

LABORATORIO Nº2 Reacciones Redox (óxido – reducción)

QUÍMICA – 63.01/83.01 1º 2020

TRABAJO PRÁCTICO N°5-A.

REACCIONES REDOX ESPONTÁNEAS.

Reacciones Redox Espontáneas

Se entiende por reacción **espontanea** a aquella que sucede sin un aporte externo de energía, hasta que se agote el reactivo limitante o se llegue al equilibrio de la misma

Además las reacciones REDOX son aquellas que producen un intercambio de electrones, en donde existe una sustancia que gana electrones y por lo tanto se **REDUCE**, y otra sustancia que cede los mismos electrones y por lo tanto se **OXIDA**.

$$(Zn \rightarrow Zn^{2+} + 2e^{-}) *2$$

 $O_2 + 2H_2O + 4e^{-} \rightarrow 4OH^{-}$

Pierde dos electrones (OXIDACIÓN)
Gana cuatro electrones (REDUCCIÓN)

$$2 Zn + O_2 + 2H_2O + 4e^- \rightarrow 2 Zn^{2+} + 4e^- + 4OH^-$$

 $2 Zn + O_2 + 2H_2O \rightarrow 2 Zn^{2+} + 4OH^-$

Reacciones Redox Espontáneas

Para toda <u>reacción espontánea</u> se cumple que :

$$\Delta E_R > 0$$

Donde:

$$\Delta E^{o}_{celda} = E^{o}_{catodo} - E^{o}_{\acute{a}nodo}$$

E°: Potencial de reducción estándar o patrón

Condiciones patrón o estándar: Temperatura = **25°C**; Concentraciones = **1M** para los iones; Presión parcial = **1atm** para los gases que intervienen.

Cátodo: Electrodo donde se produce la **reducción Ánodo:** Electrodo donde se produce la **oxidación**

Resumiendo:

$$\Delta E_R > 0$$

Reacción espontánea

$$\Delta E_R < 0$$

Reacción no espontánea

$$\Delta E_R = 0$$

Reacción en equilibrio

Potencial, Gibbs y Nernst

$$\Delta E_R > 0$$

Si y solo si

$$\Delta G < 0$$

(a P y T constante)

$$\Delta G = -nF\Delta E$$

¿ Que sucede si no tenemos condiciones estándar?

La ecuación de Nernst relaciona los términos de ΔE^0 , ΔE , presión, temperatura y concentración.

$$\Delta E = \Delta E^0 - \frac{R*T}{n*F}*Ln\left(Q\right)$$
 Donde Q es el cociente de reacción

Para una reacción del estilo

$$aA + bB \rightarrow cC + dD$$

$$Q = \frac{[C]^c * [D]^d}{[A]^a * [B]^b}$$

Procedimiento

1. Efectuar las reacciones siguientes en tubos de ensayo utilizando 2-3 cm³ de cada una de las soluciones en cada caso *(un dedo de altura).*

- b) Cu (s) + HCl (ac) (solución 1 M)
- c) Zn (s) + HCl (ac) (solución 1 M)
- d) Fe (s) + $CuSO_4$ (ac) (solución 1 M)

REALIZAR TODAS LAS
ECUACIONES,
CALCULANDO LA
DIFERENCIA DE
POTENCIAL ESTANDAR

- 2. Interpretar la espontaneidad de las reacciones redox a partir de los resultados observados. Comparar los resultados obtenidos, con los esperados <u>calculando el ΔE° para cada reacción</u>, a partir de los potenciales estándar de reducción correspondientes (utilizando la tabla de potenciales estándar).
- 3. En el caso de haber reacción indicar: ecuaciones parciales de oxidación y reducción, ecuación iónica y ecuación molecular.

Experimentos de Laboratorio

Los experimentos mencionados en la diapositiva anterior fueron recopilados para que el alumno vea y concluya si existe reacción o no, y pueda relacionar lo observado con lo obtenido del planteo del estudio mediante los potenciales estándar.

