Работа 3.2.5

Свободные и вынужденные колебания в электрическом контуре

Шелихов Дмитрий Группа Б01-305

1 ноября 2024 г.

Цель работы: Исследование свободных и вынужденных колебаний в колебательном контуре.

В работе используются: Осциллограф АКТАКОМ ADS-6142H, генератор сигналов специальной формы АКИП-3409/4, магазин сопротивления МСР-60, магазин емкости Р5025, магазин индуктивности Р567 типа МИСП, соединительная коробка с шунтирующей емкостью, соединительные одножильные и коаксиальные провода.

Экспериментальная установка:

Схема установки для исследования колебаний приведена на рисунке 1. Колебательный контур состоит из постоянной индуктивности L с активным сопротивлением R_L , переменной емкости C и сопротивления R. Картина колебаний напряжения на емкости наблюдается на экране двухканального осциллографа.

Сигнал с генератора поступает через конденсатор C_1 на вход колебательного контура. Данная ёмкость необходима, чтобы выходной импеданс генератора был много меньше импеданса колебательного контура и не влиял на процессы, проходящие в контуре.

При изучении свободно затухающих колебаний, генератор специальных сигналов на вход колебательного контура подает периодические короткие импульсы, которые заряжают конденсатор С. За время между последовательными импульсами происходит разрядка конденсатора через резистор и катушку индуктивности. U_C подается на канал 1(X) осциллографа. Для наблюдения фазовой картины затухающих колебаний на канал 2(Y) подается напряжение с резистора R, которое пропорционально току I.

При изучении возбужденных колебаний на вход колебательного контура подается синусоидальный сигнал. С помощью осциллографа возможно измерить зависимость амплитуды возбужденных колебаний в зависимости от частоты внешнего сигнала, из которого возможно определить добротность колебательного контура. Альтернативным способом расчета добротности контура является определение декремента затухания по картине установления возбужденных колебаний. В этом случае генератор сигналов используется для подачи цугов синусоидальной формы.

Ход работы Подготовка приборов к работе

1) Подключим генератор специальных сигналов к входу 1(X) осциллографа.

Рис. 1: Схема установки для исследования вынужденных колебаний

- 2) Установим на генераторе специальных сигналов последовательность импульсов. Установим длительность импульсов 10 мкс, частоту повторения импульсов $\nu=100~\Gamma$ ц, а амплитуду сигнала 20 В. Подадим сигнал.
- 3) Видим, что на осциллографе отображаются периодические импульсы. Получим статичное изображние с помощью настройки синхронизации.
 - 4) Соберем схему согласно рис.1.

Измерение периодов свободных колебаний

- 1) Установим на магазине сопротивлений величину R=0 Ом, на магазине индуктивностей L=100 м Γ н, на магазине ёмкостей C=0 мк Φ . Контур сам по себе обладает некоторым минимальным значением емкости C_0 , благодаря которому в контуре реализуются свободные колебания. При этом затухание обеспечивается наличием активного сопротивления в магазине индуктивностей R_L . Получим на экране картину свободных затухающих колебаний с помощью настроек осциллографа. На экране осциллографа появился сигнал, который соответствует свободным колебаниям с затуханием.
- 2) Подберём частоту развертки осциллографа при котором расстояние между импульсами генератора занимает почти весь экран.
 - 3) Измерим с помощью осциллографа период затухающих колебаний:

Т, мкс |
$$70 \pm 1$$

4) По периоду колебаний определим нулевую ёмкость (C_0) колебательного контура. Это значение является минимальным для магазина ёмкостей и его необходимо учитывать (прибавлять) при дальнейших расчётах.

$$C_0$$
, нФ | 1.24 ± 0.04

5) Изменяя ёмкость от 0 мк Φ до 0.009 мк Φ проведем измерения периодов. Рассчитаем теоретические значения по формуле $T=2\pi\sqrt{LC}$.

С, мкФ	$T_{\text{эксп}}$, мкс	$T_{ m reop}$, MKC	L, мГн
0,001	95 ± 1	$94,04 \pm 0,14$	
0,002	114 ± 2	$108,83 \pm 0,16$	
0,003	130 ± 2	$140,50 \pm 0,21$	
0,004	144 ± 2	$166,24 \pm 0,25$	
0,005	159 ± 2	$188,50 \pm 0,28$	$100,0 \pm 0,2$
0,006	170 ± 3	$208,39 \pm 0,21$	
0,007	182 ± 3	$226,54 \pm 0,34$	
0,008	187 ± 3	$243,35 \pm 0,37$	
0,009	199 ± 3	$259,06 \pm 0,39$	

Построим график $T_{\text{эксп}} = f(T_{\text{теор}})$:

Откуда получаем зависимость, которая аппроксимируется прямой $T_{\text{эксп}} \approx 0.6 T_{\text{теор}}$.

