CME 307 / MS&E 311: Optimization

LP modeling and solution techniques

Professor Udell

Management Science and Engineering
Stanford

January 29, 2024

Course survey

You're interested in

- duality
- modeling real-world problems
- hyperparameter and blackbox optimization
- ► fairness and ethics in optimization
- ...

Outline

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x > 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ightharpoonup if problem is infeasible, we say $p^\star = \infty$
- $ightharpoonup p^*$ can be finite or $-\infty$

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ▶ if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $-\infty$

Q: if $p^* = -\infty$, does a solution exist? is it unique? what about $p^* = \infty$?

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ▶ if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $-\infty$

Q: if $p^* = -\infty$, does a solution exist? is it unique? what about $p^* = \infty$? henceforth assume $A \in \mathbf{R}^{m \times n}$ has full row rank m **Q:** why? how to check?

standard form linear program (LP)

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$

optimal value p^* , solution x^* (if it exists)

- ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point**
- ▶ if problem is infeasible, we say $p^* = \infty$
- $ightharpoonup p^*$ can be finite or $-\infty$

Q: if $p^* = -\infty$, does a solution exist? is it unique? what about $p^* = \infty$? henceforth assume $A \in \mathbf{R}^{m \times n}$ has full row rank m

Q: why? how to check?

A: otherwise infeasible or redundant rows; use gaussian elimination to check and remove

matrix $A \in \mathbf{R}^{m \times n}$

► span of *A*:

matrix $A \in \mathbf{R}^{m \times n}$

▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of *A*:

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of *A*: nullspace(*A*) = $\{x \in \mathbf{R}^n \mid Ax = 0\} \subseteq \mathbf{R}^n$

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- how to compute basis for span and nullspace of A?

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- ightharpoonup how to solve Ax = b?

- ▶ span of A: $\operatorname{span}(A) = \{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- how to solve Ax = b? factor-solve with QR or SVD; form normal equations $A^TAx = A^Tb$ and use CG; other Krylov methods like LSQR (positive definite), MINRES (indefinite), GMRES (general)

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- how to solve Ax = b? factor-solve with QR or SVD; form normal equations $A^TAx = A^Tb$ and use CG; other Krylov methods like LSQR (positive definite), MINRES (indefinite), GMRES (general)
- ightharpoonup solution to Ax = b is unique if

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- how to solve Ax = b? factor-solve with QR or SVD; form normal equations $A^TAx = A^Tb$ and use CG; other Krylov methods like LSQR (positive definite), MINRES (indefinite), GMRES (general)
- ightharpoonup solution to Ax = b is unique if m = n and A is full rank

- ▶ span of A: $\operatorname{span}(A) = \{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- how to solve Ax = b? factor-solve with QR or SVD; form normal equations $A^TAx = A^Tb$ and use CG; other Krylov methods like LSQR (positive definite), MINRES (indefinite), GMRES (general)
- ightharpoonup solution to Ax = b is unique if m = n and A is full rank
- ightharpoonup if m < n and A is full rank
 - solution set is a hyperplane of dimension

- ▶ span of A: $\operatorname{span}(A) = \{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- how to solve Ax = b? factor-solve with QR or SVD; form normal equations $A^TAx = A^Tb$ and use CG; other Krylov methods like LSQR (positive definite), MINRES (indefinite), GMRES (general)
- ightharpoonup solution to Ax = b is unique if m = n and A is full rank
- ightharpoonup if m < n and A is full rank
 - \triangleright solution set is a hyperplane of dimension n-m
 - ightharpoonup null space of A, nullspace(A), is a hyperplane of dimension

- ▶ span of A: span(A) = $\{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- how to solve Ax = b? factor-solve with QR or SVD; form normal equations $A^TAx = A^Tb$ and use CG; other Krylov methods like LSQR (positive definite), MINRES (indefinite), GMRES (general)
- ightharpoonup solution to Ax = b is unique if m = n and A is full rank
- ightharpoonup if m < n and A is full rank
 - ightharpoonup solution set is a hyperplane of dimension n-m
 - ▶ null space of A, **nullspace**(A), is a hyperplane of dimension n-m
 - ▶ solution set is $\{x : Ax = b\} = \{x_0 + Vz\}$ where columns of $V \in \mathbb{R}^{n \times n m}$ span **nullspace**(A)

matrix $A \in \mathbf{R}^{m \times n}$

- ▶ span of A: $\operatorname{span}(A) = \{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$
- ▶ nullspace of A: nullspace(A) = $\{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$
- ▶ how to compute basis for span and nullspace of A? can use QR factorization or SVD
- how to solve Ax = b? factor-solve with QR or SVD; form normal equations $A^TAx = A^Tb$ and use CG; other Krylov methods like LSQR (positive definite), MINRES (indefinite), GMRES (general)
- ightharpoonup solution to Ax = b is unique if m = n and A is full rank
- ightharpoonup if m < n and A is full rank
 - ightharpoonup solution set is a hyperplane of dimension n-m
 - ▶ null space of A, **nullspace**(A), is a hyperplane of dimension n-m
 - ▶ solution set is $\{x : Ax = b\} = \{x_0 + Vz\}$ where columns of $V \in \mathbf{R}^{n \times n m}$ span **nullspace**(A)

if these are confusing: review linear algebra and prove them all!

- \triangleright x_i servings of food i
- $ightharpoonup c_i$ cost per serving
- \triangleright a_{ii} amount of nutrient j in food i
- $ightharpoonup b_j$ required amount of nutrient j

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- \triangleright x_i servings of food i
- $ightharpoonup c_i$ cost per serving
- $ightharpoonup a_{ij}$ amount of nutrient j in food i
- \triangleright b_j required amount of nutrient j

minimize	$c^T x$
subject to	Ax = b
	$x \ge 0$

extensions:

▶ foods come from recipes? x = By

- \triangleright x_i servings of food i
- $ightharpoonup c_i$ cost per serving
- $ightharpoonup a_{ii}$ amount of nutrient j in food i
- \triangleright b_i required amount of nutrient j

minimize	$c^T x$
subject to	Ax = b
	$x \ge 0$

- foods come from recipes?
- ensure diversity in diet?

