HOMEWORK ASSIGNMENT #7

- 1. The iterated integral $I = \int_{x=0}^{x=1} \left(\int_{y=0}^{y=\sqrt{x}} \sin\left(\frac{\pi(y^3-3y)}{2}\right) dy \right) dx$ is equal to the double integral $\int \int_R \sin\left(\frac{\pi(y^3-3y)}{2}\right) dA$ for a region R in the x,y plane.
 - (a) Sketch R.
 - (b) Write the integral with the order of integration reversed.
 - (c) Compute I.
- 2. Let D be the region bounded by y = x and $y = 6 x^2$.
 - (a) Sketch D.
 - (b) Find $\int \int_D x^2 dA$.
- 3. Let D be the region, described in polar coordinates by, $0 \le \theta \le \pi, 0 \le r \le 1 + \cos \theta$.
 - (a) Sketch D.
 - (b) Compute the area of D.
 - (c) Find the average value of distances of points in D from the origin.
- 4. Determine the following integrals:
 - (a) $\int \int_D (|x| + |y|) dA$, where D is the region $x^2 + y^2 \le a^2$ and a is a positive constant.
 - (b) $\int \int_T \sqrt{a^2 x^2} dA$, where T is the triangle with vertices (0, 0), (a, 0), (a, a).
 - (c) $\int \int_D \frac{1}{x^2 + y^2} dA$, where D is the region in the first quadrant bounded by

$$y = 0, y = x, x^2 + y^2 = 1/4, x^2 + y^2 = 1.$$

- (d) $\int \int_R (\sin xy + x^2 y^2 + 3) dxdy$, where R is the region inside the circle $x^2 + y^2 = a^2$ and outside the circle $x^2 + y^2 = b^2$, and a, b are constants satisfying 0 < b < a.
- 5. Find the volume above the x, y plane, below the surface $z = e^{-(x^2+y^2)}$ and inside the cylinder $x^2 + y^2 = 4$.
- 6. Find the volume above the x, y plane and below the surface $z = e^{-(x^2+y^2)}$.
- 7. Compute the double integral $\int \int_D (x+y) \ dA$, where D is the domain that lies to the right of the y-axis and between the circles $x^2+y^2=1,\ x^2+y^2=4$.

1

8. Find the area that is common to the polar curves $r = \cos \theta$, $r = \sin \theta$.

- 9. Find the area that is inside the polar curve $r = 4 \sin \theta$ and outside the circle r = 2.
- 10. Find the volume that is above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$.
- 11. A cylindrical hole of radius a is drilled through a sphere of radius b (a < b). Find the volume of the solid that remains.