Analiza Czasu Trwania dla awarii dysków w serwerowniach

Robert Gawrylczyk 60328 Szymon Jończyk 99693 Magdalena Piszczatowska 108474

Wstęp

Celem niniejszej pracy jest zastosowanie metod analizy czasu trwania do badania niezawodności dysków twardych na podstawie danych udostępnionych przez firmę Backblaze. Analiza czasu trwania (Survival Analysis) znajduje szerokie zastosowanie w wielu dziedzinach, a jej głównym celem jest modelowanie czasu do wystąpienia określonego zdarzenia, w badanym przypadku awarii dysku. W pracy zostaną zaprezentowane trzy podejścia do modelowania danych: model nieparametryczny, model parametryczny z podejściem bayesowskim oraz model semiparametryczny. Celem końcowym pracy jest porównanie skuteczności poszczególnych podejść w kontekście analizy awaryjności dysków twardych.

Opis zbioru danych

Zbiór został stworzony na podstawie publicznie dostępnych danych firmy Backblaze. Zbiór zawiera 248105 obserwacji i 29 zmiennych.

Zastosowaliśmy cenzurowanie prawostronne ze względu na czas. Okres obserwacji trwał od 1 stycznia 2024 do 31 grudnia 2024 roku. Przed wgraniem danych do SAS przeprowadziliśmy cenzurowanie obserwacji, dla których nie wystąpiło zdarzenie, a obserwacje przestały być odnotowywane..

Jako zdarzenie początkowe, które definiuje badaną zbiorowość przyjmujemy datę 01.01.2024. Natomiast zdarzeniem eliminującym jest awaria dysku.

Zmienna *duration_days* opisuje czas do wystąpienia zdarzenia. Wartość 365 przypisano obserwacjom, dla których zdarzenie nie wystąpiło lub miało miejsce ostatniego dnia okresu obserwacji. W związku z tym, dla obserwacji, w których zdarzenie nie wystąpiło, zmienna duration_days została zastąpiona brakiem danych. Czas będziemy liczyć jako liczbę dni od 01.01.2024 do momentu wystąpienia zdarzenia. Zmienna end_date opisuje moment wystąpienia zdarzenia. Wartość 31.12.2024 przypisano obserwacjom, dla których zdarzenie nie wystąpiło lub miało miejsce ostatniego dnia okresu obserwacji. W związku z tym, dla obserwacji, w których zdarzenie nie wystąpiło, zmienna end_date została zastąpiona brakiem danych.

Cechy pierwotne w naszym zbiorze danych to: model, capacity_bytes, datacenter, cluster_id, vault id, pod id, pod slot num, is legacy format, serial number.

Cechy wtórne w naszym zbiorze danych to: Rate of hardware read errors during disk operations, Average time of spindle spin up from zero RPM to fully operational, Number of spindle start/stop cycles, Count of reallocated sectors (bad sectors remapped), Rate of positioning errors of the read/write head, Count of hours the drive has been powered on, Number of retry attempts for spin-up, Number of full power on/off cycles, FLAG Uncorrectable errors reported to host, FLAG Command timeouts (not completed in time), Number of times the heads retracted due to power off, Times the heads have been loaded/unloaded, AVERAGE Drive temperature (usually Celsius), FLAG Number of sectors pending remap, Uncorrectable errors found offline, Errors during data transfer via the interface cable.

Prezentacja zbioru danych

Tabela 1. Opis kolumn zbioru danych wykorzystanego w analizie przeżycia.

Zmienna	Etykieta						
serial_number	Unique identifier of the individual hard drive unit.						
model	Model name or number of the hard drive.						
capacity_bytes	Storage capacity of the drive in bytes.						
datacenter	Identifier of the data center where the drive is located.						
cluster_id	ID of the hardware cluster that contains the drive.						
vault_id	Logical grouping of storage pods within a data center.						
pod_id	od_id ID of the specific storage pod that houses the drive.						
pod_slot_num	num The physical slot number of the drive within the pod.						
is_legacy_format	Indicates whether the data format used is outdated or from a previous schema (True/False).						
start_date	Date when the observation or monitoring period for the drive started.						
end_date	Date when the observation ended (either failure or last known activity).						
event	Indicator of whether a failure event occurred (usually 1 = failure, 0 = censored).						
duration_days	Number of days the drive was observed (used for survival analysis).						
smart_1_raw	Rate of hardware read errors during disk operations						
smart_3_raw	Average time of spindle spin up from zero RPM to fully operational						
smart_4_raw	Number of spindle start/stop cycles						
smart_5_raw	Count of reallocated sectors (bad sectors remapped)						

smart_7_raw	ate of positioning errors of the read/write head			
smart_9_raw Count of hours the drive has been powered on				
smart_10_raw Number of retry attempts for spin-up				
smart_12_raw	Number of full power on/off cycles			
smart_192_raw	Number of times the heads retracted due to power off			
smart_193_raw	Times the heads have been loaded/unloaded			
smart_198_raw	Uncorrectable errors found offline			
smart_199_raw	Errors during data transfer via the interface cable			

W tabeli 1. zostały wypisane użyte w modelu zmienne. Przedrostek FLAG oznacza, że zmienna jest zmienną binarną, przyjmującą 1 jeśli badana obserwacja doświadczyła danego zdarzenia co najmniej jeden raz w okresie obserwacji. Przedrostek AVERAGE oznacza, że wartością zmiennej jest średnią wartość zmiennej z całego okresu.

Tabela 2. Częstotliwość występowania badanego zdarzenia.

Event	Liczebność	Procent		
0	244.307	98.47%		
1	3.798	1.53%		

W badanej próbie awarii dysku, wartość 0 dla zmiennej event, doświadczyło 3798 dysków (1,53% wszystkich obserwacji).

