Universidade Federal de Pernambuco Centro Acadêmico do Agreste Núcleo de Tecnologia Engenharia Civil

Prova Final - Cálculo Diferencial e Integral 3 Prof. Fernando R. L. Contreras

Aluno(a):

- 1. Calcule $\int_C e^x \cos(y) dx e^x \sin(y) dy$ onde C é qualquer arco de (1,0) a (0,1).
- 2. Determine o fluxo do rotacional do campo de vetores $F(x,y,z)=(y^3,x^3,e^z)$ através da superficie $S=\left\{(x,y,z)\in R^3/x^2+y^2+z^2=2,x^2+y^2\leq 1,z\geq 0\right\}$, com normal exterior.
- 3. Calcule $\iint_S F.dS$, onde $F(x,y,z) = (4x, -2y^2, z^2)$ e S é a superfície limitada por $x^2 + y^2 = 4$ tal que $0 \le z \le 3$.
- 4. Seja R a região da elipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ e exterior a circunferência $x^2 + y^2 = 1$, calcular a integral de linha $\int_C 2xy dx + (x^2 + 2x) dy$ onde $C = C_1 + C_2$ é contorno de R.

Êxitos...!!!

Universidade Federal de Pernambuco Centro Acadêmico do Agreste Núcleo de Tecnologia Engenharia Civil

Prova Final - Cálculo Diferencial e Integral 3 Prof. Fernando R. L. Contreras

Aluno(a):

- 1. Calcule $\int_C e^x \cos(y) dx e^x \sin(y) dy$ onde C é qualquer arco de (1,0) a (0,1).
- 2. Determine o fluxo do rotacional do campo de vetores $F(x,y,z)=(y^3,x^3,e^z)$ através da superficie $S=\left\{(x,y,z)\in R^3/x^2+y^2+z^2=2,x^2+y^2\leq 1,z\geq 0\right\}$, com normal exterior.
- 3. Calcule $\iint_S F.dS$, onde $F(x,y,z) = (4x, -2y^2, z^2)$ e S é a superfície limitada por $x^2 + y^2 = 4$ tal que $0 \le z \le 3$.
- 4. Seja R a região da elipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ e exterior a circunferência $x^2 + y^2 = 1$, calcular a integral de linha $\int_C 2xy dx + (x^2 + 2x) dy$ onde $C = C_1 + C_2$ é contorno de R.