Terminology Example p-hacking Summary

Lecture 11: Hypothesis testing part I Statistical Methods for Data Science

Yinan Yu

Department of Computer Science and Engineering

December 12, 2024

Today

- Terminology
 - Experiment and parameter of interest
 - Null hypothesis and alternative hypothesis
 - Test statistic
 - Null distribution $f(s \mid H_0)$
 - ullet Significance level lpha, power and \emph{p} -value
- 2 Example
- p-hacking
- Summary

Learning outcome

- Be able to explain the following terminology
 - Null hypothesis H_0 and alternative hypothesis H_A
 - Test statistic s
 - Null distribution $f(s \mid H_0)$
 - ullet Significance level lpha and power
 - p-value
- Be able to design and interpret the one-sample z-test
- Be able to explain the concept of p-hacking

Today

- Terminology
 - Experiment and parameter of interest
 - Null hypothesis and alternative hypothesis
 - Test statistic
 - Null distribution $f(s \mid H_0)$
 - Significance level α , power and p-value
- 2 Example
- p-hacking
- 4 Summary

Experiment and parameter of interest Null hypothesis and alternative hypothesi Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and ρ -value

Important example

If you control the diet of your ducks, they lose 2.1 kg after one month on average

- Company A has developed a drug D (aka. Duckyphanomin) to help duckies lose weight.
 They claim that on average the drug works better than diet control
- Company B has developed a drug E (aka. Everyduckyslim) and they claim that drug E is more effective than drug D on average

You NEED to help your chonker ducks lose weight. Which drug should you buy? Or should you just control their diet without drugs?

- If company A tested drug D on 30 ducks and the average weight loss after one month is 2.2 kg, would you buy drug D instead of regular diet control?
- What if company A tested drug D on 30 ducks and the average weight loss after one month is 2.3 kg? Would you buy drug D instead of regular diet control in this case?
- What if company A tested drug D on 100 ducks and the average weight loss after one month is 2.3 kg?
- Now company B tested drug E on 30 ducks and the average weight loss after one month is 2.5 kg, while drug D results in 2.3 kg weight loss with the same setup, would you buy drug E instead of drug D?

What would you do?

Experiment and parameter of interest Null hypothesis and alternative hypothesi Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Statistical hypothesis

- Hypothesis:
 - A proposed explanation for a phenomenon (Wikipedia)
 - An idea or explanation of something that is based on a few known facts but that has not yet been proved to be true or correct (Oxford dictionary)
- Statistical hypothesis: A proposed distribution that explains a set of random variables
- Hypothesis testing in statistics: The goal is to determine whether it is likely that a random variable follows the proposed distribution
 - This is done using sample statistics derived from data
 - The process involves combining the hypothesis with data to make a decision on whether to reject or not reject the hypothesis

Experiment and parameter of interest Null hypothesis and alternative hypothes Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Hypothesis testing: a list to go through

- A default statement
- Experiment
- Data x, random variable X
- ullet Parameter of interest heta
- Parameter estimate $\hat{\theta}$
- Null hypothesis H_0
- Alternative hypothesis H_A
- Test statistic s
- Null distribution $f(s \mid H_0)$
- ullet Significance level α
- p-value

Terminology Example p-hacking Summary Experiment and parameter of interest Null hypothesis and alternative hypothesis Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Experiment and parameter of interest

Experiment and parameter of interest Null hypothesis and alternative hypothesi Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Experiment design

- Before formulating the statistical hypothesis, we need to propose a default statement: a "boring" and unsurprising claim that we would like to test, e.g.,
 - Drug D is not more effective than a regular diet on average
 Drug E works the same as drug D on average

In science, we are hoping for new discoveries and excitement, but we need to earn it by showing that the **trivial explanation** does not hold with evidence (**data**)

- Example 1: recall if you control the diet of your ducks, they lose 2.1 kg after one month on average
 - A default statement: drug D is not more effective than a regular diet on average What experiments can we run to test whether this statement is true?
 - Experiment (5 sec): give drug D to N chonker ducks and record the average weight loss after one month
 - Data and random variable (5 sec):
 - Data: x_i weight loss after one month for i = 1, · · · , N
 - Random variable: X_i i.i.d.
 - \bullet Parameter of interest (5 sec): the mean of the weight loss μ_D
 - Parameter estimate (5 sec): the sample mean $\hat{\mu_D} = \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$

Then we test whether \bar{x} is greater than diet control (2.1 kg)

Experiment design (cont.)

