Лабораторная работа № **16**

Программный RAID

Жукова Арина Александровна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
	3.1 Создание виртуальных носителей	7
	3.2 Создание RAID-диска	8
	3.3 RAID-массив с горячим резервом (hotspare)	13
	3.4 Преобразование массива RAID 1 в RAID 5	16
4	Ответы на контрольные вопросы	21
5	Выводы	24
Сг	Список литературы	

Список иллюстраций

3.1	Создание дисков	./
3.2	Проверка наличия дисков	8
3.3	Создание разделов	8
3.4	Создание разделов	9
3.5	Создание разделов	9
3.6	Текущий тип разделов	10
3.7	Типы партиций	10
3.8	Установка типа разделов	10
3.9	Проверка состояния дисков	11
3.10	Создание массива	11
	проверка состояния массива	12
3.12	Создание файловой системы	12
3.13	Монтировка Raid	12
	Автомонтирование	13
3.15	Удаление массива	13
3.16	Создание массива	13
3.17	Проверка состояния массива	14
3.18	Сбой одного из дисков	15
3.19	Состояние массива	15
3.20	Удаление массива	16
3.21	Создание массива, добавление третьего	16
3.22	Проверка состояния массива	17
3.23	Изменение типа массива	18
3.24	Изменение количества дисков	19
3.25	Удаление массива	19
3.26	Комментирование записи	20

Список таблиц

1 Цель работы

Освоить работу с RAID-массивами при помощи утилиты mdadm.

2 Задание

Здесь приводится описание задания в соответствии с рекомендациями методического пособия и выданным вариантом.

3 Выполнение лабораторной работы

Описываются проведённые действия, в качестве иллюстрации даётся ссылка на иллюстрацию

3.1 Создание виртуальных носителей

Я добавила к своей виртуальной машине три диска размером 512 MiB к контроллеру SATA (рис. 3.1).

Рис. 3.1: Создание дисков

3.2 Создание RAID-диска

1. Проверила наличие созданных дисков, введя команду: fdisk -1 | grep /dev/sd Если предыдущая работа по LVM была выполнена успешно, то в системе я увидела добавленные диски, отображающиеся как /dev/sdd, /dev/sde, /dev/sdf (рис. 3.2).

```
[aazhukoval@aazhukoval ~]$ su -
Пароль:
[root@aazhukoval ~]# fdisk -l | grep /dev/sd
Диск /dev/sda! 40 GiB, 42949672960 байт, 83886080 секторов
/dev/sda! * 2048 2099199 2097152 16 83 Linux
/dev/sda! * 2048 2099199 2097152 16 86 Linux LVM
Диск /dev/sdb: 512 MiB, 536870912 байт, 1048576 секторов
/dev/sdb: 512 MiB, 536870912 байт, 1048576 секторов
/dev/sdb: 206848 1048575 841728 411M 5 Расширенный
/dev/sdb: 206848 1048575 841728 411M 5 Расширенный
/dev/sdb: 206848 1048575 841728 411M 83 Linux
/dev/sdb: 208896 415743 206848 101M 83 Linux
/dev/sdb: 417792 622591 204800 100M 82 Linux своп / Solaris
Диск /dev/sdc: 512 MiB, 536870912 байт, 1048576 секторов
/dev/sdc: 206848 411647 204800 100M Файловая система Linux
/dev/sdc: 512 MiB, 536870912 байт, 1048576 секторов
Диск /dev/sdc: 512 MiB, 536870912 байт, 1048576 секторов
```

