CAPÍTULO 2. O SISTEMA DE NÚMEROS NATURAIS

SUMÁRIO

1 Axiomas de Peano

Intuitivamente, os números naturais são: 0, o que vem a seguir de 0 chamado 1, depois de 1 a seguir é 2, ... e assim por diante ...

Formalmente, o conjunto de números naturais é definido pelos axiomas de Peano.

1. Axiomas de Peano

Um conjunto \mathbb{N} , junto com uma função $s \colon \mathbb{N} \to \mathbb{N}$ (chamada sucessor) representa um sistema de números naturais se as seguintes propriedades (axiomas) são satisfeitas:

P1. Existe um único elemento, denotado por 0, que não é o sucessor de nenhum outro elemento, ou seja,

$$s(n) \neq 0$$
 para todo $n \in \mathbb{N}$,

e para todo $m \neq 0$ existe $n \in \mathbb{N}$ tal que s(n) = m.

- P2. s é injetiva, ou seja, se s(m) = s(n) então m = n. Em outras palavras, dois números que têm o mesmo sucessor são iguais.
- P3. (Princípio da indução) Se $X \subset \mathbb{N}$ é um subconjunto tal que:
 - \bullet 0 \in X,
 - \blacksquare se para todo $n \in X$ tem-se também que $s(n) \in X$ então $X = \mathbb{N}$.

Lema 1.1. Para todo $n \in \mathbb{N}$, $s(n) \neq n$, ou seja, todo número natural é diferente do seu sucessor.

Demonstração. Seja

$$X = \{ n \in \mathbb{N} : s(n) \neq n \}.$$

- $0 \in X$ já que 0 não é o sucessor de nenhum número, e em particular, $s(0) \neq 0$.
- Suponha que $n \in X$, ou seja, $s(n) \neq n$. Como S é injetiva, segue que

$$s(s(n)) \neq s(n),$$

portanto $s(n) \in X$.

Pelo princípio da indução, $X = \mathbb{N}$, ou seja, $s(n) \neq n$ para todo $n \in \mathbb{N}$.

Observação 1.1. O princípio da indução pode ser enunciado da seguinte maneira equivalente. Seja P(n) uma propriedade que se refere aos números naturais. Suponha que as seguintes afirmações sejam válidas:

- Base de indução (ou 1º passo)
 - P(0) é verdadeira
- Passo indutivo

Suponha que P(n) seja verdadeira (hipótese de indução).

A partir dessa hipótese, prova-se que P(s(n)) seja verdadeira.

Então pelo princípio da indução, P(n) é verdadeira para todo $n \in \mathbb{N}$.

De fato, se definimos

$$X = \{n \in \mathbb{N} : P(n) \text{ \'e verdadeira}\},$$

tem-se:

- \bullet $0 \in X$
- Se $n \in X$ então $s(n) \in X$.

Logo, pelo princípio da indução, $X = \mathbb{N}$, ou seja, P(n) é verdadeira para todo $n \in \mathbb{N}$.

Exemplo 1.2. Prove que se $x \neq 1$,

$$1 + x + \dots + x^n = \frac{x^{n+1} - 1}{x - 1} \quad \forall n \in \mathbb{N}.$$

Ou seja, prove que a propriedade/fórmula P(n):

$$\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1}$$

vale para todo $n \in \mathbb{N}$.

Demonstração. Usamos o princípio da indução.

■ 1° passo, ou seja, o caso n = 0.

A propriedade P(0) significa $1 = \frac{x-1}{x-1}$, que é claramente válida se $x \neq 1$.

■ Passo indutivo.

Suponha que P(n) valha, ou seja

$$\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1}.$$

Vamos provar que P(n+1) vale também. Tem-se

$$\sum_{k=0}^{n+1} x^k = \sum_{k=0}^n x^k + x^{n+1}$$

$$= \frac{x^{n+1} - 1}{x - 1} + x^{n+1} \quad \text{(pela hipótese indutiva)}$$

$$= \frac{x^{n+1} - 1}{x - 1} + \frac{x^{n+1}(x - 1)}{x - 1}$$

$$= \frac{x^{n+1} - 1 + x^{n+2} - x^{n+1}}{x - 1}$$

$$= \frac{x^{n+2} - 1}{x - 1},$$

provando que P(n+1) é válida.

Pelo princípio da indução, a fórmula P(n) vale para todo $n \in \mathbb{N}$.

Observação 1.2. Pelo princípio da indução, dada uma propriedade P(n) que se refere aos números naturais, para provar que ela seja verdadeira para todo $n \ge 7$ basta provar as seguintes afirmações:

- 1) Base de indução: P(7) é verdadeira.
- 2) Passo indutivo: Suponha que P(n) seja verdadeira para algum $n \geq 7$. Então P(s(n)) é verdadeira.

De fato, podemos definir o conjunto

$$X = \{m \in \mathbb{N} : P(7+m) \text{ \'e verdadeira}\}$$

Temos que:

- $\blacksquare \ 0 \in X$ já que P(7) é verdadeira.
- Se $m \in X$, então para n := 7 + m temos que P(n) = P(7 + m) é verdadeira. Então P(n+1) = P(7+m+1) é verdadeira, ou seja, $m+1 \in X$.

Logo, $X = \mathbb{N}$, ou seja, P(n) é verdadeira para todo $n \geq 7$.

Claramente 7 pode ser substituído por qualquer outro número.