- Example 2:
 - A default statement: drug E and drug D work the same on average
 - Experiment (5 sec): give drug D to N_D chonker ducks and record the average weight loss after one month; test drug E on another N_E chonker ducks and record the average weight loss after one month
 - Data and random variable (5 sec): data x_i weight loss using drug D after one month for $i = 1, \dots, N_D$; random variable X_i i.i.d.; likewise, we have data y_j and random variable Y_j for drug E
 - Parameter of interest (5 secs): the mean μ_D and μ_E for drug D and E, respectively
 - Parameter estimate (5 secs): the sample mean $\hat{\mu}_D = \bar{x} = \frac{1}{N_D} \sum_{i=1}^{N_D} x_i$ and $\hat{\mu_E} = \bar{y} = \frac{1}{N_F} \sum_{i=1}^{N_E} y_i$

Then we test whether \bar{x} and \bar{y} are the same

Experiment and parameter of interest Null hypothesis and alternative hypothesi Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Experiment design (cont.)

- We make our decision by observing data; if the evidence does not support the default statement, we reject the statement; otherwise, we do not reject the statement
- However, we can never definitively prove or accept the statement; we can only reject it by providing counterexamples.
- Intuition: "If the statement is true, then the evidence should support it", which is equivalent to saying (\iff) "if the evidence does not support the statement, the statement is considered false", which is not the same as claiming (\iff) "if the evidence supports the statement, the statement must be true"

Terminology Example p-hacking Summary Experiment and parameter of interest Null hypothesis and alternative hypothesis Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Null hypothesis and alternative hypothesis

Hypotheses H_0 and H_A

- Statistical hypothesis: a proposed distribution typically a statement about the parameter of interest
- Null hypothesis H₀: the default statement translated into a mathematical expression
 - Example 1: drug D is not more effective than regular diet control on average

$$H_0: \mu_D = 2.1$$

Example 2: drug E and drug D work the same on average (5 sec)

$$H_0: \mu_D = \mu_E$$

- Alternative hypothesis H_A: an alternative hypothesis that is complementary (the opposite) to the null hypothesis
 - Example 2 (5 sec): drug E and drug D do not work the same on average (5 sec)

$$H_A: \mu_D \neq \mu_E$$

• Example 1 (5 sec): drug D is more effective than regular diet control on average (5 sec)

Hypotheses H_0 and H_A (cont.)

Questions:

• Question 1: Why are $H_A: \mu_D > 2.1$ and $H_0: \mu_D = 2.1$ complementary to each other? What about H_A : $\mu_D < 2.1$?

Answer: One implicit assumption here is that μ_D will not be smaller than 2.1

Question 1.1: Do I need to make this assumption?

Answer: No.

Question 1.2: Could you elaborate on that?

Answer: Yes

Question 1.3: When? Answer: In a few slides

Okay

• Question 2: Can H_0 and H_A be ANYTHING I want? Like a magic mirror!?

Answer: No.

Question 2.2: What are the choices for H_0 and H_A then?

Choices for H_0

- In this course, we only deal with null hypotheses with an equal sign in them only one fixed choice for the distribution proposed by H_0
- Null hypothesis H₀: two cases
 - One-sample test: to test a data distribution against a theoretical probability distribution, i.e. for a given constant c

$$H_0: \theta = c$$

For example, is this (binary) classifier more accurate than random? $H_0: p = 50\%$

 Two-sample test: to test a data distribution against another data distribution, i.e.

$$H_0: \theta_1 = \theta_2$$

For example, is classifier A better than classifier B? $H_0: p_A = p_B$

- We have seen one-sample test and two-sample test in the Q-Q plot lecture
- In practice, you can narrow down your choice of hypotheses by looking at Q-Q plots

Choices for H_A

Given

$$H_0: \theta = \beta$$

where β can be either a constant (one-sample test) or a parameter from another data distribution (two-sample test)

