Тренировочная работа №2 по МАТЕМАТИКЕ 10 – 11 класс

17 мая 2019 года Вариант МА00510 (профильный уровень)

Выполнена: ФИО класс

Инструкция по выполнению работы

На выполнение тренировочной работы по математике даётся 235 минут. Работа включает в себя 19 заданий и состоит из двух частей.

Ответом в заданиях части 1 (1–12) является целое число, или десятичная дробь, или последовательность цифр. Запишите ответ в отведённом для него месте на листе с заданиями.

В заданиях части 2 (13–19) требуется записать полное решение на отдельном чистом листе.

При выполнении работы нельзя пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Выполнять задания можно в любом порядке, главное — правильно решить как можно больше заданий. Советуем Вам для экономии времени пропускать задание, которое не удаётся выполнить сразу, и переходить к следующему. Если после выполнения всей работы у Вас останется время, можно будет вернуться к пропущенным заданиям.

Желаем успеха!

© СтатГрад 2018–2019 уч. г.

Математика. 10 класс. Вариант МА00510

Ответ: ______.

Часть 1

2

В заданиях 1–12 дайте ответ в виде целого числа, или десятичной дроби, или последовательности цифр.

1	В школе 800 учеников, из них 35 % — ученики начальной школы. Среди
	учеников средней и старшей школы 30 % изучают немецкий язык. Сколько
	учеников в школе изучают немецкий язык, если в начальной школе немецкий
	язык не изучается?

На диаграмме показана среднемесячная температура воздуха в Тюмени за каждый месяц 1973 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Определите по диаграмме количество месяцев в 1973 году, в которых среднемесячная температура превышала 10 градусов Цельсия.

4	Ответ			
и	OTRET'			

© СтатГрад 2018-2019 уч. г.

З Найдите площадь треугольника, изображённого на клетчатой бумаге с размером клетки 1×1.

3

Ответ: ______.

4 На склад поступили насосы. В среднем, на каждые 496 исправных насосов приходится 4 неисправных. Найдите вероятность того, что случайно выбранный насос окажется неисправным.

Ответ: .

5 Найдите корень уравнения $\log_5(1+x) = \log_5 4$.

Ответ: .

В треугольнике ABC угол C равен 90° , высота CH равна 8, катет BC равен 10. Найдите тангенс угла A.

Ответ: .

Т На рисунке изображён график функции y = f(x), определённой на интервале (-9;4). В какой точке отрезка [-8;3] функция f(x) принимает наибольшее значение?

Ответ: .

8 Площадь поверхности куба равна 72. Найдите его диагональ.

Ответ:

9 Найдите значение выражения $\frac{\left(\sqrt{12}+\sqrt{2}\right)^2}{7+\sqrt{24}}$

Ответ: _______.

5

В розетку электросети подключены приборы, общее сопротивление которых составляет R_1 = 90 Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите наименьшее возможное сопротивление R_2 этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями R_1 и R_2 их общее сопротивление задаётся формулой $R_{\text{общ}} = \frac{R_1 R_2}{R_1 + R_2}$, а для нормальной работы электросети общее сопротивление в ней должно быть не меньше 9 Ом. Ответ выразите в омах.

Ответ: _____

Моторная лодка в 10:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 1 час 15 минут, лодка отправилась назад и вернулась в пункт А в 14:00 того же дня. Определите скорость течения реки (в км/ч), если известно, что собственная скорость лодки равна 11 км/ч.

Ответ: _____

12 Найдите точку максимума функции $y = x^3 - 75x + 14$.

Ответ: _____.

Часть 2

В заданиях 13–19 запишите полное решение на отдельном чистом листе.

13 а) Решите уравнение $2\sin\left(\frac{\pi}{2}-x\right)\cdot\cos\left(\frac{3\pi}{2}+x\right)=\sqrt{3}\sin\left(\pi-x\right)$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-3\pi;-2\pi\right]$.

В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный треугольник ABC с основанием AC. Точка K — середина ребра A_1B_1 , а точка M делит ребро AC в отношении AM:MC=1:3.

а) Докажите, что KM перпендикулярно AC.

б) Найдите угол между прямой $K\!M$ и плоскостью ABB_1 , если AB=6, AC=8 и $AA_1=3$.

15 Решите неравенство $\left(\frac{7}{3}\right)^{\frac{x^2+3x-1}{x+2}} \ge \frac{2}{3} \cdot 3.5^{x+1-\frac{3}{x+2}}$.

16 Окружность, вписанная в треугольник ABC, касается сторон BC и AC в точках M и N соответственно, E и F — середины сторон AB и AC соответственно. Прямые MN и EF пересекаются в точке D.

а) Докажите, что треугольник DFN равнобедренный.

б) Найдите площадь треугольника BED, если AB=28 и $\angle ABC=60^{\circ}$.

