M25 Návrh vloženého systému

#technicke_vybaveni_pocitacu

- na co dávat pozor při návrhu
 - · definice požadavků
 - Jaké úlohy má systém vykonávat? Jaké vstupy a výstupy potřebuje? Jaká je požadovaná rychlost a přesnost?
 - Jak jsme omezení hmotností, velikostí, spotřebou? Jaké jsou okolní podmínky?
 - Jaké bezpečnostní opatření je třeba přijmout?
 - výběr hardware
 - jaký procesor je nejvhodnější?
 - jaký typ a velikost paměti je potřeba?
 - jaké periférie potřebuji pro realizaci požadovaných funkcí?
 - jak budu systém napájet?
 - vývoj software
 - nechám běžet software na holém hardware nebo použiji operační systém?
 - jaký programovací jazyk použiji?
 - jaké metody testování použiji?
 - design systému
 - jakou architekturu použiji?
 - bude systém rozdělen do modulů?
 - optimalizace
 - jaké certifikace budou potřeba pro daný systém? při komerčním použití
- jak postupovat při míchání analogových a digitálních součástí
 - analogové části zpracovávají signály ze skutečného světa
 - digitální části provádějí výpočty a řídí systém
 - analogové a digitální části by měly být od sebe co nejvíce izolovány aby se zabránilo vzájemnému rušení
 - každá část by měla mít vlastní zdroj napájení aby se zabránilo šumu a rušení
 - vybírat převodníky s vhodným rozlišením a rychlostí převodu; správně převodníky zkalibrovat
 - pomocí osciloskopu vizualizovat analogové signály pro kontrolu
 - při návrhu multimetrem hlídat hodnoty napětí a proudu
 - pečlivě prostudovat datasheety
 - správně uzemnit obvody
- jak zvážit volbu procesoru
 - definice požadavků
 - jaké výpočetní nároky systém bude mít?
 - bude provádět složité výpočty nebo jen jednoduché úkoly?
 - kolik RAM bude systém potřebovat?
 - jaké periférie bude procesor ovládat?
 - jaká je maximální povolená spotřeba energie?
 - je nutné aby systém reagoval v reálném čase?
 - jaké jsou provozní podmínky?
 - výběr architektury
 - RISC nebo CISC?
 - RISC energeticky úspornější, jednodušší na programování
 - CISC větší výkon
 - kolik jader?
 - · velikost cache paměti
 - periférie
 - zkontrolovat, zda procesor již obsahuje potřebné periférie snížení externích součástek a nákladů
 - je dostupná široká škála vývojových nástrojů pro daný procesor?

- · cena a dostupnost
- velikost
- spotřeba energie v různých režimech

Zpětnovazební systém

- výstup systému je srovnáván s požadovanou hodnotou; rozdíl mezi nimi (chyba) je použit k úpravě vstupu systému tak, aby se výstup přiblížil k požadované hodnotě
- důvody
 - umožňuje dosáhnout vysoké přesnosti a opakovatelnosti výsledků
 - zvyšuje stabilitu systému a jeho odolnost vůči rušivým vlivům
 - umožňuje systému adaptovat se na změny v prostředí nebo požadavcích
- výhody
 - · vysoká přesnost
 - stabilita systém je odolnější vůči rušivým vlivům
 - adaptabilita
 - optimalizace výkonu systému pro dosažení požadovaných výsledků
- nevýhody
 - složitost
 - při nesprávném návrhu může dojít ke kmitání nebo nestabilitě systému
- funkční princip
 - měření
 - srovnání
 - řízení
 - akce
 - zpětná vazba (zopakování předešlých 4 bodů)

Části zpětnovazebního systému

- čidlo měří fyzikální veličinu relevantní pro řízený proces; převádí měřenou fyzikální veličinu na elektrický signál, který může být zpracován elektrickým obvodem
- srovnávač
 - porovnává aktuální hodnotu měřené veličiny (výstup čidla) s požadovanou hodnotou (referencí)
 - vytváří chybový signál reprezentující rozdíl mezi aktuální hodnotou a referencí
 - může být realizován pomocí analogového nebo digitálního obvodu
- řídící člen
 - na základě chybového signálu vypočítá potřebnou korekci a generuje řídící signál
 - realizace pomocí mikroprocesoru, mikrokontroléru nebo specializovaného obvodu
- aktuátor převádí řídící signál na fyzickou akci

