

SK에너지 실증사업 작업요청 Al Assistant

이동욱 부장 김은규 주임 손준성 주임

CONTENTS

- I. 사업 목적 및 과업 목표
- II. 사용자 요구사항 정의
- Ⅲ. 서비스 흐름
- IV. 데이터 현황 및 이슈
- V. 대안 및 협의 현황

I. 사업 목적 및 과업 목표

- 1. 사업 목적
- 2. 과업 목표

1.1. 사업 목적 및 과업 목표 (1/3)

■ 현황 및 문제점

- SK이노베이션이 개발한 OCEAN-HUB는 울산콤플렉스(울산CLX)의 공정설비 약 85만기(운행 60만기)에 대한 모든 데이터를 체계적으로 정리하고 하나의 플랫폼으로 통합한 시스템
- 현 설비관리 시스템은 입력이 복잡하여 효율적으로 활용하기 어려우며, 입력 내용의 품질이 고르지 않음
- 작업요청서 편의를 증진하고, 작업내용이 향후 데이터 활용에 적합한 정합성을 갖도록 할 필요 있음

■ 사업 목적 및 1차년도 과업 목적

사업 목적

- SK에너지의 OCEAN-HUB 설비관리 시스템을 모듈화하고, 중소기업에 맞게 커스터마이징 하여 확산
- SK 에너지 데이터를 활용
 - SK 에너지에서 발생한 상황에 대한 정보를 설비유형과 매칭시켜, 중소기업이 SK에너지의 방대한 "관리자 입력 데이터"를 활용토록 함
 - 설비의 일련번호는 지우고(데이터 내용 공개와 보안 동시 충족), 표준적인 설비유형 관리체계(코드) 수립 → 중소기업의 설비유형 마스터와 매핑 → SK 에너지 데이터 활용

작업요청 Assistant 목적

- 사용자가 작업요청을 할 때, 각 항목을 수월하고, 빠르고 정확하게 입력할 수 있도록 보조하는 Al Assistant 개발
- 저연차 근속 사용자 "작업요청" 편의 증진을 위한 "AI 활용 접근" (향후 확산 시 실사용자 (중소기업 저연차 근속 사용자)의 작업요청 입력 편의 개선)
- 향후 데이터 활용을 위해, 표준적인 작업상세 데이터 축적

■ 개발 목표

- 사용자가 알고있는 정보, 편하게 입력할 수 있는 방식과 정보를 통해 필요한 정보 추론
- 사용자가 최소한의 입력으로 주요 항목(작업명인 ITEMNO, 현상코드(파손, 수리 등)) 추출 후, 주요 항목에 대해 의존성을 갖는 나머지 항목(Location, Plant 등) 자동완성
- 작업대상 정보를 hallucination 없이 정확히 추출
- 도출된 작업요청서를 활용하여 "모범 작업명", "모범 작업상세" 제시 → 작성자가 일부 수 정하여 활용

개발 항목	목표	주요기능	정량 성과 지표		
/ ㄹ ᆼㄱ	7#	十五八〇	As-Is	To-Be	
작성 편의 개선	신규 통지 입력 항목/시간 단축	자연어 문장 입력으로 전 항목 작성	 최소 3클릭 + 1 자연어 입력 최대 12클릭 + 2 자연어 입력 력 	최소: 자연어 작성1 + 1클릭최대: 자연어 작성 3+ 2클릭	
데이터 활용 증진	작업명/작업상세 "모범안" 축적	작업요청 구성요소로 작 업명/작업상세 작성안 추 천	• 작업대상 관련 가독성 정보 (공정/로케이션/설비유형) 가 포함된 작업이력 기록: 15% 미만	작업 대상 관련 정보 모두 포함된 작업이력: 95% 이상	

II. 사용자 요구사항 정의 (문제정의)

- 1. 사용자 요구사항
- 2. 사용자 여정(Customer Journey)

