ASEN 6060 ADVANCED ASTRODYNAMICS Transfer Design Example

Objectives:

- Demonstrate a relevant trajectory design example from following paper:
 - Bosanac, N; Webster, C.M.; Howell, K.C.; Folta, D.C., 'Trajectory Design for the Wide Field Infrared Survey Telescope Mission,' September 2019, Vol. 42, No. 9, pp. 1899-1911, Journal of Guidance, Control and Dynamics

Nancy Grace Roman Space Telescope

Space telescope destined for a Sun-Earth L₂ halo orbit

- 1. Pre-specified initial state from launch vehicle provider
- 2. $\Delta \bar{V}_{LEO}$ must occur 10-60 minutes after initial epoch
- 3. $\Delta \bar{V}_{LEO}$ must be predominantly within orbital plane
- 4. Mission orbit remain within 36° of SE- L_2 line
- 5. Transfer remain within 33° of SE- L_2 line
- 6. Earth, lunar shadow avoidance for 10 years
- 7. $\left| \Delta \overline{V}_{L_2OI} \right| < 15 \text{ m/s}$

These constraints are applied early in the design process to facilitate efficient search for feasible trajectory

Overview of Trajectory Design Process

Step 1: Identify Candidate Periodic Orbits

Relevant mission orbit constraints:

- Mission orbit remains within 36° of SE- L_2 line
- Earth, lunar shadow avoidance for 10 years

Fig. 1 Feasible (blue) and infeasible (red) periodic orbits in the a) L_2 halo, b) L_2 Lyapunov, c) L_2 vertical, and d) L_2 axial families.

Step 2: Generate Stable Manifolds for Candidates

Record crossings with surface of section: $x_H = 0.7(1 - \mu) + 0.3L_{2,x}$

Fig. 2 Stable manifolds for members of the SE L_2 northern halo family in a) configuration space and b) on a (y, z) map.

Step 3: Generate LEO Departure Arcs

Constraints:

- Pre-specified initial state from launch vehicle provider
- $\Delta \bar{V}_{LEO}$ must occur 10-60 minutes after initial epoch
- $\Delta \bar{V}_{LEO}$ must be predominantly within orbital plane

Fig. 3 Paths departing the LEO and intersecting the hyperplane: a) selected solutions projected onto the xy plane, and b) larger data set represented on a (y, z) map.

Step 4: Construct Initial Guess

Step 4: Construct Initial Guess

Fig. 5 An initial guess a) constructed by selecting individual arcs on a map, b) viewed from above the SE plane, and c) viewed in three dimensions.

Step 5: Correct Trajectory in CR3BP

Fig. 6 A two-impulse continuous trajectory in the CR3BP: a) after initial corrections with $|\Delta V_{L_2OI}|=37.4$ m/s and b) final solution with $|\Delta V_{L_2OI}|=8.40$ m/s.

Step 6: Correct in Ephemeris Model w/ SRP

