

N32G4FRxC/xE

产品简介

N32G4FR 系列采用 32 bit ARM Cortex-M4 内核,最高工作主频 144MHz,支持浮点运算及 DSP 指令,内置密码算法硬件加速引擎,集成高达 512KB 加密 Flash 存储器,144KB SRAM,可用于安全存储指纹信息,支持主流的半导体指纹及光学传指纹感器,集成丰富的 U(S)ART、I2C、SPI、QSPI、USB、ADC、DAC, SDIO 等通用外设接口

关键特性

● 内核 CPU

- 32 位 ARM Cortex-M4 内核+FPU,单周期硬件乘除法指令,支持 DSP 指令和 MPU
- 一 内置 8KB 指令 Cache 缓存, 支持 Flash 加速单元执行程序 0 等待
- 最高主频 144MHz, 180DMIPS

● 存储器

- 一 高达 512KByte 片内 Flash, 支持加密存储、分区管理及数据保护, 支持硬件 ECC 校验, 10 万次擦写次数, 10 年数据保持
- 144KByte 片内 SRAM (包含 16KByte Retention RAM), 支持硬件奇偶校验

● 低功耗模式

- Standby 模式: 3uA,84个备份寄存器保持,所有 IO 保持,可选 RTC Run,16KByte Retention SRAM 保持, 支持 VBAT 管脚独立供电,100uS 快速唤醒
- Stop2 模式: 5uA, RTC Run, 16KByte Retention SRAM 保持, CPU 寄存器保持, 所有 IO 保持, 40uS 快速唤醒
- Stop0 模式: 120uA, RTC Run, 所有 SRAM 保持, 所有 IO 保持, 20uS 快速唤醒

● 时钟

- 4MHz~32MHz 外部高速晶体
- 32.768KHz 外部低速晶体
- 内部高速 RC 8MHz
- 内部低速 RC 40KHz
- 内置高速 PLL
- 一 支持 1 路时钟输出,可配置系统时钟、HSE、HSI 或 PLL 后分频输出

● 复位

- 支持上电/掉电/欠压/外部引脚复位
- 支持看门狗复位,软件复位
- 最大支持 65 个可支持复用功能的 GPIOs, 最大翻转速度 50MHz,大多数 GPIOs 支持 5V 耐压.
- 通信接口

- 7个U(S)ART接口, 最高速率达 4.5 Mbps, 其中 3个 USART接口(支持 1xISO7816, 1xIrDA, LIN), 4个 UART接口
- 3个 SPI 接口,速率高达 36 MHz,其中 2个支持 I2S
- 1个 QSPI 接口,速率高达 144 Mbps
- 一 4个 I2C 接口,速率高达 1 MHz,主从模式可配,从机模式下支持双地址响应
- 1 个 USB2.0 Full speed Device 接□
- 2个 CAN 2.0B 总线接口
- 1个SDIO接口,支持SD/MMC格式
- 1 ↑ DVP (Digital Video Port)

● 模拟接口

- 2 个 12bit 5Msps 高速 ADC,可配置为 12/10/8/6bit 模式,6bit 模式下采样率高达 9Msps,多达 16 路外部单端输入通道,支持差分模式
- 2个12bit DAC,采样率1Msps
- 支持外部输入独立参考电压源
- 所有模拟接口支持 1.8~3.6V 全电压工作
- 2个高速 DMA 控制器,每个控制器支持 8 通道,通道源地址及目的地址任意可配
- RTC 实时时钟,支持闰年万年历,闹钟事件,周期性唤醒,支持内外部时钟校准
- 定时计数器
 - 2个16bit 高级定时计数器,支持输入捕获,互补输出,正交编码输入等功能,最高控制精度 6.9nS;每个定时器有4个独立的通道,其中3个通道支持6路互补PWM输出
 - 一 4个 16bit 通用定时计数器, 每个定时器有 4个独立的通道,支持输入捕获/输出比较/PWM 输出
 - 2个 16bit 基础定时计数器
 - 1x 24bit SysTick
 - 1x 7bit 窗口看门狗(WWDG)
 - 1x 12bit 独立看门狗(IWDG)

● 编程方式

- 支持 SWD/JTAG 在线调试接口
- 支持 UART、USB Bootloader

● 安全特性

- 内置密码算法硬件加速引擎
- 支持 AES、DES、SHA, SM1、SM3、SM4、SM7, MD5 算法
- Flash 存储加密,多用户分区管理(MMU)
- TRNG 真随机数发生器

- CRC16/32 运算
- 支持写保护(WRP), 多种读保护(RDP)等级(L0/L1/L2)
- 支持安全启动,程序加密下载,安全更新
- 支持时钟失效监测, 防拆监测

