Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/002398

International filing date: 17 February 2005 (17.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-040930

Filing date: 18 February 2004 (18.02.2004)

Date of receipt at the International Bureau: 14 April 2005 (14.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

18.02.2005

H OFFICE JAPAN PATENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2月18日 2004年

出 願

特願2004-040930

Application Number:

[JP2004-040930]

出 願 人 Applicant(s):

[ST. 10/C]:

東レ株式会社

2005年

3月31日

特許庁長官 Commissioner, Japan Patent Office 【書類名】 特許願 60F01840-A 【整理番号】 平成16年 2月18日 【提出日】 特許庁長官殿 【あて先】 B32B 27/36 【国際特許分類】 B29C 55/12 【発明者】 静岡県三島市4845番地 東レ株式会社三島工場内 【住所又は居所】 小林 淳 【氏名】 【発明者】 静岡県三島市4845番地 東レ株式会社三島工場内 【住所又は居所】 西垣 泰男 【氏名】 【特許出願人】 【識別番号】 000003159

【住所又は居所】

【氏名又は名称】 【代表者】 【電話番号】

【手数料の表示】

【予納台帳番号】 【納付金額】 【提出物件の目録】

> 【物件名】 【物件名】 【物件名】

【物件名】

東京都中央区日本橋室町2丁目2番1号 東レ株式会社

榊原 定征 077-533-8173

005186

21,000円 特許請求の範囲 1

明細書 1 図面 1 要約書 1

【書類名】特許請求の範囲

【請求項1】

熱処理を施したポリエステルフィルムの少なくとも片面の幅方向における空間周波数10 (1/mm)のRelative Power I^{10} TDが、 $-25\sim0$ dBであることを特徴とする二軸配向ポリエステルフィルム。

【請求項2】

熱処理を施したポリエステルフィルムの少なくとも片面の幅方向における空間周波数10 と200 (1/mm)のRelative Powerの強度差 I^{10-200} TD が5~20 dBであることを特徴とする請求項1に記載の二軸配向ポリエステルフィルム。

【請求項3】

ポリエステルがポリエチレンテレフタレートであることを特徴とする請求項1または2に 記載の二軸配向ポリエステルフィルム。

【請求項4】

リニア記録方式の磁気記録媒体用ベースフィルムとして用いられることを特徴とする請求項1~3のいずれか1項に記載の二軸配向ポリエステルフィルム。

【請求項5】

重層メタル塗布型デジタル記録方式の磁気記録媒体用ベースフィルムとして用いられることを特徴とする請求項1~4のいずれか1項に記載の二軸配向ポリエステルフィルム。

【書類名】明細書

【発明の名称】二軸配向ポリエステルフィルム

【技術分野】

[0001]

本発明は、磁気記録材料、電子材料、製版フィルム、昇華型リボン、包装材料に用いられるポリエステルフィルムに関する。詳しくは、高温保管や加熱処理後のフィルム表面の微小平面性が良好で、高密度磁気記録媒体、特にリニア記録方式である重層メタル塗布型のデジタル記録媒体用ベースフィルムとして用いたときに有用な二軸配向ポリエステルフィルムに関する。

【背景技術】

[0002]

近年、データストレージ用やデジタルビデオテープ用などの磁気記録媒体においては、高密度化、高容量化が進んでいる。一般にこのような磁気記録媒体に用いられる記録方式には図1に示すようなヘリカル記録方式と、図2に示すようなリニア記録方式がある。ヘリカル記録方式は2つのリールを持つカートリッジからテープを引き出して、高速回転する円筒型のヘッドをスキャンさせ、テープに対して斜めに読み書きを行うのに対し、リニア記録方式は1つのリールを持つカートリッジからテープをヘッドに誘導しテープに対して長手方向に一直線に読み書きを行う。リニア記録方式はヘリカル記録方式と比較して記録密度は低いが、テープのヘッドに対する巻き込みが緩やかであるためテープへのダメージが少なく、テープのデータストレージ用として高い信頼性を持つ。

[0003]

最近このようなリニア記録方式を採用するLTO(Linear Tape Open)やSDLT(Super Digit al Linear Tape)において1巻で100GB以上の高容量を有するものが開発されている。高容 量化のためには、一般に、1. トラック数増加 2. 記録波長の短波長化 3. テープ長 増大の3つの方法がある。まずトラック数を多くすると1トラックの幅が狭くなるためテ ープ幅方向の寸法安定性の制御が重要となる。また記録波長の短波長化した上で、十分な 電磁変換特性を実現するためには表面平滑性が求められる。さらに、磁気記録媒体のカー トリッジの大きさは基本的に変わらないので、1巻当たりのテープ長を長くするためには テープの薄膜化及びそれに伴う高強度化が必須である。これら3つの視点から、これまで テープ幅方向の温度膨張係数や湿度膨張係数の最適化(特許文献1、特許文献2及び特許 文献3参照)、添加粒子の小径化(特許文献1、2及び特許文献3参照)、延伸倍率アップ によるベースフィルムの高強度化(特許文献2及び特許文献3参照)さらには金属補強によ る高強度化(特許文献1参照)等数多くの検討がなされてきた。しかし、これらの技術を 用いても1巻で100GB以上の高容量を有するリニア記録方式の磁気記録媒体用としては十分 な電磁気変換特性が得られなかった。調査の結果、高温保管やフィルム加工時における熱 負荷後のフィルム表面の微小平面性が磁気記録媒体の特性に影響を与えていることが明ら かになった。

[0004]

一般にリニア記録方式においてはテープの巻き込みが緩やかで、ヘッドがテープを垂直方向に押す力が弱いために、ヘリカル記録方式の場合よりもスペーシングロスが発生しやすい。近年記録波長が 0.6μ mを下回るほど低波長化し、より一層の表面微細制御が求められているにもかかわらず、公知の技術では依然として温度膨張係数、湿度膨張係数、強度、結晶化度といったフィルム全体の平均値を表す物性で検討を続けている。これらの特性では、現在課題とするような微小なレベルでの平面性の制御はできない。

