

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-106945

(43)Date of publication of application: 20.04.1999

(51)Int.CI.

C23C 22/58

805D 3/10

C23C 22/68

(21)Application number: 09-287763

(71)Applicant:

NIPPON PARKERIZING CO LTD

(22)Date of filing:

03.10.1997

(72)Inventor:

NAGASHIMA YASUHIKO

HAYASHI HIROKI

(54) SURFACE TREATING AGENT COMPOSITION FOR METALLIC MATERIAL AND TREATING METHOD

PROBLEM TO BE SOLVED: To provide such a surface treating agent for a nonchromium metallic material that shows high corrosion resistance eguivalent to that of chromate films and that has excellent resistance against finger prints, blackening resistance and adhesion property of the coating film.

SOLUTION: The surface of a metallic material is treated with a water-based medium and an acidic surface treating agent containing components described below. The treating agent contains (A) a cationic component of metal ions selected from manganese, cobalt, zinc, magnesium, nickel, iron, titanium, aluminum and zirconium by 0.01 to 15 wt.% of the whole solid content, (B) at least one of acid component selected from (1) fluoroacid containing 4 or more fluorine atoms and one or more elements selected from titanium, zirconium, silicon, hafnium, aluminum and boron, (2) phosphoric acid, and (3) acetic acid, by 0.1 to 15 wt.% of the whole solid content, (C) a silane coupling agent component selected from active hydrogen-contg. amino, epoxy, vinyl, mercapto and methacryloxy groups, and (D) a water-soluble polymer component having 2 to 50 polymn. units. The weight ratio of (C) to (D) ((C)/(D)) ranges 1:10 to 10:1.

LEGAL STATUS

[Date of request for examination]

22.07.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-106945

(43)公開日 平成11年(1999)4月20日

(51) Int.Cl. ⁶	識別記号	FI					
C 2 3 C 22/58	man dur.	C 2 3 C 22/58					
B 0 5 D 3/10		B 0 5 D 3/10 H					
C 2 3 C 22/68		C 2 3 C 22/68					
		審査請求 未請求 請求項の数 8 FD (全 12 頁)					
(21)出願番号	特願平9-287763	(71) 出願人 000229597					
		日本パーカライジング株式会社					
(22)出願日	平成9年(1997)10月3日	東京都中央区日本橋1丁目15番1号					
		(72)発明者 永嶋 康彦					
		東京都中央区日本橋1丁目15番1号 日本					
		パーカライジング株式会社内					
		(72)発明者 林 洋樹					
		東京都中央区日本橋1丁目15番1号 日本					
		パーカライジング株式会社内					
		(74)代理人 弁理士 村井 卓雄					

(54) 【発明の名称】 金属材料用表面処理剤組成物および処理方法

(57)【要約】 (修正有)

【課題】 クロメート皮膜に代替できる高い耐食性を有し、耐指紋性、耐黒変性および塗装密着性に優れたノンクロム系金属材料用表面処理剤を提供する。

【解決手段】下記成分を含む酸性表面処理剤で金属材料の表面を処理する。(A)マンガン、コバルト、亜鉛、マグネシウム、ニッケル、鉄、チタン、アルミニウムおよびジルコニウムからなる群から選ばれた金属イオンからなるカチオン成分。(B)(1)4個以上のフッ素原子とチタン、ジルコニウム、ケイ素、ハフニウム、アルミニウムおよびホウ素からなる群から選ばれた元素を1個以上含むフルオロ酸、(2)リン酸、(3)酢酸からなる群から選ばれた少なくとも1種、(C)活性水素含有アミノ基、エポキシ基、ビニル基、メルカプト基及びメタクリロキシ基から選ばれたシランカップリング剤成分、(D)重合単位2~50の水溶性重合体成分。

【特許請求の範囲】

【請求項1】 水性媒体と、この水性媒体中に溶解された下記成分:

- (A) マンガン、コパルト、亜鉛、マグネシウム、ニッケル、鉄、チタン、アルミニウムおよびジルコニウムからなる群から選ばれた2価以上の金属イオンからなるカチオン成分と、
- (B) 酸成分として、少なくとも(1) 4個以上のフッ 素原子と、チタン、ジルコニウム、ケイ素、ハフニウ ム、アルミニウム、およびホウ素からなる群から選ばれ た元素を1個以上含むフルオロ酸、(2) リン酸、
- (3) 酢酸からなる群から選ばれた少なくとも1種と、
- (C) 活性水素含有アミノ基、エポキシ基、ビニル基、メルカプト基及びメタクリロキシ基から選ばれた少なくとも1個の反応性官能基を有する1種以上の化合物からなるシランカップリング剤成分と、
- (D)下記一般式(I)により表される1種以上の重合 単位を2~50の平均重合度で含む1種以上の水溶性重 合体成分

【化1】

$$\begin{array}{c|c}
OH \\
O H_{2} \\
O \\
Y^{1}
\end{array}$$

$$\begin{array}{c}
(I) \\
N=2 \sim 50
\end{array}$$

[但し、式(I)中、ベンゼン環に結合している X^1 は、水素原子、ヒドロキシル基、 $C_1 \sim C_5$ のアルキル基、 $C_1 \sim C_{10}$ のヒドロキシアルキル基、 $C_6 \sim C_{12}$ のアリール基、ベンジル基、ベンザル基、前記ベンゼン環に縮合して、ナフタレン環を形成する不飽和ハイドロカ

【化2】

$$\begin{array}{c}
OH \\
O \\
O \\
Y^1
\end{array}$$

$$n=2 \sim 50$$

【化3】

$$R^2 - C - R^1$$

$$O$$

$$Y^2$$
(III)

式 (I I I) 中の R^1 および R^2 は、それぞれ互いに独立に、水素原子、ヒドロキシル基、 $C_1 \sim C_5$ のアルキル基、または $C_1 \sim C_{10}$ のヒドロキシアルキル基を表し、式 (I), (I I) および (I I I) において、ベンゼン環に結合している Y^1 および Y^2 は、それぞれ互いに独立に、下記式 (I V) または (V) により表されるZ 甚の I 種

