ECOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ENSEA - ABIDJAN

INSTITUT SOUS-RÉGIONAL DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ISSEA - YAOUNDÉ

ÉCOLE NATIONALE DE LA STATISTIQUE ET DE L'ANALYSE ÉCONOMIQUE ENSAE - DAKAR ÉCOLE NATIONALE D'ÉCONOMIE APPLIQUÉE ET DE MANAGEMENT ENEAM - COTONOU

AVRIL 2022

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Mathématiques

CORRIGÉ de la 1^{ère} COMPOSITION DE MATHÉMATIQUES

Le sujet est constitué de deux problèmes indépendants. Tout résultat donné dans l'énoncé pourra être admis dans les questions suivantes. Le plus grand soin sera apporté à la rédaction et à la présentation des résultats.

1 Problème d'analyse

Le but du problème est d'étudier l'approximation de solutions d'équations différentielles par des suites numériques.

Partie I

Soit x_0 un réel fixé, et T > 0 un réel strictement positif.

1. Résoudre l'équation différentielle

$$y'(t) = -2y(t)$$

en la variable $y:[0,T]\to\mathbb{R}$, partant de la condition initiale $y(0)=x_0$. $y(t):=x_0\exp(-2t)$.

2. Soit $h:[0,T]\to\mathbb{R}$ une fonction continue. Résoudre l'équation différentielle

$$y'(t) = -2y(t) + h(t) \tag{1}$$

en la variable $y:[0,T] \to \mathbb{R}$, partant de la condition initiale $y(0) = x_0$. $y(t) := x_0 \exp(-2t) + \int_0^t \exp(2(s-t)h(s))ds.$

3. Montrer que la solution y de l'équation différentielle (1) est de classe $\mathcal{C}^1(]0, T[; \mathbb{R})$. La fonction h est continue, donc y' est continue.

4. Montrer que la dérivée y' de la solution y de l'équation différentielle (1) est une fonction bornée.

La fonction y' est continue sur un compact, donc bornée.

5. Soit

$$F: \begin{array}{ccc} [0,T] \times \mathbb{R} & \to & \mathbb{R} \\ (t,x) & \mapsto & F(t,x) \end{array}$$

une fonction continue et de classe $\mathcal{C}^1([0,T]\times\mathbb{R};\mathbb{R})$ telle que toutes ses dérivées partielles soient bornées. Montrer que la fonction F est globalement Lipschitzienne par rapport à sa deuxième variable, c'est-à-dire qu'il existe une constante $M\geq 0$ telle que pour tout $t\in [0,T]$, pour tous $y,z\in\mathbb{R}$

$$|F(t,y) - F(t,z)| \le M|y - z|.$$

Accroissements finis, $M = \sup_{t} \sup_{x} \partial F(t, x) / \partial x$.

6. Rappeler pourquoi il existe une unique solution à l'équation différentielle ordinaire suivante

$$y'(t) = F(t, y(t)) \tag{2}$$

partant de la condition initiale $y(0) = x_0$.

Cauchy-Lipschitz, car globalement Lipschitizienne

- 7. Montrer que la solution y de l'équation différentielle (5) est de classe $\mathcal{C}^2(]0, T[; \mathbb{R})$. La fonction y' est \mathcal{C}^1 donc y est \mathcal{C}^2 .
- 8. Soit $z:[0,T]\to\mathbb{R}$ la fonction continue vérifiant l'équation intégrale suivante pour tout $t\in[0,T]$

$$z(t) = x_0 + \int_0^t F(s, z(s)) ds.$$
 (3)

Montrer que la fonction z est de classe $C^1(]0, T[; \mathbb{R})$.

Dérivation d'une primitive.

9. Montrer que pour tout $t \in [0,T]$, il existe un réel $a \in [0,T]$ (dépendant de t) tel que

$$\int_0^t F(s, z(s)) = F(a, z(a)) \times t.$$

Formule de la moyenne.

10. Montrer que pour tous $s, t \in [0, T]$, on a le développement limité suivant pour y la solution de l'équation différentielle (5)

$$y(t) = y(s) + F(s,y(s))(t-s) + \left(\frac{\partial F}{\partial t}(s,y(s)) + \frac{\partial F}{\partial x}(s,y(s))F(s,y(s))\right) \frac{(t-s)^2}{2} + O((t-s)^2)$$

où $O((t-s)^2)$ est une fonction telle que $\frac{O((t-s)^2)}{(t-s)^2}$ est bornée quand $s \to t$.

Développement de Taylor à l'ordre 2, et calcul dans (5).

Partie II

On considère une fonction continue et de classe $\mathcal{C}^1(\mathbb{R}_+ \times \mathbb{R}; \mathbb{R})$ notée

$$F: \begin{array}{ccc} \mathbb{R}_+ \times \mathbb{R} & \to & \mathbb{R} \\ (t, x) & \mapsto & F(t, x) \end{array}$$

On suppose dans cette partie qu'il existe une constante M>0 telle que les dérivées partielles de la fonction F sont bornées par cette constante, c'est-à-dire

$$\sup_{t\in\mathbb{R}}\sup_{x\in\mathbb{R}}\left|\frac{\partial F}{\partial t}(t,x)\right|\leq M \qquad \text{ et } \qquad \sup_{t\in\mathbb{R}}\sup_{x\in\mathbb{R}}\left|\frac{\partial F}{\partial x}(t,x)\right|\leq M.$$

Soit T > 0 un réel strictement positif et N un entier strictement positif avec h = T/N. Soit x_0 un réel fixé, et soit $(x_n)_{n \in \mathbb{N}}$ la suite définie par

$$x_{n+1} = x_n + hF(nh, x_n), \tag{4}$$

pour tout $n \in \mathbb{N}$.

- 11. Uniquement pour cette question, on suppose que F est une fonction bornée. On note pour tout $n \in \mathbb{N}$, $A_n := \frac{x_n}{n+1}$. Montrer que la suite $(A_n)_{n \in \mathbb{N}}$ est bornée. Soit K une borne de F. Par récurrence évidente, $|x_{n+1}| \leq |x_n| + hK \leq |x_0| + (n+1)hK$, donc avec n_A tel que $\frac{|x_0|}{n_A + 2} < hK$, alors pour tout $n > n_A$, $|A_{n+1}| \leq hK + hK$. Les termes avant n_A sont bornés car en nombre fini.
- 12. La fonction F n'étant plus supposée bornée, on ne peut pas appliquer la question précédente, et on ne sait a priori rien dire sur la suite $(A_n)_{n\in\mathbb{N}}$. Trouver une fonction F non bornée (mais dont les dérivées partielles sont bornées) telle que la suite $(A_n)_{n\in\mathbb{N}}$ ne soit pas bornée (on précisera une valeur pour x_0 si besoin).

 Prendre $F:(t,x)\mapsto x$. Alors avec $x_0=1$, on a $x_{n+1}=x_n+hx_n$ donc $x_n=(1+h)^n$ n'est pas bornée.
- 13. Montrer que $\exp(x) x 1$ est positif pour tout $x \in \mathbb{R}_+$. On dérive. La dérivée $\exp(x) - 1$ est positive, donc la fonction est croissante, et $\exp(0) - 0 - 1 = 0$.
- 14. Soit L > 0, soit $(b_n)_{n \in \mathbb{N}}$ une suite de termes positifs, et $(y_n)_{n \in \mathbb{N}}$ une suite telle que pour tout $n \in \mathbb{N}$

$$0 < y_{n+1} < (1+L)y_n + b_n$$
.