■ 요구사항 작성 개요

- 실증기업 (SK에너지) 작업요청 발의자 (총반장)을 중심으로 5개 부서 인터뷰 결과 바탕으로 작성
- 주관기업 (EAM)의 설비관리 전문가 및 SK 에너지 스마트플랜트 팀 담당자와 협의하여 항목 추출
- 확산 대상 기업 (잠재적 사용자)인 중소기업 대상의 확산을 고려하여 작성

사용자 요구사항	must have	should have	could have	wont'have
P&ID와 Item No. 정리				0
설비코드 자동완성			0	
과거 이력 가져오기			0	
공정명으로 설비 작업발의 자동완성			0	
설비코드 추천 리스트 제시		0		
과거 작업 기반 설비코드 자동완성		0		
사용자가 입력한 키워드 바탕으로 작업발의 자동 완성	0			
작업명/ 작업 상세 표준 완성		0		

■ 요구사항 상세

ㅇ그 하모	요구 항목 세부 항목	주요기능요구사항	정량 성과 지표			
#1 6 - 1			As-Is	То-Ве		
작성 편의 개 선	신규 통지 입 력 항목/시간 단축	자연어 문장 입력으 로 전 항목 작성	최소 3클릭 + 자연어 입력최대 12클릭 2 + 자연어 입력	최소: 자연어 작성1 + 1클릭최대: 자연어 작성 3+ 2클릭		
데이터 활용 증진	작 업 명/작 업 상세 "모범안 " 축적	작업요청 구성요소 로 작업명/작업상세 작성안 추천	• 작업대상 관련 가독성 정보 (공정/ 로케이션/설비유형) 가 포함된 작 업이력 기록: 15% 미만	작업 대상 관련 정보 모두 포함된 작업 이력: 95% 이상		

정성 성과 지표						
As-Is	To-Be					
 [신규통지] 입력자가 여러 단계에 거쳐 공정과 설비에 관한 정보/코드를 숙지하고 입력해야 함. [고빈도통지] 고빈도 통지를 활용한 입력은 단계가 적지만, 항목/ 상세 내용 수정해야 함 	• 신규, 고빈도 구분없이 자연어 입력과 추천 항목 선택으로 원하는 작업요청을 할 수 있음.					
 작업명과 작업상세를 통해 설비와 공정에 대한 정보를 얻기가 어려움(설비코드만 입력하는 경우가 40% 이상, 나머지 경우에도 장비를 특정하기 어려움) 설비를 특정할 수 없어, 작업명과 작업상세를 설비관련 정보 및 학습데이터로 사용할 수 없음 	 공정과 설비명이 포함된 작업명과 작업상세를 추천함으로써 가독성있는 정보 축적 향후, 설비와 관련된 정보를 학습할 수 있는 데이터로 활용 가능 					

2. 사용자 요구사항 (3/3)

■ 개발 내용

- 생산부서는 설비에서 발생한 정비 수요에 대해 다항목의 복잡한 작업요청을 작성해야 함
- AI작업요청Assistant는 정확한 설비코드를 숙지하지 못했더라도, 자연어로 공정, 설비유형 등의 정보를 입력하면 AI가 자동으로 양식의 항목을 완성하여 추천 → 수월하고 정확하게 작업요청 (시간 단축/정확도 향상)

■ 작업요청 Assistant flow 개요

사용자가 입력한 문장을 LLM을 활용 구문 분석하여 사용자의 요구사항을 파악하며 데이터에 대한 Keywords 확보.

- → DB에서 사용자 요구사항과 단서에 부합하는 데이터를 검색 및 추출
- → 추출된 정보를 반영하여 사용자가 요구에 부합하는 작업발의 출력

Made with > Napkin

■ 작업요청 Assistant prototype

- 자연어로 "핵심항목"을 추론할 수 있는 키워드 가이드라인 제시
- 입력된 내용을 바탕으로 유사한 작업대상을 선정하여 추천

■ 작업요청 Assistant flow - 입력

사용자가 작업이 필요한 설비명과 상태를 입력하고, <mark>정보가 부족한 경우 AI가 되묻는 추가적인 항목을 입력</mark>

■ 작업요청 Assistant flow - 분석

생성형 AI를 활용 입력된 문장을 구문 분석하여 사용자의 요구사항을 파악하며 문장 내의 설비명칭과 현상에 대한 단서를 발견

■ 작업요청 Assistant flow - 처리 입력 문장 분석 결과를 바탕으로 DB에서 데이터를 검색한 후 최적의 데이터를 추출

- 작업요청 Assistant flow 출력
 - 추출된 데이터를 바탕으로 완성된 작업요청서를 사용자에게 제공
 - 작업명 및 작업상세 "모범안" 추천

