

Общероссийский математический портал

3. И. Боревич, О мультипликативной группе циклических p-расширений локального поля, Tp.~MU-AH~CCCP, 1965, том 80, 16–29

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 212.232.76.46

1 февраля 2016 г., 00:31:48

з. и. Боревич

О МУЛЬТИПЛИКАТИВНОЙ ГРУППЕ ЦИКЛИЧЕСКИХ p-РАСШИРЕНИЙ ЛОКАЛЬНОГО ПОЛЯ

§ 1. Введение

Пусть k — локальное поле (конечное расширение поля p-адических чисел R_p) и K/k — нормальное расширение с группой Галуа G. Мультипликативную группу K^* поля K мы можем рассматривать как операторную группу с операторами из G. Определенный интерес представляет вопрос о строении этой G-операторной группы K^* . Однако к настоящему времени строение G-группы K^* изучено лишь в отдельных частных случаях.

Для группы K^* мы имеем разложение в прямое произведение трех групп

 $K^* = \{\Pi\} \times Q \times E$

где $\{\Pi\}$ — бесконечная циклическая группа, порожденная простым элементом Π поля K; Q — конечная циклическая группа, порядок которой взаимно прост с p; E — группа главных единиц поля K (сравнимых с 1 по модулю Π). Группы Q и E инвариантны относительно операторов из G. При исследовании группы K^* (с операторами из G) надо фактически изучить лишь строение группы главных единиц E (см. § 2).

Группа E естественным образом допускает операторы из кольца целых p-адических чисел O_p . Ее можно поэтому рассматривать как мультипликативно записанный O_p -модуль. Если поле K регулярно, т. е. не содержит первообразного корня p-й степени из 1, то E является свободным O_p -модулем, ранг которого равен степени $(K:R_p)$ поля K над R_p . В иррегулярном же случае группа E распадается в прямое произведение конечной циклической группы порядка p^s ($s \ge 1$) и свободного O_p -модуля ранга ($K:R_p$). Натуральное число s мы будем называть показателем иррегулярности иррегулярного поля K.

Так как операторы из O_p перестановочны с автоморфизмами из G, то E является мультипликативно записанным модулем над групповым кольцом $O = O_p[G]$ группы G над O_p . Строение O-модуля E известно в следующих случаях.

В статье Ивасава [1] структура О-группы E изучена в предположениях: 1) поле K иррегулярно, 2) K/k— полупрямое расширение без высшего ветвления и 3) если s— показатель иррегулярности поля K и ζ — содержащийся в K первообразный корень степени p^s из 1, то степень $(K:k(\zeta))$ делится на p при p>2 и делится на 4 при p=2.

В работе Краснера [2] доказано, что если расширение K/k не имеет высшего ветвления и поле K регулярно, то E является свободным

O-модулем (ранга $(k:R_{p})$). В случае регулярного K отсутствие высшего ветвления для K/k является также и необходимым условием для того, чтобы O-модуль E был свободным (см. [3]). В статье [2] установлено также, что если степень $(K\colon k)$ не делится на p, то E распадается в прямое произведение конечной группы (порядка p^*) и свободного О-модуля. В этом случае говорят, что для группы главных единиц поля K существует нормальный базис (относительно расширения K/k).

Для расширений $K_i k$ с высшим ветвлением строение O-модуля Eизвестно лишь в следующих двух простейших случаях. В работе [4] Ивасава выяснил строение группы E при $k=R_p$ и $K=R_p(\zeta)$, где ζ первообразный корень степени p^s из 1. В заметке [5] рассматриваемый вопрос решен для произвольного циклического расширения K/k с ре-

 Γ VЛЯРНЫМ K.

К перечисленным работам примыкает также статья Д. К. Фаддеева [6], в которой изучено строение G операторной группы K^*/K^{*p} для цикли-

ческого p-расширения K/k иррегулярного поля k.

В настоящей работе, исходным пунктом которой является статья [6]. выяснено строение G-группы K^* для ряда типов циклических p-расширений иррегулярного поля k (относительно циклических p-расширений регуиярного k см. [5]). Разобранные нами случаи полностью охватывают все пиклические расширения простой степени р. Вне рассмотрения остались не круговые расширения K/k, для которых либо степень инерции и индекс ветвления одновременно отличны от 1, либо показатели иррегулярности полей k и K различны. В случае p=2 в §§ 5 и 7 мы дополнительно предполагаем, что поле k содержит первообразный корень степени 4 из 1.

Заметим, что группа E для циклических расширений степени pс иррегулярным k рассматривалась в работе [7]. В этой работе для \hat{E} была найдена система O-образующих, но строение O-модуля E осталось невыясненным, так как для найденных образующих не удалось найти определяющих соотношений.

Условимся в следующих обозначениях:

n — степень поля k над полем p-адических чисел R_n ;

 σ — образующий автоморфизм циклического p-расширения K/k;

 $\zeta = \zeta_s$ — содержащийся в k первообразный корень степени p^s из 1, где $s \geqslant 1$ — показатель иррегулярности k; E_0 и E — группы главных единиц полей k и K соответственно;

 $N=N_{K/k}$ — норма относительного расширения K/k; $\Gamma=N\left(E\right)$ — группа норм главных единиц поля K.

В случае иррегулярного k всякое циклическое расширение K/k простой степени p имеет вид $K = k \binom{p}{\sqrt{\alpha}}$, $\alpha \in k^*$. Легко видеть, что в качестве α всегда можно выбрать либо некоторый простой элемент π поля k, либо некоторую главную единицу из \dot{E}_0 . Если во втором случае показатель иррегулярности поля K равен s+1, то можно взять $\alpha = \zeta$. Для наших целей следует различать три типа расширений $k\left(\sqrt[p]{\alpha}\right)/k$.

I. $\alpha = \pi$. Очевидно, что расширение $k \left(\sqrt[p]{\pi} \right) / k$ вполне разветвлено.

II. $\alpha = \zeta$.

III. а= $\epsilon\in E_0$ и показатели иррегулярности полей $k\left(\sqrt[p]{\epsilon}\right)$ и k совпадают.

Строение O-модуля E (для расширений $k\binom{p}{\sqrt{\alpha}}/k$) зависит еще от двух обстоятельств: 1) принадлежит ли корень ζ группе норм Γ или не принадлежит и 2) является ли расширение K/k неразветвленным

(e=1) или вполне разветвленным (e=p). Для каждой из получающихся семи возможностей группа главных единиц E как O-модульимеет строение, указанное в приведенной таблице (в случае кругового расширения, т. е. при $\alpha=\zeta$, под g понимается некоторое натуральное число, для которого $g\equiv 1 \pmod{p^s}$ и $g\not\equiv 1 \pmod{p^{s+1}}$).

