Teoria da Computação

Gramáticas e Linguagens Regulares

Aula 05

Prof. Felipe A. Louza

Roteiro

- Gramáticas e Linguagens
 - Gramáticas
 - Formalização de uma Gramática
 - Hierarquia de Chomsky
- ② Gramáticas Regulares
 - Gramáticas Lineares
 - GLUD → Linguagem Regular
 - ullet Linguagem Regular o GLUD
- 3 Referências

Motivação

Na primeira parte do curso, vimos dois formalismos para descrever/reconhecer linguagens:

- Autômatos Finitos
- Expressões Regulares

Entretanto, vimos que algumas linguagens como

$$L = \{a^n b^n | n \ge 0\}$$

não podem ser descritas com esses formalismos.

Vamos ver um outro formalismo para definir Linguagens Formais.

Gramáticas

Uma gramática possui regras para geração de todas as palavras de uma linguagem.

 Os formalismos vistos até aqui são úteis apenas para as Linguagens Regulares.

Roteiro

- Gramáticas e Linguagens
 - Gramáticas
 - Formalização de uma Gramática
 - Hierarquia de Chomsky
- 2 Gramáticas Regulares
 - Gramáticas Lineares
 - GLUD → Linguagem Regular
 - ullet Linguagem Regular o GLUD
- 3 Referências

Definição informal:

• É basicamente um conjunto finito de regras que, quando aplicadas sucessivamente, **geram palavras**.

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & \mathbf{a}\mathcal{S}\mathbf{b} \\ \mathcal{S} & \rightarrow & \mathcal{A} \\ \mathcal{A} & \rightarrow & \mathcal{E} \end{array}$$

O conjunto de todas as palavras geradas por uma gramática G define a linguagem L(G).

{ ab, aabb, aaabbb, aaaabbbb, . . . [†]

Já vimos essa linguagem antes?

Definição informal:

• É basicamente um conjunto finito de regras que, quando aplicadas sucessivamente, **geram palavras**.

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & \mathbf{a} \mathcal{S} \mathbf{b} \\ \mathcal{S} & \rightarrow & \mathcal{A} \\ \mathcal{A} & \rightarrow & \mathcal{E} \end{array}$$

O conjunto de todas as palavras geradas por uma gramática G define a linguagem L(G).

```
\{ab, aabb, aaabbb, aaaabbbb, \dots\}
```

Já vimos essa linguagem antes?

Definição informal:

• É basicamente um conjunto finito de regras que, quando aplicadas sucessivamente, **geram palavras**.

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & \mathbf{a} \mathcal{S} \mathbf{b} \\ \mathcal{S} & \rightarrow & \mathcal{A} \\ \mathcal{A} & \rightarrow & \mathcal{E} \end{array}$$

O conjunto de todas as palavras geradas por uma gramática G define a linguagem L(G).

 $\{ab, aabb, aaabbb, aaaabbbb, \dots\}$

Já vimos essa linguagem antes?

Linguagens Naturais

A **motivação original** para o estudo de Gramáticas encontra-se na descrição de Linguagens Naturais:

• Relacionamentos entre termos tais como *nomes*, *verbos* e *adjetivos*.

```
 \begin{array}{lll} \langle sentence \rangle & \rightarrow & \langle noun \; phrase \rangle \langle verb \; phrase \rangle \\ \langle noun \; phrase \rangle & \rightarrow & \langle article \rangle \langle noun \rangle \; | \; \langle noun \rangle \\ \langle verb \; phrase \rangle & \rightarrow & \langle verb \rangle \langle adjetive \rangle \\ \langle article \rangle & \rightarrow & \mathbf{the} \\ \langle noun \rangle & \rightarrow & \mathbf{boy} \; | \; \mathbf{girl} \\ \langle adjetive \rangle & \rightarrow & \mathbf{small} \; | \; \mathbf{big} \\ \langle verb \rangle & \rightarrow & \mathbf{is} \end{array}
```

Mais tarde, viu-se que Gramáticas são úteis para descrever Linguagens Artificiais, em especial, linguagens de programação.

Linguagens Naturais

A **motivação original** para o estudo de Gramáticas encontra-se na descrição de Linguagens Naturais:

Relacionamentos entre termos tais como nomes, verbos e adjetivos.

```
\begin{array}{lll} \langle sentence \rangle & \rightarrow & \langle noun \; phrase \rangle \langle verb \; phrase \rangle \\ \langle noun \; phrase \rangle & \rightarrow & \langle article \rangle \langle noun \rangle \; | \; \langle noun \rangle \\ \langle verb \; phrase \rangle & \rightarrow & \langle verb \rangle \langle adjetive \rangle \\ \langle article \rangle & \rightarrow & \mathbf{the} \\ \langle noun \rangle & \rightarrow & \mathbf{boy} \; | \; \mathbf{girl} \\ \langle adjetive \rangle & \rightarrow & \mathbf{small} \; | \; \mathbf{big} \\ \langle verb \rangle & \rightarrow & \mathbf{is} \end{array}
```

Mais tarde, viu-se que Gramáticas são úteis para descrever Linguagens Artificiais, em especial, linguagens de programação.

