	1a	4a	2a	3a	2b	2c	4b	12a	4c	6a	2d	3b	6b	6c	2e	12b	4d	12c	12d	6d	6e	6f	6g	6h	12e	12f	12g	6i	6j	12h
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1	-1	-1	1	1
χ_3	1	-1	1	1	1	1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1	-1	-1	-1	1	1	-1
χ_4	1	1	-1	1	1	1	-1	1	1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1	1	1	1	-1	-1	1	-1	1	-1
χ_5	1	-1	-1	$E(3)^{2}$	1	1	1	$-E(3)^2$	-1	$-E(3)^{2}$	-1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	$E(3)^{2}$	1	-E(3)	$-E(3)^2$	-E(3)	$-E(3)^{2}$	E(3)	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	-E(3)	-E(3)	E(3)	E(3)
χ_6	1	-1	-1	E(3)	1	1	1	-E(3)	-1	-E(3)	-1	$E(3)^{2}$	E(3)	E(3)	1	E(3)	1	$-E(3)^{2}$	-E(3)	$-E(3)^2$	-E(3)	$E(3)^{2}$	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	$-E(3)^2$	$-E(3)^2$	$E(3)^{2}$	$E(3)^2$
χ_7	1	-1	1	$E(3)^{2}$	1	1	-1	$-E(3)^2$	-1	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	E(3)	$E(3)^{2}$	E(3)	E(3)	$E(3)^{2}$	-E(3)	$-E(3)^2$	-E(3)	E(3)	E(3)	-E(3)
χ_8	1	-1	1	E(3)	1	1	-1	-E(3)	-1	E(3)	1	$E(3)^{2}$	E(3)	E(3)	1	-E(3)	-1	$-E(3)^2$	-E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	$E(3)^{2}$	E(3)	$-E(3)^2$	-E(3)	$-E(3)^2$	$E(3)^{2}$	$E(3)^{2}$	$-E(3)^2$
χ_9	1	1	-1	$E(3)^{2}$	1	1	-1	$E(3)^{2}$	1	$-E(3)^2$	-1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	$-E(3)^2$	-1	E(3)	$E(3)^{2}$	-E(3)	$-E(3)^2$	E(3)	E(3)	$E(3)^{2}$	-E(3)	$-E(3)^2$	E(3)	-E(3)	E(3)	-E(3)
χ_{10}	1	1	-1	E(3)	1	1	-1	E(3)	1	-E(3)	-1	$E(3)^{2}$	E(3)	E(3)	1	-E(3)	-1	$E(3)^{2}$	E(3)	$-E(3)^2$	-E(3)	$E(3)^{2}$	$E(3)^{2}$	E(3)	$-E(3)^2$	-E(3)	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$
χ_{11}	1	1	1	$E(3)^{2}$	1	1	1	$E(3)^{2}$	1	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	E(3)	E(3)	E(3)
χ_{12}	1	1	1	E(3)	1	1	1	E(3)	1	E(3)	1	$E(3)^{2}$	E(3)	E(3)	1	E(3)	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^2$
χ_{13}	1 .	-E(4)	-1	1	1	-1	E(4)	-E(4)	E(4)	-1	1	1	1	-1	-1	E(4)	-E(4)	-E(4)	E(4)	-1	1	1	-1	-1	E(4)	-E(4)	E(4)	1	-1	-E(4)
χ_{14}	1	E(4)	-1	1	1	-1	-E(4)	E(4)	-E(4)	-1	1	1	1	-1	-1	-E(4)	E(4)	E(4)	-E(4)	-1	1	1	-1	-1	-E(4)	E(4)	-E(4)	1	-1	E(4)
χ_{15}	1 .	-E(4)	-1	$E(3)^{2}$	1	-1	E(4)	$-E(12)^{11}$	E(4)	$-E(3)^2$	1	E(3)	$E(3)^{2}$	$-E(3)^2$	-1	$E(12)^{11}$	-E(4)	$-E(12)^7$	$E(12)^{11}$	-E(3)	$E(3)^{2}$	E(3)	-E(3)	$-E(3)^2$	$E(12)^{7}$	$-E(12)^{11}$	$E(12)^{7}$	E(3)	-E(3)	$-E(12)^7$
χ_{16}	1 .	-E(4)	-1	E(3)	1	-1	E(4)	$-E(12)^7$	E(4)	-E(3)	1	$E(3)^{2}$	E(3)	-E(3)	-1	$E(12)^{7}$	-E(4)	$-E(12)^{11}$	$E(12)^{7}$	$-E(3)^2$	E(3)	$E(3)^{2}$	$-E(3)^2$	-E(3)	$E(12)^{11}$	$-E(12)^7$	$E(12)^{11}$	$E(3)^{2}$	$-E(3)^2$	$-E(12)^{11}$
χ_{17}	1	E(4)	-1	$E(3)^{2}$	1	-1	-E(4)	$E(12)^{11}$	-E(4)	$-E(3)^2$	1	E(3)	$E(3)^{2}$	$-E(3)^2$	-1	$-E(12)^{11}$	E(4)	$E(12)^{7}$	$-E(12)^{11}$	-E(3)	$E(3)^{2}$	E(3)	-E(3)	$-E(3)^2$	$-E(12)^7$	$E(12)^{11}$	$-E(12)^7$	E(3)	-E(3)	$E(12)^7$
