Examples and Intuitions 1

Applications

Neural Networks: Representation

Non-linear classification example: XOR/XNOR

 \rightarrow x_1 , x_2 are binary (0 or 1).

A simpler version of...

Non-linear classification example: XOR/XNOR

 \rightarrow x_1 , x_2 are binary (0 or 1).

Non-linear classification example: XOR/XNOR

 \rightarrow x_1 , x_2 are binary (0 or 1).

$$y = \underline{x_1 \text{ XOR } x_2}$$

$$\Rightarrow \underline{x_1 \text{ XNOR } x_2}$$

$$\Rightarrow \overline{\text{NOT } (x_1 \text{ XOR } x_2)}$$

Exclusive OR: utputs true only when inputs differ

Building Networks

- We will try to find a network that fits the XOR example.
- But before, bu we're going to start with a slightly simpler one
- We will show a network that fits the AND function.

$$x_1, x_2 \in \{0, 1\}$$

 $y = x_1 \text{ AND } x_2$

- $x_1, x_2 \in \{0, 1\}$
- $\Rightarrow y = x_1 \text{ AND } x_2$

- $x_1, x_2 \in \{0, 1\}$
- $\rightarrow y = x_1 \text{ AND } x_2$

$$x_1, x_2 \in \{0, 1\}$$

$$\rightarrow y = x_1 \text{ AND } x_2$$

$$x_1, x_2 \in \{0, 1\}$$

$$\rightarrow y = x_1 \text{ AND } x_2$$

$$x_1, x_2 \in \{0, 1\}$$

$$\rightarrow y = x_1 \text{ AND } x_2$$

$$x_1, x_2 \in \{0, 1\}$$

$$\rightarrow y = x_1 \text{ AND } x_2$$

x_1	x_2	$h_{\Theta}(x)$
0	0	
0	1	
1	0	
1	1	

$$x_1, x_2 \in \{0, 1\}$$

$$\rightarrow y = x_1 \text{ AND } x_2$$

	10.00	U	
>> h (x)	= 9(-30	+20x	1 + 20 X
- 110	= g(-30	1	1
	60		11250
	(A)	©;"	(D)"

5:39

$$x_1, x_2 \in \{0, 1\}$$

$$\rightarrow y = x_1 \text{ AND } x_2$$

Exercise

- Suppose x1 and x2 are binary valued (0 or 1). What boolean function does the network shown below (approximately) compute?
- (Hint: One possible way to answer this is to draw out a truth table, similar to what we did in the previous slide).

- $^{\circ}$ x_1 AND x_2
- $^{\circ}$ (NOT x_1) OR (NOT x_2)
- $^{\circ}$ x_1 OR x_2
- $^{\circ}$ (NOT x_1) AND (NOT x_2)

Example: OR function

Example: OR function

Examples and Intuitions 2

Applications

Neural Networks: Representation

$$\rightarrow x_1 \text{ AND } x_2$$

$\rightarrow x_1 \text{ OR } x_2$

Negation:

$$\rightarrow x_1 \text{ AND } x_2$$

$$\rightarrow$$
 x_1 OR x_2

20	x_1	$h_{\Theta}(x)$
	0	
	1	

$$\rightarrow x_1 \text{ AND } x_2$$

$$\rightarrow x_1 \text{ OR } x_2$$

$$h_{\Theta}(x) = g(10 - 20x_1)$$

$$\rightarrow x_1 \text{ AND } x_2$$

$$\rightarrow x_1 \text{ OR } x_2$$

$$\begin{array}{c|cccc} x_1 & h_{\Theta}(x) \\ \hline 0 & g(10) \approx 1 \\ 1 & g(-10) \approx 0 \end{array}$$

$$h_{\Theta}(x) = g(10 - 20x_1)$$

$$\rightarrow x_1 \text{ AND } x_2$$

$$\rightarrow x_1 \text{ OR } x_2$$

$$\begin{array}{c|cccc} x_1 & h_{\Theta}(x) \\ \hline 0 & g(10) \approx 1 \\ 1 & g(-10) \approx 0 \end{array}$$

$$h_{\Theta}(x) = g(10 - 20x_1)$$

$$\rightarrow$$
 (NOT x_1) AND (NOT x_2)

$$\rightarrow x_1 \text{ AND } x_2$$

$$\rightarrow x_1 \text{ OR } x_2$$

x_1	$h_{\Theta}(x)$
0	9(10) 21
1	9 (-10) 20

$$h_{\Theta}(x) = g(10 - 20x_1)$$

$$\rightarrow$$
 (NOT x_1) AND (NOT x_2)

(I if and only windows to etkinleştir windows to etkinleştir mek için Ayarlar'a gidin.

