## 5.63 change\_pair

DESCRIPTION LINKS GRAPH AUTOMATON

Origin

Derived from change.

Constraint

change\_pair(NCHANGE, PAIRS, CTRX, CTRY)

Arguments

NCHANGE : dvar

PAIRS : collection(x-dvar, y-dvar)

CTRX : atom CTRY : atom

Restrictions

```
\begin{split} & \texttt{NCHANGE} \geq 0 \\ & \texttt{NCHANGE} < |\texttt{PAIRS}| \\ & \texttt{required}(\texttt{PAIRS}, [\texttt{x}, \texttt{y}]) \\ & \texttt{CTRX} \in [=, \neq, <, \geq, >, \leq] \\ & \texttt{CTRY} \in [=, \neq, <, \geq, >, \leq] \end{split}
```

Purpose

NCHANGE is the number of times that the following disjunction holds:  $(X_1 \text{ CTRX } X_2) \lor (Y_1 \text{ CTRY } Y_2)$ , where  $(X_1, Y_1)$  and  $(X_2, Y_2)$  correspond to consecutive pairs of variables of the collection PAIRS.

Example

$$\begin{pmatrix} x-3 & y-5, \\ x-3 & y-7, \\ x-3 & y-7, \\ x-3 & y-7, \\ x-3 & y-4, \\ x-3 & y-7, \\ x-1 & y-3, \\ x-1 & y-6, \\ x-1 & y-6, \\ x-3 & y-7 \end{pmatrix}, \neq, >$$

In the example we have the following 3 changes:

- One change between pairs x 3y 8 and x 3y 4 since  $3 \neq 3 \lor 8 > 4$ ,
- One change between pairs x 3y 7 and x 1y 3 since  $3 \neq 1 \lor 7 > 3$ ,
- One change between pairs x 1 y 6 and x 3 y 7 since  $1 \neq 3 \lor 6 > 7$ .

Consequently the change\_pair constraint holds since its first argument NCHANGE is assigned value 3.

**Typical** 

```
NCHANGE > 0
|PAIRS| > 1
range(PAIRS.x) > 1
range(PAIRS.y) > 1
```

20030820 795

**Symmetries** 

- One and the same constant can be added to the x attribute of all items of PAIRS.
- One and the same constant can be added to the y attribute of all items of PAIRS.

Arg. properties

Functional dependency: NCHANGE determined by PAIRS, CTRX and CTRY.

Usage

Here is a typical example where this constraint is useful. Assume we have to produce a set of cables. A given quality and a given cross-section that respectively correspond to the x and y attributes of the previous pairs of variables characterise each cable. The problem is to sequence the different cables in order to minimise the number of times two consecutive wire cables  $C_1$  and  $C_2$  verify the following property:  $C_1$  and  $C_2$  do not have the same quality or the cross section of  $C_1$  is greater than the cross section of  $C_2$ .

See also

generalisation: change\_vectors (pair of variables replaced by vector).
specialisation: change (pair of variables replaced by variable).

Keywords

characteristic of a constraint: pair, automaton, automaton with counters.

constraint arguments: pure functional dependency.

**constraint network structure:** sliding cyclic(2) constraint network(2).

constraint type: timetabling constraint.

final graph structure: acyclic, bipartite, no loop.

modelling: number of changes, functional dependency.

Arc input(s) PAIRS

Arc arity 2

Arc constraint(s) pairs1.x CTRX pairs2.x ∨ pairs1.y CTRY pairs2.y

Graph property(ies) NARC= NCHANGE

Graph class • ACYCLIC

• BIPARTITE

• NO\_LOOP

**Graph model** 

Same as change, except that each item has two attributes x and y.

Parts (A) and (B) of Figure 5.175 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NARC** graph property, the arcs of the final graph are stressed in bold.

20030820 797



Figure 5.175: Initial and final graph of the change\_pair constraint

Automaton

Figure 5.176 depicts the automaton associated with the change\_pair constraint. To each pair of consecutive pairs  $((\mathbf{X}_i,\mathbf{Y}_i),(\mathbf{X}_{i+1},\mathbf{Y}_{i+1}))$  of the collection PAIRS corresponds a 0-1 signature variable  $S_i$ . The following signature constraint links  $\mathbf{X}_i,\mathbf{Y}_i,\mathbf{X}_{i+1},\mathbf{Y}_{i+1}$  and  $S_i$ :  $(\mathbf{X}_i$  CTRX  $\mathbf{X}_{i+1}) \vee (\mathbf{Y}_i$  CTRY  $\mathbf{Y}_{i+1}) \Leftrightarrow S_i$ .



Figure 5.176: Automaton of the change\_pair constraint



Figure 5.177: Hypergraph of the reformulation corresponding to the automaton of the change\_pair constraint

20030820 799