Agrégation interne. 2012/2013 ¹

- I - Polynômes de Hilbert

K est un corps commutatif de caractéristique nulle.

 $\mathbb{K}[X]$ est l'algèbre des polynômes à coefficients dans \mathbb{K} .

Pour tout entier naturel n:

- $-\mathcal{M}_n(\mathbb{K})$ est l'algèbre des matrices carrées d'ordre $n \geq 1$ à coefficients dans \mathbb{K} ;
- $-\mathbb{K}_n[X]$ est le sous-espace vectoriel de $\mathbb{K}[X]$ constitué des polynômes de degré au plus égal à n;
- $-\mathcal{B}_n = (X^k)_{0 \le k \le n}$ est la base canonique de $\mathbb{K}_n[X]$;
- $-(H_n)_{n\in\mathbb{N}}$ est la suite des polynômes de Hilbert définie par :

$$H_0(X) = 1, \ \forall n \in \mathbb{N}^*, \ H_n(X) = \frac{X(X-1)\cdots(X-n+1)}{n!}$$

On désigne par $u: \mathbb{K}[X] \to \mathbb{K}[X]$ l'application linéaire définie par :

$$\forall P \in \mathbb{K}[X], \ u(P)(X) = P(X+1)$$

et par $\Delta = u - Id$ l'opérateur de différence première défini par :

$$\forall P \in \mathbb{K}[X], \ \Delta(P)(X) = P(X+1) - P(X)$$

Pour tout entier naturel n, on désigne respectivement par u_n et Δ_n les restrictions de u et Δ à $\mathbb{K}_n[X]$.

- 1. Montrer que, pour tout entier naturel n, $(H_k)_{0 \le k \le n}$ est une base de $\mathbb{K}_n[X]$ et que $(H_n)_{n \in \mathbb{N}}$ est une base de $\mathbb{K}[X]$.
- 2. Montrer que, pour tout entier naturel n, u_n est un isomorphisme de $\mathbb{K}_n[X]$, donner sa matrice A_n dans la base canonique \mathcal{B}_n et calculer son inverse A_n^{-1} .
- 3. Montrer que, pour tout couple (i,j) d'entiers tel que $0 \le i \le j$, on a :

$$\sum_{k=i}^{j} (-1)^{k-i} \binom{k}{i} \binom{j}{k} = \begin{cases} 0 \text{ si } i < j \\ 1 \text{ si } i = j \end{cases}$$

- 4. Donner une expression simple de $H_k(j)$ pour tout $k \in \mathbb{N}$ et tout $j \in \mathbb{Z}$ (\mathbb{Z} est identifié à $\mathbb{Z} \cdot 1$ dans \mathbb{K}). En déduire que $H_k(\mathbb{Z}) \subset \mathbb{Z}$, pour tout $k \in \mathbb{N}$.
- 5. Déterminer, pour $n \ge 1$, les racines du polynôme $P = \sum_{k=0}^{n} (-1)^k H_k$ et donner une expression de P en fonction du polynôme H_n .
- 6. Soient $n \in \mathbb{N}$, $P \in \mathbb{K}_n[X]$ et $P = \sum_{k=0}^n \alpha_k H_k$ son écriture dans la base $(H_k)_{0 \le k \le n}$ de $\mathbb{K}_n[X]$.
 - (a) Montrer que:

$${}^{t}A_{n} \begin{pmatrix} \alpha_{0} \\ \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix} = \begin{pmatrix} P(0) \\ P(1) \\ \vdots \\ P(n) \end{pmatrix}$$

(b) Montrer que, pour tout entier j compris entre 0 et n, on a :

$$\alpha_j = \sum_{k=0}^{j} (-1)^{j-k} \binom{j}{k} P(k)$$

- (c) Calculer $\sum_{k=0}^{j} (-1)^{j-k} {j \choose k} P(k)$ pour $j \ge n+1$.
- (d) Montrer que $P(\mathbb{Z}) \subset \mathbb{Z}$ si, et seulement si, on a $\alpha_k \in \mathbb{Z}$ pour tout k compris entre 0 et n.
- 7. Montrer que, pour tout entier naturel n, Δ_n est un endomorphisme de $\mathbb{K}_n[X]$ et qu'il est nilpotent d'ordre n.
- 8. L'application $\Delta : \mathbb{K}[X] \to \mathbb{K}[X]$ est-elle nilpotente?