[14]

 $\begin{array}{c|c}
 & R^5 \\
 & R^6 \\
 & R^7
\end{array}$

を表し、前記式(IV) および(V) 中の R^3 、 R^4 , R^5 、 R^6 および R^7 は、それぞれ互いに独立に水素原

(IA)

子、 $C_1 \sim C_5$ のアルキル基または $C_1 \sim C_{10}$ のヒドロキシアルキル基を表し、前記複数の重合単位のベンゼン

環に結合している X^1 、 Y^1 および Y^2 のそれぞれは、他のベンゼン環に結合している X^1 , Y^1 および Y^2 のそれぞれと同一であってもよくまたは互いに異なってもよく、前配重合体分子中の各ベンゼン環における前配 Z 基の置換数の平均値は $0.2 \sim 1.0$ である。] からなる少なくとも 1 種の水溶性重合体を含むことを特徴とする金属材料用表面処理剤組成物。

【請求項2】 前記カチオン成分(A)を、表面処理組成物の全固形分に対して0.01~10重量%を含む請求項1に記載の金属材料用表面処理組成物。

【請求項3】 前記酸成分(B)を表面処理剤組成物の 全固形分に対して0.1~15重量%含む請求項1また は2記載の金属材料用表面処理剤組成物。

【請求項4】 前記シランカップリング剤成分(C)と前記水溶性重合体成分(D)との重量比(C)/(D)が1:10~10:1である請求項1から3までの何れか1項記載の金属材料用表面処理剤組成物。

【請求項5】 前記シランカップリング剤成分(C)が (a)1個以上の活性水素を含有アミノ基を有する1個 以上の化合物からなる第1のシランカップリング剤と、

(b) 1個以上のエポキシ基を有する1種以上の化合物からなる第2のシランカップリング剤とを含む請求項1から4までの何れか1項記載の金属材料表面処理剤組成物。

【請求項6】 前記第1のシランカップリング剤(a) に含まれる活性水素含有アミノ基と、前記第2のシランカップリング剤(b)に含まれるエポキシ基に対する当量比が3:1~1:3である請求項5記載の金属材料用表面処理剤組成物。

【請求項7】 前記第1のシランカップリング剤(a) と前記第2のシランカップリング剤(b)との合計量 の、前記水溶性重合体成分(D)に対する重量比

[(a)+(b)]/(D)が5:1~1:5である請求項5から6までのいずれか1項記載の金属材料用表面処理剤組成物。

【請求項8】 請求項1から7までの何れか1項記載の表面処理剤組成物を含み、かつ2.0~6.5のpHに調整した水性表面処理液を金属表面に付着させ、乾燥して0.01~5.0g/m² の乾燥重量を有する皮膜を形成させることを特徴とする金属材料の表面処理方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、金属材料の表面に高い耐食性を付与することができると共に、耐指紋性、耐黒変性、塗装密着性などに優れた皮膜を形成する表面処理剤組成物および処理方法に関するものである。

[0002]

【従来の技術】亜鉛含有金属めっき鋼板およびアルミニウム板等の金属材料は、自動車、建材並びに家電関係の 広い分野に使用されている。しかし、これらの金属材料 に用いられる亜鉛やアルミニウムは、大気中で腐食していわゆる白錆と言われる腐食生成物を生成させ、これが 金属材料の外観を低下させ、更に塗装密着性にも悪影響 をおよぼすという欠点を有している。

【0003】そこで耐食性および塗装密着性を改善するために、金属材料の表面にクロム酸、重クロム酸またはその塩類を主成分として含む処理液によりクロメート処理を施すことが一般に行われている。

【0004】しかしながら、近年、環境保全に対する意識の高まりにより、金属材料表面を処理するのに使用されるクロメート処理液中の6価クロムには、人体に直接的な悪い影響をおよぼす欠点があるため、クロメート処理は敬遠されがちである。また、6価クロムを含む排水には、水質汚濁防止法に規定されている特別な処理を施す必要があり、これが全体的としてかなりのコストアップの原因になっている。また、クロメート処理を施した金属材料は、それがクロム含有の産業廃棄物となった時に、リサイクルができないという大きな欠点を有し、このことは社会的に問題になっている。

【0005】一方、クロメート処理以外の表面処理方法としては、多価フェノールカルボン酸を含有するタンニン酸を含む表面処理剤による処理が良く知られている。タンニン酸の水溶液によって金属材料を処理すると、タンニン酸と金属材料との反応によって形成される保護皮膜が、腐食物質の侵入に対しバリアーとなるので、耐食性が向上すると考えられている。

【0006】ところが、近年、製品の高品質化に伴い、 皮膜自体の高耐食性が要求されており、そのため、タン ニン酸単独若しくは無機成分を併用して得られる皮膜は 耐食性が不十分であるので、現状における実用化は不可 能である。

【0007】そこで、耐食性を向上させる処理方法として、特開昭53-121034号公報に、水分散性シリカと、アルキド樹脂と、トリアルコキシシラン化合物とを含む水溶液を金属表面に塗布し、乾燥して、被覆皮膜を形成する方法が開示されている。

【0008】また、ヒドロキシピロン化合物誘導体からなる水溶性樹脂を使用して、金属材料に耐食性を付与することを目的とした表面処理方法、およびヒドロキシスチレン化合物の水溶液または水分散性重合体を用いて金属材料に耐食性を付与する方法が、特開昭57-44751号公報および特開平1-177380号公報等に開示されている。

【0009】しかしながら、上記の何れの方法も、クロメート皮膜に代替できるような高い耐食性を付与する皮膜を形成し得るものではなく、現実問題として前記問題点は未だ解決されていないのである。従って、現状では耐食性に優れた金属材料用のノンクロム系表面処理剤および処理方法の開発が強く要求されているのである。

[0010]