Metody nieparametryczne

Metoda tradycyjna

Na początek konstruujemy tablicę trwania życia z wykorzystaniem metody tradycyjnej w grupach wyznaczonych przez zmienną *FLAG Command timeouts (not completed in time)*. Większy odsetek obserwacji dla których wystąpił *Command timeouts* doświadczył następnie awarii dysku.

Sumarycznie wartości ocenzurowanych i nieocenzurowanych								
Warstwa	smart_188_flag	Suma	Nie powiodło się	Ocenzurowane	Procent ocenzurowanych			
1	0	241506	3206	238300	98.67			
2	1	6599	592	6007	91.03			
Suma		248105	3798	244307	98.47			

Tabela 3. Liczba wystąpień wydarzenia *FLAG Command timeouts (not completed in time)*, wraz z sumaryczną liczbą obserwacji ocenzurowanych oraz nieocenzurowanych.

	Procedura LIFETEST														
	Waretwa 1: FLAG Command timeouts (not completed in time) = 0 Coeny przeżycia z tablic wymieralności														
Prze	dział					Bład						Oblica	zane w punkcie	erodkowym	przedziału
[Dolna,	Górna)	Liczba nieudanych	Liczba ocenzurowanych	Efektywna liczebność próby	Warunkowe prawdopodoblenstwo niepowodzenia	standardowy prawdopodoblenstwa warunkowego	Przeżycie	Niepowodzenie	Błąd standardowy przeżycia	Mediana dalazego trwania	Błąd standardowy mediany	PDF	Błąd standardowy PDF	Hazard	Błąd standardowy hazardu
0	50	423	0	241506.0	0.00175	0.000085	1.0000	0	0			0.000035	1.702E-6	0.000035	1.705E-6
50	100	322	0	241083.0	0.00134	0.000074	0.9982	0.00175	0.000085			0.000027	1.485E-6	0.000027	1.49E-6
100	150	231	0	240761.0	0.000959	0.000063	0.9969	0.00308	0.000113			0.000019	1.258E-6	0.000019	1.263E-6
150	200	549	0	240530.0	0.00228	0.000097	0.9960	0.00404	0.000129			0.000045	1.938E-6	0.000046	1.95E-6
200	250	706	0	239981.0	0.00294	0.000111	0.9937	0.00631	0.000161			0.000058	2.197E-6	0.000059	2.218E-6
250	300	426	0	239275.0	0.00178	0.000086	0.9908	0.00924	0.000195			0.000035	1.708E-6	0.000036	1.727E-6
300	350	432	0	238849.0	0.00181	0.000087	0.9890	0.0110	0.000212			0.000036	1.72E-6	0.000036	1.742E-6
350	400	117	238300	119267.0	0.000981	0.000091	0.9872	0.0128	0.000229			0.000019	1.79E-6	0.00002	1.815E-6
400		0	0	0.0	0	0	0.9862	0.0138	0.000245						

Tabela 4. Wynik procedury LIFETEST, warstwa 1 dla zmiennej *FLAG Command timeouts (not completed in time)* przyjmującej wartość 0, dla grup o rozpiętości 50 dni.

	Procedura LIFETEST Warstwa 2: FLAG Command timeouts (not completed in time) = 1 Oceny przeżycia z tablic wymieralności														
Prze	dział					Błąd						Oblicz	ane w punkcie s	rodkowym	
[Dolna,	Górna)	Liczba nieudanych	Liczba ocenzurowanych	Eřektywna liczebność próby	Warunkowe prawdopodobieństwo niepowodzenia	standardowy prawdopodobleństwa warunkowego	Przeżycie	Niepowodzenie	Błąd standardowy przeżycia	Mediana dalazego trwania	Błąd standardowy mediany	PDF	Błąd standardowy PDF	Hazard	Błąd standardowy hazardu
0	50	100	0	6599.0	0.0152	0.00150	1.0000	0	0			0.000303	0.000030	0.000305	0.000031
50	100	76	0	6499.0	0.0117	0.00133	0.9848	0.0152	0.00150			0.000230	0.000026	0.000235	0.000027
100	150	38	0	6423.0	0.00592	0.000957	0.9733	0.0267	0.00198			0.000115	0.000019	0.000119	0.000019
150	200	87	0	6385.0	0.0136	0.00145	0.9676	0.0324	0.00218			0.000264	0.000028	0.000274	0.000029

Tabela 5. Wynik procedury LIFETEST, warstwa 2 dla zmiennej FLAG Command timeouts (not completed

in time) przyjmującej wartość 1, dla grup o rozpiętości 50 dni.

Tabela 6. Wynik testu równości w warstwach dla zmiennej *FLAG Command timeouts (not completed in time)*, dla grup o rozpiętości 50 dni.

Test równości w warstwach						
Testowanie	Chi-kwadrat	DF	Pr. > chi-kwadrat			
Log. rang	2589.5011	1	<.0001			
Wilcoxon	2590.4935	1	<.0001			
-2Log(LR)	1218.8480	1	<.0001			

Rysunek 1. Wykres szacunkowych funkcji hazardu na w warstwach dla zmiennej FLAG Command timeouts (not completed in time), dla grup o rozpiętości 50 dni.

Korzystając z tabeli 6. w rozważanym przypadku przy domyślnym poziomie istotności równym 0,05 na podstawie otrzymanych wyników hipotezę zerową należy odrzucić, zatem istnieją statystycznie istotne różnice w funkcjach dożycia dla tych dwóch grup dysków. Można, podejrzewać że występowanie timeoutów w trakcie życia jednostki ma wpływ na ryzyko wystąpienia awarii dysku.

Metoda Kaplana-Meiera

Metodą Kaplana-Meiera posłużymy się w celu estymacji tablic trwania życia w grupach wyznaczonych przez zmienną *FLAG Number of sectors pending remap*.

