# Optical Character Recognition (OCR) Model: Using TensorFlow and Keras API

Workshop by LU HOU YANG

#### **TensorFlow Documentation**

# Install TensorFlow & Configure Environment Locally

## Youtube Tutorial & Steps

- 1. Youtube
- 2. Steps From Youtube Video
- 1. Install Anaconda
- 2. Check System Requirement for TensorFlow
- 3. Check Software Requirement for TensorFlow
- 4. Build Configuration CPU
  - TF CPU Configuration
  - o Create Conda Environment
  - o Install dependancies

```
# Anything above 2.10 is not supported on the GPU on Windows Native
python -m pip install "tensorflow<2.11"
# Verify the installation:
python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"</pre>
```

- 5. Build Configuration GPU
  - $\circ$  Check if you GPU supports CUDA <u>here</u>
  - TF GPU Configuration
  - o Nvidia CUDA toolkit
  - o cuDNN Archive
  - o Create Conda Environment
  - o Install dependancies. Change CUDA toolkit, cuDNN version

```
conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0
# Anything above 2.10 is not supported on the GPU on Windows Native
python -m pip install "tensorflow<2.11"
# Verify the installation:
python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"</pre>
```

# ✓ 1. Data Collection & Preparation

# Data Sources

# Kaggle

**Hugging Face** 

NIST

EMNIST Dataset

#### Extended Modified NIST (EMNIST) Dataset

Derived from NIST Special Database 19

- EMNIST ByClass: 814,255 characters. 62 unbalanced classes.
- EMNIST ByMerge: 814,255 characters. 47 unbalanced classes.
- EMNIST Balanced: 131,600 characters. 47 balanced classes.
- EMNIST Letters: 145,600 characters. 26 balanced classes.
- EMNIST Digits: 280,000 characters. 10 balanced classes.
- EMNIST MNIST: 70.000 characters. 10 balanced classes.
- → Download & Inspect Data
  - 1. Manual Download Kaggle, Balanced EMNIST
    - o Train CSV
    - Test CSV
    - Mapping

Then, unzip the files in the root of project

- 2. From Terminal
  - o Follow steps from here https://github.com/otenim/Python-EMNIST-Decoder
- 3. From IDE NIST SD 19, ByMerge

```
import os
import pathlib

DOWNLOAD_DATA_DIR = 'C:\\Users\\User\\Desktop\\Python\\OCR_Workshop\\data'

download data, by_merge, unzip

download_data_dir = pathlib.Path(DOWNLOAD_DATA_DIR)
if not data_dir.exists():
    tf.keras.utils.get_file(
        'by_merge.zip',
        origin='https://s3.amazonaws.com/nist-srd/SD19/by_merge.zip',
        extract=True,
        cache_dir='.',
        cache_subdir='data'
    )
```

4. Online Google Colab/Jupyter Notebook

Download train/test CSV files, ASCII mapping

```
!gdown 1ruHQJG2pPaeoSpvexdGgKQrwmZPE-Req
!gdown 1bHJFAdbKr_55HSVsjauuZpI9HG009UsZ
!gdown 1hf0mtpXwECXi_IvgwCQrgSzmPe-DHlaT
```

Unzip the files

```
!unzip -q /content/emnist-balanced-train.csv.zip
!unzip -q /content/emnist-balanced-test.csv.zip
```

