Notebook

October 11, 2024

1 HW1

Author: QIhua Dong

Github: https://github.com/dddraxxx/ee5644

2 Q1

2.0.1 Generate a Gaussian mixture dataset

```
[2]: import numpy as np
     from scipy.stats import multivariate_normal
     # Parameters for class L=0
     m0 = np.array([-1, -1, -1, -1])
     CO = np.array([[2, -0.5, 0.3, 0],
                    [-0.5, 1, -0.5, 0],
                    [0.3, -0.5, 1, 0],
                    [0, 0, 0, 2]])
     # Parameters for class L=1
     m1 = np.array([1, 1, 1, 1])
     C1 = np.array([[1, 0.3, -0.2, 0],
                    [0.3, 2, 0.3, 0],
                    [-0.2, 0.3, 1, 0],
                    [0, 0, 0, 3]])
     # Class priors
     P_L0 = 0.35
     P_L1 = 0.65
     # Number of samples
     num_samples = 10000
     \# Generate class labels L (0 or 1) based on the priors
     labels = np.random.choice([0, 1], size=num_samples, p=[P_L0, P_L1])
     # Initialize an empty array to store the generated samples
```

Generated 10000 samples and saved to 'gaussian_mixture_samples.npz'

```
[4]: samples, labels
```

2.0.2 Part A

```
[12]: # Import necessary libraries
import numpy as np
from scipy.stats import multivariate_normal

# Load the generated data from part 1
data = np.load('gaussian_mixture_samples.npz')
samples = data['samples']
labels = data['labels']

# Compute the likelihoods p(x/L=0) and p(x/L=1) for each sample
p_x_given_L0 = multivariate_normal.pdf(samples, mean=m0, cov=C0)
p_x_given_L1 = multivariate_normal.pdf(samples, mean=m1, cov=C1)

# Likelihood ratio for each sample
likelihood_ratio = p_x_given_L1 / p_x_given_L0

# Print the answer for step 1
print("Minimum Expected Risk Classification Rule")
```

```
print("Likelihood ratio computed as p(x|L=1) / p(x|L=0) for each sample.") print(f"Sample likelihood ratios: {likelihood_ratio}") # Print the first 5_{\square} \hookrightarrow likelihood\ ratios\ as\ a\ sample
```

Minimum Expected Risk Classification Rule Likelihood ratio computed as p(x|L=1) / p(x|L=0) for each sample. Sample likelihood ratios: [3.51761361e+02 1.89713759e+20 7.80182270e-05 ... 2.50332324e-02 7.99132323e+00 1.64115809e+16]

```
[16]: import numpy as np
      import matplotlib.pyplot as plt
      # Set up a range of gamma (threshold) values to sweep through
      gamma_values = np.logspace(-3, 3, num=500) # 500 gamma values from 10^-3 to_
       →10<sup>3</sup>
      # Lists to store true positive and false positive rates for the ROC curve
      tpr_values = [] # True Positive Rate (P(D=1 | L=1))
      fpr values = [] # False Positive Rate (P(D=1 | L=0))
      # Iterate through each gamma and compute TPR and FPR
      for gamma in gamma_values:
          # Apply the likelihood ratio test: decide class based on threshold gamma
          decisions = (likelihood_ratio > gamma).astype(int)
          # True positives: D=1 and L=1
          tp = np.sum((decisions == 1) & (labels == 1))
          fn = np.sum((decisions == 0) & (labels == 1))
          tpr = tp / (tp + fn) # True positive rate
          # False positives: D=1 and L=0
          fp = np.sum((decisions == 1) & (labels == 0))
          tn = np.sum((decisions == 0) & (labels == 0))
          fpr = fp / (fp + tn) # False positive rate
          tpr values.append(tpr)
          fpr_values.append(fpr)
      # Plot the ROC curve
      plt.figure(figsize=(8, 6))
      plt.plot(fpr_values, tpr_values, label='ROC Curve')
      plt.plot([0, 1], [0, 1], 'k--', label='Random Classifier (chance level)')
      plt.title('ROC Curve for ERM Classifier')
      plt.xlabel('False Positive Rate (FPR)')
      plt.ylabel('True Positive Rate (TPR)')
      plt.legend(loc='lower right')
```

```
plt.grid()
plt.show()

# Print the answer for step 2
print("Step 2: ROC Curve computed and plotted.")

# print(f"TPR values (sample): {np.array(tpr_values)}")

# print(f"FPR values (sample): {np.array(fpr_values)}")
```


Step 2: ROC Curve computed and plotted.

```
[19]: # Step 3: Find the gamma that minimizes the probability of error
# P(error; gamma) = P(D=1 | L=0) * P(L=0) + P(D=0 | L=1) * P(L=1)
P_L0 = 0.35
P_L1 = 0.65

# Initialize an empty list to store the probability of error for each gamma
errors = []
# Calculate the error for each gamma value
```

```
for i, gamma in enumerate(gamma_values):
    # False positive rate and false negative rate (1 - True positive rate)
    fpr = fpr_values[i]
    fnr = 1 - tpr_values[i]
    # Probability of error for this gamma
    p_error = fpr * P_L0 + fnr * P_L1
    errors.append(p_error)
# Find the index of the minimum error
min error idx = np.argmin(errors)
min_error_gamma = gamma_values[min_error_idx]
min_error_value = errors[min_error_idx]
# Plot the ROC curve again, but highlight the point of minimum error
plt.figure(figsize=(8, 6))
plt.plot(fpr_values, tpr_values, label='ROC Curve')
plt.plot([0, 1], [0, 1], 'k--', label='Random Classifier (chance level)')
plt.scatter(fpr_values[min_error_idx], tpr_values[min_error_idx], color='red',_
 →label=f'Min Error (gamma={min_error_gamma:.2f})', zorder=5)
plt.title('ROC Curve with Min Error Point Highlighted')
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')
plt.legend(loc='lower right')
plt.grid()
plt.show()
# Print the answer for step 3
print("Step 3: Minimizing the Probability of Error")
print(f"The minimum probability of error is {min error value: .4f} at gamma = __

√{min_error_gamma:.4f}")
print(f"Corresponding FPR: {fpr_values[min_error_idx]:.4f}, TPR:__
 →{tpr_values[min_error_idx]:.4f}")
# Compute the theoretical optimal gamma
gamma_opt_theoretical = P_L0 / P_L1
# Print the comparison
print("\n")
print("Comparison of Empirically Selected Gamma and Theoretical Optimal Gamma")
print(f"Empirically selected gamma (from ROC curve) = {min_error_gamma:.4f}")
print(f"Theoretically optimal gamma (from priors) = {gamma_opt_theoretical:.

4f}")

# Compare the results
if np.isclose(min_error_gamma, gamma_opt_theoretical, atol=0.01):
    print("The empirical gamma is very close to the theoretical optimal gamma.")
```

