Teoria da Computaçãos - COS700 - 2019.1

Lista 1

Entrega: 26/03/2019

Introdução

- 1. Seja w uma palavra em um alfabeto Σ . Definimos o reflexo de w recursivamente da seguinte maneira: $\epsilon^R = \epsilon$ e se $w = \sigma x$ então $w^R = x^R \sigma$ onde $\sigma \in \Sigma$. Sejam L_1 e L_2 linguagens no alfabeto Σ . Determine as seguintes linguagens em função de L_1^R e L_2^R .
 - (a) $(L_1.L_2)^R$;
 - (b) $(L_1 \cup L_2)^R$;
 - (c) $\overline{L_1}^R$;
 - (d) $(L_1^*)^R$.
- **2.** Mostre, por indução em n, que se L_0, \ldots, L_n são linguagens no alfabeto Σ então $L_0.(L_1 \cup \cdots \cup L_n) = (L_0.L_1) \cup \cdots \cup (L_0.L_n)$.

Linguagens Regulares e Autômatos Finitos Determinísticos

3. Considere o autômato finito determinístico no alfabeto $\{a, b, c\}$, com estados $\{q_0, q_1, q_2, q_3, q_4\}$, estado inicial q_0 , estados finais $F = \{q_2\}$ e cuja função de transição é dada por:

δ	a	b	c
q_0	q_0	q_2	q_1
q_1	q_3	q_2	q_4
q_2	q_4	q_2	q_1
q_3	q_1	q_2	q_3
q_4	q_3	q_2	q_0

- (a) Esboce o diagrama de estados deste autômato.
- (b) Descreva a computação deste autômato que tem início na configuração $(q_0, abccbaccaabb)$. Esta palavra é aceita pelo autômato?
- (c) Descreva a computação deste autômato que tem início na configuração $(q_0, ccbbbaaaabbccba)$. Esta palavra é aceita pelo autômato?
- (d) Descreva em português a linguagem aceita pelo autômato definido acima.
- **4.** Invente autômatos finitos determinísticos que aceitem as seguintes linguagens sobre o alfabeto $\{0,1\}$:
 - (a) o conjunto das palavras que acabam em 00;

- (b) o conjunto das palavras com três 0s consecutivos;
- (c) o conjunto das palavras em que cada 0 está entre dois 1s;
- (d) o conjunto das palavras cujos quatro símbolos finais seja 1101;
- (e) o conjunto dos palíndromos de comprimento igual a 6.

Expressões Regulares

- **5.** Descreva em português o conjunto denotado por cada uma das expressões regulares abaixo:
 - (a) 1*0;
 - (b) 1*0(0)*;
 - (c) $111 \cup 001$;
 - (d) $(1 \cup 00)^*$;
 - (e) $(0(0)^*1)^*$;
 - (f) $(0 \cup 1)(0 \cup 1)*00$.
- **6.** Prove que: $((abb)^*(ba)^*(b \cup aa)) = (abb)^*((\epsilon \cup (b(ab)^*a))b \cup (ba)^*(aa)).$

Relação entre AFD's e Expressões Regulares

- 7. Para cada um dos autômatos determinísticos, no alfabeto $\{0,1\}$, dados abaixo:
 - esboce o diagram de estados;
 - encontre os sorvedouros e os estados mortos;
 - determine a expressão regular da linguagem aceita pelo autômato usando o algoritmo de substituição.
 - (a) Os estados são $\{q_1, \ldots, q_4\}$, e o estado inicial q_1 , o conjunto de estados finais é $\{q_2\}$ e a função de transição é dada por:

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_1 & q_2 & q_4 \\ q_2 & q_3 & q_1 \\ q_3 & q_4 & q_4 \\ q_4 & q_4 & q_4 \end{array}$$

(b) Os estados são $\{q_1, \ldots, q_5\}$, e o estado inicial q_1 , o conjunto de estados finais é $\{q_3, q_4\}$ e a função de transição é dada por:

2

δ	0	1
q_1	q_2	q_4
q_2	q_2	q_3
q_3	q_5	q_5
q_4	q_5	q_5
q_5	q_5	q_5

(c) Os estados são $\{q_1, \ldots, q_4\}$, e o estado inicial q_1 , o conjunto de estados finais é $\{q_1\}$ e a função de transição é dada por:

$$\begin{array}{c|cccc}
\delta & 0 & 1 \\
q_1 & q_2 & q_4 \\
q_2 & q_3 & q_1 \\
q_3 & q_4 & q_2 \\
q_4 & q_4 & q_4
\end{array}$$

(d) Os estados são $\{q_1, \ldots, q_3\}$, e o estado inicial q_1 , o conjunto de estados finais é $\{q_1\}$ e a função de transição é dada por:

$$\begin{array}{c|cccc}
\delta & 0 & 1 \\
q_1 & q_1 & q_2 \\
q_2 & q_3 & q_2 \\
q_3 & q_1 & q_2
\end{array}$$

(e) Os estados são $\{q_1, \ldots, q_6\}$, e o estado inicial q_1 , o conjunto de estados finais é $\{q_4\}$ e a função de transição é dada por:

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_1 & q_5 & q_2 \\ q_2 & q_5 & q_3 \\ q_3 & q_4 & q_3 \\ q_4 & q_4 & q_4 \\ q_5 & q_6 & q_2 \\ q_6 & q_6 & q_4 \\ \hline \end{array}$$

Autômatos Finitos Não-Determinísticos

8. Desenhe o diagrama de estados de cada um dos seguintes autômatos finitos não determinísticos e construa o autômato finito determinístico equivalente a cada um deles. Em cada caso o estado inicial é q_1 .

(a) $F_1 = \{q_4\}$ e a função de transição é dada por:

Δ_1	a	b	c
$\overline{q_1}$	$\{q_1,q_2,q_3\}$	Ø	Ø
q_2	Ø	$\{q_4\}$	Ø
q_3	Ø	Ø	$\{q_4\}$
q_4	Ø	Ø	\emptyset

3

- (b) $\Delta_2 = \Delta_1 \in F_2 = \{q_1, q_2, q_3\};$
- (c) $F_3 = \{q_2\}$ e a função de transição é dada por:

$$\begin{array}{c|cc} \Delta_3 & a & b \\ \hline q_1 & \{q_2\} & \emptyset \\ q_2 & \emptyset & \{q_1, q_3\} \\ q_3 & \{q_1, q_3\} & \emptyset \end{array}$$

- 9. Seja A um autômato finito determinístico com um único estado final. Considere o autômato finito não determinístico A' obtido invertendo os papéis dos estados incial e final e invertendo também a direção de cada seta no digrama de estado. Descreva L(A') em termos de L(A).
- 10. Mostre que todo AFND pode ser convertido em outro equivalente que possui apenas um único estado final.

Operações com Autômatos Finitos e Linguagens Regulares

- 11. Determine AFND e converta em AFD que aceitem as linguagens cujas expressões regulares são dadas abaixo:
 - (a) $(10 \cup 001 \cup 010)^*$;
 - (b) $(1 \cup 0)*00101$;
 - (c) $((0.0) \cup (0.0.0))^*$.
- 12. Seja $\Sigma = \{0,1\}$. Seja $L_1 \subset \Sigma^*$ a linguagem que consiste das palavras onde há pelo menos duas ocorrências de 0 e $L_2 \subset \Sigma^*$ a linguagem que consiste das palavras onde há pelo menos uma ocorrência de 1.
 - (a) Construa expressões regulares para L_1 e L_2 ;
 - (b) A partir das expressões regulares, construa AFND's que aceitem L_1 e L_2 ;
 - (c) Construa $L_1 \cup L_2, L_1.L_2, L_1^* \in L_2^*$.
- 13. Explique por que o raciocínio da inversão de estados finais e não finais para a obtenção de um autômato que aceite o complemento da linguagem aceita pelo autômato original pode não funcionar quando estamos utilizando AFND.