Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/005225

International filing date: 23 March 2005 (23.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-084256

Filing date: 23 March 2004 (23.03.2004)

Date of receipt at the International Bureau: 12 May 2005 (12.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application: 2004年 3月23日

出願番号

 Application Number:
 特願2004-084256

バリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is JP2004-084256

出 願 人

日本軽金属株式会社

Applicant(s):

2005年 4月20日

1)1

特許庁長官 Commissioner, Japan Patent Office 【書類名】 特許願 【整理番号】 P = 0 1 2 1 1 2 【あて先】 特許庁長官殿 【国際特許分類】 C 2 2 C 2 1 / 0 0F 2 8 F 1/12 【発明者】 【住所又は居所】 静岡県庵原郡蒲原町蒲原1-34-1 日本軽金属株式会社グループ技術センター内 【氏名】 織田 和宏 【発明者】 【住所又は居所】 東京都品川区東品川二丁目2番20号 日本軽金属株式会社 【氏名】 塩田 正彦 【特許出願人】 【識別番号】 0 0 0 0 0 4 7 4 3 【氏名又は名称】 日本軽金属株式会社 【代理人】 【識別番号】 100109726 【弁理士】 【氏名又は名称】 園田 吉隆 【選任した代理人】 【識別番号】 100101199 【弁理士】 【氏名又は名称】 小林 義教 【手数料の表示】 【予納台帳番号】 058621 【納付金額】 21,000円 【提出物件の目録】 【物件名】 特許請求の範囲 【物件名】 明細書 1 【物件名】 要約書 1

【書類名】特許請求の範囲

【請求項1】

 $Si:13\sim25$ 質量%、 $Cu:2\sim8$ 質量%、 $Fe:0.5\sim3$ 質量%、 $Mn:0.3\sim3$ 質量%、 $P:0.001\sim0.02$ 質量%を含み、残部がAlと不可避的不純物からなり、FeとMnの合計量が3.0質量%以上であることを特徴とする剛性に優れ、低線膨張率を有する鋳造用アルミニウム合金。

【請求項2】

 $Si:13\sim25$ 質量%、 $Cu:2\sim8$ 質量%、 $Fe:0.5\sim3$ 質量%、 $Mn:0.3\sim3$ 質量%、 $Ni:0.5\sim6$ 質量%、 $P:0.001\sim0.02$ 質量%を含み、残部がAlと不可避的不純物からなり、Fe、MnおよびNiの合計量が3.0質量%以上であることを特徴とする剛性に優れ、低線膨張率を有する鋳造用アルミニウム合金。

【請求項3】

さらに、 $Cr:0.1\sim1.0$ 質量%、 $Mg:0.05\sim1.5$ 質量%、 $Ti:0.01\sim1.0$ 質量%、 $B:0.001\sim1.0$ 質量%、 $Zr:0.1\sim1.0$ 質量%、 $V:0.1\sim1.0$ 質量%、 $Mo:0.01\sim1.0$ 質量%の何れか1種以上を含むことを特徴とする請求項1又は2のいずれかに記載の、剛性に優れ、低線膨張率を有する鋳造用アルミニウム合金。

【書類名】明細書

【発明の名称】高剛性・低線膨張率を有する鋳造用アルミニウム合金

【技術分野】

 $[0\ 0\ 0\ 1\]$

本発明は、鋳造用アルミニウム合金に関し、特に自動車等各種車両のラダー型フレーム、ペリメータ型フレームやケース類のように、特に高剛性と低線膨張率を必要とされる部材の鋳造に好適に用いることができる鋳造用アルミニウム合金に関するものである。

【背景技術】

[0002]

従来、自動車のフレームのように特に高い剛性が必要とされる部材には鋳鉄が使用されてきたが、近年は、省エネルギーの観点から自動車の軽量化の要求が高まり、この要求に答えうる材料としてアルミニウム合金が注目されている。

【発明の開示】

【発明が解決しようとする課題】

[0003]

高い剛性を有するアルミニウム合金としては、アルミニウム合金中に、強化材としてA1203やSiC等を複合させたアルミニウム合金複合材が知られているが、これらの複合材は、製造工程が複雑でコスト高になる問題がある。また、A1203やSiC等を含んでいるためにリサイクル時に制約が多い等の問題もある。