else:
 print("The empirical gamma differs from the theoretical optimal gamma.")

Step 3: Minimizing the Probability of Error
The minimum probability of error is 0.0358 at gamma = 0.4419
Corresponding FPR: 0.0494, TPR: 0.9715

Comparison of Empirically Selected Gamma and Theoretical Optimal Gamma Empirically selected gamma (from ROC curve) = 0.4419 Theoretically optimal gamma (from priors) = 0.5385 The empirical gamma differs from the theoretical optimal gamma.

2.0.3 Part B

```
[20]: import numpy as np
    from scipy.stats import multivariate_normal
    import matplotlib.pyplot as plt

# Load the generated data
```

```
data = np.load('gaussian_mixture_samples.npz')
      samples = data['samples']
      labels = data['labels']
      # True mean vectors from Part A
      m0 = np.array([-1, -1, -1, -1])
      m1 = np.array([1, 1, 1, 1])
      # True covariance matrices from Part A
      CO_{true} = np.array([[2, -0.5, 0.3, 0],
                          [-0.5, 1, -0.5, 0],
                          [0.3, -0.5, 1, 0],
                          [0, 0, 0, 2]])
      C1_{true} = np.array([[1, 0.3, -0.2, 0],
                          [0.3, 2, 0.3, 0],
                          [-0.2, 0.3, 1, 0],
                          [0, 0, 0, 3]])
      # Naive Bayesian assumption: use diagonal covariance matrices
      # Extract the diagonal entries (variances) for each class
      CO_naive = np.diag(np.diag(CO_true)) # Diagonal matrix for class L=0
      C1_naive = np.diag(np.diag(C1_true)) # Diagonal matrix for class L=1
      # Print the diagonal covariance matrices to verify
      print("Diagonal covariance matrix for class L=0 (Naive Bayes assumption):")
      print(CO_naive)
      print("Diagonal covariance matrix for class L=1 (Naive Bayes assumption):")
      print(C1_naive)
     Diagonal covariance matrix for class L=0 (Naive Bayes assumption):
     [[2. 0. 0. 0.]
      [0. 1. 0. 0.]
      [0. 0. 1. 0.]
      [0. 0. 0. 2.]]
     Diagonal covariance matrix for class L=1 (Naive Bayes assumption):
     [[1. 0. 0. 0.]
      [0. 2. 0. 0.]
      [0. 0. 1. 0.]
      [0. 0. 0. 3.]]
[22]: # Class priors
      P_L0 = 0.35
      P_L1 = 0.65
      # Compute the likelihoods p(x/L=0) and p(x/L=1) using the Naive Bayes assumption
      p_x_given_L0_naive = multivariate_normal.pdf(samples, mean=m0, cov=C0_naive)
```

```
p x given L1 naive = multivariate normal.pdf(samples, mean=m1, cov=C1 naive)
      # Likelihood ratio for each sample under Naive Bayes assumption
      likelihood_ratio_naive = p_x_given_L1_naive / p_x_given_L0_naive
      # Print some sample likelihood ratios
      print(f"Sample likelihood ratios (Naive Bayes assumption):⊔
       →{likelihood_ratio_naive}")
     Sample likelihood ratios (Naive Bayes assumption): [2.70824011e+01
     3.20203944e+08 2.41014784e-04 ... 3.99848265e-02
      1.19619104e+01 1.72700163e+07]
[23]: # Set up a range of gamma (threshold) values to sweep through
      gamma_values = np.logspace(-3, 3, num=500) # 500 gamma values from 10^-3 to_
       →10<sup>3</sup>
      # Lists to store true positive and false positive rates for the ROC curve
      tpr_values_naive = [] # True Positive Rate (P(D=1 | L=1))
      fpr values naive = [] # False Positive Rate (P(D=1 | L=0))
      # Iterate through each gamma and compute TPR and FPR using Naive Bayes
       \hookrightarrow assumption
      for gamma in gamma_values:
          decisions_naive = (likelihood_ratio_naive > gamma).astype(int)
          # True\ positives:\ D=1\ and\ L=1
          tp = np.sum((decisions naive == 1) & (labels == 1))
          fn = np.sum((decisions_naive == 0) & (labels == 1))
          tpr_naive = tp / (tp + fn) # True positive rate
          # False positives: D=1 and L=0
          fp = np.sum((decisions naive == 1) & (labels == 0))
          tn = np.sum((decisions_naive == 0) & (labels == 0))
          fpr_naive = fp / (fp + tn) # False positive rate
          tpr_values_naive.append(tpr_naive)
          fpr_values_naive.append(fpr_naive)
      # Plot the ROC curve for the Naive Bayes assumption
      plt.figure(figsize=(8, 6))
      plt.plot(fpr_values_naive, tpr_values_naive, label='ROC Curve (Naive Bayes)')
      plt.plot([0, 1], [0, 1], 'k--', label='Random Classifier (chance level)')
```

plt.title('ROC Curve for Naive Bayes Classifier')

plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')

plt.legend(loc='lower right')

```
plt.grid()
plt.show()

# Print the ROC curve details
print("ROC Curve for Naive Bayes classifier plotted.")
```