Рис. 3.2: Проверка наличия дисков

2. Я создала раздел на каждом из дисков (рис. 3.3 - 3.5).

```
[root@aazhukoval ~]# sfdisk /dev/sdd <<EOF
Проверяется, чтобы сейчас никто не использовал этот диск... ОК
Диск /dev/sdd: 512 MiB, 536870912 байт, 1048576 секторов
Disk model: VBOX HARDDISK
Единицы: секторов по 1 * 512 = 512 байт
Размер сектора (логический/физический): 512 байт / 512 байт
Размер I/O (минимальный/оптимальный): 512 байт / 512 байт
>>> Создана новая метка DOS с идентификатором 0x747b7fd6.
/dev/sddl: Создан новый раздел 1 с типом 'Linux' и размером 511 MiB.
/dev/sdd2: Done.
Новая ситуация:
Тип метки диска: dos
Идентификатор диска: 0x747b7fd6
Устр-во
          Загрузочный начало
                               Конец Секторы Размер Идентификатор Тип
/dev/sdd1
                        2048 1048575 1046528
                                               511M
Таблица разделов была изменена
Вызывается ioctl() для перечитывания таблицы разделов.
Синхронизируются диски.
```

Рис. 3.3: Создание разделов

```
[root@aazhukoval ~]# sfdisk /dev/sde <<EOF
Проверяется, чтобы сейчас никто не использовал этот диск... ОК
Диск /dev/sde: 512 MiB, 536870912 байт, 1048576 секторов
Disk model: VBOX HARDDISK
Единицы: секторов по 1 * 512 = 512 байт
Размер сектора (логический/физический): 512 байт / 512 байт
Размер І/О (минимальный/оптимальный): 512 байт / 512 байт
>>> Создана новая метка DOS с идентификатором 0xf39f96ec.
/dev/sdel: Создан новый раздел 1 с типом 'Linux' и размером 511 MiB.
/dev/sde2: Done.
Новая ситуация:
Тип метки диска: dos
Идентификатор диска: 0xf39f96ec
Устр-во
          Загрузочный начало
                               Конец Секторы Размер Идентификатор Тип
/dev/sde1
                        2048 1048575 1046528 511M
Таблица разделов была изменена
Вызывается ioctl() для перечитывания таблицы разделов.
```

Рис. 3.4: Создание разделов

```
[root@aazhukoval ~]# sfdisk /dev/sdf <<EOF
Проверяется, чтобы сейчас никто не использовал этот диск... ОК
Диск /dev/sdf: 512 MiB, 536870912 байт, 1048576 секторов
Disk model: VBOX HARDDISK
Единицы: секторов по 1 * 512 = 512 байт
Размер сектора (логический/физический): 512 байт / 512 байт
Размер І/О (минимальный/оптимальный): 512 байт / 512 байт
>>> Создана новая метка DOS с идентификатором 0x1088764d.
/dev/sdfl: Создан новый раздел 1 с типом 'Linux' и размером 511 MiB.
/dev/sdf2: Done.
Новая ситуация:
Тип метки диска: dos
Идентификатор диска: 0x1088764d
           Загрузочный начало Конец Секторы Размер Идентификатор Тип
Устр-во
/dev/sdf1
                          2048 1048575 1046528 511M
                                                                     83 Linux
Таблица разделов была изменена
Вызывается ioctl() для перечитывания таблицы разделов.
Синхронизируются диски.
```

Рис. 3.5: Создание разделов

3. Я проверила текущий тип созданных разделов с помощью команд: sfdisk --print-id /dev/sdd 1 sfdisk --print-id /dev/sde 1 sfdisk --print-id /dev/sdf 1 Все созданные мной разделы имеют тип Linux (рис. 3.6).

```
[root@aazhukoval ~]# sfdisk --print-id /dev/sdd 1
sfdisk: print-id is deprecated in favour of --part-type
83
[root@aazhukoval ~]# sfdisk --print-id /dev/sde 1
sfdisk: print-id is deprecated in favour of --part-type
83
[root@aazhukoval ~]# sfdisk --print-id /dev/sdf 1
sfdisk: print-id is deprecated in favour of --part-type
83
```

