Foundations of Data Science

Konda Reddy Mopuri Dept. of Al, IIT Hyderabad

Scope

- 1. Curse of dimensionality
- 2. Covariance
- 3. Correlation
- 4. Dimensionality Reduction
- 5. Principal Component Analysis (PCA)

1. Curse of Dimensionality

Curse of Dimensionality: What?

- Challenges that can arise in spaces of higher dimensions
- Important factor influencing the design of PR/ML techniques

Example-1 Classifying the Pipeline measurements

- Each data point consists of 12D vector of measurements
- Material (each data point) can be present in one of the three geometric configurations (labels)

• Plot of 100 points w.r.t. two of the dimensions $(x_6 \text{ and } x_7)$

• Points are labeled with their geometric configurations (i.e. labels)

Data-driven Intelligence & Learning Lab

Goal: use this as training data and classify a test sample 'X'

- Approach: let's look at the neighbors
 - Intuition: identity of 'X' is determined more by its immediate neighbors from the training data than the distant ones

- Let's turn this intuition into a learning algorithm
- How?
 - o Divide the i/p space into regular cells

- How?
 - Decide in which cell the test sample falls
 - o In that cell observe which class has the most training data → majority voting

- Input spaces of higher dimensions
- As the dimension increases, the number of cells grows exponentially

- Input spaces of higher dimensions
- As the dimension increases, the number of cells grows exponentially

Figure: PRML Book

- Exponentially large no. of cells need exponentially large amount of training data
 - So that the they are not empty

 One has no hope of applying such a technique in a space of more than a few variables

Example-2 Polynomial Curve Fitting

- Simple case of input having a single variable (x)
- Considering a polynomial of order M

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

• Extending to D variables with coefficients upto order 3

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k.$$

• No. of coefficients grows proportional to?

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k.$$

• No. of coefficients grows proportional to D³

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k.$$

- In practice, we may need to use a higher-order polynomial of order M
 - \circ No. of coefficients is proportional to D^{M}
 - Quickly goes out of hands and of limited practical utility

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k.$$

Difference of Geometric Intuitions b/w Lower and Higher dimensions

Our intuitions fail

- We form intuitions from 'easy to visualize' spaces such as 3D
- They may fail badly in higher dimensional spaces

- Consider a sphere of unit radius in D dimensions
- What is the fraction of its volume that lies between radius (1-ε) and
 1?

$$V_D(r) = K_D r^D$$

$$V_D(r) = K_D r^D$$

$$\frac{V_D(1) - V_D(1 - \epsilon)}{V_D(1)} = 1 - (1 - \epsilon)^D$$

In spaces of high dimensionality, most of the volume of a sphere is concentrated in a thin shell near the surface!

Figure: PRML Book

In short

- Not all intuitions developed in lower-dim spaces will generalize to spaces of many dimensions
- As the dimension grows
 - Volume of the space grows so fast that available data becomes sparse
 - o Data looks dissimilar (prevents forming groups)
- Curse of dimensionality raises issues for learning

But, that doesn't prevent us building techniques in high-dimensions

How do we learn in higher dimensions?

- 1. Real data often confines to a lower dimensional subspace
 - o Directions over which the target varies may be confined

How do we learn in higher dimensions?

- 2. Real data typically exhibits smoothness (locally)
 - Small changes in the input variables results in small changes in target
 - We can exploit techniques such as interpolation

E.g. Inferring Orientation of objects

Figure: Oriental Motor

- Identical planar objects on a conveyor belt
- Goal: determine their orientation through images

E.g. Inferring Orientation of objects

Figure: Oriental Motor

- Each image is a point in high-dim space
- They vary in *position of the object, orientation*, and *pixel values*
- Hence, the set of images lie in a 3D manifold embedded in the

E.g. Generative models

- GANs understanding the space of human faces (on a lower-dim manifold)
 - To generate real-looking faces

Figure credits

2. Covariance

Covariance

- Measure of the joint variability of two random variables
 - How much they co-vary (vary together)

- Consider two random variables X, Y
 - With means E[Y] and E[Y]
- Their covariance is given by

$$COV(X,Y) = E[(X - E[X])(Y - E[Y])]$$

- Take pairs of (X, Y)
- Take their differences from their means
- Take their product

$$COV(X,Y) = E[(X - E[X])(Y - E[Y])]$$

- For a pair (x_1, y_1) this product is +ve
 - o If the values of x and y have varied together in same direction from their means

$$COV(X,Y) = E[(X - E[X])(Y - E[Y])]$$

- For a pair (x_1, y_1) this product is +ve
 - o If the values of x and y have varied together in same direction from their means
- Larger the magnitude of the product, stronger the relationship!

