

Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie

Industrial Robots

Wojciech Lisowski

1C Mechanics of manipulators 2 Geometrical model Forward Kinematics

Problems:

- Denavit-Hartenberg notation
- Examples of geometrical models of manipulators

Common features of industrial (manipulating) robot manipulators:

- Joints are of kinematic pairs of class V (1 DOM) rotary or prismatic ones
- Straight line links
- In each kinematic pair a motion axis of a next link is parallel or perpendicular to an axis of a link located closer to a base

Arm

Wrist

Geometry model of a manipulator

Joint coordinates: $q_1, q_2, ..., q_n$

Cartesian coordinates: x, y, z, φ , θ , ψ

Position and orientation of link *i* with respect to the reference coordinate frame:

$$^{0}\underline{T}_{i} = \underline{T}_{i} = \underline{A}_{1}\underline{A}_{2}...\underline{A}_{i-1}\underline{A}_{i}$$

matrix \underline{A}_i describes position and orientation of *i*-th coordinate frame assigned to link *i* with respect of coordinate frame assigned to link *i*-1.

Denavit-Hartenberg notation determines definition of local coordinate frames and of homogeneous transformation \underline{A}_i . Algorithm:

LOCATION OF ORIGINS

Locate an **origin of** *i***-th local coordinate frame**:

- -at intersection point of axis of motion of link i and axis of motion of link i+1 when the axes cross each other
- -at axis of motion of link i+1 so that the distance d_i is minimum when motion axes of neighbouring links are parallel to each other
- -at the intersection point of i+1 motion axis and line perpendicular to the both axes of motion of link i and link i+1 when axes of motion do not cross each other and are not parallel either.

In the case of the last link (wrist flange or end-effector) the <u>origin</u> of the local coordinate frame might be placed: at the wrist motion axes intersection point or at an arbitrarily selected point of the wrist flange or at the end-effector.

ORIENTING OF AXES

Orient axes of the local *i*-th coordinate frame so that: direction of

- x_i axis is the same as direction of x_0 axis
- z_i axis is an axis of i+1 translation or an axis of i+1 rotation

Note that axis x_i might be also the axis of i+1 rotation or translation

PARAMETERS OF TRANSFORMATIONS

Homogenous transformation used in manipulator geometrical model formulation is composed of 4 basic transformations:

- rotation about axis z_{i-1} by angle θ_i
- translation along axis z_{i-1} by d_i
- translation along axis \mathbf{x}_{i-1} by \mathbf{a}_i
- rotation about axis x_i by angle α_i

Interpretation of the geometry model parameters

$$\underline{A}_{i} = \underline{Rot}(z_{i-1}, \theta_{i}) \cdot \underline{Tra}(z_{i-1}, d_{i}) \cdot \underline{Tra}(x_{i-1}, a_{i}) \cdot \underline{Rot}(x_{i}, \alpha_{i})$$

Industrial Robots

KRiM, WIMIR AGH Kraków

SCARA RRPR Manipulator

Link No.	θ	d	a	α	Motion range
1	θ_1 v	0	a ₁	0	-120°÷120°
2	θ_2 v	0	a ₂	π	0°÷150°
3	0	d ₃ v	0	0	0.1 m ÷0.3 m
4	θ_4 v	0	0	0	-180°÷180°

Determination of cartesian coordinates of an end-effector of a SCARA manipulator

$${}^{o}\underline{\tau}_{e} = \begin{bmatrix} N_{x} & O_{x} & A_{x} & P_{x} \\ N_{y} & O_{y} & A_{y} & P_{y} \\ N_{z} & O_{z} & A_{z} & P_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}\underline{T}_{4} = \begin{bmatrix} C_{12}C_{4} + S_{12}S_{4} & -C_{12}S_{4} + S_{12}C_{4} & 0 & a_{1}C_{1} + a_{2}C_{12} \\ S_{12}C_{4} - C_{12}S_{4} & -C_{12}C_{4} - S_{12}S_{4} & 0 & a_{1}S_{1} + a_{2}S_{12} \\ 0 & 0 & -1 & -d_{3} \\ 0 & 0 & 1 \end{bmatrix}$$

