APPROXIMATE INFERENCE

PROBLEM! COMFUTING P(hIV), IF MUTING LAYER EXACT INFRIENCE RECURRES EXPONENTIAL TIME, OBSTACLE IS LABORT INTERACTIONS IN GRAPHICAL MUDGL OR EXPONENTIA AWAY. ESTECIS

INFRIENCE AS OPTIMIZATION

EXACT INFRABLIE CAN BE INTERPOSED AS OFTENDATION PROBLEM. TO'S F(V, D) DIFFICULT - LET'S GET A LOWER BOUND ON IT

- exact inference can be interrested as optimisation flubusing. Tog p(v) = L(u,a,b) = log p(v,b) Dal(u(h))| f(h|v,b)) Decompose all L(v,b,a) = E happened by p(h,v) + H(a)
- LET'S FIND & MAXIMIZING L. PURK & BUT OPTIMIZATION OR RESIDETED & MODERNING DOTIMIZATION.

EXPECTATION - MAXIMENTION

CAN BE FRAMED AS CONDINATE ASCENT MAXIMIZATION FOR L. E STEP WRT Q, M STEP WRT D.

- . DUBS EXACT INFRANCE BUT IS "APPROXIMATE" M STEP PRODUCES "GAD" RETURNED L AND LOS P. BUT LAIRL E-STEP CLOSES IT FULLY. . SOME TIMES WE JUM TO EXACT SOLUTION IN A ISPANION

SPARSE CODING / MAP

FRAMING OF SPARSE COOKS AS PROPARIESTE MUREL. MAP (DOMNE): h = ARGMAX P(HIV) - SEEU AS MAXIMIZATION OF LUNGRA WHEN Q IS DIRAC DESINAUTON

· EXTRACTION OF CODES - OFTIMISATION OF W FOR OFTIMIL REGINSTRUCTION ERROR FOR MAINTAIN L WAT Q OFTIMES FROM MAF, EM W/ DIRAC · WE MAXIMITE A BOUND ON TRUE LIMELIHOOD USING EXACT MAY INFROME POSTANIA

SEGUENCE MODELING

WITH GRAPHERS MODELS AUTOMATICE TO DUNS . IF MODELS HAVE MARKON STRUCTURE - STURF IS FASY, EXACT INFERRUE IF RECORDS - APPROXIMATE HMMC

- MARGINALIZATION SUM OVER ALL COMPLESE SOURCE TO SINK PATHS OF PROPORT OF EXP SCORES IM (6) = & TT & - ON TREWS DIAMAM - M IS LIWELLHOOD
- IN FENENCE . TT (G) = ARGMAX & A MUST PROMOSE PASH . V(G) = MAX & A LOG SCONE
- LET'S EXPLOIT CYNAMIC PROGRAMAING MALGINALIZE VIA FNO-BWO: \ m(i) = \(\frac{1}{2} \) m(i) . TMASITION PROBABULIES, EMISSION PROBABULIES ...
- · OVERALL LINELHOOD P(x1.xx) = ETT f(xt/St)P(Sc/St-1) · LOGSCORES! amn = log f(xt/St=1) + log f(St=1 | St-1=)) · GRADIBUT OFTIMIZATION WORDS BUT EN 13 FASTER
- * TOO MANY STATES IE N-GRAM MODELS VITERSI BREAKS DOWN, TOO EXPENSIVE DO BEAM SEARCH . CAN FORMWATE DISCOMMENTINE
- MAP VIA (V (G) = MAX V (G") $m(G^{N}) = \sum_{n \in P(G^{N})} e^{(\Delta N, n)} VIFBASI:$ $v(G^{N}) = \sum_{n \in P(G^{N})} e^{(\Delta N, n)} VIFBASI:$ $v(G^{N}) = \sum_{n \in P(G^{N})} e^{(\Delta N, n)} V(G^{N}) + a_{M,N} V(G^{N}) + a_{M,N} V(G^{N})$ $v(G^{N}) = \sum_{n \in P(G^{N})} e^{(\Delta N, n)} V(G^{N}) + a_{M,N} V(G^{N}) + a_{M,N} V(G^{N})$ $v(G^{N}) = \sum_{n \in P(G^{N})} e^{(\Delta N, n)} V(G^{N}) + a_{M,N} V(G^{N}) + a_{M,N} V(G^{N})$ $v(G^{N}) = \sum_{n \in P(G^{N})} e^{(\Delta N, n)} V(G^{N}) + a_{M,N} V(G^{N$ - KEETMIN UP LIMELLINOO TOO - P(Y. | Y-1) - WALLY PROMINES

