Details for Deriving the Optimal Convergence Rates

Sandra S. Y. Tan

This document is intended to be supplementary material for the paper "A Unified Framework for the Convergence Analysis of Optimization Algorithms via Sum-of-Squares". It provides full details for the proving the results given in that paper.

1 Full Details for PGM with Constant Step Size

The constraints characterizing the function class and algorithm are

$$\begin{split} g_1: & \mathbf{x}_{k+1} - \mathbf{x}_k + \gamma(\mathbf{g}_k + \mathbf{s}_{k+1}) = 0 \\ g_2: & \mathbf{g}_* + \mathbf{s}_* = 0 \\ h_1: & f_k - f_{k+1} - \mathbf{g}_{k+1}^T(\mathbf{x}_k - \mathbf{x}_{k+1}) - \alpha \left[\frac{1}{L} \| \mathbf{g}_k - \mathbf{g}_{k+1} \|^2 + \mu \| \mathbf{x}_k - \mathbf{x}_{k+1} \|^2 \right. \\ & - 2 \frac{\mu}{L} (\mathbf{g}_{k+1} - \mathbf{g}_k)^T (\mathbf{x}_{k+1} - \mathbf{x}_k) \right] \geq 0 \\ h_2: & f_k - f_* - \mathbf{g}_*^T(\mathbf{x}_k - \mathbf{x}_*) - \alpha \left[\frac{1}{L} \| \mathbf{g}_k - \mathbf{g}_* \|^2 + \mu \| \mathbf{x}_k - \mathbf{x}_* \|^2 \right. \\ & - 2 \frac{\mu}{L} (\mathbf{g}_* - \mathbf{g}_k)^T (\mathbf{x}_* - \mathbf{x}_k) \right] \geq 0 \\ h_3: & f_{k+1} - f_k - \mathbf{g}_k^T (\mathbf{x}_{k+1} - \mathbf{x}_k) - \alpha \left[\frac{1}{L} \| \mathbf{g}_{k+1} - \mathbf{g}_k \|^2 + \mu \| \mathbf{x}_{k+1} - \mathbf{x}_k \|^2 \right. \\ & - 2 \frac{\mu}{L} (\mathbf{g}_k - \mathbf{g}_{k+1})^T (\mathbf{x}_k - \mathbf{x}_{k+1}) \right] \geq 0 \\ h_4: & f_{k+1} - f_* - \mathbf{g}_*^T (\mathbf{x}_{k+1} - \mathbf{x}_*) - \alpha \left[\frac{1}{L} \| \mathbf{g}_{k+1} - \mathbf{g}_* \|^2 + \mu \| \mathbf{x}_{k+1} - \mathbf{x}_* \|^2 \right. \\ & - 2 \frac{\mu}{L} (\mathbf{g}_* - \mathbf{g}_{k+1})^T (\mathbf{x}_* - \mathbf{x}_{k+1}) \right] \geq 0 \\ h_5: & f_* - f_k - \mathbf{g}_k^T (\mathbf{x}_* - \mathbf{x}_k) - \alpha \left[\frac{1}{L} \| \mathbf{g}_* - \mathbf{g}_k \|^2 + \mu \| \mathbf{x}_* - \mathbf{x}_k \|^2 \right. \\ & - 2 \frac{\mu}{L} (\mathbf{g}_k - \mathbf{g}_*)^T (\mathbf{x}_k - \mathbf{x}_*) \right] \geq 0 \\ h_6: & f_* - f_{k+1} - \mathbf{g}_{k+1}^T (\mathbf{x}_* - \mathbf{x}_{k+1}) - \alpha \left[\frac{1}{L} \| \mathbf{g}_* - \mathbf{g}_{k+1} \|^2 + \mu \| \mathbf{x}_* - \mathbf{x}_{k+1} \|^2 \right. \\ & - 2 \frac{\mu}{L} (\mathbf{g}_{k+1} - \mathbf{g}_*)^T (\mathbf{x}_{k+1} - \mathbf{x}_*) \right] \geq 0 \\ h_7: & h_k - h_{k+1} - \mathbf{g}_{k+1}^T (\mathbf{x}_k - \mathbf{x}_{k+1}) \geq 0 \\ h_8: & h_k - h_* - \mathbf{s}_*^T (\mathbf{x}_k - \mathbf{x}_*) \geq 0 \\ h_9: & h_{k+1} - h_k - \mathbf{s}_k^T (\mathbf{x}_k - \mathbf{x}_k) \geq 0 \\ h_{10}: & h_{k+1} - h_* - \mathbf{s}_k^T (\mathbf{x}_* - \mathbf{x}_k) \geq 0 \\ h_{11}: & h_* - h_{k+1} - \mathbf{s}_{k+1}^T (\mathbf{x}_* - \mathbf{x}_{k+1}) \geq 0 \\ h_{12}: & h_* - h_{k+1} - \mathbf{s}_{k+1}^T (\mathbf{x}_* - \mathbf{x}_{k+1}) \geq 0 \\ \end{cases}$$

