Econometrics Lecture 4 EC2METRIE

Dr. Anna Salomons

Utrecht School of Economics (U.S.E.)

5 December 2016

This class

► Functional form

- Rescaling independent & dependent variables
- Variables in logs vs in levels
- Quadratic terms
- Dummy variables¹
- Interaction effects
- Chow test
- ▶ **Studenmund Ch 7**, excluding section 7.2.5 (note: lagged independent variables are discussed in week 6)

 $^{^1}$ This week, we only consider dummy variables as independent variables- in week 8, the dummy will be the dependent variable.

Rescaling an independent variable

Original model

$$Y_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1i} + \widehat{\beta}_2 X_{2i} + e_i$$

Now we rescale the independent variable X₁, e.g. multiplying it by 10. The original model can be rewritten as;

$$Y_i = \widehat{\beta}_0 + \left(\widehat{\beta}_1 \times 0.1\right) (X_{1i} \times 10) + \widehat{\beta}_2 X_{2i} + e_i$$

Rescaling an independent variable

$$Y_i = \widehat{\beta}_0 + \left(\widehat{\beta}_1 \times 0.1\right) \left(X_{1i} \times 10\right) + \widehat{\beta}_2 X_{2i} + e_i$$

- Note the following:
 - ▶ The estimated coefficient on X_1 (the rescaled variable) is divided by 10, $\widehat{\beta}_1 \times 0.1$
 - The estimated variance of the coefficient on X_1 is divided by 100: $\widehat{Var}(\widehat{\beta}_1 \times 0.1) = 0.1^2 \times \widehat{Var}(\widehat{\beta}_1)$
 - The standard error of the coefficient on X_1 is divided by 10: $se(\beta_1 \times 0.1) = \sqrt{0.1^2 \times \widehat{Var}(\widehat{\beta}_1)} = 0.1 \times se(\widehat{\beta}_1)$

Rescaling an independent variable

$$Y_i = \widehat{\beta}_0 + \left(\widehat{\beta}_1 \times 0.1\right) (X_{1i} \times 10) + \widehat{\beta}_2 X_{2i} + e_i$$

- Note the following:
 - ► The t-statistic of the coefficient on X_1 is unaffected: $\frac{\hat{\beta}_1 \times 0.1}{0.1 \times se(\hat{\beta}_1)} = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)}$
 - The residuals are unaffected, hence so is Root MSE $\widehat{\sigma} = \sqrt{\frac{\sum e_i^2}{n-k-1}}$
 - No effect on R²

Rescaling an independent variable: some examples

- Annual income in Euros or thousands of Euros
- Working experience in years or in months
- ► Probabilities (0-1) or percentages (0%-100%)

Example: multiplying the independent variable by 12

. descr wage	educ age							
variable name		play mat	val 1ab		variable	label		
wage educ age	double %10 byte %8 byte %8	0g				per hour education ears		
. reg wage ed	uc age							
Source	SS	df		MS		Number of obs F(2, 4835)		4838 645.71
Model Residual	160178.442 599696.267			39.2212 1.03232		Prob > F R-squared Adj R-squared	=	0.0000 0.2108 0.2105
Total	759874.709	4837	157.	096281		Root MSE	=	11.137
wage	Coef.	Std.	Err.	t	P> t	[95% Conf.	Ir	nterval]
educ age _cons	1.967164 .1430452 -13.20376	.058	6426 7365 6771	33.54 11.23 -13.64	0.000 0.000 0.000	1.852197 .1180758 -15.10091		2.08213 1680146 11.30661
. gen educ_mo	nths=educ*12							
. reg wage ed	uc_months age	9						
Source	SS	df		MS		Number of obs		4838
Model Residual	160178.442 599696.267			39.2212	R-squared =		=	645.71 0.0000 0.2108 0.2105
Total	759874.709	4837	157.	096281		Adj R-squared Root MSE	=	11.137
wage	Coef.	Std.	Err.	t	P> t	[95% Conf.	Ir	nterval]
educ_months age _cons	.1639303 .1430452 -13.20376	.004		33.54 11.23 -13.64	0.000 0.000 0.000	.1543498 .1180758 -15.10091		1735108 1680146 11.30661

Rescaling the dependent variable

Original model

$$Y_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1i} + \widehat{\beta}_2 X_{2i} + e_i$$

Now we **rescale the dependent variable** *Y*, e.g. multiplying it by 10. The original model can be rewritten as;

$$Y_i \times 10 = \left(\widehat{eta}_0 \times 10\right) + \left(\widehat{eta}_1 \times 10\right) X_{1i} + \left(\widehat{eta}_2 \times 10\right) X_{2i} + (e_i \times 10)$$

Rescaling the dependent variable

$$Y_i \times 10 = (\widehat{\beta}_0 \times 10) + (\widehat{\beta}_1 \times 10) X_{1i} + (\widehat{\beta}_2 \times 10) X_{2i} + (e_i \times 10)$$

- ▶ Note the following:
 - lacktriangle The estimated coefficients are all multiplied by 10, $\widehat{eta}_i imes 10$
 - The estimated variance of all coefficients is multiplied by 100: $\widehat{Var}(\widehat{\beta}_i \times 10) = 10^2 \times \widehat{Var}(\widehat{\beta}_i)$
 - ▶ The standard errors of all estimated coefficients are multiplied by 10: $se(\widehat{\beta}_{j} \times 10) = \sqrt{10^{2} \times \widehat{Var}(\widehat{\beta}_{j})} = 10 \times se(\widehat{\beta}_{j})$

Rescaling the dependent variable

$$Y_i \times 10 = (\widehat{\beta}_0 \times 10) + (\widehat{\beta}_1 \times 10) X_{1i} + (\widehat{\beta}_2 \times 10) X_{2i} + (e_i \times 10)$$

- Note the following:
 - ► The t-statistics are unaffected: $\frac{\hat{\beta}_j \times 10}{\sec(\hat{\beta}_i) \times 10} = \frac{\hat{\beta}_j}{\sec(\hat{\beta}_i)}$
 - ▶ The residuals are multiplied by 10, hence so is Root MSE $\sqrt{\frac{\sum (e_i \times 10)^2}{n-k-1}} = \hat{\sigma} \times 10$
 - ▶ No effect on R^2 since $R^2 = 1 \frac{10^2 \sum e_i^2}{10^2 \sum (y_i \overline{y})^2} = 1 \frac{\sum e_i^2}{\sum (y_i \overline{y})^2}$

Example: multiplying the dependent variable by 40

variable name	storage disp type form		value label	variable	label	
vage	double %10.	0g		earnings	per hour	
. gen wage_wee	ekly=wage*40					
. reg wage edu	uc age					
Source	SS	df	MS		Number of obs	
Model Residual	160178.442 599696.267	2 4835	80089.221 124.0323		Prob > F R-squared	= 0.0000 = 0.2108
Total	759874.709	4837	157.09628	1	Adj R-squared Root MSE	= 0.2105 = 11.137
wage	Coef.	Std.	Err.	t P> t	[95% Conf.	Interval]
educ age _cons	1.967164 .1430452 -13.20376	.0586 .0127 .96		23 0.000	1.852197 .1180758 -15.10091	2.08213 .1680146 -11.30661
. reg wage_wee	ekly educ age					
Source	ss	df	MS		Number of obs F(2, 4835)	
Model Residual	256285504 959514011	2 4835	12814275 198451.70		Prob > F R-squared Adj R-squared	= 0.0000 = 0.2108
Total	1.2158e+09	4837	251354.04	5	Root MSE	= 445.48
wage_weekly	Coef.	Std.	Err.	t P> t	[95% Conf.	Interval]
educ age _cons	78.68654 5.721807 -528.1504	2.345 .5094 38.7	615 11.	23 0.000	74.08789 4.723031 -604.0364	83.28519 6.720583 -452.2643

4 different functional forms

Example: the relationship between smokers' income and cigarette consumption.

