(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 23 October 2003 (23.10.2003)

PCT

(10) International Publication Number WO 03/087351 A1

(51) International Patent Classification⁷: 15/01, 15/36, 15/51, C12Q 1/70

C12N 7/00,

(21) International Application Number: PCT/AU03/00432

(22) International Filing Date: 11 April 2003 (11.04.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

PS 1710 12 April 2002 (12.04.2002) AU PS 3224 26 June 2002 (26.06.2002) AU

(71) Applicants (for all designated States except US): MELBOURNE HEALTH [AU/AU]; 10th Floor, Connibere Building, Royal Melbourne Hospital, Flemington Road, Parkville, VIC 3050 (AU). AUSTIN & REPATRIATION MEDICAL CENTRE [AU/AU]; Studley Road, Heidelberg, VIC 3081 (AU). SOUTHERN HEALTH [AU/AU]; Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only):

BARTHOLOMEUSZ, Angeline, Ingrid [AU/AU]; 64
Miller Street, Carnegie, VIC 3613 (AU). LOCARNINI,
Stephen, Alister [AU/AU]; 13 Carlisle Avenue, East
St Kilda, VIC 3182 (AU). AYRES, Anna [AU/AU];
4 Ferry Crescent, West Brunswick, VIC 3056 (AU).

COLLEDGE, Danielle [AU/AU]; 12 Buttercup Road,
Bundoora, VIC 3083 (AU). SASADEUSZ, Joseph
[AU/AU]; c/- Melbourne Health, 10th Floor, Connibere

Street, Royal Melbourne Hospital, Flemington Road, Parkville, VIC3050 (AU). TILLMANN, Hans [DE/DE]; Stolzestr 41, D-30171 Hannover (DE). ANGUS, Peter, William [AU/AU]; 45 Streeton Crescent, East Ivanhoe, VIC 3079 (AU). SIEVERT, William [AU/AU]; c/Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168 (AU).

- (74) Agents: HUGHES, E, John, L et al.; Davies Collison Cave, 1 Little Collins Street, Melbourne, VIC 3000 (AU).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A

(54) Title: HEPATITIS B VIRAL VARIANTS WITH REDUSED SUSCEPTIBILITY TO NUCLEOSIDE ANALOGS AND USES THEREOF

(57) Abstract: The present invention relates generally to viral variants exhibiting reduced sensitivity to particular agents and/or reduced interactivity with immunological reagents. More particularly, the present invention is directed to hepatitis B virus (HBV) variants exhibiting complete or partial resistance to nucleoside or nucleotide analogs and/or reduced interactivity with antibodies to viral surface components including reduced sensitivity to these antibodies. The present invention further contemplates assays for detecting such viral variants, which assays are useful in monitoring anti-viral therapeutic regimens and in developing new or modified vaccines directed against viral agents and in particular HBV variants. The present invention also contemplates the use of the viral variants to screen for and/or develop or design agents capable of inhibiting infection, replication and/or release of the virus.

PATENT COOPERATION TREATY PCT

REC'D 17	JUN 2003
WIPO	PCT

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicants or agents file reference 12175980/EJH	FOR FURTHER ACTION	see Notification of Tra (Form PCT/ISA/220)	ansmittal of International Search Report as well as, where applicable, item 5 below.
International application No. PCT/AU03/00432	International filing date (da 11 April 2003	ay/month/year)	(Barliest) Priority Date (day/month/year) 12 April 2002
Applicant MELBOURNE HEALTH et a	1		
This international search report has been preparaticle 18. A copy is being transmitted to the	michational Bulcau.	arching Authority and i	s transmitted to the applicant according to
This international search report consists of a to		cited in this report	
1. Basis of the report		and an and report.	
	international search was cari	ried out on the basis of	the international application in the language in
the international search was (Rule 23.1(b)).	s carried out on the basis of a	a translation of the inter	mational application furnished to this Authority
	Ingride tipetite.		ional application, the international search was
contained in the internation	al application in written form	n.	
filed together with the intern	national application in comp	uter readable form.	
furnished subsequently to the			χ.
furnished subsequently to the			*
			go beyond the disclosure in the international
·		readable form is identic	cal to the written sequence listing has been
2. X Certain claims were found unsea	archable (See Box I).		
3. Unity of invention is lacking (Sec	е Вох П).		
With regard to the title,	he text is approved as submit	tted by the applicant.	·
	he text has been established t		
HEPATITIS B VIRAL VARIA ANALOGS AND USES THERI	NTS WITH REDUCE EOF	ED SUSCEPTIBII	LITY TO NUCLEOSIDE
. With regard to the abstract, X th	ne text is approved as submit	ted by the applicant	
su	ibmit comments to this Auth	onity.	(b), by this Authority as it appears in Box III. of mailing of this international search report,
The figure of the drawings to be published		No	·
<u></u>	suggested by the applicant.		None of the figures
	cause the applicant failed to cause this figure better chara	_	
	muo nome oenet cuats		<u>'</u>

-1-

VIRAL VARIANTS, DETECTION AND USE

BACKGROUND OF THE INVENTION

5 FIELD OF THE INVENTION

The present invention relates generally to viral variants exhibiting reduced sensitivity to particular agents and/or reduced interactivity with immunological reagents. More particularly, the present invention is directed to hepatitis B virus (HBV) variants exhibiting complete or partial resistance to nucleoside or nucleotide analogs and/or reduced interactivity with antibodies to viral surface components including reduced sensitivity to these antibodies. The present invention further contemplates assays for detecting such viral variants, which assays are useful in monitoring anti-viral therapeutic regimens and in developing new or modified vaccines directed against viral agents and in particular HBV variants. The present invention also contemplates the use of the viral variants to screen for and/or develop or design agents capable of inhibiting infection, replication and/or release of the virus.

DESCRIPTION OF THE PRIOR ART

20

Bibliographic details of the publications referred to in this specification are also collected at the end of the description.

The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that that prior art forms part of the common general knowledge in any country.

Hepatitis B virus (HBV) can cause debilitating disease conditions and can lead to acute liver failure. HBV is a DNA virus which replicates *via* an RNA intermediate and utilizes reverse transcription in its replication strategy (Summers and Mason, *Cell 29*: 403-415, 1982). The HBV genome is of a complex nature having a partially double-stranded DNA

- 2 -

structure with overlapping open reading frames encoding surface, core, polymerase and X genes. The complex nature of the HBV genome is represented in Figure 1. The polymerase consists of four functional regions, the terminal protein (TP), spacer, reverse transcriptase (rt) and ribonuclease (RNAse).

5

. 15

20

25

The polymerase gene of HBV overlaps the envelope gene, mutations in the catalytic domain of the polymerase gene can also affect the nucleotide and the deduced amino acid sequence of the envelope protein and *vice versa*. In particular, the genetic sequence for the neutralization domain of HBV known as the 'a' determinant, which is found within the HBsAg and located between amino acids 99 and 169, actually overlaps the major catalytic regions of the viral polymerase protein and in particular domains A and B.

The presence of an HBV DNA polymerase has led to the proposition that nucleoside or nucleotide analogs could act as effective anti-viral agents. Examples of nucleoside analogs currently being tested are penciclovir and its oral form (FCV) [Vere Hodge, Antiviral Chem Chemother 4: 67-84, 1993; Boyd et al., Antiviral Chem Chemother. 32: 358-363, 1987; Kruger et al., Hepatology 22: 219A, 1994; Main et al., J. Viral Hepatitis 3: 211-215, 1996], Lamivudine[(-)-β-2'-deoxy-3'-thiacytidine]; (3TC or LMV) [Severini et al., Antimicrobial Agents Chemother. 39: 430-435, 1995; Dienstag et al., New England J Med 333: 1657-1661, 1995]. New nucleoside or nucleotide analogs which have already progressed to clinical trials include the pyrimidines Emtricitabine, ((-)-β-L-2'-3'-dideoxy-5-fluoro-3'-thiacydidine; FTC), the 5-fluoro derivative of 3TC, and Clevudine (1-(2fluoro-5-methyl- β -L-arabino-furanosyl) uracil; L-FMAU), a thymidine analog. Like 3TC, these are pyrimidine derivatives with an unnatural "L"- configuration. Several purine derivatives have also progressed to clinical trials; they include Entecavir (BMS-200, 475; ETV), a carbocyclic deoxyguanosine analog, diaminopurine dioxolane (DAPD), an oral pro-drug for dioxolane guanine ((-)-β-D-2-aminopurine dioxolane; DXG) and Adefovir dipivoxil, an oral prodrug for the acyclic deoxyadenosine monophosphate nucleoside analog Adefovir (9-[phosphonyl-methoxyethyl]-adenine; PMEA). Other drugs in preclincial and clinical trials include include FLG [Medivir], ACH-126,443 (L-d4C) [Archillion Pharmaceuticals], ICN 2001-3 (ICN) and Racivir (RCV) [Pharmassett].

- 3 -

Whilst these agents are highly effective in inhibiting HBV DNA synthesis, there is the potential for resistant mutants of HBV to emerge during long term antiviral chemotherapy. In patients on prolonged LMV therapy, key resistance mutations are selected in the rt domain within the polymerase at rtM204I/V +/- rtL180M as well as other mutations. The nomenclature used for the polymerase mutations is in accordance with that proposed by Stuyver et al., 2001, supra. LMV is a nucleoside analog that has been approved for use against chronic HBV infection. LMV is a particularly potent inhibitor of HBV replication and reduces HBV DNA titres in the sera of chronically infected patients after orthotopic liver transplantation (OLT) by inhibiting viral DNA synthesis. LMV monotherapy seems unlikely to be able to control HBV replication in the longer term. This is because emergence of LMV-resistant strains of HBV seems almost inevitable during monotherapy.

Adefovir dipivoxil (ADV: formerly, bis-pom PMEA) is an orally available prodrug of the acyclic deoxyadenosine monophosphate analog adefovir (formerly, PMEA) (Figure 2). ADV is also a potent inhibitor of HBV replication and has recently been given FDA approval for use against chronic HBV infection. Adefovir dipivoxil differs from other agents in this class in that it is a nucleotide (vs. nucleoside) analog and as such bypasses the first phosphorylation reaction during drug activation. This step is often rate-limiting.

20 Adefovir dipivoxil has demonstrated clinical activity against both wild-type and lamivudine-resistant strains of HBV and is currently in phase III clinical Testing (Gilson et al., J Viral Hepat 6: 387-395, 1999; Perrillo et al., Hepatology 32: 129-134, 2000; Peters et al., Transplantation 68: 1912-1914, 1999; Benhamou et al., Lancet 358: 718-723, 2001). During phase II studies a 30 mg daily dose of adefovir dipivoxil resulted in a mean 4 log10 decrease in viremia over 12 weeks (Heathcote et al., Hepatology 28: A620, 1998).

ADV is a substituted acyclic nucleoside phosphonate. This class of compounds also includes tenofovir disoproxil furnarate (also referred to as tenofovir DF, or tenofovir, or (TFV) or 9-R-(2-phosphonomethoxypropyl)adenine (PMPA) and is marketed as Viread by Gilead sciences).

30

10

TFV has antiviral activity against both HBV and HIV (Ying et al., J Viral Hepat. 7(2): 161-165, 2000; Ying et al., J. Viral Hepat. 7(1): 79-83, 2000; Suo et al., J Biol Chem. 273(42): 27250-27258. 1998).

5 FTC has activity against HBV and HIV (Frick et al., Antimicrob Agents Chemother 37: 2285-2292, 1993).

Nucleoside or nucleotide analog therapy may be administered as monotherapy or combination therapy where two or more nucleoside or nucleotide analogs may be administered. The nucleoside or nucleotide analogs may also be administered in combination with other antiviral agents such as interferon or hepatitis B immunoglobulin (HBIG).

There is a need to monitor for the emergence of nucleoside/nucleotide-analog- or antibodyresistant strains of HBV and to develop diagnostic protocols to detect these resistant
viruses and/or to use them to screen for and/or develop or design agents having properties
making them useful as anti-viral agents. Defective forms of these resistant strains or
antigenic components therefrom are also proposed to be useful in the development of
therapeutic vaccine compositions as are antibodies directed to viral surface components.

- 5 **-**

SUMMARY OF THE INVENTION

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers.

Nucleotide and amino acid sequences are referred to by a sequence identifier number (SEQ ID NO:). The SEQ ID NOs: correspond numerically to the sequence identifiers <400>1 (SEQ ID NO:1), <400>2 (SEQ ID NO:2), etc. A summary of the sequence identifiers is provided in Table 1. A sequence listing is provided after the claims.

Specific mutations in an amino acid sequence are represented herein as "Xaa₁nXaa₂" where Xaa₁ is the original amino acid residue before mutation, n is the residue number and Xaa₂ is the mutant amino acid. The abbreviation "Xaa" may be the three letter or single letter (i.e. "X") code. An "rt" before "Xaa₁nXaa₂" means "reverse transcriptase". An "s" means an envelope gene. The amino acid residues for HBV DNA polymerase are numbered with the residue methionine in the motif Tyr Met Asp Asp (YMDD) being residue number 204 (Stuyver et al., Hepatology 33: 751-757, 2001). The amino acid residues for hepatitis B virus surface antigen are number according to Norder et al. (J. Gen. Virol. 74: 341-1348, 1993). Both single and three letter abbreviations are used to define amino acid residues and these are summarized in Table 2.

In accordance with the present invention, the selection of HBV variants is identified in patients (Patient A, C and D) with chronic HBV infection treated with ADV and liver transplant patients (Patients B and E) treated with both ADV and LMV post-OLT or ADV post-transplant. HBV variants from Patients F, G and H were also identified following similar treatments. Variants of HBV are identified during ADV or combination ADV and LMV treatment with mutations in the HBV DNA polymerase gene which reduce the sensitivity of HBV to this nucleoside analog. Consequently, HBV rt variants are contemplated which are resistant to, or which exhibit reduced sensitivity to, ADV,

- 6 -

LMV, TFC, ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agentsor combinations thereof. Corresponding mutations in the surface antigen also occur. The identification of these HBV variants is important for the development of assays to monitor ADV, LMV, FTC and/or TFV resistance and/or resistance to other nucleoside or nucleotide analogs or other anti-HBV agents or combinations thereof and to screen for agents which are useful as alternative therapeutic agents.

10

Reference herein to "anti-HBV agents" includes nucleoside and nucleotide analogs as well as immunological reagents (e.g. antibodies to HBV surface components) and chemical, proteinaceous and nucleic acid agents which inhibit or otherwise interfere with viral replication, maintenance, infection, assembly or release.

15

25

30

The detection of such HBV variants is particularly important in the management of therapeutic protocols including the selection of appropriate agents for treating HBV infection. The method of this aspect of the present invention is predicated in part on monitoring the development in a subject of an increased HBV load in the presence of a nucleoside or nucleotide analog or other anti-HBV agents or combinations thereof. The clinician is then able to modify an existing treatment protocol or select an appropriate treatment protocol accordingly.

Accordingly, one aspect of the present invention is directed to an isolated HBV variant comprising a nucleotide mutation in a gene encoding a DNA polymerase resulting in at least one amino acid addition, substitution and/or deletion to the DNA polymerase and which exhibits decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combinations thereof. The variant HBV

- 7 -

comprises a mutation in an overlapping open reading frame in its genome in a region defined by one or more of domains F and G and domain A through to E of HBV DNA polymerase.

Another aspect of the present invention provides an isolated HBV variant comprising a nucleotide mutation in the S gene resulting in at least one amino acid addition, substitution and/or deletion to the surface antigen and which exhibits decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, or ADV and FTC and LMV and TFV, ADV and LMV and FTC, and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combinations thereof.

Useful mutants in the rt region include, in one embodiment, rtS21A, rtL122F, rtN124H, rtH126R, rtT28N, rtP130Q, rtD131N and rtY135C; in another embodiment, rt/N/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M; in a further embodiment, rtN53D, rtY54H, rtS57P, rtL91I, rtS116P, rtF122L, rtY124H, rtV134D, rtY141Y/F, rtL145M, rtF151F/Y, rtA181T, rtK212R, rtL217R, rtS219A, rtN236T and rtN238D; in yet another embodiment, rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A; and in yet another embodiment, rtH90D and rtL/F108L; and in still a further embodiment, rtL157L/M, rtA181V and rtV207I and in yet a further embodiment, rtL80V, rtP109S, rtI163V, rtL229M and rtN/H/A/S/Q238K; and in another embodiment, rtS78S/T, rtN118N/S, rtN139N/K, rtV142E, rtA181A/T, rtI204M, rtQ/P/S/Stop215Q, rtE218K/E and rtN238N/H or a combination thereof or an equivalent mutation.

25

Other HBV variants are also contemplated with mutations in rt at rtK32, rtN33, rtP34, rtH35 and rtT37 (these are upstream of the F domain of the DNA polymerase), rtP59, rtK60, rtF61, rtA62 and rtV63 (these are located between the F and A domains), rtD83, rtV84, rtS85, rtA86, rtY89, rtH90 and rtI/L91 (these are located within the A domain and the region immediately prior to and following), rtP177, rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184 (these are located in the B domain), rtM204 and rtY203 (these

are located in the C domain), rt235, rt236, rt237, rt238 and rt239 (these are located in the D domain) and rt247, rt248, rt249, rt250 and rt251 (these are located in the E domain) or a combination thereof or an equivalent mutation.

5 Useful mutants are provided below (see also Tables 16 and 17):

K32M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; N33D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; P34S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; H35J/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; T37W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P59S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; K60M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; F61P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; A62R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; 15 V63A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; D83C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion; V84A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; S85T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; A86R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/YV/deletion; Y89V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; H90I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; I/L91K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/deletion; P177S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; F178P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; L179K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; L180K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; A181R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; Q183E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; F183P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; 30

T184W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion;

-9-

Y203V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; M204F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; L235K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N236D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; 5 T237W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P237S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; N238D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H238I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; A238R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; 10 S239T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; Q238E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; K239M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; L247K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N248D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H248I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; F249P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; M250F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; G251H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/deletion; and V251A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion.

20

Reference above to "deletion" means that the first mentioned amino acid before the residue number has been deleted.

Useful mutations in the S gene include, in one embodiment, sP120T, sM125T and sT127A; in another embodiment, T118R, sM133T, sF134V sI195M, sS207R and sY225Y/C; in a further embodiment, sS126T, sM133L/M, sS143S/T, sD144A sG145A and sW172Stop; in yet a further embodiment, sN40S, sC69 Stop, sM75I, sL88P, sT118A, sW182stop, sW196L, sY206H and sY225F; and in yet another embodiment, sI81M and sP214Q; and in still another embodiment, sF83S, sL173F and sW199L; and in still yet another embodiment, sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C; and in yet another embodiment, sC69Stop/C, sC76Y sI110V/I, sY134N,

- 10 -

sW172Stop/W, sW196Stop and sS207R or a combination thereof or an equivalent mutation.

The present invention further contemplates a method for determining the potential for an 5 HBV to exhibit reduced sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof by isolating DNA or corresponding mRNA from the HBV and screening for a mutation in the nucleotide sequence encoding HBV DNA polymerase resulting in at least one amino acid substitution, deletion and/or addition in any one or more of domains F and G and domains A through to E or a region proximal thereto of the DNA polymerase and associated with resistance or decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof. The presence of such a mutation is an indication of the likelihood of resistance to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof.

The present invention also provides a composition comprising a variant HBV resistant to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, or ADV and FTC and LMV and TFV, ADV and LMV and FTC, and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof or an HBV surface antigen from the variant HBV or a recombinant or

10

derivative form thereof or its chemical equivalent and one or more pharmaceutically acceptable carriers and/or diluents.

Yet another aspect of the present invention provides a use of the aforementioned composition or a variant HBV comprising a nucleotide mutation in a gene encoding a DNA polymerase resulting in at least one amino acid addition, substitution and/or deletion to the DNA polymerase and a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof in the manufacture of a medicament for the treatment and/or prophylaxis of hepatitis B virus infection.

15 The present invention also contemplates a method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside or nucleotide analog or other anti-HBV agents or by isolating DNA or corresponding mRNA from the HBV and screening for a mutation in the nucleotide sequence encoding the DNA polymerase wherein the presence of the following mutations in the rt region: in one embodiment, rtS21A, rtL122F, rtN124H, rtH126R, rtT28N, rtP130Q, rtD131N and rtY135C; in another embodiment, 20 rt/N/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M; in a further embodiment, rtN53D, rtY54H, rtS57P, rtL91I, rtS116P, rtF122L, rtY124H, rtV134D, rtY141Y/F, rtL145M, rtF151F/Y, rtA181T, rtK212R, rtL217R, rtS219A, rtN236T and rtN238D; in yet another embodiment, rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A; in still another embodiment, rtH90D and rtL/F108L, in even yet another 25 embodiment, rtL157L/M, rtA181V and rtV207I; in still yet another embodiment, rtL80V, rtP109S, rtI163V, rtL229M and rtN/H/A/S/Q238K; in another embodiment, rtS78S/T, rtN118N/S, rtN139N/K, rtV142E, rtA181A/T, rtI204M, rtQ/P/S/Stop215Q, rtE218K/E and rtN238N/H; in a further embodiment, rtK32, rtN33, rtP34, rtH35 and rtT37; in yet another embodiment, rtP59, rtK60, rtF61, rtA62 and rtV63; in still another embodiment, rtD83, rtV84, rtS85, rtA86, rtY89, rtH90 and rtI/L91; in even yet another embodiment, rtP177,

-12 -

rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184; in still yet another embodiment, rtM204 and rtY203; in another embodiment, rt235, rt236, rt237, rt238 and rt239; in a further embodiment, rt247, rt248, rt249, rt250 and rt251 or combinations thereof or an equivalent one or more other mutation is indicative of a variant which exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof.

10

15

20

25

30

Still a further methodology comprises screening for a mutation in the nucleotide sequence encoding the envelope genes (s) wherein the presence of the following mutations in the S gene: in one embodiment, sP120T, sM125T and sT127A; in another embodiment, sT118R, sM133T, SF134V, sI195M, sS207R and sY225Y/C; in a further embodiment, sS126T, sM133L/M, sS143S/T, sD144A, sG145A and sW172Stop in yet another embodiment, sN40S, sC69Stop, sM75I, sL88P, sT118A, sW182Stop, sW196L, sY206H and sY225F; in still yet another embodiment, s181M and sP214Q; in another embodiment, sF83S, sL173F and sW199L; in a further aspect, sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C; in a further embodiment, sC69Stop/C, sC76Y, sI110V/I, sY134N, sW172Stop/W, sW196Stop and sS207R or combinations thereof or an equivalent one or more other mutation is indicative of a variant which exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof.

Preferably, the variants are in an isolated form such that they have undergone at least one purification step away from naturally occurring body fluid. Alternatively, the variants may be maintained in isolated body fluid or may be in DNA form. The present invention also contemplates infectious molecular clones comprising the genome or parts thereof from a

- 13 -

variant HBV. The detection of HBV or its components in cells, cell lysates, cultured supernatant fluid and bodily fluid may be by any convenient means including any nucleic acid-based detection means, for example, by nucleic acid hybridization techniques or *via* one or more polymerase chain reactions (PCRs). The term "bodily fluid" includes any fluid derived from the blood, lymph, tissue or organ systems including serum, whole blood, biopsy and biopsy fluid, organ explants and organ suspension such as liver suspensions.

Another aspect of the present invention is directed to a variant HBV comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or a truncation compared to a surface antigen from a reference or wild type HBV and wherein an antibody generated to the reference or wild type surface antigen exhibits an altered immunological profile relative to the HBV variant. One altered profile includes a reduced capacity for neutralizing the HBV. More particularly, the surface antigen of the variant HBV exhibits an altered immunological profile compared to a pre-treatment HBV where the variant HBV is selected for by a nucleoside or nucleotide analog or other anti-HBV agents of the HBV DNA polymerase. The variant HBV of this aspect of the invention may also comprise a nucleotide sequence comprising a single or multiple nucleotide substitution, addition and/or deletion compared to a pre-treatment HBV.

20

25

15

10

The present invention extends to an isolated HBsAg or a recombinant form thereof or derivative or chemical equivalent thereof corresponding to the variant HBV. Generally, the HBsAg or its recombinant or derivative form or its chemical equivalent comprises an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or a truncation compared to an HBsAg from a reference HBV and wherein an antibody directed to a reference HBV exhibits an altered immunological profile to an HBV carrying said variant HBsAg. In one embodiment, the altered immunological profile comprises a reduction in the ability to neutralize the variant HBV.

30 Another aspect of the present invention contemplates a method for detecting an agent which exhibits inhibitory activity to an HBV by generating a genetic construct comprising

a replication competent-effective amount of the genome from the HBV contained in a plasmid vector and then transfecting said cells with said construct, contacting the cells, before, during and/or after transfection, with the agent to be tested, culturing the cells for a time and under conditions sufficient for the HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said agents; and the subjecting the cells, cell lysates or culture supernatant fluid to viral- or viralcomponent-detection means to determine whether or not the virus has replicated, expressed genetic material and/or assembled and/or been released in the presence of the agent. In a preferred embodiment, the plasmid vector in a baculovirus vector and the method comprises generating a genetic construct comprising a replication competent-effective amount of the genome from the HBV contained in or fused to an amount of a baculovirus genome effective to infect cells and then infecting said cells with said construct, contacting the cells, before, during and/or after infection, with the agent to be tested, culturing the cells for a time and under conditions sufficient for the HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said agent and then subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the virus has replicated, expressed genetic material and/or assembled and/or been released in the presence of the agent.

20

10

15

In connection with these methods, the plasmid vector may include genes encoding part or all of other viral vectors such as baculovirus vectors or adenovirus vectors (see Ren and Nassal, *J. Virol.* 75(3): 1104-1116, 2001).

In an alternative embodiment, the method comprises generating a continuous cell line comprising an infectious copy of the genome of the HBV in a replication competent effective amount such that said infectious HBV genome is stably integrated into said continuous cell line such as but not limited to the 2.2.15 or AD cell line, contacting the cells with the agent to be tested, culturing the cells for a time and under conditions sufficient for the HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to the agent and then subjecting the cells,

20

25

cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the virus has replicated, expressed genetic material and/or assembled and/or been released in the presence of the agent.

In an alternative embodiment, the present invention also contemplates a method for detecting an agent which exhibits inhibitory activity to an HBV polymerase in an *in vitro* polymerase assay. The HBV polymerase activity can be examined using established assays (Gaillard *et al.*, Antimicrob Agents Chemother. 46(4): 1005-1013, 2002; Xiong *et al.*, Hepatology. 28(6): 1669-73, 1998). The HBV polymerase may be a wild-type or reference HBV polymerase or mutant HBV polymerase.

The identification of viral variants enables the production of vaccines comprising particular recombinant viral components such as polymerases or envelope genes PreS1, PreS2, S encoding for L, M, S proteins as well as therapeutic vaccines comprising defective HBV variants. Rational drug design may also be employed to identify or generate therapeutic molecules capable of interacting with a polymerase or or envelope genes PreS1, PreS2, S encoding for L, M, S proteins or other component of the HBV. Such drugs may also have diagnostic potential. In addition, defective HBV variants may also be used as therapeutic compositions to generate an immune response against the same, similar or homologous viruses. Alternatively, antibodies generated to the HBV variants or surface components thereof may be used in passive immunization of subjects against infection by HBV variants or similar or homologous viruses. Furthermore, agents such as nucleoside or nucleotide analogs, RNAi or siRNA molecules, antisense or sense oligonucleotides, chemical or proteinaceous molecules having an ability to down-regulate the activity of a component of HBV and inhibit replication, maintenance, infection, assembly or release are contemplated by the present invention.

A summary of the abbreviations used throughout the subject specification are provided in Table 3.

A summary of sequence identifiers used throughout the subject specification is provided in Table 1.

TABLE 1
Summary of sequence identifiers

SEQUENCE ID NO:	DESCRIPTION	
1	Formula I	
2	Formula II	
3	OS1 primer	
4	TTA3 primer	
5	JM primer	
6	TTA4 primer	
7	OS2 primer	
8	sense primer	
9	antisense primer	
10	internal regions primer	
11	internal regions primer	
12	PC1 forward primer	
13	PC2 reverse primer	
14	HBV-specific molecular beacon primer	
15	ILA 1 F, A-E (Figure 4)	
16	ILA 2 F, A-E (Figure 4)	
17	ILA 3 F, A-E (Figure 4)	
18	ILA 4 F, A-E (Figure 4)	
19	Pol Trans Pre 1 (Figure 5)	
20	Pol Trans 2 (Figure 5)	
21	Pol Trans 3 (Figure 5)	
22	Pol Trans 4 (Figure 5)	
23	HBsAg Trans of Pre 1 (Figure 6)	

5

SEQUENCE ID NO:	DESCRIPTION	
24	HBsAg Trans of 2 (Figure 6)	
25	HBsAg Trans of 3 (Figure 6)	
26	HBsAg Trans of 4(Figure 6)	
27	S0 (Figure 7)	
28	S6 (Figure 7)	
29	S8 (Figure 7)	
30	S12 (Figure 7)	
31	S15 (Figure 7)	
32	Pol Trans S0 (Figure 8)	
33	Pol Trans S6 (Figure 8)	
34	Pol Trans S8 (Figure 8)	
35	Pol Trans S12 (Figure 8)	
36	Pol Trans S15 (Figure 8)	
37	HBsAg Trans of S0 (Figure 9)	
38	HBsAg Trans of S6 (Figure 9)	
39	HBsAg Trans of S8 (Figure 9)	
40	HBsAg Trans of S12 (Figure 9)	
41	HBsAg Trans of S15 (Figure 9)	
42	Nucleotide sequence Patient C (Figure 10)	
43	POL Trans of Patient C (Figure 11)	
44	HBsAg Trans of Patient C (Figure 12)	
45	Nucleotide sequence of Patient D (Figure 13)	
46	Pol Trans of Patient D (Figure 14)	
47	HBsAg Trans of Patient D (Figure 15)	
48	Nucleotide sequence of Patient E (Figure 16)	
49	Pol Trans of Patient E (Figure 17)	
50	HBsAg Trans of Patient E (Figure 18)	
51	Nucleotide sequence of Patient F (Figure 20)	
52	Deduced sequence of DNA polymerase of Patient F (Figure 21)	

WO 03/087351

SEQUENCE ID NO:	DESCRIPTION	
53	HBsAg Trans of Patient F (Figure 22)	
54	Nucleotide sequence of Patient G (Figure 23)	
55	Deduced sequence of DNA polymerase of Patient G (Figure 24)	
56	HBsAg Trans of Patient G (Figure 25)	
57	Nucleotide sequence of Patient H (Figure 26)	
58	Deduced sequence of DNA polymerase of Patient H (Figure 27)	
59	HBsAg Trans of Patient H (Figure 28)	

TABLE 2
Single and three letter amino acid abbreviations

Amino Acid	Three-letter Abbreviation	One-letter symbol
Alanine	Ala	A
Arginine	· Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	Ď.
Cysteine	Cys	С
Glutamine	Gln	Q
Glutamic acid	Glu	Е .
Glycine	Gly	G .
Histidine	His	Н
Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F .
Proline	Pro	P
Serine	Ser	S
Threonine	The	T
Tryptophan	Trp	W
Tyrosine	-Tyr	. Y
Valine	Val	V
Any residue	Xaa	Х

- 20 -

A list of abbreviations used throughout the subject specification are provided in Table 3.

TABLE 3

Abbreviations

5 ,

ABBREVIATION	DESCRIPTION	
3TC	(LMV); (-)-β-2'-deoxy-3'-thiacytidine	
ADV	adefovir dipivoxil	
DAPD	diaminopurine dioxalone	
DXG	dioxolane guanine	
ETV	entecavir	
FAM	famciclovir	
FCV	famciclovir	
FTC	emtricitabine	
HBIG	hepatitis B immunoglobulin	
HBsAg	hepatitis B surface antigen	
HBV	hepatitis B virus	
LMV	lamividuine	
PMEA	9-[phosphonyl-methoxyethyl]-adenine; adefovir	
PMPA	9-R-(2-phosphonomethoxypropyl)adenine	
RNase	ribonuclease	
rt ("rt" before "Xaa ₁ nXaa ₂ " means reverse transcriptase)	reverse transcriptase	
s (as used in a mutation, e.g. sF134V)	envelope gene	
TFV	tenofovir disoproxil fumarate	
YMDD	Tyr Met Asp Asp-a motif in the polymerase protein; where the Met residue is designated residue number 204 of the reverse transcriptase	

- 21 -

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a diagrammatic representation showing the partially double stranded DNA HBV genome showing the overlapping open reading frames encoding surface (S), core (C), polymerase (P) and X gene.

Figure 2 is a diagrammatic representation of the chemical structure of ADV.

Figure 3 is a diagrammatic representation of a computer system for determining the potency value (P_A) of a variant HBV.

Figure 4 is a representation showing comparison of the HBV nucleotide sequence encoding the catalytic region of the polymerase gene in sequential samples from Patient A during ADV treatment.

15

Figure 5 is a representation showing comparison of the deduced amino acid sequence of the catalytic region of the polymerase gene in sequential samples from Patient A during ADV therapy.

Figure 6 is a representation showing comparison of the deduced amino acid sequence of the envelope gene in sequential samples from Patient A during ADV therapy.

Figure 7 is a representation showing comparison of the HBV nucleotide sequence encoding the catalytic region of the polymerase gene in sequential samples from Patient B during ADV and LMV treatment.

Figure 8 is a representation showing comparison of the deduced amino acid sequence of the catalytic region of the polymerase gene in sequential samples from Patient B during ADV and LMV therapy.

25

WO 03/087351

25

Figure 9 is a representation showing comparison of the deduced amino acid sequence of the envelope gene in sequential samples from Patient B during ADV and LMV therapy.

Figure 10 is a representation showing comparison of the HBV nucleotide sequence encoding the catalytic region of the polymerase gene in sequential samples from Patient C during ADV treatment.

Figure 11 is a representation showing comparison of the deduced amino acid sequence of the catalytic region of the polymerase gene in sequential samples from Patient C during 10 ADV therapy.

Figure 12 is a representation showing comparison of the deduced amino acid sequence of the envelope gene in sequential samples from Patient C during ADV therapy.

15 Figure 13 is a representation showing comparison of the HBV nucleotide sequence encoding the catalytic region of the polymerase gene in sequential samples from Patient D during ADV treatment.

Figure 14 is a representation showing comparison of the deduced amino acid sequence of the catalytic region of the polymerase gene in sequential samples from Patient D during ADV therapy.

Figure 15 is a representation showing comparison of the deduced amino acid sequence of the envelope gene in sequential samples from Patient D during ADV therapy.

Figure 16 is a representation showing comparison of the HBV nucleotide sequence encoding the catalytic region of the polymerase gene in sequential samples from Patient E during ADV treatment.

.10

25

- Figure 17 is a representation showing comparison of the deduced amino acid sequence of the catalytic region of the polymerase gene in sequential samples from Patient E during ADV therapy.
- Figure 18 is a representation showing comparison of the deduced amino acid sequence of the envelope gene in sequential samples from Patient E during ADV therapy.
 - Figure 19 is a diagrammatic representation of a system used to carry out the instructions encoded by the storage medium.
 - Figure 20 is a representation showing the nucleotide sequence of envelope/rt region of an HBV isolated from Patient F having ADV therapy.
- Figure 21 is a representation showing the deduced amino acid sequence of DNA polymerase encoded by the nucleotide sequence shown in Figure 20.
 - Figure 22 is a representation showing the deduced amino acid sequence of HBsAg encoded by the nucleotide sequence shown in Figure 20.
- Figure 23 is a representation showing the nucleotide sequence of envelope/rt region of an HBV isolated from Patient G having ADV therapy.
 - Figure 24 is a representation showing the deduced amino acid sequence of DNA polymerase encoded by the nucleotide sequence shown in Figure 23.
 - Figure 25 is a representation showing the deduced amino acid sequence of HBsAg encoded by the nucleotide sequence shown in Figure 23.
- Figure 26 is a representation showing the nucleotide sequence of envelope/rt region of an HBV isolated from Patient H having ADV therapy.

Figure 27 is a representation showing the deduced amino acid sequence of DNA polymerase encoded by the nucleotide sequence shown in Figure 26.

Figure 28 is a representation showing the deduced amino acid sequence of HBsAg encoded by the nucleotide sequence shown in Figure 26.

- 25 -

DETAILED DESCRIPTION OF THE INVENTION

The present invention is predicated in part on the identification and isolation of nucleoside or nucleotide analog-resistant variants of HBV following treatment of patients with either ADV or LMV or more particularly ADV and LMV, or optionally other nucleoside analogs or nucleotide analogs or other anti-HBV agents such as TFV or FTC. In particular, ADV or ADV and LMV treated patients gave rise to variants of HBV exhibiting decreased or reduced sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV. . Reference herein to "decreased" or "reduced" in relation to sensitivity to ADV and/or LMV and/or FTC and/or TFV includes and encompasses a complete or substantial resistance to the nucleoside or nucleotide analog or other anti-HBV agents as well as partial resistance and includes a replication rate or replication efficiency which is more than a wild-type in the presence of a nucleoside or nucleotide analog or other anti-HBV agents. In one aspect, this is conveniently measured by an increase in viral load during treatment, or alternatively, there is no substantial decrease in HBV DNA viral load from pre-treatment HBV DNA levels during treatment (i.e., non-response to treatment).

20

25

30

10

15

Before describing the present invention in detail, it is to be understood that unless otherwise indicated, the subject invention is not limited to specific formulations of components, manufacturing methods, dosage regimens, or the like, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.

It must be noted that, as used in the subject specification, the singular forms "a", "an" and "the" include plural aspects unless the context clearly dictates otherwise. Thus, for example, reference to "a nucleoside or nucleotide analog" includes a single analog, as well as two or more analogs; reference to "an HBV variant" includes reference to two or more HBV variants; and so forth.

- 26 -

In describing and claiming the present invention, the following terminology is used in accordance with the definitions set forth below.

The terms "analog", "compound", "active agent", "pharmacologically active agent", "medicament", "active" and "drug" are used interchangeably herein to refer to a chemical compound that induces a desired effect such as inhibit viral replication, infection, maintenance, assembly and/or the function of an enzyme such as HBV DNA polymerase. The terms also encompass pharmaceutically acceptable and pharmacologically active ingredients of those active agents specifically mentioned herein including but not limited to salts, esters, amides, prodrugs, active metabolites, analogs and the like. When the terms "analog", "compound", "active agent", "pharmacologically active agent", "medicament", "active" and "drug" are used, then it is to be understood that this includes the active agent per se as well as pharmaceutically acceptable, pharmacologically active salts, esters, amides, prodrugs, metabolites, analogs, etc.

The present invention contemplates, therefore, compounds useful in inhibiting HBV replication, infection, maintenance, assembly and/or the function of an enzyme such as HBV DNA polymerase. Reference to an "analog", "compound", "active agent", "pharmacologically active agent", "medicament", "active" and "drug" such as ADV, LMV, FTC and/or TFV includes combinations of two or more actives such as ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV. A "combination" also includes a two-part or more such as a multi-part anti-HBV therapeutic composition where the agents are provided separately and given or dispensed separately or admixed together prior to dispensation.

20

25

The terms "effective amount" and "therapeutically effective amount" of an agent as used
herein mean a sufficient amount of the agent to provide the desired therapeutic or
physiological effect of inhibiting HBV replication, infection, maintenance, assembly

and/or the function of an enzyme such as HBV DNA polymerase. Furthermore, an "effective HBV-inhibiting amount" or "effective symptom-ameloriating amount" of an agent is a sufficient amount of the agent to directly or indirectly inhibit replication, infection, maintenance, assembly and/or the function of an enzyme such as HBV DNA polymerase. Undesirable effects, e.g. side effects, are sometimes manifested along with the desired therapeutic effect; hence, a practitioner balances the potential benefits against the potential risks in determining what is an appropriate "effective amount". The exact amount required will vary from subject to subject, depending on the species, age and general condition of the subject, mode of administration and the like. Thus, it may not be possible to specify an exact "effective amount". However, an appropriate "effective amount" in any individual case may be determined by one of ordinary skill in the art using only routine experimentation.

By "pharmaceutically acceptable" carrier, excipient or diluent is meant a pharmaceutical vehicle comprised of a material that is not biologically or otherwise undesirable, i.e. the material may be administered to a subject along with the selected active agent without causing any or a substantial adverse reaction. Carriers may include excipients and other additives such as diluents, detergents, coloring agents, wetting or emusifying agents, pH buffering agents, preservatives, and the like.

20

10

15

Similarly, a "pharmacologically acceptable" salt, ester, emide, prodrug or derivative of a compound as provided herein is a salt, ester, amide, prodrug or derivative that this not biologically or otherwise undesirable.

The terms "treating" and "treatment" as used herein refer to reduction in severity and/or frequency of symptoms, elimination of symptoms and/or underlying cause, prevention of the occurrence of symptoms and/or their underlying cause, and improvement or remediation of damage in relation to HBV infection. Thus, for example, "treating" a patient involves prevention of HBV infection as well as treatment of a clinically HBV symptomatic individual by inhibiting HBV replication, infection, maintenance, assembly and/or the function of an enzyme such as HBV DNA polymerase. Thus, for example, the

- 28 -

present method of "treating" a patient with HBV infection or with a propensity for one to develop encompasses both prevention of HBV infection as well as treating HBV infection or symptoms thereof. In any event, the present invention contemplates the treatment or prophylaxis of HBV infection.

5

10

15

20

25

"Patient" as used herein refers to an animal, preferably a mammal and more preferably a primate including a lower primate and even more preferably, a human who can benefit from the formulations and methods of the present invention. A patient regardless of whether a human or non-human animal may be referred to as an individual, subject, animal, host or recipient. The compounds and methods of the present invention have applications in human medicine, veterinary medicine as well as in general, domestic or wild animal husbandry. For convenience, an "animal" includes an avian species such as a poultry bird (including ducks, chicken, turkeys and geese), an aviary bird or game bird. The condition in a non-human animal may not be a naturally occurring HBV infection but HBV-like infection may be induced.

As indicated above, the preferred animals are humans, non-human primates such as marmossets, baboons, orangatangs, lower primates such as tupia, livestock animals, laboratory test animals, companion animals or captive wild animals. A human is the most preferred target. However, non-human animal models may be used.

Examples of laboratory test animals include mice, rats, rabbits, guinea pigs and hamsters. Rabbits and rodent animals, such as rats and mice, provide a convenient test system or animal model as do primates and lower primates. Livestock animals include sheep, cows, pigs, goats, horses and donkeys. Non-mammalian animals such as avian species, zebrafish, amphibians (including cane toads) and *Drosophila* species such as *Drosophila* melanogaster are also contemplated. Instead of a live animal model, a test system may also comprise a tissue culture system.

30 Accordingly, one aspect of the present invention is directed to an isolated HBV variant wherein said variant comprises a nucleotide mutation in a gene encoding a DNA

polymerase resulting in at least one amino acid addition, substitution and/or deletion to said DNA polymerase and wherein said variant exhibits decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, or ADV and LMV and FTC, ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof.