Рис. 3.6: Текущий тип разделов

4. Я просматривала, какие типы партиций, относящиеся к RAID, можно задать, использовав команду: sfdisk -T | grep -i raid (рис. 3.7).

```
[root@aazhukoval ~]# sfdisk -T | grep -i raid fd Linux raid autodetect
```

Рис. 3.7: Типы партиций

5. Затем я установила тип разделов в Linux raid autodetect следующими командами: sfdisk --change-id /dev/sdd 1 fd sfdisk --change-id /dev/sde 1 fd sfdisk --change-id /dev/sdf 1 fd (рис. 3.8).

```
[root@aazhukoval ~]# sfdisk --change-id /dev/sdd 1 fd sfdisk: change-id is deprecated in favour of --part-type

Таблица разделов была изменена
Вызывается ioctl() для перечитывания таблицы разделов.
Синхронизируются диски.
[root@aazhukoval ~]# sfdisk --change-id /dev/sde 1 fd sfdisk: change-id is deprecated in favour of --part-type

Таблица разделов была изменена
Вызывается ioctl() для перечитывания таблицы разделов.
Синхронизируются диски.
[root@aazhukoval ~]# sfdisk --change-id /dev/sdf 1 fd sfdisk: change-id is deprecated in favour of --part-type

Таблица разделов была изменена
Вызывается ioctl() для перечитывания таблицы разделов.
Синхронизируются диски.
```

Рис. 3.8: Установка типа разделов

6. Я проверила состояние дисков с помощью команд: sfdisk -l /dev/sdd sfdisk -l /dev/sde sfdisk -l /dev/sdf (рис. 3.9).

```
[root@aazhukova1 ~]# sfdisk ~l /dev/sdd

Диск /dev/sdd: 512 MiB, 536870912 байт, 1048576 секторов

Disk model: VBOX HARDDISK

Единицы: секторов по 1 * 512 = 512 байт

Размер сектора (логический/физический): 512 байт / 512 байт

Тип метки диска: dos
Идентификатор диска: 0x747b7fd6

Устр-во Загрузочный начало Конец Секторы Размер Идентификатор Тип
/dev/sdd1 2048 1048575 1046528 511M fd Автоопределение Linux raid
[root@aazhukova1 ~]# sfdisk ~l /dev/sde
Диск /dev/sde: 512 MiB, 536870912 байт, 1048576 секторов

Disk model: VBOX HARDDISK
Единицы: секторов по 1 * 512 = 512 байт
Размер сектора (логический/физический): 512 байт / 512 байт

Тип метки диска: dos
Идентификатор диска: 0xf39f96ec

Устр-во Загрузочный начало Конец Секторы Размер Идентификатор Тип
/dev/sde1 2048 1048575 1046528 511M fd Автоопределение Linux raid
[root@aazhukova1 ~]# sfdisk ~l /dev/sdf
Диск /dev/sdf: 512 MiB, 536870912 байт, 1048576 секторов

Disk model: VBOX HARDDISK

Единицы: секторов по 1 * 512 = 512 байт

Устр-во Загрузочный начало Конец Секторы Размер Идентификатор Тип
/dev/sde1 2048 1048575 1046528 511M fd Автоопределение Linux raid
[root@aazhukova1 ~]# sfdisk ~l /dev/sdf
Диск /dev/sdf: 512 MiB, 536870912 байт, 1048576 секторов

Disk model: VBOX HARDDISK

Единицы: секторов по 1 * 512 = 512 байт

Размер () (иминияльный/оптимальный): 512 байт / 512 байт

Размер сектора (логический/физический): 512 байт / 512 байт

Размер () (иминияльный/оптимальный): 512 байт / 512 байт

Тип метки диска: dos
Идентификатор диска: 0x1088764d

Устр-во Загрузочный начало Конец Секторы Размер Идентификатор Тип
/dev/sdf1 7005aazhukoval ~l# 

2048 1048575 1046528 511M fd Автоопределение Linux raid
/dev/sdf1 7005aazhukoval ~l#
```

Рис. 3.9: Проверка состояния дисков

7. Используя утилиту mdadm, я создала массив RAID 1 из двух дисков с помощью команды: mdadm --create --verbose /dev/md0 --level=1 --raid-devices=2 /dev/sdd1 /dev/sde1 (рис. 3.10).

