Vv156 Lecture 4

Dr Jing Liu

UM-SJTU Joint Institute

September 27, 2016

- Unlike for sequences, there are several types of limits for a function

$$y = f(x)$$

- We want to know the behaviour of f near a point x = a or near infinity, e.g. We may be interested in knowing the behaviour of average speed near t = 3

Average Speed =
$$\frac{\text{Distance travelled}}{\text{Time interval}} = \frac{s(t + \delta t) - s(t)}{\delta t}$$

- For an object that is dropped and falls straight down towards earth when the resistance of air is neglected, we have

$$s = \frac{1}{2}gt^2$$
, where $g \approx 10$ m/s²

δt	1.0000	0.5000	0.0100	0.0050	0.0001	0.00005
$s(3+\delta t)-s(3)$	35.0000	16.2500	0.3005	0.1501	0.0030	0.0015
Average Speed	35.0000	32.5000	30.0500	30.0250	30.0005	30.0002

Definition

The value L is the limit of f(x) as x approaches a,

$$\lim_{x\to a}f(x)=L$$

if the values of f(x) can be made as close as we like to L by taking values of x sufficiently close to a, but not equal to a.

- There are two ways that x can approach a, from the left or from the right

$$\lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$$

0.5000									0.5000
13.7500									16.2500
27.5000	29.9500	29.9750	29.9995	29.9997	30.0002	30.0005	30.0250	30.0500	32.5000

- The two-sided limit exists if and only if the one-sided limits exist and are equal.

- For example, consider $\lim_{x \to 0} \frac{|x|}{x}$

Matlab

```
>> syms x; ezplot('abs(x)/x',[-1,1]);
>> hold on; plot(0,1,'ro'); plot(0,-1,'ro'); hold off;
>> xlabel('x'); ylabel('y');
```

- The limit concerns the value of dependent variable y, y = f(x), as the value of the independent variable x gets

closer and closer to a rather than the value of y at x = a.

- It is clear that

$$f(x = 2) = -2$$

$$\lim_{x\to 2} f(x) = 4$$

Matlab

```
>> syms x;

>> ezplot('x+2');

>> hold on;

>> plot(2,4, 'ro');

>> plot(2,-2,'b.', 'MarkerSize', 15);

>> hold off;

>> xlabel('x'); ylabel('y');
```


- Limits that are infinite and limits at infinity, for example, consider the following
- Approaches ∞ or $-\infty$

$$\lim_{x \to \infty} \frac{x^2}{x^2 - 1} = 1$$

$$\lim_{x \to -\infty} \frac{x^2}{x^2 - 1} = 1$$

- Approahces to ∞ or $-\infty$

$$\lim_{x \to 1^{-}} \frac{x^{2}}{x^{2} - 1} = -\infty$$

$$\lim_{x \to 1^{+}} \frac{x^{2}}{x^{2} - 1} = \infty$$

$$\lim_{x \to -1^{-}} \frac{x^{2}}{x^{2} - 1} = \infty$$

$$\lim_{x \to -1^{+}} \frac{x^{2}}{x^{2} - 1} = -\infty$$

Matlab

```
>> syms x
>> num = 2*power(x,2); denom = power(x,2) -1;
>> f = num/denom;
>> ezplot(f,[-3 3])
>> xlabel('x'); ylabel('y');
```

Limit Laws

Assume that $\lim_{x\to a} f(x) = K$ and $\lim_{x\to a} g(x) = L$, and that c is constant,

1 The limit of a constant is the constant itself.

$$\lim_{x\to a}c=c$$

2 The limit of a sum/difference is the sum/difference of the limits.

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = K \pm L$$

3 The limit of a product is the product of the limits.

$$\lim_{x \to a} [f(x)g(x)] = \left[\lim_{x \to a} f(x)\right] \left[\lim_{x \to a} g(x)\right] = KL$$

4 The limit of a quotient is the quotient of the limits.

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{K}{L}, \quad \text{provided } \lim_{x \to a} g(x) \neq 0$$

Limit Laws

Assume that $\lim_{x\to a} f(x) = K$ and $\lim_{x\to a} g(x) = L$, and that c is constant,

5 If f is a polynomial or a rational function and a is in the domain of f, then

$$\lim_{x\to a}f(x)=f(a)$$

6 If f(x) = g(x) for all x near a, possibly except at x = a, then

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x),$$
 provided the limits exist

The Squeeze Theorem

If $g(x) \le f(x) \le h(x)$ when x is near a, except possibly at a, and if

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L, \text{ then } \lim_{x \to a} f(x) = L$$

Exercise

(a) Evaluate the following limits

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} \qquad \qquad \lim_{x \to 1} \frac{2x^2 + 6x}{x^2 - 9}$$

- (b) Use the squeeze theorem to show $\lim_{x\to 0} x \sin \frac{1}{x} = 0$
- The following precise definition of limit removes any vagueness in the definition.

