

Lecture 01: One Period Model

Prof. Markus K. Brunnermeier

Overview

- 1. Securities Structure
 - Arrow-Debreu securities structure
 - Redundant securities
 - Market completeness
 - Completing markets with options
- 2. Pricing (no arbitrage, state prices, SDF, EMM ...)
- 3. Optimization and Representative Agent (Pareto efficiency, Welfare Theorems, ...)

The Economy

- State space (Evolution of states)
 - \square Two dates: t=0,1
 - $\square S$ states of the world at time t=1

- Preferences
 - $\square U(c_0, c_1, ..., c_S)$
 - $\Box MRS_{s,0}^A = -\frac{\partial U^A/\partial c_s^A}{\partial U^A/\partial c_0^A}$ (slope of indifference curve)
- Security structure
 - ☐ Arrow-Debreu economy
 - ☐ General security structure

Security Structure

• Security j is represented by a payoff vector $(x_1^j, x_2^j, \dots, x_S^j)$

• Security structure is represented by payoff matrix

$$X = \begin{pmatrix} x_1^j & x_2^j & \cdots & x_{S-1}^j & x_S^j \\ x_1^{j+1} & x_2^{j+1} & \cdots & x_{S-1}^{j+1} & x_S^{j+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_1^{J-1} & x_2^{J-1} & \cdots & x_{S-1}^{J-1} & x_S^{J-1} \\ x_1^J & x_2^J & \cdots & x_{S-1}^J & x_S^J \end{pmatrix}$$

• NB. Most other books use the transpose of X as payoff matrix.

21:57 Lecture 01 One Period Model Slide 1-4

One A-D asset $e_1 = (1,0)$

⇒ Markets are **incomplete**

Add second A-D asset $e_2 = (0,1)$ to $e_1 = (1,0)$

Add second A-D asset $e_2 = (0,1)$ to $e_1 = (1,0)$

21:57 Lecture 01 One Period Model Slide 1-7

Add second asset (1,2) to $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

New asset is **redundant** – it does not enlarge the payoff space

21:57 Lecture 01 One Period Model Slide 1-8

Arrow-Debreu Security Structure

$$X = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

- S Arrow-Debreu securities
- each state s can be insured individually
- All payoffs are linearly independent
- Rank of X = S
- Markets are complete

Add security (2,1) to bond (1,1)

Add security (2,1) to bond (1,1)

Market are complete with security structure Payoff space coincides with payoff space of $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 21:57 Lecture 01

One Period Model **Slide 1-14**

- Portfolio: vector $h \in R^J$ (quantity for each asset)
- Payoff of Portfolio h is $\sum_{i} h^{j} x^{j} = h'X$
- Asset span

$$< X >= \{z \in I\!\!R^S : z = h'X \text{ for some } h \in I\!\!R^J \}$$

- \square <X> is a linear subspace of R^S
- \square Complete markets $\langle X \rangle = R^S$
- \square Complete markets if and only if rank(X) = S
- \square Incomplete markets rank(X) < S
- \square Security *j* is redundant if $x^j = h'X$ with $h^j = 0$

Introducing derivatives

- Securities: property rights/contracts
- Payoffs of derivatives *derive* from payoff of underlying securities
- Examples: forwards, futures, call/put options

• Question:

Are derivatives necessarily redundant assets?

Forward contracts

- Definition: A binding agreement (obligation) to buy/sell an underlying asset in the future, at a price set today
- Futures contracts are same as forwards in principle except for some institutional and pricing differences
- A forward contract specifies:
 - ☐ The features and quantity of the asset to be delivered
 - ☐ The delivery logistics, such as time, date, and place
 - ☐ The price the buyer will pay at the time of delivery

Reading price quotes

Payoff diagram for forwards

• Long and short forward positions on the S&R 500 index:

21:57 Lecture 01 One Period Model Slide 1-19

Forward vs. outright purchase

Additional considerations (ignored)

- Type of settlement
 - ☐ Cash settlement: less costly and more practical
 - ☐ Physical delivery: often avoided due to significant costs
- Credit risk of the counter party
 - ☐ Major issue for over-the-counter contracts
 - Credit check, collateral, bank letter of credit
 - ☐ Less severe for exchange-traded contracts
 - Exchange guarantees transactions, requires collateral

