

MICROCOPY RESOLUTION TEST CHART

Contract N00014-84-K-0548

Task No. NR372-160

TECHNICAL REPORT NO. 5

Discontinuity of the exchange correlation potential from a density functional view point

by

W. Kohn

Department of Physics
University of California, Santa Barbara
Santa Barbara, CA 93106

The calculation of energy gaps of insulators is an important theory objective. A commonly used method is density functional theory. Recently it was shown that an unexpected difficulty (discontinuity of the exchange correlation potential) arises. This paper makes a contribution towards the understanding of this problem.

February 1986

2110

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

96 2 18 147

OFFICE OF NAVAL RESEARCH

Contract N00014-84-K-0548

Task No. NR372-160

TECHNICAL REPORT NO. 5

Discontinuity of the exchange correlation potential from a density functional view point

by

W. Kohn

Prepared for publication

in

Physical Review B, Rapid Publications (1986)

Department of Physics
University of California, Santa Barbara
Santa Barbara, CA 93106

Approved for Public Release.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Distribution of this Document is Unlimited

February 1986

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 2. GOVT ACCESSION NO.	J. RECIPIENT'S CATALOG NUMBER	
TECHNICAL REPORT 5	N00014-01	
4. TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED	
Discontinuity of the exchange correlation	TECHNICAL REPORT	
potential from a density functional view	6/85-12/85	
point.	6. PERFORMING ORG. REPORT NUMBER	
7. ÄÜTHÖR(a)	S. CONTRACT OR GRANT NUMBER(S)	
W. Kohn	N00014-84-K-0548	
5. PERFORMING ORGANIZATION NAME AND ADDRESS University of California	10. PROGRAM FLEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Physics Department, Santa Barbara, CA 93106 See:Contracts & Grants-Room 3227 Cheadle	TASK NO. NR372-160	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
Office of Research	February 10, 1986	
Electronics & Solid State Physics Program	13. HUMBER OF PAGES	
800 N. Quincy, Arlington, VA 22217	4	
14. MONITORING AGENCY HAME & ADDRESS(II dillerent from Controlling Office)	15. SECURITY CLASS. (of this report)	
Office of Naval Research Detachment	UNCLASSIFIED	
1030 East Green Street		
Pasadena, CA 91106	15. DECLASSIFICATION/DOWNGRADING	
IS. DISTRIBUTION STATEMENT (of this Report)		

[&]quot;Approved for Public Release: Distribution Unlimited"

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 29, If different from Report)

Reports Distribution List for ONR Physics Division Office -Unclassified Contracts

IS. SUPPLEMENTARY NOTES

Accepted for publication in Physical Review B, Rapid Publications (1986)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Exchange correlation potential; density functional theory; insulators;

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

An expression for the discontinuity of the exchange correlation potential v_{xc} of an insulator is derived entirely within the framework of density functional theory. The discontinuity is expressed in terms of changes of the exchange correlation energy E_{xc} , of a perfect N-particle insulator

when (a) a conduction electron is introduced (b) a valence electron is

TIGH OF THIS PAGE (When Date Entered)

removed and (c) an (without changing N sum of the density	external pertur) such that the changes in (a)	rbation is ap e density cha and (b).	plied to the per nge is equal to	fect insulator minus the
	·		٠.	
·				
			•	
	•			;
				÷
		·		
				;
5, N 0102- LF: 014, 4401				

..... De THIS PAGE(When Date Enforced)

Discontinuity of the Exchange Correlation Potential from a

Density Functional View Point

W. Kohn

Department of Physics, University of California, Santa Barbara, California 93106, USA

and

C. b. Xc

Max-Planck-Institut für Festkörperforschung
Heisenbergstraße 1, 7000 Stuttgart 80, FRG

from cover

Abstract

An expression for the discontinuity of the exchange correlation potential $\mathbf{v}_{\mathbf{xc}}$ of an insulator is derived entirely within the framework of density functional theory. The discontinuity is expressed in terms of changes of the exchange correlation energy, $\mathbf{E}_{\mathbf{xc}}$, of a perfect N-particle insulator when (a) a conduction electron is introduced (b) a valence electron is removed and (c) the external perturbation is applied to the perfect insulator (without changing N) such that the density change is equal to minus the sum of the density changes in (a) and (b).

