MAT250 Proof 5

Kishan S Patel

April 11, 2025

Lemma 1 (\mathcal{L}_1). For any linear subspace U, a basis of U constructed from some set S of linearly independent vectors in U must have a cardinality of dim U.

$$\forall n \in \mathbb{N}, U \subseteq \mathbb{R}^n : U = \operatorname{span}(\{\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_{\dim U}\})$$

Lemma 2 (\mathcal{L}_2). For any linearly independent set of vectors $\{\vec{v}_1, \dots, \vec{v}_n\}$, for all v_i there does not exist a linear combination with all other vectors $(v_i : i \neq j)$ that sums to v_i .

Let \mathbb{R}^n be a Euclidean space, and let $U, V \subseteq \mathbb{R}^n$ be subspaces such that $V \subseteq U$ Let $p = \dim U$ and $q = \dim V$.

1. Prove that $q \geq p(P_1)$.

Proof. Assuming $\neg P_1 \implies \exists U \subseteq \mathbb{R}^n, V \subseteq U : \dim V > \dim U$.

Let $\{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_q\}$ be a basis of V.

Assuming q > p, we can take p vectors from the set $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p, \dots, \vec{v}_q\}$ to form a basis of U as the set $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$.

Because $V \subseteq U$, all vectors must in both sets must be inside U.

$$V \subseteq U \implies \forall i \, v_i \in U$$

Forming a linearly independent set that spans U from $\{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_p\}$, the vector \vec{v}_q is not inside this set but is an element in U. This must mean there exists a linear combination between the set and some vector \vec{x} such that it equals \vec{v}_q .

$$\neg P_1 \implies \exists \vec{x} : \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_p \end{bmatrix} x = \vec{v}_q$$

This imposes a contradiction to \mathcal{L}_2 , as the set $\{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_p, \cdots, \vec{v}_q\}$ is linearly independent, therefore P_1 must be true. QED

2. If q = p then $V = U(P_2)$.

Proof. Let $\vec{u} \in U$. Because $V \subseteq U$ and $\dim U = \dim V$, any basis $\{\vec{v}_1, \dots, \vec{v}_q\}$ of V is also a basis of U as all elements in the set are elements of U.

Because any basis of V is a basis of U, \vec{u} can be written as a linear combination of the basis vectors of V, therefore $\vec{u} \in V$.

$$u \in V \land u \in U \implies U \subseteq V$$
$$V \subset U \land U \subset V \implies U = V$$

QED