(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 16 June 2005 (16.06.2005)

PCT

(10) International Publication Number WO 2005/054461 A2

(51) International Patent Classification7:

C12N 15/00

(21) International Application Number:

PCT/US2004/039805

(22) International Filing Date:

23 November 2004 (23.11.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/525,318 26 November 2003 (26.11.2003) LIS 60/542,520 6 February 2004 (06.02.2004) US 60/544,835 13 February 2004 (13.02.2004) US 60/547,933 26 February 2004 (26.02.2004) US

(71) Applicant (for all designated States except US): WHITE-HEAD INSTITUTE FOR BIOMEDICAL RESEARCH [US/US]; Nine Cambridge Center, Cambridge, MA 02142-1479 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): ODOM, Duncan, T. [US/US]; 48 JFK St. Apt. 20, Cambridge, MA 02138 (US). YOUNG, Richard, A. [US/US]; 216 Highland Street, Weston, MA 02193 (US).
- (74) Agents: GRANAHAN, Patricia et al.; Ropes & Gray LLP, One International Place, Boston, MA 02110-2624
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD. MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

[Continued on next page]

(54) Title: TRANSCRIPTIONAL REGULATORS AND METHODS THEREOF

(57) Abstract: The invention relates to transcriptional regulators and related methods thereof. The invention further relates to the identification of genes regulated by transcriptional regulators, to the treatment of diseases associated with abnormal function of a transcriptional regulator and to the modulation of gene expression, including genes expressed in hepatocytes or pancreatic cells, through the modulation of transcriptional regulator activity.

Pancreatic Islets

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Transcriptional Regulators and Methods Thereof

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of the filing date of U.S. Application No. 60/525318, filed November 26, 2003, entitled "CONTROL OF PANCREAS AND LIVER GENE EXPRESSION BY HNF TRANSCRIPTION FACTORS", U.S. Application No. 60/542520, filed February 6, 2004, entitled "CONTROL OF PANCREAS AND LIVER GENE EXPRESSION BY HNF TRANSCRIPTION FACTORS", U.S. Application No. 60/544835, filed February 13, 2004, entitled "CONTROL OF PANCREAS AND LIVER GENE EXPRESSION BY HNF TRANSCRIPTION FACTORS", and U.S. Application No. 60/547933, filed February 26, 2004, entitled "TRANSCRIPTIONAL REGULATORS AND METHODS THEREOF". The entire teachings of the referenced applications are incorporated by reference herein.

FUNDING

The invention described herein was supported, in whole or in part, by the U.S. Department of Energy Program for Computational Molecular Biology. The United States government has certain rights in the invention.

BACKGROUND OF THE INVENTION

Gene expression is controlled by transcriptional regulatory proteins, which bind specific DNA sequences and recruit cofactors and the transcription apparatus to promoters (1-3). The expression of transcriptional regulators themselves is also regulated by transcriptional regulators, and a single gene may be regulated by multiple transcription factors. As a result of these regulatory networks, or pathways, misregulation of a single transcriptional regulator in a cell can result in the aberrant expression of multiple genes in the network in which the transcriptional regulator is active, leading to disease in the organism.

Current methods of identifying the genes controlled by a transcriptional regulator typically include a comparison of the mRNA levels of candidate target in

cells which express the transcriptional regulator and control cells which either do not express it. Often, this involves overexpressing a recombinant transcriptional regulator in a given cell type and using, as a control cell, one which overexpresses a control recombinant protein or no recombinant protein at all. However, given to the artificial nature of using cell lines and overexpressing transgenes, the results obtained from such approaches may not reflect the in vivo regulation by native transcriptional regulators in an organism.

Genome-wide analysis methods have been used recently to determine how tagged transcriptional regulators encoded in Saccharomyces cerevisae are associated with the genome in living yeast cells and to model the transcriptional regulatory circuitry of these cells (4). These methods have also been used in human tissue culture cells to identify target genes for several transcriptional regulators (5-7).

15 However, the need remains to develop genome-scale analysis methods to determine how transcriptional regulators control the global gene expression programs that characterize specific tissues, and in particular, freshly isolated, primary tissues, in which the transcriptional regulators are likely to maintain their in vivo specificities. Furthermore, there is a need to identify the regulatory networks or pathways in which a given transcriptional activator acts, in part, to allow for the identification of therapeutic 20 targets for diseases caused by aberrant function of a transcriptional regulator.

SUMMARY OF THE INVENTION

5

10

30

In one aspect, the invention provides a method of identifying the genes regulated by a transcriptional regulator. One aspect of the invention provides a method 25 of determining which genes from a subset of genes are regulated by a transcriptional regulator in a cell, the method comprising (a) selectively isolating chromatin from a cell which expresses the transcriptional regulator to generate isolated chromatin; (b) selectively isolating chromatin fragments from the isolated chromatin to generate bound chromatin fragments, wherein the bound chromatin fragments are bound by the transcriptional regulator; (c) amplifying both the bound chromatin fragments to generate amplified chromatin fragments and the isolated chromatin to generate

amplified control chromatin; (d) hybridizing the amplified control chromatin and the amplified chromatin fragments to a DNA microarray, wherein the DNA microarray comprises (1) at least 10,000 experimental spots, each experimental spot comprising an experimental DNA, each experimental DNA comprising a promoter region from a gene in the subset; and (2) at least 100 control spots, each control spot comprising a control DNA, each control DNA comprising a non-promoter region; and (e) determining and comparing a hybridization signal at each of the spots on the microarray between those generated by (1) the amplified control chromatin; and (2) the amplified chromatin fragments; wherein a gene in the subset is said to be regulated by the transcriptional regulator in the cell if a spot comprising a promoter region of said gene displays a higher level of hybridization by the amplified chromatin fragments than by the amplified control chromatin.

In another aspect, the invention provides methods of identifying regulatory networks, or pathways, in a cell. The invention provides a method of identifying a transcriptional regulatory network in a cell, the method comprising determining if a transcriptional regulator regulates additional transcriptional regulators in the cell using the method of any of the methods described herein, wherein a transcriptional regulatory network is identified if at least one additional transcriptional regulator is regulated by the transcriptional regulator.

The invention also provides a method of identifying a transcriptional regulatory network in a cell, the method comprising determining if a transcriptional regulator regulates (i) its own promoter; or (ii) a promoter from a plurality of transcriptional regulators; using any of the methods described herein, wherein the experimental DNA comprises (a) a promoter from the transcriptional regulator; and (b) promoters from the plurality of transcriptional regulators; wherein a transcriptional regulatory network is identified if the transcriptional regulator regulates itself or if it regulates at least one of the plurality of transcriptional regulators.

30

25

5

10

15

20

The invention further provides a method of identifying transcriptional regulatory networks in a cell, the method comprising (a) determining, by repeating a

method of identifying the targets of transcriptional regulator for each of a plurality of transcriptional regulators, the genes in a subset which are regulated by each of the plurality of transcriptional regulators, wherein the experimental DNA comprises promoter regions for each of the plurality of transcriptional regulators; (b) determining if any one of the plurality of transcriptional regulators are regulated by at least one of the plurality of transcriptional regulators; wherein a transcriptional regulatory network is identified if any one of the plurality of transcriptional regulators is regulated by at least one of the plurality of transcriptional regulators.

The invention also provides a DNA microarray for determining promoter occupancy in a human cell, the microarray comprising (1) at least 10,000 experimental spots, each experimental spot comprising an experimental DNA, each experimental DNA comprising a promoter region from a human gene in the subset; and (2) at least 100 control spots, each control spot comprising a control DNA, each control DNA comprising a non-promoter region; wherein at least 75% of the promoter regions comprise from at least 700bp upstream to at least 200 bp downstream of the transcriptional start site.

Another aspect of the invention provides a method of estimating if a transcriptional regulator is a global transcriptional regulator, the method comprising (a) selectively isolating chromatin from a tissue; (b) identifying promoter regions from the chromatin which are bound by a candidate global transcriptional regulator; (c) identifying promoter regions from the chromatin which are bound by a member of the basal transcriptional machinery; and (d) comparing the promoter regions identified in steps (b) and (c) to determine the ratio between (i) the number of promoter regions bound by both the candidate global transcriptional regulator and the member of the basal transcriptional machinery; and (ii) the number of promoter regions bound by the member of the basal transcriptional machinery, wherein a transcriptional regulator is a global transcriptional regulator when the ratio is greater than 0.2.

30

25

5

10

15

20

The invention further provides methods of identifying targets for therapeutics. In one aspect, the invention provides a method of identifying at least one target gene for

the development of a therapeutic to treat or prevent a disorder in a subject, wherein at least one form of the disorder is caused by an altered activity in a transcriptional regulator or in a suspected transcriptional regulator, the method comprising (a) identifying the genes regulated by the transcriptional regulator in a cell; (b) determining if the transcriptional regulator is a broad-acting transcriptional regulator or a narrow-acting transcriptional regulator, wherein if the transcriptional regulator is a broad acting transcriptional regulator then the transcriptional regulator is a target gene for the development of a therapeutic, and wherein if the transcriptional regulator is a narrow acting transcriptional regulator then (i) determining if at least one gene regulated by the transcriptional regulator is likely causative in the disorder, wherein a gene that is likely causative in the disorder is a target gene for the development of a therapeutic; and (ii) reiterating steps (a) and (b) for at least one gene that is regulated by the transcriptional regulator in the cell and that either (1) encodes a transcriptional regulator or (2) is suspected to encode a transcriptional regulator, with the modification that the transcriptional regulator of steps (a) and (b) is said gene, thereby identifying at least one target gene for the development of a therapeutic to treat or prevent a disorder in the subject.

10

15

20

The invention also provides methods of treating or preventing disease. In one aspect, the invention provides a method of treating or preventing type II diabetes in a subject, comprising administering to the subject a therapeutically effective amount of an agent that increases the global transcriptional activity of HNF4alpha.

In another aspect, the invention provides a method of treating or preventing a

disorder associated with low transcriptional activity of HNF4alpha in a subject,
comprising administering to the subject a therapeutically effective amount of an agent
that increases the global transcriptional activity of HNF4alpha. A related aspect
provides a method of treating or preventing a disorder associated with high
transcriptional activity of HNF4alpha in a subject, comprising administering to the
subject a therapeutically effective amount of an agent that decreases the global
transcriptional activity of HNF4alpha.

The invention also provides a method of increasing the global transcriptional activity in a liver or a pancreatic cell comprising contacting the cell with an agent which increases the global transcriptional activity of HNF4alpha. A related aspect provides a method of decreasing the global transcriptional activity in a liver or a pancreatic cell comprising contacting the cell with an agent which decreases the global transcriptional activity of HNF4alpha.

One aspect of the invention provides methods of regulating the expression level of genes. On aspect provides a method of regulating the expression level of any one of the genes in Figure 13 in a hepatocyte, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF1 alpha. A related aspect provides a method of regulating the expression level of any one of the genes in Figure 14 in a pancreatic cell, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF1 alpha.

15

20

10

Another aspect of the invention provides a method of regulating the expression level of any one of the genes in Figure 16 in a hepatocyte, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF6. A related aspect provides a method of regulating the expression level of any one of the genes in Figure 17 in a pancreatic cell, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF6.

Yet another aspect of the invention provides a method of regulating the expression level of any one of the genes in Figure 18 in a hepatocyte, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF4alpha. A related aspect provides a method of regulating the expression level of any one of the genes in Figure 19 in a pancreatic cell, the method comprising contacting the cell with an agent which regulated the transcriptional activity of HNF4alpha.

30

25

The invention also provides methods for identifying transcriptionally active genes that are regulated by a transcriptional regulator in a cell. In one aspect, the

PCT/US2004/039805 WO 2005/054461

invention provides a method of identifying transcriptionally active genes that are regulated by a transcriptional regulator in a cell, the method comprising (a) selectively isolating chromatin from a tissue; (b) identifying promoter regions from the chromatin that are bound by the transcriptional regulator; (c) identifying promoter regions from the chromatin that are bound by a member of the basal transcriptional machinery; and (d) comparing the promoter regions identified in steps (b) and (c) to determine overlapping genes, wherein the overlapping genes are transcriptionally active genes regulated by the transcriptional regulator.

10 BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A-1C show genome-scale location analysis of HNF regulators in human tissues. (A) Hepatocytes and pancreatic islets were obtained from tissue distribution programs. These cells were treated with formaldehyde to covalently link transcription factors to DNA sites of interaction. Cells were harvested, and chromatin in cell lysates was sheared by sonication. The regulator-DNA complexes were enriched by chromatin immunoprecipitation with specific antibodies, the crosslinks were reversed, and enriched DNA fragments and control genomic DNA fragments were amplified using ligation-mediated PCR. The amplified DNA preparations, labeled with distinct fluorophores, were mixed and hybridized onto a promoter array. (B) Venn diagram showing the overlap of HNF1α, HNF6, and HNF4α bound promoters in hepatocytes (top) and pancreatic islets (bottom). (C) The collection of genes occupied by RNA polymerase II in hepatocytes is displayed as a circle, with the genes bound by HNF1α, HNF6, and HNF4α outlined collectively as a fraction of the chart. The relative contributions of HNF1α, HNF6, and HNF4α are shown as framing arcs.

25

30

20

5

15

Figures 2A-2B show transcriptional regulatory networks and motifs. (A) HNF1 α , HNF6, and HNF4 α are at the center of tissue-specific transcriptional regulatory networks. In these examples selected for illustration, regulatory proteins and their gene targets are represented as circles and boxes, respectively. Solid arrows indicate protein-DNA interactions, and genes encoding regulators are linked to their protein products by dashed lines. The HNF4a7 promoter, also known as the P2 promoter (24, 25), was recently implicated as a major human diabetes susceptibility locus (see text). (B)

Examples of regulatory network motifs in hepatocytes. For instance, in the multi-component loop, HNF1 α protein binds to the promoter of the HNF4 α gene, and the HNF4 α protein binds to the promoter of the HNF1 α gene. These network motifs were uncovered by searching binding data with various algorithms; for details on the algorithms used and a full list of motifs found, see (20).

Figure 3 shows one embodiment of a strategy for the identification of at least one target gene of a master regulator for the development of a therapeutic to treat or prevent a disorder.

10

30

Figure 4 shows a Venn diagram showing the overlap of two single, independent ChIP experiments using hepatocytes with anti-HNF4a antibodies sc-6556 and sc-8987.

Figure 5 shows a Western blot of HNF4a in HepG2 cells using 50 μg of cell lysate protein with Ab sc-6556. The lower running band is approximately 50 kDa, which is the canonical molecular weight for HNF4a, and the higher running band is the appropriate location for HNF4a dimer. A very similar gel showing HNF4a antibody specificity for sc-6556 is available at the Santa Cruz website (www.scbt.com).

Figures 6A-6D show scatterplots of attempted chromatin immunoprecipitations performed with the anti-HNF4a antibody sc-6556 using Jurkat (T-lymphocyte derived, 6A), BJ-T (foreskin fibroblast derived, 6B), and U937 (histocyte derived, 6C) cells. To demonstrate the noise inherent in the array analysis, applicants show a scatterplot of a sample of input DNA, split, labeled with the two fluorophores, and hybridized to an array (6D). Identical control experiments performed using the anti-HNF1a antibody sc-6547 afforded essentially identical results.

Figure 7 shows a scatterplot of a chromatin immunoprecipitation performed with preimmune commercial rabbit serum using hepatocytes (left). Goat pre-immune serum and two rabbit sera from different individuals gave a similar scatterplot. For comparison, applicants show the scatterplot for an equivalent ChIP with the anti-HNF4a antibody sc-6556 using hepatocytes (right).

Figure 8 shows a Venn diagram showing the overlap of the sets of promoters bound by HNF4α and RNA Pol II in hepatocytes and pancreatic islets.

5 Figure 9 shows a composite gel of gene-specific chromatin immunoprecipitation reactions using anti-HNF4α antibody sc-6556 with crosslinked human hepatocytes.

Figure 10 shows composite gel of gene-specific chromatin immunoprecipitation reactions using anti-HNF1α antibody sc-6547 with crosslinked human hepatocytes.

10

15

Figure 11 shows a partial list of proximal promoters occupied by of HNF1a in human hepatocytes and pancreatic islets. These genes were assigned to functional categories using the program ProtoGo; genes not in this automated GO ontology database were assigned using Locuslink information. Four genes are shown for each tissue/category combination; for some combinations, fewer than 4 promoters qualified as targets. Hypothetical and functionally uncharacterized genes are not shown. A complete list of targets is available in Figures 13 and 14.

Figure 12 shows Occupancy of BJ-T and tissue-specific promoter sets by HNF factors.

(*) Indicates that comparisons between BJ-T and primary tissues used only a subset of Hu13K array promoters, as RNA Pol II was profiled in BJ-T cells using a smaller, prototype array. The denominator in the above fractions represents the number of targets the HNF factor of interest occupied in the set of RNA Pol II occupied promoters that are either BJ-T specific or primary tissue specific.

25

Figure 13 shows HNF1 a bound promoters in hepatocytes

Figure 14 shows HNF1α bound promoters in pancreatic islets.

Figures 15A-15D show genes previously suggested to be regulated by HNF1a and HNF4a. 'Direct' binding is in vivo ChIP and in vivo footprinting, 'in vitro' binding is primarily gel mobility retardation assays and in vitro footprinting, and 'indirect' is

primarily transient transfections. 'Sequence-based' uses a number of different criteria to qualify binding. Note that some duplicate reports are omitted, as are a handful of recent large-scale screens, (e.g. Tronche 1997, Shih 2001, etc.).

5 Figure 16 shows HNF6 bound promoters in hepatocytes.

Figure 17 shows HNF6 bound promoters in pancreatic islets.

Figure 18A-18C show HNF4α bound promoters in hepatocytes.

10

15

20

25

Figures 19A-19C show HNF4α bound promoters in pancreatic islets.

Figures 20A-20B show the feed forward regulatory motifs in hepatocytes. The regulatory modules here were derived as described in exemplification. Feed forwards only involving HNF1a and HNF4a are also multi-input motifs, as they bind each other's promoters in a multicomponent loop.

Figures 21A-21B show multi-input motifs in hepatocytes. The regulatory modules here were derived as described in the exemplification. MIMs for the HNF6/HNF4a and HNF1a/HNF4a are listed in Figure 20 as feedforward motifs.

Figures 22A-22B show the feed forward regulatory motifs in pancreatic islets. The regulatory modules here were derived as described in Supporting Online Material. Feed forwards only involving HNF1a and HNF4a are also multiinput motifs, as they bind each other's promoters in a multicomponent loop.

Figures 23A-23B show multi-Input motifs in pancreatic islets. The regulatory modules here were derived as described in Supporting Online Material. MIMs for the HNF6/HNF4a and HNF1a/HNF4a are listed in Figure 22 as feedforward.

30

Figures 24A-24B show transcriptional regulators occupied by HNF1a and HNF4a. Network of DNA regulators downstream of HNF1a and HNF4a in hepatocytes and

islets. Target genes that are among the Gene Ontology "DNA-regulators" category were compiled, and are listed according to functional subcategory.

DETAILED DESCRIPTION OF THE INVENTION

5 I. Overview

10

15

20

25

30

In certain aspects, the invention provides methods related to transcriptional regulators. Some aspects of the invention provide methods for the identification of genes whose transcription is regulated by a specific transcriptional regulator in a cell. Some of these methods comprise determining the promoter occupancy of the transcriptional regulator using a combination of chromatin immunoprecipitation and/or DNA microarray analysis of the promoter regions that are physically associated with the transcriptional regulator in the cell. In some embodiments of the methods described herein, the DNA microarray comprises both experimental spots containing promoter DNA, and control spots containing non-promoter DNA. The methods described herein may be applied to any cell type, including transplant grade primary human tissue. Furthermore, the method described herein can be used to compare the function of transcriptional regulators across cell types, or across two populations, such as healthy and disease-afflicted subjects.

In a related aspect, the invention provides methods of identifying regulatory networks, or pathways. Some methods comprise identifying the transcriptional regulators which are regulated by a given transcriptional regulator, and optionally, determining the genes that are regulated by those transcriptional regulators. Pathways that may be identified using the methods described herein include autoregulatory, multicomponent, feed-forward, and multi-components loops, as well as regulatory chains.

The invention also provides methods of determining if a transcriptional regulator is a global transcriptional regulator. In some aspects, such methods comprise determining the promoter occupancy of both a transcriptional regulator and a member of the basal transcriptional machinery. Comparison of the promoter occupancy by the transcriptional regulator and by the member of the basal transcriptional machinery

allows the identification of transcriptionally active promoters that are bound and regulated by the transcription regulator. Other methods further comprise extrapolating from the set of promoters that were examined to the total number of promoters in the genome to determine the approximate number of transcriptionally active promoters in a cell that are under the control of a specific transcriptional factor or to determine if the transcriptional regulator is a global transcriptional regulator.

Other aspects of the invention provide methods of identifying therapeutic targets to treat disease. One specific aspect of the invention relates to identifying at least one target gene for the development of a therapeutic agent to treat or prevent a disorder in a subject, preferably a disorder in which at least one form of the disorder is caused by an altered activity in a transcriptional regulator or in a gene suspected to encode a transcriptional regulator. Some of the methods provided herein to identify therapeutic targets comprise determining if a transcriptional regulator implicated in the disease is a broad-acting or a narrow-acting transcriptional regulator, such as by identifying at least a subset of the genes that it regulates in a cell, wherein broad-acting transcriptional regulators are targets for therapeutic agents. If the transcriptional regulator is narrow-acting, then the genes that it regulates may be examined further to determine if any are broad-acting transcriptional regulators (for those genes encoding transcriptional regulators) or if any of the genes are causative to the disease state *i.e.* they regulate a pathway or network that is impaired in the disease state.

10

15

20

25

30

The invention further provides methods for the treatment of disease. Some aspects of the invention provide methods of treating metabolic disorders, such as type II diabetes. Specific aspects of the invention provide methods of treating or preventing type II diabetes in a subject by administering to the subject a therapeutically effective amount of an agent that increases the global transcriptional activity of $HNF4\alpha$. Furthermore, the invention provides methods for modulating the expression level of genes. Such methods are based, in part, on the finding by Applicants of genes which are transcriptionally regulated by $HNF1\alpha$, $HNF4\alpha$ or HNF6 in hepatocytes and pancreatic cells. In a related aspect, the invention provides methods of modulating and expression level of, and alleviating a disease state associated with the abnormal

expression of, the genes in Figures 13-19 by modulating the transcriptional activity or expression of HNF1 α , HNF4 α or HNF6. In specific embodiments, the expression of the genes is modulated in hepatocytes, pancreatic cells, or both.

5 II. Definitions

For convenience, certain terms employed in the specification, examples, and appended claims, are collected here. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

10

The articles "a" and "an" are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, "an element" means one element or more than one element.

15

The term "including" is used herein to mean, and is used interchangeably with. the phrase "including but not limited" to.

The term "or" is used herein to mean, and is used interchangeably with, the term "and/or," unless context clearly indicates otherwise.

20

25

The term "such as" is used herein to mean, and is used interchangeably, with the phrase "such as but not limited to".

A "patient" or "subject" to be treated by the method of the invention can mean either a human or non-human animal, preferably a mammal.

The terms "alpha" and "a" are used interchangeably, as are the terms "beta" and "β".

30

The term "encoding" comprises an RNA product resulting from transcription of a DNA molecule, a protein resulting from the translation of an RNA molecule, or a protein resulting from the transcription of a DNA molecule and the subsequent

translation of the RNA product.

5

10

15

20

25

30

A "promoter" is a nucleic acid sequence that directs transcription of a nucleic acid. A promoter includes nucleic acid sequences near the start site of transcription. e.g., a TATA box, see, e.g., Butler and Kadonaga (2002) Genes Dev. 16:2583-2592; Georgel (2002) Biochem. Cell Biol. 80:295-300. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs on either side from the start site of transcription. A "constitutive" promoter is a promoter that is active under most environmental and developmental conditions, while an "inducible", promoter is a promoter is active or activated under. e.g., specific environmental or developmental conditions.

The term "expression" is used herein to mean the process by which a polypeptide is produced from DNA. The process involves the transcription of the gene into mRNA and the translation of this mRNA into a polypeptide. Depending on the context in which used, "expression" may refer to the production of RNA, protein or both.

The term "recombinant" is used herein to mean any nucleic acid comprising sequences which are not adjacent in nature. A recombinant nucleic acid may be generated in vitro, for example by using the methods of molecular biology, or in vivo, for example by insertion of a nucleic acid at a novel chromosomal location by homologous or non-homologous recombination.

The term "transcriptional regulator" refers to a biochemical element that acts to prevent or inhibit the transcription of a promoter-driven DNA sequence under certain environmental conditions (e.g., a repressor or nuclear inhibitory protein), or to permit or stimulate the transcription of the promoter-driven DNA sequence under certain environmental conditions (e.g., an inducer or an enhancer).

The term "microarray" refers to an array of distinct polynucleotides or

oligonucleotides synthesized on a substrate, such as paper, nylon or other type of

membrane, filter, chip, glass slide, or any other suitable solid support.

5

10

15

20

25

The terms "disorders" and "diseases" are used inclusively and refer to any deviation from the normal structure or function of any part, organ or system of the body (or any combination thereof). -A specific-disease is manifested by characteristic -- symptoms and signs, including biological, chemical and physical changes, and is often associated with a variety of other factors including, but not limited to, demographic, environmental, employment, genetic and medically historical factors. Certain characteristic signs, symptoms, and related factors can be quantitated through a variety of methods to yield important diagnostic information.

The terms "level of expression of a gene in a cell" or "gene expression level" refer to the level of mRNA, as well as pre-mRNA nascent transcript(s), transcript processing intermediates, mature mRNA(s) and degradation products, encoded by the gene in the cell.

The term "modulation" refers to upregulation (i.e., activation or stimulation), downregulation (i.e., inhibition or suppression) of a response, or the two in combination or apart. A "modulator" is a compound or molecule that modulates, and may be, e.g., an agonist, antagonist, activator, stimulator, suppressor, or inhibitor.

The term "agonist" refers to an agent that mimics or up-regulates (e.g., potentiates or supplements) the bioactivity of a protein, e.g., polypeptide X. An agonist may be a wild-type protein or derivative thereof having at least one bioactivity of the wild-type protein. An agonist may also be a compound that upregulates expression of a gene or which increases at least one bioactivity of a protein. An agonist may also be a compound which increases the interaction of a polypeptide with another molecule, e.g., a target peptide or nucleic acid.

The term "antagonist" refers to an agent that downregulates (e.g., suppresses or inhibits) at least one bioactivity of a protein. An antagonist may be a compound which inhibits or decreases the interaction between a protein and another molecule, e.g., a

target peptide or enzyme substrate. An antagonist may also be a compound that downregulates expression of a gene or which reduces the amount of expressed protein present.

The term "prophylactic" or "therapeutic" treatment refers to administration to the subject of one or more of the subject compositions. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, i.e., it protects the host against developing the unwanted condition, whereas if administered after manifestation of the unwanted condition, the treatment is therapeutic (i.e., it is intended to diminish, ameliorate or maintain the existing unwanted condition or side effects therefrom).

The term "therapeutic effect" refers to a local or systemic effect in animals, particularly mammals, and more particularly humans caused by a pharmacologically active substance. The term thus means any substance intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease or in the enhancement of desirable physical or mental development and conditions in an animal or human. The phrase "therapeutically-effective amount" means that amount of such a substance that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment. In certain embodiments, a therapeutically-effective amount of a compound will depend on its therapeutic index, solubility, and the like. For example, certain compounds discovered by the methods of the present invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.

25

30

5

10

15

20

A probe that is "labeled" is detectable, either directly or indirectly, by spectroscopic, photochemical, biochemical, immunochemical, isotopic, or chemical means. For example, useful labels include ³²P, ³³P, ³⁵S, ¹⁴C, ³H, ¹²⁵I, stable isotopes, fluorescent dyes and fluorettes (Rozinov and Nolan (1998) Chem. Biol 5:713-728; Molecular Probes, Inc. (2003) Catalogue, Molecular Probes, Eugene Oreg.), electrondense reagents, enzymes and/or substrates, e.g., as used in enzyme-linked immunoassays as with those using alkaline phosphatase or horse radish peroxidase. The

label or detectable moiety is typically bound, either covalently, through a linker or chemical bound, or through ionic, van der Waals or hydrogen bonds to the molecule to be detected. "Radiolabeled" refers to a compound to which a radioisotope has been attached through covalent or non-covalent means. A "fluorophore" is a compound or moiety that absorbs radiant energy of one wavelength and emits radiant energy of a second, longer wavelength.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe can be detected by detecting the presence of the label bound to the probe. The probes are preferably directly labeled as with isotopes, chromophores, fluorophores, chromogens, or indirectly labeled such as with biotin to which a streptavidin complex or avidin complex can later bind.

15

20

10

5

A "nucleic acid probe" is a nucleic acid capable of binding to a target nucleic acid of complementary sequence, usually through complementary base pairing, e.g., through hydrogen bond formation. A probe may include natural, e.g., A, G, C, or T, or modified bases, e.g., 7-deazaguanosine, inosine, etc. The bases in a probe can be joined by a linkage other than a phosphodiester bond. Probes can be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. It will be understood by one of skill in the art that probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions.

25

30

"Small molecule" is defined as a molecule with a molecular weight that is less than 10 kD, typically less than 2 kD, and preferably less than 1 KD. Small molecules include, but are not limited to, inorganic molecules, organic molecules, organic molecules containing an inorganic component, molecules comprising a radioactive atom, synthetic molecules, peptide mimetics; and antibody mimetics. As a therapeutic, a small molecule may be more permeable to cells, less susceptible to degradation, and less apt to elicit an immune response than large molecules. Small molecule toxins are

described, see, e.g., U.S. Pat. No. 6,326,482 issued to Stewart, et al.

A small molecule refers to a composition, which has a molecular weight of less than about 1000 kDa.

5 III. Identification of Transcriptional Targets and Transcriptional Networks

10

15

20

25

30

One aspect of the invention provides a method of determining which genes from a subset of genes are regulated by a transcriptional regulator in a cell, the method comprising (a) selectively isolating chromatin from a cell which expresses the transcriptional regulator to generate isolated chromatin; (b) selectively isolating chromatin fragments from the isolated chromatin to generate bound chromatin fragments, wherein the bound chromatin fragments are bound by the transcriptional regulator; (c) amplifying both the bound chromatin fragments to generate amplified chromatin fragments and the isolated chromatin to generate amplified control chromatin; (d) hybridizing the amplified control chromatin and the amplified chromatin fragments to a DNA microarray, wherein the DNA microarray comprises (1) at least 10,000 experimental spots, each experimental spot comprising an experimental DNA, each experimental DNA comprising a promoter region from a gene in the subset; and (2) at least 100 control spots, each control spot comprising a control DNA, each control DNA comprising a non-promoter region; and (e) determining and comparing a hybridization signal at each of the spots on the microarray between those generated by (1) the amplified control chromatin; and (2) the amplified chromatin fragments; wherein a gene in the subset is said to be regulated by the transcriptional regulator in the cell if a spot comprising a promoter region of said gene displays a higher level of hybridization by the amplified chromatin fragments than by the amplified control chromatin.

Methods of isolating chromatin, and in particular chromatin fragments that are bound by a transcriptional regulator, may be carried out by any method known to one skilled in the art, including by cross-linking the transcriptional regulator to chromatin, fragmenting the chromatin, and immunoprecipitating the transcriptional regulators.

In a preferred embodiment, the chromatin fragments bound by the

transcriptional regulator are isolated using chromatin immunoprecipitation (ChIP). Briefly, this technique involves the use of a specific antibody to immunoprecipitate chromatin complexes comprising the corresponding antigen *i.e.* the transcriptional regulator, and examination of the nucleotide sequences present in the immunoprecipitate. Immunoprecipitation of a particular sequence by the antibody is indicative of interaction of the antigen with that sequence. See, for example, O'Neill et al. in *Methods in Enzymology*, Vol. 274, Academic Press, San Diego, 1999, pp. 189-197; Kuo et al. (1999) *Method* 19:425-433; and Ausubel et al., supra, Chapter 21.

In one embodiment, the chromatin immunoprecipitation technique is applied as follows. Cells which express the transcriptional regulator of interest, such as a native transcriptional regulator or a recombinant transcriptional regulator, are treated with an agent that crosslinks the transcriptional regulator to chromatin if that transcriptional regulator is stably bound to it. In one embodiment of the methods described herein, the crosslinking is formaldehyde crosslinking (Solomon, M.J. and Varshavsky, A., Proc. Natl. Sci. USA 82:6470-6474; Orlando, V., TIBS, 25:99-104). UV light may also be used (Pashev et al. *Trends Biochem Sci.* 1991;16(9):323-6; Zhang L et al. *Biochem Biophys Res Commun.* 2004;322(3):705-11).