Sumarycznie wartości ocenzurowanych i nieocenzurowanych								
Warstwa	smart_197_flag	Suma	Nie powiodło się	Ocenzurowane	Procent ocenzurowanych			
1	0	239518	1386	238132	99.42			
2	1	8587	2412	6175	71.91			
Suma		248105	3798	244307	98.47			

Tabela 7. Liczba wystąpień wydarzenia *FLAG Number of sectors pending remap*, wraz z sumaryczną liczbą obserwacji ocenzurowanych oraz nieocenzurowanych.

Wybrane wyniki otrzymane z wykorzystaniem procedury LIFETEST (metoda Kaplana-Meiera) w analizie w grupach wyznaczonych przez zmienną *FLAG Number of sectors pending remap*.

Test równości w warstwach					
Testowanie	Chi-kwadrat	DF	Pr. > chi-kwadrat		
Log. rang	47352.7388	1	<.0001		
Wilcoxon	47269.5336	1	<.0001		
-2Log(LR)	11944.5413	1	<.0001		

Tabela 8. Wynik testu równości w warstwach dla zmiennej FLAG Number of sectors pending remap..

Rysunek 2. Wykres prawdopodobieństwa przeżycia na podstawie metody Kaplana-Meiera z uwzględnieniem zmiennej FLAG Number of sectors pending remap.

Widać wyraźnie, że dyski z aktywną flagą tej zmiennej (wartość 1) cechują się istotnie niższym prawdopodobieństwem przeżycia w czasie, w porównaniu do dysków bez uszkodzonych sektorów (wartość 0).

Metody parametryczne

Model wykładniczy

Procedura LIFEREG

Informacje o modelu							
Zbiór	DANE.DYSKI						
Zmienna zależna	Log(duration_days)	duration_days					
Zmienna cenzurująca	event	event					
Wartości cenzurujące	0						
Liczba obserwacji	248102						
Wartości nieocenzurowane	3795						
Wartości obcięte prawostronnie	244307						
Wartości obcięte lewostronnie	0						
Wartości obcięte w przedziale	0						
Liczba parametrów	1						
Odpowiedź zerowa lub ujemna	3						
Name of Distribution	Exponential						
Log. wiarygodności	-23212.39113						

Liczba obserwacji wczytanych	248105
Liczba obserwacji użytych	248102

Statystyki dopasowania					
-2 log. wiarygodności	46424.78				
AIC (jak najmniejsze)	46426.78				
AICC (jak najmniejsze)	46426.78				
BIC (jak najmniejsze)	46437.20				

Statystyki dopasowania (odpowiedź nierejestrowana)		
-2 log. wiarygodności	84041.76	
ExponentialAIC (jak najmniejsze)	84043.76	
ExponentialAICC (jak najmniejsze)	84043.76	
ExponentialBIC (jak najmniejsze)	84054.18	

Algorytm osiągnął zbieżność.

Analiza ocen parametrów maksymalnej wiarygodności							
Parametr	DF	Ocena	Błąd standardowy	Przedział u	fności 95%	Chi-kwadrat	Pr. > chi-kw.
Intercept	1	10.0727	0.0162	10.0409	10.1045	385038	<.0001
Skala	0	1.0000	0.0000	1.0000	1.0000		
Skala Weibulla	1	23687.34	384.5124	22945.57	24453.08		
Kształt Weibulla	0	1.0000	0.0000	1.0000	1.0000		

Statystyki mnożnika Lagrange'a			
Parametr Chi-kwadrat Pr. > chi-kw			
Skala	15.4874	<.0001	

Tabela 9. Oszacowanie parametrów przy użyciu procedury LIFEREG dla modelu wykładniczego bez zmiennych objaśniających

Model wykazuje szacowaną długość przeżycia na znacznie powyżej najdłuższych obserwacji w zbiorze. Jest to najprawdopodobniej wynikiem nieproporcjonalnej ilości obserwacji ocenzurowanych w stosunku do nieocenzurowanych.

Model Weibulla

Procedura LIFEREG

Informacje o modelu				
Zbiór	DANE.DYSKI			
Zmienna zależna	Log(duration_days)	duration_days		
Zmienna cenzurująca	event	event		
Wartości cenzurujące	0			
Liczba obserwacji	248102			
Wartości nieocenzurowane	3795			
Wartości obcięte prawostronnie	244307			
Wartości obcięte lewostronnie	0			
Wartości obcięte w przedziale	0			
Liczba parametrów	2			
Odpowiedź zerowa lub ujemna	3			
Name of Distribution	Weibull			
Log. wiarygodności	-23205.28962			

Liczba obserwacji wczytanych	248105
Liczba obserwacji użytych	248102

Statystyki dopasowania		
-2 log. wiarygodności	46410.58	
AIC (jak najmniejsze)	46414.58	
AICC (jak najmniejsze)	46414.58	
BIC (jak najmniejsze)	46435.42	

Statystyki dopasowania (odpowiedź nierejestrowana)		
-2 log. wiarygodności	84027.56	
WeibullAIC (jak najmniejsze)	84031.56	
WeibullAICC (jak najmniejsze)	84031.56	
WeibullBIC (jak najmniejsze)	84052.40	

Algorytm osiągnął zbieżność.

Analiza ocen parametrów maksymalnej wiarygodności							
Parametr	DF	Ocena	Błąd standardowy	Przedział u	fności 95%	Chi-kwadrat	Pr. > chi-kw.
Intercept	1	9.8228	0.0654	9.6946	9.9511	22539.7	<.0001
Skala	1	0.9402	0.0152	0.9108	0.9705		
Skala Weibulla	1	18449.93	1207.137	16229.41	20974.27		
Kształt Weibulla	1	1.0636	0.0172	1.0304	1.0980		

Tabela 10. Oszacowanie parametrów przy użyciu procedury LIFEREG dla modelu Weibulla bez zmiennych objaśniających Model podobnie jak wykładniczy wykazuje szacowaną długość życia dysku na o wiele dłuższą niż dostępne obserwacje, podobnie jest to prawdopodobnie skutkiem ilości obserwacji ocenzurowanych. Sam model wydaje się być podobnie dopasowany co model wykładniczy.

