Шпаргалка системного администратора по сетевым инструментам Linux

June 05, 2019

В повседневные задачи системных администраторов входит работа с сетями и с подключённым к ним оборудованием. Нередко роль рабочего места администратора играет компьютер, на котором установлен какой-нибудь дистрибутив Linux. Утилиты и команды Linux, о которых пойдёт речь в материале, перевод которого мы публикуем сегодня, включают в себя список инструментов различной сложности — от простых, до продвинутых, которые предназначены для решения широкого спектра задач по управлению сетями и по диагностике сетевых неполадок.

В некоторых из рассматриваемых здесь примеров вы столкнётесь с сокращением <fqdn> (fully qualified domain name, полное доменное имя). Встретив его, замените его, в зависимости от обстоятельств, на адрес интересующего вас сайта или сервера, например, на нечто вроде servername.company.com.

Ping

Утилита ping, как можно судить по её названию, используется для проверки связи между узлами сети, между компьютером, на котором её запускают, и другой системой. Эта утилита использует протокол <u>ICMP</u>, отправляя эхозапросы, на которые отвечает удалённая система, получающая их. Использование ping, кроме того — это хороший способ проверки связности сети, проводимой в качестве первого шага диагностики сети при наличии неполадок. Команду ping можно использовать с адресами IPv4 и IPv6. Тут можно почитать подробности об IP-адресах и о работе с ними.

Примеры

```
IPv4: ping <ip address>/<fqdn>
IPv6: ping6 <ip address>/<fqdn>
```

Ping, кроме того, можно использовать для выяснения IP-адресов сайтов на основе их имён. Вот как это выглядит.

```
amodi@localhost:~ _ _ _ x

File Edit View Search Terminal Help

[amodi@localhost ~]$ ping google.com

PING google.com (172.217.7.174) 56(84) bytes of data.

64 bytes from iad30s09-in-f174.le100.net (172.217.7.174): icmp_seq=1 ttl=54 time=20.7 ms

64 bytes from iad30s09-in-f174.le100.net (172.217.7.174): icmp_seq=2 ttl=54 time=20.4 ms

^C
--- google.com ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 999ms

rtt min/avg/max/mdev = 20.451/20.608/20.766/0.213 ms

[amodi@localhost ~]$
```

Использование ping для выяснения IP-адреса сайта по его имени

Traceroute

трасетов — это приятная утилита, которая позволяет исследовать маршруты передачи данных между компьютерами. В то время как команда ping направлена на то, чтобы выяснить, можно ли установить связь между двумя узлами сети, traceroute даёт сведения об IP-адресах маршрутизаторов, через которые проходят данные от вашей системы до конечной, например — до веб-сайта или сервера. Команда traceroute обычно применяется на втором шаге диагностики сети, после команды ping.

Пример

traceroute <ip address>/<fqdn>

Telnet

Утилита telnet позволяет связаться с удалённым компьютером по протоколу Telnet и взаимодействовать с ним, используя соответствующие команды.

Пример

Для организации ceaнca <u>Telnet</u>-связи с другим компьютером используется следующая команда:

telnet <ip address>/<fqdn>

Netstat

Эта команда позволяет собирать сведения о сети и используется в ходе поиска и исправления сетевых неполадок, применяется для проверки данных о работе интерфейсов и портов, для исследования таблиц маршрутизации, для изучения информации о работе протоколов. Эта команда непременно должна присутствовать в арсенале системного администратора.

Примеры

Для того чтобы получить список всех портов, находящихся в режиме прослушивания, воспользуйтесь такой командой:

netstat -1

Следующая команда выводит сведения обо всех портах. Для того чтобы ограничиться только TCP-портами, нужно воспользоваться ключом -at, для того, чтобы получить данные об UDP-портах, используйте ключ -au.

netstat -a

Для просмотра таблиц маршрутизации воспользуйтесь такой командой:

netstat -r

Вот как выглядит результат выполнения этой команды.