Call options

- A non-binding agreement (right but not an obligation) to buy an asset in the future, at a price set today
- Preserves the upside potential (), while at the same time eliminating the unpleasant () downside (for the buyer)
- The seller of a call option is obligated to deliver if asked

Definition and Terminology

- A call option gives the owner the right but not the obligation to buy the underlying asset at a predetermined price during a predetermined time period
- Strike (or exercise) price: The amount paid by the option buyer for the asset if he/she decides to exercise
- Exercise: The act of paying the strike price to buy the asset
- Expiration: The date by which the option must be exercised or become worthless
- Exercise style: Specifies when the option can be exercised European-style: can be exercised only at expiration date

 American-style: can be exercised at any time before expiration

 Bermudan-style: can be exercised during specified periods

Reading price quotes S&P500 Index options

Strike price

STRIKE		VOL. S & P 5	LAST 500(SPX	NET CHG.)	OPEN Int.
Feb	1080 c	100	26.50		
Feb	1080 p	358	13	+ 8.00	5
Mar	1080 c	10	44		
Mar	1080 p	17	21.40	+ 6.00	412
Feb	1090 c	4	19	***	
Feb	1090 p	1 41	15.80	+ 9.00	279
Mar	1090 c	270	32		302
Mar	1090 p	343	28		302
Feb	1100 c	1,041	15	-16.20	6,763
Feb	1100 p	3,246	20.10	+11.80	26,497
Mar	1100 c	4,439	27	-15.00	19,083
Mar	1100 p	8,235	33	+12.50	30,294
Apr	1100 c	81	37	- 15.00	1,728
Apr	1100 p	2,011	44	+14.00	4,126
Feb	1110 c	1,316	9	15.00	738
Feb	1110 p	1,032	27	+ 15.50	1,472
Feb	1120 €	805	6.30	— 9.80	1,057
Feb	1120 p	225	33.50	+ 18.50	1,626
Mar	1120 c	838	18	•••	5,239
Mar	1120 p	953	43.50		5,095
Apr	1120 c	150	33.50	- 6.50	10

Diagrams for purchased call

Payoff at expiration

Profit at expiration

21:57 Lecture 01 One Period Model Slide 1-25

Put options

- A put option gives the owner the right but not the obligation to sell the underlying asset at a predetermined price during a predetermined time period
- The seller of a put option is obligated to buy if asked
- Payoff/profit of a purchased (i.e., long) put:
 - \square Payoff = max [0, strike price spot price at expiration]
 - \square Profit = Payoff future value of option premium
- Payoff/profit of a written (i.e., short) put:
 - \square Payoff = max [0, strike price spot price at expiration]
 - ☐ Profit = Payoff + future value of option premium

A few items to note

- A call option becomes more profitable when the underlying asset appreciates in value
- A put option becomes more profitable when the underlying asset depreciates in value
- Moneyness:
 - ☐ In-the-money option: positive payoff if exercised immediately
 - ☐ At-the-money option: zero payoff if exercised immediately
 - Out-of-the money option: negative payoff if exercised immediately

Option and forward positions A summary

Options to Complete the Market

Stock's payoff:
$$x^j = (1, 2, ..., S)$$
 (= state space)

Introduce call options with final payoff at T:

$$C_T = max\{S_T - E, 0\} = [S_T - E]^+$$

$$c_{E=1} = (0, 1, 2, \dots, S-2, S-1)$$

$$c_{E=2} = (0, 0, 1, \dots, S-3, S-2)$$

. . .

$$c_{E=S-1} = (0, 0, 0, \dots, 0, 1)$$

Options to Complete the Market

Together with the primitive asset we obtain

$$\begin{pmatrix} 1 & 2 & 3 & \cdots & S-1 & S \\ 0 & 1 & 2 & \cdots & S-2 & S-1 \\ 0 & 0 & 1 & \cdots & S-3 & S-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 2 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

Homework: check whether this markets are complete.

