

Electronics

Through Hole

Features:

- Designed for non-contact switching operations
- Operates over broad range of supply voltages (4.5 V to 24 V)
- Operates with excellent temperature stability in harsh environments
- Drive capability up to 7 TTL loads

Description:

These Hall-effect devices contain a monolithic integrated circuit which incorporates a Hall element, a linear amplifier, a threshold amplifier, and Schmitt trigger on a single Hallogic® silicon chip. Included on-chip is a band gap voltage regulator to allow operation with a wide range of supply voltages. These devices feature logic level output and provide up to 21 mA of sink current. This allows direct driving of more than 7 TTL loads or any standard logic family using power supplies ranging from 4.5 to 24 volts. Output amplitude is constant at switching frequencies from DC to over 200 kHz.

The Uni-Polar turns on with a (logic level "0") after a sufficient magnetic field from the south pole of a magnet approached the symbolized face of the device (Operating Point) and turns off (logic level "1") after the magnetic field reached a minimum value. The Bi-Polar latch device turns on (logic level "0") in the presence of a magnetic south pole and turn off (logic level "1") when subjected to a magnetic north pole. Both magnetic poles are necessary for operation for Bi-Polar devices. This feature makes these sensors ideal for applications in non-contact switching operations, brushless DC motors and for use with multiple pole magnets.

Applications:

- Non-contact reflective object sensor
- Assembly line automation
- Machine automation
- Machine safety
- End of travel sensor
- Door sensor

Ordering Information								
Through Hole	Configuration							
OH090U OH180U OH360U OHN3013U OHN3113U OHN3019U OHS3019U OHS3119U OHN3020U OHS3020U OHN3120U OHN3120U OHN3120U OHN3130U OHN3130U OHN3131U OHS3131U OHN3131U OHN3131U OHN3040U OHN3140U	Unipolar non-latching							
OHS3140U								

Ordering Information								
Through Hole	Configuration							
OHN3075U OHS3075U OHN3175U OHS3175U OHN3177U OHS3177U	Bi-Polar latching							

Electrical Specifications

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

<u> </u>	<u>, </u>	
Supply Voltage, Vcc		25 V
Storage Temperature Range, T _S		-65°C to +160°C
Operating Temperature Range, T _A	OHN30U OHS30U OH090/180/360U	-20°C to +85°C -40°C to +125°C -40°C to +150°C
Lead Soldering Temperature (1/8 in. (3.2 mm) from case fo	or 5 sec. with soldering iron)	260°C ⁽¹⁾
Output ON Current, I _{SINK}		25 mA
Output OFF Voltage, V _{OUT}		25 V
Magnetic Flux Density, B		Unlimited

Electrical Characteristics (Vcc = 4.5 V to 24 V, T_A = 25° C unless otherwise noted)

OH090U Uni-Polar

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
B _{OP}	Magnetic Operate Point ⁽¹⁾	0	90	180	Gauss	
B_{RP}	Magnetic Release Point	-100	65	100	Gauss	
Вн	Magnetic Hysteresis	10	25	100	Gauss	
Icc	Supply Current	-	6	9	mA	Vcc = 24 V, Output Off
V _{OL}	Output Saturation Voltage	-	100	300	mV	Vcc = 4.5 V, I _{OL} = 20 mA, B ≥ 180 Gauss
I _{OH}	Output Leakage Current	-	0.5	10.0	μΑ	Vcc = 24 V, V _{OUT} = 24 V, B ≤ -100 Gauss
t _r	Output Rise Time	-	0.21	1.00	μs	D = 930 O C = 30 pF Vcc = 14 V
t _f	Output Fall Time	-	0.10	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$, $Vcc = 14 V$

OH180U Uni-Polar

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
B _{OP}	Magnetic Operate Point ⁽¹⁾	70	180	290	Gauss	
B_RP	Magnetic Release Point	0	140	230	Gauss	
B _H	Magnetic Hysteresis	20	40	120	Gauss	
Icc	Supply Current	-	6	9	mA	Vcc = 24 V, Output Off
V _{OL}	Output Saturation Voltage	-	100	300	mV	Vcc = 4.5 V, I _{OL} = 20 mA, B ≥ 290 Gauss
I _{OH}	Output Leakage Current	-	0.5	10.0	μΑ	Vcc = 24 V, V _{OUT} = 24 V, B ≤ 0 Gauss
t _r	Output Rise Time	-1	0.21	1.00	μs	B = 920 O C = 20 pF Vcc = 14 V
t _f	Output Fall Time	-	0.10	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$, $Vcc = 14 V$

Notes:

(1) South pole facing symbolized surface.

