Урок 63 Електричний струм у газах

Мета уроку:

Навчальна. Пояснити природу виникнення струму в газах, сформувати уявлення про самостійний і несамостійний розряди.

Розвивальна. Розвивати логічне мислення учнів та показати практичну значущість отриманих знань.

Виховна. Формування таких якостей особистості, як відповідність, організованість, дисциплінованість, обов'язок.

Тип уроку: комбінований урок

Обладнання: навчальна презентація, комп'ютер.

План уроку:

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

III. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

V. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

VII. ДОМАШНЄ ЗАВДАННЯ

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

Фронтальне опитування або самостійна робота

- 1. Що таке електроліт?
- 2. У чому полягає явище електролітичної дисоціації? Наведіть приклади.
- 3. Що являє собою електричний струм в електролітах?
- 4. Опишіть процес електролізу.
- 5. Сформулюйте перший закон Фарадея.
- 6. Наведіть приклади застосування електролізу.
- 7. Як можна очистити метали від домішок?
- 8. Опишіть процес отримання алюмінію за допомогою електролізу.
- 9. Для чого поверхню металів покривають тонким шаром іншого металу?
- 10. Що таке гальваностегія? гальванопластика?

ІІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

Ми знаємо, що гази є діелектриками (в них немає вільних заряджених частинок) За яких умов газ із діелектрика може перетворитися на провідник?

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

1. Електричний струм у газах

Проведемо дослід

Складемо електричне коло: 1 — металеві пластини; 2 — повітряний проміжок; 3 — потужне джерело струму; 4 — гальванометр; 5 — спиртівка.

Замкнувши коло, побачимо, що стрілка гальванометра не відхиляється

За звичайних умов повітря не проводить електричного струму (а).

Помістимо між металевими пластинами запалену спиртівку — стрілка гальванометра відхилиться.

У разі внесення в повітряний проміжок запаленої спиртівки повітря стає провідником (б).

Питання класу

• Чому через повітря почав проходити електричний струм?

Гази складаються з електрично нейтральних атомів і молекул і за звичайних умов майже не містять вільних носіїв струму (за звичайних умов повітря ϵ ізолятором).

Полум'я спиртівки нагріває повітря, й кінетична енергія теплового руху атомів і молекул повітря збільшується настільки, що в разі їх зіткнення від молекули або атома може відірватися електрон і стати вільним. Втративши електрон, молекула (або атом) стає позитивним йоном.

Здійснюючи тепловий рух, *електрон може зіткнутися з* нейтральною частинкою і «прилипнути» до неї — утвориться негативний йон.

Йонізація газів — це процес утворення позитивних і негативних йонів та вільних електронів з молекул (атомів) газу.

Рекомбінація газів — це процес возз'єднання протилежно заряджених частинок у нейтральні молекули.

Питання класу

• Що ж відбудеться, якщо йонізований газ помістити в електричне поле?

Якщо йонізований газ помістити в електричне поле, то внаслідок дії цього поля позитивні йони рухатимуться в напрямку силових ліній поля, а електрони та негативні йони — в протилежному напрямку.

Електричний струм у газах — це напрямлений рух вільних електронів, позитивних і негативних йонів.

Електричний струм у газах інакше називають *газовим розрядом*.

2. Несамостійний газовий розряд

Йонізація газу може відбуватися під впливом різних зовнішніх впливів (сильне нагрівання газу, рентгенівське чи радіоактивне випромінювання), що називаються зовнішніми йонізаторами.

Існує 2 види газового розряду: несамостійний і самостійний.

Якщо електропровідність газу виникає під дією йонізаторів, а з видаленням останнього зникає, то це несамостійний розряд.

Несамостійний газовий розряд — це газовий розряд, який відбувається тільки за наявності зовнішнього йонізатора.

3. Самостійний газовий розряд

За певних умов газ може проводити електричний струм і після припинення дії йонізатора.

Самостійний газовий розряд – це газовий розряд, який відбувається без дії зовнішнього йонізатора.

Схема розвитку електронної лавини.

Вільний електрон, прискорений електричним полем, йонізує молекулу або атом і звільняє ще один електрон. Розігнавшись, два електрони звільняють ще два. До анода летять уже чотири електрони і т. д. Число вільних електронів збільшується лавиноподібно доти, доки вони не досягнуть анода.

Позитивні йони прямують до катода й вибивають з нього нові електрони (емісія)

Самостійний газовий розряд підтримується за рахунок ударної йонізації та за рахунок емісії електронів з поверхні катода.

V. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

- 1. До зарядженого електроскопа піднесли запалену спиртівку. Що відбуватиметься зі стрілкою електроскопа?
- 2. Як зміниться сила струму насичення, якщо під час незмінної дії іонізатора збільшити відстань між пластинами електродів?
- 3. У чому відмінність провідності газів при самостійному та несамостійному розрядах?
- 4. Які умови виконуються для того, щоб несамостійний розряд став самостійним?

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

Бесіда за питаннями

- 1. Чому за звичайних умов газ не проводить електричний струм?
- 2. Який газ називають йонізованим?
- 3. Що таке йонізація?
- 4. Що таке електричний струм у газах?
- 5. Який розряд у газі називають несамостійним?
- 6. Чому після закінчення дії йонізатора несамостійний газовий розряд швидко припиняється?
 - 7. Дайте означення самостійного газового розряду.
 - 8. Опишіть механізм ударної йонізації.
- 9. Яким ще шляхом, крім йонізації електронним ударом, поповнюється нестача вільних електронів у випадку самостійного газового розряду?

VII. ДОМАШН€ ЗАВДАННЯ

Вивчити § 39, Вправа № 39 (1 - 4)

Виконане Д/з відправте на human, або на електронну адресу kmitevich.alex@gmail.com