皿. 서비스 흐름

- 1. 작업요청 Assistant 구조 및 서비스 흐름
- 2. 자연어 구문분석 구조

3.1. 작업요청 Assistant 구조 및 서비스 흐름(안) (1/2)

■ 작업요청 AI Assistant 시스템 구조

- 사용자가 입력한 문장을 Domain 특화된 AI로 구문 분석 → AI로 현상 분석 및 해당 설비에 대한 SQL 생성
- 정확한 설비코드를 관계형 DB에서 회수, 벡터 DB로부터 설비 및 상황에 대한 정보 습득 → 추천 결과 생성
- 주요 항목(공정명, 위치, 설비, 상태)과 작업명 및 작업상세내용을 AI가 작성 → 작업요청 완성

 입력
 사용자의 자연어 입력 (ex. 정유1팀 No.1 PE_Compressor 고장)

 처리
 LLM을 통한 입력 문장 구문분석

 Text-to-SQL 기반 DB 검색 및 회수/Vector DB 유사도 참조

 생성 데이터 검토 및 반환을 통한 보완

 작성완료
 DB 검색 결과 반영 + 생성형 AI 활용 모범 작업발의 생성

■ 사전

■ 시나리오 입력 구문 분석

• 로그인 입력과 자연어 분석을 통해 "공정명", "위치", "설비유형" 또는 "설비명(대분류, 일부 소분류)까지 추론 가능

IV. 데이터 현황 및 이슈

- 1. 설비명 및 설비유형 정보
- 2. 데이터 정보 충실도 현황

■ 설비유형 및 설비명 채번 체계

- 현재 SK 에너지의 ITEMNO 채번 규칙은 ANSI (American National Standard Institute) 기준을 원용하여, 독자적 채번 체계 활용
- 현행 설비유형은 208개, 설비명(하위범주- ITEMNO 중 일련번호 이전까지 분류체계) 6십만 항목 사용 중
 - 장비(Equipment): "VD-TE1213" → VD는 공정(Unit Designation), TE는 장비 약어, 1213은 연번 (serial number)
 - Line: "781121-AB12-1"-SW-ST-20" → 78은 공정(Unit Designation), AB12는 파이프 스펙(ANSI기준-재질, 압력등급, 연번, 연결유형, 부식허용치, 준수사항), SW는 유 체(Fluid), ST는 열선 추적 유형 (전기, 스팀, 소음, 냉동, 단열 등), 20은 두께
 - 。 노란 색 부분이 장비의 "설비 유형"에 해당하는 부분
- 설비유형으로 분류를 하고 표준 설비코드 체계를 만들면 "노란 색 부분"에 해당하는 코드를 추론 하게 만들 수 있음 (녹색 부분은 입력자가 로그인을 하면 "공정명"이 파악되므로 자동 등재가 가능)

■ 6만건 중 4-5% 데이터가 자연어 학습에 유의미한 정보를 담고 있음 (주관사와 함께 검증)

