Семинарно упражнение 2

УНИВЕРСАЛЕН АНАЛОГОВ ПИД РЕГУЛАТОР С ГРАФОАНАЛИТИЧНО НАСТРОЙВАНЕ

1. ЦЕЛ НА ИЗСЛЕДВАНИЯТА

Да се представи структурата на универсалния аналогов ПИД регулатор. Да се приложат различни методики за неговото настройване, които се базират на класическите два подхода: първия, за обработване на преходния процес на управлявания обект, и втория, за отчитане на критичните параметри на САУ на управлявания обект, приведена в режим на автоколебания. Да се съпоставят резултатите от функционирането на САУ с един и същ регулатор, настроен при различни методики в настоящото лабораторно упражнение, както и на САУ с различни по структура регулатори от настоящото и предишното упражнения, настроени по една и съща методика.

2. МЕТОДИЧНИ УКАЗАНИЯ

2.1. Непрекъснат универсален ПИД регулатор

• Закон на управление

За целите на изследванията се разглежда един универсален ПИД регулатор, който формира управление u при задаващо въздействие r и регулируема величина y в САУ в съответствие с описанието

$$u(s) = K_{p} \left\{ \left[br(s) - y(s) \right] + \frac{1}{T_{i}s} e(s) + \frac{T_{d}s}{1 + T_{f}s} \left[cr(s) - y(s) \right] \right\}, \tag{1}$$

където K_p е коефициент на пропорционалност, а T_i и T_d са, съответно, интегрираща и диференцираща времеконстанти. Допълнителните параметри b и c (най-често, $0 \le [b, c] \le 1$) отразяват степента на влияние на заданието, съответно, върху пропорционалната и диференцираща съставка в ПИД регулатора. Чрез допълнителната времеконстанта $T_f = T_d/N$ ($N = 8 \div 20$) се осъществява филтриране на смущенията в САУ, с което трябва да подобри работоспособността на ПИД регулатора.

Коефициенти K_p , T_i и T_d на аналоговите ПИД регулатори обикновено се определят (изчисляват, настройват) с графоаналитични зависимости, специфични за всеки от конкретно прилаганите методи за настройване на регулатори от вида (1), най-често при b=1, c=1 и $T_f=0$. Чрез различни стойности на допълнителните параметри b, c и T_f могат да се

формират различни управляващи въздействия върху един и същ обект, което е потвърждение за универсалния характер на закона на управление (1).

• Примерно схемно решение на закона за управление

На фиг. 1 е предложена възможна структура на универсалния аналогов ПИД регулатор (1), където "Set Point" е заданието r, а "CS Output" – изходът y.

Фигура 1. Универсален аналогов ПИД регулатор

2.2. Настройване на универсален аналогов ПИД регулатор чрез метод на Острьом-Хаглунд (Astrom-Hagglund) по зададен преходен процес на обекта (tau-метод AH-1)

Методиката при този подход изискват: първо, да бъде известен преходният процес на обекта на управление, второ, да се извърши апроксимирането му чрез три-параметричен модел, и трето, да се приложат изведени зависимости между коефициентите на регулатора (1) и параметрите на така апроксимирания модел на обекта.

Авторите извеждат съотношенията: αK_p ($\alpha = K_o \frac{L}{T}$), T_i/L или T_i/T , T_d/L или T_d/T и коефициентът b. Всяка зависимост се апроксимира с функция от вида

$$f(\tau) = a_0 e^{a_1 \tau + a_2 \tau^2}, \quad \tau = \frac{L}{L + T},$$
 (2)

където au се дефинира като нормализирано чисто закъснение.

В табл. 1 са посочени стойностите на коефициентите a_0 , a_1 и a_2 в апроксимиращата функция $f(\tau)$, чрез която се настройват нормализираните параметри на ПИД регулатор за обект на управление без интегрираща съставка. Двете различни стойности на $M_{\rm S}$ определят различен запас на устойчивост на САУ (с намаляване на $M_{\rm S}$, расте робастността на САУ).

	$M_{\rm S} = 1.4$			$M_s = 2$		
Параметри	a ₀	a_1	a ₂	a ₀	a_1	a ₂
αK_p	3.8	-8.4	7.3	8.4	-9.6	9.8
T_i/L	5.2	-2.5	-1.4	3.2	-1.5	-0.93
T_i/T	0.46	2.8	-2.1	0.28	3.8	-1.6
T_d/L	0.89	-0.37	-4.1	0.86	-1.9	-0.44
T_d/T	0.077	5.0	-4.8	0.076	3.4	-1.1
b	0.40	0.18	2.8	0.22	0.65	0.051

Таблица 1. Настройване на ПИД за процес без интегриране.

