>>> IF013 - Fundamentos Teóricos de Informática
>>> Licenciatura de Sistemas - UNPSJB - Sede Trelew

Name: Celia Cintas[†], Pablo Navarro[‡], Samuel Almonacid[§] Date: August 28, 2017

[-]\$ _

[†]cintas@cenpat-conicet.gob.ar, cintas.celia@gmail.com, @RTFMCelia

 $^{^{\}ddagger}$ pnavarro@cenpat-conicet.gob.ar, pablo1n7@gmail.com

[§]almonacid@cenpat-conicet.gob.ar, almonacid.samuel.tw@gmail.com

>>> Unidad 3

- 1. Gramáticas sensibles al contexto. Autómatas acotados linealmente.
- 2. Propiedades formales de los lenguajes sensibles al contexto.
- 3. Maquinas de Turing. Reconocedoras y Generadoras.
- 4. Lenguajes y gramáticas sin restricciones.
- 5. Enumerabilidad de los lenguajes sensibles al contexto y argumento diagonal de Turing.

[1. Unidad 3]\$ _

>>> Clasificación de Chomsky

Computational and volutionary aspects of language. Martin A. Nowak, Natalia L. Komarova and Partha Niyogi, 2002. Nature.

>>> Procesamiento de Lenguaje Natural

http://www.nltk.org/

>>> Gramáticas Sensibles al Contexto

Definición

Sea $G=(V_n,V_t,S,X_0,P)$ una gramática entonces G es una gramática sensible al contexto (GSC) si toda producción perteneciente a P de la forma $\alpha \to \beta$ es tal que $long(\alpha) \leq long(\beta)$, con $\alpha \in (V_n \cup V_t)^*V_n(V_n \cup V_t)^*$, $\beta \in (V_n \cup V_t)^*$.

>>> Gramáticas Sensibles al Contexto (Cont.)

$$G = (V_n, V_t, X_0, P)$$

$$V_n = \{X_0, X_1, X_2\}$$

$$V_t = \{a, b, c\}$$

$$P = \{X_0 \to abc | aX_1bc$$

$$X_1b \to bX_1$$

$$X_1c \to X_2bcc$$

$$bX_2 \to X_2b$$

$$aX_2 \to aaX_1$$

 $aX_2 \rightarrow aa$

$$X_0 \to aX_1bc \to abX_1c$$

 $\to abX_2bcc \to aX_2bbcc \to aabbcc$

>>> Gramáticas Sensibles al Contexto (Cont.)

$$G = (V_n, V_t, X_0, P)$$

$$V_n = \{X_0, X_1, X_2\}$$

$$V_t = \{a, b, c\}$$

$$P = \{X_0 \to abc | aX_1bc$$

$$X_1b \to bX_1$$

$$X_1c \to X_2bcc$$

$$bX_2 \to X_2b$$

$$aX_2 \to aaX_1$$

$$aX_2 \to aa\}$$

$$L = \{a^nb^nc^n | n \ge 1\}$$

>>> Propiedades de LSC

Teorema

La clase de los lenguajes sensible al contexto es cerrada bajo: Unión, Concatenación, Estrella de Kleene, Intersección, Sustitución libre de λ y Homomorfismo libre de λ .

		Lenguajes	Lenguajes	Lenguajes
	Lenguajes	Libres del	Sensibles al	Estructurados
	Regulares	Contexto	Contexto	por Frases
	L_3	L_2	L_1	L_0
Unión	Sí	Sí	Sí	Sí
Concatenación	Sí	Sí	Sí	Sí
Estrella de Kleene	Sí	Sí	Sí	Sí
Intersección con un LenguajeRegular	Sí	Sí	Sí	Sí
Reversa	Sí	Sí	Sí	Sí
Sustitución Libre de λ	Sí	Sí	Sí	Sí
Sustitución	Sí	Sí	Sí	Sí
Homomorfismo	Sí	Sí	Sí	Sí
Intersección	Sí	No	Sí	Sí
Complemento	Sí	No	?	No

? = Teorema Immerman-Szelepcsényi

>>> Automata Linealmente Acotado (ALA)

Definición

Es una máquina de Turing no-determinística que cumple con las siguientes condiciones:

- * El alfabeto incluye dos elementos @ y \$, utilizados como topes.
- * El ALA no se mueve ni a la izquierda de @ ni a la derecha de \$ ni los sobreescribe.

Definición

El ALA $M=(Q, \overline{\Sigma}, \Gamma, \delta, q_0, @, \$, F)$ acepta el lenguaje L dado por:

 $L = \{w | w \in (\Sigma - \{@,\$\})^* \ y \ q_0@w\$ \vdash^* \alpha q \beta, q \in F\}$

>>> Máquina de Turing

Definición

Un Procedimiento Efectivo es un conjunto de reglas escritas en un determinado lenguaje que son interpretables y ejecutables por una máquina.