작업명/작업상세의 자연어 입력 내용은 "설비유형"을 추론하기에 충분한 정보 충실도(정보의 양과 밀도)를 지니고 있지 못함

작업대상 (ITEMNO)	Work Order	설비유형	작업명	작업상세
FC85505 (P8505 Minimum Flo				FC85505 (P8505 Minimum Flow C/V) By-pass 및 Outlet B/V 및 고정 너트 풀림 고정작업 (얼마전 풀려서 생산 자체
공정 방류턱	W24AL9202		[0394]공정 Dike 및 방류턱 도색작업	[0394]공정 Dike 및 방류턱 도색작업(아차사고 관련, 첨부 List 참조)
5313-JEX	W24AL9200 5	ГЕСЕ	[0395]5313-JEX Bottom Drain Line Flange Leak 수리작업	[0395]5313-JEX Bottom Drain Line Flange Leak 수리작업(보냉 제거 일부 포함)
(TA Planning에서 입력)			24년도 No.4 Process 정기보수 [No.4 CDU] 본작업1	C-P4003 "A" Warm up 1" Valve 교체 요함 (Packing Leak 많이 됩니다)
(TA Planning에서 입력)			24년도 No.4 Process 정기보수 [No.4 CDU] 본작업1	C-P4023A/B Discharge PSV-4023A/B to C-T4002에서 C-P4023A/B Suction 으로 Line 변경 요함(C-T4002 Chemical
W-AIT1006F	W24AL9230	ANWE	AIT-1006F(T-N) 통신불량 점검 작업	AIT-1006F(T-N) 통신불량 점검 작업
SR-TT76000	W24AL9205 I	PTT	No.2 SRU Thermal RX TI교체작업 (TI76000A→TI76048로 교체)	No.2 SRU Thermal RX TI교체작업 (TI76000A→TI76048로 교체)
HS-R2601	W24AL9285	/ERX	HS PLANT 부재료 투입작업 (4/9)	HS PLANT 부재료 투입작업 (4/9) 하여주십시오
Grating 앙카	W24AL9302		D3003에서 내려가는 사다리 입구 Grating 앙카 분리됨 수리 작업	D3003에서 내려가는 사다리 입구 Grating 앙카 분리됨 수리 작업
1504-LBR	1	/EFC	1504-LBR Steam Tracing Leak 수리작업	사진 참조
1504-LBR	W24AL9274	/EFC	1504-LBR Steam Tracing Leak 수리 위한 보온 제거작업	사진 참조
AR-AOV42002	W24AL9400	VAAV	AR-AOV42002(Diversion Pit OFS) 작동불량 Open/Close 점검작업	AR-AOV42002(Diversion Pit OFS) 작동불량 Open/Close 점검작업
BSTR-P3202AR	W24AL9301 夕	-1	(중점관리)P3202"A" Suction Strainer 청소작업(BSTR-P3202AR) (04월11일 작업)	(중점관리)P3202"A" Suction Strainer 청소작업(BSTR-P3202AR) (04월11일 작업)
Y-PG78505B	W24AL9399 \$1	PPG	Y-PG78505B(P7855B) 고장 교체작업	Y-PG78505B(P7855B) 고장 교체작업
BSTR-P3206A	W24AL9299		(중점관리)P3206"A" Suction Strainer (BSTR-P3206A)청소작업(04월11일 작업)	(중점관리)P3206"A" Suction Strainer (BSTR-P3206A)청소작업(04월11일 작업)
PX-ACCS001	W24AL9306	CLIP	ACCS Control System 교체위한 사전작업	ACCS Control System 교체위한 사전작업
BSTR-P3206B	,		(중점관리)P3206"B" Suction Strainer (BSTR-P3206B)청소작업(04월11일 작업)	(중점관리)P3206"B" Suction Strainer (BSTR-P3206B)청소작업(04월11일 작업)
32081-CJ4-4"-P-IH-60	W24AL9317	PIPI	(중점관리)P3206A Discharge Check Valve 및 Warm-up Orifice 점검작업(04월11일 작업)- Bl	i(중점관리)P3206A Discharge Check Valve 및 Warm-up Orifice 점검작업(04월11일 작업)- Blind 작업 필요함
PX-ATB101	W24AL9305	BIN	2PX Junction Box교체 위한 사전작업	2PX Junction Box교체 위한 사전작업
Y-T9805	W24AL9235	ΓACR	WAO Service Water Line Leak 수리작업(Y-T9804AR Dike 내)	WAO Service Water Line Leak 수리작업(Y-T9804AR Dike 내)
32081-CJ4-4"-P-IH-60	W24AL9318 \$	PIPI	(중점관리)P3206B Discharge Check Valve 및 Warm-up Orifice 점검작업(04월11일 작업)- BI	(중점관리)P3206B Discharge Check Valve 및 Warm-up Orifice 점검작업(04월11일 작업)- Blind 작업 필요함
PX-ME5403A	W24AL9307	/EFC	2PX PT-5433/34 신설위한 사전작업	2PX PT-5433/34 신설위한 사전작업
PE-XV2842	W24AL9569	VACV	냉동 XV2842 전.후단 보냉 보강작업(4/8)	냉동 XV2842 전.후단 보냉 보강작업 하여 주십시오.(4/8)
84소6174	W24AL9270	CFCR	84소6174 봉고 타이어 펑크 수리	84소6174 봉고 타이어 펑크 수리
VD-LT1106	W24AL9247 I	PLT	VD-LT1106 보온제거	VD-LT1106 보온제거 -Lead Line 및 Diaphargm Cleaning작업위함 전체 함석보온으로 덮혀있어 Vent Valve조작들
P-H2501R-LNB	W24AL9663	HBBR	P-H2501 동편 2번 Pilot 버너 막힘 청소	P-H2501 동편 2번 Pilot 버너 막힘 청소
P-H2801	W24AL9665	НВГН	P-H2801 4번 Pilot 버너 막힘 청소	P-H2801 4번 Pilot 버너 막힘 청소