- \triangleright x_i servings of food i
- $ightharpoonup c_i$ cost per serving
- $ightharpoonup a_{ii}$ amount of nutrient j in food i
- \triangleright b_i required amount of nutrient j

minimize	$c^T x$
subject to	Ax = b
	$x \ge 0$

- foods come from recipes?
- ightharpoonup ensure diversity in diet? $y \leq u$

- \triangleright x_i servings of food i
- $ightharpoonup c_i$ cost per serving
- $ightharpoonup a_{ii}$ amount of nutrient j in food i
- \triangleright b_j required amount of nutrient j

minimize $c^T x$ subject to Ax = b $x \ge 0$

- foods come from recipes?
- ensure diversity in diet? $y \le u$
- ranges of nutrients?

- \triangleright x_i servings of food i
- $ightharpoonup c_i$ cost per serving
- $ightharpoonup a_{ii}$ amount of nutrient j in food i
- \triangleright b_j required amount of nutrient j

minimize	$c^T x$
subject to	Ax = b
	$x \ge 0$

- ▶ foods come from recipes?
- ightharpoonup ensure diversity in diet? $y \leq u$
- ▶ ranges of nutrients? $1 \le y \le u$

Geometry of LP

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

the **feasible set** is the set of points x that satisfy all constraints

- ▶ interpretation: add up columns of *A* so they match *b*
- ightharpoonup Ax = b defines a **hyperplane**
- $ightharpoonup x_i \ge 0$ is a halfspace
- $ightharpoonup x \ge 0$ is the **positive orthant**

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

▶ define the **feasible set** $\{x : Ax = b, x \ge 0\}$

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- define the **feasible set** $\{x : Ax = b, x \ge 0\}$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- ▶ define the **feasible set** $\{x : Ax = b, x \ge 0\}$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

▶ fact: the feasible set is convex

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- ▶ define the **feasible set** $\{x : Ax = b, x \ge 0\}$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

- ► fact: the feasible set is convex
- define extreme point: x is extreme in C if it cannot be written as a linear combination of other points in C:

$$x \in C$$
 and $x = \theta y + (1 - \theta)z \implies x = y = z$

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

- ▶ define the **feasible set** $\{x : Ax = b, x \ge 0\}$
- ▶ define **convex set**: C is convex if for any $x, y \in C$,

$$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$

- ▶ fact: the feasible set is convex
- define extreme point: x is extreme in C if it cannot be written as a linear combination of other points in C:

$$x \in C$$
 and $x = \theta y + (1 - \theta)z \implies x = y = z$

▶ fact: if a solution exists, then some extreme point of the feasible set is optimal

Geometry of LP: polytopes

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

b define **polytope** P: convex hull of its extreme points $v_1, \ldots, v_k \in \mathbb{R}^n$:

$$P = \{x \in \mathbf{R}^n \mid x = \sum_{i=1}^k \theta_i v_i, \ \theta_i \ge 0, \ \sum_{i=1}^k \theta_i = 1\}$$

- if feasible set is bounded, it is a polytope
- prove: if a solution exists, then some extreme point of the feasible set is optimal

Outline

Let's do some modeling!

- OptiMUS: https://optimus-solver.vercel.app/
- power systems: https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
- multicast routing: https://colab.research.google.com/drive/ 1iOn1T1Muh51KaA7mf7UIQOdhSFZhZyry?usp=sharing

Let's do some modeling!

- OptiMUS: https://optimus-solver.vercel.app/
- power systems: https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
- multicast routing: https://colab.research.google.com/drive/ 1iOn1T1Muh51KaA7mf7UIQOdhSFZhZyry?usp=sharing

practical solvers for MILP:

- Gurobi and COPT (cardinal optimizer) are the state-of-the-art commercial solvers
- ► GLPK is a free solver that is not as fast
- ► JuliaOpt/JuMP is a modeling language in Julia that calls solvers like Gurobi and is specialized for MILP applications
- CVX* (including CVXPY in python) are modeling languages that call solvers like Gurobi with good support for convex problems
- OptiMUS is a LLM-based modeling tool for MILP

Modeling challenges

model the following as standard form LPs:

- 1. inequality constraints. $Ax \leq b$
- 2. free variable. $x \in \mathbb{R}$
- 3. **absolute value.** constraint $|x| \le 10$
- 4. **piecewise linear.** objective $max(x_1, x_2)$
- 5. assignment. e.g., every class is assigned exactly one classroom
- 6. **logic.** e.g., class enrollment \leq capacity of assigned room
- 7. **flow.** e.g., the least cost way to ship an item from s to t

Modeling challenges

model the following as standard form LPs:

- 1. inequality constraints. $Ax \leq b$
- 2. free variable. $x \in \mathbb{R}$
- 3. **absolute value.** constraint $|x| \le 10$
- 4. **piecewise linear.** objective $max(x_1, x_2)$
- 5. assignment. e.g., every class is assigned exactly one classroom
- 6. **logic.** e.g., class enrollment \leq capacity of assigned room
- 7. **flow.** e.g., the least cost way to ship an item from s to t

(see chapter 1 of Bertsimas and Tsitsiklis for more details on 1–6. see https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UIQOdhSFZhZyry?usp=sharing for a detailed treatment of a flow problem.)