- * Está formado por una secuencia finita de instrucciones o sentencias.
- * Existe un procesador capaz de interpretar las instrucciones y producir resultados predecibles y repetibles.
- * El procesador tiene memoria para almacenar resultados intermedios.
- * No existe límite finito ni a la entrada ni a la salida de los datos.
- * No existe límite a la cantidad de almacenamiento requerido para realizar la computación.

http://www.dcc.fc.up.pt/~acm/turing-phd.pdf

Definición

Una máquina de Turing es una quintupla $T=(S,\Sigma,\delta,s_0,F)$ donde:

- * S es el conjunto de estados, $S \neq \emptyset$.
- st Σ es el alfabeto de trabajo.
- * δ es una función parcial, $\delta:S\times\Sigma\to S\times\Sigma\times\{I,D,N\}$ donde:
 - * I denota: movimiento a izquierda
 - * D denota: movimiento a derecha
 - * N denota: sin movimiento
- * s_0 es el estado inicial, $s_0 \in S$.
- * F es el conjunto de estados finales, $F \subseteq S$.

δ	0	1
\overline{a}	1,#	1,a
#	h,#	$0, \lhd$

>>> Tipos de Máquinas de Turing

MT Reconocedoras

Definición

Llamaremos configuración de una máquina de Turing $T=(S,\Sigma,\delta,s_0,F)$ a una terna (s,α,i) , donde s es el estado corriente de T, $\alpha\in\Sigma^*$ e $i\in\mathbb{Z}^+$ que marca la posición donde está el cabezal.

Definición

Una transición de un máquina de Turing T será representada por la relación binaria \vdash entre configuraciones: $(s,\alpha,i) \vdash (s',\alpha',i')$ si existe en T una regla de transición $\delta(s,\alpha) = (s',\alpha',M)$ donde $s,s \in S;\alpha,\alpha' \in \Sigma^*;M \in \{I,N,D\}$, e $i' = \begin{cases} i-1 \ si \ M = I \\ i \ si \ M = N \\ i+1 \ si \ M = D \end{cases}$

Definición

Se dice que una cadena w es aceptada o reconocida por una máquina de Turing $T=(S,\Sigma,\delta,s_0,F)$ si $(s_0,w,1)\vdash^*(s_f,\alpha,i)$ para algún $s_f\in F$, $w,\alpha\in\Sigma^*,i\geq\mathbb{Z}^+$.

Definición

Dado un alfabeto Σ y un lenguaje $L\subseteq \Sigma^*$, L es aceptado por una máquina de Turing $T=(S,\Sigma,\delta,s_0,F)$ si:

$$L = L(T) = \{w | w \in \Sigma^* \ y \ w \ es \ aceptada \ por \ T\}$$

En tales casos diremos que L es un lenguaje Turing Aceptable.

MT para Computar Funciones

Definición

Se dice que una función $f_T: \Sigma^* \to \Sigma^*$ es computable por una máquina de Turing (Turing-computable) si existe una máquina de Turing $T = (S, \Sigma, \delta, s_0, F)$ tal que: $(s_0, x, 1) \vdash^* (s_f, f_T(x), i)$ donde $w \in \Sigma, i \in \mathbb{Z}$ y $s_f \in \underline{F}$.

$$f_T(w) = \bar{w}$$

[3. Máquina de Turing]\$ _

$$f_T(w) = ww^R$$

Definición

Las acciones básicas de la notación modular de MTs son:

- * Moverse hacia la izquierda MT denominada <1.
- * Moverse hacia la derecha MT denominada ▷.
- * Escribe $b, b \in \Sigma$.
- * \lhd_A y \rhd_A se mueven hacia una dirección hasta encontrar el carácter A.
- * La MT denominada B borra la cadena a su izquierda.

$$\triangleleft_A = \geqslant \triangleleft^{\overbrace{A}}$$
 $\triangleright_A = \geqslant \triangleright^{\overbrace{A}}$
 $B = \geqslant \triangleleft^{\overbrace{\#}} \#$

>>> Lenguajes Recursivos y recursivos enumerables

something here

>>> Gracias!

Bibliografía

- 1. Introduction to Automata Theory, Languages, and Computation Hopcroft et. al 2007 (3er ed.)
- 2. Teoría de la Computación Gonzalo Navarro 2011.
- 3. Fundamentos de Cs. de la Computación Juan Carlos Augusto 1995.

[4. The End]\$ _ [22/22]