Benefits of negotiated interdomain traffic engineering

Ratul Mahajan

David Wetherall

Thomas Anderson

University of Washington

Problem

- Interdomain routing decisions are based on very little information about other networks
 - poor performance
 - instability, oscillations
 - tedious, error-prone management

Example of poor performance

Example of oscillation

Current methodology

- Whenever interdomain routing changes need to be made
 - tweak-n-pray
 - call ahead
 - determine a mutually agreeable set of routing changes

An alternative

u Automated negotiation

- under real-world constraints
- as good or better than manual negotiation
- minimize manual firefighting

we've looked at two-ISP negotiation so far

- high-level methodology
- evaluation of the potential benefit

Constraints on inter-ISP negotiation

- Controlled information disclosure
 - ISPs are competing entities
- Support for different optimization criteria
 - different ISPs have different objectives
- Flexible outcomes
 - different ISP pairs have different relationships

Simplified negotiation methodology

- 1. Assign a numeric preference (like MEDs) to each routing option for each flow
 - each ISP uses its own criteria
- 2. Exchange preference lists
- 3. Take turns to propose routing options
 - find good compromises
 - reassign preferences if needed
- 4. Stop when one of the ISP wants to

Example of negotiation

Trade small sacrifices for bigger gains such that both ISPs win

u A and B negotiate for 2 flows

	Aà B	Bà A
t	(-6, 6)	(0, 0)
m	(-1, 4)	(4, -1)
b	(0,0)	(6, -6)

Evaluation

- Compare three routing methodologies
 - 1. default: early-exit, selfish
 - 2. optimal: globally best across the two ISPs
 - 3. negotiated
- Dataset: 65 measured PoP-level ISP topologies; synthetic traffic models
- Evaluate latency reduction and hotspot avoidance

Experiment 1: Latency reduction

- u Higher latency
 - ⇒ poorer performance
 - ⇒ more resource usage ⇒ costlier

- Measure latency of traffic when routed using the three routing mechanisms
 - default, optimal, negotiated

Results: Latency reduction

- Small latency reduction
 - Q: is this valuable?

- Individual ISPs can lose with the optimal
- Negotiation is win-win

Experiment 2: Hotspot avoidance

- Sudden changes (failures, DoS attacks)
 can cause short-term overload
 - fighting these is a major time sink
- 1. Assume that a peering link failed
- 2. Reroute flows traversing the failed link
- 3. Measure the potential for overload using max multiplicative increase in link load

Results: Hotspot avoidance

- Default routing tends to overload certain links
- Negotiation reduces the possibility of hotspots
 - fewer problems for the operators to resolve

Summary

- Interdomain routing decisions are based largely on local information
 - poor performance, instability
 - tedious, error-prone management
- Automated negotiation can help
- 11 Feedback:
 - would you use it to talk to your neighbors?
 - www.cs.washington.edu/research/networking/negotiation