Buffer Overflows - Mitigations

Abhishek Bichhawat

01/02/2024

Heartbleed

- **Heartbeats** are used to check if the server and clients are alive
 - echo the message as a keep-alive
- OpenSSL used

memcpy(bp, pl, payload);

- Can send more data than was requested
- Impacted many systems
- Check this

Why do such vulnerabilities exist?

- Programming languages aren't designed with security in mind
- Programmers aren't security aware
- Programs are not implemented in a secure-by-design fashion
- Programming errors that cause bugs

Defenses

- DO NOT use programming languages that aren't designed with security in mind
 - Use memory-safe languages
 - Prevent undefined memory accesses and vulnerabilities
 - Performance might be worse due to garbage collection
 - This may, however, be insignificant in most applications
 - Today's languages have comparable performances
- Programmers should AVOID risky constructs
 - Use APIs that specify bounds instead of the simpler APIs
 - DO NOT trust the inputs add all checks
 - Write memory-safe code
 - Reason about the code (check e.g., F*)

Defenses

- Implement programs in a secure-by-design fashion
 - Include security as a feature of the program
 - Do not depend on untrusted libraries
- Test the programs extensively for programming errors
 - Design tools for analyzing code
 - Bug-finding tools
 - Penetration testing
 - Fuzz testing
- Run in a virtual environment or sandbox to contain the effect

Defenses

- Non-executable buffers
 - Prevent injected code from executing
 - Can affect optimizations
- Array bounds checking
 - Compiler warnings
 - Run-time memory access checks (e.g., Purify)
 - Static analysis (e.g., model checking tools)

Defenses - StackGuard

- Mitigate ways to exploit a vulnerability
 - Stop executing before the exploit "exploits"
 - StackGuard (for stack smashing)
 - Also known as stack canary
 - Place a canary immediately after the return address
 - The canary is a value that we do not care about
 - If the canary does not change, there was no overwrite
 - If the canary dies (changes), there was an overwrite

StackGuard Attacks

- Fixed canary
 - Fixed value for canary
 - Overwrite with the same value or bypass the canary
- Random canary
 - Format string vulnerability
 - Brute-force (works with poorly generated random numbers)
- Terminator canary
 - Use NULL or \r\n or -1 to indicate end of line
 - String functions terminate here (so cannot replace canary value)

StackShield

- Duplicate the stack
- Use return address from the duplicate stack
- Three ways
 - Global return stack
 - Separate stack for return addresses (256 entries)
 - Return range check
 - Global variable that stores the base of the stack
 - Compare before returning; can detect attacks
 - Function pointer protection
 - Function pointers should only point to the text segment
- https://www.angelfire.com/sk/stackshield/

Pointer Authentication Code

- Actual addresses use lesser than 64 bits
- Use the remaining bits to store a pointer authentication code
- Check the code before accessing the address (pointer) value
 - Can do it for different pointers
 - Abort, if invalid
- Uses a secret value (key) to generate the PAC (just like MACs)
- Stored in the CPU
- Different secrets may be used for different types of pointers

Address Space Layout Randomization

 Randomly arrange the various sections of a process' address space in different parts of the memory

Address Space Layout Randomization

 Relative addresses (like the address of Return Instruction Pointer with respect to Stack Frame Pointer) are fixed