 $[0\ 0\ 0\ 4\]$

特開平1-180938号公報は、耐摩耗性を向上させたアルミニウム合金を開示したものであるが、ここに開示されたアルミニウム合金は、自動車のフレーム等に使用されている鋳鉄品と置換しようとした場合には、剛性が小さく、線膨張係数が大きすぎる問題が有る。また、特開平3-199336号公報も同様に耐摩耗性を向上させたアルミニウム合金を開示したものであるが、ここに開示されたアルミニウム合金もまた自動車のフレーム等に使用されている鋳鉄品と置換しようとした場合には、剛性が小さく、線膨張係数が大きすぎ、さらに金型への焼きつきが起こり易いという問題もある。

【特許文献1】特開平1-180938号公報

【特許文献2】特開平3-199336号公報

【課題を解決するための手段】

[0005]

従来のアルミニウム合金が有する上記のような問題を解決するため、本発明は、 $Si:13\sim25$ 質量%、 $Cu:2\sim8$ 質量%、 $Fe:0.5\sim3$ 質量%、 $Mn:0.3\sim3$ 質量%、 $Pi:0.001\sim0.02$ 質量%を含み、残部がAlと不可避的不純物からなり、FeとMnの合計量が3.0 質量%以上であることを特徴とする剛性に優れ、低線膨張率を有する鋳造用アルミニウム合金を提案する。

[0006]

さらに、Fe、MnおよびNiの合計量が3.0質量%以上となるようにNi:0.5 \sim 6質量%を加えても良い。

[0007]

さらに、上記Niに代えて、あるいはNiに加えて、Cr: 0.1~1.0質量%、Mg: 0.05~1.5質量%、Ti: 0.01~1.0質量%、B: 0.0001~1.0質量%、Zr: 0.1~1.0質量%、V: 0.1~1.0質量%、Mo: 0.01~1.0質量%の何れか1種以上を含んでも良い。

[0008]

本発明の合金は、冷却速度30°C/秒以上で鋳造することが好ましく、高い冷却速度で鋳造するためにはダイカスト法で鋳造することが好ましい。

 $[0\ 0\ 0\ 9\]$

本発明の発明者は、アルミニウム合金について鋭意研究を行った結果、晶出物の面積率とアルミニウム合金の剛性および線膨張係数に相関があることを発見し、さらに研究を行

った結果、上述の合金組成にすることにより、鋳造時にA1-Ni系、A1-Ni-Cu系、A1-Cu系、A1-Fe-Si系、A1-Fe-Mn系あるいはA1-Si-Fe-Mn系化合物の微細な晶出粒子を分散させることができ、必要とする高剛性および低線膨張率を実現できることを発見した。以下に、各成分の当該アルミニウム合金における作用について述べる。

【発明の効果】

 $[0\ 0\ 1\ 0\]$

Si: 13~25質量%

Siは、共晶Si、初晶Si、Al-Fe-Si系化合物として晶出し、剛性を向上させる作用がある。この効果は13質量%以上で顕著となるが、25質量%を超えると初晶Siが粗大化して、逆に剛性向上効果が低下する。また、鋳造温度を向上させる必要がある。更に、粗大Siによって切削加工性が著しく悪化する。Siには、線膨張率を低下させる作用、耐摩耗性を向上させる作用もある。Siのより好ましい範囲は、13~17質量%である。

$[0\ 0\ 1\ 1\]$

Cu: 2~8質量%

Cuは、Al-Cu系、Al-Ni-Cu系化合物として晶出し、剛性の向上に寄与する。この作用は4質量%以上の添加で顕著となるが、8質量%を超えると化合物が粗大化して逆に伸びが低下し、さらに耐食性も低下する。Cuのより好ましい範囲は3~6質量%である。

$[0\ 0\ 1\ 2]$

Fe+Mn(+Ni): 3.0質量%以上

Fe、Mn、Niは、A1-Fe-Mn系、A1-Fe-Si系、A1-Ni系、A1-Ni-Cu系、A1-Ni-Fe-Mn系、A1-Si-Fe-Mn系化合物として晶出し、剛性の向上に寄与し、線膨張係数を低下させる作用がある。また、耐熱性を向上させる作用もある。この作用は、Fe+Mn(+Ni)が3質量%以上で顕著となるが、12質量%を超えると晶出物が粗大化し、逆に剛性向上効果が小さくなるので、Fe+Mn+Niは合計で12質量%以下にするのが好ましい。

