Satisfacibilidad, validez y consecuencia

Sesión 11

Edgar Andrade, PhD

Última revisión: Enero de 2020

Matemáticas Aplicadas y Ciencias de la Computación

Presentación

En esta sesión estudiaremos:

- 1. Clasificación de fórmulas de acuerdo a sus interpretaciones
- 2. Satisfacibilidad de conjuntos de fórmulas
- 3. Consecuencia lógica

Contenido

1 Clasificación de fórmulas

2 Satisfacibilidad de un conjunto de fórmulas

3 Implicación lógica

Satisfacibilidad e insatisfacibilidad de fórmulas

Sea A una fórmula.

A es satisfacible sii existe una interpretación I tal que $V_I(A)=1.$

Satisfacibilidad e insatisfacibilidad de fórmulas

Sea A una fórmula.

A es satisfacible sii existe una interpretación I tal que $V_I(A)=1$.

A es insatisfacible sii para toda interpretación I, $V_I(A) = 0$.

Proposición: La fórmula $p \wedge q$ es satisfacible.

Sea
$$I$$
 tal que $I(p)=1$ y $I(q)=1$. Luego $V_I(p\wedge q)=1$.

Proposición: La fórmula $p \land \neg p$ es insatisfacible.

Proposición: La fórmula $p \land \neg p$ es insatisfacible.

Proposición: La fórmula $p \land \neg p$ es insatisfacible.

Caso 1:
$$I(p) = 0$$
. Luego $V_I(p \land \neg p) = 0$.

Proposición: La fórmula $p \land \neg p$ es insatisfacible.

Caso 1:
$$I(p) = 0$$
. Luego $V_I(p \land \neg p) = 0$.

Caso 2:
$$I(p) = 1$$
. Luego $V_I(\neg p) = 0$ y entonces $V_I(p \land \neg p) = 0$.

Proposición: La fórmula $p \land \neg p$ es insatisfacible.

Sea I una interpretación arbitraria. Tenemos dos casos:

Caso 1:
$$I(p) = 0$$
. Luego $V_I(p \land \neg p) = 0$.

Caso 2:
$$I(p) = 1$$
. Luego $V_I(\neg p) = 0$ y entonces $V_I(p \land \neg p) = 0$.

En cualquier caso, $V_I(p \land \neg p) = 0$. Como I es arbitraria, $p \land \neg p$ es insatisfacible.

6

Validez y falseabilidad de fórmulas

Sea A una fórmula.

A es válida sii para toda interpretación I, $V_I(A) = 1$.

Validez y falseabilidad de fórmulas

Sea A una fórmula.

A es válida sii para toda interpretación I, $V_I(A) = 1$.

A es falseable sii existe una interpretación I tal que $V_I(A) = 0$.

7

Proposición: La fórmula $p \lor \neg p$ es válida.

Proposición: La fórmula $p \lor \neg p$ es válida.

Proposición: La fórmula $p \lor \neg p$ es válida.

Caso 1:
$$I(p) = 1$$
. Luego $V_I(p \vee \neg p) = 1$.

Proposición: La fórmula $p \lor \neg p$ es válida.

Caso 1:
$$I(p) = 1$$
. Luego $V_I(p \vee \neg p) = 1$.

Caso 2:
$$I(p) = 0$$
. Luego $V_I(\neg p) = 1$ y entonces $V_I(p \lor \neg p) = 1$.

Proposición: La fórmula $p \lor \neg p$ es válida.

Sea I una interpretación arbitraria. Tenemos dos casos:

Caso 1:
$$I(p) = 1$$
. Luego $V_I(p \lor \neg p) = 1$.

Caso 2:
$$I(p) = 0$$
. Luego $V_I(\neg p) = 1$ y entonces $V_I(p \lor \neg p) = 1$.

En cualquier caso, $V_I(p \vee \neg p) = 1$. Como I es arbitraria, $p \vee \neg p$ es válida.

Proposición: La fórmula $p \wedge q$ es falseable.

