$\textbf{Table} \ . \ \mathsf{Comparison} \ \mathsf{of} \ \mathsf{Methods} \ \mathsf{for} \ \mathsf{fMRI} \ \mathsf{Decoding} \ \mathsf{and} \ \mathsf{Visual} \ \mathsf{Image} \ \mathsf{Reconstruction}$

Category	Representative Method	Dataset	Innovation	Advantages	Disadvantages	Results
Traditional Methods	Gabor-wavelet RF Model [9]	Vim-1	Early visual fea- tures are mapped.	Preset image sets can be recog- nized.	Pixel reconstruc- tion cannot be performed.	Category recognition is achieved.
	Bayesian CCA Model [10]	Vim-1	Sparse mappings are extracted.	Simple pixel images can be reconstructed.	Reconstruction is limited by fine lines and high noise.	Rough image re- construction is obtained.
Deep Learning (Non-gen- erative)	Voxels → Pix- els Bidirec- tional Model [15]	GOD	Unlabeled data are used for train- ing.	Rough structures can be recon- structed.	Rough structures are the only ones reconstructed.	Shape similarity is achieved.
	NEI-GNN Multi-scale [16]	GOD	Structural details are optimized.	Good texture can be obtained.	Semantic con- sistency is lack- ing.	Accurate struc- ture reconstruc- tion is achieved.
Generative (Encoder- Decoder type)	Foreground- Attention & Loop-Enc-Dec [20]	GOD	A visual attention mechanism for guidance is intro- duced.	Attended regions can be effectively reconstructed.	Generalization is limited by dataset diversity.	Clear structure with limited scene coverage is obtained.
Generative (GAN type)	Dual-guided Brain Diffu- sion Model [35]	NSD	Multi-stage guid- ance control is ap- plied.	Randomness and blur can be im- proved.	Performance is slightly worse in complex scenes.	High semantic consistency is achieved.
Generative (Diffusion Models)	MindDif- fuser[34]	NSD	Dual guidance for semantics and structure is ap- plied.	Randomness and blur can be im- proved.	Regularization adaptability is in- sufficient.	Good detail in simple scenes is achieved.
	STTM[41]	NSD, GOD	Cross-subject transfer and high/low-level joint learning are performed.	Cross-subject ad- aptation transfer can be realized.	Structural fidelity still needs improvement.	Good results in both low-level pixels and high- level semantics are obtained.
	LDM[44]	NSD	Simple linear mapping for re- construction is applied.	High resolution and high seman- tic fidelity can be achieved.	Reconstructed visual images lack natural ap- pearance.	High-resolution reconstruction is obtained.
	MindEye2[45]	NSD	A short training period for good reconstruction is required.	Cross-subject shared model can be applied.	Reconstruction is limited to natural scenes and sus- ceptible to noise.	High precision with few samples is achieved.