El enlace para ver los videos es el siguiente:

https://www.youtube.com/watch?v=f4E_-24SFUo

Potenciales estándar de reducción

Par redox	E°
$F_2 + 2H^+ + 2e \Longrightarrow 2HF(aq)$	3.06
$F_2 + 2e \Longrightarrow 2F^-$	2.87
$O_3 + 2H^* + 2e \rightleftharpoons O_2 + H_2O$	2.07
$S_2O_8^{2-} + 2\epsilon \Longrightarrow 2SO_4^{2-}$	2.01
$Co^{3+} + e \rightleftharpoons Co^{2+}$	1.82
$H_2O_2 + 2H^+ + 2e \rightleftharpoons 2H_2O$	1.77
MnO_4 + $4H^*$ + $3e \rightleftharpoons MnO_2$ + $2H_2O$	1.70
$PbO_2 + SO_4^{2-} + 4H^+ + 2e \Longrightarrow PbSO_4 + 2H_2O$	1.69
Au* + ε ⇌ Au	1.68
$HClO_2 + 2H^* + 2e \rightleftharpoons HClO + H_2O$	1.64
$HCIO + H^* + \epsilon \rightleftharpoons \frac{1}{2}Cl_2 + H_2O$	1.63
Ce ^{4*} + e ⇒ Ce ³⁺	1.61
Bi ₂ O ₄ + 4H ⁺ + 2e = 2BiO ⁺ + 2H ₂ O	1.59
$BrO_3 + 6H^* + 5e \Longrightarrow \frac{1}{2}Br_2 + 3H_2O$	1.52
MnO_4 + 8H* + 5e \rightleftharpoons Mn^2 * + 4H ₂ O	1.51
$PbO_2 + 4H^* + 2e \Longrightarrow Pb^{2*} + 2H_2O$	1.46
$Cl_2 + 2\epsilon \Longrightarrow 2Cl^-$	1.36
$Cr_2 + 2e \rightleftharpoons 2Cr$ $Cr_2O_7^{2-} + 14H^+ + 6e \rightleftharpoons 2Cr^{3+} + 7H_2O$	1.33
Cr ₂ O ₇ + 14H + 6¢ == 2Cr + /h ₂ O	1.23
$MnO_2 + 4H^* + 2e \rightleftharpoons Mn^{2*} + 2H_2O$	1.23
$O_2 + 4H^+ + 4e \Longrightarrow 2H_2O$	1.20
$IO_3^- + 6H^+ + 5e \Longrightarrow \frac{1}{2}I_2 + 3H_2O$	1.19
$CIO_4^- + 2H^+ + 2e \rightleftharpoons CIO_3^- + H_2O$	1.09
$Br_2(aq) + 2e \Longrightarrow 2Br$	
$Br_2(liq) + 2e \Longrightarrow 2Br$	1.07
Br ₃ + 2e ⇒ 3Br	1.05
$VO_2^+ + 2H^+ + \epsilon \Longrightarrow VO^{2+} + H_2O$	1.00
AuCl₄ + 3e ⇒ Au + 4Cl	1.00
NO_3 + $4H^*$ + $3e \rightleftharpoons NO + 2H_2O$	0.96
$NO_3 + 3H^* + 2e \rightleftharpoons HNO_2 + H_2O$	0.94
$2Hg^{2^*} + 2e \Longrightarrow Hg_2^{2^*}$	0.92
$AuBr_4 + 3e \implies Au + 4Br_1$	0.8
$Cu^{2^*} + 1^- + e \Longrightarrow Cul$	0.86
Hg ² + 2e −−− Hg	0.83
$Ag^+ + \epsilon \Longrightarrow Ag$	0.80
$Hg_2^{2+} + 2e \Longrightarrow 2Hg$	0.79
$Fe^{3+} + e \Longrightarrow Fe^{2+}$	0.7
$PtCl_4^{2-} + 2e \Longrightarrow Pt + 4Cl^-$	0.7
$Q+2H^*+2e \Longrightarrow H_2Q$	0.70
$O_2 + 2H^+ + 2c \Longrightarrow H_2O_2$	0.68
$PtBr_4^2 + 2e \rightleftharpoons Pt + 4Br$	0.58
$MnO_4^- + e \rightleftharpoons MnO_4^{2-}$	0.56
$H_3AsO_4 + 2H^* + 2e \Longrightarrow HAsO_2 + 2H_2O$	0.50
$1_3^- + 2e \rightleftharpoons 31^-$	0.54
$I_2(s) + 2e \Longrightarrow 2I^-$	0.54
Cu⁺ + e ⇒ Cu	0.53
4H2SO3 + 4H* + 6e == \$4O62- + 6H2O	0.5