Use slack variables to represent inequality constraints

minimize
$$c^T x$$

subject to $Ax \le b$
 $x \ge 0$

Use slack variables to represent inequality constraints

minimize
$$c^T x$$

subject to $Ax \le b$
 $x \ge 0$

introduce slack variable
$$s \in \mathbf{R}^m$$
: $Ax + s = b$, $s \ge 0 \iff Ax \le b$

minimize $c^Tx + 0^Ts$

subject to $Ax + s = b$
 $x, s > 0$

Split variable into parts to represent free variables

minimize
$$c^T x$$

subject to $Ax = b$

Split variable into parts to represent free variables

to represent the following problem in standard form,

minimize
$$c^T x$$

subject to $Ax = b$

introduce positive variables x_+, x_- so $x = x_+ - x_-$:

minimize
$$c^T x_+ - c^T x_-$$

subject to $Ax_+ - Ax_- = b$
 $x_+, x_- \ge 0$

Use epigraph variables to handle absolute value

minimize
$$||x||_1 = \sum_i = 1^n |x_i|$$

subject to $Ax = b$
 $x \ge 0$

Use epigraph variables to handle absolute value

to represent the following problem in standard form,

minimize
$$||x||_1 = \sum_i = 1^n |x_i|$$

subject to $Ax = b$
 $x \ge 0$

introduce epigraph variable $t \in \mathbf{R}^n$ so $|x_i| \le t_i$:

minimize
$$1^T t = \sum_{i=1}^n t_i \ge ||x||_1$$

subject to $Ax = b$
 $-t \le x \le t$
 $x, t > 0$

Use epigraph variables to handle absolute value

to represent the following problem in standard form,

minimize
$$||x||_1 = \sum_i = 1^n |x_i|$$

subject to $Ax = b$
 $x \ge 0$

introduce epigraph variable $t \in \mathbf{R}^n$ so $|x_i| \le t_i$:

minimize
$$1^T t = \sum_{i=1}^n t_i \ge ||x||_1$$

subject to $Ax = b$
 $-t \le x \le t$
 $x, t > 0$

Q: Why does this work? For what kinds of functions can we use this trick?

Use binary variables to handle assignment

every class is assigned exactly one classroom: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$

$$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$

Use binary variables to handle assignment

every class is assigned exactly one classroom: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$

$$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$

now solve the problem

minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$

subject to $\sum_{i=1}^{n} X_{ij} = 1$, $\forall j$ (every class assigned one room)
 $\sum_{j=1}^{m} X_{ij} = 1$, $\forall i$ (no more than one class per room)
 $X_{ij} \in \{0,1\}$ (binary variables)

where C_{ij} is the cost of assigning class i to room j.

Use binary variables to handle logic

model class enrollment $n_i \leq \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$ $X_{ij} = \begin{cases} 1 & \text{class } i \text{ is assigned to room } j \\ 0 & \text{otherwise} \end{cases}$

Use binary variables to handle logic

model class enrollment $n_i \leq \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$

$$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$

solve the problem

minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$
 subject to
$$\sum_{i=1}^{n} X_{ij} = 1, \ \forall j \quad \text{(every class assigned one room)}$$

$$\sum_{j=1}^{m} X_{ij} = 1, \ \forall i \text{(no more than one class per room)}$$

$$\sum_{i=1}^{n} p_i X_{ij} \leq c_j, \ \forall j \quad \text{(capacity constraint)}$$

$$X_{ij} \in \{0,1\} \quad \text{(binary variables)}$$

where C_{ij} is the cost of assigning class i to room j.

Use binary variables to handle logic

model class enrollment $n_i \leq \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$

$$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$

solve the problem

minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$
 subject to $\sum_{i=1}^{n} X_{ij} = 1, \ \forall j$ (every class assigned one room) $\sum_{j=1}^{m} X_{ij} = 1, \ \forall i \text{(no more than one class per room)}$ $\sum_{i=1}^{n} p_i X_{ij} \leq c_j, \ \forall j$ (capacity constraint) $X_{ij} \in \{0,1\}$ (binary variables)

where C_{ij} is the cost of assigning class i to room j. what if we want p to be a variable, too?

...or use a big-M relaxation!

model class enrollment $n_i \le \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$

$$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$

suppose M is a very large number.

...or use a big-M relaxation!

model class enrollment $n_i \le \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$

$$X_{ij} = \begin{cases} 1 & \text{class } i \text{ is assigned to room } j \\ 0 & \text{otherwise} \end{cases}$$

suppose M is a very large number. solve the problem

minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$
 subject to
$$\sum_{i=1}^{n} X_{ij} = 1, \ \forall j \quad \text{(every class assigned one room)}$$

$$\sum_{j=1}^{m} X_{ij} = 1, \ \forall i \text{(no more than one class per room)}$$

$$p_i \leq c_j + (1 - X_{ij})M, \ \forall i,j \quad \text{(capacity constraint)}$$

$$X_{ij} \in \{0,1\} \quad \text{(binary variables)}$$

where C_{ij} is the cost of assigning class i to room j.

Outline

LP inequality form

another common form for LP is inequality form

minimize
$$c^T x$$

subject to $Ax \le b$

how to transform to standard form?

▶ inequality constraints $Ax \le b$?

LP inequality form

another common form for LP is inequality form

minimize
$$c^T x$$

subject to $Ax \le b$

how to transform to standard form?

- ▶ inequality constraints $Ax \le b$? slack variables $s \ge 0$
- ▶ free variable $x \in \mathbb{R}^n$?

LP inequality form

another common form for LP is inequality form

minimize
$$c^T x$$

subject to $Ax \le b$

how to transform to standard form?

- ▶ inequality constraints $Ax \le b$? slack variables $s \ge 0$
- free variable $x \in \mathbf{R}^n$? split into positive and negative parts

we will see later that these forms are also related by duality

LP example: production planning

- \triangleright x_i units of product i
- $ightharpoonup c_i$ cost per unit
- $ightharpoonup a_{ii}$ amount of resource j used by product i
- \triangleright b_j amount of resource j available
- $ightharpoonup d_i$ demand for product i

```
minimize c^T x
subject to Ax \le b
0 \le x \le d
```

LP example: production planning

- \triangleright x_i units of product i
- $ightharpoonup c_i$ cost per unit
- $ightharpoonup a_{ij}$ amount of resource j used by product i
- \triangleright b_j amount of resource j available
- $ightharpoonup d_i$ demand for product i

minimize	$c^T x$
subject to	$Ax \leq b$
	$0 \le x \le a$

extensions:

► fixed cost for producing product *i* at all?

