PCT/JP00/02076 09/926218

JP00/020=6

日本国特許庁

4

PATENT OFFICE
JAPANESE GOVERNMENT

REC'D 26 MAY 2000
WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 4月 8日

出 願 番 号 Application Number:

平成11年特許願第101478号

第一製薬株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 5月12日

特許庁長官 Commissioner, Patent Office 近藤 隆

特平11-101478

【書類名】

1

特許願

【整理番号】

99128M

【提出日】

平成11年 4月 8日

【あて先】

特許庁長官 殿

【発明者】

【住所又は居所】

スウェーデン、ストックホルム S-171 77、カ

ロリンスカインスティチュート メディカルノベルイン

スティチュートフォアバイオケミストリィ内

【氏名】

アレン ホルムグレン

【発明者】

【住所又は居所】

スウェーデン、ストックホルム S-171 77、カ

ロリンスカインスティチュート メディカルノベルイン

スティチュートフォアバイオケミストリィ内

【氏名】

マリアン エイチ アミリ

【発明者】

【住所又は居所】

東京都江戸川区北葛西1丁目16番13号 第一製薬株

式会社東京研究開発センター内

【氏名】

政安 裕之

【特許出願人】

【識別番号】

000002831

【氏名又は名称】

第一製薬株式会社

【代理人】

【識別番号】

100096219

【弁理士】

【氏名又は名称】

今村 正純

【選任した代理人】

【識別番号】

100095843

【弁理士】

【氏名又は名称】 釜田 淳爾

【選任した代理人】

【識別番号】 100092635

【弁理士】

【氏名又は名称】 塩澤 寿夫

【先の出願に基づく優先権主張】

【出願番号】

平成11年特許願第 92789号

【出願日】

平成11年 3月31日

【手数料の表示】

【予納台帳番号】 038357

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】チオレドキシン・レダクターゼ基質 【特許請求の範囲】

【請求項1】 以下の一般式(I)又は(I'): 【化1】

$$\begin{array}{c|c}
R^1 & Y \\
N & (CH_2)_n - R^3 \\
R^2 & R^5 \\
Se & R^4
\end{array}$$
(1)

$$\begin{bmatrix} R^1 & Y & (CH_2)_n - R^3 \\ R^5 & Se \end{bmatrix}$$
 (1')

(式中、 R^1 及び R^2 はそれぞれ独立に水素原子、ハロゲン原子、トリフルオロメチル基、ニトロ基、炭素数 $1\sim$ 6のアルキル基、又は炭素数 $1\sim$ 6のアルコキシル基を示し、 R^1 及び R^2 が一緒になってメチレンジオキシ基を形成してもよく; R^3 はアリール基、芳香族複素環基、 $5\sim$ 7員のシクロアルキル基、又は $5\sim$ 7員のシクロアルケニル基を示し、該アリール基、該芳香族複素環基、該シクロアルキル基、及び該シクロアルケニル基は 1 個又は 2 個以上の置換基を有していてもよく; R^4 は水素原子、水酸基、-S-グルタチオン基、-S- α -アミノ酸基、又はアリール部分に 1 個又は 2 個以上の置換基を有していてもよいアラルキル基を示し; R^5 は水素原子以炭素数 $1\sim$ 6のアルキル基を示し、 R^4 及び R^5 は一緒になって単結合を形成してもよく;Yは酸素原子又は硫黄原子を示し; R^4 及び R^5 は一緒になって単結合を形成してもよく;Yは酸素原子又は硫黄原子を示し; R^4 00~ R^5 00を数を示し;セレン原子は酸化されていてもよい)

で表わされる化合物及び生理学的に許容し得るその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を含むチオレドキシン・レダク

ターゼ基質。

【請求項2】 2-フェニル-1,2-ベンゾイソセレナゾール-3(2H)-オン又はその開環体及び生理学的に許容し得るその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を含む請求項1に記載のチオレドキシン・レダクターゼ基質。

【請求項3】 NADPHの存在下でチオレドキシン・レダクターゼにより還元される請求項1又は2に記載のチオレドキシン・レダクターゼ基質。

【請求項4】 請求項1に記載の一般式(I)又は(I')化合物及び生理学的に許容し得るその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を含む、チオレドキシン・レダクターゼのペルオキシダーゼ活性の増強剤。

【請求項5】 2-フェニル-1,2-ベンゾイソセレナゾール-3(2H)-オン又はその開環体及び生理学的に許容し得るその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を含む、請求項4に記載の活性増強剤。

【請求項6】 請求項1に記載の一般式(I)又は(I')化合物及び生理学的に許容し得るその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を含む、チオレドキシン・レダクターゼのペルオキシダーゼ反応において還元型チオレドキシンを酸化する触媒。

【請求項7】 請求項1に記載の一般式(I)又は(I')化合物及び生理学的に許容し得るその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を含む、チオレドキシン・レダクターゼのペルオキシダーゼ反応において還元型チオレドキシンを酸化することにより過酸化物を還元する作用を有する還元剤。

【請求項8】 請求項1に記載の一般式(I)又は(I')化合物及び生理学的に許容し得るその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を含む、チオレドキシン・レダクターゼのペルオキシダーゼ反応において還元型チオレドキシンを酸化することにより生体内物質の過酸化を防止する抗酸化剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、チオレドキシン・レダクターゼの基質、及びチオレドキシン・レダクターゼのペルオキシダーゼ活性の増強剤に関する。

[0002]

【従来の技術】

チオール基の酸化還元機構の一つとしてチオレドキシン(以下、本明細書において「TRX」と略す場合がある)-チオレドキシン・レダクターゼ系の存在が知られている。この系はチオール基の可逆的な酸化還元を調節し、生体内のチオールレベルを一定に保つことにより、ジスルフィド結合の形成や過酸化状態の亢進によるチオール蛋白質の機能低下を防止している。

