Chapter 18

The d & f-Block Elements

1. In context with the transition elements, which of the following statements is incorrect?

[AIEEE-2009]

- In the highest oxidation states, the transition metals show basic character and form cationic complexes
- (2) In the highest oxidation states of the first five transition elements (Sc to Mn), all the 4s and 3d electrons are used for bonding.
- (3) Once the d^5 configuration is exceeded, the tendency to involve all the 3d electrons in bonding decreases
- (4) In addition to the normal oxidation states, the zero oxidation state is also shown by these elements in complexes
- 2. Knowing that the chemistry of lanthanoids (Ln) is dominated by its +3 oxidation state, which of the following statements is incorrect? [AIEEE-2009]
 - (1) The ionic sizes of Ln (III) decrease in general with increasing atomic number
 - (2) Ln (III) compounds are generally colourless
 - (3) Ln (III) hydroxides are mainly basic in character
 - (4) Because of the large size of the Ln (III) ions the bonding in its compounds is predominently ionic in character
- 3. The correct order of $E_{M^{2+}/M}^{\circ}$ values with negative sign for the four successive elements Cr, Mn, Fe and Co is **[AIEEE-2010]**
 - (1) Cr > Mn > Fe > Co (2) Mn > Cr > Fe > Co
 - (3) Cr > Fe > Mn > Co (4) Fe > Mn > Cr > Co
- 4. Iron exhibits +2 and +3 oxidation states. Which of the following statements about iron is incorrect?
 - [AIEEE-2012]
 - (1) Ferrous compounds are relatively more ionic than the corresponding ferric compounds.
 - (2) Ferrous compounds are less volatile than the coirresponding ferric compounds.

- (3) Ferrous compounds are more easily hydrolysed than the corresponding ferric compounds
- (4) Ferrous oxide is more basic innature than the ferric oxide.
- 5. Which of the following arrangements does not represent the correct order of the property stated against it? [JEE (Main)-2013]
 - (1) V^{2+} < Cr^{2+} < Mn^{2+} < Fe^{2+} : paramagnetic behaviour
 - (2) $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$: ionic size
 - (3) Co^{3+} < Fe^{3+} < Cr^{3+} < Sc^{3+} : stability in aqueous solution
 - (4) Sc < Ti < Cr < Mn : number of oxidation states
- Four successive members of the first row transition elements are listed below with atomic numbers. Which one of them is expected to have the

highest
$$E_{M^{3+}/M^{2+}}^{0}$$
 value? [JEE (Main)-2013]

- (1) Cr(Z = 24)
- (2) Mn (Z = 25)
- (3) Fe (Z = 26)
- (4) Co (Z = 27)
- 7. Which series of reactions correctly represents chemical reactions related to iron and its compound? [JEE (Main)-2014]

(1)
$$Fe^{\frac{\text{dil.H}_2SO_4}{}} FeSO_4 \xrightarrow{\text{H}_2SO_4,O_2} Fe_2(SO_4)_3 \xrightarrow{\text{heat}} Fe$$

(2)
$$Fe \xrightarrow{O_2,heat} FeO \xrightarrow{dil.H_2SO_4} FeSO_4 \xrightarrow{heat} Fe$$

(3)
$$Fe \xrightarrow{Cl_2,heat} FeCl_3 \xrightarrow{heat,air} FeCl_2 \xrightarrow{Zn} Fe$$

(4)
$$Fe \xrightarrow{O_2,heat} Fe_3O_4 \xrightarrow{CO,600^{\circ}C} Fe$$

8.	Match the catalysts to the correct processes :				14.	The element that usually does NOT show variable			
	Catalyst Process		Process			dation states is	(0)	[JEE (Main)-2019]	
	a.	TiCl ₃	(i)	Wacker process			Cu	(2)	
	b.	$PdCl_2$	(ii)	Ziegler-Natta		(3)	V	(4)	Sc
		0.01	/***	polymerization	15.	<u>A</u> -	$\xrightarrow{4 \text{ KOH,O}_2}$ $2\underline{B} + 2\underline{H}_2$	<u>2</u> O	
		CuCl ₂		Contact process			(Green)		
	d.	V_2O_5	(IV)	Deacon's process		3 <u>B</u>	$\xrightarrow{\text{4 HCl}} 2\underline{C} + \text{MnO}$ (Purple)	2 + 2	⊵H ₂ O
	(4)	-(iii) L(ii) -(iii) -l(ii)	(0)	[JEE (Main)-2015]			(Purple)		
		a(iii), b(ii), c(iv), d(i)				2 <u>C</u>	$\xrightarrow{H_2O, KI}$ $\rightarrow 2\underline{A} + 2KOH$	+ <u>D</u>	
0		a(ii), b(iii), c(iv), d(i)							
9.		color of KMnO ₄ is du					the above sequence	of re	
		M → L charge transfd - d transition	er u	ansiuon			pectively, are		[JEE (Main)-2019]
			or tr	ransition			KI and K ₂ MnO ₄		
		$L \rightarrow M$ charge transf σ - σ * transition	ei li	ansilion			KIO ₃ and MnO ₂		
10		ich of the following co	nmn	ounds is metallic and			MnO ₂ and KIO ₃		
10.		omagnetic?	π	[JEE (Main)-2016]			KI and KMnO ₄		
	(1)	CrO ₂	(2)	VO_2	16.	The	e lanthanide ion that w	oulc	
	(3)	MnO_2	(4)	${\rm TiO}_2$			2		[JEE (Main)-2019]
11.	The	pair having the same	e ma	agnetic moment is			Gd ³⁺		Lu ³⁺
	[At.	No.: Cr = 24, Mn = 3	25,				La ³⁺		Sm ³⁺
	[JEE (Main)-2016] (1) $[Cr(H_2O)_6]^{2+}$ and $[Fe(H_2O)_6]^{2+}$			17.		e statement that is le erstitial compounds is	NC	ORRECT about the [JEE (Main)-2019]	
	(2)	$[Mn(H_2O)_6]^{2+}$ and $[Cr($	- (H ₂ C	$[0]_{6}]^{2+}$		(1)	They are chemically	reac	tive.
	(3)	[CoCl ₄] ²⁻ and [Fe(H ₂ 0) ₆] ²	t i		(2)	They are very hard.		
	(4)	$[Cr(H_2O)_6]^{2+}$ and $[Co(H_2O)_6]^{2+}$	$CI_4]^2$			(3)	They have high melti	ng p	ooints.
12.			ns,	ZnO is respectively		(4)	They have metallic co	ondu	uctivity.
	acting as a/an [JEE (Main)-2017] (a) $ZnO + Na_2O \rightarrow Na_2ZnO_2$					e maximum number of			
						actinoides are shown l		[JEE (Main)-2019]	
		$ZnO + CO_2 \rightarrow ZnCO$	•	A aid and base			Berkelium (Bk) and c		
		Acid and acid		Acid and base			Neptunium (Np) and		
13.		Base and acid effect of lanthanoid co		Base and base			Actinium (Ac) and the		
13.		ies of elements by an					Nobelium (No) and la		
	[JEE (Main)-2019] (1) Increase in atomic radii and decrease in ionic radii		19.		nsider the hydrated io ³⁺ . The correct order o				
				mo	ments is :		[JEE (Main)-2019]		
	(2) Decrease in atomic radii and increase in ionic				$Sc^{3+} < Ti^{3+} < Ti^{2+} < V$				
	radii					$Ti^{3+} < Ti^{2+} < Sc^{3+} < V$			
	(3)	Decrease in both ato	mic	and ionic radii			$Sc^{3+} < Ti^{3+} < V^{2+} < T$		
	(4)	Increase in both ator	nic a	and ionic radii		(4)	$V^{2+} < Ti^{2+} < Ti^{3+} < Si^{3+}$	C ³⁺	

