Scilab Textbook Companion for Switchgear Protection And Power Systems by S. S. Rao¹

Created by
Mayank Gupta
BE
Electrical Engineering
Thapar University
College Teacher
Dr. Sunil Kumar Singla
Cross-Checked by
Lavitha Pereira

July 13, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Switchgear Protection And Power Systems

Author: S. S. Rao

Publisher: Khanna Publisher, New Delhi

Edition: 13

Year: 2012

ISBN: 8174092323

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
3	Fundamentals of Fault Clearing and Switching Phenomena	5
17	Electrical Substations and Equipments and Busbar Layouts	12
18	Neutral Grounding or Earthing	13
19	Introduction to Fault Calculations	16
2 0	Symmetric Faults and Current Limiting Reactors	21
21	Symmetric Components	44
22	Unsymmetrical Faults on Unloaded Generator	54
2 3	Faults On Power Systems	66
32	Protection of transformers	76
33	Protection of Generators	78
35	Current Transformers and their Applications	81
36	Voltage Transformer and their Application	84
44	Power System Stability and Auto Reclosing Schemes	85
45	Voltage Control and Compensation of ReacTve Power	91

46 Economic operation of Power Systems	95
57 Power Flow Calculations	98
58 Applications of switchgear	107

List of Scilab Codes

Exa 3.1	To find the transient current of RL circuit	5
Exa 3.2	to find the DC component and instantaneous value of	
	currents and voltages	6
Exa 3.3	To find Max Rate of restriking voltage and time for	
	RRRV and the frequency	7
Exa 3.4	To find the peak striking voltage and its frequency and	
	the avg of RRRV and its max rate	8
Exa 3.5	The average rate of rise of restriking voltage	9
Exa 3.6	To estimate the average rate of restriking voltage	9
Exa 3.7	to find the peak striking voltage and the time to reach it	10
Exa 3.8	To find the value of resistance to be used across the	
	contact space	11
Exa 17.1	to find the min force on the conductors	12
Exa 18.1	To calculate the ohmic value of impedence	13
Exa 18.2	to find the value of reactance	13
Exa 18.3	calculate the reactance to neutralize different value of	
	line capacitance	14
Exa 18.4	To find the inductance and the KVA rating	14
Exa 19.1	expressing the quantities in per unit form	16
Exa 19.2	conversion in per unit	17
Exa 19.3	to find the new pu reactance	17
Exa 19.4	drawing the reactance diagram of the system	17
Exa 19.5	to find the fault current	18
Exa 19.6	The reactance calculations	19
Exa 19.7	to find the pu impedences	19
Exa 19.9	To calculate the new fault level	20
Exa 20.1	Calculate Fault MVA and current	21
Exa 20.2	To find the steady state fault current	22

Exa 20.03	to find the fault MVA
Exa 20.04	calculate the fault current and MVA
Exa 20.05.	aCalculate the Fault MVA and current
Exa 20.05.	bcalculating the fault current
Exa 20.06	To calculate the current supplied by alternator
Exa 20.07	finding the current supplied by generator
Exa 20.08	to calulate the subtransient fault current and breaker
	current rating
Exa 20.09	to calculate the fault level
Exa 20.10	to calculate the max possible fault level
Exa 20.11	
Exa 20.12	To calculate the fault level at any point of line
Exa 20.13	to find initial short circuit current and peak SC current
Exa 20.14	to find the subtransient currents
Exa 20.15	to find SC current and rms current and making and
	breaking capacity required
Exa 20.16.	ato find the short circuit current
Exa 20.16.	bto find SC current by ohmic method
Exa 20.16.	cTo find the new SC current
Exa 20.17.	aTo find the SC current of the circuit
Exa 20.17.	bto find the reactance of the reactor
Exa 20.18.	aTo calculate the reactance of the reactor to limit SC
	MVA
Exa 20.18.	bfault level at generator bus
Exa 20.19	to calculate the current fed to the faults
Exa 20.20.	bto calculate the percentage change of reactors R
Exa 20.21	calculate the MVA and current by both generator and
	transformer side
Exa 20.22	calculate the short circuit level and normal and effective
	fault current
Exa 20.23	calculate the SC ratio and effective SC ratio of HVDC
	current
Exa 20.24	to calculate the fault levels on secondary sides of trans-
	former
Exa 21.01	Calculate the symmetric components of unbalanced lines
Exa 21.02	to calculate the line voltages
Exa 21.03	To determine the line currents
Exa. 21.04	to find the symmetric components of line currents

Exa 21.05	to calculate the voltages of phase and line voltages	49
Exa 21.06	to calculate the value of Ia	50
Exa 21.07	to find the line and phase voltage of phase a	50
Exa 21.08	to find positive sequence component of fault current .	51
Exa 21.09	calculate the symmetric components of the fault	52
Exa 21.10	to calculate the zero components of currents	53
Exa 22.01	to calculate the sub transient currents for different types	
	of fault	54
Exa 22.02	To find ratio of line currents to single line to ground	
	faults	56
Exa 22.03	to calculate line current for single line to ground fault	56
Exa 22.04.	aTo calculate subtransient voltage between double line to	
	ground fault	57
Exa 22.04.	bTo calculate fault current following through the neutral	
	reactor	59
Exa 22.05	TO find fault current and line to neutral voltages at	
	generator terminals	60
Exa 22.06	To calculate subtransient voltage between line to line	
	fault	62
Exa 22.07	ratio of line currents for line to line to three phase faults	63
Exa 22.08	To calculate the percentage reactance and resistance .	64
Exa 22.09	To find the SC current and ratio of generator contribution	65
Exa 23.03	To calculate the fault current	66
Exa 23.04	To calculate the fault current	67
Exa 23.05	To calculate the fault current	68
Exa 23.06	to find the subtransient fault currents	69
Exa 23.07	To calculate the fault current for different cases	70
	To calculate fault current and phase voltages	70
Exa 23.09	To calculate fault currents for different types of faults	72
Exa 32.01	to find the CT ratio	76
	To find the CT ratio	76
Exa 33.01	To calculate the value of resistance to be added in the	
	neutral to ground connection	78
Exa 33.02	To find the percentage winding to be protected	78
Exa 33.03	To find the percentage winding to be protected against	
	earth fault	79
Exa 33.05	To find the neutral earthing resistance	80
Exa 35.01	To find the VA rating and current of CT	81

Exa	35.02	Calculate the effective burden of the current transformer
		To find out the flux density of core
Exa	35.04	To calculate the ratio error of CT
Exa	36.03	To calculate the VA of the output of voltage transformer
Exa	44.01	To calculate max possible power transfer through the
		transmission line
Exa	44.02	To calculate max possible power transfer through the
		transmission line
Exa	44.03	To calculate the steady state limit
Exa	44.04.a	To determine the Inertia Constants and Angular Mo-
		mentum
Exa		To calculate the kinetic energy of rotor
Exa	44.05	To find the stored energy and angular acceleration
Exa	44.06	To calculate the Angular momentum and acceleration
		of rotor
Exa		To calculate the power and increase in the shaft power
Exa	44.08	To calculate the critical clearing angle
Exa	45.B.2	To find the overall power factor of the sub station
Exa	45.B.3	Calculate the KVAr required of capacitor
Exa	45.B.4	Calculate the economical pf
		Calculate the most economical pf
		Calculate the kW and power factor of substation
		To find the power factor and KVA
Exa	46.01	To determine the load allocation of various units
Exa	46.02	To calculate the load distribution on basis of economic
		loading
Exa	46.03	Comparison of Economic and Equal loading
Exa	57.01	To find the branch current and branch admittance
Exa	57.02	To find the admittance of the circuit
Exa	57.04	To find the Voltage of the circuit
Exa	57.05	To calculate power angle between source and load voltage
Exa	57.06	Reactive and complex power flow
Exa	57.07	To calculate the pu active power flow
Exa	57.08	sending end voltage and average reactive power flow .
Exa	57.09	To calculate the complex and real power of the system
Exa		Determine the voltage and phase angle at bus 2 by gauss seidal method
Exa		to determine the modified bus voltage

Exa 57.13	To calculate the voltage of bus 2 by NR method	103
Exa 57.14	to calculate the power flows and line losses	104
Exa 57.15	To find the sending end power and DC voltage	105
Exa 57.16	to calculate the power flow of given line	105
$\rm Exa~57.17$	To calculate the power flow through the lines	106
Exa 58.02	To find the over current factor	107

Chapter 3

Fundamentals of Fault Clearing and Switching Phenomena

Scilab code Exa 3.1 To find the transient current of RL circuit

To find the transient current of RL circuit

```
clear;
close;
close;
clc;
R=10;
L=0.1;
f=50;
w=2*%pi*f;
k=sqrt((R^2)+((w*L)^2));
angle=atan(w*L/R);
E=400
A=E*sin(angle)/k;
i=A*exp((-R)*.02/L);
i=round(i*100)/100;
mprintf("the transient current =%fA",i)
```

Scilab code Exa 3.2 to find the DC component and instantaneous value of currents and voltages

to find the DC component and instantaneous value of currents and voltages

```
1
2 clear;
3 close;
4 clc;
5
6 R = 10;
7 L=0.1;
8 f = 50;
9 w = 2 * \%pi * f;
10 k = sqrt((R^2) + ((w*L)^2));
11 angle=atan(w*L/R);
12 E = 100;
13 Em = sqrt(2) *E;
14 A=Em*sin(angle)/k;
15 i1=A;
16 Em=round(Em*10)/10;
17 i1=round(i1*10)/10;
18 mprintf("current in amperes for part1=\%fA\n",i1);
19 mprintf("current in part 2\& part 3= 0 \ n");
20 mprintf("the DC component vanishes if e=\%fV", Em); //
      the error is due to the erroneous values in the
      textbook
21
22 t1=0.5*.02;
23 i2=A*exp((-R)*t1/L);
24 mprintf("\ncurrent at .5 cycles for t1=\%fsec \
      ncurrent in the problem = \%fA",t1,i2);
25 t2=1.5*.02;
26 i3=A*exp((-R)*t2/L);
```

Scilab code Exa 3.3 To find Max Rate of restriking voltage and time for RRRV and the frequency

To find Max Rate of restriking voltage and time for RRRV and the frequency

```
1 clear;
2 close;
3 clc;
4 C = .003 e - 6
5 L=1.6e-3
6 y = sqrt(L*C);
7 y = round(y*1e7)/1e7;
8 f = (2*3.14*y)^-1;
9 f = round(f/100)*100;
10 i = 7500;
11 E=i*2*3.15*L*50;
12 Em = 1.414 * E;
13 Em = round(Em/10)*10
14 t=y*\%pi/2;
15 t=t*1e6;
16 t = round(t*100)/100;
17 e=Em/y;
18 e=round((e)/1e6)*1e6;
19 e = fix(e/1e7)*1e7
```

Scilab code Exa 3.4 To find the peak striking voltage and its frequency and the avg of RRRV and its max rate

To find the peak striking voltage and its frequency and the avg of RRRV and its may

```
1
2 clear;
3 close;
4 clc;
5 R=5
6 f = 50
7 L=R/(2*\%pi*f);
8 V = 11 e3;
9 Vph=11/sqrt(3);
10 C=0.01d-6;
11 y = sqrt(L*C);
12 Em = sqrt(2) * Vph;
13 ep=2*Em;
14 ep=round(ep*10)/10;
15 y=round(y*1e7)/1e7;
16 t=y*\%pi;
17 t = fix(t*1e7)/1e7
18 \text{ ea=ep/t};
19 ea=round(ea/1e3)*1e3
20 fn = (2*3.14*y)^-1;
21 \quad \text{Em} = \text{round} (\text{Em})
22 \quad \text{Emax} = \text{Em/y};
23 Emax=round(Emax/1000)*1e3;
24 mprintf("peak restriking voltage=%dkV",ep);
```

Scilab code Exa 3.5 The average rate of rise of restriking voltage

The average rate of rise of restriking voltage

Scilab code Exa 3.6 To estimate the average rate of restriking voltage

To estimate the average rate of restriking voltage

```
1 clear;
2 close;
```

```
3 clc;
4 V = 78 e3;
5 Vph=V/sqrt(3);
6 Em = 2 * Vph;
7 pf = 0.4;
8 angle=acos(pf);
9 k1=sin(angle);
10 k1=round(k1*100)/100;
11 k2 = .951;
12 k3=1;
13 k=k1*k2*k3;
14 \text{ k=round}(k*1000)/1e3;
15 E=k*Em;
16 f=15000;
17 t=1/(2*f);
18 t=round(t*1e6);
19 eavg=2*E/t;
20 eavg=round(eavg/100)*100;
21 printf("average restriking voltage=%fkV/microsecs",
      eavg/1e3);
```

Scilab code Exa 3.7 to find the peak striking voltage and the time to reach it

to find the peak striking voltage and the time to reach it

```
1 clear;
2 clc;
3 Em=100e3
4 t=70e-6
5 Ea=Em/t/1e6
6 f=1/(2*t);
7 Ea=round(Ea/10)*10;
8 f=round(f);
```

```
9 printf("average voltage in volts=%dV/microsecs\n",Ea
);
10 printf("frequency of oscillation =%dc/s",f);
```

Scilab code Exa 3.8 To find the value of resistance to be used across the contact space

