Dimensione di Hausdorff e Insiemi di Furstenberg

Tesi di Laurea Triennale

Andrea Rossi

Università di Pisa

30 settembre 2011

Presenteremo le definizioni classiche di:

- Misure di Hausdorff.
- Dimensione di Hausdorff.
- Insieme di Furstenberg.
- Estenderemo in modo opportuno il concetto di misure di Hausdorff.
- Mostreremo un insieme a-dimensionale rispetto a queste misure di Hausdorff estese.
- ▶ Definiremo gli insiemi di Furstenberg generalizzati.
- ▶ Enunceremo due teoremi sugli insiemi di Furstenberg generalizzati.
- ► Come corollario otterremo un risultato importante per quanto riguarda la dimensione di un insieme di Furstenberg classico.

- Presenteremo le definizioni classiche di:
 - Misure di Hausdorff.
 - Dimensione di Hausdorff.
 - Insieme di Furstenberg.
- Estenderemo in modo opportuno il concetto di misure di Hausdorff.
- Mostreremo un insieme a-dimensionale rispetto a queste misure di Hausdorff estese.
- ▶ Definiremo gli insiemi di Furstenberg generalizzati.
- ▶ Enunceremo due teoremi sugli insiemi di Furstenberg generalizzati.
- ► Come corollario otterremo un risultato importante per quanto riguarda la dimensione di un insieme di Furstenberg classico.

- Presenteremo le definizioni classiche di:
 - Misure di Hausdorff.
 - Dimensione di Hausdorff.
 - Insieme di Furstenberg.
- Estenderemo in modo opportuno il concetto di misure di Hausdorff.
- Mostreremo un insieme a-dimensionale rispetto a queste misure di Hausdorff estese.
- ▶ Definiremo gli insiemi di Furstenberg generalizzati.
- ▶ Enunceremo due teoremi sugli insiemi di Furstenberg generalizzati.
- ► Come corollario otterremo un risultato importante per quanto riguarda la dimensione di un insieme di Furstenberg classico.

- ▶ Presenteremo le definizioni classiche di:
 - Misure di Hausdorff.
 - Dimensione di Hausdorff.
 - Insieme di Furstenberg.
- Estenderemo in modo opportuno il concetto di misure di Hausdorff.
- Mostreremo un insieme a-dimensionale rispetto a queste misure di Hausdorff estese.
- ▶ Definiremo gli insiemi di Furstenberg generalizzati.
- ▶ Enunceremo due teoremi sugli insiemi di Furstenberg generalizzati.
- ► Come corollario otterremo un risultato importante per quanto riguarda la dimensione di un insieme di Furstenberg classico.

- Presenteremo le definizioni classiche di:
 - Misure di Hausdorff.
 - Dimensione di Hausdorff.
 - Insieme di Furstenberg.
- ▶ Estenderemo in modo opportuno il concetto di misure di Hausdorff.
- Mostreremo un insieme a-dimensionale rispetto a queste misure di Hausdorff estese.
- ▶ Definiremo gli insiemi di Furstenberg generalizzati.
- ▶ Enunceremo due teoremi sugli insiemi di Furstenberg generalizzati.
- ► Come corollario otterremo un risultato importante per quanto riguarda la dimensione di un insieme di Furstenberg classico.

- Presenteremo le definizioni classiche di:
 - Misure di Hausdorff.
 - Dimensione di Hausdorff.
 - Insieme di Furstenberg.
- Estenderemo in modo opportuno il concetto di misure di Hausdorff.
- ► Mostreremo un insieme *a-dimensionale* rispetto a queste misure di Hausdorff estese.
- ▶ Definiremo gli insiemi di Furstenberg generalizzati.
- ▶ Enunceremo due teoremi sugli insiemi di Furstenberg generalizzati.
- ► Come corollario otterremo un risultato importante per quanto riguarda la dimensione di un insieme di Furstenberg classico.

- Presenteremo le definizioni classiche di:
 - Misure di Hausdorff.
 - Dimensione di Hausdorff.
 - Insieme di Furstenberg.
- Estenderemo in modo opportuno il concetto di misure di Hausdorff.
- ► Mostreremo un insieme *a-dimensionale* rispetto a queste misure di Hausdorff estese.
- ▶ Definiremo gli insiemi di Furstenberg generalizzati.
- ▶ Enunceremo due teoremi sugli insiemi di Furstenberg generalizzati.
- ► Come corollario otterremo un risultato importante per quanto riguarda la dimensione di un insieme di Furstenberg classico.

- Presenteremo le definizioni classiche di:
 - Misure di Hausdorff.
 - Dimensione di Hausdorff.
 - Insieme di Furstenberg.
- ▶ Estenderemo in modo opportuno il concetto di misure di Hausdorff.
- Mostreremo un insieme a-dimensionale rispetto a queste misure di Hausdorff estese.
- Definiremo gli insiemi di Furstenberg generalizzati.
- ▶ Enunceremo due teoremi sugli insiemi di Furstenberg generalizzati.
- ► Come corollario otterremo un risultato importante per quanto riguarda la dimensione di un insieme di Furstenberg classico.

- Presenteremo le definizioni classiche di:
 - Misure di Hausdorff.
 - Dimensione di Hausdorff.
 - Insieme di Furstenberg.
- ▶ Estenderemo in modo opportuno il concetto di misure di Hausdorff.
- Mostreremo un insieme a-dimensionale rispetto a queste misure di Hausdorff estese.
- ▶ Definiremo gli insiemi di Furstenberg generalizzati.
- ▶ Enunceremo due teoremi sugli insiemi di Furstenberg generalizzati.
- ► Come corollario otterremo un risultato importante per quanto riguarda la dimensione di un insieme di Furstenberg classico.

Misure esterne di Hausdorff H_p^* .

Definizione

Se $E \subseteq \mathbb{R}^N$, il *diametro* di E è il numero non negativo (eventualmente infinito)

$$diam \ E = \begin{cases} 0 & \text{se } E = \emptyset \\ \sup \{|x - y| : x, y \in E\} & \text{altrimenti.} \end{cases}$$

Definizione

Sia $E \subseteq \mathbb{R}^N$, e siano $p, \delta \geqslant 0$. Definiamo

$$H_{p,\delta}^*(E) = \inf \left\{ \sum_{n \in \mathbb{N}} (diam \ U_n)^p : U_n \ \text{aperti}, \ diam \ U_n < \delta, \ E \subseteq \bigcup_{n \in \mathbb{N}} U_n \right\}$$

Sia p>0, la misura esterna p-dimensionale di Hausdorff H_p^* è data da

$$H_p^*(E) = \lim_{\epsilon \to 0} H_{p,\delta}^*(E) = \sup_{\epsilon \to 0} H_{p,\delta}^*(E) \qquad \forall E \subseteq \mathbb{R}^N.$$

Misure esterne di Hausdorff H_p^* .

Definizione

Se $E \subseteq \mathbb{R}^N$, il *diametro* di E è il numero non negativo (eventualmente infinito)

$$diam \ E = \begin{cases} 0 & \text{se } E = \emptyset \\ \sup \{|x - y| : x, y \in E\} & \text{altrimenti.} \end{cases}$$

Definizione

Sia $E \subseteq \mathbb{R}^N$, e siano $p, \delta \geqslant 0$. Definiamo

$$H_{p,\delta}^*(E) = \inf \left\{ \sum_{n \in \mathbb{N}} (diam \ U_n)^p : U_n \ \text{aperti}, \ diam \ U_n < \delta, \ E \subseteq \bigcup_{n \in \mathbb{N}} U_n
ight\}.$$

Sia p>0, la misura esterna p-dimensionale di Hausdorff H_p^* è data da

$$H_p^*(E) = \lim_{\epsilon \to \infty} H_{p,\delta}^*(E) = \sup_{\epsilon \to \infty} H_{p,\delta}^*(E) \qquad \forall E \subseteq 0$$

Misure esterne di Hausdorff H_p^* .

