Oznaczenia

Umawiamy się, że

$$(x_1,\ldots,x_N) := [x_1\ldots x_N]^{\mathsf{T}} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}$$

Przez e_k oznaczamy k-ty wektor bazowy ze standardowej bazy przestrzeni $\mathbb{R}^N,$ a więc

$$e_k := (0, 0, \dots, 0, \overbrace{1}^{k\text{-ta pozycja}}, 0, \dots, 0, 0) = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

Jeżeli mamy dany zbiór G i punkt $x \in G$, to $G - x = \{y - x \colon y \in G\}$. Wówczas

$$y \in G - x \iff y + x \in G.$$

Pochodne kierunkowe i cząstkowe

Definicja 1. Pochodną cząstkową funkcji $f: D \to \mathbb{R}, D \subseteq \mathbb{R}^n$ po zmiennej x_k definiujemy jako granicę (jeśli istnieje)

$$\lim_{h \to 0} \frac{f(x_1, x_2, \dots, x_k + h, \dots, x_n) - f(x_1, x_2, \dots, x_k, \dots, x_n)}{h}$$

i oznaczamy jako

$$\frac{\partial f}{\partial x_k}(x_1,\ldots,x_n)$$
 lub $\frac{\partial f(x_1,\ldots,x_n)}{\partial x_k}$

Definicja 2 (Pochodna Kierunkowa). Niech dana będzie funkcja $f: U \to \mathbb{R}$, gdzie $U \subseteq \mathbb{R}^n$ jest zbiorem niepustym i otwartym. *Pochodną kierunkową* funkcji f w punkcie a w kierunku niezerowego wektora $u \in U$ nazywamy (jeżeli istnieje) granicę

$$\lim_{t \to 0} \frac{f(a+tu) - f(a)}{t}.$$

Oznaczamy powyższą granicę symbolem $\nabla_u f(a)$ lub $\partial_u f(a)$.

Stosowane są także oznaczenia $\frac{\partial f}{\partial u}(a)$ i $f'_u(a)$. Oczywisty jest związek

$$\frac{\partial f}{\partial x_k}(a) = \nabla_{e_k} f(a).$$

Definicja 3. Definiujemy gradient funkcji f w punkcie a jako

grad
$$f(a) = \nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right).$$

Symbol ∇ (tzw. nabla) oznacza "operator różniczkowy", możemy rozumieć, że danej funkcji przyporządkowuje on funkcję wektorową postaci:

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n}\right).$$

Gradient funkcji w punkcie jest wektorem wskazującym kierunek najszybszego wzrostu funkcji w danym punkcie. Zatem pochodna kierunkowa liczona w kierunku gradientu będzie mieć największą wartość.

Różniczka i pochodna Frécheta

Rozważamy przestrzenie unormowane $(X, \|\cdot\|_X)$ i $(Y, \|\cdot\|_Y)$.

Niech $f\colon G\to Y$ odwzorowaniem, gdzie $G\subseteq X$ i niech $a\in \operatorname{int} G$. Mówimy, że funkcja f jest różniczkowalna w sensie Frécheta w punkcie f, gdy istnieje takie odwzorowanie liniowe i **ciągłe** $A\colon X\to Y$, że

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - Ah\|_Y}{\|h\|_X} = 0.$$
 (F)

Odwzorowanie A nazywamy różniczką odwzorowania f w punkcie a i oznaczamy $A = \mathrm{d}f(a)$. Stosowane są różne inne oznaczenia: f'(a), $\mathrm{d}_a f$, etc.

Twierdzenie 1. Nastepujące warunki są równoważne:

- (i) $funkcja \ f \colon G \to Y \ jest \ r\'ozniczkowalna \ w \ sensie \ Fr\'echeta \ w \ punkcie \ a;$
- (ii) istnieje taka funkcja $r: X \to Y$, że

$$f(a+h) - f(a) = Ah + r(h), \quad dla \ h \in G - a \tag{1}$$

przy czym

$$\lim_{h \to 0} \frac{r(h)}{\|h\|_X} = 0; \tag{1.1}$$

(iii) istnieje taka funkcja $r: X \to Y$, ciągła w zerze, że r(0) = 0 oraz dla każdego $h \in G-a$ zachodzi

$$f(a+h) - f(a) = Ah + ||h||_X r(h).$$
 (2)

Dowód Twierdzenia 1. $(i) \Rightarrow (ii)$. Wystarczy położyć

$$r(h) = \begin{cases} \frac{\|f(a+h) - f(a) - Ah\|}{\|h\|}, & \text{dla } h \in G - a \setminus \{0\}; \\ 0, & \text{w pozostałych przypadkach.} \end{cases}$$