LP example: production planning

- \triangleright x_i units of product i
- c_i cost per unit
- $ightharpoonup a_{ij}$ amount of resource j used by product i
- \triangleright b_j amount of resource j available
- $ightharpoonup d_i$ demand for product i

minimize	$c^T x$
subject to	$Ax \leq b$
	$0 \le x \le c$

extensions:

• fixed cost for producing product i at all? $c^Tx + f^Tz$, $z_i \in \{0, 1\}$, $x_i \leq Mz_i$ for M large

minimize
$$c^T x$$

subject to $Ax \le b$

 $ightharpoonup Ax \leq b$ defines a **polyhedron**

minimize
$$c^T x$$

subject to $Ax \le b$

- $ightharpoonup Ax \leq b$ defines a **polyhedron**
- ▶ \implies feasible set $P = \{x : Ax \le b\}$ is a polyhedron

minimize
$$c^T x$$

subject to $Ax \le b$

- $ightharpoonup Ax \leq b$ defines a **polyhedron**
- $\blacktriangleright \implies$ feasible set $P = \{x : Ax \le b\}$ is a polyhedron
- \triangleright x is a **vertex** of polyhedron P if there is some v so that

$$v^T x < v^T y, \qquad \forall y \in P \setminus \{x\}$$

minimize
$$c^T x$$

subject to $Ax \le b$

- $ightharpoonup Ax \leq b$ defines a **polyhedron**
- $\blacktriangleright \implies$ feasible set $P = \{x : Ax \le b\}$ is a polyhedron
- \triangleright x is a **vertex** of polyhedron P if there is some v so that

$$v^T x < v^T y, \qquad \forall y \in P \setminus \{x\}$$

fact: vertex ←⇒ extreme point

minimize
$$c^T x$$

subject to $Ax \le b$

fact: if a solution exists and the feasible set has an extreme point, then some extreme point of the feasible set is optimal

minimize
$$c^T x$$

subject to $Ax \le b$

fact: if a solution exists and the feasible set has an extreme point, then some extreme point of the feasible set is optimal

cases: solution x^* is unique / not unique

minimize
$$c^T x$$

subject to $Ax \le b$

fact: if a solution exists and the feasible set has an extreme point, then some extreme point of the feasible set is optimal

cases: solution x^* is unique / not unique

▶ unique: so $c^T x < c^T y$ for all $y \in P \setminus \{x\}$

minimize
$$c^T x$$

subject to $Ax \le b$

fact: if a solution exists and the feasible set has an extreme point, then some extreme point of the feasible set is optimal

cases: solution x^* is unique / not unique

- ▶ unique: so $c^T x < c^T y$ for all $y \in P \setminus \{x\}$
- ▶ not unique: $\{X^*: c^Tx = c^Tx^*, x \in P\}$ is a polyhedron. It is not empty (a solution exists) and its complement is not empty (optimal value is bounded). So, it has at least one vertex. That vertex is also a vertex of P.

define: $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) if there is a set $S \subset \{1, ..., n\}$ of m columns so that A_S is invertible and

$$x_{\mathcal{S}}=A_{\mathcal{S}}^{-1}b, \qquad x_{\bar{\mathcal{S}}}=0, \qquad x\geq 0.$$

- $ightharpoonup A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ BFS ⇔ extreme point
- lacktriangle two BFS with S, S' are neighbors if they share m=1 columns: $|S\cap S'|=m-1$

define: $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) if there is a set $S \subset \{1, ..., n\}$ of m columns so that A_S is invertible and

$$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \geq 0.$$

- $ightharpoonup A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ BFS ⇔ extreme point
- ▶ two BFS with S, S' are neighbors if they share m=1 columns: $|S \cap S'| = m-1$

define: active set is set of nonzero variables in x

define: $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) if there is a set $S \subset \{1, ..., n\}$ of m columns so that A_S is invertible and

$$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \geq 0.$$

- $ightharpoonup A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ BFS ⇔ extreme point
- ▶ two BFS with S, S' are neighbors if they share m=1 columns: $|S \cap S'| = m-1$

define: active set is set of nonzero variables in x

Q: how to find a BFS?

define: $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) if there is a set $S \subset \{1, ..., n\}$ of m columns so that A_S is invertible and

$$x_{\mathcal{S}}=A_{\mathcal{S}}^{-1}b, \qquad x_{\bar{\mathcal{S}}}=0, \qquad x\geq 0.$$

- $ightharpoonup A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ BFS ⇔ extreme point
- ▶ two BFS with S, S' are neighbors if they share m=1 columns: $|S \cap S'| = m-1$

define: active set is set of nonzero variables in x

Q: how to find a BFS?

A: start at a feasible point; move in a **feasible direction** until you hit another constraint; continue until you reach a BFS

Outline

Solving LPs

algorithms:

- enumerate all vertices and check
- ▶ fourier-motzkin elimination
- simplex method
- ellipsoid method
- ▶ interior point methods
- ► first-order methods
- **.**..

Solving LPs

algorithms:

- enumerate all vertices and check
- fourier-motzkin elimination
- simplex method
- ellipsoid method
- interior point methods
- first-order methods
- **.**..

remarks:

- enumeration and elimination are simple but not practical
- simplex was the first practical algorithm; still used today
- ellipsoid method is the first polynomial-time algorithm; not practical
- ▶ interior point methods are polynomial-time and practical
- first-order methods are practical and scale to large problems

Discuss: how to solve LPs?

write down a method to solve LPs; discuss in groups.

- ▶ idea
- math
- pseudocode

complete https://forms.gle/JbP2fLd6cRVbNUoW9 when you're ready (and before Friday noon) (link also available from course schedule)

Enumerate vertices of LP

can generate all extreme points of LP: for each $S \subseteq \{1, \ldots, n\}$ with |S| = m,

- ▶ $A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{S}} = 0$
- ightharpoonup if $x_S \ge 0$, then x is a BFS
- ightharpoonup evaluate objective $c^T x$

the best BFS is optimal!

Enumerate vertices of LP

can generate all extreme points of LP: for each $S \subseteq \{1, \ldots, n\}$ with |S| = m,

- $ightharpoonup A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{S}} = 0$
- ightharpoonup if $x_S \ge 0$, then x is a BFS
- ightharpoonup evaluate objective $c^T x$

the best BFS is optimal!

problem: how many BFSs are there?

