Yin, MST Spring 2012 Teams		
Teams	Projects	
Stewart Boling, Nicolas Pereira	Face detection, identification and recognition from mobile devices	
Michael Wisely, Mat Nuckolls	Undecided yet	
Nate Eloe, Jacob Gardener	Undecided yet	

Yin, MST Spring 2012		2
	Lecture 04:	
	Camera Projection (cont.)	

Perspective Matrix Equation
(in Camera Coordinates)
$$x = f \frac{X}{Z}$$

$$y = f \frac{Y}{Z}$$

$$y = f \frac{Y}{Z}$$

$$y = f \frac{X}{Z}$$

$$y = f \frac{Y}{Z}$$

$$y = f \frac{X}{Z}$$

$$z' = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Simple Stereo, Left Camera

$$\begin{pmatrix}
X \\
Y \\
Z \\
1
\end{pmatrix}
=
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
U \\
V \\
W \\
1
\end{pmatrix}$$
camera axes aligned with world axes
$$=
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$
located at world position (0,0,0)

Yin, MST Spring 2012 Simple Stereo Projection Equations

Left camera

$$\begin{bmatrix} x_l \\ y_l \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{U} \\ \mathbf{V} \\ \mathbf{W} \\ 1 \end{bmatrix}$$

$$x_l = f \frac{\mathbf{U}}{\mathbf{W}} \qquad y_l = f \frac{\mathbf{V}}{\mathbf{W}}$$

Simple Stereo, Right Camera

$$\begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & -T_x \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
U \\
V \\
W \\
1
\end{bmatrix}$$
camera axes aligned with world axes
$$= \begin{bmatrix}
1 & 0 & 0 & -T_x \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

Simple Stereo Projection Equations

Left camera
$$\begin{bmatrix} x_l \\ y_l \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} U \\ V \\ W \\ 1 \end{bmatrix}$$

$$x_l = f \frac{U}{W} \quad y_l = f \frac{V}{W} \quad \text{left camera located at } \begin{cases} x_r \\ y_r \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -T_x \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$x_r = f \frac{U - T_x}{W} \quad y_r = f \frac{V}{W}$$

Our Trick(s) to Figure out the Rotation

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & -\sqrt{x} \\ 0 & 0 & -\sqrt{x} \\ 0 & 0 & -\sqrt{x} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \\ 1 \end{pmatrix}$$

$$P_C = R P_W$$

This equation says how vectors in the world coordinate system (including the coordinate axes) get transformed into the camera coordinate system.

Yin, MST Spring 2012

Figuring out Rotations

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \\ 1 \end{pmatrix} \qquad \mathbf{P_C} = \mathbf{R} \ \mathbf{P_W}$$

what if world U axis (1,0,0) corresponds to camera axis (a,b,c)?

we can immediately write down the first column of R!

18

Figuring out Rotations

Alternative approach: sometimes it is easier to specify what camera X,Y,or Z axis is in world coordinates. Then do rearrange the equation as follows.

 $P_C = R P_W \longrightarrow R^{-1}P_C = P_W \stackrel{*}{\longrightarrow} R^TP_C = P_W$

$$\begin{pmatrix} \mathbf{r}_{11} & \mathbf{r}_{21} & \mathbf{r}_{31} & \mathbf{0} \\ \mathbf{r}_{12} & \mathbf{r}_{22} & \mathbf{r}_{32} & \mathbf{0} \\ \mathbf{r}_{13} & \mathbf{r}_{23} & \mathbf{r}_{33} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \\ \mathbf{1} \end{pmatrix} = \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \\ \mathbf{W} \\ \mathbf{1} \end{pmatrix}$$

* Rotation matrix is an orthogonal matrix.

Yin, MST Spring 2012

Figuring out Rotations

$$\begin{pmatrix} \mathbf{r}_{11} & \mathbf{r}_{21} & \mathbf{r}_{31} & 0 \\ \mathbf{r}_{12} & \mathbf{r}_{22} & \mathbf{r}_{32} & 0 \\ \mathbf{r}_{13} & \mathbf{r}_{23} & \mathbf{r}_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \\ \mathbf{W} \\ 1 \end{pmatrix} \qquad \mathbf{R}^{\mathbf{T}} \mathbf{P}_{\mathbf{C}} = \mathbf{P}_{\mathbf{W}}$$

what if camera X axis (1,0,0) corresponds to world axis (a,b,c)?

we can immediately write down the first column of R^T , (which is the first row of R).

21

Note: External Parameters also often written as R,T

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -c_x \\ 0 & 1 & 0 & -c_y \\ 0 & 0 & 1 & -c_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \\ 1 \end{pmatrix}$$

$$\mathbf{R} (\mathbf{P}_{\mathbf{W}} - \mathbf{C}) = \mathbf{R} \mathbf{P}_{\mathbf{W}} - \mathbf{R} \mathbf{C}$$

$$= \mathbf{R} \mathbf{P}_{\mathbf{W}} + \mathbf{T}$$

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{x} \\ r_{21} & r_{22} & r_{23} & t_{y} \\ r_{31} & r_{32} & r_{33} & t_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Yin, MST Spring 2012

PUTTING IT ALL TOGETHER

3D to 2D Projection: Matrix Form

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -c_x \\ 0 & 1 & 0 & -c_y \\ 0 & 0 & 1 & -c_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} U \\ V \\ W \\ 1 \end{bmatrix}$$

2d film coordinates:

Intrinsic parameters

29

- Describes coordinate transformation between film coordinates (projected image) and pixel array
- Film cameras: scanning/digitization
- CCD cameras: grid of photosensors

Yin, MST Spring 2012

Intrinsic parameters (offsets)

film plane (projected image)

pixel array

$$u = x + o_x v = y + o_y$$
$$= f \frac{X}{Z} + o_x = f \frac{Y}{Z} + o_y$$

 o_x and o_y called image center or principle point

Effective Scales: s_x and s_y

 $u = \frac{1}{s_x} f \frac{X}{Z} + o_x \quad v = \frac{1}{s_y} f \frac{Y}{Z} + o_y$

Note, since we have different scale factors in x and y, we don't necessarily have square pixels!

Aspect ratio is s_y / s_x

Yin, MST Spring 2012

Perspective projection matrix

Adding the intrinsic parameters into the perspective projection matrix:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} f/s_x & 0 & o_x & 0 \\ 0 & f/s_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

To verify:

$$u = \frac{x'}{z'}$$

$$v = \frac{y'}{z'}$$

$$u = \frac{1}{S_x} f \frac{X}{Z} + o_x \qquad v = \frac{1}{S_y} f \frac{Y}{Z} + o_y$$

33