【特許文献1】特開2002-329312号公報(第2~3頁)

【特許文献 2】 W000-076749号公報 (第 4 ~ 1 1 頁)

【特許文献3】特開2003-67913号公報(第2~8頁)

【発明の開示】

【発明が解決しようとする課題】

[0005]

本発明の課題は、高温保管や熱負荷後のフィルム表面の微小平面性が良好で、特にリニア記録方式の高密度磁気記録媒体として用いた時に有用なポリエステルフィルムを提供することにある。

【課題を解決するための手段】

[0006]

前記した本発明の課題は、熱負荷時のフィルム厚み方向における熱収縮ムラを特定の範囲に抑え、熱処理後のポリエステルフィルムにおいて少なくとも片面の幅方向における空間周波数10 (1/mm) のRelative Power I^{10}_{TD} を $-25\sim0$ dBの範囲とすることにより達成できる。

【発明の効果】

[0007]

本発明により、熱負荷後におけるフィルム表面の微小平面性が良好なポリエステルフィルムが得られる。

【発明を実施するための最良の形態】

[0008]

本発明における熱処理を施したポリエステルフィルムは、少なくとも片面の幅方向における空間周波数10 (1/mm)のRelative Power I^{10}_{TD} が、 $-25\sim0$ dB、好ましくは $-20\sim-1$ dB、更に好ましくは $-15\sim-5$ dBである。Relative Powerは、1 n m²の表面うねりを0dBと表記するよう解析ソフト上基準化された値であり、値がプラス側に大きいほどフィルム表面の微小平面性が悪いことを示す。微小平面性を決定するフィルム表面のうねりは、大きく2種類に分けられ、 $100\,\mu$ mレベルの長波長のものと $10\,\mu$ mレベルの短波長のものが存在する。幅方向に存在する $100\,\mu$ mレベルの長波長のうねりの強度 I^{10}_{TD} が十5dBよりも大きいと長波長のうねりが強くなり過ぎ、スペーシングロスにより電磁変換特性が悪化しやすく好ましくない。 I^{10}_{TD} が小さいほど長波長のうねりが少なくなり好ましいが、熱負荷による微小なうねりの発生は避けられず実質的には-25dB以上の値である。

[0009]

また、空間周波数10(1/mm)の強度により表される $100\,\mu\,\text{m}$ レベルの長波長のうねりと、空間周波数200(1/mm)により表される $5\,\mu\,\text{m}$ レベルの短波長のうねりの強度差 $I^{10}-^{200}\,\text{TD}$ が $5{\sim}20$ dBであると、本発明の効果がより一層顕著となるので好ましい。 $I^{10-200}\,\text{TD}$ は、更に好ましくは $6{\sim}18$ dBである。空間周波数200(1/mm)で表される波長 $5\,\mu\,\text{m}$ レベルの短波長のうねりはフィルムに添加される粒子径と強い相関があり、 $I^{10-200}\,\text{TD}$ が20dBよりも大きい時は、フィルム表面では添加粒子により形成される短波長のうねりよりも、 $100\,\mu\,\text{レベル}$ の長波長のうねりが支配的であることを示している。この状態では、テープとした場合にスペーシングロスが発生し電磁変換特性が悪化しやすいため好ましくない。逆に、 $I^{10-20}\,\text{TD}$ が $5{\sim}20$ dBの場合には添加粒子径・添加量に応じた突起が適切に形成されており、スペーシングロスが発生しにくく本発明のフィルムとしてより好ましい。一方で、熱負荷によりごく小さな長波長のうねりが発生することは現時点では避けられず、実質的に $I^{10-200}\,\text{TD}$ は I^{10

[0010]

本発明の特徴は、熱処理後フィルムの微小平面性を決定する長波長や短波長のうねりを空間周波数及び強度により明確に定義していることにある。それにより、従来技術で用いてきたWRaのように長波長や短波長のうねりを合計したマクロな値では説明が困難であった高密度のリニア記録方式磁気記録媒体におけるスペーシングロス及び電磁変換特性悪化という課題の改善をねらったものである。従ってWRaが同じでも I^{10}_{TD} が大きいものは本発明の効果が得られず、対象とするものではない。

[0011]

また本発明におけるポリエステルフィルムの長手および幅方向の熱収縮率の和は、3.0%以下、好ましくは2.5%以下、さらに好ましくは2.0%以下である。熱収縮率の和が3.0%よりも大きいと高温保管、あるいは熱負荷時のフィルム収縮が激しく、微小平面性が悪化しやすいため好ましくない。リニア記録方式においては、フィルム幅方向に張力がほとんど

かからない。従ってテープ幅方向の収縮及びそれに伴う微小平面性悪化を防止するため、幅方向の熱収縮率は $0.0\sim1.0\%$ に収めることが好ましい。幅方向の熱収縮率は弛緩処理等の公知の方法により適宜調整することができる。

[0012]

本発明におけるポリエステルフィルムとは、分子配向により高強度フィルムとなるポリエステルであれば特に限定しないが、主としてポリエチレンテレフタレート、ポリエチレンー2,6ーナフタレートからなることが好ましい。特に好ましくはその構成成分の80%以上がエチレンテレフタレート、エチレンナフタレートであるポリエチレンテレフタレート、ポリエチレンー2,6ーナフタレートであり、中でもクリープ特性に優れたポリエチレンテレフタレートが最も好ましい。エチレンテレフタレート、エチレンナフタレート以外のポリエステル共重合体成分としては、例えばジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ポリエチレングリコール、pーキシリレングリコール、1,4ーシクロヘキサンジメタノールなどのジオール成分、アジピン酸、セバシン酸、フタル酸、イソフタル酸、5ーナトリウムスルホイソフタル酸などのジカルボン成分、トリメリット酸、ピロメリット酸などの多官能ジカルボン酸成分、pーオキシエトキシ安息香酸などが使用できる。

[0013]

