Mini-course on Sparse estimation off-the-grid Introduction

Outline

• Session 1: Introduction to sparse estimation as optimisation over the space of measures

• Session 2: Algorithms

• Session 3: Super resolution and compressed sensing guarantees

Sparse Estimation

Recovering point wise sources from low resolution data

Let $\mathcal{X} \subseteq \mathbb{R}^n$ and let $\phi: \mathcal{X} \to \mathcal{H}$ where \mathcal{H} is a Hilbert space.

Recover
$$a_j \in \mathbb{R}$$
 and $x_j \in \mathcal{X}$ given $y = \sum_{j=1}^{\infty} a_j \phi(x_j)$

Radon measures

The space of Radon measures $\mathcal{M}(\mathcal{X})$ is the dual of

$$C_0(\mathcal{X}) = \left\{ f \in C(\mathcal{X}) : f \text{ has compact support in } \mathcal{X} \right\}^{\|\cdot\|_{\infty}}$$

View $\mu \in \mathcal{M}(\mathcal{X})$ as linear functional on $C_0(\mathcal{X})$:

•For
$$f \in L^1(\mathcal{X})$$
, define μ by $\langle \phi, \mu \rangle = \int \phi(x) f(x) dx$
•For $\mu = \sum_j a_j \delta_{x_j}$, $\langle \phi, \mu \rangle = \sum_j \phi(x_j) a_j$

Linear inverse problem

Consider a measure μ on $\mathcal{X} \subseteq \mathbb{R}^n$

$$\mu_{a,x} = \sum_{i=1}^{n} a_i \delta_{x_i}, \quad a_i \in \mathbb{R}, \quad x_i \in \mathcal{X}$$

Observe linear measurements:

Define:
$$\Phi \mu = \int_{\mathcal{X}} \phi(x) d\mu(x)$$

$$\phi(x) \in \mathcal{H} \text{ where } \phi: \mathcal{X} \to \mathcal{H}$$

Observe:
$$y = \Phi \mu + \text{noise}$$

$$NB: \Phi \mu_{a,x} = \sum_{i=1}^{n} a_i \, \phi(x_i)$$

Signal/image processing

Deconvolution:

$$\phi(x) = \tilde{\phi}(\cdot - x) \in L^2(\mathbb{R}^d)$$

e.g.
$$\tilde{\phi}(x) = \exp(|x - \cdot|^2/\sigma)$$

Laplace:

$$\phi(x) = \exp(-\langle x, \cdot \rangle) \in L^2(\mathbb{R}^d_+)$$

Fourier:

$$\phi(x) = (\exp(kx\sqrt{-1}))_{k=-f_c,...,f_c} \in \mathbb{C}^{2f_c+1}$$

Quantitative MRI

 θ_1

Time series data $Y = (y^{\nu})$

Time series measurements at voxel v:

$$y^{\nu} = [y_1, y_2, ..., y_T]$$

Recover the NMR properties

$$y = \sum_{i=1}^{s} a_i \, \phi(\theta_i) = \int \phi(\theta) d\mu_{a,\theta}(\theta)$$

There can be more than 1 tissue type in each image voxel (so n > 1).

 $\theta = T_1/T_2$ representing tissue type

 $\phi(\theta)$ = Block response of each tissue

 $\theta \in \mathcal{X}$ are parameters corresponding to different NMR properties.

