Arquitectura de Computadoras

(Cód. 5561) 1° Cuatrimestre 2018

Dra. Dana K. Urribarri DCIC - UNS

Registros y Contadores

Contadores y registros

Registros

- Grupo de FF que comparten el reloj, cada uno almacena un bit de información. Un registro de n-bits consiste de n FF.
- Además de los FF, puede haber compuertas que realicen alguna tarea sobre los datos.

Contadores

 Un grupo de FF que comparte el reloj y pasan por una secuencia predefinida de estados binarios.

Registro

- El más simple consiste solo de FF. No tiene compuertas.
- Las entradas D_i
 determinan las salidas
 Q_i con cada flanco
 positivo del reloj.
- La señal Clear resetea las salidas del registro.

Registro

Un reloj común dispara todos los FF y el dato binario disponible en las entradas D se transfiere a las salidas Q.

Registro de desplazamiento (shift)

- Registro con la capacidad de desplazar, en una dirección seleccionada, la información binaria en cada FF al FF vecino.
 - Shift a derecha: $(z_0, z_1, ..., z_n) \rightarrow (0, z_0, z_1, ..., z_{n-1})$
 - Cadena de FF con reloj común.

Registro de desplazamiento (shift)

El registro de desplazamiento más general permite:

- Clear para poner el registro en 0
- Entrada de reloj
- Control para desplazar a derecha, con líneas de entrada y salida seriales.
- Control para desplazar a izquierda, con líneas de entrada y salida seriales.
- Control de carga paralela y líneas de entradas asociadas.
- Líneas de salida paralela
- Control para habilitar/deshabilitar cambios en la salida en respuesta al reloj.

<u>Utilidad</u>: conversión serie en paralelo y viceversa.

Registro de desplazamiento (shift)

Dana K. Urribarri AC 2018

Contador

- Registro que cicla a través de una secuencia predefinidas de estados en respuesta a un pulso de entrada.
- El pulso de entrada puede
 - ser un pulso de reloj u originado por una fuente externa
 - ocurrir a intervalos fijos de tiempo o random.
- Los contadores pueden diferir en módulo, sincrónicos o asincrónicos, hacia arriba (up) o hacia abajo (down).

Contadores asincrónicos

- Son contadores ripple
- El clock dispara los cambios en el primer FF.
- La salida de ese FF sirve como fuente de disparo de los demás FF.

Contador binario en ripple

- Contador que cicla a través del a secuencia de números binarios.
- Un contador binario de n-bits consiste de n FF y puede contar, en binario, desde 0 hasta 2ⁿ-1.

Binary Count Sequence

A_3	A ₂	A ₁	A_0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0

- El contador binario en ripple consiste de una serie de FF complementados conectados.
 - La salida de cada FF se encuentra conectada al reloj del FF del bit siguiente.
 - El FF del bit menos significativo recibe el pulso de entrada.
- Puede implementarse con FF T, FF JK con ambas entradas en 1 o con FF D usando la salida complementada.

AC 2018

Funciona como un divisor de frecuencia.

Contadores sincrónicos

- En un contador sincrónico, todos los FF reciben la misma entrada de reloj.
- El reloj común dispara todos los FF simultáneamente.
- La evolución del contador está dada por las funciones de entrada.

- Contador binario
- Contador anillo (ring counter)
- Contador Möbius (Contador Johnson)

Contador binario

 Un contador binario de n-bits consiste de *n* FF y puede contar, en binario, desde 0 hasta 2^n -1.

ABCD	A ⁺ B ⁺ C ⁺ D ⁺
0000	0001
0001	0010
0010	0011
0011	0100
0100	0101

- El bit menos significativo cambia siemp
- El resto de los bits, cambian cuando todos los bits anteriores estaban en 1.

0001	0010
0010	0011
0011	0100
0100	0101
0101	0110
0110	0111
0111	1000
1000	1001
1001	1010
1010	1011
1011	1100
1100	1101
1101	1111
1111	0000

Contador binario

- Ó cuando el bit inmediato anterior, estaban en 1 y debe pasar a 0.
 - $-0001 \rightarrow 0010$
 - $-0011 \rightarrow 0100$

Contador binario carga paralela

- Flexibiliza el uso de los contadores.
- La carga paralela permite modificar el estado del contador antes de la operación de cuenta.

Contador binario carga paralela

Cuando Load es 1, se deshabilita la cuenta y se transfiere el valor de las entradas al estado del contador.

Count Load

Data_in \longrightarrow 4-Bit Binary Counter \longrightarrow A_count 4

Clear \longrightarrow C_out

Cuando Load y Count están en 0, los pulsos del reloj no cambian el estado del contador.