χ_{18}	1	E(4)	-1	E(3)	1	-1	-E(4)	$E(12)^{7}$	-E(4)	-E(3)	1	$E(3)^{2}$	E(3)	-E(3)	-1	$-E(12)^7$	E(4)	$E(12)^{11}$	$-E(12)^7$	$-E(3)^2$	E(3)	$E(3)^{2}$	$-E(3)^2$	-E(3)	$-E(12)^{11}$	$E(12)^{7}$	$-E(12)^{11}$	$E(3)^{2}$	$-E(3)^2$	$E(12)^{11}$
χ_{19}	1 .	-E(4)	1	1	1		-E(4)	-E(4)	E(4)	1	-1	1	1	-1	-1	-E(4)	E(4)	-E(4)	E(4)	1	-1	1	-1	-1	-E(4)	E(4)	E(4)	-1	-1	E(4)
χ_{20}	1	E(4)	1	1	1	-1	E(4)	E(4)	-E(4)	1	-1	1	1	-1	-1	E(4)	-E(4)	E(4)	-E(4)	1	-1	1	-1	-1	E(4)	-E(4)	-E(4)	-1	-1	-E(4)
χ_{21}	1 .	-E(4)	1	$E(3)^{2}$	1	-1	-E(4)	$-E(12)^{11}$	E(4)	$E(3)^{2}$	-1	E(3)	$E(3)^{2}$	$-E(3)^{2}$	-1	$-E(12)^{11}$	E(4)	$-E(12)^7$	$E(12)^{11}$	E(3)	$-E(3)^{2}$	E(3)	-E(3)	$-E(3)^2$	$-E(12)^7$	$E(12)^{11}$	$E(12)^{7}$	-E(3)	-E(3)	$E(12)^7$
χ_{22}	1 .	-E(4)	1	E(3)	1	-1	-E(4)	$-E(12)^{7}$	E(4)	E(3)	-1	$E(3)^{2}$	E(3)	-E(3)	-1	$-E(12)^{7}$	E(4)	$-E(12)^{11}$	$E(12)^{7}$	$E(3)^{2}$	-E(3)	$E(3)^{2}$	$-E(3)^2$	-E(3)	$-E(12)^{11}$	$E(12)^{7}$	$E(12)^{11}$	$-E(3)^2$	$-E(3)^2$	$E(12)^{11}$
χ_{23}	1	E(4)	1	$E(3)^{2}$	1	-1	E(4)	$E(12)^{11}$	-E(4)	$E(3)^{2}$	-1	E(3)	$E(3)^{2}$	$-E(3)^2$	-1	$E(12)^{11}$	-E(4)	$E(12)^{7}$	$-E(12)^{11}$	E(3)	$-E(3)^{2}$	E(3)	-E(3)	$-E(3)^2$	$E(12)^{7}$	$-E(12)^{11}$	$-E(12)^{7}$	-E(3)	-E(3)	$-E(12)^7$
χ_{24}	1	E(4)	1	E(3)	1	-1	E(4)	$E(12)^{7}$	-E(4)	E(3)	-1	$E(3)^{2}$	E(3)	-E(3)	-1	$E(12)^{7}$	-E(4)	$E(12)^{11}$	$-E(12)^{7}$	$E(3)^{2}$	-E(3)	$E(3)^{2}$	$-E(3)^2$	-E(3)	$E(12)^{11}$	$-E(12)^{7}$	$-E(12)^{11}$	$-E(3)^2$	$-E(3)^2$	$-E(12)^{11}$
χ_{25}	2	0	0	2	-2	-2	0	0	0	0	0	2	-2	-2	2	0	0	0	0	0	0	-2	-2	2	0	0	0	0	2	0
χ_{26}	2	0	0	2	-2	2	0	0	0	0	0	2	-2	2	-2	0	0	0	0	0	0	-2	2	-2	0	0	0	0	-2	0
χ_{27}	2	0		2 * E(3)		2	0	0	0	0	0	$2 * E(3)^2$	-2 * E(3)	2 * E(3)	-2	0	0	0	0	0	0	$-2*E(3)^2$	$2 * E(3)^2$	-2 * E(3)	0	0	0	0	$-2*E(3)^2$	0
χ_{28}	2	0		$2*E(3)^2$		2	0	0	0	0	0	2 * E(3)	$-2 * E(3)^2$	$2 * E(3)^2$	-2	0	0	0	0	0	0	-2 * E(3)	2 * E(3)	$-2*E(3)^2$	0	0	0	0	-2 * E(3)	0
χ_{29}	2	0		$2*E(3)^2$		-2	0	0	0	0	0	2 * E(3)	$-2 * E(3)^2$	$-2*E(3)^2$	2	0	0	0	0	0	0	-2*E(3)	-2*E(3)	$2 * E(3)^2$	0	0	0	0	2 * E(3)	0
X30	2	0	0	2 * E(3)	-2	-2	0	0	0	0	0	$2 * E(3)^2$	-2 * E(3)	-2 * E(3)	2	0	0	0	0	0	0	$-2*E(3)^2$	$-2*E(3)^2$	2 * E(3)	0	0	0	0	$2 * E(3)^2$	0

Trivial source character table of $G \cong C3 \times ((C4 \times C2) : C2)$ at $p = 3$:					
Normalisers N_i			N_1		N_2
p-subgroups of G up to conjugacy in G			P_1		P_2
Representatives $n_j \in N_i$	1a $4a$	2a $2b$	2c $4b$	4c $2d$ $2e$ $4d$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	3 3	3 3	3 3	3 3 3 3	
$ \left[0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + $	-3	-3 3	3 3	-3 -3 3 3	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0$	-3	3 3	$3 \qquad -3$	-3 3 3 -3	
