23_2_19周报

本周是考试周,因此工作内容均为简单尝试和训练:

- [与预期结果有差异] 尝试将每步的特征与输入噪声点云的特征进行cat,并将合并后的噪声作为 ScoreNet预测梯度的特征向量输入;
- 尝试了一个均匀的 y_{small}, y_{big} 训练策略,但有效果降低,我对此进行了原因分析,并尝试了一个新的修改。

1. 关于潜在特征

采样过程略,因为思路类似。

但从结果上看,似乎添加每步的Feat并不能优化结果。降噪效果有,但并不理想。

我不知道这个方向应该怎么分析和改进,有点超出我的理解范围(或者在我现有知识的理解中,它应该会更好)。

1.1. 指标对比

副标题命名规则,训练集-点云点数-噪声类型-噪声程度。

训练参数(部分):

Parameter	Value
-----------	-------

Parameter	Value
KNN_num	64 and 128
Training set	10000_possion,30000_possion,50000_possion
diffusion_step	30
beta	[1e-5,5e-5]
iterations	256000

训练过程使用控制变量,训练了两个不同的模型进行对比实验:

• Use Step Feat: 使用跳接Feat

• **not** Use Step Feat: 不使用跳接Feat

下面选取的样本不经过挑选,是测试输出的前10个结果。

标准使用p2f。

1.1.1. PUNet-50000-possion-0.01

Name	Use Step Feat	not Use Step Feat
moai	0.000871	0.000328
duck	0.000859	0.000308
elk	0.000860 0.000262	
elephant	0.000919	0.000458
quadric	0.000913	0.000405
cow	0.000986	0.000454
fandisk	0.000837	0.000351
Icosahedron	0.000723	0.000167
star	0.000833	0.000239
kitten	0.000905	0.000339

1.1.2. PUNet-50000-possion-0.03

Name	Use Step Feat	not Use Step Feat	
moai	0.000981	0.000251	
duck	0.001016	0.000279	
elk	0.001030	0.000262	
elephant	0.001079	0.000279	
quadric	0.001048	0.000346	
cow	0.001168	0.000337	
fandisk	0.000954	0.000308	
Icosahedron	0.000898	0.000277	
star	0.000989	0.000227	
kitten	0.001087	0.000281	

2. 关于 y_{big}, y_{small}

对于之前使用的 y_{big}, y_{small} 策略中, y_{big} 的直方图如下,显然这是一个缺少对低噪声样本生成的训练方式:

因此猜测,若可以让 y_{big} 的分布更加均匀是否可以让低噪声得到更好的训练,由于考试周,我这里直接采用了一个简单粗暴的中间映射:

$$x'=x^{10}$$

显然让 y_{big} 的分布更加均匀,如下所示:

但从指标对比中可发现,它并没有对结果有优化的趋势。显然问题还出在 y_{big},y_{small} 策略中,因此我对 $v=y_{small}/y_{big}$ 的分布进行分析。

• 过去的策略:

• 本周修改后的策略:

因此,从 $v=y_{small}/y_{big}$ 的分布进行分析不难发现,这两种策略生成的噪声样本均集中在降噪Sampling过程的早期,即它缺少对于Sampling过程后期对细节和小噪声的降噪和恢复。

综上所述,这次对 y_{big}, y_{small} 策略的实验的失败是理所当然的。并我认为,下一次实验的 y_{big}, y_{small} 策略需要满足下面两个要求:

- 生成的 y_{big} 的分布必须均匀;
- 生成的 y_{small} 的 $v=y_{small}/y_{big}$ 的分布必须均匀;

以上两点分别对应下面两个目标:

- 训练时的噪声样本必须均匀分布在 [0.001, 0.03]
- 训练时生成的采样中间噪声样本对应于整个范围的 $v=y_{small}/y_{big}$ 必须均匀分布在 [0,1] ,即必须有能均匀覆盖整个Sampling过程的样本。

2.1. 指标对比

副标题命名规则,训练集-点云点数-噪声类型-噪声程度。

训练参数(部分):

