Lecture 06 – Algorithms for Linear Algebra

Prof. Brendan Kochunas

NERS/ENGR 570 - Methods and Practice of Scientific Computing (F22)

Outline

- Recap of our progress so far...
- Linear Algebra Fundamentals
- Dense vs. Sparse Linear Systems
 - Where do they come from?
- Solution of Linear Systems
 - Direct methods and LU Decomposition

Learning Objectives: By the end of Today's Lecture you should be able to

- (Knowledge) interpretate meaning of some vector norms
- (Value/Knowledge) explain how to think about programming equations in linear algebra
- (Knowledge) program the basic kernels needed for linear algebra
- (Knowledge) explain the differences of dense and sparse matrix storage formats

Overview

- What types of problems are solved with Linear Algebra?
 - Linear systems of equations
 - Eigenvalue problems
 - Matrix factorizations
 - Overdetermined system of equations
 - Least-Squares (Data fitting)

Linear Algebra Fundamentals

Basics of Linear Systems

$$X = \begin{bmatrix} X_1 \\ \vdots \\ X_m \end{bmatrix}$$
 $b = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$

Ax = b

matrix vector multiplication

The Residual and Norms

The Residual and Norms
$$A \times = b \qquad b - A \times \neq 0 = residual (7)$$

$$X = x + \epsilon$$

$$residual "dual" of the error
$$||A||$$

$$||r||_{1}$$

$$||r||_{2}$$$$

Norms of Vectors

$$||r||_{2} = |r_{1}| + |r_{2}| + \cdots + |r_{n}|$$
 Total error!
 $||r||_{2} = \sqrt{r_{1}^{2} + r_{2}^{2} + \cdots + r_{n}^{2}}$ average error!
 $||r||_{\infty} = \max(|r_{1}|, |r_{2}|, \dots, |r_{m}|) \rightarrow \max. |oral error!|$

Going from Chalkboard to Terminal

$$||r||_{2} = \left(\sum_{i=1}^{n} r_{i}^{2}\right)^{1/2}$$

$$||r||_{2} = \left(\sum_{i=1}^{$$

1: Sum var lable 2: pow (vg2)/

Types of Linear Algebra Operations

BLAS

```
Scalar-scalar; Doops

Scalar-vector; 1 100p } Level 1

Vector-vector; 1 100p }

Matrix-vector; 2 100ps } Level 2

scalar-Matrix; 2 100ps } Level 3
```

Matrix-Vector Multiplication

Matrix-Matrix Multiplication

Complexity and Cost of Solving Linear Systems

Dense vs. Sparse Linear Algebra

What are Dense and Sparse Linear Systems

Dense

How do dense linear systems arise? photos, platnæs,

Integral Methods - the solution at any point is a twetron of the solution at all points

How do sparse linear systems arise?

Discretize

- Finite Difference

-Finite Clebnert

- Finite volume

 $\nabla^2 u(x) = 0$ domain boundary u(x) = f(x)

Types of Matrices and Storage Formats

Matrices Symmetric Orthoganal Triangular / upper or lower Banded invertible positive definite singular unitory orthoromal

Formats

banded

Symmetric

Coordinate

Compressed 8 pares Pow

Example: Coordinate (COO) Format

3 value 3 2 integer arays Size nz nnz

do
$$N=1$$
, NnZ

$$i = ia(n)$$

$$j = ja(n)$$

$$\chi(i) = \chi(i) + aa(n) * \chi(j)$$
end do

Solving Linear Systems

Overview of Solution Methods

LU Factorization

LU Factorization for Solving Linear Systems

LU: Forward Elimination

LU: Backward Substitution

Fast LU Factorizations