Wówczas,

$$\lim_{h \to 0} r(h) = \lim_{h \to 0} \frac{\|f(a+h) - f(a) - Ah\|}{\|h\|} \stackrel{\text{(F)}}{=} 0 = r(0).$$

 $(ii) \Rightarrow (iii)$. Zakładamy, że istnieje odwzorowanie liniowe A oraz funkcja r_1 spełniająca warunki (1) i (1.1), tj. ciągła w zerze, $r_1(0) = 0$ oraz $f(a+h) - f(a) = Ah + ||h||_X r_1(h)$ dla $h \in G - a$. Wówczas, warunek (iii)

jest spełniony z tym samym odwzorowaniem A i z funkcją r zdefiniowaną wzorem $r(h) = \|h\| r_1(h), h \in X$. Warunek (2) jest oczywiście spełniony oraz mamy

$$\lim_{h \to 0} \frac{r(h)}{\|h\|} = \lim_{h \to 0} r_1(h) = r_1(0) = 0,$$

co było do wykazania.

 $(iii) \Rightarrow (i)$. Warunek (2) zapisujemy w postaci

$$r(h) = f(a+h) - f(a) - Ah.$$

Stad,

$$\frac{f(a+h) - f(a) - Ah}{\|h\|} = \frac{r(h)}{\|h\|},$$

a ponieważ $\frac{r(h)}{\|h\|} \xrightarrow{h \to 0} 0$, to również $\left\| \frac{r(h)}{\|h\|} \right\| \xrightarrow{h \to 0} 0$ i mamy

$$\frac{\|f(a+h) - f(a) - Ah\|}{\|h\|} = \frac{\|r(h)\|}{\|h\|} = \left\|\frac{r(h)}{\|h\|}\right\| \xrightarrow{h \to 0} 0. \quad \Box$$

Twierdzenie 2. Jeżeli $f: U \to \mathbb{R}$, gdzie $U \subseteq \mathbb{R}^N$ jest niepustym zbiorem otwartym, jest funkcją różniczkowalną w sensie Frécheta w punkcie $a \in U$, to wówczas

- (i) w punkcie a istnieje pochodna kierunkowa $\nabla_u f(a)$ funkcji f w kierunku dowolnego wektora $u \in \mathbb{R}^N$, a ponadto $\nabla_u f(a) = \mathrm{d} f(a) u$;
- (ii) istnieją wszystkie pochodne cząstkowe $\frac{\partial f}{\partial x_i}(a), i \in \{1, \dots, N\}$ i zachodzi równość

$$\mathrm{d}f\left(a\right)h = \sum_{k=1}^{N} \frac{\partial f}{\partial x_{k}}(a)h_{k},$$

dla dowolnego $h = (h_1, \ldots, h_N) \in \mathbb{R}^N$.

 $Dow \acute{o}d$. Z założenia, istnieje $\varepsilon>0$, takie że kula $B\left(a,\varepsilon\right)$ zawiera się w U. Dla $|t|<\varepsilon\,\|u\|^{-1}$ punkt a+tuleży w kuli $B\left(a,\varepsilon\right)$ i wobec założenia o różniczkowalności f, mamy

$$f(a+tu) - f(a) = df(a)tu + r(tu),$$

gdzie r jest taką funkcją, że $\frac{r(tu)}{\|tu\|} \to 0$ przy $\|tu\| \to 0$. Mamy, dla odpowiednio małych t,

$$\nabla_{u}f(a) = \lim_{t \to 0} \frac{f(a+tu) - f(a)}{t}$$

$$= \lim_{t \to 0} \frac{\mathrm{d}f(a)(tu) - r(tu)}{t}$$

$$= \lim_{t \to 0} \left(\frac{t\,\mathrm{d}f(a)u}{t} - \frac{r(tu)}{t}\right)$$

$$= \lim_{t \to 0} \left(\mathrm{d}f(a)u - \frac{r(tu)}{t} \cdot \frac{\|u\|}{\|u\|}\right)$$

$$= \mathrm{d}f(a)u - \|u\| \lim_{t \to 0} \frac{r(tu)}{t\|u\|},$$

a ponieważ $\lim_{t\to 0} \frac{r(tu)}{t \|u\|} = \lim_{t\to 0} \operatorname{sgn}(t) \frac{r(tu)}{\|tu\|} = \pm \lim_{h\to 0} \frac{r(h)}{\|h\|} = 0$, to mamy porządaną równość.