Mixture models

Position/scale: $(z, \sigma) = (\text{mean, std}) \in \mathcal{X} = \mathbb{R}^d \times \mathbb{R}_+$

$$f_{a,(z,\sigma)}(t) = \sum_{i=1}^{n} a_i h\left(\frac{t-z_i}{\sigma_i}\right)$$

$$\min_{\mu \in \mathcal{M}(\mathcal{X})} ||f - \Phi \mu||_{L^2}$$

Non-Convex

$$\min_{a,z,\sigma} \|f - f_{a,(z,\sigma)}\|_{L^2}$$

$$f_{a,(z,\sigma)} = \Phi \mu = \int_{\mathbb{R}^{d+1}} \phi(x) d\mu(x)$$

Linear operator

$$\phi(z,\sigma) = h\left(\frac{\cdot - z}{\sigma}\right) \qquad \mu$$

$$\mu = \sum_{j=1}^{n} a_i \, \delta_{(z_i, \sigma_i)}$$

Density estimation with sketching

Given samples $t_1, t_2, ..., t_n$ iid from from density:

$$\bar{\xi}(t) = \sum_{j=1}^{S} a_j \xi(x_j, t) = \int \xi(x, t) d\mu_{a,x}(x)$$

[Gribonval et al 2017]

Sketch using functions
$$g_{\omega_k}$$
: $y_k = \frac{1}{n} \sum_{j=1}^n g_{\omega_k}(t_j)$, $k \in [m]$

Goal: recover
$$a, x$$
 from

$$y_k \approx \int g_{\omega_k}(t)\bar{\xi}(t)dt = \int_{\mathcal{X}} \underbrace{\int g_{\omega_k}(t)\xi(x,t)dt}_{\phi_{\omega_k}(x)} d\mu_{a,x}(x)$$

Multi-layer perceptron

For training data $(t_i, y_i)_{i=1,...,N}$ fit $f_{a,z,b}(t_i) \approx y_i$

Non-convex

$$\min_{a,z,b} \sum_{i} |f_{a,z,b}(t_i) - y_i|^2$$

Convex

$$\min_{\mu \in \mathcal{M}(\mathcal{X})} \|y - \Phi\mu\|^2$$

$$[f_{a,z,b}(t_i)]_i = \Phi \mu = \int_{\mathbb{R}^d} \phi(x) d\mu(x)$$

$$\phi(x) = \left[\rho(\langle z, t_i \rangle + b)\right]_{i=1,\dots,N} \quad \mu = \sum_{i=1}^{N} a_i \, \delta_{(z_i, b_i)}$$

Linear operator

Total variation

 $\mathcal{M}(\mathcal{X})$ is a Banach space with norm $\|\mu\|_{TV}$

$$\|\mu\|_{TV} = \sup \left\{ \int f(x) d\mu(x) : f \in C_0(\mathcal{X}), \|f\|_{\infty} \le 1 \right\}$$

$$f \in L^1(\mathcal{X}), d\mu(x) = f(x)dx \longrightarrow \|\mu\|_{TV} = \int |f(x)| dx$$

$$\mu = \sum_{j} a_{j} \delta_{x_{j}} \longrightarrow \|\mu\|_{TV} = \sum_{j} |a_{j}|$$

The Beurling-Lasso

$$P_{\lambda}(y) \qquad \inf_{\mu \in \mathcal{M}(\mathcal{X})} \lambda \|\mu\|_{TV} + \frac{1}{2} \|\Phi\mu - y\|^2$$

Relaxation for any *K*: $\inf_{a,x} \sum_{j=1}^{K} |a_j| + \frac{1}{2} \|\sum_{j=1}^{K} \phi(x_j) a_j - y\|^2 \ge \inf_{x \to \infty} P_{\lambda}(y)$

Fisher-Jerome (1973):

If $\phi(x) \in \mathbb{R}^m$ with ϕ continuous, then there exists a solution to $P_{\lambda}(y)$ with at most m Diracs.

The relaxation is tight when $K \geq m$

$$P_0(y) \quad \inf_{\mu \in \mathcal{M}(\mathcal{X})} \|\mu\|_{TV} \quad \text{s.t.} \quad \Phi \mu = y.$$

[Beurling (1973)]

[De Castro and Fabrice (2012)]

[Candès and Fernandez-Granda (2012)]

[Duval and Peyré (2015).]

