Devoir2 maison

Exercice 1

Cet exercice porte sur les représentations binaires et les protocoles de routage.

- **1.** Une adresse IPv4 est représentée sous la forme de 4 nombres séparés par des points. Chacun de ces 4 nombres peut être représenté sur un octet.
 - **a.** Donner en écriture décimale l'adresse IPv4 correspondant à l'écriture binaire : 11000000.1010000.10000000.100000011

192,168,128,131

b. Tous les ordinateurs du réseau A ont une adresse IPv4 de la forme : 192.168.128._ _ _ , où seul le dernier octet (représenté par _ _ _) diffère. Donner le nombre d'adresses différentes possibles du réseau A.

1 octet (8 bits) pour coder les adresses, soit 28 adresses différentes possibles (256 adresses).

Le nombre de machines réellement adressables est 254, car il faut retirer la valeur 0 (adresse réseau) et la valeur 255 (adresse de broadcast).

2. On rappelle que le protocole RIP cherche à minimiser le nombre de routeurs traversés (qui correspond à la métrique). On donne les tables de routage d'un réseau informatique composé de 5 routeurs (appelés A, B, C, D et E), chacun associé directement à un réseau du même nom obtenue avec le protocole RIP:

Routeur A

Destination	Métrique
Α	0
В	1
С	1
D	1
Е	2

Routeur B

Destination	Métrique
Α	1
В	0
С	2
D	1
Е	2

Routeur C

Destination	Métrique
Α	1
В	2
С	0
D	1
E	2

Routeur D

Destination	Métrique
Α	1
В	1
С	1
D	0
E	1

Routeur E

Destination	Métrique
Α	2
В	2
С	2
D	1
Е	0

a. Donner la liste des routeurs avec lesquels le routeur A est directement relié.

Attention, pour le routeur A (métrique = 0). Liste des routeurs directement reliés à A, il faut une métrique = 1 : B, C et D

b. Représenter graphiquement et de manière sommaire les 5 routeurs ainsi que les liaisons existantes entre ceux-ci.

3. Le protocole OSPF est un protocole de routage qui cherche à minimiser la somme des métriques des liaisons entre routeurs.

Dans le protocole de routage OSPF le débit des liaisons entre routeurs agit sur la métrique via la relation : $métrique = \frac{10^8}{débit}$ dans laquelle le débit est exprimé en bit par seconde (bps).

On rappelle qu'un kbps est égal à 10³ bps et qu'un Mbps est égal à 10⁶ bps. Recopier sur votre copie et compléter le tableau suivant :

Débit	100 kbps	500 kbps	10 Mbps	100 Mbps
Métrique associée	1000	200	10	1

4. Voici la représentation d'un réseau et la table de routage incomplète du routeur F obtenue avec le protocole OSPF :

Rouleur F		
Destination	Métrique	
F	0	
G	8	
Н	5	
I	13	
J	6	
K	8	
L	11	

Doutour E

Les nombres présents sur les liaisons représentent les coûts des routes avec le protocole OSPF.

a. Indiquer le chemin emprunté par un message d'un ordinateur du réseau F à destination d'un ordinateur du réseau I. Justifier votre réponse.

Le chemin emprunté par un message pour aller de F à I est : F -(5)-> H -(1)-> J -(2)-> K -(5)-> I (coût de 13, tous les autres chemins possibles ont un coût supérieur à 13).

b. Recopier et compléter la table de routage du routeur F.

Voir table routeur F ci-dessus

C. Citer une unique panne qui suffirait à ce que toutes les données des échanges de tout autre réseau à destination du réseau F transitent par le routeur G. Expliquer en détail votre réponse.

Trois routeurs permettent d'accéder à F directement : I, H, et G. Si H tombe en panne, il resterait donc uniquement G et I. Or le coût de la liaison I -> F est de 20, ce qui rend préférable l'option de passer par G dans tous les cas de figure (par exemple, même pour aller de I à F, le chemin retenu serait :

I -(5)-> K -(2)-> J -(2)-> G -(10)-> F avec un coût de 19).

