Homework #3

Sam Fleischer

April 19, 2016

Problem 1	•			•	•	•	 	•	•	•	 	•	•	•	•		 •	•	•	•	•	•	•	 •	•	•	•	 •	•	•	•	•	 	 •	•	•		2
Problem 2							 				 																						 					2
Problem 3							 				 						 •																 					3
Problem 4							 				 						 •																 					4
Problem 5							 			•	 																						 					4
Problem 6							 				 						 •																 					5
Problem 7							 				 					•																	 					6
Problem 8		 					 				 						 																 					6

Problem 1

If $u \in L^p(\mathbb{R}^n)$ for $1 \le p < \infty$, and $u^{\varepsilon} = \eta_{\varepsilon} * u$, for η_{ε} the standard mollifier. Show that

$$u^{\varepsilon} \to u$$

in $L^p(\mathbb{R}^n)$ as $\varepsilon \to 0$.

Proof. First we show the following containment:

$$\operatorname{spt}(f+g) \subset \operatorname{spt}(f) \cup \operatorname{spt}(g)$$

Let $x \in \{x \in \Omega : (f+g)(x) \neq 0\}$. Then $(f+g)(x) = f(x) + g(x) \neq 0$. Then either f(x) = 0 or g(x) = 0, i.e. $x \in \text{spt }(f) \cup \text{spt }(g)$. But $\text{spt }(f) \cup \text{spt }(g)$ is closed, which implies

$$\operatorname{spt}(f+g) = \overline{\{x \in \Omega : (f+g)(x) \neq 0\}} \subset \operatorname{spt}(f) \cup \operatorname{spt}(g).$$

Now let $\varepsilon > 0$ and approximate u by $\tilde{u} \in C_C^0(\mathbb{R}^n)$ such that $\|u - \tilde{u}\|_p < \frac{\varepsilon}{3}$. Since \tilde{u} is continuous on a compact set, it is uniformly continuous, and thus $\exists \delta_\varepsilon > 0$ such that $|x - y| < \delta_\varepsilon \implies |\tilde{u}(x) - \tilde{u}(y)| < \mu(K)^{-\frac{1}{p}} \frac{\varepsilon}{3}$ where K is defined below. Define $\delta = \min \left\{ \delta_\varepsilon, \frac{1}{2} \right\}$. Define the set $K = \left(\overline{\operatorname{spt}(\eta_1) + \operatorname{spt}(\tilde{u})} \right) \cup \operatorname{spt}(\tilde{u})$. Then since $\mu(\operatorname{spt}(\tilde{u})) < \infty$ and $\mu(\operatorname{spt}(\eta_1)) < \infty$, then $\mu(K) < \infty$. Then

$$\|\eta_{\delta} * u - \eta_{\delta} * \tilde{u}\|_{p} = \|\eta_{\delta} * (u - \tilde{u})\|_{p} \le \|\eta_{\delta}\|_{1} \|u - \tilde{u}\|_{p} = 1 \cdot \frac{\varepsilon}{3} = \frac{\varepsilon}{3}.$$

Let $J = \operatorname{spt} (\eta_{\delta} * \tilde{u} - \tilde{u})$. Then $J \subset K$ by the first containment shown. Finally,

$$\begin{split} \left\| \eta_{\delta} * \tilde{u} - \tilde{u} \right\|_{p} &\leq \left[\int_{J} \left| \int_{B_{\delta}(x)} \eta_{\delta}(x - y) \tilde{u}(y) \mathrm{d}y \right|^{p} \mathrm{d}x - \tilde{u}(x) \right]^{\frac{1}{p}} \\ &\leq \left[\int_{J} \left(\int_{B_{\delta}(x)} \eta_{\delta}(x - y) |\tilde{u}(u) - \tilde{u}(x)| \mathrm{d}y \right)^{p} \mathrm{d}x \right]^{\frac{1}{p}} \\ &< \mu(K)^{-\frac{1}{p}} \frac{\varepsilon}{3} \left[\int_{J} \mathrm{d}x \right]^{\frac{1}{p}} \\ &= \mu(K)^{-\frac{1}{p}} \frac{\varepsilon}{3} \mu(J)^{\frac{1}{p}} \\ &\leq \mu(K)^{-\frac{1}{p}} \frac{\varepsilon}{3} \mu(K)^{\frac{1}{p}} \\ &= \frac{\varepsilon}{3} \end{split}$$