Enumerate vertices of LP

can generate all extreme points of LP: for each $S \subseteq \{1, \ldots, n\}$ with |S| = m,

- $ightharpoonup A_S \in \mathbf{R}^{m \times m}$, submatrix of A with columns in S, is invertible
- ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{S}} = 0$
- ightharpoonup if $x_S \ge 0$, then x is a BFS
- \triangleright evaluate objective $c^T x$

the best BFS is optimal!

problem: how many BFSs are there? n choose m is $\binom{n}{m} = \frac{n!}{m!(n-m)!}$ ("exponentially many")

Simplex algorithm

basic idea: local search on the vertices of the feasible set

- \triangleright start at BFS x and evaluate objective c^Tx
- \blacktriangleright move to a neighboring BFS x' with better objective c^Tx'
- repeat until no improvement possible

Simplex algorithm

basic idea: local search on the vertices of the feasible set

- \triangleright start at BFS x and evaluate objective $c^T x$
- ightharpoonup move to a neighboring BFS x' with better objective c^Tx'
- repeat until no improvement possible

discuss in groups:

- how to find an initial BFS?
- how to find a neighboring BFS with better objective?
- how to prove optimality?

Finding an initial BFS

solve an auxiliary problem for which a BFS is known:

minimize
$$\sum_{i=1}^{m} z_i$$
 subject to
$$Ax + Dz = b$$
$$x, z \ge 0$$

where $D \in \mathbf{R}^{m \times m}$ is a diagonal matrix with $D_{ii} = \mathbf{sign}(b_i)$ for $i = 1, \dots, m$.

- ightharpoonup x = 0, z = |b| is a BFS of this problem
- \blacktriangleright (x,z)=(x,0) is a BFS of this problem $\iff x$ is a BFS of the original problem

start with BFS x with active set S and turn on variable $j \notin S$

$$x^+ \leftarrow x + \theta d, \qquad \theta > 0$$

where $d_j = 1$ and $d_i = 0$ for $i \notin S \cup \{j\}$. need to solve for d_S .

start with BFS x with active set S and turn on variable $j \notin S$

$$x^+ \leftarrow x + \theta d, \qquad \theta > 0$$

where $d_j = 1$ and $d_i = 0$ for $i \notin S \cup \{j\}$. need to solve for d_S .

need to stay feasible wrt equality constraints, so

$$Ax = b$$
, $A(x + \theta d) = b$, $\Longrightarrow Ad = 0$

start with BFS x with active set S and turn on variable $j \notin S$

$$x^+ \leftarrow x + \theta d, \qquad \theta > 0$$

where $d_i = 1$ and $d_i = 0$ for $i \notin S \cup \{j\}$. need to solve for d_S .

need to stay feasible wrt equality constraints, so

$$Ax = b$$
, $A(x + \theta d) = b$, $\Longrightarrow Ad = 0$

construct the jth basic direction

$$Ad = A_S d_S + A_j = 0 \implies d_S = -A_S^{-1} A_j$$

start with BFS x with active set S and turn on variable $j \notin S$

$$x^+ \leftarrow x + \theta d, \qquad \theta > 0$$

where $d_i = 1$ and $d_i = 0$ for $i \notin S \cup \{j\}$. need to solve for d_S .

need to stay feasible wrt equality constraints, so

$$Ax = b$$
, $A(x + \theta d) = b$, $\Longrightarrow Ad = 0$

construct the jth basic direction

$$Ad = A_S d_S + A_j = 0 \implies d_S = -A_S^{-1} A_j$$

▶ if $x_S > 0$ is **non-degenerate**, then $\exists \theta > 0$ st $x^+ \ge 0$

start with BFS x with active set S and turn on variable $j \notin S$

$$x^+ \leftarrow x + \theta d, \qquad \theta > 0$$

where $d_i = 1$ and $d_i = 0$ for $i \notin S \cup \{j\}$. need to solve for d_S .

need to stay feasible wrt equality constraints, so

$$Ax = b$$
, $A(x + \theta d) = b$, $\Longrightarrow Ad = 0$

construct the jth basic direction

$$Ad = A_S d_S + A_j = 0 \implies d_S = -A_S^{-1} A_j$$

- ▶ if $x_S > 0$ is **non-degenerate**, then $\exists \theta > 0$ st $x^+ \geq 0$
- how does objective change?

$$c^T x^+ = c^T x + \theta c^T d = c^T x + \theta c_j - \theta c_s^T A_s^{-1} A_j$$

Reduced cost

define **reduced cost** $\bar{c}_j = c_j - c_S^T A_S^{-1} A_j$, $j \notin S$

Reduced cost

define **reduced cost**
$$\bar{c}_j = c_j - c_S^T A_S^{-1} A_j$$
, $j \notin S$

fact:

- ightharpoonup if $\bar{c} \geq 0$, x is optimal
- if x is optimal and nondegenerate $(x_S > 0)$, then $\bar{c} \ge 0$

Outline

Why duality?

- certify optimality
 - ► turn ∀ into ∃
 - use dual lower bound to derive stopping conditions
- new algorithms based on the dual
 - solve dual, then recover primal solution

Duality notation

▶ inner product

$$y^T x = \langle y, x \rangle = y \cdot x = \sum_{i=1}^n y_i x_i$$

conjugate

$$\langle y, Ax \rangle = \langle A^T y, x \rangle$$

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, exactly one of the following is true:

- ▶ there exists $x \in \mathbb{R}^n$ so that Ax = b and $x \ge 0$
- there exists $y \in \mathbf{R}^m$ so that $A^T y \ge 0$ and $\langle b, y \rangle < 0$

⇒ can efficiently certify infeasibility of a linear program

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, exactly one of the following is true:

- ▶ there exists $x \in \mathbb{R}^n$ so that Ax = b and $x \ge 0$
- ▶ there exists $y \in \mathbf{R}^m$ so that $A^T y \ge 0$ and $\langle b, y \rangle < 0$

⇒ can efficiently certify infeasibility of a linear program

proof: suppose we have $x \in \mathbb{R}^n$ so that Ax = b and $x \ge 0$. then for any $y \in \mathbb{R}^m$,

$$0 = \langle y, b - Ax \rangle = \langle y, b \rangle - \langle A^T y, x \rangle$$
$$\langle y, b \rangle = \langle A^T y, x \rangle$$

so if $A^T y \ge 0$, then use $x \ge 0$ to conclude $\langle y, b \rangle \ge 0$.