where $\gamma = \frac{2}{L+\mu}$. Substituting g_1 and g_2 into the other constraints, we eliminate variables \mathbf{x}_{k+1} and \mathbf{s}_* . Taking n=1, we match coefficients of the monomials in

$$p(\mathbf{z}) := t(f_k + h_k) + (1 - t)(f_* + h_*) - (f_{k+1} + h_{k+1})$$
$$= \mathbf{z}_1^T Q \mathbf{z}_1 + \sum_{i=1}^{12} \lambda_i h_i(\mathbf{z})$$

to obtain the following set of linear equalities

$$g_k g_{k+1}: \qquad 0 = 2Q(11,12) - \gamma(\lambda_1 + \lambda_6) + 2\frac{\alpha}{L} \left[\lambda_1 + \lambda_3 - \mu \gamma(\lambda_1 + \lambda_3 + \lambda_4 + \lambda_6) \right]$$

$$g_k s_k: \qquad 0 = 2Q(11,13) + \gamma \lambda_9$$

$$g_k s_{k+1}: \qquad 0 = 2Q(11,14) + 2\alpha \gamma \frac{\mu}{L} (\lambda_1 + \lambda_3) + \gamma(\lambda_3 - \lambda_7 - \lambda_{12}) - 2\alpha \mu \gamma^2 (\lambda_1 + \lambda_3 + \lambda_4 + \lambda_6)$$

$$g_{k+1}^2: \qquad 0 = Q(12,12) - \frac{\alpha}{L} (\lambda_1 + \lambda_3 + \lambda_4 + \lambda_6)$$

$$g_{k+1} s_k: \qquad 0 = Q(12,13)$$

$$g_{k+1} s_{k+1}: \qquad 0 = 2Q(12,14) - \gamma(\lambda_1 + \lambda_6) - 2\alpha \gamma \frac{\mu}{L} (\lambda_1 + \lambda_3 + \lambda_4 + \lambda_6)$$

$$s_k^2: \qquad 0 = Q(13,13)$$

$$s_k s_{k+1}: \qquad 0 = 2Q(13,14) + \gamma \lambda_9$$

$$s_{k+1}^2: \qquad 0 = Q(14,14) - \alpha \mu \gamma^2 (\lambda_1 + \lambda_3 + \lambda_4 + \lambda_6) - \gamma(\lambda_7 + \lambda_{12})$$

The SDP is thus minimizing t subject to these linear equalities as well as

$$Q \succeq 0$$

$$\lambda_i \ge 0 \quad i = 0, \dots, 12$$

$$0 \le t \le 1$$

For $\gamma = \frac{2}{L+\mu}$, the optimal values of t and λ 's correspond to

$$t = \left(\frac{L-\mu}{L+\mu}\right)^2 \qquad \lambda_1 = \frac{L-\mu}{L+\mu} \qquad \lambda_5 = 2\mu \frac{L-\mu}{(L+\mu)^2}$$
$$\lambda_6 = \frac{2\mu}{L+\mu} \qquad \lambda_7 = \left(\frac{L-\mu}{L+\mu}\right)^2 \qquad \lambda_{12} = \frac{4L\mu}{(L+\mu)^2}$$

and $\lambda_i = 0$ for i = 2, ..., 4, 8, ..., 11. The optimal Q is a sparse symmetric matrix, with the non-zero entries in the upper triangular portion being:

$$Q(8,8) = \frac{2L^2\mu^2}{(L+\mu)^2(L-\mu)} \qquad Q(8,9) = -\frac{2L^2\mu^2}{(L+\mu)^2(L-\mu)} \qquad Q(8,10) = -\frac{2L\mu^2}{(L+\mu)^2(L-\mu)}$$

$$Q(8,11) = \frac{L\mu}{(L+\mu)(L-\mu)} \qquad Q(8,12) = \frac{L\mu}{(L+\mu)(L-\mu)} \qquad Q(8,14) = \frac{2L^2\mu}{(L+\mu)^2(L-\mu)}$$

$$Q(9,9) = \frac{2L^2\mu^2}{(L+\mu)^2(L-\mu)} \qquad Q(9,10) = \frac{2L\mu^2}{(L+\mu)^2(L-\mu)} \qquad Q(9,11) = -\frac{L\mu}{(L+\mu)(L-\mu)}$$

$$Q(9,12) = -\frac{L\mu}{(L+\mu)(L-\mu)} \qquad Q(9,14) = -\frac{2L^2\mu}{(L+\mu)^2(L-\mu)} \qquad Q(10,10) = \frac{2L\mu}{(L+\mu)^2(L-\mu)}$$

$$Q(10,11) = -\frac{\mu}{(L+\mu)(L-\mu)} \qquad Q(10,12) = -\frac{\mu}{(L+\mu)(L-\mu)} \qquad Q(10,14) = -\frac{2\mu^2}{(L+\mu)^2(L-\mu)}$$

$$Q(11,11) = \frac{1}{2(L-\mu)} \qquad Q(11,12) = \frac{1}{2(L-\mu)} \qquad Q(11,14) = \frac{L}{(L+\mu)(L-\mu)}$$

$$Q(12,12) = \frac{1}{2(L-\mu)} \qquad Q(12,14) = \frac{L}{(L+\mu)(L-\mu)} \qquad Q(14,14) = 2\frac{L^2 + L\mu - \mu^2}{(L+\mu)^2(L-\mu)}$$

These fulfill the set of linear equalities in the SDP. Q is also PSD, as can be verified by hand or by symbolic computation. This completes the proof that

$$f_{k+1} - f_* \le \left(\frac{L-\mu}{L+\mu}\right)^2 (f_k - f_*)$$

2 Full Details for PGM with Exact Line Search

The constraints characterizing the function class and algorithm are

Again, we take n=1 and match coefficients of the monomials in

$$p(\mathbf{z}) := t(f_k + h_k) + (1 - t)(f_* + h_*) - (f_{k+1} + h_{k+1})$$
$$= \mathbf{z}_1^T Q \mathbf{z}_1 + \sum_{j=1}^3 \lambda_j g_j(\mathbf{z}) + \sum_{i=4}^{15} \lambda_i h_i(\mathbf{z})$$

to obtain a set of linear equalities. The resulting SDP thus seeks to minimize t subject to

$$0 \le t \le 1$$

 $\lambda_i \ge 0 \quad i = 4, \dots, 16$
 $Q \succeq 0$
 $0 = Q(1, 1)$ (2)