Exercice 2

Cet exercice porte sur les réseaux et les protocoles de routages.

Rappels:

Une adresse IPv4 est composée de 4 octets, soit 32 bits. Elle est notée a.b.c.d, où a, b, c et d sont les valeurs des 4 octets.

La notation a.b.c.d/n signifie que les n premiers bits de l'adresse IP représentent la partie «réseau», les bits qui suivent représentent la partie «machine».

L'adresse IPv4 dont tous les bits de la partie «machine» sont à 0 est appelée «adresse du réseau».

L'adresse IPv4 dont tous les bits de la partie «machine» sont à 1 est appelée «adresse de diffusion».

On considère le réseau représenté sur la figure 1 ci-dessous :

Figure 1 : schéma du réseau

- 1. On considère la machine d'adresse IPv4 192.168.1.1/24
 - **a.** Donner l'adresse du réseau sur lequel se trouve cette machine.

Adresse réseau : 192.168.1.0

b. Donner l'adresse de diffusion (broadcast) de ce réseau.

Adresse de diffusion: 192.168.1.255

C. Donner le nombre maximal de machines que l'on peut connecter sur ce réseau.

Nombre de machines maximales adressables : 2^8 - 2 = 254, car il faut retirer la valeur 0 (adresse réseau) et la valeur 255 (adresse de broadcast).

d. On souhaite ajouter une machine sur ce réseau, proposer une adresse IPv4 possible pour cette machine.

Adresse machine possible: 192.168.1.2 (adresse non utilisée sur la figure 1).

2.

a. La machine d'adresse IPv4 192.168.1.1 transmet un paquet IPv4 à la machine d'adresse IPv4 192.168.4.2

Donner toutes les routes pouvant être empruntées par ce paquet IPv4, chaque routeur ne pouvant être traversé qu'une seule fois.

```
SW1 \rightarrow Routeur A \rightarrow Routeur E \rightarrow Routeur D \rightarrow SW4
SW1 \rightarrow Routeur A \rightarrow Routeur E \rightarrow Routeur C \rightarrow Routeur D \rightarrow SW4
SW1 \rightarrow Routeur A \rightarrow Routeur C \rightarrow Routeur E \rightarrow Routeur D \rightarrow SW4
SW1 \rightarrow Routeur A \rightarrow Routeur C \rightarrow Routeur F \rightarrow Routeur D \rightarrow SW4
SW1 \rightarrow Routeur A \rightarrow Routeur B \rightarrow Routeur C \rightarrow Routeur F \rightarrow Routeur D \rightarrow SW4
SW1 \rightarrow Routeur A \rightarrow Routeur B \rightarrow Routeur C \rightarrow Routeur E \rightarrow Routeur D \rightarrow SW4
```

b. Expliquer l'utilité d'avoir plusieurs routes possibles reliant les réseaux 192.168.1.0/24 et 192.168.4.0/24

Il est utile d'avoir plusieurs routes possibles reliant 2 réseaux, car en cas de panne d'un routeur, le paquet de données pourra emprunter un autre chemin qui évitera le routeur en panne.

3. Dans cette question, on suppose que le protocole de routage mis en place dans le réseau est RIP. Ce protocole consiste à minimiser le nombre de sauts. Le schéma du réseau est celui de la figure 1.

Les tables de routage utilisées sont données ci-dessous :

Routeur A		
Destination	Passe par	
В	В	
С	С	
D	E	
E	E	
F	С	

		_		
Routeur B			Routeur C	
Destination	Passe par		Destination	Passe par
Α	Α		Α	Α
С	С		В	В
D	С		D	Е
E	С		E	Е
F	С		F	F

Routeur D	
Destination	Passe par
Α	E
В	F
С	F
E	E
F	F

Routeur E		Routeur F	
Destination	Passe par	Destination	Passe par
Α	Α	Α	С
В	С	В	С
С	С	С	С
D	D	D	D
F	С	E	С

Tables de routage

a. Recopier et compléter sur la copie la table de routage du routeur A.