 입력 내용의 40%는 ITEMNO + 고장, Leak 등을 입력 → ITEMNO를 제외한 진술은 현상 코드를 추출은 가능하지만 "설비유형"을 추론할 수 있는 정보가 없음

예)

ITEMNO: Y-PG78505B

작업상세: Y-PG78505B(P7855B) 고장 교체작업

 ITEMNO를 입력하지 않은 작업명/작업상세 내용입력도 설비유형을 특정하거나 추론하기 부족한 정보량과 정보밀도

예)

ITEMNO: P41006

작업상세: No.2FCC 생산3Unit OSI추가검사 대상 (생산부서/UNIT만 추론 가능)

정보충실도가 높은 모범 사례

예

ITEMNO: S-LD5601

작업상세: 1SRP Caustic 누액감지기 S-LDP5601 Power On 시 지속적인 Alram 발생

정보충실도가 낮은 사례 (전체 80% - 85%)

예)

ITEMNO: VD-TE1213

작업상세: Flexible 파손수리

ITEMNO: HP-TE8646

작업상세: Flexible 파손수리

■ 시나리오 입력 구문 분석

- 로그인 입력과 자연어 분석을 통해 "공정명", "위치", "설비유형" 또는 "설비명(대분류, 일부 소분류)까지 추론 가능
- 고유번호인 "일련번호"는 추론 불가하며, 기업/현장마다 다른 체계의 고유번호로 학습 데이터로 활용 어려움.

- 장비: 자연어로 입력하는 "탱크" → Y-T39
 - Y (off-site → 비공정) → 로그인 입력으로 공정명 자동 입력
 - 산업 관례 또는 산업 표준 (
 - T (설비유형 Storage Tank) → 자연어 분석을 통해 탱크 → Tank → Storage Tank의
 과정으로 <u>디셔너리에</u> 있는 설비명 검색 (유사도 검색) → Storage Tank와 매칭되는 "T" 입력
 - "39"처럼 일련번호는 시스템을 적용하는 수요 기업(확산 대상 중소기업/ 잠재적 사용자)마다 다르므로, 추론 엔진을 위한 학습자료나 SK에너지의 관리 이력 데이터를 활용하기 위한데이터로 사용하기 적절치 않음
 - SK 에너지의 장비명은 대체로 ANSI 체계를 따르고 있으나, 일부 장비명 및 채번은 독자적인 약어를 갖고 있은 것으로 파악 → 장비명 기준으로 딕셔너리 구축 필요
- 라인(Piping)
 - 작업요청 입력은 장비와 라인을 구분해서 접근할 필요가 있음
 - 장비의 경우 "장비명(예: '탱크', '압력 밸브' 등) 자연어 입력이 쉽지만, 라인의 경우 번호보다 "스펙"입력이 더 까다로울 것으로 판단 됨.
 - SK 에너지의 경우 입력하는 라인 정보는 정확하게 입력 가이드를 준수하고 있음 (2024년 상반기 데이터 기준 98% 이상)
 - 사용자 입력 관행 조사 필요
 - 파이프의 <u>스펙을</u> 외우고 있기보다는 파이프의 <u>ITEMNO를</u> 외우거나, DB 검색을 통해 입력하는 것으로 추정
 - DB 검색: 781121-AB12-1"-SW-ST-20의 경우, 공정명 선택> "1121"처럼 라인고유번호를 입력> 선택 창 추천 목록 표시> 추천 목록에 있는 아이템 선택