Compiladores

Gramáticas e Compiladores:

• Regras de sintaxe (estrutura) em uma Linguagem de programação:

if	((Expr))						(St	mt)			
if		(Expr)	(Optr)	(Expr)							(St	mt)			
if	((Id)	(Optr)	(Expr))						(St	mt)			
if	(x	(Optr)	(Expr)							(St	mt)			
if		X	>	(Expr)							(St	mt)			
	(X	>	(Num)								mt)			
if		X	>	9								mt)			
if		x	>	9)	(StmtList)									
if	(K	>	9)	(StmtList)							Stmt)		
		K	>	9			(Str						Stmt)		
	(X	>	9		$\{ \overline{\langle Id \rangle} \}$		Expr)	;				Stmt)		
		X	>	9		{ x		Expr)					Stmt)		
	(x	>	9)	{ x	= (1	Num					Stmt)		
	(x	>	9)	{ x	=	0				(\$	Stmt)		
-		x	>	9		{ x	=	0		$\langle Id \rangle$	=		(Expr)		;
-	(×	>	9		{ x	=	0		у	=		(Expr)		
		×	>	9		{ x	=	0		у	=	(Expr)	(Optr)	(Expr)	
	(X	>	9		{ x	=	0		у	=	$\langle Id \rangle$	(Optr)	(Expr)	
	(X	>	9		{ x	=	0		у	=	у	(Optr)	(Expr)	
		X	>	9		(x	-	0	į	у	-	У	+	(Expr)	;
if	(X	>	9		(X	-	0		У	=	У	+	(Num)	1
if	(x	>	9)	{ x	-	0	1	v	-	y	+	1	٠.

Roteiro

- Gramáticas e Linguagens
 - Gramáticas
 - Formalização de uma Gramática
 - Hierarquia de Chomsky
- Que Gramáticas Regulares
 - Gramáticas Lineares
 - GLUD → Linguagem Regular
 - ullet Linguagem Regular o GLUD
- Referências

Definição

Uma gramática (irrestrita), denotada por G, é uma 4-tupla ordenada

$$G = (V, \Sigma, P, S)$$

tal que:

- V é um conjunto de símbolos não terminais (ou variáveis)
- Σ é um conjunto de símbolos terminais, com Σ disjunto de V
- $P: (V \cup \Sigma)^+ \to (V \cup \Sigma)^*$ é o conjunto de regras de produções, em que cada par (α, β) é representado por $\alpha \to \beta$
- $S \in V$ é denominado símbolo inicial.

10

Vamos entender mais tarde o por quê de (irrestrita).

Definição

Uma gramática (irrestrita), denotada por G, é uma 4-tupla ordenada

$$G = (V, \Sigma, P, S)$$

tal que:

- V é um conjunto de símbolos não terminais (ou variáveis)
- Σ é um conjunto de símbolos terminais, com Σ disjunto de V
- $P: (V \cup \Sigma)^+ \to (V \cup \Sigma)^*$ é o conjunto de regras de produções, em que cada par (α, β) é representado por $\alpha \to \beta$
- $S \in V$ é denominado símbolo inicial.

1

Vamos entender mais tarde o por quê de (irrestrita).

Regras de produção

Cada *regra de produção* (α, β) pode ser representada como:

$$\alpha \to \beta$$

Um grupo de regras de produção da forma

$$\begin{array}{c} \alpha \to \beta_1 \\ \alpha \to \beta_2 \\ \dots \\ \alpha \to \beta_n \end{array}$$

pode ser abreviado como:

$$\alpha \to \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n$$

Regras de produção

Exemplo:

$$G = (\{S, A\}, \{a, b\}, P, S)$$

• Regras de produção:

$$P: S \to \mathbf{a}S\mathbf{b}|A$$

 $A \to \mathcal{E}$

$$P = \{(S, aSb), (S, A), (A, \mathcal{E})\}.$$

Informalmente:

 A aplicação de uma regra de produção é denominada derivação de uma palavra.

Nota:

A aplicação sucessiva de regras de produção permite derivar as palavras da linguagem gerada pela gramática.

Informalmente:

 A aplicação de uma regra de produção é denominada derivação de uma palavra.

Nota:

A aplicação sucessiva de regras de produção permite derivar as palavras da linguagem gerada pela gramática.

Relação de derivação

Definição

Uma derivação é um par $\langle \alpha, \beta \rangle$ da Relação de Derivação denotada por $\alpha \Rightarrow \beta$ com domínio em $(V \cup \Sigma)^+$ e imagem $(V \cup \Sigma)^*$

Esta relação é definida indutivamente como

• Para toda produção na forma $S \to \beta$, (S símbolo inicial em G)

$$S \Rightarrow \beta$$

• Para todo par, $\alpha \Rightarrow \beta$, onde $\beta \Rightarrow \beta_u \beta_v \beta_w$ - se $\beta_v \rightarrow \beta_t$ é regra de P, então:

$$\beta \Rightarrow \beta_u \beta_t \beta_w$$

Em outras palavras, uma derivação é a substituição de uma subpalavra de acordo com uma regra de produção.

Relação de derivação

Definição

Uma derivação é um par $\langle \alpha, \beta \rangle$ da Relação de Derivação denotada por $\alpha \Rightarrow \beta$ com domínio em $(V \cup \Sigma)^+$ e imagem $(V \cup \Sigma)^*$

Esta relação é definida indutivamente como:

• Para toda produção na forma $S \to \beta$, (S símbolo inicial em G)

$$S \Rightarrow \beta$$

- Para todo par, $\alpha \Rightarrow \beta$, onde $\beta \Rightarrow \beta_u \beta_v \beta_w$ - se $\beta_v \to \beta_t$ é regra de P, então:
 - $\beta \Rightarrow \beta_{\mathbf{u}} \beta_{\mathbf{t}} \beta_{\mathbf{w}}$

Em outras palavras, uma derivação é a substituição de uma subpalavra de acordo com uma regra de produção.

