Econometrics May 23, 2023

Topic 16: Graphical Network Inference

by Sai Zhang

Key points:

Disclaimer: The note is built on Prof. Jinchi Lv's lectures of the course at USC, DSO 607, High-Dimensional Statistics and Big Data Problems.

16.1 Motivation

Consider a classic question: For n observations of dimension p, how can we capture the statistical relationships between the variables of interest? Consider the example of the multivariate Gaussian distribution:

Example 16.1.1: Multivariate Gaussian Distribution

Suppose we have n observations of dimension p, $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$. let \mathbf{S} be the empirical covariance matrix. Then the probability density

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} \det(\mathbf{\Sigma})^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

define the **inverse covariance matrix** or **precision matrix** as $\Omega = \Sigma^{-1}$, then we have

$$f_{\mu,\Omega} = \exp\left\{\mu'\Omega x - \left(\Omega, \frac{1}{2}xx'\right) - \frac{p}{2}\log(2\pi) + \frac{1}{2}\log\det(\Omega) - \frac{1}{2}\mu'\Omega\mu\right\}$$

where $\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{tr}(\mathbf{A}\mathbf{B})$.

In this example, we know that **every** multivariate Gaussian distribution can be represented by a pairwise **Gaussian Markov Random Field (GMRF)**, which an **undirected graph** G = (V, E)

- representing the collection of variables **x** by a vertex set $\mathcal{V} = \{1, \dots, p\}$
- encoding correlations between variables by a set of edges $\mathcal{E} = \{(i, j) \in \mathcal{V} \mid i = \neq j, \Omega_{ij} \neq 0\}$

For simplicity, we normalize $\mu = 0$. If we draw n i.i.d. samples $\mathbf{x}_1, \dots, \mathbf{x}_n \sim \mathcal{N}(\mathbf{0}, \Sigma)$, then the log-likelihood is

$$\mathcal{L}(\mathbf{\Omega}) = \frac{1}{n} \sum_{i=1}^{n} \log f(\mathbf{x}_i) = \frac{1}{2} \log \det(\mathbf{\Omega}) - \frac{1}{2n} \sum_{i=1}^{n} \mathbf{x}_1' \mathbf{\Theta} \mathbf{x}_i$$
$$= \frac{1}{2} \log \det(\mathbf{\Omega}) - \frac{1}{2} \left\langle \mathbf{\Omega}, \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i' \mathbf{x}_i' \right\rangle$$

What's the goal? We want to estimate a **sparse** graph structure given $n \ll p$ i.i.d. observations. But what does sparsity means in this context? A sparse graph is **equivalent** to a sparse precision matrix: the precision

matrix should have many 0s.

Sparse precision matrix for the Gaussian vector mentioned above $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$, we have $\forall u, v$

$$x_u \perp x_v \mid \mathbf{x}_{V \setminus \{u,v\}} \Leftrightarrow \Omega_{u,v} = 0$$

that is, sparsity of the precision matrix is equivalent to **conditional independence**¹. Consider a graph, where x_1 and x_4 are only connected through other nodes, that is x_1 and x_4 are conditional independent, then we can have the precision matrix be something like:

$$\Theta = \begin{bmatrix} * & * & 0 & 0 & * & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 & * & * & 0 \\ 0 & 0 & * & 0 & * & 0 & 0 & * \\ 0 & 0 & 0 & * & 0 & 0 & * & 0 \\ * & 0 & * & 0 & * & 0 & 0 & * \\ 0 & * & 0 & 0 & 0 & * & 0 & 0 \\ 0 & * & 0 & * & 0 & 0 & * & 0 \\ 0 & 0 & * & 0 & * & 0 & 0 & * \end{bmatrix}$$

where 0 captures precisely the conditional independence.

 x_1 and x_4 are connected

 x_1 and x_4 are *NOT connected*, conditionally

Intuitively, a sparse graph is much simpler, which is why conditional independence is desired. So how to achieve sparsity? We can again use a L-1 regularization when maximizing the log-likelihood $\mathcal{L}(\Omega)$

¹Meanwhile, for independence: $\Sigma_{u,v} = 0 \Leftrightarrow x_u \perp x_v$