Лабораторная работа. Преобразование IPv4-адресов в двоичный формат

Задачи

- Часть 1. Преобразование IPv4-адресов из разделенных точками десятичных чисел в двоичный формат
- Часть 2. Использование побитовой операции И для определения сетевых адресов
- Часть 3. Применение расчетов сетевых адресов

Общие сведения/сценарий

Каждый IPv4-адрес состоит из двух частей — сетевой и узловой. Сетевая часть адреса одинакова для всех устройств, которые находятся в одной и той же сети. Узловая часть определяет конкретный узел в пределах соответствующей сети. Маска подсети используется для определения сетевой части IP-адреса. Устройства в одной сети могут обмениваться данными напрямую; для взаимодействия между устройствами из разных сетей требуется промежуточное устройство уровня 3, например маршрутизатор.

Чтобы понять принцип работы устройств в сети, нам необходимо увидеть адреса в том виде, в котором с ними работают устройства — в двоичном представлении. Для этого необходимо перевести IP-адрес и его маску подсети из десятичного представления с точками в двоичное значение. После этого можно определить сетевой адрес с помощью побитовой операции И.

В этой лабораторной работе описывается порядок определения сетевой и узловой частей IP-адресов. Для этого нужно перевести адреса и маски подсети из десятичного представления с точками в двоичный формат, а затем применить побитовую операцию И. После этого вы воспользуетесь полученной информацией для определения адресов в сети.

Часть 1: Преобразование IPv4-адресов из десятичной системы счисления с точкой -разделителем в двоичный формат

В части 1 вам необходимо перевести десятичные числа в двоичный эквивалент. Выполнив это задание, вы займетесь преобразованием IPv4-адресов и масок подсети из десятичного представления с точкой-разделителем в двоичную систему.

Шаг 1: Переведите числа из десятичной в двоичную систему счисления.

Заполните таблицу, преобразовав десятичное число в 8-битное двоичное значение. Первое число уже преобразовано для примера. Помните, что восемь двоичных битовых значений в октете имеют основание 2 и слева направо выглядят как 128, 64, 32, 16, 8, 4, 2 и 1.

Десятичные	Двоичные
192	11000000
168	10101000
10	1010
255	11111111
2	10

Шаг 2: Преобразуйте IPv4-адреса в двоичный формат.

IPv4-адреса преобразуются точно так же, как было описано выше. Заполните приведенную ниже таблицу двоичными эквивалентами указанных адресов. Чтобы ваши ответы было проще воспринимать, разделяйте двоичные октеты точками.

Десятичные	Двоичные
192.168.10.10	11000000.10101000.00001010.00001010
209.165.200.229	11010001.10100101.11001000.11100101
172.16.18.183	10101100.00010000.00010010.10110111
10.86.252.17	00001010.01010110.111111100.00010001
255.255.255.128	11111111.11111111.11111111.10000000
255.255.192.0	111111111111111111111000000.00000000

Часть 2: Использование побитовой операции И для определения сетевых адресов

В части 2 вы будете рассчитывать сетевой адрес для имеющихся адресов узлов с помощью побитовой операции И. Сначала вам необходимо перевести десятичный IPv4-адрес и маску подсети в их двоичный эквивалент. Получив сетевой адрес в двоичном формате, переведите его в десятичный.

Примечание. При использовании операции И десятичное значение в каждой битовой позиции 32-битного IP-адреса узла сравнивается с соответствующей позицией в 32-битной маске подсети. При наличии двух нулей или 0 и 1 результатом операции И будет 0. При наличии двух единиц результатом будет 1, как показано в приведенном примере.

Шаг 1: Определите, сколько бит нужно использовать для расчета сетевого адреса.

Описание	Десятичные	Двоичные
ІР-адрес	192.168.10.131	11000000.10101000.00001010.10000011
Маска подсети	255.255.255.192	11111111.11111111.11111111.11000000
Сетевой адрес	192.168.10.128	11000000.10101000.00001010.10000000

Как определить, сколько бит нужно использовать для расчета сетевого адреса?

Перевести маску подсети в двоичный вид и посчитать количество единиц. Сколько бит в приведенном выше примере используется для расчета сетевого адреса? 26

Шаг 2: Выполните операцию И, чтобы определить сетевой адрес.