$$COV(X,Y) = E[(X - E[X])(Y - E[Y])]$$

- For a pair (x_2, y_2) this product is -ve
 - They have varied together in opposite directions (from their means)

$$COV(X,Y) = E[(X - E[X])(Y - E[Y])]$$

- Covariance is the mean value of this product
 - o Calculated with each pair of data points (x_i, y_i)

$$COV(X,Y) = E[(X - E[X])(Y - E[Y])]$$

- What if the covariance is zero?
 - The +ve cases were offset by those in which it is -ve
 - There is no linear relationship between the two variables

$$COV(X,Y) = E[(X - E[X])(Y - E[Y])]$$

Covariance is +ve

 Higher than average values of one variable tend to pair with higher than average values of the other variable

Data-driven Intelligence & Learning Lab

Covariance is -ve

 Higher than average values of one variable tend to pair with lower than average values of the other variable

Figure: Wikipedia

Covariance and independence

- Variables for which the covariance is zero → Uncorrelated
- If two variables are independent, their covariance is zero
 - Converse need not be true

Figure: Wikipedia

$$COV(X,Y) = E[(X - E[X])(Y - E[Y])]$$

$$COV(X,Y) = E[XY] - E[X]E[Y]$$

Covariance: Some properties

- Cov(X,X) = Var(X)
- Var(X+Y) = Var(X) + Var(Y) + 2 Cov(X,Y)
- Cov(aX,bY) = ab.Cov(X,Y)

Covariance: Multivariate

• Two multivariate random variables X ε R^m & Y ε Rⁿ

$$COV(X,Y) = E[XY^T] - E[X]E[Y]^T = COV(Y,X)^T \in \mathbb{R}^{m \times n}$$

Covariance: Multivariate

 When applied on a single random variable, tells its spread (variance)

$$\begin{split} \mathbb{V}_X[\boldsymbol{x}] &= \mathrm{Cov}_X[\boldsymbol{x}, \boldsymbol{x}] \\ &= \mathbb{E}_X[(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^\top] = \mathbb{E}_X[\boldsymbol{x}\boldsymbol{x}^\top] - \mathbb{E}_X[\boldsymbol{x}]\mathbb{E}_X[\boldsymbol{x}]^\top \\ &= \begin{bmatrix} \mathrm{Cov}[x_1, x_1] & \mathrm{Cov}[x_1, x_2] & \dots & \mathrm{Cov}[x_1, x_D] \\ \mathrm{Cov}[x_2, x_1] & \mathrm{Cov}[x_2, x_2] & \dots & \mathrm{Cov}[x_2, x_D] \\ \vdots & \vdots & \ddots & \vdots \\ \mathrm{Cov}[x_D, x_1] & \dots & \dots & \mathrm{Cov}[x_D, x_D] \end{bmatrix}. \end{split}$$

Covariance: Limitations

- Depends on the units of the data
- Difficult to compare covariances among datasets (with different scales)
- A value that represents a strong linear relationship in one dataset may mean a weak relationship in another dataset

Covariance: Limitations

- Correlation coefficient addresses this
 - Normalize covariance to the product of individual standard deviations
 - Dimensionless quantity → facilitates comparison across datasets

3. Correlation

Correlation

- Is any statistical relationship between two random variables
 - Our interest is 'linear' relation
- Useful because it indicates a predictive relationship that can be exploited

• Familiar measure of Correlation b/w two random variables x, y

$$\operatorname{corr}[x, y] = \frac{\operatorname{Cov}[x, y]}{\sqrt{\mathbb{V}[x]\mathbb{V}[y]}} \in [-1, 1]$$

• Corr(x,y) = Cov($x/\sigma(x)$, $y/\sigma(y)$)

$$\operatorname{corr}[x, y] = \frac{\operatorname{Cov}[x, y]}{\sqrt{\mathbb{V}[x]\mathbb{V}[y]}} \in [-1, 1]$$

Figure: Wikipedia

Figure: Wikipedia

4. Dimensionality Reduction

Issues with high-dim data

- Hard to analyze
 - o Interpretation and visualization is challenging
- Storage and compute may become cumbersome

However, the high-dim data

- Overcomplete
 - Many dimensions are redundant
- Data possesses intrinsic lower-dimensional structure

Dimensionality Reduction

- Exploits the structure and correlation → compact representation of the data
 - With minimal information loss

Dimensionality Reduction

- PCA
- LDA
- t-SNE
- Autoencoders
- etc.

5. Principal Component Analysis (PCA)

PCA

- Proposed by Pearson (1901) and Hotelling (1933)
- One of the most commonly used techniques for
 - data compression
 - Identification of patterns/structures
 - Visualization
- Also known as Karhunen-Loève (KL) transform

PCA from first principles

- Drawing from our understanding of
 - Basis
 - Projections
 - Eigen vectors
 - Constrained Optimization

Dimensionality Reduction

- (a) Dataset with x_1 and x_2 coordinates.
- (b) Compressed dataset where only the x_1 coordinate is relevant.

