Relatório do Segundo Trabalho

Autor: Telmo Ribeiro (up201805124)

Unidade Curricular: Métodos de Apoio à Decisão

Prof^o João Pedro Pedroso

Universidade do Porto Faculdade de Ciências

Conteúdo

1	Pri	meiro Exercício											
	1.1	Formulação do Problema											
	1.2	Receita Ótima e Plano de Produção											
	1.3	Conclusões											
•	Som	undo Evergíaio											
	_	gundo Exercício											
		Formulação do Problema											
	2.2	Receita Ótima e Plano de Produção											
	2.3	Conclusões											

Primeiro Exercício 1

Formulação do Problema

Com o propósito de responder ao primeiro exercício o problema foi formulado da seguinte maneira:

■ Dados do Problema:

Planets	(D1)
Types	(D2)
Operations	(D3)
Months	(D4)
$\operatorname{ForecastPrices}_{ptm}$	(D5)
${f Production Lines Capacity}_{ot}$	(D6)
ShuttleCapacity	(D7)
CharterCost	(D8)
EarthHoldingCost	(D9)

Legenda:	
(D1) Conjunto de planetas (colónias terrestres)	Mercury Venus Mars
(D2) Conjunto de tipos de marmelada	R C I
(D3) Conjunto de operações para produção	Cleaning Cooking Packing
(D4) Conjunto de meses	1 12
(D5) Previsão do preço em p por unidade de t durante m	Tabela 1 do Enunciado
(D6) Taxa de produção de o para t	Tabela 2 do Enunciado
(D7) Capacidade de transporte de um shuttle	1000
(D8) Custo de fretar um shuttle	10000
(D9) Custo mensal de armazenar uma unidade de marmelada na '	Terra 1

■ Variáveis:

 $\mathbf{ShippedUnits}_{ptm}$ quantidade de t enviada para p no período m $\mathbf{ProducedUnits}_{tm}$ quantidade de t produzida no período m ${\bf EarthStashedUnits}_{tm}$ quantidade de t mantida no inventário terrestre no fim do período m opção de envio de um shuttle para p com chegada em m $ChartedShuttles_{pm}$

■ Notas:

```
\mathbf{p} \in \mathbf{Planets}
t \in Types
\mathbf{m} \in \mathbf{Months}
o \in Operations
	ext{ChartedShuttles}_{pm} \in \{0, 1\}
```

(R3)

(R5)

■ Formulação:

$$\begin{aligned} maximize \ profit &= \sum_{p \in Planets} \sum_{t \in Types} \sum_{m \in Months} ShippedUnits_{ptm} \times ForecastPrices_{ptm} \\ &- \sum_{t \in Types} \sum_{m \in Months} EarthStashedUnits_{tm} \times EarthHoldingCost \\ &- \sum_{p \in Planets} \sum_{m \in Months} ChartedShuttles_{pm} \times CharterCost \end{aligned}$$

$$subject\ to: \sum_{t \in Tupes} ProducedUnits_{tm}/ProductionLinesCapacity_{ot} \le 1, \forall m \in Months, \forall o \in Operations$$
 (R1)

$$\sum_{t \in Tupes} ShippedUnits_{ptm} \le ShuttleCapacity, \forall p \in Planets, \forall m \in Months$$
(R2)

$$EarthStashedUnits_{t0} = 0, \forall t \in Types$$

$$ProducedUnits_{tm} + EarthStashedUnits_{t,m-1} = \sum_{p \in Planets} ShippedUnits_{ptm} + EarthStashedUnits_{tm},$$

$$\forall t \in Types, \forall m \in Months$$
 (R4)

$$\sum_{t \in Types} ShippedUnits_{ptm} \leq ShuttleCapacity \times ChartedShuttles_{pm},$$

$$\forall p \in Planets, \forall m \in Months$$

 $ShippedUnits_{ptm} \ge 0, \forall p \in Planets, \forall t \in Types, \forall m \in Months$

 $ProducedUnits_{tm} \ge 0, \forall t \in Types, \forall m \in Months$

 $EarthStashedUnits_{tm} \geq 0, \forall t \in Types, \forall m \in Months$

 $ChartedShuttles_{pm} \in \{0,1\}, \forall p \in Planets, \forall m \in Months$

■ Explicação:

Assumimos que existe uma linha de produção para cada uma das operações, usada na sequência Cleaning, Cooking e Packing para manufaturar cada um dos tipos e que, para este exercício, toda a quantidade enviada é vendida.