Pin#	Transistor
1	V_{CC}
2	Ground
3	Output

NOTE: The Hall Element is located 0.013" beneath the top surface of the package. The back of the package is denoted by the 45° angle at the base of the plastic body.

DIMENSIONS ARE IN INCHES AND [MILLIMETERS].

Electrical Characteristics (Vcc = 4.5 V to 24 V, T_A = 25° C unless otherwise noted)

OH360U Uni-Polar

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
B _{OP}	Magnetic Operate Point ⁽¹⁾	235	300	465	Gauss	
B _{RP}	Magnetic Release Point	120	235	325	Gauss	
B _H	Magnetic Hysteresis	30	65	200	Gauss	
Icc	Supply Current	-	6	9	mA	Vcc = 24 V, Output Off
V _{OL}	Output Saturation Voltage	-	100	300	mV	Vcc = 4.5 V, I _{OL} = 20 mA, B ≥ 465 Gauss
I _{OH}	Output Leakage Current	-	0.1	10.0	μΑ	Vcc = 24 V, V _{OUT} = 24 V, B ≤ 120 Gauss
t _r	Output Rise Time	-	0.21	1.00	μs	D = 920 O C = 20 pF Voc = 14 V
t _f	Output Fall Time	-	0.10	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$, $Vcc = 14 V$

OHN3013U, OHN3113U Uni-Polar

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
B _{OP}	Magnetic Operate Point ⁽¹⁾	OHN3013 OHN3113	-	300 -	450 510	Gauss	+25°C -20°C TO 85°C
B_RP	Magnetic Release Point	OHN3013 OHN3113	30 20	235 -	-	Gauss	+25°C -20°C TO 85°C
Вн	Magnetic Hysteresis	OHN3013 OHN3113	20 10	65 -	-	Gauss	+25°C -20°C TO 85°C
Icc	Supply Current		-	4	7	mA	Vcc = 24 V, Output Off, B ≤ 25 Gauss
V _{OL}	Output Saturation Voltage		-	100	400	mV	Vcc = 4.5 V, I _{OL} = 20 mA, B ≥ 450 Gauss
I _{OH}	Output Leakage Current		-	0.1	10.0	μΑ	Vcc = 24 V, V _{OUT} = 24 V, B ≤ 25 Gauss
t _r	Output Rise Time		1	0.21	1.00	μs	B = 820 O C = 20 pF Vcc = 12 V
t _f	Output Fall Time		1	0.10	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$, $Vcc = 12 V$

Notes:

(1) South pole facing symbolized surface.

Electrical Characteristics (Vcc = 4.5 V to 24 V, T_A = 25° C unless otherwise noted)

OHN3019U, OHS3019U, OHN3119U, OHS3119U Uni-Polar

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
Вор	Magnetic Operate Point ⁽¹⁾	OH_3019 OHN3119 OHS3119	175 100 45	300 - -	500 545 575	Gauss	+25°C -20°C to +85°C -40°C to +125°C
B _{RP}	Magnetic Release Point	OH_3019 OHN3119 OHS3119	125 50 25	235 - -	450 495 555	Gauss	+25°C -20°C to +85°C -40°C to +125°C
Вн	Magnetic Hysteresis	OH_3019 OHN3119 OHS3119	50 50 20	65 - -	- - -	Gauss	+25°C -20°C to +85°C -40°C to +125°C
Icc	Supply Current		-	4	7	mA	Vcc = 24 V, Output Off, B ≤ 125 Gauss
V _{OL}	Output Saturation Volta	ge	-	100	400	mV	Vcc = 4.5 V, I _{OL} = 20 mA, B ≥ 500 Gauss
I _{OH}	Output Leakage Current		-	0.1	10.0	μΑ	Vcc = 24 V, V _{OUT} = 24 V, B ≤ 100 Gauss
t _r	Output Rise Time		-	0.21	1.00	μs	
t _f	Output Fall Time		-	0.10	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$, $Vcc = 12 V$

