Physics, Backwards: Hamiltonian Reconstruction

Lucas Z. Brito

Brown Physics DUG Scialogue

July 15, 2023

Collaborators

Brad Marston

Stephen Carr

Alex Jacoby (Princeton)

000

• Project in quantum many-body physics, condensed matter theory

- Project in quantum many-body physics, condensed matter theory
- \bullet QM: Hamiltonian H determines physics of the system

000

• Project in quantum many-body physics, condensed matter

- theory • QM: Hamiltonian H determines physics of the system
- \bullet System corresponding to H can be found in a state

 $|\psi\rangle$ eigenvector of H

Introduction 000

- Project in quantum many-body physics, condensed matter theory
- QM: Hamiltonian H determines physics of the system
- System corresponding to H can be found in a state

$$|\psi\rangle$$
 eigenvector of H

• H function of operators (observable quantities)

Introduction 000

- Project in quantum many-body physics, condensed matter theory
- QM: Hamiltonian H determines physics of the system
- System corresponding to H can be found in a state

$$|\psi\rangle$$
 eigenvector of H

• *H* function of operators (observable quantities)

Physics, Backwards

Usually:

$$H \longrightarrow |\psi\rangle$$

Introduction 000

- Project in quantum many-body physics, condensed matter theory
- QM: Hamiltonian H determines physics of the system
- System corresponding to H can be found in a state

$$|\psi\rangle$$
 eigenvector of H

• H function of operators (observable quantities)

Physics, Backwards

Usually:

$$H \longrightarrow |\psi\rangle$$

Hamiltonian reconstruction:

$$|\psi\rangle \longrightarrow H$$

Quantum Many Body Systems

• Ignore translational freedom (lattice)

Quantum Many Body Systems

- Ignore translational freedom (lattice)
- Focus on spin of particles

freedom (lattice)

• Ignore translational

- Focus on spin of particles
- Write Hamiltonian in terms operators O_i on each point in the lattice

Quantum Many Body Systems

- Ignore translational freedom (lattice)
- Focus on spin of particles
- Write Hamiltonian in terms operators O_i on each point in the lattice
- Model of interest: Haldane-Shastry model

The Correlation Matrix

Big Picture

The entanglement of a state characterizes the Hamiltonian that state solves

The Correlation Matrix

Big Picture

The entanglement of a state characterizes the Hamiltonian that state solves

• Due to Qi and Ranard (2019)

The Correlation Matrix

Big Picture

The entanglement of a state characterizes the Hamiltonian that state solves

- Due to Qi and Ranard (2019)
- Fix some state $|\psi\rangle$, $\langle\psi|O_i|\psi\rangle = \langle O_i\rangle$

Big Picture

The entanglement of a state characterizes the Hamiltonian that state solves

- Due to Qi and Ranard (2019)
- Fix some state $|\psi\rangle$, $\langle\psi|O_i|\psi\rangle = \langle O_i\rangle$
- Correlation matrix:

$$M_{ij} = \langle O_i O_j \rangle_{\psi} - \langle O_i \rangle_{\psi} \langle O_j \rangle_{\psi}$$

• Hamiltonian $H = \sum_{i} h_i O_i$

$$\langle H^2 \rangle_{\psi} - \langle H \rangle_{\psi}^2 = 0$$

• Hamiltonian $H = \sum_{i} h_i O_i$

$$\langle H^2 \rangle_{\psi} - \langle H \rangle_{\psi}^2 = 0$$

• Diagonalize M_{ii} :

$$\mathbf{M} = \begin{bmatrix} \mathbf{h}^T \\ \mathbf{v}_1^T \\ \vdots \\ \mathbf{v}_{n-1}^T \\ \mathbf{v}_n^T \end{bmatrix} \begin{bmatrix} \mathbf{0} & & & & \\ & \lambda_1 & & \\ & & \ddots & & \\ & & & \lambda_{n-1} & \\ & & & & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{h} & \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix}$$