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	-3 3	3 -3	3 -3 3 -3	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0$	3 + E(4)	-3 3	-3 -3 * E(4)	-3 * E(4) 3 -3 $3 * E(4)$	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0$	3 -3*E	4) -3 3	-3 3 * E(4)	3 * E(4) $3 -3 -3 * E(4)$	
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} $	3 + E(4)	4) 3 3	-3 3 * E(4)	-3 * E(4) -3 $-3 * E(4)$	
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} $	-3*E	4) 3 3	-3 -3 * E(4)	3 * E(4) -3 -3 $3 * E(4)$	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 1 \cdot \chi_{29} + 1 \cdot \chi_{30} + 0 \cdot \chi_{11} + 0$	$0 \mid 6 \mid 0$	0 -6	-6 0	0 0 6 0	
$ \begin{bmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0$	$0 \mid 6 \mid 0$	0 -6	6 0	0 0 -6 0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot $	1 1	1 1	1 1	1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0$	1 -1	-1 1	1 1	-1 -1 1 1	1 -1 -1 1 1 -1 1 1
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 1	$1 \qquad -1$	-1 1 1 -1	1 1 -1 1 -1 1 1 -1 1
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-1 1	$1 \qquad -1$	1 -1 1 -1	1 -1 1 1 -1 1 1 -1 1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0$			-1 $-E(4)$	-E(4) 1 -1 $E(4)$	$\begin{bmatrix} 1 & -1 & E(4) & -1 & -E(4) & 1 & -1 & -E(4) & E(4) & 1 \end{bmatrix}$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0$	-E(4)) -1 1	-1 $E(4)$	E(4) 1 -1 $-E(4)$	$\begin{bmatrix} 1 & -1 & -E(4) & -1 & E(4) & 1 & -1 & E(4) & -E(4) & 1 \end{bmatrix}$
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	E(4)	1 1	-1 $E(4)$	-E(4) -1 -1 $-E(4)$	$\begin{bmatrix} 1 & 1 & E(4) & -1 & E(4) & -1 & -1 & -E(4) & -E(4) & 1 \end{bmatrix}$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$,) 1 1	-1 $-E(4)$	E(4) -1 -1 E(4)	$\begin{bmatrix} 1 & 1 & -E(4) & -1 & -E(4) & -1 & -1 & E(4) & E(4) & 1 \end{bmatrix}$
$ \left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + $	$0 \mid 2 \qquad 0$	0 -2	2 0	0 0 -2 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	$0 \mid 2 \qquad 0$	0 - 2	-2 0	0 0 2 0	$\begin{bmatrix} 2 & 0 & 0 & -2 & 0 & 0 & 2 & 0 & 0 & -2 \end{bmatrix}$

 $P_1 = Group([()]) \cong 1 \\ P_2 = Group([(1,4,14)(2,8,21)(3,11,25)(5,15,29)(6,16,30)(7,18,32)(9,22,36)(10,23,37)(12,26,39)(13,27,40)(17,31,42)(19,33,43)(20,34,44)(24,38,46)(28,41,47)(35,45,48)]) \cong C3$

 $N_1 = Group([(1,2,6,10)(3,19,13,35)(4,8,16,23)(5,9,17,24)(7,28,20,12)(11,33,27,45)(14,21)(3,14,25)(5,15,29)(6,16,30)(7,18,32)(9,23,3)(23,34)(24,35)(29,39)(30,40)(31,41)(36,43)(37,44)(38,45)(42,47)(46,48),(1,5)(2,9,33,43)(24,35)(29,39)(30,40)(31,41)(36,43)(37,44)(38,45)(42,47)(46,48),(1,2,10,13,14,25)(5,15,29)(6,16,30)(7,18,32)(9,23,31)(12,26,39)(13,27,40)(17,31,42)(19,33,43)(20,34,44)(24,38,46)(28,41,47)(35,45,48),(1,2,6,10)(3,11,25)(5,15,29)(6,16,30)(7,18,32)(9,23,31)(24,35)(24$