TS. TRƯƠNG HỮU CHÍ TS. VÕ THỊ RY

CO ĐIỆN TỬ

HỆ THỐNG TRONG CHẾ TẠO MÁY

TS. TRƯƠNG HỮU CHÍ TS. VÕ THỊ RY

CƠ ĐIỆN TỬ

(Hệ thống- trong chế tạo máy)

(În lần thứ nhất)

NHÀ XUẤT BẢN KHOA HỌC VÀ KỸ THUẬT Hà Nội - 2005 Tác giả: TS. Trương Hữu Chí TS.Võ Thị Ry

Chịu trách nhiệm xuất bản:

Biên tập và sửa chế bản:

Trình bày và chế bản:

Vẽ hình

Vẽ bìa:

PGS.TS Tô Đặng Hải

Nguyễn Thị Diệu Thuý

Lê Thụy Anh

Phạm Văn Tước

QUỲNH CHÂU

In 700 cuốn khổ 16 x 24 tại Xí nghiệp in Thương mại. Giấy phép xuất bản số: 150-41 Cục xuất bản cấp ngày 4/2/2005. In xong và nộp lưu chiếu tháng 3/2005.

LỜI NÓI ĐẦU

Công nghệ kỹ thuật thông tin trong đó ngành **cơ điện tử** có vị trí quan trọng cùng với công nghệ sinh học, công nghệ vật liệu mới, công nghệ tạo năng lượng mới, công nghệ môi trường và công nghệ hàng không vũ trụ là 06 cuộc cách mạng về công nghệ cao trong thế kỷ 21. Các công nghệ này sẽ tạo ra những ngành công nghiệp mới rất quan trọng bởi vì chúng tạo ra giá trị gia tăng rất lớn và làm cho các quốc gia sở hữu các ngành công nghệ nới này trở nên giàu có. Trong định hướng phát triển ngành **cơ điện tử** ở Việt Nam, việc đào tạo nguồn nhân lực đòi hỏi phải đi trước một bước. Với thành công ban đầu trong quá trình chuyển đổi từ một viện nghiên cứu cơ khí truyền thống sang nghiên cứu cơ điện tử, Viện Máy và Dụng cụ công nghiệp (IMI) đã xây dựng một chương trình khung để đào tạo đại học ngành cơ điện tử, đồng thời đào tạo lại các kỹ sư đã tốt nghiệp ngành cơ khí, điện, điện tử-tin học theo hướng cơ điện tử.

Cùng với việc tái bản quyển "Cơ điện tử- các thành phần cơ bản" trong đầu năm 2005, nhóm tác giả xin giới thiệu với bạn đọc quyển "cơ điện tử- hệ thống trong chế tạo máy". Đây là quyển sách thứ 2 nằm trong loạt tài liệu về cơ điện tử do chúng tôi- các cán bộ trong nhóm biến soạn giáo trình của bộ môn "cơ điện tử" của Viện IMI thực hiện. Chúng tôi quan niệm rằng nội dung quyển "cơ điện tử- hệ thống trong chế tạo máy" được bắt đầu từ các lí thuyết hệ thống (mô hình toán học, mô hình hệ thống, đấp ứng của hệ thống động học, các hàm truyền hệ thống, mô hình không gian trạng thái) và được kết thúc bởi việc phân tích hệ thống máy công cụ CNC sẽ giúp bạn đọc có được kiến thức về tính hệ thống đối với các sản phẩm cơ điện tử.

Do biên soạn lần đầu, đặc biệt nhiều thuật ngữ chưa được việt hoá nên không tránh khỏi sai sót. Chúng tôi xin chân thành cảm ơn bạn đọc về những ý kiến đóng góp để tài liệu được hoàn chỉnh trong lần xuất bản sau.

Những ý kiến đóng góp xin gửi về: Viện Máy và Dụng cụ công nghiệp, 46 Láng Hạ, Đống Đa Hà nội

Các tác giả

CHƯƠNG 1. TỔNG QUAN

Sự khác nhau giữa cơ khí truyền thống và cơ điện tử có thể minh hoạ trong khi nghiên cứu chuyển động của một chất điểm trong không gian. Trong khi trong cơ khí truyền thống vấn đề nghiên cứu là chất điểm sẽ chuyển động như thế nào nếu tác động một lực cụ thể nào đó, thì câu hỏi đặt cho cơ điện tử lại là lực phải là như thế nào để khi tác động lên chất điểm, chất điểm sẽ thực hiện được một chuyển động theo yêu cầu.

Để giải quyết bài toán của cơ truyền thống, có thể sử dụng hệ phương trình cân bằng động để giải quyết. Còn ở câu hỏi sau, có thể nhận thấy lực tác động ở trong trường hợp này không thể giữ bất biến, lực phải được tính toán và điều khiến để sao cho chất điểm có thể thực hiện được quỹ đạo cho trước. Đó là vấn đề của cơ điện tử. Với nhận thức: "Cơ điện tử là sự kết hợp đồng thời của kỹ thuật cơ khí, điều khiển điện tử và hệ thống tư duy trong thiết kế sản phẩm và quá trình sản xuất " (theo IRDAC) thì để giải quyết vấn đề của cơ điện tử, bên cạnh kiến thức cơ khí còn cần các kiến thức về lí thuyết hệ thống, bao gồm cả kỹ thuật điện-điện tử và thông tin.

1.1. SƯ TÍCH HỢP

Đặc trưng cơ bản của một hệ thống là sự tích hợp. Tích hợp này gồm có tích hợp không gian và tích hợp chức năng. Phụ thuộc vào cấu trúc tích hợp qua giải pháp ghép nối (interconection) mà hệ thống có thể là đơn giản hoặc phức tạp hơn. Các nối ghép này thường được kết hợp từ 3 cấu trúc cơ sở là: liên tiếp, song song hoặc cấu trúc có phản hồi (xem 5.4 "Mô hình không gian cho các hệ thống có nối kết")

Tích hợp không gian

Tích hợp không gian là tích hợp các thành phần/ mô đun của hệ thống thông qua những giao diện kết nối thành phần. Kết cấu nguyên lí của một hệ thống cơ điện tử có thể được thể hiện như ở hình 1.1. Sự tích hợp ở đây có thể xẩy ra giữa quá trình và sensor; giữa quá trình và hệ kích truyền động, trong khi máy tính có thể tích hợp với hệ kích truyền động, quá trình hoặc với sensor theo nhiệm vụ điều khiển của nó. Trong hệ thống này trước hết các đại lượng yêu cầu được đo và lưu lại. Trong đó nhiều đại lượng cho đến ngày nay vẫn chưa thể đo trực tiếp mà cần phải có sự chuyển đổi tín hiệu thông qua các loại cảm biến. Trong nhiều hệ thống, để có thể xử lí nhanh

Hình 1.1: Cấu trúc nguyên li một hệ thống cơ điện tử

hơn, người ta có thể không dùng các đường cáp mà sử dụng các cảm biến và hệ xử lí dữ liệu cục bộ, tích hợp trong mối liên quan đến miền lân cận của các thành phần thiết bị. Điểu đó cũng có nghĩa là ngày càng có yêu cấu tăng cường điều kiện môi trường của các thành phần điện tử và cảm biến ở các dạng như nhiệt độ, gia tốc, sự ô nhiễm.... Ngoài ra, các cơ cấu chấp hành cũng như các thành phần kích truyền động cũng có những như cấu mới, ví dụ, chúng có thể phải sở hữu một điều khiển vị trí số cục bộ. Trong nhiều trường hợp chúng tích hợp thích hợp với hệ thống cơ khí. Đôi khi các tín hiệu từ hệ kích truyền động qua xử lí thông tin được sử dụng cho quá trình cơ khí kết nối . Vì vậy sự tính toán thiết kế hệ kích truyền động và quá trình cơ khí đóng một vai trò hết sức cơ bản trong tất cả các hệ thống cơ điện từ – trong chế tạo máy. Khá năng tích hợp không gian của một hệ thống cơ điện từ có thể được thể hiện như ở hình 1.2. Tích hợp không gian thế hiện ở phần cứng vật lí của hệ thống cơ điện tử.

Hình 1.2. Tích hợp không gian của một hệ thống cơ điện tử

Tích hợp chức năng

Tích hợp chức năng là tích hợp qua sự gia công xử lí thông tin. Trên cơ sở các đại lượng đo, được xử lí, lưu chuyển và thực hiện dưới dạng: điều chỉnh, giám sát, tối ưu, v..v. Điều này yêu cầu trong hệ thống có sự gia công

thông tin trực tuyến (online), loại ngay từ khâu thiết kế hoặc để tương thích với nó cần thiết phải có những cơ sở chuyên gia, ví dụ, dưới dạng toán mô hình quá trình, phương pháp nhận dạng, quan sát các đại lượng trạng thái và các phương pháp thiết kế khác nhau kèm theo các tiêu chí đánh giá phẩm chất. Gia công thông tin trực tuyến trong mối quan hệ với hệ chuyên gia cho phép tích hợp chức năng của các hệ thống điện tử- cơ khí. Hệ thống tích hợp chức năng toàn bộ như vậy có thể được thể hiện như ở hình1.3. Sự tích hợp chức năng yêu cấu có những phần cứng thích hợp cùng với sự phát triển lắp đãt phẩn mềm.

Hinh 1.3: Tich hợp chức năng

1.2. TÍN HIỆU

Tín hiệu là các biến vật lí hoặc là các đại lượng vật lí được đo ở tại các phần khác nhau của một hệ thống, khi được xử lí cho thông tin được quan

tâm. Trong các hệ thống thực tế người ta thường gặp nhiều loại tín hiệu khác nhau. Trong đó tín hiệu điện, dòng điện hoặc điện áp là các đại lượng dễ đo nhất do vậy người ta thường sử dụng sensor và tranducer để chuyển các đại lượng vật lí thành các tín hiệu điện. Những tín hiệu này, sau đó dược xử lí bởi các kỹ thuật phù hợp, thể hiện thông tin của một vị trí hoặc thành phần trong hệ thống hoặc thông tin của phần này liên quan đến phần kia của hệ thống (mối quan hệ I/O).

Tín hiệu liên tục hoặc gián đoạn

Tín hiệu có thể phân loại thành tín hiệu liên tục hoặc tín hiệu gián đoạn, trong mỗi loại này có thể phân tiếp thành tín hiệu xác định (deterministics signal) hoặc tín hiệu ngẫu nhiên (ramdom signal). Một tín hiệu xác định luôn có thể biểu diễn dưới dạng toán học (dạng bậc, đốc, xung, SIN, COS..), nhưng thời gian diễn ra tín hiệu hoặc giá trị tín hiệu ngẫu nhiên thì không thể dự báo chắc chắn được. Một tín hiệu liên tục, x(t) có một giá trị định rõ tại mỗi một giá trị thời gian, trong khi tín hiệu gián đoạn x(n) có giá trị định rõ chỉ ở tại những diểm rời rạc (là các số nguyên thuộc n). Tương ứng với tín hiệu liên tục và gián đoạn là tín hiệu tương tự (analog) và tín hiệu số (digital). Một số dạng tín hiệu (tín hiệu liên tục, tín hiệu lấy mẫu, tín hiệu số và tín hiệu ngẫu nhiên) được thể hiện ở hình 1.4.

Tín hiệu tương tự (analog) và tín hiệu số (đigital)

Tín hiệu tương tự là tín hiệu mà biên độ của nó có thể lấy một giá trị bất kỳ trong một miền liên tục. Còn tín hiệu số là tín hiệu mà biên độ chỉ được xác định ở một số thời điểm cụ thể.

Các tín hiệu xác định có thể chia thành 2 loại: tín hiệu tuần hoàn (xem hình 1.5) và tín hiệu không tuần hoàn (như tín hiệu dao động hình sin giảm dần, các tín hiệu có tần số thay đổi biến điệu).

Tín hiệu thể hiện luồng thông tin qua hệ thống cũng là đại lượng thể hiện mối quan hệ giữa các thành phần trong hệ thống.

1.3. CÁC THÀNH PHẦN CHỦ YẾU CỦA HỆ THỐNG CƠ ĐIỆN TỬ

Trong [1], các thành phần cơ bản của hệ thống cơ điện tử đã được liệt kê và miêu tả. Sơ đồ ở hình 1.1 thể hiện các thành phần chủ yếu của một hệ thống cơ điện tử trong chế tạo máy. Hệ thống này được xác định bởi thành phần cơ thực hiện một số chuyển động cụ thể và phần điện tử (máy tính hoặc các hệ thống vi xử lí nhúng), bổ sung tính thông minh cho hệ thống. Trong thành phần cơ, công suất hệ thống luôn đóng một vai trò lớn, ngược lại với phần điện tử, xử lí thông tin mới là vấn đề chính. Các cảm biến chuyển đổi chuyển động cơ học thành các tín hiệu điện (nếu cần, có thể qua một bộ chuyển đổi tương tự-số (AD)). Các khuếch đại công suất sẽ chuyển đổi tín hiệu thành các công suất điều biến. Trong đa số các trường hợp nguồn cấp là nguồn điện, nhưng cũng có những trường hợp nguồn là hệ thống thuỷ lực hoặc khí nén.

1.4. SẢN PHẨM CƠ ĐIỆN TỬ

Tất cả các sản phẩm cơ điện từ đều mang tính hệ thống. Theo [9], sản phẩm cơ điện từ hiện nay có thể phân loại theo:

- 1. Những sản phẩm với các thành phần chính là cơ có kết hợp điện từ để tăng cường chức năng như các máy công cụ điều khiến số hoặc các bộ truyền động có tốc độ vô cấp sử dụng trong các máy gia công.
- 2. Các hệ thống cơ truyền thống được thực hiện theo hướng kết hợp với các bộ phận điện từ bèn trong, trong khi giao diện sử dụng giữ nguyên không thay đổi, ví đụ, các máy khâu hiện đại hoặc các hệ thống sản xuất tự động.
- 3. Các hệ thống giữ nguyên các chức năng của hệ thống cơ truyền thống , nhưng các cơ cấu bên trong được thay đổi bởi thành phần điện tử, ví dụ như đồng hỏ điện tử, cân điện tử.
- 4. Các sản phẩm thiết kể với sự tích hợp đồng vận công nghệ cơ và điện tử, ví dụ như máy photocopy, máy giặt thông minh, v...v.

Các sản phẩm cơ điện từ có cấu trúc điều khiến theo các mức sau:

- Mức 1: điều khiến mức thấp (ví dụ cho tiến ăn dao, phản hồi có cản, ổn định hoá, tuyến tính hoá).
- Mức 2: điều khiến mức cao (điều khiển phản hồi cấp cao).
- Mức 3: giám sát, kế cả chấn đoán lỗi.
- Mức 4:tối ưu hoá quá trình
- Mức 5: quản lí quá trình chung.

Dù đơn giản hoặc phức tạp hơn, thì đặc tính tích hợp của cơ điện tử là tạo cho các sản phẩm và hệ thống cơ điện tử phát triển hướng tới các đặc điểm:

- Sự phân chia chức năng giữa cơ và điện tử hướng về đơn giản phần cơ, đảm bảo kết cấu khoẻ, gọn nhẹ. Kết quá là có sự tăng đáng kể lượng sensor, kích truyền động, thiết bị điều khiến, cấp và các đầu nối điện trong sản phẩm.
- Các tính năng hoạt động được cải thiện: bằng ứng dụng điều khiển phán hồi tích cực, điều khiển thích nghi và điều khiến trên cơ số mô hình.
- Các chức năng mới được bổ sung: đó là những chức năng mà chỉ có điện tử số mới thực hiện được như các biến phụ thuộc vào thời gian hoặc sự thích nghi của các tham số.

CHƯƠNG 2. MÔ HÌNH HỆ THỐNG CƠ ĐIỆN TỬ TRONG CHẾ TẠO MÁY

Trong lí thuyết hệ thống, mô hình đóng một vai trò quan trọng vì chúng rất cẩn cho việc phân tích, tổng hợp và thiết kế hệ thống. Một hệ thống không phải chỉ có một mô hình duy nhất vì các mục đích khác nhau có thể dẫn đến mô hình khác nhau. Ví dụ, đối với một động cơ điện, những mô hình có thể xây dựng theo mục đích có thể là: quá trình chuyển đổi năng lượng cơ-điện: hệ thống nhiệt hoặc hệ thống cơ khí để nghiên cứu dao động và vật liêu.

Ngoài ra, trong thiết kế các hệ thống cơ điện tử, việc thay đổi cấu trúc và bộ điều khiển luôn cần được đánh giá đồng thời. Mặc dù một bộ điều khiển phù hợp có thể tạo nên một kết cấu đơn giản hơn, thì một thiết kế tổi về cơ khí không bao giờ có thể tạo khả năng thực hiện chức năng tốt cho dù hệ thống có bộ điều khiển tinh vi. Vì vậy, quan trọng là ngay từ giai đoạn đầu thiết kế đã phải có sự lựa chọn thích hợp, đáp ứng các tính cơ khí cần thiết để đạt được sự hoạt động tốt của hệ thống được điều khiển, Mặc khác, khá năng bù của bộ điều khiển có thể tạo nên những kết cấu cơ khí rẻ hơn. Điều này biểu hiện rằng, tại những giai đoạn đầu của thiết kế, một mô hình dơn giản thể hiện các yếu tố cơ bản của hệ thống có thể cho biết các giới hạn khả năng hoạt động của hệ thống.

Mặc khác, trong thực tế có những hệ thống đang vận hành nhưng khi xẩy ra sự cố hoặc lâu ngày cần điều chính lại tham số, lúc đó người ta mới nghĩ đến việc cần xem xét lại việc phân tích hệ thống, nghĩa là phải đánh giá lại các chỉ tiêu chất lượng hệ thống. Muốn làm được việc này ta cần xác định được mô tả toán học của các thành phần trong hệ thống và thực hiện phân tích hệ thống. Như vậy mô hình hệ thống không những cần cho phân tích, tổng hợp và thiết kế hệ thống mà đặc biệt cần cho các trường hợp "lần tìm lỗi" sau này.

Như vậy khi bàn về hệ thống người ta thường nói đến mô hình hệ thống, tín hiệu qua hệ thống và đáp ứng của hệ thống.

2.1. MÔ HÌNH CÁC HỆ THỐNG CƠ BẢN

2.1.1. Mô hình toán học

Hãy xem xét trường hợp bộ xử lí điều khiển tốc độ một động cơ. Tốc độ động cơ sẽ thay đổi như thế nào đối với thời gian? Chắc chắn, tốc độ động

cơ không đạt ngay được giá trị tốc độ đủ (tức giá trị thiết lập) mà chỉ đạt được sau một khoảng thời gian. Trong tất cả các trường hợp xử lí đều có hiện tượng "trễ". Vậy điều gì gây ra hiện tượng đó. Cần phải biết "thái độ" của hệ thống đối với thời gian khi hệ thống phải chịu một số "nhiễu"

Mô hình toán học là một trong những công cụ giúp để có thể hiểu "thái độ" của một hệ thống. Chúng là những công thức miêu tả mối quan hệ giữa đầu vào và đầu ra của một hệ thống, sử dụng cho khả năng dự báo trước những đáp ứng có thể sinh ra trong hệ thống dưới những điều kiện cụ thể. Cơ sở của mọi mô hình toán học là các định luật vật lí chi phối "thái độ" của hệ thống.

Tựa như một ngôi nhà, ô tô, cần cẩu,v...v. được xây dựng từ một số các khối đặc trưng cơ bản, một hệ thống cũng được cấu thành từ một dãy các khối đặc trưng. Mỗi khối đặc trưng được cơi là có một thuộc tính hoặc chức năng đơn. Điều này có thể nhận xét qua các ví dụ đơn giản: một hệ thống mạch điện được cấu thành từ các khối đặc trưng, thể hiện tác động của các điện trở, tụ điện và các cuộn cảm. Khối đặc trưng điện trở được cho là chỉ có đặc tính "trở", khối đặc trưng tụ điện thì có đặc tính điện dung còn các khối đặc trưng điện cảm thì chỉ có thuộc tính về khả năng tự cảm. Khi kết hợp các khối đặc trưng này theo các cách khác nhau, sẽ hình thành các hệ thống mạch điện đa dạng mà mối quan hệ xuất / nhập của từng hệ thu được bởi cách kết hợp hợp lí mối quan hệ của các khối đặc trưng. Theo cách đó, có thể thu được mô hình toán học cho hệ thống. Một hệ thống được lập từ các khối đặc trưng nêu trên được gọi là hệ thống tham số gộp (lumped parameter system), vì mỗi một tham số (tức tính chất hoặc chức năng) được xem xét riêng biệt.

Có sự tương tự trong "hoạt động " của các khối đặc trưng sử dụng trong các hệ thống "kinh diển" cơ, diện, nhiệt và thuỷ-khí". Sau đây sẽ đề cập đến các khối đặc trưng cơ bản, có thể tổng hợp để tạo nên mô hình toán học cho các hệ thống vật lí thực.

2.1.2. Các khối đặc trưng của một hệ thống cơ khí

Hê thống tinh tiến

Mô hình thể hiện các hệ thống cơ khí có các khối đặc trưng cơ bản là lò xo, phần tử cản hay còn gọi là giảm chấn (dashpot) và các khối lượng. *Lò xo* (hình 2.1) được sử dụng thể hiện độ cứng của hệ thống, *phần tứ cản* thể hiện

các lực chống chuyển động như các tác động ma sát hoặc các tác động giảm dao động còn khối lượng thể hiện quán tính hoặc kháng trở đối với gia tốc. Hệ thống cơ thực không nhất thiết phải hình thành từ lò xo, giảm chấn và khối lượng nhưng lại luôn có tính chất về độ cứng, độ cản (giảm chấn) và quán tính. Các khối đặc trưng này có thể coi như có dâu vào là một lực, đầu

Lực F
Thay đổi chiều đài, x

Đầu vào,F

Đầu ra , x

Hình 2.1: Lò xo

Chất lỏng

Lực, F

Thay đổi vị trí

Đầu vào, F

Phần từ cản

Hình 2.2: Phần từ cản

ra là một chuyển vị.

Độ cứng của một là xo được miêu tả bằng mối quan hệ giữa lực F, sử dụng để làm căng hoặc nén lò xo và lượng x dàn/nén lò xo:

$$F = k.x \tag{2.1}$$

Trong đó k là hằng số.

Để có cùng lượng kéo nén, khi k càng lớn, lực để kéo hoặc nén lò xo càng phải lớn. Lò xo có k cao hơn gọi là có độ cứng cao hơn. Đối tượng tạo lực để kéo lò xo cũng bị tác động bởi một lực (theo dịnh luật 3 của Niuton). Lực này có giá trị bằng lực kéo lò xo (tức kx) nhưng có hướng ngược lại.

Khối đặc trưng *phần tử cản* (dashpot) được thể hiện bằng lực cản phổ biến nhất là ma sát nhớt và ma sát khô. Ma sát xuất hiện khi một vật thể được cố đẩy

trong một dòng chất lỏng hoặc dịch chuyển vật ngược lại với các lực ma sát. Vật được đẩy nhanh hơn đồng nghĩa với việc phải chịu lực cản cao hơn. Phần tử cản được sử dụng để biểu diễn các lực này, loại làm chuyển động của các đối tượng chậm dẫn, giống như chuyển động của piston trong một xilanh đóng (hình 2.2). Sự chuyển dịch của piston buộc chất lỏng ở mặt bên kia phải chảy qua piston, theo chiều ngược lại, tạo một lực cán. Trong trường hợp lí tưởng, lực cản F là tỉ lệ với tốc đô v của piston:

$$F = cv (2.2)$$

Trong đó c là hằng số, c càng lớn thì lực cản tại một tốc độ cho trước càng lớn. Do tốc độ tỉ lệ với sự thay đổi chuyển dịch x của piston, tức v=dx/dt, nên:

$$F = c\frac{dx}{dt} \tag{2.3}$$

Đố là mối quan hệ giữa chuyển dịch x của piston- đầu ra và lực F - đầu vao, phụ thuộc vào tốc độ thay đổi của đầu ra.

Khối đặc trưng khối lượng (hình 2.3) thể hiện tính chất sau : một khối lượng lớn hơn thì yêu cầu lực lớn hơn để tạo cho nó một gia tốc nhất định. Mối quan hệ giữa lực F và gia tốc a, theo định luật 2 của Niuton là: F=ma, trong đó hằng số tỉ lệ giữa lực và gia tốc được gọi là khối lượng m. Gia tốc là sự thay đổi của tốc độ đối với thời gian, dv/dt và tốc độ v là sự thay đổi của chuyển dịch x đối với thời gian, dv/dt, như vậy:

$$F = ma = m\frac{dv}{dt} = m\frac{d(dx/dt)}{dt} = m\frac{d^2x}{dt^2}$$
 (2.4)

Để kéo lò xo, tăng tốc chuyển động của một khối và chuyển dịch piston trong môi trường có cản, cần phải có năng lượng. Trong trường hợp lò xo và khối lượng, thì có thể thu lại năng lượng nhưng trong trường hợp phần tử cản và dàn hồi thì không. Lò xo khi bị kéo dãn, đã lưu năng lượng trong nó, năng lượng này sẽ được giải

phóng khi lò xo co về vị trí ban đầu. Năng lượng dự trữ khi giãn lượng lò xo x là $\frac{1}{2}kx^2$. Vì F=kx nên có thể viết:

$$E = \frac{1}{2} \frac{F^2}{k}$$
 (2.5)

Cũng có một năng lượng dự trữ trong khối lượng khi khối lượng chuyển động với tốc độ v. Năng lượng này được gọi là động năng, được giải phóng khi dừng chuyển động:

$$E = \frac{1}{3}mv^2 \tag{2.6}$$

Tuy nhiên lại không có năng lượng tích trong phần tử cản. Piston không quay về vị trí ban đầu khi không có lực đầu vào. Phần tử cản làm tiêu hao năng lượng. Tiêu năng P phu thuộc vào tốc độ v và được xác định bởi:

$$P = cv^2 \tag{2.7}$$

Hệ thống quay tròn

Lò xo, phẩn tử cản và khối lượng là các khối đặc trưng cơ bản cho các hệ thống tịnh tiến, trong hệ chỉ gồm lực và các dịch chuyển thắng. Còn trong hệ thống quay tròn, 3 khối đặc trưng cơ bản là lò xo xoắn, phần tử cản quay (rotary damper) và khối lượng quay (biểu thị quán tính của khối lượng quay). Với những khối đặc trưng này, đầu vào là mômen xoắn và đầu ra là góc chuyển vị (góc quay). Với *lò xo xoắn*, góc quay θ tỉ lệ với mômen xoắn:

$$T=k, \theta$$
 (2.8)

Với phần tử cản quay, một đĩa quay trong chất lỏng, mômen kháng T tỉ lệ với tốc độ gốc ω. Vì tốc độ gốc là sự thay đổi của góc so với thời gian ,tức đθ/dt, nên

$$T = c\omega = c.d\theta/dt \tag{2.9}$$

Với khối lượng quay, khối đặc trưng biểu thị đặc tính là mômen quán tính l càng cao, thì mômen xoắn cần thiết để tạo ra gia tốc gốc α càng lớn:

$$T = I\alpha \tag{2.10}$$

Gia tốc góc α là sự thay đổi của tốc độ góc đối với thời gian, tức $d\omega/dt$, còn tốc độ góc là sự thay đổi của góc chuyển dịch với thời gian, vì vậy:

$$T = I\frac{d\omega}{dt} = I\frac{d(d\theta/dt)}{dt} = I\frac{d^2\theta}{dt^2}$$
 (2.11)

Lò xo xoắn và khối lượng quay đều trữ năng lượng, phần từ cần quay thì tiêu hao năng lượng. Năng lượng được trữ bởi lò xo xoắn, khi xoay một gốc 0 là $-\frac{1}{2}$ k0. Vì $T=k\theta$ nên có thể viết:

$$E = \frac{1}{2} \frac{T^2}{k} \tag{2.12}$$

Năng lượng được tích bởi một khối lượng quay với tốc độ gốc ω là động năng E, được tính bởi:

$$E = \frac{1}{2}I\omega^2 \tag{2.13}$$

Năng lượng hao tán bởi giảm chấn xoay khi xoay với tốc độ góc ω là:

$$P = c\omega^2 \tag{2.14}$$

Bảng 2.1 tổng kết các phương trình xác định đặc tính các khối đặc trưng, trong trường hợp có dịch chuyển thẳng (tịnh tiến), đầu vào -lực F, đầu ra-

chuyển dịch x và trong trường hợp chuyển động quay tròn, có mômen xoắn T- đầu vào và θ - góc chuyển vị là đầu ra

Bảng 2.1 các khối đặc trưng cơ

Khối đặc trưng	Phương trinh miêu tả	Động năng/ tán năng
	Tịnh tiến:	
Lô xo	F=kx	$E = \frac{1}{2} \frac{F^2}{k}$
Giảm chấn	$F = c \frac{dx}{dt}$	P=cv²
Khối lượng	$F = m\frac{d^2x}{dt^2}$	$E = \frac{1}{2}mv^2$
	Quay tròn:	
Lò xo	T=k. O	$E = \frac{1}{2} \frac{T^2}{k}$
Phần tử cản quay	$T = c \frac{d\theta}{dt}$	P=cm²
Mômen quán tính	$T = I \frac{d^2 \theta}{dt^2}$	$E = \frac{1}{2}I\omega^2$

Đặc trưng một hệ thống cơ

Các thành phần cơ khí trong hệ thống cơ điện tử thể hiện sự hiên diện của chúng thông qua các tác động về chuyển động và các tác động về lực

Hinh 2.4: Hệ thống khối lượng-lò xo- giảm

/mômen lên các kết cấu đỡ, kích truyền động (actuator) và cảm biến (sensor). Hiểu và dự báo thuộc tính của các tác động này, những thuộc tính nảy sinh từ sự kết hợp các tác động độ cứng, ma sát- đàn hồi và quán tính, có thể thu được nếu xác định được trạng thái lưu trữ hoặc tiêu hao năng lượng của chúng. Sự lưu trữ hoặc tiêu hao năng lượng có tầm quan trọng, quyết định tính hệ thống mối quan hệ cấu thành các thành phần tao mô hình hệ thống cơ.

Các thành phần cơ bản của hệ thống cơ thường là: khối lượng, lò xo, giảm chấn theo kiểu thể hiện ở hình 2.4. Để đánh giá mối quan hệ giữa lực và chuyển dịch, giá thiết hệ thống gốm chỉ một khối lượng m (mà thực chất đó là hệ thhống gồm khối lượng - giảm chấn- lò xo) và các lực tác dụng lên chúng. Biểu đổ khối lượng và các lực tác dụng lên khối lượng áy được gọi là biểu đổ-vật thể - tự đơ (tree body diagram). Khi các lực tác dụng đồng thời lên vật thể, tổng của chúng có thể được thế hiện dưới đảng vectơ tương

Hình 2.5: Mô hình toàn học

- a) Máy được lắp trên nến
- b) Bánh xe dang chuyển động trên đường

dương. Nếu tất cả các lực tác dụng thẳng cùng hướng, lực tổng là tổng dại số các lực thành phần. Như vậy, các lực tắc dụng vào khối lượng trong hình 2.4 có lực tổng bằng lực F trữ lực tạo nên từ việc bị giản lỗ xo và lưc cản từ giảm chấn:

 F_{Σ} ,lực tổng tác dụng vào khối lượng xác định bởi:

$$F_{V} = F - k \Lambda - c V \qquad (2.15)$$

trong đó v là tốc độ của piston trong cơ cấu giảm chấn khi khối lượng m đang chuyển động. Lực này tác động lên khối lượng, làm nổ tăng tốc:

$$F_{\Sigma} = ma$$
 (2.16)

Tức:

$$F - kx - c\frac{dx}{dt} = m\frac{d^2x}{dt^2} \qquad (2.17)$$

hoãe:

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F$$
 (2.18)

Phương trình (2.18) là phương trình vi phân bậc hai, miêu tả mối quan hệ của lực F -đầu vào hệ thống và lượng chuyển vị x- đầu ra.

Nhiều hệ thống được kết hợp hợp lí từ các khổ đặc trưng của lò xo, giảm chấn và khối lượng, Hình 2.5 a thể hiện một mô hình máy lắp trên nền, có thể sử dụng làm cơ sở để nghiên cứu các tác động dao động lên nền vào chuyển vị móng máy. Hình 2.5b thể hiện mô hình bánh xe và hệ thống giảm xóc cho một ở tỏ hoặc máy kéo. Mô hình này có thể sử dụng để nghiên cứu hoạt động của xe khi chạy trên đường gổ ghế, từ đó làm cơ sở để thiết kế hệ thống giảm xóc của xe. Phân tích các mô hình này đều có thể theo nguyên tắc đã nêu cho mô hình đơn giản lò xo-giảm chấn –khối lượng. Biểu đổ vật thể tự do (free body diagram) được thiết kế cho từng khối lượng trong hệ thống, thể hiện từng khối lượng độc lập và các lực áp vào nó. Từ đó, đối với mỗi khối lượng, lực tổng tác dụng lên nó bằng tích của khối lượng (m) và gia tốc (a).

Hình 2.6 : Quay một khối lượng ở dầu mút trục a) Cấu trúc vật li b) Mô hình khối đặc trưng

Các mô hình tương tự được xây dựng cho hệ thống chuyển động quay tròn. Để dánh giá mối quan hệ giữa mômen xoắn và góc quay chuyển vị trong hệ thống, ta chỉ xem xét một khối lượng quay và các mômen tác dụng lên khối lượng này. Khi có một vài mômen tác dụng đồng thời lên khối lượng, mômen tổng là tổng đại số (có chú ý đến hướng) của các mômen thành phần. Vì vậy, một hệ thống gồm một mômen xoắn tác động để quay một khối lượng tại đầu mút một trực (hình 2.6a) có thể được biểu hiện bởi các khối đặc trưng trong chuyển động quay tròn như biểu điển ở hình 2.6b. Có thể so sánh hệ quay với hệ tịnh tiến đã được phân tích ở hình 2.4 về lực và chuyển vị thẳng, kết quá cho một phương trình tương tự:

$$I\frac{d^2\theta}{dt^2} + c\frac{d\theta}{dt} + k\theta = T \tag{2.19}$$

Để minh hoạ cho các vấn đề nêu trên, ta xem xét, phát triển phương trình của các ví dụ sau đây.

Hinh 2.7: Minh hoa cho vi du 2.1

Ví du 2.1: hệ thống hình thành từ 2 lò xo k₁, k₂ và khối lượng m. Xuất phát từ phương trình vi phân miêu tả quan hệ giữa đầu vào -lực F và đầu ra -lương dịch chuyển x trong hệ thống ở hình 2.7, ta có

$$F_{\Sigma} = F - k_{i} x - k_{s} x \tag{2.20}$$

Vì lực tổng gây tặng tốc cho khối lượng,

$$F_{\Sigma} = m \frac{d^2 x}{dt^2} \tag{2.21}$$

 $m\frac{d^2x}{dt^2} + (k_1 + k_2)x = F$ Do vậy; (2.22)

> Vi du 2.2 : tìm phương trình vi phân miệu tả chuyển động của khối lương m, khi chiu tác dung lưc F (hình 2.8). Trước tiên, ta xem xét khối lượng m, và các lực tác dụng lên nó (hình Đó là các lực tác dụng bởi hai lò xo. Lực tác dụng kéo lò xo dưới k_1 căng với lương (x_1-x_2) . lưc tác dụng sẽ là $k_i(x_i-x_j)$. Lực tác dụng bởi lò xo phía trên, gây giẫn bằng (x_2-x_3) là $k_2(x_3-x_3)$. Như vây lực tác dung lên khối lượng là:

$$F_{x} = k_{1}(x_{2}-x_{1})-k_{2}(x_{2}-x_{2})$$
 (2.23)

Do lực này gây gia tốc cho khối lượng m₁, nên:

$$m_1 \frac{d^2 x}{dt^2} = k_1 (x_2 - x_1) - k_2 (x_3 - x_2)$$
 (2.24)

Nhưng vì lưc gây cáng lò xo phía dưới là F: $F = k_1(x_2 - x_1)$

Nên phương trình trên có thể viết lại là:

$$m_1 \frac{d^2 x}{dt^2} + k_2 (x_1 - x_2) = F$$
 (2.25)

Ví dụ 2.3: một động cơ được sử dụng để quay một tái, mô hình miêu tả vật lí thể hiện ở hình 2.6a, được đặc trưng bởi các khối như thể

Hinh 2.8: Vi du 2.2

Hinh 2.9: Minh hoa cho vi du 2.2

hiện ở hình 2.6b có phương trình vi phân là:

$$I\frac{d^2\theta}{dt^2} + c\frac{d\theta}{dt} + k\theta = T$$
 (2.26)

2.1.3. Các khối đặc trưng hệ thống điện

Các khối đặc trưng cơ sở cho hệ thống điện là các cuộn điện cảm, tụ điện và điện trở. Đối với *cuộn cảm* (inductor), hiệu điện thế *u* qua cuộn cảm tại thời điểm tức thời phụ thuộc vào sự thay đổi của dòng qua cuộn (di/dt):

$$u = L\frac{di}{dt} \tag{2.27}$$

Trong đó L là độ tự cảm. Hướng của hiệu điện thế là ngược với hướng hiệu điện thế được sử dụng để truyền dòng qua cuộn cảm, còn gọi là suất điện động ngược (back e.m.f.). Phương trình có thể viết lại là:

$$i = \frac{1}{L} \int u dt \tag{2.28}$$

Đối với một *tụ điện (capacitor)*, hiệu điện thế qua tụ phụ thuộc vào điện tích q trên tấm tụ tại thời điểm liên quan:

$$u = \frac{q}{C} \tag{2.29}$$

Trong đó C là điện dung. Do dòng điện i nạp hoặc phóng của tụ điện là tốc độ tại đó các điện tích đến hoặc rời bản tụ, tức i=dq/dt, nên điện tích tổng q trên các bản tụ là:

$$q = \int idt \tag{2.30}$$

Như vậy:

$$u = \frac{1}{C} \int idt \tag{2.31}$$

Mặc khác, vì u=q/C nên:

$$\frac{du}{dt} = \frac{1}{C} \frac{dq}{dt} = \frac{1}{C} i$$

Vây:

$$i = C \frac{du}{dt} \tag{2.32}$$

Đối với một điện trở (resistor), hiệu điện thế u qua điện trở tại một thời

điểm tức thời phụ thuộc vào dòng điện i đi qua nó:

$$u=Ri \tag{2.33}$$

Trong đó R là điện trở.

Cá cuộn cảm và tụ điện đều tích năng lượng, năng lượng này có thể được giải phóng sau này. Điện trở không tích năng lượng mà lại tiêu hao chúng. Năng lượng lưu trong cuộn cảm khi có dòng điện *i* qua là:

$$E = \frac{1}{2}Li^2 {(2.34)}$$

Năng lượng lưu bởi tụ điện khi có một hiệu điện thế qua nó là:

$$E = \frac{1}{2}Cu^2 \tag{2.35}$$

Tiêu năng P bởi điện trở khi có một hiệu điện thế qua nó là

$$P = iu = \frac{u^2}{R} \tag{2.36}$$

Bảng 2.2 tổng kết các phương trình xác định đặc tính của các khối đặc trưng điện khi đ*ầu vào* là *dòng điện* và *đầu ra* là *hiệu điện thế*. Có thể so chúng với các phương trình trong báng 2.1 về các khối đặc trưng hệ thống cơ.

Bảng 2.2 Các khối đặc trưng điện

Khối đặc trưng	Phương trình miêu tả	Động năng hoặc tán năng
Cuộn cảm	$i = \frac{1}{L} \int u dt$	$E = \frac{1}{2}Li^2$
Tụ điện	$i = C \frac{du}{dt}$	$E = \frac{1}{2}Cu^2$
Điện trở	$i = \frac{u}{R}$	$P = \frac{\mu^2}{R}$

2.1.3.1. Xây dựng mô hình hệ thống điện

Các phương trình miêu tả các khối đặc trưng điện có thể kết hợp với nhau tuân theo định luật Kirchhoff (Kirchhoff's law). Các định luật này có thể phát biểu như sau:

Định luật 1: dòng điện tổng đến một nút thì bằng tổng dòng điện rời khỏi nó, tức tổng đai số dòng điền tai đầu nối bằng 0.

Định luật 2: tại một mạch kín hoặc vòng lặp (loop), tổng đại số hiệu

điện thế qua từng phần mạch bằng sức điện động (e.m.f) đặt vào phần đó.

Định luật 1 Kirchhof sử dụng rất tiên để phân tích mút (nút là điểm nối giữa các khối đặc trưng hoặc các phần từ của mạch. Một nút là nơi gặp của 3 nhánh hoặc nhiều hơn của mạch). Định luật 2 sử dụng để *phân tích mắt lưới* (mesh analyis). luật này áp dụng được đến từng mắt (một mắt lưới là một đường đóng hoặc một loop, không chứa một đường đóng khác).

Ví dụ 2.4:để minh hoạ định luật Kirchhoff, sử dụng hai phương pháp phân tích trên để xây dựng các mối quan hệ của mạch thể hiện ở hình 2.10. Trong mạch này, tất cả các thành phần là điện trở. Phân tích nút chính,

Hinh 2.10: Phân tích nút

điểm A, điện áp là uA, khi tham chiếu đến các nút chính khác, ví dụ B, có thể coi rằng tất cả các đồng điện vào và rời A, theo định luật I của Kirchhoff:

$$i_1 = i_2 + i_3$$
 (2.37a)

Dòng điện vào qua R_i là i_i , do hiệu

điện thế qua R_i là u_A -u), nên i_I R_I = u_A -u. Dòng qua R_2 là i_2 , do hiệu điện thế qua R_2 là u_A nên i_2 $R_2 = u_A$. Dòng điện i_3 qua R_3 nổi tiếp với R_4 và hiệu điện thế u_A áp lên kết hợp này, tức $i_3(R_3+R_4)=u_A$. Cân bằng đồng, ta có:

Hinh 2.11: Phân tích lưới

Hinh 2.12: Hệ thống tu-điện trở

$$\frac{u - u_A}{R_1} = \frac{u_A}{R_2} + \frac{u_A}{R_3 + R_4}$$
 (2.37b)

Ví dụ 2.5: phân tích mắt lưới cho mach ở hình 2.10. Giả thiết đang có các dòng điện trong từng loop như thể hiện ở hình 2.11. Áp dụng định luật 2 Kirchhoff cho từng loop. Xét loop có dòng i_i : vì dòng qua R_i là i_i , qua R_2 là (i_1-i_2) , nên

$$u=i_1R_1+(i_1-i_2)R_2$$
 (2.38)

Tương tự, xét loop có i, vì không có nguồn sức điện động (e.m.f) nên:

$$0 = i_2 R_3 + i_2 R_4 + (i_2 - i_1) R_2 \qquad (2.39)$$

Từ hai công thức trên có thể giải để

thu được dòng trong hai loop, từ đó suy ra dòng trong từng nhánh mạch. Nhìn chung nếu số nút trong mạch nhỏ hơn số loop, thì nên sử dụng phương pháp phân tích nút.

Ví dụ 2.6; xét một mạch bao gồm *một điện trở và một tụ điện mắc nối* tiếp, như thể hiện ở hình 2.12. Ứng dụng định luật 2 của Kirchhoff đối với loop, ta có:

$$u = u_R + u_C \tag{2.40}$$

Trong đó u_R là hiệu điện thế qua điện trở R và u_c là hiệu điện thế của tụ. Vì mạch là 1 loop đơn, dòng i đi qua các thành phần là như nhau. Nếu đầu ra khỏi mạch là hiệu điện thế qua tụ u_c , và vì $u_R = iR$, $i = C(dv_C/dt)$, nên:

$$u = RC\frac{du_c}{dt} + u_C \tag{2.41}$$

Công thức (2.41) là phương trình vi phân bậc 1 cho biết mối quan hệ giữa đầu ra u, và đầu vào u.

Ví dụ 2.7: Hình 2.13 thể hiện một hệ thống điện trở-cuộn cảm và tụ diện. Áp dụng định luật 2 của Kirchhoff cho loop, ta có:

Hình 2.13:Hệ thống điện cảm-điện trở

$$u = u_R + u_L + u_C \tag{2.42}$$

Trong đó u_R là hiệu điện thế qua điện trở, u_L - hiệu điện thế qua cuộn cảm và u_C - hiệu điện thế của tụ điện. Vì mạch chỉ có một loop nên dòng i là như nhau khi qua các thành phần . Do đầu ra hệ thống là hiệu điện thế của bản tụ u_C và vì u_R =iR, u_L =L(di/dt), nên:

$$u = iR + L\frac{di}{dt} + u_c \tag{2.43}$$

Nhưng $i=C(du_c/dt)$

Nên:
$$u = RC \frac{du_C}{dt} + LC \frac{d^2u_C}{dt^2} + u_C$$
 (2.44)

(2.44) là phương trình vi phân bậc 2.

 $Vi\ d\mu\ 2.8$: Xét mối quan hệ giữa đầu ra- hiệu điện thế qua cuộn cảm u_L và đầu vào u của mạch, thể hiện trong hình 2.14. Áp dụng định luật 2 của Kirchhoff cho loop, ta có:

Hinh 2.14: Vi du 2.8

Hinh 2.15: Ví du 2.9

$$u = u_R + u_L \tag{2.45a}$$

Trong đó u_R là hiệu điện thế qua điện trở Rvà u_L là hiệu điện thế qua cuộn cám. Vì v_R =iR nên: $u = iR + u_L$ (2.45b)

$$i = \frac{1}{L} \int u_L dt \qquad (2.46)$$

Nên:
$$u = \frac{R}{L} \int u_L dt + u_L$$
 (2.47)

 $Vi\ d\mu\ 2.9$: Xét mối quan hệ của đầu ra, hiệu điện thế u_c qua cặp tụ C, và đầu vào u của mạch như hình vẽ 2.15

Sử dụng phân tích nút, nút B được lấy như là nút chuẩn và nút A được lấy tại điện thế v_A tương đối so với B. Áp dụng định

luật 1 của Kirchhoff:

$$i_1 = i_2 + i_3$$
 (2.48)

Nhung:

$$i_1 = \frac{u - u_A}{R} \tag{2.49}$$

$$i_2 = \frac{1}{L} \int u_A dt \tag{2.50}$$

$$i_3 = C \frac{du_A}{dt} \tag{2.51}$$

Nên:

$$\frac{u - u_A}{R} = \frac{1}{L} \int u_A dt + C \frac{du_A}{dt}$$
 (2.52)

vì $u_C = u_A$ nên có thể viết lại là:

$$u = RC\frac{du_C}{dt} + u_C + \frac{R}{L} \int u_C dt$$
 (2.53)

2.1.3.2. Sự tương tự giữa hệ cơ và điện

Các khối đặc trưng cho hệ thống cơ và điện có một số điểm tương tự. Ví dụ, điện trở của hệ điện không trữ mà tiêu hao năng lượng. Nếu dòng điện *i*

qua điện trở R, i=u/R, R không đổi, thì năng lượng mất mát $P=u^2/R$. Giảm chấn (phần tử cản) trong hệ thống cơ tương tự điện trở, cũng không trữ mà tiêu hao năng lượng. Với lực F có mối quan hệ với tốc độ F=cv, c là hằng số, thì năng lượng tiêu hao bởi giảm chấn là $P=cv^2$. Hai phương trình này có hình thức tương tự.

Nếu so sánh có thể thấy dòng điện tương đương với lực, hiệu điện thế tương đương với tốc độ, hằng số c tương đương với số đảo nghịch của điện trở (I/R). Các thành phần tương tự khác có thể so sánh lò xo với cuộn cám và khối lượng với tu.

2.1.4. Khối đặc trưng cho hệ thống thủy,, khí

Hinh 2.16: Ví dụ

Hệ thống thủy khí có 3 khối đặc trưng cơ bản, có thể coi là tương đương với điện trở, cuộn cảm và tụ điện trong hệ thống điện. Một hệ thống như vậy (hình 2.16), đầu vào, tương

đương với dòng điện, là lưu lượng dòng q, và đầu ra, tương đương với hiệu điện thế, là chênh lệch áp $(p_1 \cdot p_2)$. Hệ thống thuỷ khí có thể là hệ thuỷ lực, chất dẫn lưu là dòng chất lỏng, không có khả năng nén hoặc là hệ khí nén, chất dẫn lưu là là khí, có thể nén nên có thể thay đổi tỉ trọng.

Hệ thống thuy lực

Trở thuỷ lực (hydraulic resistance), R là sức cản đối với dòng chảy, xảy ra khi chất lỏng chảy qua các van hoặc qua ống có đường kính thay đổi (hình 2.17). Mối quan hệ giữa lưu lượng theo thể tích q qua thành phần trở và chênh lệch áp tạo ra (p_1-p_2) là:

$$p_1 - p_2 = Rq \tag{2.54}$$

trong đó R là hằng số gọi là trở thuỷ lực. Trở thủy lực càng cao thì chênh lệch áp càng cao đối với một tốc độ dòng cho trước. Trở thuỷ lực tuyến tính sinh ra ở dòng chảy tầng qua các ống mao dẫn và các đầu ống có chứa các lỗ nhỏ li ti (porous plugs), còn trở không tuyến tính xẩy ra ở các lỗ có cạnh sắc hoặc dòng chảy rối.

Áp năng thuỷ lực (hydraulic capacitance) là thuật ngữ miêu tả sự trữ năng lượng với một chất lỏng, dưới dạng thế năng. Chiều cao chất lỏng trong thùng chứa (hình 2.18) h gọi là cột áp (pressure head), là một dạng dự

Hình 2.17 : Ví dụ trở kháng thuỷ lực

Hình 2.18: Áp năng thuỷ lực (Hy draulic capacitance)

trữ năng lượng như thể. Đối với sự dự trữ này, tốc độ thay đổi thể tích V trong thùng, tức dV/dt bằng chênh lệch giữa các lưu lượng theo thể tích của chất lỏng vào thùng q_i và rời thùng q_2 .

$$q_1 - q_2 = dV/dt \qquad (2.55)$$

Nhưng V=Ah, A là tiết diện ngang của thùng chứa, h- chiều cao cột chất lỏng nên:

$$q_1 - q_2 = \frac{d(Ah)}{dt} = A\frac{dh}{dt}$$
 (2.56)

Với chênh lệch áp giữa đầu ra và đầu vào là p, $p=h\rho g$, ρ - tỉ trọng chất lỏng, g- gia tốc trọng trường, giá thiết chất lỏng không nén được, tức tỉ trọng

chất lỏng không thay đổi theo áp suất, ta có:

$$q_1 - q_2 = A \frac{d(p/\rho g)}{dt} = \frac{A}{\rho g} \frac{dp}{dt}$$
 (2.57)

áp năng C được xác định là:

$$C = \frac{A}{\rho g} \tag{2.58}$$

Diện tích tiết điện ngang A F₁=p₁A Khối lượng m F₂=p₂A

Hình 2.19 :Thuỷ năng

viết lai :

$$q_1 - q_2 = C \frac{dp}{dt} \tag{2.59}$$

Tích phân phương trình trên, ta có:

$$p = \frac{1}{C} \int (q_1 - q_2) dt \quad (2.60)$$

Thuỷ năng (hydraulic inertance) có ý nghĩa tương đương với cuộn cảm trong hệ thống điện hoặc lò xo trong hệ

thống cơ. Để tăng tốc dòng chất lỏng cần có một lực tác động lên khối chất lỏng m (hình 2.19), lực tổng tác động vào chất lỏng là:

$$F_2 - F_1 = p_1 A - p_2 A = (p_1 - p_2) A \tag{2.61}$$

Trong đó: p_i - p_2 là chênh lệch áp; A là tiết diện ngang . Lực tổng này tăng tốc chất lỏng với gia tốc a:

$$(p_1 - p_2) A = ma \tag{2.62}$$

a = dv/dt nên:

$$(p_1 - p_2)A = mdv/dt \tag{2.63}$$

Do khối chất lỏng này có thể tích bằng AL, với L - chiều dài của khối hoặc là khoảng cách giữa hai điểm trong chất lỏng, nơi đo áp suất p_1 và p_2 . Nếu chất lỏng có tỉ trọng riêng ρ thì $m=AL\rho$, như vậy:

$$(p_1 - p_2)A = AL\rho \frac{dv}{dt}$$
 (2.64)

Luu lượng theo thể tích của đồng q=Av nên:

$$(p_1 - p_2)A = L\rho \frac{dq}{dt}$$
 (2.65)

$$(p_1 - p_2)A = I\frac{dq}{dt} \tag{2.66}$$

Ở đây / là thủy năng, được xác định là:

$$I = \frac{L\rho}{\Lambda} \tag{2.67}$$

Hệ thống khí nén

Hệ thống khí nén có 3 khối đặc trưng tựa hệ thống thủy lực, đó là: trở, áp năng khí nén và khí năng. Khác với chất lỏng, khí có thể nén nên sự thay đổi áp suất sẽ kéo theo sự thay đổi thể tích và tỉ trọng. Trở khí nén R (pneumatic resistance) được xác định trong thành phần của công thức (2.66), thể hiện mối quan hệ với lưu lượng theo trọng khối của dòng \dot{m} và chênh lệch áp $(p_1 - p_2)$:

$$p_1 - p_2 = R\dot{m} ag{2.68}$$

Ap năng khí C (pneumatic capacitance) là do tính nén được của khí, có thể so sánh tương tự với nén lò xo để nạp năng lượng. Nếu có lưu lượng theo trọng khối của dòng \dot{m}_1 vào thùng chứa khối lượng V và \dot{m}_2 rời thùng, thì tốc độ thay đổi trọng khối trong thùng là ($\dot{m}_1 - \dot{m}_2$). Nếu khí trong thùng có tỷ trọng ρ , thì tốc độ thay đổi khối lượng trong thùng là :

$$\dot{m}_1 - \dot{m}_2 = \frac{d(\rho V)}{dt} \tag{2.69}$$

Nhưng do khí có thể nén được, ρ và V có thể thay đổi với thời gian, nên:

$$\dot{m}_1 - \dot{m}_2 = \rho \frac{dV}{dt} + V \frac{d\rho}{dt} \tag{2.70}$$

Nhưng(dV/dt)=(dV/dp)/(dp/dt) và đối với khí lí tưởng pV=mRT suy ra $p=(m/V)RT=\rho RT$ và $d\rho/dt=(1/RT)(dp/dt)$, khi đó:

$$\dot{m}_1 - \dot{m}_2 = \rho \frac{dV}{dp} \frac{dp}{dt} + \frac{V}{RT} \frac{dp}{dt}$$
 (2.71)

Trong đó R là hằng số khí và T là nhiệt độ được thừa nhận là bất biến theo thang Kelvin, Như vậy:

$$\dot{m}_1 - \dot{m}_2 = (\dot{\rho} \frac{dV}{dp} + \frac{dV}{RT}) \frac{dp}{dt}$$
 (2.72)

Áp năng khí do có sự thay đổi trong khối lượng khí chứa trong thùng , C_1 được xác định là:

$$C_{I} = \rho \left(\frac{dV}{dt} \right) \tag{2.73}$$

Và áp năng khí do tính nén được của khí, C2 là:

$$C_2 = \frac{V}{RT} \tag{2.74}$$

Nên :
$$\dot{m}_1 - \dot{m}_2 = (C_1 + C_2) \frac{dp}{dt}$$
 (2.75)

Hoặc:
$$p_1 - p_2 = \frac{1}{C_1 + C_2} \int (\dot{m}_1 - \dot{m}_2) dt$$
 (2.76)

Khí năng I thể hiện sự giảm áp cần thiết để tăng tốc một khối khí. Theo định luật 2 Newton, lực tổng ma=d(mv)/dt. Do lực được tạo bởi chênh lệch áp (p_1-p_2) , thì nếu A là tiết diện ngang khối khí tăng tốc đi qua, ta có:

$$(p_1 - p_2)A = \frac{d(mv)}{dt}$$
 (2.77)

Do $m = \rho LA$ (ρ là tỉ trọng khí, m là khối lượng khí đang tăng tốc, L là chiều dài của khối khí đang tăng tốc) và vì lưu lượng theo thể tích của dòng q = Av với v là tốc độ nên:

$$mv = \rho L A \frac{q}{\Lambda} = \rho L q \tag{2.78}$$

Vì vậy:

$$(p_1 - p_2)A = L\frac{d(pq)}{dt}$$
(2.79)

Nhưng $\dot{m} = \rho q$, nên:

$$p_1 - p_2 = \frac{L}{A} \frac{d\dot{m}}{dt}$$
 (2.80)

$$p_1 - p_2 = I \frac{d\dot{m}}{dt} \tag{2.81}$$

Trong (2.81) I là khí năng được xác định bằng:

$$I = L/A \tag{2.82}$$

Bảng 2.3 thể hiện các đặc tính cơ bản của các khối đặc trưng cho thủy lực và khí nén. Lưu lượng theo theo thể tích của dòng đối với thủy lực và lưu lượng theo trọng khối đối với khí nén là tương tự với dòng điện, chênh lệch áp tương tự với hiệu điện thế trong một hệ thống điện. So sánh với bảng 2.2 áp năng và thuỷ/khí năng của thủy lực và khí nén là những thành phần trữ năng lượng, trở thuỷ lực/ khí nén đều tiêu hao năng lượng.