Definizione

Se $E \subseteq \mathbb{R}^N$, il *diametro* di E è il numero non negativo (eventualmente infinito)

$$diam \ E = \begin{cases} 0 & \text{se } E = \emptyset \\ \sup \{|x - y| : x, y \in E\} & \text{altrimenti.} \end{cases}$$

Definizione

Sia $E \subseteq \mathbb{R}^N$, e siano $p, \delta \geqslant 0$. Definiamo

$$H_{p,\delta}^*(E)=\inf\left\{\sum_{n\in\mathbb{N}}\left(extit{diam }U_n
ight)^p:U_n ext{ aperti, diam }U_n<\delta,\ E\subseteqigcup_{n\in\mathbb{N}}U_n
ight\}.$$

Sia p>0, la misura esterna p-dimensionale di Hausdorff H_p^* è data da

$$H_p^*(E) = \lim_{\delta \to 0} H_{p,\delta}^*(E) = \sup_{\delta \to 0} H_{p,\delta}^*(E) \qquad \forall E \subseteq \mathbb{R}^N.$$

Proposizione

- H_p^{*} è monotona e numerabilmente subadditiva

Proposizione

- H_p^{*} è monotona e numerabilmente subadditiva

Proposizione

- $\bullet H_p^*(E) \geqslant 0 \qquad \forall E \subseteq \mathbb{R}^N;$
- $P_p^*(\emptyset) = H_p^*(\{x\}) = 0 \qquad \forall x \in \mathbb{R}^N;$
- $\mathfrak{G} H_p^*$ è monotona e numerabilmente subadditiva

Proposizione

$$\bullet H_p^*(E) \geqslant 0 \qquad \forall E \subseteq \mathbb{R}^N;$$

- $P_p^*(\emptyset) = H_p^*(\{x\}) = 0 \qquad \forall x \in \mathbb{R}^N;$
- H_p^{*} è monotona e numerabilmente subadditiva;

Proposizione

Sia p > 0, allora:

- $\bullet H_p^*(E) \geqslant 0 \qquad \forall E \subseteq \mathbb{R}^N;$
- Η_p* è monotona e numerabilmente subadditiva;

university-log

Proposizione

$$\bullet H_p^*(E) \geqslant 0 \qquad \forall E \subseteq \mathbb{R}^N;$$

- H_p è monotona e numerabilmente subadditiva;

Misure di Hausdorff H_p .

Definizione

La classe degli insiemi H_p -misurabili è

$$M_H = \left\{ E \subseteq \mathbb{R}^N : H_p^*(A) = H_p^*(A \cap E) + H_p^*(A \cap E^c) \qquad \forall A \subseteq \mathbb{R}^N \right\}.$$

Definizione

La misura di Hausdorff di indice p è $H_p = H_p^*|_{M_H}$.

Si verifica che M_H è una tribù e che H_p è numerabilmente additiva sugli elementi disgiunti di M_H , quindi H_p è effettivamente una misura.

Proposizione

Per ogni p> 0, si ha $B(\mathbb{R}^N)\subset M_H$, ovvero i boreliani sono H_p -misurabili

Misure di Hausdorff H_p .

Definizione

La classe degli insiemi H_p -misurabili è

$$M_H = \left\{ E \subseteq \mathbb{R}^N : H_p^*(A) = H_p^*(A \cap E) + H_p^*(A \cap E^c) \qquad \forall A \subseteq \mathbb{R}^N \right\}.$$

Definizione

La misura di Hausdorff di indice p è $H_p = H_p^*|_{M_H}$.

Si verifica che M_H è una tribù e che H_p è numerabilmente additiva sugli elementi disgiunti di M_H , quindi H_p è effettivamente una misura.

Proposizione

Per ogni p > 0, si ha $B(\mathbb{R}^N)\subset M_H$, ovvero i boreliani sono H_p -misurabili

Misure di Hausdorff H_p .

Definizione

La classe degli insiemi H_p -misurabili è

$$M_H = \left\{ E \subseteq \mathbb{R}^N : H_p^*(A) = H_p^*(A \cap E) + H_p^*(A \cap E^c) \qquad \forall A \subseteq \mathbb{R}^N \right\}.$$

Definizione

La misura di Hausdorff di indice p è $H_p = H_p^*|_{M_H}$.

Si verifica che M_H è una tribù e che H_p è numerabilmente additiva sugli elementi disgiunti di M_H , quindi H_p è effettivamente una misura.

Proposizione

Per ogni p>0, si ha $B(\mathbb{R}^N)\subset M_H$, ovvero i boreliani sono H_p -misurabili.

university-10g

Fissato $E \subseteq \mathbb{R}^N$, studiamo la misura esterna $H_p^*(E)$ al variare di p > 0.

Proposizione

Per ogni $E \subseteq \mathbb{R}^N$ e per ogni ε positivo

$$H_{N+\varepsilon}^*(E)=0.$$

Consideriamo quindi $H_p^*(E)$ limitandoci ai valori $p \in (0, N]$

Proposizione

Sia $E \subseteq \mathbb{R}^N$ e sia $p \in]0, N]$.

(i) se
$$H_p^*(E) < \infty$$
 allora $H_q^*(E) = 0$ $\forall q \in]p, N]$

(ii) se
$$H_p^*(E) > 0$$
 allora $H_q^*(E) = \infty$ $\forall q \in]0, p[$.

Fissato $E \subseteq \mathbb{R}^N$, studiamo la misura esterna $H_p^*(E)$ al variare di p > 0.

Proposizione

Per ogni $E \subseteq \mathbb{R}^N$ e per ogni ε positivo

$$H_{N+\varepsilon}^*(E)=0.$$

Consideriamo quindi $H_p^*(E)$ limitandoci ai valori $p \in (0, N]$.

Proposizione

Sia $E \subseteq \mathbb{R}^N$ e sia $p \in]0, N]$:

(i) se
$$H_p^*(E) < \infty$$
 allora $H_q^*(E) = 0$ $\forall q \in]p, N]$

(ii) se
$$H_p^*(E)>0$$
 allora $H_q^*(E)=\infty$ $\forall \ q\in]0,p[.$

Fissato $E \subseteq \mathbb{R}^N$, studiamo la misura esterna $H_p^*(E)$ al variare di p > 0.

Proposizione

Per ogni $E \subseteq \mathbb{R}^N$ e per ogni ε positivo

$$H_{N+\varepsilon}^*(E)=0.$$

Consideriamo quindi $H_p^*(E)$ limitandoci ai valori $p \in (0, N]$.

Proposizione

Sia $E \subseteq \mathbb{R}^N$ e sia $p \in]0, N]$:

(i) se
$$H_p^*(E) < \infty$$
 allora $H_q^*(E) = 0$ $\forall \ q \in]p, N];$

(ii) se
$$H_p^*(E) > 0$$
 allora $H_q^*(E) = \infty$ $\forall q \in [0, p[$.

Corollario

Sia $E \subseteq \mathbb{R}^N$ tale che $H_p^*(E)$ non sia identicamente nulla per ogni p > 0, allora esiste $p_0 \in]0, N]$ tale che

$$H_p^*(E) = \begin{cases} \infty & \text{se } 0 p_0 \end{cases}$$

In particolare per ogni $E \subseteq \mathbb{R}^N$ la funzione $p \longmapsto H_p^*(E)$ risulta decrescente in p. Di conseguenza possiamo introdurre il prossimo concetto.