20.				28. The incorrect statement(s) among (a) - (c) is (are			
	plutonium, respectively, are: [JEE (Main)-2019]			(a) W(VI) is more stable than Cr(VI).			
	(1) 6 and 7	(2) 7 and 6		(b) In the presence of HCl, permanganate titration	าร		
	(3) 6 and 4	(4) 4 and 6		provide satisfactory results.			
21.	The metal that gives with both acid as we	hydrogen gas upon treatment ell as base is :		(c) Some lanthanoid oxides can be used a			
		[JEE (Main)-2019]		phosphors. [JEE (Main)-2020	0]		
	(1) Zinc	(2) Magnesium		(1) (a) and (b) only			
	(3) Iron	(4) Mercury		(2) (a) only			
22.	The pair that has sir	milar atomic radii is :		(3) (b) and (c) only			
		[JEE (Main)-2019]					
	(1) Mo and W	(2) Ti and Hf	00	(4) (b) only			
	(3) Sc and Ni	(4) Mn and Re	29.	The lanthanoid that does NOT show +4 oxidatio state is [JEE (Main)-2020]			
23.		of the calculated spin only		(1) Tb (2) Dy	7]		
		n BM) among all the transition					
	metal complexes is	[JEE (Main)-2019]	00	(3) Ce (4) Eu			
	(1) 5.92	(2) 6.93	30.	Jan			
0.4	(3) 4.90	(4) 3.87		NaCl + $K_2Cr_2O_7$ + $H_2SO_4 \rightarrow (A)$ + side products			
24.	atomisation, is	ent that has lowest enthalpy of [JEE (Main)-2019]		(Conc.)			
	(1) V	(2) Cu		(A) + NaOH → (B) + Side products			
	(3) Fe	(4) Zn		(B) + $H_2SO_4 + H_2O_2 \rightarrow$ (C) + Side products			
25.	The correct order of			(dilute)			
_0.		[JEE (Main)-2019]		The sum of the total number of atoms in on molecule each of (A), (B) and (C) is	е		
		N (2) N > Ce > Eu > Ho		[JEE (Main)-2020	ומ		
	(3) Eu > Ce > Ho >	N (4) Ho > N > Eu > Ce	31	The sum of the total number of σ bonds between			
26.	5 g of zinc is treated (a) Dilute hydrochlo	I separately with an excess of	51.	chromium and oxygen atoms in chromate an			
	(b) Aqueous sodium			dichromate ions is			
		mes of H ₂ evolved in these two	00	[JEE (Main)-2020			
	reactions is	[JEE (Main)-2020]	32.	The correct electronic configuration and spin-on magnetic moment (BM) of Gd ³⁺ (Z = 64 respectively, are [JEE (Main)-2020),		
	(1) 1:4	(2) 2:1		(1) [Xe] 5f ⁷ and 8.9 (2) [Xe] 4f ⁷ and 7.9	וי		
27	(3) 1 : 2	(4) 1 : 1		(3) [Xe] 5f ⁷ and 7.9 (4) [Xe] 4f ⁷ and 8.9			
27.	The incorrect statem		22				
	(1) Manganate and permanganate ions are paramagnetic		აა.	The atomic radius of Ag is closest to [JEE (Main)-2020	0]		
	(2) Manganate an tetrahedral	d permanganate ions are		(1) Cu (2) Au			
	(3) Manganate ion is green in colour and permanganate ion is purple in colour		34.	(3) Hg (4) Ni			
				The third ionization enthalphy is minimum for			
		In manganate and permanganate ions, the π -bonding takes place by overlap of p-orbitals of oxygen and d-orbitals of		[JEE (Main)-2020	0]		
				(1) Mn (2) Fe			
	manganese	oxygen and d-orbitals of		(3) Co (4) Ni			

(1) Both statement I and statement II are correct 54. The correct order of following 3d metal oxides, according to their oxidation number is (2) Statement I is correct but statement II is incorrect [JEE (Main)-2021] (3) Both statement I and statement II are (a) CrO_3 incorrect (b) Fe₂O₂ (4) Statement I is incorrect but statement II is (c) MnO₂ correct (d) V_2O_5 Fex₂ and Fey₃ are known when x and y are (e) Cu₂O [JEE (Main)-2021] (1) (a) > (d) > (c) > (b) > (e)(1) x = F, Cl, Br, I and y = F, Cl, Br (2) (d) > (a) > (b) > (c) > (e)(2) x = CI, Br, I and y = F, Cl, Br, I (3) (a) > (c) > (d) > (b) > (e)(3) x = F, Cl, Br and y = F, Cl, Br, I (4) (c) > (a) > (d) > (e) > (b)(4) x = F, Cl, Br, I and y = F, Cl, Br, I 49. What is the spin-only magnetic moment value (BM) 55. The spin only magnetic moments (in BM) for free Ti³⁺, V²⁺ and Sc³⁺ ions respectively are of a divalent metal ion with atomic number 25, in [JEE (Main)-2021] it's aqueous solution? (At. No. Sc: 21; Ti: 22; V: 23) (1) 5.92 (2) 5.26 [JEE (Main)-2021] (3) Zero (4) 5.0 (1) 1.73, 3.87, 0 (2) 0, 3.87, 1.73 50. Given below are two statements: (3) 3.87, 1.73, 0 (4) 1.73, 0, 3.87 Statements I: Potassium permanganate on heating Which one of the following when dissolved in water at 573 K forms potassium manganate. gives coloured solution in nitrogen atmosphere? **Statements II:** Both potassium permanganate and [JEE (Main)-2021] potassium manganate are tetrahedral and paramagnetic in nature. (1) AgCI (2) Cu₂Cl₂ In the light of the above statements, choose the (4) CuCl₂ (3) ZnCl₂ most appropriate answer from the options given 57. The number of 4f electrons in the ground state below: [JEE (Main)-2021] electronic configuration of Gd²⁺ is . [Atomic (1) Statement I is false but statement II is true number of Gd = 64] [JEE (Main)-2021] (2) Both statement I and statement II are false 58. The nature of oxides V₂O₃ and CrO is indexed as (3) Both statement I and statement II are true 'X' and 'Y' type respectively. The correct set of X and Y is: [JEE (Main)-2021] (4) Statement I is true but statement II is false (1) X = amphoteric Y = basic 51. The common positive oxidation states for an element with atomic number 24, are (2) X = basic Y = basic [JEE (Main)-2021] (3) X = basic Y = amphoteric (1) +1 and +3 to +6 (2) +1 to +6 (4) X = acidic Y = acidic (3) +2 to +6(4) +1 and +359. The number of f electrons in the ground state 52. Cu²⁺ salt reacts with potassium iodide to give: electronic configuration of Np (Z = 93) is (Integer answer) [JEE (Main)-2021] [JEE (Main)-2021] 60. The addition of dilute NaOH to Cr3+ salt solution (1) Cu₂l₂ (2) Cu₂l₂ [JEE (Main)-2021] will give: (4) Cul (3) $Cu(I_3)_2$ (1) A solution of [Cr(OH)₄][−] 53. The set having ions which are coloured and (2) Precipitate of [Cr(OH)₆]³paramagnetic both is [JEE (Main)-2021] (3) Precipitate of Cr₂O₂(H₂O)₂ (1) Cu²⁺, Cr³⁺, Sc⁺ (2) Cu⁺, Zn²⁺, Mn⁴⁺