【発明が解決しようとする課題】本発明は、従来技術の有する前記問題点を解決して、耐食性に優れた皮膜を金属材料表面に形成することができ、さらに耐指紋性、耐黒変性および塗装密着性に優れたノンクロム系金属材料用表面処理剤およびそれを用いた金属材料の処理方法を提供することを目的とするものである。

[0011]

【課題を解決するための手段】本発明者らはこれらの従来技術の抱える問題点を解決すべく鋭意検討を重ねてきた結果、特定のカチオン成分と、シランカップリング剤と、特定の化学構造を有する水溶性重合体とを含む酸性表面処理剤を用いて金属材料の表面を処理することにより、耐食性に優れた皮膜が形成できるとともに、耐指紋性、耐黒変性および塗装密着性に優れた皮膜を形成できることを新たに見い出し、本発明を完成するに至った。【0012】すなわち、本発明の金属材料用表面処理剤組成物は水性媒体と、この水性媒体に溶解された下記成分:

(A)マンガン、コバルト、亜鉛、マグネシウム、ニッケル、鉄、チタン、アルミニウムおよびジルコニウムからなる群から選ばれた2価以上の金属イオンからなるカチオン成分と、(B)酸成分として、少なくとも(1)4個以上のフッ素原子と、チタン、ジルコニウム、ケイ素、ハフニウム、アルミニウム、およびホウ素から選ばれた元素を1個以上含むフルオロ酸、(2)リン酸、(3)酢酸からなる群から選ばれた少なくとも1種と、(C)活性水素含有アミノ基、エポキシ基、ピニル基、メルカプト基およびメタクリロキシ基から選ばれた少なくとも1個の反応性官能基を有する1種以上の化合物からなるシランカップリング剤成分と、(D)下記一般式(I)に表される1種以上の重合単位2~50の平均重合度で含む1種以上の水溶性重合体成分

【化5】

$$\begin{array}{c}
\text{OH} \\
\text{O} \\
\text{V}^1
\end{array}$$

$$\begin{array}{c}
\text{N=2} \sim 50$$

[但し、式(I)中、ベンゼン環に結合している X^1 は、水素原子、ヒドロキシル基、 $C_1 \sim C_5$ のアルキル基、 $C_1 \sim C_{10}$ のヒドロキシアルキル基、 $C_6 \sim C_{12}$ のアリール基、ベンジル基、ベンザル基、前記ベンゼン環に縮合して、ナフタレン環を形成する不飽和ハイドロカーボングループ(式 I I I)の基

【化6】

$$\begin{array}{c}
OH \\
O \\
O \\
Y^1
\end{array}$$

$$\begin{array}{c}
(II) \\
n=2 \sim 50
\end{array}$$

【化フ】

$$R^{2}-C-R^{1}$$

$$O$$

$$Y^{2}$$

$$OH$$

を表し、式(+1)中のペンゼン環に結合している \times^2 は、水素原子、ヒドロキシル基、 $C_1 \sim C_5$ のアルキル基、 $C_6 \sim C_{12}$ のアリール基、ベンジル基、ベンザル基を表し、式(+1)中の \times^2 および \times^2 は、それぞれ互いに独立に、水素原子、ヒドロキシル基、 \times^2 は、それぞれ互いに独立に、水素原子、ヒドロキシル基、 \times^2 は、それぞれ互いに独立に、水体に、 \times^2 は、 \times^2 は、 \times^2 は、 \times^2 は、 \times^2 は、 \times^2 は、 \times^2 において、ベンゼン環に結合している \times^2 および \times^2 は、それぞれ互いに独立に、下記式(+1) または(+2) または(+3)

を表し、前記式(IV)および(V)中のR 3 、R 4 ,R 5 、R 6 およびR 7 は、それぞれ互いに独立に水素原子、C1、C5。のアルキル基またはC1、C10のヒドロキシアルキル基を表し、前記複数の重合単位のベンゼン環に結合している \mathbf{X}^1 、 \mathbf{Y}^1 および \mathbf{Y}^2 のそれぞれは、他のベンゼン環に結合している \mathbf{X}^1 、 \mathbf{Y}^1 および \mathbf{Y}^2 のそれぞれは、他のベンゼン環に結合している \mathbf{X}^1 , \mathbf{Y}^1 および \mathbf{Y}^2 のそれぞれと同一であってもよくまたは互いに異なってもよく、前記重合体分子中の各ベンゼン環における前記 Z基の置換数の平均値は O. 2~1. Oである。]により表される重合単位 n を 2~5 Oの平均重合度で含む水溶性重合体とを含有することを特徴とするものである。

【0013】本発明の表面処理剤組成物は、カチオン成分(A)を表面処理組成物の全面形分に対して0.01~10重量%含有することが好ましい。

【0014】本発明の表面処理剤組成物は、(1)フルオロ酸、(2)りん酸および/または(3)酢酸からなる酸成分(B)が表面処理剤組成物の全面形分に対して0.1~15重量%含有することが好ましい。

【0015】本発明の表面処理剤組成物は、シランカップリング剤成分(C)と水溶性重合体成分(D)との重量比(C)/(D)が1/10~10/1であることが好ましい。

【0016】本発明の表面処理剤組成物は、シランカップリング剤成分(C)が(a)1個以上の活性水素含有アミノ基を有する1個以上の化合物からなる第1のシランカップリング剤と、(b)1個以上のエポキシ基を有する1種以上の化合物からなる第2のシランカップリング剤とを含むことが好ましい。

【0017】前配第1のシランカップリング剤(a)に含まれる活性水素含有アミノ基の、第2のシランカップリング剤(b)に含まれるエポキシ基に対する当量比が3:1~1:3であることが好ましい。

【0018】前記第1のシランカップリング剤(a)と 第2のシランカップリング剤(b)との合計量の水溶性 重合体成分(D)に対する重量比[(a)+(b)]/ (D) が5/1~1/5であることが好ましい。

