THE SPARKS FOUNDATION

TASK 1

NAME: Yashika kushwaha

Task: Data Science & Buisness Analytic Supervised ML

OBJECTIVE:

- 1) Predict the percentage of an student based on the no. of study hours using supervised ML.
- 2) Predict what will be score if a student studies for 9.25 hrs/ day.

Dataset successfully imported!

In [5]:

1 data

Out[5]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30
21	4.8	54
22	3.8	35
23	6.9	76

	Hours	Scores
24	7.8	86

```
In [6]: 1 # head of dataset
2 data.head()
```

Out[6]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30

Out[7]:

	Hours	Scores
20	2.7	30
21	4.8	54
22	3.8	35
23	6.9	76
24	7.8	86

```
In [8]: 1 data.shape
```

Out[8]: (25, 2)

```
In [9]: 1 data.describe()
```

Out[9]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

```
In [10]: 1 data.info()
```

Out[11]:

	Hours	Scores
0	False	False
1	False	False
2	False	False
3	False	False
4	False	False
5	False	False
6	False	False
7	False	False
8	False	False
9	False	False
10	False	False
11	False	False
12	False	False
13	False	False
14	False	False
15	False	False
16	False	False
17	False	False
18	False	False
19	False	False
20	False	False
21	False	False
22	False	False

```
Hours Scores
               False
                      False
          23
          24
               False
                      False
In [12]:
           1 data.isnull().sum()
Out[12]: Hours
                    0
          Scores
                    0
          dtype: int64
In [13]:
           1 #scatter plot
           2 data.plot(x='Hours', y='Scores', style = 'o')
           3 plt.title("Hours vs Scores")
           4 plt.xlabel("No. of hours studied ->")
           5 plt.ylabel("Percentage ->")
           6 plt.show()
                               Hours vs Scores
```


From the above graph, we can infer that there is a positive linear relation between the number of hours studied and percentage of score.

8/8/2021 intern 2 - Jupyter Notebook

Out[15]: <AxesSubplot:>

From the above, plot we can see there are not outiler in dataset.

```
In [16]:
           1 # Data pre-processing to fetch input / independent variable & dependent attribute
             x = data.iloc[:,:-1].values
           4 y = data.iloc[:,-1].values
In [17]:
           1 x
Out[17]: array([[2.5],
                [5.1],
                [3.2],
                [8.5],
                [3.5],
                [1.5],
                [9.2],
                [5.5],
                [8.3],
                [2.7],
                [7.7],
                [5.9],
                [4.5],
                [3.3],
                [1.1],
                [8.9],
                [2.5],
                [1.9],
                [6.1],
                [7.4],
                [2.7],
                [4.8],
                [3.8],
                [6.9],
                [7.8]])
In [18]:
           1 y
Out[18]: array([21, 47, 27, 75, 30, 20, 88, 60, 81, 25, 85, 62, 41, 42, 17, 95, 30,
                24, 67, 69, 30, 54, 35, 76, 86], dtype=int64)
```

8/8/2021 intern 2 - Jupyter Notebook

Implementing linear regression algorithm

No of Hours =[[9.25]]

Predicted Score = 93.69173248737538

```
In [23]:
           1 # Testing our Algorithm
           3 print(X_test) # Testing data - In Hours
           4 y pred = regressor.predict(X test) # Predicting the scores
         [[1.5]
          [3.2]
          [7.4]
          [2.5]
          [5.9]]
In [24]:
           1 # Creating a data frame of actual and predicted values
           3 data frame = pd.DataFrame({'Actual' : Y test, 'Predicted' : y pred})
           4 data frame
Out[24]:
            Actual Predicted
               20 16.884145
               27 33.732261
               69 75.357018
                30 26.794801
               62 60.491033
In [25]:
           1 # Checking the percentage on the given data point(studey hours = 9.25)
           3 hours = [[9.25]]
           4 own pred = regressor.predict(hours)
           5 print("No of Hours ={}".format(hours))
           6 print("Predicted Score = {}".format(own pred[0]))
```

Mean Absolute error is : 4.183859899002975

Conclusion: Hence, we concluded that if a study studies for 9.25 per day, then their is a possibilty of perentage comes out to be 93.6917%

In []: 1