AMENDMENTS TO THE CLAIMS

1. (Currently amended) A planar dielectric line comprising: a dielectric substrate;

first and second electrodes <u>positioned</u> on the front <u>a first</u> surface of the dielectric substrate so as to face each other with a fixed space therebetween; <u>to form</u> a first slot <u>sandwiched</u> between the first and second electrodes; <u>and</u>

third and fourth electrodes <u>positioned</u> formed on the rear face a second <u>surface</u> of the dielectric substrate <u>opposite the first surface</u> so as to face each other with a fixed space therebetween; and <u>to form</u> a second slot sandwiched between the third and fourth electrodes, the second slot facing and disposed so as to face the first slot,

wherein, in a planar dielectric line where a high-frequency signal is propagated along the first and second slots, the width dimensions a width of the first slot and a width of the second slot are slots are set to be different from each other.

- 2. (Currently amended) The [[A]] planar dielectric line as claimed in claim 1, wherein, when [[the]] a relative dielectric constant ϵ r of the dielectric substrate is 20 or more and a [[the]] wavelength of a high-frequency signal in the dielectric substrate is represented by $\lambda g0$, a [[the]] thickness dimension of the dielectric substrate is substantially in the range of 0.3 to 0.4 $\lambda g0$, the width dimension of one of the first and second slots is $\lambda g0/100$ or less, and the width dimension of the other slot is set to be substantially $\lambda g0/10$.
- 3. (Currently amended) The [[A]] planar dielectric line as claimed in claim 1 [[or 2]], wherein an electronic part is connected to one of the first and second slots having a narrower width dimension.

4. (Currently amended) The [[A]] planar dielectric line as claimed in <u>claim 1</u> any one of claims 1 to 3, further comprising:

a third slot <u>provided on the dielectric substrate</u>, positioned on one end of the first slot and sandwiched between the first and second electrodes[[,]]; and

a fourth slot <u>provided on the dielectric substrate</u>, positioned on one end of the second slot, sandwiched between the third and fourth electrodes, facing the third slot, and having the same width dimension as the third slot, both provided on the dielectric substrate,

wherein the first and third slots are connected by using a first connection slot, the second and fourth slots are connected by using a second connection slot, and at least either of the first and second connection slots is constituted by a tapered slot having [[the]] a width dimension that of which gradually changes.

- 5. (Currently amended) The [[A]] planar dielectric line as claimed in claim 4, wherein, when \underline{a} [[the]] wavelength of a high-frequency signal being propagated along the first and second slots is represented by λg , \underline{a} [[the]] line length of the tapered slot is set to be substantially in the range of $\lambda g/4$ to $\lambda g/2$.
- 6. (Currently amended) <u>The [[A]] planar dielectric line as claimed in claim 1</u> any one of claims 1 to 3, further comprising:

a third slot <u>provided on the dielectric substrate</u>, positioned on one end of the first slot and sandwiched between the first and second electrodes[[,]]; and

a fourth slot <u>provided</u> on the <u>dielectric substrate</u>, positioned on one end of the second slot, sandwiched between the third and fourth electrodes, facing the third slot, and having the same width dimension as the third slot, both provided on the dielectric substrate,

wherein the first and third slots are directly connected and the second and fourth slots are directly connected so as to form to constitute an impedance matching circuit.

- 7. (Currently amended) The [[A]] planar dielectric line as claimed in claim 1, further comprising any one of claims 1 to 6, wherein, in at least one of the first and second electrodes and the third and fourth electrodes, a planar-type band-stop filter [[is]] provided around at least one of the first and second slots.
- 8. (Currently amended) A high-frequency active circuit <u>comprising</u> a planar dielectric line as claimed in <u>claim 1</u> any one of claims 1 to 7.
- 9. (Currently amended) A transmitter-receiver <u>comprising</u> using a planar dielectric line as claimed in <u>claim 1</u> any one of claims 1 to 7.
- 10. (New) The planar dielectric line as claimed in claim 1, wherein a relative dielectric constant er of the dielectric substrate is 20 or more.
- 11. (New) The planar dielectric line as claimed in claim 1, wherein a wavelength of a high-frequency signal in the dielectric substrate is represented by $\lambda g0$, and a thickness of the dielectric substrate is substantially in the range of 0.3 to 0.4 $\lambda g0$.
- 12. (New) The planar dielectric line as claimed in claim 1, wherein a wavelength of a high-frequency signal in the dielectric substrate is represented by $\lambda g0$, and the width of one of the first and second slots is $\lambda g0/100$ or less, and the width of the other slot is substantially $\lambda g0/10$.