# Lesson 16: Describing Categorical Data (Proportions)

### Preparation

#### Solutions

Please note that the steps show rounded numbers, but that the final answers to the problems are calculated without rounding.

| Problem | Part | Solution                                                                                    |
|---------|------|---------------------------------------------------------------------------------------------|
| 1       | -    | b. Pie Charts                                                                               |
|         |      | d. Bar Charts                                                                               |
| 2       | -    | $\hat{p} = \frac{x}{n}$                                                                     |
|         |      | n = total sample size                                                                       |
|         |      | x = number of individuals in sample with the characteristic you are focusing on.            |
| 3       | -    | P or the population proportion                                                              |
| 4       | -    | Standard Deviation of $\hat{p} = \sqrt{\frac{p(1-p)}{n}}$                                   |
|         |      | n = total sample size                                                                       |
|         |      | $p = the true population proportion, which is also the mean of the distribution of \hat{p}$ |
| 5       | -    | Answers may vary: Categorical data groups the individuals in your study into                |
|         |      | categories, while numerical data assigns numbers to the individuals in your study.          |
|         |      | These numbers are a subset of the real numbers and can be discrete or continuous.           |

#### Class Ranks in FDMAT 222



6 -

| Problem    | Part  | Solution |
|------------|-------|----------|
| I IODICIII | 1 alt | DOLUMON  |

## Class Ranks in FDMAT 222



the data in

| 7 | - |                                                                                           |
|---|---|-------------------------------------------------------------------------------------------|
| 8 | - | Your answers could vary. You could've used proportions to describe the data, described to |
|   |   | Freshman: Count=8, $\hat{p}$ =0.0437                                                      |
|   |   | Sophmore: Count=75, $\hat{p}$ =0.4098                                                     |
|   |   | <b>Junior</b> : Count=59, $\hat{p}$ =0.3224                                               |
|   |   | <b>Senior</b> : Count=39, $\hat{p}$ =0.2131                                               |
|   |   | Other: Count=2, $\hat{p}$ =0.0109                                                         |
| 9 | A | The mean is $7\%$ or $0.07$ in this sample and the standard deviation is $0.0093$         |
| 9 | В | z = 1.073                                                                                 |
| 9 | С | Area = 0.1416                                                                             |