

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- ✓ C.Maths
- Physics
- Chemistry

+ more

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre

தவணைப் பரீட்சை, மார்ச் - 2019 Term Examination, March - 2019

தரம் :- 13 (201	9)
-----------------	----

இரசாயனவியல் I

இரண்டு மணித்தியாலம்

பகுதி – I

01. அணுவொன்றில் காணப்படும் யாதாயினும் குறித்த ஒபிற்றல் ஒன்றில் இரண்டிலும் மேற்பட்ட இலத்திரன்கள் காணப்பட முடியாது என்ற கருத்துடன் தொடர்புடைய விஞ்ஞானி

1) ஹண்ட் (Hund)

2) றொபேர்ட் மிலிக்கன்

3) பௌலி

4) Aufbau

5) நீல்போர்

அயன்களில் எதில் மைய அணுவுக்குரிய கலப்பு நிலை ஏனையவற்றிலிருந்து 02. பின்வரும் வேறுபடுகிறது?

1) CO_3^{2-}

2) NO_3^- 3) IO_3^-

5) NO_2^-

03. கீழே தரப்பட்ட சேர்வையின் IUPAC பெயர் யாது?

CHO
$$CH_3CH_2 - C - CH_2COOH$$

$$CH = CH - CONH_2$$

1) 6 - amino - 3 - formyl - 3 - ethylhex - 4 - enoic acid

2) 6 - carbamoyl - 3 - ethyl - 3 - formyl - 4 - hexenoic acid

3) 6 - carbamoyl - 3 - ethyl - 3 - oxo - 4 - hexenoic acid

4) 6 - ethyl - 4 - formyl - 6 - carboxy - 2 - hexenamide

5) 4 - ethyl - 4 - oxo - 5 - carboxy - 2 - hexenamide

மூலகமொன்றின் இலத்திரன்களின் சக்திச்சொட்டெணகள் 04. நான்காம் ஆவர்த்தன இரண்டு (4,0,0,+1/2) (4,0,0,-1/2) எனின் இம்மூலகமாக அமையமுடியாதது

1. Ca

2. Sc Br

Fe 4.

5. Cr

05. $\lambda_1 nm$ இலிருந்து $\lambda_2 nm$ ($\lambda_1 < \lambda_2$) வரையுள்ள அலை நீளவீச்சில் கட்புல ஒத்த ஒரு போட்டோனின் சக்தி வீச்சுக்கான சரியான கோவை பின்வருவனவற்றுள் எது?

(h = L | a

1) $hc\left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right) \times 10^9 \text{ J}$

2) $hc\left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1}\right) \times 10^9 \,\mathrm{J}$ 3) $hc\left(\frac{\lambda_2 - \lambda_1}{\lambda_1 \lambda_2}\right) \times 10^{-19} \,\mathrm{J}$

4) $hc\left(\frac{\lambda_1 - \lambda_2}{\lambda_1 \lambda_2}\right) \times 10^{-19} \text{ J}$

5) $hc\left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right) \times 10^{-9} \,\text{J}$

06. குறித்த வெப்பநிலையில் AgCl, AgBr ஆகிய இரண்டையும் நீரில் கரைத்து நிரம்பற் கரைசலொன்று தயாரிக்கப்பட்டது. இக்கரைசல் தொடர்பான சரியான கூற்று / கூற்றுக்கள் எது / எவை?

(தரப்பட்ட வெப்ப நிலையில் $K_{sp(AgCl)}=K_1$, $K_{sp(AgBr)}=K_2$)

- a) $[Ag^{+}_{(ag)}] = [Cl^{-}_{(ag)}] + [Br^{-}_{(ag)}]$
- b) $[Cl_{(aa)}^-][Br_{(aa)}^-] = [Ag^+]^2$
- c) $[Ag_{(qq)}^+] = \sqrt{K_1 + K_2}$
- d) $\frac{K_1}{K_2} = \frac{\left[Cl_{(aq)}^-\right]}{\left[Br_{(aq)}^-\right]}$
- 1) a, b மட்டும்
- 2) b, d மட்டும்
- 3) a, c, d மட்டும்

- 4) b, c, d மட்டும்
- 5) a, b, c, d நான்கும்
- 07. பின்வரும் கூற்றுக்களில் பொய்யானது எது?
 - கூட்டம் II இன் இருகாபனேற்றுக்களின் நீர்க்கரைசல்கள் சூடாக்கப்படுகையில் திண்மமாக மாறாது பிரிகைக்குள்ளாகின்றன.
 - 2) கூட்டம் II இன் ஐதரொட்சைட்டுக்களில் சில நீரில் கரைவதில்லை
 - 3) Si, S என்பவற்றின் ஐதரைட்டுக்கள் மென்னமில இயல்பைக் காட்டுகின்றன.
 - 4) எல்லா கூட்டம் I மூலகங்களின் புளோரைட்டுக்களும் நீரில் கரையும்.
 - 5) S குழு மூலக ஐதரொட்சைட்டுக்களில் சில உயர் வெப்பநிலையில் வெப்பப்பிரிகைக் குள்ளாகக்கூடும்.
- $08.~25^{0}$ C இல் $0.2moldm^{-3}$ செறிவுடைய மென்னமிலம் ${
 m HA}$ இன் $50{
 m cm}^{3}$ உடன் $2moldm^{-3}$ செறிவுடைய மென்னமிலம் HB இன் $50\mathrm{cm}^3$ கலக்கப்படுமாயின் விளைவுக்கரைசலில் H^+ அயன் செறிவு $moldm^{-3}$ இல் யாதாகும்?

 $(25^{\circ}C$ இல் HA, HB இன் அயனாக்கமாறிலிகள் முறையே $1\times 10^{-5} moldm^{-3}, 1\times 10^{-6} moldm^{-3}$ எனத் தரப்பட்டுள்ளன)

- 1) 1×10^{-3}
- 2) 1.41×10^{-3}
- 3) 2×10^{-3} 4) 1.5×10^{-3}
- 5) 1.2×10^{-3}

09. கீழே தரப்பட்டுள்ள தாக்கத்திட்டத்தைக் கருதுக.

$$\begin{array}{c}
OH \\
CH - CH_2 - O
\end{array}
\qquad
\begin{array}{c}
PCC \\
A \xrightarrow{Br_2/FeBr_3}
\end{array}$$

மேலுள்ள தாக்க ஒழுங்கில் B இற்கு கூடியளவு சாத்தியமாகக்கூடிய கட்டமைப்பு

1)
$$\bigcirc C - CH_2 - \bigcirc B$$

2) Br
$$C - CH_2$$
 $C - CH_2$
 $C - CH_2$

4)
$$\bigcirc C - CH_2 - \bigcirc CH_2$$

- $10. \ 0.01 moldm^{-3} \ K_2 C r_2 O_{7(aq)}$ இன் $25 {
 m cm}^3$ உடன் அமில ஊடகத்தில் முற்றாகத் தாக்கமுறுவதற்கு தேவையான ${
 m FeI_2}$ கரைசலொன்றின் கனவளவு $25{
 m cm^3}$ எனின் ${
 m FeI_2}$ கரைசலின் செறிவு $moldm^{-3}$ இல்
 - 1) 0.02
- 2) 0.01
- 3) 0.05
- 4) 0.025
- *5*) 0.5
- 11. வாயு X ஆனது வெப்பநிலை T இல் $X_{(g)} o Y_{(g)} + 2Z_{(g)}$ எனும் முதன்மைத் தாக்கத்திற்கு ஏற்பக் கூட்டப்பிரிகையடைகிறது. வாயு X இன் $1 \mathrm{mol}$ ஒரு விறைத்த கொள்கலனில் எடுக்கப்பட்டு வெப்பநிலை T இல் மேலுள்ள சமன்பாட்டின் படி கூட்டப்பிரிகையடைய விடப்பட்டது. கொள்கலனினுள் தொடக்க அமுக்கம் P_o உம் நேரம் ${f t}$ இல் அமுக்கம் ${f P}$ உம் ஆயின் பின்வரும் கோவைகளில் எது நேரம் t இல் தாக்கவீதத்துக்கு நேர்விகிதசமனாகும்?

- (1) $3P_0 P$ (2) $2P_0 P$ (3) $P P_0$ (4) $P_0 3P$ (5) $3P_0 2P$
- 12. NH_4NO_3 ஐயும் $CaCO_3$ ஐயும் மட்டும் கொண்ட ஒரு திண்மக் கலவையில் NH_4NO_3 இன் திணிவுக்கேற்ப CaCO₃ மூல்ப்பின்னம் 5/6 ஆகும். கலவையில் இன் சதவீதம். (Ca = 40, N = 14, H = 1, 0 = 16))
 - (1) 20%
- (2) 40% (3) 60%
- (4) 67%
- (5) 80%
- 13. பின்வரும் சேதன இரசாயனப் பொறிமுறைகளில் நடைபெறச் சாத்தியமானது எது?
 - $CH_{3} CH_{3} C$
 - 2) $CH_3 CH_2 \stackrel{1}{\downarrow} Cl \longrightarrow CH_3 CH_2^+ + \stackrel{-}{\cdot} Cl$

 - $H C \longrightarrow C CH_3 \longrightarrow CH_2 = CH CH_3 + CH_3 OH +:^- Br$

- $14. \ I. \ NH_4Cl$ இன் முன்னிலையில் NH_4OH உடன் பச்சை நிறமுடைய வீழ்படிவொன்றைத் தரும் II. $Na_2 CO_3$ கரைசலுடன் CO_2 வாயுவைத் தரும்.
 - III. மிகை $NaOH \ / \ H_2O_2$ உடன் மஞ்சள் நிறக் கரைசலைத்தரும் கற்றயனை இனம் காண்க
 - (1) Ni^{2+}
- (2) Fe^{3+}
- $(3) \text{ Fe}^{2+}$
- $(4) \text{ Cr}^{3+}$
- $(5) Cu^{2+}$
- $15. \ P, Q, R$ ஆகியன மூன்று 3d தாண்டல் உலோகங்களாகும். இவை ஒவ்வொன்றும் உலர் $Cl_2(g)$ உடன் தாக்கமடைந்து தனித்தனியே மஞ்சள் நிறமான நீரற்ற குளோரைட் திண்மத்தை கொடுத்தன. இக்குளோரைட் சேர்வைகளுக்கு நீர் சேர்த்த போது முறையே மஞ்சள், பச்சை, நீல நிறக் கரைசல்கள் பெறப்பட்டன. எனின் P, Q, R முறையே
 - 1. Fe, Cr, Cu

- 2. Ni, Mn, Cr
- Ni, Cu, Fe

4. Mn, Ni, Cu

- 5. Fe, Ni, Cu
- 16. திரவம் A இன் நியம ஆவியாதலின் எந்தல்பி, எந்திரப்பி பெறுமானங்கள் முறையே $30~{
 m kJmol^{-1}}$, $75 \, \mathrm{J \, mol^{-1} K^{-1}}$ ஆகும். $1 \mathrm{atm}$ வளிமண்டல அமுக்கத்தில் A இன் கொதிநிலை
 - 1) 400°C
- 2) 627°C
- 3) 127°C
- 4) 673°C
- *5*) 173°*C*
- 17. இரு மின்வாய்களின் நியமத் தாழ்த்தல் அழுத்தங்கள் வருமாறு

$$E_{Al_{(aa,1M)/Al(s)}}^{\theta} = -1.66V$$

$$E_{Al_{(aq, 1M)/Al(s)}}^{\theta} = -1.66V$$
 , $E_{cu_{(aq, 1M)/Cu(s)}}^{\theta} = 0.34V$

மேலுள்ள இரு மின்வாய்களையும் பயன்படுத்தி உப்புப்பாலத்தின் உதவியுடன் தயாரிக்கப்படும் மின்னிரசாயனக் கலம் பற்றிய பின்வரும் கூற்றுக்களில் சரியானது எது?