See mapping

!cat /content/emnist-balanced-mapping.txt

```
# download
!gdown 1ruHQJG2pPaeoSpvexdGgKQrwmZPE-Req
!gdown 1bHJFAdbKr_55HSVsjauuZpI9HG009UsZ
! \verb|gdown 1hf0mtpXwECXi_IvgwCQrgSzmPe-DHlaT|\\
→ Downloading...
      From (original): <a href="https://drive.google.com/uc?id=1ruHQJG2pPaeoSpvexdGgKQrwmZPE-Req">https://drive.google.com/uc?id=1ruHQJG2pPaeoSpvexdGgKQrwmZPE-Req</a>
      From (redirected): https://drive.google.com/uc?id=1ruHQJG2pPaeoSpvexdGgKQrwmZPE-Req&confirm=t&uuid=a33ad1ee-cb33-4c0b-8878-e56f45108864
      To: /content/emnist-balanced-train.csv.zip
      100% 39.0M/39.0M [00:01<00:00, 19.7MB/s]
      Downloading...
      From: <a href="https://drive.google.com/uc?id=1bHJFAdbKr_55HSVsjauuZpI9HG009UsZ">https://drive.google.com/uc?id=1bHJFAdbKr_55HSVsjauuZpI9HG009UsZ</a>
      To: /content/emnist-balanced-test.csv.zip
      100% 6.53M/6.53M [00:00<00:00, 11.6MB/s]
      Downloading...
      From: <a href="https://drive.google.com/uc?id=1hf0mtpXwECXi_IvgwCQrgSzmPe-DHlaT">https://drive.google.com/uc?id=1hf0mtpXwECXi_IvgwCQrgSzmPe-DHlaT</a>
      To: /content/emnist-balanced-mapping.txt
      100% 326/326 [00:00<00:00, 1.31MB/s]
# unzip
!unzip -q /content/emnist-balanced-train.csv.zip
!unzip -q /content/emnist-balanced-test.csv.zip
# see mapping
!cat /content/emnist-balanced-mapping.txt
<del>____</del> 0 48
      2 50
      3 51
      4 52
      5 53
      6 54
      7 55
      9 57
      10 65
      11 66
      12 67
      13 68
      14 69
      15 70
      16 71
      17 72
      18 73
      19 74
      20 75
      21 76
      22 77
      23 78
      24 79
      25 80
      26 81
      27 82
      28 83
      29 84
      30 85
      31 86
      32 87
      33 88
      34 89
      35 90
      36 97
      37 98
      38 100
      39 101
      40 102
      41 103
      42 104
      43 110
      44 113
      45 114
      46 116
```

