

Y and mitochondrial chromosomes in the heterogeneous stock rat population

Faith Okamoto, Palmer Lab, UC San Diego

Roadmap

- 1. Question
- 2. Data
- 3. Step 1: call haplotypes
 - a. Founder strains
 - b. Modern HS rats
- 4. Step 2: haplotype association
 - a. PheWAS
 - b. Differential expression
- 5. Conclusion

Question

Do the Y and mitochondrial chromosomes affect traits studied in HS rats?

40x

Data

- Founder strain genotypes
- 10 years of modern HS rats
 - Genotypes
 - Phenotypes

0.25x

Behavior

Microbiome

Gene expression

Physiology

Metabolome

Step 1a: HS founder strain haplotypes

Which haplotypes existed among *founder* strains?

Step 1b: modern HS rat haplotypes

Which haplotypes exist among *modern* HS rats?

Step 2a: PheWAS

Does haplotype have a significant effect on traits used in GWAS?

VS

_

Step 2b: differential expression

Does haplotype has a significant effect on gene expression?

Brain hemisphere expression of Mt-nd3

Conclusion

- Limited Y/MT diversity exists in modern HS rats
- Extant Y/MT haplotypes can be easily called from existing sequencing data
- Extant Y/MT haplotypes have little effect on traits studied in HS rats
- Limitations

Acknowledgements

Genes and Addiction
NIDA Center for GWAS in Outbred Rats

Okamoto *et al.* 2024, published in G3