PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-332387

(43) Date of publication of application: 17.12.1996

(51)Int.CI.

B01J 27/198 B01J 27/30 B01J 38/06 CO7B 61/00 CO7D307/60

(21)Application number: 07-113613

(71)Applicant:

TONEN KAGAKU KK

ABB LUMMUS GLOBAL INC

LONZA SPA

(22)Date of filing:

14.04.1995

(72)Inventor:

HAMASHIMA HISATAKA

ASAMI MASAYUKI SUZUKI SADAKATSU **ICHIKI TATSUMI UENO HIROSHI** STEPHEN C ARNOLD GIANCARLO STEFANI

(54) METHOD FOR REGENERATING CATALYST

PURPOSE: To provide a method for efficiently regenerating a catalyst (V-P-O system catalyst) formed of a composite oxide of

vanadium and phosphor.

CONSTITUTION: A method for regenerating a V-P-O system catalyst used in a process for manufacturing maleic anhydride by oxidizing butane is provided. The catalyst is contacted with steam of 0.02-30 g per 1 g of the catalyst at 300 to 600° C without operating production reaction of maleic anhydride.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-332387

(43)公開日 平成8年(1996)12月17日

(51) Int.Cl. ⁸	酸別記号	庁内整理番号	FΙ		技術表示箇所		
B01J 27/198			B01J 27	7/198	7	Z	
27/30			27	7/30			
38/06				3/06			
C 0 7 B 61/00	300	C07B 6		300			
C 0 7 D 307/60			C 0 7 D 307/60		В		
			審査請求	未請求	請求項の数 6	FD(全 5	頁)
(21) 出願番号	特願平7-113613	(71)出顧人	0002216	:27			
. ,				東燃化等	学株式会社		
(22)出顧日	平成7年(1995)4		東京都中	中央区築地4丁目	11番1号	•	
		(71)出顧人 391011227					
				エーピー	-ピー ルマス	グローバル	イン
				コーポ	レイテッド		
				ABB	LUMMUS	CREST	IN
				COR	PORATED		
				アメリス	カ合衆国ニュー	ジャージー州ブ	')
				ムフィー	ールド市プロー	ドストリート15	15
			(74)代理人	弁理士	松井 光夫		
						最終頁に	被く

(54) 【発明の名称】 触媒の再生方法

(57)【要約】

【目的】 バナジウムとリンとの複合酸化物から成る触媒(V-P-O系触媒)の再生を効率よく行う方法を提供する。

【構成】 ブタンを酸化して無水マレイン酸を製造する方法において使用するV-P-〇系触媒の再生方法。無水マレイン酸の製造反応を行うことなしに、触媒を、300~600℃にて、触媒1g当たり0.02~30gの量の水蒸気と接触させる。

1

【特許請求の範囲】

【請求項1】 炭素数4の炭化水素を酸化して無水マレイン酸を製造する方法において使用する、バナジウムとリンとの複合酸化物から成る触媒の再生方法であって、前記無水マレイン酸の製造反応を行うことなしに、300~600 ℃にて、該触媒を、触媒1g当たり0.02~30gの量の水蒸気と接触させることを特徴とする方法。

【請求項2】 水蒸気の量が、触媒1g当たり0.3~7gである請求項1記載の方法。

【請求項3】 水蒸気を、触媒1g当たり0.001 g/時 10間以上の速度で触媒に供給して接触させる請求項1または2記載の方法。

【請求項4】 水蒸気を、触媒1g当た $90.001 \sim 1g$ /時間の速度で触媒に供給して接触させる請求項 $1\sim 3$ のいずれか1項記載の方法。

【請求項5】 水蒸気を単独で触媒と接触させる請求項1~4のいずれか1項記載の方法。

【請求項6】 水蒸気を、窒素、二酸化炭素および希ガス類から選択される少なくとも1種の気体との混合ガスとして供給して、触媒と接触させる請求項1~4のいずれか1項記載の方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、炭素数4の炭化水素を 反応器、特に流動床反応器にて酸化して無水マレイン酸 を製造する方法において使用する触媒を、使用により活 性低下した際に再生する方法に関する。

