Análisis de Errores de Cache

Luis Tong

Marzo 2017

Introducción

En esta Práctica De Algoritmos Paralelos se hace un análisis de errores de cache. Se comparó dos algoritmos que hallan la multiplicación de matrices, donde el primer algoritmo es el clásico conocido formado por 3 bucles, mientras el segundo algoritmo es una mejora del primero usando bloques.

La comparación se realizó mediante el uso de herramientas tales como valgring y kcachegring, quienes nos dan una evaluación más precisa en términos de L1, L2 entre otros para conocer los errores de cache.

Comparación

Se medió mediante el tamaño de matriz en nuestro caso matrices cuadradas.

Tamaño de matriz = 100

Tipos	Llamantes	Todos los llamantes			Ma	Mapa de llamadas			Código fuente	
Tipo de evento			Incl.		Auto		Corto		Fórmula	
Obtención de instrucción			35.46		35.46	Ir				
Fallo al obte	Fallo al obtener instrucción de L1			0.43		0.43	I1mr			
Fallo al obte	ener instrucció	on de LL		0.45		0.45	ILmr			
Acceso de lectura de datos			32.36		32.36	Dr				
Fallo al leer datos de L1			80.06		80.06	D1mr				
Fallo al leer datos de LL			0.00		0.00	DLmr				
Acceso de escritura de datos			27.22		27.22	Dw				
Fallo al escribir datos en L1			0.00		0.00	D1mw				
Fallo al escribir datos en LL			0.00		0.00	DLmw				
Fallo de sun	na de L1			71.24		71.24	L1m		I1mr + D1mr + D1mw	
Fallo de sun	Fallo de suma de último nivel			0.05		0.05	LLm		ILmr + DLmr + DLmw	
Estimación de ciclo		П	35.28		35.28	CEst	=	Ir + 10 L1m + 100 LLm		

Figura 1: Primer Algoritmo con matriz de tamaño 100

Ti <u>p</u> os Llama <u>n</u> tes	T <u>o</u> dos los llamantes			s	Mapa de llamadas			Código <u>f</u> uente
Tipo de evento			Incl.		ito	Corto		Fórmula
Obtención de instrucción			36.05		36.05	Ir		
Fallo al obtener instrucción de L1			0.48		0.48	I1mr		
Fallo al obtener instrucción de LL			0.51		0.51	ILmr		
Acceso de lectura de datos			32.46		32.46	Dr		
Fallo al leer datos de L1		K.	22.05	R.	22.05	D1mr		
Fallo al leer datos de LL			0.00		0.00	DLmr		
Acceso de escritura de datos			27.25	III.	27.25	Dw		
Fallo al escribir datos en L1			0.00		0.00	D1mw		
Fallo al escribir datos en LL			0.00		0.00	DLmw		
Fallo de suma de L1		r.	14.99		14.99	L1m	=	I1mr + D1mr + D1mw
Fallo de suma de último ni	vel		0.06		0.06	LLm	=	ILmr + DLmr + DLmw
Estimación de ciclo		П	35.55		35.55	CEst	=	Ir + 10 L1m + 100 LLm

Figura 2: Segundo Algoritmo con matriz de tamaño 100

Como podemos observar en las diferentes imágenes, se marca de colores azul ,como acceso de lectura, y color verde como fallo al leer datos.

Entonces hay diferencia en los eventos de Fallo al Leer el Dato de L1, donde para el Primer Algoritmo es casi 4 veces mayor que el Segundo, también notamos que en el evento de Fallo de Suma de L1 para el Primer Algoritmo es más de 3 veces mayor que el Segundo.

Tamaño de matriz = 500

Tipo de evento	Incl.		Auto		Corto	Fórmula
Obtención de instrucción		35.46		35.46	Ir	
Fallo al obtener instrucción de L1		0.43		0.43	I1mr	
Fallo al obtener instrucción de LL		0.45		0.45	ILmr	
Acceso de lectura de datos		32.36		32.36	Dr	
Fallo al leer datos de L1		80.06		80.06	D1mr	
Fallo al leer datos de LL		0.00		0.00	DLmr	
Acceso de escritura de datos		27.22		27.22	Dw	
Fallo al escribir datos en L1		0.00		0.00	D1mw	
Fallo al escribir datos en LL		0.00		0.00	DLmw	
Fallo de suma de L1		71.24		71.24	L1m =	I1mr + D1mr + D1mw
Fallo de suma de último nivel		0.05		0.05	LLm =	ILmr + DLmr + DLmw
Estimación de ciclo		35.28		35.28	CEst =	Ir + 10 L1m + 100 LLm

Figura 3: Primer Algoritmo con matriz de tamaño 500

Tipo de evento	Incl.		Auto		Corto	Fórmula
Obtención de instrucción		36.05		36.05	Ir	
Fallo al obtener instrucción de L1		0.48		0.48	I1mr	
Fallo al obtener instrucción de LL		0.51		0.51	ILmr	
Acceso de lectura de datos		32.46		32.46	Dr	
Fallo al leer datos de L1	R .	22.05	R .	22.05	D1mr	
Fallo al leer datos de LL		0.00		0.00	DLmr	
Acceso de escritura de datos		27.25		27.25	Dw	
Fallo al escribir datos en L1		0.00		0.00	D1mw	
Fallo al escribir datos en LL		0.00		0.00	DLmw	
Fallo de suma de L1	T.	14.99	r i	14.99	L1m	= I1mr + D1mr + D1mw
Fallo de suma de último nivel		0.06		0.06	LLm	= ILmr + DLmr + DLmw
Estimación de ciclo	П	35.55		35.55	CEst	= Ir + 10 L1m + 100 LLm

Figura 4: Segundo Algoritmo con matriz de tamaño 500

Igualmente como el anterior caso, podemos ver la diferentes valores para estos tipos de datos, en este caso notamos que El Fallo al Leer datos de L1 para el Primer Algoritmo es también 4 veces mayor que el Segundo, y también notamos que en el evento de Fallo de Suma de L1 para el Primer Algoritmo es más de 3 veces mayor que el Segundo.

Conclusión

En el caso del primer algoritmo el bucle más interno de su multiplicador de matriz lee filas o columnas enteras en secuencia, el caché se llena gradualmente de datos, pero el tamaño del caché es limitado, por lo que si las filas son realmente largas, el caché debe tirar lo que cargó inicialmente, para dar cabida a cosas nuevas, es decir que cuando llegue al final e inicie el siguiente y necesitará algunos datos que estuvieron recientemente en la cache, y de esta manear esperar a que regresen de la memoria otra vez.

En mi caso se muestra que el segundo algoritmo es cuatro veces más rápido, la manera que se aplica es la siguiente, igual que el primer algoritmo estará cargando los siguientes datos por bloques, pero hay menos, porque si los bloques encajan en cachés donde no pueden matrices enteras, obtendrá más del trabajo total realizado por cache, los valores de un bloque pasarán a más de un valor de resultado antes ellos son retirados, pero accederá a los siguientes datos, debido que ya esta cargado.

En conclusión el segundo algoritmo podrá tener mas bucles anidados, pero su manera de acceso a memoria es mas rápida que el primero, para hacer esto posible debemos ver la manera de cargar los datos proximos a usar en la memoria cache, y esto debemos aplicarlo desde nuestro programa, buscando la mejor manera de acomodar nuestros datos temporales y espaciales.