Par redox	E°
$2H_2SO_3 + 2H^+ + 4e \implies S_2O_3^{2-} + 3H_2O$	0.40
$Fe(CN)_6^{3-} + e \Longrightarrow Fe(CN)_6^{4-}$	0.36
$VO^{2*} + 2H^* + e \rightleftharpoons V^{3*} + H_2O$	0.36
$Cu^{2*} + 2e \Longrightarrow Cu$	0.34
$Hg_2Cl_2 + 2e \Longrightarrow 2Hg + 2Cl^-$	0.28
IO ₃ + 3H ₂ O + 6e ⇒ I + 6OH	0.26
$AgCl + e \Longrightarrow Ag + Cl^-$	0.22
$HgBr_4^2 + 2e \rightleftharpoons Hg + 4Br$	0.21
$Cu^{2+} + e \rightleftharpoons Cu^{+}$	0.15
$Sn^{4+} + 2e \Longrightarrow Sn^{2+}$	0.15
$S + 2H^+ + 2e \Longrightarrow H_2S$	0.14
$CuCl + e \Longrightarrow Cu + Cl^-$	0.14
$AgBr + e \Longrightarrow Ag + Br$	0.10
$S_4O_6^{2-} + 2e \rightleftharpoons 2S_2O_3^{2-}$	0.08
CuBr + e === Cu + Br [™]	0.03
2H ⁺ + 2e == H ₂	0.00
Hgl ₄ ²⁻ + 2e ⇒ Hg + 41 ⁻	-0.04
$Hgl_4^{2^-} + 2e \Longrightarrow Hg + 41^-$ $Pb^{2^+} + 2e \Longrightarrow Pb$	-0.13
$CrO_4^{2-} + 4H_2O + 3e \rightleftharpoons Cr(OH)_3 + 5OH^-$	-0.13
$\operatorname{Sn}^{2^*} + 2e \Longrightarrow \operatorname{Sn}$	-0.14
$AgI + e \Longrightarrow Ag + I^-$	-0.15
$CuI + e \Longrightarrow Cu + I^-$	-0.19
$Ni^{2+} + 2e \implies Ni$	-0.2
$V^{3+} + e \Longrightarrow V^{2+}$	-0.20
PbCl ₂ + 2e ⇒ Pb + 2Cl ⁻	-0.2
Co ^{2*} + 2e ⇒ Co	-0.2
$PbBr_2 + 2e \implies Pb + 2Br^-$	-0.2
PbSO ₄ + 2e == Pb + SO ₄ 2-	-0.3
$PbI_2 + 2e \Longrightarrow Pb + 2I^-$	-0.3
$Cd^{2+} + 2e \Longrightarrow Cd$	-0.4
$Cr^{3*} + \epsilon \Longrightarrow Cr^{2*}$	-0.4
$Fe^{2*} + 2e \Longrightarrow Fe$	-0.4
$2CO_2(g) + 2H^* + 2e \Longrightarrow H_2C_2O_4(aq)$	-0.4
$Cr^{3*} + 3e \rightleftharpoons Cr$	-0.7
$Zn^{2+} + 2e \Longrightarrow Zn$	-0.7
$H_2O + e \rightleftharpoons \frac{1}{2}H_2 + OH^-$	-0.8
$Cr^{2+} + 2c \Longrightarrow Cr$	-0.9
$Mn^{2^*} + 2e \Longrightarrow Mn$	-1.1
$Al^{3+} + 3e \Longrightarrow Al$	-1.6
$Mg^{2^{*}} + 2e \Longrightarrow Mg$	-2.3
$Na^* + e \Longrightarrow Na$	-2.7
$Ca^{2^+} + 2e \rightleftharpoons Ca$	-2.8
$Sr^{2^{+}} + 2e \rightleftharpoons Sr$	-2.8
$Ba^{2+} + 2e \Longrightarrow Ba$	-2.9
Ba + 2e ↓ Ba K ⁺ + e ➡ K	-2.9
Li + c ⇒ Li	-3.0

Ejemplo

1. Materiales necesarios: Tabla de potenciales estándar de Reducción tubo de ensayo

Gotero con solución 1M de HCl : 2-3 cm³ (un dedo de altura) Un clavo de Fe

2. Observaciones:

Desprendimiento de gases

Formación de precipitados Cambios de color de la solución Otros

3. Reacciones:

Fe(s)
$$\rightarrow$$
 Fe²⁺(ac)+ 2e⁻ (Oxidación – Ánodo) E°ánodo= -0.44 V
2H+ (ac) + 2e⁻ \rightarrow H₂ (g) (Reducción – Cátodo) E°cátodo= EEH = 0.00 V

R. Iónica: Fe(s) + 2H⁺ (ac)
$$\rightarrow$$
 Fe²⁺(ac) + H₂ (g) Δ E°= E°cátodo - E°ánodo
R. Global: Fe(s) + 2 HCl (ac) \rightarrow FeCl₂(ac)+ H₂ (g) Δ E°= 0.00 V - (- 0.44 V)

4. Conclusiones: La reacción es **ESPONTÁNEA**, $\Delta E^{\circ} = 0.44 \text{ V} > 0$

Para trabajar con los temas aprendidos, los docentes les darán indicaciones para realizar diferentes actividades.

