COMP20003 Workshop Week 9

Priority Queue Heaps & Binary Heaps Heap Sort

LAB:

Heap Sort

Important: Bring papers and pens to the last 3 workshops!

Priority Queue Queue VS.

ADT:

Queue: elements are dequeued in the FIFO order.

enqueue, dequeue can be easily implemented with O(1) time complexity using linked lists

'Can I borrow your baby?...'

Priority Queue: element with highest priority must be dequeued first!

How can we efficiently implement dequeue (and enqueue)?

Yet Another ADT: Priority Queue

PQ: queue, where each element is associated with a *priority* (or *weight*), and the elements will be *dequeued* following the order of priority.

'Can I borrow your baby?...'

Main operations:

- enqueue: enPQ(PQ, item) (supposing easy access to weight inside item), or enPQ(PQ, weight, item)
- dequeue: dePQ(PQ) removes & returns the highest-priority element of PQ. Normally named as deleteMax (PQ), if higher priority means bigger, or deleteMin (PQ), if higher priority means smaller
- changeWeight: change the weight of an item: changeWeight(PQ, item)
 or: changeWeight(PQ, newWeight, item)
- create: makePQ() make an empty PQ or create a PQ from a set of items
- check for being empty: isEmptyPQ(PQ)

possible concrete data structures for PQ

Concrete Data Structure	Time complexity of					
	construction a PQ of n elements	enPQ	dePQ	peek		
unsorted arrays or linked list						
sorted arrays or linked lists						
BST						
AVL						
hash table						

Example: priority= max

Unsorted array/list: 9 2 7 5 6

array/list: 2 3 5 6 7 9 Sorted

check your answers: possible concrete data structures for PQ

Concrete	Time complexity of				Notes	
Data Structure	make PQ of n elements	enPQ	dePQ	peek	Notes	
unsorted arrays or linked list	O(n)	O(1)	O(n)	O(n)		
sorted arrays or linked lists	O(n logn)	O(n)	O(1)	O(1)		
BST	the worst cases are the same					
AVL	O(nlogn)	O(logn)	O(logn)	O(logn)	space-inefficient (and poor cache locality) compared to Heap	
hash table (using the priority as a key when hashing)	Generally not efficient: O(n) time for dequeue because a hastructure. To find the highest-priorit dequeue), the entire hash table mu maximum value.					
Heap or Binary Heap	Θ (n)	O(logn)	O(logn)	O(1)	space efficient (great cache locality)	

Peer Activity: Hashing Priorities?

Can an efficient priority queue that prioritises lower distances be implemented on a hash table with these constraints? Why?

- a. Yes, it can.
- b. No, it cannot.

Consider the following constraints:

keys

- supposing *r* is small
- range is known $(0 \le \text{key} \le r)$
- hashed with the function hash(key) = key
- hash table

Peer Activity: Hashing Priorities?

Can an efficient priority queue that prioritises lower distances be implemented on a hash table with these constraints? Why?

- a. Yes, it can.
- b. No, it cannot.

Consider the following constraints:

- o keys
 - unbounded (N₀)
 - hashed with the function hash(key) = key % 101
- hash table

•••

Binary Heap – An Efficient Data Structure for PQ

Heap? Ternary Heap **Binary heap**: an efficient implementation for priority queue Depending on the priority, we can have min-heap or max-heap

Heap: requirements

which one is a binary heap?

Binary Heap is implemented as an array!

Binary Heap is implemented as an array:

→ efficient locating parent or children of the node at index i

Insert into a heap.

tree visualisation

in the implemented array

```
index 1 2 3 4 5 6 7 8 9 10 11

H= [T,P,R,N,H,O,A,E,I,G,]

H has 10 elements

Insert S
```

Just added H[11] = S parent of H[11] is H[11/2] ie. H[5]

index 5=11/2 11 H= [T,P,R,N,H,O,A,E,I,C,S]

in this case H[11] and its parent H[5] violate the heap order

→ need to repair using upheap

Insert a new elem into a heap using upheap. Complexity=?

upheap

when a child node violates the heap order: repeatedly swap the child with its parent (if exist) until having no violation

Complexity: O(?), $\theta()$

Need to promote H[11] up using upheap(h,i=11), which repeatedly swap node i with its parent.

```
2/2=1 2=5/2 5=11/2 11

[T,P,R,N,H,O,A,E,I,C,S]

S H

→ [T,P,R,N,S,O,A,E,I,C,H]

S P

→ [T,S,R,N,P,O,A,E,I,C,S]

[S

Complexity=?
```

deletemax: delete (and returns) the heaviest. Complexity=

Heap= [T,S,R,N,P,O,A,E,I,G,H]

To remove (the heaviest, the root):

- swap root T with the last leaf H
- decrease number of elements in heap
- new root will likely violate the heap order: repair that by doing downheap

deletemax: delete (and returns) the heaviest. Complexity=

downheap= repeatedly swap node with its
heaviest child until having no violation

Complexity: O(log n)

Notes: Here upheap(H, node) was used for insertion, and downheap(H, node) for deletion. The operations can be performed for any node of the heap.