NN n. n.	$k \left(\sqrt[p]{\alpha} \right) / k$	σ-образующие группы	Определяющие соотношения
1 2 3 4	$a = \pi, \zeta \in \Gamma$ $a = \pi, \zeta \in \Gamma$ $a = \zeta, e = 1$ $a = \zeta, e = p$	$\theta_{1}, \ldots, \theta_{n}, \zeta$ $\theta_{1}, \ldots, \theta_{n-1}, \xi, \gamma$ $\theta_{1}, \ldots, \theta_{n}, \zeta'$ $\theta_{1}, \ldots, \theta_{n-1}, \theta, \gamma, \zeta'$	$\zeta^{p^g} = 1, \ \zeta^{\sigma-1} = 1$ $N(\xi^{p^g}) = 1, \ \gamma^{\sigma-1} = 1$ $\zeta^{r\sigma-g} = 1$ $N(\theta) = 1, \ \gamma^{\sigma-1} = 1, \ \zeta^{r\sigma-g} = 1$
5 6 7	$\alpha = \varepsilon, e = 1$ $\alpha = \varepsilon, e = p, \zeta \in \Gamma$ $\alpha = \varepsilon, e = p, \zeta \in \Gamma$	$\theta_1, \ldots, \theta_{n-1}, \xi, \omega$ $\theta_1, \ldots, \theta_{n-1}, \theta, \omega, \zeta$ $\begin{cases} \theta_1, \ldots, \theta_{n-2} \\ \theta, \gamma, \xi, \omega \end{cases}$	$\omega^{\sigma-1} = \xi^{p^8}$ $\begin{cases} N(\theta) = 1, \ \zeta^{p^8} = 1 \\ \zeta^{\sigma-1} = 1, \ \omega^{\sigma-1} = \xi^{p^{8-1}} \end{cases}$ $\begin{cases} N(\theta) = 1, \ \gamma^{\sigma-1} = 1 \\ \omega^{\sigma-1} = \xi^{p^8} \end{cases}$

В случаях 1 и 3 образующие $\theta_1, \ldots, \theta_n$ не связаны никакими соотношениями; это значит, что они образуют так называемый нормальный базис, т. е. что группа E распадается в прямое произведение конечной группы и свободного O-модуля ранга n (см. [3]). Особенно интересен в этом отношении случай 1, так как он указывает на возможность существования нормального базиса в E для расширений с высшим ветвлением. Заметим, что в случаях 2, 5 и 7 мы имеем $\zeta = N$ (ξ). Кроме того, для расширений 4, 6 и 7 в качестве образующей θ можно взять $\theta = \Pi^{\sigma-1}$, где Π — произвольный простой элемент поля K, для которого $\Pi^{\sigma-1}$ ξ E.

При p=2 в случаях 3, 4, 6 и 7 предполагается, что $s \ge 2$.

\S 2. Группы K^* и E

Пусть K/k— произвольное нормальное расширение локального поля k с группой Галуа G. Покажем, что группа K^* как абстрактная группа с операторами из G вполне определена G-операторной группой всех единиц U поля K.

Пусть II — произвольный простой элемент поля K. Равенством

$$\Pi^{\sigma-1} = \mathfrak{s}_{\sigma} \ (\sigma \in G)$$

определен одномерный коцикл ε_{σ} группы G на U. Класс когомологий с представителем ε_{σ} является образующим элементом циклической группы $H^1(G,U)$, порядок которой равен индексу ветвления e расширения K/k. Выберем теперь произвольный 1-коцикл u_{σ} группы G на U, для которого соответствующий класс когомологий порождает $H^1(G,U)$. На прямом произведении $X = \{A\} \times U$ бесконечной циклической группы $\{A\}$ и группы U определим действие операторов $\sigma \in G$, полагая

$$A^{\sigma 1} = u_{\sigma}$$

Мы утверждаем, что группы X и K^* операторно изоморфны. Для доказательства воспользуемся разложением $\hat{U} = \hat{O} \times E$ и положим

$$\varepsilon_{\sigma} = \eta_{\sigma} \theta_{\sigma} \quad (\eta_{\sigma} \in Q, \ \theta_{\sigma} \in E), \\
u_{\sigma} = w_{\sigma} v_{\sigma} \quad (w_{\sigma} \in Q, \ v_{\sigma} \in E).$$

Если $e=e_0p^m$, $(e_0,\ p)=1$, то группы $H^1(G,\ Q)$ и $H^1(G,\ E)$ имеют соответственно порядки e_0 и p^m . Число e_0 является, как известно, делителем порядка группы Q. Так как классы когомологий с представителями η_{σ} и w_{σ} являются образующими группы $H^1(G,\,Q)$, то при некотором целом k, взаимно простом с порядком группы Q, имеем

$$w_{\sigma} = \eta_{\sigma}^{k} \eta^{1-\sigma} \quad (\eta \in Q).$$

Аналогично при некотором l, не делящемся на p, имеем

$$v_{\sigma} = \theta_{\sigma}^{l} \theta^{1-\sigma} \quad (\theta \in E).$$

Отображения $\beta \to \beta^k(\beta \in Q)$ и $\gamma \to \gamma^l(\gamma \in E)$ являются, очевидно, G-автоморфизмами групп Q и E соответственно. Легко теперь проверяется, что отображения

$$\mathrm{II} \to A \eta \theta, \ \beta \to \beta^k (\beta \in Q), \ \gamma \to \gamma^l (\gamma \in E)$$

индуцируют операторный изоморфизм группы K^* на группу X.

Действие операторов из G на группе Q известно. Именно, если автоморфизм $\sigma \in G$ на подполе инерции индуцирует автоморфизм Фробениуса, то $\beta^{\sigma} = \beta^{q}$ ($\beta \in Q$), где q — число элементов в поле вычетов поля k. Таким образом, строение G-операторной группы K^{\bullet} целиком определяется строением группы главных единиц E.

§ 3. Вспомогательные леммы

Фактор-группа K^*/K^{*p} мультипликативной группы поля K по подгруппе p-ых степеней является элементарной абелевой p-группой. Ee можно рассматривать, следовательно, как линейное пространство над полем из p-элементов. Мы будем говорить, например, что элементы α_1,\ldots,α_k из K^* являются образующими для K^*/K^{*p} , если соответствующие им классы смежности по подгруппе K^{*p} порождают линейное пространство K^*/K^{*p} . Точно так же на элементы из K^* переносится понятие базиса K^*/K^{*p} , понятие линейной зависимости и независимости в K^*/K^{*p} .

Аналогичным образом такие понятия, как система образующих, базис, линейная зависимость и линейная независимость, будут употребляться и по отношению к единицам из E относительно линейного пространства E/E^p .

