phi knight - complex analysis

tom tomazio tomachello <u>III</u>

lecture 1 - derivatives, integrals, and hole detection

def. a function $f:U\to \mathbf{C}$ defined on an open subset U of C is holomorphic if f'(z) exists $\forall z\in U$.

intuitively, $f(z) = f(z_0) + f'(z_0)(z-z_0) + o(z-z_0)$ simply says f takes infinitesimal circles around z_0 and maps them to infinitesimal circles around $f(z_0)$, rotated and stretched by f'(z)

exr. f holomorphic \iff it is real-differentiable and Df is a scalar times a rotation.

explicitley,

(Cauchy-Riemann) $u_x = v_y$ and $u_y = -v_x$ if f = u + iv is the decomposition of a holomorphic function $f: U \to \mathbf{C}$ into real and imaginary parts.

so, a holomorphic function is one that has a derivative. does it have an anti-derivative? it depends. e^z does. but 1/z defined on \mathbf{C}^\times does not. this is very intuitive, as there is no continuous function g with $e^{g(z)}=z$ (i.e. logarithm), because there is no continuous angle function – going in a circle around the origin we get $0=\tau$. more generally, if f has an anti-derivative, then $\int_{\gamma:a\to b} f(z)\mathrm{d}z = F(b) - F(a)^1$, and in particular $\oint f(z)\mathrm{d}z = 0$. but we have $\oint_{\mathbf{T}} 1/z\mathrm{d}z = \int_0^\tau 1/e^{it}\frac{\mathrm{d}e^{it}}{\mathrm{d}t}\mathrm{d}t = i\tau \neq 0$. the problem, as we'll see, is this "hole" at the origin. without holes in the domain, holomorphic functions always have antiderivatives.

(Goursat) given $f \in \text{hol}(U)$ and a solid triangle $T \in U$ we have $\oint_{\partial T} f(z) \mathrm{d}z = 0$

indeed, we can divide any triangle into four similar parts.

whence $\oint_{\partial T}$ is the sum of four similar integrals for the smaller triangles. ergo, $|\oint_{\partial T} f(z) \mathrm{d}z|$ is at most $4|\oint_{\partial T_1} f(z) \mathrm{d}z|$ for T_1 one of the four triangles of T. continuing, we have $T \supseteq T_1 \supseteq \cdots \supseteq T_n \supseteq \cdots$, each congruent to half the previous, with $|\oint_{\partial T} f(z) \mathrm{d}z| \le 4^n |\oint_{\partial T_n} f(z) \mathrm{d}z|$. by Cantor's theorem, we have $\{z_0\} = \bigcap T_n$. now, $f(z) = f(z_0) + f'(z_0) + (z - z_0)h(z)$ with h continuous and approaching 0 as $z \to z_0$, and since the linear part has an anti-derivative, we have $\oint f(z) \mathrm{d}z = \oint h(z)(z - z_0) \mathrm{d}z$. therefore $|\oint_{\partial T} f(z) \mathrm{d}z| \le 4^n \mathrm{perimeter}(T_n) \max_{T_n} |h(z)(z - z_0)| \le 4^n \mathrm{perimeter}(T_n) \mathrm{diameter}(T_n) \max_{T_n} h$. as T_n is 2^n times smaller than T, and $\max_{T_n} h \to 0$ taking $n \to \infty$ finishes the proof.

from which we deduce

 $f\in \mathrm{hol}(U)$ has an anti-derivative if U is convex. in particular, $\int_{\gamma}f=0$ for closed rectifiable curves $\gamma\in U$.

let's demonstrate how to use this to do some non-trivial integrals. we'll show that $e^{-\pi x^2}$ is its own

 $^{^1}$ interpreted as the Riemann integral of a piecewise continuously differentiable, or even rectifiable curve, say. see exercises

Fourier transform.

exm. for $f(z)=e^{-\pi z^2}$ and γ the rectangle $-R\to R\to R+i\xi\to -R+i\xi\to -R$ we have the total integral zero. but the part on the real line goes to 1 as $R\to\infty$. on the next segment we have $f(R+iy)=e^{-\pi(R^2+2iRy-y^2)}$. since the interval is bounded and so is y, this integral is at most $O(e^{-\pi R^2})$. the same holds for the parallel edge. in total we find $0=1-\lim_{r\to\infty}\int_{-R}^R e^{-\pi(x+i\xi)^2\mathrm{d}x}$ i.e. $\int_{\mathbf{R}} e^{-\pi x^2}e^{-\pi ix\xi}=e^{-\pi \xi^2}$.

it's useful to generalize

thm. if γ_0, γ_1 are homotopic rectifiable curves in U then $\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz$ for all $f \in \text{hol}(U)$. in particular, if U is simply connected, each $f \in \text{hol}(U)$ has an anti-derivative.

there is a simple proof if the homotopy is rectifiable. it goes morally as follows. assume wlog the curves are sufficiently close, in the sense that there is a sequence of balls B_k , $k=0,\ldots,n$ contained in U and covering the curves. now pick points z_k , w_k , $k=1,\ldots,n$ on the curves between D_k and D_{k-1} . then on each segment the integral is just given by the local anti-derivative, and when passing from one ball to the next, the two local anti-derivatives on the intersection differ by a constant. When the homotopy is general, we need a bit more analysis.