Bảng 2.3 : Các khối đặc trưng cho khí nén và thủy lực

Khối đặc trưng	Phương trình miêu tả	Năng lượng trữ/ tiêu hao		
Thuý lực				
Thuỷ năng (Inertance)	$q = \frac{1}{L} \int (p_1 - p_2) dt$	$E = \frac{1}{2}Iq^2$		
Áp năng thuỷ lực (capacitance)	$q = C \frac{d(p_1 - p_2)}{dt}$	$E = \frac{1}{2}C(p_1 - p_2)^2$		
Trở (resistance)	$q = \frac{p_1 - p_2}{R}$	$P = \frac{1}{R}(p_1 - p_2)^2$		
Khí nén				
Khí nāng (Inertance)	$\dot{m} = \frac{1}{L} \int (p_1 - p_2) dt$	$E = \frac{1}{2} \operatorname{Im}^2$		
Áp năng khí nén (capacitance)	$\dot{m} = C \frac{d(p_1 + p_2)}{dt}$	$E = \frac{1}{2}C(p_1 - p_2)^2$		
Trở (resistance)	$\dot{m} = \frac{p_1 - p_2}{R}$	$P = \frac{1}{R}(p_1 - p_2)^2$		

Xây dựng mô hình cho hệ thống thuỷ/khí

Hinh 2.20 : Hệ thống chất lỏng

Hình2.21 : Hệ thống Thuỷ lực

phương trình (2.83), ta có:

Hình 2.20 thể hiện một hệ thống thuỷ lực dơn giản,-dòng chất lỏng vào (q_t) và ra (q_2) khỏi một thùng chứa. Hệ thống này gồm: 1 thùng chứa, chất lỏng trong thùng và một trở là van. Thuỷ năng có thể được bỏ qua do tốc độ dòng thay đổi rất chậm. Đối với thùng này, ta có thể viết:

$$q_1 - q_2 = C \frac{dp}{dt} \tag{2.83}$$

Tốc độ chất lỏng rời thùng q_z , bằng tốc độ ra khỏi van. Vậy đối với trở

$$p_1 - p_2 = Rq_2 \tag{2.84}$$

Chênh lệch áp $(p_1 - p_2)$ là áp suất p được tạo bởi chiều cao của chất lỏng trong thùng, và $p = h\rho g$. Thay giá trị của q_2 và p vào

 $q_1 - \frac{h\rho g}{R} = C \frac{d(h\rho g)}{dt}$ (2.85)

Và vì $C=A/\rho g$

nên:
$$q_1 = A \frac{dh}{dt} + \frac{\rho g h}{R}$$
 (2.86)

Phương trình (2.86) miêu tả chiều cao của cột chất lỏng trong thùng phụ thuộc vào tốc độ vào thùng của chất lỏng.

 $Vi\ d\mu\ 2.10$: Hình 2.21 thể hiện hệ khí nén. Trở tạo nên bởi đường hẹp khí qua, quyết định tốc độ khí vào ống, áp năng khí được tự cấp bởi chính ống xếp. Khí năng có thể bỏ qua vì tốc độ thay đổi dòng rất chậm. Lưu lượng theo trọng khối của dòng \dot{m} vào ống xếp được cho bởi :

$$p_{l} \cdot p_{2} = R \dot{m} \tag{2.87}$$

Với p_1 là áp suất trước khi vào lối hẹp và p_2 là áp sau đó (tức là áp trong ống xếp). Tất cả khí vào ống xếp, được lưu trong đó, không có đường ra khỏi ống. Áp năng khí của ống xếp được cho bởi:

$$\dot{m}_1 - \dot{m}_2 = (C_1 + C_2) \frac{dp_2}{dt} \tag{2.88}$$

 \dot{m}_1 là tốc độ của đồng cho bởi phương trình (2.87) và vì ống xếp không có đường thoát nên \dot{m}_2 =0, thay vào (2.88) ta có:

$$\frac{p_1 - p_2}{R} = (c_1 + C_2) \frac{dp_2}{dt}$$
 (2.89)

Hay:
$$p_1 = R(C_1 + C_2) \frac{dp_2}{dt} + p_2$$
 (2.90)

(2.90) là công thức miêu tả áp suất bên trong ống xếp, p_2 thay đổi theo hàm thời gian khi có đầu vào là áp p_T .

Ống xếp co hoặc dẫn phụ thuộc vào áp suất thay đổi bên trong nó. Như thế ống xếp có dạng của một lò xo, có thể viết lại : F=kx, mối quan hệ giữa lực gây dẫn/ nén , đưa đến dịch chuyển x, với k là hằng số co giãn của ống xếp. Lực F phụ thuộc vào áp suất p_2 , với $p_2=F/A$, A là tiết diện ngang của ống xếp, và $p_2A=F=kx$. Thay p_2 vào công thức (2.90), ta có:

$$p_1 = R(C_1 + C_2) \frac{k}{A} \frac{dx}{dt} + \frac{k}{A} x$$
 (2.91)

Công thức (2.91) là đạo hàm bậc 1, miêu tả thay đổi khoảng giãn /nén x của ống xếp trong khoảng thời gian t khi đầu vào là áp p_t . Áp năng khí C_t do thay đổi khối lượng thùng chứa là $\rho dV/dp_2$ và do V=Ax nên $C_t=\rho Adx/dp_2$. Nhưng đối với ống xếp $p_2A=kx$, nên:

$$C_1 = \rho A \frac{dx}{d(kx/A)} = \frac{\rho A^2}{k} \tag{2.92}$$

C2 là áp năng khí do tính nén được của khí:

$$C_2 = V / RT = Ax / RT \tag{2.93}$$

Hinh 2.22: Ví dụ 2.11

Ví dụ 2.11: Hình 2.22 thể hiện hệ thống thuỷ lực minh hoạ mối quan hệ chiều cao cột chất lóng trong hai bình chứa thay đổi với thời gian. Trong mô hình này,

bỏ qua thuỷ năng.

Trong thùng 1:

$$q_1 - q_2 = C_1 \frac{dp}{dt} \tag{2.94}$$

Với $p=h_i\rho g$ và $C_i=A_i/\rho g$, nên:

$$q_1 - q_2 = A_1 \frac{dh_1}{dt} ag{2.95}$$

Tốc độ dòng thuỷ khí rời thùng q_2 , bằng tốc độ rời van R_I . Như vậy đối với trở:

$$p_1 - p_2 = R_1 q_2 \tag{2.96}$$

 $vi \quad p_1 = h_1 \rho g \ vi \ p_2 = h_2 \rho g,$

Nên:
$$(h_1 - h_2) \rho g = R_1 q_2$$
 (2.97)

Sử dụng giá trị của q_2 cho bởi phương trình (2.97) thay vào phương trình (2.95) và (2.96), ta có:

$$q_1 - \frac{(h_1 - h_2)\rho g}{R_1} = A_1 \frac{dh_1}{dt}$$
 (2.98)

Phương trình (2.98) miều tả sự thay đổi chiều cao của chất lỏng trong thùng 1 phụ thuộc vào tốc độ dòng vào.

Đối với thùng 2, các phương trình thu được tương tự:

$$q_2 - q_3 = C_2 \frac{dp}{dt} (2.99)$$

Với $p=h_2\rho g$ và $C_2=A_2/\rho g$ từ đó:

$$q_2 - q_3 = A_2 \frac{dh_2}{dt} ag{2.100}$$

Tốc độ chất lỏng rời thùng chứa, q_3 bằng với tốc độ nó rời khỏi van R_3 . Như vậy đối với trở (van):

$$p_2 - \theta = R_2 q_3 \tag{2.101}$$

Giả thiết chất lỏng thoát ra khí quyển. Thay giá trị q_3 cho bởi phương trình (2.101) vào công thức (2.99) và (2.100) ta có:

$$q_2 - \frac{h_2 \rho g}{R_2} = A_2 \frac{dh_2}{dt} \tag{2.102}$$

Thay q_2 trong (2.102) bằng các giá trị cho bởi các phương trình chuyển hoá từ các biểu thức cho thùng 1:

$$\frac{(h_1 - h_2)\rho g}{R_1} = \frac{h_2 \rho g}{R_2} = A_2 \frac{dh_2}{dt}$$
 (2.103)

Phương trình (2.103) miêu tả sư thay đổi của cột chất lồng trong thùng 2.

2.1.5. Các khối đặc trung nhiệt

Khối đặc trưng cho hệ thống nhiệt có: nhiệt trở (thermal resistance) và nhiệt đung (thermal capacitance). Giữa hai điểm nếu có chênh lệch nhiệt sẽ có một đồng nhiệt. Hiện tượng này tương đương với mạch điện có đồng i giữa hai điểm nếu có một chênh lệch điện áp u giữa chúng. Mối quan hệ giữa đồng điện và chênh lệch điện áp là i=u/R (R là diện trở giữa các điểm). Mối quan hệ tương tự được sử dụng để xác định nhiệt trở(R). Nếu q là tốc độ của đồng nhiệt, $(T_1 - T_2)$, là chênh lệch nhiệt, khi đó:

$$q = \frac{T_2 - T_1}{R} \tag{2.104}$$

Giá trị của trở phụ thuộc vào phương thức truyền nhiệt. Trong trường hợp truyền nhiệt qua một chất rắn, truyền một chiều, ta có:

$$q = Ak \frac{T_1 - T_2}{I_1} \tag{2.105}$$

Frong đó A – tiết diện nhiệt truyền qua : L- khoảng cách giữa hai điểm vật liệu tại đó nhiệt đo được T_I và T_2 , k - hệ số dẫn nhiệt. Như vậy, trong phương thức truyền nhiệt này

$$R = \frac{L}{4k} \tag{2.106}$$

Nếu phương thức truyền nhiệt là đối lưu, như khí và nước, lúc đó:

$$q = Ah(T_2 - T_t) \tag{2.107}$$

Với A là diện tích bể mặt có chénh lệch nhiệt, h là hệ số truyền nhiệt. Như vậy, với phương thức truyền nhiệt này:

$$R = \frac{1}{Ah} \tag{2.108}$$

Nhiết dùng là đại lượng đánh giá sự lưu nhiệt lượng bên trong (nội năng) một hệ thống. Nếu tốc độ luồng nhiệt vào hệ thống là q_t và tốc độ ra là q_2 , thì:

$$T \delta c \ d\phi \ thay \ d\delta i \ n\phi i \ n ang = q_1 - q_2$$
 (2.109)

Sự thay đổi năng lượng bên trong, có nghĩa là có sự thay đổi nhiệt, do:

Thay đổi nội năng =
$$mc \times thay đổi trong nhiệt độ$$
 (2.110)

Với m- khối lượng, c- nhiệt dung riêng, khi đó:

Tốc đô thay đổi nội năng $=mc \times tốc độ thay đổi nhiệt độ (2.111)$

$$\text{vù vậy} \quad q_1 - q_2 = mc \frac{dT}{dt} \tag{2.112}$$

Trong đó dT/dt là tốc độ thay đổi nhiệt. Công thức này có thể viết lại :

$$q_1 - q_2 = C \frac{dT}{dt} \tag{2.113}$$

C là nhiệt dung C=mc. Bảng 2.5 thể hiện tổng kết của các khối đặc trưng cho hệ thống nhiệt

Bằng 2.5 Các khối đặc trưng nhiệt

Khối đặc trưng	Công thức	Năng lượng lưu
Nhiệt dung (Capacitance)	$q_1 - q_2 = C \frac{dT}{dt}$	E=CT
Nhiệt trở (Resistance)	$q = \frac{T_1 - T_2}{R}$	

Xảy dựng mô hình cho hệ thống nhiệt

Xét một nhiệt kế có nhiệt độ $T_{\rm c}$ nhúng vào một chất lỏng có nhiệt độ $T_{\rm c}$ (hình 2.23). Nếu trở nhiệt đối ngược từ đồng đến nhiệt kế là R, thì:

$$q = \frac{T_L - T}{R} \tag{2.114}$$

trong đó q là tốc độ dòng nhiệt từ chất lỏng đến nhiệt kế. C là nhiệt dung của nhiệt kế, xác định bởi :

$$q_1 - q_2 = C \frac{dT}{dt} \tag{2.115}$$

Vì chỉ có mỗi một dòng nhiệt từ chất lỏng đến nhiệt kế nên q_1 =q và q_2 =0, tức:

$$q = C\frac{dT}{dt} \tag{2.116}$$

Thay thế giá trị q ở (2.116) vào (2.114) ta được:

$$C\frac{dT}{dt} = \frac{T_L - T}{R} \tag{2.117}$$

Chuyển đổi lại, ta có:

$$RC\frac{dT}{dt} + T = T_{t} \tag{2.118}$$

Phương trình (2.118) là đạo hàm bậc 1, miêu tả sự thay đổi của nhiệt độ với thời gian khi nhiệt kế được nhúng vào một chất lỏng nóng.

Ở hệ thống nhiệt nêu trên, các tham số được xem như gộp lại, tức nhiệt kế thể hiện chỉ có một nhiệt độ, chính là nhiệt độ của chất lồng. Có nghĩa,

nhiệt độ chỉ là hàm của thời gian chứ không của vị trí trong vật thể.

Hinh 2.24: Ví du 21.12

 $Vi\ d\mu\ 21.12$: hình 2.24 thể hiện một hệ thống nhiệt- lò sưởi điện trong một căn phòng . Lò sưởi phát nhiệt lượng với tốc độ q_1 và nhiệt mất của căn phòng với tốc độ q_2 . Ta chấp nhận không khí trong phòng là như nhau ở nhiệt độ T và không có trữ nhiệt trong tường. Hãy xem xét nhiệt độ của

căn phòng sẽ thay đổi như thế nào với thời gian.

+ Nếu không khí trong trong phòng có nhiệt dung C, thì:

$$q_1 - q_2 = C \frac{dT}{dt} \tag{2.119}$$

+ Nếu nhiệt độ trong phòng là T và phía ngoài phòng là T_o, thì

$$q_2 = \frac{T - T_o}{R} {(2.120)}$$

 $\mathring{\mathbf{O}}$ đây R là trở kháng của tường. Thay vào q_2 ở (2.119)

$$q_1 - \frac{T - T_o}{R} = C \frac{dT}{dt} \tag{2.121}$$

Nên:
$$RC \frac{dT}{dt} + T = Rq_1 + T_0$$
 (2.122)

2.2. CÁC MÔ HÌNH HỆ THỐNG

2.2.1. Các hệ thống kỹ thuật

Trong mục2.1 các khối đặc trưng cơ bản cho hệ cơ tịnh tiến, cơ chuyển

Hinh 2.25:Lò xo a)Li tưởng b)Thực

động quay tròn, điện, thủy lực, nhiệt đã được xem xét riêng lẻ. Trong thực tế, các hệ thống cơ điện tử là những hệ thống đa thành phần, ví dụ, một động cơ điện có cả thành phần cơ và điện. Như vậy các khối đặc trưng được kết hợp thành các hệ thống đa "lĩnh vực". Các kết hợp này được thực hiện với giả thiết là có mối quan hệ tuyến tính. Thực tế, nhiều hệ thống có mối quan hệ không tuyến tính, tuy nhiên ta có thể sử dụng phép xấp xi tuyến tính cho những hệ thống như vậy.

2.2.1.1. Tuyến tính

Mối quan hệ giữa lực F và độ giãn x sinh bởi một lò xo lí tưởng là tuyến tính và được cho bởi F=kx, có nghĩa lực F_i sẽ gây giãn đoạn x_i , F_2 sẽ tạo đoạn dẫn x_2 và một lực bằng (F_1+F_2)

sẽ gây dẫn (x_1+x_2) . Đó gọi là nguyên tắc cộng, là điều kiện cần cho một hệ thống được gọi là tuyển tính. Một điều kiện nữa cho hệ thống tuyến là nếu

> có một đầu vào- lực F_I tạo giãn x_I thì một đầu vào cF_I sẽ tạo nên một đầu ra cx_I , với c là hằng số. Đồ thị quan hệ của lực với độ dẫn x là một

đường thắng đi qua gốc (hình 2.25a).

Thực tế, lò xo cũng như các thành phần cấu tạo khác không phải là tuyến tính lí tưởng (hình 2.25b). Thường chúng có một vùng hoạt động có thể cho là theo quan hệ tuyến tính (hình 2.25b). Đối với lò xo, phần tuyến tính được thừa nhận là vùng giữa của đồ thị. Đối với nhiều thành phần của hệ thống, có thể được chấp nhận tính tuyến tính trong một phạm vi giá trị của các biến quanh một số điểm hoạt động.

Một số thành phần hệ thống có mối quan hệ là không tuyến tính (non- linear), (hình 2.26). Trong trường hợp này, cách tốt nhất để có được mối quan hệ tuyến

Hình2.27: Dòng qua lỗ hẹp

tính là tuyến tính hoá thông qua đường thẳng tiếp tuyến với đồ thị tại điểm hoạt động. Quan hệ y và x (hình 2.26), tại điểm hoạt động P, độ đốc m là:

$$\Delta v = m\Delta v \tag{2.123}$$

Trong đó Δv và Δy là những thay đổi nhỏ trong tín hiệu đầu vào và đầu ra tại điểm hoạt động.

 $Vi d\mu 2.13$: tốc độ chảy của dòng chất lỏng q qua một lỗ được cho là:

$$q = c_a A \sqrt{\frac{2(p_1 - p_2)}{\rho}}$$
 (2.124)

Trong đó C_d - là hằng số, hệ số chảy. A -tiết diện của lỗ, ρ - tỉ trọng của chất lỏng; (p_1-p_2) - chênh lệch áp. Đối với A và ρ không đổi, công thức có thể viết lại là:

$$q = C\sqrt{p_1 - p_2} \tag{2.125}$$

C là hằng số . (2.125) là mối quan hệ không tuyến tính giữa tốc độ dòng chảy và chênh lệch áp. Có thể có được mối quan hệ tuyến tính khi xét đường thẳng thể hiện độ dốc của tốc độ dòng/ chênh lệch áp (đồ thị hình 2.27) tại điểm công tác. Độ dốc m là $dq/d(p_1-p_2)$ và có giá trị:

$$m = \frac{dq}{d(p_1 - p_2)} = \frac{C}{2\sqrt{p_{01} - p_{02}}}$$
 (2.126)

Ở đây $(p_{\theta l}-p_{\theta 2})$ là giá trị tại điểm hoạt động. Đối với các thay đổi nhỏ quanh điểm công tác, có thể thay đồ thị không tuyến tính bằng đường thắng độ đốc m, như vậy có thể viết $m=\Delta q/\Delta(p_l-p_2)$, do vậy:

$$\Delta q = m\Delta(p_1 - p_2) \tag{2.127a}$$

Nếu có $C=2m^3/s/kPa$, $\rightarrow q=2(p_1-p_2)$, nếu ở điểm hoạt động $(p_1-p_2)=4kPa$ với $m=2/(2\sqrt{4})=0.5$; tuyến tính hoá, phương trình có thể viết là:

$$\Delta q = 0.5 \ \Delta(p_1 - p_2) \tag{2.127b}$$

Trên đây là vấn đề dòng chảy qua lỗ có tiết diện không đổi. Nếu như dòng chảy qua van điều chỉnh (tiết điện ngang của van được điều chỉnh để thay đổi tốc độ dòng chảy), vấn đề sẽ khác. Trong trường hợp này

$$q = CA\sqrt{p_1 - p_2} (2.128)$$

Do cả A và (p_1-p_2) đều có thể thay đổi, phải tuyến tính hoá phương trình khi một hay cả hai biến thay đổi. Nhờ nguyên lí xếp chồng, ta có thể xem

xét trường hợp các biến thay đổi độc lập. Sau đó cộng hai kết quả để có được phương trình cho trường hợp cả hai thay đổi. Như vậy đối với các thay đổi quanh điểm công tác, các đốc của đồ thị q đối với A sẽ là:

$$m_1 = \frac{dq}{dA}C\sqrt{p_{01} - p_{02}} \tag{2.129}$$

Vì $\Delta q = m_1 \Delta A$ (chỉ số o được sử dụng để hiển thị các giá trị tại điểm hoạt động). Đối với đồ thị, quan hệ q đối với $(p_1 - p_2)$:

$$m_2 = \frac{dq}{d(p_1 - p_2)} = \frac{CA_0}{2\sqrt{p_{01} - p_{02}}}$$
(2.130)

Vì vậy $\Delta q = m_2 \Delta(p_1 - p_2)$. Tuyến tính hoá khi cả hai biến có thể thay đổi sẽ là:

$$\Delta q = m_t \Delta A + m_s \Delta (p_t - p_s) \tag{2.131}$$

Các mô hình toán học tuyến tính hoá được sử dụng vì phần lớn kỹ thuật của các hệ thống điều khiến dựa trên mối quan hệ có sự tuyến tính hoá cho các thành phần của hệ thống. Do đa số các bộ điều khiển giữ đầu ra bằng với một giá trị tham chiếu, các thay đổi so với giá trị này thường nhỏ, nên mô hình tuyến tính hoá sử dụng rất thích hợp.

 $Vi\ du2.14$: $d\vec{e}$ minh hoạ trường hợp trên, xét một thermistor sử dụng để đo nhiệt trong một hệ thống điều khiển. Mối quan hệ giữa trở R của thermistor và nhiệt độ T của nó là: $R = ke^{-rt}$.

Có thể tuyến tính hoá phương trình này quanh điểm hoạt động T_o : độ dốc m của biểu đồ R-T tại điểm hoạt động T_o được cho bởi dR/dT, như vậy:

$$m = \frac{dR}{dt} = -kce^{-cT_a} \tag{2.132}$$

Nên:

$$\Delta R = m\Delta T = (-kce^{-cT_n})\Delta T \qquad (2.133)$$

2.2.2. Hệ thống quay- tịnh tiến

Có nhiều cơ cấu cơ khí để biến đổi chuyển động quay thành tịnh tiến hoặc ngược lại. Ví dụ như bánh răng-thanh răng, trục với vít me dẫn, puli và hệ thống cấp, v..v.

Để phân tích các hệ thống như vậy, xét một hệ thống bánh răng- thanh răng(hình 2.28), chuyển động quay của bánh răng được chuyển thành tịnh

Hình 2.28: Hệ thống bánh- thanh răng

tiến của thanh răng. Trước hết xét bánh răng. Mômen hữu ích tác động lên bánh rāng là $(T_{vào}-T_{ra})$ (bỏ qua mômen thành phần ì và giảm chấn):

$$T_{\text{vio}}$$
- $T_{\text{ra}} = t \frac{d\omega}{dt}$ (2.134)

Trong đó I là mômen

quán tính của bánh răng và ω là tốc độ góc của bánh răng. Bánh răng quay tạo nên tốc độ tịnh tiến v của thanh răng. Nếu r là bán kính bánh răng, thì $v = r\omega$, có thể viết lại:

$$T_{vio} - T_{ro} = \frac{I}{r} \frac{dv}{dt} \tag{2.135}$$

Tiếp theo xét thanh rằng. Sẽ có lực $F = \frac{T}{r}$ tác dụng lên thanh rằng do chuyển động của bánh rằng. Nếu có một lực ma sát $F_{ms} = cv$, thì lực tổng sẽ là :

$$\frac{T_{ro}}{r} - cv = m\frac{dv}{dt} \tag{2.136}$$

Khử T_{ra} ở cả hai phương trình (2.135, 2.136) , ta có

$$T_{vin} - rcv = \left(\frac{I}{r} + mr\right)\frac{dv}{dt} \tag{2.137}$$

Như vậy:

$$\frac{dv}{dt} = \left(\frac{r}{I + mr^2}\right) (T_{v\delta\sigma} - rcv) \tag{2.138}$$

Kết quả (2.138) là một phương trình vi phân bậc một, miêu tả mối tiên quan đầu ra với đầu vào hệ thống quay-tịnh tiến.

2.2.3. Hệ thống cơ điện (electromechanical)

Thiết bị cơ điện như chiết áp (potentiometer), động cơ (motor), máy phát (generator) đều chuyển tín hiệu điện thành chuyển động quay tròn và ngược lại. Ở đây ta xét để đưa ra mô hình cho các hệ thống như vậy.

2.2.3.1. Chiết áp

Chiết áp là dụng cụ chia điện áp (hình 2.29), có đầu vào là chuyển động tròn, đầu ra là hiệu điện thể.

Hinh 2.29 : Chiết áp (potentiometer)

Hình2.30 : Động cơ DC a) Kéo một tải b) Nguyên lí động cơ cơ sở

$$\frac{u_0}{U} = \frac{\theta}{\theta_{\text{max}}} \tag{2.139}$$

Trong đó U là hiệu điện thế qua chiếu dài toàn bộ của rãnh potentiometer và θ_{max} là góc tổng con trượt quét qua từ một đầu mút rãnh sang đầu mút khác. Đầu ra là u_o đối với đầu vào θ .

2.2.3.2. Động cơ DC

Động cơ điện có đầu vào là một hiệu diện thế, đầu ra là chuyển động quay của trục (chuyển đổi tín hiệu điện đầu vào thành tín hiệu cơ đầu ra (hình 2.30a)). Động cơ cơ bản gồm một cuộn dây, cuộn phân ứng quay tự do. Cuộn này được đặt trong một trường từ, được tạo nên bởi dòng điện qua các cuộn trường. Khi một dòng điện i, qua cuộn ứng, do tác dụng của từ trường, tạo ra các lực tác dụng lên cuộn dây. làm roto quay (hình 2.30b). Lực F tác dụng lên dây

có đồng điện i_a , chiều dài L, trong trường từ có mật độ thông lượng B tại các gốc vuông với dây, được cho bởi:

$$F = Bi_a L \tag{2.140}$$

Với N đây:

$$F = NBi_{\perp}L \tag{2.141}$$

Các lực trên cuộn lỗi tạo thành mômen T: T=Fh, h là bề rộng của cuộn dây, nên:

$$T = NBi_a Lh \tag{2.142}$$

Mômen tổng này tỉ lệ với (Bi_a) , các thông số khác trong (2.142)không đổi nên có thể viết lai:

$$T = k_t B i_a \tag{2.143}$$

Do lỗi là một cuộn quay trong từ trường, sẽ gây ra một điện áp như là hệ quả của cảm ứng điện từ. Điện áp này theo hướng ngược với thay đổi sinh ra nó, gọi là sức điện động ngược (back e.m.f). Sức điện động ngược u_b này, tỉ lệ thuận với tốc độ quay của phần ứng và thông lượng được kết nổi bởi cuộn đây, mật độ thông lượng là \mathbf{R} , thì:

cuộn dây, mật độ thông lượng là B, thì:

Hình 2.31: DC kích hoạt riệng

$$u_b = k \cdot B\omega$$
 (2.144)

Trong đó ω là tốc độ góc của trục và k_2 là một hằng số.

Xét một động cơ DC. có cuộn lõi (phần

(armature

ứng) và cuộn trường (cuộn cảm) kích riêng lẻ (xem hình 2.31). Động cơ được gọi là điều khiển phần ứng

motor) khi động cơ có

dòng điện cuộn cảm i_f giữ cố đinh; điều khiển động

cơ thực hiện bằng điều

chính điện áp phần ứng u,.

Dòng điện cuộn cảm cố

định đồng nghĩa mật độ

-controlled

Mạch phần ứng
Armature circuit
Load

Hình 2.32: Mạch động cơ DC

thông lượng B cố định cho cuộn lõi. Như vậy:

$$u_b = k_2 B \omega = k_3 \omega \tag{2.145}$$

 \mathring{O} đây k_3 là một hằng số. Mạch phần ứng có thể xem là một trở R_a nối tiếp với cuộn cảm L_a (hình 2.32). Nếu u_a là điện áp của mạch phần ứng, do có sức điện động ngược (back e.m.f) u_b , ta có:

$$u_a - u_b = L_a \frac{di_a}{dt} + R_a i_a \tag{2.146}$$

Các thành phần của phương trình (2.146) có thể thể hiện theo biểu đồ hình 2.33(a). Đầu vào hệ thống động cơ là u_a , được cộng với tín hiệu phản hồi (tức suất điện động e.m.f ngược) u_b để thành một tín hiệu sai lệch (u_a - u_b)-

đầu vào mạch phần ứng. Phương trình (2.146) miêu tả mối quan hệ giữa đầu vào- tín hiệu sai lệch vào cuộn lõi và đầu ra- đòng điện cuộn lõi i_a . Thay u_b bởi vế trái của (2.145) ta có:

$$u_a - k_3 \omega = L_a \frac{di_a}{dt} + R_a i_a \tag{2.147}$$

Dòng i_a trong lõi sinh mômen T. Đối với động cơ điều khiển phần ứng, B là một hằng, ta có:

$$T = k_J B i_a = k_J i_a \tag{2.148}$$

Hinh2.33 : Động cơ DC

a) Điều khiển dòng ứng

b) Điều khiển trường

Trong đó k_4 - hằng số . Mômen này trở thành đầu vào của hệ thống chịu tải (load system). Mômen hữu ích tác dụng lên tải là:

Mômen hữu ích
$$=T$$
- mômen cản (2.149)

Mômen cản bằng $c\omega$, (c là hằng số). Nếu bỏ qua mọi tác động do tính đàn hồi xoắn của truc ta có:

Mômen hữu ích
$$=k_{a}i_{a}$$
- $c\omega$ (2.150)

Mômen này gây ra gia tốc góc dω/dt, nên

$$I\frac{d\omega}{dt} = k_4 I_u - c\omega \tag{2.151}$$

Ta có hai phương trình miễu tả điều kiện cho động cơ điều khiển phần ứng, là:

$$u_a - k_3 \omega = L_a \frac{di_a}{dt} + R_a i_a \text{ và } I \frac{d\omega}{dt} = k_4 i_a - c\omega$$
 (2.152)

Từ phương trình (2.152), có thể thu được các phương trình quan hệ đầu ra, ω với đầu vào, u_a của hệ thống khi khử i_a . (xem thêm phần 4.1.1 về chuyển đổi Laplace).

Động cơ điều khiển phần cảm (field controlled motor): đòng phần ứng $i_{\rm s}$ được giữ cố định và động cơ được điều khiển bằng cách thay đổi điện áp mạch cuộn cảm. Mạch này (hình 2.32) chú yếu gồm cuộn cảm $L_{\rm r}$ nối tiếp với trở $R_{\rm s}$. Trong mạch đó:

$$u_f = R_t i_t + L_f \frac{di_t}{dt} \tag{2.153}$$

Có thể xét một động cơ điều khiến lỗi với các thành phần theo sơ đồ hình 2.33b; đầu vào hệ thống là u_p mạch cuộn cảm biến đổi điện áp thành dòng i_p , môi quan hệ u_p và i_p được thể hiện ở phương trình (2.153). Dòng này dẫn đến sinh một trường từ , tạo mômen T tác động lên cuộn lỗi, $T=k_pBi_a$. Do B tỉ lệ thuân với dòng cảm i_p và i_a không đổi, nên:

$$T = k_1 B i_a = k_5 i_f \tag{2.154}$$

 k_s là hằng số . Mômen đầu ra được hệ thống tải chuyển thành tốc độ gốc ω . Như phương trình (2.149), mômen hữu ích động lên tải là:

Mômen hữu ích=
$$T$$
-mômen cản (2.155)

Mômen cán là cơi, c là hằng số , nếu mọi ảnh hưởng do tính đàn hồi xoắn của trực được bó qua thì:

Mômen hữu ích =
$$k$$
, $i_i \cdot c\omega$ (2.156)

Mômen này gây ra gia tốc gốc do/dt, nên:

$$I\frac{d\omega}{dt} = k_5 i_f - c\omega \tag{2.157}$$

Điều kiện cho một động cơ điều khiển trường là:

$$u_j = R_j I_j + L_j \frac{di_j}{dt} \text{ và } I \frac{d\omega}{dt} = k_S i_j + c\omega$$
 (2.158)

2.2.4. Hệ thống cơ -thuỷ lực

Hệ thống cơ- thuy lực chuyển đối tín hiệu thủy lực thành tín hiệu chuyển động tịnh tiến hoặc chuyển động quay tròn và ngược lại. Ví dụ, chuyển động của piston trong xilanh là kết quả của áp suất thủy lực khi có sự chuyển đổi áp thuỷ lực- đầu vào hệ thống thành chuyển động tịnh tiến- đầu ra.

Hình 2.34 :Hệ thống thủy lực và tải

Hình 2.34 thể hiện một hệ thống thuy lực: đầu vào là chuyển vị x_0 , sau khi qua hệ thống, chuyển thành chuyển vị x_0 của tải. Hệ thống bao gồm một van ống và một vi lanh. Đầu vào chuyển vị x_1 về phía trái tạo bởi áp cấp p_x làm chất

lỏng chảy về mặt trái của xi lanh, đẩy piston trong xilanh về phía phải và đẩy nước ở mặt bên phải của khoang qua cửa ra tại mút phải của van ống. Tốc độ của dòng chất lỏng chảy *vào và ra* khỏi khoang phụ thuộc vào độ mở rộng cổng, cho phép dòng chất lỏng vào hoặc rời van . Khi đầu vào- dịch chuyển x_i ở bên phải van ống làm chất lỏng chuyển động về mút phải của xi lanh, tạo nên chuyển động piston về phía trái.

Tốc độ dòng q qua lỗ (là các cổng trong van ống) là quan hệ không tuyến tính, phụ thuộc vào chênh lệch áp giữa hai mặt và tiết diện A của lỗ. Ta có thể sử dụng tuyến hóa phương trình (xem 2.2.1):

$$\Delta q = m_1 \Delta A + m_2 \Delta (chenh \, lech \, ap) \tag{2.159}$$

Trong đó m_1 và m_2 là hằng số tại điểm làm việc. Trong khoang, chênh lệch áp tại đầu vào là (p_s-p_1) , tại cổng ra là (p_2-p_o) . Nếu điểm công tác, quanh nó phương trình được tuyến tính hoá, là điểm mà tại đó van ống nằm giữa và các cổng nối nó với xilanh đều đóng, thì q=0 và $\Delta q=q$: A tỉ lệ với x_s nếu x_s được đo từ vị trí giữa, và sự thay đổi áp ở phía mặt vào piston là $-\Delta p_1$, tương quan với p_s , và ở phía ra Δp_2 tương quan với p_o . Như vậy, phương trình viết cho cổng vào là:

$$q = m_i x_i + m_2(-\Delta p_i) \tag{2.160}$$

và cho cổng ra:

$$q=m_1x_1+m_2\Delta p_2 \tag{2.161}$$

Cộng 2 phương trình, ta có:

$$2q=2m_1x_1-m_2\left(\Delta p_1-\Delta p_2\right) \tag{2.162a}$$

$$q = m_i x_i - m_3 \left(\Delta p_1 - \Delta p_2 \right) \tag{2.162b}$$

Trong đó $m_3 = m_2/2$

Đối với xilanh, sự thay đổi dung tích chất lỏng vào phía bên trái khoang, hoặc rời khoang ở phía bên phải, khi piston chuyển một đoạn x_a là Ax_a , (A là tiết diện ngang của piston). Như vậy, thể tích thay đổi theo tốc độ là $A(dx_a/dt)$. Nếu chất lỏng vào bên trái xilanh với tốc độ q, do có sự rò chất lỏng từ mặt này sang mặt kia piston, nên:

$$q = A \frac{dx_n}{dt} + q_L \tag{2.163}$$

 $\mathring{\mathbf{O}}$ đây \mathbf{q}_{0} là tốc độ rò. Thay thế q bởi vế trái của (2.162) ta có:

$$m_i x_i - m_j (\Delta p_i - \Delta p_j) = A \frac{dx_o}{dt} + q_L$$
 (2.164)

Tốc độ rò q_1 là lưu lượng qua khe hở giữa piston và xilanh. Đối với một tiết diện cố định có chênh lệch áp $(\Delta p_1 - \Delta p_2)$, sử dụng phương trình tuyến tính hoá cho dòng:

$$q_L = m_4 (\Delta p_1 - \Delta p_2) \tag{2.165}$$

Sử dụng phương trình này thay vào $q_L \mathring{\sigma} (2.164)$:

$$m_i x_i - m_d \left(\Delta p_i - \Delta p_2 \right) = A \frac{dx_o}{dt} + m_d \left(\Delta p_i - \Delta p_2 \right)$$
 (2.166)

$$m_i x_i - (m_s + m_d) \left(\Delta p_i - \Delta p_2 \right) = A \frac{dx_o}{dt}$$
 (2.167)

Chênh lệch áp qua piston tạo nên lực $(\Delta p_1 - \Delta p_2)A$ đặt lên tải. Tuy nhiên còn có thành phần cản chuyển động. Thành phần này tỉ lệ với tốc độ của khối, (dx_0/dt)). Như vậy lực hữu ích tác dụng lên tải là:

Luce hữu ích =
$$(\Delta p_1 - \Delta p_2)A - c \frac{dx_o}{dt}$$
 (2.168)

Lực này làm khối lượng tăng tốc, (d^2x_0/dt^2) , nên

$$m\frac{d^2x_o}{dt^2} = (\Delta p_1 - \Delta p_2)A - c\frac{dx_o}{dt}$$
 (2.169)

Sắp xếp lại công thức này, ta có:

$$\Delta p_1 - \Delta p_2 = \frac{m}{A} \frac{d^2 x_o}{dt^2} + \frac{c}{A} \frac{dx_o}{dt}$$
 (2.170)

Sử dụng phương trình này để thay vào chênh lệch áp ở công thức (2.167);

$$m_i x_i - (m_i + m_d) \left(\frac{m}{A} \frac{d^2 x_o}{dt^2} + \frac{c}{A} \frac{dx_o}{dt} \right) = A \frac{dx_o}{dt}$$
 (2.171)

Sắp xếp lại:

$$\frac{m(m_3 + m_4)}{A} \frac{d^2 x_o}{dt^2} + (A + \frac{c(m_3 + m_4)}{A}) \frac{dx_0}{dt} = m_1 x_c$$
 (2.172)

Dẫn đến:

$$\frac{m(m_3 + m_4)}{A^2 + c(m_3 + m_4)} \frac{d^2 x_o}{dt^2} + \frac{dx_0}{dt} = \frac{Am_1}{A^2 + c(m_3 + m_4)} x_t$$
 (2.173)

Phương trình (2.173) có thể đơn giản hoá khi thay các hằng số bằng k và τ; τ được gọi là hằng thời gian (xem chương3):

$$\tau \frac{d^2 x_n}{dt^2} + \frac{dx_0}{dt} = kx_i \tag{2.174}$$

(2.171) là mối quan hệ giữa đầu ra và đầu vào được thể hiện dưới dạng phương trình vi phân bậc hai của một hệ thống cơ- thuỷ lực.

CHƯƠNG 3. ĐÁP ỨNG ĐỘNG HỌC CỦA CÁC HỆ THỐNG

Phân tích động học của các hệ thống để dự đoán và hiểu hoạt động của hệ thống có thể thực hiện bằng mô hình toán học miêu tả cách "ứng xử" động học thích hợp của hệ thống. Thông thường, một mô hình được trình bày chính xác để miêu tả hoạt động liên tục hoặc gián đoạn đối với thời gian của một hệ thống.

Các phương trình tương ứng chi phối mô hình được sử dụng để dự đoán và hiểu hoạt động động học của hệ thống. Thực tế, một phán tích chặt chế có thể thực hiện được với những mô hình tương đối đơn giản. Thông thường, các phân tích đáp ứng động học được giới hạn ở các mô hình bậc 1 và 2 tuyến tính. Dù vậy, các giải pháp này đã có thể cho thấy những dáp ứng động học đặc trưng của hệ thống. Đối với các mô hình bậc cao, không tuyến tính ngày nay đã có thể dễ dàng giải nhờ sự giúp đỡ của máy tính.

3.1. PHẨN ỨNG ĐỘNG HỌC

3.1.1. Mô hình hệ thống động học

Một trong những chức năng quan trọng của một mô hình được phát triển cho hệ thống do hoặc điều khiến là có khá năng dự đoán đầu ra sẽ như thế nào đối với một đầu vào. Những vấn đề này không thuộc trường hợp tĩnh. Đó là trường hợp sau một khoáng thời gian. khi đã đạt trạng thái xác lập một đầu ra x tương ứng với một đầu vào y. Phải xem xét đầu ra thay đối như thế nào với thời gian khi có sự thay đổi ở đầu vào hoặc khi đầu vào thay đổi với thời gian.

Chương 2 đã thể hiện những vấn để liên qua mô hình hệ thống dưới dạng mô hình toán học. Phần này ta sử dụng các mô hình như vậy để thực hiện dự đoán các đầu ra sẽ thay đổi như thế nào theo thời gian khi đầu vào thay đổ.

3.1.1.1. Đáp ứng ở trạng thái -quá độ và trạng thái- xác lập

Đáp ứng của một hệ thống điều khiến được xem có hai thành phần, đáp ứng ở trạng thái quá độ (transient response) và đáp ứng ở trạng thái xác lập (steady-state response). Đáp ứng ở trạng thái quá độ là phần đáp ứng của hệ thống xẩy ra khi có một thay đổi trong đầu vào và tắt sau một thời gian

ngắn, đấp ứng ở trạng thái xác lập là đấp ứng giữ nguyên sau khi tất cả các

Hình 3.1: Phản ứng ở trang thái quá độ và ốn định của một hệ lò xo

đáp ứng quá độ đã tắt.

Một minh họa đơn giản là một lò xo được treo thẳng đứng (hình 3.1), Điều gì sẽ xấy ra khi có một trọng lượng bất ngờ được gá vào lò xo. Đô võng của lò xo đột ngô tăng, sau đó có thể dao động cho đến sau một khoảng thời gian, ổn định ở một giá trị xác định. Giá trị xác định là đáp ứng ở trang thái xác lập của hệ thống lò xo, dao đông xẩy ra trước khi đạt trang thái xác lập là đáp ứng quá độ. Đầu vào hệ thống lò xo là trọng lượng, đại lượng thay đổi với thời gian. Cho đến một thời gian nào đó không còn sư bổ sung trong lương, lúc này đầu vào mới giữ, không đổi cho hết thời gian còn lại. Kiểu đầu vào như vậy gọi là đầu vào

dạng bậc (step input), có đồ thị biểu diễn như hình 3.2.

Cả đầu vào và đầu ra đều là hàm của thời gian, có thể viết dưới dang f(t) với kí hiệu f là hàm và (t) mang nghĩa biến thời gian. Như vậy đối với trọng lương W-đầu vào hệ thống lò xo ta có thể viết W(t) và đối với đô võng d-

Hinh 3.3: Hệ thống là xo

đầu ra hệ thống là d(t). Biểu đồ khối của hệ thống được thể hiện như hình 3.3.

3.1.1.2. Phương trình vi phân

Để miêu tả mối quan hệ giữa đầu vào và đầu ra một hệ thống ta phải miêu tả mối quan hệ giữa chúng bằng hàm của thời gian. Ta cần dạng phương trình cho biết đầu ra sẽ thay đổi như thế nào với thời gian khi đầu vào thay đổi. Điều này có thể thực hiện được nếu sử dụng phương trình vi phản. Phương trình này bao gồm các đạo hàm đối với thời gian, qua đó cho thông tin về đáp ứng của hệ thống đối với thời gian. Hàm dx/dt miêu tả tốc độ x thay đổi đối với thời gian, d²x/dt² (d(dx/dt)/dt) thể hiện sự thay đổi dx/dt với thời gian. Các phương trình vi phân có thể phân thành phương trình bậc 1, bậc 2 và bậc 3, v...v, phụ thuộc vào mức cao nhất của đạo hàm trong phương trình. Đối với phương trình bậc 1, mức của dạo hàm cao nhất là dx/dt, bậc 2 là d²x/dt² và bậc 3 là d³x/dt³. Sau đây ta sẽ xem xét đáp ứng của các hệ thống có mò hình toán học bậc 1 và bậc 2, sử dụng cách tiếp cận gọi là "thứ tìm kết quả -try a solution" để tìm đáp án. Phương pháp chuyển đổi Laplace được giới thiệu trong phần 3.2 được sử dụng để phán tích các hệ thống liên tục đối với thời gian.

3.1.2. Các hệ thống bậc 1

Ví dụ 3.1 :Một minh hoa cho hệ thống bác 1 là một bể nước điều khiến

Hinh 3.4 : Điều khiển mức nước bằng phao

phao (hình 3.4(a). Ở hệ thống này, tốc độ nước vào bể và vì thế làm thay đổi độ cao cột nước trong thùng là hàm thời gian, phụ thuộc vào chênh lệch giữa chiều cao h của nước trong thùng và độ cao H, tại đó phao đóng nước hoàn toàn, tức tốc độ thay đổi cột nước tỉ lệ với (H-h):

$$\frac{dh}{dt} = k(H - h) \tag{3.1}$$

trong đó dh/dt là tốc độ thay đổi chiều cao, k là hằng số. Mức nước trong thùng càng táng, giá trị (H-h) càng nhỏ,

như vậy tốc độ thay đổi cột nước đối với thời gian (dh/dt) cũng càng nhỏ. Biểu đồ cột nước đối với thời gian thể hiện như hình3.4(b). Phương trình miêu tả biểu đồ này là:

$$h = H(1 - e^{-kt}) \tag{3.2}$$

Tất cả các hệ thống bậc I có đặc tính là tốc độ thay đổi của biến tỉ lệ thuận với chénh lệch giữa biến và giá trị đặt cho biến (có thể là zero). Tất cả chúng có dạng nghiệm như thể hiện ở phương trình (3.2)

 $Vi d\mu 3.2$: Xét một nhiệt kế đặt trong một chất lỏng nóng có nhiệt độ θ_{tt} .

Tốc độ -giá trị đọc trèn nhiệt kế θ thay đổi theo thời gian, tỉ lệ với chênh lệch giữa θ và $\theta_{\rm H}$. Dạng phương trình vi phân miêu tả nhiệt độ của nhiệt kế thay đổi với thời gian là:

$$\frac{d\theta}{dt} = k(\theta - \theta_H) \tag{3.3}$$

k là hằng số. Đây là mối quan hệ đặc trưng của hệ thống bậc 1.

Đối với hệ thống bậc l có đầu vào $\theta_{\rm H}$ và một đầu ra θ ta sẽ có phương trình đặc trưng của hệ thống bậc l là:

$$\theta = \theta_{\rm H} \left(1 - e^{-kt} \right) \tag{3.4}$$

3.1.2.1. Phương trình vi phân bậc 1

Hinh3.6: Các tín hiệu vào a) Bậc b) Xung lực c) Đốc d) Sin

Xét 1 hệ thống bậc 1 (hình 3.5) với y(t) là đầu vào và x(t) là đầu ra hệ thống, có tốc độ thay đổi tín hiệu đầu ra tỉ lệ với $(h_0 y - a_0 x)$, khi đó phương trình vi phân có dang :

$$a_1 \frac{dx}{dt} + a_0 x = b_0 y \tag{3.5}$$

Trong đó a_i , a_θ , b_θ là hằng số.

Tín hiệu đầu vào hệ thống y(t) có thể có nhiều dạng. Dạng thường gặp nhất là dạng bậc (step input). Đây là dạng khi đầu vào bất thình lình thay đổi giá trị, như hình 3.6 (a). Những dạng thường gặp khác là tín hiệu dạng xung lực (impulse), dốc (ramp), dạng sin. Xung lực là tín hiệu đầu vào trong một khoảng thời gian rất ngắn, hình 3.6b, tín hiệu dốc là đầu vào liên tục

tăng, hình 3.6c, có thể miêu tả bởi phương trình y=kt, với k là hằng số. Một đầu vào hình sin, hình 3.6d, có thể miêu tả là một phương trình dạng $y=ksin\omega t$ với ω gọi là tần số góc và $\omega=2\pi f$ (f là tần số).

3.1.2.2. Giải phương trình bậc 1

Giải phương trình bậc 1 là phương pháp đưa ra một biểu thức thể hiện

trực tiếp đầu ra hay đổi như thế nào với thời gian, liên quan đến sự nhận biết loại nghiệm phù hợp với phương trình và xác định nghiệm đó.

Xét một phương trình vi phân bậc 1 có đầu vào y(t), đầu ra x(t) và một phương trình vi phân có dạng:

$$a_1 \frac{dx}{dt} + a_0 x = b_0 y \tag{3.6}$$

Tín hiệu đầu vào hệ thống y(t) có thể có nhiều kiểu:

1. Trường hợp, đầu vào bằng 0. Vì không có tín hiệu vào hệ thống, ta không có tín hiệu cưỡng bức hệ thống đáp ứng nào khác là đáp ứng tự nhiên của nó với đầu vào 0. Khi đó phương trình vi phân là:

$$a_1 \frac{dx}{dt} + a_0 x = 0 (3.7)$$

Ta hãy thử với nghiệm dạng $x=Ae^{x}$; A và s là hằng số. Khi đó ta có $dx/dt=sAe^{x}$. Thay thế các giá trị này vào phương trình vi phân (3.7):

$$a_i s A e^{si} + a_0 A e^{si} = 0 ag{3.8}$$

như vậy

$$a_1 s + a_0 = 0 \tag{3.9}$$

với $s=-a_0/a_t$, nghiệm sẽ là

$$x = Ae^{-a_0/a_1} (3.10)$$

đáp ứng này thuật ngữ gọi là đáp ứng tự nhiên (natural response) vì không có hàm cưỡng bức.

2. Xét phương trình vi phân khi là hàm cưỡng bức, tức:

$$a_1 \frac{dx}{dt} + a_0 x = b_0 y ag{3.11}$$

Chia nghiệm của phương trình này thành 2 phần, x=u+v. u thể hiện trạng thái quá độ và v- trạng thái xác lập . Thay vào phương trình (3.11) có thể viết:

$$a_1 \frac{d(u+v)}{dt} + a_0(u+v) = b_0 y \tag{3.12}$$

sắp xếp lai:

$$(a_1 \frac{du}{dt} + a_0 u) + (a_1 \frac{dv}{dt} + a_0 v) = b_0 v$$
 (3.13)

Nếu để:

$$a_1 \frac{dv}{dt} + a_0 v = b_0 v ag{3.14}$$

ta phái có:

$$a_1 \frac{du}{dt} + a_0 u = 0 \tag{3.15}$$

(3.14) và (3.15) là hai phương trình vi phân, một chứa hàm cưỡng bức và 1 là phương trình đáp ứng tự nhiên. Phương trình tự nhiên, có nghiệm dạng:

$$u = Ae^{-a_0t/a_0} \tag{3.16}$$

Phương trình còn lại chứa hàm cưỡng bức y. Đối với phương trình vi phân này, kiểu nghiệm có thể thử phụ thuộc vào dạng tín hiệu đầu vào y. Với một d d u v d o d ang bậc, khi y không đổi và lớn hơn <math>0 tại mọi thời gian, tức y=k, ta có thể thử nghiệm v=A (A là hằng số). Nếu tín hiệu đầu vào có dạng $y=a+bt+ct^2+...$, với a,b,c là hằng (có thể bằng 0). Khi đó ta có thể thử nghiệm dạng $v=A+Bt+ct^2+...$ Đối với tín hiệu vào dạng SIN ta có thể thử nghiệm $v=A\cos\omega t+B\sin\omega t$

Giả sử có hệ thống có đầu vào $dqng \, bqc$, độ lớn k, tại thời điểm t=0. Ta có thể thứ nghiệm dạng v=A. Đạo hàm của một hằng bằng 0, như vậy khi thay thế vào phương trình vi phân (3.14) ta được:

$$a_o A = b_o k \tag{3.17}$$

$$V_{ay}: \qquad v = (b_0/a_0)k \tag{3.18}$$

Đầu vào K O Thời gian t

a)
Dấu
ra
(b₀/a₀)k

O Thời gian

Hình 3.7 : Hệ thống bậc 1 a) Đầu vào bậc b) Đầu ra kết quả

Nghiệm đủ có dạng: y=u+v, như vậy:

$$y = Ae^{-a_0t/a_0} + \frac{b_0}{a_0}k \tag{3.19}$$

Giá trị của hằng A có thể xác định nếu có các điều kiện biên, ví dụ, nếu đầu vào y=0 khi t=0 thì:

$$0 = A + \frac{b_0}{a_0} k$$

Như vậy: $A=-(b_0/a_0)k$.

