Exemples du cours Applications du produit scalaire 2019/2020

Frédéric Junier

Lycée du Parc 1 Boulevard Anatole France 69006 Lyon

30 avril 2020

Table des matières

- Capacité 1
- Capacité 2
- Capacité 3
- Capacité 4
- Capacité 5
- Capacité 6
- Capacité 7
- Capacité 8
- Algorithmique 1
- Capacité 9

Capacité 1 : déterminer une ligne de niveau, partie 1

Soit un segment [AB] de longueur 4 et I son milieu.

Capacité 1 : déterminer une ligne de niveau, partie 1

Soit un segment [AB] de longueur 4 et I son milieu.

• Soit M un point du plan tel que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 2$.

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = 2 \Longleftrightarrow (\overrightarrow{MI} + \overrightarrow{IA}) \cdot (\overrightarrow{MI} + \overrightarrow{IB}) = 2$$

I milieu de [*AB*] donc $\overrightarrow{IA} = -\overrightarrow{IB}$

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = 2 \iff (\overrightarrow{MI} + \overrightarrow{IA}) \cdot (\overrightarrow{MI} - \overrightarrow{IA}) = 2$$
 $\overrightarrow{MA} \cdot \overrightarrow{MB} = 2 \iff \overrightarrow{MI}^2 - \overrightarrow{IA}^2 = 2$
 $\overrightarrow{MA} \cdot \overrightarrow{MB} = 2 \iff MI^2 - AI^2 = 2$

Capacité 1 : déterminer une ligne de niveau, partie 2

• Soit Γ l'ensemble des points M du plan tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 2$.

$$M \in \Gamma \iff \overrightarrow{MA} \cdot \overrightarrow{MB} = 2$$

d'après la question précédente :

$$M \in \Gamma \iff MI^2 - AI^2 = 2$$

$$M \in \Gamma \iff MI^2 = AI^2 + 2$$

$$AI = AB/2 = 2$$

$$M \in \Gamma \iff MI^2 = 6$$

 Γ est donc le cercle de centre I et de rayon $\sqrt{6}$.

Soit ABC un triangle tel que AB = 4, AC = 5, BC = 6.

Soit ABC un triangle tel que AB = 4, AC = 5, BC = 6.

• D'après la propriété d'Al-Kashi :

$$AC^{2} = AB^{2} + BC^{2} - 2 \times AB \times BC \times \cos(\widehat{ABC})$$

$$\cos(\widehat{ABC}) = (AB^{2} + BC^{2} - AC^{2})/(2 \times AB \times BC)$$

$$\cos(\widehat{ABC}) = (16 + 36 - 25)/(2 \times 4 \times 6)$$

$$\cos(\widehat{ABC}) = (16 + 36 - 25)/(2 \times 4 \times 6)$$

$$\widehat{ABC} \approx 56^{\circ} \text{ au degré près}$$

Soit ABC un triangle tel que BC = 4, $\widehat{ABC} = 50^{\circ}$ et AB = 3. Calculer la longueur AC.

Soit ABC un triangle tel que BC = 4, $\widehat{ABC} = 50^{\circ}$ et AB = 3. Calculer la longueur AC.

• D'après la propriété d'Al-Kashi :

$$AC^{2} = AB^{2} + BC^{2} - 2 \times AB \times BC \times \cos(\widehat{ABC})$$

$$AC^{2} = 3^{2} + 4^{2} - 2 \times 3 \times 4\cos(50)$$

$$AC = \sqrt{3^{2} + 4^{2} - 2 \times 3 \times 4\cos(50)}$$

$$A \approx 3.1$$

Soit ABC un triangle tel que $\widehat{BAC} = 30^{\circ}$, AC = 2 et $\overline{AB} \cdot \overline{AC} = 5$. Calculer la longueur BC.

Soit ABC un triangle tel que $\widehat{BAC} = 30^{\circ}$, AC = 2 et $AB \cdot AC = 5$. Calculer la longueur BC.