Figure: MML Book

• Goal: find projections \widetilde{x}_n of data x_n that are as similar as possible, but with a lower intrinsic dimensionality

• Consider iid data $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ in \mathbb{R}^D with zero mean

Mean subtraction

Figure: Ravindra Parmer

Covariance matrix

$$oldsymbol{S} = rac{1}{N} \sum_{n=1}^N oldsymbol{x}_n oldsymbol{x}_n^ op$$

 We assume that there exists a lower-dim compressed representation

$$oldsymbol{z}_n = oldsymbol{B}^ op oldsymbol{x}_n \in \mathbb{R}^M$$

of x_n , where we define the projection matrix

$$oldsymbol{B} := [oldsymbol{b}_1, \dots, oldsymbol{b}_M] \in \mathbb{R}^{D imes M}$$

PCA: problem setting

We assume that the columns of B are orthonormal

$$\boldsymbol{b}_i^{\top} \boldsymbol{b}_j = 0$$
 if and only if $i \neq j$ and $\boldsymbol{b}_i^{\top} \boldsymbol{b}_i = 1$

PCA: problem setting

- We seek an M-dimensional subspace in R^D with dim(U) = M <D
 - onto which we project the data

PCA: problem setting

- We denote the projected data as $\widetilde{x}_n \in U$ and their coordinates w.r.t basis B as z_n
- Aim is to find the projections $\widetilde{x}_n \in \mathbb{R}^M$ that are similar to x_n and minimize the compression loss

Bottleneck

We chose to ignore x₂ because it did not add much information

- (a) Dataset with x_1 and x_2 coordinates.
- (b) Compressed dataset where only the x_1 coordinate is relevant.

dinate is relevant.

What if we ignore x_1 ?

- (a) Dataset with x_1 and x_2 coordinates.
- (b) Compressed dataset where only the x_1 coordinate is relevant.

What if we ignore x_1 ?

Much information would have been lost, and the compressed data would look very different

- If we interpret the information content in the data as how much "space-filling" the dataset is
 - Then, it can be described by looking at its spread

- Variance is an indicator of spread in the data
- Hence, PCA maximizes the variance in the lower-dim representation of the data

 Retaining most information after data compression is equivalent to capturing the largest amount of variance in the lower-dim code

- Let's maximize the variance in the lower-dim code
- We start by seeking a single vector $\mathbf{b}_1 \in \mathbb{R}^D$ that maximizes the variance of the projected data

$$V_1 := \mathbb{V}[z_1] = \frac{1}{N} \sum_{n=1}^{N} z_{1n}^2$$

$$z_{1n} = oldsymbol{b}_1^ op oldsymbol{x}_n$$

$$egin{aligned} V_1 &= rac{1}{N} \sum_{n=1}^N (oldsymbol{b}_1^ op oldsymbol{x}_n)^2 = rac{1}{N} \sum_{n=1}^N oldsymbol{b}_1^ op oldsymbol{x}_n oldsymbol{x}_n^ op oldsymbol{b}_1 \ &= oldsymbol{b}_1^ op oldsymbol{C} oldsymbol{b}_1 = oldsymbol{b}_1^ op oldsymbol{S} oldsymbol{b}_1 \ &= oldsymbol{B}_1^ op oldsymbol{B}_1 \$$

S is the data covariance matrix

$$egin{aligned} V_1 &= rac{1}{N} \sum_{n=1}^N (oldsymbol{b}_1^ op oldsymbol{x}_n)^2 = rac{1}{N} \sum_{n=1}^N oldsymbol{b}_1^ op oldsymbol{x}_n oldsymbol{x}_n^ op oldsymbol{b}_1 \ &= oldsymbol{b}_1^ op oldsymbol{S} oldsymbol{b}_1 = oldsymbol{b}_1^ op oldsymbol{S} oldsymbol{b}_1 \ , \end{aligned}$$

- Increasing the magnitude of b₁ increases V₁
- Hence, we restrict the solutions to have unit norm → constrained optimization

$$\max_{\boldsymbol{b}_1} \boldsymbol{b}_1^{\top} \boldsymbol{S} \boldsymbol{b}_1$$
subject to $\|\boldsymbol{b}_1\|^2 = 1$

$$\mathfrak{L}(\boldsymbol{b}_1, \lambda) = \boldsymbol{b}_1^{\top} \boldsymbol{S} \boldsymbol{b}_1 + \lambda_1 (1 - \boldsymbol{b}_1^{\top} \boldsymbol{b}_1)$$