Khi đó nghiệm trở thành:

$$x = \frac{b_0}{a_0} k (1 - e^{-a_0 t f a_1})$$
 (3.20)

Nếu t $\rightarrow \infty$, số mũ sẽ tiến đến 0, số hạng có số mũ thể hiện phần phản ứng, nghiệm trạng thái tạm thời. Khi ấy $x=(b_o/a_o)k$, là đáp ứng của hệ thống ở trạng thái xác lập. Như vậy phương trình có thể viết là:

$$x=gia\ tri\ trang\ thái\ xác\ lập $\times (1-e^{-a_0t/a_0})$ (3.21)$$

Hình 3.7 thể hiện đổ thị sự thay đổi đầu ra x với thời gian đối với một đầu vào dạng bậc.

 $Vi\ du3.3$: Để minh hoạ, ta xét một hệ thống cảm biến điện (hình 2.12) gồm một trở nối tiếp với một tụ. Khi chịu một đầu vào bậc, độ lớn V, thì đầu ra là hiệu điện thế qua tụ, v được cho bởi phương trình vi phân:

$$RC\frac{dv}{dt} + v = V ag{3.22}$$

Tìm nghiệm của phương trình, tức đáp ứng của hệ thống và thay đổi của r đối với thời gian.

So sánh phương trình vi phân (3.22) với phương trình (3.14) ta có a_1 =RC, a_0 =1 và b_0 =1, khi đó đáp số có dạng:

$$v = V(1 - e^{rTRC}) \tag{3.23}$$

 $Vi\ d\mu\ 3.4$: Xét trường hợp đầu vào có dạng dốc (ramp input). Một mạch điện gồm một trở $1M\Omega$, nối tiếp với một điện dung $2\mu F$. Tại thời điểm t=0, mạch chịu một điện áp dốc 4tV, tức điện áp tăng với tốc độ 4V/s. Xác định điện áp qua tụ sẽ thay đổi như thế nào với thời gian.

Phương trình vi phân có dạng tương tự với bài toán phương trình (3.22), nhưng bậc điện áp V ở (3.22) được thay bằng điện áp dốc 4t, tức:

$$RC\frac{du}{dt} + u = 4t \tag{3.24}$$

Thay các giá tri đã cho vào (3.24), có:

$$2\frac{du}{dt} + u = 4t\tag{3.25}$$

Lấy $u=u_n+u_p$ tổng của đáp ứng tự nhiên và cưỡng bức, ta có:

$$2\frac{du_n}{dt} + u_n = 0 ag{3.26}$$

$$Va: 2\frac{du_f}{dt} + u_f = 4t (3.27)$$

Với phương trình vi phân đáp ứng tự nhiên (3.26), ta có thể thử nghiệm dạng $u_n = Ae^M$. Sử dụng giá trị này cho:

$$2Ase^{st} + Ae^{st} = 0 (3.28)$$

Như vậy nếu s=-1/2 thì $u_n = Ae^{-t/2}$. Với phương trình vi phân đáp ứng cưỡng bức (3.27), do bên phải của phương trình là 4t, ta có thể thử nghiệm dạng $u_t = A + Bt$. Sử dụng giá trị này cho:

$$2B + A + Bt = 4t \tag{3.29}$$

Như vậy ta phải có B=4 và A=-2B=-8. Khi đó nghiệm của phương trình là $u_i=-8+4t$. Nghiệm đủ của phương trình là:

$$u = u_n + u_T = Ae^{-t/2} - 8 = 4t ag{3.30}$$

Vì v=0 khi t=0 ta phải có A=8, khi đó:

$$u = 8e^{-t/2} - 8 + 4t \tag{3.31}$$

 $Vi\ d\mu\ 3.5$: Xét một động cơ có mối quan hệ giữa tốc độ góc đầu ra ω và đầu vào- điện áp v được cho bởi:

$$\frac{IR}{k_1 k_2} \frac{d\omega}{dt} + \omega = \frac{1}{k_1} u \tag{3.32}$$

Giá trị trạng thái xác lập của tốc độ gốc là bao nhiều? khi đầu vào là bâc có giá trị 1V?

So sánh với phương trình đã giải ở trên, thì $a_1=IR/k_1k_2$, $a_n=I$ và $b_n=I/k_1$. Giá trị trạng thái xác lập cho đầu vào dạng bậc là $(b_0/a_0)k=1/k_1$

3.1.2.3. Hằng thời gian

Đối với một hệ thống bậc 1 chịu một đầu vào dạng bậc có độ lớn k ta có một đầu ra y thay đổi với thời gian t theo:

$$x = \frac{b_0}{a_0} k (1 - e^{-a_0 t + a_1}) \tag{3.33}$$

hoặc:
$$x = gia trị trạng thái xác lập $\times (1 - e^{-a_0 I a_0})$ (3.34a)$$

Khi thời gian $t=(a_1/a_0)$, thì thành phần mũ có giá trị $e^{-t}=0.37$, lúc đó:

$$x = gia trị trạng thái xác lập × (1-0,37)$$
 (3.34b)

Trong thời gian này, đầu ra đã tăng lên tới 0,63 lần giá trị ở vị trí xác lập. Thời gian này được gọi là hằng thời gian (time constant) τ. Trong thời

Bảng 3.1 Đáp ứng của hệ thống bậc			
1 đối với đầu vào- dạng bậc			
Thời gian t	Phần đầu ra ở		
	trạng thái xác lập		
0	0		
1τ	0,63		
2τ	0,86		
3τ	τ 0,95		
4τ	0,98		
5τ	0,99		
∞	1		

gian $2(a_1/a_0)=2\tau$, thành phần có số mũ trở thành $e^{-2}=0.14$ nên:

$$x = gia trị trạng thái xác lập $\times (1-0.14)$$$

Trong thời gian này, đầu ra đã tàng đến 0.86 lần giá trị của nó tại trạng thái xác lập. Tương tự, các giá trị này có thể tính toán cho đầu ra sau 3τ , 4τ và 5τ v...v. Bảng 3.1 thể hiện kết quả tính toán này, còn biểu đồ hình 3.8 thể hiện đầu ra thay đổi như thế nào theo thời gian đối với một đầu vào là bậc đơn vị.

Theo τ ta có thể viết phương trình là:

$$x = gi\acute{a} tri trạng thái xác lập $\times (1 - e^{-t/\tau})$ (3.35)$$

Hinh3.8: Phản ứng của hệ thống bậc 1 đối với đầu vào dạng bậc

Trong đó hàng số thời gian τ là (a_i/a_θ) , ta có thể viết dạng tổng quát của phương trình vi phân bác nhất:

$$a_1 \frac{dx}{dt} + a_0 x = b_0 y ag{3.36}$$

lai là:

$$\tau \frac{dx}{dt} + x = \frac{b_0}{a_0} y \tag{3.37}$$

b₀/a₀ là hệ số, nhân với đầu vào y để cho giá trị ở trạng thái xác lập, gọi là hệ số khuếch trạng thái xác lập (steady-state gain), thể hiện đầu ra lớn hơn đầu vào bao nhiều lần dưới điều kiện xác lập. Nếu biểu thị hệ số này là G_{ss} thì phương trình vi phân có thể viết dưới dang:

Hinh3.9:Ví dụ

 $\tau \frac{dx}{dt} + x = G_{ss} y \tag{3.38}$

 $Vi\ du\ 3.6$: $D\vec{e}$ minh hoạ, ta xét đầu ra u_0 của một hệ thống thay đổi như thế nào với thời gian khi chịu một đầu vào bậc - 5V (hình 3.9). Hằng thời gian là thời gian để đầu ra hệ thống bậc 1 thay đổi từ 0 đến 0.63 lần giá trị

Hình3.10 : Hệ thống lò xo bậc 2

trang thái xác lập cuối cùng của nó. Trong trường hợp này τ bằng khoảng 3 s. Ta có thể kiểm lại giá trị bằng tìm gía trị tai 2τ, tức 6s. Tai đó hệ thống bậc 1 có giá trị trạng thái xác lập là 0,86. Trong trường hợp này, đầu ra trang thái xác lập là 10V. Hệ số G_{SS} (=đầu ra/đầu vào $\ddot{\sigma}$ trạng thái xác lập) là 10/5=2. Phương trình vi phân bác 1 có thể viết:

$$\tau \frac{dy}{dt} + y = G_{SS}x \to 3\frac{dv_0}{dt} + u_0 = 2u_1$$
 (3.39)

3.1.3. Hệ thống bậc 2

Hinh3.11: Tin hiệu đầu ra đối với tin hiệu đầu vào bác :

- Không có giảm chấn
- Với giảm chấn
- Với giảm chấn manh
- Với giảm chấn đủ lớn

Nhiều hệ thống bậc 2 có thể xem thực chất như một lò xo bị kéo bởi một khối lượng và một số cơ cấu giảm chấn (damping). Hình 3.10 thể hiện đặc trưng của hệ thống này. Hệ thống đã được phân tích ở điểm 2.1.1.3. Phương trình miêu tả quan hệ đầu vào đực F và đầu ra - khoảng dịch chuyển x là:

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F \tag{3.40}$$

trong đó m là khối lượng, c là hằng số giảm chấn và k là hằng số lò xo

Đây là phương trình vi phân bác 2 của một hệ thống có lực F bất ngờ tác dụng vào, tức là một đầu vào- bậc (hình 3.11a). Lượng dịch chuyển x thay đổi với thời gian phụ thuộc vào lương giảm chấn trong hệ. Nếu không có giám chấn, khối lương sẽ dao động tư do trên lò xo, liên tục không ngừng (hình3.11b). Không có giảm chấn, có nghĩa cdx/dt=0. Tuy nhiên, giảm chấn sẽ làm cho các đạo động tắt dần (hình 3.11 c) cho đến khi đạt được một độngvà dịch chuyển của khối lượng sẽ tăng dẫn theo thời gian, và dẫn tới vị trí chuyển vị ổn định của nó (hình 3.11d).

Phương trình vi phân bậc hai

Xét chuyển động của một khối lượng tại một mút lò xo, không có giảm chấn trong hệ, khối lượng dao động tự do, đầu ra của hệ thống bậc 2 là một dao động liên tục (dao động điều hoà đơn giản). Ta có thể miêu tả dao động này bằng phương trình:

$$x = ASin\omega_{n}t \tag{3.41}$$

Trong đó x là khoảng chuyển vị tại thời gian t, A –biên độ dao động, ω_n -tần số góc của dao động không bị cản (undamped oscilations), đạo hàm phương trình (3.41), ta có:

$$\frac{dy}{dt} = \omega_n A \cos \omega_n t \tag{3.42}$$

Lấy đạo hàm bậc hai theo thời gian

$$\frac{d^2y}{dt^2} = -\omega_n^2 A Sin\omega_n t = -\omega_n^2 y \tag{3.43}$$

Rút gọn lại, ta có phương trình vi phân:

$$\frac{d^2y}{dt^2} + \omega_n^2 y = 0 ag{3.44}$$

Đối với khối lượng m trên lò xo có độ cứng k ta có một lực hồi phục:

$$m\frac{d^2x}{dt^2} = -kx\tag{3.45}$$

Và:

$$m\frac{d^{2}x}{dt^{2}} + kx = 0$$

$$\frac{d^{2}x}{dt^{2}} + \frac{k}{m}x = 0$$
(3.46)

So sánh hai phương trình vi phân, ta phải có:

$$\omega_n^2 = \frac{k}{m} \tag{3.47}$$

Và $x=Asin\omega_n t$ là nghiệm của phương trình vi phân 3.46.

Bây giờ, xét trường hợp có giảm chấn (tức có cản). Chuyển động của khối lương trên lò xo (hình 3.10) khi chịu một đầu vào dang bác F được

miêu tả bởi:

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F \tag{3.48}$$

Để giải phương trình bậc 2 này (3.48) ta có thể sử dụng phương pháp đã dùng giải phương trình vi phân bậc 1, coi kết quả được tạo bởi hai thành phần, một là đáp ứng tự nhiên và một là đáp ứng cưỡng bức, tức $x=x_n+x_p$. Thay vào x ở phương trình (3.48), ta có

$$m\frac{d^{2}(x_{n}+x_{f})}{dt^{2}}+c\frac{d(x_{n}+x_{f})}{dt}+k(x_{n}+x_{f})=F$$
(3.49)

Nếu để :

$$m\frac{d^2x_n}{dt^2} + c\frac{dx_n}{dt} + kx_n = 0$$
 (3.50)

Thì phải có:

$$m\frac{d^{2}x_{f}}{dt^{2}} + c\frac{dx_{f}}{dt} + kx_{f} = F$$
 (3.51)

Để giải phương trình trạng thái tự nhiên ta có thể thử nghiệm dạng $x_n=Ae^{st}$. Như vậy $dx_n/dt=Ase^{st}$ và $d^2x_n/dt^2=As^2e^{st}$. Thay các giá trị này vào phương trình vi phân (3.14), cho:

$$mAs^2e^{st} + cAse^{st} + kAe^{st} = 0$$
 (3.52)

$$ms^2 + cs + k = 0 \tag{3.53}$$

Như vậy $x_n = Ae^{st}$ có thể chỉ là một nghiệm khi phương trình trên khi bằng 0. Phương trình này được gọi là *phương trình bổ trợ (auxiliary equation*). Nghiệm của phương trình bậc 2 (s) thu được là:

$$s = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m} = -\frac{c}{2m} \pm \sqrt{(\frac{c}{2m})^2 - \frac{k}{m}} = -\frac{c}{2m} \pm \sqrt{\frac{k}{m}(\frac{c^2}{4mk}) - \frac{k}{m}}$$
(3.54)

đặt $\omega_n^2 = k/m$, $\zeta^2 = c^2/4km$ ta có thể viết nghiệm trên lại dưới dạng:

$$s = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1} \tag{3.55}$$

 ζ là hệ số cản hoặc hệ số giảm chấn (damping factor).

Giá trị s thu được từ phương trình (3.550 phụ thuộc rất nhiều vào giá trị của thành phần căn bậc 2 . Khi $\zeta^2 > 1$ căn bậc hai cho bình phương của một số dương, khi $\zeta^2 < 1$ ta có căn bậc 2 một số âm. Hệ số giảm chấn quyết định

thành phần của căn là số đương hoặc số âm, đó là một hệ số chủ yếu trong xác định dạng đầu ra khỏi hệ thống.

Với $\zeta > 1$ có hai nghiệm s_1 và s_2 với

$$s_i = -\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1} \tag{3.56}$$

$$s = -\zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1} \tag{3.57}$$

và nghiệm chung , x₀ là:

$$x_n = Ae^{x_1 t} + Be^{X_3 t} ag{3.58}$$

Đối với những tình trạng như thế, hệ thống được gọi là bị cản mạnh (over-damped).

Khi $\zeta = 1$, có 2 nghiệm bằng nhau, $s_1 = s_2 = -\omega_n$. Đối với điều kiện này, hệ thống được gọi là *bị cản tới hạn (critical damped*):

$$x_n = (At + B)e^{-i\alpha_n t} (3.59)$$

Cần phải xác định hai hằng số A,B. Nghiệm của trường hợp này có thể là x_0 = Ae^{x}

Với ζ <1 ta có hai nghiệm áo vì căn một số âm:

$$s = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1} = -\zeta \omega_n \pm \omega_n \sqrt{-1} \sqrt{1 - \zeta^2}$$
 (3.60)

Thay $j = \sqrt{-1}$

$$s = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$$
 (3.61)

Đặt:

$$\omega = \omega_n \sqrt{1 - \zeta^2}$$

Có thể viết lại:

$$s = -\zeta \omega_a \pm j\omega \tag{3.62}$$

Và hai nghiệm là:

$$s_t = -\zeta \omega_n + j\omega \tag{3.63}$$

$$s_2 = -\zeta \omega_n - j\omega \tag{3.64}$$

Trong đó ω là tần số gốc của chuyển động khi hệ thống trong trạng thái bị cán, định bởi ζ. Nghiệm trong các điều kiện này là:

$$x_{n} = Ae^{4-\zeta \phi_{n} + j(n)t} + Be^{4-\zeta \phi_{n} - j(n)t} = e^{-\zeta \phi_{n}t} (Ae^{j(n)t} + Be^{-j(n)t})$$
(3.65)

Nhưng $e^{j\omega t} = cos\omega t + jsin\omega t$ và $e^{-j\omega_0 t/t} = cos\omega t - jsin\omega t$. Nên:

$$x_n = e^{-\frac{\pi}{4}\omega_n t} (A \cos \omega t + jA\sin \omega + B \cos \omega t - jB\sin \omega t)$$
$$= e^{-\frac{\pi}{4}\omega_n t} [(A+B) \cos \omega t + j (A-B)\sin \omega t]$$

Nếu thay thế các hằng số P bằng (A+B), Q bằng (A-B), thì:

$$x_n = e^{-\zeta \omega_n t} (P \cos \omega t + Q \sin \omega)$$
 (3.66)

Trong các điều kiện này, ta nói hệ thống bị cán nhẹ (under-damped.)

Ở trên đã cho các nghiệm-phần tự nhiên của kết quả. Để giải phương trình cưỡng bức:

$$m\frac{d^2x_f}{dt^2} + c\frac{dx_f}{dt} + kx_f = F \tag{3.67}$$

Ta cần xét một dạng riêng biệt cho tín đầu vào rồi thừ nghiệm kết quả. Với một đầu vào bậc, độ lớn F tại thời gian t=0 ta có thể thứ nghiệm xf= A với A là hằng số. Khi đó dxf / dt=0 và d2xf /dt2=0. Khi thay các giá trị này vào phương trình vi phân (3.51), ta có:

$$0 + 0 + kA = F \tag{3.68}$$

Tức A=F/k, như vậy $x_i=F/k$. Nghiệm đủ, là tổng của nghiệm tự nhiên và cưỡng bức. Như vậy đối với một hệ thống bị cản mạnh (over-damped):

Hinh 3.12:Phản ứng của hệ thống bậc 2 đối với tin hiệu đầu vào bậc

$$x = Ae^{s_1t} + Be^{s_2t} + \frac{F}{k}$$
 (3.69)

Đối với hệ bị cản tới hạn (critically-damped):

$$x = (At + B)e^{-i\omega_{g}t} + \frac{F}{k}$$
 (3.70)

Và đối với hệ thống bị cản nhẹ (under-damped):

$$x = e^{-\xi\omega_n t} (PCos\omega t + QSin\omega t) + \frac{F}{k}$$
 (3.71)

Khi t $\rightarrow \infty$ cả 3 phương trình trên đều dẫn đến nghiệm x=F/k, trạng thái xác lập.

Hình 3.12 thể hiện đồ thị một đầu ra, là hàm thời gian của các độ giảm chấn khác nhau ζ. Trục thời gian là ω,t. Các đổ thị này thích hợp với hệ bậc 2, với mọi giá trị của ω_n . Hệ quả, x=0 ước tính dao động không bị cản (undamped oscillation) xẩy ra đối với $\omega_n t = 0, 2, 4 \dots v$.

Thường ta có thể viết một phương trình vì phân bậc 2 dưới dạng tổng quát:

$$a_2 \frac{d^2 x}{dt^2} + a_1 \frac{dx}{dt} + a_0 x = b_0 y$$
 (3.72)

Với:

$$\omega_n^2 = \frac{a_0}{a_2}$$

và:

$$\zeta^2 = \frac{a_1^2}{4a_2a_0}$$

Hình 3.13: Mạch RLC nổi liên tiếp định bởi:

Vi~du~3.7: Xét một mạch RLC nối tiếp (hình 10.13) với $R=100\Omega$, L=2~H và $C=20\mu F$. Dòng điện i trong mạch được xác định:

$$\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{1}{LC}i = \frac{U}{LC}$$
 (3.73)

Khi có đầu vào bậc-U, nếu so phương trình (3.73) với phương trình vi phân bậc 2 tổng quát (2.72), tần số góc tự nhiên được xác

$$\omega_n^2 = \frac{1}{LC} = \frac{1}{2 \times 20 \times 10^{-6}} \tag{3.74}$$

Như vậy ω_n =158Hz , so sánh với phương trình bậc 2 tổng quát , cho :

$$\zeta^{2} = \frac{(R/L)^{2}}{4 \times (1/LC)} = \frac{R^{2}C}{4L} = \frac{100^{2} \times 20 \times 10^{-6}}{4 \times 2}$$
(3.75)

Tức ζ =0,16. Vì ζ <1 nên hệ thống bị cản nhẹ. Tần số dao động giảm chấn ω được cho bởi:

$$\omega = \omega_n \sqrt{1 - \zeta^2} = 158\sqrt{1 - 0.16^2} = 156Hz \tag{3.76}$$

Vì hệ thống là bị cản nhẹ nên nghiệm sẽ có dạng:

$$x = e^{-\zeta \omega_n t} (PCos\omega t + QSin\omega t) + \frac{F}{k}$$
(3.77)

Hay:

$$i = e^{-0.16 \times 158t} \left(PCos 156t + QSin 156t \right) + U \tag{3.78}$$

Vì i=0 khi t=0 nên

$$0 = I(P+0) + U \rightarrow P=-U \tag{3.79}$$

Do di/dt=0 khi t=0, vi phân phương trình trên và đặt bằng 0, ta có:

$$\frac{di}{dt} = e^{-\zeta \omega_n t} (\omega P \sin \omega t - \omega Q \cos \omega t) - \zeta \omega_n e^{-\zeta \omega_n t} (P \cos \omega t + Q \cos \omega t)$$
 (3.80)

 $0 = 1(0 - \omega Q) - \zeta \omega_{u}(P + 0)$

$$Q = \frac{\varsigma \omega_n P}{\omega} = -\frac{\varsigma \omega_n U}{\omega} = \frac{0.16 \times 158U}{156} = -0.16U$$
 (3.81)

Nghiệm của phương trình này là:

$$I = U - Ue^{-25.3t}(\cos 156t + 0.16\sin 156t) \tag{3.82}$$

Hình 3.14 : Hệ thống chịu xoắn

Ví dụ 3.8; Xét hệ thống thể hiện ở hình 3.14, dưới điều kiện nào thì hệ thống chịu cán tới hạn?

Đầu vào là mômen xoắn T, tác dụng vào đĩa có mômen quán tính I so với tâm trục: Đầu trục có đĩa quay tự do, đầu kia ngàm chặt. Trục quay, ngược chiều với "ởi độ cứng xoắn của trục, mômen xoắn

đối kháng $k\theta_0$ xuất hiện khi có đầu vào là góc quay θ_0 (k là hằng số). Các lực ma sát cản sự quay của trục và tạo một mômen ngược chiều $cd\theta_0/dt$, với c là một hằng số.

Trước hết, ta tìm phương trình vi phân cho hệ thống:

Momen him ich =
$$T - c \frac{d\theta_0}{dt} = k\theta_0$$
 (3.83)

Mômen hữu ích là $Id^2\theta_0/dr^2$ nên:

$$I\frac{d^2\theta_0}{dt^2} = T - c\frac{d\theta_0}{dt} - k\theta_0 \tag{3.84}$$

$$I\frac{d^2\theta_0}{dt^2} + c\frac{d\theta_0}{dt} + k\theta_0 = T \tag{3.85}$$

Điều kiện cản tới hạn được cho khi hệ số cản ζ=1. So sánh phương trình

vi phân trên với phương trình vi phân tổng quát bắc 2, ta có:

$$\zeta^2 = \frac{a_1^2}{4a_2a_0} = \frac{c^2}{4Ik} \tag{3.86}$$

Để có trạng thái cản tới hạn ta phải có $c = \sqrt{Ik}$

3.1.4. Các tiêu chí để đánh giá đặc tính cho hệ thống bậc hai

Hình 3.15 thể hiện dạng đặc trưng đấp ứng của một hệ thống bậc 2 bị cần nhẹ đối với một đầu vào- bậc. Một số thuật ngữ được sử dụng để xác định sự thức hiện này là:

Thời gian tăng tốc (rise time) t_r : là khoảng thời gian để đấp ứng x tăng từ θ đến giá trị trạng thái xác lập x_{ss} , là một đại lượng thể hiện hệ thống đấp ứng nhanh như thế nào đối với đầu vào. Đó là thời gian cho đáp ứng dao động để hoàn thiện một phần tư chu kỳ, tức $1/2~\pi$, như vậy:

Hình 3.15:Đàp ứng bậc của hệ bị cản nhẹ (under-damped system)

$$\omega t_r = \frac{1}{2}\pi \tag{3.87}$$

Đôi khi thời gian tăng tốc được coi như thời gian để đáp ứng tăng từ một phần trăm cụ thể nào đó của giá trị trạng thái xác lập, ví dụ, 10% đến một phần trăm khác, ví dụ 90%.

Thời gian đỉnh (peak time): là thời gian để đáp ứng tăng từ 0 đến giá trị đính đầu tiên. Đó là thời gian đáp ứng dao động để hoàn thiên một nửa chu kỳ, π, như vày:

$$\omega t_r = \pi \tag{3.88}$$

Lượng quá điều chỉnh (overshoot) (xem hình 3.15): là lượng lớn nhất mà đáp ứng vượt quá giá trị ở trạng thái xác lập. Đó chính là biên độ của đỉnh đầu tiên. Lượng quá điều chỉnh thường được viết bằmg phần trăm của giá trị trạng thái xác lập. Đối với dao động bị cản nhẹ của một hệ thống, ta có thể viết:

$$x = e^{-\xi \omega_0 t} (P\cos \omega t + Q\sin \omega t) + giá trị trạng thái xác lập$$
(3.89)
Vì x=0 khi t=0 nên:

$$0 = I(P+0) + x_{ss} \longrightarrow P = -x_{ss} \tag{3.90}$$

Lượng quá điều chính xây ra tại $\omega t = \pi$, như vậy:

$$x = e^{-\zeta \omega_{s} \pi / \omega} (P + 0) + x_{ss}$$
 (3.91)

Lượng quá điều chỉnh là chênh lệch đầu ra tại thời gian này và giá trị ở trạng thái xác lập, vậy:

Lượng quá điều chỉnh=
$$x_{ss}e^{-\zeta\omega_a\pi/\omega}$$
 (3.92)

Do $\omega = \omega_0 \sqrt{1 - \zeta^2}$, ta có thể viết lại:

Lượng quá điều chính =
$$x_{SS} \exp\left(\frac{-\zeta \omega_n \pi}{\omega_n \sqrt{1-\zeta^2}}\right) = x_{SS} \exp\left(\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}\right)$$
 (3.93)

Thể hiện theo tỉ lệ phần trăm của xss:

Phần trăm lượng quá điều chỉnh =
$$\exp\left(\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}\right) \times 100\%$$
 (3.94)

Bảng 3.2 cho gía trị lượng quá điều chỉnh theo phần trăm đối với một số hệ số cản điển hình.

Bảng,3.2: phần trăm quá điều chỉnh

Hệ số suy giảm (subsidence ratio): là đại lượng thể hiện mức nhanh tan rã của các dao động, là biên độ của lượng quá điều chỉnh thứ hai chia cho lượng quá điều chỉnh đầu tiên. Lượng quá điều chỉnh đầu tiên xẩy ra khi $\omega t=\pi$, lượng quá điều chỉnh thứ hai khi $\omega t=2\pi$, do vây:

djou ojnini		
Hệ số	Phần trăm qua	
cản	điều chỉnh	
0,2	52,7	
0,4	25,4	
0,6	ઝે,5	
0,8	1,5	

Lượng quá điều chính đầu tiên =
$$x_{ss} \exp\left(\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}\right)$$
 (3.95)

Lượng quá điều chính thứ hai =
$$x_{ss} \exp\left(\frac{-2\zeta\pi}{\sqrt{1-\zeta^2}}\right)$$
 (3.96)

Hệ số suy giảm = Lượnt quá điều chính đầu tiến Lượng quá điều chính thứ hai

$$= \exp\left[\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}\right] \tag{3.97}$$

Thời gian xác lập (settling time), t_s: là khoảng thời gian cho đến khi dao đông tắt. Đó là thời gian cho sư đáp ứng rơi vào và giữ trong pham vi một số

phần trăm nào đó của trạng thái xác lập , ví dụ 2% của giá trị trạng thái xác lập (xem hình 3.15). Điều này có nghĩa là biên độ của dao động sẽ nhỏ hơn $2\%x_{ss}$, ta có:

$$x = e^{-\frac{2}{3}i\sigma_{\phi}t}(P\cos\omega t + Q\sin\omega t) + Gi\acute{a} trị \vec{\sigma} trạng thái xác lập$$
 (3.98)

Như ở phương trình (3,90), $P=-x_{ss}$. Biến độ của dao động là $(x-x_{ss})$ khi x là giá trị max. Các giá trị max. xẩy ra khi tot nhân với π , khi đó $\cos \omega t = 1$ và $\sin \omega t = 0$. Thời gian xác lập là 2%, khi biên độ max. là 2% x_{ss} , tức $0.02x_{ss}$. Như vậy:

$$0.02x_{ss} = e^{-\frac{\zeta_{ss}}{2}}(x_{ss}.1+0)$$
 (3.99a)

$$0.02 = e^{-\frac{\zeta}{2}m_{p}t} \tag{3.99b}$$

Lấy logarit:

 $ln0,02=-\zeta\omega_0t_S$

ln0,02=-3,9 gần bằng 4, nên:

$$t_S = \frac{4}{\zeta \omega_n} \tag{3.100}$$

Đó là thời gian xác lập khi phần trăm xác định là 2%. Nếu là 5% thì phương trình sẽ là:

$$t_S = \frac{3}{\zeta \omega_a} \tag{3.101}$$

Vì thời gian để hoàn thiện một chu kì (tức thời gian chu kì) là 1/f, f là tần số và vì $\omega = 2\pi f$ nên chu kì T được xác định là:

$$T = \frac{2\pi}{\omega} \tag{3.102}$$

Như vậy, trong thời gian xác lập t_s, số dao động xẩy ra là:

$$S\acute{o} lượng dao động = \frac{Thời gian xác lập}{T}$$
 (3.103)

Đối với thời gian xác lập được xác định bằng 2% giá trị trạng thái xác lập, thì:

$$S\hat{o}'dao \,d\hat{\phi}ng = \frac{4/\zeta\omega_n}{2\pi/\omega} \tag{3.104}$$

vì
$$\omega = \omega_n \sqrt{(1-\zeta^2)}$$
, nên:

Số lượng dao động =
$$\frac{2\omega_n\sqrt{1-\zeta^2}}{\pi\zeta\omega_n} = \frac{2}{\pi}\sqrt{\frac{1}{\zeta^2}-1}$$
 (3.105)

 $Vi\ d\mu\ 3.9$: để minh hoạ, ta xét một hệ thống bậc 2, có một tần số góc tự nhiên là 0.2Hz và tần số giảm chấn là 1,8Hz. Vì $\omega=\omega_n\sqrt{(1-\zeta^2)}$, nên hệ số giảm chấn là:

$$1.8 = 2\sqrt{(1-\zeta^2)} \tag{3.106}$$

Như vậy ζ =0,44. Do ωt_r =1/2 π , khi đó thời gian tăng tốc 100% được cho bởi:

$$t_r = \frac{\pi}{2 \times 1.8} = 0.87s \tag{3.107}$$

Phần trăm lượng quá điều chính được cho bởi:

Phán trăm lượng quá điều chính =
$$\exp\left(\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}\right) \times 100\%$$

= $\exp\left(\frac{-0.44\pi}{\sqrt{1-0.44^2}}\right) \times 100\% = 21\%$ (3.108)

Thời gian xác lập 2%, được cho bởi:

$$t_s = \frac{4}{\zeta \omega_n} = \frac{4}{0.44 \times 2} = 4.5s$$
 (3.109)

Số lượng dao động xẩy ra trong thời gian xác lập 2% được cho bởi:

$$S\acute{o}' dao \, d\hat{o}ng = \frac{2}{\pi} \sqrt{\frac{1}{\zeta^2} - 1} = \frac{2}{\pi} \sqrt{\frac{1}{0.44^2} - 1} = 1.3 \tag{3.110}$$

3.2. CÁC HÀM TRUYỀN HỆ THỐNG

3.2.1. Hàm truyển

Đối với một hệ thống khuếch đại, hệ số khuếch đại thể hiện tín hiệu ra sẽ lớn hơn bao nhiều lần so với tín hiệu đầu vào, cho phép xác định tín hiệu đầu ra cho một tín hiệu đầu vào cụ thể. Ví dụ, một bộ khuếch đại có hệ số khuếch đại là 10, với một điện áp tín hiệu đầu vào là 2mV, tín hiệu đầu ra sẽ là 20mV, hoặc nếu tín hiệu đầu vào là 1V thì tín hiệu đầu ra là 10V. Hệ số

khuếch đại thể hiện mối quan hệ toán học giữa tín hiệu đầu ra và tín hiệu đầu vào của một hệ thống.

$$H\hat{e} s \hat{o} khu \hat{e} c h \, da i = \frac{D \hat{a} u \, r a}{D \hat{a} u \, v \hat{a} o} \tag{3.111}$$

Nhưng ở nhiều hệ thống, mối quan hệ giữa tín hiệu đầu ra và tín hiệu đầu vào ở dạng phương trình vi phân, không thể đơn giản đặt hệ số khuếch đại là một con số. Ta không thể đơn giản chia tín hiệu đầu ra với tín hiệu đầu vào để thu được hệ số khuếch đại vì mối quan hệ vi phân chứ không phải là mối quan hệ đại số. Tuy nhiên ta có thể chuyển đổi phương trình vi phân thành phương trình đại số thông qua sử dụng phương pháp biến đổi Laplace. Phương trình vi phân miêu tả hoạt động của hệ thống theo thời gian, thông qua biến đổi Laplace được chuyển thành phương trình đại số đơn giản không liên quan đến thời gian, như vậy ta có thể thực hiện các phép đại số cho các đại lượng trong phương trình. Đó là kiểu hoạt động trong miền thời gian (time domain) được biến đổi đến miền-s (s-domain). Khi đó ta có thể định nghĩa mối quan hệ giữa tín hiệu đầu ra và vào bởi hàm truyền (transfer function). Hàm truyền nêu mối quan hệ giữa biến đổi Laplace tín hiệu đầu ra và biến đổi Laplace tín hiệu đầu vào:

Ta có thể thể hiện khi tín hiệu ở miền thời gian (hàm thời gian), bằng viết f(t). Khi trong miền-s, hàm được viết F(s) (chữ hoa sử dụng cho biến đổi Laplace và chữ thường dùng cho hàm thời gian f(t)).

Giả sử tín hiệu đầu vào một hệ thống tuyến tính có biến đổi Laplace Y(s) và biến đổi Laplace cho tín hiệu đầu ra X(s). Khi đó, hàm truyền G(s) của hệ thống được xác định là:

Y(s)
$$G(s) = \frac{X(s)}{Y(s)}$$
 (3.113)

Hình 3.16 Sơ đổ khối

Hàm truyền luôn có các điều kiện ban đầu bằng 0 (tức tín hiệu đầu ra bằng 0 khi tín hiệu đầu vào bằng 0; tốc độ

thay đổi của tín hiệu đầu ra với thời gian là 0 khi tốc độ thay đổi của tín hiệu đầu vào với thời gian bằng 0. Như vậy chuyển đổi đầu ra X(s) = Y(s)G(s), tích của chuyển đổi đầu vào và hàm truyền đạt. Hình 3.16 thể hiện sơ đồ khối –một hệ thống có hàm truyền G(s), hàm lấy và chuyển đổi đầu vào Y(s)

thành đầu ra X(s). Trong sơ đồ khối này ta giảm tập hợp phương trình của hệ thống thành một phương trình hệ thống nhập- xuất (input-output) duy nhất bằng đơn giản tất cả, ngoại trừ biến phụ thuộc của tập hợp. Hàm truyền kết hợp với biến phụ thuộc là một biểu diễn toán học chứa tất cả thông tin chủ yếu được nhúng trong phương trình vi phân của hệ thống.

Các biến đổi Laplace

Xét một đại lượng là hàm thời gian, ta gọi hàm này trong miền thời gian (time domain) và thể hiện là f(t). Nhiều vấn để trong thực tế liên quan chỉ với các giá trị thời gian lớn hơn hoặc bằng 0, tức t ≥ 0 . Để có được biến đổi Laplace của hàm này, ta nhân nó với e^{-st} rồi tích phân theo t từ 0 đến vô cực , ở đây s là hằng số với đơn vị đo là 1/thời gian. Kết quả của tích phân này gọi là biến đổi Laplace (Laplace transform), và phương trình được gọi là trong miền s (s- domain). Như vậy biến đổi Laplace của một hàm thời gian f(t), được viết là $\mathbb{C}\{f(t)\}$, được cho bởi:

$$\mathbb{C}\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t)dt \tag{3.114}$$

Biến đổi này chỉ xem xét các giá trị trong miền $0 \div \infty$, chứ không phải trong toàn thang $-\infty \div \infty$.

Trong miền s, ta có thể thực hiện các phép đại số (cộng, trừ, nhân chia), điều ta không thể thực hiện được đối với hàm gốc, phương trình vi phân trong miền thời gian. Bằng cách này ta có thể thu được biểu thức đơn giản hoá đáng kể trong miền s.

Nếu muốn xem, đại lượng thay đổi như thế nào với thời gian trong miền thời gian, ta phải thực hiện biến đổi ngược.

Trong miền s, hàm được viết là F(s) (là hàm của s, F thể hiện biến đổi Laplace, còn f thể hiện hàm phụ thuộc thời gian f(s)), như vậy:

$$\mathbb{C}\{f(t)\}=F(s) \tag{3.115}$$

Đối với biến đổi ngược, một hàm thời gian thu được từ biến đổi Laplace có thể viết:

$$f(t) = \mathbb{C}^{-1} \{ F(t) \} \tag{3.116}$$

Biểu thức này được đọc là: f(t) là biến đổi ngược của biến đổi Laplace F(s).

Để có được biến đổi Laplace cho một số phương trình vi phân, những phương trình gồm các đại lượng là hàm thời gian, ta có thể sử dụng một số nguyên tắc cơ bản sau (xem bổ sung phụ lục)

- 1. Một tín hiệu xung đơn vị xẩy tại thời gian t=0 có biến đổi là 1.
- Một tín hiệu bậc đơn vị (tín hiệu nhảy đến một giá trị cố định 1) tại thời gian t=0 có biển đối là 1/s.
- Một tín hiệu bậc đơn vị bắt đầu tại thời gian t=0, được miêu tả bởi phương trình tín hiệu đầu vào =1t, có biến đổi là 1/s².
- Một tín hiệu hình sin đơn vị, được miêu tả bởi phương trình tín hiệu đầu vào =1sin ωt có biến đổi là ω/(s²+ω²).
- Một tín hiệu hình cos đơn vị, được miêu tả bởi phương trình tín hiệu đầu vào = 1cos ωt có biến đổi là s/(s²+ω²).

Các cặp biến đổi Laplace được thể hiện ở bảng 3.3

Sau đây là một số nguyên tắc cơ bản để thực hiện với các biến đổi Laplace:

- 1) Nếu một hàm thời gian nhân với một hằng, thì biến đổi Laplace được nhân với chính hằng đó. Ví dụ, biến đổi Laplace cho một tín hiệu đầu vào dạng bậc, 6V của một hệ thống điện, đó chính là 6 lần biến đổi cho một bậc đơn vị, là 6s.
- Nếu một phương trình là tổng, ví dụ tổng của hai hàm thời gian, thì biến đổi của phương trình là tổng của hai biến đổi Laplace riêng lẻ.
- 3) Biến đổi Laplace của đạo hàm bậc nhất một hàm là:

Biến đổi của
$$\left\{ \frac{d}{dt} f(t) \right\} = sF(s) - f(0)$$

Trong đó, f(0) là giá trị của f(t) khi t=0 (hàm truyền có tất cả các điều kiện ban đầu là zero)

4) Biến đổi Laplace của đạo hàm bậc 2 một hàm là:

Biến đổi của
$$\left\{ \frac{d^2}{dt^2} f(t) \right\} = s^2 F(s) - s f(0) - \frac{d}{dt} f(0)$$

Với $df(\theta)/dt$ là giá trị đạo hàm bậc 1 của hàm f(t) khi t=0 (hàm truyền có tất cả các điều kiên ban đầu là zero)

5) Biến đổi Laplace của tích phân một hàm là:

Biến đổi của
$$\left\{ \int_{0}^{t} f(t) \right\} = \frac{1}{s} F(s)$$

Bảng 3.3 các cặp biến đổi Laplace

		fôi Laplace	
F(t)=	$\mathcal{L}^{1}\left F(t)\right , t\geq 0$		$F(s) = \mathcal{L} f(t) $
]	Xung lực đơn vị	t	1
2	Bậc đơn vị	t	$\frac{1}{s}$
3	t" với n=1,2,3		$\frac{n!}{s^{n+1}}$
4	e ⁻⁴⁴		$\frac{1}{s+\alpha}$
5	$t^n e^{-ct}$ với n=1, 2, 3	t	$\frac{n!}{(s+\alpha)^{n+1}}$
6	$\sin(\omega_o t)$	— ,	$\frac{\omega_o}{s^2 + \omega_o^2}$
7	$\cos(\omega_n t)$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\frac{s}{s^2 + \omega_o^2}$
8	$e^{-\alpha t}\sin(\omega_{\alpha}t)$		$\frac{\omega_o}{(s+\alpha)^2+\omega_o^2}$
9	$e^{-\alpha t}\cos(\omega_o t)$	-	$\frac{s+\alpha}{(s+\alpha)^2+\omega_o^2}$

Sau khi thực hiện đại số trong miền s, kết quả có thể được biến đổi trở lại miền thời gian bằng cách sử dụng bảng biến đổi ngược, tức tìm hàm thời gian, thích hợp với kết quả miền s. Thường, sự biến đổi được sắp xếp lại về một dạng có sẩn trong bảng. Những dạng dưới đây thường được sử dụng cho phép đảo ngược (tham khảo thêm phụ lục 1):

N1.
$$\frac{1}{s+a}$$
 cho e^{-at}

N2.
$$\frac{a}{s(s+a)}$$
 cho (1-e^{-at})

N3.
$$\frac{b-a}{(s+a)(s+b)}$$
 cho $e^{-at}-e^{-bt}$

N4.
$$\frac{s}{(s+a)^2}$$
 cho (1-at)e^{-at}

N5.
$$\frac{a}{s^2(s+a)}$$
 cho $t - \frac{1 - e^{-at}}{a}$

3.2.2. Các ứng dụng cho hệ thống bậc 1 và bậc 2

3.2.2.1. Các hệ thống bậc 1

Xem xét một hệ thống có mối quan hệ tín hiệu đầu vào và ra theo dạng phương trình vi phân bắc 1:

$$a_1 \frac{dx}{dt} + a_0 x = b_0 y ag{3.114}$$

Với a_t , a_θ , b_θ là hằng, y là tín hiệu đầu vào và x là tín hiệu đầu ra. Cả hai là hàm thời gian. Biến đổi Laplace cho phương trình này với các điều kiện ban đầu là 0:

$$a_t s X(s) + a_\theta X(s) = b_\theta Y(s) \tag{3.115}$$

ta có thể viết hàm truyền G(s):

$$G(s) = \frac{X(s)}{Y(s)} = \frac{b_0}{a_0 s + a_0}$$
 (3.116)

Sắp xếp lại:

$$G(s) = \frac{b_0/a_0}{(a_1/a_0)s+1} = \frac{G}{\tau s+1}$$
 (3.117)

ở đây G là hệ số khuếch đại của hệ thống ở trạng thái xác lập, tức

không có số hạng dx/dt, (a_1/a_0) là hằng thời gian τ của hệ thống (xem 3.1.2.3).

Khi một hệ thống bậc nhất có tín hiệu đầu vào bậc đơn vị thì Y(s)=1/s, biến đổi tín hiệu đầu ra X(s) là:

$$X(s) = G(s)Y(s) = \frac{G}{s(\tau s + 1)} = G\frac{(1/\tau)}{s(s + 1/\tau)}$$
(3.118)

Vì ta có biến đổi dạng a/s (s+a), sử dụng biến đổi ngược liệt kê ở điểm N2, ta có:

$$y=G(1-e^{-1/\tau})$$
 (3.119)

 $Vi d\mu 3.10$: Xét hàm truyền của hệ bậc 1 và ứng xử của hệ thống khi chịu tín hiệu đầu vào bậc. Một mạch có trở R mắc nối tiếp với tụ C (hình 2.12). Đầu vào mạch là u và tín hiệu đầu ra là hiệu điện thế u_e qua tụ. Phương trình vi phân quan hệ tín hiệu đầu vào và đầu ra là:

$$u = RC \frac{du_C}{dt} + u_C \tag{3.120}$$

Biến đổi Laplace với tất cả các điều kiện ban đầu là zero

$$U(s) = RCsU_C(s) + U_C(s)$$
(3.121)

Như vậy hàm truyền là:

$$G(s) = \frac{U_C(s)}{U(s)} = \frac{1}{RCs + 1}$$
 (3.122)

 $Vi d\mu 3.11$: Xét một cặp nhiệt ngẫu, có hàm truyền kết nối tín hiệu đầu ra -điện áp U và nhiệt độ- tín hiệu đầu vào là:

$$G(s) = \frac{30 \times 10^{-6}}{10s + 1} (V t^{0} C)$$
 (3.123)

Vì biến đổi tín hiệu đầu ra là tích của hàm truyền với biến đổi tín hiệu đầu vào, nên

$$U(s) = G(s) \times tin \ hiệu \ dầu \ vào (s)$$
(3.124)

Giá sử, tín hiệu đầu vào dạng bậc- 100°C, tức nhiệt độ của cặp nhiệt ngẫu tăng đột ngột lên 100°C, biến đối của nó là 100/s, như thế:

$$U(s) = \frac{30 \times 10^{-6}}{10s + 1} \times \frac{100}{s} = \frac{30 \times 10^{-4}}{10s(s + 0.1)} = 30 \times 10^{-4} \frac{0.1}{s(s + 0.1)}$$
(3.125)

Phần tử phân số có dạng a/s(s+a), nên biến đổi ngược là:

$$U=30\times10-4(1-e^{-0.1t}) (V)$$
 (3.126)

Giá trị cuối, tức giá trị ở trạng thái xác lập, khi $t\rightarrow\infty$ thì $e^{-0.1t}\rightarrow0$, bằng $30\times10\text{-}4V$, vì thế thời gian để đạt, giả sử 95% giá trị cuối được cho bởi:

$$0.95 \times 30 \times 10^{-4} = 30 \times 10^{-4} (1 - e^{-0.11})$$

Do đó $0.05 = e^{-0.1t}$, $\ln 0.05 = -0.1t$ nên thời gian là 30s

 $Vi d\mu 3.12$: Xét một ngẫu nhiệt có tín hiệu đầu vào dạng dốc $5t^0$ C/s, tức nhiệt đô tăng cứ mỗi giây lên 5^0 C; biến đổi của nó là $5/s^2$, nên:

$$U(s) = \frac{30 \times 10^{-6}}{10s + 1} \times \frac{5}{s^2} = 150 \times 10^{-6} \frac{0.1}{s^2(s + 0.1)}$$
(3.127)

Truyền ngược có thể thu được khi sử dụng điểm N5:

$$U = 150 \times 10^{-6} \left(t - \frac{1 - e^{-0.1t}}{0.1}\right) \tag{3.128}$$

Sau một thời gian, ví dụ t=12s điện áp của cặp nhiệt ngẫu $U=7.5 \times 10^{-4}$ (V)

 $Vi \ d\mu \ 3.13$: xét tín hiệu đầu vào dạng xung lực 100° C, tức nhiệt ngẫu chịu một nhiệt độ tức thời tăng đến 100° C, biến đổi của nó là 100, ta có:

$$U(s) = \frac{30 \times 10^{-6}}{10s + 1} \times 100 = 3 \times 10^{-4} \frac{1}{(s + 0.1)}$$
(3.129)

Vì thế $U = 3 \times 10^{-4} e^{-0.1r}(V)$, như vậy, sau ví dụ, t=2s điện ấp nhiệt ngẫu sẽ là $U = 1.8 \times 10^{-4}(V)$.

3.2.2.2. Hệ thống bậc 2

Đối với một hệ thống bậc 2, mối quan hệ giữa tín hiệu đầu vào y và tín hiệu đầu ra x được miêu tả bởi phương trình:

$$a_2 \frac{d^2 x}{dt^2} + a_1 \frac{dx}{dt} + a_0 x = b_0 y \tag{3.130}$$

Với a_2 , a_3 , a_6 , b_6 là hằng số, biến đổi Laplace cho phương trình với các điều kiên ban đầu là 0, ta có:

$$a_2s^2X(s) + a_1sX(s) + a_0X(s) = b_0Y(s)$$
 (3.131)

Nên

$$G(s) = \frac{X(s)}{Y(s)} = \frac{b_0}{a_2 s^2 + a_1 s + a_0}$$
(3.132)

Phương trình vi phân cho hệ thống bậc 2 còn có thể viết theo dưới dạng:

$$\frac{d^2x}{dt^2} + 2\zeta\omega_n \frac{dx}{dt} + \omega_n^2 x = b_0 \omega_n^2 y \tag{3.133}$$

Trong đó ω_n là tần số góc tự nhiên mà hệ thống dao động với và ζ là hệ số giảm chấn. Biến đổi Laplace phương trình (3.133) cho:

$$G(s) = \frac{X(s)}{Y(s)} = \frac{b_0 \omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$
(3.134)

(3.134) là dạng tổng quát của hàm truyền cho hệ thống bậc 2

Khi hệ thống bậc hai chịu một tín hiệu đầu vào bậc đơn vị, tức X(s)=1/s thì biến đổi tín hiệu đầu ra sẽ là :

$$X(s) = \frac{b_0 \omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n)}$$
(3.135)

Có thể viết lai:

$$X(s) = \frac{b_0 \omega_n^2}{s(s+p_1)(s+p_2)}$$
 (3.136)

Với p_1 và p_2 là nghiệm của phương trình

$$s^2 + 2\zeta \omega_n s + \omega_n^2 = 0 ag{3.137}$$

Giải phương trình, nghiệm của một phương trình bậc 2

$$p = \frac{-2\zeta\omega_n \pm \sqrt{4\zeta^2\omega_n^2 - 4\omega_n^2}}{2}$$
 (3.138)

Như vây:

$$p_1 = -\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1} \tag{3.139}$$

$$p_2 = -\zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1} \tag{3.140}$$

Với $\zeta > 1$ căn bậc 2 là một nghiệm thực, hệ thống bị cản mạnh (over-damped). Biến đổi ngược của phương trình (theo điểm 14 trong bảng phụ lục 1) là:

$$x = \frac{b_0 \omega_n^2}{p_1 p_2} \left[1 - \frac{p_2}{p_2 - p_1} e^{-p_2 t} + \frac{p_1}{p_2 - p_1} e^{-p_1 t} \right]$$
(3.141)

Với $\zeta = 1$ nghiệm của phương trình bằng 0, tức $p_1 = p_2 = -\omega_n$. Hệ thống giảm chấn tới hạn (critically damped). Phương trình trở thành:

$$X(s) = \frac{b_0 \omega_n^2}{s(s + \omega_n)^2}$$
 (3.142)

Phương trình này có thể khai triển (xem phụ lục 1) để cho:

$$X(s) = b_0 \omega_n^2 \left[\frac{1}{s} - \frac{1}{s + \omega_n} - \frac{\omega_n}{(s + \omega_n)^2} \right]$$
 (3.143)

Vì thế:

$$x = b_0 \omega_n^2 \left[1 - e^{-\omega_n t} - \omega_n t e^{-\omega_n t} \right]$$
 (3.144)

Với ζ <1, chuyển đổi ngược khi sử dụng điểm 28 trong bảng $\ddot{\sigma}$ phụ lục 1 là:

$$x = b_0 \left[1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \sin(\omega_n \sqrt{(1 - \zeta^2)}t + \Phi) \right]$$
 (3.145)

Trong đó Cos $\Phi = \zeta$, đó là một dao động giảm chấn yếu

Ví dụ 3.14: Xét trạng thái giảm chấn của một hệ thống có hàm truyền chịu một tín hiệu đầu vào bậc đơn vị

$$G(s) = \frac{1}{s^2 + 8s + 16} \tag{3.146}$$

Đối với tín hiệu đầu vào bác đơn vị Y(s)=1/s, biến đổi tín hiệu đầu ra là:

$$X(s) = \frac{1}{s(s^2 + 8s + 16)}$$
 (3.147)

Có thể viết đưới dang

$$X(s) = \frac{1}{s(s+4)(s+4)} \tag{3.148}$$

Nghiệm của phương trình $s^2+8s+16$ là $p_1=p_2=-4$. Cả hai nghiệm bằng nhau và là số thực nên hệ chịu giảm chấn tới hạn

Vidu 3.15; xét một hệ thống bậc 2 có tín hiệu đầu vào đốc. Đó là một tay máy chịu tín hiệu vào dạng đốc đơn vị và có hàm truyền :

$$G(s) = \frac{K}{(s+3)^2}$$
 (3.149)

Biến đổi tín hiệu đầu ra X(s) được cho bởi $X(s)=G(s)\times Y(s)$, vậy:

$$X(s) = \frac{K}{(s+3)^2} \times \frac{1}{s^2}$$
 (3.150)

Ta có thể viết lại khi sử dụng các thành phần cục bộ (xem phụ lục 1):

$$X(s) = \frac{K}{9s^2} - \frac{2K}{9(s+3)} - \frac{K}{9(s+3)^2}$$
 (3.151)

Từ đày biến đổi ngược là:

$$x = \frac{1}{9}Kt + \frac{2}{9}Ke^{-3t} + \frac{1}{9}Kte^{-3t}$$
 (3.152)

Phương trình (3.152) thể hiện tín hiệu đầu ra thay đổi theo thời gian trong hệ thống bắc 2.

