

高性能众核芯片动态热管 理技术研究

马健

为什么需要动态温度管理

- 功耗密度不断增长导致高温热问题,在众核领域,高温点问题更加严重
 - 芯片高温或局部高温影响系统可靠性
 - 高温使静态功耗增加
 - 热问题使系统冷却开销很大

▲ 72.2

多核芯片的温度分布

动态温度管理技术

- 动态电压频率调整技术 (DVFS):
 - P ~ f v^2
 - 通过调整电压和频率来降低动态功耗
 - 温度降低的同时处理速度下降

红色核: 温度超出安全温度

黄色核: 温度刚刚在安全温度以下 蓝色核: 温度远低于安全温度

动态温度管理技术

- 任务迁移:
 - 将高温核上的重负载任务迁出,来避免高温问题

热模型

$$T(k+1) = AT(k) + B_d P(k)$$
$$Y(k) = LT(k)$$

- T 表示温度向量,包括处理器核的温度和其他部分。
- Y 表示输出向量,即核的温度向量。
- P 表示输入向量,即核的功耗向量
- A B_d 表示hotspot热模型提取的热容热阻信息的离散化形式
 - L 是一个选择矩阵,即从 T 中将核的温度选择出来

最近的动态温度管理方法

- 模型预测控制 (MPC)
 - 提供指导性调整意见: 计算出期望的功耗分布

提出的混合方法

• 新的动态温度管理方法流程

提出的混合方法

- 模型预测控制方法结合任务迁移和DVFS
 - 匈牙利算法: 分配任务到正确的核(一定阈值下的二部图匹配)
 - DVFS保证匹配不上的核在安全温度以下

匹配前设定匹配阈值为3

匹配后

提出的混合方法

- 算法运算时间的问题
 - 随着核数增长,任务迁移决策的计算需要太多时间

100核芯片的例子

- 将芯片分块做两层任务迁移
 - 块内任务迁移
 - 块间任务迁移

• 块内任务迁移

块I的例子

- 没有匹配上的核可能在其他块可以匹配
- 将未匹配核集中到一起

- 未匹配核的数量可能很大
 - 如果未匹配核数量很小,直接进行匹配.
 - 否则用最小割算法将其划分,每部分内部匹配

最后没有匹配上的核再采用DVFS处理。

• 功耗重新分配完成

实验设定

- 对于未分层的混合方法,设定16核,25核,36核与49核来进行测试 比较。对于改进的分层方法设定了100核,256核,400核以及625核 进行测试比较。
- 热模型用HotSpot得到。
- 功耗信息由SPEC benchmarks 在Wattch上运行得到。
- 环境温度设定为20摄氏度。
- 安全温度设定为105摄氏度。

未分层混合方法的比较

没有采用温度管理方法时

的核间温度方差

采用混合方法时的核间温 采用MPC只结合DVFS方法时度方差 的核间温度方差

未分层混合方法的比较

		周期 1s		
核数	$MIPS_o$	$MIPS_d$	$MIPS_n$	
16 核	651.5	630.6	643.8	
25 核	530.2	508.0	520.4	
36 核	477.1	460.4	471.4	
49 核	442.6	426.4	439.1	

 $MIPS_o$ 表示理想状态下的每 秒指令数

MIPS_d表示采用MPC只结合 DVFS方法的每秒指令数

 $MIPS_n$ 表示采用混合方法的 每秒指令数

混合方法与其他方法的性能比较

未分层混合方法的比较

	周期1s			
核数	$t_p(10^{-3}\mathrm{s})$	$t_m(10^{-3}\mathrm{s})$		
16 核	0.29	4		
25 核	0.38	8		
36 核	0.50	19		
49 核	0.61	41		

混合方法与其他方法的计算时间比较

 t_p 表示MPC部分的计算时间

t_{m表示匹配部分的计算时间}

没有采用温度管理的温度

没有采用温度管理的核间温度方差

采用未分层方法的核间温度方差

采用分层方法的核间温度方差

采用MPC只结合DVFS方法的核间温度方差

	分层方法			未分层方法			
核数	t_p	t_m	t_a	t_{all}	t_p	t_m	t_{all}
	$(10^{-4}s)$	$(10^{-4}s)$	$(10^{-4}s)$	$(10^{-4}s)$	$(10^{-4}s)$	(s)	(s)
100	1.58	1.63	0	3.21	1.49	0.01	0.01
256	2.85	19.26	1.58	23.7	2.93	0.45	0.45
400	4.88	7.77	3.27	15.9	5.38	1.90	1.90
625	9.09	12.27	17.49	38.8	8.27	8.63	8.63

分层方法与未分层方法的计算时间比较

 t_p 表示MPC部分的计算时间

t_{m表示匹配部分的计算时间}

 t_a 表示最小割划分部分的计 算时间

核数	$MIPS_o$	$MIPS_d$	$MIPS_h$
100 核 (10×10)	290.8	279.6	281.5
256 核 (16×16)	210.2	202.9	207.1
400 核 (20×20)	182.1	174.7	178.8
625 核 (25×25)	156.5	150.2	154.4

分层方法与其他方法的性能比较

 $MIPS_o$ 表示理想状态下的每秒指令数

 $MIPS_d$ 表示采用MPC只结合DVFS方法的每秒指令数

 $MIPS_n$ 表示采用混合方法的每秒指令数

总结

- 提出了模型预测控制结合任务迁移和DVFS的混合方法,并 将其改进成分层方法
- 混合方法是首次将模型预测控制方法与任务迁移相结合, 并将其化为任务分配问题解决。
- 针对任务分配决策时间长的问题,创新性地将任务分配问题分层处理,并引入最小割算法。
- 通过实验比较,新的方法具有更可靠的热控制,更大的可靠性和性能优势,改进分层之后减少了计算开销增强了扩展性。

谢谢!