Lema: Teorema da dedução: $\phi \cup \{\varphi\} \vdash \Psi \Longrightarrow \phi \vdash \varphi \rightarrow \Psi$.

Demonstração. Por indução do comprimento da derivação de Ψ a apartir de $\phi \cup \varphi$.

Base: n=1. Então $\Psi \in \phi \cup \{\varphi\}$ ou φ é axioma. Se $\Psi = \varphi$, então $\phi \vdash \varphi \to \Psi$ por c) do lema anterior. Se $\Psi \in \phi$ ou Ψ é axioma, então $\phi \vdash \Psi$. Por b) do lema anterior, $\phi \vdash \Psi \to \varphi \to \Psi$. Por modus ponens: $\phi \vdash \varphi \rightarrow \Psi$.

Passo da indução: Supomos que a derivação tem comprimento n+1. Podemos supor que o ultimo passo da derivação foi aplicado o M.P. Isto é, $\phi \cup \varphi \vdash \chi$, $\phi \cup \{\varphi\} \vdash \chi \rightarrow \psi$. As derivações de ζ e $\zeta \to \Psi$ tem comprimento \leq n. Por hipótese da indução, $\phi \vdash \varphi \to \zeta$ e $\phi \vdash \varphi \to (\zeta \to \psi)$. Aplicando duas vezes o modus ponens e A1 resultam em : $\phi \vdash \varphi \rightarrow \psi$.

Lema:
$$\vdash \neg \neg \varphi \rightarrow \varphi$$
.

Demonstração. Por (A3) e (A4) e M.P, $\neg\neg\varphi \land \neg\varphi \vdash \neg\varphi, \neg\neg\varphi \land \neg\varphi \vdash \neg\neg\varphi$. Seja τ qualquer fórmula tal que $\vdash \tau$. Por c): $\phi \vdash \psi$ e $\phi \vdash \neg \psi \Longrightarrow$ em $\phi \vdash \varphi(\varphi)$ qualquer fórmula). Por a): $\vdash \tau$ $\rightarrow \neg (\neg \neg \varphi \land \neg \varphi)(=\neg \neg \varphi \rightarrow \varphi).$

Lema:
$$\phi \cup \{\Psi\} \vdash \varphi \in \phi \cup \{\neg \Psi\} \vdash \varphi \Longrightarrow \phi \vdash \varphi$$
.

Demonstração. As hipóteses implicam em $\phi \cup \{\psi\} \vdash \neg \neg \varphi \in \phi \cup \{\neg \psi\} \vdash \neg \neg \varphi$. Por d). Pelo teorema da dedução, $\phi \vdash \psi \rightarrow \neg \neg \varphi$, $\phi \vdash \neg \psi \rightarrow \neg \neg \varphi$. Por a), $\phi \vdash \neg \psi$, $\phi \vdash \neg \varphi \rightarrow \neg \neg \psi$. Então $\phi \cup \{\neg \varphi\}$ $\vdash \neg \psi, \phi \cup \{\neg \varphi\} \vdash \neg \neg \psi$. Por e), $\phi \cup \{\neg \varphi\} \vdash \neg \tau$, onde τ é fórmula tal que $\vdash \tau$. Por c) $\neg \psi \rightarrow \neg \neg \psi$ $\rightarrow \neg \tau$. Logo, $\phi \vdash \neg \varphi \rightarrow \neg \tau$ (teorema da dedução). Por a), $\phi \vdash \tau \rightarrow \neg \neg \varphi$. Por M.P: $\phi \neg \neg \varphi$. Pelo teorema anterior : $\phi \vdash \varphi$.

Obs: \vdash satisfaz as seguintes regras(onde uma regra tem a forma $\frac{\phi \vdash \varphi_1, \dots, \phi_n \vdash \varphi_n}{\phi \vdash \varphi}$, temos tal regra como "se $\phi_1 \vdash \varphi_1, ..., \phi_n \vdash \varphi_n$, então $\phi \vdash \varphi$ ").

- $(R1) \frac{}{\varphi \vdash \varphi}$
- (R2) $\frac{\phi \vdash \varphi}{\phi' \vdash \varphi}$ se $\phi \subseteq \phi'$. (R3) $\frac{\phi \vdash \varphi, \phi \vdash \psi}{\phi \vdash \varphi \land \psi}$. Por (A2). (R4) $\frac{\phi \vdash \phi \land \psi}{\phi \vdash \varphi}$. Por (A3).

- $(R4) \frac{\varphi \mapsto \varphi \mapsto \varphi}{\phi \vdash \varphi} \text{. For (A5)}.$ $(R5) \frac{\phi \vdash \phi \land \psi}{\phi \vdash \psi} \text{. Por (A4)}.$ $(R6) \frac{\phi \vdash \varphi, \phi \vdash \neg \varphi}{\phi \vdash \psi} \text{. Por e)}.$ $(R7) \frac{\phi \cup \varphi \vdash \psi, \phi \cup \neg \varphi \vdash \psi}{\phi \vdash \psi}. \text{ Pelo ultimo lema.}$