Subsequent to crosslinking, cellular nucleic acid is isolated, sheared such as by sonication and incubated in the presence of an antibody directed against the transcriptional regulator. Antibody-antigen complexes are precipitated, crosslinks are reversed (for example, formaldehyde-induced DNA-protein crosslinks can be reversed by heating) so that the sequence content of the immunoprecipitated DNA is tested for the presence of a specific sequence, for example, promoter regions. The antibody may bind directly to an epitope on the transcriptional regulator or it may bind to a tag on the regulator, such as a myc tag when used with an anti-Myc antibody (Santa Cruz Biotechnology, sc-764).

In yet another embodiment, a non-antibody agent with affinity for the transcriptional regulator or for a tag used to it is used in place of the antibody. For example, if the transcriptional regulator comprises an affinity tag, such as a six-

histidine tag, complexes may be isolated by affinity chromatography to nickel-containing sepharose. Additional variations on ChIP methods within the scope of the invention may be found in Kurdistani et al. Methods. 2003 31(1):90-5; O'Neill et al. Methods. 2003, 31(1):76-82; Spencer et al., Methods. 2003;31(1):67-75; and Orlando et al. Methods 11: 205-214 (1997).

In an alternate embodiment of the methods described herein for identifying genes regulated by a transcriptional regulator, amplified chromatin fragments from a control immunoprecipitation reaction are used in place of the isolated chromatin as a control. For example, an antibody that does not react with the transcription factor being tested may be used in a chromatin IP procedure to isolate control chromatin, which can then be compared to the chromatin isolated using an antibody that does react with the transcriptional regulator. In preferred embodiments, the antibody that does not react with the transcription factor being tested also does not react with other transcriptional regulators or DNA binding proteins.

10

15

20

25

30

In one embodiment, the amplified control chromatin and the amplified chromatin fragments are generated from their corresponding template DNA using ligation-mediated polymerase chain reaction (LM-PCR) (e.g., see Current Protocols in Molecular Biology, Ausubel, F. M. et al., eds. 1991, and U.S. Application No. 2003/0143599, the teachings of which are incorporated herein by reference) in their entirety. In specific embodiments, LM-PCR comprises fluorescently labeling amplified DNA by including fluorescently-tagged nucleotides in the LM-PCR reaction. Additional variations for manipulating and examining chromatin using microarrays have described in U.S. Patent Nos. 6,410,243, the teachings of which are incorporated herein by reference.

In one embodiment, the labelled or unlabeled probes are hybridized to DNA microarray, such as is described in U.S. Patent No. 6,410,243. Microarrays, also called "biochips" or "arrays" are miniaturized devices typically with dimensions in the micrometer to millimeter range for performing chemical and biochemical reactions and are particularly suited for embodiments of the invention. Arrays may be constructed via

microelectronic and/or microfabrication using essentially any and all techniques known and available in the semiconductor industry and/or in the biochemistry industry, provided only that such techniques are amenable to and compatible with the deposition and screening of polynucleotide sequences. Microarrays are particularly desirable for their virtues of high sample throughput and low cost for generating profiles and other data. Additional variations for manipulating and examining chromatin using microarrays have described in U.S. Patent Nos. 6,410,243, the teachings of which are incorporated herein by reference.

: --5-

10

15

20

25

30

In one embodiment of the methods described, amplified control chromatin and the amplified chromatin fragments are hybridized to a DNA microarray that includes experimental spots that represent all or a subset (e.g., a chromosome or chromosomes) of the genome. The fluorescent intensity of each experimental spot on the microarray from the amplified chromatin fragments relative to the amplified control chromatin indicates whether the protein of interest is bound to the DNA region located at that particular spot. Hence, the methods described herein allow the detection of protein-DNA interactions across an entire genome.

In some embodiments of the methods described herein, the promoter region of a gene comprises from at least 700bp upstream to at least 200 bp downstream of the transcriptional start site of the gene. In some embodiments, the promoter region comprises at least about 30, 40, 50, or 60 nucleotides in length. In specific embodiments, the promoter region of a gene as found on the spots of the microarray comprises a sequence of at least 30 nucleotides whose sequence is identical to a region stretching from 3 kb upstream to 1 kb downstream of the transcriptional start site of said gene. In some embodiments, the DNA microarray includes control spots of non-promoter DNA. In specific embodiment, the non-promoter region comprises an open reading frame. In preferred embodiments, the non-promoter regions comprise genomic regions which are not bound by transcriptional regulators, and preferably which are not bound by the transcriptional regulator being tested. In some embodiments, not all the experimental spots or the control spots comprise experimental DNA or control DNA, respectively. Furthermore, in some specific embodiments some spots comprise control

DNA which comprises promoter DNA. One skilled in the art may determine the number of experimental or control spots for a given application.

In some embodiments of the methods described herein, the level of hybridization of the amplified chromatin fragments to each experimental spot is normalized by the level of hybridization of the amplified chromatin fragments to the control spots. In specific embodiments, the normalization is performed by subtracting the mean level of hybridization of the amplified chromatin fragments to the control spots from the level of hybridization of the amplified chromatin fragments at each experimental spot.

Methods of analyzing data from microarrays are well-described in the art, including in DNA Microarrays: A Molecular Cloning Manual, Ed by Bowtel and Sambrook (Cold Spring Harbor Laboratory Press, 2002); Microarrays for an Integrative Genomics by Kohana (MIT Press, 2002); A Biologist's Guide to Analysis of DNA Microarray Data, by Knudsen (Wiley, John & Sons, Incorporated, 2002); and DNA Microarrays: A Practical Approach, Vol. 205 by Schema (Oxford University Press, 1999); and Methods of Microarray Data Analysis II, ed by Lin et al. (Kluwer Academic Publishers, 2002), hereby incorporated by reference in their entirety.

20

25

30

10

. 15

In some embodiments of any of the methods described herein, the transcriptional regulator is native to the cell. By native it is meant that the transcriptional regulator naturally occurs in the cell. In other embodiments, the transcriptional regulator is a recombinant transcriptional regulator. In some embodiments, the transcriptional regulator originates from a species which is different from that of the cell. In some embodiments, the transcriptional regulator is a viral transcriptional regulator. In such embodiments, a cell may be contacted with a virus and chromatin extracted from the infected cell after allowing sufficient time for the viral proteins to be expressed. In some embodiments, recombinant transcriptional regulators have missense mutations, truncations, or inserted sequences or entire domains from other naturally occurring proteins. A tagged recombinant transcriptional regulator may be used in some embodiments the methods of the present invention as

the tag may facilitate the immunoprecipitation of the regulator.

10

15

20

25

30

In certain embodiments of the invention, transcriptional regulators comprise specific transcription factors, coactivators, corepressors or complexes thereof. 5-- Transcription factors bind to specific cognate-DNA-elements-such as promoters, enhancers and silencer elements, and are responsible for regulating gene expression. Transcription factors may be activators of transcription, repressors of transcription or both, depending on the cellular context. Transcription factors may belong to any class or type of known or identified transcription factor. Examples of known families or structurally-related transcription factors include helix-loop-helix, leucine zipper, zinc finger, ring finger, and hormone receptors. Transcription factors may also be selected based upon their known association with a disease or the regulation of one or more genes. For example, transcription factors such as c-myc, Rel/Nf-kB, neuroD, c-fos, cjun, and E2F may be targeted. Antibodies directed to any transcriptional coactivator or corepressor may also be used according to the invention. Examples of specific coactivators include CBP, CTIIA, and SRA, while specific examples of corepressors include the mSin3 proteins, MITR, and LEUNIG. Furthermore, the genes regulated by proteins associated with transcriptional complexes, such as the histone acetylases (HATs) and histone deacetylases (HDACs), may also de determined using the methods described herein.

In one embodiment of the methods described herein, the cell is a primary cell. Primary cells are directly isolated from an organism and have undergone minimum passaging in vitro, and thus maintain most of the phenotypic characteristics of cells in the organism. In a specific embodiment, the primary cells are primary cells that have doubled less than 10 times ex vivo. In some embodiments, the cell is derived from transplant grade tissue or freshly isolated tissue. The cell type used in the assays described herein may be any cell type. The cell may be eukaryotic or prokaryotic, from a metazoan or from a single-celled organism such as yeast. In some preferred embodiments the cell is a mammalian cell, such as a cell from a rodent, a primate or a human. The cell may be a wild-type cell or a cell that has been genetically modified by recombinant means or by exposure to mutagens. The cell may be a transformed cell or

an immortalized cell. In some embodiments, the cell is from an organism afflicted by a disease. In some embodiments, the cell comprises a genetic mutation that results in disease, such as in a hyperplastic condition.

In some embodiments, the cell is derived from transplant-grade tissue or freshly isolated tissue. In some embodiments, the cell is derived from a tissue biopsy, such as from a subject afflicted with, or suspected of being afflicted with, a disorder. In another embodiment, the cell is isolated from a bodily fluid or bodily secretion, including serum, plasma, saliva, tears, sweat, semen, amniotic fluid, vaginal secretions, nasal secretions, synovial fluid, spinal fluid, phlegm, bronchoalveolar lavage fluid, blister fluid, pus, stool and intracranial fluid. The cell may be a live cell or a cell that has been preserved, such as by treatment with formalin, B5, Zenker's fixatives, Lugol's solution, Carnoy's Fixative, F13 fixative, or other preservatives, or a cell that has been preserved by freezing.

15

20

25

30

10

In some embodiments of the methods described herein, the cell has been treated with an agent, such as compound or a drug, prior to isolation of chromatin. Some preferred agents include those which bind to or regulate the expression of transcriptional regulators. In some embodiments, the genes that are regulated by a given transcriptional regulator are determined both in a cell that is contacted with an agent and in a cell that is not contacted with the agent, or that is contacted with a different amount of the agent. Such methods may be used to identify compounds that alter the types of genes and/or the extent to which a transcriptional regulators controls transcription of those genes. Furthermore, such approaches may be used to screen for agents which alter the activity, specificity or expression of a transcriptional regulator.

In some embodiment of the methods described herein for identifying genes regulated by a transcriptional regulator, a higher level of hybridization by the amplified chromatin fragments than by the amplified control chromatin comprises at least a two-fold higher level of hybridization. The threshold for what constitutes a higher level of hybridization, may be adjusted by one skilled in the art for the particular application. Higher levels of hybridization are expected to yield a smaller target size but with higher

5

10

15

20

25

30

certainty that a given gene above that threshold is regulated by the transcriptional regulator in that cell in vivo.

In other embodiments of the methods described herein for identifying genes regulated by a transcriptional regulator, the transcriptional regulator is a basal transcription factor or a component of the basal transcription machinery. In specific embodiments, components of the basal transcription machinery comprise RNA polymerases, including poII, poIII and poIIII, TBP, NTF-1 and Sp1 and any other component of TFIID, including, for example, the TAFs (e.g. TAF250, TAF150, TAF135, TAF95, TAF80, TAF55, TAF31, TAF28, and TAF20), or any other component of a polymerase holoenzyme.

Another aspect of the invention provides a method of identifying transcriptionally active genes that are regulated by a transcriptional regulator in a cell. The method comprises determining what genes are regulated by the transcriptional regulator and determining which ones are transcriptionally active in the cell. In one embodiment, a set of genes which are transcriptionally active is the set of genes whose promoters are bound by an RNA polymerase, such as RNA polymerase II, or by a member of the basal transcription machinery. Alternatively, genes which are transcriptionally active may be identified using other techniques know in the art. For example, mRNA from a cell which expresses the transcriptional regulator can be collected and examined on a DNA microarray which comprises coding sequences in order to determine which genes are being transcribed.

In one embodiment, the invention provides a method of identifying transcriptionally active genes that are regulated by a transcriptional regulator in a cell, the method comprising (a) selectively isolating chromatin from a tissue; (b) identifying promoter regions from the chromatin that are bound by the transcriptional regulator; (c) identifying promoter regions from the chromatin that are bound by a member of the basal transcriptional machinery; and (d) comparing the promoter regions identified in steps (b) and (c) to determine overlapping genes, wherein the overlapping genes are transcriptionally active genes regulated by the transcriptional regulator.

In a related aspect, the invention provides methods to determine if a transcriptional regulator is a global transcription regulator. One method comprises estimating if a transcriptional regulator is a global transcriptional regulator, the method comprising (a) selectively isolating chromatin from a tissue; (b) identifying promoter regions from the chromatin which are bound by a candidate global transcriptional regulator; (c) identifying promoter regions from the chromatin which are bound by a member of the basal transcriptional machinery; and (d) comparing the promoter regions identified in steps (b) and (c) to determine the ratio between (i) the number of promoter regions bound by both the candidate global transcriptional regulator and the member of the basal transcriptional machinery; and (ii) the number of promoter regions bound by the member of the basal transcriptional machinery wherein a transcriptional regulator is a global transcriptional regulator when the ratio is greater than 0.2.

10

25

In a preferred embodiment of the methods described above, steps (b) and (c) are performed using a DNA microarray. In a specific embodiment, the DNA microarray comprises (i) at least 10,000 experimental spots, each experimental spot comprising an experimental DNA, each experimental DNA comprising a promoter region from a human gene in the subset; and (ii) at least 100 control spots, each control spot comprising a control DNA, each control DNA comprising a non-promoter region. Any type of microarray or array may be used.

In one embodiment of the methods described above, the member of the transcriptional machinery is an RNA polymerase, such as RNA polymerase II, a TATA-binding protein, or any other component of TFIID, including, for example, the TAFs (e.g. TAF250, TAF150, TAF135, TAF95, TAF80, TAF55, TAF31, TAF28, and TAF20).

Another aspect of the invention provides methods of identifying regulatory networks, or pathways, in a cell. The methods provided by the invention allow the identification of the regulatory motifs, such as those shown in Figure 2B. A regulatory pathway can include, for example, a pathway that controls a cellular function under a

specific condition. A regulatory pathway controls a cellular function by, for example, altering the activity of a system component or the activity of a biochemical, gene expression or other type of pathway. Alterations in activity include, for example, inducing a change in the expression, activity, or physical interactions of a pathway component under a specific condition. Specific examples of regulatory pathways include a pathway that activates a cellular function in response to an environmental stimulus of a biochemical system, such as the inhibition of cell differentiation in response to the presence of a cell growth signal and the activation of galactose import and catalysis in response to the presence of galactose and the absence of repressing sugars. The term "component" when used in reference to a network or pathway is intended to mean a molecular constituent of the biochemical system, network or pathway, such as, for example, a polypeptide, nucleic acid, other macromolecule or other biological molecule.

10

15

20

25

30

In one aspect, the invention provides a method of identifying a transcriptional regulatory network in a cell, the method comprising determining if a transcriptional regulator regulates additional transcriptional regulators in the cell, such as by using any of the methods described herein, wherein a transcriptional regulatory network is identified if at least one additional transcriptional regulator is regulated by the transcriptional regulator.:

Another aspect of the invention provides a method of identifying a transcriptional regulatory network in a cell, the method comprising determining if a transcriptional regulator regulates (i) its own promoter; or (ii) a promoter from a plurality of transcriptional regulators; such as by using any of the methods described herein, wherein the experimental DNA comprises (a) a promoter from the transcriptional regulator; and (b) promoters from the plurality of transcriptional regulators; wherein a transcriptional regulatory network is identified if the transcriptional regulator regulates itself or if it regulates at least one of the plurality of transcriptional regulators.

Yet another aspect of the invention provides a method of identifying

transcriptional regulatory networks in a cell, the method comprising (a) determining, by repeating one of the methods described herein for each of a plurality of transcriptional regulators, the genes in a subset which are regulated by each of the plurality of transcriptional regulators, wherein the experimental DNA comprises promoter regions for each of the plurality of transcriptional regulators; (b) determining if any one of the plurality of transcriptional regulators are regulated by at least one of the plurality of transcriptional regulators; wherein a transcriptional regulatory network is identified if any one of the plurality of transcriptional regulators is regulated by at least one of the plurality of transcriptional regulators.

10

Specific embodiments of the methods for identifying regulatory networks described herein further comprise determining if any of the genes regulated by one of the plurality of transcriptional regulators is also a target of any of the other transcriptional regulators

15

The invention further provides algorithms for the identification of regulatory motifs, which may be used in conjuction with any of the methods provided herein, such as the methods for identifying the genes regulated by a transcriptional regulator. In a specific embodiment, two data matrices are created. The overall matrix D consists of binary entries Dij, where a 1 indicates binding of regulator j to intergenic region i, a 0 indicates no binding event. The regulator matrix R is a subset of D, containing only the rows corresponding to the intergenic region assigned to each regulator, in the same order as the columns of regulators. The analyses may be performed using Matlab® software. The algorithms to find each motif are described as follows:

25

30

20

Autoregulatory motif: Find each non-zero entry on the diagonal of R.

Feedforward loop: For each master regulator (column of R), find non-zero entries, which correspond to regulators bound. For each master regulator / secondary regulator pair, find all rows in D bound by both regulators.

Multi-component loop: For each regulator (column of R), find the regulators to

WO 2005/054461

which it binds. For each of these, find the regulators it binds. If any of these are the original regulator, you have a multi-component loop of two. For all others, find regulators to which they bind. If any of these are the original, you have a multicomponent loop of three. Repeat to find larger loops.

PCT/US2004/039805

5

Single input module: Find the intergenic regions bound by only one regulator. That is, take the subset of rows of D such that the sum of each row is 1. Then for each regulator (column), find non-zero entries. Each set (greater than three intergenic regions) is a SIM.

10

15

20

25

30

Multi-input module: Find the intergenic regions bound by more than one regulator. That is, take the subset of rows of D such that the sum of each row is greater than 1. Then, for each row, find any other row bound by the same regulators. The collection of rows bound by the same regulators correspond to a MIM. Once a row is assigned to a MIM, remove it from further analysis.

Regulator chain: For each regulator (column of R), use a recursive algorithm to find chains of all lengths. That is, for each regulator whose promoter is bound by the regulator before it in the chain, find the regulator promoters to which it binds. Repeat until the chain ends. There are three possible ways to end a chain: a regulator that does not bind to the promoter of any other regulator, a regulator that binds to its own promoter, or one that binds to the promoter of another regulator earlier in the chain.

In one preferred embodiment of any of the methods described herein such as the methods for identifying regulatory networks, the experimental DNA in the microarray comprises promoter regions from additional transcriptional regulators or from genes suspected to encode transcriptional regulators. Such microarray enables one skilled in the art to identify the components of a regulatory pathway. For example, starting with one transcriptional regulator, a subset of the genes it regulates are identified using any method, such as those described herein. If one identified gene is itself a second transcriptional regulator or is suspected to encode a transcriptional regulator, then the subset of genes the second transcriptional regulator regulates is identified, and so on.

Furthermore, the subset of genes that the first and second transcriptional regulators regulate can be compared to determine of any genes are found in both subsets. If so, then a feed-forward motif, a unit of a regulatory network, has been identified.

Likewise, if the second transcriptional regulator is found to regulate the first one, then a feedback loop has been identified.

4. Development of a Therapeutic to Treat or Prevent Disorders

10

15

20

25

30

One aspect of the invention provides methods of identifying targets for the development of the rapeutics. One aspect of the invention provides a method of identifying at least one target gene for the development of a therapeutic to treat or prevent a disorder in a subject, wherein at least one form of the disorder is caused by an altered activity in a transcriptional regulator or in a suspected transcriptional regulator, the method comprising (a) identifying the genes regulated by the transcriptional regulator in a cell; (b) determining if the transcriptional regulator is a broad-acting transcriptional regulator or a narrow-acting transcriptional regulator, wherein if the transcriptional regulator is a broad acting transcriptional regulator then the transcriptional regulator is a target gene for the development of a therapeutic, and wherein if the transcriptional regulator is a narrow acting transcriptional regulator then (i) determining if at least one gene regulated by the transcriptional regulator is likely causative in the disorder, wherein a gene that is likely causative in the disorder is a target gene for the development of a therapeutic; and (ii) reiterating steps (a) and (b) for at least one gene that is regulated by the transcriptional regulator in the cell and that either (1) encodes a transcriptional regulator or (2) is suspected to encode a transcriptional regulator, with the modification that the transcriptional regulator of steps (a) and (b) is said gene, thereby identifying at least one target gene for the development of a therapeutic to treat or prevent a disorder in the subject.

In some embodiments of the methods for identifying a target gene for the development of a therapeutic, the genes regulated by the transcriptional regulator in the cell are identified using chromosome-wide location analysis, analysis of mRNA transcripts in a cell that expresses the transcriptional regulator, or by using any of the methods provided herein for the identification of the genes that are regulated by a

transcriptional regulator. Some methods may comprise the use of DNA microarray or DNA arrays, such as those described in Gabrielson et al., Obesity Research, 8(5), 374-384 (2000).

In some embodiments of the methods described herein for identifying a target gene for the development of a therapeutic, the transcriptional regulator is a master regulatory gene. In specific embodiments, the master regulatory gene is SOX1-18, OCT6, PAX3, Myocardin, GATA1-6, TCF1/HNF1A, HNF4A, HNF6, NGN3, C/EBP, FOXA1-3, IPF1, GATA, HNF3, NKX2.1, CDX, FTF/NR5A2, C/EBPbeta, SCL1, SKIN1, or a member of the neurogenin, LK, LMO, SOX, OCT, PAX, GATA or MyoD family of transcription factors.

In some embodiments of the methods described herein, the transcriptional regulator is PAX3, EGR-1, EGR-2, OCT6, a SOX family member, a GATA family member, a PAX family member, an OCT family member, RFX5, WHN, GATA1, VDR, CRX, CBP, MeCP2, AML1, p53, PLZF, PML, Rb, WT1, NR3C2, GCCR, PPARgamma, SIM1, HNF1alpha, HNF1beta, HNF4alpha, PDX1, MAFA, FOXA2, or NEUROD1.

15

20

25

30

A transcriptional regulator whose altered activity can lead to disease might be expressed in multiple, or all tissues of an organism, such that any of multiple cell types may be used in identifying a therapeutic. In some embodiments of the methods described herein for identifying a target gene for the development of a therapeutic, the cell is derived from a tissue whose function is impaired in the disorder. For example, a pancreatic cell may be used for diabetes, a cardiac muscle cells for myocardial infarction, or neurons for Alzheimer's disease.

In specific embodiments of the methods described herein for identifying a target gene for the development of a therapeutic, the broad acting gene regulates at least about 1%, 2% or more preferably at least about 2.5% of the genes in the cell, and the narrow acting gene regulates less than about 1%, 2% or 2.5% of the genes in the cell.

5

10

15

25

30

In specific embodiments of the methods described herein, a gene is suspected to encode a transcriptional regulator if it shares at least about 30%, 40% or 50% amino acid sequence identity within at least the DNA binding domain of a transcriptional regulator. DNA binding domains and methods of performing nucleic acids and polypeptide sequence alignments are well-known in the art. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman, Adv. Appl. Math. 2: 482 (1981); by the homology alignment algorithm of Needleman and Wunsch, J. Mol Biol. 48: 443 (1970); by the search for similarity method of Pearson and Lipman, Proc. Natl. Acad. Sci. 8: 2444 (1988); by computerized implementations of these algorithms, including, but not limited to: CLUSTAL in the PC/Gene program by Intelligenetics, Mountain View, Calif., GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 7 Science Dr., Madison, Wis., USA; the CLUSTAL program is well described by Higgins and Sharp, Gene, 73: 237-244, 1988; Higgins and Sharp, CABIOS: 11-13, 1989; Corpet, et al., Nucleic Acids Research, 16:881-90,1988; Huang, et al., Computer Applications in the Biosciences 8:1-7,1992; and Pearson, et al., Methods in Molecular Biology 24:7-331,1994.

In some specific embodiments of the methods described herein for identifying a 20 target gene for the development of a therapeutic, the gene regulated by the transcriptional regulator is said to be likely causative of the disorder if a mutation in said gene results in at least one phenotype or symptom associated with the disorder. In another specific embodiment, the gene regulated by the transcriptional regulator is said to be likely causative of the disorder when the gene encodes an enzyme or signaling molecule which functions in a pathway that is impaired in the disorder. For example, if the disease is type II diabetes, a disorder characterized by hyperglycemia, then a gene regulated by the transcriptional regulator which encodes a sugar transporter, an enzyme involved in catalyzing a step of glycolysis or gluconeogenesis, or a gene which regulates insulin production, secretion or signaling is said to be likely causative or the disorder. In another specific embodiment, the gene regulated by the transcriptional regulator is said to be likely causative of the disorder if a mutant allele of the gene is genetically linked to a "susceptibility locus" for at least one form of the disease. A

"susceptibility locus" for a particular disease is a sequence or gene locus implicated in the initiation or progression of the disease. The susceptibility locus can be, for example, a gene or a microsatellite repeat, as identified by a microsatellite marker, or can be identified by a defined single nucleotide polymorphism. Generally, susceptibility genes implicated in specific diseases and their loci can be found in scientific publications, but may also be determined experimentally.

5

10

15

20

25

30

In some embodiments of the methods described herein for identifying a target gene for the development of a therapeutic, the altered activity in the transcriptional regulator comprises at least one of the following: (a) an alteration in the binding affinity of the transcriptional regulator to DNA; (b) an alteration in the ability of the transcriptional regulator to bind to RNA polymerase, to an RNA polymerase holoenzyme, or to a second transcriptional regulator; (c) an alteration in the binding affinity of the transcriptional regulator to a ligand; (d) an alteration in expression level or expression pattern of the transcriptional regulator; or (e) an alteration in an ability of the transcriptional regulator to form homomultimers or heteromultimers.

In some embodiments of the methods described herein, the cell comprises a mutant form of the transcriptional regulator. A preferred mutant form of the transcriptional regulator is one that causes the disease to which the therapeutic is sought. Such embodiments are particularly preferred when a mutant transcriptional regulator which causes at least one form of the disease has an altered target specificity and thus the genes it regulates, or the extent to which it regulates their transcription, is altered when compared to the non-mutant form of the transcriptional regulator. Such embodiments may allow the identification of therapeutic targets which might not have been identified if a wild-type form of the transcriptional regulator had been used. Mutations in the DNA binding domain, for example, may alter the target specificity of a transcriptional regulator by altering its affinity for various DNA binding sequences.

It is well-known to one skilled in the art that mutations in a transcriptional regulator may result in a hypomorphic, hypermorphic or neomorphic phenotype.

Mutations may generally reduce the activity of a transcriptional regulator, may

generally increase it activity, or may confer novel properties, such as altering the range of targets or turning an activator into a repressor or vice versa. In any methods described herein, and in particular those for identifying the therapeutics, a cell expressing a transcriptional regulator having any of these changes in activity may be used.

The methods described herein may be applied to any disorder for which a transcriptional regulator has been implicated. Examples of diseases and transcriptional regulators which cause them may be found in the scientific and medical literature by one skilled in the art, including in Medical Genetics, L.V. Jorde et al., Elsevier Science 2003, and Principles of Internal Medicine, 15th edition, ed by Braunwald et al., McGraw-Hill, 2001; American Medical Association Complete Medical Encyclopedia (Random House, Incorporated, 2003); and The Mosby Medical Encyclopedia, ed by Glanze (Plume, 1991). In some embodiments, the disorder is characterized by impaired function of at least one of the following: brain, spinal cord, heart, arteries, esophagus, stomach, small intestine, large intestine, liver, pancreas, lungs, kidney, urinary tract, ovaries, breasts, uterus, testis, penis, colon, prostate, bone, muscle, cartilage, thyroid gland, adrenal gland, pituitary, bone marrow, blood, thymus, spleen, lymph nodes, skin, eye, ear, nose, teeth or tongue.

20

25

30

5

10

15

In some embodiments of the methods described herein for identifying a target gene for the development of a therapeutic, the subject is a mammal. In preferred embodiments, the subject is a human. In some embodiments of the methods described herein for identifying a target gene for the development of a therapeutic, the therapeutic comprises a small molecule drug, an antisense nucleic acid, an antibody, a peptide, a ligand, a fatty acid, a hormone or a metabolite.

Antisense nucleic acids acting by RNAi include oligonucleotides which specifically hybridize (e.g., bind) under cellular conditions with a gene sequence, such as at the cellular mRNA and/or genomic DNA level, so as to inhibit expression of that gene, e.g., by inhibiting transcription and/or translation. The binding may be by conventional base pair complementarily, or, for example, in the case of binding to DNA

duplexes, through specific interactions in the major groove of the double helix.

Preferred antisense nucleic acid comprise siRNA, shRNAs, or any other form of double stranded RNA molecule. Antisense nucleic acids may be chemically modified, such as to increase their in vivo stability.

5

10

15

RNAi is a process of sequence-specific post-transcriptional gene repression which can occur in eukaryotic cells. In general, this process involves degradation of an mRNA of a particular sequence induced by double-stranded RNA (dsRNA) that is homologous to that sequence. For example, the expression of a long dsRNA corresponding to the sequence of a particular single-stranded mRNA (ss mRNA) will labilize that message, thereby "interfering" with expression of the corresponding gene. Accordingly, any selected gene may be repressed by introducing a dsRNA which corresponds to all or a substantial part of the mRNA for that gene. It appears that when a long dsRNA is expressed, it is initially processed by a ribonuclease III into shorter dsRNA oligonucleotides of in some instances as few as 21 to 22 base pairs in length. Furthermore, RNAi may be effected by introduction or expression of relatively short homologous dsRNAs. dsRNAs shorter than about 30 bases pairs are preferred to effect gene repression by RNAi (see Hunter et al. (1975) J Biol Chem 250: 409-17; Manche et al. (1992) Mol Cell Biol 12: 5239-48; Minks et al. (1979) J Biol Chem 254: 10180-3; and Elbashir et al. (2001) Nature 411: 494-8).

20

25

30

Antibodies include whole antibodies, e.g., of any isotype (IgG, IgA, IgM, IgE, etc.), and includes fragments thereof which are also specifically reactive with a vertebrate, e.g., mammalian, protein. Antibodies may be fragmented using conventional techniques and the fragments screened for utility in the same manner as described above for whole antibodies. Thus, the term includes segments of proteolytically-cleaved or recombinantly-prepared portions of an antibody molecule that are capable of selectively reacting with a certain protein. Non-limiting examples of such proteolytic and/or recombinant fragments include Fab, F(ab')2, Fab', Fv, and single chain antibodies (scFv) containing a V[L] and/or V[H] domain joined by a peptide linker. The scFv's may be covalently or non-covalently linked to form antibodies having two or more binding sites. The subject invention includes polyclonal, monoclonal,

humanized, or other purified preparations of antibodies and recombinant antibodies.

Peptidomimetic include compounds containing peptide-like structural elements that is capable of mimicking the biological action (s) of a natural parent polypeptide.

5..

Hormone include any one of a number of biochemical substances that are produced by a certain cell or tissue and that cause a specific biological change or activity to occur in another cell or tissue located elsewhere in the body.

10

Metabolites includes any substance produced by metabolism or by a metabolic process. "Metabolism", as used herein, refers to the various chemical reactions involved in the transformation of molecules or chemical compounds occurring in tissue and the cells therein.

15

20

Ligands include any substance which binds to a receptor protein. A ligand of a transcriptional regulator protein is a substance which binds to the regulator protein, such as estrogen binding to a nuclear hormone receptor. In a preferred embodiment, ligand binding of to a transcriptional regulator occurs with high affinity. The term ligand refers to substances including, but not limited to, a natural ligand, whether isolated and/or purified, synthetic, and/or recombinant, a homolog of a natural ligand (e.g., from another mammal). The term ligand encompasses substances which are inhibitors or promoters of receptor activity, as well as substances which selectively bind receptors, but lack inhibitor or promoter activity.

25

30

Some aspects of the invention relate to the diagnosis of disease states. A "transcriptional fingerprint", or listing of the genes, and optionally to what extent, that are regulated by given a transcriptional regulator can be generated from healthy individuals and from those afflicted with a disorder. Comparison of the fingerprints between the two groups may define genes which are specific to one of the two groups, and thus serve as diagnostic for the risk that a patient is at risk, or is afflicted, with the disorder. In one embodiment, the transcriptional fingerprint of HNF4a is used to diagnose type II diabetes. A biopsy of a subject's liver or pancreas may provide the

cells for such analysis.

In specific embodiments, the transcriptional fingerprint disease diagnosis analysis is applied to transcriptional regulators which are causative in a particular disease to diagnose the disease. This approach may be coupled to allelic genotyping of the transcriptional regulator gene in the subject. For example, genotyping of a subject's HNF4a may uncover a novel allele. By using "transcriptional fingerprint" of HNF4a in tissue from that patient, one skilled in the art may determine what effect that mutation has in HNF4a activity and thus diagnose type II diabetes.

10

15

5

5. Methods of Preventing/Treating Disease through Regulation of HNFs

Some aspects of the invention provide methods of treating or preventing disease by regulating transcriptional regulator activity, particularly that of the HNF family member. The invention provides a method of treating or preventing type II diabetes in a subject, comprising administering to the subject a therapeutically effective amount of an agent that increases the global transcriptional activity of HNF4alpha. U.S. Patent No. 5,849,485 describes methods and assays for the isolation of modulators of HNF-4a activity, hereby incorporated by reference.

20

25

The invention also provides a method of treating or preventing a disorder associated with low transcriptional activity of HNF4alpha in a subject, comprising administering to the subject a therapeutically effective amount of an agent that increases the global transcriptional activity of HNF4alpha. In a related aspect, the invention provides a method of treating or preventing a disorder associated with high transcriptional activity of HNF4alpha in a subject, comprising administering to the subject a therapeutically effective amount of an agent that decreases the global transcriptional activity of HNF4alpha.

30

Yet another related aspect of the invention provides a method of increasing the global transcriptional activity in a liver or a pancreatic cell comprising contacting the cell with an agent which increases the global transcriptional activity of HNF4alpha. Similarly, the invention provides a method of decreasing the global transcriptional

activity in a liver or a pancreatic cell comprising contacting the cell with an agent which decreases the global transcriptional activity of HNF4alpha.

Applicants have identified genes that are transcriptionally regulated by HNF-1a, HNF4a and HNF6 in hepatocytes and pancreatic cells. Accordingly, the invention provides methods of regulating the expression level of any of these genes in a cell or in a subject by contacting the cell or administering to the subject and agent which modulates the expression level or transcriptional regulatory activity of HNF transcription factors.

10

15

20

25

5

The invention provides a method of regulating the expression level of any one of the genes in Figure 13 in a hepatocyte, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF1alpha. Similarly, the invention also provides a method of regulating the expression level of any one of the genes in Figure 14 in a pancreatic cell, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF1alpha.

The invention also provides a method of regulating the expression level of any one of the genes in Figure 16 in a hepatocyte, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF6. Similarly, the invention provides a method of regulating the expression level of any one of the genes in Figure 17 in a pancreatic cell, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF6.

The invention additionally provides a method of regulating the expression level of any one of the genes in Figure 18 in a hepatocyte, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF4alpha. Similarly, the invention provides a method of regulating the expression level of any one of the genes in Figure 19 in a pancreatic cell, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF4alpha.

30

Agents which modulate the transcriptional activity of HNF-4a, or any other HNF family member, may be identified by screening compounds for their ability to

increase the expression level, the DNA binding activity or the transcriptional promoting activity of HNF4a. One assay format which can be used employs two genetic constructs. One is typically a plasmid that continuously expresses the transcriptional regulator of interest when transfected into an appropriate cell line. CV-1 cells are most often used. The second is a plasmid which expresses a reporter, e.g., luciferase under control of the transcriptional regulator. For example, if a compound which acts as a ligand for HNF-4 is to be evaluated, one of the plasmids would be a construct that results in expression of the HNF-4 receptor in an appropriate cell line, e.g., the CV-1 cells. The second would possess a promoter linked to the luciferase gene in which an HNF-4 response element is inserted. If the compound to be tested is an agonist for the HNF-4 receptor, the ligand will complex with the receptor and the resulting complex binds the response element and initiates transcription of the luciferase gene. In time the cells are lysed and a substrate for luciferase added. The resulting chemiluminescence is measured photometrically. Dose response curves are obtained and can be compared to the activity of known ligands. Other reporters than luciferase can be used including CAT and other enzymes.

10

15

20

Viral constructs can be used to introduce the gene for the receptor and the reporter. An usual viral vector is an adenovirus. For further details concerning this preferred assay, see U.S. Pat. No. 4,981,784 issued Jan. 1, 1991 hereby incorporated by reference, and Evans et al., WO88/03168 published on 5 May 1988, also incorporated by reference.

HNF-4a antagonists can be identified using this same basic "agonist" assay. A

25 fixed amount of an antagonist is added to the cells with varying amounts of test
compound to generate a dose response curve. If the compound is an antagonist,
expression of luciferase is suppressed.

Additional methods for the isolation of agonists and antagonist of HNF transcription factors are described in U.S. Patent Nos. 6,187,533 and 5,620,887.

Additional U.S. patents describing methods to identify agents that modulate the activity of transcription factors include 5,804,374, and 5,298,429, and U.S. Patent Publication

Nos. 2004/0033942A1 2003/0077664, 2003/0215829 and 2003/0039980. Any of the methods described herein may be easily adapted to identify agonists or antagonists of any one of the HNF transcriptional factors. U.S. Patent No. 6,303,653 describes modulators of HNF-4 activity.

5

Agonists and antagonists of HNF4a can also be designed based on the known crystal structure of HNF4a complexed with an endogenous fatty acid ligand (Dhe-Paganon, J. Biol. Chem. 277(41), 37973-37976). U.S. Patent Publication No. 2002/0072587 describes methods of identifying agonists of an estrogen receptor, a nuclear receptor like the HNF proteins, based on its crystal structure. Such methods may easily be applied to HNF-1a, HNF-4a and HNF6 by one skilled in the art. Additional examples of rational drug design based on the structure of a protein may be found in U.S. Patent or Publication Nos. 6,236,946, 6,684,162, 2004/0014153, 2003/0124699, 20030077628, 2002/0151028, 2002/0072587 and 2003/0211588.

15

20

10

6. Therapeutics

In one aspect, the invention provides methods of treating disease in a subject comprising the administration of a composition comprising a therapeutic agent. "Therapeutic agent" or "therapeutic" refers to an agent capable of having a desired biological effect on a host. Chemotherapeutic and genotoxic agents are examples of therapeutic agents that are generally known to be chemical in origin, as opposed to biological, or cause a therapeutic effect by a particular mechanism of action, respectively. Examples of therapeutic agents of biological origin include growth factors, hormones, and cytokines. A variety of therapeutic agents are known in the art and may be identified by their effects. Certain therapeutic agents are capable of regulating cell proliferation and differentiation. Examples include chemotherapeutic nucleotides, drugs, hormones, non-specific (non-antibody) proteins, oligonucleotides (e.g., antisense oligonucleotides that bind to a target nucleic acid sequence (e.g., mRNA sequence)), peptides, and peptidomimetics.

30

25

In one embodiment, the compositions are pharmaceutical compositions.

Pharmaceutical compositions for use in accordance with the present invention may be

formulated in conventional manner using one or more physiologically acceptable carriers or excipients. Thus, the compounds and their physiologically acceptable salts and solvates may be formulated for administration by, for example, by aerosol, intravenous, oral or topical route. The administration may comprise intralesional, intraperitoneal, subcutaneous, intramuscular or intravenous injection; infusion; liposome-mediated delivery; topical, intrathecal, gingival pocket, per rectum, intrabronchial, nasal, transmucosal, intestinal, oral, ocular or otic delivery.

5

10

25

30

An exemplary composition of the invention comprises an compound capable of modulating the expression or activity of a transcriptional regulator with a delivery system, such as a liposome system, and optionally including an acceptable excipient.

In a preferred embodiment, the composition is formulated for injection.

Techniques and formulations generally may be found in Remmington's

Pharmaceutical Sciences, Meade Publishing Co., Easton, PA. For systemic administration, injection is preferred, including intramuscular, intravenous, intraperitoneal, and subcutaneous. For injection, the compounds of the invention can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution. In addition, the compounds may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also included.

For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid

preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., ationd oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.

Preparations for oral administration may be suitably formulated to give

controlled release of the active compound. For buccal administration the compositions may take the form of tablets or lozenges formulated in conventional manner. For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g.,

dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogenfree water, before use.

30

25

5

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such

PCT/US2004/039805

as cocoa butter or other glycerides.

In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

10

5

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration bile salts and fusidic acid derivatives. in addition, detergents may be used to facilitate permeation. Transmucosal administration may be through nasal sprays or using suppositories. For topical administration, the oligomers of the invention are formulated into ointments, salves, gels, or creams as generally known in the art. A wash solution can be used locally to treat an injury or inflammation to accelerate healing.

20

15

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

25

30

For therapies involving the administration of nucleic acids, the oligomers of the invention can be formulated for a variety of modes of administration, including systemic and topical or localized administration. Techniques and formulations generally may be found in Remmington's Pharmaceutical Sciences, Meade Publishing Co., Easton, PA. For systemic administration, injection is preferred, including intramuscular, intravenous, intraperitoneal, intranodal, and subcutaneous for injection, the oligomers of the invention can be formulated in liquid solutions, preferably in

physiologically compatible buffers such as Hank's solution or Ringer's solution. In addition, the oligomers may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also included.

Systemic-administration can also be by transmucosal or transdermal means, or the compounds can be administered orally. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration bile salts and fusidic acid derivatives. In addition, detergents may be used to facilitate permeation. Transmucosal administration may be through nasal sprays or using suppositories. For oral administration, the oligomers are formulated into conventional oral administration forms such as capsules, tablets, and tonics. For topical administration, oligomers may be formulated into ointments, salves, gels, or creams as generally known in the art.

15

20

25

30

10

5

Toxicity and therapeutic efficacy of the agents and compositions of the present invention can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds which exhibit large therapeutic induces are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially

from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

5

10

15

20

25

30

In one embodiment of the methods described herein, the effective amount of the agent is between about 1mg and about 50mg per kg body weight of the subject. In one embodiment, the effective amount of the agent is between about 2mg and about 40mg per kg body weight of the subject. In one embodiment, the effective amount of the agent is between about 3mg and about 30mg per kg body weight of the subject. In one embodiment, the effective amount of the agent is between about 4mg and about 20mg per kg body weight of the subject. In one embodiment, the effective amount of the agent is between about 5mg and about 10mg per kg body weight of the subject.

In one embodiment of the methods described herein, the agent is administered at least once per day. In one embodiment, the agent is administered daily. In one embodiment, the agent is administered every other day. In one embodiment, the agent is administered every 6 to 8 days. In one embodiment, the agent is administered weekly.

As for the amount of the compound and/or agent for administration to the subject, one skilled in the art would know how to determine the appropriate amount. As used herein, a dose or amount would be one in sufficient quantities to either inhibit the disorder, treat the disorder, treat the subject or prevent the subject from becoming afflicted with the disorder. This amount may be considered an effective amount. A person of ordinary skill in the art can perform simple titration experiments to determine what amount is required to treat the subject. The dose of the composition of the invention will vary depending on the subject and upon the particular route of administration used. In one embodiment, the dosage can range from about 0.1 to about 100,000 ug/kg body weight of the subject. Based upon the composition, the dose can be

delivered continuously, such as by continuous pump, or at periodic intervals. For example, on one or more separate occasions. Desired time intervals of multiple doses of a particular composition can be determined without undue experimentation by one skilled in the art.

5

10

15

20

25

30

The effective amount may be based upon, among other things, the size of the compound, the biodegradability of the compound, the bioactivity of the compound and the bioavailability of the compound. If the compound does not degrade quickly, is bioavailable and highly active, a smaller amount will be required to be effective. The effective amount will be known to one of skill in the art; it will also be dependent upon the form of the compound, the size of the compound and the bioactivity of the compound. One of skill in the art could routinely perform empirical activity tests for a compound to determine the bioactivity in bioassays and thus determine the effective amount. In one embodiment of the above methods, the effective amount of the compound comprises from about 1.0 ng/kg to about 100 mg/kg body weight of the subject. In another embodiment of the above methods, the effective amount of the compound comprises from about 100 ng/kg to about 50 mg/kg body weight of the subject. In another embodiment of the above methods, the effective amount of the compound comprises from about 1 ug/kg to about 10 mg/kg body weight of the subject. In another embodiment of the above methods, the effective amount of the compound comprises from about 100 ug/kg to about 1 mg/kg body weight of the subject.

As for when the compound, compositions and/or agent is to be administered, one skilled in the art can determine when to administer such compound and/or agent. The administration may be constant for a certain period of time or periodic and at specific intervals. The compound may be delivered hourly, daily, weekly, monthly, yearly (e.g. in a time release form) or as a one time delivery. The delivery may be continuous delivery for a period of time, e.g. intravenous delivery. In one embodiment of the methods described herein, the agent is administered at least once per day. In one embodiment of the methods described herein, the agent is administered daily. In one embodiment of the methods described herein, the agent is administered every other day. In one embodiment of the methods described herein, the agent is administered every other day.

to 8 days. In one embodiment of the methods described herein, the agent is administered weekly.

5 EXEMPLIFICATION

10

The invention now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention, as one skilled in the art would recognize from the teachings hereinabove and the following examples, that other DNA microarrays, transcriptional regulators, cell types, antibodies, ChIP conditions, or data analysis methods, all without limitation, can be employed, without departing from the scope of the invention as claimed.

The practice of the present invention will employ, where appropriate and unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, virology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are described in the literature. See, for example, Molecular Cloning: A Laboratory Manual, 3rd Ed., ed. by Sambrook and Russell (Cold Spring Harbor Laboratory Press: 2001); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Using Antibodies, Second Edition by Harlow and Lane, Cold Spring Harbor Press, New York, 1999; Current Protocols in Cell Biology, ed. by Bonifacino, Dasso, Lippincott-Schwartz, Harford, and Yamada, John Wiley and Sons, Inc., New York, 1999; and PCR Protocols, ed. by Bartlett et al., Humana Press, 2003.

Various publications, patents, and patent publications are cited throughout this application the contents of which are incorporated herein by reference in their entirety.

30 Experimental procedures

The following procedures were followed in performing the experiments below:

Genome-scale Location Analysis

The protocol described here was adapted from Ren 2001. Briefly, cells are fixed with 1% final concentration formaldehyde for 10-20 minutes at room temperature, harvested and rinsed with 1x PBS. The resultant cell pellet is sonicated, and DNA 5 fragments that are crosslinked to a protein of interest are enriched by immunoprecipitation with a factor specific antibody. After reversal of the crosslinking, the enriched DNA is amplified using ligation-mediated PCR (LM-PCR), and then fluorescently labeled using high concentration Klenow polymerase and a dNTPfluorophore. A sample of DNA that has not been enriched by immunoprecipitation is subjected to LM-PCR and labeled with a different fluorophore. Both IP-enriched and 10 unenriched pools of labeled DNA are hybridized to a single DNA microarray containing 13,000 human intergenic regions (see below for description of DNA) microarray and binding site determination). For hepatocyte experiments, 2.5 x 107 hepatocytes were typically used per chromatin immunoprecipitation. These hepatocytes 15 were isolated by standard liver perfusion techniques, immediately crosslinked with 1% formaldehyde solution, rinsed, and flash frozen. Islet preparations were treated with formaldehyde between 1 hour and 5 days after isolation from pancreata. A minimum of 30,000 viable islet equivalents (approximately 2x 10⁷ beta cells) were fixed and handled as described above. Typical islet purity for three experiments described here 20 was >70% islets with >80% viability. HNF4a, HNF6, and RNA polymerase II produced high quality results with as few as 30,000 islet equivalents. HNF1a ChIP required significantly more material, typically 80,000 islets, to produce results with somewhat lower enrichment ratios than the results obtained with hepatocytes.

25 Human 13K DNA Microarray

30

It would be ideal to have a DNA microarray that contains the entire human genome sequence, but technical limitations and cost led applicants to select the most relevant portion of the genome for inclusion in this microarray. Because a significant percentage of transcriptional binding sites in proximal promoters are within 1 kb of transcription start sites, applicants designed primers to amplify these genomic regions for printing onto a promoter array. Applicants selected 15000 cDNAs from the NCBI RefSeq database, and mapped them to NCBI Build 22 (April 2001) of the human

genome using BLAST. Where multiple splice variants had been described, applicants used the most upstream site, and verified the 5'-end by alignment with the Database of Transcriptional Start Sites (http://elmo.ims.utokyo.ac.jp/dbtss/). Sequences to be amplified were extracted from the genomic region-750 bp to +250 bp relative to this transcriptional start site. To control for nonspecific binding, 9 amplified regions derived from long Arabidopsis open reading frames were included on the array. As a further negative control and for use in data normalization, applicants chose 158 ORF regions within long exons of human genes for amplification. To prepare the DNA content of the arrays, the program Primer3

(http://wwwgenome.wi.mit.edu/genome_software/other/ primer3.html) was used to design primers using the sequences described above. PCRs were performed on these primer set using standard conditions, except for the presence of 1 M betaine in all PCR reactions. Betaine was empirically observed to increase the success rate of the amplification reactions.

15

20

25

30

10

Of the 13,000 PCR pairs, 70% gave a strong band of the appropriate size, as verified on 2% agarose gels. Applicants have noted, however, that PCR products undetectable by agarose EtBr gel analysis can give valid positive signals when concentrated and printed on the DNA arrays. PCR quality evaluations were performed on the BRIDNAsuite of programs from the Biotechnology Research Institute of the National Research Council of Canada (http://www.irb-bri.cnrc-nrc.gc.ca/).PCR products were recovered from the reaction mixture by ammonium acetate/isopropanol precipitation and resuspended into 3x SSC with 1.5 M betaine to minimize evaporation and improve spot quality. Applicants printed amplified products onto GAPS-coated glass slides (Corning) using a Cartesian PixSys 5500 arrayer. The quality of the arrays was determined on a batch-wise basis by hybridization with sequence neutral oligonucleotides covalently linked to Cy3 or Cy5, followed by calculation of usable percentage of spots, combined with direct visual inspection of the quality of the chip. The Hu13K array was remapped post-production using two independent methods. First, applicants performed electronic PCR on the primer sets against the August 2003 final release of the completed human genome. Second, applicants BLASTed the sequence used to extract primers for amplification against the August 2003 final release of the

human genome. The dataset downloadable from the supporting website reports the location of each arrayed promoter relative to the transcriptional start site.

Data Quality Control

10

15

20

25

30

- 1. ChIP Hybridization Quality Control

The raw data generated from each array experiment was subjected to multiple levels of quality control. First, each scan was examined visually as it was being performed. Samples on microarrays with gross defects (e.g. scratches, smeared spots) were repeated whenever possible. Applicants also determined that no reliable signal was produced from control spots containing *Arabidopsis* DNA.

2. Binding Site Determination and Error Model

Scanned images were analyzed using GenePix (v3.1 or v4.0), to obtain background subtracted intensity values. Each spot is bound by both IP-enriched and unenriched DNA, which are labeled with different fluorophores. Consequently, each spot yields fluorescence intensity information in two channels, corresponding to immunoprecipitated DNA and genomic DNA. To account for background hybridization to slides, the median intensity of a set of control blank spots was subtracted for sitespecific transcription factors (e.g. HNF1a), and the median intensity for a set of control ORF spots was subtracted for broadly acting DNA binding proteins (e.g. RNA Pol II, HNF4a). To correct for different amounts of genomic and immunoprecipitated DNA hybridized to the microarray, the median intensity value of the IP-enriched DNA channel was divided by the median of the genomic DNA channel, and this normalization factor was applied to each intensity in the genomic DNA channel. Next, applicants calculated the log of the ratio of intensity in the IP-enriched channel to intensity in the genomic DNA channel for each intergenic region across the entire set of hybridization experiments. Adjusted intensity values for the IP-enriched channel were calculated from these ratios. A whole-chip error model (Hughes 2000; Lee 2002) was then used to calculate confidence values for each spot on each microarray, and to combine data for the replicates of each experiment to obtain a final average ratio and confidence for each promoter region. Genes were included in the set of 'bound' genes if the binding P-value in the error model was < 0.001 or enrichment was at least 2-fold

in the immunoprecipitation.

10

15

20

25

30

Confirmation of Predicted Binding

The accuracy of genome-wide location data reported here has been assessed using several approaches.

1. Estimation of False Positive Rates Using Conventional ChIP Experiments

Conventional, independent ChIP experiments conducted in our laboratory at a gene specific level have confirmed over 100 binding interactions identified by location analysis data involving 6 different regulators (see http://web.wi.mit.edu/young/pancregulators). These results suggest that our empirical rate of false positives is at most 16%. This rate is somewhat higher than that found for a large scale survey of yeast transcription factors (Lee 2002), which probably reflects the greater complexity of the human genome. Figures 9 and 10 show typical verification ChIP experiments for HNF4a and HNF1a, respectively, in hepatocytes.

2. Comparison with Previous Literature

Applicants found no previous studies of the genomic targets of transcriptional regulators in primary human tissue. However, a large number of HNF1a and HNF4a targets have been identified in model organisms and human carcinoma (mostly hepatoma) cell lines; these targets are summarized in Figure 14. For example, genomescale location analysis identified 30 of the 68 hepatocyte genes which were both previously suggested to be targets of HNF4a, and included on the 13K DNA array. Similarly, genome-scale location analysis identified 21 of the 81 hepatocyte genes which were both previously suggested to be targets of HNF4a, and included on the 13K DNA array. Discrepancies between the targets reported here and targets reported in the literature may result from a number of factors, which include, but are not limited to: (1) the limitations of using a 1 kb promoter fragment to probe the binding of a transcription factor, (2) the stringency of our threshold criteria, (3) the differences between the regulatory network in model organisms and/or cell lines, and the regulatory network in primary human tissue, (4) differences between indirect technologies in the literature (i.e. gel-shift and transient transfections) and genome-scale location analysis, (5) tissue isolation effects, among others. A more comprehensive discussion can be found at

http://web.wi.mit.edu/young/pancregulators

Regulatory Motifs Derived from Binding Data

10

15

20

25

30

In order to discover network motifs, two data matrices were created. The overall matrix D consists of binary entries Dij, where a 1 indicates binding of regulator j to intergenic region i, a 0 indicates no binding event. The regulator matrix R is a subset of D, containing only the rows corresponding to the intergenic region assigned to each regulator, in the same order as the columns of regulators. All analyses were performed in Matlab. The algorithms used to find each motif are described below. Autoregulatory motif: Find each non-zero entry on the diagonal of R. Feedforward loop: For each master regulator (column of R), find non-zero entries, which correspond to regulators bound. For each master regulator / secondary regulator pair, find all rows in D bound by both regulators. Multi-component loop: For each regulator (column of R), find the regulators to which it binds. For each of these, find the regulators it binds. If any of these are the original regulator, you have a multi-component loop of two. For all others, find regulators to which they bind. If any of these are the original, you have a multicomponent loop of three. Repeat to find larger loops. Single input module: Find the intergenic regions bound by only one regulator. That is, take the subset of rows of D such that the sum of each row is 1. Then for each regulator (column), find non-zero entries. Each set (greater than three intergenic regions) is a SIM. Multi-input module: Find the intergenic regions bound by more than one regulator. That is, take the subset of rows of D such that the sum of each row is greater than 1. Then, for each row, find any other row bound by the same regulators. The collection of rows bound by the same regulators correspond to a MIM. Once a row is assigned to a MIM, remove it from further analysis. Regulator chain: For each regulator (column of R), use a recursive algorithm to find chains of all lengths. That is, for each regulator whose promoter is bound by the regulator before it in the chain, find the regulator promoters to which it binds. Repeat until the chain ends. There are three possible ways to end a chain: a regulator that does not bind to the promoter of any other regulator, a regulator that binds to its own promoter, or one that binds to the promoter of another regulator earlier in the chain.

Example 1

5

10

15

20

25

30

The liver and pancreas have long been the subject of studies to understand how organs develop and are regulated at the transcriptional level (8-12). The transcriptional regulators HNF1 α (a homeodomain protein), HNF4 α (a nuclear receptor) and HNF6 (a member of the onecut family) operate cooperatively in a connected network in the liver, but less in known about the structure of this regulatory network in human pancreatic islets. All three transcriptional regulators are required for normal function of liver and pancreatic islets (13-18). Mutations in HNF1 α and HNF4 α are the causes of the type 3 and type 1 forms of maturity-onset diabetes of the young (MODY3 and MODY1), a genetic disorder of the insulin-secreting pancreatic beta cells characterized by onset of diabetes mellitus before 25 years of age and an autosomal dominant pattern of inheritance (19).

Applicants hypothesized that genome-scale analysis of the pancreatic islet genes whose expression is regulated by these transcription factors in normal beta cells could provide insights into the molecular basis of the abnormal beta cell function that characterizes MODY. Applicants have identified the genes occupied by the transcription factors HNF1 α , HNF4 α , and HNF6 in pancreatic islets. The genes transcribed in each tissue were identified by determining the genomic occupancy of RNA polymerase II. Applicants used this information to begin to map the transcriptional regulatory circuitry in these tissues.

Applicants first used genome-scale location analysis (20) to identify the promoters bound by HNF1α in human hepatocytes and pancreatic islets isolated from tissue donors (Fig 1A). For each tissue, HNF1α-DNA complexes were enriched by chromatin immunoprecipitation in three separate experiments. Applicants constructed a custom DNA microarray containing portions of promoter regions of 13,000 human genes (Hu13K array). Applicants targeted the region spanning 700 bp upstream and 200 bp downstream of transcription start sites for the genes whose start sites are best characterized based on National Center for Biotechnology Information annotation (20). Although many enhancers are present at more distant locations, most known

transcription factor binding site sequences occur within these start-site proximal regions of promoters.

The results of these genome location experiments revealed that HNF1 α is bound to at least 222 target genes in hepatocytes, representing 1.6% of the genes on the Hu13K array (Figure 11) (20). This result was verified with independent, conventional chromatin immunoprecipitation experiments, which suggest that the frequency of false positives in genome-scale location data with gene-specific regulators is no more than 16% when our threshold criteria were used (20). The genes applicants found to be occupied by HNF1 α in primary human hepatocytes encode products whose functions represent a significant cross-section of hepatocyte biochemistry. The results confirm that HNF1 α contributes to the transcriptional regulation of many of the central rate-limiting steps in gluconeogenesis and associated pathways. HNF1 α also binds to genes whose products are central to normal hepatic function, including carbohydrate synthesis and storage, lipid metabolism (synthesis of cholesterol and apolipoproteins), detoxification (synthesis of cytochrome P450s) and synthesis of serum proteins (albumin, complements and coagulation factors).

Applicants next identified HNF1 α target genes in human pancreatic islets (Figure 11) (20). HNF1 α occupied the promoter regions of 106 genes (0.8% of the Hu13K array promoters) in islets, 30% of which were also bound by HNF1 α in hepatocytes (Figure 1B). In islets, fewer chaperones and enzymes are bound by HNF1 α than in hepatocytes, and the receptors and signal transduction machinery regulated by HNF1 α vary between the two tissues.

25

30

5

10

15

20

HNF1 α has been previously implicated in the regulation of many genes in hepatocytes and islets (13, 16, 20 [Figure 15]). The direct genome binding data reported here confirmed many, but not all, of these genes. The difference may be due, at least in part, to our stringent criteria for binding in the genome-scale data, which enhances our confidence in the direct target genes identified by location analysis, but likely underestimates the actual number of targets in vivo. Furthermore, although the

proximal promoter regions printed on the array contain a significant number of transcription factor binding sequences, many genes are also regulated by more distal promoter elements and enhancers that are not present on the Hu13K array.

Applicants also identified the promoters bound by HNF6 in human hepatocytes and pancreatic islets using genome-scale location analysis (Fig 1B; Figures 16 and 17) (20). HNF6 was bound to at least 222 genes in hepatocytes and 189 genes in pancreatic islets, representing 1.7% and 1.4% of the promoters on the array, respectively. Approximately half of the promoters occupied by HNF6 were common to the two tissues, and included a number of important cell cycle regulators such as CDK2 (20).

Genome-scale location analysis revealed surprising results for HNF4 α in hepatocytes and pancreatic islets (Fig 1B). The number of genes enriched in HNF4 α chromatin immunoprecipitations was much larger than observed with typical site-specific regulators. HNF4 α was bound to approximately 12% of the genes represented on the Hu13K DNA microarray in hepatocytes and 11% in pancreatic islets. No other transcription factor applicants have profiled in human cells has been observed to bind more than 2.5% of the promoter regions represented on the 13K array.

15

20

25

30

Six independent lines of evidence indicate that the HNF4 α results are not due to poor antibody specificity or errors in the microarray analysis, and support the view that HNF4 α is associated with an unusually large number of promoters in hepatocytes and pancreatic islets (20). First, essentially identical results were obtained with two different antibodies that recognize different portions of HNF4 α . Second, Western blots showed that the HNF4 α antibodies are highly specific. Third, applicants verified binding at over 50 randomly selected targets of HNF4 α in hepatocytes by conventional gene-specific chromatin immunoprecipitation. Fourth, when antibodies against HNF4 α were used for ChIP in control experiments with Jurkat, U937, and BJT cells (which do not express HNF4 α), no more than 17 promoters were identified in each cell line by our criteria, which is well within the noise inherent in this system. Fifth, when pre-immune antibodies from rabbit and goat (the two different anti-HNF4 α antibodies came from rabbit and goat) were used in control experiments in hepatocytes, the

number of targets identified was within the noise. Finally, if the HNF4 α results are correct, then applicants would expect that the set of promoters bound by HNF4 α should be largely a subset of those bound by RNA polymerase II in each tissue; applicants found that this is the case (see below). Applicants conclude that HNF4 α is a widely acting transcription factor in these tissues, consistent with the observation that it is an unusually abundant, constitutively active transcription factor (11).

5

10

15

20

25

30

Applicants next identified the genes represented on the Hu13K microarray that are actively transcribed in hepatocytes and pancreatic islets, so the fraction of actively transcribed genes that are bound by HNF4\alpha could be determined (Fig 2C). It is difficult to determine accurately the transcriptome of these tissues by profiling transcript levels with DNA microarrays. Transcript profiling requires a reference RNA population against which a tissue RNA population can be compared, and there are limitations to generating appropriate reference RNA. To circumvent this limitation, applicants exploited the fact that RNA polymerase II occupies the set of protein-coding genes that are actively transcribed in eukaryotic cells. Location analysis with RNA polymerase II antibodies can identify these actively transcribed genes (7, 21). Applicants found that 23% of the genes on the Hu13K array (2984 genes) were bound by RNA polymerase II in hepatocytes, and 19% (2426 genes) were bound by RNA polymerase II in islets (20). The sets of genes occupied by RNA polymerase II in hepatocytes and islets overlapped substantially (81% overlap, relative to islets), consistent with the relatedness of the two tissues (22). As expected, the majority of genes occupied by HNF4\alpha in hepatocytes and pancreatic islets (80\% and 73\%, respectively) were also occupied by RNA polymerase II. Remarkably, of the genes occupied by RNA polymerase II, 42% (1262/2984) were bound by HNF4 α in hepatocytes and 43% (1047/2426) were bound by HNF4α in islets (Fig 1C). By comparison, only 6% and 2% of RNA polymerase II enriched promoters were also bound by HNF1 \alpha in hepatocytes and islets, respectively.

Previous studies indicate that HNF1 α , HNF4 α , and HNF6 are at the center of a network of transcription factors that cooperatively regulate numerous developmental and metabolic functions in hepatocytes and islets (9, 13, 15, 17). Our systematic

analysis of the direct in vivo targets of these factors significantly expands our understanding of the regulatory network in primary human tissues (Fig 2A). A comparison of the regulatory network in these two tissues reveals that $HNF1\alpha$, $HNF4\alpha$, and HNF6 occupy the promoters of genes encoding a large population of transcription factors and cofactors in the two tissues (20). The precise set of transcription factor genes occupied by $HNF1\alpha$, $HNF4\alpha$, and HNF6, and the extent to which they are co-occupied by the HNF regulators, differed substantially between these two tissues.

10

15

20

25

30

The transcription factor binding data was used to identify regulatory network motifs, simple units of transcriptional regulatory network architecture that suggest mechanistic models (Fig 2B) (4, 23). Our data confirm previous reports that HNF1 α and HNF4\alpha occupy one another's promoters in both hepatocytes and islets, forming a multi-component loop (24-26). Multicomponent loops provide the capacity for feedback control and produce bistable systems that can switch between two alternate states (23). It has been suggested that the multicomponent loop present between $HNF1\alpha$ and $HNF4\alpha$ is responsible for stabilization of the terminal phenotype in pancreatic beta cells (26). Applicants also found that HNF6 serves as a master regulator for feedforward motifs in hepatocytes and pancreatic islets involving over 80 genes in each tissue (Figures 20 and 22). For example, in hepatocytes, HNF6 binds the HNF4α7 promoter, and HNF6 and HNF4α together bind *PCK1*, which encodes phosphoenolpyruvate carboxykinase, an enzyme key to gluconeogenesis (Fig 2B). A feedforward loop can act as a switch designed to be sensitive to sustained, rather than transient, inputs (23). HNF1α, HNF4α and HNF6 were also found to form multi-input motifs by collectively binding to sets of genes in hepatocytes and islets. This regulatory motif suggests coordination of gene expression through multiple input signals. Applicants also found that HNF6, HNF4α, and HNF1α form a regulator chain motif with THRA (NR1D1); regulator chain motifs represent the simplest circuit logic for ordering transcriptional events in a temporal sequence (4, 23). Additional examples of these regulatory motifs can be found in Figures 20 and 23 (20). Figures 20-24, panels A and B, show transcriptional regulators occupied by HNF transcription factors and their regulatory loops. Figures 4-10 show additional controls and data generated by the experiments described herein.

Our results suggest that the nuclear hormone receptor HNF4 α contributes to regulation of a large fraction of the liver and pancreatic islet transcriptomes by binding directly to almost half of the actively transcribed genes. This likely explains why

- HNF4α is crucial for development and proper function of these tissues (12-15, 17, 18). Perhaps most importantly, our results suggest a mechanistic explanation for the recent discovery that polymorphisms in the islet-specific P2 promoter for the splice variant HNF4α7 can greatly increase the risk of type II diabetes (27-30). Applicants found that multiple HNF factors bind directly to the P2 promoter in primary, healthy human islets.
- Alterations in the binding sites for these factors could cause misregulation of HNF4α expression and thus its downstream targets, leading to beta cell malfunction and diabetes.