【0019】また、本発明の表面処理方法は、本発明の金属材料用表面処理剤組成物を含み、かつ2.0~6.5のpH範囲に調整された水性表面処理液を、金属材料表面に付着させ、乾燥して、0.01~5.0g/m²の乾燥重量を有する皮膜を形成することを特徴とするものである。

[0020]

【0022】また、本発明における表面処理剤組成物中のカチオン成分の濃度は、表面処理剤組成物の全固形分中に対して0.01~10重量%であることが好ましい。この濃度が0.01重量%未満の場合、得られた皮膜の成膜性が未熟で、耐食性が低下することがある。また、カチオン成分が10重量%を超えると、表面処理剤組成物およびそれを含む水性処理液の安定性を悪くする。

【0023】本発明における表面処理剤組成物中の酸成分(B)は、(1)少なくとも4個以上のフッ素原子と、チタン、ジルコニウム、ケイ素、ハフニウム、アル

ミニウム、およびホウ素からなる群から選ばれた元素を1個以上含むフルオロ酸、(2)リン酸、(3)および酢酸からなる群から選ばれた少なくとも1種を含む。これらの成分の配合量は特に限定されないが、この酸成分にて表面処理剤組成物のpHを2.0~6.5に調整することが好ましい。また、酸成分は表面処理剤組成物の全固形分に対して0.1~15重量%含有することが好ましい。酸成分が全固形分に対して0.1重量%未満の場合、pHを上配範囲内に調整できず、その結果、成膜性が悪く、耐食性が低下する。また、それが全固形分中の15重量%を超えると、表面処理剤組成物およびそれを含む水性処理液の安定性を悪くする場合がある。

【0024】本発明に用いられるシランカップリング剤成分(C)は、1分子中に反応性官能基として活性水素を有するアミノ基、エポキシ基、ビニル基、メルカプト基およびメタクリロキシ基を含むものであれば、特に構造は限定されないが、具体的に例を挙げれば、以下のイ・~イ・のような組成のものを使用することができる。

イ·アミノ基を有するもの

N-(2-アミノエチル) 3-アミノプロピルメチルジメトキシシラン、N-(アミノエチル) 3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン

イ・エポキシ基を有するもの

3 ーグリシドキシプロピルトリメトキシシラン、3 ーグ リシドキシプロピルメチルジメトキシシラン、2 ー

(3、4エポキシシクロヘキシル) エチルトエリメトキ シシラン

ィ・ビニル基を有するもの

ビニルトリエトキシシラン

インメルカプト基を有するもの

3-メルカプトプロピルトリメトキシシラン

ィ・メタクリロキシ基を有するもの

3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン

【 O O 2 5 】本発明に用いられるシランカップリング剤 成分 (C) は、1 個以上の活性水素含有アミノ基を有す る1種以上の化合物からなるシランカップリング剤

(a)と、1個以上のエポキシ基を有する1種以上の化合物からなるシランカップリング剤(b)からなるものが好ましい。

【0026】また、本発明における表面処理剤中のシランカップリング剤の反応性官能基が活性水素を有するアミノ基とエポキシ基からなる第1および第2のものである場合、活性水素を有するアミノ基とエポキシ基との当量比は3:1~1:3の範囲であることが好ましい。この活性水素を有するアミノ基とエポキシ基との当量比が3:1を超えてアミノ基が多いと、処理された皮膜の成膜性が悪く、耐食性、耐指紋性、耐黒変性、塗装密着性が不十分になる。またこの当量比が1:3未満の場合、

処理された皮膜の耐食性、耐指紋性、耐黒変性、および 塗装密着性等の性能が飽和してしまい経済的に無駄にな る。

【OO27】次に本発明に用いる水溶性重合体(D) は、前配(1)、および(11)で示される重合体を含 むオリゴマーまたはポリマーであり、式(1)、および (11)の重合単位の平均重合度は2~50である。 【0028】式(1)において、ベンゼン環に結合して いる X^1 は、水素原子、ヒドロキシル基、 $C_1 \sim C_2$ の アルキル基、例えばメチル、エチル、プロピル基等、C , ~C₁₀ のヒドロキシアルキル基、例えばヒドロキシメ チル、ヒドロキシエチル、ヒドロキシプロピル基等、C 。~C12 のアリール基、例えばフェニル、ナフチル基 等、ペンジル基、ペンザル基、前記ペンゼン環に縮合し てナフタレン環を形成する不飽和ハイドロカーポングル ープ(||), すなわちーCH=CH-CH=CHー, =CH-CH=CH-CH=基または前記式(III) の基を表す。式(11)中のベンゼン環に結合している X² は、水素原子、ヒドロキシル基、C₁~C₅のアル キル基、C、~C10のヒドロキシアルキル基、C6~C 12 のアリール基、ベンジル基、ベンザル基を表わす。 【0029】式(III) 中のR¹ およびR² は、それ ぞれ互いに独立に、水素原子、ヒドロキシル基、C、~ C₁₀ アルキル基、例えばメチル、エチル、プロピル基 等、C₁ ~ C₁₀ のヒドロキシアルキル基、例えばヒドロ キシメチル、ヒドロキシエチル、ヒドロキシプロピル基

【0030】式(1),(11)および(111)において、ベンゼン環に結合している Y^1 および Y^2 は、それぞれ互いに独立に、水素原子、または式(1V)または(V)により表されるZ基を有する。また、式(1V)および(V)の中の R^3 , R^4 , R^5 , R^6 および R^7 は、それぞれ互いに独立に C_1 ~ C_{10} アルキル基、例えばメチル、エチル、プロピル基等、 C_1 ~ C_{10} のヒドロキシアルキル基、例えばヒドロキシメチル、ヒドロキシエチル、ヒドロキシプロピル基等を表すものである。

