第8讲 统计量及其分布

《 知识结构》

様本均値
$$-\overline{X} = \frac{1}{n}\sum_{i=1}^{n}X_{i}$$

| 様本方差 $-S^{2} = \frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2} = \frac{1}{n-1}\left(\sum_{i=1}^{n}X_{i}^{2}-n\overline{X}^{2}\right)$

| 様本核離差 $-S = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}}$

| 様本核節中心矩 $-B_{k} = \frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}(k=1,2,\cdots)$

| 様本核節中心矩 $-B_{k} = \frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}(k=2,3,\cdots)$

| 操本核節中心矩 $-B_{k} = \frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}(k=2,3,\cdots)$

| 操務分布 $-X \sim N(0,1), P(X) > \mu_{k} = a(0 < a < 1)$

| 上恋分布 $-X \sim N(0,1), P(X) > \mu_{k} = a(0 < a < 1)$

| 上述 $-A_{k} = A_{k} =$

称研究对象全体的某数量指标为总体X,n个相互独立且与总体X具有相同概率分布的随机变量 X_s , X_s , \dots , X_s , 所组成的整体 (X_1,X_2,\dots,X_s) 称为来自总体X 的容量为n的一个简单随机样本、简称样本。一次抽样结果的n个具体数值 (x_1,x_2,\dots,x_s) 称为样本 X_1,X_2,\dots,X_s 的一个观测值(或样本值).

当 X_1, X_2, \dots, X_n 为来自总体X的一个样本时, $g(x_1, x_2, \dots, x_n)$ 为n元函数,如果g中不含任何未知参数,则称 $g(X_1, X_2, \dots, X_n)$ 为样本 X_1, X_2, \dots, X_n 的一个统计量. 统计量就是由统计数据计算得来的量. 统计量是随机变量的函数,也是随机变量.

一统计量

设 X_1, X_2, \cdots, X_n 是来自总体X的简单随机样本,则相应的统计量定义如下.

① 样本均值
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
.

② 样本方差
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \, \overline{X}^2 \right);$$
 样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}.$

③ 样本 k 阶原点矩
$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k (k = 1, 2, \cdots).$$

④ 样本
$$k$$
 阶中心矩 $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k (k = 2, 3, \cdots).$

⑤ 顺序统计量 将样本 X_1, X_2, \cdots, X_n 的 n 个观测量按其取值从小到大的顺序排列,得 $X_{(1)} \leqslant X_{(2)} \leqslant \cdots \leqslant X_{(n)}$.

随机变量 $X_{(k)}(k=1,2,\cdots,n)$ 称作第 k 顺序统计量,其中 $X_{(1)}$ 是最小观测量,而 $X_{(n)}$ 是最大观测量: $X_{(1)}=\min\{X_1,X_2,\cdots,X_n\}$, $X_{(n)}=\max\{X_1,X_2,\cdots,X_n\}$.

【注】数学三有一个考点,数学一不考,叫经验分布函数,即 (x_1,x_2,\cdots,x_n) 为总体样本 (X_1,X_2,\cdots,X_n) 的一个观测值,按大小顺序排列为 $x_{(1)} \leqslant x_{(2)} \leqslant \cdots \leqslant x_{(n)}$. 对任意实数x,称函数

为样本 (X_1, X_2, \cdots, X_n) 的经验分布函数.

事实上, $F_n(x)$ 就是事件 $\{X \le x\}$ 在 n 次试验中出现的频率,而 $P\{X \le x\} = F(x)$ 是事件 $\{X \le x\}$ 出现的概率,由伯努利大数定律(即频率收敛于概率)可知,当 n 充分大时, $F_n(x)$ 可作为未知分布函数 F(x) 的一个近似,n 越大,近似效果越好.

如设(2,1,5,2,1,3,1) 是来自总体 X 的简单随机样本值,求总体 X 的经验分布函数 $F_2(x)$.

解 将各观测值按从小到大的顺序排列,得1,1,1,2,2,3,5,则经验分布函数为