Hypothesis Testing

we studied (Review)

- 1. Testing for single mean (Large sample)
- 2. Testing for two means ())
- 3. Testing for bingle sample proportion (L.S)
- 4. Testing for two sample proporting (L.S)
- 5. Chisquare text for attributes (3-cases)
 - $2 = \frac{x H}{D / \sqrt{n}} \sim N(0, 1)$
- $Z = \frac{\overline{x} \overline{y}}{\overline{y_1}} \sim N(011)$ $\frac{\overline{y_1}}{\overline{y_1}} + \frac{\overline{y_2}}{\overline{y_2}}$
- 3) $Z = \frac{P P}{\sqrt{\frac{PQ}{n}}} \sim N(0,1)$
- 4) $Z = \frac{p_1 p_2}{\sqrt{p_0 (2m_1 + 2m_2)}} \sim N(0, 1)$
- 5) $y^2 = 5 \frac{(0-\epsilon)^2}{\epsilon} df x^2_{(m-1)} df_{(m-1)}$

Let us discuss about n- means (30 more sample Means)

Testing the fignificance differency S/W Heree or more groups with help 10-4 Variances (F-test)

The name of test is ANOVA ie Analysis of Variance"

Means -> The Variation due to any spectic factor is compared with the Geridenal Variation for tognificance by applying Ite F-text and Itus text the homogeneity of the observed data.

Techniques:

. A NOVA for one way classification

2. ANOVA for two way claenification.

ANOVA Take

Source of Variation (s.v)	clegrenof freedom (duf)	Sum of Squaren (s.s)	Moan Sumot Squuy	Fall	Fahl
Between clang (treat) Wiltin Clans Total	4.1 A-1.	Triss Ess Tss	(MSS) MTX=TTSS K-1 ME - ESS M-K	LOST NEW	F(K-1,n-k

8

Formulae:

Correction factor
$$(c \cdot f) = \frac{G^2}{n}$$
 (G-Grand total)
$$(n-no + obse$$

(n-no of objects)

Total sum of saverus) = EEYij2 - C.f.

Eg: - The following table shows He lives En hours of 4 brands of electric lamps

A
$$\begin{vmatrix} 17 & 26 & 35 & 41 & 50 \\ 8 & 8 & 12 & - & 20 & 14 \\ 0 & 16 & 13 & 12 & 4 & 6 \end{vmatrix}$$

penform an ANOVA and test the homogenety of the mean lives of the 4 brands of lamps at 5% Los.

D B A 16 17 13 26 12 35 41 51 = 305 4: = 5712.2 729 520,2 = 7281.72 320.33 Σεγί² = 7993 $C \cdot f = \frac{G^2}{\pi} = \frac{(305)^2}{17} = 5472.05$ Total sum of Sarum (TSS) = EE4i2 - C.f = 2520.94 Treatment sum of) = 5 yil - Cf = 7281.73 - 5472.05 = 1809.68 Errs Sun of Squam (Erss) = TSS - Trss

Enris san (Erss) = TSS - Toss = 2520, 94 - 1809.68 = 711.26

Page (5):

ANOVA Table	,
-------------	---

Z. V	d.f	ک ک	M-SS.	Fcol	Frask
Treatment (Trss) Error (Erss) Total (Tss)	m-k= = 17-4=13	_ (= Tris = 1809-68 = 1809-68 = 1809-68 = 1809-68 = 1809-68 = 1809-68 = 1809-68 = 1809-68 = 1809-68 = 1809-68	Fcd = _Mrs _Ms _603.22 54.712 = 11.025	F(3,13) = =3.41

Interence: Since F cal Value is grater Hau F- Lab at (3/1) in 5%. Los our null Hypothem is referred.