

Running Spark on a High-Performance Cluster using RDMA Networking and NVMe Flash

Patrick Stuedi, IBM Research

Hardware Trends

community target

	2010	2017	
Storage	100 MB/s 100ms	1000 MB/s 200us	
Network	1Gbps 50us	10Gbps 20us	
CPU	~3GHz	~3GHz	

Hardware Trends

community our target target

	2010	2017	2017
Storage	100 MB/s	1000 MB/s	10 GB/s
	100ms	200us	50us
Network	1Gbps	10Gbps	100Gbps
	50us	20us	1us
CPU	~3GHz	~3GHz	

User-Level APIs

Remote Data Access

Let's Use it!

Case Study: Sorting in Spark

Experiment Setup

- Total data size: 12.8 TB
- Cluster size: 128 nodes
- Cluster hardware:
 - DRAM: 512 GB DDR 4
 - Storage: 4x 1.2 TB NVMe SSD
 - Network: 100GbE Mellanox RDMA

Flash bandwidth per node matches network bandwidth

How is the Network Used?

What is the Problem?

- Spark uses legacy networking and storage APIs: no kernel-bypass
- Spark itself introduces additional I/O layers: Netty, serializer, sorter, etc.

Example: Shuffle (Map)

Example: Shuffle (Map)

Example: Shuffle (Map+Reduce)

Example: Shuffle (Map+Reduce)

How can we fix this...

- Not just for shuffle
 - Also for broadcast, RDD transport, inter-job sharing, etc.
- Not just for RDMA and NVMe hardware
 - But for any possible future high-performance I/O hardware
- Not just for co-located compute/storage
 - Also for resource disaggregation, heterogeneous resource distribution, etc.
- Not just improve things
 - Make it perform at the hardware limit

The CRAIL Approach

Example: Crail Shuffle (Map)

Example: Crail Shuffle (Reduce)

Example: Crail Shuffle (Reduce)

Performance: Configuration

- Experiments
 - Memory-only: Broadcast, GroupBy, Sorting, SQL
 - Memory/Flash: disaggregation, tiering
- Cluster size: 8 nodes, except Sorting: 128 nodes
- Cluster hardware:
 - DRAM: 512 GB DDR 4
 - Storage: 4x 1.2 TB NVMe SSD
 - Network: 100GbE Mellanox RDMA
- Spark 2.1.0, Alluxio 1.4, Crail 1.0
- Hadoop.tmp.dir: RamFS for microbenchmarks, flash SSD for workloads

Spark Broadcast


```
val bcVar = sc.Broadcast(new Array[Byte](128))
sc.parallelize(1 to tasks, tasks).map(_ => {
 bcVar.value.length
  .count
```

crail

10ms

100ms

vanilla

1ms

Spark GroupBy (80M keys, 4K)


```
val pairs = sc.parallelize(1 to tasks, tasks).flatmap(_ => {
   var values = new array[(Long,Array[Byte])](numKeys)
   values = initValues(values)
}).cache().groupByKey().count()
```

Sorting 12.8 TB on 128 nodes

Spark/Crail Network Usage

How fast is this?

Spark

Native C distributed sorting benchmark

www.sortingbenchmark.org

	Spark/Crail	Winner 2014	Winner 2016
Size (TB)	12.8	100	100
Time (sec)	98	1406	134
Total cores	2560	6592	10240
Network HW (Gbit/s)	100	10	100
Rate/core (GB/min)	3.13	0.66	4.4

Sorting rate of Crail/Spark only 27% slower than rate of Winner 2016

Spark SQL Join


```
val ds1 = sparkSession.read.parquet("...") //64GB dataset
val ds2 = sparkSession.read.parquet("...") //64GB dataset
val resultDS = ds1.joinWith(ds2, ds1("key") === ds2("key")) //~100GB
resultDS.write.format("parquet").mode(SaveMode.Overwrite).save("...")
```

Storage Tiering: DRAM & NVMe

DRAM & Flash Disaggregation

Using Crail, a Spark 200GB sorting workload can be run with memory and flash disaggregated at no extra cost

Conclusions

- Effectively using high-performance I/O hardware in Spark is challenging
- Crail is an attempt to re-think how data processing frameworks (not only Spark) should interact with network and storage hardware
 - User-level I/O, storage disaggregation, memory/flash convergence
- Spark's modular architecture allows Crail to be used seamlessly

Crail for Spark is Open Source

- www.crail.io
- github.com/zrlio/spark-io
- github.com/zrlio/crail
- github.com/zrlio/parquetgenerator
- github.com/zrlio/crail-terasort

Thank You.

Contributors:

Animesh Trivedi, Jonas Pfefferle, Michael Kaufmann, Bernard Metzler, Radu Stoica, Ioannis Koltsidas, Nikolos Ioannou, Christoph Hagleitner, Peter Hofstee, Evangelos Eleftheriou, ...