[0003]

チオレドキシン・レダクターゼはNADPHとチオレドキシンの存在下で標的蛋白質のジスルフィド結合を還元開裂させる活性を有しており、その他にも非常に多岐にわたる生理作用を担っていることが解明されている。チオレドキシン・レダクターゼの基質となるチオレドキシンは、セレノシステインを含有し、2分子のチオール基を分子内に持つ蛋白であり、リボヌクレオチドレダクターゼがリボヌクレオチドを還元する際のプロトン供与体としても作用している。

[0004]

【発明が解決しようとする課題】

本発明の課題は、チオレドキシン・レダクターゼの基質として作用し、チオレドキシンーチオレドキシン・レダクターゼ系を活性化できる物質を提供することにある。特に、チオレドキシン・レダクターゼのペルオキシダーゼ活性を増強することができる物質を提供することが本発明の課題である。

[0005]

【課題を解決するための手段】

本発明者らは上記の課題を解決すべく鋭意研究を行った結果、2-フェニル-1,2-ベンゾイソセレナゾール-3(2H)-オンなどのセレン化合物がチオレドキシン・レダクターゼの基質となり、それ自身が酸化-還元を繰り返してチオレドキシンー

チオレドキシン・レダクターゼ系におけるチオレドキシンと同様に作用できること、並びにこの物質が、チオレドキシン・レダクターゼ及びチオレドキシンの共存下においてチオレドキシン・レダクターゼのペルオキシダーゼ活性を顕著に増強できることを見出した。本発明はこれらの知見を基にして完成されたものである。なお、上記物質についてはグルタチオンペルキシダーゼ様作用により過酸化物(活性酸素)を還元しうることは知られているが(Muller, A. et al., Biochem. Pharmacol., 33, pp.3235-3239)、グルタチオンペルオキシダーゼによる過酸化物の還元作用とチオレドキシン・レダクターゼを介した過酸化物の還元作用とは全く別異の機序に基づくものである。

[0006]

すなわち、本発明は、以下の一般式 (I) 又は (I'): 【化2】

$$R^{1}$$
 N
 $(CH_{2})_{n}-R^{3}$
 R^{2}
 R^{4}
 $(CH_{2})_{n}$
 $(CH_{2})_{n}$

$$\begin{bmatrix} R^1 & & & \\ & & & \\ & & & \\ R^2 & & & \\ &$$

(式中、 R^1 及び R^2 は、それぞれ独立に水素原子、ハロゲン原子、トリフルオロメチル基、ニトロ基、炭素数 $1\sim6$ のアルキル基、又は炭素数 $1\sim6$ のアルコキシル基を示し、 R^1 及び R^2 が一緒になってメチレンジオキシ基を形成してもよく; R^3 はアリール基、芳香族複素環基、 $5\sim7$ 員のシクロアルキル基、又は $5\sim7$ 員のシクロアルケニル基を示し、該アリール基、該芳香族複素環基、該シクロアルキル基、及び該シクロアルケニル基は1個又は2個以上の置換基を有していてもよく; R^4 は

水素原子、水酸基、-S-グルタチオン基、-S-α-アミノ酸基、又はアリール部分に 1 個又は 2 個以上の置換基を有していてもよいアラルキル基を示し; R^5 は水素原子又は炭素数 $1\sim6$ のアルキル基を示し、 R^4 及び R^5 は一緒になって単結合を形成してもよく;Y は酸素原子又は硫黄原子を示し; R^4 の整数を示し;セレン原子は酸化されていてもよい)

で表わされる化合物及び生理学的に許容し得るその塩、並びにそれらの水和物及 びそれらの溶媒和物からなる群から選ばれる物質を含むチオレドキシン・レダク ターゼ基質を提供するものである。

[0007]

上記発明の好ましい態様によれば、2-フェニル-1,2-ベンゾイソセレナゾール-3(2H)-オン又はその開環体及び生理学的に許容し得るその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を含む上記のチオレドキシン・レダクターゼ基質;及び、NADPHの存在下でチオレドキシン・レダクターゼにより還元される上記のチオレドキシン・レダクターゼ基質が提供される。

[0008]

別の観点からは、上記の一般式(I)又は(I')化合物及び生理学的に許容し得るその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を含む、チオレドキシン・レダクターゼのペルオキシダーゼ活性の増強剤が提供され、その好ましい態様として、2-フェニル-1,2-ベンゾイソセレナゾール-3(2H)-オン又はその開環体及び生理学的に許容し得るその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を含む上記の活性増強剤が提供される。

[0009]

さらに別の観点からは、上記の一般式(I)又は(I')化合物及び生理学的に 許容し得るその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から 選ばれる物質を含む、チオレドキシン・レダクターゼのペルオキシダーゼ反応に おいて還元型チオレドキシンを酸化する触媒;上記の物質を含む、チオレドキシ ン・レダクターゼのペルオキシダーゼ反応において還元型チオレドキシンを酸化 することにより過酸化物を還元する作用を有する還元剤;及び、上記の物質を含 む、チオレドキシン・レダクターゼのペルオキシダーゼ反応において還元型チオレドキシンを酸化することにより生体内物質の過酸化を防止する抗酸化剤が提供される。

[0010]

これらの発明に加えて、生体内においてチオレドキシン・レダクターゼのペルオキシダーゼ活性を増強する方法であって、上記の一般式(I)又は(I')化合物及び生理学的に許容し得るその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質の有効量をヒトを含む哺乳類動物に投与する工程を含む方法;生体内において過酸化物を還元する方法であって、上記物質の有効量をヒトを含む哺乳類動物に投与する工程を含む方法;及び生体内において生体内物質の過酸化を防止する方法であって、上記物質の有効量をヒトを含む哺乳類動物に投与する工程を含む方法が提供される。

