Intrusion Detection

Dr Christopher D. McDermott

Outline

- 1. Introduction
- 2. IDS Categorisation
- 3. Intrusion Data Sources
- 4. Techniques for implementation
- 5. Threat Intelligence
- 6. Trends, Insider Threats & Operational Technology
- 7. IDS Signatures
- 8. Performance Metrics
- 9. Datasets
- 10. IDS Evasion Techniques

Introduction

Intrusion:

- Any kind of unauthorised activity that causes damage to an information system
- Any attack that could pose a possible threat to the information confidentiality, integrity or availability

Goal:

 To identify malicious network traffic and computer usage that cannot be identified by a firewall

IDS Categorisation

Signature-based IDS (SIDS)

- Pattern matching techniques also known as 'Knowledge-based' or 'Misuse Detection'
- Signature matches a suspected intrusion with previously known intrusion
- Compare current set of activities against existing signature and raise an alarm if match found
- High accuracy for known attacks; Lower accuracy for zero day attacks
- Sophisticated SIDS can extract signature information from multiple packets; requires SIDS to recall content of earlier packets

IDS Categorisation

Anomaly-based IDS (AIDS)

- Normal model of behaviour is created using machine-learning, statistical-based or knowledgebased methods
- Any significant deviation between observed behaviour and the model is regarded as an anomaly (interpreted as an intrusion)
- Assumption is malicious behaviour differs from typical user behaviour

IDS Categorisation Comparison

\$16 60		Advantages	Disadvantages
Detection methods	SIDS	 Very effective in identifying intrusions with minimum false alarms (FA). Promptly identifies the intrusions. Superior for detecting the known attacks. Simple design 	 Needs to be updated frequently with a new signature. SIDS is designed to detect attacks for known signatures. When a previous intrusion has been altered slightly to a new variant, then the system would be unable to identify this new deviation of the similar attack. Unable to detect the zero-day attack. Not suitable for detecting multi-step attacks. Little understanding of the insight of the attacks
	AIDS	 Could be used to detect new attacks. Could be used to create intrusion signature 	 AIDS cannot handle encrypted packets, so the attack can stay undetected and can present a threat. High false positive alarms. Hard to build a normal profile for a very dynamic computer system. Unclassified alerts. Needs initial training.

IDS Categorisation (AIDS)

Method	Characteristics	Example
Statistics based	 Needs a large amount of knowledge of statistics •Simple but less accurate Real-time Easy to implement Hash function could be used for identification. 	Bhuyan, et al.
Pattern-based	◆Easy to implement◆Hash function could be used for identification.	Liao, et al. Riesen and Bunke
Rule-based	 •The computational cost of rule-based systems could be very high because rules need pattern matching. •It is very hard to estimate what actions are going to occur and when •Requires a large number of rules for determining all possible attacks. •Low false positive rate •High detection rate 	Hall, et al.
State-based	Probabilistic, self-trainingLow false positive rate.	Kenkre, et al.
Heuristic-based	It needs knowledge and experienceExperimental and evolutionary learning	Abbasi, et al. Butun, et al.

Techniques for Implementing AIDS

- Statistical: collect and examine data records in a set of items to build model of normal behaviour
- Knowledge-based: identify requested actions from existing data such a protocols
- Machine-learning: acquire complex patternmatching from training data

Intrusion Data Sources

Host-based IDS (HIDS)

- Inspect data that originates from the host system
- Audit sources such as: operating system, window server logs, firewalls logs, application system audits, or database logs
- Can deter insider attacks that do not involve network traffic

Network-based IDS (NIDS)

- Monitors network traffic extracted through packet capture,
 NetFlow
- Limited ability to inspect ALL data (sampling)
- Deployed at a number of positions

Threat Intelligence

Strategic Intelligence

High-level information used by executives and decision-makers.

Tactical Intelligence

 Focuses on specific Indicators of Compromise (IoCs) like IP addresses, malware hashes, and phishing URLs.

Operational Intelligence

Provides deeper insights into threat actor behaviour and attack techniques.

Technical Intelligence

 Detailed information about malware, vulnerabilities, exploits, and attack techniques.

Threat Intelligence Feeds

Open-Source

AlienVault OTX, AbuseIPDB, MalwareBazaar

Commercial

FireEye, Recorded Future, IBM X-Force

Government & Industry

CISA, FS-ISAC, MITRE CTI

Integrating Threat Intelligence

Automated Integration

- STIX/TAXII protocols to share threat intelligence with IDS.
- IDS can ingest real-time loCs from threat intelligence platforms.

Manual Rule Updates

Security teams manually update IDS rules based on TI reports.

SIEM Integration

 TI-enhanced IDS alerts can be sent to SIEM & SOAR platforms for automated response.

