ORGANIC ELECTROLUMINESCENT ELEMENT

Publication number: JP2005123095 Publication date: 2005-05-12

Inventor: KIDO JUNJI: MATSUMOTO TOSHIO; NAKADA SOJI;

KAWAMURA NORIFUMI

Applicant: KIDO JUNJI; INTERNAT MFG & ENGINEERING SER

Classification:

- International: C09K11/06: H01L51/50: H01L51/30: C09K11/06: H01L51/50:

H01L51/05; (IPC1-7): H05B33/22; C09K11/06; H05B33/14

- european: H01L51/50J

Application number: JP20030358402 20031017 Priority number(s): JP20030358402 20031017

Also published as:

EP1524706 (A2) US2005084712 (A1 EP1524706 (A3)

CN1610470 (A)

Report a data error hei

Abstract of JP2005123095

PROBLEM TO BE SOLVED: To lower drive voltage of an element by lowering an energy barrier at hole injection from a negative electrode layer or a positive electrode layer into an organic compound layer as well as to greatly reduce danger of electric short circuit between the negative electrode layer and the positive electrode layer without raising the drive voltage by adjusting a film thickness of a hole injection layer. SOLUTION: The element is provided with a positive electrode layer, a negative electrode layer arranged in apposition to the positive electrode, a hole injection layer located between the positive and the negative electrodes and in contact with the positive electrode layer, and at least one luminous layer. At least either the positive electrode layer or the negative electrode layer is transparent, and the hole injection layer contains a mixture film of metal oxide and an organic compound formed by co-deposition. COPYRIGHT: (C)2005, JPO&NCIPI

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11) 特許出願公開番号 特開2005-123095

(P2005-123095A) (43) 公開日 平成17年5月12日(2005.5.12)

(51) Int.C1.7	F 1			テーマコード(参考)
HO5B 33	22 HO5B	33/22	D	3K007
CO9K 11/	'06 CO9K	11/06	690	
HO5B 33/	'14 HO5B	33/14	A	

		審査請求	未請求	請求項の数	18	OL	(全 28 頁)		
(21) 出願音号(22) 出願日	特願2003-358402 (P2003-358402) 平成15年10月17日 (2003.10.17)	(71) 出願人	(人 501231510 城戸 淳二 山形泉米沢市林泉寺3-12-16						
		(71) 出願人	593191350 株式会社アイメス 神奈川県藤沢市桐原町3番地						
		(74) 代理人	100083286 弁理士 三浦 邦夫						
		(74)代理人	100120204 弁理士 平山 轍						
		(72) 発明者	山形県米沢市林泉寺3-12-16						
		(72) 発明者							

(54) 【発明の名称】有機エレクトロルミネッセント素子

(57)【要約】

[課題] 除極端結婚や陽極電影別から有機化合物層へ のホール柱入時におけるエネルギー海壁を低下させるこ とにより、素子の駆動電圧を低下させると共に、前記ホ ール柱入層の膜厚を開整して、駆動電圧を上昇させずに 除極電艦脚と陽極電船間間での電気的施熱の危険性を大 機に低減する。

【解決手段】 緊極電極層と、陽極電極層と対向して配置された除硫電極層と、陽極電極層と、陽極電極層と、陽極電極層との間 に位置する、陽極電極層に接するホール注入層及び少なくとも一層の発光層と、を有し、陽極電極層と陰極電極層の少なくとも一方は透明であり、ホール注入層は全属 酸化物と有機化合物との混合膜を含み、混合膜は共蒸着によって形成されている。

【雑択図】 図 5

40

【特許請求の範囲】

【請求項1】

陽極電極層と、前記陽極電極層と対向して配置された陰極電極層と、前記陽極電極層と前 記陰極電極層との間に位置する、前記陽極電極層に接するホール注入層と、少なくとも一 層の発光層と、を有し、前記陽極電板層と前記録極電極層の少なくとも一方は透明である 有機エレクトロルミネッセント素子であって、前記ホール注入層は金属酸化物と有機化合物との混合膜を含み、前記混合膜は共蒸着によって形成されていることを特徴とする有機 エレクトロルミネッセント素子。

【請求項2】

対向する陽極電極と陰極電極の間に、少なくとも一層の発光層を含む発光ユニットを複数個有する有機エレクトロルミネッセント素子であって、前記発光ユニットのそれぞれが少なくとも一瞬からなる電荷発生層によって仕切られており、前記電荷発生層が1.0×1 0^2 Q·c m以上の比抵抗を有する電気的絶縁層であり、前記陽極電極に接するホール注入層が請求項1に記載のホール注入層であることを特徴とする有機エレクトロルミネッセント素子。

【請求項3】

まま、双1又は請求項2に記載の有機エレクトロルミネッセント素子において、前記混合膜中の前記有機化合物は、イオン化ポテンシャルが5.7eVより小さく、ホール輸送性を有し、前記混合膜は、前記金属酸化物と前配有機化合物問との酸化還元反応によって生成した前記有機化合物のラジカルカチオンと前記金属酸化物のラジカルアニオンからなるためにある。 一般では、前記電荷移動錯体中の前記ラジカルカチオンが、電圧印加時に前記除機電極層の方向へ移動することにより、前記発光層へホールが往入されることを特徴とする有機エレクトロルミネッセント素子。

【請求項4】

請求項3に記載の有機エレクトロルミネッセント素子において、前記有機化合物は、一般 式

[化1]

$$Ar_1 \longrightarrow N \longrightarrow Ar_3$$

で示されるアリールアミン化合物であることを特徴とすることを特徴とする有機エレクトロルミネッセント素子。ただし、Ar、Ar。及びAr3は、それぞれ独立に置換基を有してよい芳香飯設化水素基を表わす。

【請求項5】

請求項3に配載の有機エレクトロルミネッセント素子において、前配有機化合物は、フタロシアニン誘導体を含むポルフィリン化合物誘導体であることを特徴とする有機エレクトロルミネッセント業子。

【請求項6】

請求項4に記載の有機エレクトロルミネッセンント素子において、前記有機化合物は、ガラス転移点が90℃以上であるアリールアミン化合物であることを特徴とする有機エレクトロルミネッセント素子。

【請求項7】

請求項6に記載の有機エレクトロルミネッセント素子において、前記有機化合物であるア リールアミン化合物は、αーNPD、2-TNATA、スピローTAD又はスピローNP Bであることを特徴とする有機エレクトロルミネッセント素子。

【請求項8】

請求項1乃至請求項7のいずれか1項に記載の有機エレクトロルミネッセント素子において、前記金属酸化物がV,O,又はRe,O,であることを特徴とする有機エレクトロルミネ

ッセント素子。

【請求項9】

請求項1、3乃至8のいずれか1項に記載の有機エレクトロルミネッセント素子において、 、基板上に、前記陽極電極層、前記ホール注入層、前記発光層を含む有機構造体、及び前 記陰極電機層が順に機層されていることを特徴とする有機エレクトロルミネッセント素子

【請求項10】

【請求項11】

請求項9に記載の有機エレクトロルミネッセント素子において、前記金属機化物と前記有機化合物の混合比率が前記陽極電極層側から前記発光層を含む有機構造体側にかけて、連続的に変化していることを特徴とする有機エレクトロルミネッセント素子。