Relação de derivação

Definição

Uma derivação é um par $\langle \alpha, \beta \rangle$ da Relação de Derivação denotada por $\alpha \Rightarrow \beta$ com domínio em $(V \cup \Sigma)^+$ e imagem $(V \cup \Sigma)^*$

Esta relação é definida indutivamente como:

• Para toda produção na forma $S \to \beta$, (S símbolo inicial em G)

$$S \Rightarrow \beta$$

- Para todo par, $\alpha \Rightarrow \beta$, onde $\beta \Rightarrow \beta_u \beta_v \beta_w$ - se $\beta_v \rightarrow \beta_t$ é regra de P, então:
 - $\beta \Rightarrow \beta_{\mathbf{u}} \beta_{\mathbf{t}} \beta_{\mathbf{w}}$

Em outras palavras, uma derivação é a substituição de uma subpalavra de acordo com uma regra de produção.

Definição

Dizemos que α deriva (diretamente) β , se β puder ser obtido substituindo alguma subcadeia de α , utilizando uma regra de P, denotado por:

$$\alpha \Rightarrow \beta$$
.

No exemplo anterior:

$$G = (\{S, A\}, \{a, b\}, P, S)$$
$$P : S \to \mathbf{a}S\mathbf{b}|A$$
$$A \to \mathcal{E}$$

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaaEbbb = aaabbb$

Definição

Dizemos que α deriva (diretamente) β , se β puder ser obtido substituindo alguma subcadeia de α , utilizando uma regra de P, denotado por:

$$\alpha \Rightarrow \beta$$
.

$$G = (\{S, A\}, \{a, b\}, P, S)$$
$$P: S \to \mathbf{a}S\mathbf{b}|A$$
$$A \to \mathcal{E}$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaaEbbb = aaabbb$$

Definição

Dizemos que α deriva (diretamente) β , se β puder ser obtido substituindo alguma subcadeia de α , utilizando uma regra de P, denotado por:

$$\alpha \Rightarrow \beta$$
.

$$G = (\{S, A\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}S\mathbf{b}|A$$

$$A \rightarrow \mathcal{E}$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaaEbbb = aaabbb$$

Definição

Dizemos que α deriva (diretamente) β , se β puder ser obtido substituindo alguma subcadeia de α , utilizando uma regra de P, denotado por:

$$\alpha \Rightarrow \beta$$
.

$$G = (\{S, A\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}S\mathbf{b}|A$$

$$A \rightarrow \mathcal{E}$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaaEbbb = aaabbb$$

Definição

Dizemos que α deriva (diretamente) β , se β puder ser obtido substituindo alguma subcadeia de α , utilizando uma regra de P, denotado por:

$$\alpha \Rightarrow \beta$$
.

$$G = (\{S, A\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}S\mathbf{b}|A$$

$$A \rightarrow \mathcal{E}$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaaEbbb = aaabbb$$

Derivação em múltiplos passos

Definição

Dizemos que α deriva em múltiplos passos β , se houver uma sequência de derivações tais que $\alpha \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \Rightarrow \beta$, denotado por:

$$\alpha \Rightarrow^* \beta$$
.

$$S\Rightarrow aSb\Rightarrow aaSbb\Rightarrow aaaSbbb\Rightarrow aaaEbbb=aaabbb$$
 $S\Rightarrow^*aaaEbbb=aaabbbb$

Passos de derivação

Os sucessivos passos de derivação podem ser definidos como:

- ⇒*: zero ou mais passos sucessivos de derivação;
- ⇒⁺: um ou mais passos sucessivos de derivação;
- \Rightarrow^i : exatos *i* passos de derivações sucessivas, $i \in \mathbb{N}$.

Definição

Seja $G = (V, \Sigma, P, S)$ uma gramática.

 A linguagem gerada por G, denotada por L(G), é composta por todas as palavras de <u>símbolos terminais</u> deriváveis a partir do <u>símbolo inicial S</u>, ou seja,

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^+ w \}$$

Exemplo:

$$G = (\{S, A\}, \{a, b\}, P, S)$$

• Regras de produção:

$$P: S \to \mathbf{a}S\mathbf{b}|A$$

 $A \to \mathcal{E}$

• Cadeias geradas:

$$S \Rightarrow^* ab$$

 $S \Rightarrow^* aabb$
 $S \Rightarrow^* aaabbb$
...
 $L(G) = \{a^n b^n \mid n \ge 0\}$

$$P = \{(S, aSb), (S, A), (A, \mathcal{E})\}.$$

Nota:

Dizemos que duas gramáticas G_1 e G_2 são equivalentes se:

$$L(G_1)=L(G_2)$$

Mais um exemplo:

$$G = (\{S\}, \{a, b\}, P, S)$$

• Regras de produção:

$$P: S \rightarrow \mathbf{a}S\mathbf{a} \mid \mathbf{b}S\mathbf{b} \mid \mathbf{a} \mid \mathbf{b} \mid \mathcal{E}$$

Cadeias geradas:

$$S \Rightarrow * a$$

 $S \Rightarrow * b$
 $S \Rightarrow * aa$
 $S \Rightarrow * bb$
 $S \Rightarrow * aba$
 $S \Rightarrow * ababab$
...

