

LASSO

Regularized regression and model selection

Tim Padvitski

Linear regression and OLS

linear models do not require that all variables are explicitly linear

https://ryxcommar.com/2019/09/06/some-things-you-maybe-didnt-know-about-linear-regression/?fbclid=lwAR3v_ff9puRpQuLwxZdTmkQMi9ZBWnlWMivf7EZ91q11nXnqNET_PzNH5ZE

Linear regression - 2 variables

Linear regression: more than 2 variables

$$Y=\beta_0+\beta_1X_1+\beta_2X_2+\ldots +\beta_nX_n+\epsilon$$

Linear regression: more than 2 variables

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

vector!

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{bmatrix} \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} \quad \text{and} \quad \boldsymbol{\epsilon} = \begin{bmatrix} \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 \\ \vdots \\ \boldsymbol{\epsilon}_n \end{bmatrix}$$

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} \quad \text{and} \quad \boldsymbol{\epsilon} = \begin{bmatrix} \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 \\ \vdots \\ \boldsymbol{\epsilon}_n \end{bmatrix}$$

Linear regression - fitting

Residual sum of squares : RSS

$$e_i = y_i - \hat{y}_i$$

Residual – difference between ith observed response value and ith predicted value from linear model

! minimize
$$(RSS = e_1^2 + e_2^2 + \dots + e_n^2,$$

$$RSS(\beta) = \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

OLS estimator

OLS visually explained: http://setosa.io/ev/ordinary-least-squares-regression/

The value of b which minimizes RSS is called the OLS (ordinary least squares) estimator for β

Solving linear models with OLS

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{bmatrix} \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} \quad \text{and} \quad \boldsymbol{\epsilon} = \begin{bmatrix} \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 \\ \vdots \\ \boldsymbol{\epsilon}_n \end{bmatrix}$$

$$RSS(\beta) = \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

OLS visually explained: http://setosa.io/ev/ordinary-least-squares-regression/

New data points

Bias-variance trade-off

Low Bias

High Bias

Bias: deviation of average model from 'true' model

Variance: deviation between models learned from individual datasets

NGSchool 2019, Białobrzegi

Bias-variance trade-off

Bias-variance trade-off

Bias-variance and total error

What is a good model?

Issues with OLS solution

- OLS solution for regression has low bias but high variance:
 - Collinearity
 - Too many predictors.

Impossible for p > n problems (often: p >> n!).
 Poor solution for p ~ n

Regularization approaches

Stepwise regularized regression

Backward:

- start with full model
- remove least important parameters
- works only when N > p

Forward:

- start with intercept
- iteratively add most predictive parameters
- works even when p >> N

Stepwise approaches are 'greedy' and solutions are **not stable**

Penalized regression

LASSO

And many other:

- Partial least squares
- Principal component regression
- etc.

Ridge - L₂ penalty

$$f(X) = \beta_0 + \sum_{j=1}^{p} \beta_j X_j$$

Note! linear regression model stays the same!

$$\beta^{ridge} = argmin_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$
 RSS penalty for coefficients

 λ = weighting factor

LASSO* - L₁ penalty

$$f(X) = \beta_0 + \sum_{j=1}^{p} \beta_j X_j$$

Note! linear regression model stays the same!

$$\beta^{lasso} = argmin_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

$$RSS$$

$$penalty for coefficients$$

 λ = weighting factor

^{*} Least Absolute Shrinkage and Selection Operator

LASSO vs Ridge

$$\beta^{lasso} = argmin_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$
RSS
penalty for coefficients

$$\beta^{ridge} = argmin_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

$$RSS \qquad \text{penalty for coefficients}$$

 λ = weighting factor (shrinkage coefficient)

LASSO sets many parameters to zero

Friedman et.al. 2001

LASSO vs Ridge: prostate cancer

Predict prostate specific antigen

Positive correlation in both cases.
Both are activators?

All target genes of B are also targets of A, but not the other way round!

A is an activator; B is a repressor.

 β_A , β_B : marginal effects $\beta_{A'}$, $\beta_{B'}$: combined model

$$y = \beta_0 + \beta_A A$$
$$y = \beta_0 + \beta_B B$$
$$y = \beta_0 + \beta_A A + \beta_B B$$

Lasso results:

LASSO vs Ridge

$$\beta^{lasso} = argmin_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

RSS

penalty for coefficients

$$\beta^{ridge} = argmin_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

$$\text{RSS}$$

$$\text{penalty for coefficients}$$

 λ = weighting factor (shrinkage coefficient)

Model selection approaches

AIC/BIC scores AIC = -2logL + 2q

A method for model selection that trades off goodness of fit with model complexity.

AIC/BIC scores

A method for model selection that trades off goodness of fit with model complexity.

Cross-validation

A method for choosing the value of λ that minimizes the generalization error on a held-out test validation set.

AIC/BIC scores

A method for model selection that trades off goodness of fit with model complexity.

Cross-validation

A method for choosing the value of λ that minimizes the generalization error on a held-out test validation set.

Stability methods

A class of methods for identifying the most "stable" model structure by using the idea that the same algorithm should yield similar results on similar datasets if the results are "stable".

AIC/BIC scores : (performs poorly in high dimensional setting

A method for model selection that trades off goodness of fit with model complexity.

Cross-validation

A method for choosing the value of λ that minimizes the generalization error on a held-out test validation set.

Stability methods

A class of methods for identifying the most "stable" model structure by using the idea that the same algorithm should yield similar results on similar datasets if the results are "stable".

Cross validation

Algorithm:

- Split data randomly into training and test set
- Fit based on training
- Test performance on test set
- Vary λ until optimal prediction

Split data into 5 random sub-sets

1st fold

2nd fold

etc ...

Finally: average performance

Stability selection

Algorithm:

- Sample the data (take random subset)
- Train the model
- Repeat many times (e.g. 100) with different samples
- Get probability of inclusion (fraction of models) in which each parameter is included

$$p_i = \frac{n_i}{N}$$
 — How many times was i included? Total number of permutations

Stability selection

Stability selection provides control over number of false positives

Take Home message

- Regularized regression can deal with p >> N
 problem and optimize bias-variance trade-off
- Ridge sets many coefficients close to zero ⇒
 NO variable selection
- Lasso sets many coefficients to zero ⇒ variable selection
- Cross validation and stability selection help to select best model - amount of regularization λ