Aprendizaje Profundo por Refuerzo 01. Introducción

Dr. Juan Gómez Romero Investigador Senior

Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad de Granada

Aprendizaje profundo por refuerzo

AlphaGo (2018). Dirigida por Greg Kohs. Más: https://www.alphagomovie.com

Aprendizaje profundo por refuerzo

(deep reinforcement learning)

Profesor: Juan Gómez Romero (PhD)

jgomez@ugr.es http://decsai.ugr.es/~jgomez

Material https://github.com/jgromero/eci2019-DRL

Organización del curso 3 horas / día (30' Q&A, 2h teoría + prácticas, 30' lab) x 5 días

1. Introducción al aprendizaje profundo (días 1, 2)

2. Aprendizaje por refuerzo (día 3)

3. Aprendizaje profundo por refuerzo (días 4, 5)

Aprendizaje profundo por refuerzo

Prerrequisitos

Se recomienda contar con conocimientos sobre Álgebra, Inteligencia Artificial y Redes Neuronales.

El lenguaje de programación que se utilizará en el curso es Python.

Conceptos general de AI, ML y ANN

- Del curso "Al for Everyone", de Coursera, Week 1:

Vídeo: Machine Learning

Vídeo: The Terminology of Al

Vídeo: Non-technical explanation of Deep Learning (Part 1, Part 2)

- Del libro de Chollet "Deep Learning with Python":

Capítulo 1: What is Deep Learning

Formalización de modelos de ANN

- Del libro de Russell & Norvig "Artificial Intelligence: A Modern Approach": Sección 18.7: Artificial Neural Networks (20.5 en la versión en español)

Primeros pasos en Deep Learning & PyTorch

- Del libro de Stevens & Antiga "Deep Learning with PyTorch":

Capítulo 1: PyTorch from 1 Mile Away

Aprendizaje profundo por refuerzo

Evaluación

La evaluación del curso se hará mediante:

- Examen de tipo test, a celebrar el último día del curso (viernes 26) [hasta **8.5 puntos** sobre 10]
- La entrega de un trabajo teórico-práctico, que consistirá en la resolución de un problema de optimización en un entorno virtual aplicando algoritmos de aprendizaje profundo por refuerzo [hasta **5 puntos** sobre 10].

Se entregará el software junto a una breve memoria explicando la solución desarrollada.

Actividades prácticas

El curso tiene una orientación teórico-práctica y se desarrollará con trabajos de ejercitación y experimentación en computadoras en el laboratorio:

- Introducción práctica a *Deep Learning*. definición, entrenamiento y validación de redes neuronales *feed-forward* utilizando PyTorch y computación en la nube, para conocer sus elementos principales, las etapas del proceso de aprendizaje y los algoritmos de optimización. (2 días)
- Métodos de aprendizaje por refuerzo: implementación de algoritmos fundamentales (Monte Carlo y Q-learning), para comprender los conceptos de recompensa acumulada y política de actuación. (1 día)
- Métodos de aprendizaje profundo por refuerzo: introducción a la implementación de algoritmos fundamentales (DQN, DDPG), para comprender el concepto de estimación de recompensa y optimización de acción, así como su cálculo utilizando redes neuronales profundas. (1.5 días)

Introducción Aprendizaje profundo por refuerzo

Bibliografía

Deep Learning

- Y. LeCun, Y. Bengio, G. Hinton (2015) Deep Learning. Nature 521, 436-444.
- I. Goodfellow, Y. Bengio, A. Courville (2016) Deep Learning. MIT Press. http://www.deeplearningbook.org • F. Berzal (2019) Redes Neuronales & Deep Learning. [link]
 - E. Stevens, L. Antiga (2019) Deep Learning with PyTorch. Manning.

