第4节 函数的复合运算

关系的复合运算定义:设R⊂X×Y,S⊂Y×Z $R \circ S = \{ \langle x, z \rangle | x \in X \land z \in Z \land$ $\exists y(y \in Y \land \langle x, y \rangle \in R \land \langle y, z \rangle \in S)$ 由于函数是特殊的关系,函数的复合运算定义为: 1、定义: $f:X\to Y$, $g:Y\to Z$ 是函数,则 $g \circ f = \{\langle x, z \rangle | x \in X \land z \in Z \land \}$ $\exists y(y \in Y \land \langle x,y \rangle \in f \land \langle y,z \rangle \in g)$ 称g在函数 f 的左边可复合 (左复合)。

注意: 这里把g写在f的左边了,所以叫左复合。

这样写是为了照顾数学习惯:

 $g \circ f(x) = g(f(x))$

设: g∘f(x)= z 于是<x,z>∈g∘f, 即

∃y∈Y, 使得 <x,y>∈f ∧ <y,z>∈g

即 y=f(x) 且 z=g(y), 于是 z=g(f(x))

因此 g∘f(x)= g(f(x))

定理1:两个函数的复合是一个函数。

证明: \diamondsuit f:X \to Y, g:Y \to Z 是两个函数,往证 g $_{\circ}$ f \subseteq X \times Z 仍然是函数。

- (1) 对任意 $x \in X$,存在 $y \in Y$,使得 y=f(x)。因 $y \in Y$, 所以存在 $z \in Z$,使得 z=g(y),即 $z=g(f(x))=g\circ f(x)$
- (2) 若有 $x \in X$,使得 $< x, z_1 > \in g \circ f$, $< x, z_2 > \in g \circ f$,并且 $z_1 \neq z_2$,根据复合定义,一定有 $y_1, y_2 \in Y$,使得 $< x, y_1 > \in f$, $< x, y_2 > \in f$, $< y_1, z_1 > \in g$, $< y_2, z_2 > \in g \circ g$ 因 f 是函数,所以 $y_1 = y_2$,再由 g 是函数,所以 $z_1 = z_2$,矛盾。综上, $g \circ f$ 是函数。

2、求函数复合运算的方法

与求关系复合运算的方法相同,可以直接"过河拆桥",或者用关系图或关系矩阵去求,但要注意写成左复合。

例 $f:X\to Y$, $g:Y\to Z$, $X=\{1,2,3\}$, $Y=\{1,2,3,4,\}$, $Z=\{1,2,3,4,5,\}$ $f=\{<1,2>,<2,4>,<3,1>\}$, $g=\{<1,3>,<2,5>,<3,2>,<4,1>\}$

用有向图求复合:

$$X \xrightarrow{g \quad f} Z$$

$$1 \xrightarrow{\circ} 2$$

$$2 \xrightarrow{\circ} 3$$

$$3 \xrightarrow{\circ} 4$$

$$g \circ f = \{<1,5>,<2,1>,3,3>\}$$

3、函数复合运算的性质

定理2 函数的复合运算满足可结合性。

设 $f:X \rightarrow Y$, $g:Y \rightarrow Z$, $h:Z \rightarrow W$ 是函数, 则 $(h \circ g) \circ f = h \circ (g \circ f)$

证明:与关系的复合有可结合性的证明类似,但要注意,要用函数相等的定义去证明。

```
定理3、设 f:X \rightarrow Y, g:Y \rightarrow Z 是两个函数,则
(1)如果f和g是满射的,则gof也是满射的;
(2)如果f和g是入射的,则gof也是入射的;
(3)如果f 和 g是双射的,则 gof 也是双射的。
证明: (1) 设 f 和 g 是满射的, 因 g∘f: X→Z,
  任取 z \in Z, 因 g:Y \to Z 是满射的,所以存在 y \in Y,
使得 z=g(y),又因 f:X\to Y 是满射的,所以存在 x\in X,
使得 y=f(x), 于是有 z = g(y) = g(f(x)) = g∘f (x),
 因此 gof 是满射的。
```

- (2) 设 f 和 g是入射的, 因 g∘f: X→Z, 任取 x₁, x₂∈X 且 x₁≠x₂, 因 f:X→Y 是入射的, 所以 f(x₁)≠f(x₂), 又因 g:Y→Z 是入射的, 而 f(x₁), f(x₂)∈Y, 所以 g(f(x₁))≠ g(f(x₂)), 即 g∘f (x₁)≠ g∘f (x₂), 所以 g∘f 也是入射的。
- (3) 如果f 和 g是双射的,则 gof 也是双射的。由(1)(2)可得此结论。

定理4 设 $f:X\to Y$, $g:Y\to Z$ 是两个函数,则

- (1)如果 gof 是满射的,则 g是满射的;
- (2)如果 gof 是入射的,则 f 是入射的;
- (3)如果 gof 是双射的,则 f是入射的且g是满射的。

记住: 前满后入。

该定理的证明是今天的作业,同学们自己证明。

```
定理5 f:X\to Y 是函数,则 f\circ I_X=f 且 I_Y\circ f=f。
证明: 先证明定义域、陪域相等;
   因为 I_x: X \to X, f: X \to Y, 所以
      f \circ I_X : X \rightarrow Y, I_{Y} \circ f : X \rightarrow Y
   可见 folx、lyof 与 f 有相同的定义域和陪域。
再证它们的映射相同:
   任取 x \in X, f \circ I_X(x) = f(I_X(x)) = f(x)
                   I_Y \circ f(x) = I_Y(f(x)) = f(x)
综上 f∘l<sub>x</sub> = f 且l<sub>y</sub>∘f = f。
```