За обекти с интегриране авторите препоръчват следния подход. Предполага се, че предавателната функция на модела на този тип обект е от вида

$$W(s) = \frac{1}{s}W*(s) \tag{3}$$

като използваните в табл. 2 параметри са на модела без интегриращата част W*(s) . За да бъдат те оценени, е необходимо да се изчисли преходен процес W*(s) . За целта се реализира експериментално снемане на преходната функция на обекта в ограничен времеви интервал и диференцирането му. Алтернативно решение представлява експериментално да се снеме импулсно-преходната функция на обекта.

Tuomida 2. Haciponbane na Hing sa inpodee e minei piipane					irei priparie	
	$M_{s} = 1.4$			$M_s = 2$		
Параметри	a_0	a_1	a_2	a_0	a_1	a_2
αK_p	5.6	-8.8	6.8	8.6	-7.1	5.4
T_i/L	1.1	6.7	-4.4	1.0	3.3	-2.3
T_d/L	1.7	-6.4	2.0	0.38	0.056	-0.60
b	0.12	6.9	-6.6	0.56	-2.2	1.2

Таблица 2. Настройване на ПИД за процес с интегриране

2.3. Настройване на универсален аналогов ПИД регулатор чрез метод на Острьом-Хаглунд (Astrom-Hagglund) по критичните параметри в САУ (карра-метод АН-2)

Методиките при този подход изискват: първо, САУ на обекта да бъде приведена в режим на автоколебания, второ, да бъдат определени критичните (граничните, т.е. на границата на устойчивостта) параметри на автоколебанията – коефициент на усилване K_u и период на автоколебания T_u , и трето, да бъдат аналитично изчислени настройките на регулатора.

Авторите извеждат допълнителния коефициент $\kappa=1/K_oK_u$, за който трябва да се познава и статичния коефициент на усилване на обекта K_o . За предлаганите съотношения K_p/K_u , T_i/T_u и T_d/T_u е намерена връзката между параметрите на регулатора и параметрите на процеса, която може да се представи като функция на коефициента κ , т.е.

$$f(\kappa) = a_0 e^{a_1 \kappa + a_2 \kappa^2} \tag{4}$$

със специфични стойности на коефициентите a_0 , a_1 и a_2 , дадени в табл. 3.

	$M_{s} = 1.4$			$M_s = 2$		
Параметри	a_0	a_1	a_2	a_0	a_1	a_2
K_p/K_u	0.33	-0.31	-1.0	0.72	-1.6	1.2
T_i/T_u	0.76	-1.6	-0.36	0.59	-1.3	0.38
T_d/T_u	0.17	-0.46	-2.1	0.15	-1.4	0.56
b	0.58	-1.3	3.5	0.25	0.56	-0.12

Таблица 3. Настройване на ПИД за устойчиви процеси.

3. ЗАДАЧИ ЗА ИЗПЪЛНЕНИЕ

3.1. Да се моделира в SIMULINK САУ с универсален ПИД регулатор

<u>Стъпка 1</u>. Изгражда се ПИД регулатор *Unified PID* като динамична система с два входа и един изход според структурната схема на фиг. 1.

Стъпка 2. Заимстват се настройките на параметрите в регулатора T_p , T_i и T_d от Лабораторно упражнения 1. Допълнителните коефициенти b и c приемат няколко стойност 0 или 1, а T_f се дефинира с $T_f = T_d/10$ или 0.

<u>Стъпка 3</u>. Прави се проверка за работоспособността на изградените САУ с унифицираните ПИД. Извършва се съпоставяне на сигналите в САУ за ПИД регулаторите от <u>класическата</u> и <u>унифицираната</u> схема при максимално препокриване на условията на работа, за да се констатира тяхната близост.

3.2. Да се оценят коефициентите на модел (1) по експериментално снета преходна характеристика на обекта на управление

<u>Стъпка 1</u>. В SIMULINK се изгражда схема за снемане и визуализиране на преходна характеристика на обекта за експериментиране.

<u>Стъпка 2</u>. Избира се три-параметричен модел и се оценяват неговите коефициенти според метода на Стрейц.

<u>Забележка</u>. Когато обектът на управление е същият от Лаб. упражнение 1, се заимстват получените вече стойности на неговия модел.

3.3. Да се определят критичните показатели на автоколебателен режим

<u>Стъпка 1</u>. В SIMULINK се изгражда САУ с П регулатор за обекта на експериментиране. Уточнява се интервалът на изследване.

<u>Стъпка 2</u>. Чрез коефициента на пропорционалност на регулатора се привежда САУ в автоколебателен режим и се отчитат съответните критични показатели.

<u>Забележка</u>. Когато обектът на управление е същият от Лаб. упражнение 1, се заимстват получените вече стойности за критичните показатели.