Proposición: La fórmula $p \wedge q$ es falseable.

Sea I tal que
$$I(p) = 0$$
. Luego $V_I(p \wedge q) = 0$.

Contingencia

Sea A una fórmula.

A es contingente sii A es satisfacible y falseable.

Proposición: La fórmula $p \wedge q$ es contingente.

Proposición: La fórmula $p \wedge q$ es contingente.

Ver ejemplos 3 y 6.

1 en toda interpretación	1 en unas y 0 en otras	0 en toda interpretación
--------------------------------	---------------------------------	--------------------------------

Contenido

1 Clasificación de fórmulas

2 Satisfacibilidad de un conjunto de fórmulas

3 Implicación lógica

Satisfacibilidad e insatisfacibilidad de conjuntos

Sea
$$U = \{A_1, \dots, A_n\}$$
 un conjunto de fórmulas.

U es satisfacible sii existe una interpretación I tal que para toda $A_i \in U$, $V_I(A_i) = 1$.

Satisfacibilidad e insatisfacibilidad de conjuntos

Sea $U = \{A_1, \dots, A_n\}$ un conjunto de fórmulas.

U es satisfacible sii existe una interpretación I tal que para toda $A_i \in U$, $V_I(A_i) = 1$.

U es insatisfacible sii para toda interpretación I, existe $A_i \in U$ tal que $V_I(A_i) = 0$.

Proposición: El conjunto $U = \{p \lor r, q \lor r\}$ es satisfacible.

Sea
$$I$$
 tal que $I(p)=1$ y $I(q)=1$. Luego $V_I(p\vee r)=1$ y $V_I(q\vee r)=1$.

Proposición: El conjunto $U = \{p \lor r, q \lor r\}$ es satisfacible.

Sea / tal que
$$I(p)=1$$
 y $I(q)=1$. Luego $V_I(p\vee r)=1$ y $V_I(q\vee r)=1$.

NB: Observe que cualquiera sea el valor que I le da a r no se altera el hecho de que $V_I(p \lor r) = 1$ y $V_I(q \lor r) = 1$. Luego hay más de una tal I.

Proposición: El conjunto $U = \{p, \neg q, \neg p \lor q\}$ es insatisfacible.

Proposición: El conjunto $U = \{p, \neg q, \neg p \lor q\}$ es insatisfacible.

Sea I arbitraria. Vamos a demostrar que existe una fórmula A en U tal que $V_I(A)=0$. Tenemos varios casos:

Proposición: El conjunto $U = \{p, \neg q, \neg p \lor q\}$ es insatisfacible.

Sea I arbitraria. Vamos a demostrar que existe una fórmula A en U tal que $V_I(A) = 0$. Tenemos varios casos:

Caso 1: I(p) = 0. Luego sea A = p. Observe que $A \in U$ y que $V_I(A) = 0$.

Proposición: El conjunto $U = \{p, \neg q, \neg p \lor q\}$ es insatisfacible.

Sea I arbitraria. Vamos a demostrar que existe una fórmula A en U tal que $V_I(A) = 0$. Tenemos varios casos:

Caso 1: I(p) = 0. Luego sea A = p. Observe que $A \in U$ y que $V_I(A) = 0$.

Caso 2: I(p) = 1. Luego $V_I(\neg p) = 0$. Tenemos dos casos:

Proposición: El conjunto $U = \{p, \neg q, \neg p \lor q\}$ es insatisfacible.

Sea I arbitraria. Vamos a demostrar que existe una fórmula A en U tal que $V_I(A) = 0$. Tenemos varios casos:

- Caso 1: I(p) = 0. Luego sea A = p. Observe que $A \in U$ y que $V_I(A) = 0$.
- Caso 2: I(p) = 1. Luego $V_I(\neg p) = 0$. Tenemos dos casos:
 - Caso 2a: I(q)=1. Luego sea $A=\neg q$. Observe que $A\in U$ y que $V_I(A)=0$.

Proposición: El conjunto $U = \{p, \neg q, \neg p \lor q\}$ es insatisfacible.

