The Impact of High-Density Lipoproteins and Sex on the Frequency of Blood Monocytes in Older Adults.

Gavrila Ang

Background

- Foam cells are a type of macrophage that localize to fatty deposits on blood vessel walls, where they ingest low-density lipoproteins and become laden with lipids, giving them a foamy appearance. These can form a plaque that can lead to atherosclerosis and trigger heart attacks and stroke.
- HDL (high-density lipoprotein), or "good" cholesterol, absorbs cholesterol and carries it back to the liver. The liver then flushes it from the body.

Cells of the Innate and Adaptive Immune Systems

Background

- An *in vitro* study by Murphy et al. (2008) showed that high-density lipoprotein (HDL) caused a dose-dependent reduction in the activation of human monocytes.
- There are conflicting studies on the sexualdimorphism of the immune system in older adults.
- A study by Marquez et al. (2020) concluded that older men had a higher innate and pro-inflammatory activity than older women. Conversely, So et al. (2021) found that innate immune functions in older women were more activated than in men.

Hypotheses

H0: High-density lipoproteins have no association with the blood monocyte frequencies of older adults.

H1: High-density lipoproteins are negatively associated with the blood monocyte frequencies of older adults.

H0: There is no difference between the blood monocyte frequencies of older men and older women.

H1: There is a difference between the blood monocyte frequencies of older men and older women.

Experimental Design

- Older adults (between ages 65-85) were recruited from the San Diego area to participate in a clinical trial (2015-2021) involving 12 weeks of instructor-led Tai-Chi practice.
- The goal of the trial was to investigate the effects of Tai-Chi on the blood pressure and immune function of older adults.
- From a total of 191 participants that were enrolled, 159 participants were able to provide blood samples at the pre-intervention visit.
- These blood samples were sent to LabCorp for complete blood count tests and lipid panel tests.

Data Wrangling

hapi <- hapichi %>%
filter(visit == 1) %>% # filter for baseline visit
 select(c("subject_id", "gender", "hdl_cholesterol",
"monocytes")) %>% #select variables of interest
 na.omit(TRUE) #omit participants that do not have
complete clinical measurements

hapi['gender'][hapi['gender'] == '1'] <- 'Male'
hapi['gender'][hapi['gender'] == '2'] <- 'Female'</pre>

hapi\$gender <- as.factor(hapi\$gender)</pre>

hapi <- rename(hapi, Gender = gender)</pre>

subject_id [‡]	Gender [‡]	hdl_cholesterol	monocytes [‡]
1	Female	74	14
2	Female	70	13
3	Female	48	11
5	Female	88	6
7	Female	44	7
10	Male	60	6
11	Female	78	8
13	Female	103	8

Initial Graph

```
ggplot(data = hapi, aes(y = monocytes, x =
hdl_cholesterol, group = Gender, colour =
Gender)) +

geom_point() +

geom_smooth(method = "Im", alpha = .15,
aes(fill = Gender)) +

labs(title = "HDL Cholesterol vs Monocytes in
Blood", x = "HDL Cholesterol (mg/dL)", y =
"Monocyte Frequency (% in peripheral blood)") +
theme_bw()
```

Data Inspection

```
hapi %>% group_by(Gender) %>%
summarise('Participant Count' = length(Gender))
#unbalanced data
```

```
shapiro.test(hapi$monocytes) #non-normal
ggplot(hapi, aes(monocytes)) +
   ggtitle("Histogram of Monocyte Frequency") +
   geom_histogram(binwidth = 1) +
   xlab("Monocyte Frequency (% in peripheral
blood)") #right-skewed response data
```


Data Inspection (cont.)

hapi.mod <- glm(monocytes ~
hdl_cholesterol + Gender, data = hapi,
family = 'poisson')</pre>

AER::dispersiontest(hapi.mod)

check dispersion: ~0.7057, data is

underdispersed

autoplot(hapi.mod, colour = 'Gender')

Model Evaluation and Results

The sample sizes are unbalanced.

The response data is underdispersed and heteroscedastic.

There is no interaction effect between the predictor variables.

Therefore, analysed the model using a Type II ANOVA.

Visual Model RCode

```
# Generate new explanatory variable values
new.x <- expand.grid(</pre>
 hdl cholesterol = seg(from = 23, to = 135, length.out =
500), # range(hapi$hdl cholesterol)
 Gender = levels(hapi$Gender))
# Generate new response variable values
new.y <- predict(hapi.mod, newdata = new.x, se.fit =</pre>
TRUE)
new.y <- data.frame(new.y)</pre>
# Create a new datafame from these generated values
addThese <- data.frame(new.x, new.y)</pre>
addThese <- mutate(addThese, monocytes = exp(fit), lwr
= \exp(\text{fit} - 1.96 * \text{se.fit}), \text{ upr} = \exp(\text{fit} + 1.96 * \text{se.fit}))
```

```
# Add trend lines to the linear models using the predicted
values with confidence intervals
midterm_1_plot <- ggplot(hapi, aes(x = hdl_cholesterol, y
= monocytes, colour = Gender)) +
 geom point(size = 2.0, aes(colour = Gender)) +
 geom smooth(data = addThese, aes(ymin = lwr, ymax =
upr, colour = Gender, fill = Gender), stat = 'identity') +
 scale x continuous(n.breaks = 10) +
 scale_y_continuous(n.breaks = 10) +
 labs(title = "HDL Cholesterol vs Monocytes in Blood", x =
"HDL Cholesterol (mg/dL)", y = "Monocyte Frequency (%
in peripheral blood)") +
 theme_bw()
```


Conclusion

- I failed to reject both null hypotheses.
- High-density lipoproteins have no effect on the blood monocyte frequencies of older adults.
- There is no difference between the blood monocyte frequencies of older men and older women.
- Consider re-analysis using a Conway-Maxwell distribution to better model the underdispersed data
- A larger clinical sample size would also be ideal to increase statistical power and confidently derive any concrete conclusions of sexual dimorphism.

References

https://pubmed.ncbi.nlm.nih.gov/18617650/

https://www.nature.com/articles/s41467-020-14396-9

https://bsd.biomedcentral.com/articles/10.1186/s13293-021-00387-y

Fox J, Weisberg S (2019). An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks

CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

RStudio Team (2021). RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.