W wynikach rezultatem jest kształt Weibulla 1.0636 co oznacza że funkcja hazardu uzyskana z wykorzystaniem tego modelu jest rosnąca.

Rysunek 3. Krzywa hazardu przy użyciu modelu Weibulla

Potwierdza to wykres funkcji hazardu dla modelu Weibulla, który przedstawia funkcję która w początkowym okresie gwałtownie rośnie, a następnie zwalnia tempo przyrostu wraz z upływem czasu. Oznacza to że prawdopodobieństwo wystąpienia zdarzenia rośnie z czasem, w szczególności w pierwszych dniach.

Model Weibulla ze zmiennymi objaśniającymi

Podjęte zostały próby estymacji parametrów dla modelu Weibulla z wszystkimi zmiennymi objaśniającymi, jednak ilość obserwacji i poziomów dla wielu zmiennych uniemożliwiły to przy dostępnych mocach obliczeniowych. Dlatego konieczne było pogrupowanie zmiennych. Zostało to zrobione w sposób automatyczny, ze względu na liczbę obserwacji, przydzielając obserwacje do jednej z maksymalnie 5 grup dla każdej ze zmiennych. Następnie model Weibulla został skonstruowany dla pogrupowanych obserwacji. Część ze zmiennych dla których zostały utworzone tylko 2 grupy posiadała jedynie wartości 0 i 1. Nie uwzględnione zostały zmienne dotyczące lokalizacji dysku w centrum danych, takie jak *cluster_id, pod_id, vault_id*.

Procedura LIFEREG					
	Inform	acje o modelu			
Zbiór		WORK.MERG	ED_DATA		
Zmienna zależn	a	Log(durat	ion_days)	duration_days	
Zmienna cenzu	rująca		event	event	
Wartości cenzu	rujące		0		
Liczba obserwa	cji		248102		
Wartości nieocenzurowane		3795			
Wartości obcięt	e prawostronnie	244307			
Wartości obcięt	e lewostronnie	0			
Wartości obcięt	e w przedziale	0			
Liczba paramet	rów	46			
Odpowiedź zero	owa lub ujemna	3			
Name of Distribution		Weibull			
Log. wiarygodności		-149	70.44785		
	Liczba obserwac	ji wczytanych	248105		
	Liczba obserwacji		248102		

Informacje o poziomach klasyfikacji				
Nazwa	Poziomy	Wartości		
smart_1_raw_bin	4	1234		
smart_3_raw_bin	4	1234		
smart_4_raw_bin	5	01234		
smart_5_raw_bin	2	24		
smart_7_raw_bin	3	134		
smart_9_raw_bin	5	01234		
smart_10_raw_bin	2	24		
smart_12_raw_bin	5	01234		
smart_187_flag_bin	2	24		
smart_188_flag_bin	2	24		
smart_192_raw_bin	5	01234		
smart_193_raw_bin	5	01234		
smart_194_avg_temp_bin	5	01234		
smart_197_flag_bin	2	24		
smart_198_raw_bin	2	2 4		
smart_199_raw_bin	2	2 4		
capacity_bytes_bin	5	01234		

Statystyki dopasowania			
-2 log. wiarygodności	29940.90		
AIC (jak najmniejsze)	30032.90		
AICC (jak najmniejsze)	30032.91		
BIC (jak najmniejsze)	30512.29		

Statystyki dopasowania		
-2 log. wiarygodności	29940.90	
AIC (jak najmniejsze)	30032.90	
AICC (jak najmniejsze)	30032.91	
BIC (jak najmniejsze)	30512.29	

Statystyki dopasowania (odpowiedź nierejestrowana)				
-2 log. wiarygodności 67557.88				
WeibullAIC (jak najmniejsze)	67649.88			
WeibullAICC (jak najmniejsze)	67649.89			
WeibullBIC (jak najmniejsze)	68129.27			

WARNING: Iteration limit exceeded.

