Recommender systems with TensorFlow

Martin Jakomin Jan Hartman

About us

Martin Jakomin PhD @ FRI

Jan Hartman
DataSci masters student

Davorin Kopič* Head of DataSci @ Zemanta

Agenda, part 1

- Recommender systems paradigms and algorithms
 - Content-based filtering:
 - Item feature extraction
 - Similarity measures and distances
 - Collaborative filtering:
 - Memory based (user-user, item-item, hybrid)
 - Basic algorithms (nearest neighbours,)
 - Model based latent factors
 - Matrix Factorization
 - Deep learning for RS:
 - Deep Neural CF
 - Autoencoders
 - DeepFM
- Recommender systems evaluation and metrics
- Incremental learning, cold start, scalability, data fusion, interpretability

Agenda, part 2

- **TensorFlow**: basic concepts, tensors, autodiff
- Keras high-level API: layers, models, fitting & evaluation
- Matrix factorization implementation
- Deep autoencoder implementation

Hands-on challenge!

Introduction

- We often make choices in life without sufficient personal experiences, thus we heavily rely on recommendations.
- Recommender systems are tools that assist and augment this natural decision making process.

Introduction

- RS are large-scale machine learning and knowledge discovery tools aimed at providing **personalized** recommendations.
- Examples: videos, movies and songs, web pages, articles, ads, books, social media posts, products, services ...
- In terms of machine learning problems: estimation of user ratings, picking topN (ranking), picking new unfamiliar items (novelty, diversity).

Paradigms And Algorithms

Typically we split RS into three categories:

- Content-based filtering (where the user is recommended items similar to the ones he preferred in the past),
- **Collaborative filtering** (where the user is recommended items that people with similar tastes and preferences liked in the past),
- Hybrid approaches (that combine collaborative and content-based methods).

- Recommendations are based on user choices made in the past (e.g. previous purchases), combined with rated items descriptions.
- The main idea: if you like a particular item in the past you will also like a similar item in the future.

- Similarity between objects is therefore the basis for recommending new items.
- We can view this as a user-specific classification problem of user's likes and dislikes based on an item's features.
- CBF is best suited to situations where there is abundant data on items, but not for the users.

- ★ Easy to implement
- ★ Transparent, Explainable
- ★ User independent (no user data needed)
- **★** Scalable
- ★ No item cold-start

- Difficult information extraction
- Limited content analysis
- Overspecialization (only recommending similar things)
- User cold-start

- The recommendation process is usually performed in 3 steps:
 - Content Analysis (extracting features),
 - Profile learning (extracting user preferences),
 - Filtering (extract relevant items).

Item Similarity

Movie	Adventure	Action	Science-Fiction	Drama	Crime	Thiller
Star Wars IV	1	1	1	0	0	0
Saving Private Ryan	0	0	0	1	0	0
American Beauty	0	0	0	1	0	0
City of Gold	0	0	0	1	1	0
Interstellar	0	0	1	1	0	0
The Matrix	1	1	1	0	. 0	1

• • •

- Item representation:
 - Structured,
 - Unstructured (vector space models, TF-IDF),
 - Mixed.

