2024-2025学年度大类实变函数论期末考试(A卷)

2025年6月24日

第1题 设 $\{A_n\}$ 与 $\{B_n\}$ 是集合列,且 $\lim_{n\to\infty} A_n$ 与 $\lim_{n\to\infty} B_n$ 都存在。证明

$$\lim_{n\to\infty} (A_n \cup B_n) = (\lim_{n\to\infty} A_n) \cup (\lim_{n\to\infty} B_n).$$

第2题 设 $G_1, G_2 \subset \mathbb{R}$ 为开集。证明当且仅当 $G_1 \cap G_2 = \emptyset$ 时,有

$$m(G_1 \cup G_2) = m(G_1) + m(G_2).$$

第3题 (1) 叙述 Lusin 定理。

- (2) 设 $D \subset \mathbb{R}$ 是可测集, $f: D \to \mathbb{R}$ 为几乎处处有限的可测函数。证明:存在 定义在 D 上的连续函数列 $\{f_n\}$,使得 $f_n(x) \to f(x)$ 对几乎所有的 $x \in D$ 成立。
- 第4题 设 f、g 是 \mathbb{R} 上的有界可测函数,且有函数序列 $\{f_n\}$ 、 $\{g_n\}$ 分别依测度收敛到 f、g。证明: f_ng_n 依测度收敛到 fg。

第5题 设 $f: \mathbb{R} \to \mathbb{R}$ 为几乎处处有限的可测函数。证明以下判别等价:

$$f \in L(\mathbb{R}) \iff \sum_{k=-\infty}^{+\infty} 2^k m(\{x \in \mathbb{R} : |f(x)| \ge 2^k\}) < +\infty.$$

第6题 设 $E \subset \mathbb{R}$ 为可测集且 m(E) > 0, $f \in L(E)$ 。定义函数

$$F(x) = \int_{(-\infty, x) \cap E} f(t) dt, \quad x \in \mathbb{R}.$$

证明: $F \in \mathbb{R}$ 上一致连续。

第7题 设 $E \subset \mathbb{R}$ 为可测集且 m(E) > 0, $f \in L(E)$ 。证明:

$$\lim_{k \to \infty} \int_{E \cap \{|f| < 1/k\}} |f(x)| \, \mathrm{d}x = 0.$$

第8题 设 $f:[a,b] \to \mathbb{R}$ 在闭区间 [a,b] 上绝对连续且没有零点。证明: 1/f 在 [a,b] 上也是绝对连续函数。