(3) Sc³⁺, V⁵⁺, Ti⁴⁺

(4) Ni²⁺, Mn⁷⁺, Hg²⁺

(4) Precipitate of Cr(OH)₃

1.	Potassium permaganate on heating at 513 K gives a non-gaseous product which is	70.	The difference in oxidation state of chromium in chromate and dichromate salts is,		
	[JEE (Main)-2021]				
	(1) Paramagnetic and green		[JEE (Main)-2022]		
	(2) Paramagnetic and colourless	71.			
	(3) Diamagnetic and colourless		Amongst the following, the metal with the highest		
	(4) Diamagnetic and green		melting point will be [JEE (Main)-2022]		
2.	Which one of the following lanthanides exhibits +2 oxidation state with diamagnetic nature? (Given Z for Nd = 60, Yb = 70, La = 57, Ce = 58)		(1) Hg (2) Ag (3) Ga (4) Cs		
	[JEE (Main)-2021]	72.			
	(1) Nd (2) Yb		acidic solution. The difference in oxidation states		
	(3) La (4) Ce		of two ions it forms in acidic solution is		
3.	In the structure of the dichromate ion, there is a :		[JEE (Main)-2022]		
	[JEE (Main)-2021]	73.	Cerium (IV) has a noble gas configuration. Which		
	(1) Linear symmetrical Cr - O - Cr bond		of the following is correct statement about it?		
	(2) Non-linear symmetrical Cr – O – Cr bond		[JEE (Main)-2022]		
	(3) Linear unsymmetrical Cr - O - Cr bond		(1) It will not prefer to undergo redox reactions.		
	(4) Non-linear unsymmetrical Cr – O – Cr bond		(2) It will prefer to gain electron and act as an		
4.	its ground state electronic configuration		oxidizing agent		
	(outermost) : [Atomic number of Eu = 63]		(3) It will prefer to give away an electron and behave as reducing agent		
	[JEE (Main)-2021]		(4) It acts as both, oxidizing and reducing agent.		
	(1) 4f ⁶ (2) 4f ⁷	7.4			
	(3) $4f^66s^2$ (4) $4f^76s^2$	74.	Among the following which is the strongest oxidizing agent? [JEE (Main)-2022]		
5.	The value of magnetic quantum number of the outermost electron of Zn ⁺ ion is (Integer				
	answer) [JEE (Main)-2021]		(1) Mn ³⁺ (2) Fe ³⁺		
6.	Identify the element for which electronic		(3) Ti^{3+} (4) Cr^{3+}		
	configuration in +3 oxidation state is [Ar]3d ⁵ :	75.	The metal ion (in gaseous state) with lowest spin-		
	[JEE (Main)-2021]		only magnetic moment value is		
	(1) Mn (2) Ru		[JEE (Main)-2022]		
	(3) Co (4) Fe		(1) V^{2+} (2) Ni^{2+}		
7.	In the given chemical reaction colors of the Fe ²⁺ and Fe ³⁺ ions, are respectively: [JEE (Main)-2021]		(3) Cr ²⁺ (4) Fe ²⁺		
	$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$	76.	The spin-only magnetic moment value of the most basic oxide of vanadium among V_2O_3 , V_2O_4 and		
	(1) Yellow, Green (2) Green, Orange		V ₂ O ₅ is B.M. (Nearest integer)		
	(3) Green, Yellow (4) Yellow, Orange		[JEE (Main)-2022]		
8.	Number of electrons present in 4f orbital of Ho ³⁺ ion is (Given Atomic No. of Ho = 67)	77.	The most common oxidation state of Lanthanoid		
	[JEE (Main)-2021]		elements is +3. Which of the following is likely to deviate easily from +3 oxidation state?		
9.	The oxide that shows magnetic property is:		[JEE (Main)-2022]		
	[.IFF (Main)-2021]		[OLL (Main)-2022]		

(1) Ce (At. No. 58)

(3) Lu (At. No. 71)

(2) La (At. No. 57)

(4) Gd (At. No. 64)