Epsilon-Delta definition of limit

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. The value of L is the limit of f(x) as x approaches a,

$$\lim_{x \to a} f(x) = L$$

if for every number $\epsilon > 0$ there is a number $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 if $0 < |x - a| < \delta$

- This precise definition of limit removes any vagueness, and thus can be used to prove or establish results or theorems regarding limits.
- For example, consider

$$\lim_{x \to -1} (x^2 + 3) = 4$$

- For every $\epsilon > 0$, we need to find $\delta > 0$ (which depends on ϵ) such that

$$|f(x) - 4| < \epsilon$$
 if $0 < |x - (-1)| = |x + 1| < \delta$

- Since δ is the upper bound of |x+1|, we need to know how |x+1| behaves.
- Specifically, we need to find the upper bound in terms of ϵ .
- This can be done by investigating what leads to $|f(x)-4|<\epsilon$

$$|f(x)-4|<\epsilon \qquad \text{if and only if} \qquad |x^2+3-4|<\epsilon$$
 if and only if
$$|x^2-1|<\epsilon$$
 if and only if
$$|(x-1)(x+1)|<\epsilon$$
 if and only if
$$|x-1|+1|<\epsilon$$

- So we have

$$|f(x)-4|<\epsilon$$
 if and only if $|x-1||x+1|<\epsilon$

- We will now "replace" the term |x-1| with an appropriate constant and keep the term |x+1| since |x+1| is what we are after.
- To do so, we will arbitrarily assume that $\delta \leq 1$. This is a valid assumption to make since, in general, once we find a δ that works, all smaller values of δ also work.

Based on this assumption, then

$$|x+1| < \delta \le 1 \implies |x+1| < 1$$

$$\implies -1 < x+1 < 1$$

$$\implies -2 < x < 0$$

$$\implies 1 < |x-1| < 3$$

- Now if we combine |x-1| < 3 with the result

$$|f(x)-4|<\epsilon$$
 if and only if $|x-1||x+1|<\epsilon$,

then we know

$$|f(x) - 4| < \epsilon$$
 if and only if $(3)|x + 1| < \epsilon$

- This means an upper bound of $\frac{\epsilon}{3}$ for |x+1| will guarantee

$$|f(x) - 4| < \epsilon$$
, provided that $\delta \le 1$.

- Therefore choosing $\delta=\min\{1,\frac{\epsilon}{3}\}$ will guarantee both assumptions made about δ in the course of this proof are simultaneously taken into account, and will guarantee that

$$|f(x)-4|<\epsilon$$
 if $0<|x+1|<\delta$

for all $\epsilon > 0$.

13 / 22

- More importantly, the Epsilon-Delta definition is used to establish limit laws.
- For example, for the following limit laws:
- 1. $\lim_{x\to a} c = c$
- 2. $\lim_{x\to a} cf(x) = c \lim_{x\to a} f(x) = cK$, where $K = \lim_{x\to a} f(x)$.

Proof

- For the first part, let f(x) be the constant function, that is f(x) = c. We need to show that, for every number $\epsilon > 0$ there is a number $\delta > 0$ such that

$$|f(x)-c|<\epsilon$$
 if $0<|x-a|<\delta$

- The left inequality is always satisfied for any x since f(x) = c.

Thus for any $\epsilon > 0$, not only there is a number $\delta > 0$ such that

$$|f(x)-c|<\epsilon$$
 if $0<|x-a|<\delta$

actually every $\delta > 0$ is fine.

Proof

- For the second part, if c=0 then cf(x)=0, and $\lim_{x\to a}[0f(x)]=\lim_{x\to a}0$. It reduces to a special case of limit law 1., with c=0. Therefore we know 2. is true for c=0 and so we can assume that $c\neq 0$ for the remainder of this proof.
- Suppose $\epsilon > 0$, then $\frac{\epsilon}{|c|} > 0$. Because $\lim_{x \to a} f(x) = K$ by the precise definition of the limit there exists a $\delta_1 > 0$ such that,

$$|f(x) - K| < \frac{\epsilon}{|c|}$$
 if $0 < |x - a| < \delta_1$

Now suppose $\delta = \delta_1$ is a valid choice, to finish we need to show that

$$|cf(x) - cK| < \epsilon$$
 if $0 < |x - a| < \delta$

Assume that $0 < |x - a| < \delta$, then $0 < |x - a| < \delta_1$, which means

$$|f(x) - K| < \frac{\epsilon}{|c|} \implies |c||f(x) - K| < \epsilon \implies |cf(x) - cK| < \epsilon \quad \Box$$

The Squeeze Theorem

If $g(x) \le f(x) \le h(x)$ when x is near a, except possibly at a, and if

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L, \quad \text{then} \quad \lim_{x \to a} f(x) = L$$

Proof

- Suppose that $g(x) \le f(x) \le h(x)$ for all $x \ne a$ in near a and also that

$$\lim_{x \to a} g(x) = L = \lim_{x \to a} h(x) = L$$

- Let $\epsilon > 0$. Since

$$\lim_{x \to a} g(x) = L$$

- there is $\delta_{g} > 0$ so that

$$|g(x) - L| < \epsilon$$
 if $0 < |x - a| < \delta_g$

- Notice that this implies that

$$-\epsilon < g(x) - L < \epsilon \implies g(x) > L - \epsilon$$

Proof

- Similarly, since

$$\lim_{x\to a}h(x)=L$$

- there is $\delta_h > 0$ so that

$$|h(x) - L| < \epsilon$$
 if $0 < |x - a| < \delta_h$

and this implies that $h(x) < L + \epsilon$.