Montrer que pour tout $n \in \mathbb{N}$

$$y_n \le y_0 \exp(Ln) + \sum_{k=0}^{n-1} b_k \exp(L(n-1-k)).$$

Par récurrence. On utilise les majorations $(1 + L) \le \exp(L)$ avec la question 13. L'initialisation est $y_1 \le (1 + L)y_0 + b_0 \le \exp(L)y_0 + b_0$.

15. Soit D > 0, soit $(d_n)_{n \in \mathbb{N}}$ une suite telle que pour tout $n \in \mathbb{N}$

$$d_n = \sum_{k=0}^{n-1} Dk \exp(-kD).$$

Montrer qu'il existe une constante E > 0 telle que pour tout $n \in \mathbb{N}$, $|d_n| \leq E$.

Le majorant est $\sum_{k=0}^{+\infty} Dk \exp(-kD)$ qui est une série convergente, comme série entière dérivée de la série entière de $x \mapsto \exp(-Dx)$.

16. Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ vérifie qu'il existe trois constantes K_1 , K_2 et K_3 telles que pour tout $n\in\mathbb{N}$

$$|x_{n+1}| \le (1+K_1)|x_n| + K_2n + K_3.$$

On a

$$|x_{n+1}| \leq |x_n| + h|F(nh, x_n) - F(nh, 0) + F(nh, 0)|$$

$$\leq |x_n| + hM|x_n - 0| + |F(nh, 0) - F(0, 0) + F(0, 0)|$$

$$\leq |x_n| + hM|x_n| + Mnh + |F(0, 0)|.$$

Donc $K_1 = hM$, $K_2 = hM$ et $K_3 = |F(0,0)|$.

17. On note pour tout $n \in \mathbb{N}$, $X_n := \exp\left(-\frac{MT}{N}\right)^n x_n$. Montrer que la suite $(X_n)_{n \in \mathbb{N}}$ est bornée.

Avec la question 14, on a $|x_n| \le |x_0| \exp(Mhn) + \sum_{k=0}^{n-1} (Mhk + K_3) \exp(Mh(n-k))$. Donc

$$|X_n| \le \exp\left(-\frac{MT}{N}\right)^n |x_0| \exp(Mhn) + \exp\left(-\frac{MT}{N}\right)^n \sum_{k=0}^{n-1} (Mhk + K_3) \exp(Mh(n-1-k))$$

 $\le |x_0| + \sum_{k=0}^{n-1} \left(\frac{MT}{N}k + K_3\right) \exp\left(-\frac{MT}{N}\right)^k.$

Avec la question 15, on obtient

$$|X_n| \le |x_0| + \sum_{k=0}^{+\infty} \left(\frac{MT}{N}k + K_3\right) \exp\left(-\frac{MT}{N}\right)^k.$$

Partie III

Dans cette partie, on continue de considérer la fonction F de la partie II, et la suite $(x_n)_{n\in\mathbb{N}}$. De plus, on note y la solution de l'équation différentielle ordinaire

$$y'(t) = F(t, y(t)) \tag{5}$$

partant de la condition initiale $y(0) = x_0$ sur l'intervalle [0, T]

18. Montrer que pour tout 0 < s < t < T, il existe $\xi \in [s, t]$ tel que

$$y(t) = y(s) + F(s, y(s))(t - s) + y''(\xi) \frac{(t - s)^2}{2}.$$

Formule de Taylor-Lagrange et y' solution de l'EDO.

19. Montrer qu'il existe une constante Q > 0 telle que pour tout 0 < s < t < T,

$$|y(t) - y(s) - F(s, y(s))(t - s)| \le Q \frac{(t - s)^2}{2}.$$

La fonction y est C^2 sur un compact donc bornée.

20. En déduire que pour tout entier $0 \le n < N$, on a

$$|x_{n+1} - y((n+1)h)| \le |x_n - y(nh)|(1+Mh) + Q\frac{h^2}{2}$$

avec M la constante introduite en partie II.

Estimation avec les questions 18 et 19.

21. Soit $\varepsilon > 0$, montrer qu'il existe un entier N^* tel que si $N > N^*$ alors pour tout entier $0 \le n < N$, on a

$$|x_{n+1} - y((n+1)h)| \le |x_n - y(nh)|(1+\varepsilon) + \varepsilon h.$$

On écrit Mh = MT/N et Qh/2 = QT/2N. Alors comme les suites tendent vers 0, il existe un rang à partir duquel elles sont plus petites que ε fixé.

22. Soit $\varepsilon > 0$, montrer qu'il existe un entier N^* tel que si $N > N^*$ alors

$$\sup_{0 \le n \le N} |x_n - y(nh)| \le \varepsilon \frac{T}{N} \frac{1 - \exp(\varepsilon N)}{1 - \exp(\varepsilon)}.$$

On utilise les questions 14 et 20.

$$\sup_{0 \le n \le N} |x_n - y(nh)| \le \sum_{k=0}^{N-1} \varepsilon h \exp(\varepsilon k) \le \varepsilon h \frac{1 - \exp(\varepsilon N)}{1 - \exp(\varepsilon)}.$$

23. L'estimation précédente n'admet pas de limite finie quand N tend vers $+\infty$. On va essayer d'améliorer les résultats. Montrer que

$$\sup_{0 \le n \le N} |x_n - y(nh)| \le \frac{Qh^2}{2} \sum_{k=0}^{N-1} \exp(MkT/N).$$

On reprend la question 20, et par la question 14, on obtient

$$\sup_{0 \le n \le N} |x_n - y(nh)| \le 0 + \sup_{0 \le n \le N} \sum_{k=0}^{n-1} \frac{Qh^2}{2} \exp(Mh(n-1-k))$$

$$\le \sum_{k=0}^{N-1} \frac{Qh^2}{2} \exp(Mh(N-1-k))$$

$$\le \frac{QT^2}{2N^2} \sum_{k=0}^{N-1} \exp(MkT/N).$$

24. Montrer qu'il existe une constante C et un entier N^* tel que si $N > N^*$ alors

$$\frac{QT}{2N} \sum_{k=0}^{N-1} \exp(MkT/N) \le C.$$

Quand N tend vers $+\infty$, alors la limite de $\frac{T}{N}\frac{1-\exp(MT)}{1-\exp(MT/N)}$ est $\frac{\exp(MT)-1}{M}$. Donc il existe un rang N^* à partir duquel la valeur pour tout $N>N^*$ est plus petite que 2 fois la limite, c'est-à-dire tel que $\frac{QT}{2N}\sum_{k=1}^N \exp(MkT/N) \leq Q\frac{\exp(MT)-1}{M}$

25. Soit $\varepsilon>0$, montrer qu'il existe un entier N^* tel que si $N>N^*$ alors on a

$$\sup_{0 \le n \le N} |x_n - y(nh)| \le \varepsilon.$$

Avec la question précédente, et un rang (plus grand que le précédent) tel que $C\frac{T}{N} \leq \varepsilon$ alors

$$\sup_{0 \le n \le N} |x_n - y(nh)| \le C \frac{T}{N} \le \varepsilon.$$

26. Pour N choisi, on pose x_N' le N-ième terme de la suite $(x_n)_{n\in\mathbb{N}}$ construite pour ce choix de N. Montrer que la limite de x_N' quand $N\to +\infty$ est y(T).

Avec la question précédente $|x_N - y(Nh)| = |x_N - y(T)| \le \varepsilon$.