References for Experimental Section:

- 15 1. Roeder, R.G. Cold Spring Harb Symp Quant Biol 63, 201 (1998).
 - 2. T.I. Lee, R.A. Young. Annu Rev Genet 34, 77 (2000).
 - 3. G. Orphanides, D. Reinberg. Cell 108, 439 (2002).
 - 4. T.I. Lee, et al. Science 298, 799 (2002).
 - 5. B. Ren, et al. Genes Dev 16, 245 (2002).
- 20 6. A.S. Weinmann, et al. Genes Dev 16, 235 (2002).
 - 7. Z. Li, et al. Proc Natl Acad Sci USA 100, 8164 (2003).
 - 8. E. Lai, J.E. Darnell, Jr. Trends Biochem Sci 16, 427 (1991).
 - 9. C.J. Kuo, et al. Nature 355, 457 (1992).
 - 10. M. Pontoglio, et al. Cell 84, 575 (1996).
- 25 11. F.M. Sladek, Seidel, S. D. in. Nuclear Receptors and Genetic Disease. T. P. Burris, Ed. (Academic Press, New York, 2001).
 - 12. F. Parviz, et al. Nat Genet 34, 292 (2003).
 - 13. R.H. Costa, et al, Hepatology 38, 1331 (2003).
 - 14. D.Q. Shih, et al. Diabetes 50, 2472 (2001).
- 30 15. D.Q. Shih, M. Stoffel. Proc Natl Acad Sci USA 98, 14189 (2001).
 - 16. K.S. Zaret. Nat Rev Genet 3, 499 (2002).
 - 17. P. Jacquemin et al. Dev Biol 258, 105 (2003).

- 18. Fajans, S. S., et al. N Engl J Med 345, 971 (2001).
- 19. See supporting data on Science Online, and additional information is available at the authors' website: http://web.wi.mit.edu/young/pancregulators
- 20. H.H. Ng, F. Robert, R.A. Young, K. Struhl. Genes Dev 16, 806 (2002).
- 5 21. R. Bort, K. Zaret. Nat Genet 32, 85 (2002).
 - 22. R. Milo, et al. Science 298, 824 (2002).
 - 23. S.F. Boj ae tl. Proc Natl Acad Sci USA 98, 14481 (2001).
 - 24. H. Thomas, et al. Hum Mol Genet 10, 2089 (2001).
 - 25. J. Ferrer. Diabetes 51, 2355 (2002).
- 10 26. I. Barroso et al. PLoS Biology 1, 41 (2003).
 - 27. Q. Zhu et al. Diabetologia 46, 567 (2003).
 - 28. L. Love-Gregory et al. Diabetes 54 (2004) in press.
 - 29. K. Silander et al. Diabetes 54 (2004) in press.

Claims:

5

10

15

20

- 1. A method of determining which genes from a subset of genes are regulated by a transcriptional regulator expressed in a cell, the method comprising
 - (a) selectively isolating chromatin from the cell to generate isolated chromatin:
 - (b) selectively isolating chromatin fragments from the isolated chromatin to generate bound chromatin fragments, wherein the bound chromatin fragments are bound by the transcriptional regulator;
 - (c) amplifying both the bound chromatin fragments to generate amplified chromatin fragments and the isolated chromatin to generate amplified control chromatin;
 - (d) hybridizing the amplified control chromatin and the amplified chromatin fragments to a DNA microarray, wherein the DNA microarray comprises
 - (1) at least 10,000 experimental spots, each experimental spot comprising an experimental DNA, each experimental DNA comprising a promoter region from a gene in the subset; and
 - (2) at least 100 control spots, each control spot comprising a control DNA, each control DNA comprising a non-promoter region; and
 - (e) determining and comparing a hybridization signal at each of the spots on the microarray between those generated by
 - (1) the amplified control chromatin; and
 - (2) the amplified chromatin fragments;
- wherein a gene in the subset is said to be regulated by the transcriptional regulator in the cell if a spot comprising a promoter region of said gene displays a higher level of hybridization by the amplified chromatin fragments than by the amplified control chromatin.
- The method of claim 1, wherein the level of hybridization of the amplified chromatin fragments to each experimental spot is normalized by the level of hybridization of the amplified chromatin fragments to the control spots.

5

15

- The method of claim 1, wherein the level of hybridization of the amplified chromatin fragments to each experimental spot is normalized by subtracting the mean level of hybridization of the amplified chromatin fragments to the control spots.
- 4. The method of claim 1, wherein the higher level of hybridization comprises at least a two-fold higher level of hybridization.
- The method of claim 1, wherein the transcriptional regulator is native to the cell.
 - 6. The method of claim 1, wherein the transcriptional regulator is not a recombinant transcriptional regulator.
 - 7. The method of claim 1, wherein the cell is a primary cell.
 - 8. The method of claim 7, wherein the cell is a human cell.
- 20 9. The method of claim 8, wherein the cell is a transplant-grade human cell.
 - 10. The method of claim 1, wherein step (b) comprises immunoprecipitation of the transcriptional regulator.
- 25 11. The method of claim 1, wherein step (c) comprises ligation-mediated polymerase chain reaction (LM-PCR).
- 12. The method of claim 1, wherein the promoter region of the gene comprises from at least 700bp upstream to at least 200 bp downstream of the transcriptional start site of the gene.

13. The method of claim 1, wherein the promoter region comprises at least 30, 40, 50, or 60 or nucleotides in length.

- The method of claim 1, wherein the promoter region of the gene comprises a sequence of at least 30 nucleotides whose sequence is identical to a region stretching from 3 kb upstream to 1 kb downstream of the transcriptional start site of said gene.
- 15. The method of claim 1, wherein the non-promoter region comprises an open reading frame.
 - 16. The method of claim 1, wherein the transcriptional regulator is a basal transcription factor.
- 15 17. The method of claim 16, wherein the transcriptional regulator is an RNA polymerase II or a TATA-binding protein.
- A method of identifying a transcriptional regulatory network in a cell, the method comprising determining if a transcriptional regulator regulates additional transcriptional regulators in the cell using the method of claim 1, wherein a transcriptional regulatory network is identified if at least one additional transcriptional regulator is determined to be regulated by the transcriptional regulator.
- 25 19. The method of claim 18, wherein the experimental DNA comprises promoter regions from the additional transcriptional regulators.
 - 20. A method of identifying a transcriptional regulatory network in a cell, the method comprising determining if a transcriptional regulator regulates
 - (i) its own promoter; or

30

(ii) a promoter from a plurality of transcriptional regulators, using the method of claim 1, wherein the experimental DNA comprises

5

10

15

25

30

- (a) a promoter from the transcriptional regulator; and
- (b) promoters from the plurality of transcriptional regulators; wherein a transcriptional regulatory network is identified if the transcriptional regulator regulates itself or if it regulates at least one of the plurality of transcriptional regulators.
- 21. A method of identifying transcriptional regulatory networks in a cell, the method comprising
 - (a) determining, by repeating the method of claim 1 for each of a plurality of transcriptional regulators, the genes in a subset which are regulated by each of the plurality of transcriptional regulators, wherein the experimental DNA comprises promoter regions for each of the plurality of transcriptional regulators;
 - (b) determining if any one of the plurality of transcriptional regulators are regulated by at least one of the plurality of transcriptional regulators; wherein a transcriptional regulatory network is identified if any one of the plurality of transcriptional regulators is regulated by at least one of the plurality of transcriptional regulators.
- 20 22. The method of claim 21, further comprising determining if a gene is regulated by more than one of the plurality of transcriptional regulators.
 - 23. A DNA microarray for determining promoter occupancy in a human cell, the microarray comprising
 - (1) at least 10,000 experimental spots, each experimental spot comprising an experimental DNA, each experimental DNA comprising a promoter region from a human gene in the subset; and
 - (2) at least 100 control spots, each control spot comprising a control DNA, each control DNA comprising a non-promoter region; wherein at least 75% of the promoter regions comprise from at least 700bp upstream to at least 200 bp downstream of the transcriptional start site.

24. A method of estimating if a transcriptional regulator is a global transcriptional regulator, the method comprising

(a) selectively isolating chromatin from a tissue;

5

10

15

25

- (b) identifying promoter regions from the chromatin which are bound by a candidate global transcriptional regulator;
- (c) identifying promoter regions from the chromatin which are bound by a member of the basal transcriptional machinery; and
- (d) comparing the promoter regions identified in steps (b) and (c) to determine the ratio between (i) the number of promoter regions bound by both the candidate global transcriptional regulator and the member of the basal transcriptional machinery; and (ii) the number of promoter regions bound by the member of the basal transcriptional machinery

wherein a transcriptional regulator is a global transcriptional regulator when the ratio is greater than 0.2.

- 25. The method of claim 24, wherein steps (b) and (c) are performed using a DNA microarray.
- 20 26. The method of claim 25, wherein the DNA microarray comprises
 - (i) at least 10,000 experimental spots, each experimental spot comprising an experimental DNA, each experimental DNA comprising a promoter region from a human gene in the subset; and
 - (ii) at least 100 control spots, each control spot comprising a control DNA, each control DNA comprising a non-promoter region;
 - 27. The method of claim 24, wherein the member of the basal transcriptional machinery is an RNA polymerase II or a TATA-binding protein.
- 30 28. The method of claim 24, wherein the tissue is transplant-grade tissue.
 - 29. The method of claim 24, wherein the tissue is freshly-isolated human tissue.

30. The method of claim 29, wherein the tissue is from a subject afflicted with a disorder.

5 31. The method of claim 30 wherein the disorder is a hyperplastic condition.

10

15

20

25

30

- 32. A method of identifying at least one target gene for the development of a therapeutic to treat or prevent a disorder in a subject, wherein at least one form of the disorder is caused by an altered activity in a transcriptional regulator or in a suspected transcriptional regulator, the method comprising
 - (a) identifying the genes regulated by the transcriptional regulator in a cell;
 - (b) determining if the transcriptional regulator is a broad-acting transcriptional regulator or a narrow-acting transcriptional regulator, wherein if the transcriptional regulator is a broad acting transcriptional regulator then the transcriptional regulator is a target gene for the development of a therapeutic, and wherein if the transcriptional regulator is a narrow acting transcriptional regulator then
 - (i) determining if at least one gene regulated by the transcriptional regulator is likely causative in the disorder, wherein a gene that is likely causative in the disorder is a target gene for the development of a therapeutic; and
 - (ii) reiterating steps (a) and (b) for at least one gene that is regulated by the transcriptional regulator in the cell and that either
 - (1) encodes a transcriptional regulator or
 - (2) is suspected to encode a transcriptional regulator,with the modification that the transcriptional regulator of steps (a) and(b) is said gene,

thereby identifying at least one target gene for the development of a therapeutic to treat or prevent a disorder in the subject.

33. The method of claim 32, wherein identifying the genes regulated by the

25

transcriptional regulator in a cell comprises chromosome-wide location analysis.

- 34. The method of claim 32, wherein identifying the genes regulated by the transcriptional regulator in the cell comprises using the method of claim 1.
 - 35. The method of claim 32, wherein the transcriptional regulator is a master regulatory gene.
- The method of claim 35, wherein the master regulatory gene is SOX1-18, OCT6, PAX3, Myocardin, GATA1-6, TCF1/HNF1A, HNF4A, HNF6, NGN3, C/EBP, FOXA1-3, IPF1, GATA, HNF3, NKX2.1, CDX, FTF/NR5A2, C/EBPbeta, SCL1, SKIN1, or a member of the neurogenin, LK, LMO, SOX, OCT, PAX, GATA or MyoD family of transcription factors.
- The method of claim 32, wherein the transcriptional regulator is PAX3, EGR-1, EGR-2, OCT6, a SOX family member, a GATA family member, a PAX family member, an OCT family member, RFX5, WHN, GATA1, VDR, CRX, CBP, MeCP2, AML1, p53, PLZF, PML, Rb, WT1, NR3C2, GCCR, PPARgamma, SIM1, HNF1alpha, HNF1beta, HNF4alpha, PDX1, MAFA, FOXA2, or NEUROD1.
 - 38. The method of claim 32, wherein the cell is derived from a tissue whose function is impaired in the disorder.
 - 39. The method of the claim 32, wherein the broad acting gene regulates at least about 2.5% of the genes in the cell, and wherein the narrow acting gene regulates less than about 2.5% of the genes in the cell.
- 30 40. The method of claim 32, wherein the gene is suspected to encode a transcriptional regulator if it shares at least 30% amino acid sequence identity with the DNA binding domain of a transcriptional regulator.

15

20

25

30

- 41. The method of claim 32, wherein the transcriptional regulator in the cell is a mutant transcriptional regulator.
- 5 42. The method of claim 32, wherein the transcriptional regulator in the cell-hasaltered activity.
- 43. The method of claim 32, wherein the gene regulated by the transcriptional regulator is likely causative of the disorder when a mutation in the gene results in at least one phenotype or symptom associated with the disorder.
 - 44. The method of claim 32, wherein the gene regulated by the transcriptional regulator is likely causative of the disorder when the gene encodes an enzyme or signaling molecule which functions in a pathway that is impaired in the disorder.
 - 45. The method of claim 32, wherein the altered activity in the transcriptional regulator comprises at least one of the following:
 - (a) an alteration in the binding affinity of the transcriptional regulator to DNA;
 - (b) an alteration in the ability of the transcriptional regulator to bind to RNA polymerase, to an RNA polymerase holoenzyme, or to a second transcriptional regulator;
 - (c) an alteration in the binding affinity of the transcriptional regulator to a ligand;
 - (d) an alteration in expression level or expression pattern of the transcriptional regulator; or
 - (e) an alteration in an ability of the transcriptional regulator to form homomultimers or heteromultimers.
 - 46. The method of claim 32, wherein the disorder is characterized by impaired function of at least one of the following: brain, spinal cord, heart, arteries,

esophagus, stomach, small intestine, large intestine, liver, pancreas, lungs, kidney, urinary tract, ovaries, breasts, uterus, testis, penis, colon, prostate, bone, muscle, cartilage, thyroid gland, adrenal gland, pituitary, bone marrow, blood, thymus, spleen, lymph nodes, skin, eye, ear, nose, teeth or tongue.

5

- 47. The method of claim 32, wherein the therapeutic comprises a small molecule drug, an antisense reagent, an antibody, a peptide, a ligand, a fatty acid, a hormone or a metabolite.
- 10 48. The method of claim 32, wherein the subject is a mammal.
 - 49. The method of claim 48, wherein the mammal is a human.
- 50. The method of claim 32, wherein the transcriptional regulator is a transcriptional activator or a transcriptional repressor.
 - 51. The method of claim 32, wherein the transcriptional regulator is native to the cell.
- 20 52. The method of claim 32, wherein the transcriptional regulator is from a species different from that of the cell.
 - 53. The method of claim 52, wherein the transcriptional regulator is a viral transcriptional regulator.

25

- A method of treating or preventing type II diabetes in a subject, comprising administering to the subject a therapeutically effective amount of an agent that increases the global transcriptional activity of HNF4alpha.
- 30 55. A method of treating or preventing a disorder associated with low transcriptional activity of HNF4alpha in a subject, comprising administering to the subject a therapeutically effective amount of an agent that increases the

global transcriptional activity of HNF4alpha.

5

10

15

A method of treating or preventing a disorder associated with high transcriptional activity of HNF4alpha in a subject, comprising administering to the subject a therapeutically effective amount of an agent that decreases the global transcriptional activity of HNF4alpha.

- 57. A method of increasing the global transcriptional activity in a liver or a pancreatic cell comprising contacting the cell with an agent which increases the global transcriptional activity of HNF4alpha.
- 58. A method of decreasing the global transcriptional activity in a liver or a pancreatic cell comprising contacting the cell with an agent which decreases the global transcriptional activity of HNF4alpha.

A method of regulating the expression level of any one of the genes in Figure 13 in a hepatocyte, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF1alpha.

- A method of regulating the expression level of any one of the genes in Figure
 14 in a pancreatic cell, the method comprising contacting the cell with an agent
 which regulates the transcriptional activity of HNF1alpha.
- A method of regulating the expression level of any one of the genes in Figure
 16 in a hepatocyte, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF6.
- A method of regulating the expression level of any one of the genes in Figure 17 in a pancreatic cell, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF6.
 - 63. A method of regulating the expression level of any one of the genes in Figure

18 in a hepatocyte, the method comprising contacting the cell with an agent which regulates the transcriptional activity of HNF4alpha.

- A method of regulating the expression level of any one of the genes in Figure

 19 in a pancreatic cell, the method comprising contacting the cell with an agent which regulated the transcriptional activity of HNF4alpha.
 - A method of identifying transcriptionally active genes that are regulated by a transcriptional regulator in a cell, the method comprising
 - (a) selectively isolating chromatin from a tissue;
 - (b) identifying promoter regions from the chromatin that are bound by the transcriptional regulator;
 - (c) identifying promoter regions from the chromatin that are bound by a member of the basal transcriptional machinery; and
 - (d) comparing the promoter regions identified in steps (b) and (c) to determine overlapping genes,

wherein the overlapping genes are transcriptionally active genes regulated by the transcriptional regulator.

20

10

Fig. 1A

Fig. 1B

(2/41)

Fig. 1C

Hepatocyte

Pancreatic Islet

(3/41)

Fig. 2A

Hepatocytes

Pancreatic Islets

Fig. 2B Single Input Regulator Chain Autoregulation Feedforward Loop Multicomponent Loop Multi-input

(5/41)

Fig. 3

Fig. 4

Fig. 5

(8/41)

Fig. 6A

Fig. 6B

Fig. 6C

(11/41)

WO 2005/054461 PCT/US2004/039805

Fig. 6D

(12/41)

Fig. 8

Hepatocytes

Pancreatic Islets

HNF4αRNA Pol II

(14/41)

Fig. 9

(15/41)

Fig. 10

Fig. 11

Name	RefSeq	Description	Hepatocyte	Islets	Name	RefSeq	Description	Hepatocyte	Islets
Chanasana	-	•	主	<u> </u>	Signal Trans	duction-Other			<u></u>
Chaperone C4BPA	NM 000715	complement 4 binding protein a		¥	BIKE	NM 017593	BMP-2 inducible kinase		J
APCS	NM_001639	amyloid P component	٠		SGK2	NM_016276	serum/glucocorticold reg. kinase 2	_	J
	NM_019559	coagulation factor XI			SEL1L	NM_005065	suppressor of lin-12-like		v
F11	NM_001734	complement component 1s	Ž		SCYE1	NM 004757	small cytokine E1	~	
C1S					ANGPTL3	NM_014495	angiopoietin-like 3	Ú	
VTN	NM_000638	somatomedin B	•			duction-Recepto			
EnzymeHyd		-1.1111.1		J	HAVCR-1	NM_012206	hepatitis A virus cellular receptor 1		J
PGCP	NM_016134	glutamate carboxypeptidase		Š	TACR3	NM 001059	tachykinin receptor 3		J
GLA	NM_000169	-galactosidase, alpha		Ü	GNB2L1	NM_006098	GTP binding protein , beta2L1		Ċ
LIPA	NM_000235	tipase A			INSR	NM_000208	insulin receptor		Ĵ
SPO11	NM_012444	SPO11-like		Ž	SSTR1	NM_001049	somatostatin receptor 1	٠	Ü
PAFAH2	NM_000437	platelet-activating factor 2	Ψ.	Ž	TM4SF4	NM_004617	transmembrane 4-4	·	Ü
AADAC	NM_001086	arylacetamide deacetylase		Ž	ASGR2	NM_001181	asialoglycoprotein receptor 2	J	•
PS-PLA1	NM_015900	phospholipase A1alpha			GPR39	NM_001508	G protein-coupled receptor 39	Ū	
VNN3	NM_018399	vanin 3		•		NM_000629	interferon receptor 1	J	
CPB2	NM_016413	carboxypeptidase B2	•		IFNAR1				
ANPEP	NM_001150	alanyi aminopeptidase	~		TFRC	NM_003234	transferrin receptor	•	
HGFAC	NM_001528	HGF activator	~		Transcription		Amount Oles wine Sense weeksin		
ENPEP	NM_001977	glutamyl aminopeptidase	•		ZNF300	NM_052860	kruppel-like zinc finger protein B-cell CLL/lymphoma 6		J
Enzyme-Lig					BCL6	NM_001706			J
MCCC1	NM_020166	methylcrotonoyi-CoA carboxytase		~	ZNF155	NM_003445	zinc finger protein 155		٠.
GARS	NM_002047	glycyl-IRNA synthetase	~		FBXO8	NM_012180	F-box only protein 8		¥.
TARS	NM_003191	threonyl-tRNA synthetase	~		NR0B2	NM_021969	Small heterodimer protein		ŭ
Enzyme-Lya					HNF4a7	AF509467	HNF4alpha, alternate splice	•	•
UROD	NM_000374	uroporphyrinogen decarboxylase		•	NR5A2	NM_003822	LRH-1/FTZ-F1	•	•
PCK1	NM_002591	.PEPCK1	~		ELF3	NM_004433	E74-like factor 3	•	~
HPCL2	NM_012260	2-hydroxyphytanoyl-CoA lyase	•		NR1D1	NM_021724	THRA1	-	
HAL	NM_002108	histidine ammonia-lyase	✓-		ATF2	NM_001880	activating transcription factor 2	~	
FH	NM_000143	fumarate hydratase	•		CREBL2	NM_001310	CREB-like 2	•	
EnzymeOxi	doreductase				RARB	NM_016152	RAR-beta	~	
COQ7	NM_016138	COQ7 coenzyme Q, 7		J		-Channel/Pore			
ADH4	NM_000670	alcohol dehydrogenase 4		•	SLC17A2	NM_005835	vesicular glutamate transporter	J	
UQCRC2	NM_003366	ubiqcyt. c reductase core prot. II	~	~	AQP3	NM_004925	aquaporin 3	~	
CYB5-M	NM_030579	cytochrome b5	~	~	SLC22A11	NM_018484	hOAT4	J	
CYP2E	NM_000773	cytochrome P450, IIE	✓		GJB1	NM_000166	gap junction protein, beta 1	~	
CYB5	NM 001914	cytochrome b-5	-		Transporter-	-Lipids and Small	Molecules		
HSD17B2	NM_002153	hydroxysterold dehydrogenase 2	•		APOH	NM_000042	apolipoprotein H	•	~
ADH1A	NM_000667	alcohol dehydrogenase 1A		,	ALB	NM_000477	albumin	~	
EnzymeTra					ABCC2	NM_000392	canalicular OAT	~	
GCNT3	NM_004751	glucosaminyl transferase 3		~	G6PT1	NM_001467	glucose-6-phosphatase, transport	~	
FNTB	NM_002028	farnesyltransferase beta	•	J	Transporter-	-Proteins			
HNMT	NM_006895	histamine N-methyltransferase	~		RAB6KIFL	NM_005733	RAB6 Interacting, kinesin-like		~
GOT1	NM_002079	aspartate aminotransferase 1	~		PEX13	NM_002618	peroxisome biogenesis factor 13		~
UGT2B15	NM_001076	UDP givcosvitransferase 2B15	~		TMP21	NM_006827	transmembrane trafficking protein		•
GBE1	NM_000158	glycogen branching enzyme	~		RAB33B	NM_031296	RAS oncogene	•	~
Enzyme Reg		gry dog dr. Dransming dr. Lynno			NAPA	NM_003827	alpha SNAP	•	
SERPING1	NM_000062	C1-inhibitor	,		AP3M1	NM_012095	adaptor-related prot. Complex	•	
SERPINA1	NM_000295	alpha-1-antitrypsin	,		SNX17	NM_014748	sorting nexin 17	-	
ITIH4	NM_002218	inter-alpha inhibitor H4	Ù						
		alpha-2-HS-glycoprotein	Ĵ						
AHSG	NM_001622	athita-5-Lio-Aliamhiorem	•		•				
Ligand Bind		tdulin 2		J.					
TMOD2	NM_014548	tropomodulin 2	,	-					
IGFBP1	NM_000596	IGF binding protein 1							
MT1X	NM_005952	metallothionein 1X	Š				•		
CRP	NM_000567	C-reactive protein							
APOA2	NM_001643	apolipoprotein A-II	•						

Fig. 12

eatic Islets*	Islet specific genes	825/1898 (43%)	32/1898 (1.7%)	68/1898 (3.6%)
BJ-T vs Pancreatic Islets*	BJ-T specific genes Islet specific genes		4/546 (.9%)	3/546 (.5%)
BJ-T vs Hepatocytes*	Hepatocyte specific genes	996/2389 (42%)	123/2389 (5.1%)	105/2389 (4.4%)
BJ-T vs H	BJ-T specific genes	19/492 (4%)	2/492 (.4%)	7/492 (1.4%)
		HNF4α/RNA Pol II	HNF1α/RNA Pol II	HNF6/RNA Pol II

Fig. 13

Name	RefSeq	Name :	RefSeq : **	Name -	RefSeq	Name			RefSeq
AADAC	NM_001086	DLEU1	NM_005887	HPX	NM_000613	PHF2	NM_005392	ZNF288	NM_015642
ABCC2	NM_000392	DUSP6	NM_022652	HSD11B1	NM_005525	PIST	NM_020399	ZNF361	NM_018555
ACF	NM_014576	EIF4EBP2	NM_004096		NM 002153	PLCB1	NM_015192		
ADH1A	NM_000667	ELF3	NM_004433	HSPC111	NM_016391	PLG	NM_000301	1	
ADH1B	NM_000668	ENPEP	NM_001977		NM_016396	PLGL	NM_002665	İ	
ADH6	NM_000672	F11 .	NM_019559	IFNAR1	NM_000629	PS-PLA1	NM_015900	1	
	NM_000029	FE65L2	NM_006051	IGF1R	NM_000875	PZP	NM_002864		
AGT	NM_001622	FH	NM_000143	IGFBP1	NM_000596	RAB33B	NM_031296	}	
AHSG	NM_001625	FKSG87	NM_032029	INADL	NM_005799	RAMP	NM_016448		
AK2	NM_001354	FLJ10242	NM_018036	ПНЗ	NM_002217	RARB	NM_016152		
AKR1C2	NM_003739	FLJ10276	NM_018045	ITIH4	NM_002218	RBP5	NM_031491		
IAKR1C3	NM_001818	FLJ10525	NM_018126	ITM2B	NM_021999	RNGTT	NM_003800		
AKR1C4		FLJ10583	NM_018148	KIAA0022	NM_014880	RPL37AP1	NG_000988		
ALB	NM_000477	FLJ10650	NM_018168	KIAA0669	NM_014779	SAC	NM_018417	1	
ALDH3A2	NM_000382	FLJ10774	NM_024662	KIAA0844	NM_014951	SCYE1	NM_004757		
ALS2	NM_020919	FLJ11000		KIAA0872	NM_014940	SEL1L	NM_005065	1.	
AMBP	NM_001633		NM_018295	1	NM_014947	SERPINA1	NM_000295		
ANGPTL3	NM_014495	FLJ11838	NM_024664 NM_022492	KIAA1041	NM_000893	SERPINA10	NM_016186		
ANPEP	NM_001150	FLJ12788	_	1		SERPINA6	NM_001756	İ	
AP3M1	NM_012095	FLJ13448	NM_025147	LBP	NM_004139	SERPINC1	NM_000488		
APCS	NM_001639	FLJ13611	NM_024941		NM_015913	SERPINE1	NM_000602	}	
APG3	NM_022488	FLJ14356	NM_030824		NM_016001		NM_000062		
APOA2	NM_001643	FLJ20080	NM_017657		NM_016632	SERPING1	NM_016276	1	
APOH	NM_000042	FLJ20718	NM_017939		NM_019043	SGK2			
AQP3	NM_004925	FLJ21272	NM_025032		NM_020143	SLC17A2	NM_005835	į.	
AQP9	NM_020980	FLJ21934	NM_024743		NM_021211	SLC22A11	NM_018484		
ARHGAP11A	NM_014783	FLJ22551	NM_024708	LY6E	NM_002346	SLPI	NM_003064		
ASGR1	NM_001671	FLJ23259	NM_024727	M17S2	NM_031858	SNX17	NM_014748	1	
ASGR2	NM_001181	FNTB	NM_002028	M96	NM_007358	SRI	NM_003130		
ATF2	NM_001880	G0S2	NM_015714	MAGEA9	NM_005365	SSA2	NM_004600	j	
AUTL1	NM_032852	G3A	NM_019101		NM_031477	SSTR1	NM_001049		
BAT3	NM_004639	G6PT1	NM_001467		NM_031453	SSTR4	NM_001052	1	
BIKE	NM_017593	GARS	NM_002047		NM_024322	STRAIT11499			
BTN2A1	NM_078476	GBE1	NM_000158		NM_032687	SUPV3L1	NM_003171		
C1S	NM_001734	GCKR	NM_001486		NM_032367	SYN3	NM_133632		
C2 .	NM_000063	GDI2	NM_001494	MGC955	NM_024097	TARS	NM_003191	Ì	
C4BPA	NM_000715	GIOT-2	NM_016264	MIA2	NM_054024	TBPL1	NM_004865	1	
C8B	NM_000066	GJB1	NM_000166	MRPL15	NM_014175	TEF	NM_003216		
CCNE1	NM_001238	GOT1	NM_002079	MRPS18B	NM_014046	TFRC	NM_003234		
CDCA1	NM_031423	GPR39	NM_001508	MSH6	NM_000179	TIEG2	NM_003597		
CISH	NM_013324	GPX2	NM_002083	MT1H	NM_005951	TIEG2	NM_003597	1	
CLYBL	NM_138280	GRHPR	NM_012203	MT1L.	NM_002450	TM4SF4	NM_004617		
CNTNAP2	NM_014141	GTF2B	NM_001514	MT1X	NM_005952	TMEM1	NM_003274		
CPB2	NM_016413	GTF2E1	NM_005513	MTHFD1	NM_005956	TNFRSF6	NM_000043		
CREBL2	NM_001310	GTPBG3	NM_032620	MTP	NM_000253	UGT1A1	NM_000463		
CRP	NM_000567	HABP2	NM_004132	NAPA	NM_003827	UGT2B11	NM_001073		
CTSZ	NM_001336	HAL	NM_002108	NET-2	NM_012338	UGT2B15	NM_001076	1	
CYB5	NM_001914	HAO1	NM_017545	NFKBIB	NM_002503	UQCRC2	NM_003366		
CYB5-M	NM_030579	HCAP-G	NM_022346	NPC1L1	NM_013389	VNN3	NM_018399		
CYP2E	NM_000773	HGD	NM_000187	NR0B2	NM_021969	VTN	NM_000638	Ì	
CYP3A43	NM_022820	HGFAC	NM_001528	NR1D1	NM_021724	WBP4	NM_007187		
DAF	NM_000574	HNF4A	NM_000457	NR5A2	NM_003822	WDF2	NM_052950		
DC13	NM_020188	HNF4A	NM_000457	NRD1	NM_002525	WDR12	NM_018256		
DKFZP5640046		HNF4a7	AF509467	PAFAH2	NM_000437	XDH	NM_000379	1	
DKFZP586A052		HNMT	NM_006895	PAX8	NM_013952	XPC	NM_004628	1	
DKFZP586M012	_	HPCL2	NM_012260	PCK1	NM_002591	ZK1	NM_005815	l	

Fig. 14

Name	RefSeq	Namo	RefSeg
AADAC	NM_001086	KIAA0101	NM_014736
ABCC9	NM_020297	KIAA0399	NM 015113
ADH4	- NM-000670	KIAA0844 — -	- NM_014951
APOH	NM_000042	KIF13A	. NM_022113
ARHGAP11A	NM 014783	KIR-023GB	
B29	NM_031939	KIR2DS2	NM_015868
	NM_001706		NM_012312
BCL6	_	KIR3DL1	NM_013289
BIKE	NM_017593	KRTAP1.1	NM_030967
C4BPA	NM_000715	KRTHA3A	NM_004138
C6orf11	NM_005452	LIPA	NM_000235
CDC45L	NM_003504	LOC113201	NM_138423
COL3A1	NM_000090	LOC113220	NM_138424
COQ7	NM_016138	LOC51092	NM_015996
CPXCR1	NM_033048	LOC56906	NM_020147
ICRH	NM_000756	MCCC1	NM_020166
CTSZ	NM_001336	MGC10500	NM_031477
CYB5-M	NM_030579	MGC15677	NM_032878
DKFZP564J157	NM_018457	MIA2	NM_054024
DLEU1 .	NM_005887	MRPL15	NM_014175
DOCK1 ,	NM_001380	Nod1(-)6kb	NM_006092
DSC1	NM_024421	NPY2R	NM_000910
EIF3S6	NM_001568	NR0B2	NM_021969
ELF3	NM_004433	NR2C2	NM_003298
FBXO8	'NM_012180	NR5A2	NM_003822
FE65L2	NM_006051	PAFAH2	NM_000437
FIL1(EPSILON)	NM_014440	PAX8	NM_013952
FLJ10242	NM_018036	pcnp	NM_020357
FLJ10252	NM_018040	PEX13	NM_002618
FLJ10474	NM_018104	PGCP	NM_016134
FLJ10650	NM_018168	PRO2032	NM_018615
FLJ11301	NM_018385	PSMA5	NM_002790
FLJ13273	NM_024751	PS-PLA1	NM_015900
FLJ13385	NM_024853	RAB33B	NM_031296
FLJ13448	NM_025147	RAB6KIFL	NM_005733
FLJ14855	NM_033210	SDCCAG10	NM_005869
FLJ20156	NM_017691	SEL1L	NM_005065
FLJ20225	NM_019062	SGK2	NM_016276
FLJ20234	NM_017720	SLC26A7	NM_052832
FLJ20298	NM_017752	SPO11	NM_012444
FLJ20643	NM 017916	SRI	NM_003130
FLJ20731	NM_017946	SSTR1	NM_001049
FLJ21272	NM_025032	TACR3	NM 001059
FLJ22559	NM 024928	TM4SF4	NM_004617
FNTB	NM_002028	TMOD2	NM_014548
GCNT3	NM_004751	TMP21	NM_006827
GIOT-2	NM_016264	UQCRC2	NM_003366
GLA	NM_000169	UROD	NM_000374
GNB2L1	NM_006098	VNN3	NM_018399
GPR74	NM_004885	WBP4	NM_007187
H4F2	NM_003548	ZNF155	_
HAVCR-1			NM_003445
HHLA2	NM_012206	ZNF300	NM_052860
	NM_007072		
HNF4a7 IFNA10	AF509467		
	NM_002171		
INSR	NM_000208	1	