- 17
- 15 января Андрей планирует взять кредит в банке на шесть месяцев в размере 1,2 млн рублей. Условия его возврата следующие:
- 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r целое число;
- выплата должна производиться ежемесячно в период со 2-го по 14-е число каждого месяца;
- 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии с таблицей.

Дата	15.02	15.02	15.03	15.04	15.05	15.06	15.07
Долг	1.2	1	0,8	0,6	0,3	0,1	0
(млн рублей)	1,2		0,0	0,0	0,5	0,1	•

Найдите наименьшее значение r, при котором Андрею в общей сумме придётся выплатить больше 1,7 млн рублей.

- 18
- Найдите все значения a, при каждом из которых любое число x из отрезка [3; 4] является решением уравнения |x-a-5|+|x+a+1|=2a+6.
- 19
- а) Найдите хотя бы одно такое натуральное число n, что десятичная запись числа n^2+4n оканчивается всеми цифрами числа n, записанными в том же порядке.
- б) Может ли такое число оканчиваться цифрой 1?
- в) Найдите все такие четырёхзначные числа.

Ответы на тренировочные варианты 00509-00512 (профильный уровень) от 17.05.2019

	1	2	3	4	5	6	7	8	9	10	11	12
00509	98	7	10,5	0,007	8	1	1	18	6	24	3	- 3
00510	156	4	17	0,008	3	0,75	- 6	6	2	10	1	- 5
00511	14625	- 12	27	0,12	- 9	25	6	9000	5	5	74	- 3
00512	16320	- 15	24,5	0,14	- 5	15	2	720	4	4,5	49	- 4

Критерии оценивания заданий с развёрнутым ответом

13

- a) Решите уравнение $2\sin\left(\frac{\pi}{2} x\right) \cdot \cos\left(\frac{3\pi}{2} + x\right) = \sqrt{3}\sin(\pi x)$.
- б) Найдите все корни этого уравнения, принадлежащие отрезку $[-3\pi; -2\pi]$.

Решение.

а) Преобразуем уравнение:

$$2\cos x \cdot \sin x = \sqrt{3}\sin x; \quad \sin x \cdot \left(2\cos x - \sqrt{3}\right) = 0;$$
$$\sin x = 0 \text{ или } \cos x = \frac{\sqrt{3}}{2}, \text{ откуда}$$

$$x=\pi k$$
 или $x=\pm \frac{\pi}{6}+2\pi n\,,\; k,\,n\in\mathbb{Z}\,.$

б) С помощью тригонометрической окружности отберём корни уравнения, принадлежащие промежутку $[-3\pi; -2\pi]$.

Получаем -3π , $-\frac{13\pi}{6}$, -2π .

Ответ: a)
$$\pi k$$
; $\pm \frac{\pi}{6} + 2\pi n$, $k, n \in \mathbb{Z}$; 6) -3π , $-\frac{13\pi}{6}$, -2π .

Содержание критерия	Баллы				
Обоснованно получены верные ответы в обоих пунктах					
Обоснованно получен верный ответ в пункте а.					
ИЛИ					
Получены неверные ответы из-за вычислительной ошибки, но при	1				
этом имеется верная последовательность всех шагов решения обоих					
пунктов: пункта a и пункта δ					

© СтатГрад 2018-2019 уч. г.

Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный треугольник ABC с основанием AC . Точка K середина ребра A_1B_1 , а точка M делит ребро AC в отношении AM:MC=1:3 .
 - а) Докажите, что KM перпендикулярно AC.
 - б) Найдите угол между прямой $K\!M$ и плоскостью ABB_1 , если AB=6, AC=8 и $AA_1=3$.

Решение.

а) Пусть L — середина ребра AB, E — середина ребра AC. Так как треугольник ABC равнобедренный, отрезок BE перпендикулярен отрезку AC. Поскольку AM:MC=1:3, имеем AM=ME. Значит, треугольник AML подобен треугольнику AEB. Следовательно, отрезок LM перпендикулярен отрезку AC. Поскольку отрезок KL перпендикулярен плоскости ABC, получаем, что отрезок AC перпендикулярен плоскости KLM, а значит, KM перпендикулярно AC.

б) Пусть MH — высота треугольника AML. Так как плоскости ABC и ABB_1 перпендикулярны, отрезок MH перпендикулярен плоскости ABB_1 , и поэтому искомый угол равен углу HKM. Вычисляя двумя способами площадь треугольника AML, получим $2S_{AML} = MH \cdot AL = MA \cdot ML$, откуда

$$MH = \frac{MA \cdot ML}{4L} = \frac{2\sqrt{3^2 - 2^2}}{3} = \frac{2\sqrt{5}}{3}$$

© СтатГрад 2018-2019 уч. г.

