Slide A: Derive the Convolution Sum

$$y[k] = \sum_{m=-\infty}^{\infty} x[m]h[-m+k]$$

<u>Step 1.</u> Any arbitrary sequence x[k] can be represented as a linear combination of time-shifted, DT impulse or unit sample functions

$$\delta[k-m]$$
 for $-\infty < m < \infty$, i.e., $x[k] = \sum_{m=-\infty}^{\infty} x[m]\delta[k-m]$

Recall that the DT impulse function, aka the "unit sample" is defined as

$$\mathcal{S}[k] = \begin{cases} 1, & k = \underline{} \\ 0, & k \neq \underline{} \end{cases}$$

Slide B: Applying properties

Step 4. The output, in response to the arbitrary input, is given by

$$y[k] = T\{x[k]\} = T\left\{\sum_{m=-\infty}^{\infty} x[m]\delta[k-m]\right\}.$$
$$y[k] = T\{x[k]\} = \sum_{m=-\infty}^{\infty} T\{x[m]\delta[k-m]\}.$$

a. What property allows moving the Transformation operator within the summation above?

Furthermore, the output can be expressed as

$$y[k] = T\{x[k]\} = \sum_{m=-\infty}^{\infty} x[m]T\{\delta[k-m]\}.$$

b. What property allows the above step?

Slide C: completing steps 5 and 6

Recall the result of Step 4:

$$y[k] = T\{x[k]\} = \sum_{m=-\infty}^{\infty} x[m]T\{\delta[k-m]\}.$$

 $\underline{\text{Step 5.}} \ T\{\delta[k]\} = \underline{\hspace{1cm}}.$

Step 6. Apply the time invariance property:

$$T\{\delta[k-m]\} = \underline{\qquad}.$$

 $\underline{\text{Step 7.}}$ Substituting the above result into the result from Step 4 gives $_{\infty}$

$$y[k] = \sum_{m=-\infty}^{\infty} x[m]h[k-m].$$

Slide D: working with DT sinusoids - 3 problems

- 1. Consider the CT signal $x(t) = 6\cos(40\pi t + \pi/4)$, sampled at Fs = 100 Hz.
 - a) What is the maximum frequency f_{max} in $\mathbf{x}(\mathbf{t})$? b) Find $\mathbf{x}[\mathbf{k}]$ c) Determine DT normalized cyclic frequency F d) Find the period N_{θ} , if it exists
 - e) Graph x[k] in Matlab and verify N_0 . f) What is the value of x[4]?
 - g) Is the DT normalized radian frequency $\Omega < \pi$?
- 2. Suppose $x(t) = 5\cos(2\sqrt{2\pi}t + \pi/3)$, where $F_s = 6$ Hz.
 - a) Find x[k] b) Determine DT normalized cyclic frequency F. Is F < 1/2? c) Find the period N_0 , if it exists d) Graph x[k] in Matlab e) Convert x[k] back to x(t). (Hint: recall kTs = t when changing a CT signal into a DT signal.) f) Does it match your original CT signal? Why?

Slide D (cont'd)

- 3. Again consider the CT signal $x(t) = 6\cos(40\pi t + \pi/4)$, but now it's sampled at Fs = 30 Hz.
- a. Find x[k]
- b. Determine DT normalized cyclic frequency F
- c. Find the period N_{θ} , if it exists
- d. Graph x[k] in Matlab and check out N_{θ} .
- e. Now reconstruct x(t) from x[k] with Fs = 30Hz.
- **f.** Do you get back the original signal x(t)?

Slide E. So let's look at that horizontal axis again, but now with Fs = 10kHz

• Recall the DTFT graph:

- The horizontal axis denotes DT normalized radian frequency Ω .
- a) Now find the CT frequency f [in Hz] corresponding to each of each of

$$\Omega = 0.2\pi$$
, 0.4π , 0.6π , 0.8π .

$$\Omega = 0.1\pi, \ 0.3\pi, \ 0.5\pi, \ 0.7\pi, 0.9\pi.$$

Slide F. Apply the DTFT synthesis equation:

$$X(\Omega) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\Omega k}$$

• Ex. Given $x[k] = \delta[k]$. Calculate the DTFT of x[k].

• In light of what you found for the DTFT of x[k], can you specify the DTFT pair: