

Pertemuan ke-12: LUAS DAN GARIS SINGGUNG DALAM KOORDINAT POLAR

Departemen Matematika FMIPA IPB

Bogor, 2017

Garis Singgung

• Untuk menentukan garis singgung pada kurva polar $r=f\left(\theta\right)$, kita anggap θ sebagai parameter dan menulis persamaan parametriknya sebagai

$$x = r\cos\theta = f(\theta)\cos\theta$$

 $y = r\sin\theta = f(\theta)\sin\theta$.

 Dengan metode penentuan kemiringan garis singgung m pada kurva parametrik kita peroleh

$$m = \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}.$$

- Kurva mempunyai garis singgung horizontal di titik dengan $dy/d\theta = 0$, asalkan $dx/d\theta \neq 0$.
- Kurva mempunyai garis singgung vertikal di titik dengan $dx/d\theta = 0$, asalkan $dy/d\theta \neq 0$.

Contoh

Diberikan kardioid $r = 1 + \sin \theta$.

- **1** Tentukan kemiringan garis singgungnya saat $\theta = \pi/3$.
- 2 Tentukan titik-titik pada kardioid tersebut di mana garis singgungnya horizontal atau vertikal.

Luas

Untuk menurunkan rumus luas daerah yang dibatasi kurva dalam persamaan polar, kita perlu menggunakan rumus luas sektor (juring) dari suatu lingkaran dengan jari-jari r, yaitu

$$L=\frac{1}{2}r^2\theta,$$

dengan θ adalah sudut pusat yang diukur dalam radian.

 Rumus ini didapat dari fakta bahwa luas sektor lingkaran adalah sebanding dengan sudut pusatnya. ■ Misalkan $\mathcal R$ adalah daerah yang dibatasi kurva polar $r=f(\theta)$ dan oleh dua garis $\theta=a$ dan $\theta=b$, di mana f adalah kontinu dan taknegatif serta $0 \le b-a \le 2\pi$.

• Kita bagi selang [a,b] menjadi n anak selang yang sama panjang, dengan titik-titik ujung $\theta_0, \theta_1, \ldots, \theta_n$, dan panjang masing-masing anak selang adalah $\Delta\theta$.

■ Dengan demikian, daerah \mathcal{R} juga terbagi menjadi n daerah bagian, yang masing-masing memiliki sudut pusat $\Delta\theta$.

- Kita pilih $\theta_i^* \in [\theta_{i-1}, \theta_i]$.
- Jika ΔL_i menyatakan luas daerah bagian ke-i, maka daerah ini dapat dihampiri dengan luas sektor lingkaran dengan jari-jari $f\left(\theta_i^*\right)$ dan sudut pusat $\Delta \theta$, yaitu

$$\Delta L_i \approx \frac{1}{2} \left(f\left(\theta_i^*\right) \right)^2 \Delta \theta$$

sehingga hampiran untuk total luas daerah ${\mathcal R}$ adalah

$$L \approx \sum_{i=1}^{n} \frac{1}{2} (f(\theta_i^*))^2 \Delta \theta.$$

- Perhatikan bahwa jumlah di atas adalah sebuah jumlah Riemann, dan nilai hampiran akan semakin mendekati luas daerah $\mathcal R$ jika $n o \infty$.
- lacktriangle Akhirnya, kita peroleh rumus untuk menentukan luas daerah ${\mathcal R}$ sebagai berikut

$$L = \int_{a}^{b} \frac{1}{2} (f(\theta))^{2} d\theta = \int_{a}^{b} \frac{1}{2} r^{2} d\theta.$$

Contoh

Tentukan luas daerah yang dibatasi oleh:

- **1** Satu daun dari mawar berdaun empat $r = 4 \sin{(2\theta)}$.
- 2 Limason $r = 2 + \cos \theta$.

Contoh

Tentukan luas daerah yang terletak di dalam lingkaran $r=3\cos\theta$ dan di luar kardioid $r=1+\cos\theta$.

Bahan Responsi

Soal

Tentukan kemiringan garis singgung pada kurva polar berikut di titik dengan nilai θ yang diberikan. Tentukan pola titik pada kurva tersebut di mana garis singgungnya horizontal atau vertikal.

- $1 r = 3\cos\theta, \quad \theta = \pi/3.$
- $r = \cos \theta + \sin \theta$, $\theta = \pi/4$.

Soal

Tentukan luas daerah yang dibatasi oleh

- 1 $r = 3 + \cos \theta$.
- $r = 4 4 \sin \theta$.
- $r = 4\cos(3\theta)$.
- $r^2 = 5\cos(2\theta)$.

Soal

Gambar limason $r = 3 - 6 \sin \theta$.

- 1 Tentukan luas daerah di dalam simpai yang kecil.
- 2 Tentukan luas daerah di dalam simpai yang besar dan di luar simpai yang kecil.

Tentang Slide

■ Penyusun: Dosen Departemen Matematika FMIPA IPB

■ Versi: 2017

■ Media Presentasi: LATEX - BEAMER (PDFLATEX)