• D'après la propriété du cosinus :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC})$$

 $5 = 2 \times AB \times \cos(30)$
 $AB = \frac{5}{\sqrt{3}} = \frac{5\sqrt{3}}{3}$

Soit ABC un triangle tel que $\widehat{BAC} = 30^{\circ}$, AC = 2 et $AB \cdot AC = 5$. Calculer la longueur BC.

• D'après la propriété du cosinus :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC})$$

 $5 = 2 \times AB \times \cos(30)$
 $AB = \frac{5}{\sqrt{3}} = \frac{5\sqrt{3}}{3}$

• Ensuite, d'après la propriété d'Al-Kashi :

$$BC^{2} = AB^{2} + AC^{2} - 2\overrightarrow{AB} \cdot \overrightarrow{AC}$$

$$BC^{2} = 25/3 + 4 - 10$$

$$BC = \sqrt{\frac{7}{3}}$$

Dans le plan muni d'un repère orthonormé, soit les points A(4;5) et B(6;3).

Dans le plan muni d'un repère orthonormé, soit les points A(4;5) et B(6;3).

• Un vecteur directeur de la droite (AB) est AB (2; -2).

Dans le plan muni d'un repère orthonormé, soit les points A(4;5) et B(6;3).

- Un vecteur directeur de la droite (AB) est \overrightarrow{AB} (2; -2).
- Si \overrightarrow{u} (c; d) est un vecteur directeur d'une droite alors \overrightarrow{n} est un vecteur normal si et seulement si $\overrightarrow{n} \neq \overrightarrow{0}$ et $\overrightarrow{n} \cdot \overrightarrow{u} = 0$, donc on peut choisir \overrightarrow{n} (-d; c).
 - Dans notre cas, $\overrightarrow{n}(2;2)$ est un vecteur normal à (AB)

Si \mathscr{D} d'équation ax + by + c = 0 alors un vecteur directeur est $\overrightarrow{u}(-b; a)$ et un vecteur normal est $\overrightarrow{n}(a; b)$.

Si \mathscr{D} d'équation ax + by + c = 0 alors un vecteur directeur est $\overrightarrow{u}(-b; a)$ et un vecteur normal est $\overrightarrow{n}(a; b)$.

• \mathcal{D}_1 d'équation $y = x \Leftrightarrow x - y = 0$ admet pour vecteur normal $\overrightarrow{n}(1;-1)$ et pour vecteur directeur $\overrightarrow{u}(1;1)$.

Si \mathscr{D} d'équation ax + by + c = 0 alors un vecteur directeur est $\overrightarrow{u}(-b; a)$ et un vecteur normal est $\overrightarrow{n}(a; b)$.

- \mathcal{D}_1 d'équation $y = x \Leftrightarrow x y = 0$ admet pour vecteur normal $\overrightarrow{n}(1;-1)$ et pour vecteur directeur $\overrightarrow{u}(1;1)$.
- \mathcal{D}_2 d'équation $y = -2x \Leftrightarrow 2x + y = 0$ admet pour vecteur normal $\overrightarrow{n}(2;1)$ et pour vecteur directeur $\overrightarrow{u}(-1;2)$.

Si \mathscr{D} d'équation ax + by + c = 0 alors un vecteur directeur est $\overrightarrow{u}(-b; a)$ et un vecteur normal est $\overrightarrow{n}(a; b)$.

- \mathcal{D}_1 d'équation $y = x \Leftrightarrow x y = 0$ admet pour vecteur normal $\overrightarrow{n}(1; -1)$ et pour vecteur directeur $\overrightarrow{u}(1; 1)$.
- \mathcal{D}_2 d'équation $y = -2x \Leftrightarrow 2x + y = 0$ admet pour vecteur normal $\overrightarrow{n}(2;1)$ et pour vecteur directeur $\overrightarrow{u}(-1;2)$.
- \mathcal{D}_3 d'équation $y = 3 \Leftrightarrow y 3 = 0$ admet pour vecteur normal $\overrightarrow{n}(0;1)$ et pour vecteur directeur $\overrightarrow{u}(1;0)$.

Si \mathscr{D} d'équation ax + by + c = 0 alors un vecteur directeur est $\overrightarrow{u}(-b;a)$ et un vecteur normal est $\overrightarrow{n}(a;b)$.