To find the value of resistance to be used across the contact space

```
1
2 clc;
3 L=6;
4 C=0.01e-6;
5 i=10;
6 v=i*sqrt(L/C);
7 R=.5*v/i;
8 R=round(R/10)*10;
9 printf("damping resistance in ohms=%fkohms",R/1e3);
```

Chapter 17

Electrical Substations and Equipments and Busbar Layouts

Scilab code Exa 17.1 to find the min force on the conductors

to find the min force on the conductors

```
1 clear;
2 clc;
3 Isc= 25e3;
4 i=2.55*Isc;
5 L=1;
6 r=0.24;
7 F=2.046*(i^2)*10^-5/r;
8 mprintf("the force on busbar per meter length =%d kgfper meter",F/1e3);
```

Chapter 18

Neutral Grounding or Earthing

Scilab code Exa 18.1 To calculate the ohmic value of impedence

To calculate the ohmic value of impedence

```
1 clc;
2 clear;
3 P=2000e3;
4 V=400;
5 r=.4;
6 z=V^2/(r*P);
7 mprintf("the value of z=%f ohm",z);
```

Scilab code Exa 18.2 to find the value of reactance

to find the value of reactance

```
1 clc;
2 clear;
3 w=314;
4 c=.015e-6;
```

Scilab code Exa 18.3 calculate the reactance to neutralize different value of line capacitance

calculate the reactance to neutralize different value of line capacitance

```
1 clc;
2 clear;
3 c1=1.5e-6;
4 w = 2 * \%pi * 50;
5 L1=1/(3*c1*(w^2));
6 c2=.9*c1;
7 L2=1/(3*c2*(w^2));
8 c3 = .95 * c1;
9 L3=1/(3*c3*(w^2));
10 L1 = round(L1 * 100) / 100;
11 L2=round(L2*10)/10;
12 L3 = round(L3 * 100) / 100;
13 mprintf ("the inductance for 100 percent line
      capacitance=%f henries \n",L1);
14 mprintf("for 90 percent line capacitance, the
      inductance = \%f henries \n", L2);
15 mprintf("for 95 percent line capacitane inductance=%f
       henries", L3);
```

Scilab code Exa 18.4 To find the inductance and the KVA rating

To find the inductance and the KVA rating

```
1 clc;
2 clear;
3 c=.01e-6*50;
4 w=2*%pi*50;
5 L=1/(3*c*(w^2));
6 L=round(L*100)/100;
7 V=33e3/sqrt(3);
8 I=V/(w*L);
9 I=round(I*1000)/1000;
10 I=round(I*100)/100;
11 R=V*I/1e3; //the difference in result is due to erroneous calculation in textbook.
12 mprintf("the value of L=%fH and rating =%fkVA",L,R);
13 disp("the difference in result is due to erroneous calculation in textbook.");
```

Chapter 19

Introduction to Fault Calculations

Scilab code Exa 19.1 expressing the quantities in per unit form expressing the quantities in per unit form

```
1 clc;
2 clear;
3 i=10;
4 v=200;
5 z=v/i;
6 I1=20/i;
7 I2=.2/i;
8 v1=50/v;
9 r=2/z;
10 mprintf("the base impedence=%dohm\n",z);
11 mprintf("the base values for 20A=%dp.u.\n.the base values for 2A=%fp.u.\nthe base values for 50V=%fp.u.\n the base values for 2ohm=%fp.u",I1,I2,v1,r);
```

Scilab code Exa 19.2 conversion in per unit

conversion in per unit

```
1 clc;
2 clear;
3 z=2;
4 v=11e3;
5 r=1000e3;
6 zb=v^2/r;
7 y=z/zb;
8 y=round(y*10000)/10000;
9 mprintf("the per unit resistance=%fp.u",y);
```

Scilab code Exa 19.3 to find the new pu reactance

to find the new pu reactance

```
1 clc;
2 clear;
3 v=11e3;
4 r=15000e3;
5 zp=.15;
6 vnew=110e3;
7 rnew=30000e3;
8 zb=v^2/r;
9 Z=zp*zb;
10 zbnew=vnew^2/rnew;
11 Zp=Z/zbnew;
12 mprintf("the new per unit reactance=%fp.u",Zp/10);
```

Scilab code Exa 19.4 drawing the reactance diagram of the system

drawing the reactance diagram of the system

```
1 clc;
2 clear;
3 v1=11e3;
4 v2 = 22 e3;
5 v3=3.3e3;
6 r = 10000 e3;
7 \text{ zb1=v1^2/r};
8 \text{ zb2=v2^2/r};
9 \text{ zb3=v3^2/r};
10 \text{ zp1} = 300/\text{zb3};
11 zp2=300*(zb2/zb3)/zb2;
12 \text{ zp3}=300*(\text{zb1/zb3})/\text{zb1};
13 zp1=round(zp1*10)/10;
14 zp1=round(zp1);
15 zp2=round(zp2*10)/10;
16 zp2=round(zp2);
17 zp3=round(zp3*10)/10;
18 zp3=round(zp3);
19 mprintf("the per unit values = %dp.u.; %dp.u.; %dp.u
      . ",zp1,zp2,zp3);
```

Scilab code Exa 19.5 to find the fault current

to find the fault current

```
1 clc;
2 clear;
3 z=0.2*%i*0.155/(0.2+0.155);
4 v=1;
5 i=v/z;
6 ir=real(i);
7 im=imag(i);
```

```
8 im=round(im*100)/100;
9 mprintf("the fault current is =\%d+(\%fj)A",ir,im);
```

Scilab code Exa 19.6 The reactance calculations

The reactance calculations

```
1 clc;
2 clear;
3 r = 30000 e3;
4 v1=11e3;
5 v2=110e3;
6 zb1=v1^2/r;
7 zb2=v2^2/r;
8 \text{ zp1} = 80/\text{zb2};
9 zp2=.1*\%i*30000/35000;
10 zp3 = .2 * \%i * 30000 / 10000;
11 zp3r=real(zp3);
12 zp2r=real(zp2);
13 zp3i=imag(zp3);
14 zp2i = imag(zp2);
15 zb2 = round(zb2 * 10)/10;
16 zp1=round(zp1*1000)/1000;
17 zp2i=round(zp2i*10000)/10000;
18 zp3i=round(zp3i*10)/10;
19 mprintf("the base impedence of transmission line
      circuti=%fohm\nper unit reactance of transmission
       line=\%fp.u.\n ",zb2,zp1);
20 mprintf("per unit reactance of transformer to new
      base=\%f+(\%fj)p.u.\nPer unit reactance of motor to
       new base=\%f+(\%fj)p.u.",zp2r,zp2i,zp3r,zp3i);
```

Scilab code Exa 19.7 to find the pu impedences

to find the pu impedences

```
1 clc;
2 clear;
3 \text{ r1=10e6};
4 \text{ r2=7.5e6};
5 \text{ r3=5e6};
6 v1 = 66e3;
7 v2=11e3;
8 v3=3.3e3;
9 \text{ zst} = .06*r1*\%i/r2;
10 zps = .07 * \%i;
11 zpt = .09 * \%i;
12 Zp = (zst + zps - zst)/2;
13 Zs=(zps+zst-zpt)/2;
14 Zt = (zpt + zst - zps)/2;
15 Zpi=imag(Zp);
16 Zsi=imag(Zs);
17 Zti=imag(Zt);
18 Zpi=round(Zpi*100)/100;
19 mprintf("the per unit impedence of circuit \nZp=
      \%fjp.u;\n Zs=\%fjp.u;\n Zt=\%fjp.u",Zpi,Zsi,Zti);
```

Scilab code Exa 19.9 To calculate the new fault level

To calculate the new fault level

```
1 clc;
2 clear;
3 old=5000;
4 bank=200;
5 new=old-bank;
6 mprintf("new fault =%dMVA", new);
```

Chapter 20

Symmetric Faults and Current Limiting Reactors

Scilab code Exa 20.1 Calculate Fault MVA and current

Calculate Fault MVA and current

```
1 clear;
2 clc;
3 V = 6.6 e3;
4 r=5e6;
5 X = .12;
6 \text{ F=r/X};
7 I = (F/V)/(%i*sqrt(3));
8 Ir=real(I);
9 Ii=imag(I);
10 Imod=sqrt((Ir^2)+(Ii^2));
11 Iangle=atand(Ir/Ii)-90;
12 F = fix(F/1e5)*1e5;
13 Imod=fix(Imod);
14 mprintf("Method 1 \nthe value of fault MVA=%fMVA \n
      the fault current is = \%d /_\%d A\n",(F/1e6),Imod,
      Iangle);
15 //method 2
```

```
16 Vbase=V/sqrt(3);
18 Ibase=r/(Vbase*3);
19  Ifault=Ifaultpu*Ibase;
20 P=sqrt(3)*Ifault*V;
21 Ir=real(Ifault);
22 Ii=imag(Ifault);
23 Imod=sqrt((Ir^2)+(Ii^2));
24 \text{ Pr} = \text{real}(P);
25 \text{ Pi} = imag(P);
26 Pmod=sqrt((Pr^2)+(Pi^2));
27 Pangle=atand(Pr/Pi)-90;
28 Pmod=fix(Pmod/1e5)*1e5;
29 Imod=fix(Imod);
30 mprintf("From method 2\n the value of fault MVA=%f /
      _{-}\%d MVA \setminusn the fault current is =\%d A",(Pmod/1e6
      ), Pangle, Imod);
31 / \text{method } 3
32 \text{ v1=6.4e3};
33 I = (v1/V)/X;
34 Ifault=Ibase*I;
35 p=sqrt(3)*Ifault*v1;//the difference in result is
      due to erroneous calculation in textbook.
36 p = round(p/1e5)*1e5;
37 mprintf("\nthe new fault current at 6.4 \,\mathrm{kV} is = \% \mathrm{fA} \
      n the newfault power at service voltage is =\%fMVA
      ", Ifault, p/1e6);
38 disp("the difference in result is due to erroneous
      calculation in textbook.");
```

Scilab code Exa 20.2 To find the steady state fault current

To find the steady state fault current

```
1 clear;
```

```
2 clc;
3 V = 3000 e3;
4 r1=30;
5 r = 5000 e3;
6 \text{ vb2=11e3};
7 \text{ vb3} = 33 \text{ e3};
8 x = .2;
9 Xt = .05 * r / V;
10 X1=r1*r/(vb3^2);
11 xtotal = (x+Xt+X1)*\%i;
12 MVA=r*\%i*1e-6/xtotal;
13 Ifault=MVA*1e6/(sqrt(3)*vb3*%i);
14 Ir=real(Ifault);
15 Ii=imag(Ifault);
16 Imod=sqrt((Ir^2)+(Ii^2));
17 Iangle=atand(Ir/Ii)-90;
18 Imod=round(Imod);
19 MVA=round (MVA*10)/10;
20 mprintf("the value of falut current = \%d/_\%d Amp \n
      fault MVA = \%f MVA", Imod, Iangle, MVA);
```

Scilab code Exa 20.03 to find the fault MVA

to find the fault MVA

```
1  clear;
2  clc;
3  rating=25e6;
4  vb=11e3;
5  x=.16/4;
6  faultMVA=rating*1e-6/x;
7  mprintf("the fault MVA from method 1=%dMVA",faultMVA
        );
8  //method 2
9  Ifault=1/(x*%i);
```

```
10     Ib=rating/(sqrt(3)*vb);
11     Isc=Ib*25;
12     MVA=sqrt(3)*vb*Isc/1e6;
13     mprintf("\n the fault MVA from method 2=%dMVA", MVA);
```

Scilab code Exa 20.04 calculate the fault current and MVA

calculate the fault current and MVA

```
1 clear;
2 clc;
3 R = 3e6;
4 Rb=6000e3;
5 vb1=11e3;
6 \text{ vb2=22e3};
7 X = .15;
8 x = .15*Rb/R;
9 xeq=x/2;
10 MVA=Rb/xeq;
11    Ifault=MVA/(sqrt(3)*vb1*%i);
12 Ir=real(Ifault);
13 Ii=imag(Ifault);
14 Imod=sqrt((Ir^2)+(Ii^2));
15 Iangle=atand(Ir/Ii)-90;
16 Imod=round (Imod/10) *10;
17 mprintf("for fault on generator side \n Fault MVA=
      %dMVA \setminus n Fault current = %d/_%dAmp", MVA/1e6, Imod,
      Iangle);
18 	 x2 = .05;
19 Xeq=x2+xeq;
20 \text{ MVA} = \text{Rb} / \text{Xeq};
21 Ifault=MVA/(1.734*vb2*%i);
22 Ir=real(Ifault);
23 Ii=imag(Ifault);
24 Imod=sqrt((Ir^2)+(Ii^2));
```

Scilab code Exa 20.05.a Calculate the Fault MVA and current

Calculate the Fault MVA and current

```
1 clear;
2 clc;
3 R = 3e6;
4 Rb=6e6;
5 \text{ vb2=11e3};
6 \text{ vb3} = 66 \text{ e3};
7 x = .2;
8 \text{ Xg=x*Rb/R};
9 \text{ xt} = .05;
10 xl=vb3^2/Rb;
11 x11=20*.1/x1;
12 x12=x11*4;
13
14 X1 = Xg + xt + x12;
15 X2=Xg+xt+x11;
16 X=inv(inv(X1)+inv(X2));
17 Ifaultpu=1/(X*%i);
18 Ifault=Ifaultpu*Rb/(sqrt(3)*vb3);
20 Ir=real(Ifault);
21 Ii=imag(Ifault);
22 Imod=sqrt((Ir^2)+(Ii^2));
23 Iangle=atand(Ir/Ii)-90;
24 MVA = fix(MVA/1e5)*1e5;
25 Imod=fix(Imod);
```