1. Level-level specification

$$\textit{cigs}_i = \beta_0 + \beta_1 \textit{income}_i + \varepsilon_i$$

2. **Log-log** specification (double log)

$$\ln \textit{cigs}_i = \beta_0 + \beta_1 \ln \textit{income}_i + \varepsilon_i$$

3. Log-level specification (semi log)

In
$$cigs_i = \beta_0 + \beta_1 income_i + \varepsilon_i$$

4. Level-log specification (semi log)

$$cigs_i = \beta_0 + \beta_1 \ln income_i + \varepsilon_i$$

Level-level specification

This is what we have seen in previous weeks. Example:

$$\textit{cigs}_i = \beta_0 + \beta_1 \textit{income}_i + \varepsilon_i$$

variable name	storage type	disp forma		val lab		variab	ole label		
cigs income	byte float	%8.00 %8.00					smoked per income, in		
. sum cigs in	come								
Variable	0	bs	M	lean	Std.	Dev.	Min	Max	C
<mark>cigs</mark> income	3	10 10	22.6 19.25		13.2 9.10		.5	80 30	
. <mark>reg cigs in</mark> Source	come S	S	df		MS		Number o		
Model Residual	1278.2 52851.		308		.26682 .59507		Prob > F R-square Adi R-sq	d	= 0.006 = 0.023
Total	54129.	5484	309	175.	176532		Root MSE		= 13.09
cigs	Co	ef.	Std.	Err.	t	P> t	[95%	Conf.	[nterval
income _cons	.2234 18.30		.0818		2.73				.384565

Interpretation: smokers who earn \$1000 more per year smoke

Estimated shape of the relationship between income and cigarette consumption

- ▶ In a log-log specification, the coefficient gives an elasticity.
- Example:

In
$$\mathit{cigs}_i = \beta_0 + \beta_1$$
 In $\mathit{income}_i + \varepsilon_i$

► The income elasticity of cigarette consumption can then be calculated as:

$$\eta_{income} = \frac{\%\Delta cigs}{\%\Delta income} = \frac{\partial \ln cigs}{\partial \ln income} = \beta_1$$

$$\eta_{income} = \frac{\partial \ln cigs}{\partial \ln income}$$

Proof: first recognize that

Such that

$$\begin{array}{ll} \frac{\partial \ln \textit{cigs}}{\partial \ln \textit{income}} & = & \frac{\partial \textit{cigs}}{\textit{cigs}} \frac{\textit{income}}{\partial \textit{income}} \\ & = & \frac{\partial \textit{cigs}}{\partial \textit{income}} \frac{\textit{income}}{\textit{cigs}} \equiv \eta_{\textit{income}} \end{array}$$

variable name		display format	value label	variable label
cigs income <mark>lcigs</mark> lincome	fĺoat float	%8.0g %8.0g %9.0g %9.0g		cigs. smoked per day annual income, in 1000\$ (log(cigs) (log(income)

. sum cigs income lcigs lincome

Variable	Obs	Mean	Std. Dev.	Min	Max
cigs	310	22.6129	13.23543	1	80
income	310	19.25645	9.101791	.5	30
<mark>lcigs</mark>	310	2.890992	.7933564	0	4.382027
lincome	310	2.786507	.6776821	6931472	3.401197

reg lcigs lincome

Source	SS	df	MS	Number of obs = $F(1, 308) =$	310 5.59
Model Residual	3.46780403 191.021258			Prob > F = R-squared =	0.0187
Total	194.489062	309	.62941444	Adj R-squared = Root MSE =	

lcigs	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lincome	.1563227	.0661089	2.36	0.019	.0262404	.286405
_cons	2.455397	.1895655	12.95	0.000	2.08239	2.828405

Interpretation: when income increases with 1%, smokers smoke 0.16% more cigarettes per day. I.e., the income elasticity of cigarette consumption is 0.16 for smokers.

Estimated shape of the relationship between income and cigarette consumption

Last week's tutorial exercise

- Compare this to last week's tutorial exercise, calculating the own-price **point elasticity** of chicken consumption from a level-level specification.
 - The point elasticity is different for each point of the demand curve
 - ► That is, it depends on the price of chicken (PC) and per capita chicken consumption (Y)
- A log-log specification, on the other hand, estimates a constant elasticity.

Last week's tutorial exercise: calculating a point elasticity

variable name		display format	value label	variable label
y pc pb yd	float float	%9.0g %9.0g %9.0g %9.0g		per capita chicken consumption price of chicken price of beef disposable income
. reg y pc pb	yd			

Source	SS	df	MS	Number of obs = 40 F(3, 36) = 1236.78
Model Residual	14745.7283 143.072565		4915.24278 3.97423792	Prob > F = 0.0000
Total	14888.8009	39	381.764125	Root MSE = 1.9935

у	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
pc	60716	.1571203	-3.86	0.000	9258147	2885054
pb	.0921878	.039883	2.31	0.027	.0113012	.1730743
yd	.2448599	.0110954	22.07	0.000	.2223574	.2673624
_cons	27.59394	1.584457	17.42	0.000	24.38051	30.80737

Last week's tutorial exercise: calculating a point elasticity

					. Juli y pc
Max	Min	Std. Dev.	Mean	Obs	Variable
88.87 15.9	23.52 6.5	19.53879 2.464809	50.56725	40 40	y pc

• We calculated the average **point elasticity** $\overline{\eta}_{own}$:

$$\begin{array}{lcl} \eta_{own} & = & \frac{\partial Y}{\partial PC} \frac{PC}{Y} \\ \overline{\eta}_{own} & = & \frac{\partial Y}{\partial PC} \frac{\overline{PC}}{\overline{Y}} = -0.61 \times \frac{10.24}{50.57} = -0.12 \end{array}$$

Last week's tutorial exercise: estimating a constant elasticity

```
. gen ly=log(y)
```

- . gen lpc=log(pc)
- . gen lpb=log(pb)
- . gen lyd=log(yd)
- . reg ly lpc lpb lyd

Source	SS	ат	MS
Model Residual	5.80622913 .087121785	3 36	1.93540971 .00242005
Total	5.89335091	39	.151111562

Number	of			40
F(3,		36)	=	799.74
Prob >			=	0.0000
R-squa			=	0.9852
Adj R-		ared	=	
Root M	SE		=	.04919

lу	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lpc	2206263	.0396401	-5.57	0.000	3010202	1402324
lpb	0063099	.0614643	-0.10	0.919	1309653	.1183455
lyd	.4567236	.0358703	12.73	0.000	.3839753	.5294719
_cons	2.405279	.0990111	24.29	0.000	2.204475	2.606083

The estimated constant own price elasticity is -0.22.

Log-level specification

- ▶ In a log-level specification, the coefficient ×100% gives the percentage change in the dependent variable, for a one unit increase in the level of the independent variable.
- Example:

$$ln \ cigs_i = \beta_0 + \beta_1 income_i + \varepsilon_i$$

Log-level specification

► The coefficient gives

$$eta_1 = rac{\partial \ln cigs}{\partial income} pprox rac{\% \Delta cigs / 100}{\partial income}$$

Proof:

$$\begin{array}{lcl} \Delta \ln {\it cigs} & = & \ln ({\it cigs} + \Delta {\it cigs}) - \ln ({\it cigs}) \\ & = & \ln \left(\frac{{\it cigs} + \Delta {\it cigs}}{{\it cigs}} \right) \\ & = & \ln \left(1 + \frac{\Delta {\it cigs}}{{\it cigs}} \right) \end{array}$$

using the approximation that $ln(1+x) \approx x$ for $x \approx 0$:

$$\Delta \ln cigs pprox rac{\Delta cigs}{cigs} = \% \Delta cigs / 100$$

Log-level specification

reg lcigs income

SS	df	MS		Number of obs	
2.80534201 191.68372				Prob > F R-squared	= 0.0345 = 0.0144
194.489062	309	.62941444		Root MSE	= .78889
Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
.0104686 2.689404			0.035	.0007664 2.482817	.0201707
	2.80534201 191.68372 194.489062 Coef.	2.80534201 1 2 191.68372 308 194.489062 309 Coef. Std. Er	2.80534201	2.80534201	2.80534201

Interpretation: when income increases with \$1000, smokers smoke 1.05% (= $0.0105 \times 100\%$) more cigarettes per day.

Estimated shape of the relationship between income and cigarette consumption

Level-log specification

- ▶ In a **level-log specification**, the coefficient/100 gives the impact on the level of the dependent variable from a 1% increase in the independent variable.
- Example:

$$cigs_i = \beta_0 + \beta_1 \ln income_i + \varepsilon_i$$

► The reason for this interpretation is that $\Delta \ln income \simeq \frac{\Delta income}{income}$

Level-log specification

reg cigs lincome

Source	SS	df		MS	Number of obs		
Model Residual	1566.29487 52563.2535	1 308		29487 59914		F(1, 308) Prob > F R-squared Adi R-squared	= 0.0027 = 0.0289
Total	54129.5484	309	175.1	.76532		Root MSE	= 13.064
cigs	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
lincome _cons	3.322244 13.35545	1.096		3.03 4.25	0.003	1.164407 7.167913	5.48008 19.54298

Interpretation: when income increases with 1%, smokers smoke $0.03 \ (= 3.32/100)$ more cigarettes per day.