2 Problème d'algèbre

Dans ce problème, on considère des sous-groupes de \mathbb{Z}^2 , et certains maillages générés par des bases d'éléments. On cherche notamment à caractériser les morphismes de ces maillages.

Partie I

On pose $G = \{g = (g_1, g_2) \in \mathbb{Z}^2 : g_1 + g_2 = 0 \text{ [mod 2]} \}$. On rappelle que la notation [mod 2] dans l'expression $g_1 + g_2 = 0 \text{ [mod 2]}$ signifie que 2 divise l'entier $g_1 + g_2$. Notamment si $g_1 + g_2 = 1 \text{ [mod 2]}$ c'est que 2 ne divise pas l'entier $g_1 + g_2$. Plus simplement on pourrait écrire

$$G = \{g = (g_1, g_2) \in \mathbb{Z}^2 : g_1 + g_2 \text{ est un entier pair}\}$$

qui est l'ensemble composé de couple de coordonnées cartésiennes entières telles que leur somme soit paire. Une représentation schématique de cet ensemble est donnée ci-dessous.

Pour élément $g = (g_1, g_2)$ et $h = (h_1, h_2) \in G$, on note g + h le couple $(g_1 + h_1, g_2 + h_2)$. Pour élément $g = (g_1, g_2)$ et $h = (h_1, h_2) \in G$, on note $g \star h$ le couple (g_1h_1, g_2h_2) . Pour tout élément $n \in \mathbb{Z}$, et tout élément $g = (g_1, g_2) \in G$, on note $n \cdot g$ le couple (ng_1, ng_2) .

- 1. Montrer que (G, +) est un groupe. 0, + et opposé.
- 2. Montrer que pour tout élément $n \in \mathbb{Z}$, et tout élément $g = (g_1, g_2) \in G$, alors $n \cdot g$ est dans G.

La parité n'est pas modifiée par multiplication par un entier naturel.

3. Montrer que la matrice

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)$$

est inversible.

Déterminant non nul.

4. En déduire qu'il existe deux éléments u et $v \in G$ tel que pour tout $g \in G$, il existe m et $n \in \mathbb{Z}$ tels que

$$g = mu + nv$$
.

u = (1, 1) et v = (1, -1) avec $m + n = g_1$ et $m - n = g_2$ qui est bien un système inversible. $m = (g_1 + g_2)/2$ qui est pair donc divisible par 2, et $n = (g_1 - g_2)/2 = g_1 - (g_1 + g_2)/2$ qui est aussi un entier.

- 5. Montrer que $(G, +, \star)$ est un anneau commutatif. Stabilité par \star , car $g_1h_1 + g_2h_2 = 0$ [mod 2]. La commutativité provient de la commutativité de la multiplication classique $g \star h = h \star g$.
- 6. Montrer que G possède un sous-anneau non trivial, c'est-à-dire qu'il existe un sous-anneau H tel que $(0,0) \nsubseteq H \nsubseteq G$. L'ensemble $H = \{(m,m) : m \in \mathbb{Z}\}$ est un sous-groupe additif de G. Soient g = (m,m) et $h = (n,n) \in H$ alors $g \star h = (mn,mn) \in H$, c'est donc un sous-anneau. Enfin $(2,0) \in G$ et $(2,0) \notin H$.

Partie II

On rappelle qu'un idéal I d'un anneau commutatif G est un sous-groupe additif tel que

$$\forall q \in G, \quad \forall i \in I, \quad q \star i \in I.$$

Pour $u = (u_1, u_2)$ et $v = (v_1, v_2)$ deux éléments de G (i.e. $u_1 + u_2 = 0 \pmod{2}$ et $v_1 + v_2 = 0 \pmod{2}$), on note

$$I[u] := \{ g \in G : \text{ Il existe } m \in \mathbb{Z} \text{ tel que } g = m \cdot u \}$$

et

$$I[u,v] = \{ g \in G : \text{ Il existe } m \in \mathbb{Z} \text{ et } n \in \mathbb{Z} \text{ tels que } g = m \cdot u + n \cdot v \}$$

deux sous-ensembles particuliers de G qu'on se propose d'étudier. Une représentation schématique de I[u] et I[u,v] est donnée ci-dessous.

- 7. Vérifier que I[u] et I[u, v] sont bien des sous-ensembles de G. Soit $g \in I[u]$ et $\tilde{g} \in I[u, v]$ alors $g = m \cdot u$ donc $g_1 + g_2 = mu_1 + mu_2 = m0$ [mod 2] = 0 [mod 2]. Comme $\tilde{g} = m \cdot u + n \cdot v$ alors $\tilde{g}_1 + \tilde{g}_2 = (mu_1 + nv_1) + (mu_2 + nv_2) = m(u_1 + u_2) + n(v_1 + v_2) = m0 + n0$ [mod 2] = 0 [mod 2].
- 8. Montrer que l'ensemble I[u] est un sous-groupe additif de G. Pour g et $\tilde{g} \in I[u]$ alors $g + \tilde{g} = ((m + \tilde{m})u_1, (m + \tilde{m})u_2) = (m + \tilde{m}) \cdot u \in I[u]$. Et on a toujours $(m + \tilde{m})(u_1 + u_2) = (m + \tilde{m})0 \text{ [mod 2]} = 0 \text{ [mod 2]}$ (par la question 7). L'ensemble est également non vide car il contient (0,0), et l'inverse d'un élément g est $-1 \cdot g$.
- 9. Montrer que l'ensemble I[u,v] est un sous-groupe additif de G. Soient g et $\tilde{g} \in I[u,v]$ alors $g+\tilde{g}=(m+\tilde{m})\cdot u+(n+\tilde{n})\cdot v\in I[u,v]$. Et on a bien $(m+\tilde{m})u_1+(n+\tilde{n})v_1+(m+\tilde{m})u_2+(n+\tilde{n})v_2)=(m+\tilde{m})0+(n+\tilde{n})0$ [mod 2] = 0 [mod 2]. L'ensemble est également non vide car il contient (0,0), et l'inverse d'un élément g est $-1\cdot g$.
- 10. Trouver un élément $u \in G$ tel que I[u] ne soit pas un sous-anneau de G. On doit trouver un couple d'entiers (u_1, u_2) avec $u_1 + u_2 = 0 \pmod{2}$ tels qu'il existe m et $n \in \mathbb{Z}$ tels que

$$(m\cdot u)\star (n\cdot u)\notin I[u]$$

c'est-à-dire tels qu'il n'existe aucun entier $p \in \mathbb{Z}$ avec $mnu_1^2 = pu_1$ et $mnu_2^2 = pu_2$. Il suffit de choisir $u_1 \neq 0 \neq u_2$ alors $mnu_1 = p = mnu_2$ pour obtenir une contradiction. Le choix $m = 1 = n = u_1 = -u_2$ fonctionne.

11. Montrer que l'ensemble I[u] est un idéal si et seulement si $u_1=0$ ou $u_2=0$. Ce n'est pas un idéal s'il existe $g\in G$ et $i\in I$ tels que $g\star i\notin I$. Si $u=(0,0),\ I[u]=\{(0,0)\}$ est l'idéal trivial. Si $u_1=0$, alors $g\star i=(g_1mu_1,g_2mu_2)=(0,g_2mu_2)=(g_2m)\cdot u\in I[u]$, idem si $u_2=0$. Réciproquement, si $u_1\neq 0$ et $u_2\neq 0$. On pose g=(1,-1) et i=u alors s'il existe $M\in \mathbb{Z}$ tel que $g\star i=M\cdot u$ on aurait

$$g \star i = (u_1, -u_2) = (Mu_1, Mu_2) \iff (1 = M \text{ et } 1 = -M)$$

ce qui est une contradiction.

