Digital Image Processing

Local Enhancement Through Spatial Filtering

Dr. Muhammad Sajjad

R.A: M.Abbas

Overview

- Introduction to Spatial Filtering
- Spatial Filtering (Convolution)
- Example of Convolution Operation
- Padding in Spatial Filtering
- Convolution vs Correlation
- Smoothing Spatial Filters
- Sharpening Spatial Filters

Introduction to Spatial Filtering

Spatial Filtering

- A technique used in image processing
- Each pixel's value is modified based on the pixel itself and the values of its neighboring pixels.
- Used for image enhancement, noise reduction, and edge detection.

Filter (or Kernel, Mask, Template, Window):

- The kernel is an array whose size defines the neighborhood of operation, and whose coefficients determine the nature of the filter.
- We prefer odd-sized kernels (e.g., 3x3, 5x5, etc.).

Spatial Filtering (Convolution)

Linear Spatial Filtering

- Move the kernel across the image, pixel by pixel.
- Perform a sum-of-products operation between the local region of the image I and the filter kernel K.
- Place the computed value into the corresponding pixel in the output image.
- Examples: Averaging filter, Gaussian filter.

Non-Linear Filtering:

- Use operations other than the sumof-products
- Example: selecting the median value in a neighborhood (e.g., Median filter)

4	0	0	
4	1	2	
3	0	1	
			Local region

	_		
	1	0	-1
	1	0	-1
	1	0	-1
•		Filte	r

$$(I * K)(1,1) = (2*0) + (3*1) + (5*0) + (1*1) + (0*0) + (2*-1) + (3*0) + (4*1) + (2*0)$$

 $(I * K)(1,1) = 6$

Input Image

Kernel

Output Image

$$(I * K)(1,2) = (3*0) + (5*1) + (0*0) + (0*1) + (2*0) + (3*-1) + (4*0) + (2*1) + (4*0)$$

 $(I * K)(1,2) = 4$

Input Image

Kernel

Output Image

$$(I * K)(1,3) = (5*0) + (0*1) + (4*0) + (2*1) + (3*0) + (0*-1) + (2*0) + (4*1) + (1*0)$$

 $(I * K)(1,3) = 6$

Input Image

Kernel

Output Image

$$(I * K)(2,1) = (1*0) + (0*1) + (2*0) + (3*1) + (4*0) + (2*-1) + (1*0) + (3*1) + (3*0)$$

 $(I * K)(2,1) = 4$

$$(I * K)(2,2) = (0*0) + (2*1) + (3*0) + (4*1) + (2*0) + (4*-1) + (3*0) + (3*1) + (2*0)$$

 $(I * K)(2,2) = 5$

$$(I * K)(2,3) = (2*0) + (3*1) + (0*0) + (2*1) + (4*0) + (1*-1) + (3*0) + (2*1) + (4*0)$$

 $(I * K)(2,3) = 6$

Input Image

Kernel

Output Image

$$(I * K)(3,1) = (3*0) + (4*1) + (2*0) + (1*1) + (3*0) + (3*-1) + (4*0) + (2*1) + (1*0)$$

 $(I * K)(3,1) = 4$

$$(I * K)(3,2) = (4*0) + (2*1) + (4*0) + (3*1) + (3*0) + (2*-1) + (2*0) + (1*1) + (4*0)$$

 $(I * K)(3,2) = 4$

$$(I * K)(3,3) = (2*0) + (4*1) + (1*0) + (3*1) + (2*0) + (4*-1) + (1*0) + (4*1) + (3*0)$$

 $(I * K)(3,3) = 7$

Padding in Spatial Filtering

- · Adding extra rows and columns around an image.
- Ensure that the filter can be applied evenly across all pixels.

Zero Padding: Adds pixels with a value of zeros around the image.

Replicate Padding: Replicates the border pixels of the image.

For a kernel of size m×n:

- Pad with **(m-1)/2**, rows of zeros (top and bottom).
- Pad with (n-1)/2, columns of zeros (left and right).