Voir table routeur A ci-dessus

b. Un paquet IP doit aller du routeur B au routeur D. En utilisant les tables de routage, donner le parcours emprunté par celui-ci.

Routeur $B \rightarrow Routeur C \rightarrow Routeur E \rightarrow Routeur D$

C. Les connexions entre les routeurs B-C et A-E étant coupées, sur la copie, réécrire les tables de routage des routeurs A, B et C.

	0
Routeur A	
Destination	Passe par
В	В
С	С
D	С
E	С
F	С

Routeur B	
Destination	Passe par
Α	Α
С	Α
D	Α
Е	Α
F	A

Routeur C	
Destination	Passe par
Α	Α
В	Α
D	E
E	E
F	F

d. Déterminer le nouveau parcours emprunté par le paquet IP pour aller du routeur B au routeur D.

Routeur B \rightarrow Routeur A \rightarrow Routeur C \rightarrow Routeur E \rightarrow Routeur D

- **4.** Dans cette question, on suppose que le protocole de routage mis en place dans le réseau est OSPF. Ce protocole consiste à minimiser la somme des coûts des liaisons empruntées. Le coût d'une liaison est défini par la relation $coût = \frac{10^8}{d}$ où d représente le débit en bit/s et coût est sans unité. Le schéma du réseau est celui de la figure 1.
 - **a.** Déterminer le coût des liaisons Ethernet ($d = 10^7$ bit/s), Fast-Ethernet ($d = 10^8$ bit/s) et Fibre (d = 10^9 bit/s).

coût Ethernet =
$$\frac{10^8}{10^7}$$
 = 10 coût Fast Ethernet = $\frac{10^8}{10^8}$ = 1 coût Fibre = $\frac{10^8}{10^9}$ = 0,1

b. On veut représenter schématiquement le réseau de routeurs à partir du schéma du réseau figure 1.

Recopier sur la copie le schéma ci-dessous et tracer les liaisons entre les routeurs en y indiquant le coût.

C. Un paquet IPv4 doit être acheminé d'une machine ayant pour adresse IPv4 192.168.2.1 à une machine ayant pour adresse IPv4 192.168.4.1 Écrire les routes possibles, c'est à dire la liste des routeurs traversés, et le coût de chacune de ces routes, chaque routeur ne pouvant être traversé qu'une seule fois.

```
SW2 → Routeur B → Routeur A → Routeur E → Routeur D → SW4 : coût 2.1
SW2 → Routeur B → Routeur A → Routeur E → Routeur C → Routeur F → Routeur D → SW4 : coût 3,2
SW2 	o Routeur \ B 	o Routeur \ A 	o Routeur \ C 	o Routeur \ E 	o Routeur \ D 	o SW4 : coût 1,3
```

SW2 → Routeur B → Routeur A → Routeur C → Routeur F → Routeur D → SW4 : coût 2,2 SW2 → Routeur B → Routeur C → Routeur A → Routeur E → Routeur D → SW4 : coût 11,2 SW2 → Routeur B → Routeur C → Routeur E → Routeur D → SW4 : coût 10,2

 $SW2 \rightarrow Routeur \ B \rightarrow Routeur \ C \rightarrow Routeur \ F \rightarrow Routeur \ D \rightarrow SW4$: coût 11,1

d. Donner, en la justifiant, la route qui sera empruntée par un paquet IPv4 pour aller d'une machine ayant pour adresse IPv4 192.168.2.1 à une machine ayant pour adresse IPv4 192.168.4.1

Le chemin emprunté sera la route avec le plus faible coût (1,3) $SW2 \rightarrow Routeur \ B \rightarrow Routeur \ A \rightarrow Routeur \ C \rightarrow Routeur \ E \rightarrow Routeur \ D \rightarrow SW4$