

دانشگاه اصفهان

دانشكده مهندسي كامپيوتر

تمرین سوم هوش محاسباتی: شبکه های عصبی و کاربردها Neural Networks & Applications

نگارش

دانیال شفیعی مهدی مهدیه امیررضا نجفی

استاد راهنما

دكتر كارشناس

فهرست مطالب

۲		مفدمه	•
۲		مفاهيم و حل مسئله	١
١١	1	کدزنی و پیاده سازی	۲
	١		
۱۱	١	۱.۱.۲ مقدمه	
۱۱	دادهها	۲.۱.۲ پیشپردازش	
۱۱	گرسیون لجستیک	۳.۱.۲ بخش اول: رَّ	
۱۲	سبکه با یک لایه پنهان	۴.۱.۲ بخش دوم: ش	
۱۳	طبقهبندی چندکلاسه	۵.۱.۲ بخش سوم: م	
14	: مقایسهی ویژگیهای شبکه عصبی نیمه پیشرفته	۶.۱.۲ بخش چهاُرم:	
۱۴	زی	٧.١.٢ توابع فعالسا	
۱۵	ىھىنەسازى	۸.۱.۲ الگوریتههای	

مقدمه

هدف از این تمرین آشنایی بیشتر با شبکه های عصبی و استفادهی بیشتر از آنها در کاربردهای عملی است.

۱ مفاهیم و حل مسئله

۱. بله، هر نورون در یک شبکهٔ عصبی حامل نوعی اطلاعات است؛ اما ماهیت و میزان «وضوح» این اطلاعات بسته به عمق
 لایه و ویژگیهای بنیادین شبکه متفاوت است.

چهار ویژگی بنیادی و سلسلهمراتبی بودن نمایش:

(آ) توابع غيرخطى (Nonlinearity)

- هر نورون پس از ترکیب خطی ورودیها (ضرب وزنها + بایاس) خروجی را از طریق تابعی مانند ReLU، sigmoid یا tanh عبور میدهد.
- بدون غیرخطیسازی، شبکه عملاً یک عملگر خطی بزرگ خواهد بود و قادر به تشخیص زیرویژگیهای پیچیده نیست.
- تابع فعالسازی باعث می شود هر نورون تنها در صورت وقوع یک الگوی خاص «فعال» شود و در نتیجه به عنوان یک تشخیص دهندهٔ ساده عمل کند.

(ب) نمایش توزیع شده (Distributed Representation)

• برخلاف سیستمهای سمبلیک که هر مفهوم را با یک واحد منفرد نمایش میدهند، شبکههای عصبی مفاهیم را بهصورت همزمان در بردار فعالسازی تعداد زیادی نورون کدگذاری میکنند.

- این پراکندگی اطلاعات باعث افزایش مقاومت شبکه در برابر نویز و آسیب به نورونهای منفرد می شود.
 - هر نورون سهم جزئی اما معنادار در تشخیص زیرویژگیهای ساده یا انتزاعی دارد.

(ج) یادگیری گرادیان محور (Gradient-based Learning)

- با استفاده از الگوریتم پس انتشار (Backpropagation)، وزنها و بایاس هر نورون بهروزرسانی می شود تا خطای خروجی به کمترین مقدار برسد.
- در طی آموزش، هر نورون به زیرویژگیهایی پاسخ میدهد که برای کاهش خطا در مسئلهٔ مشخص مفیدند.
- در پایان آموزش، وزنهای ورودی هر نورون تعیین میکنند که آن نورون به چه الگو یا ویژگی حساس باشد.

(د) سلسلهمراتب ویژگیها (Hierarchical Feature Learning)

- لایههای ابتدایی شبکههای عمیق معمولاً به زیرویژگیهای ساده مانند لبههای عمودی/افقی یا بافتها حساس اند.
 - لایههای میانی ترکیب این زیرویژگیها را انجام داده و الگوهای پیچیدهتر را میآموزند.
- در لایهٔ خروجی (مثلاً نورونهای softmax) احتمال تعلق هر ورودی به یک کلاس نهایی (مثلاً «گربه» یا «سگ») کدگذاری می شود.
- ۲. در شبکههای عصبی، «دانش» در قالب پارامترها (وزنها و بایاسها) ذخیره میشود و از طریق فرآیند آموزش شکل میگیرد؛ در ادامه، یک پاسخ یکپارچه و مرتبشده ارائه شده است:

(آ) شکلگیری دانش در شبکههای عصبی

- i. تعریف ساختار شبکه (Architecture): انتخاب تعداد لایهها (Input, Hidden, Output)، نوع آنها (fully-connected)، کانولوشن، بازگشتی و ...) و تعداد نورون در هر لایه.
- ii. مقداردهی اولیه پارامترها (Initialization): وزنها و بایاسها معمولاً با توزیعهای تصادفی (مثل Xavier یا He) مقداردهی می شوند.
 - iii. انتشار رو به جلو (Forward Propagation): برای هر ورودی x، در هر y نانتشار رو به جلو

$$z^{(\ell)} = W^{(\ell)} a^{(\ell-1)} + b^{(\ell)}, \quad a^{(\ell)} = \sigma(z^{(\ell)})$$

در نهایت $a^{(L)}$ خروجی نهایی شبکه است.

- نیا رگرسیون یا (Loss Calculation): با تابع هزینه ($L(y_{\mathrm{pred}}, y_{\mathrm{true}})$ مانند iv. محاسبه خطا ($C_{\mathrm{ross-Entropy}}$
 - v. پس انتشار خطا (Backpropagation): مشتق تابع هزینه را نسبت به پارامترها محاسبه می کنیم:

$$\frac{\partial L}{\partial W^{(\ell)}}, \quad \frac{\partial L}{\partial b^{(\ell)}}$$

.i. بهروزرسانی پارامترها (Optimization): با الگوریتمهایی مثل Gradient Descent یا vi.

$$W^{(\ell)} \leftarrow W^{(\ell)} - \eta \, \frac{\partial L}{\partial W^{(\ell)}}, \quad b^{(\ell)} \leftarrow b^{(\ell)} - \eta \, \frac{\partial L}{\partial b^{(\ell)}}$$

این چرخه تا رسیدن به همگرایی تکرار میشود.

(ب) فرمول بندی «معادل بودن» دو شبکه عصبی

 $M(x) = f_{\theta_N}(x)$ دو شبکه (Exact Functional Equivalence) دو شبکه i. $f_{\theta_N}(x)$ دقیقاً معادل اند اگر: $f_{\theta_N}(x)$

$$\forall x \in X, \quad N(x) = M(x).$$

 $d(x) = \|N(x) - M(x)\|_p$ با فاصلهٔ خروجی (Approximate Equivalence) تقریب معادل iii.

$$\forall x \in X, \ d(x) < \epsilon$$
 $\forall x \in X, \ d(x) < \delta.$

(ج) مثال ریاضی

 $\sigma(z)=z$ دو شبکه خطی با یک لایه پنهان و i.

$$N(x) = W_2(W_1 x + b_1) + b_2, \quad M(x) = W'_2(W'_1 x + b'_1) + b'_2.$$

آنها معادلاند اگر:

$$W_2W_1 = W_2'W_1', \quad W_2b_1 + b_2 = W_2'b_1' + b_2'.$$

- ii. اشارهای به حالت غیرخطی: در شبکههای غیرخطی (مثلاً ReLU)، تبدیلات پیچیدهترند؛ اما با ادغام BatchNorm یا تبدیلات جبری می توان مشابهت رفتار را نشان داد.
- ۳. در شبکههای عصبی، توانایی یادگیری، بهخاطر سپاری (Memorization) و تعمیم (Generalization) بر پایهی ساختار معماری، الگوریتمهای آموزش و ویژگیهای دادهها شکل میگیرد. در ادامه، این سه قابلیت را همراه با مبانی ریاضی و مثالهای عینی بررسی میکنیم.
 - (آ) یادگیری (Learning)

شبکه با کمینهسازی تابع هزینه

$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} \ell(f_{\theta}(x_i), y_i)$$

و به کارگیری انتشار رو به جلو و پسانتشار خطا ،(Backpropagation) پارامترهای θ (وزنها و بایاسها) را با الگوریتمهای گرادیان محور ،Adam (SGD و ...) به روزرسانی میکند:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} L(\theta).$$

• قضیه تقریب جهانی (Universal Approximation Theorem) هر شبکه ی با حداقل یک لایه پنهان و تابع فعالسازی غیرفابی (مثلاً ReLU یا Sigmoid) میتواند هر تابع پیوسته روی یک مجموعه ی کامیکت را تقریب بزند.

