Question 1

$$2 \int_{0}^{\frac{\pi}{2}} \int_{0}^{\sqrt{3}} e^{r^{2}} r dr d\theta = \left(-\frac{1}{2} + \frac{e^{3}}{2}\right) \pi$$

Question 2

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\sqrt{3}} \cos(r^2) \cdot r \, dr \, d\theta = \frac{\sin(3) \pi}{2}$$

Question 3

1. convert to polar: $z = x^2 + y^2 \rightarrow z = r^2$ and $x^2 + y^2 = 3$ $x \rightarrow r^2 = 3$ $r \cos \theta \rightarrow r = 4 \cos \theta$

2. then figure out bounds by drawing the circle $r = 3 \cos(\theta) \rightarrow$

now we can see r is bounded by $0 \le r \le 3 \cos \theta$ and θ is bounded from $0 \le \theta \le \frac{\pi}{2}$

3. Set up the integral with our new bounds adding our jacobian $\int_0^{\pi} \int_0^{3\cos(\theta)} \int_{0.0}^{r^2} 1 \, dz \, r dr \, d\theta$

or
$$\int_{0}^{\pi} \int_{0}^{3\cos(\theta)} r^{2} \cdot r \, dr \, d\theta$$
 (b/c $z = x^{2} + y^{2} = r^{2}$ is given)

6. Next evaluate the integral

$$\int_{0}^{\pi} \frac{1}{4} (3 \cos(\theta))^{4} d\theta \Rightarrow \int_{0}^{\pi} \frac{81}{4} \cos^{4}(\theta) d\theta = \frac{243 \pi}{32}$$

Question 4

- 2. bounds would be $0 \le r \le \theta$ and $0 \le \theta \le \frac{3\pi}{2}$ because it is bounded by the y axis
- 3. Set up the integral with our new bounds and adding the jacobian $\int_0^{\frac{3\pi}{2}} \int_0^{\theta} r \, dr \, d\theta = \frac{9\pi^3}{16}$

Question 5