- Alternative hypothesis H_A : H_A can be one-tailed or two-tailed
 - One-tailed:

$$H_A: \theta > \beta$$

or

$$H_A: \theta < \beta$$

Two-tailed:

$$H_A: \theta \neq \beta \iff \theta < \beta \text{ or } \theta > \beta$$

Summary: choices for H_0 and H_A

Putting everything together,

	One-sample test	Two-sample test
Two-tailed	$H_0: \theta = c, H_A: \theta \neq c$	$H_0: \theta_1 = \theta_2, H_A: \theta_1 \neq \theta_2$
One-tailed	$H_0: \theta = c, H_A: \theta > c$	$H_0: \theta_1 = \theta_2, H_A: \theta_1 > \theta_2$
	$H_0: \theta = c, H_A: \theta < c$	$H_0: \theta_1 = \theta_2, H_A: \theta_1 < \theta_2$

where θ , θ_1 , θ_2 are the parameters of interest and c is a constant Note: this is the answer to question 1.1 (cf. page 14): if you choose the one-tailed test, then you are making the assumption $H_A: \mu_D > 2.1$; if you choose the two-tailed test, then you are not making this assumption

Terminology Example p-hacking Summary Experiment and parameter of interest Null hypothesis and alternative hypothesi **Test statistic**Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Test statistic

Test statistic

- Test statistic s (random variable S): a (typically standardized) statistic computed from data
- Purpose: to determine how plausible the null hypothesis H_0 is by observing s

- What is needed for the expression of the test statistic?
 - Assumptions on random variables X_i's
 - We only need the null hypothesis H_0 (not H_A) to express the test statistic

Disclaimer: in this course, we only deal with null hypothesis where we are able to express the PDF/PMF $f(s \mid H_0)$, i.e. H_0 with an equal sign in them

Test statistic (cont.)

Example 1. one-sample test (is drug D more effective than diet control)

- Data: x₁, · · · , x_N
- Random variable: X_1, \dots, X_N i.i.d. Gaussian with known σ
- Parameter of interest: μ_D
- Parameter estimate: $\bar{x} \ (\sim \mathcal{N}(\mu_D, \frac{\sigma^2}{N}) \mathsf{CLT})$
- Null hypothesis: $H_0: \mu_D = 2.1$
- Test statistic: $s = \text{standardized } \bar{x}$ assuming the null hypothesis
 - What are we trying to do here? To decide whether we can reject the null hypothesis if the
 null hypothesis is true, we should be able to see evidence that supports it if we do not see
 evidence, we reject the null hypothesis
 - What is "evidence"? It is the value of the test statistic s assuming the the distribution described by the null hypothesis (we need H₀ to compute s)
 - What is the distribution described by the null hypothesis?
 - Gaussian distribution with (known) standard deviation σ and mean $\mu_D=2.1$
 - Assuming the null hypothesis: data are assumed to be generated from the distribution described by the null hypothesis $X_i \sim \mathcal{N}(2.1, \sigma^2)$
 - Recall: what is standardization?
 - Random variable X: $\frac{X-\mu_X}{\sigma_X}$
 - Data x: x-μχ σx
 - Why are we standardizing the statistic \bar{x} ? We want to use standard tools for our analysis

Standardize \bar{x} (15 sec)

$$s = z = \frac{\bar{x} - 2.1}{\sigma / \sqrt{N}}$$

Test statistic (cont.)

Example 2. two-sample test

- Data: x_1, \dots, x_{N_D} and y_1, \dots, y_{N_E}
- Random variable: X_1, \dots, X_{N_D} i.i.d. Gaussian with known σ_D ; Y_1, \dots, Y_{N_E} i.i.d. Gaussian with known σ_E ; X_i and Y_j independent
- Parameter of interest: μ_D , μ_E
- Parameter estimate: \bar{x} , \bar{y}
- Null hypothesis: $H_0: \mu_D = \mu_E \iff H_0: \mu_D \mu_E = 0$
- Test statistic: standardized $\bar{x} \bar{y}$ assuming the null hypothesis

$$z = \frac{\bar{x} - \bar{y}}{\sqrt{\sigma_D^2/N_D + \sigma_E^2/N_E}}$$

Note: \bar{x} , \bar{y} Gaussian (CLT); awesome properties of Gaussian from Lecture 6

