

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS INGENIERÍA EN SOFTWARE/COMPUTACIÓN

Periodo académico: 2022-A

Asignatura: Aplicaciones Web Avanzadas Grupo: GR1SW

Fecha de entrega: 14/08/2023

Estudiante:

> Kelvin José Ojeda Quiroz.

Arquitectura de microservicios

En el constante avance del desarrollo de software, tres enfoques arquitectónicos han emergido como protagonistas: Monolitos, la Arquitectura Orientada a Servicios (SOA) y los Microservicios. Cada uno de estos enfoques posee sus propias ventajas, desventajas, similitudes y diferencias, lo que los convierte en opciones a considerar de acuerdo a las necesidades y objetivos de un proyecto.

Monolitos son sistemas integrados que abarcan todos los componentes y funcionalidades en una única unidad. Esta simplicidad inicial es particularmente beneficiosa en proyectos pequeños o en etapas iniciales de desarrollo, agilizando la implementación y el despliegue. Sin embargo, a medida que la aplicación crece, la falta de modularidad puede dar lugar a una complejidad excesiva. La fortaleza de tener un lenguaje y una base de datos únicos simplifica la gestión, pero puede limitar la adopción de tecnologías especializadas para tareas específicas.

La Arquitectura Orientada a Servicios (SOA) se centra en la creación de servicios independientes que se comunican a través de un bus de servicios. Este enfoque fomenta la reutilización y la interoperabilidad, ya que los servicios pueden ser implementados en diferentes lenguajes y tecnologías. Sin embargo, la implementación de SOA puede volverse compleja y costosa, especialmente en la administración del bus de servicios. Los formatos de comunicación, como XML, WSDL y REST HTTP, facilitan la interacción entre los servicios.

Los Microservicios representan una evolución de SOA, concentrándose en unidades aún más pequeñas y autónomas de funcionalidad. Cada microservicio tiene un propósito específico y se administra de manera independiente, lo que otorga flexibilidad en el desarrollo y despliegue de aplicaciones. La arquitectura de microservicios permite el uso de protocolos como OAUP, eliminando la necesidad de un bus de servicios centralizado. Aunque la independencia de los microservicios simplifica la implementación, gestionar la comunicación y la consistencia entre ellos puede resultar desafiante.

En comparación, los Monolitos son rápidos de desarrollar, pero pueden volverse complejos y difíciles de escalar. SOA prioriza la interoperabilidad, pero su implementación puede ser costosa y compleja. Los Microservicios ofrecen gran flexibilidad y escalabilidad, pero la administración de la comunicación entre ellos puede requerir un esfuerzo adicional. Además, para tratar de entender las

ventajas y desventajas que comprende cada una de estas arquitecturas se pretende realizar a través de una tabla comparativa, como lo muestra la Tabla 1.

Aspecto	Monolitos	Arquitectura Orientada a Servicios (SOA)	Microservicios
Desarrollo	- Fácil desarrollo inicial, ideal para prototipos	- Promueve la reutilización y la interoperabilidad	- Flexibilidad en desarrollo y despliegue
	- Rápido despliegue y ejecución		 Unidad autónoma y específica de funcionalidad
Escalabilidad	- Dificultades para escalar a medida que crece	- Escalabilidad variable según la implementación	- Escalabilidad individual, eficiente y tolerante
Acoplamiento	- Componentes estrechamente acoplados	 Mayor complejidad en la gestión de múltiples 	- Desacoplamiento, facilita la modificación y actual.
Flexibilidad	- Limitación en la adopción de tecnologías especializadas	- Diversidad de tecnologías y lenguajes	- Elección de tecnologías para cada servicio
	- Limitación en tecnologías específicas		- Mayor flexibilidad tecnológica
Comunicación	- Comunicación interna eficiente	- Bus de servicios puede ser complejo y costoso	- Simplificación de comunicación interna
Red	- Infraestructura de red menos sofisticada	- Requiere infraestructura de red más sofisticada	 Mayor complejidad en infraestructura de red
Tolerancia a fallos	- Dependencia global del sistema	 Mayor tolerancia a fallos en servicios individuales 	- Mayor tolerancia a fallos en servicios individuales
Administración	- Gestión centralizada	- Administración del bus de servicios	 Independencia en la gestión de servicios

Tabla 1: Comparativa de las diferentes arquitecturas de microservicios.

En conclusión, la elección entre Monolitos, SOA y Microservicios debe basarse en las particularidades del proyecto. Cada enfoque tiene su lugar en el espectro de arquitecturas de software y debe considerarse cuidadosamente. Comprender las ventajas, desventajas, similitudes y diferencias de cada enfoque es crucial para tomar decisiones informadas y efectivas en el diseño de sistemas de

software. Solo a través de esta comprensión, las organizaciones pueden seleccionar la arquitectura que mejor se ajuste a sus objetivos y requisitos.

Referencias

- [1] IThinkUpc. (2023, August 06). ¿Monolito o microservicios? Ventajas y desventajas. Retrieved from https://www.ithinkupc.com/es/blog/monolito-o-microservicios-ventajas-y-desventajas
- [2] 4ai. (2022). Arquitectura de microservicios: qué es, ventajas y desventajas. Decide. Retrieved from https://decidesoluciones.es/arquitectura-de-microservicios
- [3] Editorial Trycore. (2022). Por qué una Arquitectura Orientada a Servicios podrá potenciar los recursos TI Trycore. Trycore. Retrieved from https://trycore.co/buenas-practicas-ti/diferencia-arquitectura-orientada-servicios-microservicios