 $L(G) = \{ palindromos sobre o alfabeto terminal \{a, b\} \}$

Mais um exemplo:

$$G = (\{S\}, \{a, b\}, P, S)$$

Regras de produção:

$$P: S \rightarrow aSa \mid bSb \mid a \mid b \mid \mathcal{E}$$

Cadeias geradas:

$$S \Rightarrow^* a$$

 $S \Rightarrow^* b$
 $S \Rightarrow^* aa$
 $S \Rightarrow^* bb$
 $S \Rightarrow^* aba$
 $S \Rightarrow^* ababab$

 $L(G) = \{ palíndromos sobre o alfabeto terminal \{a, b\} \}$

Roteiro

- Gramáticas e Linguagens
 - Gramáticas
 - Formalização de uma Gramática
 - Hierarquia de Chomsky
- Qualification of the second of the second
 - Gramáticas Lineares
 - GLUD → Linguagem Regular
 - Linguagem Regular → GLUD
- 3 Referências

Hierarquia de Chomsky

Noam Chomsky, classificou gramáticas (e linguagens) a partir de restrições em suas regras de produção.

Figura: Noam Chomsky

Chomsky definiu estas classes como (potenciais) modelos para linguagens naturais.

Tipos de Gramáticas e Linguagens

Definição:

Uma gramática $G = (V, \Sigma, S, P)$ é do **Tipo 3** se toda produção de P for da forma:

$$A \rightarrow bC$$
 ou $A \rightarrow b$

com $A, C \in V$ e $b \in \Sigma$ ou $b = \mathcal{E}$.

Essas são as **Gramáticas Regulares (GR)**.

Definição:

Uma gramática $G = (V, \Sigma, S, P)$ é do **Tipo 3** se toda produção de P for da forma:

$$A \rightarrow bC$$
 ou $A \rightarrow b$

com $A, C \in V$ e $b \in \Sigma$ ou $b = \mathcal{E}$.

Essas são as Gramáticas Regulares (GR).

Definição:

Uma gramática $G = (V, \Sigma, S, P)$ é do **Tipo 2** se toda produção de P for da forma:

$$A \rightarrow \omega$$

com $A \in V$ e $\omega \in (\Sigma \cup V)^*$.

Estas são as Gramáticas Livres de Contexto (GLC)

Definição:

Uma gramática $G = (V, \Sigma, S, P)$ é do **Tipo 2** se toda produção de P for da forma:

$$A \rightarrow \omega$$

com $A \in V$ e $\omega \in (\Sigma \cup V)^*$.

Estas são as Gramáticas Livres de Contexto (GLC).

Definição:

Uma gramática $G = (V, \Sigma, S, P)$ é do **Tipo 1** se toda produção de P for da forma:

$$vAw \rightarrow vzw$$

com
$$A \in V$$
, $v, w \in (\Sigma \cup V)^*$ e $z \in (\Sigma \cup V)^+$ (isto é, $z \neq \mathcal{E}$).

Além disso, permite-se uma única regra $S o \mathcal{E}$ quando S não aparece do lado direito de nenhuma produção.

Estas são as Gramáticas Sensíveis de Contexto (GSC).

Definição:

Uma gramática $G = (V, \Sigma, S, P)$ é do **Tipo 1** se toda produção de P for da forma:

$$vAw \rightarrow vzw$$

com
$$A \in V$$
, $v, w \in (\Sigma \cup V)^*$ e $z \in (\Sigma \cup V)^+$ (isto é, $z \neq \mathcal{E}$).

Além disso, permite-se uma única regra $S \to \mathcal{E}$ quando S não aparece do lado direito de nenhuma produção.

Estas são as Gramáticas Sensíveis de Contexto (GSC)

Definição:

Uma gramática $G = (V, \Sigma, S, P)$ é do **Tipo 1** se toda produção de P for da forma:

$$vAw \rightarrow vzw$$

com
$$A \in V$$
, $v, w \in (\Sigma \cup V)^*$ e $z \in (\Sigma \cup V)^+$ (isto é, $z \neq \mathcal{E}$).

Além disso, permite-se uma única regra $S \to \mathcal{E}$ quando S não aparece do lado direito de nenhuma produção.

Estas são as Gramáticas Sensíveis de Contexto (GSC).

Definição:

Qualquer gramática $G = (V, \Sigma, S, P)$ é do **Tipo 0**.

Não existem restrições na forma das produções para as gramáticas desta classe.

Estas são as Gramáticas Recursivamente Enumeráveis

Definição:

Qualquer gramática $G = (V, \Sigma, S, P)$ é do **Tipo 0**.

Não existem restrições na forma das produções para as gramáticas desta classe.

Estas são as Gramáticas Recursivamente Enumeráveis.

Hierarquia de Chomsky

$$\mathcal{L}_3 \subsetneq \mathcal{L}_2 \subsetneq \mathcal{L}_1 \subsetneq \mathcal{L}_0$$

 $[\]mathcal{L}_i$ corresponde à linguagem de tipo i.