**ASCII** chart

# Decimal - Binary - Octal - Hex - ASCII Conversion Chart

| Decimal | Binary   | Octal | Hex | ASCII | Decimal | Binary   | Octal | Hex | ASCII | Decimal | Binary   | Octal | Hex | ASCII | Decimal | Binary   | Octal | Hex | ASCII |
|---------|----------|-------|-----|-------|---------|----------|-------|-----|-------|---------|----------|-------|-----|-------|---------|----------|-------|-----|-------|
| 0       | 00000000 | 000   | 00  | NUL   | 32      | 00100000 | 040   | 20  | SP    | 64      | 01000000 | 100   | 40  | @     | 96      | 01100000 | 140   | 60  |       |
| 1       | 0000001  | 001   | 01  | SOH   | 33      | 00100001 | 041   | 21  | !     | 65      | 01000001 | 101   | 41  | Α     | 97      | 01100001 | 141   | 61  | а     |
| 2       | 00000010 | 002   | 02  | STX   | 34      | 00100010 | 042   | 22  |       | 66      | 01000010 | 102   | 42  | В     | 98      | 01100010 | 142   | 62  | b     |
| 3       | 00000011 | 003   | 03  | ETX   | 35      | 00100011 | 043   | 23  | #     | 67      | 01000011 | 103   | 43  | С     | 99      | 01100011 | 143   | 63  | С     |
| 4       | 00000100 | 004   | 04  | EOT   | 36      | 00100100 | 044   | 24  | \$    | 68      | 01000100 | 104   | 44  | D     | 100     | 01100100 | 144   | 64  | d     |
| 5       | 00000101 | 005   | 05  | ENQ   | 37      | 00100101 | 045   | 25  | %     | 69      | 01000101 | 105   | 45  | E     | 101     | 01100101 | 145   | 65  | е     |
| 6       | 00000110 | 006   | 06  | ACK   | 38      | 00100110 | 046   | 26  | &     | 70      | 01000110 | 106   | 46  | F     | 102     | 01100110 | 146   | 66  | f     |
| 7       | 00000111 | 007   | 07  | BEL   | 39      | 00100111 | 047   | 27  | •     | 71      | 01000111 | 107   | 47  | G     | 103     | 01100111 | 147   | 67  | g     |
| 8       | 00001000 | 010   | 80  | BS    | 40      | 00101000 | 050   | 28  | (     | 72      | 01001000 | 110   | 48  | Н     | 104     | 01101000 | 150   | 68  | h     |
| 9       | 00001001 | 011   | 09  | HT    | 41      | 00101001 | 051   | 29  | )     | 73      | 01001001 | 111   | 49  | 1     | 105     | 01101001 | 151   | 69  | i     |
| 10      | 00001010 | 012   | 0A  | LF    | 42      | 00101010 | 052   | 2A  | *     | 74      | 01001010 | 112   | 4A  | J     | 106     | 01101010 | 152   | 6A  | j     |
| 11      | 00001011 | 013   | 0B  | VT    | 43      | 00101011 | 053   | 2B  | +     | 75      | 01001011 | 113   | 4B  | K     | 107     | 01101011 | 153   | 6B  | k     |
| 12      | 00001100 | 014   | 0C  | FF    | 44      | 00101100 | 054   | 2C  | ,     | 76      | 01001100 | 114   | 4C  | L     | 108     | 01101100 | 154   | 6C  | 1     |
| 13      | 00001101 | 015   | 0D  | CR    | 45      | 00101101 | 055   | 2D  | -     | 77      | 01001101 | 115   | 4D  | M     | 109     | 01101101 | 155   | 6D  | m     |
| 14      | 00001110 | 016   | 0E  | SO    | 46      | 00101110 | 056   | 2E  |       | 78      | 01001110 | 116   | 4E  | N     | 110     | 01101110 | 156   | 6E  | n     |
| 15      | 00001111 | 017   | 0F  | SI    | 47      | 00101111 | 057   | 2F  | 1     | 79      | 01001111 | 117   | 4F  | 0     | 111     | 01101111 | 157   | 6F  | 0     |
| 16      | 00010000 | 020   | 10  | DLE   | 48      | 00110000 | 060   | 30  | 0     | 80      | 01010000 | 120   | 50  | P     | 112     | 01110000 | 160   | 70  | p     |
| 17      | 00010001 | 021   | 11  | DC1   | 49      | 00110001 | 061   | 31  | 1     | 81      | 01010001 | 121   | 51  | Q     | 113     | 01110001 | 161   | 71  | q     |
| 18      | 00010010 | 022   | 12  | DC2   | 50      | 00110010 | 062   | 32  | 2     | 82      | 01010010 | 122   | 52  | R     | 114     | 01110010 | 162   | 72  | r     |
| 19      | 00010011 | 023   | 13  | DC3   | 51      | 00110011 | 063   | 33  | 3     | 83      | 01010011 | 123   | 53  | S     | 115     | 01110011 | 163   | 73  | s     |
| 20      | 00010100 | 024   | 14  | DC4   | 52      | 00110100 | 064   | 34  | 4     | 84      | 01010100 | 124   | 54  | T     | 116     | 01110100 | 164   | 74  | t     |
| 21      | 00010101 | 025   | 15  | NAK   | 53      | 00110101 | 065   | 35  | 5     | 85      | 01010101 | 125   | 55  | U     | 117     | 01110101 | 165   | 75  | u     |
| 22      | 00010110 | 026   | 16  | SYN   | 54      | 00110110 | 066   | 36  | 6     | 86      | 01010110 | 126   | 56  | V     | 118     | 01110110 | 166   | 76  | V     |
| 23      | 00010111 | 027   | 17  | ETB   | 55      | 00110111 | 067   | 37  | 7     | 87      | 01010111 | 127   | 57  | W     | 119     | 01110111 | 167   | 77  | w     |
| 24      | 00011000 | 030   | 18  | CAN   | 56      | 00111000 | 070   | 38  | 8     | 88      | 01011000 | 130   | 58  | X     | 120     | 01111000 | 170   | 78  | x     |
| 25      | 00011001 | 031   | 19  | EM    | 57      | 00111001 | 071   | 39  | 9     | 89      | 01011001 | 131   | 59  | Υ     | 121     | 01111001 | 171   | 79  | у     |
| 26      | 00011010 | 032   | 1A  | SUB   | 58      | 00111010 | 072   | 3A  | :     | 90      | 01011010 | 132   | 5A  | Z     | 122     | 01111010 | 172   | 7A  | z     |
| 27      | 00011011 | 033   | 1B  | ESC   | 59      | 00111011 | 073   | 3B  | ;     | 91      | 01011011 | 133   | 5B  | [     | 123     | 01111011 | 173   | 7B  | {     |
| 28      | 00011100 | 034   | 1C  | FS    | 60      | 00111100 | 074   | 3C  | <     | 92      | 01011100 | 134   | 5C  | 1     | 124     | 01111100 | 174   | 7C  | 1     |
| 29      | 00011101 | 035   | 1D  | GS    | 61      | 00111101 | 075   | 3D  | =     | 93      | 01011101 | 135   | 5D  | ]     | 125     | 01111101 | 175   | 7D  | }     |
| 30      | 00011110 | 036   | 1E  | RS    | 62      | 00111110 | 076   | 3E  | >     | 94      | 01011110 | 136   | 5E  | ٨     | 126     | 01111110 | 176   | 7E  | ~     |
| 31      | 00011111 | 037   | 1F  | US    | 63      | 00111111 | 077   | 3F  | ?     | 95      | 01011111 | 137   | 5F  | _     | 127     | 01111111 | 177   | 7F  | DEL   |