[0011]

【発明の実施の形態】

R¹及びR²が示す炭素数1~6個のアルキル基としては、直鎖又は分枝鎖のいずれでもよい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基などを挙げることができる。R¹及びR²が示す炭素数1~6個のアルコキシル基としては、直鎖又は分枝鎖のいずれでもよく、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペントキシ基、n-ヘキソキシ基などを挙げることができる。

[0012]

R³が示すアリール基としては、例えば、炭素数6~14個、好ましくは炭素数6~10個の単環性ないし3環性、好ましくは単環性又は2環性のアリール基を用いることができる。具体的には、フェニル基又はナフチル基などが好適である。R³が示す芳香族複素環基としては、窒素原子、酸素原子、イオウ原子などのヘテロ原子を1個又は2個以上含む、例えば、単環性ないし3環性、好ましくは単環性又は2環性の芳香族複素環基を用いることができる。2個以上のヘテロ原子を含む場

合には、それらは同一でも異なっていてもよい。例えば、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、イソオキサゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、インドリジニル基、イソインドリル基、インドリル基、イソキノリル基、キノリル基、フタラジニル基、ナフチリジニル基、キノキサリニル基、キナゾリニル基、シンノリニル基、プテリジニル基、カルバゾリル基、アクリジニル基、フェナンスリジニル基、フェノチアジニル基などを挙げることができる。

[0013]

 R^3 が示すアリール基、芳香族複素環基、 $5\sim7$ 員環のシクロアルキル基、又は $5\sim7$ 員環のシクロアルケニル基は、その環上に1個又は2個以上の置換基を有してい てもよい。2個以上の置換基を有する場合には、それらは同一でも異なっていて もよい。置換基の存在位置は特に限定されず、環上の任意の位置に存在すること ができる。置換基の種類も特に限定されないが、例えば、 C_1 - C_6 アルキル基、 C_2 - C_6 アルケニル基、 C_2 - C_6 アルキニル基、 C_6 - C_{14} アリール基、複素環基(本明細書 において複素環という場合には、芳香族複素環のほか、部分飽和又は飽和の複素 環を包含する)、ハロゲン原子(本明細書においてハロゲン原子という場合には 、フッ素原子、塩素原子、臭素原子、又はヨウ素原子のいずれでもよい)、ヒド ロキシ基、オキソ基、アミノ基、アンモニウム基、イミノ基、メルカプト基、チ オキソ基、シアノ基、ニトロ基、カルボキシル基、リン酸基、スルホ基、ヒドラ ジノ基、 C_1 - C_6 ウレイド基、 C_1 - C_6 イミド基、イソチオシアナート基、イソシアナ ート基、 c_1 - c_6 アルコキシ基、 c_1 - c_6 アルキルチオ基、 c_6 - c_{14} アリールオキシ基、 複素環オキシ基、 C_6 - C_{14} アリールチオ基、複素環チオ基、 C_7 - C_{15} アラルキル基、 複素環アルキル基、 C_7 - C_{15} アラルキルオキシ基、複素環アルキルオキシ基、 C_1 - C_1 ₆アルコキシカルボニル基、C₆-C₁₄アリールオキシカルボニル基、複素環オキシ カルボニル基、 C_9 - C_7 アルキルカルボニル基、 C_6 - C_{14} アリールカルボニル基、複 素環カルボニル基、 C_2 - C_7 アルキルカルボニルオキシ基、 C_6 - C_{14} アリールカルボ ニルオキシ基、複素環カルボニルオキシ基、 C_2 - C_8 アルキルカルボニルアミノ基 、 C_1 - C_6 スルホニル基、 C_1 - C_6 スルフィニル基、 C_1 - C_6 スルホニルアミノ基、 C_1 - C_6 カルバモイル基、又は $C_2^{-C_6}$ スルファモイル基などを挙げることができる。

[0014]

さらに、上記に例示した置換基は、さらに 1 又は 2 個以上の他の置換基で置換されていてもよい。このような例として、例えば、ヒドロキシ C_1 - C_6 アルキル基、ハロゲン化 C_1 - C_6 アルキル基、モノ若しくはジ C_1 - C_6 アルキルアミノ基、ハロゲン化 C_1 - C_6 アルキルカルボニル基、ハロゲン化 C_6 - C_1 4アリール基、ヒドロキシ C_6 - C_1 4アリール基、モノ又はジ C_1 - C_6 アルキルカルバモイル基などを挙げることができる。もっとも、上記に説明した置換基は例示のためのものであり、これらに限定されることはない。

[0015]

 R^4 が示す-S- α - γ ミノ酸基の種類は特に限定されないが、チオール基含有のアミノ酸の残基であることが好ましく、-S- α - γ ミノ酸基は蛋白質又はペプチド化合物を構成するアミノ酸の残基であってもよい。蛋白質又はペプチド化合物としては、生理的に許容されるものであればその種類は限定されないが、例えば、アルブミン、グロブリン等の血清中の蛋白質を用いることが好ましい。血清中の蛋白質のうちアルブミンがより好ましく、ヒトアルブミンが特に好ましい。 R^4 が示すアリール部分に1個又は2個以上の置換基を有していてもよいアラルキル基としては、ベンジル基、パラヒドロキシベンジル基、2,4-ジヒドロベンジル基などを挙げることができる。 R^4 及び R^5 は一緒になって単結合を形成してもよく、その場合には、 R^5 が結合する窒素原子とセレン原子とを含む5員環が形成される。 R^5 が示す炭素数1 \sim 6のアルキル基としては、上記に例示したものを用いることができる。

[0016]

