Университет ИТМО

Лабораторная работа №1 «WiFi»

по дисциплине: Беспроводные сети

Выполнили: Соболев Иван, Верещагин Егор, Абульфатов Руслан Р34312 Преподаватель: Оголюк Александр Александрович

Санкт-Петербург 2024

1. Тестовый стенд

- В качестве FTP-сервера выступает ПК с ОС Windows 11, на котором установлена программа FileZilla, с помощью которой и развернут FTP-сервер.
- В качестве FTP-клиента выступает ПК с ОС macOS 14.4.1. Скрипт, который эмулирует FTP-клиента, запускается с помощью Python 3.12
- Точка доступа ELTEX NTU-RG-5420G-Wac. Параметры точки доступа:

- Расстояние от сервера до роутера: 200 см
- Расстояние от клиента до роутера: 240 см
- Тариф скорости интернета от провайдера: 300 Мбит/с

2. Настройка ftp-сервера:

На компьютере с ОС Windows был настроен FTP-сервер FileZilla:

Также были настроены разрешения на брэндмауере:

Создание программы для эмуляции ftp-клиента:

Для эмуляции ftp-клиента была написана программа:

```
import time
from ftplib import FTP
import subprocess

address = "192.168.0.8"
command = ["ping", "-c", "10", address]

def ping():
    try:
    result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)

    output = result.stdout
    errors = result.stderr

    print("Выходные данные команды ping:")
    print(оиtput)
```

```
if errors:
      print("Ошибки:")
      print(errors)
  except Exception as e:
    print(f"Произошла ошибка: {e}")
def create_large_file(filename, size_in_gb):
  """Создает файл заданного размера в Гб."""
  with open(filename, 'wb') as f:
    f.write(os.urandom(size_in_gb * 1024 * 1024))
def upload file ftp(ftp, filename):
  """Загружает файл на FTP-сервер и замеряет время передачи."""
  ftp.set pasv(True)
  start time = time.time()
  with open(filename, 'rb') as f:
    ftp.storbinary(f'STOR {os.path.basename(filename)}', f)
  end time = time.time()
  elapsed time = end time - start time
  file size = os.path.getsize(filename)
  speed_mbps = (file_size * 8) / (1024 * 1024 * elapsed_time) # Биты в Мегабиты/сек
  return elapsed time, speed mbps
def main():
  filename = 'large file 2.bin'
  size in mb = 300
  ftp host = '192.168.0.8'
  ftp user = 'Asus'
  ftp pass = 'root'
  # print("Создание большого файла...")
  # create_large_file(filename, size_in_mb)
  # print(f"Файл {filename} успешно создан.")
  ftp = FTP(ftp host)
  ftp.login(ftp_user, ftp_pass)
  print("Начало загрузки на FTP...")
```

```
elapsed_time, speed_mbps = upload_file_ftp(ftp, filename)
ftp.quit()

print(f"Загрузка завершена.")
print(f"Время передачи: {elapsed_time:.2f} секунд.")
print(f"Скорость передачи: {speed_mbps:.2f} Мбит/с.")

ping()

if __name__ == "__main__":
main()
```

Она подключается к ftp-серверу и загружает на него файл размером 300Мб, при это замеряя скорость и время передачи, также выполняет команду ping 10 раз и собирает информацию.

3. Сравнение параметров

Доступные к изменению параметры:

Основные настройки WLAN

На роутере удалось изменить стандарт WiFi на:

WLAN Basic Settings

Стандарт	Время	Скорость передачи	Среднее время	Максимальное
	передачи(сек)	(Мбит/с)	отклика(мс)	время отклика
				(MC)
A	115.57	20.77	17.170	29.644
N	77.43	31	9.542	17.783
A+N	104.95	22.87	23.407	35.724
AC	143.23	16.76	64.338	159.197
N+AC	85.03	28.22	18.020	30.948
A+N+AC	96.16	24.96	19.803	32.641

Можем видеть, что наилучшим по характеристикам стандартом оказался стандарт N.

Также на роутере можно изменить ширину канала:

 Ширина канала:
 Auto

 ✓ 20MHz
 40MHz

 Текущая ширина канала:
 40MHz

Будем измерять различие характеристик от ширины канала на наиболее быстром стандарте - N.

Ширина канала (МГц)	Время передачи(сек)	Скорость передачи (Мбит/с)	Среднее время отклика(мс)	Максимальное время отклика (мс)
20	82.77	29	18.247	27.899
40	93.91	25.26	26.377	64.475

Можем видеть, что наилучшие параметры передачи достигаются при ширине канала 20 МГц. Чем больше ширина канала, тем больше пакетов данных может обрабатываться одновременно, из-за чего могут быть просадки скорости.

Также на роутере еще можно изменить мощность передатчика:

Мощность передатчика(mW):	√ 100%	
	80%	J
Максимальное количество клиентов:	60%	
	40%	2
	20%	

Мощность	Время	Скорость передачи	Среднее время	Максимальное
передатчика	передачи(сек)	(Мбит/с)	отклика(мс)	время отклика
				(мс)
100	77.43	31	9.542	17.881
80	90.53	26.51	18.625	29.959
60	109.31	21.96	18.635	28.174
40	113.39	21.17	17.569	28.054
20	115.95	20.70	17.520	29.209

Чем больше мощность передатчика, тем быстрее скорость.

Выбор канала

Для анализа каналов WIFI использована программа – NetSpot

Для эксперимента подключимся к другим доступным каналам:

Канал	Время передачи(сек)	Скорость передачи (Мбит/с)	Среднее время отклика(мс)	Максимальное время отклика (мс)
Auto (DFS)	133.99	17.91	20.969	29.940
40	130.30	18.42	57.153	201.140
153	171.46	14.00	51.705	158.839

Выводы

В рамках выполнения лабораторной работы мы подняли на ноутбуке FTP-сервер и подключились к нему с другого ноутбука по локальной сети. Далее с помощью скрипта измерили характеристики передачи данных при изменении параметров WI-FI. Для нашей локальной сети наиболее быстрым оказался стандарт N с шириной канала 20 МГц и максимальной мощностью передатчика.