(20/41)

Fig. 15A

		Direct	In vitro	Indirect	Sequence Baser	ORGANISM
Regulator	Target Gene	Reference	Reference	Reference	Reference	Organism
HNF4a	GST-YA		Transfer to the second	Paulson 1990	iveletence	human
HNF4a	TTR		Sladek 1990	Stadek 1990, costa 1991		human
HNF4a	ApoC3		Sladek 1990	Sladek 1990		human
HNF4a	ApoA1		Sladek 1990	Stadek 1990		human
HNF4a	serpina		Sladek 1990	Stadek 1990		human
HNF4a	Pkir		Sladek 1990	Sladek 1990		human
HNF4a	cyp2c13				eguchi 1991	rat
HNF4a	aib		herbst 1991	herbst 1991		rat
HNF4a HNF4a	ttr hnf1a		herbst 1991	herbst 1991		rat
HNF4a	19			üan 1991		human
HNF4a	hnf1a		crossley 1991	kuo 1992		human
HNF4a	apob		ladias 1992	tadias 1992		human
HNF4a	ApoC3		ladias 1992	ladias 1992		human
HNF4a	apoa2		ladias 1992	ladias 1992		human human
HNF4a	pkir		INGRO (DOL	puzenal 1992		human
HNF4a	19			relinen 1992		human
HNF4a	Ħ .			schaeffer 1993		human
HNF4a	hnfia			zapp 1993		xenopus
HNF4cı	pck1	•	angrand 1994	angrand 1994		rat
HNF4a	pck2		angrand 1994	angrand 1994		rat
HNF4a	cyp2c2		chen 1993	chen 1993	•	human
HNF4a	cyp2c1		chen 1993	chen 1993		human
HNF4a	cyp2c3		chen 1993	chen 1993		human
HNF4a	cyp7a1		chiang 1994	chiang 1994		rat
HNF4a HNF4a	ApoA1		luemkranz 1994	fuemkranz 1994		human
HNF4a	CEACAM1		hauck 1994	hauck 1994		human
HNF4a	apoa4 pkir		klistaki 1994	klistaki 1994		human
HNF4a	a2m		matthin 1004	liimatta 1994		ral
HNF4a	pkir	miquerol 1994	matthijs 1994			human
HNF4a	rbp2	miquoror too-		nakshatri 1994		human rodent
HNF4a	otc			nishiyori 1994		mice
HNF4a	acox1		winrow 1994	winrow 1994		rat
HNF4a	hsd17b4		winrow 1994	winrow 1994		ral .
HNF4a	f7		erdmann 1995, greenberg	erdmann 1994, greenberg		
			1995	1995		human
HNF4a	f8		figueiredo 1995	figuelredo 1995		human
HNF4a HNF4a	epo		galson 1995	galson 1995		human
HNF4a	cyp2c9		ibeanu 1995	ibeanu 1995		human
HNF4a	ambp cyp2c23		rouet 1995 roussel 1995	rouet 1995		human
HNF4a	cyp2d6		caims 1996	caims 1996		ral
HNF4a		•	Fernandez-Rachubinski			human
	serpinc1		1996	Fernandez-Rachubinski 1996		human
HNF4a	bf .			garnier 1996		human
HNF4a	f10	1	hung 1996	hung 1996		human
HNF4a	prir	,	moldrup 1996	moldrup 1996		ral
HNF4a	mst1		waltz 1996	waltz 1996		human
HNF4a	lipc);	chang 1997		human
HNF4a HNF4a	g6pc SLC2A2		lin 1997	lin 1997		human
HNF4a	aldob			stoffel 1997		mouse
HNF4a	gadp			stoffel 1997 stoffel 1997		mouse
HNF4a	fabp1			stoffel 1997		mouse
HNF4a	cyp2a4		yokomari 1997	Siche: 1337		mouse
HNF4cı	f12		farsetii 1998			mouse human
HNF4a	cyp3a23		huss 1998	huss 1998		rat
HNF4a	shbg		janne 1998	janne 1998		numan
HNF4a	apoc2		kardassis 1998	kardassis 1998		numan
HNF4a	afp			magee 1998		numan
HNF4a	HMGCS2		rodriguez 1998	rodriguez 1998		odent
HNF4a	ALDH3A1			boesch 1999		al .
HNF4cı	serpina1			hu 1999	1	numan
HNF4ct	cyp3a1			ogino 1999		at
HNF4c	aldh2			pinaire 1999		numan
HNF4a HNF4a	cyp2c12 GUCY2C			sasaki 1999		al
HNF4a	ang			swenson 1999 yanai 1999		uman
HNF4a	ada		dusing 2000	Janul 1000		uman
	hnf6			lahuna 2000		uman uman
	•				'	

(21/41)

Fig. 15B

TABLE S4		Direct	in vitro	Indirect	Sequence Basi	ed · · · · · be
Regulator		Reference	Reference	Reference	Reference	Organisi
HNF4a	hadhb		nicolas-frances 2000	nicolas-frances 2000		human
	pax4		smith 2000	smith 2000		human
HNF4a	ins ogdh			wang 2000		mouse
HNF4cc	ucp2			wang 2000		mouse
HNF4α	nni4a		bailly 2001	wang 2000 		mouse
HNF4a	ghr		jiang 2001	jiang 2001		human bovine
HNF4a	сур3а4		, re-ig 200 .	jover 2001		human
HNF4a	сур3а5		•	jover 2001		human
HNF4cz	сур3а6			jover 2001		human
HNF4a	cyp2b6			jover 2001		human
HNF4a	cyp2c9			jover 2001		human
HNF4a HNF4a	fmo1		. 1	luo 2001		rabbit
HNF4a	cyp3a16 akr1c4		nakayama2001	nakayama2001		mouse
HNF4a	cyp8b1		ozeki 2001 zhang 2001	ozaki 2001		human
HNF4a	hpd		aarenstrup 2002	zhang 2001 aarenstrup 2002		human rat
HNF4a	cyp27		garuti 2002	garuli 2002		human
HNF4a	NOS2A		guo 2002	guo 2002		rat
HNF4a	cptia		•	louet 2002		human
HNF4a	ppara		pineda-torra 2002	pineda-torra 2002		human
HNF4α	gk		roth 2002			rat
HNF4a HNF1a	Serpina1	Soutoglou 2002			1	human
HNF1a	FGA FGB			baumhueter 1990	*	
HNF1a	FGG			baumhueter 1990		
HNF1a	afp			baumhueter 1990 baumhueter 1990		
HNF1a	serpina1			baumhueter 1990		١
HNF1a	aim			herbst 1991	cereghini 1990	rat (herb
HNF1a	alm			tronche 1991	,	rat
HNF1a	cyp2e1		gonzalez 1990, hayashi		ť	
DRIFTA .			1991			animai
HNF1a HNF1a	aldob aldob		raymondjean 1991			rat
HNF1a			ito 1990	numerichted 4000 habatta-	:	rat
	igfbp1			suwanichkul 1990, babajko 1993		human
HNF1a	lgfbp1	•		powell 1993		human
HNF1a	igfbp1			suh 1995, suh 1997		rat
	crp	•		toniatti 1990		
HNF1a	apoa2			chambaz 1991		human
HNF1a HNF1a	ttr			costa 1991		mouse
HNF1a	tir hdlibp			herbst 1991		rat
HNF1a	rbp5			Minusti 1001	drewes 1991	xenopus
HNF1a	12		bancroft 1992	tripodi 1991 bancroft 1992		human
HNF1a	apob		brooks 1992	Danaton 1332		human human
HNF1a	insr		cameron 1992			human
HNF1a	Insr		cameron 1992			human
HNF1a	agt			congiu 1992		mouse
HNF1a	ins			emens 1992		rat
HNF1a	pkir		puzenal 1992			
HNF1a HNF1a	tat		schweizer-groyer 1992	minesen 1000 bala tarris		rat
11111 112	siat1		svensson 1992	svensson 1992, bois-joyeux 1995		human
HNF1a	adh1			van coji 1992		human
HNF1a	crhbp			vaii 00p 1002	behan 1993	human
HNF1a	afp			bernier 1993	- O	human
HNF1a	fgb	•	dalmon 1993	dalmon 1993		human
HNF1a	lyz				grajer 1993	chicken
HNF1a	aldob			gregori 1993		
HNF1a HNF1a	tbg			hayashi 1993		human
	apoa1			krilis 1993		
	apoc3 crp		li 1 9 96	krilis 1993		
	igb		11 1480	ku 1993, li 1996 roberts 1993		mouse
	proc			berg 1994		xenopus human
	serpina1			bulla 1994		nungi)
HNF1a	gsla2		dairmont 1994			human
	cyp2c13			legraverend 1994		human
	pki r	miqueral 1994		-		human
	anpep		olsen 1994	olsen 1994		human
HNF1a	si		wu 1994	Wu 1994		human

(22/41)

Fig. 15C

TARLE CA		Dissat	In vitro	fudlant	Company Dane	। स्थानका विकास स्थानका स्थानका
TABLE S4	Targel Gene	Direct Reference		Indirect Reference	Sequence Basec Reference	:Organism
HINFIG	C4BPA	- Arteled Ellocation	A reservation (1972)	arenzana 1995	A. A. Canada Garage	human
HNF1a	FGA			hu 1985		human
HNF1a	igf1			kulik 1995, nolten 1995		salmon, human
HNF1cc	cyp2e1		llu 1995	liu 1995, ler ch e 1996		ral
HNF1a	ambp		rouet 1995	rouet 1995		human
HNF1a	ddc -		aguanno 1996	aguanno 1996		human
HNF1a HNF1a	fB n)n		moglynn 1996	moglynn 1996		human
HNF1a	pig pah		meroni 1996	meroni 1996 pontoglio 1996		human mouse
HNF1a	hmgcs2			politogilo 1250	boukaftane 1997	human
HNF1a	lipc			chang 1997	OGGIZZANO 1007	rat
HNF1a	cyp2h1		dogra 1997	dogra 1997		chicken
HNF1cc	ugt2b1		hansen 1997	hansen 1997		human, rat
HNF1a	guanylin		hochman 1997	hochman 1997		mouse
HNF1a	ggp ,		lin 1997	lin 1997		human
HNF1a HNF1a	cyp2e1		McGehee 1997	McGehee 1997		rodent
HNF1a	pah Ipal		Pontoglio 1997 Taylor 1997			mouse`
HNF1a	hnf4a		Taylor 1991	ballly 1998		ral
HNF1a	hnf3a		· ·	bailty 1998		rat
HNF1a	cebpa			bailly 1998		ral
HNF1a	g6pc		lin 1999	lin 1998		human
HNF1a	atp		magee 1998	magee 1998		human
HNF1a	SLC5A1		rhoads 1998			ral
HNF1a	si .		4000	rodolosse 1998		human
HNF1a HNF1a	gc SULT2A1		song y 1998 song c 1998	song y 1998		human
HNF1a	proc		surg C 1950	song c 1998 spek 1998		rat human
HNF1a	g6pc		streeper 1998	streeper 1998		human
HNF1a	SLC10A1		trauner 1998	oboopu. Too		human
HNF1cz	ins			wang 1998		human
HNF1a	ugtiai		bernard 1999			human, mouse
· HNF1α	cyp7a1		chen 1999			human
HNF1a	dpp6		14000	erickson 1999		human
HNF1a HNF1a	serpina6		hu 199 9	hu 1999		human
HNF1a	igf1 ins		okita 1999	meton 1999 okta 1999		salmon human
HNF1a	CYP27A1		rao 1999	rao 1999		rat
HNF1a	lct		spodsberg 1999	spodsberg 1999		mice
HNF1cc	SLC5A1			wood 1999		human
HNF1a	fabp1			akiyama 2000		mouse
HNF1a	cyp7a1		antes 2000	antes 2000		mice
HNF1α	slc2a2		cha 2000	cha 2000		human
HNF1a	dpp6		erickson 2000	erickson 2000		human
HNF1a HNF1a	UGT2B17 UGT2B7		gregory 2000	gregory 2000		human
HNF1a	ugita?		ishii 2000 metz 2000	ishii 2000 metz 2000		human ral
HNF1a	fech		met. 2000	muppala 2000		mouse
HNF1a	gjb1		piechocki 2000	piechocki 2000		human
HNF1a	SLC5A2		Pantoglio 2000	pontoglio 2000		human
HNF1a	pax4		smith 2000	smith 2000		human
HNF1a	ogdh			wang 2000		rat
HNF1a	aldob			wang 2000	•	rat
HNF1a HNF1a	ins SLC5A2			wang 2000		rat)
HNF1a	pkir			wang 2000 wang 2000		ral rat
HNF1a	hmgcr			wang 2000 wang 2000		rat
HNF1a	hnf4a		bailly 2001	bailly 2001	•	human
HNF1a	pdx1		ben-shushan 2001	ben-shushan 2001		human
HNF1a	hnf4a7	Boj 2001				mouse
HNF1a	hnf3g	Boj 2001				mouse
HNF1a	hn[4g	Boj 2001				mouse
HNF1a	gck baf4a		cha 2001	cha 2001		human
HNF1a	hnf4a	Hatzis 2001	hatzis 2001	hatzis 2001		human
HNF1a HNF1a	g6pc g6pt1			hiraiwa 2001 hiraiwa 2001		mouse
HNF1a	slc21a6		jung 2001	jung 2001		mouse human
HNF1a	slc21a8		, d = + + ·	jung 2001		human
HNF1a	ngn3			lee 2001		human
HNF1a	igfbp1			leu 2001		rodent
HNF1a	д6р	•		leu 2001		rodent
HNF1a	aip			leu 2001		rodent
HNF1a	fmo1		luo 2001	tuo 2001		rabbil, human

Fig. 15D

TABLE S4		Direct	In vitro		uence Based
Regulator		Reference	Reference	Reference Reference	rence Organism
HNF1a	CYP27A1		memorn 2001		hamster
HNF1a	AKR1C4		oxeki 2001	ozeki 2001	human
HNF1a	NR5A2		pare 2001	pare 2001	· mouse
HNF1a	cyp2c11		park 2001	park 2001	rodent
HNF1a	cyp2a2		park 2001	park 2001	rodent
HNF1a	cyp4a2		park 2001	park 2001	rodent
HNF1a	pklr		parrizas 2001		human
HNF1a	slc2a2		parrizas 2001		human
HNF1a	pah		parrizas 2001		human
HNF1α	c8a			pontoglio 2001	mouse
HNF1a	c 5 .			pontoglio 2001	mouse
HNFia	cyp2e1		roe 2001		rat
HNF1a	nr1b4		shih 2001	shih 2001	mouse
HNF1a	SLC10A2		shih 2001	shin 2001	mouse
HNF1a	SLC17A1			sournounou 2001	human, mouse
HNF1a	hnf4a7			thomas 2001	human
HNF1α	ins			yamakawa 2001	human
HNF1a	Nr5a2			zhang 2001	
HNF1α	SLC5A1			vayro 2001	sheep
HNF1a	slc2a2		ban 2002.	ban 2002	human
HNF1α	si .			boudreau 2002	mouse
HNF1α	SLC17A1			cheret 2002	mouse
HNF1a	SLC10A1		geier 2002		rat
HNF1a	UGT2B17		gregory 2002	gregory 2002	human
HNF1a	hnf4a7			hansen 2002	mouse
HNF1a	gjb1			koffler 2002	rat
HNF1α	AKR1C4		ozeki 2002	ozeki 2002	human
HNF1a	cldn2			sakaguchi 2002	human, mouse
HNF1α	fgfr4		shah 2002	shah 2002	human
HNF1a	igf1			yang 2002	human/rat
HNF1a	mif			yang 2002	human/rat
HNF1α	Serpina1	Soutoglou 2002			human
HNF1α	c1		zahedi 2002		human

WO 2005/054461 PCT/US2004/039805

Fig. 16

Name	RefSeq 11	Name	RefSeg 1999	Name 2	RefSeq	Name	RefSeq	Name	ReiSeg
A1BG	NM_130786-	DHFR	NM 000791-	IGSS	NM_000178	ORC1L	NM_004153		NM_000463
AASS	NM_005763	DKFZP434J037	NM_030952	H3FF	NM_003533	PABPC1	NM_002568		NM_001073
ABCA8	NM_007168	DKFZP56400523		H4FK	NM_003546	PCDHA12			NM_001076
ABCB11	NM_003742	DKFZP586A0522		HABP2	NM_004132	PCK1	NM_002591	URKL1	NM_017859
ABCC2	NM_000392	DXF68S1E	NM_012080	HBP1	NM_012257	PHTF1	NM_006608	VCP	NM_007126
ABL2	NM_007314	E2F1	NM_005225	HCAP-G	NM_022346	PIK4CB	NM_002651	VTN	NM_000638
ACVR1	NM_001105	E2F1	NM_005225	HESX1	NM_003865	PLGL	NM_002665	WDR12	NM_018256
ADH1A	NM_000667	EIF4A1	NM_001416	HIVEP3	NM_024503	POLR2D	NM_004805	WDR5B	NM_019069
ADH1B	NM_000668	EIF4E	NM_001968	HMGCR	NM_000859	POLS	NM_006999	IVE NOB	11W_013003
AF038169		ELOVL1	NM_016031	HNF4a7	AF509467	PON1	NM_000446	1	
AGTR1	NM_000685	EPHA1	NM_005232	HNMT	NM_006895	PPFIA1	NM_003626	1	
AKR1C4	NM_001818	F11	NM_019559	HNRPR	NM_005826	PPP2R5A	NM_006243	ľ	
ALDH3A1	NM_000691	F9	NM_000133	HSD17B4	NM_000414	PRO1855	NM_018509		
ALDH5A1	NM_001080	FABP5	NM_001444	HSP105B	NM_006644	PSMA1	NM_002786		
AMBP	NM_001633	FACTP140	NM_007192	HSPA1B	NM_005346	PSMB1	NM_002700	1	
AMT	NM_000481	FADS3	NM_021727	HTR2B	NM_000867	PTPRR	NM_002849	Į.	
APCS	NM_001639	FLJ10209	NM_018026	IF	NM_000204	REA	NM_007273	1 .	
APOH	NM_000042	FLJ10407	NM_018087	INSM2	NM_032594	RING1	NM_002931		
ASPA	NM_000049	FLJ10415	NM_018089	IRF3	NM_001571	RNF20	NM_019592	i	
BCAR1	NM_014567	FLJ10578	NM_018144	IRF6	NM_006147	RPL35	NM_007209	ļ	
BCKDHA	NM_000709	FLJ10650	NM_018168	ITGAV	NM_002210	RPL37AP1		l	
BF	NM_001710	FLJ11029	NM_018304	ITIH1	NM_002215	RPLP1	NM_001003	İ	
BM039	NM_018455	FLJ11105	NM_018323	JIK	NM_016281	RPS6KA5	NM_004755		
BNIP3L	NM_004331	FLJ11301	NM_018385	KIAA0806	NM_014813	RRP46	NM_020158	ļ	
BTN3A2	NM_007047	FLJ11726	NM 024971	KIAA0872	NM_014940	SART3	NM_014706		
C1S	NM_001734	FLJ11773	NM_021934	KIAA1056	NM_014894	SAS10	NM_020368		
C2	NM_000063	FLJ12552	NM_022832	KLF3	NM_016531	SCYB13	NM_006419	ŀ	
C20orf188		FLJ12770	NM_032174	LIMK1	NM_016735	SEC10L1	NM_006544		
C8B	NM_000066	FLJ12910	NM_024573	LOC51060	NM_015913		NM_000062)	
C8G	NM_000606	FLJ13798	NM_024773	LOC51074	NM_015957	SERPINI1	NM_005025	l	
CACNA1D	NM_000720	FLJ14153	NM_022736	LOC51287	NM_016565	SILV	NM_006928		
CASP2	NM_032982	FLJ20084	NM_017659	LOC51633	NM_016023	SLC1A3	NM_004172		
CCT8	NM_006585	FLJ20156	NM_017691	LOC51646	NM_016061	SLC25A13	NM_014251		
CDC25A	NM_001789	FLJ20422	NM_017814	LOC56906	NM_020147	SLC7A9	NM_014270		
CDC2L5	NM_003718	FLJ20627	NM_017909	LOC81558	NM_030802	SMARCC1	NM_003074		
CDK2	NM_001798	FLJ20671	NM_017924	LOH11CR2A	NM_014622	SMCY	NM_004653		•
CDSN	NM_001264	FLJ20772	NM_017956	M17S2	NM_031858	SNRPD2	NM_004597		
CFL1	NM_005507	FLJ21934	NM_024743	MAP2K5	. NM_002757	SNW1	NM_012245	,	
CH25H		FLJ21963	NM_024560	MGC10500	NM_031477	SNX3	NM_003795		
CLCN3		FLJ22169	NM_024085	MGC13053	NM_032710	SPG4	NM_014946		
CLDN2		FLJ22557	NM_024713	MGC16169	NM_033115	SPINK1	NM_003122		
CLLD8	_	FLJ2307.1		MGC16386	NM_080668	SPP2	NM_006944		
COL5A1		FLJ23263	NM_025115	MGC4189	NM_032308	SRF	NM_003131		
COL5A3		FLJ23375	NM_024956	MGST3	NM_004528	STMN2	NM_007029		
COPB2		FLJ23499	NM_022761	MN1	NM_002430	TAF2GL	NG_001012		
COPS7A	NM_016319	FLJ23598	NM_024783	NEK6	NM_014397	TAT	NM_000353		
CRADD CRI1	NM_003805		NM_022006	NFKBIA	NM_020529	TBX2	NM_005994		
CRP	NM_014335 NM_000567		NM_000151 NM_002040	NFKBIA NFKBIA	NM_020529 NM_020529	TCEB3	NM_003198		
CSN2	NM_001891			NOLC1		TM4SF4	NM_004617		
CYGB	NM_134268		–	NR1i2	NM_004741 NM_022002	TMF1 TMOD2	NM_007114		
CYP3A43	NM_022820			NTF2	NM_005796	TNFRSF6	NM_014548 NM_000043		
CYP51	NM_000786		NM_002086	OAT	NM_000274	TNFSF10	NM_003810		
	NM_005800		NM_001511	OAZ2	NM_002537		NM_014820		
DDB2				OGFR		TSG101	NM_006292		

Fig. 17

r:	The of Palacety Mr.	#1							
_	lame		Name		Name 🖖 .	RefSeq	·· Name	RefSeg	7.7
- 1	ASS	NM_005763		NM_018373	JIK	NM_016281	SEMA6A	NM_020796	_
	BCB8	NM_007188		NM_018385	KIAA0660	NM_012297	SERPINB8	NM_002640	
	CPP	NM_001099	1	NM_021934	KIAA0712	NM_014715	SERPING1	NM_000062	
	CVR1	NM_001105	FLJ12770	NM_032174	KIAA0806	NM_014813	SERPINI1	NM_005025	
	DH1A	NM_000667	FLJ12910	NM_024573	KIAA0872	NM_014940	SH3BGRL	NM_003022	
	F038169	NM_013310	FLJ13220	NM_021927	KIAA1056	NM_014894	SLC1A3	NM_004172	
	F15Q14	NM_020380	FLJ13798	NM_024773	KRTAP1.1	NM_030967	SNRPD2	NM_004597	
	GT	NM_000029	FLJ13955	NM_024759	LAMC2	NM_018891	SNW1	NM_012245	i
- 1	MBP	NM_001633	FLJ14153	NM_022736	LBC	NM_006738	SPG4	NM_014946	1
	MT	NM_000481	FLJ14486	NM_032792	LOC51060	NM_015913	SPINK1	NM_003122	- 1
- 1	PCS	NM_001639	FLJ20084	NM_017659	LOC51287	NM_016565	TEGT	NM_003217	- 1
	POH	NM_000042	FLJ20156	NM_017691	LOC51633	NM_016023	TMF1	NM_007114	۱
- 6	RL1	NM_001177	FLJ20422	NM_017814	LOC56906	NM_020147	TNFRSF6	NM_000043	- 1
	BP	NM_032027	FLJ20627	NM_017909	LOC81558	NM_030802	TNFRSF6	NM_000043	- 1
	CKDHA .	NM_000709	FLJ20643	NM_017916	LOH11CR2	A NM_014622	TNFRSF6	NM_000043	-1
BI		NM_001710	FLJ20671	NM_017924	LUC7A	NM_016424	TNFRSF6	NM_000043	-
	TN3A2	NM_007047	FLJ20772	NM_017956	MDH1	NM_005917	TNFSF10	NM_003810	-
	IS	NM_001734	FLJ21272	NM_025032	MDS029	NM_018464	TOMM70A	NM_014820	
	20orf188	NM_015638	FLJ21934	NM_024743	MEIS1	NM_002398	UGT2B15	NM_001076	1
C		NM_006331	FLJ21963	NM_024560	MGC13040			NM_001077	-
	Borf4	NM_020130	FLJ22169	NM_024085	MGC13053	NM_032710		NM_007126	ľ
	CT8	NM_006585	FLJ23263	NM_025115	MGC19595	NM_033415		NM_000638	1
	C2L5	NM_003718	FLJ23375	NM_024956	MGC3020	NM_024048		NM_018256	ı
1	125H	NM_003956	GABARAPL	1 NM_031412	MGC3413	NM_032678	L	NM_020933	1
CI		NM_004882	GABPA	NM_002040	MGC4189	NM_032308			ı
	CN4	NM_001830	GCP3	NM_006322	MGST3	NM_004528			
	DN2	NM_020384	GJB1	NM_000166	MTERF	NM_006980			
	LD8	NM_031915	GLA	NM_000169	NET-6	NM_014399	İ		
	NS1A	NM_001293	GRB2	NM_002086	NOLC1	NM_004741			
	ONE24922	NM_015679	GRO1	NM_001511	NOVA1	NM_006489			
	1G1	NM_025103	GRO3	NM_002090	NR0B2	NM_021969	i		
	PB2	NM_004766	GSS	NM_000178	NUDT2	NM_001161	1		
Icc	PS7A	NM_016319	GSTA4	NM_001512	OGFR	NM_007346	1		
	X4I1	NM_001861	GTF2E1	NM_005513	ORC1L	NM_004153	ļ		
	X7A2L	NM_004718	H4FA	NM_003538	PAPA-1	NM_031288		•	
CR		NM_014335	H4FH	NM_003543	PEX6	NM_000287			
CS		NM_001891	HABP2	NM_004132	PMAIP1	NM_021127			
	P3A43	NM_022820	HASJ4442	NM_017528	PPFIA1	NM_003626			
		NM_032291	HBOA	NM_007067	PPFIBP1	NM_003622			
I	FZp761J139		HBP1	NM_012257	PPP1R3D	NM_006242			
EE		NM_003797	HLA-G	NM_002127	PSMA1	NM_002786			
EG		NM_000399	HMG2	NM_002129	PSMB1	NM_002793	•		
EHI		NM_014599	HNF4a7	AF509467	PTPRN2	NM_002847			
EH		NM_012153	HNRPA2B1	NM_031243	REA	NM_007273	'		
EIF		NM_001968	HNRPR	NM_005826	RECK	NM_021111			
F11		NM_019559	HSD17B4	NM_000414	RIG-I	NM_014314			
F2F		NM_004101	HSN44A4A	NM_015372	RPC32	NM_006467			
FAE		NM_001444	HSP105B	NM_006644	RPL36P1	NG_000983			
	R1L3	NM_133337	HSPA1B	NM_005346	RPS6KA5	NM_004755			
	10342	NM_018064	HSPC125	NM_014165	RRP46	NM_020158			
	10407	NM_018087	HT007	NM_018480	SAMHD1	NM_015474			
	10415 10482	NM_018089	HTR2B	NM_000867	SART3	NM_014706			
		NM_018107	humNRDR	NM_021004		NM_020368			
		NM_018168	IIGSF3	NM_001542	SCYA28	NM_019846			
LU	11025	NM_018304	IRF3	NM_001571	SEC10L1	NM_006544			

(26/41)

