```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# For feature selection
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel

# For statistical analysis
from scipy import stats
```

df=pd.read_csv('file1.csv')
df

	time	device_address	physical_payload	gateway	crc_status	1
0	2019-03- 01T00:00:01.528887066Z	01ae0905	QAUJrgGA3CIF/9yXgSG9G2+SwnOEzEmlHJeTCuE=	00000f0c210721f2	1	8
1	2019-03- 01T00:00:01.528930845Z	01ae0905	QAUJrgGA3CIF/9yXgSG9G2+SwnOEzEmlHJeTCuE=	00000f0c210721f2	1	8
2	2019-03- 01T00:00:01.822131604Z	00c2d5cc	QMzVwgCA7xoFASIHknHqttrHhvTB4DvnUz/HSvs=	00000f0c210721f2	1	8
3	2019-03- 01T00:00:01.822184581Z	00c2d5cc	QMzVwgCA7xoFASIHknHqttrHhvTB4DvnUz/HSvs=	00000f0c210721f2	1	8
4	2019-03- 01T00:00:03.924795694Z	-1	NaN	00000f0c210721f2	-1	8
108420	2019-03- 01T23:59:43.726314706Z	10003432	QDI0ABCAug8BmDSRJF3Vv8eR3OH07twjPyKrX0tcqtwwB2	00000f0c22433141	1	8
08421	2019-03- 01T23:59:56.371057987Z	-1	NaN	00000f0c22433141	-1	8
08422	2019-03- 01T23:58:19.264275Z	fa2dd4c4	m8TULfqnX/aTLvbsiRvo/jATE+0RiCFoQ2UC8lxemOLVRn	00800000a0001793	-1	8
08423	2019-03- 01T23:57:25.821769386Z	8e98fc05	ewX8mI6/wjnOKqoazwPuba7eeRp+o9fZ7jNLZkRhKh/Pp8	00800000a0001914	-1	8
108424	2019-03- 01T23:58:01.389385243Z	e04f2714	fBQnT+C46c+bkOilfuCJUzH6MKwg+xHjPh2USgv+67U3nd	00800000a0001914	-1	8
08425 ro	ows × 15 columns					
						•

Start coding or generate with AI.

print(df.describe())

$\overline{\Rightarrow}$		crc_status	frequency	spreading_factor	bandwidth	\
	count	108425.000000	1.084250e+05	108424.000000	108424.000000	
	mean	0.359041	8.681482e+08	7.986433	125.547619	
	std 0.933326		3.567392e+05	0.916765	8.255487	
	min	-1.000000	8.671000e+08	7.000000	125.000000	
	25%	-1.000000	8.681000e+08	7.000000	125.000000	
	50%	1.000000	8.681000e+08	8.000000	125.000000	
	75%	1.000000	8.685000e+08	8.000000	125.000000	
	max	1.000000	8.688000e+08	12.000000	250.000000	
		rssi	snr	size	mtype \	\
	count	108425.000000	108425.000000	108425.000000	108425.000000	
	mean	-108.471312	-6.161835	21.315822	8.812184	
	std	6.019582	6.129328	19.387354	15.755465	
	min	-123.000000	-128.000000	0.000000	-1.000000	
	25%	-113.000000	-11.000000	0.000000	-1.000000	
	50%	-109.000000	-7.000000	29.000000	10.000000	
	75%	-105.000000	-2.000000	29.000000	10.000000	
	max	-68.000000	15.000000	255.000000	111.000000	
		fcnt	fport			
	count	108425.000000	108391.000000			
	mean	9802.214628	4.006467			
	std	13504.482517	13.112764			
	min	-1.000000	-1.000000			

```
25%
            -1.000000
                       -1.000000
          5691.000000
                        5.000000
   50%
   75%
         10554.000000
                        5.000000
         65461.000000
                       255.000000
# df['time'] = pd.to_datetime(df['time']).astype('int64') // 10**9
# print(df['time'])
1551398401
           1551398401
           1551398401
           1551398401
           1551398403
          1551484783
   108420
   108421
           1551484796
   108422
           1551484699
           1551484645
   108423
          1551484681
   108424
   Name: time, Length: 108425, dtype: int64
numeric_cols = df.select_dtypes(include='number').columns
print(numeric cols)
selected_cols = numeric_cols.unique()
numeric_df = df[selected_cols]
numeric_df
```

$\overline{\Rightarrow}$		crc_status	frequency	spreading_factor	bandwidth	rssi	snr	size	mtype	fcnt	fport
	0	1	868500000	8.0	125.0	-112	0.0	29	10	8924	5.0
	1	1	868500000	8.0	125.0	-113	-9.0	29	10	8924	5.0
	2	1	868100000	8.0	125.0	-108	2.0	29	10	6895	5.0
	3	1	868100000	8.0	125.0	-101	9.0	29	10	6895	5.0
	4	-1	868100000	8.0	125.0	-112	-11.0	0	-1	-1	-1.0
	108420	1	868500000	7.0	125.0	-115	-7.0	42	10	4026	1.0
	108421	-1	868100000	8.0	125.0	-116	-13.5	0	-1	-1	-1.0
	108422	-1	867700000	7.0	125.0	-114	-10.8	47	100	63071	254.0
	108423	-1	867300000	7.0	125.0	-111	-11.0	71	11	14786	217.0
	108424	-1	867300000	7.0	125.0	-111	-11.5	168	11	53225	49.0
	108425 rd	ws × 10 colum	nns								

```
# Histograms for numerical features
for col in numeric_df:
    plt.figure(figsize=(8, 4))
    sns.histplot(df[col], kde=True)
    plt.title(f'Distribution of {col}')
    plt.show()
```



```
corr_matrix = numeric_df.corr()

# Plot heatmap
plt.figure(figsize=(12, 10))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()
```


from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

```
# Specify your features and target
features = ['frequency', 'spreading_factor', 'bandwidth', 'rssi', 'snr', 'size', 'mtype', 'fcnt', 'fport']
target = 'crc_status'

X = df[features]
y = df[target]

# Handle categorical variables
X = pd.get_dummies(X, columns=['mtype'], drop_first=True)

# Split data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
# Create and fit the model
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)
# Get feature importances
importances = model.feature_importances_
feature_importances = pd.DataFrame({'feature': X.columns, 'importance': importances})
feature_importances = feature_importances.sort_values(by='importance', ascending=False)
# Select top N features
top_n = 3
best_features = feature_importances.head(top_n)['feature'].tolist()
print("Best features selected:", best_features)
# # Final DataFrame with selected features and target
# X_final = numeric_df[best_features + [target]]

∃ Best features selected: ['size', 'fport', 'fcnt']
# Final DataFrame with selected features and target
X_final = numeric_df[best_features + [target]]
X_final
```

$\overline{\Rightarrow}$		size	fport	fcnt	crc_status
	0	29	5.0	8924	1
	1	29	5.0	8924	1
	2	29	5.0	6895	1
	3	29	5.0	6895	1
	4	0	-1.0	-1	-1
	108420	42	1.0	4026	1
	108421	0	-1.0	-1	-1
	108422	47	254.0	63071	-1
	108423	71	217.0	14786	-1