Communication Systems

Mohammad Hadi

mohammad.hadi@sharif.edu @MohammadHadiDastgerdi

Fall 2022

Overview

1 History of Communication

2 Communication Systems

Modeling, Analysis, and Design

Communication History

Visual Era

Figure: Visual era.

Wired Era

Figure: Wired Era.

<ロト <部ト < 注 ト < 注 ト

Wireless Era

Figure: Wireless Era.

4 D F 4 B F 4 B F

IP Cloud Era

Figure: IP cloud Era.

Communication Systems

Communication Systems

Figure: Abstract diagram of a communication system.

9/29

Mohammad Hadi Communication systems Fall 2022

Channel

- Channel is the physical medium that is used to send a signal from the source to the destination.
- Channel has two important limitations
 - Physical impairments
 - Noise
 - Attenuation
 - Oelay
 - Oistortion
 - 6 Fading
 - Working constraints
 - Available bandwidth
 - Ocentral Frequency
 - Injected power
 - Usage time

Communication Systems

Figure: Functional diagram of a communication system.

11/29

Transceiver

- The information is generated randomly in the source.
- The source transducer converts the information to a signal, which can be fed to the transmitter.
- The transmitter transforms its input signal into a signal, which can effectively cope with the channel limitations.
- The receiver extracts its output signal from the signal polluted by the undesirable effects of the channel.
- The destination transducer converts the extracted signal to a desirable information.
- The information may have a different format in the destination.

Electrical Communication Systems

Figure: Functional diagram of an electrical communication system.

Analog Communication Systems

Figure: Functional diagram of an analog communication system.

14 / 29

Digital Communication Systems

Figure: Functional diagram of a digital communication system.

Mohammad Hadi Communication systems Fall 2022 15 / 29

Analog and Digital Electrical Communication System

The input signal to the transmitter or the output signal from the receiver is

- electrical in an electrical communication system.
- analog in an analog communication system.
- digital in a digital communication system.

Analog Communication Systems

Figure: Detailed diagram of an analog communication system.

Mohammad Hadi Communication systems Fall 2022 17 / 29

Analog Communication Systems

- ✓ The preemphasizer manipulates the signal to better cope with the physical impairments of the channel.
- ✓ The modulator manipulates the signal to better meet the working constraints of the channel.
- ✓ The filter manipulates the signal to better cope with the working constraints of the channel.
- ✓ The deeemphasizer, demodulator, and filter in the receiver are the inverse counterparts of their corresponding blocks in the transmitter.
- ✓ The equalizer mitigates the undesired effects imposed by the physical impairments of the channel.

Digital Communication Systems

Figure: Detailed diagram of a digital communication system.

Mohammad Hadi Communication systems Fall 2022 19 / 29

Digital Communication Systems

- ✓ The compressor removes the redundant data from the input information signal and helps to better meet the working constraint of the channel.
- ✓ The encoder adds a controllable amount of redundancy to the information signal to better cope with the physical impairments of the channel.
- ✓ The modulator manipulates the signal to better fit the working constraints of the channel.
- ✓ The filter manipulates the signal to better cope with the working constraints of the channel.
- ✓ The decompressor, decoder, demodulator, and filter in the receiver are the inverse counterparts of their corresponding blocks in the transmitter.
- ✓ The equalizer mitigates the undesired effects imposed by the physical impairments of the channel.

Modeling, Analysis, and Design

Modeling, Analysis, and Design

Roughly,

- ✓ In the modeling, the system structure is determined.
- ✓ In the analysis, the system performance is determined.
- ✓ In the design, the system setting is determined.

Modeling

Example (Distortionless channel)

The distortionless channel is modeled by a linear time-invariant system with the transfer function $H_c(f) = Ae^{-j2\pi ft}$, whose amplitude $A \le 1$ is constant and whose phase $-2\pi fD$ is a linear function of f.

$$y(t) = Ax(t - D) \Rightarrow Y(f) = Ae^{-j2\pi fD}X(f)$$

 $\Rightarrow H_c(f) = \frac{Y(f)}{X(f)} = Ae^{-j2\pi fD}$

Modeling

Example (Point-to-point microwave radio channel)

A point-to-point microwave radio channel can be modeled by a linear time-invariant system with the transfer function $H_c(f)=A_1e^{-j2\pi fD_1}(1+Ae^{-j2\pi fD})$, where $A=A_2/A_1<1$ and $D=D_2-D_1\geq 0$.

$$y(t) = A_1 x(t - D_1) + A_2 x(t - D_2) \Rightarrow Y(f) = \left[A_1 e^{-j2\pi f D_1} + A_2 e^{-j2\pi f D_2} \right] X(f)$$
$$\Rightarrow H_c(f) = A_1 e^{-j2\pi f D_1} (1 + A e^{-j2\pi f D})$$

Analysis

Example (Customized distortion-less channel)

Passing x(t) through the distortion-less channel with A=1 and D=1, the output y(t)=x(t-1) appears.

Analysis

Example (Customized point-to-point microwave radio channel)

Passing x(t) through the point-to-point microwave radio channel with $A_1=1$, $A_2=0.75$, $D_1=1$, and $D_2=2$, the output y(t)=x(t-1)+0.75x(t-2) appears.

Design

Example (Point-to-point microwave radio channel equalizer)

The distortion imposed by the point-to-point microwave radio channel can be equalized by a linear time-invariant system with the transfer function $H_e(f) = 1/(1 + Ae^{-j2\pi fD})$, where $A = A_2/A_1 < 1$ and $D = D_2 - D_1 \ge 0$.

$$H_c(f)H_e(f) = A_1e^{-j2\pi fD_1}(1 + Ae^{-j2\pi fD})H_e(f) = A_1e^{-j2\pi fD_1}$$

 $\Rightarrow H_e(f) = \frac{1}{1 + Ae^{-j2\pi fD}}$

Mohammad Hadi Communication systems Fall 2022 27 / 29

Design

Example (Point-to-point microwave radio channel equalizer)

For $A \ll 1$, the point-to-point microwave radio channel equalizer can be practically implemented using a tapped delay line structure.

$$|Ae^{-j2\pi fD}| < 1 \Rightarrow H_e(f) = \frac{1}{1 - \left[-Ae^{-j2\pi fD} \right]} = 1 - Ae^{-j2\pi fD} + A^2 e^{-j4\pi fD} - \cdots$$

$$A\ll 1 \Rightarrow H_{\mathrm{e}}(f) = rac{1}{1-\left[-A\mathrm{e}^{-j2\pi fD}
ight]} pprox 1-A\mathrm{e}^{-j2\pi fD} + A^2\mathrm{e}^{-j4\pi fD}$$

4 D > 4 B > 4 E >

The End