Definizione

Si dice dimensione di Hausdorff di un sottoinsieme E di \mathbb{R}^N , il numero

$$dim_H(E) = \inf \{ p > 0 : H_p^*(E) = 0 \} \in [0, N].$$

Corollario

Sia $E \subseteq \mathbb{R}^N$ tale che $H_p^*(E)$ non sia identicamente nulla per ogni p > 0, allora esiste $p_0 \in]0, N]$ tale che

$$H_p^*(E) = \begin{cases} \infty & \text{se } 0 p_0 \end{cases}$$

In particolare per ogni $E \subseteq \mathbb{R}^N$ la funzione $p \longmapsto H_p^*(E)$ risulta decrescente in p. Di conseguenza possiamo introdurre il prossimo concetto.

Definizione

Si dice dimensione di Hausdorff di un sottoinsieme E di \mathbb{R}^N , il numero

$$dim_H(E) = \inf \{ p > 0 : H_p^*(E) = 0 \} \in [0, N].$$

Osservazione

Notiamo che il concetto di dimensione di Hausdorff vale per ogni $E \subseteq \mathbb{R}^N$, anche non misurabile, perché la definizione si basa sul concetto di misura esterna di Hausdorff, definita per ogni E.

Come da intuito, la dimensione di Hausdorff è monotona, ovvero $E \subset F$ implica $dim_H(E) \leqslant dim_H(F)$: questo deriva dal fatto che H_p^* è monotona. In pratica per dimostrare che un insieme dato E ha una certa dimensione di Hausdorff s è sufficiente verificare che

$$H_r^*(E) = \infty$$
 $\forall r < s$ e $H_t^*(E) = 0$ $\forall t > s$

indipendentemente dal fatto che $H_s^*(E)$ sia nulla, finita positiva o infinita In particolare se $0 < H_s^*(E) < \infty$ allora $dim_H(E) = s$.

university-log

Osservazione

Notiamo che il concetto di dimensione di Hausdorff vale per ogni $E \subseteq \mathbb{R}^N$, anche non misurabile, perché la definizione si basa sul concetto di misura esterna di Hausdorff, definita per ogni E.

Come da intuito, la dimensione di Hausdorff è monotona, ovvero $E \subset F$ implica $dim_H(E) \leqslant dim_H(F)$: questo deriva dal fatto che H_p^* è monotona. In pratica per dimostrare che un insieme dato E ha una certa dimensione di Hausdorff s è sufficiente verificare che

$$H_r^*(E) = \infty$$
 $\forall r < s$ e $H_t^*(E) = 0$ $\forall t > s$,

indipendentemente dal fatto che $H_s^*(E)$ sia nulla, finita positiva o infinita. In particolare se $0 < H_s^*(E) < \infty$ allora $dim_H(E) = s$.

university-log

Il rapporto tra la misura di Hausdorff e quella di Lebesgue

Dopo aver introdotto la dimensione di Hausdorff, mostreremo ora come essa caratterizza gli insiemi non trascurabili rispetto a m_N , ovvero quelli con misura di Lebesgue strettamente positiva.

Teorema

Esiste una costante α_N , che dipende solo da N, tale che per ogni insieme $E \subseteq \mathbb{R}^N$ si ha

$$H_N^*(E) = \alpha_N m_N^*(E)$$

Corollario

Sia $E\subseteq\mathbb{R}^N$ tale che $m_N^*(E)>0$, allora

$$dim_H(E) = N$$

Il rapporto tra la misura di Hausdorff e quella di Lebesgue

Dopo aver introdotto la dimensione di Hausdorff, mostreremo ora come essa caratterizza gli insiemi non trascurabili rispetto a m_N , ovvero quelli con misura di Lebesgue strettamente positiva.

Teorema

Esiste una costante α_N , che dipende solo da N, tale che per ogni insieme $E \subseteq \mathbb{R}^N$ si ha

$$H_N^*(E) = \alpha_N m_N^*(E).$$

Corollario

Sia $E\subseteq\mathbb{R}^N$ tale che $m_N^*(E)>0$, allora

$$dim_H(E) = N$$

university-log

Il rapporto tra la misura di Hausdorff e quella di Lebesgue

Dopo aver introdotto la dimensione di Hausdorff, mostreremo ora come essa caratterizza gli insiemi non trascurabili rispetto a m_N , ovvero quelli con misura di Lebesgue strettamente positiva.

Teorema

Esiste una costante α_N , che dipende solo da N, tale che per ogni insieme $E \subseteq \mathbb{R}^N$ si ha

$$H_N^*(E) = \alpha_N m_N^*(E).$$

Corollario

Sia $E \subseteq \mathbb{R}^N$ tale che $m_N^*(E) > 0$, allora

$$dim_H(E) = N$$
.

university-log

In seguito al corollario limiteremo la nostra attenzione alla dimensione di Hausdorff degli insiemi di misura nulla secondo Lebesgue, e vedremo con alcuni esempi come tale dimensione riesca a catalogare e distinguere questi insiemi:

- ightharpoonup sia $M \subset \mathbb{R}^N$ tale che $m_N^*(M) > 0$, allora M ha dimensione N;
- ightharpoonup ogni insieme numerabile $E \subset \mathbb{R}^N$ ha dimensione 0
- ▶ il supporto $\Gamma = \varphi([a,b]) \subset \mathbb{R}^N$ di ogni curva semplice di classe C^1 ha dimensione 1;

In seguito al corollario limiteremo la nostra attenzione alla dimensione di Hausdorff degli insiemi di misura nulla secondo Lebesgue, e vedremo con alcuni esempi come tale dimensione riesca a catalogare e distinguere questi insiemi:

- ▶ sia $M \subset \mathbb{R}^N$ tale che $m_N^*(M) > 0$, allora M ha dimensione N;
- ▶ ogni insieme numerabile $E \subset \mathbb{R}^N$ ha dimensione 0;
- ▶ il supporto $\Gamma = \varphi([a, b]) \subset \mathbb{R}^N$ di ogni curva semplice di classe C^1 ha dimensione 1;

In seguito al corollario limiteremo la nostra attenzione alla dimensione di Hausdorff degli insiemi di misura nulla secondo Lebesgue, e vedremo con alcuni esempi come tale dimensione riesca a catalogare e distinguere questi insiemi:

- ▶ sia $M \subset \mathbb{R}^N$ tale che $m_N^*(M) > 0$, allora M ha dimensione N;
- ▶ ogni insieme numerabile $E \subset \mathbb{R}^N$ ha dimensione 0;
- ▶ il supporto $\Gamma = \varphi([a,b]) \subset \mathbb{R}^N$ di ogni curva semplice di classe C^1 ha

In seguito al corollario limiteremo la nostra attenzione alla dimensione di Hausdorff degli insiemi di misura nulla secondo Lebesgue, e vedremo con alcuni esempi come tale dimensione riesca a catalogare e distinguere questi insiemi:

- ▶ sia $M \subset \mathbb{R}^N$ tale che $m_N^*(M) > 0$, allora M ha dimensione N;
- ▶ ogni insieme numerabile $E \subset \mathbb{R}^N$ ha dimensione 0;
- ▶ il supporto $\Gamma = \varphi([a,b]) \subset \mathbb{R}^N$ di ogni curva semplice di classe C^1 ha dimensione 1;

Un esempio di dimensione non intera: l'insieme di Cantor

Sia $C \subset \mathbb{R}$ l'insieme di Cantor ottenuto togliendo da [0,1] al primo passo l'intervallo (aperto) centrale di ampiezza 1/3, e ricorsivamente al k-esimo passo togliendo da ogni sottointervallo residuo l'intervallo (aperto) centrale di ampiezza $(1/3)^k$.

Figura: I primi cinque passi dell'iterazione.

Proposizione

L'insieme di Cantor ha dimensione $\frac{\log 2}{\log 3}$

Un esempio di dimensione non intera: l'insieme di Cantor

Sia $C \subset \mathbb{R}$ l'insieme di Cantor ottenuto togliendo da [0,1] al primo passo l'intervallo (aperto) centrale di ampiezza 1/3, e ricorsivamente al k-esimo passo togliendo da ogni sottointervallo residuo l'intervallo (aperto) centrale di ampiezza $(1/3)^k$.