$$x = a_1 C_1 + a_2 C_{12}$$
$$y = a_1 S_1 + a_2 S_{12}$$
$$z = -d_3$$

$$\varphi = \arctan\left(\frac{N_y}{N_x}\right)$$

$$\theta = \arctan\left(\frac{-N_z}{\sqrt{1 - N_z^2}}\right) =$$

$$= \arcsin(-N_z)$$

$$\begin{split} \varphi &= \arctan\left(\frac{S_{12}C_4 - C_{12}S_4}{C_{12}C_4 - S_{12}S_4}\right) = \\ &= \arctan\left(\frac{\sin(\theta_1 + \theta_2 - \theta_4)}{\cos(\theta_1 + \theta_2 - \theta_4)}\right) = \theta_1 + \theta_2 - \theta_4 \\ \theta &= \arctan\left(\frac{0}{\sqrt{1}}\right) = 0^{\circ} \\ \psi &= \arctan\left(\frac{0}{\sqrt{1}}\right) = 180^{\circ} \end{split}$$

 $\psi = \arctan\left(\frac{O_z}{\Lambda}\right)$

No. of link	θ	d	a	α
1	0	d ₁ v	0	0
2	0	0	a ₂ v	90°
3	0	d ₃ v	0	0

$$\underline{T}_3 = \begin{bmatrix} 1 & 0 & 0 & a_2 \\ 0 & 0 & -1 & -d_3 \\ 0 & 1 & 0 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Cartesian PPP arm

No. of link	θ	d	a	α
1	0	d ₁ v	0	0
2	θ_2 v	0	a ₂	-90°
3	0	d ₃ v	0	0

$$\underline{T}_3 = \begin{bmatrix} C_2 & 0 & -S_2 & a_2C_2 - d_3S_2 \\ S_2 & 0 & C_2 & a_2S_2 + d_3C_2 \\ 0 & -1 & 0 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Cylindrical PRP arm

No. of link	θ	d	a	α
1	θ_1 v	d_1	0	-90°
2	θ_2 v	0	0	90°
3	0	d ₃ v	0	0

$$\underline{T}_{3} = \begin{bmatrix} C_{1}C_{2} & -S_{1} & C_{1}S_{2} & d_{3}C_{1}S_{2} \\ S_{1}C_{2} & C_{1} & S_{1}S_{2} & d_{3}S_{1}S_{2} \\ -S_{2} & 0 & C_{2} & d_{1} + d_{3}C_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Spherical RRP arm

Anthropomorphic RRR arm

Spherical wrist (Euler - type RBR)

Spherical wrist (Euler - type RBR)

Spherical wrist (RPY - type RBB)

Spherical wrist (RPY - type RBB)

No. of link	θ	d	a	α
4	θ_4 v	0	0	0
5	0	0	0	α_5 v
6	θ_6 v	d ₆	0	0

Spherical wrist (RPY - type RBB)

$${}^{3}\underline{T}_{6} = \begin{bmatrix} -S_{4}C_{5}S_{6} + C_{4}C_{6} & -S_{4}C_{5}C_{6} - C_{4}S_{6} & S_{4}S_{5} & d_{6}S_{4}S_{5} \\ C_{4}C_{5}S_{6} + S_{4}C_{6} & C_{4}C_{5}C_{6} - S_{4}S_{6} & -C_{4}S_{5} & -d_{6}C_{4}S_{5} \\ S_{5}S_{6} & S_{5}C_{6} & C_{5} & d_{6}C_{5} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

RRR RR Manipulator

RRRRRR (RRR+RPY) manipulator

Link No.	θ	d	a	α
1	θ_1 v	d ₁	0	-90°
2	θ_2 v	0	a_2	0
3	θ ₃ +90° v	0	0	90°
4	θ_4 v	d_4	0	-90°
5	θ_5 v	0	0	90°
6	0	0	0	α_6 v
6	0	d ₇	0	0

1C Mechanics of manipulators 2 Geometrical model Forward Kinematics