HBV is a member of the Hepdnaviridae that includes also avian hepatitis viruses such as Duck hepatitis B virus (DHBV) and hepatitis viruses from mammals such as woodchuck hepatitis virus (WHV). These viruses have similarity to HBV and may be used in *in vitro* and *in vivo* or animal model systems to investigate the equivalent HBV mutants and antiviral sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, or ADV and LMV and TFV, and LMV and TFV, and LMV and TFV, and LMV and TFV, and LMV and LMV and TFV, and LMV and LMV and TFV, and LMV and LMV and LMV and LMV and LMV.

An "anti-HBV agent" includes a nucleoside or nucleotide analog, protein, chemical compound, RNA or DNA or RNAi or siRNA oligonucleotide.

20

25

Preferably, the decreased sensitivity is in respect of ADV. Alternatively, the decreased sensitivity is in respect of TFV. Alternatively, the decreased sensitivity is in respect of TFV. Alternatively, the decreased sensitivity is in respect of ADV and LMV. Alternatively, the decreased sensitivity is in respect of ADV and TFV. Alternatively, the decreased sensitivity is in respect of LMV and TFV. Alternatively, the decreased sensitivity is in respect of ADV and FTC. Alternatively, the decreased sensitivity is in respect to FTC and TFV. Alternatively, the decreased sensitivity is in respect of ADV and LMV. Alternatively, the decreased sensitivity is in respect of ADV and TFV. Alternatively, the decreased sensitivity is in respect to ADV and TFV. Alternatively, the decreased sensitivity is in respect to ADV and FTC. Alternatively, the decreased sensitivity is in respect to LMV and FTC. Alternatively, the decreased sensitivity is in respect of ADV and

- 30 -

LMV and FTC. Alternartively, the decreased sensitivity is in respect of ADV and FTC and TFV and LMV.

Reference herein to "anti-HBV agents" includes nucleoside and nucleotide analogs as well as immunological reagents (e.g. antibodies to HBV surface components) and chemical, proteinaceous and nucleic acid agents which inhibit or otherwise interfere with viral replication, maintenance, infection, assembly or release. Reference herein to "nucleic acid" includes reference to a sense or antisense molecule, RNA or DNA, oligonucleotides and RNAi and siRNA molecules and complexes containing same.

10

25

30

In addition to a mutation in the gene encoding DNA polymerase, due to the overlapping nature of the HBV genome (Figure 1), a corresponding mutation may also occur in the gene encoding the S gene encoding the surface antigen (HBsAg) resulting in reduced interactivity of immunological reagents such as antibodies and immune cells to HBsAg. The reduction in the interactivity of immunological reagents to a viral surface component generally includes the absence of immunological memory to recognize or substantially recognize the viral surface component. The present invention extends, therefore, to an HBV variant exhibiting decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and 20 LMV and FTC, and/or ADV and FTC and LMV and TFV or a reduced interactivity of an immunological reagent to HBsAg wherein the variant is selected for following ADV and/or LMV combination or sequential treatment. The term "sequential" in this respect means ADV followed by LMV and/or TFV, and /or FTC, LMV followed by ADV and/or TFV, and /or FTC, or multiple sequential administrations of each of ADV, LMV and/or TFV, and /or FTC.

A viral variant may, therefore, carry mutation only in the DNA polymerase gene or both in the DNA polymerase gene and the S gene. The term "mutation" is to be read in its broadest context and includes multiple mutations.

The present invention extends to a mutation and any domain of the HBV DNA polymerase and in particular regions F and G, and domains A through to E provided said mutation leads to decreased sensitivity to ADV and/ or LMV and/or TFV or combinations thereof. Regions F and G of the HBV DNA polymerase is defined by the amino acid sequence set forth in Formula I below [SEQ ID NO:1]:

FORMULA I

L, X₁, X₂, D, W, G, P, C, X₃, X₄, H, G, X₅, H, X₆, I, R, B₇, P, R, T, P, X₈, R, V, X₉, G, G, V, F, L, V, D, K, N, P, H, N, T, X₁₀, E, S, X₁₁, L, X₁₂, V, D, F, S, Q, F, S, R, G, X₁₃, X₁₄, X₁₅, V, S, W, P, K, F, A, V, P, N, L, X₁₆, S, L, T, N, L, L, S*

wherein:

15 X_1 is L, or R, or I

 X_2 is E, or D

X₃ is T, or D, or A, or N, or Y

 X_4 is E, or D

 X_5 is E, or K, or Q

20 X₆ is H, or R, or N,

 X_7 is I, or T

 X_8 is A, or S

 X_9 is T or R

 X_{10} is A, or T, or S

25 X_{11} is R, or T

 X_{12} is V, or G

X₁₃ is S, or I, or T, or N, or V

 X_{14} is T, or S, or H, or Y

 X_{15} is R, or H, or K, or Q

30 X_{16} is Q, or P;

and wherein S* is designated as amino acid 74.

In this specification, reference is particularly made to the conserved regions of the DNA polymerase as defined by domains A to E. Regions A to E are defined by the amino acid sequence set forth in Formula II below [SEQ ID NO:2] (and in Australian Patent No. 734831):

FORMULA II

10 S X₁ L S W L S L D V S A A F Y H X₂ P L H P A A M P H L L X₃ G S S G L X₄ R Y V A R L S S X₅ S X₆ X₇ X N X₈ Q X₉ X₁₀ X X X X₁₁ L H X₁₂ X₁₃ C S R X₁₄ L Y V S L X₁₅ L L Y X₁₆ T X₁₇ G X₁₈ K L H L X₁₉ X₂₀ H P I X₂₁ L G F R K X₂₂ P M G X₂₃ G L S P F L L A Q F T S A I X₂₄ X₂₅ X₂₆ X₂₇ X₂₈ R A F X₂₉ H C X₃₀ X₃₁ F X₃₂ Y M* D D X₃₃ V L G A X₃₄ X₃₅ X₃₆ X₃₇ H X₃₈ E X₃₉ L X₄₀ X₄₁ X₄₂ X₄₃ X₄₄ X₄₅ X₄₆ L L X₄₇ X₄₈ G I H L N P X₄₉ K
15 T K R W G Y S L N F M G Y X₅₀ I G

wherein:

- X is any amino acid
- 20 X_1 is N or D;
 - X_2 is I or P;
 - X_3 is I or V;
 - X_4 is S or D;
 - X_5 is T or N;
- 25 X_6 is R or N;
 - X_7 is N or I;
 - X_8 is N or Y or H;
 - X_9 is H or Y;
 - X_{10} is G or R;
- 30 X_{11} is D or N;
 - X_{12} is D or N;

- X_{13} is S or Y;
- X_{14} is N or Q;
- X_{15} is L or M;
- X_{16} is K or Q;
- 5 X_{17} is Y or F;
 - X_{18} is R or W;
 - X_{19} is Y or L;
 - X_{20} is S or A;
 - X_{21} is I or V;
- 10 X_{22} is I or L;
 - X_{23} is V or G;
 - X_{24} is C or L;
 - X_{25} is A or S;
 - X_{26} is V or M;
- 15 X_{27} is V or T;
 - X_{28} is R or C;
 - X_{29} is F or P;
 - X_{30} is L or V;
 - X_{31} is A or V;
- 20 X₃₂ is S or A;
 - X_{33} is V or L or M;
 - X_{34} is K or R;
 - X_{35} is S or T;
 - X_{36} is V or G;
- 25 X_{37} is Q or E;
 - X_{38} is L or S or R;
 - X_{39} is S or F;
 - X_{40} is F or Y;
 - X_{41} is T or A;
- 30 X₄₂ is A or S;
 - X_{43} is V or I;

- 34 -

```
X_{44}
        is T or C;
X_{45}
        is N or S;
        is F or V;
X_{46}
        is S or D;
X_{47}
X_{48}
        is L or V;
X_{49}
        is N or Q;
X_{50}
        is V or I; and
M*
        is amino acid 204;
```

and wherein the first S is designated as amino acid 75.

Preferably, the mutation results in an altered amino acid sequence in any one or more of domains F and G, and domains A through to E or regions proximal thereto of the HBV DNA polymerase.

15

Another aspect of the present invention provides an HBV variant comprising a mutation in an overlapping open reading frame in its genome wherein said mutation is in a region defined by one or more of domains F and G, and domains A through to E of HBV DNA polymerase and wherein said variant exhibits decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents.

In a related embodiment, there is provided an HBV variant comprising a mutation in the nucleotide sequence encoding a DNA polymerase resulting in an amino acid addition, substitution and/or deletion in said DNA polymerase in one or more amino acids as set forth in Formula I [SEQ ID NO:1] and/or Formula II [SEQ ID NO:2]:

- 35 -

FORMULA I

L, X₁, X₂, D, W, G, P, C, X₃, X₄, H, G, X₅, H, X₆, I, R, X₇, P, R, T, P, X₈, R, V, X₉, G, G, V, F, L, V, D, K, N, P, H, N, T, X₁₀, E, S, X₁₁, L, X₁₂, V, D, F, S, Q, F, S, R, G, X₁₃, X₁₄, 5 X₁₅, V, S, W, P, K, F, A, V, P, N, L, X₁₆, S, L, T, N, L, L, S*

wherein:

 X_1 is L, or R, or I

10 X₂ is E, or D

X₃ is T, or D, or A, or N, or Y

 X_4 is E, or D

 X_5 is E, or K, or Q

X₆ is H, or R, or N,

15 X_7 is L, or T

X₈ is A, or S

 X_9 is T or R

 X_{10} is A, or T, or S

 X_{11} is R, or T

20 X_{12} is V, or G

 X_{13} is S, or L, or T, or N, or V

 X_{14} is T, or S, or H, or Y

 X_{15} is R, or H, or K, or Q

 X_{16} is Q, or P;

25

and

FORMULA II

30 S X₁ L S W L S L D V S A A F Y H X₂ P L H P A A M P H L L X₃ G S S G L X₄ R Y V A R L S S X₅ S X₆ X₇ X N X₈ Q X₉ X₁₀ X X X X₁₁ L H X₁₂ X₁₃ C S R X₁₄ L Y V S L X₁₅ $\begin{array}{l} L\;L\;Y\;X_{16}\;T\;X_{17}\;G\;X_{18}\;K\;L\;H\;L\;X_{19}\;X_{20}\;H\;P\;I\;X_{21}\;L\;G\;F\;R\;K\;X_{22}\;P\;M\;G\;X_{23}\;G\;L\;S\;P\;F\;L\\ L\;A\;Q\;F\;T\;S\;A\;I\;X_{24}\;X_{25}\;X_{26}\;X_{27}\;X_{28}\;R\;A\;F\;X_{29}\;H\;C\;X_{30}\;X_{31}\;F\;X_{32}\;Y\;M^{^*}\;D\;D\;X_{33}\;V\;L\;G\;A\\ X_{34}\;X_{35}\;X_{36}\;X_{37}\;H\;X_{38}\;E\;X_{39}\;L\;X_{40}\;X_{41}\;X_{42}\;X_{43}\;X_{44}\;X_{45}\;X_{46}\;L\;L\;X_{47}\;X_{48}\;G\;I\;H\;L\;N\;P\;X_{49}\;K\\ T\;K\;R\;W\;G\;Y\;S\;L\;N\;F\;M\;G\;Y\;X_{50}\;I\;G \end{array}$

5

wherein:

- X is any amino acid
 X₁ is N or D;
 10 X₂ is I or P;
 X₃ is I or V;
 X₄ is S or D;
 - X_5 is T or N;
 - X_6 is R or N;
- 15 X₇ is N or I;
 - X_8 is N or Y or H;
 - X₉ is H or Y;
 - X_{10} is G or R;
 - X_{11} is D or N;
- 20 X_{12} is D or N;
 - X_{13} is S or Y;
 - X_{14} is N or Q;
 - X_{15} is L or M;
 - X_{16} is K or Q;
- 25 X_{17} is Y or F;
 - X_{18} is R or W;
 - X_{19} is Y or L;
 - X_{20} is S or A;
 - X_{21} is I or V;
- 30 X₂₂ is I or L;
 - X_{23} is V or G;

 X_{24} is C or L; X_{25} is A or S; X_{26} is V or M; X_{27} is V or T; X_{28} is R or C; is F or P; X_{29} X_{30} is L or V; X_{31} is A or V; is S or A; X_{32} is V or L or M; 10 X_{33} X_{34} is K or R; X_{35} is S or T; X_{36} is V or G; is Q or E; X_{37} is L or S or R; 15 X_{38} X_{39} is S or F; is F or Y; X_{40} X_{41} is T or A; X_{42} is A or S; 20 X_{43} is V or I; X_{44} is T or C; is N or S; X_{45} X_{46} is F or V; X_{47} is S or D; X_{48} is L or V; 25 is N or Q; X_{49} X_{50} is V or I; and M^{\bullet}

is amino acid 204;

and wherein S* in Formula I is designated as amino acid 74 and the first S in Formula II is 30 designated as amino acid 75;

- 38 -

and wherein said variant exhibits decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof. Preferably, the decreased sensitivity is to ADV or to both ADV and LMV or to one or both of ADV and/or LMV and/or TFV and /or FTC.

- Another preferred aspect of the present invention contemplates an HBV variant comprising a mutation in the nucleotide sequence encoding HBsAg resulting in an amino acid addition, substitution and/or deletion in said HBsAg in a region corresponding to the amino acid sequence set forth in Formulae I and II wherein said variant exhibits decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof.
- More particularly, the present invention provides a variant HBV comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or a truncation compared to a surface antigen from a reference or wild-type HBV and wherein an antibody generated to the reference or wild-type surface antigen exhibits reduced capacity for neutralizing said HBV variant, said variant selected by exposure of a subject to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof.

- 39 -

The term "combination therapy" means that both combinations of ADV, LMV, FTC and/or TFV are co-administered in the same composition or simultaneously in separate compositions. The term "sequential therapy" means that the two agents are administered within seconds, minutes, hours, days or weeks of each other and in either order. Sequential therapy also encompasses completing a therapeutic course with one or other of ADV, LMV, FTC or TFV and then completing a second or third or subsequent therapeutic courses with the other of ADV, LMV, FTC or TFV.

Accordingly, another aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to ADV therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

10

15

Another aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to LMV therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

Yet another aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to FTC therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

Still another aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to TFV therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

10 Even yet another aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to ADV and LMV therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

Even still another aspect of of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to ADV and TFV therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

25

30

20

A further aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure

- 41 -

of a subject to LMV and TFV therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

Another aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to ADV and FTC therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

10

15

30

Yet another aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to TFV and FTC therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

Still another aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to FTC and LMV therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

Even yet another aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile

compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to ADV, LMV and TFV therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

Even still another aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to ADV, LMV and TFV therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

A further aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to ADV, LMV and FTC therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

20

25

15

Another aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to FTC, LMV and TFV therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

Yet another aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and

- 43 -

wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to ADV, FTC and TFV therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

5

20

Still yet another aspect of the present invention contemplates an HBV variant comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the pretreatment HBV and wherein the surface antigen of the variant HBV exhibits an altered immunological profile compared to the pretreatment HBV where the said variant HBV is selected for by exposure of a subject to ADV, LMV, FTC and TFV therapy or therapy by one or more other nucleoside or nucleotide analogs or other anti-HBV agents.

Preferably, the variants are in isolated form such that they have undergone at least one purification step away from naturally occurring body fluid. Alternatively, the variants may be maintained in isolated body fluid or may be in DNA form. The present invention also contemplates infectious molecular clones comprising the genome or parts thereof from a variant HBV. Furthermore, the present invention provides isolated components from the variant HBVs such as but not limited to an isolated HBsAg. Accordingly, the present invention provides an isolated HBsAg or a recombinant form thereof or derivative or chemical equivalent thereof, said HBsAg being from a variant HBV selected by exposure of a subject to one or more of ADV, LMV, FTC and/or TFV or optionally one or more nucleoside or nucleotide analogs or other anti-HBV agents.

25 More particularly, yet another aspect of the present invention is directed to an isolated variant HBsAg or a recombinant or derivative form thereof or a chemical equivalent thereof wherein said HBsAg or its recombinant or derivative form or its chemical equivalent exhibits an altered immunological profile compared to an HBsAg from a reference HBV, said HBsAg being from a variant HBV selected by exposure of a subject to one or more of ADV, LMV, FTC and/or TFV or optionally one or more nucleoside or nucleotide analogs or other anti-HBV agents.

- 44 -

Even more particularly, the present invention provides an isolated variant HBsAg or a recombinant or derivative form thereof or a chemical equivalent thereof wherein said HBsAg or its recombinant or derivative form or its chemical equivalent comprises an amino acid sequence with a single or multiple amino acid substitution, addition and/or deletion or a truncation compared to an HBsAg from a reference HBV and wherein a neutralizing antibody directed to a reference HBV exhibits no or reduced neutralising activity to an HBV carrying said variant HBsAg, said HBsAg being from a variant HBV selected by exposure of a subject to one or more of ADV, LMV, FTC and/or TFV or optionally one or more nucleoside or nucleotide analogs or other anti-HBV agents.

10

15

20

25

Preferred mutations in the HBV DNA polymerase include variants selected from patients with HBV recurrence following ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV treatment. Nucleoside or nucleotide analog or other anti-HBV agents treatment may occur in relation to a transplantation procedure (e.g. bone marrow transplantation (BMT) or OLT) or following treatment of patients diagnosed with hepatitis. Following selection of variants, viral loads are obtainable at levels similar to pretreatment levels or are increasing while on therapy.

Preferred mutations include, in one embodiment, rtS21A, rtL122F, rtN124H, rtH126R, rtT28N, rtP130Q, rtD131N and rtY135C; in another embodiment, rt/N/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M; in a further embodiment, rtN53D, rtY54H, rtS57P, rtL91I, rtS116P, rtF122L, rtY124H, rtV134D, rtY141Y/F, rtL145M, rtF151F/Y, rtA181T, rtK212R, rtL217R, rtS219A, rtN236Tand rtN238D; in yet another embodiment, rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A; in still another embodiment, rtH90D, and rtL/F108L; in even yet another embodiment, rtL157L/M, rtA181V and rtV207I; in still yet another embodiment, rtL80V, rtP109S, rtI163V, 30 rtL229M and rtN/H/A/S/Q238K; in another embodiment, rtS78S/T, rtN118N/S, rtN139N/K, rtV142E, rtA181A/T, rtI204M, rtQ/P/S/Stop215Q, rtE218K/E and rtN238N/H; in a further embodiment, rtK32, rtN33, rtP34, rtH35 and rtT37; in yet another embodiment, rtP59, rtK60, rtF61, rtA62 and rtV63; in still another embodiment, rtD83, rtV84, rtS85, rtA86, rtY89, rtH90 and rtI/L91; in even yet another embodiment, rtP177, rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184; in still yet another embodiment, rtM204 and rtY203; in another embodiment, rt235, rt236, rt237, rt238 and rt239; in a further embodiment, rt247, rt248, rt249, rt250 and rt251; in yet another embodiment,

 $\label{eq:K32M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; $$N33D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion;$

- 10 P34S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; H35I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; T37W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P59S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; K60M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion;
- 15 F61P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; A62R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; V63A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; D83C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion; V84A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion;
- 20 S85T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; A86R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/YV/deletion; Y89V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; H90I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; I/L91K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/deletion;
- 25 P177S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; F178P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; L179K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; L180K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; A181R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/YV/deletion;
- 30 Q183E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; F183P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion;

T184W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; Y203V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; M204F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; L235K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; 5 N236D/C/O/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; T237W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P237S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; N238D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H238I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; A238R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; S239T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; Q238E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; K239M/F/P/S/T/W/Y/V/A/R/N/D/C/O/E/G/H/I/L/deletion; L247K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; 15 N248D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H248I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; F249P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; M250F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; G251H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E; and

V251A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y.

20

Reference above to "deletion" means that the first mentioned amino acid before the residue number has been deleted.

Such HBV variants are proposed to exhibit a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof. It should be noted that the nomenclature system for amino acid positions is based on the methionine residues in the YMDD motif being designated codon rtM204. This

- 47 -

numbering system is different to that in Australian Patent No. 734831 where the methionine residue in the YMDD motif within the polymerase gene is designated codon 550. In this regard, rtL180M and rtM204V correspond to L526M and M550V, respectively, in Australian Patent No. 734831. Corresponding mutations may also occur in envelope genes such as in one or more of PreS1, PreS2 and S. The mutations in S gene encoding HBsAg at sT118R, sP120T, sS143S/T, sD144A or sI195M also result in mutation in the in the polymerase gene rtY126C, rtT128N, rtF151S/F or rtM204V respectively.

Another potential mode of action of ADV and other acyclic nucleoside phosphonates is that of immune stimulation (Calio et al., Antiviral Res. 23: 77-89, 1994). A number of mutations resulted in changes in the envelope gene detected in HBV variants which may be associated with immune escape. These changes include sT118R, sP120T, sS126T, sM133T, sM133L/M, sF134V, sS143S/T, sD144A, sG145A and/or sW172STOP.

15

20

25

30

HBV encoding the mutation at codon sG145R is a well characterized vaccine escape mutant, although the envelope protein from HBV encoding the mutation at sG145A does not have the same antigen/antibody binding characteristics as the sG145R. This mutation was detected in HBV isolated from patient C in conjunction with mutations at codons 143 and 144.

The identification of the variants of the present invention permits the generation of a range of assays to detect such variants. The detection of such variants may be important in identifying resistant variants to determine the appropriate form of chemotherapy and/or to monitor vaccination protocols, or develop new or modified vaccine preparations.

Still another aspect of the present invention contemplates a method for determining the potential for an HBV to exhibit reduced sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other

- 48 -

nucleoside or nucleotide analogs or other anti-HBV agents, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV DNA polymerase resulting in at least one amino acid substitution, deletion and/or addition in any one or more of domains F and G, and A domains through to E or a region proximal thereto of said DNA polymerase and associated with resistance or decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and LMV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents wherein the presence of such a mutation is an indication of the likelihood of resistance to said ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents.

Preferably, the assay detects one or more of the following mutations: in one embodiment, rtS21A, rtL122F, rtN124H, rtH126R, rtT28N, rtP130Q, rtD131N and rtY135C; in another embodiment, rt/N/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M; in a further embodiment, rtN53D, rtY54H, rtS57P, rtL91I, rtS116P, rtF122L, rtY124H, rtV134D, rtY141Y/F, rtL145M, rtF151F/Y, rtA181T, rtK212R, rtL217R, rtS219A, rtN236T and rtN238D; in yet another embodiment, rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A; in still another embodiment, rtH90D and rtL/F108L; in even yet another embodiment, sP120T, sM125T and sT127A; in still yet another embodiment, sT118R, sM133T, SF134V, sI195M, sS207R and sY225Y/C; in another embodiment, sS126T, sM133L/M, sS143S/T, sD144A, sG145Aand sW172Stop; in a further embodiment, sN40S, sC69STOP, sM75I, sL88P, sT118A, sW182Stop, sW196L, sY206H and sY225F; in yet another embodiment, s181M and sP214Q; in still another embodiment, sF83S, sL173F and sW199L; in yet another embodiment, sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C; in still another embodiment, sC69Stop/C, sC76Y, sI110V/I, sY134N, sW172Stop/W, sW196Stop, sS207R; in even still

another embodiment, rtK32, rtN33, rtP34, rtH35 and rtT37); in another embodiment, rtP59, rtK60, rtF61, rtA62 and rtV63); in a further embodiment, rtD83, rtV84, rtS85, rtA86, rtY89, rtH90 and rtI/L91);in yet another embodiment, rtP177, rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184; in still another embodiment, rtM204 and 5 rtY203; in even yet another embodiment, rt235, rt236, rt237, rt238 and rt239and in even still another embodiment, rt247, rt248, rt249, rt250 and rt251 and in another embodiment, K32M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; N33D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; P34S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M//deletionF; H35I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; T37W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P59S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; K60M/F/P/S/T/W/Y/V/A/R/N/D/C/O/E/G/H/I/L/deletion: F61P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; A62R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; V63A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; D83C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion; V84A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; S85T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; A86R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/YV/deletion; Y89V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; H90I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; I/L91K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/deletion; P177S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; 25 F178P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; L179K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion;

Q183E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; 30 F183P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; T184W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion;

L180K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; A181R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion;

- 50 -

Y203V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; M204F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; L235K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N236D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; T237W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P237S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; N238D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H238I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; A238R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/YV/deletion; 10 S239T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; Q238E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; K239M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; L247K/M/F/P/S/T/W/Y/V/A/R/N/D/C/O/E/G/H/I/deletion; N248D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H248I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; F249P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; M250F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; G251H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/deletion; and V251A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant 20 exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof. 25

Accordingly, another aspect of the present invention produces a method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside or nucleotide analog or other anti-HBV agents, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding the DNA polymerase and/or a corresponding region of the S gene, wherein the presence of a

mutation selected from, in one embodiment, rtS21A, rtL122F, rtN124H, rtH126R, rtT28N, rtP130Q, rtD131N and rtY135C; in another embodiment, rt/N/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M; in a further embodiment, rtN53D, rtY54H, rtS57P, rtL91I, rtS116P, rtF122L, rtY124H, rtV134D, rtY141Y/F, rtL145M, rtF151F/Y, 5 rtA181T, rtK212R, rtL217R, rtS219A, rtN236T and rtN238D; in yet another embodiment, rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A; in still another embodiment, rtH90D and rtL/F108L; in even yet another embodiment, sP120T, sM125T and sT127A; in still yet another embodiment, sT118R, sM133T, SF134V, sI195M, sS207R and sY225Y/C; in another embodiment, sS126T, sM133L/M, sS143S/T, sD144A, sG145Aand sW172Stop; in a further embodiment, sN40S, sC69STOP, sM75I, sL88P, sT118A, sW182Stop, sW196L, sY206H and sY225F; in yet another embodiment, s181M and sP214O; in still another embodiment, sF83S, sL173F and sW199L; in yet another embodiment, sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C; in still another embodiment, sC69Stop/C, sC76Y, sI110V/I, sY134N, sW172Stop/W, sW196Stop, sS207R; in even still another embodiment, rtK32, rtN33, rtP34, rtH35 and rtT37); in another embodiment, rtP59, rtK60, rtF61, rtA62 and rtV63); in a further embodiment, rtD83, rtV84, rtS85, rtA86, rtY89, rtH90 and rtI/L91); in yet another embodiment, rtP177, rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184; in still another embodiment, rtM204 and rtY203; in even yet another embodiment, rt235, rt236, rt237, rt238 and rt239and in even still another embodiment, rt247, rt248, rt249, rt250 and rt251; and in another embodiment,

K32M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; N33D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; P34S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion;

20

H35I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; T37W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P59S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; K60M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion: F61P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; A62R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion;

V63A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion;

D83C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion; V84A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; S85T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; A86R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; 5 Y89V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; H90I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; I/L91K/M/F/P/S/T/W/Y/V/A/R/N/D/C/O/E/G/H/deletion: P177S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; F178P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; L179K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; L180K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; A181R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; Q183E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion: F183P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; T184W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; Y203V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; M204F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; L235K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N236D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; 20 T237W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P237S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; N238D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H238I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; A238R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; S239T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; Q238E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; K239M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; L247K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N248D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H248I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; 30 F249P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion;

- 53 -

M250F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; G251H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/deletion; and

V251A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion or combinations thereof or an equivalent one or more other mutation is indicative of a variant which exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof.

10

15

20

30

A further aspect of the present invention produces a method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside or nucleotide analog or other anti-HBV agents, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding the DNA polymerase and/or a corresponding region of the S gene, wherein the presence of a mutation selected from, in one embodiment, rtS21A, rtL122F, rtN124H, rtH126R, rtT28N, rtP130Q, rtD131N and rtY135C; in another embodiment, rt/N/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M; in a further embodiment, rtN53D, rtY54H, rtS57P, rtL91L, rtS116P, rtF122L, rtY124H, rtV134D, rtY141Y/F, rtL145M, rtF151F/Y, rtA181T, rtK212R, rtL217R, rtS219A, rtN236T and rtN238D; in yet another embodiment, rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A; in still another embodiment, rtH90D and rtL/F108L; in even yet another embodiment, sP120T, sM125T and sT127A; in still yet another embodiment, sT118R, sM133T, SF134V, sI195M, sS207R and sY225Y/C; in another embodiment, sS126T, sM133L/M, sS143S/T, sD144A, sG145Aand sW172Stop; in a further embodiment, sN40S, sC69STOP, sM75I, sL88P, sT118A, sW182Stop, sW196L, sY206H and sY225F; in yet another embodiment, s181M and sP214Q; in still another embodiment, sF83S, sL173F and sW199L; in yet another embodiment, sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C; in still another embodiment, sC69Stop/C, sC76Y, sI110V/I, sY134N, sW172Stop/W, sW196Stop, sS207R; in even still another embodiment, rtK32, rtN33, rtP34, rtH35 and rtT37); in another embodiment, rtP59, rtK60, rtF61, rtA62 and rtV63); in a further embodiment,

rtD83, rtV84, rtS85, rtA86, rtY89, rtH90 and rtI/L91);in yet another embodiment, rtP177, rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184; in still another embodiment, rtM204 and rtY203; in even yet another embodiment, rt235, rt236, rt237, rt238 and rt239and in even still another embodiment, rt247, rt248, rt249, rt250 and rt251; and in

- 5 another embodiment,
 - K32M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion;
 - N33D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion;
 - P34S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion;
 - H35I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion;
- 10 T37W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion;
 - P59S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion;
 - K60M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion;
 - F61P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion;
 - A62R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion;
- 15 V63A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion;
 - D83C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion;
 - V84A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion;
 - S85T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion;
 - A86R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion;
- 20 Y89V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion;
 - H90I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion;
 - I/L91K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/deletion;
 - P177S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion;
 - F178P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion;
- 25 L179K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion;
 - L180K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion;
 - A181R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion;

 - Q183E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion;
 - F183P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion;
- 30 T184W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion;
- Y203V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion;

- 55 -

M204F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; L235K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N236D/C/Q/B/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; T237W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P237S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; N238D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H238I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; A238R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; S239T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; 10 Q238E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; K239M/F/P/S/T/W/Y/V/A/R/N/D/C/O/E/G/H/I/L/deletion; L247K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N248D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H248I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; F249P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; M250F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; G251H/J/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/O/E/deletion; and V251A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion or combinations thereof or an equivalent one or more other mutation is indicative of a variant which exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC

25

30

HBV agents or combination thereof.

The detection of HBV or its components in cells, cell lysates, cultured supernatant fluid and bodily fluid may be by any convenient means including any nucleic acid-based detection means, for example, by nucleic acid hybridization techniques or via one or more polymerase chain reactions (PCRs). The term "bodily fluid" includes any fluid derived from the blood, lymph, tissue or organ systems including serum, whole blood, biopsy and biopsy fluid, organ explants and organ suspension such as liver suspensions. The invention

and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-

- 56 -

further encompasses the use of different assay formats of said nucleic acid-based detection means, including restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), single-strand chain polymorphism (SSCP), amplification and mismatch detection (AMD), interspersed repetitive sequence polymerase chain reaction (IRS-PCR), inverse polymerase chain reaction (iPCR) and reverse transcription polymerase chain reaction (RT-PCR), amongst others. Other forms of detection include Northern blots, Southern blots, PCR sequencing, antibody procedures such as ELISA, Western blot and immunohistochemistry. A particularly useful assay includes the reagents and components required for immobilized oligonucleotide- or oligopeptide-mediated detection systems.

One particularly useful nucleic acid detection system is the reverse hybridization technique. In this technique, DNA from an HBV sample is amplified using a biotin or other ligand-labeled primer to generate a labeled amplificon. Oligonucleotides immobilized to a solid support such as a nitrocellulose film are then used to capture amplified DNA by hybridization. Specific nucleic acid fragments are identified via biotin or the ligand. Generally, the labeled primer is specific for a particular nucleotide variation to be detected. Amplification occurs only if the variation to be detected is present. There are many forms of the reverse hybridization assay and all are encompassed by the present invention.

Detecting HBV replication in cell culture is particularly useful.

This and other aspects of the present invention is particularly amenable to microarray analysis such as to identify oligonucleotides including sense and antisense molecules, RNAi or siRNA molecules or DNA or RNA-binding molecules which down-regulate genomic sequences or transcripts of HBV. Microarray analysis may also be used to identify particular mutations in the HBV genome such as within the HBV DNA polymerase-coding region or the HBsAg-coding region.

10

20

Another aspect of the present invention contemplates a method for detecting an agent which exhibits inhibitory activity to an HBV by:

generating a genetic construct comprising a replication competent-effective amount of the genome from the HBV contained in a plasmid vector and then transfecting said cells with said construct;

contacting the cells, before, during and/or after transfection, with the agent to be tested;

10

culturing the cells for a time and under conditions sufficient for the HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said agents; and

- then subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the virus has replicated, expressed genetic material and/or assembled and/or been released in the presence of the agent.
- 20 In a preferred embodiment, the plasmid vector may include genes encoding part or all of oher viral vectors such as baculovirus or adenovirus (Ren and Nassal, 2001, *supra*) and the method comprises:
- generating a genetic construct comprising a replication competent-effective amount of the genome from the HBV contained in or fused to an amount of a baculovirus genome or adenovirus genome effective to infect cells and then infecting said cells with said construct;

contacting the cells, before, during and/or after infection, with the agent to be 30 tested;

- 58 -

culturing the cells for a time and under conditions sufficient for the HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said agent; and

then subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the virus has replicated, expressed genetic material and/or assembled and/or been released in the presence of the agent.

0 In an alternative embodiment, the method comprises:

15

25

30

generating a continuous cell line comprising an infectious copy of the genome of the HBV in a replication competent effective amount such that said infectious HBV genome is stably integrated into said continuous cell line such as but not limited to 2.2.15 or AD;

contacting the cells with the agent to be tested;

culturing the cells for a time and under conditions sufficient for the HBV to 20 replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to the agent; and

then subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the virus has replicated, expressed genetic material and/or assembled and/or been released in the presence of the agent.

The above-mentioned methods are particularly useful in identifying or developing agents against HBV variants such as those carrying mutations, in one embodiment, rtS21A, rtL122F, rtN124H, rtH126R, rtT28N, rtP130Q, rtD131N and rtY135C; in another embodiment, rt/N/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M; in a

further embodiment, rtN53D, rtY54H, rtS57P, rtL91L, rtS116P, rtF122L, rtY124H, rtV134D, rtY141Y/F, rtL145M, rtF151F/Y, rtA181T, rtK212R, rtL217R, rtS219A, rtN236T and rtN238D; in yet another embodiment, rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A; in still another embodiment rtH90D and rtL/F108L; in even yet another embodiment, rtL157L/M, rtA181V and rtV207I; in even still another embodiment, rtL80V, rtP109S, rtI163V, rtL229M and rtN/H/A/S/Q238K; in another embodiment, rtS78S/T, rtN118N/S, rtN139N/K, rtV142E, rtA181A/T, rtI204M, rtO/P/S/Stop215O, rtE218K/E and rtN238N/H; in a further embodiment, sP120T, sM125T and sT127A; in yet another embodiment, sT118R, sM133T, SF134V, sI195M, sS207R and sY225Y/C; in still another embodiment, sS126T, sM133L/M, sS143S/T, sD144A, sG145A and sW172Stop; in even yet another embodiment, sN40S, sC69Stop, sM75I, sL88P, sT118A, sW182STOP, sW196L, sY206H and sY225F; in even still another embodiment, s181M and sP214Q; in another embodiment, sF83S, sL173F and sW199L; in a further embodiment, sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C; in yet another embodiment, sC69Stop/C, sC76Y sI110V/I, sY134N, sW172Stop/W, sW196Stop and sS207R; in still another embodiment, rtK32, rtN33, rtP34, rtH35 and rtT37; in even yet another embodiment, rtP59, rtK60, rtF61, rtA62 and rtV63; in even still another embodiment, rtD83, rtV84, rtS85, rtA86, rtY89, rtH90 and rtI/L91; in another embodiment, rtP177, rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184; in a further embodiment, rtM204 and rtY203; in yet another embodiment, rt235, rt236, rt237, rt238 and rt239 in still another embodiment, rt247, rt248, rt249, rt250 and rt251; and in even yet another embodiment,K32M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; N33D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; P34S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion;

H35I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion;
 T37W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion;
 P59S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion;
 K60M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion;
 F61P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion;
 A62R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion;

V63A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion;

15

D83C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion; V84A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; S85T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; A86R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; 5 Y89V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; H90I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; I/L91K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/deletion; P177S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; F178P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; L179K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; L180K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; A181R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; Q183E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; F183P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; 15 T184W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; Y203V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; M204F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; L235K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N236D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; T237W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P237S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion: N238D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H238I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; A238R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; 25 S239T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; Q238E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; K239M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; L247K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N248D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H248I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; F249P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion;

- 61 -

M250F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; G251H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/deletion; and V251A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion.

5 Accordingly, another aspect of the present invention contemplates a method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside or nucleotide analog or other potential anti-HBV agent, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence of the envelope genes or DNA polymerase gene selected from, in one embodiment, rtS21A, rtL122F, rtN124H, rtH126R, rtT28N, rtP130Q, rtD131N and rtY135C; in another embodiment, rt/N/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M; in a further embodiment, rtN53D, rtY54H, rtS57P, rtL91I, rtS116P, rtF122L, rtY124H, rtV134D, rtY141Y/F, rtL145M, rtF151F/Y, rtA181T, rtK212R, rtL217R, rtS219A, rtN236T and rtN238D; in yet another embodiment, rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A; in still another embodiment rtH90D and rtL/F108L; in even yet another embodiment, rtL157L/M, rtA181V and rtV207I; in even still another embodiment, rtL80V, rtP109S, rtI163V, rtL229M and rtN/H/A/S/Q238K; in another embodiment, rtS78S/T, rtN118N/S, rtN139N/K, rtV142E, rtA181A/T, rtI204M, rtQ/P/S/Stop215Q, rtE218K/E and rtN238N/H; in a further embodiment, sP120T, sM125T and sT127A; in yet another embodiment, sT118R, sM133T, SF134V, sI195M, sS207R and sY225Y/C; in still another embodiment, sS126T, sM133L/M, sS143S/T, sD144A, sG145A and sW172Stop; in even yet another embodiment, sN40S, sC69Stop, sM75I, sL88P, sT118A, sW182STOP, sW196L, sY206H and sY225F; in even still another embodiment, s181M and sP214Q; in another embodiment, sF83S, sL173F and sW199L; in a further embodiment, sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C; in yet another embodiment, sC69Stop/C, sC76Y sI110V/I, sY134N, sW172Stop/W, sW196Stop and sS207R; in still another embodiment, rtK32, rtN33, rtP34, rtH35 and rtT37; in even yet another embodiment, rtP59, rtK60, rtF61, rtA62 and rtV63; in even still another embodiment, rtD83, rtV84, rtS85, rtA86, rtY89, rtH90 and rtI/L91; in another embodiment, rtP177, rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184; in a further embodiment, rtM204 and rtY203; in yet another embodiment, rt235, rt236,

rt237, rt238 and rt239 in still another embodiment, rt247, rt248, rt249, rt250 and rt251; and in even yet another embodiment,

K32M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion;

N33D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion;

- 5 P34S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; H35I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; T37W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P59S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; K60M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion;
- 10 F61P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; A62R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; V63A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; D83C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion; V84A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion;
- 15 S85T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; A86R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; Y89V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; H90I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; I/L91K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/deletion;
- 20 P177S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; F178P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; L179K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; L180K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; A181R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion;
- 25 Q183E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; F183P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; T184W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; Y203V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; M204F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion;
- 30 L235K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N236D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion;

- 63 -

T237W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P237S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; N238D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H238I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion;

- 5 A238R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; S239T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; Q238E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C; K239M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L; L247K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I;
- 10 N248D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R; H248I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G; F249P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M; M250F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K; G251H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/QE; and
- V251A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof.
- The detection of amino acid variants of DNA polymerase is conveniently accomplished by reference to the amino acid sequence shown in Formulae I and II. The polymorphisms shown represent the variations shown in various databases for active pathogenic HBV strains. Where an HBV variant comprises an amino acid different to what is represented, then such an isolate is considered a putative HBV variant having an altered DNA polymerase activity.
- The present invention further contemplates agents which inhibit ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV,

- 64 -

FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and LMV and TFV resistant HBV variants. Such agents are particularly useful if long term treatment by ADV, LMV, FTC and/or TFV and/or optionally other nucleoside analogs or nucleotide analogs such as TFV is contemplated by the clinician. The agents may be DNA or RNA or proteinaceous or non-proteinaceous chemical molecules. Natural product screening such as from plants, coral and microorganisms is also contemplated as a useful potential source of masking agents as is the screening of combinatorial or chemical libraries. The agents may be in isolated form or in the form of a pharmaceutical composition or formulation and may be administered in place of or sequentially or simultaneously with a nucleoside or nucleotide analog. Furthermore, rationale drug design is contemplated including solving the crystal or NMR structure of, for example, HBV DNA polymerase and designing agents which can bind to the enzyme's active site. This approach may also be adapted to other HBV components.

15

20

Accordingly, another aspect of the present invention contemplates a method for detecting an agent which exhibits inhibitory activity to an HBV which exhibits resistance or decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof, , said method comprising:

generating a genetic construct comprising a replication competent-effective amount of the genome from said HBV contained in a plasmid vector and then transfecting said cells with said construct;

contacting said cells, before, during and/or after transfection, with the agent to be tested;

25

culturing said cells for a time and under conditions sufficient for the HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said agent; and

subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the virus has replicated, expressed genetic material and/or assembled and/or been released in the presence of said agent.

Still another aspect of the present invention provides a method for detecting an agent which exhibits inhibitory activity to an HBV which exhibits resistance or decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof, , said method comprising:

15

20

25

30

generating a genetic construct comprising a replication competent-effective amount of the genome from said HBV contained in or fused to an amount of a baculovirus genome effective to infect cells and then infecting said cells with said construct;

contacting said cells, before, during and/or after infection, with the agent to be tested;

culturing said cells for a time and under conditions sufficient for the HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said agent; and

subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the virus has replicated, expressed genetic material and/or assembled and/or been released in the presence of said agent.

WO 03/087351

Preferably, the HBV genome is stably integrated into the cells' genome.

Particularly useful cells are 2.2.15 cells (Price et al., Proc. Natl. Acad. Sci. USA 86(21): 8541-8544, 1989 or AD cells (also known as HepAD32 cells or HepAD79 cells [Ying et al., Viral Hepat. 7(2): 161-165, 2000.

Whilst the baculovirus vector is a particularly useful in the practice of the present invention, the subject invention extends to a range of other vectors such as but not limited to adenoviral vectors.

10

The present invention further extends to cell lines (e.g. 2.2.15 or AD cells) carrying genetic constructs comprising all or a portion of an HBV genome or a gene or part of a gene therefrom.