- \mathcal{D}_1 d'équation $y = x \Leftrightarrow x y = 0$ admet pour vecteur normal $\overrightarrow{n}(1; -1)$ et pour vecteur directeur $\overrightarrow{u}(1; 1)$.
- \mathcal{D}_2 d'équation $y = -2x \Leftrightarrow 2x + y = 0$ admet pour vecteur normal $\overrightarrow{n}(2;1)$ et pour vecteur directeur $\overrightarrow{u}(-1;2)$.
- \mathcal{D}_3 d'équation $y = 3 \Leftrightarrow y 3 = 0$ admet pour vecteur normal \overrightarrow{n} (0; 1) et pour vecteur directeur \overrightarrow{u} (1; 0).
- \mathcal{D}_4 d'équation $x = 4 \Leftrightarrow x 4 = 0$ admet pour vecteur normal \overrightarrow{n} (1;0) et pour vecteur directeur \overrightarrow{u} (0;1).

Capacité 4 : Déterminer une équation cartésienne de droite à partir d'un point et d'un vecteur normal

Dans le plan muni d'un repère orthonormé, soit les points A(2;3) et B(-5;4), I le milieu de [AB] et Δ la médiatrice de [AB].

Capacité 4 : Déterminer une équation cartésienne de droite à partir d'un point et d'un vecteur normal

Dans le plan muni d'un repère orthonormé, soit les points A(2;3) et B(-5;4), I le milieu de [AB] et Δ la médiatrice de [AB].

 La médiatrice d'un segment est la perpendiculaire à ce segment en son milieu. On en déduit que :

$$M \in \Delta \Leftrightarrow \overrightarrow{IM} \cdot \overrightarrow{AB} = 0$$

Capacité 4 : Déterminer une équation cartésienne de droite à partir d'un point et d'un vecteur normal

Dans le plan muni d'un repère orthonormé, soit les points A(2;3) et B(-5;4), I le milieu de [AB] et Δ la médiatrice de [AB].

• La médiatrice d'un segment est la perpendiculaire à ce segment en son milieu. On en déduit que :

$$M \in \Delta \Leftrightarrow \overrightarrow{IM} \cdot \overrightarrow{AB} = 0$$

• On a \overrightarrow{AB} (-7; 1) et I(-3/2; 7/2) donc si M(x; y), alors \overrightarrow{IM} (x+3/2; y-7/2). D'après la question précédente :

$$M(x;y) \in \Delta \Leftrightarrow -7(x+3/2) + (y-7/2) = 0$$

 $M(x;y) \in \Delta \Leftrightarrow -7x + y - 14 = 0$

Dans le plan muni d'un repère orthonormé, on considère la droite \mathcal{D}_1 d'équation 2y - 3x + 6 = 0.

Dans le plan muni d'un repère orthonormé, on considère la droite \mathcal{D}_1 d'équation 2y - 3x + 6 = 0.

• Pour déterminer les coordonnées du point d'intersection de \mathscr{D}_1 avec l'axe des abscisses, on résout le système :

$$\begin{cases} 2y - 3x + 6 = 0 \\ y = 0 \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ y = 0 \end{cases}$$

De coupe l'axe des abscisses au point de coordonnées (2;0).

Dans le plan muni d'un repère orthonormé, on considère la droite \mathcal{D}_1 d'équation 2y - 3x + 6 = 0.

• Pour déterminer les coordonnées du point d'intersection de \mathscr{D}_1 avec l'axe des abscisses, on résout le système :

$$\begin{cases} 2y - 3x + 6 = 0 \\ y = 0 \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ y = 0 \end{cases}$$

- De coupe l'axe des abscisses au point de coordonnées (2;0).
- Pour déterminer les coordonnées du point d'intersection de \mathscr{D}_1 avec l'axe des ordonnées, on résout le système :

$$\begin{cases} 2y - 3x + 6 = 0 \\ x = 0 \end{cases} \Leftrightarrow \begin{cases} y = -3 \\ x = 0 \end{cases}$$

 \mathcal{D} coupe l'axe des ordonnées au point de coordonnées (0; -3).