Cost of Portfolio and Returns

- Price vector $p \in R^J$ of asset prices
- Cost of portfolio *h*,

$$p \cdot h := \sum_{j} p^{j} h^{j}$$

• If $p^j \neq 0$ the (gross) return vector of asset j is the vector

$$R^j = \frac{x^j}{p^j}$$

Overview

- 1. Securities Structure
 (AD securities, Redundant securities, completeness, ...)
- 2. Pricing
 - LOOP, No arbitrage and existence of state prices
 - Market completeness and uniqueness of state prices
 - Pricing kernel q*
 - Three pricing formulas (state prices, SDF, EMM)
 - Recovering state prices from options
- 3. Optimization and Representative Agent (Pareto efficiency, Welfare Theorems, ...)

Pricing

- State space (evolution of states)
- (Risk) preferences
- Aggregation over different agents
- Security structure prices of traded securities
- Problem:
 - Difficult to observe risk preferences
 - What can we say about **existence of state prices** without assuming specific utility functions for all agents in the economy

Vector Notation

- Notation: $y,x \in R^n$
 - \square y \ge x \Leftrightarrow yⁱ \ge xⁱ for each i=1,...,n.

 - \square y >> x \Leftrightarrow yⁱ > xⁱ for each i=1,...,n.
- Inner product
 - $\Box y \cdot x = \sum_i yx$
- Matrix multiplication

Three Forms of No-ARBITRAGE

- 1. Law of one price (LOOP) If h'X = k'X then $p \cdot h = p \cdot k$.
- 2. No strong arbitrage There exists no portfolio h which is a strong arbitrage, that is $h'X \ge 0$ and $p \cdot h < 0$.
- 3. No arbitrage There exists no strong arbitrage nor portfolio k with k'X > 0 and $p \cdot k \le 0$.

Three Forms of No-ARBITRAGE

- Law of one price is equivalent to every portfolio with zero payoff has zero price.
- No arbitrage \Rightarrow no strong arbitrage No strong arbitrage \Rightarrow law of one price

21:57 Lecture 01 One Period Model Slide 1-36

Pricing

• Define for each $z \in \langle X \rangle$,

$$q(z) := \{ p \cdot h : z = h'X \}$$

- If LOOP holds q(z) is a single-valued and linear functional. (i.e. if h' and h' lead to same z, then price has to be the same)
- Conversely, if q is a linear functional defined in <X> then the law of one price holds.

Pricing

- LOOP $\Rightarrow q(h'X) = p \cdot h$
- A linear functional Q in R^S is a valuation function if Q(z) = q(z) for each $z \in \langle X \rangle$.
- $Q(z) = q \cdot z$ for some $q \in R^S$, where $q^s = Q(e_s)$, and e_s is the vector with $e_s^s = 1$ and $e_s^i = 0$ if $i \neq s$ $\square e_s$ is an Arrow-Debreu security
- q is a vector of state prices

State prices q

- q is a vector of state prices if p = X q, that is $p^j = x^j \cdot q$ for each j = 1,...,J
- If $Q(z) = q \cdot z$ is a valuation functional then q is a vector of state prices
- Suppose q is a vector of state prices and LOOP holds. Then if z = h'X LOOP implies that

$$q(z) = \sum_{j} h^{j} p^{j} = \sum_{j} (\sum_{s} x_{s}^{j} q_{s}) h^{j} =$$
$$= \sum_{s} (\sum_{j} x_{s}^{j} h^{j}) q_{s} = q \cdot z$$

• $Q(z) = q \cdot z$ is a valuation functional \Leftrightarrow q is a vector of state prices and LOOP holds

State prices q

The Fundamental Theorem of Finance

- **Proposition 1.** Security prices exclude arbitrage if and only if there exists a valuation functional with q >> 0.
- **Proposition 1'.** Let X be an $J \otimes S$ matrix, and $p \in R^J$. There is no h in R^J satisfying $h \cdot p \leq 0$, $h'X \geq 0$ and at least one strict inequality if, and only if, there exists a vector $q \in R^S$ with q >> 0 and p = X q.

No arbitrage ⇔ positive state prices

Multiple State Prices q & Incomplete Markets

21:57 Lecture 01 One Period Model Slide 1-43

Multiple q in incomplete markets

Many possible state price vectors s.t. p=X'q.