Thus,

$$\left\|\eta_{\delta}*u-u\right\|_{p}\leq\left\|\eta_{\delta}*u-\eta_{\delta}*\tilde{u}\right\|_{p}+\left\|\eta_{\delta}*\tilde{u}-\tilde{u}\right\|_{p}+\left\|\tilde{u}-u\right\|_{p}<3\left(\frac{\varepsilon}{3}\right)=\varepsilon,$$

which shows, since ε is arbitrarily small, that

$$\eta_{\delta} * u \rightarrow u$$
.

Problem 2

Let Ω denote an open and smooth subset of \mathbb{R}^n . Prove that $\mathscr{C}_c^{\infty}(\Omega)$ is dense in $L^p(\Omega)$ for $1 \le p < \infty$.

UC Davis Analysis (MAT201C)

Proof. It suffices to show that any convolved function is in \mathscr{C}_C^{∞} . Let $u \in L^p$ and choose $\varepsilon > 0$. Then since

$$\frac{\partial}{\partial x} \eta_{\varepsilon}(x - y) u(y) = u(y) \frac{\partial}{\partial x} \eta_{\varepsilon}(x - y) \le u(y) M(y)$$

since $\eta_{\varepsilon}(x-y)$ is an arbitrarily smooth compactly supported function, and thus its derivatives are arbitrarily smooth compactly supported functions. Specifically,

$$M(y) = \max_{x \in B_{\varepsilon}(y)} \{ \eta_{\varepsilon}(x - y) \}$$

Next we show M is continuous. Choose $\tilde{\varepsilon} > 0$. Then choose δ such that $|x_1 - x_2| < \delta \implies |\eta_{\varepsilon}(x_1) - \eta_{\varepsilon}(x_2)| < \tilde{\varepsilon}$. Then

$$M(y+\delta) = \max_{x \in B_{\varepsilon}(y+\delta)} \left\{ \eta_{\varepsilon}(x-y-\delta) \right\} \le \max_{x \in B_{\varepsilon}(y+\delta)} \left\{ \eta_{\varepsilon}(x-y) + \tilde{\varepsilon} \right\} = M(y) + \tilde{\varepsilon}$$

since

$$|\eta_{\varepsilon}(x-y-\delta)-\eta_{\varepsilon}(x-y)|<\tilde{\varepsilon}$$

Similarly, $-\tilde{\varepsilon} < M(y + \delta) - M(y)$. Thus,

$$|M(y+\delta)-M(y)|<\tilde{\varepsilon}$$

and thus M is continuous in M. Since $u \in L^p$ and M is continuous, u(y)M(y) is integrable (and it is also a bounding function of $\frac{\partial}{\partial x}\eta_{\varepsilon}(x-y)u(y)$). Thus Shkoller Lemma 1.39 applies, and

$$\frac{\mathrm{d}}{\mathrm{d}x}u^{\varepsilon} = \frac{\mathrm{d}}{\mathrm{d}x}\int_{\Omega}\eta_{\varepsilon}(x-y)u(y)\mathrm{d}y = \int_{\Omega}\frac{\mathrm{d}}{\mathrm{d}x}\eta_{\varepsilon}(x-y)u(y)\mathrm{d}y = \int_{\Omega}u(y)\frac{\mathrm{d}}{\mathrm{d}x}\eta_{\varepsilon}(x-y)\mathrm{d}y = u*\frac{\mathrm{d}}{\mathrm{d}x}\eta_{\varepsilon}\in\mathscr{C}_{C}^{0}(\Omega)$$