Clear	CLK	Load	Count	Function
0	X	X	X	Clear to 0
1	\uparrow	1	X	Load inputs
1	\uparrow	0	1	Count next binary state
1	\uparrow	0	0	No change

Contador BCD

 Se puede diseñar un circuito secuencial de 4 FF a través de la tabla de estados:

ABCD	A ⁺ B ⁺ C ⁺ D ⁺
0000	0001
0001	0010
0010	0011
0011	0100
0100	0101
0101	0110
0110	0111
0111	1000
1000	1001
1001	0000

Contador BCD

 Se puede usar un contador de carga paralela y codificar el estado 9 para cargar un 0 en el próximo pulso de reloj.

Contador BCD

También se podría usar la señal Clear del contador.

- El Clear no dependen del reloj. Inmediatamente cuando la salida es 1010 el registro se resetea.
- Tiempo despreciable, pero puede generar picos indeseables en la salida.

Ring counter

- Define una secuencia de estados con un único FF en 1 en cada momento. Todos los demás están en 0.
- Ese bit en 1 se desplaza de un FF al siguiente.
- Es costoso. Para un contador de n estados se necesitan n FF.
- Define n señales de temporizado.

ABCD	A ⁺ B ⁺ C ⁺ D ⁺
0001	0010
0010	0100
0100	1000
1000	0001

Dana K. Urribarri

AC 2018

Ring counter

 La implementación con FF requiere de FF con la capacidad de Preset/Clear

Ring counter

- Puede implementarse como un registro de desplazamiento inicializado en 1000 y configurado de manera circular.
- Puede implementarse con contador binario y un decoder.

Contador Möbius

- También llamado Contador Johnson.
- Similar al Ring counter.
- Con n FF logra 2n estados.

A	B	\boldsymbol{C}	E
0	0	0	0
1	0	0	0
1	1	0	0
1	1	1	0
1	1	1	1
0	1	1	1
0	0	1	1
0	0	0	1

Contador Möbius

Duplica la cantidad de estados conectando la salida negada del último FF a la entrada del primero.

Para *n* FF: tenemos 2*n* señales, de período 2*n*T, desfasadas en T.

Circuito secuencial

- Entradas: dos pulsos x₁ y x₂.
- <u>Salida</u>: un nivel. Se pone en 0 con un pulso x_1 y se pone en 1 con dos pulsos x_2 seguidos.

	X ₁	X ₂	Z
1	2	1	1
2	2	3	0
3	2	1	0

Ejemplo de implementación (1)

 Usando un contador binario de 2 bits con entradas count y load separadas y una entrada up/down.

Clock	Load	Count	Up/down	
_	Χ	Χ	Χ	No cambia de estado
↑	1	Χ	X	Carga paralela
↑	0	1	1	Estado siguiente
↑	0	1	0	Estado anterior
↑	0	0	Х	No cambia de estado

Ejemplo de implementación (1)

Identificar los
casos que
habilitan las
entradas load,
count y up/down.

- No hacer and a. (Load = 0, Count = 0)
- Carga paralela del estado 1 (Load = 1)
- Contando up o down (Load = 0, Count = 1)

Ejemplo de implementación (1)

- Load = estado₃ · x_2
- Count = estado₃ · x₁ + estado₂ · x₂ + estado₁ · x₁
- Up/down: =(estado₃ · x_1)'
 - Codificamos el caso más simple: cuándo cuenta hacia abajo.
 Cualquier otro caso, cuenta hacia arriba.
- Clock = $x_1 + x_2$

Dana K. Urribarri AC 2018

Ejemplo de implementación (2)

 Usando el contador <u>binario</u> de 2 bits de Logisim con <u>un entrada load/count</u> y otra entrada <u>up/down</u>.

Ejemplo de implementación (2)

- No hacer anda. (Clock = 0)
- Carga paralela del estado 1 (Load/ $\overline{\text{Count}} = 1$)
- Contando up o down (Load/ $\overline{\text{Count}} = 0$)

Ejemplo de implementación (2)

- Load/Count = estado₃ · x₂
 - Codificamos la carga paralela. Cualquier otro caso, cuenta.
- Up/down = $(estado_3 \cdot x_1)'$
- Clock = estado₁' · x₁ + estado₂' · x₂

Dana K. Urribarri AC 2018

Bibliografía

 <u>Capítulo 6.</u> M. Morris Mano & Michael D. Celetti.
 Digital Design: With an Introduction to the Verilog HDL. Pearson. (2015, 5ta Ed.)