Fourier Spectral Methods (pt.2)

ONB
$$Q_{n}(x) = \frac{1}{\sqrt{2\pi}} e^{inx}$$

For $n = 0, \pm 1, \pm 2, \dots$

Solu $u(x) \simeq \sum_{|n| \in \mathbb{N}} \widehat{Q}_{n}(x)$

INIEN

RHS $f(x) \simeq \sum_{|n| \in \mathbb{N}} \widehat{f}_{n}(x)$

WISH

Algorithm 5 FF7 O Compute $\frac{2}{5} = \frac{1}{5} \frac$

2) Silve un: Full expensives mz ±1,±2,...,±N and u.= g (grupe) [0,2n]per

3 Compute $u = F^{-1}\hat{u}$

Note: identical to fast FD solver except ne use eigenvalues of -2 (n2) instead of $D=\begin{bmatrix} 2^{-1} & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$.

2 solver is only
$$2^{nd}$$
 order accurate because
$$\frac{1}{2-2(1-\binom{2n}{N})^2+\binom{2n}{N}^4-1} = n^2(1+O((\frac{n}{N})^2))$$
Toylor expand

Only the low bying modes are accurate (m << N), beeding to the bour-order accuracy of the FO scheme

Non-periodic problems

Old pender cotanson

We can solve using a sine serves, BUT convergence rates will depend on smoothness of the odd-persolic extension of FCX).

OND
$$Q_{n}(x) = \sqrt{\frac{2}{n!}} \sin(nx)$$
 (nx) (nx)

3 U = 105T1(Q)

Note that for, e.g., super-algebraic convergence we need for k= 0,1,2,...

Smooth enterior => $f^{(K)}(x)$ continuous on [0,2n]Smooth enterior=> $f^{(K)}(0)=f^{(K)}(2n)$

$$f_{ext}(x) = -f(2n-x) = f_{ext}(x) = (-1)^{n+1} f^{(n)}(2n-x)$$

$$f_{n}$$
 $f_{(n)}(x) = \lim_{x \to n^+} (-1)^{n+1} f_{(n)}(x^{n-2})$

for sold
$$n = 2$$
 $f^{(n)}(n) = f^{(n)}(n)$
for even $n = 2$ $f^{(n)}(n) = -f^{(n)}(n)$

The old a condition is always satisfied but the even a condition can only be true when $f^{(n)}(r) = 0$. Similar calculation at X20 leads to

Super-algebraie
$$(=)$$
 $f^{(n)}|_{x=0,n} = 0$ convergence rade for all even n

Similar scheme based on even extensions and DC71 for Neumann boundary conditions.

Multi-dimensional Fourier Spectral Methods

Fourier, Sine, and Cosine bases dayonetize const coefficient differential operators. Com extend to multi-dimensions using knowee ker product analogous to multi-dim. Finite difference schemes.

Example: 20 Prisson An/homogeneurs Dirkhlet BCs.

on $Q_{nn}(x,y) = \frac{2}{\pi} \sin(nx) \sin(ny)$

 $497 u(x,y) = \underbrace{\sum_{n=1}^{N} u_{nn} Q_{nn}(x,y)}_{n=1}$

 $Q(X,Y) = \frac{1}{2\pi} \sum_{n=1}^{N} \widehat{S}_{nn} \mathcal{O}_{nm}(x,y)$

Step 1: Compute Fam = < (Onn, F)

Iterated integral z Sine Transform in x, then y

$$\frac{1}{2} = \left(\frac{n}{n}, f \right) = \frac{2}{n} \int_{0}^{n} \sin(nx) \sin(ny) f(x,y) dx dy$$

$$= \sqrt{\frac{2}{n}} \int_{0}^{n} \sin(ny) \sqrt{\frac{2}{n}} \int_{0}^{n} \sin(nx) f(x,y) dx dy$$

$$= \frac{1}{n} \int_{0}^{n} \sin(ny) \sqrt{\frac{2}{n}} \int_{0}^{n} \sin(nx) f(x,y) dx dy$$

$$= \frac{1}{n} \int_{0}^{n} \sin(nx) f(x,y) dx dy$$

$$= \frac{1}{n} \int_{0}^{n} \sin(nx) f(x,y) dx dy$$

=
$$\sqrt{\frac{1}{n}}$$
 | Sin(my) $\bar{F}(y)$ dy 10 transform in y

Approximating the inner and onter integrals using a trapezoidal rule on an equi-spaced good beeds to a Discrete sine Transform (Type-1) along both array and of sample madrix

$$F = \begin{bmatrix} f(x^{n},\lambda^{n}) & --- & f(x^{n},\lambda^{n}) \\ \vdots & \vdots & \vdots \\ f(x^{n},\lambda^{n}) & --- & f(x^{n},\lambda^{n}) \end{bmatrix}$$

of rather of f(x,y) on 20 equispaced good (x,y,n)

Step 2: She for ûn (dagonel system)
eigenvals of - D w/208C1
Step 2: Sohre for Unm (diagonal system) eigenrals of - $\Delta u/208Ci$ (lan, - ΔU) = $(n^2 + m^2)$ Unm and (u) (u) f) = \hat{f}_{nm}
=> ûnm = F_m/(nerme) for n,m24,,N
Step 3: Compute Ulxy) on good (equipped)
Evaluating the 20 sine serves
N N

on the equipposeed good (Nn, Yn) above leads to an inverse Discrete Sine Transform (Type-I) along both array axis of the NxN metrix

$$\hat{\mathcal{U}} = \begin{bmatrix} \hat{\mathcal{U}}_{\text{II}} & - \hat{\mathcal{U}}_{\text{IN}} \\ \\ \hat{\mathcal{U}}_{\text{NI}} & - \hat{\mathcal{U}}_{\text{NN}} \end{bmatrix}$$