Figura: I primi cinque passi dell'iterazione.

Proposizione

L'insieme di Cantor ha dimensione $\frac{\log 2}{\log 3}$.

Insiemi di Furstenberg

Presentiamo adesso una classe di particolari sottoinsiemi del piano euclideo, la cui definizione si basa sul concetto di dimensione di Hausdorff.

Definizione

Sia $\alpha \in]0,1]$, un sottoinsieme $E \subseteq \mathbb{R}^2$ si dice insieme di Furstenberg di tipo α (oppure insieme F_{α}) se, per ogni direzione e nel cerchio unitario, esiste un segmento l_e nella direzione di e tale che $dim_H(l_e \cap E) \geqslant \alpha$. Diremo anche che in tal caso E appartiene alla classe F_{α} .

Insiemi di Furstenberg

Presentiamo adesso una classe di particolari sottoinsiemi del piano euclideo, la cui definizione si basa sul concetto di dimensione di Hausdorff.

Definizione

Sia $\alpha \in]0,1]$, un sottoinsieme $E \subseteq \mathbb{R}^2$ si dice insieme di Furstenberg di tipo α (oppure insieme F_{α}) se, per ogni direzione e nel cerchio unitario, esiste un segmento l_e nella direzione di e tale che $dim_H(l_e \cap E) \geqslant \alpha$. Diremo anche che in tal caso E appartiene alla classe F_{α} .

Funzioni dimensione

Definizione

Una funzione $h:[0,\infty)\longrightarrow [0,\infty)$ è chiamata funzione dimensione se

$$h(0) = 0, \ h(t) > 0$$
 per $t > 0, \ h$ è crescente e continua a destra.

Denotiamo con \mathbb{H} la classe delle funzioni dimensione.

Definizione

Siano g,h due funzioni dimensione. Diremo che g è dimensionalmente più piccola di h e scriveremo $g \prec h$ se e solo se

$$\lim_{x \to 0^+} \frac{h(x)}{g(x)} = 0$$

Funzioni dimensione

Definizione

Una funzione $h:[0,\infty)\longrightarrow [0,\infty)$ è chiamata funzione dimensione se

$$h(0) = 0, \ h(t) > 0$$
 per $t > 0, \ h$ è crescente e continua a destra.

Denotiamo con \mathbb{H} la classe delle funzioni dimensione.

Definizione

Siano g,h due funzioni dimensione. Diremo che g è dimensionalmente più piccola di h e scriveremo $g \prec h$ se e solo se

$$\lim_{x \to 0^+} \frac{h(x)}{g(x)} = 0$$

Possiamo ora definire le misure esterne di Hausdorff H^h , dove $h \in \mathbb{H}$, analogamente al caso classico.

Definizione

Siano $E \subseteq \mathbb{R}^N$, $\delta > 0$ e h una funzione dimensione. Definiamo

$$H^h_\delta(E)=\inf\left\{\sum_{n\in\mathbb{N}}h(diam\ U_n):U_n\ \mathrm{aperti},\ diam\ U_n<\delta,\ E\subseteq\bigcup_{n\in\mathbb{N}}U_n
ight\}.$$

La misura esterna h-dimensionale di Hausdorff di $E \subseteq \mathbb{R}^N$ è

$$H^h(E) = \lim_{\delta \to 0^+} H^h_{\delta}(E) = \sup_{\delta > 0} H^h_{\delta}(E)$$

Possiamo ora definire le misure esterne di Hausdorff H^h , dove $h \in \mathbb{H}$, analogamente al caso classico.

Definizione

Siano $E \subseteq \mathbb{R}^N$, $\delta > 0$ e h una funzione dimensione. Definiamo

$$H^h_\delta(E)=\inf\left\{\sum_{n\in\mathbb{N}}h(ext{diam }U_n):U_n ext{ aperti, diam }U_n<\delta,\ E\subseteq\bigcup_{n\in\mathbb{N}}U_n
ight\}.$$

La misura esterna h-dimensionale di Hausdorff di $E \subseteq \mathbb{R}^N$ è

$$H^h(E) = \lim_{\delta \to 0^+} H^h_{\delta}(E) = \sup_{\delta > 0} H^h_{\delta}(E).$$

Osservazione

Notiamo come si tratti effettivamente di un'estensione delle definizioni precedenti, nel senso che la definizione usuale di misura esterna di Hausdorff $H_p^*(p>0)$ si ottiene per $h_p(x)=x^p$, che è proprio una funzione dimensione. Analogamente per ogni $E\subseteq\mathbb{R}^N$ la funzione $h\longmapsto H^h(E)$ risulta decrescente in h, ovvero se $g\prec h$ allora $H^h(E)\leqslant H^g(E)$.

Come vedremo, non è vero in generale che, dato un insieme E, esista una funzione $h \in \mathbb{H}$ tale che

$$H^{g}(E) = \begin{cases} \infty & \text{se } g \prec h \\ 0 & \text{se } g \succ h \end{cases}$$

ovvero con questa estensione alle misure H^h perdiamo l'analogo della dimensione di Hausdorff, che invece esiste per ogni insieme E nella definizione standard

Osservazione

Notiamo come si tratti effettivamente di un'estensione delle definizioni precedenti, nel senso che la definizione usuale di misura esterna di Hausdorff $H_p^*(p>0)$ si ottiene per $h_p(x)=x^p$, che è proprio una funzione dimensione. Analogamente per ogni $E\subseteq\mathbb{R}^N$ la funzione $h\longmapsto H^h(E)$ risulta decrescente in h, ovvero se $g\prec h$ allora $H^h(E)\leqslant H^g(E)$.

Come vedremo, non è vero in generale che, dato un insieme E, esista una funzione $h \in \mathbb{H}$ tale che

$$H^{g}(E) = \begin{cases} \infty & \text{se } g \prec h \\ 0 & \text{se } g \succ h \end{cases}$$

ovvero con questa estensione alle misure H^h perdiamo l'analogo della dimensione di Hausdorff, che invece esiste per ogni insieme E nella definizione standard

Osservazione

Notiamo come si tratti effettivamente di un'estensione delle definizioni precedenti, nel senso che la definizione usuale di misura esterna di Hausdorff $H_p^*(p>0)$ si ottiene per $h_p(x)=x^p$, che è proprio una funzione dimensione. Analogamente per ogni $E\subseteq\mathbb{R}^N$ la funzione $h\longmapsto H^h(E)$ risulta decrescente in h, ovvero se $g\prec h$ allora $H^h(E)\leqslant H^g(E)$.

Come vedremo, non è vero in generale che, dato un insieme E, esista una funzione $h \in \mathbb{H}$ tale che

$$H^{g}(E) = \begin{cases} \infty & \text{se } g \prec h \\ 0 & \text{se } g \succ h \end{cases}$$

ovvero con questa estensione alle misure H^h perdiamo l'analogo della dimensione di Hausdorff, che invece esiste per ogni insieme E nella definizione standard.

Teorema

Sia $h \in \mathbb{H}$ tale che $H^h(E) = 0$, allora

$$\exists g \prec h (g \in \mathbb{H}): H^g(E) = 0.$$

Teorema

Sia $E \subset \mathbb{R}^N$ un insieme boreliano. Se $h \in \mathbb{H}$ è tale che E ha misura H^h non σ -finita allora esiste $g \succ h$ ($g \in \mathbb{H}$) tale che E ha misura H^g non σ -finita.