Dans le plan muni d'un repère orthonormé, on considère la droite \mathcal{D}_1 d'équation 2y - 3x + 6 = 0.

Dans le plan muni d'un repère orthonormé, on considère la droite \mathcal{D}_1 d'équation 2y - 3x + 6 = 0.

• Un vecteur normal à \mathcal{D}_1 est \overrightarrow{n} (-3; 2), c'est aussi un vecteur normal à la droite \mathcal{D}_2 parallèle à \mathcal{D}_1 et passant par B(1; 2).

Dans le plan muni d'un repère orthonormé, on considère la droite \mathcal{D}_1 d'équation 2y - 3x + 6 = 0.

- Un vecteur normal à \mathcal{D}_1 est \overrightarrow{n} (-3;2), c'est aussi un vecteur normal à la droite \mathcal{D}_2 parallèle à \mathcal{D}_1 et passant par B(1;2).
- Une équation de \mathcal{D}_2 est donc de la forme -3x + 2y + c = 0.

Dans le plan muni d'un repère orthonormé, on considère la droite \mathcal{D}_1 d'équation 2y - 3x + 6 = 0.

- Un vecteur normal à \mathcal{D}_1 est \overrightarrow{n} (-3; 2), c'est aussi un vecteur normal à la droite \mathcal{D}_2 parallèle à \mathcal{D}_1 et passant par B(1; 2).
- Une équation de \mathcal{D}_2 est donc de la forme -3x + 2y + c = 0.

•

$$B(1; 2) \in \mathcal{D}_2 \Leftrightarrow -3 + 4 + c = 0$$

$$B(1; 2) \in \mathcal{D}_2 \Leftrightarrow c = -1$$

Une équation de \mathcal{D}_2 est -3x + 2y - 1 = 0

Dans le plan muni d'un repère orthonormé, on considère la droite \mathcal{D}_1 d'équation 2y - 3x + 6 = 0.

Dans le plan muni d'un repère orthonormé, on considère la droite \mathcal{D}_1 d'équation 2y - 3x + 6 = 0.

• Un vecteur directeur e \mathcal{D}_1 est \overrightarrow{u} (-2; -3), c'est aussi un vecteur normal à la droite \mathcal{D}_3 perpendiculaire à \mathcal{D}_1 et passant par B(1;2).

Dans le plan muni d'un repère orthonormé, on considère la droite \mathcal{D}_1 d'équation 2y - 3x + 6 = 0.

- Un vecteur directeur e \mathcal{D}_1 est \overrightarrow{u} (-2; -3), c'est aussi un vecteur normal à la droite \mathcal{D}_3 perpendiculaire à \mathcal{D}_1 et passant par B(1;2).
- Une équation de \mathcal{D}_3 est donc de la forme -2x-3y+c=0.

Dans le plan muni d'un repère orthonormé, on considère la droite \mathcal{D}_1 d'équation 2y - 3x + 6 = 0.

- Un vecteur directeur e \mathcal{D}_1 est \overrightarrow{u} (-2; -3), c'est aussi un vecteur normal à la droite \mathcal{D}_3 perpendiculaire à \mathcal{D}_1 et passant par B(1;2).
- Une équation de \mathcal{D}_3 est donc de la forme -2x 3y + c = 0.

•

$$B(1; 2) \in \mathcal{D}_3 \Leftrightarrow -2 - 6 + c = 0$$

$$B(1; 2) \in \mathcal{D}_3 \Leftrightarrow c = 8$$

Une équation de \mathcal{D}_3 est -2x-3y+8=0.

Capacité 6 : Déterminer les coordonnées du projeté orthogonal d'un point sur une droite, Partie 1

Dans le plan muni d'un repère orthonormé, on considère la droite \mathscr{D} d'équation x + 2y - 4 = 0 et le point A(3; 3).

Capacité 6 : Déterminer les coordonnées du projeté orthogonal d'un point sur une droite, Partie 1

Dans le plan muni d'un repère orthonormé, on considère la droite \mathscr{D} d'équation x+2y-4=0 et le point A(3;3).

• Soit Δ la droite perpendiculaire à \mathscr{D} passant A. \overrightarrow{u} (-2; 1) est un vecteur directeur de \mathscr{D} et donc un vecteur normal à Δ .