等を表すものである。

【0031】前記重合体分子中の各ペンゼン環に結合している式(I)中の X^1 , Y^1 , 式(II)中の X^2 , Y^1 および式(III)中の Y^2 のそれぞれは、他のペンゼン環に結合している X^1 , Y^1 および Y^2 のそれぞれと同一であってもよくまたは互いに異なってもよい。また、前記重合体分子中の各ペンゼン環における前記 Z基の置換数の平均値は、 $0.2\sim1.0$ である。また、式(I)および(II)中の10 中の10 中の平均重合度を表す。11 かられた重合体の分子量が過小であり、得られる皮膜の耐食性が不十分になり、またそれが50を超えると、得られる表面処理組成物およびそれを含む水溶性処理液の安定性が悪くなり、実用上不都合を生じる。

【0032】 Z基の置換数の平均値とは、重合体分子中の全ペンゼン環において、それぞれに導入されている Z基の数の平均値である。例えば、式(I)において、n=10であって、且つ x¹が式(III)のペンゼン環合有基である場合、この重合体の1分子当たりのペンゼン環数は20であり、この重合体1分子当たり、10個のペンゼン環に各1個宛の Z基が導入されている場合、この重合体の Z基置換数平均値は、 [(1×10)+(0×10)]/20=0.5となる。

【0033】このZ基置換数の平均値が0.2未満であると、得られる重合体の水溶性が不十分となり、表面処理組成物、およびそれらから得られる水性処理液の安定性が悪くなる。またそれが、1.0を超えると、得られる重合体の水溶性が過大になり、得られる皮膜の可溶性が上がり、耐食性が不十分となる。

【0034】式 (1V) および式 (V) により表される Z 基中の $R^3 \sim R^7$ の各々は、 $C_1 \sim C_5$ のアルキル 基、 $C_1 \sim C_{10}$ のヒドロキシアルキル基を表す。これら の炭素数が 11 以上になると、形成される皮膜の成膜性 が低下するため、耐食性が不十分になる。

【0035】本発明の表面処理剤中において、シランカップリング剤(C)と水溶性重合体(D)との重量比は、1:10~10:1であることが好ましく、より好ましくは1:1~5:1である。この重量比が1:10未満の場合、すなわちシランカップリング剤の比率が低いと、基体表面との接着力が低下するため、耐食性、密着性が低下する。またそれが10:1を超えると、すなわちシランカップリング剤の含有比率が過大になると、得られる表面処理剤組成物の成膜性が低下するため、耐食性が不十分になる。

【0036】また、本発明の表面処理剤組成物を含む水性表面処理液のpHは、2.0~6.5の範囲に調整されることが好ましい。その際、pH調整剤としては、水性表面処理液のpHを上げる場合、アンモニウム水や、水酸化物塩を用い、水性表面処理液のpHを下げる場合、本発明に用いている酸成分(B)で調整することが好ましい。pHが2.0未満では、基体表面との反応性が過多になるので、皮膜の成膜不良を発生してしまい、得られる皮膜の耐食性、耐指紋性、耐黒変性および塗装密着性が不十分になる。またそれが、6.5を超えると、水溶性重合体自体が水性処理液から沈殿析出しやすくなるため、水性表面処理液の寿命が短くなる。

【0037】また、本発明方法において、金属材料の表面に水性表面処理液を付着させ、乾燥して0.01~5.0g/m²の乾燥重量を有することが好ましい。乾燥後の皮膜重量が0.01g/m²未満の場合、金属材料を被覆できにくく、耐食性、耐指紋性、耐黒変性および塗装密着性が不十分になる。また乾燥後の皮膜重量が5.0g/m²を超えると、塗装密着性が低下する。水性表面処理液を付着させる方法には、特に限定はなく、

例えば浸漬方法、スプレー方法およびロールコート法などを適応することができる。また、処理温度、処理時間についても特に限定はない。さらに金属材料表面上の水性表面処理液層の乾燥を加熱下に行うことが好ましい。加熱温度としては50~250℃が好ましい。その後、必要に応じて水冷を行っても良い。

【0038】また、本発明の表面処理剤組成物中には、 充填剤や潤滑剤を配合しても構わない。充填剤としては ジルコニアゾル、アルミナゾル、シリカゾル等を用いる ことができ、潤滑剤としてはポリエチレンワックス、ポ リプロピレンワックス等を用いることができる。上記充 填剤、潤滑剤などは本発明の表面処理剤組成物中に予め 配合しておいてもよい。

【0039】本発明による表面処理対象となる金属材料の種類、寸法、形状などには特に限定はなく、例えば鉄板、亜鉛含有金属めっき鋼板、スズめっき鋼板、ステンレス鋼板、アルミニウム板およびアルミニウム合金板などから選ぶことができる。

【0040】本発明の表面処理剤組成物で処理された金 属材料の耐食性、耐指紋性、耐黒変性、および塗装密着 性が著しく増進される作用効果について説明する。ま ず、金属材料表面を表面処理剤組成物を含む水性表面処 理液に接触させると、処理液中の酸成分により、金属表 面のエッチングが起きる。これによって、界面のpHが 上昇し溶出してきた金属イオン、並びに表面処理液中の 2 価以上のカチオン成分と水溶性重合体との反応により 難溶性の樹脂皮膜が界面に形成される。この難溶性の樹 脂皮膜パリア効果を発揮し、それにより金属材料の耐食 性、耐指紋性、および耐黒変性が向上するものと考えら れる。ただし、このままでは金属材料と皮膜との密着性 が低いため、シランカップリング剤を併用することで、 加水分解を受けたシランカップリング剤中の官能基(一 OR基) が金属材料表面とオキサン結合を形成し、更に シランカップリング化合物の有する反応性官能基が水溶 性重合体、ならびに有機塗料と反応するため、金属材料 と水溶性重合体ならびに有機塗料水溶性重合体との密着 性を向上させるものと推定される。

[0041]

【実施例】下記の実施例により本発明を具体的に説明するが、本発明の範囲はこれらの実施例により限定されるものでない。下記実施例および比較例に用いられる金属材料、その表面清浄化方法および水性表面処理液について下記に説明する。

【0042】1. 供試材

ィ・冷延鋼板

市販品、板厚0.6mm JIS G3141

イ・亜鉛含有金属めっき鋼板

a 市販品、板厚 0. 6 mm 両面電気亜鉛めっき鋼板 (EG材)