3.3. Да се изчислят настройките на непрекъснат ПИД регулатор

<u>Стъпка 1</u>. Използват се табл. 1 и 3 за изчисляване на параметрите на ПИД регулатор в зависимост от коефициентите на оценения модел (за tau-метода на АН-1) или критичните показатели (за карра-метода на АН-2).

<u>Стъпка 2</u>. Определят се настройките на съответните ПИД регулатори за различни комбинации на c и $^{T}{}_{f}$.

3.4. Да се извърши съпоставка на САУ с различно настроени регулатори

<u>Стъпка 1</u>. Да се организира функциониране на САУ с така настроените регулатори. Допълнително в схемата се включва товарно смущение.

<u>Стъпка 2</u>. Наблюдават се резултати от изследването на САУ, в които еднакви по структура ПИД регулаторите имат различни настройки, както и на САУ, в които различни по структура ПИД регулатори използват еднакви подходи за настройване.

<u>Стъпка 3</u>. SIMULINK схемите на САУ трябва да включват и блокове **To Workspace**, за да се запази в потребителски променливи необходимата информация за конкретни сигнали от функционирането на САУ при стъпално задание и моделирано товарно смущение.

ПРИЛОЖЕНИЕ

Таблица П2.1.1. Настройване по tau-метода на Astrom-Hagglund

function [K,Ti,Td,b]=PIDtun_AHtau	8.9 -6.6 3.0; % Ti/L
Tunction [1x,11,10,0]—I IDtun_Airtau	, 0.5 -0.0 5.0, /0 11/L

```
0.78 -0.45]; %b
                           (Ko,T,L,str,M)
                                                0.44
                                              % Коефициенти в апроксимиращата функция
% Предназначение
% Настройване на ПИ и ПИД регулатори по
                                                a0=TPI20(:,1);
% tau-метода на Astrom- Hagglund
                                                a1=TPI20(:,2);
% чрез три-параметричен модел на обекта
                                                a2=TPI20(:,3);
% W(p) = Ko/(1+Tp)*e^{(-Lp)}.
                                               else
% Входни аргументи:
                                                error('Wrong sensitivity M'), return
% Ко – коефициент на усилване (скалар);
                                               end
% Т – времеконстанта (скалар);
                                              elseif strcmp(str,'PID')
% L – чисто закъснение (скалар).
                                               if (M==1.4)
% str – символна променлива за типа на
                                               TPID14=[
                                              %Таблица за случай М=1.4 при ПИД регул.
% регулатора (скалар),
% str='PI' – настройване на ПИ регул.;
                                              % a0
                                                      a1
                                                          a2
                                                3.80 -8.40 7.3; % aK
% st = 'PID' - настройване на ПИД регул.;
% M – жел. чувствителност в САУ (скалар),
                                                5.20 -2.50 -1.4; % Ti/L
M = 1.4;
                                                0.89 -0.37 -4.1; % Td/L
M = 2.0.
                                                0.40 0.18 2.8]; % b
% Изходни аргументи:
                                             % Коефициенти в апроксимиращата функция
% K – коеф. на усилване на регул.(скалар);
                                                a0=TPID14(:,1);
% Ті – интегр. времеконстанта (скалар);
                                                a1=TPID14(:,2);
% Td – дифер. времеконстанта (скалар).
                                                a2=TPID14(:,3);
% b – коеф. на грешката по задание(скалар);
                                               elseif (M==2)
% Изчисляване на спом. величини а и tau
                                                TPID20=[
a=Ko*L/T; tau=L/(L+T);
                                              %Таблица за случай М=2.0 при ПИД регул.
if nargin<4
                                             % a0
                                                      a1 a2
error('Don't miss the fourth input argument!'),
                                                8.40 -9.6 9.80; % aK
                                                3.20 -1.5 -0.93; % Ti/L
return.
end
                                                0.86 -1.9 -0.44; % Td/L
if nargin<5
                                                0.22 0.65 0.051]; % b
disp('You choose 1.4 sensitivity!'), M=1.4;
                                             % Коефициенти в апроксимиращата функция
                                                a0=TPID20(:,1);
end
if strcmp(str,'PI')
                                                a1=TPID20(:,2);
 if (M==1.4)
                                                a2=TPID20(:,3);
  TPI14=[
                                               else
% Таблица за случай М=1.4 при ПИ регул.
                                                error('Wrong sensitivity M'), return
% a0
        a1
             a2
  0.29 -2.7 3.7: % aK
                                              else error('Wrong name of the controller!'),
  8.9 -6.6 3.0; % Ti/L
                                              return
  0.81 0.73 1.9]; % b
                                              end
% Коефициенти в апроксимиращата функция
                                              % Настройки на ПИ или ПИД регулатор
  a0=TPI14(:,1);
                                              % Изчисляване на спомагателната Функция
                                             fun=a0.*exp(a1*tau+a2*tau^2);
  a1=TPI14(:,2);
                                             % Изчисляване на К
  a2=TPI14(:,3);
  elseif (M==2)
                                             K=fun(1)/a;
  TPI20=[
                                             % Изчисляване на Ті
%Таблица за случай М=2.0 при ПИ регулатор
                                             Ti=fun(2)*L;
% a0
              a2
                                              % Изчисляване на b и Td (за ПИД)
         a1
  0.78 -4.1
              5.7; % aK
                                             if strcmp(str,'PI') % Следваща страница ...
                                              Td=fun(3)*L; b=fun(4);
 b=fun(3); return
                                              end
else
```