Convolution vs Correlation

Correlation

 Moving the center of a kernel over an image, and computing the sum of products at each location

$$(w \Leftrightarrow f)(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Convolution

• Moving 180" rotated kernel over an image, and computing the sum of products at each location.

$$(w \star f)(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$

$$a = (m-1)/2$$
 $b = (n-1)/2$

	\ 0	0	rigi	n	f				
	Ò	0	0	0	()				
MxN	0	0	0	0	0		w		
Image	0	0	1	0	0	1	2	3	Τ7 1
rmage	0 0	0	0	0	0	4	5	6	m x n Kernel
					0				

7	- In	itia	l p	osit	ion	for	w	Cor	rela	tio	n re	esul	t
¦ī`	2	- <u>3</u> !	0	0	0	()							
4	5	3 6	()	()	()	()		0	0	\cap	0	\cap	
7	8	9¦	0	()	0	()			_	-		_	
								-			7	-	
0	0	0	0	0	0	0		0	6	5	4	()	
()	()	0	0	0	0	0		()	3	2	1	()	
0	0	0	0	0	0	0		0	0	0	0	0	

 \leftarrow Rotated w

*				00				on'	volı	utio	n r	esul	ľ
<u> </u> 9	8	7 4	0	0	0	0							
6	5	4	0	0	0	0		0	\cap	0	0	0	
3	2	_1	0	0	0	0					3		
0	0	0	1	0	0	0							
0	0	()	0	0	0	0	<u></u>	0					
0	0	0	0	0	0	0					9		
0	0	0	0	0	0	0		0	0	0	0	0	

Used for: Blurring and noise reduction.

Blurring helps to:

- Remove small details before object extraction.
- Bridge small gaps in lines or curves.

Averaging Linear Filters

Image M x N, Filter m x n

$$g(x,y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)}$$

	1	1	1
$\frac{1}{9}*$	1	1	1
,	1	1	1

Box Filter
All coefficients are
equal

1	1	2	1
$\frac{1}{16}$ *	2	4	2
	1	2	1

Weighted Average

Five more (less)
weight to pixels near
(away from) the
output location

Example of box kernel

Original Image

3 x 3 box kernel result

11 x 11 box kernel result

21 x 21 box kernel result

Example of Weighted Average Filters

Order-statistic (Nonlinear) Filters

- Nonlinear
- Based on ordering (ranking) the pixels contained in the filter mask
- Replacing the value of the center pixel with the value determined by the ranking result
- E.g., median filter, max filter, min filter

Median Filtering

- Assigns the mid value of all the gray levels in the mask to the center of mask
- Useful in removing impulse noise (also known as salt-and-pepper-noise).

Noisy Image

3x3 Median filtering

Median Filtering

X-ray image of a circuit board Corrupted by salt-

and-pepper noise

Result 3x3 averaging filer

Using 3x3 median filter

Sharpening Spatial Filters

Purpose:

Sharpening highlights intensity transitions, enhancing edges and fine details in images.

Method:

Achieved by spatial differentiation, which emphasizes intensity changes (edges) and reduces areas with gradual intensity variations.

Key Concept:

Sharpening is often referred to as *highpass filtering*, where high frequencies (fine details) are enhanced, and low frequencies are suppressed.

Applications:

Used in fields like electronic printing, medical imaging, industrial inspection, and military systems.

Original Image

Sharpened Image

Sharpening via Spatial Differentiation

First-Order Derivatives (Gradient-based sharpening):

- Measures the rate of change of pixel intensity.
- Useful for detecting edges

$$\frac{\partial f}{\partial x} = f(x+1,y) - f(x,y)$$
 X-direction

$$\frac{\partial f}{\partial y} = f(x, y + 1) - f(x, y)$$
 Y-direction

The first derivative must be:

- 1. Zero in areas of constant intensity, (along flat segments)
- 2. Nonzero at the onset of an intensity step or ramp.
- 3. Nonzero along intensity ramps.