【請求項12】

請求項10に起載の有機エレクトロルミネッセント業子において、前記金属酸化物と前記 有機化合物の混合比率が前辺陽極電極層側から前記発光層を含む有機構造体側にかけて、 連続的に変化していることを特徴とする有機エレクトロルミネッセント素子。

【請求項13】

請求項 9 に配載の有機エレクトロルミネッセント素子において、前記金属酸化物と前配有機化合物の混合比率が前配陽極電極層側から前記発光層を含む有機構造体側にかけて、不 連続に変化していることを特徴とする有機エレクトロルミネッセント素子。

【請求項14】

請求項 1 0 に記載の有機エレクトロルミネッセント素子において、前記金属酸化物と前記 有機化合物の混合比率が前記陽極電機層側から前記発光層を含む有機構造体側にかけて、 不連続に変化していることを特徴とする有機エレクトロルミネッセント素子。

【請求項15】

請求項10、12及び14のいずれか1項に記載の有機エレクトロルミネッセント素子に おいて、前記陽極電極層がスパッタリング法で成膜され、かつ前記混合膜がスパッタリン グプロセス時のダメージを低減するための緩衝層として機能している有機エレクトロルミ ネッセント素子。

【請求項16】

請求項15に記載の有機エレクトロルミネッセント素子において、前記スパッタリング法 に使用されるスパッタリング装置は、所定距離隔でて対向配置した一対のターゲットの各 々の周辺の前方に電子を反射する反射電極を設けると共に、磁界発生手段により各ターゲットの周辺部の近傍にその面に平行な部分を有する平行破界を形成した対向ターゲット式 スパッタリング装置である有機エレクトロルミネッセント素子。

【請求項17】

請求項1万至請求項16のいずれか1項に記載の有機エレクトロルミネッセント素子において、前記金属 酸化物が抵抗加熱蒸着法、電子ビーム蒸着法、 又はレーザービーム蒸着法 によって成膜されている有機エレクトロルミネッセント素子。

【請求項18】

請求項1万至請求項16のいずれか1項に記載の有機エレクトロルミネッセント素子において、金属酸化物と有機化合物の混合膜であるホール注入層の比抵抗が、1.0×10²Q・cm以上かつ1.0×10¹⁰Q・cm未満の範囲であることを特徴とする有機エレクトロルミネッセント素子。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、平面光源や表示素子に利用される有機エレクトロルミネッセント素子(有機

エレクトロルミネッセンス素子、以下、「有機 B L 素子」、もしくは「素子」と略記することがある。) に関する。

【背景技術】

[0002]

[0003]

このような高効率素子を開発する上で、陰極電極層からの電子注入や陽極電極層からのホール注入をエネルギー障壁なく有機層に注入する技術は重要な要素として認識されている。前述のTangらは基本的に絶縁物とみなされる有機化合物に対して、金属電極から電子を注入する際に問題となるエネルギー障壁を低下させるため、仕事関数の小さいMg(マグネシウム、仕事関数:3.6eV:仕事関数値はCRC Handbook of

Chemistry and Physics, 64th EDITIONより転載。以下、同様)を使用した。その際、Mgは酸化しやすく不安定であるのと、有機表面への接着性に乏しいので、化学的に安定で、つまり、仕事関数が高く、しかも有機表面に密着性の良いAg(銀、仕事関数:4.6eV)と共蒸着により合金化して用いた。前記合金組成の採用に至るまでの経緯はKODAK社の特許に辞細に記載されている。

[0004]

当初、KODAK社の特許(米国特許No. 4, 3556, 429もしくは、No. 4, work function metal)として、Al, in, Ag, Sn, Pb, Work function metal)として、Al, in, Ag, Sn, Pb, Mg, Mn等の金属を例示しており、具体的な仕事関数値の記載によって低仕事関数金属の定義をしていなかった。しかし、その後の特許(米国特許No. 4, 885, 21后しくは、No. 4, 720, 432もしくはNo. 5, 059, 862)では、陰極電極層に使用される金属の仕事関数は低ければ低いほど、必要とされる動電圧も低くな表とを記載した上で、4,0eV以下の仕事関数を重きを言載した上で、4,0eV以下の仕事間数を重きを言載した。4、0eV以上の金属はむしろ化学的に不安定な4,0eV以下の低任事関数金属と没も分とを記載している。

[0005]

この安定化金属は高仕事関数第2金属(higher work function second metal)と表現され、その候補となる金属に、当初は低仕事関数金属 (Λ low work function metal)として挙げられていた Λ 1、 Λ 8 g、Sn、Pbが含まれており、開発初期の試行錯誤の過程が垣間見られる。また、KODAK社の上記一連の特許中では、最も仕事関数の低いアルカリ金属については、その原理的優位性を認めつつも、来子を安定駆動させるには反応性が高すぎるので陰極電極層金属の候補かち除外するとしている。

[0006]

機化合物層上にリチウムを単独で 10 Å程度に極めて薄く蒸縮し、その上から銀を積層した二層型陰極電極層が低駆動電圧の実現に有効であることを報告している(1 E E E Trans. Electron Devices. 40, 1342 (1993))。 [0007]

さらに、最近では本発明者らはリチウムなどのアルカリ金属、ストロンチウムなどのアルカリ土預金属、サマリウムなどの希土類金属を、除糖電極層金属ではなく、陰極電極層に接する有機層中にドーピングすることにより、駆動電圧を低下させることに成功した日とアファ5、特間平10-270171号、対応米国特許6013384)。これは電極に接する有機層中の有機分子を金属ドーピングによりラジカルアニオン状態とし、陰極電極層からの電子注入障壁を大幅に低下させたためと考えられる。この場合は、陰極電極層からの電子注入障壁を大幅に低下させたためと考えられる。この場合は、陰極電極層としてアルミニウムとができるばかりでなく、17003方に従来は陽極電極層として使用され、陰極電極層には最も不向きであるとされてきた高仕事関数の電極材料でも発光として駆動することも確かめられている(特願2001-1426729参照)。 $\{0008\}$

またさらに本発明者らは特開平11-233262号、又は特開2000-18274号において、陸極電極層に接する部分の有機層を、アルカリ金属イオン、アルカリ工規を組成するか、又は前記有機金属端体化合物と電子輸送性有機化合物との混合層によって構成し、かつ前記陸硫電極層材料が、前記混合層中の有機金属端体化合物によって構成し、かつ前記陸硫電極層材料が、前記混合層中の有機金属が化合物中に含むてるアルカリ金属でイオン、アルカリ土脈金はオオン、不力の土土を真空中において金属で温元しうる熱選元性金属からなることを特徴とする有機エレクトロルミネッセント素子を提案した。(The 10th International Workshop on Inorganic and Organic Electroluminesscence, P-61、Jpn. J. Appl. Phys. Vol. 38 (1999) L1348Part2, No. 118, 15 November, reference 12)、Jpn. J. Appl. Phys. Vol. 480

[0010]

[0009]

このような、電子注入技術における歴史的変遷を見ても理解されるように、有機エレクトロルミネッセント素子開発においては、電子注入電極、もしくは陰極電極層界面の電子注入層形成法の改良は、絶え間なく行われてきており、結果として発光効率の劇的な改善・、低電圧駆動化を可能としてきたために、現在においては有機EL素子の性能向上のための重要な要素技術として認識されるに至っている。

[0011]

また、有機層へのホール注入においては、陽極電極層として比較的仕事関数の高い透明

40

な酸化物電極材料としてITO(Indium Tin Oxide)が用いられることが多かった。有機E1業子は光を面状に取り出す必要があるので、液温表示装置で広く使われてきたこのITOが、その高仕事関数値の故に、比較的有機層へのホール注入に適した材料であったことは、ある意味で幸運な偶然であったとも言える。

[0012]

KODAKE 社の <math>Tang 5 は陽極電極層界面のコンタクトをさらに改善して素子の低電圧化を実現するために 200 Å以下の膜厚の鋼フタロシアニン(CuPc)を、陽極電機 層と正孔輸送性有機化合物との間に挿入した。(上記KODAK社特許参照)また、パイポニア株式会社のグループは大阪大学の城田らの提案したスターパースト型のアリールアミン化合物を用いることで同様の効果を得ている(<math>Appl. Phys. Lett. 6 4、807(1994)。CuPc Appl. Appl.