ROC Curve for Naive Bayes classifier plotted.

```
[24]: # Step 4: Find the gamma that minimizes the probability of error using Naive_
Bayes assumption
errors_naive = []

# Calculate the error for each gamma value using Naive Bayes assumption
for i, gamma in enumerate(gamma_values):
    # False positive rate and false negative rate (1 - True positive rate)
    fpr_naive = fpr_values_naive[i]
    fnr_naive = 1 - tpr_values_naive[i]

# Probability of error for this gamma
```

Step 4: Minimizing the Probability of Error with Naive Bayes Assumption The minimum probability of error (Naive Bayes) is 0.0438 at gamma = 0.4298

```
[25]: # Plot ROC Curves for both models to compare
     plt.figure(figsize=(8, 6))
      plt.plot(fpr_values, tpr_values, label='True Model ROC Curve')
      plt.plot(fpr_values naive, tpr_values naive, label='Naive Bayes ROC Curve')
      plt.plot([0, 1], [0, 1], 'k--', label='Random Classifier (chance level)')
      plt.title('Comparison of ROC Curves (True Model vs Naive Bayes)')
      plt.xlabel('False Positive Rate (FPR)')
      plt.ylabel('True Positive Rate (TPR)')
      plt.legend(loc='lower right')
      plt.grid()
      plt.show()
      # Print minimum error comparison
      print("Comparison of Minimum Probability of Error")
      print(f"True Model: Minimum probability of error = {min(errors):.4f} at gamma =__

¬{gamma_values[np.argmin(errors)]:.4f}")
      print(f"Naive Bayes Model: Minimum probability of error = ...
       →{min_error_value_naive:.4f} at gamma = {min_error_gamma_naive:.4f}")
      # Analyze if the error rates differ significantly
      error_diff = abs(min(errors) - min_error_value_naive)
      print(f"Difference in minimum error between True Model and Naive Bayes:
       →{error_diff:.4f}")
      # Conclusion
      if error_diff > 0.01:
          print("The Naive Bayes assumption negatively impacted the performance, ⊔
       ⇔leading to a higher probability of error.")
          print("The Naive Bayes assumption had a minimal impact on the performance∟
       ⇔in this case.")
```


Comparison of Minimum Probability of Error

True Model: Minimum probability of error = 0.0358 at gamma = 0.4419

Naive Bayes Model: Minimum probability of error = 0.0438 at gamma = 0.4298

Difference in minimum error between True Model and Naive Bayes: 0.0080

The Naive Bayes assumption had a minimal impact on the performance in this case.

2.1 Part C

```
[26]: import numpy as np

# Load the generated data
data = np.load('gaussian_mixture_samples.npz')
samples = data['samples']
labels = data['labels']

# Separate the samples by class
class_0_samples = samples[labels == 0]
class_1_samples = samples[labels == 1]

# Estimate the means (sample average for each class)
```

```
mean_0 = np.mean(class_0_samples, axis=0)
     mean_1 = np.mean(class_1_samples, axis=0)
     # Estimate the covariances (sample covariance for each class)
     cov_0 = np.cov(class_0_samples, rowvar=False)
     cov_1 = np.cov(class_1_samples, rowvar=False)
     # Print the estimated means and covariances
     print("Estimated mean for class 0:", mean 0)
     print("Estimated mean for class 1:", mean_1)
     print("Estimated covariance for class 0:\n", cov 0)
     print("Estimated covariance for class 1:\n", cov_1)
     Estimated mean for class 0: [-0.97885076 -1.0237032 -0.9936786 -0.98522708]
     Estimated mean for class 1: [0.98877577 1.01837441 1.00133738 1.03811884]
     Estimated covariance for class 0:
      [[ 2.05628253 -0.50954691  0.30881279  0.02713176]
      [-0.50954691 0.99377434 -0.50324397 -0.0270095 ]
      [ 0.30881279 -0.50324397 1.01671457 0.02585526]
      Estimated covariance for class 1:
      [ 0.28232123  2.00259907  0.33323045  -0.02692974]
      [-0.17598996 0.33323045 1.00285683 0.03258915]
      [-0.00444704 -0.02692974 0.03258915 2.96640964]]
[27]: # Compute the within-class scatter matrix (S_W)
     S_W = cov_0 + cov_1
     # Compute the between-class difference in means
     mean_diff = mean_1 - mean_0
     # Compute the Fisher LDA weight vector
     w_LDA = np.linalg.inv(S_W).dot(mean_diff)
     # Print the Fisher LDA weight vector
     print("Fisher LDA projection vector (w_LDA):", w_LDA)
     Fisher LDA projection vector (w_LDA): [0.65951191 0.79556628 0.99968001
     0.40636247]
[29]: # Project all the samples onto the LDA direction
     projected_data = samples.dot(w_LDA)
     # Print a few sample projections
     print(f"First 5 projected data points: {projected_data}")
     First 5 projected data points: [ 1.71430203 8.94072525 -4.16443533 ...
     -2.85120666 0.62648119
```

