范函分析 I 期末考试

命题: 陈天权 录入: erliban@bdwm

时间: 2006年6月

- 1. (20分) 设 B₁ 和 B₂ 是两个 Banach 空间.
- (i) 试述线性算子 $T \in \mathcal{L}(B_1, B_2)$ 是紧算子的定义;
- (ii) 若 $T \in \mathcal{L}(B_1, B_2)$, 且 $dim(\operatorname{Im} T) < \infty$. 试证: $T \in \mathcal{L}_c(B_1, B_2)$;
- (iii) 若 $(Tn)_{n=1}^{\infty}$ 是 $B_1 \to B_2$ 的一串紧算子, 又在范数意义下,有 $T = lim_{n\to\infty}T_n$. 试证: $T \in \mathcal{L}(B_1, B_2)$.
- 2. (20分) 设 $K(x,y) \in C([0,1] \times [0,1])$, 记积分算子

$$\mathbf{K}(f)(x) = \int_0^1 K(x, y) f(y) dy.$$

试证:

- (i) $\mbox{ij} K(x,y) \in C([0,1] \times [0,1]), \mathbf{K} \in \mathcal{L}(C[0,1], C[0,1]);$
- (iii) 对一切 $K(x,y) \in C([0,1] \times [0,1])$, 有 $K \in \mathcal{L}_c(C[0,1], C[0,1])$.
- 3. (20分) 设 $v_y(x) = u(x+y)$, 其中 $u \in \mathcal{D}$, δ 表示相对于自变量 x 的 Dirac δ 函数, $a_j \in \mathbb{R}, j = 0, 1, \dots, n$. 试求:
- (i) $< v_u, \delta > = ?$
- (ii) $< v_y, \delta' > = ?$
- (iii) $\langle v_u, \delta^{(j)} \rangle = ?$
- $(iv) < v_y, \sum_{j=0}^{n} (-1)^j a_j \delta^{(j)} > = ?$
- 4. (20分) 设 $A \in \mathcal{L}(H,H)$ 是一个自伴算子, 其中 H 是一个 Hilbert 空间. 而预解式 R(z) 定义为:

$$R(z) = (A - zI)^{-1}.$$

试证:

- (i) 对于一切 $z \in \mathbb{C} \setminus \mathbb{R}$, R(z) 有定义;
- (ii) 对于一切 $z \in \mathbb{C} \setminus \mathbb{R}$,

$$||R(z)|| \le \frac{1}{|\mathrm{Im}z|};$$

(iii) 对于一切 $z, w \in \mathbb{C} \setminus \mathbb{R}$,

$$R(z)R(w)(z-w) = R(z) - R(w) = R(w)R(z)(z-w).$$

5. (20分) 设 $T \in \mathcal{L}(B_1, B_2)$, 其中 B_1, B_2 是两个 Banach 空间, 且 $codim(\operatorname{Im} T) < \infty$. 试证: $\operatorname{Im} T$ 是闭子空间.