Лекция 5 Изоморфизм Карри-Ховарда (завершение), Унификация

Определение

Изоморфизм Карри-Ховарда

- 1. $\Gamma \vdash M$: σ влечет $|\Gamma| \vdash \sigma$
- 2. $\Gamma \vdash \sigma$, то существует M и существует Δ , такое что $|\Delta| = \Gamma$, что $\Delta \vdash M:\sigma$, где $\Delta = \{x_{\sigma}:\sigma | \sigma \in \Gamma \}$

Рассмотрим пример: $\{f:\alpha\to\beta,\,x:\beta\}\vdash fx:\beta$ Применив изоморфизм Карри-Ховарда получим: $\{\alpha\to\beta,\,\beta\}\vdash\beta$

 $\Pi.1$ доказывается индукцией по длине выражения т.е. есть 3 правила вывода. убирая P и Q.

П.2 доказывается аналогичным способом но действия обратные. Т.е. отношения между типами в системе типов могут рассматриваться как образ отношений между высказываниями в логической системе, и наоборот.

Определение

расширенный полином определяется формулой:

$$E(p,q) = \begin{cases} C, & \text{if } p = q = 0\\ p_1(p), & \text{if } q = 0\\ p_2(q), & \text{if } p = 0\\ p_3(p,q), & \text{if } p, q \neq 0 \end{cases}$$

, где C-константа, p_1, p_2, p_3 -выражения, составленные из *, +, p, q и констант по сути расширенный полином это множество функций над натуральными числами(черчевскими нумералами).

Пусть $v=(\alpha\to\alpha)\to(\alpha\to\alpha)$, где α -произвольный тип и пусть $F\in\Lambda$, что $F:v\to v\to v$, то существует расширенный полином E, такой что $\forall a,b\in\mathbb{N}$ $F(\overline{a},\overline{b})=_{\beta}\overline{E(a,b)}$, где \overline{a} -черчевский нумерал

Теорема

У каждого терма в просто типизиреумом λ исчислении существует расширенный полином.

Ссылки

- 1. https://www.quora.com/What-is-an-intuitive-explanation-of-the-Curry-Howard-correspondence
- 2. https://habr.com/post/269907/
- 3. https://arxiv.org/pdf/cs/0701022.pdf