Ejercicio de Probabilidad: Suma de Dos Dados

Estudiante: Bettsy Liliana Garces Buritica 24 de octubre de 2025

Enunciado

Al lanzar un par de dados justos, sea S la suma de los valores que aparecen en las caras superiores. Se pide:

- 1. Determinar la función de probabilidad (PMF).
- 2. Calcular la función de distribución acumulada (CDF).
- 3. Hallar el valor esperado E[S].
- 4. Calcular la varianza Var(S).

1. Función de Probabilidad (PMF)

El espacio muestral tiene $6 \times 6 = 36$ resultados equiprobables. La suma S puede tomar valores desde 2 hasta 12. La probabilidad de cada valor es:

$$P(S=s) = \frac{\text{número de combinaciones que suman } s}{36}$$

s	Casos favorables	P(S=s)	Valor decimal
2	1	1/36	0.0278
3	2	2/36	0.0556
4	3	3/36	0.0833
5	4	4/36	0.1111
6	5	5/36	0.1389
7	6	6/36	0.1667
8	5	5/36	0.1389
9	4	4/36	0.1111
10	3	3/36	0.0833
11	2	2/36	0.0556
12	1	1/36	0.0278

2. Función de Distribución Acumulada (CDF)

Se obtiene sumando las probabilidades de todos los valores menores o iguales que s:

$$F_S(s) = P(S \le s) = \sum_{t=2}^{s} P(S = t)$$

s	$F_S(s)$	
2	1/36 = 0.0278	
3	3/36 = 0.0833	
4	6/36 = 0.1667	
5	10/36 = 0.2778	
6	15/36 = 0.4167	
7	21/36 = 0.5833	
8	26/36 = 0,7222	
9	30/36 = 0.8333	
10	33/36 = 0.9167	
11	35/36 = 0.9722	
12	36/36 = 1,0000	

3. Valor Esperado

Por definición:

$$E[S] = \sum_{s=2}^{12} s \cdot P(S=s)$$

Sustituyendo los valores:

$$E[S] = \frac{2(1) + 3(2) + 4(3) + 5(4) + 6(5) + 7(6) + 8(5) + 9(4) + 10(3) + 11(2) + 12(1)}{36} = \frac{252}{36} = 7.$$

Por linealidad, también puede comprobarse que:

$$E[S] = E[D_1] + E[D_2] = 3.5 + 3.5 = 7.$$

4. Varianza

Primero hallamos $E[S^2]$:

$$E[S^2] = \frac{2^2(1) + 3^2(2) + 4^2(3) + 5^2(4) + 6^2(5) + 7^2(6) + 8^2(5) + 9^2(4) + 10^2(3) + 11^2(2) + 12^2(1)}{36}$$

$$E[S^2] = \frac{1974}{36} = \frac{329}{6}.$$

Entonces:

$$Var(S) = E[S^2] - (E[S])^2 = \frac{329}{6} - 7^2 = \frac{35}{6} \approx 5,8333.$$

Desviación estándar:

$$\sigma_S = \sqrt{\frac{35}{6}} \approx 2{,}415.$$

5. Resolución en Python

El mismo problema puede resolverse usando librerías estadísticas de Python:

```
import itertools
import numpy as np
import matplotlib.pyplot as plt
# Posibles resultados de dos dados
resultados = list(itertools.product(range(1,7), repeat=2))
suma = np.array([x+y for x, y in resultados])
# Probabilidades
valores, conteo = np.unique(suma, return_counts=True)
prob = conteo / 36
# Valor esperado y varianza
E = np.sum(valores * prob)
Var = np.sum(valores**2 * prob) - E**2
print("E[S] =", E)
print("Var(S) =", Var)
# Gráfica PMF
plt.bar(valores, prob, color='skyblue')
plt.title("Función de Probabilidad (PMF)")
plt.xlabel("Suma de los dados")
plt.ylabel("P(S = s)")
plt.show()
# Gráfica CDF
cdf = np.cumsum(prob)
plt.step(valores, cdf, where='post', color='red')
plt.title("Función Acumulada (CDF)")
plt.xlabel("Suma de los dados")
plt.ylabel("P(S s)")
plt.show()
```

Este código calcula automáticamente la PMF, la CDF, el valor esperado y la varianza, además de graficar las funciones correspondientes.