Estimated shape of the relationship between income and cigarette consumption

Comparing models: a word of caution

$$cigs_{i} = \beta_{0} + \beta_{1}income_{i} + \varepsilon_{i}$$

$$\ln cigs_{i} = \beta_{0} + \beta_{1}\ln income_{i} + \varepsilon_{i}$$

$$\ln cigs_{i} = \beta_{0} + \beta_{1}income_{i} + \varepsilon_{i}$$

$$cigs_{i} = \beta_{0} + \beta_{1}\ln income_{i} + \varepsilon_{i}$$

$$(3)$$

► You cannot compare
$$R^2$$
 or \overline{R}^2 (or root MSE) across models with different dependent variables! (Let we can only compare

with different dependent variables! (I.e. we can only compare model 1 with model 4 in this way, as well as model 2 with model 3.)

Comparing models: a word of caution

- ► This is because R^2 , \overline{R}^2 and root MSE measure the (un)explained variation in the dependent variable, but different dependent variables (logs or levels) implies that variation is different.
- ▶ **Rely on economic reasoning** (and which hypothesis you are interested in testing) to decide which model you prefer.

Population regression model:

In
$$wage_i = \beta_0 + \beta_1 educ_i + \beta_2 age_i + \beta_3 age_i^2 + \varepsilon_i$$

- ▶ Partial effect of education on log wages= marginal or ceteris paribus effect of one more year of education on the log wage, holding constant age.
- ▶ This can be found by taking the first order partial derivative of the equation with respect to *educ*:

$$\frac{\partial \ln wage_i}{\partial \ln educ_i} = \beta_1$$

Population regression model:

In wage
$$_i = eta_0 + eta_1$$
educ $_i + eta_2$ age $_i + eta_3$ age $_i^2 + arepsilon_i$

- Partial effect of age on log wages= marginal or ceteris paribus effect of one more year of age on the log wage, holding constant education.
- Again, taking the first order derivative to find this:

$$\frac{\partial \ln wage_i}{\partial \ln age_i} = \beta_2 + 2\beta_3 age_i$$

We see that the marginal effect of age on log wages depends on age.

$$rac{\partial \ln wage_i}{\partial \ln age_i} = eta_2 + 2eta_3$$
age $_i$

- ► We can describe this effect by **finding the stationary point** and classifying it as a **minimum or maximum**.
- ► To find the stationary point, set the first derivative equal to zero, and solve for age:

$$\begin{array}{lcl} \frac{\partial \ln \textit{wage}_i}{\partial \ln \textit{age}_i} & = & \beta_2 + 2\beta_3 \textit{age}^* = 0 \\ \\ \Leftrightarrow & \textit{age}^* = -\frac{\beta_2}{2\beta_3} \end{array}$$

Classify the stationary point by looking at the sign of the second derivative:

$$\begin{array}{rcl} \frac{\partial^2 \ln \textit{wage}_i}{\partial \ln \textit{age}_i^2} & = & 2\beta_3 \\ & \beta_3 & > & 0 \Leftrightarrow \min \\ & \beta_3 & < & 0 \Leftrightarrow \max \end{array}$$

► For an example, see the last exercise of last week's tutorial.

Dummy variable: definition

Dummy variable: can take on two values only, 0 and 1.

- Examples:
 - ▶ Dummy for female gender: $female_i = 1$ if the respondent is female; $female_i = 0$ if male
 - Dummy for male gender: male_i = 1 if the respondent is male; male_i = 0 if female
- Note that
 - For each individual in the sample it holds that female_i + male_i = 1
 - female = the fraction of women in the sample; male = the fraction of men in the sample
 - $\overline{\text{female}} + \overline{\text{male}} = 1$

Bivariate regression

In
$$\textit{wage}_i = eta_0 + eta_1 \textit{female}_i + arepsilon_i$$

Under OLS assumptions we can write:

▶ Average log wage for $female_i = 1$:

$$E(\operatorname{In} \textit{wage}_i | \textit{female}_i = 1) = eta_0 + eta_1$$

• Average log wage for $female_i = 0$:

$$E(\text{In } wage_i|female_i=0)=eta_0$$

 $female_i = 0$ is called the **reference group**, i.e. the group against which the wage comparison is made.

Bivariate regression

To see why:

ightharpoonup Average log wage for $female_i = 1$:

$$E(\operatorname{In wage}_i|\operatorname{female}_i=1)=E\left[(eta_0+eta_1\operatorname{female}_i+arepsilon_i)|\operatorname{female}_i=1
ight]$$

$$=\ eta_0+E(eta_1\operatorname{female}_i|\operatorname{female}_i=1)+E(arepsilon_i|\operatorname{female}_i=1)$$

$$=eta_0 + eta_1 + E(arepsilon_i | extit{female}_i = 1) = eta_0 + eta_1$$

▶ Similarly, average log wage for $female_i = 0$:

$$E(\operatorname{In} \textit{wage}_i | \textit{female}_i = 0) = E\left[(eta_0 + eta_1 \textit{female}_i + \epsilon_i) | \textit{female}_i = 0\right]$$

$$= \beta_0 + E(\beta_1 \text{female}_i | \text{female}_i = 0) + E(\varepsilon_i | \text{female}_i = 0)$$

$$= eta_0 + E(arepsilon_i | extit{female}_i = 0) = eta_0$$

¹OLS assumptions for unbiasedness give that: $E(\varepsilon_i|female_i=1)=E(\varepsilon_i|female_i=0)=0$

Metrics Lecture 4 ☐ Dummy variables ☐ Dummy for 2 groups: interpretation

Bivariate regression

Variable	Obs	Mean	Std. Dev.	Min	Max
female male	4838 4838	.5049607	.5000271 .5000271	0	1

. reg lwage female

	Source	SS	df		MS						Number of obs = F(1. 4836) = 16			
	Model Residual	51.7583589 1543.36023				Prob > F R-squared								
_	Total	1595.11859	4837	.329	774361			Root MSE = .						
-	lwage	Coef	C+4	Err	+	D> [+]	FQ5% Conf	Tn	+ervall					

Iwage	Coer.	Sta. Err.	τ	P> T	[95% CONT	. Interval
female _cons	2068753 2.941271	.0162446 .0115435			2387221 2.91864	

Interpretation: women earn 20.7% lower wages than men. (Note that we can interpret this coefficient since it's statistically significant.)

Multivariate regression

$$\mbox{In wage}_i \ = \ \beta_0 + \beta_1 \mbox{female}_i + \beta_2 \mbox{educ}_i + \varepsilon_i \label{eq:beta}$$
 Under OLS assumptions :

 $E(\ln wage_i|educ, female_i) = \beta_0 + \beta_1 female_i + \beta_2 educ_i$

▶ Average log wage for $female_i = 1$:

$$E(\operatorname{\mathsf{In}} \mathit{wage}_i | \mathit{female}_i = 1) = eta_0 + eta_1 + eta_2 \mathit{educ}_i$$

▶ Average log wage for $female_i = 0$:

$$E(\ln wage_i | female_i = 0) = \beta_0 + \beta_2 educ_i$$

Average log wage difference between women and men:

$$E(\operatorname{In} wage_i | female_i = 1) - E(\operatorname{In} wage_i | female_i = 0) = \beta_1$$

Multivariate regression

. reg lwage female educ

Source	SS	df	MS
Model Residual	384.683739 1210.43485	2 4835	192.34187 .250348469
Total	1595.11859	4837	.329774361

Number of obs	=	4838
F(2, 4835)	=	768.30
Prob > F	=	0.0000
R-squared	=	0.2412
Adj R-squared	=	0.2408
Root MSE	=	.50035

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	2398371	.014416	-16.64	0.000	2680991	211575
educ	.0961508	.0026366	36.47	0.000	.0909817	.1013198
_cons	1.626193	.0374833	43.38	0.000	1.552709	1.699678

Interpretation: women earn 24% less than men, holding constant the education level. (Note that we can interpret this coefficient since it's statistically significant.)

Metrics Lecture 4 └─Dummy variables

Dummy for 2 groups: interpretation

Dummy changes the intercept

Men and women have a difference log wage intercept (but identical slopes, given by the coefficient on educ).

Dummy variable trap and perfect collinearity

Why is the following model incorrect:

In
$$\textit{wage}_i = \beta_0 + \beta_1 \textit{female}_i + \beta_2 \textit{male}_i + \varepsilon_i$$

Perfectly collinearity:

- ▶ female_i and male_i are perfect linear functions of each other, in particular, for each individual observation female_i + male_i = 1.
- Hence, one of the OLS assumptions for unbiasedness is violated.
- This is known as the dummy variable trap: cannot include a full set of dummies, we need an omitted category which serves as the reference category.

cons

Dummy variable trap and perfect collinearity

. reg lwage female male educ note: male omitted because of collinearity

1.626193

	Source	SS	df		MS				4838 768.30
	Model Residual	384.683739 1210.43485	2 4835		.34187 348469	Prob > F R-squared Adj R-squarec		=	0.0000
	Total	1595.11859	4837	.329	.329774361				.50035
Ī	lwage	Coef.	Std.	Err.	t	P> t	[95% Conf.	Int	terval]
	female male	2398371 (omitted)	.014		-16.64	0.000	2680991		.211575
	educ	0961508	0026	366	36 47	0 000	0909817		1013198

.0374833

If you make this mistake, Stata will automatically omit one of the categories for you. The next two slides show that it does not matter which category you decide to exclude.