(2) Na₂O (4) Mn₃O₄

(1) MgO(3) SiO₂

78.	Acidified potassium permanganate solution oxidises oxalic acid. The spin-only magnetic moment of the manganese product formed from the above reaction is B.M.	80.	compound with strongest oxidizing ability among MnF ₄ , MnF ₃ and MnF ₂ isB.M. [nearest integer] [JEE (Main)-2022]			
	(Nearest Integer) [JEE (Main)-2022]	87.	Given below are two statements.			
79.			Statement I: Iron (III) catalyst, acidified $\rm K_2Cr_2O_7$ and neutral $\rm KMnO_4$ have the ability to oxidise I ⁻ to I ₂ independently.			
	(1) Cr (2) Fe		Statement II: Manganate ion is paramagnetic in			
	(3) Cu (4) Zn		nature and involves $p\pi-p\pi$ bonding.			
80.	The 'f' orbitals are half and completely filled, respectively in lanthanide ions		In the light of the above statements, choose the correct answer from the options given below.			
	[Given: Atomic no. Eu, 63; Sm, 62; Tm, 69; Tb, 65; Yb, 70; Dy, 66] [JEE(Main)-2022]		[JEE (Main)-2022]			
	(1) Eu ²⁺ and Tm ²⁺ (2) Sm ²⁺ and Tm ³⁺		(1) Both Statement I and Statement II are true(2) Both Statement I and Statement II are false			
	(3) Tb ⁴⁺ and Yb ²⁺ (4) Dy ³⁺ and Yb ³⁺		(2) Both Statement I and Statement II are false(3) Statement I is true but Statement II is false			
81.	Which one of the lanthanoids given below is the most stable in divalent form? [JEE (Main)-2022]	88.	(4) Statement I is false but Statement II is true The total number of Mn=O bonds in Mn ₂ O ₇ is			
	(1) Ce (Atomic Number 58)		[JEE (Main)-2022]			
	(2) Sm (Atomic Number 62)		(1) 4 (2) 5			
	(3) Eu (Atomic Number 63)		(3) 6 (4) 3			
	(4) Yb (Atomic Number 70)	In neutral or alkaline solution, MnO_4^- oxidises				
82.	The electronic configuration of Pt(atomic number 78) is: [JEE (Main)-2022]		thiosulphate to : [JEE (Main)-2022]			
	(1) [Xe] 4f ¹⁴ 5d ⁹ 6s ¹ (2) [Kr] 4f ¹⁴ 5d ¹⁰		(1) $S_2O_7^{2-}$ (2) $S_2O_8^{2-}$			
	(3) [Xe] 4f ¹⁴ 5d ¹⁰ (4) [Xe] 4f ¹⁴ 5d ⁸ 6s ²		(3) SO_3^{2-} (4) SO_4^{2-}			
83.	An acidified manganate solution undergoes	90.	Match List-I with List-II, match the gas evolved during			
	disproportionation reaction. The spin-only magnetic moment value of the product having manganese in		each reaction.			
	higher oxidation state is B.M. (Nearest		List-I			
	integer) [JEE (Main)-2022]		(A) $(NH_4)_2Cr_2O_7 \xrightarrow{ \Delta } (I) H_2$			
84.	Among Co ³⁺ , Ti ²⁺ , V ²⁺ and Cr ²⁺ ions, one if used as a reagent cannot liberate H ₂ from dilute mineral acid		(B) $KMnO_4 + HCI \rightarrow (II) N_2$ (C) $AI + NaOH + H_2O \rightarrow (III) O_2$			
	solution, its spin-only magnetic moment in gaseous		(C) $AI + NaOH + H_2O \rightarrow (III) O_2$ (D) $NaNO_3 \xrightarrow{\triangle} (IV) Cl_2$			
	state is B.M. (Nearest integer) [JEE (Main)-2022]		Choose the correct answer from the options given			
85.	The spin-only magnetic moment value of M ³⁺ ion (in		below: [JEE (Main)-2022]			
	gaseous state) from the pairs Cr^{3+}/Cr^{2+} , Mn^{3+}/Mn^{2+} , Fa^{3+}/Fa^{2+} and Fa^{3+}/Fa^{2+} and Fa^{3+}/Fa^{2+} that has pagetive standard		(1) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)			
	Fe ³⁺ /Fe ²⁺ and Co ³⁺ /Co ²⁺ that has negative standard electrode potential, is B.M. [Nearest integer]		(2) (A)-(III), (B)-(I), (C)-(IV), (D)-(II) (3) (A)-(II), (B)-(IV), (C)-(I), (D)-(III)			
	[JEE (Main)-2022]		(4) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)			

- 92. In following pairs, the one in which both transition metal ions are colourless is: [JEE (Main)-2022]
 - (1) Sc³⁺, Zn²⁺
- (2) Ti⁴⁺, Cu²⁺
- (4) V²⁺, Ti³⁺
- (4) Zn²⁺, Mn²⁺

[JEE (Main)-2022]

- 93. Which of the following 3d-metal ion will give the lowest enthalpy of hydration ($\Delta_{hyd}H$) when dissolved in water? [JEE (Main)-2022]
 - (1) Cr²⁺
- (2) Mn²⁺
- (4) Fe²⁺
- (4) Co²⁺
- 94. Which of the following pair is not isoelectronic species?

(At. no. Sm, 62; Er, 68; Yb, 70; Lu, 71; Eu, 63; Tb, 65; Tm, 69) [JEE (Main)-2022]

- (1) Sm²⁺ and Er³⁺
- (2) Yb2+ and Lu3+
- (3) Eu²⁺ and Tb⁴⁺
- (4) Tb²⁺ and Tm⁴⁺
- 95. The number of terminal oxygen atoms present in the product B obtained from the following reaction is _____.

$$\mathsf{FeCr}_2\mathsf{O}_4 + \mathsf{Na}_2\mathsf{CO}_3 + \mathsf{O}_2 \!\to\! \mathsf{A} + \mathsf{Fe}_2\mathsf{O}_3 + \mathsf{CO}_2$$

 $\mathrm{A} + \mathrm{H}^{\scriptscriptstyle +} \rightarrow \mathrm{B} + \mathrm{H}_2\mathrm{O} + \mathrm{Na}^{\scriptscriptstyle +}$

[JEE (Main)-2022]

96. Given below are two statements.

Statement I: O₂, Cu²⁺, and Fe³⁺ are weakly attracted by magnetic field and are magnetized in the same direction as magnetic field.

Statement II: NaCl and H₂O are weakly magnetized in opposite direction to magnetic field.

In the light of the above statements, choose the **most** appropriate answer from the options given below.

[JEE (Main)-2022]

- (1) Both **Statement I** and **Statement II** are correct.
- (2) Both Statement I and Statement II are incorrect.
- (3) Statement I is correct but Statement II is incorrect.
- (4) Statement I is incorrect but Statement II is correct.
- 97. Match List-II with List-II.

List-I

List-II

- (A) $N_2(g) + 3H_2(g)$
- (I) Cu
- \rightarrow 2NH₃(g)
- (B) $CO(g) + 3H_2(g)$
- (II) Cu/ZnO-Cr₂O₃

$$\rightarrow$$
 CH₄(g) + H₂O(g)

- (C) $CO(g) + H_2(g)$
- (III) $Fe_xO_y + K_2O +$
- \rightarrow HCHO(g)
- Al_2O_3
- (D) $CO(g) + 2H_2(g)$
- (IV) Ni

 \rightarrow CH₃OH(g)

Choose the **correct** answer from the options given below:

[JEE (Main)-2022]

- (1) (A) (II), (B) (IV), (C) (I), (D) (III)
- (2) (A) (II), (B) (I), (C) (IV), (D) (III)
- (3) (A) (III), (B) (IV), (C) (I), (D) (II)
- (4) (A) (III), (B) (I), (C) (IV), (D) (II)
- 98. Match List-I with List-II.

List-I

List-II

(Processes/

(Catalyst)

Reactions)

- (A) $2SO_2(g) + O_2(g)$
- (I) Fe(s)

 \rightarrow 2SO₃(g)

- (B) $4NH_3(g) + 5O_2(g)$
- (II) Pt(s) Rh(s)
- \rightarrow 4NO(g) + 6H₂O(g)
- (C) $N_2(g) + 3H_2(g)$
- (III) V_2O_5
- \rightarrow 2NH₃(g)
- (D) Vegetable oil(I) + H₂ (IV) Ni(s)
 - → Vegetable ghee(s)

Choose the **correct** answer from the options given below:

[JEE (Main)-2022]

- (1) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)
- (2) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
- (3) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)
- (4) (A)-(IV), (B)-(II), (C)-(III), (D)-(I)
- 99. Match List-I with List-II.