12. Soient u et v deux éléments de G non colinéaires, c'est-à-dire que si $u=(u_1,u_2)$ et $v=(v_1,v_2)$ alors $u_1v_2-u_2v_1\neq 0$. On suppose que $1/(u_1v_2-u_2v_1)\in \mathbb{Z}$. Montrer que l'ensemble

I[u,v] est un sous-anneau de G.

C'est déjà un sous-groupe additif par la question 9. Soient g et $\tilde{g} \in I[u, v]$ alors

$$g \star \tilde{g} = ((mu_1 + nv_1)(\tilde{m}u_1 + \tilde{n}v_1), (mu_2 + nv_2)(\tilde{m}u_2 + \tilde{n}v_2))$$

On cherche M et $N \in \mathbb{Z}$ tels que

$$(mu_1 + nv_1)(\tilde{m}u_1 + \tilde{n}v_1) := b_1 = Mu_1 + Nv_1 \text{ et } (mu_2 + nv_2)(\tilde{m}u_2 + \tilde{n}v_2) := b_2 = Mu_2 + Nv_2.$$

Si $(u_1v_2 - u_2v_1) \neq 0$ alors l'unique solution dans \mathbb{Q} est

$$M = \frac{b_1 v_2 - b_2 v_1}{u_1 v_2 - u_2 v_1} \text{ et } N = \frac{-b_1 u_2 + b_2 u_1}{u_1 v_2 - u_2 v_1}.$$

Si $1/(u_1v_2-u_2v_1) \in \mathbb{Z}$, alors $M \in \mathbb{Z}$ et $N \in \mathbb{Z}$.

On pouvait également se rendre compte que les éléments (1,1) et (1,-1) sont dans I[u,v] pour montrer que I[u,v] = G. En effet, $(v_2-v_1)\cdot u + (u_1-u_2)\cdot v = (v_2u_1-u_2v_1, -v_1u_2+u_1v_2) = (1,1)$. Cela vient de l'inversibilité de la matrice du système dans \mathbb{Z} .

13. Sous les mêmes conditions que la question précédente, montrer que I[u,v] est un idéal de G. Il faut montrer que pour tout $m,n\in\mathbb{Z}$ et $g\in G$, en posant $i=m\cdot u+n\cdot v$ alors l'élément $g\star i=(g_1mu_1+g_1nv_1,g_2mu_2+g_2nv_2)$ est un élément de I[u,v], c'est-à-dire qu'il existe un couple d'entiers M et N tels que

$$(g \star i)_1 := g_1 m u_1 + g_1 n v_1 = M u_1 + N v_1$$
 et $(g \star i)_2 := g_2 m u_2 + g_2 n v_2 = M u_2 + N v_2$.

Comme à la question précédente, on trouve une unique solution dans Q qui est

$$M = \frac{g_1 m u_1 v_2 + g_1 n v_1 v_2 - g_2 m u_2 v_1 - g_2 n v_2 v_1}{u_1 v_2 - u_2 v_1},$$

$$N = \frac{-g_1 m u_1 u_2 - g_1 n v_1 u_2 + g_2 m u_2 u_1 + g_2 n v_2 u_1}{u_1 v_2 - u_2 v_1}.$$

Si on avait montré que I[u,v]=G à la question précédente, on a immédiatement que c'est un idéal.

14. Soient u et v deux éléments de G tels que $(u_1v_2 - u_2v_1) = 2$. Montrer que l'ensemble I[u, v] est un sous-anneau de G.

C'est encore un sous-groupe additif par la question 9. Comme $(u_1v_2-u_2v_1) \neq 0$ alors l'unique solution dans \mathbb{Q} est encore donnée par

$$M = \frac{b_1 v_2 - b_2 v_1}{u_1 v_2 - u_2 v_1} \text{ et } N = \frac{-b_1 u_2 + b_2 u_1}{u_1 v_2 - u_2 v_1}.$$

Mais cette fois, il faut vérifier que le numérateur est divisible par 2 pour conclure que M et $N \in \mathbb{Z}$. On a $b_1v_2 - b_2v_1 = (mu_1 + nv_1)(\tilde{m}u_1 + \tilde{n}v_1)v_2 - (mu_2 + nv_2)(\tilde{m}u_2 + \tilde{n}v_2)v_1$, mais comme u et v sont dans G, alors il existe p et $q \in Z$ tels que $u_2 = -u_1 + 2p$ et $v_2 = -v_1 + 2q$

donc $b_1v_2 - b_2v_1 = b_1(-v_1 + 2q) - b_2v_1 = -(b_1 + b_2)v_1 \text{ [mod 2]}$. Il suffit donc d'étudier si $b_1 + b_2$ est pair, or

$$b_{1} + b_{2} = \left((mu_{1} + nv_{1})(\tilde{m}u_{1} + \tilde{n}v_{1}) + (mu_{2} + n(-v_{1} + 2q))(\tilde{m}u_{2} + \tilde{n}(-v_{1} + 2q)) \right)$$

$$= \left((mu_{1} + nv_{1})(\tilde{m}u_{1} + \tilde{n}v_{1}) + (mu_{2} - nv_{1})(\tilde{m}u_{2} - \tilde{n}v_{1}) \right) [\text{mod } 2]$$

$$= \left((mu_{1} + nv_{1})(\tilde{m}u_{1} + \tilde{n}v_{1}) + (m(-u_{1} + 2p) - nv_{1})(\tilde{m}(-u_{1} + 2p) - \tilde{n}v_{1}) \right) [\text{mod } 2]$$

$$= \left((mu_{1} + nv_{1})(\tilde{m}u_{1} + \tilde{n}v_{1}) + (-mu_{1} - nv_{1})(-\tilde{m}u_{1} - \tilde{n}v_{1}) \right) [\text{mod } 2]$$

$$= \left((mu_{1} + nv_{1})(\tilde{m}u_{1} + \tilde{n}v_{1}) + (mu_{1} + nv_{1})(\tilde{m}u_{1} + \tilde{n}v_{1}) \right) [\text{mod } 2]$$

$$= 0 [\text{mod } 2].$$

Et pour N, on a $-b_1u_2 + b_2u_1 = (b_1 + b_2)u_1 \text{ [mod 2]} = 0 \text{ [mod 2]}.$

15. Sous les mêmes conditions que la question précédente, montrer que I[u,v] est un idéal de G. Il faut montrer que pour tout $m,n\in\mathbb{Z}$ et $g\in G$, en posant $i=m\cdot u+n\cdot v$ alors l'élément $g\star i=(g_1mu_1+g_1nv_1,g_2mu_2+g_2nv_2)$ est un élément de I[u,v], c'est-à-dire qu'il existe un couple d'entiers M et N tels que

$$(g \star i)_1 := g_1 m u_1 + g_1 n v_1 = M u_1 + N v_1$$
 et $(g \star i)_2 := g_2 m u_2 + g_2 n v_2 = M u_2 + N v_2$.