since the convolution of an L^p function with a continuous function is continuous. This shows $u^{\varepsilon} \in \mathscr{C}^1_C(\Omega)$. Now suppose $u^{\varepsilon} \in \mathscr{C}^k_C(\Omega)$. Then

$$\frac{\mathrm{d}^k}{\mathrm{d}x^k} \int_{\Omega} \eta_{\varepsilon}(x - y) u(y) \mathrm{d}y \in \mathscr{C}_C^0(\Omega)$$

$$\Longrightarrow \int_{\Omega} \frac{\mathrm{d}^k}{\mathrm{d}x^k} \eta_{\varepsilon}(x - y) u(y) \mathrm{d}y = \int_{\Omega} u(y) \frac{\mathrm{d}^k}{\mathrm{d}x^k} \eta_{\varepsilon}(x - y) \mathrm{d}y$$

Thus,

$$\frac{\mathrm{d}^{k+1}}{\mathrm{d}x^{k+1}} \int_{\Omega} \eta_{\varepsilon}(x-y) u(y) \mathrm{d}y = \frac{\mathrm{d}}{\mathrm{d}x} \int_{\Omega} u(y) \frac{\mathrm{d}^{k}}{\mathrm{d}x^{k}} \eta_{\varepsilon}(x-y) \mathrm{d}y$$

By similar arguments as above (which apply since all derivatives of η_{ε} are arbitrarily smooth),

$$\frac{\mathrm{d}^{k+1}}{\mathrm{d}x^{k+1}} \int_{\Omega} \eta_{\varepsilon}(x-y) u(y) \mathrm{d}y = \int_{\Omega} \frac{\mathrm{d}}{\mathrm{d}x} u(y) \frac{\mathrm{d}^{k}}{\mathrm{d}x^{k}} \eta_{\varepsilon}(x-y) \mathrm{d}y = \int_{\Omega} u(y) \frac{\mathrm{d}^{k+1}}{\mathrm{d}x^{k+1}} \eta_{\varepsilon}(x-y) \mathrm{d}y = u * \frac{\mathrm{d}^{k+1}}{\mathrm{d}x^{k+1}} \eta_{\varepsilon} \in \mathscr{C}_{C}^{0}(\Omega)$$

since u is L^p and all derivatives of η_{ε} are continuous. Thus, by induction, $u^{\varepsilon} \in \mathscr{C}^k_C(\Omega)$ for all $k = 1, 2, \ldots$, i.e. $u^{\varepsilon} \in \mathscr{C}^{\infty}_C(\Omega)$. By problem one, convolutions are dense in $L^p(\Omega)$, and thus \mathscr{C}^{∞}_C is dense in $L^p(\Omega)$.

Problem 3

Prove that if $u \in L^1_{\mathrm{loc}}(\Omega)$ satisfies $\int_{\Omega} u(x)v(x)\mathrm{d}x = 0$ for all $v \in \mathscr{C}^\infty_c(\Omega)$, then u = 0 a.e. in Ω .

Proof. Suppose u satisfies the hypothetical conditions, and also that $u \not\equiv 0$. Then $\exists E \subset \Omega$ with $\mu(E) > 0$ and $u(x) \not\equiv 0$ for all $x \in E$. Without loss of generality, suppose u(x) > 0 for all $x \in E$. Next let $K \subset L \subset E$, with K compact and L open. By Urysohn's Lemma for smooth functions, construct the test function v such that v(x) = 1 for all $x \in K$ and v(x) = 0 for all $x \in E$ and $v(x) \in [0,1]$ for all $x \in E$. Then

$$\int_{\Omega} u(x)v(x)\mathrm{d}x \ge \int_{K} |u(x)|\mathrm{d}x > 0$$

This is a contradiction. Thus if $u \in L^1_{loc}(\Omega)$ satisfies $\int_{\Omega} u(x)v(x)dx = 0$ for all test functions v, then u = 0 a.e. in Ω .