- 1) $Al_{(aq)}^{3+}$ இன் செறிவு அதிகரிக்கப்படின் மின்னியக்க விசை கூடும்
- 2) மேற்படி கலத்தின் கலத்தாக்கம் $Al_{(s)}+\mathcal{C}u_{(aa)}^{2+} \longrightarrow Al_{(aa)}^{3+}+\mathcal{C}u_{(s)}$
- 3) கலத்தின் மின்னியக்க விசை அதிகரிக்கப்படுவதற்கு வெப்பநிலை குறைக்கப்படல் வேண்டும்.
- ஓர் அரைக்கலத்திலிருந்து அயன்கள் மற்றைய அரைக்கலத்திற்கு உப்புப் பாலத்தினுடாக நகர்கின்றன.
- 5) கலம் தொழிற்படுகையில் மி. இ. வி 2.00V இல் மாறாதிருக்கும்.
- 18. தலிக்கமிலம் $C_6H_4(COOH)_2$ ஆனது ஓர் இரு மூல மென்னமிலமாகும். $25^{\circ}C$ இல் இதன் முதலாம், இரண்டாம் அயனாக்கமாறிலிகள் முறையே $K_1=6.4 \times 10^{-2} moldm^{-3}$, $K_2=6.5 \times 10^{-4} moldm^{-3}$ எனத் தரப்பட்டுள்ளது.

 $C_6H_4(COOH)_{2(qq)} + 2H_2O_{(l)} \rightleftharpoons C_6H_4(COO)_{2(qq)}^{2-} + 2H_3O_{(qq)}^{+}$ எனும் தாக்கத்தின் சமநிலை மாறிலி

- 1) $6.4 \times 10^{-2} mol^2 dm^{-6}$
- 2) $4.2 \times 10^{-5} mol^2 dm^{-6}$
- 3) $5.3 \times 10^{-4} mol^2 dm^{-6}$
- 4) $1 \times 10^{-2} mol^2 dm^{-6}$
- 5) $9.8 \times 10^{-3} mol^2 dm^{-6}$

19. பின்வரும் தாக்கத்தைக் கருதுக.
$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} \qquad \Delta H = (-)$
ஒரு விறைத்த, அடைத்த கொள்கலத்தில் $\mathit{N}_{2(g)}$, $\mathit{H}_{2(g)}$ ஆகியவற்றின் குறித்த அளவுகள்
கலக்கப்பட்டு பொருத்தமான நிபந்தனையில் மேற்குறித்த சமநிலையை அடையவிடப்பட்டன.
சமநிலையில் உள்ள $\mathit{NH}_{3(g)}$ இன் மூல்களின் எண்ணிக்கையை அதிகரிப்பதற்கு காரணங்களாக
பின்வரும் கூற்றுக்கள் குறிப்பிடப்பட்டுள்ளன.
${ m A}$ – ஒரு மாறாக் கனவளவில் வெப்பநிலையை அதிகரிக்கச் செய்தல்.
B – ஒரு மாறா வெப்பநிலையில் கொள்கலத்தின் கனவளவை குறைத்தல்.
C – மாறா வெப்பநிலையிலும் கனவளவிலும் கொள்கலத்தில் He வாயுவின் குறித்த அளவைச்
சேர்த்தல்.
மேற்படி கூற்றுக்களில் சரியானது / சரியானவை
1) A மாத்திரம் 2) B மாத்திரம் 3) B, C மாத்திரம்
4) A, C மாத்திரம் 5) A, B, C யாவும்
20. ஓர் ஐதரோகாபன் X அமோனியா சேர் AgNO ₃ உடன் வெண் வீழ்படிவைக் கொடுப்பதுடன் தளமுனைவாக்கிய ஒளியின் தளத்தையும் திருப்பக்கூடியது. இவ்வைதரோகாபன் இழிவு எண்ணிக்கையான C, H ஆகிய அணுக்க <mark>ளைக்</mark> கொண்டிருக்குமெனின் அதற்குச் சாத்தியமான மூலக்கூற்றுச் சூத்திரம் 1) C_6H_{10} 2) C_6H_8 3) C_6H_6 4) C_7H_6 5) C_8H_6
21. Nα,Mg,Al,S,Cl ஆகிய மூலகங்களின் 2ஆம் அயனாக்கற் சக்தி அதிகரிக்கும் ஒழுங்கு வரிசை யாது?
1) $Mg < Al < Cl < S < Na$ 2) $Na < Al < Mg < S < Cl$
3) $Al < Mg < Na < S < Cl$ 4) $S < Mg < Cl < Al < Na$
5) $S < Mg < Na < Al < Cl$
22. அசேதனச் சேர்வை A ஆனது HCl உடன் வாயு Bயும் கரைசல் C ஐயும் விளைவாகக் கொடுத்தது.
C இலுள்ள சேர்வை சுவாலைச் சோதனையில் சிவப்பு நிறத்தைக் கொடுக்கக்கூடியது. கரைசல் C
இற்கு H_2SO_4 கரைசல் இடுகையில் வெண்ணிற வீழ்படிவு தோன்றியது. வாயு B ஆனது

அமிலமாக்கிய $K_2 C r_2 O_7$ கரைசலை பச்சை நிறமாக மாற்றிய போதிலும் ${\it CuSO}_4$ உடன் வீழ்படிவைத் தரவில்லை. A ஆக இருக்கக்கூடியது.

3) K_2SO_3 4) $Li_2S_2O_3$ 5) $SrSO_3$ 2) *SrS* 1) Li_2S

23.மூடிய தொகுதியொன்றில் சமதிணிவுடைய $\mathcal{C}H_{4(g)}$, $H_{2(g)}$ என்பன $25^{\circ}\mathcal{C}$ வெப்பநிலையில் காணப்படுகின்றன. மேற்படி இருவாயுக்களும் இலட்சிய வாயுக்களாக நடந்து கொள்ளும் எனின் தொகுதியில் $H_{2(g)}$ இன் அமுக்கத்தின் பின்னமானது.

4) $\frac{16}{17}$ 1) $\frac{1}{2}$ 5) 24. $CH_3CH_2 - C \equiv CH$ A XB $CH_3CH_2 - C = OH$ $CH_3CH_2 - C = OH$ CH_2CH_3

மேலுள்ள தாக்கத்திட்டத்தில் $A,B\;X$ என்பவற்றுக்கு பொருத்தமானது

- 1) $Hg^{2+}/dilH_2SO_4$, (i) CH_3CH_2MgBr (ii) H_2O , $CH_3CH_2-C-CH_3$
- 2) $Pd/H_2/BaSO_4$, Quinolene, CH_3CH_2MgBr , $CH_3CH_2CH = CH_2$
- 3) $Hg^{2+}/\ dilH_2SO_4$,KCN/ $dilH_2SO_4$,CH $_3$ CH $_2$ C CH_3
- 4) Na/ திரவ NH_3 , $CH_3 C$ H CH_3 $CH_2 C \equiv C^-Na^+$
- 5) மேலுள்ள எதுவுமன்று
- 25. அறைவெப்பநிலையில் தூய A இன் ஆவியமுக்கமானது தூய B இன் ஆவியமுக்கத்தை விட இரு மடங்கானது A, B என்பவற்றை முறையே 3:2 எனும் மூலர் விகிதத்தில் கொண்ட ஒரு துவித இலட்சியக் கரைசலொன்று அதன் ஆவியுடன் சமநிலையில் உள்ள போது ஆவியில் A இன் மூலப்பின்னம் யாது?
 - 1) 0.25
- 2) 0.30
- 3) 0.50
- 4) 0.75
- 5) 0.05
- 26. $25^{0}C$ இல் $2.20moldm^{-3}$ $CH_{3}COOH$ இன் $250cm^{3}$ ஐயும் $2.00moldm^{-3}$ NaOH இன் $250cm^{3}$ ஐயும் கலந்து தயாரிக்கப்பட்ட தாங்கற் கரைசலின் pH யாதாகும்? ($25^{0}C$ இல் $CH_{3}COOH$ இன் $K_{a}=1\times10^{-5}\ moldm^{-3}$)
 - 1) 4
- 2) 5
- 3)
- 4) 7
- 5) 8
- 27. $C_2H_5NH_2$ ஐப் பற்றிய பின்வரும் கூற்றுக்களில் பொய்யானது எது?
 - $1) \ CH_3COCl$ உடன் தாக்கம் புரிந்து ஓர் ஏமைட்டை உருவாக்கும்
 - 2) NaOH உடன் தாக்கமடைந்து NH_3 ஐக் கொடுக்க மாட்டாது.
 - 3) நைத்திரஸ் அமிலத்துடன் தாக்கமடைந்து N_2 வாயுவை விளைவாகத் தரும்.
 - 4) CH₃CONH₂ இலும் பார்க்க மூலத்தன்மை கூடியது.
 - 5) அல்டிகைட்டுக்கள் மற்றும் கீற்றோன்களுடன் கருநாட்டப் பிரதியீட்டுத் தாக்கத்தில் ஈடுபடும்.
- 28. பின்வருவனவற்றுள் எது நீர்க்கரைசலில் அமில இயல்பினை வெளிப்படுத்தாது?
 - 1) $BiCl_3$
- 2) $AlCl_3$

