EV - 2013

Schriftliche Prüfung aus Energieversorgung, am 26.06.2013

Name/Vorname:	/ MatrNr./Knz.:/	/

1. A Transformator (12 Punkte)

Ein Zweiwicklungstransformator hat folgende Daten und Ersatzschaltbild:

 $\begin{array}{lll} \mbox{Spannungsübersetzungsverhältnis:} & \mbox{U_1/U_2} = 110 \mbox{kV}/20 \mbox{kV} \\ \mbox{Nennscheinleistung:} & \mbox{S_N} = 40 \mbox{ MVA} \\ \mbox{Kurzschlussspannung:} & \mbox{u_k} = 15\% \\ \mbox{Kurzschlusswirkverluste:} & \mbox{P_k} = 500 \mbox{ kW} \\ \mbox{Leerlaufstrom:} & \mbox{i_L} = 0,25\% \end{array}$

Leerlaufwirkverluste: $P_L = 25 \text{ kW}$

<u>Hinweis</u>: **Für** die Berechnung des Kurzschlussfalls können die Leerlaufverluste vernachlässigt werden!

- a. (3) Bestimmen Sie die Kurzschlussresistanz $\mathbf{R}_{\mathbf{k}}$ für die 20-kV-Seite
- b. (3) Bestimmen Sie die Leerlaufkonduktanz G_I, für die 20-kV Seite
- c. (3) Bestimmen Sie die Leerlaufsuszeptanz B_I für die 20-kV Seite
- d. (3) Bestimmen Sie den **Betrag der Kurzschlussimpedanz Z**_k für die 110-kV-Seite

1. B Parallelschaltung von zwei Transformatoren (12 Punkte)

Es werden 2 Transformatoren gleicher Schaltgruppe parallel geschaltet: Trafo 1 mit einem Spannungsübersetzungsverhältnis $U_1/U_2=110 \mathrm{kV}/20 \mathrm{kV}$ und Trafo 2 mit einem Spannungsübersetzungsverhältnis $U_1/U_2=118 \mathrm{kV}/20 \mathrm{kV}$. Trafo 1 weist im gegebenen Betriebsfall unterspannungsseitig eine Kurzschlussimpedanz von $Z_{k-US}=1,5\Omega$ und Trafo 2 eine Kurzschlussimpedanz von $Z_{k-US}=1,3\Omega$. An beiden Transformatoren liegt an der Oberspannungsseite die Spannung 110kV an.

- e. (4) Welche Spannung stellt sich unterspannungsseitig im Leerlauf ein?
- f. (4) Wie groß ist der **Kreisstrom**, der sich bei diesem parallelen Betrieb einstellt?
- g. (4) Darf so ein pralleler Betrieb durchgeführt werden (Begründung)?

EV - 2013

2. Leitungsgleichungen (24 Punkte)

Gegeben ist ein 380~kV-Drehstromfreileitungssystem in einem 50 Hz Netz mit Dreierbündel und der Länge 600 km mit folgenden Parametern:

$$R' = 0$$
; $\frac{\Omega}{km}$; $X' = 0.25 \frac{\Omega}{km}$; $G' = 0 \frac{S}{km}$; $C' = 14 \frac{nF}{km}$

- a. (3) Wie groß ist die komplexe Ausbreitungskonstante γ ?
- b. (3) Welche Spannung stellt sich am Ende der leerlaufenden Leitung ein?
- c. (6) Berechnen sie die Kompensationsimpedanz, damit sich am Ende der Leitung ein Spanungsanstieg von 105% der Nennspannung einstellt.
- d. (3) Wie groß muss die Kapazität bzw. Induktivität des Bauelements für die ideale Kompensation der Leitung nach Punkt c. dimensioniert werden?
- e. (2) Wie soll diese Impedanz mit der Leitung verschaltet werden (mit Begründung)?

Verwenden Sie ab hier folgenden Wert für die Kompensationsimpedanz: $X = j980 \Omega$.

- f. (3) Berechnen Sie die Spannung am Leitungsende nach dem Kompensationsvorgang.
- g. (3) Die thermisch zulässige Leistung dieser Leitung soll der natürlichen Leistung entsprechen. Wie groß ist in diesem Fall der zulässige Strom eines <u>Einzelleiters</u>?
- h. (2) Wie groß ist die Blindleistung am Anfang der Leitung, wenn diese mit dem Wellenwiderstand abgeschlossen ist?

