S. 131/3 Suchen in binären Bäumen

Geordneter Binärbaum:

Ein Binärbaum heißt geordnet, wenn die Knoten des linken Teilbaums eines Knotens nur kleinere Schlüssel und die Knoten des rechten Teilbaums eines Knotens nur größere Schlüssel als der Knoten selbst besitzen.


```
Öffne die Vorlage S131-A3.
Warum können hier nicht die ersten eingefügten Elemente
als Suchelemente benutzt werden?
Wie wird hier die Suchliste gefüllt?
Ergänze die Methode suchdauer() in Test. Benutze dazu die
Methode inhaltSuchenZaehlen(...) der Klasse Suchbaum.
public int suchdauer(){
    int suchdauer = 0;
    for (int i = 0; i< suchliste.length;i++){
      suchdauer = suchdauer +
                   sbaum.inhaltSuchenZaehlen
                         (new Eintrag("", suchliste[i]));
    return (int) (suchdauer/suchliste.length);
```

Variiere n und miss die jeweilige Suchdauer für s Einträge.

Trage die Ergebnisse in eine Tabelle ein.

Welche Laufzeitordnung ergibt sich?

Welche günstigen und ungünstigen Fälle können beim Aufbau des Baums vorkommen?

n	suchdauer
50	5
100	7
150	7
200	9
250	8
300	8
350	10
400	10
450	11
500	10
550	11
600	10
650	11
700	10
750	11
800	10
850	12
900	10
950	11
1000	12
1050	11
1100	12

Laufzeitordnung: O(log n) günstig: ausbalanciert O(log n) ungünstig: zu Liste entartet O(n)

Skaliert man die x-Achse logarithmisch, erkennt man einen linearen Zusammenhang!

Die Ackermann-Funktion

- sehr schnelles Wachstum (noch schneller: Busy Beaver)
- Test: Was ist berechenbar?

http://www.youtube.com/watch?v=VZz7m91XxoM

$$ack(n,m) = \begin{cases} m+1, & falls \ n=0 \\ ack(n-1,1), & falls \ m=0 \\ ack(n-1,ack(n,m-1)) & sonst \end{cases}$$

```
falls n = 0
                                          ack(n,m) = \begin{cases} ack(n-1,1), \end{cases}
                                                                       falls m = 0
public class Ackermann
                                                    ack(n-1,ack(n,m-1))
                                                                           sonst
   public int ack(int n, int m){
     if(n==0) {
         return m+1;
     else if (m==0){
         return ack(n-1,1);
     else {
         return ack(n-1, ack(n, m-1));
```

```
public long anzahlAck(int n, int m){
  if(n==0) {
                                                                        falls n = 0
                                                     m+1,
                                           ack(n,m) = \begin{cases} ack(n-1,1), \end{cases}
     return 1;
                                                                  falls m = 0
                                                     ack(n-1,ack(n,m-1))
                                                                            sonst
   else if (m==0){
     return 1+ anzahlAck(n-1,1);
   else {
     return 1 + anzahlAck(n-1, ack(n, m-1))+ anzahlAck(n, m-1);
public void schleife (int n, int m){
   for (int i=0; i< m; i++){
     System.out.println(i + "; " +anzahlAck(n, i));
```

Laufzeitverhalten:

ack(0, m)

m	anzahlAck(0, m)
0	1
1	1
2	1
3	1
4	1
5	1
6	1
7	1
8	1
9	1
10	1
11	1
12	1
13	1
14	1
15	1
16	1
17	1
18	1
19	1

konstantes Laufzeitverhalten: O(1)

Laufzeitverhalten:

ack(1, m)

m	anzahlAck(1, m)
0	2
1	4
2	6
3	8
4	10
5	12
6	14
7	16
8	18
9	20
10	22
11	24
12	26
13	28
14	30
15	32
16	34
17	36
18	38
19	40

Laufzeitverhalten:

ack(2, m) (Messung bis m=100)

m	anzahlAck(2, m)
0	5
1	14
2	27
3	44
4	65
5	90
6	119
7	152
8	189
9	230
10	275
11	324
12	377
13	434
14	495
15	560
16	629
17	702
18	779
19	860

Vermutung: polynomiale Laufzeit!