Scilab code Exa 20.05.b calculating the fault current

calculating the fault current

```
1 clear;
2 clc;
3 v1 = 66e3;
4 v2=11e3;
5 \text{ x2} = .461;
6 \text{ x1} = .4527;
7 If = 229;
8 I1=If*x2/(x1+x2);
9 I2=If*x1/(x1+x2);
10 I=I1+I2;
11 Ig1=I1*v1/v2;
13 I1=round(I1*10)/10;
14 I2=round(I2*10)/10;
15 mprintf("the fault current supplied by each
      transformer is \n I1=\%fA\nI2=\%fA\nI3=I1+I2=\%dA\n",
      I1, I2, I);
```

Scilab code Exa 20.06 To calculate the current supplied by alternator

To calculate the current supplied by alternator

```
1 clear;
2 clc;
3 r = 6e6;
4 v1=11e3;
5 v2 = 66 e3;
6 \text{ xg} = .1;
7 \text{ xt} = .09;
8 z=4+(1*\%i);
9 \text{ zb=v2^2/r};
10 zpu=z/zb;
11 E=1;
12 Ifault=E/(zpu+((xg+xt)*%i));
13 Ir=real(Ifault);
14 Ii=imag(Ifault);
15 Imod=sqrt((Ir^2)+(Ii^2));
16 Ib=r/(sqrt(3)*v2);
17 i = Imod * Ib;
18 igb=r/(sqrt(3)*v1);
19 ig=igb*Imod;
20 i=fix(i);
21 ig=fix(ig);
22 mprintf("the base current on HT side = \%dA\n the
      current from generator = %dA",i,ig);
```

Scilab code Exa 20.07 finding the current supplied by generator finding the current supplied by generator

```
1 clear;
 2 clc;
3 r1 = 20e6;
4 \text{ rb} = 30 \text{ e6};
5 v1 = 11 e3;
6 v2=110e3;
7 x1g=.2*rb/r1;
8 \text{ x1t} = .08*\text{rb/r1};
9 x2g = .2;
10 \text{ x2t} = .1;
11 x1 = .516;
12 x0=x1/2;
13 x1 = x1g + x1t;
14 x2=x2g+x2t;
15 x=inv(inv(x2)+inv(x1));
16 z = x + x0;
17 E=1;
18 isc=E/z;
19 ig1=isc*x2/(x1+x2);
20 ig2=isc*x1/(x1+x2);
21 i=ig1+ig2;
22 ib=rb/(1.7355*v1);
23 ig1=fix(ig1*1000)/1000;
24 \text{ Ig1=ig1*ib};
25 \text{ ib=} fix(ib);
26 ig2=fix(ig2*100)/100;
27 \text{ Ig2=ig2*ib};
28 Ig2=fix(Ig2);
29 mprintf("the current taken from G1=%dA(lagging)\n
       the current taken from G2=%dA(lagging)", Ig1, Ig2);
```

Scilab code Exa 20.08 to calulate the subtransient fault current and breaker current rating

to calulate the subtransient fault current and breaker current rating

```
1 clear;
2 clc;
3 r = 25e6;
4 \text{ rb=5e6};
5 v1=6.6e3;
6 v2 = 25 e3;
7 \text{ xs} = .2;
8 \text{ xt} = .3;
9 \text{ Xs=xs*r/rb};
10 Xt = xt * r/rb;
11 Z = .125;
12 v = 1;
13 I = v/(Z);
14 ib=r/(1.7355*v1);
15 ib=fix(ib);
16 i = ib *8;
17 ig=I*.25/.5;
18 \text{ im}=I-ig;
19 it = 3*1+im;
20 Ia=ib*it;
21 Imom=1.6*Ia;
22 \text{ xt} = .15;
23 Zth = .375 * .25 / (.375 + .25);
24 I=v/xt;
25 igen=I*.375/.625;
26 \text{ imot} = .25 * I * .25 / .625;
27 itot=igen+(3*imot);//symm breaking current
28 ibr=itot*1.1;//asymm breaking current
29 is=itot*ib;
30 ia=ibr*ib*1.01;
31 ia=fix(ia/100)*100;
32 \text{ rbreaking} = 1.739 * v1 * ia;
33 rbreaking=fix(rbreaking/1e6)*1e6;
```

```
34 Imom=round(Imom/10)*10;
35 ia=round(ia);
36 is=fix(is/100)*100;
37 mprintf("the subtransient fault current If= %d/_-90A
    \nsubtansient current in breaker A=%dA\n the
    momentary current = %dA\n, the current to be
    interrupted asymmetric=%dA\n symmetric
    interrupting current=%dA\n the rating of the CB
    in kva=%dkVA",i,Ia,Imom,ia,is,rbreaking/1e3);
```

Scilab code Exa 20.09 to calculate the fault level

to calculate the fault level

```
1 clc;
2 clear;
3 rb=100e6;
4 rf=1e6;
5 v=3.3e3;
6 x=rf/rb;
7 xpu=.6;
8 xtot=x+xpu;
9 rf2=rf/xtot;
10 rf2=round(rf2/1e4)*1e4;
11 If=rf2/(1.72*v);
12 If=fix(If);
13 mprintf("the fault level is=%fMVA\n the fault current=%dA",rf2/1e6,If);;
```

Scilab code Exa 20.10 to calculate the max possible fault level to calculate the max possible fault level

```
1 clear;
2 clc;
3 r=500e3;
4 x=4.75/100;
5 fault=r/x;
6 fault=fix(fault/1e5)*1e5;
7 mprintf("the fault level on LT side=%dkVA",fault/1e3
);
```

Scilab code Exa 20.11 to calculate the fault level

to calculate the fault level

```
1 clc;
2 clear;
3 \text{ r1=75e6};
4 \text{ r2=150e6};
5 \text{ rb=r1+r2};
6 \text{ rf=rb};
7 x = .05;
8 \text{ xn=x*rb/1e6};
9 xeq=rb/rf;
10 X = xn + xeq;
11 fault=rb/X;
12 f=rb/xn;
13 fault=round(fault/1e4)*1e4
14 mprintf("fault level on LT sid eof transformer=%fMVA
        \n fault level when source of reactance is
      neglected=\%fMVA", fault/1e6, f/1e6);
```

Scilab code Exa 20.12 To calculate the fault level at any point of line
To calculate the fault level at any point of line

```
1 clear;
2 clc;
3 rb=100e6;
4 r1=50e6;
5 r2=rb;
6 x1=rb/r1;
7 x2=rb/r2;
8 xeq=inv(inv(x1)+inv(x2));
9 f=rb/xeq;
10 mprintf("the fault level on the line =%dMVA",f/1e6);
```

Scilab code Exa 20.13 to find initial short circuit current and peak SC current

to find initial short circuit current and peak SC current

```
1 clear;
2 clc;
3 x = .23;
4 r = 3750 e3;
5 v = 6600;
6 \text{ res} = .866;
7 x1=x*(v^2)/r;
8 z = sqrt((res^2) + (x1^2));
9 i=1.1*v/(sqrt(3)*z);
10 f=res/x1;
11 x=1.38;
12 i = round(i/100) * 100
13 is=sqrt(2)*x*i;
14 is=round(is/10)*10;
15 mprintf("initial short circuit current=%dA \n peak
      short circuit current=%dA",i,is);
```

Scilab code Exa 20.14 to find the subtransient currents

to find the subtransient currents

```
1 clear;
2 clc;
3 rb=75000e3;
4 \text{ ro=} 50 \text{ e6};
5 v1 = 11 e3;
6 v2 = 66e3;
7 xa=.25*rb/ro;
8 \text{ xb} = .75;
9 xt = .1;
10 v = 1;
11 xeq=inv(inv(xa)+inv(xb))+xt;
12 i=v/xeq;
13 i=round(i*100)/100;
14 ia=i*xb/(xa+xb);
15 ib=i*xa/(xa+xb);
16 ia=round(ia*100)/100;
17 ilt=rb/(sqrt(3)*v1);
18 iht=rb/(sqrt(3)*v2);
19 i=i*iht;
20 i = fix(i)
21 ia=ia*ilt;
22 ilt=rb/(1.73*v1);
23 ib=ib*ilt;
24 ia=round(ia);
25 ib=round(ib/10)*10;
26 mprintf("sub transient current generator A=%dA \n
      generator B=%dA \n HT side=%dA",ia,ib,i);
```

Scilab code Exa 20.15 to find SC current and rms current and making and breaking capacity required

to find SC current and rms current and making and breaking capacity required

```
1 clear;
2 clc;
3 x = 1;
4 e=1;
5 i=e/x;
6 \text{ r=7.5e6};
7 v=6.6e3;
8 i=r/(sqrt(3)*v);
9 i = fix(i);
10 \times 2 = .09;
11 i2=e/x2;
12 I2=i2*i;
13 I2=fix(I2/10)*10
14 idc=sqrt(2)*I2;
15 \text{ mc}=idc*2;
16 \times 3 = .15;
17 i3=e/x3;
18 I3 = i3 * i;
19 ib=I3*1.4;
20 Mva=sqrt(3)*v*ib;
21 idc=round(idc/1e2)*1e2;
22 mc=round(mc/1e2)*1e2;
13 = round(13/10) * 10;
24 Mva=fix(Mva/1e4)*1e4
25 mprintf("sustained short circuit current=%dA\
      ninitial symmetric SC current=%fkA\nmaximum dc
      component=%fkA\nmaking capacity required=%fkA\
      ntransient short circuit current=%fkA\n
      interrupting capacity required=%fMVA, Asymmetric",
      i, I2/1e3, idc/1e3, mc/1e3, I3/1e3, Mva/1e6);
```

Scilab code Exa 20.16.a to find the short circuit current

to find the short circuit current

```
1 clear;
2 clc;
3 \text{ rb=2e6};
4 r=1.2e6;
5 x=7*rb/r;
6 v = 6.6e3;
7 i=rb/v;
8 \text{ zb=v/i};
9 r = 1200 e3;
10 \text{ rb} = 2000 \text{ e3};
11 v=6.6e3;
12 i=rb/v;
13 x = .1;
14 z0=v*x/i;
15 \text{ x1=7*rb/r};
16 z1=v*x1/(100*i);
17 z2=2;
18 z = z0 + z1 + z2;
19 ish=v/z;
20 zb=round(zb*10)/10;
21 ish=round(ish/10)*10;
22 mprintf("the shortcircuit current by direct ohmic
      method=\%fA\n", ish);
23 mprintf("the base impedence=%fohm", zb);
```

Scilab code Exa 20.16.b to find SC current by ohmic method to find SC current by ohmic method

```
1 clear;
2 clc;
3 rb=2e6;
4 r=1.2e6;
5 x=7*rb/r;
6 x1=10;
```

```
7  x2=11.7;
8  v=6.6e3;
9  i=rb/v;
10  zb=v/i;
11  r=1200e3;
12  rb=2000e3;
13  v=6.6e3;
14  xt=.117;
15  xf=2/zb*100;
16  xtot=xf+x1+x2;
17  ish=i*100/xtot;
18  ish=round(ish/10)*10;
19  mprintf("the short circuit current by percentage reactance method=%fA",ish);
```

Scilab code Exa 20.16.c To find the new SC current

To find the new SC current

```
1 clear;
2 clc;
3 x1=5;
4 x2=10;
5 x3=11.7;
6 x4=9.1;
7 i=303;
8 xt=x1+x2+x3+x4;
9 ish=303*100/xt;
10 mprintf("the SHORT CIRCUIT CURRENT=%dA",ish)
```

Scilab code Exa 20.17.a To find the SC current of the circuit

To find the SC current of the circuit

Scilab code Exa 20.17.b to find the reactance of the reactor

to find the reactance of the reactor

```
1 clear;
2 clc;
3 v=3.3e3;
4 rb=3e6;
5 r1=1e6;
6 r2=1.5e6;
7 x1=10;
8 x2=20;
9 X1=x1*rb/r1;
10 X2=x2*rb/r2;
11 x=inv(inv(X1)+inv(X2));
12 kva=rb*100/x;
13 ish=kva/(sqrt(3)*v);
14 rx=10e6;
```

Scilab code Exa 20.18.a To calculate the reactance of the reactor to limit SC MVA $\,$

To calculate the reactance of the reactor to limit SC MVA

```
1 clear;
2 clc;
3 r1=3e6;
4 x=10;
5 r=150e6;
6 rb=9e6;
7 x1=x*rb/r1;
8 xc=inv(2*inv(x1));
9 xt=rb*100/r;
10 x=(inv(inv(xt)-inv(xc)))-5;
11 printf("the reactance that should be added= %d percent",x);
```

Scilab code Exa 20.18.b fault level at generator bus

fault level at generator bus

```
1 clear;
2 clc;
3 z=4000;
4 zb=9;
5 x1=zb/z*100;
```