本発明のチオレドキシン・レダクターゼ基質としては、上記式(1)又は式(1)で表される化合物の生理学的に許容される塩を用いてもよい。生理学的に許容される塩は当業者に適宜選択可能である。また、遊離形態の化合物又は生理学的に許容される塩の水和物を用いることもできる。なお、上記式(1)又は(1)で表される化合物は1個又は2個以上の不斉炭素を有する場合があるが、光学異性体、ジアステレオ異性体などの立体異性体、立体異性体の任意の混合物、ラセミ体などを本発明の基質として用いてもよい。

[0017]

本発明の基質として、例えば、2-フェニル-1,2-ベンズイソセレナゾール-3(2H)-オン(一般名では「エブセレン(ebselen)」と呼ばれる。)又はS-(2-フェニルカルバモイル-フェニルセレニル)-アルブミンなどを挙げることができ、これらの化合物の生理学的に許容される塩又は水和物も本発明の基質として好ましい。2-フェニル-1,2-ベンズイソセレナゾール-3(2H)-オンの製造方法は、特公平2-38591号公報に開示されており、S-(2-フェニルカルバモイル-フェニルセレニル)-アルブミンの製造方法は特開平7-233056号公報に開示されている。従って、これらの製造方法を参照することにより、当業者は上記式(1)又は式(1')に包含される任意の化合物を容易に製造することが可能である。

[0018]

上記式(1)又は式(1')で表わされる本発明の基質は、チオレドキシン・レダクターゼにより還元され、チオレドキシン・レダクターゼのペルオキシダーゼ活性を増強することができる。また、本発明の基質は、チオレドキシン・レダクターゼのペルオキシダーゼ反応において還元型チオレドキシンを酸化する触媒として作用することができ、チオレドキシン・レダクターゼのペルオキシダーゼ反応において還元型チオレドキシンを酸化することにより過酸化物を還元する還元剤としても作用することができる。さらに、チオレドキシン・レダクターゼのペルオキシダーゼ反応において還元型チオレドキシンを酸化することにより生体内物質の過酸化を防止する抗酸化剤としても作用できる。

[0019]

従って、本発明の基質を医薬としてヒトを含む哺乳類動物に投与することにより、生体内のチオレドキシン・レダクターゼのペルオキシダーゼ反応を増強することができ、その結果、生体内物質の過酸化を防止し、あるいは生体内の過酸化物を還元することができ、生体内のチオール蛋白やチオール化合物の酸化ー還元状態の恒常性を保つことができる。本発明の基質を有効成分として含む医薬は、例えば、細胞内酸化還元調節の異常に起因し、細胞内酸化還元調節の異常を伴う疾患の予防及び/又は治療に有用である(Mattson, M.P. et al., Nature, 382, pp.674-675, 1996)。このような疾患として、例えば、虚血性臓器疾患(脳、心

臓、肝臓、腎臓、消化器等)、不適切なアポトーシス誘発による神経退行性疾患 (アルツハイマー病、パーキンソン病、ハンチントン舞踏病、家族性筋萎縮性側 索硬化症 [ALS]、エイズ等)や放射線障害、悪性腫瘍(白血病など)、及び各種 炎症性疾患やエンドキシンショック等を挙げることができる。

[0020]

いかなる特定の理論に拘泥するわけではないが、酸化ストレスと虚血性臓器疾患や各種炎症及びエンドトキシンショックとの関連性が認められており、これら虚血性臓器疾患に不適切なアポトーシス誘発の関与が近年確認されている(Hockon bery, D.M. et al., Cell, 75, pp.241-251, 1993)。アポトーシス惹起の過程においては、種々の要因による細胞内過酸化物(活性酸素)、特に過酸化水素の生成により細胞内核蛋白転写因子NF- κ Bの活性化、すなわち抑制蛋白質 I κ BのNF κ Bよりの離脱がもたらされ、プログラムされた細胞死(アポトーシス)が引き起こされることが知られている(Frank, J.T. et al., Proc. Natl. Acad. Sci. USA., 87, pp.9943-9947, 1990)。

[0021]

[0022]

本発明の基質を医薬として用いる場合には、上記式(1)又は式(1)で表される化合物及び生理学的に許容されるその塩、並びにそれらの水和物からなる群から選ばれる物質をそのまま投与してもよいが、一般的には、有効成分である上記物質と製剤用添加物とを含む医薬組成物を製造して投与することが望ましい。製剤用添加物としては、例えば、賦形剤、結合剤、崩壊剤、溶解剤等を用いるこ

特平11-101478

とができ、2種以上の製剤用添加物を組み合わせて用いることもできる。医薬組成物の形態は特に限定されないが、例えば、錠剤、カプセル剤、散剤、顆粒剤、シロップ剤などの経口投与用組成物、注射剤、点滴剤、坐剤、経皮吸収剤、経粘膜吸収剤、クリーム剤、軟膏剤、点鼻剤、点眼剤、点耳剤、貼付剤などの非経口投与用組成物を挙げることができる。これらの医薬組成物は当業界で汎用の方法により製造することが可能である。

[0023]

上記医薬の投与量は、適用すべき疾患の種類、患者の年齢や体重、疾患の重篤度などの条件に応じて、適宜選択することが可能である。例えば、経口投与の場合、成人一日あたり0.05~5,000mg(有効成分量として)の範囲である。2-フェニル-1,2-ベンズイソセレナゾール-3(2H)-オンを有効成分として含む医薬を用いる場合には、その投与量は、経口投与の場合、成人一日あたり100~2,000mg(有効成分量として)であり、好ましくは、200~1,000mgの範囲である。もっとも、上記の投与量は上記の条件に応じて適宜増減することができる。

[0024]

【実施例】

以下、本発明を実施例により説明するが、本発明は下記の実施例に限定されることはない。以下の実施例中、化合物Aは2-フェニル-1,2-ベンズイソセレナゾール-3(2H)-オン(図中、Ebselenと記する場合がある)を示す。

[0025]