• **ویژگی توزیعی** (Distributed Representation) هر نورون یا زیراسختار فقط بخشی از ویژگیهای داده را مدل می کند و با ترکیب میلیونها پارامتر، شبکه قادر به نمایش الگوهای غیرخطی و سلسلهمراتبی است.

(ب) بهخاطر سیاری (Memorization)

شبکههای overparameterized (پارامترها خیلی بزرگتر از نمونهها) میتوانند جزئیات حتی نویزی دادههای آموزشی را حفظ کنند:

. بزرگ Complexity Rademacher و VC-Dimension Capacity: High

• مثال Bias-Variance Tradeoff

Complexity $\uparrow \rightarrow \text{Bias} \downarrow$, Variance \uparrow , Memorization \uparrow

اگر هیچ ضابطهای (Regularization) وجود نداشته باشد، شبکه میتواند اطلاعات آموزشی را تقریباً کامل بازتولید کند.

(Generalization) تعميم (Generalization)

تعمیم یعنی عملکرد خوب روی دادههای ندیده. این امر با ترکیب مکانیزمهای implicit و explicit regularization و explicit regularization و Inductive Bias

$$L_{\text{reg}}(\theta) = L(\theta) + \lambda \|\theta\|_2^2$$

- Implicit Regularization: رفتار SGD شبکه را به سمت مینیممهای تخت (flat minima: مینیممهای تخت (flat minima) هدایت میکند.
 - Regularization صریح:
 - افزودن $\lambda \|\theta\|_2^2$ به تابع هزینه. (L2) Weight Decay $oldsymbol{-}$
 - Dropout: غيرفعالسازي تصادفي نورونها.
 - Early Stopping: پایان آموزش پیش از شروع شدید
 - Inductive Bias معمارى:
 - CNN: اشتراک وزنها و حساسیت به ویژگیهای مکانی.
 - RNN/Transformer: نگاشت توالی های زمانی و وابستگی های ترتیبی.
- نرمالسازی (Batch Normalization) کاهش حساسیت به مقیاس وزنها و تثبیت جریان گرادیان.
- دادههای متنوع و کافی کمیت و کیفیت دادههای آموزشی پایهی استخراج قاعدههای عمومی و کاهش Overfitting
- (د) پیوند با «معادل بودن دو شبکه» و «شکلگیری دانش» شکلگیری دانش = پارامترهای بهینه θ که از فرآیند یادگیری بهدست می آیند. معادل بودن دو شبکه وقتی است که:

$$\forall x, \ N(x) = M(x)$$
 Functional) (Exact

یا تقریباً: (Structural Symmetry)، یا تقریباً: یا با پرموتیشن π روی نورونها

$$||N(x) - M(x)||_p < \varepsilon$$
 \downarrow $\mathrm{KL}(N(x) || M(x)) < \delta$.

- ۴. در زیر سه نوع رایج از "توابع تبدیل نورونی" (یا به عبارت دیگر انواع نورونهای مرتبه بالا و RBF) را به صورت ریاضی می بینید:
 - (آ) نورون درجه دوم (Quadratic Neuron):

$$\operatorname{net}(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i x_j + \sum_{i=1}^{n} v_i x_i + b,$$
$$y = f(\operatorname{net}(\mathbf{x})),$$

که در آن

- $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n \bullet$
- ضرایب ضربهای درجه دوم، w_{ij}
 - ضرایب ترکیب خطی، v_i
 - b باياس،
 - تابع فعالسازی. $f(\cdots)$

(ب) نورون کروی (Spherical / RBF Neuron):

$$\operatorname{net}(\mathbf{x}) = \|\mathbf{x} - \boldsymbol{\mu}\| = \sqrt{\sum_{i=1}^{n} (x_i - \mu_i)^2}, \quad y = f(\operatorname{net}(\mathbf{x})),$$

یا گونهی مربعی بدون ریشه:

$$\operatorname{net}(\mathbf{x}) = \sum_{i=1}^{n} (x_i - \mu_i)^2, \quad y = \exp(-\gamma \operatorname{net}(\mathbf{x})),$$