3) SiH_4

- 4) HCOONa
- 5) NH_4Br

- 29. துணையிடை ஈர்ப்புக்கள் சம்பந்தமான பின்வரும் கூற்றுக்களில் சரியானது எது?
 - 1) அயன் தூண்டிய இரு முனைவுக் கவர்ச்சி காரணமாக I_2 சிறிதளவு நீரில் கரையும்.
 - 2) சில சந்தர்ப்பங்களில் இரு முனைவுக் கவர்ச்சியை விட லண்டன் விசைகள் வலிமை கூடியவையாக காணப்படலாம்.
 - 3) அயன் சேர்வைகளின் மூலக்கூற்றுத்திணிவு அதிகரிக்கையில் அவ்வயன்களின் வந்தர்வாலிசுக் கவர்ச்சி அதிகரிக்கும்.
 - 4) நீருடன் ஐதரசன் பிணைப்பைத் தோற்றுவிப்பதன் காரணமாக NaCl நீரில் கரைகின்றது.
 - 5) அயன் இருமுனைவுக் கவர்ச்சி பொதுவாக இருமுனைவு இரு முனைவுக் கவர்ச்சியை விட வலிமை குறைந்தது.
- $30.\,\,3d\,$ தாண்டல் மூலகங்கள் பற்றிய பின்வரும் கூற்றக்களில் எது தவறானது?
 - 1) இவற்றில் Mn, Cu என்பன ஒப்பிட்டளவில் உருகுநிலை குறைந்தவை.
 - 2) இவை உருவாக்கும் ஒட்சி அன்னயன்கள் பொதுவாக நிறமுடையவை.
 - 3) 4S தொகுப்பு மூலகங்களை விட இம் மூலகங்களின் அணு ஆரை உயர்வானது.
 - 4) Mn, Fe ஆகிய மூலகங்களின் கற்றயன்கள் NH_3 உடன் அமைன் சிக்கல்களை உருவாக்குவதில்லை.
 - 5) இவற்றில் உயர் மின்கடத்துதிறனைக் கொண்டது *Cu* ஆகும்.
- 31 தொடக்கம் 40 வரையுள்ள வினாக்கள் ஒவ்வொன்றிற்கும் (a), (b), (c), (d) எனும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்பட்டவை திருத்தமானவை. திருத்தமான தெரிவை / தெரிவுகளை தேர்நதெடுக.க

1	2	3	4	5
(a),(b)	(b) (c)	(c) (d)	(d) (a)	வேறு
ஆகியவை	ஆகியவை	ஆகியவை	ஆகியவை	தெரிவுகளின்
மாத்திரம்	மாத்திரம்	மாத்திரம்	மாத்திரம்	எண்ணோ
திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	சேர்மானவைகளே
				ா திருத்தமானவை

- 31. ஓர் இரசாயனத் தாக்கத்தின் இயக்கப்பண்பியல் பற்றிய பின்வரும் கூற்றுக்களில் சரியானது சரியானவை எது / எவை?
 - a) தாக்கவீதத்தின் அலகை மெதுவான படியே தீர்மானிக்கும்.
 - b) தாக்கிகளின் செறிவில் ஏற்படும் அதிகரிப்பு ஒரு தாக்கத்தின் ஒட்டுமொத்தமான வரிசையைப் பாதிப்பதில்லை.
 - c) தாக்கவீத மாறிலியின் அலகு ஒட்டுமொத்த தாக்கத்தின் மூலக்கூற்றுத்திறனால் தீர்மானிக்கப்படுகின்றது.
 - d) பூச்சிய வரிசைத் தாக்கம் ஒருபோதும் தனிப்படித் தாக்கமாக இருக்க முடியாது.

32. P, Q, R என்பன உலோகங்களாகும். இவற்றைக் கொண்ட சில மின்வாய்களும் நியம மின்வாய் அழுத்தப் பெறுமதிகளும் தரப்பட்டுள்ளன.

$$P^{2+}_{(aq)}/P_{(s)}$$

$$E^{\theta} = -0.41V$$

$$Q_{(aq)}^{2+}/Q_{(s)}$$

$$E^{\theta} = -0.76V$$

$$R_{(aa)}^{2+} / R_{(s)}$$

$$E^{\theta} = -0.13V$$

மேலுள்ள தரவுகளின் அடிப்படையில் மூன்று வேறுபட்ட நியமக் கலங்கள் தயாரிக்கப்படுகின்றன. இக்கலங்கள் பற்றிய பின்வரும் கூற்றுக்களில் சரியானது / சரியானவை எது / எவை?

- a) R உலோகம் பயன்படுத்தும் மின்வாய் எப்போதும் கதோட்டாகவே தொழிற்படும்.
- b) Q உலோகம் பயன்படுத்தும் மின்வாய் எப்போதும் அனோட்டாகவே தொழிற்படும்..
- c) $R_{(s)}$ / $R_{(aq,1moldm^{-3})}^{2+} /\!\!/ Q_{(aq,1moldm^{-3})}^{2+} / Q(s)$ கலம் இவற்றுள் கூடிய நியம மின்னியக்க விசையுடையதாகும்.
- d) Q^{2+} நீர்க்கரைசலினுள் P(s) ஐ இட்டு Q ஐ இடம்பெயர்க்கலாம்.
- 33. மீளும் தாக்க சமநிலைத் தொகுதியொன்றின் சமநிலை மாறிலி k தொடர்பான பின்வரும் கூற்றுக்களில் தவறானது/ தவறானவை எது / எவை?
 - a) புறவெப்பச் சமசிலையில் வெப்பநிலை அதிகரிப்புடன் சமநிலை மாறிலியின் பெறுமானம் குறையும்.
 - b) k இன் பெறுமானமானது தாக்கிக<mark>ளின் செறிவு, தொகுதியின் அ</mark>முக்கம் போன்றவற்றுடன் மாற்றமடையும்.
 - வீதமாறிலிக்கும் பிற்தாக்கத்தின் வீத மாறிலிக்குமிடையிலான விகிதம் c) முற்தாக்கத்தின் எச்சமநிலைத் தொகுதிக்கும் k இன் பெறுமானத்துக்குச் சமனானது.
 - d) அகவெப்பச் சமநிலையில் வெப்பநிலைக் குறைவுடன் k இன் பெறுமானம் குறைவடையும்.
- 34. A, B ஆகிய தூய திரவங்கள் இலட்சியக் கரைசலை ஆக்கக்கூடியன. A, B இன் கலவையின் அமைப்பு எதிர் ஆவியமுக்க வரைபு கீழ்த்தரப்பட்டுள்ளது.

 ${\sf C}$ $P^0_A - A_{(l)}$ இன் தூய நிலை ஆவியமுக்கல்

 $P_B^O-B_{(l)}$ இன் தூய நிலை ஆவியமுக்கல்

இவ் அவத்தை வரைபடம் தொடர்பான சரியான கூற்று / கூற்றுக்கள் எது / எவை?

- a) வரைபில் ${
 m E}$ திரவ அவத்தை, ${
 m G}$ ஆவி அவத்தை ${
 m F}$ திரவம் $\;
 ightharpoons$ ஆவி சமநிலை, P_A^0 , P_B^0 முறையே C,D ஆல் சுட்டிக் காட்டப்பட்டுள்ளது.
- b) வரைபில் ${
 m E}$ ஆவி அவத்தை, ${
 m G}$ திரவ அவத்தை ${
 m F}$ திரவம் ightharpoonup ஆவி சமநிலை, P_A^0,P_B^0 முறையே C,D ஆல் சுட்டிக் காட்டப்பட்டுள்ளது.
- c) திரவம் A இனது கொதிநிலை B இனதிலும் உயர்வு
- d) கலவையின் மொத்த அமுக்கம் P ஆனது கலவையின் வெவ்வேறு அமைப்புக்களுடன் $P_A^0 < P < P_B^0$ ஆக மாறும்.

- 35. சில நியம வெப்பவுள்ளுறை மாற்றங்கள் தொடர்பிலான பின்வரும் கூற்றுக்களில் தவறானது தவறானவை எது / எவை?
 - a) ஒரு மூலகத்தின் அனைத்துப் பிறதிருப்பங்களினதும் நியம வெப்பவுள்ளுறை பூச்சியமாகும்.
 - b) எந்த ஒரு மூலகத்தினதும் இரண்டாம் இலத்திரன் நாட்டம் அகவெப்பத்திற்குரியதாகும்.
 - c) அனைத்து ஈரணு மூலக்கூறுகளினதும் அணுவாதல் வெப்பவுள்ளுறை அவற்றின் பிணைப்புப் பிரிகை வெப்பவுள்ளுறையின் அரைப்பங்காகும்.
 - d) பதங்கமாதல், அணுவாதல், பிணைப்புப் பிரிகை மற்றும் சாலக வெப்பவுள்ளுறைகள் எப்போதும் நேர்க்கணியங்களாகும்.
- $36.N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_3(g)$ எனும் சமநிலையில் K_C பெறுமானம் 500K இல் $1.7 \times 10^2 mol^{-2} dm^6$ $20 dm^3$ கனவளவுடைய மூடிய விறைத்த குடுவையொன்றில் $1.5 mol\ N_{2(g)}$, $2.0\ mol\ H_{2(g)}$, $8.0\ mol\ NH_{3(g)}$ என்பன இடப்பட்டு 500K வெப்பநிலை நிலை நாட்டப்பட்டது. மேற்படி தொகுதி தொடர்பான கீழுள்ள கூற்றுக்களில் உண்மையானது / உண்மையானவை எது / எவை?
 - a) தாக்க ஈவு $Q_C < K_C$ ஆவதுடன் தேறிய தாக்கம் $NH_{3(g)}$ அதிகரிக்கும் வகையில் முற்திசையில் இடம்பெறும்.
 - b) தாக்க ஈவு $Q_C < K_C$ ஆவதுடன் தேறிய தாக்கம் $N_{2(g)}, H_{2(g)}$ என்பன அதிகரிக்கும் வகையில் பிற்திசையில் இடம்பெறும்.
 - c) தாக்க ஈவு $Q_{\mathcal{C}} < K_{\mathcal{C}}$ ஆவதுடன் தேறிய <mark>தாக்</mark>கம் $NH_{3(g)}$ இன் அளவு அதிகரிக்கும் வகையில் ω முற்திசையில் இடம்பெறும்.
 - d) தொகுதி சமநிலையில் காணப்படுவதால<mark>்</mark> எத்திசையிலும் தேறிய தாக்கம் நிகழமாட்டாது.

37.

 CH_3CH_2OH

E

மேலே தரப்பட்ட A,B ஆகிய சேர்வைகளைப் பற்றிய பின்வரும் கூற்றுக்களில் சரியானது சரியானவை எது / எவை?

- a) A இனது அமில இயல்பை விட B அமில இயல்பு கூடியது
- b) கருநாட்டப் பிரதியீட்டுத் தாக்கத்தின் வீதம் B ஐ விட A இல் உயர்வாகும்.
- c) A இலுள்ள C-O பிணைப்பு பகுதி இரட்டைப் பிணைப்புக்குரிய இயல்பையும் B இலுள்ள C-O பிணைப்பு ஒற்றைப் பிணைப்பின் தன்மையையும் கொண்டிருக்கும்.
- d) A இல் ஒட்சிசனுடன் இணைந்த காபன் அணுவின் இலத்திரன் குறைபாடு B இன் ஒத்த காபன் அணுவினதை விட குறைவாகும்.
- 38. இலட்சிய வாயு தொடர்பான பின்வரும் கூற்றுக்களில் எது / எவை சரியானது / சரியானவை?
 - a) வாயுவின் இடைவர்க்க மூலக் கதி வாயுவின் சார் மூலக்கூற்றுத்திணிவு அதிகரிக்கும் போது அதிகரிக்கும்.
 - b) வாயு மூலக்கூறுகளுக்கிடையிலான தூரம் புறக்கணிக்கத்தக்க அளவுக்குச் சிறியதாகும்.
 - c) வாயுவினது சராசரி இயக்கப்பண்புச் சக்தியானது வெப்பவியக்கவியல் வெப்பநிலைக்கு நேர்விகித சமனாகும்.
 - d) ஒரே வெப்பநிலையில் மூலக்கூற்றுத் திணிவு கூடிய வாயுவிற்கு மூலக்கூற்றத்திணிவு குறைந்த வாயுவை விட கதி வர்க்க இடை உயர்வானதாகும்.