The present invention also provides for the use of the subject HBV variants to screen for anti-viral agents. These anti-viral agents inhibit the virus. The term "inhibit" includes antagonizing or otherwise preventing infection, replication, assembly and/or release or any intermediate step. Preferred anti-viral agents include nucleoside or nucleotide analogs or anti-HBV agents, however, the present invention extends to non-nucleoside molecules.

20

25

30

In addition, rational drug design is also contemplated to identify or generate chemical molecules which either mimic a nucleoside or which interact with a particular nucleotide sequence or a particular nucleotide. Combinatorial chemistry and two hybrid screening are some of a number of techniques which can be employed to identify potential therapeutic or diagnostic agents.

In one example, the crystal structure or the NMR structure of polymerase or the surface antigen is used to rationally design small chemical molecules likely to interact with key regions of the molecule required for function and/or antigenicity. Such agents may be useful as inhibitors of polymerase activity and/or may alter an epitope on the surface antigen.

- 67 -

Several models of the HBV polymerase have been prepared due to the similarity with reverse transcriptase from HIV (Das et al., J. Virol. 75(10): 4771-4779, 2001; Bartholomeusz et al., Intervirology 40(5-6): 337-342 1997; Allen et al., Hepatology 27(6): 1670-1677, 1998). The models of the HBV polymerase can be used for the rational drug design of new agents effective against HBV encoding the resistant mutations as well as wild type virus. The rational drug that is designed may be based on a modification of an existing antiviral agent such as the agent used in the selection of the HBV encoding the mutations associated with resistance. Viruses or clones expressing HBV genomic material encoding the mutations may also be used to screen for new antiviral agents.

In an alternative embodiment, the present invention also contemplates a method for detecting an agent which exhibits inhibitory activity to an HBV polymerase in an *in vitro* polymerase assay. The HBV polymerase activity can be examined using established assays (Gaillard *et al.*, Antimicrob Agents Chemother. 46(4): 1005-1013, 2002; Xiong *et al.*, Hepatology 28(6): 1669-1673, 1998).

As indicated above, microarray technology is also a useful means of identifying agents which are capable of interacting with defined HBV internal or external components. For example, arrays of HBV DNA polymerase or peptide fragments thereof carrying different amino acid variants may be used to screen for agents which are capable of binding or otherwise interacting with these molecules. This is a convenient way of determining the differential binding patterns of agents between HBV variants. Arrays of antibodies may also be used to screen for altered HBsAg molecules. Microarrays are also useful in proteomic analysis to identify molecules such as antibodies, interferons or cytokines which have an ability to interact with an HBV component. Microarrays of DNA and RNA molecules may also be employed to identify sense and antisense molecules for genetic regions on the HBV genome or transcripts thereof.

20

30 The above methods are particularly useful in identifying an inhibitor of an HBV resistant to or exhibiting reduced sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV

and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof. The present invention extends, therefore, to compositions of the inhibitors. The inhibitors may also be in the form of antibodies or genetic molecules such as ribozymes, antisense molecules and/or sense molecules for co-suppression or the induction of RNAi or may be other nucleoside or nucleotide analogs or other anti-HBV agents or derivatives of known analogs. Reference to RNAi includes reference to short, interfering RNAs (siRNA).

10

The term "composition" includes a "pharmaceutical composition" or a formulation.

The inhibitor is referred to below as an "active ingredient" or "active compound" and may be selected from the list of inhibitors given above.

15

30

The composition may include an antigenic component of the HBV, a defective HBV variant or an agent identified through natural product screening or rational drug design (including combinatorial chemistry).

Pharmaceutically acceptable carriers and/or diluents include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, use thereof in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.

The pharmaceutical composition may also comprise genetic molecules such as a vector capable of transfecting target cells where the vector carries a nucleic acid molecule capable of encoding an aspartyl protease inhibitor. The vector may, for example, be a viral vector.

Pharmaceutical forms suitable for injectable use include sterile aqueous solutions (where water soluble) and sterile powders for the extemporaneous preparation of sterile injectable solutions. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dilution medium comprising, for example, water, ethanol, polyol (for example, glycerol, propylene glycol and liquid polyethylene glycol, and the like), suitable mixtures thereof and vegetable oils. The proper fluidity can be maintained, for example, by the use of superfactants. The preventions of the action of microorganisms can be brought about by various anti-bacterial and anti-fungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thirmerosal and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminium monostearate and gelatin.

15

25

30

10

Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with the active ingredient and optionally other active ingredients as required, followed by filtered sterilization or other appropriate means of sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, suitable methods of preparation include vacuum drying and the freeze-drying technique which yield a powder of active ingredient plus any additionally desired ingredient.

When the active ingredient is suitably protected, it may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsule, or it may be compressed into tablets. For oral therapeutic administration, the active ingredient may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers and the like. Such compositions and preparations should contain at least 1% by weight of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 5 to about 80% of the weight

- 70 -

of the unit. The amount of active compound in such therapeutically useful compositions is such that a suitable dosage will be obtained. Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between about 0.1 µg and 200 mg of active compound. Alternative dosage amounts include from about 1 µg to about 1000 mg and from about 10 µg to about 500 mg. These dosages may be per individual or per kg body weight. Administration may be per hour, day, week, month or year.

The tablets, troches, pills, capsules and the like may also contain the components as listed hereafter. A binder such as gum, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin may be added or a flavouring agent such as peppermint, oil of wintergreen or cherry flavouring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and a flavouring. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially nontoxic in the amounts employed. In addition, the active compound(s) may be incorporated into sustained-release preparations and formulations.

As stated above, the present invention further extends to an isolated HBsAg from the HBV variants herein described. More particularly, the present invention provides an HBsAg or a recombinant form thereof or derivative or chemical equivalent thereof. The isolated surface component and, more particularly, isolated surface antigen or its recombinant, derivative or chemical equivalents are useful in the development of biological compositions such as vaccine formulations.

25

- 71 -

Yet another aspect of the present invention provides a composition comprising a variant HBV resistant to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or an HBV surface antigen from said variant HBV or a recombinant or derivative form thereof or its chemical equivalent and one or more pharmaceutically acceptable carriers and/or diluents. Such a composition may be regarded as a therapeutic composition and is useful in generating an immune response including a humoral response. Generally, the HBV variants are "defective" and in themselves are unable to cause a sustained infection in a subject.

As indicated above, antibodies may be generated to the mutant HBV agents and used for passive or direct vaccination against infection by these viruses. The antibodies may be generated in humans or non-human animals. In the case of the latter, the non-human antibodies may need to be deimmunized or more specifically humanized prior to use. Deimmunized may include, for example, grafting complimentarity determining regions (CDRs) from the variable region of a murine or non-human animal anti-HBV antibody onto a human consensus fragment antibody binding (Fab) polypeptide. Alternatively, amino acids defining epitopes in the variable region of the antibody may be mutated so that the epitopes are no longer recognized by the human MHC II complex.

Insofar as ribozyme, antisense or co-suppression (RNAi) or siRNA or complexes thereof repression is concerned, this is conveniently aimed at post-transcription gene silencing. DNA or RNA may be administered or a complex comprising RNAi or a chemical analog thereof specific for HBV mRNA may be employed.

All such molecules may be incorporated into pharmaceutical compositions.

25

- 72 -

In another embodiment, the present invention provides a biological composition comprising a variant HBV or an HBsAg or L, M or S proteins from said variant HBV or a recombinant or derivative form thereof or its chemical equivalent.

5 Generally, if an HBV is used, it is first attenuated. The biological composition according to this aspect of the present invention generally further comprises one or more pharmaceutically acceptable carriers and/or diluents.

The biological composition may comprise HBsAg or like molecule from one HBV variant or the composition may be a cocktail of HbsAgs or L, M or S proteins or like molecules from a range of ADV- and/or LMV- and/or, FTC- and/or TFV-resistant HBV variants. Similar inclusions apply where the composition comprises an HBV.

The present invention is further directed to the use of defective HBV variants in the manufacture of therapeutic vaccines to vaccinate individuals against infection by HBV strains having a particular nucleotide sequence or encoding a particular polymerase or surface antigen or L, M or S proteins.

Examples of suitable vaccine candidates are defective forms of HBV variants comprising a mutation selected from, in one embodiment, rtS21A, rtL122F, rtN124H, rtH126R, rtT28N, rtP130Q, rtD131N and rtY135C; in another embodiment, rt/N/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M; in a further embodiment, rtN53D, rtY54H, rtS57P, rtL91I, rtS116P, rtF122L, rtY124H, rtV134D, rtY141Y/F, rtL145M, rtF151F/Y, rtA181T, rtK212R, rtL217R, rtS219A, rtN236T and rtN238D; in yet another embodiment, rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A; in still another embodiment rtH90D and rtL/F108L; in even yet another embodiment, rtL157L/M, rtA181V and rtV207I; in even still another embodiment, rtL80V, rtP109S, rtI163V, rtL229M and rtN/H/A/S/Q238K; in another embodiment, rtS78S/T, rtN118N/S, rtN139N/K, rtV142E, rtA181A/T, rtI204M, rtQ/P/S/Stop215Q, rtE218K/E and rtN238N/H; in a further embodiment, sP120T, sM125T and sT127A; in yet another embodiment, sT118R, sM133T, SF134V, sI195M, sS207R and sY225Y/C; in still another embodiment, sS126T,

sM133L/M, sS143S/T, sD144A, sG145A and sW172Stop; in even yet another embodiment, sN40S, sC69Stop, sM75I, sL88P, sT118A, sW182STOP, sW196L, sY206H and sY225F; in even still another embodiment, s181M and sP214Q; in another embodiment, sF83S, sL173F and sW199L; in a further embodiment, sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C; in yet another embodiment, sC69Stop/C, sC76Y sI110V/I, sY134N, sW172Stop/W, sW196Stop and sS207R; in still another embodiment, rtK32, rtN33, rtP34, rtH35 and rtT37; in even yet another embodiment, rtP59, rtK60, rtF61, rtA62 and rtV63; in even still another embodiment, rtD83, rtV84, rtS85, rtA86, rtY89, rtH90 and rtI/L91; in another embodiment, rtP177, rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184; in a further embodiment, rtM204 and rtY203; in yet another embodiment, rt235, rt236, rt237, rt238 and rt239 in still another embodiment, rt247, rt248, rt249, rt250 and rt251; and in even yet another embodiment,

- K32M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion;
 N33D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion;
 P34S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion;
 H35I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion;
 T37W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion;
 P59S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion;

 20 K60M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion;
- F61P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; F61P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; A62R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; V63A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion; D83C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion;
- 25 V84A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; S85T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; A86R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; Y89V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; H90I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion;
- 30 I/L91K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/deletion;
 P177S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion;

- 74 -

F178P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; L179K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; L180K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; A181R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; 5 Q183E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; F183P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; T184W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; Y203V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; M204F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; 10 L235K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N236D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; T237W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion: P237S/T/W/Y/V/A/R/N/D/C/O/E/G/H/I/L/K/M/F/deletion: N238D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; 15 H238I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; A238R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; S239T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; Q238E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; K239M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; L247K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N248D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H248I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; F249P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; M250F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion;

25 G251H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E; and V251A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion or a combination of two or more mutations.

In one embodiment, for example, an HBV variant may be identified having a particular mutation in its polymerase conferring resistance or decreased sensitivity to a nucleoside analog. This variant may then be mutated to render it defective, i.e. attenuated or unable to

- 75 -

cause infection. Such a defective, nucleoside analog-resistant virus may then be used as a therapeutic vaccine against virulent viruses having the same mutation in its polymerase.

The subject invention extends to kits for assays for variant HBV resistant to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV.. Such kits may, for example, contain the reagents from PCR or other nucleic acid hybridization technology or reagents for immunologically based detection techniques. A particularly useful assay includes the reagents and components required for immobilized oligonucleotide- or oligopeptide-mediated detection systems.

Still another aspect of the present invention contemplates a method for determining the potential for an HBV to exhibit reduced sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combination thereof, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV DNA polymerase resulting in at least one amino acid substitution, deletion and/or addition in any one or more of domains F and G, and domains A through to E or a region proximal thereto of said DNA polymerase and associated with resistance or decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, wherein the presence of such a mutation is an indication of the likelihood of resistance to said ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV.

30

An assessment of a potential viral variant is important for selection of an appropriate therapeutic protocol. Such an assessment is suitably facilitated with the assistance of a computer programmed with software, which *inter alia* adds index values (I_{VS}) for at least two features associated with the viral variants to provide a potency value (P_A) corresponding to the resistance or sensitivity of a viral variant to a particular chemical compound or immunological agent. The I_{VS} can be selected from (a) the ability to exhibit resistance for reduced sensitivity to a particular compound or immunological agent; (b) an altered DNA polymerase from wild-type HBV; (c) an altered surface antigen from wild-type HBV; or (d) morbidity or recovery potential of a patient. Thus, in accordance with the present invention, I_{VS} for such features are stored in a machine-readable storage medium, which is capable of processing the data to provide a P_A for a particular viral variant or a biological specimen comprising same.

Thus, in another aspect, the invention contemplates a computer program product for assessing the likely usefulness of a viral variant or biological sample comprising same for determining an appropriate therapeutic protocol in a subject, said product comprising:

- (1) code that receives as input I_Vs for at least two features associated with said viral agents or biological sample comprising same, wherein said features are selected from:
 - (a) the ability to exhibit resistance for reduced sensitivity to a particular compound or immunological agent;
 - (b) an altered DNA polymerase from wild-type HBV;
 - (c) an altered surface antigen from wild-type HBV;

25

- (d) morbidity or recovery potential of a patient; or
- (e) altered replication capacity (increased or decreased);
- (2) code that adds said I_Vs to provide a sum corresponding to a P_V for said viral
 30 variants or biological samples; and

10

15

25

30

(3) a computer readable medium that stores the codes.

In a related aspect, the invention extends to a computer for assessing the likely usefulness of a viral variant or biological sample comprising same in a subject, wherein said computer comprises:

- (1) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said machine-readable data comprise I_Vs for at least two features associated with said viral variant or biological sample; wherein said features are selected from:-
 - (a) the ability to exhibit resistance for reduced sensitivity to a particular compound or immunological agent;
 - (b) an altered DNA polymerase from wild-type HBV;
- (c) an altered surface antigen from wild-type HBV;
 - (d) morbidity or recovery potential of a patient; or
 - (e) altered replication capacity (increased or decreased);
- a working memory for storing instructions for processing said machine-readable
 data;
 - (3) a central-processing unit coupled to said working memory and to said machinereadable data storage medium, for processing said machine readable data to provide a sum of said Ivs corresponding to a Pv for said compound(s); and
 - (4) an output hardware coupled to said central processing unit, for receiving said P_V.

Any general or special purpose computer system is contemplated by the present invention and includes a processor in electrical communication with both a memory and at least one input/output device, such as a terminal. Figure 19 shows a generally suitable computer system. Such a system may include, but is not limited, to personal computers, workstations

- 78 -

or mainframes. The processor may be a general purpose processor or microprocessor or a specialized processor executing programs located in RAM memory. The programs may be placed in RAM from a storage device, such as a disk or pre-programmed ROM memory. The RAM memory in one embodiment is used both for data storage and program execution. The computer system also embraces systems where the processor and memory reside in different physical entities but which are in electrical communication by means of a network.

10

20

In an alternative embodiment, the program screens for a mutation selected from, in one embodiment, rtS21A, rtL122F, rtN124H, rtH126R, rtT28N, rtP130Q, rtD131N and rtY135C; in another embodiment, rt/N/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M; in a further embodiment, rtN53D, rtY54H, rtS57P, rtL91L rtS116P. rtF122L, rtY124H, rtV134D, rtY141Y/F, rtL145M, rtF151F/Y, rtA181T, rtK212R, rtL217R, rtS219A, rtN236T and rtN238D; in yet another embodiment, rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A; in still another embodiment rtH90D and rtL/F108L; in even yet another embodiment, rtL157L/M, rtA181V and rtV207I; in even still another embodiment, rtL80V, rtP109S, rtI163V, rtL229M and rtN/H/A/S/Q238K; in another embodiment, rtS78S/T, rtN118N/S; rtN139N/K, rtV142E, rtA181A/T, rtI204M, rtQ/P/S/Stop215Q, rtE218K/E and rtN238N/H; in a further embodiment, sP120T, sM125T and sT127A; in yet another embodiment, sT118R, sM133T, SF134V, sI195M, sS207R and sY225Y/C; in still another embodiment, sS126T, sM133L/M, sS143S/T, sD144A, sG145A and sW172Stop; in even yet another embodiment, sN40S, sC69Stop, sM75I, sL88P, sT118A, sW182STOP, sW196L, sY206H and sY225F; in even still another embodiment, s181M and sP214Q; in another embodiment, sF83S, sL173F and sW199L; in a further embodiment, sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C; in yet another embodiment, sC69Stop/C, sC76Y sI110V/I, sY134N, sW172Stop/W, sW196Stop and sS207R; in still another embodiment, rtK32, rtN33, rtP34, rtH35 and rtT37; in even yet another embodiment, rtP59, rtK60, rtF61, rtA62 and rtV63; in even still another embodiment, rtD83, rtV84, rtS85, rtA86, rtY89, rtH90 and rtI/L91; in another embodiment, rtP177, rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184; in a further embodiment, rtM204 and rtY203; in yet another embodiment, rt235, rt236,

rt237, rt238 and rt239 in still another embodiment, rt247, rt248, rt249, rt250 and rt251; and in even yet another embodiment,

K32M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; N33D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion;

- 5 P34S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; H35I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; T37W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P59S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; K60M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion;
- F61P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; A62R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; V63A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; D83C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion; V84A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion;
- 15 S85T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; A86R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; Y89V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; H90I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; I/L91K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/deletion;
- 20 P177S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; F178P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; L179K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; L180K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; A181R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion;
- 25 Q183E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; F183P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; T184W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; Y203V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; M204F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion;
- 30 L235K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N236D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion;

T237W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P237S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; N238D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H238I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion;

- 5 A238R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; S239T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; Q238E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; K239M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; L247K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion;
- N248D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H248I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; F249P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; M250F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; G251H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E; and
- 15 V251A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion or a combination of two or more mutations.

The present invention is further described by the following non-limiting Examples.

- 81 -

EXAMPLE 1

Overlapping genome of HBV

The overlapping genome of HBV is represented in Figure 1. The gene encoding DNA polymerase (P), overlaps the viral envelope genes, Pre-S1 and Pre-S2, and partially overlaps the X and core (C) genes. The HBV envelope comprises small, middle and large proteins HBV surface antigens. The large protein component is referred to as the HBV surface antigen (HBsAg) and is encoded by the S gene sequence. The Pre-S1 and Pre-S2 gene sequences encode the other envelope components.

10

EXAMPLE 2

Patients and Treatment

Patient A, a 48 year old Lebanese woman was initially referred for evaluation of 15 thrombocytopenia and hepatosplenomegaly. At this time the patient had abnormal LFT's (ALT 67 U/L, normal <55) and the HBV DNA was 61 pg/ml (231 days prior to the start of treatment). The patient was HBsAg and HBeAg positive. The ALT's fluctuated between 50-70 IU/L from (-231 to -35 days pretreatment). ADV was commenced on Day 0 in a clinical trial on 30 mg/day. HBV DNA levels were reduced with ADV treatment. The ADV treatment was reduced to 10 mg/day (144 days post-treatment). There was a problem with the randomization treatment protocol. The patient was on antiviral treatment for I month only during the second year of the treatment period. The study was completed on Day 679 post ADV treatment. The patient was not on ADV treatment until the open label ADV was recommenced on Day 875 from the start of the initial ADV treatment. This second period of ADV treatment was given for 108 days (day 983 post initial ADV 25 treatment). The HBV DNA levels remained at 7-10 pg/ml (1.96 x 10⁵ to 2.8 x 10⁵ copies/ml). At Day 983, ADV treatment was stopped and the patient was treated with LMV.

Patient B is a male liver transplant patient. The patient has been on both sequential and combination antiviral therapy including HBIG, FCV+HBIG, LMV+HBIG, LMV,

- 82 -

LMV+GCV, LMV+FCV+GCV, LMV+GCV and finally LMV+ADV. The patient has been on long term ADV+LMV treatment for over 795 days.

Patient C, is a 58 year old male. Prior to ADV treatment the patient had abnormal LFT's (ALT 240 IU/L, normal <55) and the HBV DNA was 2x10⁷copies/ml. ADV was commenced on Day 0 in a clinical trial on 10 mg/day for two years. The average ALT during the two year clinical trial period ws 114 IU/L. However, the ALT was rising and at 630 days after the start of ADV treatment the ALT remained high 407 IU/L. Open label ADV was commenced on Day 668 from the start of the initial ADV treatment. This second period of ADV treatment was given for 71 days. The HBV DNA levels remained high during open label ADV treatment (3.7x10⁶ to 1.5x10⁷ copies/ml). The peak ALT during open label ADV treatment was 517 IU/L (Day 738). The next day (Day 739), ADV treatment was stopped and the patient was treated with LMV.

15

EXAMPLE 3

Detection of Viral Markers

Hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), anti-HBe and hepatitis B core antigen (HBcAg) specific IgG and IgM were measured using commercially available immunoassays (Abbott Laboratories, North Chicago, IL, USA). Hepatitis B viral DNA levels were measured using a capture hybridization assay according to the manufacturer's directions (Digene Hybrid Capture II, Digene Diagnostics Inc., Beltsville, MD). The manufacturers stated cut-off for detecting HBV viremia in clinical specimens was 0.7x10⁶ copies/ml or 2.5 pg/ml, [Hendricks et al., Am J Clin Pathol 104: 537-46, 1995]. HBV DNA levels can also be quantitated using other commercial kits such as Cobas amplification HBV monitor kit (Roche).

- 83 -

EXAMPLE 4

Sequencing of HBV DNA

HBV DNA was extracted from 100 μl of serum as described previously by Aye et al., J.
Hepatol. 26: 1148-1153, 1997. Oligonucleotides were synthesized by Geneworks, Adelaide, Australia. Amplification of the HBV polymerase gene has been described by Aye et al., 1997, supra.

The specific amplified products were purified using PCR purification columns from MO BIO Laboratories Inc (La Jolla, CA) and directly sequenced using Big Dye terminator Cycle sequencing Ready Reaction Kit (Perkin Elmer, Cetus Norwalk, CT). The PCR primers were used as sequencing primers, OS1 5'- GCC TCA TTT TGT GGG TCA CCA TA-3' (nt 1408-1430) [SEQ ID NO:3], TTA3 5'-AAA TTC GCA GTC CCC AAA-3'(nt2128-2145) [SEQ ID NO:4], JM 5'-TTG GGG TGG AGC CCT CAG GCT - 3'(nt1676-1696) [SEQ ID NO:5], TTA4 5'-GAA AAT TGG TAA CAG CGG -3' (nt 2615-2632) [SEQ ID NO:6], OS2 5' TCT CTG ACA TAC TTT CCA AT 3' (nt 2798-2817) [SEQ ID NO:7], to sequence the internal regions of the PCR products.

EXAMPLE 5

20 Analysis of HBV DNA

Patient A: During ADV treatment, unique HBV mutations were detected by sequencing (Tables 4 and 5) This includes the unique mutation at rtY135C in addition to the mutation at rtT128N that was present prior to ADV treatment. A number of other unique changes were also detected in the polymerase and in the overlapping envelope gene (Table 5, Figures 4, 5 and 6). The unique change in the HBsAg include sP120T. These unique changes were compared to reference sequences from each of the seven genotypes A-G as well as a consensus sequence from pretreatment samples to determine unique changes.

Patient B: The HBV mutations prior to ADV treatment and during ADV treatment are listed in Table 6 and 7 and Figures 7, 8, and 9. The unique changes in the rt region of the HBV DNA polymerase include rtN/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M. The unique changes in the HBsAg include sT118R, sM133T, sF134V, sI195M, sS207R, sY225Y/C.

Patient C: The HBV mutations prior to ADV treatment and during ADV treatment are listed in Tables 8 and 9 and Figures 10, 11 and 12. The unique changes in the rt region of the HBV DNA polymerase include rtN53D, rtS116P, rtF151F/T, rtN236T and rtN238D. The unique changes in the HBsAg include sG145A and sW172stop.

Patient D: The HBV mutations during ADV treatment is listed in Table 10 and Figures 13, 14 and 15. The unique changes in the HBV DNA polymerase include rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A. The unique changes in the surface include sN40S and sC69 Stop. A number of unique changes were detected after the stop codon mutation at codon 69 of the S gene including sM75I, sL88P, sT118A, sW182stop, sW196L, sY206H and sY225F.

Patient E: The HBV mutations during ADV treatment is listed in Table 11 and Figures 16, 17 and 18. The unique changes in the HBV DNA polymerase include rtH90D and rtL/F108L. The unique changes in the surface include sI81M and sP214Q. A six nucleotide insertion was also detected resulting in a two amino acid insertion in the HBV polymerase and envelope gene at codons rt131 and s122, respectively. This insertion was previously detected in pre-ADV samples.

25

10

EXAMPLE 6

Adefovir Dipivoxil (ADV)

ADV (formerly Bis-pom PMEA)) is a potent inhibitor of HBV replication. The structure of ADV is shown in Figure 2 and its synthesis is described by Benzaria et al., J Med Chem. 39: 4958-4965, 1996).

- 85 -

EXAMPLE 7

HBV rt mutants

The HBV polymerase has similarities to other polymerases including HIV. Thus, mutations associated with resistance to antiviral agents may occur within the polymerase in functionally important regions such as the nucleotide triphosphate binding pocket that may also include the interaction between the DNA primer and template strand, magnesium ions and nucleoside triphosphates or nucleoside/ nucleotide analogs (and there vaiorus phosphroylated forms). Codons which are proposed to be mutated during anti-viral selection pressure are rtK32, rt N33, rtP34, rtH35 and rtT37 (that are upstream from the F domain); rt P59, rtK60, rtF61, rtA62 and rtV63 (between the F and A domains), rtD83, rtV84, rtS85, rtA86, rt Y89, rt H90 and rtJ/L91 (within the A domain and the region immediately prior to and after), rtP177, rtF178, rt L179, rtL180, rtA181, rtQ182, rtF183 and rtT184 (B domain); rtM204 and rtY203(C Domain), rtL235, rtN236, rtP/T237, rtN/H/A/S/Q238 and rtK239 (D Domain), rLt247, rtN/H248, rtF249, rtM250 and rtG251 (E Domain). The codons are defined in Table 12 and examples of various mutants are given in Tables 13 and 14.

EXAMPLE 8

20 Patient F

15

25

The HBV mutations during ADV treatment of Patient F are listed in Table 15 and Figures 20, 21 and 22. The unique changes in the HBV DNA polymerase includes rtL157L/M, rtA181V, rtV207I, and rtN236T. The unique changes in the surface includes sF83S, sL173F and sW199L.

- 86 -

EXAMPLE 9

Patient G

The HBV mutations during ADV treatment of Patient G are listed in Table 16 and Figures 23, 24 and 25. The unique changes in the HBV DNA polymerase includes rtL80V, rtP109S, rtI163V, rtM204I, rtL229M and rtN/H/A/S/Q238K. The unique changes in the surface includes sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C.

10

EXAMPLE 10

Patient H

The HBV mutations during ADV treatment in Patient H are listed in Table 17 and Figures 26, 27 and 28. The unique changes in the HBV DNA polymerase includes rtS78S/T, rtN118N/S, rtN139N/K, rtV142E, rtA181A/T, rtI204M, rtQ/P/S/Stop215Q, rtE218K/E, and rtN238N/H. The unique changes in the surface include sC69Stop/C, sC76Y sI110V/I, sY134N, sW172Stop/W, sW196Stop and sS207R.

EXAMPLE 11

20

In vitro analysis of ADV resistance

The sensitivity/resistance profile of HBV mutants to ADV was examined *in vitro* using recombinant HBV/baculovirus. The procedure for analyzing the resistance profile is outlined in the following Examples 12-20.

25

EXAMPLE 12

Cell culture

Sf21 insect cells were maintained in supplemented Grace's insect medium further supplemented with 10% v/v heat-inactivated fetal bovine serum (Gibco BRL,

- 87 -

Gaithersburg, MD) in humidified incubator at 28°C with CO₂. HepG2 cells were maintained in minimal essential medium supplemented with 10% v/v heat-inactivated fetal bovine serum (MEM-FBS). HepG2 cells were grown in humidified 37°C incubators at 5% v/v CO₂.

5

25

EXAMPLE 13

Preparation of HBV/baculovirus transfer vector with specific point mutations

The recombinant HBV/baculovirus system used for antiviral testing has been previously described (Delaney et al., Antimicrob Agents Chemother 45(6): 1705-1013, 2001). In brief, the recombinant transfer vector was created by excising a fragment containing the 1.3x HBV genome construct and cloning it into the multiple cloning region of a baculovirus vector pBlueBac4.5 (Invitrogen, Carlsbad, CA). Point mutations were created by site directed mutagenesis using the commercial kits according to the manufacturer's specifications (QuikChange, Stratagene). HBV/ baculovirus recombinant clones encoding the reverse transcriptase mutations rtA181T/N236T/N238D and rtN236T/N236D in combination with the precore mutation at G1896A (pcW28 stop) or wild-type with respect to codon pcW28, were prepared by site-directed mutagenesis. The nucleotide sequence of the plasmid and the point mutations generated by site directed mutagenesis were confirmed by sequencing using the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit according to the manufacturer's specifications (Perkin Elmer, Cetus Norwalk, CT).

EXAMPLE 14

Generation of recombinant baculoviruses containing the 1.3 HBV construct

Purified recombinant transfer vector and linear AcMNPV baculovirus DNA were cotransfected into Sf21 cells using the BacNBlue transfection kit from Invitrogen (Carlsbad, CA); recombinant viruses were isolated by plaque assay according to the manufacturer's instructions. A series of recombinant viruses were amplified from isolated plaques by infecting 100-mm dishes of Sf21 cells. Viral DNA was extracted from amplified viruses

using standard procedures. Purified viral DNA was digested with restriction enzymes and then fractionated by electrophoresis in a 1% v/v agarose gel. Southern blotting was performed to determine which virus isolates contained the intact 1.3 HBV construct. A Boehringer Mannheim Random Prime DNA Labeling kit (Indianapolis, IN) was used to generate [P³²]-radiolabeled probes. A full-length double-stranded HBV genome was used as a template for all radiolabeled probes. Viral DNA sequence was confirmed by PCR amplification of the polymerase catalytic region using the sense primer 5'-GCC TCA TTT TGT GGG TCA CCA TA-3' [SEQ ID NO:8], (nucleotide 1408 to 1430 according to HBV Genebank Accession number M38454) and the antisense primer 5'-TCT CTG ACA TAC TTT CCA AT-3' [SEQ ID NO:9] (nucleotides 2817 to 2798 according to HBV Genebank Accession number M38454). The following primers were utilized for the sequencing of internal regions 5'-TGC ACG ATT CCT GCT CAA-3' [SEQ ID NO:10] (nucleotides 2345-2362 according to HBV Genebank Accession number M38454) and 5'-TTT CTC AAA GGT GGA GAC AG-3' [SEQ ID NO:11] (nucleotides 1790-1810 according to HBV Genebank Accession number M38454).

EXAMPLE 15

15

Preparative baculovirus amplification and purification

Baculoviruses were amplified by infecting suspension cultures of Sf21 cells in log phase at a multiplicity of infection (moi) of 0.5 pfu/cell. Infections were allowed to proceed until a majority of the cells in the flasks showed visible signs of infection (four to five days). Virions were concentrated from infected Sf21 medium by centrifugation at 80,000 x g and purified through a 20-60% w/v sucrose gradient. Purified virus was titrated in quadruplicate in Sf21 cells by end-point dilution. An aliquot of each high titer stock was used for DNA extraction. The polymerase gene was amplified and sequenced to confirm the presence of the site-directed mutagenesis as in Example 14.

- 89 -

EXAMPLE 16

Infection of HepG2 cells with recombinant HBV expressing baculovirus

HepG2 cells were seeded at approximately 20-40% confluency and then were grown for 16-24 hours before infection. On the day of infection, triplicate plates of cells were trypsinized, and viable cell number was determined with a hemocytometer using Trypan blue exclusion. Average cell counts were calculated and used to determine the volume of high-titer viral stock necessary to infect cells at the indicated moi. HepG2 cells were washed one time with serum-free MEM to remove traces of serum. Baculovirus was diluted into MEM without serum to achieve the appropriate moi using volumes of 1.0, 0.5, and 0.25 ml to infect 100-mm, 60 mm, and 35-mm dishes, respectively. Baculovirus was adsorbed to HepG2 cells for one hour at 37°C with gentle rocking every 15 minutes to ensure that the inoculum was evenly distributed. The inoculum was then aspirated and HepG2 cells were washed two times with phosphate-buffered saline and refed MEM-FBS with or without various concentrations of agents.

EXAMPLE 17

Detection of intracellular replicative intermediates

HBV core particles were isolated from the-cytoplasmic fraction of HepG2 cells lysed in 0.5% w/v NP-40. Cytoplasmic extracts were adjusted to 10 mmol/l McC12 and unprotected DNA was removed by an incubation to 500 g/ml Proteinase K for 1.5 hours at 37°C. HBV DNA in the samples were then extracted using commercial DNA extraction kits such as Qiagen (DNA extraction) or in-house methods using sequential phenol and chloroform extractions, and the nucleic acids were recovered by ethanol precipitation. Nucleic acids were resuspended in 50 μl /l TE (10 mmol/l Tris, 1 mmol/l ethylenediaminetetraacetic acid), normalized by OD260, and digested with 100 g/ml RNase (Boehringer Mannheim, Indianapolis, IN) for one hour at 37°C before analysis by real-time PCR or electrophoresis and Southern blotting. After southern blot analysis a BioRad GS-670 imaging densitometer and the Molecular Analyst software (BioRad, Hecules California) was used to analyze suitable exposures of Southern blots.

PCT/AU03/00432 WO 03/087351

- 90 -

Densitometry data was fitted to logistic dose response curves using the TableCurve 2D software package from Jandel Scientific. Logistic dose response equations were used to calculate IC₅₀ and IC₉₀ values and co-efficients of variation.

5

20

25

30

EXAMPLE 18

Real-time PCR

For the real-time PCR based assay for HBV, HBV DNA was extracted from 200 µl of serum using the QIAamp DNA Mini Kit according to the manufacturer's instructions 10 (QIAGEN GmbH, Hildens, Germany). Primers and a molecular beacon were designed for conserved nucleic acid sequences within the precore domain of the HBV genome to amplify and detect a 216-nucleotide product. Amplification was performed in a 50-µl reaction mixture containing 1.0 Taqman buffer A (Applied Biosystems, Foster City, CA), 3.0 mM MgCl, 0.4 pmol of each primer per µL, forward primer, PC1 (5'-GGGAGGAGATTAGGTTAA-3' [SEQ ID NO:12]) and reverse primer, PC2 (5'-GGCAAAAACGAGAGTAACTC-3' [SEQ ID NO:13]), 0.4 pmol of the HBV-specific molecular beacon per μL, (5'-FAM-CGCGTCCTACTGTTCAAGCCTCCAAGCTGT GACGCG-DABCYL-3' [SEQ ID NO:14]; where FAM represents fluorophore 6carboxyfluorescein and DABCYL, 4-dimethylaminophenylazobenzoic acid, a quenching chromophore) and 1.25U of AmpliTaq Gold DNA polymerase (Perkin-Elmer). PCR was performed using the ABI PRISM 7700 spectrofluorometric thermocycler (Applied Biosystems). The PCR program consisted of an initial cycle (95°C for 10 minutes) followed by 45 amplification cycles (94°C for 15 secs, 50°C for 30 secs, 72°C for 30 secs). The instrument detected and recorded the fluorescence spectrum of each reaction tube during the annealing phase.

An external standard was constructed by ligation of a 1.3 kB wild-type HBV plasmid (genotype D) into the pBlueBac plasmid vector (Hershey Medical Center, Hershey, PA). Quantification of the DNA concentration of the plasmid was determined by spectrophotometry. Duplicates of serial 10-fold dilutions of the plasmid ranging from 10₈ copies/ml to 100 copies/ml were included in each run in order to generate a standard curve.

- 91 -

The copy number in each experimental reaction was determined by interpolation of the derived threshold cycle (C_T).

EXAMPLE 19

5

ADV treatments

ADV was resuspended in sterile water, aliquoted, and frozen at -20°C to avoid repeated freezing and thawing of the drug. Medium containing ADV was prepared daily as needed using fresh aliquots of 3TC. In experiments in which ADV treatment was initiated after viral infection, HepG2 cells were exposed to the indicated concentration of ADV immediately after infection with HBV baculovirus. In experiments utilizing pretreatment with ADV, cells were fed medium containing ADV 16 hours prior to HBV baculovirus infection, HBV baculovirus infection was also carried out in medium containing ADV, and cells were refed fresh medium containing ADV immediately after completion of the infection and washing procedures.

EXAMPLE 20

Antiviral testing performed with wild-type and HBV/baculovirus encoding rtA181T/N236T/N238D and rtN236T/N236D

20

25

15

The *in vitro* antiviral drug cross-resistance testing of the HBV mutants is shown in Table 18. The laboratory reference strain of HBV (genotype D subtype ayw) containing the introduced D domain mutations demonstrated increased IC₅₀ values against ADV (Table 18). The rt N236T/N238D mutation was associated with a twenty-three fold increase in IC₅₀ against ADV. This was reduced to a five-fold increase when the rtA181T was also present and this triple HBV polymerase mutant was resistant to LMV.

TABLE 4 Clinical, virological and HBV sequencing data summary for Patient A while on open label ADV.

	۱	

Days post-ADV treatment	ıt (pg/ml)		Treatment protocol	Key polymerase mutations detected by sequencing ¹		
-230	1.7 10 ⁶ (61)	67 U/L	pre-therapy	rtT/N128T/N rtQ/H/R215Q/stop		
875			ADV recommenced	-		
904	1.55 x 10 ⁶					
932	2.97 x 10 ⁶			·		
959	1.76 x 10 ⁶					
983	1.64 x 10 ⁶	65	end ADV	rtT128N rtY135C		

Nomenclature according to Stuyver et al., 2001, supra

TABLE 5 Summary of HBV mutations in patient A treated with ADV

Sample name	Days post-ADV	Genotype	Polymerase*	Surface
	treatment			a feet to the
ILA1	-230	D	rtA/S21A/S rtT/N128T/N** rtQ/H/R215Q/stop	sP120P/T sI208I/L
ILA2	904	D	rtA/S21S rtF122L rtR126H rtT/N128T/N rtQ130P rtN131D rtQstop/215Q rtH248N	sP/T120P sT125M sI/I208I/L
ILA3	932	D	rtA/S21S rtF122L rtR126H rtT/N128T/N rtQ130P rtN131D rtQstop/215Q rtH248N	sP/T120P sT125M sI/1208I/L
ILA4	983	D	ntS21A ntL122F ntN124H ntH126R ntT128N ntP130Q ntD131N ntY135C	sP120T sM125T sT127A

^{*} Nomenclature according to Stuyver et al., 2001, supra.

^{5 **} Mutations in bold have not been detected in reference HBV genotypes, mutations not in bold are changes from the previous sample that are present in reference genotypes.

TABLE 6 Clinical, virological and HBV sequencing data summary for Patient B while on open label ADV.

Days post-ADV treatment	HBV DN copies/ml (pg/ml)	ALT IU/L	Treatment protocol	Key polymerase mutations detected by sequencing ¹
-867(S0)	183	298	pre-therapy	rtN/S/T/I/V53D rtV153G rtQ/E215S rtN248H
-8(S6)	955	427	pre-ADV on LMV	rtI/L80L rtY126Q rtL180M rtS202G rtI204V
76(S8)	not detected	150	on ADV (20 mg) and LMV	rtN/S/T/I/V53D rtY126Q rtL180M rtS202G rtI204V
637(S12)	not detected	36	on ADV (5 mg) and LMV	rtN/S/T/I/V53D rtY126Q rtL180M rtS202G rtI204V
872(S15)	not detected	67	on ADV (5 mg) and LMV	rtN/S/T/I/V53D rtY126Q rtL180M rtS202G rtI204V rtI235I/M

⁵ Nomenclature according to Stuyver et al., 2001, supra

TABLE 7 Summary of HBV mutations in Patient B treated with ADV

Sample name			Polymerase*	Surface
S0	-867	D	rtN/S/T/I/V53D	sM/K/L133T
БО	-607		rtV153G	sF134V
		1	rtQ/E215S	sF134V sS207R
	(rtN248H	sL21V/L
S6	-8	D	rtI/L80L	sT118R
Бо			rtY126Q	sM133T
		1	rtL180M	sF134V
		1	rtS202G	sI195M
			rtI204V	sS207R
S8	76	D	rtN/S/T/I/V53D	sT118R
		-	rtY126Q	sM133T
		ł	rtL180M	sF134V
		ł ł	rtS202G	sI195M
		}	rtI204V	sS207R
S12	637	D	rtN/S/T/I/V53D	sT118R
			rtY126O	sM133T
	Ì	1	rtL180M	sF134V
		l	rtS202G	sI195M
	*		I204V	sS207R
S15	872	D	rtN/S/T/I/V53D	sT118R
			rtY126Q	sM133T
			rtL180M	sF134V
	}	į į	rtS202G	sI195M
	}		rtI204V	sS207R
			rt12351/M	sY225Y/C

^{5 *} Nomenclature according to Stuyver et al., 2001, supra

** Mutations in bold have not been detected in reference HBV genotypes, mutations not in bold are changes from the previous sample that are present in reference genotypes.

TABLE 8 Clinical, virological and HBV sequencing data summary for Patient C while on open label ADV.

Days post-ADV treatment	HBV DNA copies/ml (pg/ml)	ALT IU/L	Treatment protocol	Key polymerase mutations detected by sequencing ¹
-26	2 x10 ⁷		pre-therapy	rtN53D rtS116P rtD/N/S134V rtN238D
0		240	ADV commenced clinical trial	·
29		160		
630		407		
668			Open label ADV	
701	1.5 x 10 ⁷	226		
730	3.7 x 10 ⁶	361		rtN53D rtS116P rtF151S/T rtA181T rtN236T rtN238D
738		517		
739			end ADV, start LMV	· · · · · · · · · · · · · · · · · · ·

⁵ Nomenclature according to Stuyver et al., 2001, supra

- 97 -

TABLE 9 Summary of HBV mutations in Patient C treated with ADV

Sample	Days	Genotype	Polymerase*	Surface.
name	post-ADV			
7771000	treatment			
DRJ1299	-26	D	rtN53D**	T126S
			rtY54H	S204G
			rtS57P	
			rtL91I	L209V
1	'		rtS116P	S210R
			rtF122L	521010
)		•	rtY124H	,
})		rtD/N/S134V	J
	1		rtK212R	
		•	rtL217R	
	1		rtS219A	
			rtN238D	. '
DRJ1	730	D	rtN53D	sS126T
	ļ		rtY54H	sM133L/M
			rtS57P	sS143S/T
]		rtL91I	sD144A
			rtS116P	sG145A
		İ	rtF122L	sW172Stop
			rtY124H	_
	[rtV134D	
	ĺ		rtY141Y/F	
	1	ľ	rtL145M	
			_ rtF151T/F	
		ľ	rtA181T	
	1	i	rtK212R	
	}		rtL217R	
			rtS219A	
			rtN236T	
			rtN238D	

^{*} Nomenclature according to Stuyver et al., 2001, supra.