● 96位 UID 及 128位 UCID

● 工作条件

- 工作电压范围: 1.8V~3.6V
- 工作温度范围: -40℃~105℃
- ESD: ±4KV (HBM 模型), ±1KV (CDM 模型)

● 封装

- QFN32(4mm x 4mm)
- QFN40(5mm x 5mm)
- LQFP64(10mm x 10mm)
- LQFP80(12mm x 12mm)

● 订购型号

系列	型号
N32G4FRxC	N32G4FRKCQ7 N32G4FRHCQ7
N32G4FRxE	N32G4FRKEQ7,N32G4FRHEQ7 N32G4FRREL7,N32G4FRMEL7

1 命名规则

2 产品型号资源配置

器件型号		N32G4FRKC/E		N32G4FRHC/E		N32G4FRRE	N32G4FRME	
Flash 容量(KB)		256	512	256	512	512	512	
SRAM 容量(KB)		144	144	144	144	144	144	
CPU 频率		ARM Cortex-M4 @144MHz,180DMIPS						
工作环境		1.8~3.6V/-40~105°C						
定时器	通用	4						
	高级	2						
	基本	2						
通讯 接口 -	SPI	2 3						
	I2S	1 2						
	QSPI	1						
	I2C			3		4		
	USART	1		2		3		
	UART	3		4				
	USB	1						
	CAN	1	l	2				
	SDIO			No		1	1	
	DVP	No		1				
GPIO		24		32		51	65	
D	MA				2			
Number of Channels		16Channel						
12bit ADC		2	2	2		2	2	
Number of channels		7Channel		11Channel		16Channel	16Channel	
12bit DAC		2						
Number of channels		2Channel						
算法支持		DES/3DES、AES、SHA1/SHA224/SHA256、SM1、SM3、SM4、SM7、MD5、 CRC16/CRC32、TRNG						
安全保护		读写保护(RDP/WRP)、存储加密、分区保护、安全启动						
封装		QFI	N32	QFN ²	40	LQFP64	LQFP80	

3 封装

3.1 QFN32 封装

3.1.1 QFN32 引脚分布

3.1.2 QFN32 封装尺寸

3.2 QFN40 封装

3.2.1 QFN40 引脚分布

3.2.2 QFN40 封装尺寸

3.3 LQFP64 封装

3.3.1 LQFP64 引脚分布

3.3.2 LQFP64 封装尺寸

3.4 LQFP80 封装

3.4.1 LQFP80 引脚分布

3.4.2 LQFP80 封装尺寸

4 历史版本

版本	日期	备注
V1.0	2020.2.12	新建文档
V1.0.1	2020.12.15	修改 3.1.1, 3.2.1, 3.3.1, 3.4.1 引脚分布图
V1.1	2022.7.6	1. 删除 SDIO eMMC 格式

5 声明

国民技术股份有限公司(下称"国民技术")对此文档拥有专属产权。依据中华人民共和国的法律、条约以及世界其他法域相适用的管辖,此文档及其中描述的国民技术产品(下称"产品")为公司所有。

国民技术在此并未授予专利权、著作权、商标权或其他任何知识产权许可。所提到或引用的第三方名称或品牌 (如有)仅用作区别之目的。

国民技术保留随时变更、订正、增强、修改和改良此文档的权利,恕不另行通知。请使用人在下单购买前联系国民技术获取此文档的最新版本。

国民技术竭力提供准确可信的资讯,但即便如此,并不推定国民技术对此文档准确性和可靠性承担责任。

使用此文档信息以及生成产品时,使用者应当进行合理的设计、编程并测试其功能性和安全性,国民技术不对任何因使用此文档或本产品而产生的任何直接、间接、意外、特殊、惩罚性或衍生性损害结果承担责任。

国民技术对于产品在系统或设备中的应用效果没有任何故意或保证,如有任何应用在其发生操作不当或故障情况下,有可能致使人员伤亡、人身伤害或严重财产损失,则此类应用被视为"不安全使用"。

不安全使用包括但不限于: 外科手术设备、原子能控制仪器、飞机或宇宙飞船仪器、所有类型的安全装置以及 其他旨在支持或维持生命的应用。

所有不安全使用的风险应由使用人承担,同时使用人应使国民技术免于因为这类不安全使用而导致被诉、支付 费用、发生损害或承担责任时的赔偿。

对于此文档和产品的任何明示、默示之保证,包括但不限于适销性、特定用途适用性和不侵权的保证责任,国民技术可在法律允许范围内进行免责。

未经明确许可,任何人不得以任何理由对此文档的全部或部分进行使用、复制、修改、抄录和传播。