

Grundlagen der Elektrotechnik I

Prof. Dr.-Ing. Sven Tschirley

University of Applied Sciences Berlin

Prof. Dr.-Ing. Sven Tschirley GdE I 1/42

Teil I

Grundbegriffe

Prof. Dr.-Ing. Sven Tschirley GdE I Teil 1: Grundbegriffe 2/42

- Motivation
- 2 Physikalische Größen und deren Einheiten
- Elektrische Größen
 - Elektrische Ladung
 - Elektrischer Strom
 - Elektrische Spannung
 - Energie und Leistung
 - Elektrischer Widerstand
- Grundelemente in elektrischen Netzwerken
 - Signalformen
 - Netzwerkelemente

GdE I Teil 1: Grundbegriffe

3/42

4/42

Abschnitt 1.1

Motivation

Prof. Dr.-Ing. Sven Tschirley GdE I Teil 1: Grundbegriffe

Elektrotechnik

Elektrotechnik ist die Lehre von der Anwendung der Energieform Elektrizität

Elektrizität

Die Elektrizität ist eine Energieform, die aus potenziellen und kinetischen Energiezuständen von Elektronen und deren Änderung resultiert.

- Energietechnik Erzeugung, Verteilung, Verwendung elektrischer Energie
- Nachrichtentechnik Erfassung, Aufbereitung, Übertragung, Wiedergabe von Informationen
- Elektronik Verarbeitung elektrischer Signale bei Verwendung des Flusses von Elektronen

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

5/42

Einordnung des Fachs Grundlagen der Elektrotechnik

Stoffauswahl

Grundlage für die Tätigkeit in den drei Teilgebieten

- Energietechnik
- Nachrichtentechnik
- Elektronik

Abschnitt 1.2

Physikalische Größen und deren Einheiten

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

7/42

Größengleichungen

1.2 – Physikalische Grössen und deren Einheiten

Definition (Physikalische Größen)

- Beschreibung einer physikalischen Erscheinung
- Symbolische Darstellung durch ein Buchstabensymbol:

P als Symbol für elektrische Leistung

Quantifizierbare Darstellung als Produkt aus Zahlenwert und Einheit

$$P = 10W$$

- Die Einheiten sind frei wählbar,
- sollten sich aber an gebräuchlichen Einheitensystemen orientieren.
- Basis ist das SI-System (MKSA-System)

Definition (Einheitensysteme)

Einheitensysteme fassen abgestimmte Einheiten verschiedener physikalischer Größen geeignet zusammen.

Prof. Dr.-Ing. Sven Tschirley GdE I Teil 1: Grundbegriffe 8/42

- Basis sind Meter, Kilogramm, Sekunde, Ampère
- seit 1954 in Anwendung
- seit 1970 als SI-System weltweit gültige Norm

GdE I Teil 1: Grundbegriffe

9/42

MKSA in der Elektrotechnik

1.2 – Physikalische Grössen und deren Einheiten

Größe	Formelzeichen	Definition		Einheit	
		Größe	Einheit	Name	Symbol
Strom	i, I	Basisgröße		Ampère	Α
Spannung	u, U	$U=\frac{W}{Q}=\frac{P}{I}$	$1V = \frac{1W}{1A}$	Volt	V
Widerstand	R	$R = \frac{U}{I}$	$1\Omega = \frac{1V}{1A}$	Ohm	Ω
Leitwert	G	$G=rac{l}{U}$	$1S = \frac{1A}{1V}$	Siemens	S
Ladung	Q	$Q = I \cdot t$	1C = 1A ⋅ 1s	Coulomb	С
Kapazität	С	$C=rac{Q}{U}$	$1F = \frac{1C}{1V}$	Farad	F
Induktivität	L	$L = \frac{\Phi}{I}$	$1H = \frac{1Vs}{1A}$	Henry	Н

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

Benennung	Kurzzeichen	Faktor	
Femto	f	10^{-15}	
Pico	р	10 ⁻¹²	
Nano	n	10 ⁻⁹	
Mikro	μ	10^{-6}	
Milli	m	10^{-3}	
		10 ⁰	
Kilo	k	10 ³	
Mega	M	10 ⁶	
Giga	G	10 ⁹	
Tera	Т	10 ¹²	
Peta	Р	10 ¹⁵	

