Exercice A – UN CAPTEUR CAPACITIF (5 points)

Étude théorique de la charge d'un dipôle RC

- **1.** D'après la loi des mailles : $E u_R u_C = 0$ ou $u_R + u_C = E$
- 2. On flèche l'intensité sur le schéma du circuit ; d'après la convention générateur elle est orientée dans le sens de la flèche de tension E. u_R

D'après la loi d'Ohm : $u_R = R.i$

3. La charge portée par l'armature positive du condensateur vérifie : $q = C.u_C$.

L'intensité du courant étant un débit de charges électrique : $i = \frac{dq}{dt}$

Ainsi :
$$i = \frac{dq}{dt} = \frac{d(C.u_C)}{dt} = C.\frac{du_C}{dt}$$
 car C est une constante.

4. D'après les questions précédentes : $E - u_R - u_C = 0 \Leftrightarrow u_R + u_C = E$

Or
$$u_R = R.i$$
 et $i = C.\frac{du_C}{dt}$ donc $u_R = R.C.\frac{du_C}{dt}$

Ainsi,
$$u_R + u_C = E$$
 devient $R.C. \frac{du_C}{dt} + u_C = E$

En divisant chaque terme par
$$R.C$$
: $\frac{du_C}{dt} + \frac{u_C}{RC} = \frac{E}{RC}$

5. Vérifions que $u_C = E \times (1 - e^{-\frac{l}{RC}})$ est solution de l'équation différentielle précédente.

$$\frac{du_{C}}{dt} = \frac{d\left(E \times (1 - e^{-\frac{t}{RC}})\right)}{dt} = E \times \frac{d(1 - e^{-\frac{t}{RC}})}{dt} = E \times \left(0 - \left(-\frac{1}{RC}\right) \times e^{-\frac{t}{RC}}\right) = \frac{E}{RC} \times e^{-\frac{t}{RC}}$$

Injectons les expressions de u_C et $\frac{du_C}{dt}$ dans l'équation différentielle $\frac{du_C}{dt} + \frac{u_C}{RC} = \frac{E}{RC}$:

$$\frac{E}{RC} \times e^{-\frac{t}{RC}} + \frac{E \times (1 - e^{-\frac{t}{RC}})}{RC} = \frac{E}{RC} \Leftrightarrow \frac{E}{RC} = \frac{E}{RC} \quad CQFD$$

Autre méthode :

On écrit l'équation différentielle sous la forme y' = a.y + b qui admet des solutions de la forme $y = K.e^{a.x} - \frac{b}{a}$.

$$\frac{du_{\rm C}}{dt} = -\frac{1}{R.C}.u_{\rm C} + \frac{E}{R.C}$$
Par analogie, $a = -\frac{1}{R.C}$ et $b = \frac{E}{R.C}$

ainsi les solutions sont de la forme $u_{\mathbb{C}}(t) = K \times e^{-\frac{t}{R.C}} - \frac{E}{\frac{R.C}{R.C}} = K \times e^{-\frac{t}{R.C}} + E$.

En tenant compte des conditions initiales, on peut trouver l'unique solution.

$$u_{C}(t=0) = 0$$

$$K \times e^{-\frac{0}{R.C}} + E = 0$$

$$K + E = 0 \text{ donc } K = -E$$

$$u_{C} = -E \times e^{-\frac{t}{R.C}} + E$$

Finalement on retrouve la solution proposée : $u_c = E \times \left(1 - e^{-\frac{t}{R.C}}\right)$

Étude expérimentale de la charge d'un dipôle RC.

6. Le temps caractéristique τ correspond à la durée nécessaire pour que la tension $u_{\rm C}$ atteigne 63 % de sa valeur finale soit $0.63 \times 5.0 = 3.15$ V.

Graphiquement, on obtient $\tau = 9.0$ ns.

Astuce: on mesure à la règle la longueur correspondant à 5,0 V sur l'axe vertical puis on multiplie cette longueur par 0,63 pour placer 3,15 V.

7.
$$\tau = R.C$$

8.
$$\tau = R \times C \Leftrightarrow C = \frac{\tau}{R}$$

$$C = \frac{9,0 \times 10^{-9}}{330} = 2,7 \times 10^{-11} \text{ F} = 27 \times 10^{-12} \text{ F, soit 27 pF.}$$

Remarque : cette valeur est faible mais correspond aux valeurs usuelles des capacités des condensateurs (du pF à quelque mF).

Étude d'un condensateur à capacité variable

9.
$$C = \frac{\varepsilon \times S}{d} \Leftrightarrow \varepsilon = \frac{C \times d}{S}$$
 avec C en F, d en m et S en m^2 donc ε en $\frac{F \times m}{m^2}$ soit F.m⁻¹.

10. Si on rapproche l'armature mobile, d diminue. Or d est **au dénominateur** dans la relation $C = \frac{\varepsilon \times S}{d}$ donc la capacité C du condensateur augmente.

Réalisation d'un capteur de position

11.
$$C = \frac{\varepsilon \times S}{d} \Leftrightarrow d = \frac{\varepsilon \times S}{C}$$

La permittivité ε est connue ; si on admet que la surface S des plaques est connue (ou facile à mesurer), l'étude de la charge du dipôle RC constitué permet de trouver la valeur de la capacité C (comme à la question **8.** en admettant la valeur de R connue).

Ainsi, on peut en déduire l'épaisseur d de colle $d = \frac{\varepsilon \times S}{C}$.