

第四章 充电系统

第一节 系统概述

本车充电系统主要是通过家用插头和交流充电桩接入交流充电口,通过车载充电器将家用 220V 交流电转为直流高压电给动力电池进行充电。

主要组成部分:

交流充电口

车载充电器

电池管理器

动力电池

第二节 组件位置

第三节 系统框图

第四节 诊断流程

把车开进维修间

NEXT

2 检查起动电池电压

标准电压值:

 $11\sim14V$

如果电压值低于 11V, 在进行 NEXT 之前请充电或更换起动电池。

NEXT

3 参考故障症状表

结果	进行
现象不在故障症状表或	A
DTC 中	
现象在故障症状表或 DTC	В
表中	

В

转到第5步

A

4 全面分析与诊断

NEXT

5 调整,维修或更换

NEXT

6 确认测试

NEXT

7 结束

第五节 故障码列表

序列号	故障码 (ISO 15031-6)	故障定义	
1	P157016	车载充电器交流侧电压低	
2	P157017	车载充电器交流侧电压高	
3	P157100	车载充电器高压输出断线故障	
4	P157219	车载充电器直流侧电流高	
5	P157218	车载充电器直流侧电流低	
6	P157216	车载充电器直流侧电压低	
7	P157217	车载充电器直流侧电压高	
8	P157300	车载充电器风扇状态故障	
9	P157400	供电设备故障	
10	P157513	低压输出断线	
11	P157616	低压蓄电池电压过低	
12	P157617	低压蓄电池电压过高	
13	P157713	交流充电感应信号断线故障	
14	P157897	充放电枪连接故障	
15	P15794B	电感温度高	
16	P157A37	充电电网频率高	
17	P157A36	充电电网频率低	
18	P157B00	交流侧电流高	
19	P157C00	硬件保护	
20	P157D11	充电感应信号外部对地短路	
21	P157D12	充电感应信号外部对电源短路	
22	P157E11	充电连接信号外部对地短路	
23	P157E12	充电连接信号外部对电源短路	
24	P157F11	交流输出端短路	
25	P158011	直流输出端短路	
26	P158119	放电输出过流	
27	P158200	H 桥故障	
28	P15834B	MOS 管温度高	
29	U011100	与动力电池管理器通讯故障	
30	U015500	与组合仪表通讯故障	
31	P151100	交流端高压互锁故障(新增)	

第六节 全面诊断流程

5.6.1 充电请求允许电路

原理图:

充电系统检查步骤

1 检查整车回路

(a) 检查车载充电器、配电箱、电池管理器的接插件 是否松动、破损或未安装。

OK:整车连接正常

NG

重新安装或更换产品

NEXT

2 车上检查

OK

3 检查交流充电连接装置

(a) 插上交流充电连接装置。

(b) 检查缆上控制盒的 ready 灯是否常亮, charge 灯是否闪烁。(参考交流充电连接装置控制盒背面说明)

OK: 交流充电连接装置正常

NG

更换交流充电连接装置

OK

4 检查仪表充电指示灯是否点亮

- (a) 整车上 ON 档电,将交流充电连接装置连接充电桩或家用电源。
- (b) 观察仪表充电指示灯是否点亮。
- (c) 用万用表测量车载充电器低压接插件电压(充电指示灯)。

端子	线色	正常值
K55-D—车身地	Y	小于 1V
BMS 输出仪表指示 灯信号 K65-22一车 身地	/	小于 1V

NG

尝试更换车载充电器 检查线束或仪表

OK

5 │ 检查车载充电器感应信号

- (a) 将交流充电连接装置连接充电桩或家用电源。
- (b) 用万用表测量车载充电器低压接插件电压(充电请求信号)。

端子	线色	正常值
K55-C一车身地	L	小于 1V

NG

更换车载充电器

OK

6 检查低压电源是否输入

- (a) 不连接交流充电连接装置。
- (b) 用万用表测量车载充电器低压接插件电压(起动电池正负)。

端子	线色	正常值
K55-H一车身地	R	11-14V
K55-G一车身地	В	小于 1V

NG

检查线束

7 |检查交流充电及 off 档充电继电器

- (a) 不连接交流充电连接装置
- (b) 取下充电继电器。
- (c) 给控制端加电压, 检查继电器是否吸合。

端子	正常值
1~起动电池正极	3 与 5 导通
2~起动电池负极	3 到 3 升地

NG

更换继电器

OK

检查配电箱车载充电保险

- (a) 不连接交流充电连接装置
 - (b) 拆开电池包及包内配电箱
 - (c) 测量下方车载保险(30A)是否导通。

OK: 配电箱保险正常,装好配电箱。

NG

更换车载充电保险

OK

检查配电箱正极接触器电源端

- (a) 上 ON 档电,用万用表检测配电箱低压接插件 K54-5。
- (b) 将交流充电连接装置连接充电桩或家用电源
- (c) 测量接插件对应引脚低压是否为 12V 以上。