- (R1) assegura-se que a capacidade total de cada uma das linhas de produção não é excedida.
- (R2) impõe um máximo na entrega mensal para cada um dos planetas/meses, uma vez que a capacidade dos shuttles é limitada.
- (R3) define o inventário a zero inicialmente, para todos os tipos.
- (R4) determina o inventário terrestre no fim de cada mês. A quantidade de unidades produzidas num dado mês, somada ao inventário que sobrou do mês anterior, totaliza todas as unidades que temos disponível nesse dado mês. Esta última quantidade será repartida entre as unidades que enviamos para os planetas e as unidades em inventário no fim desse mês.
- (R5) determina que se for necessário enviar uma qualquer quantidade de marmelada para um planeta, então será necessário fretar um shuttle. Como uma decisão, esta restrição só pode tomar dois valores: sim(1) ou não(0). No caso de não serem enviadas quaisqueres quantidades para p num dado m então o valor do ChartedShuttles_{pm} está livre de assumir qualquer resultado. Como fretar um shuttle tem custos associados então, aquando da otimização, este valor será forçado a 0 sempre que possível. Por outro lado, ao decidir-se enviar uma quantidade não nula, nas condições anteriores, o valor será forçado a 1.

1.2 Receita Ótima e Plano de Produção

Para a obtenção da receita ideal auxiliamo-nos da ferramenta glpsol.

O ficheiros .mod e .dat que descrevem o modelo apresentado, assim como o .sol que possui o resultado e as tabelas auxiliares, encontam-se no mesmo diretório deste relatório.

Após a sua análise temos que o valor, para o qual a receita é máxima, corresponde a 426984.5238 solarcoins.

Tabela do Plano de Produção

Mês		Pro	dução		Inventário					
wies	R	C	I	Total	R	C	I	Total		
1	0	850	0	850	0	850	0	850		
2	0	850	0	850	0	1700	0	1700		
3	0	850	0	650	0	2550	0	2550		
4	0	850	0	850	0	2400	0	2400		
5	220.238	283.333	657.143	1160.714	220.238	1683.33	657.143	2560.711		
6	396.429	0	942.857	1339.286	0	300	1600	1900		
7	0	0	1200	1200	0	300	800	1100		
8	0	0	1200	1200	0	300	0	300		
9	0	850	0	850	0	150	0	150		
10	0	850	0	850	0	0	0	0		
11	0	485.714	514.286	1000	0	0	0	0		
12	0	0	1000	1000	0	0	0	0		

Tabela do Plano de Vendas

Mês	Ve	ndas	de	Mercúrio	V	endas de	Vénus	Vendas de Marte				
lvies	R	\mathbf{C}	Ι	Total	\mathbf{R}	C	I	Total	R	C	I	Total
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	1000	0	1000
5	0	0	0	0	0	0	0	0	0	1000	0	1000
6	0	0	0	0	616.667	383.333	0	1000	0	1000	0	1000
7	0	0	0	0	0	0	1000	1000	0	0	1000	1000
8	0	0	0	0	0	0	1000	1000	0	0	1000	1000
9	0	0	0	0	0	0	0	0	0	1000	0	1000
10	0	0	0	0	0	0	0	0	0	1000	0	1000
11	0	0	0	0	0	0	0	0	0	485.714	514.286	1000
12	0	0	0	0	0	0	0	0	0	0	1000	1000

1.3 Conclusões

Ao analisar a tabela do plano de vendas observa-se que, quando ocorrem, as mesmas são realizadas em pacotes de 1000 unidades.

Ora, uma vez que incorremos em custos sempre que enviamos unidades para um planeta, seria de esperar que uma estratégia tomada seria de aproveitar o máximo da capacidade do shuttle. A diferença entre as unidades produzidas e as vendidas centra-se no facto de que se pode armazená-las para vender quando os preços estão mais altos, desde que, o custo de mantê-las em inventário não ultrapasse o lucro dessa decisão.

2 Segundo Exercício

2.1 Formulação do Problema

Com o propósito de responder ao segundo exercício foram realizadas as seguintes mudanças ao primeiro modelo:

■ Dados Adicionados:

Lengeda:

(D1) Custo mensal de armazenar uma unidade de marmelada numa das colónias

2

■ Variáveis Adicionadas:

 ${f Colony Stashed Units}_{ptm} \ {f Sold Units}_{ptm}$

quantidade de t mantida em inventário em p no período m quantidade de t vendida em p no período m

■ Nova Formulação:

$$\begin{split} maximize \ profit &= \sum_{p \in Planets} \sum_{t \in Types} \sum_{m \in Months} SoldUnits_{ptm} \times ForecastPrices_{ptm} \\ &- \sum_{t \in Types} \sum_{m \in Months} EarthStashedUnits_{tm} \times EarthHoldingCost \\ &- \sum_{p \in Planets} \sum_{m \in Months} ChartedShuttles_{pm} \times CharterCost \\ &- \sum_{p \in Planets} \sum_{t \in Types} \sum_{m \in Months} ColonyStashedUnits_{ptm} \times ColonyHoldingCost \end{split}$$

$$ColonyStashedUnits_{pt0} = 0, \forall p \in Planets, \forall t \in Types$$
(R6)

 $ShippedUnits_{ptm} + ColonyStashedUnits_{pt,m-1} = SoldUnits_{ptm} + ColonyStashedUnits_{ptm},$

$$\forall p \in Planets, \forall t \in Types, \forall m \in Months$$
 (R7)

