Tutorial Sheet No. 4 February 01, 2016

Partial and directional derivatives, differentiability

(1) The kinetic energy of an object with a constant mass m and position $\mathbf{r}(t) \in \mathbb{R}^n$ at time $t \in \mathbb{R}$ is defined to be $K(t) := \frac{1}{2}mv^2(t)$, where $v(t) := \|\mathbf{r}'(t)\|$. Determine K'(t).

Solution: We have $K(t) = \frac{1}{2}m\mathbf{r}'(t) \bullet \mathbf{r}'(t) \Rightarrow K'(t) = m(\mathbf{r}'(t) \bullet \mathbf{r}''(t))$.

(2) Find the unit tangent vector to $\mathbf{r}(t) = (e^t, 2t, 2e^{-t})$. Also find the speed of a moving object with position $\mathbf{r}(t) = (3\sin(2t), 5\cos(2t), 4\sin(2t))$ in feet at time $t \in \mathbb{R}$ in seconds.

Solution: Speed is the magnitude of the velocity $\mathbf{r}'(t)$. Hence

$$\begin{aligned} \|\mathbf{r}'(t)\| &= \|(6\cos(2t), -10\sin(2t), 8\cos(2t))\| \\ &= \sqrt{36\cos^2(2t) + 100\sin^2(2t) + 64\cos^2(2t)} \\ &= \sqrt{100\cos^2(2t) + 100\sin^2(2t)} = 10 \text{ feet per second.} \blacksquare \end{aligned}$$

(3) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by f(0,0) = 0 and $f(x,y) = \frac{xy}{x^2 + y^2}$. Show that f is not continuous at (0,0) but the partial derivatives of f exist on \mathbb{R}^2 . Show that the partial derivatives are not continuous at (0,0).

Solution: Obviously f is not continuous and $f_x(0,0) = 0 = f_y(0,0)$. Now

$$f_x(x,y) = \frac{y(y^2 - x^2)}{(x^2 + y^2)^2}$$

shows that f_x is not continuous at (0,0). Indeed, $f_x(0,1/n) = n \to \infty$. Similarly, f_y is not continuous at (0,0).

(4) Let $f: U \subset \mathbb{R}^2 \to \mathbb{R}$, where U is open. If the first order partial derivatives of f exist on U and are bounded then show that f is continuous on U.

Solution: We have f(a+x,b+y)-f(a,b)=[f(a+x,b+y)-f(a,b+y)]+[f(a,b+y)-f(a,b)]. By MVT, there exists $0 < \theta_i < 1$ for i = 1, 2 such that

$$[f(a+x,b+y) - f(a,b+y)] + [f(a,b+y) - f(a,b)] = f_x(a+\theta_1x,b+y)x + f_y(a,b+\theta_2y)y.$$

This shows $|f(a+x,b+y)-f(a,b)| \le \text{const.}(|x|+|y|) \to 0$ as $(x,y) \to (0,0)$. Hence f is continuous at (a,b).

(5) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by f(0,0) = 0 and

$$f(x,y) = (x^2 + y^2) \sin \frac{1}{x^2 + y^2}$$
 for $(x,y) \neq (0,0)$.

Show that f is continuous at (0,0) and the partial derivatives of f exist but are not bounded in any disc (howsoever small) around (0,0).

Solution: Since $|f(x,y)| \le x^2 + y^2$, f is continuous at (0,0) and $f_x(0,0) = f_y(0,0) = 0$. We have

$$f_x(x,y) = 2x \left(\sin \left(\frac{1}{x^2 + y^2} \right) - \frac{1}{x^2 + y^2} \cos \left(\frac{1}{x^2 + y^2} \right) \right).$$

The function $2x \sin\left(\frac{1}{x^2+y^2}\right)$ is bounded in any disc centered at (0,0), while $\frac{2x}{x^2+y^2}\cos\left(\frac{1}{x^2+y^2}\right)$ is unbounded in any such disc. (Consider $(x,y)=\left(\frac{1}{\sqrt{n\pi}},0\right)$ for n a large positive integer.) Thus f_x is unbounded in any disc around (0,0).

(6) Let $f: \mathbb{R}^2 \to \mathbb{R}$. If $f_x(x,y) = 0 = f_y(x,y)$ for all $(x,y) \in \mathbb{R}^2$ then show that f is a constant function.

Solution: We have f(x,y) - f(0,0) = [f(x,y) - f(0,y)] + [f(0,y) - f(0,0)]. By MVT, there exists $0 < \theta_i < 1$ for i = 1, 2 such that

$$[f(x,y) - f(0,y)] + [f(0,y) - f(0,0)] = f_x(\theta_1 x, y)x + f_y(0,\theta_2 y)y = 0.$$

This shows f(x,y) - f(0,0) = 0 for all $(x,y) \in \mathbb{R}^2$. Hence f is constant. \blacksquare .

(7) Let $f, g : \mathbb{R}^2 \to \mathbb{R}$ be given by f(0,0) = 0 = g(0,0) and, for $(x,y) \neq (0,0)$, $f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}, \qquad g(x,y) = \frac{\sin^2(x+y)}{|x| + |y|}.$

Examine differentiability and the existence of partial and directional derivatives of f and g at (0,0).

Solution: (i) We have $\nabla f(0,0) = (0,0)$ and f is differentiable. Solved in the class.