Теоретические значения отклоняются от экспериментальных при увеличении ёмкости из-за наличия сопротивления обкладок конденсатора, которое возрастает при увеличении ёмкости.

Критическое сопротивление и декремент затухания

1) Приняв L = 100 мГн, рассчитаем ёмкость C^* , при которой собственная частота колебаний $\nu_0=\frac{1}{2\pi\sqrt{LC}}=6.5$ кГц. Для выбранных L и C^* рассчитаем критическое сопротивление контура $R_{\rm cr}$ по формуле $R_{\rm cr}=2\sqrt{L/C^*}$

С*, нФ	L, мГн	ν_0 , к Γ ц	$R_{\rm cr}$, кОм
6.00 ± 0.01	100	6.5	8.165 ± 0.015

- 2) Установим на магазине ёмкость, близкую к рассчитанной критической: C=6 нФ (включая C_0). Увеличивая сопротивление R от нуля до $R_{\rm cr}$, пронаблюдаем картину затухающих колебаний на экране осциллографа. Определим сопротивление магазина, при котором колебательный режим переходит в апериодический: $R\approx 8300$ Ом.
- 3) Установим сопротивление $R\approx 0.05R_{\rm cr}=(408.25\pm0.83)$ Ом. Получим на экране картину затухающих колебаний. Для расчёта логарифмического декремента затухания $\theta=\frac{1}{n}ln\frac{U_m}{U_{m+n}}$ измерим амплитуды, разделенные целым числом периодов п. Измерения проведем для 6 значений R в интервале $(0.05\text{-}0.25)R_{\rm cr}$.

R, Om	U_m , мВ	n	U_{m+n} , MB	θ	R_{Σ} , Ом
408.25 ± 0.75	688 ± 7	3	224 ± 2	0.374 ± 0.036	440.58 ± 0.75
816.50 ± 1.50	552 ± 6	3	80 ± 1	0.644 ± 0.048	848.83 ± 1.50
1224.75 ± 2.25	440 ± 4	3	30 ± 1	0.895 ± 0.073	1257.08 ± 2.25
1633.00 ± 3.00	348 ± 3	2	28 ± 1	1.260 ± 0.099	1665.33 ± 3.00
2041.25 ± 3.75	284 ± 3	1	55 ± 1	1.642 ± 0.126	2073.58 ± 3.75
2449.50 ± 4.50	218 ± 1	1	29 ± 1	2.017 ± 0.149	2481.83 ± 4.50

Построим график в координатах $1/\theta^2 = \mathrm{f}[1/(R_\Sigma^2)]$. Y = $1/\theta^2$, $1/(R_\Sigma^2) = \mathrm{X}$. Тогда $R_{\mathrm{cr}} = 2\pi\sqrt{\Delta Y/\Delta X}$.

Получили $k = 1.77 \pm 0.07$:

$R_{\rm cr^{ m Teop}},$ кОм	$R_{ m cr^{ m 9} KC\Pi}$, кОм
8.165 ± 0.015	8.359 ± 0.585

Рассчитаем добротность контура $Q=\frac{\pi}{\theta}$ для максимального и минимального значений θ по картине затухающих колебаний.

$\theta_{\min} = 0.374 \pm 0.036$	$Q = 8.4 \pm 0.8$
$\theta_{\rm max} = 2.017 \pm 0.149$	$Q = 1.6 \pm 0.1$

4) Выберем $R1=(816.50\pm 1.50)$ Ом и $R2=(1633.00\pm 3.00)$ Ом. Эти значения будем использовать для наблюдения вынужденных колебаний.

Свободные колебания на фазовой плоскости

- 1) Введем сопротивление $R \approx 0.05~R_{\rm cr}$ на магазине. Подадим на канал 2(Y) осциллографа падение напряжения с резистора.
- 2) Для одновременного наблюдения осциллограмм тока и напряжения свободных затухающих колебаний переведем осциллограф в двухканальный режим. Подберем масштабы по вертикали и частоту развертки по горизонтали так, чтобы оба сигнала были представлены на временном интервале, слегка превышающем период повторения импульсов с

генератора.

