}$.
- **Exercice 55** Etudier la suite (u_n) définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{1 + u_n}$.
- **Exercice 56** Etudier la suite (u_n) définie par $u_0=a\in\mathbb{R}$ et $\forall n\in\mathbb{N}$, $u_{n+1}=u_n^2$.
- **Exercice 57** Etudier la suite (u_n) définie par $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n^2 + 1$.
- **Exercice 58** Etudier la suite (u_n) définie par $u_0 \ge 1$ et $\forall n \in \mathbb{N}, u_{n+1} = 1 + \ln u_n$.
- **Exercice 59** Etudier la suite (u_n) définie par $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = e^{u_n} 1$.
- **Exercice 60** Etudier la suite (u_n) définie par $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2+u}$.
- $\textit{Exercice 61} \quad \text{Soit } (u_n) \ \text{ la suite réelle définie par } u_0 = a \in \left[-2,2\right] \ \text{et } \ \forall n \in \mathbb{N}, u_{n+1} = \sqrt{2-u_n}$
 - a) Justifier que la suite (u_n) est bien définie et $\forall n \in \mathbb{N}, u_n \in [-2,2]$.
 - b) Quelles sont les limites finies possibles pour (u_n) ?
 - c) Montrer que $(|u_n 1|)$ converge puis que $\lim |u_n 1| = 0$. En déduire $\lim u_n$.
- **Exercice 62** Soit $a \in \mathbb{C}$ tel que 0 < |a| < 1 et (u_n) la suite définie par $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{2 u_n}$.
- Montrer que (u_n) est bien définie et $\left|u_n\right|<1$. Etudier la limite de (u_n) .
- **Exercice 63** Déterminer le terme général de la suite (u_n) définie par :

$$u_0 = a > 0, u_1 = b > 0$$
 et $\forall n \in \mathbb{N}, u_{n+2}u_n = u_{n+1}^2$.

A quelle condition (u_n) converge?

- **Exercice 64** Soit a > 0 et (u_n) la suite définie par $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$.
 - a) Etudier la convergence de la suite (u_n) .
 - b) On pose $\forall n \in \mathbb{N}, v_n = \frac{u_n \sqrt{a}}{u_n + \sqrt{a}}$. Calculer v_{n+1} en fonction de v_n , puis v_n en fonction de v_0 et
 - c) Montrer que, si $\ u_0 > \sqrt{a}$, on a $\left| \ u_n \sqrt{a} \ \right| \leq 2u_0.v_0^{2^n}$.

Ainsi, $u_{\scriptscriptstyle n}$ réalise une approximation de $\sqrt{a}\,$ à la précision $2u_{\scriptscriptstyle 0}.v_{\scriptscriptstyle 0}^{2^{\scriptscriptstyle n}} {\buildrel \to 0}\,.$

On peut alors par des calculs élémentaires, déterminer une approximation de \sqrt{a} . Cette méthode était exploitée par les Babyloniens 3000 ans avant notre ère.

- **Exercice 65** On considère l'équation $\ln x + x = 0$ d'inconnue x > 0.
 - a) Montrer que l'équation possède une unique solution $\,\alpha\,.$
 - b) Former, par l'algorithme de Newton, une suite récurrente réelle (u_n) convergeant vers α .

david Delaunay http://mpsiddl.free.fr