		Anal	iza ocen pa	rametrów maks	ymalnej wiar	ygodności		
Parametr		DF	Ocena	Błąd standardowy	Przedział u	fności 95%	Chi-kwadrat	Pr. > chi-kw.
Intercept		1	-67.0194	4.4900	-75.8195	-58.2193	222.80	<.0001
smart_1_raw_bin	1	1	-0.0994	0.0731	-0.2427	0.0439	1.85	0.1739
smart_1_raw_bin	2	1	-0.4022	0.0986	-0.5956	-0.2089	16.63	<.0001
smart_1_raw_bin	3	1	-0.7493	0.0460	-0.8395	-0.6591	265.18	<.0001
smart_1_raw_bin	4	0	0.0000					
smart_3_raw_bin	1	1	0.0369	0.0846	-0.1288	0.2027	0.19	0.6624
smart_3_raw_bin	2	1	0.3556	0.0793	0.2002	0.5111	20.10	<.0001
smart_3_raw_bin	3	1	0.0580	0.0609	-0.0613	0.1773	0.91	0.3407
smart_3_raw_bin	4	0	0.0000					
smart_4_raw_bin	0	1	0.7892	0.1590	0.4777	1.1007	24.65	<.0001
smart_4_raw_bin	1	1	0.6083	0.1501	0.3141	0.9026	16.42	<.0001
smart_4_raw_bin	2	1	0.5492	0.1420	0.2709	0.8276	14.96	0.0001
smart_4_raw_bin	3	1	0.2438	0.1213	0.0061	0.4814	4.04	0.0444
smart_4_raw_bin	4	0	0.0000			-		
smart_5_raw_bin	2	1	1.3668	0.0445	1.2797	1.4539	945.31	<.0001
smart_5_raw_bin	4	0	0.0000					
smart_7_raw_bin	1	1	-1.6624	0.1192	-1.8960	-1.4288	194.56	<.0001
smart_7_raw_bin	3	1	-0.5335	0.0486	-0.6287	-0.4383	120.60	<.0001
smart_7_raw_bin	4	0	0.0000					
smart_9_raw_bin	0	1	-1.6294	0.0794	-1.7851	-1.4738	420.96	<.0001
smart_9_raw_bin	1	1	-1.0889	0.0861	-1.2185	-0.9593	271.21	<.0001
smart_9_raw_bin	2	1	-0.3640	0.0570	-0.4758	-0.2522	40.72	<.0001
smart_9_raw_bin	3	1	-0.2661	0.0563	-0.3765	-0.1557	22.30	<.0001
smart_9_raw_bin	4	0	0.0000					
smart_10_raw_bin	2	1	74.9795	4.4806	66.1978	83.7613	280.04	<.0001
smart_10_raw_bin	4	0	74.8060	0.0000	74.8060	74.8060		
smart_12_raw_bin	0	1	-0.2746	0.1547	-0.5779	0.0287	3.15	0.0760
smart_12_raw_bin	1	1	-0.3033	0.1520	-0.6012	-0.0054	3.98	0.0460
smart_12_raw_bin	2	1	-0.3459	0.1427	-0.6255	-0.0683	5.88	0.0153
smart_12_raw_bin	3	1	-0.0544	0.1231	-0.2958	0.1870	0.20	0.6586
smart_12_raw_bin	4	0	0.0000					
smart_187_flag_bin	2	1	1.4721	0.0684	1.3381	1.6062	463.50	<.0001
smart_187_flag_bin	4	0	0.0000					
smart_188_flag_bin	2	1	0.6712	0.0471	0.5789	0.7636	202.99	<.0001
smart_188_flag_bin	4	0	0.0000					

smart_192_raw_bin	0	1	-0.6317	0.0942	-0.8163	-0.4471	44.97	<.0001
smart_192_raw_bin	1	1	-0.5077	0.0872	-0.6786	-0.3368	33.90	<.0001
smart_192_raw_bin	2	1	-0.4884	0.0849	-0.6547	-0.3221	33.13	<.0001
smart_192_raw_bin	3	1	-0.3465	0.0753	-0.4941	-0.1989	21.16	<.0001
smart_192_raw_bin	4	0	0.0000					
smart_193_raw_bin	0	1	0.5425	0.0926	0.3610	0.7239	34.33	<.0001
smart_193_raw_bin	1	1	0.1592	0.0795	0.0033	0.3150	4.01	0.0453
smart_193_raw_bin	2	1	-0.0582	0.0571	-0.1700	0.0536	1.04	0.3075
smart_193_raw_bin	3	1	0.1345	0.0504	0.0358	0.2332	7.13	0.0076
smart_193_raw_bin	4	0	0.0000					
smart_194_avg_temp_b	0	1	-0.0980	0.0449	-0.1859	-0.0101	4.77	0.0289
smart_194_avg_temp_b	1	1	-0.0168	0.0452	-0.1053	0.0717	0.14	0.7093
smart_194_avg_temp_b	2	1	-0.0307	0.0433	-0.1155	0.0541	0.50	0.4780
smart_194_avg_temp_b	3	1	-0.0628	0.0416	-0.1444	0.0187	2.28	0.1309
smart_194_avg_temp_b	4	0	0.0000					
smart_197_flag_bin	2	1	2.3533	0.0586	2.2385	2.4680	1614.83	<.000
smart_197_flag_bin	4	0	0.0000					
smart_198_raw_bin	2	1	-0.5678	0.0495	-0.6647	-0.4708	131.81	<.000
smart_198_raw_bin	4	0	0.0000					
smart_199_raw_bin	2	1	-0.0398	0.1114	-0.2581	0.1786	0.13	0.7212
smart_199_raw_bin	4	0	0.0000					
capacity_bytes_bin	0	1	-1.1724	0.2142	-1.5921	-0.7526	29.96	<.000
capacity_bytes_bin	1	1	-1.2739	0.2094	-1.6843	-0.8634	37.00	<.000
capacity_bytes_bin	2	1	-1.0092	0.2084	-1.4176	-0.6008	23.46	<.000
capacity_bytes_bin	3	1	0.1175	0.2015	-0.2774	0.5124	0.34	0.5598
capacity_bytes_bin	4	0	0.0000					
Skala		1	0.8396	0.0130	0.8141	0.8650		
Kształt Weibulla		1	1.1911	0.0184	1.1560	1.2283		

Tabela 11. Oszacowanie parametrów przy użyciu procedury LIFEREG dla modelu Weibulla ze wszystkimi zmiennymi Statystycznie istotny wpływ na długość działania miała część zmiennych, poza zmiennymi smart_1_raw, smart_3_raw, smart_12_raw, smart_193_raw, smart_194_avg_temp, smart_199_raw, capacity_bytes w całości lub na niektórych ich poziomach.

Kształt Weibulla na poziomie 1.1911 oznacza że funkcja hazardu uzyskana przy użyciu tego modelu jest rosnąca. Największy wpływ zwiększający ryzyko ma zmienna smart_10_raw, natomiast największy zmniejszający ryzyko smart_7_raw, smart_9_raw i capacity_bytes. Można też zaobserwować, że przy niektórych zmiennych takich jak np. smart_193_raw niektóre poziomy mają pozytywny a niektóre negatywny wpływ na ryzyko wystąpienia zdarzenia.