43.38

0.000

1.552709

1.699678

Omitted category (=reference group): men

. reg lwage female educ

Source	SS	df	MS
Model Residual	384.683739 1210.43485	2 4835	192.34187 .250348469
Total	1595.11859	4837	.329774361

Number of obs =	4838
F(2, 4835) =	768.30
Prob > F =	0.0000
R-squared =	0.2412
Adj R-squared =	
Root MSE =	.50035

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	2398371	.014416	-16.64	0.000	2680991	211575
educ	.0961508	.0026366	36.47	0.000	.0909817	.1013198
_cons	1.626193	.0374833	43.38	0.000	1.552709	1.699678

Interpretation: women earn 24% lower wages than men, cet. par. on education.

Omitted category (=reference group): women

. reg lwage male educ

Source	SS	df	MS
Model Residual	384.683739 1210.43485	2 4835	192.34187 .250348469
Total	1595.11859	4837	.329774361

Number of obs	=	4838
(2, 4835)	=	768.30
Prob > F	=	0.0000
R-squared	=	0.2412
Adj R-squared	=	0.2408
Root MSE	=	.50035

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
male	.2398371	.014416	16.64	0.000	.211575	.2680991
educ	.0961508	.0026366	36.47	0.000	.0909817	.1013198
_cons	1.386356	.0383269	36.17	0.000	1.311218	1.461495

Interpretation: men earn 24% higher wages than women, cet. par. on education.

Different types of dummy variables

- Dummy variables for 2 groups: e.g. gender (male or female), married (married or not married).
- ▶ Dummy variables for >2 groups
 - Dummies for categorical variables: cannot be ranked (e.g. race, industry or region)
 - Dummies for ordinal variables: can be ranked (e.g. degree of religiousness, degree of happiness,...)

Dummy variables for multiple groups

Examples:

- values of region:
 - ▶ 1 for north
 - 2 for east
 - ▶ 3 for west
 - 4 for south
- values of industry:
 - ▶ 1 for manufacturing
 - 2 for services
 - 3 for utilities

- 4 for public sector
- values of race:
 - ▶ 1 for black
 - 2 for asian
 - ▶ 3 for white
- Region, industry, and race are all categorical variables: their values cannot be ranked

Dummy variables for multiple groups

Examples:

- values of happiness:
 - 1 for very unhappy
 - 2 for somewhat unhappy
 - 3 for somewhat happy
 - 4 for very happy
- values of agegroup:
 - ▶ 1 for 18<age<34
 - ▶ 2 for 34<age<54
 - ▶ 3 for 55<age<65

- values of religiousness:
 - ▶ 1 for not religious
 - 2 for somewhat religious
 - 3 for very religious
- Happiness, agegroup, and religiousness are all ordinal variables: their values can be ranked

Inclusion of categorical variables

Do not include categorical variables directly into the regression equation.

Wrong specification:

In
$$wage_i = eta_0 + eta_1$$
 female $_i + eta_2$ educ $_i + eta_3$ race $_i + arepsilon_i$

The coefficient on race **cannot be interpreted** ("when race increases with 1" makes no sense since the categories of race cannot be ranked).

Correct procedure:

- Create a separate dummy variable for each of the k categories of race
- ▶ Include k-1 of those dummies into the equation (not k, due to dummy variable trap!)

Inclusion of categorical variables

- ▶ Race has three values: 1 for black, 2 for asian, 3 for white.
- Create three dummies:
 - ▶ gen black=1 if race==1
 - replace black=0 if race!=1
 - ▶ gen asian=1 if race==2
 - replace asian=0 if race!=2
 - ▶ gen white=1 if race==3
 - ► replace white=0 if race!=3
- ► In Stata, we can also create all dummies in one go by using tab race, gen(drace)
 - This creates 3 separate dummy variables, drace1 drace2 and drace3.

Inclusion of categorical variables

$$\label{eq:mage_i} \mbox{ln wage}_i = \beta_0 + \beta_1 \mbox{female}_i + \beta_2 \mbox{educ}_i + \beta_3 \mbox{black}_i + \beta_4 \mbox{asian}_i + \epsilon_i$$

. reg lwage female educ black asian

Source	SS	df	MS	Number of ob F(4, 4833
Model Residual	393.211516 1201.90707		98.302879 .248687579	Prob > F R-squared Adj R-square
Total	1595.11859	4837	.329774361	Root MSE

lwage	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
female	2361326	.0143826	-16.42	0.000	2643291	2079361
educ	.0953349	.0026343	36.19	0.000	.0901704	.1004994
<mark>black</mark>	1394592	.0238211	-5.85	0.000	1861594	0927589
<mark>asian</mark>	0187773	.0338864	-0.55	0.580	08521	.0476554
_cons	1.650723	.0375929	43.91	0.000	1.577023	1.724422

= 0.2465= 0.2459

Interpretation of categorical variables

In
$$\textit{wage}_i = \beta_0 + \beta_1 \textit{female}_i + \beta_2 \textit{educ}_i + \beta_3 \textit{black}_i + \beta_4 \textit{asian}_i + \epsilon_i$$

lwage	Coef.	Std. Err.	t	P> t
female	2361326	.0143826	-16.42	0.000
educ	.0953349	.0026343	36.19	0.000
<mark>black</mark>	1394592	.0238211	-5.85	0.000
asian	0187773	.0338864	-0.55	0.580

The omitted category is white: all **interpretations are relative to this omitted category**

- $\widehat{\beta}_3$: Black workers earn on average 14% less than white workers, cet. par. on education and gender.
- $\widehat{\beta}_4$: There is no statistically significant wage difference between asian and white workers, cet. par. on education and gender.

Testing the statistical significance of multiple dummies

$$\label{eq:mage_i} \mbox{ln wage}_i = \beta_0 + \beta_1 \mbox{female}_i + \beta_2 \mbox{educ}_i + \beta_3 \mbox{black}_i + \beta_4 \mbox{asian}_i + \varepsilon_i$$

▶ Does race have a significant impact on wages, controlling for education and gender?

$$H_0$$
 : $\beta_3 = \beta_4 = 0$
 H_A : H_0 not true

▶ Multiple population parameters in *H*₀, hence need an **F-test**!

Testing the statistical significance of race

. reg lwage female educ black asian

Source	SS	df	MS	
Model Residual	393.211516 1201.90707	4 4833	98.302879 .248687579	
Total	1595.11859	4837	.329774361	

Number of obs		4838
F(4, 4833)	=	395.29
Prob > F	=	0.0000
R-squared	=	0.2465
Adj R-squared	=	0.2459
Root MSE	=	.49869

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	2361326	.0143826	-16.42	0.000	2643291	2079361
educ	.0953349	.0026343	36.19	0.000	.0901704	.1004994
black	1394592	.0238211	-5.85	0.000	1861594	0927589
asian	0187773	.0338864	-0.55	0.580	08521	.0476554
_cons	1.650723	.0375929	43.91	0.000	1.577023	1.724422

. test black asian

- (1) black = (
- (2) asian = 0

Conclusion: reject H_0 , race has a statistically significant impact on wages, ceteris paribus.

Choice of reference category

- ► As before, the **choice of reference category is not important**.
 - ▶ That is, we can omit white, black or asian.
- ▶ This can be shown more formally: parameters for equations with different reference categories can all be found from an equation with any single reference group.