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

ASCII Conversion Chart.doc Copyright © 2008, 2012 Donald Weiman 22 March 2012

# Prepare Data for TensorFlow

#### **Determine Load Function**

### pd.read\_csv

Read a comma-separated values (csv) file into DataFrame. pd.read\_csv

```
pandas.read_csv(
   filepath_or_buffer
)
```

### tf.keras.utils.image\_dataset\_from\_directory

Require directory structure for tf.keras.utils.image\_dataset\_from\_directory:

```
main_directory/
...class_a/
.....a_image_1.jpg
....a_image_2.jpg
...class_b/
.....b_image_1.jpg
....b_image_2.jpg
```

# 2. Visualize Data & Preprocessing

Load Data & Inspect Shape

```
import gc
import tensorflow as tf
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
from keras import layers
from keras.models import Sequential
from IPython.display import display, clear output
gc.collect()
# add any additional imports after this line -----
# declare global variables
SEED = 42
tf.random.set_seed(SEED)
np.random.seed(SEED)
train_dataframe = pd.read_csv('emnist-balanced-train.csv')
test_dataframe = pd.read_csv('emnist-balanced-test.csv')
mapping = pd.read_csv('emnist-balanced-mapping.txt', sep=' ', header=None)
display(train_dataframe.head())
train_dataframe.info()
print(f"train_dataframe shape: {train_dataframe.shape}")
\overline{z}
        45 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ... 0.524 0.525 0.526 0.527 0.528
     0 36 0
                      0
                           0
                               0
                                    0
                                         0
                                                                            0
                                                                                  0
                                                                                         0
     1 43 0
                      0
                          0
                               0
                                    0
                                         0
                                              0
                                                              0
                                                                            0
                                                                                  0
                                                                                         0
     2 15 0
                 0
                      0
                          0
                               0
                                    0
                                         0
                                              0
                                                  0
                                                                     0
                                                                            0
                                                                                  0
                                                                                         0
        4 0
                 0
                               0
                                              0
                                                  0
                                                              0
                                                                           0
                      0
                          0
                                    0
                                         0
                                                                     0
                                                                                  0
                                                                                         0
     4 42 0
                 0
                      0
                          0
                               0
                                    0
                                         0
                                             0
                                                  0
                                                              0
                                                                    0
                                                                           0
                                                                                  0
                                                                                         0
     5 rows × 785 columns
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 112799 entries, 0 to 112798
     Columns: 785 entries, 45 to 0.533
     dtypes: int64(785)
     memory usage: 675.6 MB
```

#### **Kaggle EMNIST**

#### **Format**

There are six different splits provided in this dataset and each are provided in two formats:

- Binary (see emnist\_source\_files.zip)
- CSV (combined labels and images)
  - o Each row is a separate image
  - o 785 columns
  - First column = class\_label (see mappings.txt for class label definitions)
  - Each column after represents one pixel value (784 total for a 28 x 28 image)

```
labels = train_dataframe["45"].values

plt.figure(figsize=(20, 6))
sns.countplot(x=labels)

del labels
gc.collect()

22296

2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2000-
2
```

