Taller III

Bourbaki

18 de noviembre de 2024

- 1. Demuestre que $A \subset \mathbb{C}$ es compacto si y solo si es acotado y cerrado.
- 2. Sea $K \subset \mathbb{C}$ compacto. Sean $K_1 \supseteq K_2 \supseteq K_3 \supseteq \cdots$ una sucesión de subconjuntos de K no vacíos, tales que $K_n \supseteq K_{n+1}$. Demostrar que la intersección de todos los K_n , $n=1,2,3,\ldots$ es no vacía.
- 3. (*) Encontrar la imagen de las regiones:

$$1 < |\text{Im}(z)| < 2$$

bajo las aplicaciones:

a)
$$f(z) = z^2$$

$$b) f(z) = \frac{2z + i}{z + 1}$$

- 4. (*) Sea $f(z) = \frac{z i}{z + i}$, hallar la imagen por f de:
 - a) El semiplano superior.
 - *b*) La semirecta it; $t \ge 0$.
 - *c*) La recta it; $t \in \mathbb{R}$.
 - d) |z-1|=1.
 - *e*) |z| = 2; $Im(z) \ge 0$.
- 5. Sea $A = \{z \in \mathbb{C} : -\infty < \operatorname{Im}(z) \le \alpha\}$. Si $f(z) = e^z$, hallar f(A).
- 6. Sea $A = \{z \in \mathbb{C} : |\operatorname{Re}(z)| < \frac{\pi}{2}, \operatorname{Im}(z) > 0\}$. Si $f(z) = \sin(z)$, hallar f(A).
- 7. Determine completamente la proyección estereográfica (que lleva la esfera de Riemann en el plano complejo). Es decir, hallar explícitamente T y T^{-1} .
- 8. Demostrar que la proyección estereográfica preserva círculos. La imagen directa o inversa de una circunferencia es una circunferencia.

1