V. 대안 및 현황

- 1. 추론 엔진 대안
- 2. 서비스 흐름 협의 현황

■ 추론 대안

- (예시 문장 제공) 자연어 입력 정보로부터 공정명> 위치> 설비명 (또는 설비유형) 정보 추출
- → (실증기업) DB에 저장된 "작업 목록"에서 작업대상과 작업상세를 추천 → 사용자 선택 및 수정
- RDB 검색은 LLM Agent의 text-to-query 도구 활용/ 현상코드 발생은 LLM 구문분석 활용

■ 주관사와 서비스 구현 방향 협의

작업상세: 제품운영팀, 석유배합저장 시설, 저장탱크(Storage Tank)에서 중간점검 지적사항으로 워터드레인 밸브 보수

감사합니다.

㈜이씨마이너

서울특별시 강남구 논현로 28길 54 덕원빌딩 4층 Tel 02-552-5266 Fax 02-566-0768 URL - http://www.ecminer.com

■ 과제 목적 및 목표

- 자연어 입력 → 설비코드 및 핵심항목 생성 → 하위항목 자동완성 및 설비코드 추천, 과거 요청 이력 검색 등 기능을 탑재한 Al Agent 개발
- 자연어 표현 (설비코드 포함) 입력만으로 핵심항목(작업대상, 현상코드, 작업시기)을 자동 추론

■ 설비/ 작업 정보 연계 활용 (과제 응모 당시 주관사/참여사 제안 방향)

■ 주요일정

• 데이터 정제, 모델 연구, 구문분석 체계,

사용자 경험 설계	해야 할 일	J jun				📛 2025년 4월 29일
도메인 지식 학습	진행 중					🖰 2025년 5월 12일
데이터 현황 분석	해야 할 일	❷ 김은규				🖰 2025년 5월 14일
빠른 검증 (Quick Win)	해야 할 일	DD Dongwook Lee	SKAI			🖰 2025년 5월 12일
시스템 요구사항 정의	해야 할 일			advice	advice	🖰 2025년 5월 14일
설비코드 추출 패턴 분석/생성 로직 구성	해야 할 일			advice	advice	🖰 2025년 5월 14일
데이터 전처리 파이프라인 구축	해야 할 일			Co-work	Co-work	🖰 2025년 5월 19일
Al 모델/agent 구성 전략 수립	해야 할 일			Co-work	Co-work	🖰 2025년 5월 22일
시스템 아키텍쳐 설계	해야 할 일			dev.	dev.	🖰 2025년 6월 9일
추론 엔진 설계	해야 할 일			Co-work	Co-work	🖰 2025년 6월 12일
실험 환경 구축	해야 할 일			advice	advice	📛 2025년 6월 23일
핵심 모듈 프로토타입 개발	해야 할 일			advice	advice	🖰 2025년 6월 30일
Multi-Agent/RAG 프로토타입 개발	해야 할 일			advice	advice	🖰 2025년 7월 28일
시나리오별 접근법 테스트	해야 할 일			advice	advice	🖰 2025년 8월 11일
성능 평가 및 최적화	해야 할 일			Co-work	Co-work	🖰 2025년 8월 18일
백엔드 개발	해야 할 일			dev.	dev.	🖰 2025년 8월 18일
프론트엔드 개발(EAM연계)	해야 할 일			dev.	dev.	
시스템 통합	해야 할 일			dev.	dev.	