Mutations in bold have not been detected in reference HBV genotypes, mutations not in bold are changes from the previous sample that are present in reference genotypes.

- 98 -

TABLE 10 Summary of HBV mutations in Patient D treated with ADV

Sample Name	Genotype	Polymerase*	Surface
02575908	D	rtS78T rtV84M rtY126C rtV191I rtM204I rtV214A	sN40S sC69stop sM75I sL88P sT118A sW182STOP sW196L sY206H sY225F

- * Nomenclature according to Stuyver et al., 2001, supra.
- 5 ** Mutations in bold have not been detected in reference HBV genotypes, mutations not in bold are changes from the previous sample that are present in reference genotypes.

TABLE 11 Summary of HBV mutations in Patient E treated with ADV

Sample Name	Genotype	Polymerase*	Surface
8123/02	A	rtH90D rtL/F108L 6nt insertion/duplication after codon rt131(aaQ&N)	sI81M sY/S100Y 6nt insertion/ duplication after codon s122 (aaT & K) sP214Q

10

- * Nomenclature according to Stuyver et al., 2001, supra.
- ** Mutations in bold have not been detected in reference HBV genotypes, mutations not in bold are changes from the previous sample that are present in reference genotypes.

TABLE 12 Codons where mutations occur following exposure to nucleoside or nucleotide analogs

Region/	Original amino	Nucleotide			N 38 13 W
Domain	acid in reverse		1		
	transcriptase				
	(rt) and codon				
	position				
prior to F	K32	AAG	AAA	 	
	N33	AAT			
	P34	CCT			
	H35	CAC			
	T37	ACC -			•
FTOA	P59	CCA			
	K60	AAA			196
	F61	TTC		 	
	A62	GCA			
	V63	GTC			
Α	D83	GAT			
	V84	GTG			
	S85	TCT		 	
	A86	GCG		7	
	Y89	TAT			
	H90	CAT			
	I/L91	ATT	CTT		
В	P177	CCG			
	F178	TTT			
	L179	CTC			
	L180	CTG			
	A181	TTG			
	Q182	CAG			
	F183	TTT -			
	T184	ACT			
С	Y203	TAT			
	M204	ATG			
D	L235	TTG	TTA		
	N236	AAC	AAT		
	T237	ACT	ACC		
	P237	CCT	CCC		
	N238	AAT	AAC		
I	H238	CAC			
	A238	GCT			
	S238	TCT			
	Q238	CAG			

Region/ Domain	Original amino acid in reverse transcriptase (rt) and codon	Nucleotide				
	position K239	A A A	AAC			
		AAA	AAG			
E	L247	CTT	TTA	CTA	CTC	CTG
	N248	AAC	AAT			
	H248	CAT	CAC			
	F249	TTC	TTT			
	M250	ATG				
	G251	GGT	GGA	GGC	GGG	
	V251	GTC				·

TABLE 13 Target amino acid sites in rt with codons and mutations leading to amino acid changes.

Title	Codon	Amino Acid	Codon	Amino Acid	Codon	Amino Acid
K32	AAG	Lys	AAG	Lys	GAG	Glu
N33	AAT	Asn	AAT	Asn	GAT	Asp
P34	CCT	Pro	ACT	Thr	GCT	Ala
H35	CAC	His	AAC	Asn	GAC	Asp
T37	ACC	Thr	ACC	Thr	GCC	Ala
P59	CCA	Pro	ACA	Thr	GCA	Ala
K60	AAA	Lys	AAA	Lys	GAA	Glu
F61	TTC	Phe	ATC	lle	GTC	Val
A62	GCA	Ala	ACA	Thr	GCA	Ala
V63	GTC	Val	ATC	Πe	GTC	Val
D83	GAT	Asp	AAT	Asn	GAT	Asp
V84	GTG	Val	AŢG	Met	GTG	Val
S85	TCT	Ser	ACT	Thr	GCT	Ala
A86	GCG	Ala	ACG	Thr	GCG	Ala
Y89	TAT	Tyr	AAT	Asn	GAT	Asp
H90	CAT	His	AAT	Asn	GAT	Asp
I/L91	ATT	Пе	ATT	Пе	GTT	Val
P177	CCG	Pro	ACG	Thr	GCG	Ala
F178	TTT	Phe	ATT	Ile	GTT	Val
L179	CTC	Leu	ATC	Ile	GTC	Val
L180	CTG	Leu	ATG	Met	GTG	Val
A181	TTG	Leu	ATG	Met	GTG	Val
Q183	CAG	Gln	AAG	Lys	GAG	Glu
F183	TTT	Phe	ATT	Ile	GTT	Val
T184	ACT	Thr	ACT	Thr	GCT	Ala
Y203	TAT	Tyr	AAT	Asn	GAT	Asp
M204	ATG	Met	ATG	Met	GTG	Val
L235	TTG	Leu	ATG	Met	GTG	Val
N236	AAC	Asn	AAC	Asn	GAC	Asp
T237	ACT	Thr	ACT	Thr	GCT	Ala
P237	CCT	Pro	ACT	Thr	GCT	Ala
N238	AAT	Asn	AAT	Asn	GAT	Asp
H238	CAC	His	AAC	Asn	GAC	Asp
A238	GCT	Ala	ACT	Thr	GCT	Ala
S239	TCT	Ser	ACT	Thr	GCT	Ala
Q238	CAG	Gln	AAG	Lys	GAG	Glu
K239	AAA	Lys	AAA	Lys	GAA	Glu
L247	CTT	Leu	ATT	Ile	GTT	Val
N248	AAC	Asn	AAC	Asn	GAC	Asp
H248	CAT	His	AAT	Asn	GAT	Asp
F249	TTC	Phe	ATC	Ile	GTC	Val
M250	ATG	Met	ATG	Met	GTG	Val
G251	GGT	Gly	AGT	Ser	GGT	Gly
V251	GTC	Val	ATC	lle	GTC	Val

- 102 -

TABLE 13 continued (II)

Codon ·	Amino Acid	Codon	Amino Acid .	Codon	Amino Acid
CAG	Gln	TAG	Stop	AAG	Lys
CAT	His	TAT	Tyr	AAT	Asn
CCT	Pro	TCT	Ser	CAT	His
CAC	His	TAC	Tyr	CAC	His
CCC	Pro	TCC	Ser	AAC	Asn
CCA	Pro	TCA	Ser	CAA	Gln
CAA	Gln	TAA	Stop	AAA	Lys
CTC	Leu	TTC	Phe	TAC	Tyr
CCA	Pro	TCA	Ser	GAA	Glu
CTC	Leu	TTC	Phe	GAC	Asp
CAT	His	TAT	Tyr	GAT	Asp
CTG	Leu	TTG	Leu	GAG	Glu
CCT	Pro	TCT	Ser	TAT	Tyr
CCG	Pro	TCG	Ser	GAG	Glu
CAT	His	TAT	. Tyr	TAT	Tyr
CAT	His	TAT	Tyr	CAT	His
CTT	Leu	TTT	Phe	AAT	Asn
CCG	Pro	TCG	Ser	CAG	Gln
CTT	Leu	TTT	Phe	TAT	Tyr
CTC	Leu	TTC	Phe	CAC	His
CTG	Leu	TTG	Leu	CAG	Gln
CTG	Leu	TTG	Leu	TAG	Stop
CAG	Gln	TAG	Stop	CAG	Gln
CTT	Leu	TTT	Phe	TAT	Tyr
CCT	Pro	TCT	Ser	AAT	Asn
CAT	His	TAT	Tyr	TAT	Tyr
CTG	Leu	TTG	Leu	AAG	Lys
CTG	Leu	TTG	Leu	TAG	Stop
CAC	His	TAC	Tyr	AAC	Asn
CCT	Pro	TCT	Ser	AAT	Asn
CCT	Pro	TCT	Ser	CAT	His
CAT	His	TAT	Tyr	AAT	Asn
CAC	His	TAC	Tyr	CAC	His
CCT	Pro	TCT	Ser	GAT	Asp
CCT	Pro	TCT	Ser	TAT	Tyr
CAG	Gln	TAG	Stop	CAG	Gln
CAA	Gln	TAA	Stop	AAA	Lys
CTT	Leu	TTT	Phe	CAT	His
CAC	His	TAC	Tyr	AAC	Asn
CAT	His	TAT	Tyr	CAT	His
CTC	Leu	TTC	Phe	TAC	Tyr
CTG	Leu	TTG	Leu	AAG	Lys
CGT	Arg	TGT	Cys	GAT	Asp
CTC	Leu	TTC	Phe	GAC	Asp

- 103 -

TABLE 13 continued (III)

Codon	Amino Acid	Codon	Amino Acid	Codon	Amino Acid
AGG	Arg	ACG	Thr	ATG	Met
AGT	Ser	ACT	Thr	ATT	Ile
CGT	Arg	CCT	Pro	CTT	Leu
CGC	Arg	CCC	Pro	CTC	Leu
AGC	Ser	ACC	Thr	ATC	Ile
CGA	Arg	CCA	Pro	CTA	Leu
AGA	Arg	ACA	Thr	ATA	Ile
TGC	Cys	TCC	Ser	TTC	Phe
GGA	Gly	GCA	Ala	GTA	Val
GGC	Gly	GCC	Ala	GTC	Val
GGT	Gly	GCT	Ala	GTT	Val
GGG	Gly	GCG	Ala	GTG	Val
TGT	Cys	TCT	Ser	TTT	Phe
GGG	Gly	GCG	Ala	GTG	Val
TGT	Cys	TCT	Ser	TTT	Phe
CGT	Arg	CCT	Pro	CTT	Leu
AGT	Ser	ACT	Thr	ATT	Ile
CGG	Arg	CCG	Pro	CTG	Leu
TGT	Cys	TCT	Ser	TIT	Phe
CGC	Arg	CCC "	Pro	CTC	Leu
CGG	Arg	CCG	Pro	CTG	Leu
TGG	Trp	TCG	Ser	TTG	Leu
CGG	Arg	CCG	Pro	CTG	Leu
TGT	Cys	TCT	Ser	TTT	Phe
AGT	Ser	ACT	Thr	ATT	Ile
TGT	Cys	TCT	Ser	TTT	Phe
AGG	Arg	ACG	Thr	ATG	Met
TGG	Trp	TCG	Ser	TTG	Leu
AGC	Ser	ACC	Thr	ATC	Ile
AGT	Ser	ACT	Thr	ATT	lle lle
CGT	Arg	CCT	Pro	CTT	Leu
AGT	Ser	ACT	Thr	ATT	Re
CGC	Arg	CCC	Pro	CTC	Leu
GGT	Gly	GCT	Ala	GTT	Val
TGT	Cys	TCT	Ser	TTT	Phe
CGG	Arg	CCG	Pro	CTG	Leu
AGA	Arg	ACA	Thr	ATA	lle
CGT	Arg	CCT	Pro	CTT	Leu
AGC	Ser	ACC	Thr	ATC	lle lle
CGT	Arg	CCT	Pro	CTT	Leu
TGC	Cys	TCC	Ser	TTC	Phe
AGG	Arg	ACG	Thr	ATG	Met
GGT	Gly	GCT	Ala	GTT	Val
GGC	Gly	GCC	Ala	GTC	Val Val

- 104 -

TABLE 13 continued (IV)

Codon	Amino	Codon	Amino	Codon	Amino	Codon	Amino
	Acid		Acid		Acid		Acid
AAA	Lys	AAG	Lys	AAC	Asn	AAT	Asn
AAA	Lys	AAG	Lys	AAC	Asn	AAT	Asn
CCA	Pro	CCG	Pro	CCC	Pro	CCT	Pro
CAA	Gln	CAG	Gln	CAC	His	CAT	His
ACA	Thr	ACG	Thr	ACC	Thr	ACT	Thr
CCA	Pro	CCG	Pro	CCC	Pro	CCT	Pro
AAA	Lys	AAG	Lys	AAC	Asn	AAT	Asn
TTA	Leu	TTG	Leu	TTC	Phe	TTT	Phe
GCA	Ala	GCG	Ala	GCC	Ala ·	GCT	Ala
GTA	Val	GTG	Val	GTC	Val	GTT	Val
GAA	Glu	GAG	Glu	GAC	Asp	GAT	Asp
<u>GTA</u>	Val	GTG	Val	GTC	Val	GTT	Val
TCA	Ser	TCG	Ser	TCC	Ser	TCT	Ser
GCA	Ala	GCG	Ala	GCC	Ala	GCT	Ala
TAA	Stop	TAG	Stop	TAC	Tyr	TAT	Tyr
CAA	Gln	CAG	Gln	CAC	His	CAT	His
ATA	Ile	ATG	Met	ATC	Ile	ATT	. Ile
CCA	Pro	CCG	Pro	CCC	Pro	CCT	Pro
TTA	Leu	TTG	Leu	TTC	Phe	TTT	Phe
CTA	Leu	CTG	Leu	CTC	Leu	CTT	Leu
CTA	Leu	CTG	Leu	CTC	Leu	CTT	Leu
TTA	Leu	TTG	Leu .	TTC	Phe	TTT	Phe
CAA	Gln	CAG	Gln	CAC	His	CAT	His
TTA	Leu	TTG	Leu	TTC	Phe	TTT	Phe
ACA	Thr	ACG	Thr	ACC	Thr	ACT	Thr
TAA	Stop	TAG	Stop	TAC	Tyr	TAT	Tyr
ATA	Ile	ATG	Met	ATC	Ile	ATT	Ile
TTA	Leu	TTG	Leu	TTC	Phe	TTT	Phe
AAA	Lys	AAG	Lys	AAC	Asn	AAT	Asn
ACA	Thr	ACG	Thr	ACC	Thr	ACT	Thr
CCA	Pro	CCG	Pro	CCC	Pro	CCT	Pro
AAA	Lys	AAG	Lys	AAC	Asn	AAT	Asn
CAA	Gln	CAG	Gln	CAC	His	CAT	His
GCA	Ala	GCG	Ala	GCC	Ala	GCT	Ala
TCA	Ser	TCG	Ser	TCC	Ser	TCT	Ser
CAA	Gln	CAG	Gln	CAC	His	CAT	His
AAA	Lys	AAG	Lys	AAC	Asn	AAT	Asn
CTA	Leu	CTG	Leu	CTC	Leu	CTT	Leu
AAA	Lys	AAG	Lys	AAC	Asp	AAT	Asn
CAA	Gln	CAG	Gln	CAC	His	CAT	His
TTA	Leu	TTG	Leu	TTC	Phe	TTT	Phe
ATA	Ile	ATG	Met	ATC	lle l	ATT	Ile
GGA	Gly	GGG	Gly	GGC	Gly	GGT	Gly
GTA	Val	GTG	Val	GTC	Val	GTT	Val

TABLE 14 Amino acid mutations at target sites in rt

Target	Mutation	15
K32	M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L	
N33	D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R	
P34	S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F	
H35	VL/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G	
T37	W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S	
P59	S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F	
K60	M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L	
F61	P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M	
A62	R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V	
V63	A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y	•
D83	C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N	
V84	A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y	
S85	T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P	
A86	R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V	
Y89	V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W	
H90	I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G	
I/L91	K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H	
P177	S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F	
F178	P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M	
L179	K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I	
L180	K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I	
A181	R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V	
Q183	E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C	
F183	P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M	
T184	W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S	
Y203	V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W	
M204	F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K	
L235	K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I	
N236	D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R	
T237	W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S	
P237	S/T/W/Y/V/A/R/N/D/C/Q/B/G/H/I/L/K/M/F	
N238	D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R	
H238	I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G	
A238	R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V	
S239	T/W/Y/V/A/R/N/D/C/Q/E/G/H/J/L/K/M/F/P	
Q238	E/G/H/J/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C	
K239	M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L	
L247	K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I	
N248	D/C/Q/E/G/H/J/L/K/M/F/P/S/T/W/Y/V/A/R	
H248	I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G	

Target	Mutation
F249	P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M
M250	F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K
G251	H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E
V251	A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y

TABLE 15 Summary of HBV mutations in Patient F treated with ADV

Sample Name	Genotype	Polymerase*	Surface
CAP 01564808	A	rtL157L/M rtA181V rtV207I rtN236T	sF83S sL173F sW199L

^{*} Nomenclature according to Stuyver et al., 2001, supra.

5

^{**} Mutations in bold have not been detected in reference HBV genotypes, mutations not in bold are changes from the previous sample that are present in reference genotypes.

TABLE 16 Summary of HBV mutations in Patient G treated with ADV

Sample Name	Genotype	Polymerase*	Surface
KAN 02510355	C	rtL80V rtP109S rtI163V rtM204I rtL229M rtN/H/A/S/Q238K	sI126T sK160R sS174N sA184V sW196L sS210N sF/C220L sY221C

- * Nomenclature according to Stuyver et al., 2001, supra.
- 5 ** Mutations in bold have not been detected in reference HBV genotypes, mutations not in bold are changes from the previous sample that are present in reference genotypes.

TABLE 17 Summary of HBV mutations in Patient H treated with ADV

Sample Name	Genotype	Polymerase*	Surface
LAV0303	D	rtS78S/T rtN118N/S rtN139N/K rtV142E rtA181A/T rtI204M rtQ/P/S/Stop215Q rtE218K/E rtN238N/H	sC69Stop/C sC76Y sI110V/I sY134N sW172Stop/W sW196Stop sS207R

- 10
- * Nomenclature according to Stuyver et al., 2001, supra.
- ** Mutations in bold have not been detected in reference HBV genotypes, mutations not in bold are changes from the previous sample that are present in reference genotypes.

- 108 -

TABLE 18 In vitro drug susceptibility of the HBV reference laboratory strain and patient-derived HBV isolate

In vitro Susceptibility, IC ₅₀ (fold change from wild-type)						
	Real-time PCR	Southe	rn Blot			
Mutation	Adefovir	Adefovir	Lamivudine			
Wild-type (pPC)	1	1	1			
rt N236T/N238D	23	NA ¹	NA ¹			
rt A181T/N236T/N238D	5.1	7.3	>100			
rt L180M/M204V ²	NT ⁵	0.9	>2500			

⁵ NA, not analyzed.

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features

Data from Delaney et al., 2001, supra

- 109 -

BIBLIOGRAPHY

Allen et al., Hepatology 27(6): 1670-1677, 1998

Aye et al., J. Hepatol. 26: 1148-1153, 1997

Bartholomeusz et al., Intervirology 40(5-6): 337-342 1997

Benhamou et al., Lancet 358: 718-723, 2001

Benzaria et al., J Med Chem. 39: 4958-4965, 1996

Boyd et al., Antiviral Chem Chemother. 32: 358-363, 1987

Calio et al., Antiviral Res. 23: 77-89, 1994

Das et al., J. Virol. 75(10): 4771-4779, 2001

Delaney et al., Antimicrob Agents Chemother 45(6): 1705-1013, 2001

Dienstag et al., New England J Med 333: 1657-1661, 1995

Frick et al., Antimicrob. Agents Chemother. 37: 2285-2292, 1993

Gaillard et al., Antimicrob Agents Chemother. 46(4): 1005-1013, 2002

Gilson et al., J Viral Hepat 6: 387-395, 1999

Heathcote et al., Hepatology 28: A620, 1998

Hendricks et al., Am J Clin Pathol 104: 537-46, 1995

Kruger et al., Hepatology 22: 219A, 1994

Main et al., J. Viral Hepatitis 3: 211-215, 1996

Norder et al., (J. Gen. Virol. 74: 341-1348, 1993

Perrillo et al., Hepatology 32: 129-134, 2000

Peters et al., Transplantation 68: 1912-1914, 1999

Price et al., Proc. Natl. Acad. Sci. USA 86(21): 8541-8544, 1989

Ren and Nassal, J. Virol. 75(3): 1104-1116, 2001

Severini et al., Antimicrobial Agents Chemother. 39: 430-435, 1995

Stuyver et al., Hepatology 33: 751-757, 2001

Summers and Mason, Cell 29: 403-415, 1982

Suo et al., J Biol Chem. 273(42): 27250-27258. 1998

Vere Hodge, Antiviral Chem Chemother 4: 67-84, 1993

Xiong et al., Hepatology. 28(6): 1669-73, 1998

Ying et al., J Viral Hepat. 7(2): 161-165, 2000

- 110 -

Ying et al., J. Viral Hepat. 7(1): 79-83, 2000

Ying et al., Viral Hepat. 7(2): 161-165, 2000

CLAIMS

- 1. An isolated HBV variant wherein said variant comprises a nucleoside mutation in a gene encoding a DNA polymerase resulting in at least one amino acid addition, substitution and/or deletion to said DNA polymerase and wherein said variant exhibits decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combinations thereof
- 2. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to ADV.
- 3. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to both LMV.
- 4. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to TFV.
- 5. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to FTC.
- 6. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to ADV and LMV.
- 7. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to ADV and TFV.
- 8. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to LMV and TFV.

- 112 -

- 9. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to ADV and FTC.
- 10. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to LMV and FTC.
- 11. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to TFV and FTC.
- 12. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to ADV and LMV and TFV.
- 13. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to ADV and LMV and FTC.
- 14. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to FTC and LMV and TFV.
- 15. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to ADV and FTC and TFV.
- 16. The isolated HBV variant of Claim 1 wherein said variant exhibits decreased sensitivity to ADV and LMV and TFV and FTC.
- 17. The isolated HBV variant of any one of Claims 1 to 16 wherein said variant exhibits reduced interactivity to an immunological reagent specific to HBsAg.
- 18. The isolated HBV variant of Claim 1 wherein said variant comprises a mutation in domain F of the HBV DNA polymerase thereby conferring an altered amino acid sequence to the sequence set forth in Formula I [SEQ ID NO:1]:

- 113 -

FORMULA I

L, X₁, X₂, D, W, G, P, C, X₃, X₄, H, G, X₅, H, X₆, I, R, X₇, P, R, T, P, X₈, R, V, X₉, G, G, V, F, L, V, D, K, N, P, H, N, T, X₁₀, E, S, X₁₁, L, X₁₂, V, D, F, S, Q, F, S, R, G, X₁₃, X₁₄, X₁₅, V, S, W, P, K, F, A, V, P, N, L, X₁₆, S, L, T, N, L, L, S*

wherein:

```
X_1
         is L or R or I;
 X_2
         is E or D;
 X_3
         is T or D or A or N or Y;
 X_4
         is E or D;
X_5
         is E or K or Q;
X_6
         is H or R or N:
X_7
         is I or T;
X_8
         is A or S;
χ<sub>9</sub>
         is T or R;
X_{10}
        is A or T or S:
X_{11}
        is R or T;
X_{12}
        is V or G;
X_{13}
        is S or I or T or N or V;
X_{14}
        is T or S or H or Y;
X_{15}
        is R or H or K or Q;
X_{16}
        is Q or P;
```

and wherein S* is designated as amino acid 74.

19. The isolated HBV variant of Claim 1 wherein said variant comprises a mutation in any one of domains A through E thereby conferring an altered amino acid sequence to the sequence set forth in Formula II [SEQ ID NO:2]:

- 114 -

FORMULA II

 $S \ X_1 \ L \ S \ W \ L \ S \ L \ D \ V \ S \ A \ F \ Y \ H \ X_2 \ P \ L \ H \ P \ A \ A \ M \ P \ H \ L \ L \ X_3 \ G \ S \ G \ L \ X_4 \ R \ Y \ V \\ A \ R \ L \ S \ S \ X_5 \ S \ X_6 \ X_7 \ X \ N \ X_8 \ Q \ X_9 \ X_{10} \ X \ X \ X \ X_{11} \ L \ H \ X_{12} \ X_{13} \ C \ S \ R \ X_{14} \ L \ Y \ V \ S \ L \ X_{15} \\ L \ L \ Y \ X_{16} \ T \ X_{17} \ G \ X_{18} \ K \ L \ H \ L \ X_{19} \ X_{20} \ H \ P \ I \ X_{21} \ L \ G \ F \ R \ K \ X_{22} \ P \ M \ G \ X_{23} \ G \ L \ S \ P \ F \ L \\ L \ A \ Q \ F \ T \ S \ A \ I \ X_{24} \ X_{25} \ X_{26} \ X_{27} \ X_{28} \ R \ A \ F \ X_{29} \ H \ C \ X_{30} \ X_{31} \ F \ X_{32} \ Y \ M^* \ D \ D \ X_{33} \ V \ L \ G \ A \\ X_{34} \ X_{35} \ X_{36} \ X_{37} \ H \ X_{38} \ E \ X_{39} \ L \ X_{40} \ X_{41} \ X_{42} \ X_{43} \ X_{44} \ X_{45} \ X_{46} \ L \ L \ X_{47} \ X_{48} \ G \ I \ H \ L \ N \ P \ X_{49} \ K \\ T \ K \ R \ W \ G \ Y \ S \ L \ N \ F \ M \ G \ Y \ X_{50} \ I \ G$

wherein:

- X is any amino acid
- X_1 is N or D;
- X_2 is I or P;
- X_3 is I or V;
- X_4 is S or D;
- X_5 is T or N;
- X_6 is R or N;
- X_7 is N or I;
- X_8 is N or Y or H;
 - X_9 is H or Y;
- X_{10} is G or R;
- X_{11} is D or N;
- X_{12} is D or N;
- X_{13} is S or Y;
- X_{14} is N or Q;
- X_{15} is L or M;
- X_{16} is K or Q;
- X_{17} is Y or F;
- X_{18} is R or W;

- X_{19} is Y or L;
- X₂₀ is S or A;
- X_{21} is I or V;
- X_{22} is I or L;
- X_{23} is V or G;
- X_{24} is C or L;
- X_{25} is A or S;
- X_{26} is V or M;
- X_{27} is V or T;
- X_{28} is R or C;
- X_{29} is F or P;
- X_{30} is L or V;
- X_{31} is A or V;
- X_{32} is S or A;
- X_{33} is V or L or M;
- X_{34} is K or R;
- X_{35} is S or T;
- X_{36} is V or G;
- X_{37} is Q or E;
- X_{38} is L or S or R;
- X_{39} is S or F;
- X₄₀ is F or Y;
- X_{41} is T or A;
- X₄₂ is A or S;
- X_{43} is V or I;
- X_{44} is T or C;
- X₄₅ is N or S;
- X_{46} is F or V;
- X_{47} is S or D;
- X_{48} is L or V;
- X_{49} is N or Q;

- 116 -

 X_{50} is V or I; and

M is amino acid 204;

and wherein the first S is designated as amino acid 75.

- 20. The isolated HBV variant of Claim 18 or 19 wherein said variant further comprises an altered HBsAg.
- 21. An isolated HBV variant comprising a mutation in the nucleotide sequence encoding HBsAg resulting in an amino acid addition, substitution and/or deletion in said HBsAg in a region corresponding to the amino acid sequence set forth in SEQ ID NO:1 or SEQ ID NO:2 and wherein said variant exhibits decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and/or optionally other nucleoside or nucleotide analogs or other anti-HBV agents or combinations thereof.
- 22. The isolated HBV variant of Claim 21 wherein said variant exhibits decreased sensitivity to ADV.
- 23. The isolated HBV variant of Claim 21 wherein said variants exhibits decreased sensitivity to LMV.
- 24. The isolated HBV variant of Claim 21 wherein said variant exhibits decreased sensitivity to TFV.
- 25. The isolated HBV variant of Claim 21 wherein said variant exhibits decreased sensitivity to FTC.
- 26. The isolated HBV variant of Claim 21 wherein said variant exhibits decreased

WO 03/087351

PCT/AU03/00432

- 117 -

sensitivity to ADV and LMV.

27. The isolated HBV variant of Claim 21 wherein said variant exhibits decreased sensitivity to LMV and TFV.

- 28. The isolated HBV variant of Claim 21 wherein said variant exhibits decreased sensitivity to ADV and FTC.
- 29. The isolated HBV variant of Claim 21 wherein said variant exhibits decreased sensitivity to LMV and FTC.
- 30. The isolated HBV variant of Claim 21 wherein said variant exhibits decreased sensitivity to TFV and FTC.
- 31. The isolated HBV variant of Claim 21 wherein said variant exhibits decreased sensitivity to ADV and TFV.
- 32. The isolated HBV variant of Claim 21 wherein said variant exhibits decreased sensitivity to ADV and LMV and TFV.
- 33. The isolated HBV variant of Claim 21 wherein said variant exhibits decreased sensitivity to ADV and LMV and FTC.
- 34. The isolated HBV variant of Claim 21 wherein said variant exhibits decreased sensitivity to FTC and LMV and TFV.
- 35. The isolated HBV variant of Claim 21 wherein said variant exhibits decreased sensitivity to ADV and FTC and TFV.
- 36. The isolated HBV variant of Claim 21 wherein said variant exhibits decreased sensitivity to ADV and LMV and TFV and FTC.

- 37. The isolated HBV variant of Claim 21 wherein an antibody specific for a wild-type HBsAg exhibits a reduced capacity to neutralize said HBV variant and wherein said HBV variant is selected by exposure of a subject to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, in single or combinations or sequential therapy.
- 38. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtS21A, rtL122F, rtN124H, rtT28N, rtP130Q, rtD131N and rtY135C or a combination thereof or an equivalent mutation.
- 39. The isolated HBV variant of Claim 1 or 37 comprising a muation in the HBV DNA polymerase selected from rt/N/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M or a combination thereof or an equivalent mutation.
- 40. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtN53D, rtY54H, rtS57P, rtL91I, rtS116P, rtF122L, rtY124H, rtV134D, rtY141Y/F, rtL145M, rtF151F/Y, rtA181T, rtK212R, rtL217R, rtS219A, rtN236T and rtN238D or a combination thereof or an equivalent mutation.
- 41. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtH90D and rtL/F108L or a combination thereof or an equivalent mutation.
- 42. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtL157L/M, rtA181V and rtV207I or a combination thereof or an equivalent mutation.
- 43. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV

DNA polymerase selected from rtL80V, rtP109S, rtI163V, rtL229M and rtN/H/A/S/Q238K or a combination thereof or an equivalent mutation.

- 44. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the surface antigen selected from sP120T, sM125F and sT127A or a combination thereof or an equivalent mutation.
- 45. The isolated HBV variant of Claim1 or 37 comprising a mutation in the surface anitgen selected from sT118R, sM133T, sF134V, sI195M, sS207R and sY225Y/C or a combination thereof or an equivalent mutation.
- 46. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the surface antigen selected from sS126T, sM133L/M, sS143S/T, sD144A, sG145A and sW172Stop or a combination thereof or an equivalent mutation.
- 47. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV surface antigen selected from s181M and sP214Q or a combination thereof or an equivalent mutation.
- 48. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV surface antigen selected from sF83S, sL173F and sW199L or a combination thereof or an equivalent mutation.
- 49. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV surface antigen selected from sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C or a combination thereof or an equivalent mutation.
- 50. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV surface antigen selected from sC69Stop/C, sC76Y, sI110V/I, sY134N, sW172Stop/W, sW196Stop and sS207R or a combination thereof or an equivalent mutation.

- 51. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtK32, rtN33, rtP34, rtH35 and rtT37 or a combination thereof or an equivalent mutation.
- 52. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtP59, rtK60, rtF61, rtA62 and rtV63 or a combination thereof or an equivalent mutation.
- 53. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtD83, rtV84, rtS85, rtA86, rtY89, rtH90 and rtI/L91 or a combination thereof or an equivalent mutation.
- 54. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtP177, rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184 or a combination thereof or an equivalent mutation.
- 55. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtM204 and rtY203 or a combination thereof or an equivalent mutation.
- 56. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rt235, rt236, rt237, rt238 and rt239 or a combination thereof or an equivalent mutation.
- 57. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rt247, rt248, rt249, rt250 and rt251 or a combination thereof or an equivalent mutation.
- 58. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from K32M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; N33D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion;

P34S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; H35I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; T37W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P59S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; K60M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; F61P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; A62R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; V63A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; D83C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion: V84A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; S85T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion: A86R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; Y89V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; H90I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; I/L91K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/deletion; P177S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion: F178P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion: L179K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion: L180K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion: A181R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; Q183E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion: F183P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; T184W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion: Y203V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; M204F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; L235K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N236D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; T237W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion: P237S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion: N238D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion: H238I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion;

- 122 -

A238R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion;
S239T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion;
Q238E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion;
K239M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion;
L247K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion;
N248D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion;
H248I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion;
F249P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion;
M250F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion;
G251H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/deletion; and
V251A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion.

- 59. A method for determining the potential for an HBV to exhibit reduced sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV or optionally other nucleoside analogs or other anti-HBV agents, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV DNA polymerase resulting in at least one amino acid substitution, deletion and/or addition in any one or more of domains F and A through E or a region proximal thereto of said DNA polymerase and associated with resistance or decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, wherein the presence of such a mutation is an indication of the likelihood of resistance to said ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV.
- 60. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to

ΔΙ	71/	
л	<i>J</i> Y .	

- 61. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to LMV.
- 62. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to TFV.
- 63. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to FTC.
- 64. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to ADV and LMV.
- 65. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to ADV and TFV.
- 66. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to LMV and TFV.
- 67. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to ADV and FTC.
- 68. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to TFV and FTC.
- 69. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to LMV and FTC.
- 70. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to ADV and LMV and TFV.
- 71. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to ADV

and LMV and FTC.

- 72. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to LMV and TFV and FTC.
- 73. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to ADV and FTC and TFV.
- 74. The method of Claim 59 wherein the HBV exhibits reduced sensitivity to ADV and LMV and TFV and FTC.
- An isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtS21A, rtL122F, rtN124H, rtT28N, rtP130Q, rtD131N and rtY135C or a combination thereof or an equivalent mutation.
- 76. The isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a muation in the HBV DNA polymerase selected from rt/N/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M or a combination thereof or an equivalent mutation.
- 77. The isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtN53D, rtY54H, rtS57P, rtL91I, rtS116P, rtF122L, rtY124H, rtV134D, rtY141Y/F, rtL145M, rtF151F/Y, rtA181T, rtK212R, rtL217R, rtS219A, rtN236T and rtN238D or a combination thereof or an equivalent mutation.
- 78. The isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A or a combination thereof or an equivalent mutation.

- 125 -

- 79. An isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtH90D and rtL/F108L or a combination thereof or an equivalent mutation.
- 80. An isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected rtL157L/M, rtA181V and rtV207I or a combination thereof or an equivalent mutation.
- 81. An isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtL80V, rtP109S, rtI163V, rtL229M and rtN/H/A/S/Q238K or a combination thereof or an equivalent mutation.
- 82. The isolated HBV variant of Claim 1 or 37 comprising a mutation in the DNA polymerase selected from rtS78S/T, rtN118N/S, rtN139N/K, rtV142E, rtA181A/T, rtI204M, rtQ/P/S/Stop215Q, rtE218K/E and rtN238N/H or a combination thereof or an equivalent mutation.
- 83. An isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the surface antigen gene selected from sP120T, sM125F and sT127A or a combination thereof or an equivalent mutation.
- 84. An isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the HBV Surface antigen gene selected from sT118R, sM133T, sF134V, sI195M, sS207R and sY225Y/C or a combination thereof or an equivalent mutation.
- 85. An isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the surface antigen selected from sS126T, sM133L/M, sS143S/T, sD144A, sG145A and sW172Stop or a combination thereof or an equivalent mutation.
- 86. An isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA surface antigen selected from sN40S, sC69Stop, sM75I,

WO 03/087351

sL88P, sT118A, sW182Stop, sW196L, sY206H an sY225F or a combination thereof or an equivalent mutation.

- 87. An isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA surface antigen selected from s181M and sP214Q or a combination thereof or an equivalent mutation.
- 88. An isolated DNA molecule from anHBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA surface antigen selected from sF83S, sL173F and sW199L or a combination thereof or an equivalent mutation.
- 89. An isolated DNA molecule from anHBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA surface antigen selected from sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C or a combination thereof or an equivalent mutation.
- 90. An isolated DNA molecule from anHBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA surface antigen selected from sC69Stop/C, sC76Y, sI110V/I, sY134N, sW172Stop/W, sW196Stop and sS207R or a combination thereof or an equivalent mutation.
- 91. An isolated DNA molecule from anHBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtK32, rtN33, rtP34, rtH35 and rtT37 or a combination thereof or an equivalent mutation.
- 92. An isolated DNA molecule from anHBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtP59, rtK60, rtF61, rtA62 and rtV63 or a combination thereof or an equivalent mutation.
- 93. An isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtD83, rtV84, rtS85, rtA86, rtY89,

- 127 -

rtH90 and rtI/L91 or a combination thereof or an equivalent mutation.

- 94. An isolated DNA molecule from anHBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtP177, rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184 or a combination thereof or an equivalent mutation.
- 95. An isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rtM204 and rtY203 or a combination thereof or an equivalent mutation.
- 96. An isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rt235, rt236, rt237, rt238 and rt239 or a combinations thereof or an equivalent mutation.
- 97. An isolated DNA molecule from an HBV variant of Claim 1 or 37 comprising a mutation in the HBV DNA polymerase selected from rt247, rt248, rt249, rt250 and rt251 or a combinations thereof or an equivalent mutation.
- 98. An isolated DNA molecule from an HBV variant of Claim I or 37 comprising a mutation **HBV** pol/meraes in the DNA selected from K32M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; N33D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; P34S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; H35I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; T37W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P59S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; K60M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; F61P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; A62R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; V63A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; D83C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion;

V84A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; S85T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; A86R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/YV/deletion; Y89V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; H90I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; I/L91K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/deletion; P177S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; F178P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; L179K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion: L180K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; A181R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; Q183E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; F183P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; T184W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; Y203V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; M204F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; L235K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N236D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; T237W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion: P237S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; N238D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H238I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; A238R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; S239T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; Q238E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; K239M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion: L247K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N248D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H248I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; F249P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion: M250F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion;

- 129 -

G251H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/deletion; and V251A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion.

- 99. A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of rtS21A, rtL122F, rtN124H, rtT28N, rtP130Q, rtD131N and rtY135C or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and optionally other nucleoside analogs.
- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of rt/N/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.
- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of rtN53D, rtY54H, rtS57P, rtL91I, rtS116P, rtF122L, rtY124H, rtV134D, rtY141Y/F, rtL145M, rtF151F/Y, rtA181T, rtK212R, rtL217R, rtS219A, rtN236T and rtN238D or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and

- 130 -

LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.

- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and optionally other nucleoside analogs.
- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of rtH90D and rtL/F108L or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.
- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of rtL157L/M, rtA181V and rtV207I or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and

- 131 -

optionally other nucleoside analogs.

- 105. A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of rtL80V, rtP109S, rtI163V, rtL229M and rtN/H/A/S/Q238K or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.
- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of rtS78S/T, rtN118N/S, rtN139N/K, rtV142E, rtA181A/T, rtI204M, rtQ/P/S/Stop215Q, rtE218K/E and rtN238N/H or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.
- 107. A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of sP120T, sM125F and sT127A or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, and optionally

- 132 -

other nucleoside analogs.

- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of sT118R, sM133T, sF134V, sI195M, sS207R and sY225Y/C or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.
- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation-wherein the presence of sS126T, sM133L/M, sS143S/T, sD144A, sG145A and sW172Stop or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.
- 110. A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of sN40S, sC69Stop, sM75I, sL88P, sT118A, sW182Stop, sW196L, sY206H an sY225F or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.

- 133 -

- 111. A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of s181M and sP214Q or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.
- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of sF83S, sL173F and sW199L or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.
- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.

- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of sC69Stop/C, sC76Y, sI110V/I, sY134N, sW172Stop/W, sW196Stop and sS207R or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.
- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of rtK32, rtN33, rtP34, rtH35 and rtT37 or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.
- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of rtP59, rtK60, rtF61, rtA62 and rtV63 or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.
- 117. A method for determining whether an HBV strain exhibits reduced sensitivity

to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of rtD83, rtV84, rtS85, rtA86, rtY89, rtH90 and rtI/L91 or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.

- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of rtP177, rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184 or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.
- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of rtM204 and rtY203 or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.
- 120. A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA

- 136 -

from said HBV and screening for a mutation wherein the presence of rt235, rt236, rt237, rt238 and rt239 or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.

- A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of rt247, rt248, rt249, rt250 and rt251 or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside analogs.
- 122. A method for determining whether an HBV strain exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation wherein the presence of K32M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; N33D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; P34S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; H35I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P59S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; K60M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; K60M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; A62R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; V63A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion;

D83C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion; V84A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; S85T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; A86R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/YV/deletion; Y89V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; H90I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; I/L91K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/deletion; P177S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; F178P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; L179K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; L180K/M/F/P/S/T/W/Y/V/A/R/N/D/C/O/E/G/H/I/deletion: A181R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/YV/deletion; Q183E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; F183P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; T184W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; Y203V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion: M204F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; L235K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N236D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion: T237W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P237S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; N238D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H238I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; A238R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; S239T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion: Q238E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; K239M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; L247K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N248D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H248I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; F249P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion;

M250F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; G251H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/deletion; and

V251A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and optionally other nucleoside analogs.

A method for detecting an agent which exhibits inhibitory activity to an HBV which exhibits resistance or decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and optionally other nucleoside or nucleotide analogs or other anti-HBV agents, said method comprising:

generating a genetic construct comprising a replication competent-effective amount of the genome from said HBV contained in a plasmid vector and then transfecting said cells with said construct;

contacting said cells, before, during and/or after transfection, with the agent to be tested;

culturing said cells for a time and under conditions sufficient for the HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said agent; and

subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the virus has replicated, expressed genetic material and/or assembled and/or been released in the presence of said agent.

A method for detecting an agent which exhibits inhibitory activity to an HBV which exhibits resistance or decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV, and optionally other nucleoside or nucleotide analogs or other anti-HBV agents, said method comprising:

generating a genetic construct comprising a replication competent-effective amount of the genome from said HBV contained in or fused to an amount of a baculovirus genome effective to infect cells and then infecting said cells with said construct;

contacting said cells, before, during and/or after infection, with the agent to be tested;

culturing said cells for a time and under conditions sufficient for the HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said agent; and

subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the virus has replicated, expressed genetic material and/or assembled and/or been released in the presence of said agent.

- 125. The method of Claim 123 or 124 wherein the HBV genome is stably integrated into the cells' genome.
- 126. An agent identified by the method of any one of Claims 123 to 124.
- 127. Use of an HBV variant according to any one of Claims 1 to 59 or a component thereof in the rational design of an anti-HBV agent.