本発明の二軸配向ポリエステルフィルムは、単層でも2層以上の積層構造であっても良いが、2層構造の場合は磁気記録媒体として使用した時に磁性層を塗布する層(A)と反対側の層(B)の表面突起形成を容易に制御できるため好ましい。

[0014]

前記二軸配向ポリエステルフィルムの層 (A)の、非接触 3次元粗さ計 (WYKO)を用いて面積測定倍率41.6倍で測定した表面粗さ WRa^A は、 $0.2\sim6.0$ nmで、好ましくは $0.5\sim4.0$ nmである。表面粗さ WRa^A を0.2nmよりも小さくするとヘッドとテープの滑りが悪くなりやすく好ましくない。一方、6.0nmを超えると表面が粗くなり過ぎ、高密度磁気記録媒体用として用いた時十分な電磁気変換特性が得られにくいため好ましくない。一方、反対面の層 (B)の表面粗さ WRa^B は $1.0\sim10.0$ nm、好ましくは、 $3.0\sim8.0$ nmである。表面粗さが1.0nmよりも小さいとフィルムの巻き取り中に、しわなどが入り、巻き姿が不良となりやすく好ましくない。一方、 WRa^B が10.0nmよりも大きくなると、表面が粗くなり過ぎるためフィルムロールとして巻き取った際、磁性層を塗布する層 (A) に転写するなどの悪影響を及ぼすため好ましくない。

[0015]

次に、上記表面粗さを満足するためには層内に不活性粒子を添加することが好ましく、本発明において層 (A) に用いられる不活性粒子 I は、平均粒径dIは好ましくは $0.04\sim0.30$ μ m、より好ましくは $0.05\sim0.10$ μ mで、含有量は好ましくは $0.001\sim0.30$ 重量%、より好ましくは $0.01\sim0.25$ 重量%である。本発明の対象とする高密度磁気記録媒体においては、微小平面性更には電磁変換特性の悪化を防止するため、0.3 μ mより大きな粒径の粒子を使用することや、添加量を0.30 重量%よりも多くすることは好ましくない。

[0016]

前記ポリエステルフィルムにおいて、層 (B) の厚み t_B は好ましくは $0.1\sim2.0\,\mu$ mであり、より好ましくは $0.2\sim1.5\,\mu$ mである。この厚みが、 $0.1\,\mu$ mよりも小さくなると粒子が脱落しやすくなり、 $2.0\,\mu$ mよりも大きくなると添加粒子の突起形成効果が減少し、好ましくない。

[0017]

[0018]

層 (A) および層 (B) に含まれる不活性粒子は、球状シリカ、ケイ酸アルミニウム、二酸化チタン、炭酸カルシウムなどの無機粒子、またその他有機系高分子粒子としては、架橋ポリスチレン樹脂粒子、架橋シリコーン樹脂粒子、架橋アクリル樹脂粒子、架橋スチレンーアクリル樹脂粒子、架橋ポリエステル粒子、ポリイミド粒子、メラミン樹脂粒子等が好ましい。これらの1種もしくは2種以上を選択して用いる。いずれについても、粒子形状・粒子分布は均一なものが好ましく、体積形状係数は好ましくは $f=0.3 \sim \pi/6$ であり、より好ましくは $f=0.4 \sim \pi/6$ である。体積形状係数fは、次式で表される。

[0019]

 $f = V/D_m^3$

ここでVは粒子体積 (μm^3) , Dmは粒子の投影面における最大径 (μm) である。

[0020]

なお、体積形状係数fは粒子が球の時、最大の $\pi/6$ (=0.52)をとる。必要に応じて濾過などを行うことが好ましい。中でも、球状シリカは単分散性に優れ、突起形成を容易に制御でき、本発明の効果がより良好となるため好ましい。また必要に応じて、地肌補強の観点から一次粒径が $0.005\sim0.10\,\mu$ m、好ましくは $0.01\sim0.05\,\mu$ mの α 型アルミナ、 γ 型アルミナ、 δ 型アルミナ、ジルコニア、シリカ、チタン粒子などから選ばれる不活性粒子を表面突起形成に影響を及ぼさない範囲で含有してもよい。

また、本発明におけるポリエステルフィルムは、フィルムの長手方向および幅方向のヤング率がそれぞれ3500~10000MPaで両者の比(長手/幅)が0.7~2.5であり、好ましくは1.2~2.2、更に好ましくは1.5~2.0である。長手方向および幅方向のヤング率の比(長手方向/幅方向)が0.7よりも小さくなると、長手方向に張力がかかった時の幅方向の寸法変化が大きくなりやすく、トラックズレが発生する場合があるため好ましくない。ヤング率の比を2.0よりも大きくするためには長手方向にかなり大きな延伸倍率をかける必要があり、フィルム製膜時に破れが頻発しやすく生産上好ましくない。

[0021]

また一般にリニア記録方式においてはトラックずれを防止する観点から長手方向に張力がかかったときの幅方向の寸法変化率が小さいことが好ましい。フィルムの長手方向に 32MPaの荷重をかけ、温度49C、湿度90WRHで72hr処理した時、処理前後の幅方向の寸法変化が-0.35-0W、好ましくは-0.30--0.10Wである。-0.35Wよりも大きいと、磁気テープとして使用した際トラックずれが発生する場合があり好ましくない。長手方向の強度が大きいほど幅方向の寸法変化率は小さくなる傾向があり、好ましくは長手方向のヤング率は6000MPa以上、更に好ましくは6500MPa以上である。しかし、長手方向のヤング率が10000MPaよりも大きくなると、フィルム製膜時の延伸倍率が高くなり、フィルム破断が多発し、製品歩留まりが悪くなりやすく好ましくない。一方、長手方向の強度が3500MPaよりも小さくなると、磁気テープとした時に十分な強度が得られにくいため好ましくない。

[0022]

