

Introdução a Redes Neurais

Arquiteturas MLP e CNN

Joris GUERIN

Concurso para Professor Adjunto em Aprendizado de Máquina Departamento de Informática e Matemática Aplicada (DIMAP) Universidade Federal do Rio Grande do Norte (UFRN)

Problemas de aprendizagem

Funções de perda

Classificação: Cross-Entropy

$$L_{CE}(F,X,y) = -rac{1}{N}\sum_{i=1}^N y_i \log(F(x_i))$$

Regressão: Mean Squared Error

$$\left|L_{MSE}(F,X,y) = -rac{1}{N}\sum_{i=1}^{N}\left|\left|y_i - F(x_i)
ight|
ight|^2$$

Modelos lineares

$$F(x) = \omega^T x + b$$

Pré-processamento de dados: padronização

Treinamento: Otimização iterativa - Gradiente Descendente

Source: http://rasbt.github.io/mlxtend/user-guide/general-concepts/gradient-optimization/

Avaliação de classificadores: Acurácia

$$rac{N_{correct}}{N_{total}}$$

Multi-Layer Perceptron Uma primeira arquitetura de rede neural artificial

Motivações

Modelização de funções não-lineares

Motivações

Por que MLP entre outros modelos não-lineares?

Teoria: Teorema da aproximação universal

Prática: Permite resolver problemas muito complexos

Implementação: Combinação de funções simples

- → Fácil de usar o gradiente descendente
- → Fácil de otimizar o treinamento rápido com GPU

Modelo de neurônio simples

Funções de ativação comuns

Sigmoid

$$arphi(x)=rac{e^x}{1+e^x}=rac{1}{1+e^{-x}}$$

Tanh

$$arphi(x) = 1 - rac{2}{1 + e^{2x}}$$

ReLU

$$\varphi(x) = \max(0, x)$$

Modelo de camada de neurônios (*layer*)

$$egin{aligned} orall i \in \{1,2\}, \ y_i = arphi(W_i^Tx + b_i) \end{aligned}$$

Modelo de Multi-Layer Perceptron (MLP)

Restrições sobre a arquitetura

O tamanho da camada de entrada é a dimensão dos dados

O tamanho da camada de saída depende dos rótulos

Classificação: N neurônios de saída = N categorias

Regressão: N neurônios de saída = N valores a estimar (geralmente 1)

A função de ativação da camada de saída depende da faixa de valores Exemplo: regressão de variáveis resposta num intervalo fixo: Sigmoid

O **número de parâmetros** não deve ser muito maior do que o número de amostras → Regra empírica

Calcular número de parâmetros

Regra empírica para construção de arquitetura MLP

Começar com 2 hidden layers

Em cada camada: usar **potências de 2** para números de neurônios (2, 4, 8, 16, 32, etc.)

Primeira camada ~ metade do número de features

Camadas seguintes: metade da camada anterior

Este esquema dá uma boa arquitetura para começar o processo de treinamento, mas geralmente o desenvolvimento de uma rede neural é um **processo iterativo** onde se precisa testar muitas configurações.

Treinamento de um MLP para o dataset Wine

13 FEATURES

Propriedades químicas do vinho

Alcohol

Malic acid

Ash

Alkalinity of ash

Magnesium

Total phenols

Etc.

178 AMOSTRAS

Diferentes produtores da mesma região na Itália

3 CATEGORIAS

Diferentes espécies de uva usadas

178 Amostras13 Features3 Categorias

- o Começar com 2 hidden layers
- Em cada camada: usar potências de 2 para números de neurônios (2, 4, 8, 16, 32, etc.)
- Primeira camada ~ a metade do número de features
- o Camadas seguintes: metade da camada anterior

178 Amostras13 Features3 Categorias

Input layer

Tamanho

- o Começar com 2 hidden layers
- o Em cada camada: usar potências de 2 para números de neurônios (2, 4, 8, 16, 32, etc.)
- Primeira camada ~ a metade do número de features
- o Camadas seguintes: metade da camada anterior

178 Amostras13 Features3 Categorias

Input layer

Tamanho 13 **Output layer**

Tamanho

?

- Começar com 2 hidden layers
- o Em cada camada: usar potências de 2 para números de neurônios (2, 4, 8, 16, 32, etc.)
- o Primeira camada ~ a metade do número de features
- o Camadas seguintes: metade da camada anterior

178 Amostras13 Features3 Categorias

Input layer

Tamanho **13**

Output layer

Tamanho

3

Ativação

?

- Começar com 2 hidden layers
- Em cada camada: usar potências de 2 para números de neurônios (2, 4, 8, 16, 32, etc.)
- Primeira camada ~ a metade do número de features
- Camadas seguintes: metade da camada anterior

178 Amostras 13 Features 3 Categorias

Número de camadas escondidas:

Input layer

Tamanho **13**

Output layer

Tamanho

3

Ativação

SoftMax

Começar com 2 hidden layers

• Em cada camada: usar potências de 2 para números de neurônios (2, 4, 8, 16, 32, etc.)