поэтому

$$\sin \angle HKM = \frac{HM}{KM} = \frac{HM}{\sqrt{3^2 + \sqrt{5}^2}} = \frac{2\sqrt{5}}{3\sqrt{14}}.$$

Other: 6) $\arcsin \frac{2\sqrt{5}}{2\sqrt{14}}$

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и обоснованно	2
получен верный ответ в пункте δ	2
Имеется верное доказательство утверждения пункта а.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ , возможно,	1
с использованием утверждения пункта а, при этом пункт а	
не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	2

Решите неравенство $\left(\frac{7}{3}\right)^{\frac{x^2+3x-1}{x+2}} \ge \frac{2}{3} \cdot 3.5^{x+1-\frac{3}{x+2}}$. 15

Решение.

Преобразуем неравенство:

$$\left(\frac{7}{3}\right)^{\frac{x^2+3x-1}{x+2}} \ge \frac{2}{3} \cdot \left(\frac{7}{2}\right)^{\frac{x^2+3x-1}{x+2}}; \qquad \left(\frac{2}{3}\right)^{\frac{x^2+3x-1}{x+2}} \ge \frac{2}{3}.$$

Значит, $\frac{x^2+3x-1}{x+2} \le 1$, то есть $\frac{(x+3)(x-1)}{x+2} \le 0$, откуда $x \le -3$ или $-2 < x \le 1$.

Ответ: $(-\infty; -3]; (-2; 1].$

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

16 Окружность, вписанная в треугольник ABC, касается сторон BC и ACв точках M и N соответственно, E и F — середины сторон AB и ACсоответственно. Прямые MN и EF пересекаются в точке D.

- а) Докажите, что треугольник *DFN* равнобедренный.
- б) Найдите площадь треугольника BED, если AB = 28 и $\angle ABC = 60^{\circ}$.

Решение.

3

а) Поскольку CM = CN, треугольник MCN равнобедренный. Прямые EF и BC параллельны, поэтому треугольник DFN подобен треугольнику MCN, следовательно, треугольник DFN также равнобедренный: DF = NF.

б) Обозначим BC = a, AC = b, AB = c. Пусть p — полупериметр треугольника ABC. Предположим, что a > c. Тогда

$$BE = \frac{c}{2}, \quad CF = \frac{b}{2}, \quad CM = CN = p - c = \frac{a + b - c}{2},$$

$$FD = FN = CN - CF = \frac{a + b - c}{2} - \frac{b}{2} = \frac{a - c}{2}.$$

Значит, $ED = EF - FD = \frac{a}{2} - \frac{a-c}{2} = \frac{c}{2} = EB$, то есть треугольник BEDравнобедренный.

Аналогично для $a \le c$.

Поскольку прямые ED и BC параллельны,

$$\angle BED = 180^{\circ} - \angle ABC = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

Следовательно, $S_{BED} = \frac{1}{2}BE \cdot ED \cdot \sin 120^{\circ} = \frac{1}{2} \cdot 14 \cdot 14 \cdot \frac{\sqrt{3}}{2} = 49\sqrt{3}$.

Ответ: 6) $49\sqrt{3}$.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	3
обоснованно получен верный ответ в пункте δ	3
Обоснованно получен верный ответ в пункте δ .	
ИЛИ	
Имеется верное доказательство утверждения пункта а, и при	2
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта а.	
ИЛИ	
При обоснованном решении пункта б получен неверный ответ	
из-за арифметической ошибки.	1
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	3

15 января Андрей планирует взять кредит в банке на шесть месяцев в размере 1,2 млн рублей. Условия его возврата следующие:

- 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r — целое число;
- выплата должна производиться ежемесячно в период со 2-го по 14-е число каждого месяца;
- 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии с таблицей.

Дата	15.02	15.02	15.03	15.04	15.05	15.06	15.07
Долг	1.2	1	0,8	0,6	0.3	0,1	0
(млн рублей)	1,2	1	0,0	0,0	0,3	0,1	U

Найдите наименьшее значение r, при котором Андрею в общей сумме придётся выплатить больше 1,7 млн рублей.

кредитования. Также для удобства произведём замену: $k = 1 + \frac{r}{100}$.

Тогла

 $S_1 = 1, 2 \cdot k - 1$ (изначальный долг в 1,2 млн рублей увеличится в k раз, а во втором месяце на счету должен остаться 1 млн рублей).

© СтатГрад 2018-2019 уч. г.

Аналогично

5

 $S_2 = 1 \cdot k - 0.8$; $S_3 = 0.8 \cdot k - 0.6$; $S_4 = 0.6 \cdot k - 0.3$; $S_5 = 0.3 \cdot k - 0.1$; $S_6 = 0.1 \cdot k$. Общая сумма выплат S составляет

$$S = S_1 + S_2 + S_3 + S_4 + S_5 + S_6 = 4k - 2.8$$
.