^{1.} D'après, Centrale PSI 2003, Capes 2002, Agrégation interne 2010

- 9. Montrer que Δ n'est pas injective et décrire son noyau.
- 10. Calculer $\Delta(H_n)$ pour tout $n \in \mathbb{N}$ et $\Delta^k(H_n)(0)$ pour tous n, k dans \mathbb{N} .
- 11. Montrer que, pour tout $n \in \mathbb{N}$, on a :

$$\forall P \in \mathbb{K}_n [X], \ P = \sum_{k=0}^n (\Delta^k (P)) (0) H_k$$

Expliciter les coefficients du polynôme X^3 dans la base $(H_k)_{0 \le k \le 3}$.

12. Soient $n \in \mathbb{N}$ et $P \in \mathbb{K}_n[X]$.

En utilisant la question précédente, montrer que les conditions suivantes sont équivalentes :

- (i) $P(\mathbb{Z}) \subset \mathbb{Z}$;
- (ii) les composantes de P dans la base $(H_k)_{0 \leq k \leq n}$ sont entières ;
- (iii) $P(k) \in \mathbb{Z}$ pour tout k comprisentre 0 et n;
- (iv) il existe n+1 entiers consécutifs en lesquels P prend des valeurs entières.
- 13. Montrer qu'un polynôme $P \in \mathbb{K}[X]$ est tel que $P(\mathbb{Q}) \subset \mathbb{Q}$ si, et seulement si, il est dans $\mathbb{Q}[X]$ (i. e. ses composantes dans la base canonique sont rationnels).
- 14. Montrer que pour tout polynôme $P \in \mathbb{K}[X]$, il existe un polynôme $Q \in \mathbb{K}[X]$, unique à une constante additive près, tel que $P = \Delta(Q)$.

En déduire, pour tout entier naturel n, une expression de $\sum_{k=0}^{n} P(k)$ en fonction de Q et de n.

Simplifier la somme $\sum_{k=0}^{n} k^3$.

15. Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathbb{K} définie par :

$$\begin{cases} u_0 \in \mathbb{K} \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + P(n) \end{cases}$$

où P est un polynôme non nul dans $\mathbb{K}\left[X\right]$. En désignant par Q le polynôme tel que $P=\Delta\left(Q\right)$ et $Q\left(0\right)=0$, montrer que :

$$\forall n \in \mathbb{N}, \ u_n = u_0 + Q(n)$$

Étudier le cas où $P(X) = X^2 + X + 1$.

- 16. Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathbb{K} . Montrer que les deux conditions suivantes sont équivalentes :
 - (i) il existe un polynôme $P \in \mathbb{K}[X]$ tel que $u_j = P(j)$ pour tout $j \in \mathbb{N}$;
 - (ii) il existe un entier $n \in \mathbb{N}$. tel que :

$$\forall j \ge n+1, \ \sum_{k=0}^{j} (-1)^{j-k} \binom{j}{k} u_k = 0$$

- II - Séries entières complexes. Quelques propriétés

Pour cette partie et la suivante, $\mathbb{K} = \mathbb{C}$.

Pour tout $R \in [0, +\infty]$ (i. e. R est un réel strictement positif, ou $R = +\infty$), on désigne par :

$$D(0,R) = \{z \in \mathbb{C} \mid |z| < R\}$$

le disque ouvert de centre 0 et de rayon R dans le plan complexe et, pour R réel, par :

$$\overline{D(0,R)} = \{ z \in \mathbb{C} \mid |z| < R \}$$

le disque fermé de centre 0 et de rayon R.

Pour cette partie, on se donne une série entière complexe $\sum a_n z^n$ de rayon de convergence $R \in]0, +\infty]$ et on désigne par f sa somme qui est définie sur D(0, R) par :

$$\forall z \in D(0,R), \ f(z) = \sum_{n=0}^{+\infty} a_n z^n$$

1. Justifier la définition, pour tout réel $r \in [0, R]$, du réel :

$$M_r(f) = \sup_{|z|=r} |f(z)|$$

et montrer que pour tout entier $k \in \mathbb{N}^*$, on a $M_r(f^k) \leq (M_r(f))^k$.