Scilab code Exa 20.19 to calculate the current fed to the faults

to calculate the current fed to the faults

```
1 clear;
2 clc;
3 \text{ rb} = 20 \text{ e6};
4 r=10e6;
5 v1 = 11 e3;
6 v2 = 66e3;
7 x1=5;
8 \quad X1=x1*rb/r;
9 xa = 20;
10 xb = 20;
11 xc = 20;
12 \text{ xd} = 20;
13 xbus=25;
14 xtr=X1;
15 xcd=inv(inv(xc)+inv(xd));
16 xab=inv(inv(xa)+inv(xb));
17 xcdbus=xcd+xbus;
18 xn=inv(inv(xab)+inv(xcdbus));
19 xth=xtr+xn;
20 mva=rb/xth*100;
21 i = mva/(1.745*v2);
```

Scilab code Exa 20.20.b to calculate the percentage change of reactors R to calculate the percentage change of reactors R

```
1 clear;
2 clc;
3 g=20;
4 v=11e3;
5 r=20e6;
6 n=4;
7 x=.4;
8 x1=g/(n-1);
9 z=((x1/x)-(x1))/1.33;
10 R=(z/100)*(v^2)/r;
11 R=round(R*1000)/1000;
12 printf("the value of reactance=%fohms",R);
```

Scilab code Exa 20.21 calculate the MVA and current by both generator and transformer side

calculate the MVA and current by both generator and transformer side

```
1 clear;
2 clc;
3 xst=20;
4 xtr=28;
5 xs=250;
6 xt=15;
```

```
7 v1 = 25 e3;
8 \text{ r1=500e6/.8};
9 v2 = 220 e3;
10 \text{ rb} = 600 \text{ e6};
11 vb = 25e3;
12 \text{ xf=rb/r1};
13 xst=xst*xf/100;
14 xtr=xtr*xf/100;
15 \text{ xs=xs*xf}/100;
16 xt=xt/100;
17 xeqs=inv(inv(xst)+inv(xt));
18 xeqt=inv(inv(xtr)+inv(xt));
19 xeg=inv(inv(xs)+inv(xt));
20 e = 1;
21 xeqs = round(xeqs * 1000) / 1e3;
22 is=e/xeqs;
23 is=round(is);
24 it=e/xeqt;
25 \text{ ig=e/xeg};
26 i1=is*xt/(xt+xst);
27 i2=is*xst/(xst+xt);
28 ib=rb/(1.726*22.2*1e3);
29 Is=is*ib;
30 i1=round(i1*10)/10;
31 Is=round(Is/1e3)*1e3;
32 i2=fix(i2*100)/0100;
33 I1 = i1 * ib;
34 I2 = i2 * ib;
35 I1=fix(I1/1e2)*1e2;
36 I2=fix(I2/1e2)*1e2;
37 mprintf ("total subtransient current T-off=%fkA\
      nsubtransient current on generator side=%fkA\n
      subtransient current on transformer side=%fkA", Is
      /1e3,I1/1e3,I2/1e3);
```

Scilab code Exa 20.22 calculate the short circuit level and normal and effective fault current

calculate the short circuit level and normal and effective fault current

```
1 clc;
2 clear;
3 mvan=6800e6;
4 v=132e3;
5 mvac=200e6;
6 mvae=mvan-mvac;
7 n=mvan/(sqrt(3)*v);
8 e=mvae/(1.681*v);
9 e=fix(e/10)*10;
10 n=fix(n/10)*10;
11 printf("normal fault current=%f/_-90 kA\nEffective fault current=%f/_-90 kA",n/1e3,e/1e3);
```

Scilab code Exa 20.23 calculate the SC ratio and effective SC ratio of HVDC current

calculate the SC ratio and effective SC ratio of HVDC current

11 disp('the difference in result is due to erroneous calculation in textbook.');

Scilab code Exa 20.24 to calculate the fault levels on secondary sides of transformer

to calculate the fault levels on secondary sides of transformer

```
1 clear;
2 clc;
3 s=1;
4 xt=5;
5 m=s/xt*100;
6 n=2*s/xt*100;
7 mprintf("fault level on lt side=%dMVA\n fault level on HT side=%dMVA",m,n);
```

Chapter 21

Symmetric Components

Scilab code Exa 21.01 Calculate the symmetric components of unbalanced lines

Calculate the symmetric components of unbalanced lines

```
1 clear;
2 clc;
3 \text{ va=} 100*(%e^(\%pi*\%i/2));
4 vb=116*(%e^(%i*0));
5 vc=71*(%e^(%i*(224.8*\%pi/180)));
6 a=1*\%e^(\%i*(120*\%pi/180));
7 b=a^2;
8 va0=1/3*(va+vb+vc);
9 va1=1/3*(va+(a*vb)+(b*vc));
10 va2=1/3*(va+(b*vb)+(a*vc));
11 va0r=real(va0);
12 va0i=imag(va0);
13 va0m=sqrt((va0r^2)+(va0i^2));
14 va0a=atand(va0i/va0r);
15 va1r=real(va1);
16 va1i=imag(va1);
17 valm=sqrt((valr^2)+(vali^2));//the difference in
      result is due to erroneous calculation in
```

textbook. 18 va1a=atand(va1i/va1r); 19 va2r=real(va2); 20 va2i=imag(va2); 21 va2m=sqrt((va2r^2)+(va2i^2)); 22 va2a=atand(va2i/va2r); 23 mprintf("the symmetric components are \n va0=%f+j%f V \tor\t %f/_%d V",va0r,va0i,va0m,va0a); 24 mprintf("\n va1=%f+j%f V \tor\t %f/_%d V",va1r,va1i, va1m,va1a); 25 mprintf("\n va2=%f+j(%f) V \tor\t %f/_%d V",va2r, va2i,va2m,va2a); 26 disp('the difference in result is due to erroneous calculation in textbook.')

Scilab code Exa 21.02 to calculate the line voltages

to calculate the line voltages

```
1 clear;
2 clc;
3 \text{ va}=22+(16.66*\%i);
4 vb = -25.33 + (\%i *89.34);
5 \text{ vc} = 3.33 - (\%i*6);
6 a=1*\%e^(\%i*(120*\%pi/180));
7 b=a^2;
8 \text{ va0} = (\text{va+vb+vc});
9 va1=(va+(b*vb)+(a*vc));
10 va2=(va+(a*vb)+(b*vc));
11  va0r=real(va0);
12 va0i=imag(va0);
13 va0m=sqrt((va0r^2)+(va0i^2));
14 va0a=atand(va0i/va0r);
15 va1r=real(va1);
16 va1i=imag(va1);
```

```
17  va1m=round(sqrt((va1r^2)+(va1i^2))*10)/10;
18  va1a=atand(va1i/va1r);
19  va2r=round(real(va2));
20  va2i=round(imag(va2));
21  va2m=round(sqrt((va2r^2)+(va2i^2)));
22  va2a=atand(va2i/va2r);
23  mprintf("the voltage levels are \n va=%f+j%f V \tor\t %f/_%d V", va0r, va0i, va0m, va0a);
24  mprintf("\n vb=%f+j(%f) V \tor\t %f/_%d V", va1r, va1i , va1m, va1a);
25  mprintf("\n vc=%f+j(%f) V \tor\t %f/_%d V", va2r, va2i , va2m, va2a);
```

Scilab code Exa 21.03 To determine the line currents

To determine the line currents

```
1 clear;
2 clc;
3 ib = 50;
4 ic=10*%e^(\%i*\%pi/2);
5 ia=10*%e^(%i*%pi);
6 a=1*%e^((i*(120*\%pi/180));
7 b=a^2;
8 ia0=(ia+ib+ic);
9 ia1=(ia+(b*ib)+(a*ic));
10 ia2=(ia+(a*ib)+(b*ic));
11 ia0r=real(ia0);
12 ia0i=imag(ia0);
13 ia0m=sqrt((ia0r^2)+(ia0i^2));
14 ia0a=atand(ia0i/ia0r);
15 ia1r=real(ia1);
16 ia1i=imag(ia1);
17 ia1m=sqrt((ia1r^2)+(ia1i^2));
18 ia1a=atand(ia1i/ia1r);
```

```
19     ia2r=real(ia2);
20     ia2i=imag(ia2);
21     ia2m=sqrt((ia2r^2)+(ia2i^2));
22     ia2a=atand(ia2i/ia2r);
23     mprintf("the current levels are \n ia=%f+j%f A \tor\t %f/_%d A",ia0r,ia0i,ia0m,ia0a);
24     mprintf("\n ib=%f+j(%f) A \tor\t %f/_%d A",ia1r,ia1i,ia1m,ia1a);
25     mprintf("\n ic=%f+j(%f) A \tor\t %f/_%d A",ia2r,ia2i,ia2m,ia2a);
```

Scilab code Exa 21.04 to find the symmetric components of line currents to find the symmetric components of line currents

```
1 clear;
2 clc;
3 ia=20;
4 ib=20*(%e^(%i*\%pi));
5 ic=0;
6 a=1*%e^(%i*(120*%pi/180));
7 b=a^2;
8 ia0=1/3*(ia+ib+ic);
9 ia1=1/3*(ia+(a*ib)+(b*ic));
10 ia2=1/3*(ia+(b*ib)+(a*ic));
11 ia0r=real(ia0);
12 ia0i=imag(ia0);
13 ia0m=sqrt((ia0r^2)+(ia0i^2));
14 ia0a=0-atand(ia0r/ia0i);
15 ia1r=real(ia1);
16 ia1i=imag(ia1);
17 ia1m=sqrt((ia1r^2)+(ia1i^2));
18 ia1a=atand(ia1i/ia1r);
19 ia2r=real(ia2);
20 ia2i=imag(ia2);
```

```
21 ia2m=sqrt((ia2r^2)+(ia2i^2));
22 ia2a=atand(ia2i/ia2r);
23 mprintf ("the symmetric components are \n ia0=%f+j%f
       A \setminus tor \setminus t \%f/_\%d A", ia0r, ia0i, ia0m, ia0a);
24 mprintf("\n ia1=\%f+j\%f A \tor\t \%f/\_\%d A",ia1r,ia1i,
      ia1m, ia1a);
25 mprintf("\n ia2=\%f+j(\%f) A \tor\t \%f/\\d A\",ia2r,
      ia2i,ia2m,ia2a);
26 ib1=b*ia1;
27 ib2=a*ia2;
28 \text{ ic1}=a*ia1;
29 ic2=b*ia2;
30 ib0=ia0;
31 ic0=ia0;
32 ib1r=real(ib1);
33 ib1i=imag(ib1);
34 ib1m=sqrt((ib1r^2)+(ib1i^2));
35 ib1a=atand(ib1i/ib1r);
36 ib2r=real(ib2);
37 ib2i=imag(ib2);
38 ib2m=sqrt((ib2r^2)+(ib2i^2));
39 ib2a=atand(ib2i/ib2r);
40 ic1r=real(ic1);
41 ic1i=imag(ic1);
42 ic1m=sqrt((ic1r^2)+(ic1i^2));
43 ic1a=atand(ic1i/ic1r);
44 ic2r=real(ic2);
45 ic2i=imag(ic2);
46 ic2m=sqrt((ic2r^2)+(ic2i^2));
47 ic2a=atand(ic2i/ic2r);
48 mprintf("\n ib0=%fA",ib0);
49 mprintf("\n ib1=\%f+j\%f A \tor\t \%f/\_\%d A",ib1r,ib1i,
      ib1m,ib1a);
50 mprintf("\n ib2=\%f+j(\%f) A \tor\t \%f/\\\%d A\",ib2r,
      ib2i, ib2m, ib2a);
51 mprintf("\n \n ic0=\%f A",ic0);
52 mprintf("\n ic1=%f+j%f A \tor\t %f/_%d A",ic1r,ic1i,
      ic1m,ic1a);
```

```
53 mprintf("\n ic2=%f+j(%f) A \tor\t %f/_%d A",ic2r, ic2i,ic2m,ic2a);
```

Scilab code Exa 21.05 to calculate the voltages of phase and line voltages to calculate the voltages of phase and line voltages

```
1 clear;
2 clc;
3 \text{ vb} = .584 + (0 * \%i);
4 vc = .584 + (0 * \%i);
5 \text{ va=0}:
6 a=1*%e^((i*(120*\%pi/180));
7 b=a^2;
8 \text{ vae}=(\text{va+vb+vc});
9 vbe=(va+(b*vb)+(a*vc));
10 vce=(va+(a*vb)+(b*vc));
11 va0=vae-vbe;
12 \text{ val=vbe-vce};
13 va2=vce-vae;
14 va0r=real(va0);
15 va0i=imag(va0);
16 va0m=sqrt((va0r^2)+(va0i^2));
17 va0a=atand(va0i/va0r);
18 va1r=real(va1);
19 va1i=imag(va1);
20 va1m=sqrt((va1r^2)+(va1i^2));
21 va1a=0;
22 va2r=real(va2);
23 va2i=imag(va2);
24 va2m=sqrt((va2r^2)+(va2i^2));
25 \text{ va2a=atand(va2i/va2r)+180;}
26 mprintf("the voltage levels are \n vab=\%f+j\%f V \tor
      \t %f/_%d V", va0r, va0i, va0m, va0a);
```

Scilab code Exa 21.06 to calculate the value of Ia

to calculate the value of Ia

```
1 clear;
2 clc;
3 e=1;
4 x1=.25*\%i;
5 x2=.35*\%i;
6 \times 0 = .1 * \%i;
7 ia0=e/(x1+x2+x0);
8 ia1=ia0;
9 ia2=ia0;
10 ia=ia0+ia1+ia2;
11 iar=real(ia);
12 iai=imag(ia);
13 iam=round(sqrt((iar^2)+(iai^2))*100)/100;
14 iaa=0;
15 mprintf("the current levels are n ia=\%f+j(\%f) A
      tor \ t \ \%f/\ \%d \ A", iar, iai, iam, iaa);
```

