Nvidia CUDA

|Astafurov Eugene

MIPT, MSU, fall 2023

Timeline

- Модель вычислений PTX Machine
- Nvidia GPU
- DL Performance Guide P.1

Часть 1: PTX Machine

Parallel Thread Machine

girafe

PTX

- PTX низкоуровневая виртуальная машина параллельного выполнения потоков
- PTX и ISA (Instruction Set Architecture) представляет собой GPU как устройство параллельных вычислений с данными

Масштабируемое вычисление

- параллельные вычисления с данными
- высокая арифметическая интенсивность
- соотношение арифметических операций к операциям с памятью

Со-процессор

- 1. Компиляция функции ядра в набор инструкций РТХ
- 2. Перевод в целевой набор инструкций GPU

Иерархия потоков

Иерархия потоков

Согласованные массивы потоков

- *"Ядро"* специальная функция, написанная для выполнения на GPU
- "CTA Cooperative Thread Array" массив поток, выполняющих ядро одновременно или параллельно
- "SIMT" Single instruction Multiple Threads
- *"Варп"* максимальное подмножество потоков из СТА, выполняющие одни и те же инструкции одновременно (выполняющиеся в режиме SIMT)

Кластер согласованных потоков

• *"Кластер"* - это группа СТА, которые выполняются одновременно или параллельно и могут синхронизироваться и взаимодействовать друг с другом через Shared Memory

Сетка кластеров

• Кластеры СТА, выполняющие одно и то же ядро, могут быть сгруппированы в сетку кластеров так, что общее количество потоков становится очень велико

Иерархия памяти

Набор мультипроцессоров SIMT

- Масштабируемая архитектура
- Блоки сетки распределяются по мультипроцессорам для параллельного выполнения
- "Конвейерное выполнение" новые блоки запускаются на освободившихся ресурсах
- Мультипроцессор содержит ядра Scalar Processor (CUDA ядра) и встроенную shared memory
- Нулевой оверхед шедулера
- Барьерная синхронизация в SP
- Мелкозернистый параллелизм

Модель выполнения SIMT

- На каждом этапе выбирается варп
- Выдается следующая инструкция активным потокам варпа

Различия между SIMT и SIMD

Независимое планирование потоков

- До Volta варпы использовали общий программный счетчик для всех потоков в варпе
- Начиная с Volta независимое планирование потоков независимо от варпа

On-Chip Shared memory

Основные типы

Basic Type	Fundamental Type Specifiers					
Signed integer	.s8 , .s16 , .s32 , .s64					
Unsigned integer	.u8 , .u16 , .u32 , .u64					
Floating-point	.f16 , .f16x2 , .f32 , .f64					
Bits (untyped)	.b8 , .b16 , .b32 , .b64 , .b128					
Predicate	.pred					

Основные типы

Формат данных bf16:

Этот формат данных представляет собой 16-битный формат с плавающей точкой с 8 битами для экспоненты и 7 битами для мантиссы.

Формат данных e4m3:

Этот формат данных представляет собой 8-битный формат с плавающей точкой с 4 битами для экспоненты и 3 битами для мантиссы. Кодирование e4m3 не поддерживает бесконечность

Формат данных e5m2:

Этот формат данных представляет собой 8-битный формат с плавающей точкой с 5 битами для экспоненты и 2 битами для мантиссы.

• Формат данных tf32:

Этот формат данных представляет собой специальный 32-битный формат с плавающей точкой, поддерживаемый инструкциями умножения и аккумуляции матриц, с тем же диапазоном, что и .f32, и уменьшенной точностью (>=10 бит).

Упакованные типы данных

С плавающей точкой:

- Тип .f16x2, содержащий два значения с плавающей точкой .f16.
- Тип .bf16x2, содержащий два значения альтернативного формата с плавающей точкой .bf16.
- Тип .e4m3x2, содержащий два значения альтернативного формата с плавающей точкой .e4m3.
- Тип .e5m2x2, содержащий два значения альтернативного формата с плавающей точкой .e5m2.
- Тип .f16x2 поддерживается как основной тип. Но типы .bf16x2, .e4m3x2 и .e5m2x2 не могут использоваться как фундаментальные типы они поддерживаются как типы для определенных инструкций. Например если мы кладем в переменную регистра тип .bf16x2, то она должна быть должна быть объявлена с типом .b32. Переменная регистра, содержащая данные .e4m3x2 или .e5m2x2, должна быть объявлена с типом .b16.

Целочисленные:

РТХ поддерживает два варианта типов упакованных целочисленных данных: .u16x2 и .s16x2. Упакованный тип данных состоит из двух значений .u16 или .s16. Переменная регистра, содержащая данные .u16x2 или .s16x2, должна быть объявлена с типом .b32. Типы упакованных целочисленных данных не могут использоваться как фундаментальные типы. Они поддерживаются только для определенных инструкций.

Тензоры

Свойства:

- Размерность
- Размеры в каждом измерении
- Типы отдельных эоементов
- Tenor stride

Инструкции РТХ для тензоров так же включают:

- Копирование данных
- Уменьшение данных

Тезоры

Размерность, размер и формат тензора:

- Битовый тип: .b32, .b64
- Целое число: .u8, .u16, .u32, .s32, .u64, .s64
- Числа с плавающей точкой и альтернативные: .f16, .bf16, .tf32, .f32, .f64

Часть 2: Nvidia GPU

girafe ai

Преимущества использования GPU

CUDA

CUDA

Гетерогенное исполнение

Performance Guidelines

- **Максимизация параллельного выполнения** для достижения максимальной утилизации;
- Оптимизация использования памяти для достижения максимальной пропускной способности памяти;
- Оптимизация использования инструкций для достижения максимальной пропускной способности инструкций;

Максимизация утилизации

- Полная утилизация достигается, когда планировщики варпов всегда имеют какую-то инструкцию для выдачи для какого-то варпа в каждом тактовом цикле в течение периода latency
- Если какой-либо входной операнд находится в памяти вне чипа, latency намного выше: обычно сотни тактовых циклов.

Максимизация throughput memory

- Передача данных между хостом и GPU
 - o pinned memory, page locked memory, mapped memory
- Доступы к памяти устройства
 - o global memory
- Практическое применение в pytorch

Максимизация пропускной способности инструкций

- Арифметические инструкции с низкой пропускной способностью
 - половинная точность
 - обнуление денормализованных чисел

Compute Capability	5.0, 5.2	5.3	6.0	6.1	6.2	7.x	8.0	8.6	8.9	9.0
16-bit floating-point add, multiply, multiply- add	N/A	256	128	2	256	128	256 ³		128	256
32-bit floating-point add, multiply, multiply- add	128		64	128	128 64			128		
64-bit floating-point add, multiply, multiply- add	4		32	4		32 ⁵	32	2		64
32-bit floating-point reciprocal, reciprocal square root, base-2 logarithm (_log2f), base 2 exponential (exp2f), sine (_sinf), cosine (_cosf)	32		16	32		16				
32-bit integer add, extended-precision add, subtract, extended-precision subtract	128		64	128	128 64					
32-bit integer multiply, multiply-add, extended-precision multiply-add	Multiple instruct.					64 ⁶				

Recap

- Мультипроцессор
 - базовая вычислительная единица GPU
- Streaming Multiprocessor (SM)
 - другое название мультипроцессора в контексте CUDA
 - SM содержит набор функциональных единиц, таких как SP, блоки памяти и прочее
- Scalar Processor (SP)
 - о Так же известен как CUDA Core / Tensor Core / RT Core
 - Базовая вычислительная единица внутри SM

Часть 3: Deep Learning Performance

girafe ai

Цели:

- Научиться определять где ботлнек: в памяти или в арифметике
- Как избавиться от ботлнека
- Как подогнать обучение и инференс под конкретную архитектуру
- И прочее...

Арифметическая интенсивность

Большие слои имеют больше арифметических вычислений по отношению к количеству транзакций доступов к памяти. Это соотношение называется арифметическая интенсивность.

Используем тензорные ядра с уважением

Ключевые параметры операции

- Кратны 4 при использовании TF32
- Кратные 8 при использовании FP16
- Кратны 16 при использовании INT8

(то есть, когда ключевые размеры операции выровнены по кратным 16 байтам в памя

Что является ключевыми параметрами?