3.2.2.3. Các hệ thống nổi liên tiếp

Hình 3.17: hệ thống nổi tiếp

Một hệ thống gồm các hệ thống con nối liên tiếp như hình 3.17 thì hàm truyền của hệ thống sẽ là:

$$G(s) = \frac{X(s)}{Y(s)} = \frac{X_1(s)}{Y(s)} \times \frac{X_2(s)}{X_1(s)} \times \frac{X(s)}{X_2(s)} = G_1(s) \times G_2(s) \times G_3(s)$$
(3.153)

Hàm truyền của toàn hệ thống là tích hàm truyền của các hệ thống con nối tiếp trong hệ (hình 3.17), khi không có sự ảnh hưởng tương tác xẩy ra giữa các hệ. Sự tương tác có thể tạo thay đổi trong hàm truyền đạt. Ví dụ, nếu các hệ thống con là các mạch điện, có thể có vấn đề các mạch tương tác và chất tải lẫn nhau.

Vi du 3.16: Xét hàm truyền của hệ thống gồm 3 thành phần nối tiếp, có các hàm truyền thành phần là 10; 2/s và 4/(s+3). Sử dụng phương trình triển khai ở (3.153), ta có:

$$G(s) = 10 \times \frac{2}{s} \times \frac{4}{s+3} = \frac{80}{s(s+3)}$$
(3.154)

Hình 3.18: Hệ thống nổi tiếp (động cơ DC)

Ví dụ 3.16: Xét một động cơ DC điều khiển phần cảm, gồm 3 thành phần nối tiếp: mạch phần cảm, cuộn lõi và tải. Hình 3.18 thể hiện sự sắp xếp và các hàm truyền của các hệ thống con. Hàm truyền của toàn hệ thống là tích của các hàm truyền các thành phần trong nối tiếp:

$$G(s) = \frac{1}{Ls + R} \times k \times \frac{1}{Is + c} = \frac{k}{(Ls + R)(Is + c)}$$
(3.155)

3.2.2.4. Hệ thống với vòng phản hồi

Hình 3.19 thể hiện một hệ thống đơn giản có phản hồi. Nếu phản hồi âm, các tín hiệu đầu vào hệ thống sẽ trừ tín hiệu phản hồi tại bộ cộng. Thuật ngữ đường tiến (forward path) được sử dụng cho đường truyền có hàm truyền G(s), đường hồi (feedback path) là đường có hàm truyền H(s). Hệ thống toàn bộ được gọi là hệ thống vòng kín (closed loop system).

Hình 3.19. Hệ thống phản hối âm

Đối với hệ thống phản hồi âm, tín hiệu đầu vào hệ thống con có hàm truyền G(s) là Y(s) trừ tín hiệu phản hồi. Vòng phản hồi với hàm truyền H(s), có tín hiệu đầu vào là X(s), nên tín hiệu phản hồi là H(s)X(s). Do đó thành phần G(s) có một

tín hiệu đầu vào là Y(s)-H(s)X(s) và tín hiệu đầu ra là X(s), vì vậy:

$$G(s) = \frac{X(s)}{Y(s) - H(s)X(s)}$$
(3.156)

Quy đồng, chuyển vế, nhóm lại, ta có

$$[I+G(s)H(s)]X(s)=G(s)Y(s)$$
 (3.157)

$$\frac{X(s)}{Y(s)} = \frac{G(s)}{1 + G(s)H(s)} \tag{3.158}$$

Như vậy hàm truyền T(s) cho toàn hệ thống có phản hồi âm là:

$$T(s) = \frac{X(s)}{Y(s)} = \frac{G(s)}{1 + G(s)H(s)}$$
(3.159)

 $Vi \ d\mu \ 3.17$: Để minh hoạ, xét hàm truyền cho một hệ thống vòng đóng có hàm truyền đường tiến là 2/(s+1) và hàm truyền đường phản hồi âm là 5s. Sử dụng phương trình đã triển khai ở trên, có:

$$T(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{2/(s+1)}{1 + |2/(s+1)|5s} = \frac{2}{11s+1}$$
(3.160)

 $Vi\ d\mu\ 3.18$: Xét một động cơ d.c điều khiển lõi, đường tiến gồm 3 thành phần: mạch lõi với hàm truyền I/(Ls+R), cuộn lõi với hàm truyền k và tải với

hàm truyền I/(Is+c), có đường phản hồi với hàm truyền K. Hàm truyền đường tiến cho các thành phần nối tiếp là:

$$G(s) = \frac{1}{Ls + R} \times k \times \frac{1}{ls + c} = \frac{k}{(Ls + R)(ls + c)}$$
(3.161)

Đường phản hồi có hàm truyền K, vậy hàm truyền toàn bộ là:

$$T(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{\frac{k}{(Ls+R)(Is+c)}}{\frac{kK}{(Ls+R)(Is+c)}} = \frac{k}{(Ls+R)(Is+c)+kK}$$
(3.162)

 $Vi \ d\mu \ 3.19$: Xét một bộ điều khiển vị trí với đường phản hồi âm có hàm truyền là I và hai hệ thống con trên đường tiến của hệ: một bộ điều khiển với hàm truyền K và một hệ thống truyền động có hàm truyền là $\frac{1}{s(s+1)}$ Tìm giá trị K để hệ chịu giảm chấn tới hạn.

Đường tiến có hàm truyền K/s(s+1) và đường phán hồi có hàm truyền I. Hàm truyền tổng của hệ thống là:

$$T(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{\frac{k}{s(s+1)}}{1 + \frac{K}{s(s+1)}} = \frac{k}{s(s+1) + K}$$
(3.163)

Mẫu số: s^2+s+K có nghiệm là:

$$s = \frac{-1 \pm \sqrt{1 - 4K}}{2} \tag{3.164}$$

Để có giảm chấn tới hạn ta phải có: 1-4K=0, tức K=1/4.

CHƯƠNG 4. ĐÁP ỨNG TẦN SỐ

Phân tích và thiết kế các hệ thống điều khiển công nghiệp thường được thực hiện khi sử dụng các phương pháp đáp ứng tần số. Thuật ngữ đáp ứng tần số thể hiện mối quan hệ giữa đầu ra và đầu vào của một hệ thống tuyến tính với hệ số hằng ở trạng thái xác lập khi đầu vào biên đổi theo quy luật hình SIN.

Sau đây ta xét đáp ứng của hệ thống khi có tín hiệu đầu vào dạng sin.

4.1. ĐẦU VÀO DANG SIN:

Đối với nhiều hệ thống điều khiển, tín hiệu đầu vào hình sin có thể không bình thường. Các tín hiệu dạng này cần được kiểm thử, vì các hệ thống đáp ứng tín hiệu đầu vào hình sin là nguồn hữu hiệu trợ giúp công tác thiết kế và phân tích hệ thống.

Xét một hệ thống bác 1 được thể hiện bởi phương trình vi phân:

$$a_1 \frac{dx}{dt} + a_0 x = b_0 y \tag{4.1}$$

với y là tín hiệu đầu vào, x là tín hiệu đầu ra. Giả sử ta có một tín hiệu đầu vào dạng sin: $y=\sin\omega t$, nếu thay vào phương trình vi phân trên, tín hiệu sau đạo hàm cũng mang tính chất sin có cùng tần số ($\cos\omega t=\sin(\omega t+90^{\circ})$). Ta có thể thực hiện đạo hàm nhiều lần, chắc chấn đấp ứng ở trạng thái xác lập, x cũng sẽ là hình sin cùng tần số. Tuy nhiên tín hiệu đầu ra sẽ có biên độ và pha khác với tín hiệu đầu vào.

4.2. VECTO PHA (VECTO PHA)

Để thuận tiện khi phân tích tín hiệu sin ta dùng thuật ngữ vectơ pha (vectơ pha). Xét một đường sin miêu tả bởi v=V sin $(\omega t+\Phi)$ với V là biên độ, ω tần số góc và ϕ là góc pha. Vectơ pha thể hiện một đường thẳng có chiều dài |V| tạo một góc ϕ với trục tham chiếu pha. Kí hiệu || được sử dụng để chỉ độ lớn của đại lượng chiều dài của vectơ pha được quan tâm. Vectơ pha được xác định khi chiều dài và góc ω được xác định. Để thuận tiện ta có thể đặt kí hiệu vectơ pha với kí tự đậm ví dụ V. Kí hiệu này hàm ý là đại lượng có một kích thước (độ lớn) và một góc.

4.2.1. Khái niệm

Một vectơ pha có thể miêu tả dưới dạng số phức, thể hiện bởi (x+jy), với x là phần thực và y là phần ảo. Trên đồ thị thành phần ảo được thể hiện trên trục y và thực trên trục x và x và y là tọa độ Decac của một điểm thể

Hình 4.1 Thể hiện dạng phức của phasor

hiện số phức (hình 4.1). Đường nối điểm này tới gốc đồ thị thể hiện một vectơ pha. Gốc pha φ của vectơ pha, được thể hiện bởi:

$$\tan \phi = \frac{y}{x} \tag{4.2}$$

Chiều dài của vectơ pha:

$$|V| = \sqrt{x^2 + y^2} \tag{4.3}$$

$$V \acute{o}i \ x = |V| \cos \phi \tag{4.4}$$

$$y = |V|\sin\phi \tag{4.5}$$

Ta có thể viết:

$$\mathbf{V} = x + j\mathbf{y} = |V|(\cos\theta + j\sin\theta) \tag{4.6}$$

Công thức (4.6) miêu tả phần số thực và số ảo của một số phức, xác định một vectơ pha

Xét một vectơ pha có chiều dài đơn vị và góc pha 0^{6} C (hình 4.1a), thể hiện dưới dạng số phức (1+j0). Ta lại xét một vectơ pha có cùng chiều dài nhưng góc pha là 90^{6} C (hình 4.2b), thể hiện dưới đạng 0+j1. Đó là vectơ pha (4.2a) quay ngược chiều kim đồng hồ 90^{6} C, tương ứng với việc nhân vectơ pha đó với j. Nếu quay tiếp một góc 90^{6} C (hình 4.2c), thực hiện cùng quy luật nhân, ta có vectơ pha gốc (4.2a) nhân với j^{2} . Đó là vectơ pha bằng vectơ pha gốc có hướng ngược lại, (tức nhân với (-1), $j^{2}=-1$, $j=\sqrt{(-1)}$. Quay vectơ pha gốc đi 270^{6} C, tức 3x 90^{6} C, tương đương với việc nhân vectơ pha gốc với $j^{3}=j$ $(j)^{2}=-j$, v...v.

Hinh 4.2: Quay vector pha (a) 0°, (b) 90°, (c)180°, (d) 270°

 $Vi \ d\mu \ 4.1$: Để minh hoạ ta xét một điện áp u thay đổi với thời gian theo hình sin, có phương trình:

$$u=10\sin\left(\omega t+30^{6}\right)U\tag{4.7}$$

Vector pha thể hiện ở phương trình này có:

- Chiều dài theo tỉ lệ, thể hiện biên độ của đường sin là 10V.
- Góc so với trục tham chiếu bằng với góc pha, là 30°.
- Phần thực cho bởi phương trình là $x=10 \cos 30^{6} = 8.7 \text{V}$; phần ảo là $y=10 \sin 30^{6} = 5.0 \text{V}$. Vậy vectơ pha được thể hiện bởi 8.7 + j5.0 V.

4.2.2. Các phương trình của vectơ pha

Xét một vectơ pha thể hiện đường hình sin có biển độ bằng 1:

$$x=\sin \omega t$$
. (4.8)

dx/dt=ωcosωt,

Có thể viết lại:

 $dv/dt=\omega \sin(\omega t+90^{\circ})$. \rightarrow đạo hàm là một vectơ pha có chiều dài tăng bởi hệ số ω và quay 90° so với vectơ pha gốc. Theo kí hiệu số phức, ta phải nhân vectơ pha gốc với j ω , vì nhân với j tương đương với quay 90° . Như vậy phương trình vi phân:

$$a_1 \frac{dx}{dt} + a_0 x = b_0 y (4.9)$$

Có thể viết theo kí hiệu số phức, phương trình của một vectơ pha

$$j\omega a_{i}X + a_{0}X = b_{0}Y \tag{4.10}$$

Ở đây các kí tự đậm thể hiện dữ liệu tham chiếu tới vectơ pha. Ta có thể nói rằng, phương trình vi phân, theo miền thời gian, đã được biến đổi thành một phương trình theo miền tần số (freequency domain). Phương trình miền tần số có thể viết lại là:

$$(j\omega a_t + a_0) X = b_0 Y \tag{4.11}$$

$$\frac{\mathbf{X}}{\mathbf{Y}} = \frac{b_0}{j\omega a_1 + a_0} \tag{4.12}$$

Trong mục 3.2.2.1 cũng phương trình này nhưng viết trong miền s ta có:

$$G(s) = \frac{X(s)}{Y(s)} = \frac{b_0}{a_1 s + a_0}$$
 (4.13)

Nếu thay s bằng $j\omega$, ta có cùng phương trình. Có nghĩa, ta luôn có thể chuyển đổi từ miền s sang miền tần số. Như vậy ta có thể đưa ra một định nghĩa về hàm đáp ứng tấn số (frequency response function) hoặc hàm truyền tần số (frequency transfer function) $G(\omega)$ đối với trạng thái xác lập như:

$$G(j\omega) = \frac{\text{vector pha tin hiệu đầu ra}}{\text{vector pha tin hiệu đầu vào}}$$
(4.14)

Ví du 4.2: Xác định hàm đáp ứng tần số cho hệ thống có hàm truyền đạt:

$$G(s) = \frac{1}{s+1} \tag{4.15}$$

Hàm đáp ứng tần số thu được bằng thay s bởi jω, là:

$$G(\omega) = \frac{1}{j\omega + 1} \tag{4.16}$$

4.3. ĐÁP ỨNG TẦN SỐ

4.3.1. Đáp ứng tần số cho các hàm bậc 1

Hệ thống bậc 1 có hàm truyền, được viết là:

$$G(s) = \frac{1}{1+\tau s} \tag{4.17}$$

Với τ là hàng thời gian của hệ thống (xem 3.2.2.1). Hàm đáp ứng tần số $G(\omega)$ có thể thư được khi thay s bằng j ω , như vậy:

$$G(\omega) = \frac{1}{1 + \tau i \omega} \tag{4.18}$$

Nếu nhân cả tử lẫn mẫu với (1- jωτ) ta có:

$$G(\omega) = \frac{1}{1 + j\omega\tau} \times \frac{1 - j\omega\tau}{1 - j\omega\tau} = \frac{1 - j\omega\tau}{1 - j^2\omega^2\tau^2}$$
(4.19)

mà $j^2=-1$, nên

$$G(\omega) = \frac{1}{1 + \omega^2 \tau^2} - j \frac{\omega \tau}{1 + \omega^2 \tau^2}$$
 (4.20)

Đó là phương trình có dạng x+jy, vì $G(j\omega)$ là tỉ số giữa vectơ pha tín hiệu đầu ra và vectơ pha tín hiệu đầu vào. Ta có kích thước vectơ pha tín hiệu đầu ra lớn hơn vectơ pha tín hiệu đầu vào, bằng hệ số $|G(j\omega)|$ với:

$$|G(j\omega)| = \sqrt{x^2 + y^2} = \sqrt{\left(\frac{1}{1 + \omega^2 \tau^2}\right)^2 + \left(\frac{\omega \tau}{1 + \omega^2 \tau^2}\right)^2} = \frac{1}{\sqrt{1 + \omega^2 \tau^2}}$$
 (4.21)

 $|G(j\omega)|$ cho biết, biên độ của tín hiệu đầu ra lớn hơn tín hiệu đầu vào là bao nhiêu, đại lượng này được gọi là độ lớn (magnitude) hoặc hệ số khuếch đại (gain). Chênh lệch pha ϕ giữa vectơ pha tín hiệu đầu ra và vectơ pha tín hiệu đầu vào được cho bởi công thức:

$$\tan \phi = \frac{y}{x} = -\omega t \tag{4.22}$$

Dấu âm thể hiện vectơ pha tín hiệu đầu ra trễ so với vectơ pha tín hiệu đầu vào một góc φ

Ví dụ 4.3: Để minh hoạ, xét một hệ thống (mạch điện có một điện trở nối tiếp với tụ, tín hiệu đầu ra được lấy sau tụ, hình 2.12), có hàm truyền:

$$G(s) = \frac{1}{RCs + 1} \tag{4.23}$$

Hệ thống là bậc 1, có hằng thời gian τ của RC. Hàm đấp ứng tần số thu được khi thay s bằng $j\omega$ là:

$$G(j\omega) = \frac{1}{j\omega RC + 1} \tag{4.24}$$

Nhân tử và mẫu với $(1-j\omega RC)$ và sắp xếp, viết lại phương trình:

$$G(j\omega) = \frac{1}{1 + \omega^2 (RC)^2} - j \frac{\omega (RC)}{1 + \omega^2 (RC)^2}$$
(4.25)

Như vậy, tương tự như phương trình (4.21):

$$\left|G(j\omega)\right| = \frac{1}{\sqrt{1+\omega^2(RC)^2}}\tag{4.26}$$

$$V\grave{a}: \qquad \tan\phi = -\omega RC \tag{4.27}$$

 $Vi \ d\mu \ 4.4$: Xét vấn đề liên quan đến xác định độ lớn và pha trạng thái xác lập của tín hiệu đầu ra một hệ thống khi chịu một tín hiệu đầu vào là $2\sin (3t+60^{\circ})$ nếu nó có hàm truyền:

$$G(s) = \frac{4}{s+1} \tag{4.28}$$

Ta có hàm đáp ứng tần số khi thay s bằng jω:

$$G(j\omega) = \frac{4}{j\omega + 1} \tag{4.29}$$

Nhân mẫu và tử phương trình (4.29) với $(-j\omega+1)$, ta có:

$$G(j\omega) = \frac{-4j\omega + 4}{\omega^2 + 1} = \frac{4}{\omega^2 + 1} - j\frac{4\omega}{\omega^2 + 1}$$
(4.30)

Độ lớn của một số phức x+jy được cho bởi $\sqrt{x^2+y^2}$, như vậy:

$$|G(j\omega)| = \sqrt{\frac{4^2}{(\omega^2 + 1)^2} + \frac{4^2 \omega^2}{(\omega^2 + 1)^2}} = \frac{4}{\sqrt{\omega^2 + 1}}$$
(4.31)

Góc pha được cho bởi $tan\phi = y/x$ nên :

$$tan\phi = -\omega \tag{4.32}$$

Đối với một tín hiệu đầu vào có ω=3rad/s. Độ lớn sẽ là :

$$|G(j\omega)| = \frac{4}{\sqrt{3^2 + 1}} = 1.3$$
 (4.33)

và pha là : tanø =-3

Như vậy $\phi = -72^{\circ}C$, đó là góc pha giữa tín hiệu đầu vào và đầu ra. Tín hiệu đầu ra là $2.6\sin(3t-12^{\circ})$.

4.3.2. Đáp ứng tần số cho các hệ thống bậc 2

Xét một hệ thống bậc hai với hàm truyền (xem 3.2.2.2):

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
 (4.34)

Trong đó ω_n là tần số góc tự nhiên và ζ là tỉ số giảm chấn. Hàm đáp ứng tần số thu được khi thay s bởi j ω , là:

$$G(j\omega) = \frac{\omega_n^2}{-\omega^2 + 2j\zeta\omega\omega_n + \omega_n^2} = \frac{\omega_n^2\omega}{(\omega_n^2 - \omega^2) + 2j\zeta\omega\omega_n}$$

$$= \frac{1}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right] + 2j\zeta\left(\frac{\omega}{\omega_n}\right)}$$
(4.35)

Nhân tử và mẫu với biểu thức: $\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right] - 2j\zeta\left(\frac{\omega}{\omega_n}\right)$

Cho:
$$G(j\omega) = \frac{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right] - 2j\zeta\left(\frac{\omega}{\omega_n}\right)}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta\left(\frac{\omega}{\omega_n}\right)\right]^2}$$
(4.36)

Phương trình trên có dạng x+jy, do $G(j\omega)$ là vectơ pha tín hiệu đầu ra chia vectơ pha tín hiệu đầu vào, ta có kích thước độ lớn của vectơ pha đầu ra lớn hơn vectơ pha đầu bởi hệ số $\sqrt{(x^2+y^2)}$, là:

$$|G(j\omega)| = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta\left(\frac{\omega}{\omega_n}\right)\right]^2}}$$
(4.37)

Chênh lệch pha φ giữa tín hiệu đầu vào và tín hiệu đầu ra được cho bởi tanφ=x/y và như vậy

$$\tan \phi = -\frac{2\zeta(\frac{\omega}{\omega_n})}{1 - (\frac{\omega}{\omega})^2}$$
(4.38)

Dấu trừ thể hiện pha tín hiệu đầu trễ sau tín hiệu đầu vào

4.4. ĐỒ THỊ BODE (BODE PLOTS)

Đáp ứng tần số của một hệ thống là tập hợp các giá trị về độ lớn (magniture) $|G(j\omega)|$ và góc pha ϕ xẩy ra khi một tín hiệu đầu vào đạng sin thay đổi trong một phạm vi tần số. Nó có thể thể hiện theo 2 đồ thị, một là đồ thị theo độ lớn $|G(j\omega)|$ - tần số góc ω và một là đồ thị pha ϕ - tần số góc ω , được sử dụng để thể hiện đặc tính tần số biên-pha. Đồ thị độ lớn $|G(j\omega)|$ - tần số góc ω thường sử dụng thang lògarit, được sử dụng thể hiện đặc tính tần số lògarit. Cặp đồ thị này được gọi là đồ thị Bode (Bode plot). Như vậy có thể coi đồ thị Bode là công cụ hiển thị đáp ứng tần số của hệ thống.

Ở đặc tính tần số lôgarit, độ lớn được thể hiện theo đơn vị dêxiben (dB).

$$|G(j\omega)|$$
 theo dB = $201g_{10}|G(j\omega)|$ (4.39)

Ví dụ một độ lớn 20dB có nghĩa:

$$20 = 20\lg_{10}|G(j\omega)| \tag{4.40}$$

$$1 = \lg_{10} \left| G(j\omega) \right|$$

$$V\grave{a} \qquad 10 = |G(j\omega)| \tag{4.41}$$

Như thế một độ lớn 20dB có nghĩa độ lớn là 10, cho nên biên độ của

đầu ra là 10 lần biên độ đầu vào. Một độ lớn 40dB có độ lớn 100 và như vậy biên độ đầu ra là 100 lần biên độ đầu vào.

4.4.1. Các ví dụ về đồ thị Bode

Xét đó thị Bode cho một hệ thống ở hình 4.3, có hàm truyền G(s)=K, với Klà hằng số. Hàm đáp ứng tần số $G(j\omega)=K$, độ kớn $|G(j\omega)|=K$ và theo decibel, $|G(j\omega)| = 20 \log K$. Đổ thị của độ lớn trong trường hợp này một đường thẳng độ lớn cố định, thay đối K đơn thuần là dịch chỉnh đường đô lớn lên

> hoặc xuống bằng một số decibel cụ thể. Phase bằng 0.

> Xét đồ thị Bode cho hệ thống có hàm truyền G(s)=1/s. Hàm đáp ứng tần số sẽ là: $G(j\omega)=1/j\omega$, nhân với j/j cho $G(j\omega)=-j/\omega$. Như vậy đô lớn $|G(j\omega)| = 1/\omega$. Theo decibel $20lg(1/\omega) = -20log\omega$. Khi $\omega = 1$ rad/s độ lớn bằng 0. Khi $\omega=10rad/s$, $|G(j\omega)|=-20dB$. Khi $\omega=100 rad/s$, $|G(i\omega)|=-40 dB$. Như vây khi tần số góc, w tăng 10 lần thì độ lớn, $|G(j\omega)|$ giảm đi lượng -20dB. Đồ thị độ lớn là đường thẳng có đô dốc -20dB /dêcat (dêcat là đơn vi đo của tần số ω, tức lôgarit của độ tăng tần số 10 lần), đi qua θdB $tai\omega = Irad/s$. Pha của hệ thống như thế được cho bằng:

Do vây $\phi = -90^{\circ}$ cho tất cả các tần số (hình 4.4).

Ví dụ 4.5: Xét đồ thị Bode cho một hệ thống bậc nhất, có hàm truyền cho bởi:

$$G(s) = \frac{1}{\tau s + 1} \tag{4.43}$$

Khi đó hàm đáp ứng tần số là:

Hình 4.3: Đổ thị Bode G(s)=K

Hình 4.4: Đổ thị Bode G(s)=1/s

$$G(j\omega) = \frac{1}{j\omega\tau + 1} \tag{4.44}$$

Đô lớn (xem 4.2.2) sẽ là:

$$|G(j\omega)| = \frac{1}{\sqrt{1+\omega^2\tau^2}} \tag{4.45}$$

Theo decibel là:

$$20\lg(\frac{1}{\sqrt{1+\omega^2\tau^2}})$$
 (4.46)

Khi ω <<1/t> $1/\tau$ thì $\omega^2 \tau^2$ được bỏ qua so với 1, độ lớn 20lg1=0dB. Như vậy tại các tần số thấp, đồ thị độ lớn là đường thẳng có giá trị không đổi, là 0dB. Đối với các tần số cao, khi ω >>1/ τ thì $\omega^2 \tau^2$ lớn hơn nhiều so với 1 nên 1 có thể bỏ qua. Khi đó độ lớn là 20lg(1/ ω t), tức -20lg ω t. Đó là một đường thẳng có độ dốc -20dB /dêcat, cắt đường 0dB khi ω τ =1, tức ω =1/ τ . Hình 4.5 thể hiện các đường này đối với tần số thấp và tần số cao với điểm giao nhau của chúng, gọi là điểm cắt (break point) hoặc tần số góc (corner frequency) tại ω =1/ τ . Hai đường thẳng này được gọi là tiệm cận xấp xỉ đồ thị thực (true plot). Chênh lệch giữa đồ thị thực và đường xấp xỉ lớn nhất là 3 dB, tại điểm cắt.

Pha của hệ bậc 1 (xem mục 4.2.2), được cho bởi $tang\phi = -\omega t$

Hinh 4.5: Đổ thị Bode cho G(s)=1/(τs+1)

Tại các tần số thấp, khi ω nhỏ hơn $0,1/\tau$, pha gần như bằng 0. Tại các tần số cao, khi ω lớn hơn $10/\tau$, pha gần như bằng -90° . Giữa hai cực trị này, có thể xét góc pha để tìm ra một đường thẳng hợp lí trên đồ thị Bode (hình 4.5). Sai lệch max. được cho là xẩy ra trong trường hợp đường thẳng $51/\tau^{\circ}$.

Xét một hệ thống bậc 2, có hàm truyền đạt:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
 (4.47)

Hàm đáp ứng tần số thu được

khi thay s bằng jω:

$$G(j\omega) = \frac{\omega_n^2}{-\omega^2 + j2\zeta\omega_n\omega + \omega_n^2}$$
 (4.48)

Khi đó độ lớn sẽ là (xem phần 3.3.2.2):

$$|G(j\omega)| = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta\left(\frac{\omega}{\omega_n}\right)\right]^2}}$$
(4.49)

Theo decibel, độ lớn sẽ là:

$$|G(j\omega)| = 20 \lg \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta\left(\frac{\omega}{\omega_n}\right)\right]^2}}$$

$$= -20 \lg \sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta\left(\frac{\omega}{\omega_n}\right)\right]^2}$$
(4.50)

Hinh4.6:Đồ thị Bode cho hệ thống bậc 2

Đối với $(\omega/\omega_{\rm p})$ <<1, độ lớn gần bằng -20lg1 hoặc 0 dB. Vvới $(\omega/\omega_0) >> 1$, độ lớn xấp xỉ bằng $-20lg(\omega/\omega_0)^2$. Như vậy, khi ω tặng bởi hệ số 10, độ lớn tặng bói hê số -20log100 hoặc -40dB. Tại các tần số thấp, đồ thị độ lớn là một đường thẳng tại 0dB, trong khi tai các tần số cao, đó là một đường thẳng tần số -40dB/dêcat. Giao điểm của hai đường thắng này, điểm cắt, là tại $\omega = \omega_n$. Đồ thi độ lớn là đường xấp xỉ được cho bởi hai đường tiệm cận này. Tuy nhiên, giá trị thực phụ thuộc vào hệ số cản ζ. Hình 4.6 thể hiên hai đường tiệm cận và các đổ thị thực (true plot) cho một số hệ số cản (hệ số giảm chấn).

Pha được cho bởi:

$$\tan g\phi = -\frac{2\zeta(\frac{\omega}{\omega_n})}{1-(\frac{\omega}{\omega_n})^2}$$
(4.51)

Đối với (ω/ω_n) <<1, tức (ω/ω_n) =0,2, tang ϕ xấp xĩ bằng ϕ ϕ =0°. Đối với (ω/ω_n) >>1, tức (ω/ω_n) =5, tang ϕ xấp xỉ -(- ∞), ϕ =-180°. Khi ω = ω_n , có tan ϕ =- ∞ ϕ =-90°. Đường xấp xĩ hợp lí là đường thẳng qua -90° tại ω = ω_n , điểm ϕ 0° tại ϕ 0°.

4.4.2. Xây dựng đổ thị Bode (Bode plot)

Xét một hệ thống gồm các thành phần nối tiếp. Hàm truyền của cả hệ thống (xem phần 3.2.2.3)được cho bởi:

$$G(s) = G_1(s) G_2(s) G_3(s) \dots v \dots v.$$
 (4.52)

Hàm đáp ứng tần số cho một hệ thống có 2 thành phần khi thay s bởi jω là:

$$G(j\omega) = G_{t}(j\omega) G_{t}(j\omega) \tag{4.53}$$

Ta có thể viết hàm truyền G(jω) đười dạng số phức (xem phần 3.3.2), tức:

$$x + jy = |G_1(j\omega)|(\cos\phi_1 + j\sin\phi_1)$$
 (4.54)

Trong đó $|G(j\omega)|$ là độ lớn và ϕ là pha của hàm đáp ứng tần số. Tương tự ta có thể viết $G2(j\omega)$ là:

$$|G_2(j\omega)|(\cos\phi_2 + j\sin\phi_2) \tag{4.55}$$

Như vậy:

$$G(j\omega) = |G_1(j\omega)|(\cos\phi_1 + j\sin\phi_1) \times |G_2(j\omega)|(\cos\phi_2 + j\sin\phi_2)$$
 (4.56)

$$= |G_1(j\omega)||G_2(j\omega)|(\cos\phi_1\cos\phi_2 + j(\sin\phi_1\cos\phi_2 + \cos\phi_1\sin\phi_2) + j^2\sin\phi_1\sin\phi_2)$$

Nhưng $j^2 = -l$ và do : $\cos \phi_1 \cos \phi_2 - \sin \phi_1 \sin \phi_2 = \cos(\phi_1 + \phi_2)$

$$\sin \phi_1 \cos \phi_2 + \cos \phi_1 \sin \phi_2 = \sin(\phi_1 + \phi_2)$$

Nên:

$$G(j\omega) = |G_1(j\omega)||G_2(j\omega)||\cos(\phi_1 + \phi_2) + j(\sin(\phi_1 + \phi_2))|$$
(4.57)

Hàm đáp ứng tần số của một hệ thống có độ lớn là tích các độ lớn của các thành phần và pha là tổng pha của các thành phần, tức:

$$|G(j\omega)| = |G_1(j\omega)||G_2(j\omega)||G_3(j\omega)|....v..v.$$
 (4.58)

$$\phi = \phi_i + \phi_2 + \phi_3 + \dots v \dots v. \tag{4.59}$$

Bây giờ xét đồ thị Bode theo lôgarit của độ lớn:

$$\lg|G(j\omega)| = \lg|G_1(j\omega)| + \lg|G_2(j\omega)| + \lg|G_3(j\omega)| \dots v \dots v$$

$$(4.60)$$

Như vậy ta có thể có đồ thị Bode của một hệ thống bằng cộng các đồ thị Bode độ lớn của các thành phần cấu thành. Tương tự, đồ thị pha (phase plot) thu được khi cộng pha của các thành phần cấu thành với nhau.

Bằng việc sử dụng một lượng các thành phần cơ bản, ta có thể thu được đồ thị Bode cho một hệ thống lớn. Các thành phần cơ bản được sử dụng là:

- 1. G(s)=K, cho đồ thị Bode như thể hiện trong hình 4.3.
- 2. G(s)=1/s, cho đồ thị Bode như thể hiện trong hình 4.4.

Hình 4.7: Ví dụ

- 3. G(s)=s cho đồ thị Bode, đối xứng giương với loại được thể hiện trong hình 4.4. $|G(j\omega)| = 20dB$ /dêcat, đi qua 0dB tại ω =1 rad, ϕ là một hằng tai 90° .
- 4. $G(s)=1/(\tau s + 1)$ cho đồ thị Bode như thể hiện trong hình 4.5.
- 5. $G(s)=\tau s+1$, cho đồ thị Bode, đối xứng giương với loại được thể hiện trong 4.5. ở đồ thị độ lớn, điểm cắt là tại $1/\tau$ với đường trước điểm này thuộc đường 0dB và sau nó là đường dốc 20dB/dêcat. Pha bằng 0 tại $0.1/\tau$ và tăng lên $+90^{\circ}$ tai $10/\tau$.

- 6. $G(s) = \omega_n^2 / (s^2 + 2\varsigma \omega_n s + \omega_n^2)$. Hàm này cho đồ thị Bode như thể hiện trong hình 4.6.
- 7. $G(s)=(s^2+2\varsigma\omega_n s+\omega_n^2)/\omega_n^2$. Hàm này cho đồ thị Bode, đối xứng gương với loại thể hiện trong hình 4.6

Ví dụ 4.6: Để minh hoạ vấn đề nêu trên, ta xét hình vẽ các đường tiện cận của đổ thị Bode cho một hệ thống có hàm truyền:

$$G(s) = \frac{10}{2s+1} \tag{4.61}$$

Hàm truyền (4.61) được cấu thành bởi 2 thành phần , một là hàm truyền của 10 và một là hàm truyền 1/(2s+1). Có thể vẽ đồ thị Bode cho từng thành phần rồi cộng

Hinh 4.8: Đổ thị Bode cho hệ thống bậc 2

với nhau để tạo thành đổ thị yêu cầu. Đổ thị Bode cho hàm truyền 10 có dạng cho trong hình 4.3 với K=10, còn đổ thị Bode cho 1/(2s+1) thì tựa như loại cho trong hình 4.5 với τ=2. Kết quả được thể hiện trong hình 4.7

Ví dụ 4.7: Xét hình vẽ các đường tiện cận của đồ thị Bode cho một hệ thống có hàm truyền:

$$G(s) = \frac{2.5}{s(s^2 + 3s + 25)} \tag{4.62}$$

Hàm truyền trên được cấu thành từ 3 thành phần, một với hàm truyền 0,1, một với hàm truyền 1/s và 1 với hàm truyền 25/(s2+3s+25). Hàm truyền 0,1 sẽ cho 1 đồ thị Bode tựa như trong hình 4.3 với K=0,1. Hàm truyền 1/s sẽ cho đồ thị Bode tựa như trong hình 4.4. Hàm truyền

25/(s2+3s+25) có thể được thể hiện theo $\omega_n^2/(s^2+2\zeta\omega_n+\omega_n^2)$ với ω_n =5 rad/s và ζ =0,3, có điểm cắt khi ω = ω_n =5 rad/s. Tiệm cận đối với pha qua -90° tại điểm cắt là 0° khi ta có (ω/ω_n) =0,2 và là -180° khi (ω/ω_n)=5. Hình 4.8 thể hiện đồ thị Bode tổng hợp.

4.5. ĐẶC ĐIỂM KỸ THUẬT

Hinh 4.9: Đặc tinh thực hiện

Các thuật ngữ sử dụng để miêu tả đặc điểm của một hệ thống, khi chịu tín hiệu đầu vào hình sin là *cộng hưởng cực đại* (peak resonance) và *độ rộng dải tần* (bandwidth). *Cộng hưởng cực đại* (peak resonance) M_p được định nghĩa là giá trị max. của độ lớn (hình 4.9). Cộng hưởng cực đại tương ứng với giá trị sự vượt quá max. của một hệ thống. Đối với một hệ thống bậc 2, sự cộng hưởng có quan hệ trực tiếp với hệ số

cản (damping ratio) khi so sánh đáp ứng với đổ thị Bode ở hình 4.6. Ta nhận thấy một hệ số cản thấp tương ứng với một cộng hưởng đỉnh cao. Độ rộng dải tần được định nghĩa là băng tần số trong khoảng đó độ lớn không thấp dưới -3dB. Đối với hệ thống cho đồ thị Bode ở hình 4.9, độ rộng dải tần là khoảng mở giữa tần số 0 và tần số tại đó độ lớn tụt xuống -3dB.

4.6. ĐỘ ỔN ĐỊNH

Khi có một tín hiệu hình sin ở đầu vào một hệ thống, đầu ra hệ thống có thể là tín hiệu sin cùng tần số góc, nhưng cũng có thể với biên độ và pha khác với tín hiệu đầu vào. Xét một hệ thống vòng lặp kín có phản hồi âm (hình 4.10), không có tín hiệu vào. Giả sử, vì một lí do, ta có xung sin chỉnh lưu một nửa là tín hiệu sai lệch trong hệ thống. Tín hiệu này qua đầu ra và hồi hoàn, tới thành phần so sánh (comparator element) với biên độ không đổi nhưng pha thay đổi -180° (như thể hiện ở hình 4.10). Khi tín hiệu này được trừ khỏi tín hiệu đầu vào, ta có một sai lệch tổng, tiếp tục xung chỉnh lưu một nửa ban đầu. Rồi xung này quay lại vòng phản hồi, lại tiếp tục tín hiệu theo thời gian. Như vậy ta có một dao động tự duy trì (self-sustaining oscilation).

Để có đao động tự duy trì, hệ thống phải có hàm đáp ứng tần số với độ

Hình 4.10: Dao động tự duy trì

lớn bằng 1 và pha - 180° (như thể hiện ở hình 4.10). Hệ thống tín hiệu qua là: G(s) nối tiếp với H(s). Nếu độ lớn nhỏ hơn 1 thì từng xung sóng một nửa tiếp theo sau sẽ có kích thước nhỏ hơn, như vậy dao động sẽ tắt dần. Nếu như độ lớn lớn hơn 1, sóng xung tiếp theo

sẽ lớn hơn sóng trước đó, có hiện tượng tích sóng, như vậy hệ thống không ổn định. Có thể rút ra một số kết luân sau:

- 1. Một hệ thống điều khiển sẽ dao động với một biên độ không đổi nếu như độ lớn tổng hợp từ hệ thống G(s) nối tiếp với H(s) là 1 và pha là-180°.
- Một hệ thống điều khiển sẽ dao động với một biên độ giảm dần nếu độ lớn tổng hợp từ hệ thống G(s) nối tiếp với H(s) là nhỏ hơn 1 và pha là-180°.
- 3. Một hệ thống diều khiển sẽ dao động với một biên độ tăng đần, như vậy là không ổn định, nếu độ lớn tổng hợp từ hệ thống G(s) nối tiếp với H(s) lớn hơn 1 và phase là-180°.

Hinh4.11: Hàm truyền đạt vòng mớ

Hàm truyền cho hệ G(s) nối tiếp H(s) được gọi là hàm truyền vòng mở (open -loop transfer function), giống trường hợp vòng kín thể hiện trong hình 4.10 với sự ngắt tại bộ so sánh (comparator), như thể hiện ở hình 4.11. Hàm truyền của vòng mở là tích hàm truyền G(s)H(s).

Một hệ thống điều khiển vòng mở tốt, ổn định thường yêu cầu độ lớn của hàm truyền vòng mở, tức [G(s)H(s)] phải nhỏ hơn I (giá trị thường dùng là từ

Hình 4.12: các giới han khếch đại và pha

Hinh 4.13: Ví dụ

0.4 đến 0.5). Hơn nữa, góc pha phải trong khoảng $-115^{\circ} \div 125^{\circ}$. Những giá trị này tạo nên một hệ thống điều khiển bị cản nhẹ (under-damped control system), loại với đầu vào dạng bậc, đem lại khoảng 20% đến 30% lượng quá điều chỉnh, hệ số suy giảm khoảng từ 3 đến 1 (xem phần 3.1.4).

Đồ thị Bode cho hàm truyền vòng mở có thể được sử dụng để thể hiện độ ổn định của hệ thống. Thuật ngữ giao pha (phase crossover) được dùng cho tần số trong đồ thị phase (đổ thị phase) góc pha đầu tai đó tiên -180°. Thuật ngữ biên khuếch đại (gain margin) được sử dụng cho hệ số mà độ lớn nhân với tai giao pha cho giá tri 1 (hình 4.12). Thuật ngữ giao khuếch đại (gain crossover) được sử dụng cho tần số trong đồ thi đô lớn, tai đó đô lớn đầu tiên của vòng mở đạt giá trị 1. Thuật ngữ biên pha (phase margin) được sử dung cho một số mức, ở đó góc pha

nhỏ hơn -180° tại giao khuếch đại (hình 4.12). Những nguyên tắc trên được xem xét cho hệ thống điều khiển, gọi là hệ thống ổn định tốt nếu có biên khuếch đại trong khoảng 2 và 2,5 và biên pha trong khoảng 45° và 65°))

Vi~du~4.8: Để minh hoạt, xét một đồ thị Bode trong hình 4.13 cho một hàm truyền vòng mở của một hệ thống điều khiển. Biên khuếch đại là giá trị độ lớn khi pha -180° là khoảng 8dB, có nghĩa: 8=20lg~(dộ~lớn). Như vậy độ lớn là $10^{8/20}=2.5$, biên pha là chênh lệch pha so với -180° khi độ lớn bằng 0, là khoảng 40° . Hệ thống này được cho là hệ thống ổn định.

 $Vi \ du \ 4.9$: Xác định giá trị K cho hệ thống với hàm truyền vòng mở $\frac{K}{s(2s+1)(s+1)}$, cho biên khuếch đại 3dB (\approx 2). Hàm đáp ứng tần số của vòng mở là:

$$G_0(j\omega) = \frac{K}{j\omega(j2\omega+1)(j\omega+1)} = \frac{K}{-3\omega^2 + j\omega(1-2\omega^2)}$$
(4.63)

Nhân tử và mẫu với $(-3\omega^2 + j\omega(1-2\omega^2))$, cho:

$$G_0(j\omega) = \frac{-3K\omega^2 + jK\omega(1 - 2\omega^2)}{9\omega^4 + \omega^2(1 - 2\omega^2)^2}$$
(4.64)

Độ lớn của hàm đấp ứng tần số -vòng mở là:

$$|G_0(j\omega)| = \frac{K}{\sqrt{9\omega^4 + \omega^2(1 - 2\omega^2)^2}}$$
 (4.65)

Pha là:

$$\tan g\phi = \frac{1 - 2\omega^2}{3\omega} \tag{4.66}$$

Đối với hệ thống có biên khuếch đại 3dB, thì đó phải là giá trị độ lớn tại ϕ =-180°. Tại góc này, phương trình trên cho 1-2 ω ²=0 và như vậy ω =1/ $\sqrt{2}$. Tại góc này:

Biên khuếch đại =-20
$$\lg |G_0(j\omega)|$$
 (4.67)

nên:

$$3 = -20 \operatorname{ig} \left[\frac{K}{\sqrt{9\omega^4 + \omega^2 (1 - 2\omega^2)^2}} \right]$$
 (4.68)

$$3 = -20 \lg \left[\frac{K}{\sqrt{9/4 + 0}} \right]$$
 Do d6 K/(3/2)=10-3/20 \rightarrow K=1,06 (4.69)

CHƯƠNG 5. PHÂN TÍCH TRẠNG THÁI VÀ ĐẶC TÍNH CỦA HỆ THỐNG

5.1. TRẠNG THÁI CỦA MỘT HỆ THỐNG

Trạng thái $x(t_0)$ của một hệ thống động tại thời gian t_0 là tập hợp các biến, cùng đầu vào u(t) với $t \ge t_0$ định đoạt hoạt động của hệ thống đối với mọi tất cả $t \ge t_0$

Cơ sở của định nghĩa này là ghi nhận trạng thái về cấu hình hiện thời của một hệ thống. Vì thế bộ nhớ của hệ thống động học được dành riêng lưu giữ các biến trạng thái tại thời điểm hiện thời t_0 (gọi là điều kiện ban đầu). Các phương cách hoạt động trong tương lai của hệ thống được quyết định bởi điều kiện ban đầu $x(t_0)$ và đầu vào u(t) đối với $t \ge t_0$. Trạng thái hệ thống có thể viết là một tập hợp:

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$

Trong đó n là số lượng các trạng thái. Một tập hợp biến bất kì, thoả mãn định nghĩa trên là một trạng thái hợp lệ, cho dù trạng thái có thể không là duy nhất.

Những đề cập trong phần này là các vấn đề trạng thái của các hệ thống động lực. Các hệ thống động lực là các hệ thống mà các biến số của hệ thống liên quan lẫn nhau, không những theo phương diện đại số mà cả sự can thiệp các tác động tích luỹ và tốc độ thay đổi chúng. Các mô hình hệ thống động lực có thể được xây dựng trong miền thời gian liên tục, gián đoạn hoặc trong miền thời gian liên tục- gián đoạn (những hệ thống lai, hệ thống lấy mẫu). Sau đây ta xem xét các trường hợp này.

5.1.1. Biển trạng thái

Một trong những phân loại thường được sử dụng nhất cho mô hình là theo các hệ phương trình đã được xác định về tập hợp các nội biến (inner variable) của hệ thống. Các nội biến được gọi là các biến trạng thái (state variable). Khi giá trị biến hệ thống có tại một thời điểm tức thời xác định, hình thành trạng thái hệ thống (system state). Nhiều nghiên cứu coi biến trạng thái và trạng thái hệ thống là đồng nghĩa.

Tập hợp các biến trạng thái của một hệ thống cho trước là tập hợp nội biến, như vậy mọi biến hệ thống có thể được tính toán (computed) như là một hàm của trạng thái hiện tại và là các đầu vào hệ thống hiện tại và tương lai. Định nghĩa này hàm ý nếu biết trạng thái ở một thời gian t ta có thể tính được năng lượng tích trong hệ thống tại thời điểm ấy. Năng lượng tích phụ thuộc vào một số biến hệ thống (tốc độ, điện áp, vị trí, nhiệt độ, áp suất, v...v) và theo định nghĩa có thể tính được từ trạng thái hệ thống.

Theo định nghĩa này, tổng quát hơn có thể hiểu trạng thái, các biến trạng thái có thể chọn như là hàm của các thay đổi bên trong hệ thống. Điều này tạo khoảng cách giữa trạng thái và thể hiện vật lí của nó và cũng tạo nên một đặc điểm thú vị, rằng khả năng chọn lựa các biến trạng thái không là duy nhất.

Một nhận xét quan trọng nữa là, sự phát triển của trạng thái với thời gian có thể tính từ giá trị hiện tại của trạng thái và các đầu vào hiện tại và tương lai. Vì vậy các mô hình liên quan là các phương trình vi phân bậc l cho thời gian liên tục hoặc đệ quy nhẩy một nhịp cho thời gian gián đoạn (one-step recursive).

5.1.2. Các mô hình không gian trạng thái cơ bản

Nếu biểu thị x là vectơ tương ứng sự lựa chọn các biến trạng thái đặc thù, dạng tổng quát của mô hình biến trạng thái là:

Đối với các hệ thống thời gian liên tục (continuous-time systems):

$$\frac{dx}{dt} = F(x(t), u(t), t) \tag{5.1}$$

$$y(t) = G(x(t), u(t), t)$$
 (5.2)

Trong đó u(t) là vectơ đầu vào và y(t) là vectơ đầu ra hệ thống.

Đối với các hệ thống thời gian gián đoạn (discrete-time systems):

$$x[t+1] = F_d(x[t]u[t]t)$$

$$(5.3)$$

$$y[t] = G_d(x[t]u[t]t)$$
(5.4)

Trong đó u[t]là vectơ đầu vào (input vectơ) và y[t]là vectơ đầu ra (output vectơ) hệ thống

 $Vi \ d\mu \ 5.1$: Một ngoại lực f(t) tác dụng vào một hệ thống khối lượng-lò xo. Vị trí d(t)

Hình 5.1:Mô hình hệ thống cơ khí

được đo tương ứng với vị trí khối lượng khi lò xo được nhả và không chịu ngoại lực. Chuyển động của khối lượng chậm đần đo lực ma sát nhờn, ma sát này tỉ lệ thuân với tốc độ v(t) của khối lượng.

Từ nguyên lí hệ thống thời gian liên tục ta có thể tính vị trí khối lượng và tốc độ của khối lượng nếu biết tốc độ ban đầu của khối lượng và lượng giãn dài lò xo ban đầu. Như vậy véctơ trạng thái phải có hai thành phần, $x(t) = [x_1(t) \quad x_2(t)]^T$, chọn trang thái tư nhiên là:

$$x_1(t) = d(t) \tag{5.5}$$

$$x_{2}(t) = v(t) = \dot{x}_{1}(t)$$
 (5.6)

Với sự lựa chọn này, ta có thể áp dụng định luật Neuton để có:

$$f(t) = m\frac{dv(t)}{dt} + Kd(t) + Dv(t) = m\dot{x}_2(t) + Kx_1(t) + Dx_2(t)$$
(5.7)

Trong đó m là khối lượng, D là hằng số, tỉ lệ thuận với ma sát nhớt. Phương trình trạng thái có thể viết lại là:

$$\dot{x}_1(t) = x_2(t) \tag{5.8}$$

$$\dot{x}_2(t) = -\frac{K}{m}x_1(t) - \frac{D}{m}x_2(t) + \frac{1}{m}f(t)$$
 (5.9)

Nhận xét, năng lượng w(t) tích trong hệ thống được cho bởi:

$$w(t) = \frac{1}{2} K d^{2}(t) + \frac{1}{2} m v^{2}(t) = x(t)^{T} \Lambda x(t)$$
 (5.10)

với
$$\Lambda$$
 là ma trận chéo: $\Lambda = diag\left\{\frac{K}{2}, \frac{m}{2}\right\}$

Tính không độc nhất của vectơ trạng thái: đánh giá tính không độc nhất của vectơ trạng thái được thực hiện, thay vì sự lựa chọn được thực hiện ở (5.8), ta có thể chọn một trạng thái mới $\bar{x}(t)$ liên quan với x(t) bởi một ma trận không suy biến $T \in {}^{2x^2}$, tức:

$$\overline{x}(t) = Tx(t) \tag{5.11}$$

(xem tiếp ở phần biến đổi đồng dạng trạng thái).

Tín hiệu và mô tả không gian trạng thái

Không gian trạng thái cũng có thể được sử dụng để mô tả các trạng thái đa dạng của tín hiệu khi sử dụng mô hình, dạng:

$$\frac{dx(t)}{dt} = Ax(t) \qquad ; \quad \dot{y}(t) = Cx(t) \quad \text{cho các tín hiệu thời gian- liên tục} \tag{5.12}$$

$$x[t+1] = A_q x[t], y[t] = C_q x[t] \text{ cho các tín hiệu thời gian- rởi rạc} (5.13)$$

Ví dụ 5.2: Để minh hoạ, xét một tín hiệu thời gian- liên tục cho bởi:

$$f(t) = 2 + 4\cos(5t) - \sin(5t) \tag{5.14}$$

Tín hiệu này được hiểu là nghiệm phương trình vi phân đồng nhất:

$$\frac{d^3 f(t)}{dt^3} + 25 \frac{df(t)}{dt} = 0 \qquad \text{có } f(0) = 6, \ \dot{f}(0) = -5 \text{ và } \ddot{f}(0) = -100$$
 (5.15)

Nếu chọn các biến trạng thái $x_1(t) = f(t)$, $x_2(t) = \dot{f}(t)$ và $x_3(t) = \ddot{f}(t)$, thì mô hình trang thái cho tín hiệu này là:

$$\frac{dx(t)}{dt} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -25 & 0 \end{bmatrix} x(t) \qquad y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x(t)$$
 (5.16)

Trong việc sử dụng mô hình không gian trạng thái này, các biến trạng thái không có nghĩa vật lí đặc biệt. Tuy nhiên việc mô tả này đặc biệt hữu ích trong lí thuyết xây dựng lại tín hiệu và giải quyết nhiễu trong việc tổng hợp hệ thống điều khiển.

5.2. MÔ TẢ KHÔNG GIAN TRẠNG THÁI CHO HỆ THỐNG THỜI GIAN-LIÊN TỤC

Những phân tích sau tập trung vào loại các hệ thống bất biến thời gian và tuyến tính. Để thực hiện điều này ta xem xét việc xây dựng một mô hình tuyến tính từ các phương trình không tuyến tính (5.1) và 5.(2).

Một hạn chế nữa trong phần này là hệ thống nghiên cứu có trễ thời gian không thuần khiết. Đặc điểm này tạo nên một vectơ trạng thái có thứ nguyên không xác định. Hệ thống như vậy sẽ được bàn đến ở 5.1.4.