- 140 -

- 128. Use according to Claim 126 wherein the rational design comprises microarray analysis.
- 129. Use according to Claim 126 wherein the rational design is based on the crystal structure or NMR structure of a viral component.
- 130. A vaccine comprising an antigenic component of the HBV variant of any one of Claims 1 to 59 or an antigenic component thereof or an antibody thereto.
- 131. The vaccine of Claim 130 wherein the antigenic component is an HBsAg or PreS1 or PreS2.
- 132. The vaccine of Claim 130 wherein the antigenic component is a defective HBV variant.
- 133. The vaccine of Claim 130 comprising an antibody to HBsAg or PreS1 or PreS2
- 134. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rtS21A, rtL122F, rtN124H, rtT28N, rtP130Q, rtD131N and rtY135C.
- 135. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rt/N/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V and rtI235I/M.
- 136. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rtN53D, rtY54H, rtS57P, rtL91I, rtS116P, rtF122L, rtY124H, rtV134D, rtY141Y/F.

- 141 -

- 137. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rtL145M, rtF151F/Y, rtA181T, rtK212R, rtL217R, rtS219A, rtN236T and rtN238D.
- 138. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A.
- 139. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rtH90D and rtL/F108L.
- 140. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rtL157L/M, rtA181V and rtV207I.
- 141. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rtL80V, rtP109S, rtI163V, rtL229M and rtN/H/A/S/Q238K.
- The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rtS78S/T, rtN118N/S, rtN139N/K, rtV142E, rtA181A/T, rtI204M, rtQ/P/S/Stop215Q, rtE218K/E and rtN238N/H.
- 143. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from sP120T, sM125F and sT127A.
- 144. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from sT118R, sM133T, sF134V, sI195M, sS207R and sY225Y/C.

WO 03/087351

- 142 -

PCT/AU03/00432

- 145. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from sS126T, sM133L/M, sS143S/T, sD144A, sG145A and sW172Stop.
- 146. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from sN40S, sC69Stop, sM75I, sL88P, sT118A, sW182Stop, sW196L, sY206H an sY225F.
- 147. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from s181M and sP214Q.
- 148. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from sF83S, sL173F and sW199L.
- 149. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C.
- 150. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from sC69Stop/C, sC76Y, sI110V/I, sY134N, sW172Stop/W, sW196Stop and sS207R.
- 151. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rtK32, rtN33, rtP34, rtH35 and rtT37.
- 152. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rtP59, rtK60, rtF61, rtA62 and rtV63.
- 153. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rtD83, rtV84, rtS85, rtA86, rtY89, rtH90 and rtJ/L91.

- 154. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rtP177, rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184.
- 155. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rtM204 and rtY203.
- 156. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rt235, rt236, rt237, rt238 and rt239.
- 157. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from rt247, rt248, rt249, rt250 and rt251.
- 158. The vaccine of Claim 130 wherein the HBV or its antigenic compound is from an HBV variant having a mutation selected from, K32M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; N33D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; P34S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; H35I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; T37W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P59S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; K60M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; F61P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion: A62R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; V63A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; D83C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion; V84A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; S85T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; A86R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion;

Y89V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion;

H90I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; I/L91K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/deletion; P177S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; F178P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion: L179K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion: L180K/M/F/P/S/T/W/Y/V/A/R/N/D/C/O/E/G/H/I/deletion: A181R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion: Q183E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; F183P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; T184W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; Y203V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; M204F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; L235K/M/F/P/S/T/W/Y/V/A/R/N/D/C/O/E/G/H/I/deletion: N236D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; T237W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P237S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; N238D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion: H238I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; A238R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; S239T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; Q238E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion: K239M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; L247K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N248D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion: H248I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/O/E/G/deletion: F249P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion: M250F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; G251H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/deletion; and V251A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion.

- 159. A computer product for assessing the likely usefulness of a viral variant or biological sample comprising same for determining an appropriate therapeutic protocol in a subject, said product comprising:
 - (1) code that receives as input index values (I_{VS}) for at least two features associated with said viral agents or biological sample comprising same, wherein said features are selected from:
 - (a) the ability to exhibit resistance for reduced sensitivity to a particular compound or immunological agent;
 - (b) an altered DNA polymerase from wild-type HBV;
 - (c) an altered surface antigen from wild-type HBV;
 - (d) morbidity or recovery potential of a patient; or
 - (e) altered replication capacity (increased or decreased);
 - (2) code that adds said I_Vs to provide a sum corresponding to a potency value (P_V) for said viral variants or biological samples; and
 - (3) a computer readable medium that stores the codes.
- 160. A computer for assessing the likely usefulness of a viral variant or biological sample comprising same in a subject, wherein said computer comprises:
 - (1) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said machine-readable data comprise I_Vs for at least two features associated with said viral variant or biological sample; wherein said features are selected from:-
 - (a) the ability to exhibit resistance for reduced sensitivity to a particular compound or immunological agent;

- (b) an altered DNA polymerase from wild-type HBV;
- (c) an altered surface antigen from wild-type HBV;
- (d) morbidity or recovery potential of a patient; or
- (e) altered replication capacity (increased or decreased);
- (2) a working memory for storing instructions for processing said machinereadable data;
- (3) a central-processing unit coupled to said working memory and to said machine-readable data storage medium, for processing said machine readable data to provide a sum of said I_Vs corresponding to a P_V for said compound(s); and
- (4) an output hardware coupled to said central processing unit, for receiving said P_V.
- 161. A composition comprising an agent capable of directly or indirectly inhibiting an HBV variant as defined in any one of Claims 1 to 59, said composition further comprising one or more pharmaceutically acceptable carriers and/or diluents.
- 162. The composition of Claim 161 wherein the agent is a recombinant protein from said HBV variant.
- 163. The composition of Claim 161 wherein the recombinant protein is HBsAg or PreS1 or PreS2.
- 164. The composition of Claim 161 wherein the agent is capable of inhibiting an HBV variant polymerase.
- 165. The composition of Claim 161 wherein the agent is identified by natural product screening or rational drug design.

WO 03/087351

- 147 -

PCT/AU03/00432

- 166. The composition of Claim 161 wherein the agent is a defective HBV variant.
- 167. The composition of Claim 161 wherein the agent is an antibody directed to an HBV compound.
- 168. The composition of Claim 161 wherein the agent is a ribozyme, antisense molecule or sense molecule relative to an HBV gene.
- A method according to Claims 37 to 57 wherein a virus related to HBV from the family of hepdanviruses such as WHV or DHBV exhibits reduced sensitivity to a nucleoside analog, said method comprising isolating DNA or corresponding mRNA from said HBV, or DHBV or WHV and screening for a mutation or combinations thereof or an equivalent one or more other mutation is indicative of a variant wherein said variant exhibits a decreased sensitivity to ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and FTC, or ADV and FTC and LMV and TFV.
- 170. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- 171. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA

- 148 -

or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from sP120T, sM125T and sT127A selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.

- 172. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from sT118R, sM133T, sF134V sI195M, sS207R and sY225Y/C selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- 173. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from sS126T, sM133L/M, sS143S/T, sD144A sG145A and sW172Stop selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.

- 149 -

- 174. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from sN40S, and sC69 Stop, sM75I, sL88P, sT118A, sW182stop, sW196L, sY206H and sY225F selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- 175. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from sF83S, sL173F and sW199L selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and

- 150 -

LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.

- A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from sC69Stop/C, sC76Y sI110V/I, sY134N, sW172Stop/W, sW196Stop and sS207R selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from rtS21A, rtL122F, rtN124H, rtH126R,

rtT128N, rtP130Q, rtD131N, rtY135C selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.

- 180. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from rtN/S/T/I/V53D, rtY126Q, rtL180M, rtS202G, rtI204V, rtI235I/M selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- 181. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from rtN53D, rtY54H, rtS57P, rtL91I, rtS116P, rtF122L, rtY124H, rtV134D, rtY141Y/F, rtL145M, rtF151F/Y, rtA181T, rtK212R, rtL217R, rtS219A, rtN236T and rtN238D selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.

- 152 -

- 182. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from rtS78T, rtV84M, rtY126C, rtV191I, rtM204I and rtV214A selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from rtH90D and rtL/F108L selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- 184. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from rtL157L/M, rtA181V, rtV207I; and rtN236T selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and FTC and LMV and FTC and LMV and FTC,

- 153 -

interactivity of said antibodies to said mutated surface antigen.

- 185. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from rtL80V, rtP109S, rtI163V, rtM204I, rtL229M and rtN/H/A/S/Q238K selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- 186. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from rtS78S/T, rtN118N/S, rtN139N/K, rtV142E, rtA181A/T, rtI204M, rtQ/P/S/Stop215Q, rtE218K/E, and rtN238N/H selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from rtK32, rtN33, rtP34, rtH35 and rtT37 selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV,

LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.

- A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from rtP59, rtK60, rtF61, rtA62 and rtV63 elected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and FTV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and EMV and EMV and EMV and EMV and
- A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from rtD83, rtV84, rtS85, rtA86, rtY89, rtH90 selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and EMV and EMV and EMV and EMV and EMV and EMV
- 190. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the

presence of such a mutation is selected from rtP177, rtF178, rtL179, rtL180, rtA181, rtQ182, rtF183 and rtT184 selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.

- 191. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from rtM204 and rtY203 selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from rt235, rt236, rt237, rt238 and rt239 selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- 193. A method for determining the potential for an HBV to exhibit reduced.

 interactivity to antibody to HBV surface antigen, said method comprising isolating DNA

or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation is selected from rt247, rt248, rt249, rt250 and rt251 selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.

194. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolating DNA or corresponding mRNA from said HBV and screening for a mutation in the nucleotide sequence encoding HBV surface antigen and/or HBV DNA polymerase genes wherein the presence of such a mutation, K32M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion; N33D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; P34S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; H35I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; T37W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; P59S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion; K60M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion: F61P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; A62R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; V63A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; D83C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/deletion; V84A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion; S85T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion; A86R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; Y89V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion; H90I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; I/L91K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/deletion; P177S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion;

F178P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; L179K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; L180K/M/F/P/S/T/W/Y/V/A/R/N/D/C/O/E/G/H/I/deletion: A181R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; Q183E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion; F183P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; T184W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion; Y203V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/deletion: M204F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion; L235K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N236D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion: T237W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/deletion: P237S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/deletion: N238D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion: H238I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; A238R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/deletion; S239T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/deletion: Q238E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/deletion: K239M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/deletion: L247K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/deletion; N248D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/V/A/R/deletion; H248I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/deletion; F249P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/M/deletion; M250F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/G/H/I/L/K/deletion: G251H/I/L/K/M/F/P/S/T/W/Y/V/A/R/N/D/C/Q/E/deletion; and V251A/R/N/D/C/Q/E/G/H/I/L/K/M/F/P/S/T/W/Y/deletion, is selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.

- 195. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolated protein from said HBV encoding HBV surface antigen wherein the presence of such a mutation was selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV and is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- 196. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolated protein from said HBV encoding HBV surface antigen wherein the presence of such a mutation is selected from sP120T, sM125T and sT127A selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolated protein from said HBV encoding HBV surface antigen wherein the presence of such a mutation was selected from sT118R, sM133T, sF134V sI195M, sS207R and sY225Y/C selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.

- 159 -

- 198. A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolated protein from said HBV encoding HBV surface antigen wherein the presence of such a mutation was selected from sS126T, sM133L/M, sS143S/T, sD144A sG145A and sW172Stop selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and FTC is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolated protein from said HBV encoding HBV surface antigen wherein the presence of such a mutation was selected from sN40S, and sC69 Stop, sM75I, sL88P, sT118A, sW182stop, sW196L, sY206H and sY225F selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolated protein from said HBV encoding HBV surface antigen wherein the presence of such a mutation was selected from sF83S, sL173F and sW199L selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen

- 160 -

- A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolated protein from said HBV encoding HBV surface antigen wherein the presence of such a mutation was selected from sI126T, sK160R, sS174N, sA184V, sW196L, sS210N, sF/C220L and sY221C selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.
- A method for determining the potential for an HBV to exhibit reduced interactivity to antibody to HBV surface antigen, said method comprising isolated protein from said HBV encoding HBV surface antigen wherein the presence of such a mutation was selected sC69Stop/C, sC76Y sI110V/I, sY134N, sW172Stop/W, sW196Stop and sS207R selected during treatment with ADV, LMV, TFV, or FTC, or ADV and LMV, ADV and TFV, LMV and TFV, FTC and ADV, FTC and TFV, FTC and LMV, or ADV and LMV and TFV, or ADV and FTC and TFV, TFV and FTC and LMV, ADV and LMV and FTC, or ADV and FTC and LMV and TFV is an indication of the likelihood of reducing interactivity of said antibodies to said mutated surface antigen.

Figure 1

Figure 2

Figure 3

4/32

NO:8] NO:9] NO:10] NO:11]				4/3	32		
[8EQ ID [8EQ ID [9EQ ID [9EQ ID							
80 88 100 73	180 188 200 173	280 288 300 273	380 388 400 373	480 488 500 473	580 588 600 573	680 688 700 673	780 788 800
1 CAMANCTIGGCAGCAANICCGCCTCCTCCATCYACCAANICGGCAGTCAGGAMGGCAGCTACCCGCTGTCCAGCATCAGCAGGAMGGCAGCCTACCCGCTGTCCACCATCTCCACCTTTTCCAACTTGCCAGCAANICCGCCTCCTCCACCAANICGCCAGTCAGCAAAGGCAGCCAGCAAAACTTTGCCAGCAAANICCGCCTCCTGCCTCCAACCAANICGCCAGTCAGGAAAGGCAGCTACCCGGCTGTCCTCCAACTTTTTTTT	81 GAGAAACACTCATCCTCAGGCCATGCAGTGGAAYTCCACAACCTTCCACCAAACTCTGWAAGATCCCAGRGTGARAGGCCTGTATTTCCCTGCTGGTGGGC 89 GAGAAACACTCATCCTCAGGCCATGCAGTGGAATTCCACAACCTTCCACCAACTCTGCAAGATCCCAGAGTGAGAGGCCTGTATTTCCCTGCTGGTGGGCE 101 GAGAAACACTCATCCTCAGGCCATGCAGAACTCCACCAAACTCTGCAAGATCCCAGAGTGAAGAGGCCTGTATTTCCCTGCTGGTGGTGGC 74 GAGAAACACTCATCCTCAGGCCATGCAGGAACTCCACCACCAAACTCTGCAAAGATCCCAGGGTGAAGAGCCTGTATTTCCCTGCTGGTGGC	181 189 201 174	281 CATCAGAAITCCIMGGACCCCINCICGIGITACAGGCGGGGTITITICITGATAGAAICCICACAATACCGCAGAGIATCIAGACTCGGGGGGGGGACTTC 289 CANCAGGAITCCIAGGACCCCINCICGIGITACAGGGGGGGTITITICITGATGACAAGAAITCCIACAAIACCGCAGAGICTAGACTCGTGGTGGTGGACTTC E 301 CATCAGGAITCCIAGGACCCCINCICGTGITACAGGGGGGGTITTTCITGTTGAAAAACCTCACAATACCGCAGAGICTAGACTCGTGGTGGACTTC 274 CATCAGGATTCCICGGACCCCTGCTACAGGGGGGGGTTTTTCTTGTTGAAGAAATCCTCACAATACCGCAGAGTCTAGAACTCGTGGTGGACTTC	381 TCTCAATTTTCTAGGGGAACTACCGTGTGTCTTGGCCAAAITTCGCAGTCCCCAAACCTCCAATCACTCACCTCCTGTCCTCCTAACTTGTCCTCCAACTTGTCCTCCAACTTGTCCTCCAACTTGTCCTCCAACTTGTCCTCCAACTTGTCCTCCAACTTGTCCTCCAACTTGTCCTCCAACTTGTCCTCCAACTTGTCCTCGAACTTGTCCTGGT	481 TAICGCTGGAIGTGTGGGGGGTTTTATCATCTTCCTCTTCATCCTGCTATGCCTCATCTTGTTGGTTG	581 CCGITIGICCICIAAITICCAGGAI 589 CCGITIGICCICIAAITICCAGGAI 601 CCGITIGICCICIAAITICCAGGAI 574 CCGITIGICCICIAAITICCAGGAI	681 689 701 674
IIA1 8, A-E IIA 2 8,A-E IIA 3 8, A-E IIA 4 8,A-E	ILAL F, A-E ILA 2 F,A-E ILA 3 F, A-E ILA 4 F,A-E	IIA1 P, A-B IIA 2 P,A-B IIA 3 B, A-B IIA 4 P,A-B	IIA1 F, A-E IIA 2 F,A-E IIA 3 F, A-E IIA 4 F,A-B	ILAL F, A-E ILA 2 F,A-E ILA 3 F, A-E ILA 4 F,A-E	ILA1 F, A-E ILA 2 F,A-B ILA 3 F, A-B ILA 4 F,A-B	IIA1 F, A-E IIA 2 F,A-E IIA 3 F, A-E IIA 4 F,A-E	IIA 2 F, A-B. IIA 2 F, A-B IIA 3 F, A-B IIA 4 F, A-E

5/32

[SEQ ID NO:8] [SEQ ID NO:9] [SEQ ID NO:10] [SEQ ID NO:11]		
888 888 900 873	980 988 1000	
ILAL F, A-E 781 TGGCTCAGTFIRCTAGTGCCAFTTCAGTGGTTCGTAGGGCTTTCCCCCACTGTTTGGGGTTATATGGATGATGTATGT	ILAL B, A-B 889 TGTAYAGCAYCTTGAGTCCCTTTTTACCGCTGTTACCTATTTTGTCTTTGGGTATACATTTAACCCTAACAAACTAAAAGATGGGGTTACTCT 980 ILA 2 F,A-B 889 TGTACAGCATCTTGAGTCCCTTTTTACCGCTGTTACCTAATTTTCTTTTGGGTATACATTTAACCCTAACAAAAAAAA	IIA1 P, A-E 981 THACAITTCANGGGNTANGTCAINGGANGTNANGGGNCCANGANCACANCANCANGAAANCAAGANGGNTT 1060 IIA 2 F,A-E 989 CHAANTTTNANGGGYLANGGANGTNANGGGNCCTNG IIA 3 F, A-E 1001 CHAAATTTNANGGGYNANGTCANNGANGTNANGGGNCCTNGCCACAAGAACACANCAAAAAANCAAAAANGAANG 1077 IIA 4 F,A-E 974 THAAATTTCANGGGANANGTCATNGGANGGGGGGGGGGGGAAGAAAAACAAAAAAAAAA

Figure 4 (continued)

Patient A polymerase amino acid sequence alignment

(SEQ ID NO:12) (SEQ ID NO:13) (SEQ ID NO:14)	6/32
KLASKBASSIXQSPVRXAAYPAVSTFEKHSBSGHAVEXHNILPPNSXRSQXERPVTPCWWLQPRNSKPCSDYCLSHIVNILLEDWGPCAEHGEHH HTTNFASKSASCLHQSPVRXAAYPAVSTFEKHSBSGHAVEFHNILPPNSARSQSERPVTPCWWLQPRNSKPCSDYCLSLIVNILLEDWGPCAEHGEHH AGGILQNFASKSASCLHQSPVRXAAYPAVSTFEKHSBSGHAVEFHNILPPNSARSQSERPVTPCWWLQPRNSKPCSDYCLSLIVNILLEDWGPCAEHGEHH ASKSASCLHQSPVRXAAYPAVSTYEKHSSSGHAVEFHNILPPNSARSQSERPVTPCWWLQPRNSKPCSDYCLSLIVNILLEDWGPCAEHGEHH ASKSASSIYQSPVGTAAYPAYSTXEKHSSSGHAVETHNIPPNSERSGGERPVTPCWWLQPRNSKPCSDYCLSHIVNILLEDWGPCAEHGEHH IRLPRTPSRVTGGVFLVDKNPHNTAESRLVVDPSQPSRGNYRVSWPKFAVPNLQSLTNILLSSNISWLSLIDVSAAFYHLPLHPAAMPHLLVGSSGLSRYVA IRLPRTPSRVTGGVFLVDKNPHNTAESRLVVDPSQPSRGNYRVSWPKFAVPNLQSITNILLSSNISWLSHLDVSAAFYHLPLHPAAMPHLLVGSSGLSRYVA IRLPRTPSRVTGGVFLVDKNPHNTAESRLVVDPSQPSRGNYRVSWPKFAVPNLQSITNILLSSNISWLSLDVSAAFYHLPLHPAAMPHLLVGSSGLSRYVA IRLSSNSRIENNQHGYRVDLHDYCSRNLYVSLLLLYQTFGRKLHLYSHPIILGFRKI PWGVGLSPFLLAQFTSALCSVVRRAFPHCLAFSYMDDVVLGAKS RLSSNSRIENNQHGYNPDLHDYCSRNLYVSLLLLYQTFGRKLHLYSHPIILGFRKI PWGVGLSPFLLAQFTSALCSVVRRAFPHCLAFSYMDDVVLGAKS RLSSNSRIENNQHGYNPQNLHDYCSRNLYVSHLLLYYQTFGRKLHLYSHPIILGFRKI PWGVGLSPFLLAQFTSALCSVVRRAFPHCLAFSYMDDVVLGAKS RLSSNSRIENNQHGYNPQNLHDYCSRNLYVSHLLLYYQTFGRKIHLYSHPIILGFRKI PWGVGLSPFLLAQFTSALCSVVRRAFPHCLAFSYMDDVJCAKKS RLSSNSRIENNQHGYNPQNLHDCCSRNLYVSHLLLYYGTFGRKIHLYSHPIILGFRKI PWGVGLSPFLLAQFTSALCSVVRRAFPHCLAFSYMDDVJCAKKS 100 RLSSNSRIENNQHGYNPQNLHDYGSRNLYVSHLLLYYSHPIILGFRKI PWGVGLSPFLLAQFTSALCSVVRRAFPHCLAFSYMDDVJCAKKS 100 RLSSNSRIENNQHGYNPQNLHDYGSRNLYVSHLLLLYYGTFGRKXLHLYSHPIILGFRKI PWGVGLSPFLLAQFTSALCSVVRRAFPHCLAFSYMDDVJCAKKS 100 RLSSNSRIENNQHGYNPGNNLYNGHALLLYYGTFGRKXLHLYSHPIILGFRKI PWGVGLSPFLLAQFTSALCSVVRRAFPHCLAFSYMDDVJCAKKS 100 RLSSNSRIENNQHAFNGNNLYNGHALLLYYGTFGRKXLHLYSHPIILGFRKI PWGVGLSPFLLAQFTSALCSVVRRAFPHCLAFSYMDDVJCAKKS 100 RLSSNSRIENNGHAFNGNAFALLALYYGTFGRKALLYNGHAFN PROGRAFFALLY PROGRAF	VXHLESLFTAVTNFILSLGIHLAPDKTKRMOYSLHFMGYVIGC 336 VQHLESLFTAVTNFILSLGIHLAPDKTKRMOYSLHFMGYVIGCY 340 VQHLESLFTAVTNFILSLGIHLAPDKTKRMOYSLHFMGYVIGCY 344 VQHLESLFTAVTNFILSLGIHLAPDKTKRMOYSLHFMGYVIGWYG 336
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	294 297 301 292
Pol Trans Pre 1 Pol Trans 2 Pol Trans 4 1 Pol Trans 4 1 Pol Trans 2 97 Pol Trans 2 97 Pol Trans 6 4 92 Pol Trans Pre 199 Pol Trans Pre 199 Pol Trans 7 197 Pol Trans 7 197 Pol Trans 8 197 Pol Trans 9 197 Pol Trans 1 197 Pol Trans 1 197 Pol Trans 1 197	Pol Trans Pre Pol Trans 2 Pol Trans 3 Pol Trans 4
Pol Trans	Pol Trans Pol Trans Pol Trans
Pol Pol Pol Pol Pol Pol Pol Pol Pol Pol	707 707 707 707

Patient A HBBAg Amino acid alignment

088) 088) 088)			
MENITSGFLOPLANLOA PPPASTNRQSGRQPTPLSPPLRNTHPQAMQWNSTTFHQTLQDPRVRGLYFPAGGSSSGTVNPVLITASPLSSIFGRLGDPALAMENITSGFLGPLLVLQA 100 PPPPSTNRQSGRQPTPLSPPLRNTHPQAMQWNSTTFHQTLQDPRVRGLYPPAGGSSSGTVNPVLITASPLSSIFSRLGDPALAMENITSGFLGPLLVLQA 100 PPPPSTNRQSGRQPTPLSPPXRNTHPQAMQWNSTTFHQTLKDPRVXGLYPPAGGSSSGTVNPVPTTASPISSIFSRLGDPALAMENITSGFLGPLLVLQA 100	GFFLLTRILTIPQSLDSWWTSLNFLGGTTVCLGQNSQSPTSNHSPTSCPPTCPGYRWMCLRRFIIFLFILLLCLIFLLVLLDYQGMLPVCPLIPGSSTTS 117 GFFLLTRILTIPQSLDSWWTSLNFLGGTTVCLAQNSQSPTSNHSPTSCPPTCPGYRWMCLRRFIIFLFILLLCLIFLLVLLDYQGMLPVCPLIFGSSTTS 200 GFFLLTRILTIPQSLDSWWTSLNFLGGTTVCLGQNSQSPTSNHSPTSCPPTCPGYRWMCLRRFIIFLFLFILLLCLIFLLVLLDYQGMLPVCPLIFGSSTTS 200 GFFLLTRILTIPQSLDSWWTSLNFLGGTTVCLGQNSQSPTSNHSPTSCPPTCPGYRWMCLRRFIIFLFLFLLLCLIFLLVLLDYQGMLPVCPLIFGSSTTS 200	AGXCRICTITAQGTSMYPSCCCIKEBDGNCTCIPIPSSWAFGKFLWBWASARFSWLSLLVPPVQWFVGLSPTVWLSVIWMWYWGPSLYSXLSPFLPLLD 217 TGPCRTCMTTAQGTSMYPSCCCTKPSDGNCTCIPIPSSWAFGKFLWBWASARFSWLSLLVPPVQWFVGLSPTVWLSVIWMMYWGPSLYSILSPFLPLLD 310 TGPCRTCMTTAQGTSMYPSCCCTKPSDGNCTCIPIPSSWAFGKFLWBWASARFSWLSLLVPPVQWFVGLSPTVWLSVIWMMYWGPSLYSILSPFLPLLD 300 AGTCRTCTTAAQGTSMYPSCCCTKPSDGNCTCIPIPSSWAFGKFLWBWASARFSWLSLLVPFVQWFVGLSPTVWLSVIWMMYWGPSLYSILSPFLPLLD 300	IPPCLMVXI 226 IPPCLMVXI 309 IFPCLMVXI 309
ਰਜਜਜ	18 101 101 101	118 201 201 201	218 301 301
Pre 22	Pre 3 3 4	Pre 3	Pre 2 3 4 4
Trans of Trans of Trans of Trans of	a a a a a a a a a a a a a a a a a a a	B B Off	s of s of
Trans of Trans of Trans of Trans of Trans	Tran Tran Tran	Tran Tran Tran	Tran Tran Tran Tran
HBBAG HBBAG HBBAG HBBAG	HBBAG Trans of HBBAG Trans of HBBAG Trans of HBBAG Trans of	HBsAg Trans of 1 HBsAg Trans of 3 HBsAg Trans of 4	HBsAg Trans of HBsAg Trans of HBsAg Trans of HBsAg Trans of
			•

Figure

8/32 30 20 40 50 10 S0 [SEQ ID NO:20] [SEQ ID NO:21] **S6** [SEQ ID NO:22] S8 T [SEQ ID NO:23] TTTTGGGGAGCCCTCAGGCTCAGGCATATTACAAACTCTGCCAGCAAAT **S12** TACAAACTTTGCCAGCAAAT [SEQ ID NO:24] S15 60 70 80 90 100 S0 **S**6 GCCCTTCTGCCTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCT S8 **S12** CCACCTCCTGCCTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCT CCACCTCCTGCCTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCT 110 120 130 140 150 S0 **S6** SB GTCTCCACCTTTGAGAGACACTCATCCTCAGGCCATGCAGTGGAACTCAA S12 GTCTCCACCTTTGAGAGACACTCATCCTCAGGCCATGCAGTGGAACTCAA GTCTCCACCTTTGAGAGACACTCATCCTCAGGCCATGCAGTGGAACTCAA 190 160 170 180 200 ' SO **S**6 **S8** CAACCTTCCACCAAACTCTGCAAGATCCCAGAGTGAAAGGCCTGTATTTC S12 CAACCTTCCACCAAACTCTGCAAGATCCCAGAGTGAAAGGCCTGTATTTC CAACCTTCCACCAAACTCTGCAAGATCCCAGAGTGAAAGGCCTGTATTTC 210 220 230 240 250 **S**0 S6 CCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCCGACTACTGC **S8** CCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCCGACTACTGC 512 CCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCCGACTACTGC **S15** 260 290 300 270 280 SO S6 CTCTCACTCATCGTCAATCTTCTCGAGGATTGGGGTCCCTGCGCTGAACA S8 CTCTCACTCATCGTCAATCTTCTCGAGGATTGGGGTCCCTGCGCTGAACA S12

Figure 7

CTCTCACTCATCGTCAATCTTCTCGAGGATTGGGGTCCCTGCGCTGAACA

S15

9/32

S0 S6		310	320	330	340	350
58 512 515	TGGAGAA	CATCACATC	AGGACTCCTA	GGACCCCTTC	CATTETECT: CATTETECT: CATTETECT:	AGGCG
\$0 \$6		360	370		390 CAGAGTCTAG	
S8 S12 S15	GGGTTTT	CTTGTTGAG	CAAGAATCCT	CACAATACCG	CAGAGTCTAG CAGAGTCTAG CAGAGTCTAG	ACTC
		410	420	430	440	450
S0 S6	GTGGTGG1	ACTTCTCTCI	ATTTTCGAG	EGGGGACTAC	CGTGTGTCTT	GGCC
88					CGTGTGTCTT	
S12 S15					CGTGTGTCTT	
513	GIGGIGGA	3011010101	MITTICGAGG	GGGGACTAC	CGTGTGTCTT	GGCC
so	-	160	470		490	500
S6	AAAATTCC	CAGTCCCCA			CCTCCTGTCC CCTCCTGTCC	
S8	AAAATTCG	CAGTCCCCA			CCTCCTGTCC	
S12					CTCCTGTCC	
S15	AAAATTC	CAGTCCCCA	ACCTCCAATC	ACTCACCAA	CCTCCTGTCC	TCCA
	5	10	520	530 ·	540	550
S0	ACTTGTC	CTGGTTATC	GCTGGATGTG	TCTGCGGCG'	TTTATCATC	
S6	ACTTGTC	CTGGTTATC	GCTGGATGTG	TCTGCGGCG:	TTTATCATC	TTCCT
S8					TTTATCATC'	
S12					TTTATCATC	
S15	ACTTGTC	CTGGTTATC	GCTGGATGTG	TCTGCGGCG	TTTATCATC	TTCCT
		560	570	580	590	600
S0	CTTCATC	CTGCTGCTA	TGCCTCATCT	TCTTGTTGGT	TCTTCTGGA	CTGTC
S6					TCTTCTGGA	
S8					TCTTCTGGA	
S12					TCTTCTGGA	
S15	CTTCATC	CTGCTGCTA	TGCCTCATCT	TCTTGTTGGC	CTCTACTGGA	CTGTC
		610 \.	620	630	640	650
S0					CCTCAACCA	
S6					CCTCAACCA	
S8					CCTCAACCAC	
S12					CCTCAACCA	
S15	AAGGTAT	GIIGCCCGT	LIGICCTCTA	ATTCCAGGAT	CCTCAACCAC	CAGC

Figure 7 (continued)

10/32

	660	670	680	690	700
S0	ACGGGACCATG	CCGAACCTGCA	CGACTCCTG	CTCAAGGAACC	TCTACGGT
S6	AGGGGACCATG	CCGAACCTGCA	CGACTCCTG	CTCAAGGAACC	TCTACGGT
S8	AGGGGACCATG				
S12	AGGGGACCATG				
S15	AGGGGACCATG				
213	AGGGGACCAIG	CCGAACCIGCA	CGACICCIGC	LUMAGGAACC	.ICIACGGI
	210	820	53.0	740	250
	710	720	730	740	750
SO	TCCCTCATGTT				
S6	TCCCTCATGTT				
S8	TCCCTCATGTT	GCTGTACCAAA	CCTTCGGAC	GAAATTGCAC	CTGTATTC
S12	TCCCTCATGTT	GCTGTACCAAA	CCTTCGGACG	GAAATTGCAC	CTGTATTC
S15	TCCCTCATGTT	GCTGTACCAAA	CCTTCGGACG	GAAATTGCAC	CTGTATTC
	760	770	780	790	800
S0	CCATCCCATCA	TCCTGGGCTTT	CGGAAAATTC	CTATGGGAGT	GGGCCTCA
S6	CCATCCCATCA'	•			
S8	CCATCCCATCA	-			
\$12	CCATCCCATCA			·	
S15	CCATCCCATCA'	rccrgggcttt	CGGAAAATTC	CTATGGGAGT	GGGCCTCA
	810	820	830	840	850
S0	GCCCGTTTCTC	CTGGCTCAGTT	TACTAGTGCC	'ATTTGTTCAG	TGGTTCGT
\$6	GCCCGTTTCTC	ATGGCTCAGTT	TACTAGTGCC	'ATTTGTTCAG	TGGTTCGT
88	GCCCGTTTCTC	ATGGCTCAGTT	TACTAGTGCC	ATTTGTTCAG	TGGTTCGT
S12	GCCCGTTTCTC	ATGGCTCAGTT	TACTAGTGCC	ATTTGTTCAG	TGGTTCGT
S15	GCCCGTTTCTC	ATGGCTCAGTT	TACTAGTGCC	ATTTGTTCAG	TGGTTCGT
	860	870	880	890	900
S0	AGGGCTTTCCC				
S6	AGGGCTTTCCC				
S8	AGGGCTTTCCC				
S12	AGGGCTTTCCCC				
S15	AGGGCTTTCCC	CACTGTCTGG	CTTTTGGTTA	TGTGGATGAT	GIGGIAII
	*				
	910	920	930	940	950
30	GGGGGCCAAGT				
S6	GGGGGCCAAGT	CTGTATCGCAT	CTTGAGTCCC	TTTTTACCGC	TGTTACCA
S8	GGGGGCCAAGT	CTGTATCGCAT	CTTGAGTCCC	TTTTTACCGC	TGTTACCA
S12	GGGGGCCAAGT	CTGTATCGCAT	CTTGAGTCCC	TTTTTACCGC	TGTTACCA
S15	GGGGGCCAAGT	TGTATCGCAT	CTTGAGTCCC	TTTTTACCGC	TGTTACCA
	960	970	980	990	1000
S0	ATTTTCTTTTG				
S6	ATTTTCTTTTG				
	ATTTTCTTTTG				
S8					
S12	ATTTTCTTTTG				
S15	ATTTTCTTTTGT	CTTTGGGTAT.	NCATTTAAAT	CCTAACAAAA	CAAAAAGA
	1010	1020	1030	1040	1050

Figure 7 (continued)

11/32

SO	TGGGGTTACTCCC	TACATTTTAT	GGGCTATGTC	ATTGGAT	
S 6	TGGGGTTACTCCC	TACATTTTAT	GGGCTATGTC	ATTGGATGTC	ATGGGTC
S8	TGGGGTTACTCCC	TACATTTTAT	GGGCTATGTC	ATTGGATGTC	ATGGGTC
S12	TGGGGTTACTCCC	TACATTTTAT	GGGCTATGTC	ATTGGATGTC	ATGGGTC
S15	TGGGGTTACTCCC	TACA			
	1060	1070	1080	1090	1100
so					
S6	CTTGCCACAAGAA	CACATCAGAC	'AAAAAATCAA	AGAATGTTTT	AGAAAAC
S8	CTTGCCACAAGAA	CACATCAGAC	AAAAAATCA		
S12	CTTGCCACAAGAA	CACATCAGAC	AAAAAATCAA	AGAATGTTTT	AGAAAAC
S15					

Figure 7 (continued)

12/32

Pat:	lent	В	Am
------	------	---	----

S0 S6 S8 S12 S15	260 SGHTTNFASKSTSCLH CPFCLH SGHITNSASKSTSCLH TNFASKSTSCLH	QSPVRKAAYP QSPVRKAAYP	AVSTFERHSS AVSTFERHSS	SGHAVELNNI SGHAVELNNI	ippns ippns	(SEQ (SEQ	ID ID	NO:25] NO:26] NO:27] NO:28] NO:29]
S0 S6 S8 S12	310 ARSQSERPVFPCWWLQ ARSQSERPVFPCWWLQ ARSQSERPVFPCWWLQ	FR N SK P CSDY	CLSLIVNLLE	DWGPCAEHGE	HHIR			
S15	ARSQSERPVFPCWWLQ							
	360	370	380	390	400			
S0 S6	TPRTPSRVTGGVFLVD	KNPHNTAESR	LVVDFSQFSR	GDYRVSWPKE	NAVA			
58	TPRTPSRVTGGVFLVD		~					
S12 S15	TPRTPSRVTGGVFLVD		_					
213	IPRIPSRVIGGVEAVD)	MPANTAESK	nvoragrak	GDIRVSWFRE	AVEN		•	
	410	420	430	440	450			
SO C	LQSLTNLLSSNLSWLS			LVGSSGLSRY LVGSSGLSRY				
56 S8	LQSLTNLLSSNLSWLS			-				
S12	LOSLITALLSSALSWLS							
S15	LQSLTNLLSSNLSWLS	LDVSAAFYHL	PLHPAAMPHL	LVGSTGLSRY	VARL			
	460	470	480	490	500	•		
S0	SSNSRILNHQHGTMPNI							
S6 S8	SSNSRILNHQQGTMPNI SSNSRILNHOOGTMPNI		_					
S12	SSNSRILNHOOGTMPNI		_					
S15	SSNSRILNHQQGTMPNI	LHDSCSRNLY	SLMLLYQTF	GRKLHLYSHP	IILG			
	510	520	530	540	550			
S 0	FRKIPMGVGLSPFLLA(•						
S6	FRKIPMGVGLSPFLMA(-						
S8 S12	FRKIPMGVGLSPFLMAG FRKIPMGVGLSPFLMAG	•						
S15	FRKIPMGVGLSPFLMA	-						
	560	570	580	590	600			
SO	HLESLFTAXTNFLLSLO				QEHI			
86	HLESLFTAVTNFLLSLO				ORHI			
S8 S12	HLESLFTAVTNFLLSLO				Annr			•
S15	HLESLFTAVTNFLLSLO							

Figure 8

13/32

S0 S6 S8 S12 S15	10 LGSPQAQGILQTLE		30 RQSGRQPTPLS RQSGRQPTPLS			[SEQ ID NO:30] [SEQ ID NO:31] [SEQ ID NO:32] [SEQ ID NO:33] [SEQ ID NO:34]
S0 S6	60	70	80	90	100	
S8 S12 S15	TFHQTLQDPRVKGL TFHQTLQDPRVKGL					
S0 S6 S8	110	120	130 QSLDSW	140 NTSLNFRGGT	150 FTVCLGQ	
S12 S15	ENITSGLLGPLLVL ENITSGLLGPLLVL					
S0 S6 S8 S12 S15	160 NSQSPTSNHSPTSC NSQSPTSNHSPTSC NSQSPTSNHSPTSC	PPTCPGYRWN PTCPGYRWN PPTCPGYRWN	MCLRRFIIFLF: MCLRRFIIFLF: MCLRRFIIFLF:	(LLLCLIFLI (LLLCLIFLI (LLLCLIFLI	TATTDCO TATTDCO TATTDCO	· .
S0 S6 S8 S12 S15	210 GMLPVCPLIPGSST GMLPVCPLIPGSST GMLPVCPLIPGSST GMLPVCPLIPGSST	TSRGPCRTCT TSRGPCRTCT TSRGPCRTCT	PTPAQGTSTVP9 PTPAQGTSTVP9 PTPAQGTSTVP9	SCCCTKPSDG SCCCTKPSDG SCCCTKPSDG	ENCTCIP ENCTCIP ENCTCIP	
S0 S6 S8 S12 S15	260 IPSSWAFGKFLWEW IPSSWAFGKFLWEW IPSSWAFGKFLWEW IPSSWAFGKFLWEW IPSSWAFGKFLWEW	asarfswlsi Asarfswlsi Asarfswlsi Asarfswlsi	TVDEAÖMEAGI TVDEAÖMEAGI TADEAÖMEAGI	SPTVWLLVM SPTVWLLVM SPTVWLLVM	MXMMMM MXMMMMM MXMMMMMMMMMMMMMMMMMMMMM	
S0 S6 S8 S12 S15	310 GPSLYRILSPFLPL GPSLYRILSPFLPL GPSLYRILSPFLPL GPSLYRILSPFLPL GPSLYRILSPFLPL	LPIFFCLWV) LPIFFCLWV)	/I /I /I			