Sea I arbitraria. Vamos a demostrar que existe una fórmula A en U tal que $V_I(A) = 0$. Tenemos varios casos:

- Caso 1: I(p) = 0. Luego sea A = p. Observe que $A \in U$ y que $V_I(A) = 0$.
- Caso 2: I(p) = 1. Luego $V_I(\neg p) = 0$. Tenemos dos casos:
 - Caso 2a: I(q)=1. Luego sea $A=\neg q$. Observe que $A\in U$ y que $V_I(A)=0$.
 - Caso 2b: I(q)=0. Luego sea $A=\neg p\lor q$. Observe que $A\in U$ y que $V_I(A)=0$, toda vez que $V_I(\neg p)=0$ y que $V_I(q)=0$.

Proposición: El conjunto $U = \{p, \neg q, \neg p \lor q\}$ es insatisfacible.

Sea I arbitraria. Vamos a demostrar que existe una fórmula A en U tal que $V_I(A) = 0$. Tenemos varios casos:

- Caso 1: I(p) = 0. Luego sea A = p. Observe que $A \in U$ y que $V_I(A) = 0$.
- Caso 2: I(p) = 1. Luego $V_I(\neg p) = 0$. Tenemos dos casos:
 - Caso 2a: I(q)=1. Luego sea $A=\neg q$. Observe que $A\in U$ y que $V_I(A)=0$.
 - Caso 2b: I(q)=0. Luego sea $A=\neg p\lor q$. Observe que $A\in U$ y que $V_I(A)=0$, toda vez que $V_I(\neg p)=0$ y que $V_I(q)=0$.

En cualquier caso, existe una fórmula A en U tal que $V_I(A) = 0$. Como I es arbitraria, U es insatisfacible.

Sean B una fórmula y $U = \{A_1, \dots, A_n\}$ un conjunto de fórmulas.

1. Si U es satisfacible, entonces $U - \{A_i\}$ es satisfacible, para cualquier i = 1, ..., n.

Sean B una fórmula y $U = \{A_1, \dots, A_n\}$ un conjunto de fórmulas.

- 1. Si U es satisfacible, entonces $U \{A_i\}$ es satisfacible, para cualquier i = 1, ..., n.
- 2. Si U es satisfacible y B es válida, entonces $U \cup \{B\}$ es satisfacible.

Sean B una fórmula y $U = \{A_1, \dots, A_n\}$ un conjunto de fórmulas.

- 1. Si U es satisfacible, entonces $U \{A_i\}$ es satisfacible, para cualquier i = 1, ..., n.
- 2. Si U es satisfacible y B es válida, entonces $U \cup \{B\}$ es satisfacible.
- 3. Si U es insatisfacible, entonces $U \cup \{B\}$ es insatisfacible para cualquier fórmula B.

Sean B una fórmula y $U = \{A_1, \dots, A_n\}$ un conjunto de fórmulas.

- 1. Si U es satisfacible, entonces $U \{A_i\}$ es satisfacible, para cualquier i = 1, ..., n.
- 2. Si U es satisfacible y B es válida, entonces $U \cup \{B\}$ es satisfacible.
- 3. Si U es insatisfacible, entonces $U \cup \{B\}$ es insatisfacible para cualquier fórmula B.
- 4. Si U es insatisfacible y A_i es válida para algún i, entonces $U \{A_i\}$ es insatisfacible.

Contenido

1 Clasificación de fórmulas

2 Satisfacibilidad de un conjunto de fórmulas

3 Implicación lógica

Implicación lógica (1/2)

Sea B una fórmula y $U = \{A_1, \dots, A_n\}$. Definimos que B sea una implicación lógica de U:

$$U \models B$$
 sii para toda interpretación I , si $V_I(A_i) = 1$ para todo $A_i \in U$, entonces $V_I(B) = 1$.

Proposición: Sea B=q y $U=\{p,p\rightarrow r,r\rightarrow q\}$. Entonces $U\models B$.

