Dynamique(s) de descente pour l'optimisation multi-objectif

Guillaume Garrigos

Istituto Italiano di Tecnologia & Massachusetts Institute of Technology Genova, Italie

> Journées SMAI-MODE 24 Mars, 2016

Introduction/Motivation Multi-objective problem

In engineering, decision sciences, it happens that various objective functions shall be minimized simultaneously: $f_1, ..., f_m : H \longrightarrow \mathbb{R}$

Introduction/Motivation Multi-objective problem

In engineering, decision sciences, it happens that various objective functions shall be minimized simultaneously: $f_1, ..., f_m : H \longrightarrow \mathbb{R}$

→ Needs appropriate tools: multi-objective optimization.

Let $F=(f_1,...,f_m): H \to \mathbb{R}^m$ locally Lipschitz, H Hilbert. Solve MIN $(f_1(x),...,f_m(x)): x \in C \subset H$ convex.

Let $F = (f_1, ..., f_m) : H \to \mathbb{R}^m$ locally Lipschitz, H Hilbert.

Solve MIN $(f_1(x),...,f_m(x))$: $x \in C \subset H$ convex.

We consider the usual order(s) on \mathbb{R}^m :

$$a \le b \Leftrightarrow a_i \le b_i$$
 for all $i = 1, ..., m$, $a < b \Leftrightarrow a_i < b_i$ for all $i = 1, ..., m$.

Let $F = (f_1, ..., f_m) : H \to \mathbb{R}^m$ locally Lipschitz, H Hilbert.

Solve MIN $(f_1(x),...,f_m(x))$: $x \in C \subset H$ convex.

We consider the usual order(s) on \mathbb{R}^m :

$$a \le b \Leftrightarrow a_i \le b_i$$
 for all $i = 1, ..., m$, $a < b \Leftrightarrow a_i < b_i$ for all $i = 1, ..., m$.

x is a Pareto point if $\nexists y \in C$ such that $F(y) \nleq F(x)$ x is a weak Pareto point if $\nexists y \in C$ such that F(y) < F(x)

Let
$$F = (f_1, ..., f_m) : H \to \mathbb{R}^m$$
 locally Lipschitz.

Solve MIN
$$f_1(x),...,f_m(x)$$
 : $x \in C \subset H$ convex.

How to solve it?

Let
$$F = (f_1, ..., f_m) : H \to \mathbb{R}^m$$
 locally Lipschitz.

Solve MIN
$$f_1(x),...,f_m(x)$$
 : $x \in C \subset H$ convex.

How to solve it?

ullet genetic algorithm \longrightarrow no theoretical guarantees.

Let
$$F = (f_1, ..., f_m) : H \to \mathbb{R}^m$$
 locally Lipschitz.

Solve MIN
$$f_1(x),...,f_m(x)$$
 : $x \in C \subset H$ convex.

How to solve it?

- ullet genetic algorithm \longrightarrow no theoretical guarantees.
- scalarization method:

$$\bigcup_{\theta \in \Delta^m} \underset{x \in H}{\mathsf{argmin}} \ f_{\theta}(x) \subset \{\mathsf{weak} \ \mathsf{Paretos}\} \subset \{\mathsf{Paretos}\},$$

where
$$\Delta^m$$
 is the simplex unit and $f_{\theta}(x) := \sum_{i=1}^m \theta_i f_i(x)$.

Let
$$F = (f_1, ..., f_m) : H \to \mathbb{R}^m$$
 locally Lipschitz.

Solve MIN
$$f_1(x), ..., f_m(x) : x \in C \subset H$$
 convex.

We are going to present a method which:

Let
$$F = (f_1, ..., f_m) : H \to \mathbb{R}^m$$
 locally Lipschitz.

Solve MIN
$$f_1(x), ..., f_m(x) : x \in C \subset H$$
 convex.

We are going to present a method which:

• generalizes the gradient descent dynamic $\dot{x}(t) + \nabla f(x(t)) = 0$,

Let
$$F = (f_1, ..., f_m) : H \to \mathbb{R}^m$$
 locally Lipschitz.

Solve MIN
$$f_1(x), ..., f_m(x) : x \in C \subset H$$
 convex.

We are going to present a method which:

- generalizes the gradient descent dynamic $\dot{x}(t) + \nabla f(x(t)) = 0$,
- is cooperative, i.e. all objective functions decrease simultaneously,

Let
$$F = (f_1, ..., f_m) : H \to \mathbb{R}^m$$
 locally Lipschitz.

Solve MIN
$$f_1(x),...,f_m(x)$$
 : $x \in C \subset H$ convex.