$$\begin{array}{lll} f_*: & 1-t=2Q(1,2)-\lambda_5-\lambda_7+\lambda_8+\lambda_9 \\ f_k: & t=2Q(1,3)+\lambda_4+\lambda_5-\lambda_6-\lambda_8 \\ f_{k+1}: & -1=2Q(1,4)-\lambda_4+\lambda_6+\lambda_7-\lambda_9 \\ h_*: & 1-t=2Q(1,5)-\lambda_{11}-\lambda_{13}+\lambda_{14}+\lambda_{15} \\ h_k: & t=2Q(1,6)+\lambda_{10}+\lambda_{11}-\lambda_{12}-\lambda_{14} \\ h_{k+1}: & -1=2Q(1,7)-\lambda_{10}+\lambda_{12}+\lambda_{13}-\lambda_{15} \\ & 0=Q(1,i)&i=8,9,10,12,13,15,16 \\ g_*: & 0=2Q(1,11)+\lambda_3 \\ s_*: & 0=2Q(1,11)+\lambda_3 \\ s_*: & 0=2Q(1,14)+\lambda_3 \\ & 0=Q(i,j)&i=2,\ldots,7,\ j=i,\ldots,16 \\ \hline x_*^2: & 0=Q(8,8)-\alpha\mu(\lambda_5+\lambda_7+\lambda_8+\lambda_9) \\ x_*x_k: & 0=2Q(8,9)+2\alpha\mu(\lambda_5+\lambda_8) \\ x_*x_k: & 0=2Q(8,10)+2\alpha\mu(\lambda_7+\lambda_8) \\ x_*x_g: & 0=2Q(8,10)+2\alpha\mu(\lambda_7+\lambda_8) \\ x_*g_*: & 0=2Q(8,11)+\lambda_5+\lambda_7+2\alpha\frac{\mu}{L}(\lambda_5+\lambda_7+\lambda_8+\lambda_9) \\ x_*g_*: & 0=2Q(8,12)-2\alpha\frac{\mu}{L}(\lambda_5+\lambda_8)-\lambda_8 \\ x_*g_{k+1}: & 0=2Q(8,13)-2\alpha\frac{\mu}{L}(\lambda_7+\lambda_9)-\lambda_9 \\ x_*s_*: & 0=2Q(8,13)-2\alpha\frac{\mu}{L}(\lambda_7+\lambda_9)-\lambda_9 \\ x_*s_*: & 0=2Q(8,15)-\lambda_{14} \\ x_*s_*s_{k+1}: & 0=2Q(8,16)-\lambda_{15} \\ x_k^2: & 0=Q(9,9)-\alpha\mu(\lambda_4+\lambda_5+\lambda_6+\lambda_8) \\ x_kg_*: & 0=2Q(9,10)+2\alpha\mu(\lambda_4+\lambda_6) \\ x_kg_*: & 0=2Q(9,11)-\lambda_5-2\alpha\frac{\mu}{L}(\lambda_5-\lambda_8) \\ x_kg_k: & 0=2Q(9,12)+2\alpha\frac{\mu}{L}(\lambda_4+\lambda_6)+\lambda_6+\lambda_8 \\ x_kg_{k+1}: & 0=2Q(9,13)-\lambda_2-\lambda_4-2\alpha\frac{\mu}{L}(\lambda_4+\lambda_6) \\ x_ks_*: & 0=2Q(9,14)-\lambda_{11} \\ x_ks_*: & 0=2Q(9,15)+\lambda_{12}+\lambda_{14} \\ x_ks_*: & 0=2Q(9,15)+\lambda_{12}+\lambda_{14} \\ x_ks_*: & 0=2Q(9,10)-\alpha\mu(\lambda_4+\lambda_6+\lambda_7+\lambda_9) \\ x_ks_*: & 0=2Q(10,11)-\lambda_7-2\alpha\frac{\mu}{L}(\lambda_7+\lambda_9) \\ x_{k+1}g_k: & 0=2Q(10,11)-\lambda_7-2\alpha\frac{\mu}{L}(\lambda_7+\lambda_9) \\ x_{k+1}g_k: & 0=2Q(10,11)-\lambda_7-2\alpha\frac{\mu}{L}(\lambda_4+\lambda_6)-\lambda_6 \\ x_{k+1}g_{k+1}: & 0=2Q(10,13)+\lambda_2+\lambda_4+\lambda_9+2\alpha\frac{\mu}{L}(\lambda_4+\lambda_6+\lambda_7+\lambda_9) \\ x_{k+1}g_k: & 0=2Q(10,13)+\lambda_2+\lambda_4+\lambda_9+2\alpha\frac{\mu}{L}(\lambda_4+\lambda_6+\lambda_7+\lambda_9) \\ x_{k+1}g_k: & 0=2Q(10,16)-\lambda_2+\lambda_{10}+\lambda_{15} \\ g_*: & 0=Q(11,11)-\frac{\alpha}{L}(\lambda_5+\lambda_7+\lambda_8+\lambda_9) \\ g_*g_*: & 0=2Q(11,11)-\frac{\alpha}{L}(\lambda_5+\lambda_7+\lambda_8+\lambda_9) \\ g_*g_*: & 0=2Q(11,11)-\frac{\alpha}{L}(\lambda_7+\lambda_9) \\ \end{array}$$

$$0 = Q(11, i) \quad i = 14, \dots, 16$$

$$g_k^2: \quad 0 = Q(12, 12) - \frac{\alpha}{L}(\lambda_4 + \lambda_5 + \lambda_6 + \lambda_8)$$