目付量20g/m²

b 市販品、板厚 0.6 mm 溶融亜鉛めっき鋼板(G I 材)

目付量40g/m² · アルミニウム板(A I 材) 市販品、板厚0.8mm JIS A5052 【0043】2.金属板の清浄方法

上記金属材料の表面を中アルカリ脱脂剤の(登録商標:ファインクリーナー4336、日本パーカライジング(株)製)の水溶液(薬剤濃度:20g/リットル)を用いて、処理温度:60℃、処理時間:20秒の条件で

(株) 製)の水溶液 (柴剤温度:20g/リットル)を 用いて、処理温度:60℃、処理時間:20秒の条件で スプレー処理し、表面に付着しているゴミや油を除去し た。次に表面に残存しているアルカリ分を水道水により 洗浄し、供試材の表面を清浄化した。

【0044】3. 水性表面処理組成

<処理液 A > 水溶液重合体 $1 \, \text{として}$ 、 n=5、 X^1 = 水 素、 Y^1 = Z = $-\text{CH}_2$ N (CH_3) $_2$ 、 Z 基置換数平均値= 1 のものを用いて、3 - メルカプトプロピルトリメトキシシランの、水溶性重合体 1 に対する重量比が 3:1 になるように両成分を配合し、全固形分量の 1 重量%に相当する亜鉛イオンを酢酸亜鉛にて添加した。 更に酸成分としてジルコンフッ化水素酸を全固形分量に対して 1 0 重量%添加し、リン酸で p Hを 3 。 0 に調整した。その後、全固形分量が 5 重量%になるように脱イオン水で希釈した。

【0045】 < 処理液 B > 水溶性重合体 2 として、n=15、 $X^1=-CH_2-C_6$ H_4 -OH、 $Y^1=Z=-CH_2$ N (CH_3) C_2 H_5 OH、 Z 基置換数 平均値 =0. 75 のものを用いて、 3- アミノプロピルトリエトキシシラン+3-グリシドキシプロピルメチルジメトキシシラン (活性水素含アミノ基:エポキシ基の当量比が 1:3) の、水溶性重合体 2 に対する重量比が 1:1になるように両成分を配合し、全固形分量の 1 重量%に 日当するチタンイオンをチタンフッ化アンモニウムにて添加した。 更に酸成分としてチタンフッ化水素酸を全固形に対して 15 %添加し、 p Hを 4 に 4 のに 調整した後、全固形分量が 5 重量%になるように脱イオン水にて希釈した。

【0046】 <処理液 C>水溶性重合体 3 として、n=5、 $X^1=-CH_2-C_6$ H_4 -OH、 $Y^1=Z=-C$ H_2 N (CH_3) $_2$ 、 Z 基置換数平均値=0.5のものを用いて、3 - アミノプロピルトリエトキシシラン+3 - グリシドキシプロピルメチルジメトキシシラン(活性水素含アミノ基:エポキシ基の当量比=1:1)の、水溶性重合体 3 に対する重量比が 5:1になるように両成分を配合し、全固形分量の 1 重量%に相当するニッケルイオンを硝酸ニッケルにて添加し、酸成分としてケイフッ化水素酸を全固形分に対して 0:5 重量%添加し、酢酸で P H 5:0 に調整した後、全固形分量が 5 重量%になるように脱イオン水にて希釈した。

【0047】<処理液D>水溶性重合体4として、n=

 $3 \times X^1 = -C_4 H_3 - OH(ナフタレン環、式 III) 、 <math>Y^1 = Z = -CH_2 N(CH_3) C_2 H_5 OH$ 、 Z 基置換数平均値 = 1 . O のものを用いて、3 - T ミノプロピルトリエトキシシラン+3 - メタクリロキシプロピルトリメトキシシラン(活性水素含アミノ基: メタクリロ基の当量比 = 1 : 3) の、水溶性 里合体 4 に対する 重量比 M 1 : M 1 : M 2 に M 3 に M 4 に M 4 に M 5 を配合し、全 M 6 を配合し、全 M 6 を配合し、全 M 6 を配合し、全 M 7 と M 7 に M 8 で M 8 で M 8 で M 9 に M 8 で M 9 に M 8 で M 9 に M 9 で M 8 で M 9 に M 9

【0049】<比較処理液F>水溶性重合体2として、n=5、 $X^1=-CH_2-C_6$ H_4 -OH、 $Y^1=Z=-CH_2$ N (CH_3) C_2 H_5 OH、Z 基置換数平均値 =0. 75 のものを用いて、3- アミノプロピルトリエトキシシラン+3- グリシドキシプロピルメチルジメトキシシラン(活性水素含有アミノ基:エポキシ基の当量比 =1: =1) の、水溶性重合体2に対する重量比が =1: =1

【0050】 < 比較処理液G > 水溶性重合体 6 として、n=5、 $X^1=-CH_2-C_6$ H_4 -OH、 $Y^1=Z=-CH_2$ N (CH_3) C_2 H_6 OH、 Z 基置換数平均値 =0. 50 のものを用いて、 3- アミノプロピルトリエトキシシラン+ 3- グリシドキシプロピルメチルジメトキシシラン (活性水素合有アミノ基:エポキシ基の当量 比=1:1) の、水溶性重合体 2 に対する重量比が 1:1 になるように両成分を配合した。更に酸成分としてリン酸を全固形分に対して 15 重量%添加し、p Hを 4:0 に調整した後、全固形分量が 5 重量%になるように脱イオン水にて希釈した。

【0051】 <比較処理液H>水溶性重合体 1 として、n=5、 $X^1=$ 水素、 $Y^1=Z=-CH_2$ N (CH_3)₂、 Z基置換数平均値=1のものを用いて、全固形分量

の1 重量%に相当する亜鉛イオン量を酢酸亜鉛にて添加した。更に酸成分として酢酸を全固形分量に対して10 重量%添加し、酢酸でpHを3.0に調整した。その 後、全固形分量が5 重量%になるように脱イオン水で希 駅した。