[0002]

【従来の技術およびその課題】従来、バナジウム・リン 複合酸化物触媒(いわゆるV-P-〇系触媒)を用い、 炭素数4の炭化水素を酸化して無水マレイン酸を製造す る方法は公知である。この方法では、触媒を使用するに つれて、触媒活性が低下してしまい、また反応温度を上 げると無水マレイン酸の収率の低下を生じるという問題 があった。そこで、種々の触媒再生方法が試みられてき た。例えばリン化合物の添加により触媒活性を向上させ る方法として、特公平5-42436 号公報には、ブタン連続 気相酸化マレイン酸製造プロセスにおいて、供給原料に 対して0.1 ~100000重量%のリン化合物および0.1 ~4 重量%の水を反応中に触媒と接触させる方法が開示され 40 ている。また、リン化合物と水とを共にその場で供給 し、触媒の一部を部分的に失活させる方法(米国特許第 4,701,433 号明細書); リン処理したV-P-O系触媒 の水蒸気再生の方法(特公平4-75060 号公報)も知られ ている。

【0003】一方、特開平5-43567号公報は、触媒を反応器から抜き出して処理する触媒の再生方法を開示する。実施例によれば、触媒に20℃で湿度60%の空気で30分間の処理、もしくは20℃水飽和窒素気流で1時間の処理を行っている。

【0004】本発明は、V-P-O系触媒の再生を効率 よく行う方法を提供することを目的とする。

2

[0005]

【課題を解決するための手段】本発明は、炭素数4の炭化水素を酸化して無水マレイン酸を製造する方法において使用する、バナジウムとリンとの複合酸化物から成る触媒の再生方法であって、前記無水マレイン酸の製造反応を行うことなしに、300~600℃にて、該触媒を、触媒1g当たり0.02~30gの量の水蒸気と接触させることを特徴とする方法を提供する。

【0006】本発明において使用される触媒は、バナジウムとリンとの複合酸化物から成る触媒(以下では、V-P-O系触媒と称する)であって、使用により活性が低下したものである。前記触媒は、リンとバナジウムの原子比(P/V)が、好ましくは0.8-2.0/1、より好ましくは1-1.5/1であるバナジウム・リン結晶性混合酸化物を活性成分として含むものである。例えば主な結晶性成分がピロリン酸ジバナジルである触媒が挙げられる。触媒は担体を含んでいてもいなくてもよい。担体としては、例えばSiO、Al, O, TiO, 等が挙げられる。また、さらに助触媒成分として、例えばLi, B, Si, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zr, Mo, Sn, Hf, Bi, Si, Ti, Cr, Mo, Sn, Hf, Bi, So, Ti, Ti,

【0007】とのようなV-P-O系触媒は、公知の方 法により製造することができる。例えば、リン酸の存在 下で五酸化バナジウムを塩酸、シュウ酸、ヒドラジン等 で還元することにより生成した前駆体を焼成処理する方 法 (特開昭54-120273 号公報、米国特許第4,085,122 号 30 明細書等);五酸化バナジウムを実質的に無水の有機溶 媒中で還元処理した後、リン酸の存在下で加熱処理する ことにより生成した前駆体を焼成処理する方法(特公昭 57-8761 号公報、特公平1-50455 号公報等) である。 【0008】本発明の触媒再生方法は、前記のV-P-○系触媒を、無水マレイン酸の製造反応を行うことなし に、特定条件で水蒸気と接触させるものである。本発明 の再生処理は次の条件で行う。温度は300 ℃以上、好ま しくは400 ℃以上であり、かつ600 ℃以下、好ましくは 550 ℃以下である。温度が低すぎると再生効果が低く、 また高すぎると触媒が変質してしまい、無水マレイン酸 の収率が低下する恐れがある。圧力は特に限定されない が、処理操作の容易さという点から、通常は常圧(約0. 1 MPa) 以上、好ましくは0.1 ~0.5 MPa である。触媒 と接触させる水蒸気の総量は、触媒1g当たり0.02g以 上、好ましくは0.2 g以上、より好ましくは0.3 g以上 であり、かつ30g以下、好ましくは10g以下、より好ま しくは7g以下である。水蒸気の総量が少なすぎると触 媒の再生効果が低いので実用的でなく、多すぎると触媒 の変質を招く傾向がある。また、水蒸気の供給速度は、