Dans le plan muni d'un repère orthonormé, on considère la droite \mathscr{D} d'équation x + 2y - 4 = 0 et le point A(3; 3).

- Soit Δ la droite perpendiculaire à \mathscr{D} passant A. \overrightarrow{u} (-2;1) est un vecteur directeur de \mathscr{D} et donc un vecteur normal à Δ .
- Une équation de Δ est donc de la forme -2x + y + c = 0.

Dans le plan muni d'un repère orthonormé, on considère la droite \mathscr{D} d'équation x + 2y - 4 = 0 et le point A(3; 3).

- Soit Δ la droite perpendiculaire à \mathscr{D} passant A. \overrightarrow{u} (-2; 1) est un vecteur directeur de \mathscr{D} et donc un vecteur normal à Δ .
- Une équation de Δ est donc de la forme -2x + y + c = 0.

•

$$A(3;3) \in \Delta \Leftrightarrow -6+3+c=0$$

 $A(3;3) \in \Delta \Leftrightarrow c=3$

Dans le plan muni d'un repère orthonormé, on considère la droite \mathscr{D} d'équation x+2y-4=0 et le point A(3;3).

- Soit Δ la droite perpendiculaire à $\mathscr D$ passant A. \overrightarrow{u} (-2; 1) est un vecteur directeur de $\mathscr D$ et donc un vecteur normal à Δ .
- Une équation de Δ est donc de la forme -2x + y + c = 0.

•

$$A(3;3) \in \Delta \Leftrightarrow -6+3+c=0$$

 $A(3;3) \in \Delta \Leftrightarrow c=3$

• Une équation de Δ est donc -2x + y + 3 = 0.

Dans le plan muni d'un repère orthonormé, on considère la droite \mathscr{D} d'équation x+2y-4=0 et le point A(3;3). On a démontrée qu'une équation de Δ la perpendiculaire à \mathscr{D} passant par A est -2x+y+3=0.

Dans le plan muni d'un repère orthonormé, on considère la droite \mathscr{D} d'équation x+2y-4=0 et le point A(3;3). On a démontrée qu'une équation de Δ la perpendiculaire à \mathscr{D} passant par A est -2x+y+3=0.

 Le projeté orthogonal H de A sur D est le point d'intersection de D et de Δ.

Dans le plan muni d'un repère orthonormé, on considère la droite \mathscr{D} d'équation x+2y-4=0 et le point A(3;3). On a démontrée qu'une équation de Δ la perpendiculaire à \mathscr{D} passant par A est -2x+y+3=0.

- Le projeté orthogonal H de A sur D est le point d'intersection de D et de Δ.
- Les coordonnées de H sont solutions du système :

$$\begin{cases} -2x+y+3=0 \\ x+2y-4=0 \end{cases} \Leftrightarrow \begin{cases} y=2x-3 \\ x+2(2x-3)-4=0 \end{cases} \Leftrightarrow \begin{cases} y=2x-3 \\ 5x=10 \end{cases}$$
$$\begin{cases} -2x+y+3=0 \\ x+2y-4=0 \end{cases} \Leftrightarrow \begin{cases} y=1 \\ x=2 \end{cases}$$

Les coordonnées de H sont donc (2;1).

Dans le plan muni d'un repère orthonormé, soit les points A(2;1) et B(5;3). Soit Γ le cercle de diamètre [AB].

Dans le plan muni d'un repère orthonormé, soit les points A(2;1) et B(5;3).

Soit Γ le cercle de diamètre [AB].

• Le centre I du cercle Γ est le milieu du segment [AB], ses coordonnées sont $(\frac{2+5}{2}; \frac{1+3}{2})$ soit $(\frac{7}{2}; 2)$.

Dans le plan muni d'un repère orthonormé, soit les points A(2;1) et B(5;3).

Soit Γ le cercle de diamètre [AB].