Вспомним, что $k = 1 + \frac{r}{100}$, и решим неравенство:

$$4 + \frac{4r}{100} - 2.8 > 1.7; \quad \frac{4r}{100} > 0.5; \quad r > 12.5.$$

Наименьшее целое решение: r = 13.

Ответ: 13.

Содержание критерия	Баллы					
Обоснованно получен верный ответ	3					
Верно построена математическая модель, решение сведено						
к исследованию этой модели, и получен результат:	2					
— неверный ответ из-за вычислительной ошибки;	2					
— верный ответ, но решение недостаточно обосновано						
Верно построена математическая модель, решение сведено						
к исследованию этой модели, при этом решение может быть	1					
не завершено						
Решение не соответствует ни одному из критериев, перечисленных						
выше	0					
Максимальный балл	3					

Найдите все значения a, при каждом из которых любое число x из отрезка [3, 4] является решением уравнения |x-a-5|+|x+a+1|=2a+6.

Решение.

Если 2a + 6 < 0, то уравнение решений не имеет.

Пусть a = -3. Тогда уравнение имеет вид |x-2| + |x-2| = 0 и ни одно число из отрезка [3, 4] не является его решением.

Пусть a > -3. Запишем уравнение в виде

$$|x-(a+5)|+|x-(-a-1)|=2a+6.$$

При a > -3 верно неравенство -a - 1 < a + 5, и поэтому решением уравнения является любое число из отрезка [-a-1, a+5], поскольку длина этого отрезка равна (a+5)-(-a-1)=2a+6 и уравнению удовлетворяют те и только те точки x, сумма расстояний от каждой из которых до точек x = a + 5и x = -a - 1 равна 2a + 6.

Осталось выбрать те значения a, при каждом из которых отрезок [-a-1, a+5] содержит отрезок [3, 4]. Это выполнено тогда и только тогда, когда

[©] СтатГрад 2018-2019 уч. г.

Математика. 10 класс. Вариант МА00510

$$\begin{cases} -a-1 \leq 3, & \left\{a \geq -4, \\ a+5 \geq 4; \right. & \text{откуда } a \geq -1. \end{cases}$$

Ответ: $a \ge -1$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получены все значения a , но ответ	3
содержит лишнее значение или исключена точка $a = -1$	
Получен ответ $a \ge -1$, но решение недостаточно обосновано или не	2
доказано отсутствие других возможных значений а	
Задача верно сведена к исследованию возможного значения корней	1
уравнения в зависимости от а	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

19

- а) Найдите хотя бы одно такое натуральное число n, что десятичная запись числа n^2+4n оканчивается всеми цифрами числа n, записанными в том же порядке.
- б) Может ли такое число оканчиваться цифрой 1?
- в) Найдите все такие четырёхзначные числа.

<u>Решение.</u>

- а) Например, число 7.
- б) Предположим, что n = 10k + 1. Тогда

$$n^2 + 4n = 100k^2 + 20k + 1 + 40k + 4 = 10l + 5$$
,

то есть десятичная запись числа $n^2 + 4n$ оканчивается цифрой 5. Значит, такое невозможно.

в) Запишем условие задачи в таком виде: $n^2 + 4n = n + N \cdot 10000$ и преобразуем полученное уравнение:

$$n^2 + 3n = N \cdot 10000$$
, T. e. $n \cdot (n+3) = 2^4 \cdot 5^4 \cdot N$.

Числа n и n+3 не могут одновременно делиться на 2 и не могут одновременно делиться на 5. Значит, один из множителей делится на 5^4 и один из множителей делится на 2^4 . Эти два множителя могут совпадать только в том случае, если число n четырёхзначное, а n+3 делится на 10000, то есть n=9997.

Если $n \neq 9997$, мы должны подобрать два числа, одно из которых делится на 16, а другое на 625 и одно из которых больше другого на 3.

Переберём нечётные четырёхзначные числа, кратные числу 625: 1875, 3125, 4375, 5625, 6875, 8125, 9375. Среди них только 1875 имеет вид 16k+3 и только 8125 имеет вид 16k-3.

Математика. 10 класс. Вариант МА00510

7

Значит, искомое число равняется 1872, 8125 или 9997.

Ответ: а) 7; б) нет; в) 1872; 8125; 9997.

Содержание критерия	Баллы
Получены верные обоснованные ответы в пунктах a , δ и ϵ	4
Получены верные обоснованные ответы в пунктах a и δ , либо получены верные обоснованные ответы в пунктах a и ϵ	3
Получен верный обоснованный ответ в пункте δ , пункты a и b не решены, либо получен верный обоснованный ответ в пункте b , пункты b и b не решены	2
Приведён пример в пункте a , пункты δ и ϵ не решены	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

[©] СтатГрад 2018-2019 уч. г.