Teorema

Sia $h \in \mathbb{H}$ tale che $H^h(E) = 0$, allora

$$\exists g \prec h \ (g \in \mathbb{H}): \quad H^g(E) = 0.$$

Teorema

Sia $E \subset \mathbb{R}^N$ un insieme boreliano. Se $h \in \mathbb{H}$ è tale che E ha misura H^h non σ -finita allora esiste $g \succ h$ ($g \in \mathbb{H}$) tale che E ha misura H^g non σ -finita.

Corollario

Se per un boreliano $E \subset \mathbb{R}^{\mathbb{N}}$ esiste $h \in \mathbb{H}$ tale che

$$H^g(E) > 0 \quad \forall g \prec h, \qquad \qquad H^g(E) = 0 \quad \forall g \succ h,$$

allora E ha misura H^h positiva e σ -finita.

Definizione

Se E è un boreliano che verifica le ipotesi del corollario, esso si dice h-set; viceversa, se per ogni $h \in \mathbb{H}$ E non è un h-set, E si dice a-dimensionale.

Il corollario è importante in quanto ci permetterà di mostrare un esempio di insieme a-dimensionale: l'insieme dei numeri di Liouville.

Corollario

Se per un boreliano $E \subset \mathbb{R}^{\mathbb{N}}$ esiste $h \in \mathbb{H}$ tale che

$$H^g(E) > 0 \quad \forall g \prec h, \qquad \qquad H^g(E) = 0 \quad \forall g \succ h,$$

allora E ha misura H^h positiva e σ -finita.

Definizione

Se E è un boreliano che verifica le ipotesi del corollario, esso si dice h-set; viceversa, se per ogni $h \in \mathbb{H}$ E non è un h-set, E si dice a-dimensionale.

Il corollario è importante in quanto ci permetterà di mostrare un esempio di insieme a-dimensionale: l'insieme dei numeri di Liouville.

Corollario

Se per un boreliano $E \subset \mathbb{R}^{\mathbb{N}}$ esiste $h \in \mathbb{H}$ tale che

$$H^g(E) > 0 \quad \forall g \prec h, \qquad \qquad H^g(E) = 0 \quad \forall g \succ h,$$

allora E ha misura H^h positiva e σ -finita.

Definizione

Se E è un boreliano che verifica le ipotesi del corollario, esso si dice h-set; viceversa, se per ogni $h \in \mathbb{H}$ E non è un h-set, E si dice a-dimensionale.

Il corollario è importante in quanto ci permetterà di mostrare un esempio di insieme a-dimensionale: l'insieme dei numeri di Liouville.

Definizione

Chiamiamo insieme dei numeri di Liouville

$$\mathbb{L} = \left\{ x \in \mathbb{R} : \quad \forall n \in \mathbb{N}_0, \ \exists \ p, q \in \mathbb{Z} \ (q \geqslant 2) : \quad 0 < \left| x - \frac{p}{q} \right| < \frac{1}{q^n} \right\}.$$

Proposizione

L'insieme L ha le seguenti proprietà.

- ① $\emptyset \neq \mathbb{L} \subset \mathbb{Q}^c$, cioè i numeri di Liouville sono irrazionali;

- L ha misura m di Lebesgue nulla;

Definizione

Chiamiamo insieme dei numeri di Liouville

$$\mathbb{L} = \left\{ x \in \mathbb{R} : \forall n \in \mathbb{N}_0, \ \exists \ p, q \in \mathbb{Z} \ (q \geqslant 2) : \quad 0 < \left| x - \frac{p}{q} \right| < \frac{1}{q^n} \right\}.$$

Proposizione

- $\emptyset \neq \mathbb{L} \subset \mathbb{Q}^c$, cioè i numeri di Liouville sono irrazionali

- L ha misura m di Lebesgue nulla,
- **⑤** \mathbb{L} è periodico mod \mathbb{Q} : $\mathbb{L} + q = \mathbb{L}$ \forall $q ∈ \mathbb{Q}$

Definizione

Chiamiamo insieme dei numeri di Liouville

$$\mathbb{L} = \left\{ x \in \mathbb{R} : \quad \forall n \in \mathbb{N}_0, \ \exists \ p, q \in \mathbb{Z} \ (q \geqslant 2) : \quad 0 < \left| x - \frac{p}{q} \right| < \frac{1}{q^n} \right\}.$$

Proposizione

- $\emptyset \neq \mathbb{L} \subset \mathbb{Q}^c$, cioè i numeri di Liouville sono irrazionali;

- L ha misura m di Lebesgue nulla
- **⑤** \mathbb{L} è periodico mod \mathbb{Q} : $\mathbb{L} + q = \mathbb{L}$ \forall $q ∈ \mathbb{Q}$

Definizione

Chiamiamo insieme dei numeri di Liouville

$$\mathbb{L} = \left\{ x \in \mathbb{R} : \quad \forall n \in \mathbb{N}_0, \ \exists \ p, q \in \mathbb{Z} \ (q \geqslant 2) : \quad 0 < \left| x - \frac{p}{q} \right| < \frac{1}{q^n} \right\}.$$

Proposizione

- $\emptyset \neq \mathbb{L} \subset \mathbb{Q}^c$, cioè i numeri di Liouville sono irrazionali;
- **2** \mathbb{L} è un insieme G_{δ} , quindi boreliano;
- \odot L è denso in \mathbb{R} ;
- L ha misura m di Lebesgue nulla,
- $\textbf{ § } \mathbb{L} \text{ è periodico mod } \mathbb{Q}: \quad \mathbb{L}+q=\mathbb{L} \quad \forall \ q\in\mathbb{Q}$

Definizione

Chiamiamo insieme dei numeri di Liouville

$$\mathbb{L} = \left\{ x \in \mathbb{R} : \quad \forall n \in \mathbb{N}_0, \ \exists \ p, q \in \mathbb{Z} \ (q \geqslant 2) : \quad 0 < \left| x - \frac{p}{q} \right| < \frac{1}{q^n} \right\}.$$

Proposizione

- $\emptyset \neq \mathbb{L} \subset \mathbb{Q}^c$, cioè i numeri di Liouville sono irrazionali;
- **2** \mathbb{L} è un insieme G_{δ} , quindi boreliano;
- \bullet L è denso in \mathbb{R} ;
- L ha misura m di Lebesgue nulla
- **⑤** \mathbb{L} è periodico mod \mathbb{Q} : $\mathbb{L} + q = \mathbb{L}$ \forall $q ∈ \mathbb{Q}$

Definizione

Chiamiamo insieme dei numeri di Liouville

$$\mathbb{L} = \left\{ x \in \mathbb{R} : \quad \forall n \in \mathbb{N}_0, \ \exists \ p, q \in \mathbb{Z} \ (q \geqslant 2) : \quad 0 < \left| x - \frac{p}{q} \right| < \frac{1}{q^n} \right\}.$$

Proposizione

- $\emptyset \neq \mathbb{L} \subset \mathbb{Q}^c$, cioè i numeri di Liouville sono irrazionali;
- **2** \mathbb{L} è un insieme G_{δ} , quindi boreliano;
- \bullet L è denso in \mathbb{R} ;
- L ha misura m di Lebesgue nulla;

Definizione

Chiamiamo insieme dei numeri di Liouville

$$\mathbb{L} = \left\{ x \in \mathbb{R} : \quad \forall n \in \mathbb{N}_0, \ \exists \ p, q \in \mathbb{Z} \ (q \geqslant 2) : \quad 0 < \left| x - \frac{p}{q} \right| < \frac{1}{q^n} \right\}.$$

Proposizione

- $\emptyset \neq \mathbb{L} \subset \mathbb{Q}^c$, cioè i numeri di Liouville sono irrazionali;
- **2** \mathbb{L} è un insieme G_{δ} , quindi boreliano;
- \bullet L è denso in \mathbb{R} ;
- L ha misura m di Lebesgue nulla;
- **5** \mathbb{L} è periodico mod \mathbb{Q} : $\mathbb{L} + q = \mathbb{L} \quad \forall \ q \in \mathbb{Q}$.