Пемма 1. Если единицы $\theta_1, \ldots, \theta_k$ являются образующими для E/E^p , то они являются образующими и для группы E (которую мы рассматриваем как операторную группу над кольцом целых р-адических чисел O_n).

Доказательство очевидно. Пусть теперь K/k — циклическое расширение пррегулярного поля к и о — образующий автоморфизм его группы Галуа. Автоморфизм о индупирует на пространстве K^*/K^{*p} (размерности np^m+2) линейный оператор, который мы будем обозначать той же буквой с.

 Π е м м а 2. Если нормы $N_{K/k}(\alpha_j)$ элементов α_j $(1\leqslant j\leqslant k)$ из K^* линейно независимы в K^*/K^{*p} , то линейно независимыми в K^*/K^{*p} будут и элементы

$$\alpha_j^{\sigma^i} (1 \leqslant j \leqslant k, \ 0 \leqslant i < p^m).$$

Доказательство. Рассмотрим в пространстве K^*/K^{*p} нульстепенный оператор $\sigma-1$ (см. [6]). Его показатель нульстепенности равен p^m , так как

$$(\sigma-1)^{p^m} \equiv 0 \pmod{p},$$

$$(\sigma-1)^{p^{m-1}} \equiv 1 + \sigma + \dots + \sigma^{p^{m-1}} \equiv N_{K/k} \pmod{p}.$$

Допустим, что имеет место зависимость

$$\prod_{i,j} \alpha_j^{a_{ij}} j^{(\sigma-1)^i} \equiv 1 \pmod{K^{*p}},$$

где не все целые рациональные a_{ij} делятся на p. Пусть i_0 есть наименьший из индексов i, для которого существует такое j, что $a_{i_0,j}\not\equiv g \pmod p$. Применив к нашему соотношению оператор $(\sigma-1)^{p^m-i_0-1}$, мы получим

$$\prod_{j} (N(\alpha_{j}))^{a_{i_0 j}} \equiv 1 \pmod{K^{*p}},$$

а это противоречит независимости норм $N(\alpha_j)$. Таким образом, элементы $\alpha_j^{(q-1)^j}$ независимы в K^*/K^{*p} , а так как они связаны с $\alpha_j^{o^i}$ неособенным треугольным преобразованием, то и последние элементы линейно независимы в K^*/K^{*p} . Лемма 2 доказана.

Фактически то же самое доказательство дает нам также следующее

Лемма 3. Если для элементов $\gamma \in k^*$ и $\alpha_j \in K^*$ $(1 \le j \le k)$ система γ , $N(\alpha_1)$, ..., $N(\alpha_k)$ линейно независима в K^*/K^{*p} , то система

$$\gamma$$
, α_j^{ci} $(1 \leqslant j \leqslant k, 0 \leqslant i < p^m)$

будет также линейно независимой в K^*/K^{*p} .

Вложение $k^* \to K^*$ естественным образом индуцирует гомоморфизм $k^*/k^{*p} \to K^*/K^{*p}$. Из теории куммеровых расширений очевидным образом вытекает

Лемма 4. При иррегулярном k и циклическом p-расширении K/k ядром гомоморфизма $k^*/k^{*p} \to K^*/K^{*p}$ является подгруппа порядка p (подпространство размерности 1).

Вложение $E \to K^*$ индуцирует мономорфизм $E/E^p \to K^*/K^{*p}$, поэтому E/E^p можно рассматривать как подпространство пространства K^*/K^{*p} (на единицу меньшей размерности), Ясно, что это подпространство инвариантно относительно оператора σ . Аналогичным образом факторгруппу E_0/E_0^p можно считать подпространством линейного пространства k^*/k^{*p} .

Лемма 5. Естественный гомоморфизм $E_0/E_0^p \to E/E^p$ имеет нетривиальное ядро (т. е. не является мономорфизмом) тогда и только тогда, когда $\zeta_1 \in E^{\sigma-1}$ (здесь ζ_1 — первообразный корень степени p из 1).

когда $\zeta_1 \in E^{\sigma-1}$ (здесь ζ_1 — первообразный корень степени p из 1). Действительно, если единица ε из E_0 не принадлежит E_0^p , но $\varepsilon = \beta^p$, $\beta \in E$, то $\beta^{\sigma-1} \neq 1$ и $(\beta^{\sigma-1})^p = 1$. Обратно, если $\zeta_1 = \beta^{\sigma-1}$ ($\beta \in E$), то β не принадлежит E_0 , однако $\beta^p \in E_0$.

принадлежит E_0 , однако $\beta^p \in E_0$.

Для расширения K/k через t обозначим наибольшее целое число, для которого $\zeta_t \in E^{q-1}$ (ζ_t — первообразный корень степени p^t из 1). Легко

видеть, что $0 \le t \le \min(m, s)$. Согласно лемме 5, условие t = 0 равносильно тому, что отображение $E_0/E_0^p \to E/E^p$ является мономорфизмом.

 Π е м м а 6. Π усть K/k — разветвленное (не обязательно вполне разветвленное) циклическое p-расширение, для которого t>0. Π редположим, что ядро гомоморфизма $E_0/E_0^p \to E/E^p$ содержится в группе $\Gamma E_0^p/E_0^p$. T огда, если нормы N (θ_j) $(1 \leqslant j \leqslant n-1)$ единиц $\theta_j \in E$ линейно независимы в E/E^p , то для любого простого элемента Π поля K система

$$\theta_{j}^{\sigma i}$$
, $\Pi^{\sigma i}$ $(1 \leqslant j \leqslant n-1, 0 \leqslant i < p^{m})$

будет линейно независимой в K^*/K^{*p} .

Доказательство. Так как по условию $(E_0:\Gamma)>1$, то группа $\Gamma E_0^p/E_0^p$ является линейным пространством размерности n. Положим $N\left(\theta_{j}\right)\stackrel{\circ}{=} \varepsilon_{j}$ (1 \leqslant j \leqslant n = 1). Если единица ε из Γ является образующим элементом для ядра гомоморфизма $E_0/E_0^p o E/E^p$, то система ${\mathfrak s},\,{\mathfrak s}_1,\,\ldots$ \ldots , ε_{n-1} будет базисом для $\Gamma E_0^p/E_0^p$. Следовательно, пространство $\Gamma E^p/E^p$ имеет размерность n-1 и, значит, при разложении пространства E/E^p в прямую «сумму» циклических подпространств относительно нульстепенного оператора $\sigma - 1$ мы будем иметь ровно n - 1 подпространств максимальной размерности p^m . В качестве этих подпространств можно взять подпространства, порожденные единицами $\theta_1, \ldots, \theta_{n-1}$. Далее, как показано в работе [6], в линейном пространстве K^*/K^{*p} имеется nпрямых «слагаемых», являющихся циклическими подпространствами размерности p^m . В качестве с-образующих для них можно, очевидно, взять систему θ_1 , ..., θ_{n-1} , A, где $A\in K^*$. Образующая A не может быть единицей, поэтому $A=\Pi^k\mu$, где $k\not\equiv 0\ (\mathrm{mod}\ p)$ и μ — некоторая единица поля K. Но всякая главная единица поля K в пространстве E/E^p может быть выражена через $\theta_1, \ldots, \theta_{n-1}$ и через «корневые векторы» высоты $< p^m$. В силу этого единицу μ можно отбросить, т. е. можно взять $A = \Pi^k$. Далее, возведением в надлежащую степень и отбрасыванием p-й степени можно сделать k равным 1. Таким образом, при выполнении условий леммы всегда можно взять $A = \Pi$, а это и завершает ее доказательство.