$[0\ 0\ 1\ 3]$

 $P: 0.001 \sim 0.02$

Pは、初晶Siを微細化して均一に分散させる作用を有する。この作用は、0.001質量%以上で顕著であるが、0.02質量%を超えると溶湯の粘性が増加し、鋳造性が悪くなる。

$[0\ 0\ 1\ 4\]$

Mg: 0. 05~1.5質量%

Mgは、母相中に固溶し、剛性の向上に寄与する。この作用は、0.05質量%以上で顕著であるが、1.5質量%を越えると伸びが低下し、鋳造性が著しく悪化する。さらに好ましくは、Mgは0.4質量%以下である。

$[0\ 0\ 1\ 5]$

Cr: 0. 1~1. 0質量%

Crは、Al-Si-Fe-Mn-Cr系化合物として晶出し、剛性の向上に寄与する。また、初晶Siを 微細且つ均一に分散させる作用をも有する。当該作用は、CrがO・1質量%以上で顕著で あるが、1・0質量%を超えると粗大な化合物が形成され、逆に伸びが低下する。

$[0\ 0\ 1\ 6]$

Ti: 0. 01~1. 0質量%

 Γ_1 は、 α 相を微細化し、鋳造性の向上に寄与するとともに、 Λ_1 - N_1 系化合物の粗大かを防止する作用がある。その作用は、 Γ_1 が0. 0 1 質量%以上で顕著となるが、1. 0 質量%を超えると粗大な化合物が形成され、逆に伸びが低下する。

$[0\ 0\ 1\ 7]$

B:O.OOOl~1.O質量%、V:O.1~1.O質量%、Zr:O.1~1.O質量%、Xr:O.0質量%、Mo:O.Ol~1.O質量%

B、V、Zr、Moは、高剛性晶出物を形成し、剛性の向上に寄与する。何れの元素も上限を超えて添加すると粗大な晶出物を形成して、伸びが低下する。

【発明を実施するための最良の形態】

[0018]

本出願の発明者は、本発明にかかるアルミニウム合金を製造し、組成と結晶構造及び剛性と線膨張係数との関係について実験的に確認したので、その結果を以下に述べる。

実験に用いたアルミニウム合金の組成を表 1 に示す。実験に用いたアルミニウム合金は、PF ダイカスト法により、鋳造温度 720° Cで 200 × 200 × 10 mmの平板形状に鋳造した後、200° Cで 4 時間保持して時効させた後、剛性(ヤング率)と線膨張係数(熱膨張係数)を測定した。合金No. $1\sim1$ 7 は本発明に基づくアルミニウム合金、合金No. $18\sim2$ 4 は、組成の範囲のうちの少なくとも 1 つが上述の条件を満たさない比較例である。条件を満足していない組成には下線を引いて示した。

【表 1】

No.		組成(質量%)													特性	
		Si	Cu	Ni	Fe	Mn	Mg	Cr	Ti	В	V	Zr	Мо	Р	E	α
		، د	Cu												(GPa)	(x10 ⁻⁶ /°C)
1	本発明による組成	13	5	3	2	1	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.01	96	17.8
2		24	5	3	2	1	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.01	103	14.6
3		16	3	3	2	1	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.01	96	17.2
4		16	7	3	2	1	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.01	100	16.7
5		16	5	1	1	1	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.01	93	17.5
6		16	5	3	2	2	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.01	98	17.0
7		16	5	6	2	3.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.01	106	16.4
8		16	5	1	1	1	1.5	1.0	1.0	1.0	1.0	1.0	1.0	0.01	98	16.9
9		16	5	-	2	2	_	0.4	_	-	-	-	_	0.01	92	17.8
10		16	5	-	2	2	0.5	0.4	•	-	-	-	-	0.01	92	17.8
11		16	5	-	2	2	-	0.4	•	0.4	-	-	_	0.01	94	17.7
12		16	5	-	2	2	-	0.4	0.4	-	-	-	-	0.01	93	17.7
13		16	5	-	2	2	-	0.4	-	-	0.4	-	_	0.01	93	17.7
14		16	5	_	2	2	1	0.4	-	-	-	0.4	-	0.01	94	17.7
15		16	5	-	2	2	-	0.4	-	-	-	-	0.4	0.01	94	17.7
16		14	4	2	2.5	1.2	_	0.5	0.5	-	0.5	-	-	0.01	94	17.6
17		16	5		2	2	0.5	=	_	_	-	-	-	0.01	90	17.9
18	比較例	<u>12</u>	<u>1</u>	1	1	<u>0.5</u>	1	_	_	-	-	-	_	=	<u>80</u>	20.0
19		<u>11</u>	2.5	1	<u>0.8</u>	0.2	0.2	-	-	-	-	-	-	_	<u>78</u>	21.0
20		16	5_	0.5	1	0.5	0.5	0.4	-	-	-	-	-	0.01	87	17.9
21		16	5	2	_ =	2	-	0.4	-	-	-	-	-	0.01	91	17.8
22		16	5	2	2	_	-	0.4	-	-	-	-	-	0.01	-	17.4
23		16	1	_	2	2	-	0.4	-	-	-	-	-	0.01	<u>86</u>	18.5
24		<u>12</u>	5	-	2	2	-	0.4	-	-		-	-	0.01	88	18.9
								1		1	1		1	i		

