CMT 307 Applied Machine leaning

Fine-grained image classification of Dogs

Content

INTRODUCTION

DESCRIPTIVE ANALYSIS

DATA PREPARATION

IMPLEMENTATION OF MODEL

RESULTS

ERROR ANALYSIS

CONCLUSION

Introduction

- Fine-grained image recognition is the task of distinguishing between very similar objects such as identifying the species of a bird, the breed of a dog or the model of an aircraft.
- Outline the steps taken to develop an end-to-end machine learning pipeline used to develop a machine learning model which can categorise fine grained images of dogs into their subcategories (breeds).
- The Stanford Dog Dataset was used for this analysis.

Source: https://medium.com/nanonets/how-to-easily-builda-dog-breed-image-classification-model-2fd214419cde

Descriptive Analysis

Stanford Dog Breed Dataset

- 20580 Images
- 120 Dog Breeds
- Descriptive analysis of dog breed images:

	count	mean	std	min	25%	50%	75%	max
Count	120.0	171.5	23.220898	148.0	152.75	159.5	186.25	252.0

- Initial training set: 12000 Images
- Initial test set: 8580 Images

Image sizes:

- We have a large distribution of image sizes
- Majority of images are between:
 - A width of 361 and 500
 - A height of 333 to 453
- Huge differences between the maximum and minimum
- Images will have to be normalised

Image Size - Descriptive		
Statistics	Width	Height
mean	442.5	385.9
std	142.8	124.9
min	97	4
25%	361	333
50%	500	375
75%	500	453
max	3264	2562

Data Preparation

File preparation from ImageNet

- •Images (757MB)
- Annotations (21MB)
- Lists, with train/test splits (0.5MB)
- •Train Features (1.2GB), Test Features (850MB)

Dataset Split

Initial Split:

A 60:40 ratio of test and train sets

References obtained:

• If the data-set is large enough one can consider ratios like 70:30 or 75:25, while in the case of small data-sets it is recommended to use ratios such as 90 : 10.

Final Split:

 Train, validation and test samples with proportions of 80%, 10% and 10% respectively

Image Pre-processing

Normalisation of the images:

It makes sure that each pixel has a similar distribution which will allow faster convergence when training the model.

Image augmentation:

It allows us to generate more training data by using our existing training data sets by transforming the original images providing more data for each class

Image Generator

- Rotation of 45-degrees to generate the images of the dog at a 45degree angle.
- Width and height shift that randomly shifts the images left and right and up and down.
- Slanting the image.
- Zooming out
- Horizontally and vertically flipping the image
- Setting the fill mode to nearest which autofill's any empty pixels with the nearest pixel value.

ImageNet

- ImageNet is a project focused on labeling and categorising objects into 22,000 separate categories for the purpose of computer vision research.
- The models are trained on 1.2 million images, validated on 50,000 more and tested on 100,000 images.
- Image categories correspond to daily life object classes, such as dogs, cats, vehicle types etc.

Overall

- Total number of non-empty synsets: 21841
- Total number of images: 14,197,122
- Number of images with bounding box annotations: 1,034,908
- Number of synsets with SIFT features: 1000
- Number of images with SIFT features: 1.2 million

Source: https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c

- It uses 3x3 convolutional layers stack on top of each other in increasing depth.
- Max pooling is responsible for reducing the volume size.
- There are 13 convolutional layers, 5 Max Pooling layers and 3 Dense layers (with 4,096 nodes and ReLu activation) which sums up to 21 layers
- At the end it has 2 fully-connected layers by a softmax classifier.
- It has 16 weight layers.

Advantages

- The Vgg16 network architecture its characterised by its simplicity compared to others.
- The model achieves 92.7% accuracy on the test set of ImageNet dataset.

Disadvantages

- Training and deploying the network is time consuming (approximately 138 million parameters).
- The architecture weights themselves are quite large in terms of disk/bandwidth.

Input

Conv 1-1 Conv 1-2

Pooing

Conv 2-1

Conv 2-2

Pooing

Conv 3-1

Conv 3-2

Conv 3-3

Pooing

Conv 4-1

Conv 4-2

Conv 4-3

Pooing

Conv 5-1

Conv 5-2

Conv 5-3

Pooing

Dense

Dense Dense

Source: https://neurohive.io/en/popular-networks/vgg16/

VG-T0

ResNet50

- ResNet-50 is a convolutional neural network that is 50 layers deep.
- Implements skip connections that do not simply go to the next layer, but instead propagate features from previous layers ahead in time.
- The network has an image input size of 224-by-224.
- Uses Global Average Pooling.
- Batch normalisation used after each convolutional and before activation.
- Batch size of 256.
- Learning rate starts from 0.1 and is divided by 10 when error plateaus.
- Trained for 60 x 10⁴ iterations.
- Weight decay of 0.0001, momentum of 0.9.
- Does not use Dropout.
- Test-time augmentation: 10-crop testing.

Advantages

- Deeper than VggNet, with less computation.
- The model achieves 93.3% accuracy on the test set of ImageNet dataset.

(a) original (b) proposed

Source: https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035

Xception

- Xception stands for the Extreme version of Inception and replaces the standard Inception modules with depth-wise separable convolutions.
- More efficient use of Inception's parameters.
- Xception is a convolutional neural network that is 71 layers deep.
- Implements residual skip connections that propagate features from previous layers

ahead in time.

- The network has an image input size of 299-by-299.
- The initial number of channels is translated to n×n spatial convolutions.
- The 3×3 convolutional is done first, before any spatial convolutions.
- Uses intermediate ReLu activation function.

Advantages

- Slightly outperforms Inception V2 and significantly outperforms Inception V3 on the ImageNet dataset.
- The model achieves 94.5% accuracy on the test set of ImageNet dataset.
- The number of connections is smaller which leads to lighter model.

Source: https://towardsdatascience.com/review-xception-with-depthwise-separable-convolution-better-than-inception-v3-image-dc967dd42568

Final Model

 At the end of the Xception network, we added two Dense and one Dropout layer.

Results

Xception	Train set	Validation set	Test set
Accuracy	55%	90%	92%
Loss	2.1	0.4	0.23

Error Analysis

Misclassified Breeds:

- Some breeds have a lots of similarities, it's difficult to classify even by human
- Some images contains more than one dog breed

Whippet

Italian greyhound

Pitbull terrier and Irish Greyhound

Error Analysis

Bias and Variance

Some dog breeds are initially having much more images than other

	Dog	Count
)	Maltese_dog	252
0	Afghan_hound	239
0	Scottish_deerhound	232
0	Pomeranian	219
0	Samoyed	218

Mitigations:

- Make stable distribution for each breed
- Use image augmentation to increase the size of the training set
- Adopt sparse model

Error Analysis - Xception

Validation accuracy is much higher than training accuracy

- Because we adopt drop-out layer
- Better generalization and is less likely to overfit the training data
- More robust on the validation

Accuracy and Loss of Xception model in 30 epochs

Conclusion

Problem encountered

- Separations of tasks
- Underestimate the time of training a model on images
- Time differences with some members of the team

Future work

- Deeper Network Topology
- Explore how other algorithm tuning methods could affect the accuracy of the model such as early stopping or using different batch types and epochs.
- Try different resampling methods such as: K-folds cross validation.

