Cyber-Physical Systems (CSC.T431)

Synchronous Model (3)

Instructor: Takuo Watanabe (Department of Computer Science)

Agenda

1. Synchronous Model (3)

Course Support & Material

- Slides: OCW-i
- Course Web: https://titech-cps.github.io
- Course Slack: titech-cps.slack.com

Composition of Components

Ex. DoubleDelay from two Delays

- The DoubleDelay is a component with a Boolean input in and a Boolean output out, such that in the first two rounds the output is 0 and in every subsequent round n, the output equals the input in round n-2.
- We can construct DoubleDelay by composing two Delay components as the block diagram above shows.

Composition of Components

Three Operations on Composition

- Instantiation & Renaming
 - Delay1 (Delay2) is a copy of Delay except its output (input) variable is renamed to temp.
- Parallel Composition
 - Delay1 and Delay2 run in parallel and communicate synchronously via temp.
- Output Hiding
 - The variable temp is not exported to the outside of DoubleDelay.

Composition of Components

Three Operations on Composition

DoubleDelay is textually defined as

 $(Delay[out \mapsto temp] \mid Delay[in \mapsto temp]) \setminus temp$

Instantiation & Renaming

Compatibility in Variable Names

- Two SRCs (Synchronous Reactive Components) $C_i = (I_i, O_i, S_i, Init_i, React_i) \ (i = 1,2)$ are *compatible* if
 - $S_1 \cap (I_2 \cup O_2 \cup S_2) = \emptyset$ and $S_2 \cap (I_1 \cup O_1 \cup S_1) = \emptyset$,
 - $O_1 \cap O_2 = \emptyset$, and
 - $S_1 \cap S_2 = \emptyset.$
- $I_1 \cap I_2$, $I_1 \cap O_2$, $I_2 \cap O_1$ are not necessarily empty.
- If $x \in I_i$ and $y \in O_j$ $(i \neq j)$ are the same variable, then $\tau_x = \tau_y$.

Parallel Composition (1)

- $C_i=(I_i,O_i,S_i,Init_i,React_i)$ (i=1,2) are SRCs with compatible variable names. $C_1 \parallel C_2$ denotes the *parallel composition* (or the *synchronous product*) of C_1 and C_2 .
- $C_1 \parallel C_2$ (say C hereafter) is also an SRC (I, O, S, Init, React) where
 - $I = (I_1 \cup I_2) \setminus O,$
 - $O = O_1 \cup O_2$
 - $S = S_1 \cup S_2$, and
 - $Init = Init_1; Init_2 \text{ (or } Init_2; Init_1).$

Parallel Composition (2)

How React is defined

- No Communication: $I_1 \cap O_2 = \emptyset \wedge I_2 \cap O_1 = \emptyset$
 - Updates in $React_1$ and $React_2$ can be executed independently.
- 1-Way: $(I_1 \cap O_2 = \emptyset \land I_2 \cap O_1 \neq \emptyset) \lor (I_1 \cap O_2 \neq \emptyset \land I_2 \cap O_1 = \emptyset)$
 - Udates in React can be realized by executing updates in $React_1$ first, then executing updates in $React_2$.
 - Ex. DoubleDelay
- 2-Way: $I_1 \cap O_2 \neq \emptyset \land I_2 \cap O_1 \neq \emptyset$
 - TBD

1-Way Communication

Ex. DoubleDelay

Reactions:

$$(0,0) \xrightarrow{0/(0,0)} (0,0); (0,0) \xrightarrow{1/(0,0)} (1,0); (0,1) \xrightarrow{0/(0,1)} (0,0); (0,1) \xrightarrow{1/(0,1)} (1,0); (1,0) \xrightarrow{0/(1,0)} (0,1); (1,0) \xrightarrow{1/(1,0)} (1,1); (1,1) \xrightarrow{0/(1,1)} (0,1); (1,1) \xrightarrow{1/(1,1)} (1,1).$$

An Execution Scenario of DoubleDelay

round	init	1	2	3	4	5	6
in		0	1	1	0	1	1
\mathcal{X}_1		0	0	1	1	0	1
x_1	0	0	1	1	0	1	1
temp		0	0	1	1	0	1
x_2		0	0	0	1	1	0
$\mathcal{X}_{2}^{'}$	0	0	0	1	1	0	1
out		0	0	0	1	1	0

Ex. SplitDelay & Inverter

FeedBack Composition

Ex. of 2-Way Communication

Composing Task Graphs

To construct the task graph of $C_1 \parallel C_2$

- General rule for cross-component precedence edges: Suppose that $i \neq j$. If $y \in O_j$ is a variable that is read by a task A in C_i , then add a precedence edge from A' to A where A' is the unique task in C_j that writes y.
- The precedence relation \prec of $C_1 \parallel C_2$ is the union of \prec_1 and \prec_2 , together with the cross-component edges according to the rule above.
- Ex.
 - The output variable in the renamed Inverter is read by the task A_2 in SplitDelay. The unique task in the renamed Inverter that write in is A. So we can add an edge from A to A_2 .
 - Similarly, we can add an edge from A_1 to A.