Avec l'unique solution dans \mathbb{Q} , il faut vérifier que le numérateur des solutions est divisible par 2 pour conclure que M et $N \in \mathbb{Z}$. On a qu'il existe un entier $r \in \mathbb{Z}$ tel que $u_1v_2 = u_2v_1 + 2r$ donc

$$g_1 m u_1 v_2 + g_1 n v_1 v_2 - g_2 m u_2 v_1 - g_2 n v_2 v_1$$

$$= g_1 m u_2 v_1 + g_1 n v_1 v_2 - g_2 m u_2 v_1 - g_2 n v_2 v_1 \text{ [mod 2]}$$

$$= (g_1 m - g_2 m) u_2 v_1 + (g_1 n - g_2 n) v_2 v_1 \text{ [mod 2]}$$

$$= (g_1 - g_2) (m u_2 + n v_2) v_1 \text{ [mod 2]}$$

$$= (g_1 + g_2) (m u_2 + n v_2) v_1 \text{ [mod 2]} = 0 \text{ [mod 2]}.$$

Et pour l'autre numérateur

$$-g_1 m u_1 u_2 - g_1 n v_1 u_2 + g_2 m u_2 u_1 + g_2 n v_2 u_1$$

$$= -g_1 m u_1 u_2 - g_1 n v_1 u_2 + g_2 m u_2 u_1 + g_2 n u_2 v_1 \text{ [mod 2]}$$

$$= (g_2 - g_1)(m u_1 + n v_1) u_2 \text{ [mod 2]}$$

$$= (g_1 + g_2)(m u_1 + n v_1) u_2 \text{ [mod 2]} = 0 \text{ [mod 2]}.$$

En réalité, on montre encore que I[u, v] = G car on peut générer (1, 1) et (1, -1). Pour (1, 1), on trouve $M = (v_2 - v_1)/2 = -v_1 + q$ et $N = (u_1 - u_2)/2 = u_1 - p$. Pour (1, -1), on trouve $M = (v_2 + v_1)/2 = q$ et $N = -(u_1 + u_2)/2 = -p$.

Partie III

Dans cette partie, on considère deux éléments fixés $u = (u_1, u_2)$ et $v = (v_1, v_2)$ de G tels que $u_1v_2 - u_2v_1 \neq 0$, et on considère encore le sous-groupe additif

$$I[u,v] = \{g \in G : \text{ Il existe } m \in \mathbb{Z} \text{ et } n \in \mathbb{Z} \text{ tels que } g = m \cdot u + n \cdot v\}.$$

On note GL_2 le groupe de transformations linéaires inversibles de \mathbb{R}^2 défini par

$$GL_2 := \left\{ P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2,2}(\mathbb{R}) : a, b, c, d \in \mathbb{R}, ad - bc \neq 0 \right\}$$

et on note O_2 le groupe de transformations orthogonales de \mathbb{R}^2 défini par

$$O_2 := \left\{ P = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in GL_2 : PP^T = P^TP = Id \right\}$$

où P^T est la matrice transposée de P et Id est la matrice identité. Pour un élément P de GL_2 ou de O_2 , et un élément $g \in G$ on note Pg le couple $(ag_1 + bg_2, cg_1 + dg_2) \in \mathbb{R}^2$.

16. Vérifier que GL_2 forme un groupe pour la loi de multiplication. L'inverse est donné explicitement par

$$\frac{1}{ad-bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right).$$

Un produit de matrices inversibles est encore inversible.

- 17. Vérifier que O_2 est un sous-groupe de GL_2 pour la loi de multiplication. Si une matrice P est dans O_2 , alors elle est inversible, et son déterminant est forcément 1 ou -1. Si P et Q sont dans O_2 alors $(PQ)^T PQ = Q^T P^T PQ = Q^T Q = Id$, et le produit est donc bien dans O_2 . L'inverse d'un élément est sa transposée, donc l'ensemble est stable par inverse.
- 18. On note Aut(I[u,v]) l'ensemble des matrices P de O_2 tels que pour tout $g \in I[u,v]$, on a Pg et P^Tg qui sont encore dans I[u,v]. Soit $P \in Aut(I[u,v])$, montrer que l'application \mathcal{P} suivante est un morphisme de groupe additif de I[u,v].

$$\mathcal{P}: \begin{array}{ccc} I[u,v] & \to & I[u,v] \\ g = m \cdot u + n \cdot v & \mapsto & \mathcal{P}(g) = Pg \end{array}$$

On identifiera donc la matrice P avec l'application \mathcal{P} dans le reste du problème. L'application est additive $\mathcal{P}(g+\tilde{g})=P(g+\tilde{g})=\mathcal{P}(g)+\mathcal{P}(\tilde{g})$.

- 19. Montrer que l'ensemble Aut(I[u,v]) est un sous-groupe de O_2 pour la loi de multiplication. Soient deux matrices P et Q de Aut(I[u,v]). Le produit PQ est toujours dans O_2 . Montrons que pour tout $g \in G$, alors $(PQ)g \in I[u,v]$. En effet, (PQ)g = P(Qg) avec $Qg \in I[u,v]$, donc $P(Qg) \in I[u,v]$. De même, $(PQ)^Tg = (Q^TP^T)g = Q^T(P^Tg) \in I[u,v]$. L'inverse est donné par la matrice transposée qui stabilise aussi I([u,v]) et donc est un élément de Aut(I[u,v]).
- 20. Montrer que pour tout $P \in Aut(I[u,v])$ il existe $\alpha \in \mathbb{R}$ tel que

$$P = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \text{ ou } P = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ -\sin(\alpha) & -\cos(\alpha) \end{pmatrix}.$$

Comme $PP^T = Id$ alors $a^2 + b^2 = 1 = c^2 + d^2$ donc il existe α tel que $a = \cos(\alpha)$ et $b = -\sin(\alpha)$ et il existe β tel que $c = \sin(\beta)$ et $d = \cos(\beta)$. Mais on a aussi ac + bd = 0 donc $\sin(\beta - \alpha) = 0$, et donc $\beta = \alpha[\pi]$. Si $\beta = \alpha$ on obtient la matrice anti-symétrique, si $\beta = \alpha + \pi$ on obtient la matrice symétrique.

21. Soit $P \in Aut(I[u,v])$, en montrant que $P^{-1}u + Pu$ est un élément de I[u,v], en déduire que la trace de P est un entier.

Aut(I[u,v]) est un groupe donc P^{-1} existe et stabilise I[u,v], donc $P^{-1}u+Pu\in I[u,v]$. Si P est une symétrie, sa trace est nulle. Autrement si P est une rotation, par le calcul $P^{-1}u+Pu$ est l'élément $2\cos(\alpha)\cdot u$. Comme cet élément est dans I[u,v] alors il existe deux entiers M et N tels que $2\cos(\alpha)\cdot u=M\cdot u+N\cdot v$. Les vecteurs étant linéairement indépendants, alors $M=2\cos(\alpha)$ et N=0. On retrouve que la trace de P est soit nulle soit un entier.

22. Soit P un élément de Aut(I[u,v]) de déterminant 1. Montrer qu'il existe au maximum 8 valeurs possibles dans $]-\pi,\pi]$ pour α dans l'écriture proposée en question 20, précisément que seuls les angles $\left\{0,\pm\frac{\pi}{3},\pm\frac{\pi}{2},\pm\frac{2\pi}{3},\pi\right\}$ sont autorisés.

On vient de montrer que la trace est un entier. Nécessairement $2\cos(\alpha) \in \{-2, -1, 0, 1, 2\}$, donc $\alpha \in \{0, \pm \frac{\pi}{3}, \pm \frac{\pi}{2}, \pm \frac{2\pi}{3}, \pi\}$.

23. Supposons qu'il existe un élément $P \in Aut(I[u,v])$ de déterminant égal à 1, tel que Tr(P) = 1. Montrer qu'il existe une contradiction.