Лемма 7. Если расширение K/k вполне разветвлено и $s\geqslant 2$ при p=2, то ядро гомоморфизма $E_0/E_0^p\to E/E^p$ содержится в группе $\Gamma E_0^p/E_0^p$.

Доказательство. Пусть t>0 и пусть единица $\varepsilon\in E_0$ порождает ядро гомоморфизма $E_0/E_0^p\to E/E^p$. Положим $\varepsilon=\omega^p$, где $\omega\in E$. Так как расширение $k(\omega)/k$ вполне разветвлено и имеет степень p, то группа норм (в поле k) группы главных единиц поля $k(\omega)$ совпадает с ΓE_0^p . С другой стороны, норма $N_{k(\omega)/k}(\omega)$ равна ε при p>2 и равна — ε при p=2. Но при p=2 по условию — $1\in E_0^p$, поэтому во всех случаях $\varepsilon\in \Gamma E_0^p$, что и требовалось доказать.

Лемма 8. Если $\alpha^{\sigma-1} = \lambda$, $\alpha \in K^*$, то

$$N(\alpha) = \alpha^{p^m} \lambda^{-\varphi},$$

г∂е

$$\varphi = 1 + 2\sigma + 3\sigma^2 + \ldots + p^{m_{\sigma}p^{m-1}}$$
.

Для доказательства следует заметить, что

$$(\sigma - 1) \varphi = p^m - (1 + \sigma + \sigma^2 + \dots + \sigma^{p^{m-1}}).$$

Условие t=0 равносильно, как мы видели, тому, что отображение $E_{\alpha}/E_{\alpha}^{p} \rightarrow E/E^{p}$ является мономорфизмом. Таким образом, при t=0 всякая система единиц из E_0 , линейно независимая в E_0/E_0^p , остается линейно независимой и в E/E^{ρ} . В частности, показатели иррегулярности полей k и K совпадают. Ясно также, что при t=0 расширение K/kвполне разветвлено, а значит для группы норм $\Gamma = N_{K/k}(E)$ факторгруппа $\dot{E}_{
m o}/\Gamma$ есть циклическая группа порядка p^m .

Мы предположим сначала, что корень $\zeta = \zeta_s(s \geqslant 1)$ является образующим элементом для E_0/Γ , т. е. что $E_0 = \{\zeta, \Gamma\}$. Очевидно, что последнее может иметь место только при $m \leqslant s$.

 ${
m Teopema~1.}~E$ сли отображение $E_0/E_0^p o E/E^p$ является мономорфизмом и если $E_0 = \{\zeta, \ \Gamma\}$, то для главных единиц поля K существует нормальный базис над k, т. е. О-модуль E распадается в прямое произведение конечной группы $\{\zeta\}$ и свободного О-модуля (ранга n).

Доказательство. В группе норм Γ выберем единицы $\varepsilon_1, \ldots, \varepsilon_n$ так, чтобы $E_0 = \{\zeta, \varepsilon_1, \ldots, \varepsilon_n\}$. Пусть $\varepsilon_j = N\left(\theta_j\right), \ 1 \leqslant j \leqslant n$. Так как единицы ζ , ε_1 , ..., ε_n линейно независимы в E_0/E_0^p , то они линейно независимы и в E/E^p . По лемме 3 система ζ , $\theta_j^{\mathfrak{s}^i}$ $(1\leqslant j\leqslant n,\ 0\leqslant i < p^m)$ будет линейно независимой в K^*/K^{*p} , а значит она будет образовывать базис пространства E/E^p . Применив теперь лемму 1, мы и получаем утверждение теоремы.

T е о р е м а 2. Если отображение $E_0/E_0^p \to E/E^p$ является мономорфизмом и $\zeta \in \Gamma$, то О-модуль E допускает систему образующих $\theta_1, \ldots, \theta_{n-1}$ ξ, γ с определяющими соотношениями:

$$N(\xi^{p^8}) = 1, \quad \gamma^{\sigma-1} = 1.$$

Доказательство. Пусть единица $\gamma \in E_0$ такова, что $E_0 = \{\gamma, \Gamma\}$. Так как γ не является p-й степенью в E_0 , то в Γ можно, помимо ζ , выбрать такие единицы $\varepsilon_1, \ldots, \varepsilon_{n-1},$ что система $\gamma, \zeta, \varepsilon_1, \ldots, \varepsilon_{n-1}$ будет базисом для E_0/E_0^p . Пусть

$$N(\xi) = \zeta$$
, $N(\theta_i) = \varepsilon_i$ $(1 \leqslant j \leqslant n - 1)$.

11о лемме 3 система γ , ξ^{σ^i} , $\theta^{\sigma^i}_j$ будет базисом для E/E^p , а значит, по лемме 1, — системой O_p -образующих для E. Соотношение $N\left(\xi\right)^{p^2}=1$ для этих образующих над O_p будет единственным. Теорема Z доказана.

Обозначим через r наибольшее целое число, для которого ζ_r (первообразный корень степени p^r из 1) принадлежит группе норм Γ , и через p^h — индекс подгруппы $\{\zeta, \Gamma\}$ в группе E_0 . Ясно, что h+s=m+r. ${f B}$ теоремах 1 и 2 число h принимает крайние возможные значения h=0 u h=m.