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, exactly one of the following is true:

- ▶ there exists $x \in \mathbb{R}^n$ so that Ax = b and $x \ge 0$
- there exists $y \in \mathbf{R}^m$ so that $A^T y \ge 0$ and $\langle b, y \rangle < 0$

⇒ can efficiently certify infeasibility of a linear program

proof: suppose we have $x \in \mathbb{R}^n$ so that Ax = b and $x \ge 0$. then for any $y \in \mathbb{R}^m$,

$$0 = \langle y, b - Ax \rangle = \langle y, b \rangle - \langle A^T y, x \rangle$$
$$\langle y, b \rangle = \langle A^T y, x \rangle$$

so if $A^Ty \ge 0$, then use $x \ge 0$ to conclude $\langle y, b \rangle \ge 0$. (opposite direction is similar)

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$ (\mathcal{P})

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$ for $y \in \mathbf{R}^m$.

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$ for $y \in \mathbf{R}^m$. define the **Lagrangian**

$$\mathcal{L}(x,y) := c^T x - \langle y, Ax - b \rangle$$

 (\mathcal{P})

primal problem with solution $x^* \in \mathbb{R}^n$, optimal value p^* :

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x \ge 0$ (\mathcal{P})

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$ for $y \in \mathbb{R}^m$. define the **Lagrangian**

$$\mathcal{L}(x,y) := c^{T}x - \langle y, Ax - b \rangle$$

$$p^{*} = \inf_{x:Ax = b, x \geq 0} \mathcal{L}(x,y) \geq \inf_{x \geq 0} \mathcal{L}(x,y)$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$c^T x$$

subject to $Ax = b$: dual y
 $x > 0$ (\mathcal{P})

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$ for $y \in \mathbf{R}^m$. define the **Lagrangian**

$$\mathcal{L}(x,y) := c^{T}x - \langle y, Ax - b \rangle$$

$$p^{*} = \inf_{\substack{x:Ax = b, \ x \geq 0}} \mathcal{L}(x,y) \geq \inf_{\substack{x \geq 0}} \mathcal{L}(x,y)$$

$$= \inf_{\substack{x \geq 0}} c^{T}x + \langle y, b - Ax \rangle$$

$$= \langle y, b \rangle + \inf_{\substack{x \geq 0}} \left(c^{T}x - \langle A^{T}y, x \rangle \right)$$

$$= \langle y, b \rangle + \inf_{\substack{x \geq 0}} \left(\langle c - A^{T}y, x \rangle \right)$$

Lagrange duality, ctd

we have a lower bound on p^* for any y, and a useful one whenever $c + A^T y = 0$. maximize bound:

$$p^* \geq \begin{array}{ll} \text{maximize} & \langle y, b \rangle \\ \text{subject to} & A^T y \leq c \\ \text{variable} & y \in \mathbf{R}^m \end{array}$$

define the dual function

$$g(y) = \begin{cases} \langle y, b \rangle & A^T y \leq c \\ -\infty & otherwise \end{cases}$$

weak duality asserts that $p^* \ge g(y)$ for all $y \in \mathbf{R}^m$.

$$p^* \geq g(y) \quad \forall y \in \mathbf{R}^m$$

 $\geq \sup_{\mathcal{D}} g(y) =: d^*$

 $p^{\star} \geq d^{\star}$ dual optimal value

Strong duality

Definition (Duality gap)

The **duality gap** for a primal-dual pair (x, y) is $c^T x - b^T y \ge 0$

by weak duality, duality gap is always nonnegative

Strong duality

Definition (Duality gap)

The duality gap for a primal-dual pair (x, y) is $c^T x - b^T y \ge 0$

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x^*, y^*) satisfies **strong duality** if

$$p^{\star} = d^{\star} \iff c^{T}x - b^{T}y = 0$$

Strong duality

Definition (Duality gap)

The **duality gap** for a primal-dual pair (x, y) is $c^T x - b^T y \ge 0$

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x^*, y^*) satisfies **strong duality** if

$$p^* = d^* \iff c^T x - b^T y = 0$$

strong duality holds

- ▶ for feasible I Ps
- (later) for convex problems under constraint qualification aka Slater's condition. feasible region has an interior point x so that all inequality constraints hold strictly

strong duality fails if either primal or dual problem is infeasible or unbounded

Strong duality for LPs

primal and dual LP in standard form:

minimize
$$c^T x$$

subject to $Ax = b$
 $x > 0$

maximize $b^T y$
subject to $A^T y \le c$

claim: if primal LP has a bounded feasible solution x^* , then strong duality holds *i.e.*, dual LP has a bounded feasible solution y^* and $p^* = d^*$

Proof of strong duality for LPs

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

Proof of strong duality for LPs

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

claim: this system has no solution. pf by contradiction:

- ▶ if $\tau > 0$, then x'/τ is feasible for LP and $c^T x'/\tau < p^*$
- lacktriangle if au=0, then $x^\star+x'$ is feasible for LP and $c^T(x^\star+x')< p^\star$

Proof of strong duality for LPs

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

claim: this system has no solution. pf by contradiction:

- ▶ if $\tau > 0$, then x'/τ is feasible for LP and $c^T x'/\tau < p^*$
- if $\tau = 0$, then $x^* + x'$ is feasible for LP and $c^T(x^* + x') < p^*$

so use Farkas' lemma:

$$Ax + b = 0, x \ge 0$$
 or $A^T y \ge 0, b^T y < 0$

Proof of strong duality for LPs

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

claim: this system has no solution. pf by contradiction:

- ▶ if $\tau > 0$, then x'/τ is feasible for LP and $c^T x'/\tau < p^*$
- if $\tau = 0$, then $x^* + x'$ is feasible for LP and $c^T(x^* + x') < p^*$

so use Farkas' lemma:

$$Ax + b = 0, \ x \ge 0 \qquad \text{or} \qquad A^T y \ge 0, \quad b^T y < 0$$

$$\begin{bmatrix} A & -b \\ c^T & -p^* \end{bmatrix} \begin{bmatrix} x \\ \tau \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \qquad \text{or} \qquad \begin{bmatrix} A^T & c \\ -b^T & -p^* \end{bmatrix} \begin{bmatrix} y \\ \sigma \end{bmatrix} \ge 0, \ \sigma > 0$$

Proof of strong duality for LPs

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

claim: this system has no solution. pf by contradiction:

- ▶ if $\tau > 0$, then x'/τ is feasible for LP and $c^T x'/\tau < p^*$
- if $\tau = 0$, then $x^* + x'$ is feasible for LP and $c^T(x^* + x') < p^*$

so use Farkas' lemma:

$$Ax + b = 0, \ x \ge 0$$
 or $A^T y \ge 0, \ b^T y < 0$

$$\begin{bmatrix} A & -b \\ c^T & -p^* \end{bmatrix} \begin{bmatrix} x \\ \tau \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
 or $\begin{bmatrix} A^T & c \\ -b^T & -p^* \end{bmatrix} \begin{bmatrix} y \\ \sigma \end{bmatrix} \ge 0, \ \sigma > 0$

use second system to show y/σ is dual feasible and optimal

Outline

Duality as stopping condition

want to optimize until **primal suboptimality** $p^* - c^T x \ge 0$ or **dual suboptimality** $d^* - b^T y \ge 0$ are small enough. how?

Duality as stopping condition

want to optimize until **primal suboptimality** $p^* - c^T x \ge 0$ or **dual suboptimality** $d^* - b^T y \ge 0$ are small enough. how?

duality gap $c^Tx - b^Ty \ge 0$ bounds both!

for x feasible, y dual feasible,

$$c^T x \ge c^T x^* \ge b^T y^* \ge b^T y$$

How to use duality to estimate sensitivity?

primal and dual LP in standard form:

$$p^* = \begin{array}{ll} \min & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array} \qquad d^* = \begin{array}{ll} \max & b^T y \\ \text{subject to} & A^T y \le c \end{array}$$

optimal primal and dual solution x^* , y^*

perturbed problem: primal and dual LP in standard form:

$$ilde{p}^{\star} = egin{array}{ll} \min & c^T x \\ \text{subject to} & Ax = b + \epsilon \\ & x \geq 0 \end{array} \qquad ilde{d}^{\star} = egin{array}{ll} \max & (b + \epsilon)^T y \\ \text{subject to} & A^T y \leq c \end{array}$$

How to use duality to estimate sensitivity?

primal and dual LP in standard form:

$$p^* = \begin{array}{ll} \min & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array} \qquad d^* = \begin{array}{ll} \max & b^T y \\ \text{subject to} & A^T y \le c \end{array}$$

optimal primal and dual solution x^* , y^* perturbed problem: primal and dual LP in standard form:

 y^* is feasible for perturbed problem, so

$$\tilde{p}^{\star} = \tilde{d}^{\star} \ge (b + \epsilon)^T y^{\star} = d^{\star} + \epsilon^T y^{\star}$$

Outline

primal and dual LP, $A \in \mathbb{R}^{m \times n}$, $n \gg m$:

minimize
$$c^T x$$

subject to $Ax = b$ $\leftrightarrow^{\text{dual}}$ maximize $b^T y$
subject to $A^T y \leq c$

primal and dual LP, $A \in \mathbf{R}^{m \times n}$, $n \gg m$:

minimize
$$c^T x$$

subject to $Ax = b$ $\leftrightarrow^{\text{dual}}$ maximize $b^T y$
subject to $A^T y \leq c$

approximate by using $S \subset \{1, \ldots, n\}$: fewer variables (primal) or constraints (dual)

minimize
$$c_s^T x_S$$

subject to $A_S x_S = b$ \longleftrightarrow maximize $b^T y$
subject to $A_S^T y \le c_S$

primal and dual LP, $A \in \mathbf{R}^{m \times n}$, $n \gg m$:

minimize
$$c^T x$$

subject to $Ax = b$ $\leftrightarrow^{\text{dual}}$ maximize $b^T y$
subject to $A^T y \le c$

approximate by using $S \subset \{1, \ldots, n\}$: fewer variables (primal) or constraints (dual)

minimize
$$c_s^T x_S$$

subject to $A_S x_S = b$ \longleftrightarrow maximize $b^T y$
subject to $A_S^T y \le c_S$

if x_S is optimal for \mathcal{P}_S and reduced cost $\bar{c} \geq 0$, then x_S is optimal for \mathcal{P}

if y is optimal for \mathcal{D}_S and feasible for \mathcal{D} , then y is optimal for \mathcal{D}

primal and dual LP, $A \in \mathbf{R}^{m \times n}$, $n \gg m$:

minimize
$$c^T x$$

subject to $Ax = b$ $\leftrightarrow^{\text{dual}}$ maximize $b^T y$
subject to $A^T y \leq c$

approximate by using $S \subset \{1, \ldots, n\}$: fewer variables (primal) or constraints (dual)

minimize
$$c_s^T x_S$$

subject to $A_S x_S = b$ \longleftrightarrow maximize $b^T y$
subject to $A_S^T y \le c_S$

if x_S is optimal for \mathcal{P}_S and reduced cost $\bar{c} \geq 0$, then x_S is optimal for \mathcal{P} otherwise?

if y is optimal for $\mathcal{D}_{\mathcal{S}}$ and feasible for \mathcal{D} , then y is optimal for \mathcal{D}

