Sydney Grammar School

4 unit mathematics

Trial DSC Examination 1992

- 1. (a) Find $\int \frac{dx}{\sqrt{x^2 + 4x + 8}}$
- **(b)** (i) Use partial fractions to show that $\int_0^1 \frac{dx}{(x+2)(2x+1)} = \frac{1}{3} \ln 2$
- (ii) Hence evaluate $\int_0^{\frac{\pi}{2}} \frac{3}{4+5\sin x} dx$ using the substitution $t = \tan \frac{x}{2}$
- (c) (i) Given $I_n = \int_0^1 x^n e^{2x} dx$, where n is a positive integer, use integration by parts to show that $I_n = \frac{1}{2}(e^2 nI_{n-1})$
- (ii) Hence evaluate $\int_0^1 x^4 e^{2x} dx$
- 2. (a) (i) Write the complex number $-\sqrt{3} + i$ in modulus-argument form.
- (ii) Hence use de Moivre's theorem to find $(-\sqrt{3}+i)^{10}$ in the form a+bi, where $a,b\in\mathbb{R}$.
- (b) Sketch each of the following regions in separate Argand diagrams:
- (i) $-1 < \Re(z) < 2$ and $0 < \Im(z) < 3$
- (ii) $z\overline{z} (1-i)z (1+i)\overline{z} < 2$
- (iii) $0 < \arg |(1-i)z| < \frac{\pi}{6}$
- (c) (i) Find the square roots of the complex number -3 + 4i
- (ii) Find the roots of the quadratic equation $x^2 (4-2i)x + (6-8i) = 0$
- 3. (a)

The diagram shows the region R bounded by the curve $y=2x-x^2$ and the x-axis. The typical strip shaded has width δx .

(i) Show that, when this strip is rotated about the y-axis, the cylindrical shell formed has approproximate volume $2\pi xy\delta x$.

(ii) Hence determine the volume of the solid formed when the region R is rotated about the y-axis.

(b)

By taking triangular slices parallel to the base, show that the tetrahedron (i.e., triangular pyramid) sketched above has volume $\frac{1}{6}abc$ cubic units.

4. (a) A particle of mass mkg is moving along the x-axis under the influence of a propelling force of $\frac{P}{v}$ Newtons (whose P is a positive constant and v is the speed of the particle in metres per second), and experiences a resistance of Kv^2 Newtons (where K is a positive constant).

(i) Show that $\frac{d^2x}{dt^2} = v\frac{dv}{dx}$, where t is time in seconds. (ii) If the magnitude of the propelling force is equal to the magnitude of the resistance at speed u metres per second, show that $K = \frac{P}{u^3}$.

(iii) Show that $\frac{dv}{dx} = \frac{P}{m}(\frac{1}{v^2} - \frac{v}{u^3})$. (iv) Suppose the particle has initial speed $\frac{u}{3}$ metres per second. Show that the distance travelled in accelerating to a speed of $\frac{2u}{3}$ metres per second is $\frac{mu^3}{3P}\ln(\frac{26}{19})$ metres.

(b) A car travels at 54km/h around a banked circular bend of radius 90 metres.

(i) Draw a diagram showing the weight, the normal reaction and the sideways frictional force acting on the car.

(ii) Show that the road is banked at an angle of approximately 14° to the horizontal if there is no tendency for this car to slip sideways. (Take $g = 10 \text{m/s}^2$).

(iii) Find, in Newtons correct to two significant figures, the sideways frictional force exerted by the road on the wheels of a second car of mass 1.2 tonnes which travels the same bend at 72 km/h. (Take $g = 10 \text{m/s}^2$).

5. (a) Find any x-intercepts and stationary points on the curve $y = x^2(x-3)$. Hence sketch the curve.

(b) By considering the sketch drawn in part (a), draw a sketch on separate diagrams of each of the following curves:

(i)
$$y = |x^2(x-3)|$$
,

- (ii) $|y| = x^2(x-3)$, (iii) $y = \frac{1}{x^2(x-3)}$,
- (iv) $y = \frac{1}{x^2(|x|-3)}$.
- (c) For what values of c does the equation $x^2(x-3) = c$ have one real root? (Give reasons for your answer).
- **6.** (a) (i) Find, in the form a+ib, where a and b are real, the four fourth roots of
- (ii) Hence write $z^4 + 16$ as a product of two quadratic factors with real coefficients.
- (iii) Let α be the fourth root of -16 whose principal argument lies between 0 and $\frac{\pi}{2}$. Show that $\alpha + \frac{\alpha^3}{4} + \frac{\alpha^5}{16} + \frac{\alpha^7}{64} = 0$. **(b)** Consider the sequence defined by:

$$\begin{cases} u_1 = 12, \\ u_2 = 30, \\ u_n = 5u_{n-1} - 6u_{n-2}, \text{ for } n \ge 3. \end{cases}$$

- (i) Determine the values of u_3 and u_4 .
- (ii) Show that $u_n = 2 \times 3^n + 3 \times 2^n$ for n = 1 and n = 2. (iii) If $u_k = 2 \times 3^k + 3 \times 2^k$ and $u_{k+1} = 2 \times 3^{k+1} + 3 \times 2^{k+1}$, where k is a positive integer, prove that $u_{k+2} = 2 \times 3^{k+2} + 3 \times 2^{k+2}$.
- (iv) What conclusion may be reached as a result of parts (ii) and (iii)?
- 7. (a) The polynomial equation $x^5 ax^2 + b = 0$ has a multiple root. Show that $108a^5 = 3125b^3$.
- (b) (i) Write down the expansions of $\sin(A+B)$ and $\sin(A-B)$ and deduce that $2\sin B\cos A = \sin(A+B) - \sin(A-B).$
- (ii) Use the result from (i) to show that $2\sin x(\cos 2x + \cos 4x + \cos 6x) = \sin 7x \cos 4x + \cos 6x$ $\sin x$.
- (iii) Hence show that
- (\alpha) $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = -\frac{1}{2},$ (\beta) $\cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7} = \frac{1}{2}.$
- (c) Suppose b and c are positive integers and a = b = c.
- (i) Use the binomial expansion of $(b+c)^n$, where n is a positive integer, to show that $a^n - b^{n-1}(b+cn)$ is divisible by c^2 .
- (ii) Hence show that $5^{42} 2^{48}$ is divisible by 9.
- **8.** (a) Let $I_1 = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx$ and let $I_2 = \int_0^\pi \frac{(\pi x) \sin x}{1 + \cos^2 x} dx$. (i) Using the substitution $u = \pi x$, show that $I_1 = I_2$.
- (ii) Show that $I_1 + I_2 = \frac{\pi^2}{2}$.
- (iii) Hence evaluate I_1 .
- (b) (i) Show that $\frac{x^2}{x^4+x^2+1} \le \frac{1}{3}$ for all real values of x.
- (ii) Determine the range of $y = \tan^{-1}(\frac{1}{1+x^2})$, and the range of $y = \tan^{-1}(\frac{x^2}{1+x^2})$.

- (iii) Show that $\tan^{-1}(\frac{1}{1+x^2}) + \tan^{-1}(\frac{x^2}{1+x^2}) = \tan^{-1}(1 + \frac{x^2}{1+x^2+x^4})$. (iv) Hence determine the range of $y = \tan^{-1}(\frac{1}{1+x^2}) + \tan^{-1}(\frac{x^2}{1+x^2})$. (c) The lengths of the sides of a triangle form an arithmetic progression and the largest angle of the triangle exceeds the smallest by 90°. Find the ratio of the lengths of the sides.