Electric Circuits

Eleventh Edition, Global Edition

Chapter 2
Circuit
Elements

The circuit symbols for (a) an ideal independent voltage source and (b) an ideal independent current source.

(a) (b) Circuit symbols for ideal dependent voltage sources and (c) (d) ideal dependent current sources.

Example 1 (1)

Example 1(2)

Example 2 (1 of 2)

Example 2 (2 of 2)

Electrical Resistance

OHM'S LAW

Two possible reference choices for the current and voltage at the terminals of a resistor and the resulting equations.

Circuit symbols. (a) Short circuit. (b) Open circuit. (c) Switch.

Kirchhoff's current law:

•The algebraic sum of all the currents at any node in a circuit equals zero.

KCL

Example (KCL)

Kirchhoff's voltage law

 The algebraic sum of all the voltages around any closed path in a circuit equals zero.

Example (KVL)

Example

- a) Use Kirchhoff's laws and Ohm's law to find i0 in the circuit shown in Fig.
- b) Test the solution for by verifying that the total power generated equals the total power dissipated.

Solution: The circuit shown in Fig. with the unknowns i_1 , v_o , and v_1 defined.

The power dissipated in the 50 Ω resistor is

$$p_{50\Omega} = (3)^2(50) = 450 \text{ W}.$$

The power dissipated in the 10Ω resistor is

$$p_{10\Omega} = (-3)^2 (10) = 90 \text{ W}.$$

The power delivered to the 120 V source is

$$p_{120V} = -120i_o = -120(-3) = 360 \text{ W}.$$

The power delivered to the 6 A source is

$$p_{6A} = -v_1(6)$$
, but $v_1 = 50i_1 = 150 \text{ V}$.

Therefore

$$p_{6A} = -150(6) = -900 \text{ W}.$$

The 6 A source is delivering 900 W, and the 120 V source is absorbing 360 W. The total power absorbed is 360 + 450 + 90 = 900 W. Therefore, the solution verifies that the power delivered equals the power absorbed.

UNDERSTANDING PASSIVE SIGN CONVENTION

We must examine the voltage across the component and the current through it

$$P_{S1} = V_{AB}I_{AB}$$

$$P_{S2} = V_{A'B'}I_{A'B'}$$

Voltage(V)	Current A - A'	S1	S2
positive	positive	supplies	receives
positive	negative	receives	supplies
negative	positive	receives	supplies
negative	negative	supplies	receives

Pearson

 $egin{array}{c|c} \mathsf{ONS_1} & \mathsf{ONS_2} \\ \pmb{V_{AB}} > 0, \pmb{I_{AB}} < 0 & \pmb{V_{AB'}} > 0, \pmb{I_{AB'}} > 0 \\ \end{array}$

ON S2 $V_{A'B'} < 0, I_{A'B'} > 0$

WHEN IN DOUBT LABEL THE TERMINALS OF THE COMPONENT

WHICH TERMINAL HAS HIGHER VOLTAGE AND WHICH IS THE CURRENT FLOW DIRECTION

COMPUTE POWER ABDORBED OR SUPPLIED BY EACH ELEMENT

IMPORTANT: NOTICE THE POWER BALANCE IN THE CIRCUIT

EXERCISES WITH DEPENDENT SOURCES

DETERMINE THE POWER SUPPLIED BY THE DEPENDENT SOURCES

TAKE VOLTAGE POLARITY REFERENCE

TAKE CURRENT REFERENCE DIRECTION

POWER ABSORBED OR SUPPLIED BY EACH ELEMENT

$$P_1 = (12V)(4A) = 48[W]$$

$$P_2 = (24V)(2A) = 48[W]$$

$$P_3 = (28V)(2A) = 56[W]$$

$$P_{DS} = (1I_x)(-2A) = (4V)(-2A) = -8[W]$$

$$P_{36V} = (36V)(-4A) = -144[W]$$

NOTICE THE POWER BALANCE

USE POWER BALANCE TO COMPUTE IO 6 V $I_x = 2 \text{ A}$ -12**W** 2 A $\frac{12 \text{ V}}{2} + \frac{(12)(-9)}{1}$ $(6)(I_0)$ 6 V 11 A $8I_{\chi}$ 4 V (10)(-3)(4)(-8) $(8 \times 2)(11)$ 3 A 8 A $P_{2A} = (6)(-2) = -12 \text{ W}$ $P_1 = (6)(I_o) = 6I_o W$ $P_2 = (12)(-9) = -108 \text{ W}$ $P_3 = (10)(-3) = -30 \text{ W}$ $P_{4V} = (4)(-8) = -32 \text{ W}$

 $I_{o} = 1[A]$

$$-12 + 6I_0 - 108 - 30 - 32 + 176 = 0$$

 $P_{DS} = (8I_x)(11) = (16)(11) = 176 \text{ W}$

KCL

•SUM OF CURRENTS FLOWING INTO A NODE IS EQUAL TO SUM OF CURRENTS FLOWING OUT OF THE NODE

A node is a point of connection of two or more circuit elements. It may be stretched out or compressed for visual purposes...
But it is still a node

WRITE ALL KCL EQUATIONS

$$-i_{1}(t) + i_{2}(t) + i_{3}(t) = 0$$

$$i_{1}(t) - i_{4}(t) + i_{6}(t) = 0$$

$$-i_{2}(t) + i_{4}(t) - i_{5}(t) + i_{7}(t) = 0$$

$$-i_{3}(t) + i_{5}(t) - i_{8}(t) = 0$$

$$-i_{6}(t) - i_{7}(t) + i_{8}(t) = 0$$

THE FIFTH EQUATION IS THE SUM OF THE FIRST FOUR... IT IS REDUNDANT!!!