- $39.\,NH_3$ இனது இரசாயனம் பற்றிய பின்வரும் எக்கூற்று / கூற்றுக்கள் உண்மையானது உண்மையானவை?
 - a) NH_3 ஒட்சியேற்றியாகத் தொழிற்படும் எல்லாச் சந்தர்ப்பங்களிலும் ஐதரசன் தாழ்த்தப்படும்.
 - b) NH_3 ஆனது உலோகங்களுடன் தாக்கம் புரியும் போது எப்போதும் உலோகத்தின் அமைட்டு (NH_2^-) தோன்றும்.
 - c) NH_3 வாயுவை உலர்த்துவதற்கு $\mathcal{C}aO$ பயன்படுத்தப்படலாம்.
 - d) NH_3 ஆனது மிகை Cl_2 உடன் தாக்கம் புரியும் போது H_2 தோன்றும்.
- 40. சுயமாக நடைபெறும் செயன்முறைகள் தொடர்பான கூற்றுக்களில் உண்மையானது உண்மையானவை எது?
 - a) எல்லாச் சுய செயன்முறைகளுக்கும் $\Delta S>0$ ஆகும்.
 - b) எல்லாச் சுய செயன்முறைகளுக்கும் $\Delta H < 0$
 - c) $\Delta S > 0$ ஆக அமைந்த புறவெப்பச் செயன்முறைகள் எப்போதும் சுயமாக நடைபெறுவனவாகும்.
 - d) சூழலினதும் தொகுதியினதும் மொத்த எந்நிரப்பி மாற்றம் நேரானதாயின் அச்செயன்முறை சுயமாக நடைபெறும்.

❖ 41 தொடக்கம் 50 வரையுள்ள வினாக்க<mark>ள் ஒவ்வொன</mark>்றிலும் இரண்டு கூற்றுக்கள் தரப்பட்டுள்ளன.

தெரிவுகள்	முதலாம் கூற்று	இரண்டாம் கூற்று			
(1)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்கு			
	2.0001007E	திருத்தமான விளக்கத்தை தருவது			
(2)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்கு			
(2)	2_0001007ED	திருத்தமான விளக்கத்தை தராதது			
(3)	உண்மை	பொய்			
(4)	பொய்	உண்மை			
(5)	பொய்	பொய்			

	முதலாம் கூற்று	இரண்டாம் கூற்று			
41.	மாறா வெப்பநிலையில் ஓர் ஓரு மூல மென்னமிலம் HA ஐ வடித்த நீரினால் ஐதாக்கும் போது அதிலுள்ள H ⁺ அயன் செறிவு கூடும்.	மாறா வெப்பநிலையில் மென்ன மிலத்தை ஐதாக்கும் போது அதன் அயனாக்க அளவு அதிகரிக்கும்.			
42.	AgF இலும் பார்க்க AgI இன் பங்கீட்டு வலு இயல்பு அதிகமாகும்.	அன்னயனின் ஆரை அதிகரிக்கும் போது முனைவாகு தகவு அதிகரிக்கின்றது.			
43.	KNO ₂ ,KNO ₃ கரைசல்களை ஐதான HCl பயன்படுத்தி வேறுபடுத்தி இனம் காணலாம்.	KNO ₂ இன் நீர்க்கரைசல் அமில இயல்புடையது எனினும் KNO ₃ நீர்க்கரைசல் நடுநிலையானது.			

44.	வெப்பநிலை அதிகரிக்கும் போது	வெப்பநிலை அதிகரிக்கும் போது 🛆
	தாக்கமொன்றின் வீதமானது அதிகரிக்கின்றது.	இன் எதிர்ப்பெறுமானம் எப்பொழுது அதிகரிக்கும்.
45.	$25^{0}C$ இல் $1 \times 10^{-3} moldm^{-3}$ $NaOH$ கரைசலை $1 \times 10^{-3} moldm^{-3}$ HCl கரைசலினால் நியமிப்பதற்கு பினோப்தலின் காட்டியைப் பயன்படுத்தலாம்.	25°C இல் NaOH கரைசலை HC இனால் நியமிப்பின் சமவலுப்புள்ளியி விளைவுக் கரைசலின் pH = 7 ஆகும்
46	கார ஊடகத்தில் H_2S ஐச் செலுத்துவதன் மூலம் $Cu^{2+}(aq)$ ஐ Cus ஆக வீழ்படிவாக்க முடியாது.	OH¯/H ₂ S இல் S ^{2−} இன் செறி உயர்வாகக் காணப்படும்.
47	இலட்சியக் கரைசலொன்றின் கொதி நிலையானது அதன் அமைப்புடன் சீரான நேர்கோட்டு மாறலைக் காட்டும்.	இலட்சியக் கரைசலில் தனித்தல் கூறுகளுக்கிடையிற் காணப்படு இடைக்கவர்ச்சி விசைகள், கரைசலி வெவ்வேறு இனங்களிடை கோணப்படும் இடைக் கவர்ச்சி விசைக யாவும் ஒன்றுக்கொன்று சமனாகும்.
48	அல்டிகைட்டுக்களிலுள்ள α – H ஆனது அற்கைன்களின் மும்மைப்பிணைப்புக் காபனில் இணைந்துள்ள் H ஐ விட அமில இயல்பு கூடியதாகும்.	கிரிக்னாட் சோதனைப்பொரு அற்கைன்களுடன் அமில க தாக்கத்தை நிகழ்த்திய போத அல்டிகைட்டுக்களுடன் கருநாட்ட கூட்டல் தாக்கத்திலேயே ஈடுபடும்.
49	80^{0} இல் $He(g)$ இன் சராசரி மூலக்கூற்றுக்கதியானது 40^{0} இல் $O_{2}(g)$ இன் சராசரி மூலக்கூற்றுக்கதியை விட உயர்வானதாகும்.	சராசரி மூலக்கூற்றுச் கதியான வெப்பநிலையின் வர்க்கமூலத்துக் நேர்விகித சமனாகும் அதே வே மூலர்திணிவின் வர்க்க மூலத்துக் நேர்மாறு விகித சமனாகும்.
50	இரு மின்வாய்களைக் கொண்டு ஆக்கப்படும் மின்கலமொன்றில் மின்வாய்களுக்கிடைத் தூரத்தை அதிகரிப்பினும் மின்னோட்டம் மாற்றமடையாது.	கலமொன்றின் நியம மின்னியக் விசையானது மின்வாய்களுக் கிடை பட்ட தூரத்தில் தங்கியிராது.

வடமாகாணக் கல்வித் திணைக்களத்துடன் ூணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் **Field Work Centre** தவணைப் பரீட்சை, மார்ச் - 2019

Term Examination, March - 2019

தரம் :- 13 (2019)

இரசாயணவியல் II A | மூன்று மணித்தியாலம் 10 நிமிடம்

	பகுது II A அமைப்புக் கட்டுரை வினா
	எல்லா வினாக்களுக்கும் விடையளிக்குக.
	பின்வரும் சேர்வைகளைக் கருத்திற் கொண்டு கீழே தரப்பட்டுள்ள வினாக்களிற்கு விடை தருக. $AgNO_3, ZnCO_3, MnCl_2, (COO)_2Fe, CuSO_4.5H_2O, Ag_2CO_3$
	(i) வெப்பமேற்றும் போது உலோக மூலகத்தையும் இரண்டு நிறமற்ற வாயு விளைவுகளையும் கொடுக்கும் சேர்வை
	(ii) வெப்பமேற்றும் போது கரிய நி <mark>ற</mark> ச் சேர்வையும் இரண்டு வாயுக்களையும் தரக்கூடிய சேர்வை
	(iii) உப்பின் நீர்க்கரைசலுக்கு $Na_2S_2O_{3(aq)}$ ஐச் சேர்க்கும் போது வெள்ளை நிற வீழ்படிவு தோன்றி சிறிது நேரம் விடப்படுகையில் வீழ்படிவு கறுப்பாக மாறியது எனின் உப்பானது.
	(iv) வெப்பமேற்றும் போது வெண்ணிறச் சேர்வையைத் தரும் நிறமுள்ள உப்பு
	(v) எச்சேர்வையின் நீர்க்கரைசலுக்கு $NαOH_{(aq)}$ சேர்க்கையில் வெண்ணிற வீழ்படிவு தோன்றி வளிபடும் போது கபில நிறமாக மாறும்?
	(vi) சூடாக்கும் போது மஞ்சள் நிறத்திண்ம மீதி பெறப்பட்டு குளிரவிடப்படுகையில் வெண்ணிறமாக மாறும் எனின் சேர்வை
(b) (I) K, J, L எனும் மூலகங்களினால் உருவாக்கப்பட்ட ஒரு மூலக்கூறின் வன்கட்டமைப்பு வருமாறு յ — K — L L

- J, K என்பன P தொகுப்பில் ஒரே கூட்டத்தில் அடுத்தடுத்தமையும் இரு அல்லுலோக மூலகங்கள் ஆகும்.
- Ј ஆனது மூவணு மூலக்கூறொன்றை உருவாக்கும்.
- J, K என்பன KJ_2 எனும் மூலக்கூற்றுச் சூத்திரமுடைய சேர்வையொன்றை உருவாக்கும்.
- J_3 , KJ_2 ஆகிய இரு மூலக்கூறுகளும் ஒத்த வடிவத்தையுடையன.
- மூலகம் L இன் மின்னெதிரியல்பு J இன் மின்னெதிரியல்பிலும் உயர்வானது.
 - (i) மேலே தரப்பட்ட தரவுகளிற்கிணங்க J, K, L ஆகிய மூலகங்களை இனங்கண்டு வினாவில் தரப்பட்ட வன்கட்டமைப்புடைய மூலக்கூறுக்கான மிகவும் ஏற்கத்தக்க லூயி கட்டமைப்பை வரைக.
 - (ii) இம் மூலக்கூறின் 3 பரிவுக்கட்டமைப்புகளை வரைக.

