Reporte práctica 3

Introducción

Una parte fundamental del funcionamiento de un algoritmo genético es, sin lugar a dudas, el proceso de selección de candidatos a reproducirse. En el algoritmo genético este proceso de selección suele realizarse de forma probabilística, lo cual quiere decir, que los individuos menos aptos tienen oportunidad de sobrevivir, a diferencia de las estrategias evolutivas en donde la selección es **extintiva**(los menos aptos tienen una probabilidad de cero de sobrevivir).

Existen técnicas de selección que son utilizadas en los algoritmos genéticos y pueden clasificarse en tres grandes grupos:

- 1. Selección proporcional
- 2. Selección mediante torneo
- 3. Selección de estado uniforme

En este reporte se platicará sobre la primera técnica, debido a que esta práctica tuvo como objetivo aplicar y desarrollar esta técnica de selección implementando el algoritmo de la ruleta.

Selección Proporcional

Este nombre describe a un grupo de esquemas de selección originalmente propuestos por Holland en los cuales se eligen individuos de acuerdo a su contribución de aptitud con respecto al total de la población.

Se consideran cuatro grupos de esquemas que pertenecen a esta técnia, las cuales son las siguientes:

- 1. La ruleta
- 2. Sobrante Estocástico
- 3. Universal Estocástica
- 4. Muestreo Determinístico

La ruleta

Fue propuesta por DeJong, y ha sido el método más comúnmente usado desde los orígenes de los algoritmos genéticos. El algoritmo es simple, pero ineficiente debido a que su complejidad es O(n²). Asimismo, presenta el problema de que el individuo menos apto puede ser seleccionado más de una vez.

El algoritmo de la Ruleta es el siguiente:

- Calcular la suma de valores esperados T
- Repetir N veces (N es el tamaño de la población):

- Generar un número aleatorio r entre 0.0 y T
- Ciclar a través de los individuos de la población sumando los valores esperados hasta que la suma sea mayor o igual a r.
- El individuo que haga que esta suma exceda el límite es el seleccionado.

Capturas de pantalla

1.Inicialización, evaluacion y seleccion de padres								
No.	Pobla Ini	valor X	Apt F(X)=x^2	Probabilidad	ValEsp			
1	00001	1	1 1	0.000103	0.003284			
2	11001	25	625	0.064142	2.052545			
3	01001	j 9	81	0.008313	0.266010			
4	00001	j 1	1 1	0.000103	0.003284			
5	00000	0	Θ	0.000000	0.000000			
6	01001	9	81	0.008313	0.266010			
7	10010	18	324	0.033251	1.064039			
8	10110	22	484	0.049672	1.589491			
9	11010	26	676	0.069376	2.220033			
10	11011	27	729	0.074815	2.394089			
11	11100	28	784	0.080460	2.574713			
12	10110	22	484	0.049672	1.589491			
13	10011	19	361	0.037048	1.185550			
14	10000	16	256	0.026273	0.840722			
15	01100	12	144	0.014778	0.472906			
16	11111	31	961	0.098625	3.155993			
17	01011	11	121	0.012418	0.397373			
18	01100	12	144	0.014778	0.472906			
19	01100	12	144	0.014778	0.472906			
20	01000	8	64	0.006568	0.210181			
21	01101	13	169	0.017344	0.555008			
22	01111	15	225	0.023091	0.738916			
23	00001	001000	1 1	0.000103	0.003284			
24	11001	25	625	0.064142	2.052545			
25	10001	17	289	0.029659	0.949097			
26	00001	1	1 1	0.000103	0.003284			
27	01001	9	81	0.008313	0.266010			
28	10001	17	289	0.029659	0.949097			
29	10111	23	529	0.054290	11.737274			
30	10011	19	361	0.037048	1.185550			
31	10110	22	484	0.049672	1.589491			
32	01111	15	225	0.023091	0.738916			
Suma: Aptitud: 9744 Probabilidad: 1.000000								
Promedi		304		Probabilidad: 0.031250				
Maximo: Aptitud: 961 Probabilidad: 0.098625								

3.Mutacion y evaluacion de la descendencia								
No.	Descendencia	Mutacion	Val X	Aptitud				
1	11001	#10001	17	289				
2	11001	#11000	24	576				
3	01010	01010	10	100				
4	10001	#10000	16	256				
5	10110	#11110	30	900				
6	10110	10110	22	484				
7	11010	11010	26	676				
8	11010	#11110	30	900				
9	11011	11011	27	729				
10	11011	#01011	11	121				
11	11100	11100	28	784				
12	11100	11100	28	784				
13	11110	11110	30	900				
14	10100	10100	20	400				
15	10011	10011	19	361				
16	10011	10011	19	361				
17	01111	01111	15	225				
18	11100	11100	28	diffican png. 784				
19	11111	11111	31	961				
20	11111	11111	31	961				
21	01100	01100	12	144				
22	01000	01000	8	64				
23	01101	01101	13	169				
24	11011	11011	27	729				
25	10001	10001	17	289				
26	11001	11001	25	625				
27	10001	10001	17	289				
28	10111	10111	23	529				
29	10011	10011	19	361				
30	10111	10111	23	529				
31	10110	10110	22	484				
32	10110	10110	22	484				
Suma:	Aptitud:	16248						
Promedio	: Aptitud:	507		Day Londes 2d.				
Maximo:	Aptitud:	961						

Conclusión

En conclusión, el objetivo de esta práctica fue el implementar una técnica de selección de candidatos para poder reproducirse, para ello se realizó el algoritmo de la Ruleta, un algoritmo que fue desarrollado por DeJong y que resulta un algoritmo simple pero poco eficiente ya que la complejidad de este es $O(n^2)$ y resulta que los individuos menos óptimos pueden ser seleccionados varias veces. La selección lo hace generando un número aleatorio r entre 0.0 y T, donde T es la suma total de los valores esperados de cada individuo, repetir n veces, donde n es el tamaño de la

población, y ciclar a través de los individuos de la población sumando sus valores esperados hasta que la suma sea mayor o igual a r. Si el individuo excede esta suma, es seleccionado.

Referencias Bibliograficas

• Coello, C. (2008). Introducción a la Computación Evolutiva (Notas de Curso). México, pp.115-117.