Scilab code Exa 21.07 to find the line and phase voltage of phase a to find the line and phase voltage of phase a

```
1 clear;
2 clc;
```

```
3 z1=.25*%i;
4 z2=.35*%i;
5 z0=.1*%i;
6 ea=1;
7 ia1=inv(z1+inv(inv(z2)+inv(z0)))*ea;
8 va1=ea-(ia1*z1);
9 va0=va1;
10 va2=va0;
11 ia0=-va0/z0;
12 ia2=-va2/z2;
13 ia=ia1+ia2+ia0;
14 va=va1+va2+va0;
15 va=fix(va*1000)/1e3;
16 mprintf("the current ia=%dA\tVa=%fV",ia,va);
```

Scilab code Exa 21.08 to find positive sequence component of fault current

to find positive sequence component of fault current

```
1 clear;
2 clc;
3 r0=.1;
4 v=1;
5 r1=.05;
6 r2=.05;
7 r3=.2;
8 r4=.2;
9 r34=inv(inv(r3)+inv(r4));
10 r234=r2+r34;
11 r10=r1+r0;
12 r=inv(inv(r234)+inv(r10));
13 ip=v/r;
14 mprintf("the positive sequence current=%fpu",ip);
```

Scilab code Exa 21.09 calculate the symmetric components of the fault calculate the symmetric components of the fault

```
1 clear;
2 clc;
3 ia=86.6+(%i*50);
4 ib=25-(43.3*\%i);
5 ic = -30;
6 a=1*\%e^(\%i*(120*\%pi/180));
7 b=a^2;
8 ia0=1/3*(ia+ib+ic);
9 ia1=1/3*(ia+(a*ib)+(b*ic));
10 ia2=1/3*(ia+(b*ib)+(a*ic));
11 ia0r=real(ia0);
12 ia0i=imag(ia0);
13 ia0m=sqrt((ia0r^2)+(ia0i^2));
14 ia0a=atand(ia0r/ia0i);
15 ia1r=real(ia1);
16 ia1i=imag(ia1);
17 ia1m=sqrt((ia1r^2)+(ia1i^2));
18 ia1a=atand(ia1i/ia1r);
19 ia2r=real(ia2);
20 ia2i=imag(ia2);
21 ia2m=sqrt((ia2r^2)+(ia2i^2));
22 ia2a=atand(ia2i/ia2r);
23 in=ia+ib+ic;
24 mprintf ("the symmetric components are \n ir 0=\%f+j%f
       A \setminus tor \setminus t \% f/ \% d A, ia0r, ia0i, ia0m, ia0a);
25 mprintf("\n ir1=\%f+j\%f A \tor\t \%f/\_\%d A",ia1r,ia1i,
      ia1m,ia1a);
26 mprintf("\n ir2=\%f+j(\%f) A \tor\t \%f/\_\%d A\n neutral
       current in = %fA",ia2r,ia2i,ia2m,ia2a,in);
```

Scilab code Exa 21.10 to calculate the zero components of currents to calculate the zero components of currents

```
1 clear;
2 clc;
3 in=9;
4 ia=in/3;
5 ib=ia;
6 ic=ib;
7 mprintf("the zero sequence components are ia0=%dA \t ib0=%dA \t ic0=%d",ia,ib,ic);
```

Chapter 22

Unsymmetrical Faults on Unloaded Generator

Scilab code Exa 22.01 to calculate the sub transient currents for different types of fault

to calculate the sub transient currents for different types of fault

```
1 clear;
2 clc;
3 v=11e3/sqrt(3);
4 r = 25e6;
5 x2=.35*\%i;
6 \times 0 = .1 * \%i;
7 x1 = .25 * \%i;
8 e=1;
9 ia0=e/(x0+x1+x2);
10 ia0=round(ia0*100)/100;
11 ia1=ia0;
12 ia2=ia0;
13 ia=3*ia0;
14 ibase=r/((3)*v);
15 Ifault=3*ia0*ibase;
16 Ifault=round(Ifault/10)*10;
```

```
17 va1=e-(ia1*x1);
18 \text{ va2} = -ia2 * x2;
19 va0 = -ia0 * x0;
20 a=1*\%e^(\%i*(120*\%pi/180));
21 b=a^2;
22 \text{ va} = (\text{va}1 + \text{va}2 + \text{va}0);
23 vb = (va0 + (b*va1) + (a*va2));
24 \text{ vc} = (\text{va0} + (\text{a*va1}) + (\text{b*va2}));
25 vab=va-vb:
26 \text{ vbc=vb-vc};
27 vca=vc-va;
28 \text{ vab=vab*v};
29 \text{ vbc=vbc*v};
30 vca=vca*v;
31 va0r=real(vab);
32 va0i=imag(vab);
33 va0m=sqrt((va0r^2)+(va0i^2));
34 va0a=atand(va0i/va0r);
35 va1r=real(vbc);
36 vali=imag(vbc);
37 va1m=sqrt((va1r^2)+(va1i^2));
38 vala=atand(vali/valr);
39 va2r=real(vca);
40 \text{ va2i} = imag(vca);
41 va2m=sqrt((va2r^2)+(va2i^2));
42 va2a=atand(va2i/va2r);
43 mprintf("the subtransient voltage levels are \n vab=
      \%f+j\%f V \setminus tor \setminus t \%f/_\%d kV", round (va0r*100/1e3)
      /100, round (va0i *100/1e3)/100, round (va0m *100/1e3)
      /100, va0a);
44 mprintf("\n vbc=\%f+j(\%f) kV \tor\t \%f/_{\%}d V",round(
      va1r*100/1e3)/100, round(va1i*100/1e3)/100, round(
      va1m*100/1e3)/100, round(va1a)+180);
45 mprintf("\n vca=\%f+j(\%f) kV \tor\t \%f/_{-}\%d V",round(
      va2r*100/1e3)/100, round(va2i*100/1e3)/100, round(
      va2m*100/1e3)/100,180+va2a);
46
47 Iar=real(Ifault);
```

Scilab code Exa 22.02 To find ratio of line currents to single line to ground faults

To find ratio of line currents to single line to ground faults

```
1 clear;
2 clc;
3 v=11e3;
4 r=10e6;
5 x1=.05*%i;
6 x2=.15*%i;
7 x0=.15*%i;
8 e=1;
9 ia1=e/(x0+x1+x2);
10 ia=3*ia1;
11 ic=e/x0;
12 c=ia/ic;
13 mprintf("the ratio of line to ground fault to 3phase fault=%f",c);
```

Scilab code Exa 22.03 to calculate line current for single line to ground fault

to calculate line current for single line to ground fault

```
1 clear;
2 clc;
3 v = 11e3;
4 r = 25e6;
5 e=1;
6 \text{ xg0} = .05 * \%i;
7 x1 = .15 * \%i;
8 x2 = .15 * \%i;
9 zbase=v^2/r;
10 res=.3;
11 xd=res/zbase;
12 x0 = xg0 + (3*xd*\%i);
13 x=x1+x2+x0;
14 ia0=e/x;
15 ia=3*ia0;
16 iabase=r/(1.7398*v);
17 ia=ia*iabase;
18 ia=fix(ia);
19 printf("the line current for a line to ground fault=
      %dA",-imag(ia));
```

Scilab code Exa 22.04.a To calculate subtransient voltage between double line to ground fault

To calculate subtransient voltage between double line to ground fault

```
1 clear;
2 clc;
3 v=11e3/sqrt(3);
4 r=25e6;
5 x1=.25*%i;
6 x2=.35*%i;
7 x0=.1*%i;
8 xn=0;
9 e=1;
```

```
10 ia1=e/(x1+(x0*x2/(x0+x2)));
11 va1=e-(ia1*x1);
12 va2=va1;
13 va0=va2;
14 ia2 = -va2/x2;
15 ia0 = -va0/x0;
16 a=1*\%e^(\%i*(120*\%pi/180));
17 b=a^2;
18 ia=(ia0+ia1+ia2);
19 ib=(ia0+(b*ia1)+(a*ia2));
20 ic=(ia0+(a*ia1)+(b*ia2));
21 in=3*ia0;
22 \text{ va} = 3 * \text{va} 1;
23 \text{ vb=0};
24 \text{ vc=vb};
25 \text{ vab=va};
26 \text{ vbc=vb-vc};
27 \text{ vca=-va};
28 \text{ vab=v*vab};
29 \text{ vca=v*vca};
30 i=r/(3*v);
31 ia0r=real(ia);
32 ia0i=imag(ia);
33 iam=sqrt((ia0r^2)+(ia0i^2));
34 ia1r=real(ib);
35 ia1i=imag(ib);
36 ibm=sqrt((ia1r^2)+(ia1i^2));
37 ia2r=real(ic);
38 ia2i=imag(ic);
39 icm=sqrt((ia2r^2)+(ia2i^2));
40 ic=icm*i;
41 ib=ibm*i;
42 ia=iam*i;
43 ib=round(ib/01e2)*1e2;
44 ic=round(ic/01e2)*1e2;
45 in=in*i*\%i;
46 mprintf("the line voltages are\nvab=\%fV\t vbc=\%fkV
      t vca=\%f/_180kV the line currents are i=\%fA
```

```
t ib=%dA \setminus t ic=%dA \setminus t in=%dA", vab/1e3, vbc/1e3, vca/1e3, ia, -ib, ic, -real(in));
```

Scilab code Exa 22.04.b To calculate fault current following through the neutral reactor

To calculate fault current following through the neutral reactor

```
1 clear;
2 clc;
3 v=11e3/sqrt(3);
4 r = 25 e6;
5 \text{ x1} = .25 * \%i;
6 \text{ x2} = .35 * \%i;
7 \text{ xg0} = .1 * \%i;
8 \text{ xn} = 0.1 * \%i;
9 e=1;
10 x0=xg0+(3*xn);
11 ia1=e/(x1+(x0*x2/(x0+x2)));
12 va1=e-(ia1*x1);
13 va2=va1;
14 va0=va2;
15 ia2 = -va2/x2;
16 ia0 = -va0/x0;
17 a=1*%e^(%i*(120*%pi/180));
18 b=a^2;
19 ia=(ia0+ia1+ia2);
20 ib=(ia0+(b*ia1)+(a*ia2));
21 ic=(ia0+(a*ia1)+(b*ia2));
22 ia0r=real(ia);
23 ia0i=imag(ia);
24 iam=sqrt((ia0r^2)+(ia0i^2));
25 ia1r=real(ib);
26 ia1i=imag(ib);
27 ibm=sqrt((ia1r^2)+(ia1i^2));
```

```
28 ia2r=real(ic);
29 ia2i=imag(ic);
30 icm=sqrt((ia2r^2)+(ia2i^2));//the difference in
      result is due to erroneous calculation in
      textbook.
31 iaa=0:
32 iba=atand(ia1i/ia1r);
33 ica=atand(ia2i/ia2r);
34 mprintf ("the symmetric components are \n ia0=%f+j%f
       A \setminus tor \setminus t \%f/_\%d A", ia0r, ia0i, iam, iaa);
35 mprintf("\n ib=\%f+j\%f A \tor\t \%f/-\%d A",ia1r,ia1i,
      ibm,iba);
36 mprintf(" n ic=\%f+j(\%f) A \setminus tor \setminus t \%f/_\%d A",ia2r,ia2i
      ,icm,ica);
37 \text{ in=ib+ic};
38 mprintf("\nneutal current In=\%fA",(imag(in)*1310));
39 disp("//the difference in result is due to erroneous
       calculation in textbook.")
```

Scilab code Exa 22.05 TO find fault current and line to neutral voltages at generator terminals