One is special: q* - it can be replicated as a portfolio.

Uniqueness and Completeness

• **Proposition 2.** If markets are complete, under no arbitrage there exists a *unique* valuation functional.

- If markets are not complete, then there exists $v \in R^S$ with 0 = Xv.
 - Suppose there is no arbitrage and let q >> 0 be a vector of state prices. Then $q + \alpha v >> 0$ provided α is small enough, and $p = X (q + \alpha v)$. Hence, there are an infinite number of strictly positive state prices.

The Three Asset Pricing Formulas

- State prices
- Stochastic discount factor

$$p^j = \sum_s q_s x_s^j$$

 $p^j = E[mx^j]$

• Martingale measure

$$p^{j} = 1/(1+r^{f}) E_{\hat{\pi}}[x^{j}]$$

(reflect risk aversion by
over(under)weighing the "bad(good)" states!)

Stochastic Discount Factor

$$p^j = \sum_s q_s x_s^j = \sum_s \pi_s \underbrace{\frac{q_s}{\pi_s}}_{m_s} x_s^j$$

• That is, stochastic discount factor $m_s = q_s/\pi_s$ for all s.

$$p^j = E[mx^j]$$

21:57 Lecture 01 One Period Model Slide 1-49

Stochastic Discount Factor

shrink axes by factor $\sqrt{\pi_s}$

Equivalent Martingale Measure

- Price of any asset $p^j = \sum_S q_S x_S^j$
- Price of a bond

$$p^{\mathsf{bond}} = \sum_{s} q_s = \frac{1}{1+rf}$$

$$p^{j} = \sum_{s'} q_{s'} \sum_{s} \frac{q_{s}}{\sum_{s'} q_{s'}} x_{s}^{j}$$

$$p^{j} = \frac{1}{1+r^{f}} \sum_{s} \frac{q_{s}}{\sum_{s'} q_{s'}} x_{s}^{j}$$

$$p^{j} = \frac{1}{1+r^{f}} E_{\widehat{\pi}}[x^{j}]$$

The Three Asset Pricing Formulas

- State prices
- Stochastic discount factor

$$p^j = \sum_s q_s x_s^j$$

 $p^j = E[mx^j]$

Martingale measure

$$p^{j} = 1/(1+r^{f}) E_{\hat{\pi}}[x^{j}]$$

(reflect risk aversion by
over(under)weighing the "bad(good)" states!)

21:57 Lecture 01

One Period Model

Only works as long as market Slide 1-53 completeness doesn't change

Recovering State Prices from Option Prices

- Suppose that S_T , the price of the underlying portfolio (we may think of it as a proxy for price of "market portfolio"), assumes a "continuum" of possible values.
- Suppose there are a "continuum" of call options with different strike/exercise prices ⇒ markets are complete
- Let us construct the following portfolio:

for some small positive number $\varepsilon > 0$,

- \Box Buy one call with $E = \hat{S}_T \frac{\delta}{2} \varepsilon$
- \Box Sell one call with $E = \hat{S}_T \frac{\delta}{2}$
- \Box Sell one call with $E = \hat{S}_T + \frac{\delta}{2}$
- \Box Buy one call with $E = \hat{S}_T + \frac{\delta}{2} + \varepsilon$

Recovering State Prices ... (ctd.)

____ Value of the portfolio at expiration

Figure 8-2 Payoff Diagram: Portfolio of Options

21:57 Lecture 01 One Period Model Slide 1-55

Recovering State Prices ... (ctd.)