SplitDelay II Inverter $[in \mapsto out, out \mapsto in]$

$$0 \xrightarrow{/(1,0)} 1 \xrightarrow{/(0,1)} 0 \xrightarrow{/(1,0)} 1 \xrightarrow{/(0,1)} 0 \xrightarrow{/(1,0)} \cdots$$

Ex. ParallelRelay & Inverter

Ex. Parallel Composition

ParallelRelay II Inverter[$in \mapsto out_1, out \mapsto in_2$]

Cycles in Await Dependencies

- Relay $\parallel \text{Relay}[in \mapsto out, out \mapsto in]$
 - $\operatorname{Both} S_{\varnothing} \xrightarrow{/(0,0)} S_{\varnothing} \xrightarrow{/(0,0)} S_{\varnothing} \xrightarrow{/(0,0)} \cdots \operatorname{and} S_{\varnothing} \xrightarrow{/(1,1)} S_{\varnothing} \xrightarrow{/(1,1)} S_{\varnothing} \xrightarrow{/(1,1)} \cdots \operatorname{are OK?}$
- Inverter | Relay[$in \mapsto out, out \mapsto in$]
 - No valid computation

Component Compatibility

- C_1 , C_2 : synchronous reactive components
 - $C_1 = (I_1, O_1, S_1, Init_1, React_1), >_1 \subseteq O_1 \times I_1$: await-dependency
 - $C_2 = (I_2, O_2, S_2, Init_2, React_2), \succ_2 \subseteq O_2 \times I_2$: await-dependency
- C_1 and C_2 are compatible if
 - 1. the set O_1 and O_2 are disjoint, and
 - 2. the relation $\succ_1 \cup \succ_2$ is acyclic.

Interface

- Let C = (I, O, S, Init, React) be a component and $\succ \in O \times I$ is the await-dependency of C.
- We say that (I, O, >) is the *interface* of C.
- To check the compatibility of two components, we only need their interfaces.

Proposition

Await compatibility implies acyclic product task graph

Let C_1 and C_2 be compatible reactive components. Then the task graph over the set of tasks in C_1 and C_2 obtained by retaining the precedence edges in the individual components and adding cross-component edges from a task A_1 of one component to a task A_2 of another component whenever A_1 writes a variable read by A_2 , is acyclic.

In short, If $\succ_1 \cup \succ_2$ is acyclic, then the task graph of $C_1 \parallel C_2$ is acyclic.

Proof Direction

- C_1 , C_2 : compatible components
- \prec_1 , \prec_2 : precedence relations over the task sets of C_1 and C_2
- \succ_1 , \succ_2 : input/output await dependencies of C_1 and C_2
- We show that if the combined task graph (task graph of $C_1 \parallel C_2$) contains a cycle, then $\succ (= \succ_1 \cup \succ_2)$ has a cycle.
- Notation: $A \prec^* B \stackrel{\mathrm{def}}{=} A = B \lor A \prec^+ B$

Suppose that the combined task graph has a cycle. It should look like this.

edges

cross-component

For $j=1,\ldots,k$, let (A_i,B_i) be a pair of tasks that corresponds to a cross-component edge in the cycle and x_i be a variable written by A_i and read by B_i . Suppose that $p = (j + 1) \mod 2 + 1$ and $q=(j+1) \mod 2+2$ and A_i and B_i respectively belong to components C_p and C_q . This implies $x_j \in O_p$ and $x_j \in I_q$. Thus, $x_j \succ_p x_{j-1}$ $(j=2,\ldots,k)$ and $x_1 \succ_1 x_k$. Clearly this forms a cycle.