OK: 配电箱接触器供电正常

NG

检查接触器供电低压线束

10 │检查配电箱正极接触器控制端

- (a) 上 ON 档电,用万用表检测配电箱低压接插件 K54-11。
- (b) 将交流充电连接装置连接充电桩或家用电源
- (c) 测量接插件对应引脚低压是否为 12V 以下。

OK: 配电箱接触器控制脚正常

NG

检查接触器控制低压线束或电池管理器

OK

11 检查配电箱负极接触器电源端

- (a) 上 ON 档电,用万用表检测配电箱低压接插件 K54-7。
- (b) 将交流充电连接装置连接充电桩或家用电源
- (c) 测量接插件对应引脚低压是否为 12V 以上。

OK: 配电箱接触器供电正常

NG •

检查接触器供电低压线束

OK

12 检查配电箱负极接触器控制端

- (a) 上 ON 档电,用万用表检测配电箱低压接插件 K54-12。
- (b) 将交流充电连接装置连接充电桩或家用电源
- (c) 测量接插件对应引脚低压是否为 12V 以下。

OK: 配电箱接触器控制脚正常

NG

检查接触器控制低压线束或电池管理器

OK

13 检查交流充电口总成

- (a) 拔出交流充电口接插件。
- (b)分别测量充电口和接插件两端各对应引脚是否导通。

OK: 交流充电口总成正常

NG

更换交流充电口总成

14 检查车载充电器 CAN 通讯

- (a) 检查接插件端子是否异常
- (b) 将交流充电口连接充电桩或家用电源。
- (c) 用万用表测量车载充电器低压线束端电压。

端子	线色	正常值
K55-K-车身地	V	1.5-2.5V
K55-J-车身地	P	2.5-3.5V

NG

更换线束

放电系统检查步骤

1 检查整车回路

(a) 检查车载充电器、配电箱、电池管理器的接插件 是否松动、破损或未安装。

OK:整车连接正常

NG

重新安装或更换产品

NEXT

3 检查交流充电连接装置

(a) 插上 VTOL 放电装置。

(b) 检查 VTOL 放电装置的电源指示灯是否正常 OK: 插上 VTOL 放电装置正常

NG

更换 VTOL 放电装置

OK

4 │检查仪表指示灯(同充电指示灯)是否点亮

- (a) 将 VTOL 放电装置接上用电器(功率应在允许范围内)。
- (b) 观察仪表指示灯是否点亮。
- (c)用万用表测量车载充电器低压接插件电压(充电指示灯)。

4H-4 / 4 / -		
端子	线色	正常值
K55-D—车身地	Y	小于 1V

NG

充电连接装置重新配合 更换车载充电器

5 检查车载充电器感应信号

- (a) VTOL 放电装置接上用电器。
- (b) 用万用表测量车载充电器低压接插件电压(充电请求信号)。

端子	线色	正常值
K55-C一车身地	L	小于 1V

NG

更换车载充电器

OK

6 检查低压电源是否输入

- (a) 断开 VTOL 放电装置。
- (b) 用万用表测量车载充电器低压接插件电压(起动电池正负)。

端子	线色	正常值
K55-H一车身地	R	11-14V
K55-G—车身地	В	小于 1V

NG

更换线束

OK

7 检查交流充电及 off 档充电继电器

- (a) 不连接 VTOL 放电装置
- (b) 取下充电继电器。
- (c) 给控制端加电压, 检查继电器是否吸合。

端子	正常值
1~起动电池正极	3 与 5 导通
2~起动电池负极	3 月 3 守地

NG

更换继电器

OK

8 │检查配电箱车载充电保险

- (a) 拆卸电池包
- (b) 拆开配电箱。
- (C) 测量下方车载保险(30A)是否导通。
- OK: 配电箱保险正常,

NG

更换车载充电保险

OK

9 检查配电箱正极接触器电源端

- (d) 用万用表检测配电箱低压接插件 K54-5。
- (e) 将交流充电连接装置连接充电桩或家用电源
- (f) 测量接插件对应引脚低压是否为 12V 以上。

OK: 配电箱接触器供电正常

NG

检查接触器供电低压线束

OK

10 检查配电箱正极接触器控制端

- (d) 用万用表检测配电箱低压接插件 K54-11。
- (e) 将交流充电连接装置连接充电桩或家用电源
- (f) 测量接插件对应引脚低压是否为 12V 以下。