The Beurling-Lasso

$$P_{\lambda}(y) \qquad \min_{\mu \in \mathcal{M}(\mathcal{X})} \lambda \|\mu\|_{TV} + \frac{1}{2} \|\Phi\mu - y\|^2$$

The Lasso: Given y = Xa, $y \in \mathbb{R}^m$, $X \in \mathbb{R}^{m \times n}$, to recover a sparse vector $a \in \mathbb{R}^n$

$$\min_{a \in \mathbb{R}^n} \frac{1}{2\lambda} ||Xa - y||^2 + ||a||_1$$

- Optimisation is over the space of measures (not just Diracs) with no a-priori choice on the number of spikes.
- This is a convex problem, with strong recovery guarantees.
- Some non-convex problems can be placed into this framework

Questions

- When is $\mu_0 = \sum_j a_j \delta_{x_j}$ an exact solution to $(P_0(y))$?
- Are solutions to $P_{\lambda}(y)$ stable to noise?
- Numerical algorithms in the infinite dimensional space?
- Under what conditions do we recover the exact number of spikes?
- ullet Compressed sensing if Φ is a random operator, how many measurements to recover?

Optimality conditions

$$\mu_* \in \operatorname{argmin}_{\mu} F(\mu) \quad \longleftarrow \quad \nabla F(\mu_*) = 0$$

But $\|\mu\|_{TV}$ is not differentiable. Need to consider its sub-differential.

Let $\Psi:U\to\mathbb{R}$ be a convex function, its **sub-differential** is:

$$\partial \Psi(\mu) = \left\{ p \in U^* : \forall \hat{\mu}, \ \Psi(\hat{\mu}) \ge \Psi(\mu) + \langle p, \hat{\mu} - \mu \rangle \right\}$$

Optimality conditions

Equivalent characterization for $\|\mu\|_{TV}$: $\partial \|\mu\|_{TV} = \{f \in C(\mathcal{X}): \|f\|_{\infty} \le 1, \langle f, \mu \rangle = \|\mu\|_{TV} \}$

Optimality conditions

For convex problem $\min_{x} F(x)$, minimiser iff $0 \in \partial F(x)$

$$\mu_{\lambda} \in \operatorname*{argmin}_{\mu \in \mathcal{M}(\mathcal{X})} \lambda \|\mu\|_{TV} + \frac{1}{2} \|\Phi\mu - y\|^2 \qquad \longrightarrow \qquad 0 \in \partial \|\mu_{\lambda}\|_{TV} + \frac{1}{\lambda} \Phi^*(\Phi\mu_{\lambda} - y)$$

$$\mu_{a,x} = \sum_{i} a_{i} \delta_{x_{i}} \qquad \eta \in \partial \|\mu_{a,x}\|_{TV} \qquad \eta_{\lambda} := -\frac{1}{\lambda} \Phi^{*}(\Phi \mu_{\lambda} - y) \in \partial \|\mu_{\lambda}\|_{TV}$$

$$Supp(\mu_{\lambda}) \subset \{x : |\eta_{\lambda}(x)| = 1\}$$

The *dual certificate* η_{λ} certifies the support of μ_{λ}

Convex duality

Primal:
$$\min_{\mu \in \mathcal{M}(\mathcal{X})} \lambda \|\mu\|_{TV} + \frac{1}{2} \|\Phi\mu - y\|^2$$

$$\sup_{\|f\|_{\infty} \le 1} \langle p, y \rangle - \frac{\lambda}{2} \|p\|^2 \quad \text{s.t.} \quad f = \Phi^* p$$

$$= \sup_{p, \|f\|_{\infty} \le 1} \inf_{\mu \in \mathcal{M}(\mathcal{X})} \langle p, y \rangle - \frac{\lambda}{2} \|p\|^2 + \langle f - \Phi^* p, \mu \rangle$$