例1:製剤例

(錠剤)

化合物A 50 mg
 カルボキシメチルセルロース 25 mg
 でんぷん 5 mg
 結晶セルロース 40 mg
 ステアリン酸マグネシウム 2 mg
 計 122 mg

[0026]

例2:試験例

(A)材料と方法

(1)材料および酵素

NADPHとDTNBはシグマ社、過酸化水素(30%)とジメチルスルホキシドはメルク社の製品を用いた。子牛胸腺由来又はヒト胎盤由来のチオレドキシン・レダクターゼ (TrxR) はラットの肝酵素用に報告されているものに準じて精製し、均質化したものを用いた (活性度:酵素1 mgあたり毎分25 μ molのNADPHを酸化する)。大腸菌由来のチオレドキシン(Trx)は均質化処理したものを用い、ヒトリコンビナントチオレドキシンおよび突然変異菌C62S/C72Sはレンらの方法で調製した。化合物Aは実験前にジメチルスルホキシド (DMSO) に溶解した。

[0027]

(2)分光光度法による測定

化合物Aの存在下での酵素活性は、セミミクロ石英キュベットにサンプルを加え、自動サンプルエクスチェンジャーとレコーダー付きPMQ3分光光度計(ツァイス社)で室温で測定した。

(3)酵素アッセイ

チオレドキシン・レダクターゼ活性の測定は、TE緩衝液(50 mM Tris-HCl, 1 mM EDTA, pH 7.5)に100μMのNADPHと所定量の化合物Aを加えて行なった。チオレドキシン・レダクターゼのストック溶液5~10μlを上記混合物に加え、最終液量 0.55 mlとして反応を行った。比較用試料のキュベットには測定試料と同量のDMS 0とチオレドキシン・レダクターゼを加え、比較用キュベットの吸光度を自動的に吸光度計で差し引いた。反応の進行は340 nmで追跡した。

[0028]

チオレドキシン・レダクターゼの活性はインスリン定量法で行なった。100 mMリン酸カリウム(pH 7.0)、2 mM NADPH、及び0.16 mMインスリンを混合し、化合物 A及びチオレドキシンを加え、最後にチオレドキシン・レダクターゼを加えて総 液量0.55 mlとして反応を行なった。インスリンジスルフィドの還元反応の進行 は340 nmで追跡した。生成した硫化水素基又はセレノール基は、6 Mグアニジン-HCl、0.20 M Tris-HCl (pH 8.0)、1 mM DTNBの混合液 0.50 mlを加えて412 nmで

測定し、13,600 M⁻¹cm⁻¹のモル吸光係数を用いて算出した。NADPHを用いたチオレドキシン・レダクターゼのDTNB還元活性は、10 mM EDTA、0.2 mM NADPH、5 mM DTNB、及び0.1 mg/mlのウシ血清アルブミンを含む100 mMリン酸カリウム(pH 7.0)溶液中で412 nmで測定した。

[0029]

(4) NADPHの酸化で生成したセレノール基の算出

化合物 A は340 nmでモル吸光係数4,000 M^{-1} cm $^{-1}$ の吸光度を示す。またジチオールによるセレノール還元化合物であるN-フェニル-2-カルボキシアミドベンゼンセレノールは340 nmで半分の吸光度(2,000 M^{-1} cm $^{-1}$)を示す。過剰のDTTの存在下又は非存在下において化合物 A-セレノールが生成することを吸光度曲線から確認した。化合物 A-セレノールの生成量算定では、NADPHの酸化により生ずるMDP $^+$ が6,200 M^{-1} cm $^{-1}$ のモル吸光係数を有するので、8,200 M^{-1} cm $^{-1}$ のモル吸光係数を用いた。

[0030]

(5) 蛍光測定

蛋白の蛍光測定は自動温度調節SPEX-Fluoro Max計で行なった。 $Trx-(SH)_2$ は大腸菌由来の $Trx-S_2$ 640 μ Mを室温で10 mM DTTと共に20分間インキュベートし調製し、その後、DTTをゲルクロマトグラフイーで除いた(N_2 平衡緩衝液をNAP-5カラム(ファルマシア製)に通した)。 $Trx-(SH)_2$ は0.1 M燐酸カリウムと1 mM EDTAの3 ml混合液(pH 7.5)中に溶解した化合物 Aと混合し、直ちに22℃で蛍光分光光度計により測定した。波長290 nmで蛍光励起した後、波長300から500 nmの範囲で発光スペクトルを記録した。340 nmでの蛍光を用いて $Trx-(SH)_2$ の酸化反応速度を追跡して反応速度を記録した。

[0031]

(B)結果

(1)ヒトチオレドキシン・レダクターゼによる化合物Aの還元

化合物A 50μ M又は 100μ MとNADPH(100μ M)とを加えたキュベットに純粋なヒトレドキシンレダクターゼ(40 nM又は 4.5μ g/ml)を加えると、340 nmの吸光度が急激に減少し、化合物Aがヒトチオレドキシン・レダクターゼの基質となるこ

とが確認された。図1に結果を示す。 $50\,\mu\,\text{M}$ () 又は $100\,\mu\,\text{M}$ (\Box) の化合物 A を $50\,\mu\,\text{M}$ Tris-HCl、1 mM EDTA (pH 7.5)、 $100\,\mu\,\text{M}$ NADPHを含む溶液 $0.55\,\mu\,\text{l}$ に加え、 $40\,\mu\,\text{M}$ NADPHを含む溶液 $0.55\,\mu\,\text{l}$ に加え、 $40\,\mu\,\text{M}$ に $0.55\,\mu\,\text{M}$ に

[0032]