Problem 4

Let $u \in L^{\infty}(\mathbb{R}^n)$ and let η_{ε} be a standard mollifier. For $\varepsilon > 0$ consider the sequence $\psi_{\varepsilon} \in L^{\infty}(\mathbb{R}^n)$ such that

$$\|\psi_{\varepsilon}\|_{\infty} \le 1 \ \forall \varepsilon > 0 \ \text{and} \ \psi_{\varepsilon} \to \psi \text{ a.e. in } \mathbb{R}^n$$
,

define

$$v^{\varepsilon} = \eta_{\varepsilon} * (\psi_{\varepsilon} u)$$
 and $v = \psi u$.

- (a) Prove that $v^{\varepsilon} \stackrel{*}{\rightharpoonup} v$ in $L^{\infty}(\mathbb{R}^n)$.
- (b) Prove that $v^{\varepsilon} \to v$ in $L^1(B)$ for every ball $B \subset \mathbb{R}^n$.

Proof. (a) We want to show $\phi_{v^{\varepsilon}}(f) \to \phi_{v}(f)$ for all $f \in L^{1}(\mathbb{R})$, where ϕ_{v} and $\phi_{v^{\varepsilon}}$ are the continuous linear functionals associated with v and v^{ε} , respectively.

Problem 5

For $u \in \mathcal{C}^0(\mathbb{R}^n;\mathbb{R})$, spt (u) is the closure of the set $\{x \in \mathbb{R}^n : u(x) \neq 0\}$, but this definition may not make sense for functions $u \in L^p(\Omega)$. For example what is the support of $\mathcal{X}_{\mathbb{Q}}$, the indicator over the rationals?

Let $u: \mathbb{R}^n \to \mathbb{R}$, and let $\{\Omega_\alpha\}_{\alpha \in A}$ denote the collection of all open sets on \mathbb{R}^n such that for each $\alpha \in A$, u = 0 a.e. on Ω_α . Define $\Omega = \bigcup_{\alpha \in A} \Omega_\alpha$. Prove that u = 0 a.e. on Ω .

The support of u, spt (u), is Ω^C , the complement of Ω . Notice that if v = w a.e. on \mathbb{R}^n , then spt $(v) = \operatorname{spt}(w)$; furthermore, if $u \in \mathscr{C}^0(\mathbb{R}^n)$, then $\Omega^C = \overline{\{x \in \mathbb{R}^n : u(x) \neq 0\}}$. (Hint: Since A is not necessarily countable, it is not clear that f = 0 a.e. on Ω , so find a countable family U_n of open sets in \mathbb{R}^n such that every open set on \mathbb{R}^n is the union of some of the sets from $\{U_n\}$.)

Proof. Define the basis *B* of the standard topology on \mathbb{R}^n by

$$B = \{(a_1, b_1) \times \cdots \times (a_n, b_n) : a_i, b_i \in \mathbb{Q} \ \forall 1 \le i \le n\}.$$

B is clearly countable, and is a basis of the standard topology on \mathbb{R}^n because \mathbb{Q}^n is dense in \mathbb{R}^n . Since Ω_α is open for each $\alpha \in A$, then Ω_α can be written as a union of open sets in *B*:

$$\Omega_{\alpha} = \bigcup_{i=1}^{\infty} B_{\alpha,i}$$

where $B_{\alpha,i} \in B$. The union above is countable since B is countable. Also, $\bigcup_{\alpha \in A} \Omega_{\alpha}$ can be re-indexed as

$$\Omega = \bigcup_{\alpha \in A} \Omega_{\alpha} = \bigcup_{\alpha \in A} \bigcup_{i=1}^{\infty} B_{\alpha,i} = \bigcup_{k=1}^{\infty} B_k$$

where $B_k \in B$. This union is countable since each $\bigcup_{i=1}^{\infty} B_{\alpha,i}$ is countable and all $B_{\alpha,i} \in B$, which is countable. Thus,

$$\mu(\{x \in \Omega : u(x) \neq 0\}) = \mu\left\{\left\{x \in \bigcup_{k=1}^{\infty} B_k : u(x) \neq 0\right\}\right\} \underbrace{\leq}_{\text{countable additivity }} \sum_{k=1}^{\infty} \mu\left\{\left\{x \in \Omega : u(x) \neq 0\right\}\right\} = 0$$