- (iii) பகுதி (i) இல் வரையப்பட்ட லூயி கட்டமைப்பில் K அணுவைச் சூழவுள்ள
 (I) இலத்திரன் சோடிக் கேத்திர கணிதம்
 (II) வடிவம் என்பவற்றைக் குறிப்பிடுக.
 இலத்திரன் சோடிக் கேத்திரகணிதம் -
- II) கருதுகோளான ஒரு மூலக்கூறின் லூயி கட்டமைப்பு கீழே தரப்பட்டுள்ளது. இம் மூலக்கூறு தொடர்பான கீழுள்ள அட்டவணையை பூரணப்படுத்துதல்

	N அணு	N அணு Cl அணு என்பவற்றுடன் இணைந்த O அணு
i) இலத்திரன் சோடிக்கேத்திர கணிதம்		
ii) வடிவம்		
iii) கலப்பாக்கம்		

- (C) அடைப்புக்குள் தரப்பட்ட இயல்பின் ஏறுவரிசைக்கேற்ப பின்வருவனவற்றை ஒழுங்குபடுத்துக.
 - (i). செயன்முறை $M_{(g)}+e \to M_{(g)}^-$ இல் விடுவிக்கப்படும் சக்தி (M ஆனது Be, O, Na, S)

.....<......

	(ii). H ₂ CO, CO, CO ₂ , COCl ₂ (காபனின் மின்னெதிரியல்பு)
	(iii) N O_2^+ , N O_3^- , N O_2 , N O_2^- (பிணைப்புக் கோணம்)
	<
	(iv) CH₃COO¯, <i>OH¯</i> , <i>NH</i> 2¯, <i>CH</i> 3¯ (மூல இயல்பு)
	<
	(v) CH3CH2OH, CH3COOH, CH3CHO, CH3-OCH3 (நி.வெ.அ இல் நிரம்பலாவியமுக்கம்)
	<<
02. a)	
(I)	மக்னீசியம், கல்சியம் என்பவற்றை மட்டும் கொண்ட கலப்புலோகமொன்றின் $1{ m g}$ மாதிரி ஐதான Hcl இன் மிகையளவில் இட்டு முற்றாகக் கரைக்கப்பட்ட போது STP இல் $0.784\ dm^3$ வாயு சேகரிக்கப்பட்டது. கலப்புலோகத்தில் ஒவ்வோர் உலோகத்தினதும்திணிவ% ஐக் காண்க. (STP இல் வாயுவொன்றின் மூலர்க்கனவளவு $22.4\ dm^3\ mol^{-1}$)
(II)	கல்வனைசுப்படுத்திய இரும்புத்துண்டொன்றின் $2g$ திணிவு எடுக்கப்பட்டு போதுமான செறிந்த H_2S0_4 இட்டு பின் நீர் சேர்த்து $200\ cm^3$ கரைசலாக்கப்பட்டு மூடிய நிலையில் சுமார் 24 மணித்தியாலங்கள் வைக்கப்பட்டது. இதன்போது திண்ம மீதி எதுவும் எஞ்சவில்லை.
	இக்கரைசலின் $25cm^3$ எடுக்கப்பட்டு $0.15moldm^{-3}KMnO_4$ கரைசலுடன் நியமிக்கப்பட்ட போது அளவி வாசிப்பு $40.0cm^3$ ஆகக் காணப்பட்டது.
	கல்வனைசுப்படுத்திய இரும்புத்துண்டானது Zn,Fe இரண்டையும் மட்டும் கொண்டதென உமக்கு அறிவிக்கப்பட்டுள்ளது. ($Zn=64,Fe=56$) வாயு விளைவு ஏதும் உருவாகியிருப்பின் அது கரைசலில் முற்றாகக் கரைந்ததாக கருதுக.
	$({ m i})$ கல்வனைசுப்படுத்திய இரும்புத்துண்டு செறிந்த H_2SO_4 இல் கரைவதற்கான ஈடுசெய்த தாக்கச் சமன்பாடுகளைத் தருக.
1	

	படி நியமிப்பில் ஏந்படும் நிறமாற்றம் u த்தத்தின் சிறப்புப் பெயர் யாது? பனைசுப்படுத்திய இரும்பில் Zn இன் திணி	பாது? இங்கு காட்டியாகப் பயன்ட
பதார்	த்தத்தின் சிறப்புப் பெயர் யாது?	பாது? இங்கு காட்டியாகப் பயன்ட
பதார்	த்தத்தின் சிறப்புப் பெயர் யாது?	
iv) கல்வ 	னைசுப்படுத்திய இரும்பில் Zn இன் திணி	
		ிவு% ஐக் கணிக்க
லுள்ள சே வதானங்களு	சேர்வைகளை இனங்காண்பதற்கான நம் கீழ்த்தரப்பட்டுள்ளன.	பரிசோதனைகளும் அவற்றுக்
சர்வைகள்		நீர் $H_2SO_{4(aq)}$ சேர்த்தல்
A	தெளிவான கரைசல்	வாயு வெளியேற்றத்துட தெளிவற்ற, கலங்கற் கரைசல்.
В	தெளிவான கரைசல்	வெள்ளை வீழ்படிவு
С	வெள்ளை வீழ்படிவு மிகை NαOH இல் கரைந்தது.	தெளிவான கரைசல்
D	வெள்ளை வீழ்படிவு சிறிது நேரத்தின்	தெளிவான கரைசல்
	பின் கபிலமாக மாறியது	
Е	நரைநிற வீழ்படிவு	தெளிவான கரைசல்
	் E வரையான கரைசல்களை இனம் க	I
2	e.cl _{2 (aq)} , Ag லுள்ள ே வதானங்கள் A B C	தொடக்கம் E வரை பெயரிடப்பட்ட சில நீர்க்கரைசரை ${}_{ccl_{2}}{}_{(aq)}$, ${}_{AgNO_{3}}$, ${}_{MnCl_{2}}$, ${}_{Na_{2}}$ ${}_{S_{2}}$ ${}_{O_{3}}{}_{(aq)}$, ${}_{Zn}$ (No only) வள்ள சேர்வைகளை இனங்காண்பதற்கான வதானங்களும் கீழ்த்தரப்பட்டுள்ளன. சேர்வைகள் நீர் ${}_{NaOH}{}_{(aq)}$ சேர்த்தல் A தெளிவான கரைசல் B தெளிவான கரைசல் C வெள்ளை வீழ்படிவு மிகை ${}_{NaOH}{}_{Q}$ இல் கரைந்தது. D வெள்ளை வீழ்படிவு சிறிது நேரத்தின் பின் கபிலமாக மாறியது

	(ii)	வீழ்படிவு பெ	றப்படும் தாக்கங்க	எ ளிற்குரிய ஈடுெ	செய்த சமன்பாடுக	ள் எழுத	J க.
						• • • • • • • • • • • • • • • • • • • •	
03.	a)						
03.	(I)	பின்வரும் பச	நங்களை வரைய <u>ா</u>	பக்குக.			
	()		´	,			
		ii) சராசரி	ித் தாக்கவீதம்				
		iii) அரை	வாழ்வுக்காலம்				
			<mark>,</mark>		.,		
		6					
				.	<u> </u>),,	
	(II)	Nitrogen mon தாழ்த்தப்படக்		ூ வாயுவினால்	N ₂ ஆகவும் நி	ராவியாக	வும் பின்வருமாறு
		தாழ்த்தப்படக		$H_{2(g)} \rightarrow N_{2(g)}$	+ 2H ₂ O(x)		
		மேற்படி த		பக்கப்பண்பியன		நற்கு (மேற்கொள்ளப்பட்ட
		• •	sளில் $\mathit{NO}_{(g)}$ இ	ன் செறிவு மா		. •	•
			ன் அட்டவணைப்				
		பரிசோதனை	ஆரம்பச்செ	சறிவுகள்	Δ[NO]/	நேரம்	தொடக்க வீதம்
		இல	$[NO]/moldm^{-3}$	$[H_2]/moldm^{-3}$	$moldm^{-3}$	அற்புய	$mol\ dm^{-3}S^{-1}$
		1	6.4×10^{-3}	2.2×10^{-3}	20.8×10^{-5}	8S	
		3	1.28×10^{-2}	2.2×10^{-3}	52.0×10^{-5}	5S	
			6.4×10^{-3}	4.4×10^{-3}	30.6×10^{-5}	6S	
		_		ளயிலும் தொடக் -	க வீதத்தை கணி	த்து அட்ட	_வணையின் உரிய
		நிரகை	ல நிரப்புக.				
		(ii) <i>NO</i> , <i>H</i>	H_2 சார்பான வரிை	சகள் முறையே	x,y எனவும் வீத	நமாறிலி 1	k எனவும் கொண்டு

வீத விதிக்கான கோவையை எழுதுக.

	(iii)	பரிசோதனையின் கணிக்க.	பெறுமானங்களைப்	பயன்படுத்தி	<i>x, y</i> இன்	பெறுமதிகளைக்
	(iv)	வீதமாறிலி k இன்	பெறுமானத்தைக் க	ணிக்க.		
	<i>a</i> .		22 2	0		
	மேற்ப	டி தாக்கத்துக்கென	பிரேரிக்கப்பட்ட பொ	றிமுறை வரும	ளறு.	
	2 <i>N</i>	$O_{(g)} \rightleftharpoons N_2 O_2$	(விரைவான स	சமநிலைப்படி,	சமநிலை ம	ாறிலி K_{1})
	N_2C	$O_2 + H_2 \longrightarrow N_2O + H_2$	7 ₂ 0 (மெதுவான ப	படி, தாக்கவீத	மாறிலி K_2)	
	N_2C	$0 + H_2 \longrightarrow N_2 + H_2 O$	(விரைவான ப	படி, தாக்கவீத	மாறிலி K_3))
	(i)	மேற்படி தாக்கத்தில்	ன் வீத நிர்ணயிப்படி	எது எனக் குற	றிப்பிடுக.	
	(ii)	மேற்குறிப்பிட்ட பம எழுதுக.	<u> </u>	ாக்கத்தின் வீத	த்துக்கான ஒ	ஒரு கோவையை
	(iii)	இதிலிருந்து பகுதி	(i) இல் பெற்ற வீத	க்கோவையை	$[NO][H_2]$	சார்பாக பெறுக.
b)						
(I)	பின்வரு	ம் பூச்சிய வரிசைத்	தாக்கத்தைக் கருதுக.			
		A ightarrow விளைவுக				
	இத்தாக்	கத்தின் தாக்கவீதமா	ாறிலி k எனத்தரப்படி $\mathfrak a$	ठां		
	(i)	வீத விதிக்கான கே	നമെധെ ഒழுதுக.			
				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

	(ii)	A இன் ஆரம்பச் செறிவு $[A]_o$ எனவும் யாதாயினுமொரு நேரம் ${f t}$ இல் ${f A}$ இன் செறிவு $[A]_t$ எனவும் கொண்டு $[A]_o$, $[A]_t$, k என்பவற்றுக்கிடையிலான தொடர்புடைமையைத் தருக.
	(iii)	மேலே பெற்ற தொடர்பிலிருந்து தாக்கத்தின் அரை வாழ்வுக்காலம் $t_{rac{1}{2}}=rac{[A]_o}{2k}$
		எனக்காட்டுக.
c)	மெது	இல் தரப்பட்ட NH_4OH கரைசலொன்றின் $10.0\ cm^3$ இனுள் HCl கரைசலொன்றை வாகச் சேர்க்கும் போது ஏற்படும் pH மாற்றத்தை கீழுள்ள வரைபு காட்டுகிறது.
		பரைபு தொடர்பாக கீழ்த்தரப்பட்டுள்ள வினாக்களுக்கு விடை தருக. C இல் $K_{w}=1 imes10^{-14}\ mol^{2}\ dm^{-6}$)
		pH 11 10 9 8 - 7 - 6 6 - 5 - 4
		3 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	(i)	$25^{\circ}C$ இல் தரப்பட்ட NH_4OH இன் அயனாக்க மாறிலி K_b இன் பெறுமானம் யாது?
	(ii)	தரப்பட்ட NH_4OH கரைசலின் ஆரம்பச் செறிவைக் கணிக்க.

