Institutional Sign In

BROWSE MY SETTINGS GET HELP WHAT CAN I ACCESS? SUBSCRIBE

Browse Journals & Magazines > Solid-State Circuits, IEEE Jou ...

Solid-State Circuits, IEEE Journal of

Popular

Early Access

Current Issue

Past Issues

About Journal

Submit Your Manuscript

Popular Articles (December 2014)

Includes the top 50 most frequently downloaded documents for this publication according to the most recent monthly usage statistics.

37. A LDO Regulator With Weighted Current Feedback Technique for 0.47 nF–10 nF Capacitive Load	1
Xiao Liang Tan ; Sau Siong Chong ; Pak Kwong Chan ; Dasgupta, U. Page(s): 2658 - 2672	
I	
38. A low-power low-noise CMOS amplifier for neural recording applications Harrison, R.R.; Charles, C.	
Page(s): 958 - 965	
I	
39. A 79 GHz Phase-Modulated 4 GHz-BW CW Radar Transmitter in 28 nm CMOS	
Giannini, V. ; Guermandi, D. ; Qixian Shi ; Medra, A. ; Van Thillo, W. ; Bourdoux, A. ; Wambacq, P. Page(s): 2925 - 2937	
I	
40. A Minimally Invasive 64-Channel Wireless μECoG Implant	i i
Muller, R.; Le, HP.; Li, W.; Ledochowitsch, P.; Gambini, S.; Bjorninen, T.; Koralek, A.; Carmena, J.M.; Maharbiz, M.M.; Alon, E.; Rabaey, J.M. Page(s): 344 - 359	
I	
41. A 69.5 mW 20 GS/s 6b Time-Interleaved ADC With Embedded Time-to-Digital Calibration in 32 nm CMOS SOI Chen, V.HC.; Pileggi, L.	
Page(s): 2891 - 2901	
I	
42. A 160 Channel QAM Modulator With 4.6 Gsps 14 Bit DAC McMahill, D.R.; Hurta, D.S.; Brandt, B.; Miaochen Wu; Kalthoff,	1
P.; Ostrem, G.S. Page(s): 2878 - 2890	
I	
43. Class E-A new class of high-efficiency tuned single- ended switching power amplifiers	1
Sokal, N.O. ; Sokal, A.D. Page(s): 168 - 176	
I	
44. A TDC-Free Mostly-Digital FDC-PLL Frequency Synthesizer With a 2.8–3.5 GHz DCO	
Venerus, C. ; Galton, I. Page(s): 1 - 14	
I	
45. A Fully Integrated SAR ADC Using Digital Correction Technique for Triple-Mode Mobile Transceiver	

Aims & Scope Meet Our Editors Further Links

The IEEE Journal of Solid-State Circuits publishes papers each month in the broad area of solid-state circuits with particular emphasis on transistor-level design of integrated circuits.

Editor-in-ChiefMichael Flynn
University of Michigan

IEEE Account

- » Change Username/Password
- » Update Address

Purchase Details

- » Payment Options
- » Order History
- » Access Purchased Documents

Profile Information

- » Communications Preferences
- » Profession and Education
- » Technical Interests

Need Help?

- » US & Canada: +1 800 678 4333
- » Worldwide: +1 732 981 0060
- » Contact & Support

About IEEE Xplore | Contact Us | Help | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology. © Copyright 2015 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.