[0013]

また、豊田中央研究所のグループは ITOよりも仕事関数の大きい、酸化パナジウム (VOX)や酸化ルテニウム (RuOX)や酸化モリブデン (MOX)などの金属酸化物を ITO上に 50~300Åの厚さにスパッタリングの手法を用いて成膜して、陽極電極層である ITOから有機層へのホール注入時のエネルギー障壁を低減した有機 EL素子を提案している (日本国特許第2824411号)。

[0014]

この素子の場合も、ITOを単独で使用した場合と比べて、明らかな低電圧化の効果が 観測されている。同じく、陽極電極層からのホール注入に関して、本出票人らは特原平1 0-49771号公報(特間平11-251067号(対応米国特許第6,423,42 9B2号))や特別2001-244079号(対応米国特許第6,589,673B1 号)に示すように、ルイス酸化合物とホール輸送性有機化合物を共議者の手法により再進 量混合し、ホール注入層とすることで、さらに改善されたホール注入特性を得ることに成 切した(「Jpn.J.Appl.Phys.Vol.41(2002)L358」)。 【0015]

この業子においては、予め有機化合物の酸化剤となりうるルイス酸である化合物を、陽極電極層に接触する有機化合物層中にドーピングすることにより、有機化合物を酸化された状態の分子として存在するので、ホール注入エネルギー障壁を小さくでき、従来の有機として、適当な有機化合物とルイス酸化合物の組み合わせを選べば、従来のドーピング層において、適当な有機化合物のみによって構成される層と異なり、層厚をμーオーダーにまで原くしても駆動選圧の極度にクリースを表します。 展別を μーオーダーにまで原く子 学会予稿集、47巻9号、p1940(1998))。また、前記時間2001-244079号公報(特別2000-54176号)中に記載されているとおり、前記ルイス酸ドーピング層を光学機厚(optical path length シの調像に使用し、発光スペクトル制御層として機能させ、色純度の改善等に利用することもできる。

[0016]

ここで、改めてこれらホール注入技術のそれぞれが持っていた特徴、欠点について列挙すれば以下のようにまとめられる。 まず、本出願人らのルイス酸化合物を混合したホール注入層とは、その低い比抵抗値によって実質的に前記ホール注入層の膜厚によって駆動電圧が上昇しない等の他のホール注入層にはない特徴があり、これまでのところ最も有効な、保存安定性に不安があった。また本発明者らの検討では、対電流効率(または量子効率)を若干ながら低下させる問題があった。また本発明者らの検討では、対電流効率(または量子効率)でと表示となる。また本発明者の検討では、本発明者の検討では電極成限時のフロイスダメージを低減するパッファー層としては機能しなかった。Tangらや城田のフロイスグメージを低減する小で、フェー層としては機能しなかった。Tanggのマホン化ポテンシャルの小さい有機化合物を使用するホール往入層は、陽極電極層界面

20

40

でのコンタクト性能の改善が見られるものの、使用膜厚に上限があるため素子設計の自由 度が制限される。

[0017]

また豊田中央研究所の仕事関数の大きい金属酸化物を陽極電極層上に積層して使用する 場合もその光透過率の低さからやはり使用膜厚の上限があり、また、例示されている化合 物は実質的にすべてスパッタリング法のみでしか成膜できない。

[0018]

いずれにしても、本発明のホール注入層のように、その低い比抵抗値の故に駆動電圧の 膜厚依存性がなく、高い電流効率(量子効率)を維持することができ、電極成膜時のプロ セスダメージ低減層としても機能する性質を併せ持つホール注入層は、これまでのところ 存在していなかった。

[0 0 1 9]

【特許文献 1 】 特願平 1 0 - 4 9 7 7 1 号公報 (特開平 1 1 - 2 5 1 0 6 7)

【特許文献2】特開2000-182774号公報

【特許文献 3】 特開平 1 1 - 2 3 3 2 6 2 号公報

【特許文献4】特開平10-270171号公報

【特許文献 5】特開 2 0 0 1 - 2 4 4 0 7 9 号公報

【特許文献 6】米国特許第4,356,429号明細書

【特許文献7】米国特許第4,539,507号明細書

【特許文献8】米国特許第4、885、211号明細書

【特許文獻9】米国特許第4,720,432号明細書

【特許文献10】米国特許第5,059,862号明細書

【特許文献11】米国特許第6,013,384号明細書

【非特許文献1】第51回応用物理学会学術講演会、講演予稿集28A-PB-4、10

40頁

【非特許文献2】第54回応用物理学会学術講演会、講演予稿集29p-ZC-15、1 127頁

【非特許文献3】IEEE Trans. Electron Devices, vol.

44. No. 8, p. 1342 (1993)

【非特許文献4】IEEE Trans. Electron Devices, 40, 1 3 4 2 (1 9 9 3)

【非特許文献 5】 Appl. Phys. Lett., 73 (1998) 2866

【非特許文献6】The 10th International Workshop on Inorganic And Organic Electroluminesc

ence, 第61頁 【非特許文献7】Appl. Phys. Lett., vol. 70、p. 152 (199

7) 【非特許文献 8】 Jpn. J. Appl. Vol. 41 (2002) pp L 358

【非特許文献 8】 Jpn. J. Appl. Vol. 41 (2002) pp L800

【非特許文献9】SID97DIGEST·P775 【非特許文献 10】 Jpn. Appl. Phy. Vol. 38 (1999) pp L80

【非特許文献 1 1 】 J p n. J. A p p l. P h y s. V o l. 4 1 (2002) p p I. 8 0 0

【発明の開示】

【発明が解決しようとする課題】

[0020]

本発明は、以上の事情に鑑みてなされたものであり、その目的は陰極電極層や陽極電極 層から有機化合物層へのホール注入時におけるエネルギー障壁を低下させることにより、 素子の駆動電圧を低下させると共に、本発明で新たに導入されるホール注入層の抵抗値が

20

他の有機層に比べて桁違いに低いことを利用して、前記ホール注入層の腰厚を(実質的に 上限なく) 調整して、駆動電圧を上昇させずに陰極電極層と陽極電極層間での電気的短絡 の危険性を大幅に低減するために利用することにある。

[0021]

また、金属機化物と有機化合物の混合層である本発明のホール注入層が、スパッタリン グによる電極成膜時に引き起こされる高エネルギー粒子等のダメージを低減するパッファ 一層として機能させることも目的としている。

