3.1 Test z teorie

- 1. Vytvořte dvojice pojem příklad.
 - a) náhodný pokus 1) Doba přenosu testovacího datového souboru je delší než 30 s.
 - b) náhodný jev 2) <u>Měření</u> doby přenosu testovacího datového souboru.
 - c) náhodná veličina_3) Doba přenosu testovacího datového souboru.
- 2. Určete pravdivost následujících výroků.
 - Náhodnou veličinu chápeme jako výsledek náhodného pokusu.
 - (b) Diskrétní náhodná veličina může nabývat konečného nebo spočetného množství hodnot.
 - Obstribuční funkce náhodné veličiny X v bodě t udává pravděpodobnost, že X nabývá hodnot menších než t.
- d) Má-li náhodná veličina spojitou distribuční funkci, je spojitá.
- e) Je-li X diskrétní náhodná veličina, pak $\sum_i P(X=x_i)=1$.
- Oborem hodnot distribuční funkce jsou všechna reálná čísla.
- Medián je střední hodnota.
- Nabývá-li funkce f(x hodnoty 1,3, nemůže jít o hustotu pravděpodobnosti.
- (i) Rozdělení spojité náhodné veličiny můžeme popsat distribuční funkci a hustotou pravděpodobnosti. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x) \, dx = 1 \qquad \text{for } (x) \geq 0$
- 3. Určete, která ze zadaných funkcí nemůže představovat pravděpodobnostní funkci.

4. Určete, zda by grafy znázorněných funkcí mohly představovat distribuční funkci.

5. Určete, zda by grafy znázorněných funkcí mohly představovat hustotu <u>pravděpodobnost</u>i.

3

- 6. Nechť náhodná veličina X představuje životnost (dobu do poruchy) monitorů na počítačové učebně E320. Určete pravdivost následujících výroků.
 - a) X je spojitou náhodnou veličinou.
 - \nearrow Rozdělení X může být popsáno pravděpodobnostní funkcí.
 - (c) Pro popis X lze použít intenzitu poruch.
- 7. Vyjádřete následující pravděpodobnosti pomocí distribuční funkce.

b)
$$P(X \ge 5), = 1 - P(X \le 5) = 1 - P(S)$$

c) $P(5 \le X < 10) = P(X \le 10) - P(X \le 10) - P(S)$

8. Nechť X je diskrétní náhodná veličina. Vyjádřete co nejjednodušeji následující pravděpodobnosti pomocí P(X = 10), P(X < 10), P(X > 10), P(X = 5), P(X < 5), P(X > 5).

a) $P(X \le 10)$, = P(X < 10) + P(X = 17)

b)
$$P(X \ge 10)$$
, $P(X \ge 10) + P(X = 10) = 1 - P(X \le 10)$

a)
$$P(X \le 10)$$
, = $P(X \ge 10)$ + $P(X = 10)$
b) $P(X \ge 10)$, $\supseteq P(X \ge 10)$ + $P(X = 10)$ = $P(X \ge 10)$ - $P(X \ge 10$

d)
$$P(5 \le X \le 10)$$
. $P(\chi \le 10) - P(\chi \in I) = P(\chi \in I) + P(\chi = 10) - P(\chi \in I)$

- 9. Nechť X je spojitá náhodná veličina. Vyjádřete co nejjednodušeji následující pravděpodobnosti pomocí P(X = 10), P(X < 10), P(X > 10), P(X = 5), P(X < 5), P(X > 5).
 - a) $P(X \le 10)$, $= P(X \le 10)$
 - b) P(X > 10), = P(X > 10)
 - c) $P(5 < X \le 10)$, = $P(X \angle 10) P(X \angle \Gamma)$
 - d) $P(5 \le X \le 10)$. \simeq
- 10. Nechť X je spojitá náhodná veličina. Vyjádřete následující pravděpodobnosti pomocí hustoty pravděpodobnosti.
 - a) $P(X \le 10)$,
 - b) P(X > 10),
 - c) P(5 < X < 10),
 - d) $P(5 \le X \le 10)$.
- a) $\int_{-b}^{\infty} f(x) dx$ $\int_{0}^{\infty} f(x) dx$

3.2 Diskrétní náhodná veličina - příklady

1. Majitel servisního střediska nabídl prodejně automobilů, která si zřídila autopůjčovnu své služby. Za každý automobil zapůjčený jeho prostřednictvím obdrží od autopůjčovny 500,- Kč. Zároveň se však zavázal, že každý den investuje do údržby zapůjčených automobilů 800,- Kč. Počet automobilů zapůjčených prostřednictvím servisního střediska za 1 den je popsán následující pravděpodobnostní funkci:

x_i	0	1	2	3	4	5	6
$P(x_i)$	0,01	0,40	0,25	$0,\!15$	0,10	01,08	0,03

a) Hodnota pravděpodobnostní funkce pro 5 automobilů byla špatně čitelná. Určete ji.