 \rightarrow 2NH₃(g)

	List-I		List-II
	Reaction		Catalyst
(A)	$4NH_3(g) + 5O_2(g)$	(I)	NO(g)
	\rightarrow 4NO(g) + 6H ₂ O(g)		
(B)	$N_2(g) + 3H_2(g)$	(II)	$H_2SO_4(I)$

(C)
$$C_{12}H_{22}O_{11}(aq)$$
 (III) $Pt(s)$
+ $H_2O(I)$
 $C_6H_{12}O_6 + C_6H_{12}O_6$
Glucose Fructose

(D)
$$2SO_2(g) + O_2(g)$$
 (IV) Fe(s)
 $\rightarrow 2SO_3(g)$

Choose the **correct** answer from the options given below:

[JEE (Main)-2022]

- (1) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
- (2) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
- (3) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
- (4) (A)-(III), (B)-(II), (C)-(IV), (D)-(I)

The d & f-Block Elements

1. Answer (1)

In the highest oxidation states, the transition metals show acidic character.

2. Answer (2)

Ln (III) compounds are generally coloured.

3. Answer (2)

Mn > Cr > Fe > Co

$$E_{Mn^{2+}/Mn}^{o} = -1.18$$

$$E_{Cr^{2+}/Cr}^{0} = -0.91$$

$$E_{Ee^{2+}/Ee}^{o} = -0.44$$

$$E_{CO^{2+}/CO}^{0} = -0.28$$

4. Answer (3)

5. Answer (1)

Number of unpaired electrons of V²⁺, Cr²⁺, Mn²⁺ and Fe²⁺ are 3, 4, 5 and 4 respectively. Hence the given order of paramagnetic behaviour is incorrect.

6. Answer (4)

Cobalt has the highest value of $E^{\circ}_{Co^{3+}/Co^{2+}}=+1.97\ V$. Other values of standard reduction potential are $E^{\circ}_{Mn^{3+}/Mn^{2+}}=+1.57\ V$, $E^{\circ}_{Fe^{3+}/Fe^{2+}}=0+0.77\ V$ and $E^{\circ}_{Cr^{3+}/Cr^{2+}}=-0.41\ V$.

7. Answer (4)

$$Fe \xrightarrow{O_2} Fe_3O_4$$

This reaction is corresponding to the combustion of Fe.

$$Fe_3O_4 \xrightarrow{CO} FeO \xrightarrow{CO} Fe$$

These reactions correspond to the production of Fe by reduction of Fe_3O_4 in blast furnace.

8. Answer (2)

TiCl₃ - Ziegler-Natta polymerisation

V₂O₅ - Contact process

PdCl₂ - Wacker process

CuCl₂ - Deacon's process

9. Answer (3)

Charge transfer spectra from ligand (L) to metal (M) is responsible for color of KMnO₄.

10. Answer (1)

CrO₂ is strongly attracted towards magnetic field so it is ferromagnetic.

11. Answer (1)

Identical the number of unpaired electrons higher the magnetic moment

	Metal ion	Unpaired electrons
[Cr(H ₂ O) ₆] ²⁺	Cr ²⁺	4
[Fe(H ₂ O) ₆] ²⁺	Fe ²⁺	4
		H ₂ O) ₆] ²⁺ have identical
magnetic mor	nent.	

12. Answer (2)

In (a), ZnO acts as acidic oxide as ${\rm Na_2O}$ is basic oxide.

In (b), ZnO acts as basic oxide as CO₂ is acidic oxide.

13. Answer (3)

Due to lanthanoid contraction, size of atom as well as ion of lanthanoid decrease.

14. Answer (4)

Sc shows fixed oxidation state of +3

15. Answer (3)

$$2\mathsf{MnO}_2 + 4\mathsf{KOH} + \mathsf{O}_2 \xrightarrow{} 2\mathsf{K}_2\mathsf{MnO}_4 + 2\mathsf{H}_2\mathsf{O} \\ \overset{(\mathsf{Green})}{(\mathsf{B})}$$

$$K_2MnO_4 + 4HCI \longrightarrow 2KMnO_4 + MnO_2 + 2H_2O$$

$$(Purple)$$
(Purple)

$$2KMnO_4 + H_2O + KI \longrightarrow 2MnO_2 + 2KOH + KIO_3$$
(D)

$$A - MnO_{2}$$

$$D - KIO_3$$

16. Answer (4)

Sm⁺³ = Partially filled f orbital = 4f⁵

 $Sm = 4f^{6}6s^{2}$

 $Sm^{+3} = Yellow.$

 $Lu^{+3} = 4f^{14}$ colourless.

17. Answer (1)

Interstitial compounds are inert.

18. Answer (2)

Actinoids	Oxidation state shown
Th	+4
Ac	+3
Pu	+3, +4, +5, +6, +7
Np	+3, +4, +5, +6, +7
Bk	+3, +4
Cm	+3, +4
Lr	+3

... Maximum oxidation state is shown by (Np and Pu).

19. Answer (1)

Electronic configuration of the given transition metal ions are

$$Sc^{3+}$$
 (Z = 21) $1s^22s^22p^63s^23p^6$

$$Ti^{2+}$$
 (Z = 22) $1s^22s^22p^63s^23p^63d^2$

$$Ti^{3+}$$
 (Z = 22) $1s^22s^22p^63s^23p^63d^1$

$$V^{2+}$$
 (Z = 23) 1s²2s²2p⁶3s²3p⁶3d³

Magnetic moment is directly proportional to the number of unpaired electrons. So the correct increasing order of magnetic moment is

$$Sc^{3+} < Ti^{3+} < Ti^{2+} < V^{2+}$$

0 1

2

3

unpaired electrons

20. Answer (1)

Maximum oxidation state shown by

Uranium = +6

Plutonium = +7

21. Answer (1)

$$Zn + NaOH \longrightarrow Na_2ZnO_2 + H_2$$

 $Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$

Zn is amphoteric.

22. Answer (1)

Mo and W belong to group-6 and period 5 (4d series) and 6 (5d series) respectively.

Due to lanthanoid contraction, radius of Mo and W are almost same.

23. Answer (1)

The transition metal atom/ion in a complex may have unpaired electrons ranging from zero to 5. So, maximum number of unpaired electrons that may be present in a complex is 5. Magnetic moment is given as

$$\mu = \sqrt{n(n+2)}$$
 BM [no. of unpaired electrons = n]

Maximum value of magnetic moment

$$=\sqrt{5(5+2)}=\sqrt{35}=5.92\,\mathrm{BM}$$

24. Answer (4)

Zinc has least enthalpy of atomisation in 3d-transition series.