KCL DEPENDS ONLY ON THE INTERCONNECTION.
THE TYPE OF COMPONENT IS IRRELEVANT

KCL DEPENDS ONLY ON THE TOPOLOGY OF THE CIRCUIT

WRITE KCL EQUATIONS FOR THIS CIRCUIT

- •THE LAST EQUATION IS AGAIN LINEARLY DEPENDENT OF THE PREVIOUS THREE
- •THE PRESENCE OF A DEPENDENT SOURCE DOES NOT AFFECT APPLICATION OF KCL KCL DEPENDS ONLY ON THE TOPOLOGY

Find I_1 and I_2

 $10mA - 4mA - I_1 = 0$

$$10\mathbf{i}_x + \mathbf{i}_x - 44\mathbf{m}\mathbf{A} = 0$$
$$\mathbf{i}_x = 4\mathbf{m}\mathbf{A}$$

$$i_x - 10i_x + 120mA - 12mA = 0$$

DETERMINE THE CURRENTS INDICATED

$$I_{\Lambda} = 2m\Lambda$$

$$I_5 = 5mA$$

THE PLAN

MARK ALL THE KNOWN CURRENTS

FIND NODES WHERE ALL BUT ONE CURRENT ARE KNOWN

$$I_1 = 2mA$$
, $I_2 = 3mA$, $I_3 = 5mA$

$$I_6 - I_1 - 2I_2 = 0 \Rightarrow I_6 = 8mA$$

$$I_5 + I_2 - I_6 = 0$$

$$I_4 + I_3 - I_5 = 0$$

$FIND I_x$

VERIFICATION

$$I_b = 1mA + I_X = -2mA$$
$$2I_X + 4mA = I_b$$

KVL

KVL: THE ALGEBRAIC SUM OF VOLTAGE DROPS AROUND ANY LOOP MUST BE ZERO

$$O - V + O \equiv O + (-V) - O$$
 $A - B = A - B$
A VOLTAGE RISE IS
A NEGATIVE DROP

Write the KVL equation for the following loop, traveling clockwise:

PROBLEM SOLVING TIP: KVL IS USEFUL TO DETERMINE A VOLTAGE - FIND A LOOP INCLUDING THE UNKNOWN VOLTAGE

THE LOOP DOES NOT HAVE TO BE PHYSICAL

EXAMPLE: V_{R1} , V_{R3} ARE KNOWN DETERMINE THE VOLTAGE V_{be}

$$V_{R_1} + V_{be} + V_{R_3} - 30[V] = 0$$

$$+V_{R_1}-5+V_{R_2}-15+V_{R_3}-30=0$$

BACKGROUND: WHEN DISCUSSING KCL WE SAW THAT NOT ALL POSSIBLE KCL EQUATIONS ARE INDEPENDENT. WE SHALL SEE THAT THE SAME SITUATION ARISES WHEN USING KVL

$$V_{R_1} + V_{R_4} - 16 - 24 = 0$$

$$V_{R_2} + V_{R_3} + 8 + 16 - V_{R_4} = 0$$

$$V_{R_1} + V_{R_2} + V_{R_3} + 8 - 24 = 0$$

THE THIRD EQUATION IS THE SUM OF THE OTHER TWO!!

FIND THE VOLTAGES V_{ae} , V_{ec}

$$V_{ae} + 10 - 24 = 0$$

$$16 - 12 + 4 + 6 - V_{ae} = 0$$

GIVEN THE CHOICE USE THE SIMPLEST LOOP

$$4 + 6 + V_{ec} = 0$$

DEPENDENT SOURCES ARE HANDLED WITH THE SAME EASE

$$V_{R_1} + V_{R_2} - V_S = 0$$

$$20V_{R_1} + V_{R_3} - V_{R_2} = 0$$

$$V_{ad} = \underline{\hspace{1cm}}, \quad V_{eb} = \underline{\hspace{1cm}}$$

DEPENDENT SOURCES ARE NOT REALLY DIFFICULT TO ANALYZE

REMINDER: IN A RESISTOR THE VOLTAGE AND CURRENT DIRECTIONS MUST SATISFY THE PASSIVE SIGN CONVENTION

SAMPLE PROBLEM

DETERMINE

$$V_x = 4v$$

$$V_{ab} = -8V$$

Power disipated on

the 2k resistor

$$P_{2k} =$$

Remember past topics

We need to find a closed path where only one voltage is unknown

FOR
$$V_X$$

$$V_X + V_2 - V_1 + 4 = 0$$

$$V_X + 4 - 12 + 4 = 0$$
Pearson

$$V_X + V_2 + V_{ab} = 0$$
$$V_{ab} = -V_X - V_2$$

Example: A circuit with a dependent source.

Example:

Example