Reinforcement Learning

• R.S. Sutton, A.G. Barto (2018) Reinforcement Learning. MIT Press. https://mitpress.mit.edu/books/reinforcement-learning-second- edition

Deep Reinforcement Learning

- ★ A. Zai, B. Brown (2018) Deep Reinforcement Learning in Action. Manning.
 - M. Morales (2018) Grokking Deep Reinforcement Learning. Manning.
 - M. Pumperla, K. Ferguson (2019). Deep Learning and the Game of Go. Manning.
 - OpenAI (2018) Spinning Up in Deep RL. https://spinningup.openai.com/

Aprendizaje profundo por refuerzo

Bibliografía

DeepMind

Control (juegos Atari)

• V. Mnih et al. (2015) Human-Level Control through Deep Reinforcement Learning. Nature 518, 529-533.

Juegos con adversario e información perfecta (Go)

- D. Silver et al. (2016) Mastering the game of Go with Deep Neural Networks and Tree Search. Nature 529, 484-489.
- D. Silver et al. (2017) Mastering the game of Go without human knowledge. Nature 550, 354-359.
- D. Silver et al. (2018) A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419), 1140-1144.

Juegos con adversario e información imperfecta (StarCraft II, Quake III)

- O. Vinyals et al. (2019) AlphaStar: Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
- M. Jaderberg et al. (2019) Human-level performance in 3D multiplayer games with population-based reinforcement learning. Science 364, 859-865.

Aprendizaje por refuerzo

Planteamiento: Un agente, situado en un entorno, debe resolver una tarea mediante experimentación repetida. El entorno proporciona al agente una recompensa positiva cuando realiza una acción "buena" y una penalización cuando realiza una acción "mala".

Objetivo: Seleccionar acciones que maximicen la recompensa acumulada por el agente durante su vida

Dificultad: Seleccionar secuencias de acciones óptimas a largo plazo + Diversificar entre acciones que se sabe que son (en general) positivas y otras novedosas

Aprendizaje profundo por refuerzo (deep reinforcement learning)

Utilizar redes neuronales profundas para optimizar la recompensa acumulada

Aprendizaje por refuerzo

Objetivo

Maximizar ganancia acumulada

Introducción Aprendizaje por refuerzo

Objetivo

Encontrar la meta en el laberinto en el menor tiempo posible

Aprendizaje por refuerzo

Objetivo

Encontrar la meta en el laberinto en el menor tiempo posible

Acciones

Tiempo

Aprendizaje por refuerzo

Objetivo

Encontrar la meta en el laberinto en el menor tiempo posible

Camino óptimo: 20s

Algoritmos de búsqueda óptimos

- + *Búsqueda con coste*Explora todos los posibles caminos, asignando un coste según el tiempo que se tarda en realizar una acción
- + Búsqueda con función de potencial
- + Búsqueda con función heurística (e.g A*)

Necesitan conocer el mapa y la posición objetivo No son viables en problemas de tamaño moderado

Aprendizaje por refuerzo

Aprendizaje por refuerzo

R.S. Sutton, A.G. Barto (2018) Reinforcement Learning. MIT Press.

$$S_t = \{ (6, 2), \uparrow \} \longrightarrow S_{t+1} = \{ (5, 2), \uparrow \}$$

$$A_t = AVANZAR$$

$$R_{t+1} = -1$$

Aprendizaje por refuerzo

Estados y transiciones

Aprendizaje por refuerzo

Política de actuación: π Si normal: mover arriba Si rayas: mover derecha

Secuencia o episodio:

$$(2,1) \uparrow -5 (1,1)$$

 $(1,1) \rightarrow +50 (1,2)$

Recompensa acumulada: -5 + 50 = -45

Política óptima π_* :

Estado	Acción
(2, 1)	\rightarrow
(2, 2)	1
(2,3)	←
• • •	

Aprendizaje

Aprendizaje profundo por refuerzo (deep reinforcement learning)

Utilizar redes neuronales profundas para optimizar la recompensa acumulada

La red neuronal:

- devuelve la próxima acción que se debe realizar...
- ... en función de una estimación de cómo de buena es un acción en el estado actual

Entrenar la red para encontrar π_* :

A partir de ejemplos de secuencias de acciones y recompensas asociadas