$$\mathbf{W}_{\mathsf{X},\,\mathsf{y}} = \mathsf{tf}_{\mathsf{X},\,\mathsf{y}} \times \mathsf{log}\left(\frac{\mathsf{N}}{\mathsf{df}_{\mathsf{X}}}\right) \qquad \qquad \mathsf{Bag} \ \mathsf{of} \ \mathsf{words} : \\ \mathsf{TF*IDF} \ \mathsf{weight} \ \mathsf{vectors} \\ \mathsf{Set} \ \mathsf{1} \quad \mathsf{Set} \ \mathsf{2} \\ \mathsf{Set} \ \mathsf{1} \quad \mathsf{Set} \ \mathsf{2} \\ \mathsf{Bag} \ \mathsf{of} \ \mathsf{words} : \\ \mathsf{Set} \ \mathsf{1} \quad \mathsf{Set} \ \mathsf{2} \\ \mathsf{O}_{\mathsf{0},\mathsf{0},\mathsf{0}} \ \mathsf{0}_{\mathsf{0},\mathsf{0},\mathsf{0}} \\ \mathsf{O}_{\mathsf{0},\mathsf{1},\mathsf{0}} \ \mathsf{0}_{\mathsf{0},\mathsf{0},\mathsf{0}} \\ \mathsf{O}_{\mathsf{0},\mathsf{0},\mathsf{0}} \ \mathsf{0}_{\mathsf{0},\mathsf{0}} \\ \mathsf{O}_{\mathsf{0},\mathsf{0},\mathsf{0}} \ \mathsf{0}_{\mathsf{0},\mathsf{0}} \\ \mathsf{O}_{\mathsf{0},\mathsf{0},\mathsf{0}} \ \mathsf{0}_{\mathsf{0},\mathsf{0}} \ \mathsf{0}_{\mathsf{0},\mathsf{0}} \\ \mathsf{O}_{\mathsf{0},\mathsf{0},\mathsf{0}} \ \mathsf{0}_{\mathsf{0},\mathsf{0}} \ \mathsf{0}_{\mathsf{0},\mathsf{0}} \\ \mathsf{O}_{\mathsf{0},\mathsf{0},\mathsf{0}} \ \mathsf{0}_{\mathsf{0},\mathsf{0}} \ \mathsf{0}_{\mathsf{0},\mathsf{$$

Similarity Measures

• Euclidean distance:

$$\sqrt{\sum_{i=1}^n (q_i-p_i)^2}.$$

Manhattan distance:

$$\sum_{i=1}^n |p_i-q_i|,$$

Minkowski distance

$$D\left(X,Y
ight) = \left(\sum_{i=1}^{n}\left|x_{i}-y_{i}
ight|^{p}
ight)^{rac{1}{p}}$$

Jaccard distance

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}=rac{|A\cap B|}{|A|+|B|-|A\cap B|}.$$

Cosine distance

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

Item Similarity

CBF - Recommending

- Recommend simply by returning similar items to those which the user has rated in the past.
- Weighting can be applied in case of real-number ratings.
- More sophisticated approaches can use Bayesian Classifiers, cluster analysis, decision trees, and neural networks in order to estimate the probability that the user is going to like the item.

Collaborative Filtering

- Recommendations are usually based on user's neighbours choices made in the past (of similar items).
- The main idea: people who agreed in the past will agree in the future and will like similar kinds of items.

Collaborative Filtering

- Oppose to CBF, we generally only use past rating information (though, other information can be incorporated into models).
- No "feature extraction", models can learn abstract (latent) features on fly.
- This allows for serendipitous recommendations (items can be completely different from what was seen and liked in the past).

Collaborative Filtering

- ★ Superior modelling and accuracy
- **★** Serendipity
- ★ Efficient and scalable
- ★ Justifiable and transparent*
- ★ Robust and stable

- Black box models*
- User and Item cold-start
- Can be biased

^{*} Depends on the model

Memory-based CF

- Most basic approach where ratings are calculated using simple statistics and aggregations upon stored data.
- Very simplistic, but can often capture local associations in the data.
- Generally split into:
 - user-based (where users are recommended items from their neighbouring users with similar rating patterns),
 - item-based (where users are recommended items based on their ratings of the set of similar items).

User-based CF

- Predict a rating for a user **u** for an item *i* using the ratings for the item *i* by users most similar to *u*.
- Weighted kNN (regression or classification).

$$\hat{r}_{ui} = \frac{\sum\limits_{v \in \mathcal{N}_i(u)} w_{uv} r_{vi}}{\sum\limits_{v \in \mathcal{N}_i(u)} |w_{uv}|}$$

Item-based CF

- Predict a rating for a user u for an item i using the ratings by the user u for items most similar to i.
- Weighted kNN (regression or classification).

$$\hat{r}_{ui} = rac{\sum\limits_{j \in \mathcal{N}_{u}(i)} w_{ij} r_{uj}}{\sum\limits_{j \in \mathcal{N}_{u}(i)} |w_{ij}|}$$

Item-based filtering

Memory-based CF

- Memory-based CF methods are simplistic, transparent (explainable), efficient and allow for serendipitous predictions.
- We can further extend MCF with various normalization (centering and biases), choosing different similarity metrics (Euclidean, Cosine, ...) or by applying various pre-filtering and post-filtering stages (neighbourhood selection), speedups (locality-sensitive hashing), ...
- Finally, we can combine user-based and item-based approaches using Hybrid models.