Figure 9

14/32

200	300	400	500	600	700	800	900	1000
	3GATTCCTAG	ATTTTCTAGG	CTGGATGTGT	FGCCCTCTAA	CCAAACCIWC	CAGTTTACTA	AGCATCGTGA	TTTCATGGGC
190	290	390	490	590	690	790	890	990
	ATCACATCA	CTTCTCTCA	TGGTTATCG	TTGCCCGTT	GITGCIGIA	CTCCTGACT	GGTCTGTAC	CTCTTTACA
180	280	380	480	580	680	780	880	980
	PTGGAGAAC	CGTGGTGGA	AACTTGTCC	CAAGGTATG	PICCCICAL	AGCCCGTTT	TGGGGGCCA	ATGGGGTTA
ひんて	270	370	470	570	670	770	870	970
	TGCACTGAAC	AGTCTAGACT	CCTGTCTCC	TCTGGACTAT	ACCTCTWTGT	PAGTGGGCCTC	GATGTGGTAT	AAACAAAAAG
160 AGAGTGABAR	260 TTGGGGACCC	360 AATACCGCAG	460 TCACCAACCT	560 TGTTGGTTCT	660 TGCTCAAGGA	760 TTCCTATGGG	860 TTATATGGAT	960 ACCCGGACA
	250	350	450	550	650	750	850	950
	FTATCGAGGA	BAATCCICAC	CTCCAATCAC	CTCATCTTCT	3CACGACTCC	FFTCGGAAAA	TGGCTTTCAG	TATACATTTA
たく いっぱん なんけん なんしん	TCTCTCACACATCGTAATCGTATCGAGGATTGGGGACCCTGCACTGGAGAACATCACATCAGGATTCCTAG	330 340 350 360 370 380 390 400 GGGGTTTTTCTTGTTGACAAGAATCCTCACAATATTTTCTAGG	430 440 450 460 470 480 490 500 CAAAAATTCGCAGTCCCTCCAATCACTCACCAACCTCCTGTCCTCCAACTTGTCCTGGTTATCGCTGGATGTGT	530 540 550 560 570 580 590 600 TCTTCATCCTGCTGCTATGCTTCTTGTTGGTTCTTGGACTATCAAGGTATGTTGCCCGTTTGCCCTCTAA	630 640 650 660 670 680 690 700 CACGGGACCATGCAGGACCTCCTGCTCAAGGAACCTCTWTGTATCCCTCATGTTGCTGTACCAAACCTWC	730 740 750 760 770 780 790 800 CCCATCCCATCCTGGGCTTTCCTATCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGACTCAGTTTACTA	830 840 850 860 870 880 890 900 TAGGGCTTTCCCCCACTGTTTGAGTTATATGAGATGATGTGGTATTGGGGGCCAGGTCTGTACAGCATCGTGA	930 940 950 960 970 970 980 1000 PAITITICITITIGICICIGGGIAIACAITITAACCCCGGACAAAACAAA
いしょうなるないな	230	330	430	530	630	730	830	930
	TCTCTCACAC	GGGTTTTTC	CAAAATTCGC	TCTTCATCCT	CACGGGACCA	CCCATCCCAT	TAGGGCTTTC	AATTTTCTTT
ししようなないがよう	220 CCGACTACTG	320 GTTACAGGO	420 FIGCCTIGGC		620 CARCCACCAG			920 GCTGTTACC
TO THE COST OF THE COST OST OF THE COST OF THE COST OST OF THE COST OST OST OST OST OST OST OST OST OST	210 220 GTAAACCCTGTTCCGACTACTG	310 GACCCCTCGTGTTACAGGC	410 420 GGGGACCACCGTGTGCCTTGGC	510 CTGCGGCGTTTTATCATATTCC	610 610 TTCCAGGATCCTCAACCAGG	720 GGMCGSAAATTGCACCTGTATT	810 GTGCCATTGTTCAGTGGTTCG	910 920 GGCCCTTTTTACCGCTGTTACC

Figure 10

Figure 11

0 ~	200 28N	0 Q
100	2(300
SHHIRIPR	Varlesi	VLGARSVQ
90	190	290
DWGPCTEHGE	LVGSSGLSRY	CLAFSYMDDV
80	180	280
CLSHIVNLIE	PLHPAAMPHL	CSWRRAFPH
70	170	270
FRNSKPCSDY	LDVSAAFYHI	FLLTQFTSAI
60	160	260
RPVSPCWWLQ	LLSSNLSWLS	Kipmgvglsp
50	150	250
PPNSTRSQSE	AVPNLQSLTN	XSHPIILGFR
40	140	240
SGHAVELHKL	Igdhrvpwp <i>i</i> c	YTP/TGRKLHL
30	130	230
SDSTFEKHSS	UVVDFSQFSF	//FVSLMLLYQ
20	120	220
YQSPVRKAAYE	XNPENTAESF	TLEDSCSRNLY
10 20 30 40 10 10	110 120 130 140 150 160 170 170 190 200	210 220 230 240 250 260 270 280 200 300
TINLASKSASCLYQSPVRKAAYPSDSTFBKHSSSGHAVELHKLPPNSTRSQSBRPVSPCWWLQFRNSKPCSDYCLSHIVNLIEDWGPCTEHGEHHIRIPR	TPARVTGGVFLVDKNPHNTAESRLVVDFSQFSRGDHRVPWPKFAVPNLQSLTNLLISSNLSWLSILDVSAAFYHIPLHPAAMPHILVGSSGLSRYVARLPSN	SRIINHQHGTMQNLHDSCSRNLY/FVSLMLLYQTF/TGRKLHLYSHPIILGFRKIPMGVGLSPFILTQFTGATGSVVRRAFPHCLAFSYMDDVVLGARSVQ

Figure 12

100	200	300
GFLG	7CPLI	30GLYS
90	190	290
DPALNMENITS	VVLLDYQGMLPV	ILSVIWMMWYWG
80	180	280
SHTSSILSRIG	FILLLCLIFL	QWFVGLSPTVV
70	170	270
GTVNPVPTTV	MCLRRFIIFL	S*LSLLVPFV
60	160	260
XLPAGGSSS	PPTCPGYRW	Tuwewasarf
50	150	250
TLQDPRVKGL	PTSNHSPTSC	IPSSWAFGKF
40	140	240
MQWNSTNFHR	TVCLGQNSQS	/TAANCICIP
30	130	230
PPLRNTHPQA	Wtslayelggt	YPSCCCTKPS
20	120	220
QSGRQPTPLT	LTIPQSLDSW	TPAQGTSM/L
10 20 30 40 50 60 70 80 101 LQTLPANPPPASTNRQSGRQPTPLTPPLRNTHPQAMQWNSTNFHRTLQDPRVKGLYLPAGGSSSGTVNPVPTTVSHTSSILSRIGDPALNMENITSGFLG	110 120 130 140 150 160 160 170 170 190 200 PLLVLQAGPFLLTRILTIPQSLDSWWTSLNVFLGGTTVCLGQNSQSPTSNHSPTSCPPTCPGYRWMCLRRFIIFLFILLLLLLTLVLLDYQGMLPVCPLI	210 220 230 240 250 250 300 PGSSTISIGPCRICTIPAQGISM/LYPSCCCTKPS/TAANCTCIPIPSSWAFGKFLWEWASARFS*LSLLVPFVQWFVGLSPTVWLSVIWMMYWGPGLYS

310 IVRPFLPLLPIFFCLWVXI 100

90

80

9

20

		880	870	860	850	840	830	820	810 820 830 840 850 860 870
800	730 740 750 760 770 780 790 800	780	770	760	750	740	730	720	710 720
AGCTATA	TITCȚCTIGGCICAGITIACIAGIGCALITGITCAGIGAIICGIAAGGGCITICCCCCACIGITIGGCIITCAGCIAIA	rccccacte	CGTAGGGCTT	TTCAGTGATT	STGCCATTTG1	CAGITTACIA	TCȚCTTGGCT	FCAGTCCGTT	ATGGGAGTGGGCCTCAGTCCG
700	690	680	670	660	650	640	630	620	610 620 630 640 650 660 670 680 690 700
AATACCT	GCTTTCGCAA2	ATCATCTTGG	NTTCCCATCCC	GCACCIGIP	3GATGGAAATT	CAAAACCTAC	TGTTGCTGTA	FITTCCCTCA	AAGGCAACTCTATGTTTCCCTCATGTTGCTACGAATGGAAATTGCACCTGTATTCCCATCCCATCTTGGGCTTTCGCAAAATACCT
600	590	580	570	seo	550	540	530	520	SIU
CCIGCIC	CTGCACGACT	CTGCAAAAC	Pagtgcgggac	racaacaac	FTCCAGGATCC	TGTCCTCTAA:	GTTGCCCGTT	ATCAAGGIAI	GTICTICIGGATIAICAAGGIAIGTIGCCCGTITGTCCTCTAATTCCAGGATCCACAACAACCAGIGCGGGACCCTGCAAAACCIGCACGACTCCTGCTC
500	490	480	. 470	460	450	440	430	420	410 420 430 440 450 460 470 480 490 500 ARCICCIGICCICCICICICICICICICICICICICICICI
CITATIG	FGCTCATCTT	CTGCCGCTA1	CCTCTTCATC	TATCATATI	CTGCGGCGTTT	CTGGATATGT	CTGGTTATCG	CCAATTTGAC	
400	390	380	370	360	350	340	330	320	310 320 330 350 350 400
ACTCACC	VACCTCCAATC	3CAGTCCCC	GCCAAAATTC	FIGIGICITO	3GGATCACCC	GTTTTCTAGG	ACTTCTCTCA	CTCGTGGTGG	CGCAGAGICTAGACTCGIGGIGGACTTCTCTCAGGGGGATCACCCGTGIGTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCAC
300	290	280	270	260	250	240	230	220	210 220 230 240 250 260 270 280 290 300
ACAATAC	PAGAATCCTC?	FCTTGTTGAC	GCGGGGTTTT	GTGTTACAG	3ACCCCTGCTC	GGATTCCTAG	CATCACATCA	ACATGGAGAA	GACCCTGCGCCGAACATGGAGAACATCAGGATTCCTAGGACCCCTGCTCGTGTTACAGGCGGGGGTTTTTCTTGTTGACAAGAATCCTCACAATAC
SACTGGG	GGCCATGGTGGCTCAGCCTGCTGGTGGCTCCAGTTCAGGAACACTCAGTTCCCTGTTCCCAATATTGCCTCTCACATCTCGTCAATCTCCTTGAGGACTGGG	ATCTCGTCA	TGCCTCTCAC	TCCCAATAI	CTCAACCCTG1	TTCAGGAACA	GTGGCTCCAG	CAGCCTGCTG	SCCATGGTGGCTC
		180	170	160	120	140	130	170	077

Figure 13

80

Figure 15

10	20	30	40	50
TCCTGTCCTCCAA	TTTGTCCTGG			GCGTTT
60	70	80	90	100
TATGATATTCCTC				
110	120	130	140	150
TTCTGGATTATCA				
			0.0	
160	170	180	190	200
ACAACAACCAGTAC			=	
ACHACHACCAGIA(COCACCATO	~mmaccmm	ACCIGCACGA(-166166
210	220	230	240	250
TCAAGGCAACTCT	1101110001	AIGIIGCIG.	IACAAAACCIA	ICGGATG
260	070	000	000.	0.00
260	270		290	
GAAATTGCACCTGT	EATTCCCATC	CCATCGTCCTC	GGCTTTCGCA	DTTAAAA
310.	320			. 350
CTATGGGAGTGGG	CTCAGTCCG:	TTCTCTTGG	CTCAGTTTACT	AGTGCC
360	370	380	390	400
ATTTGTTCAGTGGT	TCGTAGGGC	TTCCCCCACT	rgtttggctt1	CAGCTA
410	420	430	440	450
TATGGATGATGTGG	TATTGGGGG	CCAAGTCTGT	ACAGCATCGTC	AGGCCC
			·	
460	470	480	490	500
TTTATACAGCTGTT	ACCAATTTT	TTTTGTCTCT	rgggtatacai	TTAAAC
510	520	530	540	550
CCTAACAAAACAAA				TTACAT
560	570	580	590	
AATTGGAAGTTGG				

Figure 16

SNLSWLSLDVSAAFYDIPLHPAAMPHLLIGSSGLSRYVARLSSNSRINNN QYGTMQNQNLHDSCSRQLYVSLMLLYKTYGWKLHLYSHPIVLGFRKIPMG ${\tt VGLSPFLLAQFTSAICSVVRRAFPHCLAFSYMDDVVLGAKSVQHREALYT}$ AVTNFLLSLGIHLNPNKTKRWGYSLNFMGYIIGSWG

SCPPICPGYRWMCLRRFMIFLFILLLCLIFLLVLLDYQGMLPVCPLIPGS TTTSTGPCKTKTCTTPAQGNSMFPSCCCTKPTDGNCTCIPIPSSWAFAKF LWEWASVRFSWLSLLVPFVQWFVGLSPTVWLSAIWMMWYWGPSLYSIVRP FIQLLPIFFCLWVYI

Figure 19

20	30	40	50
'ACCGCAGAGTC	PAGACTTCGT	GTGACTTCTC	TCAATT
.1,000001010101010			
70			
ACCCGTGTGTC	TEGCCAAAA?	TCGCAGTCC	CCAACCT
120	130	140	150
CAACCTCTTGT	CCTCCAATTTC	STCCTGGTTAT	rcgctgg
170	180	190	
CGTTTTATCAT	ATCCCTCTTC!	ATCCTGCTGC'	PATGCCT
		0.4.0	250
220	230		
rggttcttctgg	ATTATCAAGG:	PATGITGCCC	3111G1C
252	200	200	300
270	280 * ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	250 31 CCCTCC121	ארריזיפר
3GATCCACAACA	ACCAGIACGG	JACCCI GCAM	1100100
320	330	340	350
₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	TATGTTTCCC!	CATGTTGCT	GTACAAA
CAROCARIO			
370	380	390 -	400
GAAATTGCACMT	GTATTCCCAT	CCCATCATCT	TGGGCTT
420	⁻ 430	440	450
CTATGGGAGTGG	GCCTCAGTCC	GTTTCTCTTG	GTTCAGT
470	480	490	500
ATTTGTTCAGTG	GTTCGTAGGG	CTTTCCCCCA	CTGTTTG
		-10	550
520	530	54U	טככ גייי גייי גייי
TATGGATGATAT	TGTACTGGGG	GCCAAGTCTG	TACAACA
	500	E00	600
570	UBC TITITE KOD KINNI		
TTTATACCGCTG	TIACCAATII	ICITIIGICI	11000111
620	620	640	650
02U	ŊŊĊŊĊŊŢĊĊĊ		
CCIAACAAAAC	TWO TWO TOO		
'ልልጥጥርር'ልል			
	70 PACCGCAGAGTCT 70 PACCCGTGTGTCT 120 PCAACCTCTTGTC 170 PCGTTTTATCATA 220 PGGTTCTTCTGGA 270 PGATCCACAACA 320 PCAAGGCAACTCT 370 PCAAGGCAACTCT 370 PCAAGGCAACTCT 370 PCAAGGCAACTCT 370 PCAAGGCAACTCT 370 PCAAGTTGCACMT 420 PCTATGGGAGTGG 470 PATTTGTTCAGTG 520 PCTATGGATGATAT 570 PTTTATACCGCTG 620	70 80 ACCCGTGTGTCTTGGCCAAAAT 120 130 CCAACCTCTTGTCCTCCAATTTC 170 180 ECGTTTTATCATATCCCTCTTCA 220 230 EGGTTCTTCTGGATTATCAAGGT 270 280 EGATCCACAACAACCAGTACGGC 320 330 ECAAGGCAACTCTATGTTTCCCT 370 380 EAAATTGCACMTGTATTCCCATC 420 430 CTATGGGAGGGGCCTCAGTCCC 470 480 ATTTGTTCAGTGGTTCGTAGGG 520 530 TATGGATGATATTGTACTGGGG TATGGATGATATTGTACTGGGG 570 580 TTTTATACCGCTGTTACCAATTT 620 630 CCCTAACAAAACAAAGAGATGGG	70 80 90 ACCCGTGTGTCTTGGCCAAAATTCGCAGTCCC 120 130 140 CCAACCTCTTGTCCTCCAATTTGTCCTGGTTAT 170 180 190 GCGTTTTATCATATCCCTCTTCATCCTGCTGCT 220 230 240 FGGTTCTTCTGGATTATCAAGGTATGTTGCCCC 270 280 290 GGATCCACAACAACAACCAGTACGGGACCCTGCAAA 320 330 340 FCAAGGCAACTCTATGTTCCCTCATGTTGCTC 370 380 390 GAAATTGCACMTGTATCCCATCCCATCATCT 420 430 440 CTATGGGAGTGGGCCTCAGTCCGTTCTCTTG 470 480 490 ATTTGTTCAGTGGTTCGTAGGGCTTTCCCCCA 520 530 540 TATGGATGATATTGTACTGGGGGCCAAGTCTG 570 580 590 TTTTATACCGCTGTTACCAATTTTCTTTTTTTTTTTTT

Figure 20

	10	20	30	40	50
SNLSWI	LSLDVSAA	FYHIPLHPAAM	PHLLIGSSGI	SRYVARLSSN	SRIHNN
	60	70	80	90	100
QYGTL	ONLHDSCS	RQLYVSLMLLY	KTYGWKLHXY	SHPIILGFRE	CIPMGVG
	110	120	130	140	150
LSPFLI	LVQFTSAI	CSVVRRAFPHC	LAFSYMDDIV	LGAKSVQHLE	SLYTAV
	160	170	180		
נונדמים	SLGIHLTE	NKTKRWGYSLN	FMGYVIG		

10 20 30 40 50
PICPGYRWMCLRRFIISLFILLLCLIFLLVLLDYQGMLPVCPLIPGSTTT

60 70 80 90 100
STGPCKTCTTPAQGNSMFPSCCCTKPTDGNCTCIPIPSSWAFAKYLWEWA

110 120 130 140 150
SVRFSWFSLLVPFVQWFVGLSPTVWLSAIWMILYWGPSLYNILSPFIPLL

160
PIFFCLWVYI

10	20		40	50
TCCAATTTGTCC	IGGGTATCGCTG		3CGGCGTTTTA	TCATAT
60	70	80	90	100
TCCTCTTCATCC	TGCTGCTATGCC	TCATCTTCT	IGTTGGTTCTT	CTGGAC
110	120	130	140	150
TATCAAGGTATG	TTGCCCGTTTGT	CCTCTACTT	CCAGGAACATO	AACTAC
160	170	180	190	200
CAGCACGGGACC	ATGCAAGACCTG	CACGACTCC	TGCTCAAGGAA	CCTCTA
210	220	230 .	240	250
TGTTTCCCTCTT	GTTGCTGTACAA	AACCTTCGG	ACGGAAATTGO	ACTTGT
260 ATTCCCATCCCA			290 TTCCTATGGGA	300 AGTGGGC
310		330	340	350
CTCAGTCCGTTT		CTTTACTAGT	GCCATTTGTTC	AGTGGT
360 TCGTAGGGCTTI			390 TTATATTGATC	400 ATGTGG
410	420		440	450
TATTGGGGGCCA	AGTCTGTACAA		CCCTTTTTACC	CTCTATT
460	470	480	490	500
ACCAATTTCTT	ATGTCTTTGGG	TATACATTTA	AACCCTAAGAA	AAACCAA
510	520	,	540	550
ACGTTGGGGCT	ACTCCCTTAACT		TGTAATTGGA	AGTTGGG
GTAC				

Figure 23

10 20 30 40 50

SNLSWVSLDVSAAFYHIPLHPAAMPHLLVGSSGLSRYVARLSSTSRNINY

60 70 80 90 100

QHGTMQDLHDSCSRNLYVSLLLLYKTFGRKLHLYSHPIVLGFRKIPMGVG

110 120 130 140 150

LSPFLLAQFTSAICSVVRRAFPHCLAFSYIDDVVLGAKSVQHLESLFTSI

160 170 180

TNFLMSLGIHLNPKKTKRWGYSLNFMGYVIGSWG

PICPGYRWMCLRRFIIFLFILLLCLIFLLVLLDYQGMLPVCPLLPGTSTT STGPCKTCTTPAQGTSMFPSCCCTKPSDGNCTCIPIPSSWAFARFLWEWA SVRFSWLXLLVPFVQWFVGLSPTVWLSVILMMWYWGPSLYNILNPFLPLL PIFLCLWVYI

10		30	40	50
CAGCAAATCCGC	CTCCTGCCTCTA	CCAATCGCC	AGTCAGGAAGG	CAGCCT
60	70	80	90	700
ACCCCTCTGTCT	CCACCTTTGRGA	AACACTCAT	CCTCAGGCCAT	GCAGTG
110	120	130	140	150
GAACTCCACAAC	CTTCCACCAAAC	TCTGCWAGA'	TCCCAGAGTGA	GAGGCC
160	170	180	190	200
TGTATTTCCCTG	CTGGTGGCTCCA	GTTCAGGAA	CAGTAAACCCT	GTTCCG
210	220	230	240	250
ACTTCTGTCTCT	CACACATCGTCA	ATCTTCTCG	AGGATTGGGGW	CCCTGC
260	270	280	290	300
GCTGAACATGGA	GAACATCACATC	AGGATTCCT:	AGGACCCCTGC	TCGTGT
310	320	330	340	350
TACAGGCGGGGT	TTTTCTTGTTGA	CAAGAATCC	TCACAATACCG	CAGAGT
360	370	380	390	400
CTAGACTCGTGG	TGGACTTCTCTC	AATTTTCTA	GGGGGAACTAC	CGTGTG
410	420	430	440	450
TCTTGGCCAAAA	TTCGCAGTTCCC	AACCTCCAA	TCACTCACCAA	CCTCCT
460	470	480	490	500
GTCCTCCAACTT	'GWCCTGGTTATC	GCTGGATGT	RTCTGCGGCGT	TTTATC
510	520	530	540	550
ATCTTCCTCTTC	ATCCTGCTGCTA	TGCCTCATC	TTCTTGTTGGT	TCTTCT
560	570	580	590	600
GGACTATCAAGG	TATGTTGCCCGT	TTGTCCTCT	ARTTCCAGGAT	CTTCAA
610	620	630	640	650
CCACCAGCACGG	GACCATGCAGAA	CCTGCACGA	CTCCTGCTCAA	GGAAMC
660	670	680	690	700
TCTATGAATCC	CTCCTGTTGCTGI	ACCAAACCT	TCGGACGGAAA	TTGCAC
710	720	730	740	750
CTGTATTCCCAT	CCCATCATCCTC	GGCTTTCGG	LAAAATTCCTAT	'GGGAGT
760	770	780	790	800
GGGCCTCAGCCC	CGTTTCTCCTGRO	CTCAGTTTAC	TAGTGCCATTI	GTTCAG
gin	820	830	840	850
TGGTTCGTAGGC	CTTTCCCCACT	CGTTTGGCTI	TCAGTTATATO	GATGAT
860	870	880	890	900
GTGGTATTGGG	GCCAAGTCTGT?	YMGCATCTT	RAGTCCCTTT	TACCGC
910	920	930	940	950
TGTTACCAATT.	TTCTTTTGTCTY	rgggtataca	ATTTAAACCCT1	1ACAAAA
960	970	980	990	1000
CAAAAAGATGG	GGTTACTCTTTA(CATTTCATGO	GCTATGTCAT	IGGATGT
1010	1020	1030	1040	
TATGGGTCATT	GCCACAAGATCA	CATCAGACA	GAAAATCAAAGI	AA

Figure 26

	10	20	30	40	50
SKSASC	LYQSPVRI	KAAYPSVSTFX	KHSSSGHAVE	LHNLPPNSAR	SQSERP
VFPCWW	60	70	80	90	100
	ILQFRNSKI	PCSDFCLSHIV	NLLEDWGPCA	EHGEHHIRIF	RTPARV
TGGVFI	110	120	130	140	150
	VDKNPHN	FAESRLVVDFS	QFSRGNYRVS	WPKFAVPNLÇ	SLTNLL
SSNLXV	160 ULSLDVSA	170 AFYHLPLHPAA		190 LSRYVARLSS	200 XSRIFN
HQHGTN	210	220	230	240	250
	MONLHDSC	SRXLYESLLLI	YQTFGRKLHI	YSHPIILGFF	KIPMGV
GLSPFI	260	270	280	290	300
	LLXQFTSA	ICSVVRRAFPH	ICLAFSYMDD\	/VLGAKSVXHI	XSLFTA
VTNFLI	310 LSLGIHLN	320 PXKTKRWGYSI	330 HFMGYVIGC	340 GSLPQDHIRQ	OKIKE

Figure 27

10	20	30	40	50
ANPPPASTNRQ	SGRQPTPLSI	PPLXNTHPQAM	IQWNSTTFHQT	LXDPRVRGL
60	70	80	90	100
YFPAGGSSSGT	VNPVPTSVSH	ITSSIFSRIGX	PALNMENTTS	GLTG5TTAT
110	120	130	140	150
QAGFFLLTRIL	TIPQSLDSW	ITSLNFLGGTI	VCLGQNSQFF	TSNHSPTSC
160	170	180	190	200
PPTXPGYRWMX	LRRFIIFLFI	LLLCLIFLLV	/LLDYQGMLPV	CPLXPGSST
210	220	230	240	
TSTGPCRTCTT	PAQGXSMNPS	SCCCTKPSDGN	ICTCIPIPSSW	AFGKFLWEW
260	270	280	290	300
ASARFSXLSLL	VPFVQWFVGI ·	SPTVWLSVIW	MMWYWGPSLY	XILSPFLPL
310				
LPIFFCLWVYI				

Figure 28

<221> MISC_FEATURE

-1-

SEQUENCE LISTING

```
<110> Melbourne Health (for all States except the US)
       Austin and Repatriation Medical Centre (for all States except the
       Southern Health (for all States except the US)
       Bartholomeusz, Angeline (US only)
       Locarnini, Stephen (US only)
       Ayres, Anna (US only)
       Colledge, Danielle (US only)
       Sasadeusz, Joseph (US only)
       Tillmann, Hans (US only)
       Angus, Peter (US only)
       Sievert, William (US only)
<120> Viral variants, detection and use
<130> 12175980/EJH
<140> International
<141> 2003-04-11
<150> AU PS1710
<151> 2002-04-12
<150> AU PS3224
<151> 2002-06-26
<160> 59
<170> PatentIn version 3.1
<210> 1
<211> 76
<212> PRT
<213> synthetic
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> X = L or R or I
<220>
<221> MISC_FEATURE
<222> (3)..(3)
\langle 223 \rangle X = E or D
<220> ·
<221> MISC FEATURE
<222> (9)..(9)
<223> X = T or D or A or N or Y
<220>
```

```
<222> (10)..(10)
 <223> X = E or D
 <220>
 <221> MISC_FEATURE
 <222> (13)..(13)
 <223> X = E or K or Q
 <220>
 <221> MISC_FRATURE
 <222> (15)..(15)
<223> X = H or R or N
<220>
<221> MISC_FEATURE
<222> (18)..(18)
<223> X = I or T
<220>
<221> MISC_FEATURE
<222> (23)..(23)
\langle 223 \rangle X = A or S
<220>
<221> MISC_FEATURE
<222> (26)..(26)
<223> X = T or R
<220>
<221> MISC_FEATURE
<222> (40)..(40)
<223> X = A or T or S
<220>
<221>. MISC_FEATURE
<222> (43)...(43)
<223> X = R or T
<220>
<221> MISC_FEATURE
\langle 222 \rangle (45)..(45)
\langle 223 \rangle X = V or G
<220>
<221> MISC_FEATURE
<222> (55)..(55)
<223> X = S or I or T or N or V
```

- 3 -

```
<220>
 <221> MISC_FEATURE
<222> (56)..(56)
<223> X = T or S or H or Y
 <220>
 <221> MISC_FRATURE
 <222> (57)..(57)
<223> X = R or H or K or Q
<220>
<221> MISC_FEATURE
<222> (69)..(69)
<223> X = Q or P
<220>
<221> MISC_FEATURE
<222> (76) ... (76)
<223> S is designated amino acid 74
<400> 1
Leu Xaa Xaa Asp Trp Gly Pro Cys Xaa Xaa His Gly Xaa His Xaa Ile
Arg Xaa Pro Arg Thr Pro Xaa Arg Val Xaa Gly Gly Val Phe Leu Val
                                  25
Asp Lys Asn Pro His Asn Thr Xaa Glu Ser Xaa Leu Xaa Val Asp Phe
                              40
Ser Gln Phe Ser Arg Gly Xaa Xaa Xaa Val Ser Trp Pro Lys Phe Ala
Val Pro Asn Leu Xaa Ser Leu Thr Asn Leu Leu Ser
                    70
<210> 2
<211> 181
<212> PRT
<213> synthetic
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> S = amino acid 75
```

```
<220>
 <221> MISC_FEATURE
 <222> (2)..(2)
 <223> X = N or D
<220>
<221> MISC FEATURE
<222> (17)..(17)
<223> X = I or P
<220>
<221> MISC_FEATURE
<222> (29)..(29)
\langle 223 \rangle X = I or v
<220>
<221> MISC_FEATURE
<222> (35)..(35)
<223> X = S or D
<220>
<221> MISC_FEATURE
<222> (44)..(44)
\langle 223 \rangle X = T or N
<220>
<221> MISC_FEATURE
<222> (46)..(46)
<223> X = R or N
<220>
<221> MISC FEATURE
<222> (47)..(47)
\langle 223 \rangle X = N or I
<220>
<221> MISC_FEATURE
<222> (48)..(48)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (50)..(50)
<223> X = N or Y or H
<220>
<221> MISC_FEATURE
```

<223> X = Y or F

```
<220>
 <221> MISC_FEATURE
 <222> (79)..(79) <223> X = R or W
 <220>
<221> MISC_FRATURE
<222> (84)..(84)
<223> X = Y or L
 <220>
<221> MISC_FEATURE
<222> (85)..(85)
<223> X = S or A
<220>
<221> MISC_FEATURE
<222> (89)..(89)
<223> X = I or V
<220>
<221> MISC_FEATURE
<222> (95)..(95)
<223> X = I or L
<220>
<221> MISC_FEATURE
<222> (99)..(99)
<223> X = V or G
<220>
<221> MISC_FEATURE
<222> (114)..(114)
<223> X = C or L
<220>
<221> MISC_FEATURE
<222> (115)..(115)
\langle 223 \rangle X = A or S
<220>
<221> MISC_FEATURE
<222> (116)...(116)
<223> X = V or M
<220>
<221> MISC_FEATURE
```

<223> X = S or T

```
<220>
  <221> MISC_FEATURE
  <222> (140)..(140)
  <223> X = V or G
 <220>
 <221> MISC_FEATURE
 <222> (141)..(141)
 <223> X = Q \text{ or } B
 <220>
 <221> MISC FEATURE
 <222> (143)..(143)
 <223> X = L or S or R
 <220>
 <221> MISC_FEATURE
 <222> (145)..(145)
 <223> X = S or F
 <220>
 <221> MISC FEATURE
 <222> (147)..(147)
 \langle 223 \rangle X = F or Y
 <220>
 <221> MISC FEATURE
 <222> (148)..(148)
 \langle 223 \rangle X = T or A
 <220>
 <221> MISC_FEATURE
 <222> (149)..(149)
 <223> X = A or S
 <220>
 <221> MISC_FEATURE
<222> (150)..(150)
<223> X = V or I
 <220>
<221> MISC_FEATURE
\langle 222 \rangle (151)..(151)
\langle 223 \rangle X = T or C
<220>
```

<221> MISC_FEATURE

<222> (152)..(152) <223> X = N or S <220> <221> MISC_FRATURE <222> (153)..(153) <223> X = F or V

<220>

<221> MISC_FEATURE <222> (156)..(156) <223> X = S or D

<220>

<221> MISC_FEATURE <222> (157)..(157) <223> X = L or V

<220>

<221> MISC_FEATURE <222> (164)..(164) <223> X = N or Q

<220>

<221> MISC_FEATURE <222> (179)..(179) <223> X = V or I

<400> 2

Ser Xaa Leu Ser Trp Leu Ser Leu Asp Val Ser Ala Ala Phe Tyr His 1 5 10 15

Xaa Pro Leu His Pro Ala Ala Met Pro His Leu Leu Xaa Gly Ser Ser 20 25 30

Gly Leu Xaa Arg Tyr Val Ala Arg Leu Ser Ser Xaa Ser Xaa Xaa Xaa 35 40 45

Asn Xaa Gln Xaa Xaa Xaa Xaa Xaa Leu His Xaa Xaa Cys Ser Arg 50 55 60

Xaa Leu Tyr Val Ser Leu Xaa Leu Leu Tyr Xaa Thr Xaa Gly Xaa Lys 65 70 75 80

Leu His Leu Xaa Xaa His Pro Ile Xaa Leu Gly Phe Arg Lys Xaa Pro

- 10 -

85 90 95

Met Gly Xaa Gly Leu Ser Pro Phe Leu Leu Ala Gln Phe Thr Ser Ala 100 105 110

Ile Xaa Xaa Xaa Xaa Xaa Arg Ala Phe Xaa His Cys Xaa Xaa Phe Xaa 115 120 125

Tyr Met Asp Asp Xaa Val Leu Gly Ala Xaa Xaa Xaa His Xaa Glu 130 135 140

Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa Leu Leu Xaa Xaa Gly Ile His 145 150 155 160

Leu Asn Pro Xaa Lys Thr Lys Arg Trp Gly Tyr Ser Leu Asn Phe Met 165 170 175

Gly Tyr Xaa Ile Gly 180

<210> 3

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> OS1 primer

<400> 3

gcctcatttt gtgggtcacc ata

23

<210> 4

<211> 18

<212> DNA

<213> artificial sequence

<220>

<223> TTA3 primer

<400> 4

aaattcgcag tccccaaa

18

<210> 5

<211> 21

<212> DNA

<213> artificial sequence

<220>

- 11 -

<223>	JM primer		
<400>	5		
ttgggg	tgga gccctcaggc t		21
<210>	6		
<210>			
<212>			
	artificial sequence		
<220>	•		
<223>	TTA4 primer		
	6		
gaaaat	tggt aacagcgg		18
<210>	7		
<211>		•	
<212>			
	artificial sequence		
<220>			
<223>	OS2 primer		
.400	_		
<400>			
.c.c.g	acat actttccaat		20
<210>	8		
<211>	23		
:212>	DNA		
:213>	artificial sequence		
:220>			
:223>	sense primer		
:400>	ρ		
	ttt gtgggtcacc ata		22
,	3055		23
:210>	9		
211>			
212>			
213>	artificial sequence		
200.			
220>	anticones autor		
223>	antisense primer		
400>	9		
	acat actttccaat	٠	20
210>	10		

<212> DNA

- 12 -

```
<213> artificial sequence
 <220>
 <223> internal regions primer
 <400> 10
tgcacgattc ctgctcaa
                                                                          18
<210> 11
<211>
        20
<212> DNA
<213> artificial sequence
<220>
<223> internal regions primer
<400> 11
tttctcaaag gtggagacag
                                                                          20
<210> 12
<211> 18
<212> DNA
<213> artificial sequence
<220>
<223> PC1 forward primer
<400> 12
gggaggagat taggttaa
                                                                          18 .
<210> 13
<211> 20
<212> DNA
<213> artificial sequence
<220>
<223> PC2 reverse primer
<400> 13
ggcaaaaacg agagtaactc
                                                                         20
<210> 14
<211> 42
<212> DNA
<213> artificial sequence
<220>
<223> HBV-specific molecular beacon primer
<220>
<221> misc_feature
\langle 222 \rangle (42) ... (42) \langle 223 \rangle n = L
```

- 13 -

<400> 14 cgcgtcctac tgttcaagcc tccaagctgt gacgcgdabc yn	42
<210> 15 <211> 280 <212> DNA <213> artificial sequence	
<220> <223> ILA 1 F, A-E	
<220> <221> misc_feature <222> (215)(215) <223> n = any nucleotide	
<400> 15	
tggctcagtt tactagtgcc atttgttcag tggttcgtag ggctttcccc cactgtttgg	60
ctttcagtta tatggatgat gtggtattgg gggccaagtc tgtayagcay cttgagtccc	120
tttttaccgc tgttaccaat tttcttttgt ctttgggtat acatttaaac cctaacaaaa	180
ctaaaagatg gggttactct ttacatttca tgggntatgt cattggatgt tatgggtcat	240
tgccacaaga tcacatcata cagaaaatca aagatggttt	280
<210> 16 <211> 242 <212> DNA <213> artificial sequence	
<220> <223> ILA 2 F, A-E	
<400> 16 tggctcagtt tactagtgcc atttgttcag tggttcgtag ggctttcccc cactgtttgg	60
ctttcagtta tatggatgat gtggtattgg gggccaagtc tgtacagcat cttgagtccc	120
tttttaccgc tgttaccaat tttcttttgt ctttgggtat acatttaaac cctaacaaaa	180
caaagagatg gggttactct ctaaatttta tgggttatgt cattggatgt tatgggtcct	240
tg	242
<210> 17 <211> 277 <212> DNA <213> artificial sequence	

- 14 -

<220> <223> ILA 3 F, A-E	
<400> 17	
tggctcagtt tactagtgcc atttgttcag tggttcgtag ggctttcccc cactgtttgg	60
ctttcagtta tatggatgat gtggtattgg gggccaagtc tgtacagcat cttgagtccc	120
tttttaccgc tgttaccaat tttcttttgt ctttgggtat acatttaaac cctaacaaaa	180
caaagagatg gggttactct ctaaatttta tgggttatgt cattggatgt tatgggtcct	240
tgccacaaga acacatcata caaaaaatca aagaatg	277
<210> 18 <211> 237 <212> DNA <213> artificial sequence	
<220> <223> ILA 4 F, A-E	
<400> 18 tggctcagtt tactagtgcc atttgttcag tggttcgtag ggctttcccc cactgtttgg	60
etttcagtta tatggatgat gtggtattgg gggccaagtc tgtacagcat cttgagtccc	120
ttttaccgc tgttaccaat tttcttttgt ctttgggcat acatttaaac cctaacaaaa.	180
ctaaaagatg ggggtactct ttaaatttca tgggatatgt cattggatgg tatgggg	237
2210> 19 2211> 336 2212> PRT 2213> artificial sequence	
220> 223> Pol Trans Pre 1	
220> 221> MISC_FEATURE 222> (11)(11) 223> x = any amino acid	
220> 221> MISC_FEATURE 222> (17)(17) 223> x = any amino acid	
220> 221> MISC_FEATURE 222> (38)(38) 223> x = any amino acid	

- 15 -

<220> <221> MISC_FEATURE <222> (46)..(46) <223> x = any amino acid<220> <221> MISC_FEATURE <222> (50)..(50) <223> x = any amino acid <220> <221> MISC_FEATURE <222> (101)..(101) <223> x = any amino acid <220> <221> MISC_FEATURE <222> (208)..(208) <223> x = any amino acid <220> <221> MISC_FEATURE <222> (295)..(295) <223> x = any amino acid<400> 19 Lys Leu Ala Ser Lys Ser Ala Ser Ser Ile Xaa Gln Ser Pro Val Arg 10 Xaa Ala Ala Tyr Pro Ala Val Ser Thr Phe Glu Lys His Ser Ser Ser 20 Gly His Ala Val Glu Xaa His Asn Leu Pro Pro Asn Ser Xaa Arg Ser 40 Gln Xaa Glu Arg Pro Val Phe Pro Cys Trp Trp Leu Gln Phe Arg Asn 55 60 Ser Lys Pro Cys Ser Asp Tyr Cys Leu Ser His Ile Val Asn Leu Leu Glu Asp Trp Gly Pro Cys Ala Glu His Gly Glu His His Ile Arg Ile 90

- Pro Arg Thr Pro Xaa Arg Val Thr Gly Gly Val Phe Leu Val Asp Lys 100 105 110
- Asn Pro His Asn Thr Ala Glu Ser Arg Leu Val Val Asp Phe Ser Gln 115 120 125
- Phe Ser Arg Gly Asn Tyr Arg Val Ser Trp Pro Lys Phe Ala Val Pro
 130 140
- Asn Leu Gln Ser Leu Thr Asn Leu Leu Ser Ser Asn Leu Ser Trp Leu 145 150 155 160
- Ser Leu Asp Val Ser Ala Ala Phe Tyr His Leu Pro Leu His Pro Ala 165 170 175
- Ala Met Pro His Leu Leu Val Gly Ser Ser Gly Leu Ser Arg Tyr Val 180 185 190
- Ala Arg Leu Ser Ser Asn Ser Arg Ile Phe Asn His Gln Arg Gly Xaa
- Met Gln Asn Leu His Asp Tyr Cys Ser Arg Asn Leu Tyr Val Ser Leu 210 215 220
- Leu Leu Tyr Gln Thr Phe Gly Arg Lys Leu His Leu Tyr Ser His 225 235 240
- Pro Ile Ile Leu Gly Phe Arg Lys Ile Pro Met Gly Val Gly Leu Ser 245 250 255
- Pro Phe Leu Leu Ala Gln Phe Thr Ser Ala Ile Cys Ser Val Val Arg 260 265 270
- Arg Ala Phe Pro His Cys Leu Ala Phe Ser Tyr Met Asp Asp Val Val 275 280 285
- Leu Gly Ala Lys Ser Val Xaa His Leu Glu Ser Leu Phe Thr Ala Val 290 295 300
- Thr Asn Phe Leu Leu Ser Leu Gly Ile His Leu Asn Pro Asn Lys Thr 305 310 315 320

-17-

Lys Arg Trp Gly Tyr Ser Leu His Phe Met Gly Tyr Val Ile Gly Cys 325 330 335

<210> 20

<211> 340

<212> PRT

<213> artificial sequence

<220>

<223> Pol Trans 2

<400> 20

His Thr Thr Asn Phe Ala Ser Lys Ser Ala Ser Cys Leu His Gln Ser 1 5 10 15

Pro Val Arg Lys Ala Ala Tyr Pro Ala Val Ser Thr Phe Glu Lys His 20 25 30

Ser Ser Ser Gly His Ala Val Glu Phe His Asn Leu Pro Pro Asn Ser 35 40 45

Ala Arg Ser Gln Ser Glu Arg Pro Val Phe Pro Cys Trp Trp Leu Gln 50 55 60

Phe Arg Asn Ser Lys Pro Cys Ser Asp Tyr Cys Leu Ser Leu Ile Val 65 70 75 80

Asn Leu Glu Asp Trp Gly Pro Cys Ala Glu His Gly Glu His His 95

Ile Arg Ile Pro Arg Thr Pro Ser Arg Val Thr Gly Gly Val Phe Leu 100 105 110

Val Asp Lys Asn Pro His Asn Thr Ala Glu Ser Arg Leu Val Val Asp 115 120 125

Phe Ser Gln Phe Ser Arg Gly Asn Tyr Arg Val Ser Trp Pro Lys Phe 130 135 140

Ala Val Pro Asn Leu Gln Ser Leu Thr Asn Leu Leu Ser Ser Asn Leu 145 150 155 160

Ser Trp Leu Ser Leu Asp Val Ser Ala Ala Phe Tyr His Leu Pro Leu 165 170 175 WO 03/087351