We are going to present a method which:

- generalizes the gradient descent dynamic $\dot{x}(t) + \nabla f(x(t)) = 0$,
- is cooperative, i.e. all objective functions decrease simultaneously,
- is independent of any choice of parameters.

Towards a descent dynamic for multi-objective optimization

Single objective optimization:

$$x_{n+1} = x_n + \lambda_n d_n$$

where d_n satisfies $df(x_n; d_n) < 0$ (e.g. $d_n = -\nabla f(x_n)$).

Multi-objective optimization:

Can we find d_n such that $df_i(x_n; d_n) < 0$ for all $i \in \{1, ..., m\}$?

Towards a descent dynamic for multi-objective optimization Historical review

Let $F = (f_1, ..., f_m) : H \longrightarrow \mathbb{R}^m$ locally Lipschitz, C = H Hilbert.

Definition

For all $x \in H$, $s(x) := -(\cos \{\partial^c f_i(x)\}_{i=1,...,m})^0$ is the (common) steepest descent direction at x.

Let $F = (f_1, ..., f_m) : H \longrightarrow \mathbb{R}^m$ locally Lipschitz, C = H Hilbert.

Definition

For all $x \in H$, $s(x) := -(\cos \{\partial^c f_i(x)\}_{i=1,...,m})^0$ is the (common) steepest descent direction at x.

Remarks in the smooth case

• If m=1 then $s(x)=-\nabla f_1(x)$.

Let $F = (f_1, ..., f_m) : H \longrightarrow \mathbb{R}^m$ locally Lipschitz, C = H Hilbert.

Definition

For all $x \in H$, $s(x) := -(\cos \{\partial^c f_i(x)\}_{i=1,...,m})^0$ is the (common) steepest descent direction at x.

Remarks in the smooth case

- If m = 1 then $s(x) = -\nabla f_1(x)$.
- At each x, s(x) selects a convex combination:

$$s(x) = -\sum_{i=1}^m \theta_i(x) \nabla f_i(x) = -\nabla f_{\theta(x)}(x)$$
 where $f_{\theta(x)} = \sum_{i=1}^m \theta_i(x) f_i$.

Let $F = (f_1, ..., f_m) : H \longrightarrow \mathbb{R}^m$ locally Lipschitz, C = H Hilbert.

Definition

For all $x \in H$, $s(x) := -(\cos \{\partial^c f_i(x)\}_{i=1,...,m})^0$ is the (common) steepest descent direction at x.

Remarks in the smooth case

- If m = 1 then $s(x) = -\nabla f_1(x)$.
- At each x, s(x) selects a convex combination:

$$s(x) = -\sum_{i=1}^{m} \theta_i(x) \nabla f_i(x) = -\nabla f_{\theta(x)}(x) \text{ where } f_{\theta(x)} = \sum_{i=1}^{m} \theta_i(x) f_i.$$

• s(x) is the steepest descent:

$$\overline{\frac{s(x)}{\|s(x)\|}} = \operatorname*{argmin}_{d \in \mathbb{B}_H} \left\{ \max_{i=1,...,m} \left\langle \nabla f_i(x), d \right\rangle
ight\}.$$

Algorithm:

$$x_{n+1} = x_n + \lambda_n s(x_n).$$

Studied in the 2000's by Svaiter, Fliege, lusem, ...

Continuous dynamic:

(SD)
$$\dot{x}(t) = s(x(t)),$$

i.e. (SD) $\dot{x}(t) + (\cos{\{\partial^c f_i(x(t))\}_i})^0 = 0$

(SD)
$$\dot{x}(t) = s(x(t))$$
 with $f_1(x) = ||x||^2$ and $f_2(x) = x_1$.

(SD)
$$\dot{x}(t) = s(x(t))$$
 with $f_1(x) = ||x||^2$ and $f_2(x) = x_1$.

(SD)
$$\dot{x}(t) = s(x(t))$$
 with $f_1(x) = ||x||^2$ and $f_2(x) = x_1$.

(SD)
$$\dot{x}(t) = s(x(t))$$
 with $f_1(x) = ||x||^2$ and $f_2(x) = x_1$.

(SD)
$$\dot{x}(t) = s(x(t))$$
 with $f_1(x) = x_1^2$ and $f_2(x) = x_2^2$.

The (multi-objective) Steepest Descent dynamic Main results (Attouch, G., Goudou, 2014)

A cooperative dynamic

Let $x : \mathbb{R}_+ \longrightarrow H$ be a solution of (SD) $\dot{x}(t) = s(x(t))$. For all i = 1, ..., m, the function $t \mapsto f_i(x(\cdot))$ is decreasing.