GdE I Teil 1: Grundbegriffe

11/42

Gleichungen

1.2 – Physikalische Grössen und deren Einheiten

Definition

Größengleichungen Alle Gleichungen sind als Größengleichungen zu behandeln

- Rechnen mit Symbolen
- Ergebnisermittlung durch Einsetzen von Wert und Einheit

Beispiele

- Größengleichung
- Einheitenumwandlung

Darstellung in Graphen

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

13/42

Das Wesen der Elektrizität

1.2 – Physikalische Grössen und deren Einheiten

- Elektrizität selbst ist nicht sichtbar
- Erkennbar sind nur Wirkungen
 - Anziehende Kräfte auf Ladungen
 - Ladungsausgleichsvorgänge
- Elektrische Ladung ist, wie die Masse, eine Grundeigenschaft der Bausteine der Materie

■ Leichte Transportierbarkeit

- Transport über große Entfernungen
- Hoher Wirkungsgrad, verglichen mit dem Transport mechanischer oder thermischer Energie
- Schnelle Verfügbarkeit durch hohe Verbreitungsgeschwindigkeit
- Leichte Transformierbarkeit in andere Energieformen:
 - mechanische Energie (Motore)
 - thermische Energie (Lichtbogenschweißgeräte)
 - chemische Energie (Elektrolyse)
 - akustische Energie (Schallwandler)
- Leichte Teilbarkeit bei Transport unterschiedlicher Leistungen über ein Netz
 - Effizienter als mechanische Systeme (Keilriemenantriebe)

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

15/42

Eigenschaften elektrischer Energie II

1.2 – Physikalische Grössen und deren Einheiten

- Leichte Konzentrierbarkeit / hohe Leistungsdichte der elektrischen Energie z.B.
 - beim Schweißen oder Induktionserwärmen
 - beim Transport großer Mengen elektrischer Energie durch dünne Leitungen
- Leichte Skalierbarkeit durch Steuerung und Regelung
 - Leistungselektronik
- Möglichkeit der einfachen Übertragung von Signalen
 - Einfache Transportierbarkeit erlaubt Fernsteuerungen auf Basis elektrischer Signale
 - Informationscodierung durch Modulation
 - Übertragung durch elektromagnetische Wellen
- Gute Messbarkeit durch viele bekannte elektrische Verfahren zur messtechnischen Bestimmung von physikalischen Größen
 - Messung elektrische Größen
 - Messung nicht-elektrischer Größen

Prof. Dr.-Ing. Sven Tschirley

- Aufwandsarme Wartung und hohe Zuverlässigkeit elektrischer Systeme
- Hohe Betriebssicherheit durch Selbstschutz
- Speichermöglichkeit von elektrische Energie und elektronischen Daten
 - Elektrische Informationsspeicherung mit hoher Dichte möglich
 - Effiziente Aufwandsarme Speicherung großer Mengen elektrischer Energie existiert nicht
 - Speicherung ist nur durch Umwandlung in andere Energieformen möglich

GdE I Teil 1: Grundbegriffe

17/42

Abschnitt 1.3

Elektrische Größen

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

Wirkungen ruhender Ladungen

- Eine elektrische Ladung übt auf andere elektrische Ladung Kräfte aus.
- Der Teil eines Raumes, in dem eine solche Kraftwirkung nachweisbar ist, ist ein Raum, im dem ein elektrisches Feld wirkt.
- Jede Ladung ist von einem elektrischen Feld umgeben.

Wirkungen bewegter Ladungen

- Bewegte elektrische Ladungen üben auf andere bewegte elektrische Ladungen Kräfte aus
- Der Teil eines Raumes, in dem eine solche Kraftwirkung nachweisbar ist, ist von einem magnetisches Feld durchsetzt.
- Jede bewegte Ladung ist von einem magnetischen Feld umgeben.

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

19/42

1.3 – ELEKTRISCHE GRÖSSEN

Elektrische Ladung

Elementarladung: $q = 1.6 \cdot 19^{-19}$ C

- Bohrsches Atommodell
- Valenzelektronen können aufgenommen und abgegeben werden
 - Metalle
 - Isolatoren
 - Halbleiter

- Abgabe von Elektronen (e^{\ominus}) hinterläßt lonen
- Freie Elektronen sind von besonderen Interesse: Transport elektrischer Ladungen

GdE I Teil 1: Grundbegriffe

21/42

1.3 – ELEKTRISCHE GRÖSSEN

Elektrische Ladung

- Erscheinung der gerichteten Bewegung von Ladungsträgern
- Bestimmungsgröße ist die Stromstärke