که در آن

- مرکز نورون، $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n) \bullet$
 - \bullet ضریب پهنای باند، $\gamma > 0$
- هي باشد. ميتواند تابع خطى يا نمايي باشد. $f(\cdot)$
- (ج) نورون چندجملهای (Polynomial Neuron): ابتدا ترکیب خطی و توان:

$$u = \sum_{i=1}^{n} w_i x_i + b, \quad y = u^d = \left(\sum_{i=1}^{n} w_i x_i + b\right)^d.$$

به صورت کلی برای ورودی چندبعدی:

$$y = \sum_{\alpha_1 + \dots + \alpha_n \le d} w_{\alpha_1, \dots, \alpha_n} \ x_1^{\alpha_1} \cdots x_n^{\alpha_n},$$

که در آن

درجه چندجملهای، d

اندیسهای چندجملهای، $lpha_i \in \mathbb{N}_0$

ضرایب متناظر. $w_{\alpha_1,\dots,\alpha_n}$

۵. سوال ۵

(آ) طراحی پرسیترون تکلایه

فرض کنیم میخواهیم الگوها را به صورت برچسب $t_1=-1$ برای $t_2=+1$ برای $t_2=+1$ دسته بندی کنیم. باید $w\in\mathbb{R}^3$ باید $w\in\mathbb{R}^3$ باید نیم میخواهیم الگوها را طوری بیابیم که

$$\begin{cases} \operatorname{sign}(w^{\top} P_1 + b) = -1, \\ \operatorname{sign}(w^{\top} P_2 + b) = +1. \end{cases}$$

این معادلات به صورت نابرابری های زیر نوشته می شوند:

$$w^{\mathsf{T}}(-1, -1, 1) + b < 0, \quad w^{\mathsf{T}}(+1, -1, 1) + b > 0.$$

به سادگی میتوانیم مثلاً وزنها را به صورت w=(1,0,0) ، و بایاس b=0 انتخاب کنیم:

$$w^{\mathsf{T}} P_1 + b = -1 < 0, \quad w^{\mathsf{T}} P_2 + b = +1 > 0.$$

لذا تابع تصميم $y = \mathrm{sign}(x_1)$ دو الگو را به درستی تفکیک میکند.

(ب) طراحی شبکه Hamming

شبکه همینگ برای N الگو P_k به صورت زیر است:

$$\mathbf{W} = \begin{bmatrix} P_1^\top \\ P_2^\top \end{bmatrix}, \quad y = \arg\max_k (\mathbf{W} \, x)_k.$$

برای P_1, P_2 داریم:

$$\mathbf{W} = \begin{pmatrix} -1 & -1 & 1 \\ +1 & -1 & 1 \end{pmatrix}, \quad .\sum_i W_{k,i} x_i$$
انتخاب k با بیشینه ی

(ج) طراحی شبکه Hopfield

شبکه هاپفیلد با الگوهای باینری ± 1 به کمک قاعده $T=\sum_k P_k P_k^{ op}$ ساخته می شود. اینجا داریم:

$$T = P_1 P_1^{\top} + P_2 P_2^{\top} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & -2 & 2 \end{pmatrix}.$$

درس مبانی هوش محاسباتی صفحه ۹ از ۱۸

سپس حالت نرونیها با قاعده $x_i \leftarrow \mathrm{sign} \left(\sum_j T_{ij} x_j \right)$ به سمت نزدیک ترین الگو جذب می شود.

٧. (آ) طراحي مرز تصميم و شبكه پرسپترون تكلايه

با انتخاب وزنها و بایاس زیر:

$$\mathbf{w} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad b = \frac{1}{2}$$

تابع فعالسازي گام به اين صورت خواهد بود:

$$y = \begin{cases} 1, & \mathbf{w}^{\top} \mathbf{x} + b > 0, \\ 0, & \text{وگرنه}. \end{cases}$$

معادله مرز تصميم:

$$-x_1 - x_2 + \frac{1}{2} = 0 \iff x_1 + x_2 = \frac{1}{2}.$$

ε ان تشخیص قابلیت جداسازی و تعیین بازه (ب

از نامعادلات زیر برای کلاس بندی استفاده میکنیم:

$$\begin{cases}
-x_1 - x_2 + b > 0 & 1 \\
-x_1 - x_2 + b < 0 & 0
\end{cases}$$

نتیجه می شود که برای هر $\varepsilon \geq 0$ می توان $w_1 = w_2 = -1$ و $w_1 = w_2 = -1$ را انتخاب کرد و جداسازی خطی امکانپذیر است.