WO 2005/054461 PCT/US2004/039805

Fig. 18A

l'Gëne Na	me RelSeg	Gene Name	RefSec	Gene Name	RelSeg	Gene Name	RefSec	Gene Nan	ne Resea	A Gene Nam RefSen	L. Gono Non	ar pararettiii i
24432	NM 022914	APOA5	NM 052968	IC3F	NM 005768	ICPT1B	NM 004377	DNAJA3	NM 005147	FLJ11184 NM 018352	Ft J22028	NM_024854
384D8-2	NM 014551	APOB	. NM 000384	C40	NM 017546	CPT2	NM 000098	IUMAJBII	N67 016306	IFW11186 NM 018353	IFLJ22169	NM 024085
54TM A1BG	NM_020470 NM_130786	APOG2 APOG3	NM_000483 NM_000040	C4A C4B	NM_007293	CRADD	NM_003805	DNAJ84	NM 007034	IFW11198 NM 018358	FLJ22191	NM_025231
IAASS	NM 005763	APOH .	NM 000042	IC4BPA	NM 000592 NM 000715	CREBL2 CRFG	NM_001310 NM_012341	DNAJB9 DOC-1R	NM_012328 NM_005851	FLJ11274 NM 018375 FLJ11266 NM 018381	FLJ22353	NM_024587
AB02619	O NM 014458	APOH AQP3	NM 004925	C6orf11	NM 005452	CRI1	NM 014335	IDPAGT1	NM 001382	FLJ11266 NM 018381 FLJ11342 NM 018394 FLJ11526 NM 024632	FLJ22477 FLJ22501	NM_024735 NM_024747
ABCA6 ABCB10	NM 080284 NM 012089	IAQP6	NM_001652	C6orf35	NM 018452	CRIPT	NM 014171	DPM1	NM 003859		FLJ22551	NM_024708
ABCB11	NM 012089 NM 003742	ACP9 ARF1GAP	NM 020980 NM 018208	C7crf10 C8B	NM 024728 NM 000086	CRKL	NIM_005207 NIM_021151	DSCR3 DUSP11	NM 008052 NM 003584	FLJ11726 NM 024971 FLJ11767 NM 024593	FLJ22555	NM 024520
ABCC2	NM 000392	ARFD1	NM 001656	C8G	NM 000606	CRP	NM 000567	DUSP3	NM 004090	IFLJ11838 NM 024664	FLJ22557 FLJ22578	NM 024713 NM 024864
ABCC3	NM_003786	ARG2	NM 001172	C8orf4	NM_020130	CRP CRSP3	NM, 004830	DUSP6	NM 004090 NM 022652	FLJ11848 NM 025155	FLJ22637	NM_025165
ABCC6 ABCE1	NM 001171 NM 002940	ARHGAP11A IARHI	NM 014783 NM 004675	CABC1	NM 020247 NM 006030	CRSP9 CRY1	NM 004270 NM 004075	DYRK1B EEF182	NM 004714 NM 021121	FLJ12171 NM 024619 FLJ12377 NM 024989	FLJ22649	NM 021928
IABCG1	NM 004915	ARL1	NM 001177	CACNA2D2 CACNA2D2	NM 006030	CRYZ	NW 001889	EFG1	NM 024996	FLJ12439 NM 023077	FLJ22692 FLJ22729	NM 025049 NM 024683
ABCG8 ABLIM	NM 022437 NM 006720	ARL5 ARL7	NM 012097	CAMK2D	NM_001221	ics	NM 004077	EHD3	NM 014600	FLJ12552 NM 022832	FLJ22865	NM_025109
ABS	NM_016222	ARPC5	NM 005737 NM 005717	CARD15	NM 022162 NM 032982	CSDUFD1 CSNK2A1	NM 031919 NM 001895	EHHADH EHM2	NM 001966 NM 019114	FLJ12618 NM 024884 FLJ12707 NM 022067	FLJ22875	NM 032231
IABT1	NM_013375	IARS2	NM_015908	CASP6	NM_001226	CSPG6	NM 005445	EIF2S1	NM_004094	FLJ12770 NM 032174	FLJ23093	NM 025192 NM 024643
AGAA2 AGADSB	NM 008111 NM 001609	ASB3	NM 016115	CAT56	NM_025263	CSTF1	NM_001324	EIF2S3	NM_001415	FLJ12788 NM_022492	FLJ23109 FLJ23251	NM_024814
ACADVL	NM 000018	ASGR1 ASGR2	NM 001671 NM 001181	CATSPER CBARA1	NM 053054 NM 006077	CSTF3 CTMP	NM 001326 NM 053055	EIF4EBP2	NM, 001968 NM 004096	FLJ12886 NM 019108 FLJ12888 NM 024945	FLJ23251 FLJ23263	NM 024818
IACF	NM 014576	IATF2	NM 001880	ICBS	NM, 000071	CTSZ	NM 001336	EIF5	NM. 001969	FLJ12910 NM 024573	FLJ23305	NM 025115 NM 025059
ACLY ACO2	NM_001096 NM_001098	ATF4	NM 001675 NM 006856	CBX3 CBX5	NM_007276	CUL2	NM_003591	ELF3 ELP2	NM_004433	FLJ13102 NM_024887	FLJ23441	NM_024678
ACOX1	NM_004035	ATM	NM 000050	CONGI	NM 012117 NM 004060	CYB5 CYB5-M	NM 001914 NM 030579	ENC1	NM 018255 NM 003633	FLJ13158 NM 024909	FLJ23468 FLJ23499	NM 024629
ACOX3	NM 003501	ATP5C1	NM 005174	ICCNG2	NM 004354	CYP1A2	NM 000761	EPB72	NM 004099	FLJ13162 NM 025002 FLJ13181 NM 025188	FLJ23518	NM 022761 NM 024725
ACP2 ACTA2	NM 001610 NM 001613	ATP5F1 ATP6G3	NM 001688 NM 001689	CCNH	NM 001239	CYP1B1	NM 000104	EPHA2	NM 004431	IFU13194 NM 02514B	IFLOT1	NM 005803
ACTNI	NM 001102	ATP6D	NM 001689	CCT6A CD1D	NM_001762 NM_001766	CYP21A2 CYP2B6	NM_000500 NM_000767	EPI64 ERBB2IP	NM 031937 NM 018695	FLJ13195 NM_022906 FLJ13262 NM 024914	FMR1	NM_002024 NM_002027
ACTR3	NM, 005721	ATP6G1 ATP6L	NM 004888	CD68	NM 001251	ICVP2C8	NM_000770	100003	NM 001982	FLJ13273 NM_024751	FNTB	NM_002028
ACVR1	NM 001105 NM 000666	ATP6L ATP6M	NM 001694 NM 015994	CDA CDC 14A	NM 001785 NM 003872	CYP2D6 CYP2D7AP CYP2E	NM 000106	ERCC5 ERCC6 ERO1L	NM 000123	FLJ13291 NM 032178	FOSL2	NM 005253
AD022	NM 016614	ATP6S14	NM 004231	CDC 25A	NM_003872 NM_001789	CYP2D/AP	NG 000853 NM 000773	FRO1	NM 000124 NM_014584	FLJ13340 NM_025085 FLJ13448 NM_025147	FRG1 FRK	NM, 004477 NM, 002031
IAD034	NM 031480	ATP7B	NM 000053	CDC42BPB	NM_006035	CYP2J2	NM_000775	IEVA1	NM 005797	IFLJ13491 NM 024623	FSTL3	NM 005860
AD158 AD24	NM 032270 NM_022451	ATPW AUP1	NM 015684 NM 012103	CDC5L CDCA1	NM 001253 NM 031423	CYP3A43 CYP3A5	NM 022820 NM 000777	EVC EVG1	NM 014556	FLJ13611 NM 024941	FTHFD	NM 012190
ADH1B	NM, 000668	AUTL1	NM 032852	CDK2	NM 001798	CYP4F11	NM 021187	EWSRI	NM 032561 NM 013986	FLJ13615 NM 025114 FLJ13660 NM 025197	FTSJ1 FUBP1	NM 012280 NM 003902
ADH6	NM 000672	B29	NM 031939	CDKL3	NM 016508	CYP4F2	NM 001082	F10	NM 000504	FLJ13769 NM 025012	FXYD7	NM 022006
ADPRIL1	NM 001125 NM 006437	B3GAT1	NM 018644 NM 016230	CDKN1B CDKN1B	NM 004064 NM 004064	CYP4F3 CYP51	NM 000896 NM 000786	F12 F7	NM 000505	FLJ13798 NM 024773	FZD1	NM 003505
ADPRTL3	NM 005485	b5&b5R BACE	NM 012104	COKINIB	NM 004064	CYP8B1	NM 004391	F9	NM 019616 NM 000133	FLJ13949 NM 025077 FLJ13952 NM 024798	FZD3 G0S2	NM 017412 NM 015714
ADRB2	NM_000024	BAI2	NM_001703	CDKN1B	NM_004064	Cyt19	NM, 020682	FACTP140	NM_007192	IFLJ13962 NM 024862	G10	NM_003910
AF093680 AF140225	NM 013242 NM 030799	BAT1	NM 031458 NM 004640	CDSN CDW92	NM_001264 NM_080546	D123 D13S106E	NM, 006023 NM_005800	FAP48	NM 053274 NM 032639	FLJ13964 NM 032186 FLJ14153 NM 022736	G3A G6PC	NM_019101
AF15Q14	NM 020380	BAT3	NM 004639	CEACAM1	NM 001712	D6S2654E	NM 012135	FBXL7	NM 012304	FLJ14393 NM 032778	GSPT1	NM_000151 NM_001467
AGA	NM 000027	IBAT4	NM 033177	ICEP3	NM 006449	DAF	NM 000574	EBAUSI	NM 012304 NM 012172	[FLJ14431 NM 032783	GAB1	NM 002039
AGM1 AGPAT1	NM 015599 NM 006411	BAZ1A BAZ1B	NM 013448 NM 032408	CERD4	NM012074 NM 004344	DAG1 DBI	NM 004393 NM 020548	FBXO4 FBXO8	NM 012176 NM 012180	FLJ14511 NM_033087 FLJ14821 NM_032811	IGABPA IGABPB2	NM_002040 NM 002041
IAGT	NM 000029	BCAT2 BCCIP	NM 001190	CEZANNE	NM_020205	DBP	NM_001352	(FBXW2	NM_012164	FLJ14624 NM 032813	GADD45G	NM 002041
AGXT2 AGXT2L1	NM .031900		NM 016567	CFL2	NM 021914	IDBT	NM_001918	FDX1	NM 004109	FLHASAS NIM DESPAIR	GAPD	NM_002046
AHSG	NM 031279 NM 001622	BCDO2 BCL6	NM 031938 NM 001706	CG005 CGBP	NM 014887 NM 014593	DC11 DC13	NM 020186 NM 020188	FDXR FE65L2	NM 024417 NM 006051	FLJ14681 NM_032824 FLJ14697 NM_032826	IGBE1	NM_000158 NM_005875
IAK2	NM, 001625	BCS1L	NM_004328	CGI-01	NM_015935	DC8	NM_015471	FEMIA	NM_020177	FLJ14827 NM 032848	GCHFR	NM 005258
AKAP13 AKR1C2	NM, 007200 NM, 001354	BET1	NM_005868	CGI-11	NM .015941	DCK	NM_000788	FEM18	NM 015322	FLJ14840 NM 032850	IGCKR	NM_001486
AKR1C3	NM 003739	BHMT	NM 001710 NM 001713	CGI-51	NM 015380 NM 004284	DCLRE1B DCLRE1C	NM_022836 NM_022487	FETUE	NM 014375 NM 000143	FLJ20010 NM_019021 FLJ20014 NM 017622	GDAP2 GFER	NM ,017686 NM 005262
JAKR1C4	NM 001818	BIKE	NM 017593	CHI3L1	NM_001276	DDA3	NM 032636	FHIT	NM 002012	FLJ20037 NM_017633	GGCX	NM 000821
ALCAM ALDHIA1	NM 001627 NM 000689	BIRC6 BLOV1	NM 016252 NM 018656	CHIC2 CHM	NM 012110 NM 000390	DDX18 DDX27	NM 006773 NM 017895	FIGF FKSG87	NM 004469 NM 032029	FLJ20080 NM 017657	GIOT-2	NM 016284
ALDH2	NM 000690	BPHL	NM 004332	CHP	NM 007236	DDX28	NM 018380	FLJ10038	NM_032029 NM_017976	FLJ20081 NM_017658 FLJ20084 NM_017659	GIPC2 GJA4	NM_017655 NM_002060
ALDH3A1	NM 000591	BRCAI	NM 007295	CIAO1	NM_004804	DDX35	NM 021931	IFLJ10111	NM 017999	FLJ20123 NM_017674 FLJ20125 NM 017676	JGJB1	NM_000166
ALDH3B1 ALDH5A1	NM 000694 NM 001080	BRD4 BRIP1	NM 014299 NM 032043	CISH CITED2	NM, 013324 NM 006079	DDX38 DDX8	NM 014003 NM 004941	FW10116 FW10143	NM_018000 NM_018009	FLJ20125 NM 017676 FLJ20130 NM 017681	GK001 GLYAT	NM 020198
ALDH8A1	NM 022568	IBTO	NM 000080	CKAP1	NM 001281	DED	NM 012138	FLJ10276	NM 018045	FLJ20202 NM 017709	GMDS	NM 005838 NM 001500
ALDOC ALS2	NM 005165 NM 020919	BTF3	NM 001207 NM 001731	ICKN1 ICKS2	NM 000082 NM 001827	DEDD2 DEPP	NM 133328 NM 007021	FLJ10287	NM 019083	FLJ20287 NM 017746	GNB1L	NM 053004
ALSZCR19 AMACR	NM 057177	BTN2A1	NM 078476	CL683	NM_015696	IDGKD	NM 007021	FLJ10330 FLJ10407	NM 018081 NM_018087	FLJ20331 NM 017768 FLJ20442 NM 017823	GNG5 GNMT	NM 005274 NM 016960
AMACR	NM_014324	BYSL	NM 004053	CLCN3	NM 001829	DJ37E16.5	NM 020315	FLJ10407 FLJ10415 FLJ10422	NM_018089	IFLJ20452 NM 017828	GNS	NM_002076
AMBP AMOT	NM 001633 NM 133265	C12018 C14011	NM_006817 NM_007176	CLCN6 CLCNKA	NM 001286 NM 004070	DJ726C3,2 DKFZP434C245	NM 025227 NM 015426	FLJ10422 FLJ10432	NM 018091	FLJ20511 NM_017853	GOLGA2	NM_004488
AMT	NM 000481	C14ort3	NM 012111	CLDN2	NM 020384	DKFZp434D177	NM 032264	FLJ10482	NM_019070 NM_018107	FLJ20534 NM 017867 FLJ20580 NM 017887	GOLGA4 GOLPH4	NM 002078 NM 014498
ANG	NM 001145	C1ort8	NM 004872	CLDN3	NM_001306	IDKF7P434H0115	NM_031421	FLJ10511	NM_018120	FLJ20595 NM 017894	IGOSR2	NM_004287
ANKRA2 ANPEP	NIM 023039 NIM 001150	C18	NM 001734 NM 000063	CLONE24922 CLPTM1	NM 015679 NM 001294	DKFZP434J037 DKFZP434L0117	NM 030952	FLJ10525	NM 018126	FLJ20819 NM 017904	GOT1	NM 002079
I.ANXA5	NM_001154	C20orf13	NM, 017714	CLPX	NM 006660	DKFZP564A2416	NM_022778 NM_015535	FLJ10535 FLJ10581	NM 018129 NM 018146	FLJ20627 NM_017909 FLJ20628 NM_017910	GPC6 GPHN	NM_005708 NM_020806
ANXA6 ANXA9	NM 001155	C20orf154	NM_032485	(CLTA	NM 001833	IDKFZP564G2022	NM 015497	FLJ10583	NM 018148	FLJ20671 NM 017924	GPR39	NM_001508
AP1M1	NM 003568 NM 032493	C20orf163 C20orf164	NM 080749 NM 080752	CLYCL1 CLYCL	NM 001835 NM 138280	DKFZP564L2423 DKFZP564O0463	NM 030805 NM 014156	FLJ10604 FLJ10637	NM 018154 NM_018164	FLJ20699 NM 017931 FLJ20707 NM 017936	GPT GPV1	NM 005309 NM 000581
AP2A1	NM 130787	C20orf172	NM D24918	CNOT2	NM 014515	DKFZP56400523	NM_032120	FLJ10640	NM 019023	FLJ20707 NM 017936 FLJ20718 NM_017938	GPX1 GPX2	NM_000581 NM_002083
AP3B1	NM_003664	C20orf188	NM_015638	CNQT4	NM. 013316	DKFZP568C243	NM_015388	FLJ10661	NM 018172	FLJ20729 NM 017953	GRHPR	NM 012203
AP4B1	NM 012095 NM 006594	C20ort32 C20ort4	NM 020356 NM 015511	COASTER COPB	NM 015555 NM 016451	DKFZP566M1046 DKFZp566O084	NM 032127 NM 015510	FLJ10761 FLJ10774	NM 018208 NM 024682	FLJ20730 NM 017945 FLJ21007 NM 030794	GRIK3 GRIN2D	NM 000831 NM 000836
APC10	NM 014885	C20orf84	NM 033550	COPB2	NM 004768	DKFZP588A011	NM 015416	FW10856	NM 018247	FLJ21144 NM 022774	IGRO3	NM 002090
APCS APEH	NM, 001639 NM 001640		NM 024120 NM 052865	COPS7B	NM_022730	DKFZP586A0522	NM 014033	FLJ10871	NM 018250	FLJ21272 NM 025032	IGSK3B	NM_002093
APG-1	NM .014278	C20or77	NM .021215	COX11	NM 017421 NM 004375	DKFZP586J0119 DKFZp762L0311	NM 015636 NM_018719	FLJ10891 FLJ11000	NM 018260 NM 018295	FLJ21415 NM 024738 FLJ21820 NM 021925	GSPT1 GSS	NM 002094 NM 000178
APG3	NM 022488	C21orf18	NM 017438	COX7A2	NM 001865	IDLEU1	NM, 005887	FLJ11011	NM 018299	FLJ21820 NM_021925 FLJ21808 NM 024504 FLJ21934 NM 024743	GSTA4	NM 001512
APMCF1 APOA1	NM 021203 NM 000039	C21orf33	NM 004849 NM 006331	COXTA2L CPB2	NM 004718 NM 016413	DLST	NM 001933 NM 007068	FLJ11029 FLJ11046	NM 018304 NM 018309	FLJ21934 NM 024743 FLJ21939 NM 022461	GSTM4 GSTTLb28	NM 000850 NM 004832
APOA2	NM 001643	C2F C3	NM 000064	CPSF5	NM 007006	DNAJA2	NM 005880	FLJ11159	NM_018343	FLJ21963 NM_024560	GTF2E1	NM_005513
									-			

Fig. 18B

Gene Nam	e ReiSeo	· Gene Na	me RefSeo	Gene Nar	ne Reiseo	Gena Na	Tie Reisen	Gene N	me Refsee	Cona Ma	ma Raissan =	is years of	me RefSeq
GTF2H1 GTPBG3	NM_00531 NM_03262	6 IIGF1 0 IIGFBP1	NM_000516 NM_000596			0_ 1WE IAP2	NM_00663	B IMRPL49	NM_004927	OSGEP	NM017807	_IPPPIR1	28 NM 032105
GYS2	NM 02195	7 IL11RA	NM_004512	LOC5102	6 NM 01604 6 NM 01607	MGC:133	79 NM 01849			OSMR	NM 003999 NM 00053		5B NM 032833 B NM 024607
H2A/S H2AFG	NM 08059 NM 02106	5 RIRAP	NM 000585 NM 002182	LOCSIDS	4 MM 01580		33 NM_02432 12 NM_03266	1 MRPS14	NM 022100	p100 P115	NM 014390 NM 003716) PPP1R3	C NM 005398
H2AFO H2BFA	NM 00351 NM 00351	6 IL22R 8 IL2RB	NM 021258 NM 000878	LOC5106	NM 01591	3 IMGC1082	23 NM 03143	7 IMRPS18		D21UAS1	1 NM 000389	PPP2CA	NM 002715
H2BFB	NM 02106	3 ILEST	NM_000878	LOC5106	NM_01591 NM_01595	7 MGC1092 7 MGC1094	4 NM_03057 10 NM_03230	1 MRPS18 3 MRPS21	3C NM 016067	p21UAS8	NM 000389	IPPP2R5	B NM_006244 NM_005134
H2BFF H2BFG	NM 02106: NM 00352:	2 IMMT 2 INADL	NM 006839 NM 005799	LOC5109 LOC5109	NM 01695	5 MGC1096	U NM 03265	3 MRP\$30	NM 016640	P23	NM 006601	PPP5C	NM 006247
H326	NM_01572	6 INHBC	NM_005538	LOC51104	NM 01601	MGC1099	19 NM_032307	7 MRP\$36	NM 021821 NM 033281	P29 P2RY2	NM_015484 NM_002564	PQBP1 PRCC	NM_005710 NM_005973
H4F2 H4FD	NM 00354		NM, 014425 NM 006147	LOC51107	NM_01602 NM_01612	MGC1103	4 NM 031453	3 MRPS7 2 MRS2L	NM_015971	PABPC1	NM_002568	PRCP	NM_005040
H6PD HAAO	NM 00428	ITGA6	NM 000210 NM 002209	LOC51142	NM 016139	MGC1127	NM 033549	9 MST1	NM 020662 NM 020998	PABPN1 PAFAH2	NM 004643 NM 000437		NM 005399 P NM 012407
HADH2	NM 004493	3 ITIH3	NM 002217	LOC51174	NM 01626		9 NM.024326 5 NM 031427	MSTP02	8 NM 031954 NM 005951	PAI-RBP1	NM_015640 NM_005884	PRKCL2 PRLR	NM_006256 NM_000949
HADHA	NM_000183 NM_000183	2 ITTIH4 3 ITM1	NM 002218 NM 002219	LOC51175	NM 016262 NM 016304	MGC1294	3 NM 032317	7 MT1L	NM_002450	PALMD	NM_017734	PR01728	NM_018505
HADHSC	NM .005327	7 INTPR2	NM 002223	LOC51205	NM 016361	MGC1300	8 NM_032686	MT2A	NM 005952 NM 005953	PANK PARVB	NM 138316 NM 013327	PR02389	NM 025230
HAO1	NM 002108 NM 017545	3 JIK 5 JRKL	NM_016281 NM_003772	LOC51231 LOC51240	NM_016440 NM_016467	MGC1301 MGC1303	7 NM 080656 3 NM 031447	MTHFD1		PAX8 PBEF	NM .013952	PROZ	NM_003891
HARC HAX1	NM 017913 NM 006118	JUN	NM 002228	LOC51246 LOC51285	NM 016475	MGC1310	2 NM 032323	MTHFS	NM, 005957 NM, 008441	PCDH20 PCK1	NM_005746 NM_022843	PRPS1	NM_015629 NM_002764
HBP1	NM 012257	'JunB(-)2ki	NM 002229	ILOC51287	NM 016565	MGC1313	8 NM_033410 9 NM 032927	MTMR2	NM_003912 NM_004687	PCK1 PCK2	NM 002591 NM 004563	PRSS25 PSA	NM 013247 NM 021154
HBQ1 HBS1L	NM_005331 NM_006620		NM 002229 NG 000941	LOC51292 LOC51326	NM 016576 NM 016632	MGC1346 MGC1415	NM_032758	MTP	NM 000253	PCMT1	NM_005389	IPSMA1	NM_002786
HBXIP	NM, 006402	KBRAS1	NM 020345	LOC51596	NM_015921	MGC1442	NU 022007	MUT	NM_016020 NM_000255	PCYT1A PDCD4	NM 005017 NM 014456	PSMA2 PSMA5	NM_002787 NM_002790
HCA112 HCDI	NM 018487 NM 020195	IKCNJ12	NM 004977 NM 021012	LOC51601 LOC51611	NM 015929 NM 015958	MGC1443	3 NM 032904 9 NM 080659	MYO1A	NM .005379	PDE11A PDE4DIP	NM 016953	PSMD10	NM 002814
HDAC6	NM_008044 NM_006044	KCNN2 KEO4	NM 021614 NM 006459	LOC51633 LOC51644	NM 016023 NM 016057	MGC14844	NM 032341	NAGA	NM 013240 NM 000262	PDE6D	NM_014644 NM_002601	PSMD7. PSME3	NM_002811 NM_005789
HEL308	NM 133636	KHDRBS1	NM_006559	LOC51651	NM_016077	MGC1543: MGC15504	NM 032751	NAGK NAPA	NM 017567 NM 003827	PDIR PDK2	NM 006810 NM 002611	PT0012 PT0013	NM 014039 NM 015952
HEXA HEY1	NM 000520 NM 012258	KIAA0092 KIAA0102	NM_014679 NM_014752	LOC51659 LOC54516	NM 016095 NM 019041	MGC1552 MGC15563	NM 138570 NM_032876	NAT8	NM 003960 NM 025233	PDK4	NM 002612	PTD015	NM_014040
HFL3 HGC8.2	NM 005666 NM 014356	KIAA0103 KIAA0105	NM 014673	LOC54518	NM 019043	MGC15677	NM 032878	INCALD	NM 032041	PDZK1	NM 002614 NM 006117	PTK2 PTPN18	NM_005607 NM_014369
HGD	NM 000187	KIAAD141	NM 004906 NM 014773	LOC55580 LOC55815	NM_017571 NM_018430	MGC15737 MGC15906	NM_032926 NM_032885	NCBP1 NCBP2	NM 002488 NM 007362	PELO	NM_015946 NM_007169	PTPN4 PTPRE	NM_002830
HIF1A HINT2	NM001530 NM 032593	KIAA0205 KIAA0255	NM 014873 NM 014742	LOC55954 LOC56834	NM 019103	MGC16733	NM 033547	NCF1	NM 000265	PEPD	NM, 000285	PTPRG	NM_008504 NM_002841
HKE2	NM_014260	KIAA0258	NM 014785	LOC56902	NM 020155 NM 020143	MGC16943 MGC17347	NM 138333	NCK1 NCOA3	NM 006153 NM 006534	PEX11B PEX13	NM 003846 NM 002618	PURG PWP1	NM 013357 NM 007062
HKE4 HLA-B	NM 006979 NM 005514	KIAA0266 KIAA0391	NM 021645 NM 014672	LOC57018 LOC57019	NM_020307 NM_020313	MGC19595	NM 033415 NM 032360	NCOA5 NCOR1	NM 020967 NM 006311	PEX16	NM_057174 NM_003630	PYGL	NM 002863
HLA-F HMCS	NM_018950 NM_017947	KIAA0409 KIAA0433	NM_015324 NM_015216	LOC57107	NM 020381	MGC2404 MGC2474	NM, 023931	NDRG1	NM_006096	PFKFB4	NM 003630	PZP QP-C	NM 002864 NM 014402
HMG1	NM_002128	KIAA0438	NM_014819	LOC57406	NM_020467 NM_020676	MGC2477 MGC2488 MGC2560	NM 024099 NM 024039	NDUFA6	NM_002489 NM_002490	PGM1 PHACS	NM_002633 NM_032592	R3HDM RA410	NM 015361 NM 016106
HMG17L3 HMOX2	NM 006353 NM 002134	KIAA0618 KIAA0645	NM_014833 NM_014662	LOC57826 LOC57862	NM_021183 NM_021188	MGC2560 MGC2629	NM_031452 NM_032522	NDUFB1 NDUFB5	NM 004545 NM 002492	PHLDA1	NM 007350	RAB10	NM_016131
HNF4a7 HNMT	AF 509467 NM_ 006895	KIAAD660 KIAAD670	NM 012297 NM 014977	LOC64182 LOC81034	NM 022359	MGC2650	NM 024108	INDUFS1	NM 005006 NM 002495	PHTF1 PIGPC1 PIGPC1	NM 006608 NM 022121	RAB11A RAB18	NM 004663 NM 021252
HNRPA1	NM 031157	KIAA0747	NM 015292	LOC81558	NM 030780 NM 030802	MGC2734 MGC2747	NM_033117 NM_024104	NDUFS4 NEDD8	NM_002495 NM_006156	PIGPC1	NM 022121 NM 022121	RAB2 RAB30	NM_002865 NM_014488
HNRPR	NM 005826 NM 032410	KIAA0792 KIAA0795	NM_014698 NM_025010	LOC84518 LOC84661	NM 032488 NM 032574	MGC2835	NM 024072 NM 024295	NEK2	NM_002497	PIGPC1	NM 022121	RAB33B	NM_031296
HOXA1	NM 005522 NM 022658	KIAA0806 KIAA0872	NM_014813	LOC89953	NM_138343	MGC3067 MGC3180 MGC3222	NM 024041	NET-2 NFE2L1	NM_012338 NM_003204	Pigs Pik3R3	NM 033198 NM 003629	RAB4B RAB6KIFL	NM_016154 NM_005733
HPCL2	NM 012260	KIAA0905	NM 014940 NM 014933	LOC90799 LOC91689	NM 138363 NM 033316		NM 024334 NM 032486	NFKBIB NFKBIB	NM 002503 NM 002503	PIK4CB PILB	NM 002651 NM 012228	RABSP40 RABEX5	NM 005833
HPN HPRP4P	NM 002151 NM 004697	KIAA0914 KIAA1017	NM 014883 NM 007216	LR8 LSM3	NM 014020 NM 014463	MGC3413	NM 032678	NFKBIB	NM 002503	PINKI	NM 032409	RAD17	NM 014504 NM 133338
HPX HRIHFB2436	NM 000613	KIAA1041	NM 014947	LSR7	NM_018559	MGC3413 MGC4161 MGC4189	NM 024303 NM 032308	NFKBIB NFYA	NM 002503 NM 002505	PIP5K1A PIPOX	NM 003557 NM 016518	RAD23B RAD50	NM 002874 NM 133482
HSA011916	NM_015343	KIAA1116 KIAA1169	NM_014892 NM_017901	LTA4H LZTR1	NM_000895 NM_006767	MGC4400 MGC4606	NM_032679 NM_024516	NKTR NME1	NM_005385 NM_000269	PIR PIST	NM_003662 NM_020399	RAGA RA-GEF-2	NM 006570 NM 016340
HSD11B1 HSD17B2	NM 005525 NM 002153	KIAA1453 KIAA1638	NM 025090 NM 025132	M17S2 M96	NM 031858 NM 007358	MGC4638 MGC4663	NM 031479 NM 024514	NOLC1	NM 004741	PITPNB	NM 012399	RAMP	NM 016448
HSD17B4	NM_000414	IKIF1B	NM 015074	MADCAM1	NM_007164	MGC4677	NM_052871	NONO NPAS2	NM_007363 NM_002518	PKM2 PLA2G13	NM_002654 NM_032562	RANBP8 RANGAP1	NM_006390 NM_002883
HSD17B7 HSPA5	NM 016371 NM 005347	KIF9 KLF15	NM 022342 NM 014079	MADH4 MAF	NM 005359 NM 005360	MGC4767 MGC5302	NM 032314 NM 024089	NPAT NPC1	NM 002519 NM 000271	PLAB PLAGL2	NM 004864 NM_002657	RAP1GA1	NM 002885
HSPC002 HSPC048	NM 015352 NM_014148	KLHL6 KNG	NM 130446 NM 000893	MAGOH MAL2	NM 002370	MGC5509 MGC9084	NM 024093	NR0B2	NM_021969	PLD2	NM_002663	RASSF1	NM 022650 NM 007182
HSPC051	NM 013387	KNSL4	NM 007317	MANBA	NM_052886 NM_005908	IMGEA5	NM_033418 NM_012215	NR1H3 NR1I2	NIM_005693 NIM_022002	PLGL PLSCR1	NM_002665 NM_021105	RBBP4 RBM15	NM_005610 NM_022768
HSPC052 HSPC111	NM 014150 NM 016391	KPNB1 KRT10	NM 002265 NM 000421	MAOA MAP3K11	NM 000240 NM 002419	MGST1 MGST2	NM_020300 NM_002413	NR3C1 NR5A2	NM 000176	PME-1	NM_016147	RBM6	NM 005777
HSPC117 HSPC129	NM_014306 NM_016396	LAD1 LALP1	NM_005558	MAP3K4	NM 005922	MGST3	NM_004528	INRAS	NM_003822 NM_002524	PMS1 PMS2	NM 000534 NM 000535	RBM7 RBP5	NM 016090 NM_031491
HSPC141 HSPC154	NM 014172	LAPTM4A	NM 020354 NM 014713	MAP3K7 MAP7	NM 003188 NM 003980	MIPEP MLC1SA	NM 005932 NM 002475	NRCAM NRD1	NM 005010 NM 002525	PMS2L8 PNAS-131	NM 005394 NM 031446	RBSK RBT1	NM_022128 NM_013368
HSPC157	NM 014177 NM 014179	LATS1 LBP	NM 004690 NM 004139	MAPK7 MAT1A	NM_002749 NM_000429	MNAT1 MOV10	NM 002431 NM 020963	NS1-RP	NM_006469	PNKP	NM: 007254	IRCL	NM,006443
HSPC166 HSPC213	NM 014186 NM 016475	LC27 LCN2	NM 018407	MAT2A	NM 005911	MPP1	NM 002436	NT5C3 NTHL1	NM 002528	PNLIPRP1 POLB	NM 006229 NM 002690	RDBP RDH5	NM_002904 NM_002905
HSU79274	NM 013300	LENG5	NM 005564 NM_024075	MBD4 MCCC1	NM_003925 NM_020186	MPPE1 MRE11A	NM 023075 NM 005590	NTN4 NUDT2	NM 021229	POLD4 POLE3	NM 021173 NM 017443	REA RECOLS	NM_007273 NM_004259
HSU84971 HT002	NM 013303 NM 014066	LEPR LGALS1	NM 002303 NM 002305	MCEE MCP	NM 032601 NM 002389	MDDES	NM 024026 NM 014175	NUDT5 NUFIP1	NM 014142	POLR2A	NM, 000937	PENT1	NM 002911
HT007 HT010	NM 018480	LGALS1 LIMK2	NM 005569	MDFI	NM 005586	MRPL15 MRPL18 MRPL2 MRPL24	NM 014161	NUP107	NM 020401	POLR2K POLS	NM 005034 NM 006999	RFC3 RFC5	NM 002915 NM 007370
HT012	NM 018473	LISCH7 LIV-1	NM_015925 NM_012319	MDH1 MDM2UAS6	NM_005917 NM_002392	MRPL24	NM 015950 NM 024540	NUP62 NUP98	NM 012346	PON1 POP5	NM 005999 NM 000446 NM 015918	RGL	NM 015149
humNRDR HYAL3	NM 021004 NM 003549	LNPEP LOC115330	NM 005575 NM 138445	MDM2UAS8 MDS009	NM 002392 NM 020234		NM_004891 NM_023937	IOAS1	NM 002534	PORIMIN	NM 052932	RIG-I RIP60	NM 014314 NM 013400
IER5	NM .016545	LOC128401	NM 138285	MDSD25	NM_021625	MRPL34 MRPL37	NM_016491	OAS3 OAZ2	NM 002537	POV1 PP5395	NM_003627 NM_021732	RNASE2 RNASE3	NM 002934 NM 002935
IFITM2 IFNAR1	NM 006435 NM 000629	LOC151534 LOC151636	NM 138297	MDS029 MEA	NM 018464 NM 014623	MRPL4 MRPL44	NM 015956 NM 022915	OPA3 ORC3L	NM 025136	PPFIEP1 PPGB	NM 003622 NM 000308	RNASE4 RNF29	NM 002937
IFNGR1	NM 000416 NM 001550	LOC51004 LOC51011	NM 015940	MEF2B MEP50	NM 005919	MRPL46	NM 022163	ORM1	NM 000607	PPM1D	NM 003620	RNF5	NM 033058 NM 006913
,	31000	,_0001011	0 10044	PIET 3U	NM 024102	MRPL48	NM 016055	ORM2	NM 000608	PPP1R11	NM 021959	RNGTT	NM 003800