- VITIMA

CONSITIONAL RAMOM FIEWS

UNINEUF MODELS TRAINED TO MAXIMPLE JOINT F(YIX)

GNAPH TRANSFORMER! CUMPULATIONAL MODEL TRANSPORMING A WEIGHTED DAG INTO ANOTHER. SET OF IN WEIGHTS - SET OF ON WEIGHTS. CAP ME GRAPH TRANSPORMEN • CRF IS MADE BUT WITH PUTSWILLS ARE CONSTITUTED, PARAMETERIZED, ON INVITS • 2 WOUND BE INTRACTABLE, BUT MAKENOV PROPERTY MAKES IT FOSSIBLE TO USE DYNAMIC PROPERTY . NO OF SUASSUMS FOR IMPERENCE SCALES WITH DROPM AM TRACT IT

- . FOR MAF, SUM-PRODUCT MAX-SUM

NEUML NETWORKS AND SEARCH COMBO

ANN + HMM/SEARCH IS OLD 1084, SPEECH & HAMWRITING RECOGNITION. MANCINALIZATION AM INFRANCE (VIA DYNEROR) FOR TEMPORALLY STRUCTURES OUTPUTS CAN BE APPLIED ALSO WHEN LOCKORES ARE VEALUED LINEAR PUNCTIONS (LINE IN ANN) - GRAPH TRANSPORMER EXAMPLE : SEGMENTATION - DECOGNITION - SPEWHEIN -- CONTEXT AWMENED GRAPH TRANSPORMEN BEM SEARCH! IE WHEN NO OF MODES GROWS EXPONENTIALLY IN SECURIC LEWISH. WITEON NO GOOD. NETWORK

- BREAK MODES INTO CHOURS OF COMPANABLE NODES SAME PATH LEAGH
- SEGUENTIALLY PROJESS GROUPS; WEEPING UNLY A GROUP SUBSES AT STEP T SUBSET IS BEAM. DASTO ON ST. A. FALL NOTE THIS APPROX OF MAX TOTAL LOG-SCOTUS OF PAPE
- It UBTAINED FROM FOLLOWING ARES IN ST. M, SORS REJULTING GROUPS WAS NEXT STEN ESTIMATION. WEST THE BEST M.
- · BEAM OFTEN LAWS IN DINERSTRY, IS CASEBY WAS t

VANATIONAL INFERENCE

THE COMPLEATED DISTRIBUTIONS ARE THE COMMISSIONALS P(V/N) POTESTORS, CORRESPOND TO THE COMPLETE GRACKS OVER THE ANORN UNITS → BRUTE FORCE LOC.

**DOTH P(MIN) AM E[P] ARE MESSED UP . APPROXIMATE P WITH Q(N), SIMPLE. • 13 MAXIMITATION OF A BOUND

CALCULUS OF VANIATIONS

4. 19. 1 2 W. A.

FUNCTIONAL: FOR OF FOR. MINIMPERTION OF FUNCTIONALS, FUNCTIONAL DEDUCATIVES $\frac{\delta}{\delta + (x)}$. $\frac{\delta}{\delta + (x)} \int g(f(x), x) dx = \frac{\partial}{\partial y} g(f(x), x)$ **EXAMPLE:** GAUSSIAN AS MAX-ENTROPY DISTRIBUTION

H[F] = -Ex ly f(x) = - [f(x) | of f(x) dx . WE NACO CONSIDERATE TO FIX INTEGRAL TO 1, BURDA THE VALLACE, SPECIFY SHIFT. INCOMMUNA FUNCTIONAL.

•
$$L(P) = \lambda_1 \left(\int f(x) dx - 1 \right) + \lambda_2 \left(E[x] - \mu_1 \right) + \lambda_3 \left(E[(x - \mu_1)^2] - \sigma^2 \right) + H[P] = ...$$
• $\forall x \frac{\delta}{\delta f(x)} L = \lambda_1 + \lambda_2 x + \lambda_3 (x - \mu_1)^2 - 1 - \log P = 0$