6.073762621

```
[30]: import matplotlib.pyplot as plt
      # Set up a range of tau (threshold) values to sweep through
      tau_values = np.linspace(np.min(projected_data), np.max(projected_data),
       \rightarrownum=500)
      # Lists to store true positive and false positive rates for the ROC curve
      tpr_values_lda = [] # True Positive Rate (P(D=1 | L=1))
      fpr_values_lda = [] # False Positive Rate (P(D=1 | L=0))
      # Iterate through each tau and compute TPR and FPR
      for tau in tau_values:
          decisions_lda = (projected_data > tau).astype(int)
          # True positives: D=1 and L=1
          tp = np.sum((decisions lda == 1) & (labels == 1))
          fn = np.sum((decisions lda == 0) & (labels == 1))
          tpr_lda = tp / (tp + fn) # True positive rate
          # False positives: D=1 and L=0
          fp = np.sum((decisions_lda == 1) & (labels == 0))
          tn = np.sum((decisions lda == 0) & (labels == 0))
          fpr_lda = fp / (fp + tn) # False positive rate
          tpr_values_lda.append(tpr_lda)
          fpr_values_lda.append(fpr_lda)
      # Plot the ROC curve for Fisher LDA
      plt.figure(figsize=(8, 6))
      plt.plot(fpr_values_lda, tpr_values_lda, label='ROC Curve (Fisher LDA)')
      plt.plot([0, 1], [0, 1], 'k--', label='Random Classifier (chance level)')
      plt.title('ROC Curve for Fisher LDA Classifier')
      plt.xlabel('False Positive Rate (FPR)')
      plt.ylabel('True Positive Rate (TPR)')
      plt.legend(loc='lower right')
      plt.grid()
      plt.show()
      # Print the ROC curve details
      print("ROC Curve for Fisher LDA classifier plotted.")
```


ROC Curve for Fisher LDA classifier plotted.

```
[31]: # Class priors
P_LO = 0.35
P_L1 = 0.65

# Initialize an empty list to store the probability of error for each tau errors_lda = []

# Calculate the error for each tau value for i, tau in enumerate(tau_values):
    # False positive rate and false negative rate (1 - True positive rate) fpr_lda = fpr_values_lda[i]
    fnr_lda = 1 - tpr_values_lda[i]

# Probability of error for this tau
    p_error_lda = fpr_lda * P_LO + fnr_lda * P_L1 errors_lda.append(p_error_lda)

# Find the index of the minimum error
```

Step 5: Minimizing the Probability of Error with Fisher LDA The minimum probability of error (LDA) is 0.0397 at tau = -0.7305

```
[33]: # Plot ROC Curves for all three models (True Model, Naive Bayes, Fisher LDA)
      ⇔for comparison
     plt.figure(figsize=(8, 6))
     plt.plot(fpr_values, tpr_values, label='True Model ROC Curve')
     plt.plot(fpr_values_naive, tpr_values_naive, label='Naive Bayes ROC Curve')
     plt.plot(fpr_values_lda, tpr_values_lda, label='Fisher LDA ROC Curve')
     plt.plot([0, 1], [0, 1], 'k--', label='Random Classifier (chance level)')
     plt.title('Comparison of ROC Curves (True Model, Naive Bayes, Fisher LDA)')
     plt.xlabel('False Positive Rate (FPR)')
     plt.ylabel('True Positive Rate (TPR)')
     plt.legend(loc='lower right')
     plt.grid()
     plt.show()
     # Print minimum error comparison for all three models
     print("Comparison of Minimum Probability of Error")
     print(f"True Model: Minimum probability of error = {min(errors):.4f} at gamma =
      print(f"Naive Bayes Model: Minimum probability of error =_
      →{min_error_value_naive:.4f} at gamma = {min_error_gamma_naive:.4f}")
     print(f"Fisher LDA Model: Minimum probability of error = {min_error_value_lda:.
```


Comparison of Minimum Probability of Error

True Model: Minimum probability of error = 0.0358 at gamma = 0.4419 Naive Bayes Model: Minimum probability of error = 0.0438 at gamma = 0.4298 Fisher LDA Model: Minimum probability of error = 0.0397 at tau = -0.7305

2.1.1 LDA Classifier Performance Compared to True Model and Naive Bayes Summary:

- True Model: Optimal performance due to full knowledge of class distributions.
- Naive Bayes: Suffers from feature independence assumption.
- **Fisher LDA**: Provides a strong balance between simplicity and performance, offering a near-optimal solution while being computationally efficient.

