基本概念

最优化问题的数学模型的一般形式 (优化模型):(第七章又重新定义了一遍, 只是符号有所不同, 这里定义为极小化问题, 极大化问题可以转化为极小化问题)

$$\begin{cases} \min \ f(x) \\ \text{s.t.} \ c_i(x) = 0, \ i = 1, 2, \dots, m, \\ c_i(x) \geqslant 0, \ i = m + 1, \dots, p, \end{cases}$$

其中 $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^1$, $c_i = \mathbb{R}^n \to \mathbb{R}^1$ $(i = 1, 2, \dots, p)$ 为连续函数, 通常还要求连续可微. x 称为**决策变量**, f(x) 为**目标函数**, $c_i(x)$, $i = 1, 2, \dots, p$ 为**约束函数 (约束条件)**, $c_i(x) = 0$, $i = 1, 2, \dots, m$ 为**等式约束**, $c_i(x) \ge 0$, $i = m + 1, \dots, p$ 为**不等式约束**, 并记等式约束指标集为 $E = \{1, 2, \dots, m\}$, 不等式约束指标集为 $I = \{m + 1, \dots, p\}$.

可行点: 若点 $x \in \mathbb{R}^n$ 满足优化模型中的所有约束条件, 则称 x 为**可行点**.

可行域: 全体可行点所成之集称为可行域, 即

$$\mathcal{F} = \{x : c_i(x) = 0, i = 1, 2, \dots, m, c_i(x) \ge 0, i = m + 1, \dots, p\}.$$

有效约束 (起作用约束): 可行点 $\bar{x} \in \mathcal{F}$, 若 $c_i(\bar{x}) = 0$, 则称不等式约束 $c_i(x) \ge 0$ 在点 \bar{x} 是有效约束, 并称可行点 \bar{x} 位于约束 $c_i(x) \ge 0$ 的边界.

有效约束集: 记 $I(x) = \{i : c_i(x) = 0, i \in I\}$, 对任何 $x \in \mathbb{R}^n$, 我们称集合

$$A(x) = E \cup I(x)$$

是在 x 点处的有效约束指标集 (或积极约束指标集), 简称有效约束集或有效集.

可行方向: 设 $x^* \in \mathcal{F}$, $0 \neq d \in \mathbb{R}^n$, 若存在 $\delta > 0$ 使得

$$x^* + \alpha d \in \mathcal{F}, \quad \forall \alpha \in [0, \delta],$$

则称 $d \in \mathcal{F}$ 在 x^* 处的**可行方向**. \mathcal{F} 在 x^* 处的全体可行方向所成之集记为 $\mathcal{FD}(x^*,\mathcal{F})$.

下降方向: 设 f(x) 为 \mathbb{R}^n 上的连续函数, 点 $\bar{x} \in \mathbb{R}^n$, 若对于方向 $s \in \mathbb{R}^n$ 存在 $\delta > 0$ 使得下式成立

$$f(\bar{x} + \alpha s) < f(\bar{x}), \quad \forall \alpha \in (0, \delta),$$

则称 s 为 f(x) 在 \bar{x} 处的一个**下降方向**, 将点 \bar{x} 处的所有下降方向所成之集记为 $\mathcal{D}(\bar{x})$.

无效约束 (不起作用约束): 可行点 $\bar{x} \in \mathcal{F}$, 若 $c_i(\bar{x}) > 0$, 则称不等式约束 $c_i(x) \ge 0$ 在点 \bar{x} 是 **无效约束**, 并称可行点 \bar{x} 位于约束 $c_i(x) \ge 0$ 的内部.

全局 (或总体) 最优解 (极小点): 可行点 $x^* \in \mathcal{F}$ 称为优化模型的全局最优解, 当且仅当

$$f(x^*) \leqslant f(x), \quad \forall x \in \mathcal{F}.$$

严格全局 (或总体) 最优解 (极小点): 可行点 $x^* \in \mathcal{F}$ 称为优化模型的**严格全局最优解**, 当且仅当

$$f(x^*) < f(x), \quad \forall x \in \mathcal{F}, \ x \neq x^*.$$

局部最优解 (极小点): 可行点 $x^* \in \mathcal{F}$ 称为优化模型的**局部最优解**, 当且仅当, 存在 x^* 的一个邻域

$$\mathcal{N}(x^*) = \{x : ||x - x^*|| \le \delta\}$$

使得下式成立

$$f(x^*) \leqslant f(x), \quad \forall x \in \mathcal{N}(x^*) \cap \mathcal{F}.$$

同理也可以定义严格局部最优解.

