Übungen zur Vorlesung Differentialgeometrie II

Blatt 1

Aufgabe 1. (4 Punkte)

Bestimme auf dem durch die Gleichung

$$\beta(x^2 + y^2) = z^2$$

mit $z \neq 0$ und $\beta > 0$ im \mathbb{R}^3 definierten Kegel Geodätische, die keine Geradenstücke sind. Benutze dabei eine lokale Isometrie zu \mathbb{R}^2 für eine Vermutung über das Aussehen dieser Geodätischen.

Aufgabe 2 (Existenz und Eindeutigkeit maximaler Geodätischen). (4 Punkte) Formuliere und beweise Theorem 13.5 für höhere Kodimensionen.

Aufgabe 3 (Geodätisch vollständige Untermannigfaltigkeiten). (4 Punkte) Formuliere und beweise Theorem 13.9 für höhere Kodimensionen.

Aufgabe 4. (4 Punkte)

Geodätische auf der \mathbb{S}^2 sind gegeben durch

$$\alpha_{\varphi}(t) = (\cos t, \sin t \cos \varphi, \sin t \sin \varphi).$$

Zeige, dass die Parallelverschiebung von $X(0)=e_3$ entlang α_{φ} von φ abhängt.

Abgabe: Bis Donnerstag, 26.04.2018, 10.00 Uhr, in die Mappe vor Büro F 402.