Preprocessing

#### Refering to **EMNSIT** research paper

- · CSV (combined labels and images)
  - Each row is a separate image
  - o 785 columns
  - First column = class\_label (see mappings.txt for class label definitions)
  - Each column after represents one pixel value (784 total for a 28 x 28 image)

```
# extract label and training data
y_train = np.array(train_dataframe.iloc[:,0].values)
x_train = np.array(train_dataframe.iloc[:,1:].values)
y_test = np.array(test_dataframe.iloc[:,0].values)
x_test = np.array(test_dataframe.iloc[:,1:].values)
print(f"Extracted Labels: {y_train}\n")
print(f"Train data shape: {x_train.shape}")
print(f"Train data shape: {x_test.shape}\n")
del train_dataframe
del test_dataframe
gc.collect()
→ Extracted Labels: [36 43 15 ... 23 31 8]
     Train data shape: (112799, 784)
     Train data shape: (18799, 784)
     9898
# normalize
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
# Reshape the data to have a single color channel (since EMNIST is grayscale)
# and match the input shape expected by the model
x_{train} = x_{train.reshape}((-1, 28, 28, 1))
x_{\text{test}} = x_{\text{test.reshape}}((-1, 28, 28, 1))
print(f"Shape before transpose: \{x\_train.shape\}")
print(f"Mean before transpose: {np.mean(x_train[116])}\n")
→ Shape before transpose: (112799, 28, 28, 1)
     Mean before transpose: 0.11454582214355469
```

## Show 5 samples from original data

```
fig, axes = plt.subplots(1, 5, figsize=(12, 12))
for i, ax in enumerate(axes.flatten()):
    ax.imshow(x_train[i])
    ax.set_title(y_train[i])
```



```
# transpose to reverse effect from converting png to csv (2D -> 1D)
def transpose_data(x):
    return np.transpose(np.squeeze(x))[..., np.newaxis]

x_train = np.array([transpose_data(x) for x in x_train])
x_test = np.array([transpose_data(x) for x in x_test])
print(f"Shape after transpose: {x_train.shape}")
print(f"Mean after transpose: {np.mean(x_train[116])}\n")

Shape after transpose: (112799, 28, 28, 1)
    Mean after transpose: 0.11454582214355469
```

```
# get a sample image for future comparison
sample_image = x_train[116]
sample_label = y_train[116]
print(f"Sample image shape: {sample_image.shape}")
print(f"Sample label: {class_mapping.get(sample_label)}")
→ Sample image shape: (28, 28, 1)
     Sample label: F
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test))
print(f"train_dataset shape: {train_dataset.element_spec}")
= train_dataset shape: (TensorSpec(shape=(28, 28, 1), dtype=tf.float32, name=None), TensorSpec(shape=(), dtype=tf.int64, name=None))
del x_train
del x_test
del y_train
del y_test
gc.collect()
→ 25271
train_dataset = train_dataset.cache().shuffle(10000).batch(16).prefetch(tf.data.AUTOTUNE)
test_dataset = test_dataset.cache().batch(16)
```

## Show 5 samples from preprocessed data

```
for img_ds, labels_ds in train_dataset.take(1):
    fig, axes = plt.subplots(1, 5, figsize=(12, 12))

for i, ax in enumerate(axes.flatten()):
    ax.imshow(img_ds[i])
    ax.set_title(class_mapping.get(labels_ds[i].numpy()))
```



# 3. Build Model

Neural Network (NN)

Convolutional Neural Network (CNN)

Build Sequential Model

```
input_shape = img_ds.shape[1:]
num_classes = len(class_mapping)

model = Sequential([
    layers.Input(shape=input_shape),
    layers.Conv2D(filters=32, kernel_size=(6, 6), activation='relu', padding='same'),
    layers.MaxPooling2D((3, 3)),
    layers.Conv2D(filters=64, kernel_size=(4, 4), activation='relu', padding='same'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(filters=128, kernel_size=(3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(64, activation='relu'),
    layers.Dense(num_classes)
])
```

# 4. Compile, Fit & Save Model

Compile: specifying a loss, metrics, and an optimizer

Optimizers

#### Adam

Adaptive Moment Estimation is an algorithm for optimization technique for gradient descent. Read more here

#### **RMSprop**

RMSprop (Root Mean Squared Propagation) is an adaptive learning rate optimization algorithm. Read more here

### Loss Functions

### **Categorical Cross-Entropy**

Computes the crossentropy loss between the labels (one-hot encoded vectors) and predictions. Read more here