化合物 A 50μ Mでは反応が 1 分で完了し、この反応が速いことが認められた。その後、非常にゆっくり340 nmでの吸光度が減少したが、これは化合物 A がセレナイト、セレノシステイン等の他のセレン化合物と異なり酸素と酸化還元サイクルをしないことを示している。DTNBを含む6 MグアニジンHClを7分後にキュベットに加えたところ、412 nmにおける吸光度が0.400となり、セレノール基の生成が確認された。化合物 A 自身はDTNBと反応しなかった。化合物 A 100μ Mを添加した時の反応速度は酵素を40 nM用いた場合の340 nm吸光度から見て遅いように思われた。

[0033]

より低い濃度の酵素で実験によると、酵素17 nM、化合物A 100μMの場合に見られるように340 nmでの吸光度は複雑な変化を示した(図1)。340 nmの吸光度は初期に減少した後増加し、その後減少して15分後には酵素40 nM添加の場合と同じ値を示した。酵素7.5 nMを添加し、化合物Aの量を10、20、50、100μMに変化させた場合の結果を図2に示す。図2 Aには低濃度でのチオレドキシン・レダクターゼによる化合物Aの還元作用を示す。50 mM Tris-HCl、1 mM EDTA (pH 7.5)、100μM NADPHを含む溶液 0.55 mlを入れたキュベットに化合物A 10μM (●)、20μM (△)、50μM (□)、100μM (■)を添加した。TrxR 7.5 nMを上記4サンプルに添加した。時刻ゼロにおける化合物Aを含まないブランクの340 nmでの吸光度の低下は、NADPHが10μMの化合物Aで酸化されたことを示す。50μM 及び100μMの化合物Aを含むキュベットは340 nmでの吸光度の増加を示した。また、可視的沈殿生成によりNADPHの酸化反応が防止された。

[0034]

図2Bには、化合物Aをチオレドキシン・レダクターゼにより10分間還元した後のDTNBによるセレノール基生成の検出結果を示す。上記図2Aと同様の実験を10分間反復した。6 Mグアニジン-HCl、0.20 M Tris-HCl (pH 8.0)、1 mM DTNBの混合液 0.5 mlを添加して反応を停止し、412 nmでの吸光度を測定し、ブランクを差し引いてセレノール基の定量を行った。化合物Aが最高濃度(50μM、100μM)の時キュベットに沈殿が生じ、6 MグアニジンHClとDTNBで反応を停止した時、セレノール様物質がすべてのキュベットに認められたが(図2B)、NADPHの酸化と化合物Aのセレノールへの還元により生じる340 nm吸光度の低下は、明らかにこの沈殿により防止されていた。

[0035]

NADPHと酵素による化合物Aの還元はイソセレナゾロン環が開環した結合中間体を経て、セレノールを生成する反応と考えられる(下記スキーム)。

[0036]

【化3】

$$O_{Se-H}^{1} + O_{Se}^{0} - O_{Se}^{0} - O_{Se}^{0}$$

[0037]

この中間体と化合物Aとの反応、あるいは酵素に結合した中間体と化合物Aとの 反応は溶解度の低いジセレニドを生成し、これが沈殿量を増加させ340 nm吸光度 を高めるものと考えられる。化合物A 100μMと酵素を4 nMしか含まない沈殿物 の入ったキュベットに酵素40 nMを加えると、このジセレニドはセレノールに還元されて溶液は急速に透明になり、最終的にNADPH酸化反応が進行したことが340 nmでの吸光度変化として現れるが、この不溶性ジセレニドの生成はこの酵素だけに見られる特別な性質ではない。これは、化学量論的に解析できないような低い濃度 (10μM) のDTTと100μMの化合物Aを用いた予備実験で示されたが、一方セレノールは過剰のDTTの存在下でのみ生成することがHPLCでも確認された。

[0038]

化合物 A の Km値および Vmax値を求めるため、5、10、20 μ Mの化合物 A に対して15 nMの酵素を用いた。30秒後、すべてのキュベットで5 μ MのNADPHが酸化された。その後、ジセレニドの還元を示すと思われる化合物 A の濃度上昇がゆっくり見られた。化合物 A の Km値が5 μ M未満であることは明らかであり、1000±300/分の K cal値が算出された。ヒト Trx-S₂が2.5 nMの Km値と3000/分の K cal値を持つことを考えると、化合物 A は非常に珍しく効率のよい基質であると言える。

[0039]

(b) 哺乳類チオレドキシン系の酵素活性に及ぼす化合物Aの影響

化合物 A がチオレドキシン・レダクターゼの作用を阻害するか否かを調べるため、酵素定量試験を行なった。50 μ M化合物 A と10 nM酵素とDTNBを基質として用いたところ、阻害は認められず、また、チオレドキシンとチオレドキシン・レダクターゼを用いたインスリン還元定量試験ではわずかな影響しか認められなかった(表1)。後者の効果は、酵素と共に化合物 A がインスリンジスルフィドの還元反応の触媒作用をしないため、定量試験ではTrxと競合することに由来する。化合物 A と共に酵素をプレインキュベーションするとNADPHの存在下又は非存在下で酵素作用は阻害されなかった。

[0040]

表1に哺乳類チオレドキシン・レダクターゼの酵素活性に対する化合物Aの効果を示す。(A)は、100 nMリン酸カリウム (pH 7.0)、2 mM EDTA、0.2 mM NADPH、0.16 mMインスリン、5μM ヒトTr×及び表示の化合物Aを混合した時の反応の結果を示す。10 nM子牛胸腺由来のチオレドキシン・レダクターゼを総量0.55 mlの上記混合液に添加して反応を開始し、340 nmでの吸光度を20(Cで3分間測定した