$$\leq \inf_{\mu \in \mathcal{M}(\mathcal{X})} \sup_{p, \|f\|_{\infty} \le 1} \langle p, y \rangle - \frac{\lambda}{2} \|p\|^2 + \langle f - \Phi^* p, \mu \rangle$$

$$= \inf_{\mu \in \mathcal{M}(\mathcal{X})} \sup_{p} - \frac{\lambda}{2} \|p\|^2 + \|\mu\|_{TV} - \langle p, \Phi\mu - y \rangle$$

$$= \inf_{\mu \in \mathcal{M}(\mathcal{X})} \frac{1}{2\lambda} \|\Phi\mu - y\|^2 + \|\mu\|_{TV}$$

Dual:
$$\sup_{\|\Phi^*p\|_{\infty} \le 1} \langle p, y \rangle - \frac{\lambda}{2} \|p\|^2 \qquad (D_{\lambda}(y))$$

$$C_0(\mathcal{X})^* = \mathcal{M}(\mathcal{X})$$

$$\|\mu\|_{TV} = \sup_{\|f\|_{\infty} \le 1} \langle f, \mu \rangle$$

Convex duality

$$\sup_{\|\Phi^*p\|_{\infty} \le 1} \langle p, y \rangle - \frac{1}{2} \lambda \|p\|^2 = -\frac{1}{2} \lambda \|p - y/\lambda\|^2 + \frac{1}{\lambda} \|y\|^2$$

Projection onto convex set

- ullet $D_{\lambda}(y)$ is the projection onto a convex set. So, it has a unique solution.
- If $\mathcal{H} = \mathbb{R}^n$, optimise over finite vector space but with infinite constraints.
- There is strong duality. $\inf P_{\lambda}(y) = \sup D_{\lambda}(y)$
- When $\lambda > 0$, solutions to $P_{\lambda}(y)$ and $D_{\lambda}(y)$ exist.

The noiseless problem

Primal:
$$\min_{\mu \in \mathcal{M}(\mathcal{X})} \|\mu\|_{TV}$$
 s.t. $\Phi \mu = y$

$$\sup_{\|\Phi^*p\|_{\infty} \le 1} \langle p, y \rangle$$

ullet When $\lambda=0$, only existence of solutions to $P_0(y)$ is guaranteed (unless $\mathcal H$ is finite).

Convex duality

If
$$p_{\lambda} = \operatorname{argmax} D_{\lambda}(y)$$
 and $\eta_{\lambda} = \Phi^* p_{\lambda}$, then $\eta_{\lambda} \in \partial \|\mu_{\lambda}\|_{TV}$ means that $\operatorname{Supp}(\mu_{\lambda}) \subset \{x : |\eta_{\lambda}(x)| = 1\}$

Solutions to $D_0(\Phi\mu_0)$ can tell us about the structure of $\mu_\lambda\in\min P_\lambda(\Phi\mu_0+w)$

Uniqueness

Theorem:

If $\mu_{a,x} = \sum a_j \delta_{x_j}$ and $y = \Phi \mu_{a,x}$ and there exists p such that

- j \bullet $\eta := \Phi^* p$ satisfies $|\eta(x)| < 1$ for all $x \notin \{x_i\}$
 - $\bullet \quad \eta(x_i) = \operatorname{sign}(a_i) \text{ for all } i.$
 - $(\phi(x_i))_i$ are linearly independent.

Then, $\mu_{a,x}$ is the unique solution to $P_0(y)$

0.5

Proof: by the primal-dual relationships, any solution has support contained in $\{x_i\}_i$

So, any two solutions take the form: $\mu = \sum_i a_i \delta_{x_i}$ and $\hat{\mu} = \sum_i \hat{a}_i \delta_{x_i}$

We must have $a_i = \hat{a}_i$ since $\Phi \hat{\mu} = \Phi \mu$ and $\phi(x_i)$ are linearly independent.

Stability

Theorem [Azais De Castro & Gamboa (2015)]

Suppose we observe $y = \Phi \mu_{a,x} + w$ with $||w|| \le \epsilon$.

