Cel

Zadana jest macierz:

$$M = \begin{pmatrix} 9 & 2 & 0 & 0 \\ 2 & 4 & 1 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

- Stosując metodę potęgową znajdź największą co do modułu wartość własną macierzy M oraz odpowiadający jej wektor własny. Na wykresie w skali logarytmicznej zilustruj zbieżność metody w funkcji ilości wykonanych iteracji.
- Stosując algorytm QR bez przesunięć, znajdź wszystkie wartości własne macierzy M. Sprawdź, czy macierze A_i upodabniają się do macierzy trójkątnej górnej w kolejnych iteracjach. Przeanalizuj i przedstaw na odpowiednim wykresie, jak elementy diagonalne macierzy A_i ewoluują w funkcji indeksu i.
- Zastanów się, czy zbieżność algorytmu z pprzednich pkt. jest zadowalająca. Jak można usprawnić te algorytmy? Wyniki sprawdź używając wybranego pakietu algebry komputerowej lub biblioteki numerycznej.

Wstęp teoretyczny

Metoda potęgowa

Niech $A \in R^{N \times N}$ będzie macierzą symetryczną, $A = A^T$. Wiadomo, ze macierz taka jest diagonalizowalna, ma rzeczywiste wartości własne, a jej unormowane wektory własne tworzą bazę ortonormalną w R^N . Niech bazą tą będzie $ei_{i=1}^N$, przy czym $Ae_i = \lambda_i e_i$. Przyjmijmy dodatkowo, ze wartości własne macierzy A są dodatnie i uporządkowane $\lambda_1 > \lambda_2 > \dots > \lambda_N > 0$.

Weźmy wektor $y \in \mathbb{R}^N$. Posiada on rozkład

$$y = \sum_{i=1}^{N} \beta_i e_i$$

Obliczamy

$$Ay = A \sum_{i=1}^{N} \beta_{i} e_{i} = \sum_{i=1}^{N} \beta_{i} A e_{i} = \sum_{i=1}^{N} \beta_{i} \lambda_{i} e_{i}$$
$$A^{2}y = A^{2} \sum_{i=1}^{N} \beta_{i} e_{i} = \sum_{i=1}^{N} \beta_{i} A^{2} e_{i} = \sum_{i=1}^{N} \beta_{i} \lambda_{i}^{2} e_{i}$$

- -

Zuzanna Bożek

$$A^{(k)}y = A^{(k)} \sum_{i=1}^{N} \beta_i e_i = \sum_{i=1}^{N} \beta_i A^{(k)} e_i = \sum_{i=1}^{N} \beta_i \lambda_i^{(k)} e_i$$

Widzimy, ze dla dostatecznie dużych k wyraz zawierający λ_1^k będzie dominował w sumie po prawej stronie, pozostałe współczynniki będą zaniedbywalnie małe, a zatem prawa strona dla dostatecznie dużych k będzie dązyć do wektora proporcjonalnego do e_1 , czyli do wektora własnego do największej wartości własnej.

A zatem iteracja ($||y_1|| = 1$, poza tym dowolny):

$$Ay_k = z_k$$

$$y_{k+1} = \frac{z_k}{||z_k||}$$

Gdy iteracja zbiegnie się do punktu stałego (kolejne wektory $y_k \approx e_1$ przestaną się zauwazalnie zmieniać), wartość własną obliczamy jako $\lambda_1 = ||z_k||$.

Algorytm QR

Niech macierz A posiada faktoryzację QR, A=QR. Rozważmy iloczyn tych czynników wziętych w odwrotnej kolejności:

$$A' = RQ = Q^T AQ$$
.

Widzimy, że wymnożenie czynników faktoryzacji QR w odwróconej kolejności stanowi ortogonalną transformację podobieństwa macierzy A.