Per mostrare che $\mathbb L$ è un insieme a-dimensionale, dobbiamo utilizzare delle interessanti proprietà di cui godono le misure di Borel su $\mathbb R$.

Indichiamo con int(A) la parte interna dell'insieme A, definiamo $A + B = \{a + b : a \in A, b \in B\}, A + t = \{a + t : a \in A\}.$

Teorema

Sia $B \subset \mathbb{R}$ un boreliano di misura di Lebesgue nulla e μ una misura boreliana (cioè definita su una tribù contenente i boreliani) su \mathbb{R} tale che B abbia misura μ positiva e σ -finita. Allora esiste un compatto $C \subset B$ con $\mu(C) > 0$ e int $(C - C) = \emptyset$.

Teorema

Sia B un insieme G_δ denso tale che $\{t \in \mathbb{R} : B + t \subset B\}$ sia denso in \mathbb{R} e sia $C \subset B$ un compatto con int $(C - C) = \emptyset$. Allora B contiene una quantità più che numerabile di traslati disgiunti di C.

Per mostrare che $\mathbb L$ è un insieme a-dimensionale, dobbiamo utilizzare delle interessanti proprietà di cui godono le misure di Borel su $\mathbb R$.

Indichiamo con int(A) la parte interna dell'insieme A, definiamo $A + B = \{a + b : a \in A, b \in B\}, A + t = \{a + t : a \in A\}.$

Teorema

Sia $B \subset \mathbb{R}$ un boreliano di misura di Lebesgue nulla e μ una misura boreliana (cioè definita su una tribù contenente i boreliani) su \mathbb{R} tale che B abbia misura μ positiva e σ -finita. Allora esiste un compatto $C \subset B$ con $\mu(C) > 0$ e int $(C - C) = \emptyset$.

Teorema

Sia B un insieme G_{δ} denso tale che $\{t \in \mathbb{R} : B + t \subset B\}$ sia denso in \mathbb{R} e sia $C \subset B$ un compatto con int $(C - C) = \emptyset$. Allora B contiene una quantità più che numerabile di traslati disgiunti di C.

Per mostrare che $\mathbb L$ è un insieme a-dimensionale, dobbiamo utilizzare delle interessanti proprietà di cui godono le misure di Borel su $\mathbb R$.

Indichiamo con int(A) la parte interna dell'insieme A, definiamo $A + B = \{a + b : a \in A, b \in B\}, A + t = \{a + t : a \in A\}.$

Teorema

Sia $B \subset \mathbb{R}$ un boreliano di misura di Lebesgue nulla e μ una misura boreliana (cioè definita su una tribù contenente i boreliani) su \mathbb{R} tale che B abbia misura μ positiva e σ -finita. Allora esiste un compatto $C \subset B$ con $\mu(C) > 0$ e int $(C - C) = \emptyset$.

Teorema

Sia B un insieme G_δ denso tale che $\{t\in\mathbb{R}:B+t\subset B\}$ sia denso in \mathbb{R} e sia $C\subset B$ un compatto con int $(C-C)=\emptyset$. Allora B contiene una quantità più che numerabile di traslati disgiunti di C.

Per mostrare che $\mathbb L$ è un insieme a-dimensionale, dobbiamo utilizzare delle interessanti proprietà di cui godono le misure di Borel su $\mathbb R$.

Indichiamo con int(A) la parte interna dell'insieme A, definiamo $A + B = \{a + b : a \in A, b \in B\}, A + t = \{a + t : a \in A\}.$

Teorema

Sia $B \subset \mathbb{R}$ un boreliano di misura di Lebesgue nulla e μ una misura boreliana (cioè definita su una tribù contenente i boreliani) su \mathbb{R} tale che B abbia misura μ positiva e σ -finita. Allora esiste un compatto $C \subset B$ con $\mu(C) > 0$ e int $(C - C) = \emptyset$.

Teorema

Sia B un insieme G_δ denso tale che $\{t \in \mathbb{R} : B + t \subset B\}$ sia denso in \mathbb{R} e sia $C \subset B$ un compatto con int $(C - C) = \emptyset$. Allora B contiene una quantità più che numerabile di traslati disgiunti di C.

Per mostrare che $\mathbb L$ è un insieme a-dimensionale, dobbiamo utilizzare delle interessanti proprietà di cui godono le misure di Borel su $\mathbb R$.

Indichiamo con int(A) la parte interna dell'insieme A, definiamo $A + B = \{a + b : a \in A, b \in B\}, A + t = \{a + t : a \in A\}.$

Teorema

Sia $B \subset \mathbb{R}$ un boreliano di misura di Lebesgue nulla e μ una misura boreliana (cioè definita su una tribù contenente i boreliani) su \mathbb{R} tale che B abbia misura μ positiva e σ -finita. Allora esiste un compatto $C \subset B$ con $\mu(C) > 0$ e int $(C - C) = \emptyset$.

Teorema

Sia B un insieme G_δ denso tale che $\{t \in \mathbb{R} : B + t \subset B\}$ sia denso in \mathbb{R} e sia $C \subset B$ un compatto con int $(C - C) = \emptyset$. Allora B contiene una quantità più che numerabile di traslati disgiunti di C.

Per mostrare che $\mathbb L$ è un insieme a-dimensionale, dobbiamo utilizzare delle interessanti proprietà di cui godono le misure di Borel su $\mathbb R$.

Indichiamo con int(A) la parte interna dell'insieme A, definiamo $A + B = \{a + b : a \in A, b \in B\}, A + t = \{a + t : a \in A\}.$

Teorema

Sia $B \subset \mathbb{R}$ un boreliano di misura di Lebesgue nulla e μ una misura boreliana (cioè definita su una tribù contenente i boreliani) su \mathbb{R} tale che B abbia misura μ positiva e σ -finita. Allora esiste un compatto $C \subset B$ con $\mu(C) > 0$ e int $(C - C) = \emptyset$.

Teorema

Sia B un insieme G_δ denso tale che $\{t \in \mathbb{R} : B+t \subset B\}$ sia denso in \mathbb{R} e sia $C \subset B$ un compatto con int $(C-C)=\emptyset$. Allora B contiene una quantità più che numerabile di traslati disgiunti di C.

Grazie ai due teoremi appena enunciati otteniamo

Teorema

Sia $B \subset \mathbb{R}$ un insieme (non vuoto) G_{δ} di misura di Lebesgue nulla, e supponiamo che $\{t \in \mathbb{R} : B+t \subset B\}$ sia denso in \mathbb{R} . Allora per ogni misura μ boreliana su \mathbb{R} e invariante per traslazioni si ha o $\mu(B)=0$ oppure B ha misura μ non σ -finita.

Corollario

Grazie ai due teoremi appena enunciati otteniamo

Teorema

Sia $B \subset \mathbb{R}$ un insieme (non vuoto) G_{δ} di misura di Lebesgue nulla, e supponiamo che $\{t \in \mathbb{R} : B+t \subset B\}$ sia denso in \mathbb{R} . Allora per ogni misura μ boreliana su \mathbb{R} e invariante per traslazioni si ha o $\mu(B)=0$ oppure B ha misura μ non σ -finita.

Corollario

Grazie ai due teoremi appena enunciati otteniamo

Teorema

Sia $B \subset \mathbb{R}$ un insieme (non vuoto) G_{δ} di misura di Lebesgue nulla, e supponiamo che $\{t \in \mathbb{R} : B+t \subset B\}$ sia denso in \mathbb{R} . Allora per ogni misura μ boreliana su \mathbb{R} e invariante per traslazioni si ha o $\mu(B)=0$ oppure B ha misura μ non σ -finita.