First-order derivative kernel used for edge detection

Sharpening via Spatial Differentiation

Second order derivatives of digital functions

$$\frac{\partial^2 f}{\partial x^2} = f'(x+1) - f'(x)$$

$$= f(x+2) - f(x+1) + f(x+1) + f(x)$$

$$= [f(x+2) - f(x+1)] - [f(x+1) - f(x)]$$
Position for the output pixel
$$\frac{\partial^2 f}{\partial x^2} = f(x+2) - 2f(x+1) + f(x)$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

$$f(x+1)$$

$$f(x+2)$$

f(x-1)

f(x)

Image

Profile Intensity in horizontal Line

First Derivative

Second Derivative

The second derivative must be:

- Zero in areas of constant intensity.
- Nonzero at the onset and end of an intensity step or ramp.
- Zero along intensity ramps.

Y-direction kernel

f(x+1)

-2

X-direction kernel

Example of derivatives

• 1st derivative detect thick edges while 2nd derivative detect thin edges.

 2nd derivative has mush stronger response at graylevel step than 1st derivative.

Various situations encountered for derivatives

$$f' = \frac{\partial f}{\partial x} \qquad f'' = \frac{\partial^2 f}{\partial x^2}$$

- Ramps or steps in the 1D profile normally characterize the edges in an image
- f" is nonzero at the onset and end of the ramp: produce thin (double) edges
- f' is nonzero along the entire ramp produce thick edges

•Flat segment \rightarrow (f')=0; (f'')=0

f	()	C)	()	C)	()	
f'		(0	(O	()		0		
f''			O		()	0)			

•Step \rightarrow (f'):{0,+,0}; (f''):{0,+,-,0}

f	()	0)	()	7		ĺ	7	7	7	,	7
f		(O	(0		7	(0	()	()	0
f''			0)		7		7	()	0)	()

•Ramp→ (f')≈constant; (f'')=0

f	4	5	4	-	()	3	2	2	1	1	0)	()
f'	0	_	-1	_	-1	_	1	_	-1	_	1	()	0
f''		1	C)	()	C)	()	1		()

The Laplacian Filter

- 2D second-order derivative operator used for image sharpening.
- Highlights sharp intensity transitions and deemphasizes regions with slow intensity changes.
- Produces grayish edge lines and discontinuities on a dark background.

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$
$$\therefore \frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$\therefore \frac{\partial^2 f}{\partial v^2} =$	f(x,y+1)+f(x,y)	y-1)-2f(x,y)
OV^{2}		

$$\nabla^2 f(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

We can apply these kernels using convolution operations.

	f(x-1, y)	
f(x, y-1)	f(x, y)	f(x,y+1)
	f(x+1,y)	

Rotation nvariant	0	1	
it 90° ++	1	-4	
	0	1	

0	-1	0
-1	4	-1
0	-1	0

Laplacian kernel, Equation

Rotation invariant at 45° ++

Includes the diagonal terms

×	1	1	1
	1	-8	1
,	1	1	1

-1	-1	-1
-1	8	-1
-1	-1	-1

Laplacian for Image Enhancement

To obtain the enhance image

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y), & w_5 < 0 \\ f(x,y) + \nabla^2 f(x,y), & w_5 > 0 \end{cases}$$

 $\begin{array}{c|cccc} w_1 & w_2 & w_3 \\ \hline w_4 & w_5 & w_6 \\ \hline w_7 & w_8 & w_9 \\ \hline \end{array}$

- $f(x, y) \rightarrow Original Image$
- $\nabla^2 f(x,y) \rightarrow$ Laplacian of original image
- In this way, background tonality can be perfectly preserved while details are enhanced.

Laplacian Kernel, Highlight areas of sharp intensity

-1	. -	1	-1
-1	-	8	-1
-1		1	-1

+

0	0	0
0	1	0
0	0	0

Identity kernel, doesn't modify the pixel values

Resultant Kernel, produce a sharper image by preserving the original intensity values

Laplacian for Image Enhancement (Example)

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y), & w_5 < 0 \\ f(x,y) + \nabla^2 f(x,y), & w_5 > 0 \end{cases}$$

Blurred image of the North Pole of the moon.

Laplacian image obtained using the 90° isotropic kernel

Image sharpened using equation above

Image sharpened using the same procedure, but with 45° isotropic kernel.

Thank You