Maßgeblich ist die höchste Potenz:

$$y = c \cdot x^{n}$$

$$log y = log(c \cdot x^{n})$$

$$log y = log c + n \cdot log x$$

$$y^{*} = c^{*} + n \cdot x^{*}$$

<u>Doppelt logarithmisch</u> aufgetragen ist das eine Gerade mit Steigung n und y-Abschnitt c*.

Doppelt logarithmisch aufgetragen ist ein linearer Zusammenhang erkennbar.

Dies ist ein Nachweis für polynomiales Laufzeitverhalten!

Bestimme aus zwei Wertepaaren der Wertetabelle c und n für anzahlAck(2, m) (z.B. m=70 und m= 15):

- (1) $\log 10295 = n \cdot \log 70 + \log c$
- (2) $\log 560 = n \cdot \log 15 + \log c$

$$n = \frac{\log 10295 - \log 560}{\log 70 - \log 15} \approx 1,89$$

$$\log c = \log 10295 - n \cdot \log 70 \approx 0,525348$$

$$c \approx 3,4$$

d.h. Laufzeitverhalten von ack(2, m) ist polynomial, es verhält sich asymptotisch wie $3,4 \cdot m^{1,89}$, d.h. ungefähr $O(n^2)$.

• ack (3, m): exponentielles Laufzeitverhalten

• ack (4, m): unbekanntes Laufzeitverhalten

Vergleiche die folgenden Sortieralgorithmen

- InsertionSort
- SelectionSort
- BubbleSort
- MergeSort
- QuickSort

Einschub: Sortieralgorithmen

• Insert Sort:

Elemente des noch nicht sortierten 2. Teils der Liste werden in den ersten Teil der Liste einsortiert.

5	2	4	6	1	3
5	2	4	6	1	3
2	5	4	6	1	3
2	4	5	6	1	3
2	4	5	6	1	3
1	2	4	5	6	3
1	2	3	4	5	6

Selection Sort:

Das jeweils kleinste Element des noch nicht sortierten 2. Teils der Liste wird in den ersten Teil der Liste einsortiert.

• Bubble Sort:

Nachbarelemente, die in der falschen Reihenfolge stehen, werden so lange vertauscht, bis das Feld sortiert

• Merge Sort:

Teile in zwei gleich große Teillisten und sortiere diese getrennt.

Quick Sort:

Aus der unsortierten Liste wird ein beliebiges Element p ausgewählt und die übrigen Elemente auf zwei Listen verteilt, von denen die eine nur Elemente kleiner gleich p, die andere nur Elemente größer gleich p enthalten darf.

	5	2	4	6	1	3
4	5	2		6	1	3
4	5	2		6	1	3
	5>4					3<=4
4	3	2		6	1	5
				6>4	1<=4	
4	3	2		1	6	5
4	3	2	1		6	5
	3	2	1	4	6	5
	1	2	3	4	5	6

Schätze das Laufzeitverhalten aufgrund der eigenen Sortierversuche ab.

Lade VisualSort herunter:

BlueJ Projekte - mebis | Infoportal (bayern.de)

Mit VisualSort Veranschaulichung können mehrere Sortieralgorithmen veranschaulicht werden, mit VisualSort Laufzeitmessung kann die Laufzeit gemessen werden.

Vergleiche die Laufzeiten (außer BozoSort).

Laufzeit	Best Case	Average Case	Worst Case
Insert Sort	O(n)	O(n²)	O(n ²)
Selection Sort	O(n ²)	O(n²)	$O(n^2)$
Bubble Sort	O(n)	O(n²)	O(n ²)
Merge Sort	O(n log(n))	O(n log(n))	O(n log(n))
Quick Sort	O(n log(n))	O(n log(n))	O(n ²)

15 Sortieralgorithmen in 6 Minuten https://www.youtube.com/watch?v=kPRA0W1kECg

Routenplaner:

Brute-Force-Verfahren:

Bestimme alle zyklenfreien Wege vom Start (München) zum Ziel (Frankfurt) und wähle den kürzesten.

Öffne das BlueJ-Projekt
Routenplaner. Vervollständige in
Arbeit die Methode
BruteForceMessreihe().
In der Schleife soll die Zeit für die
Wegesuche weitere 1000 mal
bestimmt werden und davon das
Minimum berechnet werden.