EV - 2013

3. Zweipoliger Kurzschluss mit Erdberührung (24 Punkte)

Generator:

 $U_N = 4kV$, $S_N = 8MVA$, x_d " = 12%

Transformator:

YNd5, $U_1/U_2 = 20/4$, $S_N = 8$ MVA, $u_k = 12\%$, (Annahme $P_k = 0$), $X_{(0)} = 18 \Omega$ (auf 20kV Seite) Sternpunkt **exakt kompensiert ("gelöschtes Netz")**

Freileitung:

 $X'_{(1)} = 0.4$ Ohm/km, $X'_{(0)} = 0.75$ Ohm/km, $C'_{E} = 11$ nF/km, I = 30 km

Am Ende der Freileitung ereignet sich ein **zweipoliger Kurzschluss** zwischen den Phasen b und c **mit Erdberührung** (siehe Skizze).

- a. (4) Wie groß ist die im Sternpunkt verwendete **Petersonspule**, sodass die Leitungskapazitäten exakt kompensiert werden?
- b. (3) Berechnen Sie die wirksamen Impedanzen des Generators, des Transformators und der Leitung (in Ohm) am Kurzschlussort.
- c. (3) Berechnen Sie die Mit-, Gegen und Nullimpedanz.
- d. (3) Zeichnen Sie die **Ersatzschaltung** im Mit-, Gegen- und Nullsystem mit korrekter Verschaltung der drei Systeme für den dargestellten Kurzschlussfall.
- e. (4) Wie groß sind die drei **Komponentenströme** $I_{(0)}$, $I_{(1)}$ und $I_{(2)}$ am Kurzschlussort?
- f. (4) Wie groß sind die drei **Phasenströme** $\underline{I}_{(a)}$, $\underline{I}_{(b)}$ und $\underline{I}_{(c)}$ am Kurzschlussort?
- g. (3) Wie groß ist der Kurzschlussstrom im Falle eines einpoligen Fehlers mit Erdberührung am selben Fehlerort?

4. Fünf Sicherheitsregeln (4 Punkte)

Bringen Sie die fünf Sicherheitsregeln in die richtige Reihenfolge:

Spannungsfreiheit allnolig feststellen

_ opania Bon emercanbong restatemen
Erden und kurzschließen
Gegen Wiedereinschalten sichern
Freischalten (d.h. allpoliges Trennen einer elektrischen Anlage von spannungsführenden Teilen)
Benachbarte, unter Spannung stehende Teile abdecken oder abschranken

5. Wirtschaftlichkeitsvergleich (24 Punkte)

In einem Energieversorgungsnetz werden zusätzliche Kraftwerke gebaut und es soll dabei der wirtschaftlichste Kraftwerkstyp ausgewählt werden. Die folgenden zwei Kraftwerkstypen sind zu vergleichen:

EV - 2013

	GuD-Kraftwerk	Laufwasserkraftwerk
spez. Errichtungskosten	700 €/ kW _{el}	2400 €/ kW _{el}
Zinssatz	8,4 %	8,4 %
Ausbauleistung	200 MW	200 MW
leistungsabhängige Betriebskosten	90 €/ kW _{el} a	80 €/ kW _{el} .a
Brennstoffkosten	siehe weitere Angabe	-
arbeitsabhängige Betriebskosten	0,001 €/ kWh _{el}	-
Volllaststundenzahl	6800 h/a	5000 h/a
Nutzungsdauer	15 a	30 a

Das GuD-Kraftwerk wird mit Erdgas betrieben.

Heizwert von Erdgas: 30MJ/m³ Erdgaspreis: 1) 0,2 €/m³

2) 4 €/m³

GuD Gesamtwirkungsgrad: 59 %

a. (6) Wie hoch sind die Stromgestehungskosten für das GuD-Kraftwerk:

- a.1) bei niedrigem Erdgaspreis?
- a.2) bei hohem Erdgaspreis?
- b. (4) Wie hoch sind die Stromgestehungskosten für das Wasserkraftwerk?
- c. (4) Die Volllaststunden des Laufkraftwerkes sind durch den natürlichen Zufluss gegeben (fix). Bei welcher Volllaststundenzahl des GuD-Kraftwerkes sind die Stromgestehungskosten der Kraftwerkstypen gleich? (Erdgaspreis a.1))
- d. (6) Zeichnen Sie qualitativ richtig die beiden Stromgestehungskosten in Abhängigkeit der Volllaststunden. Achsenbeschriftung nicht vergessen! Weißt das GuD-Kraftwerk irgendwann niedrigere Stromgestehungskosten auf als das Wasserkraftwerk? (Erdgaspreis a.1))
- e. (4) Bedingt durch sehr kalte Winter und unerwartete Reparaturen erreicht das Laufwasserkraftwerk nicht seine Solllaufstunden von 5000 h/a. Unter welche Volllaststundendauer darf das Laufkraftwerk nicht sinken, um noch günstiger als das GuD-KW (dieses bleibt bei 6800 Volllaststunden) produzieren zu können?