Отчет по лабораторной работе № 3 «Применение многослойной нейронной сети для классификации данных»

студента Ле Дык Ань группы <u>Б20-205</u> . Дата сдачи: ₋	
Ведущий преподаватель: Трофимов А.Г. оценка: _	подпись:

Вариант №7

Цель работы: изучение математической модели многослойной нейронной сети и решение с её помощью задачи классификации данных.

1. Исходные данные

Число признаков	Число классов	Объём выборки	Объёмы выборок для
тисло признаков	тисло классов	оовем выоорки	каждого класса
250	•	250	0: 200
350	2	350	1: 150

Диаграмма рассеяния исходных данных:

Формирование обучающей, валидационной и тестовой выборок:

	Обучающая	Валидационна я	Тестовая	Всего
%	60	30	10	100
Объём выборки	210	105	35	350
Объёмы выборок для	1: 92	1: 42	1: 16	1: 150
каждого класса	0: 108	0: 63	0: 19	0: 200

Предобработка данных:

	Метод	Параметры метода	Формула расчёта
Предобработка входов	Переход на 0	-	label = (label+1)/2
Предобработка выходов	-	-	-

2. Построение нейросетевого классификатора с двумя скрытыми слоями

Параметры архитектуры сети:

Число входов	Число выходов	Число и АХ нейронов 1-го скрытого слоя	Число и АХ нейронов 2-го скрытого слоя	Функция активации выходного нейрона
2	1	20	20	Logistic

Схема нейронной сети:

Параметры обучения:

Метод обучения	Параметры метода обучения	Режим обучения	Функция потерь
Momentum	learning rate = 0.01	Stochastic	Categorical cross- entropy

Параметры инициализации:

<u> </u>		
Распределение весов 1-го	Распределение весов 2-го	Распределение весов
скрытого слоя	скрытого слоя	выходного слоя
glorot_uniform	glorot_uniform	glorot_uniform

Критерий останова: нет

Зависимость средней функции потерь $E(\tau)$ (левая ось) и ошибки классификации $\varepsilon(\tau)$ (правая ось) на обучающей, валидационной и тестовой выборках от времени обучения (всего 6 графиков):

Отметить на графике начало переобучения (если наблюдается) (ε = число неверно классифицированных примеров/число всех примеров)

Показатели качества обученного нейросетевого классификатора:

	Обучающая	Валидационная	Тестовая
Среднее значение функции потерь E	0.3773	0.4008	0.3174
Ошибка классификации є	0.1714	0.1810	0.1429

Матрица ошибок классификации обученной сети на обучающей / тестовой выборках:

Формируемые обученной сетью области классов:

Весенний семестр 2022/2023. Лабораторный практикум по курсу «Нейронные сети» (нанести на диаграмму исходные данные, закрасить области разных классов разными цветами, отметить границы между классами)

3. Проверка устойчивости найденного решения

Провести обучение сети заново из другой случайной начальной точки w(0).

Показатели качества обученного нейросетевого классификатора:

Ţ	Обучающая	Валидационная	Тестовая
Среднее значение функции потерь E	0.3089	0.3931	0.3512
Ошибка классификации є	0.1268	0.1905	0.2000

Формируемые обученной сетью области классов:

(нанести на диаграмму исходные данные, закрасить области разных классов разными цветами, отметить границы между классами)

Выводы:в рамках лабораторной работы была решена задача классификации точек на плоскости при помощи многослойной нейронной сети. В результате выполнения работы была построена модель нейронной сети, способная классифицировать точки с некоторой точностью