47 / 51

primal and dual LP, $A \in \mathbf{R}^{m \times n}$, $n \gg m$:

minimize
$$c^T x$$

subject to $Ax = b$ $\leftrightarrow^{\text{dual}}$ maximize $b^T y$
subject to $A^T y \leq c$

approximate by using $S \subset \{1, \ldots, n\}$: fewer variables (primal) or constraints (dual)

minimize
$$c_s^T x_S$$

subject to $A_S x_S = b$ \longleftrightarrow maximize $b^T y$
subject to $A_S^T y \le c_S$

if x_S is optimal for \mathcal{P}_S and reduced cost $\bar{c} \geq 0$, then x_S is optimal for \mathcal{P}

ost if y is optimal for \mathcal{D}_S and feasible for \mathcal{D} , then y is optimal for \mathcal{D}

otherwise? find i with $\bar{c}_i = c_i - c_S^T A_S^{-1} a_i < 0$ (primal) or $a_i^T y > c_i$ (dual) and add to S

primal and dual LP, $A \in \mathbf{R}^{m \times n}$, $n \gg m$:

minimize
$$c^T x$$

subject to $Ax = b$ $\leftrightarrow^{\text{dual}}$ maximize $b^T y$
subject to $A^T y \le c$

approximate by using $S\subset\{1,\ldots,n\}$: fewer variables (primal) or constraints (dual)

minimize
$$c_s^T x_S$$

subject to $A_S x_S = b$ $\leftrightarrow^{\text{dual}}$ maximize $b^T y$
subject to $A_S^T y \leq c_S$

if x_S is optimal for \mathcal{P}_S and reduced cost if y is optimal for \mathcal{D}_S and feasible for \mathcal{D} , $\bar{c} \geq 0$, then x_S is optimal for \mathcal{P} then y is optimal for \mathcal{D} otherwise? find i with $\bar{c}_i = c_i - c_S^T A_S^{-1} a_i < 0$ (primal) or $a_i^T y > c_i$ (dual) and add to S

if dual constraints are all binding, $A_S^T y = c_S$, so these conditions are the same!

Presolve

Often many constraints are redundant or can be simplified. example:

$$\begin{array}{ll} \text{minimize} & x_3\\ \text{subject to} & x_1=1\\ & x_2=x_3-x_1\\ & x_3-x_2\geq 0\\ & x\geq 0 \end{array}$$

a good presolve can often reduce problem from 1000s of variables and constraints down to 10s!

reference: Achterberg, Tobias, et al. "Presolve reductions in mixed integer programming." INFORMS Journal on Computing 32.2 (2020): 473-506.

Outline

MILP solution vs LP solution

mixed-integer linear program (MILP):

minimize
$$c^T x$$
 minimize $c^T x$ subject to $Ax + Bz = b$ $x \ge 0, z \ge 0 \in \mathbb{Z}$ minimize $c^T x$ subject to $Ax + Bz = b$ $x, z \ge 0$

MILP solution vs LP solution

mixed-integer linear program (MILP):

$$\begin{array}{lll} \text{minimize} & c^Tx & \text{minimize} & c^Tx \\ \text{subject to} & Ax+Bz=b & \rightarrow^{\mathsf{relax}} & \mathsf{subject to} & Ax+Bz=b \\ & x \geq 0, z \geq 0 \in \mathbb{Z} & & x, z \geq 0 \end{array}$$

example:

$$\begin{array}{ll} \text{maximize} & x \\ \text{subject to} & x \leq z \\ & x \leq 1-z \\ & x \geq 0, z \in \{0,1\} \end{array}$$

MILP solution vs LP solution

mixed-integer linear program (MILP):

$$\begin{array}{lll} \text{minimize} & c^Tx & \text{minimize} & c^Tx \\ \text{subject to} & Ax+Bz=b & \rightarrow^{\mathsf{relax}} & \mathsf{subject to} & Ax+Bz=b \\ & x \geq 0, z \geq 0 \in \mathbb{Z} & & x, z \geq 0 \end{array}$$

example:

$$\begin{array}{ll} \text{maximize} & x \\ \text{subject to} & x \leq z \\ & x \leq 1-z \\ & x \geq 0, z \in \{0,1\} \end{array}$$

draw picture: where is solution of MILP? of LP relaxation?

Branch and bound

given MILP with integer variable z in rectangle R = (I, u), $I \le z \le u$, optimal value $p^*(R)$, solution $z^*(R)$

- ▶ solve LP relaxation to produce lower bound LB(R) $\leq p^*(R)$
- round z to nearest feasible integer z' to produce upper bound $UB(R) \ge p^{\ell}(R)$

Branch and bound

given MILP with integer variable z in rectangle R = (I, u), $I \le z \le u$, optimal value $p^*(R)$, solution $z^*(R)$

- ▶ solve LP relaxation to produce lower bound LB(R) $\leq p^{\star}(R)$
- round z to nearest feasible integer z' to produce upper bound $UB(R) \ge p^{\ell}(R)$

if
$$LB(R) = UB(R)$$
, then $p^*(R) = LB(R) = UB(R)$ and we are done.

Branch and bound

given MILP with integer variable z in rectangle R = (I, u), $I \le z \le u$, optimal value $p^*(R)$, solution $z^*(R)$

- ▶ solve LP relaxation to produce lower bound LB(R) $\leq p^{\star}(R)$
- round z to nearest feasible integer z' to produce upper bound $UB(R) \ge p^{\ell}(R)$

if LB(R) = UB(R), then $p^*(R) = \text{LB}(R) = \text{UB}(R)$ and we are done. otherwise, branch

- ▶ split R into two subrectangles $R_1 = (I_1, u_1)$, $R_2 = (I_2, u_2)$ so that $\mathbb{Z} \cap R = (\mathbb{Z} \cap R_1) \cup (\mathbb{Z} \cap R_2)$
- \triangleright compute bounds LB(R_1), UB(R_1), LB(R_2), UB(R_2)
- $ightharpoonup R \subset R_1 \cup R_2 \text{ so } \mathsf{LB}(R) \leq \mathsf{min}(\mathsf{LB}(R_1), \mathsf{LB}(R_2))$
- ▶ keep best solution so far $UB \leftarrow min(UB, UB(R_1), UB(R_2))$
- ightharpoonup prune: eliminate rectangle from consideration if LB(R) > UB

draw picture in 2D