Рис. 3.10: Создание массива

8. Я проверила состояние массива RAID, используя следующие команды: cat/proc/mdstat, mdadm --query /dev/md0, mdadm --detail /dev/md0 (рис. 3.11).

```
[root@aazhukoval ~]# cat /proc/mdstat
Personalities : [raid1]
mdO : active raid1 sde1[1] sdd1[0]
522240 blocks super 1.2 [2/2] [UU]
[root@aazhukoval ~]# mdadm --query /dev/md0
/dev/md0: 510.00MiB raid1 2 devices, 0 spares. Use mdadm --detail for more detail.
[root@aazhukoval ~]# mdadm --detail /dev/md0
/dev/md0:
              Version: 1.2
      Version: 1.2
Creation Time: Sat Dec 21 11:58:51 2024
Raid Level: raid1
Array Size: 522240 (510.00 MiB 534.77 MB)
Used Dev Size: 522240 (510.00 MiB 534.77 MB)
Raid Devices: 2
      Total Devices :
         Persistence : Superblock is persistent
         Update Time : Sat Dec 21 11:58:54 2024
    Active Devices : 2
   Working Devices
Failed Devices
      Spare Devices :
Consistency Policy : resync
                   Name : aazhukoval.localdomain:0 (local to host aazhukoval.localdomain)
                  UUID : d4a02c98:03eb139e:e286cd61:9162c409
                Events: 17
                  Major
                                        RaidDevice State
                                                        active sync
                                                                            /dev/sdd1
                                                        active sync
                                                                            /dev/sdel
```

Рис. 3.11: проверка состояния массива

9. Я создала файловую систему на RAID с помощью команды: mkfs.ext4 /dev/md0 (рис. 3.12).

```
[root@aazhukoval ~]# mkfs.ext4 /dev/md0
mke2fs 1.46.5 (30-Dec-2021)
Creating filesystem with 522240 1k blocks and 130560 inodes
Filesystem UUID: 93a4f93f-04b1-4b1f-a747-ced15852ebf6
Superblock backups stored on blocks:
8193, 24577, 40961, 57345, 73729, 204801, 221185, 401409

Allocating group tables: done
Writing inode tables: done
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information: done
```

Рис. 3.12: Создание файловой системы

10. Я подмонтировала RAID, создав каталог: mkdir /data, mount /dev/md0 /data (рис. 3.13).

```
[root@aazhukoval ~]# mkdir /data
mkdir: невозможно создать каталог «/data»: Файл существует
[root@aazhukoval ~]# mount /dev/md0 /data
[root@aazhukoval ~]# cd /etc
```

Рис. 3.13: Монтировка Raid

11. Для автомонтирования я добавила запись в файл /etc/fstab:/dev/md0 /data ext4 defaults 1 2. Затем я смоделировала сбой одного из дисков. Удаляя сбойный диск. Я заменила диск в массиве на новый (рис. 3.14).

```
[root@aazhukoval etc]# mdadm /dev/md0 --fail /dev/sdel
mdadm: set /dev/sdel faulty in /dev/md0
[root@aazhukoval etc]# mdadm /dev/md0 --remove /dev/sdel
mdadm: hot removed /dev/sdel from /dev/md0
[root@aazhukoval etc]# mdadm /dev/md0 --add /dev/sdfl
```