- 18 -

His Pro Ala Ala Met Pro His Leu Leu Val Gly Ser Ser Gly Leu Ser 180 185 190

Arg Tyr Val Ala Arg Leu Ser Ser Asn Ser Arg Ile Leu Asn Asn Gln
195 200 205

His Gly Thr Met Pro Asp Leu His Asp Tyr Cys Ser Arg Asn Leu Tyr 210 215 220

Val Ser Leu Leu Leu Leu Tyr Gln Thr Phe Gly Arg Lys Leu His Leu 225 235 240

Tyr Ser His Pro Ile Ile Leu Gly Phe Arg Lys Ile Pro Met Gly Val 245 250 255

Gly Leu Ser Pro Phe Leu Leu Ala Gln Phe Thr Ser Ala Ile Cys Ser 260 265 270

Val Val Arg Arg Ala Phe Pro His Cys Leu Ala Phe Ser Tyr Met Asp 275 280 285

Asp Val Val Leu Gly Ala Lys Ser Val Gln His Leu Glu Ser Leu Phe 290 295 300

Thr Ala Val Thr Asn Phe Leu Leu Ser Leu Gly Ile His Leu Asn Pro 305 310 315 320

Asn Lys Thr Lys Arg Trp Gly Tyr Ser Leu Asn Phe Met Gly Tyr Val 325 330 335

Ile Gly Cys Tyr 340

<210> 21

<211> 344

<212> PRT

<213> artificial sequence

<220>

<223> Pol Trans 3

<400> 21

Leu Ala Gln Gly Ile Leu Gln Asn Phe Ala Ser Lys Ser Ala Ser Cys
1 10 15

- Leu His Gln Ser Pro Val Arg Lys Ala Ala Tyr Pro Ala Val Ser Thr
 20 25 30
- Phe Glu Lys His Ser Ser Ser Gly His Ala Val Glu Phe His Asn Leu 35 40 45
- Pro Pro Asn Ser Ala Arg Ser Gln Ser Glu Arg Pro Val Phe Pro Cys
 50 55 60
- Trp Trp Leu Gln Phe Arg Asn Ser Lys Pro Cys Ser Asp Tyr Cys Leu 65 70 75 80
- Ser Leu Ile Val Asn Leu Leu Glu Asp Trp Gly Pro Cys Ala Glu His
 85 90 95
- Gly Glu His His Ile Arg Ile Pro Arg Thr Pro Ser Arg Val Thr Gly
 100 105 110
- Gly Val Phe Leu Val Asp Lys Asn Pro His Asn Thr Ala Glu Ser Arg 115 120 125
- Leu Val Val Asp Phe Ser Gln Phe Ser Arg Gly Asn Tyr Arg Val Ser 130 140
- Trp Pro Lys Phe Ala Val Pro Asn Leu Gln Ser Leu Thr Asn Leu Leu 145 150 155 160
- Ser Ser Asn Leu Ser Trp Leu Ser Leu Asp Val Ser Ala Ala Phe Tyr 165 170 175
- His Leu Pro Leu His Pro Ala Ala Met Pro His Leu Leu Val Gly Ser 180 185 190
- Ser Gly Leu Ser Arg Tyr Val Ala Arg Leu Ser Ser Asn Ser Arg Ile 195 200 205
- Leu Asn Asn Gln His Gly Thr Met Pro Asp Leu His Asp Tyr Cys Ser 210 220
- Arg Asn Leu Tyr Val Ser Leu Leu Leu Leu Tyr Gln Thr Phe Gly Arg 225 230 235 240

Lys Leu His Leu Tyr Ser His Pro Ile Ile Leu Gly Phe Arg Lys Ile 245 250 255

Pro Met Gly Val Gly Leu Ser Pro Phe Leu Leu Ala Gln Phe Thr Ser 260 265 270

Ala Ile Cys Ser Val Val Arg Arg Ala Phe Pro His Cys Leu Ala Phe 275 280 285

Ser Tyr Met Asp Asp Val Val Leu Gly Ala Lys Ser Val Gln His Leu 290 295 300

Glu Ser Leu Phe Thr Ala Val Thr Asn Phe Leu Leu Ser Leu Gly Ile 305 310 315 320

His Leu Asn Pro Asn Lys Thr Lys Arg Trp Gly Tyr Ser Leu Asn Phe 325 330 335

Met Gly Tyr Val Ile Gly Cys Tyr 340

<210> 22

<211> 336

<212> PRT

<213> artificial sequence

<220>

<223> Pol Trans 4

<220>

<221> MISC FEATURE

<222> (24)..(24)

<223> x =any amino acid

<400> 22

Ala Ser Lys Ser Ala Ser Ser Ile Tyr Gln Ser Pro Val Gly Thr Ala 1 5 10 15

Ala Tyr Pro Ala Val Ser Thr Xaa Glu Lys His Ser Ser Ser Gly His

Ala Val Glu Leu His Asn Leu Pro Pro Asn Ser Glu Arg Ser Gln Gly 35 40 45

Glu Arg Pro Val Phe Pro Cys Trp Trp Leu Gln Phe Arg Asn Ser Lys 50 55 60

Pro Cys Ser Asp Tyr Cys Leu Ser His Ile Val Asn Leu Leu Glu Asp 65 70 75 80

Trp Gly Pro Cys Ala Glu His Gly Glu His His Ile Arg Ile Pro Arg 85 90 95

Thr Pro Ala Arg Val Thr Gly Gly Val Phe Leu Val Asp Lys Asn Pro 100 105 110

His Asn Thr Ala Glu Ser Arg Leu Val Val Asp Phe Ser Gln Phe Ser 115 120 125

Arg Gly Asn Tyr Arg Val Ser Trp Pro Lys Phe Ala Val Pro Asn Leu 130 135 140

Gln Ser Leu Thr Asn Leu Leu Ser Ser Asn Leu Ser Trp Leu Ser Leu 145 150 155 160

Asp Val Ser Ala Ala Phe Tyr His Leu Pro Leu His Pro Ala Ala Met 165 170 175

Pro His Leu Leu Val Gly Ser Ser Gly Leu Ser Arg Tyr Val Ala Arg 180 185 190

Leu Ser Ser Asn Ser Arg Ile Phe Asn His Gln Arg Gly Asn Met Gln 195 200 205

Asn Leu His Asp Cys Cys Ser Arg Asn Leu Tyr Val Ser Leu Leu Leu 210 215 220

Leu Tyr Gln Thr Phe Gly Arg Lys Leu His Leu Tyr Ser His Pro Ile 225 230 235 240

Ile Leu Gly Phe Arg Lys Ile Pro Met Gly Val Gly Leu Ser Pro Phe 245 250 255

Leu Leu Ala Gln Phe Thr Ser Ala Ile Cys Ser Val Val Arg Arg Ala 260 265 270

Phe Pro His Cys Leu Ala Phe Ser Tyr Met Asp Asp Val Val Leu Gly

- 22 -

275 280 285

Ala Lys Ser Val Gln His Leu Glu Ser Leu Phe Thr Ala Val Thr Asn 295

Phe Leu Leu Ser Leu Gly Ile His Leu Asn Pro Asn Lys Thr Lys Arg 310

Trp Gly Tyr Ser Leu Asn Phe Met Gly Tyr Val Ile Gly Trp Tyr Gly 330

<210> 23 <211> 226 <212> PRT

<213> artificial sequence

<220>

<223> HBsAg Trans of Pre 1

<220>

<221> MISC_FEATURE

<222> (120)..(120) <223> x = any amino acid

<220>

<221> MISC_FEATURE <222> (208)..(208) <223> x = any amino acid

<400> 23

Met Glu Asn Ile Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu Gln

Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu 25-

Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Thr Thr Val Cys

Leu Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser Pro Thr Ser 55

Cys Pro Pro Thr Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe 70 75

- 23 -

Ile Ile Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe Leu Leu Val 85 90 95

Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Ile Pro Gly
100 105 110

Ser Ser Thr Thr Ser Ala Gly Xaa Cys Arg Thr Cys Thr Thr Ala 115 120 125

Gln Gly Thr Ser Met Tyr Pro Ser Cys Cys Cys Thr Lys Pro Ser Asp 130 135 140

Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Gly Lys 145 150 155 160

Phe Leu Trp Glu Trp Ala Ser Ala Arg Phe Ser Trp Leu Ser Leu Leu 165 . 170 175

Val Pro Phe Val Gln Trp Phe Val Gly Leu Ser Pro Thr Val Trp Leu 180 185 190

Ser Val Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu Tyr Ser Xaa 195 200 205

Leu Ser Pro Phe Leu Pro Leu Leu Pro Ile Phe Phe Cys Leu Trp Val 210 215 220

Tyr Ile 225

<210> 24

<211> 309

<212> PRT

<213> artificial sequence

<220>

<223> HBsAg Trans of 2

<400> 24

Pro Pro Pro Ala Ser Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro 1 5 10 . . 15

Leu Ser Pro Pro Leu Arg Asn Thr His Pro Gln Ala Met Gln Trp Asn 20 25 30

- 24 -

Ser Thr Thr Phe His Gln Thr Leu Gln Asp Pro Arg Val Arg Gly Leu 35 40 45

Tyr Phe Pro Ala Gly Gly Ser Ser Ser Gly Thr Val Asn Pro Val Leu 50 55 60

Thr Thr Ala Ser Pro Leu Ser Ser Ile Phe Ser Arg Ile Gly Asp Pro 65 70 75 80

Ala Leu Asn Met Glu Asn Ile Thr Ser Gly Phe Leu Gly Pro Leu Leu 85 90 95

Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro 100 105 110

Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Thr 115 120 125

Thr Val Cys Leu Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser 130 135 140

Pro Thr Ser Cys Pro Pro Thr Cys Pro Gly Tyr Arg Trp Met Cys Leu 145 150 155 160

Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe 165 170 175

Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu 180 . 185 190

Ile Pro Gly Ser Ser Thr Thr Ser Thr Gly Pro Cys Arg Thr Cys Met 195 200 205

Thr Thr Ala Gln Gly Thr Ser Met Tyr Pro Ser Cys Cys Cys Thr Lys 210 215 220

Pro Ser Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala 225 230 235 240

Phe Gly Lys Phe Leu Trp Glu Trp Ala Ser Ala Arg Phe Ser Trp Leu 245 250 255

- 25 -

Ser Leu Leu Val Pro Phe Val Gln Trp Phe Val Gly Leu Ser Pro Thr 260 265

Val Trp Leu Ser Val Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu 280 285

Tyr Ser Ile Leu Ser Pro Phe Leu Pro Leu Pro Ile Phe Phe Cys 290 295

Leu Trp Val Tyr Ile

<210> 25 <211> 309 <212> PRT

<213> artificial sequence

<220>

<223> HBsAg Trans of 3

<400> 25

Pro Pro Pro Ala Ser Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro

Leu Ser Pro Pro Leu Arg Asn Thr His Pro Gln Ala Met Gln Trp Asn 20 30

Ser Thr Thr Phe His Gln Thr Leu Gln Asp Pro Arg Val Arg Gly Leu 35

Tyr Phe Pro Ala Gly Gly Ser Ser Ser Gly Thr Val Asn Pro Val Leu 50

Thr Thr Ala Ser Pro Leu Ser Ser Ile Phe Ser Arg Ile Gly Asp Pro 70 80

Ala Leu Asn Met Glu Asn Ile Thr Ser Gly Phe Leu Gly Pro Leu Leu 85

Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro 100 105

Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Thr 115 120

- 26 -

Thr Val Cys Leu Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser 130 135 140

Pro Thr Ser Cys Pro Pro Thr Cys Pro Gly Tyr Arg Trp Met Cys Leu 145 150 - 155 160

Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe 165 170 175

Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu 180 185 190

Ile Pro Gly Ser Ser Thr Thr Ser Thr Gly Pro Cys Arg Thr Cys Met 195 200 205

Thr Thr Ala Gln Gly Thr Ser Met Tyr Pro Ser Cys Cys Cys Thr Lys 210 215 220

Pro Ser Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala 225 230 235 240

Phe Gly Lys Phe Leu Trp Glu Trp Ala Ser Ala Arg Phe Ser Trp Leu 245 250 255

Ser Leu Leu Val Pro Phe Val Gln Trp Phe Val Gly Leu Ser Pro Thr 260 265 270

Val Trp Leu Ser Val Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu
275 280 285

Tyr Ser Ile Leu Ser Pro Phe Leu Pro Leu Pro Ile Phe Phe Cys 290 295 300

Leu Trp Val Tyr Ile 305

<210> 26

<211> 309

<212> PRT

<213> artificial sequence

<220>

<223> HBsAg Trans of 4

- 27 -

<220>

<221> MISC_FEATURE <222> (21)..(21) <223> x = any amino acid

<220>

<221> MISC FEATURE

<222> (46)..(46)

<223> x = any amino acid

<400> 26

Pro Pro Pro Pro Ser Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro 5

Leu Ser Pro Pro Xaa Arg Asn Thr His Pro Gln Ala Met Gln Trp Asn 20

Ser Thr Thr Phe His Gln Thr Leu Lys Asp Pro Arg Val Xaa Gly Leu 40

Tyr Phe Pro Ala Gly Gly Ser Ser Ser Gly Thr Val Asn Pro Val Pro

Thr Thr Ala Ser Pro Ile Ser Ser Ile Phe Ser Arg Ile Gly Asp Pro 75 70

Ala Leu Asn Met Glu Asn Ile Thr Ser Gly Phe Leu Gly Pro Leu Leu 85

Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro 105

Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Thr 120

Thr Val Cys Leu Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser 130

Pro Thr Ser Cys Pro Pro Thr Cys Pro Gly Tyr Arg Trp Met Cys Leu 145

Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe 170

- 28 -

Lev	ı Leu	Val	Leu 180	Leu	Asp	Tyr	Gln	Gly 185		Leu	Pro	Val	Cys 190		Leu
Ile	Pro	Gly 195	Ser	Ser	Thr	Thr	Ser 200	Ala	Gly	Thr	Cys	Arg 205	Thr	Сув	Thr
Thr	Ala 210	Ala	Gln	Gly	Thr	Ser 215	Met	Tyr		Ser	Сув 220	Суз	Cys	Thr	Lys
Pro 225	Ser	qaA	Gly	Asn	Сув 230	Thr	Cys	Ile	Pro	Ile 235	Pro	Ser	Ser	Trp	Ala 240
Phe	Gly	Lys	Phe	Leu 245	Trp	Glu	Trp	Ala	Ser 250	Ala	Arg	Phe	Ser	Trp 255	Leu
Ser	Leu	Leu	Val 260	Pro	Phe	Val	Gln	Trp 265	Phe	Val	Gly	Leu	Ser 270	Pro	Thr .
Val	Trp	Leu 275	Ser	Val	Ile	Trp	Met 280	Met	Trp	Tyr	Trp	Gly 285	Pro	Ser	Leu
Tyr	Ser 290	Ile	Leu	Ser	Pro	Phe 295	Leu	Pro	Leu	Leu	Pro 300	Ile	Phe	Phe	Сув
Leu 305	Trp	Ala	Tyr	Ile											
<210 <211 <212 <213	> 6	7 56 NA rtif	icia	l se	quen	ce									
<220 <223	-	0													
	> m > (561)	feati (56 ny no	51)	otide	e							٠		
<400 cgca		-	gacto	gtgç	g tgg	jacti	ctc	tcaa	attt	cg a	agggo	ggad	et ac	cato	ıtgtç
ttgg															

gtcctggtta tcgctggatg tgtctgcggc gttttatcat cttcctcttc atcctgctgc

60

120

180

- 29 -

tatgcctcat	cttcttgttg	gttcttctgg	actgtcaagg	tatgttgccc	gtttgtcctc	240
taattccagg	atcctcaacc	accagcacgg	gaccatgccg	aacctgcacg	actcctgctc	300
aaggaacctc	tacggttccc	tcatgttgct	gtaccaaacc	ttcggacgga	aattgcacct	360
gtattcccat	cccatcatcc	tgggctttcg	gaaaattcct	atgggagtgg	gcctcagccc	420
gtttctcctg	gctcagttta	ctagtgccat	ttgttcagtg	gttcgtaggg	ctttccccca	480
ctgtctggct	tttagttata	tggatgatgt	ggtattgggg	gccaagtctg	tatcgcatct	540
tgagtccctt	tttaccgctg	ntaccaattt	tcttttgtct	ttgggtatac	atttaaaccc	600
taacaaaaca	aaaagatggg	gttactccct	acattttatg	ggctatgtca	ttggat	656
<210> 28 <211> 625 <212> DNA <213> art	ificial sequ	lence				
<220> <223> \$6						
<222> (10)	c_feature)(10) any nucleot	zide				
<400> 28	acctcctatc	ctccaacttq	tecteattat	cactagatat	gtctgcggcg .	60
	ttcctcttca					120
	atgttgcccg					180
	acctgcacga					240
	teggaeggaa				•	300
						360
	tgggagtggg					420
	ttcgtagggc					
	ccaagtctgt				•	480
	tgggtataca					540
	gctatgtcat		gggtccttgc	cacaagaaca	catcagacaa	600
aaaatcaaag	aatgttttag	aaaac				625

PCT/AU03/00432 WO 03/087351

- 30 -

<211> <212> <213>	103 DNA art		puence				
<220>		•					
<223>	S8						
<400>	29						
tgcccc	ttet	gcctccacca	atcgccagtc	aggaaggcag	, cctaccccgc	tgtctccacc	60
tttgag	agac	actcatcctc	aggccatgca	gtggaactca	acaaccttcc	accaaactct	120
gcaaga	tccc	agagtgaaag	gcctgtattt	ccctgctggt	ggctccagtt	caggaacagt	180
aaaccc	tgtt	ccgactactg	cctctcactc	atcgtcaatc	ttctcgagga	ttggggtccc	240
tgcgct	gaac	atggagaaca	tcacatcagg	actcctagga	cecetteteg	tgttacaggc	300
ggggtt	tttc	ttgttgacaa	gaatcctcac	aataccgcag	agtctagact	cgtggtggac	360
ttctct	caat	tttcgagggg	ggactaccgt	gtgtcttggc	caaaattcgc	agtccccaac	420
ctccaa	tcac	tcaccaacct	cctgtcctcc	aacttgtcct	ggttatcgct	ggatgtgtct	480
geggeg	tttt	atcatcttcc	tetteatect	gctgctatgc	ctcatcttct	tgttggttct	. 540
tctgga	ctgt	caaggtatgt	tgcccgtttg	tcctctaatt	ccaggatcct	caaccaccag	600
cagggg	acca	tgccgaacct	gcacgactcc	tgctcaagga	acctctacgg	ttccctcatg	660
ttgctg	tacc	aaaccttcgg	acggaaattg	cacctgtatt	cccatcccat	catcctgggc	720
tttcgg	aaaa	ttcctatggg	agtgggcctc	agcccgtttc	tcatggctca	gtttactagt	780
gccatti	gtt	cagtggttcg	tagggctttc	cccactgtc	tggcttttgg	ttatgtggat	840
gatgtgg	gtat	tgggggccaa	gtctgtatcg	catcttgagt	ccctttttac	cgctgttacc	900
aatttt	ttt	tgtctttggg	tatacattta	aatcctaaca	aaacaaaaag	atggggttac	960
tccctac	catt	ttatgggcta	tgtcattgga	tgtcatgggt	ccttgccaca	agaacacatc	1020
agacaaa	aaa	tca	•				1033
<210><211><211><212><213>	DNA	ficial sequ	uence				
<220> <223>	S12						
<400> ttttggg	30 gag	ccctcaggct	cagggcatat	tacaaactct	gccagcaaat	ccacctcctg	60
cctccac	caa	tcgccagtca	ggaaggcagc	ctaccccgct	gtctccacct	ttgagagaca	120

ctcatcctca	ggccatgcag	tggaactcaa	caaccttcca	ccaaactctg	caagatccca	180
gagtgaaagg	g cctgtatttc	cctgctggtg	gctccagttc	aggaacagta	aaccctgttc	240
cgactactgo	ctctcactca	tcgtcaatct	tctcgaggat	tggggtccct	gcgctgaaca	300
tggagaacat	cacatcagga	ctcctaggac	cccttctcgt	gttacaggcg	gggtttttct	360
tgttgacaag	, aatcctcaca	ataccgcaga	gtctagactc	gtggtggact	tctctcaatt	420
ttcgaggggg	gactaccgtg	tgtcttggcc	aaaattcgca	gtccccaacc	tccaatcact	480
caccaaccto	ctgtcctcca	acttgtcctg	gttatcgctg	gatgtgtctg	cggcgtttta	540
tcatcttcct	cttcatcctg	ctgctatgcc	tcatcttctt	gttggttctt	ctggactgtc	600
aaggtatgtt	gcccgtttgt	cctctaattc	caggatcctc	aaccaccagc	aggggaccat	660
gccgaacctg	cacgactcct	gctcaaggaa	cctctacggt	tccctcatgt	tgctgtacca	720
aaccttcgga	cggaaattgc	acctgtattc	ccatcccatc	atcctgggct	ttcggaaaat	780
tcctatggga	gtgggcctca	gcccgtttct	catggctcag	tttactagtg	ccatttgttc	840
agtggttcgt	agggctttcc	cccactgtct	ggcttttggt	tatgtggatg	atgtggtatt	900
gggggccaag	tctgtatcgc	atcttgagtc	cctttttacc	gctgttacca	attttcttt	960
gtctttgggt	atacatttaa	atcctaacaa	aacaaaaaga	tggggttact	ccctacattt	1020
tatgggctat	gtcattggat	gtcatgggtc	cttgccacaa	gaacacatca	gacaaaaaat	1080 .
caaagaatgt	tttagaaaac					1100

```
<210> 31
```

<223> S15

<211> 987

<212> DNA

<213> artificial sequence

<220>

<220>

<221> misc_feature <222> (329)..(329)

<223> y = any nucleotide

<220>

<221> misc_feature

<222> (943)..(943)

<223> y = any nucleotide

tacaaacttt	gccagcaaat	ccacctcctg	cctccaccaa	tcgccagtca	ggaaggcagc	6
ctaccccgct	gtctccacct	ttgagagaca	ctcatcctca	ggccatgcag	tggaactcaa	12
caaccttcca	ccaaactctg	caagatccca	gagtgaaagg	cctgtatttc	cctgctggtg	18
gctccagttc	aggaacagta	aaccctgttc	cgactactgc	ctctcactca	tcgtcaatct	24
tctcgaggat	tggggtccct	gcgctgaaca	tggagaacat	cacatcagga	ctcctaggac	300
cccttctcgt	gttacaggcg	gggtttttyt	tgttgacaag	aatcctcaca	ataccgcaga	360
gtctagactc	gtggtggact	tctctcaatt	ttcgaggggg	gactaccgtg	tgtcttggcc	420
aaaattcgca	gtccccaacc	tccaatcact	caccaacctc	ctgtcctcca	acttgtcctg	480
gttatcgctg	gatgtgtctg	cggcgtttta	tcatcttcct	cttcatcctg	ctgctatgcc	540
tcatcttctt	gttggctcta	ctggactgtc	aaggtatgtt	gcccgtttgt	cctctaattc	600
caggateete	aaccaccagc	aggggaccat	gccgaacctg	cacgactcct	gctcaaggaa	660
cctctacggt	tccctcatgt	tgctgtacca	aaccttcgga	cggaaattgc	acctgtattc	720
ccatcccatc	atcctgggct	ttcggaaaat	tcctatggga	gtgggcctca	gcccgtttct	780
catggctcag	tttactagtg	ccatttgttc	agtggttcgt	agggctttcc	cccactgtct	840
ggcttttggt	tatgtggatg	atgtggtatt	gggggccaag	tctgtatcgc	atcttgagtc	900
cctttttacc	gctgttacca	attttcttt	gtctttgggt	atrcatttaa	atcctaacaa .	960
aacaaaaaga	tggggttact	ccctaca				987

```
<210> 32
```

<220>

<223> Pol Trans S0

<220>

<221> MISC_FEATURE

<222> (309)..(309) <223> x = any amino acid

<220>

<221> MISC_FEATURE

<222> (345)..(345) <223> x = any amino acid

<400> 32

<211> 350

<212> PRT

<213> artificial sequence

Ser Gly His Thr Thr Asn Phe Ala Ser Lys Ser Thr Ser Cys Leu His 1 5 10 15

Gln Ser Pro Val Arg Lys Ala Ala Tyr Pro Ala Val Ser Thr Phe Glu 20 25 30

Arg His Ser Ser Ser Gly His Ala Val Glu Leu Asn Asn Leu Pro Pro 35 40 45

Asn Ser Ala Arg Ser Gln Ser Glu Arg Pro Val Phe Pro Cys Trp Trp 50 55 60

Leu Gln Phe Arg Asn Ser Lys Pro Cys Ser Asp Tyr Cys Leu Ser Leu 65 70 75 80

Ile Val Asn Leu Leu Glu Asp Trp Gly Pro Cys Ala Glu His Gly Glu
85 90 95

His His Ile Arg Thr Pro Arg Thr Pro Ser Arg Val Thr Gly Gly Val

Phe Leu Val Asp Lys Asn Pro His Asn Thr Ala Glu Ser Arg Leu Val 115 120 125

Val Asp Phe Ser Gln Phe Ser Arg Gly Asp Tyr Arg Val Ser Trp Pro 130 135 140

Lys Phe Ala Val Pro Asn Leu Gln Ser Leu Thr Asn Leu Leu Ser Ser 145 150 155 160

Asn Leu Ser Trp Leu Ser Leu Asp Val Ser Ala Ala Phe Tyr His Leu 165 170 175

Pro Leu His Pro Ala Ala Met Pro His Leu Leu Val Gly Ser Ser Gly
180 185 190

Leu Ser Arg Tyr Val Ala Arg Leu Ser Ser Asn Ser Arg Ile Leu Asn 195 200 - 205

His Gln His Gly Thr Met Pro Asn Leu His Asp Ser Cys Ser Arg Asn 210 215 220

Leu Tyr Gly Ser Leu Met Leu Leu Tyr Gln Thr Phe Gly Arg Lys Leu

- 34 -

225 230 235 240

His Leu Tyr Ser His Pro Ile Ile Leu Gly Phe Arg Lys Ile Pro Met 245 250 255

Gly Val Gly Leu Ser Pro Phe Leu Leu Ala Gln Phe Thr Ser Ala Ile 260 265 270

Cys Ser Val Val Arg Arg Ala Phe Pro His Cys Leu Ala Phe Ser Tyr 275 280 285

Met Asp Asp Val Val Leu Gly Ala Lys Ser Val Ser His Leu Glu Ser 290 295 300

Leu Phe Thr Ala Xaa Thr Asn Phe Leu Leu Ser Leu Gly Ile His Leu 305 310 315 320

Asn Pro Asn Lys Thr Lys Arg Trp Gly Tyr Ser Leu His Phe Met Gly 325 330 335

Tyr Val Ile Gly Cys His Gly Ser Xaa Pro Gln Glu His Ile 340 345 350

<210> 33

<211> 181

<212> PRT

<213> artificial sequence

<220>

<223> Pol Trans S6

<400> 33

Ser Asn Leu Ser Trp Leu Ser Leu Asp Val Ser Ala Ala Phe Tyr His 1 5 10 15

Leu Pro Leu His Pro Ala Ala Met Pro His Leu Leu Val Gly Ser Ser 20 25 30

Gly Leu Ser Arg Tyr Val Ala Arg Leu Ser Ser Asn Ser Arg Ile Leu 35 40 45

Asn His Gln Gln Gly Thr Met Pro Asn Leu His Asp Ser Cys Ser Arg
50 55 60

- 35 -

Asn Leu Tyr Gly Ser Leu Met Leu Leu Tyr Gln Thr Phe Gly Arg Lys 65 70 75 80

Leu His Leu Tyr Ser His Pro Ile Ile Leu Gly Phe Arg Lys Ile Pro 85 90 95

Met Gly Val Gly Leu Ser Pro Phe Leu Met Ala Gln Phe Thr Ser Ala 100 105 110

Ile Cys Ser Val Val Arg Arg Ala Phe Pro His Cys Leu Ala Phe Gly
115 120 125

Tyr Val Asp Asp Val Val Leu Gly Ala Lys Ser Val Ser His Leu Glu 130 135 140

Ser Leu Phe Thr Ala Val Thr Asn Phe Leu Leu Ser Leu Gly Ile His 145 150 155 160

Leu Asn Pro Asn Lys Thr Lys Arg Trp Gly Tyr Ser Leu His Phe Met
165 170 175

Gly Tyr Val Ile Gly 180

<210> 34

<211> 340

<212> PRT

<213> artificial sequence

<220>

<223> Pol Trans S8

<400> 34

Cys Pro Phe Cys Leu His Gln Ser Pro Val Arg Lys Ala Ala Tyr Pro 1 5 10 15

Ala Val Ser Thr Phe Glu Arg His Ser Ser Ser Gly His Ala Val Glu 20 25 30

Leu Asn Asn Leu Pro Pro Asn Ser Ala Arg Ser Gln Ser Glu Arg Pro 35 40 45

Val Phe Pro Cys Trp Trp Leu Gln Phë Arg Asn Ser Lys Pro Cys Ser 50 55 60

Asp Tyr Cys Leu Ser Leu Ile Val Asn Leu Leu Glu Asp Trp Gly Pro 65 70 75 80

Cys Ala Glu His Gly Glu His His Ile Arg Thr Pro Arg Thr Pro Ser 85 90 95

Arg Val Thr Gly Gly Val Phe Leu Val Asp Lys Asn Pro His Asn Thr

Ala Glu Ser Arg Leu Val Val Asp Phe Ser Gln Phe Ser Arg Gly Asp 115 120 125

Tyr Arg Val Ser Trp Pro Lys Phe Ala Val Pro Asn Leu Gln Ser Leu 130 135 140

Thr Asn Leu Ser Ser Asn Leu Ser Trp Leu Ser Leu Asp Val Ser 145 150 155 160

Ala Ala Phe Tyr His Leu Pro Leu His Pro Ala Ala Met Pro His Leu 165 170 175

Leu Val Gly Ser Ser Gly Leu Ser Arg Tyr Val Ala Arg Leu Ser Ser 180 185 190

Asn Ser Arg Ile Leu Asn His Gln Gln Gly Thr Met Pro Asn Leu His
195 200 205

Asp Ser Cys Ser Arg Asn Leu Tyr Gly Ser Leu Met Leu Leu Tyr Gln
210 215 220

Thr Phe Gly Arg Lys Leu His Leu Tyr Ser His Pro Ile Ile Leu Gly 225 230 235 240

Phe Arg Lys Ile Pro Met Gly Val Gly Leu Ser Pro Phe Leu Met Ala 245 250 255

Gln Phe Thr Ser Ala Ile Cys Ser Val Val Arg Arg Ala Phe Pro His 260 265 270

Cys Leu Ala Phe Gly Tyr Val Asp Asp Val Val Leu Gly Ala Lys Ser 275 280 285

- 37 -

Val Ser His Leu Glu Ser Leu Phe Thr Ala Val Thr Asn Phe Leu Leu 290 295 300

Ser Leu Gly Ile His Leu Asn Pro Asn Lys Thr Lys Arg Trp Gly Tyr 305 310 315 320

Ser Leu His Phe Met Gly Tyr Val Ile Gly Cys His Gly Ser Leu Pro 325 330 335

Gln Glu His Ile 340

<210> 35

<211> 340

<212> PRT

<213> artificial sequence

<220>

<223> Pol Trans S12

<400> 35

Ser Gly His Ile Thr Asn Ser Ala Ser Lys Ser Thr Ser Cys Leu His 1 5 10 15

Gln Ser Pro Val Arg Lys Ala Ala Tyr Pro Ala Val Ser Thr Phe Glu 20 25 30

Arg His Ser Ser Ser Gly His Ala Val Glu Leu Asn Asn Leu Pro Pro 35 40 45

Asn Ser Ala Arg Ser Gln Ser Glu Arg Pro Val Phe Pro Cys Trp Trp 50 55 60

Leu Gln Phe Arg Asn Ser Lys Pro Cys Ser Asp Tyr Cys Leu Ser Leu 80

Ile Val Asn Leu Leu Glu Asp Trp Gly Pro Cys Ala Glu His Gly Glu 85 90 95

His His Ile Arg Thr Pro Arg Thr Pro Ser Arg Val Thr Gly Gly Val

Phe Leu Val Asp Lys Asn Pro His Asn Thr Ala Glu Ser Arg Leu Val

- 38 -

Val Asp Phe Ser Gln Phe Ser Arg Gly Asp Tyr Arg Val Ser Trp Pro 130 135 140

Lys Phe Ala Val Pro Asn Leu Gln Ser Leu Thr Asn Leu Leu Ser Ser 145 150 155 160

Asn Leu Ser Trp Leu Ser Leu Asp Val Ser Ala Ala Phe Tyr His Leu 165 170 175

Pro Leu His Pro Ala Ala Met Pro His Leu Leu Val Gly Ser Ser Gly 180 185 190

Leu Ser Arg Tyr Val Ala Arg Leu Ser Ser Asn Ser Arg Ile Leu Asn 195 200 205

His Gln Gln Gly Thr Met Pro Asn Leu His Asp Ser Cys Ser Arg Asn 210 215 220

Leu Tyr Gly Ser Leu Met Leu Leu Tyr Gln Thr Phe Gly Arg Lys Leu 225 235 240

His Leu Tyr Ser His Pro Ile Ile Leu Gly Phe Arg Lys Ile Pro Met 245 250 255

Gly Val Gly Leu Ser Pro Phe Leu Met Ala Gln Phe Thr Ser Ala Ile 260 265 270

Cys Ser Val Val Arg Arg Ala Phe Pro-His Cys Leu Ala Phe Gly Tyr 275 280 285

Val Asp Asp Val Val Leu Gly Ala Lys Ser Val Ser His Leu Glu Ser 290 295 300

Leu Phe Thr Ala Val Thr Asn Phe Leu Leu Ser Leu Gly Ile His Leu 305 310 315 320

Asn Pro Asn Lys Thr Lys Arg Trp Gly Tyr Ser Leu His Phe Met Gly 325 330 335

Tyr Val Ile Gly 340

- 39 -

<210> 36
<211> 328
<212> PRT
<213> artificial sequence

<220>
<223> Pol Trans S15

<220>
<221> MISC_FEATURE
<222> (110)..(110)
<223> x = any amino acid

<220>
<221> MISC_FEATURE
<222> (314)..(314)
<223> x = any amino acid

<400> 36

Thr Asn Phe Ala Ser Lys Ser Thr Ser Cys Leu His Gln Ser Pro Val 1 5 15

Arg Lys Ala Ala Tyr Pro Ala Val Ser Thr Phe Glu Arg His Ser Ser 20 25 30

Ser Gly His Ala Val Glu Leu Asn Asn Leu Pro Pro Asn Ser Ala Arg 35 40 45

Ser Gln Ser Glu Arg Pro Val Phe Pro Cys Trp Trp Leu Gln Phe Arg 50 55 60

Asn Ser Lys Pro Cys Ser Asp Tyr Cys Leu Ser Leu Ile Val Asn Leu 65 70 75 80

Leu Glu Asp Trp Gly Pro Cys Ala Glu His Gly Glu His His Ile Arg 85 90 95

Thr Pro Arg Thr Pro Ser Arg Val Thr Gly Gly Val Phe Xaa Val Asp

Lys Asn Pro His Asn Thr Ala Glu Ser Arg Leu Val Val Asp Phe Ser 115 120 125

Gln Phe Ser Arg Gly Asp Tyr Arg Val Ser Trp Pro Lys Phe Ala Val 130 135 140 Pro Asn Leu Gln Ser Leu Thr Asn Leu Leu Ser Ser Asn Leu Ser Trp 145 150 155 160

Leu Ser Leu Asp Val Ser Ala Ala Phe Tyr His Leu Pro Leu His Pro 165 170 175

Ala Ala Met Pro His Leu Leu Val Gly Ser Thr Gly Leu Ser Arg Tyr 180 185 190

Val Ala Arg Leu Ser Ser Asn Ser Arg Ile Leu Asn His Gln Gln Gly
195 200 205

Thr Met Pro Asn Leu His Asp Ser Cys Ser Arg Asn Leu Tyr Gly Ser 210 220

Leu Met Leu Leu Tyr Gln Thr Phe Gly Arg Lys Leu His Leu Tyr Ser 225 230 235 240

His Pro Ile Ile Leu Gly Phe Arg Lys Ile Pro Met Gly Val Gly Leu 245 250 255

Ser Pro Phe Leu Met Ala Gln Phe Thr Ser Ala Ile Cys Ser Val Val 260 265 270

Arg Arg Ala Phe Pro His Cys Leu Ala Phe Gly Tyr Val Asp Asp Val 275 280 285

Val Leu Gly Ala Lys Ser Val Ser His Leu Glu Ser Leu Phe Thr Ala 290 295 300

Val Thr Asn Phe Leu Leu Ser Leu Gly Xaa His Leu Asn Pro Asn Lys 305 310 315 320

Thr Lys Arg Trp Gly Tyr Ser Leu 325

<210> 37

<211> 197

<212> PRT

<213> artificial sequence

<220>

<223> HBsAg Trans of S0

- 41 -

<220>

<221> MISC_FEATURE

<222> (187)..(187)

<223> x = any amino acid

<400> 37

Gin Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Arg Gly Gly Thr 1 5 10 15

Thr Val Cys Leu Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser 20 25 30

Pro Thr Ser Cys Pro Pro Thr Cys Pro Gly Tyr Arg Trp Met Cys Leu 35 40 45

Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe 50 55 60

Leu Leu Val Leu Leu Asp Cys Gln Gly Met Leu Pro Val Cys Pro Leu 65 70 75 80

Ile Pro Gly Ser Ser Thr Thr Ser Thr Gly Pro Cys Arg Thr Cys Thr 85 90 95

Thr Pro Ala Gln Gly Thr Ser Thr Val Pro Ser Cys Cys Cys Thr Lys
100 105 110

Pro Ser Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala 115 120 125

Phe Gly Lys Phe Leu Trp Glu Trp Ala Ser Ala Arg Phe Ser Trp Leu 130 135 140

Ser Leu Leu Val Pro Phe Val Gln Trp_Phe Val Gly Leu Ser Pro Thr 145 150 155 160

Val Trp Leu Leu Val Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu 165 170 175

Tyr Arg Ile Leu Ser Pro Phe Leu Pro Leu Xaa Pro Ile Phe Phe Cys 180 185 190

Leu Trp Val Tyr Ile

- 42 -

195

<210> 38

<211> 161 <212> PRT <213> artificial sequence

<220>

<223> HBsAg Trans of S6

<400> 38

Pro Pro Thr Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile

Ile Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe Leu Leu Val Leu

Leu Asp Cys Gln Gly Met Leu Pro Val Cys Pro Leu Ile Pro Gly Ser 40

Ser Thr Thr Ser Arg Gly Pro Cys Arg Thr Cys Thr Thr Pro Ala Gln

Gly Thr Ser Thr Val Pro Ser Cys Cys Cys Thr Lys Pro Ser Asp Gly

Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Gly Lys Phe

Leu Trp Glu Trp Ala Ser Ala Arg Phe Ser Trp Leu Ser Leu Leu Val 105

Pro Phe Val Gln Trp Phe Val Gly Leu Ser Pro Thr Val Trp Leu Leu 120

Val Met Trp Met Met Trp Tyr Trp Gly Pro Ser Leu Tyr Arg Ile Leu 135

Ser Pro Phe Leu Pro Leu Pro Ile Phe Phe Cys Leu Trp Val Tyr 155

Ile

- 43 -

<210> 39 <211> 160 <212> PRT

<213> artificial sequence

<220>

<223> HBsAg Trans of S8

<400> 39

Pro Thr Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile 10

Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu 20

Asp Cys Gln Gly Met Leu Pro Val Cys Pro Leu Ile Pro Gly Ser Ser

Thr Thr Ser Arg Gly Pro Cys Arg Thr Cys Thr Thr Pro Ala Gln Gly 55

Thr Ser Thr Val Pro Ser Cys Cys Cys Thr Lys Pro Ser Asp Gly Asn 70

Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Gly Lys Phe Leu 85

Trp Glu Trp Ala Ser Ala Arg Phe Ser Trp Leu Ser Leu Leu Val Pro 100 105

Phe Val Gln Trp Phe Val Gly Leu Ser Pro Thr Val Trp Leu Leu Val 120

Met Trp Met Met Trp Tyr Trp Gly Pro Ser Leu Tyr Arg Ile Leu Ser 130 135

Pro Phe Leu Pro Leu Pro Ile Phe Phe Cys Leu Trp Val Tyr Ile 155

<210> 40

<211> 325

<212> PRT

<213> artificial sequence

<220>

<223> HBsAg Trans of S12

<400> 40

Leu Gly Ser Pro Gln Ala Gln Gly Ile Leu Gln Thr Leu Pro Ala Asn
1 10 15

Pro Pro Pro Ala Ser Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro 20 25 30

Leu Ser Pro Pro Leu Arg Asp Thr His Pro Gln Ala Met Gln Trp Asn 35 40 45

Ser Thr Thr Phe His Gln Thr Leu Gln Asp Pro Arg Val Lys Gly Leu 50 55 60

Tyr Phe Pro Ala Gly Gly Ser Ser Ser Gly Thr Val Asn Pro Val Pro 65 70 75 80

Thr Thr Ala Ser His Ser Ser Ser Ile Phe Ser Arg Ile Gly Val Pro 85 90 95

Ala Leu Asn Met Glu Asn Ile Thr Ser Gly Leu Leu Gly Pro Leu Leu 100 105_ 110

Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro 115 120 125

Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Arg Gly Gly Thr
130 140

Thr Val Cys Leu Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser 145 150 155 160

Pro Thr Ser Cys Pro Pro Thr Cys Pro Gly Tyr Arg Trp Met Cys Leu 165 170 175

Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe 180 185 190

Leu Leu Val Leu Leu Asp Cys Gln Gly Met Leu Pro Val Cys Pro Leu 195 200 - 205

Ile Pro Gly Ser Ser Thr Thr Ser Arg Gly Pro Cys Arg Thr Cys Thr 210 220

- 45 -

Thr Pro Ala Gln Gly Thr Ser Thr Val Pro Ser Cys Cys Cys Thr Lys 225 230 235 240

Pro Ser Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala 245 __250 255

Phe Gly Lys Phe Leu Trp Glu Trp Ala Ser Ala Arg Phe Ser Trp Leu 260 265 270

Ser Leu Leu Val Pro Phe Val Gln Trp Phe Val Gly Leu Ser Pro Thr 275 280 285

Val Trp Leu Leu Val Met Trp Met Met Trp Tyr Trp Gly Pro Ser Leu 290 295 300

Tyr Arg Ile Leu Ser Pro Phe Leu Pro Leu Leu Pro Ile Phe Phe Cys 305 310 315 320

Leu Trp Val Tyr Ile 325

<210> 41

<211> 309

<212> PRT

<213> artificial sequence

<220>

<223> HBsAg Trans of S15

<220>

<221> MISC_FEATURE

<222> (308)..(308)

<223> x = any amino acid

<400> 41

Pro Pro Pro Ala Ser Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro 1 5 10 15

Leu Ser Pro Pro Leu Arg Asp Thr His Pro Gln Ala Met Gln Trp Asn 20 25 30

Ser Thr Thr Phe His Gln Thr Leu Gln Asp Pro Arg Val Lys Gly Leu 35 40 45

- Tyr Phe Pro Ala Gly Gly Ser Ser Ser Gly Thr Val Asn Pro Val Pro 50 55 60
- Thr Thr Ala Ser His Ser Ser Ser Ile Phe Ser Arg Ile Gly Val Pro 65 70 75 80
- Ala Leu Asn Met Glu Asn Ile Thr Ser Gly Leu Leu Gly Pro Leu Leu 85 90 95
- Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro 100 105 110
- Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Arg Gly Gly Thr 115 120 125
- Thr Val Cys Leu Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser 130 140
- Pro Thr Ser Cys Pro Pro Thr Cys Pro Gly Tyr Arg Trp Met Cys Leu 145 150 155 160
- Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe 165 170 175
- Leu Leu Ala Leu Leu Asp Cys Gln Gly Met Leu Pro Val Cys Pro Leu 180 185 190
- Ile Pro Gly Ser Ser Thr Thr Ser Arg Gly Pro Cys Arg Thr Cys Thr 195 200 205
- Thr Pro Ala Gln Gly Thr Ser Thr Val Pro Ser Cys Cys Thr Lys 210 215 220
- Pro Ser Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala 225 230 235 240
- Phe Gly Lys Phe Leu Trp Glu Trp Ala Ser Ala Arg Phe Ser Trp Leu 245 250 255
- Ser Leu Leu Val Pro Phe Val Gln Trp Phe Val Gly Leu Ser Pro Thr 260 265 270