PID regulátor

- skládá se z části
 - proporcionální

- reaguje na aktuální odchylku mezi požadovanou hodnotou a skutečnou hodnotou
- prostý zesilovač
- integrační zohledňuje kumulativní odchylku v čase; eliminuje statickou chybu
- derivační reaguje na rychlost změny odchylky
- řadí se před řízenou soustavu
- nejdříve realizovány pomocí pneumatických; později elektronických obvodů
- postup procesu regulátoru
 - čidlo měří aktuální hodnotu řízené veličiny
 - naměřená hodnota se porovná s požadovanou hodnotou a vypočítá se odchylka
 - PID regulátor vypočítá řídicí signál na základě proporcionální, integrální a derivační složky
 - řídicí signál je aplikován na aktuátor, který ovlivňuje řízený proces
 - změna stavu procesu se projeví na výstupu čidla, což vede k novému výpočtu chybového signálu
- · matematický popis

$$u(t) = K_p * e(t) + K_i * \int e(t) dt + K_d * (de(t)/dt)$$

kde

- u(t) řídicí signál
- K_p proporcionální konstanta
- K_i integrační konstanta
- K_d derivační konstanta
- e(t) odchylka
- výhody
 - lze použít pro širokou škálu aplikací
 - je robustní
 - mnoho mikroprocesorů a mikrokontrolérů má integrované funkce pro implementaci PID regulátoru
- nevýhody
 - nastavení parametrů K_p , K_i a K_d může být náročné a vyžaduje určitou zkušenost
 - pro vysoce nelineární systémy může být potřeba použít složitější metody řízení
- využití

udržování konstantní teploty v průmyslových procesech, domácích spotřebičích řízení otáček motorů v elektrických nářadí, průmyslových robotech

* regulace tlaku v pneumatických systémech

Účel

analogové sekce

• při návrhu analogové sekce je důležité zvážit požadavky na přesnost, rychlost, spotřebu energie

- převod fyzikálních veličin na elektrické signály
 - senzory měří fyzikální veličiny; výsledkem měření je obvykle analogový signál (napětí nebo proud) úměrný měřené veličině
 - převodníky analogové signály ze senzorů jsou často převedeny na digitální hodnotu pomocí ADC, aby je mohl
 zpracovat mikroprocesor
- generování analogových signálů
 - DAC převádí digitální hodnoty z mikroprocesoru na analogové signály, které mohou být použity k řízení externích zařízení
 - generátory signálů produkují analogové signály (např.: sinusové, obdélníkové, trojúhelníkové); pro různé účely
- zpracování analogových signálů
 - zesílení
 - filtrace
 - srovnání porovnávání analogových signálů s referenční hodnotou
- typické komponenty
 - operační zesilovače univerzální analogové obvody pro zesilování, sčítání, odčítání, integraci a diferenciaci
 - komparátory porovnávají dva analogové signály a generují digitální výstup
 - · analogový multiplexor
 - filtry
 - ADC, DAC

digitální sekce

- zpracovává informace, rozhoduje a řídí ostatní komponenty systému
- pracuje s diskrétními hodnotami (obvykle 0 a 1)
- zpracování dat
 - provádí aritmetické a logické operace nad daty získanými z analogové části nebo uloženými v paměti
 - na základě zpracovaných dat vydává příkazy pro ovládání ostatních částí systému
 - zajišťuje komunikaci s jinými zařízeními nebo s uživatelem
- uchovává programové kódy, data a konfigurační parametry systému
- zajišťuje přesné časování a synchronizaci různých procesů v systému
- komponenty
 - mikroprocesor nebo mikrokontrolér
 - paměť ROM/RAM
 - vstupně-výstupní porty
 - periférie

Napájení

- zdroje napájení
 - baterie primární, sekundární
 - síťové adaptéry
 - energetické zdroje solární články, palivové články
- návrh napájecího systému
 - napětí každý čip a obvod v systému má své specifické požadavky na napájecí napětí
 - proud maximální odběr proudu určuje kapacitu zdroje a dimenzování vodičů
 - stabilita napájení musí být stabilní, aby se předešlo poruchám a nesprávné funkci systému
 - rušení napájecí zdroj by neměl vytvářet rušení, které by mohlo ovlivnit ostatní části systému
 - bezpečnost napájecí systém musí být navržen tak, aby byl bezpečný pro uživatele i zařízení
- · ochrana napájecího systému pojistky, diody
- požadavky pro napájení vloženého systému
 - nízká spotřeba
 - široký rozsah vstupního napětí
 - · ochrana citlivých obvodů před rušením a zemními smyčkami

• ochrana proti přepólování