Međuispit iz Elektromagnetskih polja

25.11.2020.

- 1. U ishodištu koordinatnog sustava pričvršćena je opruga na čijem je dnu obješena kuglica mase m. Kuglica je nabijena nabojem q_I koji možemo smatrati točkastim nabojem. U ravnini z=0 leži okrugli disk radijusa r_D nabijen plošnom gustoćom naboja σ . Plošna gustoća naboja σ na disku ovisi o varijabli r, ali i o naboju kuglice q_I te o z-koordinati točke T(0,0,-h) u kojoj kuglica miruje, tj. vrijedi da je $\sigma = \frac{-q_1h}{2\pi(r^2+h^2)^{1.5}}$.
 - a) Odredite električnu silu kojom disk privlači kuglicu nabijenu nabojem q_I koja se nalazi u točki T(0,0,-h). Konstanta h je pozitivan broj.
 - b) Odredite masu m kuglice, ako točka T u kojoj kuglica miruje ima koordinate T(0,0,-h), a radijus diska r_D teži u beskonačnost. Sila opruge se može zanemariti.

Rješenje:
$$E_Z = \frac{h^2}{16\pi\varepsilon_0} \left[\frac{1}{h^4} - \frac{1}{\left(r_d^2 + h^2\right)^2} \right], m = \frac{q_1^2}{16\pi\varepsilon_0 h^2 g}$$

2. Vrlo dugačka šuplja staklena cijev unutarnjeg radijusa R_1 i vanjskog radijusa R_2 ispunjena je volumnim nabojem ρ koji je opisan funkcijom $\rho = -kr$, za $r < R_1$, gdje je k pozitivna konstanta. Dielektrična konstanta stakla iznosi ε_s . Vanjska stijenka staklene cijevi je prema slici nabijena konstantnim plošnim nabojem σ , gdje je $\sigma > 0$. Odredite jakost električnog polja u cijelom prostoru $0 < r < \infty$.

Rješenje:
$$r < R_1 \rightarrow E = -\frac{kr^2}{3\varepsilon_0}, R_1 < r < R_2 \rightarrow E = -\frac{kR_1^3}{3r\varepsilon_s}, r > R_2 \rightarrow E = -\frac{kR_1^3}{3r\varepsilon_0} + \frac{\sigma R_2}{r\varepsilon_0}$$

3. Dva magnetska materijala razdvaja ravnina -x-2y+z=0. Ishodište O(0,0,0) se nalazi u sredstvu s relativnom permeabilnosti $\mu_{r1}=6$, gdje je magnetska indukcija zadana s $\vec{B}_1=3\vec{a}_x+3\vec{a}_y-2\vec{a}_z$. Odredite magnetsku indukciju \vec{B}_2 u sredstvu s relativnom magnetskom permeabilnosti $\mu_{r2}=2$.

Rješenje:
$$\vec{B}_2 = \frac{20}{9}\vec{a}_x + \frac{31}{9}\vec{a}_y - \frac{17}{9}\vec{a}_z$$

- 4. Vodljivi štap duljine *l*, mase *m* i otpora *R* se može gibati slobodnim padom duž okomito postavljenih tračnica. Homogeno magnetsko polje *B* okomito na ravninu tračnica vlada između njih. U trenutku *t*=0 je brzina štapa jednaka ništici i tada ga pustimo da slobodno pada. Ako zanemarimo otpor tračnica i trenje između tračnica i štapa odredite:
 - funkciju brzine štapa u ovisnosti o vremenu,
 - funkciju struje kroz štap u ovisnosti vremenu i smjer struje kroz štap,
 - maksimalnu brzinu koju štap u ovim uvjetima može postići.

Rješenje:
$$v(t) = \frac{mgR}{B^2 l^2} (1 - e^{-t\frac{B^2 l^2}{mR}})$$
, $i(t) = \frac{mg}{Bl} (1 - e^{-t\frac{B^2 l^2}{mR}})$, smjer struje u smjeru kazaljke na satu, $v_{max} = \frac{mgR}{B^2 l^2}$

5. Strujnica u obliku kvadrata nalazi se u x-y ravnini prema slici. Ako je strujnica protjecana strujom I = 1 A odredite magnetsku indukciju \vec{B} u točki T(0,0,1).

Rješenje: $\vec{B} = 2.31 \times 10^{-7} \vec{a}_z$