Accesion For				
NTIS				
Unannounced Justification				
By Diet ibution/				
Availability Codes				
Dist	Avail and/or Special			
A-1				

Since the work of Perdew and Levy¹ and of Sham and Schlüter² it has been known that the exchange correlation potential $v_{xc}(r)$ of the Kohn-Sham (KS) equations³ has an r-independent discontinuity Δ , as one crosses the energy gap. This discontinuity has been studied with the aid of Green's function theory by Wang and Pickett*, Sham and coworkers² 5 6.7 and Hanke³. In this note we discuss the discontinuity entirely from a density functional view point.

We shall consider an insulator at temperature $T=0^+K$ in three physical ground-states: 1. with N electrons, without conduction electrons or holes. We denote the corresponding density distributions by $n_{\circ}(r)$ with

$$\int n_o(r) dr = N (1)$$

2. with N+v electrons; and 3. with N+v electrons, with v<<N. 9 We write the densities in states 2. and 3. as

$$n^{+}(r) \equiv n_{0}(r) + v n^{c}(r); \int n^{c}(r) dr = 1.$$

$$(2)$$
 $n^{-}(r) \equiv n_{0}(r) - v n^{c}(r); \int n^{c}(r) dr = 1.$

We take (kT) much smaller than any physical energy but larger than the energy spacing between successive single particle excitations. The system is in contact with a particle bath, allowing continuous changes of the total particle number.

By its definition, the energy gap can be expressed in terms a ground state energies,

$$E_g \equiv \frac{1}{v} [(E_{N+v} - E_N) - (E_N - E_{N-v})].$$
 (3)

Each of these energy is given, in the KS theory³, by the expression

$$E_{V}[n(r)] = T_{S}[n(r)] + \int V(r)n(r)dr + \frac{1}{2} \int \frac{n(r)n(r')}{i^{r-r'}} dr dr' + E_{VC}[n(r)], \qquad (4)$$

where v(r) is the (fixed) external potential and the other symbols have their usual meanings. As is well-known, this expression can be transformed into

$$E_{v}[n(r)] = \sum_{i} [n(r)] - \sum_{i} \int \frac{n(r)n(r')}{r-r'!} dr dr' + E_{xe}[n(r)]$$

$$-\int v_{xe}(r';[n(r)])n(r')dr'$$
(5)

where i runs over all occupied single particle levels associated with the KS equation

$$\{-\frac{1}{2} \nabla^2 + v(r) + \int \frac{n(r^*)}{|r-r^*|} dr^* + v_{xc}(r; n[r^*])\} \psi_i(r) = \varepsilon_i \psi_i(r), (6)$$

and

$$v_{xc}(r;[n(r')]) \equiv \delta E_{xc}[n(r')]/\delta n(r). \tag{7}$$

We have emphasized in our notation that $v_{\stackrel{}{xc}}$ and ϵ_i are functionals of n(r') .

The difference $E_{N+\nu}^{-}-E_{N}^{-}$ in (3) can now be calculated from (5), to first order in ν :

$$E_{N+v} = E_{N} = \sum_{N+1}^{N+v} \epsilon_{i}^{c} + \sum_{1}^{N} \delta \epsilon_{i}^{c} - v \int \frac{n^{c}(r)n_{o}(r')}{r-r'} dr dr' + \delta E_{xc}[n(r)] - v \int v_{xc}(r';[n_{o}(r)]n^{c}(r')dr' - \int \delta v_{xc}(r';[n(r)])n_{o}(r') dr'$$

$$= v \epsilon_{N+1}^{c}$$
(8)

Here ε_{N+1}^c is the lowest conduction band energy of the KS equation for the N+v particle system (v+0), calculated with the exchange correlation potential $v_{xc}^c(r)$ appropriate for this system:

$$v_{xc}^{c}(r) \equiv \lim_{v \to 0} \frac{\delta E_{xc} \left[n_{o}(r) + v n^{c}(r) \right]}{\delta n(r)}$$
(9)

The simplification in the last step of Eq. (8) is due to the cancellation of the $2^{\rm nd}$, $3^{\rm rd}$ and last terms, and of the $4^{\rm th}$ and $5^{\rm th}$ terms. Similarly

$$\Xi_{N}^{-}\Xi_{N-V} = v \varepsilon_{N-1}^{V} , \qquad (10)$$

where ϵ_{N-1}^{v} is computed with

$$v_{xc}^{V}(r) \equiv \lim_{v \to 0} \frac{\delta E_{xc} \left[n_{o}(r) + v n^{V}(r) \right]}{\delta n(r)} . \tag{11}$$

Thus the gap is given by

$$E_{g} = \epsilon_{N+1}^{c} - \epsilon_{N-1}^{v} . \qquad (12)$$

The arguments of refs. (1) and (2) show, and we shall verify, that

$$v_{xc}^{c}(r) - v_{xc}^{v}(r) \equiv \Delta, \qquad (13)$$

a constant independent of r. Therefore (12) can also be written as

$$E_{g} = \varepsilon_{N+1}^{V} - \varepsilon_{N-1}^{V} + \Delta$$

$$= \varepsilon_{N+1}^{C} - \varepsilon_{N-1}^{C} + \Delta = \varepsilon_{g} + \Delta , \qquad (14)$$

where ϵ_g is the non-physical gap of the KS single particle insulator, computed with either v_{xc}^V or v_{xc}^C .

