Dropouts in ANN

from keras. layers import Dropout

Dropout(0.3)

(a) Standard Neural Net

(b) After applying dropout.

- **Dropout** is a powerful regularization method that **randomly deactivates neurons** during training to prevent overfitting.
- It is especially useful when the model has a large number of parameters and could overfit the training data.

Core Concept:

- During the training process, dropout randomly "drops" or deactivates a certain percentage of neurons. This means that these neurons are temporarily excluded from both the forward pass and the backward pass of the network.
- This process is repeated for each training batch, so different sets of neurons are deactivated each time.
- During the inference or testing phase, all neurons are active, but their outputs are typically scaled down to compensate for the fact that they were less active

during training.

Dropout Rate:

- The "dropout rate" is a hyperparameter that determines the percentage of neurons to be dropped.
- Common values are between 0.2 and 0.5.

Training vs. Inference:

- Dropout is only applied during the training phase.
- During inference, the entire network is used.
 - \circ For testing we multiply weights by (1-p)
 - \circ p = dropout rate

Python code:

```
model = Sequential([
    Dense(128, activation='relu', input_dim=784), # Input layer (28×28 flattene d to 784)
    Dropout(0.3), # Drop 30% of the neurons in the first hidden layer

Dense(64, activation='relu'),
    Dropout(0.3), # Drop 30% of the neurons in the second hidden layer

Dense(10, activation='softmax') # Output layer (10 classes for MNIST)
])
```

Pro Tips

1. Combine with L2 Regularization:

```
Dense(64, activation='relu', kernel_regularizer=I2(0.01))
```

2. Adjust Rate Based on Layer Size:

- Higher dropout for larger layers (e.g., 0.5 for 512 neurons).
- Lower dropout for **small layers** (e.g., 0.2 for 64 neurons).

3. Monitor Training Curves:

- If training loss >> validation loss, increase dropout.
- If **both losses are high**, reduce dropout.
- 4. Initially, **test this on the last layer**. If you see any results, you can try it on remaining hidden layers.

```
5. CNN \rightarrow 0.4 to 0.5
RNN \rightarrow 0.2 to 0.3
ANN \rightarrow 0.1 to 0.5
```

Drawbacks

- Delay in convergence
 - Slow training
- Value of loss function changes
 - So, it becomes difficult to debug the gradients

Regression Example

Data:

Without Dropout:

Train: 0.003131699515506625, Test: 0.046952348202466965

_, test_mse = model_1.evaluate(X_test, y_test, verbose=0)

print('Train: {}, Test: {}'.format(train_mse, test_mse))

- More than 10x difference between training & testing loss
 - Indicates overfitting

```
y_pred_1 = model_1.predict(X_test)

plt.figure()
plt.scatter(X_train, y_train, c='red', label='Train')
plt.scatter(X_test, y_test, c='blue', label='Test')
plt.plot(X_test, y_pred_1)
plt.legend()
plt.ylim((-1.5, 1.5))
plt.show()
```



```
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
```


With Dropout:

```
model_2 = Sequential()
model_2.add(Dense(128, input_dim=1, activation="relu"))
model_2.add(Dropout(0.2))
model_2.add(Dense(128, activation="relu"))
model_2.add(Dropout(0.2))
model_2.add(Dense(1, activation="linear"))
#adam = Adam(learning_rate=0.01)
model_2.compile(loss='mse', optimizer='adam', metrics=['mse'])
drop_out_history = model_2.fit(X_train, y_train, epochs=500, validation_data = (X_test, y_test), verbose=False)
```

```
# evaluate the model
_, train_mse = model_2.evaluate(X_train, y_train, verbose=0)
```

```
_, test_mse = model_2.evaluate(X_test, y_test, verbose=0)
print('Train: {}, Test: {}'.format(train_mse, test_mse))
```

Train: 0.013462228700518608, Test: 0.03443724662065506

model_2.evaluate(X_train, y_train, verbose=0) :

• This will return same value twice because both the **loss** and **metric** being returned by the **evaluate()** function are the same.

```
y_pred_2 = model_2.predict(X_test)

plt.figure()
plt.scatter(X_train, y_train, c='red', label='Train')
plt.scatter(X_test, y_test, c='blue', label='Test')
plt.plot(X_test, y_pred_2)
plt.legend()
plt.ylim((-1.5, 1.5))
plt.show()
```


plt.plot(drop_out_history.history['loss'])
plt.plot(drop_out_history.history['val_loss'])

