Started on	Tuesday, 24 November 2020, 3:09 PM	
State	Finished	
Completed on	Tuesday, 24 November 2020, 4:45 PM	
Time taken	1 hour 35 mins	
Marks	s 67.0/80.0	
Grade	8.4 out of 10.0 (84 %)	
4		
Question 1		
Complete		

Mark 0.0 out of 1.0

[537] Given the following recursive algorithm. What is the output of the following code? for i:=1 to 5 do print(vzar(i))

procedure vzar(n : positive integer)

if n < 3 then return n

else return 3*vzar(n-1) - 2*vzar(n-2)

Select one:

- None
- 0 1, 2, 4, 8, 16
- 0 1, 2, 4, 6, 8
- 0 5, 5, 5, 5, 5
- 0 1, 2, 3, 4, 5

The correct answer is: None

Question ${\bf 2}$

Complete

Mark 1.0 out of 1.0

[416] Which of the following are PRIMES?

Select one:

- 135794 and 23570
- 29 and 31
- None of the others
- 77 and 11

The correct answer is: 29 and 31

Question 3	
Complete	
Mark 1.0 out of 1.0	

[850] Write the postfix expression of the infix expression((x + 8) * (y - 7)) + 2.

Select one:

- x 8 y 7 2 + * +
- x 8 y 7 + * 2 +
- x 8 + y 7 * 2 +
- None of the others

The correct answer is: x + y - *2 +

Question 4

Complete

Mark 0.0 out of 1.0

[845] Given a binary search tree containing values 5, 4, 0, 1, 2, 3, 6, 7. After the value of 8 is inserted. The result when the inorder traversal algorithm is applied on the tree is _____

Select one:

- 540123678
- 0 540182367
- 012345678
- None of the others
- 0 876543210

The correct answer is: 0 1 2 3 4 5 6 7 8

The correct answer is: (ii)

Question **8**Complete

Mark 1.0 out of 1.0

 $(i) \\ p \rightarrow q \\ p \\ \hline \vdots \quad q$

[104] Which of these following statements are FALSE (where \neg is the negation)?

 $p \rightarrow q$ $q \rightarrow r$ $\cdots \qquad p \rightarrow r$ (iii) $[p \land (q \lor p)] \equiv p$ (iv) $p \rightarrow q \equiv \neg p \rightarrow \neg q$

Select one:

- (iv)
- (i)
- (ii)
- None
- (iii)

The correct answer is: (iv)

```
Question 9
Complete
Mark 1.0 out of 1.0
```

```
[312] Which of the following functions is to correct for finding the position of an element in the array of integers?
```

```
int binary-search(element x, array a, int i, int j)
            if (i > j) then return -1; // not found
            m = (i+j) / 2;
            if(x = a[m]) return m;
            if (x > a[m]) return binary-search(x, a, i, m-1);
            return binary-search(x, a, m+1, j);
    int binary-search(element x, array a, int i, int j)
b.
            if (i > j) then return -1; // not found
            m = (i+j) / 2;
            if (x = a[m]) return m;
            if (x < a_m) \ return \ binary-search(x, \ a, i, m-1); \\
            return binary-search(x, a, m+1, j);
         binary-search(element x, array a, int i, int j)
c.
    int
            m = (i+j) / 2;
            if (x = a[m]) return m;
            if (x < a[m]) return binary-search(x, a, i, m-1);
            return binary-search(x, a, m+1, j);
d.
    int binary-search(element x, array a, int i, int j)
            if (i > j) then return -1; // not found
            m = (i+j) / 2;
            if (x = a[m]) return m;
            if (x < a[m]) return binary-search(x, a, 1, m-1);
            return binary-search(x, a, m+1, n);
```

Select one:

- O c.
- b.
- d.
- a.

```
Question 10
Complete
Mark 0.0 out of 1.0
```

[307] Which of the following functions is to correct for FINDING the position of integer z in the array a of integers sorted in increasing order,

```
int bsearch(integer array a of a[1], a[2], ..., a[n]; d, c and z: integer)
                                                                        if (d > c) then
                                                                               return 0; // not found
                                                                        g = (d+c)/2;
                                                                        if (z == a[g])
                                                                               retum g;
                                                                        if (z \le a[g])
                                                                               return bsearch(a, d, g-1, z);
                                                                        return bsearch(a, g+1, c, z);
                                                      b.
                                                                int bsearch(integer array a of a[1], a[2], ..., a[n]; d, c and z: integer)
                                                                        if (d > c) then
                                                                               return 0; // not found
                                                                        g = (d+c)/2;
                                                                        if (z == a[g])
                                                                               retum g;
                                                                        if (z \ge a[g])
                                                                               return bsearch(a, d, g-1, z);
if we call "int result = bsearch(a, 1, n, z)"?
                                                                        return bsearch(a, g+1, c, z);
                                                                int bsearch(integer array a of a[1], a[2], ..., a[n]; d, c and z: integer)
                                                      C.
                                                                        g = (d+c)/2;
                                                                        if(z == a[g])
                                                                               retum g;
                                                                        if (z \le a[g])
                                                                               return bsearch(a, d, g-1, z);
                                                                        return bsearch(a, g+1, c, z);
                                                      d.
                                                                int bsearch(integer array a of a[1], a[2], ..., a[n]; d, c and z: integer)
                                                                        g = (d+c)/2;
                                                                        if (z == a[g])
                                                                               retum g;
                                                                        if (z \ge a[g])
                                                                               return bsearch(a, d, g-1, z);
                                                                        return bsearch(a, g+1, c, z);
```

Select one:

- C.
- b.
- d.
- a.

Question 11 Complete Mark 1.0 out of 1.0
[431] Convert hexa decimal (BC1) to base 2.
Select one:
O 1011 1010 0001
○ 1011 1001 0001
1011 1100 0001
O 1011 1101 0001
The correct answer is: 1011 1100 0001
Question 12
Complete
Mark 0.0 out of 1.0
[7064] There are non-zero entries in an adjacent matrix representing the graph K5.
Select one:
O 12
O 10
15
O 20
The correct answer is: 20
Question 13
Complete
Mark 1.0 out of 1.0
[7041] How many edges does a graph have if its degree sequence is 4, 3, 3, 2, 1, 1, 0?
Select one:
○ 28
7
O 14
O 6
The correct answer is: 7

https://lmsdn.fpt.edu.vn/mod/quiz/review.php?attempt=12243&cmid=2918&showall=1

[202] Let the rules of f: $N \rightarrow N$, $f(n) = n \mod 3$; g: $R \rightarrow N$, g(x) = floor(n). h: $Z \rightarrow Z$, h(z) = z+1 is a bijective! Which of the following is/are true?

Select one:

- f is injective, g is injective
- of is injective, g is onto
- of is onto, g is onto, and h is not bijective.
- of is onto, g is onto, and h is bijective.
- of is onto, g is injective

The correct answer is: f is onto, g is onto, and h is bijective.

Question 15

Complete

Mark 1.0 out of 1.0

[501] The solution to the recurrence relation A[n]=A[n-1]+2.n, with initial term A[0]=2 are A[n]=____.

Select one:

- [n * (n+1)] + 2
- 5 * (n+1)/2
- 4*n + 7
- 3 * (n^2)

The correct answer is: [n * (n+1)] + 2

24/2020	Assignment 3 - SE150 2: Attempt review
Question 19	
Complete	
Mark 1.0 out of 1.0	
[645] How many six-character p	passwords can be formed if characters are chosen from the set {a, b,, z}, with repeated letters are allowed?
Select one:	
© 26 ⁶	
O 156	
None	
O 26!	
The correct answer is: 26^6	
Question 20	
Complete	
Mark 1.0 out of 1.0	
[163] Determine whether the a	rgument given here is valid.(i) "If CôVy works hard then she will pass the examination. We know that she did
	Cô-Vy will not pass the examination."(ii) "If Thoong is good at learning he will get a prize. Assume that he did
not get a prize. Therefore, he is	not good at learning."
Select one:	
O All	
onone	
(ii) only	
(i) only	
The correct answer is: (ii) only	

https://lmsdn.fpt.edu.vn/mod/quiz/review.php?attempt=12243&cmid=2918&showall=2243&cmid=2918&showall=2243&cmid=2918&showall=2243&cmid=2918&showall=2243&cmid=2918&showall=2243&cmid=2918&showall=2243&cmid=2244&cmid=2244&cmid=2244&cmid=2244&cmid=2244&cmid=2244&cmid=2244