5.2.1. Tuyển tính hoá

Vì bàn đến các các hệ thống không thay đổi với thời gian, phương trình (5.1) và (5.2) có thể viết lại là:

$$\frac{dx}{dt} = F(x(t), u(t)) \tag{5.17}$$

$$v(t) = G(x(t), u(t))$$
 (5.18)

Giả thiết, mô hình (5.17) và (5.18) có ít nhất một *diểm cản bằng* (equilibrium point) cho bởi $\{x_Q, u_Q, y_Q\}$, 3 tọa độ chiếu theo 3 vectơ bất biến thoá mãn:

$$0 = F(x_0, u_0) (5.19)$$

$$y_{O} = G(x_{O}, u_{O})$$
 (5.20)

Ghi chú: điểm cân bằng được xác định bởi đạo hàm trạng thái bằng 0,

Nếu xét vùng quanh điểm cân bằng, ta có thể xấp xỉ mô hình (5.17), (5.18) bởi đây Talor rút gọn, có dạng:

$$\dot{x}(t) \approx F(x_Q, u_Q) + \frac{\partial F}{\partial x}\bigg|_{\substack{x = x_Q \\ u = u_Q}} (x(t) - x_Q) + \frac{\partial F}{\partial u}\bigg|_{\substack{x = x_Q \\ u = u_Q}} (u(t) - u_Q)$$
 (5.21)

$$y(t) = G(x_Q, u_Q) + \frac{\partial G}{\partial x} \Big|_{\substack{x = x_Q \\ u = u_Q}} (x(t) - x_Q) + \frac{\partial G}{\partial u} \Big|_{\substack{x = x_Q \\ u = u_Q}} (u(t) - u_Q)$$
 (5.22)

Khi đó, phương trình (5.21) và (5.22) có thể viết lại là:

$$\frac{d\Delta x(t)}{dt} = A\Delta x(t) + B\Delta u(t)$$
 (5.23)

$$\Delta y(t) = C\Delta x(t) + D\Delta u(t) \tag{5.24}$$

Trong đó:

$$\Delta x(t) = x(t) - x_O$$
 $\Delta u(t) = u(t) - u_O$ $\Delta y(t) = y(t) - y_O$ (5.25)

va:

$$A = \frac{\partial F}{\partial x}\Big|_{\substack{x = x_Q \\ u = u_Q}} B = \frac{\partial F}{\partial u}\Big|_{\substack{x = x_Q \\ u = u_Q}} C = \frac{\partial G}{\partial x}\Big|_{\substack{x = x_Q \\ u = u_Q}} D = \frac{\partial G}{\partial u}\Big|_{\substack{x = x_Q \\ u = u_Q}}$$
(5.26)

Hình 5.2 Hệ thống nâng từ tinh

Các ý tưởng về tuyến tính hoá sẽ được minh hoạ bởi các ví du sau:

Ví dụ 5.3: Xét hệ thống năng có từ tính được thể hiện trong hình 5.2, trong đó quả cấu kim loại chịu hai lực: trọng lực mg và lực hút sinh ra bởi nam châm điện f(t). Nam châm điện được điều khiển qua nguồn điện

áp $e(t) > 0 \forall t$. Lực hút trên quả cầu f(t) phụ thuộc vào khoảng cách h(t) và dòng i(t). Mối quan hệ này có thể miêu tả xấp xỉ bởi:

$$f(t) = \frac{K_1}{h(t) + K_2} i(t)$$
 (5.27)

với K, và K, là các hằng số dương.

Sử dụng các nguyên lí thứ nhất, ta có thể viết:

$$e(t) = Ri(t) + L\frac{di(t)}{dt}$$
(5.28)

$$v(t) = -\frac{dh(t)}{dt} \tag{5.29}$$

$$f(t) = \frac{K_1}{h(t) + K_2} i(t) = mg + m \frac{dv(t)}{dt}$$
 (5.30)

Chọn các biến trạng thái là: dòng i(t), vị trí quả cầu h(t) và tốc độ của quả cầu v(t), ta có:

$$x(t) = \begin{bmatrix} x_1(t) & x_2(t) & x_3(t) \end{bmatrix}^T = \begin{bmatrix} i(t) & h(t) & v(t) \end{bmatrix}^T$$
 (5.31)

Từ (5.28÷5.30) ta có thể đặt sự điển tả hệ thống theo (5.1) như sau:

$$\frac{di(t)}{dt} = \frac{dx_1(t)}{dt} = -\frac{R}{L}x_1(t) + \frac{1}{L}e(t)$$
 (5.32)

$$\frac{dh(t)}{dt} = \frac{dx_2(t)}{dt} = -x_3(t)$$
 (5.33)

$$\frac{dv(t)}{dt} = \frac{dx_3(t)}{dt} = \frac{K_1}{m(x_2(t) + K_2)} x_1(t) - g$$
 (5.34)

Trước khi xây dựng mô hình tuyến tính hoá, phải tính điểm cân bằng. Đầu vào truyền điện trong hệ thống này là điện áp nguồn e(t), điểm cân bằng thu được với $e(t)=E_Q$. Vì vậy, có thể tính trạng thái cân bằng với các công thức từ $(5.32)\div(5.34)$, khi đặt tất cả các đạo hàm bằng 0, tức :

$$-\frac{R}{L}x_{1Q} + \frac{1}{L}E_Q = 0 \implies x_{1Q} = \frac{E_Q}{R}$$
 (5.35)

$$-x_{30} = 0 \Longrightarrow x_{30} = 0 \tag{5.36}$$

$$\frac{K_1}{m(x_{2Q} + K_2)} x_{1Q} - g = 0 \Longrightarrow x_{2Q} = \frac{K_1}{mg} x_{1Q} - K_2 = \frac{K_1 E_Q}{mgR} - K_2$$
 (5.37)

Sự thiết lập trên là đủ để dựng một mô hình tuyến tính hoá ở đầu vào gia

số (incremental input) $\Delta e(t)$ và trạng thái gia số (incremental state) $\Delta x(t) = \begin{bmatrix} \Delta x_1(t) & \Delta x_2(t) & \Delta x_3(t) \end{bmatrix}^T$, kết quả là:

$$\frac{d\Delta x_1(t)}{dt} = -\frac{R}{L}\Delta x_1(t) + \frac{1}{L}\Delta e(t)$$
 (5.38)

$$\frac{d\Delta x_2(t)}{dt} = -\Delta x_3(t) \tag{5.39}$$

$$\frac{d\Delta x_3(t)}{dt} = \frac{Rg}{E_Q} \Delta x_1(t) - \frac{Rmg^2}{K_1 E_Q} \Delta x_2(t)$$
 (5.40)

Nếu coi h(t)- vị trí của quả cầu là đầu ra, ta có thể so sánh các phương trình trên với (5.23) và (5.24) để thu được:

$$A = \begin{bmatrix} -\frac{R}{L} & 0 & 0 \\ 0 & 0 & -1 \\ \frac{Rg}{E_{O}} & -\frac{Rmg^{2}}{K_{1}E_{O}} & 0 \end{bmatrix}; \quad B = \begin{bmatrix} \frac{1}{L} \\ 0 \\ 0 \end{bmatrix}; \quad C = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}; \quad D=0$$
 (5.41)

Trong những phần tiếp, ta bỏ kí tự Δ ra ngoài nhưng xin lưu ý, mô hình ở trên là tuyến tính trong các thành phần gia số (Δ) của trạng thái, các đầu ra và đầu vào ở quanh điểm cán bằng được chọn.

5.2.2. Mô hình không gian trạng thái tuyến tính

Trước tiên, ta xét mô hình không gian trạng thái bất biến thời gian tuyến tính:

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t) \tag{5.42}$$

$$y(t) = Cx(t) + Du(t)$$
(5.43)

Nghiệm của phương trình (5.42), theo ràng buộc $x(t_0)=x_0$, được cho bởi:

$$x(t) = e^{A(t-t_0)} x_0 + \int_{t_0}^{t} e^{A(t-\tau)} Bu(\tau) d\tau \quad \forall t \ge t_0$$
 (5.44)

Với ma trận chuyển tiếp e^{At} thoả mãn:

$$e^{At} = I + \sum_{k=1}^{\infty} \frac{1}{k!} A^k t^k \tag{5.45}$$

Với kết quả này, giải phương trình (5.43) cho:

$$y(t) = Ce^{A(t-t_0)}x_0 + C\int_{t_0}^{t} e^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$
 (5.46)

Động lực học hệ thống

Trạng thái của một hệ thống có hai thành phần, thành phần tự nhiên $x_n(t)$ (tức thành phần không cưỡng bức) và thành phần cưỡng bức x_n , với:

$$x_n(t) = e^{A(t-t_0)} x_0 (5.47)$$

$$x_f(t) = \int_{t_0}^{t} e^{A(t-\tau)} Bu(\tau) d\tau$$
 (5.48)

Để thấu hiểu mô hình không gian trạng thái và cách giải chúng, ta xét trường hợp khi t_0 =0 và u(t)=0 $\forall t \ge 0$, tức trạng thái chỉ có thành phần tự nhiên (không cưỡng bức), khi ấy:

$$x(t) = e^{At} x_0 \tag{5.49}$$

Tiếp theo, giả thiết là $A \in \mathbb{R}^n$ và để đơn giản, chúng có các giá trị riêng $\lambda_1, \lambda_2, \ldots, \lambda_n$ với n (độc lập tuyến tính) vectơ riêng $\nu_1, \nu_2, \ldots, \nu_n$. Khi đó luôn tồn tại một tập hợp các hằng số $\alpha_1, \alpha_2, \ldots, \alpha_n$, mà:

$$x_0 = \sum_{t=1}^n \alpha_t v_t, \qquad \alpha_t \in \tag{5.50}$$

Kết quả từ đại số tuyến tính cho biết, các giá trị riêng của A^k là λ_1^k , λ_2^k ,.... λ_n^k với các vectơ riêng tương ứng v_1 , v_2 ,.... v_n . Việc áp dụng kết quả này cho:

$$x(t) = e^{At} x_0 = I + \sum_{l=1}^{n} \alpha_l \sum_{k=1}^{\infty} \frac{1}{k!} \underbrace{A^k v_l t^k}_{\lambda_k^l v_l} = \sum_{l=1}^{n} \alpha_l e^{\lambda_l t} v_l$$
 (5.51)

Phương trình này thể hiện, thành phần không cưỡng bức của trạng thái là một kết hợp tuyến tính các dao động tự nhiên (natural mode) $\{e^{\lambda_i t}\}$, mỗi một dao động kết hợp với một giá trị riêng A. Do vậy ,ma trận A quyết định:

- Cấu trúc của đáp ứng không cưỡng bức.
- Tính ổn định của hệ thống.
- Tốc độ đáp ứng.

5.2.3. Cấu trúc của đáp ứng không cưỡng bức (unforced response)

Khi không có đầu vào, trạng thái tiến triển như một tổ hợp các dao động tự nhiên, thuộc loại đã được định nghĩa về hàm: là các hàm mũ với số mũ là số thực hoặc là số phức. Các dao động này gồm cả các sóng sin không đổi, sóng sin hàm mũ số thực, sóng thuần SIN, các sóng sin điều biến số mũ và một số hàm đặc biệt khác nảy sinh từ các giá trị đặc trưng được lặp lại.

5.2.4. Cấu trúc của đáp ứng cưỡng bức(forced response):

Khi trạng thái ban đầu là 0, trạng thái sẽ thể hiện chỉ mỗi thành phần cưỡng bức. Thành phần cưỡng bức của trạng thái sẽ gồm cả các dao động tự nhiên và một số đao động cưỡng bức bổ sung hoặc dao động đặc thù, phụ thuộc vào bản chất đầu vào u(t) của hệ thống. Thường, các dao động cưỡng bức trong đầu vào sẽ cũng xuất hiện trong trạng thái. Tuy nhiên có một số trường hợp đặc biệt phát sinh khi một số dao động cưỡng bức trong u(t) trùng với một số dao động tự nhiên của hệ thống.

Tính ổn định của hệ thống

300

On định trong các hệ thống bất biến theo thời gian và tuyến tính có thể phân tích được khi sử dụng ma trận trạng thái A.

Tất cả các biến hệ thống có thể biểu diễn là các hàm tuyến tính của trạng thái và đầu vào hệ thống. Khi đầu vào hệ thống u(t) là vectơ của các hàm giới hạn thời gian (bounded time functions), khi đó biên của các biến phụ thuộc vào trạng thái bị giới hạn.

Định lí 1: Xét một hệ thống được mô tả trạng thái bởi phương trình (5.42) và (5.43), trong đó A,B,C, và D có các phần tử bị giới hạn. Khi ấy trạng thái hệ thống (và vì thế đầu ra hệ thống) bị ràng buộc cho tất cả các đầu vào giới hạn nếu và chỉ nếu các giá trị riêng của A có các phần thực âm.

Ví dụ 5.4: Để minh hoạ định lí 1, ta xét lại ví dụ ở hình 5.2. Đối với hệ thống này ma trận A(ở mô hình tuyến tính hoá) được cho bởi:

$$A = \begin{bmatrix} -\frac{R}{L} & 0 & 0\\ 0 & 0 & -1\\ \frac{Rg}{E_Q} & -\frac{Rmg^2}{K_1 E_Q} & 0 \end{bmatrix}$$
 (5.52)

Các giá tri riêng của ma trân này là nghiêm của $det(\lambda I - A) = 0$, ở đây:

$$\det(\lambda I - A) = \left(\lambda + \frac{R}{L}\right) \left(\lambda - \sqrt{\frac{Rmg^2}{K_1 E_Q}}\right) \left(\lambda + \sqrt{\frac{Rmg^2}{K_1 E_Q}}\right)$$
 (5.53)

Khi trong các giá trị riêng của ma trận có một giá trị thực và lớn hơn 0, hệ quả là hệ thống không ổn định (unstable). Điều này phù hợp với lí luận vật lí. Thực vậy, theo lí thuyết, ít nhất ta có thể định vị quả cầu cân bằng (được mô tả bởi phương trình (5.27). Tuy nhiên đó là một điểm cân bằng không ổn định, vì ngay khi ta có tác động (nhiễu) nhẹ lên quả cầu, nó sẽ tăng tốc hoặc xuống nền hoặc về thanh nam châm điện.

Tốc độ đáp ứng và cộng hưởng

Ngay cả khi hệ thống là ổn định thì vẫn còn nhiều câu hỏi liên quan đến những tính chất cơ bản khác.

Trong một hệ thống ổn định, phần thực của giá trị riêng quyết định tốc độ hội tụ về 0 của các dao động liên quan. Các dao động chậm nhất là các dao động có ảnh hưởng (dominant modes), quyết định tốc độ tại đó đầu ra hệ thống xác lập giá trị trạng thái không thay đổi, tức quyết định tốc độ đáp ứng của hệ thống. Ví dụ nếu các giá trị riêng có ảnh hưởng quyết định của hệ thống là:

$$\lambda_{1,2} = -\sigma \pm j\omega_0, \sigma > 0 \tag{5.54}$$

Các dao động tự nhiên liên quan sinh một sóng sin chậm dần số mũ:

$$y(t) = Ae^{-\alpha t} \sin(\omega_0 t + \alpha). \tag{5.55}$$

Ta nhận thấy tín hiệu ở (5.55) phân rã nhanh hơn đối với một α lớn hơn.

Một vấn đề đặc biệt quan trọng đối với các cấu trúc đàn hồi là sự hiện diện của cộng hưởng. Trong các hệ thống vật lí, sự tồn tại các giá trị riêng phức hợp có quan hệ mật thiết đến sự hiện diện 2 dạng năng lượng. Sự cộng hưởng mô tả sự dao động (ít cản) giữa hai loại năng lượng này. Trong mạch điện, các năng lượng này là năng lượng tĩnh điện trong các tụ và năng lượng điện từ trong các phần cảm điện. Trong hệ thống cơ thì đó là năng lượng động để chuyển dịch khối lượng và thế năng trong các lò xo. Các kết cấu đàn hồi có thể có một số dao động cộng hưởng. Một trong những vấn đề chính để xẩy ra cộng hưởng là khi đầu vào chứa năng lượng tại một tần số, gần với tần số cộng hưởng. Ví dụ nếu một hệ thống có giá trị riêng:

$$\lambda_{1,2} = -0.05 \pm j \tag{5.56}$$

tức tần số cộng hưởng là Irad/s và một trong các thành phần đầu vào là sóng

sin, tần số 0,9 rad/s, khi đó đầu ra hệ thống biểu lộ một dao động (cưỡng bức) rất lớn với các biên độ đầu tiên phát triển gần như tuyến tính, sau đó ổn định ở một giá trị không đổi. Trong thực tế, hiện tượng này có thể phá huỷ hệ thống.

5.2.5. Sự biến đổi đồng dạng trạng thái

Như đã nói điểm 5.1.1., sự chọn lựa các biến trạng thái không phải là duy nhất. Giả sử ta có một hệ thống , đầu vào là u(t), đầu ra y(t) và 2 sự lựa chọn khác nhau của vecto trạng thái: $x(t) \in \ ^n$ với 4 đại lượng liên quan (A,B,C,D) và $\overline{x} \in \ ^n$ với các đại lượng liên quan $(\overline{A},\overline{B},\overline{C},\overline{D})$ khi đó tồn tại một ma trận không suy biến (nonsigular) $T \in \ ^{n \times n}$, như:

$$\bar{x}(t) = Tx(t) \iff x(t) = T^{-1}\bar{x}(t)$$
 (5.57)

Phương trình này dẫn đến sự tương đương;

$$\overline{A} = TAT^{-1}$$
, $\overline{B} = TB$, $\overline{C} = CT^{-1}$ (5.58)

Sự lựa chọn khác nhau các biến trạng thái có thể hoặc cũng có thể không đáp ứng được các tiếp cận hiện tượng học khác nhau đối với phân tích hệ thống. Đôi khi đó chỉ là vấn để về đơn giản toán học hoặc là sự quyết định về các phương tiện liên quan để đo các biến hệ thống. Nhưng quan trọng là dù cách mô tả trạng thái nào được chọn thì những đặc tính cơ bản của hệ thống cụ thể sẽ không thay đổi vì thực tế, các giá trị riêng của hệ thống là bất biến đối với các biến đổi đồng dạng, do:

$$\det(\lambda I - \overline{A}) = \det(\lambda T T^{-1} - TAT^{-1}) = \det(T) \det(\lambda I - A) \det(T^{-1}) = \det(\lambda I - A) \quad (5.59)$$

Hinh 5.3: Mạch điện

Như vậy độ ổn định, bản chất của đáp ứng không cưỡng bức và tốc độ đáp ứng là không đổi đối với các biến đổi đồng dang.

Ví dụ 5.3: Xét mạch điện (hình 5.3). Chọn vectơ trạng thái:

$$x(t) = [x_1(t) \quad x_2(t)]^T = [i_L(t) \quad v_C]^T \quad \text{và } u(t) = v_f(t)$$
.

Sử dụng các nguyên lí thứ nhất, ta có:

$$\frac{dx(t)}{dt} = \begin{bmatrix} 0 & \frac{1}{L} \\ -\frac{1}{C} & \frac{R_1 + R_2}{R_1 R_2 C} \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ \frac{1}{R_1 C} \end{bmatrix} u(t)$$
 (5.60)

Có thể lựa chọn vectơ trạng thái $\overline{x}(t) = [\overline{x}_1(t) \ \overline{x}_2(t)]^T = [i(t) \ i_2(t)]^T$. Trường hợp này ta có trạng thái:

$$\overline{x}(t) = \underbrace{\frac{1}{R_2} \begin{bmatrix} R_2 & 1\\ 0 & 1 \end{bmatrix}}_{T} x(t) \tag{5.61}$$

5.2.6. Mối quan hệ không gian trạng thái và các hàm truyền đạt Không gian trang thái hướng đến hàm truyền

Mối quan hệ đầu ra và đầu vào của một hệ thống động trong miền tần số được mô tả bởi một hàm truyền đạt, thu được khi sử dụng biến đổi Laplace với các điều kiện ban đầu là 0 (như đã đề cập ở mục 3.2.1) Đối với một hàm bất biến thời gian tuyến tính với đầu vào $u(t) \in \mathbb{R}^m$ và đầu ra $y(t) = \mathbb{R}^p$, hàm truyền $H(s) \in \mathbb{R}^{p \times m}$ được xác định bởi phương trình:

$$Y(s) = H(s)U(s) \text{ trong d\'o} \qquad \left[H(s)\right]_{ij} = \frac{Y_i(s)}{U_I(s)}$$
 (5.62)

Tức thành phần (i,j) trong ma trận H(s) là biến đổi Laplace của đấp ứng trong đầu ra i^{th} khi một xung lực đơn vị đặt ở đầu vào j^{th} , với các điều kiện ban đầu bằng 0 và với các đầu vào còn lại bằng 0 cho tất cả $t \ge 0$

Mặt khác nếu biến đổi Laplace (5.42), (5.43) với các điều kiện ban đầu bằng θ , ta có:

$$X(s) = (sI - A)^{-1}BU(s) \tag{5.63}$$

$$Y(s) = CX(s) + DU(s) = \underbrace{(C(sI - A)^{-1}B + D)}_{H(s)}U(s)$$
 (5.64)

Để đơn giản và có thể phân tích sâu hơn, ta xét các hệ thống vô hướng (scalar system), tức hệ thống chỉ có một đầu vào và một đầu ra. Tức m=p=1, B trở thành vector cột, C vector hàng và $D=H(\infty)$ (trong các hệ thống thực, thường $D=H(\infty)=0$). Đối với các hệ thống vô hướng, H(s) là thương của các đa thức theo s, tức:

$$H(s) = \frac{CAdj(sI - A)B + D\det(sI - A)}{\det(sI - A)}$$
(5.65)

ở đây, Adj(o) biểu hiện ma trận liên hợp (o).

Vấn đề cơ bản rằng các cực của hàm truyền là các giá trị riêng của ma trận A. Tuy nhiên nhìn chung điều đó không đúng, có thể tập hợp các cực của hàm truyền trùng với tập hợp các giá trị riêng của ma trận A, nhưng cũng có thể khác, điều này có thể được làm rõ qua ví dụ 5.4:

Ví du 5.4: Cho:

$$A = \begin{bmatrix} -2 & 1 \\ 0 & -3 \end{bmatrix}; \quad B = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}; \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix}; \quad D = 0$$

Khi đó:

$$H(s) = C(sI - A)^{-1}B$$

$$= \frac{1}{(s+2)(s+3)} \begin{bmatrix} 0 & 1 \begin{bmatrix} s+3 & 1 \\ 0 & s+2 \end{bmatrix} \begin{bmatrix} 1 \\ 0,5 \end{bmatrix}$$

$$= \frac{0.5(s+2)}{(s+2)(s+3)} = \frac{0.5}{(s+3)}$$
(5.66)

Như vậy, hàm truyền chỉ có một cực, mặc dù ma trận A có hai giá trị riêng. Ta nhận thấy có một sự huỷ cực zero trong H(s). Hiện tượng này có mối quan hệ chặt chẽ với vấn đề đặc tính của hệ thống (xem thêm phần 5.4).

Xét lại ví dụ 5.2, nếu ta định nghĩa dòng i(t) là đầu ra hệ thống, ta có thể nhận xét, từ đầu vào e(t) đến đầu ra này chỉ có một cực. Điều này ngược với thực tế là kích thước của trạng thái bằng 3. Điều này có thể giải thích là trong mô hình vật lí giản đơn của chúng ta, dòng i(t) không có ảnh hưởng tới vị trí và tốc độ của quả cầu kim loại (chấp nhận có thể bỏ qua sự thay đổi trong độ tự cảm do sự thay đổi vị trí của quả cầu).

Kết luận là hàm truyền có thể cấp không cùng lượng thông tin như mô hình không gian trạng thái cho cùng hệ thống. Vì mô hình không gian trạng thái kết quả không bộc lộ các cực zero huỷ nên mô tả một không gian trạng thái từ một hàm truyền cho trước, còn coi là thực hiện tối thiểu (minimal realization).

Hàm truyền hướng đến không gian trạng thái

Có một số phương pháp để thu được mô hình không gian trạng thái từ hàm truyền cho trước. Sau đây ta xem xét một trong số các phương pháp đó.

Xét một hàm truyền cho bởi:

$$H_T(s) = \frac{B_o(s)}{A_0(s)} + H_T(\infty) = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_1s + b_o}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_o} + H_T(\infty)$$
 (5.67)

Nhắc lại $D=H_T(\infty)$, như vậy hàm truyền; $H(s)=H_T(s)-H_T(\infty)$ là một hàm truyền hợp lệ.

Tiếp theo, xét biến $v_I(t) \in \mathbb{R}$ biến đổi Laplace của nó, $V_I(s)$ thoả mãn:

$$V_{l}(s) = \frac{s^{l-1}}{A_{0}(s)}U(s) \quad l \in \{1, 2, ... n\}$$
 (5.68)

(5.68) bao hàm:

$$v_{t}(t) = \frac{dv_{t-1}(t)}{dt} \qquad l \in \{2, ..., n\}$$
 (5.69)

$$Y(s) = \sum_{t=1}^{n} b_{t-1} V_t(s)$$
 (5.70)

$$U(s) = \frac{A_n(s)}{A_n(s)}U(s) = \underbrace{\frac{s^n}{A_0(s)}U(s)}_{s A_n(s)} + \sum_{t=1}^n a_{t-1} \underbrace{\frac{s^{t-1}}{A_0(s)}U(s)}_{V_t(s)}$$
(5.71)

Chọn biến trạng thái: $x_i(t) = v_i(t)$

Các phương trình trên có:

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-2} & -a_{n-1} \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$
 (5.72)

$$C = \begin{bmatrix} b_0 & b_1 & b_2 & \cdots & b_{n+1} \end{bmatrix} \qquad D = H_T(\infty)$$

Ví dụ 5.5: Hàm truyền của một hệ thống được cho bởi:

$$H(s) = \frac{4s - 10}{(s+2)^2(s-1)} = \frac{4s - 10}{s^3 + 3s^2 - 4}$$
 (5.73)

Thực hiện tối thiểu cho hệ thống này là:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & 0 & -3 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad C = \begin{bmatrix} -10 & 4 & 0 \end{bmatrix} \quad D = 0$$
 (5.74)

Kết luận: Một hàm truyền hệ thống là bất biến đối với các phép biến đổi

đồng dạng trạng thái.

5.3. KHÔNG GIAN TRẠNG THÁI CÁC HỆ THỐNG LẤY MẪU VÀ THỜI GIAN RỜI RAC (DISCRETE-TIME AND SAMPLED DATA SYSTEM)

Mô tả không gian trạng thái cho các hệ thống lấy mẫu và thời gian rời rạc dựa chính trên kết quả thu được từ trường hợp thời gian liên tục. Mô hình thời gian rời rạc có thể do bởi 2 nguồn khác nhau:

- Từ một hệ thống thời gian rời rạc thuần, thường không tuyến tính, các biến của nó chỉ có thể xác định được tại những thời điểm tức thời t_k . Những hệ thống như vậy có thể tìm thấy trong các hệ thống kinh tế, lí thuyết quá trình thống kê ngẫu nhiên (stochastic).
- Từ việc rời rạc hoá một hệ thống thời gian liên tục. Trong trường hợp này ta chỉ quan tâm đến giá trị các biến hệ thống tại các thời điểm tức thời xác định. Các mô hình này rất hữu ích khi các hệ thống số (digital system) như các vi điều khiến (microcontroller), máy tính (computer), PLCs và những hệ thống khác, tương tác với các hệ thống thời gian thực liên tục (continous-time real systems) như các cơ cấu cơ khí, van, thùng chứa, các mạch tương tự hoặc các quá trình công nghiệp toàn bộ (qua các bộ chuyển đổi tương tự-số và số -tương tự).

Phân tích của chúng ta cho cả hai trường hợp trên sẽ được chú trọng vào loại mô hình bất biến thời gian và tuyến tính.

5.3.1. Tuyến tính hoá các hệ thống thời gian rời rạc

Thời gian rời rạc tương ứng với (5.3) (5.4) được cho bởi các phương trình không tuyến tính:

$$x[t+1] = F_d(x[t], u[t])$$
 (5.75)

$$y[t] = G_d(x[t], u[t])$$
 (5.76)

Tuyến tính hoá các mô hình cho hệ thống thời gian rời rạc theo dọc các đường cũng như cho thời gian liên tục. Trước hết xét điểm cân bằng cho bởi $\{x_0, u_0, y_0\}$;

$$x_O = F_d(x_O, u_O) (5.77)$$

$$y_Q = G_d(x_Q, u_Q) (5.78)$$

Chú ý: điểm cân bằng được xác định bởi một tập hợp các giá trị **cố định**

của trạng thái và các giá trị **có định** của đầu vào, thoả mãn (5.75) (5.76). Như vậy ta có đầu ra hệ thống không đổi. Khi ấy mô hình rời rạc có thể tuyến tính hoá quanh điểm cân bằng này.

Định nghĩa:

$$\Delta x[t] = x[t] - x_O \qquad \Delta u[t] = u[t] - u_O \qquad \Delta y[t] = y[t] - y_O \qquad (5.79)$$

Ta có mô hình không gian trạng thái

$$\Delta x[t+1] = A_{d} \Delta x[t] + B_{d} \Delta u[t] \qquad (5.80)$$

$$\Delta v[t] = C_d \Delta x[t] + D_d \Delta u[t] \tag{5.81}$$

Trong đó:

$$A_d = \frac{\partial F_d}{\partial x}\bigg|_{\substack{x = x_Q \\ u = u_Q}} B_d = \frac{\partial F_d}{\partial u}\bigg|_{\substack{x = x_Q \\ u = u_Q}} C_d = \frac{\partial G_d}{\partial x}\bigg|_{\substack{x = x_Q \\ u = u_Q}} D_d = \frac{\partial G_d}{\partial u}\bigg|_{\substack{x = x_Q \\ u = u_Q}} (5.82)$$

5.3.2. Các hệ thống lấy mẫu dữ liệu (Sampled Data System)

Như dã nói, có thể có được mô hình thời gian rời rạc bằng lấy mẫu dấu vào và đầu ra trong các hệ thống thời gian liên tục (continous-time systems). Khi sử dụng một thiết bị số (digital device) để tác động lên một hệ thống thời gian liên tục, các tín hiệu điều khiển chi cấn được xác định tại thời điểm tức thì ấy, chứ không phải ở tất cả các thời gian. Tuy nhiên, dể tác động lên hệ thống thời gian liên tục, tạ phải có một tín hiệu thời gian liên tục. Việc này thường được thực hiện bởi mạch giữ bậc 0 (zero order hold), thành phân sinh ra một tín hiệu bậc thang (staircase signal). Ngoãi ra khi đo số một biến hệ thống, việc này sẽ được thực hiện tại một số thời điểm tức thời nào đó. Điều này có nghĩa tạ phải *lấy mẫu* (sample) các tín hiệu đầu ra.

Hinh 5.4: Sơ đổ thể hiện hệ thống lấy mẫu dữ liệu

Hình 5.4 minh hoạ khái niệm này. Giả thiết ta lấy mẫu tuần hoàn, với chu kì Δ, ta chỉ quan tâm đến các tín hiệu trong thời gian kΔ. Trong phần

tiếp theo, ta bỏ Δ khỏi argumen, sử dụng $u(k\Delta) = u[t]$ cho đầu vào , $y(k\Delta) = y[t]$ cho đầu ra và $x(k\Delta) = x[t]$ cho trạng thái hệ thống.

Nếu xét mô hình trạng thái tuyến tính và bất biến trong thời gian liên tục, được xác định bởi công thức (5.42) và (5.43) với trạng thái ban đầu $x(k_o\Delta) = x_o$, ta có thể sử dụng phương trình (5.44) để tính giá trị tiếp theo của trạng thái:

$$x(k_o\Delta + \Delta) = e^{A(k_o\Delta + \Delta - k_o\Delta)} x(k_o\Delta) + \int_{k_o\Delta}^{k_o\Delta + \Delta} e^{A(k_o\Delta + \Delta - \tau)} Bu(\tau) d\tau$$
 (5.83)

Tiếp theo nếu sử dụng mạch giữ mức 0, tức: $u(\tau) = u(k_0 \Delta)$ cho $k_0 \Delta \le \tau \le k_0 \Delta + \Delta$ ta có:

$$x(k_o\Delta + \Delta) = e^{A\Delta}x(k_o\Delta) + \int_0^\Delta e^{A\eta}d\eta Bu(k_o\Delta)$$
 (5.84)

Nếu biết trạng thái và đầu vào tại thời gian $k_o\Delta$, đầu ra sẽ được xác định bởi phương trình(5.43):

$$y(k_a \Delta) = Cx(k_a \Delta) + Du(k_a \Delta) \tag{8.85}$$

Có thể kết luận: đối với một mô hình thời gian liên tục cho trước với các ma trận không gian trạng thái $\{A,B,C,D\}$ và được lấy mẫu cứ mỗi Δ giây, thì hệ thống lấy mẫu dữ liệu tương đương sẽ được mô tả bằng mọ hình không gian trạng thái thời gian gián đoạn:

$$x(k\Delta + \Delta) = A_d x(k\Delta) + B_d u(k\Delta)$$
 (5.86)

$$y(k\Delta) = C_d x(k\Delta) + D_d u(k\Delta)$$
 (5.87)

Trong đó:

$$A_d = e^{A\Delta}; \quad B_d = \int_0^\Delta e^{A\eta} d\eta B; \qquad C_d = C; \qquad D_d = D$$
 (5.88)

Có một số phương pháp khác nhau để xác định A_d định nghĩa trong (5.88), nhưng cách đơn giản nhất để tính ma trận này là sử dụng biến đổi Laplace, ta có:

$$A_d = e^{A\Delta} = \mathcal{L}^{-1} \left\{ (sI - A)^{-1} \right\}_{t=\Delta}$$
 (5.89)

Ví dụ 5.6: Xét hệ thống cơ cho ở hình 5.1, mô hình không gian trạng thái được mô tả bởi:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{K}{m} & -\frac{D}{m} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ -\frac{1}{m} \end{bmatrix} f(t)$$
 (5.90)

Trong đó f(t) là ngoại lực và ta có thể chọn hoặc vị trí khối lượng, $x_1(t)$ hoặc tốc độ khối lượng, $x_2(t)$ là đầu ra hệ thống.

Để minh họa số, ta đặt m=1kg, D=1.2Ns/m và K=0.32 N/m.

Ma trận A_d thu được từ (5.89) khi áp dụng biến đổi ngược Laplace:

$$A_{d} = \mathcal{L}^{-1} \left[\begin{bmatrix} s & -1 \\ 0.32 & s+1.2 \end{bmatrix}^{-1} \right]_{t=\Delta} = \begin{bmatrix} 2e^{-0.4\Delta} - e^{-0.8\Delta} & 2.5(e^{-0.4\Delta} - e^{-0.8\Delta}) \\ 0.8(e^{-0.4\Delta} - e^{-0.8\Delta}) & -e^{-0.4\Delta} + 2e^{-0.8\Delta} \end{bmatrix}$$
(5.91)

B_i tghu được từ (5.88):

$$B_{d} = \int_{0}^{\Delta} \begin{bmatrix} 2e^{-0.4\eta} - e^{-0.8\eta} & 2.5(e^{-0.4\eta} - e^{-0.8\eta}) \\ 0.8(e^{-0.4\eta} - e^{-0.8\eta}) & -e^{-0.4\eta} + 2e^{-0.8\eta} \end{bmatrix} d\eta \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow B_{d} = \begin{bmatrix} -6.25e^{-0.4\Delta} + 3.125e^{-0.8\Delta} + 3.125 \\ 2.5(e^{-0.4\Delta} - e^{-0.8\Delta}) \end{bmatrix}$$
(5.92)

Chú ý: cả A_d và B_d là hàm của Δ . Như vậy, chu kì lấy mẫu Δ thể hiện ảnh hưởng trong hoạt động động lực của hệ thống lấy mẫu, như nhận xét ở những phần tiếp theo.

5.3.3. Mô hình không gian trạng thái tuyến tính

Mô hình không gian trạng thái bất biến thời gian tuyến tính được cho bởi:

$$x[t+1] = A_d x[t] + B_d u[t]$$
 (5.93)

$$y[t] = C_d x[t] + D_d u[t]$$
 (5.94)

Đó có thể là một mô hình thời gian rời rạc được tuyến tính hoá như (5.80) và (5.81) hoặc một hệ thống lấy mẫu dữ liệu như (5.86),(5.86), trong đó Δ được bỏ ra khỏi agumen thời gian.

Giải phương trình (5.93) và (5.94), có $x[t_o] = x_0$, cho :

$$x[t] = A_d^{(t-t_n)} x_0 + \sum_{i=0}^{(t-t_n)-1} A_d^{(t-t_n)-i-1} B_d u[i+t_n] \qquad \forall t \ge t_0$$
 (5.95)

Trong đó $A_d^{t-t_a}$ là ma trận quá độ (transition matrix). Phương trình (5.95) thoả mãn (5.93). Với kết quả trên, khi giải (5.94) ta có:

$$y[t] = C_d A_d^{(t-t_o)} x_0 + C_d \sum_{i=0}^{(t-t_o)-1} A_d^{(t-t_o)-i-1} B_d u[i+t_o] + D_d u[t]$$
(5.96)

Động học hệ thống

Trạng thái của hệ thống có hai thành phần: không cưỡng bức $x_n[t]$ và cưỡng bức $x_t[t]$, trong đó:

$$x_a[t] = A_d^{(t-t_a)} x_a \tag{5.97}$$

$$x_{j'}(t) = \sum_{i=0}^{(t-t_a)-1} A_d^{(t-t_a)-i-1} B_d u[i+t_a]$$
 (5.98)

Để thấu hiểu mô hình không gian trạng thái và cách giải chúng, ta xét trường hợp khi $t_o=0$ và u(t)=0 $\forall t \ge 0$, tức trạng thái chỉ có thành phần không cưỡng bức, khi ấy:

$$x[t] = A_d' x_0 (5.99)$$

Tiếp theo, giả thiết là $A \in \mathbb{R}^{n \times n}$, có n giá trị riêng λ_t riêng biệt với n vectơ riêng v_c độc lập tuyến tính. Khi ấy luôn tồn tại một tập hợp n hằng số α_t , như vây:

$$x_0 = \sum_{t=1}^n \alpha_t v_t \qquad \alpha_t \in \tag{5.100}$$

Một kết quả quen thuộc từ đại số tuyến tính cho ta biết rằng các giá trị riêng của A_d^k là η_I^k khi $k \in V$ ới các vectơ riêng tương ứng v_I . Ứng dụng kết quả này cho:

$$x[t] = A_d^t x_o = A_d^t \sum_{t=1}^n \alpha_t v_t = \sum_{t=1}^n \alpha_t \underbrace{A_d^t V_t}_{\eta_t^t v_t},$$
 (5.101)

$$x[t] = \sum_{i=1}^{n} \alpha_{i} \eta_{i}^{t} v_{i}$$
 (5.102)

Phương trình này thể hiện thành phần không cưỡng bức của trạng thái, là một tổ hợp của các dao động tự nhiên (natural modes) $\{\eta_i'\}$ và mỗi một dao động được kết hợp với một giá trị riêng A_d , loại được biết như là các tần số tự nhiên (natural frequencies) của mô hình. Như vậy, ma trận A_d quyết định:

Cấu trúc của đáp ứng không bị cưỡng bức

- Tính ổn định của hệ thống
- Tốc độ phản ứng.

Cấu trúc của đáp ứng không cưỡng bức (unforced response)

Khi không có đầu vào, trạng thái khai triển là một tổ hợp các dao động tự nhiên, loại phụ thuộc vào lớp định nghĩa các hàm: luỹ thừa của các giá trị riêng của mô hình là số thực hoặc số phức. Các dao động này là các hàm rời rạc liên quan đến sóng SIN bất biến, hàm SIN số mũ thực, các sóng thuần SIN, các sóng sin điều biến số mũ và một số hàm đặc biệt khác nảy sinh từ sự lặp lại của các giá trị riêng.

 $Vi\ d\mu\ 5.7$: Để minh hoạ, xem xét diễn giải vật lí của cấu trúc đáp ứng không cưỡng bức, ta xét hệ thống lấy mẫu trong ví dụ 5.6. Nếu $\Delta=1$, các ma trận không gian trạng thái là:

$$A_d = \begin{bmatrix} 0.8913 & 0.5525 \\ -0.1768 & 0.2283 \end{bmatrix} \qquad B_d = \begin{bmatrix} 0.3397 \\ 0.5525 \end{bmatrix}$$
 (5.103)

Vì thế các giá trị riêng của hệ thống là nghiệm của phương trình:

$$\det(\eta I - A_{d}) = \det\begin{bmatrix} \eta - 0.8913 & -0.5525 \\ 0.1768 & \eta - 0.2283 \end{bmatrix} = (\eta - 0.6703)(\eta - 0.4493) = 0$$
 (5.104)

Có nghĩa $\eta_1 = 0.6703$, $\eta_2 = 0.4493$, và đáp ứng không cưỡng bức là:

$$x_u[t] = C_1(0.6702)^t + C_2(0.4493)^t$$
(5.105)

Trong đó C_1 và C_2 chỉ phụ thuộc vào các điều kiện ban đầu. Có thể nhận xét, khi t tiến đến vô cực, $x_n[t]$ phân rã về 0, do $\lfloor \eta_{1,2} \rfloor < 1$. Như vậy các giá trị riêng này là số thực dương, không có dao động trong các phương thức tự nhiên.

Cấu trúc của đáp ứng cưỡng bức (forced response):

Xét phương trình (5.95). Khi trạng thái ban đầu là 0, trạng thái sẽ thể hiện chỉ mỗi thành phần cưỡng bức. Tuy nhiên, thành phần cưỡng bức của trạng thái sẽ vẫn gồm cả dao động tự nhiên và một số dao động cưỡng bức (forced modes) bổ sung hoặc dao động đặc thù (particular modes) tuỳ vào bản chất đầu vào u(t) của hệ thống. Thường, các dao động cưỡng bức trong đầu vào sẽ cũng xuất hiện trong trạng thái. Tuy nhiên sẽ phát sinh một số trường hợp đặc biệt khi một số dao động cưỡng bức trong u(t) trùng với một số dao động tự nhiên của hệ thống.

Tính ổn định hệ thống

Có thể phân tích tính ổn dịnh trong các hệ thống bất biến thời gian tuyến tính khi sử dụng ma trận trạng thái A_u . Như đã nói, tất cả các biến hệ thống có thể biểu diễn như là các hàm tuyến tính của trạng thái và đầu vào hệ thống. Khi đầu vào hệ thống u(t) là vectơ của các hàm giới hạn thời gian, khi đó biên của các biến hệ thống phụ thuộc vào trạng thái bị giới hạn. Ta có kết quả sau:

Định lí 2: Xét một hệ thốngđược mô tả bởi phương trình (5.93) và (5.94), trong đó B_d , C_d , và D_d có các phần tử bị giới hạn. Khi ấy trạng thái hệ thống bị giới hạn cho tất cả các đầu vào giới hạn nếu và chỉ nếu các giá trị riêng của A_d nằm bên trong đĩa đơn vị, tức $[\eta_I]$ <1, $\forall I$.

Tốc độ đáp ứng và cộng hưởng

Dao động tự nhiên của các hệ thống thời gian rời rạc là luỹ thừa của các giá trị riêng. Do các giá trị riêng này luôn được mô tả dưới dạng đại lượng phức, ta có thể viết dao động tự nhiên như:

$$(\eta_t)^t = (|\eta_t|e^{j\theta_t})^t = |\eta_t|^t e^{j\theta_t t} \text{ trong d\'o } \theta_t = <\eta_t$$
(5.106)

Như vậy ta có:

- $0<|\eta_I|<\infty$ quyết định tốc độ dao động phân rã về 0 cho các hệ thống ổn định $(|\eta_I|<1)$, hoặc phát triển tới vô cực cho các hệ thống không ổn định $(|\eta_I|>1)$.
- $-\pi < \theta_i \le \pi$ quyết định *tần số* dao động tự nhiên, đo theo radian.

Mặc dù các dao động tự nhiên của các hệ thống ổn định phân rã về 0, bản chất của chúng quyết định tính đấp ứng quá độ của hệ thống.

Để minh hoạ các vấn đề trên, người ta thường sử dụng các đấp ứng bậc, với các điều kiện ban đầu bằng 0.

Ví dụ 5.8: Xét một hệ thống thời gian rời rạc được miêu tả bởi mô hình không gian trạng thái:

$$x[t+1] = \begin{bmatrix} 1,2796 & -0.81873 \\ 1 & 0 \end{bmatrix} x[t] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u[t]$$
 (5.107)

$$y[t] = [0 \quad 0.5391] \qquad x[t]$$
 (5.108)

Giá trị riêng của hệ thống thu được từ A_d:

$$\eta_{12} = 0.6398 \pm j0.6398 = 0.9048e^{j\pi/4}$$
 (5.109)

Và các dao động tự nhiên kết hợp, hiện diện trong đáp ứng quá độ là:

$$\eta_{1.2} = 0.9248' e^{j\frac{\pi}{4}t} = 0.9048' \left[\cos\left(\frac{\pi}{4}t\right) \pm j \sin\left(\frac{\pi}{4}t\right) \right]$$
(5.110)

Các dao động tự nhiên bị cản nhẹ vì $|\eta_{1,2}|$ gần bằng 1 và chúng thể hiện là dao động với tần số $\pi/4$.

Hình 5.5: Tác động cộng hưởng trong đấu ra hệ thống

Các đồ thị ở hình 5.5 thể hiện một đầu ra cộng hưởng mạnh, Hình55 a, tương ứng với một đầu vào $u[t] = \sin\left[\frac{\pi}{4}t\right]$, tức tần số đầu vào trùng với tần

số của các dao động tự nhiên. \vec{O} hình 5.56 đầu vào là một sống vuông, tín hiệu tần số $\pi/12$. Trong trường hợp này, hàm điều hoà thứ ba của đầu vào có tần số bằng tần số của dao động tự nhiên.

Tác động của các khoảng thời gian lấy mẫu

Ta nhận thấy, trong phương trình (5.87) A_d và B_d phụ thuộc vào sự chọn khoảng thời gian lấy mẫu Δ . Sự lựa chọn này cũng quyết định vị trí của các giá trị riêng của hệ thống. Xem lại phương trình (5.88), giả thiết A đã được chéo hoá. Ta có;

$$A_d = e^{\operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)\Delta} = \operatorname{diag}\left\{e^{\lambda_1 \Delta}, \dots, e^{\lambda_n \Delta}\right\}$$
 (5.111)

Trong đó $\{\lambda_1, \lambda_2, ..., \lambda_n\}$ là giá trị riêng của các hệ thống thời gian liên tục cơ sở. Khi đó các giá trị riêng này được sắp đặt thành các giá trị riêng của hệ thống lấy mẫu bởi phương trình:

$$\eta_I = e^{\lambda_I \Delta} \tag{5.112}$$

Hình 5.6:Tác động lấy mẫu trong các dao động tự nhiên

Trong hình 5.6 ta có thể nhận xét các đáp ứng của hệ thống lấy mẫu theo ví dụ 5.6 trong hình 5.6, chọn $x_1[t]$ là đầu ra hệ thống, khi điều kiện ban đầu là $x_o = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ đối với các giá trị khác nhau của Δ . Ta nhận thấy, trục ngang

tương ứng với t, như vậy các khoảng khắc thời gian thực (real instants times) là $t\Delta$.

Một vấn đề quan trọng liên quan đến lấy mẫu các tín hiệu thời gian liên tục là chu kì lấy mẫu phải được chọn đủ nhỏ để nắm bắt được bản chất cốt yếu của tín hiệu được lấy mẫu. Ví dụ về một chọn lựa Δ tồi, giả thiết tín hiệu $f(t) = A\sin(\omega_o t)$ được lấy mẫu trong từng Δ giây, với $\Delta = 2l\pi/\omega_o, l \in$. Khi ấy tín hiệu thời gian rời rac kết quả là $f(t) = 0, \forall t \in$

5.3.4. Sự biến đổi đồng dạng trạng thái

Ý tưởng chuyển đổi trạng thái thông qua biến đối đồng dạng gần tương tự như áp dụng đối với hệ thống thời gian liên tục. Sự biến đổi này không gây nên sự thay đổi tính chất của hệ thống.

Không gian trạng thái và các hàm truyền

Mối quan hệ giữa không gian trạng thái và các mô hình hàm truyền cho các hệ thống thời gian rời rạc về cơ bản giống trường hợp thời gian liên tục. (xem mục 5.2). Có thể nói, mô tả không gian trạng thái của các hệ thống bất biến thời gian tuyến tính và hàm truyền là các cách mô tả hệ thống, mặc dù trong một số trường hợp, không gian trạng thái cung cấp thông tin trong hệ thống nhiều hơn.

Đối với một hàm bất biến thời gian tuyến tính với đầu vào $u(t) \in \mathbb{R}^m$ và đầu ra $y(t) = \mathbb{R}^p$, hàm truyền $H(z) \in \mathbb{R}^{p \times m}$ được xác định bởi phương trình:

$$Y(z) = H(z)U(z)$$
 trong đó $[H(z)]_{ij} = \frac{Y_i(z)}{U_I(z)}$ (5.113)

tức thành phần (i,j) trong ma trận H(z) là biến đổi Zeta của đáp ứng đầu ra thứ i (i^{th}) khi một Đen ta Kroneckerđơn vị (unit Kronecker's delta) đặt ở đầu vào thứ $J(j^{th})$, với các điều kiện ban đầu bằng 0 và với các đầu vào còn lại bằng 0 cho tất cả $t \ge 0$.

Mặt khác nếu áp dụng biến đổi Zeta vào mô hình không gian trạng thái thời gian rời rạc (5.93) và (5.94) với các điều kiện ban đầu bằng 0, ta có:

$$X(z) = (zI - A_d)^{-1} B_d U(z)$$
 (5.114)

$$Y(z) = C_d X(z) + D_d U(z)$$
 (5.115)

Dẫn đến:
$$C_d(zI - A_d)^{-1}B_d + D_d = H[z]$$
 (5.116)

Trong phân tích sau, ta trọng tâm vào các hệ thống vô hướng, tức m=p=1, B_d , C_d^T là các vectơ cột và $D_d=H(\infty)$. Có thể thấy, H(z) là thương của các đa thức theo z, tức:

$$H(z) = \frac{C_d A dj(zI - A_d)B_d + D_d \det(zI - A_d)}{\det(zI - A_d)}$$
(5.117)

ở đây Adj(o) biểu hiện ma trận liên hợp của (o).

Như vậy, tương tự trường hợp thời gian liên tục, các cực hàm truyền là các giá trị riêng của ma trận $A_{\rm d}$. Tuy nhiên, điều đó nhìn chung không đúng trong trường hợp tập hợp các điểm cực của hàm truyền trùng với tập hợp các giá trị riêng của ma trận. Cần biết rằng các mô hình hàm truyền có thể dấu sự huỷ giữa các cực và các zero, với các hệ quả được mô tả trong phần "Tính diều khiển được, tính đạt được và tính ổn định được " và "Tính quan sát được, và tái lập được".

Một kết luận quan trọng cho hệ thống thời gian rời rạc là như cho các hệ thống thời gian liên tục. Hàm truyền có thể cung cấp không cùng lượng thông tin như mó hình không gian trạng thái cho cùng hệ thống.

Để thu được mô hình không gian trạng thái ta có thể sử dụng phương pháp đã được để nghị ở trong phần 5.2 "không gian trạng thái và các hàm truyền" áp dụng biến đổi Zeta thay vì biến đổi Laplace và sử dụng sự kiện là:

$$F(z) = Z\{f[t]\} \Leftrightarrow zF[z] = Z\{f[t+1]\}$$

$$(5.118)$$

Ví dụ 5.9: Hàm truyền của một hệ thống được cho bởi

$$H[z] = \frac{2z^2 - z + 1}{(z - 0.8)(z - 0.6)} = \frac{1.8z + 0.04}{z^2 - 1.4z + 0.48} + 2$$
 (5.119)

Thực hiện tối thiểu cho hệ thống này là:

$$A_d = \begin{bmatrix} 0 & 1 \\ -0.48 & -1.4 \end{bmatrix}; \quad B_d = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \quad C_d = \begin{bmatrix} 0.04 & 1.8 \end{bmatrix}; \quad D_d = 2$$
 (5.120)

Trong mô hình thời gian rời rạc cũng sẽ xẩy ra: hàm truyền hệ thống là bất biến đối với các biến đổi đồng dạng trạng thái.

5.4. MÔ HÌNH KHÔNG GIAN TRẠNG THÁI CHO CÁC HỆ THỐNG CÓ NỐI KẾT .

Để xây dựng các mô hình không gian trạng thái cho những hệ thống phức, đôi khi cần mô tả chúng như các kết nối của các hệ thống đơn giản

hơn. Kết nối này thường là một tổ hợp của 3 cấu trúc kết nối cơ sở: liên tục, song song và phản hồi. Sau đây ta xét mô hình không gian trạng thái cho các hệ thống kết hợp này.

Trong các phân tích sau, ta sử dụng hai hệ thống, được định nghĩa bởi

Hệ thống 1:
$$\frac{dx_1(t)}{dt} = A_1x_1(t) + B_1u_1(t)$$
 (5.121)

$$y_1(t) = C_1 x_1(t) + D_1 u_1(t)$$
 (5.122)

Hệ thống 2:
$$\frac{dx_2(t)}{dt} = A_2x_2(t) + B_2u_2(t)$$
 (5.123)

$$y_2(t) = C_2 x_2(t) + D_2 u_2(t)$$
 (5.124)

Kết nối liên tiếp

Kết nối hệ thống được thể hiện như ở hình 5.7a được biết đến như là hệ thống nối liên tiếp hoặc nối ghép tầng. Để xây dựng mô hình không gian trạng thái yêu cầu, nhận xét đầu tiên là $y_2(t)=u_1(t)$, như vậy đầu vào của hệ

Hình 5.7 Mô hình không gian trạng thái cho các hệ thống kết nối a) liên tục b)song song c)có phản hối.

thống ghép lại là $u(t)=u_2(t)$ và đầu ra của hệ thống ghép là $y(t)=y_i(t)$, như vậy ta thu được:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} A_1 & B_1 C_2 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} B_1 D_2 \\ B_2 \end{bmatrix} u(t)$$
 (5.125)

$$y(t) = \begin{bmatrix} C_1 & D_1 C_2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} D_1 D_2 \end{bmatrix} u(t)$$
 (5.126)

Kết nối song song

Kết nối hệ thống được thể hiện như ở hình 5.7b gọi là một hệ thống song song. Để xây dựng mô hình không gian trạng thái yêu cầu, nhận xét đầu vào của hệ thống là $u(t)=u_1(t)=u_2(t)$ và đầu ra của hệ thống toàn bộ $y(t)=y_1(t)+y_2(t)$, ta có:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(t)$$
 (5.127)

$$y(t) = \begin{bmatrix} C_1 & C_2 \\ x_2(t) \end{bmatrix} + \begin{bmatrix} D_1 + D_2 \\ u(t) \end{bmatrix} u(t)$$
 (5.128)

Kết nối có phản hồi

Kết nối hệ thống được thể hiện như ở hình 5.7c được gọi là hệ thống có phản hồi (với phản hồi âm), tương ứng với cấu trúc cơ sở của một vòng điều khiển, trong đó S_1 là thiết bị và S_2 là bộ điều khiển. Để xây dựng mô hình không gian trạng thái ghép nối, ta nhận xét đầu vào của hệ thống toàn bộ thoả mãn $u(t)=u_2(t)+y_i(t)$ và đầu ra của hệ thống toàn bộ $y(t)=y_i(t)$. Tiếp theo giả thiết rằng hệ thống S_1 (thiết bị) là phù hợp tuyệt đối, tức $D_1=0$, khi đó ta thu được:

$$\begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \end{bmatrix} = \begin{bmatrix} A_{1} - B_{1}D_{2}C_{1} & B_{1}C_{2} \\ -B_{2}C_{1} & A_{2} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix} + \begin{bmatrix} B_{1}D_{2} \\ B_{2} \end{bmatrix} u(t)$$
 (5.129)

$$y(t) = \begin{bmatrix} C_1 & 0 \\ x_2(t) \end{bmatrix}$$
 (5.130)

Những kết quả tương tự được áp dụng với những sửa đổi thích đáng về chi tiết cho các hệ thống kết nối thời gian rời rạc. Chi tiết hơn có thể tìm đọc ở [9].