OHN3020U, OHS3020U, OHN3120U, OHS3120U Uni-Polar

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
Вор	Magnetic Operate Point ⁽¹⁾	OH_3020 OHN3120 OHS3120	70 70 35	230 - -	350 425 450	Gauss	+25°C -20°C to +85°C -40°C to +125°C
B _{RP}	Magnetic Release Point	OH_3020 OHN3120 OHS3120	50 50 25	180 - -	330 405 430	Gauss	+25°C -20°C to +85°C -40°C to +125°C
Вн	Magnetic Hysteresis	OH_3020 OHN3120 OHS3120	20 20 20	50 - -		Gauss	+25°C -20°C to +85°C -40°C to +125°C
Icc	Supply Current		-	4	7	mA	Vcc = 24 V, Output Off, B ≤ 50 Gauss
V_{OL}	Output Saturation Voltag	ge	-	100	400	mV	Vcc = 4.5 V, I _{OL} = 20 mA, B ≥ 350 Gauss
I _{OH}	Output Leakage Current		-	0.1	10.0	μΑ	Vcc = 24 V, V _{OUT} = 24 V, B ≤ 50 Gauss
t _r	Output Rise Time		-	0.21	1.00	μs	P = 820 O C = 20 pE Vcc = 12 V
t _f	Output Fall Time		-	0.10	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$, $Vcc = 12 V$

Notes:

(1) South pole facing symbolized surface.

Electrical Characteristics (Vcc = 4.5 V to 24 V, T_A = 25° C unless otherwise noted)

OHN3030U, OHS3030U, OHN3130U & OHS3130U Uni-Polar

SYMBOL	PARAMETER		MIN	ТҮР	MAX	UNITS	TEST CONDITIONS
B _{OP}	Magnetic Operate Point ⁽¹⁾	OH_3030 OH_3130 OHN3130 OHS3130	- - -	205 - - -	250 150 175 200	Gauss	+25°C +25°C -20°C to +85°C -40°C to +125°C
B _{RP}	Magnetic Release Point	OH_3030 OH_3130 OHN3130 OHS3130	0 -150 -175 -200	160 - - -		Gauss	+25°C +25°C -20°C to +85°C -40°C to +125°C
Вн	Magnetic Hysteresis	OH_3030 OH_3130 OHN3130 OHS3130	20 20 20 20	45 - - -	- - -	Gauss	+25°C +25°C -20°C to +85°C -40°C to +125°C
Icc	Supply Current		1	4	7	mA	Vcc = 24 V, Output Off, B ≤ 0 Gauss
V _{OL}	Output Saturation Voltage	!	-	100	400	mV	Vcc = 4.5 V, I _{OL} = 20 mA, B ≥ 200 Gauss
I _{OH}	Output Leakage Current		1	0.1	10.0	μΑ	Vcc = 24 V, V _{OUT} = 24 V, B ≤ 50 Gauss
t _r	Output Rise Time		1	0.21	1.00	μs	D = 920 O C = 20 pF Vec = 12 V
t _f	Output Fall Time		-	0.10	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$, $Vcc = 12 V$

OHN3131U & OHS3131U Uni-Polar

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
B _{OP}	Magnetic Operate Point ⁽¹⁾	OH_3131 OHN3131 OHS3131	-75 -75 -75	- - -	95 95 135	Gauss	+25°C -20°C to +85°C -40°C to +125°C
B _{RP}	Magnetic Release Point	OH_3031 OHN3131 OHS3131	-95 -59 -135		85 85 125	Gauss	+25°C -20°C to +85°C -40°C to +125°C
Вн	Magnetic Hysteresis	OH_3031 OHN3131 OHS3131	10 10 10	- - -	- - -	Gauss	+25°C -20°C to +85°C -40°C to +125°C
Icc	Supply Current		1	4	7	mA	Vcc = 24 V, Output Off, B ≤ 0 Gauss
V _{OL}	Output Saturation Voltage	2	1	100	400	mV	Vcc = 4.5 V, I _{OL} = 20 mA, B ≥ 200 Gauss
I _{OH}	Output Leakage Current		-	0.1	10.0	μΑ	Vcc = 24 V, V _{OUT} = 24 V, B ≤ 50 Gauss
t _r	Output Rise Time		-	0.21	1.00	μs	D = 930 O C = 30 pF Vcc = 13 V
t _f	Output Fall Time		-	0.10	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$, $Vcc = 12 V$

Notes:

(1) South pole facing symbolized surface.