25. Answer (3)

Atomic radii follows the order

26. Answer (4)

$$Zn + 2NaOH \rightarrow Na_2[ZnO_2] + H_2$$

(1 mol) (1 mol)

$$Zn + 2HCI \rightarrow ZnCI_2 + H_2$$

(1 mol) (1 mol)

from one mole of Zn, 1 mol of $\rm H_2$ is produced by both NaOH and HCl.

∴ Molar ratio = Volume ratio ie. 1 : 1

27. Answer (1)

Manganate ion (MnQ²)

Tetrahedral

Green colour

pπ-dπ bonding
between oxygen and
manganese

Permanganate ion (MnQ)
Purple colour
pπ-dπ bonding
between oxygen and
manganese

- 28. Answer (4)
 - W(VI) is more stable than Cr(VI)
 - Permanganate titrations in presence of HCl are unsatisfactory as HCl is oxidised to Cl₂
 - Lanthanoid oxides are used as phosphors.
- 29. Answer (4)

Europium (Eu)

Atomic No \rightarrow 63

Electronic configuration \rightarrow [Xe]4f⁷6s² Can show only \pm 2 and \pm 3 oxidation state. 30. Answer (18)

$$NaCl \xrightarrow{K_2Cr_2O_7} CrO_2Cl_2 \xrightarrow{NaOH} Na_2CrO_4$$
(A) (B)

$$Na_2CrO_4 \xrightarrow{\text{dil } H_2SO_4} CrO_5$$
(B)

Total number of atoms in A, B and C are 18.

31. Answer (12)

if we consider only σ bonds then the answer would be 12 but there are 6π bonds also then the total number of Cr-O bonds will be 18

32. Answer (2)

$$Gd^{3+}$$
 (Z = 64) = [Xe] $4f^7$

$$\mu = \sqrt{n(n+2)} = \sqrt{7(7+2)} = 7.9 \text{ B.M.}$$

33. Answer (2)

Ag and Au have similar atomic radius.

34. Answer (2)

The electronic configurations of the given metals and in their +3 state are :

Mn: $3d^5 4s^2$ Mn³⁺: $3d^4$

Fe: $3d^6 4s^2 \text{Fe}^{3+}$: $3d^5$

 $Co: 3d^7 4s^2 Co^{3+}: 3d^6$

Ni: $3d^8 4s^2 Ni^{3+}$: $3d^7$

Since Fe³⁺ has stable configuration of 3d⁵, the third ionization energy of Fe is minimum.

35. Answer (1)

$$Ce^{3+}(Z = 58) - [Xe]4f^{1}$$

$$Eu^{2+}(Z = 63) - [Xe]4f^7$$

36. Answer (3)

Misch metal is an alloy consisting mainly of lanthanoid metals.

37. Answer (1)

Only Cu²⁺/Cu has positive SRP among 3d-series metals.

38. Answer (3)

Red colour of the ruby is due to the presence of Cr^{3+} .

RuO₄ is an oxidizing agent

 $VOSO_4 \Rightarrow VO^{2+} \Rightarrow V^{4+}$ (it can oxidized) So it is a reducing agent.

Cr₂O₃ is amphoteric oxide

39. Answer (4)

Cu Co Fe Cr Zn density in g/cm³ 8.9 8.7 7.8 7.19 7.1

40. Answer (2)

Ce and Eu have stable oxidation state of +3. So $^{+4}_{\mathrm{CeO}_2}$ acts as oxidizing agent to get reduced to

+3 and EuSO₄ acts as reducing agent to get oxidized to +3.

41. Answer (3)

42. Answer (2)

The element having atomic no. 29 is copper The electronic configuration of Cu²⁺ is

Cu²⁺: 3d⁹

It has 1 unpaired electron

$$\mu = \sqrt{3} = 1.73 \text{ BM} \approx 2$$

43. Answer (4)

 $Nd (60) = 4f^4 6s^2$

 $Pr(59) = 4f^3 6s^2$

 $Dy (66) = 4f^{10} 6s^2$

Yb (70) = $4f^{14} 6s^2$

Yb⁺² has fully-filled 4f orbital, it will require very large amount of energy to reach +4 oxidation state.

44. Answer (6)

$$Cr_2O_7^{2-} \xrightarrow{OH^-} CrO_4^{2-}$$

 \therefore Oxidation state of Cr in CrO_4^{2-} is +6.

45. Answer (6)

In neutral or faintly alkaline medium

$$8MnO_4^- + 3S_2O_3^{2-} + H_2O \longrightarrow 8MnO_2 + 6SO_4^{2-} + 2OH^{-}$$
(A)

A is SO_4^{2-} . The oxidation state of sulphur in A is +6.

46. Answer (2)

Size of Bk3+ is 98 pm

Size of Np3+ is 101 pm

So size of Np3+ is more than Bk3+ ion.

there is a gradual decrease in the size of M³⁺ ions across the series. This may be referred to as the actinoid contraction.

47. Answer (2)

$$Ce^{4+} \xrightarrow{e^{-}} Ce^{3+} E^{\circ} = +1.74 V$$

Positive SRP and higher SRP means greater oxidising power. So, Ce⁴⁺ wants to reduce to Ce³⁺. Indicates Ce⁴⁺ is less stable than Ce³⁺.

48. Answer (1)

Fel₃ does not exist as I⁻ reduces Fe³⁺ to Fe²⁺. But FeF₂, FeCl₂, FeBr₂, Fel₂ all exist.

49. Answer (1)

The element having atomic number 25 is manganese. The electronic configuration of Mn^{2+} is $Mn^{2+}: 3d^5$

In aqueous solution it exists as $[Mn(H_2O)_6]^{2+}$. Since H_2O is a weak field ligand, it does not cause pairing of unpaired electrons. So, its spin only magnetic moment is

$$\mu = \sqrt{5 \times 7} = 5.92 \text{ BM}$$

50. Answer (4)

KMnO₄ on heating dissociates as

$$+7$$
 $+6$ $2KMnO_4$ $\longrightarrow K_2MnO_4 + MnO_2 + O_2$ Permanganate Manganate

Both permanganate and manganate are tetrahedral but only manganate is paramagnetic.

+7 Mn:3d⁰4s⁰

Diamagnetic

+6

Mn: 3d14s0

Paramagnetic

: Statement I is true but statement II is false.

51. Answer (3)

Z = 24 represents chromium

Common positive oxidation state of Cr are from +2 to +6

where +3 and +6 are the most common ones.

52. Answer (1) or (4)

 ${\rm Cu^{2^+}}$ salt reacts with potassium iodide to form ${\rm Cu_2l_2}$ and ${\rm Kl_3}$

$$^{\circ}$$
2Cu²⁺ + 5Kl \longrightarrow Cu₂l₂ \downarrow + Kl₃ + 4K⁺

Cu₂l₂ is sometimes also written as Cul.