5.5. TÍNH CHẤT CỦA HỆ THỐNG

5.5.1. Tính điều khiển được (controllability),tính đạt được (reachability) và tính ổn định được (stabilizability)

Một câu hỏi rất quan trọng cần quan tâm về các hệ thống điều khiển sử dụng mô hình trạng thái là liệu có thể thay đổi trạng thái thông qua đầu vào, điều khiển tới những vị trí nào đó trong không gian trạng thái. Biết rằng các trạng thái của một hệ thống thường là các nội biến như nhiệt độ, áp lực, mực

chất lỏng,v...v. Đôi khi đó là những giá trị tới hạn mà ta muốn giữ trong khoảng các giá trì định trước.

Tính điều khiển được (controllability)

Tính điều khiển được liên quan đến việc, liệu một trạng thái ban đầu x_0 cho trước có thể được dẫn về gốc (orgin) trong một thời gian nhất định khi sử dụng đầu vào u(t).

 $Vi \ d\mu \ 5.10$: Nếu ta phân tích mô hình, định nghĩa ở (5.131), ở đó đầu vào không có ảnh hưởng lên trạng thái $x_2(t)$:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$

$$(5.131)$$

Cho trạng thái ban đầu $[x_1(0), x_2(0)]'$, đầu vào u(t) có thể được chọn để dẫn $x_1(t)$ về 0 trong khi $x_2(t)$ vẫn giữ không thay đổi.

Chính thức, ta có định nghĩa sau:

Định nghĩa I: Một trạng thái \mathbf{x}_0 nói là có thể điều khiển được, nếu tồn tại một khoảng thời gian có hạn [0,T] và một đầu vào $u(t),t\in[0,T]$, như vậy x(T)=0. Nếu tất cả các trạng thái là có thể điều khiến, thì hệ thống này được nói là có thể điều khiến hoàn toàn,

Tinh dat duoc (Reachability)

Khái niệm liên quan đến tính đạt được, đôi khi được sử dụng trong các hệ thống thời gian gián đoạn, được phát biểu như sau:

Dình nghĩa 2: Một trạng thái $\bar{x} \neq 0$ được gọi là "đạt được" (reachable), xuất phát từ gốc, nếu cho x(0)=0, tổn tại một khoảng thời gian hữu hạn [0,T] và một đầu vào $\{u(t),t\in[0,T]\}$, như vậy thì $x(T)=\bar{x}$. Nếu tất cả các trạng thái là "đạt được", hệ thống được xem là "đạt được" toàn toàn.

Đối với các hệ thống tuyến tính, bất biến và liên tục với thời gian, không có sự khác nhau giữa tính điều khiển được hoàn toàn và tính đạt được hoàn toàn. Tuy nhiên trong trường hợp thời gian rời rạc cũng có một chút sự khác nhau tế nhị. Sau đây là ví dụ minh họa.

Ví dụ 5.11: Xét hệ thống có đầu ra:

$$x[t+1] = \begin{bmatrix} 0.5 & 1 \\ -0.25 & -0.5 \end{bmatrix} x(t) \Rightarrow x[t] = \begin{bmatrix} 0.5 & 1 \\ -0.25 & -0.5 \end{bmatrix}' x[0]$$
 (5.132)

Có thể nhận thấy hệ thống này có tín điều khiển được hoàn toàn vì $x[t] = 0, \forall t \ge 2$ và với $\forall x[0] \in \mathbb{R}^2$. Điều này hàm ý rằng mọi trạng thái ban đầu là có thể kiểm soát được. Tuy nhiên không thể đạt được trạng thái không về 0 (nonzero state).

Trong hệ thống thời gian rời rạc, không có sự khác biệt lớn giữa tính điều khiển được và tính đạt được nên người ta thường dùng từ tính điều khiển được cho cả hai nghĩa. Còn trong một hệ thống bất biến thời gian tuyến tính, tính điều khiển được và đạt được thường được sử dụng lẫn.

Phân ly chuẩn và tính ổn định được (canonical decomposition and stabilizability)

Nếu ta có một hệ thống không có tính điều khiển được toàn bộ, hệ thống này có thể phân thành một hệ thống con có tính điều khiển được toàn bộ và một hệ thống con không điều khiển được, theo cách sau:

 $B \vec{o} \ d \hat{c} \ I$: Xét một hệ thống có bậc $\{\Gamma_c[A,B]\} = k < n$, khi ấy tồn tại một biến đổi tương tự T, như vậy $\overline{x} = T^{-1}x$,

$$\overline{A} = T^{-1}AT \qquad \overline{B} = T^{-1}B \tag{5.133}$$

và \overline{A} , \overline{B} có dạng

$$\overline{A} = \begin{bmatrix} \dot{A}_c & A_{12} \\ 0 & \bar{A_{nc}} \end{bmatrix} \qquad \overline{B} = \begin{bmatrix} \overline{B}_c \\ 0 \end{bmatrix}$$
 (5.134)

Trong đó $\bar{A_c}$ có kích thước k và $(\bar{A_c}, \bar{B_c})$ là có khả năng điều khiển toàn bỏ.

Kết quả trên cho biết, kết quả nào có thể và kết quả nào không có thể lái được về 0. Để đánh giá điều này, ta có thể biểu diễn trạng thái và các phương trình đầu ra ở dạng:

$$\begin{bmatrix} \dot{x}_c \\ \dot{x}_{nc} \end{bmatrix} = \begin{bmatrix} \overline{A}_c & \overline{A}_{12} \\ 0 & \overline{A}_{nc} \end{bmatrix} \begin{bmatrix} \overline{x}_c \\ \overline{x}_{nc} \end{bmatrix} + \begin{bmatrix} \overline{B}_c \\ 0 \end{bmatrix} u$$
 (5.135)

$$y = \begin{bmatrix} \bar{C}_c & \bar{C}_{uc} \end{bmatrix} \begin{bmatrix} \bar{X}_c \\ \bar{X}_{uc} \end{bmatrix} + Du$$
 (5.136)

Phần không gian có thể điều khiển được (controllable substate) của một mô hình hệ thống bao gồm tất cả các trạng thái được sinh ra qua từng kết hợp tuyến tính khả dĩ của các trạng thái trong \bar{x}_c . Độ ổn định (stability) của

phần không gian này được quyết định bởi vị trí của các giá trị riêng của \overline{A}_c .

Mặc khác, phần không gian không thể điều khiến được (uncontrollable substate) gồm tất cả các trạng thái được sinh ra qua từng kết hợp tuyến tính khả dĩ của các trạng thái trong \vec{x}_{nc} . Độ ổn định của phần không gian này được quyết định bởi vị trí của các giá trị riêng \vec{A}_{nc} .

Vì lí do này, đầu vào sẽ không có ảnh hưởng đến phần không gian không điều khiển được. Như vậy ta chỉ có thể hy vọng là phần này cũng ổn định, rồi trạng thái trong phần không gian này sẽ đến điểm gốc. Trong trường hợp này mô hình không gian trạng thái được nói là có khả năng ổn định (stabilizable).

Đặc điểm chủ yếu của mô tả (5.135) và (5.136) nảy sinh từ sự việc hàm truyền được cho bới:

$$H(s) = C_c (sI - \bar{A}_c)^{-1} \bar{B}_c + D \tag{5.137}$$

Phương trình (5.137) phát biểu rằng các giá trị riêng của phần không gian không thể điều khiến không thuộc vào tập hợp các cực của hàm truyền. Điều này có nghĩa có sự huỷ tất cả các cực tương ứng với nghiệm của $(st - \overline{A}_{nc})$.

Dạng thức họp chuẩn điều khiển được

Bổ đề 2: Xét một mô hình không gian trạng thái có khả năng đạt đến (reachable) toàn bộ cho một hệ thống SISO. Khi đó tồn tại một phép biến đổi tương tự chuyển đổi mô hình không gian trạng thái thành dạng thức hợp chuản điều khiến được (controllability canonical form) sau:

$$A' = \begin{bmatrix} 0 & 0 & \cdots & 0 & -\alpha_0 \\ 1 & 0 & \cdots & 0 & -\alpha_1 \\ 0 & 1 & \cdots & 0 & -\alpha_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & -\alpha_n \end{bmatrix}; \qquad \begin{matrix} 1 \\ 0 \\ B' = 0 \\ \vdots \\ 0 \end{matrix}$$

$$(5.138)$$

Ở đây $\lambda^n + \alpha_{n-1}\lambda^{n-1} + \dots + \alpha_1\lambda + \alpha_n = \det(\lambda I - A)$ là đa thức đặc tính của A.

Bổ đề 3: Xét một mô hình không gian trạng thái có khả năng điều khiển (controllable) toàn bộ cho một hệ thống SISO. Khi đó tồn tại một phép biến đổi tương tự, chuyển đổi mô hình không gian trạng thái thành dạng thức hợp chuẩn điều khiển được (controller canonical form) sau:

$$A'' = \begin{bmatrix} -\alpha_{n-1} & -\alpha_{n-2} & \cdots & -\alpha_1 & -\alpha_0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix} \qquad \begin{matrix} 1 \\ 0 \\ B'' = 0 \\ \vdots \\ 0 \end{matrix}$$
 (5.139)

Trong đó $\lambda^n + \alpha_{n-1}\lambda^{n+1} + \dots + \alpha_1\lambda + \alpha_n = \det(\lambda I - A)$ là đa thức đặc tính của A

5.5.2. Tính quan sát được & tái lập được (Observability& Reconstructibility)

Nếu xét một mô hình không gian trạng thái của một hệ thống, khi có thể dự đoán theo sự quan sát đầu ra hệ thống qua một khoảng thời gian mà biết được một số thông tin về trạng thái thì ta nói hệ thống đó có khả năng quan sát được (hoặc tái lập được).

Tính quan sát dược (observability)

Khả năng quan sát được liên quan đến những vấn đề có thể nói về trạng thái nếu ta đo đầu ra của thiết bi.

Ví du 5.11: Nếu nhìn vào hệ thống được định nghĩa bởi mô hình không gian trạng thái:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}; \quad y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
 (5.140)

Ta có thể nhận thấy đầu ra y(t) được quyết định chỉ bởi $x_1(t)$, biến trạng thái khác $x_2(t)$ không có ảnh hưởng lên đầu ra. Hệ thống như vậy không có tính quan sát được hoàn toàn .

Định nghĩa 3: Trạng thái $x_o \neq 0$ được nói là không thể quan sát được nếu $x(0) = x_o$ và u(t) = 0 đối với $t \geq 0$ thì y(t) = 0 đối với $t \geq 0$, tức ta không thể thấy bất kì ảnh hưởng nào của x_o lên đầu ra hệ thống.

Hệ thống được gọi là có thể quan sát được hoàn toàn nếu ở đó không tồn tại trạng không về 0 (nonzero) ban đầu (trạng thái này là không quan sát được).

Tính tái lập được (reconstructibility)

Một khái niệm liên quan mật thiết với khả năng quan sát gọi là khả năng tái lập. Khả năng tái lập liên quan với những gì có thể nói về x(T), khi có các giá trị quá khứ của đầu ra y đối với $0 \le t \le T$. Đối với các hệ thống tuyến tính bất biến thời gian liên tục, không cần thiết có sư phân biệt giữa

tính quan sát được và tái lập được. Tuy nhiên đối với hệ thống thời gian rời rạc thì có sự khác nhau giữa chúng. Sau đây là ví dụ minh hoạ.

$$Vi d\mu 5.12$$
: Xét
 $x[t+1] = 0$ $x[0] = x_0$ $y[t] = 0$ (5.141)

Hệ thống này rõ ràng là có tính tái lập được cho tất cả $T \ge 1$, vì chắc chắn rằng x[T] = 0 với $T \ge 1$. Tuy nhiên nó không thể quan sát toàn bộ được do y[t] = 0, $\forall k$ bất luận x_0 thể nào.

Sự khác nhau giữa 2 khái niệm trên không nhiều vì vậy người ta thường dùng khái niệm *tính quan sát được* cho cả hai khái niệm.

CHƯƠNG 6. PHÂN TÍCH HỆ THỐNG- MÁY CÔNG CỤ CNC

6.1. BIẾN DẠNG TĨNH VÀ BIẾN DANG ĐÔNG TRONG GIA CÔNG

6.1.1. Giới thiệu

Máy công cụ là máy để chế tạo các máy khác. Để có được dung sai theo yêu cầu, máy công cụ phải có độ chính xác cao hơn dung sai của chi tiết được gia công trên nó. Độ chính xác của máy công cụ, tác động vào độ chính xác định vị dụng cụ cắt tương quan với phôi gia công và biến dạng cấu trúc tương đối giữa chúng. Sau đây ta xem xét phân tích kỹ thuật và mô hình biến dạng tĩnh và biến dạng động dụng cụ cắt và phôi.

Kết cấu của máy công cụ

Một máy công cụ điều khiển số là một hệ thống bao gồm 3 nhóm chính: các kết cấu cơ, các thành phần truyền động và điều khiển, như thể hiện ở hình 6.1.

Kết cấu cơ khí: bao gồm các thân tĩnh và động. Các thân tĩnh gồm bệ (beds), cột (columm), dầm máy (bridge), hộp giảm tốc,bệ đỡ các bộ phận dịch chuyển. Các bộ phận dịch chuyển gồm: bàn, thân trượt, trục chính, các bánh rằng, vòng bi và các chi tiết di động khác...Thiết kế kết cấu các chi tiết máy công cụ yêu cầu tính cứng vững cao, ổn định nhiệt và giảm rung động. Nhìn chung, kích thước của máy công cụ được đánh giá cao trong vực hạn chế biến dạng động và tĩnh trong gia công đến mức tối thiểu.

Thành phần truyền động: cơ cấu chuyển động trong máy công cụ được phân ra: truyền động trục chính và truyền động trục ăn dao. Truyền động trục chính cấp tốc độ quay, mômen và công suất để quay trục chính. Những trục có tốc độ thấp hoặc trung bình có thể được kết nối với động cơ điện thông qua đai V, hộp giảm tốc 1 cấp và li hợp. Ở trục chính với tốc độ cao (n>15000vòng/phút) động cơ điện có thể được gắn trực tiếp vào trục chính để giảm quán tính và ma sát (tạo nên bởi khớp nối động cơ- trục chính). Trong một trung tâm gia công, thường trong thời gian ngắn trục chính phải có thể thay đổi từ tốc độ thấp lên tốc độ cao và ngược lại, do vậy cần có kết cấu phù hợp với đặc tính công tác này. Hệ truyền động chạy dao mang bàn máy hoặc bàn chạy dao. Thường đai ốc được lắp vào bàn máy, trục vít me thì kết nối trực tiếp với động cơ, hoặc thông qua hệ thống bánh răng tuỳ thuộc vào tốc độ ăn dao, quán tính và yêu cầu giảm mômen. Trong máy công cụ

truyến thống, đó là các hộp giảm tốc theo bậc để đạt được tốc độ tiến dao mong muốn. Trong máy công cụ CNC, mỗi trục vit me chạy dao kết nối với riêng một động cơ. Với máy công cụ có tốc độ rất cao, động cơ trục ăn dao có thể là các động cơ tuyến tính, chạy dao trực tiếp (không qua trục vít medai ốc) để tránh quán tính thừa và các thành phân tiếp xúc ma sát.

Điều khiến: Các thành phần điều khiến gốm: động cơ, các bộ khuếch đại, công tắc và các máy tính- các thành phần được sử dụng để tiếp năng lượng cho các chi tiết điện theo tuần tự điều khiển và thời gian. Trong máy công cụ truyền thống đó thường là các role, công tắc hành trình, các chiết áp điều khiển bàn máy và các chuyển mạch điều khiển hướng. Ở các Máy CNC, đó là bộ khuếch đại công suất servo, các thiết bị đóng/mở cách quang (opto-isolated ON/OFF), các công tắc hành trình và một hệ máy tính được trang bị với điều khiển khẩn và các hệ giao điện người vận hành. Tốc độ chạy dao và độ chính xác định vị của truyền động chạy dao phụ thuộc vào công suất và mômen cấp của động cơ servo và thuật toán điều khiển servo truyền động chạy dao, được thực hiện ở bộ điều khiển số (CNC).

Hinh6.1: Trung tâm gia công CNC

6.1.2. Nguyên lí cơ sở trong gia công

Trong gia công, vật liệu có thể được bóc tách bởi dụng cụ truyền thống (dao phay, bào, tiện, ...) hoặc các chùm năng lượng tại vị trí giao diện của dụng cụ và phỏi. Với dụng cụ truyền thống, giao diện này dễ xác định, còn đối với các tia năng lượng thì khó xác định hơn nhiều do việc phân chia năng lượng không đồng dạng- trong không gian 3 chiều.

Máy công cụ có thể coi là một robot (cơ cấu vận hành) với một số bậc tự do khác nhau, mang trên thân cả dụng cụ và vật gia công. Trên quan điểm động học, chức năng "điều khiển chính xác" và "khả năng lặp lại điểm tiếp xúc "giữa dụng cụ cắt và phỏi được gọi là *giao điện gia công* (machining interface) và được quan tâm. Giao điện này xác định để hơn đối với dụng cụ truyền thống, những cũng không đơn gián do có sự thay đối của các tham số trong quá trình gia công. Những chức năng khác và kết cấu của máy công cụ đều phục vụ cho mục đích duy trì giao điện này.

Chuổi kết cấu máy gồm: lưỡi cắt của đao, đầu giữ đạo, các đường và bệ trượt để dịch chuyến dụng cụ/phôi, các trực giữ dụng cụ hoặc phỏi, châu cặp, các đổ gá và các rung động bên trong, lệch tâm và những tác động động lực học khác. Thường, những thay đổi không thể kiểm soát hoặc không biết trong chuổi kết cấu là những nguồn chính gây lỗi động học trong gia công. Các tác động bên ngoài chuổi kết cấu gây ảnh hưởng và tạo lỗi gia công có thể là các dao động, sự thay đổi nhiệt, v...v.

Có nhiều nguồn gây sai số trong gia công. Sai số được coi là toàn bộ các ánh hưởng tới việc gia công chi tiết "hoàn hảo". Một chi tiết hoàn hảo là chi tiết có kích thước chính xác , bề mặt gia công nhám tốt, hình dạng hình học và vật liệu thoà mãn mọi điều kiện theo yêu cấu thiết kế. Thực tế không có sự chính xác tuyệt đối. Ta hài lòng với chi tiết "chấp nhận được", loại có dung sai không vượt khỏi giới hạn cho phép , độ nhám cũng như hình dạng hình học không vượt giới hạn sử dụng và vật liệu với các tính chất đã được dự đoán cho những phạm vi ứng dụng. Sai số gia công tạo nên tất cá các thuộc tính không lí tưởng của một chi tiết,

6.1.3. Sai số hình dạng kích thước trong gia công

Các nguyên nhân gây biến dạng tương đối giữa dụng cụ cắt và phỏi gia công tại điểm tiếp xúc có thể do nhiệt, khối lượng và các lực cắt. Máy công cụ có các thành phần chuyển động và quay, chúng bị làm nóng do ma sát.

Nhiệt độ không đều giữa các chi tiết máy do các hệ số và nguồn nhiệt không như nhau. Đầu trục chính (nằm trên cổng hoặc cột khung đứng) thay đổi vị trí cùng tọa độ của điểm cắt trên phôi. Khối lượng di chuyển sẽ làm thay đổi độ cứng hoặc độ dịch chuyển tương đối giữa dụng cụ và phôi tại điểm cắt. Biến dạng do nhiệt/khối lượng có thể đo được tại các vị trí khác nhau của bàn máy hoặc đầu trục chính, lưu vào bảng ghi bù của CNC. Khi dụng cụ chạy, sai số được đọc từ bảng ghi và bổ sung vào chuyển động, theo lệnh của CNC để bù các sai lệch biến dạng trong khi gia công.

Sai số kích thước bởi lưc cắt

Sau đây ta bàn đến sai số gây nên bởi lực cắt. Khi dụng cụ dịch chuyển theo dọc đường chạy dao, có thể có sự thay đổi về đại lượng và hướng của các lực cắt cũng như độ cứng tương đối giữa dụng cụ cắt và phỏi. Chuyển vị tương đối gây nên độ sai lệch so với kích thước yêu cầu của chi tiết, tạo sai số kích thước và sai số hình dang hình học.

Ví dụ: Sai lệch hình dạng trong phay mặt đầu

Thành của các chi tiết được gia công bởi phần trụ của dao phay ngón có bề mặt gia công vuông góc với hướng tiến của dụng cụ . Nếu hướng tiến và hướng trực giao đặt vào hệ tọa độ Dêcac x,y tương ứng, bất cứ sự lệch theo hướng y nào đều có thể tạo sai số tĩnh về hình dạng (static form error). Các dao phay ngón có thể xem như là một thanh trụ đàn hồi được ngàm vào trục chính thông qua ống kẹp. Chúng là phần nhạy cảm nhất trong hệ thống máy công cụ do tỉ lệ đường kính dụng cụ-chiều dài ngàm khá nhỏ.

Sai số hình dạng tạo nên bởi phay mặt đầu xoắn ốc khá phức tạp. Các lực cắt không cố định mà thay đổi với sự quay của đao. Hơn nữa góc xoắn của đường rãnh tạo thêm những thay đổi về phân bố lực cắt dọc theo đường trục z của lưỡi cắt.

Để đơn giản trong việc giải thích cơ chế tạo bề mặt gia công, trước hết, ta xét trường hợp dao phay ngón với đường rãnh thẳng (tức góc xoắn 0). Ở dây, độ võng vuông góc với bề mặt gia công (theo hướng y) là quan trọng. Độ võng tĩnh, gây nên bởi lực vuông góc F_x tại phía đầu tự do của dao phay là : $\delta_y = F_y/k$; trong đó $k = (3EI)/l^3$ và $I = (\pi d^4)/64$, d- đường kính tác dụng của lưỡi cắt, lấy bằng $0.8 \div 0.85$ đường kính ngoài (tuỳ theo dạng rãnh máng) và l- khoảng cách từ điểm cắt đến điểm kẹp. Lực cắt tỉ lệ thuận với

chiểu đày phọi h và bằng:

$$F_{v}(\phi) = K_{t}\alpha h(\phi) \times \left[\cos(\phi) + K_{t}\sin(\phi)\right]$$
(6.1)

Với ϕ là góc chìm đo từ trực y đến điểm cắt, chiều dây của phoi là $h(\phi) = c\sin\phi$), với c là lượng tiến dao trên rāng. Rãng tạo bể mặt khi tiếp xúc với nó hoặc khi ở nằm trên trực y pháp tuyến. Khi dao nằm trên trực y, chiều dày phoi luôn bằng 0. Trường hợp này xẩy ra tại vị trí vào phôi khi phay nghịch (ϕ =0) hoặc vị trí ra ở phay thuận (ϕ = π), hình 6.2 Như vậy nếu chỉ có một rãng trong vùng cắt, với mọi độ đàn hổi của dao phay ngón và độ lớn của lực cắt, sai số hình dạng bể mặt sẽ là 0 (dao phay ngón rãnh thắng). Trường hợp này được sử dụng cắt tinh, khi dao có góc chìm hướng kính nhỏ hơn nhiều so với góc bước lưỡi cắt. Tuy nhiên nếu có hơn 1 răng tham gia

Hinh 6.2: Ẩnh hưởng của chiều rộng cắt và phương thức cắt lên sai số hình dạng bề mặt a) Phay thuận b) Phay nghịch

cắt cũng lúc, lực cắt sẽ không còn bằng 0 khi một rang nằm thắng hướng trục y, vì tại các rãnh khác đã có phoi cắt trong vùng nhúng. Trong trường hợp này dụng cụ hoặc võng xuống bề mặt khi phay nghịch, gây sai số hình dạng cắt quá, hoặc lỗi lên so với bề mặt trong phay thuận, gây sai số hình dang cắt nong.

Tạo hình bề mặt trở nên phức tạp khi dùng dao phay ngón rãnh xoắn (helical). Kể cả trường hợp dao chi với một rãnh cắt cũng luôn để lại sai số hình dạng bề mặt. Xét một cạnh rãnh tại phần dưới cùng của lưỡi cắt được sắp thẳng hàng với trục y, vì vậy có gốc chìm 0 (tức $\phi(z=0)=0$). Khi dao phay ngón quay, đỉnh của rãnh di

chuyển đến góc chìm ϕ , trong lúc một điểm phía trên rãnh, có tọa độ z đo từ đinh, sẽ ở phía bên phải trực y, từ đó tạo bể mặt gia công. Vì lực pháp tuyển khác 0 tại thời điểm ấy, độ dịch chuyển đàn hỗi của dao phay ngón sẽ tạo nên một sai số hình dạng trên bề mặt. Khi lưỡi cắt quay, điểm tạo bề mặt gia công sẽ chuyển động hướng lên dọc máng rãnh nhờ góc xoắn. Phụ thuộc vào số rãnh và chiếu rộng lớp cắt có thể cổ nhiều hơn một điểm cắt được sắp thẳng theo trực y hoặc tiếp xúc với bề mặt gia công. Các điểm tiếp xúc có thể tính được khi cân bằng gốc chìm tức thời $(\phi_j(z) = \phi + (j-1)\phi_p - k_B z)$ với $k_B = (2\tan\beta)/d$) tiến đến 0 khi phay nghịch, π khi phay thuân:

$$z = \frac{\phi + (j-1)\phi_p}{k_B}$$
 (Phay nghịch) (6.2)

$$z = \frac{\pi - \phi + (j-1)\phi_p}{k_B}$$
 (Phay thuận) (6.3)

Hinh 6.3: Mô hình biến dạng tĩnh dao phay ngón

Trong đó β là góc xoắn, j=1,2,...,N-1 là chỉ số rãnh và $\phi_p = (2\pi)/N$ là góc bước mũi cát. Như vậy ta có thể lập ra thuật toán dự đoán sai số hình dạng gia công. Lưỡi cát có thể chia thành M thành phán hình đĩa theo chiều sau dọc trục của lớp cát a (xem hình 6.3), nó có thể quay một góc gia số $\Delta \phi$ (ví dụ $\phi = 0, \Delta \phi, 2\Delta \phi, ..., \phi_p$). Mỗi một phần tử vị phân có chiều sâu cát

đọc trục $\Delta z = a/M$ và khi chọn các phần tử nhỏ, ảnh hưởng của gốc xoắn cố thể bỏ qua. Lực cắt vị phân (xem hình 6.3) sinh bởi thành phần m là:

$$\Delta F_{v,m}(\phi) = K_i c \Delta z \sum_{j=0}^{N-1} \left[\sin \phi_j(z) - K_i \cos \phi_j(z) \right] \sin \phi_j$$
 (6.4)

Trong đó K_r , K_r là các hằng số cắt và c là lượng ăn dao trên rằng.

Gốc chìm cho thành phần m là $\phi_j(m) = \phi + (j-1)\phi_\rho - k_\beta m\Delta z$. Các lực cắt thành phần có thể chồng nhau tại các biên trên của các đĩa. Võng theo hướng

y tại điểm tiếp xúc z_k do lực đặt | vào thành phần m gây nên, tính cho thanh công xôn là:

$$\delta_{x}(z_{k}, m) = \begin{cases} \frac{\Delta F_{x,m} v_{m}^{2}}{6EI} (3v_{m} - v_{k}) & 0 < v_{k} < v_{m} \\ \frac{\Delta F_{x,m} v_{m}^{2}}{6EI} (3v_{k} - v_{m}) & v_{m} < v_{k} \end{cases}$$
(6.5)

Ở đây E là mô dun đàn hồi, I là mômen quán tính tiết điện của dụng cụ và $\partial_k = I - z_k$ với I là chiều dài từ điểm cắt đến mặt mút ống kẹp. I được tính theo bán kính tương đương $R_i = 0.8R$ (0.8 là hệ số tỉ lệ gắn đúng do có sự hiện diện của các rãnh). Độ võng tĩnh tổng tại điểm tiếp xúc dọc trục z_k được tính khi chồng các độ võng sinh bởi M lực thành phần lên dao phay ngón:

$$\delta_{\chi}(z_k) = \sum_{m=1}^{M} \delta_{\chi}(z_k, m) \tag{6.6}$$

6.1.4. Rung cơ học trong gia công

Trong máy công cụ, rung đồng vai trò lớn cản trở năng suất gia công, tăng nhanh độ mòn dụng cụ, góp phần làm kém chất lượng bề mặt và gây hại gối đỡ trực chính. Sau dây ta xem xét và phân tích mô hình hệ thống máy công cụ trên cơ sở kỹ thuật phân tích dựa vào thực nghiệm, một kỹ thuật được sử dụng rộng rãi trong các phương tiện gia công hiện đại. Trên cơ sở này có thể làm sáng tỏ vấn dễ rung và ngân ngừa nó trong ứng dụng thực tế.

6.1.4.1. Cơ số của rung tự đo và rung cưỡng bức

Như thể hiện ở phần 2.2.2, các kết cấu cơ đơn giản với một bậc tự do có thể được mô hình hoá bởi các thành phần khối lượng (m), lò xo (k) và giảm chấn (c) như hình 6.4. Khi có một lực ngoài F đặt vào kết cấu, chuyển động của hệ được miêu tả bởi phương trình bậc vi phán là:

$$m\ddot{x} + c\dot{x} + kx = F(t) \tag{6.7}$$

Nếu hệ thống nhận một cú đập trong một khoảng thời gian cực ngắn, nó sẽ thực hiện các *dao động tự do (free vibration)*. Biên độ của dao động sẽ giám dần theo thời gian, là hàm của hằng số giám chấn (damping constant) của hệ thống. Tần số đao động bị ảnh hưởng chính bởi độ cứng và khối lượng và một phần bởi hằng số giảm chấn (tính nhớt), hằng số này thường là

rất nhỏ trong kết cấu cơ khí. Khi hằng giảm chấn bằng 0 (c=0) hệ thống giao động với tần số tự nhiên:

Hình6.4: Mô hình hệ thống khối lượng lò xodao động giảm dần của hệ thống một bậc tự do a) Hệ thống SDOF b)Rung tự do của hệ thống SDOF.

Hệ số giảm chấn (hoặc hệ số cản) là: $\xi = c/2\sqrt{km}$, luôn nhỏ hơn l trong kết cấu cơ khí, Ở đa số kết cấu cơ khí, Ở đa số kết cấu thậm chí nhỏ hơn, Tần số tự nhiên giảm chấn của kết cấu được xác định bởi :

$$\omega_d = \omega_n \sqrt{1 - \xi^2} \qquad (6.9)$$

Giả sử khối lượng không có ngoại lực và dịch chuyển một lượng x_0 , chuyển động rung tự do được miêu tả bởi:

$$x(t) = x_0 e^{-\frac{\xi \omega_0 t}{4}} \cos \omega_d t$$
(6.10)

Chu kì giữa mỗi sóng dao động là $\tau_c = 2\pi/\omega_d$, đây là cách đơn giản để ước đoán tần số tự nhiên có cản của hệ thống từ các phép đo dao động quá độ hoặc tự do (free or transient vibrations measurement). Hằng số giảm chấn có thể xấp xỉ từ tỉ lệ của biên độ phân rã lớn nhất (max.) của sóng đầu tiên và sóng thứ n của đãy sóng liên tục với phương trình;

$$\zeta = \frac{1}{n} \left(in \frac{x_1}{x_n} \right) / 2\pi \tag{6.11}$$

Khi có một ngoại lực F(t), hệ thống chịu một một dao động cưỡng bức (forced vibrations). Nếu lực $F(t)=F_0$ không đổi đặt vào kết cấu, hệ thống chịu một dao động quá độ hoặc dao động tự do ngắn, sau đó ổn định tại độ

võng (ở trạng thái tĩnh) $x_s = F_0/k$. Nếu ngoại lực là một lực điều hoà (dạng hàm sin hoặc cosin), ta có thể viết:

$$m\ddot{x} + c\dot{x} + kx = F_n(\sin\omega t) \tag{6.12}$$

Như thế, hệ thống này chịu đao động cưỡng bức có cùng tần số ω với ngoại lực, nhưng với thời gian/pha trễ hơn. Giả sử, các giao động quá độ được tạo bởi các tài ban đầu yếu dẫn, hệ thống hoạt động ở trạng thái ổn định, khi ấy:

$$x(t) = X\sin(\omega t + \phi) \tag{6.13}$$

Trong đạo động cưỡng bức, sử dụng hàm điều hoà phức sẽ thuận lợi hơn. Lực điều hoà có thể thể hiện bởi $F(t) = F_0 e^{j\alpha} e^{j\omega t}$, với α là pha dẫn so với thời gian tham chiếu hoặc vị trí góc trên một mặt phẳng phức. Đáp ứng điều hoà tương ứng là $x(t)=Xe^{j(0)t+\theta_1}$, nếu thay vào phương trình chuyển động (6.12) ta có:

$$(k - \omega^2 m + j\omega c)Xe^{j\phi}e^{j\omega t} = F(t) = F_0e^{j\alpha}e^{j\omega t}$$

Hình 6.5: Hàm truyền đạt của một hệ thống SDOF

Pha và biên độ tổng của các đạo động điều hoà là:

$$|\Phi(\omega)| = \frac{|X|}{|F_0|}$$

$$= \frac{1}{k} \frac{1}{\sqrt{(1 - r^2)^2 + (2\xi r)^2}}$$
 (6.14)
$$\phi = \tan^{-1} \frac{-2\xi r}{1 - r^2} + \alpha$$

trong đó, r là tỉ số tần số (giữa tần số kích hoạt và tần số tự nhiên) $r = \omega/\omega_n$. Phương trình (6.14) gọi là hàm truyền (transfer function) hoặc hàm đáp ứng tần số (freequency response function) của một kết cấu SDOF (hệ thống một bậc tự do), đồ thị của nó được thể hiện ở hình 6.5. Hàm truyền

Φ(ω) có thể chia ra thành phần thực G(ω) và ảo H(ω) của $\frac{X}{F_0}e^{i(φ-ιε)}$ như sau:

Hình6.6: Hàm truyền đạt của một hệ thống SDOF

Hình 6.7: Hàm truyền đạt của một hệ thống SDOF trong hệ thống tọa độ cực

$$G(\omega) = \frac{1 - r^2}{k \left[(1 - r^2)^2 + (2\xi r)^2 \right]}$$

$$H(\omega) = \frac{-2\xi r}{k \left[(1 - r^2)^2 + (2\xi r)^2 \right]} (6.15)$$
và $\Phi(\omega) = G(\omega) + jH(\omega)$

Chú ý: tại điểm cộng hưởng: $\omega = \omega_n$, r = 1, $G(\omega_n) = 0$, $H(\omega_n) = -1/(2\xi)$.

Phần thực và áo của hàm được minh hoa trên truyên hình 6.6 và bởi đồ thi cực trên hình 6.7. Trên đổ thị này, tại điểm cắt tần số 0, phần thực bằng độ đàn hối $t \tilde{t} n h (1/k)$. Khi tần số kích thích tiến đến tần số tư nhiên (tức r=1), hệ thống công hưởng, biên độ của dao động trở thành max., góc pha tiến gần -90°. Thời gian trẻ giữa kích thích và đáp được xác định bởi $t_d = \phi/\omega$ tại tần số kích thích điều hoà ω. Nếu tần số kích thích tiếp tục tặng, góc pha tiến đến -180°, hoặc trễ xẩy ra ở một nửa thời gian kích hoạt. Bién đô của các dao động giảm do kết cấu vật lí không thể đáp ứng đối với các nhiều tần số cao. Hệ số cắn, độ cứng và tần số tư nhiên có thể được đánh giá từ hàm truyền . được đo với máy phân tích Fourier. Tại tần số kích hoạt 0 ($\omega = 0$) độ iớn của $\Phi(\omega)$ và phần thực của hàm truyền $G(\omega)$ bằng với độ đàn hồi tĩnh (1/k). Khí đọc các giá trị này tại các tần số thấp, cần chú ý sự kém nhạy cảm của các phép đo được thực hiện bởi các cảm biến tốc độ và gia tốc. Phép ngoại suy hàm truyền từ các tần số cao hơn, ở đó các mức cộng hưởng tắt có thể được coi là phương pháp thay thế để đánh giá độ cứng. Thường, các cảm biến đo chuyển vị cho các phép đo độ dàn hổi tĩnh chính xác hơn. Độ lớn max, của $\Phi(\omega)$ xáy ra tại $\omega = \omega_{\alpha} \sqrt{1 - 2\xi^2}$. $G(\omega)$ có hai cực trị tại:

$$\omega_1 = \omega_n \sqrt{1 - 2\xi} \to G_{\text{max}} = \frac{1}{4k\xi(1 - \xi)}$$

$$\omega_2 = \omega_n \sqrt{1 + 2\xi} \to G_{\text{min}} = \frac{1}{4k\xi(1 + \xi)}$$
(6.16)

Trong thực tế chế tạo máy, các kích hoạt bên ngoài thường là tuần hoàn nhưng không điều hòa. Mọi lực tuần hoàn đều có thể thể hiện bởi các thành phần sóng hài của nó. Khi một ngoại lực F(t) (ví dụ như lực phay) tuần hoàn với chu kì $\tau = 2\pi/\omega$ (tức chu kì của răng dao phay). Triển khai theo chuỗi Fourier, ta có:

$$F(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\omega t + \sum_{n=1}^{\infty} b_n \sin n\omega t$$
 (6.17)

Với n là hàm điều hoà tần số cơ bản ω . Kết quá chính xác của các hệ số Fourier có thể thu được bằng lấy tích phân liên tục, các tích phân yêu cầu thể hiện toán học hàm cưỡng bức tuần hoàn F(t). Do thực tế, kích hoạt ngoài như lực phay có chu kì dạng sóng không đều nên ta có thể sử dụng kĩ thuật số rời rạc để tính các hệ số Fourier. Giả thiết, kích hoạt tuần hoàn được số hóa đều tại các khoảng T(s), N lần trên khoảng τ (tức $\tau = NT$), ta có:

$$a_{0} = \frac{2}{N} \sum_{i=1}^{N} F_{i}$$

$$a_{n} = \frac{2}{N} \sum_{i=1}^{N} F_{i} \cos \frac{n2\pi i_{i}}{\tau} \qquad \text{v\'oi } n = 1, 2, 3, ...$$

$$b_{n} = \frac{2}{N} \sum_{i=1}^{N} F_{i} \sin \frac{n2\pi i_{i}}{\tau} \qquad \text{v\'oi } n = 1, 2, 3, ...$$
(6.18)

Trong phân tích thí nghiệm, F, tương ứng với lấy mẫu thứ i của lực bởi máy phân tích Fourier. Ta còn có thể thể hiện dãy fourier rời rạc của hàm

tuần hoàn theo:

$$F(t) = \sum_{n=0}^{N} c_n e^{-j\alpha_n} e^{-mnt}$$

$$(6.19)$$

Trong đó:

$$c_n = \sqrt{a_n^2 + b_n^2} \qquad \omega_n = \tan^{-1} \frac{b_n}{a_n}$$

Đồ thị của c_n, tần số đối (versus frequency) α_n được gọi là *phổ Fourier* (Fourier spectrum). Đối với một kích hoạt tuần hoàn nhưng không điều hoà, đáp ứng - ở trạng thái ổn định của một hệ thống SDOF (hệ thống 1 bậc tự do) có thể tính được bằng phương pháp chồng dao động được tạo bởi các thành phần sóng hài của kích hoạt tuần hoàn:

$$x(t) = \sum_{n=0}^{N} \frac{c_n}{k\sqrt{(1 - n^2 r^2)^2 + (2\xi n r)^2}} e^{j(now - \alpha_n - \phi_n)}$$
(6.20)

Trong thực tế, kích hoạt tuần hoàn từ bên ngoài được xấp xi bởi chỉ 4 đến 5 thành phần đầu tiên của sóng hài (n). Những sóng hài bậc cao hơn không đủ năng lượng để gây ảnh hưởng lên dao động. Các lực phay chu kì theo răng có thể biểu diễn bởi thành phần chuỗi Fourier. Nếu sóng hài của lực phay gần với dao động tự nhiên của kết cấu, có thể chọn tốc độ trục chính luân phiên đảo chiều để tránh dao động cưỡng bức.

6.1.4.2. Hàm truyền định hướng

Hinh6.8: Hàm truyền đạt chéo của chuyển vị định hướng (y) và lực (F)

Các biến dạng tĩnh và động giữa dụng cụ và bể mặt cất xác định độ chính xác và độ tin cậy của các thành phần được gia cóng. Một máy công cụ đặc trưng có thể được miêu tả bởi một dãy các khối lượng nối với nhau bởi lò xo theo các hướng khác nhau. Lực cắt tổng truyền đến máy thông qua các lò xo và khối lượng. Sự tổng hợp các chuyển vị tạo nên bởi tất cả các lò xo theo hướng trực giao với bể mặt cắt gia công quyết

định độ chính xác kích thước cuối và khối lượng phoi bóc tách khỏi phỏi gia công.

Xét một khối lượng chung (m) nối với nền cứng bởi các lò xo như thể hiện ở hình 6.8. Mỗi một lò xo (i) và khối lượng m xác định một hệ thống SDOF theo mỗi hướng khác nhau thông qua định hướng góc (θ_i) , xuất phát từ hướng bề mặt cắt y. Lực cắt tổng F có góc β so với hướng bề mặt cắt y. Yêu cầu xác định chuyển vị ở hướng y, tạo nên bởi tát cả các lò xo chịu ảnh hưởng lực F.

Lực truyền đến lò xo i là:

$$F_i = F\cos(\theta_i - \beta) \tag{6.21}$$

Nếu hàm truyền $\ddot{\sigma}$ mỗi hướng lò xo là $\Phi_i(\omega) = x_i / F_i$, thì chuyển vị tương ứng của lò xo i là:

$$x_i = F_i \Phi(\omega) = F \cos(\theta_i - \beta) \Phi_i(\omega)$$
 (6.22)

Dịch chuyển theo hướng y của lò xo i là:

$$y_i = x_i \cos \theta_i = F \cos \theta_i \cos(\theta_i - \beta) \Phi(\omega)$$
 (6.23)

Gộp các thành phần đạo động x_i ở hướng y ta sẽ có đạo động tổng hợp. Hàm truyền giữa lực cắt F và đạo động tổng hợp y được gọi là *hàm truyền định hướng* (oriented transfer function) hoặc *hàm truyền chéo* (cross transfer function), là:

$$\Phi_{y}F(\omega) = \frac{y}{F} = \sum_{i=1}^{4} u_{di}\Phi_{i}(\omega)$$
 (6.24)

Trong đó $u_{id} = \cos\theta_i \cos(\theta_i - \beta)$ là hệ số định hướng (directional factor) ở hướng i. Khi bỏ qua khối lượng, ta có thể sử dụng công thức (6.24) để tính biến dạng tĩnh tổng hợp ở hướng v.

6.1.4.3. Các hệ thống toa độ do và thiết kế

Trong phân tích kết cấu máy công cụ, ta thường sử dụng hệ thống 3 tọa độ, trong đó kết cấu máy công cụ được mô hình hoá bởi một lượng lò xo, giảm chấn và khối lượng. Các hệ thống này có thể là hệ thống tọa độ đo (còn gọi là cực bộ), thiết kế hoặc hệ thống tọa độ riêng (design, local and modal systems). Các khối lượng, lò xo và giảm chấn có thể xác định được trong một trong 3 hệ thống tọa độ này, phụ thuộc vào sự thuận lợi dể tính bằng máy tính hoặc thể hiện vật lí. Các hệ thống tọa độ riêng không mang ý

nghĩa vật lí, được sử dụng để phân tích độ bền và sự hoạt động của toàn bộ kết cấu tại một tắn số tự nhiên riêng biệt (sẽ được để cập đến ở phân sau).

Hình 6.9: Chuyển vị và lực xác dịnh trong tọa độ do và thiết kế a) Các lò xo nổi nhau b) Tọa độ thiết kế c) Tọa độ đo

Các tọa đô thiết kể và cực bộ được giải thích thông ket qua don cáu gián được thể hiện bởi 2 lò xo nổi tiếp nhau và lực F_i và F₁ đặt vào chúng (hình 6.9), các chuyển vị được đo tại các vị trí ấn định (như tại điểm ban đấu I và 2, nơi không bi biên dang). Các chuyển vị là x_1, x_2 , các diểm tham chiếu cho

phép đo là ốn định. Các chuyển vị là x_1 , x_2 được xác định trong toa do cực bộ (hoặc tọa độ đơ). Tuy nhiên, khi độ giãn tương đối (giữa hai dấu mút) của một lò xo được do, chuyển vị tương ứng được xác định trong tọa độ thiếi $k\acute{e}$ (design coordinates). Nói cách khác, chuyển vị cục bộ thể hiện sự thay đổi tuyệt đối trong tọa độ của một điểm trên kết cấu, còn chuyển vị thiết kế thể hiện độ giãn dài hoặc nên của riêng một lò xo.

Gọi các lực là S_1 và S_2 và các chuyển vị là y_1 và y_2 trong tọa độ thiết kế, thì:

$$S_1 = k_a y_1 S_2 = k_b y_2 (6.25)$$

Hoặc ở dạng ma trận:

$$\begin{cases} S_1 \\ S_2 \end{cases} = \begin{vmatrix} k_a & 0 \\ 0 & k_b \end{vmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
 (6.26)

Trong đó k_a và k_b là giá trị độ cứng thiết kể cho các lò xo . Để đơn giản

ta có thể sử dụng kí hiệu ma trận sau;

$$\{S\} = \left[K_{y} \mid \{y\}\right] \tag{6.27}$$

Với $\{S\}$ và $\{y\}$ là vectơ lực và chuyển vị, $[K_y]$ là ma trận độ cứng trong tọa độ thiết kế. Mối quan hệ giữa chuyển vị đo và thiết kế được thể hiện:

$$x_1 = y_1 \to y_1 = x_1$$
 (6.28)

$$x_2 = y_1 + y_2 \rightarrow y_2 = -x_1 + x_2$$
 (6.29)

Hoặc

$$\begin{cases} y_1 \\ y_2 \end{cases} = \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow \{y\} = [T]\{x\}$$
 (6.30)

Ở đây [T]là ma trận chuyển đổi giữa chuyển vị thiết kế và cục bộ. Tương tư có thể viết biểu thức cho lực là:

$$S_2 = F_2 \longrightarrow F_2 = S_2 \tag{6.31}$$

$$S_1 = F_1 + F_2 \longrightarrow F_1 = S_1 - S_2$$
 (6.32)

Hoặc
$$\{F\} = [T]^T \{S\}$$
 (6.33)

Các thành phần độ cứng, khối lượng và giảm chấn có thể được chuyển từ một hệ thống tọa độ sang hệ thống khác khi sử dụng ma trận chuyển đổi [T], thay phương trình (6.27) và (6.30) vào (6.33):

$$\{F\} = [T]^{T} \{S\} = [T]^{T} [K,]\{y\} = [T]^{T} [K,]T] \{x\}$$
(6.34)

Vì $\{F\}=[K_x]\{x\}$, ta có thể thu được ma trận độ cứng cục bộ từ tọa độ thiết kế như:

$$[K_{\perp}] = [T]^T [K_{\perp}] T$$

$$(6.35)$$

Tương tự có thể áp dụng cho ma trận khối lượng và giảm chấn như:

$$[C_{x}] = [T]^{T} [C_{x}] [T], [M_{x}] = [T]^{T} [M_{x}] [T]$$
 (6.36)

Chú ý, phụ thuộc vào chuyển vị và lực, đơn vị đo có thể khác nhau trong các tọa độ thiết kế và cục bộ. Ví dụ, chuyển vị có thể xác định theo mm trong tọa độ cục bộ cho vị trí nào đó của kết cấu, trong khi chuyển vị có thể ở đơn vị đo góc nếu do các tải xoắn và lò xo trong tọa độ thiết kế gây nên. Mặc dù tất cả phép đo thí nghiệm được thực hiện trong tọa độ cục bộ , nhưng đối với người thiết kế thì mối quan tâm là những phần từ yếu trong tọa độ thiết kế.

6.1.4.4. Phân tích dao động giải tích cho các hệ thống nhiều bậc tự do

Máy công cụ có nhiều bậc tự do theo các hướng khác nhau. Dao động giữa dụng cụ và bề mặt chi tiết gia công là mối quan tâm chính, do chúng anh hưởng đến độ chính xác của bề mặt sản phẩm, chiếu dày phoi và lực cắt tác động vào máy. Sau đây những nguyên lí cơ sở của phân tích đao động. được xem xét sử dụng cho hệ thống hai bậc tự do (2-DOF). hình 6.10.

Hinh6.10: Hàm truyền đạt của một hệ thống SDOF

Từ định luật 2 Newton, phương trình chuyển động của khối lượng m_1 và m_2 trong tọa độ đo hoặc cục bộ (x_1, x_2) có thể viết là:

$$m_1\ddot{x}_1 = F_1 - c_1\dot{x}_1 - c_2(\dot{x}_1 - \dot{x}_2) - k_1x_1 - k_2(x_1 - x_2)$$
(6.37)

$$m_2\ddot{x}_2 = F_2 - c_2(\dot{x}_2 - \dot{x}_1) - k_2(x_2 - x_1) - k_3x_2 - c_3\dot{x}_2$$
 (6.38)

Sắp xếp lại các phương trình ở dạng ma trận:

$$[M_{\lambda} | \{x\} + [C_{\lambda} | \{x\} + [K_{\lambda} | \{x\} = [F]]$$
(6.39)

Trong đó, ma trận khối lượng, độ cứng và giảm chấn tương ứng là:

$$[M_{\lambda}] = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}; \quad [K_{\lambda}] = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 + k_3 \end{bmatrix}; \quad [C_{\lambda}] = \begin{bmatrix} c_1 + c_2 & -c_2 \\ -c_2 & c_2 + c_3 \end{bmatrix}$$
 (6.40)

Vecto chuyển vị $\{x\}$ và lực $\{F\}$ được định nghĩa là:

$$\{x\} = \begin{cases} x_1(t) \\ x_2(t) \end{cases} \qquad \{F\} = \begin{cases} F_1(t) \\ F_2(t) \end{cases} \tag{6.41}$$

Giải hệ phương trình vi phân trước hết cho trường hợp đạo động tự do không giảm chấn (tức $c_1 = c_2 = c_3 = 0$ và $\{F\} = \{0\}$)

$$[M_{y} | \{\ddot{x}\} + [K_{x}] \{x\} = [0]$$
 (6.42)

Hệ thống không bị cản có nghiệm chung là:

$$\{x(t)\} = \{X\}\sin(\omega t + \Psi') \tag{6.43}$$

Trong đó $\{X\}$ và Ψ là không đổi, ω là tần số tự nhiên của hệ thống. Thay vectơ chuyển vị $\{x(t)\}$ và đạo hàm bậc hai, vectơ gia tốc: $\{\ddot{x}\} = -\omega^2 \{X\} \sin(\omega t + \Psi)$, phương trình (6.42) trở thành:

$$([K_+] - \omega^2 [M_+]) \{X\} = \{0\}$$
(6.44)

Hoãc:

$$\begin{bmatrix} k_1 + k_2 - \omega^2 m_1 & -k_2 \\ -k_2 & k_2 + k_3 - \omega^2 m_2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 (6.45)

Để giải, định thức của các phương trình đại số đồng thời phải bằng θ , Nếu đặt $s=\omega^2$, ta có:

$$\begin{bmatrix} k_1 + k_2 - sm_1 & -k_2 \\ -k_2 & k_2 + k_3 - sm_2 \end{bmatrix} = 0$$
 (6.46)

Hoãc:

$$s^n + a_1 s^{n+1} + \dots + a_n = 0 ag{6.47}$$

Với n là số bậc tự do của hệ thống. Ví dụ, đối với một hệ thống hai bậc tự do (2-DOF):

$$s^{2} - \left(\frac{k_{1} + k_{2}}{m_{1}} + \frac{k_{2} + k_{3}}{m_{2}}\right) s + \frac{k_{1}k_{2} + k_{2}k_{3} + k_{1}k_{3}}{m_{1}m_{2}} = 0$$
 (6.48)

Ở đã thức này s có hai giá trị thực: $s_1 = \omega_{n1}^2$ và $s_2 = \omega_{n2}^2$, với ω_{n1} và ω_{n2} là các tần số tự nhiên của hệ thống. Tổng hợp phần góp của từng giải pháp

hoãc mode. ta có:

$$\begin{vmatrix} x_1(t) \\ x_2(t) \end{vmatrix}_1 = \begin{vmatrix} X_1(t) \\ X_2(t) \end{vmatrix}_1 \sin(\omega_{n}t + \Psi_1) + \begin{vmatrix} X_1(t) \\ X_2(t) \end{vmatrix}_2 \sin(\omega_{n}2t + \Psi_2)$$

$$(6.49)$$

Ở dây $\{P\}_{0,2} = \{X_1 \mid X_2\}_{0,2}^{V}$ là các vector riêng hoặc dạng dao động (eigenvectos/ mode shapes) được liên kết tần số tự nhiên cơ bản (ω_m) và tần số tự nhiên phụ ω_{n2} , tương ứng. X_n là chuyển vị của nút i và Ψ_k là pha tạo bởi dao động tự nhiên k. Kết quả của phương trình (6.44) chỉ đưa ra tỉ số các biên độ tại mỗi nút (node). Thay ω_{n1} và ω_{n2} trong phương trình (6.44) và sắp xếp lai, ta có:

$$\left(\frac{\lambda_{3}}{X_{2}}\right)_{1} = \lambda_{1} - \frac{\lambda_{2}}{k_{1} + k_{2} - \omega_{n}^{2} m_{1}} = \frac{k_{3} + k_{3} - \omega_{n}^{2} m_{2}}{k_{2}}$$
(6.50)

$$\left(\frac{X_1}{X_2}\right)_{12} = \lambda_2 = \frac{k_2}{k_1 + k_2 - \omega_{n2}^2 m_1} = \frac{k_2 + k_3 - \omega_{n2}^2 m_2}{k_2}$$
(6.51)

Thay $\lambda_{1,2} = (X_1/X_2)_{1,2}$, đạt $X_{21} = Q_1$, $X_{22} = Q_2$ vào phương trình (6.33) về các rung động quá độ (transient vibration), ta có:

$$\begin{cases} |x_1(t)| = [\lambda_1 - \lambda_2] |Q_1 \sin(\omega_{n1}t + \Psi_1)| \\ |x_2(t)| = [1 - 1] |Q_2 \sin(\omega_{n2}t + \Psi_2)| \end{cases}$$
(6.52)

Hoặc dạng vecto:

$$\{x(t)\} = [\{P\}_{0} \mid \{P\}_{2}] \begin{bmatrix} q_{1}(t) \\ q_{2}(t) \end{bmatrix} = [P] \{q(t)\}$$
(6.53)

Trong đó $\{P\}_{i} = [\lambda_{i} - 1]^{i}$ và q_{i} là dạng dao động đầu tiên và chuyển vị riêng tạo bởi nó. Sự thể hiện vật lí của một đạng dao động có thể giải thích ở hình 6.10 b. Số lượng đạo động tự nhiên gây chuyển vị đơn vị tại khối lượng m_{i} va λ_{i} tại khối lượng m_{i} . [P] là ma trận riêng đẩy đủ, có kích thước $[n \times n]$ cho hệ thống n bậc tự do. Tuy nhiên, ma trận riêng không nhất thiết là ma trận vương. Số hàng bằng với số các điểm tọa độ trên máy và mỗi cột thể hiện một đạo động .