Model-based CF

- Contrary, model-based approaches rather use ratings in order to learn a predictive model (which is then used to make new predictions).
- Goal of modelling user-item interactions with factors representing their latent characteristics.
- These factors are inferred solely from the ratings and might represent obvious dimensions (e.g. movie genres) or something completely uninterpretable to us.

- Essential tool in machine learning, broadly used for dimensionality reduction, compression, clustering, classification, ...
- Also, one of the most popular and most used CF model.
- Simple and efficient way to model explicit data and various other side information (implicit ratings, biases, temporal effects, etc.).

- User-Item ratings can be simply represented with a matrix.
- Recommendations now becomes a matrix completion problem.
- We can solve this by factorizing this matrix into a product of (two) smaller matrices.

Matrix Factorization - Intuition

• A trivial factorization: X = X * I

	Machine Learning Paradigest		Dark		
1					
	1				
		1			
			1		
				1	
					1

• Low-Rank factorization: X = U * V

		.9	-1	1	1	9
		2	8	-1	.9	1
1	.1	.88	-1.08	0.9	1.09	-0.8
-1	0	-0.9	1.0	-1.0	-1.0	0.9
.2	-1	0.38	0.6	1.2	-0.7	-1.18
.1	1	-0.11	-0.9	-0.9	1.0	0.91

- Solve matrix factorization problem: $X \approx \hat{X} = UV^T$
- Predict with dot product (linear combinations) between latent user matrix and latent item matrix.
- There are many possible factorizations how to find the best one?
- Define the matrix completion as an optimization problem.

- Define the objective (loss) function.
- One of the most common is the squared loss (Frobenius

norm):
$$||X - \hat{X}||_F^2 = ||X - UV^T||_F^2 = \sum_{i=1}^n \sum_{j=1}^m (x_{ij} - u_i v_j^T)^2$$

- Problem of huge sparsity (typically over 99%).
- We can use weighted matrix factorization:

$$W \circ X \approx W \circ \hat{X} = W \circ (UV^T)$$

- This kind of optimization problems are usually solved using various gradient descent methods: GD, SGD, MUR, PGD, CD ...
- Alternatively, we can use ALS (convex optimization).
- With SGD we can omit the weighted part and optimize only on the known (non-zero) ratings.

Matrix Factorization - SGD

$$L = \sum_{u,i} (r_{ui} - (\mu + b_u + b_i + \mathbf{x}_u^\intercal \cdot \mathbf{y}_i))^2 + \lambda_{xb} \sum_{u} \|b_u\|^2 + \lambda_{yb} \sum_{i} \|b_i\|^2 + \lambda_{xf} \sum_{u} \|\mathbf{x}_u\|^2 + \lambda_{yf} \sum_{u} \|\mathbf{y}_i\|^2$$

$$egin{aligned} rac{\partial L}{\partial b_u} &= 2(r_{ui} - (\mu + b_u + b_i + \mathbf{x}_u^\intercal \cdot \mathbf{y}_i))(-1) + 2\lambda_{xb}b_u \ & b_u \leftarrow b_u + \eta \left(e_{ui} - \lambda_{xb}b_u
ight) \ & b_i \leftarrow b_i + \eta \left(e_{ui} - \lambda_{yb}b_i
ight) \ & \mathbf{x}_u \leftarrow \mathbf{x}_u + \eta \left(e_{ui}\mathbf{y}_i - \lambda_{xf}\mathbf{x}_u
ight) \ & \mathbf{y}_i \leftarrow \mathbf{y}_i + \eta \left(e_{ui}\mathbf{x}_u - \lambda_{yf}\mathbf{y}_i
ight) \end{aligned}$$

- MF allows for a simple inclusion of various side information (like implicit ratings, tags), constraints (penalties and rewards), regularization, biases and temporal dynamics.
- Contextual information about the rating process (circumstances) can also be incorporated - CARS:
 - Contextual pre-filtering, post-filtering and modelling
 - \circ $R: User \times Item \times Context \rightarrow Rating$
 - Tensor factorization

- Constrained Matrix Factorization:
 - NMF (only additive linear combinations induce parts-based representation)
 - Sparse MF (constrained number of combinations)
 - Orthogonal MF (uniqueness, clustering)
- Data Fusion

Deep Learning for RS

- Nowadays, deep learning is everywhere - RS are not an exception.
- Data is becoming more abundant and available.
- Main Idea the user/item interaction may be non-linear.
- Deep models and Hybrids are SOTA.