Теорема 2*. Если t=0 и 0 < h < m, то в О-модуле E имеется система образующих $\theta_1, \ldots, \theta_{n-1}, \xi, \gamma$ с определяющими соотношениями:

$$(\gamma^{ph}N(\xi))^{ps}=1, \quad \gamma^{\sigma-1}=1.$$

Доказательство. Пусть $E_0\!=\!\{\gamma,\ \Gamma\}$ и пусть единицы $\varepsilon_j\!\in\!\Gamma$ $(1\leqslant j\leqslant n)$ таковы, что система γ , ε_1 , ..., ε_n является базисом для E_0/E_0^p . По лемме 1 эти единицы порождают E_0 , поэтому при некоторых целых р-адических показателях будем иметь

$$\zeta = \gamma^{x_0} \varepsilon_1^{x_1} \dots \varepsilon_n^{x_n}.$$

Согласно условию, x_0 делится на p^h и не делится на более высокую степень p. Изменив, быть может, единицу γ , мы можем добиться того, чтобы $x_0 = p^h$. Все остальные показатели x_j не могут делиться на p одновременно, так как в противном случае корень ζ был бы p-й степенью в E_0 , что не так. Пусть, например, x_n не делится на p. Положив

$$\tilde{\varepsilon} = \varepsilon_1^{x_1} \ldots \varepsilon_n^{x_n} \in \Gamma,$$

мы получаем для E_0 новую систему образующих γ , $\bar{\varepsilon}$, ε_1 , ..., ε_{n-1} . Если теперь $\bar{\varepsilon} = N\left(\xi\right)$, $\varepsilon_j = N\left(\theta_j\right)$ $(1\leqslant j\leqslant n-1)$, то единицы γ , ξ^{σ^i} , $\theta_j^{\sigma^i}$ будут образующими для E (над O_p), а так как $\zeta=\gamma^{p^h}N\left(\xi\right)$, то образующие γ , ξ , θ_j (над O) удовлетворяют требованиям теоремы 2^* .

Замечание 1. Легко показать, что в условиях теорем 1, 2 и 2* при надлежащем выборе простого элемента П и при надлежащих обра-

зующих в Е будут справедливы равенства:

1)
$$\Pi^{\sigma-1} = \zeta_m$$
,
2) $\Pi^{\sigma-1} = \xi^{ps}$,
2*) $\Pi^{\sigma-1} = \gamma^{pr} \xi^{ps}$.

Замечание 2. Утверждение теоремы 2^* справедливо также при h=0 и h=m: простая замена образующих приводит нас к соотношениям теорем 1 и 2.

§ 5. Круговые расширения

В этом параграфе мы будем предполагать, что $s \geqslant 2$, если только p = 2 (и $s \geqslant 1$ при $p \neq 2$).

Рассмотрим поле $K = k(\zeta')$, где $\zeta' = \zeta_{s+m}$ — первообразный корень степени p^{s+m} из 1. Расширение K/k, называемое круговым, циклично и имеет степень p^m .

Tеорема $\hat{3}$. Если круговое расширение K/k неразветелено, то для

главных единиц поля К существует нормальный базис.

До казательство. Пусть система единиц ζ , ε_1 , ..., ε_n из E_0 является базисом для E_0/E_0^p и пусть $\varepsilon_j=N(\theta_j)$, $1\leqslant j\leqslant n$. По лемме 4 единицы ε_1 , ..., ε_n линейно независимы в E/E^p , поэтому (лемма 2) линейно независимыми в E/E^p будут и единицы $\theta_j^{\sigma_j}$ ($1\leqslant j\leqslant n$, $0\leqslant i< p^m$). Нам достаточно теперь показать, что единицы ζ' , $\theta_j^{\sigma_j}$ порождают E. Допуская, что эти единицы линейно зависимы в E/E^p , мы смогли бы корень ζ' с точностью до p-й степени выразить через $\theta_j^{\sigma_j}$. Но тогда, перейдя в таком выражении к нормам, мы получили бы выражение корня ζ , равного $N(\zeta')$ при $p\neq 2$ и $N(\zeta')$ при p=2, через ε_j (с точностью до p-й степени в E_0), а это невозможно. Полученное противоречие и завершает доказательство теоремы 3.

Для полного описания действия оператора σ на группе E к теореме 3 следует добавить, что $\zeta'^{\sigma} \equiv \zeta'^{g}$, где число g удовлетворяет условиям $g \equiv 1 \pmod{p^{s}}, \ g \not\equiv 1 \pmod{p^{s+1}}$.

T в о р е м а 4. Если круговое расширение K/k вполне разветвлено, то для группы главных единиц E поля K существует система образующих $\theta_1, \ldots, \theta_{n-1}, \theta, \gamma, \zeta'$ (над O) с определяющими соотношениями

$$N(\theta) = 1, \ \gamma^{\sigma-1} = 1, \ \zeta'^{\sigma-g} = 1.$$

Доказательство. Пусть $E_0 = \{\gamma, \ \Gamma\}$. Так как $\pm \zeta \in \Gamma$ (минус берется при p=2), то при некоторых $\epsilon_1, \ldots, \epsilon_{n-1}$ из Γ система $\epsilon_1, \ldots, \epsilon_{n-1}$, γ , ζ будет базисом для E_0/E_0^p . Пусть $\epsilon_j = N\left(\theta_j\right)$ $\left(1 \leqslant j \leqslant n-1\right)$

и пусть $\pi = N$ (П), где П—простой элемент поля K, выбранный так, что $\Pi^{\sigma-1} = 0 \in E$. Ясно, что элементы $\varepsilon_1, \ldots, \varepsilon_{n-1}, \pi, \gamma, \zeta$ линейно независимы в k^*/k^{*p} , а значит, ввиду леммы 4 элементы $\varepsilon_1, \ldots, \varepsilon_{n-1}, \pi, \gamma$ линейно независимы в K^*/K^{*p} . По лемме 3 система $\theta_j^{\sigma_j}$, Π^{σ_j} , γ также линейно независима в K^*/K^{*p} . Покажем, что к ней можно присоединить ζ' , не нарушая линейной независимости в K^*/K^{*p} . В самом деле, если бы расширенная система оказалась зависимой, то, как и при доказательстве теоремы 3, мы получили бы выражение для ζ (с точностью до p-й степени) через ε_j , π , γ , что невозможно. Таким образом, система $\theta_j^{\sigma_i}$, Π^{σ_i} , γ , ζ' является базисом для K^*/K^{*p} . В этом базисе элементы Π^{σ_i} можно заменить на П и θ^{σ_i} , где i пробегает все значения 0, 1, ... p^m-1 , кроме одного. Убрав П, мы получим базис для E/E^p . Заметив теперь, что единицы θ^{σ_i} ($0 \leq i < p^m$) связаны соотношением N (θ) = 1, и применив лемму 1, мы и получаем утверждение теоремы 4.

