

MACHINE LEARNING

CONTINUOUS ASSESSMENT

Module Assessments

- Python Machine Learning Continuous Assessment
 - Part 1 Regression, Classification, Decision **Trees**
 - Part 2 Neural Network

Part 1's Requirements (1)

- Select datasets from the followings
 - https://data.gov.sg/
 - https://archive.ics.uci.edu/ml/index.php
 - https://www.kaggle.com/datasets
 - The source dataset must contain a minimum of 300 rows of data

Part 1's Requirements (2)

- Develop machine learning models (total 3 sets of models)
 - a) Classification techniques

Choose three of the followings and do a comparison of the outcome:

- Logistic Regression
- K-NN Classification
- **Decision Trees**
- b) Perform data or feature engineering to evaluate the impact on the outcome

Part 1's Deliverables

- Dataset
- Python Codes
- Write-up
 - Problem statement
 - Simple Data Dictionary of training model (only the essential columns involved in training), including the source of dataset
 - Duration of <u>training</u> and <u>prediction</u> for each model
 - Sharing of the process, for example,
 - impact of data engineering, feature engineering on the outcome
 - Conclusion
 - What you have learnt

Part 2's Requirements (1)

- A **Fruits** dataset will be provided to you, and it consists of images of (1) apples, (2) oranges, (3) bananas and (4) a mix of fruits
- Implement a CNN to recognize the 4 classes. Use the images in the "train" folder to train your image classifier
- Test the accuracy of your image classifier using images from the "test" folder
- Document what you did to increase the accuracy of your image classifier (e.g. image augmentation)
- Use Matplotlib to plot the loss and accuracy of your training (pick any of your better runs)
- Specify the best/final accuracy of your image classifier on the test data

- Python code for your CNN implementation
- A short and to-the-point report (not more than 2 pages)
 - Document the improvements you made to your CNN model that increases its accuracy
 - Plot(s) to show the loss and accuracy of your classifier on the training data (pick any of your better runs)
 - State the best accuracy of your classifier on the test data
 - A reflection of lessons learnt in building your network

- Uploading of deliverables
 - Deliverables 17th Nov (Tue), by 11pm

- Peer Evaluation
 - Scores will be adjusted according to peer evaluation