Рис. 3.14: Автомонтирование

12. После этого я удалила массив и очистила метаданные (рис. 3.15).

```
[root@aazhukoval ~]# umount /dev/md0
[root@aazhukoval ~]# mdadm --stop /dev/md0
mdadm: stopped /dev/md0
[root@aazhukoval ~]# mdadm --zero-superblock /dev/sddl
[root@aazhukoval ~]# mdadm --zero-superblock /dev/sdel
[root@aazhukoval ~]# mdadm --zero-superblock /dev/sdfl
```

Рис. 3.15: Удаление массива

3.3 RAID-массив с горячим резервом (hotspare)

1. Я создала массив RAID 1 из двух дисков, добавила третий диск в массив: mdadm --add /dev/md0 /dev/sdf1, подмонтировала /dev/md0 (рис. 3.16).

```
[root@aazhukova1 ~]# mdadm --create --verbose /dev/md0 --level=1 --raid-devices=2 /dev/sdd1 /dev/sde1
mdadm: Note: this array has metadata at the start and
may not be suitable as a boot device. If you plan to
store '/boot' on this device please ensure that
your boot-loader understands md/v1.x metadata, or use
--metadata=0=00
mdadm: size set to 522240K
Continue creating array [y/N]? y
mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md0 started.
[root@aazhukova1 ~]# mdadm --add /dev/md0 /dev/sdf1
mdadm: added /dev/sdf1
[root@aazhukova1 ~]# mount /dev/md0
mount: (hint) your fstab has been modified, but systemd still uses
the old version; use 'systemctl daemon-reload' to reload.
[root@aazhukova1 ~]# systemctl daemon-reload
```

Рис. 3.16: Создание массива

2. Я проверила состояние массива (рис. 3.17).

Рис. 3.17: Проверка состояния массива

3. Я снова смоделировала сбой одного из дисков. Затем я проверила состояние массива (рис. 3.18 - 3.19).

```
[root@aazhukoval ~]# mdadm /dev/md0 --fail /dev/sdel
mdadm: set /dev/sdel faulty in /dev/md0
[root@aazhukoval ~]# mdadm --detail /dev/md0
/dev/md0:
               Version: 1.2
       Version : 1.2
Creation Time : Sat Dec 21 12:05:37 2024
Raid Level : raid1
Array Size : 522240 (510.00 MiB 534.77 MB)
Used Dev Size : 522240 (510.00 MiB 534.77 MB)
       Total Devices : 3
Persistence : Superblock is persistent
         Update Time : Sat Dec 21 12:07:37 2024
State : clean
     Active Devices : 2
    Working Devices
Failed Devices
       Spare Devices: 0
Consistency Policy : resync
                     Name : aazhukoval.localdomain:0 (local to host aazhukoval.localdomain)
                    UUID : b71d429d:18ce41fa:22d48dfa:94f3f460
                  Events: 37
                   Major
                                           RaidDevice State
                                                            active sync /dev/sdd1
active sync /dev/sdf1
                                  49
                                                                                  /dev/sdd1
                                  81
                                                            faulty /dev/sde1
```

Рис. 3.18: Сбой одного из дисков

```
root@aazhukoval ~]# cat /proc/mdstat
Personalities : [raid1]
nd0 : active raid1 sdf1[2](S) sde1[1] sdd1[0]
522240 blocks super 1.2 [2/2] [UU]
unused devices: <none>
[root@aazhukova1 ~]# mdadm --query /dev/md0
/dev/md0: 510.00MiB raid1 2 devices, 1 spare. Use mdadm --detail for more detail.
[root@aazhukova1 ~]# mdadm --detail /dev/md0
      Version: 1.2
Creation Time: Sat Dec 21 12:05:37 2024
Raid Level: raid1
Array Size: 522240 (510.00 MiB 534.77 MB)
Used Dev Size: 522240 (510.00 MiB 534.77 MB)
Raid Devices: 2
       Total Devices :
          Persistence : Superblock is persistent
         Update Time : Sat Dec 21 12:06:18 2024
   Working Devices Failed Devices :
       Spare Devices : 1
Consistency Policy : resync
                  Name : aazhukoval.localdomain:0 (local to host aazhukoval.localdomain)
UUID : b7ld429d:18ce4lfa:22d48dfa:94f3f460
Events : 18
                                            RaidDevice State
     Number
                   Major
                               Minor
                                                             active sync
                                                              active sync
                                                                                    /dev/sdel
                                                              spare
```

