数理逻辑第十一讲习题参考答案*

2019年6月21日

1

设: $\Delta \subseteq \Gamma$, Δ 为有穷集, 从而有 $k \in \mathbb{N}$ 使得 $\Delta \subseteq \{(x > S^n O) | n = 0, 1, 2, ..., k\}$ 设 $N = \{\mathbb{N}, O, Suc, >\}$ 为算术的标准模型 其中 Suc(x) = x + 1, > 为大于关系 令 σ 为 \mathbb{N} 上赋值使 $\sigma(x) = k + 1$ 从而 $N \models_{\sigma} (x > S^n(O))(n = 0, 1, 2, ..., k)$ 故 $N \models_{\sigma} \Delta$ 即 Δ 可满足 由紧致性定理知 Γ 可满足.

2

设 $\Gamma \models \varphi$ 反设不存在 Γ 的有穷子集 Δ 使 $\Delta \models \varphi$ 从而对任何 Γ 的有穷子集 Δ 有 $\Delta \nvdash \varphi$ 因此对任何 Γ 的有穷子集 Δ 有 $\Delta \cup \{ \neg \varphi \}$ 可满足 故 $\Gamma \cup \{ \neg \varphi \}$ 的任何有穷子集可满足, 由紧致性定理知 $\Gamma \cup \{ \neg \varphi \}$ 可满足,设 $\mathfrak{M} \models \Gamma \cup \{ \neg \varphi \}$. 即 $\mathfrak{M} \models \Gamma$ 且 $\mathfrak{M} \models \neg \varphi$, 与 $\Gamma \models \varphi$ 矛盾. 因此存在 Γ 的有穷子集 Δ 使 $\Delta \models \varphi$.

3

令 $\varphi_n \triangleq \exists x_1, ..., x_n. \bigwedge_{1 \leq i < j \leq n} \neg (x_i \doteq x_j)$ 易见 $\mathfrak{M} \models \varphi_n \Leftrightarrow |M| \geq n$ $\mathfrak{M} \models \{\varphi_i | i \in \mathbb{N}^+\} \Leftrightarrow |M| \geq \aleph_0$

^{*}Ver. 0.6. 原答案由宋方敏教授给出手稿,乔羽同学录入,最后由丁超同学修订补充. 此文档来源为https://github.com/sleepycoke/Mathematical_Logic_NJUCS由于时间紧张,丁超只更正了比较明显的笔误,没有仔细验证,见谅. 欢迎各位同学提出意见共同维护.

令 $\Gamma \triangleq \Sigma \cup \{\varphi_i | i \in \mathbb{N}^+\}$,对于任何 Γ 的有穷子集 $\Delta \subseteq \Sigma \cup \{\varphi_i | i \in \mathbb{N}^+\}$,存在 k 使 $\Delta \subseteq \Sigma \cup \{\varphi_1, ..., \varphi_k\}$,由于 Σ 具有论域 基数大于 k 的模型,故 Δ 可满足,由紧致性定理知 Γ 可满足,那么有, $\mathfrak{M} \models \Gamma$ 从而 $\mathfrak{M} \models \{\varphi_i | i \in \mathbb{N}^+\}$,故 $|M| \geq \aleph_0$.

4

只需证每个有穷图可 4 色则无穷图可四色. 设 MAP 为一张无穷地图,令全体国家的集合为 $\{a_i|i\in I\}$, 这里 $|I|\geq\aleph_0$.

设一阶语言 \mathcal{L} 由以下构成

- (1) 常元: $\{a_i | i \in I\}$
- (2) 一元谓词符: $C_k(x)(k=1,2,3,4)$ ($C_k(x)$ 表示 x 着 k 色)
- (3) 二元谓词符: g(x,y) (g(x,y) 表示 x 与 y 有大于 0 的公共边界).

令 $Q \triangleq \{ \langle i,j \rangle | i,j \in I \}$ 且在 MAP 中 a_i 与 a_j 有大于 0 的公共边界.

