CAT 2

79546 - Stephen Ng'etich

Q1

 \mathbf{a}

$$df = n - l - 1$$

where l is the level in anova test and n is the sample size

48 = n - 1 - 1

Solve for n

n = 50

b

$$S = \sqrt{MSE}$$

$$MSE = \frac{SSE}{n-2} = \sqrt{\frac{11354}{48}} = 15.38$$

 \mathbf{c}

$$\begin{array}{ll} & \text{t-statistic} & \text{p-value} \\ H_0: \alpha = 0 \,, H_a: \alpha \neq 0 & -2.601 & -0.0123 \\ H_0: \beta_1 = 0 \,, H_a: \beta_1 \neq 0 & 9.464 & 1.490*10^{-12} \end{array}$$

 \mathbf{d}

$$MSR = \frac{SSR}{1} = \frac{21186}{1} = 21186$$

$$MSR = \frac{SSE}{n-2} = \frac{11354}{48} = 236.59166$$

$$\text{F-value} = \frac{MSR}{MSE} = \frac{21186}{236.5417} = 89.5656$$

 \mathbf{e}

$$R^2 = 0.6511$$

 $\mathbf{Q2}$

$$\begin{split} \frac{L(\theta_0)}{L(\theta_1)} &\leq k \\ \frac{\prod_{i=1}^n 2 \times x^{2-1}}{\prod_{i=1}^n 1 \times x^{1-1}} &\leq k \\ \frac{1}{2 \prod_{i=1}^n X_i} &\leq k \end{split}$$

Making x the subject of the formula

$$\frac{1}{2k} \le \prod_{i=1}^{n} x_i$$

Q3

let $\theta_2 = \sigma^2$ and $\theta_1 = \mu$

$$L(\theta) = L(\mu, \sigma^2) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n exp\left[-\sum_{i=1}^n \frac{(X_i - \mu)^2}{2\sigma}\right]$$

The Maximum Likelihood estimator the $L(\theta)$ at point $(\hat{\mu}, \hat{\sigma^2})$ is

$$\hat{\mu} = \overline{X}$$
 and $\hat{\sigma} = \frac{1}{2} \sum_{i=1}^{n} (X_i - \hat{\mu})^2$

then the $L(\hat{\theta})$ is obtained by replacing μ with $\hat{\mu}$ and σ^2 with $\hat{\sigma}^2$ which gives

$$L(\theta) = \left(\frac{1}{\sqrt{2\pi}\hat{\sigma}}\right)^n exp\left[-\sum_{i=1}^n \frac{(X_i - \hat{\mu})^2}{2\hat{\sigma}^2}\right] = \left(\frac{1}{\sqrt{2\pi}\hat{\sigma}}\right)^n e^{-\frac{n}{2}}$$

Therefore the likelihood ratio is calculated as

$$\wedge = \frac{L(\hat{\theta_o})}{L(\hat{\theta})} = \frac{\left(\frac{1}{\sqrt{2\pi}\hat{\sigma}}\right)^n e^{-\frac{n}{2}}}{\left(\frac{1}{\sqrt{2\pi}\hat{\sigma}}\right)^n e^{-\frac{n}{2}}} = \left(\frac{\hat{\sigma^2}}{\sigma_0^2}\right)^{\frac{n}{2}} = \left[\frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sum_{i=1}^n (X_i - \mu_o)^2}\right]^{\frac{n}{2}}$$

The rejection region is given by

$$\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sum_{i=1}^{n} (X_i - \mu_o)^2} < k^{\frac{2}{n}}$$

 $\mathbf{Q4}$

 \mathbf{a}

$$f(x;\theta) = \theta^x (1-\theta)^{1-x} x = 0, 1$$

$$\begin{split} \frac{L(0.5)}{L(\theta)} & \leq k \\ \frac{\prod_{i=0}^{n} 0.5^{x} (1-0.5)^{1-x}}{\prod_{i=0}^{n} \theta^{x} (1-\theta)^{1-x}} & \leq k \\ \frac{0.5^{x} \times 0.5^{n-x}}{\theta^{\sum_{i=1}^{n} x} (1-\theta)^{n-\sum_{i=1}^{n}}} & \leq k \\ \frac{0.5^{n}}{\theta^{\sum_{i=1}^{n} x} (1-\theta)^{n-\sum_{i=1}^{n}}} & \leq k \end{split}$$

let $Y = \sum_{i=1}^{n}$

$$\frac{0.5^n}{\theta^y (1-\theta)^{5-y}} \le k$$
$$\frac{0.5^n (1-\theta)^y}{\theta^y (1-\theta)^5} \le k$$

Move constant to one side

$$\frac{(1-\theta)^y}{\theta^y} \le 32k(1-\theta)5$$

$$ln\left[\frac{(1-\theta)^y}{\theta^y}\right] \le ln\left[32k(1-\theta)5\right]$$

$$yln(1-\theta) + yln\theta \le ln32 + lnk + 5ln(1-\theta)$$

$$y(ln(1-\theta) + ln\theta) \le ln32 + lnk + 5ln(1-\theta)$$

$$y \le \frac{ln32 + lnk + 5ln(1-\theta)}{ln(1-\theta) + ln\theta}$$

Q5

 H_0 : proposition are equal to the one provided

$$p_1 = \frac{9}{16} = 0.5625, p_2 = \frac{3}{16} = 0.1875, p_3 = \frac{3}{16} = 0.1875, p_4 = \frac{1}{16} = 0.0625$$

 H_a : at least on the p_1 is different

Sample size:

$$= 124 + 30 + 43 + 11 = 208$$

$$\chi^2 = \frac{(O-E)^2}{E}$$

Dist.	O	E = np	O - E	$(O - E)^{2}$	$\frac{(O-E)^2}{E}$
0.5625	124	117	7	49	0.4188
0.1875	30	39	-9	81	2.0769
0.1875	43	39	4	16	0.4103
0.0625	11	13	-2	4	0.3077
Sum	208				3.2137

df = 4 - 1 = 3 and at $\alpha = 0.05$ the chi-square value is 7.81

if $\chi^2_{calc} \leq \chi^2_{critical}$ we fail to reject the null hypothesis

 $3.2137 \le 7.81$ we fail to reject the null hypothesis

Q6

 H_o : Choice of major is independent of the hand posture

 H_a : Choice of major is not independent of the hand posture

	LH	RH	Totals
RN	89	29	118
LI	5	4	9
LN	5	8	13
Totals	99	41	140

Computing Expectation using the formula $\frac{x_{\rm row\ total} \times x_{\rm column\ total}}{{\rm sum\ total}}$

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

$$\chi^2 = \frac{(89 - 83.44)^2}{83.44} + \frac{(5 - 6.36)^2}{6.36} + \frac{(5 - 9.19)^2}{9.19} + \frac{(29 - 34.56)^2}{34.56} + \frac{(4 - 2.64)^2}{2.64} + \frac{(8 - 3.81)^2}{3.81}$$

$$\chi^2 = 0.37 + 0.29 + 1.91 + 0.89 + 0.7 + 4.6 = 8.76$$

Calculate the degrees of freedom using the formula df = (r-1)(c-1) = (3-1)(2-1) = 2 χ^2_{α} from the table at 0.05 with df = 2 is 5.99

$$\chi_{calc}^2 > \chi_{\alpha}^2 \text{ reject } H_0$$

8.76 > 5.99 hence reject the null hypothesis