#### **Sparse Categorical Cross-Entropy**

Computes the crossentropy loss between the labels (integer values) and predictions. Read more here

Metrics

Accuracy

Loss

Val Accuracy

Val Loss

→ Compile

```
model.compile(
    optimizer='adam',
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=['accuracy']
)
model.summary()
```

```
→ Model: "sequential"
```

| Layer (type)                                                                                              | Output Shape       | Param # |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------------|---------|--|--|--|--|--|
| conv2d (Conv2D)                                                                                           | (None, 28, 28, 32) | 1184    |  |  |  |  |  |
| <pre>max_pooling2d (MaxPooling2 D)</pre>                                                                  | (None, 9, 9, 32)   | 0       |  |  |  |  |  |
| conv2d_1 (Conv2D)                                                                                         | (None, 9, 9, 64)   | 32832   |  |  |  |  |  |
| <pre>max_pooling2d_1 (MaxPoolin g2D)</pre>                                                                | (None, 4, 4, 64)   | 0       |  |  |  |  |  |
| conv2d_2 (Conv2D)                                                                                         | (None, 2, 2, 128)  | 73856   |  |  |  |  |  |
| flatten (Flatten)                                                                                         | (None, 512)        | 0       |  |  |  |  |  |
| dense (Dense)                                                                                             | (None, 64)         | 32832   |  |  |  |  |  |
| dense_1 (Dense)                                                                                           | (None, 64)         | 4160    |  |  |  |  |  |
| dropout (Dropout)                                                                                         | (None, 64)         | 0       |  |  |  |  |  |
| dense_2 (Dense)                                                                                           | (None, 47)         | 3055    |  |  |  |  |  |
| Total params: 147919 (577.81 KB) Trainable params: 147919 (577.81 KB) Non-trainable params: 0 (0.00 Byte) |                    |         |  |  |  |  |  |

### → Fit Model

```
EPOCHS = 5
early_stopping = tf.keras.callbacks.EarlyStopping(
  monitor='val_accuracy',
  patience=3,
  restore_best_weights=True,
  min_delta=0,
  mode='max'
  verbose=0
history = model.fit(
  train dataset,
  validation_data=test_dataset,
  epochs=EPOCHS,
  callbacks=[early_stopping]
⇒ Epoch 1/5
          7050/7050 [=
   Epoch 2/5
   7050/7050 [
           Epoch 3/5
          7050/7050 [=
   Epoch 4/5
   7050/7050 [===========] - 33s 5ms/step - loss: 0.4265 - accuracy: 0.8593 - val_loss: 0.4141 - val_accuracy: 0.8632
   Epoch 5/5
   7050/7050 [===========] - 34s 5ms/step - loss: 0.4003 - accuracy: 0.8667 - val_loss: 0.4314 - val_accuracy: 0.8661
```

## Save Model

```
model.save('ocr_model')
```

# 5. Test Accuracy of Model

#### ✓ Evaluate

#### **Evaluate Function**

# 6. Export Model

# Python Module

```
class OCDModel(tf.Module):
  def __init__(self, model):
    self.model = model
    self.class_mapping = {0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9',
                        10: 'A', 11: 'B', 12: 'C', 13: 'D', 14: 'E', 15: 'F', 16: 'G', 17: 'H', 18: 'I',
                        19: \ 'J', \ 20: \ 'K', \ 21: \ 'L', \ 22: \ 'M', \ 23: \ 'N', \ 24: \ '0', \ 25: \ 'P', \ 26: \ 'Q', \ 27: \ 'R', \ (21)
                        28: 'S', 29: 'T', 30: 'U', 31: 'V', 32: 'W', 33: 'X', 34: 'Y', 35: 'Z', 36: 'a',
                        37: 'b', 38: 'd', 39: 'e', 40: 'f', 41: 'g', 42: 'h', 43: 'n', 44: 'q', 45: 'r',
                        46: 't'}
  @tf.function
  def predict(self, data):
    if isinstance(data, tf.float32):
      result = self.model(data, training=False)
    elif isinstance(data, str):
     img = preprocess_image(data, 'preprocessed_input_img.png')
      result = self.model(img, training=False)
      raise ValueError("Unsurported data type.\nPlease pass preprocessed image using preprocess_image function.\nOr pass path to image file"
    return result
  def __call__(self, data):
    pred = self.predict(data)
    return self.class_mapping.get(np.argmax(pred.numpy()[0]))
```

### TensorFlow Lite for Flutter

### TensorFlow Lite

- TensorFlow Lite is a way to run TensorFlow models on devices locally, supporting mobile, embedded, web, and edge devices. Read more here
- Convert model to TFLite Documentation

Start coding or generate with AI.

