Offene und abgeschlossene Mengen

Def Sei (X, d) ein metrischer Raum und $U \subset X$. U heißt offen in X, falls

$$\forall x \in U \,\exists \varepsilon > 0 : B_{\varepsilon}(x) \subset U.$$

U heißt abgeschlossen in X, falls sein Komplement $U^c := X \setminus U$ offen ist, d.h.

$$\forall x \in X \setminus U \,\exists \varepsilon > 0 : B_{\varepsilon}(x) \subset X \setminus U.$$

Satz 1.4 Für Teilmengen eines metrischen Raums gilt:

- 1) Sind $U_i, i \in I$ offen, so ist $\bigcup_{i \in I} U_i$ offen.
- 2) Sind $U_1, ..., U_n$ offen, so ist $\bigcap_{k=1}^n U_k$ offen.
- 3) Sind $U_i, i \in I$ abgeschlossen, so ist $\bigcap_{i \in I} U_i$ abgeschlossen.
- 4) Sind $U_1, ..., U_n$ abgeschlossen, so ist $\bigcup_{k=1}^n U_k$ abgeschlossen.

Def Sei (X, d) ein metrischer Raum und $U \subset X$.

Die Menge $\overline{U} := \{x \in X : \exists (x_n)_{n \in \mathbb{N}} \subset U \text{ mit } x_n \to x\}$ heißt der Abschluss (oder die abgeschlossene Hülle) von U.

Die Menge $U := \{x \in U : \exists \varepsilon > 0 \text{ mit } B_{\varepsilon}(x) \subset U\}$ heißt das *Innere* (oder der *offene Kern*) von U.

 $\partial U := \overline{U} \setminus \overset{\circ}{U}$ heißt der Rand von U.

Def Sei (X, d) ein metrischer Raum. $x \in X$ heißt $H\ddot{a}ufungspunkt$ der Menge $U \subset X$, falls es eine Folge $(x_n)_{n \in \mathbb{N}}$ in $U \setminus \{x\}$ mit $x_n \to x$ gibt. Ein Punkt $x \in U$, der kein Häufungspunkt von U ist, heißt isolierter Punkt von U.

Satz 1.5 Sei (X, d) ein metrischer Raum und $U \subset X$. Die folgenden Aussagen sind äquivalent:

- i) U ist abgeschlossen.
- ii) $U = \overline{U}$
- iii) Für jede Folge $(x_n)_{n\in\mathbb{N}}\subset U$ mit $x_n\to x$ gilt $x\in U$.
- iv) $\partial U \subset U$
- v) U enthält alle ihre Häufungspunkte.

Satz 1.6 Sei (X, d) ein metrischer Raum und $U \subset X$. Dann ist $x \in \partial U$ genau dann, wenn jede Kugel um x sowohl einen Punkt aus U als auch aus $X \setminus U$ enthält.

Lemma Sei (X, d) ein metrischer Raum und $U \subset X$. Es gilt:

$$\overset{\circ}{U} = U \setminus \partial U, \quad \overline{U} = U \cup \partial U.$$

Satz 1.7 Sei (X, d) ein metrischer Raum und $U \subset X$. Die folgenden Aussagen sind äquivalent:

- i) U ist offen.
- ii) $U \cap \partial U = \emptyset$
- iii) $U = \stackrel{\circ}{U}$

Def Sei (X, d) ein metrischer Raum. $M \subset X$ heißt dicht in X, falls $\overline{M} = X$.

Stetigkeit in metrischen Räumen

Def Seien (X, d_X) und (Y, d_Y) metrische Räume. Eine Abbildung $f: X \to Y$ heißt stetig in $a \in X$, falls für alle Folgen $(x_n)_{n \in \mathbb{N}}$ in X gilt:

$$x_n \to a \Rightarrow f(x_n) \to f(a)$$
.

Satz 1.8 (ε - δ -Charakterisierung der Stetigkeit)

Seien (X, d_X) und (Y, d_Y) metrische Räume, $f: X \to Y$, $a \in X$. Die folgenden Aussagen sind äquivalent:

- i) f ist stetig in a.
- ii) $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in X : d_X(x, a) < \delta \Rightarrow d_Y(f(x), f(a)) < \varepsilon.$
- iii) Für jede Kugel $B(f(a)) \subset Y$ um f(a) gibt es eine Kugel $B'(a) \subset X$ um a mit $B' \subset f^{-1}(B)$.

Satz 1.9 (Topologische Charakterisierung der Stetigkeit)

Seien (X, d_X) und (Y, d_Y) metrische Räume, $f: X \to Y$. Die folgenden Aussagen sind äquivalent:

- i) f ist stetig auf X.
- ii) $f^{-1}(O)$ ist offen für jedes offene $O \subset Y$.
- iii) $f^{-1}(A)$ ist abgeschlossen für jedes abgeschlossene $A \subset Y$.