严格局部最优解 (极小点): 可行点 $x^* \in \mathcal{F}$ 称为优化模型的**严格局部最优解**, 当且仅当, 存在 x^* 的一个邻域

$$\mathcal{N}(x^*) = \{x : ||x - x^*|| \le \delta\}$$

使得下式成立

$$f(x^*) < f(x), \quad \forall x \in \mathcal{N}(x^*) \cap \mathcal{F}, \ x \neq x^*.$$

凸集: 集合 $D \subset \mathbb{R}^n$ 称为**凸集**, 当且仅当, 对于任意 $x, y \in D$ 有

$$\lambda x + (1 - \lambda)y \in D, \quad \forall \lambda \in [0, 1].$$

即连接 x, y 的直线段上的所有点均在集合 D 内.

凸函数: 设函数 f(x) 在凸集 D 上有定义, 如果对于任意 $x,y \in D$ 有

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall \lambda \in [0, 1],$$

则称 f(x) 是凸集 D 上的**凸函数**.

严格凸函数: 设函数 f(x) 在凸集 D 上有定义, 如果对于任意 $x, y \in D, x \neq y$ 有

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y), \quad \forall \lambda \in (0, 1),$$

则称 f(x) 是凸集 D 上的**严格凸函数**.

凸规划问题: 可行域 \mathcal{F} 是凸集, 目标函数 f(x) 是凸函数的最优化问题称为**凸规划问题**. (可以证明, 凸规划问题的局部最优解必是全局最优解)

判断凸函数方法: 设 f(x) 为非空开凸集 $D \subset \mathbb{R}^n$ 上的二阶可微函数,则

- (1) f(x) 的 Hesse 矩阵 $\nabla^2 f(x)$ 在 D 上半正定 (所有主子式均 ≥ 0) \iff f(x) 是 D 上的凸函数.
- (2) f(x) 的 Hesse 矩阵 $\nabla^2 f(x)$ 在 D 上**正定** (顺序主子式均 > 0) $\Rightarrow f(x)$ 是 D 上的**严格凸函**数.

最优性条件: 最优化问题的最优解(局部的或者全局的)所必须满足的条件.

KKT 点: 利用迭代的方法产生一个逐步改善的序列 $\{x^{(k)}\}$, 在 $\{x^{(k)}\}$ 为**有限**点列时, 它最后一个点是 **KKT 点**; 当 $\{x^{(k)}\}$ 是**无限点列**时, 其任意一个聚点为 **KKT 点**.

最优化方法的基本迭代格式:

- 1. 给出初始点 $x^{(0)}$, 令 k := 0; (初始化)
- 2. 如果 $x^{(k)}$ 满足对最优解估计的终止条件, 停止迭代; (结束条件)
- 3. 确定一个改善 $x^{(k)}$ 的修正量 $s^{(k)}$; (计算)

算法 (方法) 的收敛性: 一个算法是收敛的, 当且仅当, 算法产生的序列 $\{x^{(k)}\}$ 满足

$$\lim_{k \to \infty} ||x^{(k)} - x^*|| = 0,$$

其中 x^* 为该问题的 KKT点, 即该序列 $\{x^{(k)}\}$ 收敛.

全局收敛 (总体收敛): 如果一个算法对于任意给定的初始点都能能够收敛,则称该算法全局收敛.

局部收敛:如果一个算法只有当初始点接近或充分接近最优解时才具有收敛性,则称该算法**局部收敛**.

收敛速度: 设向量序列 $\{x^{(k)}\}\subset\mathbb{R}^n$ 收敛于 x^* , 定义误差序列

$$e_k = x^{(k)} - x^*.$$

若存在正常数 C 和 r 使得下式成立

$$\lim_{k \to \infty} \frac{||x^{(k+1)} - x^*||}{||x^{(k)} - x^*||^r} = \lim_{k \to \infty} \frac{||e_{k+1}||}{||e_k||^r} = C,$$

则称序列 $\{x^{(k)}\}$ r 阶收敛于 x^* (以 C 为因子, 有时也称 C 为**收敛速度的值**).

当 r=1, 0 < C < 1 时称为线性收敛, r=2 时称为二次收敛, r>1 时称为超线性收敛.

精确线性搜索的无约束最优化算法的一般形式:

- 1. 给出初始点 $x_0 \in \mathbb{R}^n$, $\varepsilon \geq 0$, 今 k := 0.
- 2. 计算 $\nabla f(x_k)$, 若 $||\nabla f(x_k)|| \leq \varepsilon$, 停止迭代.
- 3. 计算下降方向 d_k , 计算步长因子 α_k , 使得

$$f(x_k + \alpha_k d_k) = \min_{\alpha \geqslant 0} f(x_k + \alpha d_k).$$

4. 今 $x_{k+1} = x_k + \alpha_k d_k$, k := k+1, 转到第 2 步.

