IN THE CLAIMS:

- 1. (original) A liposome to which a polyalkylene glycol and albumin are bonded.
- 2. (original) The liposome according to claim 1, wherein a physiologically active ingredient is further contained.
- 3. (original) The liposome according to claim 2, wherein the physiologically active ingredient is a pharmaceutically active ingredient.
- 4. (original) The liposome according to claim 3, wherein the pharmaceutically active ingredient is an antitumor agent.
- 5. (currently amended) A pharmaceutical composition containing the liposome mentioned in any one of claims 2 to 4 claim 2.
- 6. (original) The pharmaceutical composition according to claim 5, which is an injection.
- 7. (original) A method for treatment of cancer, which comprises administering a pharmaceutical composition comprising a

liposome to which a polyalkylene glycol and albumin are bonded and in which an antitumor agent is contained.

- 8. (currently amended) Use of A method of extending the in vivo retention time of a physiologically active ingredient contained in a liposome to which comprising binding the liposome to a polyalkylene glycol and albumin are bonded and in which a physiologically active ingredient is contained, for the extension of the in vivo retention time of the physiologically active ingredient.
- 9. (original) A process for the production of the liposome of claim 1, characterized in that,
- a liposome having a compound represented by the following formula (1):

$$\begin{array}{c|c} & H_3C & CH_3 \\ & N \\ & CH_2 \\ & NH \\ & CH_2 - O - P - OCH_2CH_2NHCOCH_2CH_2CH_2COO - \\ & NH^+ \\ & CH_2 \\ & CH_2 \\ & CH_2 \\ & CH_3 \\ & CH_$$

(wherein R is an acyl group derived from a fatty acid having 2 to 35 carbon atoms) as a constituent lipid is bonded to albumin;

a liposome having a compound represented by the following formula (2):

(wherein R has the same meaning as defined above) as a constituent lipid is bonded to a compound represented by the formula (3):

U.S. National Stage of PCT/JP2003/014405 PRELIMINARY AMENDMENT

PATENT

$$(Alb-NH) - CO - CH2 - CH2 - SH$$
 (3)

(wherein Alb-NH is a group formed by removing one hydrogen atom of the amino group from an albumin molecule represented by $Alb-NH_2$);

a liposome having a compound represented by the following formula (4):

$$\begin{array}{c} CH_2 \longrightarrow OR \\ RO \longrightarrow CH \\ CH_2 \longrightarrow O \longrightarrow P \longrightarrow OCH_2CH_2NHCOOCH_2 CH_2 \longrightarrow OCH_2CH_2 \longrightarrow OCH_2 \longrightarrow OCH_$$

(wherein n is an integer of 5 to 100,000 and R has the same meaning as defined above) as a constituent lipid is bonded to a compound represented by the formula (5):

$$(Alb-NH)-CO-CH2-SH$$
 (5)

(wherein Alb-NH has the same meaning as defined above);

a compound represented by the following formula (6):

$$\begin{array}{c} CH_2 \longrightarrow OR \\ RO \longrightarrow CH \\ CH_2 \longrightarrow O \longrightarrow P \longrightarrow OCH_2CH_2NHCO \\ OH \\ OCH_2 \longrightarrow CH_2 \longrightarrow OCH_2CH_2 \longrightarrow OCH_2 \longrightarrow OC$$

(wherein n, R and Alb-NH have each the same meaning as defined above) is inserted into a liposome;

a liposome having the compound represented by the above formula (1) as a constituent lipid is bonded to a compound represented by the following formula (7):

$$CH_3OCH_2CH_2$$
 OCH_2CH_2 OCH_2CH_2 OCH_2CH_2 OCH_2 OCH_2

(wherein $-NH-Alb-NH_2$ is a group formed by removing one hydrogen atom from one of the amino groups of an albumin molecule represented by $H_2N-Alb-NH_2$, and n has the same meaning as defined

above); or

a liposome having the compound represented by the above formula (2) as a constituent lipid is bonded to a compound represented by the following formula (8):

$$CH_{2}CO \longrightarrow (NH-Alb-NH) \longrightarrow COCH_{2}CH_{2}SH$$

$$CH_{3}OCH_{2}CH_{2} \longrightarrow OCH_{2}CH_{2} \longrightarrow O$$

$$O$$

$$(8)$$

(wherein -NH-Alb-NH- is a group formed by removing one hydrogen atom from each of the two amino groups of an albumin molecule represented by the formula $H_2N-Alb-NH_2$, and n has the same meaning as defined above).

- 10. (new) A pharmaceutical composition containing the liposome mentioned in claim 3.
- 11. (new) A pharmaceutical composition containing the liposome mentioned in claim 4.

U.S. National Stage of PCT/JP2003/014405 PRELIMINARY AMENDMENT

PATENT

- 12. (new) The pharmaceutical composition according to claim 10, which is an injection.
- 13. (new) The pharmaceutical composition according to claim 11, which is an injection.