[0022]

また、本発明者らは、特願2002-086599号において、これまでの有機EL素子とは異なる、新規な構造を有する素子構造を提案した。前記素子構造の特徴は複数の光 光ユニット(従来型有機 BL素子の陰極電極層と関極電極層に挟まれた層部分)が「電荷発生層」と呼ばれる層によって仕切られた構造を有しており、電圧印加時には前記電荷発生層がホールと電子の発生層として機能して、結果的に複数の従来型有機 BL素子が直列に接続されたように同時に発光する特徴を持っている。 【0023】

この電荷発生層は陰極電極層や隔極電極層に接する電子注入層やホール注入層としても 機能することが予想された。なぜなら、前記電荷発生層は、その陰極電極層側に接すする 光ユニットに対してはホール注入層として機能しており、またその陽極電極層側に接すする 発光ニニットに対しては電子注入層として機能しているからである。したがってこの電荷 発生層の構成を隔極電極層に接する層に使用して、素子の低電圧化と安定駆動を達成する のが本発明の目的である。

[0024]

また、本発明の他の目的は、従来の有機 E L 素子においてその駆動電圧や発光効率の一支配要因であった電極(本発明では陽板電機圏)の仕事関数値を不問とし、つまり陽極電機層材料の選択の幅を広げることに勝る。したがって本発明の素子の陽極電極層材料は導電性を有していればいかなる材料でも使用できる。一般に、当業者間では A I のように低事関数が 4.2 e V 2 程度と I T O (5.0 e V 2 程度)と比べて低い値の場合、素子の駆動安定性を損なうことも良く知られている。 【0025】

一方、本発明において前記混合膜を陽極電極層に接するホール注入層として使用する時は、混合膜中で使用されるアリールアミン等の有機分子は既にラジカルカチオン状態にあるので、電圧印加時には陽極電極層材料の種類によらず、エネルギー障壁なく、「発光層を含む有機構造体」へホール注入が可能である。

[0026]

本発明は、以上の事情に鑑みてなされたものであり、関係電極層からのホール注入時の エネルギー陸壁を低減する新しい構成のホール注入層を関格電極層に接する度け、低 電圧駆動化と素子の駆動安定性を付与することを実現することを目的としている。

【課題を解決するための手段】

[0027]

本発明にかかる有機エレクトロルミネッセント素子は、陽極電極層と、陽極電極層と対 向して配置された陰極電極層と、陽極電極層と陰極電極層との間に位置する、陽極電極層 に接するホール注入層及び少なくとも一層の発光層と、を有し、陽極電極層と陰極電極層 の少なくとも一方は透明であり、ホール注入層は金属酸化物と有機化合物との混合膜を含 み、混合膜は共蒸着によって形成されている。

[0028]

本発明にかかる有機エレクトロルミネッセント素子は、対向する陽極電極と陰極電極の間に、少なくとも一層の発光層を含む発光ユニットを複数個有し、発光ユニットのそれぞれが少なくとも一層からなる電荷発生層によって仕切られており、電荷発生層が1.0~ Ω に m以上の比抵抗を有する電気的絶縁層であり、陽極電極に接するホール注入層は金属酸化物と有機化合物との混合膜を含み、混合膜は共蒸費によって形成されている

20

30

[0029]

混合膜中の有機化合物は、イオン化ポテンシャルが5.7 e V より小さく、ホール輸送性を有し、混合膜は、金属酸化物と有機化合物同との酸化還元反応によって生成した有機化合物のラジカルカチオンと金属酸化物のラジカルアニオンからなる電荷移動鎖体を有し、電荷移動鎖体中のラジカルカナオンが、電圧印加時に酸銀電板層の方向へ移動することにまり、発光層へホールが拝入されることが好ましい。

[0030]

有機化合物はアリールアミン化合物であってもよく、例えば一般式 【化1】

Ar₂

で示されるアリールアミン化合物でもよい。ただし、Ar₁、Ar₂及びAr₃は、それぞれ独立に置換基を有してよい芳香族炭化水素基を表わす。また、有機化合物は、ガラス転移点が90℃以上であるアリールアミン化合物であってもよく、例えば、 $\alpha-NPD$ 、2-TNATA、スピローTAD又はスピローNPBであってもよい。

さらに有機化合物は前述の CuPcを代表とする、フタロシアニン化合物やポルフィリン 化合物であっても良い。

さらに、ホール輸送性が確認されている、キナクリドン化合物(及び、その誘導体)やインダンスレン化合物(及びその誘導体)等が、適宜、好適に使用できる。

[0031]

[0032]

基板上に、陽極電極層、ホール注入層、発光層を含む有機構造体、及び陰極電極層を順 に積層させてもよいし、あるいは逆に、基板上に、前記陰極電極層、前記発光層を含む有 機構造体、前記ホール注入層、及び前記陽極電極層を順に積層させてもよい。

[0033] 金属酸化物と有機化合物の混合比率は、陽極電極層側から発光層を含む有機構造体側に かけて、変化していてもよく、変化は連続的であっても不連続であってもよい。

[0034]

臨極電極層は例えばスパッタリング法で成膜することができ、混合膜がスパッタリング プロス時のダメージを低減するための緩衝層として機能しうる。 【0 ○ 3 5 】

スパッタリング法に使用されるスパッタリング装置は、具体的には例えば、所定距離隔てて対向配置した一対のターゲットの各々の周辺の前方に電子を反射する反射電極を設けると共に、破界発生手段により各ターゲットの周辺部の近傍にその面に平行な部分を有する平行破界を形成した対向ターゲット式スパッタリング装置を用いることができる。 【0036】

金属酸化物は、少なくとも抵抗加熱蒸着法、電子ビーム蒸着法、又はレーザービーム蒸 着法によって成職することができる。

[0037]

金属酸化物と有機化合物の混合膜であるホール注入層の比抵抗は、 $1.0 \times 10^2 \Omega$ ・cm以上かつ $1.0 \times 10^{10} \Omega$ ・cm未満の範囲であることが好ましい。

【発明の効果】

[0038]

本発明によれば、陰極電極層や陽極電極層から有機化合物層へのホール注入時における

【発明を実施するための最良の形態】

[0039]

[0040]

つまり、本実施形態の有機 E L 素子において、ホール注入層 3 は (a) イオン化ポテンシャルが5.7 e V より小さく、ホール輸送性すなわち電子供与性を有する有機化合物、及び (b) (a) の有機化合物と酸化還元反応による電荷移動錯体を形成しうる金属酸化物かちなる混合層からなり、前記 (a) 成分と (b) 成分との間で酸化還元反応による電荷移動錯体を形成している。

[0041]

一般に電子供与性を有する有機化合物が容易にラジカルカチオン状態となるにはイオン 化ポテンシャルが5.7 e V より小さいことが望ましい。(a)成分の有機化合物のイオ ン化ポテンシャルが5.7 e V 以上であると、(b)成分の金属酸化物と酸化還元反応を 起こすことが難しくなり、結果的に本発明における電荷移動錯体の形成も因難になる場合 がある。

[0042]

さらに具体的には、 (a) 成分の有機化合物がアリールアミン化合物であり、一般式 (I):

