Affine and Vector Spaces

LA1 \diamond **1.** Suppose ℓ_1 and ℓ_2 are skew lines in the space \mathbb{R}^3 . Is it true that lines PQ, where $P \in \ell_1$, $Q \in \ell_2$, sweep the whole space?

LA1 \diamond **2.** Find a basis of the vector space $V = \{p(x) \in \mathbb{R}_4[x] : p'(5) = 0\}$.

LA1\displays. Find a dimension and a basis of the vector space

- (a) of all symmetric matrices $A \in Mat_n(\mathbb{R})$.
- (b) of all skew-symmetric matrices $A \in Mat_n(\mathbb{R})$.
- (c) $\mathfrak{sl}_n(\mathbb{R}) = \{ A \in \operatorname{Mat}_n(\mathbb{R}) : \operatorname{tr} A = 0 \}.$

LA1 \diamond **4.** Give an example of a finite dimensional space V and three its pairwise transversal subspaces U, W, T (that is, intersecting only at the origin) such that dim U+dim W+dim T = dim V, but $U + W + T \neq V$.

LA1 \diamond **5.** Suppose dim(U + V) = dim($U \cap V$) + 1 for some two vector subspaces $U, V \subset \mathbb{R}^n$. Is it true that U + V is equal to one of the subspaces U, V and $U \cap V$ is equal to another?

LA16. Is it possible that the intersection of the positive orthant

$$\{(x_1, x_2, x_3, x_4) : x_1, x_2, x_3, x_4 \ge 0\} \subset \mathbb{R}^4$$

with some 2-dimensional plane is a square?

LA1 \diamond **7.** Let *V* be a vector space of dimension *n* over the finite field \mathbb{F}_q of *q* elements. How many

- (a) vectors (b) bases (c) *k*-dimensional subspaces are there in *V*?
- **LA1** \diamond **8.** Let *V* be an affine space of dimension *n* over the finite field \mathbb{F}_q of *q* elements. How many *k*-dimensional affine subspaces are there in *V*?

LA1 \diamond **9.** For which $c \in \mathbb{R}$ the hyperplane $\sum x_j = c$ intersects with

- (a) the three dimensional cube $I^3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : |x_j| \le 1 \ \forall j \}$?
- (b) the four dimensional cube $I^4 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : |x_j| \le 1 \ \forall j \}$?

Draw all the polygons and polyhedra respectively that are cut from the cube by such hyperplanes.

LA1 \diamond **10.** Prove that the vector space of all continuous functions on \mathbb{R} is infinite dimensional.