Comme Tr(P) = 1 alors P est la rotation d'angle $\pi/3$ ou $-\pi/3$. Donc $Pu = (\frac{u_1 \mp \sqrt{3}u_2}{2}, \frac{u_2 \pm \sqrt{3}u_1}{2})$ qui n'est pas dans I[u, v].

24. Montrer que pour tout $u, v \in G$, les angles 0 et π sont autorisés, c'est-à-dire que les éléments

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ et } -I = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

sont des éléments de Aut(I[u,v]).

L'identité est toujours un automorphisme. Et si $g=m\cdot u+n\cdot v$, alors $-g=-m\cdot u-n\cdot v=-Ig$.

25. Montrer qu'il existe deux éléments $u, v \in G$, tels que la rotation d'angle $\pi/2$ n'est pas autorisée comme transformation préservant I[u, v].

Avec u = (3,1) et v = (1,3) alors la rotation de u est (-1,3), mais il n'existe aucun entier m et n tels que 3m + n = -1 et m + 3n = 3 car l'unique solution est m = -6/8 et n = 10/8.

26. Soit $g \in I[u, v]$ non nul, montrer que

$$\max(|g_1v_2 - g_2v_1|, |g_1u_2 - g_2u_1|) \ge u_1v_2 - u_2v_1$$

Il existe m et n tels que $g = m \cdot u + n \cdot v$ donc

$$|g \wedge v| = |mu \wedge v| = |m||u_1v_2 - u_2v_1|$$
 et $|g \wedge u| = |nv \wedge u| = |n||u_1v_2 - u_2v_1|$

Soit m soit n est non nul, donc le maximum entre les deux déterminants est supérieur à $|u_1v_2-u_2v_1|$. On peut enlever la valeur absolue.

- 27. Montrer qu'il existe ε tel que la norme $\|g\|:=\sqrt{g_1^2+g_2^2}$ de tout élément $g\in I[u,v]$ non nul vérifie $\|g\|>\varepsilon$. S'il existait g de norme petite alors $|u\wedge v|\leq \max(|g\wedge v|,|g\wedge u|)<\varepsilon\max(\|u\|,\|v\|)$. C'est-à-dire que l'angle entre u et v est forcément nul, ce qui contredit la colinéarité.
- 28. Soit $\delta = \min\{\|g\| \in \mathbb{R} : g \in I[u,v], g \neq 0\}$. Montrer qu'il existe un nombre fini d'éléments qui soient de norme δ . La norme d'un élément est $\sqrt{(mu_1 + nv_1)^2 + (mu_2 + nv_2)^2}$. Les éléments de norme δ sont donc situés sur un cercle de rayon δ . Comme G est un groupe discret, alors I[u,v] l'est également, alors il existe un nombre fini d'éléments dans tout domaine borné.
- 29. Conclure qu'il existe un nombre pair d'éléments de norme minimale non nulle. Par symétrie centrale, il en existe un nombre pair (et au moins 2).

ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ENSEA – ABIDJAN

INSTITUT SOUS-RÉGIONAL DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ISSEA – YAOUNDÉ

ÉCOLE NATIONALE DE LA STATISTIQUE ET DE L'ANALYSE ÉCONOMIQUE ENSAE PIERRE NDIAYE – DAKAR ÉCOLE NATIONALE D'ÉCONOMIE APPLIQUÉE ET DE MANAGEMENT ENEAM – COTONOU

AVRIL 2022

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Mathématiques

Corrigé de la 2ème COMPOSITION DE MATHÉMATIQUES (Durée de l'épreuve : 4 heures)

Dans toute cette épreuve, N désigne l'ensemble des entiers naturels, R l'ensemble des nombres réels, e le nombre de Néper et Ln le logarithme népérien.

Exercice n° 1

On considère l'espace vectoriel R^4 rapporté à la base canonique. Soit f l'endomorphisme de

$$R^4$$
 représenté par la matrice suivante : $M = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 4 & 2 \\ 1 & 0 & 2 & 0 \end{pmatrix}$

1. Déterminer l'image de f.

On remarque que : $f(e_4) = f(e_2)$ et $f(e_3) = 2f(e_1) + f(e_2)$. L'image de cette application est donc de dimension 2, engendrée par ces deux vecteurs.

2. Etudier la diagonalisation de f (on déterminera les valeurs propres et des vecteurs propres pour la valeur propre double).

Comme la matrice est symétrique, elle est diagonalisable.

On a : $det(M - \lambda I) = \lambda^2(\lambda^2 - 4\lambda - 11)$. Zéro est donc une valeur propre double et les deux autres sont $\lambda = 2 \pm \sqrt{15}$.

Pour la valeur propre nulle, on peut choisir comme vecteurs propres : (-2, 0, 1, -1) et (0, 1, 0, -1).

3. Soit q la forme quadratique sur R^4 définie par :

 $q(x, y, z, t) = 4z^2 + 2xy + 2xz + 2xt + 4yz + 4zt$. Cette forme quadratique est-elle positive?

La matrice de cette forme quadratique est M, qui admet une valeur propre négative, donc la forme quadratique n'est pas positive.

4. Résoudre le système suivant, où m et p sont des paramètres réels :

$$\begin{cases} y+z+t=1\\ x+2z=m^2+1\\ x+2y+4z+2t=p+2\\ x+(m-1)y+2z=2 \end{cases}$$

La matrice du système est :
$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 4 & 2 \\ 1 & m-1 & 2 & 0 \end{pmatrix}$$
. On procède en deux temps : Résolution

du système homogène, puis le système général.

On peut remarquer que Ligne3-Ligne2=2Ligne1, donc le déterminant de la matrice est nul quel que soit la valeur du paramètre m.

- (i) Système homogène
- Si m=1, alors A=M et le noyau de f (sous espace vectoriel propre associé à la valeur propre nulle) est l'ensemble des solutions.
- Si $m \ne 1$, alors l'ensemble des solutions est de dimension 1, engendré par le vecteur (2,0,-1,1).
- (ii) Système général
- Si m=1, il existe un sous espace affine de solutions si et seulement si $(1,2,p+2,2) \in \text{Im } f$. $(X,Y,Z,T) \in \text{Im } f \Rightarrow Y = 0$, soit $m^2 + 1 = 0$, donc pas de solutions au système.
- Si $m \ne 1$, $(X, Y, Z, T) \in Im f \Rightarrow X = -2Z$; T = -Y Z, soit p=-6 et p=-5, donc pas de solutions au système.

Exercice n° 2

On note E l'espace vectoriel des matrices carrées d'ordre 3 à coefficients réels, puis $S = \{M \in E \mid M = M'\}$ et $A = \{M \in E \mid M = -M'\}$, où M' désigne la matrice transposée. 1. Déterminer la dimension de S et celle de A.

2

$$\forall M \in A$$
, la matrice s'écrit : $M = \begin{pmatrix} 0 & a & -b \\ -a & 0 & c \\ b & -c & 0 \end{pmatrix}$, donc Dim $A=3$.

$$\forall M \in S$$
, la matrice s'écrit : $M = \begin{pmatrix} d & a & b \\ a & e & c \\ b & c & f \end{pmatrix}$, donc Dim S=6.

2. Montrer que E est la somme directe de S et A.

On a:

(i) Dim E=9=Dim S + Dim A

- (ii) $\forall M \in E, M = \frac{M + M}{2} + \frac{M M}{2}$, le premier élément appartient à S et le deuxième à A. On a bien une somme directe avec ces deux propriétés.
- 3. Soit $M \in A$, étudier la diagonalisation de M dans R (ensemble des nombres réels) et C (ensemble des nombres complexes).

