BMD ENG 301Quantitative Systems Physiology (Nervous System)

Somatosensation 2022 v2

Professor Malcolm A. MacIver

FIGURE 9.1 Somatosensory afferents convey information from the skin surface to central circuits

NEUROSCIENCE 6e, Figure 9.1
© 2018 Oxford University Press

FIGURE 9.2 Transduction in a mechanosensory afferent

NEUROSCIENCE 6e, Figure 9.2 © 2018 Oxford University Press

CLINICAL APPLICATIONS Dermatomes

A after Rosenzweig et al. (2005) *Biological Psychology*, 4th Edition. Sunderland, MA: Sinauer Associates. B, C after Haymaker and Woodhall (1967) *Peripheral Nerve Injuries: Principles of Diagnosis*. Philadelphia: W. B. Saunders.

NEUROSCIENCE 6e, Clinical Applications 9
© 2018 Oxford University Press

FIGURE 9.3 Receptive fields and the two-point discrimination threshold

NEUROSCIENCE 6e, Figure 9.3 © 2018 Oxford University Press

FIGURE 9.4 Slowly and rapidly adapting mechanoreceptors provide different information

NEUROSCIENCE 6e, Figure 9.4 © 2018 Oxford University Press

FIGURE 9.5 The skin harbors a variety of morphologically distinct mechanoreceptors

A after Johansson and Vallbo (1983) *Trends Neurosci.* 6: 27–32. B from Abraira and Ginty (2013) *Neuron* 79: 618–639.

NEUROSCIENCE 6e, Figure 9.5 © 2018 Oxford University Press

FIGURE 9.6 Simulation of activity patterns in different mechanosensory afferents in the fingertip

NEUROSCIENCE 6e, Figure 9.6 © 2018 Oxford University Press

TABLE 9.2 Afferent Systems and Their Properties

TABLE 9.2 ■ Afferent Systems and Their Properties

	Small receptive field		Large receptive field			
	Merkel	Meissner	Pacinian	Ruffini		
Location	Tip of epidermal sweat ridges	Dermal papillae (close to skin surface)	Dermis and deeper tissues	Dermis		
Axon diameter	7–11 μm	6-12 μm	6-12 μm	6-12 μm		
Conduction velocity	40-65 m/s	35-70 m/s	35-70 m/s	35-70 m/s		
Sensory function	Shape and texture perception	Motion detection; grip control	Perception of distant events through transmitted vibra- tions; tool use	Tangential force; hand shape; motion direction		
Effective stimuli	Edges, points, corners, curvature	Skin motion	Vibration	Skin stretch		
Receptive field area a	9 mm ²	22 mm ²	Entire finger or hand	60 mm ²		
Innervation density (finger pad)	100/cm ²	150/cm ²	20/cm ²	10/cm ²		
Spatial acuity	0.5 mm	3 mm	10+ mm	7+ mm		
Response to sustained indentation	Sustained (slow adaptation)	None (rapid adaptation)	None (rapid adaptation)	Sustained (slow adaptation)		
Frequency range	0–100 Hz	1-300 Hz	5-1000 Hz	0-? Hz		
Peak sensitivity	5 Hz	50 Hz	200 Hz	0.5 Hz		
Threshold for rapid indentation or vibration:						
Best	8 μm	2 μm	0.01μm	40 μm		
Mean	30 μm	6 μm	0.08 μm	300 μm		

 $^{{}^{\}alpha}\text{Receptive}$ field areas as measured with rapid 0.5-mm indentation.

(After K. O. Johnson, 2002.)

FIGURE 9.7 Proprioceptors in the musculoskeletal system

NEUROSCIENCE 6e, Figure 9.7 © 2018 Oxford University Press

TABLE 9.1 Somatic Sensory Afferents that Link Receptors to the Central Nervous System						
SENSORY FUNCTION	RECEPTOR TYPE	AFFERENT AXON TYPE®	AXON DIAMETER	CONDUCTION VELOCITY		
Proprioception	Muscle spindle	Axon Myelin	13–20 μm	80–120 m/s		
Touch	Merkel, Meissner, Pacinian, and Ruffini cells	Αβ	6–12 μm	35–75 m/s		
Pain, temperature	Free nerve endings	Αδ	1–5 μm	5–30 m/s		
Pain, temperature, itch	Free nerve endings (unmyelinated)	C	0.2–1.5 μm	0.5–2 m/s		

[&]quot;During the 1920s and 1930s, there was a virtual cottage industry classifying axons according to their conduction velocity. Three main categories were discerned, called A, B, and C. A comprises the largest and fastest axons, C the smallest and slowest. Mechanoreceptor axons generally fall into category A. The A group is further broken down into subgroups designated α (the fastest), β , and δ (the slowest). To make matters even more confusing, muscle afferent axons are usually classified into four additional groups—I (the fastest), II, III, and IV (the slowest)—with subgroups designated by lowercase roman letters!

(After Rosenzweig et al., 2005.)

NEUROSCIENCE 5e, Table 9.1

© 2012 Sinauer Associates, Inc.

FIGURE 9.8 The main touch pathways

NEUROSCIENCE 6e, Figure 9.8 © 2018 Oxford University Press

FIGURE 9.9 Proprioceptive pathways for the upper and lower body

NEUROSCIENCE 6e, Figure 9.9 © 2018 Oxford University Press

FIGURE 9.10 Somatosensory portions of the thalamus and their cortical targets in the postcentral gyrus

After Brodal (1992) and Jones et al. (1982).