# 7. UI, Input & Preprocessing Pipeline

## Preprocessing pipeline

```
!gdown 1-cTOocQVoNPAl4u5oxu6eBgIUG5jg4y3
!gdown 12NGQvSBp0hBIbiFidPYAyjKhX17ooJGn

Downloading...
From: https://drive.google.com/uc?id=1-cTOocQVoNPAl4u5oxu6eBgIUG5jg4y3
To: /content/random_scale_img_f.png
    100% 14.1k/14.1k [00:00<00:00, 36.0MB/s]
Downloading...
From: https://drive.google.com/uc?id=12NGQvSBp0hBIbiFidPYAyjKhX17ooJGn</pre>
```

```
To: /content/sample_input.png
     100% 793/793 [00:00<00:00, 4.22MB/s]
from scipy.ndimage import gaussian_filter
def preprocess_image(input_image_path, output_image_path):
    # read the original image
    image = cv2.imread(input_image_path, cv2.IMREAD_GRAYSCALE)
    if image is None:
       raise ValueError("Image not found or the path is incorrect")
    # invert the colors of the image
    image = 255 - image
    # apply Gaussian filter with \sigma = 1
    image = gaussian_filter(image, sigma=1)
    # extract the region around the character
    # find non-zero pixels (characters)
    coords = cv2.findNonZero(image)
    x, y, w, h = cv2.boundingRect(coords)
    # crop the image to the bounding box
    cropped_image = image[y:y+h, x:x+w]
    # center the character in a square image
    # calculate the size of the new image (keeping the aspect ratio)
    max side = max(w, h)
    square_image = np.zeros((max_side, max_side), dtype=np.uint8)
    # compute the offset to center the character
    x_{offset} = (max_{side} - w) // 2
    y_offset = (max_side - h) // 2
    # place the cropped image in the center of the square image
    square_image[y_offset:y_offset+h, x_offset:x_offset+w] = cropped_image
    # add a 2-nixel border
    padded_image = cv2.copyMakeBorder(square_image, 2, 2, 2, cv2.BORDER_CONSTANT, value=0)
    # down-sample to 28x28 using bi-cubic interpolation
    downsampled_image = cv2.resize(padded_image, (28, 28), interpolation=cv2.INTER_CUBIC)
    # scale intensity values to [0, 255]
    # convert image to have values in range [0, 255]
    final image = cv2.normalize(downsampled image, None, 0, 255, cv2.NORM MINMAX)
    # normalize values between [0, 1]
    final_image = final_image/255.0
    # verify that preprocessing is consistant with data
    print(f"Mean input image: {np.mean(final_image)}\n")
   plt.imshow(final_image[..., np.newaxis])
    # save the final processed image
    cv2.imwrite(output image path, final image[..., np.newaxis])
    # add batch shape, and channel
    return final_image[np.newaxis, ..., np.newaxis]
# compare sample from dataset & preprocessed input image
fig, axes = plt.subplots(1, 3, figsize=(12, 8))
axes[0].imshow(sample_image)
axes[0].set_title(np.mean(sample_image));
preprocessed_img_nist = preprocess_image('sample_input.png', 'preprocessed_sample_input.png')
img1 = np.squeeze(preprocessed_img_nist, axis=0)
axes[1].imshow(img1)
axes[1].set_title(np.mean(img1));
preprocessed_img_f = preprocess_image('random_scale_img_f.png', 'preprocessed_random_scale_img_f.png')
img2 = np.squeeze(preprocessed_img_f, axis=0)
axes[2].imshow(img2)
axes[2].set_title(np.mean(img2));
```

→ Mean input image: 0.10560724289715887

Mean input image: 0.09445278111244497



## 8. Load & Use Pretrained Model

# Run prediction on Google Colab