The (multi-objective) Steepest Descent dynamic Main results (Attouch, G., Goudou, 2014)

A cooperative dynamic

Let $x : \mathbb{R}_+ \longrightarrow H$ be a solution of (SD) $\dot{x}(t) = s(x(t))$. For all i = 1, ..., m, the function $t \mapsto f_i(x(\cdot))$ is decreasing.

Convergence in the convex case

Assume that the objective functions are convex. Then any bounded trajectory weakly converges to a weak Pareto point.

The (multi-objective) Steepest Descent dynamic Main results (Attouch, G., Goudou, 2014)

A cooperative dynamic

Let $x : \mathbb{R}_+ \longrightarrow H$ be a solution of (SD) $\dot{x}(t) = s(x(t))$. For all i = 1, ..., m, the function $t \mapsto f_i(x(\cdot))$ is decreasing.

Convergence in the convex case

Assume that the objective functions are convex. Then any bounded trajectory weakly converges to a weak Pareto point.

Existence in the convex case

Suppose that H is finite dimensional. Then, for any initial data, there exists a global solution to (SD).

The (multi-objective) Steepest Descent dynamic Going further

• In case of convex constraint $C \subset H$:

(SD)
$$\dot{x}(t) + (N_C(x(t)) + \cos \{\partial^C f_i(x(t))\}_i)^0 = 0.$$

How to discretize it properly?

The (multi-objective) Steepest Descent dynamic Going further

• In case of convex constraint $C \subset H$:

(SD)
$$\dot{x}(t) + (N_C(x(t)) + \cos \{\partial^C f_i(x(t))\}_i)^0 = 0.$$

How to discretize it properly?

• Uniqueness? Yes, if $\{\nabla f_i(x(\cdot))\}_{i=1,\dots,m}$ are affinely independents.

The (multi-objective) Steepest Descent dynamic Going further

• In case of convex constraint $C \subset H$:

(SD)
$$\dot{x}(t) + (N_C(x(t)) + \cos \{\partial^C f_i(x(t))\}_i)^0 = 0.$$

How to discretize it properly?

- Uniqueness? Yes, if $\{\nabla f_i(x(\cdot))\}_{i=1,\dots,m}$ are affinely independents.
- Convergence to Pareto points? Guaranteed by endowing \mathbb{R}^m with a different order (but some of the Paretos might be lost in the operation).

Numerical results

Recovering the Pareto front

$$f_1(x,y) = x + y$$

 $f_2(x,y) = x^2 + y^2 + \frac{1}{x} + 3e^{-100(x-0.3)^2} + 3e^{-100(x-0.6)^2}$
 $(x,y) \in C = [0.1,1]^2$

Plot of F(C), $F = (f_1, f_2) : C \longrightarrow \mathbb{R}^2$.

Recovering the Pareto front

$$f_1(x,y) = x + y$$

 $f_2(x,y) = x^2 + y^2 + \frac{1}{x} + 3e^{-100(x-0.3)^2} + 3e^{-100(x-0.6)^2}$
 $(x,y) \in C = [0.1,1]^2$

Plot of F(C), $F=(f_1,f_2):C\longrightarrow \mathbb{R}^2$ and its pareto front.

Recovering the Pareto front

$$f_1(x,y) = x + y$$

 $f_2(x,y) = x^2 + y^2 + \frac{1}{x} + 3e^{-100(x-0.3)^2} + 3e^{-100(x-0.6)^2}$
 $(x,y) \in C = [0.1,1]^2$

Gradient method (Right) vs Scalar method (Left). 100 samples.

Numerical results Pareto selection with Tikhonov penalization

Can we select, among the weak Paretos (= the zeros of $x \mapsto s(x)$) the closest to a desired state?

Can we select, among the weak Paretos (= the zeros of $x \mapsto s(x)$) the closest to a desired state?

 \rightarrow Tikhonov regularization

$$\dot{x}(t) - s(x(t)) + \varepsilon(x(t) - x_d) = 0, \varepsilon > 0.$$

Can we select, among the weak Paretos (= the zeros of $x \mapsto s(x)$) the closest to a desired state?

→ Diagonal Tikhonov regularization

$$\dot{x}(t) - s(x(t)) + \varepsilon(t)(x(t) - x_d) = 0,$$

$$\varepsilon(t) \downarrow 0, \int_0^\infty \varepsilon(t) dt = +\infty.$$

See the works of Attouch, Cabot, Czarnecki, Peypouquet (...) in the monotone case.

