CS 310

Q) How many computer scientists does it take to kill a cockroach?

CS 310

- Q) How many computer scientists does it take to kill a cockroach?
- A) Two. One of them holds it down and the other installs Windows on it.

Homework 7

Underlying DAG

Time Complexity?

×		ITEMS				
T Y		Value	v ₁ =30	v ₂ =4	v ₃ =16	v ₄ =9
I I		Weights	$w_1 = 3$	w ₂ =3	w ₃ =2	w ₄ =1
P A		0	1	2	3	4
A	0	0	0	0	0 /	0
С	1	0 /	0	0 —	0	9
C K	2	0 —	0 -	→ 0 —	16	16
A	3	0	30 —	30	30	30
P S	4	0	30	30	30	39
N A	5	0	30	30	46	46
K	6	0	30	34	46	55

No one knows of a polynomial algorithm for Knapsack.

Subset Sum Problem

Given, non-negative integer weights, item i weighs $w_i > 0$.

Bound or capacity: W

Select a subset S $\sum_{i \in S} w_i \le W$

$$\sum_{i \in S} w_i \leq W$$

This sum should be as large as possible.

If $w < w_i$ then OPT(i, w) = OPT(i-1, w).

If
$$w < w_i$$
 then $opt(i, w) = opt(i-1, w)$.

$$OPT(i, w) = max(OPT(i-1, w), w_i + OPT(i-1, w-w_i)).$$

If
$$w < w_i$$
 then $opt(i, w) = opt(i-1, w)$.

$$OPT(i, w) = max(OPT(i-1, w), w_i + OPT(i-1, w-w_i)).$$

Base case?

Applications of Knapsack

- Resource constrained selection problems