 $\Leftrightarrow \Gamma \triangleq \{q(a_i, a_j) | \langle i, j \rangle \in Q\}$

 $\cup \{ \neg q(a_i, a_j) | < i, j > \notin Q \}$

 $\cup \{ \forall x (c_1(x) \lor c_2(x) \lor c_3(x) \lor c_4(x)) \}$

 $\cup \{ \forall x \forall y (q(x,y) \to (\neg(c_1(x) \land c_1(y)) \land \neg(c_2(x) \land c_2(y)) \land \neg(c_3(x) \land c_3(y)) \land \neg(c_4(x) \land c_4(y)))) \}$ 设 $S \subseteq \Gamma$ 为 Γ 的任何有穷子集,不妨设 $\{a_0,...,a_n\}$

为出现在 S 中的全体常元,令 $M = \{a_0, ..., a_n\}, MAP[s]$ 为 $\{a_0, ..., a_n\}$ 的生成子图. 从而 MAP[s] 可着 4 色.

 \diamondsuit $(C_k)_{\mathfrak{M}} \triangleq \{a_i | a_i \stackrel{.}{=} k \stackrel{.}{=} i \leq n\} k = 1, ..., 4$

 $q_{\mathfrak{M}} = \{ \langle a_i, a_j \rangle \mid \langle i, j \rangle \in Q \}$ 从而 $\mathfrak{M} \models S$

由 compactness 知有 \mathfrak{M} 使 $\mathfrak{M} \models \Gamma$ 即 MAP 可 4 染色.

5

反设,对任何 $m \in \mathbb{N}$ 都存在结构 $\mathfrak{M} \triangleq (M, I)$ 使 $m < |M| < \aleph_0$ 且 $\mathfrak{M} \models \neg \varphi$ 令 φ_n 为 $\exists x_1 \exists x_2 ... \exists x_n (\bigwedge_{0 < i < j \le n} \neg (x_i \doteq x_j))$ 易见

- $(1)\mathfrak{M} \vDash \varphi_n \Rightarrow |M| \ge n.$
- $(2) \stackrel{\text{def}}{=} m < n$ 时, $\mathfrak{M} \models \varphi_n \Rightarrow \mathfrak{M} \models \varphi_m$
- $(3)\mathfrak{M} \vDash \{\varphi_1, \varphi_2 ...\} \Rightarrow |M| \geq \aleph_0$

 $\diamondsuit \Gamma \triangleq \{\neg \varphi, \varphi_1, ..., \varphi_n, ...\} = \{\neg \varphi\} \cup \{\varphi_n | n \in N^+\}$

对于有穷集 $S \subseteq \Gamma$, 有 k 使 $S \subseteq \{\neg \varphi, \varphi_1, ..., \varphi_k\}$

从而由反设知 S 有模型,因此由紧致定理知, Γ 有模型,设为 $\mathfrak{M}'=(M',I')$,从而 $\mathfrak{M}' \models \{\varphi_1,...,\varphi_n...\}$,因此 $|M'| \geq \aleph_0$ 且

6

反设存在这样的 Σ . 令 $\{c_n|n\in N\}$ 为新常元 集,令 $\mathcal{L}' \triangleq \mathcal{L} \cup \{c_n|n\in N\}$, $\Sigma' \triangleq \Sigma \cup \{R(c_{n+1},c_n), \neg(c_{n+1} \doteq c_n)|n\in N\}$ 因为 Σ 有一个无穷模型,所以 Σ' 的任何有穷子集有 模型,从而 Σ' 有模型,设为 \mathfrak{M} . 因此 $\mathfrak{M} \models \Sigma$. 令 $R_{\mathfrak{M}}$ 为 <, $(c_n)_{\mathfrak{M}}$ 为 a_n 从而 $a_0 > a_1 > a_2$... 为无穷下降链,从而 $\{a_n|n\in \mathbb{N}\}$ 没有最小元. 故 $R_{\mathfrak{M}}$ 并非 M 上的良序. 矛盾