La matrice s'écrit:
$$M = \begin{pmatrix} 0 & a & -b \\ -a & 0 & c \\ b & -c & 0 \end{pmatrix}$$
 et $det(M - \lambda I) = -\lambda(a^2 + b^2 + c^2 + \lambda^2)$ qui

On a donc trois valeurs propres distinctes complexes. La matrice est diagonalisable dans C mais pas dans R. (sauf si les 3 paramètres sont nuls)

4. Soit la matrice particulière

$$M = \begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 2 \\ 2 & -2 & 0 \end{pmatrix}$$

Déterminer une base de vecteurs propres complexes de M. Indiquer comment calculer Mⁿ pour n entier supérieur à 1 (le calcul explicite n'est pas demandé).

D'après la question précédente, les valeurs propres de la matrice sont : 0, 3i et -3i

La matrice est donc semblable à la matrice diagonale $D = \begin{bmatrix} -3i & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3i \end{bmatrix}$ et on a :

 $M = PDP^{-1} \Rightarrow M^n = PD^nP^{-1}$, où P est la matrice de passage de la base canonique à une base de vecteurs propres. Cherchons les vecteurs propres.

- base de vecteurs propres. Cherchons les vecteurs propres. - Pour $\lambda = 0$, on résout le système : $\begin{cases} y 2z = 0 \\ -x + 2z = 0 \end{cases}$, on peut donc prendre le vecteur (2, 2, 1). - Pour $\lambda = 3i$, on résout le système : $\begin{cases} -3ix + y 2z = 0 \\ -x 3iy + 2z = 0 \end{cases}$, on peut donc prendre le vecteur

(5, -4+3i, -2-6i). Ce vecteur est orthogonal au précéden

- Pour $\lambda = -3i$, on a : $Mu = \lambda u \Rightarrow \overline{Mu} = \overline{\lambda u} \Rightarrow M\overline{u} = \overline{\lambda u}$, donc un vecteur propre est le conjugué du précédent, à savoir : (5, -4-3i,-2+6i). La matrice de passage est :

$$P = \begin{pmatrix} 5 & 2 & 5 \\ -4-3i & 2 & -4+3i \\ -2+6i & 1 & -2-6i \end{pmatrix}$$

Exercice n° 3

Soit $B = (e_1, e_2, e_3)$ une base orthonormée de R^3 muni du produit scalaire standard. On note D la droite vectorielle engendrée par le vecteur e_1 et E l'orthogonal de D.

- 1. Déterminer les matrices des endomorphismes de R^3 suivants dans la base B:
- Rotation autour de D et d'angle α . On notera R cette matrice.
- Projection orthogonale sur D. On notera P_1 cette matrice.
- Projection orthogonale sur E. On notera P_2 cette matrice.
- (a) Pour la rotation autour de D et d'angle α , on a :

$$R(e_1) = e_1; R(e_2) = (\cos \alpha)e_2 + (\sin \alpha)e_3; R(e_3) = (-\sin \alpha)e_2 + (\cos \alpha)e_3$$
, d'où

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

(b) Pour
$$P_1$$
, on a: $P_1(e_1) = e_1$; $P_1(e_2) = P_1(e_3) = 0$. Soit $P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

(c) Pour
$$P_2$$
, on a: $P_2(e_1) = 0$; $P_2(e_2) = e_2$; $P_2(e_3) = e_3$ Soit $P_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

2. Exprimer R à l'aide de P_1 , P_2 et $M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$. Quelle est la nature géométrique de l'application linéaire associée à M (matrice dans la base B)?

$$R = P_1 + (\cos \alpha) P_2 + (\sin \alpha) M$$

Soit f l'application linéaire associée à M. On a :

$$f(e_1) = 0; f(e_2) = e_3; f(e_3) = -e_2.$$

On constate que :
$$M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
, donc $f = P_2 \circ R(\pi/2, D)$.

3. Exprimer $\cos \alpha$ en fonction de la trace de R.

Exprimer M en fonction de R, R (transposée de R) et α pour $\alpha \neq k \pi (k \in \mathbb{Z})$.

La trace est un opérateur linéaire, on a : $TrR = TrP_1 + (\cos\alpha)TrP_2 + (\sin\alpha)TrM$, soit $TrR = 1 + 2(\cos\alpha)$. Par conséquent : $\cos\alpha = \frac{TrR - 1}{2}$.

On a:
$$R - R' = 2(\sin \alpha) M \Rightarrow M = \frac{1}{2\sin \alpha} (R - R')$$

- 4. Soient u, v deux rotations de \mathbb{R}^3 . Montrer que les assertions suivantes sont équivalentes :
- (i) uov = vou
- (ii) u et v ont les mêmes vecteurs invariants ou u et v sont des symétries par rapport à deux droites orthogonales.

$$(ii) \Rightarrow (i)$$

(a) Si u et v sont des symétries par rapport aux droites orthogonales D_1, D_2 . Soit (e_1, e_2, e_3) une base orthonormée de R^3 telle que : $e_1 \in D_1, e_2 \in D_2, e_3 \perp (e_1, e_2)$.

Si
$$u$$
 est la symétrie par rapport à D_1 , alors $S(u) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
Si v est la symétrie par rapport à D_2 , alors $S(v) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

On obtient:
$$S(u)S(v) = S(v)S(u) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow uov = vou$$

(b) Si u et v ont les mêmes vecteurs invariants, on a: $R(u) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$ et

$$R(v) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}. \text{ Par conséquent : } R(u)R(v) = R(v)R(u) \Rightarrow uov = vou$$

Réciproque

Soient u la rotation autour de $D_1 = E_1(u)$ et v la rotation autour de D_2 .

Si $x \in D_1, x \neq 0, u(x) = x \Rightarrow vou(x) = u(v(x)) = v(x)$. On a $v(x) \neq 0$ sinon $Kerv \neq \{0\}$ et v ne serait pas bijective, donc v(x) est un vecteur propre de u associé à la valeur propre 1. Comme v conserve la norme et que $Dim E_1(u) = 1$, on en déduit que $v(x) = \pm x$.

- Si v(x) = x, ce dernier est un vecteur propre de v associé à la valeur propre 1 et u et v ont les mêmes invariants.
- Si v(x) = -x, alors -1 est une valeur propre de v et comme le déterminant de la matrice de vest égal à 1, (-1) est une valeur propre double et v est une symétrie par rapport à D_2 . On a :

$$M(v) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \text{ et } M(u) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

L'égalité uov = vou implique sin $\alpha = -\sin \alpha \Rightarrow \alpha = k \pi$. Par conséquent u est une symétrie par rapport D_1 (qui est orthogonale à D_2).

Exercice n° 4

Soit f la fonction réelle définie par : $f(x) = \frac{x}{e^x - 1}$ si $x \ne 0$ et f(0) = 1

1. Etudier la continuité et la dérivabilité de f en zéro.

On rappelle que :
$$e^x = \sum_{p \ge 0} \frac{x^p}{p!}$$
.

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x}{e^{x} - 1} = \lim_{x \to 0} \frac{x}{x} = 1 = f(0)$$
, donc la fonction est continue en zéro.

$$\lim_{x \to 0} \frac{f(x) - 1}{x} = \lim_{x \to 0} \frac{1 + x - e^x}{x(e^x - 1)} = -\frac{1}{2} = f'(0)$$
, donc la fonction est dérivable en zéro.