また本発明におけるポリエステルフィルムは、フィルムの幅方向の温度膨張係数は-1 $0\times10^{-6}\sim20\times10^{-6}$ / \mathbb{C} であり、好ましくは $-5\times10^{-6}\sim15\times10^{-6}$ / \mathbb{C} である。更にフィルム幅方向の湿度膨張係数は $0\sim20\times10^{-6}$ /%RHさらに好ましくは $5\times10^{-6}\sim15\times10^{-6}$ /%RHである。温度膨張係数及び湿度膨張係数がこの範囲を超えるとデータ書き込み時とデータ読み取り時の温度差や湿度差が大きい場合、テープに書き込まれた磁気情報を固定ヘッドが正しく読みとることができないことがある。温湿度環境の変化があってもデータを正しく読みとるためには膨張係数を上記範囲におさめることが好ましい。

[0023]

本発明におけるポリエステルフィルムは、本発明の効果を阻害しない範囲で少なくとも 片面に水溶性塗剤、あるいは有機溶剤系の塗剤を塗布することにより易接着層を設けても 良い。

[0024]

本発明に用いられるポリエステルフィルムの厚さは、高容量化に伴い薄膜化が進んでおり、 $2.0\sim7.0\,\mu$ mが好ましく、より好ましくは $4.0\sim6.5\,\mu$ mである。 $7.0\,\mu$ mよりも厚いとカセットに入るテープ長が短くなり、十分な記録容量が得られないことがあり好ましくない。 $2.0\,\mu$ mよりも薄いとテープとした時に十分な強度が得られず好ましくない。

[0025]

次に本発明の二軸配向ポリエステルフィルムの製造方法について説明する。まず、ポリエステルに不活性粒子を含有せしめる方法としては、例えばジオール成分であるエチレングリコールに不活性粒子 I を所定割合にてスラリーの形で分散せしめ、このエチレングリコールスラリーをポリエステル重合完結前の任意段階で添加する。ここで、粒子を添加する際には、例えば、粒子を合成時に得られる水ゾルやアルコールゾルを一旦乾燥させることなく添加すると粒子の分散性が良好であり、滑り性、電磁変換特性を共に良好とすることができる。また粒子の水スラリーを直接所定のポリエステルペレットと混合し、ベント方式の2軸混練押出機に供給しポリエステルに練り込む方法も本発明の効果に有効である

[0026]

粒子の含有量を調節する方法としては、上記方法で高濃度の粒子マスターを作っておき、それを製膜時に粒子を実質的に含有しないポリエステルで希釈して粒子の含有量を調節する方法が有効である。

[0027]

上記の方法にて得られたポリエステルのペレットを所定の割合で混合し、乾燥したのち、公知の溶融積層用押出機に供給し、ポリマーをフィルターにより濾過する。非常に薄い磁性層を塗布する高密度磁気記録媒体用途においては、ごく小さな異物もDOの原因となるため、フィルターには例えば1.5μm以上の異物を95%以上捕集する高精度のものを用いることが有効である。続いてスリット状のスリットダイからシート状に押し出し、キャスティングロール上で冷却固化せしめて未延伸フィルムを作る。すなわち、1から3台の押出機、1から3層のマニホールドまたは合流ブロック(例えば矩形合流部を有する合流ブロック)を用いて必要に応じて積層し、口金からシートを押し出し、キャスティングロールで冷却して未延伸フィルムを作る。この場合、背圧の安定化および厚み変動の抑制の観点からポリマ流路にスタティックミキサー、ギヤポンプを設置する方法は有効である。

[0028]

次にこの未延伸フィルムの延伸方法は延伸ロールを使用しない同時二軸延伸であっても、延伸ロールを使用する逐次2軸延伸であってもよい。熱負荷による微小平面性悪化を防止するフィルムを製造するためには、例えばフィルムの厚み方向や平面方向の結晶化指数(Ic)を $8\sim15cm^{-1}$ 、ばらつきを $1cm^{-1}$ 以下に抑えることが有効である。これにより熱負荷時の厚み方向における熱収縮ムラ、微小平面性の悪化を防止できる。この場合、フィルム製造工程において局所的な温度ムラを加えないことが重要であるが、実現の方法は特に限定されるものではない。

[0029]

延伸方法は逐次二軸延伸であっても同時二軸延伸であってもよい。例えば逐次延伸の場合、最初の長手方向の延伸が重要であり延伸温度は90~130℃、好ましくは100~120℃である。延伸温度が90℃よりも低くなるとフィルムが破断しやすく、延伸温度が130℃よりも高くなるとフィルム表面が熱ダメージを受けやすくなるため好ましくない。また、延伸ムラ、及びキズを防止する観点からは延伸は2段階以上に分けて行うことが好ましく、トータル倍率は2.5~3.5倍、好ましくは2.8~3.3倍である。延伸倍率が2.5倍よりも小さいと磁気記録媒体用として必要な強度が得られにくい。一方、倍率が3.5倍よりも大きくなるとフィルムにキズが発生し磁気記録媒体用として使用が難しいばかりでなく、再縦延伸時にフィルムが破断しやすく好ましくない。さらに、延伸ロールとしては、表面の粗さなどを制御しやすい非粘着性のシリコーンロールが好ましい。従来技術のようにセラミック

スやテフロン(R)さらに金属のロールを用いても可能であるが、粘着によりフィルム表面のみが局所的に加熱され、フィルム表面と内部との結晶化指数にばらつきが発生しやすく好ましくない。さらに延伸ロールの表面粗さRaは、 $0.005\sim1.0\,\mu$ m、好ましくは $0.01\sim0.6\,\mu$ mである。Raが $1.0\,\mu$ mよりも大きいと延伸時ロール表面の凸凹がフィルム表面に転写するため好ましくなく、一方 $0.005\,\mu$ mよりも小さいとロールとフィルム地肌が粘着し、フィルムが熱ダメージを受けやすくなるため好ましくない。表面粗さを制御するためには研磨剤の粒度、研磨回数などを適宜調整することが有効である。さらに、延伸部におけるロールとフィルムのトータルの接触時間は0.170以下、好ましくは0.0870以下にすることがフィルムを製造する上で特に有効である。ロールとフィルムの接触時間が0.171がよりも大きくなると、延伸ロールの熱によりフィルム表面のみが局所的に加熱され、フィルム内部との間の結晶化指数にばらつきが発生し、引いては熱負荷時の微小平面性悪化を引き起こしやすいため好ましくない。接触時間を短くする方法としては、例えばフィルムを延伸ロールに巻き付けず、ニップロール間で平行に延伸することが有効である。