Fig. 18C

Gene Nam		Gene Name	RefSeq	Gene Name	RefSeq :		ReiSeq
RNPC2 RNPEPL1	NM 004902 NM 018226	SLC25A13 SLC25A18	NM_014251 NM_031481	TDRKH TEAD3	NM 006862	VPS45A	NM 007259
ROCK1	NM_005406	SLC25A5	NM 001152	TED	NM 003214 NM_015686	IVTN IWASF3	NM 000638 NM_006646
RORC	NM_005060	SLC26A1	NM 022042	TEF	NM_003216	WASL	NM 003941
RPC32 RPL18	· NM 008467	SLC2A8	NM_014580	TEGT	NM_003217	WBP4	NM 007187
RPL31	NM 000979 NM 000993	SLC31A1 SLC35A2	NM 001859 NM 005660	TESK2	NM 007170 - NM 001063	WDF2 WDR10	NM 052950 NM 052985
RPL37AP1	NG_000988	SLC35A3	NM 012243	THPO	NM_000460	WDR12	NM_018256
RPL5 RPL7	NM_000969	SLC38A1	NM 030674	THIP	NM, 024328	WDR13	NM .017883
RPLP1	NM_000971 NM_001003	SLC38A4 SLC39A1	NM .018018 NM .014437	TIA1 TIMM17A	NM 022037 NM 006335	XDH	NM_000379 NM_000380
RPS16	NM_001020	SLC5A3	NM_006933	TIMM17B	NM_005834	XPA XPC	NM 004628
RPS19	NM_001022	SLC7A2	NM. 003046	TIMM23	NM_006327	JXPR1	NM 004736
RPS27A RPS3A	NM 002954 NM 001006	SLC7A9 SLPI	NM_014270 NM_003064	TIMM9 TLH29	NM 012460 NM_032036	XRCC5 YKT6	NM 021141 NM_006555
RPS6KA5	NM_004755	SMAC	NM ,019887	TLN1	NM_006289	YWHAB	NM_003404
RPS6KB1	NM_003161 NM_005444	SMAP SMARCA5	NM_006696 NM_003601	TM4SF4 TM9SF2	NM. 004617	ZAN	NM 003386
RSHL1	NM_030785	SMARCE1	NM 003079	TMEM7	NM_004800 NM_031440	ZBRK1 ZF5128	NM 021632 NM 014347
RSP3	NM 031924	SMC2L1	NM 006444	TMF1	NM 007114	IZFP95	NM 014569
RSU1 RTCD1	NM 012425 NM 003729	SMPD1 SNAI2	NM_000543 NM_003068	TMOD2	NM_014548	ZK1	NM_005815
RTP801	NM 019058	SNAP23	NM .003825	TMP21 TNFAIP1	NM, 006827 NM, 021137	ZNF133 ZNF144	NM 003434 NM 007144
RUVBL2	NM_006666	SNAPC1	NM, 003082	TNFRSF118		ZNF146	NM_007145
RXRB S100A9	NM 021976 NM 002965	SNK SNRPA	NM 006622 NM_004596	TNFRSF6	NM. 000043	ZNF147	NM 005082
SAA1	NM_000331	SNRPD3	NM_004175	TNFRSF6	NM 000043 NM 000043	ZNF155 ZNF183	NM 003445 NM 006978
SAA1	~- NM_000331	SNRPF	NM, 003095	TNFRSF6	NM_000043	ZNF192	NM_006298
SAA1 SAA1	NM_000331 NM_000331	SNW1 SNX1	NM_012245 NM_003099	TNFSF13	NM_003808	ZNF207	NM 003457
SAA2	NM 030754	SNX17	NM 014748	TNS TOM1	NM 022648 NM 005488	ZNF214	NM 013249 NM 006963
SAC	NM_018417 NM_006590	SNX17 SNX3	NM 003795	TOMM70A	NM, 014820	ZNF22 ZNF221	NM_013359
SAD1 SAMHD1	NM_015474	SNX5 SOD1	NM_014426 NM_000454	TP53TG1 TPP2	NM_007233	IZNF222	NM_013360
SAP18	NM 005870	SORCS3	NM 014978	TPT*	NM_003291 NM_014317	ZNF224 ZNF225	NM 013398 NM 013362
SAS10	NM_020368	SOX10	NM 006941	TRA1	NM_003299	[ZNF226	NM 016444
SC4MOL SCA2	NM 006745 NM 002973	SP2 SPATA2	NM_138406 NM_006038	TRAF6 TRAP150	NM_004620 NM_005119	ZNF230	NM_006300
SCAND1	NM 033630	SPATA6	NM 019073	TRIM15	NM 033229	ZNF237 ZNF281	NM_014242 NM_012482
SCD	NM 005063	SPC18	NM 014300	TRIM26	NM 003449	ZNF302	NM 018443
SCYA14 SCYA15	NM_032962 NM_032964	SPOCK SPP2	NM 004598 NM 006944	TRIM31 TRIM34	NM 052816 NM_130389	ZNF361 ZNF9	NM_018555 NM_003418
SCYA16	NM_004590	SORDL	NM_021199	TRIM4	NM 033017	ZNF-U69274	NM_014415
SCYE1	NM_004757 NM_002997	SREBF2	NM_004599	TRIP11	NM_004239	ZNRD1	NM, 014596
SDC1 SDCCAG10	NM_005869	SRP54 SRP68	NM 003136 NM 014230	TRN-SR TRPC5	NM_012470 NM_012471	ZnTL2	NM, 133496
SDCCAG28	NM_006645	SRPR	NM, 003139	TRPST	NM_014112		
SDFR1 SEC10L1	NM 012428 NM 006544	SSA2 SSAT2	NM 004600	TSG101	NM 006292		
SEC23A	NM_006364	ISSSCA1	NM_133491 NM_006396	TSLRP TTY14	NM, 012472 NM, 031932	}	
SEC24D	NM_014822	SSTR1	NM_001049	TUBB5	NM_006087	j	
SEC61B SEL1L	NM_006808 NM_005065	STAF42 STAF65(gamma)	NM_053053	TUFT1	NM_020127	i	
SEMA3C	NM_006379	STAM	NM, 003473	TXNIP TXNL	NM 006472 NM 004786		
SEMAGC	NM, 030913	STAM2	NM 005843	TXNRD1	NM 003330		
SEMA7A SENP1	NM 003612 NM 014554	STARD7 STAT1	NM 020151 NM_007315	TYMS U2AF1	NM 001071 NM 006758	1	
SEPX1	NM 016332	STAU2	NM 014393	U3-55K	NM 004704		
SERPINA1 SERPINA10	NM_000295 NM_016186	STCH	NM 006948	U5-116KD	NM_004247	ł	
SERPINA5	NM_000624	STIM1 STK19	NM_003156 NM_004197	UBE2B UBE2D3	NM_003337 NM_003340	1	
SERPINA6	NM_001766	STK2	NM_003157	UBE2M	NM 003969	i	
SERPINC1 SERPIND1	NM 000488 NM 000185	STOML1	NM_004809	UBP1	NM014517	[
SERPINE1	NM 000602	STRAIT11499 STX18	NM 021242 NM 016930	UBQLN1 UBQLN2	NM 053067 NM_013444	}	
SERPING1	NM, 000062	ISUCLA2	NM_003850	UCH37	NM 015984		
SERPINI1 SES2	NM_005025 NM_031459	SUCLG1 SUDD	NM_003849	UCHL3	NM 006002		
SF3A3	NM_006802	SULTIAL	NM_003831 NM_001055	UGDH UGT2B11	NM .003359 NM 001073	ŀ	
SF3B2	NM,006842	SULT2A1	NM 003167	UGT2B15	NM .001076	i	
SFRS11 SFRS5	NM 004768 NM 006925	SUOX	NM 000456	UGTREL1	NM 005827		
SFRS8	NM 004592	SUPT3H SUPT5H	NM_003599 NM_003169	UGTREL7 ULBP3	NM 015139 NM 024518		
SGK	NM 005627	SUPV3L1	NM_003171	UPB1	NM 016327	1	
SGK2 SGT1	NM 016276 NM 006704	SYN3 SYTL4	NM 133632 NM 080737	UQCRC2 URKL1	NM_ 003366	1	
SH2D3C	NM_005489	SZF1	NM 016089	UROD	NM 017859 NM 000374	1	
SH3BGRL2	NM, 031469	TADA3L	NM_ 133480	luros	NM . 000375	1	
SILV SIX2	NM 006928 NM 016932	TAF2GL TAGLN2	NG 001012 NM_003564	USP1 USP15	NM 003368	1	
SKB1	NM 006109	TARS	NM 003354 NM 003191 NM 000353	IUSP2	NM_008313 NM_004205]	
SKD1 SKRP1	NM, 004869	ITAT	NM 000353	JUXT	NM 004182	1	
SLC10A1	NM, 080876 NM, 003049	TCF1 TCF12 TCF19	NM 000545 NM 003205	VAMP1 VAMP5	NM_014231 NM_006634	l	
SLC17A2	NM, 005835	TCF19	NM_007109	VDAC1	NM_003374		
SLC17A5 SLC19A3	NM 012434 NM 025243	TCF21 TCF7L2	NM 003206	VDAC2	NM, 003375		
SLC22A1LS	NM_007105	TCIRG1	NM 030756 NM 006019	VEGFC VEZATIN	NM 005429 NM 017599		
SLC22A3 SLC22A7	NM 021977	ITCOF1	NM 000356 NM 030752	VMP1 VPS29	NM 030938 NM 016226		
ILUZZA!	NM_008672	TCP1	NM_U3U/52	IVPS29	NM 016226	I	

(29/41)

Fig. 19A

Gene Nan	e ReiSeq	Gona Name	RefSec	Gene Name	RefSeq 5	Gene Name	ReiSeq	Gene Name	RefSeq	Gene Nam RelSeq	Gene Name	ReiSeq
101F6	NM 007022	BIG1	NM_008421	CGBP	NM 014583	DKFZP547N043 DKFZP584G2022	NM 032018	FLJ10477 FLJ10509	NM 018105 NM 018119	FLJ20420 NM 017812 FLJ20422 NM 017814	GPRKZL GRIK3	NM_005307 NM_000831
AAMP.	NM 019843 NM 001087_	BLTR2 BLZF1	NM_019839 NM_003666	CGI-203	NM 015935 NM 020408	DKFZP564I0422	NM 015497 - NM 031435	FLJ10503	NM 018120	FLJ20450 NM 017827	IGRIH	NM, 013264
ABCB10	NM 012089	BM-002	NM. 016617	(CG)-51	NM 015380	IDKFZP564L2423	NM 030805	FLJ10525	NM_018126	FLJ20498 NM_019040	GRWD	NM 031485
ABCB8 ABCB9	NM 007188 NM_019624	BMI1 BMP5	NM 005180 NM 021073	CHERP	NM 007194 NM 006387	DKFZP584M082 DKFZP56400463	NM 014042 NM 014156	FLJ10535 FLJ10581	NM 018129 NM 018146	FLJ20508 NM 017850 FLJ20511 NM 017853	GSPT1 GSS	NM 002094 NM 000178
ABCC5	NM 005688	BNC	NM_001717	CHICZ	NM 012110	DKFZP58400523	NM_032120	FLJ10583	NM_018148	IFLJ20546 NM_017872	IGSTZ1	NM 001513
ABCG1	NM 004915	BNIP1	NM 001205	CHM	NM 000380	DKFZP566B183 DKFZP586C243	NM 015509 NM 015388	FLJ10604 FLJ10628	NM 018154 NM 018159	FLJ20558 NM 017880 FLJ20624 NM 017906	GTF2B GTF2E1	NM 001514 NM 005513
ABH	NM_006020 NM_016222	BPGM BRAP	NM ,001724 NM ,006768	CHMP1.5 CHRNB2	NM_020412 NM_000748	DKFZP586D1346	NM 030816	FLJ10634 .	NM_018163	FLJ20627 NM 017909	GTF2H1	NM 005315
ABT1	NM 013375	IBRCA1	NM 007295	CIAO1	NM 004804	DKFZP586D1346 DKFZP566E144	NM_015523	FLJ10637	NM_018164	JFLJ20828 NM_017910	GTF2H3	NM_001516
ACADS ACADSB	NM_014384 NM 001609	BRF2 BRIX	NM 018310 NM 018321	CIP29 CIR	NM_032364 NM_004882	DKFZP586A011 DKFZP586J0119	NM 015416 NM 015636	FLJ10640 FLJ10661	NM_019023 NM_018172	FL120643 NM 017916 FL120644 NM 017917	GTF2H4 GTF2i	NM 001517 NM 033003
ACATN	NM 004733	BST1	NM_001334	CITED2	NM 006079	DKFZP761E2110	NM_030953	FI J10774	NM. 024662	FLJ20851 NM 017919	GTF3C5	NM 012087
ACO2 ACOX1	NM 001098 NM 004035	BTD	NIA_000060 NIA_033637	CKAP1 CKS2	NM_001281 NM_001827	DKFZp781J139 DKFZP762H66	NM 032280 NM 020441	FLJ10803 FLJ10826	NM 018224 NM 018233	FLJ20871 NM 017924 FLJ20895 NM 017929	GUSB H GS185L1	181000 MM
ACOXI	NM 003501	BUB18	NM 001211	CLLD8	NM 031915	DLG4	NM 001365	IFLJ10853	NM 018246	IFLJ20729 NM 017953	H17	NAI 017547
ACP2	NM .001610	BUB3	NM 004725 NM 004053	CLONE24922	NM 015679	DMAP1	NM_019100 NM_004407	FLJ10856 FLJ10871	NM 018247 NM 018250	FLJ20730 NM 017945 FLJ20731 NM 017948	H326 H3FM	NM 015726 NM 021059
ACTR1A AD-017	NM_005736 NM_018446	BYSL C11orf10	NM, 004053 NM 014206	CLPTM1 CLPX	NM 001294 NM 006660	DMP1 DNAJB11	NM 016306	FLJ10891	NM 018260	FLJ20748 NM 019020		NM 003548
AD022	NM 016614	C11orf2	NM 013265	CLTA	NM 001833	DNAJB12	NM 017526	IFLJ10989	NM 018292	FLJ20772 NM 017956	H4FI	NM 003544
AD034 AD158	NM 031480 NM 032270	C14orf3	NM_012111 NM_006333	CLTCL1 CNAP1	NM_001835 NM_014865	DNAJB4 DPAGT1	NM 007034 NM 001382	FLJ11000	NM_018294 NM_018295	FLJ20859 NM 022734 FLJ21272 NM 025032	HAAO HASJ4442	NM_012205 NM_017528
AD24	NM 022451	C1orf22	NM 025191	CNOT3	NM 014516	DPH2L2	NM 001384	IFLJ11016	NM 018301	IFLJ21613 NM 021929	ITIAXI	NM 006118
ADAT1 ADCY7	NM 012091 NM 001114	C1ort25 C1ort8	NM_030934 NM_004872	CNOT4 COASTER	NM 013316 NM 015555	DPM1 DPM2	NM 003859 NM_003863	FLJ11017 FLJ11029	NM 018302 NM_018304	FLJ21742 NM 032207 FLJ21820 NM 021925		NM 007067 NM_012257
ADD2	NM 001617	G20orf1	NM_012112	COP9	NM 006710	DSCR3	NM 006052	FLJ11046	NM 018309	FLJ21934 NM 024743	IHBQ1	NM 005331
ADSS	NM 001126	C20orf10	NM 014477	COPB	NM 016451	DSCR5	NM 016430	FLJ11159	NM 018343	FLJ21939 NM 022461 FLJ21945 NM 025203	HBXIP HCAP-G	NM 006402 NM 022346
AF093680 AF140225	NM 013242 NM 030799	C20orf111 C20orf12	NM_016470 NM_018152	COPB2	NM_004766 NM_016319	IDSS1 IDYRK1B	NM 008304 NM 004714	FLJ11186 FLJ11193	NM 018353 NM 018356	FLJ21952 NM 022494	HCDI	NM 020195
AF15Q14	NM 020380	C20orf13	NM 017714	COPS78 COPS78 COX7A2	NM 022730	E2F4	NM 001950	FLJ11220	NM 018364	FLJ21977 NM 032213	HCNGP	NM 013260
AGA AGTPBP1	NM 000027 NM 015239	C20orf14 C20orf154	NM 012469 NM_032485	COX7A2 COX7A2L	NM 001865 NM 004718	E2F5 E2IG3	NM 001951 NM 014366	FLJ11271 FLJ11274	NM 018373 NM 018375	FLJ21986 NM 024913 FLJ22028 NM 024854	HDAC8	NM 002111 NM 018486
AIP	NM 003977	C20orf164	NM_080752	ICOX7C	NM_001867	EAF1	NM 033083	FLJ11292	NM_018382	FLJ22169 NM 024085	IHEC	NM_006101
AK2 AKR1B1	NM 001625 NM 001628	C20orf188 C20orf28	NM 015638 NM 015417	COX8 CPA2	NM_004074 NM_001869	EED EEF1B2	NM 003797 NM 021121	FLJ11301 FLJ11838	NM 018385 NM 024664	FLJ22184 NM 025094 FLJ22191 NM 025231	HEL308 HEXA	NM 133636 NM 000520
ALS2	NM 020919	C20orf30	NM 014145	CPSF5	NM 007006	EFG1	NM_024996	FLJ11848	NM 025155	FLJ22347 NM 022830	HGD	NM_000187
AMSH	NM 006463	C20orf33	NM 030877	CPT1B	NM 004377	EGLN2 EHD3	NM 053046 NM 014600	FLJ12085 FLJ12168	NM 022771 NM 024682	FLJ22501 NM 024747 FLJ22551 NM 024708	HHEX	NM 002729 NM 007072
ANKRA2 APIMI	NM 023039 NM 032493	C20orf4 C20orf43	NM 015511 NM 016407	CREBL1 CREBL2	NM 004381 NM_001310	EIF1A	NM 001412	FLJ12455	NM_022078	FLJ22555 NM 024520	HIFIAN	NM 017902
AP2A1	NM 130787	C20orf44	NM 018244	CRFG	NM_012341	EIF2B1	NM 001414	FLJ12525	NM 031206	FLJ22637 NM 025165	HIRIP3	NM .003609
AP2B1 AP2M1	NM_001282 NM_004068	C20orf45 C20orf64	NM_016045 NM_033550	CrkRS CRSP3	NM_016507 NM_004830	EIF2S1 EIF2S2	NM_004094 NM_003908	FLJ12571 FLJ12707	NM 024926 NM 022067	FLJ22688 NM 025129 FLJ22729 NM 024683	HKE2 HKE4	NM_014260 NM_006979
AP2S1	NM 021575	C20orf72	NM 052865	CRY2	NM 001889	EIF2S3	NM 001415	FLJ12735	NM 024857	FLJ22865 NM 025109	HLF	NM 002126
AP3M1	NM_012095 NM_006594	C20orf77 C21orf18	NM 021215 NM 017438	CRYZL1	NM 005111 NM 004077	EIF3S2 EIF3S6	NM_003757 . NM_001568	FLJ12770 FLJ12785	NM_032174 NM_024855	FLJ22875 NM 032231 FLJ23109 NM 024814	HMG1 HMG2	NM 002128 NM 002129
APACD	NM 005783	C210/155	NM 017833	CSK	NM 004383	IEIF4G1	NM 004953	FLJ12788	NM 022492	FLJ23182 NM 022366	HNRPA0	NM 006805
APC10	NM 014885	C21orf59	NM 021254	CSNK2A1	NM 001895	EIF5	NM_001969	FLJ12879	NM 024757	FLJ23251 NM 024818 FLJ23263 NM 025115	HNRPA1 HNRPC	NM_031157 NM_031314
APG3 APMCF1	NM 022488 NM 021203	C2F C2orf9	NM 006331 NM 032309	CSTF1 CSTF2T	NM 001324 NM 015235	IELL IEPHA1	NM 006532 NM 005232	FLJ12888 FLJ12895	NM 024945 NM 023926	FLJ23468 NM 024629	HPCL2	NM 012260
AQP3	NM 004925	C3ort4	NM 019895	CSTF3	NM 001326	ERCC5	NM 000123	FLJ12910	NM 024573	FLJ23469 NM 024710	IHLKHAL	NM UU4697
AOP6 ARD1	NM 001652 NM 003491	C4arfi C5arf6	NM 006345 NM 016605	CTAG1 CTMP	NM 001327 NM 053055	EWSR1 EXO1	NM 013986 NM 130398	FLJ12960 FLJ13102	NM 024638 NM 024887	FLJ23499 NM 022761 FLNA NM 001456	HRB2 HRMT1L2	NM 007043 NM 001536
ARF1GAP	NM 018209	Côort11	NM 005452	CTNNA1	NM_001903	EZFIT	NM_021216	FLJ13158	NM_024909	FNTB NM_002028	HSGT1	NM_007265
ARFD1	NM 001656 1.NM 014783	C6ari35 C7arf10	NM 018452 NM 024728	CUL2 CXorf12	NM 003591 NM 003492	F12 F23149_1	NM 000505 NM 019088	FLJ13194 FLJ13195	NM 025146 NM 022905	FOXO1A NM 002015	HSP105B HSPA5	NM 006644 NM 005347
ARL1	NM_001177	C9arf12	NM, 022755	CYB5-M	NM_030579	FACTP140	NM_007192	FLJ13220	NM 021927	FRG1 NM 004477	HSPC003	NM_014017
ARS2	NM_015908	C9ort5	NM_032012	CYLD CYP51	NM_015247	FANCF FBXO24	NM 022725 NM 012172	FLJ13273	NM_024751 NM_032178	FRSB NM 005887	HSPC016	NM 015933 NM 016101
ARSDR1 ASB3	NM 016026 NM 016115	CAP CAPZA2	NM 006367 NM_006136	D123	NM 000786 NM 006023	IFBXO8	NM_012180	FLJ13291 FLJ13315	NM_025005	FTSJ1 NM_012280	HSPC051	NM, 013387
ASE-1	NM 012099	CAT56	NM 025263	D13S106E	NM 005800	FBXW2	NM, 012164	FLJ13491 FLJ13611	NM_024623 NM_024941	FUBP1 NM 003902 FXC1 NM 012192	HSPC052	NM_014150 NM_014154
ATF6	NM 001675 NM 007348	CAV1 CBARA1	NM 001753 NM 006077	D1S155E DACH2	NM 007158 NM 053281	FDPS FDX1	NM 002004 NM 004109	FLJ13615	NM 025114	FYCO1 NM 024513	HSPC072	NM 014162
IATF7	NM_006856	CBX5	NM_012117	DAD1	NM_001344	FDXR	NM_024417	FLJ13798	NM_024773	G10 NM 003910 G22P1 NM 001469	HSPC111	NM 016391 NM 014306
ATP10C ATP5B	NM_024490 NM_001686	CCNE1 CCNT1	NM_001238 NM_001240	DC11	NM_001918 NM_020186	FE65L2	NM_006051 NM_004111	FLJ13912 FLJ13949	NM_022770 NM_025077	G22P1 NM 001469 G6PD NM 000402	HSPC128	NM 014157
ATP5F1	NM 001688	CCT6B	NM 006584	IDC13	NM 020188	IFGF13	NM 004114	FLJ13962	NM 024882	GABPA NM .002040		NM 016396
ATP5G3	NM 001689	CCT7	NM 008429	DC50	NM 031210	FGF7	NM_002009 NM_000143	FLJ14431	NM 032783 NM 032786	GABPB2 NM_002041 GABRE NM_021984	H5PC134	NM_014169 NM_016401
ATP5J2 ATP6E	NM 004889 NM 001696	CDC10	NM_006585 NM_001788	DC8 DCLRE1B	NM_015471 NM_022836	FHIT	NM 002012	FLJ14451 FLJ14486	NM_032792	GAI NAC4! NM 031422		NM 014172
ATPGM	NM 015994	CDC23	NM 004661 NM 001789	DCTN4 DDOST	NM 016221 NM 005216	FKBP10 FKBP3	NM_021939 NM 002013	FLJ14511 FLJ14547	NM 033087 NM 032804	GAS1 NM 002048 GBF1 NM 004193	HSPC142	NM 014173 NM 014174
ATP6S14 AUP1	NM 004231 NM 012103	CDC25A CDC42BPB	NM 008035	DDX10 DDX21	NM 004398	FKBPL	NM 022110	FLJ14697	NM 032826	GCN5L1 NM 001487	HSPC144 HSPC148	NM 016403
AUTL1	NM_032852	CDC45L	NM_003504	DDX21	NM 004728	FKSG32 FLJ10038	NM 031307	FLJ14803	NM 032842	GDAP2 NM 017686		NM 016404 NM 014179
B3GNT6 BAD	NM 006876 NM 004322	CDC5L CDC6	NM 001253 NM 001254	DDX28 DDX38	NM 018380 NM 014003	FLJ10038	NM 017976 NM 017982	FLJ14840 FLJ14855	NM 032850 NM 033210	GHITM NM 014394 GIOT-3 NM 016265	HSPC157 HSPC160 HSPC166	NM 014179
BAG4	NM 004874	CDCA1	NM 031423	BXCD(NM_004941	FLJ10116	NM 018000	FLJ20010	NM_019021	IGJA4 NM 002060		NM 014186
BARD1 BAT1	NM 000465 NM 004640	CDIPT CDK5	NM 008319 NM 004935	DEDD	NM 012138 NM 004216	FLJ10142 FLJ10276	NM_018008 NM_018045	FLJ20045 FLJ20070	NM 017638 NM 017652	GK001 NM_020198 GLA NM 000169		NM 014187 NM 014188
IBAT2	NM 004638	CDKB	NM 001260	DESC1	NM 014058	FLJ10287	NM 019083	IFLJ20080	NM 017657	GLA NM 000169 GLTSCR2 NM 015710 GNAI3 NM 006496	HSPC182 HSPC189 HSPE1	NM 016535 NM 002157
BAT3	NM_004639 NM_033177	CDKN1B CEBPA	NM_004064 NM_004364	DGUOK DIS3	NM 080915 NM 014953	FLJ10330 FLJ10342	NM, 018061 NM 018064	FLJ20081 FLJ20084	NM_017658 NM_017659	GNAI3 NM_006496 GNB2L1 NM_006098	HSPE1	NM_002157 NM_013300
BAZIB	NM 032408	CEBPB	NM 005194	DJ37E16.5	NM 020315	FLJ10374	NM 018074	FLJ20125	NM 017676	IGNS NM 002076	HSU84971	NM 013303
BCAR1	NM 014567	ICEP2	NM 003779	DKFZP434B10 DKFZP434C2	NM 015434	FLJ10377 FLJ10407	NM 018077 NM 018087	FLJ20189 FLJ20190	NM 017704 NM 017705	GOSR1 NM 004871 GOSR2 NM 004287	HT010 HT011	NM 018471 NM 018472
BCCIP BCKDHA	NM 016567 NM 000709	CES2 CETN2	NM 003869 NM 004344	DKFZ0434E22	NM 017612	FLJ10415	NM 018089	FLJ20257	NM_019806	GOT1 NM 002079	HUNK	NM 014586
BCL2L1	NM 001191	CETN3	NM 004365 NM 005507	DKFZP434E2 DKFZP434L11	NM 032138	FLJ10422 FLJ10432	NM 018091 NM 019070	FLJ20288 FLJ20291	NM 024668 NM 017748	GPCR150 NM 014373 GPR105 NM 014879 GPR37 NM 005302	IER5 IFRD1	NM 016545 NM 001550
BCS1L BET1	NM 004328 NM 005868	CFL1 CG005	NM 005507 NM 014887	DKFZp434N08	NM 032261	FLJ10450	NM, 018095	FLJ20342	NM_017774	GPR37 NM 005302	IFRD2	NM_006764
BETS	NM 014408	CG1I	NM 006349	DKFZp434N14	NM 032133	FLJ10468	NM 018101	FLJ20343	NM 017775	GPR52 NM 005884	IGBP1	NM 001551

