

Ciências da Computação e Sistemas de Informação

Teoria das filas

Ciências da Computação e Sistemas de Informação

Introdução

- Por que aparecem as filas?
- Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo:
 - que cada pessoa disponha do uso exclusivo de uma rua para se movimentar
 - que cada pessoa tenha um supermercado para o seu abastecimento exclusivo
- Recursos limitados devem ser compartilhados.

Ciências da Computação e Sistemas de Informação

Introdução

- Ao compartilhar recursos, pode acontecer que no momento em que se queira fazer uso de um recurso, este esteja ocupado,
 - necessidade de esperar
 - aparecem as filas
- Exemplo: nos sistemas de fluxo pode acontecer a formação de filas

Ciências da Computação e Sistemas de Informação

- Um fluxo é o movimento de alguma entidade através de um ou mais canais de capacidade finita para ir de um ponto a outro.
- Capacidade finita significa que o canal só pode satisfazer a demanda a uma taxa finita.
- Exemplos:
 - fluxo de automóveis (entidades) através de uma rede de caminhos (canais)
 - transmissão de mensagens telefônicas (entidades) através da rede (canal)

Ciências da Computação e Sistemas de Informação

- Se dividem em duas classes:
 - <u>Determinísticos</u>: sistemas no qual o comportamento da demanda de serviço é totalmente previsível, isto é, a quantidade de demanda é exatamente conhecida sobre o intervalo de interesse.
 - Aleatório: não é possível predizer como vai se comportar a demanda de serviço, por exemplo, o instante de chegada de uma demanda é imprevisível.

Ciências da Computação e Sistemas de Informação

- Exemplo de fluxo determinístico:
 - Seja r a taxa de chegada (constante) de pacotes em uma rede de comutação a um buffer.
 - Seja c a taxa (constante) com que esses pacotes são processados em cada nó.
 - Se r > c, o buffer do nó é inundado com pacotes, já que o número de pacotes em espera de serviço crescerá indefinidamente.
 - Se r < c, se tem um fluxo estável, o número de pacotes em espera de serviço é finito.

Ciências da Computação e Sistemas de Informação

- Exemplo de fluxo aleatório:
 - Um centro de computação em que as solicitações de impressão podem chegar em instantes imprevisíveis.
 - Quando um trabalho de impressão chega, pode ser que o servidor esteja atendendo outro e seja necessário esperar.
 - Se está desocupado, pode atender imediatamente à nova solicitação de impressão até que esta fique completa.

Chegadas ao

sistema

DISCIPLINA: Pesquisa Operacional

Ciências da Computação e Sistemas de Informação

Teoria das filas

Representação de uma fila

Saídas do sistema

Ciências da Computação e Sistemas de Informação

Teoria das filas

Notação de Kendall para descrever uma fila:

A/B/C/K/m/Z

Ciências da Computação e Sistemas de Informação

Teoria das filas

Notação de Kendall para descrever uma fila:

A/B/C/K/m/Z

distribuição do

tempo entre chegadas

☐ Alguns valores de A mais comuns:

M: denota distribuição exponencial equivalente (M provém de Markoviano)

G: distribuição geral

D: representa um tempo fixo (determinístico)

Ciências da Computação e Sistemas de Informação

Teoria das filas

Notação de Kendall para descrever uma fila:

□ Alguns valores de B mais comuns:

M: denota distribuição exponencial equivalente (M provém de Markoviano)

G: distribuição geral

D: representa um tempo fixo (determinístico)

Ciências da Computação e Sistemas de Informação

Teoria das filas

Ciências da Computação e Sistemas de Informação

Teoria das filas

Ciências da Computação e Sistemas de Informação

Teoria das filas

Ciências da Computação e Sistemas de Informação

Teoria das filas

Ciências da Computação e Sistemas de Informação

Teoria das filas

- Notações usadas nos sistemas de filas:
 - C_i: i-ésimo usuário que entra ao sistema.
 - r_i: tempo de chegada de C_i
 - t_i : tempo entre as chegadas de C_{i-1} e C_i ($t_i = r_i r_{i-1}$)
 - A(t): distribuição do tempo entre chegadas = P[t_i□t]
 - x_i: tempo de serviço para C_i
 - B(x): distribuição do tempo de serviço = P[x_i □x]
 - w_i: tempo de espera na fila de C_i
 - se: tempo no sistema (fila mais serviço) de C_i (se = $w_i + x_i$)

