자율주행 로봇을 활용한 가스 누출 원천 탐지 및 배관 점검 시스템

27기 B반 1조

정수미, 서경란, 이성재, 정새연, 김영빈

목차

- 01 추진 배경
- 02 프로젝트 목표 및 개요
- 03 전기수 분석
- 04 논문 분석
- 05 활용 기술
- 06 시나리오
- 07 향후 일정 및 역할 분담

추진 배경

화학사고발생 건수

- 출처 = 환경부「화학물질 배출량조사 결과 보고」
- 대부분의 화학사고는 '누출사고'
- 누출사고에 대한 대책 마련 필요

가스누출사고 사례

- 2020년 LG 폴리머스 가스 누출 사고
- 누출 당시 경보 체계 미작동
- 13명의 사망자, 1,000명 이상 영향

사고 원인과 한계점

- 고정형 센서 의존시 탐지 사각지대 및 거리 제한 발생
- 센서 추가 시 비용 및 설치 공간 부족 문제
- 환경적 요인에 의한 센서 고장 가능성, 정기 점검 필요
- 센서는 해당 구역의 누출을 탐지할 뿐 원천을 찾지 못함

이동식 탐지 로봇 필요

프로젝트 목표 및 개요

사각지대 최소화

고정형 센서와 이동형 센서를 이용하여 사각지대 최소화

목표 및 차별점

누출 원천 탐지

누출된 정확한 지점을 탐지하여 의심 대상 점검

유독가스로 인한 누적 피해 방지

유독가스 누적으로 인한 직업병 등 방지

기대효과

안전한 작업 환경 조성

미세한 누출마저 감지하여 안전한 작업 환경 조성 이동형 장치를 통한 주기적 배관 및 밸브 점검을 통한 안정성 향상

전기수 분석

23기 A1조 <공장위험구역 맵핑을 통한 안전관리로봇>

18기 C2조 <야간 순찰 로봇 "POBBY">

- 객체 탐지로 안전용구 착용 확인 및 안내 유형 분류
- <u>다익스트라 알고리즘을 이용한 최적경로 계획</u>
- 객체 탐지(YOLO, DEEP SORT)를 통해 거리 유지
- 감지된 위험요소를 관리자가 모니터링 (화재, 고열, 크랙)

- 순찰 → 사람&화재&구조 요청 감지 → 즉각 대처 및 사후 관리
- MQ-2 가스 센서로 화재 감지(담배 연기, 부탄, 메탄, 알코올 등)
- LIDAR 기반 SLAM (CARTOGRAPHER)

호환 관련 이슈로 LIDAR 센서를 이용한 SLAM 기능을 구현하지 못함

정보를 보내는 서버와 정보를 받는 APP과 통신이 쉽게 진행되지 않음

논문분석

Tracking Chemical Plumes in 3-Dimensions (2006)

로봇이 처음으로 화학 플룸(Plume)에 접촉하는 방법을 제안 공기 흐름 방향에 대해 수직으로 반복적으로 탐색을 수행하며 가스 농도가 검출되는 지점에서 탐색을 종료

Information-Driven Gas Source Localization Exploiting Gas and Wind Local Measurements for Autonomous Mobile Robots (2021)

Fig. 4. (a) Shows an example of the fully 3-dimensional environments used for simulated experiments. (b) Shows an image of the robot taken during the real-world experimentation.

확률 기반 실내 가스 원천 탐지 알고리즘 제안

그리드 베이스로 가상 환경을 구현하고 wrapped normal distribution을 사용하여 가스 이동 경로 탐색 이를 위해 best-first search 알고리즘을 활용함