。その後、6 MグアニジンHCI、0.20 M Tris-HCI (pH 8.0)、1 mM DTNBを含む混合液を0.5 ml加えて反応を停止し、412 nmでの吸光度よりインスリン中に生成したSH基の量を算出した。(B)では、10 nM子ウシ胸腺由来のチオレドキシン・レダクターゼを50 μ Mの化合物 A 及び100 μ M NADPHの存在下又は非存在下で1時間プレインキュベーションした。その後、この液10 μ lを0.1 M Tris-HCl (pH 8.0)、1 mM EDTA、5 mM DTNBの混合液500 μ lに加え、412 nmでの活性を求めた。活性は3分間に生成したSH基の量 (μ M) で示した。

[0041]

【表1】

	Trx で触媒されるインスリン			DTNB の還元	
	ジス	ルフィドの	還元		
化合物A (μM)	0	5	10	0	50
SH基(µM)	79.8	70.6	68.4	7.3	7.5
活性(%)	100	89	88	100	103

[0042]

(3)化合物Aの還元に及ぼすチオレドキシンの影響

チオレドキシン・レダクターゼ、NADPH、及び化合物 A にヒトチオレドキシンを加えると反応速度が上昇した。図 3 は、チオレドキシン・レダクターゼによる化合物 A の還元反応に対するヒトチオレドキシンの影響を示した図である。50 mM Tris-HCl、1 mM EDTA (pH 7.5)、100 μ M NADPHを含む混合液0.5 mlに10 nM TrxR を加え、ヒトTrx-S2添加量をゼロ (\bullet)、5 μ M (\bullet) に変化させてNADPHの酸化反応の進行を記録した。最初の2分間には、Trx-S2はTrx-(SH)2へと還元された。矢印は両方のキュベットに化合物 A を添加したことを示す。この結果は、Trx-(SH)2が化合物 A を下記反応式に従って速やかに還元することを示している。

 $Trx-(SH)_2+$ 化合物A \rightarrow Trx-S₂+化合物A/セレノール $Trx-S_2+NADPH+H^+\rightarrow TrxR\rightarrow Trx-(SH)_2+NADP^+$ 【0043】

(4)化合物Aと大腸菌Trx-(SH)₂との反応

哺乳類と大腸菌のTrxはGPCという同じ活性部位を持ちジスルフィドとの反応性を有する。大腸菌のTrx- $(SH)_2$ は Trx- S_2 の3倍の強度のトリプトファン蛍光を発す

るので、これを化合物 A との反応を追跡するのに用いた。 0.1μ M の化合物 A と混合すると 0.1μ M $Trx-(SH)_2$ から $Trx-S_2$ への酸化が起こったことを示すスペクトルの変化が認められた。図 4 A は、蛍光分光光度法による大腸菌 $Trx-(SH)_2$ の 化合物 A による酸化を示した図である。 N_2 平衡 0.1 M リン酸カリウム液に大腸菌 $Trx-(SH)_2$ 0.1μ M $(1.2\mu$ g/ml) を加え、1 mM EDTA (pH 7.5) でサンプルを調製した。サンプルの蛍光は波長290 nmで励起した。波長範囲 $300\sim500$ nmで吸光度を記録し、その後、 0.1μ Mの化合物 A を添加してスペクトルを記録した。図 4 B は 0.1μ M $Trx-(SH)_2$ と 0.1μ Mの化合物 A を混合した後の340 nmにおける蛍光発光の減衰率を示した図である。 0.1μ Mの化合物 A を添加後のデッドタイムに 0.1μ Mの $Trx-(SH)_2$ の相対蛍光発光強度が変化することは、 $Trx-(SH)_2$ の 2×10^7 /M/秒より酸化速度が速いことを示している。これは低分子量化合物による還元型チオレドキシンの酸化反応の中で最も速いものである。

[0044]

(5)化合物Aによるチオレドキシン・レダクターゼの過酸化水素レダクターゼ活性の増強

哺乳類のチオレドキシン・レダクターゼによる過酸化水素を直接還元した。図5は、ヒトチオレドキシン・レダクターゼによる過酸化水素の還元と化合物A及びチオレドキシンの影響を示した図である。50 mM Tris-HCl、1 mM EDTA (pH 7.5)、10 0 mM NADPHを含むキュベットに0.5 mM過酸化水素、17 nMヒトTrxR(●)、17 nM ヒトTrxR+2μM化合物A(Δ)、17 nM TrxR+2μM化合物A+4.5μM ヒトTrx (□)。過酸化水素を含まない17 nM チオレドキシン・レダクターゼだけのブランクの340 nmでの吸光度を測定した。この結果、0.50 mMのヒドロペルオキシドで30回/分の回転率と算定された。化合物A 2μMを添加することにより、この酵素の活性が刺激され、回転率が15倍、すなわち450回/分に増大した。さらに4.5μMのヒトTrxを加えると、活性は30倍、すなわち900回/分へと増大した。このように、化合物Aはチオレドキシン・レダクターゼの過酸化水素レダクターゼ活性(ペルオキシダーゼ活性)を劇的に増大させ、チオレドキシンペルオキシダーゼ類似の作用を有することが明らかになった。

[0045]

(6) 高濃度過酸化水素に対する化合物 A およびチオレドキシンの影響

チオレドキシン・レダクターゼ17 nMにチオレドキシンを4.5μM添加すると過酸化水素の還元が促進される。図 6 はチオレドキシン・レダクターゼによる過酸化水素の還元反応に及ばすチオレドキシンと化合物Aの影響を示した図である。図 5 と同様の条件で17 nM チオレドキシン・レダクターゼのみ (●)、4.5μM Trx 添加 (△)とし、その後0.5μMの化合物Aを加えて最終的に化合物Aの濃度を5.5μMとした。低濃度 (0.5μM)の化合物Aは反応速度を上昇させ、5.5μMではさらに強力な促進作用が認められた。過酸化水素 (2 mM)、TrxR (17 nM)、ヒトT rx (5μM)を用い、1、2、5μMの化合物Aを用いた場合には、同じ反応速度、すなわち23 nM/分のNADPH酸化速度を得た。このように、これらの条件下では酵素の回転率1328回/分、1 nMの化合物Aの回転率23回/分であり、非常に高い効率のペルオキシダーゼ系であることが判明した。