Теорема 4*. Пусть для кругового расширения K/k степень инерции $f = p^v$ и индекс ветвления $e = p^u$ одновременно больше 1. Тогда для E существуют О-образующие $\theta_1, \ldots, \theta_{n-1}, \theta, \gamma, \zeta'$ с определяющими соотно-

шениями

$$N(\theta) = 1, \ \gamma^{\sigma-1} = \theta^{\sigma}, \ \zeta'^{\sigma} = \zeta'^{g}.$$

Доказательство. Так как $\zeta \in \Gamma E_0^p$, то для расширения K/k выполнены условия леммы 6. Выберем единицы $\varepsilon_j = N\left(\theta_j\right)$ $(1 \leqslant j \leqslant n-1)$ так, чтобы система ζ , ε_1 , ..., ε_{n-1} являлась базисом подпространства $\Gamma E_0^p/E_0^p$. Если Π —простой элемент поля K, то по лемме 6 система θ_j^i , Π^{σ^i} линейно независима в K^*/K^{*p} . Мы будем считать Π выбранным так, что $\Pi^{\sigma-1} = \theta$ является главной единицей.

Обозначим через Θ подгруппу группы главных единиц E, состоящую из единиц с нормой 1. Фактор-группа $\Theta/E^{\sigma-1} = H^1(G, E)$ является циклической группой порядка $e = p^u$, и единица θ является ее образующим элементом. Следовательно, существует такая единица $\gamma \in E$, что

$$\gamma^{\sigma-1} = \theta^{\sigma}$$
.

Покажем, что в пространстве E/E^p единица γ не является линейной комбинацией единиц $\theta_j^{\circ i}$, $\theta_j^{\circ i}$, т. е. что она не принадлежит подпространству $E'E^p/E^p$, где $E' = \{\theta_j^{\circ i}, \theta_j^{\circ i}\}$.

По лемме 8 N (П) = $\Pi^{p^m}\theta^{-\varphi}$. Отсюда следует, что все собственные векторы в инвариантном относительно σ подпространстве $E'E^p/E^p$ порождаются единицами ε_1 , ..., ε_{n-1} , θ^{φ} . Допустим, что $\gamma \in E'E^p$. Так как γ — собственный вектор оператора σ в E/E^p , то

$$\gamma = \varepsilon_1^{x_1} \dots \varepsilon_{n-1}^{x_{n-1}} \theta^{\varphi x} \beta^p, \quad \beta \in E$$

с целыми рациональными x_1, \ldots, x_{n-1}, x . Применим к этому раве**и**ству оператор $\sigma - 1$. Мы получим

$$\theta^{p^u} = \theta^{p^{m_x}} (\beta^{\sigma-1})^p$$
,

откуда

$$\theta^{p^{u-1}} = \theta^{p^{m-1}x} \beta^{\sigma-1} \zeta_1^k.$$

Так как $m-1\geqslant u$, то $\theta^{p^{m-1}}\in E^{\sigma-1}$. По лемме 5 корень ζ_1 также принадлежит $E^{\sigma-1}$. Следовательно,

$$\theta^{pu-1} \in E^{\sigma-1}$$
,

и мы получили противоречие, так как θ является образующим элементом для циклической группы $\Theta/E^{\sigma-1}$ порядка p^u . Доказано, таким образом, что γ не принадлежит группе $E'E^p$.

Рассмотрим норму $N(\gamma)$. По лемме 8 мы имеем

$$N(\gamma) = \gamma^{fe} \theta^{-e\varphi} = \bar{\epsilon}^e$$
,

где $\bar{\varepsilon} = \gamma^f \theta^{-\phi}$. Но $\bar{\varepsilon}^{\sigma-1} = \theta^{ef} \theta^{-pm} = 1$, поэтому $\bar{\varepsilon} \in E_0$, а значит $N(\gamma)$ есть

p-я степень в E_0 .

Покажем теперь, что корень ζ' не является линейной комбинацией (в E/E^p) единиц $\theta_j^{\sigma_j}$, θ^{σ_j} , γ . Так как $\zeta'^{\sigma-1} = \zeta'^{g-1} \in E^p$, то ζ' — также собственный вектор в E/E^p . Поэтому, допуская противное, мы имели бы:

$$\zeta' = \varepsilon_1^{x_1} \dots \varepsilon_{n-1}^{x_{n-1}} \theta^{\varphi x} \gamma^y \beta^p, \quad \beta \in E.$$

Но такое равенство невозможно: после перехода к нормам оно дает нам, что $\zeta \in E_0^p$, а это не так.

Нами показано, что единицы θ_j^{ci} , θ^{ci} , γ , ζ' , между которыми имеется только одно соотношение $N(\theta) = 1$, порождают пространство E/E^p , а значит, по лемме 1, порождают и группу E (над кольцом O_p). Теорема 4^* доказана.

Замечание. Утверждение теоремы 4* справедливо и в условиях теорем 3 и 4.

§ 6. Неразветвленные расширения

Нижеследующая теорема 5 является частвым случаем более общегорезультата Ивасава (см. [1]). Мы приводим ее здесь с целью охватить все случаи расширений простой степени р. Кроме того, наше доказательство основывается на существенно другом подходе, что представляет известный интерес.

Теорема 5. Если расширение K/k неразветвлено, а поля K и k имеют один и тот же показатель иррегулярности, то для О-модуля E существует система образующих $\theta_1, \ldots, \theta_{n-1}, \xi$, ω с единственным определяющим соотношением

$$\omega^{\sigma-1} = \xi^{p^g}.$$

Доказательство. Так как ζ не является p-й степенью в E, тов E_0 можно выбрать такие единицы $\varepsilon_1, \ldots, \varepsilon_{n-1}$, что система $\zeta, \varepsilon_1, \ldots, \varepsilon_{n-1}$ линейно независима в E/E^p . Пусть $\zeta = N$ $(\xi), \varepsilon_j = N$ (θ_j) $(1 \leqslant j \leqslant n-1)$. По лемме 2 система

$$\theta_j^{\sigma^i}$$
, ξ^{σ^i} $(1 \leq j \leq n-1, 0 \leq i < p^m)$

также линейно независима в E/E^p . Далее, так как $N(\xi^{p^s})=1$, а группа $H^1(G, E)$ для неразветвленного расширения тривиальна, то существует единица $\omega \in E$ такая, что $\omega^{\sigma-1}=\xi^{p^s}$. Покажем, что единица ω в пространстве E/E^p не является линейной комбинацией единиц $\theta_j^{s^s}$, ξ^{σ^s} . Допу-

ская противное и учитывая, что ω — собственный вектор в E/E^p , мы нашли бы для ω представление в виде

$$\omega = \varepsilon_1^{x_1} \dots \varepsilon_{n-1}^{x_{n-1}} \zeta^x \beta^p, \ \beta \in E,$$

с целыми рациональными x_1, \ldots, x_{n-1}, x . Применим к этому равенству оператор σ —1. Мы получим

$$\xi^{p^8} = (\beta^{\sigma-1})^p,$$

откуда

$$\xi^{p^{8-1}} = \beta^{\sigma-1} \zeta_1^k,$$

что после взятия нормы дает нам противоречивое равенство $\zeta^{p^{s-1}}=1$. Этим доказано, что единицы $\theta_j^{s^i}$, ξ^{σ^i} , ω порождают группу E (над O_p). Так как $N(\xi)=\zeta$, то единственным соотношением между этими единицами (над O_p) будет соотношение $N(\xi)^{p^s}=1$. Теорема 5 доказана.