Сведения о таблице маршрутизации

Вот вариант этой команды, выводящий статистику по протоколам:

```
netstat -s
```

```
stack@undercloud-0:~
[stack@undercloud-0 -]$ netstat -s
Ip:
    51869585 total packets received
    230846 forwarded
    0 incoming packets discarded
    51638713 incoming packets delivered
    51483892 requests sent out
    16 outgoing packets dropped
Icmp:
    3374 ICMP messages received
    0 input ICMP message failed.
    ICMP input histogram:
        destination unreachable: 3356
        echo requests: 7
        echo replies: 1
        timestamn request:
```

Статистика по протоколам

Следующий вариант вызова netstat позволяет узнать сведения об отправленных и полученных пакетах (transmission/receive, TX/RX) по каждому интерфейсу:

Данные об отправленных и полученных пакетах

Nmcli

Утилита nmcli отлично подходит для управления сетевыми соединениями, для выполнения настроек и для решения других подобных задач. С её помощью можно управлять программой NetworkManager и модифицировать сетевые параметры различных устройств.

Примеры

Вот как с помощью nmcli вывести список сетевых интерфейсов:

nmcli device

Так можно вывести информацию по конкретному интерфейсу:

nmcli device show <interface>

Следующий вариант вызова команды позволяет проверить подключение устройства к сети:

nmcli connection

```
root@undercloud-0:~
File Edit View Search Terminal Help
[root@undercloud-0 ~]# nmcli device
             TYPE
                                     CONNECTION
DEVICE
                          STATE
eth0
             ethernet
                          unmanaged --
            loopback
                          unmanaged --
br-ctlplane openvswitch unmanaged --
br-int
            openvswitch unmanaged
ovs-system openvswitch unmanaged --
[root@undercloud-0 ~]# nmcli connection
             UUID
                                                    TYPE
                                                              DEVICE
[root@undercloud-0 ~]#
```

Примеры использования nmcli

Эта команда позволяет отключить заданный интерфейс:

nmcli connection down <interface>

А эта позволяет включить интерфейс:

nmcli connection up <interface>

Вот пример команды, которая добавляет VLAN-интерфейс с заданным VLANномером, IP-адресом и шлюзом к указанному интерфейсу:

nmcli con add type vlan con-name <connection-name> dev <interface> id
<vlan-number> ipv4 <ip/cidr> gw4 <gateway-ip>

Маршрутизация

Существует множество команд, которые можно использовать для проверки правил маршрутизации и их настройки. Рассмотрим самые полезные из них.

Примеры

Следующая команда показывает все текущие маршруты, настроенные для соответствующих интерфейсов:

ip route

```
stack@undercloud-0:-- - - - x

File Edit View Search Terminal Help

[stack@undercloud-0 ~]$ ip route

default via 172.16.0.1 dev eth1 proto dhcp metric 101

10.0.0.0/24 dev eth2 proto kernel scope link src 10.0.0.37 metric 102

172.16.0.0/24 dev eth1 proto kernel scope link src 172.16.0.4 metric 101

172.17.0.0/16 dev docker0 proto kernel scope link src 172.17.0.1

192.168.24.0/24 dev br-ctlplane proto kernel scope link src 192.168.24.1

[stack@undercloud-0 ~]$

[stack@undercloud-0 ~]$

[stack@undercloud-0 ~]$
```

Эта команда позволяет добавить в таблицу маршрутизации шлюз, используемый по умолчанию:

route add default gw <gateway-ip>

Следующая команда добавляет в таблицу маршрутизации новый сетевой маршрут. Существует и множество других её параметров, позволяющих выполнять такие операции, как добавление маршрута и шлюза, используемых по умолчанию, и так далее.

route add -net <network ip/cidr> gw <gateway ip> <interface>

С помощью такой команды можно удалить запись о заданном маршруте из таблицы маршрутизации:

route del -net <network ip/cidr>

Вот примеры использования команды route.

```
stack@undercloud-0:-
[stack@undercloud-0 ~]$ sudo route add -net 10.0.2.0/24 gw 10.0.0.1 eth2
[stack@undercloud-0 ~]$ route -n
Kernel IP routing table
Destination
                                                                                       Use Iface
                    Gateway
                                         Genmask
                                                              Flags Metric Ref
                    172.16.0.1
0.0.0.0
                                         0.0.0.0
                                                             UG
                                                                     101
                                                                                          0 eth1
                                        255.255.255.0
255.255.255.0
255.255.255.0
255.255.0.0
10.0.0.0
10.0.2.0
                    0.0.0.0
10.0.0.1
                                                                                          0 eth2
                                                                              θ
                                                                     102
                                                             UG
                                                                     0
                                                                              Θ
                                                                                          0 eth2
172.16.0.0
                                                                     101
                    0.0.0.0
                                                                              θ
                                                                                          0 eth1
172.17.0.0
192.168.24.0
                    0.0.0.0
                                                                              Θ
                                                                     0
                                                                                          0 docker0
                                         255.255.255.0
                    0.0.0.0
                                                                     Θ
                                                                                          0 br-ctlplane
[stack@undercloud-0 ~]$ sudo route del -net 10.0.2.0/24
[stack@undercloud-0 ~]$ route -n
Kernel IP routing table
                    Gateway
Destination
                                                              Flags Metric Ref
                                                                                       Use Iface
                                         Genmask
                    172.16.0.1
                                         0.0.0.0
0.0.0.0
                                                             UG
                                                                     101
                                                                              Θ
                                                                                          0 eth1
                                        255.255.255.0
255.255.255.0
255.255.0.0
                    0.0.0.0
10.0.0.0
                                                                              θ
                                                                                          0 eth2
                                                             U
                                                                     102
172.16.0.0
                    0.0.0.0
                                                                     101
                                                                              Θ
                                                                                          0 eth1
 172.17.0.0
                    0.0.0.0
                                                                     Θ
                                                                              θ
                                                                                          0 docker0
192.168.24.0
                                         255.255.255.0
                    0.0.0.0
                                                                     0
                                                                                          0 br-ctlplane
 stack@undercloud-0 ~1$
```

Использование команды route

Вот команда, которая применяется для вывода текущей таблицы соседей. Кроме того, её можно использовать для добавления, изменения или удаления сведений о соседях:

ip neighbor

Взглянем на примеры её использования.

Вот сведения о команде ір пеідһ

```
stack@undercloud-0:- - - - ×

File Edit View Search Terminal Help

[stack@undercloud-0 ~]s ip neigh help

Usage: ip neigh { add | del | change | replace }

{ ADDR [ lladdr LLADDR ] [ nud STATE ] | proxy ADDR } [ dev DEV ]

ip neigh { show | flush } [ proxy ] [ to PREFIX ] [ dev DEV ] [ nud STATE ]

[ vrf NAME ]

STATE := { permanent | noarp | stale | reachable | none |

incomplete | delay | probe | failed }

[stack@undercloud-0 ~]s

[stack@undercloud-0 ~]s
```

Сведения о команде ip neigh

Команда arp (ARP — это сокращение от Address Resolution Protocol, протокол определения адреса) похожа на ip neighbor. Утилита arp выводит данные о соответствии IP-адресов МАС -адресам. Вот как её использовать:

arp

Вот пример её вызова.

```
stack@undercloud=0:~
[stack@undercloud-0 ~]S arp
Address
                           HWtype
                                    HWaddress
                                                          Flags Mask
                                                                                  Iface
10.0.0.215
                                    fa:16:3e:91:da:4a
                                                                                  eth2
                           ether
10.0.0.220
                                    fa:16:3e:91:da:4a
                                                          C
                                                                                  eth2
                           ether
10.0.0.107
                           ether
                                    52:54:00:d1:e0:8a
                                                          C
                                                                                  eth2
                                    52:54:00:70:43:c9
gateway
                           ether
                                                                                  eth1
    168.24.10
                                    52:54:00:41:20:7a
                           ether
                                                                                  br-ctlplane
```

Вызов команды агр

Tcpdump и Wireshark

Linux даёт в распоряжение администратора множество инструментов для захвата и анализа пакетов. Среди них,

например, tcpdump, wireshark, tshark, и другие. Они используются для захвата сетевого трафика в передаваемых системой пакетах или в пакетах, получаемых ей. Это делает их весьма ценным инструментом администратора, помогающим в деле выяснения причин различных сетевых неполадок. Тем, кто предпочитает командную строку всем остальным способам общения с компьютерами, понравится tcpdump. Тем же, кто любит графические интерфейсы, можно порекомендовать wireshark — отличный инструмент для захвата и анализа пакетов. Утилита tcpdump — это встроенное в Linux средство для захвата сетевого трафика. Его можно использовать для захвата и вывода трафика с фильтрацией по портам, протоколам, и по другим признакам.