[0046]

(7)低濃度過酸化水素に対する影響

化合物 A 2μMでは17 nMチオレドキシン・レダクターゼのみが100μMの過酸化水素に高い活性を示した。図7はTrxRの化合物 Aへの活性に対する過酸化水素の濃度の影響を示した図である。17 nMヒトチオレドキシン・レダクターゼ+2μM化合物 A (●)、17 nM ヒトチオレドキシン・レダクターゼ+4.5μM Trx+2μM 化合物 A (△)に表示の濃度の過酸化水素を添加して測定した。このように、化合物 A は生理的に有効な低い濃度でも酵素活性を向上させ、その増加率は約25倍であった。図8は、10 nMチオレドキシン・レダクターゼのみ (●)、又は10 nM チオレドキシン・レダクターゼ+4.5μM ヒトTrx (△)のみを用いた場合における100μM過酸化水素の還元反応に対する化合物 A の影響を示している。活性は340 nmにおける吸光度の毎分当たりの変化率 Δ A 340/分で表示した。チオレドキシン依存反応はさらに促進されており、100μM 過酸化水素と1、2、5μMの化合物 A によって、Trxの存在下又は非存在下でも同じように反応が促進された。

【図面の簡単な説明】

【図1】 ヒトチオレドキシン・レダクターゼによる化合物A(2-フェニル-1.2

- -ベンズイソセレナゾール-3(2H)-オン、「エブセレン」) の還元作用を示した図である。
- 【図2】 チオレドキシン・レダクターゼによる化合物Aの還元作用を示した図である。(A)は低濃度チオレドキシン・レダクターゼによる化合物Aの還元を示し、(B)は化合物Aをチオレドキシン・レダクターゼにより10分間還元した後の、DTNBによるセレノール基生成の検出結果を示す。図中、Ebselenは化合物Aを意味する。
- 【図3】 チオレドキシン・レダクターゼによる化合物Aの還元作用に対するヒトチオレドキシンの影響を示した図である。
- 【図4】 蛍光分光光度法による大腸菌Trx-(SH)₂の化合物Aによる酸化(図A)及び0.1μM Trx-(SH)₂と0.1μMの化合物Aを混合した後の340 nmにおける蛍光発光の減衰率を示した図である。図中、Trxはチオレドキシン、EbSeは化合物Aを示す。
- 【図5】 トチオレドキシン・レダクターゼによる過酸化水素の還元と化合物A 及びチオレドキシンの作用を示した図である。図中、Trxはチオレドキシン、EbS eは化合物A、TrxRはチオレドキシン・レダクターゼを示す。
- 【図6】 チオレドキシン・レダクターゼによる過酸化水素の還元反応に及ぼす チオレドキシンと化合物Aの作用を示した図である。図中、Trxはチオレドキシ ン、EbSeは化合物Aを示す。
- 【図7】 チオレドキシン・レダクターゼの化合物Aへの作用に及ぼす過酸化水素の濃度の影響を示した図である。図中、Trxはチオレドキシン、TrxRはチオレドキシン・レダクターゼ、EbSeは化合物Aを示す。
- 【図8】 過酸化水素の還元反応に対する化合物Aの作用を示した図である。図中、Ebselenは化合物Aを意味する。

【図1】

【図4】

【図5】

7

【書類名】 要約書

【要約】

【解決手段】 以下の一般式(I)又は(I'):

【化1】

$$R^{1}$$
 N
 $(CH_{2})_{n}-R^{3}$
 R^{2}
 R^{5}
 R^{4}
 (1)

 $(R^1$ 及び R^2 は水素原子、ハロゲン原子、トリフルオロメチル基などを示し; R^3 はアリール基、芳香族複素環基などを示し; R^4 は水素原子、水酸基、 $-S-\alpha-P$ ミノ酸基などを示し; R^5 は水素原子又は炭素数 $1\sim6$ のアルキル基を示し;Yは酸素原子又は硫黄原子を示し; R^5 は水素原子又は炭素数 $1\sim6$ のアルキル基を示し;Yは酸素原子又は硫黄原子を示し; R^5 は水素原子又は炭素数 $1\sim6$ のアルキル基を示し;Yは酸素原子又は硫黄原子を示し; R^5 は水素原子又は炭素数 $1\sim6$ のアルキル基を示し;Yは酸素原子又は硫黄原子を示し; R^3 は水素原子、 R^4 は水素原子、水酸基、 $-S-\alpha-P$ ミノ酸基などを示し; R^3 は水素原子、水酸基、 $-S-\alpha-P$ ミノ酸基などを示し; R^3 は水素原子、水酸基、 $-S-\alpha-P$ ミノ酸基などを示し; R^3 は水素原子、水酸基、 $-S-\alpha-P$ ミノ酸基などを示し; R^3 は水素原子、水酸基、 $-S-\alpha-P$ ミノ酸基などを示し; R^4 は水素原子、水酸基、 $-S-\alpha-P$ ミノ酸基などを示し; R^5 は水素原子といるのアルキル基を示し; R^4 は、 R^4 は水素原子といるのアルキル基を示し; R^4 は、 R^4 は、R

【効果】 NADPHの存在下でチオレドキシン・レダクターゼにより還元され、チオレドキシン・レダクターゼのペルオキシダーゼ活性を増強する。

【選択図】 なし

識別番号

[000002831]

1. 変更年月日 1990年 8月28日

[変更理由] 新規登録

住 所 東京都中央区日本橋3丁目14番10号

氏 名 第一製薬株式会社

THIS PAGE BLANK (USPTO)

Þ