(ج) اجرای الگوریتم پرسپترون و نتایج نهایی

برای سه مقدار ε اجرای الگوریتم با نرخ یادگیری $\eta=1$ ، وزن و بایاس را از صفر مقداردهی کرده و تا خطای صفر تکرار میکنیم.

برنامهٔ ۱: پیادهسازی الگوریتم پرسپترون

```
import numpy as np
 def perceptron_train(P, t, lr=1, max_epochs=1000):
    w = np.zeros(2)
   b = 0.0
   epc = 0
   for epoch in range(max_epochs):
      errors = 0
     for x, target in zip(P, t):
       y = 1 if np.dot(w, x) + b > 0 else 0
       if y != target:
          errors += 1
          update = lr * (target - y)
          w += update * x
          b += update
      if errors == 0:
        break
      epc = epoch
   return w, b, epc+1
 epsilons = [1, 2, 6]
 for eps in epsilons:
   P = [
      np.array([0,1]), np.array([1,-1]), np.array([-1,1]),
44
      np.array([1,eps]), np.array([1,0]), np.array([0,0])
۲۵
   t = [0,1,1,0,0,1]
۲۷
   w, b, epochs = perceptron_train(P, t)
   print(f" ={eps}: w={w}, b={b}, epochs={epochs}")
```

```
\varepsilon = 1: \mathbf{w} = (-1, -1), \ b = 1, \ \text{epochs} = 2,

\varepsilon = 2: \mathbf{w} = (-2, -2), \ b = 1, \ \text{epochs} = 4,

\varepsilon = 6: \mathbf{w} = (-3, -4), \ b = 3, \ \text{epochs} = 4.
```

(د) خلاصه نتایج

- $.x_1 + x_2 = \frac{1}{2}$ مرز تصمیم: •
- بازه $arepsilon: 0 \geq 0$ (تمام مقادیر غیرمنفی).
- ullet وزنها و بایاس نهایی برای $\varepsilon = 1, 2, 6$ مطابق جدول فوق.
- الگوريتم پرسپترون حداكثر تا ۴ دور همگرا شده و خطاي صفر حاصل شد.

٨. سوال ٨

٩. سوال ٩

۲ کدزنی و پیاده سازی

۱.۲ بخشهای ۱ تا ۴

۱.۱.۲ مقدمه

هدف این پروژه، پیادهسازی کامل یک شبکه عصبی از پایه و بدون استفاده از کتابخانههای آماده مانند TensorFlow یا PyTorch برای اهداف آموزشی است. این پروژه شامل مراحل مختلفی از جمله رگرسیون لجستیک، شبکه با لایه پنهان و در نهایت طبقهبندی چندکلاسه می باشد.

۲.۱.۲ پیش پر دازش دادهها

برای انجام این پروژه، از مجموعه داده CIFAR-10 استفاده شده است. تصاویر با استفاده از توابع موجود در corchvision بارگذاری شده و به آرایههای CuPy تبدیل گردیدهاند تا از قدرت محاسباتی GPU بهرهبرداری شود. دیتاست به دو صورت مختلف برای وظایف دودویی و چندکلاسه یردازش شد:

- طبقهبندی دودویی: تصاویر هواپیما (airplane) با برچسب صفر و سایر کلاسها با برچسب یک.
 - طبقه بندی چند کلاسه: برچسبها به صورت one-hot برای ده کلاس مختلف نگاشته شدند.

۳.۱.۲ بخش اول: رگرسیون لجستیک

در این مرحله، هدف تشخیص اینکه آیا یک تصویر متعلق به کلاس هواپیما است یا خیر میباشد. مدل تنها شامل یک لایه است با تابع فعالسازی سیگموئید:

$$\hat{y} = \sigma(Wx + b)$$

تابع خطاي مورد استفاده، Binary Cross-Entropy است:

$$\mathcal{L}(y, \hat{y}) = -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$

پارامترها با گرادیان نزولی بهروزرسانی شدند.