Corollario

Grazie ai due teoremi appena enunciati otteniamo

Teorema

Sia $B \subset \mathbb{R}$ un insieme (non vuoto) G_{δ} di misura di Lebesgue nulla, e supponiamo che $\{t \in \mathbb{R} : B+t \subset B\}$ sia denso in \mathbb{R} . Allora per ogni misura μ boreliana su \mathbb{R} e invariante per traslazioni si ha o $\mu(B)=0$ oppure B ha misura μ non σ -finita.

Corollario

Insiemi di Furstenberg generalizzati

Definizione

Sia $h \in \mathbb{H}$, un sottoinsieme $E \subseteq \mathbb{R}^2$ si dice *insieme di Furstenberg di tipo* h, o insieme F_h , se per ogni direzione $e \in \mathbb{S}^1$ esiste un segmento I_e nella direzione di e tale che $H^h(I_e \cap E) > 0$.

Insiemi di Furstenberg generalizzati

Definizione

$$\mathbb{H}_d = \{ h \in \mathbb{H} : \ h(2x) \leqslant Ch(x) \ \text{per qualche } C > 0 \}.$$

Definizione

Date due funzioni $g,h\in\mathbb{H}$ definiamo

$$\Delta_0(g,h)(x) = \frac{g(x)}{h(x)}, \qquad \Delta_1(g,h)(x) = \frac{g(x)}{h^2(x)}$$

Insiemi di Furstenberg generalizzati

Definizione

$$\mathbb{H}_d = \{ h \in \mathbb{H} : \ h(2x) \leqslant Ch(x) \ \text{per qualche } C > 0 \}.$$

Definizione

Date due funzioni $g, h \in \mathbb{H}$ definiamo

$$\Delta_0(g,h)(x) = \frac{g(x)}{h(x)}, \qquad \Delta_1(g,h)(x) = \frac{g(x)}{h^2(x)}.$$

Teorema

Siano E un insieme F_h con $h \in \mathbb{H}_d$, $g \in \mathbb{H}$ tale che $g \prec h^2$. Posto

$$a_k = \sqrt{\frac{k}{\Delta_1(g,h)(2^{-k})}},$$

supponiamo che la serie $\sum_{k=0}^{\infty} a_k$ converga. Allora

$$H^{g}(E) > 0$$

Teorema

Siano E un insieme F_h con $h \in \mathbb{H}_d$, $g \in \mathbb{H}$ tale che $g \prec h^2$. Posto

$$a_k = \sqrt{\frac{k}{\Delta_1(g,h)(2^{-k})}},$$

supponiamo che la serie $\sum_{k=0}^{\infty} a_k$ converga. Allora

$$H^g(E) > 0$$

Teorema

Siano E un insieme F_h con $h \in \mathbb{H}_d$, $g \in \mathbb{H}$ tale che $g \prec h^2$. Posto

$$a_k = \sqrt{\frac{k}{\Delta_1(g,h)(2^{-k})}},$$

supponiamo che la serie $\sum_{k=0}^{\infty} a_k$ converga. Allora

$$H^{g}(E)>0.$$

Teorema

Sia E un insieme F_h , con $h \in \mathbb{H}_d$, tale che $h(x) \lesssim x^{\alpha}$ per qualche $0 < \alpha < 1$, e sia $g \in \mathbb{H}$ tale che $g \prec h$. Posto

$$a_k = (\Delta_0(h,g)(2^{-k}))^{\frac{2\alpha}{2\alpha+1}},$$

se la serie $\sum_{k=0}^{\infty} a_k$ converge, allora

$$H^{g\sqrt{\cdot}}(E) > 0$$

Teorema

Sia E un insieme F_h , con $h \in \mathbb{H}_d$, tale che $h(x) \lesssim x^{\alpha}$ per qualche $0 < \alpha < 1$, e sia $g \in \mathbb{H}$ tale che $g \prec h$. Posto

$$a_k = (\Delta_0(h,g)(2^{-k}))^{\frac{2\alpha}{2\alpha+1}},$$

se la serie $\sum_{k=0}^{\infty} a_k$ converge, allora

$$H^{g\sqrt{\cdot}}(E) > 0$$

Teorema

Sia E un insieme F_h , con $h \in \mathbb{H}_d$, tale che $h(x) \lesssim x^{\alpha}$ per qualche $0 < \alpha < 1$, e sia $g \in \mathbb{H}$ tale che $g \prec h$. Posto

$$a_k = (\Delta_0(h,g)(2^{-k}))^{\frac{2\alpha}{2\alpha+1}},$$

se la serie $\sum_{k=0}^{\infty} a_k$ converge, allora

$$H^{g\sqrt{\cdot}}(E) > 0.$$

Il caso degli insiemi di Furstenberg classici

Riprendiamo la definizione di insieme di Furstenberg classico.

Definizione

Sia $\alpha \in]0,1]$, un sottoinsieme $E \subseteq \mathbb{R}^2$ si dice insieme di Furstenberg di tipo α (oppure insieme F_{α}) se, per ogni direzione e nel cerchio unitario, esiste un segmento l_e nella direzione di e tale che $dim_H(l_e \cap E) \geqslant \alpha$. Diremo anche che in tal caso E appartiene alla classe F_{α} .

Osservazione

Un insieme di Furstenberg classico di tipo F_{α} con $\alpha \in]0,1]$ non è altro che un caso particolare di insieme di Furstenberg generalizzato di tipo F_h , con $h(x) = x^{\alpha}$.

Il caso degli insiemi di Furstenberg classici

Riprendiamo la definizione di insieme di Furstenberg classico.

Definizione

Sia $\alpha \in]0,1]$, un sottoinsieme $E \subseteq \mathbb{R}^2$ si dice insieme di Furstenberg di tipo α (oppure insieme F_{α}) se, per ogni direzione e nel cerchio unitario, esiste un segmento l_e nella direzione di e tale che $dim_H(l_e \cap E) \geqslant \alpha$. Diremo anche che in tal caso E appartiene alla classe F_{α} .

Osservazione

Un insieme di Furstenberg classico di tipo F_{α} con $\alpha \in]0,1]$ non è altro che un caso particolare di insieme di Furstenberg generalizzato di tipo F_h , con $h(x) = x^{\alpha}$.

Il teorema di Wolff

Useremo i due importanti teoremi sugli insiemi di Furstenberg generalizzati per dare un risultato notevole, dovuto a Wolff, per quanto riguarda la dimensione di Hausdorff di un insieme del tipo F_{α} .

Teorema (Wolff)

Dato $\alpha \in]0,1]$, sia $E \in F_{\alpha}$. Allora

$$dim_H(E) \geqslant \max\{2\alpha, \alpha + 1/2\}$$
.

Il teorema di Wolff

Useremo i due importanti teoremi sugli insiemi di Furstenberg generalizzati per dare un risultato notevole, dovuto a Wolff, per quanto riguarda la dimensione di Hausdorff di un insieme del tipo F_{α} .

Teorema (Wolff)

Dato $\alpha \in]0,1]$, sia $E \in F_{\alpha}$. Allora

$$dim_H(E) \geqslant \max\{2\alpha, \alpha + 1/2\}$$
.

Il teorema di Wolff

Useremo i due importanti teoremi sugli insiemi di Furstenberg generalizzati per dare un risultato notevole, dovuto a Wolff, per quanto riguarda la dimensione di Hausdorff di un insieme del tipo F_{α} .

Teorema (Wolff)

Dato $\alpha \in]0,1]$, sia $E \in \mathcal{F}_{\alpha}$. Allora

$$dim_H(E) \geqslant \max\{2\alpha, \alpha + 1/2\}$$
.