What about inertial dynamics?

$$\dot{x}(t) + \nabla f(x(t)) = 0 \qquad \qquad \ddot{x}(t) + \gamma \dot{x}(t) + \nabla f(x(t)) = 0$$

$$x_{n+1} = x_n - \lambda \nabla f(x_n) \qquad \qquad x_{n+1} = y_n - \lambda \nabla f(y_n)$$

$$y_{n+1} = x_{n+1} + (1 - \gamma)(x_{n+1} - x_n)$$

What about inertial dynamics?

$$\dot{x}(t) + \nabla f(x(t)) = 0 \qquad \qquad \ddot{x}(t) + \gamma \dot{x}(t) + \nabla f(x(t)) = 0$$

$$x_{n+1} = x_n - \lambda \nabla f(x_n) \qquad \qquad x_{n+1} = y_n - \lambda \nabla f(y_n)$$

$$y_{n+1} = x_{n+1} + (1 - \gamma)(x_{n+1} - x_n)$$

What about inertial dynamics?

$$\dot{x}(t) + \nabla f(x(t)) = 0$$
 $\ddot{x}(t) + \gamma \dot{x}(t) + \nabla f(x(t)) = 0$

Inertia promotes

- Faster trajectories (varying γ),
- Exploratory properties.

Convergence rates: empirical observation

$$f_1(x) = \left(\sum_{i=1}^{10} x_i^2 - 10\cos(2\pi x_i) + 10\right)^{\frac{1}{4}}, \ f_2(x) = \left(\sum_{i=1}^{10} (x_i - 1.5)^2 - 10\cos(2\pi (x_i - 1.5)) + 10\right)^{\frac{1}{4}}$$

Convergence rate of $||F(x^n) - F(x^\infty)||_\infty$: Steepest Descent vs Inertial Steepest Descent

Inertial (multi-objective) Steepest Descent

Let $f_1, ..., f_m$ be smooth, with *L*-Lipschitz gradient.

(ISD)
$$\ddot{x}(t) = -\gamma \dot{x}(t) + s(x(t)).$$

Inertial (multi-objective) Steepest Descent

Let $f_1, ..., f_m$ be smooth, with *L*-Lipschitz gradient.

(ISD)
$$\ddot{x}(t) = -\gamma \dot{x}(t) + s(x(t)).$$

Example: $f_1(x) = ||x||^2$ and $f_2(x) = x_1$.

Inertial (multi-objective) Steepest Descent Main results (Attouch, G., 2015)

Let $f_1, ..., f_m$ be smooth, with *L*-Lipschitz gradient.

(ISD)
$$m\ddot{x}(t) = -\gamma \dot{x}(t) + s(x(t))$$
.

Assume that $\gamma \geq L$.

Inertial (multi-objective) Steepest Descent Main results (Attouch, G., 2015)

Let $f_1, ..., f_m$ be smooth, with *L*-Lipschitz gradient.

(ISD)
$$m\ddot{x}(t) = -\gamma \dot{x}(t) + s(x(t))$$
.

Assume that $\gamma \geq L$.

Existence

Suppose that H is finite dimensional. Then, for any initial data, there exists a global solution to (ISD).

Inertial (multi-objective) Steepest Descent Main results (Attouch, G., 2015)

Let $f_1, ..., f_m$ be smooth, with *L*-Lipschitz gradient.

(ISD)
$$m\ddot{x}(t) = -\gamma \dot{x}(t) + s(x(t))$$
.

Assume that $\gamma \geq L$.

Existence

Suppose that H is finite dimensional. Then, for any initial data, there exists a global solution to (ISD).

Convergence in the convex case

Let $f_1, ..., f_m$ be convex. Then, any bounded trajectory weakly converges to a weak Pareto point.

Conclusion

The steepest descent provides a flexible tool once adapted to multi-objective optimization problems.

Conclusion

The steepest descent provides a flexible tool once adapted to multi-objective optimization problems.

Open questions:

• Understand the asymptotic behaviour of

$$\dot{x}(t) - s(x(t)) + \varepsilon(t)x(t) = 0$$

(the set of weak Paretos is non-convex).

Conclusion

The steepest descent provides a flexible tool once adapted to multi-objective optimization problems.

Open questions:

• Understand the asymptotic behaviour of

$$\dot{x}(t) - s(x(t)) + \varepsilon(t)x(t) = 0$$

(the set of weak Paretos is non-convex).

 Having convergence rates for first and second-order dynamics (the critical values are not unique). Thank you for your attention!