Terminology Example p-hacking Summary Experiment and parameter of interest Null hypothesis and alternative hypothesis Test statistic

Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Null distribution $f(s \mid H_0)$

Null distribution

- Null distribution $f(s \mid H_0)$: the distribution of the test statistic S given the null hypothesis H_0
- Example:
 - Data: x₁, · · · , x_N
 - Random variable: X_1, \dots, X_N i.i.d. Gaussian with known σ
 - Parameter of interest: μ
 - Parameter estimate: \bar{x}
 - Null hypothesis: $H_0: \mu = \mu_0$
 - Test statistic:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{N}}$$

• Null distribution: standard Gaussian distribution

Terminology Example p-hacking Summary Experiment and parameter of interest Null hypothesis and alternative hypothes Test statistic Null distribution $f(s\mid H_0)$ Significance level α , power and p-value

Significance level α , power and p-value

Significance level

Given a null hypothesis $H_0: \mu = 2.1$ and the null distribution $f(s \mid H_0)$, we decide whether we reject the hypothesis or not by observing data

- Run some experiments and collect data x_1, \dots, x_N
- Compute the test statistic from data, e.g.

$$z = \frac{\bar{x} - 2.1}{\sigma / \sqrt{N}} = 4.0$$

• Does this evidence support the hypothesis H_0 ? Probably not since it's so far away from the center?

Significance level (cont.)

• What about this observation?

- To be able to answer the question, you need to decide where you draw the line (quite literally) define a rejection region by choosing a significance level
- Significance level α : red area under the curve

In these three images, $\alpha = 0.05$

- What is needed for choosing a meaningful α ?
 - Null distribution
 - H_A one-tailed or two-tailed

Significance level (cont.)

• Significance level $\alpha = 0.05$: red area under the curve

- More conservative \Rightarrow less probable to reject H_0 , which indicates a smaller rejection region
- Two-tailed H_A is more conservative

Interpretation of α

• $\alpha = P(reject \ H_0 \mid H_0 \ is \ true)$ - the probability of making such a mistake

- The rejection region indicates that H_0 is **unlikely**, but the probability is not zero
- It is possible that H₀ is true, but our observation happens to fall in the rejection region
- If H₀ is true and our observation falls in the rejection region, we will mistakenly reject H₀
- ullet The probability of making this type of mistakes is lpha
- Similar to the confidence interval, $1-\alpha$ is called the **confidence level** "with 95% confidence, rejecting H_0 is the right thing to do"
- Define the significance level before you run the experiments so that you can't cheat!

Significance level and power

Contingency table:

	$y = H_A$	$y = H_0$
$\hat{y} = \text{reject } H_0$	TP	FP (Type I error)
$\hat{y} = \text{do not reject } H_0$	FN (Type II error)	TN

• Significance level α : incorrectly rejecting H_0

$$\alpha = \textit{P}(\text{type I error})$$

Power: correctly rejecting H₀

power =
$$P(\text{reject } H_0 \mid H_A) = 1 - P(\text{type II error})$$

• What is needed for computing power (20 sec)? $f(s \mid H_0)$, $f(s \mid H_A)$, α

p-value

The p-value tells us how unlikely it would be to see our results (or something more extreme) by pure chance alone if the null hypothesis is true.

- p-value:
 - One-tailed:
 - Right tail: $p = P(S \ge s \mid H_0)$, e.g. 1-stats.norm.cdf(s, 0, 1) • Left tail: $p = P(S \le s \mid H_0)$, e.g. stats.norm.cdf(s, 0, 1)
 - Two-tailed:
 - $p = 2 \min(P(S \le s \mid H_0), P(S \ge s \mid H_0))$, e.g. $2^* \min(\text{stats.norm.cdf(s, 0, 1)}, 1\text{-stats.norm.cdf(s, 0, 1)})$ Note: for example, if $f(s \mid H_0)$ is symmetric around zero and s < 0,

- What is needed for computing the p-value? (10 sec)
 - Null distribution
 - Alternative hypothesis H_A to know one-tailed or two-tailed
 - Observation test statistic computed from data

