(!) This quiz has been regraded; your new score reflects 2 questions that were affected.

Test4-MachineLearning

- Due Apr 18 at 4:47pm
- Points 28
- Questions 14
- Available Apr 18 at 3:52pm Apr 23 at 9pm
- Time Limit 35 Minutes

Instructions

Choose the best answer.

Closed book test.

This quiz was locked Apr 23 at 9pm.

Attempt History

	Attempt	Time	Score	Regraded			
LATEST	Attempt 1	22 minutes	24 out of 28	28 out of 28			
(!) Correct	answers are hidde	n.					
Score for th	Score for this quiz: 28 out of 28						
Submitted A	pr 18 at 4:14pm						
This attempt took 22 minutes.							
• • • • • • • • • • • • • • • • • • •							
Question 1							
2 / 2 pts							
Support Ved	tor Machine is a	type of m	nachine learning.				
intelligent							
O parametrio							
non-paran	netric						
O SVM							
0 0 0 0 0 0							
Question 2	Question 2						
2 / 2 pts							

Support Vector Machine has primarily three components. Indicate the one below that applies best.
Transformation of the attribute space to make data space linearly separable
Selecting a relevant subset of training data as the model
Simultaneous optimization of the primary and dual objective functions
All the other three answers
Question 3
2 / 2 pts
Which one of the following algorithm is used to train an Artificial Neural Network?
Machine learning
Optimization
O Forward chaining
O Inferencing
Question 4
2 / 2 pts
Consider a <i>perceptron</i> being trained to add three numbers. With three input nodes the perceptron needs four parameters to learn, w0, w1, w2, and w3.
Consider the activation function of the perceptron being linear, i.e., the weighted sum itself is the output.
What is the expected learned parameter-vector, (w0, w1, w2, w3)?
© (O, 1, 1, 1)
O [1, 1, 1, 1]
O (1, 0, 1, 1)
O (1, 1, 1, 0)
Question 5
2 / 2 pts

	A1	A2	ΕA	A4	y (prediction target or label)
x1	а	1	0	0	1
x2	а	1	1	1	1
x3	Ь	1	0	0	1
x4	Ь	0	1	0	0
x5	Ь	0	0	1	1
x6	Ь	0	0	1	0
x7	а	0	1	0	1
x8	а	0	1	0	1
x9	С	0	0	1	1

From the above training data a decision tree is being made. Suppose the root node chosen is A2. Consider the branch for A2=0.

What is the weighted total entropy for the attribute A1 at this stage?

- \bigcirc [(2/3) log(2/3) + (1/3) log(1/3)]
- = [(3/6)[(1/3)log(1/3)+(2/3)log(2/3)] + (2/6)[log(2/2)+0log(0/2)]) + (1/6)[log(1/1)+0log(0/1)]]
- [(2/3) log(2/3) + (1/3) log(1/3)] + (1/6) 0]
- $-[(1/2) 0 + (1/3) [(2/2) \log (2/2) + (0/2) \log (0/2)] + (1/6) [(1/1) \log (1/1) + (0/1) \log (0/1)]]$

::

Question 6

2 / 2 pts

Can the Decision Tree learning algorithm be used to select the most important attribute to predict the label?

○ No
Yes
○ Sometimes
O Depends on the problem
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Question 7 2 / 2 pts
kNN algorithm requires
Parametric modeling of data
An efficient data organization to find nearest neigbors
O High quality input data
Cinearly separable data
Question 8 2 / 2 pts
Which one of the following relates best to the k-Means algorithm?
Repeated iterations over attributes
Computing density of each cluster
Finding the medians of k clusters in an iteration
Updating cluster membership of each data point in each iteration
**
Question 9 2 / 2 pts
Which of the following unsupervised learning algorithm is typically used for developing phylogeny tree of organisms?
k-means algorithm
O Density-based clustering
Hierarchical clustering
Bi-clustering or Subspace modeling
**

5/2/24, 1:10 PM	Test4-MachineLearning: CSE4301: Intro Art Intelligence, Spring 2024, Sect. 01
Question 10 2 / 2 pts	
Fact: A linear regression two variables (x1, x2).	problem over two attributes needs to learn three parameters (w0, w1, w2) for
	data points. Find the three parameters (w0, w1, w2). [Hint: you do not need . Use your observation and simple arithmetic.]
(x1=7, x2=2) -> (y=5)	
(x1=100, x2=3) -> (y=7)	
(x1=50, x2=4) -> (y=9)	
(0, 1, 2)	
(1, 0, 2)	
(2, 0, 1)	
(2, 1, 0)	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Question 11 Original Score: 0 / 2 pts F	Regraded Score: 2 / 2 pts
	① This question has been regraded.
	out (x1, x2) has three parameters (w0=1, w1=2, w2=1). It uses a step function as ediction and <=0 for False).
What is the inference for	[x1=2, x2=-3]
▼ T	
O F	
Cannt be inferred	
Question has a mistake	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Question 12	
2 / 2 pts	
Compute the a-priori ent	ropy for the whole table.

Play Golf

			g		g,Fg,	
		Yes	No			
	Sunny	3	2	5		
Outlook	Cloudy	4	2	6		
	Rain	1	7	8		
		8	11	17		

- -(5/17)*log(5/17) (6/17)log(6/17) -(8/17)log(8/17)
- -(8/11)*log(8/11) (11/8)log(11/8)
- (8/17)*log(8/17) (11/17)log(11/17)
- -(8/17)*log(8/17) (11/17)log(11/17)

::

Ouestion 13

Original Score: 0 / 2 pts Regraded Score: 2 / 2 pts

(!) This question has been regraded.

What is the information gain for the attribute Outlook where E is the entropy for the whole table, and e(Pt, Pf) is the entropy where Pt is the Probability of true instances and Pf is the Probability of false instances. [Note: Play Golf is the target label.]

		Play Golf		
		Yes	No	
	Sunny	3	2	5
Outlook	Cloudy	4	2	6

		8		C , 1 C ,
Rain	1	7	8	
	8	11	17	
E+[(5/17)e(3/5,2/5) +(6	/17]e(4/6,2/6)	+(8/17)e(1/8,7/8	0)]]	
E-[(5/17)e(3/2,2/3) +(6,	/17]e[4/2,2/4] +	-(8/17)e(1/7,7/1)]		
(5/17)e(3/5,2/5) +(6/17)	7)e(4/6,2/6) +(8	3/17]e[1/8,7/8]]-	E	
None of the above				
· · · · · · · · · · · · · · · · · · ·				
Question 14				
2 / 2 pts				
Consider F as a binary	Boolean fund	ction, such tha	at F(0,1) =	F(1,0)=0, and F(0,0)=F(1,1)=1.
Is the function associa	tive, i.e., F(a,	F(b, c)) = F(F(a	ı, b), c), for	r three Boolean variables a, b, and c?
Yes				
○ No				
The question has a mis	stake.			
Cannot be inferred				
				Ouiz Score: 28 out of 28