[0030]

その後、 $85\sim140$ ℃、好ましくは $90\sim120$ ℃で幅方向に $2.5\sim4.5$ 倍、好ましくは $3.0\sim4.0$ 6 位 手を伸する。かかる温度、倍率範囲をはずれると延伸ムラあるいはフィルム破断などの問題を引き起こし、本発明の特徴とするフィルムが得られにくいため好ましくない。本発明の目的とする結晶化指数を得るためには、好ましくは $130\sim160$ ℃、さらに好ましくは $140\sim150$ ℃で、 $1.4\sim2.0$ 倍好ましくは $1.6\sim1.8$ 倍程度再縦延伸することが好ましい。特に延伸温度が130 ℃よりも低いとフィルムが破断しやすく好ましくない。一方160 ℃よりも高いとフィルム表面が熱によるダメージを受けるため好ましくない。また、1.4 倍よりも低いとフィルム表面が熱によるダメージを受けるため好ましくない。また、1.4 倍よりも低いと十分なテープ強度が得られず、2.0 倍よりも大きいとフィルムが破断しやすく生産上好ましくない。その後 $1.0\sim1.5$ 倍再横延伸した後、 $205\sim240$ ℃、好ましくは $210\sim230$ ℃で $0.5\sim20$ 秒、好ましくは $1\sim15$ 秒熱固定を行う。特に熱固定温度が205 ℃よりも小さくなるとフィルムの結晶化が進まないために構造が安定せず、高温保管や熱負荷時に微小平面性が悪化しやすく好ましくない。

[0031]

一方、同時二軸延伸においては延伸時にフィルムとロールが接触することがないため フィルム表面の局所的な加熱が発生しにくく結晶化指数を制御しやすいため延伸方法と してより好ましい。同時二軸延伸においては未延伸フィルムを、まず長手および幅方向に 延伸温度は80~130℃、好ましくは85~110℃で同時に延伸する。延伸温度が80℃よりも低 くなるとフィルムが破断しやすく、延伸温度が130℃よりも高くなると磁気記録媒体とし て用いた時に十分な強度が得られないため好ましくない。また、延伸ムラを防止する観点 から、トータル倍率は4~20倍、好ましくは6~15倍である。延伸倍率が4倍よりも小さい と本発明の対象とする高密度磁気記録媒体用として必要十分な強度が得られにくい。一方 、倍率が20倍よりも大きくなると、フィルム破断が起こりやすく、安定したフィルムの製 造が難しい。高密度磁気記録媒体に必要な強度を得るためには、温度140~200℃、好まし くは160~190℃で、長手方向及び/又は幅方向に1.2~2.0、好ましくは1.3~1.7倍で再度 延伸を行うことが好ましい。その後、205~240℃好ましくは210~230℃で0.5~20秒、好 ましくは1~15秒熱固定を行う。熱固定温度が205℃よりも低いとフィルムの結晶化が進ま ないため構造が安定せず、高温保管や熱負荷時の熱収縮により微小平面性悪化を引き起こ しやすいため好ましくない。また本発明の目的を達成するためには、フィルム上下の温度 差が20℃以下、好ましくは10℃以下である、更に好ましくは5℃以下である。フィルム上 下での温度差が20℃よりも大きいと、厚み方向での結晶化指数が均一にならず、熱負荷時 に微小平面性の悪化を引き起こしやすいため好ましくない。

[0032]

同時二軸延伸では、ロールによる接触加熱とは異なり、高温空気によってのみフィルムが加熱される。また、同時二軸延伸は最初の延伸温度である90℃前後の温度から熱固定温度である220℃までのゾーンが全て長手方向につながっているため、随伴気流など高温空気の自由な流れによりフィルム上下や幅方向に温度差が発生しやすい延伸方法でもある。

温度差を低減する方法としては特に限定されないが、温度の異なるゾーンの間に高温空気の自由な流れを抑制するシャッターなどの設備を設けることが有効である。特に、本発明の特徴とする結晶化指数のばらつきを抑えたフィルムを作成するためには、フィルムとシャッターの隙間は $1\sim250\,\mathrm{mm}$ 、好ましくは $2\sim100\,\mathrm{mm}$ 、更には $3\sim50\,\mathrm{mm}$ であることが好ましい。隙間が $1\,\mathrm{mm}$ よりも小さいとフィルムがシャッターに接触し破れやすいため、製造が難しく好ましくない。しかしながら、 $250\,\mathrm{mm}$ よりも大きいと結晶化指数のばらつきが大きくなり微小平面性が悪化しやすく好ましくない。フィルムとシャッターが接触しないようにするためには、ノズルから吹き出す風速を適宜調整することが有効である。

[0033]

熱負荷時の微小平面性を評価する際には、このようにして得られたフィルムに100℃、24hrの熱処理を施した。磁気記録媒体に加工する際、塗剤乾燥時には80~120℃の高温、またキュア時には48~72時間という長時間の熱負荷を受けるためであるが、熱処理方法はこの方法に限定されない。

【実施例】

[0034]

以下、実施例で本発明を詳細に説明する。

[0035]

本発明の特性値の測定方法、並びに効果の評価方法は次の通りである。微小平面性の評価であるRelative Powerは熱処理後のフィルムにより、その他の特性は熱処理前のフィルムにより測定した。

A. 粒子の平均粒径

フィルムからポリマをプラズマ低温灰化処理法で除去し、粒子を露出させる。処理条件は、ポリマは灰化されるが粒子は極力ダメージを受けない条件を選択する。その粒子を走査型電子顕微鏡 (SEM) で観察し、粒子画像をイメージアナライザで処理する。SEMの倍率はおよそ5000~20000倍から適宜選択する。観察箇所をかえて粒子数5000個以上で粒径とその体積分率から、次式で体積平均径 d を得る。粒径の異なる2種類以上の粒子を含有している場合には、それぞれの粒子について同様の測定を行い、粒径を求めた。