wlog $\gamma_t(s):[0,1]\times[0,1]\to U$ is a homotopy. by compactness, $\exists r>0$ s.t. $B_r(\gamma_t(s))\in U$ $\forall t,s$. since $\gamma_t(s)$ is uniformly continuous, $\exists N$ s.t. $|t-t'|\leq 1/N$ and $|s-s'|\leq 1/N$ implies $|\gamma_t(s)-\gamma_{t'}(s')|< r/2$. so let us divide the square into $(N+1)^2$ squares. for each such square $A\to B\to C\to D\to A$ consider the quadrilateral $R=\gamma(A)\to\gamma(B)\to\gamma(C)\to\gamma(D)\to\gamma(A)$. since R is contained in $B_r(\gamma(A))$, we have $\int_R f(z)\mathrm{d}z=0$ by the above fact. summing over all squares, cancellations, and the fact that $\gamma_t(0)$ and $\gamma_t(1)$ are constant gives us that the integral of f over the straight line segments $\gamma_j(k/N)$ to $\gamma_j((k+1)/N)$ agrees for j=0,1. but again, by the above fact, and the fact that $\gamma_j(s)$ is inside a ball in U on these intervals, the integral over γ is the integral over these linear segments.

lecture 2 - Cauchy's integral formula and its many corollaries

(Cauchy)

$$f(z) = \frac{1}{\tau i} \oint_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta$$

for each point \overline{z} in the interior of the closed disk D and f holomorphic in a neighborhood of D.

indeed, $\oint_{\partial D} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta = \oint_{z+\varepsilon \mathbf{T}} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta$ by homotopy equivalence. but the integrand is bounded around z as it approaches a limit. hence letting $\varepsilon \to 0$ we get that this integral equals zero. we are done by the fact that $\oint_{\mathbf{T}} 1/z = \tau i$

in particular, f is determined by its values on ∂D . note that we have f in the center of D as a sort of average of f on ∂D . in particular,

cor. given $f \in \text{hol}(U)$, |f| cannot have a local maxima at any point $p \in U$ unless it is constant around p. similarly, only if f(p) = 0 or f constant around p can |f| have a local minima at p.

since integrating / averaging improves the smoothness of a function, it is now not surprising that holomorphic functions are smooth. better yet, holomorphic functions are analytic

thm. let f be holomorphic in $B_r(z_0)$. then a power series about z_0 with radius of convergence at least r equals f on $B_r(z_0)$.

indeed, wlog let $z_0 = 0$, r = 1, f holomorphic in a neighborhood of $|z| \le 1$ and $a_n = \frac{1}{i\tau} \oint_{\mathbf{T}} \frac{f(z)}{z^{n+1}}$. If M is a bound for |f| on the disk, then $|a_n| \le M/r^n$ whence $\sum a_n z^n$ converges at least in the open disk. now, for fixed w in that open disk we have

$$i\tau f(w) = \oint_{\mathbf{T}} \frac{f(z)}{z - w} dz = \oint_{\mathbf{T}} f(z) \sum \frac{w^n}{z^{n+1}} dz$$

which is interchangable via the Weirestrass M-test. 2 and we are done.

cor. holomorphic functions are infinitely differentiable - $f \in \text{hol}(U) \implies f' \in \text{hol}(U)^3$.

(Cauchy)
$$f \in \text{hol}(\overline{B_r(z_0)}) \implies |f^{(n)}(z_0)| \le \frac{n! \max_{\partial B_r(z_0)} |f|}{r^n}$$

(Liouville) $f \in hol(C)$ non-constant $\implies f$ unbounded

(Riemann) the following are equivalent for $f \in \text{hol}(U - \{p\})$, $p \in U$.

- 1. f holomorphically extendable to p
- 2. f continuously extendable to p

(Gauss) C algebraically closed

3. f bounded around p

4.
$$(z-p)f(z) \rightarrow 0$$
 as $z \rightarrow p$

indeed, $1 \to 2 \to 3 \to 4$ being trivial, if 4 holds then $h(z) = (z-p)^2 f(z)$ for $z \neq p$ and h(p) = 0 is holomorphic in U, since we have $h'(p) = \lim_{z \to 0} (z-p) f(z) = 0$. so around p we have h as a convergent power series without the two first terms, making $h(z)/(z-p)^2 = f(z)$ is holomorphically extendable to p.

cor. the real and imaginary parts of $u+iv=f\in ext{hol}(U)$ are harmonic, $u_{xx}+u_{yy}=v_{xx}+v_{yy}=0$

²dominated convergence could overkill

³up till now, we did not even know that f' is continuous!

cor. let $f_n \in \text{hol}(U)$ converge to $f: U \to \mathbf{C}$ uniformly on compact sets. then $f \in \text{hol}(U)$.

indeed, wlog $U=B_1(0)$. since $0=\oint_{\partial T}f_n\to\oint_{\partial T}f$, for any triangle T in U, the function $F(z)=\int_{0\to z}f$ is a holomorphic, infinitely differentiable antiderivative for f

cor. if $f,g \in hol(D)$ and $\{f=g\}$ has an accumulation point in D then f=g.

demonstrate that $f \neq g$ is possible if the accumulation point is outside D.

cor. for a non-constant $f \in \text{hol}(D)$, |f| has no local maxima, and its local minima are its roots $\{f = 0\}$. \Leftrightarrow