Statistique descriptive à une variable

3) Etude du cas d'une variable statistique continue :

Soit X une variable statistique continue définie sur une population de n individus et dont les observations sont regroupés en k classes : $[e_0, e_1]$, $[e_1, e_2]$, ..., $[e_{k-1}, e_k]$ dont les effectifs respectifs n_1, n_2, \ldots, n_k .

Exemple : Un échantillon de 50 poissons de la même espèce a fourni les poids suivants (en g) :

Poids	Ampl.	Centre	Effectif	Fréq.
(g)	a_i	x_i	n_i	fi
[70; 80[10	75	8	0, 16
[80; 90[10	85	8 n _i	0, 16
[90; 100[10	95	12	0, 24
[100; 110[10	105	17	0, 34
[110; 120[10	115	5	0, 10
total			50	1

$$a_i = e_i - e_{i-1}$$
: Amplitude de la classe $[e_{i-1}, e_i]$.

$$x_i = \frac{e_i + e_{i-1}}{2}$$
: centre de la classe $[e_{i-1}, e_i]$.

$$n_i = rac{n_i}{n}$$
 : effectif de la classe $[e_{i-1}, e_i]$.

3.1 Représentation graphique : Histogramme

A chaque classe $[e_{i-1}, e_i]$, on fait correspondre un rectangle de base égale à son amplitude et hauteur proportionnelle à sa fréquence f_i^g .

Remarque : En reliant les points de coordonnées (x_i, f_i) par des segments de droites dans l'histogramme, on obtient une courbe dite Polygone des fréquences.

3.2 Fréquences cumulées et courbes cumulatives :

 $Fi \uparrow = f1 + ... + fi$ dite fréquence cumulée croissante, correspondante à $[e_{i-1}, e_i]$, est la proportion des observations inférieure à e_i .

 $Fi \downarrow = f1 + ... + fi$ dite fréquence cumulée croissante, correspondante à $[e_{i-1}, e_i]$, est la proportion des observations supérieur ou égale à e_{i-1} .

COURBES CUMULATIVES:

La courbe cumulative croissante (respectivement décroissante) de la variable statistique X est la représentation graphique de la fonction $F \uparrow (x) : \mathbb{R} \to [0,1]$ (respectivement $F \downarrow (x) : \mathbb{R} \to [0,1]$) définie par

$$F \uparrow (x) = \begin{cases} 0 & \text{si } x < e_0 \\ \frac{f_i}{a_i} (x - e_{i-1}) + F_{i-1} \uparrow & \text{si } x \in [e_{i-1}, e_i[\\ 1 & \text{si } x \ge e_k \end{cases}$$

$$\text{(Respectivement } F\downarrow(x) = \begin{cases} 1 & \textit{si } x \leq e_0 \\ \frac{f_i}{a_i}(e_i-x) + F_{i+1} \downarrow \textit{ si } x \in [e_{i-1} \,, e_i[\\ 0 & \textit{si } x > e_k. \end{cases}$$

Remarque:

1) $F \uparrow$ et $F \downarrow$ sont appelées fonctions de répartitions de la variable statistique X.

2) $F \uparrow (x)$: représente la proportion d'observations qui sont inférieure à x.

3)
$$F \uparrow (e_i) = F_i \uparrow pour tout i = 1,2,...,k$$
.

4)
$$F \downarrow (e_i) = F_{i+1} \downarrow \text{ pour tout } i = 0,1,...,(k-1)$$

3.3 Représentation numérique des données :

3.3.1 Paramètres de tendance centrale :

i) Le MODE : noté M_o .

La classe dont la fréquence est la plus élevée est dite classe modale. Soit $[e_{i-1}$, $e_i[$ la classe modale, alors $M_o \in [e_{i-1}$, $e_i[$.

La valeur du mode M_o peut-être approchée de deux manières :

Première méthode : $M_o = \frac{e_{i-1} + e_i}{e_{i-1}}$ centre de la classe modale.