а. Введите отсутствующую информацию в таблицу ниже:

Описание	Десятичные	Двоичные
ІР-адрес	172.16.145.29	10101100.00010000.10010001.00011101
Маска подсети	255.255.0.0	111111111111111111.00000000.00000000
Сетевой адрес	172.16.0.0	10101100.00010000.00000000.00000000

b. Введите отсутствующую информацию в таблицу ниже:

Описание	Десятичные	Двоичные
ІР-адрес	192.168.10.10	11000000.10101000.00001010.00001010
Маска подсети	255.255.255.0	11111111.11111111.111111111.00000000
Сетевой адрес	192.168.10.0	11000000.10101000.00001010.00000000

с. Введите отсутствующую информацию в таблицу ниже:

Описание	Десятичные	Двоичные
ІР-адрес	192.168.68.210	11000000.10101000.01000100.11010010
Маска подсети	255.255.255.128	11111111.11111111.11111111.10000000
Сетевой адрес	192.168.68.128	11000000.10101000.01000100.10000000

d. Введите отсутствующую информацию в таблицу ниже:

Описание	Десятичные	Двоичные
ІР-адрес	172.16.188.15	10101100.00010000.10111100.00001111
Маска подсети	255.255.240.0	11111111.11111111.11110000.00000000
Сетевой адрес	172.16.176.0	10101100.00010000.10110000.00000000

е. Введите отсутствующую информацию в таблицу ниже:

Описание	Десятичные	Двоичные
ІР-адрес	10.172.2.8	00001010.10101100.00000010.00001000
Маска подсети	255.224.0.0	1111111.11100000.00000000.00000000
Сетевой адрес	10.160.0.0	00001010.10100000.00000000.00000000

Часть 3: Применение расчетов сетевых адресов

В части 3 вам необходимо рассчитать сетевой адрес для указанных IP-адресов и масок подсети. Получив сетевой адрес, вы должны определить ответы, необходимые для выполнения этой лабораторной работы.

Шаг 1: Определите, находятся ли IP-адреса в одной и той же сети.

а. Вы настраиваете два ПК для своей сети. Компьютеру РС-А присвоен IP-адрес 192.168.1.18, а компьютеру РС-В — IP-адрес 192.168.1.33. Маска подсети обоих компьютеров — 255.255.255.240.

Лабораторная работа. Преобразование IPv4-адресов в двоичный формат

Какой сетевой адрес у РС-А? 192.168.1.16

Какой сетевой адрес у РС-В? 192.168.1.32

Смогут ли эти ПК взаимодействовать друг с другом напрямую? Нет, они находятся в разных подсетях.

Какой наибольший адрес, присвоенный компьютеру РС-В, позволит ему находиться в одной сети с PC-A? 192.168.1.224

b. Вы настраиваете два ПК для своей сети. Компьютеру РС-А присвоен IP-адрес 10.0.0.16, а компьютеру РС-В — IP-адрес 10.1.14.68. Маска подсети обоих компьютеров — 255.254.0.0.

Какой сетевой адрес у РС-А? 10.0.0.0

Какой сетевой адрес у РС-В? 10.0.0.0

Смогут ли эти ПК взаимодействовать друг с другом напрямую? да, они находятся в одной подсети.

Какой наименьший адрес, присвоенный компьютеру PC-B, позволит ему находиться в одной сети с PC-A? 10.0.0.1

Шаг 2: Установите адрес шлюза по умолчанию.

а. В вашей компании действует политика использования первого IP-адреса в сети в качестве адреса шлюза по умолчанию. Узел в локальной сети (LAN) имеет IP-адрес 172.16.140.24 и маску подсети 255.255.192.0.

Какой у этой сети сетевой адрес?

172.16.128.0

Какой адрес имеет шлюз по умолчанию для этого узла?

172.16.128.1

b. В вашей компании действует политика использования первого IP-адреса в сети в качестве адреса шлюза по умолчанию. Вы получили указание настроить новый сервер с IP-адресом 192.168.184.227 и маской подсети 255.255.255.248.

Какой у этой сети сетевой адрес?

192.168.184.224

Каким будет шлюз по умолчанию для этого сервера?

192.168.184.225

Вопросы для повторения

Почему при определении сетевого адреса важна маска подсети?

Маска подсети позволяет отделить узловую часть адреса от сетевой.