Análisis y procesamiento de imágenes radiológicas en el ámbito médico

Introducción al método Monte Carlo

P. Pérez

FAMAF (UNC) & IFEG (CONICET)

un poco de historia...

- la física históricamente ha sido conocida como filosofía natural y su estudio ha sido através de investigación puramente teórica
 - progreso "verdadero" limitado por la falta de conocimiento real
 - casi imposible determinar cuando una teoría aplicaba realmente a la naturaleza
- la investigación aplicada se convirtió en la forma aceptada de investigación
 - limitada a la capacidad de los físicos para preparar una muestra para un estudio
- con el advenimiento de la computadora, se pudieron llevar a cabo simulaciones de situaciones reales modeladas
 - la capacidad de cálculo actual permitió el mejoramiento de los modelos de las condiciones naturales de forma realista

simulaciones

- gracias a las computadoras, las simulaciones en física se convirtieron en una nueva forma de investigación
 - en muchos casos las simulaciones proveen las bases teóricas para el entendimiento de los resultados experimentales
 - en otros casos, las simulaciones proveen datos
 "experimentales" que permiten contrastar y mejorar la teoría

simulaciones en radiación ionizante

- la ec. de transporte de Boltzmann es una ecuación integrodiferencial sin solución analítica para casos generales
- se puede estimar una solución numérica
- resolver la ec. de forma computacional permite explorar experimentos en una computadora personal que no serían posibles de realizar en situaciones de laboratorio

Monte Carlo

- técnica que utiliza números aleatorios (random) para resolver problemas
- el primer trabajo a gran escala data de mediados de s. XX
 - estudios de multiplicación, scattering, propagación y absorción de neutrones en un medio, o saliendo de él
 - Ulam, von Neumann y Fermi <- los primeros!
 - se resolvieron por primera vez problemas prácticos de transporte
 - o para la bomba!
- el término proviene de la afición de los físicos al juego por plata
- ullet antes ya lo habían usado a mediados de s. XIX para calcular π
 - fue Buffon!

En la física?

- las bolas de Galton
 - fines de s. XIX
 - bolas cayendo sobre un arreglo de puntos
 - los puntos dispersando las bolas aleatoreamente
 - bolas colectadas en compartimentos verticales abajo
 - la altura de las bolas en los compartimentos aproximan la distribución binomial
 - o constituye una demostración del Teorema Central del Límite
- Pearson usó números aleatorios en los 20's para resolver problemas complejos de probabilidad y estadística
 - primeras tablas de números aleatorios!

Un poco más...

- Kelvin propone descripción de técnicas Monte Carlo modernas (hace 100 años!) para discutir las ecuaciones de Boltzmann
 - pero Kelvin estaba más preocupado por los resultados que por la técnica!
- la técnica deriva de un juego popular en Mónaco (o del casino dicen algunos)
 - los niños tiraban piedritas, en la playa, sobre un cuadrado que tenía un círculo dibujado adentro, de forma aleatoria
 - \circ de la fracción de piedritas que caen en el cículo se puede inferir π
 - otros afirman que el nombre proviene de la afición de unos físicos por calcular probabilidades de triunfo en el casino de Monte Carlo

Qué es una simulación Monte Carlo?

- en una simulación Monte Carlo (MC, de ahora en más) se sigue la evoución de un parámetro físico
- en radiaciones, se sigue la partícula (fotón, e^- , e^+ , n, ν , etc) en sus interacciones
 - o cuál es la probabilidad de que recorra determinada distancia?
 - cuál es la probabilidad de que interactúe con electrones del medio?
 - \circ cuál es la probabilidad de que el evento de interacción sea de tipo k?
 - \circ cuál es la probabilidad de que dado el evento k, la partícula salga con energía $E_f
 eq E_i$?
 - \circ cuál es la probabilidad de que salga en un ángulo $(heta,\phi)$?
 - loop hasta que me canse

Ahora que sabemos de qué se trata...

A almorzar!