Deuxième méthode: En utilisant la règle de Thales on obtient

$$M_o = e_{i-1} + a_i \frac{\Delta_1}{\Delta_1 + \Delta_2}$$
 Où: $\Delta_1 = f_i - f_{i-1}$ $\Delta_2 = f_i - f_{i+1}$.

Où:
$$\Delta_1 = f_i - f_{i-1}$$

$$\Delta_2 = f_i - f_{i+1}$$

ii) La MEDIANE : Notée M_e . Elle vérifie $F \uparrow (M_e) = F \downarrow (M_e) = \frac{1}{2}$. La classe $[e_{i-1}, e_i]$ est dite classe médiane si $M_e \in [e_{i-1}, e_i]$.

<u>Calcul de la médiane</u>: soit $F_{i-1} \uparrow \leq \frac{1}{2} < F_i \uparrow \Rightarrow M_e \in [e_{i-1}, e_i]$. D'après la courbe cumulative croissante on obtient : $\frac{F_i \uparrow - F_{i-1} \uparrow}{g_{i-1} g_{i-1}} = \frac{F \uparrow (M_e) - F_{i-1} \uparrow}{M_e g_{i-1}} \Rightarrow$ $\frac{f_i}{g_i} = \frac{0.5 - F_{i-1} \uparrow}{M_c - e_{i-1}} \Rightarrow$

$$M_e = \frac{a_i}{f_i}(0.5 - F_{i-1}\uparrow) + e_{i-1}$$

En particulier si $\exists i \ tel \ que \ F_i \uparrow = 0.5$ alors $M_e = e_i$.

iii) La MOYENNE ARITHMETIQUE : $not\'ee \bar{x}$.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i$$

où $x_i = \frac{e_{i-1} + e_i}{2}$ centre de la classe $[e_{i-1}, e_i]$

2

et n_i : l'effectif correspondant à la classe $[e_{i-1}, e_i]$.

3.3.2 Paramètre de dispersions :

i) VARIANCE et ECART TYPE :

$$V(X) = \frac{1}{n} \sum_{i=1}^k n_i (x_i - \overline{x})^2 \quad \text{ ou encore } V(X) = (\frac{1}{n} \sum_{i=1}^k n_i x_i^2) - \overline{x}^2$$

où $x_i = \frac{e_{i-1} + e_i}{2}$ centre de la classe $[e_{i-1}, e_i]$ et n_i : l'effectif correspondant à la classe $[e_{i-1}, e_i]$. \overline{x} : Moyenne arithmétique de X.

L'écart type de X est défini par :

$$\sigma_X = \sqrt{V(X)}.$$

ii) INTERVALLE INTEROUARTILES:

Les quartiles notés, Q_1, Q_2, Q_3 vérifient : $F \uparrow (Q_1) = 0.25, F \uparrow (Q_2) = F \uparrow (M_e) = 0.5, F \uparrow (Q_2) = 0.75.$ L'intervalle interquartile est donné par : $[Q_1, Q_3]$, il mesure la dispersion des observations autour de la médiane M_{ρ} .

Calcul du quartile Q_1 : soit $F_{i-1} \uparrow \le 0.25 < F_i \uparrow \Rightarrow Q_1 \in [e_{i-1}, e_i]$. En procédant de même que pour le cas de la médiane, on obtient :

$$Q_1 = \frac{a_i}{f_i}(\mathbf{0}.25 - F_{i-1} \uparrow) + e_{i-1}$$

Calcul du quartile Q_3 : soit $F_{i-1} \uparrow \le 0.75 < F_i \uparrow \Rightarrow Q_3 \in [e_{i-1}, e_i]$. En procédant de même que pour le cas de la médiane, on obtient :

$$Q_3 = \frac{a_i}{f_i}(\mathbf{0}.75 - F_{i-1} \uparrow) + e_{i-1}$$