【0052】水溶性重合体1として、n=5、 $x^1=x$ 索、 $Y^1=Z=-CH_2$ N $(CH_3)_2$ 、Z 基置換数平均値=1のものを用いて、3-T ミノプロピルトリエトキシシラン+3- グリシドキシプロピルメチルジメトキシシラン (活性水素含有アミノ基:エポキシ基の当量比=1:1)の、水溶性重合体2に対する重量比が1:1になるように両成分を配合し、全固形分量の1重量%に相当する銅イオン量を酢酸銅にて添加した。更に酸成分として酢酸を全固形分量に対して10重量%添加し、酢酸でpH を3.0に調整した。その後、全固形分量が5重量%になるように脱イオン水で希釈した。

【0053】<比較処理液J>水溶性重合体6として、ポリアクリル酸(n=50)を用いて、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランの、水溶性重合体11との重量比が1:4になるように両成分を配合し、全固形分量の0.5重量%に相当する亜鉛イオン量を酢酸亜鉛にて添加した。更に酸成分としてチタンフッ化水素酸を全固形分量に対して0.7重量%添加し、リン酸でpH4.0に調整した。その後、全固形分量が5重量%になるように脱イオン水にて希釈した。

【0054】<実施例1>前記方法で清浄化された冷延 鋼板材に、水性処理液Aをロールコート法にて塗布し、 到達板温度が150℃になるように加熱乾燥した。

【0055】<実施例2>前記方法で清浄化された冷延 鋼板材に、水性処理液Bをロールコート法にて塗布し、 到達板温度が100℃になるように加熱乾燥した。

【0056】<実施例3>前記方法で清浄化された電気 亜鉛メッキ鋼板に、水性処理液日をロールコート法にて 塗布し、到達板温度が100℃になるように加熱乾燥した。

【0057】<実施例4>前記方法で清浄化された溶融 亜鉛メッキ鋼板に、水性処理液Cをロールコート法にて 塗布し、到達板温度が100℃になるように加熱乾燥し た。

【 0 0 5 8 】 <実施例 5 > 前記方法で清浄化された溶融 亜鉛メッキ鋼板に、水性処理液 D をロールコート法にて 塗布し、到達板温度が 8 0 ℃になるように加熱乾燥した。

【0059】<実施例6>前記方法で清浄化された溶融 亜鉛メッキ鋼板に、水性処理液Eをロールコート法にて 塗布し、到達板温度が200℃になるように加熱乾燥 し、直ちに水に付け、冷却した。

【0060】<実施例7>前記方法で清浄化されたアルミニウム材に、水性処理液Bをロールコート法にて塗布し、到達板温度が200℃になるように加熱乾燥した。 【0061】<実施例8>前記方法で清浄化されたアルミニウム材に、水性処理液Cをロールコート法にて塗布し、到達板温度が100℃になるように加熱乾燥した。 【0062】<比較例1>前記方法で清浄化された冷延鋼板材に、水性処理液Fをロールコート法にて塗布し、到達板温度が100℃になるように加熱乾燥した。

【0063】<比較例2>前記方法で清浄化された電気 亜鉛メッキ鋼板材に、水性処理液Gをロールコート法に て塗布し、到達板温度が100℃になるように加熱乾燥 した。

【0064】<比較例3>前記方法で清浄化された電気 亜鉛メッキ鋼板材に、水性処理液Hをロールコート法に て塗布し、到達板温度が150℃になるように加熱乾燥 した。

【0065】 <比較例4>前記方法で清浄化された電気 亜鉛メッキ鋼板材に、水性処理液Hをロールコート法に て塗布し、到達板温度が80℃になるように加熱乾燥し た。

【0066】 <比較例5>前記方法で清浄化された電気 亜鉛メッキ鋼板材に、水性処理液Hをロールコート法に て塗布し、到達板温度が100℃になるように加熱乾燥 した。

【0067】実施例1~8及び比較例1~5の表面処理 剤組成物及び処理液の組成などを表1に示す。

[0068]

【表1】

电电	* * *	面饭	55 AO	シランカップリング剤成分(A)	(3)		水溶性蛋合体成分(8)	k 成分(B)		水性処	散成分
		麗	台西	シランカップリング剤	配合	c	×	٨	2 位因	西森の	
				の實能裁	thet m				事な中中での日本	Hd	
双路的 1	SPC	4	E 20	月1,027.1出	-	2	水斑	-CH,M(CH,),	1.00	3.0	ソ・トコンフッ化水紫砂
災酷例 2	SPC	æ	141	アミノ苗+エボキシ苗	1:3	15.	-c(ch,),-c,H,-0H	-CH*N(CH*)C*H*0H	0.75	4.0	#ソフッイヒンメ常敬
災低例 3	EG	В	197	アミノ热+エボキシ絡	1:3	1.5	-C(CH3)3-C3H4-0H	-CH,N(CH,)C,M,0H	0.75	4.0	チタンフッ化水紫酸
英島例 4	15	U	177B	アミノ苗+エポキシ菇	1:1	ß	-C(CH,),-C,H,-0H	-CH.N(CH.),	0.50	5.0	177亿水景数
灾脆例 5	ວລ	Q	7.1/2	アミノ苗+メタクリロ語	1:1	c	C.H OH	-CH 1 (CH 1) C 1 K 1 OH	1.00	2.5	ロンは
灾酷的 6	93	ម	AT \$8	アミノ基	ı	e.	-C(CH,),-C,H,-OH	-CH,N(CH,),	0.50	4.0	安
设施例 7	7	æ	147	アミノ苗+エポキシ路	1:1	1.5	-C(CH,),-C,H,-0H	-CH,N(CH,)C,H,0H	0.75	4.0	49/7-1亿水双型
32 MG FM 8	١٧	ပ	2778	アミノ苗+エポキシ蕗	3:1	5	-C(CH,),-C,N,-0H	-CH,N(CH,),	0.50	5.0	117-化水条酸.
15 62 69/ 1	SPC	(E.,	£97	アミノ協+エポキツ語	1:1	1.5	-C(CH3)3-C4H4-0H	-CH,N(CH,)C,H,0H	0.75	8.0	ł
11 eq 194	₩	0	ŧ	アミノ路+エポキシ路	1:1	S	-C(CH3)3-C4H4-0H	-CH,N(CH,),	0.50	4.0	+977-化水溶散
12 0% (P) 3	ວິລ	π	頭18	ı	ı	ß	关	-CH,N(CH,),	1.00	3.0	949
比晚阳4	93	1	Œ	アミノ高トエポキシ凸	1::	22	XX XX	-CH, N(CH,),	1.00	3.0	6.00
1.00 gm 5	£6	ĵ	B 189	アミノ語	ŧ	20	ポリアクリル酸			4.0	チシンフー化水発酸