Component Composition

- $C_i = (I_i, O_i, S_i, Init_i, React_i)$ (i = 1,2): compatible SRCs
 - $React_i$ is given using local variables L_i by a task graph with the set \mathbf{A}_i of tasks and the precedence relation \prec_i .
- $C_1 \parallel C_2$ is a SRC C = (I, O, S, Init, React) such that
 - $I = (I_1 \cup I_2) \setminus O, O = O_1 \cup O_2, S = S_1 \cup S_2$
 - If $x \in S_i$, its initialization in *Init* is given by $Init_i$ (i = 1,2).
 - React uses local variables $L_1 \cup L_2$ and is given by a task graph such that (1) the set of tasks $A_1 \cup A_2$, and (2) the precedence relation is $\prec_1 \cup \prec_2$ and task pairs (A_1, A_2) , such that A_1 and A_2 are tasks of different components with some variable occurring in both the write-set of A_1 and the read-set of A_2 .

Properties of Parallel Components

- Let C_1 , C_2 and C_3 be SRCs in which any pair of them are compatible. The following properties hold.
- Commutativity: $C_1 \| C_2 = C_2 \| C_1$
- Associativity: $C_1 \| (C_2 \| C_3) = (C_1 \| C_2) \| C_3$
- If both C_1 and C_2 are finite-state, then so is $C_1 \parallel C_2$.
- If C_1 has n_1 states and C_2 has n_2 states, then $C_1 \parallel C_2$ has $n_1 \times n_2$ states.
- If all the tasks of C_1 and C_2 are deterministic, then $C_1 \parallel C_2$ is deterministic.
- If all the tasks of C_1 and C_2 are input-enabled, then $C_1 \parallel C_2$ is input-enabled.

Output Hiding

- Let C = (I, O, S, Init, React) is an SRC and $y \in O$.
- $C \setminus y = (I, O \setminus \{y\}, S, Init, React_{(y)})$, where $React_{(y)}$ is the same as React except that it uses y as a local variable.
- $(C \setminus x) \setminus y = (C \setminus y) \setminus x$ holds. So we can write $C \setminus \{x, y\}$.

DoubleDelay (revisited)

 $Delay[out \mapsto temp] \parallel Delay[in \mapsto temp]$

Reactions:

$$(0,0) \xrightarrow{0/(0,0)} (0,0); (0,0) \xrightarrow{1/(0,0)} (1,0); (0,1) \xrightarrow{0/(0,1)} (0,0); (0,1) \xrightarrow{1/(0,1)} (1,0); (1,0) \xrightarrow{0/(1,0)} (0,1); (1,0) \xrightarrow{1/(1,0)} (1,1); (1,1) \xrightarrow{0/(1,1)} (0,1); (1,1) \xrightarrow{1/(1,1)} (1,1).$$

DoubleDelay (revisited)

 $(Delay[out \mapsto temp] \parallel Delay[in \mapsto temp]) \setminus temp$

Reactions:

$$(0,0) \xrightarrow{0/0} (0,0); (0,0) \xrightarrow{1/0} (1,0); (0,1) \xrightarrow{0/1} (0,0); (0,1) \xrightarrow{1/1} (1,0);$$
$$(1,0) \xrightarrow{0/0} (0,1); (1,0) \xrightarrow{1/0} (1,1); (1,1) \xrightarrow{0/1} (0,1); (1,1) \xrightarrow{1/1} (1,1).$$

Top-Down Design of SRCs

- ullet Starting point: Inputs and outputs of desired design C
- ullet Models/assumptions about the environment in which C operates
- ullet Informal/formal description of desired behavior of C
- Example: CruiseController

Ex. CruiseController

Decomposing CruiseController

Tracking Speed

- Inputs: Events rotate and second
- Output: current speed
- Computes the number of rotate events per second

Tracking Cruise Settings

- Inputs from the driver: Commands to turn the cruise-control on/off and to increment/decrement desired cruising speed from driver
- Input: Current speed, Output: Desired cruising speed
- What assumptions can we make about simultaneity of events?
- Should we include safety checks to keep desired speed within bounds?

Controlling Speed

- Inputs: Actual speed and desired speed
- Output:Make Pressure on the throttle
- Goal: actual speed equal to the desired speed (while maintaining key physical properties such as stability)
- Design relies on theory of dynamical systems (Chapter 6)

Summary

- Synchronous Model (3)
 - Composition of Components
 - Instantiation and Renaming, Compatibility in Variable Names
 - Parallel Composition
 - Composition of Task Graphs, Cross-Components Edges
 - Compatibility, Interface
 - Output Hiding
 - Top-Down Design of SRCs
 - Ex. CruiseController