Homework 6

Math 55b Due Tuesday, 10 Mar 2009.

- 1. Let $K_n(x) = c_n(1-x^4)^n$ for |x| < 1 and 0 otherwise, where c_n is chosen so that $\int_{\mathbb{R}} K_n = 1$. Prove that $\langle K_n \rangle$ is an approximate identity. (You need to show that $\int_{-r}^r K_n(x) dx \to 1$ for every r > 0.)
- 2. Determine which of the following sequences of functions are equicontinuous, and give a uniform modulus of continuity h(r) for the ones that are.¹
 - (a) $f_n(x) = \exp(nx), x \in (-\infty, 1];$
 - (b) $f_n(x) = \sin(\sin(\cdots(\sin x)))$ (n times), $x \in [0, 2\pi]$;
 - (c) $f_n(x) = n + x^n, x \in [0, 1/2].$
 - (d) $f_n(x) = (1 + x/n)^n, x \in [0, \infty).$
- 3. Let X, Y be a pair of compact metric spaces. Show that the continuous functions of the form f(x)g(y) span a dense subspace of $C(X \times Y)$.
- 4. Compute the Fourier series of the function f(x) = |x| on $[-\pi, \pi]$ (extended periodically to the whole line). Does the series converge absolutely?
- 5. Let $S \subset C[a,b]$ be a finite-dimensional subspace. Prove that if $f_n \in S$, and $g:[a,b] \to \mathbb{R}$, then $f_n \to g$ pointwise iff $g \in S$ and $f_n \to g$ uniformly.
- 6. Let f(x,y) be a real-valued function on \mathbb{R}^2 , and suppose df/dx and df/dy exist for every (x,y). Prove or disprove each of the following assertions.
 - (a) f is continuous.
 - (b) If, in addition, $|df/dx| \leq M$ and $|df/dy| \leq M$, then f is continuous.
 - (c) If, in addition, $|df/dx| \leq M$ and $|df/dy| \leq M$, then f is differentiable.

Hint: consider $xy/(x^2+y^2)$ and $x^3/(x^2+y^2)$.

7. Give an example of a differentiable map $f: \mathbb{R}^2 \to \mathbb{R}^2$ such det $Df(x) \neq 0$ for all x, but f is not one-to-one.

¹This means $h(r) \to 0$ as $r \to 0$ and $|x - y| < r \implies |f_n(x) - f_n(y)| < h(r)$ for all n.