2. Montrer que pour tout réel $r \in [0, R[$ et tout entier $n \in \mathbb{N}$, on a :

$$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f\left(re^{it}\right) e^{-int} dt$$

et:

$$|a_n| \le \frac{M_r(f)}{r^n}$$

- 3. On suppose, pour cette question, que $R = +\infty$.
 - (a) Montrer que f est bornée sur \mathbb{C} si, et seulement si, elle est constante (théorème de Liouville).
 - (b) En déduire que la série entière $\sum a_n z^n$ est uniformément convergente sur $\mathbb C$ si, et seulement si, sa somme f est une fonction polynomiale.
 - (c) Que peut–on dire de f s'il existe une fonction polynomiale P telle que $|f(z)| \le |P(z)|$ pour tout $z \in \mathbb{C}$?
- 4. Montrer que pour tout réel $r \in [0, R]$, on a :

$$\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{it})|^{2} dt = \sum_{n=0}^{+\infty} |a_{n}|^{2} r^{2n}$$

- 5. Montrer que si |f| admet un maximum local en 0, elle est alors constante (principe du maximum).
- 6. Soit $(f_k)_{k\in\mathbb{N}}$ une suite de fonctions développables en série entière sur \mathbb{C} avec

$$\forall k \in \mathbb{N}, \ \forall z \in \mathbb{C}, \ f_k(z) = \sum_{n=0}^{+\infty} a_n^{(k)} z^n$$

On suppose que $(f_k)_{k\in\mathbb{N}}$ converge uniformément vers une fonction g sur tout compact de \mathbb{C} . Montrer que g est développables en série entière sur \mathbb{C} .

- 7. Montrer qu'une fonction g est développables en série entière sur $\mathbb C$ si, et seulement si, il existe une suite de polynômes $(P_n)_{n\in\mathbb N}$ qui converge uniformément vers g sur tout compact de $\mathbb C$.
- 8. Soient $r \in [0, R[$ et $z_0 \in D(0, r)$.
 - (a) Montrer que:

$$f\left(z_{0}\right) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{re^{it}}{re^{it} - z_{0}} f\left(re^{it}\right) dt$$

(formule de Cauchy).

(b) Montrer que:

$$|f(z_0)| \le \frac{r}{r - |z_0|} M_r(f)$$

- (c) En déduire que $|f(z_0)| \leq M_r(f)$ (on peut utiliser la question précédente pour les fonctions f^k où $k \in \mathbb{N}^*$).
- 9. Montrer que la fonction $r \mapsto M_r(f)$ est croissante sur]0, R[et que :

$$M_{r}\left(f\right) = \sup_{z \in \overline{D\left(0,r\right)}} \left| f\left(z\right) \right|$$

- 10. Soient $r \in (0, R)$ et $z_0 \in D(0, r)$.
 - (a) Montrer que, pour tout entier $p \in \mathbb{N}$, la série $\sum_{n \geq p+1} a_n z_0^{n-1-p}$ est convergente. On notera S_p sa somme.
 - (b) Calculer z_0S_0 et $S_p z_0S_{p+1}$, pour tout entier $p \in \mathbb{N}$.
 - (c) Montrer que $S_p = \underset{p \to +\infty}{o} \left(\frac{1}{r^{p+1}} \right)$.
 - (d) Montrer que le rayon de convergence R_0 de la série $\sum S_p z^p$ est supérieur ou égal à R.

On désigne par $g_0(z) = \sum_{p=0}^{+\infty} S_p z^p$ la somme de cette série entière pour $z \in D(0, R_0)$.

(e) Montrer que:

$$\forall z \in D(0,R), (z-z_0)g_0(z) = f(z) - f(z_0)$$

On a donc ainsi montré que pour tout $z_0 \in D(0,R)$, il existe une fonction g_0 développable en série entière sur D(0,R) telle que $f(z) - f(z_0) = (z - z_0) g_0(z)$ pour tout $z \in D(0,R)$.

- (f) On suppose que f s'annule en en $p \ge 1$ points deux à deux distincts, z_1, \dots, z_p de $D(0, R) \setminus \{0\}$.
 - i. Montrer qu'il existe une fonction g développable en série entière sur $D\left(0,R\right)$ telle que :

$$\forall z \in D(0,R), f(z) \prod_{j=1}^{p} \left(r^2 - \overline{z_j} \cdot z\right) = g(z) \prod_{j=1}^{p} \left(z - z_j\right)$$

$$\tag{1}$$

 $(\overline{z_i})$ est le nombre complexe conjugué de z_i).

- ii. Calculer $\left| \frac{r^2 \overline{z_j} \cdot z}{z z_j} \right|$ pour tout $z \in D(0, R) \setminus \{z_1, \dots, z_p\}$ tel que |z| = r.
- iii. Montrer que pour tout $z \in D(0,R) \setminus \{z_1, \dots, z_p\}$ tel que |z| = r, on a :

$$|g(z)| = r^p |f(z)|$$

iv. Montrer que :

$$M_r\left(g\right) = r^p M_r\left(f\right)$$

v. Montrer que :

$$|f(0)| r^p \le M_r(f) \left| \prod_{j=1}^p z_j \right|$$

vi. On suppose qu'il existe un entier $k \in \mathbb{N}^*$ tel que $a_j = 0$ pour tout j compris entre 0 et k - 1. Montrer que :

$$|a_k| r^{p+k} \le M_r(f) \left| \prod_{j=1}^p z_j \right|$$

- III - Un théorème de Pólya

Pour cette partie, on se donne une série entière complexe $\sum a_n z^n$ de rayon de convergence infini et on désigne par f sa somme qui est définie sur $\mathbb C$ par :

$$\forall z \in \mathbb{C}, \ f(z) = \sum_{n=0}^{+\infty} a_n z^n$$

On note encore $M_r(f) = \sup_{|z| \le r} |f(z)|$ pour tout réel r > 0.

