Conclusion

Concepts essentiels

1 Modélisation bayésienne :

$$heta\sim\pi(heta)$$
 l'a priori
$$Y_i| heta\stackrel{iid}{\sim}f(y| heta)$$
 modèle d'échantillonnage

- **2** La formule de Bayes : $p(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta)}{f(\mathbf{y})}$ avec $p(\theta|\mathbf{y})$ la loi *a posteriori*, $f(\mathbf{y}|\theta)$ la vraisemblance (héritée du modèle d'échantillonnage), $\pi(\theta)$ l'*a priori* et $f(\mathbf{y}) = \int f(\mathbf{y}|\theta)\pi(\theta)$ la distribution marginale des données, i.e. la constante de normalisation (par rapport à θ)
- 3 La distribution a posteriori est obtenue par :

$$p(\theta|\mathbf{y}) \propto f(\mathbf{y}|\theta)\pi(\theta)$$

4 La loi a priori faiblement informative de Jeffreys :

$$\pi(\theta) \propto \sqrt{I(\theta)}$$
 en unidimensionnel

possédant la propriété d'invariance.

5 Intervalle de crédibilité, MAP et moyenne a posteriori

Usage pratique

L'approche bayésienne est un outil statistique pour l'analyse de données (parmi d'autres)

Usage pratique

L'approche bayésienne est un outil statistique pour l'analyse de données (parmi d'autres)

Particulièrement utile quand :

- peu d'observations sont disponibles
- on dispose de connaissances a priori importantes

Usage pratique

L'approche bayésienne est un outil statistique pour l'analyse de données (parmi d'autres)

Particulièrement utile quand :

- peu d'observations sont disponibles
- on dispose de connaissances a priori importantes

Comme tout méthode statistique, l'analyse bayésienne présente des avantages et des inconvénients, qui seront plus ou moins important selon l'application envisagée