Ciências da Computação e Sistemas de Informação

Teoria das filas

Notação de filas em diagrama temporal

Ciências da Computação e Sistemas de Informação

Teoria das filas

- Notações usadas nos sistemas de filas
 - E_k: estado do sistema (normalmente corresponde ao número de usuários no sistema)
 - □_k□taxa média de chegada dos usuários ao sistema, quando este se encontra no estado k
 - − □_k: taxa média de serviço quando o sistema se encontra no estado k

Ciências da Computação e Sistemas de Informação

Teoria das filas

- Outros parâmetros de uma fila:
 - N(t): número de usuários no sistema no instante t
 - L = E[k]: número médio de usuários no sistema (em estado estacionário)
 - LQ: número médio de usuários na fila (em estado estacionário).
 - T = E[s]: tempo médio de permanência de um usuário no sistema = E[k]/□ (fórmula de Little)

Definições do gerador

DISCIPLINA: Pesquisa Operacional

Ciências da Computação e Sistemas de Informação

https://res.phcco.com/simulador-fifo/

Definições do gerador	
Gerador utilizado: Probabilidades definidas	•
Distribuição de probabilidade de chegada por minuto: # <após as=""> = <número chegando="" clientes="" de="">x<probabilidade %="" em=""> 0:00 = 0x70 1x20 2x10 4:00 = 0x60 1x30 2x10 5:00 = 0x80 1x20 11:00 = 0x50 1x40 2x10 13:00 = 0x80 1x15 2x5 20:00 = 0x50 1x40 22:00 = 0x90 1x10</probabilidade></número></após>	Distr. de probabilidade de tempo de atendimento na chegada em minutos: # <após as=""> = <tempo atendimento="" de="">x<probabilidade %="" em=""> 0:00 = 20x70 30x20 5x10</probabilidade></tempo></após>
Faixa de horário da simulação 00:00 até 23:59	nto FIFO de servidor o no atendimento por hora 2 e por atendimento 1

Ciências da Computação e Sistemas de Informação

Resultados

Resumo

Número de clientes na fila ao final da execução: **0 clientes** Total de clientes atendidos: **3 clientes**

Tempo médio de espera na fila: 0 minuto(s) Tempo médio no sistema: 15 minuto(s) Taxa de ocupação dos servidores: 0.31%

Valor ganho final: R\$ -235.5 (média de R\$ -23.55 por serv.)

Situação final dos servidores

```
[Servidor 1#livre] (Ocupação 1.04% / R$ -22.5 em 1 at.) [Servidor 2#livre] (Ocupação 1.04% / R$ -22.5 em 1 at.) [Servidor 3#livre] (Ocupação 1.04% / R$ -22.5 em 1 at.) [Servidor 4#livre] (Ocupação 0% / R$ -24 em 0 at.) [Servidor 5#livre] (Ocupação 0% / R$ -24 em 0 at.) [Servidor 6#livre] (Ocupação 0% / R$ -24 em 0 at.) [Servidor 7#livre] (Ocupação 0% / R$ -24 em 0 at.) [Servidor 8#livre] (Ocupação 0% / R$ -24 em 0 at.) [Servidor 9#livre] (Ocupação 0% / R$ -24 em 0 at.)
```

Chegadas, inicio de atendimentos, finalizacoes de atendimento e fila por hora

Ciências da Computação e Sistemas de Informação

Log de entrada e saída com situação da fila

```
[00:01] 1 Cliente 1 chegou na fila (at. 15) (0)
[00:01] 2 Cliente 1 (serv. 1) em atendimento (0)
[00:02] 3 Cliente 2 chegou na fila (at. 15) (0)
[00:02] 4 Cliente 2 (serv. 2) em atendimento (0)
[00:03] 5 Cliente 3 chegou na fila (at. 15) (0)
[00:03] 6 Cliente 3 (serv. 3) em atendimento (0)
[00:16] 7 Cliente 1 (serv. 1) atendido
[00:17] 8 Cliente 2 (serv. 2) atendido
[00:18] 9 Cliente 3 (serv. 3) atendido
```