A Continuous Life-years Gained Priority Score for Ventilator Allocation

- 1 Theory
- 2 Simulation using CDC data

Theory

In military triage situations, a utilitarian framework is employed to save the greatest number of wounded soliders in a mass casualty event

Identify patients who will survive without critical care (Green)

In military triage situations, a utilitarian framework is employed to save the greatest number of wounded soliders in a mass casualty event

- Identify patients who will survive without critical care (Green)
- 2 Exclude patients who obviously will not survive with critical care (Blue)

In military triage situations, a utilitarian framework is employed to save the greatest number of wounded soliders in a mass casualty event

- Identify patients who will survive without critical care (Green)
- 2 Exclude patients who obviously will not survive with critical care (Blue)
- 3 Rank order patients who will die without critical care by P(ICUSurvival) (Red > Yellow)

In military triage situations, a utilitarian framework is employed to save the greatest number of wounded soliders in a mass casualty event

- Identify patients who will survive without critical care (Green)
- Exclude patients who obviously will not survive with critical care (Blue)
- 3 Rank order patients who will die without critical care by P(ICUSurvival) (Red > Yellow)
- 4 Treat as many patients as possible in order of P(ICUSurvival)

Problems with military triage approach in the COVID-19 Pandemic

Three patients with COVID-19

28 year old femaleSOFA: 30% survival

80 year old male
• SOFA: 75% survival

60 year old male
• SOFA: 50% survival

Who gets the one remaining ventilator?

New York ventilator allocation policy

Priority rankings under NY triage system

Goes against "youngest first" allocation principles.

Maximizing life-years gained

An alternative utilitarian approach is to maximize life-years gained

Priority Score that maximizes life-years gained

$$PriorityScore = P(ICUSurvival) * (100 - age)$$

Priority Score vs. Patient Age, by Probability of ICU Survival

Range of possible priority scores by patient age

Simulation using CDC data

Data source

We took data from the CDC report Severe Outcomes Among Patients with Coronavirus Disease 2019 — United States, February 12–March 16, 2020

COVID-19 Age Distribution of patients requiring ICU

COVID-19 ICU survival by Age in the US per the CDC

Simulated ICU population

Simulated Survival by Age

Lottery allocation

Random assignment of vents, ignoring age and P(ICUsurvival). A lottery allocation of 500 ventilators would save 319 out of 1000 patients admitted to the ICU. A lottery saves 12,146 out of a total

Maximizing ICU survival

A ICU survival triage system of 500 ventilators would save 466 out of 1000 patients admitted to the ICU. Maximizing ICU survival saves 18.856 out of a total of possible 33.927 (56%).

Maximizing Life-years gained

Prioritizing life-years for 500 ventilators would save 448 out of 1000 patients admitted to the ICU. Maximizing life-years gained saves 19.679 out of a total of possible 33.927 (58%).

Maximizing life-years vs. ICU survival

The Tradeoff

Prioritizing life-years gained over ICU survival saves an additional 823 life-years for this 1000 patient sample, at a cost of 18 more deaths in the ICU.