Hierarquia de Chomsky

Roteiro

- Gramáticas e Linguagens
 - Gramáticas
 - Formalização de uma Gramática
 - Hierarquia de Chomsky
- ② Gramáticas Regulares
 - Gramáticas Lineares
 - ullet GLUD ightarrow Linguagem Regular
 - $\bullet \ \mathsf{Linguagem} \ \mathsf{Regular} \to \mathsf{GLUD}$
- 3 Referências

Roteiro

- Gramáticas e Linguagens
 - Gramáticas
 - Formalização de uma Gramática
 - Hierarquia de Chomsky
- ② Gramáticas Regulares
 - Gramáticas Lineares
 - GLUD → Linguagem Regular
 - ullet Linguagem Regular o GLUD
- 3 Referências

Gramáticas Lineares

Vamos ver gramáticas do **Tipo 3** e mostrar que elas geram exatamente as Linguagens Regulares.

 Essas gramáticas também são conhecidas como Gramáticas Lineares.

Gramáticas Lineares

Vamos estudar 4 formas de gramáticas do **Tipo 3**:

- **9 GLD**: Gramática linear à direita
- Q GLE: Gramática linear à esquerda
- GLUD: Gramática linear unitária à direita
- GLUE: Gramática linear unitária à esquerda

Gramática Linear à Direita - GLD

Definição

 $G = (V, \Sigma, P, S)$ é uma **GLD** se todas as regras de produção forem da forma:

$$A \rightarrow \omega B$$
 ou $A \rightarrow \omega$

com $A, B \in V$ e $\omega \in \Sigma^*$.

$$G_1 = (\{S, A\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}A$$

$$A \rightarrow \mathbf{b}\mathbf{a}A \mid \mathcal{E}$$

Gramática Linear à Esquerda - GLE

Definição

 $G = (V, \Sigma, P, S)$ é uma **GLE** se todas as regras de produção forem da forma:

$$A \rightarrow B\omega$$
 ou $A \rightarrow \omega$

com $A, B \in V$ e $\omega \in \Sigma^*$.

$$G_2 = (\{S\}, \{a, b\}, P, S)$$
$$P: S \to S\mathbf{ba} \mid a$$

Gramática Linear Unitária à Direita - GLUD

Definição

 $G = (V, \Sigma, P, S)$ é um **GLUD** se todas as regras de produção forem da forma:

$$A \rightarrow wB$$
 ou $A \rightarrow w$

com $A, B \in V$ e $w \in (\Sigma \cup \{\mathcal{E}\})$, ou seja, $|w| \leq 1$.

$$G_3 = (\{S, A, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}A$$

$$A \rightarrow \mathbf{b}B \mid \mathcal{E}$$

$$B \rightarrow \mathbf{a}A$$

Gramática Linear Unitária à Esquerda - GLUE

Definição

 $G = (V, \Sigma, P, S)$ é um **GLUE** se todas as regras de produção são da forma:

$$A \rightarrow Bw$$
 ou $A \rightarrow w$

com $A, B \in V$ e $w \in (\Sigma \cup \{\mathcal{E}\})$, ou seja, $|w| \leq 1$.

$$G_4 = (\{S, A\}, \{a, b\}, P, S)$$

$$P: S \to A\mathbf{a} \mid a$$

$$A \to S\mathbf{b}$$

Equivalência das Gramáticas Lineares

Teorema da Equivalência das Gramáticas Lineares

Seja *L* uma linguagem. Então:

L é gerada por uma **GLD**, se e somente se,

L é gerada por uma **GLE**, se e somente se,

L é gerada por uma GLUD, se e somente se,

L é gerada por uma GLUE.

Ou seja, todas as Gramáticas Lineares são equivalentes.

A demonstração fica como exercício.

Equivalência das Gramáticas Lineares

Exemplos: A linguagem $a(ba)^*$ é gerada pelas seguintes gramáticas:

$$G_1 = (\{S, A\}, \{a, b\}, P, S)$$
 $G_2 = (\{S\}, \{a, b\}, P, S)$
 $P: S \to \mathbf{a}A$ $P: S \to S\mathbf{b}\mathbf{a}|a$

$$A \to \mathbf{b}\mathbf{a}A|\mathcal{E}$$
 $G_3 = (\{S, A, B\}, \{a, b\}, P, S)$ $G_4 = (\{S\}, \{a, b\}, P, S)$

 $P: S \rightarrow A\mathbf{a}|a$

 $A \rightarrow Sh$

 $P: S \rightarrow \mathbf{a}A$

 $A \rightarrow \mathbf{b}B|\mathcal{E}$

 $B \rightarrow aA$

Portanto, G_1 , G_2 , G_3 e G_4 são equivalentes.

Gramáticas Lineares

Importante:

- Se uma gramática tiver produções de ambos os tipos:
 - Linear à Direita ($A \rightarrow \omega B$); e
 - Linear à Esquerda ($A \rightarrow B\omega$).
- Então esta não é uma Gramática Linear.

Gramática Regular × Linguagem Regular

Os resultados a seguir mostram que a classe das <u>Gramáticas Lineares</u> denota exatamente a Classe das <u>Linguagens</u> Regulares.

Roteiro

- Gramáticas e Linguagens
 - Gramáticas
 - Formalização de uma Gramática
 - Hierarquia de Chomsky
- ② Gramáticas Regulares
 - Gramáticas Lineares
 - ullet GLUD ightarrow Linguagem Regular
 - Linguagem Regular → GLUD
- 3 Referências

Gramática Linear \rightarrow Linguagem Regular

Teorema

Se L é uma linguagem gerada por uma Gramática Linear, então L é uma Linguagem Regular.