- (ii) We have $g_x(0,0) = \lim_{h\to 0} \frac{\sin^2(h)/|h|}{h} = \lim_{h\to 0} \frac{\sin^2(h)}{h|h|}$ which shows that the limit does not exist. Similarly, $g_y(0,0)$ does not exist. Hence g is not differentiable.
- (8) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by f(x,y) = 0 if y = 0 and and $f(x,y) = \frac{y}{|y|} \sqrt{x^2 + y^2}$, if $y \neq 0$. Show that f is continuous at (0,0), $D_u f(0,0)$ exists for all unit vector u but f is not differentiable at (0,0).

Solution: Since f(0,0) = 0 and $|f(x,y)| \le \sqrt{x^2 + y^2}$, f is continuous at (0,0). Let $u = (u_1, u_2)$ be a unit vector in \mathbb{R}^2 with $u_2 \ne 0$. Then

$$D_u f(0,0) = \lim_{t \to 0} \frac{f(tu) - f(0)}{t} = \frac{u_2}{|u_2|}.$$

On the other hand, if u = (1,0) then $D_u f(0,0) = f_x(0,0) = 0$. Hence $D_u f(0,0)$ exist for every unit vector $u \in \mathbb{R}^2$. Next, we have $\nabla f(0,0) = (0,1)$ and

$$\lim_{(h,k)\to(0,0)} \frac{|f(h,k) - \nabla f(0,0) \bullet (h,k)|}{\sqrt{h^2 + k^2}} = \lim_{(h,k)\to(0,0)} \frac{\left|\frac{k}{|k|}\sqrt{h^2 + k^2} - k\right|}{\sqrt{h^2 + k^2}}$$
$$= \lim_{(h,k)\to(0,0)} \left|\frac{k}{|k|} - \frac{k}{\sqrt{h^2 + k^2}}\right|$$

which shows that the limit does not exist. Hence f is not differentiable at (0,0).

(9) Find the directional derivative of $f(x,y) = y^3 - 2x^2 + 3$ at the point (1,2) in the direction of $u := \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. Also, find the directional derivative of $f(x,y) = \log(x^2 + y^2)$ at (1,-3)

in the direction of u := (2, -3).

Solution: (i) We have $f_x(x,y) = -4x$, $f_y(x,y) = 3y^2$ which are continuous. Therefore

$$D_u f(1,2) = \nabla f(1,2) \bullet u = f_x(1,2) \frac{1}{2} + f_y(1,2) \frac{\sqrt{3}}{2} = -2 + 6\sqrt{3}.$$

- (ii) Next, we have $f_x(x,y) = \frac{2x}{x^2 + y^2}$ and $f_y(x,y) = \frac{2y}{x^2 + y^2}$ which are continuous at (1, -3). Hence for $u = (\frac{2}{\sqrt{13}}, \frac{-3}{\sqrt{13}})$, we have $D_u f(1, -3) = \nabla f(1, -3) \bullet u = \frac{11}{5\sqrt{3}}$.
- (10) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable at (0,0). Suppose that for u:=(3/5,4/5) and $v:=(1/\sqrt{2},1/\sqrt{2})$, we have $D_u f(0,0)=12$ and $D_v f(0,0)=-4\sqrt{2}$. Then determine $f_x(0,0)$ and $f_y(0,0)$.

Solution: Set $(\alpha, \beta) := \nabla f(0,0)$. Then $(\alpha, \beta) \bullet (3/5, 4/5) = 12 \Rightarrow 3\alpha + 4\beta = 60$ and $(\alpha, \beta) \bullet (1/\sqrt{2}, 1/\sqrt{2}) = -4\sqrt{2} \Rightarrow \alpha + \beta = -8$. Hence $f_x(0,0) = \alpha = -92$ and $f_y(0,0) = \beta = 84$.

(11) Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$. Suppose that $\partial_i f(x,y)$ exists and g is differentiable at f(x,y). Show that $\partial_i (g \circ f)(x,y)$ exists and $\partial_i (g \circ f)(x,y) = g'(f(a))\partial_i f(x,y)$.

Solution: Define $\psi(x) := f(x,y)$ and $\phi(x) = g(\psi(x)) = g(f(x,y))$. Then $\psi'(x) = f_x(x,y)$. Hence $\phi'(x)$ exists and by chain rule $\phi'(x) = g'(\psi(x))\psi'(x) = g'(f(x,y))f_x(x,y)$.

(12) Let $g: \mathbb{R} \to \mathbb{R}$ be differentiable. Using chain rule determine the partial derivatives of $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$(i) f(x,y) := g(xy^2 + 1), \quad (ii) f(x,y) := g(4x + 7y), \quad (iii) f(x,y) := g(x - y).$$

Also, examine differentiability of f and determine the derivative, if it exists.

Solution: Easy. Apply chain rule. Continuous partial derivatives \Rightarrow differentiability and in such a case the derivative is given by $Df(a,b)(h,k) = \nabla f(a,b) \bullet (h,k)$ for all $(h,k) \in \mathbb{R}^2$.

(13) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable at $a \in \mathbb{R}^2$ and suppose that $\nabla f(a) \neq 0$. Show that the maximum value of the directional derivative $D_u f(a)$ is $\|\nabla f(a)\|$ and is attained in the direction of $\nabla f(a)$ with $u = \nabla f(a)/\|\nabla f(a)\|$. Also show that the minimum value of $D_u f(a)$ is $-\|\nabla f(a)\|$ and is attained in the direction of $-\nabla f(a)$.

Solution: We have $D_u f(a) = \nabla f(a) \bullet u$. By Cauchy-Schwarz inequality $|D_u f(a)| \leq \|\nabla f(a)\|$. Hence the result follows.

**** End ****