Примеры

Такая команда показывает, в режиме реального времени, пакеты с заданного интерфейса:

```
tcpdump -i <interface-name>
```

Пакеты можно сохранять в файл, воспользовавшись флагом -w и задав имя файла:

```
tcpdump -w <output-file.> -i <interface-name>
```

Вот пример использования tcpdump.

```
stack@undercloud-0-
File Edit View Search Terminal Help

[stack@undercloud-0 ~]$ sudo tcpdump -i eth0

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes

01:07:26.033020 STP 802.1d, Config, Flags [none], bridge-id 8000.52:54:00:5b:86:3e.8004, length 35

01:07:28.033025 STP 802.1d, Config, Flags [none], bridge-id 8000.52:54:00:5b:86:3e.8004, length 35

01:07:30.033080 STP 802.1d, Config, Flags [none], bridge-id 8000.52:54:00:5b:86:3e.8004, length 35

01:07:32.033072 STP 802.1d, Config, Flags [none], bridge-id 8000.52:54:00:5b:86:3e.8004, length 35

^C

4 packets captured

4 packets received by filter

6 packets dropped by kernel

[stack@undercloud-0 ~]$
```

Использование tcpdump

Следующий вариант команды используется для захвата пакетов, приходящих с заданного IP системы-источника:

```
tcpdump -i <interface> src <source-ip>
```

Так можно захватить пакеты, идущие на заданный адрес системы-приёмника:

```
tcpdump -i <interface> dst <destination-ip>
```

Вот пример использования tcpdump для захвата пакетов для заданного номера порта, например, это может быть порт 53, 80, 8080, и так далее:

```
tcpdump -i <interface> port <port-number>
```

Здесь показано, как с помощью tcpdump захватывать пакеты заданного протокола, вроде TCP, UDP или других:

tcpdump -i <interface> <protocol>

Iptables

Утилита iptables похожа на файрвол, она поддерживает фильтрацию пакетов, что позволяет управлять трафиком, пропуская или блокируя его. Диапазон возможностей этой утилиты огромен. Рассмотрим несколько наиболее распространённых вариантов её использования.

Примеры

Следующая команда позволяет вывести все существующие правила iptables:

```
iptables -L
```

Эта команда удаляет все существующие правила:

```
iptables -F
```

Следующие команды разрешают прохождение трафика с заданного номера порта к заданному интерфейсу:

```
iptables -A INPUT -i <interface> -p tcp -dport <port-number> -m state
-state NEW, ESTABLISHED -j ACCEPT
```

```
iptables -A OUTPUT -o <interface> -p tcp -sport <port-number> -m state - state ESTABLISHED -j ACCEPT
```

Следующие команды разрешают loopback-доступ к системе:

```
iptables -A INPUT -i lo -j ACCEPT iptables -A OUTPUT -o lo -j ACCEPT
```

Nslookup

Инструмент nslookup используется для получения сведений о назначении IP-адресов сетевым ресурсам. Его можно использовать и для получения сведений с DNS-серверов, например таких, как все DNS-записи для некоего веб-сайта (ниже мы рассмотрим соответствующий пример). На nslookup похожа утилита dig (Domain Information Groper).

Примеры

Следующая команда выводит IP-адреса вашего DNS-сервера в поле Server, и, ниже, выдаёт IP-адрес искомого сайта:

```
nslookup <website-name.com>
```

Такая команда показывает все доступные записи для заданного веб-сайта или домена:

nslookup -type=any <website-name.com>

Поиск неполадок

Вот набор команд и список важных файлов, используемых для идентификации сетевых неполадок.

Примеры

- ss утилита для вывода статистической информации о сокетах.
- nmap <ip-address> имя этой команды является сокращением от Network Mapper. Она сканирует сетевые порты, обнаруживает хосты, выясняет MAC-адреса и выполняет множество других задач.
- ip addr/ifconfig -a эта команда предоставляет сведения об IP-адресах и другие данные по всем интерфейсам системы.
- ssh -vvv user@<ip/domain> такая команда позволяет подключиться по SSH к другому компьютеру, используя заданный IP-адрес или доменное имя компьютера и имя пользователя. Флаг -vvv позволяет получать подробные сведения о происходящем.
- ethtool -S <interface> данная команда позволяет вывести статистические сведения по заданному интерфейсу.
- ifup <interface> эта команда включает указанный интерфейс.
- ifdown <interface> эта команда отключает указанный интерфейс.
- systemctl restart network с помощью этой команды можно перезагрузить системную сетевую подсистему.
- /etc/sysconfig/network-scripts/<interface-name> это файл настройки интерфейсов, используемый для указания IP-адреса, сети,

шлюза и других параметров для заданного интерфейса. Здесь можно задать использование интерфейсом DHCP-режима.

- /etc/hosts данный файл содержит сведения о соответствии хостов или доменов IP-адресам, настроенные администратором.
- /etc/resolv.conf в этом файле хранятся настройки DNS.
- /etc/ntp.conf этот файл хранит настройки NTP.