Notebook

October 11, 2024

1 Q2

1.1 Part A: Minimum Probability of Error Classification (0-1 Loss)

```
[2]: ## Step 1: Generate 10,000 Samples from the Data Distribution
     import numpy as np
     # Class priors
     P_L1 = 0.3
     P_L2 = 0.3
     P_L3 = 0.4
     # Means and covariances for each class
     mean_1 = [0, 0, 0] # Mean for class 1
     mean_2 = [3, 3, 3] # Mean for class 2
     mean 3a = [6, 0, 0] # First component of class 3
     mean_3b = [0, 6, 6] # Second component of class 3
     cov_1 = np.eye(3) # Covariance for class 1 (identity)
     cov_2 = np.eye(3) # Covariance for class 2 (identity)
     cov_3 = np.eye(3) # Same covariance for both components of class 3
     # Number of samples to generate
     n_samples = 10000
     # Generate samples for each class based on the priors
     n_L1 = int(P_L1 * n_samples)
     n_L2 = int(P_L2 * n_samples)
     n_L3 = n_samples - n_L1 - n_L2
     # Generate class 1 samples (single Gaussian)
     samples_L1 = np.random.multivariate_normal(mean_1, cov_1, n_L1)
     # Generate class 2 samples (single Gaussian)
     samples_L2 = np.random.multivariate_normal(mean_2, cov_2, n_L2)
     # Generate class 3 samples (from mixture of two Gaussians)
     samples_L3a = np.random.multivariate_normal(mean_3a, cov_3, n_L3 // 2)
```

```
samples_L3b = np.random.multivariate normal(mean_3b, cov_3, n_L3 // 2)
     samples_L3 = np.vstack((samples_L3a, samples_L3b))
     # Combine samples and create true labels
     samples = np.vstack((samples_L1, samples_L2, samples_L3))
     labels = np.array([1] * n_L1 + [2] * n_L2 + [3] * n_L3)
     # Print shapes to verify
     print(f"Generated samples shape: {samples.shape}")
     print(f"Generated labels shape: {labels.shape}")
    Generated samples shape: (10000, 3)
    Generated labels shape: (10000,)
[3]: ## Step 2: Implement the Bayesian Decision Rule (Minimum Error)
     from scipy.stats import multivariate_normal
     # Compute the class-conditional likelihoods for each class
     likelihood L1 = multivariate normal.pdf(samples, mean=mean 1, cov=cov_1)
     likelihood L2 = multivariate normal.pdf(samples, mean=mean 2, cov=cov 2)
     likelihood_L3a = multivariate_normal.pdf(samples, mean=mean_3a, cov=cov_3)
     likelihood_L3b = multivariate_normal.pdf(samples, mean=mean_3b, cov=cov_3)
     # Class 3 is a mixture, so we average the likelihoods from the two components
     likelihood_L3 = 0.5 * (likelihood_L3a + likelihood_L3b)
     # Compute the posterior probabilities using Bayes' Rule
     posterior_L1 = likelihood_L1 * P_L1
     posterior_L2 = likelihood_L2 * P_L2
     posterior_L3 = likelihood_L3 * P_L3
     # Combine posteriors into a matrix
     posteriors = np.vstack((posterior_L1, posterior_L2, posterior_L3)).T
     # Classify based on maximum posterior probability (Bayesian Decision Rule)
     predicted_labels = np.argmax(posteriors, axis=1) + 1 # Add 1 to match label_
      \hookrightarrow indexing
     # Calculate the confusion matrix
     confusion_matrix = np.zeros((3, 3), dtype=int)
     for true label, predicted label in zip(labels, predicted labels):
         confusion_matrix[true_label - 1, predicted_label - 1] += 1
     # Print confusion matrix
     print("Confusion Matrix:")
```

print(confusion_matrix)

```
ΓΓ2983
             13
                   41
     [ 17 2960
                  231
     Γ
         3
             19 3978]]
[5]: ## Step 3: Visualize the Data in 3D and Indicate Correct/Incorrect
     \hookrightarrow Classifications
     import matplotlib.pyplot as plt
     from mpl_toolkits.mplot3d import Axes3D
     # Create a 3D scatter plot of the data
     fig = plt.figure(figsize=(10, 7))
     ax = fig.add_subplot(111, projection='3d')
     # Correctly classified points will be green, incorrect ones will be red
     for i in range(1, 4):
         correct_idx = (labels == i) & (predicted_labels == i)
         incorrect_idx = (labels == i) & (predicted_labels != i)
         ax.scatter(samples[correct_idx, 0], samples[correct_idx, 1],__
      ⇒samples[correct_idx, 2], label=f'Class {i} (Correct)', marker='o', □
      ⇔color='green', s=20)
         ax.scatter(samples[incorrect_idx, 0], samples[incorrect_idx, 1],__
      ⇒samples[incorrect_idx, 2], label=f'Class {i} (Incorrect)', marker='x', u
      ⇔color='red', s=20)
     # Labels and title
     ax.set_title("3D Scatter Plot of Classified Data")
     ax.set_xlabel("X1")
     ax.set_ylabel("X2")
     ax.set_zlabel("X3")
     ax.legend(loc="best")
     # Show the plot
     plt.show()
```

Confusion Matrix:

3D Scatter Plot of Classified Data

1.2 Part B: Expected Risk Minimization (ERM) with Different Loss Matrices

```
return posterior_probs.dot(loss_matrix)
     # Perform classification with Lambda_10
     risk_10 = expected_risk(posteriors, Lambda_10)
     predicted_labels_10 = np.argmin(risk_10, axis=1) + 1
     # Perform classification with Lambda 100
     risk_100 = expected_risk(posteriors, Lambda_100)
     predicted_labels_100 = np.argmin(risk_100, axis=1) + 1
     # Calculate and print confusion matrices for both
     confusion_matrix_10 = np.zeros((3, 3), dtype=int)
     confusion_matrix_100 = np.zeros((3, 3), dtype=int)
     for true label, predicted label in zip(labels, predicted labels_10):
         confusion_matrix_10[true_label - 1, predicted_label - 1] += 1
     for true label, predicted label in zip(labels, predicted labels_100):
         confusion_matrix_100[true_label - 1, predicted_label - 1] += 1
     print("Confusion Matrix (Lambda_10):")
     print(confusion_matrix_10)
     print("Confusion Matrix (Lambda 100):")
     print(confusion_matrix_100)
    Confusion Matrix (Lambda_10):
    [[2996
                   01
     [ 58 2935
                   7]
             61 3930]]
         9
    Confusion Matrix (Lambda_100):
    [[3000
              0
                   0]
                   21
     [ 148 2850
     [ 43 167 3790]]
[7]: # Function to create the 3D scatter plot
     def plot_3d_classification(samples, labels, predicted_labels, title):
         fig = plt.figure(figsize=(10, 7))
         ax = fig.add_subplot(111, projection='3d')
         for i in range(1, 4):
             correct_idx = (labels == i) & (predicted_labels == i)
             incorrect_idx = (labels == i) & (predicted_labels != i)
             ax.scatter(samples[correct_idx, 0], samples[correct_idx, 1],__
      samples[correct_idx, 2], label=f'Class {i} (Correct)', marker='o', [
      ⇔color='green', s=20)
```

```
ax.scatter(samples[incorrect_idx, 0], samples[incorrect_idx, 1],
samples[incorrect_idx, 2], label=f'Class {i} (Incorrect)', marker='x',
color='red', s=20)

ax.set_title(title)
ax.set_xlabel("X1")
ax.set_ylabel("X2")
ax.set_zlabel("X3")
ax.legend(loc="best")
plt.show()

# Plot for Lambda_10
plot_3d_classification(samples, labels, predicted_labels_10, "3D Scatter Plot_
color='red', s=20)

ax.set_vlabel("X1")
ax.set_ylabel("X2")
ax.set_zlabel("X3")
ax.legend(loc="best")
plt.show()

# Plot for Lambda_10
plot_3d_classification(samples, labels, predicted_labels_10, "3D Scatter Plot_
color='red', s=20)

ax.set_vlabel("X1")
ax.set_vlabel("X2")
ax.set_vlabel("X2
```