Applichiamo infine il teorema di Wolff per stimare la dimensione di un opportuno insieme di Furstenberg che andiamo a costruire:

Esempio

Consideriamo il classico insieme di Cantor $C \subset \mathbb{R}$, e sia $C' = C - 1/2 \subset [-1/2, 1/2]$ il suo traslato verso sinistra di 1/2. Definiamo

$$\mathcal{W}=\left\{(x,y):\;x=r\cos\theta,\;y=r\sin\theta,\;r\in C^{'},\;\theta\in[0,\pi]\right\}\subset\mathbb{R}^{2}.$$

 $\mathcal W$ contiene in ogni direzione un insieme di Cantor, quindi $\mathcal W$ è un insieme di Furstenberg F_{α} dove $\alpha=\frac{\log 2}{\log 3}$. Allora per il teorema di Wolff si ha

$$\dim_{H}(\mathcal{W}) \geqslant \max\left\{2\alpha, \alpha + \frac{1}{2}\right\} = \max\left\{\frac{2\log 2}{\log 3}, \frac{\log 2}{\log 3} + \frac{1}{2}\right\} = \frac{\log 4}{\log 3}.$$

Applichiamo infine il teorema di Wolff per stimare la dimensione di un opportuno insieme di Furstenberg che andiamo a costruire:

Esempio

Consideriamo il classico insieme di Cantor $C\subset\mathbb{R}$, e sia $C^{'}=C-1/2\subset[-1/2,1/2]$ il suo traslato verso sinistra di 1/2. Definiamo

$$\mathcal{W} = \left\{ (x,y): \ x = r\cos\theta, \ y = r\sin\theta, \ r \in C^{'}, \ \theta \in [0,\pi] \right\} \subset \mathbb{R}^{2}.$$

 $\mathcal W$ contiene in ogni direzione un insieme di Cantor, quindi $\mathcal W$ è un insieme di Furstenberg F_{α} dove $\alpha=\frac{\log 2}{\log 3}$. Allora per il teorema di Wolff si ha

$$dim_{H}(\mathcal{W}) \geqslant \max\left\{2\alpha, \alpha + \frac{1}{2}\right\} = \max\left\{\frac{2\log 2}{\log 3}, \frac{\log 2}{\log 3} + \frac{1}{2}\right\} = \frac{\log 4}{\log 3}$$

Applichiamo infine il teorema di Wolff per stimare la dimensione di un opportuno insieme di Furstenberg che andiamo a costruire:

Esempio

Consideriamo il classico insieme di Cantor $C\subset\mathbb{R}$, e sia $C^{'}=C-1/2\subset[-1/2,1/2]$ il suo traslato verso sinistra di 1/2. Definiamo

$$\mathcal{W}=\left\{(x,y):\;x=r\cos\theta,\;y=r\sin\theta,\;r\in C^{'},\;\theta\in[0,\pi]\right\}\subset\mathbb{R}^{2}.$$

 $\mathcal W$ contiene in ogni direzione un insieme di Cantor, quindi $\mathcal W$ è un insieme di Furstenberg F_{α} dove $\alpha=\frac{\log 2}{\log 3}$. Allora per il teorema di Wolff si ha

$$dim_{H}(\mathcal{W}) \geqslant \max\left\{2\alpha, \alpha + \frac{1}{2}\right\} = \max\left\{\frac{2\log 2}{\log 3}, \frac{\log 2}{\log 3} + \frac{1}{2}\right\} = \frac{\log 4}{\log 3}$$

Applichiamo infine il teorema di Wolff per stimare la dimensione di un opportuno insieme di Furstenberg che andiamo a costruire:

Esempio

Consideriamo il classico insieme di Cantor $C\subset\mathbb{R}$, e sia $C^{'}=C-1/2\subset[-1/2,1/2]$ il suo traslato verso sinistra di 1/2. Definiamo

$$\mathcal{W} = \left\{ (x,y): \ x = r\cos\theta, \ y = r\sin\theta, \ r \in C^{'}, \ \theta \in [0,\pi] \right\} \subset \mathbb{R}^{2}.$$

 $\mathcal W$ contiene in ogni direzione un insieme di Cantor, quindi $\mathcal W$ è un insieme di Furstenberg F_α dove $\alpha=\frac{\log 2}{\log 3}$. Allora per il teorema di Wolff si ha

$$dim_H(\mathcal{W}) \geqslant \max\left\{2\alpha, \alpha + \frac{1}{2}\right\} = \max\left\{\frac{2\log 2}{\log 3}, \frac{\log 2}{\log 3} + \frac{1}{2}\right\} = \frac{\log 4}{\log 3}.$$

Applichiamo infine il teorema di Wolff per stimare la dimensione di un opportuno insieme di Furstenberg che andiamo a costruire:

Esempio

Consideriamo il classico insieme di Cantor $C\subset\mathbb{R}$, e sia $C^{'}=C-1/2\subset[-1/2,1/2]$ il suo traslato verso sinistra di 1/2. Definiamo

$$\mathcal{W} = \left\{ (x,y): \ x = r\cos\theta, \ y = r\sin\theta, \ r \in C^{'}, \ \theta \in [0,\pi] \right\} \subset \mathbb{R}^{2}.$$

 $\mathcal W$ contiene in ogni direzione un insieme di Cantor, quindi $\mathcal W$ è un insieme di Furstenberg F_{α} dove $\alpha=\frac{\log 2}{\log 3}$. Allora per il teorema di Wolff si ha

$$dim_H(\mathcal{W}) \geqslant \max\left\{2\alpha, \alpha + \frac{1}{2}\right\} = \max\left\{\frac{2\log 2}{\log 3}, \frac{\log 2}{\log 3} + \frac{1}{2}\right\} = \frac{\log 4}{\log 3}.$$

Applichiamo infine il teorema di Wolff per stimare la dimensione di un opportuno insieme di Furstenberg che andiamo a costruire:

Esempio

Consideriamo il classico insieme di Cantor $C\subset\mathbb{R}$, e sia $C^{'}=C-1/2\subset[-1/2,1/2]$ il suo traslato verso sinistra di 1/2. Definiamo

$$\mathcal{W}=\left\{(x,y):\;x=r\cos\theta,\;y=r\sin\theta,\;r\in C^{'},\;\theta\in[0,\pi]\right\}\subset\mathbb{R}^{2}.$$

 $\mathcal W$ contiene in ogni direzione un insieme di Cantor, quindi $\mathcal W$ è un insieme di Furstenberg F_{α} dove $\alpha=\frac{\log 2}{\log 3}$. Allora per il teorema di Wolff si ha

$$\dim_H(\mathcal{W}) \geqslant \max\left\{2\alpha, \alpha + \frac{1}{2}\right\} = \max\left\{\frac{2\log 2}{\log 3}, \frac{\log 2}{\log 3} + \frac{1}{2}\right\} = \frac{\log 4}{\log 3}.$$

Conclusioni

Bibliografia essenziale

Paolo Acquistapace.

Appunti di Analisi Funzionale.

http://www.dm.unipi.it/~acquistp/anafun.pdf .

A. S. Besicovitch.

On the definitions of tangents to sets of infinite linear measure.

Proc. Camb. Phil. Soc. 52 (1956) 2029.

🦫 Marton Elekes e Tamas Keleti.

Borel sets which are null or non- σ -finite for every translation invariant measure.

Adv. Math. 201 (2006) 102-115.

🕒 Ursula Molter e Ezeguiel Rela.

Improving dimension estimates for Furstenberg-type sets.

Adv. Math. 223 (2010) 672-688.

Bibliografia essenziale

C. A. Rogers.

Hausdorff measures.

Cambridge University Press, 1970.

Carlo Viola.

Approssimazione diofantea, frazioni continue e misure d'irrazionalità. La Matematica nella Società e nella Cultura, Boll. Un. Mat. Ital. (8) 7-A, agosto 2004.

Thomas Wolff.

Recent work connected with the Kakeya problem.

Prospects in mathematics (Princeton, NJ, 1996), 129162, Amer. Math. Soc., Providence, RI, 1999.