[化2]

$$Ar_1 \longrightarrow N \longrightarrow Ar$$

(式中、Ar」、Ar₂及びAr₃は、それぞれ独立に置換基を有してよい芳香族炭化水素 痣を表わす。)で示されるアリールアミン化合物であるのが好ましい。

[0043]

20

10

30

40

7-97355号公報に開示されているアリールアミン化合物類が好ましく、例えば、N \backslash N \backslash N \backslash - \neg F \backslash D γ = γ - γ D γ = γ - γ D γ = γ D γ = γ D γ = γ ルーN、N' -ジ (3-メチルフェニル) -4, 4' -ジアミノビフェニル、2, 2-ビ ス (4-ジ-p-トリルアミノフェニル) プロパン、N、N、N'、N'ーテトラーp-トリルー4. 4'ージアミノビフェニル、ビス (4ージーゥートリルアミノフェニル)フ ェニルメタン、N, N' -ジフェニル-N, N' -ジ (4-メトキシフェニル) -4, 4 ' ージアミノビフェニル、N, N, N', N' ーテトラフェニルー 4, 4' ージアミノジ フェニルエーテル、 4 , 4 ' -ビス (ジフェニルアミノ) クオードリフェニル、 4 - N . N-ジフィニルアミノスチルベンゼン、N-フェニルカルバゾール、1,1-ビス(4-ジー p - トリアミノフェニル) ーシクロヘキサン、1, 1 - ビス(4 - ジー p - トリアミ ノフェニル) -4-フェニルシクロヘキサン、ビス (4-ジメチルアミノ-2-メチルフ ェニル) -フェニルメタン、N, N, N-トリ (p-トリル) アミン、4-(ジ-p-ト リルアミノ) -4'-[4(ジーp-トリルアミノ) スチリル] スチルベン、<math>N.N.N'. N'ーテトラフェニルー4, 4'ージアミノービフェニルNーフェニルカルバゾール 4. 4'-ビス[N-(1-ナフチル)-N-フェニル-アミノ] ピフェニル、4, 4 '' -ビス「N-(1-+7+h)-N-7ェニルーアミノ」p-9-7ェニル、4 , 4' ーピス [N- (3-アセナフテニル) - N-フェニル-アミノ] ビフェニル、1.5-- (9-アントリル) - N-フェニル-アミノ] ビフェニル、4, 4''-ビス [N-(1 - アントリル) - N - フェニルーアミノ] p - ターフェニル、4.4' ービス [N - (2 - フェナントリル) - N - フェニル - アミノ] ピフェニル、4, 4' - ピス [N - (8 -フルオランテニル) - N - フェニル-アミノ] ビフェニル、4. 4' - ビス [N-(2 -ピレニル) - N - フェニルーアミノ] ビフェニル、4.4' - ビス[N - (2 - ペリレニル) -N-フェニル-アミノ] ビフェニル、4, 4'-ビス [N-(1-コロネニル)- N - フェニル - アミノ] ビフェニル、2, 6 - ビス (ジーp - トリルアミノ) ナフタレ ン、2.6-ビス[ジー(1-ナフチル)アミノ]ナフタレン、2.6-ビス[N-(1 -ナフチル) - N - (2 -ナフチル) アミノ] ナフタレン、4. 4' ' -ビス [N. N-ジ(2ーナフチル) アミノ] ターフェニル、4.4' - ピス (N-フェニル-N-[4-(1-ナフチル) フェニル] アミノ) ビフェニル、4, 4'-ビス [N-フェニル-N-(2-ピレニル) -アミノ] ビフェニル、2, 6-ビス [N, N-ジ(2-ナフチル) ア ミノ] フルオレン、4. 4'' ービス (N, Nージーpートリルアミノ) ターフェニル、 ビス (N-1-ナフチル) (N-2-ナフチル) アミン、下記の式: [(k, 3]

で表わされる 4 , 4' ーピス [N-(2-ナフチル)-N-フェニルーアミノ] ピフェニル $(\alpha-NPD)$ 、下記の式:

20

30

40

[(k. 4]

で表わされるスピロー (spiro-) N P B、下記の式: 【化 5】

で表わされるスピロー (spiroー) TAD、下記の式: 【化 6】

で表わされる 2-T NATA などがある。 さらに、従来有機 EL 素子の作製に使用されている公知のものを適宜用いることができる。

[0044]

またさらに、前紀アリールアミン化合物はガラス転移点が90℃以上であるアリールアミン化合物であることが、素子の耐熱性の観点から望ましい。 【0045】

上記、化3~化6に挙げられた化合物はガラス転移点が90℃以上である化合物の好適な例である。

[0046]

また、本実施形態の有機 E L 素子における陽極電極層に接するホール注入層の最も好適な例は、(a) であるアリールアミン化合物と、(b) 前記アリールアミン化合物と酸化週元反応によって電荷移動錯体を形成しうる金属酸化物との混合層がある。

[0047]

さらに、本実施形態のホール往入層を構成する2種類の化合物が酸化還元反応により電荷移動構体を形成しうるものであるか否かは、吸収スペクトルにより確認できる。吸収スペクトルは、分光学的分析手段(吸収スペクトル測定)によって測定する。本実施形態では、図2に示すように、2種類の化合物が(上述のアリールアミン化合物と金属酸化物)それぞれ単独では、波長800~2000 n mの近赤外領域では吸収スペクトルのビークを示さないが、これらの化合物の混合膜では、波長800~2000 n mの近赤外領域に

吸収スペクトルのピークが顕著に現れている。このため、2種類の化合物間における電子 移動を伴う酸化還元反応により、電荷移動錐体が形成されていることが確認できた。

[0048

図2及び図3に示した各混合膜の吸収スペクトルが、各々の単独の物質の吸収スペクトルの(単純な)重ね合わせではなく、電子移動を伴う反応(つまり酸化還元反応)によって、第3の新たな吸収ビークが近赤外線領域800nmか52000nmの位置に観測されており、本発明者5の検討では、前記混合膜中で発生する酸化還元反応の存在が、電圧加端における電極からの電荷注入を容易にして、結果として素子の駆動電圧を低下させることが判明した。

[0049]

本実施形態の有機E L 集子は、従来の有機E L 集子と同様の成膜順序によって各層を積 他してある。すなわち、ガラス基板上に、階極電極層、ホール注入層、発光層を含む有機 構造体、及び陰極電極層が順に積隔されている。陰極電極層としての金属や1T O は、 抗加熱蒸着やスパッタリングの手法を用いて成膜することができる。この場合、下記の実 施例3 に記載されるように、基板上に陽極電極層としてのA1を積層 た後、本発明の混 合膜をホール注入層として成膜し、最後に透明陰極電極層として1T T O を成膜した 面側(IT O 側)から光を取り出すトップエミッション構造の素子を実現することができる。 一般にA1はホール注入電極としては仕事関数が小さすぎて不向きであると認識され ているが、本発明の混合膜をホール注入層をして使用すればこのような制限を不関とする ことが可能である。

[0050]

また逆に、本実施形態の有機 E L 素子は、従来から広く行われてきた順序とは逆の順序で成膜してある。すわなち、基板上に、陰極電極層、発光層を含む有機構造体、ホール注入層、及び陽極電極層が順に積層されている。陽極電極層としての金属や 1 T O B なんたい 無抗加熱蒸着やスパッタリングの手法を用いて成膜することができる。この場合は、本発明の(混合である)ホール注入層が、陽極電極風成膜時、特にスパッタリングプロセスを使用する I T O 透明電極の成膜プロセス時のダメージ低減層として機能することが期待され、実際、下記実施例 5 に示すように有効に働くことが示される。