شكل ١: تغييرات دقت و هزينه در طي آموزش با مدل رگرسيون لجستيك

١	Classification	Report:				
۲	precision	recall	f1-score	support		
٣						
۴	Airplane	0.5455	0.3240	0.4065	1000	
۵	Not Airplane	0.9281	0.9700	0.9486	9000	
۶						
v	accuracy			0.9054	10000	
٨	macro avg	0.7368	0.6470	0.6776	10000	
٩	weighted avg	0.8899	0.9054	0.8944	10000	

شکل ۲: ماتریس آشفتگی برای مدل رگرسیون لاجستیک بعد ۱۰۰ ایپاک

۴.۱.۲ بخش دوم: شبکه با یک لایه پنهان

در این بخش، مدل با افزودن یک لایه پنهان با ۶۴ نورون توسعه یافت. معماری شبکه به صورت زیر است:

$$Z_1 = W_1 X + b_1$$

$$A_1 = \sigma(Z_1)$$

$$Z_2 = W_2 A_1 + b_2$$

$$A_2 = \sigma(Z_2)$$

در اینجا نیز از سیگموئید به عنوان تابع فعالسازی استفاده شده و آموزش با الگوریتم گرادیان نزولی انجام شده است.

```
Classification Report:
precision recall f1-score support
```


شكل ٣: تغييرات دقت و هزينه در طي آموزش با مدل رگرسيون لجستيك چند لايه

Airplane	0.7000	0.2310	0.3474	1000	
Not Airplane	0.9205	0.9890	0.9535	9000	
accuracy			0.9132	10000	
macro avg	0.8102	0.6100	0.6504	10000	
weighted avg	0.8984	0.9132	0.8929	10000	

شكل ۴: ماتريس آشفتگي براي مدل رگرسيون لاجستيك چند لايه بعد ۲۰ ايپاك

۵.۱.۲ بخش سوم: طبقهبندی چندکلاسه

در این مرحله، شبکه برای شناسایی تمامی ۱۰ کلاس CIFAR-10 طراحی شد. خروجی شبکه دارای ۱۰ نورون با تابع فعالسازی Softmax

$$Softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^{10} e^{z_j}}$$

درس مبانی هوش محاسباتی صفحه ۱۴ از ۱۸

تابع هزینه مورد استفاده، Categorical Cross-Entropy است.

شكل ٥: تغييرات دقت و هزينه در طي آموزش با مدل رگرسيون وانهات چند لايه

١	Classification	Report:			
۲	precision		recall	f1-score	support
٣					
4	airplane	0.5959	0.5840	0.5899	1000
۵	automobile	0.6030	0.5970	0.6000	1000
۶	bird	0.4269	0.3270	0.3703	1000
V	cat	0.3580	0.3430	0.3504	1000
٨	deer	0.4403	0.3800	0.4079	1000
٩	dog	0.4317	0.3920	0.4109	1000
١.	frog	0.4860	0.6400	0.5524	1000
11	horse	0.5580	0.5720	0.5649	1000
17	ship	0.5958	0.6750	0.6329	1000
14	truck	0.5547	0.5880	0.5709	1000
14					
۱۵	accuracy			0.5098	10000
19	macro avg	0.5050	0.5098	0.5051	10000
١٧	weighted avg	0.5050	0.5098	0.5051	10000
۱۸					
19					

۶.۱.۲ بخش چهارم: مقایسهی ویژگیهای شبکه عصبی نیمه پیشرفته

در این بخش، یک شبکه عصبی نیمه پیشرفته با قابلیت استفاده از بهینهسازهای مختلف و توابع فعالسازی گوناگون پیادهسازی شده است. ساختار شبکه به گونهای طراحی شده که از وزندهی اولیه مناسب، ذخیرهسازی گرادیانها، و بهینهسازهای مدرن مانند Adam پشتیبانی میکند.

۷.۱.۲ توابع فعالسازی

توابع فعالسازی نقش مهمی در آموزش شبکههای عصبی ایفا میکنند. در این پروژه از سه تابع فعالسازی پرکاربرد شامل ReLU، Sigmoid، و Tanh استفاده شده است.