	(iii)	இச்செயன்முறையில் பயன்படுத்தப்பட்ட HCl இன் செறிவைக் கணிக்க.
	<i>(</i> ' \	
	(iv)	சமவலுப்புள்ளியில் கரைசலின் pH ஐக் கணிக்க
	(v)	ஒரு நியமிப்பு தொடர்பாக சமவலுப்புள்ளி, முடிவுப்புள்ளி என்பவற்றுக்கிடையிலுள்ள
		வேறுபாட்டை சுருக்கமாக விளக்குக?
04 . a)		C, D என்பன $C_5H_{11}Br$ எனும் மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட நான்கு
		மப்புச் சமபகுதியச் சேர்வைகளாகும். இவற்றில் B, C, D ஆகியன ஒளியீர்ப்புள்ள ங்களில் காணப்படக்கூடியன. A இல் ஒளியியற் தொழிற்பாடு இல்லை. A ஆனது ஐதான
	ищон NaOH	
		னைப்பொருளுடன் உடனடிக் கலங்கலைக் கொடுத்தது. B, C, D என்பன தனித்தனியே
		கோல் சேர் KOH உடன் பரிகரிக்கப்படும் போது முறையே Q, R, S எனும் விளைவுகள்
	-	பட்டதுடன் அவற்றுள் S ஆனது கேத்திரகணித சமபகுதியத்தன்மையைக் காட்டியது.
	(i)	A, D, P, S என்பவற்றின் கட்டமைப்புக்களை கீழுள்ள பெட்டிகளில் வரைக.
		A D P S
	(ii)	B, C என்பவற்றை தனித்தனியே $NaOH_{(aq)}$ உடன் தாக்கமுறவிட்ட போது முறையே
		X,Y என்பன பெறப்பட்டன. X,Y ஒவ்வொன்றையும் தனித்தனி $H^+/KMno_4$ உடன் பரிகரித்து பின் $N\alpha BH_4$ இனால் தாழ்த்தும் போது Y மட்டும் மீண்டும் உருவாகியது.
		B, C, X, Y, Q, R என்பவற்றின் கட்டமைப்புகளை தருக.
		B =
		Q =
		X =

	(iii)	X, Y என்பவற்றை வேறுபடுத்தியறிவதற்கான சோதனையொன்றைக் குறிப்பிடுக.
	(iv)	$A \xrightarrow{NaOH_{(aq)}} P$
		$C \xrightarrow{NaOH_{(aq)}} Y$
		மற்குறிப்பிடப்பட்ட இரு தாக்கங்களினதும் பொறிமுறை வகை யாது? ிவற்றில்இருபடிக்குரியது எத்தாக்கம்?
b)	_	தரப்பட்டுள்ள தாக்கங்களின் பிரதான சேதன விளைவுகளின் கட்டமைப்புகளை தரப்பட்ட டிகளினுள் எழுதுக.
	(i)	$CH_3 - C \equiv CH \xrightarrow{\text{(i) } NaNH_2} $ $\overline{\text{(ii) } CH_3 CH_2 Br}$
	(ii)	$OH \atop CH_2 - CH - CH_3 $ $Al_2O_3 \atop \triangle$
	(iii)	$C = CH_2 C - O - CH_3$ (i) (மிகை) CH_3MgBr (ii) CH_3MgBr
	(iv) <i>(</i>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	(v) C	T ₂ H ₅ COCl CH ₃ NH ₂
	(vi) [$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

(viii)
$$C_2 H_5 OH$$

$$\frac{H^+/KMno_4}{}$$

$$(ix)$$
 $CH_2 = CH_2$ (குளிர்) கார $KMno_4$

$$\begin{array}{c|c} & & & \\ NH_2 & & & \\ \hline \\ & & & \\ \end{array}$$

c)
$$CH_3 - C = 0$$
 $2,4 - DNPH$ விளைபொருள் CH_3

மேலுள்ள தாக்கத்தின் விளைபொருளின் கட்டமைப்பை எழுதுக.

இத்தாக்கத்திற்கு பொருத்தமான பொறிமுறையொன்றைப் பிரேரித்து அப்பொறிமுறை வகைக்குரிய பெயரையும் குறிப்பிடுக.

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre

தவணைப் பரீட்சை, மார்ச் - 2019 Term Examination, March - 2019

தரம் :- 13 (2019)

இரசாயனவியல் II B

கட்டுரை வினாக்கள்

பகுதி II – B

எவையேனும் இரண்டு வினாக்களுக்கு மட்டும் விடையளிக்குக.

05. (a)

வெப்பநிலை T இல் விறைத்த, மூடிய கொள்கலமொன்றில் $A_{(g)}$ இன் $a \mod$ இடப்பட்டு பின்வரும் சமநிலை அடையவிடப்பட்டது.

 $3A_{(q)} \leftrightharpoons 2B_{(q)}$

- சமநிலையில் $A_{(g)}$ இன் 60% ஆனது $B_{(g)}$ ஆக மாற்றமடைந்திருந்ததுடன் தொகுதியினுள் மொத்த அமுக்கம் $2 \times 10^5 \text{Pa}$ ஆகக் காணப்பட்டது. வெப்பநிலை T இல் மேற்குறிப்பிட்ட சமநிலைக்கான சமநிலைமாறிலி K_P ஐக் கணிக்க.
- ii) தொகுதியின் வெப்பநிலை 2T ஆக அதிகரிக்கப்பட்ட போது மேற்குறிப்பிட்ட சமநிலைக்கு மேலதிகமாக $3A_{(q)} \leftrightharpoons \mathcal{C}_{(q)} + 2D_{(q)}$ எனும் வேறொரு சமநிலையும் ஏற்பட்டது. 2T வெப்பநிலையில் தொகுதியில் இரு சமநிலைகளும் ஏற்பட்டிருந்த போது ஆரம்ப $A_{(g)}$ இன் 30% ஆனது $C_{(g)}$ ஆகவும் $D_{(g)}$ ஆகவும் மாற்றப்பட்டிருந்ததுடன் $A_{(g)}$ இன் தொடக்க அளவின் 40% ஆனது எஞ்சியிருந்தது. 2T வெப்பநிலையில் மேற்தரப்பட்ட இரு தாக்கங்களினதும் சமநிலை மாறிலி K_P ஐக் கணிக்க.
- $25^{0}C$ இல் $Cmoldm^{-3}$ செறிவுள்ள ஒருமூலமென்னமிலம் HA தரப்பட்டுள்ளது. (b)
 - நீர்க்கரைசலில் HA இன் சமநிலையைக் கருதி அதன் அயனாக்க மாறிலி K_{a} இற்குரிய i) கோவையொன்றைப் பெறுக.
 - HA இல் pH இற்குரிய கோவையொன்றை C, K_a சார்பில் பெறுக.
 - iii) HA இன் $5cm^3$ எடுக்கப்பட்டு வடித்த நீர் சேர்த்து $500cm^3$ இற்கு ஐதாக்கப்படின் தற்போதைய pH இற்கும் ஆரம்ப pH இற்குமான வேறுபாடு யாது?
 - ${
 m iv}$) 25^0C இல் $0.02moldm^{-3}$ செறிவுள்ள CH_3COOH கரைசலின் pH ஐக் கணிக்க. $(25^{0}C$ இல் $CH_{3}COOH$ இன் $K_{a} = 1.8 \times 10^{-5} moldm^{-3})$
 - இன் $25cm^3$ ஆனது $0.02moldm^{-3}$ NaOH கரைசலுடன் மேலுள்ள *CH*3*COOH* (அளவியில்) நியமிக்கப்பட்டது.
 - இந்நியமிப்பின் போது அமிலத்தினுள் $15cm^3$ NaOH சேர்க்கப்பட்ட நிலையில் i) விளைவுக் கரைசலின் pH யாதாக இருக்கும்?
 - நியமிப்பின் முடிவுப்புள்ளியில் சேர்க்கப்பட்ட NaOH இன் கனவளவு யாது? ii)
 - iii) சமவலு நிலையில் கரைசல் அமிலமா அல்லது மூலமா எனக் காரணத்துடன் குறிப்பிட்டு அதன் pH ஐக் கணிக்க.

 $(25^{\circ}C$ இல் $K_{w} = 1 \times 10^{-14} mol^{2} dm^{-6})$

(C)

I) $NO_{(g)} + O_{3(g)} \rightarrow NO_{2(g)} + O_{2(g)} \Delta H < 0$

மேலுள்ள தாக்கம் ஒரு முதன்மைத் தாக்கம் எனத் தரப்பட்டுள்ளது.

- i. மேற்படி தாக்கம் சாத்தியமாவதற்கு பூர்த்திசெய்யப்பட வேண்டிய நிபந்தனைகள் 2 ஐத் தருக.
- ii. தாக்கத்தின் வீத விதிக் கோவையை எழுதுக.
- $A \to E$ எனும் தாக்கம் இருபடிகளினூடாக நடைபெறுவதாக அறியப்பட்டுள்ளது. இத்தாக்கத்தின் தாக்க ஆள்கூறு எதிர் சக்தி வரிப்படம் கீழே தரப்பட்டுள்ளது.

▶ தாக்க ஆள்கூறு

- i) மேலுள்ள வரைபில் A, X, I, Y, E என்பவற்றால் குறிப்பிடப்படும் நிலைகளுக்குரிய பெயர்களை எழுதுக.
- ii) பின்வருவனவற்றுக்கான சக்திக்கணியங்களின் பெறுமதிகளை a, b, c, d, e இன் சார்புகளில் குறிப்பிடுக.