 $\sum_{i=1}^{\text{Rešenf:}} P(x=y_i) = 1 \quad \rightarrow \quad P(x=s) = 1 - \sum_{i=1}^{\infty} P(x=y_i) = 0,06$

b) Určete a zakreslete distribuční funkci náhodné veličiny X, která je definována jako počet zapůjčených automobilů.

 $F(t) = P(\chi < t) = P(\chi = \chi_i)$

c) Určete střední hodnotu, rozptyl, směrodatnou odchylku a modus počtu zapůjčených automobilů během jednoho dne.

 $E(x) = \sum_{i} x_{i} P(x=x_{i}) = 2 (2)$ $D(x) = E(x^{2}) - E(x)^{2} = 1.9571$ $\sum_{i} x_{i} P(x=x_{i})$

$$[E(X) = 2, 23; D(X) = 1, 96; \sigma(X) = 1, 4; \hat{x} = 1]$$

d) Určete pravděpodobnostní funkci a distribuční funkci náhodné veličiny Y, která je definována jako denní příjem majitele servisu.

= 200.X

e) Určete střední hodnotu, směrodatnou odchylku a modus příjmu majitele servisu ze zapůjčených automobilů během jednoho dne.

Řešení:

f) Určete pravděpodobnost, že příjem majitele servisu (náhodná veličina Y) z půjčování automobilů převýší jeho výdaje.

Řešení:

[0,59]

g) Určete střední hodnotu, směrodatnou odchylku a modus náhodné veličiny Z, která je definována jako zisk majitele servisu ze zapůjčených automobilů během jednoho dne.

Řešení:

$$[E(Z)=315~\mathrm{K}\check{\mathrm{c}};\,\sigma(Z)=700~\mathrm{K}\check{\mathrm{c}};\,\hat{z}=-300~\mathrm{K}\check{\mathrm{c}}]$$

2. Pro distribuční funkci náhodné veličiny X platí:

$$F(x) = \begin{cases} 0 & x \le -1 & 0 \\ 0, 3 & -1 < x \le 0 \\ 0, 7 & 0 < x \le 1 \\ 1 & x > 1 \end{cases} \quad 0 \Rightarrow \quad 0 \Rightarrow$$

a) Určete pravděpodobnostní funkci náhodné veličiny X, její střední hodnotu a směrodatnou odchylku.

Řešení:

$$A(x) = 0$$

$$E(x) = 0$$

$$[E(X) = 0; \sigma(X) = 0,77]$$

b) Náhodná veličina Y = 1 - 3X, určete P(y), F(y), E(Y), D(Y).

Řešení:

$$\frac{|x_{1}|-2|-7|4}{|pex_{1}|(0,3)(0,4)(0,3)}$$

$$E(T)=1$$

$$D(T)=514$$

$$[E(Y) = 1; D(Y) = 5, 4]$$

c) Náhodná veličina $W = 3X^2$, určete P(w), F(w), E(W), D(W).

Řešení:

$$X=1...W=3$$
 $X=1...W=3$
 $X=0...W=3$
 $X=0...W=3$
 $X=1.8$

$$\frac{(w)}{p(w)} = \frac{1}{3}$$
 $\frac{(w)}{p(w)} = \frac{2}{16}$

$$[E(W) = 1, 8; D(W) = 2, 16]$$

- 3. V dílně jsou dva stroje pracující <u>nezávisle</u> na sobě. Pravděpodobnost poruchy prvního stroje je 0,2, pravděpodobnost poruchy druhého stroje je 0,3. Náhodná veličina X je definována jako počet současně porouchaných strojů. Určete:
 - a) pravděpodobnostní funkci náhodné veličiny X,

Řešení:

c) střední hodnotu a rozptyl náhodné veličiny X.

Řešení:

$$E(X) = 0.5$$

$$D(X) = 0.3 + 0.$$

$$[E(X) = 0, 50; D(X) = 0, 37]$$