Electrical Characteristics (Vcc = 4.5 V to 24 V, T_A = 25° C unless otherwise noted)

OHN3040U, OHS3040U, OHN3140U, OHS3140U

Uni-Polar

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS	
Вор	Magnetic Operate Point ⁽¹⁾	OH_3040 OHN3140 OHS3140	70 45 45	150 - -	220 260 270	Gauss	+25°C -20°C to +85°C -40°C to +125°C	
B _{RP}	Magnetic Release Point	OH_3040 OHN3140 OHS3140	50 25 25	115 - -	180 240 250	Gauss	+25°C -20°C to +85°C -40°C to +125°C	
Вн	Magnetic Hysteresis	OH_3040 OHN3140 OHS3140	20 20 20	35 - -		Gauss	+25°C -20°C to +85°C -40°C to +125°C	
Icc	Supply Current		-	4	7	mA	Vcc = 24 V, Output Off, B ≤ -50 Gauss	
V _{OL}	Output Saturation Voltage		-	100	400	mV	Vcc = 4.5 V, I _{OL} = 20 mA, B ≥ 200 Gauss	
I _{OH}	Output Leakage Current		-	0.1	10.0	μΑ	Vcc = 24 V, V _{OUT} = 24 V, B ≤ -50 Gauss	
t _r	Output Rise Time		-	0.21	1.00	μs	B = 920 O C = 20 pF Vec = 12 V	
t _f	Output Fall Time		-	0.10	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$, $Vcc = 12 V$	

OHN3075U, OHS3075U, OHN3175U, OHS3175U

Bi-Polar Latch

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS	
B _{OP}	Magnetic Operate Point ⁽¹⁾	OH_3075 OH_3175 OHN3175 OHS3175	50 25 15 10	100 - - -	250 170 180 260	Gauss	+25°C +25°C -20°C to +85°C -40°C to +125°C	
B _{RP}	Magnetic Release Point	OH_3075 OH_3175 OHN3175 OHS3175	-250 -170 -180 -260	-100 - - -	-50 -25 -15 -10	Gauss	+25°C +25°C -20°C to +85°C -40°C to +125°C	
Вн	Magnetic Hysteresis	OH_3075 OH_3175 OHN3175 OHS3175	100 100 80 50	200 - - -	500 - - -	Gauss	+25°C +25°C -20°C to +85°C -40°C to +125°C	
Icc	Supply Current		1	4	7	mA	Vcc = 24 V, Output Off, B ≤ -250 Gauss	
V _{OL}	Output Saturation Voltage		ı	100	400	mV	Vcc = 4.5 V, I _{OL} = 20 mA, B ≥ 250 Gauss	
I _{OH}	Output Leakage Current		1	0.1	10.0	μΑ	Vcc = 24 V, V _{OUT} = 24 V, B ≤ -250 Gauss	
t _r	Output Rise Time		1	0.21	1.00	μs	R _L = 820 Ω, C _L = 20 pF, Vcc = 12 V	
t _f	Output Fall Time		-	0.10	1.00	μs		

Notes:

(1) South pole facing symbolized surface.

Electrical Characteristics (Vcc = 4.5 V to 24 V, T_A = 25° C unless otherwise noted)

OHN3177U, OHS3177U Bi-Polar Latch

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS	
Вор	Magnetic Operate Point ⁽¹⁾	OH_3177 OHN3177 OHS3177	50 25 25	1 1 1	150 150 200	Gauss	+25°C -20°C to +85°C -40°C to +125°C	
B _{RP}	Magnetic Release Point	OH_3177 OHN3177 OHS3177	-150 -150 -200		-50 -25 -25	Gauss	+25°C -20°C to +85°C -40°C to +125°C	
Вн	Magnetic Hysteresis	OH_3177 OHN3177 OHS3177	100 50 50			Gauss	+25°C -20°C to +85°C -40°C to +125°C	
Icc	Supply Current		ı	4	7	mA	Vcc = 24 V, Output Off, B ≤ -250 Gauss	
V _{OL}	Output Saturation Voltage		ı	100	400	mV	Vcc = 4.5 V, I _{OL} = 20 mA, B ≥ 250 Gauss	
I _{OH}	Output Leakage Current		ı	0.1	10.0	μΑ	Vcc = 24 V, V _{OUT} = 24 V, B ≤ -250 Gauss	
t _r	Output Rise Time		-	0.21	1.00	μs		
t _f	Output Fall Time		-	0.10	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$, $Vcc = 12 V$	

Notes:

(1) South pole facing symbolized surface.

Typical Operate & Release Points

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.