[0051]

本発明者らは、特願 2 0 0 1 - 1 4 2 6 7 2 9 明細書において、有機應にダメージのないスパッタリング成版の手法を用いて、金属ドーピングされた電子注入層上に陰極電極層として機能する 1 T 0 透明導電販を成版できることを示している。

【実施例】

[0052]

以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれにより限定されるものではない。 有機化合物、金属酸化物、金属、及び1 T O 透明電極の成膜には、 ア ネルバ製真空蒸着機、またFTSコーボレーション製スパッタリング装置を使用した。 常物質の成膜速度の制御や膜厚の制御は前配洗着機に取付けられている。 水品振動子をしたした 成膜後の実質順厚の制定には、テンコール(T e n c O r) 社製 P 1 0 強計をした。 また、成膜後の実質順厚の制定には、テンコール(T e n c O r) 社製 P 1 0 強計をした。 また、成膜後の実質順厚の制定には、テンコール(K E 1 T H L E Y) 社ソースメータと発計を用いた。素子の特性評価には、ケースレー(K E 1 T H L E Y) 社ソースメータ2 でステップ状に印加して、電圧上昇1秒後の輝度及び電流値を測定した。 また、 E L 素子の スペクトルは、浜松ホトニクスPMAー11 オプチカルマルチチャンネルアナライザーを使用してを電流振動し調定した。

[0053]

基準例

図4の積層構成を有する従来の有機EL素子を基準例として作製した。ガラス基板11 上に陽極透明電極層12として、シート抵抗10Ω/□のITO(インジウムースズ酸化

10

20

30

50

物、日本板硝子社製)がコートされている。その上にホール輸送性(電子供与性)を有する下記式:

[化7]

[化8]

で表されるトリス (8-キノリノラト) アルミニウム錯体層(以下「Alq」という) をホール輸送層13と同じ条件で400点の厚さに真空蒸着して形成した。

[0054]

次に、前記発光層 1 4 の上に、本発明者らが特開平 1 0 - 2 7 0 1 7 1 号公報で開示した電子往入層 (金属ドーピング層、低抵抗電子輸送層) 1 5 として、下記式: 【任9】

で表されるパソクプロイン(以下、BCPと記す)とアルカリ金属であるCs(セシウム)をモル比率BCP:Cs=4:1で共素着し300人の厚さに成膜した。なお、ホール輸送層13、発光層14及で電子注入層15で発光層を含む有機構造体18を構成している。つづいて、陰極電極層(陰極、陰極電極)16として、A1を蒸着速度10人/秒で1000人蒸薪した。発光領域は縦0.2cm、横0.2cmの正方形状とした。

[0055]

基準例の有機 E L 素子において、陽極透明電極層 1 2 である 1 T O と陰極電極層 1 6 である A 1 との間に、直流電圧を印加し、発光層 1 4 (A 1 q)から緑色発光の輝度を測定した。その結果を図 7、図 8、図 9、図 1 0 中の白丸プロット(〇)で示す。また、基準例の素子の発光スペクトルを図 1 1 の太線で示した。

[0056]

実施例1

50

10

20

30

図 5 に実施例 1 の有機 E L 素子の積隔構造を示す。ガラス基板 2 1 上に陽極透明電極層 (陽極電極層) 2 2 として、シー 法抗 1 0 口 / □の 1 T 口 (インジウムースズ酸化物、日本板硝子 社製) がコートされている。その上に金属酸化物である V 2 0 3 たホール輸送性 を有する 有機化合物としての α N P D をモル比率 V 2 0 3 : α N P D = 4 : 1 で共蒸着し、1 0 0 3 人の厚さの混合膜に成膜して、ホール社入層 2 7 を形成した。その後は、上記の基準例と同様に、ホール輸送層 2 3 元 6 至 0 下 2 5 、 陰極電極層(陰極) 2 6 を順次積層した。 なお、ホール輸送層 2 3 、発光層 2 4 、及び電子注入層 2 5 で発光層を合む有機構造体 2 8 を構成している。

[0057]

実施例 1 の有機 E L 素子において、陽極透明電極層 2 2 である I T O と陰極電極層 2 6 である A | との間に、直流電圧を印加し、発光層 2 4 (A I q) から緑色発光の頭度を測定した。その結果を図7、図8、図9、図1 O 中の白四角プロット (□) で示す。また、実施例1 の 素子 0 発光ズベクトルを図1 1 の 点線で示した。

実施例2

図7~図11に示すデータに基づいて基準例、実施例1、実施例2の業子を比較すると 以下のことが分かった。 (1) 実施例1及び実施例2の業子は、実施例1及び実施例2 のようなホール注入層を有さない基準例の素子に比べて、駆動電圧が低く(図7)、最高 輝度も高い(図8、図10)。

(2) 実施例 1 及び実施例 2 の素子は、基準例の素子と比較して、高電流密度領域 (1000mA/cm² の電流密度単位の領域) でも電流効率(量子効率)の低下がほとんど観測されない(図9) ため、素子の信頼性が高い。

(3)実施例1及び実施例2の素子のように、ホール注入層の膜原を厚くしても素子の駆動管には上昇することがなく、むしろ実施例2のようにホール注入層の膜厚が厚い方が、より低程にで所望の電流密度を得ることができる(図7)。

(4) 発光スペクトルは、前記ホール注入層が1000Åと厚い素子(実施例2)は干渉効果によってピーク位置が長波長側にシフトし(図11)、本発明のホール注入層が色調制御にも利用できることが分かった。(実施例2の素子が基準例や実施例1の素子と比べて最高電流効率で若干低い値を示しているのは、この干渉効果によるものである。)

実施例3

図12に実施例3のトップエミッション構造有機EL素子の積層構造を示す。ガラス基板41上にA1(アルミニウム、仕事関数4.2 eV)を10Å/秒の蒸締速度で100 0Åの厚さに成膜して陽極電極層42を形成した。その上に金属極化物であるV20とホール輸送性を有する有機化合物としてのαNPDをモル比率V203:αNPD=4:1で 井蒸着し、100Aの厚さの協合際に成膜して、本発明のホール往入層47を形成した。

20

30

その上にホール輸送層 4 3 として a N P D を 1 0 ⁻⁶ T o r r (1 T o r r = 1 3 3 . 3 2 P a) 下で、2 A グ秒の蒸着速度で600 Åの厚さに成膜し、次に発光層 4 4 として A 1 q をホール輸送層 4 3 と同じ条件で600 Åの厚さに真空蒸着して形成した。 [0061]

次に、前記発光層 4 4 の上に、本発明者らが特開平 1 1 - 2 3 3 2 6 2 号公報で開示した電子注入層 4 5 を形成するため下記式:

【化10】

で表される (8 - キノリノラト) リチウム金属館体層 (以下「Liq」という) を10 A の厚さに成 膜し、次にA 1を15 A 蒸着して熱 選元反応による電子注入層 45 を形成した。なお、ホール輸送層 43、発光層 44 及び電子注入層 45 で発光層を含む有機構造 8 を構成している。次に、陰極透明 電極層 46 として、ITOを、発明者らが特開平2001-142672号公報で開示したスパッタリングの手法を用いて4 A / 秒の速度で1000 Å の厚さ は 放 膜 した。発光領域は 縦 0.2 cm、 横 0.2 cm の正方形状とした。 【0062】