Model log-logistyczny

Procedura LIFEREG

Informacje o modelu					
Zbiór	DANE.DYSKI				
Zmienna zależna	Log(duration_days)	duration_days			
Zmienna cenzurująca	event	event			
Wartości cenzurujące	0				
Liczba obserwacji	248102				
Wartości nieocenzurowane	3795				
Wartości obcięte prawostronnie	244307				
Wartości obcięte lewostronnie	0				
Wartości obcięte w przedziale	0				
Liczba parametrów	2				
Odpowiedź zerowa lub ujemna	3				
Name of Distribution	LLogistic				
Log. wiarygodności	-23205.69723				

Liczba obserwacji wczytanych	248105
Liczba obserwacji użytych	248102

Statystyki dopasowania				
-2 log. wiarygodności	46411.39			
AIC (jak najmniejsze)	46415.39			
AICC (jak najmniejsze)	46415.39			
BIC (jak najmniejsze)	46436.24			

Statystyki dopasowania (odpowiedź nierejestrowana)				
-2 log. wiarygodności	84028.37			
LLogisticAIC (jak najmniejsze)	84032.37			
LLogisticAICC (jak najmniejsze) 840				
LLogisticBIC (jak najmniejsze)	84053.22			

Algorytm osiągnął zbieżność.

Analiza ocen parametrów maksymalnej wiarygodności							
Parametr	DF	Ocena	Błąd standardowy	Przedział u	fności 95%	Chi-kwadrat	Pr. > chi-kw.
Intercept	1	9.8008	0.0650	9.6733	9.9282	22706.3	<.0001
Skala	1	0.9366	0.0151	0.9074	0.9668		

Tabela 12. Oszacowanie parametrów przy użyciu procedury LIFEREG dla modelu log-logistycznego bez zmiennych objaśniających

Jako model przyspieszonej porażki został utworzony model log-logistyczny za pomocą procedury LIFEREG. Wykazuje on statystyki dopasowania podobne do modeli Weibulla i wykładniczego, jednak większe niż model Weibulla ze zmiennymi objaśniającymi.

Predykcja z wykorzystaniem modeli parametrycznych

Utworzono modele tylko ze zmiennymi istotnymi statystycznie.

Statystyki dopasowania			
-2 log. wiarygodności	32552.07		
AIC (jak najmniejsze)	32576.07		
AICC (jak najmniejsze)	32576.08		
BIC (jak najmniejsze)	32701.13		

Tabela 13. Statystyki dopasowania dla modelu Weibulla ze zmiennymi istotnymi statystycznie

Statystyki dopasowania			
-2 log. wiarygodności	32321.36		
AIC (jak najmniejsze)	32347.36		
AICC (jak najmniejsze)	32347.37		
BIC (jak najmniejsze)	32482.84		

Tabela 14. Statystyki dopasowania dla modelu Gamma ze zmiennymi istotnymi statystycznie

Statystyki dopasowania			
-2 log. wiarygodności	32244.70		
AIC (jak najmniejsze)	32268.70		
AICC (jak najmniejsze)	32268.70		
BIC (jak najmniejsze)	32393.76		

Tabela 15. Statystyki dopasowania dla modelu Log logistycznego ze zmiennymi istotnymi statystycznie

Statystyki dopasowania				
-2 log. wiarygodności	32545.07			
AIC (jak najmniejsze)	32569.07			
AICC (jak najmniejsze)	32569.07			
BIC (jak najmniejsze)	32694.13			

Tabela 16. Statystyki dopasowania dla modelu Log normalnego ze zmiennymi istotnymi statystycznie

Statystyki dopasowania wskazują na to że najlepszym modelem w tym przypadku jest model Gamma.

Na podstawie tego modelu utworzone z użyciem makra zostały prawdopodobieństwa wystąpienia zdarzenia po 100 dniach.

prob	t	event	end_date	start_date	gacy_format
0.9990094492	100	0	45657	45292	0
0.999197418	100	0	45657	45292	0
0.9989037421	100	0	45657	45292	0
0.9993233928	100	0	45657	45292	0
0.9994719912	100	0	45657	45292	0
0.9994123693	100	0	45657	45292	0
0.9991177652	100	0	45657	45292	0
0.9987332036	100	0	45657	45292	0
0.9992861897	100	0	45657	45292	0
0.9989140623	100	0	45657	45292	0
0.999564547	100	0	45657	45292	0
0.8916934275	100	1	45596	45292	0
0.9991517584	100	0	45657	45292	0
0.9956235122	100	0	45657	45292	0

Tabela 17. Wycinek ze zbioru danych pokazujący wygenerowane prawdopodobieństwa dla każdej z obserwacji przy czasie 100.

Metody parametryczne (bayes)

W niniejszym podrozdziale przedstawiono budowę modeli parametrycznych opartych na podejściu bayesowskim, również w wersji z kowariatami. Zastosowanie podejścia bayesowskiego umożliwia nie tylko uwzględnienie niepewności w estymacji parametrów, lecz także elastyczne modelowanie rozkładów przeżycia z wykorzystaniem niskich prób.

Ze względu na różne skale i rozkłady atrybutów S.M.A.R.T., przed dalszą analizą dokonano standaryzacji i transformacji zmiennych. Dla zmiennych o skośności większej niż 1 zastosowano transformację logarytmiczną, aby zredukować asymetrię rozkładu. Następnie wszystkie cechy ciągłe zeskalowano (standaryzacja), co jest szczególnie istotne przed estymacją modeli bayesowskich, aby poprawić zbieżność algorytmów MCMC.