3D Scatter Plot (ERM with Lambda_10)

3D Scatter Plot (ERM with Lambda 100)


```
[8]: # Compare Confusion Matrices
print("Comparison of Confusion Matrices:\n")

# Confusion matrix for Bayesian classification (Part A)
print("Confusion Matrix (Bayesian Classifier - Part A):")
print(confusion_matrix)

# Confusion matrix for ERM with Lambda_10
print("\nConfusion Matrix (ERM with Lambda_10):")
print(confusion_matrix_10)

# Confusion matrix for ERM with Lambda_100
print("\nConfusion Matrix (ERM with Lambda_100):")
```

```
print(confusion_matrix_100)
```

Comparison of Confusion Matrices:

```
Confusion Matrix (Bayesian Classifier - Part A):
[[2983
         13
               4]
   17 2960
              23]
 3
         19 3978]]
Confusion Matrix (ERM with Lambda_10):
[[2996
          4
               0]
               7]
 [ 58 2935
 9
         61 3930]]
Confusion Matrix (ERM with Lambda_100):
[[3000
          0
               0]
 [ 148 2850
   43 167 3790]]
```

1.2.1 Inisght

1.2.2 Summary of Insights:

- As the penalty for Class 3 errors increases (from ({10}) to ({100})), the model becomes highly accurate in classifying Class 3 but at the cost of more errors in Classes 1 and 2.
- The trade-off is evident: focusing on reducing errors for one class (Class 3) leads to increased misclassifications for other classes (especially Class 2).

Notebook

October 11, 2024

1 Q3

2 Wine Quality Dataset

2.0.1 Step 1: Load the Wine Quality Dataset

We will load both red and white wine datasets, which contain 11 features and quality labels ranging from 0 to 10.

```
# # Display the first few rows of the white wine data
# print("Wine White Data Sample:\n", wine_white.head())
```

Wine Red Dataset Shape: (1599, 12) Wine White Dataset Shape: (4898, 12)

```
[15]: import numpy as np
      import pandas as pd
      from scipy.stats import multivariate normal
      from sklearn.metrics import confusion_matrix, accuracy_score
      # Helper function to compute class priors, means, and covariances
      def estimate_statistics(X, y):
          classes = np.unique(y)
          class_priors = []
          class_means = []
          class_covariances = []
          for cls in classes:
              X_class = X[y == cls]
              prior = len(X class) / len(X)
              mean = np.mean(X class, axis=0)
              covariance = np.cov(X_class, rowvar=False)
              class_priors.append(prior)
              class_means.append(mean)
              class_covariances.append(covariance)
          return np.array(class_priors), np.array(class_means), np.
       ⇔array(class_covariances)
      # Load the Wine Quality data (red wine for this example)
      wine_red = pd.read_csv('/mnt/localssd/ee5644/hw1/wine_quality/winequality-red.
       ⇔csv', sep=';')
      # Extract features and labels
      wine_red_X = wine_red.drop(columns='quality').values
      wine_red_y = wine_red['quality'].values
      # Debug: Print the unique values and range of the true labels
      print("True Labels (Wine Red):", np.unique(wine_red_y))
      print(f"True Labels Range: {wine_red_y.min()} to {wine_red_y.max()}")
      # Estimate priors, means, and covariances for Wine Red dataset
      priors_red, means_red, covs_red = estimate_statistics(wine_red_X, wine_red_y)
```

```
# Regularization function for covariance matrices
def regularize_covariance(cov_matrix, lambda_value):
    I = np.eye(cov_matrix.shape[0])
    regularized_cov = cov_matrix + lambda_value * I
    return regularized_cov
# Apply regularization to the covariance matrices with lambda = 0.01
lambda_reg = 0.01
covs red reg = [regularize covariance(cov, lambda reg) for cov in covs red]
# Function to apply minimum-probability-of-error classification
def classify_min_error(X, priors, means, covs):
    n_samples = X.shape[0]
    n_classes = len(priors)
    posteriors = np.zeros((n_samples, n_classes))
    for i in range(n_classes):
        likelihood = multivariate_normal.pdf(X, mean=means[i], cov=covs[i])
        posteriors[:, i] = likelihood * priors[i]
    predicted_labels = np.argmax(posteriors, axis=1)
    return predicted_labels + 3
# Apply minimum-probability-of-error classification
predicted_red = classify_min_error(wine_red_X, priors_red, means_red,_u
 ⇔covs_red_reg)
# Debug: Print the unique values and range of the predicted labels after the fix
print("Predicted Labels (Wine Red) After Fix:", np.unique(predicted red))
print(f"Predicted Labels Range After Fix: {predicted_red.min()} to_u
 →{predicted_red.max()}")
# Compute confusion matrix and error probability for Wine Red
conf_matrix_red = confusion_matrix(wine_red_y, predicted_red)
error_prob_red = 1 - accuracy_score(wine_red_y, predicted_red)
# Print confusion matrix and error probability
print("Confusion Matrix (Wine Red):\n", conf_matrix_red)
print("Error Probability (Wine Red):", error_prob_red)
True Labels (Wine Red): [3 4 5 6 7 8]
True Labels Range: 3 to 8
Predicted Labels (Wine Red) After Fix: [3 4 5 6 7 8]
Predicted Labels Range After Fix: 3 to 8
Confusion Matrix (Wine Red):
```

```
[[ 5 0 3 2 0 0]
        2
             6 28 15
                         2
                             0]
        5 13 486 165 12
                            0]
      Γ 1
            6 188 394 45
                             4]
      0 ]
             0 11 119
                             31
                        66
      Γ
                 1
                     7
                         5
                            511
     Error Probability (Wine Red): 0.39837398373983735
[16]: from sklearn.decomposition import PCA
     import matplotlib.pyplot as plt
      # Function to visualize the dataset using PCA
     def visualize_pca(X, y, predicted_labels, title):
         pca = PCA(n_components=2)
         X_pca = pca.fit_transform(X)
         plt.figure(figsize=(8, 6))
         scatter = plt.scatter(X_pca[:, 0], X_pca[:, 1], c=predicted_labels,__

cmap='coolwarm', alpha=0.6)

         plt.title(title)
         plt.xlabel('Principal Component 1')
         plt.ylabel('Principal Component 2')
         plt.colorbar(scatter)
         plt.show()
      # Visualize the original wine data and the predicted labels (Wine Red)
     visualize_pca(wine_red_X, wine_red_y, predicted_red, "Wine Red Dataset_
       ⇔Classification (PCA)")
```