Experiment and parameter of interest Null hypothesis and alternative hypothes Test statistic Null distribution $f(s \mid H_0)$ Significance level α , power and p-value

Summary: steps for hypothesis testing

- Step 1 Make a default statement
- Step 2 Design an experiment
- Step 3 Describe the **data** generated from the experiment and the corresponding random variables
- Step 4 Describe the parameter of interest and their estimates
- Step 5 Translate the default statement into a statistical hypothesis and call it the null hypothesis H_0
- Step 6 Find the expression for the **test statistic** s
- Step 7 Find the expression for the null distribution
- Step 8 Define an alternative hypothesis H_A : one-tailed or two-tailed
- Step 9 Choose a significance level α (the tail), which defines the rejection region
- Step 10 Run experiments and collect data
- Step 11 Compute the test statistic from data
- Step 12 Compute the *p*-value
- Step 13 If p-value< α , i.e. the test statistic falls in the rejection region of the null distribution, then we reject the hypothesis H_0 ; otherwise, we fail to reject H_0 .

Today

- 1 Terminology
- 2 Example
- p-hacking
- Summary

Example

Recall example: if you control the diet of your ducks, they lose $2.1\ kg$ after one month on average. Company A has developed a drug D (Duckyphanomin!) to help ducks lose weight. They claim that on average the drug works better than diet control.

- Step 1 Make a default statement (5 secs): drug D works the same as diet control
- Step 2 Design an experiment (choose N = 30) (10 secs): feed drug D to 30 chonker ducks and measure their weight loss after one month
- Step 3 Describe the data and random variables along with assumptions about their distributions (5 secs): weight loss x_1, \cdots, x_{30} ; X_1, \cdots, X_{30} i.i.d. Gaussian random variables let's make an additional assumption to simplify the problem the standard deviation of X_i $\sigma=0.6$ is known
- Step 4 Describe the parameter of interest and their estimates (10 secs): the mean value μ_D and $\hat{\mu}_D = \bar{x}$
- Step 5 Translate the default statement into a statistical hypothesis and call it the **null hypothesis** H_0 (10 secs): $H_0: \mu_D=2.1$
- Step 6 Find the expression for the **test statistic** *s* (60 secs):

$$s = z = \frac{\bar{x} - 2.1}{\sigma / \sqrt{30}}$$

Step 7 Find the expression for the **null distribution** $f(s \mid H_0)$ (10 secs):

$$f(z\mid H_0) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

Step 8 Define an alternative hypothesis H_A (10 secs):

$$H_A: \mu_D \neq 2.1 \text{ or } H_A: \mu_D > 2.1$$

One-tailed or two-tailed

- Two-tailed (5 secs): $H_A: \mu_D \neq 2.1$
- One-tailed (5 secs): $H_A: \mu_D > 2.1$
- Step 9 Choose a significance level α (the tail), which defines the rejection region (5 secs): e.g. $\alpha=0.05$
- Step 10 Collect 30 ducks in 20 secs and feed them drugs great job! Weights measured after one month x_1, \dots, x_{30}
 - Say $\frac{1}{30} \sum_{i=1}^{30} x_i = 2.2$
- Step 11 Compute the test statistic from data (5 secs):

$$z_0 = \frac{2.2 - 2.1}{0.6/\sqrt{30}} = 0.91$$

- Step 12 Compute the *p*-value (20 secs):
 - For $H_A: \mu_D > 2.1$ (one-tailed): $p = P(Z \ge z_0 \mid H_0) = 0.1807 > \alpha$
 - For $H_A: \mu_D \neq 2.1$ (two-tailed): $p = 2P(Z \geq z_0 \mid H_0) = 0.3613 > \alpha$
- Step 13 If p-value< α , i.e. the test statistic falls in the rejection region of the null distribution, then we reject the hypothesis H_0

Do not reject H_0 for both one-tailed and two-tailed H_A What does it mean? - Based on this test, you will stick to diet control instead of buying Duckyphanomin

What if $\bar{x} = 2.3$?