We now turn to a consideration of v_{xc}^c , Eq. (9). We introduce

$$\delta n_r$$
, $(r) = Y \delta(r+r)$, $\int \delta(r-r) dr = 1$ (15)

where Y << 1 and δ is a normalized, regularized δ -function.

Then

$$v_{xc}^{c}(r') = \lim_{\nu \to 0} \lim_{\gamma \to 0} \frac{1}{\gamma} \left\{ E_{xc} \left[n_{o}(r) + \nu n^{c}(r) + \gamma \delta(r - r') \right] - E_{xc} \left[n^{o}(r) + \kappa n^{c}(r) \right] \right\}$$
(16)

It is now useful to decompose $\delta(r-r')$ into two parts: $n^{c}(r)$, which increases the number of electrons by 1, and a remainder, m_{r}^{c} , (r), which leaves the number of electrons unchanged at N.

$$\delta(r-r') = n^{c}(r) + m_{r'}^{c}(r),$$
 (17)

where, evidently in view of Eqs. (2) and (15),

$$\int m_{r'}^{c}(r)dr = \int [\delta(r-r') - n^{c}(r)]dr = 0.$$
 (18)

Substituting (17) into (16) gives two terms,

$$v_{xc}^{c}(r') = \mu_{xc}^{c} + w_{xc}^{c}(r')$$
, (19)

where

$$\mu_{xe}^{c} \equiv E_{xe}[n_{o}(r) + n^{c}(r)] - E_{xe}[n_{o}(r)]$$
(20)

$$\equiv \epsilon_{xc,N+1} - \epsilon_{xc,N}$$

and

$$w_{xe}^{c}(r') = \lim_{v \to 0} \lim_{\gamma \to 0} \frac{1}{\gamma} \{ E_{xe}[n_{o}(r) + vn^{c}(r) + \gamma m_{r}^{c}(r)] - E_{xe}[n_{o}(r) + vn^{c}(r)] \}.$$

$$+ vn^{c}(r) \}.$$
(21)

The two density arguments in Eq. (21) differ by Υ m_r^c , (r), defined by Eq. (17), and corresponding to $\delta N=0$. This density difference must therefore be understood as being brought about by the action of a small external perturbing potential, Υ u_r , (r) modifying the (N+v) particle ground state. In the limit $v \neq 0$ the role of the conduction electrons in (21) becomes negligible, so that

$$w_{xe}^{c}(r') = \lim_{\gamma \to 0} \frac{1}{\gamma} \{ E_{xe}[n_{o}(r) + \gamma m_{r'}^{c}(r)] + E_{xe}[n_{o}(r)] \}.$$
 (22)

In a completely analogous manner we obtain the following results for $v\frac{v}{xc}(\textbf{r}^{\, t})$:

$$v^{V}_{2}(r^{\dagger}) = \mu^{V}_{XC} + \omega^{V}_{XC}(r^{\dagger})$$
, (23)

where

$$u_{xe}^{V} = E_{xe}[n_{o}(r)] - E_{xe}[n_{o}(r) - n^{V}(r)],$$

$$\equiv E_{xe,N} - E_{xe,N-1},$$
(24)

and

$$w_{xc}^{V}(r') = \lim_{\gamma \to 0} \frac{1}{\gamma} \left[\varepsilon_{xc} \left[n_{o}(r) \right] - \varepsilon_{xc} \left[n_{o}(r) - \gamma m_{r}^{V}(r) \right] \right]$$
(25)

with

$$m_{r'}^{\mathbf{V}}(\mathbf{r}) \equiv \delta(\mathbf{r} - \mathbf{r'}) - n^{\mathbf{V}}(\mathbf{r}). \tag{26}$$