2.0.2 Results and Discussion

1. Confusion Matrix:

- The confusion matrix shows how well the classifier performed for each class.
- The classifier performed reasonably well on the middle classes (4-7), but there are still some misclassifications, particularly for the more extreme classes (3 and 8).

2. Error Probability:

• The overall error probability is **39.8**%, which suggests that the Gaussian assumption might not perfectly capture the true class-conditional distributions of the data.

3. Visualization Using PCA:

- The PCA visualization shows the separation of different wine quality classes in a 2D projection.
- If the classes overlap significantly in the PCA projection, this suggests that the Gaussian model may not be able to fully separate the classes, leading to higher misclassification rates.

4. Suitability of the Gaussian Model:

• The assumption that the features follow a Gaussian distribution for each class might not fully hold for the Wine Quality dataset.

• Given the error probability and the PCA visualization, we can infer that a more flexible model (e.g., non-parametric models or mixture models) could potentially perform better.

5. Conclusion:

- While the Gaussian class-conditional model provides a good baseline, it may not be the best fit for this dataset due to the complex nature of the feature distributions.
- Further improvements could be achieved by exploring models that relax the Gaussian assumption or by incorporating feature transformations to make the data more amenable to Gaussian modeling.

3 Human Activity Recognition Using Smartphones Dataset

3.0.1 Step 1: Load the Human Activity Recognition (HAR) Dataset

We will load the HAR dataset's training data ($X_{train.txt}$) and the corresponding labels ($y_{train.txt}$).

```
[17]: import pandas as pd
      import numpy as np
      # Load the training data for HAR dataset
      X_train = pd.read_csv('/mnt/localssd/ee5644/hw1/
       ⇔human_activity_recognition_using_smartphones/UCI HAR Dataset/train/X_train.
       stxt', delim_whitespace=True, header=None)
      y_train = pd.read_csv('/mnt/localssd/ee5644/hw1/
       whuman activity recognition using smartphones/UCI HAR Dataset/train/y train.
       otxt', delim_whitespace=True, header=None)
      # Convert to numpy arrays
      X_train = X_train.values
      y_train = y_train.values.flatten()
      # Display shape and basic information
      print("X_train shape:", X_train.shape)
      print("y_train shape:", y_train.shape)
      print("Unique labels in y_train:", np.unique(y_train))
```

/tmp/ipykernel_3182837/2131676244.py:5: FutureWarning: The 'delim_whitespace' keyword in pd.read_csv is deprecated and will be removed in a future version. Use ``sep='\s+'`` instead

 $\label{eq:csv} $$X_{\tau in} = pd.read_csv('/mnt/localssd/ee5644/hw1/human_activity_recognition_using_smartphones/UCI HAR Dataset/train/X_train.txt', delim_whitespace=True, header=None)$

```
X_train shape: (7352, 561)
y_train shape: (7352,)
Unique labels in y_train: [1 2 3 4 5 6]
```

/tmp/ipykernel_3182837/2131676244.py:6: FutureWarning: The 'delim_whitespace' keyword in pd.read_csv is deprecated and will be removed in a future version.

```
ng smartphones/UCI HAR Dataset/train/y train.txt', delim whitespace=True,
     header=None)
[19]: # Helper function to compute class priors, means, and covariances
     def estimate_statistics(X, y):
         classes = np.unique(y)
         class priors = []
         class_means = []
         class covariances = []
         for cls in classes:
             X_{class} = X[y == cls]
            prior = len(X_class) / len(X)
            mean = np.mean(X_class, axis=0)
             covariance = np.cov(X_class, rowvar=False)
             class_priors.append(prior)
             class_means.append(mean)
             class_covariances.append(covariance)
         return np.array(class_priors), np.array(class_means), np.
      →array(class covariances)
     # Estimate priors, means, and covariances for HAR training dataset
     priors_har, means_har, covs_har = estimate_statistics(X_train, y_train)
     # Print estimated statistics for HAR
     print("Class Priors (HAR):", priors_har)
     # print("Mean Vectors (HAR) - Class 1:\n", means_har[0])
     print("Covariance Matrix (HAR) - Class 1:\n", covs_har[0])
     Class Priors (HAR): [0.16675734 0.14594668 0.13411317 0.17491839 0.18688792
     0.1913765 ]
     Covariance Matrix (HAR) - Class 1:
      1.83172712e-05 -1.52433104e-04]
      4.37971757e-05 -9.74079500e-05]
      [-1.73625491e-04 9.60152451e-05 1.05206402e-03 ... 2.24479930e-06
       2.87508524e-05 7.62211531e-05]
     [-4.95972723e-05 -2.31419170e-05 2.24479930e-06 ... 9.72430979e-03
       3.20320771e-03 7.49682841e-03]
      [ 1.83172712e-05  4.37971757e-05  2.87508524e-05  ...  3.20320771e-03
       3.19049432e-03 1.59055320e-03]
      [-1.52433104e-04 -9.74079500e-05 7.62211531e-05 ... 7.49682841e-03
```

