(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-265607

(43)公開日 平成8年(1996)10月11日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示簡所

H04N 5/202

9/69

H04N 5/202 9/69

審査請求 未請求 請求項の数1 OL (全 4 頁)

(21)出願番号

(22)出願日

特顏平7-60759

平成7年(1995) 3月20日

(71)出願人 000005821

松下電器產業株式会社

大阪府門真市大字門真1006番地

(72)発明者 島岡 克明

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 掩本 智之 (外1名)

(54) 【発明の名称】 マルチ走査型ディスプレイ

(57)【要約】

【目的】 マルチスキャンディスプレイにおいて、水平 偏向周波数の変化に対してホワイトバランスの安定性を 図る最適な直流電圧を供給する

【構成】 映像入力信号に対応して映像出力信号のゲイ ンを変えるガンマ補正ポイントを備えた信号処理回路 と、DA変換器3を制御するCPU部4とで構成され、 前記DA変換器3はガンマ補正ポイントを決める直流電 圧を供給し、前記CPU部4は水平周波数に対応して上 記ガンマ補正ポイントを可変制御する。

ビデオ出力回路 CRT

3 DAC CPU部

リモコン受光部 りモコン

Vcc 電源電圧 C1 コンデンサ

R1.R2.R3.R4.R5.R6 抵抗 TR1.TR2.TR3 トランジスタ

【特許請求の範囲】

【請求項1】 映像入力信号に対応して映像出力信号の ゲインを変えるガンマ補正ポイントを備えた信号処理回 路と、DA変換器を制御するCPUとで構成され、前記 DA変換器は前記ガンマ補正ポイントを決める直流電圧 を供給し、前記CPUは水平周波数に応じて前記ガンマ 補正ポイントを可変制御することを特徴とするマルチ走 **査型ディスプレイ**

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、水平周波数が広範囲に 変化する入力信号に対して水平同期が自動追従するマル チ走査型ディスプレイに関するものである。

[0002]

【従来の技術】CRT蛍光体の発光特性については図5 に示す様に、カソードドライブ電圧に対してGREEN (緑) については直線的特性を示すが、特にBLUE

(青) については高ドライブ領域において発光特性の傾 斜は綴やかになってくる(以下ガンマ特性と呼ぶ)。

【0003】とのガンマ特性は低ドライブ領域と高ドラ 20 イブ領域で映像白のホワイトバランスの変化という現象 をもたらす。そとでBLUEの映像信号処理回路に図3 に示す様な回路を導入し、映像入出力特性の図4に示す 様に折線特性して蛍光体ガンマ特性によるホワイトバラ ンスの変化を補正していた(以下ガンマ補正回路と呼 <u>.</u> (ند

【0004】以下、図3を用いて回路動作を説明する。 先すボリュームVR1で決まる直流電圧VCがバッファ IC1からエミッタホロワTR3を通ってTR2のエミ ッタに伝達される。一方、映像入力信号VINはエミッタ ホロワTR1から抵抗R2を通ってビデオ出力回路1に VOUTとして入力される。このときVIN>VCの場合はT R2はカットオフし抵抗R3には電流が流れないのでV OUT= VINとなる。

【0005】逆にVIN<VCの場合はTR2のエミッタ からR3、R2を通じてTR1に電流が流れる為、Vou $T = (VIN \cdot R3 + VG \cdot R2) / (R2 + R3)$ り、映像信号出力特性はゲイン低下した特性となり、映 像信号入出力特性は図4の様になる。

[0006]

【発明が解決しようとする課題】蛍光体のガンマ特性は 元々単位時間当たりの蛍光体単位面積当たりに投入され る電荷エネルギーで決まってくるのでCRTカソードド ライブ電圧だけでなく、図5の波線のように電子ビーム の走査速度に大きく依存する。つまり走査速度が速くな れば、BLUE蛍光体のガンマ特性はB4、B5の様に なり、遅くなればB2, B1の様になる。

【0007】従って、マルチ走査型ディスプレイにおい ては走査速度に応じて上記ガンマ補正回路のガンマ補正 ポイントを変えてやらないと入力信号の周波数によって 50 TR1、TR2、TR3 トランジスタ

ホワイトバランスが変化することになる。

【0008】本発明は上記問題に鑑み、水平周波数が広 範囲に変化する入力信号に対して水平同期が自動追従す るマルチ走査型ディスプレイを提供するものである。 [0009]

【課題を解決するための手段】上記問題を解決するため に本発明のマルチ走査型ディスプレイは、ガンマ補正ボ イントを決める直流電圧VGを水平偏向周波数に応じて 可変制御するという手段で対応する。

[0010] 10

【作用】本発明は上記した構成によって、図1に示す様 に、CPUはDAC(ディジタル/アナログコンバー タ) にアクセスすることでDACからガンマ補正回路に 直流電圧VCをあたえる。との直流電圧VCはリモコン6 で所定の入力信号においてホワイトバランスを所望の値 に調整するときに初期値(VG3)に決定される。さら に、CPUは入力水平周波数検出機能を持つことで入力 周波数の変化に応じて直流電圧VGは初期値VG3から周 波数補正されて出力される。

[0011]

【実施例】以下、本発明の一実施例におけるマルチ走査 型ディスプレイを図面と共に説明する。図1は本発明の 一実施例におけるマルチ走査型ディスプレイの構成回路 図を示す。

【0012】先ず、CPU部4は入力信号の水平同期信 号(H.SYNC)と基準クロックを基に水平周波数を 検出し、周波数補正係数を乗算してDAC3をアクセス する。この作用によって入力水平周波数が初期設定時よ りも高くなるにつれて、直流電圧VCはVG5>VC4>VC 3という値を出力し、低くなるにつれて直流電圧VCはV G1<VG2<VG3という値を出力し映像信号入出力特性は 図2の様になる。

[0013]

30

【発明の効果】以上の説明から明らかなように、走査速 度によって変化する蛍光体のガンマ特性をガンマ補正回 路のガンマポイントを周波数制御することでマルチ走査 型ディスプレイのホワイトバランスの安定性を図ること が出来る。

【図面の簡単な説明】

- 40 【図1】本発明の一実施例におけるマルチ走査型ディス ブレイの回路図
 - 【図2】図1の入出力特性図
 - 【図3】従来のマルチ走査型ディスプレイの回路図
 - 【図4】図3の入出力特性図
 - 【図5】CRT蛍光体の発光特性図

【符号の説明】

C1 コンデンサ

R1, R2, R3, R4, R5, R6

抵抗

IC1 オペアンプ

(3)

特開平8-265607

1 ビデオ出力アンプ

2 CRT

3 DAC (ディジタル/アナログ変換器)

*4 CPU部

5 リモコン受光部

リモコン

【図1】

1 ビデオ出力回路 2 CRT 3 DAC

CPU部 リモコン受光部 リモコン

電源電圧 C1 コンデンサ

R1,R2,R3,R4,R5,R6 抵抗 TR1,TR2,TR3 トランジスタ

【図2】

AMP 基準クロック

【図3】

【図4】

【図5】