4 Ausschnitt aus Autobahnnetz

aus Informatik – Oberstufe 2 Oldenbourg Verlag

```
public void BruteForceMessreihe() {
    long startzeit, minDauer, dauer;
    for (int i=4; i<22; i++){
      GRAPH MATRIX g = GraphErzeugen(i);
      startzeit = System.nanoTime();
     g.WegeSuchen("M","F");
      minDauer = System.nanoTime()-startzeit;
      for (int j=0; j<1000; j++){
        startzeit = System.nanoTime();
        g.WegeSuchen("M","F");
        dauer = System.nanoTime()-startzeit;
        if (dauer < minDauer) {</pre>
          minDauer = dauer;
      System.out.println(i + "; " + minDauer);
```


Kopiere den Inhalt der Methode BruteForceMessreihe in die Methode DijkstraMessreihe und ersetze g.WegeSuchen("M", "F") durch g.KuerzesterWeg("M", "F"). Nimm einen Messreihe auf und untersuche das Laufzeitverhalten.

4 699 5 699 6 699 7 699 8 1049 9 1049 10 1399 11 1399 12 1749 13 2099 14 2099 15 2449 16 2799 17 3149 18 3499 19 3849 20 3849 21 4548	Anzahl Knoten	Zeit in ns
6 699 7 699 8 1049 9 1049 10 1399 11 1399 12 1749 13 2099 14 2099 15 2449 16 2799 17 3149 18 3499 19 3849 20 3849	4	699
7 699 8 1049 9 1049 10 1399 11 1399 12 1749 13 2099 14 2099 15 2449 16 2799 17 3149 18 3499 19 3849 20 3849	5	699
8 1049 9 1049 10 1399 11 1399 12 1749 13 2099 14 2099 15 2449 16 2799 17 3149 18 3499 19 3849 20 3849	6	699
9 1049 10 1399 11 1399 12 1749 13 2099 14 2099 15 2449 16 2799 17 3149 18 3499 19 3849 20 3849	7	699
10 1399 11 1399 12 1749 13 2099 14 2099 15 2449 16 2799 17 3149 18 3499 19 3849 20 3849	8	1049
11 1399 12 1749 13 2099 14 2099 15 2449 16 2799 17 3149 18 3499 19 3849 20 3849	9	1049
12 1749 13 2099 14 2099 15 2449 16 2799 17 3149 18 3499 19 3849 20 3849	10	1399
13 2099 14 2099 15 2449 16 2799 17 3149 18 3499 19 3849 20 3849	11	1399
14 2099 15 2449 16 2799 17 3149 18 3499 19 3849 20 3849	12	1749
15 2449 16 2799 17 3149 18 3499 19 3849 20 3849	13	2099
16 2799 17 3149 18 3499 19 3849 20 3849	14	2099
17 3149 18 3499 19 3849 20 3849	15	2449
18 3499 19 3849 20 3849	16	2799
19 3849 20 3849	17	3149
20 3849	18	3499
	19	3849
21 4548	20	3849
	21	4548

Laufzeitordnung von Dijkstra: O(n²)

Europäisches Straßennetz: 10 Millionen Knoten

Verbesserung:

Aufteilung in verschiedene Hierarchieebenen

Aus: Gallenbacher, *Abenteuer Informatik, 2. Aufl.*© Spektrum Akademischer Verlag GmbH 2008

Aus: Gallenbacher, *Abenteuer Informatik*, 2. *Aufl*. © Spektrum Akademischer Verlag GmbH 2008

Aus: Gallenbacher, *Abenteuer Informatik, 2. Aufl.*© Spektrum Akademischer Verlag GmbH 2008

Aus: Gallenbacher, *Abenteuer Informatik, 2. Aufl.*© Spektrum Akademischer Verlag GmbH 2008

Abschätzung:

Extremfall 1: Linearer Graph
 1 Möglichkeit um von einem Knoten zu einem anderen zu gelangen.

n Knoten werden besucht.

Extremfall 2: Vollständiger Graph
 (n – 1)! mögliche Wege per Tiefensuche

Realität:

Von jedem Knoten gehen drei oder mehr Kanten aus.