Deep RS

- **★** Non-linear transformations
- ★ Representation learning and better generalization
- ★ Sequence modelling (RNN)
- **★** Flexibility
- ★ Superior accuracy
- ★ Unified representation and data fusion

- Black box models bad interpretability
- Data requirement and sparseness
- Extensive Hyperparameter tuning

- User and Item embeddings (with one-hot input)
- Dense layers and single output

• This is a generalization of the matrix factorization

• We can add multiple dense layers

• Or combine both models

Deep Autoencoders

- Generalization of the PCA
- Aims to reconstruct the input on the output level

Deep Autoencoders

- Item-based
- User-based: denoising autoencoder

Deep Factorization Machines

 Main idea: Learn both, low-order (FM) and high-order (DNN) feature interactions.

		U	ser			It	em		1	Cat	egori	es		His	story	7
x^1	1	0	0		1	0	0		1	0	1		1	0	1	
x^2	1	0	0		0	1	0		0	2	1		0	0	1	
r^3	0	1	0		1	0	0		3	0	14		1	0	0	
:	:	:	:	:	:	:	:	1	:	:	:	1	:	:	:	:
r^n	0	0	0		0	0	1		0	1	5		0	0	1	

Quantity	
2	y
4	y'
5	y
:	:
1	y'

Evaluating Recommender Systems

- Inherently difficult, same dataset in used for learning and evaluation, highy sparsity, bias and outliers
- How to measure success? User satisfaction is hard to define!
- How to optimize for novelty and serendipity?
- In general, we try to optimize the pre-defined loss function (which does not guarantee best predictions or best user satisfactions).

Evaluating Recommender Systems

- We commonly use a holdout set (sub-matrix, random sample) on which we apply predictive accuracy metrics, such as RMSE, MAE, ...
- For topN recommendations we typically use coverage measures, such as precision and recall (and F1).

TensorFlow

What is TensorFlow?

- "An end-to-end open source machine learning platform"
- At its core: general purpose ML framework, focused on DL
- Core implemented in C / C++ / Python, wrappers for Java / Go / Swift
- Peripherals: TF Serving (microservice for serving models),
 TensorBoard (model visualization / profiling), etc.

Pros & cons of TF

- + A lot of implemented operations and models
- + Optimized for speed, CPU, GPU support
- + Ecosystem (users, libraries, end-to-end platform) most widely used DL framework
- Complexity
- Poor documentation + awkward API in some places

Code time

- Clone the <u>repo</u> and open it
- JupyterLab notebooks: run them locally or on Colab
- Local: Create virtualenv and install dependencies, then run jupyter-lab
- Colab: https://colab.research.google.com/notebooks/intro.ipynb
- The colab notebooks are stored on your GDrive

Stuff we left out

- Saving and loading models
- TF Serving, production usage
- TF in other programming languages
- Custom op creation
- Estimators and tf.data pipelines

Sources (TF part)

- <u>TensorFlow guide</u>
- Deep Learning With Keras: Recommender Systems
- Collaborative Filtering for Movie Recommendations
- NVIDIA/DeepRecommender: Deep learning for recommender systems
- An implementation of DeepRecommender in Tensorflow
 & Keras

Hands-on challenge

Data

- Data: <u>Goodreads book ratings</u>, filtered
- 84k train, 21k test examples
- train.csv & test.csv: user ID, book name & rating
- Bonus: additional book data in *books.csv* (match by book name) try to find a way to add it to the model
- books.csv: authors, publish date, publisher, rating, number of reviews, number of pages

Challenge

- Goal: implement a recommender system in TF to accurately predict a user's rating of a book
- Use mean squared error as your loss function
- You can use some of the code in the notebooks
- Use a validation dataset
- We'll have a leaderboard, lowest MSE wins!
- Don't use test data for validation! :)