• Primeira camada ~ a metade do número de features

Camadas seguintes: metade da camada anterior

178 Amostras13 Features3 Categorias

- Começar com 2 hidden layers
- Em cada camada: usar potências de 2 para números de neurônios (2, 4, 8, 16, 32, etc.)
- Primeira camada ~ a metade do número de features
- Camadas seguintes: metade da camada anterior

178 Amostras13 Features3 Categorias

- Começar com 2 hidden layers
- o Em cada camada: usar potências de 2 para números de neurônios (2, 4, 8, 16, 32, etc.)
- Primeira camada ~ a metade do número de features
- Camadas seguintes: metade da camada anterior

178 Amostras13 Features3 Categorias

Número de parâmetros: ?

- Começar com 2 hidden layers
- o Em cada camada: usar potências de 2 para números de neurônios (2, 4, 8, 16, 32, etc.)
- Primeira camada ~ a metade do número de features
- Camadas seguintes: metade da camada anterior

178 Amostras 13 Features 3 Categorias

Número de parâmetros: 8x(13+1) + 4x(8+1)

= 148

- Começar com 2 hidden layers
- o Em cada camada: usar potências de 2 para números de neurônios (2, 4, 8, 16, 32, etc.)
- Primeira camada ~ a metade do número de features
- Camadas seguintes: metade da camada anterior

Exemplo de implementação

```
from sklearn.datasets import load wine
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.neural network import MLPClassifier
from sklearn.metrics import accuracy score
# Load data
data = load wine()
X = data.data
y = data.target
# Split into train and test set
X train, X test, y train, y test = train test split(X, y, test size=0.3)
# Preprocess data
scaler = StandardScaler()
X train = scaler.fit transform(X train)
X test = scaler.transform(X test)
# Build MLP
mlp = MLPClassifier(hidden layer sizes=[8, 4], max iter=10000)
# Train MLP
mlp.fit(X train, y train)
# Predict on test set
y pred = mlp.predict(X test)
# Compute accuracy score
print("Accuracy MLP: ", accuracy score(y pred, y test))
```


18

Descrição básica do processo de treinamento

Conclusão intermediária

- Apresentamos a arquitetura MLP e mostramos como pode ser desenvolvida
- Muitos elementos importantes sobre treinamento de redes neurais não foram discutidos ainda (próximas aulas)

Inicialização Otimização Regularização Avaliação Implementação eficiente Implantação industrial

Convolutional Neural Network

Rede neural artificial para processamento de imagens

Classificação de imagens

54640904 133d1a4fd9.jpg

fly agaric	0.999999
common stinkhorn	9.50538e-07
giant puffball	2.51632e-08
earthstar	1.56964e-08
scarlet elf cup	3.09601e-09

Evaluation time (1-image): 0.228s

Detecção de objetos

Super resolution & Image denoising

Pose recognition

Source: https://www.analyticsvidhya.com/blog/2021/05/pose-estimation-using-opency/

Geração de imagens & Geração de arte

Motivações: problemas com MLP para imagens

Classificar imagens usando MLP

Uma imagem pode ser representada por um tensor (Matrice 3D) de dimensão WxHx3

Motivações: problemas com MLP para imagens

Explosão do número de parâmetros necessários

Motivações: problemas com MLP para imagens

- Número de parâmetros necessários
- Invariância à translação

Motivações: problemas com MLP para imagens

- Número de parâmetros
- Invariância à translação
- Invariância à escala
- Invariância à rotação

Convolutional Neural Networks (CNN)

Filtro de convolução e produto escalar de matrizes

Exemplo: filtros de convolução para detectar orelha de gato

Imagem em escala de cinza

representação numérica

3	0	0	3	0
0	0	10	0	3
0	10	3	10	0
10	3	3	3	10
3	3	3	3	3

Etapa 1: detecção de bordas inclinadas

Etapa 1: detecção de bordas inclinadas

Etapa 1: detecção de bordas inclinadas

Etapa 1: detecção de bordas inclinadas

Padrão procurado

Filtro de convolução

$$\varphi(x) = \max(0, x)$$

Aplicar o filtro à imagem toda

Imagem em escala de cinza

Representação numérica

3	0	0	3	0
0	0	10	0	3
0	10	3	10	0
10	3	3	3	10
3	3	3	3	3

Filtro de convolução

-1	-1	1
-1	1	-1
1	-1	-1

Aplicar o filtro à imagem toda

Imagem em escala de cinza

Representação numérica

3	0	0	3	0
0	0	10	0	3
0	10	3	10	0
10	3	3	3	10
3	3	3	3	3

Filtro de convolução

-1	-1	1
-1	1	-1
1	-1	-1

Aplicar o filtro à imagem toda

Filtro de convolução

-1	-1	1
-1	1	-1
1	-1	-1

	10	

Aplicar o filtro à imagem toda

Imagem em escala de cinza

Zero-padding

Filtro de convolução

-1	-	1
-1	1	-1
1	-1	-1

3		
	10	

Aplicar o filtro à imagem toda

Imagem em escala de cinza

Representação numérica

0	0	0	0	0	0	0
0	3	0	0	3	0	0
0	0	0	10	0	3	0
0	0	10	3	10	0	0
0	10	3	3	3	10	0
0	3	3	3	3	3	0
0	0	0	0	0	0	0