 Obtain the Lagrangian to solve this constrained optimization problem

$$\mathfrak{L}(\boldsymbol{b}_1, \lambda) = \boldsymbol{b}_1^{\top} \boldsymbol{S} \boldsymbol{b}_1 + \lambda_1 (1 - \boldsymbol{b}_1^{\top} \boldsymbol{b}_1)$$

Now, get the partial derivatives

$$\frac{\partial \mathfrak{L}}{\partial \boldsymbol{b}_1} = 2\boldsymbol{b}_1^{\top} \boldsymbol{S} - 2\lambda_1 \boldsymbol{b}_1^{\top}, \qquad \frac{\partial \mathfrak{L}}{\partial \lambda_1} = 1 - \boldsymbol{b}_1^{\top} \boldsymbol{b}_1$$

$$egin{aligned} rac{\partial \mathfrak{L}}{\partial oldsymbol{b}_1} &= 2 oldsymbol{b}_1^ op oldsymbol{S} - 2 \lambda_1 oldsymbol{b}_1^ op \ rac{\partial \mathfrak{L}}{\partial \lambda_1} &= 1 - oldsymbol{b}_1^ op oldsymbol{b}_1 \end{aligned}$$

$$egin{aligned} oldsymbol{S}oldsymbol{b}_1 &= \lambda_1oldsymbol{b}_1\,, \ oldsymbol{b}_1^ op oldsymbol{b}_1 &= 1\,. \end{aligned}$$

Set them to 0

$$egin{aligned} oldsymbol{S} oldsymbol{b}_1 &= \lambda_1 oldsymbol{b}_1 \,, \ oldsymbol{b}_1^ op oldsymbol{b}_1 &= 1 \,. \end{aligned}$$

 Comparing this to the Eigenvalue decomposition, clearly, b₁ is the eigenvector of the covariance matrix S

$$V_1 = \boldsymbol{b}_1^{\top} \boldsymbol{S} \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1^{\top} \boldsymbol{b}_1 = \lambda_1$$

 Variance of the projected data on the 1D subspace = eigenvalue corresponding to b₁ (first eigenvector, also known as the first principal component)

$$\tilde{oldsymbol{x}}_n = oldsymbol{b}_1 z_{1n} = oldsymbol{b}_1 oldsymbol{b}_1^ op oldsymbol{x}_n \in \mathbb{R}^D$$

- \bullet Contribution of \boldsymbol{b}_1 in the original data space is determined by \boldsymbol{z}_{1n}
- Despite being a D-dim vector, it requires only one component to represent w.r.t. the basis vector b₁

Spectral Theorem

If $A \in \mathbb{R}^{n \times n}$ is symmetric, there exists an orthonormal basis of the corresponding vector space V consisting of eigenvectors of A, and each eigenvalue is real.

- Say, we have the first m-1 principal components
- How do we find the mth Principal component?

• By subtracting the effect of the first m-1

Captures the remaining information

To find the mth PC, we maximize the variance

$$V_m = \mathbb{V}[z_m] = rac{1}{N}\sum_{m=1}^N z_{mn}^2 = rac{1}{N}\sum_{m=1}^N (oldsymbol{b}_m^ op \hat{oldsymbol{x}}_n)^2 = oldsymbol{b}_m^ op \hat{oldsymbol{S}} oldsymbol{b}_m$$

Turns out that

every eigenvector of S is an eigenvector of \hat{S}

Variance captured by a PC is equal to the eigenvalue

$$V_m = \mathbb{V}[z_m] = rac{1}{N} \sum_{m=1}^N z_{mn}^2 = rac{1}{N} \sum_{m=1}^N (oldsymbol{b}_m^ op \hat{oldsymbol{x}}_n)^2 = oldsymbol{b}_m^ op \hat{oldsymbol{S}} oldsymbol{b}_m$$

$$V_m = oldsymbol{b}_m^ op oldsymbol{S} oldsymbol{b}_m = \lambda_m oldsymbol{b}_m^ op oldsymbol{b}_m = \lambda_m$$

 Variance captured by PCA with M PCs (or, by projecting into an M-dim subspace)

$$V_M = \sum_{m=1}^M \lambda_m$$

 Relative variance captured by PCA with M PCs (or, by projecting into an M-dim subspace)

$$\frac{V_M}{V_D}$$

PCA steps

- 1. Standardize the data (mean subtraction and division by standard deviation)
- 2. Compute the covariance matrix
- 3. Compute the eigenvectors and eigenvalues of the covariance matrix \rightarrow principal components
- 4. Decide how many principal components to keep
- 5. Transform the data using the principal components basis

Mathematics is the foundation for Data Science, Machine Learning, & Artificial Intelligence

Foundation

- Linear Algebra & Matrix theory
- Vector Calculus
- Probability and Statistics
- Optimization
- etc.

