Universidade de São Paulo – USP Escola de Engenharia de São Carlos – EESC Departamento de Engenharia Elétrica e de Computação – SEL

Circuitos Elétricos – SEL0602 Exercício 03

Prof.: Mário Oleskovicz

Data de entrega: 05/07/2024

✓ Orientações para a elaboração do relatório:

O relatório deve ser redigido de forma clara e objetiva, contemplando e seguindo a mesma ordem de apresentação dos itens a, b e c abaixo.

- a. Resolução Teórica: desenho e resolução analítica do circuito;
- b. Resolução pelo SPICE:
 - -Desenho do circuito no PSPICE;
 - -Gráficos gerados no ORCAD das grandezas solicitadas no exercício.
- c. Análise dos resultados: Confrontar e analisar os resultados fornecidos pelo SPICE com os resultados obtidos pela resolução teórica.

✓ Orientações para a entrega do relatório:

- Data máxima de entrega: 05/07/2024 até 23:59h;
- A formatação do texto, organização dos resultados e qualidade de visualização das figuras serão critérios avaliativos.
- Forma de entrega: Os relatórios deverão ser entregues eletronicamentevia Moodle, obrigatóriamente em FORMATO .PDF. Os arquivos de saída do PSPICE devem aparecer no relatório como figuras.

\checkmark Instruções de implementação da fonte de tensão senoidal

Figura 1: Fonte VSIN Part Browser Advanced Part Name: Description Search VSIN Description: Create New Part List ◛ Transient sine voltage source Search Library VPWL_ENH
VPWL_F_RE_FORE\
VPWL_F_RE_N_TIM
VPWL_FILE
VPWL_RE_FOREVEI
VPWL_RE_N_TIMES
VSFM C:\Program Files\OrCAD_Demo\PSpic Close Place Place & Close Help VSRC VSTIM WATCH1 Wbreak Libraries... XFRM_LINEAR XFRM_NONLINEAR << Basic ZbreakN Edit Symbol Full List

Figura 2: Parâmetros VSIN

DC	Função DC usado p/ uma Análise do Ponto de Operação. (Padrão = 0).
AC	Função AC usado p/ Análise AC Sweep. (Padrão = 0).
VOFF	Tensão de deslocamento CC do gerador de sinal (em Volts). (Padrão = 0).
VAMPL	Amplitude de pico da senoide (em Volts).
FREQ	Frequência da tensão de saída senoidal (em Hz).
TD	Tempo de atraso até que a tensão da fonte comece (em segundos). (Padrão = 0).
	Taxa na qual a senoide diminui/aumenta em amplitude (em 1/segundos). Um valor
DF	positivo resulta em uma amplitude exponencialmente decrescente; um valor
	negativo confere uma amplitude crescente. Um valor zero (0) gera uma onda
PHASE	Deslocamento de fase da senoide no tempo zero (em Graus)

- 1. Para o circuito apresentado calcule o Equivalente de Thévenin visto a partir do indutor entre os nós 2 e 3. Apresente os valores de Z_{th} , \dot{V}_{th} e \dot{I}_n . Em seguida, calcule a tensão e as correntes entre os nós 2 e 3 no circuito original.
- 2. Utilizando o PSPICE com a análise "Transient" e a função gráfica, plote as curvas no tempo das grandezas solicitadas no item 1.

OBS: Para isso será preciso de 3 netlists diferentes. Destas, uma para o circuito original e duas para definir o equivalente de Thévenin, sendo uma para definir \dot{V}_{th} e outra para \dot{I}_n .

Obs.:

- (a) "NN" é igual aos dois últimos dígitos do número USP;
- (b) Caso o número final de sua matricula seja "00", utilizar "NN=10";
- (c) Considere $\omega = 2 \text{ rad/s}$.
- (d) Considere um passo de simulação e um tempo máximo que sejam capazes de representar de forma clara o comportamento das grandezas no gráfico.