Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V3.

$$\begin{bmatrix}
2 \\
-1 \\
4
\end{bmatrix}, \begin{bmatrix}
3 \\
12 \\
-9
\end{bmatrix}, \begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}, \begin{bmatrix}
-4 \\
2 \\
-8
\end{bmatrix}
\} = \mathbb{R}^3?$$

Solution: Since

RREF
$$\begin{bmatrix} 2 & 3 & 1 & -4 \\ -1 & 12 & 2 & 2 \\ 4 & -9 & 3 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

lacks a zero row, the vectors span \mathbb{R}^3 .

Standard V4.

Mark

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=0 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Solution: Yes, because z = -x - y and $a \begin{bmatrix} x_1 \\ y_1 \\ -x_1 - y_1 \end{bmatrix} + b \begin{bmatrix} x_2 \\ y_2 \\ -x_2 - y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + bx_2 \\ ay_1 + by_2 \\ -(ax_1 + bx_2) - (ay_1 + by_2) \end{bmatrix}$. Alternately, yes because W is isomorphic to \mathbb{R}^2 .

Standard S2.

Mark:

Determine if the set $\left\{ \begin{bmatrix} 3 & -1 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 2 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 4 \\ -1 & 8 \end{bmatrix}, \begin{bmatrix} -1 & 3 \\ 0 & 4 \end{bmatrix} \right\}$ is a basis of $\mathbb{R}^{2 \times 2}$.

Solution:

$$\operatorname{RREF}\left(\begin{bmatrix} 3 & 2 & 1 & -1 \\ -1 & 0 & 4 & 3 \\ 2 & 2 & -1 & 0 \\ 3 & 4 & 8 & 4 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

Г		
ı		
_	_	

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Solution: Since there are only three vectors, they cannot span \mathbb{R}^5 .

Standard V4.

Mark:

Let W be the set of all complex numbers that are purely real (i.e of the form a + 0i) or purely imaginary (i.e. of the form 0 + bi). Determine if W is a subspace of \mathbb{C} .

Solution: No, because 1 is purely real and i is purely imaginary, but the linear combination 1+i is neither.

Determine if the set $\left\{\begin{bmatrix} 3 & -1 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 2 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 4 \\ -1 & 8 \end{bmatrix}, \begin{bmatrix} -1 & 3 \\ 0 & 4 \end{bmatrix}\right\}$ is a basis of $\mathbb{R}^{2 \times 2}$.

Solution:

$$RREF \left(\begin{bmatrix} 3 & 2 & 1 & -1 \\ -1 & 0 & 4 & 3 \\ 2 & 2 & -1 & 0 \\ 3 & 4 & 8 & 4 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Determine if the vectors
$$\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 2 & 3 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ -2 & 3 & 1 & 0 \\ 0 & 6 & 1 & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2} \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there is a zero row, the vectors do not span \mathbb{R}^4 .

Standard V4. $\begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R}$ a subspace of \mathbb{R}^4 .

Solution: It is closed under addition and scalar multiplication, so it is a subspace. Alternatively, it is the image of the linear transformation from $\mathbb{R}^3 \to \mathbb{R}^4$ given by

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix}.$$

Standard S2.

Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x^2 - 2\}$ is a basis of \mathcal{P}^2 .

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V3.

Determine if the vectors
$$\begin{bmatrix} -3\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 5\\-1\\-2 \end{bmatrix}$, $\begin{bmatrix} 2\\0\\-1 \end{bmatrix}$, and $\begin{bmatrix} 0\\2\\-1 \end{bmatrix}$ span \mathbb{R}^3

Solution:

$$RREF \left(\begin{bmatrix} -3 & 5 & 2 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & -2 & -1 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix has only two pivot columns, the vectors do not span \mathbb{R}^3 .

Standard V4.

Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Solution: W is closed under scalar multiplication, but not under addition. For example, $x - x^2$ and x^2 are both in W, but $(x - x^2) + (x^2) = x \notin W$.

Standard S2.

Mark:

Determine if the set $\{x^3 - 3x^2 + 2x + 2, -x^3 + 4x^2 - x + 1, -x^3 + 2x + 1, 3x^2 + 3x + 9\}$ is a basis of \mathcal{P}^3 or not.

Solution:

RREF
$$\begin{bmatrix} 1 & -1 & -1 & 0 \\ -3 & 4 & 0 & 3 \\ 2 & -1 & 2 & 3 \\ 2 & 1 & 1 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since this is not the identity matrix, the set is not a basis.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra

Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Does span
$$\left\{ \begin{bmatrix} 2\\-1\\4 \end{bmatrix}, \begin{bmatrix} 3\\12\\-9 \end{bmatrix}, \begin{bmatrix} 1\\4\\-3 \end{bmatrix}, \begin{bmatrix} -4\\2\\-8 \end{bmatrix} \right\} = \mathbb{R}^3$$

Solution: Since

RREF
$$\begin{bmatrix} 2 & 3 & 1 & -4 \\ -1 & 12 & 4 & 2 \\ 4 & -9 & -3 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 1/3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

has a zero row, the vectors fail to span \mathbb{R}^3 .

Standard V4.

Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Solution: W is closed under scalar multiplication, but not under addition. For example, $x - x^2$ and x^2 are both in W, but $(x - x^2) + (x^2) = x \notin W$.

Determine if the set $\left\{ \begin{bmatrix} 3\\-1\\2 \end{bmatrix}, \begin{bmatrix} 2\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\4\\-1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^3 .

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 3 & 2 & 1 \\ -1 & 0 & 4 \\ 2 & 2 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

Name:	
J#:	Dr. Clontz
Date:	

 ${\bf Math~237-Linear~Algebra}$

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Solution: Since

Version 6

RREF
$$\begin{bmatrix} 2 & 3 & 1 & -4 \\ -1 & 12 & 2 & 2 \\ 4 & -9 & 3 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

lacks a zero row, the vectors span \mathbb{R}^3 .

Standard V4.

Mark:

Let W be the set of all complex numbers that are purely real (i.e. of the form a + 0i) or purely imaginary (i.e. of the form 0 + bi). Determine if W is a subspace of \mathbb{C} .

Solution: No, because 1 is purely real and i is purely imaginary, but the linear combination 1+i is neither.

Standard S2.

Mark:

Determine if the set $\left\{ \begin{bmatrix} 3 & -1 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 2 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 4 \\ -1 & 8 \end{bmatrix}, \begin{bmatrix} -1 & 3 \\ 0 & 4 \end{bmatrix} \right\}$ is a basis of $\mathbb{R}^{2 \times 2}$.

Solution:

$$RREF \left(\begin{bmatrix} 3 & 2 & 1 & -1 \\ -1 & 0 & 4 & 3 \\ 2 & 2 & -1 & 0 \\ 3 & 4 & 8 & 4 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.