Step 11 Compute the test statistic from data (5 secs):

$$z_0 = \frac{2.3 - 2.1}{0.6/\sqrt{30}} = 1.826$$

Step 12 Compute the *p*-value (20 secs):

- For $H_A: \mu_D > 2.1$ (one-tailed): $p = P(Z \ge z_0 \mid H_0) = 0.0339 < \alpha$
- For $H_A: \mu_D \neq 2.1$ (two-tailed): $p = 2P(Z \geq z_0 \mid H_0) = 0.0679 > \alpha$

Step 13 If p-value $< \alpha$, i.e. the test statistic falls in the rejection region of the null distribution, then we reject the hypothesis H_0

Reject H_0 for one-tailed H_A ; do not reject H_0 for two-tailed H_A for the same confidence level $1 - \alpha = 95\%$

Note: the two-tailed test is more conservative - if the data passes a two-tailed test, it is more conclusive than one-tailed test for the same confidence level

What if $\bar{x} = 2.3$ with N = 100?

Step 11 Compute the test statistic from data (5 secs):

$$z_0 = \frac{2.3 - 2.1}{0.6/\sqrt{100}} = 3.33$$

Step 12 Compute the *p*-value (20 secs):

- For $H_A: \mu_D > 2.1$ (one-tailed): $p = P(Z \ge z_0 \mid H_0) = 0.0004 < \alpha$
- For $H_A: \mu_D \neq 2.1$ (two-tailed): $p = 2P(Z \geq z_0 \mid H_0) = 0.0009 < \alpha$

Step 13 If p-value< α , i.e. the test statistic falls in the rejection region of the null distribution, then we reject the hypothesis H_0

Reject H_0 for both one-tailed and two-tailed H_A

Note:

• With more data, it becomes more certain that we should reject H_0 in favor of H_A given the observation $\bar{x} = 2.3$

This test is called **one-sample z-test** (one of the established tests you choose from)

Today

- Terminology
- 2 Example
- p-hacking
- 4 Summary

Recall: one-tailed vs two-tailed tests

- p-value indicates how "surprising" the observation is
- In this context, "surprising" observations usually mean potential novelty
- In one of the examples, we have shown that we reject the null hypothesis for the one-tailed test but we fail to reject the null hypothesis for the two-tailed test given the same significance level

- In this example, if we use the two-tailed test, we will not claim that we have observed potential novelty with the experiment, whereas if we use the one-tailed test, we claim that we do observe potential novelty
- The conclusion we draw depends on which test we conduct

Variation of the p-value

- p-value is computed from data
- Data is random
- With the same experiment set up, if we switch to a different sample, p-value will be different

p-hacking

- Many factors can result in a different p-value
- p-hacking refers to situations where researchers are trying multiple things until they get the desired result
- This action can be a conscious decision, a subconscious decision or even an accident
- p-hacking can be tricky to identify
- Suggestions to avoid p-hacking, e.g. one should always report effect sizes and confidence intervals
- Reference:
 - https://www.nature.com/news/ scientific-method-statistical-errors-1.14700
 - Why Most Published Research Findings Are False?

p-hacking (cont.)

What should I do!?

- Be honest and explicit about your assumptions
- Be "conservative"
- Be skeptical about your result don't let go of any doubt!
- Assume the first success is always too good to be true try to prove yourself wrong - be a proper scientist

Today

- 1 Terminology
- 2 Example
- p-hacking
- 4 Summary

Summary

So far:

- Data types and data containers
- Descriptive data analysis: descriptive statistics, visualization
- Probability distributions, events, random variables, PMF, PDF, parameters
- CDF, Q-Q plot, how to compare two distributions (data vs theoretical, data vs data)
- Modeling
- Parameter estimation: maximum likelihood estimation (MLE) and maximum a posteriori estimation (MAP)
- Classification, multinomial naive Bayes classifier, Gaussian naive Bayes classifier
- · Central limit theorem, interval estimation
- Clustering, cluster tendency
- Centroid clustering, k-means, parameter estimation, SSE, Silhouette score
- Gaussian Mixture Models, AIC/BIC
- The EM algorithm
- Hypothesis test

Next:

More examples and test statistics

Before next lecture:

Steps for hypothesis testing

Screw diet! I'm perfect p = 100%!

That's not how p-value works...