Proposición: Sea B=q y $U=\{p,p\rightarrow r,r\rightarrow q\}$. Entonces $U\models B$.

Sea I una interpretación y supongamos que

$$V_I(p) = V_I(p \rightarrow r) = V_I(r \rightarrow q) = 1$$

Proposición: Sea B=q y $U=\{p,p\rightarrow r,r\rightarrow q\}$. Entonces $U\models B$.

Sea / una interpretación y supongamos que

$$V_I(p) = V_I(p \rightarrow r) = V_I(r \rightarrow q) = 1$$

Como
$$V_I(p) = 1$$
 y $V_I(p \rightarrow r) = 1$, entonces $V_I(r) = 1$.

Proposición: Sea B=q y $U=\{p,p\rightarrow r,r\rightarrow q\}$. Entonces $U\models B$.

Sea I una interpretación y supongamos que

$$V_I(p) = V_I(p \rightarrow r) = V_I(r \rightarrow q) = 1$$

Como
$$V_I(p) = 1$$
 y $V_I(p \rightarrow r) = 1$, entonces $V_I(r) = 1$.

Como
$$V_I(r)=1$$
 y $V_I(r\to q)=1$, entonces $V_I(q)=1$.

Proposición: Sea B=q y $U=\{p,p\rightarrow r,r\rightarrow q\}$. Entonces $U\models B$.

Sea I una interpretación y supongamos que

$$V_I(p) = V_I(p \rightarrow r) = V_I(r \rightarrow q) = 1$$

Como
$$V_I(p) = 1$$
 y $V_I(p \rightarrow r) = 1$, entonces $V_I(r) = 1$.

Como
$$V_I(r) = 1$$
 y $V_I(r \rightarrow q) = 1$, entonces $V_I(q) = 1$.

En consecuencia, si $V_I(A_i) = 1$ para todo $A_i \in U$, entonces $V_I(B) = 1$. Por lo tanto $U \models B$.

Implicación lógica (2/2)

Observe que:

$$U \not\models B$$
 sii existe una interpretación I tal que $V_I(A_i) = 1$ para todo A_i , pero $V_I(B) = 0$.

Proposición: Sea B = q y $U = \{p \rightarrow r, r \rightarrow q\}$. Entonces $U \not\models B$.

Proposición: Sea B = q y $U = \{p \rightarrow r, r \rightarrow q\}$. Entonces $U \not\models B$.

Debemos encontrar una I tal que $V_I(p o r) = V_I(r o q) = 1$ y $V_I(q) = 0$.

Proposición: Sea B = q y $U = \{p \rightarrow r, r \rightarrow q\}$. Entonces $U \not\models B$.

Debemos encontrar una I tal que $V_I(p \to r) = V_I(r \to q) = 1$ y $V_I(q) = 0$.

Sea
$$I(p) = I(r) = I(q) = 0$$
.

Proposición: Sea B = q y $U = \{p \rightarrow r, r \rightarrow q\}$. Entonces $U \not\models B$.

Debemos encontrar una I tal que $V_I(p \to r) = V_I(r \to q) = 1$ y $V_I(q) = 0$.

Sea
$$I(p) = I(r) = I(q) = 0$$
.

Luego $V_I(p
ightarrow r) = 1$ y también $V_I(r
ightarrow q) = 1$. Además, $V_I(q) = 0$.

Sean B, C fórmulas y $U=\{A_1,\ldots,A_n\}$ un conjunto de fórmulas.

1. Si
$$U \models B$$
, entonces $U \cup \{C\} \models B$.

Sean B, C fórmulas y $U = \{A_1, \dots, A_n\}$ un conjunto de fórmulas.

- 1. Si $U \models B$, entonces $U \cup \{C\} \models B$.
- 2. Si C es válida y $U \models B$, entonces $U \{C\} \models B$.