In other words, x = 0 a.e. on Ω .

Problem 6

Prove that if $u \in L^1(\mathbb{R}^n)$ and $v \in L^p(\mathbb{R}^n)$ for $1 \le p \le \infty$, then

$$\operatorname{spt}(u * v) \subset \overline{\operatorname{spt}(u) + \operatorname{spt}(v)}.$$

Proof. Suppose $x \notin \overline{\operatorname{spt}(u) + \operatorname{spt}(v)}$ and define the set $[x - \operatorname{spt}(u)]$ as the shift of the support of u by the vector x:

$$[x - \operatorname{spt}(u)] = \{y : x - y \in \operatorname{spt}(u)\}$$

Then

$$(u*v)(x) = \int_{\mathbb{R}^n} u(x-y)v(y)dy = \int_{[x-\operatorname{spt}(u)]\cap\operatorname{spt}(v)} u(x-y)v(y)dy$$

If $x_0 \in \operatorname{spt}(v) \cap [x - \operatorname{spt}(u)]$, then $x_0 \in \operatorname{spt}(v)$ and $x - x_0 = 0 \in \operatorname{spt}(u)$. Then since $x = (x - x_0) + (x_0)$, then $x \in \operatorname{spt}(u) + \operatorname{spt}(v)$, which is a contradiction since $x \notin \operatorname{spt}(u) + \operatorname{spt}(v)$. Thus $[x - \operatorname{spt}(u)] \cap \operatorname{spt}(v) = \emptyset$, and therefore

$$(u*v)(x) = \int_{[x-\operatorname{spt}(u)]\cap\operatorname{spt}(v)} u(x-y)v(y)dy = \int_{\emptyset} u(x-y)v(y)dy = 0.$$

Since $\overline{\operatorname{spt}(u) + \operatorname{spt}(v)}$ is closed, its complement is open. So $\exists \varepsilon$ such that $B_{\varepsilon}(x) \subset \overline{\operatorname{spt}(u) + \operatorname{spt}(v)}^{C}$. Thus (u * v)(x) = 0 for all $x \in B_{\varepsilon}(x)$. Then

$$B_{\varepsilon}(x) \cap \{x \in \Omega : (u * v)(x) \neq 0\} = \emptyset.$$

So there is a neighborhood around x which does not intersect $\{x \in \Omega : (u * v)(x) \neq 0\}$. Thus,

$$x \notin \overline{\{x \in \Omega : (u * v)(x) \neq 0\}} = \operatorname{spt}(u * v).$$

This shows

$$\operatorname{spt}(u * v) \subset \overline{\operatorname{spt}(u) + \operatorname{spt}(v)}$$
.

Problem 7

Suppose that $1 . If <math>\tau_y f(x) = f(x - y)$, show that f belongs to $W^{1,p}(\mathbb{R}^n)$ if and only if $\tau_y f$ is a Lipschitz function of y with values in $L^p(\mathbb{R}^n)$; that is,

$$\|\tau_y f - \tau_z f\|_p \le C|y - z|.$$

What happens in the case p = 1?

Proof.