$[0\ 0\ 1\ 9\]$

上記の測定結果を、表1に、組成とともに示す。

ここでは、ヤング率に関しては基準値を90 G P a として、これ以上のものが基準を満足すると判断し、線膨張係数については基準値を 18×10^{-6} / ° C として、これ未満のものが基準を満足すると判断した。

[0020]

合金No.19もまた、合金No.18と同様に、ヤング率、線膨張係数ともに基準を満足していない。これは、Cuについては上述の範囲に入っているものの、SiとNi+Fe+Mnの含有量が何れも不十分である(上述の範囲を下回っている)ことが原因であると考えられる。

[0021]

合金No.20は、ヤング率が基準値よりも低いが、これはNi+Fe+Mnの含有量が合計2.0質量%であって、上述の条件、Ni+Fe+Mn3.0質量%を下回っていることが原因と考えられる。

[0022]

合金No.21は、ヤング率と線膨張係数は基準を満足しているが、金型に焼きつきを生じた。これは、Feが実質的に添加されておらず、上述の条件を満足していなかったことが原因と考えられる。

[0023]

合金No.22は、延びが不十分で、弾性変形領域内で試験片が割れてしまったために ヤング率を測定することができなかった。これは、Mnが実質的に添加されておらず、組成 に関する上述の条件を満足していないためと考えられる。

[0024]

合金No.23は、ヤング率、線膨張係数ともに基準を満足していない。これは、Cuが 1質量%では不十分である(上述の範囲を下回っている)ことが原因であると考えられる

[0025]

合金No.24もまた、ヤング率、線膨張係数ともに基準を満足していない。これは、Siが12質量%では不十分である(上述の範囲を下回っている)ことが原因であると考えられる。

[0026]

これに対して、上述の組成範囲を満足する本発明のアルミニウム合金No.1~17は、表1に示されている予に何れも、ヤング率および線膨張係数の値が基準を満足している

【産業上の利用可能性】

[0027]

本発明の鋳造用アルミニウム合金は、特に自動車等各種車両のラダー型フレーム、ペリメータ型フレームやケース類のように、特に高剛性と低線膨張率を必要とされる部材の 鋳造に好適に用いることができる。 【書類名】要約書

【要約】

【課題】 高剛性および低線膨張係数を実現すると同時に、コスト高にならず、リサイクル時の制約が少ない鋳造用アルミニウム合金。

【解決手段】 Si: $13 \sim 25$ 質量%、Cu: $2 \sim 8$ 質量%、Fe: $0.5 \sim 3$ 質量%、Mn: $0.3 \sim 3$ 質量%、P: $0.001 \sim 0.02$ 質量%を含み、残部がAlと不可避的不純物からなり、FeとMnの合計量が3.0質量%以上であることを特徴とする剛性に優れ、低線膨張率を有する鋳造用アルミニウム合金。当該合金はさらに、Ni: $0.5 \sim 6$ 質量%を含み、Fe、MnおよびNiの合計量が3.0質量%以上であってもよい。さらに、当該合金はさらに、Cr: $0.1 \sim 1.0$ 質量%、Mg: $0.05 \sim 1.5$ 質量%、Ti: $0.01 \sim 1.0$ 質量%、B: $0.001 \sim 1.0$ 質量%、Zr: $0.1 \sim 1.0$ 質量%、V: $0.1 \sim 1.0$ 質量%、Mo: $0.01 \sim 1.0$ 質量%の何れか1種以上を含んでもよい。

【選択図】 なし

0000004743
19960213
住所変更

東京都品川区東品川二丁目2番20号日本軽金属株式会社