The Master Theorem

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the non-negative integers by the recurrence:

$$T(n) = aT(n/b) + f(n)$$

where we interpret n/b to be either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) can be bounded asymptotically as follows:

- If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2 If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Note: There are other forms of the Master Theorem

Matrix Multiplication

Given two *n*-by-*n* matrices, A and B, compute C = AB

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$C_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

Brute Force

 $\Theta(n^3)$ arithmetic operations

Fundamental Question

Can we improve upon brute force?

Divide and Conquer: First Attempt

- Divide: partition A and B into $\frac{1}{2}n$ by $\frac{1}{2}n$ blocks
- Conquer: multiply $8 \frac{1}{2}n$ by $\frac{1}{2}n$ recursively
- Combine: add appropriate products using 4 matrix additions

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$\begin{bmatrix} C_{11} & = (A_{11} \times B_{11}) + (A_{12} \times B_{21}) \\ C_{12} & = (A_{11} \times B_{12}) + (A_{12} \times B_{22}) \\ \end{bmatrix}$$

$$C_{11} = (A_{11} \times B_{11}) + (A_{12} \times B_{21})$$

$$C_{12} = (A_{11} \times B_{12}) + (A_{12} \times B_{22})$$

$$C_{21} = (A_{21} \times B_{11}) + (A_{22} \times B_{21})$$

$$C_{22} = (A_{21} \times B_{12}) + (A_{22} \times B_{22})$$

Divide and Conquer: First Attempt

- Divide: partition A and B into $\frac{1}{2}n$ by $\frac{1}{2}n$ blocks
- Conquer: multiply $8 \frac{1}{2}n$ by $\frac{1}{2}n$ recursively
- Combine: add appropriate products using 4 matrix additions

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = (A_{11} \times B_{11}) + (A_{12} \times B_{21}) + (A_{12} \times B_{22})$$

$$C_{12} = (A_{11} \times B_{12}) + (A_{12} \times B_{22})$$

$$C_{11} = (A_{11} \times B_{11}) + (A_{12} \times B_{21})$$

$$C_{12} = (A_{11} \times B_{12}) + (A_{12} \times B_{22})$$

$$C_{21} = (A_{21} \times B_{11}) + (A_{22} \times B_{21})$$

$$C_{22} = (A_{21} \times B_{12}) + (A_{22} \times B_{22})$$

$$T(n) = \underbrace{8T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, form submatrices}} \Rightarrow T(n) = \Theta(n^3)$$

Divide and Conquer: Strassen (1969)

Key Idea

Multiply 2-by-2 block matrices with only 7 multiplications (7 multiplications and 18 additions/subtractions)

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_5 + P_1 - P_3 - P_7$$

$$P_{1} = A_{11} \times (B_{12} - B_{22})$$

$$P_{2} = (A_{11} + A_{12}) \times B_{22}$$

$$P_{3} = (A_{21} + A_{22}) \times B_{11}$$

$$P_{4} = A_{22} \times (B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22}) \times (B_{11} + B_{22})$$

$$P_{6} = (A_{12} - A_{22}) \times (B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21}) \times (B_{11} + B_{12})$$

Divide and Conquer: Strassen (1969)

Key Idea

Multiply 2-by-2 block matrices with only 7 multiplications (7 multiplications and 18 additions/subtractions)

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_5 + P_1 - P_3 - P_7$$

$$P_{1} = A_{11} \times (B_{12} - B_{22})$$

$$P_{2} = (A_{11} + A_{12}) \times B_{22}$$

$$P_{3} = (A_{21} + A_{22}) \times B_{11}$$

$$P_{4} = A_{22} \times (B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22}) \times (B_{11} + B_{22})$$

$$P_{6} = (A_{12} - A_{22}) \times (B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21}) \times (B_{11} + B_{12})$$

$$T(n) = \underbrace{7T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, subtract}} \implies T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})$$

```
Px := sort points by x //to split left/right
Py := sort points by y //to get Sy sorted by y
ClosestPair(Px,Py)
  if only 2 points, return their distance
  \delta_L := ClosestPair(left-half(Px,Py))
  \delta_R := ClosestPair(right-half(Px,Py))
  \delta := \min(\delta_L, \delta_R)
  Sy := points in Py within \delta of dividing line
  for i = 1 to |Sy|
    for j = i+1 to i+8
       \delta := \min(\delta, distance(Sy[i], Sy[j]))
  return δ
```

left/right-half(Px,Py):

Px' := left/right half of Px

Py' := go through every point and choose it or not based on comparing its x coordinate with the middle point of Px