【0069】3. 評価試験方法

前記実施例および比較例により得られた表面処理金属材料の性能を下記方法により評価した。

【0070】3.1.耐食性

a)耐食性イ・

供試材が亜鉛含有金属めっき鋼板(EG、GI)および アルミニウム板(AI)の場合:塩水噴霧試験(JIS Z 2371)により、耐白銷性を目視により測定 し、白錆発生面積が5%に達するまでの時間で評価を行った。

b)耐食性心

供試材が冷延鋼板の場合:温度50℃-湿度95%の雰囲気条件で、発饋面積が5%に達するまでの時間で評価を行った。

【0071】3.2. 塗膜密着性

供試表面処理金属材料に、下記条件下で塗装を施し、塗 膜密着試験を実施した。

<塗装条件>アルキッド系塗料(大日本塗料(株)商標名デリコン#700)塗装:パーコート法、

焼き付け条件:140℃×20分 25μmの**塗膜を** 形成

【0072】3.2.1.一次密着性

ィ・碁盤目テスト

塗膜に鋼板素地に達するまでの1mm角の碁盤目をNT カッターで100個入れた後、セロハンテープにて剝離 を行い、塗膜の残存個数にて評価した。

ィ·碁盤目エリクセンテスト

塗膜に鋼板素地に達するまでの1mm角の碁盤目をNTカッターで100個入れ、エリクセン試験機で5mm押出した後、この凸部をセロハンテープにて剥離し、塗料の残存個数にて評価した。

【0073】3.2.2.二次密着性

塗装板を沸騰した純水に2時間浸漬後、一次密着性と同様の評価を行った。

【0074】3.2.3. 耐指紋性

供試板に指を押しつけ、指紋の痕跡状態を目視により評

価した。なお、評価結果を次の通りである。

◎:指紋の痕跡が全く残らない。

〇:指紋の痕跡が極僅かに残る。

Δ:指紋の痕跡が軽度に残る。

×:指紋の痕跡が鮮明に残る。

【0075】3.2.4耐黑変性

供試板を複数切り出し、各試験板の供試板を対面させ1対としたものを、5~10対重ねて、ビニールコート紙にて梱包後、角の4ケ所をボルト締めにして、トルクレンチで、0.67Kgf.cmの荷重をかけ、そして、70℃、80%の相対湿度の湿潤箱内に240時間保持した後、取り出して、重ね合わせ部の黒変状況を目視にて判定した。なお、判定基準は次の通りである。

5: 黒変なし

4:極めて軽度に灰色化

3: 黒変25%未満

2: 黒変25~50%未満

1: 黒変50%以上

【0076】上記試験評価結果を表2に示す。

[0077]

【表2】

砰伽ば驗結果

			(度/四*)	HCT	S S T	- 次を	金牌	芸を性(*	1) 日 若性 延配目 エリクセン	耐指紋性	耐風変性
	סא	架材	<u></u>		331	- 英松目	ゴリクセン	等级 目	が歌目 エリクセン		
	1	冷挺	1.0	720hr		100	100	100	98	-	
爽	2	冷延	2.0	980hr	-	100	100	100	100	_	
^	3	EG	0.3		168hr	100	100	100	100	•	5
庭	4	O I	0.1	-	144hr	100	100	100	100	0	
694	5	E G	0.3	-	144hr.	100	100	100	100	0	5
٠,	6	E G	1.5	_	240hr	100	100	100	95	•	4
	7	アルミ	0.3	-	360hr	100	100	100.	100	0	_
	В	アルミ	0.1	-	240hr	100	100	100	95	0	_
比	1	冷延	1.0	48hr	~	100	100	100	-98	-	
~	2	冷延	20	48hr -		100	100	100	95		
帨	3	E G	0.3	-	48hr	100	75	100	80	0	3
974	4	EG	0.1	_	24hr	100	68	100	50	0	2
<i>D4</i>	5	EG	1.5		12hr	100	96	100	71	x	1

(*1)…蘇茲自發存留数

【0078】表1の結果から明らかなように本発明の表面処理剤組成物を含む水性表面処理液を用いた実施例1~8は、良好な耐食性および塗膜密剤性を示している。しかし、本発明の範囲外のpHの水性処理液である比較例1や、2価以上の金属を含まない水性処理液を用いた比較例2、シランカップリング剤を含まない比較例3、本発明の範囲外である飼イオンを用いた比較例4、更に、本発明の範囲外の水溶性重合体を用いた比較例5は、耐食性、耐指紋性、耐黒変性がかなり劣っていた。

また、シランカップリング剤を含まない比較例3は、塗 膜密着性が劣っていた。

[0079]

【発明の効果】本発明の表面処理剤組成物および処理方法は、クロメートを含まない水性処理液により高耐食性能を有する表面処理材料が得られるため、今後の溶剤の使用が規制されてもこれに対応することが可能である。 更に、本発明は表面処理液組成物および処理方法は、金属材料の種類に制限がないため、材料の特性を生かした まま、これに高い防錆性や塗装性を付与することができる。また、社会問題に対する対応策としても、極めて有

効で且つ実用上の効果も大きいものである。