For example, when changing the priority of a node in a heap.

How to efficiently build a heap with n elements?

Solution 1: insert each element into the (initially empty) heap, and do upheap after each insertion.

Complexity: O(?)

How to efficiently build a heap with n elements? heapify

Solution 2: populate the heap array with n elements in the input order, then turn the array to a heap (ie make it to satisfy the heap condition). Algorithm:

```
for (i=???; i>0; i--) {
  // for i from last parent node to first node
    downheap(h, i);
```

= **Θ(n)** (see lectures and/or ask Google for a proof)

The operation is known as Heapify/Makeheap/Bottom-Up Heap Construction

Related: Ex 9.3

Summary: Building a heap for n priority values

Heapsort= sorting using a heap

How? Complexity=?

Pre-questions:

- How to selection-sort by selecting the largest first?
- What is the complexity of selection sort?
- How can we have a faster select-the-largest?

Example: sort the keys: 20,3,60, 8,1,16

HeapSort summary

To sort an array A[1..n] in *increasing* order

- 1. Use heapify to turn A into a maxheap
- 2. while (heap A has more than 1 element):
- delete root by :
 - first swap it with the last element of the heap, then
 - downheap the new root

Questions:

- What's the best case of heapsort?
- Is heapsort stable?

Example: using Heapsort, sort the keys: 20,3,60,8,1,16

Heapsort= sorting using a heap

How? Complexity=? Example: sort the keys: 20,3,60, 8,1,16 Step 1: Turn the array to a maxheap using heapify 20 3 60 8 1 16 60 > only child 16 : subtree 60 is a heap 20 3 60 8 1 16 3 < larger child 8 : swap 20 8 60 3 1 16 3 has no child, is a heap 20 8 60 3 1 16 swap 20 with larger child 60 60 8 20 3 1 16 20 > only child 16 : 20 is a heap done complexity step 1: $\Theta(n)$

```
Step 2: loop: a) swap root with the last
             decrement heap length
            b) downheap(heap, position= 1)
60 8 20 3 1 16
                       n= 6
1a: swap(60,16)
16 8 20 3 1 60
                n= 5
1b: downheap(16): swap (16,20), done
20 8 16 3 1 60
                     n=5
2a: swap(20,1)
1 8 16 3 20 60 n= 4
2b: downheap(1): swap (1,16), done
16 8 1 3 20 60 n= 4
3ab: swap (16,3), downheap(3)= swap(3,8)
8 3 1 16 20 60 n= 3
4ab: swap (8,1), downheap(1)= swap(1,3)
3 1 8 16 20 60
                n= 2
5ab: swap (3,1), downheap(3)= no swap needed
1 3 8 16 20 60
                        n= 1, done
DONE after 5= n-1 step
 complexity step 2 = \text{overall} = O(n \log n)
```

HeapSort summary

To sort an array A[1..n] in *increasing* order

- 1. Use heapify to turn A into a maxheap
- 2. while (heap A has more than 1 element):
- delete root by :
 - first swap it with the last element of the heap, then
 - downheap(A,1): downheap the new root

```
Complexity=
= O(n logn)
```

Questions:

- What's the best case of heapsort? all elements equal, $\Theta(n)$
- Is heapsort stable? no (long-distance swap)

Heap & Heap Sort: Complexity Summary

Heap operations:

- upheap:
- downheap:
- insert/enPQ:
- deleteMax/deleteMin:

note: changeWeight an be done in O(logn) time

- heapify:
- heapsort:

Heap & Heap Sort: Complexity Summary

Heap operations:

- upheap(H, pos): O(logn)
- downheap(H, pos): O(logn)
- insert/enPQ(H, key): O(log n)
- deleteMax/deleteMin(H): O(logn)
- changeWeight(H, newkey, item) : $O(\log n)$
- heapify: $\Theta(n)$
- heapsort: O(n log n) best case: Θ (n)

Peer Activity: $m^{ t h}$ Smallest Number

Does the upper-bound complexities of these two algorithms differ?

- a. Yes, they do.
- b. No, they do not.

Assume that that $m \ll n$.

Consider an **unsorted algorithm** that:

- \circ gets the m^{th} smallest value
- from n unsorted values

Now consider a **sorted algorithm** that:

- sorts n values in ascending order
- indexes the mth value

Adaptive (aka. Natural) Merge Sort

Bottom-up merge sort improvement

- Monotonic increasing runs already sorted
- Insert monotonic runs into queue instead of singletons

2 4 5 1 7 3

Demonstration – Adaptive Merge Sort

Bottom-up merge sort improvement

• Best Case: Θ()

Worst Case: Θ()

If known k= number of monotonic runs: Θ()

Lab

W9.7: Implementing heapsort