Wirkungen des Elektrischen Stromes

- Die positive Stromrichtung wird allgemein in Richtung der positiven Ladungsträger festgelegt.
- Stromdurchflossene Leiter sind von einem Magnetfeld umgeben
- Beim Stromfluss in Leiter entsteht Wärme
- Nur beim Transport von Ionen (z.B. in Flüssigkeiten) wird auch Materie transportiert

Definition (Einheit des Elektrischen Stromes)

1 Ampère ist die Stärke eines zeitlich unveränderlichen Stroms, der, durch zwei im Vakuum parallel im Abstand von 1 m voneinander angeordnete, geradlinige, unendlich lange Leiter von vernachlässigbar kleinem, kreisförmigem Querschnitt fließend, zwischen diesen Leitern je 1m Leiterlänge elektrodynamisch die Kraft 0, 2 · 10⁻⁶N hervorrufen würde.

(9. Generalkonferenz für Maß und Gewicht, 1948)

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

23/42

Elektrische Spannung

1.3 – ELEKTRISCHE GRÖSSEN

Elektrische Spannung

- Elektrische Spannung ist die Ursache für die Bewegung von Ladungsträgern
- Einrichtungen, die diese Ursache bereitstellen sind Spannungsquellen oder Generatoren

 Die positive Richtung wird festgelegt, wenn die Probeladung sich zur entgegengesetzt geladenen Platte bewegt

Begriffseinführung durch Wirkungsbetrachtung

Zur Definition der elektrischen Spannung wird die Kraftwirkung auf eine Probeladung im elektrischen Feld betrachtet.

$$\vec{E} = \frac{1}{O} \vec{F}$$

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

25/42

Elektrische Spannung

1.3 – ELEKTRISCHE GRÖSSEN

Elektrische Spannung

Definition (Elektrisches Potenzial)

Das Potenzial V(x) ist der Energiebetrag, der frei wird, wenn die Ladung zu einem Punkt anderen Potenzials verschoben wird. Das Potenzial ist eine *skalare Größe*.

Das Vorzeichen wird positiv gewählt, so dass bei Verschiebung von niedrigem zu höherem Potenzial positive Energie bedeutet.

Definition (Potenzialdifferenz)

Eine Potenzialdifferenz $V(x_2) - V(x_1)$ wird elektrische Spannung genannt.

Prof. Dr.-Ing. Sven Tschirley

GdE I

Teil 1: Grundbegriffe

■ Energie: Formelbuchstabe W

$$W = U \cdot I \cdot t$$

■ Leistung: Formelbuchstabe *P*

$$P = U \cdot I$$

Transportrichtung legt das Vorzeichen fest

■ Transport in Feldrichtung

$$W_{1,2} = Q \int_{x_1}^{x_2} \vec{E} d\vec{x} = U_{1,2} \cdot I \cdot t$$

■ Transport entgegen der Feldrichtung

$$W_{2,1} = Q \int_{x_2}^{x_1} \vec{E} d\vec{x} = -U_{1,2} \cdot I \cdot t$$

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

27/42

Elektrischer Widerstand

1.3 – ELEKTRISCHE GRÖSSEN

Elektrischer Widerstand

Im freien Raum kann eine Ladung frei bewegt werden:

$$W_{1,2} = Q(V_1 - V_2) = Q \cdot U_{1,2} = \frac{1}{2}mv^2$$
 (1)

→ Im Festkörper ist die freie Bewegung nicht möglich.

Der elektrische Widerstand zwischen zwei Punkten ist

$$R_{A,B} = \frac{U_{A,B}}{I}$$

$$A \circ \longrightarrow B$$

Prof. Dr.-Ing. Sven Tschirley

GdE I Tei

Teil 1: Grundbegriffe

Elektrischer Widerstand

13 – FLEKTRISCHE GRÖSSEN

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

29/42

1.3 – ELEKTRISCHE GRÖSSEN

Elektrischer Widerstand

Linearer Widerstand

■ Bei Metallen und Legierungen:

$$R = \frac{U}{I} = \text{const.}$$

■ Der Widerstand ist linear

Prof. Dr.-Ing. Sven Tschirley

GdE I Te

Teil 1: Grundbegriffe

nichtlinearer Widerstand

- \blacksquare $R \neq \text{const.}$
- Gleichstromwiderstand

$$R_1 = \frac{U_1}{I_1}$$

■ Differenzieller Widerstand

$$r = \frac{\Delta U}{\Delta I}$$

■ r gilt im Arbeitspunkt AP_1

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe 31/42

Widerstand eines Leiters

Widerstandsberechnung für einen Leiter

$$R = \varrho \cdot \frac{I}{A} = \frac{1}{\kappa} \cdot \frac{I}{A}$$

- ϱ : Spezifischer Widerstand, Einheit $\frac{\Omega \text{ mm}^2}{\text{m}}$
- κ : Spezifischer Leitwert, Einheit $\frac{Sm}{mm^2}$

