MEDICAL INSURANCE COST PREDICTION

L.Harshitha 21B01A0590: CSE N.Sai Ramya Sri 21B01A05B4: CSE O.Pranathi Sudha 21B01A05C7: CSE P.Divya Tejaswini 21B01A05C9: CSE

SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN

17th February, 2024

Table Of Content

- Introduction
- Problem Statement
- Oataset Description
- Model Building
- **5** Evaluation Metrics
- Opployment
- Accuracy Results
- Result

Introduction

- The healthcare industry is undergoing various
 Technological adaptations. Amidst these changes, the
 ability to predict medical insurance costs has emerged as a
 critical task for insurance providers and healthcare
 organizations.
- The goal is to understand the factors that contribute to insurance and to build a machine learning model capable of predicting the Medical Insurance Cost.

Problem Statement

- The project focuses on predicting medical insurance using a dataset.
- The problem is framed as a regression task: predicting the insurance charges based on various features such as age, sex, BMI, number of children, smoking status, and region.

Dataset Description

- The Dataset includes information such as patient demographics, region etc.
- Key features include age, gender, BMI, region, smoker or not, number of children.
- The target variable is "Insurance Money," and the Machine Learning model can be trained on historical data to predict this outcome for new individuals.

Model Building

Three classification models have been implemented in the project:

- Linear Regression
- Decision Tree Regression
- Random Forest Regression

Evaluation Metrics

The performance of the models is assessed using common classification metrics:

- Accuracy
- Root Mean Square Error
- Mean Absolute Error

Deployment

ullet Framework : gradio

• Programming Language: Python

• Version Control : Git hub

Accuracy Results

Table 1: Models with Accuracy

Model	Accuracy
Linear Regression	0.727
RandmForest Regression	0.936
Decision Tree Regressor	0.916

• Selected Model : Decision Tree Regressor

Random Forest Regression Accuracy

Decision Tree Regressor Accuracy

Result

Thank You