TEST OF SIGNIFICANCE

By: Sheen Thusoo

ID: 20728766

CONCEPT

Test of Significance

- A formal process for comparing the observed data with a claim or null hypothesis
 - The truth of this hypothesis is assessed
- For example, a null hypothesis H₀ could be
 - Sub-populations P_1 and P_2 were randomly drawn from the same Population
 - Sub-populations P_1 and P_2 were generated randomly
 - Sub-populations P_1 and P_2 were created by randomly assigning units in one population to each sub-population
- A Discrepancy Measure $D(P_{1}, P_{2})$ helps us compare and quantify how inconsistent the data is with the null hypothesis
 - $Ex: D(P_{1}, P_{2}) = |\bar{y}_{1} \bar{y}_{2}|$
- Result: A p-value whose value indicates how strong the evidence is against H₀

MECHANISM/LOGIC

- 1. State the Null Hypothesis H₀
 - Ex: P_1 (Fiction Books) and P_2 (Non-Fiction Books) are randomly drawn from the same population
- 2. Establish Measure of Discrepancy $D(P_1, P_2)$
 - Large values indicate evidence against H₀
 - Ex: $D(P_1, P_2) = |\bar{y}_1 \bar{y}_2|$
- 3. Calculate Observed Discrepancy dobs
 - $D(P_1, P_2)$ calculated on the unshuffled sub-populations
- 4. Shuffle Sub-Populations M times & Calculate Observed p-value

$$p$$
-value = $Pr\left(D \ge d_{obs} \mid H_0 \text{ is true}\right) \approx \frac{1}{M} \sum_{i=1}^{M} I\left(D(\mathcal{P}_{1,i}^{\star}, \mathcal{P}_{2,i}^{\star}) \ge d_{obs}\right)$

P-Value	Specification
< 0.001	Very strong evidence against H ₀
0.00 I < p-value < 0.0 I	Strong evidence against H ₀
0.01 < p-value < 0.05	Evidence against H ₀
0.05 < p-value < 0.1	Weak evidence against H ₀
p-value > 0.1	No evidence against H ₀