In addition to conditions of previous theorem, suppose $\eta = \Phi^* p$ satisfies

i)
$$|\eta(x)| \le 1 - c_2 ||x - x_i||^2$$
 for all $x \in B(x_i, r)$

ii)
$$|\eta(x)| < 1 - c_o \text{ for all } x \notin \cup_i B(x_i, r)$$

Then, choosing $\lambda \sim \epsilon/\|p\|$, any solution $\hat{\mu}$ to $P_{\lambda}(y)$ satisfies

$$c_0 |\hat{\mu}| (\mathcal{X} \setminus \bigcup_i B(x_i, r)) + c_2 \sum_i \int_{B(x_i, r)} ||x - x_i||^2 \mathrm{d} |\hat{\mu}| (x) \lesssim \epsilon ||p||$$

amplitudes outside neighbourhood of true support is small

Cluster around true support

Stability

Theorem [Azais De Castro & Gamboa (2015)]

Suppose we observe $y = \Phi \mu_{a,x} + w$ with $||w|| \le \epsilon$.

In addition to conditions of previous theorem, suppose $\eta = \Phi^* p$ satisfies

i)
$$|\eta(x)| \le 1 - c_2 ||x - x_i||^2$$
 for all $x \in B(x_i, r)$

ii)
$$|\eta(x)| < 1 - c_o \text{ for all } x \notin \cup_i B(x_i, r)$$

Then, choosing $\lambda \sim \epsilon/\|p\|$, any solution $\hat{\mu}$ to $P_{\lambda}(y)$ satisfies

$$c_0 |\hat{\mu}| (\mathcal{X} \setminus \bigcup_i B(x_i, r)) + c_2 \sum_i \int_{B(x_i, r)} ||x - x_i||^2 d|\hat{\mu}| (x) \lesssim \epsilon ||p||$$

$$W_2^2(\sum_j \hat{A}_j \delta_{x_j}, |\hat{\mu}|) \lesssim \epsilon ||p||$$
 and $\max_j |a_j - \hat{a}_j| \lesssim \epsilon ||p||$
 $\hat{A}_j = |\hat{\mu}|(B(x_j, r))$ $\hat{a}_j = \hat{\mu}(B(x_j, r))$

Candidate for a dual certificate

Define:

$$K(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle$$

$$\eta_C(x) = \sum_{i=1}^n u_i K(x_i, x) + \sum_{i=1}^n v_i \partial_1 K(x_i, x)$$

Want: $\eta(x_i) = \text{sign}(a_i)$ and $\eta'(x_i) = 0$

2n equations to solve for 2n unknowns in u, v.

Computed η and check if $|\eta(x)| < 1$ for all $x \notin \{x_i\}$.

Recovery under minimal separation

Candès and Fernandez-Granda (2012): Let $\phi(x) = (\exp(2\pi\sqrt{-1}kx)_{|k| \le f_c})$

if
$$\min_{i \neq j} |x_i - x_j| \ge \frac{C}{f_c}$$
, then η_C is non-degenerate. So, we have stable recovery.

Necessary: If $|x_1-x_2|<\frac{1}{f_c}$ then $\mu=\delta_{x_1}-\delta_{x_2}$ cannot be recovered by the Blasso

What kind of minimum separation condition to impose for non-translation invariant kernel?

Fisher-Rao distance

Fisher metric:
$$g_x := \partial_1 \partial_2 K(x, x') = [\nabla \phi(x)][\nabla \phi(x')]^{\mathsf{T}} \in \mathbb{R}^d$$

Fisher-Rao geodesic distance: $d_g(x, x') := \inf_{\gamma: x \to x'} \int_0^1 \sqrt{\langle g_{\gamma(t)} \gamma'(t), \gamma'(t) \rangle} dt$

Interpretation:

 $x \mapsto \phi(x)$ embeds \mathcal{X} into the sphere in \mathcal{H} and

$$d_g(x, x') = \inf_{\gamma: \phi(x) \to \phi(x')} \int_0^1 \|\gamma'(t)\|_{\mathcal{H}} dt$$

Examples

Poon, Keriven and Peyre (2019): If $\min_{i \neq j} d_g(x_i, x_j) \ge \Delta_{s,K}$, then η_C is nondegenerate.