\S 7. Виолне разветвленные расширения при t>0

В этом параграфе мы рассмотрим вполне разветвленые расширения K/k, для которых гомоморфизм $E_0/E_0^p \to E/E^p$ имеет нетривиальное ядро (t > 0) и для которых поля K и k имеют один и том же показатель иррегулярности $s \geqslant 1$. В теоремах 6, 7 и 7* эти условия будут предполагаться выполненными без дополнительных оговорок. Кроме того, в случае p=2 предполагаем, что $s \geqslant 2$.

Через П мы обозначим простой элемент поля K, для которого $\Pi^{\sigma-1} = \theta$ принадлежит группе главных единиц E, и через ε — единицу из E_0 , порождающую ядро гомоморфизма $E_0/E_0^p \to E/E^p$. Согласно лемме 7, можно считать, что $\varepsilon \in \Gamma$. Числа r и h будут иметь то же значение, что и в § 4.

Теорема 6. Если $E_0 = \{\zeta, \Gamma\}$, то для E существуют О-образующие $\theta_1, \ldots, \theta_{n-1}, \theta, \omega, \zeta$ с определяющими соотношениями

$$\begin{split} N\left(\theta\right) = 1, & \zeta^{p^{s}} = 1, & \zeta^{\sigma-1} = 1, \\ \omega^{\sigma-1} = & \begin{cases} \zeta^{p^{r}} & npu \ t = m, \\ \zeta^{p^{r}} \theta^{p^{t}} & npu \ t < m. \end{cases} \end{split}$$

Доказательство. Пусть единицы ζ , ε , ε , ..., ε _{n-1} образуют базис для E_0/E_0^p , причем $\varepsilon_j=N\left(\theta_j\right)$, $1\leqslant j\leqslant n-1$. Положим $\pi=N\left(\Pi\right)$. Так как элементы ζ , ε ₁, ..., ε _{n-1}, π линейно независимы в K^*/K^{*p} , то по лемме 3 система ζ , θ_j^{*j} , Π^{*i} будет также линейно независимой в K^*/K^{*p} . Из условия h=0 следует, что $m\leqslant s$, а значит $\zeta_m\in E$. Но $N\left(\zeta_m\right)=1$, поэтому по теореме Гильберта существует такое $\alpha\in K^*$, что $\alpha^{\sigma-1}=\zeta_m$. Легко видеть, что $N\left(\alpha\right)=\pm\alpha^{pm}$; следовательно, при надлежащем выборе единицы ε будем иметь $N\left(\alpha\right)\equiv\varepsilon\left(\operatorname{mod}k^{*p}\right)$. Если бы элемент α был линейной комбинацией системы ζ , θ_j^{*i} , Π^{*i} (в пространстве K^*/K^{*p}), то, переходя к нормам, мы получили бы, что ε является линейной комбинацией элементов ε ₁, ..., ε _{n-1}, π (в пространстве k/k^{*p}), а это невозможно. Таким образом, элементы θ_j^{*i} , Π^{*i} , ζ , α образуют базис для K^*/K^{*p} .

Если теперь t=m, то в качестве α можно взять единицу $\omega \in E$ и для этой единицы $\omega^{\sigma-1}=\zeta_m=\zeta^{p^r}.$

Если же $1 \leqslant t < m$, то α единицей быть не может. В то же время α не может быть простым элементом поля K. Следовательно, α можно выбрать в виде $\alpha = \omega \Pi^{-p^x}$, где $\omega \in E$ и $1 \leqslant x < m$. Для E мы получаем, таким образом, систему образующих $\theta_j^{\sigma_i}$, θ^{σ_i} , ω , ζ , при этом $\omega^{\sigma-1} = \zeta_m \theta^{p^x}$, и нам остается только показать, что x = t.

Мы имеем (см. лемму 8)

$$(\omega^{p^{m-x}}\theta^{-\varphi})^{\sigma-1} = (\zeta_m\theta^{p^x})^{p^{m-x}}\theta^{-p^m} = \zeta_x,$$

значит $\zeta_x \in E^{\sigma-1}$. Далее,

$$(\alpha^{p^{m-x-1}})^{\sigma-1} = \zeta_{x+1};$$

если бы существовала единица $\mu \in E$, для которой $\mu^{\sigma-1} = \zeta_{x+1}$, то мы получили бы, что $\Pi^{p^{m-1}} \in Ek^{\bullet}$, а этого не может быть. Следовательно, x = t, и доказательство теоремы 6 окончено.

x=t, и доказательство теоремы 6 окончено. Теорема 7. Если $\zeta \in \Gamma$, то в группе E существуют образующие $\theta_1, \ldots, \theta_{n-2}, \theta, \gamma, \xi, \omega$ (над O) с определяющими соотношениями

$$N(\theta) = 1, \ \gamma^{\sigma-1} = 1, \ \omega^{\sigma-1} = \begin{cases} \xi^{p^s} \ npu \ t = \min(s, \ m), \\ \xi^{p^s} \theta^{p^t} \ npu \ t < \min(s, \ m). \end{cases}$$

Доказательство. Пусть $E_0 = \{\gamma, \Gamma\}$ и пусть $E_0 = \{\gamma, \varepsilon, \zeta, \varepsilon_1, \ldots, \varepsilon_{n-2}\}$, где $\varepsilon_j = N\left(\theta_j\right)$, $1 \leqslant j \leqslant n-2$. Если $\zeta = N\left(\xi\right)$, то по леммам 6 и 3 система

$$\theta_j^{\sigma^i}$$
, ξ^{σ^i} , Π^{σ^i} , γ

линейно независима в K^*/K^{*p} . Но $N(\xi^{p^s})=1$, поэтому по теореме Гильберта $\alpha^{\sigma-1}=\xi^{p^s}$ при некотором $\alpha\in K^*$. По лемме 8 мы имеем

$$N(\alpha) = \alpha^{p^m} \xi^{-\varphi p^s},$$

а значит $N(\alpha) \in K^{*p}$. В то же время

$$\left(\alpha^{p^{m-1}}\xi^{-\varphi p^{s-1}}\right)^{\sigma-1} = \xi^{p^{m+s-1}}\xi^{-p^{m+s-1}}N\left(\xi\right)^{p^{s-1}} = \zeta_1,$$

поэтому можно считать, что $N(\alpha) \equiv \varepsilon \pmod{k^{\star p}}$. Так же, как и при доказательстве теоремы 6, теперь легко устанавливается, что система

$$\theta_i^{\sigma^i}$$
, ξ^{σ^i} , Π^{σ^i} , γ , α

образует базис в K^*/K^{*p} .