OK: 配电箱接触器控制脚正常

NG

检查接触器控制低压线束或电池管理器

OK

11 检查配电箱负极接触器电源端

- (c) 用万用表检测配电箱低压接插件 K54-7。
- (d) 将交流充电连接装置连接充电桩或家用电源
- (c) 测量接插件对应引脚低压是否为 12V 以上。

OK: 配电箱接触器供电正常

NG

检查接触器供电低压线束

12 检查配电箱负极接触器控制端

- (c) 用万用表检测配电箱低压接插件 K54-12。
- (d) 将交流充电连接装置连接充电桩或家用电源
- (c) 测量接插件对应引脚低压是否为 12V 以下。

OK: 配电箱接触器控制脚正常

NG

检查接触器控制低压线束或电池管理器

OK

13 检查交流充电口总成

- (a) 拔出交流充电口接插件。
- (b)分别测量充电口和接插件两端各对应引脚是否导通。

OK:交流充电口总成正常

NG

更换交流充电口总成

OK

14 检查 CAN 通讯

- (a) 连接 VTOL 放电装置。
- (b) 用万用表测量车载充电器低压线束端电压。

端子	线色	正常值
K55-K-车身地	V	1.5-2.5V
K55-J-车身地	P	2.5-3.5V

NG

更换 CAN 线束

OK

15 检查车载充电器充电输出电压

- (a) 连接 VTOL 放电装置。
- (b) 用万用表测量车载充电器输出端电压。

端子	线色	正常值	
高压正-高压负	0	220V AC	

NG

更换车载充电器

第八节 拆卸与安装

1. 车载充电器总成:

(1) 结构组成

车载充电器总成由盒盖、盒体、支架、散热器等组 成。

- (2) 拆卸维修前需:
- ① 点火开关 OFF 档
- ②起动电池断电
- ③拆卸后行李箱右后内饰板
- (3) 拆卸:
- ①断开外部接插件,包括高压输出接插件(接高压配 电箱的电缆),低压接插件(包含 CAN 线线束), 交流输入接插件(220V 电源线):
- ②用棘轮将车载充电器交流输入搭铁线的M6六角法 兰面螺母松开,并才将固定车载三个支架上的 M6× 12 六角法兰面承面带齿螺栓拧下(如图圈圈处);
- ③将车载充电器轻轻取出;
- (4) 装配
- ①戴上手套,把车载充电器放置在后舱安装支架上, 使车载充电器支架上的孔和车身上支架的孔对正;将 车载充电器安装在行李舱右侧,先将右侧通风口处六 角法兰面承面带齿螺栓 Q1800616T1F3 先拧上,将车 载推入、对准孔位,再将左侧两颗六角法兰面承面带 齿螺栓 Q1800616T1F3 固定同时将 3 颗螺栓打紧, 打 紧力矩要求约8N·m;
- ②再将交流输入接插件和搭铁线固定好。接插件对准 防错角度插入再顺时针拧紧锁死,搭铁线用六角法兰 面螺母 Q32006T2F3C 打紧, 打紧力矩要求约 6 N·m; 校核无误后打上油漆印记。
- ③然后将低压接插件和高压输出接插件对接固定好。

注意事项:

操作员操作时应戴好手套,以免碰伤。安装前确保车 载充电器外观清洁,表面油漆不应有划痕。

2. 交流充电口总成:

(1) 结构组成

交流充电口总成由车辆插座、电缆、接插件等组成。

- (2) 拆卸维修前需:
- ① 点火开关 OFF 档
- ② 起动电池断电
- ③ 卸后行李箱右后内饰板
- ④ 拆掉电池管理器
- ⑤ 拆铰链护板
- (3) 拆卸:
- ① 断开交流输出接插件(与车载充电器对接接插

件);

- ② 将固定电缆的扎带松开(固定在车身钣金和铰链上):
- ③ 用棘轮将固定充电口座的 M6×20 六角法兰面承面带齿螺栓拧下,并将充电口上的电锁取下;
- ④ 将交流充电口往车外轻轻取出:

(4) 装配

①戴上手套,把交流充电口尾部电缆穿过钣金,正对充电口座确认好方向(盖子打开方向向右打开)用四颗六角法兰面承面带齿螺栓 Q1800620T1F31 固定,打紧力矩要求约 8 N·m,并扣上电锁;

- ②再将电缆扎带依次固定在车身钣金和铰链上。
- ③然后将接插件与车载充电器对接好。

注意事项:

操作员操作时应戴好手套,以免碰伤。安装前确保充电口外观清洁,表面油漆不应有划痕及电缆接插件表面不应破损。