Changing the reference category from white to black

$$\begin{split} & \ln \textit{wage}_i = \beta_0 + \beta_1 \textit{fem}_i + \beta_2 \textit{educ}_i + \beta_3 \textit{black}_i + \beta_4 \textit{asian}_i + \epsilon_i \\ & \text{Using that} \\ & \textit{white}_i + \textit{black}_i + \textit{asian}_i = 1 \Leftrightarrow \textit{black}_i = 1 - \textit{white}_i - \textit{asian}_i \\ & \ln \textit{wage}_i = \left\{ \begin{array}{c} \beta_0 + \beta_1 \textit{fem}_i + \beta_2 \textit{educ}_i + \beta_3 \left(1 - \textit{white}_i - \textit{asian}_i\right) \\ + \beta_4 \textit{asian}_i + \epsilon_i \end{array} \right\} \\ & \ln \textit{wage}_i = \left\{ \begin{array}{c} \beta_0 + \beta_1 \textit{fem}_i + \beta_2 \textit{educ}_i + \beta_3 - \beta_3 \textit{white}_i - \beta_3 \textit{asian}_i \\ + \beta_4 \textit{asian}_i + \epsilon_i \end{array} \right\} \\ & \ln \textit{wage}_i = \left\{ \begin{array}{c} (\beta_0 + \beta_3) + \beta_1 \textit{fem}_i + \beta_2 \textit{educ}_i - \beta_3 \textit{white}_i \\ + (\beta_4 - \beta_3) \textit{asian}_i + \epsilon_i \end{array} \right\} \end{split}$$

Reference category: white vs black

White omitted:

$$\widehat{\ln wage_i} = \widehat{\beta}_0 + \widehat{\beta}_1 fem_i + \widehat{\beta}_2 educ_i + \widehat{\beta}_3 black_i + \widehat{\beta}_4 asian_i$$

$$\widehat{\ln wage_i} = 1.65 - 0.24 fem_i + 0.095 educ_i - 0.14 black_i - 0.02 asian_i$$

Black omitted:

$$\widehat{\ln wage_i} = \begin{cases} \left(\widehat{\beta}_0 + \widehat{\beta}_3\right) + \widehat{\beta}_1 fem_i + \widehat{\beta}_2 educ_i - \widehat{\beta}_3 white_i \\ + \left(\widehat{\beta}_4 - \widehat{\beta}_3\right) asian_i \end{cases}$$

$$\widehat{\ln wage_i} = 1.51 - 0.24 fem_i + 0.095 educ_i + 0.14 white_i + 0.12 asian_i$$

where

$$(\widehat{\beta}_0 + \widehat{\beta}_3) = 1.65 - 0.14 = 1.51$$
$$-\widehat{\beta}_3 = 0.14$$

 $(\widehat{\beta}_4 - \widehat{\beta}_3) = -0.02 + 0.14 = 0.12$

Choice of reference category: black

. reg lwage female educ asian white

Source	SS	df	MS
Model Residual	393.211516 1201.90707	4 4833	98.302879 .248687579
Total	1595.11859	4837	.329774361

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	2361326	.0143826	-16.42	0.000	2643291	2079361
educ	.0953349	.0026343	36.19	0.000	.0901704	.1004994
<mark>asian</mark>	.1206818	.039982	3.02	0.003	.042299	.1990647
white	.1394592	.0238211	5.85	0.000	.0927589	.1861594
_cons	1.511263	.042203	35.81	0.000	1.428526	1.594001

$$\widehat{\ln wage_i} = 1.51 - 0.24 fem_i + 0.095 educ_i + 0.14 white_i + 0.12 asian_i$$

Changing the reference category from white to asian

$$\begin{split} & \text{In wage} = \beta_0 + \beta_1 \textit{fem}_i + \beta_2 \textit{educ}_i + \beta_3 \textit{black}_i + \beta_4 \textit{asian}_i \\ & \text{Using that} \\ & \textit{white}_i + \textit{black}_i + \textit{asian}_i = 1 \Leftrightarrow \textit{asian}_i = 1 - \textit{white}_i - \textit{black}_i \\ & \text{In wage}_i &= \left\{ \begin{array}{l} \beta_0 + \beta_1 \textit{fem}_i + \beta_2 \textit{educ}_i + \beta_3 \textit{black}_i \\ + \beta_4 \left(1 - \textit{white}_i - \textit{black}_i\right) + \varepsilon_i \end{array} \right\} \\ & \text{In wage}_i &= \left\{ \begin{array}{l} \beta_0 + \beta_1 \textit{fem}_i + \beta_2 \textit{educ}_i + \beta_3 \textit{black}_i + \beta_4 - \beta_4 \textit{white}_i \\ - \beta_4 \textit{black}_i + \varepsilon_i \end{array} \right\} \\ & \text{In wage}_i &= \left\{ \begin{array}{l} (\beta_0 + \beta_4) + \beta_1 \textit{fem}_i + \beta_2 \textit{educ}_i + (\beta_3 - \beta_4) \textit{black}_i \\ - \beta_4 \textit{white}_i + \varepsilon_i \end{array} \right\} \end{split}$$

Reference category: white vs asian

White omitted:

$$\begin{array}{ll} \widehat{\ln wage_i} &=& \widehat{\beta}_0 + \widehat{\beta}_1 fem_i + \widehat{\beta}_2 educ_i + \widehat{\beta}_3 black_i + \widehat{\beta}_4 asian_i \\ \widehat{\ln wage_i} &=& 1.65 - 0.24 fem_i + 0.095 educ_i - 0.14 black_i - 0.02 asian_i \end{array}$$

Asian omitted:

$$\widehat{\ln wage_{i}} = \left\{ \begin{array}{c} \left(\widehat{\beta}_{0} + \widehat{\beta}_{4}\right) + \widehat{\beta}_{1} \textit{fem}_{i} + \widehat{\beta}_{2} \textit{educ}_{i} + \left(\widehat{\beta}_{3} - \widehat{\beta}_{4}\right) \textit{black}_{i} \\ -\widehat{\beta}_{4} \textit{white}_{i} \end{array} \right\}$$

$$\widehat{\ln wage_{i}} = 1.63 - 0.24 \textit{fem}_{i} + 0.095 \textit{educ}_{i} - 0.12 \textit{black}_{i} + 0.02 \textit{white}_{i}$$

where

$$(\widehat{\beta}_0 + \widehat{\beta}_4) = 1.65 - -0.02 = 1.63$$

$$(\widehat{\beta}_3 - \widehat{\beta}_4) = -0.14 - -0.02 = -0.12$$

$$-\widehat{\beta}_4 = 0.02$$

Choice of reference category: asian

. reg lwage female educ black white

Source	SS	df	MS
Model Residual	393.211516 1201.90707	4 4833	98.302879 .248687579
Total	1595.11859	4837	.329774361

Number of obs = 4838 F(4, 4833) = 395.29 Prob > F = 0.0000 R-squared = 0.2465 Adj R-squared = 0.2459 Root MSE = .49869

lwage	coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	2361326	.0143826	-16.42	0.000	2643291	2079361
educ	.0953349	.0026343	36.19	0.000	.0901704	.1004994
<mark>black</mark>	1206818	.039982	-3.02	0.003	1990647	042299
white	.0187773	.0338864	0.55	0.580	0476554	.08521
_cons	1.631945	.0503872	32.39	0.000	1.533164	1.730727

 $\widehat{\ln wage_i} = 1.63 - 0.24 fem_i + 0.095 educ_i - 0.12 black_i + 0.02 white_i$

Metrics Lecture 4

Dummy variables

└ Dummy for >2 groups: interpretation

Brenda Meyers-Powell of the Dreamcatcher foundation

Another example of categorical dummies

- ► The **study of illegal markets**: intersection of many fields (law, economics, sociology, psychology..)
- Markets are illegal when either the product itself (e.g. heroine), the exchange of it for money (e.g. prostitution, human organs), or the way in which it is produced or sold (e.g. counterfeit Rolexes, or production using child labor) violates legal stipulations.
- Example: prostitution in Mexico.

Dataset on an illegal market

Obtained from Manisha Shah and Stefano Bertozzi, "Risky Business: The Market for Unprotected Sex", Journal of Political Economy (2005), 113, pp. 518-550.

variable name variable label

```
price
               Price of the transaction in Mexican pesos
Inprice
               log(price) of transaction
               1 if the sex worker is attractive; 0 otherwise
attractive
school
               1 if sex worker has completed secondary school or higher; 0 otherwise
               age of sex worker in vears
age
rich
               1 if client is rich; 0 otherwise
               1 if client consumed alcohol prior to the transaction
alcohol
bar
               1 if transaction originated in a bar; 0 otherwise
street
               1 if transaction originated in a street: 0 otherwise
               1 if transaction originated in another site: 0 otherwise
othersite
```

Dataset on an illegal market

	Variable	Obs	Mean	Std. Dev.	Min	Max
_	price Inprice attractive school age	3016 3016 3016 3016 3016	449.5823 5.839489 .137931 .3169761 27.40981	400.4593 .7155389 .3448848 .4653752 7.729452	9.999999 2.302585 0 0	5799.999 8.665613 1 1 54
	rich alcohol bar street othersite	3016 3016 3016 3016 3016	.8428382 .846817 .8047082 .1747347 .020557	.3640136 .3602236 .3964909 .379803 .1419194	0 0 0 0	1 1 1 1 1

A pricing equation for illegal transactions

Model the transaction price as a function of:

- characteristics of the sex worker (schooling, age, attractiveness);
- characteristics of the customer (rich, alcohol); and
- characteristics of the transaction (transaction place of origin: bar, street or other)

$$\label{eq:norm_price} \begin{aligned} \ln \textit{price}_i = \left\{ \begin{array}{c} \beta_0 + \beta_1 \textit{attractive}_i + \beta_2 \textit{school}_i + \beta_3 \textit{age}_i + \\ \beta_4 \textit{rich}_i + \beta_5 \textit{alcohol}_i + \\ \beta_6 \textit{bar}_i + \beta_7 \textit{othersite}_i + \varepsilon_i \end{array} \right\} \end{aligned}$$

Note that street is the omitted category

Estimates

. reg Inprice attractive school age rich alcohol bar other

Source	SS	df	MS		Number of obs = $F(7, 3008) =$	
Model Residual	501.703241 1041.9644		71.6718916 .34639774		Prob > F = R-squared = Adj R-squared =	0.0000 0.3250
Total	1543.66764	3015	.511995901			.58856
lnprice	Coef.	Std.	Err. t	P> t	[95% Conf. In	terval]
- Imprire	coer.	Jeu.		17 01	[33/0	COIII. III

attractive school .2394121 .0315921 7.58 0.000 .1774678 .3013563 age rich alcohol .2010136 .0014531 -14.46 0.000 0238627 0181645 alcohol .2924201 .0304404 9.61 0.000 .232734 .3521061 bar othersite .4781665 .0348945 13.70 0.000 .409747 .5465861 cons 5.49038 .0612582 89.63 0.000 5.370268 5.610492	lnprice	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	school age rich alcohol <mark>bar</mark> othersite	.1637754 0210136 .2924201 .2403329 .4781665 .2621039	.0238151 .0014531 .0304404 .0358481 .0348945	6.88 -14.46 9.61 6.70 13.70 3.30	0.000 0.000 0.000 0.000 0.000 0.001	.11708 0238627 .232734 .1700436 .409747 .1064444	.2104709 0181645 .3521061 .3106222 .5465861 .4177633

Estimated equation

$$\ln \textit{price}_i = \left\{ \begin{array}{c} 5.49 + 0.24 \textit{attractive}_i + 0.16 \textit{school}_i - 0.02 \textit{age}_i + \\ 0.29 \textit{rich}_i + 0.24 \textit{alcohol}_i + \\ 0.48 \textit{bar}_i + 0.26 \textit{othersite}_i + \epsilon_i \end{array} \right\}$$

Interpretations:

- $\hat{\beta}_{bar}$: transactions that originated in bars had a 48% higher price than those that originated in the street, all else equal;
- $\widehat{\beta}_{othersite}$: transactions that originated in other sites (i.e. not in bars or on the street) had a 26% higher price than those that originated in the street, all else equal.

Note that these interpretations are relative to the omitted category "street"; both effects are individually significant which means the prices are significantly different from that of the omitted category.

Location, location, location?

Does location matter for the transaction price, after controlling for characteristics of the sex worker and the customer?

$$\ln \textit{price}_i = \left\{ \begin{array}{l} \beta_0 + \beta_1 \textit{attractive}_i + \beta_2 \textit{school}_i + \beta_3 \textit{age}_i + \\ \beta_4 \textit{rich}_i + \beta_5 \textit{alcohol}_i + \\ \beta_6 \textit{bar}_i + \beta_7 \textit{othersite}_i + \epsilon_i \end{array} \right\}$$

$$H_0$$
: $\beta_6 = \beta_7 = 0$

 H_A : H_0 not true

Location matters

attractive .2394121 .0315921 7.58 0.000 .1774678 .301356 school .1637754 .0238151 6.88 0.000 .11708 .210470 age 0210136 .0014531 -14.46 0.000 0238627 018164 rich .2924201 .0304404 9.61 0.000 .232734 .352106 alcohol .2403329 .0358481 6.70 0.000 .1700436 .310622 bar .4781665 .0348945 13.70 0.000 .409747 .546586 othersite .2621039 .0793876 3.30 0.001 .1064444 .417763 _cons 5.49038 .0612582 89.63 0.000 5.370268 5.61049		Inprice	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
	•	school age rich alcohol bar othersite	.1637754 0210136 .2924201 .2403329 .4781665 .2621039	.0238151 .0014531 .0304404 .0358481 .0348945 .0793876	6.88 -14.46 9.61 6.70 13.70 3.30	0.000 0.000 0.000 0.000 0.000 0.001	.11708 0238627 .232734 .1700436 .409747 .1064444	.210470 018164 .352106 .310622 .546586 .417763

```
. test bar other
```

```
(1) bar = 0
(2) othersite = 0

F(2, 3008) = 93.89

Prob > F = 0.0000
```

 H_0 rejected: location of the transaction matters for the price, cet par.

73 / 107

Inclusion of ordinal variables

Unlike categorical variables, ordinal variables can be included directly into the regression equation. From our affairs example (last week):

$$\textit{naffairs}_i = eta_0 + eta_1 \textit{yrsmarried}_i + eta_2 \textit{religion}_i + \epsilon_i$$

But we can also include separate dummies for all but one group, i.e.

$$\textit{naffairs}_i = \left\{ \begin{array}{c} \beta_0 + \beta_1 \textit{yrsmarried}_i + \beta_2 \textit{veryrelig}_i + \beta_3 \textit{somerelig}_i \\ + \beta_4 \textit{slightrelig}_i + \beta_5 \textit{notrelig}_i + \varepsilon_i \end{array} \right\}$$

This is a more flexible specification since it allows for a different intercept for each value of the religion variable.

Inclusion of ordinal variable: directly

variable name	storage type	display format	value label	variabl	e label		
relig)	byte	%9.0g			y relig., 4 = s l, 1 = anti	omewhat, 3 =	slightly, 2 = not
. reg naffair:	s yrsmarr	relig					
Source	s	s df	MS		Number of obs		
Model Residual	463.27 6065.				Prob > F R-squared Adi R-squared	= 0.0000 = 0.0710	
Total	6529.0	8153 600	10.88180	26	Root MSE	= 3.1849	
naffairs	Со	ef. Std.	Err.	t P> t	[95% Conf.	Interval]	
yrsmarr <mark>relig</mark> _cons	.1357 5496 2.058	927 .114	1186 -4	.68 0.000 .82 0.000 .29 0.000		.182737 3255708 2.822505	

Use a **t-test** to test for the importance of religion on the number of affairs, cet. par. on years of marriage.

Inclusion of separate ordinal dummies (omitted group = anti-religious)

reg naffairs vrsmarr vrvrel smerel slghtrel notrel

. reg narrarr.	3 yr 3marr Vry	TCT SIII	crer	3 Igilci e i	HOCTET			
Source	SS	df		MS		Number of obs		601 10.29
Model Residual	519.84179 6009.23974	5 595		.968358 0995626		Prob > F R-squared Adj R-squared	=	0.0000 0.0796 0.0719
Total	6529.08153	600	10.8	8818026		Root MSE	=	3.178
naffairs	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
yrsmarr vryrel smerel slghtrel notrel _cons	.1359918 -2.1628 -2.038553 7286147 9102627 1.644965	.0239 .6011 .5163 .537 .5215 .4874	444 265 735 395	5.69 -3.60 -3.95 -1.35 -1.75 3.37	0.000 0.000 0.000 0.176 0.081 0.001	.0890393 -3.343423 -3.052597 -1.784704 -1.934545 .6876068	-1	1829443 .982177 .024509 3274748 1140194 .602322

Use an **F-test** to test for the importance of religion on the number of affairs, cet. par. on years of marriage.

Inclusion of ordinal dummies

- ► How to decide whether to include an ordinal variable directly, or as separate dummy variables?
- ► Can **compare adjusted** R^2 **across two models**: the one with the highest adjusted R^2 is preferable.
- More practice in the tutorial.

Interaction terms involving a dummy variable

We now consider models with an **interaction term** in X_1 and X_2

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i} + \varepsilon_i$$

where either X_1 or X_2 is a dummy variable.

Note that whenever we have an interaction term, we should also always include the variables which make up the interaction (here, X_1 and X_2) individually.

Let's look at an example.

