T	A	CT	TAT .	A TA	
L.	А	31	- I N /	A IV	

MCGILL ID#

FIRST NAME

SIGNATURE

- Only Faculty standard calculator accepted
- No cellphone allowed
- Show all your work

- Clearly indicate your final answer with the SI unit and multiplier
- You have 45 minutes to complete this quiz

Question 1: Consider the circuit shown and assume ideal op-amp behavior. The op-amp circuit is configured as a differentiator where $v_o(t) = -RC\frac{d}{dt}v_i(t)$.

a) Derive the output voltage $v_o(t)$ as a function of the input voltage $v_i(t)$. [1 pt]

- b) When the input voltage $v_i(t)$ increases over time at a rate of 0.5 V over 1 milliseconds (0.5 V/ms), the current drawn by the input voltage source is 400 μ A ($i(t) = 400 \mu$ A) and the output voltage value is $v_0(t) = -5 V$. What values should R and C be for this to be possible? [3 pt]
- c) Assume now that the resistance of R is $10 \text{ k}\Omega$ ($R = 10 \text{ k}\Omega$) and the capacitance of C is 20 nF (C = 20 nF). An ac input voltage $v_i(t) = A_i \sin(\omega t)$ is applied to the input of the circuit where $A_i = 2 V$. The frequency ω is in radians ($\omega = 2\pi f$) where the sinusoidal time period T is 1/f. At which frequency f will the amplitude of the output voltage $v_o(t)$ equal -2 V? [3 pt]

b)
$$\frac{dv(H)}{dt} = 0.5V/ms \rightarrow i(H) = 400\mu A$$
 $\frac{1}{2} = 0.5V/ms \rightarrow i(H) = 400\mu A$ $\frac{1}{2} = 0.5V/ms \rightarrow i(H) = -0.5V/ms \rightarrow$

C)
$$V_0(t)$$
: $-RCd_{V_1}(t)$: $-RCd_{V_2}(A:sin(wt))$: $-RCAiw_cos(wt)$

$$-RCAiw = -2V$$

$$5 = \frac{2V}{2\pi(RCAi)} = \frac{2V}{2\pi(lox10^312.20\times10^{-9}F.2V)} = 795.72Hz$$
Page 1 of 4 (double-sided)

Question 2: Consider the circuit shown below. The switch connects the 10 V independent voltage source for t < 0 s. The circuit reaches steady state before the switch changes its connection to the other voltage source. For t > 0 s, the switch connects the 5 V independent voltage source. Answer the following questions.

- a) Find the Thévenin equivalent circuit for t > 0 s providing the open-circuit voltage (v_{oc}) and the Thévenin resistance (R_T) . [2 pt]
- b) Connect a 10 μ F capacitor across the terminals A and B such that v(t) is the voltage across the capacitor. Find the values of voltage v(t) at $t = 0^-$ s, $t = 0^+$ s, and $t \to \infty$. In other words, find $v(0^-)$, $v(0^+)$, and $v(\infty)$. [2 pt]
- c) Draw the Thévenin equivalent circuit found in part a) connecting the 10 μ F capacitor described in part b). As seen in class, the solution to the differential equation obtained from the KVL equation where the variable is v(t) is $v(t) = c_1 + c_2 e^{-kt}$. Find the value of k, c_1 , and c_2 . Recall that $k = \frac{1}{\tau} = \frac{1}{R_T C}$. [2 pt]
- d) Plot v(t) as a function of time t. Clearly indicate the initial and final steady state values as well as the time constant τ . At which time t does the voltage change the most, i.e., fastest rate of change? [2 pt]

