

United International University
Department of CSE
CSE 2113: Electrical Circuits
Final Examination
Fall 2022

Time: 2 Hours Full Marks: 40

1.

Figure 1 for Question 1.

(a) Find the value of R that would result in the maximum power absorbed by that resistor. Assume that $V_s = 22 V$. [7]

(b) Find the maximum power delivered to the resistor R. [2]

2.

Figure 2 for Question 2.

For the above circuit shown in Figure 2, determine the power absorbed the in 7Ω resistor using Source transformation. [8]

Figure 3 for Question 3.

For the above circuit shown in Figure 3, determine vo using Superposition. [8]

4.

Figure 4 for Question 4.

For the above circuit shown in Figure 4, the following information is given: $i_s = 5 \sin(277t +$ 40°), L=10mH, $R_1=100\Omega$, $R_2=20\Omega$, $C=100\mu F$, $v_{R_1}=14.46\sin{(277t+125.2^{\circ})}$. Now, determine the followings:

- Power absorbed by R₁. [2]
- Value of Z.Explain what type of electrical component constitutes the impedance, Z.[4] i) ii)
- Voltage across R2 resistor. [2]
- Determine the phase angle difference between $i_s \& v_{R_2}$. Explain which one is leading. iii) iv) [2]

5.

Figure 5 for Question 5.

When the voltage shown in waveform-1 is applied across a 10Ω resistor, on average 2.5W power is absorbed by the resistor. If the voltage shown in waveform-2 is applied across the same resistor, then determine the average absorbed power. [5]