1 Proof

Lemma 1: $q2 \Longrightarrow in \neq out$

- \bullet Initially q2 is false, lemma is true
- Only statement that progresses to q2 is q1 which requires $in \neq out$
- $in \neq out$ cannot become false between q1 and q2
 - Only other statement which can change in or out is p4
 - Since **lemma 2**, p cannot make $in \neq out$

Lemma 2: $p3..4 \Longrightarrow out \neq (in+1) \mod N$

- Initially holds, as p3..4 is false
- Only statement that progresses to p3..4 is p2 which requires $out \neq (in + 1)$
- out! = (in + 1) mod N cannot become false between p2..p4
- Thus cannot increment in such that in = out
 - Only statement which can change in or out is q3 (out = out + 1)
 - Thus can increment to out + 1, so $(out + 1) \neq (in + 1) \mod N$