Problem 8

If $u \in W^{1,p}(\mathbb{R}^n)$ for some $p \in [1,\infty)$ and $\frac{\partial u}{\partial x_j} = 0$, $j = 1,\ldots,n$, on a connected open set $\Omega \subset \mathbb{R}^n$, show that u is equal a.e. to a constant on Ω . (Hint: approximate u using that $\eta_{\varepsilon} * u \to u$ in $W^{1,p}(\mathbb{R}^n)$, where η_{ε} is a sequence of standard mollifiers. Show that $\frac{\partial}{\partial x_j}(\eta_{\varepsilon} * u) = 0$ on $\Omega_{\varepsilon} \subset \Omega$ where $\Omega_{\varepsilon} \nearrow \Omega$ as $\varepsilon \to 0$.)

More generally, if $\frac{\partial u}{\partial x_i} - f_j \in C(\Omega)$, $1 \le j \le n$, show that u is equal a.e. to a funtion in $\mathscr{C}^1(\Omega)$.

Proof. We want to show that $\frac{\partial}{\partial x_i}u^{\varepsilon}=0$ for any $i=1,2,\ldots,n$. This would imply $u^{\varepsilon}=C_{\varepsilon}$, for C_{ε} some constant. By Theorem 1.40 in Shkoller's Notes, $u^{\varepsilon}\to u$ pointwise almost everywhere, and thus would imply $C_{\varepsilon}\to C\equiv u$.

$$\frac{\partial}{\partial x_i}(u^{\varepsilon}) = \frac{\partial}{\partial x_i} \int_{\Omega_{\varepsilon}} \eta_{\varepsilon}(x) u(x - y) dx$$
$$= \int_{\Omega_{\varepsilon}} \frac{\partial}{\partial x_i} \left[\eta_{\varepsilon}(x) u(x - y) \right] dx.$$

We can interchange the integral and the derivative since the hypotheses of Theorem 1.39 in Shkoller's Notes holds. In particular,

$$\frac{\partial}{\partial x_i} \left[\eta_{\varepsilon}(x) u(x-y) \right] = \left[\frac{\partial}{\partial x_i} \eta_{\varepsilon}(x) \right] u(x-y) + \eta_{\varepsilon}(x) \left[\frac{\partial}{\partial x_i} u(x-y) \right]^{-0}$$

since all first partial derivatives of u are assumed to be 0 on Ω . Thus,

$$\frac{\partial}{\partial x_i} \left[\eta_{\varepsilon}(x) u(x - y) \right] = \left[\frac{\partial}{\partial x_i} \eta_{\varepsilon}(x) \right] u(x - y) \le M u(x - y)$$

where M is the maximum of the i^{th} derivative of η_{ε} , which is attained since η_{ε} is continuous on a compact set. Since $u \in W^{1,p}(\mathbb{R}^n)$, Mu(x-y) is integrable, and thus Theorem 1.39 holds. Then

$$\begin{split} \frac{\partial}{\partial x_i}(u^{\varepsilon}) &= \int_{\Omega_{\varepsilon}} \left[\frac{\partial}{\partial x_i} \eta_{\varepsilon}(x) \right] u(x-y) \mathrm{d}x \\ &= \int_{\Omega_{\varepsilon}} \left[\frac{\partial}{\partial x_i} \eta_{\varepsilon}(x-y) \right] u(y) \mathrm{d}y \\ &= -\int_{\Omega_{\varepsilon}} \left[\frac{\partial}{\partial y_i} \eta_{\varepsilon}(x-y) \right] u(y) \mathrm{d}y \qquad \text{by a suitable change of variables} \\ &= -\int_{\Omega_{\varepsilon}} \eta_{\varepsilon}(x-y) \frac{\partial}{\partial y_i} u(y) \mathrm{d}y \qquad \text{by the definition of weak derivative of } u \in W^{1,p} \end{split}$$

Sam Fleischer A

UC Davis Analysis (MAT201C)

Spring 2016

= 0 by assumption of all first partial derivatives

Thus, $u^{\varepsilon} = C_{\varepsilon}$ is constant, which shows u is constant. since $u^{\varepsilon} \to u$ pointwise a.e.