Iteracja algorytmu QR

Procedurę tę można iterować, zaczynając od $A_1 = A$:

$$A_1 = Q_1 R_1,$$

 $A_2 = R_1 Q_1 = Q_2 R_2,$

$$A_3 = R_2 Q_2 = Q_3 R_3,$$

:

$$A_n = R_{n-1}Q_{n-1} = Q_n R_n$$

Każda prawa strona $Q_k R_k$ reprezentuje faktoryzację QR dokonywaną w k-tym kroku iteracji. Macierz A_n jest ortogonalnie podobna do macierzy A.

Właściwości algorytmu QR

- 1. Algorytm zachowuje:
 - Symetrie macierzy,

Zuzanna Bożek

- o Postać trójdiagonalną symetryczną,
- o Postać Hessenberga.
- 2. Zachodzi następujące twierdzenie:

Twierdzenie: Jeżeli macierz A jest diagonalizowalna i jej wszystkie wartości własne są rzeczywiste oraz parami różne od siebie, to iteracja:

$$A_k = R_{k-1}Q_{k-1}$$

jest zbieżna do macierzy trójkątnej górnej, w której na głównej przekątnej znajdują się kolejne wartości własne macierzy A.

Znalezienie największej wartości własnej macierzy M metodą potęgową

Macierz M jest symetryczna, a jej elementy należą do zbioru liczb rzeczywistych, możemy więc zastosować metodę potęgową.

Program stosujący tą metodę dostępny jest w pliku power.py. Z jego pomocą obliczono wektor własny e_1 i odpowiadającą mu warość własną λ_1 macierzy M.

$$e_1 = \begin{pmatrix} 0.93984758 \\ 0.33766292 \\ 0.05124654 \\ 0.0066394 \end{pmatrix}$$

$$||e_1|| = 1$$

$$\lambda_1 = 9.718548254119627$$

Sprawdzono również zbieżność metody w zależności od liczby wykonanych iteracji.

Metoda Potęgowa uzyskała największą wartość własną w prawie 30 iteracjach dla macierzy 4x4, a była to wartość własna najbardziej różniąca się wielkością od pozostałych. Sugeruje to, że zbieżność metody do obliczania kolejnych wartości własnych będzie jeszcze wolniejsza.

Znalezienie wartości własnych algorytmem QR

Program stosujący tą metodę dostępny jest w pliku qr.py. Z jego pomocą obliczono wartości własne λ_i macierzy M.

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{pmatrix} = \begin{pmatrix} 9.71854825 \\ 4.30170491 \\ 2.74019411 \\ 1.23955273 \end{pmatrix}$$

Wyznaczona w ten sposób pierwsza wartość własna jest zgodna z tą wyznaczoną w poprzedniej metodzie.

Na wykresie zobrazowano jak zmieniały się wszystkie wartości własne w kolejnych iteracjach:

Ponieważ wartości własne na diagonali macierzy M są już bliskie rzeczywistym wartościom w trakcie wczesnych iteracji, to dalsza zbieżność jest bardzo powolna.

Przedstawiono również zmiany elementów poddiagonalnych podczas wykonywania iteracji.

Widać wyraźnie że wraz z kolejnymi iteracjami zbiegały one do 0.

Macierz A_{50} miała postać:

Zuzanna Bożek
$$A = \begin{pmatrix} 9.71854825 & 1.17334237 \cdot 10^{-16} & -3.23120854 \cdot 10^{-17} & 5.89307528 \cdot 10^{-17} \\ 2.95900848 \cdot 10^{-18} & 4.30170491 & 2.73053629 \cdot 10^{-10} & -2.15717460 \cdot 10^{-16} \\ 0.0 & 2.73053128 \cdot 10^{-10} & 2.74019411 & -1.51992527 \cdot 10^{-16} \\ 0.0 & 0.0 & 6.59273312 \cdot 10^{-18} & 1.23955273 \end{pmatrix}$$

zatem elementy ponad 1 pasmem nad diagoinalą stały się niezerowe (wciąż pozostały jdnak znikomo małe w porównaniu z elementami diagonalnymi), z kolei elementy leżące na pasmech bezpośrednio ponad i pod diagonalą znacznie zmalały. Poddiagonalne elementy równe 0 pozostały zerowe.