- 47 -

Val Trp Leu Leu Val Met Trp Met Met Trp Tyr Trp Gly Pro Ser Leu 275 280 285

Tyr Arg Ile Leu Ser Pro Phe Leu Pro Leu Leu Pro Ile Phe Phe Cys 290 295 300

Leu Trp Val Xaa Ile 305

<210> 42

<211> 1031

<212> DNA

<213> artificial sequence

<220>

<223> Nucleotide sequence of Patient C

<400> 42

tactacaaac cttgccagca aatccgcctc ctgcctctac caatcgccag tcaggaaggc 60 agcctacccc tctgactcca cctttgagaa acactcatcc tcaggccatg cagtggaact 120 ccacaaactt ccaccgaact ctacaagatc ccagagtgaa aggcctgtat ctccctgctg 180 gtggctccag ttcaggaaca gtaaaccctg ttccgactac tgtctctcac acatcgtcaa 240 300 gacccctgct cgtgttacag gcggggtttt tcttgttgac aagaatcctc acaataccgc 360 agagtctaga ctcgtggtgg acttctctca attttctagg ggggaccacc gtgtgccttg 420 gccaaaattc gcagtcccca acctccaatc actcaccaac ctcctgtcct ccaacttgtc 480 ctggttatcg ctggatgtgt ctgcggcgtt ttatcatatt cctcttcatc ctgctgctat 540 gcctcatctt cttgttggtt cttctggact atcaaggtat gttgcccgtt tgccctctaa 600 ttccaggatc ctcaaccacc agcacgggac catgcagaac ctgcacgact cctgctcaag 660 gaacctctwt gtatccctca tgttgctgta ccaaacctwc ggmcgsaaat tgcacctgta 720 ttcccatccc atcatcctgg gctttcggaa aattcctatg ggagtgggcc tcagcccgtt 780 teteetgact cagtttacta gtgccatttg ttcagtggtt cgtagggctt tcccccactg 840 tttggctttc agttatatgg atgatgtggt attgggggcc aggtctgtac agcatcgtga 900 ggcccttttt accgctgtta ccaattttct tttgtctctg ggtatacatt taaccccgga 960 caaaacaaaa agatggggtt actctttaca tttcatgggc tatgtcattg gatgttatgg 1020 gtcattgcca c 1031

- 48 -

<210> 43 <211> 316 <212> PRT

<213> artificial sequence

<220>

<223> POL Trans of Patient

<400> 43

Thr Thr Asn Leu Ala Ser Lys Ser Ala Ser Cys Leu Tyr Gln Ser Pro

Val Arg Lys Ala Ala Tyr Pro Ser Asp Ser Thr Phe Glu Lys His Ser

Ser Ser Gly His Ala Val Glu Leu His Lys Leu Pro Pro Asn Ser Thr

Arg Ser Gln Ser Glu Arg Pro Val Ser Pro Cys Trp Trp Leu Gln Phe

Arg Asn Ser Lys Pro Cys Ser Asp Tyr Cys Leu Ser His Ile Val Asn

Leu Ile Glu Asp Trp Gly Pro Cys Thr Glu His Gly Glu His His Ile

Arg Ile Pro Arg Thr Pro Ala Arg Val Thr Gly Gly Val Phe Leu Val 105

Asp Lys Asn Pro His Asn Thr Ala Glu Ser Arg Leu Val Val Asp Phe 120

Ser Gln Phe Ser Arg Gly Asp His Arg Val Pro Trp Pro Lys Phe Ala 135

Val Pro Asn Leu Gln Ser Leu Thr Asn Leu Leu Ser Ser Asn Leu Ser 155

Trp Leu Ser Leu Asp Val Ser Ala Ala Phe Tyr His Ile Pro Leu His 170

Pro Ala Ala Met Pro His Leu Leu Val Gly Ser Ser Gly Leu Ser Arg

Tyr Val Ala Arg Leu Pro Ser Asn Ser Arg Ile Leu Asn His Gln His 195 200 205

Gly Thr Met Gln Asn Leu His Asp Ser Cys Ser Arg Asn Leu Tyr Phe 210 215 220

Val Ser Leu Met Leu Leu Tyr Gln Thr Phe Thr Gly Arg Lys Leu His 225 230 235 240

Leu Tyr Ser His Pro Ile Ile Leu Gly Phe Arg Lys Ile Pro Met Gly
245 250 255

Val Gly Leu Ser Pro Phe Leu Leu Thr Gln Phe Thr Ser Ala Ile Cys
260 265 270

Ser Ala Leu Phe Thr Ala Val Thr Asn Phe Leu Leu Ser Leu Gly Ile 275 280 285

His Leu Thr Pro Asp Lys Thr Lys Arg Trp Gly Tyr Ser Leu His Phe 290 295 300

Met Gly Tyr Val Ile Gly Cys Tyr Gly Ser Leu Pro 305 310 315

<210> 44

<211> 301

<212> PRT

<213> artificial sequence

<220>

<223> HBsAg Trans of Patient C

<400> 44

Leu Gln Thr Leu Pro Ala Asn Pro Pro Pro Ala Ser Thr Asn Arg Gln 1 5 10 15

Ser Gly Arg Gln Pro Thr Pro Leu Thr Pro Pro Leu Arg Asn Thr His 20 25 30

Pro Gln Ala Met Gln Trp Asn Ser Thr Asn Phe His Arg Thr Leu Gln 35 40 45

Asp Pro Arg Val Lys Gly Leu Tyr Leu Pro Ala Gly Gly Ser Ser Ser

- 50 -

50 55 60

Gly Thr Val Asn Pro Val Pro Thr Thr Val Ser His Thr Ser Ser Ile
65 70 75 80

Leu Ser Arg Ile Gly Asp Pro Ala Leu Asn Met Glu Asn Ile Thr Ser

Gly Phe Leu Gly Pro Leu Leu Val Leu Gln Ala Gly Phe Phe Leu Leu 100 105 110

Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser 115 120 125

Leu Asn Phe Leu Gly Gly Thr Thr Val Cys Leu Gly Gln Asn Ser Gln 130 135 140

Ser Pro Thr Ser Asn His Ser Pro Thr Ser Cys Pro Pro Thr Cys Pro 145 150 155 160

Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile 165 170 175

Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly
180 185 190

Met Leu Pro Val Cys Pro Leu Ile Pro Gly Ser Ser Thr Thr Ser Thr 195 200 205

Gly Pro Cys Arg Thr Cys Thr Thr Pro Ala Gln Gly Thr Ser Met Leu 210 215 220

Tyr Pro Ser Cys Cys Cys Thr Lys Pro Ser Thr Ala Ala Asn Cys Thr 225 230 235 240

Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Gly Lys Phe Leu Trp Glu 245 250 255

Trp Ala Ser Ala Arg Phe Ser Leu Ser Leu Leu Val Pro Phe Val Gln 260 265 270

Trp Phe Val Gly Leu Ser Pro Thr Val Trp Leu Ser Val Ile Trp Met 275 280 285

<210>

45

- 51 -

Met Trp Tyr Trp Gly Pro Gly Leu Tyr Ser Ile Val Arg 290 295 300

<211> 888 <212> DNA <213> artificial sequence <220> <223> Nucleotide sequence of Patient D <400> 45 tggtcacagt gccaacagtt cctcctcctg cctccaccaa tcggcagtca gggaggcagc 60 ctactcccat ctctccacct ctaagagaca gtcatcctca ggccatggtg gctcagcctg 120 ctggtggctc cagttcagga acactcaacc ctgttcccaa tattgcctct cacatctcgt 180 caatctcctt gaggactggg gaccctgcgc cgaacatgga gaacatcaca tcaggattcc 240 taggacccct gctcgtgtta caggcggggt ttttcttgtt gacaagaatc ctcacaatac 300 cgcagagtct agactcgtgg tggacttctc tcagttttct agggggatca cccgtgtgtc 360 tiggccaaaa ticgcagicc ccaaccicca atcacicacc aacciccigi cciccaatti . 420 gacctggtta tcgctggata tgtctgcggc gttttatcat attcctcttc atcctgccgc 480 tatgcctcat cttcttattg gttcttctgg attatcaagg tatgttgccc gtttgtcctc 540 taattccagg atccacaaca accagtgcgg gaccctgcaa aacctgcacg actcctgctc 600 aaggcaactc tatgtttccc tcatgttgct gtacaaaacc tacggatgga aattgcacct 660 gtattcccat cccatcatct tgggctttcg caaaatacct atgggagtgg gcctcagtcc 720 gtttctcttg gctcagttta ctagtgccat ttgttcagtg attcgtaggg ctttcccca 780 ctgtttggct ttcagctata ttgatgatgt ggtactgggg gccaagtctg cacaacatct 840 tgagtccctt tataccgctg ttaccaattt tcttttgtct ttgggtat 888

<210> 46
<211> 295
<212> PRT
<213> artificial sequence
<220>
<223> Pol Trans of Patient D

<400> 46

Gly His Ser Ala Asn Ser Ser Ser Cys Leu His Gln Ser Ala Val

- 52 -

1 5 10 15

Arg Glu Ala Ala Tyr Ser His Leu Ser Thr Ser Lys Arg Gln Ser Ser 20 25 30

Ser Gly His Gly Gly Ser Ala Cys Trp Trp Leu Gln Phe Arg Asn Thr 35 40 45

Gln Pro Cys Ser Gln Tyr Cys Leu Ser His Leu Val Asn Leu Leu Glu 50 55

Asp Trp Gly Pro Cys Ala Glu His Gly Glu His His Ile Arg Ile Pro 65 70 75 80

Arg Thr Pro Ala Arg Val Thr Gly Gly Val Phe Leu Val Asp Lys Asn 85 90 95

Pro His Asn Thr Ala Glu Ser Arg Leu Val Val Asp Phe Ser Gln Phe 100 105 110

Ser Arg Gly Ile Thr Arg Val Ser Trp Pro Lys Phe Ala Val Pro Asn 115 120 125

Leu Gln Ser Leu Thr Asn Leu Leu Ser Ser Asn Leu Thr Trp Leu Ser 130 140

Leu Asp Met Ser Ala Ala Phe Tyr His Ile Pro Leu His Pro Ala Ala 145 150 155 160

Met Pro His Leu Leu Ile Gly Ser Ser Gly Leu Ser Arg Tyr Val Ala 165 170 175

Arg Leu Ser Ser Asn Ser Arg Ile His Asn Asn Gln Cys Gly Thr Leu 180 185 190

Gln Asn Leu His Asp Ser Cys Ser Arg Gln Leu Tyr Val Ser Leu Met 195 200 205

Leu Leu Tyr Lys Thr Tyr Gly Trp Lys Leu His Leu Tyr Ser His Pro 210 215 220

Ile Ile Leu Gly Phe Arg Lys Ile Pro Met Gly Val Gly Leu Ser Pro 225 230 235 240

- 53 -

Phe Leu Leu Ala Gln Phe Thr Ser Ala Ile Cys Ser Val Ile Arg Arg 245 250 255

Ala Phe Pro His Cys Leu Ala Phe Ser Tyr Ile Asp Asp Val Val Leu 260 265 270

Gly Ala Lys Ser Ala Gln His Leu Glu Ser Leu Tyr Thr Ala Val Thr 275 280 285

Asn Phe Leu Leu Ser Leu Gly 290 295

<210> 47

<211> 293

<212> PRT

<213> artificial sequence

<220>

<223> HBsAg Trans of Patient D

<400> 47

Val Thr Val Pro Thr Val Pro Pro Pro Ala Ser Thr Asn Arg Gln Ser 1 5 10 15

Gly Arg Gln Pro Thr Pro Ile Ser Pro Pro Leu Arg Asp Ser His Pro 20 25 30

Gln Ala Met Val Ala Gln Pro Ala Gly Gly Ser Ser Ser Gly Thr Leu
35 40 45

Asn Pro Val Pro Asn Ile Ala Ser His Ile Ser Ser Ile Ser Leu Arg 50 55 60

Thr Gly Asp Pro Ala Pro Asn Met Glu Asn Ile Thr Ser Gly Phe Leu 65 70 . 75 80

Gly Pro Leu Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile 85 90 95

Leu Thr Ile Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Ser Phe
100 105 110

Leu Gly Gly Ser Pro Val Cys Leu Gly Gln Asn Ser Gln Ser Pro Thr

- 54 -

115 120 125

Ser Asn His Ser Pro Thr Ser Cys Pro Pro Ile Pro Gly Tyr Arg Trp

Ile Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Pro Leu Cys 145 - 150 - 155 160

Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val 165 170 175

Cys Pro Leu Ile Pro Gly Ser Thr Thr Thr Ser Ala Gly Pro Cys Lys
180 185 190

Thr Cys Thr Thr Pro Ala Gln Gly Asn Ser Met Phe Pro Ser Cys Cys 195 200 205

Cys Thr Lys Pro Thr Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser 210 215 220

Ser Trp Ala Phe Ala Lys Tyr Leu Trp Glu Trp Ala Ser Val Arg Phe 225 230 235 240

Ser Trp Leu Ser Leu Leu Val Pro Phe Val Gln Phe Val Gly Leu Ser 245 250 255

Pro Thr Val Trp Leu Ser Ala Ile Leu Met Met Trp Tyr Trp Gly Pro 260 265 270

Ser Leu His Asn Ile Leu Ser Pro Phe Ile Pro Leu Leu Pro Ile Phe 275 280 285

Phe Cys Leu Trp Val 290

<210> 48

<211> 591

<212> DNA

<213> artificial sequence

<220>

<223> Nucleotide sequence of Patient E

<400> 48

tcctgtcctc caatttgtcc tggttatcgc tggatgtgtc tgcggcgttt tatgatattc

cto	ette	atcc	tgc	tgcta	atg (cctca	atcti	c ti	att	ggtto	: tto	etgga	atta	tcaa	aggtatg
ttg	acce	gtct	gtc	ctcta	at t	ccag	gato	a ad	caaca	acca	gta	cggg	gacc	atgo	caaaacc
aaa	acct	gca	cgad	ctcct	gc t	caag	gcaa	ac to	etate	gtttc	cct	cate	gttg	ctgt	acaaaa
cct	acgg	gatg	gaaa	attgo	ac d	ctgta	attco	c at	ccca	atcgt	cct	ggg	ettt	cgca	aaattc
cta	tggg	gagt	9999	ctca	gt d	ccgtt	tctc	t to	gcto	agtt	tac	tagt	gcc	attt	gttcag
tgg	ttcg	gtag	ggct	ttcc	cc c	cacto	ıtttg	ıg ct	ttca	ıgcta	tat	ggat	gat	gtgg	tattgg
999	ccaa	gtc	tgta	cago	at d	gtga	ggco	c tt	tata	cago	tgt	tacc	aat	tttc	ttttgt
cto	tggg	tat	acat	ttaa	ac c	ctaa	caaa	a ca	aaaa	gatg	999	ttat	tcc	ctaa	acttca
tgg	gtta	cat	aatt	ggaa	gt t	9999	aaca	t tg	ccac	agga	tca	tatt	gta	c	
<21 <21 <21 <21 <22	1> 2> 3>			al s			R								
<40		49			140	16110	T2								
			Ser	Trp 5	Leu	Ser	Leu	Asp	Val 10	Ser	Ala	Ala	Phe	Tyr 15	Asp
Ile	Pro	Leu	His 20	Pro	Ala	Ala	Met	Pro- 25	-His	Leu	Leu	Ile	Gly 30	Ser	Ser
Gly	Leu	Ser 35	Arg	Tyr	Val	Ala	Arg 40	Leu	Ser	Ser	Asn	Ser 45	Arg	Ile	Asn .
Asn	Asn 50	Gln	Tyr	Gly	Thr	Met 55	Gln	Asn	Gln	Asn	Leu 60	His	Asp	Ser	Cys
Ser 65	Arg	Gln	Leu	Tyr	Val 70	Ser	Leu	Met	Leu	Leu 75	Tyr	Lys	Thr	Tyr	Gly 80
Trp	Lys	Leu	His	Leu 85	Tyr	Ser	His	Pro	Ile 90	Val	Leu	Gly	Phe	Arg 95	Lys

Ile Pro Met Gly Val Gly Leu Ser Pro Phe Leu Leu Ala Gln Phe Thr

- 56 -

Ser Ala Ile Cys Ser Val Val Arg Arg Ala Phe Pro His Cys Leu Ala 115 120 125

Phe Ser Tyr Met Asp Asp Val Val Leu Gly Ala Lys Ser Val Gln His

Arg Glu Ala Leu Tyr Thr Ala Val Thr Asn Phe Leu Leu Ser Leu Gly 145 150 155 160

Ile His Leu Asn Pro Asn Lys Thr Lys Arg Trp Gly Tyr Ser Leu Asn 165 170 175

Phe Met Gly Tyr Ile Ile Gly Ser Trp Gly 180 185

<210> 50

<211> 165

<212> PRT

<213> artificial sequence

<220>

<223> HBsAg Trans of Patient E

<400> 50

Ser Cys Pro Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg 1 5 10 15

Phe Met Ile Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe Leu Leu 20 25 30

Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Ile Pro 35 40 45

Gly Ser Thr Thr Thr Ser Thr Gly Pro Cys Lys Thr Lys Thr Cys Thr 50 55 60

Thr Pro Ala Gln Gly Asn Ser Met Phe Pro Ser Cys Cys Cys Thr Lys 65 70 75 80

Pro Thr Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala 85 90 95

Phe Ala Lys Phe Leu Trp Glu Trp Ala Ser Val Arg Phe Ser Trp Leu 100 105 110 - 57 -

Ser Leu Leu Val Pro Phe Val Gln Trp Phe Val Gly Leu Ser Pro Thr 115 120 125	
Val Trp Leu Ser Ala Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu 130 135 140	
Tyr Ser Ile Val Arg Pro Phe Ile Gln Leu Leu Pro Ile Phe Phe Cys 145 150 155 160	
Leu Trp Val Tyr Ile 165	
<210> 51	
<211> 669	
<212> DNA <213> artificial sequence	
<220> <223> Nucleotide sequence of Patient	
<400> 51	
aateeteaca atacegeaga gtetagaett egtggtgaet teteteaatt ttetagggga	. 60
ceaccegtgt gtettggeca aaattegeag teeccaacet ecaateacte accaacetet	120
tgtcctccaa tttgtcctgg ttatcgctgg atgtgtctgc ggcgttttat catatccctc	180
ttcatcctgc tgctatgcct catcttctta ttggttcttc tggattatca aggtatgttg	240
cccgtttgtc ctctaattcc aggatccaca acaaccagta cgggaccctg caaaacctgc	300
acgactcctg ctcaaggcaa ctctatgttt ccctcatgtt gctgtacaaa acctacggat	360
ggaaattgca cmtgtattcc catcccatca tcttgggctt tcgcaaaata cctatgggag	420
tgggcctcag tccgtttctc ttggttcagt ttactagtgc catttgttca gtggttcgta	480
gggctttccc ccactgtttg gctttcagct atatggatga tattgtactg ggggccaagt	540
ctgtacaaca tcttgagtcc ctttataccg ctgttaccaa ttttcttttg tctttgggta	600
tacatttaac ccctaacaaa acaaagagat ggggttattc cctgaatttc atgggttatg	660
taattggaa	669

<210> 52 <211> 181 <212> PRT <213> artificial sequence

- 58 -

<220>

<223> Deduced sequence of DNA polymerase of Patient F

<220>

<221> MISC FEATURE

<222> (83)..(83)

<223> x = any amino acid

<400> 52

Ser Asn Leu Ser Trp Leu Ser Leu Asp Val Ser Ala Ala Phe Tyr His 1 5 10 15

Ile Pro Leu His Pro Ala Ala Met Pro His Leu Leu Ile Gly Ser Ser 20 25 30

Gly Leu Ser Arg Tyr Val Ala Arg Leu-Ser Ser Asn Ser Arg Ile His
35 40 45

Asn Asn Gln Tyr Gly Thr Leu Gln Asn Leu His Asp Ser Cys Ser Arg 50 55 60

Gln Leu Tyr Val Ser Leu Met Leu Leu Tyr Lys Thr Tyr Gly Trp Lys 65 70 75 80

Leu His Xaa Tyr Ser His Pro Ile Ile Leu Gly Phe Arg Lys Ile Pro 85 90 95

Met Gly Val Gly Leu Ser Pro Phe Leu Leu Val Gln Phe Thr Ser Ala .

Ile Cys Ser Val Val Arg Arg Ala Phe Pro His Cys Leu Ala Phe Ser 115 120 125

Tyr Met Asp Asp Ile Val Leu Gly Ala Lys Ser Val Gln His Leu Glu 130 135 140

Ser Leu Tyr Thr Ala Val Thr Asn Phe Leu Leu Ser Leu Gly Ile His 145 150 155 160

Leu Thr Pro Asn Lys Thr Lys Arg Trp Gly Tyr Ser Leu Asn Phe Met 165 170 175

Gly Tyr Val Ile Gly 180

- 59 -

<210> 53

<211> 160

<212> PRT

<213> artificial sequence

<220>

<223> HBsAg Trans of Patient F

<400> 53

Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile 1 5 10 15

Ser Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu 20 25 30

Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Ile Pro Gly Ser Thr 35 40 45

Thr Thr Ser Thr Gly Pro Cys Lys Thr Cys Thr Thr Pro Ala Gln Gly 50 55 60

Asn Ser Met Phe Pro Ser Cys Cys Cys Thr Lys Pro Thr Asp Gly Asn 65 70 75 80

Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Ala Lys Tyr Leu 85 90 95

Trp Glu Trp Ala Ser Val Arg Phe Ser Trp Phe Ser Leu Leu Val Pro

Phe Val Gln Trp Phe Val Gly Leu Ser Pro Thr Val Trp Leu Ser Ala 115 120 125

Ile Trp Met Ile Leu Tyr Trp Gly Pro Ser Leu Tyr Asn Ile Leu Ser 130 140

Pro Phe Ile Pro Leu Leu Pro Ile Phe Phe Cys Leu Trp Val Tyr Ile 145 150 155 160

<210> 54

<211> 554

<212> DNA

<213> artificial sequence

- 60 -

																	•
	220> 223>	Nuc	leot	ide	sequ	ience	e of	Pati	ent	G							
	00> Caat	54 ttgt	cct	gggt	atc	gctg	gato	ıtg t	ctgo	ggcg	t tt	tato	atat	tcc	tctt	cat	60
															tgcc		120
															gcac		180
															acgga		240
															agtg		300
															taggg		360
															gtete		420
															tatac		480
															tgtaa		540
		999													_		554
.01																	
	LO> L1>	55 184							••							•	•
	.2> .3>	PRT	fici	al a	0001											•	
		urcı		ar s	eque	nce											
<22 <22		Dedu	ced	sequ	ence	of	DNA	poly	mera	se o	f Pa	tien	t G				
<40		55										•					
Ser 1	Asn	Leu	Ser	Trp 5	Val	Ser	Leu	Asp	Val 10	Ser	Ala	Ala	Phe	Tyr 15	His		
Ile	Pro	Leu	His 20	Pro	Ala	Ala	Met	Pro 25	His	Leu	Leu	Val	Gly 30	Ser	Ser		•
Gly	Leu	Ser 35	Arg	Tyr	Val	Ala	Arg 40	Leu	Ser	Ser	Thr	Ser 45	Arg	Asn	Ile		
Asn	Tyr 50	Gln	His	Gly	Thr	Met 55	Gln	Asp	Leu	His	Asp 60	Ser	Сув	Ser	Arg		
Asn 65	Leu	Tyr	Val	Ser	Leu 70	Leu	Leu	Leu	Tyr	Lув 75	Thr	Phe	Gly	Arg	Lys 80		

Leu His Leu Tyr Ser His Pro Ile Val Leu Gly Phe Arg Lys Ile Pro 85 90 95

WO 03/087351 PCT/AU03/00432

- 61 -

Met Gly Val Gly Leu Ser Pro Phe Leu Leu Ala Gln Phe Thr Ser Ala 105 .

Ile Cys Ser Val Val Arg Arg Ala Phe Pro His Cys Leu Ala Phe Ser 120

Tyr Ile Asp Asp Val Val Leu Gly Ala Lys Ser Val Gln His Leu Glu

Ser Leu Phe Thr Ser Ile Thr Asn Phe Leu Met Ser Leu Gly Ile His 145 155

Leu Asn Pro Lys Lys Thr Lys Arg Trp Gly Tyr Ser Leu Asn Phe Met 165 170

Gly Tyr Val Ile Gly Ser Trp Gly 180

<210> 56 <211> 160

<212> PRT

<213> artificial sequence

<220>

<223> HBsAg Trans of Patient G

<220>

<221> MISC_FEATURE

<222> (108)..(108)

<223> x = any amino acid

<400> 56

Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile

Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu 20 25 30

Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Leu Pro Gly Thr Ser 40

Thr Thr Ser Thr Gly Pro Cys Lys Thr Cys Thr Thr Pro Ala Gln Gly

WO 03/087351 PCT/AU03/00432

- 62 -

Thr Ser Met Phe Pro Ser Cys Cys Cys Thr Lys Pro Ser Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Ala Arg Phe Leu 90 Trp Glu Trp Ala Ser Val Arg Phe Ser Trp Leu Xaa Leu Leu Val Pro 100 105 Phe Val Gln Trp Phe Val Gly Leu Ser Pro Thr Val Trp Leu Ser Val Ile Leu Met Met Trp Tyr Trp Cly Pro Ser Leu Tyr Asn Ile Leu Asn 135 Pro Phe Leu Pro Leu Pro Ile Phe Leu Cys Leu Trp Val Tyr Ile 145 150 155 <210> 57 <211> 1045 <212> DNA <213> artificial sequence <220> <223> Nucleotide sequence of Patient H <400> 57 cagcaaatcc gcctcctgcc tctaccaatc gccagtcagg aaggcagcct acccctctgt 60 ctccaccttt grgaaacact catcctcagg ccatgcagtg gaactccaca accttccacc 120 aaactctgcw agatcccaga gtgagaggcc tgtatttccc tgctggtggc tccagttcag 180 gaacagtaaa ccctgttccg acttctgtct ctcacacatc gtcaatcttc tcgaggattg 240 gggwccctgc gctgaacatg gagaacatca catcaggatt cctaggaccc ctgctcgtgt 300 tacaggcggg gtttttcttg ttgacaagaa tcctcacaat accgcagagt ctagactcgt 360 ggtggacttc tctcaatttt ctagggggaa ctaccgtgtg tcttggccaa aattcgcagt 420 tcccaacctc caatcactca ccaacctcct gtcctccaac ttgwcctggt tatcgctgga 480 tgtrtctgcg gcgttttatc atcttcctct tcatcctgct gctatgcctc atcttcttgt 540 tggttcttct ggactatcaa ggtatgttgc ccgtttgtcc tctarttcca ggatcttcaa 600 ccaccagcac gggaccatgc agaacctgca cgactcctgc tcaaggaamc tctatgaatc 660 cctcctgttg ctgtaccaaa ccttcggacg gaaattgcac ctgtattccc atcccatcat

720

cctgg	ggettt eggaaaatte etatgggagt gggeeteage eegtttetee	tgrctcagtt
tacta	agtgcc atttgttcag tggttcgtag ggctttcccc cactgtttgg	ctttcagtta
tatgg	gatgat gtggtattgg gggccaagtc tgtaymgcat cttragtccc	tttttaccgc
tgtta	accaat tttcttttgt ctytgggtat acatttaaac cctmacaaaa	caaaaagatg
gggtt	tactet ttacatttca tgggctatgt cattggatgt tatgggtcat	tgccacaaga
tcaca	atcaga cagaaaatca aagaa	
<210>	> 58	
<2115	348	
	T T T	
	PRT	
<213>	artificial sequence	
<220>		
<223>	Deduced sequence of DNA polymerase of Patient H	
<220>		
	MISC_FEATURE	•
	(24)(24)	•
<223>	x = any amino acid	
<220>		•
<221>	MISC_FEATURE	
	(155)(155)	
<223>		
1227	x - any andno acto	
<220>		
<221>	MISC_FEATURE	
-222>	(195)(195)	•
<223>	x = any amino acid	
<220>		
	(216)(216)	
<223>	x = any amino acid	
<220>		
<221>	MISC FEATURE	
<222>		
		•
<223>	x = any amino acid	
<220>		
<221>	MICC PDAMIND	
<222>	MISC_FEATURE	
_	(292)(292)	
<223>	x = any amino acid	

WO 03/087351 PCT/AU03/00432

- 64 -

<220>

<221> MISC FEATURE

<222> (295)..(295)

<223> x = any amino acid

<220>

<221> MISC_FEATURE

<222> (315)..(315)

<223> x = any amino acid

<400> 58

Ser Lys Ser Ala Ser Cys Leu Tyr Gln Ser Pro Val Arg Lys Ala Ala 1 5 10 15

Tyr Pro Ser Val Ser Thr Phe Xaa Lys His Ser Ser Ser Gly His Ala
20 25 30

Val Glu Leu His Asn Leu Pro Pro Asn Ser Ala Arg Ser Gln Ser Glu 35 40 45

Arg Pro Val Phe Pro Cys Trp Trp Leu Gln Phe Arg Asn Ser Lys Pro
50 55 60

Cys Ser Asp Phe Cys Leu Ser His Ile Val Asn Leu Leu Glu Asp Trp 65 70 75 80

Gly Pro Cys Ala Glu His Gly Glu His His Ile Arg Ile Pro Arg Thr
85 ...90

Pro Ala Arg Val Thr Gly Gly Val Phe Leu Val Asp Lys Asn Pro His 100 105 110

Asn Thr Ala Glu Ser Arg Leu Val Val Asp Phe Ser Gln Phe Ser Arg 115 120 125

Gly Asn Tyr Arg Val Ser Trp Pro Lys Phe Ala Val Pro Asn Leu Gln 130 135 140

Ser Leu Thr Asn Leu Leu Ser Ser Asn Leu Xaa Trp Leu Ser Leu Asp 145 150 155 160

Val Ser Ala Ala Phe Tyr His Leu Pro Leu His Pro Ala Ala Met Pro 165 170 175 His Leu Leu Val Gly Ser Ser Gly Leu Ser Arg Tyr Val Ala Arg Leu 180 185 190

Ser Ser Xaa Ser Arg Ile Phe Asn His Gln His Gly Thr Met Gln Asn 195 200 205

Leu His Asp Ser Cys Ser Arg Xaa Leu Tyr Glu Ser Leu Leu Leu Leu 210 215 220

Tyr Gln Thr Phe Gly Arg Lys Leu His Leu Tyr Ser His Pro Ile Ile 225 230 235 240

Leu Gly Phe Arg Lys Ile Pro Met Gly Val Gly Leu Ser Pro Phe Leu 245 250 255

Leu Xaa Gln Phe Thr Ser Ala Ile Cys Ser Val Val Arg Arg Ala Phe 260 265 270

Pro His Cys Leu Ala Phe Ser Tyr Met Asp Asp Val Val Leu Gly Ala 275 280 285

Lys Ser Val Xaa His Leu Xaa Ser Leu Phe Thr Ala Val Thr Asn Phe 290 295 300

Leu Leu Ser Leu Gly Ile His Leu Asn Pro Xaa Lys Thr Lys Arg Trp 305 310 315 320

Gly Tyr Ser Leu His Phe Met Gly Tyr Val Ile Gly Cys Tyr Gly Ser

Leu Pro Gln Asp His Ile Arg Gln Lys Ile Lys Glu 340 345

<210> 59

<211> 311

<212> PRT

<213> artificial sequence

<220>

<223> HBsAg Trans of Patient H

<220>

<221> MISC FEATURE

<222> (24)..(24)

```
\langle 223 \rangle x = any amino acid
<220>
<221> MISC_FEATURE
<222> (43)..(43)
<223> x = any amino acid
<220>
<221> MISC_FEATURE
<222> (81)..(81)
<223> x = any amino acid
<220>
<221> MISC FEATURE
<222> (154)..(154)
<223> x = any amino acid
<220>
<221> MISC_FEATURE
<222> (161)..(161)
\langle 223 \rangle x = any amino acid
<220>
<221> MISC_FEATURE
<222> (195)..(195)
<223> x = any amino acid
<220>
<221> MISC_FEATURE
<222> (216)..(216)
<223> x = any amino acid
<220>
<221> MISC_FEATURE
<222> (257)..(257)
<223> x = any amino acid
<220>
<221> MISC_FEATURE
<222> (292)..(292)
<223> x = any amino acid
<400> 59
Ala Asn Pro Pro Pro Ala Ser Thr Asn Arg Gln Ser Gly Arg Gln Pro
                 5
```

PCT/AU03/00432

- Thr Pro Leu Ser Pro Pro Leu Xaa Asn Thr His Pro Gln Ala Met Gln 20 25 . 30
- Trp Asn Ser Thr Thr Phe His Gln Thr Leu Xaa Asp Pro Arg Val Arg
- . Gly Leu Tyr Phe Pro Ala Gly Gly Ser Ser Ser Gly Thr Val Asn Pro 50 55 60
- Val Pro Thr Ser Val Ser His Thr Ser Ser Ile Phe Ser Arg Ile Gly 65 70 75 80
- Xaa Pro Ala Leu Asn Met Glu Asn Ile Thr Ser Gly Phe Leu Gly Pro
- Leu Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr 100 105 110
- Ile Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly 115 120 125
- Gly Thr Thr Val Cys Leu Gly Gln Asn Ser Gln Phe Pro Thr Ser Asn 130 135 140
- His Ser Pro Thr Ser Cys Pro Pro Thr Xaa Pro Gly Tyr Arg Trp Met 145 155 160
- Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys
 180 185 190
- Pro Leu Xaa Pro Gly Ser Ser Thr Thr Ser Thr Gly Pro Cys Arg Thr 195 200 205
- Cys Thr Thr Pro Ala Gln Gly Xaa Ser Met Asn Pro Ser Cys Cys Cys 210 215 220
- Thr Lys Pro Ser Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser 225 235 235
- Trp Ala Phe Gly Lys Phe Leu Trp Glu Trp Ala Ser Ala Arg Phe Ser

WO 03/087351 PCT/AU03/00432

- 68 -

245 250 255

Xaa Leu Ser Leu Leu Val Pro Phe Val Gln Trp Phe Val Gly Leu Ser 260 265 270

Pro Thr Val Trp Leu Ser Val Ile Trp Met Met Trp Tyr Trp Gly Pro 275 280 285

Ser Leu Tyr Xaa Ile Leu Ser Pro Phe Leu Pro Leu Pro Ile Phe 290 295 300

Phe Cys Leu Trp Val Tyr Ile 305 310

a

International application No. PCT/AU03/00432

A.	CLASSIFICATION OF SUBJECT MATTER		
Int. Cl. 7:	C12N7/00, 15/01, 15/36, 15/51, C12Q1/70		
According to	International Patent Classification (IPC) or to both	national classification and IPC	_
В.	FIELDS SEARCHED		
Minimum do	numentation searched (classification system followed by o	lassification symbols)	
Documentation SEE BELC	on searched other than minimum documentation to the ext	ent that such documents are included in the fields search	hed
WPIDS, M	a base consulted during the international search (name of EDLINE, CA. KEYWORDS: Hepatitis B/Nuc e/Tenofivir/Thiacydidine/HBsAg/Polymerase a	cleotide/Nucleoside/Resistan?/Muta?/Adefovi	ir/
C.	DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
X	WO 01/94559 (Melbourne Health) 13 Dec	ember 2001	1-125, 169-
	Claims, p.12-19, p.22 line 25-p.24 line 25, p. 25 line 30 - p. 26 line 9	and .	202
х	WO 01/57244 (Melbourne Health) 9 Augus	t 2001	1-17, 19-74,
	Claims, Table 1, p. 17 line 7 - p. 21 line 12 p. 25 line 16 - p. 33 line 2	and	80, 86, 95, 106, 119, 123- 127
X	Further documents are listed in the continuation	n of Box C X See patent family ann	ех
"A" docum which releva "E" earlier	is not considered to be of particular and application or patent but published on or "X" of	ater document published after the international filing da nd not in conflict with the application but cited to under or theory underlying the invention ocument of particular relevance; the claimed invention onsidered novel or cannot be considered to involve an	rstand the principle
claim(public	ent which may throw doubts on priority "Y" of s) or which is cited to establish the ation date of another citation or other special	when the document is taken alone ocument of particular relevance; the claimed invention onsidered to involve an inventive step when the documents on more other such documents, such combination	ent is combined
"O" docum	• • • • • • • • • • • • • • • • • • • •	person skilled in the art ocument member of the same patent family]
"P" docum	ant published prior to the international filing at later than the priority date claimed		
	ual completion of the international search	Date of mailing of the international search report	D 6 JUN 2003
27 May 200	Iing address of the ISA/AU	Authorized officer	
AUSTRALIA	V PATENT OFFICE	Sentification officer	• •
B-mail address	WODEN ACT 2606, AUSTRALIA : pct@ipaustralia.gov.au	ALISTAIR BESTOW	. }
Facsimile No.	(02) 6285 3929	Telephone No: (02) 6283 2450	

International application No.
PCT/AU03/00432

Box I		Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This inte		nal search report has not been established in respect of certain claims under Article 17(2)(a) for the following
1.	П	Claims Nos:
		because they relate to subject matter not required to be searched by this Authority, namely:
2.	X	Claims Nos: 126, 159, 160 (completely), 161-168 (partially)
		because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
		The claims are not restricted to the technical features of the invention, namely hepatitis B variants, methods of using these variants and products of these methods. Claims 161-168 have only been searched in so far as they relate to HBV nucleic acid or peptides sequences, antibodies, ribozymes and antisense that are capable of inhibiting the variant HBVs of the inventiont
3.		Claims Nos:
		because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)
Box II	(Observations where unity of invention is lacking (Continuation of Item 3 of first sheet)
This Inte	ernation	nal Searching Authority found multiple inventions in this international application, as follows:
See S	Supple	emental Box for summary inventions.
1.		As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims
2.	X	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.		As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.		No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Pr	otest The additional search fees were accompanied by the applicant's protest.
		No protest accompanied the payment of additional search fees.

International application No.
PCT/AU03/00432

	PCT/AU03/00	
C (Continuat	ion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	WO 98/21317 (Western Health Care Network) 22 May 1998	1-17, 19-37, 39, 40, 42-50
	Claims, p. 4 line 5 - p. 7 line 12 and p. 8 line 28 - p. 11 line 20,	54, 55, 58-74 76-78, 80-90 94, 95, 98, 100-114, 118 119, 122, 170 178, 180-182
		184-186, 196 194-202
X	Yeh, C. et al., 2000, Clearance of the original hepatitis B virus YMDD-motif mutants with emergence of distinct lamivudine-resistant mutants during prolonged lamivudine therapy, Hepatology, 31:1318-1325 See whole document	1-17, 19-37, 39, 40, 49, 50, 54, 55, 58-74, 76, 77, 78, 82, 85, 86, 89, 90, 94, 95, 98, 100-102, 106, 113, 114, 118, 119, 122, 127-129
x	Seigneres, B. et al., 2000, Evolution of Hepatitis B virus polymerase gene sequence during famciclovir therapy for chronic hepatitis B, Journal of Infectious Diseases, 181:1221-33 See whole document	1-17, 19-38 42, 50, 54, 5 58-74, 80, 85 86, 90, 97, 104, 109, 110 114, 118, 12 122, 127-129
x	Ogata, N. et al., 1999, Novel patterns of amino acid mutations in the hepatitis b virus polymerase in association with resistance to lamivudine therapy in japanese patients with chronic hepatitis B, Journal of Medical Virology, 59:270-276 See whole document	1-17, 19-37, 43, 59-74, 81 105
х	Bock, C. et al., 2002(February), Selection of hepatitis B virus polymerase mutants with enhanced replication by lamivudine treatment after liver transplantation, Gastroenterology, 122:264-273 See whole document	1-17, 19-37, 39, 44, 54, 55 58-74, 83, 94 95, 98, 100, 107, 118, 119 122

International application No.
PCT/AU03/00432

C (Continuat	ion) DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/A005/00	
Category*	Citation of document, with indication, where appropriate, of the relevant passage	·S	Relevant to claim No.
х	Cane, P. et al., 1999, Analysis of hepatitis B virus quasispecies changes a emergence and reversion of lamivudine resistance in liver transplantation. Therapy, 4:7-14 See whole document	during the m, Antiviral	1-17, 19-37, 39, 43, 45, 45, 50, 55, 58-74 81, 84, 86, 85 90, 94, 95, 98 100, 102, 108
			110, 113, 114 118,119, 122
•	·		
ı			
	·		
	•		
	•	. '	·
	·		

International application No.

PCT/AU03/00432

Supp]	lemental	Box
-------	----------	-----

(To be used when the space in any of Boxes I to VIII is not sufficient)

Continuation of Box No II:

Invention 1: Claims 1-20, 38, 59-75, 99, 123-125, 127, 130-134, 170, 178, 179, 195 (all partially) relating to an isolated Hepatitis B virus (HBV) variant comprising a mutation in a gene encoding DNA polymerase resulting in an amino acid addition, substitution and/or deletion at amino acid position rt21 of the HBV DNA polymerase, the use of these variants, and methods for determining whether a HBV variant exhibits decrease sensitivity to anti-viral agents or reduced interactivity to an antibody to HBV surface antigen.

Invention 2: 1-20, 38, 59-75, 77, 99, 101, 123-125, 127, 130-134, 136, 170, 178, 179, 181, 195 (all partially) relating to an isolated HBV variant comprising a mutation in a gene encoding DNA polymerase resulting in an amino acid addition, substitution and/or deletion at amino acid position rt122 of the HBV DNA polymerase, the use of these variants, and methods for determining whether a HBV variant exhibits decrease sensitivity to anti-viral agents or reduced interactivity to an antibody to HBV surface antigen.

Inventions 3-37: relating to HBV variants comprising a mutation in a gene encoding DNA polymerase and/or HBsAg resulting in an amino acid addition, substitution and/or deletion at amino acid positions rt124, rt28, rt130, etc, rt251 or the equivalent position in the overlapping HBsAg, the use of these variants, and methods for determining whether a HBV variant exhibits decrease sensitivity to anti-viral agents or reduced interactivity to an antibody to HBV surface antigen.

The common feature linking the group of inventions resides in the elucidation of the link between reduced sensitivity to anti-HBV agents such as ADV, LMV, FTC and TFV and mutation of the nucleotide sequence encoding HBV DNA polymerase or the overlapping S gene (HBsAg). However, this is already known in the art (see Chen et al., 1999, Human hepatitis B virus mutants: significance of molecular changes, FEBS Letters, 453:237-242, and citations below), as such the claims relate to multiple inventions, a posteriort.

Information on patent family members

International application No.
PCT/AU03/00432

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

	Document Cited in Patent Family Member Search Report						
wo	200194559	AU	20008109	AU	200163672	EP	1297109
WO	200157244	AU	200131415	EP	1257661		
wo	9821317	AU	37628/97	EP	964916	US	6555311