Exercise

 Suppose that x1 and x2 are binary valued (0 or 1). Which of the following networks (approximately) computes the boolean function (NOT x1) AND (NOT x2)?

Putting it together: $x_1 \text{ XNOR } x_2$

(+1
(x_1
(x_2

x_1	x_2	$a_1^{(2)}$	$a_2^{(2)}$	$h_{\Theta}(x)$
0	0			
0	1			
1	0			
1	1		ws'u Etkin	eştir nek icin Avarlar'a gidi

x_1	x_2	$a_1^{(2)} \ a_2^{(2)} \ h_{\Theta}(x)$	
0	0		
0	1		
1	0		
1	1	Windows'u Etkin eştir Windows'u etkinleştirmek için Ayarlar'a gidi	n,

Putting it together: $\underline{x_1}$ XNOR $\underline{x_2}$ $\xrightarrow{+1}$ $\xrightarrow{10}$ $h_{\Theta}(x)$ $\xrightarrow{x_1}$ $\xrightarrow{20}$ $h_{\Theta}(x)$ $\xrightarrow{x_2}$ $h_{\Theta}(x)$ $\xrightarrow{x_2}$ $h_{\Theta}(x)$ $\xrightarrow{x_2}$ $\xrightarrow{x_2}$

(NOT x_1) AND (NOT x_2)

 $\rightarrow x_1 \text{ AND } x_2$

x_1	x_2	$\begin{vmatrix} a_1^{(2)} & a_2^{(2)} & h_{\Theta}(x) \end{vmatrix}$
0	0	
0	1	
1	0	
1	1	Windows'u Etkin eştir Windows'u etkinleştirmek için Ayarlar'a gidin.

 $\rightarrow x_1 \text{ OR } x_2$

Putting it together: $x_1 ext{ XNOR } x_2$

x_1	x_2	$\begin{vmatrix} a_1^{(2)} & a_2^{(2)} & h_{\Theta}(x) \end{vmatrix}$
0	0	
0	1	
1	0	
1	1	Windows'u Etkin eştir Windows'u etkinleştirmek için Ayarlar'a gidin.

Neural Network intuition

Multiclass Classification

Applications

Neural Networks: Representation

Want
$$h_{\Theta}(x) pprox \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) pprox \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) pprox \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, etc. Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin. When pedestrian when car when motorcycle

Andrew Ng

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, etc.

when car when motorcycle

$$h_{\Theta}(x) \in \mathbb{R}^4$$

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, etc.

when pedestrian when car when motorcycle

Training set:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

$$y^{(i)}$$
 one of $\begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\0\\1\\1 \end{bmatrix}$

pedestrian car motorcycle truck

$$h_{\Theta}(x) \in \mathbb{R}^4$$

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, etc.

when pedestrian when car when motorcycle

Training set:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

$$\rightarrow$$
 $y^{(i)}$ one of $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$

pedestrian car motorcycle truck

$$h_{\Theta}(x) \in \mathbb{R}^4$$

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, etc.

when pedestrian when car when motorcycle

Training set:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

pedestrian car motorcycle truck

$$h_{\Theta}(x) \in \mathbb{R}^4$$

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, etc.

when pedestrian when car when motorcycle

$$\rightarrow$$
 $y^{(i)}$ one of

$$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix},$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Exercise

- Suppose you have a multi-class classification problem with 10 classes.
- Your neural network has 3 layers, and the hidden layer (layer 2) has 5 units.
- Using the one-vs-all method described here, how many elements does $\theta^{(2)}$ have?