$d = \Sigma (d i \cdot N v i)$

ここで、diは粒径、Nviはその体積分率である。粒子がプラズマ低温灰化処理法で大幅にダメージを受ける場合には、フイルム断面を透過型電子顕微鏡(TEM)を用いて、 $3000\sim100000$ 倍で観察する。TEMの切片厚さは約100nmとし、場所をかえて500視野以上測定し、上記式から体積平均径 dを求める。

B. 粒子の体積形状係数

走査型電子顕微鏡で、粒子の写真を例えば5000倍で10視野撮影した上、画像解析処理装置を用いて、投影面最大径および粒子の平均体積を算出し、下記式により体積形状係数を得た。

[0036]

 $f = V / D_m^3$

ここで、Vは粒子の平均体積 (μm^3) 、 D_m は投影面の最大径 (μm) である。

C. フィルム積層厚み

表面からエッチングしながらXPS(X線光電子光法)、IR(赤外分光法)あるいはコンフォーカル顕微鏡などで、その粒子濃度のデプスプロファイルを測定する。片面に積層したフイルムにおける表層では、表面という空気-樹脂の界面のために粒子濃度は低く、表面から遠ざかるにつれて粒子濃度は高くなる。本発明の片面に積層したフイルムの場合は、深さ [I] で一旦極大値となった粒子濃度がまた減少し始める。この濃度分布曲線をもとに極大値の粒子濃度の1/2になる深さ [II] (ここで、II>I)を積層厚さとした。さらに、無機粒子などが含有されている場合には、二次イオン質量分析装置(SIMS)を用いて、フイルム中の粒子のうち最も高濃度の粒子の起因する元素とポリエステルの炭素元素の濃度比(M+/C+)を粒子濃度とし、層(A)の表面からの深さ(厚さ)方向の分析を行う。そして上記同様の手法から積層厚さを得る。

D. 全反射ラマン結晶化指数

試料をエポキシ樹脂に包埋し、研磨を行って断面を出した。平面方向に異なる5ヶ所に おいて、厚み方向に1μm毎(6μmのフィルムであれば6点)に結晶化指数を測定し、同じ厚 み方向位置の平均値を計算し、その値から最大値、最小値及びばらつきを計算した。平面 方向は断面を切り出した後フィルム表面から深さ1μmまでの領域を長手及び幅方向に2mm おきに各6点(12.7mmテープ幅相当)計12点を下記条件で測定し、ばらつきを計算した。173 Ocm-1(カルボニル基の伸縮振動)の半値幅を結晶化指数とした。

[0037]

レーザーラマン分光の測定条件は次の通りである。

[0038]

Jobin Yvon社製 Ramanor U-1000 装置

測定装置 180° 散乱 マイクロラマン ;

試料台

Ar⁺レーザー、NEC GLG3300、波長 515nm 光源

構成 1m Czerny - Turner型 分光器

Double Monochromator

回折格子 Plane Holographic、1800g/mm

 110×110 mm

分散 9.23cm⁻¹/mm

逆行除去率 10-14(20cm-1)

検出器 ; PM RCA31034、浜松電子製943-02

E. フィルムのヤング率

JIS-K7127の方法に従い、インストロンタイプの引張試験機を用いて23℃、 65%RHにてヤング率を測定した。フィルムの縦方向(MD)および幅方向(TD)に 切り出した幅10mm、長さ100mmの試料フィルムを引っ張り測定した。

F. 温度膨張係数

フィルムを幅4mmにサンプリングし、試長15mmになるように真空理工(株)製TMA TM-3 000および加熱制御部TA-1500にセットした。0.5gの荷重をフィルムにかけて、温度を室温 (23℃)から50℃まで上昇させた後、一旦室温まで温度を戻した。その後、再度温度を室温 から50℃まで上昇させた。その時の30℃から40℃までのフィルムの変位量(△Lmm)を測定 し、次式から温度膨張係数を算出した。

[0039]

温度膨張係数(/℃)=(ΔL/15)/(40-30))

G. 湿度膨張係数

フィルムを幅10mmにサンプリングし、試長200mmになるように大倉インダストリー製の テープ伸び試験器にセットし、温度30℃、湿度40%RHから80%RHまで変化させ30分保持した 後、変位量(ΔLmm)を測定し、次式から湿度膨張係数を算出した。

[0040]

湿度膨張係数(/%RH)=(Δ L/200)/(80-40)

H. 熱収縮率

フィルムを長手及び幅手方向に幅10mm、長さ250mmに切り出し、約200mmの間隔で2本の 標線を入れ、その間隔を23℃で測定する(これをXmmとする)。この試料の先端に0.4gの 荷重をかけた状態で100℃雰囲気中30分間放置した後の標線間の間隔を再度23℃で測定し (これをYmmとする)、100×(X-Y)/Xをもって熱収縮率とした。

I. 寸法変化率

フィルムを長手方向 100mm、幅方向 30mmに切り出し、23℃、65%RH無荷重の条件下にて 、24時間調湿調温した後、大日本印刷(株)製クロムマスク上に、サンプルを静電気によ り貼り付け、光学顕微鏡を用いて幅方向の長さ(L0)を測定する。その後、49℃、90%RH の条件下、長手方向に32MPaの荷重をかけた状態で、72時間放置した。72時間後、荷重を 解放し、23℃、65%RH、無荷重の条件下にて24時間調湿調温後、幅方向の長さ(L1)を測