I. தாக்கவெப்பம்

II. முதலாம், இரண்டாம் ஏவற்சக்திகள்

06. (a)

- i) பூரண கலக்கும் தகவுடைய இலட்சியக்கரைசலை ஆக்கும் இரு திரவங்கள் A, B சார்பாக இரவோற்றின் விதியைக் கூறுக.
- ii) மேலுள்ள திரவத்தொகுதியில் காணப்படக்கூடிய சமநிலைகளைக் கருதுவதன் மூலம் இரவோற்றின் விதிக்கான கணிதக் கோவையொன்றை நிறுவிப்பெறுக. அதிலுள்ள ஒவ்வொரு பதத்தையும் வரையறுக்க.
- iii) 2 mol A உம் 3 mol B உம் கலந்து மூடிய வெற்றிடப்பாத்திரமொன்றில் இடப்பட்டன. 70℃ இல் ஏற்பட்டதிரவ ஆவி சமநிலையில் 10% ஆன A ஆனது ஆவியாக மாறியதுடன் B இன் 20% ஆனது ஆவியாக மாறியிருந்தது. திரவத்துடன் சமநிலையிலுள்ள ஆவி ஏற்படுத்திய மொத்த அமுக்கம் 4.8 × 10⁵Nm⁻² ஆகக் காணப்பட்டது. A, B எனும் திரவங்கள் இலட்சியக் கரைசலை உருவாக்குவன. அத்துடன் ஆவியில் A, B மூலக்கூறுகளுக்கிடையில் இடைத்தாக்க விசைகள் இல்லை. 70℃ இல் A, B இன் தூயநிலை ஆவியமுக்கங்களைக் கணிக்க.

- (b) 298K இல் நீருக்கும் பியூற்றனோலுக்குமிடையே அசற்றிக்கமிலத்தின் பங்கீட்டுக்குணகத்தைத் துணிவதற்காக மேற்கொள்ளப்பட்ட ஒரு பரிசோதனை தொடர்பான அளவீடுகள் வருமாறு சமநிலை நீர்ப்படையில் 25cm³ உடன் முற்றாகத் தாக்கமடைவதற்கு குறித்த ஒரு NaOH கரைசலின் 5cm³ தேவைப்பட்டது.
 - பியூட்டனோல் படையின் $10cm^3$ உடன் முற்றாகத் தாக்கமடைய தேவையான அதே NaOH கரைசலின் கனவளவு $40cm^3$ ஆகும்.
 - i) 298K இல் நீருக்கும் பியூட்டனோலுக்குமிடையே அசற்றிக்கமிலத்தின் பங்கீட்டுக் குணகத்தைக் காண்க.
 - ii) 298 K இல் 0.05moldm⁻³ CH₃COOH நீர்க்கரைசலொன்றின் 50cm³ உடன் 25cm³ பியூட்டனோல் இடப்பட்டு நன்கு குலுக்கப்பட்டு சமனிலையடையவிடப்பட்டது. சமநிலையில் நீர்ப்படையின் 20cm³ வேறாக்கப்பட்டு 0.2moldm⁻³ செறிவுடைய NaOH கரைசலினால் நியமிக்கப்பட்டது. முடிவுப்புள்ளியில் NaOH இன் கனவளவு யாது?

C)

- i) $2moldm^{-3}$ செறிவுள்ள $NaHC_2O_4$ நீர்க்கரைசலின் $25cm^3$ அதே செறிவுடைய NaOH கரைசலினால் நியமிக்கப்பட்டது. நியமிப்பின் முடிவுப்புள்ளியில் பெறப்பட்ட விளைவுக்கரைசலினுள் $1moldm^{-3}$ $Mg(NO_3)_2$ கரைசலின் $50cm^3$ சேர்க்கப்பட்டால் படிவாகும். MgC_2O_4 இன் திணிவைக் கணிக்க $(Mg=24, C=12, O=16, 25^{\circ}C$ இல் MgC_2O_4 இன் $K_{sp}=8.1\times 10^{-5}mol^2dm^{-6})$
- ii) $25^{\circ}C$ இல் $0.5moldm^{-3}$ செறிவுடைய NH_4Cl கரைசலின் pH ஐக் கணிக்க. இக்கரைசலின் $1dm^3$ ஆனது என்ன கனவளவாக ஐதாக்கப்படுவதன் மூலம் pH=6 ஐயுடைய கரைசலொன்றைத் தயாரிக்க முடியும். $(25^{\circ}C$ இல் NH_4OH இன் $K_b=1.8\times 10^{-5}moldm^{-3}$ எனத் தரப்பட்டுள்ளது.)

07. a)

- i) பரடேயின் மின்பகுப்பு விதிகளைக் கூறுக.
- ii) M எனும் ஓர் உலோகம் $1 moldm^{-3}$ செறிவுள்ள $M^{n+}_{(aq)}$ இனுள் அமிழ்த்தப்பட்டு உருவாக்கப்படும் மின்வாயையும் Ag உலோகம் $1 moldm^{-3}$ $AgNO_{3(aq)}$ இனுள் அமிழ்த்தப்பட்டு உருவாக்கப்படும் வேறொரு மின்வாயையும் கொண்டு ஆக்கப்பட்ட மின்னிரசாயனக் கலத்தின் வரிப்படம் கீழே தரப்பட்டுள்ளது. கலத்தில் மின்பாயும் திசை அம்புக்குறி மூலம் காட்டப்பட்டுள்ளது.

கலத்தின் நியம மின்னியக்க விசை $E_{cell}^{\theta}=1.56V$ $Ag_{(s)}/Ag_{(aq)}^{+}$ மின்வாயின் நியம மின்வாயமுத்தம் $E_{Ag_{(aq)}}^{\theta}/Ag_{(s)}=+0.80V$

- i) $M_{(aq)}^{n+} + ne \rightleftharpoons M_{(s)}$ இன் நியம சமநிலை மின்வாயழுத்தம் யாது?
- ii) அனோட்டு, கதோட்டு என்பவற்றை இனங்காண்பதுடன் அவற்றின் முனைவுத்தன்மைகளையும் குறிப்பிடுக.
- iii) அனோட், கதோட் என்பவற்றில் நிகழும் அரை அயன்தாக்கங்களை எழுதுக.
- iv) கலத்தாக்கம் யாது?
- v) X எனக் குறிப்பிட்ட பகுதியின் தொழிற்பாடு யாது? இதற்குப் பயன்படுத்தக்கூடிய ஒரு பதார்த்தம் குறிப்பிடுக.
- vi) மேலுள்ள கலம் தொழிற்படும் போது முதல் 5s இல் Ag மின்வாயில் படிவாகிய Ag இன் திணிவு 54mg. இந்நேர ஆயிடையில் M உலோகத்தில் 16.35mg திணிவுக்குறைவு ஏற்பட்டமை அவதானிக்கப்பட்டது.
 - 54mg Ag படிவதற்கு செலுத்தப்பட வேண்டிய மின்கணியம் யாது?
 (Ag = 108, 1F = 96500 C)
 - 2) பகுதி (i) இல் தொடர்புபடும் இலத்திரன்களின் மூல் எண்ணிக்கை யாது?
 - 3) M இன் சாரணுத்திணிவு 65.4 எனின் 1மூல் M படிய தேவையான இலத்திரன்களின் மூல் எண்ணிக்கையை கணித்து இதிலிருந்து n இன் பெறுமானத்தை உய்த்தறிக.
- b) A,B ஆகியன மூலக்கூற்றுச்சூத்திரம் $Cr\ N_5\ H_{12}\ Cl_2\ O_2$ உடைய இரு இணைப்புச் சேர்வைகளாகும். இரு சேர்வைகளிலும் $Cr\$ ஆனது ஒரே ஒட்சியேற்ற நிலையில் உள்ளது. அத்துடன் இவற்றில் H அணுக்கள் NH_3 ஆக மட்டும் உள்ளன. இரு சேர்வைகளினதும் இணைப்புக்கோளத்தின் நிகர ஏற்றம் சமனாவதுடன் எண்முகி வடிவமுடையது. சேர்வை A மாத்திரம் $AgNO_3$ உடன் ஐதான NH_3 இல் கரையக்கூடிய வெண்ணிற வீழ்படிவைத் தருகின்றது.
 - மேற்குறித்த சேர்வைகளில் Cr இன் ஒட்சியேற்ற நிலை யாது?
 - ii) மேலுள்ள சேர்வைகளில் உள்ள Cr இன் அயனிற்கான பூரண இலத்திரன் நிலையமைப்பை எழுதுக.
 - iii) காரணங்கள் தந்து A, B ஆகிய சேர்வைகளின் கட்டமைப்புச் சூத்திரங்களை எழுதுக.
 - iv) மேலே பகுதி (iii)| இல் குறிப்பிட்ட கட்டமைப்புக்களிற்கான IUPAC பெயர்களைத் தருக.
 - v) சேர்வை B இல் உள்ள அனயனை இனங்காண்பதற்கு சோதனையொன்றைக் குறிப்பிடுக.
- c) $KMno_4$ மாதிரியொன்று மாசாக MnO_2 ஐக் கொண்டுள்ளது. இம்மாதிரியின் 3.32g திணிவுக்கு சிறிது மிகையாக KI உம் ஐதான H_2 SO_4 உம் இடப்பட்டன. வெளிப்பட்ட I_2 இனை முற்றாக நியமிக்க $2\ mol\ dm^{-3}\ Na_2\ S_2\ O_3$ இன் $45\ cm^3$ தேவைப்பட்டது.
 - i) நடைபெறும் தாக்கங்களின் ஈடுசெய்த சமன்பாடுகள் தருக.
 - ii) மாதிரியில் $KMno_4$ இன் தூய்மையின் நூற்றுவீதத்தைக் கணிக்க. $(K=39,\,Mn=55,\,O=16)$

பகுதி II – C

எவையேனும் இரண்டு வினாக்களுக்கு மட்டும் விடையளிக்குக.

08. a) பட்டியலில் தரப்பட்டுள்ள இரசாயனப் பொருட்களை மட்டும் பயன்படுத்தி இ ஆரம்பச்சேதன தொடக்குபொருளாகப் பயன்படுத்தி பின்வரும் மாற்றத்தை எவ்வாறு மேற்கொள்வீர்?

$$CH_2Cl$$

$$C \equiv C - C - CH_3$$

இரசாயனப் பொருட்களின் பட்டியல்

 H_2O, Br_2 / CCl_4 , செறி $H_2\,SO_4$, $CH_3\,M_g\,Br$ / உலர் ஈதர், அற்ககோல் சேர் KOH , PCC , NaOH

b)
$$(CH_3)_2CH - C - O - CH_2$$
 $(CH_3)_3C - CH = CH$ (B)

சேர்வை A இலிருந்து ஆரம்பித்து வேறு சேதனப் பதார்த்தங்களைப் பயன்படுத்தாது B ஐத் தொகுப்பதற்கான தாக்கத்திட்டமொன்றைப் பிரேரிக்க.

c) methyliodide ஆனது ethylaminė உடன் கீழ்க்காட்டியவாறு தாக்கமடையும்.

$$CH_3 I + CH_3 CH_2 NH_2 \rightarrow CH_3 CH_2 - N - CH_3 + HI$$

- a. இத்தாக்கத்தின் பொறிமுறை எவ்வகைக்குரியது?
- b. வளைந்த அம்புக்குறிகளைப் பயன்படுத்தி மேற்படி தாக்கப்பொறிமுறையை எழுதிக்காட்டுக.
- c. methyliodide ஆனது Propionamide உடன் கீழ்க்காட்டியவாறு தாக்கமடைவது இல்லை. $CH_3\ I + CH_3\ CH_2\ CONH_2\ o CH_3\ CH_2\ CO\ NH\ CH_3\ + HI$ மேலுள்ள தாக்கம் சாத்தியமற்றமைக்கான காரணத்தை சுருக்கமாக விளக்குக.
- 09. a) A என்பது ஒரு நிறத்திண்மமாகும். அதனை செறி HCl உடன் கொதிக்க வைக்கும் போது மஞ்சள் நிறக்கரைசல் B உம் நிறமற்ற வாயு C உம் உண்டாகின்றன. கரைசல் B ஐ நீருடன் ஐதாக்கிய பின் அதன் ஒரு பகுதிக்கு அமில ஊடகத்தில் H_2S ஐக் குமிழியிடச் செய்த போது வீழ்படிவு தோன்றியது. அத்துடன் ஐதாக்கிய கரைசலின் மற்றைய பகுதிக்கு ஐதான $NH_{3(aq)}$ சேர்க்கும் போது வீழ்படிவு D தோன்றி மேலதிக NH_3 சேர்க்கையில் அவ்வீழ்படிவு கரைந்து கடும் நீல நிறக்கரைசல் E உருவாகியது.

