Sampling Techniques

Why Sampling?

- Gathering information about an entire population often costs too much or is virtually impossible.
- Instead, we use a sample of the population.
- How to form a sample?

Principal

• A sample should have the same characteristics as the population it is representing.

Hypothesiss

Students in our class (Math201) like Basketball more than Football.

Population: 36 students in our cluss.

Sample:

Multiple ways to Sample

- Simple Random Sampling
- Systematic Sampling
- Stratify Sampling

```
(For example: or h) celled data from your friends)
```

Simple Random Sampling

Simple Random Sampling

- Step 1: Number all items in the population
- Step 2: Decide the sample size
- Step 3: Use a random number generator to select items/data for the

```
sample

Lordon H select 10 2

2 do separt the hypothesis

2 do separt the hypothesis
=) It looks whethe h-1 pothesis is not correct.
```


Population

1 471741141114211					
	First Name	Last Name	Attendance	Assignments	
1	James	Anelli	18	Julia	Lau
2	Dante	Brito	19	Sarah	Lavoie
<u>(3)</u>	Dylan	Castle 📈	20	Gregory	Leedham 📈
4	Julia	Dearing	21	Donald	MacMillan
5	Reid	Deniso	(22)	Daniel	Maki ₩
6	Anna	Dye	23	Aiden	Masse
7	Lynsey	Fleming W	24	Nickolas	Molina
8	Ryley	George	25	Vincent	Pesce ₩
9	Nicholas	Giogas	(26)	Seth	Pickering W
10	Spencer	Glau	27	Caleb	Raesly
11	Emma	Glynn	28	Elijah	Rocheleau w
12	Matthew	Grace	29	Brianne	Salomao
13	Aiden	Guarneri	30	Juan	Sanchez Mercedes
14	Michael	Gudewicz 1	31	Aleksandr	Shekhel
(15)	Jessica	Jaffarian 🕇	32	John	Stellakis
16	Roie	Lachmish	33	Cade	Sullivan
17	Connor	Larochelle	34)	Robert	Thompson ₩
			35	Jackson	Williams

- Let say we want to go with a sample size of 30% population.
- We would need about 35*.3 = 10 or 11 data points.
- Use a random number generator to generate a random number, for example

Link

• Collect data from the students associated with the generated numbers.

Systematic Sampling

• Step 1: Number all items in the population

• Step 2: Pick a random number, says 7, then select items starting from 7, 8, 9...to a desired number.

Stratified Sampling

- Breaks down the population into groups
- Randomly select items from each groups
- The proportion of each group in your samples and the proportion of each group in your population should be similar.

Convenience Sampling (Not recommended!)

- Conveniently select items from the population
- For example: Only collect data from the people you know