활용 기술

자율주행

SLAM 기반 자율 주행

SLAM 기술을 활용해 실시간으로 환경을 스캔하며 자율적으로 설비를 피하고 가스 누출 지점으로 이동

가스 농도 및 설비를 고려해 실시간으로 경로를 최적화해 이동

가스 탐지 및 최적 경로 알고리즘

농도 기반 탐색 및 확률적 모델링

고정식 및 이동식 센서를 통해 가스 농도를 측정하여 원천 위치를 추적

1) 초기 데이터 수집

고정식 센서가 가스 누출 감지 시 중앙 시스템에 데이터를 전송해 로봇이 해당 섹션을 탐색

2) 격자 기반 탐색

섹션을 작은 격자로 나눠 농도를 측정하고 원천이 있을 확률을 추정

3) 경로 갱신

원천의 확률을 바탕으로 높은 최적의 경로를 계산해 로봇이 이동

배관 상태 점검 및 인식

객체 탐지 및 배관 상태 진단

로봇은 카메라 및 센서로 배관과 주변 환경을 스캔해 딥러닝 기반 객체 탐지로 배관의 손상 여부를 자동으로 분석함

이미지 분석 및 상태 평가

문제 발견 시 데이터를 중앙 시스템에 전송하고 AI를 통해 상태를 평가하고 수리 필요성 제안

프로세스

소켓통신

가스 누출 원점 탐지 기술

고정식 센서가 한 섹션에서 가스 농도를 감지하면 중앙 시스템으로 데이터 전송 고정식 센서만으로는 누출 원천을 정확히 파악할 수 없어 로봇 파견

가스 누출 원점 탐지 기술

가스 감지 및 로봇 파견

고정식 센서가 한 섹션에서 가스 농도를 감지하면 중앙 시스템으로 데이터 전송 고정식 센서만으로는 누출 원천을 정확히 파악할 수 없어 로봇 파견

실시간 가스 농도 측정

로봇이 섹션 내를 이동하며 농도 값을 측정하고, 농도 값을 중앙시스템으로 전송

가스 감지 및 로봇 파견

고정식 센서가 한 섹션에서 가스 농도를 감지하면 중앙 시스템으로 데이터 전송 고정식 센서만으로는 누출 원천을 정확히 파악할 수 없어 로봇 파견

실시간 가스 농도 측정

로봇이 섹션 내를 이동하며 농도 값을 측정하고, 농도 값을 중앙시스템으로 전송

최적 경로 설정

중앙 시스템은 고정식 센서와 이동식 센서에서 수집된 데이터를 바탕으로 격자별 농도와 원천이 있을 확률을 계산하여 최적 경로를 계속하여 갱신

가스 누출 원점 탐지 기술

가스 감지 및 로봇 파견

고정식 센서가 한 섹션에서 가스 농도를 감지하면 중앙 시스템으로 데이터 전송 고정식 센서만으로는 누출 원천을 정확히 파악할 수 없어 로봇 파견

실시간 가스 농도 측정

로봇이 섹션 내를 이동하며 농도 값을 측정하고, 농도 값을 중앙시스템으로 전송

최적 경로 설정

중앙 시스템은 고정식 센서와 이동식 센서에서 수집된 데이터를 바탕으로 격자별 농도와 원천이 있을 확률을 계산하여 최적 경로를 계속하여 갱신

가스 원천 탐지 후 점검

로봇이 가스 농도가 높은 지역으로 이동해 최종 원천 위치에 도달한 후 카메라를 통해 배관, 밸브, 조인트 등의 상태를 실시간으로 점검 및 진단

향후 일정 및 역할분담

기술구현 관련 일정 조금 더 자세히 작성

Su	Мо	Tu	We	Th	Fr	Sa
1	2	3	4	5	6	7
	아이디어 선정 부품주문 기술 분석					본석
8	9	10	11	12	13	14
기술 구현						
15	16	17	18	19	20	21
기술 구현						
22	23	24	25 /	26	27	28
기술 구현 시연 영상 촬영 및 PPT제작 발표						
29	30	31				

정수미	자율주행 및 SLAM 개발		
서경란	하드웨어 센서 연결 및 시스템 통합		
이성재	중앙 관제 시스템 및 데이터 분석		
정새연	배관 상태 점검 및 객체 인식 개발		
김영빈	가스 탐지 및 원천 추적 알고리즘 구현		

감사합니다