Insider Threats

Insider Threats

- Malicious Insiders
- Accidental Insiders

Detection Techniques

- User behaviour Analytics (UBA)
- Deception-based Detection

Operational Technology

IDS in SCADA and ICS Environments

Critical infrastructure (power grids, oil pipelines)

IT vs OT Security needs

Aspect	IT Security	OT Security
Primary Focus	Confidentiality & Integrity	Availability & safety
System Updates	Frequent patches & upgrades	Legacy systems, rarely updated
Attack Consequences	Data breaches, downtime	Physical damage, safety risks

Challenges in OT IDS

Real-time detection, legacy systems, availability

Trends in IDS

Al & Deep Learning-Basded IDS

 Uses advanced Al models (CNNs, LSTMs, transformers) to detect complex intrusions.

Federated Learning

• Enables multiple entities to train models without sharing raw data, improving privacy.

Explainable AI (XAI

Ensures Al-driven IDS models provide clear explanations for alerts.

Zero Trust

Integrating IDS into Zero Trust architecture to continuously validate threats.

IDS Signatures

Snort IDS rules

action protocol sourceip sourceport -> destinationip destinationport (options)

Types

• Alert, block, drop, file identification, file rule, logging, pass, service

IDS Signatures

Snort IDS rules

```
alert icmp any any > $HOME_NET any (msg:"ICMP External Ping"; sid:1; rev:1;)

alert icmp any any > $HOME_NET any (msg:"ICMP External Ping"; sid:1; rev:1;)

alert tcp any any -> 192.168.1.0/24 80 (msg:"HTTP Traffic Detected"; flow:to_server,established; sid:100001;)

alert tcp any any -> 192.168.1.0/24 80 (msg:"HTTP Traffic Detected"; flow:to_server,established; sid:100001;)
```

Chat GPT is your friend!

IDS Signatures

Best Practice according to Splunk

- Overly broad rules and inefficient writing
- Syntax and documentation errors
- Improper flow direction and content matching issues
- Neglecting rule order and protocol specifics
- Inadequate testing and over reliance on default rules
- Incomplete validation and analysis

Performance Metrics

Confusion Matrix

Actual Class	Predicted	edicted Class		
	Class	Normal	Attack	
	Normal	True negative (TN)	False Positive (FP)	
	Attack	False Negative (FN)	True positive (TP)	

$$TPR = \frac{TP}{TP + FN}$$

$$FNR = \frac{FN}{FN + TP}$$

$$\mathsf{FPR} = \frac{FP}{FP + TN}$$

$$\mathsf{ACCURACY} = \frac{TP + TN}{TP + TN + FP + FN}$$

Receiver Operating Characteristics (ROC)

Performance Metrics

$$TPR = \frac{TP}{TP + FN}$$
 anomalies that are successfully detected

$$FNR = \frac{FN}{FN+TP}$$
 normal activities that are incorrectly classified as intrusive

$$FPR = \frac{FP}{FP+TN}$$
 anomalies that are missed and classified as normal

$$\mathsf{ACCURACY} = \frac{TP + TN}{TP + TN + FP + FN}$$

Precision (P) =
$$\frac{TP}{TP+FP} \in [0,1]$$
 Recall (R) = $\frac{TP}{TP+FN} \in [0,1]$

F Measure (F₁) = 2 *
$$\frac{P * R}{P + R} \in [0,1]$$

Datasets

- DARPA / KDD Cup99
- CAIDA
- NSL-KDD
- ISCX 2012
- ADFA-LD & ADFA-WD
- CICIDS 2017
- Mirai-RGU (My dataset)

IDS Evasion Techniques

Fragmentation

Flooding

Obfuscation

Encryption

Sources

Bhuyan MH, Bhattacharyya DK, Kalita JK (2014) Network anomaly detection: methods, systems and tools. IEEE Communications Surveys & Tutorials 16(1):303–336

K. Riesen and H. Bunke, "IAM graph database repository for graph based pattern recognition and machine learning," in Structural, syntactic, and statistical pattern recognition: joint IAPR international workshop, SSPR & SPR 2008, Orlando, USA, December 4–6, 2008. Proceedings, N. da Vitoria Lobo et al., Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 287–297

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. ACM SIGKDD explorations newsletter 11(1):10–18

Kenkre PS, Pai A, Colaco L (2015b) Real Time Intrusion Detection and Prevention System. Springer International Publishing, Cham, pp 405–411

Bhuyan MH, Bhattacharyya DK, Kalita JK (2014) Network anomaly detection: methods, systems and tools. IEEE Communications Surveys & Tutorials 16(1):303–336

A. Abbasi, J. Wetzels, W. Bokslag, E. Zambon, and S. Etalle, "On emulation-based network intrusion detection systems," in Research in attacks, intrusions and defenses: 17th international symposium, RAID 2014, Gothenburg, Sweden, September 17–19, 2014. Proceedings, A. Stavrou, H. Bos, and G. Portokalidis, Eds. Cham: Springer International Publishing, 2014, pp. 384–404

Snort rules 101: Examples & use cases for Snort Network Defense (no date) Splunk. Available at: https://www.splunk.com/en_us/blog/learn/snort-rules.html (Accessed: 07 February 2025).