Рис. 3.19: Состояние массива

4. Я удалила массив и очистила метаданные (рис. 3.20).

```
1 8 65 - faulty /dev/sdel
[root@aazhukoval ~]# umount /dev/md0
[root@aazhukoval ~]# mdadm --stop /dev/md0
mdadm: stopped /dev/md0
[root@aazhukoval ~]# mdadm --zero-superblock /dev/sddl
[root@aazhukoval ~]# mdadm --zero-superblock /dev/sdel
[root@aazhukoval ~]# mdadm --zero-superblock /dev/sdfl
```

Рис. 3.20: Удаление массива

3.4 Преобразование массива RAID 1 в RAID 5

1. Я снова создала массив RAID 1 из двух дисков. Я добавила третий диск в массив (рис. 3.21).

```
[root@aazhukoval ~]# mdadm --create --verbose /dev/md0 --level=1 --raid-devices=2 /dev/sdd1 /dev/sde1 mdadm: Note: this array has metadata at the start and may not be suitable as a boot device. If you plan to store '/boot' on this device please ensure that your boot-loader understands md/vl.x metadata, or use --metadata=0.90 mdadm: size set to 522240K Continue creating array [y/N]? y mdadm: Defaulting to version 1.2 metadata mdadm: array /dev/md0 started. [root@aazhukoval ~]# [root@aazhukoval ~]# mdadm --add /dev/md0 /dev/sdf1 mdadm: added /dev/sdf1 [root@aazhukoval ~]# mount /dev/md0
```

Рис. 3.21: Создание массива, добавление третьего

2. Я проверила состояние массива (рис. 3.22).

Рис. 3.22: Проверка состояния массива

3. Я изменила тип массива RAID на RAID 5. Проверила состояние массива (рис. 3.23).

Рис. 3.23: Изменение типа массива

4. Изменила количество дисков в массиве RAID 5, проверила состояние массива (рис. 3.24).

```
root@aazhukoval ~]# mdadm --grow /dev/md0 --raid-devices 3
root@aazhukoval ~]# mdadm --detail /dev/md0
      Version: 1.2
Creation Time: Sat Dec 21 12:09:53 2024
Raid Level: raid5
Array Size: 522240 (510.00 MiB 534.77 MB)
Used Dev Size: 522240 (510.00 MiB 534.77 MB)
Raid Devices: 3
Total Devices: 3
      Total Devices :
          Persistence : Superblock is persistent
    Update Time : Sat Dec 21 12:13:16 2024
State : clean, reshaping
Active Devices : 3
   Working Devices :
Failed Devices :
           Layout : left-symmetric
Chunk Size : 64K
 onsistency Policy : resync
     Reshape Status : 34% complete
Delta Devices : 1, (2->3)
                  Name : aazhukoval.localdomain:0 (local to host aazhukoval.localdomain)
UUID : 6a88203d:128d1de9:f4b2e4c0:b824759f
Events : 33
                                                 RaidDevice State
                    Major
                                                                   active sync
active sync
                                                                                             /dev/sddl
/dev/sdel
                                      49
65
                                                                      active sync
 oot@aazhukova1 ~]#
```

Рис. 3.24: Изменение количества дисков

5. Удалила массив и очистила метаданные с помощью команд (рис. 3.25).

```
[root@aazhukoval ~]# umount /dev/md0
[root@aazhukoval ~]# mdadm --stop /dev/md0
mdadm: stopped /dev/md0
[root@aazhukoval ~]# mdadm --zero-superblock /dev/sdd1
[root@aazhukoval ~]# mdadm --zero-superblock /dev/sdel
[root@aazhukoval ~]# mdadm --zero-superblock /dev/sdf1
[root@aazhukoval ~]# mdadm --zero-superblock /dev/sdf1
```

