

Outlines

- 1. Introduction to Visualization
- 2. Line Plot & Scatter Plot
- 3. 1D Histogram
- 4. 2D Histogram
- 5. Area Plot
- 6. Stem Plot & Violin Plot
- 7. Box Plot
- 8. Stripe Plot & Swarm Plot
- 9. Error Bar Plot

- 10. Pie Chart
- 11.Bar Chart
- 12. Rose Plot & Radar Plot
- 13. Biplot & Control Chart
- 14. Forest Plot
- 15.Q-Q Plot
- 16. Combination Plot
- 17. Question Time

Visualization

- As we mentioned before, data visualization is one of the most effective approach for data exploration to understand the characteristics of each feature or dataset.
- According to the attribute of data, we need to select the appropriate visualization methods for illustration.
- Here, we are going to introduce bar chart, biplot, box plot, control chart, forest plot, histogram, pie chart, Q-Q plot, scatter plot, stem plot, violin plot, radar plot, and line plot.

Line Plot & Scatter Plot

1D Histogram

2D Histogram

Area Plot

Stem Plot & Violin Plot

Source:

https://matplotlib.org/stable/gallery/lines_bars_and_markers/stem_plot.html#sphx-glr-gallery-lines-bars-and-markers-stem-plot-py

Source: https://seaborn.pydata.org/generated/seaborn.violinplot.html

Box Plot

Strip Plot & Swarm Plot

Observe the d

Source: https://seaborn.pydata.org/generated/seaborn.stripplot.html

Source: https://seaborn.pydata.org/generated/seaborn.swarmplot.html

Error Bar Plot

Pie Chart

Bar Chart

Rose Plot & Radar Plot

Profile diversity in various GOS samples

Lin et al. (2022) Profile diversity of galacto-oligosaccharides from disaccharides to hexasaccharides by porous graphitic carbon liquid chromatography-orbitrap tandem mass spectrometry. Food Chem. Vol. 390. 133151.

Star Plot of MER IDD and Automated Designs

Source: https://en.wikipedia.org/wiki/Radar_chart#/media/File:MER_Star_Plot.gif

Biplot & Control Chart (I)

Control Chart (II)

Forest Plot

	Diseased	Healthy
Exposed	20	380
Not Exposed	10	490

risk of developing the disease given exposure = $\frac{DE}{VE} = \frac{20}{400}$ risk of developing the disease given non – exposure = $\frac{DN}{VN} = \frac{10}{500}$ relative risk = $\frac{\frac{DE}{(DE + HE)}}{\frac{DN}{(DN + HN)}} = \frac{DE/VE}{DN/VN} = \frac{20/400}{10/500}$ odds ratio = $\frac{DE/HE}{DN/HN} = \frac{20/380}{10/500}$

Quantile-quantile Plot (Q-Q Plot)

Combination Chart

Question Time

If you have any questions, please do not hesitate to ask me.

Statistics II Descriptive Statistics – Graph

The End

Thank you for your attention))