Gramática Linear → Linguagem Regular

Ideia da prova:

- Para mostrar que uma linguagem é Regular, vamos construir um AF que a reconheça.
- Vamos construir um $AFN_{\mathcal{E}} N$, tal que L(N) = L(G) para qualquer **GLUD** G.

Gramática Linear \rightarrow Linguagem Regular

Ideia da prova:

- Para mostrar que uma linguagem é Regular, vamos construir um <u>AF</u> que a reconheça.
- Vamos construir um $AFN_{\varepsilon} N$, tal que L(N) = L(G) para qualquer GLUD G.

Gramática Linear → Linguagem Regular

Procedimento:

O AFN_ε descrito abaixo simula as derivações de uma GLUD
 G = (V, Σ, P, S).

$$N = (Q, \Sigma, \delta, q_0, F)$$

$$- Q = V \cup \{q_f\}$$

$$- q_0 = 5$$

$$-F = \{q_f\}$$

- δ é definida como:

Gramática Linear → Linguagem Regular

Procedimento:

O AFN_ε descrito abaixo simula as derivações de uma GLUD
 G = (V, Σ, P, S).

$$N = (Q, \Sigma, \delta, q_0, F)$$

$$- Q = V \cup \{q_f\}$$

$$- q_0 = 5$$

$$- F = \{q_f\}$$

 $-\delta$ é definida como:

Tipo de Produção	Transição
${\mathcal A} o {\mathcal E}$	$\delta(A, \mathcal{E}) = q_f$ $\delta(A, w) = q_f$ $\delta(A, \mathcal{E}) = B$ $\delta(A, w) = B$
A o w	$\delta(A, w) = q_f$
A o B	$\delta(A, \mathcal{E}) = B$
A o wB	$\delta(A, w) = B$

Exemplo

Exemplo: Considere a **GLUD** $G_3 = (\{S, A, B\}, \{a, b\}, P, S)$, com

$$P: \quad S \to \mathbf{a}A \\ A \to \mathbf{b}B \mid \mathcal{E} \\ B \to \mathbf{a}A$$

Vamos construir o $AFN_{\mathcal{E}} N_3$ que reconhece $L(G_3) = \mathbf{a}(\mathbf{ba})^*$

$$\textit{N} = (\textit{V} \cup \{\textit{q}_f\}, \Sigma, \delta, \textit{S}, \{\textit{q}_f\})$$

Tipo de Produção	Transição
$A o \mathcal{E}$	$\delta(A, \mathcal{E}) = q_f$
$A \rightarrow w$	$\delta(A, w) = q_f$
$A \rightarrow B$	$\delta(A, \mathcal{E}) = B$
$A \rightarrow wB$	$\delta(A, w) = B$

Exemplo

Exemplo: Considere a **GLUD** $G_3 = (\{S, A, B\}, \{a, b\}, P, S)$, com

$$P: \quad S \to \mathbf{a}A \\ A \to \mathbf{b}B \mid \mathcal{E} \\ B \to \mathbf{a}A$$

Vamos construir o $AFN_{\mathcal{E}} N_3$ que reconhece $L(G_3) = \mathbf{a}(\mathbf{ba})^*$

Tipo de Produção	Transição
$A o \mathcal{E}$	$\delta(A, \mathcal{E}) = q_f$
$A \rightarrow w$	$\delta(A, w) = q_f$
$A \rightarrow B$	$\delta(A, \mathcal{E}) = B$
$A \rightarrow wB$	$\delta(A, w) = B$

 $N = (V \cup \{q_f\}, \Sigma, \delta, S, \{q_f\})$

Gramática Linear o Linguagem Regular

Prova de corretude:

Fica como exercício mostrar que L(N) = L(G).

Roteiro

- Gramáticas e Linguagens
 - Gramáticas
 - Formalização de uma Gramática
 - Hierarquia de Chomsky
- ② Gramáticas Regulares
 - Gramáticas Lineares
 - GLUD → Linguagem Regular
 - $\bullet \ \, \mathsf{Linguagem} \, \, \mathsf{Regular} \to \mathsf{GLUD}$
- 3 Referências

${\sf Linguagem\ Regular} \to {\sf Gram\'atica\ Linear}$

Teorema

Se L é uma Linguagem Regular, então existe uma Gramática Linear que gera L.

${\sf Linguagem\ Regular} \to {\sf Gram\'atica\ Linear}$

Ideia da prova:

- Se L é uma <u>Linguagem Regular</u>, então existe um AFD que reconhece L.
- Vamos construir uma <u>GLUD</u> G a partir de AFD M, tal que L(M) = L(G)

${\sf Linguagem\ Regular} \to {\sf Gram\'atica\ Linear}$

Ideia da prova:

- Se L é uma <u>Linguagem Regular</u>, então existe um AFD que reconhece L.
- Vamos construir uma GLUD G a partir de AFD M, tal que L(M) = L(G)

Linguagem Regular o Gramática Linear

Procedimento:

 As derivações da <u>GLUD</u> descrita abaixo simulam a função de transição estendida do AFD M.

$$\underline{G = (V, \Sigma, P, S)}$$

$$- V = \mathbf{Q} \cup \{S\}$$

 $- \forall q_f \in F$, ou seja, todos os estados de aceitação

Transição	Tipo de Produção
-	$\mathcal{S} ightarrow oldsymbol{q}_0$

Linguagem Regular o Gramática Linear

Procedimento:

 As derivações da <u>GLUD</u> descrita abaixo simulam a função de transição estendida do AFD M.