Aby wykazać (ii), zauważmy, że dowolny wektor $h=(h_1,\ldots,h_N)\in\mathbb{R}^N$ możemy zapisać w postaci

$$h = \sum_{k=1}^{N} h_k e_k,$$

gdzie e_k jest k-tym wektorem bazy standardowej \mathbb{R}^N . Mamy

$$df(a) h = df(a) \sum_{k=1}^{N} h_k e_k = \sum_{k=1}^{N} h_k df(a) e_k$$
$$= \sum_{k=1}^{N} h_k \nabla_{e_k} f(a) = \sum_{k=1}^{N} \frac{\partial f}{\partial x_k}(a) h_k.$$

Twierdzenie 3. Niech $f: G \to \mathbb{R}$, gdzie $G \subseteq \mathbb{R}^N$ jest zbiorem otwartym. Wówczas, jeżeli funkcja f ma wszystkie pochodne cząstkowe pierwszego rzędu i są one ciągłe w punkcie $a \in G$, to funkcja f jest różniczkowalna w sensie Frécheta.

Szukanie ekstremów funkcji dwóch zmiennych

Niech f będzie funkcją określoną w otoczeniu punktu $P \in \mathbb{R}^2$. Jeżeli funkcja f ma ciągłe drugie pochodne cząstkowe w punkcie P to jest różniczkowalna dwukrotnie w jego otoczeniu. Warunkiem koniecznym istnienia ekstremum jest

$$df(P) h = 0, h \in \mathbb{R}^2 \iff \frac{\partial f}{\partial x}(P) = \frac{\partial f}{\partial y}(P) = 0.$$

Wtedy niech

$$H = \det d^2 f(P) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2}(P) & \frac{\partial^2 f}{\partial x \partial y}(P) \\ \frac{\partial^2 f}{\partial x \partial y}(P) & \frac{\partial^2 f}{\partial y^2}(P) \end{vmatrix}$$

- 1. Jeżeli H>0, to funkcja f ma w punkcie P ekstremum lokalne właściwe:
 - (a) minimum, gdy $\frac{\partial^2 f}{\partial x^2}(P) > 0$,
 - (b) maksimum, gdy $\frac{\partial^2 f}{\partial x^2}(P) < 0$.
- 2. Jeżeli H<0, to funkcja f nie ma w punkcie P ekstremum, ma natomiast punk siodłowy.
- 3. Jeżeli H=0, to sprawa istnienia ekstremum jest nierozstrzynięta.

Szukanie ekstremów warunkowych

Niech $G\subseteq\mathbb{R}^N$ będzie otwartym otoczeniem punktu a, funkcja $f\colon G\to\mathbb{R}$ oraz funkcje $g\colon G\to\mathbb{R}$, mają ciągłe pierwsze pochodne cząstkowe, a ponadto $\nabla f(a), \nabla g(a)\neq 0$. Wówczas, jeżeli f ma w punkcie a ekstremum pod warunkiem g(a)=0, to istnieje taka liczba rzeczywista λ , że funkcja $L\colon G\to\mathbb{R}$ określona wzorem

$$L(\mathbf{x}) = f(\mathbf{x}) - \lambda g(\mathbf{x}), \ \mathbf{x} = (x_1, \dots, x_N) \in G$$

spełnia warunek

$$\frac{\partial L}{\partial x_i}(a) = 0$$
, dla $i = 1, \dots, N$.

Załóżmy dodatkowo, że f i g mają ciągłe drugie pochodne cząstkowe. Wówczas, jeżeli dla każdego wektora $\mathbf{h} = (h_1, \dots, h_N) \neq 0$ takiego, że

$$\sum_{j=1}^{N} \frac{\partial g}{\partial x_j}(a)h_j = 0,$$

zachodzi

$$d^2L(\mathbf{x})\mathbf{h} > 0,$$

to funkcja f ma w punkcie a lokalne minimum przy warunku g=0, a jeżeli

$$\mathrm{d}^2 L(\mathbf{x})\mathbf{h} < 0,$$

dla **h** jak uprzednio, to f ma w punkcie a lokalne maksimum przy warunku g=0.

Przykłady

1.

$$f(x,y) = \begin{cases} e^{-\frac{1}{x^2 + y^2}}, & \text{gdy } x^2 + y^2 \neq 0, \\ 0, & \text{gdy } x = y = 0. \end{cases}$$

Zbadamy różniczkowalność (w sensie Frécheta) funkcji f w punkcie (0,0). Mamy

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h}$$
$$= \lim_{h \to 0} \frac{e^{-\frac{1}{h^2} - 0}}{h} = \lim_{h \to 0} \frac{1}{h} e^{-\frac{1}{h^2}} = 0.$$

Analogicznie $\frac{\partial f}{\partial y}(0,0)=0$. Jeżeli funkcja f jest różniczkowalna w (0,0), to (na mocy twierdzenia 2):

