PRZYKŁAD "Symulacja promieniowania gamma emitowanego ze źródła Cs-137 o aktywności 2 TBq i depozycji energii na tarczy z tworzywa sztucznego imitującego ciało ludzkie z zastosowaniem osłony z ołowiu"

Krok 1.

Źródło promieniowania gamma Cs-137 (662 keV) w formie "pastylki" o promieniu 1 cm i grubości 5 mm umieszczone w środku układu współrzędnych w płaszczyźnie XY. Promieniowanie rozchodzi się sferycznie w powietrzu. Źródło posiada aktywność 2 TBq i jest zamknięte w kapsule ołowianej. Kształt wiązki wyznacza kolimator o kącie rozwarcia 20 stopni.

Define the beam position BEAMPOS	R: 0		Type: FLOOD ▼
BEAMPOS	Rin: 0	Rout: 1	Type: CYLI-VOL ▼
	Hin: 0,5	Hout:	
Define the beam characteristics			
BEAM	Beam: Energy ▼	E: 0.0006617	Part: PHOTON ▼
∆p:Flat ▼	Δр:	∆4: Isotropic ▼	
Shape(X): Annular ▼	Rmin: 0	Rmax: 0	

Zadana geometria:

Gęstość energii promieniowania gamma:

Krok 2.W odległości 50 cm od źródła wstawiamy fantom ciała ludzkiego (o wymiarach 30x30x15 cm³).
Oszacuj równoważnik dawki pochłoniętej przez fantom w ciągu godziny.

Moc dawki promieniowania gamma:

Krok 3.

W odległości 20 cm od źródła wstawiamy osłonę ołowianą (o wymiarach 30x30x5 cm³).

Na podstawie wartości równoważnika dawki jaką otrzyma fantom chroniony osłoną (w ciągu 1h), oszacuj krotność osłabienia promieniowania dla danej osłony.

Moc dawki promieniowania gamma za osłoną:

