

Style Rotation on Swiss Long-Only Equities Factors

Sebastien Gorgoni, Florian Perusset, Florian Vogt

Your Team

As a team of qualified portfolio managers, with strong academic backgrounds at HEC Lausanne, we are aiming to provide excellent investment solutions in the Swiss market.

Our Objectives

Mandate: Managing a dynamic long-only portfolio of risk premia on the Swiss market, with a focus on the tracking-error.

Long-Term
Vision &
Diversification

Higher Returns & Lower Risks

Exposure to the Swiss Market

TABLE OF CONTENTS

- 1. Introduction
- 2. Data
- 3. Methodology
- 4. Portfolio Results
- 5. Sensitivity & Robustness
- 6. Conclusion

Introduction

Rationale of Factor Investing

- New paradigms in the investment industry from the researches of Fama and French in the 1990s
- Factor investment gains increasing interest since then
- Factors anomalies (e.g. returns momentum, size, beta, volatilities, etc.) which can explain and improve the performances of portfolios
- Question: How to combine these factors at the appropriate time in our portfolios?
 - Risk-based approach
 - Factor tilting through changing macro environment

Data

Factor Creation: Swiss Performance Index

- Monthly data (Reuters Datastream)
- All companies included in the Swiss Performance Index from 2009
- Data from these companies collected from January 2000:
 - Stock price;
 - Volume traded (liquidity constraint);
 - Fundamental values (EPS, Dividend Yield, PE, Market-to-book, etc).

Factor Timing: US Macroeconomic Data

- Monthly data
- To time the factors: US market
 - 10y LT government bond yield in the US;
 - VIX Index
 - CPI Index
 - Libor in USD at different maturities
- Risk-free rate: Swiss market
 - 1M Libor in CHF
- Collected from the Federal Reserve of Economic Data (FRED)

Methodology

Factor Construction

Eight popular factors considered:

- Momentum (12-months average return)
- Value (E/P)
- Size (Market cap)
- Profitability (Gross margin)
- Low-Beta (Beta)
- Low-Volatility (12-months rolling variance)
- Dividend (Dividend yield)
- Quality Earnings (EPS)

Take either a long position above or below a certain quantile depending on the factor, and remove illiquid companies

Portfolio Strategies

No Factor Tilting:

• Equal-Risk Contribution

Factor Tilting:

- Ridge Regression
- Momentum of Factors
- Parametric Weights

Equal-Risk Contribution

• Capital allocation which equalizes the risk contribution of each asset:

$$\alpha_i MCR_i = \alpha_j MCR_j$$

• The Marginal Contributions to Risk (MCR) is:

$$MCR = \frac{\sum \alpha}{\sigma_p}$$

Ridge Regression

- Ulloa, Giamouridis & Montagu (2012): Risk Reduction in Style Rotation
- Timing factors by maximizing the information ratio and maintaining a close position to the EW

$$\max_{w} \left(\frac{\bar{R}_{factors}}{\sigma_{factors}^{2}} - \lambda \sum_{i=1}^{K} w_{i}^{2} \right)$$

Subject to:

$$\sum_{i=1}^{K} w_i = 1 \qquad \qquad w_{min} \le w_i \le w_{max}$$

Momentum of Factors

- Potential persistence in the factors' returns through time
- Long/short: Buy the past 12-months winner and sell the past 12-months losers
- Long-only: Buy the past 12-months winner with an average return above the 50th percentile

Parametric Weights

- Brandt & Santa-Clara (2006). Dynamic Portfolio Selection by Augmenting the Asset Space
- Parametrize the portfolio weights as a linear function of observable quantities (e.g. macro data, firm's characteristics, etc.): $\alpha_t = \theta z_t$
- Mean-variance optimization problem:

$$\max_{\{\theta\}} E_t[(\theta z_t)' r_{t+q}] - \frac{\lambda}{2} V_t[(\theta z_t)' r_{t+q}]$$

• Optimal solution:

$$\tilde{\alpha} = \frac{1}{\lambda} \left[\sum_{t=1}^{T} z_t z_t' \otimes r_{t+1} r_{t+1}' \right]^{-1} \left[\sum_{t=1}^{T} z_t \otimes r_{t+1} \right]$$

Portfolio Performances

Three Tailor-Made Portfolios

- **Defensive Portfolio** (based on a Ridge regression)
- Balanced Portfolio (based on parametric weights with VIX only)
- **Dynamic Portfolio** (based on a momentum of factors)
- Laggard: Equal-Risk Contribution

Defensive Portfolio

Defensive Portfolio

	CW	Ridge (No TE)	Ridge (6% TE Target)	80%Ridge, $20%$ CW
Ann. Return (%)	10.086	11.352	8.614	11.099
Ann. STD (%)	12.051	10.602	11.438	10.511
SR	0.869	1.107	0.787	1.092
Max DD (%)	-18.161	-21.496	-24.616	-20.751
Hit Ratio (%)	66.234	66.883	64.935	66.234
TE Ex-Post (%)	0.000	7.308	6.194	5.846
Info. Ratio	0.000	0.173	-0.238	0.173
VaR (%)	3.671	3.041	3.606	3.076
ES (%)	4.885	3.997	4.660	4.107

- Outperformance of the defensive portfolio
- TE reduction in optimization not optimal, better performances when simply combining it with the benchmark
- Low risk and decent returns
- Lowest information ratio as most defensive portfolio

Balanced Portfolio

Balanced Portfolio

	CW	Parametrics (No TE)	80% Parametrics, $20%$ CW
Ann. Return (%)	10.086	13.075	12.578
Ann. STD (%)	12.051	11.462	11.148
SR	0.869	1.174	1.163
Max DD (%)	-18.161	-22.644	-21.678
Hit Ratio (%)	66.234	66.667	65.584
TE Ex-Post (%)	0.000	7.698	6.158
Info. Ratio	0.000	0.323	0.323
VaR (%)	3.671	3.353	3.318
ES (%)	4.885	4.291	4.330

- Outperformance of the balanced portfolio
- Optimal trade-off between TE and performances
- Combination with benchmark can reduce substantially the TE, while keeping a similar SR
- High information ratio (approximately the double of the defensive portfolio)

Dynamic Portfolio

Dynamic Portfolio

	CW	MF (No TE)	80% MF, $20%$ CW
Ann. Return (%)	10.086	13.738	13.007
Ann. STD (%)	12.051	12.219	11.662
SR	0.869	1.156	1.148
Max DD (%)	-18.161	-23.006	-21.974
Hit Ratio (%)	66.234	67.532	66.883
TE Ex-Post (%)	0.000	8.860	7.088
Info. Ratio	0.000	0.412	0.412
VaR (%)	3.671	3.331	3.297
ES (%)	4.885	4.550	4.587

- Outperformance of the dynamic portfolio
- Highest annualized returns, but with higher risk (lower SR than balanced portfolio)
- Highest information ratio but with similar maximum drawdown as the other portfolio
- Highest tracking-error of all strategies: optimal to combine with the benchmark

Sensitivity & Robustness

Variables to Monitor

- Liquidity constraint
- Factor construction
- Combination with the benchmark to reduce the tracking-error
- Focus on the balanced portfolio (parametric weights with VIX)

Liquidity Constraints

 Interestingly, adding liquidity constraint increases performance

• No liquidity premium

Liquidity Constraints

	0% Qtl		10% Qtl		30% Qtl		50% Qtl	
	No TE	20% CW	No TE	20% CW	No TE	20% CW	No TE	$20\%~\mathrm{CW}$
Ann. Return (%)	9.842	9.992	11.702	11.479	13.809	13.165	17.067	15.772
Ann. STD (%)	9.534	9.621	10.550	10.467	11.890	11.501	13.992	13.152
SR	1.072	1.078	1.145	1.133	1.194	1.178	1.247	1.228
$\mathrm{Max}\;\mathrm{DD}\;(\%)$	-17.987	-17.930	-20.028	-19.569	-22.594	-21.637	-24.766	-23.299
Hit Ratio (%)	68.627	66.883	69.281	68.182	66.667	66.883	64.706	63.636
TE Ex-Post (%)	7.415	5.932	7.122	5.698	7.699	6.159	8.767	7.013
Info. Ratio	-0.101	-0.101	0.156	0.156	0.418	0.418	0.739	0.739
VaR (%)	2.846	2.938	3.152	3.184	3.486	3.429	3.908	3.743
ES (%)	3.833	3.967	4.249	4.293	4.461	4.480	5.049	4.930

- Expected return & volatility increase as quantile increases
- Risk-adjusted performance (Sharpe ratio & IR) also increases
- Drawdowns become also more frequent
- TE becomes also higher when quantile increases

Factor Construction

Increasing the quantile generally decreases performance

• Still outperforms CW benchmark in terms of absolute performance (seems quite robust).

Factor Construction

	20% Qtl		30% Qtl		40% Qtl		60% Qtl	
		20% CW						
Ann. Return (%)	13.385	12.826	12.969	12.493	13.050	12.558	12.079	11.781
Ann. STD (%)	13.362	12.690	13.056	12.478	11.929	11.601	10.554	10.431
SR	1.030	1.041	1.023	1.032	1.126	1.115	1.181	1.166
Max DD (%)	-24.594	-23.255	-25.207	-23.825	-23.088	-22.037	-20.360	-19.836
Hit Ratio (%)	66.667	65.584	64.706	66.883	66.667	66.234	67.320	66.883
TE Ex-Post (%)	8.081	6.465	7.632	6.106	7.027	5.621	7.474	5.979
Info. Ratio	0.346	0.346	0.312	0.312	0.350	0.350	0.199	0.199
VaR (%)	3.984	3.826	3.980	3.824	3.627	3.550	3.068	3.112
ES (%)	5.069	4.924	5.237	5.073	4.755	4.697	3.976	4.081

- Expected return and volatility are decreasing when quantile increases
- Slight improvement in the Sharpe ratio, however the IR is smaller.
- Portfolio becomes clearly less risky (lower volatility, drawdowns)
- TE is decreasing as quantile increases

Combination with Benchmark

 Parametric portfolio (using VIX) outperforms CW benchmark

• The more we allocate to the parametric portfolio the more (absolute) performance we get.

• The idea is to reduce TE

Combination with Benchmark

	50% Ptf, 50% CW	60% Ptf, 40% CW	70% Ptf, 30% CW	90% Ptf, 10% CW
Ann. Return (%)	11.832	12.081	12.329	12.826
Ann. STD (%)	11.065	11.040	11.067	11.280
SR	1.104	1.129	1.149	1.171
Max DD (%)	-20.216	-20.705	-21.192	-22.161
Hit Ratio (%)	68.182	65.584	65.584	66.234
TE Ex-Post (%)	3.849	4.619	5.388	6.928
Info. Ratio	0.323	0.323	0.323	0.323
VaR (%)	3.388	3.350	3.320	3.326
ES (%)	4.495	4.423	4.365	4.302

- Expected return decreases a bit when allocating more to the CW benchmark, while volatility remains almost the same
- Sharpe ratio decreases a little bit
- TE is substantially smaller when CW shares increases

Conclusion

Conclusion

Each portfolio has its strengths & weaknesses

- ERC (not presented): less risky than CW but underperforms in terms of absolute return
- Ridge regression (defensive): less return than CW, lowest risk-adjusted performance & lowest risk
- Momentum of factors (dynamic): outperforms CW, best risk-adjusted performance but most risky
- Parametric VIX (balanced): outperforms CW, good risk-adjusted performance & low TE

Optimal choice depends on risk preferences but Parametric VIX seems to be the best for an institutional investor

Thank You

This publication is solely meant to be part of an informal project of the course Quantitative Asset & Risk Management II given in Autumn 2021 at the University of Lausanne and is no way an offer or invitation to buy or sell investment or any other products. The information and opinions reflected in this document originate from reliable sources; nonetheless, we refuse and dismiss any contractual or implicit liability for incorrect or incomplete information, judgments or estimations. All information, opinions and numbers can be subject to change at any moment without advance notice.

Authors: Sebastien Gorgoni, Florian Perusset, Florian Vogt

Appendix

Laggard: Equal-Risk Contribution

Laggard: Equal-Risk Contribution

	CW	ERC (No TE)	ERC (6% TE Target)	80% ERC, 20% CW
Ann. Return (%)	10.086	9.500	9.698	9.617
Ann. STD (%)	12.051	10.653	11.466	10.577
SR	0.869	0.928	0.879	0.945
Max DD (%)	-18.161	-21.859	-21.743	-21.043
Hit Ratio (%)	66.234	65.584	64.935	65.584
TE Ex-Post (%)	0.000	7.077	6.766	5.662
Info. Ratio	0.000	-0.083	-0.057	-0.083
VaR (%)	3.671	3.216	3.449	3.228
ES (%)	4.885	4.146	4.525	4.232