• Let us thus consider buying ${}^1\!/_{\epsilon}$ units of the portfolio. The total payment, when $\hat{S}_T - \frac{\delta}{2} \leq S_T \leq \hat{S}_T + \frac{\delta}{2}$, is $\epsilon \cdot \frac{1}{\epsilon} \equiv 1$, for any choice of ϵ . We want to let $\epsilon \mapsto 0$, so as to eliminate the payments in the ranges $S_T \in (\hat{S}_T - \frac{\delta}{2} - \epsilon, \hat{S}_T - \frac{\delta}{2})$ and $S_T \in (\hat{S}_T + \frac{\delta}{2}, \hat{S}_T + \frac{\delta}{2} + \epsilon)$. The value of $\frac{1}{\epsilon}$ units of this portfolio is:

$$\frac{1}{\varepsilon} \left\{ C\left(S, E = \hat{S}_T - \frac{\delta}{2} - \epsilon\right) - C\left(S, E = \hat{S}_T - \frac{\delta}{2}\right) - \left[C\left(S, E = \hat{S}_T + \frac{\delta}{2}\right) - C\left(S, E = \hat{S}_T + \frac{\delta}{2} + \epsilon\right)\right] \right\}$$

21:57 Lecture 01 One Period Model Slide 1-56

Taking the limit $\varepsilon \rightarrow 0$

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left\{ C\left(S, E = \hat{S}_{T} - \frac{\delta}{2} - \epsilon\right) - C\left(S, E = \hat{S}_{T} - \frac{\delta}{2}\right) - \left[C\left(S, E = \hat{S}_{T} + \frac{\delta}{2}\right) - C\left(S, E = \hat{S}_{T} + \frac{\delta}{2} + \epsilon\right)\right] \right\}$$

$$= -\lim_{\epsilon \to 0} \left\{ \frac{C\left(S, E = \hat{S}_{T} - \frac{\delta}{2} - \epsilon\right) - C\left(S, E = \hat{S}_{T} - \frac{\delta}{2}\right)}{-\epsilon} \right\} + \lim_{\epsilon \to 0} \left\{ \frac{C\left(S, E = \hat{S}_{T} + \frac{\delta}{2} + \epsilon\right) - C\left(S, E = \hat{S}_{T} + \frac{\delta}{2}\right)}{\epsilon} \right\}$$

$$\leq 0$$

$$= -\frac{\partial C}{\partial E}(S, E = \hat{S}_T - \frac{\delta}{2}) + \frac{\partial C}{\partial E}(S, E = \hat{S}_T + \frac{\delta}{2})$$

Divide by δ and let $\delta \to 0$ to obtain state price **density** as $\partial^2 C/\partial E^2$.

Recovering State Prices ... (ctd.)

Evaluating following cash flow

$$\widetilde{CF_{T}} = \begin{cases}
0 \text{ if } S_{T} & \notin \left[\hat{S}_{T} - \frac{\delta}{2}, \hat{S}_{T} + \frac{\delta}{2}\right] \\
50000 \text{ if } S_{T} & \in \left[\hat{S}_{T} - \frac{\delta}{2}, \hat{S}_{T} + \frac{\delta}{2}\right]
\end{cases}.$$

The value today of this cash flow is:

$$50000\left[\frac{\partial C}{\partial E}(S, E = \hat{S}_T + \frac{\delta}{2}) - \frac{\partial C}{\partial E}(S, E = \hat{S}_T - \frac{\delta}{2})\right]$$

$$q(S_T^1, S_T^2) = \frac{\partial C}{\partial E}(S, E = S_T^2) - \frac{\partial C}{\partial E}(S, E = S_T^1)$$

21:57 Lecture 01 One Period Model Slide 1-58

Table 8.1 Pricing an Arrow-Debreu State Claim

E	C(S,E)	Cost of	Payoff if $S_T =$								
		position	7	8	9	10	11	12	13	ΔC	$\Delta(\Delta C) = q_s$
7	3.354										
										-0.895	
8	2.459										0.106
										-0.789	
9	1.670	+1.670	0	0	0	1	2	3	4		0.164
								_	_	-0.625	
10	1.045	-2.090	0	0	0	0	-2	-4	-6	0.444	0.184
	0.404	0.404			•		0			-0.441	0.4.4
11	0.604	+0.604	0	0	0	0	0	1	2	0.050	0.162
										-0.279	
12	0.325										0.118
										-0.161	
13	0.164										
		0.184	0	0	0	1	0	0	0		