定した。幅方向の寸法変化率は下記式により求めた。 幅方向の寸法変化率(%) = [(L1-L0)/L0] ×100

J. 延伸ロールの表面粗さ

Mitutoyo(株)製の表面粗さ計サーフテスト301を使用して、カットオフ0.25mmにてロール幅方向に3点中心面平均粗さを測定し、その平均値を採用した。

K.. 非接触3次元粗さ計

フィルムを100Cのオーブンに24時間放置することにより熱処理を行った。熱処理後のフィルムの微小平面性をWYKO社製 非接触 3 次元粗さ計TOPO-3Dを用いて、測定面積倍率 41.6倍、測定面積 $239\times239\,\mu$ m $(0.057\,\mathrm{m\,m^2})$ で測定した。該粗さ計に内蔵された表面解析ソフト (ver. 4.90) により、各空間周波数におけるRelative Powerを求めた。測定は 10 回行い、平均値をもってRelative Power の値とした。同様に、内蔵されたソフトにより熱処理前フィルムの中心面平均粗さ (WRa)を測定した。

[0041]

なお、Relative Powerは、各空間周波数におけるパワースペクトラムP(fx, fy)を対数スケール(dB)で表した値であり、P(fx, fy)1 n m^2 の表面うねりを0dBと表記するするよう解析ソフト中で基準化されている。xをフィルム幅方向、yをフィルム長手方向として測定した。P(fx, fy)は、それぞれ下記式により計算される。

[0042]

【数1】

$$P(fx,fy) = \frac{1}{A} \{FT[h(x,y)]\}^2$$

[0043]

式中、P(fx, fy)はパワースペクトラムであり、Aは測定面積、FTは $\iint h(x, y) exp[i2\pi(x fx+y \cdot fy)]$ で表されるフーリエ変換の演算、h(x, y)は表面形状データ、fx, fyは空間上の周波数座標である。

【0044】 【数2】

WR
$$a = \frac{1}{MN} \sum_{k=1}^{M} \sum_{j=1}^{N} |Z_{jk} - \overline{Z}|$$

$$\overline{Z} = \frac{1}{MN} \sum_{k=1}^{M} \sum_{j=1}^{N} |Z_{jk}|$$

[0045]

また、 $Z_{j\,k}$ は、測定方向とそれと直交する方向をそれぞれM, N分割したときの各方向のj番目、k番目の位置における3次元粗さチャート上の高さである。

[0046]

空間周波数10(1/mm)及び、10(1/mm)と200(1/mm)の強度差を読み取り、それぞれ I^{10}_{TD} 、 I^{10-200}_{TD} と表す。これらの値は、フィルム表面の微小平面性の度合いを示しており、値が大きいほど微小平面性が悪い。測定機器はWYKOに特定するもでのはなく、同様の測定が可能な非接触3次元粗さ計ZYGOや、原子間力顕微鏡AFMを用いても良い。

[0047]

実施例1

平均粒径 $0.06\,\mu\,\mathrm{m}$ 、体積形状係数 f = 0.51の球状シリカ粒子を含有するポリエチレンテレフタレートと実質上粒子を含有しないポリエチレンテレフタレートのペレットを作り、

球状シリカ粒子の含有量が0.2重量%となるよう2種のペレットを混合することにより熱可 塑性樹脂Aを調製した。また、平均粒径 $0.3\,\mu\,\mathrm{m}$ 、体積形状係数 $\mathrm{f}=0.52$ のジビニルベンゼ ン/スチレン共重合架橋粒子を含有するポリエチレンテレフタレートと、平均粒径0.8μm 、体積形状係数f=0.52のジビニルベンゼン/スチレン共重合架橋粒子を含有するポリエ チレンテレフタレート、および実質上粒子を含有しないポリエチレンテレフタレートのペ レットを、0.3μmの粒子含有量が0.26重量%、0.8μmの粒子含有量が0.01重量%となるよう 混合した熱可塑性樹脂Bを調製した。これらの熱可塑性樹脂をそれぞれ160℃で8時間減圧 乾燥した後、別々の押出機に供給し、275℃で溶融押出して高精度濾過した後、矩形の2層 用合流ブロックで合流積層し、2層積層とした。その後、285℃に保ったスリットダイを介 し冷却ロール上に静電印可キャスト法を用いて表面温度25℃のキャスティングドラム巻き 付け冷却固化して未延伸積層フィルムを得た。この未延伸積層フィルムを95℃でリニアモ ーター式の同時二軸延伸機により長手及び幅方向にそれぞれ3.5倍、トータルで12.3倍延 伸しその後、再度180℃で1.5倍再度長手方向に延伸し、定長下で220℃で3秒間熱処理した 。フィルムとシャッターの距離を20mm、フィルム上下の温度差を最大で3℃とした。その 後長手方向に1%、幅方向に2%の弛緩処理を施し、総厚み6μm、層(B)の厚み0.5μmのフィ ルム原反を得た。

実施例2

層(A)及び層(B)に添加する粒子の粒径及び添加量、さらに長手及び幅方向の倍率を変更する以外は実施例1と同様にして二軸配向ポリエステルフィルムを得た。

[0048]

実施例3

平均粒径 $0.10\,\mu$ m、体積形状係数 f = 0.51の球状シリカ粒子を含有するポリエチレンテレフタレートと実質上粒子を含有しないポリエチレンテレフタレートのペレットを作り、球状シリカ粒子の含有量が0.1重量%となるよう2種のペレットを混合することにより熱可塑性樹脂を調製し、 $5\,\mu$ mの単層のフィルムとする以外は実施例 1 と同様にして二軸配向ポリエステルフィルムを得た。

[0049]

実施例4

層 (A) に添加する粒子の添加量、及び層 (A) 、層 (B) の厚みを変更する以外は実施例1と同様にして未延伸積層フィルムを作成し、逐次二軸延伸法により延伸した。まず延伸温度11 0 \mathbb{C} で 2 段階に分けて長手方向に3.1倍延伸した。このとき接触する延伸ロールには表面粗さ \mathbb{R} 2 \mathbb{C} 2 \mathbb{C} 3 \mathbb{C} 2 \mathbb{C} 3 \mathbb{C} 2 \mathbb{C} 40 \mathbb{C} 1 \mathbb{C} 2 \mathbb{C} 2 \mathbb{C} 2 \mathbb{C} 3 \mathbb{C} 2 \mathbb{C} 3 \mathbb{C} 3 \mathbb{C} 3 \mathbb{C} 6 \mathbb{C} 6 \mathbb{C} 6 \mathbb{C} 6 \mathbb{C} 6 \mathbb{C} 7 \mathbb{C} 6 \mathbb{C} 7 \mathbb{C} 8 \mathbb{C} 6 \mathbb{C} 7 \mathbb{C} 8 \mathbb{C} 7 \mathbb{C} 8 \mathbb{C} 7 \mathbb{C} 9 \mathbb{C}