5 种无约束最优化方法

最速下降法: 设目标函数 f(x) 在 x_k 附近连续可微, 且 $g_k := \nabla f(x_k) \neq 0$.

- 1. 给出初始点 $x_0 \in \mathbb{R}^n$, $\varepsilon \geq 0$, 令 k := 0.
- 2. 计算 $d_k = -g_k$; 若 $||g_k|| \le \varepsilon$, 停止迭代.
- 3. 计算步长因子 α_k , 使得

$$f(x_k + \alpha_k d_k) = \min_{\alpha \geqslant 0} f(x_k + \alpha d_k).$$

4. $\diamondsuit x_{k+1} = x_k + \alpha_k d_k, k = k+1$, 转到第 2 步.

带步长因子的牛顿法: 设 f(x) 二次连续可微, $x_k \in \mathbb{R}^n$, 令 $G_k := \nabla^2 f(x_k)$, $g_k := \nabla f(x_k)$.

- 1. 给出初始点 $x_0, \varepsilon \geq 0$, 令 k := 0.
- 2. 计算 g_k . 若 $||g_k|| \leq \varepsilon$, 停止迭代.
- 3. 解方程组 $G_k d = -g_k$ 得 d_k 为牛顿方向, 计算步长因子 α_k , 使得

$$f(x_k + \alpha_k d_k) = \min_{\alpha \ge 0} f(x_k + \alpha d_k).$$

4. $\diamondsuit x_{k+1} = x_k + \alpha_k d_k, k := k+1$, 转到第 2 步.

牛顿法具有 2 阶收敛速度.

向量的共轭: 设 $G \in n \times n$ 对称正定矩阵, d_1, d_2 为 n 为非零向量, 若

$$d_1^T G d_2 = 0,$$

则称向量 d_1 和 d_2 是 G-共轭的, 简称**共轭的**.

 d_1, d_2, \cdots, d_m 为一组 n 为非零向量, 若

$$d_i^T G d_j = 0, \quad (i \neq j),$$

则称向量 d_1, d_2, \cdots, d_m 是 G-共轭的, 简称**共轭的**.

一般共轭方向法:

- 1. 给出初始点 $x_0, \varepsilon \ge 0$, 令 k := 0. 计算 $g_0 = \nabla f(x_0)$ 和初始下降方向 d_0 , 使得 $d_0^T g_0 < 0$.
- 2. 计算 g_k . 如果 $||g_k|| \leq \varepsilon$, 停止迭代.
- 3. 计算步长因子 α_k , 使得

$$f(x_k + \alpha_k d_k) = \min_{\alpha \geqslant 0} f(x_k + \alpha d_k).$$

4. 采用某种共轭方向法计算 d_{k+1} 使得

$$d_{k+1}^T G d_i = 0, \ j = 0, 1, \cdots, k.$$

令 $x_{k+1} = x_k + \alpha_k d_k$, k := k+1, 转到第 2 步.

二次终止性:对于正定二次函数,算法是有限步终止的. (可以证明若搜索方向是相互共轭的,则算法具有二次终止性,共轭梯度法和拟牛顿法都就具有二次终止性)

拟牛顿法: B_k 为牛顿法迭代中的 Hesse 矩阵 G_k 的近似值, 通常取 $B_0 = E_n$ 单位阵.

- 1. 给出初始点 $x_0 \in \mathbb{R}^n$, $B_0 \in \mathbb{R}^{n \times n}$, $\varepsilon \geqslant 0$, k := 0.
- 2. 计算 $g_k = \nabla f(x_k)$. 如果 $||g_k|| \leq \varepsilon$, 停止迭代.
- 3. 解方程组 $B_k d = -g_k$ 得到搜索方向 d_k , 计算步长因子 α_k , 使得

$$f(x_k + \alpha_k d_k) = \min_{\alpha > 0} f(x_k + \alpha d_k).$$

4. 令 $x_{k+1} = x_k + \alpha_k d_k$. 校正 B_k 产生 B_{k+1} , 使得拟牛顿条件

$$B_k(x_{k+1} - x_k) = g_{k+1} - g_k,$$

成立, 其中 $g_{k+1} = \nabla f(x_{k+1})$. 令 k := k+1, 转到第 2 步.