Gaussian	Fourier	Laplace
$\phi(x) \propto \exp(-\ x - \cdot\ _{\Sigma}^2)$	$\phi(x) = (\exp(2\pi\sqrt{-1}kx))_{\ k\ _{\infty} \le f_c}$	$\phi(x) \propto \exp(-x\cdot)$
$g_x = \Sigma$	$g_x = f_c I$	$g_x = \operatorname{diag}(1/x_i)$
$d_g(x, x') = x - x' _{\Sigma}$	$d_g(x, x') \propto f_c x - x' _2$	$d_g(x, x') = \sqrt{\sum_{i} \log(x_i) - \log(x_i') ^2}$
$\Delta = \sqrt{\log(s)}$	$\Delta = \sqrt{d\sqrt{s}}$	$\Delta = d + \log(ds)$

Summary

$$\min_{\mu \in \mathcal{M}(\mathcal{X})} \lambda \|\mu\|_{TV} + \frac{1}{2} \|\Phi\mu - y\|^2 \qquad \qquad = \inf_{a,x} \lambda \sum_{j=1}^{K} |a_j| + \frac{1}{2} \|\sum_{j=1}^{K} \phi(x_j) a_j - y\|^2$$
Convex relaxation

$$\sup_{\|\Phi^*p\|_{\infty} \le 1} \langle p, y \rangle - \lambda \|p\|^2$$

To assess the recovery of $m_{a,x}$,

Find $\eta = \Phi^* p \in C(\mathcal{X})$ such that

$$\eta(x_i) = \text{sign}(a_i) \text{ and } |\eta(x)| < 1 \text{ for all } x \notin \{x_i\}$$

Provided that spikes are sufficiently separated:

- Exact recovery in the noiseless setting
- Stable recovery in the noisy setting.

References

General theory for the Blasso:

- •Candès, E. J., & Fernandez-Granda, C. (2014). Towards a mathematical theory of super-resolution. *Communications on pure and applied Mathematics*, 67(6), 906-956.
- •Azais, J. M., De Castro, Y., & Gamboa, F. (2015). Spike detection from inaccurate samplings. *Applied and Computational Harmonic Analysis*, 38(2), 177-195.
- •Bredies, K., & Pikkarainen, H. K. (2013). Inverse problems in spaces of measures. *ESAIM: Control, Optimisation and Calculus of Variations*, 19(1), 190-218.
- •Duval, V., & Peyré, G. (2015). Exact support recovery for sparse spikes deconvolution. Foundations of Computational Mathematics, 15(5), 1315-1355.
- Poon, C., Keriven, N., & Peyré, G. (2021). The geometry of off-the-grid compressed sensing. *Foundations of Computational Mathematics*, 1-87

A few references for applications

- Denoyelle, Q., Duval, V., Peyré, G., & Soubies, E. (2019). The sliding Frank–Wolfe algorithm and its application to super-resolution microscopy. *Inverse Problems*, 36(1), 014001.
- Gribonval, R., Blanchard, G., Keriven, N., & Traonmilin, Y. (2021). Compressive statistical learning with random feature moments. *Mathematical Statistics and Learning*, 3(2), 113-164
- •Bach, F. (2017). Breaking the curse of dimensionality with convex neural networks. *The Journal of Machine Learning Research*, 18(1), 629-681.
- Golbabaee & Poon (2022). An off-the-grid approach to magnetic resonance fingerprinting.
 Inverse Problems (to appear).