Vì các dao động là trực giao với nhau, chúng có tính chất:

$$\{P\}_{1}^{T}[M_{x}]\{P\}_{2} = 0 \tag{6.54}$$

Trong khi:

$$\{P\}\{\{M_+\}\{P\}\} = m_{o1} \tag{6.55}$$

Ở đây m_{q1} là khối lượng riêng kết hợp với dao động đầu tiên. Khi áp dụng nguyên lí trực giao tương tự cho các dạng dao động còn lại, ma trận khối lượng và ma trận độ cứng cục bộ được chuyển vào tọa độ riêng:

$$\begin{bmatrix} M_{\eta} \end{bmatrix} = \begin{bmatrix} P \end{bmatrix}^T \begin{bmatrix} M_{\chi} \parallel P \end{bmatrix}$$

$$\begin{bmatrix} K_{\eta} \end{bmatrix} = \begin{bmatrix} P \end{bmatrix}^T \begin{bmatrix} K_{\chi} \parallel P \end{bmatrix}$$
(6.56)

Các ma trận riêng khối lượng tổng $[M_{ij}]$ và ma trận riêng độ cứng tổng $[K_{ij}]$ là ma trận đường chéo, mỗi thành phần trên đường chéo thể hiện khối lượng hoặc độ cứng kết hợp với một đạo động. Chú ý, khi hệ thống có giảm chấn cản đối (tức $\{C_i\} = \alpha_1[M_{ij}] + \alpha_2[K_i]$), với α_1 và α_2 là các hằng số theo thực nghiệm), ma trận riêng độ cán $[C_{ij}]$ cũng là ma trận đường chéo:

$$\begin{bmatrix} C_{\alpha} \end{bmatrix} = \{ P \}^T \begin{bmatrix} C_{\alpha} \end{bmatrix} \begin{bmatrix} P \end{bmatrix} \tag{6.57}$$

Úng dụng các chuyển đổi riêng vào phương trình (6.39), ta thu được phương trình chuyển động ở tọa độ riêng.

$$\begin{bmatrix} m_{g1} & 0 \\ 0 & m_{g2} \end{bmatrix} \begin{bmatrix} \ddot{q}_1(t) \\ \ddot{q}_2(t) \end{bmatrix} + \begin{bmatrix} c_{g1} & 0 \\ 0 & c_{g2} \end{bmatrix} \begin{bmatrix} \dot{q}_1(t) \\ \dot{q}_2(t) \end{bmatrix} + \begin{bmatrix} k_{g1} & 0 \\ 0 & k_{g2} \end{bmatrix} \begin{bmatrix} q_1(t) \\ q_2(t) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(6.58)

Hoặc ở dạng véc tơ:

$$[M_n][\hat{q}] + [C_n][\hat{q}] + [K_n][q] - \{0\}$$
(6.59)

Các phương trình chuyển động trong tọa độ riêng không liên quan nhau, có thể giải tương tự với cách cho các hệ thống 1 bậc tự do. Nếu xét các dao động tự do của dao động đầu tiên làm ví dụ, ta có:

$$m_{a1}\ddot{q}_1 + c_{a1}\dot{q}_1 + k_{a3}q_1 = 0 ag{6.60}$$

Phương trình này có nghiệm:

$$q_1(t) = Q_1 e^{-\frac{\xi \omega_0 t}{2}} \sin(\omega_{n1} \sqrt{1 - \xi^2 t} + \Psi_1)$$

Ở đây, hệ số cản là $\xi_1 = c_{ql}/(2\sqrt{k_{ql}m_{ql}})$ và Q_1 tìm được từ các điều kiện ban đầu. Sau khi giải, tìm chuyển vị trong hệ thống tọa độ riêng , các dao động trong hệ thống cục bộ có thể thu được bằng chuyển đổi hệ thống riêng (6.53) (tức $\{x(t)\}=[P]\{q\}$. Khi áp dụng chuyển đổi, ví dụ cho hệ thống 2-DOF, các chuyển vị cục bộ trở thành:

$$\begin{cases} x_1(t) \\ x_2(t) \end{cases} = \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$
 (6.61)

Bằng việc áp dụng các chuyển đổi vào tọa độ riêng như thế cho cả hai vế của phương trình dao động cưỡng bức (6.39). Vectơ Tực $\{F\}$ có thể chuyển được sang các tọa độ riêng là :

$${R} = [P]^T {F}$$
 (6.62)

Biểu thức dao động cưỡng bức trong tọa độ riệng trở thành:

$$[M_q \|\ddot{q}\} + [C_q \|\dot{q}\} + [K_q \|q\}_1 = \{R\}$$
(6.63)

Áp dụng các chuyển đổi này vào hệ thống 2-DOF, ta có:

$$m_{al}\ddot{q}_{1} + c_{al}\dot{q}_{1} + k_{al}q_{1} = R_{1} \tag{6.64}$$

$$m_{u2}\ddot{q}_2 + c_{u2}\dot{q}_2 + k_{u2}q_2 = R_2 \tag{6.65}$$

Đó là các phương trình vì phân không kết nối, có thể giải tương tự như ở hệ phương trình một bậc tự do (như đã đề cập ở trên). Các hàm truyền trong tọa độ riêng được thể hiện tương tự cho các hệ thống SDOF (phương trình 6.14) đối với từng dao động k:

$$\left|\Phi_{q,k}(\omega)\right| = \left[\frac{q_k}{R_k}\right] = \frac{1}{k_{qk}} \frac{1}{\sqrt{(1 - r_k^2)^2 + (2\xi_k r_k)^2}}$$
(6.66)

$$\phi_k = \tan^{-1} \frac{-2\xi_k r_k}{1 - r_k^2} \tag{6.67}$$

Trong đó tỉ số tần số $r_k = \omega/\omega_{nk}$. Đối với ví dụ hệ thống 2-DOF chuyển vị riêng có thể được biểu diễn bởi:

$$\begin{bmatrix} q_{\perp}(t) \\ q_{\perp}(t) \end{bmatrix} = \begin{bmatrix} \Phi_{q\perp} & 0 \\ 0 & \Phi_{q\perp} \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$$
(6.68)

Sử dụng dạng ma trận tổng quát, ta có:

$$\{q\} = \left[\Phi_{\alpha}\right] \left[R\right] \tag{6.69}$$

Với Φ_q là ma trận đường chéo hàm truyền $\mathring{\sigma}$ hệ tọa độ riêng. Thay $\{R\} = [P]^T \{F\}$ và $\{x\} = [P]^T \{g\}$ vào phương trình (6.69) ta thu được các dao động trong tọa độ cục bộ:

$$\{x\} = [P] \{\Phi_n\} \{P\}^T \{F\}$$
 (6.70)

Hoặc:

$$\{x\} = \left(\sum_{k=1}^{n} \{P\}_{k} \{P\}_{k}^{T} \Phi_{q,k}\right) \{F\}$$
(6.71)

Trong đó $\{P\}_k$ là vectơ riêng cho dao động k và n là số bậc tự do. Như vậy các dao động cưỡng bức điều hoà đối với từng tọa độ có thể tính được khi sử dụng dạng dao động $\{P\}_k$, các hàm truyền - riêng Φ_{gk} và các vectơ ngoại lực $\{F\}$. Nếu ngoại lực $\{F\} = \{F_1 \sin(\omega r) = 0\}$, dao động đo được ở tọa độ cục bộ, \mathbf{x}_1 và \mathbf{x}_2 sẽ là:

$$\frac{x_1(\omega)}{F_1(\omega)} = \lambda_1^2 \Phi_{q1} + \lambda_2^2 \Phi_{q2}
\frac{x_2(\omega)}{F_1(\omega)} = \lambda_1 \Phi_{q1} + \lambda_2 \Phi_{q2}$$
(6.72)

6.1.4.5. Hàm truyền tương đối giữa dụng cụ và phói

Hình6.11: Hàm truyền đạt giữa dụng cụ và phôi trên máy công cụ

Dao động tương đối giữa dụng cụ cắt và bề mặt gia công quyết định độ chính xác của chi tiết gia công và tải động của các kết cấu cơ khí liên quan. Có thể dự đoán lực cắt cho một số hình dạng hình học của dụng cụ và điều kiện cắt như một số tài liệu về công nghệ chế tạo máy đã trình bày [5]. Các lực cắt đặt lên dao cụ và phôi có biên đô bằng nhưng hướng ngược nhau

và chuyển vị tương đối giữa hai kết cấu là có thể xác định được. Xét một cấu trúc chung máy công cụ, thể hiện ở hình 6.11. Chuyển vị tương đối giữa dụng cụ và phỏi là: (x_i-x_w) , x_1 - chuyển vị của dụng cụ, , x_w - chuyển vị của phỏi. Lực cắt tác dụng lên dụng cụ là (F_i) và lên phỏi là (F_w) có cùng độ lớn F_0 nhưng hướng ngược nhau $(F_i=-F_w)$. Vectơ lực và vectơ chuyển vị cho hệ thống n-DOF thể hiện ở tọa độ cục bộ là:

$$\{x\} = \{x_1, x_2, \dots, x_t \mid x_{s_t}, \dots, x_n\}$$

$$\{F\} = \{0, 0, \dots, 1, -1, \dots, 0\} F_0$$

$$(6.73)$$

Phương trình chuyển động của hệ thống là:

$$[M, \{x\} + [C, x] + [K, x] = \{F\}$$
(6.74)

Với [M,]- ma trận khối lượng cục bộ, $[C_n]$ - ma trận giảm chấn cục bộ và [K,]-ma trậnđộ cứng cục bộ là các ma trận vuông, kích thước $[n \times n]$, vectơ lực $\{F\}$ có kích thước $[n \times 1]$. Giải các gía trị riêng (eigenvalues) dẫn tới ma trận đạo động [P] với kích thước $[n \times n]$:

$$[P] = \begin{bmatrix} P_{11} & P_{12} & P_{1n} & P_{1n} & P_{1n} \\ P_{21} & P_{22} & P_{2n} & P_{2n} & P_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ P_{i1} & P_{i2} & P_{in} & P_{in} & P_{in} \\ P_{w1} & P_{w2} & P_{wi} & P_{wi} & P_{wn} \\ \vdots & \vdots & \vdots & \vdots \\ P_{n1} & P_{n2} & P_{n1} & P_{nn} & P_{nn} & P_{nn} \end{bmatrix}$$

$$(6.75)$$

Hoac:

$$[P] = [\{P\}_1, \{P\}_1, \dots, \{P\}_n, \{P\}_n, \dots, \{P\}_n\}]$$
(6.76)

Ở đây, mỗi cột thể hiện dạng dao động $\{P\}$ của hệ thống cấu trúc n-DOF. Từ phương trình chuyển đổi tọa độ riêng $(x) = [P]\{q\}$, các chuyển vị của dụng cụ và phỏi có thể tính khi sử dụng kết hợp các hàng t, w của ma trận riêng trên:

$$\{x_t\} = \{P_{t1} \mid P_{t2} \mid \dots \mid P_{tt} \mid P_{tu} \mid \dots \mid P_{tt}\} \{q_1 \mid q_2 \mid \dots \mid q_t \mid q_u \mid \dots \mid q_{tt}\}^T$$
 (6.77)

$$\{x_{w}\}=\{P_{w1}-P_{w2}-\dots-P_{wt}-P_{ww}-\dots-P_{wt}\}\{q_{1}-q_{2}-\dots-q_{t}-q_{w}-\dots-q_{m}\}^{t}$$
 (6.78)

Thay lực $\{R\} = [P]^T \{F\}$ vào vectơ chuyển vị riêng $\{\{q\} = [\Phi_q] \{R\}\}$, lưu ý là tất cả thành phần của vectơ lực là 0 trừ hai thành phần tương ứng tọa độ \mathbf{x}_1 và \mathbf{x}_n , ta có:

$$\{q\} = \left[\Phi_{q}\right] \begin{bmatrix} P_{t1} - P_{w1} \\ P_{t2} - P_{w2} \\ \vdots \\ P_{tn} - P_{wn} \end{bmatrix} F_{0} = \begin{bmatrix} \Phi_{q1}(P_{t1} - P_{w1}) \\ \Phi_{q2}(P_{t2} - P_{w2}) \\ \vdots \\ \Phi_{qn}(P_{tn} - P_{wn}) \end{bmatrix} F_{0}$$

$$(6.77)$$
Thay các chuyển vị riêng này vào phương trình (6.77, 6.78) ta có chuyển

Thay các chuyển vị riêng này vào phương trình (6.77, 6.78) ta có chuyển vị cục bộ tương ứng của dụng cụ và phối là:

$$x_{t} = F_{0} \sum_{t=1}^{n} \Phi_{qi} P_{tt} (P_{ti} - P_{ot})$$
(6.78)

$$x_{n} = F_{0} \sum_{i=1}^{n} \Phi_{ip} P_{ni} (P_{n} - P_{ni})$$
(6.79)

Khi cấu trúc máy công cụ bị tác động bởi một lực thay đổi điều hoà tại điểm cắt, hàm truyền tương đối giữa dụng cụ và phỏi thành:

$$\frac{x_r(\omega) - x_w(\omega)}{F_0(\omega)} = \sum_{i=1}^{n} \Phi_{qi} (P_n - P_{ui})^2$$
(6.80)

Nếu thể hiện một hệ thống 2DOF là cấu trúc của phỏi và dụng cụ (tức, $x_1 \equiv x_1$, $x_2 \equiv x_w$), vectơ lực trở thành $\{F\} = \{1 - 1\}F_0$. Hàm truyền tương đối giữa dụng cụ và phỏi trong ví dụ này là:

$$\frac{x_1 - x_2}{F_0} = \Phi_{q1}(\lambda_1 - 1)^2 + \phi_{q2}(\lambda_2 - 1)^2$$
(6.81)

6.1.5. Phân tích thí nghiệm dao động cho hệ thống nhiều bậc tự do

Hình 6.12: Đo hàm truyền đạt sử dụng búa với cảm biến lực và gia tốc

Hàm truyền của các hệ thống nhiều bắc tự do (MDOF) đang tồn tại được nhận biết nhờ kiểm thử động học kết cấu máy. Máy vật lí được mô hình hoá bởi các màng khối lượng rời rạc, kết nối với các lò xo thẳng hoặc xoắn.

Các thiết bị dùng làm nguồn kích hiệu quả nhất các sàng lắc thuy điện hoặc điện từ, vì chúng có thể cấp lực với dài tấn rộng, chứa các dao động tự nhiên chi phối (dominant natural modes) của cơ cấu được kiểm. Hoặc có thể sử dụng búa có gắn cảm biến lực piezo-electric (xem hình 6.12), mặc dù phương pháp này có thể tạo ra lực với biên độ và tần số ngẫu nhiều. Lực va đặp cấp bởi búa có thời gian ngắn, có thể coi là những xung hẹp hoặc như các xung lực có phổ Fourier nông, tức phổ tấn số rộng bao gồm các dao động tự

nhiên bị kích bởi xung lực đang cần được tìm ra. Khối lượng của búa và vật

liệu đính búa (trên đó dán cảm biến lực) phải lựa chọn phù hợp với khối lương, độ cứng và vật liêu của kết cấu chiu kích họat.

Các dao động tổng hợp được đo với cảm biến chuyển vị, tốc độ và gia tốc . Các cảm biến đo chuyển vị kiểu diện cảm hoặc điện dung nhằm thu được các tín hiệu dao động tần số thấp hoặc tĩnh để đo tính đàn hồi tĩnh. Do là các cảm biến không tiếp xúc, có thể khó tìm được vị trí thích hợp để treo các cảm biến trên máy được kiểm. Hiện nay đã có cảm biến đo chuyển vị bằng tia laze, khá thuận tiện trong lấp đặt thực tế. Gia tốc kế (accelerometer) cũng được sử dụng nhiều trong đo dao động. Trường hợp đó, khối lượng và phạm vi tần số của gia tốc kế phải được lựa chọn phù hợp, do chúng có thể bổ sung khối lượng làm thay đổi các tần số tự nhiên đo được . Các vật liệu giao diện và liên kết giữa kết cấu và gia tốc kế phải được chọn cẩn thận để đảm bảo các phép đo chính xác.

Sau đây là cơ sở phân tích dao động thực nghiệm được giới thiệu tóm tắt. Kiến thức này cần thiết cho các kỹ sư chế tạo máy do luôn gặp vấn đề về động lực học trong nghiên cứu và chế tạo.

Khái niêm về thăng dư (residue)-r:

Hàm truyền của một hệ thống SDOF (biểu diễn bởi phương trình 6.7) thể hiện ở miền Laplace:

$$h(s) = \frac{X(s)}{F(s)} = \frac{1/m}{s^2 + 2\xi\omega_n s + \omega_n^2}$$
 (6.82)

Trong đó $s^2 + 2\xi\omega_n s + \omega_n^2$ là phương trình đặc tính của hệ thống, có nghiệm kép phức:

$$s_1 = -\xi \omega_n + j\omega_d \qquad s_1^* = -\xi \omega_n - j\omega_d \ (6.83)$$

Hàm truyền (6.82) có thể biểu diễn bởi khai triển phân số:

$$h(s) = \frac{r}{s - s_1} + \frac{r^*}{s - s_1^*} = \frac{\alpha + \beta s}{s^2 + 2\xi \omega_n s + \omega_n^2}$$
(6.84)

Thặng dư (residue) là:

$$r = \sigma + jv r^* = \sigma - jv (6.85)$$

Các tham số tương ứng là:

$$\alpha = 2(\xi \omega_n \sigma - \omega_d v) \qquad \beta = 2\sigma \tag{6.86}$$

Thặng dư có thể có phần thực và ảo, phụ thuộc và sức cản và số lượng

dao động trong hệ thống. Tuy nhiên, đối với một hệ thống SDOF, thặng dư có các giá trị riêng biệt, là:

$$r = \lim_{s \to s_1} (s - s_1) \frac{1/m}{(s - s_1)(s - s_1)} = \frac{1/m}{s_1 - s_1} = \frac{1/m}{2j\omega_d}$$
 (6.87)

$$r^* = \lim_{s \to s_1} (s - s_1) \frac{1/m}{(s - s_1)(s - s_1)} = \frac{1/m}{s_1^* - s_1} = -\frac{1/m}{2j\omega_d}$$
(6.88)

Do đó, đối với các hệ thống SDOF phần thực của thặng dư phải là 0 ($\alpha = 0$ và $\beta = 0$). Chú ý, đối với một khối lượng đơn vị, thặng dư có giá trị $r = 1/(2j\omega_d)$.

Hàm truyền của một hệ thống MDOF:

Phương trình chuyển động của một hệ thống MDOF thể hiện trong miền s khi lấy biến đối Laplace phương trình (4.12):

$$([M]s^{2} + [C]s + [K])\{X(s)\} = \{F(s)\}$$
(6.89)

Hoāc:

$$[B(s)][X(s)] = \{F(s)\}$$
 (6.90)

Khi đó, ma trận hàm truyền của hệ thống MDOF là:

$$[H(s)] = \frac{\{X(s)\}}{\{F(s)\}} = \frac{adj[B(s)]}{[B(s)]}$$
(6.91)

Trong (6.90), ||B(s)|| là phương trình đặc tính, và nghiệm của ||B(s)|| = 0 cho các giá trị riêng của hệ thống MDOF. Chú ý, ma trận hàm truyền ||H(s)|| có kích thước $|n \times n||$ cho hệ thống n-DOF và tất cả các thành phần của nó đều có mẫu số chung ||a|||B(s)||.

Ví dụ 6.1; Hàm truyền cho một hệ thống 2-DOF là:

$$[H(s)] = \begin{bmatrix} h_{11}(s) & h_{12}(s) \\ h_{21}(s) & h_{22}(s) \end{bmatrix}$$
(6.92)

Vái ·

$$h_{11}(s) = \left[\frac{r_{11,1}}{s - s_1} + \frac{r_{11,1}^*}{s - s_1^*}\right]_{\text{model}} + \left[\frac{r_{11,2}}{s - s_2} + \frac{r_{11,2}^*}{s - s_2^*}\right]_{\text{mode2}}$$
 hoặc (6.93)

$$h_{11}(s) = \left[\frac{\alpha_{11,1} + \beta_{11,1}s}{s^2 + 2\xi_1\omega_{n,1}s + \omega_{n+1}^2} \right]_{\text{model}} + \left[\frac{\alpha_{11,2} + \beta_{11,2}s}{s^2 + 2\xi_2\omega_{n,2}s + \omega_{n,2}^2} \right]_{\text{model}}$$
(6.94)

Các thành phần h_0 trong ma trận hàm truyền thu được từ các phép đo thí nghiệm. Khi một kết cấu 2-DOF bị tác động bởi lực $\{F\} = \{F_1 - F_2\}$ và dao động được đo tại điểm 1, ta có:

$$h_{11} = \frac{x_1}{F_1} \to F_2 = 0$$
 ; $h_{12} = \frac{x_1}{F_2} \to F_1 = 0$ (6.95)

Ví dụ 6.2: Một gia tốc kế được dán vào điểm 1 và búa đập vào điểm này, đo với thiết bị phân tích Fourier ta có h₁₁, đập vào điểm 2 và đo, ta có h₁₂. Dán tốc kế (accelerometer) vào điểm 2 và thực hiện va đập, ta có các thành phần của hàm truyền tương ứng h₂₁ và h₂₂. Các thành phần này có mẫu số như nhau nhưng thặng dư (hoặc tử số) là khác nhau. Ma trận hàm truyền là đối xứng đối với một hệ tuyến tính (tức h₁₂=h₂₁). Các hàm truyền đo, được thiết bị phân tích - lưu vào vùng tần số, dưới dạng thành phần thực và ảo tại từng tần số. Dữ liệu hàm truyền miễn tần số đo được (h_a) được chuyển tới một máy tính (được trang bị các phần mềm phân tích dao động). Đối với một số dao động tự nhiên cho trước, hệ thống phân tích dao động quét dữ cho vùng các biên đô công hưởng max, và tần số tương liệu hàm truyền ứng, nơi thành phần thực của hàm truyền bằng 0. Các tần số này là các tần số tự nhiên của hệ thống. Khi đó hệ thống hợp đường đặc tuyến theo đữ liệu với mẫu số là một đa thức bác (2xn). Nếu xử lí số tiếp tục, đường đặc tuyến sẽ khớp với các phương trình vi phân bậc hai, như thể hiện ở phương trình (6.95). Như vậy các giá trị số của tần số tự nhiên, giảm chấn và thặng dư cho từng dao động được dự đoán từ đường đặc tuyến này. Ở dang tổng quát, thành phần ở hàng i và côt l của ma trận hàm truyền [H(s)] được đo là:

$$h_{il} = \sum_{k=1}^{n} \frac{\alpha_{il,k} + \beta_{il,k} s}{s^2 + 2\xi_k \omega_{n,k} s + \omega_{n,k}^2}$$
(6.96)

Trong đó, $\omega_{d,k}$ là tần số tự nhiên dao động có giảm chấn, $\omega_{n,k}$ - tần số tự nhiên không giảm chấn và ξ_k -ti số giảm chấn cho dao động k của hệ thống. Đáp ứng tần số của kết cấu có thể thu được khi thay $s=j\omega$, ở đây tần số kích hoạt ω có thể được quét trong phạm vi bao phủ toàn bộ các tần số tự nhiên. Hàm truyền đây đủ có thể biểu diễn ở dạng ma trận sau:

$$[H(s)] = \sum_{k=1}^{n} \frac{[R]_k}{s^2 + 2\xi_k \omega_{n,k} s + \omega_{n,k}^2}$$
 (6.97)

Trong đó, mỗi thành phần trong ma trận kích thước $[n \times n]$, $[R_k] = [\alpha + \beta s]$ phản ánh thặng đư của đạo động k tại hàng i và cột l.

6.2. THIẾT KẾ VÀ PHÂN TÍCH CÁC HỆ THỐNG CNC

Sơ đồ một trung tâm gia công CNC đặc trưng được thể hiện ở hình 6.1. Trung tâm gia công bao gồm các thành phần cơ, điện tử công suất và các bộ phận CNC. Hệ cơ gồm :bệ, cột, tổ hợp trực chính và các cơ cấu chạy dao. Động cơ trực chính và trực chạy dao và các bộ khuếch đại servo, hệ cấp nguồn cao áp và các công tắc hành trình thuộc nhóm điện tử công suất. Phần điều khiển CNC bao gồm hệ máy tính và các cẩm biến tốc độ và vị trí cho mỗi cơ cấu truyền động. Người vận hành nhập chương trình NC vào bộ CNC, CNC xử lí dữ liệu và cấp các điều khiển số (numerical) gián đoạn về định vị, điều khiển bộ truyền động chạy dao và tốc độ cho trực chính. CNC chuyển đổi các lệnh số thành các tín hiệu điện áp (±5V hoặc ± 10V), truyền đến các bộ khuếch đại servo, ở đó chúng được xử lí và khuếch đại thành các mức điện áp lớn theo yêu cầu của động cơ. Khi bộ truyền động hoạt động, các cảm biến sẽ đo tốc độ và vị trí của chúng. Bộ CNC thực hiện quy luật điều khiển con số (digital) theo chu kì, giữ tốc độ chạy dao và đường chạy dao theo tốc độ được lập trình bằng việc sử dụng các cẩm biến đo phản hồi.

Nguyên lí cơ bản thiết kế một hệ thống CNC thể hiện trong nội dung sau:

- Tính toán và chọn hệ truyền động.
- Cơ cấu vật lí và mô hình của hệ thống điều khiển động cơ servo.
- Mô hình toán học và phân tích hệ thống truyền động.

6.2.1. Hệ truyển động máy công cụ

Các hệ truyền động trong máy công cụ được phân loại theo cơ cấu truyền động trục chính hoặc cơ cấu truyền động trục chạy dao. Trục chính quay và thường có phạm vi tốc độ rộng (đến 35.000 vòng/phút), trong khi các bộ truyền động chạy dao thường chuyển đổi tốc độ góc của động cơ thành các chuyển động di chuyển thẳng, phạm vi tốc độ có thể tới đến 30.000mm/ phút. Trong phần này chỉ đề cập đến điều khiển chạy dao servo vì phân tích và thiết kế điều khiển servo chạy dao và trục chính là tương tự.

Đối với máy phay CNC 3 trục ở hình 6.13, hệ truyền động chạy dao có các thành phần cơ khí sau: bàn, trục vít me đai ốc-bi, bộ bánh răng giảm tốc và động cơ servo (xem hình 6.14) Vì ưu điểm có thể cấp mômen quay hiệu

quá tại những tốc độ khác nhau nên hấu hết động cơ servo được sử dụng trong bộ chạy dao là động cơ dòng một chiều (DC). Tuy nhiên động cơ servo dòng xoay chiều (AC) ngày nay cũng đã được sử dụng khá phổ thông nhờ đặc tính điều khiển đã được cải thiện. Các thành phần điện của hệ thống động cơ servo bao gồm; bộ khuếch đại động cơ servo, hệ cảm biến phân hối vị trí và tốc độ, máy tính số (digital computer) và bộ chuyển đổi số- tương tự.

Hình 6.13 Sơ đổ khối cơ bản của máy phay 3 trục trục CNC

6.2.1.1. Thành phán cơ khí và các yếu cấu về mỏmen quay

Động cơ chạy dao phải tháng được tải tình và tài động trong máy công cụ. Nguồn của tài tình là các tồn thát do ma sát gây nên trong các đường dẫn, gối đỡ và các lực cắt tác dụng theo hướng cát của bàn máy. Động cơ phải cấp một mômen động đủ lớn để tăng tốc bàn- chi tiết gia công và hệ thống trục vitme bi trong một thời gian ngắn cho đến khi hệ truyền động đạt được tốc độ trạng thái ổn định mong muốn. Mômen động lực là mômen định (hoặc dòng định) có thể kéo dài trong 2-3 giây và được cấp bởi nhà sản xuất động cơ servo. Các động cơ trang bị cho máy CNC phải có phạm vi cấp mômen liên tục đủ cao và mômen đỉnh cũng như thời gian tăng tốc đủ để vượt qua được tải tĩnh và động tương ứng. Xác định tải tĩnh và tải động của đồng cơ được giới thiểu tốm tắt như sau:

Tải tĩnh (static loads), do 3 nguồn : ma sát đường trượt, tổn hao do ma sát trong các gối ổ đỡ của hệ truyền động và các lực cắt.

Ma sát đường trượt phụ thuộc vào dạng tiếp xúc giữa bàn trượt và đường dẫn. Hệ số ma sát của đường trượt lớn khi các đường dẫn bôi trơn đơn giản, có bể mặt tiếp xúc là kim loại -kim loại, vùng tiếp xúc lớn. Hệ số ma sát giảm nếu vùng bể mặt tiếp xúc kim loại giảm, đường trượt được bôi trơn thủy tĩnh và thuỷ động . Hệ số ma sát nhỏ nhất trong thiết kể đường dẫn là sử dụng các bi lãn trong rãnh lập rấp bàn- đường dẫn (hình 6.14). Mômen thể hiện lên động cơ do ma sát (T_{sl}) trong các đường trượt, được ước lượng là:

$$T_{gf} = \frac{h_p}{2\pi} \mu_{gf} \left[(m_t + m_n) g + F_z \right]$$
 (6.98)

Với μ_{g} là hệ số ma sát trên đường trượt , m_{e} -khối lượng bản máy, m_{u} -khối lượng phỏi gia công, F_{Z} - lực cất vuồng gốc với bàn máy, h_{p} là- chiếu dài bước của trục vít và g - gia tốc trọng trường (9,81m/s²). Hệ số ma sát đối với đường trượt phẳng thường lấy từ 0,05÷1 , lực cắt F_{Z} có thể lấy bằng 10% lực cắt tổng lớn nhất ở máy phay đứng điển hình [5].

Hinh 6.14: Cơ cấu truyền động chạy dao dùng vít me bi

ổ chặn được sử dụng tại hai đầu mút trục vít để hấp thụ các lực ăn dạo.

đồng thời đảm bảo độ chính xác hướng tâm cho trục vít. Các ổ chặn được gia tải căng trước để bù khe hở sinh ra bởi giãn nở nhiệt của trục vít. đo ma sát của hệ dẫn động chạy dao. Khi cắt, các ổ chặn trục còn phải chịu tải do lực ăn dao. Các lực ăn dao được xác định bởi các thông số cắt và vật liệu cắt trong các tài liệu " cắt kim loại" " sổ tay công nghệ" [13,14]. Mất mát momen trong các gối đỡ và tài đặt trước được tính:

$$T_{ij} = \frac{d_h}{2} \mu_h (F_f + F_P) \tag{6.99}$$

Với μ_b là hệ số ma sát gối đỡ (thường khoảng 0,005), d_b là đường kính trục vít, F_r là lực chạy dao lớn nhất đặt lên bàn và F_p là lực đặt trước, Mômen tác động lên trục vít do lực cắt theo hướng ăn dao là :

$$T_f = \frac{h_p}{2\pi} F_t \tag{6.100}$$

Mômen tĩnh tổng tác động lên trực vít (T_s) bằng tổng của các mômen (6.98), (6.99), (6.100):

$$T_{s} = T_{sf} + T_{ff} + T_{f} \tag{6.101}$$

Trong trường hợp tải tĩnh T_s quá lớn, ta có thể sử dụng truyền động bánh rằng giữa trục động cơ và trục vít để giảm truyền tải, T_i số truyền, r_g được xác định bởi:

$$r_{\rm g} = \frac{Z_{\rm f}}{Z_{\rm m}} = \frac{n_{\rm m}}{n_{\rm f}} \tag{6.102}$$

Với Z_m - số rằng của bánh rằng trục động cơ, Z_l - số rằng của bánh rằng trên trục vít , n_m -tốc độ góc động cơ (vòng/phút) và n_l - tốc độ góc của trục vít chạy dao (vòng/phút).

Để giảm tốc tại động cơ ta cần có $Z_t \!\!>\!\! Z_m$ (tức $r_g \!\!>\!\! 1$), khi đó tải tác động lên trưc đồng cơ là:

$$T_{s,j} = \frac{T_{s,j}}{r_{g,j}} \tag{6.103}$$

Người thiết kế máy CNC phải chọn một động cơ DC có khả năng cung cấp mômen liên tục cao hơn tải tĩnh tác động lên trục động cơ.

Tải động:

Máy công cụ yêu cầu mômen gia tốc cao khi có sự thay đổi tốc độ. Quán tính tác động lên trục động cơ bao gồm quán tính của bàn, phôi gia công, trục vít, các bánh rằng và trục động cơ. Monent quán tính của bàn và

phôi tác động lên trục vít là:

$$J_{nc} = (m_e + m_u) \left(\frac{h_p}{2\pi}\right)^2 \tag{6.104}$$

Mômen quán tính của trực vít với đường kính trực đọ là :

$$J_{t} = \frac{1}{2} m_{t} \left(\frac{d_{P}}{2\pi} \right)^{2} \tag{6.105}$$

Với m_i - trọng lượng của trục vít. Quán tính tổng phản ánh lên trục của động cơ là:

$$J_{e} = \frac{J_{m} + j_{t}}{r_{s}^{2}} + j_{m}$$
 (6.106)

 J_m là quán tính của trục động cơ , $r_g{\geq}$ Iti số truyền tốc độ giữa động cơ và truc vít.

Còn có một mômen ma sát tí lệ với tốc độ trong hệ thống truyền động là momen ma sát nhớt. Mômen động cần thiết để gia tốc cho quần tính J_{ζ} và thắng ma sát nhớt và các tái tĩnh là:

$$T_d = J_s \frac{d\omega}{dt} + B\omega + T_{sr} \tag{6.107}$$

Ở đây, ω là vận tốc gốc của động cơ và B là hệ số ma sát nhớt. Chú ý, nếu cất với bước tiến nhỏ, thì không cần xét tác động của các lực vất (T_i) vào tải tĩnh (T_i) trong phương trình (6.106). Giá trị mômen định do động cơ cấp phải lớn hơn mômen động tính được từ (6.106). Nếu có giảm truyền động giữa trục động cơ và trục vít, mômen động tác động lên trục động cơ sẽ được giảm theo công thức (1.105) và (6.106).

Ví dụ 6.3: một máy phay đứng được trang bị với 3 động cơ ser vo DC tương tự nhau. Do tải trọng lớn nhất tác động lên trục ngang nên các động cơ được lựa chọn phù hợp theo mômen yêu cấu của trục này. Những tham số sau là dành cho truc truyền động chay đạo:

m_c=180kg –khối lượng bàn

m_w=200kg - khối lượng phôi lớn nhất

m₁ =8,15kg - khối lượng trục vít

h_e =0,00508m/vòng- bước của trục vít

d₀=0,0445m - đường kính trục vít

 J_m =2.373 x 10^3 kGm²- quán tính trực động cơ

r_e=1 - tỉ số số truyền

μ_{el}=0.1- hệ số ma sát trên các đường trượt

 μ_b = 0,005- hệ số ma sát của ổ đỡ

B=0.0 Nm/(rad/s)- hệ số giám chấn do nhớt

F₂=2000N Tực cắt lớn nhất theo chiều Z (vuông góc với mặt bàn)

F,=8000N - lưc ân dạo lớn nhất

F_p=5000N - lực gia tài trong gối chặn

f= 0.170m/s- tốc độ dịch chuyển lớn nhất

t,=0,1s-thời gian tăng tốc servo

Tinh toán:

Tải tình: Tải tĩnh tạo bởi các ma sát trong đường dẫn, theo (6.98) là:

$$T_{vt} = 0.1 \frac{0.00508}{2\pi} [(180 + 200)9.81 + 2000] = 0.4631 Nm$$

Mất mát mômen trong các gối do ma sát theo (6.99) là:

$$T_{bt} = 0.005 \frac{0.0445}{2} (5000 + 8000) = 1.4463 Nm$$

Mômen yêu cầu để vượt qua lực ăn đạo theo(6.100) là:

$$T_{\tau} = \frac{0.00508}{2\pi} 8000 = 6.4680 Nm$$

Mômen tổng hợp liên tục, yêu cầu cho động cơ (công thức 6.103) là:

$$T_{st} = \frac{0.4631 + 1.4463 + 6.4680}{1.0} = 8.3874Nm$$

Tải động: mômen quán tính của bàn và phôi tác động lên trục vít theo(6.104) là:

$$j_m = (180 + 200) \left(\frac{0.00508}{2\pi} \right)^2 = 2.484 \times 10^{-4} kGm^2$$

Quán tính của trực vít theo (6.105) là:

$$J_t = \frac{1}{2}8.15 \left(\frac{0.0445}{2}\right)^2 = 20.174 \times 10^{-4} kGm^2$$

Do động cơ nổi trực tiếp vào trục vít (tức $r_g=1$), mômen quán tính tổng

tác động lên trục động cơ (6.106) là:

$$J_e = 2.484 \times 10^{-4} + 20.174 \times 10^{-4} + 2.373 \times 10^{-3} = 4.64 \times 10^{-4} kGm^2$$

Gia tốc chạy thắng của bàn trượt được tính bằng cách chia tốc độ chạy dao nhanh với thời gian tăng tốc của động cơ:

$$\alpha_i = \frac{0.170}{0.1} = 1.70 m/s^2$$

Gia tốc góc của trục động cơ là:

$$\frac{d\omega}{dt} = \frac{\alpha_t}{(h_v / 2\pi)} \frac{0.17}{0.00508} 2\pi = 2103 rad / s^2$$

Mômen động yêu cấu theo (6.107) là:

$$T_d = 4.64 \times 10^{-3} kGm^2 \times 2103 rad / s^2 + (8.3874 - 6.468) Nm = 11.6773 Nm$$

Như vây, động cơ servo được chọn, phải có thể giữ mômen động 11,6773 Nm ít nhất trong khoảng thời gian 0,1s.

6.2.1.2. Các dụng cụ phản hồi

Có hai dụng cụ phán hổi cơ bán trong hệ thống điều khiển truyền động chạy dao: các cảm biến phán hồi tốc độ và vị trí. Thường máy đo tốc độ góc (tachometer) được sử dụng làm cảm biến tốc độ và bộ encoder được sử dụng làm cảm biến phán hồi vị trí.

Máy đo tốc độ góc (Tachometer)

Tachometer là một động cơ nam châm vĩnh cửu DC nhỏ, được lắp trực tiếp ở phía sau trục động cơ servo. Tachometer tạo một điện áp tỉ lệ thuận với tốc độ thực của trục động cơ. Nó có một hằng số tốc độ được đặt bởi nhà sán xuất và một hệ số khuếch đại cho phép điều chính vòng phán hồi tốc độ. Hàm truyền giữa tốc độ thực của động cơ và đầu ra mạch tachometer được cho bởi:

$$\frac{V_i(s)}{\omega(s)} = T_g H_g \tag{6.108}$$

Trong đó $V_s(s)$ là điện áp đầu ra của mạch tachometer, $\omega(s)$ là tốc độ gốc thực của trục động cơ. H_s là hằng số tachometer. T_s là hệ số phóng đại có thể điều chính và s là toán tử Laplace.

Encoder

Encoder được sử dụng làm cảm biến đo vị trí số trong truyền động servo.

Encoder dựa trên nguyên lí phát ánh sáng của diot quang (photodiode). Encoder có thể ở dạng đĩa hoặc thước thẳng, chứa các bằng tối và trong suốt. Anh sáng được phát từ diot quang từ một phía sang được phía bên kia chỉ ở bằng trong suốt. Cảm biến quang nhận và phát một tín hiệu logic (mã nhị phân, tuỳ thuộc vào số lượng các băng tôi và trong suốt được phát hiện ở các vị trí gia số của encoder). Các encoder thắng được sử dụng để đo vị trí thực của bàn máy còn encoder dạng đĩa thường được sử dụng để đo vị trí góc của trục động cơ. Trong gia công chính xác encoder thắng thường được dùng do kha năng do chính xác hơn vị trí thực của bàn máy. Tuy nhiên, nếu có khe hở trong hệ thống truyền động chay đạo, bàn -lấp với encoder thắng có thể tạo chu trình *giới han (limit cycle)* trong servo điều khiến vị trí. Vì các encoder đĩa lấp trực tiếp lên trực đồng cơ, nó không cầm nhân rơ đo vậy không sinh ra chu trình giới han không tuyến tính này . Các nhà sản xuất động cơ servo thường cũng cấp tachometer và các encoder lấp ở phía sau true động cơ ngày từ nơi sản xuất. Encoder được cũng cấp với *mật độ đường* vạch (line density) và kiểu của bộ giải mã. Ví dụ một encoder với mật độ 1000 vạch và mạch giải mã cấu phương sẽ sinh 4,000 xung qua một vòng quay của trục. Trong phân tích mạch phân hồi điều khiến vị trí, encoder được thể hiện qua hệ số K, (nhịp/rad hoặc nhịp/mm).

Ví dụ 6.4: Một encoder 1000 line với bộ giải mã cầu phương sử dụng làm cảm biến phân hồi vị trí trong một hệ thống điều khiến truyền động chạy đạo. Động cơ được nổi trực tiếp với trục vít, có bước 5.08mm. Hệ số encoder được tính như sau:

$$\begin{split} K_c &= \frac{4 \times 1000}{2\pi} (count / rad) \text{ , hoặc} \\ K_c &= \frac{5.08}{4000} = 0.00127 mm(0.00005 in) / count \end{split}$$

Như vậy một tín hiệu đếm (count) do encoder gửi tương ứng với 0,00127mm chuyển động thẳng của bàn. *Count* được sử dụng tương ứng với đơn vị chiều dài cơ sở của hệ thống servo điều khiến vị trí.

6.2.1.3. Thiết bị truyền động điện

Truyền động chạy dao có thể được cấp năng lượng bởi một trong các loại động cơ điện (bước, DC hoặc AC) hoặc động cơ thủy lực. Việc sử dụng động cơ phụ thuộc vào khá năng cấp monent và các yếu cấu đáp ứng - thời

gian của hệ truyền động của máy công cụ hoặc của robot.

Động cơ thuỷ lực được sử dụng khi hệ thống truyền dộng yêu cầu dải mômen rộng và đáp ứng nhanh. Động cơ thuỷ lực quay tròn (rotary hydraulic motor) thường được sử dụng trong các máy phay, tiện và rôbot công nghiệp hạng nặng. Các động cơ thủy lực chuyển động thẳng (linear hydraulic motor) với các hệ thống chuyển địch piston được sử dụng cho máy mài, máy bào và máy ép do có yêu cầu chuyển động qua lại. Nhược điểm của động cơ thủy lực là hiệu suất thấp, có khả năng rò dầu, nhạy cảm đối với dầu bẩn và giá bảo dưỡng cao.

Động cơ bước không được sử dụng trong hệ truyền động ăn dao có lực cắt cao. Chúng thường được sử dụng không có thiết bị phản hồi. Động cơ bước được điều khiển với các chuyển động bước góc, các bước này được gửi theo dạng xung điều khiển từ một máy tính. Ở thời điểm khởi động và hãm, khi mômen động yêu cầu lớn, động cơ bước có thể bỏ qua một số xung điều khiển vị trí. Vì không có thiết bị phản hồi nên loại động cơ này có thể không đảm bảo được độ chính xác gia công. Thường động cơ bước chỉ được sử dụng cho các máy CNC hạng nhẹ dùng để học tập hoặc các thiết bị vận chuyển vật liệu.

Động cơ xoay chiều AC thường được sử dụng trong máy CNC. Tốc độ của động cơ AC được điều khiển khi thay đổi tần số điện áp nguồn cấp. Vấn đề cơ bản là thiết kế các bộ biến đổi điện (inverter) giá thấp để thay đổi tần số nguồn cấp. Ngày nay công nghệ vi xử lí đã tạo khả năng tính toán các tần số được sử dụng trong inverter.

Động cơ thường dùng nhất trong máy CNC là động cơ DC vì chúng cho phép tốc độ hoạt động trong phạm vi rộng với mômen đủ lớn theo yêu cầu của máy công cu và các rôbot.

Sự phân tích và quá trình mô hình hoá động cơ AC và DC là tương tự nhau. Sau đây là những phân tích về động cơ DC để cung cấp kiến thức về điều khiển động cơ.

6.2.1.4. Động cơ DC nam châm vĩnh cữu, điều khiến phần ứng

Sơ đồ điện của động cơ DC nam châm vĩnh cửu được thể hiện ở hình 6.15. Tốc độ của động cơ được điều khiển bởi điện áp cấp U_c cho phần ứng (rôto) của động cơ, đến lượt phần ứng tạo ra một trường từ giữa rôto và stato (chú ý , dòng ở phần ứng không thể vượt khả năng cấp dòng max. của hệ

Hình6.15: Sơ đồ điện của động cơ DC

khuếch đại công suất). Giới hạn dòng được xem là không tuyến tính trong hệ điều khiển động cơ DC vì lúc tăng tốc hoặc hãm động cơ sẽ có dòng đỉnh, xuất hiện trong một thời gian cực ngắn. Dòng đỉnh và thời gian kéo dài nó được cho bởi các nhà sản xuất.

Trong một động cơ DC điều khiển phần ứng, thông lượng từ là bất biến trong khi điện áp phần ứng thay đổi. Trường từ sinh ra một môment, được sử dụng để quay rotor nối với trục của động cơ. Trong động cơ DC sinh ra trong mạch roto một suất điện động ngược (back e.m.v.), U_b tỷ lệ với tốc độ của roto.

Những phương trình động học cơ bản sau chi phối chuyển động của động cơ de.

Điện áp đặt vào phần ứng U_a , áp dụng luật Kirchoff vào mạch động cơ, ta có:

$$U_{a}(t) = R_{a}I_{a}(t) + L_{a}\frac{dI_{a}(t)}{dt} + K_{b}\omega(t)$$
 (6.109)

Trong đó: $\omega(\text{rad/s})$ là tốc độ góc; $I_a(A)$ là dòng phần ứng; $R_a(\Omega)$ là trở phần ứng; $L_a(H)$ là cảm phần ứng, $K_b(V/(\text{rad/s}))$ là hằng điện áp của động cơ và t(s) là thời gian.

Trường từ sinh ra một mômen động cơ hữu ích T_m , tỉ lệ thuận với dòng phần ứng, I_a :

$$T_m(t) = K I_d(t) \tag{6.110}$$

Mômen hữu ích được tạo bởi động cơ, dùng để tăng tốc quán tính trục, thắng ma sát trong các gối đỡ và các đường trượt, đối kháng với các lực cắt và các tải ma sát tác động như mômen lật lên trục động cơ, như vậy:

$$T_m(t) = J_c \frac{d\omega(t)}{dt} + B\omega(t) + T_s(t)$$
 (6.111)

Trong đó J_c mômen quần tính trục động cơ, B là ma sát tương đương (ma sát nhớt) và T_S là mômen lật tĩnh trên trục động cơ .

Hình 6.16: Sơ đổ khối của hệ thống điều khiển servo truyền động chạy dao a) các phần vật lị b) hàm truyền đặt

Lưu ý, mômen lật bao gồm thành phần ma sát và cắt. Mômen ma sát khô (ma sát Coulomb) đối kháng với tốc độ (ω). Hướng của tốc độ được xét trong biểu đồ khối (hình 6.16) sử dụng hàm sign là sgn. Trong phương trình (6.111), ma sát nhớt được cho là tỉ lệ với tốc độ. Tác động của mômen ma sát nhớt phụ thuộc vào kiểu đường trượt của máy công cụ, tỉ lệ tuyến tính với tốc độ và hằng số tỉ lệ B.

Sử dụng biến đổi Laplace công thức (6.109), (6.110) và (6.111) cho:

$$I_{n}(s) = \frac{V_{n}(s) - K_{n}\omega(s)}{L_{n}s + R_{n}}$$

$$T_{m}(s) = K_{t}I_{n}(s)$$

$$\omega(s) = \frac{T_{m}(s) - T_{S}(s)}{J_{n}s + B}$$
(6.112)

Các công thức này có các diễn giải vật lí. Hàm truyền của dòng ứng nhận điện áp sai lệch làm đầu vào. Điện áp sai lệch là chênh lệch giữa điện áp chuẩn cấp cho phần ứng U_a và suất điện động ngược (back e.m.v) tác dụng như một tín hiệu phản hồi). Đồng điện tổng hợp tạo nên mômen hữu ích $T_m(s)$. Một phần của mômen này được sử dụng để thắng mômen lật $T_s(s)$, phần còn lại để tăng tốc quán tính và vượt qua mômen masat nhờn. Hai tham số thiết kế quan trọng là:

$$\tau_v = \frac{L_u}{R_u}$$

$$\tau_m = \frac{J_v}{B}$$
(6.113)

 \vec{O} đây, τ_m là hằng số thời gian cơ học và τ_c là hằng số thời gian điện học của động cơ. Cá hai hệ số này được nhà sản xuất cấp trên cơ sở chỉ xem xét quán tính của trực động cơ và ma sát trong gối trực động cơ. Hệ số thời gian cơ của động cơ DC sẽ tăng đáng kể khi xét đến cả quán tính của bàn và hệ lắp rấp trực vít-bi.

Mạch khuếch đại công suất đồng cơ DC và vòng điều khiến tốc đô

Điện áp phần ứng được cấp bởi một mạch khuếch đại công suất. Mạch khuếch đại công suất nhận một điện áp DC lớn, giá trị không đối từ một máy biến thế, nơi chuyển điện áp đường AC thành điện áp DC mức yêu cầu. Mạch khuếch đại công suất trong đổ thị khối của vòng phản hổi tốc độ được thể hiện ở hình 6.16 là một mạch điều biến chiều rộng xung (PWM)- mạch

khuếch đại điều khiến dòng. Mạch khuếch đại công suất nhân tín hiệu điều khiển tốc độ U_i từ đầu ra bộ chuyển đổi số-tương tự của bộ điều khiến số. Trước hết U_i được lưu lại mạch tiền khuếch đại vì sai, với hệ số khuếch đại khá điều chỉnh, S_a . Đầu ra S_a được so với tín hiệu tốc độ thực, đo bởi hệ phản hồi đo vận tốc vòng (tachometer). Tính hiệu sai lệch tốc độ tổng (theo vôn) được mạch khuếch đại đồng (có hệ số khuếch đại K_t) chuyển thành dòng yêu cầu. Đa số các mạch khuếch đại dòng sử dụng tín hiệu phản hồi dòng ứng để cải thiện sự đáp ứng động lực của động cơ. Tín hiệu dòng điện phán hồi được kéo từ bộ nối cám nhận (sense coupler) nhận được so với dòng yêu cầu. Mạch điều biến độ rộng xung (PWM) sinh ra một diện áp DC thay đổi theo dạng răng cưa tại tần số nhất định. Tần số của PWM thường khoảng 10Khz. Tín hiệu sai lệch đồng được điều biến bởi mạch PWM, với hệ số điều biến K_i . Kết quả, điện áp kết quả DC trở thành dạng ON-OF, sóng vuông. Mức điện áp trung bình của dạng sóng (giá trị DC) được sử dụng làm điện áp phần ứng U_a trong tính toán. Sơ đồ khối toàn bộ của mạch khuếch đại , động cơ và hệ phản hồi tachometer được thể hiện ở hình 5.16a.