53. Answer (1)

To show colour and paramagnetic behaviour, the ion must have unpaired electron(s)

Cu²⁺ - 3d⁹ (one unpaired e⁻)

Cr³⁺ - 3d³ (three unpaired e⁻)

Sc⁺ - 3d² (two unpaired e⁻)

54. Answer (1)

Metal oxide	Oxidation number
CrO ₃	+6
Fe_2O_3	+3
MnO_2	+4
V_2O_5	+5
Cu_2O	+1

55. Answer (1)

The electronic configuration and magnetic moment of the given species are

 $Ti^{3+}: 3d^1 \quad \mu = 1.73 \text{ BM}$

 $V^{2+}: 3d^3 \quad \mu = 3.87 \text{ BM}$

 $Sc^{3+}: 3d^0 \quad \mu = 0$

56. Answer (4)

CuCl₂ in water gives blue solution.

57. Answer (7)

Atomic number of Gd is 64

Electronic configuration of Gd is [Xe]4f⁷5d¹6s²

 $Gd^{2+} = [Xe]4f^{7}5d^{1}$

58. Answer (2)

 V_2O_3 (X) is basic and CrO (Y) is also basic. The transition metal oxides in lower oxidation states are basic.

59. Answer (4)

The electronic configuration of neptunium in ground state is [Rn] 5f⁴6d¹7s²

... It has 4 electrons in the f subshell of the anti penultimate shell.

60. Answer (4)

$$Cr^{3+} + OH^{-} \longrightarrow Cr(OH)_{3}$$
(green ppt)

If NaOH is present in excess, then

$$Cr(OH)_3 + OH^- \longrightarrow [Cr(OH)_4]$$
(green solution)

61. Answer (1)

$$\begin{array}{c} \text{2KMnO}_4 \xrightarrow{513\text{K}} \text{K}_2\text{MnO}_4 \\ & \text{Paramagnetic} \\ & \text{(Green)} \end{array} + \begin{array}{c} \text{MnO}_2 \\ & \text{Paramagnetic} \\ & \text{(Colorless)} \end{array}$$

62. Answer (2)

Yb
$$(70) = 4f^{14} 6s^2$$

$$Yb^{+2} = 4f^{14} 6s^0$$

All the electrons are paired hence Yb⁺² is diamagnetic

63. Answer (2)

Structure of dichromate is

Structure is non — linear with symmetrical

64. Answer (2)

Outermost electronic configuration of Eu

Eu (63) =
$$4f^76s^2$$

$$Fu^{2+} = 4f^7$$

65. Answer (0)

$$Zn(30) = [Ar]4s^23d^{10}$$

$$Zn^+ = [Ar]4s^13d^{10}$$

Outermost electron is present in 4s

I = 0

$$n = 4$$

$$m_i = 0$$

66. Answer (4)

$$Mn(25) = [Ar]3d^54s^2$$

$$Mn^{+3} = [Ar]3d^44s^0$$

Ru-belongs to 4d transition series

Co (27) =
$$[Ar]3d^74s^2$$

$$Co^{+3} = [Ar]3d^64s^0$$

$$Fe(26) = [Ar]3d^64s^2$$

$$Fe^{+3} = [Ar]3d^54s^0$$

67. Answer (3)

Fe²⁺ is green in color

Fe3+ is yellow in color

68. Answer (10)

Electronic configurations of Ho and Ho3+ are

Ho: 4f11 6s2

∴ Number of electrons present in 4f orbital of Ho³⁺ is 10.

69. Answer (4)

Mn₃O₄ is magnetic in nature.

70. Answer (0)

Chromate ion \rightarrow CrO₄²⁻, oxidation state of Cr = +6

Dichromate ion \rightarrow CrO₄²⁻, oxidation state of Cr = +6

: Difference in oxidation state = zero

71. Answer (2)

Melting points of the given metals

Hg: -38.83° C

Ag: 961.8° C

Ga: 29.76° C

Cs: 28.44° C

.. Metal having highest melting point is Ag.

72. Answer (3)

Manganese (VI) disproportionates in acidic medium as

$$3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^- + MnO_2 + 2H_2O$$

Difference in oxidation states of Mn in the products formed = 7 - 4 = 3

73. Answer (2)

E° value of Ce⁴|Ce⁴³ is 1.74 V, which suggests that it is a very good oxidising agent.

74. Answer (1)

$$E^{\circ}_{Fe^{3+}IFe^{2+}} = +0.77V$$

$$E^{\circ}_{T_{i}^{3+}, T_{i}^{2+}} = -0.37 \text{ V}$$

$$E^{\circ}_{Mn^{+3}Mn^{+2}} = +1.57 \text{ V } E^{\circ}_{Cr^{3+}Cr^{2+}} = -0.41 \text{ V}$$

Mn⁺³ is the best oxidising agent among the given series.

75. Answer (2)

	Valence shell	Unpaired
	Configuration	electrons
V^{2+} \rightarrow	3 <i>d</i> ³ 4 <i>s</i> ⁰	n = 3
Ni²⁺ →	3 <i>d</i> ⁸ 4 <i>s</i> ⁰	n = 2
Cr²⁺ →	3 <i>d</i> ⁴ 4 <i>s</i> ⁰	n = 4
Fe²⁺ →	3 <i>d</i> ⁶ 4 <i>s</i> ⁰	n = 4

Since Ni²⁺ has least number of unpaired electrons.

Hence Ni²⁺ will have lowest spin only magnetic moment Value.

76. Answer (3)

The most basic oxide among V_2O_3 , V_2O_4 and V_2O_5 is V_2O_5

 $V_2O_3 = V^{+3}(d^2)$

Magnetic moment = $\sqrt{2(2+2)} = \sqrt{8}$

= 2.83

77. Answer (1)

 $Ce \rightarrow [Xe]4f^1 5d^1 6s^2$

 $Ce^{+4} \rightarrow [xe] 4f^0 5d^0 6s^0$

Cerium in +4 oxidation state acquires inert gas configuration.

78. Answer (6)

 $\mathsf{KMnO_4}(\mathsf{acidic\ medium}) + \mathsf{H_2C_2O_4} \to \mathsf{CO_2} + \mathsf{Mn^{+2}}$

Mn⁺² has 5 unpaired electrons

 \therefore Spin only magnetic moment = $\sqrt{5(5+2)}$

 $=\sqrt{5\times7}$

 $=\sqrt{35}$

 $\simeq 5.92$ B.M.

 \approx 6 B.M.

79. Answer (3)

Metal E° M²⁺/M

Cr -0.90 V

Fe -0.44 V

Cu + 0.34 V

Zn (-0.76 V)

The metal having highest $E^{\circ}(M^{2+}/M)$ standard reduction potential is Cu.

80. Answer (3)

+2 +3 +4

Eu 4f⁷ 4f⁶

Tm 4f¹³ 4f¹²

Sm 4f6 4f5

Tb 4f9 4f8 4f7

Yb 4f¹⁴ 4f¹³

Dy 4f¹⁰ 4f⁹

Hence, the pair Tb⁺⁴ Yb⁺² have half filled and completely filled f subshells respectively.

