SE 3368 – SOFT COMPUTING

Spring, 2023

ASSIGNMENT 1

Given: March 17, 2023 **Due:** March 31, 2023

Apply a genetic algorithm (GA) on the "Consecutive Ones Problem (COP)" according to the given instructions below.

Definition of the "COP": It aims to find the n-length binary strings that contain the <u>longest consecutive ones</u>. The fitness function for this problem is: the length of the substring that contains the longest consecutive ones in the binary string. The objective function is to maximize this fitness value. For example, let n = 10 and the number of solutions be as follows,

S1 = 0001110101, fitness = 3

S2 = 1101111101, fitness = 5

S3 = 1100100110, fitness = 2

The best solution is S2.

Task: You will apply a GA as shown in class. <u>Code your solution to the problem in JAVA and fill the report below.</u> Check the explanations and pseudocodes in the slides. Here are some steps you need to take:

Parameters:

	Problem 1	Problem 2	Problem 3	Problem 4		
n	10	100	100	100		
initial population size (m)	10	100	100	1000		
# of iterations	10	100	1000	100		
crossover type	One Point Crossover					
crossover ratio	70%					
mutation type	bitflip (flipping n / 3 bits at random)					
mutation ratio	30%					
mating selection	roulette wheel or tournament					
	elitism (transferring m /10 individu					
survival selection	+					
	roulette wheel or tournament (for transferring 9*m / 10 individuals)					

Instructions:

- Use the parameters above in your GA.
- Generate the initial population randomly.
- Do not use any local search.
- At each iteration, the exactly number of offspring should be same as the size of the initial population (that is n).
- Run each Problem 1 through 4 for **10 times** and fill in the "Table" in the report below.
- In the "Concluding Remarks" section, write down your observation about your algorithm's success by comparing the results of Problems 1 through 4.
 - How did the change in the values of "n", "population size", and "# of iterations" affect the success of your GA? Comment with a few brief sentences.
- After finishing your GA coding, running it, and filling your report, put your **JAVA project** (with all your codes) and the report file (convert to PDF file) in a folder. Name this folder with this format: "A1_Firstname_Lastname" (e.g. A1_Kazim_Erdogdu). Zip your folder and upload it to "Assignment1" in Moodle.

SE 3368 – SOFT COMPUTING ASSIGNMENT 1 – REPORT

Student ID: 21070006054

Student Name: Arda Harman

Department: Software Engineering

Department. Software Engineering							
Best fitness for	Problem 1	Problem 2	Problem 3	Problem 4			
Run 1	6	25	35	32			
Run 2	10	27	34	34			
Run 3	10	23	33	31			
Run 4	10	27	34	36			
Run 5	8	26	37	33			
Run 6	10	23	29	32			
Run 7	8	26	36	32			
Run 8	10	32	35	34			
Run 9	8	27	32	33			
Run 10	7	26	32	37			
Average of all runs	8.7	26.2	33.7	33.4			
Best fitness of 10 runs	10	32	37	37			
The genotype of the best fitness	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]	[1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	[1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	[1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			

Concluding Remarks:

At the 1st problem, When the "length-n" was 10, it was very quick and easy to reach the best possible fitness 10

But at the 2nd problem, after increasing the "n" to 100, the max fitness I got was 32, it wasn't 100

Also, no matter how much I increased the "m" or "# of generations", the best fitness I got just increased 32 to 37.

- I have to highlight that, at the 3rd problem "m" was 10 times more
- At the 4th problem, "# of generations" was 10 times more
- But the best fitness I got has just slightly increased

Increasing "# of generations" made a slightly better run than increasing "m". But the difference wasn't significant

Finally it is worth noting that, I used tournament as a selection method and it gave very less chances to weak individuals. I observed that, most of the new offsprings would just be the copy of only 1 or 2 individual's copy