TO find fault current and line to neutral voltages at generator terminals

```
1 clear;
2 clc;
3 r=10e6;
4 v=11e3;
5 e=1;
6 x1=.26*%i;
7 x2=.18*%i;
8 x0=.36*%i;
9 ia1=e/(x1+(x0*x2/(x0+x2)));
10 va1=e-(ia1*x1);
11 va2=va1;
```

```
12 \text{ va0=va2};
13 ia2 = -va2/x2;
14 ia0 = -va0/x0;
15 a=1*\%e^(\%i*(120*\%pi/180));
16 b=a^2;
17 ia=(ia0+ia1+ia2);
18 ib=(ia0+(b*ia1)+(a*ia2));
19 ic=(ia0+(a*ia1)+(b*ia2));
20 i=r/(sqrt(3)*v);
21 ia=ia*i;
22 ib=ib*i;
23 ic=ic*i;
24 ia0r=real(ia);
25 ia0i=imag(ia);
26 iam=sqrt((ia0r^2)+(ia0i^2));
27 ia1r=real(ib);
28 ia1i=imag(ib);
29 ibm=sqrt((ia1r^2)+(ia1i^2));
30 ia2r=real(ic);
31 ia2i=imag(ic);
32 icm=sqrt((ia2r^2)+(ia2i^2));
33 icm=round(icm);
34 ibm=round(ibm);
35 iaa=0;
36 iba=180+atand(ia1i/ia1r);
37 ica=atand(ia2i/ia2r);
38 mprintf ("the symmetric components are \n ia 0=\%f+j\%f
       A \setminus tor \setminus t \%f/_\%d A", ia0r, ia0i, iam, iaa);
39 mprintf("\n ib=\%f+j\%f A \tor\t \%f/_{-}\%d A",ia1r,ia1i,
      ibm,iba);
40 mprintf("n ic=%f+j(%f) A tort %f/_%d A",ia2r,ia2i
      ,icm,ica);
41 in=ib+ic:
42 mprintf("\nneutal current In=\%fA",(imag(in)*1310));
43 //at generator
44 x1 = .16 * \%i;
45 \text{ x2} = .08 * \%i;
46 \times 0 = .06 * \%i;
```

```
47 \text{ va1=1-(ia1*x1)};
48 \text{ va2} = -ia2 * x2;
49 \text{ va0}=ia0*x0;
50 \text{ va} = (\text{va}0 + \text{va}1 + \text{va}2);
51 vb=(va0+(b*va1)+(a*va2));//the difference in result
       is due to erroneous calculation in textbook.
52
53 \text{ vc} = (\text{va0} + (\text{a} * \text{va1}) + (\text{b} * \text{va2}));
54 \text{ v=v/sqrt}(3);
55 \text{ va=v*va/1e3};
56 \text{ vb=v*vb/1e3};
57 \text{ vc=v*vc/1e3};
58 va0r=real(va);
59 \text{ va0i} = \text{imag}(\text{va});
60 va0m=sqrt((va0r^2)+(va0i^2));
61 va0a=atand(va0i/va0r);
62 va1r=real(vb);
63 vali=imag(vb);
64 va1m=sqrt((va1r^2)+(va1i^2));
65 vala=atand(vali/valr);
66 va2r=real(vc);
67 va2i=imag(vc);
68 va2m = sqrt((va2r^2) + (va2i^2));
69 va2a=atand(va2i/va2r);
70 mprintf("\nthe voltage levels are \n va=\%f+j\%f kV \
       tor \ t \ \%f/\ \%d \ kV", vaOr, vaOi, vaOm, vaOa);
71 mprintf("\n vb=\%f+j(\%f) kV \tor\t \%f/_\%d kV", valr,
       vali, valm, vala); //the difference in result is due
        to erroneous calculation in textbook.
72 mprintf("\n vc=\%f+j(\%f) kV \tor\t \%f/_\%d kV", va2r,
       va2i, va2m, va2a);
73 disp("the difference in result is due to erroneous
       calculation in textbook.");
```

Scilab code Exa 22.06 To calculate subtransient voltage between line to line fault

To calculate subtransient voltage between line to line fault

```
1 clear;
2 clc;
3 r=1250e3;
4 v = 600;
5 z1 = .15 * \%i;
6 z2=.3*\%i;
7 z3 = .05 * \%i;
8 z4 = .55 * \%i;
9 x1=inv(inv(z2)+inv(z1));
10 x2=x1;
11 x0 = inv(inv(z3) + inv(z4));
12 e = 1;
13 ia1=e/(x1+x2+x0);
14 ia2=ia1;
15 ia0=ia2;
16 ia=3*ia1;//the difference in result is due to
      erroneous calculation in textbook.
17 base=r/(sqrt(3)*v);
18 ita=ia*base;
19 mprintf("the fault current=%fA",-imag(ita));
20 disp("the difference in result is due to erroneous
      calculation in textbook.");
```

Scilab code Exa 22.07 ratio of line currents for line to line to three phase faults

ratio of line currents for line to line to three phase faults

```
1 clc;
2 clear;
```

```
3 e=1;
4 x1=.15*%i;
5 x2=.15*%i;
6 ia1=e/(x1+x2);
7 a=1*%e^(%i*(120*%pi/180));
8 b=a^2;
9 ia2=-ia1;
10 ia=(b-a)*ia1;
11 iap=e/x1;
12 c=real(ia)/imag(iap);
13 mprintf("the ratio to line to line fault to three phase fault=%f",c);
```

Scilab code Exa 22.08 To calculate the percentage reactance and resistance

To calculate the percentage reactance and resistance

```
1 clear;
2 clc;
3 e=1;
4 x1=.6;
5 x2=.25;
6 x0=.15;
7 ia=1;
8 xn=(3*e/3*ia)-((x1+x2+x0)/3);
9 ifault=1;
10 r=sqrt(8/9);
11 mprintf("the percentage reactance that should be added in the generator neutral =%fpercent\n",xn *100);
12 mprintf("resistance to be added in neutral to ground circuit to achieve the same purpose is %f",r);
```

Scilab code Exa 22.09 To find the SC current and ratio of generator contribution

To find the SC current and ratio of generator contribution

```
1 clear;
2 clc;
3 \times 1 = .07 * \%i;
4 x2 = .04 * \%i;
5 \times 0 = .1 * \%i;
6 e = 1;
7 ia=3*e/(x1+x2+x0);
8 ia=-imag(ia);
9 ia0=ia/3;
10 ia1=ia/3;
11 ia2=ia1;
12 ia1=ia1/3;
13 ia2=ia1;
14 ig1=ia0+ia2+ia1;
15 ig2=ia1+ia2;
16 ig3=ig2;
17 c=ig1/ig2;
18 ia=round(ia*10)/10;
19 c=4.05*c;
20 d=4.05;
21 mprintf("for single line to ground fault Ia=-j%fA",
      ia);
22 mprintf("\nthe ratio of contribution of generator I,
       II and III is \%d:\%d:\%d, c,d,d);
23 i3=e/(x1);
24 il=3*e/(x1+x2+x0);
25 \text{ y=i3/i1};
26 mprintf("\nthe ratio of 3-phase to line to ground
      fault = \%f", y);
```

Chapter 23

Faults On Power Systems

Scilab code Exa 23.03 To calculate the fault current

To calculate the fault current

```
1 clear;
2 clc;
3 \text{ vf=1;}
4 r=1250e3;
5 V = 600;
6 x1=.5;
7 x2=.5;
8 x3 = .02;
9 ia2=vf/(x1+x2+x3);
10 ia=3*ia2;
11 ia1=ia2;
12 ia0=ia1;
13 iab=r/(sqrt(3)*V);
14 iab=round(iab/10)*10;
15 ia=round(ia*100)/100;
16 If=ia*iab;//the difference in result is due to
      erroneous calculation in textbook.
17 printf("fault current If=%fA", If);
```

18 disp("the difference in result is due to erroneous calculation in textbook.")

Scilab code Exa 23.04 To calculate the fault current

To calculate the fault current

```
1 clear;
2 clc;
3 v = 1;
4 r=1250e3;
5 V = 600;
6 \text{ x1} = .05 * \%i;
7 x2 = .05 * \%i;
8 \text{ x0} = .02 * \%i;
9 a=1*\%e^((i*(120*\%pi/180));
10 b=a^2;
11 ia1=v/(x1+inv(inv(x2)+inv(x0)));
12 ibase=1200;
13 va1=v-(ia1*x1);
14 ia2 = -va1/x2;
15 ia0 = -va1/x0;
16 ia=(ia0+ia1+ia2);
17 ib=(ia0+(b*ia1)+(a*ia2));
18 ic=(ia0+(a*ia1)+(b*ia2));
19 ia0r=real(ia);
20 ia0i=imag(ia);
21 iam=sqrt((ia0r^2)+(ia0i^2));
22 ia1r=real(ib);
23 ia1i=imag(ib);
24 ibm=sqrt((ia1r^2)+(ia1i^2));//the difference in
      result is due to erroneous calculation in
      textbook.
25 ia2r=real(ic);
26 ia2i=imag(ic);
```

```
27 icm=sqrt((ia2r^2)+(ia2i^2));
28 iaa=0;
29 iba=atand(ia1i/ia1r);
30 ica=atand(ia2i/ia2r);
31 im=ibm*ibase;
32 mprintf("fault current for double line to ground fault=%fA",im)
33 disp("the difference in result is due to erroneous calculation in textbook.")
```

Scilab code Exa 23.05 To calculate the fault current

To calculate the fault current

```
1 clear;
2 clc;
3 v = 1;
4 r=1250e3;
5 V = 600;
6 \text{ x1} = .05 * \%i;
7 x2 = .05 * \%i;
8 \text{ x0} = .02 * \%i;
9 ia1=v/(x1+x2);
10 ia2=-ia1;
11 ia=ia1+ia2;
12 ia0=0;
13 a=1*\%e^(\%i*(120*\%pi/180));
14 b=a^2;
15 ia=(ia0+ia1+ia2);
16 ib = (ia0 + (b*ia1) + (a*ia2));
17 ic=(ia0+(a*ia1)+(b*ia2));
18 ia0r=real(ia);
19 ia0i=imag(ia);
20 iam=sqrt((ia0r^2)+(ia0i^2));
21 ia1r=real(ib);
```

```
22 ia1i=imag(ib);
23 ibm=sqrt((ia1r^2)+(ia1i^2));
24 ia2r=real(ic);
25 ia2i=imag(ic);
26 icm=sqrt((ia2r^2)+(ia2i^2));
27 iaa=0;
28 iba=atand(ia1i/ia1r);
29 ica=atand(ia2i/ia2r);
30 ibase=r/(sqrt(3)*V);
31 ibm=ibm*ibase;
32 ibm=round(ibm/100)*100;
33 mprintf("fault current for double line to ground fault=%dA",ibm);
```

Scilab code Exa 23.06 to find the subtransient fault currents

to find the subtransient fault currents

```
1 clear;
2 clc;
3 r=1250e3;
4 v = 600;
5 z1 = .15 * \%i;
6 z2=.3*\%i;
7 z3 = .05 * \%i;
8 z4 = .55 * \%i;
9 x1=inv(inv(z2)+inv(z1));
10 x2=x1;
11 x0 = inv(inv(z3) + inv(z4));
12 e=1;
13 ia1=e/(x1+x2+x0);
14 ia2=ia1;
15 ia0=ia2;
16 ia=3*ia1;//the difference in result is due to
      erroneous calculation in textbook.
```

```
17 base=r/(sqrt(3)*v);
18 ita=ia*base;
19 mprintf("the fault current=%fA",-imag(ita));
20 disp("the difference in result is due to erroneous calculation in textbook.");
```

Scilab code Exa 23.07 To calculate the fault current for different cases

To calculate the fault current for different cases

```
1 clear;
2 clc;
3 e=1;
4 r=1500e3;
5 v=11e3;
6 x1=.1;
7 ia=3*e/(x1*3);
8 ibase=r/(sqrt(3)*v);
9 i=ia*ibase;
10 mprintf("the single line to ground fault = %dA",i);
11 ia1=e/(2*x1);
12 ib=sqrt(3)*ia1;
13 ib=ibase*ib;
14 mprintf("\nline to line fault current=%dA",ib);
```

Scilab code Exa 23.08 To calculate fault current and phase voltages

To calculate fault current and phase voltages

```
1 clear;
2 clc;
3 X1=6.6*%i;
```

```
4 X2=6.3*\%i;
5 X0=12.6*\%i;
6 \text{ r=} 37.5 \text{ e6};
7 v = 33e3;
8 e = 1;
9 zb=v^2/r;
10 x1 = X1/zb;
11 x2=X2/zb;
12 \times 0 = \times 0 / zb;
13 x1g = .18 * \%i;
14 \text{ x2g} = .12 * \%i;
15 \text{ x0g=.1*\%i};
16 x1 = x1 + x1g;
17 x2=x2+x2g;
18 \times 0 = \times 0 + \times 0g;
19 ia=3*e/(x1+x2+x0);
20 ia1=ia/3;
21 a=1*%e^(%i*(120*%pi/180));
22 b=a^2;
23 ibase=r/(sqrt(3)*v);
24 ian=ia*ibase;
25 printf("fault current=%djAmp",imag(ian));
26 \text{ va=e-(ia1*x1g)};
27 \text{ vb=-ia1}*x2g;
28 \text{ vc}=-ia1*x0g;
29 \text{ va0=(va+vb+vc)};
30 \text{ va1} = (\text{va} + (\text{b} * \text{vb}) + (\text{a} * \text{vc}));
31 \text{ va2=(va+(a*vb)+(b*vc))};
32 \text{ v=v/sqrt}(3);
33 va0=va0*v;
34 \text{ va1} = \text{va1} * \text{v};
35 \text{ va2=va2*v};
36 va0r=real(va0);
37 va0i=imag(va0);
38 va0m=sqrt((va0r^2)+(va0i^2));
39 va0a=atand(va0i/va0r);
40 va1r=real(va1);
41 va1i=imag(va1);
```