- 3) Подберем частоту повторения импульсов на генераторе так, чтобы расстояние между импульсами было порядка характерного времени затухания свободных колебаний. (400-500 Γ ц)
 - 4) Настроим спираль в фазовой плоскости подобрав масштаб, удобный для измерений.

Для определения декремента затухания θ измерим координаты пересечения витков спирали с горизонтальной осью координат, разделенные целым числом периодов n, для сопротивлений R_1 и R_2

$$\theta = ln \frac{X_k}{X_{k+1}}$$

R, Om	i	X_i , усл.ед.	θ
	0	-39	
	1	-19	0.72
816.50 ± 1.59	2	-10	0.64
010.00 ± 1.09	3	7	
	4	14	0.69
	5	28	0.69
	0	-34	
1633.00 ± 3.00	1	-8	1.45
	2	-2	1.39
	4	4	
	17	1.45	

Откуда находим θ для обоих случаев и добротность контура Q:

R, Om	θ	Q	
816.50 ± 1.59	0.69 ± 0.02	4.55 ± 0.13	
1633.00 ± 3.00	1.43 ± 0.03	2.20 ± 0.05	

Теоретические значения для Q по R, L, C контура

L, мГн	С, нФ	R, Ом	Q
99.96	6	848.83	4.81
99.96	6	1665.33	2.45

Исследование резонансных кривых

- 1) Для наблюдения вынужденных колебаний переведем осциллограф в одноканальный режим просмотра (выключить режим XY).
- 2) Переведем генератор специальных сигналов в режим подачи синусоидального сигнала.

Рис. 2: Схема установки для исследования АЧХ и ФЧХ

- 3) Выставим ранее найденные значения емкости и сопротивления C^* и R_1 .
- 4) С помощью переходника и коаксиальных кабелей подадим сигнал с генератора одновременно на колебательный контур и на канал 2 осциллографа. Добъемся того чтобы на экране осциллографа можно было наблюдать одновременно два сигнала: сигнал, взятый с колебательного контура, на первом канале и первоначальный сигнал на втором канале.
- 5) Убедитимся, что на экране осциллографа при частотах близких к резонансным наблюдается устойчивый синусоидальный сигнал.
- 6) Изменяя частоту генератора вблизи резонансной частоты и наблюдая синусоиду на первом канале на экране осциллографа, убедимся, что амплитуда колебаний максимальна при достижении резонансной частоты. Определим ее значение: $\nu_{\rm pes}\approx 6490~\Gamma$ ц.
- 7) Снимем АЧХ колебательного контура вблизи резонанса. Амплитуда резонансной частоты: $U_{\rm pes}\approx 1.06$ В. Повторим измерения для R_2 , где $\nu_{\rm pes}=6610$ Гц и $U_{\rm pes}=604$ мВ:

R_1 , Om	ν ₁ , Γц	U_1 , mB	R_2 , Om	$ u_2$, Гц	U_2 , MB
	2850	66		4600	244
	3200	83		4800	284
	3550	106		5000	316
	3900	142		5200	356
	4250	184		5400	396
	4600	242		5600	444
	4950	322		5800	492
	5300	438		6000	532
	5650	608		6200	572
	6000	824	1633.00 ± 3.00	6400	592
$816.50 \pm 1.50 \mathrm{Om}$	6350	1010		6600	604
010.50 ± 1.50 OM	6700	1000		6800	604
	7050	890		7000	596
	7400	748		7200	580
	7750	644		7400	564
	8100	572		7600	548
	8450	528		7800	528
	8800	476		8000	512
	9150	440		8200	492
	9500	416		8400	476
	9850	396		8600	456
	10200	380		8800	436
				9000	424

Построим на одном графике резонансные кривые в координатах $U/U_0=f(\nu/\nu_0),$ где U_0 - напряжение при резонансной частоте ν_0 :

Определим добротность контура по формуле $Q=\omega_0/2\Delta\Omega$, где $2\Delta\Omega$ - ширина резонансной кривой, измеренная на уровне f(1)/sqrt(2)

$$R_1 = (816.50 \pm 1.50) \; ext{Om} \quad Q_1 = R_2 = (1633.00 \pm 3.00) \; ext{Om} \quad Q_2 = 0$$

Процессы установления и затухания

Рис. 3: Нарастание и затухание вынужденных колебаний