$$G = (V, \Sigma, P, S)$$

- $-V=Q\cup\{S\}$
- $\forall q_f$ ∈ F, ou seja, todos os estados de aceitação

Transição	Tipo de Produção
-	$S o q_0$
-	$q_f \to \mathcal{E}$

Linguagem Regular o Gramática Linear

Procedimento:

 As derivações da <u>GLUD</u> descrita abaixo simulam a função de transição estendida do AFD M.

$$\underline{G = (V, \Sigma, P, S)}$$

- $V = \mathbf{Q} \cup \{S\}$
- $\forall q_f$ ∈ F, ou seja, todos os estados de aceitação

Transição	Tipo de Produção
-	$\mathcal{S} ightarrow oldsymbol{q}_0$
-	$q_f o \mathcal{E}$
$\delta(q_i, a) = q_j$	$q_i ightarrow aq_j$

Exemplo: Considere a seguinte Linguagem Regular $L_5 = \mathbf{a}^* + \mathbf{a}^* \mathbf{b}^+ + \mathbf{a}^* \mathbf{b}^+ \mathbf{c}^+$, reconhecida pelo AFD M_5 abaixo:

$$G = (Q \cup \{S\}, \Sigma, P, S)$$

$$G_5 = (\{S, q_0, q_1, q_2\}, \{a, b, c\}, P, S)$$

$$\begin{array}{ll} P: & S \rightarrow q_0 \\ & q_0 \rightarrow \mathcal{E} \\ & q_1 \rightarrow \mathcal{E} \\ & q_2 \rightarrow \mathcal{E} \end{array} \quad \begin{array}{ll} q_0 \rightarrow \mathbf{a}q_0 \mid \mathbf{b}q_1 \\ & q_1 \rightarrow \mathbf{b}q_1 \mid \mathbf{c}q_2 \\ & q_2 \rightarrow \mathbf{c}q_2 \end{array}$$

Exemplo: Considere a seguinte Linguagem Regular $L_5 = \mathbf{a}^* + \mathbf{a}^*\mathbf{b}^+ + \mathbf{a}^*\mathbf{b}^+\mathbf{c}^+$, reconhecida pelo AFD M_5 abaixo:

$$\underline{G = (Q \cup \{S\}, \Sigma, P, S)}$$

$$G_5 = (\{S, q_0, q_1, q_2\}, \{a, b, c\}, P, S)$$

Transição	Tipo de Produção
-	$S o q_0$
-	$q_f o \mathcal{E}$
$\delta(\mathbf{q}_i, \mathbf{a}) = \mathbf{q}_j$	$q_i ightarrow aq_j$

$$\begin{array}{cccc} P: & S \rightarrow q_0 \\ & q_0 \rightarrow \mathcal{E} & q_0 \rightarrow \mathbf{a}q_0 \mid \mathbf{b}q_1 \\ & q_1 \rightarrow \mathcal{E} & q_1 \rightarrow \mathbf{b}q_1 \mid \mathbf{c}q_2 \\ & q_2 \rightarrow \mathcal{E} & q_2 \rightarrow \mathbf{c}q_2 \end{array}$$

Exemplo: Considere a seguinte Linguagem Regular $L_5 = \mathbf{a}^* + \mathbf{a}^*\mathbf{b}^+ + \mathbf{a}^*\mathbf{b}^+\mathbf{c}^+$, reconhecida pelo AFD M_5 abaixo:

$$\underline{G = (Q \cup \{S\}, \Sigma, P, S)}$$

TransiçãoTipo de Produção-
$$S \rightarrow q_0$$
- $q_f \rightarrow \mathcal{E}$ $\delta(q_i, a) = q_i$ $q_i \rightarrow aq_i$

$$G_5 = (\{S, q_0, q_1, q_2\}, \{a, b, c\}, P, S)$$

$$\begin{array}{cccc} P: & S \rightarrow \mathbf{q_0} \\ & q_0 \rightarrow \mathcal{E} & q_0 \rightarrow aq_0 \mid \mathbf{b}q_1 \\ & q_1 \rightarrow \mathcal{E} & q_1 \rightarrow \mathbf{b}q_1 \mid \mathbf{c}q_2 \\ & q_2 \rightarrow \mathcal{E} & q_2 \rightarrow \mathbf{c}q_2 \end{array}$$

Exemplo: Considere a seguinte Linguagem Regular $L_5 = \mathbf{a}^* + \mathbf{a}^*\mathbf{b}^+ + \mathbf{a}^*\mathbf{b}^+\mathbf{c}^+$, reconhecida pelo AFD M_5 abaixo:

$$\underline{G = (Q \cup \{S\}, \Sigma, P, S)}$$

$$G_5 = (\{S, q_0, q_1, q_2\}, \{a, b, c\}, P, S)$$

$$P: \quad S \to q_0 \\ q_0 \to \mathcal{E} \qquad q_0 \to aq_0 \mid bq_1 \\ q_1 \to \mathcal{E} \qquad q_1 \to bq_1 \mid cq_2 \\ q_2 \to \mathcal{E} \qquad q_2 \to cq_2$$