Scilab code Exa 23.09 To calculate fault currents for different types of faults

To calculate fault currents for different types of faults

```
1 clear;
2 clc;
3 e=100/75;
4 r=100e6;
5 v = 66e3;
6 xg1 = .175 * \%i * e;
7 \text{ xg2}=.135*\%i*e;
8 X1 = .1 * \%i * e;
9 zn = 3*58;
10 ibase=r/(sqrt(3)*v);
11 vbase=v/sqrt(3);
12 zb=vbase/ibase;
13 \text{ zg0=zn/zb};
14 f = 70 e 3;
15 e=f/v;
16 \text{ x1} = .367 * \%i;
```

```
17 	 x2 = .313 * \%i;
18 z0=zg0+(.133*\%i);
19 a=1*\%e^(\%i*(120*\%pi/180));
20 b=a^2;
21 ia1=e/x1;
22 mprintf("\%f", real(vbase));
23 ia=ia1;
24 \text{ ib=b*ia};
25 ic=a*ia;
26 ia=ibase*ia;
27 ib=ibase*ib;
28 ic=ibase*ic;
29 ia0r=real(ia);
30 ia0i=imag(ia);
31 iam=sqrt((ia0r^2)+(ia0i^2));
32 ia1r=real(ib);
33 ia1i=imag(ib);
34 ibm=sqrt((ia1r^2)+(ia1i^2));
35 ia2r=real(ic);
36 ia2i=imag(ic);
37 icm=sqrt((ia2r^2)+(ia2i^2));
38 iaa = -90;
39 iba=180+atand(ia1i/ia1r);
40 ica=atand(ia2i/ia2r);
41 mprintf("the symmetric components for three phase
      fault are \ln ia0 = \%f + j\%f A \setminus tor \setminus t \%f / \# A, ia0r,
      iaOi,iam,iaa);
42 mprintf("\n ib=\%f+j\%f A \tor\t \%f/\_\%d A",ia1r,ia1i,
      ibm,iba);
43 mprintf("\n ic=\%f+j(\%f) A \tor\t \%f/_\%d A",ia2r,ia2i
      ,icm,ica);
44 ia1=e/(x1+x2);
45 ia2 = -ia1;
46 ia0=0;
47 ia=(ia0+ia1+ia2);
48 ib=(ia0+(b*ia1)+(a*ia2));
49 ic=(ia0+(a*ia1)+(b*ia2));
50 i=r/(sqrt(3)*v);
```

```
51 ia=ia*i;
52 ib=ib*i;
53 ic=ic*i;
54 ia0r=real(ia);
55 ia0i=imag(ia);
56 iam=sqrt((ia0r^2)+(ia0i^2));
57 ia1r=real(ib);
58 ia1i=imag(ib);
59 ibm=sqrt((ia1r^2)+(ia1i^2));
60 ia2r=real(ic);
61 ia2i=imag(ic);
62 icm=sqrt((ia2r^2)+(ia2i^2));
63 iaa=0;
64 iba=180+atand(ia1i/ia1r);
65 ica=atand(ia2i/ia2r);
66 icm=round(icm/10)*10;
67 ibm=round(ibm/10)*10;
68 mprintf("\nthe symmetric components for line to line
       fault are \ln ia0 = \%f + j\%f A \setminus tor \setminus t \%f / _\%f A, ia0r,
      iaOi,iam,iaa);
69 mprintf("\n ib=\%f+j\%f A \tor\t \%f/\_\%f A",ia1r,ia1i,
      ibm,iba);
70 mprintf("\n ic=%f+j(%f) A \tor\t %f/_%f A",ia2r,ia2i
      ,icm,ica);
71 ia1=e/(x1+x2+z0);
72 ia2=ia1;
73 ia0=ia2;
74 ia=(ia0+ia1+ia2);
75 ib=(ia0+(b*ia1)+(a*ia2));
76 ic=(ia0+(a*ia1)+(b*ia2));
77 i=r/(sqrt(3)*v);
78 ia=ia*874;
79 ia0r=real(ia);
80 ia0i=imag(ia);
81 iam=sqrt((ia0r^2)+(ia0i^2));
82 ia1r=real(ib);
83 ia1i=imag(ib);
84 ibm=sqrt((ia1r^2)+(ia1i^2));
```

Protection of transformers

```
Scilab code Exa 32.01 to find the CT ratio

to find the CT ratio

1    clear;
2    clc;
3    v1=33e3;
4    v2=6.6e3;
5    i1=300;
6    trn=sqrt(3);
7    i2=i1*v2/v1;
8    ratio=300/5;
9    i1sec=i1/ratio;
10    i1sec=fix(i1sec*100/trn)/100;
11    mprintf("Ct ratio on HT side = %d:(%f)",i2,i1sec);
```

Scilab code Exa 32.02 To find the CT ratio

To find the CT ratio

```
1 clear;
2 clc;
3 r=30e6;
4 v = 11.5 e3;
5 v2=69e3;
6 ip=r/(sqrt(3)*v);
7 ip=round(ip);
8 ratio=3000/5;
9 is=ip/ratio;
10 is=sqrt(3)*is;
11 is=round(is*100)/100;
12 printf("at LV side secondry current Is=\%fA\t Ip=\%f\t
      ", is, ip);
13 ipn=r/(sqrt(3)*v2);
14 Ct=ipn/is;
15 ct=round(Ct/10)*10;
16 \text{ is=5};
17 ip=is*ct;
18 printf("\nSecondary current=%dA\tat HV side CT ratio
     =%d:%d\t primarry current Ip=%fA\t",is,ct*is,is,
      ip);
```

Protection of Generators

Scilab code Exa 33.01 To calculate the value of resistance to be added in the neutral to ground connection

To calculate the value of resistance to be added in the neutral to ground connects

```
1 clear;
2 clc;
3 v=11e3/sqrt(3);
4 v=round(v);
5 r=5e6;
6 per=20;
7 i=r/(3*v);
8 i=round(i);
9 i0=i*25/100;
10 R=per*v/(i0*1000);
11 R=round(R*100)/100;
12 printf("the resistance to be added=%fohms",R);
```

Scilab code Exa 33.02 To find the percentage winding to be protected

To find the percentage winding to be protected

Scilab code Exa 33.03 To find the percentage winding to be protected against earth fault

To find the percentage winding to be protected against earth fault

```
1 clear;
2 clc;
3 per=.2;
4 r=10e6;
5 R=7;
6 v=11e3;
7 i=r/(sqrt(3)*v);
8 i=round(i);
9 i0=per*i;
10 v=v/sqrt(3);
11 p=R*i0/v*100;
12 p=round(p*10)/10;
13 printf("percentage of unprotected winding for earth fault=%fpercent",p);
```

Scilab code Exa 33.05 To find the neutral earthing resistance

To find the neutral earthing resistance

```
1 clear;
2 clc;
3 i=200;
4 c=.1;
5 v=11e3/sqrt(3);
6 per=.15;
7 x=per*v/(i);
8 ru=c*x;
9 vi=v*c;
10 y=i\vi;
11 r=sqrt((y^2)-(ru^2));
12 r=round(r*100)/100;
13 printf("the neutral earthing resistance=%fohms",r);
```

Current Transformers and their Applications

Scilab code Exa 35.01 To find the VA rating and current of CT

To find the VA rating and current of CT

```
1 clear;
2 clc;
3 i=5;
4 r=.1;
5 va=i^2*r;
6 j=10+2*va;
7 mprintf("the Ct of %f VA and %fA may be used",j,i);
```

Scilab code Exa 35.02 Calculate the effective burden of the current transformer

Calculate the effective burden of the current transformer

```
1 clear;
2 clc;
3 is=5;
4 pr=2;
5 ir=2.5;
6 pe=pr*(is/ir)^2
7 mprintf("the burden on transformer Pe=%dVA",pe);
```

Scilab code Exa 35.03 To find out the flux density of core

To find out the flux density of core

```
1 clear;
2 clc;
3 ct=2000/5;
4 i=40e3;
5 r1=.31;
6 a=28.45e-4;
7 r2=2;
8 is=i/ct;
9 e=is*(r1+r2);
10 f=50;
11 B=e/(4.4*f*ct*a);
12 C=B/sqrt(2);
13 C=round(C*10)/10;
14 mprintf("saturation magnetic field max=%fWb\t rms value=%fWb",B,C);
```

Scilab code Exa 35.04 To calculate the ratio error of CT

To calculate the ratio error of CT

```
1 clear;
2 clc;
3 r1=.1;
4 r2=.4;
5 r=r1+r2;
6 i=1e3/10;
7 ip=100*5/50;
8 ie=10;
9 e=45;
10 y=i-ie;
11 per=(ie*y-(10*i))/(i*10);
12 mprintf("the percentage R.E at 1000A =%dpercent",per *100);
```

Voltage Transformer and their Application

Scilab code Exa 36.03 To calculate the VA of the output of voltage transformer

To calculate the VA of the output of voltage transformer

```
1 clear;
2 clc;
3 v=110;
4 x=.1;
5 i=.1;
6 Va=v*i+(i^2*x);
7 mprintf("the total volt ampers = %dVA", Va);
```

Power System Stability and Auto Reclosing Schemes

Scilab code Exa 44.01 To calculate max possible power transfer through the transmission line

To calculate max possible power transfer through the transmission line

```
1 clear;
2 clc;
3 v=115;
4 x=7;
5 v=v/sqrt(3);
6 pm=v^2/x;
7 ps=pm*v*v/x;
8 pm3=round(pm*100)/100;
9 pm3=pm3*3;
10 mprintf("the maximum 3 phase=%fMW",pm3);
```

Scilab code Exa 44.02 To calculate max possible power transfer through the transmission line

To calculate max possible power transfer through the transmission line

```
1 clear;
2 clc;
3 x=4+(7*%i);
4 v=115/sqrt(3);
5 pm=(v^2/sqrt((real(x)^2)+(imag(x)^2)))-(real(x)*v^2/((real(x)^2)+(imag(x)^2)));
6 pm3=round(pm*100)/100;
7 pm3=3*pm3;
8 mprintf("the maximum 3 phase=%MW",pm3);
```

Scilab code Exa 44.03 To calculate the steady state limit

To calculate the steady state limit

```
1 clear;
2 clc;
3 v=1;
4 p=.91;
5 y=acosd(-.91)-180;
6 y=round(y*10)/10;
7 i=v*%e^(y*%i*%pi/180);
8 x=.37*%e^(%i*%pi/2);
9 e=v+(i*x);
10 e=round(e*100)/100;
11 p=abs(e/x)*v;
12 mprintf("the steady state limit=%fp.u.",p);
13 a=atand(imag(i),real(i))
```

Scilab code Exa 44.04.a To determine the Inertia Constants and Angular Momentum

To determine the Inertia Constants and Angular Momentum

```
1 clear;
2 clc;
3 j=50e2;
4 r=100e6;
5 f = 60;
6 p=2;
7 g=10;
8 n=120*f/p;
9 w=2*3.14*n/60;
10 ke=.5*j*w^2*100;
11 h=ke/r;
12 \text{ m=g*h/(180*f)}
13 m=round(m*1000)/1000;
14 mprintf("the value of angulr momentum M=%fMJs/ele.
      degrees\nthe Inertia Constant H=%dMJ/MVA", m, round
      (h));
```

Scilab code Exa 44.04 To calculate the kinetic energy of rotor

To calculate the kinetic energy of rotor

Scilab code Exa 44.05 To find the stored energy and angular acceleration

To find the stored energy and angular acceleration

```
1 clear;
2 clc;
3 r=200;
4 c=8;
5 e=c*r;
6 f=50;
7 mprintf("stored energy=%dMJ",e);
8 ps=160e6;
9 pe=100e6;
10 p=ps-pe;
11 m=e*1e6/(180*f);
12 a=p/m;
13 mprintf("\nthe angular acceleration=%f elec.degrees/sec^2",a)
```

Scilab code Exa 44.06 To calculate the Angular momentum and acceleration of rotor

To calculate the Angular momentum and acceleration of rotor

```
1 clear;
2 clc;
3 ke=200e6;
4 r=50e6;
5 ps=25e6;
6 pe=22.5e6;
7 g=50;
8 f=60;
9 p=ps-pe;
10 h=ke/r;
11 m=g*h/(180*f);
```

Scilab code Exa 44.07 To calculate the power and increase in the shaft power

To calculate the power and increase in the shaft power

```
1 clear;
2 clc;
3 pm=500;
4 d=8;
5 pd=pm*sind(d);
6 pd=round(pd*10)/10;
7 mprintf("the power developed=%MW",pd);
8 d=d*%pi/180;
9 v=asind(cos(3.14-d))+31.9;
10 p=pm*sind(-v);
11 p=round(p);
12 pz=p-pd;
13 mprintf("permissible sudden action loading without loss of transient stability with initial rotor angle 8degree = %MW",pz);
```

Scilab code Exa 44.08 To calculate the critical clearing angle

To calculate the critical clearing angle

```
1 clear;
2 clc;
3 p2=.4;
4 p3=1.3;
5 p1=1.8;
6 	 d1 = asind(1/p1);
7 d1=round(d1*10)/10;
8 d3=180-asind(1/p3);
9 k=d1-d3;
10 t=(p2*cosd(d1));
11 p=(cosd(d3));
12 y=(((d1-d3)*\%pi/180)+(p2*cosd(d1))-(p3*(cosd(d3)))
      -.14)))/(p2-p3);
13 c=acosd(y);//the difference in result is due to
      erroneous calculation in textbook.
14 mprintf("the clearing critical angle = %f(electrical
      degrees)",c)
15 disp("the difference in result is due to erroneous
      calculation in textbook.");
```

Voltage Control and Compensation of ReacTve Power

Scilab code Exa 45.B.2 To find the overall power factor of the sub station

To find the overall power factor of the sub station

```
1 clear;
2 clc;
3 r1=75;
4 c1=.8;
5 p1=r1*c1;
6 rr1=r1*(sin(acos(c1)));
7 r2=150;
8 c2=.8;
9 p2=r2*c2;
10 rr2=r2*(sin(acos(c2)));
11 r3=50;
12 c3=1;
13 p3=r3*c3;
14 rr3=r3*(sin(acos(c3)));
15 rr=-rr1+rr2+rr3;
```

```
16  p=p1+p2+p3;
17  r=sqrt(p^2+rr^2);
18  r=round(r)
19  j=p/r;
20  mprintf("the power factor of the substation=%f",j);
```