Rysunek 1. Korelacja zmiennych

W celu inicjalnego wybrania zmiennych obliczono korelacji pomiędzy zmiennymi objaśniającymi a zmienną *duration_days*. Zmienne charakteryzują się niskim wpływem, najwyższa wartość korelacji to 0.43.

Ze względu na złożoność obliczeniową algorytmu MCMC postanowiono wybrać najbardziej istotne zmienne za pomocą modelu XGBoost. Zbiór podzielono na dane treningowe (60%) i walidacyjne (40%). Z uwagi na znaczne niezbalansowanie klas (bardzo rzadka częstotliwość awarii), jako metrykę oceny modelu wybrano AUC PR (pole pod krzywą precision-recall), która jest o wiele bardziej czuła na jakość wykrywania rzadkiej klasy niż klasyczna AUC ROC. Następnie wybrano 5 najważniejszych zmiennych przyjmując kryterium gain.

- Smart_197_flag flaga informująca o wystąpieniu sektorów *pending* (oczekujących na relokację). Jest to najważniejsza zmienna wskazana przez model. Oznacza to, że wystąpienie sektorów pending znacznie podwyższa ryzyko awarii dysku.
- Smart_198_raw_log logarytmicznie przetransformowana liczba błędów odczytu/zapisu.
- Smart_9_raw liczba godzin pracy dysku. Ta cecha pojawiła się jako istotna zapewne dlatego, że łączy się z wiekiem dysku starsze dyski mają większą skłonność do awarii.
- Smart_5_raw_log logarytmicznie przetransformowana liczba realokowanych sektorów.
- Smart 187 flag flaga zgłoszonych niekorygowalnych błędów.

Rysunek 2. Feature importance top 5 zmiennych.

Rysunek 3. Korelacja top 5 zmiennych po transformacji

Sprawdzono, czy powyższe zmienne nie są ze sobą nadmiernie skorelowane (co mogłoby zakłócać estymację modelu). Obliczono macierz korelacji Pearsona dla wybranych 5 zmiennych. Najwyższa wartość nie przekraczała 0.7 - brak potrzeby wykluczenia jakiejkolwiek zmiennej.

Estymacja modeli

Oryginalny zbiór danych Backblaze jest bardzo duży, a przypadków braku awarii (cenzura) jest wielokrotnie więcej niż przypadków awarii. Aby ograniczyć rozmiar danych dokonano podpróbkowania obserwacji ocenzurowanych do 10 000 przypadków.

Rysunek 4. Kaplan-Meier

W celu rozeznania się w danych, wyestymowano empiryczną funkcję przeżycia za pomocą estymatora Kaplana-Meiera. Prosty kształt linii przeżycia może sugerować wybór rozkładu wykładniczego jako podstawę modelu parametrycznego.

Model bayesowski parametryczny z kowariatami (Weibull)

Głównym celem analizy było zbudowanie modelu parametrycznego, który uwzględnia wpływ wybranych zmiennych kowariatów na czas do awarii, w podejściu bayesowskim. Zdecydowano się na model Weibulla z kowariatami, który jest elastycznym modelem często wykorzystywanym w analizie przeżycia komponentów.¹ Model Weibulla ma dwa parametry, dzięki czemu potrafi się lepiej dopasować do danych.

Współczynniki beta otrzymały prior Normal(0, 3) - założono, że nie wiadomo czy dana zmienna przedłuża czy obniża czas życia dysku. Wyraz wolny otrzymał szeroki prior Normal(5.7, 5.0), który został dobrany na podstawie wcześniejszych eksperymentów z estymowaniem modeli bez kowariat. Parametr kształtu rozkładu Weibulla TruncNormal(1.0, 0.5), ograniczony do > 0.1. Ograniczenie dolne zapobiegło zbieganiu do bardzo małych

¹ Lawless, J.F. (2003). Statistical Models and Methods for Lifetime Data. 2nd ed. Hoboken, NJ: Wiley, s. 18.

wartości. Model został zaimplementowany za pomocą pakietu PyMC z wykorzystaniem algorytmu MCMC (No-U-Turn Sampler, wariant Hamiltonowskiego Monte Carlo). Użyto 4 łańcuchów, dla każdego ustawiono 1000 iteracji, dodatkowo 1000 iteracji było iteracjami początkowymi. Współczynnik docelowej akceptacji ustawiono dosyć wysoko - 0.95.

Tablea 1. Podsumowanie algorytmu MCMC.

	mean	sd	hdi_3%	hdi_97%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
alpha	4.380	0.034	4.317	4.446	0.001	0.001	3834.0	2827.0	1.0
beta[0]	-0.083	0.003	-0.088	-0.078	0.000	0.000	3276.0	2962.0	1.0
beta[1]	0.016	0.003	0.009	0.022	0.000	0.000	2972.0	2454.0	1.0
beta[2]	0.011	0.002	0.007	0.015	0.000	0.000	4521.0	2868.0	1.0
beta[3]	-0.048	0.003	-0.054	-0.043	0.000	0.000	3529.0	2683.0	1.0
beta[4]	-0.023	0.003	-0.029	-0.017	0.000	0.000	3596.0	2639.0	1.0

Diagnostyka łańcuchów MCMC nie wykazała problemów z konwergencją, wszystkie wartości R-hat (test Gelmana-Rubina) są równe 1.0, co oznacza, że łańcuchy się wymieszały i skonwergowały do rozkładu posterior.² Wizualizacje wskazują na rozkłady monomodalne oraz dobre zmieszanie łańcuchów. W celu zbadania dopasowania modelu do danych, wykorzystano informacyjne kryterium dopasowania WAIC (Watanabe–Akaike Information Criterion) obliczone na podstawie log-wiarygodności posterior, które znacznie lepiej sobie radzi niż DIC i AIC, oraz w pełni wspiera ujęcie bayesowskie.³ Dla modelu z kowariatami uzyskano elpd_waic = -82039, WAIC=164.078. Wartość ta sama w sobie nic nie mówi, ale jest używana do porównywania modeli.

² Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. i Rubin, D.B., 2013. *Bayesian Data Analysis*. Wyd. 3. Boca Raton: CRC Press, s. 297.

³ Ibidem, s. 174.

Rysunek 5. Algorytm MCMC (Weibull z kowariatami)

Rysunek 6. Algorytm MCMC dla poszczególnych parametrów beta.

Rysunek 7. Wizualizację rozkładów posteriori dla parametrów beta (pairplot)

Tabela 2. Hazard Ratios.

	HR	HR_hdi_5%	HR_hdi_95%
smart_197_flag	0.920351	0.915761	0.924040
smart_198_raw_log	1.016129	1.010050	1.021222
smart_9_raw	1.011061	1.007025	1.014098
smart_5_raw_log	0.953134	0.947432	0.956954
smart 187 flag	0.977262	0.972388	0.982161

Dla każdej zmiennej wyznaczono współczynnik hazardu (hazard ratio) wraz z 90% przedziałem wiarygodności. Wszystkie zmienne okazały się statystycznie istotne, ponieważ żaden przedział HDI nie obejmuje 1. HR > 1 oznacza, że większa wartość zmiennej zwiększa hazard (szybkość awarii), natomiast HR < 1 zmniejsza. W przypadku gdy zmienne zostały wyskalowane, ciężko interpretować bezpośrednio wpływ zmiennych na hazard. Policzono również percentyle przeżycia dysków. Mediana wyniosła 328 dni.

Tabela 3. Szacowane czasy przeżycia (percentyle rozkładu).

```
10% survival time: 213.16 days (95% HDI: 211.12-215.19)
20% survival time: 252.99 days (95% HDI: 251.10-254.84)
50% survival time: 327.72 days (95% HDI: 326.01-329.45)
90% survival time: 431.05 days (95% HDI: 428.72-433.51)
99% survival time: 505.00 days (95% HDI: 501.51-508.63)
```

Rysunek 8. Funkcja przeżycia.

Rysunek 9. Funkcja hazardu

Aby ocenić jakość predykcyjną zbudowanego modelu przeżycia, posłużono się miarami opartymi o ranking ryzyka w funkcji czasu: AUC(t) oraz PR AUC(t). Metryki te sprawdzają, na ile model potrafi poprawnie klasyfikować dyski pod względem tego, czy dożyją one do pewnego horyzontu czasowego. Z otrzymanych wykresów wynika, że model lepiej radzi sobie ze starszymi dyskami.

Rysunek 10. Wykres AUC(t)

Rysunek 11. Wykres PR_AUC(t)

Modele parametryczne bazowe (bez kowariat)

Po zbudowaniu złożonego modelu zbadano modele prostsze, nieuwzględniające zmiennych objaśniających, aby ustalić, jaki podstawowy rozkład najlepiej opisuje ogólnie czas życia dysku. Wybrano dwa rozkłady:

• Rozkład Weibulla - rozkład z dwoma parametrami

 Rozkład wykładniczy - rozkład z jednym parametrem (szczególny przypadek rozkładu Weibulla)

W modelu Weibulla bazowym nadano priory Gamma(2.0, 1.0) zarówno dla parametru alpha (kształt) jak i lambda (skala). W modelu wykładniczym również ustalono taki prior. stymację wykonano analogicznie algorytmem NUTS, uzyskując dużą liczbę próbek a posteriori. Oba modele oceniono przy pomocy WAIC. Otrzymano następujące wyniki:

WAIC = $-2 \times elpd_waic$

- Model Weibulla: elpd waic = -83.402.
- Model wykładniczy: elpd_waic = -93.234.

Estymowany model Weibulla okazał się lepszy. Natomiast w celach porównawczych postawiono przeanalizować model wykładniczy.

Rysunek 12. Algorytm MCMC dla modelu wykładniczego bez kowariat.

Tabela 4. Podsumowanie MCMC dla modelu wykładniczego bez kowariat.

	mean	sd	hdi_3%	hdi_97%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
lambda_	0.003	0.0	0.003	0.003	0.0	0.0	1729.0	1834.0	1.0

Wybrany model wykładniczy zakłada stałą intensywność awarii w czasie dla całej populacji dysków. W przypadku modelu wykładniczego hazard jest stały (zakłada stałe ryzyko awarii niezależnie od wieku dysku).

Na podstawie posterior uzyskano następujące oszacowania:

- Posterior median hazard (lambda): ~0,00316 / dzień
- 95% przedział wiarygodności dla hazardu: [0,00310 0,00321] / dzień.

Mediana z próbek posteriora wartości lambda = 0,00316 oznacza, że średnio w danej populacji dysków około 0,316% ulega awarii każdego dnia. Wyliczona wartość hazardu jest dosyć wysoka, co oznacza, że badane dyski są silnie narażone na awarie, prawdopodobnie ze względu na intensywną eksploatację. Na podstawie parametru lambda można również obliczyć inne miary:

- Średni czas do awarii (1 / lambda): 316 dni
- Mediana czasu przeżycia: 220 dni
- 10% dysków ulega uszkodzeniu w ciągu 34 dni
- 90% dysków ulega uszkodzeniu w ciągu 730 dni

Rysunek 13. Funkcja przeżycia

Model wykładniczy jest znacznie prostszy niż poprzedni z kowariatami, ponieważ wszystkie dyski traktuje jednakowo. Mimo to, model wykładniczy dość dobrze opisuje badane zjawisko, a jego główną zaletą jest prostota interpretacji. Jego dopasowanie do danych potwierdza również podobieństwo do krzywej przeżycia Kaplana-Meiera.