Benzylpyridinium 'Thermometer' lons can Fragment Through an Unexpected Intramolecular Elimination: These are Not the Fragments You are Looking For

Christian Ieritano, W. Scott Hopkins

Hopkins Group
37th Annual Trent Conference for Mass Spectrometry

A long time ago, in a galaxy far away when COVID wasn't a thing...

We were able to characterize the effective temperature induced by the separation field in differential mobility spectrometry (DMS) using benzylpyridinium thermometer ions

R	E _o / kJ mol ⁻¹
OMe	178.5
Me	219.0
F	230.6
Cl	228.7
Н	241.2
CN	264.4

Requires high bath gas temp AND high SV

A long time ago, in a galaxy far away when COVID wasn't a thing...

We were able to characterize the effective temperature induced by the separation field using benzylpyridinium

thermometer ions

R	E _o / kJ mol ⁻¹
OMe	178.5
Me	219.0
F	230.6
Cl	228.7
Н	241.2
CN	264.4

Linear relationship between ion T_{eff} and its density of states / collision probability

How can we extend this to lower bath gas temperatures?

A long time ago, in a galaxy far away when COVID wasn't a thing...

Give the methoxy BP ions more rovibrational states to funnel energy into

 M^+

OMe $E_0 = 178.5, 87 \text{ DoF}$

OEt $E_0 = 172.1, 96 \text{ DoF}$

$$\bigcup_{\mathbf{N}} \mathbb{I}$$

OiPr E_o = 166.0, 105 DoF

OtBu $E_0 = 160.4, 114 \text{ DoF}$

Linear relationship between ion T_{eff} and its density of states / collision probability

And that's when things go crazy

Loss of pyridine is not the dominant fragmentation pathway

$$\begin{array}{c|c} & \oplus & \\ \hline & N & \\ \hline \end{array}$$

OMe

$$E_0 = 178.5, 87 DoF$$

$$E_0 = 172.1, 96 DoF$$

OiPr

$$E_0 = 166.0, 105 DoF$$

 $E_0 = 160.4$, **114 DoF**

Breakdown behaviour gives insight into what's happening

Formation of 6 is **greater** for BP ions with bulkier side chains

Figuring out wtf is going on

The only way to form 107 is via an intramolecular elimination that passes through a 4-membered ring TS.

2 major implications:

$$\begin{array}{c|c} R_1 R_2 \\ H_3 C \end{array} \longrightarrow \begin{array}{c} H_1 \\ H_2 \end{array} \longrightarrow \begin{array}{c$$

4a
$$(R_1 = R_2 = H)$$

4b
$$(R_1 = H; R_2 = Me)$$

4c
$$(R_1 = R_2 = Me)$$

5a
$$(R_1 = R_2 = H)$$

5b
$$(R_1 = H; R_2 = Me)$$

5c
$$(R_1 = R_2 = Me)$$

7a
$$(R_1 = R_2 = H)$$

7b
$$(R_1 = H; R_2 = Me)$$

7c
$$(R_1 = R_2 = Me)$$

1. ΔG^{\dagger} OEt > OiPr > OtBu

Hyperconjugation effect (E_i like)

Figuring out wtf is going on

The only way to form 107 is via an intramolecular elimination that passes through a 4membered ring TS.

7c $(R_1 = R_2 = Me)$

- 2 major implications:
- Intramolecular elimination requires incorporation proton into the product

Finally understanding what was going on

Mapping the reaction coordinate using the nudged elastic band confirms our proposed

fragmentation mechanism

Reaction pathway

Hyperconjugation in the TS

OEt: 24.0 kJ mol⁻¹ OiPr: 206.0 kJ mol⁻¹ OtBu: 759.8 kJ mol⁻¹

Acknowledgements

PhD Committee

Prof. W. Scott Hopkins

Prof. Terry B. McMahon

Adj. Prof. J. Larry Campbell

Hopkins Lab

Dan Rickert Dr. Joshua Featherstone

Dr. Alexander Haack
Dr. Neville Coughlan
Dr. Jeff Crouse
Dr. Ce Zhou
Dr. Weiqiang Fu
Nour Mashmoushi
Arthur Lee
Justine Bissonnette
Courtney Kates

SCIEX Gurus

Dr. J. C. Yves Le Blanc Dr. Brad Schneider Dr. Mircea Guna

For more details, see our publication:

J. Phys. Chem. Lett, 2021, 12, 5994-5999

Collaborators, Resources, and Funding

compute * calcul