 $ShippedUnits_{ptm} \ge 0, \forall p \in Planets, \forall t \in Types, \forall m \in Months$

 $ProducedUnits_{tm} \ge 0, \forall t \in Types, \forall m \in Months$

 $EarthStashedUnits_{tm} \ge 0, \forall t \in Types, \forall m \in Months$

 $ChartedShuttles_{pm} \in \{0,1\}, \forall p \in Planets, \forall m \in Months$

 $ColonyStashedUnits_{ptm} \ge 0, \forall p \in Planets, \forall t \in Types, \forall m \in Months$

 $SoldUnits_{ptm} \ge 0, \forall p \in Planets, \forall t \in Types, \forall m \in Months$

■ Explicação:

É de notar que, para este exercício, as unidades vendidas de t para p no período m não são iguais às unidades enviadas de t para p num dado m. Como tal, foi necessário criar uma variável que representasse as unidades vendidas.

(R6) define o inventário a zero inicialmente, para todos os tipos e em todas as colónias.

(R7) determina o inventário das colónias no fim de cada mês. A quantidade de unidades enviadas a uma colónia num dado mês, somada ao inventário que sobrou do mês anterior, totaliza todas as unidades que a colónia tem disponível nesse dado mês. Esta última quantidade será repartida entre as unidades que serão vendidas na colónia e as unidades em inventário no fim desse mês.

2.2 Receita Ótima e Plano de Produção

A obtenção da receita ideal foi realizada nas mesmas condições do primeiro exercício. Após a análise do ficheiro .sol temos que o valor, para o qual a receita é máxima, corresponde a 626028.5714 solarcoins.

Mês		Pro	odução	Inventário da Terra				
ivies	R	C	I	Total	R	\mathbf{C}	I	Total
1	0	0	1200	1200	0	0	200	200
2	0	0	1200	1200	0	0	400	400
3	0	0	1200	1200	0	0	600	600
4	0	0	1200	1200	0	0	800	800
5	0	0	1200	1200	0	0	1000	1000
6	0	0	1200	1200	0	0	1200	1200
7	0	0	1200	1200	0	0	800	800
8	0	0	1200	1200	0	0	0	0
9	0	850	0	850	0	0	0	0
10	0	850	0	850	0	0	0	0
11	0	485.714	514.286	1000	0	0	0	0
12	0	0	1000	1000	0	0	0	0

Tabela do Plano de Produção

Tabela do Inventário das Colónias

Mês	Inventário de Mercúrio					Inventário de Vénus					Inventário de Marte			
Mes	R	\mathbf{C}	Ι	Total	R	\mathbf{C}	Ι	Total	\mathbf{R}	\mathbf{C}	I	Total		
1	0	0	0	0	0	0	1000	1000	0	0	0	0		
2	0	0	0	0	0	0	2000	2000	0	0	0	0		
3	0	0	0	0	0	0	3000	3000	0	0	0	0		
4	0	0	0	0	0	0	4000	4000	0	0	0	0		
5	0	0	0	0	0	0	5000	5000	0	0	0	0		
6	0	0	0	0	0	0	6000	6000	0	0	0	0		
7	0	0	0	0	0	0	7000	7000	0	0	600	600		
8	0	0	0	0	0	0	0	0	0	0	0	0		
9	0	0	0	0	0	0	0	0	0	0	0	0		
10	0	0	0	0	0	0	0	0	0	0	0	0		
11	0	0	0	0	0	0	0	0	0	0	0	0		
12	0	0	0	0	0	0	0	0	0	0	0	0		

Tabela do Plano de Vendas

Mês	Ve	ndas	de	Mercúrio	V	enda	as de V	⁷ énus	Vendas de Marte				
Mes	R	\mathbf{C}	Ι	Total	R	C	I	Total	R	С	I	Total	
1	0	0	0	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	8000	8000	0	0	1600	1600	
9	0	0	0	0	0	0	0	0	0	850	0	850	
10	0	0	0	0	0	0	0	0	0	850	0	850	
11	0	0	0	0	0	0	0	0	0	485.714	514.286	1000	
12	0	0	0	0	0	0	0	0	0	0	1000	1000	

2.3 Conclusões

Como é expectável, ao introduzir a condição de que as colónias podem armazenar unidades de marmelada nos inventários locais, o valor da receita aumentou de 426984.5238 para 626028.5714 solarcoins.

Ora, o inventário terrestre já permitia armazenar marmelada com o intuito de vender quando os preços estivessem mais altos. No entanto, como os shuttles possuem uma capacidade de transporte finita, a quantidade máxima que podiamos vender a um planeta num dado mês seria essa capacidade. Podia então, ocorrer o caso de ser proveitoso vender mais do que 1000 unidades de t nesse mês, para lucrar com a subida do preço, mas não conseguirmos ter essa quantia disponível para venda. Com a possibilidade de inventários locais, tal problema foi mitigado.