A Mincer model with an interaction term

Consider the following Mincer model:

In
$$\textit{wage}_i = \beta_0 + \beta_1 \textit{age}_i + \beta_2 \textit{educ}_i + \beta_3 \textit{fem}_i + \epsilon_i$$

We can include an interaction term between gender and education:

$$\text{In } \textit{wage}_{\textit{i}} = \beta_0 + \beta_1 \textit{age}_{\textit{i}} + \beta_2 \textit{educ}_{\textit{i}} + \beta_3 \textit{fem}_{\textit{i}} + \beta_4 \textit{educ}_{\textit{i}} \times \textit{fem}_{\textit{i}} + \varepsilon_{\textit{i}}$$

This allows for two different reasons that women earn different wages:

- ▶ Direct effect: **different intercept** (β_3)
- ▶ Indirect effect through education: **different slope** (β_4)

A Mincer model with an interaction term

To see how an interaction term gives both intercept and slope differences, rewrite the model for men and women separately:

▶ Model for men (i.e. filling in $fem_i = 0$):

In
$$wage_i = \beta_0 + \beta_1 age_i + \beta_2 educ_i + \varepsilon_i$$

▶ Model for women (i.e. filling in $fem_i = 1$):

$$\begin{array}{lll} \text{In wage}_i & = & \beta_0 + \beta_1 \text{age}_i + \beta_2 \text{educ}_i + \beta_3 + \beta_4 \text{educ}_i + \epsilon_i \\ & = & (\beta_0 + \beta_3) + \beta_1 \text{age}_i + (\beta_2 + \beta_4) \text{educ}_i + \epsilon_i \end{array}$$

▶ This shows that β_3 reflects the intercept difference and β_4 reflects the slope difference for education, between men and women.

Estimates

- . gen educ_fem=educ*female
- . reg lwage age educ female educ_fem

Source	SS	df	MS	Number of obs = 4838 F(4, 4833) = 435.48
Model Residual	422.597779 1172.52081			Prob > F = 0.0000 R-squared = 0.2649 Adj R-squared = 0.2643
Total	1595.11859	4837	.329774361	Root MSE = .49255

lwage Coef.			P> t	[33/0 COIII.	Interval]
age .0068006 educ .08455 female educ_fem .0235023 _cons 1.498829	.0005659	12.02	0.000	.0056913	.0079099
	.0034573	24.46	0.000	.077772	.0913279
	.0743861	-7.70	0.000	7183901	4267289
	.0052602	4.47	0.000	.01319	.0338146
	.0519311	28.86	0.000	1.397021	1.600638

Interpretation of estimates

- $\widehat{eta_2}=0.085$: men earn 8.5% higher wages for each additional year of education, cet. par.
- ▶ $\widehat{\beta_3} = -0.57$: women have a 57% lower wage intercept than men (i.e. earn 57% lower wages than men at an age and education of 0)
- $\widehat{eta_4}=0.024$: compared to men, women earn 2.4 percentage points higher wages for each additional year of education, cet. par.
- ▶ $\widehat{\beta_2} + \widehat{\beta_4} = 0.085 + 0.024 = 0.109$: women earn 10.9% higher wages for each additional year of education, cet. par.

Intercept and slope dummies visualized

$$ln\ wage_i = 1.50 + 0.01$$
age $+0.08$ educ $_i - 0.57$ fem $_i + 0.02$ educ $_i \times$ fem $_i$

Intercept difference is -0.57; slope difference is 0.02.

A Mincer model with an interaction term

$$\mathsf{In}\ \textit{wage}_{\textit{i}} = \beta_0 + \beta_1 \textit{age}_{\textit{i}} + \beta_2 \textit{educ}_{\textit{i}} + \beta_3 \textit{fem}_{\textit{i}} + \beta_4 \textit{educ}_{\textit{i}} \times \textit{fem}_{\textit{i}} + \epsilon_{\textit{i}}$$

Rewriting:

In
$$\mathit{wage}_i = (\beta_0 + \beta_3 \mathit{fem}_i) + \beta_1 \mathit{age}_i + (\beta_2 + \beta_4 \mathit{fem}_i) \mathit{educ}_i + \epsilon_i$$

- ▶ If $\beta_3 = 0$, the intercept is the same for men and women
- If $\beta_4 = 0$, the slope (i.e. return to education) is the same for men and women

A Mincer model with an interaction term

In
$$\mathit{wage}_i = (\beta_0 + \beta_3 \mathit{fem}_i) + \beta_1 \mathit{age}_i + (\beta_2 + \beta_4 \mathit{fem}_i) \mathit{educ}_i + \epsilon_i$$

Possible hypothesis tests:

- Same intercept (different slopes are allowed): $H_0: \beta_3 = 0$, $H_A: \beta_3 \neq 0$
- Same slope (different intercepts are allowed): $H_0: \beta_4=0$, $H_A: \beta_4 \neq 0$
- ▶ Same intercept and same slope: $H_0: \beta_3 = \beta_4 = 0, H_A: H_0$ not true

Hypothesis tests

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0068006	.0005659	12.02	0.000	.0056913	.0079099
educ	.08455	.0034573	24.46	0.000	.077772	.0913279
female	5725595	.0743861	-7.70	0.000	7183901	4267289
educ_fem	.0235023	.0052602	4.47	0.000	.01319	.0338146
_cons	1.498829	.0519311	28.86	0.000	1.397021	1.600638

- . test female educ_fem
- (1) female = 0
 (2) educ_fem = 0
 - F(2, 4833) = 160.38 Prob > F = 0.0000

 H_0 : $\beta_3 = 0 \rightarrow H_0$ rejected

 H_0 : $\beta_{\Delta} = 0 \rightarrow H_0$ rejected

 H_0 : $\beta_3 = \beta_4 = 0 \rightarrow H_0$ rejected

Metrics Lecture 4

Interaction terms

Between 2 continuous variables

Note: I include this discussion of interaction terms between 2 continuous variables in case you need this for your paper / BSc thesis; I won't ask it on the exam.

Interaction between continuous variables

Model with an **interaction term** in X_1 and X_2 (and neither is a dummy variable)

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i} + \varepsilon_i$$

Marginal effect of X_1 on Y is the first partial derivative of Y wrt X_1

$$\frac{\partial Y_i}{\partial X_{1i}} = \beta_1 + \beta_3 X_{2i}$$

So for each value of X_2 there is a different marginal effect of X_1 on Y: we can show all these different marginal effects in a histogram; or calculate value for the average value of X_2 .

$$wage_i = \beta_0 + \beta_1 age_i + \beta_2 nrkids_i + \beta_3 age_i \times nrkids_i + \varepsilon_i$$

The effect of the number of children someone has on their wages is given by

$$\frac{\partial wage_i}{\partial nrkids_i} = \beta_2 + \beta_3 age_i$$

The average effect is

$$\beta_2 + \beta_3 \overline{age}$$

variable name	storage type	display format	value label	variable label
wage age nkids	byte	%10.0g %8.0g %8.0g		earnings per hour age in years number of children living with

- . gen age_nkids=age*nkids
- . reg wage age nkids age_nkids

_	Source	SS	df	MS	Number of obs = F(3, 4834) =	
	Model Residual	29722.1111 730152.598			Prob > F = (R-squared = (Adj R-squared = (0.0000
	Total	759874.709	4837	157.096281	Root MSE =	

	wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	age	.1386198	.0154784	8.96	0.000	.1082752	.1689644
	nkids	-4.41183	.7807822	-5.65	0.000	-5.942519	-2.881142
	_nkids	.1323203	.0197556	6.70	0.000	.0935904	.1710502
	_cons	13.79807	.7164421	19.26	0.000	12.39352	15.20262

- . gen effect=-4.41183+.1323203 *age
- . sum effect

Variable	Obs	Mean	Std. Dev.	Min	Max
effect	4838	1.224227	1.665623	-1.633104	6.835395

► Interpretation: the negative effect of having children on wages decreases with age

$$\frac{\partial wage_i}{\partial nrkids_i} = -4.41 + 0.13age_i$$

. sum age					
Variable	Obs	Mean	Std. Dev.	Min	Max
age	4838	42.59405	12.58781	21	85

- ► The effect at the average age (42.6) is positive: having one more child increases hourly wages with \$1.22.
- ► The effect becomes positive at an age of 33.92 (before that age, having children decreases wages)

$$-4.41 + 0.13age^* = 0$$

$$\Leftrightarrow age^* = \frac{4.41}{0.13} = 33.92$$

The predicted effect of having one more child on wages for different ages can also be graphed:

Differences across groups

We have seen:

 How including a dummy variable allows for a different intercept between two groups (example: men and women)

In
$$wage_i = eta_0 + eta_1 age_i + eta_2 educ_i + eta_3 fem_i + arepsilon_i$$

How additionally including an interaction term allows for a different intercept and 1 different slope between two groups:

$$\ln wage_i = \left\{ \begin{array}{c} \beta_0 + \beta_1 age_i + \beta_2 educ_i + \beta_3 fem_i \\ + \beta_4 educ_i \times fem_i + \varepsilon_i \end{array} \right\}$$

Sometimes, we want to an even more flexible specification: we want to allow two groups to have completely different regression equations, i.e. allowing the intercept and all slopes to differ.

