College name: Computer science and artificial intelligence

Course name: Selected CS-2

Team number: 25

	Member ID	Member Name
1	201900178	امنیه محمد یوسف سید
2	201900308	رنا محمود وطني عبدو
3	201900167	الشيماء عزت عريان حسين
4	201900077	احمد فرید فرج محمد
5	201900013	احمد ابر اهيم مصطفي العرباني
6	201900015	احمد اشرف سعید ابر اهیم
7	201900819	مصطفي شعبان طه بشير

(Paper Details)

- -Paper Name: Human Gender Detection from Facial Images Using Convolution Neural Network
- -Publishers Name: Tahmina Akter Sumi, Mohammad Shahadat Hossain, Raihan Ul Islam, and Karl Andersson
- -Year Of Publication: AG 2021
- The Datasets used on this paper: 2 dataset which are Kaggle dataset and Nottingham Scan Database
- -The Implemented Algorithm : Convolution Neural Network (CNN)
- -The Results: After implementation, a highest accuracy 97.44% has been gained using Kaggle dataset and 90% has been gained using No

(Project Description Document)

1) General Information on the selected dataset

- -Name of the dataset used: Gender Classification Dataset
- -The link of dataset: Gender Classification Dataset | Kaggle
- -The total number of samples in the dataset: 3 samples
- -Dimension of images (96, 96)
- -Number of classes & their labels : 2classes with labels (female, male)

2) Implementation details:

- The ratio used for training, validation, and testing:

Training (85% of the training dataset) = 39959 images

Validation (15% of the training dataset) = 7050 images

Testing (100% of the testing dataset)=11649 images

-The Block Diagram

-The hyperparameters used in the model

```
In [30]: #the model
image_input = Input(shape=(96,96,3))
            #The first CNN layer followed by Relu and MaxPooling layers
x = Conv2D(32,(3,3),activation = "relu")(image_input)
            x = BatchNormalization()(x)
x = MaxPooling2D((2,2))(x)
            x = Dropout(0.2)(x)
           #The second CNN layer followed by Relu and MaxPooling layers x = Conv2D(64,(3,3),activation = "relu")(x) x = BatchNormalization()(x)
            x = MaxPooling2D((2,2))(x)
            x = Dropout(0.2)(x)
            #The third CNN layer followed by Relu and MaxPooling layers x = Conv2D(128,(3,3),activation = "relu")(x)
            x = BatchNormalization()(x)
            x = MaxPooling2D((2,2))(x)
            x = Dropout(0.2)(x)
            #The Flatten layer
            x = Flatten()(x)
            #The Dense Layer
x = Dense(256,activation="relu")(x)
            x = BatchNormalization()(x)
            x = Dropout(0.5)(x)
            #The Final layer with two outputs for two categories
            image_output = Dense(2,activation="softmax")(x)
            model = Model(image_input,image_output)
```

3) Results details:

- The Accuracy: 96%

- The loss : 4%

- The classification report

[]. Pr(<pre>print(classification_report(predicted,y_test))</pre>				
	precision	recall	f1-score	support	
0	0.99	0.93	0.96	6243	
1	0.92	0.99	0.95	5406	
accuracy			0.96	11649	
macro avg	0.96	0.96	0.96	11649	
weighted avg	0.96	0.96	0.96	11649	

- The Confusion Matrix