21:57 Lecture 01

One Period Model

Only works as long as market Slide 1-60 completeness doesn't change

Overview

- 1. Securities Structure
 (AD securities, Redundant securities, completeness, ...)
- 2. Pricing (no arbitrage, state prices, SDF, EMM ...)
- 3. Optimization and Representative Agent
 - Marginal Rate of Substitution (MRS)
 - Pareto Efficiency
 - Welfare Theorems
 - Representative Agent Economy

Representation of Preferences

A preference ordering is (i) complete, (ii) transitive, (iii) continuous [and (iv) relatively stable] can be represented by a utility function, i.e.

$$(c_0,c_1,...,c_S) \succ (c'_0,c'_1,...,c'_S)$$

 $\Leftrightarrow U(c_0,c_1,...,c_S) > U(c'_0,c'_1,...,c'_S)$

(more on risk preferences in next lecture)

Agent's Optimization

- Consumption vector $(c_0, c_1) \in R_+ \times R_+^S$
- Agent *i* has $U^i: \mathbf{R}_+ \times \mathbf{R}_+^S \to \mathbf{R}$ endowments $(\mathbf{e}_0, \mathbf{e}_1) \in \mathbf{R}_+ \times \mathbf{R}_+^S$
- U^{i} is quasiconcave {c: $U^{i}(c) \ge v$ } is convex for each real v
 - $\Box U^{i}$ is concave: for each $0 \ge \alpha \ge 1$, U^{i} (α c + (1- α)c') $\ge \alpha U^{i}$ (c) + (1- α) U^{i} (c')
- $\partial U^{i}/\partial c_0 > 0$, $\partial U^{i}/\partial c_1 >> 0$

Agent's Optimization

• Portfolio consumption problem

$$\begin{aligned} \max_{c_0,c_1,h} U^i(c_0,c_1) \\ \text{subject to } (i) & 0 \leq c_0 \leq e_0 - p \cdot h \\ \text{and} & (ii) & 0 \leq c_1 \leq e_1 + X'h \end{aligned}$$

$$U^i(c_0,\overrightarrow{c}_1) - \lambda[c_0 - e_0 + ph] - \overrightarrow{\mu}[\overrightarrow{c}_1 - \overrightarrow{e}_1 - h'X]$$

FOC
$$c_0$$
: $\frac{\partial U^i}{\partial c_0}(c^*) = \lambda$

$$c_s$$
: $\frac{\partial U^i}{\partial c_s}(c^*) = \mu_s$

$$h$$
: $\lambda \overrightarrow{p} = X \overrightarrow{\mu}$

$$\Leftrightarrow p^j = \sum_s \frac{\mu_s}{\lambda} x_s^j$$

21:57 Lecture 01 One Period Model Slide 1-64

Agent's Optimization

$$p^{j} = \sum_{s} \frac{\partial U^{i}/\partial c_{s}}{\partial U^{i}/\partial c_{0}} x_{s}^{j}$$

For time separable utility function

$$U^{i}(c_{0}, \overrightarrow{c}) = u(c_{0}) + \delta u(\overrightarrow{c})$$
 and expected utility function (later more)

$$U^{i}(c_0, \overrightarrow{c_1}) = u(c_0) + \delta E[u(c)]$$

$$p^{j} = \sum_{s} \pi_{s} \delta \frac{\partial u^{i} / \partial c_{s}}{\partial u^{i} / \partial c_{0}} x_{s}^{j}$$

Welfare Theorems

- First Welfare Theorem. If markets are complete, then the equilibrium allocation is Pareto optimal.
 - \square State price is unique q. All MRSⁱ(c*) coincide with unique state price q.
- Second Welfare Theorem. Any Pareto efficient allocation can be decentralized as a competitive equilibrium.

Representative Agent & Complete Markets

- Aggregation Theorem 1: Suppose
 - ☐markets are complete

Then asset prices in economy with *many agents* are identical to an economy with a *single agent/planner* whose utility is

$$U(c) = \sum_{k} \alpha_{k} u^{k}(c),$$

where α^k is the welfare weights of agent \bar{k} . and the single agent consumes the aggregate endowment.