 CH_2Cl

வாயு C ஐ அமில ஊடகத்தில் K_2 Cr_2 O_7 கரைசலிற்குள் செலுத்திய போது பச்சை நிறக்கரைலும் மெல்லியமஞ்சள் கலங்கல் F உம் தோன்றின. மேற்படி கலங்கல் பதார்த்தம் ஐதான NaOH உடன் பொருத்தமான நிபந்தனைகளில் தாக்கமுறும் போது G, H ஆகிய விளைவுகளும் H_2O உம் உண்டாகின. G, H கலவைக்கு ஐதான HCl சேர்க்கையில் மீண்டும் மென்மஞ்சள் கலங்கல விளைவு F உம் வாயு C உம் வேறொரு மணமுடைய வாயு C உம் உருவாகின. C0 ஆனது C1 ஆவது C2 இது வேண்ணிற வீழ்படிவைக் கொடுப்பதுடன் அவ்வீழ்படிவு சற்று நேரத்தின் பின் கறுப்பாக மாறக்கூடியது.

- i) A, B, C, D, E, F, G, H, I என்பவற்றை இனம் காண்க.
- ii) F இற்கும் *NaOH* இற்கும் இடையிலான வினாவில் குறிப்பிடப்பட்ட தாக்கத்திற்கு ஈடு செய்த சமன்பாடு எழுதுக.
- iii) H இற்கு $AgNO_3$ சேர்க்கையில் குறிப்பிடப்பட்ட அவதானங்களை அதற்கு காரணமான தாக்கச்சமன்பாடுகள் மூலம் விளக்குக.
- iv) வாயு C இற்கும் வாயு I இற்குமிடையே நீர் ஊடகத்தில் நிகழும் தாக்கத்தின் சமன்பாட்டை எழுதி மேற்படி தாக்கத்தில் ஒட்சியேற்றி தாழ்த்தி என்பவற்றை குறிப்பிடுக.
- b) கலவை X ஆனது இரு உலோகங்களின் உப்புக்களை மாத்திரம் கொண்டுள்ளது. இக்கலவையுடன் செய்யப்பட்ட பரிசோதனைகளும் அவதானங்களும் கீழே தரப்பட்டுள்ளன.

	சோதனை	அவதானம்
i)	கலவை காய்ச்சி வடித்த நீரில்	நிறமுடைய கரைசல் பெறப்பட்டது.
	கரைக்கப்பட்டது.	
ii)	கலவையின் நீர்க்கரைசலுக்கு ஐதான HCl	வெள்ளை வீழ்படிவு பெறப்பட்டது.
	சேர்க்கப்பட்டது.	(a)
iii)	மேலே (ii) இல் பெற்ற வீழ்ப்படிவு	வீழ்படிவு கரைந்து நிறமற்ற கரைசல்
	வடிக்கப்பட்டு ஐதான $NH_{3(aq)}$ உடன்	உருவாகியது.
	பரிகரிக்கப்பட்டது.	9)
iv)	மேலே (ii) இல் பெற்ற வடி திரவத்திற்குள்	வீழ்படிவு எதுவும் இல்லை.
	$H_2 S$ வாயு குமிழியிடப்பட்டது.	
v)	மேலே (iv) இல் பெற்ற வடி திரவம்	பச்சை நிற வீழ்படிவு உருவானது.
	கொதிக்கவைக்கப்பட்டு, சிறிதளவு NH_4Cl	
	சேர்த்த பின் $\mathit{NH}_{3(aq)}$ துளித்துளியாக	
	சேர்க்கப்பட்டது.	
vi)	மேலே (v) இல் பெறப்பட்ட வீழ்படிவு	பச்சை நிறக்கரைசல் பெறப்பட்டது.
	$NaOH_{(aq)}$ உடன் வெப்பப்படுத்தப்பட்டது.	

- i) கலவையிலுள்ள இரு உலோகக்கற்றயன்களும் எவை?
- ${
 m ii}$) சோதனை ${
 m (v)}$ இல் உருவான பச்சைநிற வீழ்படிவுக்கு ${
 m \it NaOH}, {
 m \it H}_2{
 m \it O}_2$ என்பவற்றைச் சேர்த்துச் சூடாக்கும் போது அவதானத்தையும் அதற்குக் காரணமான தாக்கச் சமன்பாட்டையும் எழுதுக.

- 10. a) X, Y, Z என்பன 3d தொடருக்குரிய மூலகங்கள் மூன்றினது உப்புக்களின் நீர்க்கரைசல்களாகும். மேற்படி ஒவ்வொரு உப்பினதும் நீர்க்கரைசல்களுடன் முதலில் தனித்தனியே NaOH கரைசலின் சிறிதளவு வீதமும் மிகையான அளவும் சேர்க்கப்பட்டன. அதன் பிறகு மிகையான நீர்மய NH₃ கரைசல் சேர்க்கப்பட்டது. கிடைத்த அவதானிப்புகள் கீழே தரப்பட்டுள்ளன.
 - X : வெண்ணிற வீழ்படிவு கிடைத்தது. அவ் வெண்ணிற வீழ்படிவு மிகையான NaOH கரைசலிலும் மிகையான நீர்மய NH_3 கரைசலிலும் கரைந்தது.
 - Y : பச்சை நிற வீழ்படிவு கிடைத்தது. அவ்வீழ்படிவு மிகையான NaOH கரைசலில் கரையவில்லை

எனினும் மிகையான நீர்மய NH_3 கரைசலில் கரைந்தது.

- Z : மஞ்சட்கபில வீழ்படிவு கிடைத்தது. அவ்வீழ்படிவு மிகை NaOH கரைசலிலோ மிகை NH_3 கரைசலிலோ கரையவில்லை.
- i) மேற்படி அவதானிப்புகளைக் கொண்டு X, Y, Z ஆகியவற்றில் அடங்கியுள்ள கற்றயன்களை இணங்காண்க.
- ii) மேலே (i) இல் இனங்கண்ட X, Y, Z ஆகிய மூன்று மூலகங்களினதும் அயன்கள் செறி*HCl* உடன் உருவாக்கு<mark>ம் சிக்கல்</mark> அயன்களின் சூத்திரங்களையும் நிறங்களையும் குறிப்பிடுக.
- b) பின்வரும் தாக்கங்களிற்கு ஈடுசெய்த சமன்பாடுகள் தருக.

i)
$$NO_{3(aq)}^{-} + Al_{(s)} + OH_{(aq)}^{-} \rightarrow$$

ii)
$$Cr_{(aq)}^{3+} + OH_{(aq)}^{-} + H_2O_{2(aq)} \rightarrow$$

iii)
$$H_2O_{2(aq)} + Ag_2O_{(s)} \rightarrow$$

iv)
$$NaOH_{(aq)} + (NH_4)_2Cr_2 O_{7(aq)} \rightarrow$$

$$\mathrm{v)} \quad KOH_{(aq)} + \Delta VO_{2\,(g)} \longrightarrow$$

vi)
$$Li NO_{3(s)} \rightarrow$$

c) ஒரு கரைசல் Q இல் Fe^{3+} , Cl^- , H^+ ஆகிய அயன்கள் உள்ளன. அவற்றின் செறிவுகளைத் துணிவதற்கு பின்வரும் நடைமுறைகள் A, B, C பின்பற்றப்பட்டன.

நடைமுறை A:-

கரைசல் Q இன் $25~cm^3$ உடன் மிகை $AgNO_3$ கரைசல் சேர்த்த போது கிடைத்த வீழ்படிவின் உலர் திணிவு 0.287g ஆகும். (சா.அ.தி Ag=108, Cl=35.5)

நடைமுறை B :-

கரைசல் Q இன் $25\,cm^3$ ஐ எடுத்து அதிலுள்ள Fe^{3+} அயன்களை முற்றாக FeS ஆக வீழ்படிவாக்குவதற்குப் போதியவாறு H_2S குமிழியிடச் செய்யப்பட்டது. இங்கு உண்டாகும் கந்தகம் அடங்கிய ஒரு விளைபொருளாகிய FeS உம் வீழ்படிவு S உம் வடிகட்டியகற்றப்பட்டு வடிதிரவம் நடைமுறை C இற்கு பயன்படுத்தப்பட்டது. மேற்குறித்த வீழ்படிவுகளை உலர்த்தி வளியில் வறுக்கும் போது வெளிப்படும் SO_2 வாயு $0.048\,mol\,dm^{-3}$ அமில $KMnO_4$ கரைசலின் $50\,cm^3$ இனுள்ளே அனுப்பப்பட்டது. இங்கு தாக்கம் புரியாத $KMnO_4$ உடன் முற்றாகத் தாக்கம் புரிவதற்கு $0.12\,mol\,dm^{-3}\,H_2\,C_2\,O_4$ கரைசலின் $25\,cm^3$ செலவிடப்பட்டது.

நடைமுறை C:-

மேலே நடைமுறை (B) இலிருந்து பெற்ற வடிதிரவத்தில் உள்ள H_2S ஐ முற்றாக அகற்றி $0.6\ mol\ dm^{-3}\ NaOH$ உடன் நியமித்த போது செலவிடப்பட்ட NaOH இன் கனவளவு $25\ cm^3$ ஆகும்.

கரைசல் Q இல் உள்ள $\mathit{Cl}^-,\mathit{Fe}^{3+},\;\mathit{H}^+$ ஆகிய ஒவ்வொன்றினது செறிவுகளையும் கணிக்க

Biology

C.Maths

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

✓ t.me/Science Eagle ▶ YouTube / Science Eagle f 💆 🔘 /S cience Eagle S L