Рис. 3.25: Удаление массива

6. В конце я закомментировала запись в файле /etc/fstab:

```
/dev/md0 /data ext4 defaults 1 2 (рис. 3.26).
```

Рис. 3.26: Комментирование записи

4 Ответы на контрольные вопросы

- 1. RAID (Redundant Array of Independent Disks) это технология, которая позволяет объединять несколько физических дисков в одну логическую единицу для повышения производительности, надежности и/или резервирования данных. RAID позволяет распределять данные между дисками, что обеспечивает защиту от потери данных при отказе одного или нескольких дисков, а также может увеличить скорость чтения и записи.
- 2. Типы RAID-массивов Существует несколько уровней RAID, каждый из которых обеспечивает свои особенности в области производительности, резервирования данных и структуры. Основные типы RAID-массивов:

RAID 0 RAID 1 RAID 5 RAID 6 RAID 10 (1+0) RAID 2 RAID 3 RAID 4 RAID 50 (сочетание RAID 5 и RAID 0) RAID 60 (сочетание RAID 6 и RAID 0)

3. Описание уровня RAID

RAID 0

Алгоритм работы

Данные разбиваются на блоки и параллельно распределяются по всем дискам в массиве. Это обеспечит высокую скорость записи и чтения. Назначение

RAID 0 обеспечивает максимальную производительность, но не содержит резервирования данных. В случае отказа одного из дисков все данные теряются.

Примеры применения

RAID 0 чаще всего используется в системах, требующих высокой скорости обработки данных, например в игровой индустрии, видеоредакторах и других приложениях, где важна высокая производительность.

RAID 1

Алгоритм работы

Данные дублируются на каждом диске в массиве. Если массив состоит из двух дисков, данные записываются одновременно на оба, создавая полную копию.

Назначение

RAID 1 предоставляет высокий уровень защиты данных. Если один из дисков выйдет из строя, данные будут доступны на другом диске.

Примеры применения

RAID 1 часто используется для систем, требующих высокой надежности, таких как файловые серверы и системы резервного копирования.

RAID 5

Алгоритм работы

Данные и контрольные суммы (паритетные данные) распределяются по всем дискам в массиве. Для восстановления данных при отказе диска используется информация о паритете, что позволяет обеспечивать резервирование без полного дублирования данных.

Назначение

RAID 5 обеспечивает хороший баланс между производительностью и уровнем защиты данных. Выдерживает отказ одного диска без потери данных.

Примеры применения

RAID 5 подходит для использования в серверах, приложениях с большими объемами данных и системах, где важны как производительность, так и резервирование (например, базы данных).

RAID 6

Алгоритм работы

Подобно RAID 5, но с дополнительным уровнем защиты. RAID 6 использует две

контрольные суммы (двойной паритет), что позволяет ему выдерживать отказ двух дисков одновременно.

Назначение

RAID 6 обеспечивает высокий уровень защиты данных и подходит для систем, где критически важна надежность.

Примеры применения

RAID 6 часто используется в крупных системах хранения данных, где риск потери данных неприемлем, например, в облачных хранилищах, центрах обработки данных и серверных кластерах.

5 Выводы

Этот процесс позволил мне получить практику в работе с RAID-массивами и утилитами для его управления, а также познакомиться с основами настройки и восстановления массивов.

Список литературы

- 1. Vadala D. Managing RAID on Linux. O'Reilly, 2004.
- 2. UNIX Power Tools / M. Loukides, T. O'Reilly, J. Peek, S. Powers. O'Reilly Media, 2009.
- 3. Колисниченко Д. Н. Самоучитель системного администратора Linux. СПб. : БХВПетербург, 2011. (Системный администратор).