$$g_k g_{k+1}: \quad 0 = 2Q(12, 13) + \lambda_1 + 2\frac{\alpha}{L}(\lambda_4 + \lambda_6)$$

$$0 = Q(12, i) \quad i = 14, 15$$

$$g_k s_{k+1}: \quad 0 = 2Q(12, 16) + \lambda_1$$

$$g_{k+1}^2: \quad 0 = Q(13, 13) - \frac{\alpha}{L}(\lambda_4 + \lambda_6 + \lambda_7 + \lambda_9)$$

$$0 = Q(13, i) \quad i = 14, 15$$

$$g_{k+1} s_{k+1}: \quad 0 = 2Q(13, 16) + \lambda_1$$

$$0 = Q(i, j) \quad i = 14, 15, \ j = i, \dots, 16$$

$$s_{k+1}^2: \quad 0 = Q(16, 16) + \lambda_1$$

The optimal values of t and λ 's correspond to

$$t = \left(\frac{L-\mu}{L+\mu}\right)^2 \qquad \lambda_1 = -\frac{2}{L+\mu} \qquad \lambda_2 = -1 \qquad \lambda_4 = \frac{L-\mu}{L+\mu}$$
$$\lambda_8 = 2\mu \frac{L-\mu}{(L+\mu)^2} \qquad \lambda_9 = \frac{2\mu}{L+\mu} \qquad \lambda_{10} = \left(\frac{L-\mu}{L+\mu}\right)^2 \qquad \lambda_{15} = \frac{4L\mu}{(L+\mu)^2}$$

and $\lambda_i = 0$ for $i = 3, 5, \dots, 7, 11, \dots, 14, 16$. The optimal Q is a sparse symmetric matrix, with the non-zero entries in the upper triangular portion being:

$$\begin{split} Q(8,8) &= \frac{2L^2\mu^2}{(L+\mu)^2(L-\mu)} & Q(8,9) = -\frac{L\mu^2}{(L+\mu)^2} & Q(8,10) = -\frac{L\mu^2}{(L-\mu)(L+\mu)} \\ Q(8,11) &= -\frac{2L\mu^2}{(L+\mu)^2(L-\mu)} & Q(8,12) = \frac{L\mu}{(L+\mu)^2} & Q(8,13) = \frac{L\mu}{(L-\mu)(L+\mu)} \\ Q(8,16) &= \frac{2L\mu}{(L+\mu)^2} & Q(9,9) = \frac{L\mu(L+3\mu)}{2(L+\mu)^2} & Q(9,10) = -\frac{L\mu}{2(L+\mu)} \\ Q(9,11) &= \frac{\mu^2}{(L+\mu)^2} & Q(9,12) = -\frac{\mu(3L+\mu)}{2(L+\mu)^2} & Q(9,13) = -\frac{\mu}{2(L+\mu)} \\ Q(9,16) &= -\frac{2L\mu}{(L+\mu)^2} & Q(10,10) = \frac{L\mu}{2(L-\mu)} & Q(10,11) = \frac{\mu^2}{(L-\mu)(L+\mu)} \\ Q(10,12) &= \frac{\mu}{2(L+\mu)} & Q(10,13) = -\frac{\mu}{2(L-\mu)} & Q(11,11) = \frac{2L\mu}{(L+\mu)^2(L-\mu)} \\ Q(11,12) &= -\frac{\mu}{(L+\mu)^2} & Q(11,13) = -\frac{\mu}{(L-\mu)(L+\mu)} & Q(12,12) = \frac{L+3\mu}{2(L+\mu)^2} \\ Q(12,13) &= \frac{1}{2(L+\mu)} & Q(12,16) = \frac{1}{L+\mu} & Q(13,13) = \frac{1}{2(L-\mu)} \\ Q(13,16) &= \frac{1}{L+\mu} & Q(16,16) = \frac{2}{L+\mu} \end{split}$$

These fulfill the set of linear equalities in the SDP. Q is also PSD, as can be verified by hand or by symbolic computation. This completes the proof that

$$f_{k+1} - f_* \le \left(\frac{L-\mu}{L+\mu}\right)^2 (f_k - f_*)$$