y_train = pd.read_csv('/mnt/localssd/ee5644/hw1/human_activity_recognition_usi

Use ``sep='\s+'`` instead

1.59055320e-03 1.30640909e-02]]

```
[20]: # Regularization function for covariance matrices
     def regularize_covariance(cov_matrix, lambda_value):
         I = np.eye(cov_matrix.shape[0])
         regularized_cov = cov_matrix + lambda_value * I
         return regularized_cov
     # Apply regularization to the covariance matrices with lambda = 0.01
     lambda_reg = 0.01
     covs har reg = [regularize covariance(cov, lambda reg) for cov in covs har]
     # Print the regularized covariance matrix for one class
     print("Regularized Covariance Matrix for Class 1 (HAR):\n", covs_har_reg[0])
    Regularized Covariance Matrix for Class 1 (HAR):
      1.83172712e-05 -1.52433104e-04]
      4.37971757e-05 -9.74079500e-05]
      [-1.73625491e-04 9.60152451e-05 1.10520640e-02 ... 2.24479930e-06
       2.87508524e-05 7.62211531e-05]
     [-4.95972723e-05 -2.31419170e-05 2.24479930e-06 ... 1.97243098e-02
       3.20320771e-03 7.49682841e-03]
      [ 1.83172712e-05  4.37971757e-05  2.87508524e-05 ...  3.20320771e-03
       1.31904943e-02 1.59055320e-03]
      [-1.52433104e-04 -9.74079500e-05 7.62211531e-05 ... 7.49682841e-03
       1.59055320e-03 2.30640909e-02]]
[21]: from scipy.stats import multivariate_normal
     # Function to apply minimum-probability-of-error classification
     def classify_min_error(X, priors, means, covs):
         n_samples = X.shape[0]
         n_classes = len(priors)
         posteriors = np.zeros((n_samples, n_classes))
         for i in range(n classes):
             likelihood = multivariate_normal.pdf(X, mean=means[i], cov=covs[i])
            posteriors[:, i] = likelihood * priors[i]
         predicted_labels = np.argmax(posteriors, axis=1) + 1 # HAR class labels_u
      ⇔start from 1
         return predicted_labels
     # Apply classification to the HAR training dataset
```

```
predicted_har = classify_min_error(X_train, priors_har, means_har, covs_har_reg)

# Print some predicted labels for HAR
print("Predicted Labels (HAR):", predicted_har[:10])
```

Predicted Labels (HAR): [5 5 5 5 5 5 5 5 5 5]

```
[22]: from sklearn.metrics import confusion_matrix, accuracy_score

# Compute confusion matrix and error probability for HAR
conf_matrix_har = confusion_matrix(y_train, predicted_har)
error_prob_har = 1 - accuracy_score(y_train, predicted_har)

# Print confusion matrix and error probability
print("Confusion Matrix (HAR):\n", conf_matrix_har)
print("Error Probability (HAR):", error_prob_har)
```

```
Confusion Matrix (HAR):
 ΓΓ1226
         0
             0
                          0
                               07
                         0
                              ſΩ
    0 1073
               0
                    0
    0
          1 985
                    0
                         0
                              07
 Γ
          0
               0 1197
                              ſΩ
    0
                        89
 0
                    1 1373
                              07
    0
          0
 Γ
          0
               0
                    0
                         0 1407]]
```

Error Probability (HAR): 0.012377584330794389

```
[23]: from sklearn.decomposition import PCA
      import matplotlib.pyplot as plt
      # Function to visualize the dataset using PCA
      def visualize_pca(X, y, predicted_labels, title):
         pca = PCA(n_components=2)
         X_pca = pca.fit_transform(X)
         plt.figure(figsize=(8, 6))
         scatter = plt.scatter(X_pca[:, 0], X_pca[:, 1], c=predicted_labels,__
       ⇔cmap='coolwarm', alpha=0.6)
         plt.title(title)
         plt.xlabel('Principal Component 1')
         plt.ylabel('Principal Component 2')
         plt.colorbar(scatter)
         plt.show()
      # Visualize the HAR training data using PCA
      visualize_pca(X_train, y_train, predicted_har, "HAR Dataset Classification⊔
```


3.0.2 Discussion of Results for HAR Dataset

1. Confusion Matrix:

- The classifier performs very well on most classes.
- Most samples are correctly classified, with only slight errors between some activity classes (e.g., Class 3 and 4).

2. Error Probability:

- The overall error probability is 1.23%, indicating strong performance.
- This suggests that the Gaussian assumption works well for the HAR dataset.

3. PCA Visualization:

- The PCA plot shows two clear clusters of classes.
- Some overlap exists between adjacent classes (like Class 3 and 4), which explains minor misclassifications.

4. Suitability of Gaussian Model:

- The Gaussian model appears suitable for this dataset due to its structured features.
- The low error rate and well-formed PCA projection support this assumption.

5. Model Assumptions:

• The multivariate Gaussian assumption for each class seems valid here.

• Regularization was necessary due to the high dimensionality (561 features).

6. Conclusion:

- The Gaussian class-conditional model works very well for the HAR dataset.
- While the performance is strong, further improvements could be explored using non-parametric or more complex models.