- Le centre I du cercle Γ est le milieu du segment [AB], ses coordonnées sont $(\frac{2+5}{2}; \frac{1+3}{2})$ soit $(\frac{7}{2}; 2)$.
- Le rayon du cercle est $\frac{AB}{2} = \frac{\sqrt{(5-2)^2 + (3-1)^2}}{2} = \frac{\sqrt{13}}{2}$.

Dans le plan muni d'un repère orthonormé, soit les points A(2;1) et B(5;3).

Soit Γ le cercle de diamètre [AB].

- Le centre I du cercle Γ est le milieu du segment [AB], ses coordonnées sont $(\frac{2+5}{2}; \frac{1+3}{2})$ soit $(\frac{7}{2}; 2)$.
- Le rayon du cercle est $\frac{AB}{2} = \frac{\sqrt{(5-2)^2 + (3-1)^2}}{2} = \frac{\sqrt{13}}{2}$.
- Une équation de Γ est donc $(x-\frac{7}{2})^2+(y-2)^2=\frac{13}{4}$.

Dans le plan muni d'un repère orthonormé, soit les points A(2;1) et B(5;3). Soit \mathcal{T} la tangente à Γ au point A.

Dans le plan muni d'un repère orthonormé, soit les points A(2;1) et B(5;3). Soit \mathcal{T} la tangente à Γ au point A.

• Le centre du cercle Γ est $I\left(\frac{7}{2};2\right)$ donc $\overrightarrow{AI}\left(\frac{3}{2};1\right)$ est un vecteur normal à \mathcal{T} .

Dans le plan muni d'un repère orthonormé, soit les points A(2;1) et B(5;3). Soit \mathcal{F} la tangente à Γ au point A.

- Le centre du cercle Γ est $I\left(\frac{7}{2};2\right)$ donc $\overrightarrow{AI}\left(\frac{3}{2};1\right)$ est un vecteur normal à \mathcal{F} .
- Une équation de \mathcal{T} est donc de la forme $\frac{3}{2}x + y + c = 0$

Dans le plan muni d'un repère orthonormé, soit les points A(2;1) et B(5;3). Soit \mathcal{T} la tangente à Γ au point A.

- Le centre du cercle Γ est $I\left(\frac{7}{2};2\right)$ donc $\overrightarrow{AI}\left(\frac{3}{2};1\right)$ est un vecteur normal à \mathcal{F} .
- Une équation de \mathcal{T} est donc de la forme $\frac{3}{2}x + y + c = 0$

•

$$A(2;1) \in \mathcal{T} \Leftrightarrow 1+1+c=0$$

 $A(2;1) \in \mathcal{T} \Leftrightarrow c=-2$

Dans le plan muni d'un repère orthonormé, soit les points A(2;1) et B(5;3). Soit \mathcal{T} la tangente à Γ au point A.

- Le centre du cercle Γ est $I\left(\frac{7}{2};2\right)$ donc $\overrightarrow{AI}\left(\frac{3}{2};1\right)$ est un vecteur normal à \mathcal{T} .
- Une équation de \mathcal{T} est donc de la forme $\frac{3}{2}x + y + c = 0$

•

$$A(2;1) \in \mathcal{T} \Leftrightarrow 1+1+c=0$$

 $A(2;1) \in \mathcal{T} \Leftrightarrow c=-2$

• Une équation de \mathcal{T} est donc $\frac{3}{2}x + y - 2 = 0$.

Dans le plan muni d'un repère orthonormé, soit les points A(2;1) et B(5;3). Une équation de Γ est donc $(x-\frac{7}{2})^2+(y-2)^2=\frac{13}{4}$. On considère la droite Δ d'équation x+y=6.

Dans le plan muni d'un repère orthonormé, soit les points A(2;1) et B(5;3). Une équation de Γ est donc $(x-\frac{7}{2})^2+(y-2)^2=\frac{13}{4}$. On considère la droite Δ d'équation x+y=6.