Элемент α не может быть простым в K (так как α и α линейно зависимы в K^*/K^{*p} , лемма 6).

Легко видеть, что пара элементов $\alpha' \in K^*$ и $\xi' \in E$ также удовлетворяет условиям $N(\xi') = \zeta$, $\alpha'^{\sigma-1} = \xi'^{p^s}$ тогда и только тогда, когда $\xi' = \xi \beta^{\sigma-1}$, $\alpha' = \alpha \beta^{p^s} c$, где $\beta \in K^*$ и $c \in k^*$. Следовательно, при надлежащем выборе ζ и ξ в качестве α можно взять либо некоторую единицу $\alpha \in E$, либо элемент вида $\alpha \in E$, где $\alpha \in E$ и $\alpha \in$

случае $\omega^{\sigma-1} = \xi^{p^g} \theta^{p^g}$. Для группы E мы получаем, таким образом, систему образующих (над O_p)

 $\theta_j^{\sigma^i}$, ξ^{σ^i} , θ^{σ^i} , γ , ω ,

и для завершения доказательства теоремы 7 остается лишь проверить, что первый случай ($\alpha = \omega$) имеет место тогда и только тогда, когда $t = \min(s, m)$, а также что во втором случае t = x.

Пусть $\alpha = \omega$. Если $s \leq m$, то

$$\zeta_s = (\omega^{p^{m-s}} \xi^{-\varphi})^{\sigma-1};$$

если же $m \leqslant s$, то

$$\zeta_m = (\omega \xi^{-\varphi p^{8-m}})^{\sigma-1}.$$

Таким образом, при $\alpha = \omega$ мы имеем $t = \min(m, s)$.

Пусть теперь $\alpha = \omega \Pi^{-px}$, $1 \leqslant x < \min(m, s)$. Корень ζ_s содержится в подгруппе, порожденной O-образующими ω , ξ , θ , и эта подгруппа выделяется в E прямым O-сомножителем. Следовательно, $\zeta_u \in E^{\sigma-1}$ тогда и только тогда, когда ζ_u выражается через $\omega^{\sigma-1}$, $\xi^{\sigma-1}$ и $\theta^{\sigma-1}$ (над O), т. е. когда

$$\zeta_{\mathbf{z}} := N \left(\xi \right)^{p^{\theta}-u} = \left(\xi^{p^{\theta}} \theta^{p^{\theta}} \right)^{a} \xi^{\mu(\sigma-1)} \theta^{\nu(\sigma-1)},$$

где $a \in O_p$, $\mu \in O$, $\nu \in O$. Для существования такого представления необходимо и достаточто, чтобы

$$ap^x \equiv 0 \pmod{p^m}, \quad ap^s \equiv p^{m+s-n} \pmod{p^{m+s}}$$

при некотором $a \in O_p$, а для этого в свою очередь необходимо и достаточно выполнение неравенства $u \leqslant x$. Таким образом, наибольшее возможное значение для u равно x, т. е. t = x. Теорема 7 доказана полностью.

Теорема 7*. Если $(E_0: \{\zeta, \Gamma\}) = p^h$, 0 < h < m, то в Е существуют О-образующие $\theta_1, \ldots, \theta_{n-2}, \theta, \gamma, \xi, \omega$ с определяющими соотношениями

$$N\left(\theta\right)=1, \quad \gamma^{\sigma-1}=1, \quad \omega^{\sigma-1}=\left\{\begin{array}{ll} \gamma^{p^r}\xi^{p^s} & npu & t=\min\left(s,\ m\right), \\ \gamma^{p^r}\xi^{p^s}\theta^{p^t} & npu & t<\min\left(s,\ m\right). \end{array}\right.$$

Доказательство. Пусть $E_0 = \{\gamma, \ \Gamma\}$ и пусть $E_0 = \{\gamma, \ \varepsilon_1, \ \ldots, \ \varepsilon_{n-1}\}$, причем $\varepsilon_j = N\left(\theta_j\right), \ 1\leqslant j\leqslant n-1$. Положим

$$\zeta = \gamma^{x_0} \mathbf{s}^x \mathbf{e}_1^{x_1} \dots \mathbf{e}_{n-1}^{x_{n-1}}$$

(показатели здесь — делые p-адические числа). При надлежащем γ можно взять $x_0 = p^h$. Так как ζ не является p-й степенью в E, то не все показатели x_1, \ldots, x_{n-1} делятся на p. Положим

$$\tilde{\varepsilon} = \varepsilon^x \varepsilon_1^{x_1} \cdots \varepsilon_{n-1}^{x_{n-1}} \in \Gamma,$$

$$\tilde{\varepsilon} = N(\xi).$$

Если $x_{n-1} \not\equiv 0 \pmod p$, то мы можем единицу ε_{n-1} заменить на $\tilde{\varepsilon}$.

Так как $\zeta = \gamma^{ph} N(\xi)$, то $N(\gamma^{pr} \xi^{p\theta}) = 1$, а значит при некотором $\alpha \in K^*$ будем иметь

 $\alpha^{\sigma-1} = \gamma^{p^r} \xi^{p^s}.$

Далее доказательство проводится в том же плане, что и доказательство теоремы 7. При p=2 следует учесть, что в рассматриваемом случае $m \gg 2$.

Литература

- K. Iwasawa. On Galois groups of local fields. Trans. Amer. Math. Soc., 1955, 80, № 2, 448-469.
 M. Krasner. Sur la représentation exponentielle dans les corps relativement
- galoisiens de nombres p-adiques. Acta arithm., 1939, 3, 133-173.
- 3. D. Gilbarg. The structure of the group of p-adic 1-units. Duke Math. J., 1942, 9, № 2, 262—271.

 4. K. Iwasawa. On local cyclotomic fields. J. Math. Soc. Japan, 1960, 12,
- № 1, 16—21.

 5. 3. И. Боревич. Мультипликативная группа регулярного локального поля с циклической группой операторов. Изв. АН СССР. сер, матем., 1964, 28, № 3, 707—712.
- 6. Д. К. Фаддев. К строению приведенной мультипликативной группы циклического расширения локального поля. Изв. АН СССР, сер. матем., 1960, 24, № 2, 145—152.

 7. G. E. Wahlin. The multiplicative representation of the principal units of a
- relative cyclic field. J. reine und angew. Math., 1932, 167, 122-128.