- Для полносвязных слоев ключевыми параметрами являются размер батча и количество входов и выходов;
- для сверточных слоев количество входных и выходных каналов;
- для рекуррентных слоев размер батча и скрытая размерность.

Размер батча (в общем случае)

- кратен большим степеням двойки (как минимум 65)
- Использование кратности более 512 особого прироста не дает
- Делимость на степень двойки наиболее важна для малых парамтеров:
 - выбор 512 вместо 520 дает бОльший прирост чем выбор 5120 вместо 5218

Линейные слои

TLDR

- Размер батча и количество входов и выходов выбирать так, чтобы они делились нацело на
 - o 4 (TF32)
 - o 8 (FP16)
 - o 16 (INT8)

для эффективной работы на Tensor Cores. В случае A100 параметры должны делиться нацело на 32 (TF32) / 64 (FP16) / 128 (INT8);

• В случае если один или несколько гиперпараметров малы: размер батча должен делиться нацело как минимум на 64

Перформанс и СЕММ

Table 1. Mapping of inputs, outputs, and batch size to GEMM parameters M, N, K.

Computation Phase	М	N	К
Forward Propagation	Number of outputs	Batch size	Number of inputs
Activation Gradient	Number of inputs	Batch size	Number of outputs
Weight Gradient	Number of inputs	Number of outputs	Batch size

Перформанс и СЕММ

Шаг 1: Выравнивание размера словаря

Шаг 2: размер батча кратен 8

Шаг 3: Избегание Квантования Волн

Сверточные слои

TLDR

- Количество входных и выходных каналов, делящихся на 8 (для FP16) или 4 (для TF32), чтобы эффективно работать на Tensor Cores.
- Размер батча, количество входных и выходных каналов, делящиеся хотя бы на 64 и идеально на 256, чтобы уменьшить эффект квантования волн;
- Библиотеки NVIDIA предлагают набор различных алгоритмов свертки с различными характеристиками производительности, зависящими от параметров свертки. Когда размер входных данных, обрабатываемых сетью, одинаков в каждой итерации, автотюнинг является эффективным методом для обеспечения выбора идеального алгоритма для каждой свертки в сети. Для PyTorch включите автотюнинг, добавив torch.backends.cudnn.benchmark = True.
- Выбирайте расположение тензоров в памяти, чтобы избежать транспонирования входных и выходных данных. Существует две основные конвенции, каждая из которых названа в соответствии с порядком размерностей: NHWC и NCHW. Рекомендуется использовать формат NHWC, где это возможно.

Сверточные слои: тензорные ядра

Table 2. Translation of convolution parameters to corresponding GEMM parameters

Computation Phase	"M"	"N"	"K"
Forward Propagation	N*P*Q	К	C*R*S
Activation Gradient	N*H*W	С	K*R*S
Weight Gradient	C*R*S	K	N*P*Q

Сверточные слои: тензорные ядра

Размер батча, высота и ширина

Performance Background

	CUDA Cores				Tensor Cores					
NVIDIA Architecture	FP64	FP32	FP16	INT8	FP64	TF32	FP16	INT8	INT4	INT1
Volta	32	64	128	256			512			
Turing	2	64	128	256			512	1024	2048	8192
Ampere (A100)	32	64	256	256	64	512	1024	2048	4096	16384
Ampere, sparse						1024	2048	4096	8192	

Execution Model Background

Understanding Performance

Table 1. Examples of neural network operations with their arithmetic intensities. Limiters assume FP16 data and an NVIDIA V100 GPU.

	ITTIDIA TTOO OF O	
Operation	Arithmetic Intensity	Usually limited by
Linear layer (4096 outputs, 1024 inputs, batch size 512)	315 FLOPS/B	arithmetic
Linear layer (4096 outputs, 1024 inputs, batch size 1)	1 FLOPS/B	memory
Max pooling with 3x3 window and unit stride	2.25 FLOPS/B	memory
ReLU activation	0.25 FLOPS/B	memory
Layer normalization	< 10 FLOPS/B	memory

Спасибо за внимание!

Жду вопросов и обсуждений