50 触媒1g当たり好ましくは0.001 g/時間以上、より好

3

ましくは0.010 g/時間以上であり、かつ好ましくは1 g/時間以下、より好ましくは0.5g/時間以下、さら に好ましくは0.4 g/時間以下である。水蒸気の供給速 度が小さすぎると、長時間の処理が必要となって触媒の 変質を招く傾向があり、また大きすぎると、一度に大量 の水蒸気で触媒を処理することになるのでやはり触媒の 変質を招く傾向がある。

【0009】触媒と接触させる水蒸気は、単独で供給す ることができるが、水蒸気を、他の気体と共に供給する こともできる。しかし、酸化性気体では、処理温度が髙 10 レイン酸を製造する反応を行った。反応条件は、常圧、 いため、V4価が酸化されピロリン酸ジバナジル結晶が 変質し、MAH収率が低下する場合がある。また還元性 気体では、処理温度が高いため、V4価が還元されビロ リン酸ジバナジル結晶が変質し、MAH収率が低下する 場合がある。窒素、二酸化炭素および希ガス類(例えば He、Ne、Ar等)等が好ましく使用でき、これらか ら選択される少なくとも1種の気体と水蒸気との混合ガ スとして供給するのが好ましい。混合ガス中の水蒸気濃 度は、好ましくは5 モル%以上、より好ましくは10モル %以上で、かつ好ましくは80モル%、より好ましくは60 20 モル%以下である。好ましくは水蒸気と窒素との混合ガ スとして、より好ましくは水蒸気濃度5~80モル%の水 蒸気含有窒素ガスとして供給する。水蒸気処理時間は、 上記の条件を満たせば特に限定されないが、好ましくは 2時間以上、より好ましくは10時間以上である。また、 あまり長い時間の処理は触媒を変質させる恐れがあるの で、好ましくは90時間以下、より好ましくは50時間以下 である。

[0010]

【実施例】以下の実施例により、本発明をより詳しく説 30 明する。なお、実施例および比較例におけるブタン転化 率および無水マレイン酸 (MAH) の収率は次のように して求めた:

[0011]

【数1】ブタン転化率=(反応器入口のブタンモル濃度 - 反応器出口のブタンモル濃度) / (反応器入口のブタ ンモル濃度)×100

[0012]

【数2】MAH収率=(単位時間当たり生成したMAH のモル数)/(単位時間当たりに反応で消費されたブタ ンのモル数)×100

比較例 1

n-ブタンを空気酸化して無水マレイン酸を製造する系の 流動床反応器で約2年間使用し、活性が低下したV-P - 〇系触媒を試料として用いた。

【0013】触媒試料1gを活性試験のため、固定床流 通系反応装置に充填し、n-ブタンを空気酸化して無水マ GHSV(気体毎時空間速度)1500時間-1、反応温度43 0 ℃、空気中のn-ブタン浪度1.5 モル%の条件であっ た。反応器入口ガスと出口ガス中のn-ブタン濃度をガス クロマトグラフィーで分析定量し、ブタン転化率を求め た結果、52モル%であった。また、出口ガスを30~100 m1の水に30~60分間導入することにより、生成したMA Hを水に吸収させ、これを0.1 規定の水酸化ナトリウム 水溶液で滴定して、MAHの収率を求めた。その結果、 MAH収率は33モル%であった。

【0014】実施例1

比較例1で用いたのと同じ触媒試料1gを、次のように 再生処理した:触媒を比較例1と同じ固定床流通系反応 装置に充填し、常圧、処理温度430℃にて、水蒸気と窒 素を1:1のモル比で含む混合ガスを、水蒸気が1時間 当たり触媒1g当たり0.132gの量で触媒に供給される ような流速で、24時間供給した。