Sơ đồ khối được thể hiện với các biến trạng thái nhất thời để minh hoạ sự bắt nguồn hàm truyền vòng phản hồi tốc độ. Các mối quan hệ sau có thể biểu diễn từ sơ đồ khối sử dụng các trạng thái nhất thời U_t , U_2 , và U_3 :

$$U_{z}(s) = S_{z}U_{z}(s) - T_{z}H_{z}\omega(s)$$
 (6.114)

$$U_{2}(s) = K_{total}U_{1}(s) - K_{a}I_{a}(s)$$

$$= K_{t}S_{a}V_{c}(s) - K_{t}T_{a}H_{a}\omega(s) - K_{a}I_{a}(s)$$
(6.115)

$$U_{3}(s) = K_{v}U_{2}(s) - K_{b}\omega(s)$$

$$= K_{t}K_{t}S_{g}U_{e}(s) - (K_{t}K_{t}T_{g}H_{g} + K_{b})\omega(s) - K_{t}K_{u}I_{u}(s)$$
(6.116)

Hàm truyền giữa đồng và trạng thái U_3 là:

$$I_a(s) = \frac{U_3(s)}{L_a s + R_a} \tag{6.117}$$

Thay giá trị U₃ vào biểu thức dòng, ta có:

$$I_{a}(s) = \frac{K_{U}K_{I}S_{g}}{L_{a}s + R_{a} + K_{U}K_{a}}V_{c}(s) - \frac{K_{U}K_{I}T_{g}H_{g} + K_{b}}{L_{a}s + R_{a} + K_{U}K_{a}}\omega(s)$$
(6.118)

Hàm truyền cơ học của động cơ theo (6.112) là:

$$\omega(s) = \frac{T_m(s) - T_S(s)}{J_c s + B}$$
 (6.119)

Hoặc:

$$\omega(s) = \frac{K_e}{J_e s + B} I_a(s) - \frac{1}{J_e s + B} T_S(s)$$
 (6.120)

Thay biểu thức của đồng điện (6.118) vào (6.120), hàm truyền giữa tốc độ đầu ra- ω , điện áp đầu vào - U_c và mômen lật - T_d là:

$$\omega(s) = \frac{K_{\perp}}{s^2 + K_2 s + K_3} U_c(s) - \frac{(1/J_c)[s + (R_a + K_v K_a)/L_a]}{s^2 + K_2 s + K_3} T_s(s) \quad (6.121)$$

Trong đó:

$$K_1 = \frac{K_t S_g K_t K_{tt}}{L_a J_c} \tag{6.122}$$

$$K_2 = \frac{B}{J_E} + \frac{R_a + K_U K_u}{L_u} \tag{6.123}$$

$$K_{3} = \frac{B(R_{a} + K_{tr}K_{a}) + K_{t}(K_{b} + H_{g}T_{g}K_{tr}K_{t})}{J_{e}L_{a}}$$
(6.124)

Bộ điều khiến tốc độ servo truyền động ăn đạo được thiết kế để có thời gian tăng tốc nhanh với lượng quá điều chỉnh 0 (zero overshoot) tại các thay đổi tốc độ theo dạng bậc. Phân tích vòng phản hồi tốc độ như là hàm của điện áp đầu vào điều khiến tốc độ $-U_C$, hàm truyền, phương trình (6.121) có thể được biểu diễn như:

$$\frac{\omega(s)}{U_{C}(s)} = \frac{K_{\perp}}{s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2}}$$
(6.125)

Ở đây tần số tự nhiên ω_a và hệ số giảm chấn ξ của vòng tốc độ được định nghĩa là:

$$\omega_n = \sqrt{K_3} \text{ [rad/s]} \tag{6.126}$$

$$\xi = \frac{K_2}{2\sqrt{k_3}} < 1 \tag{6.127}$$

Trong đó K_1 , $K_2 > 0$. Đáp ứng bậc thang miền thời gian của servo tốc độ giảm chấn yêú (underdamped verlocity servo) được thể hiện là:

$$\omega(t) = U_{c} \frac{K_{1}}{K_{3}} \left[1 - \frac{e^{-\frac{2}{5}\omega_{n}t}}{\sqrt{1 - \xi^{2}}} \sin(\omega_{n}t + \phi) \right]$$
 (6.128)

Ở đây, tần số tự nhiên giảm chấn ω_d và chuyển dịch pha ϕ được xác định:

$$\omega_d = \omega_n \sqrt{1 - \xi^2} \tag{6.129}$$

$$\phi = \tan^{-1} \omega_n \left(\frac{\sqrt{1 - \xi^2}}{\xi} \right) \tag{6.130}$$

Hinh6.17: Đáp ứng bước nhảy của hệ thống không giảm chấn bậc hai (τ-hằng thời gian, t_p - thời gian đỉnh, t_r-thời gian tăng tốc, M_p-lượng quá điều chỉnh) gian của phương trình (6.128):

Các hệ số biến thiên của mạch khuếch đại (tức S_{μ} , T_{μ} , K_{I}, K_{V}) được điều chính để có hệ số khuếch đại vòng tốc đô yêu cầu và các đặc tính đáp ứng bậc thang như hình 6.17. Khi đầu vào mạch khuếch đại là bậc đơn vị (tức $U_c=I$), đáp max, của vòng tốc độ xẩy ra tại thời gian t_p , lúc đạo hàm tốc đô bằng $(d\omega_n(t)/dt = 0)$. Tai lần vươt mức đầu tiên ,có thể thu được biểu thức sau từ đạo hàm thời

$$t_p = \frac{\pi}{\omega_d} \tag{6.131}$$

Các giá trị thiết kế đặc trưng cho động cơ servo chạy dao là tỉ số giảm chấn ξ =0,707 và thời gian đính t_p=10ms. Tần số tự nhiên ω_n có thể xác định từ công thức (6.131) như sau:

$$\omega_n = \frac{\pi}{t_p \sqrt{1 - \xi^2}} = 554 \text{ rad/s} = 88 \text{Hz}$$
 (6.132)

Các tham số servo tương ứng được xác định khi thay giá trị ξ và ω_n vào công thức (6.126, 6.127).

6.2.1.5. Vòng điều khiển vị trí (position control loop)

Vòng điều khiến vị trí bao gồm một mạch đếm hai chiều (up-down counter), một encoder, một phin lọc bù số (digital compensation filter) và một mạch chuyển đổi số- tương tư (digital to analog converter).

Mach dém hai chiều (up- down counter)

Thanh ghi đếm hai chiều nhận số đếm (counts) điều khiến và vị trí đo dược. Điều khiến định vị gia tăng trong khi encoder phán hồi các số đếm, giám dần lượng trong mạch đểm hai chiều. Nội dung tức thời của bộ đếm thế hiện sai lệch vị trí tích luỹ trong khoảng thời gian T điều khiến servo số. Biểu diễn sơ đồ khối của mạch đếm hai chiều là:

$$\frac{X_a(s)}{\omega(s)} = \frac{K_c}{s} \tag{6.133}$$

Mach loc bù số (digital compensation filter)

Nội dung của mạch đếm hai chiều và sai lệch vị trí được lấy mẫu cứ sau T giây. Sai lệch vị trí riêng biệt E(k) là chênh lệch giữa vị trí chuẩn và vị trí hiện thời của bàn: $E(k)=X_a(k)-X_a(k)$, trong đó: $X_a(k)$ - vị trí tham chiếu riêng biệt, $X_a(k)$ - vị trí hiện thời và z- toán từ dịch chuyển thuận thời gian gián đoạn.

Sai lệch từ bộ lọc số, có hàm truyền đặc trưng dạng:

$$D(z) = K_p \frac{z + a}{z + b} \tag{6.134}$$

Với K_p là hệ số khuếch đại của mạch lọc điều khiến vị trí, a là 0 của mạch lọc, b là cực của mạch lọc.

Mạch lọc số là khá trình và nằm trong máy tính điều khiến chuyển động servo. Các tham số lọc được điều chỉnh để cấp một đáp ứng quá độ theo yêu cầu của hệ thống điều khiển vị trí.

Bộ chuyển đổi số - tương tự (Digital to Analog (D/A) converter)

Máy tính điều khiến dịch chuyển, gửi tính hiệu đầu ra mạch lọc số đến mạch chuyển đổi D/A của máy tính. Bộ chuyển đổi D/A được mô hình hoá như là một mạch giữ bậc 0 (ZOH) và mạch hệ số khuếch đại K_d . Hệ số khuếch đại của D/A được xác định:

$$K_d = \frac{\text{Vùng điện áp của Chip D/A}}{2^{nb}}$$
 (6.135)

Trong đó, nh là số bit chip được D/A dùng trong chuyển đổi một số nhị phân sang điện áp tương tự. Ví dụ, một chip chuyển đổi D/A 12 bit với vùng điện áp ± 10 V có hệ số K_a bằng:

$$K_d = \frac{20V}{2^{12}} = 0.00488(V / count)$$

6.2.2. Hàm truyền của vòng (loop) vị trí

Sơ đồ khối của toàn hệ thống điều khiến vị trí có thể sắp xếp như hình 6.16. Hệ thống có các thành phần liên tục và gián đoạn. Phần liên tục của hàm truyền hệ thống được thể hiện trong miền Laplace là:

$$G_{c}(s) = \frac{K_{1}}{s^{2} + K_{2}s + K_{3}} \frac{K_{c}}{s}$$
 (6.136)

Tín hiệu điều khiển tốc độ U_C của bộ điều khiển chuyến động số (digital motion control unit) được đặt vào mạch khuếch đại công suất tại các khoảng thời gian T theo đường qua bộ chuyển đổi D/A với hệ số khuếch đại K_{x} . Đương lượng duy trì bậc zero - $G_{c}(s)$ cho thời gian lấy mẫu một miligiây là:

$$G_v(z) = K_d(1+z^{-1}) \Im \left[\frac{G_v(s)}{s} \right]$$
 (6.137)

Công thức này sau khi chuyển đổi z trở thành:

$$G_c(z) = \frac{K_d K_1 K_c}{K_3} \frac{b_2 z^2 + b_1 z + b_0}{(z - 1)(z^2 + a_1 z + a_0)}$$
(6.138)

Với $z=e^{xt}$. Biểu thức xác định các tham số của $G_{\epsilon}(z)$, là::

$$b_2 = T - \frac{1}{\omega_d} e^{-\frac{\xi \omega_n t}{2}} \sin(\omega_d T) - \frac{K_2}{K_3} \left\{ 1 - e^{-\frac{\xi \omega_n t}{2}} \left[\frac{\xi \omega_n}{\omega_d} \sin(\omega_d T) + \cos(\omega_d) \right] \right\}$$
(6.139)

$$b_{1} = 2e^{-\frac{\xi\omega_{n}T}{\omega_{d}}} \left[\frac{\sin(\omega_{d}T)}{\omega_{d}} - T\cos(\omega_{d}T) \right] + \frac{K_{2}}{K_{3}} (1 - e^{-2\xi\omega_{n}T}) - 2e^{-\xi\omega_{n}T} \sin(\omega_{d}T) \frac{K_{2}}{K_{3}} \frac{\xi\omega_{n}}{\omega_{d}}$$
(6.140)

$$b_0 = Te^{-2\xi\omega_n T} + \frac{1}{\omega_d} e^{-\xi\omega_n T} \sin(\omega_d T) + \frac{K_2}{K_3} \left\{ e^{-2\xi\omega_n T} + e^{-\xi\omega_d T} \left[\frac{\xi\omega_n}{\omega_d} \sin(\omega_d T) + \cos(\omega_d T) \right] \right\}$$
(6.141)

$$a_1 = -2e^{-\frac{\xi w_a T}{2}}\cos(\omega_a T)$$

$$a_0 = -e^{-2\xi w_a T}$$
(6.142)

Sơ đổ khối dơn giản hoá tương đương hệ thống

Hình 6.18 vòng điều khiển vị trí thời gian gián đoạn

điều khiến vị trí gián đoạn được thể hiện ở hình 6,18 Hàm truyền của vòng lặp kín của hệ thống điều khiến truyền động chạy đao là:

$$G_{cl}(z) = \frac{X_u(k)}{X_L(z)} = \frac{D(z)G_c(z)}{1 + D(z)G_c(z)}$$
(6.143)

Hoāc:

$$G_{cl}(z) = K_{cl} \frac{z^3 + \beta_2 z^2 + \beta_1 z + \beta_0}{z^4 + \alpha_2 z^3 + \alpha_2 z^2 + \alpha_1 z + \alpha_0}$$
(6.144)

Các tham số của hàm truyền vòng lặp đóng, $G_{ij}(z)$ sẽ là:

$$\beta_2 = \frac{b_1 + ab_2}{b_2} \tag{6.145}$$

$$\beta_1 = \frac{b_0 + ab_1}{b_2} \tag{6.146}$$

$$\beta_0 = \frac{ab_0}{b_2} \tag{6.147}$$

$$\alpha_3 = \frac{K_1 K_p K_d K_p}{K_3} b_2 + b + a_1 - 1 \tag{6.148}$$

$$\alpha_2 = \frac{K_1 K_c K_d K_p}{K_3} (b_1 + ab_2) + b(a_1 - 1) + a_0 - a_1$$
 (6.149)

$$\alpha_1 = \frac{K_1 K_c K_d K_p}{K_3} (b_0 + ab_1) + b(a_a - a_1) - a_0$$
 (6.150)

$$\alpha_0 = \frac{K_1 K_c K_d K_p}{K_2} a b_0 - b a_0 \tag{6.151}$$

$$K_{ef} = \frac{K_1 K_2 K_3 K_2 p_2}{K_1}$$
 (6.152)

Hàm truyền (công thức 6.144) có thể được biểu diễn khi sử dụng toán từ dịch chuyển thời gian ngược z^{+} bằng nhân cá từ và mẫu với z^{4} , như vậy:

$$G_{cl}(z^{-1}) = K_{cl} \frac{z^{-1} + \beta_2 z^{-2} + \beta_1 z^{-3} + \beta_0 z^{-4}}{1 + \alpha_3 z^{-1} + \alpha_2 z^{-2} + \alpha_1 z^{-3} + \alpha_0 z^{-4}}$$
(5.153)

Với z^{T} là toán tử dịch chuyển ngược thời gian, tác động lên các tín hiệu gián đoạn theo:

$$z^{-1}x(kT) \approx x[(k-1)T] \tag{6.154}$$

Trong đó: T là khoảng thời gian lấy mẫu gián đoạn, x(kT) là các giá trị gián đoạn của x tại thời gian lấy mẫu k.

Với mọi tín hiệu đầu vào thời gian rời rạc $X_r(kT)$ cho trước, đấp ứng vị trí $X_u(kT)$ tìm được khi sắp xếp lại hàm truyền $G_{cl}(z^{-1})$ là:

$$\begin{split} X_a(k) &= -(\alpha_3 z^{-1} + \alpha_2 z^{-2} + \alpha_1 z^{-3} + \alpha_0 z^{-4}) X_a(z^{-1}) \\ &+ K_{ct}(z^{-1} + \beta_2 z^{-2} + \beta_1 z^{-3} + \beta_0 z^{-4}) X_r(z^{-1}) \end{split} \tag{6.155}$$

Lưu ý, vòng điều khiển vị trí có thể được phân tích trong miền thời gian (s) liên tục như là một giải pháp cho miền thời gian (z) gián đoạn. Tuy nhiên giải pháp này yêu cầu thực hiện xấp xỉ hàm mạch lọc số (digital filter) D(z) trong miền s. Một trong những phép xấp xỉ thường dùng là z = (1+sT/2)/(1-sT/2), được gọi là phép biến đổi song tuyến Tustin (Tustin's bilinear transformation). Hàm mạch lọc số D(s) tương ứng khi đó là:

$$D(s) = K_p \frac{s + a^2}{s + b^2}$$
 (6.156)

Với
$$K_p = K_p \frac{1-a}{1-b}; \quad a = \frac{2}{T} \frac{1+a}{1-a}; \quad b = \frac{2}{T} \frac{1+b}{1-b}$$
 (6.157)

Hoặc:
$$K_p = K_p \frac{1-b}{1-a}$$
; $a = \frac{Ta^2 - 2}{Ta^2 + 2}$; $b = \frac{Tb^2 - 2}{Tb^2 + 2}$ (6.158)

Trong trường hợp này, hàm truyền mạch đóng của vòng vị trí trong miền Laplace trở thành:

$$G_{et}(s) = \frac{D(s)K_dG_e(s)}{1 + D(s)K_dG_e(s)}$$
(6.159)

Sai số-tiếp theo (following- error)trong hệ thống CNC

Có hai đặc tính điển hình yêu cầu cho servo chạy dao:

- Có được đáp ứng quá độ, mịn để tránh dao động đường chạy dao khi thay đổi tốc độ.
- Tối thiểu sai lệch vị trí ở trạng thái ổn định, gọi là sai số-tiếp theo (following- error), để đạt được độ chính xác cắt biên dạng đa trục.

Khi gia công biên dạng ở trạng thái ổn định với tốc độ ăn dao f_c , vị trí chuẩn được biểu diễn là một đầu vào đốc (ramp):

$$X_c(kT) = f_c \cdot kT \tag{6.160}$$

Với k là nhịp lấy mẫu (sampling counter). Trong miền z, tín hiệu điều khiển độ đốc được thể hiện là:

$$X_r(k) = f_c \frac{Tz}{(z-1)^2}$$
 (6.161)

Sai số-tiếp theo e_{ss} tương ứng khi đó là:

$$e_{SS} = \lim_{z \to 1} \frac{f_z Tz}{(z-1)D(z)G_z(z)}$$
 (6.162)

Thay phương trình (6.134), (6.137), và (6.160) vào (6.162), ta có biểu thức tham số cho sai số- tiếp theo trong bộ truyền động chạy dao là:

$$e_{ss} = \frac{f_c K_3 (1+b)}{K_1 K_e K_p K_d (1+a)}$$
(6.163)

Như vậy, nếu hệ số khuếch đại hàm truyền vòng mở (open loop) $D(z)G_c(z)$ lớn hơn, thì sai số-tiếp theo sẽ nhỏ hơn, đó là sự mong muốn cho các nguyên công gia công biên dạng với nhiều trục. Tuy nhiên khả năng nâng cao hệ số khuếch đại vòng mở bị giới hạn bởi quán tính của hệ truyền động cơ khí và các giới hạn mômen của động cơ và mạch khuếch đại . Kỹ sư điều khiển phải điều chỉnh các tham số điều khiển số để đạt được một đáp ứng servo truyền động chạy dao tối ưu mà không gây nên bất cứ dao động hoặc lượng quá điều chỉnh nào.

Sai số-tiếp theo ở trạng thái ổn định được xác định khi sử dụng hàm truyền trong miền thời gian liên tục là:

$$e_{SS} = \lim_{s \to 0} s \frac{f_c}{s^2 [D(s) K_s G_a(s)]}$$
 (6.164)

Với $G_r(s)$ và D(s) cho trong công thức (6.136) và (6.156).

6.2.3. Mô hình không gian trạng thái của hệ thống truyền động chạy dao

Một mô hình không gian trạng thái cho servo truyền động chạy dao được sử dụng để thử mô hình nhận được khi sử dụng dữ liệu đáp ứng miền thời gian đo được. Để mô hình hoá trong không gian trạng thái, servo được chia thành các vùng liên tục và gián đoạn.

Phần liên tục của hệ thống bao gồm vòng điều khiển tốc độ (velocity control loop), phương trình (6.136) và mạch đếm hai chiều phương trình (6.133). Ba trạng thái: dòng ứng I_a , tốc độ góc ω và vị trí hiện thời X_a - được tìm như sau.

Từ hình 6.16, điện áp phần ứng được biểu diễn là:

$$U_{\sigma} = K_{U} \left[K_{I} (S_{\sigma} U_{r} - T_{\sigma} H_{\sigma} (\omega) - K_{\sigma} I_{\sigma} \right]$$
 (6.165)

Thay phương trình (6.109) vào (6.165), ta có:

$$\frac{dI_a}{dt} = -\frac{K_U K_a + R_a}{L_a} I_a - \frac{K_b + K_U K_I T_g H_g}{L_a} \omega + \frac{K_U K_I S_g}{L_a} U_c$$
 (6.166)

Khử mômen động cơ T_m bằng thay (6.110) vào (6.111), cho:

$$\frac{d\omega}{dt} = \frac{K_t}{J_c} I_a - \frac{B}{J_c} \omega - \frac{1}{J_c} T_s \tag{6.167}$$

Biến đổi Laplace ngược cho hàm truyền của mạch đếm hai chiều và encoder (phương trình 6.133) cho:

$$\frac{dX_{u}(t)}{dt} = K_{v}\omega(t) \tag{6.168}$$

Phương trình trạng thái (6.166 ÷6.168) có thể tổ chức theo dạng không gian trạng thái chuẩn:

$$x_c(t) = A_c x_c(t) + B_c u_c(t)$$
 (6.169)

Trong đó, vectơ trạng thái $(x_c(t))$ và vectơ đầu vào $(u_c(t))$ được xác định là:

$$x_c(t) = \begin{bmatrix} I_a(t) \\ \omega(t) \\ X_a(t) \end{bmatrix} \qquad u_c(t) = \begin{bmatrix} V_c(t) \\ T_S(t) \end{bmatrix}$$

$$(6.170)$$

Và A_c và B_c là các ma trận bất biến:

$$A_{r} = \begin{bmatrix} -\frac{K_{tr}K_{a} + R_{u}}{L_{a}} & -\frac{K_{h} + K_{tr}K_{t}T_{g}H_{g}}{L_{a}} & 0\\ -\frac{K_{t}}{J_{r}} & -\frac{B}{J_{c}} & 0\\ 0 & K_{r} & 0 \end{bmatrix}$$
(6.171)

$$B_{c} = \begin{bmatrix} \frac{K_{I^{c}} K_{J} S_{g}}{L_{u}} & 0\\ 0 & -\frac{1}{J_{r}}\\ 0 & 0 \end{bmatrix}$$
 (6.172)

Phương trình trạng thái (6.169) thể hiện phần liên tục của hệ thống servo truyền động chạy dao. Phương trình này có nghiệm tương ứng rời rạc đối với khoảng thời gian quan sát T như sau:

$$x_c(k+1) = \phi(T)x_c(k) + H(T)u_c(k)$$
(6.173)

Trong đó, các vectơ trạng thái và vectơ đầu vào tại khoảng lấy mẫu k được xác định là:

$$x_{c}(k) = \begin{bmatrix} I_{a}(k) \\ \omega(k) \\ X_{a}(k) \end{bmatrix} \qquad u_{c}(k) = \begin{bmatrix} U_{c}(k) \\ T_{s}(k) \end{bmatrix}$$

$$(6.174)$$

$$\Phi(T) = e^{A_c T} = \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{bmatrix}$$
(6.175)

$$H(T) = \int_{0}^{T} e^{A_{c}T} dt \cdot B_{c} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \\ h_{31} & h_{32} \end{bmatrix}$$
 (6.176)

Ma trận $\Phi(T)$ được tính toán từ các giá trị riêng của ma trận A_C hoặc dãy Talor mở rộng cho đương lượng thời gian gián đoạn của hệ thống thời gian liên tục. Do khoảng lấy mẫu (T) nhỏ. 3 số hạng đầu tiên của xấp xỉ dãy Taylor được cho là đủ cho nhiều ứng dụng:

$$\Phi(T) = e^{A_c T} = [I] + [A]T + [A^2] \frac{T^2}{2!} + \dots$$
 (6.177)

Các thành phần thời gian gián đoạn của vòng điều khiển vị trí gồm mạch lọc digital -D(z) và hệ số khuếch đại $-K_d$ của bộ chuyển đổi D/A. Tín hiệu điều khiển tốc đô biểu diễn trong miền z là:

$$U_{c}(k) = K_{p} \frac{z+a}{z+b} K_{d} [X_{r}(k) - X_{a}(k)]$$
(6.178)

Phương trình này có thể sắp xếp lại:

$$U_c(k) = K_p K_d [X_r(k) - X_a(k)] + U_d(k)$$
(6.179)

Trong đó:

$$U_d(k) = K_p K_d \frac{a - b}{a + b} [X_r(k) - X_u(k)]$$
 (6.180)

Các biến mới U_c và U_d có thể xem là *trạng thái thứ tư* tương ứng. Sau khi sắp xếp lại phương trình (6.180) và (6.178), lấy biến đổi ngược z của chúng, ta có được các phương trình trạng thái thời gian-gián đoạn (discrete-time state) như sau:

$$U_d(k+1) = -bU_d(k) + K_n K_d(a-b)[X_r(k) - X_n(k)]$$
(6.181)

$$U_r(k) = K_p K_d [X_r(k) - X_u(k) + U_d(k)]$$
(6.182)

Phương trình trạng thái thời gian rời rạc (6.180), (6.181) có thể kết hợp với phương trình trạng thái (6.174), thể hiện sự tương đương thời gian rời rạc của phần liên tục của động cơ servo chạy dao. Sắp xếp đại số ta có phương trình trang thái hoàn chính cho động cơ servo chay dao:

$$x(k+1) = G(T).x(k) + \Gamma(T).u(k)$$

$$y(k) = C, x(k) + D, u(k)$$
 (6.183)

Trong đó vectơ trạng thái, đầu vào và đầu ra được định nghĩa tương ứng là:

$$x(k) = \begin{bmatrix} V_{a}(k) \\ I_{a}(k) \\ \omega(k) \\ X_{a}(k) \end{bmatrix}; \qquad u(k) = \begin{bmatrix} X_{r}(k) \\ T_{s}(k) \end{bmatrix}; \qquad y(k) = \begin{bmatrix} K_{c}(t) \\ I_{a}(k) \\ \omega(k) \\ X_{a}(k) \end{bmatrix}$$
(6.184)

Ma trận trạng thái G(T), ma trận đầu vào $\Gamma(T)$, ma trận đầu ra $C_s(T)$, và ma trận chuyển đổi $D_s(T)$ được xác định theo thứ tự sau:

$$G(T) = \begin{bmatrix} -b & 0 & 0 & -K_{p}K_{d}(a-b) \\ h_{11} & \phi_{11} & \phi_{12} & \phi_{13} - h_{14}K_{p}K_{d} \\ h_{21} & \phi_{24} & \phi_{22} & \phi_{23} - h_{21}K_{p}K_{d} \\ h_{34} & \phi_{34} & \phi_{32} & \phi_{33} - h_{31}K_{p}K_{d} \end{bmatrix}; \quad \Gamma(T) = \begin{bmatrix} K_{p}K_{d}(a-b) & 0 \\ h_{11}K_{p}K_{d} & h_{12} \\ h_{21}K_{p}K_{d} & h_{22} \\ h_{31}K_{p}K_{d} & h_{32} \end{bmatrix};$$

$$C_{s} = \begin{bmatrix} 1 & 0 & 0 & -K_{p}K_{d} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \quad D_{s} = \begin{bmatrix} K_{p}K_{d} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(6.185)$$

Vectơ đầu ra y(k) cho đường truy xuất- nhập 3 tham số động lực hữu ích trong servo chạy dụng cụ, đó là dòng ứng, tốc độ góc và vị trí của bàn đối với một điều khiển vị trí cho trước và mômen cắt tác dụng. Những trạng thái khác trong hệ thống điều khiển có thể tìm được bằng cách nhân chúng với các hệ số khuếch đại thích hợp, theo sơ đồ khối thể hiện ở hình 6.16.

PHŲ LŲC

BIẾN ĐỔI LAPLACE

1. Biến đổi Laplace cơ bản

Ví dụ 1: Để xem xét biến đổi một đại lượng từ miền thời gian vào trong miền -s, xét một hàm, có giá trị hằng số ,1 cho thời gian lớn hơn 0, tức f(t)=1 với t ≥0. Điều kiện này mièu tả một hàm bậc thang đơn vị, như thể hiện ở hình Ph.1. Khi đó biến đổi Laplace là:

$$\mathbb{C}\{f(t)\}=F(s)=\int_{0}^{\infty}1e^{-st}f(t)dt=\frac{1}{s}\left[e^{-st}\right]_{0}^{\infty}$$

Với t=∞ giá tri của e^{-∞} bằng 0 và với t=0 → e⁻⁰=-1, khi đó:

$$F(s) = \frac{1}{s}$$

Ví dụ 2: Xác định biến đổi Laplace hàm e^{at} với a là hằng số. Biến đổi Laplace của f(t)=e^{at} là:

$$F(s) = \int_{0}^{\infty} e^{at} e^{-st} dt = \int_{0}^{\infty} e^{-(s-a)t} dt = -\frac{1}{s-a} \left[e^{-(s-a)t} \right]_{0}^{\infty}$$

Khi t= t= ∞ , $\left[e^{-(v-u)t}\right] \rightarrow 0$ và khi t=0, nó =-1, nên:

$$F(s) = \frac{1}{s - a}$$

2. Hàm tín hiệu vào dạng bậc đơn vị và xung lực

Các tín hiệu vào hệ thống thường ở dạng bậc thang đơn vị và xung lực.

Hàm bậc đơn vị

Hình Ph.1 thể hiện đồ thị của một hàm bậc đơn vị, bậc xuất hiện tại t=0, có phương trình:

Hàm bậc miêu tả đại lượng thay đổi từ 0 đến một giá trị tựa như điện áp, đặt vào một mạch điện khi bất thình linh đóng điện.

Như vậy, hàm bậc đơn vị không thể miêu tả bằng hàm f(t)=1, vì hàm này thể hiện là một hàm có giá trị 1 tại tất cả các giá trị của t, (cả dương lẫn âm). Hàm bậc đơn vị chuyển từ 0 đến +1 tại t=0, thường được miêu tả bởi u(t) hoặc H(t) (H tên người khởi xướng

0 t

Hình Ph.1 : Hàm bậc đơn vị

hàm này O. Heaviside, vì vậy đôi khi người ta gọi đó là hàm Heaviside).

Biến đổi Laplace cho hàm bậc đơn vị là:

$$F(s) = \frac{1}{s}$$

Biến đổi Laplace cho một hàm bậc có chiều cao a là:

$$F(s) = \frac{a}{s}$$

Hàm xung lực

Xét một xung chữ nhật có kích thước 1/k xẩy ra tại thời điểm t=0, chiều rộng xung bằng k,, tức diện tích xung là 1. Hình Ph.2 thể hiện xung này, có thể miêu tả là:

$$f(t) = \frac{1}{k} \text{ v\'oi } 0 \le t \le k$$
$$f(t) = 0 \text{ v\'oi } t \ge k$$

Hình Ph.2 : Hàm xung vuông

Nếu giữ điện tích xung bằng 1, nhưng giảm chiều rộng của xung (giảm k), chiều cao sẽ tăng, như vậy khi k \rightarrow 0 xung này tiến tới một đường thẳng đứng tại t=0 với chiều cao của đồ thị tiến đến vô cực. (hình Ph.3) . Một biểu đồ như vậy được sử dụng để thể hiện một xung lực (xung nhọn).

Gọi là một xung lực đơn vị nếu điện tích bao bởi xung bằng 1. Hàm này được thể hiện là δ(t), hàm xung lực đơn vị (unit impulse function) hoặc hàm Dirac –delta.

Biến đổi Laplace cho xung chữ nhật đơn vị trong hình Ph.3 được cho bởi:

$$F(s) = \int_{0}^{\infty} f(t)e^{-st}dt = \int_{0}^{k} \frac{1}{k}e^{-st}dt + \int_{k}^{\infty} 0e^{-st}dt = \left[-\frac{1}{sk}e^{-st} \right]_{0}^{k} = -\frac{1}{sk}(e^{-sk} - 1)$$

Để thu được biến đổi Laplace cho xung lực đơn vị ta cần tìm ra giá trị của kết quả trên khi k→0. Điều này có thể thực hiện được khi mở rộng thành phần có số mũ thành dãy số:

$$e^{-sk} = 1 - sk + \frac{(-sk)^2}{2!} + \frac{(-sk)^3}{3!} + \dots$$

Có thể viết lai thành:

$$F(s) = 1 - \frac{sk}{2!} + \frac{(sk)^2}{3!} + \dots$$

Giới hạn của dãy trên (biến đổi Laplace) tiến đến 1khi k→0.

$$\mathbb{C}\{\delta(t)\}=1$$

Diện tích của xung đơn vị là 1 nên có thể định nghĩa kích thước của xung này là 1. Nếu một xung lực có kích thước a, thì hàm sẽ được thể hiện bởi $a\delta(t)$ và biến đổi Laplace sẽ là:

$$\mathbb{C}\{a\delta(t)\}=a$$

3. Các biến đổi Laplace chuẩn

Xác định biến đổi Laplace cho các hàm không nhất thiết phải đánh giá các tích phân vi đã có bảng lập sẵn các biến đổi Laplace cho các hàm thường gặp. Những hàm này kết hợp với kiến thức về đặc tính biến đổi (xem phần tiếp theo) tạo khả năng giải quyết những vấn để thường xẩy ra thực tế. Bảng Ph.1 liệt kê một số hàm thời gian thường gặp và biến đổi Laplace của chúng:

Bảng Ph.1 biến đổi Laplace:

		Bang Fil. I bleft dol Laplace.
TT	Hàm thời gian f(t)	Biến đổi Laplace F(s)
1	Xung đơn vị, δ(t)	1
2	Xung đơn vị bị trễ, δ(t-T)	e ^{-sT}
3	Bậc đơn vị, u(t)	$\frac{1}{x}$
4	Bậc đơn vị trễ, u(t-T)	$\frac{e^{-sT}}{s}$
5	Dốc đơn vị, t	$\frac{1}{s^2}$
6	Đốc bậc n, t ⁿ	$\frac{n!}{s^{n+1}}$
7	Phân rã theo luật số mũ, e-at	$\frac{1}{s+a}$
8	Tăng trưởng theo luật số mũ, 1-e-at	$\frac{a}{s(s+a)}$
9	te ^{-ai}	$\frac{1}{(s+a)^2}$
10	t ⁿ e- ^{at}	$\frac{n}{s^2(s+a)}$
11	$t - \frac{1 - e^{-at}}{a}$	$\frac{a}{s^2(s+a)}$
12	e ^{-at} -e ^{-bt}	$\frac{b-a}{(s+a)(s+b)}$
13	(1-at)e ^{-at}	$\frac{s}{(s+a)^2}$

Tiếp bảng Ph.1

$15 \frac{a}{(b-a)}$	$\frac{b}{(c-a)}e^{-at} + \frac{a}{b-a}e^{-bt} = \frac{e^{-at}}{a(c-a)(a-b)} + \frac{e^{-at}}{(a-c)(b-c)}$	$\frac{ab}{s(s+a)(s+b)}$ $\frac{1}{(s+a)(s+b)(s+c)}$
16 Sóng		
	sin, sinωt	$\frac{\omega}{s^2 + \omega^2}$
17 sòng	cosin, cosωt	$\frac{s}{s^2+\omega^2}$
18 Sòng	sin tắt dần, e ^{-al} sinωt	$\frac{\omega}{(s+a)^2+\omega^2}$
19 Sóng	cosin tắt dần, e ^{-al} cosωt	$\frac{s+a}{(s+a)^2+\omega^2}$
20 1- cos	swt	$\frac{\omega^2}{s(s^2 + \omega^2)}$
21 tcosa	ot	$\frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$
22 tsinω	ot .	$\frac{2\omega_{\lambda}}{(s^2+\omega^2)^2}$
23 sin(o)	ot+θ)	$\frac{\omega\cos\theta + s\sin\theta}{s^2 + \omega^2}$
24 cos(a	nt+θ)	$\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$
25 e ^{-at} si	in(ωt+θ)	$\frac{(s+a)\sin\theta + \omega\cos\theta}{(s+a)^2 + \omega^2}$
26 e ^{-at} co	os(ωt+θ)	$\frac{(s+a)\cos\theta - \omega\sin\theta}{(s+a)^2 + \omega^2}$
l'	$\frac{\partial}{\partial \varsigma^2} e^{-\varsigma \omega t} \sin \omega \sqrt{1 - \varsigma^2} t$	$\frac{\omega^2}{s^2 + 2\varsigma\omega\varsigma s + \omega^2}$
28 1	$\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta \omega t}\sin(\omega\sqrt{1-\zeta^2}t+\theta), \cos\phi=\zeta$	$\frac{\omega^2}{s(s^2 + 2\varsigma\omega\varsigma s + \omega^2)}$
29 sinho	ωt	$\frac{\omega}{s^2 - \omega^2}$
30 cosh	ωt	$\frac{s}{s^2-\omega^2}$

Tiếp bảng Ph.1.

31	e ^{-at} sinhωt	$\frac{\omega}{(s+a)^2-\omega^2}$
32	e ^{-at} coshωt	$\frac{s+a}{(s+a)^2-m^2}$
33	Sóng sin chỉnh lưu một nữa, chu kì T=2π/ω	$\frac{\omega}{(s^2+\omega^2)(1-e^{-\pi s/\omega})}$
34	Sóng sin chỉnh lưu toàn b ộ , chu ki T=2π/ω	$\frac{\omega(1+e^{-\pi s/\omega})}{(s^2+\omega^2)(1-e^{-\pi s/\omega})}$
35	Xung chữ nhật chu ki T, biên độ từ +1 đến 0	$\frac{1}{s(1+e^{-sT/2})}$

Ghi chú: f(t)=0 cho tất cả các giá trị t âm. Trong hầu hết các hàm thời gian, thành phần u(t) được thừa nhận là có thể bỏ qua .

Tính chất của các biến đổi Laplace

Sau đây là các tính chất cơ sở của biến đổi Laplace , những tính chất này tạo khả năng lập bảng biến đổi Laplace chuẩn để được sử dụng ở phạm vi rộng hơn.

Tinh tuyến tinh

Nếu có hai hàm thời gian riêng biệt, f(t) và g(t), thì biến đổi Laplace cho hàm tổng thờii gian, bằng tổng biến đổi Laplace của hai hàm.

$$\mathbb{C}\{af(t)+bg(t)\}=a\mathbb{C}f(t)+b\mathbb{C}g(t)$$

a và b là hằng

Ví dụ 3: Biến đổi Laplace của 1+2t+4t² được cho bởi tổng biến đổi của từng hạng mục trong biểu thức. Như vậy nếu sử dụng các thành phần 1,5 và 6 trong bảng Ph.1, ta có:

$$F(s) = \frac{1}{s} + \frac{2}{s^2} + \frac{8}{s^3}$$

Tính chất dịch chuyển trong miền- s

Tính chất này được sử dụng để xác định biến đổi Laplace hàm có hệ số mũ, đôi khi được gọi là đặc tính dịch chỉnh thứ nhất (first shifting property).

Nếu F(s)= C{f(t)}thi:

$$\mathbb{C}\{e^{-at}|f(t)\}=F(s-a)$$

Vi~du~4: Xác định biến đổi Laplace của $e^{ut}t^{u}$: do biến đổi Laplace của t^{u} là $n!/S^{N+1}$

theo muc 6 ở bảng Ph.1, ta có:

$$\mathbb{C}\{e^{-at}t^n\} = \frac{n!}{(s-a)^{n+1}}$$

Tính chất dịch chuyển trong miền thời gian

Nếu một tín hiệu trễ một thời gian T, thi biến đổi Laplace của tín hiệu được nhân với e^{-s1}. Gọi F(s) là biến đổi Laplace của f(t) thì :

$$\mathbb{C}\{f(t-T)u(t-T)\} = e^{-sT}F(s)$$

Sự trễ tín hiệu một thời gian T được quy về định lí dịch chỉnh lần hai (second shift theorem). Tính chất dịch chỉnh trong miền thời gian có thể áp dụng cho tất cả các biến đổi Laplace. Như vậy, đổi với một xung lực $\delta(t)$ trễ một thời gian T, hàm trễ $\delta(t-T)$ có biến đổi là $1e^{-sT}$ (biến đổi Laplace của $\delta(t)$ chính là 1)

Các hàm tuần hoàn (periodic functions)

Hàm f(t) gọi là hàm tuần hoàn trong thời gian T nếu biến đổi Laplace cho hàm này là:

$$\mathbb{C}f(t) = \frac{1}{1 - e^{-sT}} F_1(s) \tag{1}$$

Với F(s) là biến đổi Laplace của hàm cho chu kì đầu tiên

Hình Ph.4 : Hàm bậc đơn vị

Vi dụ 5: Xét biến đổi Laplace cho các xung tuần hoàn trong thời gian T, như thể hiện trong hình

Ph..4. Biến đổi Laplace của một xung đơn được cho bởi (1/s)(1-e^{-s1/2}). Sử dụng phương trình (1), biến đổi Laplace khi ấy sẽ là:

$$\frac{1}{1 - e^{-sT}} \times \frac{1}{s} (1 - e^{-sT/2}) = \frac{1}{s(1 + e^{-sT/2})}$$

Định li giá trị đầu tiên và giá trị cuối cùng

Định lí giá trị đầu tiên có thể được phát biểu như sau; nếu một hàm thời gian f(t) có biến đổi Laplace F(s) thì giá trị của hàm theo giới hạn khi thời gian tiến đến 0, được cho bởi:

$$\lim_{t\to 0} f(t) = \limsup_{s\to \infty} F(s)$$

Định lí giá trị cuối cùng có thể phát biểu là nếu một hàm thời gian f(t) có biến đổi Laplace F(s) thì giá trị của hàm được cho bởi giới hạn của nó khi thời gian tiến đến vô cùng, là:

$$\lim_{t\to\infty} f(t) = \limsup_{s\to 0} F(s)$$

Đạo hàm

Biến đổi Laplace của đạo hàm một hàm được cho bởi:

$$\mathbb{C}\left\{\frac{d}{dt}f(t)\right\} = sF(s) - f(0)$$

Với f(0) là gia trị của hàm khi t=0. Đối với một đạo hàm bậc hai, ta có:

$$\mathbb{C}\left\{\frac{d^2}{dt^2}f(t)\right\} = s^2 F(s) - sf(0) - \frac{d}{dt}f(0)$$

Với đf(0)dt là giá trị của đạo hàm bậc một tại t=0. Các ví dụ về biến đổi Laplace cho đao hàm được cho ở chương 3 phần 3.2.2.

Tích phân

Biến đổi Laplace của tích phân hàm f(t), hàm có biến đổi Laplace là F(s) được cho bởi:

$$\mathbb{C}\left\{\int_{0}^{t} f(t)dt\right\} = \frac{1}{s}F(s)$$

 $Vi \ d\psi \ 6$: Biến đổi Laplace cho tích phân của hàm e^{t} giữa các giới hạn 0 và t, được cho bởi :

$$\mathbb{C}\left\{\int_{0}^{t} e^{-t} dt\right\} = \frac{1}{s} \mathbb{C}\left\{e^{t}\right\} = \frac{1}{s(s+1)}$$

4. Biến đổi ngược

କାର୍ଦ୍ଦ đổi Laplace ngược là sự chuyển đổi một biến đổi Laplace F(s) thành hàm thời gian f(t). Erấu này có thể thực hiện bởi:

$$\mathbb{C}^{\cdot 1}\!\{F(s)\}\!\!=f(t)$$

Chuyển đổi ngược có thể thực hiện được với sự trợ giúp của bảng Ph.1. Tính tuyến tính của biến đổi Laplace là nếu một biến đổi là tổng của hai thành phần và yêu cầu có chuyển đổi ngược thì ta có thể thực hiện biến đổi ngược của từng thành phần riêng lẻ và lấy tổng của chúng:

$$\mathbb{C}^{\text{-1}}\{aF(s)+bG(s)\}\text{=}a\mathbb{C}^{\text{-1}}F(s)+b\mathbb{C}^{\text{-1}}g(s)$$

Như vậy với sự sắp xếp lại, ta có thể để các số hạng theo đúng dạng chuẩn như thể hiện trong bảng Ph.1. Ví dụ, biến đổi ngược 3/(2s+1) thu được, khi sắp đặt lại , ta có:

$$\frac{3(1/2)}{s + (1/2)} \tag{2}$$

Bảng Ph.1(TT.7) chứa chuyển đổi 1/(s+a) có chuyển đổi ngược là e^{-at} . Như vây, chuyển đổi ngược của (2) có dạng: hàm này nhân với hằng số (3/2) với a=(1/2), tức (3/2) $e^{-t/2}$.

Ví dụ 7: Xét biến đổi Laplace ngược hàm (2s+2)(s²+1). Biểu thức này có thể sắp xếp lại là:

$$2\left[\frac{s}{s^2+1} + \frac{1}{s^2+1}\right]$$

Thành phần thứ nhất trong móc vuông có chuyển đổi ngược là cost (trong bảng Ph.1, TT. 17), số hạng thứ hai là sint (trong bảng Ph.1, TT16). Như vậy biểu thức của chuyển đổi ngược là:

Phân số từng phần

Thường F(s) là tỉ số của hai đa thức, khó xác định được với biến đổi chuẩn (trong bảng Ph.1. Nó cần được chuyển đổi thành các số hạng phân số đơn giản trước khì có thể sử dụng các chuyển đổi chuẩn. Quá trình chuyển đổi một biểu thức thành các số hạng phân số đơn giản gọi là phân ly thành *phân số từng phần* (partial fractions). Kỹ thuật này sử dụng để tạo ra bậc của tử số,n nhỏ hơn mẫu số, m(n<m). Bậc của đa thức là số mũ cao nhất của s trong biểu thức. Khi bậc của tử số bằng hoặc cao hơn bậc của mẫu số, thì phải chia tử cho mẫu cho đến khi kết quả là tổng của các số hạng với các số hạng phân số còn lại có bậc của mẫu lớn hơn tử số.

Ta có thể xem xét 3 kiểu cơ bản của phân số từng phần sau:

Mẫu số chứa hệ số có dạng (s+a), (s+b), (s+c),được thể hiện ở dạng:

$$\frac{f(s)}{(s+a)(s+b)(s+c)}$$

Nó có các phân số từng phần là:

$$\frac{A}{(s+a)} + \frac{B}{(s+b)} + \frac{C}{(s+c)}$$

2. Mẫu số có hệ số (s+a) lặp lại, tức mẫu số chứa một luỹ thừa của hệ số này, có dạng:

$$\frac{f(s)}{(s+a)^n}$$

Các phân số từng phần là:

$$\frac{A}{(s+a)^{1}} + \frac{B}{(s+a)^{2}} + \frac{C}{(s+a)^{3}} + \dots \frac{N}{(s+a)^{n}}$$

3. Mẫu số chứa các hệ bậc hai mà bậc hai này không thể đặt thừa số nếu không có số hạng ảo. Đối với một biểu thức dạng:

$$\frac{f(s)}{(as^2 + bs + c)(s + d)}$$

Các phân số từng phần là:

$$\frac{As+B}{as^2+bs+c}+\frac{C}{s+d}$$

Giá trị các hằng A,B,C, v...v có thể tìm được khi sử dụng tương giữa biểu thức và các phân số từng phần phải là số thực cho tất cả các giá trị của s hoặc các hệ số sh trong biểu thức phải bằng sh trong phần mở rộng phân số từng phần.

Ví dụ 7: Hàm từng phần của:

$$\frac{3s+4}{(s+1)(s+2)}$$
 | $\frac{A}{s+1} + \frac{B}{s+2}$

Để cho 2 biểu thức cản bằng, ta phải có:

$$\frac{3s+4}{(s+1)(s+2)} = \frac{A(s+2) + B(s+1)}{(s+1)(s+2)}$$

Kết quả:

$$3s+4=A(s+2)+B(s+1)$$

Biểu thức này phải là thực cho tất cả các giá trị của s. Khi ấy, thủ tục tuyển chọn các giả trị cho s sẽ tạo nên một số số hạng chứa hằng trở thành 0, như vậy tạo khả năng xác đình các hằng khác. Nếu để s=-2 ta sẽ có:

Như vây B=2. Nếu để s=-1 thì:

Nên:

$$\frac{3s+4}{(s+1)(s+2)} = \frac{1}{(s+1)} + \frac{2}{s+2}$$

Kết luận: biến đổi Laplace được sử dụng để đơn giản hoá việc phân tích và thiết kế các hệ thống bất biến tuyến thời gian, trong thời gian liên tục hoặc rời rạc.

MÁC TÁC

Chương 1. Tổng quan	4
1.1. Sự tích hợp	
1.2. Tín hiệu	
1.3. Các thành phần chủ yếu của hệ thống cơ điện tử	8
1.4. Sản phẩm cơ điện tử	9
Chương 2. Mô hình hệ thống cơ điện tử trong chế tạo máy	10
2.1. Mô hình các hệ thống cơ bản	10
2.1.1. Mô hình toán học	10
2.1.2. Các khối đặc trưng của một hệ thống cơ khí	11
2.1.3. Các khối đặc trưng hệ thống điện	19
2.1.4. Khối đặc trưng cho hệ thống thủy,, khí	24
2.1.5. Các khối đặc trưng nhiệt	32
2.2. CáC Mô hình hệ thống	34
2.2.1. Các hệ thống kỹ thuật	34
2.2.2. Hệ thống quay- tịnh tiến	37
2.2.3. Hệ thống cơ điện (electromechanical)	
2.2.4. Hệ thống cơ -thuỷ lực	42
Chương 3. Đáp ứng động học của các hệ thống	46
3.1. Phản ứng động học	46
3.1.1. Mô hình hệ thống động học	46
3.1.2. Các hệ thống bậc 1	48
3.1.3. Hệ thống bậc 2	55
3.1.4. Các tiêu chí để đánh giá đặc tính cho hệ thống bậc hai	62
3.2. Các hàm truyền hệ thống	65
3.2.1. Hàm truyền	65
3.2.2. Các ứng dụng cho hệ thống bậc 1 và bậc 2	70
Chương 4. Đáp ứng tần số	
4.1. Đầu vào dạng sin;	. 78
4.2. vector pha (Vector pha)	
4.2.1. Khái niệm	. 79
4.2.2. Các phương trình của vectơ pha	
4.3. đáp ứng tần số	
4.3.1. Đáp ứng tần số cho các hàm bậc 1	. 81

4.3.2. Đáp ứng tần số cho các hệ thống bậc 2
4.4. Đổ thị Bode (Bode plots)
4.4.1. Các ví dụ về đồ thị Bode
4.4.2. Xây đựng đồ thị Bode (Bode plot)
4.5, Đặc điểm kỹ thuật
4.6. độ ổn định
Chương 5, Phân tích trạng thái và đặc tính của hệ thống
5.1. Trạng thái của một hệ thống
5.2. Mô tả không gian trạng thái cho hệ thống thời gian- liên tục
5.2.1. Tuyến tính hoá
5.2.2. Mô hình không gian trạng thái tuyến tính 101
5.2.3. Cấu trúc của đáp ứng không cưỡng bức (unforced response) 103
5.2.4. Cấu trúc của đáp ứng cưỡng bức(forced response):
5.2.5. Sự biến đổi đồng dạng trạng thái
5.2.6. Mối quan hệ không gian trạng thái và các hàm truyền đạt 106
5.3. không gian trạng thái các hệ thống lấy mẫu và thời gian rời rạc
(Discrete-Time and sampled Data System)
5.3.1. Tuyến tính hoá các hệ thống thời gian gián đoạn
5.3.2. Các hệ thống lấy mẫu dữ liệu (Sampled Data System)
5.3.3. Mô lành không gian trạng thái tuyến tính
5.4. Mô hình không gian trạng thái cho các hệ thống có nối kết 119
5.5. Tính chất của hệ thống
5.5.1. Tính điều khiến được (controllability), tính đạt được (reachability) và
tieb in linh được (stabilizability)
5.5 Tính quan sát được & tái lập được
Chương 6. Fhân tích hệ thống- máy công cụ CNC
6.1. Biến dạng tĩnh và biến dạng động trong gia công
6.2. Thiết kế và phân tích các hệ thống CNC
6.2.1. Bộ truyền động máy công cụ
Phụ lục
Biến đổi laplace
Tài liệu tham khảo187

TÀI LIỆU THAM KHẢO

[1] NANYANG POLITECHNIC, SINGAPORE

Mechtronic system technology

Phát hành nội bộ cho khoá đào tạo mechantronics, 1995

[2] PROF, DR. ING R. NORDMAN, PROF. DR. ING H. BIRKHOFER

Maschinenelemente und Mechantronik I

Shaker Verlag GmbH 2002

[3] Prof. Dr. Ing R. NORDMAN

Mechatronische Systeme im Maschinenbau I

Shaker Verlag GmnH 2002

[4] W. BOLTON

Mechatrinics- Electronics control systems in mechanical enginering Longman Group limited 1995

[5] ROBERT H.BISHOP

The mechatronics handbook

CRC Press 2002

[6] YUSUF ALTINAS

Manufacturing automation

Cambridge University Press, 2000

[7] GEORGE C, STANTON

Numerical Control Programing

John Wiley&Son Inc., 1988

[8] TIEN-CHIEN CHANG, RICHARD A. WYSK, HSU-PIN WANG

Computer-aided Manufacturing

Prentice Hall International, 1998

[9] ZOU.K

Essential of Robust Control

Prentice-Hall, Englewood Cliffs, NJ, 1998

[10] Một số w.w.w

[11] PHẠM THƯỢNG HÀN, NGUYỄN TRỌNG QUẾ, NGUYỄN VĂN HOÀ

Kỹ thuật đo lường và các đại lượng vật lí Nhà xuất bản Giáo dục, Hà Nội, 1996

[11] NGÔ ĐIỆP TẬP

Đo lường và điều khiển bằng máy tính Nhà xuất bản Khoa học và Kỹ thuật Hà Nội, 1996

[12] ĐỖ XUÂN THỤ, NGUYỄN ĐỨC THUẬN, NGUYỄN HỮU SƠN Kỹ thuật điện tử

Nhà xuất bản Giáo dục 1997

[13] GS.TS NGUYỄN VĂN KHANG

Dao động kỹ thuật

Nhà xuất bản Khoa học và Kỹ thuật, Hà Nội 1998

[14] PGS. TS VŨ HOÀI ÂN

Nền sản xuất CNC

Nhà xuất bản Khoa học và Kỹ thuật, Hà Nội 2003

[15] TRẦN VĂN ĐỊCH, NGUYỄN TRỌNG BÌNH và những người khác Số tay công nghệ chế tạo máy

Trường Đại học Bách khoa Hà nội, 2000

[16] NGUYỄN ĐẮC LỘC, LÊ VĂN TIẾN và những người khác Số tay công nghệ chế tạo máy tập 1,2,3 Nhà xuất bản khoa học và kỹ thuật 2001

[17] TS. VÕ THỊ RY,

Tổng quan về cơ điện tử-

Khả năng thực hiện trên cơ sở vật chất của Viện IMI
 Báo cáo đề tài nghiên cứu khoa học công - nghệ cấp bộ, 2001

205046

Giá: 24.000đ