実施例3の有機EL素子において、陽極電極層42であるA1と陰極透明電極層46であるITOとの間に、直流電圧を印加し、発光層44(A1q)から緑色発光の輝度を削むした。その結果を図13、図14、図15、図16中に示す。また、実施例3の素子の発光スペクトルを図17に示した。

[0063]

図14に示すように、実施例3の素子の最高輝度は25000cd/m²を超え、電流 効率も基準例や実施例1の素子と比べて遜色ない値が得られた(図15、16)ため、本 発明のホール注入層はA1のような低仕事関数金属を陽極電極層として用いても良好に機 能することが分かった。

[0064]

実施例 4

図18に実施例4の有機EL素子の積層構造を示す。実施例4の素子は、通常の有機E L素子とは逆の順番に、すなわち、基板上に、陰極透明極層、発光層を含む有機構造体 ホール注入局、及び陽極電極層が順、積層されている。ガラス基板51上に陰極透明電 板層56として、シート抵抗100/口の1T0(インジウムースズ酸化物、日本板硝子 社製)がコートされている。その上に電子注入層(金属ドーピング層)55として、BC PとCsをモル比率BCP:Cs=4:1で共蒸着し100人の厚さの混合膜に成限した

[0065]

[0066]

実施例4の有機BL素子において、陰極透明電極層52であるITOと陽極電極層56であるAlとの間に、直流電圧を印加し、発光層54(Alq)から緑色発光の輝度を測

定した。その結果を、図19、図20、図21、図22に示す。また、実施例4の素子の 発光スペクトルを図23に示した。

[0067]

図20に示すように、実施例4の素子の最高輝度は20000cd/m²に進し、電流 効率も基準例や実施例1の素子と比べて遜色ない値が得られた(図21、図22)ため、 実施例4の有機EL素子は通常の素子と逆順に積層して最後に成膜される陽極電極層の前 に、ホール注入層を設けて、かつAlのような低仕事関数金属を陽極電極層として用いて も良好に機能することが分かった。

[0068]

実施例5

図24に実施例5の有機EL素子の積層構造を示す。実施例5の素子は、通常の有機EL素子とは逆の順器に、すなわち、基板上に、陰極透明電極層、発光層を含む有機構造体、ホール社入層、及び陽極透明電極層が順に積層されている。ガラス基板61上に陰極端 明電機層66として、シート抵抗100/□のITO(インジウムースズ酸化物、日本板 領子社製)がコートされている。その上に電子注入層65として、BCPとCsをモル比 率BCP:Cs=4:1で共蒸着し100人の厚さの混合膜に成膜した。

[0069]

実施例 5 の有機 F. L 素子において、陰極透明電極層 6 2 である I T O と階極透明電極層 6 2 である I T O と階極透明電極層 6 2 である I T O と階極透明電極層 度を削定した。その結果を図2 5、図2 6、図2 7、図2 8 に示す。これらの図において、ガラス基板 (基板) 側からの測定結果を白丸プロット (○) で、成膜面側から見た測定結果を黒丸プロット (●) で示した。また、図2 9 において、実施例 5 の素子のガラス基 (基板) 側から見た発光スペクトルを実線で、成膜面側から見た発光スペクトルを図2 9 の点線で示した。

[0071]

実施例5の素子は、ガラス基板側と成膜面側(隔極透明電極層側)のいずれからも発光 を観察できる透明な発光薬子である。しかし、両発光スペクトルは図29に示すように、 干減効果により互いに異なるものであった。

[0072]

また、実施例5の素子は通常の素子と逆順に積層しており、最後に成膜される陽極電極層の前にホール注入層を設けている。このため、陽極透明電極層62である1TOのスパッタリングプロセスにおいても、ホール注入層67によって保護されることにより、発光層を含む有機構造体68へのダメージが低減され、ホール注入層67がダメージ低減層として良好に機能することが分かった。

[0073]

なお、本実施形態にかかる有機エレクトロルミネッセント素子は、複数の発光ユニット (陰極電極層と陽極電極層に挟まれた層部分、例えば、「(陽極) / ホール注入層 / ホール輸送層 / 発光層 / 電子注入層 / (陰極) 」という構成の素子の場合は、「ホール注入層 / ホール輸送層 / 発光層 / 電子注入層 / が「発光ユニット」に相当する。)が電荷発生層 によって仕切られた構造を採用してもよく。電圧印加時には電荷発生層がホール発生層 電子発生層として機能して、結果的に複数の有機 E L 素子が直列に接続されたように同時

30

50

に発光させることができる。電荷発生層は、その陰極電極層側に接する発光ユニットに対してはホール注入層として機能し、またその陽極電極層側に接する発光ユニットに対して は電子注入層として機能しする。

[0074]

参考例

参考例として、本発明のホール注入層の比抵抗(Q・cm)を、被測定物の比抵抗の値(レンジ)によって2種類の方法で測定した。

[0075]

第1 の測定法 (サンドイッチ法) は、比較的比抵抗の大きい物質に対して適当とされる方法で、被測定物の蒸着薄膜を電極で挟持した形態(図3 0 及び図3 1 に示すサンドイッチ構造の比抵抗評価用素子)で測定を行った。自加電圧 (V) と被測定物等限の膜厚(cm) (つまり電極間距離)から得られる電場 E (V/c m) 及び観測電流 (A) と電流が流れる領域の断面積 (c m^2) とから得られる電流密度 (A/c m^2) の比〔(V/c m) /(A/c m^2) = ($Q\cdot c$ m)] として比抵抗を算出した。

具体的には (2mm幅の) ITO電極101上に (場合により2mm幅のA1電極上に) 被測定物103を所望の膜厚になるように蒸着し、最後に (同じく2mm幅の) アルミカ辺電低102をITO電極101と直交するように成膜して、比抵抗評価用業子を作製した。

[0077]

第2の測定法(並置法)は、比較的比抵抗の小さい物質に対して適当とされる方法で、並 世構造の比抵抗評価用業子を用いて測定する。すなわち、図32及び図33に示した場を、表板200上の同一平面上に予め陽極電極層201、陰極電極層202となるを所定距離(Lcm)陽でて成膜されたものを用意しておき、その上から被測定物203級着標膜を所定の閉口艦(Wcm)を有するエリア規定用金属マスクを介して、所定の腹厚(tcm)を成膜する。この場合得られる電場E(Cm)と成膜する。この場合得られる電場E(A/cm)は、即加電医(V)を電極順距離(Lcm)で除して算出され、電流密度(A/cm²)は観測電流(A)を電流が流れる領域の断面積(この場合はW×tcm²)で除して算出される。このようにして得られた値から、前記のサンドイッチ構造の場合と同様に、比抵抗(Ω・cm)を算出した。

[0078]

[0079]