Proposición: Sea B una fórmula y $U = \{A_1, \dots, A_n\}$ un conjunto de fórmulas:

$$U \models B \text{ sii } (A_1 \land \ldots \land A_n) \rightarrow B \text{ es válida}.$$

 \Rightarrow) Supongamos que $U \models B$ y sea I una interpretación arbitraria. Debemos ver que $V_I((A_1 \land \ldots \land A_n) \to B) = 1$. Tenemos dos casos:

 \Rightarrow) Supongamos que $U \models B$ y sea I una interpretación arbitraria. Debemos ver que $V_I((A_1 \land \ldots \land A_n) \to B) = 1$. Tenemos dos casos:

Existe
$$A_i \in U$$
 tal que $V_I(A_i) = 0$. Luego $V_I(A_1 \wedge \ldots \wedge A_n) = 0$ y por lo tanto $V_I((A_1 \wedge \ldots \wedge A_n) \to B) = 1$.

 \Rightarrow) Supongamos que $U \models B$ y sea I una interpretación arbitraria. Debemos ver que $V_I((A_1 \land \ldots \land A_n) \to B) = 1$. Tenemos dos casos:

Existe
$$A_i \in U$$
 tal que $V_I(A_i) = 0$. Luego $V_I(A_1 \wedge \ldots \wedge A_n) = 0$ y por lo tanto $V_I((A_1 \wedge \ldots \wedge A_n) \to B) = 1$.

$$V_I(A_i)=1$$
 para todo $A_i\in U$. Como $U\models B$, entonces $V_I(B)=1$ y por lo tanto $V_I(\left(A_1\wedge\ldots\wedge A_n\right)\to B)=1$.

 \Rightarrow) Supongamos que $U \models B$ y sea I una interpretación arbitraria. Debemos ver que $V_I((A_1 \land \ldots \land A_n) \to B) = 1$. Tenemos dos casos:

Existe
$$A_i \in U$$
 tal que $V_I(A_i) = 0$. Luego $V_I(A_1 \wedge \ldots \wedge A_n) = 0$ y por lo tanto $V_I((A_1 \wedge \ldots \wedge A_n) \to B) = 1$.

$$V_I(A_i)=1$$
 para todo $A_i\in U$. Como $U\models B$, entonces $V_I(B)=1$ y por lo tanto $V_I(\left(A_1\wedge\ldots\wedge A_n\right)\to B)=1$.

En cualquier caso, $V_I((A_1 \wedge \ldots \wedge A_n) \to B) = 1$. Como I es arbitraria, $(A_1 \wedge \ldots \wedge A_n) \to B$ es válida.

 \Leftarrow) Supongamos que $(A_1 \wedge \ldots \wedge A_n) \rightarrow B$ es válida y sea I tal que $V_I(A_i) = 1$ para todo $A_i \in U$. Debemos ver que $V_I(B) = 1$.

```
\Leftarrow) Supongamos que (A_1 \wedge \ldots \wedge A_n) \rightarrow B es válida y sea I tal que V_I(A_i) = 1 para todo A_i \in U. Debemos ver que V_I(B) = 1.
```

Esto es fácil, ya que
$$V_I(A_1 \wedge ... \wedge A_n) = 1$$
 y como $V_I((A_1 \wedge ... \wedge A_n) \rightarrow B) = 1$, entonces $V_I(B) = 1$.

 \Leftarrow) Supongamos que $(A_1 \land \ldots \land A_n) \to B$ es válida y sea I tal que $V_I(A_i) = 1$ para todo $A_i \in U$. Debemos ver que $V_I(B) = 1$.

Esto es fácil, ya que $V_I(A_1 \wedge ... \wedge A_n) = 1$ y como $V_I((A_1 \wedge ... \wedge A_n) \rightarrow B) = 1$, entonces $V_I(B) = 1$.

Por lo tanto $U \models B$.

Fin de la sesión 3

En esta sesión usted ha aprendido:

- Comprender las categorías de una fórmula de acuerdo a sus interpretaciones
- 2. Demostrar relaciones entre conceptos lógicos
- Comprender una de las posibles formalizaciones de la noción de consecuencia lógica