• Les coordonnées d'un point d'intersection de Γ et de la droite Δ sont solutions du système :

$$\begin{cases} (x - \frac{7}{2})^2 + (y - 2)^2 = \frac{13}{4} \\ x + y = 6 \end{cases} \Leftrightarrow \begin{cases} (x - \frac{7}{2})^2 + (4 - x)^2 = \frac{13}{4} \\ y = 6 - x \end{cases}$$
$$\begin{cases} (x - \frac{7}{2})^2 + (y - 2)^2 = \frac{13}{4} \\ x + y = 6 \end{cases} \Leftrightarrow \begin{cases} 2x^2 - 15x + 25 = 0 \\ y = 6 - x \end{cases}$$

On résout l'équation $2x^2 - 15x + 25 = 0$ de discriminant $b^2 - 4ac = 25$ et de racines 5 et $\frac{5}{2}$

$$\begin{cases} (x - \frac{7}{2})^2 + (y - 2)^2 = \frac{13}{4} \\ x + y = 6 \end{cases} \Leftrightarrow \begin{cases} x = 5 \\ y = 1 \end{cases} \text{ ou } \begin{cases} x = 5/2 \\ y = 3,5 \end{cases}$$

Le plan muni d'un repère orthonormé.

Le plan muni d'un repère orthonormé.

• Soit Γ l'ensemble des points M(x;y) dont les coordonnées vérifient $x^2 + y^2 + 2 = 0$.

$$M(x;y) \in \Gamma \Leftrightarrow x^2 + y^2 + 2 = 0$$

 $M(x;y) \in \Gamma \Leftrightarrow x^2 + y^2 = -2$

Or pour tout couple de réels (x,y), on a $x^2 + y^2 \ge 0$

Le plan muni d'un repère orthonormé.

• Soit Γ l'ensemble des points M(x;y) dont les coordonnées vérifient $x^2 + y^2 + 2 = 0$.

$$M(x;y) \in \Gamma \Leftrightarrow x^2 + y^2 + 2 = 0$$

 $M(x;y) \in \Gamma \Leftrightarrow x^2 + y^2 = -2$

Or pour tout couple de réels (x,y), on a $x^2 + y^2 \ge 0$

ullet On en déduit que Γ est un ensemble vide.

Le plan muni d'un repère orthonormé.

Le plan muni d'un repère orthonormé.

• Soit Γ l'ensemble des points M(x;y) dont les coordonnées vérifient $x^2 - 2x + y^2 + 6y + 26 = 0$.

$$M(x;y) \in \Gamma \Leftrightarrow x^2 - 2x + y^2 + 6y + 26 = 0$$

$$M(x;y) \in \Gamma \Leftrightarrow x^2 - 2x + 1 + y^2 + 6y + 9 - 1 - 9 - 26 = 0$$

$$M(x;y) \in \Gamma \Leftrightarrow (x-1)^2 + (y+3)^2 - 1 - 9 - 26 = 0$$

$$M(x;y) \in \Gamma \Leftrightarrow (x-1)^2 + (y+3)^2 = 6^2$$

Le plan muni d'un repère orthonormé.

• Soit Γ l'ensemble des points M(x;y) dont les coordonnées vérifient $x^2 - 2x + y^2 + 6y + 26 = 0$.

$$M(x;y) \in \Gamma \Leftrightarrow x^2 - 2x + y^2 + 6y + 26 = 0$$

$$M(x;y) \in \Gamma \Leftrightarrow x^2 - 2x + 1 + y^2 + 6y + 9 - 1 - 9 - 26 = 0$$

$$M(x;y) \in \Gamma \Leftrightarrow (x-1)^2 + (y+3)^2 - 1 - 9 - 26 = 0$$

$$M(x;y) \in \Gamma \Leftrightarrow (x-1)^2 + (y+3)^2 = 6^2$$

• On en déduit que Γ est le cercle de centre $\Omega(1; -3)$ et de rayon 6.

Le plan muni d'un repère orthonormé.

Le plan muni d'un repère orthonormé.

• Une équation cartésienne du cercle de centre O(0;0) et de rayon 1 est $x^2 + y^2 = 1^2$.

Le plan muni d'un repère orthonormé.

- Une équation cartésienne du cercle de centre O(0;0) et de rayon 1 est $x^2 + y^2 = 1^2$.
- Si on suppose $x \ge 0$ et $y \ge 0$, alors :

$$\begin{cases} x^2 + y^2 = 1 \\ x \ge 0 \text{ et } y \ge 0 \end{cases} \Leftrightarrow \begin{cases} y = \sqrt{1 - x^2} \\ x \ge 0 \end{cases}$$

Le plan muni d'un repère orthonormé.

