

Sep 26, 2022

Simultaneous detection of miRNA and mRNA at the single-cell level in plant tissues

Chi-Chih Wu¹

¹Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan

1 Works for me

[∞] Share

dx.doi.org/10.17504/protocols.io.x54v9deppg3e/v1

Chi-Chih Wu

ABSTRACT

Detecting the simultaneous presence of a microRNA (miRNA) and a mRNA in a specific tissue can provide support for the prediction that the miRNA regulates the mRNA. We develop a method that uses sequence-specific miRNA-locked nucleic acid (LNA) and mRNA-LNA probes. Moreover, it augments the detection signal by rolling circle amplification, achieving a high signal-noise ratio at the single-cell level. Dot signals are counted for determining the expression levels of mRNA and miRNA molecules in specific cells. We show a high sequence specificity of our miRNA-LNA probe, revealing that it can discriminate single-base mismatches. Numerical quantification by our method is tested in transgenic rice lines with different gene expression levels.

DOI

dx.doi.org/10.17504/protocols.io.x54v9deppg3e/v1

PROTOCOL CITATION

Chi-Chih Wu 2022. Simultaneous detection of miRNA and mRNA at the single-cell level in plant tissues. **protocols.io**

https://protocols.io/view/simultaneous-detection-of-mirna-and-mrna-at-the-si-cfvwtn7e

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

motocols.io

1

Citation: Chi-Chih Wu Simultaneous detection of miRNA and mRNA at the single-cell level in plant tissues https://dx.doi.org/10.17504/protocols.io.x54v9deppq3e/v1

CREATED

Aug 27, 2022

LAST MODIFIED

Sep 26, 2022

PROTOCOL INTEGER ID

69270

1 miRNA hybridization

Α
1. The slides with
sections are taken out the freezer and
equilibrated to RT for 40 mins.
2. Permeabilized in 20 ug/ml proteinase k
for proper duration
3. Quickly wash in DEPC-PBS
4. Quickly dehydrate the slides in EtOH
(50, 70, 99 %) and then air dry
5. Mount the secure seal reaction
chambers onto the slides.
6. Add 1x DEPC-PBS-tween 0.05 % (Wash
buffer) into the chambers to keep the slides wet until RT reaction ready

2 Section permeabilization

Α	В	С
	Stock	Final
Formamide	100%	50%
SSC	20x%	5x
tRNA	10 mg/ml	0.5 ug/ul
Denhardt's	50x	1x
LNA probe A	10 uM	2-3 pmole
DEPC-H20		

1. process

Α
Hybridization under the predicted melting temperature of the probe for an hour
Wash with 0.1X SSC three times at the temperature set in the Step 1
Wash with 2X SSC at RT once
Wahs wtih the wash buffer (PBS, 0.05% Tween-20) once

3 mRNA cDNA synthesis

Reagent	Stock	Final
NEB Tag DNA ligase	40U/ul	0.5 U/ul
Rnase H	5 U/ul	0.4 U/ul
Ribolock Rnase	40 U/ul	1 U/ul
inhibitor		
NEB Tag ligase buffer	10x	1x
BSA	20 ug/ul	0.2 ug/ul
KCI	1 M	0.05 M
Formamide	100%	20%
Pd_A	10 uM	0.1 uM
Pd_B	10 uM	0.1 uM
Pd_C	10 uM	0.1 uM
DEPC-H20		

Process

1. Add ligation
mixture in chambers,
seal with adhesive
film
2. Incubate for 30
min at 37 C followed
by 45 min at 48 C
3. Wash 2x, 1x DEPC-
PBS-Tween 20, 0.05%

4 miRNA and mRNA padlock probe hybridization and ligation

Reagent	Stock	Final
NEB Tag DNA ligase	40U/ul	0.5 U/ul
Rnase H	5 U/ul	0.4 U/ul
Ribolock Rnase	40 U/ul	1 U/ul
inhibitor		
NEB Tag ligase buffer	10x	1x
BSA	20 ug/ul	0.2 ug/ul
KCI	1 M	0.05 M
Formamide	100%	20%
Pd_A	10 uM	0.1 uM
Pd_B	10 uM	0.1 uM
Pd_C	10 uM	0.1 uM
DEPC-H20		

process

Α
1. Add ligation
mixture in chambers, seal with adhesive film
2. Incubate for 30
min at 37 C followed by 45 min at 48 C
3. Wash 2x, 1x DEPC-PBS-Tween 20, 0.05%

5 rolling circle amplification

Reagent	Stock	Final
Phi 29 polymerase	10 U/ul	1 U/ul
Ribolock Rnase	40 U/ul	1 U/ul
inhibitor		
10 X phi 29 buffer	10 x	1 x
dNTP	10 mM	0.25 mM
BSA	20 ug/ul	0.2 ug/ul
Glycerol	50%	5%
DEPC-H20		

process

Α
1. Add reaction
mixture and seal chamber
2. Incubate for over night at 37 C
3. Wash 2x, DEPC-PBS-Tween 20, 0.05 %

6 detection oligo hybridization

Α	В	С
Reagent	Stock	Final
Hyb mixture	4 x	2 x
Detection oligo 1- FITC	1 uM	0.1 uM
Detection oligo 2-Cy3	1 uM	0.1 uM
Detection oligo 3-Cy5	1 uM	0.1 uM
DEPC-H20		

process

1. Add reaction
mixture
2. Incubate for 30
min at 37 C
3. Wash 2x, DEPC-
PBS-Tween 20, 0.05
%
4. Dehydrated by
EtOH 50, 70, 99 %;
then
then air dry.