Reconstructing with the CM

• Hamiltonian $H = \sum_i h_i O_i$

$$\langle H^2 \rangle_{\psi} - \langle H \rangle_{\psi}^2 = 0$$

Diagonalize M_{ii} :

$$\mathbf{M} = \begin{bmatrix} \mathbf{h}^T \\ \mathbf{v}_1^T \\ \vdots \\ \mathbf{v}_{n-1}^T \\ \mathbf{v}_n^T \end{bmatrix} \begin{bmatrix} \mathbf{0} & & & & \\ & \lambda_1 & & \\ & & \ddots & & \\ & & & \lambda_{n-1} & \\ & & & & \lambda n \end{bmatrix} \begin{bmatrix} \mathbf{h} & \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix}$$

- $\mathbf{h} = [h_1, \dots, h_n]$ are the coefficients of $H = \sum_i h_i O_i$!
- The Hamiltonian is in the nullspace of M_{ij}

Caveat

How do we pick O_i ?

Caveat

How do we pick O_i ?

Our approach:

Caveat

How do we pick O_i ?

Our approach:

• Start with a known Hamiltonian, deliberately choose incorrect O_i

Caveat

How do we pick O_i ?

Our approach:

- Start with a known Hamiltonian, deliberately choose incorrect O_i
- See if you can diagnose O_i from error

Caveat

How do we pick O_i ?

Our approach:

- Start with a known Hamiltonian, deliberately choose incorrect O_i
- See if you can diagnose O_i from error
- (My task) validate with the Haldane-Shastry model

 Pen-and-paper calculations and numerical work

Visualization of matrix

- Pen-and-paper calculations and numerical work
 - Quantum mechanics, SU(2) algebra calculations, second quantization

Visualization of matrix

- Pen-and-paper calculations and numerical work
 - Quantum mechanics, SU(2) algebra calculations, second quantization
 - Computations with Julia

Visualization of matrix

- Pen-and-paper calculations and numerical work
 - Quantum mechanics, SU(2) algebra calculations, second quantization
 - Computations with Julia
 - $2^{21} \times 2^{21} = 2097152 \times 2097152$ matrix!

Visualization of matrix

- Pen-and-paper calculations and numerical work
 - Quantum mechanics, SU(2) algebra calculations, second quantization
 - Computations with Julia
 - $2^{21} \times 2^{21} = 2097152 \times 2097152$ matrix!
- Making figures/visualizations to understand numerics

Visualization of matrix

- Pen-and-paper calculations and numerical work
 - Quantum mechanics, SU(2) algebra calculations, second quantization
 - Computations with Julia
 - $2^{21} \times 2^{21} = 2097152 \times 2097152$ matrix!
- Making figures/visualizations to understand numerics
- Going back to analytical calculations to understand results

Visualization of matrix

Three Scenarios

Three Scenarios

• Case 1: You have the right amount of operators

Three Scenarios

- Case 1: You have the right amount of operators
- Case 2: You have too many operators (overcomplete)

Three Scenarios

- Case 1: You have the right amount of operators
- Case 2: You have too many operators (overcomplete)
- Case 3: You have too <u>few</u> operators (undercomplete)

Three Scenarios

- Case 1: You have the right amount of operators
- Case 2: You have too many operators (overcomplete)
- Case 3: You have too <u>few</u> operators (undercomplete)

What we found:

Three Scenarios

- Case 1: You have the right amount of operators
- Case 2: You have too many operators (overcomplete)
- Case 3: You have too <u>few</u> operators (undercomplete)

What we found:

• Case 1: Everything is (mostly) fine

Over and Undercomplete Bases

Three Scenarios

- Case 1: You have the right amount of operators
- Case 2: You have too many operators (overcomplete)
- Case 3: You have too <u>few</u> operators (undercomplete)

What we found:

- Case 1: Everything is (mostly) fine
- Case 2: Things might be messed up

Over and Undercomplete Bases

Three Scenarios

- Case 1: You have the right amount of operators
- Case 2: You have too many operators (overcomplete)
- Case 3: You have too <u>few</u> operators (undercomplete)