Parameter	Value
KNN_num	128
Training set	30000_possion,50000_possion
diffusion_step	30
beta	[1e-5,5e-5]

Parameter	Value
iterations	256000

下面选取的样本不经过挑选,是测试输出的前10个结果。

标准使用p2f。

2.1.1. PUNet-50000-possion-0.01

Name	Ours(Fix)	Ours(Fix, use New y_{big}, y_{small})
moai	0.000050	0.000062
duck	0.000070	0.000080
elk	0.000100	0.000092
elephant	0.000090	0.000089
quadric	0.000086	0.000086
cow	0.000076	0.000087
fandisk	0.000046	0.000056
Icosahedron	0.000034	0.000041
star	0.000045	0.000056
kitten	0.000046	0.000060

2.1.2. PUNet-50000-possion-0.03

Name	Ours(Fix)	Ours(Fix, use New y_{big}, y_{small})
moai	0.000095	0.000095
duck	0.000109	0.000110
elk	0.000143	0.000137
elephant	0.000160	0.000149
quadric	0.000165	0.000151
cow	0.000146	0.000138
fandisk	0.000112	0.000096
Icosahedron	0.000065	0.000063

Name	Ours(Fix)	Ours(Fix, use New y_{big}, y_{small})
star	0.000068	0.000076
kitten	0.000094	0.000089

3. 关于Loss优化

定义 Score-based 分布梯度:

$$abla_x log[q_ heta(x_a^{(t-1)}|x_a^{(t)})] pprox -z_ heta \propto \min\{||x_i^{(0)}-x_a^{(t)}||_2^2 \ |x_i^{(0)} \in x^{(0)}\}$$

当前训练监督的是点云的梯度方向和梯度大小,即:

$$egin{aligned} \mathcal{L}_{s}(x_{i}) &= rac{1}{K} \sum_{j=1}^{K} KNN(x_{i}, x^{(0)}, K)_{j} - x_{i} \ & \mathcal{L}_{z}(x_{0:T}, \{eta_{i}\}_{i=1}^{T}) = \sum_{t=1}^{T} \mathbb{E}_{x_{i} \in x_{a}^{(t)}} igg[igg|
abla_{x_{i}} log[q_{ heta}(x_{a}^{(t-1)} | x_{a}^{(t)})] + \mathcal{L}(x_{i}) igg|_{2}^{2} \end{aligned}$$

除外还能使用的方法如监督 $(x_a^{(t)}+grad)_i$ 和 $x_i^{(0)}$ 之间的距离,即将噪声样本使用网络得到的偏移量偏移后 距离 $x_i^{(0)}$ 的距离。

关于使用 $x_i^{(0)}$ 作为监督目标的理由:

训练输入的点云均是通过在网格上进行均匀采样得到的,期望上可以让输出的结果更加均匀。

2月13号和辛老师讨论中认为,降噪结果向高频偏移是可以的,部分工作甚至希望输入点云在高频有

• $x_i^{(0)}$ 是已经有的,是现成的输入内容。

因此可以定义一个附加项,由于它的指向与最优下降方向有轻微差距,可以起到正则项的作用

$$egin{aligned} \mathcal{L}_0(x_{0:T}, \{eta_i\}_{i=1}^T) &= \sum_{t=1}^T \mathbb{E}_{x_{t,i} \in x_a^{(t)}, x_{0,i} \in x^{(0)}} igg[igg| ig(x_{t,i} -
abla_{x_{t,i}} log[q_{ heta}(x_a^{(t-1)} | x_a^{(t)})]) - x_{0,i} igg|_2^2 igg] \ \mathcal{L} &= \mathcal{L}_z + lpha \mathcal{L}_0, \ where \ lpha = 0.01 \end{aligned}$$

计划下周会讲行对这个改动的对比实验。

4. 关于训练集和测试集

后续可以尝试该方法在其他训练集下的效果,但这个工作的优先级靠后,目前以前面三个为主。