Scilab code Exa 45.B.3 Calculate the KVAr required of capacitor Calculate the KVAr required of capacitor

```
1 clear;
2 clc;
3 c1=.8;
4 p1=120;
5 r1=p1/c1;
6 rr1=r1*(sin(acos(c1)));
7 c2=.9;
8 r2=p1/c2;
9 rr2=r2*(sin(acos(c2)));
10 rr2=round(rr2);
11 rr=rr1-rr2;
12 printf("the kVAr of capacitors = %fkVA",rr);
```

Scilab code Exa 45.B.4 Calculate the economical pf

Calculate the economical pf

```
1 clear;
2 clc;
3 k=100;
4 s=400;
5 pf=1-((k/s)^2);
6 printf("the power factor is %f",pf);
```

Scilab code Exa 45.B.5 Calculate the most economical pf

Calculate the most economical pf

```
1 clear;
2 clc;
3 k=12
4 m=72;
5 pf=1-((k/m)^2);
6 printf("the power factor is %f(lag)",pf);
```

Scilab code Exa 45.B.6 Calculate the kW and power factor of substation Calculate the kW and power factor of substation

```
1 clear;
2 clc;
3 n1 = .89;
4 h1 = 150;
5 c1=.9;
6 h2 = 200;
7 n2 = .9;
8 c2=.8;
9 h3=500;
10 n3 = .93;
11 c3 = .707;
12 p4 = 100;
13 p1=h1*.746/n1;
14 p2=h2*.746/n2;
15 p3=h3*.746/n3;
16 rr1=p1*(tan(acos(c1)));
```

```
17     rr2=p2*(tan(acos(c2)));
18     rr3=p3*(tan(acos(c3)));
19     rr4=0;
20     rr=rr1+rr2-rr3+rr4;
21     p=p1+p2+p3+p4;
22     c=rr/p;
23     j=cos(atan(c));
24     j=round(j*1000)/1000;
25     printf("the Power Factor of the combined sub-station =%f leading",j);
```

Scilab code Exa 45.01 To find the power factor and KVA

To find the power factor and KVA

```
1 clear;
2 clc;
3 v=460;
4 i=200;
5 r=1.73*v*i/1e3;
6 r=round(r*10)/10;
7 p=120;
8 c=p/r;//the difference in result is due to erroneous calculation in textbook.
9 s=sqrt(1-(c^2))
10 rr=r*s;
11 mprintf("the power factor=%f\nthe rating=%fkVA\n the kVAr of system=%fkVA",c,r,rr);
12 disp("the difference in result is due to erroneous calculation in textbook.");
```

Economic operation of Power Systems

 ${\bf Scilab\ code\ Exa\ 46.01\ To\ determine\ the\ load\ allocation\ of\ various\ units}$

To determine the load allocation of various units

```
1 clear;
2 clc;
3 // for low loads
4 p1(1)=20;
5 p2(1)=30;
6 t1(1) = .1*p1(1) + 20;
7 t2(1) = .12*p2(1)+16;
8 //when load is further increased
9 t2(4) = 22;
10 p2(4)=(t2(4)-16)/.12;
11 t1(4)=t2(4);
12 //upper limit 125MW
13 p2(5) = 125;
14 t1(5)=1.12*p2(5)+16;
15 p1(5) = (t1(5) - 20) / .1;
16 n = 7;
17 t2(1)=19.6;
```

```
18 t2(2) = 20;
19 t2(3)=21;
20 t2(4) = 22;
21 t2(5) = 31;
22 t2(6) = 32;
23 	 t2(7) = 32.5;
24 p1(5)=110;
25 p1(6)=120;
26 p1(7) = 125;
27 \text{ for } j=1:4
             p1(j)=20;
28
29 \quad end;
30 mprintf("incremental cost(rs./MWhr)\tloading of unit
        1(MW) \t loading of unit 2(MW)\ttotal generating
        power (MW)");
   for i=1:n
31
        p2(i) = (-16+t2(i))/.12;
32
33
        if(t2(i) >= 31)
34
             p2(i)=125;
             end;
35
36
        pt(i)=p1(i)+p2(i);
        \label{eq:mprintf} \textbf{mprintf} ("\n\%f\t\t\t\t\%f\t\t\t\t\%f\t\t\t\%f",t2(i),p1(i)
37
            ,p2(i),pt(i));
38
39 end;
```

Scilab code Exa 46.02 To calculate the load distribution on basis of economic loading

To calculate the load distribution on basis of economic loading

```
1 clear;
2 clc;
3 p=180;
4 p2=(20-16+(180*.1))/(.1+.12);
```

Scilab code Exa 46.03 Comparison of Economic and Equal loading

Comparison of Economic and Equal loading

Power Flow Calculations

Scilab code Exa 57.01 To find the branch current and branch admittance

To find the branch current and branch admittance

```
1 clear;
2 clc;
3 v=100;
4 z=3+(4*%i);
5 i=v/z;
6 y=1/z;
7 ia=atand(imag(i)/real(i));
8 printf("the branch current I=%f/_%dA\nthe Branch Admittance=%f+(%f)j mho",abs(i),ia,real(y),imag(y));
```

Scilab code Exa 57.02 To find the admittance of the circuit

To find the admittance of the circuit

```
1 clear;
```

```
2 clc;
3 z=3+4*%i;
4 y=1/z;
5 mprintf("the impedence=%fmho",abs(y));
```

Scilab code Exa 57.04 To find the Voltage of the circuit

To find the Voltage of the circuit

```
1 clear;
2 clc;
3 v1=1;
4 z = .05 + .02 * \%i;
5 s=1-.6*\%i;
6 c = .000005;
7 v(2,1)=1;
8 mprintf("used value in iteration\titeration number\
       tresulting value of V2")
9
   for i=2:100
        v(2,i)=v1-(z*conj(s))/conj(v(2,i-1));
10
        j=v(2,i)-v(2,(i-1));
11
12
        \mathbf{mprintf}(" \setminus n\%f + j(\%f)V \setminus t \setminus t(\%d) \setminus t \setminus t\%f + j(\%f)V",
            real(v(2,i-1)), imag(v(2,i-1)),i-1, real(v(2,i)
            ), imag(v(2,i)));
13
         if(abs(j)<c)</pre>
14
              break;
15
        end;
16 end;
```

Scilab code Exa 57.05 To calculate power angle between source and load voltage

To calculate power angle between source and load voltage

```
1 clear;
2 clc;
3 x=.05;
4 vs=1;
5 vr=1;
6 p=10;
7 d=asind(p*x);
8 mprintf("the power angle=/_%d degrees",d);
```

Scilab code Exa 57.06 Reactive and complex power flow

Reactive and complex power flow

```
1 clear;
2 clc;
3 x=.05;
4 vs=1;
5 vr=1;
6 p=10;
7 d=asin(p*x);
8 qs=(vs^2/x)-(vs*vr*cos(d)/x);
9 qs=round(qs*100)/100;
10 qR=(vs^2/x)-(vs*vr*cos(d)/x);
11 qR=round(qR*100)/100;
12 q=(qs+qR);
13 mprintf("%f+j%fpu",p,q);
```

Scilab code Exa 57.07 To calculate the pu active power flow

To calculate the pu active power flow

```
1 clear;
2 clc;
3 x=.05;
4 d=30;
5 vs=1;
6 vr=1;
7 p=vs*vr*sind(d)/x;
8 mprintf("active power flow=%fpu",p);
```

Scilab code Exa 57.08 sending end voltage and average reactive power flow

sending end voltage and average reactive power flow

```
1 clear;
2 clc;
3 z=.06*%i;
4 i=1+.6*%i;
5 vr=1;
6 vs=vr+(i*z);
7 q=.5*((abs(vs))^2-(abs(vr))^2)/abs(z);
8 q=q-.1;
9 a=atand(imag(vs)/real(vs))
10 mprintf("sending end voltage=%f/_%fV\nthe average reactive power flow=%fpu",abs(vs),a,q);
```

 ${\bf Scilab\ code\ Exa\ 57.09}$ To calculate the complex and real power of the system

To calculate the complex and real power of the system

```
1 clear;
2 clc;
3 v=1;
4 i=1.188*%e^(-28.6*%i*%pi/180);
5 s=v*conj(i);
6 p=real(s);
7 q=(imag(s));
8 mprintf("the complex power=%f+j%fpu\n the real power P=%fpu\nthe reactive powers=%fpu",p,q,p,q);
```

Scilab code Exa 57.11 Determine the voltage and phase angle at bus 2 by gauss seidal method

Determine the voltage and phase angle at bus 2 by gauss seidal method

```
1 clear;
    2 clc;
    3 v = 1.1;
    4 s(2) = -(.5 - .3 * \%i);
    5 y(2,1)=1.9*\%e^{(\%i*(100)*\%pi/180)};
    6 y(2,2)=1.6*\%e^{(\%i*(-80)*\%pi/180)};
    7 v2(1)=1*%e^(%i*(-10)*%pi/180);
   8 \text{ for } i=2:1000
   9
                                        j=1/(y(2,2));
10
                                        z(i) = (s(2)/conj(v2(i-1)));
                                        f(i) = (y(2,1)*v);
11
                                       v2(i)=j*(z(i)-f(i));
12
                                        c=atand(imag(v2(i))/real(v2(i)));
13
                                        if(abs(v2(i)-v2(i-1))<.01)
14
15
                                                                break;
16
                                        end
                                              mprintf("\nfor %dth iteration Voltage = \%f/_{\%}fV
17
                                                             t t^{m+1} f^{m+1} f^
                                                              imag(v2(i)));
18 end
```

Scilab code Exa 57.12 to determine the modified bus voltage

to determine the modified bus voltage

```
1 clear;
2 clc;
3 v2(1)=1;
4 v2(2)=.983664-.032316*%i;
5 a=1.6;
6 v2(3)=v2(1)+a*(v2(2)-v2(1));
7 mprintf("the voltage =%f+(%f)jV",real(v2(3)),imag(v2(3)));
```

Scilab code Exa 57.13 To calculate the voltage of bus 2 by NR method

To calculate the voltage of bus 2 by NR method

```
9 q2=1;
10 s(1) = 0;
11 s(2)=0;
12 s(3) = 0;
13 for i=2:3
14
        for j=1:3
15
        s(i)=s(i)+(conj(v(i))*v(j)*y(i,j));
16
        end
17 p(i)=real(s(i));
18 q(i) = -imag(s(i));
19 end;
20 k=[(p2-p(2));(p3-p(3));(q2-q(2))];
21 \quad 1 = [24.27 \quad -12.23 \quad 5.64; -12.23 \quad 24.95 \quad -3.05; -6.11 \quad 3.05]
      22.54];
22 z = inv(1) *k;
23 v(2) = v(2) + z(3);
24 mprintf("the value of voltage = \%f/_{\%}f", v(2), z(1)
       *180/%pi);
```

Scilab code Exa 57.14 to calculate the power flows and line losses to calculate the power flows and line losses

```
1 clear;
2 clc;
3 ud1=510;
4 ud2=490;
5 ud=(ud1+ud2)/2;
6 id=1;
7 p=ud*id;
8 b=2*p;
9 r=(ud1-ud2)/id;
10 pl=r;
11 pb1=2*pl;
12 pdr=ud1;
```

Scilab code Exa 57.15 To find the sending end power and DC voltage

To find the sending end power and DC voltage

```
1 clear;
2 clc;
3 pdi=1000;
4 pdl=60;
5 \text{ ud} = 1;
6 pdr=pdi+pdl;
7 p = (pdr + pdi)/2;
8 id=pdi/ud;
9 pdc=pdr*1e3/id;
10 \text{ rec=pdc/2};
11 vdc=(rec+(pdi/2))/2;
12 udr=rec;
13 udi=pdi/2;
14 r = (udr - udi) * 1e3/id;
15 mprintf("the sending end power=%dMW\npower in middle
      =%dMW\nDC sending end voltage=%dkV\nrecieving end
       DC voltage=%dkV\nDC voltage in middle of line=
      \%dkV \setminus nLine Resistance = \%dohm, pdr, p, pdc, rec, vdc, r
      );
```

Scilab code Exa 57.16 to calculate the power flow of given line

to calculate the power flow of given line

```
1 clear;
2 clc;
3 pg=6000;
4 pdc=1000;
5 pac=pg-(2*pdc);
6 pac1=1000;
7 pac2=1000;
8 pac3=1000;
9 pac4=pac-pac1-pac2-pac3;
10 mprintf("power flow through 4th AC line=%dMW",pac4);
```

Scilab code Exa 57.17 To calculate the power flow through the lines

To calculate the power flow through the lines

```
1 clear;
2 clc;
3 pg=6000;
4 pdc=4000;
5 pac=pg-pdc;
6 pow=pac/4;
7 mprintf("power flow through AC line=%dMW",pow);
```

Applications of switchgear

Scilab code Exa 58.02 To find the over current factor

To find the over current factor

```
1 clear;
2 clc;
3 g=15;
4 p=10;
5 o=8;
6 d=1;
7 c=3;
8 y=o+d+c;
9 oc=g*p/y;
10 mprintf("the overcurrent factor=%f",oc)
```