Ćwiczenie 20

AUTOR

1 Wstęp Teoretyczny

Celem ćwiczenia jest skalowanie termopary w celu wyznaczenie współczynnika termoelektrycznego termopary. Następnie wyznaczenie temperatury krzepnięcia stopu Wooda.

Lepkość zostanie wyznaczona na podstawie danych otrzymanych przez obserwacje kulki tonącej w glicerynie.

Dzięki analizie ruchu kulki, znając jej parametry takie jak masa i średnica, które przekładają się na gęstość. Można zanalizować siły oporu, które stawia ciecz co przekłada się na współczynnik lepkości η .

W naszym eksperymencie wykorzystamy następujące przyrządy:

- Termomentr
- Garnek z wodą
- Termos wody z lodem
- Kuchenka
- Woltomierz
- Stoper
- Mieszadełko
- Tygiel ze stopem Wooda
- Podstawka chłodząca

2 Skalowanie termopary i wyznaczenie współczynnika termoelektrycznego α

Wzory: niepewność multimetra $u(U) = \frac{0.05}{100} \cdot U + 0.001$

niepewność termometru $u(T)=\pm 0,01^{\circ}$

Z regresji liniowej wynika, że $\alpha\approx 0,0404[\frac{mV}{C}]$ natomiast jej błąd $u(\alpha)\approx 0,00012$

Wyznaczenie temperatury krzepnięcia stopu metali oraz nie-3 pewności jej wyznaczenia

Czas[s]	U[mV]
C	3,23
30	3,05
60	2,95
90	2,85
120	2,78
150	2,73
180	2,7
210	2,68
240	2,66
270	2,64
300	2,62
330	2,6
360	2,57
390	2,55
420	2,52
450	2,49
480	2,44
510	2,38
540	2,28
570	2,17
600	2,06
630	1,96
660	1,86
690	1,79
720	1,73
750	
780	1,64
810	1,61
840	1,59

niepewność standardowa typu A wartości średniej napięć mieszczących się w obszarze plateau $u_A(\overline{U})=\sqrt{\frac{\sum_{i=1}^n(U_i-\overline{U}_i)^2}{n\cdot(n-1)}}$

$$u_A(\overline{U}) = \sqrt{\frac{\sum_{i=1}^n (U_i - \overline{U}_i)^2}{n \cdot (n-1)}}$$

niepewność standardowa typu B
$$\Delta_p(U) = \frac{0.05}{100} \cdot U + 0,001$$

$$u_B(U) = \frac{\Delta_p(U)}{\sqrt{3}}$$

niepewność napięcia krzepnięcia można obliczyć ze wzoru

$$u(U_k) = \sqrt{(u_A(\overline{U}))^2 + (u_B(U))^2}$$

Przykładowe obliczenia:

$$u_A(\overline{U}) = \sqrt{\frac{\sum_{i=1}^{29} (U_i - \overline{U}_i)^2}{29 \cdot 28}} \approx 0,000022V$$

$$u_B(U) = \frac{\Delta_p(U)}{\sqrt{3}} \approx 0,00059V$$

$$u(U_k) = \sqrt{(0,0000216))^2 + (0,000585)^2} \approx 0,00059V$$

Temperatura krzepnięcia stopu $T_k = \frac{U_k}{\alpha} = \frac{2.62}{0.0404} \approx 64,8 C^\circ$

$$T_k = \frac{U_k}{\alpha} = \frac{2,62}{0.0404} \approx 64,8C^{\circ}$$

$$u_c(T_k) \approx 2,7C^{\circ}$$

4 Wnioski

- wraz ze wzrostem temperatury przewodów rośnie napięcie
- podczas mierzenia przewodności stopu wooda w pewnym momencie spadek napięcia praktycznie znika, wynika to z powodu przejścia stanu skupienia stopu z ciekłego na stały