Filtro de convolução

-1	-1	1
-1	1	-1
1	-1	-1

3	-13	-13	10	-6
-13	-26	10	-23	10
-23	21	-30	-10	-20
11	-20	-9	-26	-3
-7	-13	-6	1	-13

Aplicar a não-linearidade

Operação de Max-pooling

Operação de Max-pooling

Saída da camada de convolução

Por que Max pooling?

Número de parâmetros

(Tamanho da imagem divido por 4)

Invariância à translação

(Ativação independente da posição exata)

- Invariância à escala
- Invariância à rotação

Detecção de orelha de gato

Filtro 2					
1	-1	-1			
-1	1	-1			
-1	-1	1			

Representação numérica

3	0	0	3	0
0	0	10	0	3
0	10	3	10	0
10	3	3	3	10
3	3	3	3	3

Nova imagem

Canal 1

3	10	10
21	0	0
0	1	0

Canal 2

7	10	0
0	18	11
1	0	0

Filtro de convolução da segunda camada

Imagem

Nova representação

Canal 1				Canal	2
3	10	10	7	10	0
21	0	0	0	18	11
0	1	0	1	0	0

Filtro de convolução 3D

Filtro de convolução da segunda camada

Nova representação

Filtro de convolução 3D

	Canal	1		Canal :	2
-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	1
-1	-1	-1	-1	-1	-1

Filtro de convolução da segunda camada

Imagem

Nova representação

Canal 1					Canal	2
3	10	10		7	10	0
21	0	0		0	18	11
0	1	0		1	0	0

Filtro de convolução 3D

	Canal 1				Canal	2
-1	-1	-1		-1	-1	-1
-1	1	-1		-1	-1	1
-1	-1	-1		-1	-1	-1

-43	-70	-39
7	-70	-60
-41	-50	-30

Filtro de convolução da segunda camada

		_
-43	-70	-39
7	-70	-60
-41	-50	-30

Camada de classificação

Conclusão: Tem uma orelha de gato na imagem

Outro mecanismo de redução de tamanho: Stride

Stride = 1

3	0	0	3	0	
0	0	10	0	3	
0	10	3	10	0	
10	3	3	3	10	
3	3	3	3	3	

Stride = 2

Stride = 3

Como escolher os filtros na prática?

Filtros de convolução parametrizados e aprendidos

Aplicado à profundidade inteira da imagem de entrada

Como escolher os filtros na prática?

Filtros de convolução parametrizados e aprendidos

Aplicado à profundidade inteira da imagem de entrada

Construção e treinamento

Número de parâmetros: MLP vs CNN

Competição ImageNet (ILSVRC 2012)

Classificar imagens entre 1000 categorias 1.2M imagens de treinamento | 150K imagens de teste

Competição ImageNet (ILSVRC 2012)

Classificar imagens entre 1000 categorias 1.2M imagens de treinamento | 150K imagens de teste

Source: https://www.datacorner.fr/vgg-transfer-learning/

Source 2: https://keras.io/api/applications/

Arquitetura VGG 16

Model	Size (MB)	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth	Time (ms) per inference step (CPU)	Time (ms) per inference step (GPU)
Xception	88	0.790	0.945	22,910,480	126	109.42	8.06
VGG16	528	0.713	0.901	138,357,544	23	69.50	4.16
VGG19	549	0.713	0.900	143,667,240	26	84.75	4.38

Adaptação da arquitetura CNN para vídeos

Conclusão

- Apresentamos a arquitetura MLP e mostramos como pode ser desenvolvida → Dados tabulares
- Apresentamos a arquitetura CNN e mostramos como pode ser desenvolvida → Imagens
- Muitos elementos importantes sobre treinamento de redes neurais não foram discutidos ainda (próximas aulas)

Inicialização Otimização Regularização Avaliação
Implementação eficiente Implantação industrial

Fortalecer o conhecimento

- Exercício 1: Desenvolvimento de uma rede MLP
 - Escolher um dataset supervisionado no UCI ML repository (https://archive.ics.uci.edu/ml/index.php)
 - o Desenvolver uma arquitetura MLP adaptada usando a técnica apresentada.
 - o Implementar e testar com a biblioteca Scikit-learn.
- Exercício 2: Desenvolvimento de convoluções à mão
 - Testar as convoluções simples desenvolvidas nesta aula no exemplo seguinte
 - Propor uma cadeia de convoluções para detectar este padrão