Jest to oczywiste ze względu na symetrię w definicji f.

$$df(0,0) = \frac{\partial f}{\partial x}(0,0) dx + \frac{\partial f}{\partial y}(0,0) dy = 0.$$

Inaczej mówiąc,

$$df(0,0)(h,k) = \frac{\partial f}{\partial x}(0,0)h + \frac{\partial f}{\partial y}(0,0)k = 0, \text{ dla } (h,k) \in \mathbb{R}^2.$$

Musimy sprawdzić, czy

$$\lim_{(h,k)\to(0,0)} \frac{f(0+h,0+k) - f(0,0) - \mathrm{d}f(0,0)(h,k)}{\|(h,k)\|} = 0.$$

Ponieważ f(0,0) = 0, df(0,0)(h,k) = 0, to mamy

$$||(h,k)|| = \sqrt{h^2 + k^2}$$

$$\lim_{(h,k)\to(0,0)} \frac{f(h,k)}{\sqrt{h^2 + k^2}} = \lim_{(h,k)\to(0,0)} \frac{1}{\sqrt{h^2 + k^2}} e^{-\frac{1}{h^2 + k^2}}.$$
 (3)

Zauważmy, że gdy $h,k\to 0$, to $t=\frac{1}{\sqrt{h^2+k^2}}\to \infty$, zatem prawa strona równania (3) jest równa $\lim_{t\to\infty}te^{-t^2}=0$. Pokazaliśmy w ten sposób, że funkcja f jest różniczkowalna w punkcie (0,0) i jej różniczka Frécheta w tym punkcie jest tożsamościowo równa zero: $\mathrm{d}f(0,0)\equiv 0$. (Tzn. $\mathrm{d}f(0,0)(h,k)=0$ dla dow. $(h,k)\in\mathbb{R}^2!$)

Zwróćmy uwagę, że stąd wynika też, że f. f jest ciągła w punkcie (0,0)!

2. Niech

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & \text{gdy } x^2 + y^2 \neq 0, \\ 0, & \text{gdy } x = y = 0. \end{cases}$$

Funkcja f jest ciągła i ma w otoczeniu punktu (0,0) skończone pochodne cząstkowe, ale **nie** jest różniczkowalna w punkcie (0,0).

Aby sprawdzić, że funkcja f jest ciągła, weźmy dowolny ciąg $(x_n, y_n) \to (0,0)$. Niech $a_n = \max\{|x_n|, |y_n|\}, n \in \mathbb{N}$. Wtedy, jak łatwo sprawdzić, $\lim_{n\to\infty} a_n = 0$. Mamy

$$0 \leqslant \left| \frac{x_n y_n}{\sqrt{x_n^2 + y_n^2}} \right| \leqslant \frac{a_n^2}{\sqrt{a_n^2}} = a_n \xrightarrow{n \to \infty} 0,$$

a więc $\lim_{n\to\infty} f(x_n,y_n) = 0 = f(0,0)$. To oznacza, że

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0),$$

wobec dowolności wyboru ciągu $(x_n, y_n), n \in \mathbb{N}$.

Mamy $\frac{\partial f}{\partial x}(0,0)=\lim_{h\to 0}\frac{h\cdot 0}{\sqrt{h^2+0^2}}=0$ i analogicznie $\frac{\partial f}{\partial y}(0,0)=0$. Zatem, jeżeli funkcja f jest różniczkowalna w sensie Frécheta w p. (0,0), to $\mathrm{d} f(0,0)=0$. Badamy granicę postaci

$$\lim_{(h,k)\to(0,0)} \frac{f(0+h,0+k) - f(0,0) - \mathrm{d}f(0,0)}{\|(h,k)\|} = 0.$$

Powyższa granica (wstawiamy df(0,0) = 0, f(0,0) = 0) ma postać

$$\lim_{(h,k)\to(0,0)} \frac{\frac{hk}{\sqrt{h^2+k^2}} - 0 - 0}{\sqrt{h^2+k^2}} = \lim_{(h,k)\to(0,0)} \frac{hk}{h^2+k^2}.$$

Jeżeli rozważymy ciąg $(h_n,k_n)=(\frac{1}{n},\frac{1}{n})$, to okaże się, że nie może być ona równa zero, gdyż $\lim_{n\to 0}\frac{h_nk_n}{h_n^2+k_n^2}=\frac{1}{2}$. Dodatkowo, jeżeli rozpatrzymy np. ciąg $(h_n,k_n)=(\frac{1}{n},\frac{1}{n^2})$, to zobaczymy, że granica ta w ogóle nie istnieje.

Pokazaliśmy, że funkcja f nie jest różniczkowalna w p. (0,0).