図34から算出した比抵抗は以下のとおりである。

(1) 並置法で測定

- O - I T O 4. 6 × 1 0 ⁻⁴ Ω ⋅ c m

 $- \bullet - V_2 O_5$ 7. $2 \times 10^4 \Omega \cdot c m$

- ▲ - (V₂O₅: αNPD=4:1)の共蒸着膜 2.0×10³Ω·cm - ◇ - (V₂O₅: αNPD=1:1)の共蒸着膜 3.6×10⁴Ω·cm

30

-+- (V₂O₅: αNPD=1:2)の共蒸着膜 2.9×10⁵Ω・cm

- □ - (V₂O₅: 2 - T N A T A = 4:1) の共蒸着膜 5.8 × 10³ Ω · c m

[0080] (2) サンドイッチ法で測定

- A - I T O / V 2 O 4 / A 1

2. 8×10⁵Ω·cm 1. 7×10⁵Ω·cm - ☆ - 1 T O / C s : B C P / A 1

4. 8 × 1 0 13 Ω · c m -▼- A1/A1q₃/A1

-★- 1 T O / α N P D / A 1

- ■ - ITO/V,O5: αNPD (50Å) /αNPD (1000Å) /V,O5: αN 8. 0 × 1 0 8 Ω · c m PD (50Å) / A1

1. 5×10¹³Ω · c m

この結果に示すように、 V_2O_5 を含むホール注入層の比抵抗は、1.0×10 $^2\Omega$ ・c m以上かつ1. 0×10¹⁰Ω・cm未満の範囲内にある。

[0081]

図35に示されるとおり、本実施形態の金属酸化物と有機化合物の混合膜であるホール 注入層は、両物質の混合によりそれぞれの物質が単独では示すことのない低い比抵抗を示 し、この事実によっても電子移動に伴う酸化還元反応の存在が示唆されており、ひいては 素子の低駆動電圧化と高効率化にこのホール注入層が有効である基礎的な証明となってい る。

[0082]

なお、本実施形態のホール注入層の膜厚は、特に制限はないが5Å以上とすることが好 ましい。このホール注入層中では無電場の状態でもアリールアミン化合物がラジカルカチ オンの状態で存在し、内部電荷として振る舞えるので膜厚には特に上限はなく、その低い 比抵抗値の故に厚膜にしても素子の電圧上昇をもたらすことがないので電極間の距離を通 常の有機EL素子の場合よりも長く設定することにより短絡の危険性を大幅に軽減する手 段としても有用である。したがって電極間の総膜厚を2000Å以上にしても、通常の有 機EL素子と変わらない低電圧駆動が可能である。

【図面の簡単な説明】

[0083]

【図1】ホール注入層における電荷移動錯体の形成と電圧印加時におけるホールの移動を 示す説明図である。

【図2】アリールアミン化合物である2-TNATA、α-NPD、スピローTAD及び スピローNPB、及び、金属酸化物であるV2〇5(5酸化パナジウム)それぞれの単独で の吸収スペクトル、並びに、各アリールアミン化合物と5酸化パナジウムとの混合膜の吸 収スペクトルを示す図である。

【図3】 $\alpha - NPD$ とRe $_{2}O_{7}$ (7酸化レニウム)の混合膜の吸収スペクトルを示す図で

【図4】基準例の素子の積層構造を示す模式図である。

【図5】実施例1の素子の積層構造を示す模式図である。

【図6】実施例2の素子の積層構造を示す模式図である。

【図7】 基準例、実施例1及び実施例2の素子の電流密度 (m A / c m²) - 駆動電圧 (V) 特性を示す図である。

【図8】基準例、実施例1及び実施例2の輝度 (cd/m²) - 駆動電圧 (V) 特性を示 す図である。

【図9】基準例、実施例1及び実施例2の電流効率 (cd/A) -電流密度 (mA/cm 2) 特性を示す図である。

【図10】基準例、実施例1及び実施例2の電力効率(1m/W) - 輝度(cd/m²) 特件を示す図である。

【図11】基準例、実施例1及び実施例2の素子の発光スペクトルを示す図である。

【図12】実施例3の素子の積層構造を示す模式図である。

【図13】実施例3の素子の電流密度 (m A / c m²) - 駆動電圧 (V) 特性を示す図で

```
ある。
 【図14】 実施例3の輝度(cd/m²) - 駆動電圧(V) 特性を示す図である。
 【図15】 実施例3の電流効率 (cd/A) -電流密度 (mA/cm²) 特性を示す図で
ある。
 【図 1 6 】実施例 3 の電力効率 (1 m/W) - 輝度 (c d/m²) 特性を示す図である。
 【図17】実施例3の素子の発光スペクトルを示す図である。
 【図18】 実施例4の素子の結層機造を示す模式図である。
 【図19】 実施例4の素子の電流密度(mA/cm²) - 駆動電圧(V) 特性を示す図で
 ある。
 【図20】実施例4の輝度(cd/m²)-駆動電圧(V)特性を示す図である。
                                                   10
 【図21】実施例4の電流効率 (cd/A) -電流密度 (mA/cm²) 特性を示す図で
 ある。
 【図22】実施例4の電力効率(1 m/W) - 輝度(c d/m²) 特性を示す図である。
 【図23】 実施例4の素子の発光スペクトルを示す図である。
 【図24】実施例5の素子の積層構造を示す模式図である。
 【図25】実施例5の素子の電流密度(mA/cm²) -駆動電圧(V)特性を示す図で
 ある。
 【図 2 6 】実施例 5 の輝度 ( c d / m<sup>2</sup>) - 駆動電圧 ( V ) 特性を示す図である。
 【図27】実施例5の電流効率 (cd/A) -電流密度 (mA/cm²) 特性を示す図で
                                                   20
 ある。
 【図28】実施例5の電力効率(1m/W) - 輝度(cd/m²)特性を示す図である。
 【図29】実施例5の素子の発光スペクトルを示す図である。
 【図30】サンドイッチ法による比抵抗評価用素子を示す平面図である。
 「図31】図30の線A-Aにおける断面図である。
 [図32] 並置法による比抵抗評価用素子を示す平面図である。
 【図33】図32の線B-Bにおける断面図である。
 【図34】参考例の電流密度 (A / c m²) - 電場 (V / c m) 特性を示す図である。
 【図35】 V<sub>2</sub>O<sub>5</sub>とαNPDの共蒸着膜の混合比(モル分率)と比抵抗(Ω・cm)の関
 係を示す図である。
                                                   30
 【符号の説明】
 [0084]
                        陽極電極層
 1, 42, 52
                        発光層を含む有機構造体
 2, 28, 38, 48, 58, 68
 3, 27, 37, 47, 57, 67
                        ホール注入層
 21, 31, 41, 51, 61
                        ガラス基板
                        陽極電極層 (陽極透明電極層)
 22,32,62
 23, 33, 43, 53, 63
                        ホール輸送層
 24, 34, 44, 54, 64
                        発光層
 25, 35, 45, 55, 65
                        電子注入層
                        陰極電極層 (陰極層)
                                                   40
26,36
                        除極雷極屬 (除極透明雷極層)
 46, 56, 66
```


【図21】 • ######

【図 2 2 】 。 жалноет

フロントページの続き

(72)発明者 仲田 壮志

神奈川県藤沢市桐原町3番地 株式会社アイメス内

(72)発明者 川村 憲史

神奈川県藤沢市桐原町3番地 株式会社アイメス内

F ターム(参考) 3K007 AB03 AB06 AB08 AB11 DB03 FA01