

جامعة النجاح الوطنية كلية المندسة وتكنولوجيا المعلومات

Computer Engineering Department

Course Name: Microprocessor Lab Number: 10636392

Lab Report Grading Sheet

Instructor: Dr. Manar Qamhieh	Experiment #: 6
Academic Year: 2023/2024	Experiment Name: LED 16x16 Dot Matrix Display
Semester: Second- Part1	

Students				
1- Wala' Essam Ashqar.	2- Doaa Yasin Jararaa.			
3- Salsabeel Dwaikat.				
Performed on: 12/3/2024	Submitted on: 19/3/2024			
Report's Outcomes				
ILO =() %) % ILO =()% ILO_	_ =() %	
Evaluation Criterion		Grade	Points	
Abstract answers of the questions: "What did you do? How did you find?"	0.5			
Introduction and Theory Sufficient, clear and complete statement of object Presents sufficiently the theoretical basis.	1.5			
Apparatus/ Procedure Apparatus sufficiently described to enable anoth identify the equipment needed to conduct the exsufficiently described.	2			
Experimental Results and Discussion (In-Lab World Crisp explanation of experimental results. Compared predictions to experimental results, including distand error analysis in some cases.	4			
Conclusions and Recommendations Conclusions summarize the major findings from results with adequate specificity. Recommendat light of conclusions. Correct grammar.	1			
Appearance Title page is complete, page numbers applie organized, correct spelling, fonts are consistent, go	1			
Total		10		

> Abstract:

- 1. To know the basic principles and function of LED 16X16 dot matrix display.
- 2. To master the interface circuit design between microprocessor and LED matrix block and its programming.

Introduction:

16x16 matrix LED is a common-cathode display consisting of four 8x8 LED dot matrix. This display can be used to display information as it allows both static and animated text and images. As shown in the figure below of a dot matrix display, multiple LEDs are wired together in rows and columns. This is done to minimize the number of pins required to drive them. For example, there are 256 LEDs in a 16x16 dot matrix and they require 32 pins to interface them (four 8-bit ports).

The Tools we will use it: MML 8086K3, 8255, LED 16x16 Dot Matrix Display, 86PCI Debug Software.

Procedure & Results & Discussion:

- Part 1: Static shape
 - In this part we will display a single digit (We choose 2) on 8x8 LED matrix.
 - Connoting port A at the columns and port C at rows
 - Turning on row by row and in every row turning on different columns depends in how to display number 2
 - The values restored in arrays.
 - Using small delay (80H) after displaying every row.

An-Najah National University Faculty of Engineering and IT

جامعة النجاح الوطنية كلية المندسة وتكنولوجيا المعلومات

o The Code

CODE SEGMENT ASSUME CS:CODE ORG 2000H

START: MOV AL, 80H MOV DX, 0FF2BH ;CWR

OUT DX, AL

MOV AL, 0FFH

MOV DX, 0FF29H ;PORT B OUT DX, AL

MAIN:

MOV SI, OFFSET ROWS MOV DI, OFFSET COLS MOV CX,0

LP:

MOV AL, [SI]

MOV DX, OFF2AH ;PORT C Indicates the beginning of the ROWS ARRAY

OUT DX, AL

MOV AL, [DI]

MOV DX, OFF28H; PORT A Indicates the beginning of

the COLS ARRAY OUT DX, AL PUSH CX ;DELAY MOV CX, 500 DELAYS: NOP LOOP DELAYS POP CX

INC DI ; INDICATES NEXT ELEMENT IN COLS ARRAY INC SI ; INDICATES NEXT ELEMENT IN ROWS ARRAY

INC CX; NEXT LED

CMP CX, 7 ;CHECK IF IT ARRAIVE 8X8
JE MAIN ; GO TO ELEMENT 0 IN ARRAYS

JMP LP; COMPLETE

COLS DB 83H, 0FBH, 0F7H, 0CFH, 0BFH, 0BBH, 0C7H

;NUMBER 2

ROWS DB 01H, 02H, 04H, 08H, 10H, 20H, 40H; ON

END START CODE ENDS

جامعة النجاح الوطنية كلية المندسة وتكنولوجيا المعلومات

o Part 2: Basic animation

- Displaying basic animation on 8x16 LED matrix. Turning on a single column and makes it rotate over the display starting from C1 to C16 and goes back.
- Connoting port A and port B at the columns and port C at rows.
- Turning on all the rows by outing OffH at port c.
- The values of the columns restored in array by turning on column by column.
- Firstly, turning on port A columns and turning off port B columns by outing Offh to port B. Then turning off B and turning on C. Finally, the loop continues and repeats.
- Using delay (50000) after displaying every column.

o The Code

CODE SEGMENT	MOV AL, 0FFH	
ASSUME CS:CODE	MOV DX, 0FF28H ;PORT A	
ORG 2000H	OUT DX, AL	
START:	MAIN1:	
MOV AL, 80H	MOV SI, OFFSET COLS	
MOV DX, 0FF2BH , CWR	MOV CX,8	
OUT DX, AL	LPB:	
	MOV AL, [SI]	
MAIN:	MOV DX, 0FF29H ;PORT B	
MOV AL, 0FFH	OUT DX, AL	
MOV DX, 0FF29H ;PORT B		
OUT DX, AL	MOV AL, 0FFH	
	MOV DX, 0FF2AH ;PORT C	
MOV SI, OFFSET COLS	OUT DX, AL	
MOV CX,8		
	PUSH CX	
LPA:	MOV CX, 50000	
MOV AL, [SI]	DELAYS1: NOP	
MOV DX, 0FF28H ;PORT A Indicates the	LOOP DELAYS1	
beginning of the COLS ARRAY	POP CX	
OUT DX, AL		
	LOOP LPB	
MOV AL, 0FFH		
MOV DX, 0FF2AH ;PORT C ALL ROWS IS O	N JMP MAIN	
OUT DX, AL		
	COLS DB 0FEH, 0FDH, 0FBH, 0F7H,	
PUSH CX	OEFH, ODFH, OBFH, 7FH	
MOV CX, 50000		
DELAYS: NOP	END START	
LOOP DELAYS	CODE ENDS	
POP CX		
INC SI		
LOOP LPA		

جامعة النجاح الوطنية كلية المندسة وتكنولوجيا المعلومات

> Conclusion:

We conclude from this experiment how to display several things at led dot matrix and how to control it using 8255 by connecting the rows at port C and the columns at port A, B and C.