From the expressions (19), (20), (22) and (23), (24), (25) we can calculate the difference, v_{xc}^c , v_{xc}^v . Note that the two particle number conserving changes, (22) and (25), can be combined

$$\{E_{xc}[n_{o}(r)+Ym_{r}^{c},(r)]-E_{xc}[n_{o}(r)]-\{E_{xc}[n_{o}(r)]\}$$

$$-E_{xc}[n_o(r)-\gamma m_r^v,(r)]$$

$$= E_{xc}[n_0(r)+\gamma(m_{r'}^c(r)-m_{r'}^v(r))]-E_{xc}[n_0(r)]$$

$$= E_{xc}[n_o(r) = Y(n^c(r) = n^v(r)] - E_{xc}[n_o(r)], \qquad (27)$$

independent of r'. Thus we obtain for the discontinuity of v xc'

$$\Delta \equiv v_{xc}^{c}(r') = v_{xc}^{v}(r') = (\mu_{xc}^{c} - \mu_{xc}^{v}) + (\mu_{xc}^{c}(r') - \mu_{xc}^{v}(r'))$$

$$= \{E_{xc}[n_{o}(r) + n^{c}(r)] - E_{xc}[n_{o}(r)]\} + \{E_{xc}[n_{o}(r) - n^{v}(r)] - E_{xc}]\}$$

$$+ \{E_{xc}[n_{o}(r) - (n^{c}(r) - n^{v}(r))] - E_{xc}[n_{o}(r)\}. \tag{28}$$

These three terms represents the changes in the exchange-correlation energy of the N-particle insulator when (a) a conduction electron is added; (b) a valence electron is removed; and (c) an external potential is applied which changes the density of the N-particle insulator by $-(n^c(r)+n^v(r))$ without introducing either electrons or holes. Note that if $E_{xc}[n(r)]$ had a regular dependence on n(r) near $n(r)=n_o(r)$, then the three terms could be expanded in the small quantities $n^c(r)$ and $n^v(r)$ resulting in

$$\Delta_{\text{reg}} = \frac{\sigma E_{\text{xc}} \left[n(r^{\dagger}) \right]}{\sigma n(r)} \Big|_{n(r)=n_{\text{v}}} \times \left[n^{\text{c}}(r)-n^{\text{v}}(r)-(n^{\text{c}}(r)n^{\text{v}}(r)) \right] dr = 0$$
(29)

Thus any approximate theory which uses a regular expression for $E_{\rm xc}^-$ as, for example, the local density approximation - must yield a vanishing Δ . The correct formal expression (28) makes it clear however, on physical grounds, why Δ does not vanish: the effect on $E_{\rm xc}^-$ of modifying the external potential of the insulator so that its density changes by

 $-(n^{\mathbf{C}}(\mathbf{r})-n^{\mathbf{V}}(\mathbf{r}))$ does not cancel the sum of the physically totally different changes of adding an electron with density $n^{\mathbf{C}}(\mathbf{r})$ and of removing an electron with density $n^{\mathbf{V}}(\mathbf{r})$. The correct $\mathbf{E}_{\mathbf{XC}}[n(\mathbf{r})]$ will give the correct Δ by Eq.(28). It remains a challenge to find useful non-regular expressions for $\mathbf{E}_{\mathbf{XC}}$ which will yield accurate values for Δ .

The support of the National Science Foundation (Grant No. DMR 83-10117) and of the Office of Naval Research (Contract No. N00014-84-K- 0548) are gratefully acknowledged. It is a pleasure to thank Professor H. Bilz for hospitality at the Max Planck Institute for Solid State Research in Stuttgart where this work was completed. Finally I would like to express my special thanks to Dr. W. Hanke for extensive and invaluable discussions.

References

- 1. J.P. Perdew and M. Levy, Phys. Rev. Lett. <u>51</u>, 1884 (1983)
- 2. L.J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983)
- 3. W. Kohn and L.J. Sham, Phys. Rev. 140, A 1133 (1965)
- 4. C.S. Wang and W.E. Pickett, Phys. Rev. Lett. <u>51</u>, 597 (1983)
- 5. L.J. Sham, Phys. Rev. B <u>32</u>, 3876 (1985)
- 6. L.J. Sham and M. Schlüter, Phys. Rev. B 32, 3883 (1985)
- 7. M. Lamoo et al., Phys. Rev. B <u>32</u>, 3890 (1985)
- 8. W. Hanke et al., in <u>Electronic Structure</u>, <u>Dynamics and Quantum Structural Properties of Condensed Matter</u>, edited by J.T. Devreese and P. Van Camp (Plenum Press, New York, 1985), p. 113
- 9. Effects due to the long range Coulomb repulsion of the ν conduction electrons (or valence holes) are of second order in ν and need not concern us here.

END

FILMED

3-86

DTIC