[0050]

比較例1

延伸温度を125℃、延伸ロールに表面粗さが0.6μmのセラミックスロールを用いる以外は実施例4と同様にして二軸配向ポリエステルフィルムを得た。

[0051]

比較例 2

延伸温度を125 \mathbb{C} 、延伸ロールに表面粗さが 0.6μ mのセラミックスロールを用い、さらに延伸時にフィルムをロールに巻き付けて延伸することでフィルムとロールの接触時間を0.15 秒とする以外は実施例 4 と同様にして二軸配向ポリエステルフィルムを得た。

[0052]

比較例3

長手及び幅方向の延伸倍率を変更し、熱固定温度を200℃、フィルムとシャッターの距離を250mm、フィルム上下の温度差を最大で20℃とする以外は、実施例2と同様にして二軸配向ポリエステルフィルムを得た。

【0053】 【表1】

				(V)			(B)					
	フィルム厚み			18 (A)					日となれた十			
	4/2 To 2. T. 2. Z. 2.	[m // +	<u>т</u> Р/~+	不活性粒子 I	濃度[重量%]	WRa ^A [nm]	不活在粒子I dI[μm]	濃度[重量%]	小沼吐和ナニ d缸[μm]	濃度[重量%]	WRa ^B [nm]	延伸方法
	fill カーや 「m ガール・オの計学	-B1 # 1113	1 7				αc	0.01	0.3	0.26	4.4	同時二軸
実施例1	9:0	0.5	0.63	0.00	0.2	0.0	25				ć	# 1 # 1
1		L	0.83	0.3	0.1	4.5	0.8	0.05	0.3	0.60	8.9	11111111111111111111111111111111111111
美施彻2	00	0.0	20.00	3		о В	'	ı	1	ı	1	同時二軸
財務例3	5.0	1	1	0.1	1.0	6.3						
			0 0	9	נטט	0.7	0.8	0.01	0.3	0.26	4.3	逐次二軸
実施例4	4.5	0.4	0.50	0.00	20:0					(,	おかし抽
7、特色1	4.5	0.4	0.50	90'0	0.02	1.0	0.8	0.01	0.3	0.26	4.4	20%一指
10.4X	L	* 0	0 20	900	0.05	4.	9.0	0.01	0.3	0.26	4.4	逐次二軸
比較例2	Ç. 4	4.0	Oc.o	8	3	7.7	80	0.05	0.3	09'0	7.0	同時二軸
比較例3	6.0	0.5	0.63	0:3		-						

[0054]

【表2】

												!	熱処理後フィルム	74114
						執収縮率			厚み方向			平面方向		
	ノイルム参注	何大師	温度影張係数	湿度膨張係数	-	1月日の寸法 熱収縮の和	長手方向	ho 七 向 [k]	MAX [cm-1]	MAX [cm-1] MIN [cm-1]	△N□国み方向	Alc平面方向	1 ¹⁰	I ¹⁰⁻²⁰⁰ TD
	ヤング車[MPa]	4	[10.4°C]	[10 ⁻⁴ /%RH]	変化平[2]	[8]	Ę.		To Tool					
		0007	c	ç		~	1.7	0.1	13.7	13.5	0.2	0.3	-13.0	12.0
案施例1	8200	4200	2	2		2				и С	0	70	15.	13.5
サを座り	2000	2000	T	9	-0.28	2.1	1.7	0.4	13.8	0.0	0.0	5		
米尼四4	\perp			,	3	•	11	. 10	13.6	13.4	0.2	0.3	-5.0	14.0
実施例3	8300	4100	10	20	91.0	9								
					000	÷	9.1	. 00	13.9	13.2	0.7	0.5	-8.0	17.0
実施例4	8300	4200	10	19	-0.20	7.1	4.							•
			Ş	\$	- - -	2.1	2.1	0.0	14.5	13.3	1.2	1.4	2.5	26.8
比較例1	8200	4200	2	2	0.60				į	,	0	6	22	30.0
子校庭り	8200	4200	9	10	-0.20	1.8	1.7	0.1	19.1	15.0	2	2:3		
10.45		1	ţ	÷	-0.28	93	9.	0.7	15.8	14.9	6.0	0.5	1.0	16.0
比較例3	5100	4400			7.50									

ページ: 13/E

【図面の簡単な説明】

[0055]

【図1】一般的なヘリカル記録方式の概略図である。

【図2】一般的なリニア記録方式の概略図である。

【書類名】図面 【図1】

ヘリカル記録方式

ヘッド走行方向

リニア記録方式

ヘッド走行方向

【書類名】要約書

【要約】

【課題】

高温保管や熱負荷後のフィルム表面の微小平面性が良好で、特にリニア記録方式の高密 度磁気記録媒体として用いた時に有用なポリエステルフィルムを提供する。

【解決手段】

熱負荷時のフィルム厚み方向における熱収縮ムラを特定の範囲に抑え、熱処理後のポリエステルフィルムにおいて少なくとも片面の幅方向における空間周波数10 (1/mm)のRelative Power I^{10}_{TD} を $-25\sim0$ dBの範囲とすることにより達成できる。

【選択図】図2

特願2004-040930

出願人履歴情報

識別番号

[000003159]

1. 変更年月日 [亦再理由]

2002年10月25日

[変更理由]

住所変更

住 所 氏 名 東京都中央区日本橋室町2丁目2番1号

東レ株式会社