What we found:

- Case 1: Everything is (mostly) fine
- Case 2: Things might be messed up
- Case 3: Things are messed up, but to a predictable degree

Over and Undercomplete Bases

• Reconstruction should work...

$$[H, J] = 0 \Longrightarrow \langle J^2 \rangle_{\psi} - \langle J \rangle_{\psi}^2 = 0$$

• Reconstruction should work... unless there's a conserved quantity $J = \sum_i j_i O_i$

$$[H,J] = 0 \Longrightarrow \langle J^2 \rangle_{\psi} - \langle J \rangle_{\psi}^2 = 0$$

Diagnosing Failure

• J leads to extra zero in diagonalization

$$[H, J] = 0 \Longrightarrow \langle J^2 \rangle_{\psi} - \langle J \rangle_{\psi}^2 = 0$$

- \bullet J leads to extra zero in diagonalization
- Higher dimensional nullspace, diagonalization outputs some random vector in that nullspace

$$[H,J] = 0 \Longrightarrow \langle J^2 \rangle_{\psi} - \langle J \rangle_{\psi}^2 = 0$$

- J leads to extra zero in diagonalization
- Higher dimensional nullspace, diagonalization outputs some random vector in that nullspace
- Random vector is generally not h!

$$[H, J] = 0 \Longrightarrow \langle J^2 \rangle_{\psi} - \langle J \rangle_{\psi}^2 = 0$$

- J leads to extra zero in diagonalization
- Higher dimensional nullspace, diagonalization outputs some random vector in that nullspace
- Random vector is generally not h!
- E.g., HS has total spin as conserved quantity

• Can think of as having a complete basis then adding new operators

- Can think of as having a complete basis then adding new operators
- New operator O_{i+1} might be *irrelevant*

- Can think of as having a complete basis then adding new operators
- New operator O_{i+1} might be *irrelevant*
 - Just adds some constant to the energy

- Can think of as having a complete basis then adding new operators
- New operator O_{i+1} might be *irrelevant*
 - Just adds some constant to the energy
 - Doesn't affect reconstruction

- Can think of as having a complete basis then adding new operators
- New operator O_{i+1} might be *irrelevant*
 - Just adds some constant to the energy
 - Doesn't affect reconstruction
- Or... O_{i+1} could correspond to a symmetry of H

- Can think of as having a complete basis then adding new operators
- New operator O_{i+1} might be *irrelevant*
 - Just adds some constant to the energy
 - Doesn't affect reconstruction
- Or... O_{i+1} could correspond to a symmetry of H
- $|\psi\rangle$ still solution if you permute operators

- Can think of as having a complete basis then adding new operators
- New operator O_{i+1} might be *irrelevant*
 - Just adds some constant to the energy
 - Doesn't affect reconstruction
- Or... O_{i+1} could correspond to a symmetry of H
- $|\psi\rangle$ still solution if you permute operators
- New zero shows up, as in the conserved quantity case above

Case 3: Undercomplete

• Can think of starting with complete basis and "truncating" operators one by one

Case 3: Undercomplete

- Can think of starting with complete basis and "truncating" operators one by one
- Zero eigenvalue λ_0 (in complete basis) deviates from zero

Case 3: Undercomplete

- Can think of starting with complete basis and "truncating" operators one by one
- Zero eigenvalue λ_0 (in complete basis) deviates from zero
- $\lambda_0 \propto \text{magnitude of largest}$ truncated operator in Hamiltonian

$$H = \sum h_i O_i$$

Next Steps

• Currently finalizing figures, paper

Next Steps

- Currently finalizing figures, paper
- How to separate conserved quantity from Hamiltonian?

Next Steps

- Currently finalizing figures, paper
- How to separate conserved quantity from Hamiltonian?
- Finite-temperature simulations?

The End

Thank you! Questions?