- Une équation cartésienne du cercle de centre O(0;0) et de rayon 1 est $x^2 + y^2 = 1^2$.
- Si on suppose $x \ge 0$ et $y \ge 0$, alors :

$$\begin{cases} x^2 + y^2 = 1 \\ x \ge 0 \text{ et } y \ge 0 \end{cases} \Leftrightarrow \begin{cases} y = \sqrt{1 - x^2} \\ x \ge 0 \end{cases}$$

• L'aire \mathscr{A} est celle d'un quart de disque de rayon 1, sa valeur est donc de $\frac{\pi}{4}$.

Calculs des sommes d'aires de rectangles.

Calculs des sommes d'aires de rectangles.

```
from math import sqrt

def sommeRectGauche(n):
    s = 0
    for k in range(n):
        s = s + sqrt(1 - (k/n) ** 2)
    return s
```

Calculs des sommes d'aires de rectangles.

```
from math import sqrt

def sommeRectGauche(n):
    s = 0
    for k in range(n):
        s = s + sqrt(1 - (k/n) ** 2)
    return s
```

```
from math import sqrt

def sommeRectDroite(n):
    s = 0
    for k in range(n):
        s = s + sqrt(1 - ((k+1)/n) ** 2)
    return s
```

On encadre l'aire du demi-disque par deux sommes d'aires de rectangles.

On encadre l'aire du demi-disque par deux sommes d'aires de rectangles.

Une parabole \mathscr{P} coupe l'axe des abscisses aux abscisses -4 et 2 et l'axe des ordonnées à l'ordonnée 6.

• Une équation de \mathscr{P} est de la forme $y = ax^2 + bx + c$.

- Une équation de \mathscr{P} est de la forme $y = ax^2 + bx + c$.
- L'abscisse α où l'axe de symétrie coupe l'axe des abscisses, est le milieu de l'intervalle [-4;2] donc $\alpha = \frac{-4+2}{2} = -1$. On a donc $-\frac{b}{2a} = -1$ et donc b = 2a.

- Une équation de \mathscr{P} est de la forme $y = ax^2 + bx + c$.
- L'abscisse α où l'axe de symétrie coupe l'axe des abscisses, est le milieu de l'intervalle [-4;2] donc $\alpha = \frac{-4+2}{2} = -1$. On a donc $-\frac{b}{2a} = -1$ et donc b = 2a.
- Par hypothèse on a $6 = a \times 0^2 + b \times 0 + c$ donc c = 6.

- Une équation de \mathscr{P} est de la forme $y = ax^2 + bx + c$.
- L'abscisse α où l'axe de symétrie coupe l'axe des abscisses, est le milieu de l'intervalle [-4;2] donc $\alpha = \frac{-4+2}{2} = -1$. On a donc $-\frac{b}{2a} = -1$ et donc b = 2a.
- Par hypothèse on a $6 = a \times 0^2 + b \times 0 + c$ donc c = 6.
- Toujours par hypothèse, on a $0 = a \times 2^2 + 2b + c$. On déduit de ce qui précède que $0 = 4a + 4a + 6 \Leftrightarrow a = -\frac{3}{4}$.

- Une équation de \mathscr{P} est de la forme $y = ax^2 + bx + c$.
- L'abscisse α où l'axe de symétrie coupe l'axe des abscisses, est le milieu de l'intervalle [-4;2] donc $\alpha = \frac{-4+2}{2} = -1$. On a donc $-\frac{b}{2a} = -1$ et donc b = 2a.
- Par hypothèse on a $6 = a \times 0^2 + b \times 0 + c$ donc c = 6.
- Toujours par hypothèse, on a $0 = a \times 2^2 + 2b + c$. On déduit de ce qui précède que $0 = 4a + 4a + 6 \Leftrightarrow a = -\frac{3}{4}$.
- Une équation de \mathscr{P} est donc $y = -\frac{3}{4}x^2 \frac{3}{2}x + 6$.

