SIW4 Part 1:Simulation Exercize

Pratik Patil

17/10/2020

 $\#\# Setting\ values$

```
set.seed(31) # set seed for reproducability
lam <- 0.2 # lambda=0.2
x <- 40 #samples=40
sim <- 1000 #simulations=1000
sim_exp <- replicate(sim, rexp(x, lam)) # simulate
mean_exp <- apply(sim_exp, 2, mean) # calculate mean of exponentials</pre>
```

Question 1

Show where the distribution is centered at and compare it to the theoretical center of the distribution.

```
ana_mean <- mean(mean_exp)
ana_mean</pre>
```

[1] 4.993867

```
# analytical mean
th_mean <- 1/lam
th_mean</pre>
```

[1] 5

```
# visualization
hist(mean_exp, xlab = "mean", main = "Exponential Function Simulations")
abline(v = ana_mean, col = "blue")
abline(v = th_mean, col = "red")
```

Exponential Function Simulations

The analytics mean is 4.993867 the theoretical mean 5. The center of distribution of averages of 40 exponentials is very close to the theoretical center of the distribution.

Question 2

Show how variable it is and compare it to the theoretical variance of the distribution..

```
# standard deviation of distribution
stan_dev_dist <- sd(mean_exp)
stan_dev_dist</pre>
```

[1] 0.7931608

```
# standard deviation from analytical expression
stan_dev_th <- (1/lam)/sqrt(x)
stan_dev_th</pre>
```

[1] 0.7905694

```
# variance of distribution
var_dist <- stan_dev_dist^2
var_dist</pre>
```

[1] 0.6291041

```
# variance from analytical expression
var_th <- ((1/lam)*(1/sqrt(x)))^2
var_th</pre>
```

[1] 0.625

Standard Deviation of the distribution is 0.7931608 with the theoretical SD calculated as 0.7905694. The Theoretical variance is calculated as ((1 / ??) * (1/???n))2 = 0.625. The actual variance of the distribution is 0.6291041

Question 3

Show that the distribution is approximately normal.

```
xf <- seq(min(mean_exp), max(mean_exp), length=100)
yf <- dnorm(xf, mean=1/lam, sd=(1/lam/sqrt(x)))
hist(mean_exp,breaks=x,prob=T,col="red",xlab = "means",main="Density of means",ylab="density")
lines(xf, yf, pch=22, col="orange", lty=5)</pre>
```

Density of means


```
# compare the distribution of averages of 40 exponentials to a normal distribution
qqnorm(mean_exp)
qqline(mean_exp, col = 2)
```

Normal Q-Q Plot

Due to Due to the central limit theorem (CLT), the distribution of averages of 40 exponentials is very close to a normal distribution.