- Let $\delta = \min\{\delta_{g}, \delta_{h}\}$ and $0 < |x - a| < \delta$. Then

$$L - \epsilon < g(x) \le f(x) \le h(x) < L + \epsilon$$

$$L - \epsilon < f(x) < L + \epsilon$$

- Hence, $|f(x) - L| < \epsilon$. Since $\epsilon > 0$ is arbitrary, $\lim_{x \to a} f(x) = L$.

- We can definite limit at infinity and infinite limit precisely. For example,

Definition

Let f be function defined on some open interval that contains the number a, except possibly at a itself. Then the limit of f(x) approaches infinity, written as,

$$\lim_{x \to a} f(x) = \infty \qquad \text{or} \qquad f(x) \to \infty \quad \text{as} \quad x \to a$$

if for every number M>0 there exists a number $\delta>0$ such that

$$f(x) > M$$
 if $0 < |x - a| < \delta$

Definition

Let f be function defined on some open interval (a, ∞) . Then the limit of f(x)

$$\lim_{x \to \infty} f(x) = L$$
 or $f(x) \to L$ as $x \to \infty$

if for every number $\epsilon > 0$ there exists a number $M \in (a, \infty)$ such that

$$|f(x) - L| < \epsilon$$
 if $x > M$

- Many of our limits laws can be modified to accommodate infinity. For example,

Theorem

Suppose f(x) and g(x) are two functions such that

$$\lim_{x\to a} f(x) = \infty \qquad \lim_{x\to a} g(x) = L$$

1. The limit of the sum/difference is infinity

$$\lim_{x \to a} [f(x) \pm g(x)] = \infty$$

2. The limit of the product is infinity if L > 0 and negative infinity if L < 0

$$\lim_{x \to a} [f(x)g(x)] = \pm \infty$$

3. The limit of the quotient is infinity if L > 0 and negative infinity if L < 0

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \pm \infty \quad \text{and} \quad \lim_{x \to a} \frac{g(x)}{f(x)} = 0$$

Proof

- For M > 0, we know there exists δ_f such that if $0 < |x - a| < \delta_f$, we have

$$f(x) > \frac{2M}{L}$$

- We also know that there exists $\delta_{\mathbf{g}}$ such that if $0<|x-a|<\delta_{\mathbf{g}}$, we have

$$0 < |g(x) - L| < \frac{L}{2} \implies \frac{L}{2} < g(x) < \frac{3L}{2}$$

- Now let $\delta = \min\{\delta_f, \delta_g\}$, so if $0 < |x - a| < \delta$ we know from the above,

$$f(x) > \frac{2M}{L}$$
 and $g(x) > \frac{L}{2}$

- This gives us

$$f(x)g(x) > \left(\frac{2M}{L}\right)\left(\frac{L}{2}\right) = M \quad \Box$$

- All the limit laws hold when the limits are taken as $x \to \infty$ instead of $x \to a$.

Theorem

If r is a positive rational number, then $\lim_{x\to\infty}\frac{1}{x^r}=0$

Proof

- For every $\epsilon > 0$, we need to show that there exists a number M such that

$$\left| \frac{1}{x^r} - 0 \right| < \epsilon$$
 when $x > M$

- We know the root $\sqrt[\ell]{\frac{1}{\epsilon}}$ will exist since ϵ is positive, if we let $x>M=\sqrt[\ell]{\frac{1}{\epsilon}}$, then

$$x > \sqrt[r]{\frac{1}{\epsilon}} \implies x^r > \frac{1}{\epsilon} \implies \frac{1}{x^r} < \epsilon \implies \left| \frac{1}{x^r} - 0 \right| < \epsilon \quad \square$$

Theorem

If
$$p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$$
 is a polynomial of degree n , then
$$\lim_{x\to\infty}p(x)=\lim_{x\to\infty}a_nx^n$$

Exercise

(a) Find
$$\lim_{x \to \infty} \frac{x^2 + 5x + 1}{2x^2 - 10}$$

Theorem

The limit of a rational function as $x \to \infty$ is the limit of the quotient of the terms of highest degree in the numerator and the denominator as $x \to \infty$.

Exercise

(b) Find
$$\lim_{x \to \infty} \frac{3x^2 + 1}{4x^3 + 2x + 1}$$