Prof. Dr.-Ing. Sven Tschirley

1.3 – ELEKTRISCHE GRÖSSEN Elektrischer Widerstand

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

33/42

Temperaturabhängigkeit des Widerstands

1.3 – ELEKTRISCHE GRÖSSEN

Flektrischer Widerstand

Lineare Modellierung der Temperaturabhängigkeit

$$R_{\rm T} = R_{20} + \alpha_{20} \cdot \Delta T \cdot R_{20}$$

 α_{20} ist der Temperaturkoeffizient des verwendeten Materials

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

Elektrischer Widerstar

Material	κ in $\frac{\rm Sm}{\rm mm^2}$	ϱ in $\frac{\Omega \text{mm}^2}{\text{m}}$	α in %/K
Reine Metalle			
Aluminium	36	0,0278	+0,4
Kupfer	56	0,0178	+0,39
Silber	60.5	0,0165	+0,41
Wolfram	18,2	0,0550	+0,46
Widerstandslegierungen			
Konstantan	2	0,5	$\pm 0,003$
Manganin	2,3	0,43	$\pm 0,001$
Lineare Widerstände			
Kohleschicht	0,033	30	-0,05
Metallschicht	1	1	$\pm 0,01$

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

35/42

Beispiele

.3 – ELEKTRISCHE GRÖSSEN

Elektrischer Widerstand

Widerstandsberechnung

Ein isolierter Kupferdraht der Länge 44m und einem Durchmesser von 0, 1mm befindet sich aufgerollt auf einer Kabeltrommel. Welchen Widerstand messen Sie bei Raumtemperatur?

Temperaturabhängikeit

Ein Kupferdraht hat bei $T=20\,^{\circ}$ C einen Widerstand von $R_{20}=15\Omega$. Bei welcher Temperatur ist der Widerstand um 10% angestiegen?

Widerstandsberechnung II

Ein Lautsprecherkabelring mit doppeladriger Leitung $(I = 25 \text{m}, A = 2, 5 \text{mm}^2)$ soll als Lastspule verwendet werden. Für die Funktion der Schaltung muss der ohmsche Widerstand bekannt sein. Die Doppeladern werden an beiden Enden verlötet. Welchen ohmschen Widerstand hat die Leitung?

Abschnitt 1.4

Grundelemente in elektrischen Netzwerken

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

37/42

1.4 – GRUNDELEMENTE IN ELEKTRISCHEN NETZWERKEN

Signalformen

Gleichgrößen

■ Keine Zeitabhängigkeit

$$I \neq f(t) = const$$

■ Notation in Großbuchstaben

1

Wechselgrößen

Wechselgrößen

■ Zeitabhängigkeit

$$i(t) = f(t)$$

■ Notation in Kleinbuchstaben

$$i(t) = i$$

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

39/42

Periodische Wechselgrößen

1.4 – Grundelemente in elektrischen Netzwerken

Signalformen

Periodische Wechselgrößen

Periodisch widerkehrendes Muster

$$i(t) = i(t + nT)$$

Sonderfall: Sinusförmige
Größen heißen harmonische
Größen

Begriffe

- T Periodendauer
- f Frequenz
- lacksquare $\omega = 2\pi f$ Kreisfrequenz
- \hat{i} Scheitelwert

Aktive Netzwerklemente

Prof. Dr.-Ing. Sven Tschirley

GdE I Teil 1: Grundbegriffe

41/42

Passive Netzwerklemente

1.4 – Grundelemente in elektrischen Netzwerken

Netzwerkelemente

■ Ohmscher Widerstand (resistor)

$$u = R \cdot i$$

■ Induktivität (inductor)

$$u = L \cdot \frac{di}{dt}$$
, Einheit 1H(Henry)

■ Kapazität (capacitor)

$$i = C \cdot \frac{du}{dt}$$
, Einheit 1F(farad)