Exemplo: Considere a seguinte Linguagem Regular $L_5 = \mathbf{a}^* + \mathbf{a}^*\mathbf{b}^+ + \mathbf{a}^*\mathbf{b}^+\mathbf{c}^+$, reconhecida pelo AFD M_5 abaixo:

$$\underline{G = (Q \cup \{S\}, \Sigma, P, S)}$$

$$G_5 = (\{S, q_0, q_1, q_2\}, \{a, b, c\}, P, S)$$

$$P: \quad \mathcal{S} o q_0 \ q_0 o \mathcal{E} \ q_0 o \mathbf{a} q_0 \mid \mathbf{b} q_1 \ q_1 o \mathcal{E} \ q_2 o \mathcal{E}$$

Exemplo: Considere a seguinte Linguagem Regular $L_5 = \mathbf{a}^* + \mathbf{a}^*\mathbf{b}^+ + \mathbf{a}^*\mathbf{b}^+\mathbf{c}^+$, reconhecida pelo AFD M_5 abaixo:

$$\underline{G = (Q \cup \{S\}, \Sigma, P, S)}$$

$$\begin{array}{c|c} \textbf{Transição} & \textbf{Tipo de Produção} \\ \hline \begin{matrix} - & S \rightarrow q_0 \\ - & q_f \rightarrow \mathcal{E} \end{matrix} \\ \delta(q_i,a) = q_j & q_i \rightarrow aq_j \end{matrix}$$

$$G_5 = (\{S, q_0, q_1, q_2\}, \{a, b, c\}, P, S)$$

$$P: \quad \mathcal{S} o q_0 \ q_0 o \mathcal{E} \ q_0 o \mathbf{a}q_0 \mid \mathbf{b}q_1 \ q_1 o \mathcal{E} \ q_2 o \mathcal{E}$$

Exemplo: Considere a seguinte Linguagem Regular $L_5 = \mathbf{a}^* + \mathbf{a}^*\mathbf{b}^+ + \mathbf{a}^*\mathbf{b}^+\mathbf{c}^+$, reconhecida pelo AFD M_5 abaixo:

$$\underline{G = (Q \cup \{S\}, \Sigma, P, S)}$$

$$\begin{array}{c|c} \textbf{Transição} & \textbf{Tipo de Produção} \\ \hline \begin{matrix} - & S \rightarrow q_0 \\ & - & q_f \rightarrow \mathcal{E} \end{matrix} \\ \delta(q_i,a) = q_j & q_i \rightarrow aq_j \end{matrix}$$

$$G_5 = (\{S, q_0, q_1, q_2\}, \{a, b, c\}, P, S)$$

$$\begin{array}{ccc} P: & S \rightarrow q_0 \\ & q_0 \rightarrow \mathcal{E} & q_0 \rightarrow \mathbf{a}q_0 \mid \mathbf{b}q_1 \\ & q_1 \rightarrow \mathcal{E} & q_1 \rightarrow \mathbf{b}q_1 \mid \mathbf{c}q_2 \\ & q_2 \rightarrow \mathcal{E} & q_2 \rightarrow \mathbf{c}q_2 \end{array}$$

$$L(G_5) = L(M_5) = \mathbf{a}^* + \mathbf{a}^* \mathbf{b}^+ + \mathbf{a}^* \mathbf{b}^+ \mathbf{c}^+:$$

$$\xrightarrow{\mathbf{q}_0} \xrightarrow{\mathbf{b}} \xrightarrow{\mathbf{q}_1} \xrightarrow{\mathbf{c}} \xrightarrow{\mathbf{q}_2}$$

$$G_5 = (\{S, q_0, q_1, q_2\}, \{a, b, c\}, P, S)$$
 $P: S \to q_0$
 $q_0 \to \mathbf{a}q_0 \mid \mathbf{b}q_1 \mid \mathcal{E}$
 $q_1 \to \mathbf{b}q_1 \mid \mathbf{c}q_2 \mid \mathcal{E}$
 $q_2 \to \mathbf{c}q_2 \mid \mathcal{E}$

${\sf Linguagem\ Regular} \to {\sf Gram\'atica\ Linear}$

Prova de corretude:

Fica como exercício mostrar que L(G) = L(M).

Gramática Linear × Linguagem Regular

Em resumo:

- A linguagem gerada por qualquer Gramática Linear é uma Linguagem Regular.
- Toda Linguagem Regular pode ser descrita por uma Gramática Linear.

Definicão

Uma Gramática Linear é chamada de Gramática Regular (GR)

Gramática Linear \times Linguagem Regular

Em resumo:

- A linguagem gerada por qualquer Gramática Linear é uma Linguagem Regular.
- Toda Linguagem Regular pode ser descrita por uma Gramática Linear.

Definição

Uma Gramática Linear é chamada de Gramática Regular (GR).

Formalismos para as Linguagens Regulares

Temos agora mais um formalismo para as Linguagens Regulares:

Todos eles s\u00e3o equivalentes

Hierarquia de Chomsky

$\mathcal{L}_3 \subsetneq \mathcal{L}_2$

Na próxima aula vamos ver as linguagens do Tipo 2.

Fim

Dúvidas?

Roteiro

- Gramáticas e Linguagens
 - Gramáticas
 - Formalização de uma Gramática
 - Hierarquia de Chomsky
- 2 Gramáticas Regulares
 - Gramáticas Lineares
 - GLUD → Linguagem Regular
 - ullet Linguagem Regular o GLUD
- Referências

Referências

Referências:

- "Introdução à Teoria da Computação" de M. Sipser, 2007.
- ² "Linguagens formais e autômatos" de Paulo F. B. Menezes, 2002.
- Materiais adaptados dos slides do Prof. Evandro E. S. Ruiz, da USP.