【0015】再生処理後の触媒の活性を、同じ装置内 で、比較例1と同一条件にして測定したところ、ブタン 転化率71モル%、MAH収率42モル%であった。

【0016】実施例2~6および比較例2~8 比較例1で用いたのと同じ触媒試料1gを、触媒の再生 処理条件を表1に示したように変えた以外は実施例1と 同様にして再生処理した。

【0017】再生処理後の触媒の活性を、同じ装置内 で、比較例1と同一条件にして測定した。結果を表1に

[0018]

【表1】

表 1

			プタン転化率	MAH収率				
	処理温度 (℃)	処理時間 (時間)	処理気体 N ₂ /B ₂ 0(モル比)	水落気移添加量 (g/触媒g)	水蒸気供給速度 (g/触媒g/時間)	(モル%)	(モル%)	
実施例1	430	24	50/50	3.17	0. 132	71	42	
実施例2	350	24	50/50	3. 17	0. 132	56	34	
実施例3	430	3	50/50	0.40	0. 132	60	37	
実施例 4	430	24	95/5	0.31	0. 013	58	35	
実施例 5	430	12	89/20	0.63	0. 053	63	39	
実施例 6	520	10	70/30	0.39	0. 039	61	38	
比較例2	439	24	100/0	0	-	53	33	
比較例3	100	24	50/50	3.17	0. 132	52	33	
比較例4	250	24	50/50	3.17	0. 132	54	33	
比较例5	430	20	95/5	0.019	0. 00093	53	33	
比較例6	430	150	50/50	39. 6	0. 264	50	28	
比較例?	650	60	50/50	7. 92	0. 182	51	30	

比較例9

上較例1で用いたのと同じ触媒試料1gを、次のように 再生処理した:触媒を比較例1と同じ固定床流通系反応 装置に充填し、反応温度430℃、常圧、空気中のn-ブタン濃度1.5 モル%のGHSV 1500時間一のガス流通条件で、無水マレイン酸生成反応を行った。5時間経過後に、反応を継続しつつ、触媒1g当たり0.05g/時間の流速で8時間水を反応器に導入した(触媒に添加した水蒸気の総量は0.4g/触媒g)。水は触媒層上部(上流側)の加熱ゾーンにて完全に気化するよう供給した。 【0019】再生処理後の触媒の活性を、同じ装置内で、比較例1と同一条件にして測定した。ブタン転化率*

*は57モル%、MAH収率は35モル%であった。

【0020】比較例9では、実施例3と同じ量の水蒸気を触媒に接触させているが、MAH生成反応を行いつつ(すなわち空気およびブタンの存在下で)、触媒に水蒸気を供給している。その結果、ブタン転化率およびMAH収率共に実施例3より低くなっている。

[0021]

【発明の効果】本発明によれば、バナジウムとリンとの 複合酸化物から成る触媒を、効率よく再生処理すること 30 ができる。また、本発明の方法で再生した触媒を流動床 反応器に充填して反応を行う場合には、触媒の活性が向 上するばかりでなく、流動性も向上する。

フロントページの続き

(71)出願人 595067693

ロンザ ソシエタ ペル アジオニ LONZA Societa per A zioini イタリア、ミラノ、ビア ビットル ビザ ニ 31

(72)発明者 浜島 長登

東京都中央区築地4丁目1番1号 東燃化 学株式会社内

(72)発明者 浅見 昌之

東京都中央区築地4丁目1番1号 東燃化 学株式会社内

(72)発明者 鈴木 貞勝

東京都中央区築地4丁目1番1号 東燃化 学株式会社内

(72)発明者 市来 達美

東京都中央区築地4丁目1番1号 東燃化 学株式会社内

(72)発明者 上野 廣

東京都中央区築地4丁目1番1号 東燃化 学株式会社内

(72)発明者 ステフェン、シー アーノルド

アメリカ台衆国、ニュージャージー、マウ ンテン レークス、クラベン ロード 4 (72)発明者 ジャンカルロ ステファニ イタリア、ゴルレ(ベルガモ)、ビア ザ バリット 193