4.1 计算时间以及软件功耗

- —、 (1) C++——Sort
 - 源码见附件

\$ cd "/root/homework/" && clang++ sort.cpp -o sort && "/root/homework/"sort 冒泡排序的最大时间是 1800 纳秒; 冒泡排序的最小时间是 800 纳秒; 冒泡排序 的平均时间是 1000 纳秒. 快速排序的最大时间是 2000 纳秒; 快速排序的最小时间是 700 纳秒; 快速排序 的平均时间是 940 纳秒. 选择排序的最大时间是 1500 纳秒; 选择排序的最小时间是 800 纳秒; 选择排序 的平均时间是 1010 纳秒. 插入排序的最大时间是 1100 纳秒; 插入排序的最小时间是 600 纳秒; 插入排序 的平均时间是 700 纳秒.

功耗: CPU: i5-10400@2.90GHz为65W

最大功耗: 冒泡 = 1.17e-04w 快速 = 1.3e-04w 选择 = 9.7e-05w 插入 = 7.15e-05w

最小功耗: 冒泡 = 5.2e-05w 快速 = 4.55e-05w 选择 = 5.2e-05w 插入 = 3.9e-05w

平均功耗: 冒泡 = 6.5e-05w 快速 = 6.11e-05w 选择 = 6.565e-05w 插入 = 4.55e-05w

- 一、 (2) Matlab——Sort
 - 源码见附件
 - quickSort
- >> testTime

arr =

1.0e-03 *

0.1671 0.1288 0.1717 0.0837 0.3004 0.0313 0.0163 0.0754 0.0169 0.0160

• bubbleSort

>> testTime

arr =

0.0028 0.0006 0.0001 0.0001 0.0007 0.0000 0.0000 0.0000 0.0001 0.0000

- 二、(1) C++——Sum
 - 源码见附件

\$ cd "/root/homework/" && clang++ sum.cpp -o sum && "/root/homework/"sum 求和的时间是 35000 纳秒

二、(2)Matlab——Sum

• 源码见附件

arr =

1.0e-03 *

 $0.0942 \quad 0.0592 \quad 0.0310 \quad 0.0218 \quad 0.0184 \quad 0.0420 \quad 0.0261 \quad 0.0192 \quad 0.0173 \quad 0.1058 \quad 0.0282$

4.2 HLS综合

使用开发板为: ZYNQ-7 ZC702 Evaluation Board Part:xc7z020clg484-1 Family:zynq

一、Sort之Bubble

• Timing

• LUT

一、Sort之Quick

• Timing

• LUT

Modules && Loops	Issue Type	Violation Type	Distance	Slack	Latency(cycles)	Latency(ns)	Iteration Latency	Interval	Trip Count	Pipelined	BRAM	DSP	FF	LUT	URAM
■ guickSort				-	-	-	-	-	-	no	4	0	1570	4194	0
										no	0	0	163	510	0
										no			163	510	0
▷ C VITIS_LOOP_34_1										no					

二、计算和

• Timing

Target	Estimated	Uncertainty	
10.00 ns	6.978 ns	2.70 ns	

• LUT

Modules && Loops	Issue Type	Violation Type	Distance	Slack	Latency(cycles)	Latency(ns)	Iteration Latency	Interval	Trip Count	Pipelined	BRAM	DSP FF	LUT	URAM
⊚ countSum				-	8	80.000	-	9		no	0	6 881	992	0

Note:源码见附件

4.3 通信传输

已知: W=32bit, TB=20ns

—、N=10000Byte

latency1 = (10000/4) * 20ns = 50ms

二、N = 9981Byte

latency2 = (9981/4) * 20ns = 2496 * 20ns = 49.92ms (除不尽,向上取整,需要占一个传输周期)