upGrad

Lending Club Case Study:

1

Business Requirement

- **Problems**: I have lending loan data of consumer finance company which are providing various type of loan to urban customers. When the company receives a loan application, the company has to make a decision for loan approval based on the applicant's profile. Two types of risks are associated with the bank's decision.
 - If the applicant is likely to repay the loan, then not approving the loan results in a loss of business to the company.
 - If the applicant is not likely to repay the loan, i.e. he/she is likely to default, then approving the loan may lead to a financial loss for the company.
- The data given contains the information about past loan applicants and whether they 'defaulted' or not. The aim is to identify patterns which indicate if a person is likely to default, which may be used for taking actions such as denying the loan, reducing the amount of loan, lending (to risky applicants) at a higher interest rate, etc.
- I will use EDA to understand how consumer attributes and loan attributes influence the tendency of default.
- When a person applies for a loan, there are two types of decisions that could be taken by the company:
 - 1. Loan accepted: If the company approves the loan, there are 3 possible scenarios described below:
 - 1. Fully paid: Applicant has fully paid the loan (the principal and the interest rate).
 - 2. Current: Applicant is in the process of paying the instalments, i.e. the tenure of the loan is not yet completed. These candidates are not labelled as 'defaulted'.
 - 3. Charged-off: Applicant has not paid the instalments in due time for a long period of time, i.e. he/she has defaulted on the loan
 - 2. Loan rejected: The company had rejected the loan (because the candidate does not meet their requirements etc.). Since the loan was rejected, there is no transactional history of those applicants with the company and so this data is not available with the company (and thus in this dataset)

Process to Achieve Goal

 We have lending club loan history data in csv format where we can do the analysis on approved loan on the behalf of many features.

EDA Process :

- ☐ Data Cleaning
- Data sanity Testing
- Binning
- Deciding Target Frames
- Univariate Analysis
- Multivariate Analysis
- Conclusion

Data Cleaning

• Firstly we need to remove attached irrlevant-variables-removed.txt file features from loan data frames

irrlevant-variables-removed.txt

- I imputed **emp_length** feature from median that needs to be imputed since its low number to drop these values.
- I have handled data type conversion for features: emp_length, term, int_rate etc.
- I have dropped some records due to missing values into emp_title etc.

Sanity Check

- I have filtered data and do some sanity testing like funded amount should not be equal or less than zero etc.
- eg: loandf.funded_amnt_inv > 0

Deciding Target Frames

- I am extracting 2 target frames using below loan status:
 - Fully Paid
 - Charged off

Binning

• I have created binning for interest rate, funded amount, annual amount to identify the relation with deciding factor.

Univariate Analysis

- I have done univariate analysis on the behalf of some of the important fields like Annual Income, Funded Income Inv, Verification Status, Grade, Interest rate etc.
- I can achieve univariate analysis with the help of boxplot, pie chart, bar plot etc.
- I am using univariate analysis to identify the frequency order, outliers etc.

Loan Amount

Please have a look below stats:

0	Count	37057.000000
0	Mean	11230.901044
0	Std	7383.178753
0	Min	500.000000
0	25%	5500.000000
0	50%	10000.000000
0	75%	15000.000000
0	Max	35000.000000
0	Name:	loan_amnt,
	dtype:	float64

Funded Amount Inv

Please have a look below stats:

0	Count	36844.000000	
0	Mean	10357.971056	
0	Std	7017.898541	
0	Min	0.000000	
0	25%	5000.000000	
0	50%	9000.000000	
0	75%	14313.362500	
0	Max	35000.000000	
0	Name:	funded_amnt_inv	
	dtype:	float64	

Interest rate

Please have a look stats:

0	Count	36844.000000
0	Mean	12.039300
0	Std	3.709402
0	Min	5.420000
0	25%	9.320000
0	50%	11.860000
0	75%	14.590000
0	Max	24.400000
0	Name:	int_rate,
	dtvpe:	float64

Annual Income

Please have a look stats:

0	Count	36844.000000
0	Mean	65592.048841
0	Std	34142.373826
0	Min	4000.000000
0	25%	41000.000000
0	50%	59000.000000
0	75%	81000.000000
0	Max	224000.000000
0	Name:	annual_inc,
	dtype:	float64

Annual Income

Annual income after removing the outliers.