Таблица П2.1.2. Настройване по kappa-метода на Astrom-Hagglund

```
function [K,Ti,Td,b]= PIDtun AHkap
                                                a2=TPI14(:,3);
                           (Ko,Ku,Tu,str,M)
                                              elseif (M==2)
% Предназначение
                                                TPI20=[
% Настройване на ПИ и ПИД регулатори по
                                              %Таблица за случай М=2.0 при ПИ регулатор
% карра-метода на Astrom- Hagglund
                                              % a0
                                                       a1
                                                            a2
% чрез критичните параметри на
                                                0.13
                                                      1.90 -1.30;
% автоколебанията в САУ и
                                                0.90 -4.40 2.70;
                                                      0.40 - 0.17;
% коефициента на усилване в три-
                                                0.48
% параметричен модел на обекта
                                              % Коефициенти в апроксимиращата функция
% W(p) = Ko/(1+Tp)*e^{(-Lp)}.
                                                a0=TPI20(:.1):
% Входни аргументи:
                                                a1=TPI20(:,2);
% Ко – коефициент на усилване (скалар);
                                                a2=TPI20(:,3);
% Ки – коеф. на автоколебания (скалар);
% Ти – период на автоколебания (скалар);
                                                error('Wrong sensitivity M'), return
% str – символна променлива за типа на
                                               end
% регулатора (скалар),
                                              elseif strcmp(str,'PID')
% str='PI' – настройване на ПИ регул.;
                                               if (M==1.4)
% str='PID' – настройване на ПИД регул.;
                                                TPID14=[
% M – жел. чувствителност в САУ (скалар),
                                              %Таблица за случай М=1.4 при ПИД регул.
M = 1.4;
                                              % a0
                                                      a1
                                                           a2
M = 2.0.
                                                0.33 -0.31 -1.00;
% Изходни аргументи:
                                                0.76 -1.60 -0.36;
                                                0.17 -0.46 -2.10;
% K – коеф. на усилване на регул.(скалар);
% Ті – интегр. времеконстанта (скалар);
                                                0.58 - 1.30 3.50];
% Td − дифер. времеконстанта (скалар).
                                              % Коефициенти в апроксимиращата функция
% b – koeф. на грешката по задание(скалар);
                                                a0=TPID14(:,1);
% Изчисляване на спомаг. величина кара
                                                a1=TPID14(:,2);
kappa=1/(Ko*Ku);
                                                a2=TPID14(:,3);
if nargin<4
                                               elseif (M==2)
                                                TPID20=[
error('Don't miss the fourth input argument!'),
return,
                                              %Таблица за случай М=2.0 при ПИД регул.
end
                                              % a0
                                                      a1 a2
if nargin<5
                                                0.72 -1.60 1.20:
disp('You choose 1.4 sensitivity!'), M=1.4;
                                                0.59 -1.30 0.38;
                                                0.15 -1.40 0.56;
if strcmp(str,'PI')
                                                0.25 \ 0.56 - 0.12];
 if (M==1.4)
                                              % Коефициенти в апроксимиращата функция
  TPI14=[
                                                a0=TPID20(:,1);
% Таблица за случай М=1.4 при ПИ регул.
                                                a1=TPID20(:,2);
% a0
        a1
              a2
                                                a2=TPID20(:,3);
  0.053 2.9000 -2.6;
                                               else
  0.900 -4.4000 2.7;
                                                error('Wrong sensitivity M'), return
  1.100 -0.0061 1.8];
                                               end
% Коефициенти в апроксимиращата функция
                                              else error('Wrong name of the controller!'),
  a0=TPI14(:,1);
  a1=TPI14(:,2);
                                              end % Следваща страница ...
% Настройки на ПИ или ПИД регулатор
                                             % Изчисляване на b и Td (за ПИД)
% Изчисляване на спомагателната функция
                                             if strcmp(str,'PI')
fun=a0.*exp(a1*kappa+a2*kappa^2);
                                              b=fun(3); return
```

% Изчисляване на К	else
K=fun(1)*Ku;	Td=fun(3)*Tu; b=fun(4);
% Изчисляване на Ті	end
Ti=fun(2)*Tu;	