Representative Agent & HARA utility world

- Aggregation Theorem 2: Suppose
 - □riskless annuity and endowments are tradable.
 - □ agents have common beliefs
 - □ agents have a common rate of time preference
 - □agents have LRT (HARA) preferences with

 $R_A(c) = 1/(A_i + Bc) \Rightarrow \text{linear risk sharing rule}$

Then asset prices in economy with *many agents* are identical to a *single agent* economy with HARA preferences with $R_A(c) = 1/(\sum_i A_i + B)$.

Overview

- 1. Securities Structure
 (AD securities, Redundant securities, completeness, ...)
- 2. Pricing (no arbitrage, state prices, SDF, EMM ...)
- 3. Optimization and Representative Agent (Pareto efficiency, Welfare Theorems, ...)

Extra Material

Follows!

Portfolio restrictions

• Suppose that there is a short-sale restriction

$$h \in \mathcal{C} = \{h : h^j \ge -b^j, j \in \mathcal{J}_0\}$$

where $b \ge 0, \mathcal{J}_0 \subset \{1, \dots, J\}$

- C is a convex set
- $<\tilde{X}>=\{z\in R^S:z=h'X' \text{for some }h\in\mathcal{C}\}$
- $\bullet < \tilde{X} >$ is a convex set
- For $z \in <\tilde{X}>$ let (cheapest portfolio replicating z) $\tilde{q}(z)=\inf_h\{p\cdot h:z=h'X',h\in\mathcal{C}\}$

Restricted/Limited Arbitrage

- An arbitrage is limited if it involves a short position in a security $j \in \mathcal{J}_0$
- In the presence of short-sale restrictions, security prices exclude (unlimited) arbitrage (payoff ∞) if, and only if, here exists a q >> 0 such that

$$p^{j} \ge x^{j} \cdot q \quad \forall j \in \mathcal{J}_{0}$$
$$p^{j} = x^{j} \cdot q \quad \forall j \notin \mathcal{J}_{0}$$

• Intuition: $q = MRS^i$ from optimization problem some agents wished they could short-sell asset

Portfolio restrictions (ctd.)

- As before, we may define $R^f = 1 / \sum_s q_s$, and $\widehat{\pi}_s$ can be interpreted as risk-neutral probabilities
- Rf $p^{j} \ge E^{\pi} [x^{j}]$, with = if $j \notin \mathcal{J}_{0}$
- 1/R^f is the price of a risk-free security that is not subject to short-sale constraint.

Portfolio restrictions (ctd.)

• Portfolio consumption problem

```
\max_{c_0,c_1,h} U^i(c_0,c_1) subject to (i) 0 \le c_0 \le w_0 - p \cdot h and (ii) 0 \le c_1 \le w_1 + h'X' and h \in \mathcal{J}_0
```

• Proposition 4: Suppose c*>>0 solves problem s.t. $h^{j} \ge -b^{j}$ for $j \in \mathcal{J}_{0}$. Then there exists positive real numbers λ , μ_{1} , μ_{2} , ..., μ_{S} , such that

$$\begin{array}{l} - \partial \operatorname{U}^{\mathrm{i}/} \partial \operatorname{c}_0 \left(\mathbf{c}^* \right) = \lambda \\ - \partial \operatorname{U}^{\mathrm{i}/} \partial \operatorname{c}_0 \left(\mathbf{c}^* \right) = \left(\mu_1, ..., \mu_S \right) \\ - p^j \geq \sum_s \frac{\mu_s}{\lambda} x_s^j = \sum_s MRS_{0,s}^i x_s^j \\ - p^j = \sum_s \frac{\mu_s}{\lambda} x_s^j, \text{ if } \notin \mathcal{J}_0 \text{ or } h^j > -b^j \end{array}$$

The converse is also true.

Eco 525: Financial Economics I

FOR LATER USE Stochastic

Discount Factor

$$p^{j} = \sum_{s} \pi_{s} \underbrace{\delta \frac{\partial u^{i}(c^{*})/\partial c_{s}}{\partial u^{i}(c^{*})/\partial c_{0}}}_{m_{s}} x_{s}^{i}$$

• That is, stochastic discount factor $m_s = q_s/\pi_s$ for all s.

$$p^{j} = \sum_{s} \pi_{s} m_{s} x_{s}^{j}$$
$$p^{j} = E[mx^{j}]$$