شكل ۶: ماتريس آشفتگي براي مدل رگرسيون وان هات چند لايه بعد ۵۰ ايپاک

• تابع Sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}}, \quad \sigma'(x) = \sigma(x)(1 - \sigma(x))$$

• تابع Tanh:

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \quad \frac{d}{dx} \tanh(x) = 1 - \tanh^2(x)$$

• تابع ReLU•

$$f(x) = \max(0, x), \quad f'(x) = \begin{cases} 1 & x > 0 \\ 0 & x \le 0 \end{cases}$$

در تحلیل تجربی، تابع ReLU بهدلیل سادگی محاسباتی و اجتناب از مشکل ناپدید شدن گرادیانها عملکرد برتری نسبت به سایر توابع نشان داد.

۸.۱.۲ الگوریتمهای بهینهسازی

در این پروژه سه الگوریتم زیر پیادهسازی و بررسی شدهاند:

درس مبانی هوش محاسباتی صفحه ۱۶ از ۱۸

۱. SGD: بهروزرسانی وزنها به صورت مستقیم و بر پایه گرادیان فعلی صورت می گیرد:

$$\theta = \theta - \eta \nabla_{\theta} J(\theta)$$

که در آن η نرخ یادگیری و $J(\theta)$ تابع هزینه است.

Momentum : این روش برای بهبود همگرایی، از سرعت قبلی استفاده می کند:

$$v_t = \gamma v_{t-1} - \eta \nabla_{\theta} J(\theta)$$
 , $\theta = \theta + v_t$

که در آن γ ضریب مومنتوم است.

. . Adam : این روش تخمین هایی از میانگین و واریانس لحظه ای گرادیان ها ذخیره می کند:

$$m_{t} = \beta_{1} m_{t-1} + (1 - \beta_{1}) g_{t}$$

$$v_{t} = \beta_{2} v_{t-1} + (1 - \beta_{2}) g_{t}^{2}$$

$$\hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}}, \quad \hat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}^{t}}$$

$$\theta = \theta - \eta \frac{\hat{m}_{t}}{\sqrt{\hat{v}_{t}} + \epsilon}$$

شکل ۷: مقایسهی همگرایی SGD و تکانه با فعالسازهای یکسان در دو لایه در دادههای تست و آموزش

مقداردهي اوليه وزنها

برای بهبود عملکرد یادگیری، از دو روش مقداردهی اولیه استفاده شده است:

ReLU: براى توابع Initialization He

$$Var(w) = \frac{2}{n_{in}}$$

درس مبانی هوش محاسباتی صفحه ۱۷ از ۱۸

Tanh: و Sigmoid براى توابع Initialization Xavier ●

$$Var(w) = \frac{1}{n_{in}}$$

شكل ٨: اثر مقداردهي اوليه He دريك شبكه دو لايه با بهينه ساز تكانه در ٣٠ ايپاك

مقايسه تجربى توابع فعالسازى

در بخش سوم، برای مقایسه عملکرد توابع فعالسازی، سه شبکه با ساختار یکسان ولی با توابع ،Sigmoid، ReLU و Tanh آموزش داده شد. نتایج نشان دادند که:

- ReLU منجر به همگرایی سریعتر و دقت بالاتر در دادههای تست شد.
- Sigmoid به دلیل ناپدید شدن گرادیان در لایه های عمیق ضعیف ترین عملکرد را داشت.
 - Tanh عملکردی بین دو تابع دیگر ارائه داد.

نتایج در قالب نمودارهای دقت در طول اپوکها رسم گردیدند.

مقایسه تجربی بهینهسازها

در بخش پایانی، عملکرد سه الگوریتم Momentum ،SGD و Adam بر روی یک شبکه سهلایه آزمایش شد. نتایج حاکی از آن بود که:

- Adam در اکثر موارد سریعتر همگرا شد و به دقت بالاتری رسید.
 - \bullet Momentum پایداری بهتری نسبت به Momentum
 - استفاده از بهینه ساز مناسب نقش مهمی در کیفیت آموزش دارد.

مدل طراحی شده در این پروژه به دلیل ساختار ماژولار و قابل گسترش، قابلیت استفاده در کاربردهای مختلف را دارد. نتایج تجربی نشان دادند که انتخاب دقیق تابع فعال سازی، مقداردهی اولیه مناسب، و الگوریتم بهینه سازی مؤثر نقش کلیدی در موفقیت مدل ایفا میکند.

شکل ۹: مقایسهی همگرایی توابع فعالسازی متفاوت با ۳۰ ایپاک

شکل ۱۰: مقایسهی همگرایی بین بهینهسازهای مختلف در ۳۰ ایپاک