2. Donner un développement limité de f à l'ordre 4 au voisinage de zéro. On écrira f sous la forme $f(x) = \sum_{p \ge 0} B_p \frac{x^p}{p!}$. Que valent $B_0, ..., B_4$?

On a:

$$f(x) = \frac{x}{x(1 + \frac{x}{2!} + \frac{x^2}{3!} + \frac{x^3}{4!} + \frac{x^4}{5!} + o(x^4))}$$

$$f(x) = 1 - \left(\frac{x}{2!} + \frac{x^2}{3!} + \frac{x^3}{4!} + \frac{x^4}{5!}\right) + \left(\frac{x}{2!} + \frac{x^2}{3!} + \frac{x^3}{4!}\right)^2 - \left(\frac{x}{2!} + \frac{x^2}{3!}\right)^3 + \left(\frac{x}{2!}\right)^4 + o(x^4), \text{ d'où}$$

$$f(x) = 1 - \frac{x}{2} + \frac{1}{12}x^2 - \frac{1}{720}x^4 + o(x^4)$$
. On obtient:

$$B_0 = 1; B_1 = -\frac{1}{2}; B_2 = \frac{1}{6}; B_3 = 0; B_4 = -\frac{1}{30}$$

3. Etudier les variations de f et tracer son graphe.

La dérivée est égale à : $f'(x) = \frac{e^x (1-x)-1}{(e^x-1)^2} < 0$ en étudiant le signe du numérateur. La

fonction est décroissante et à valeurs dans les réels positifs. Elle admet la deuxième bissectrice comme asymptote à moins l'infini et l'axe Ox comme asymptote à plus l'infini.

4. Calculer
$$I = \int_{1}^{2} \frac{f(x)}{x} dx$$
.

$$I = \int_{1}^{2} \frac{1}{e^{x} - 1} dx \qquad \text{et} \qquad \text{on} \qquad \text{pose} \qquad t = e^{x} \Rightarrow dx = \frac{1}{t} dt \qquad \text{pour} \qquad \text{obtenir}:$$

$$I = \int_{e}^{e^{2}} \left(\frac{1}{t - 1} - \frac{1}{t}\right) dt = \left[Ln(t - 1) - Ln(t)\right]_{e}^{e^{x}} = Ln\left(\frac{e^{2} - 1}{e - 1}\right) - 1$$

Exercice n° 5

Soit la fonction numérique f définie par : $f(x) = x^2 Ln (1 + x^2)$

1. Etudier les variations de f et tracer son graphe.

La fonction est paire et sa dérivée est égale à : f'(x) = 2x $Ln(1+x^2) + \frac{2x^3}{1+x^2} > 0$ pour x > 0.

La fonction est donc croissante sur les réels positifs et admet une branche parabolique dans la direction verticale.

2. Etudier la convergence de la suite (u_n) définie par la relation de récurrence : $u_{n+1} = f(u_n)$ et le premier terme $u_0 > 0$.

La suite est à termes positifs et si elle converge vers une limite l, cette dernière est un point fixe de la fonction, donc soit l=0 ou $l Ln(1+l^2)=1$.

On considère $z = l \ln(1+l^2) - 1$, sa dérivée est strictement positive sur les réels positifs, z(0) = -1 et z tend vers plus l'infini à l'infini. D'après le théorème des valeurs intermédiaires, il existe une unique valeur α telle que $z(\alpha) = 0$ (c'est le point d'intersection entre le graphe de la fonction et la bissectrice, cf. graphe précédent). Comme la fonction est croissante, la suite est monotone.

Si $u_0 < \alpha$, la suite est décroissante et minorée par zéro, donc elle converge vers 0.

Si $u_0 > \alpha$, la suite est croissante et elle tend vers plus l'infini.

Si $u_0 = \alpha$, la suite est stationnaire et converge donc vers alpha.

3. Calculer
$$I = \int_{0}^{1} f(x) dx$$
.

On a par intégration par parties : $I = \left[\frac{x^3}{3}Ln(1+x^2)\right]_0^1 - \frac{2}{3}\int_0^1 \frac{x^4}{1+x^2}dx$, d'où

$$I = \frac{Ln2}{3} - \frac{2}{3} \int_{0}^{1} (x^{2} - 1 + \frac{1}{1 + x^{2}}) dx = \frac{Ln2}{3} + \frac{4}{9} - \frac{\pi}{6}$$

Exercice n° 6

1. En se servant du développement en série entière de la fonction : $x \to \frac{1}{1-x}$, calculer

pour
$$0 < x < 1$$
, la somme des séries $\sum_{k=1}^{\infty} k x^{k-1}$ et $\sum_{k=1}^{\infty} k^2 x^{k-1}$

La série $\sum_{k=0}^{\infty} x^k$ est une série entière de rayon de convergence 1 et de somme $f(x) = \frac{1}{1-x}$ pour |x| < 1, d'où pour 0 < x < 1, on peut écrire $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$.

On peut dériver terme à terme cette série pour 0 < x < 1 et on a :

$$f'(x) = \frac{1}{(1-x)^2} = \sum_{k=1}^{\infty} kx^{k-1}. \text{ De même, en calculant les dérivées secondes, on a :}$$

$$f''(x) = \frac{2}{(1-x)^3} = \sum_{k=2}^{\infty} k(k-1)x^{k-2} = \sum_{k=2}^{\infty} k^2 x^{k-2} - \sum_{k=2}^{\infty} kx^{k-2}$$

$$f''(x) = \frac{\frac{1}{2}}{(1-x)^3} = \sum_{k=2}^{\infty} k(k-1)x^{k-2} = \sum_{k=2}^{\infty} k^2 x^{k-2} - \sum_{k=2}^{\infty} k x^{k-2}$$

$$\sum_{k=1}^{\infty} k^2 x^{k-1} = 1 + x \sum_{k=2}^{\infty} k^2 x^{k-2} = 1 + x (f''(x) + \sum_{k=2}^{\infty} k x^{k-1})$$

$$\sum_{k=1}^{\infty} kx^{k-1} = 1 + x \sum_{k=2}^{\infty} kx^{k-2} = f'(x)$$

$$\sum_{k=1}^{\infty} k^2 x^{k-1} = x f''(x) + f'(x) = \frac{x+1}{(1-x)^3}$$

2. Soit n un entier naturel non nul fixé. Calculer le développement en série entière de la fonction $x \to \frac{1}{(1-x)^n}$ et en déduire la somme de la série

$$\sum_{k=0}^{\infty} C_{n+k-1}^k x^k$$

On a d'une part $f^{(n-1)}(x) = \frac{(n-1)!}{(1-x)^n}$

Et d'autre part:

$$f^{(n-1)}(x) = \sum_{k=n-1}^{\infty} k(k-1) \dots (k-n+2) x^{k-n+1} = \sum_{k=n-1}^{\infty} \frac{k!}{(k-n+1)!} x^{k-n+1}$$

Ou en posant k' = k - n + 1,

$$f^{(n-1)}(x) = \sum_{k=0}^{\infty} \frac{(k+n-1)!}{k!} x^k$$

Finalement, on a:
$$\frac{(n-1)!}{(1-x)^n} = \sum_{k=0}^{\infty} \frac{(k+n-1)!}{k!} x^k$$
 ou $\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} \frac{(k+n-1)!}{(n-1)!k!} x^k$

Et comme
$$C_{k+n-1}^{n-1} = C_{k+n-1}^k$$
, on a $\sum_{k=0}^{\infty} C_{k+n-1}^k x^k = \frac{1}{(1-x)^n}$