Tutorial-5

1 Basis and Dimensions

1. Consider the vectors in \mathbb{R}^4 defined by

$$\alpha_1 = (-1, 0, 1, 2), \alpha_2 = (3, 4, -2, 5), \alpha_3 = (1, 4, 0, 9)$$

- (a) What is the dimension of the subspace W of \mathbb{R}^4 spanned by the three given vectors? Find a basis for W and extend it to a basis \mathcal{B} of \mathbb{R}^4 .
- (b) Use a basis \mathcal{B} of \mathbb{R}^4 as in (a) to characterize all linear transformations $T: \mathbb{R}^4 \to \mathbb{R}^4$ that have the same null space W. What can you say about the rank of such a T? What is therefore the precise condition on the values of T on \mathcal{B} ?
- 2. Let V be a vector space with $v = (v_1, v_2, \dots, v_n)$ as one of its basis. Now we define a new list \tilde{v} by subtracting from each vector of v (except the first one) its preceding vector, i.e.

$$\widetilde{v} = (v_1, v_2 - v_1, v_3 - v_2, \dots, v_n - v_{n-1})$$

Prove that \widetilde{v} is also a basis of V.

Hint: Using the properties of v as a basis, you have to show the two properties satisfy for \widetilde{v} — it is linearly independent, and it spans V.

- 3. Let $P_4(F)$ be the vector space of all polynomials of degree at most 4 over field (F). And let p denote a basis of this vector space.
 - (a) Find the dimension of $P_4(F)$.
 - (b) **Prove or refute**: There is a valid basis $p = (p_0, p_1, p_2, p_3, p_4)$ of $P_4(F)$ such that none of the polynomials p_0, p_1, p_2, p_3, p_4 has degree 3.
- 4. Let V be a subspace of \mathbb{R}^n . Suppose that $\mathbb{B} = \{v_1, v_2, \dots, v_k\}$ is a basis of the subspace V. Prove that every basis of V consists of k vectors in V.

2 Linear Transformation

1. Let $T: \mathbb{R}^3 \to P_2$ be a linear transformation, where P_2 is the vector space of polynomials in x with real coefficients having degree at most 2, given by

$$T\left(\begin{bmatrix} a \\ b \\ c \end{bmatrix}\right) = (a-b)x^2 + cx + (a+b+c)$$

Let
$$\tau = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \end{pmatrix}$$
 and $\Omega = (x+1, x^2-x, x^2+x-1)$ be the respective bases. Find $[T]_{\tau}^{\Omega}$.

- 2. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. Let $\tau = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{bmatrix} 1 \\ 1 \end{pmatrix}$ and $\Omega = \begin{pmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{pmatrix}$ be ordered basis for \mathbb{R}^2 . Suppose $T\begin{pmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $T\begin{pmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Find $[T]^{\Omega}_{\tau}$.
- 3. Let U and V be finite dimensional vector spaces over a scalar field F. Consider a linear transformation $T:U\to V$. Prove that if dim(U)>dim(V), then T cannot be injective (one-to-one).
- 4. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that it maps the vectors v_1, v_2 as indicated in the figure below.

Find the matrix representation A of the linear transformation T.

- 5. Let T be the linear operator on \mathbb{R}^2 defined by $T(x_1, x_2) = (-x_2, x_1)$.
 - (a) What is the matrix of T in the standard ordered basis for \mathbb{R}^2 ?
 - (b) Interpret the operation of T geometrically.
 - (c) What is the matrix of T in the ordered basis $\mathbb{B} = \{\alpha_1, \alpha_2\}$, where $\alpha_1 = (1, 2)$ and $\alpha_2 = (1, -1)$?
 - (d) Prove that for every real number c the operator (T-cI) is invertible.
- 6. Let $T,U\in L(V,V)$ be linear operators on the finite dimensional vector space V. Prove that the rank of the composition UT is less than or equal to the minimum of the ranks of T and U.
- 7. Let V be the vector space over \mathbb{R} of all real polynomial functions p of degree at most 2. For any fixed $a \in \mathbb{R}$ consider the shift operator $T: V \to V$ with (Tp)(x) = p(x+a). Explain why T is linear and find the range and null space of T. Write down the matrix of T with respect to the ordered basis $\mathbb{B} = \{1, x, x^2\}$.