Differences in regression equations across groups

Consider the following Mincer model:

In
$$wage_i = \beta_0 + \beta_1 age_i + \beta_2 educ_i + \varepsilon_i$$

To allow both the intercept & all coefficients of this Mincer model to differ between men and women, we can write **equations separately for men and women**:

In
$$wage_i = \beta_0^M + \beta_1^M age_i + \beta_2^M educ_i + \varepsilon_i$$
 for males
In $wage_i = \beta_0^F + \beta_1^F age_i + \beta_2^F educ_i + \varepsilon_i$ for females

Testing differences in regression equations across groups: Chow test

Chow test: tests whether groups have different regression functions.

Restricted model:

In
$$wage_i = \beta_0 + \beta_1 age_i + \beta_2 educ_i + \varepsilon_i$$

Unrestricted models:

In
$$wage_i = \beta_0^M + \beta_1^M age_i + \beta_2^M educ_i + \varepsilon_i$$
 for males (1)

In
$$wage_i = \beta_0^F + \beta_1^F age_i + \beta_2^F educ_i + \varepsilon_i$$
 for females (2)

We want to compare the restricted to the unrestricted models: use the Chow test (which is a particular type of F-test).

Chow test

- 1. Write restricted and unrestricted models; define corresponding null and alternative hypotheses.
- 2. Choose a significance level α
- 3. Estimate the restricted and unrestricted models
- 4. Calculate the Chow test statistic, which is an F-statistic comparing the RSS between the restricted and unrestricted models
- 5. Find the critical F-statistic, F_c
- 6. Reject H_0 if $F > F_c$

Chow test: steps 1 & 2

Restricted model:

In
$$wage_i = eta_0 + eta_1 age_i + eta_2 educ_i + arepsilon_i$$

Unrestricted models:

In
$$wage_i = \beta_0^M + \beta_1^M age_i + \beta_2^M educ_i + \varepsilon_i$$
 for males (1)

In
$$wage_i = \beta_0^F + \beta_1^F age_i + \beta_2^F educ_i + \varepsilon_i$$
 for females (2)

Hypotheses:

$$H_0$$
: $\beta_0^M = \beta_0^F$, $\beta_1^M = \beta_1^F$, $\beta_2^M = \beta_2^F$
 H_A : H_0 not true
 $\alpha = 0.05$

Chow test: step 3 - estimate of restricted model

reg lwage age educ

Source	SS	df	MS	Number of obs = $F(2, 4835) =$	
Model Residual	344.778477 1250.34011			Prob > F = R-squared = Adi R-squared =	0.0000 0.2161
Total	1595.11859	4837	.329774361	Root MSE =	

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0061996	.0005816	10.66	0.000	.0050594	.0073397
educ	.0920017	.0026777	34.36	0.000	.0867521	.0972512
_cons	1.298487	.0441869	29.39	0.000	1.21186	1.385113

Chow test: step 3 - estimates of unrestricted models

. reg lwage age educ if female==0 Source | SS df

Source	SS	df	MS
Model Residual	184.315041 597.984653	2 2392	92.1575206 .249993584
Total	782.299694	2394	.326775144

Number of obs	=	2395
F(2, 2392)	=	368.64
Prob > F	=	0.0000
R-squared	=	0.2356
Adj R-squared	=	0.2350
Root MSE	=	.49999

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0081278	.0008216	9.89	0.000	.0065166	.0097389
educ	.0838045	.003525	23.77	0.000	.0768921	.090717
_cons	1.453204	.0564518	25.74	0.000	1.342504	1.563904

. reg lwage age educ if female==1

Source	SS	df	MS
Model Residual	187.800312 573.260221	2 2440	93.9001559 .234942714
Total	761.060533	2442	.3116546

Number of obs	_	2443
F(2, 2440)		399.67
Prob > F	Ξ	0.0000
R-squared	Ξ	0.2468
Adj R-squared		
Root MSE	=	.48471

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age educ cons	.0055318 .1077437 9853033	.0007788 .0038926 .0661849	7.10 27.68 14.89	0.000 0.000 0.000	.0040046 .1001106	.0070589

Chow test: step 4 - calculate the F-stat

$$F = \frac{\left(RSS_M - RSS_1 - RSS_2\right) / (k+1)}{\left(RSS_1 + RSS_2\right) / (n_1 + n_2 - 2(k+1))} \backsim F_{[k+1],[n_1 + n_2 - 2(k+1)]}$$

where

 RSS_M : RSS from restricted model

 RSS_1 : RSS from unrestricted model 1

RSS₂ : RSS from unrestricted model 2

 n_1 : nr of obs from unrestricted model 1

 n_2 : nr of obs from unrestricted model 2

k: nr of parameters (all models have same k)

Chow test: step 4 - calculate the F-stat

$$F = \frac{(RSS_M - RSS_1 - RSS_2) / (k+1)}{(RSS_1 - RSS_2) / (n_1 + n_2 - 2(k+1))}$$

$$= \frac{(1250.34 - 597.98 - 573.26) / (2+1)}{(597.98 + 573.26) / (2395 + 2443 - 2(2+1))}$$

$$= \frac{(1250.34 - 597.98 - 573.26) / 3}{(597.98 + 573.26) / 4832}$$

$$= 108.8$$

Chow test: steps 5 & 6 - compare to critical F-stat

$$F_c = F_{3,4832,0.05} = 2.60$$

$$F > F_c$$
 since $108.8 > 2.60$

Hence reject H_0 : this means we **reject the restricted model in** favor of the unrestricted models.

The conclusion is therefore that men and women have significantly different regression equations.

An alternative procedure to the Chow test

➤ To allow both the intercept & all coefficients of this Mincer model to differ between men and women, we can write equations separately for men and women, as done in the Chow test:

In wage_i =
$$\beta_0^M + \beta_1^M age_i + \beta_2^M educ_i + \varepsilon_i$$
 for males
In wage_i = $\beta_0^F + \beta_1^F age_i + \beta_2^F educ_i + \varepsilon_i$ for females

Or, we could include a dummy for gender and create interactions of all slopes with this gender dummy:

$$\label{eq:loss_state} \begin{aligned} & \text{In wage}_i = \left\{ \begin{array}{c} \beta_0 + \beta_1 \text{age}_i + \beta_2 \text{educ}_i + \beta_3 \text{fem}_i \\ + \beta_4 \text{educ}_i \times \text{fem}_i + \beta_5 \text{age}_i \times \text{fem}_i + \epsilon_i \end{array} \right\} \end{aligned}$$

This combines the two unrestricted models into one model!

An alternative procedure to the Chow test

Restricted model:

In
$$wage_i = \beta_0 + \beta_1 age_i + \beta_2 educ_i + \varepsilon_i$$

Unrestricted model:

$$\label{eq:loss_self_self_self_self} \begin{split} \ln \textit{wage}_i &= \left\{ \begin{array}{c} \beta_0 + \beta_1 \textit{age}_i + \beta_2 \textit{educ}_i + \beta_3 \textit{fem}_i \\ + \beta_4 \textit{educ}_i \times \textit{fem}_i + \beta_5 \textit{age}_i \times \textit{fem}_i + \epsilon_i \end{array} \right\} \end{split}$$

We can now perform a **regular F-test** to see which of these two models is better:

$$H_0$$
 : $\beta_3 = \beta_4 = \beta_5 = 0$
 H_A : H_0 not true

If we reject H_0 , the unrestricted model is better, and we conclude that men and women have different regression equations. We will get **exactly the same F-stat value** as with the Chow test procedure!

An alternative procedure to the Chow test

- . gen age_fem=age*female
- . gen educ_fem=educ*female
- . reg lwage age educ female age_fem educ_fem

Source	SS	df	MS
Model Residual	423.873712 1171.24487	5 4832	84.7747424 .242393393
Total	1595.11859	4837	.329774361

Number of obs	=	4838
F(5, 4832)	=	349.74
Prob > F	=	0.0000
R-squared	=	0.2657
Adj R-squared	=	0.2650
Root MSE	=	.49233

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
age educ female age_fem educ_fem _cons	.0081278 .0838045 4679007 002596 .0239392 1.453204	.000809 .003471 .0872312 .0011315 .0052613	10.05 24.14 -5.36 -2.29 4.55 26.14	0.000 0.000 0.000 0.022 0.000 0.000	.0065417 .0769997 6389135 0048142 .0136247 1.344228	.0097138 .0906094 2968879 0003778 .0342537 1.56218

- . test female age_fem educ_fem

- age_fem = 0 educ_fem = 0

Project paper

Reconsider your specification, improving the functional form by considering the following modifications (i.e. trying them out, but only retaining them when appropriate):

- (Re)scaling of variables?
- Dependent and independent variables in logs or levels?
- Quadratic terms on the right-hand side of the equation?
- Inclusion of dummy variables- categorical or ordinal? Add interpretation of these variables.
- Include an interaction term & its interpretation.
- Perform a Chow test.