Recent Explorations of Self-Attention Networks

Presenter: Baosong Yang

Why Self-Attention? (EMNLP 2018)

- Motivation
 - Modeling long-range dependencies through shorter-path? Theoretic!
- Experiments
 - Subject-verb agreement over long distances
 - ▶ Verbs must agree with their subjects in both grammatical number and person
 - Extraction of semantic feature in word sense disambiguation
 - ▶ Replace the ambiguous word with other translations of its translation
 - Setting:
 - RNNS2S: encoder(1-bi+6-uni) and decoder (8 uni)
 - RNNbideep: 4-bi
 - Transformer: 8 SAN

Long-distance

- Cannot conclude that Transformer models are stronger than RNN models for long-distances
- CNN: accuracy increases when the local context size becomes larger, but the BLEU score not.
 - ▶ BLEU measures only on the n-grams

Layer	K	Ctx	2014	2017	Acc(%)
4	3	4	22.9	24.2	81.1
6	3	6	23.6	25.0	82.5
8	3	8	23.9	25.2	84.9
8	5	16	23.5	24.7	89.7
8	7	24	23.3	24.6	91.3

Multi-Head Benefits More

► The accuracy over long-distances can be improved substantially, by increasing the number of heads.

Model	2014	2017	PPL	Acc(%)
RNNS2S-s	7.3	7.8	47.8	77.3
Trans-s	7.2	8.0	44.6	74.6
RNNS2S-re	9.2	10.5	39.2	77.7
Trans-re-h2	9.6	10.7	36.9	71.9
Trans-re-h4	9.5	11.9	35.8	73.8
Trans-re-h8	9.4	10.4	36.0	75.3

WSD

- Transformers distinctly outperform RNNS2S and ConvS2S models on WSD tasks.
- ► Chen et al., 2018 (ACL) encoder(SAN) and decoder (RNN) is worse than Transformer.

Model	DE→EN				$DE \rightarrow FR$		
	PPL	2014	2017	Acc(%)	PPL	2012	Acc(%)
RNNS2S	5.7	29.1	30.1	84.0	7.06	16.4	72.2
ConvS2S	6.3	29.1	30.4	82.3	7.93	16.8	72.7
Transformer	4.3	32.7	33.7	90.3	4.9	18.7	76.7
uedin-wmt17	<u> </u>	_	35.1	87.9	7 <u>-</u> 3	_	_
TransRNN	5.2	30.5	31.9	86.1	6.3	17.6	74.2

Conclusion

- ► CNN and SAN which have shorter paths through networks are not empirically superior to RNNs in modeling long distance dependencies.
- Multi-head affects the ability mentioned above.
- Transformer outperform other models on WSD.
- Simply computing BLEU score may be insufficient to learn the performance of a model.

Overview of Recent Studies on SAN

- Dependencies
 - Short-term
 - Long-term
 - Phrasal Pattern
- Multi-heads
 - Multiple features
 - Interaction
- ► Temporal Information
 - Position
 - Recurrence
- Others
 - Multi-layer
 - Training
 - Components
- Applications

Dependency

- Short term:
 - Local SAN (Sperber et al., Interspeech2018)
 - ▶ Block (Shen et al., ICLR 2018)
 - CNN (Yu et al., ACL 2018)
 - Block Review (Hao Jie)
- Long term:
 - ▶ Global Context (Yang et al., AAAI 2019; Hao et al., AAAI 2019)
 - ▶ Not good at subject-verb agreement (Tang et al., EMNLP 2018; Trans et al., EMNLP 2018)
- Phrasal pattern:
 - ▶ Local Attention (Luong et al., EMNLP 2015)
 - Localness (Yang et al., EMNLP 2018)
- Hard attention:
 - ► Hard attention (Shen et al., IJCAI 2018; Xinwei)
 - others (e.g. syntax-aware or dependency enhanced SAN in AAAI 2019)
- The weighted average operation may be insufficient to fully capture dependencies which may be alleviated by multi-head mechanism.
- The description "build direct revelance between words benefits performance (Gehring et al., ICML 2017; Vaswani et al., NIPS 2017) " may be not strict.

Multi-head

- Multiple features
 - Multi-dim (Lin et al., ICLR 2017; Shen et al., AAAI 2018)
 - ▶ Different subspace of representation (Vaswani et al., NIPS 2017)
 - ▶ Disagreement (Lin et al., ICLR 2017; Li et al., EMNLP 2018)
 - ▶ Different local scopes (Yang et al., EMNLP 2018)
 - ▶ Different distance dependencies (Tang et al., EMNLP 2018)
- Interaction
 - ▶ Weighted (Ahmed et al., 2018)
 - ► CNN and Bilinear Pooling (Li et al., AAAI 2019)
- Multi-Head benefits more for Transformer!
- How to extract and interact features?
 - e.g. more linguistic information (Cohn et al., NAACL 2016; Li Jian)

Temporal Information

- Position
 - ▶ Absolute (Gehring et al., ICML 2017; Vaswani et al., NIPS 2017)
 - ▶ Relative (Shaw et al., NAACL 2018)
- Recurrence
 - ▶ Bi-directional (Shen et al., AAAI 2018)
 - RNN+ (Chen et al., ACL 2018)
 - Target mean and nearest attention (Zhang et al., ACL 2018)
 - May drop the BLEU score
 - ▶ Mean fail to fully capture the context (Yang et al., AAAI 2019)
 - ▶ RNN better than SAN and CNN in language modeling (Trans et al., EMNLP 2018)
- Temporal Information is important. However, in practice, there is marginal improvement by incorporating recurrence.
 - Translation (Hao et al., AAAI 2019)
 - Word Sense Disambigation (Tang et al., 2018)
 - Encoder SAN Decoder RNN performance better in (Domhan et al., ACL 2018), but worse in (Trans et al., EMNLP 2018)
 - Speed!
- Block review? (Hao Jie)

Others

- Multi-layer
 - Semantic and syntactic information (Peter et al., NAACL 2018)
 - ► Coarse to fine and revise (Domhan et al., ACL 2018; Dehghani et al., Google 2018)
 - Different Local Scope (Yang et al., EMNLP 2018)
 - ► Aggregation (Dou et al., EMNLP 2018)
- Large Scale
 - ► Large Batch size and larger learning rate (Facebook 2018)
- Components are important (Domhan et al., ACL 2018)
 - Residual FFN
 - Layer normalization

Applications

- Author profiling (Use twitters to predict age) (Lin et al., ICLR 2017)
 - Author Profiling dataset: http://pan.webis.de/clef16/pan16-web/author-profiling.html
- Sentiment analysis
 - Yelp dataset: https://www.yelp.com/dataset_challenge (Lin et al., ICLR 2017)
 - Stanford SST: https://nlp.stanford.edu/sentiment/ (Shen et al., AAAI 2018)
- Natural language inference (Lin et al., ICLR 2017; Shen et al., IJCAI 2018)
 - ► SNLI corpus: https://nlp.stanford.edu/projects/snli/
- Semantic Relatedness (Shen et al., 2018)
 - ► SICK datasets: http://alt.qcri.org/semeval2014/task1/index.php?id=data-and-tools
- Probing Tasks (10 classification tasks) (Conneau et al. ACL 2018) Evaluating Representations!!!
- ► NMT
- QA (Yu et al., ACL 2018)
 - SQuAD: https://rajpurkar.github.io/SQuAD-explorer/
- Speech (Sperate et al., Interspeech 2018)
- Universal Transformer (Not release)