81. Answer (3)

Eu⁺² is 4f⁷

Yb+2 is 4f14

but Eu+2 is more stable than Yb+2 because

 $\mathsf{E}_{\mathsf{Eu}|\mathsf{Eu}^{+2}}^{\circ} > \mathsf{E}_{\mathsf{Yb}|\mathsf{Yb}^{+2}}^{\circ}$

82. Answer (1)

Pt = [Xe] $4f^{14} 5d^9 6s^1$

83. Answer (00.00)

 $MnO_4^{-2} \xrightarrow{H^+} MnO_2 + MnO_4^- + H_2O$

 $Mn^{+7} = d^0$

Hence, magnetic moment = zero

84. Answer (5)

Co³⁺ will not liberate H₂ gas an reaction with dilute

$$E_{Co^{3+}/Co^{2+}}^{o} = +1.97$$

And Co³⁺ has electronic configuration = [Ar] 3d⁶

∴ 4 unpaired e⁻ are present in it

 \therefore Spin-only magnetic moment = $\sqrt{4(4+2)}$

= 4.92

≈ 5

85. Answer (4)

Among the pairs given, Cr^{3+}/Cr^{2+} has negative reduction potential which is -0.41 V.

 $Cr(III) \Rightarrow d^3$

Number of unpaired electrons = 3

$$\mu = \sqrt{3(3+2)} = \sqrt{15} \simeq 4 \text{ B.M.}$$

86. Answer (05.00)

MnF₃ has the strongest oxidising ability

$$\begin{bmatrix} E_{Mn^{+3}/Mn^{+2}}^{\circ} \simeq 1.57 \text{ V} \\ \& E_{Mn^{+4}/Mn^{+2}}^{\circ} \simeq 1.2 \text{ V} \end{bmatrix}$$

So, spin only magnetic moment

$$=\sqrt{4(4+2)}=\sqrt{24}$$
 B.M.

[~] ≤ 5

87. Answer (2)

Manganate ion MnO₄²⁻ has tetrahedral structure

has only $d\pi$ - $p\pi$ π -bonds.

 ${\rm Fe^{3+}}$ is not used as a catalyst in the conversion of ${\rm I^-to~I_2}$ by ${\rm K_2Cr_2O_7}$. ${\rm K_2Cr_2O_7}$ oxidise ${\rm I^-in}$ acidic medium easily

88. Answer (3)

Structure of Mn₂O₇ is as :

 \therefore There are total 6 M = O bonds are present in Mn₂O₇ compound.

89. Answer (4)

$$H_2O + 8MnO_4^- + 3S_2O_3^{2-} \rightarrow 8MnO_2 + 6SO_4^{2-} + 2OH^-$$

90. Answer (3)

$$(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N_2 + 4H_2O + Cr_2O_3$$
 $KMnO_4 + HCI \longrightarrow KCI + MnCI_2 + CI_2 + H_2O$
 $AI + NaOH + H_2O \longrightarrow Na(AI(OH)_4) + H_2$
 $2NaNO_3(s) \xrightarrow{\Delta} 2NaNO_2(s) + O_2$

91. Answer (4)

$$3 \stackrel{+6}{M} nO_4^{-2} + 4H^+ \rightarrow \stackrel{+4}{M} nO_2 + \stackrel{+7}{M} nO_4^-$$

 $Mn \rightarrow 4s^23d^5$

 $Mn^{+4} \rightarrow 3d^3$

n = 3

$$\mu = \sqrt{n(n+2)}$$

$$= \sqrt{3(5)}$$

$$= \sqrt{15}$$

$$= 3.87 \approx 4 \text{ B.M.}$$

92. Answer (A)

Sc⁺³ and Zn⁺² are colourless as they contain no unpaired electron. Whereas the transition metal ions Cu⁺², Ti⁺³, V⁺² and Mn⁺² are coloured as they contain unpaired electrons.

The unpaired electron from lower energy *d* orbital gets excited to a higher energy *d* orbital on absorbing light of frequency which lies in visible region. The colour complementary to light absorbed is observed.

93. Answer (B)

$$\begin{array}{ccc} & \Delta_{\rm hyd} \ {\rm H} \ ({\rm M}^{+2}) \\ {\rm Cr} & -1925 \\ {\rm Mn} & -1862 \\ {\rm Fe} & -1560 \\ {\rm Co} & -1640 \\ \end{array}$$

 Mn^{+2} has lowest $\Delta_{hvd}H$

94. Answer (A, D)

Species having same number of electrons are isoelectronic

Tb
$$\longrightarrow$$
 65 Tb⁺² \longrightarrow 63 electrons not isoelectronic Tm \longrightarrow 69 Tm⁺⁴ \longrightarrow 65 electrons

95. Answer (6)

$$FeCr2O4 + Na2CO3 + O2 \longrightarrow Fe2O3 + CO2$$

$$+ Na2CrO4$$
(A)

$$Na_2CrO_4 + H^+ \longrightarrow Cr_2O_7^{-2} + H_2O + Na^+$$

96. Answer (1)

O₂, Cu²⁺ and Fe³⁺ have 2, 1 and 5 unpaired electrons respectively, so these are the paramagnetic species. Hence, they are attracted by magnetic field.

NaCl and H₂O are the diamagnetic species so they are repelled by the magnetic field.

97. Answer (3)

Here, we have to match the reactions with their correct catalyst :

(A)
$$N_2(g) + 3H_2(g) \xrightarrow{Fe_XO_y + K_2O + Al_2O_3} 2NH_3(g)$$

(B)
$$CO(g) + 3H_2(g) \xrightarrow{Ni} CH_4(g) + H_2O(g)$$

(C)
$$CO(g) + H_2(g) \xrightarrow{Cu} HCHO(g)$$

(D)
$$CO(g) + 2H_2(g) \xrightarrow{Cu/ZnO-Cr_2O_3} CH_3 - OH(g)$$

.. Option (3) is correct option.

98. Answer (2)

(A)
$$2SO_2(g) + O_2(g) \xrightarrow{V_2O_5} 2SO_3$$

(B)
$$4NH_3(g) + 5O_2(g) \xrightarrow{Pt(s)-Rh(s)}$$

$$4NO(g) + 6H_2O(g)$$

(C)
$$N_2(g) + 3H_2(g) \xrightarrow{Fe(s)} 2NH_3(g)$$

(D) Vegetable oil(I) +
$$H_2 \xrightarrow{Ni(s)}$$

Vegetable ghee(s)

99. Answer (3)

(A)
$$4NH_3(g) + 5O_2(g) \xrightarrow{Pt(s)} 4NO(g) + 6H_2O(g)$$

(B)
$$N_2(g) + 3H_2(g) \xrightarrow{Fe(s)} 2NH_3(g)$$

(C)
$$C_{12}H_{22}O_{11}(aq) + H_2O(I) \xrightarrow{H_2SO_4(I)}$$

(D)
$$2SO_2(g) + O_2(g) \xrightarrow{NO(g)} 2SO_3$$