Zbieżność algorytmu QR i metody potęgowej

1. Zbieżność metody potęgowej

Metoda potęgowa jest stosunkowo szybka, gdy chodzi o znajdowanie największej wartości własnej, szczególnie gdy ta wartość jest wyraźnie dominująca w porównaniu do innych. Jednak jej zbieżność jest wolniejsza, gdy różnice między wartościami własnymi są małe. Dla macierzy, w której wartości własne są bliskie siebie, metoda potęgowa może wymagać wielu iteracji, aby osiągnąć wymaganą dokładność. W tym przypadku, jeżeli macierz ma wiele wartości własnych zbliżonych do siebie, zbieżność metody może być znacznie wolniejsza.

Możliwości poprawy:

Metoda potęgowa z przesunięciem (shifted power method): Zastosowanie przesunięcia, czyli zmiany macierzy A na $A-\sigma I$ (gdzie σ to przesunięcie), pozwala przyspieszyć zbieżność, szczególnie jeśli znamy przybliżoną wartość własną.

2. Zbieżność algorytmu QR Algorytm QR bez przesunięć jest bardzo efektywny w przypadku macierzy symetrycznych, szczególnie jeśli nie ma dużych różnic w wartościach własnych. Zbieżność jest zazwyczaj szybka, ale w przypadku macierzy o licznych wartościach własnych bliskich siebie, wymaga on wielu iteracji. W praktyce, mimo iż algorytm jest teoretycznie zbieżny, czasami może wymagać wielu iteracji, by otrzymać dokładne wartości własne.

Możliwości poprawy:

QR z przesunięciem: Zastosowanie przesunięcia w algorytmie QR może znacznie przyspieszyć zbieżność. W takim przypadku faktoryzacja QR jest wykonywana na macierzy $A_k - \sigma I = Q_k R_k$. Następie dodaje się przesunięcie do kolejnego kroku iteracji $A_{k+1} = R_k Q_k + \sigma I$. Prowadzi do szybszego zbiegania macierzy do postaci trójkątnej górnej. Konsekwencją wyboru algorytmu z przesunięciami wartości własnych jest brak uporządkowania wartości własnych na diagonali.

Podsumowanie

W zadaniu zastosowano dwie metody obliczania wartości własnych macierzy: metodę potęgową oraz algorytm QR. Macierz M jest symetryczna i rzeczywista, co pozwoliło na użycie tych algorytmów.

Metoda potęgowa:

Zuzanna Bożek 2024-11-25

Użyta do obliczenia największej wartości własnej. Zbieżność metody była stosunkowo szybka, ale dla macierzy z wartościami własnymi zbliżonymi do siebie może być wolniejsza. Największa wartość własna wyniosła: $\lambda_1 \approx 9.71854825$, a odpowiadający jej wektor własny to:

$$e_1 = \begin{pmatrix} 0.93984758 \\ 0.33766292 \\ 0.05124654 \\ 0.0066394 \end{pmatrix}$$

- Algorytm QR bez przesunięć:
- Znaleziono wszystkie wartości własne macierzy, które wyniosły: $\lambda_1=9.71854825$, $\lambda_2=4.30170491$, $\lambda_3=2.74019411$, $\lambda_4=1.23955273$. Zbieżność tego algorytmu była powolna, ale zapewniła wszystkie wartości własne. Wartości na diagonali zaczęły się stabilizować już w pierwszych iteracjach, a elementy poddiagonalne zbiegały do zera.

Wniosek:

Zarówno metoda potęgowa, jak i algorytm QR są skuteczne, ale ich zbieżność można poprawić przez zastosowanie przesunięć, szczególnie w przypadku macierzy o wielu wartościach własnych bliskich siebie.