Please have a look stats:

Count	36634.000000
Mean	64792.179819
Std	32555.369624
Min	4000.000000
25%	41000.000000
50%	58800.000000
75%	80004.000000
Max	199992.000000
Name:	annual_inc,
dtype:	float64
	Mean Std Min 25% 50% 75% Max Name:

Loan Status Frequency

We can see here stats of Loan status:

Fully Paid: 82.9%Current: 2.9%

Charged Off: 14.%

Home Ownership Frequency

We can see here stats of Loan status:

Count: 39494

Unique: 5

• Top: RENT

Freq: 18848

Name: home_ownership,

dtype: object

Emp Length Frequency

We can see here stats of Loan status:

o count: 38422

Unique: 11

Top: 10+ years

o Freq: 8796

Name: emp_length,

dtype: object

Verification Status Frequency

We can see here stats of Loan status:

o Count: 39494

Unique: 3

Top: Not Verified

o Freq: 16860

Name: verification_status,

dtype: object

Grade Frequency

We can see here stats of Loan status:

0	Count	39494
0	Unique	7
0	Тор	В
0	Freq	11967
0	Name:	grade,
	dtype:	object

Multivariate Analysis

• We are performing multivariate analysis to identify the correlation status among the features.

Create the Heatmap identify the correlation

Observation:

- We are creating the heatmap to identify the correlation.
- We can see Loan Amount is highly correlated with Funded Amount Inv

upGrad

<u>Identify Purpose Of Loan VS Loan Amount per loan status:</u> <u>Boxplot</u>

Observation:

- Small Business: We can not see any clear indication of outliers for Small Business. So Bank should do more analysis while giving the loan.
- We can see that Others and Major Purchase categories have lots of outliers which can be contribute more losses.

Employee Length VS Loan Status: Bar plot

Observation:

- Loan taken in maximum number whose employee length is >= 10 Years. 18 % Loan has been taken.
- Loan taken in minimum number whose employee length is 1 year as compared to others[0 to 5 years] and has low defaulting rate.

Employee Length V/S Funded Amount For Loan Purpose: Boxplot

Observation:

- Loan taken in maximum number whose employee length is >= 10 Years. 18 % Loan has been taken.
- Loan taken in minimum number whose employee length is 1 year as compared to others[0 to 5 years] and has low defaulting rate.

Driving Variables Contributing to Loan Default

Observation:

- Identifying probability of risky applicants through variables that are responsible for triggering defaulters
- Below Variables might trigger "Charged-Off":
 - 1. employment length ----> Categorical Variable
 - 2. grades -----> Categorical Variable
 - 3. purpose ----> Categorical Variable
 - 4. loan_amnt ----> Categorical Variable (After Conversion)
 - 5. int rate ----> Categorical Variable (After Conversion)
 - 6. annual_inc ----> Categorical Variable (After Conversion)

Employee length vs Default Probability

Grade vs Default Probability

Purpose vs Default Probability

Driving Variables Contributing to Loan Default

We have observed many things from above 3 slides:-

- 1. Employee length vs Default Probability Observation:
 - Less Defaulter rate when your employee length is 9 years
 - Higher Defaulter rate for employee length >= 10 years
- 2. Grades with default chances Observation:-
 - From grade A to G, Loan Probability Defaulter increasing
- 3. Purpose With Default Chances Observation:-
 - We can see that , most of the loan default probability is seen for small_business, so bank should be extra careful while approving the loan for such businesses
 - Minimum defaulter rate showing for Major Purchase

BINNING AS WE FOUND OUTLIERS EARLIER IN ANNUAL INCOME

- Annual Income range vs Loanda default Probability
 - We can see, as annual income is increasing, probability of being defaulter is also increasing, reaching up to 19%
- Interest Rate vs Loan Defaulter Probability
 - We can see that, as interest rate is increasing, chance of being defaulter is also increasing, when the interest rate touches more than 15%, risk of default rate is increasing
- funded_amnt_range vs Loan Defaulter Probability
 - We can see that default rate is increasing, when the loan amount/funded amount is increasing at the alarming rate

Annual Income Range chance to be defaulter

Interest Range and chance to be defaulter

Loan Amount (Approved Amount) and chance of being defaulter

Case Study Conclusion

- 1. Defaulter rate is higher when employee length are 1 year, 7 years, and >=10 years.
- 2. Minimum defaulter rate exist for 9 years employee length.
- 3. Maximum defaulter rate for employee length >=10 years.
- 4. Grade is proportional to Loan Defaulter Probability.
- 5. We can see that , most of the loan default probability is seen for small_business,so bank should be extra careful while approving the loan for such businesses
- 6. Minimum defaulter rate showing for Major Purchase purpose.
- 7. We can see, as annual income is @[proportional to] probability of being defaulter. It is reaching up to 19%
- 8. We can see that as interest rate is increasing chance of being defaulter is also increased. when the interest rate touches more than 15%, risk of default rate is increasing
- 9. We can see that default rate is increasing, when the loan amount/funded amount is increasing at the alarming rate

10-05-2022 35

Thank You!