- 1. Soient $n \in \mathbb{N}^*$ et r > n un réel.
 - (a) Décomposer la fraction rationnelle $R_n(X) = \frac{n!}{X(X-1)\cdots(X-n)}$ en éléments simples.
 - (b) Montrer que:

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{n! f\left(re^{it}\right)}{\left(re^{it} - 1\right) \cdots \left(re^{it} - n\right)} dt = \sum_{k=0}^n \left(-1\right)^{n-k} \binom{n}{k} f\left(k\right)$$

(c) En déduire que :

$$\left| \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(k) \right| \le \frac{n! M_r(f)}{(r-1) \cdots (r-n)}$$

2. On suppose, pour cette question, que f est nulle sur \mathbb{N} (c'est-à-dire que f(k) = 0 pour tout entier $k \in \mathbb{N}$) et que $M_r(f) = \underset{r \to +\infty}{o} (2^r)$. Montrer que f est identiquement nulle (on pourra raisonner par l'absurde en utilisant $\mathbf{II.10(f)vi}$ avec $r = p, z_j = j$ pour j compris entre 1 et p, où p est un entier naturel quelconque et s'aider de la formule de Stirling : $p! \underset{p \to +\infty}{\smile} \sqrt{2\pi p} p^p e^{-p}$).

4

3. On suppose que $f(\mathbb{N}) \subset \mathbb{Z}$ et que $M_r(f) = \underset{r \to +\infty}{o} \left(\frac{2^r}{\sqrt{r}}\right)$.

(a) En choisissant judicieusement r dans la question III.1 montrer qu'il existe un entier n_0 tel que :

$$\forall n \ge n_0, \ \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(k) = 0$$

(b) En déduire que f est une fonction polynomiale (théorème de Pólya).

- IV - Un théorème de Harald Bohr

Pour cette partie, on se donne une série entière complexe $\sum a_n z^n$ de rayon de convergence $R \ge 1$ et on désigne par f sa somme qui est définie sur D(0,R) par :

$$\forall z \in D(0,R), f(z) = \sum_{n=0}^{+\infty} a_n z^n$$

On se propose de montrer que si $f\left(D\left(0,1\right)\right)\subset D\left(0,1\right),$ on a alors :

$$\forall r \in \left[0, \frac{1}{3}\right[, \sum_{n=0}^{+\infty} |a_n| r^n < 1$$

On suppose que $f(0) \in \mathbb{R}^+$ (si $f(0) = \rho e^{i\theta} \neq 0$, on remplace f par $e^{-i\theta} f$).

1. Montrer que pour tout réel $r \in \]0,R[$ et tout entier $n \in \mathbb{N}^*,$ on a :

$$a_{n}=\frac{1}{2\pi r^{n}}\int_{0}^{2\pi}\left(f\left(re^{it}\right)+\overline{f\left(re^{it}\right)}\right)e^{-int}dt$$

En déduire que si $\Re (f(z)) > 0$ pour tout $z \in D(0,1)$, on a alors :

$$\forall n \in \mathbb{N}^*, \ |a_n| \le 2a_0$$

2. Montrer que:

$$\forall n \in \mathbb{N}^*, |a_n| \leq 2(1 - a_0)$$

- 3. En déduire le résultat annoncé.
- 4. On se propose de montrer ici que le coefficient $\frac{1}{3}$ est optimal. Pour tout réel $\alpha \in]0,1[$, on désigne par f la fonction définie sur $D\left(0,\frac{1}{\alpha}\right)$ par :

$$f_{\alpha}(z) = \frac{z - \alpha}{1 - \alpha z}$$

- (a) Montrer que f_{α} est développable en série entière sur $D\left(0,\frac{1}{\alpha}\right)$ et que $f_{\alpha}\left(D\left(0,1\right)\right)\subset D\left(0,1\right)$.
- (b) Faisant tendre α vers 1 montrer que le coefficient $\frac{1}{3}$ est optimal.