最小二乘问题:

$$\min_{x \in \mathbb{R}^n} \quad f(x) = \frac{1}{2} ||r(x)||_2^2 = \frac{1}{2} \sum_{i=1}^m [r_i(x)]^2, \quad m \geqslant n.$$
 (1)

其中 $r(x) = (r_1(x), r_2(x), \dots, r_m(x))^T$, $r_i(x)$ $(i = 1, 2, \dots, m)$ 称为**残量函数**, 有无 $\frac{1}{2}$ 对最优解没有影响. 当 $r_i(x)$ 为线性函数时, 称 (1) 为**线性最小二乘问题**; 当 $r_i(x)$ 为非线性函数时, 称 (1) 为**非线性最小二乘问题**.

Gauss-Newton 法求解非线性最小二乘问题: 记向量函数 r(x) 的 $m \times n$ 阶 Jacobian 矩阵为

$$A(x) = \nabla r(x) = [\nabla r_1(x), \cdots, \nabla r_m(x)]^T = \begin{bmatrix} \frac{\partial r_1}{\partial x_1}(x) & \frac{\partial r_1}{\partial x_2}(x) & \cdots & \frac{\partial r_1}{\partial x_n}(x) \\ \frac{\partial r_2}{\partial x_1}(x) & \frac{\partial r_2}{\partial x_2}(x) & \cdots & \frac{\partial r_2}{\partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial r_m}{\partial x_1}(x) & \frac{\partial r_m}{\partial x_2}(x) & \cdots & \frac{\partial r_m}{\partial x_n}(x) \end{bmatrix}$$

记 $A_k = A(x_k), r_k = r(x_k),$ 则 Gauss-Newton 法如下

- 1. 给定初始值 $x_k, \varepsilon \geq 0$, 令 k := 0.
- 2. 计算 $g_k = \nabla f(x_k)$. 若 $||g_k|| \leq \varepsilon$, 停止迭代.
- 3. 解方程组 $A_k^T A_k \delta = -A_k^T r_k$ 得到搜索方向 δ_k .
- 4. 今 $x_{k+1} = x_k + \delta_k$, k := k + 1, 转到第 2 步.

KKT 条件

KKT 定理: 设 f(x), $c_i(x)$ ($i = 1, 2, \dots, p$) 在 x^* 的邻域内一阶连续可微, 约束规范条件 (应该不是重点)

$$\mathcal{SFD}(x^*, \mathcal{F}) = \mathcal{LFD}(x^*, \mathcal{F})$$

成立, 则存在 λ_i^* $(i=1,2,\cdots,m)$ 使得 (下面五个条件就是 **KKT 条件**)

若记 Lagrange 函数 $L(x, \lambda^*) = f(x) - \sum_{i=1}^m \lambda_i^* c_i(x)$,则 KKT 条件中第一个条件 (即 (2) 式) 可以视为

$$\nabla_x L(x^*, \lambda^*) = \frac{\partial L}{\partial x}(x^*) = \left[\frac{\partial L}{\partial x_1}(x^*) \quad \cdots \quad \frac{\partial L}{\partial x_n}(x^*)\right]^T = \mathbf{0}$$

注意: 使用上述 KKT 条件, 必须满足为极小化问题, 且不等式约束为 ≥ 0 的形式.

二次罚函数和内点障碍法

只需会构造即可.

二次**订函数**: 关于优化模型我们定义二次罚函数 $Q(x; \mu)$ 如下

$$Q(x:\mu) := f(x) + \frac{1}{2\mu} \sum_{i \in E} c_i^2(x) + \frac{1}{2\mu} \sum_{i \in I} ([c_i(x)]^-)^2$$

其中 $[c_i(x)]^- := \min\{c_i(x), 0\}, (i \in I), \frac{1}{2\mu}$ 称为罚系数.

当罚系数 $\rightarrow \infty$ 时, $Q(x; \mu)$ 的极小值趋近优化模型的极小值.

内点障碍法: 考虑不等式约束最优化问题

$$\begin{cases} \min \ f(x) \\ \text{s.t. } c_i(x) \geqslant 0, \ i = I. \end{cases}$$

两种常用的障碍函数:

对数障碍函数:

$$P(x; \mu) = f(x) - \mu \sum_{i \in I} \log c_i(x).$$

分数障碍函数:

$$P(x; \mu) = f(x) - \mu \sum_{i \in I} \frac{1}{[c_i(x)]^+}.$$

其中 $[c_i(x)]^+ = \max\{0, c_i(x)\}.$

当 $\mu \to 0$ 时, $P(x; \mu)$ 的极小值趋近优化模型的极小值.

内点障碍法的优势在于, $P(x,\mu)$ 每一步所求出的的极小值, 一定符合优化模型的所有不等式约束条件, 而罚函数方法并不能保证.