Fig. 19B

Gene Name	ReiSeq	Gene Name	RefSeq	Gene Name	ReiSeq	Gene Name	RefSeq	Gene Name	ReiSeq	Gene Name	RefSeq	Gene Name	RefSeq .
IGSF8	NM_052868	LOC51075	NM ,015959	MFAP1	NM 005926	MRPL33	NM 004891	NTE NTF2	NM 006702 NM 005796	PPP1R15B PPP2R5B	NM 032833 NM 006244	RPL7 RPLP0L	NM 000971 NM 016183
IMAGE145052 IMAGE34552		LOC51076	NM 015960 NM 015982	MGC10433 MGC10500	NM 024321 NM 031477	MRPL43 MRPL44	NM 032112 NM 022915	NUCBI	NM 006184	PPP6C	NM 0002721	Rpo1-2	NM 019014
IMMT	NM 006839	LOC51094	NM 015999	MGC10702	NM 032663	MRPL46	NM 022163	NUDT2	NM 001161	PRCC	NM 005973	IRPS14	NM 005617
IMP13	NM 014652	LOC51096	NM-016001	MGC10924	NM 030571	MRPL48 MRPL51	NM 016055* NM_016497	NUDTS NUDTS	NM 014142 1 NM 007083	PRDM5	~NM-018699 - NM_012094	RPS18	NM 001020 NM 022551
INCENP ING3	NM_020238 NM_019071	LOC51104 LOC51107	NM_016014 NM_016022	MGC10974 MGC10999	NM 032305 NM 032307	MRPL53	NM 053050	NUP107	NM 020401	PRKAB!	NM 006253	RPS19	NM 001022
ING4	NM 016162	LOC51117	NM 016035	MGC11102	NM 032325	MRPS11	NM 022839	NUP54	NM 017426	PRKCABP	NM 012407	RPS20	NM 001023
INVS	NM 014425 NM 003604	LOC51118	NM 016037 NM 016139	MGC11115 MGC11266	NM 032310 NM 024322	MRPS12 MRPS14	NM 021107 NM 022100	NUP62 NVL	NM 012346 NM 002533	PRKCE PRO2389	NM 005400 NM 025230	RPS21 RPS25	NM 001024 NM 001028
IRS4 ITGA6	NM 003604 NM 000210	LOC51142 LOC51174	NM_016261	MGC1127	NM 033549	MRPS15	NM 03128D	NYD-SP11	NM 031951	IPRP18	NM 003675	RPS27A	NM_002954
ITGA9	NM 002207	LOC51187	NM_016304	MGC11279	NM_024326	MRPS16	NM_016065		NM 080654	PRPF31	NM 015629	RPS28	NM_001031 NM_001005
ITGB3BP	NM 014288 NM 002219	LOC51202 LOC51204	NM 016355 NM 016360	MGC11296 MGC11352	NM 032352 NM 030927	MRPS18B MRPS18C	NM 014046 NM 016067	OGFR	NM 013397 NM 007346	PRRG2 PRSS25	NM 000951 NM_013247	RPS3 RPS3A RPS5	NM_001005
JM4	NM 007213	LOC51205	NM 016361	MGC12943 MGC12981 MGC13102	NM, 032317	IMRPS21	NM_018997	IOPA1	NM_015560	PRSS25 PSCD2	NM_004228	RPS5	NM_001009
JTB	NM_006694	LOC51231	NM_016440	MGC12981	NM 032357	MRPS23 MRPS27	NM_016070	OPA3	NM_025136 NM_004153	PSMA1 PSMA2	NM_002766 NM_002787	RPS6 RPS6KA5	NM, 001010 NM 004755
KARS KBRAS1	NM 005548 NM 020345	LOC51246 LOC51287	NM 016479 NM 016565	MGC13102	NM 032323 NM 032366	MRPS28	NM 015084 NM 014018	ORC1L ORC3L	NM, 012381	PSMA3	NM_002788	RPSSKRI	NM_003161
KCNQ5	NM 019842	LOC51290	NM_016570	MGC13138 MGC13159	NM 033410	IMRPS30	NM_016840	IOSBP	NM 002556	IPSMA5	NM_002780	RPS6KC1	NM_012424
KEO4	NM 006459	LOC51292	NM_016576	MGC13159	NM_032927	MRPS35	NM_021821	OSBPL11	NM 022776 NM 130771	PSMB1 PSMB5	NM 002793 NM 002797	RRM1 RRP4	NM_001033 NM_014285
KIAA0028 KIAA0057	NM 015340 NM 012288	LOC51300 LOC51326	NM_016589 NM_016632	MGC1346 MGC14126	NM_032758 NM_032898	MRPS7 MSMB	NM 015971 NM 002443	OSCAR OSCEP	NM 017807	PSMB7	NM 002789	RRP46	NM 020158
KIAA0092	NM_014679	LOC51329	NM 016638	IMGC14151	NM 032356	MSTP028	NM_031954	P125	NM 007180	PSMC4	NM 008503	RSU1	NM 012425
K1AA0102	NM_014752	LOC51596	NM 015921	MGC14288 MGC14421	NM 032901 NM 032907	MTERF MTF1	NM 006980 NM 005955	P15-2 P29	NM_016698 NM_015484	PSMD1 PSMD10	NM_002807 NM_002814	RXRB SACM2L	NM_021976 NM_022553
K1AA0105 KIAA0164	NM_004906 NM_014739	LOC51604 LOC51605	NM 015937 NM 015939	MGC14595	NM_032334	MTHFD1	NM 005956	P5326	NM 031450	PSMD4	NM_002810	SAD1	NM_008590
KIAA0196 KIAA0255	NM 014846	LOC51626	NM 016008	IMGC14697	NM 032747	MTMR4	NM 004687	PACE	NM 002569	PSMD7	NM 002811	SAP18	NM 005870
KIAA0255	NM 014742	LOC51631	NM_016019	MGC14798	NM 080650 NM 033412	MTR MTRE1	NM_000254 NM_004294	PACE4	NM 002570 NM 000437	PSMD8 PSME3	NM 002812 NM 005789	SART3 SAS10	NM_014708 NM_020368
KIAA0258 KIAA0274	NM 014785 NM 014845	LOC51633	NM 016023 NM 016057	MGC14836 MGC15677	NM 032878	MTRF1 mtTFB	NM 016020	PALREP1	NM 015640	PT0009	NM 016146	ISBP2	NM 024077
KIAA0317	NM 014821	LOC51651	NM 016077	IMGC16169	NM 033115	MUT	NM 000255	PANX2	NM 052839	PTD012	NM 014039	SCDGF-B	NM 025208
KIAA0372	NM 014639	LOC51657 LOC51691	NM 016086 NM 016200	MGC18386 MGC16733	NM_080668 NM_033547	MUTYH	NM_012222 NM_005962	PAPA-1 PARV8	NM 031288 NM 013327	PTD013 PTD015	NM_015952 NM 014040	SCML1 SCYE1	NM 005746 NM 004757
KIAA0391 KIAA0416	NM 014672 NM 015564	LOC54516	NM 010200	MGC17347	NM_138333	MYCBP	NM 012333	PAWR	NM 002583	PTK7	NM 002821	SDCCAG10	NM_005889
KIAA0419	NM 014711	LOC54543	NM 019059	MGC19595	NM_033415	MYL6	NM 079424	PAX1	NM 006192	PTPN13	NM_006264 NM_007062	SDCCAG28	NM_006645 NM_006923
KIAA0426	NM 014724 NM 015216	LOC55815 LOC55954	NM 018430 NM 019103	MGC20486	NM 052844 NM 032360	NAG NAGK	NM 015909 NM 017567	pono	NM 020357 NM 015889	PWP1 R3HDM	NM 00/062 NM 015361	SDF2 SDFR1	NM 006923
KIAA0433 KIAA0438	NM 014819	LOC56851	NM 020154	MGC2404 MGC2408 MGC24447	NM 032331	NAKAP95	NM 014371	PCOAP PCYT1A	NM 005017	RA410	NM 016106	SDHC	NM 003001
KIAA0537	NM .014840	LQC56902	NM 020143	MGC24447	NM .138288	NAPA	NM_003827	IPDCD10	NM_007217	RAB11A RAB18	NM 004663	SEC10L1	NM 006544 NM 004892
KIAA0547 KIAA0670	NM 014793 NM 014977	LOC56993 LOC57019	NM 020243 NM 020313	MGC2474 MGC2477	NM 023931 NM 024099	NBP NBR2	NM 025233 NM 005821	PDE4DIP PDE6D	NM 014644 NM 002601	RARIB	NM 021252 NM 030981	SEC22L1 SEC3	NM 018261
KIAAU882	NM_014852	LOC57107	NM 020381	MGC2488 MGC2508	NM_024039	INCBP1	NM 002486	PDEBA	NM_002606	RAB2	NM_002865	SEC61B	NM_006808
KIAA0710	NM_014871	LOC57109	NM 020385	MGC2508	NM_024327	NCBP2	NM 007362	PEAS	NM 057161 NM 012392	RAB30 RAB6KIFL	NM_014488 NM_005733	SEC8 SEDLP	NM_021807 NM_015890
KIAA0766 . KIAA0795	NM 014805 NM 025010	LOC57147 LOC63929	NM 020423 NM 022098	MGC2560 MGC2650	NM_031452 NM_024108	NCOA4 NDUFA1	NM_005437 NM_004541	PEF PEMT	NM 012392 NM 007169	RABBRIFL RAB7	NM_004637	SEL1L	NM 005065
KIAA0795	NM 014813	LOC81034	NM 030780	MGC2655	NM 024339	NDUFA3	NM 004542	PET112L	NM 004564	RABAC1	NM 006423	SENP1	NM 014554
KIAA0872	NM 014940	LOC81558 LOC89953	NM 030802	MGC2655 MGC2747 MGC2840 MGC3121	NM 024104	NDUFA4	NM 002489	PEX11B	NM 003846	Rabip4R	NM 017987	SERPINA4	NM 006215
KIAA0907 KIAA0950	NM 014949 NM 012306	LOC89953 LOC90346	NM 138343 NM 138351	MGC2840	NM 024079 NM 024031	NDUFA5 NDUFA6	NM_005000 NM_002490	PEX12 PEX13	NM_000286 NM_002618	RAD51 RAGA	NM 133487 NM 006570	SERPINES SERPINES	NM 006919 NM 002640
KIAA0971	NM 014929	LOC90678	NM 138361	MGC3123 MGC3133	NM 024107	NDUFA7	NM 005001	PEX16	NM 057174	RAI2	NM 021785	SERPINII	NM 005025
KIAA1012	NM 014939	LOC90701	NM_033280	MGC3133	NM_031287	NDUFB3	NM_002491	JPEX6	NM_000287	RAMP RANBP8	NM_016448 NM_006390	SES2 SETDB1	NM_031459 NM_012432
KIAA1017 KIAA1041	NM 007216 NM 014947	LOC90799 LOC92106	NM 138363 NM 138381	MGC3180 MGC3222	NM 024041 NM 024334	NDUFB5 NDUFS1	NM 002492 NM 005006	PFDN5 PHACS	NM 002624 NM 032592	RANGAPI	NM_002883	SF3A3	NM_006802
KIAA1068	NM 015332	LRP5	NM_002335	MGC3248	NM_032486	NDUFS3	NM 004551	PHB	NM 002634	DADS	NM_018975	SE3B1	NM 012433
KIAA1100	NM 014901	ILRRN1	NM 002319	MGC4054 MGC4093	NM 024341	NDUFS4 NDUFV1	NM 002495 NM 007103	PHKB	NM 000293	RARG-1	NM 016167 NM 007182	SF3B2	NM 006842 NM 005850
KIAA1608 KIAA1775	NM_024820 NM_033100	LSM3 LSM4	NM 014463 NM 012321	IMCC4161	NM 030578 NM 024303	NEDD8	NM_006156	PIGN PIGPC1	NM 012327 NM 022121	RARG-1 RASSF1 RBAK	NM_021163	SF3B2 SF3B4 SFRS1	NM_006924
KIF3B	NM_004798	LSM5	NM_012322	MGC4189 MGC4251	NM 032308 NM 032376	NEK7 NFATC2	NM 133494	PIGPC1	NM 022121	IRBBP4	NM 005610	ISFRS11	NM_004768
KIF9	NM_022342	LTA4H	NM_000895	MGC4251		NFATC2	NM 012340 NM 003204	PIGPC1	NIM_022121 NIM_002847	RBL1	NM_002895 NM_005611	SFRS2 SFRS5	NM_003016 NM_006926
KLRF1 KNSL7	NM 016523 NM 020242	LYPLA2	NM 007260 NM 020347	MGC4308 MGC4608	NM 032359 NM 024516	NFE2L1 NFE2L3	NM 004289	PINKI	NM_032409	RBM15	NM_022788	SFRS8	NM 004592
KPTN .	NM 007059	LZTR1	NM 006767	MGC4767	NM 032314	NFKBIB	NM 002503	PIP5K1A	NNL 003657	RBM6	NM_005777	SGCE	NM_003919
KRT10	NM 000421	M17S2 M6A	NM 031858	MGC4771 MGC5302	NM 032668 NM 024089	NFKBIB NFKBIB	NM 002503 NM 002503	PIST PL6	NM 020399 NM 007024	RBM7 RDBP	NM 016090 NM 002904	SGT1 SH3BGRL2	NM 006704 NM 031469
LAPTM4A LCMT	NM 014713 NM 018015	M9	NM 019852 NM 013234	IMGC5347	NM_024083	NFKBIB	NM 002503	PLA2G2D	NM, 012400	RDH5	NM 002905	SHH	NM_000193
ILCP	NM_014315	M96	NM 007358	MGC5378	NM 032632	NFKBIL1 NFYA	NM_005007	PLA2G4B	NM 005090	REA	NM 007273	SIP	NM_014412 NM_030593
LDB1 LEPR	NM_003893	MAGOH	NM 002370 NM 002757	MGC5469 MGC5509	NM_032361 NM_024093	INFYA NIMP	NM_002505 NM_032730	PLAA PLON	NM 004253 NM 012388	RECOL RECOLS	NM 002907 NM 004259	SIRT2 SKB1	NM_030593 NM_006109
LGMN	NM_002303 NM_005606	MAP2K5 MAP3K11	NM 002/07	MGC5521	NM 024061	NKTR	NM 005385	PME-1	NM 016147	REGIA	NM 002909	SKIDT	NM 004869
LHX6	NM_014368	IMAP3K3	NM_002401	IMGC9084	NM_033418	NLN	NM_020726	PMS2	NM 000535	REG18	NM_006507	SKD3 SKI	NM_030813
LIM LIMS1	NM 006457 NM 004987	MAP3K7 MAPK7	NM_003188 NM_002749	MGC9740 MGST3	NM 080658 NM 004528	NMA NME1	NM_012342 NM_000269	PMSZL8 PNAS-131	NIM_005394 NIM_031446	RENT1	NM 002911 NM 002915	SKP2	NM 003036 NM 032637
LIN-7-C	NM 018362	MAPK8IP2	NM 012324	MID1	NM 000381	NME7	NM 013330	PNKP	NM 007254	IRPPL2	NM 006605	ISLC16A6	NM 004694
LISCH7	NM 015925	MAPK8IP3	NM 015133	MKRN1	NM 013446	NOH61	NM 019082	PNMA1	NM 006029 NM 005397	RNF40 RNF5	NM 014771 NM 006913	SLC25A19 SLC2AB	NM 021734 NM 014580
LIV-1 LOC113251	NM 012319 NM 052879	MAT2A MBD4	NM 005911 NM 003925	MLH1 MLN	NM_000249 NM_002418	NOLG1	NM 018983 NM 004741	PODXL POLE3	NM_005397	RNGTT	NM 003800	SLC31A1	NM 001859
LOC113444	NA1_138428	MCEE	NM_032601	MN1	NM 002430	NOLC1 NOSIP	NM_015953	POLL	NM 013274	RNPC2	NM_004902	SLC35A1 SLC35A2	NM_006416
LOC113622	NML 138430	MCFP	NM 018843	MOCS3	NM_014484	NOT56L	NM 005787 NM 002518	POLRZA POLRZK	NM 000937 NM 005034	RPA2 RPA40	NM 002946 NM 004875	SLC35A2 SLC7A9	NM_005660 NM_014270
LOC115827 LOC129401	NM 138453 NM 138285	MCM3	NM 002388 NM 005586	MPPE1 MRE11A	NM 023075 NM 005590	NPC1	NM 000271	POI R3F	NM 008466	RPI 10	NM 032241	SMAC	NM 019887
LOC151534	NM 138482	MDH1	NM_005917	MRPL11	NM_016050	NPAS2 NPC1 NPR2L	NM_006545	POLRMT POP5	NM_005035	RPL12	NN: 000976	SMAP	NM 006696
LOC153768	NM_138492	MDH2	NM_005918	MRPL18 MRPL19	NM 014161 NM 014763	NR1D1 INR1H3	NM 021724 NM 005693	POP5 POR1	NM 015918 NM 012402	RPL18 RPL18A	NM 000979 NM 000980	SMARCA5 SMARCE1	NM 003601 NM 003079
LOC51002 LOC51004	NM 016058 NM 015940	MDS025 MDS032	NM 021825 NM 018467	MRPL2	NM_015950	NRAS	NM 002524	POUSE1	NM 012402	RPL26	NM: 000987	SMC1L1	NM 008306
11.0051016	NM 016049	MDS033	NM 018468	MRPL22	NM 014180	NRAS NRCAM	NM 005010	PPIL1	NM 016059	DOI 27	NM 000988	SMC2L1	NM 006444
LOC51019	NM_016053	MEF2B	NM, 005919	MRPL24 MRPL27	NM 024540	NRD1 NS1-BP	NM_002525 NM_006469	PPIL2 PPP1CA	NM, 014337 NM, 002708	RPL31	NM 000993 NM 000994	SMC4L1 SMCX	NM_005496 NM_004187
LOC51026 LOC51027	NM 016072 NM 016074	MEN1 MEP60	NM_130800 NM_024102	MRPL3	NM 016504 NM 007208	NSEP1	NM 004559	PPP1R10	NM 002714	RPL31 RPL32 RPL37	NM 000997	SMPD2	NM 003080
LOC51060	NM 015913	METAP2	NM 006838	MRPL3 MRPL30	NM 016503		NM 008178	PPP1R11	NM 021959	IRPL37A	NM 000938	SNRPA	NM 004596
LOC51067	NM 015936	METL	NM 018396	MRPL32	NM 031903	NT5C3	NM 016489	IPPP1R12B	NM_032105	RPL41	NM 021104	SNRPD2	NM_004597

(31/41)

Fig. 19C

Cone No	mo. Dolloo		
SNRPD3	me RelSeq. 7	TXNL	ReiSeg
SNRPF	NM 003095	U2AF1	NM_0047 NM_0067
SNW1	NM_012245	U5-100K	NM_0048
SNX1	NM_003099	U5-116KD	NM_0042
SNX11 SNX17	NM 013323	UBE2M	NM nnac
SNX5	NM_014748 NM_014426	UBE2N UBE2V1	NM_003
SON	NM 003103	UBOLNI	NM-0224 NM 053(
ISOX17	NM 022454	UCH37	NM 0159
SOX9	NM 000346	HIGTER 1	NM_0058
SP2 SPATA2	NM_003103 NM_022454 NM_000346 NM_138406	UMPS UNRIP UPF3B UQCRC2	NM_0003
SPC18	NM 006038 NM 014300 NM 014946	UNKIP	NM_0071
SPG4	NM_014946	UQCRC2	NM_0806 NM_0033
SPK	NM_004819 NM_021199	IUQURH	NM_0060
SQRDL	NM 021199	JURKL1	NM 0178
SRP19 SRP54	NM 003135	JUROD	NM, 000:
SRP68	NM 014230	UROS USF1	NM 0003 NM ,0071
SSA2	NM 003135 NM 003135 NM 003136 NM 014230 NM 004600 NM 003143 NM 003751	USP5	NM_0034
SSBP1	NM_003143	li ivr	
SSFA2 SSR2	NM_005751	VIRL1	, NM 0206
SSR3	NM_003145 NM_007107	VEGFC VMP1	NM, 0054
ISSSCA1	NM_006396	VPS33A	NM_0309 NM_0229
SSTK	NM 032037	WARS2	. NM D158
SSTR4	NM_001052	WBP4	NM 0071 NM 0529
ST13 STAF42	NM_003932 NM_053053	WDF2	NM 0529
STAF65/a	am: NM 014860	WDR12 WDR13	NM_0182
STAM	ami NM 014860 NM 003473	WHIP	NM 0178 NM 0201
ISTAM2	NM_005843	XPC	NM_0046
STCH STK19	NM 006948	XPO1	NM 0046 NM 0034 NM 0228
STK24	NM 004197 NM 003576	XRCC4 XRCC5	NM_0228
STOML1	NM_004809	XRN2	NW_UZ11
STOML2	NM 013442 NM 016930	YR-29	NM_0211 NM_0122 NM_0148
STX18	NM 016930	YWHAB	NM 0034
SUCLG1	NM_003849	ZBRK1 ZF5128	NM_0216
SULT1A3 SULT1C1	NM 003166 NM 001056	17FP37	NM 0145 NM 0034
SUPT5H	NM 003169 NM 003171 NM 015698	ZFP93	NM 0042
SUPV3L1	NM 003171	175295	NM 0145
T54 TADA3L	NM 015698	ZNF133 ZNF134	NM_0034
TAF11	NM_133480 NM: 005643	ZNF134 ZNF142	NM_0034
TAF6	NM 005641	2NF142	NM005(
TARBP2	NM_004178	ZNF146 ZNF155	NM 0071 NM 0034
TAX1BP1	NM 006024	ZNF175	NM, 0071
TCERG1	NM :006706	ZNF183	NM 0065
TČF2	NM 000045	ZNF 109	NM_0034 NM_0062
TCF2	NM 005643 NM 005641 NM 006178 NM 006024 NM 006706 NM 000545 NM 000458 NM 000458	ZNF155 ZNF175 ZNF183 ZNF189 ZNF192 ZNF193 ZNF207 ZNF214	NM_0062
TCF2	NM 000458	ZNF207	NM 0034
TCOF1	NM 000356 NM 030752	ZNF214	NM 0132
TDRKH	NM 006862	ZNF214 ZNF221 ZNF222	NM 0132 NM 0133 NM 0133
TEGT	NM_003217 NM_007170	ZNF224 ZNF225 ZNF226	NM 0135
TESK2	NM_007170	ZNF225	NM 0133 NM 0133
TFAP4	NM 003223	ZNF226	
TG737	NM 013342 NM 006531	ZNF230 ZNF264	NM_0062
TIMM23	NM 006327	ZNF265	NM 006: NM 0032 NM 0052 NM 0215 NM 0526 NM 0706
TIMM9	NM 012460	ZNF265 ZNF277	NM 0215
TIP39	NM .D12143	ZNF300	NM 0528
TLN1	NM_005078 NM_006289	ZNF302 ZNF304	NM .0184
TM9SF1	NM 008405	ZNF317	NM D20C
TM9SF2	NM_004800	ZNF338	NM 0206 NM 0206 NM 0220
TMOD2	NM .014548	プレリアウムア	NM, 0034
TMP21 TMSB10	NM 006827 NM 021103	ZNF361 ZNF361	NM 0185 NM 0144
TNFAIP1	NM_021137	ZNF-U89274 ZNRD1	NM 0145 NM 0145
TOMM70A	NM 014820	1	
ITOR2A ITPT	NM_130459	· ·	
TRA1	NM_014317 NM_003299	l	
TRAF5	NM 004619	1	
TRAP150	NM 005119	1	
TRFP TRIM4	NM 004275 NM 033017	[
TRIP	NM 033017 NM 005879	1	
TRIP11	NM_004239	ł	
TRN-SR	NM 012470	1	
TRPS1	NM 014112		
TSG101 TSLRP	NM 006292 NM 012472	l .	
TSN TSNAX	NM 004622		
	NM_005999		
TUBB4	380600, MM		

(32/41)

Fig. 20A

	_	٠. ـ	-			_			-					ىد			٠		÷ '		_	_	_ <u>-</u> -				-	-	u." t	-					_						_ ^			
	110000	NM 031858	NM 018148	NM_001880	NM_013324	NM_002083	NM_016186	NM_00356	C69900 WN	NW_CUD835	NM_U011639	500500 MN	NM_029564	UM_012200	NW O 16230	NM OUGH	NM 005952	NM 138280	NM_030579	NM_005956	NM 004600	NM_019748	NW 024708	NM_002218	NM 002525	NA CONTROL	NM 000773	NM_003216	NM_002079	NM 001181	NM_000166	NM_031491	NM_005799	NM_002450	NM_00/535	NM_001467	NM_000567	NM 001/56	-	NM_002153	NM 001070		-	
		FE651.2 M175?	æ				₽	2,5	HAMI	SLC1/A2	APCS	N-Keib	FL11836	HOLZ	WORIZ	COC3 1030 SEPPINE	MI1X	CLYBL	CYB5-M	MTHFD1	SSA2	SNX17	FL.122551	ITH4	NRD1	140c	CYP2E	重	GOT1	ASGR2	GJ81	RBP5 CTPAIT11400	INADL	MT1L	M35 FF 191979	Gepti	CRP	SERPINAS	DKFZP56400463	HSD17B2	0.012813			
HNE4&/ HNE1a	ı	NG_000988		_	_	_	NM_018295	NM_000029	NM 001643	NM_015/14	NM_007187	NM_004433	NM_000437	NM_001049	_	_	NM 024322	NM 016632	NM_015913	NM_025147	NM_001671	NM_005815	NM_001623	NM 001338	NM_013952	NM_014947	NM_032029	NM_000629	AF509467	06100 WN	NM_016448	NM_000295	NM_000143	NM_004617	NM_003627	NM_001508	NM_002108	NM_012338	NM 001914	NM_020188	NM_012203 NM_020919	NM_003800	NM_022820 NM_003064	NM 005525
HNEAR / HNEAR	ΣINL ΙΧ	RPL37AP1	FL.110278	AQP3	SGK2	XOX HOX	FL341000	AGT	APOA2	G082	WBP4	ELF3	PAFAHZ	SSTR	Pist	7 8	_	_	_	FLJ13448	ASGR1	X:	ZNEZG				FKSG87	FNAR	HNF4a7	IGERP!	RAMP	SERPINA1	是	TM4SF4	NAPA			Z-1-2			ALS2		CYP3A43	
	34(4) THE T	NM_004757	NM 019101	NM_032367	NM_031453	NM_016413	NM_004139	NM_022492	NM_020143	NM_016391	NM_003822	NM_024941	NM_000392	NM_000043	NM_001073	NM_000/15	NIM DOMESTO	NM OUTOB3	NM 000672	NM_017657	NM 022488	NM_016264	NM_014045	NM_012095	NM_001633	NW_005065	NM_U16396 NM_031423	NM_000062	NM_000668	NM 017545	NM_133632	NM_001622	NM 032852	NM_031298	NM_000574	NM 014033	NM_021969	NM_000187	NM 000158	NM 001354	NM_000638 NM_014783	NM_018126	NM_024662	NM 002864
		SCYE1	234	MGC15435	MGC11034	CPB2	de la	FLJ12788	LOC56902	HSPC111	NR5A2	FLJ13611	ABCC2	INFRSF6	UGT2B11	CABPA	GIFZEI	ניים	ADH6	FLJ20080	APG3	GIOT-2	MRPS18B	AP3M1	AMBP	SEL1L	HSPC129	SERPING1	ADH18	MRPLIS	SYN3	AHSG	AUTL	RAB33B	DAF	DKFZP586A0522	NR0B2	HGD	GBF1	AKR 1C2	VTN	FLJ10525	FLJ10774	PZP
			NIM D24550	AF509467	NM 016565	NM_014548	NM_006608	NM_004755	NM_004617	NM_002090	NM_001076	NM_022006	NM_032174	NM_024085	NM_018089	NM_022820	NM_001105	NM 007273	NM 031858	NM 000606	NM_004741	NM_006895	NM 001639	NM_019230	NM_014813	NM_002537	NM_001710 NM_000042	NM 022002	NM_000353	NM_001829	NM_000166	NM 012257	NM 005763	NM_002786	NM_000691	NM_018304	NM_005025	NM_000133	NM 001968		NM_015913 NM_024573	NM_018087	NG_001012	NM 003805
	J. 3	URKL1	FLJ2067	HNF4a7	LOC51287	TMOD2	PHTF1	RPS6KA5	TM4SF4	GR03	UGT2815	FXYD7	FLJ12770	FLJ22169	FLJ10415	CYP3A43	ACVR1	פועא	M1757	500	NOLCI	HAIM	APCS	FACT P140	KIAA0806	OA22	7. 2004	NR-12	TAT	CLCN3	6.81	HBP1	AASS	PSMA1	ALDHBAI	PIK4C8 FLJ11029	SERPINI	6.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GSS	LOC51060	FLJ10407	TAF2GL	CRADD
PINE.	HNF4a-	NM_130786	NM_001/39	NM 030802	NM 022761	NM 020368	NM_006544	NM_025192	NM 001080	NM_000151	NM_002558	NM_001798	NM_000392	NM_000043	NM_001073	NM_017909	NM_022736	NW UUUUUS	NN DODGE	NM 017659	NM 006147	NM_032120	NM_001633	NM_032882	NM_000668	NM_030952	NM_006292	NM 000481	NM_002040	NM_005800	NM_014033	NM_005828	NM_004766	NM_016023	NM_003742	NM_001818	NM 024743	NM_014940	NN_000/86	NM_007114	NM_032308	NM_015638	NM 024773	NM_016281 NM_006999
			CIS	1 OCR1558	FI.123499	SAS 10	SEC:101.1	FLJ23071	ALDH5A1	GBPC	PABPC1	CDK2	ABCC2_	TNFRSF6	UGT2B11	FLJ20627	FL/14153	25	DON'S	FI 120084	IRF6	DKFZP56400523	AMBP	CASPZ	ADH18	DKF ZP434J037	TSG101	AMT	GABPA	D13S106E	DKFZP586A0522	HNRPR	COPBZ	LOC51633	ABCB11	AKR1C4	FL/21934	KIAA0872	CYP51	TMF1	MGC4189	C20orf188	FLJ13798	J₹ POI:s
Regi	Reg2									,		-	-					1.1	:	٠, -	\$	ŞĻŞ	91(Ņί	ПC	L	ا ا	υ	n	96	11;			Ÿ	• :					5 j		-:		

Fig. 20B

Feedforward Loop

Fig. 21A

Reg1	HNI	- 6	F	INF6
Reg2	HNF	4α	н	NFJα
Reg3.	HNF	1α		
	C1S	NM_001734	F11	NM_019559
. 5. 1	ABCC2	NM_000392	C1S	NM_001734
	TNFRSF6	NM_000043	FLJ10650	NM_018168
	UGT2B11	NM_001073	ABCC2	NM_000392
	C2	NM_000063	TNFRSF6	NM_000043
	AMBP	NM_001633	UGT2B11	NM_001073
	SERPING1	NM_000062	UGT1A1	NM_000463
	ADH1B	NM_000668	C2	NM_000063
	PCK1	NM_002591	ADH1A	NM_000667
	DKFZP586A0522	NM_014033	AMBP	NM_001633
min in	VTN	NM_000638	SERPING1	NM_000062
တ	AKR1C4	NM_001818	ADH1B	NM_000668
moters	FLJ21934	NM_024743	HABP2	NM_004132
)te	KIAA0872	NM_014940	PCK1	NM_002591
20	RPL37AP1	NG_000988	DKFZP586A	NM_014033
Ü	PLGL	NM_002665	VTN	NM_000638
<u>r</u> 0	C8B	NM_000066	AKR1C4	NM_001818
۵	LOC51060	NM_015913	FLJ21934	NM_024743
nd	HNF4a7	AF509467	KIAA0872	NM_014940
\sqsubseteq	TM4SF4	NM_004617	RPL37AP1	NG_000988
שכ	UGT2B15	NM_001076	PLGL	NM_002665
BO	CYP3A43	NM_022820	C8B	NM_000066
	M17S2	NM_031858	LOC51060	NM_015913
	HNMT	NM_006895	HNF4a7	AF509467
	APCS	NM_001639	TM4SF4	NM_004617
	WDR12	NM_018256	UGT2B15	NM_001076
	APOH	NM_000042	CYP3A43	NM_022820
	GJB1	NM_000166	M17S2	NM_031858
	CRP	NM_000567	HNMT	NM_006895
			APCS	NM_001639
İ			WDR12	NM_018256
		1	APOH	NM_000042
ŀ			GJB1	NM_000166
ł			CRP	NM 000567

Fig. 21B

Multi-input

Fig. 22A

Reg1	· .	• H	INF6		HNF1α	/ HNF4α
Reg2		HI	NF4α		HNF4a	/HNF1α
1.35						
25 1.86 77 4	BCKDHA	NM_000709	FLJ13798	Alla 004770		NN 004754
	FLJ23263	NM_025115	GSS	NM_024773 NM_000178	FLJ13273	NM_024751
	FLJ11271	NM_018373	HBOA	_	MGC10500	NM_031477
	HMG2	NM_002129	1	NM_007067	SDCCAG10	NM_005869
1 :	LOC81558	NM_030802	LOC51060	NM_015913	FBXO8	NM_012180
	SAS10	NM_030802	FLJ13220	NM_021927	ZNF300	NM_052860
	SEC10L1	NM 006544	FLJ12910	NM_024573	H4F2	NM_003548
	RRP46	NM_020158	FLJ10407	NM_018087	FLJ11301	NM_018385
		_	FLJ10342	NM_018064	SEL1L	NM_005065
1	SNRPD2 MDH1	NM_004597 NM_005917	FLJ20671 LOC51287	NM_017924	ZNF155	NM_003445
	ORC1L	NM_004153	GLA	NM_016565	C6orf11	NM_005452
	FLJ20627	NM 017909	RPS6KA5	NM_000169	ARHGAP11A	NM_014783
	GTF2E1	NM_005513	FLJ20772	NM_004755	UROD	NM_000374
7.1	TOMM70A	NM_014820	FLJ12770	NM_017956	FLJ20731	NM_017946
	PAPA-1	NM_031288	FLJ22169	NM_032174	RAB6KIFL	NM_005733
က	HASJ4442	NM_017528	FLJ10415	NM_024085	TMP21	NM_006827
	FLJ20084	NM_017659	ZNF317	NM_018089	MGC15677 WBP4	NM_032878
Promoters	PEX6	NM_000287	SNW1	NM_020933	PAFAH2	NM_007187
<u> </u>	FLJ11301	NM_018385	REA	NM_012245 NM_007273	EIF3S6	NM_000437
0	EED	NM_003797	C2F	NM_006331	PSMA5	NM_001568 NM_002790
ן ה	MGC19595	NM_033415	NOLC1	NM_004741	TMOD2	NM_014548
=	CIR	NM_004882	CLONE24922	NM_015679	GLA	NM_000169
	CLLD8	NM_031915	CCT8	NM_006585	GNB2L1	NM_006098
Bound	ABCB8	NM_007188	PSMB1	NM_002793	FNTB	NM_002028
ြက္က	SPG4	NM_014946	WDR12	NM_018256	PEX13	NM_002618
	GABPA	NM_002040	KIAA0806	NM 014813	FE65L2	NM_006051
	OGFR	NM_007346	DKFZp761J139	NM_032280	UQCRC2	NM_003366
	COPB2	NM_004766	SART3		FLJ14855	NM_033210
, .	AF15Q14	NM_020380	COX7A2L	NM_004718	HHLA2	NM_007072
- 4	MTERF	NM_006980	FLJ20422	NM_017814	CYB5-M	NM_030579
	LOC51633	NM_016023	COPS7A	NM_016319	CDC45L	NM_003504
	FLJ14486	NM_032792	FLJ20643	NM_017916	рспр	NM_020357
	FLJ21934	NM_024743	HBP1	- 1	FLJ20643	NM_017916
	KIAA0872	NM_014940	PSMA1		FLJ21272	NM_025032
	TEGT	NM_003217	FLJ21272	NM_025032		
* y **	MGC4189	NM_032308	FLJ11029	NM_018304		
· . · · · ·	SERPINB8	NM_002640	ARL1	NM_001177		
	MGST3	NM_004528	SERPINI1	NM_005025		
	HSP105B	NM_006644	NUDT2	NM_001161		1
	C20orf188	NM_015638				

Table S11. The feed forward regulatory motifs in pancreatic islets . The regulatory modules here were derived as described in Supporting Online Material. Feed forwards only involving HNF1 α and HNF4 α are also multi-input motifs, as they bind each other's promoters in a multicomponent loop.

Fig. 22B

Feedforward Loop

Fig. 23A

HNF1a HNF4a HNF4a HNF4a HNF4a HNF4a HNF4a HNF4a HNF4a HNF7a NM_018385 FLJ20643 NM_017916 FLJ21272 NM_025032
HNF10 HNM_018168 NM_020147 NM_020147 NM_018385 NM_018385 NM_018385 NM_01969 NM_017691 NM_017691 NM_000042 NM_017916 NM_017916
FLJ10650 LOC56906 FLJ11301 NR0B2 KRTAP1.1 HNF4a7 FLJ20156 GLA APOH FLJ20156
Reg 2 Reg 2 Seg 2

Fig. 23B

Multi-input

Fig. 24

		He	Hepatocytes	ytes			Pancr	Pancreatic Islets	Islets
·		THINT			(a)		HINFA		HNF1¢
			1	\			→		->
	HNF1A	SP2	NR0B2	TEF	HNF4A	HNF1A	SP2	BLZF1	HNF4A
	HNF1B	NR112	NR5A2 RAMP	RAMP	NR1D1	HNF1B	CREBL2 MEF2B	MEF2B	ELF3
	LISCH7	SREBF2 CREBL2 ATF2	CREBL2	ATF2		LISCH7	NR1D1	MTF1	PAX8
	RXRB	BTF3	ELF3	M96		RXRB	LZTR1	CRSP3	NR5A2
Transcription	NR1H3	HIF1A	PAX8	٠		NR1H3	E2F4	HCNGP	NROB2
Factors	DED	NR3C2			ī	DED	E2F6 -	NR1H3	NR2C2
	GABPA	TCF19				GABPA	M96	POUSF1	
	GABPB2					GABPB2	TFAP4	RAMP	
	ATF4					ATF4	ATF6	USF1	•
	ATF7	-				ATF7	LZTFL1		- ·
	TRAP150 CNOT2	CN0T2				TRAP150 TRIP11	TRIP11	NCOA4	
Caption Control	TADA3L	CRSP9				FACTP140 CIR	CIR	SMAP	
COACHVAIOLS				,		SMARCA5 CNOT3	CN0T3		-
						COASTER CNOT4	CNOT4		
Mitochondrial	mtTFB	TFAM				mtTFB	mtERF		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.