4/2020	Assignment 3 - SE150 2: Attempt review
Question 21 Complete Mark 1.0 out of 1.0	
[114] Let P:If Sahil bowls, Saurabh hits a century. ,Q: If Raju following can be true?	bowls , Sahil gets out on first ball. Now if P is true and Q is false then which of the
Select one: Sahil bowled and Saurabh hits a century Sahil bowled and Saurabh got out Raju did not bowled	
Raju bowled and Sahil got out on first ball The correct answer is: Sahil bowled and Saurabh hits a cent	tury
Question 22 Complete Mark 0.0 out of 1.0	
[134] Let p and q be the propositions: p: You drive over 65 get a speeding ticket, but you do not drive over 65 miles p	miles per hour. q: You get a speeding ticket.Write the following proposition "You er hour", using p, q and logical connectives.
Select one:	

- \bigcirc qvp
- \bigcirc p \rightarrow q

The correct answer is: $q \wedge p$

[161] Let P(x) and Q(x) be two statements of "x is a prime number.", "x is odd". The domain consists of all positive integers. Let R and S be the quantifications of " \forall x [P(x) \rightarrow Q(x)]" and " \exists x [P(x) \land \neg Q(x)]", respectively. What are the truth values of R and S?

Select one:

- R is false and S is true
- R is true and S is false
- R is false and S is false
- R is true and S is true

The correct answer is: R is false and S is true

Question 27

Complete

Mark 1.0 out of 1.0

[281] Given that $X = \{x \in N \mid 0 \le x \le 6 \text{ and } x \text{ is odd}\}$. Show the power set P(X) - the set of all subsets of X.

Select one:

- {1}, {5}, {3}, {1, 5}, {1, 3}, {5, 3}}
- {1}, {5}, {3}, {1, 5}, {1, 3}, {5, 3},{1,5,3}}
- **(1,3,5)**
- \bigcirc {Ø,{1}, {5}, {3}, {1, 5}, {1, 3}, {5, 3}}

The correct answer is: {Ø, {1}, {5}, {3}, {1, 5}, {1, 3}, {5, 3},{1,5,3}}

Question 28
Complete

[421] Find the BASE 2 expansion of the integer 16.

Select one:

Mark 1.0 out of 1.0

- 0 10000
- 0 11111
- 0 11011
- 00001

The correct answer is: 10000

Question 29

Complete

Mark 1.0 out of 1.0

[7075] Given the graph. Which statement(s) is (are) TRUE?

Select one:

- The graph has no Euler circuit.
- An Euler circuit is 1 2 3 1 3 6 4 5 6 2 4 1
- O An Euler circuit is 1 3 4 5 6 1
- An Euler circuit is 1 2 3 4 5 6 3 1

The correct answer is: An Euler circuit is 1 2 3 1 3 6 4 5 6 2 4 1

Assignment 5 - SE 100 2. Attent	ipt review
Question 30 Complete	
Mark 1.0 out of 1.0	
[103] Determine the NEGATION of the logical expression (where \neg is the negation) $\exists x (P(x))$	(i) ∀x (¬P(x) ∧ ¬Q(x)) (ii) ∀x (P(x) ∨ Q(x)) (iii) ∀x (¬P(x) ∨ ¬Q(x)) (iv) ∀x (P(x) ∧ Q(x))
Select one:	
○ (ii)	
(i)	
○ (iv)	
(iii)	
The correct answer is: (i)	
Question 31	
Complete	
Mark 1.0 out of 1.0	
[325] Consider the algorithm:The complexity of the algorithm is(Choose the best of procedure $max(a_1,a_2,,a_n)$: reals) $max:=a_1$ for $i:=2$ to n if $max then max:=a_i$	otion)
Select one:	
O(n log(n))	
O(n)	
O(n^2)	
O(1)	
The correct answer is: $O(n)$	

The correct answer is: O(n)

[538] Given a recursive algorithmWhat is the output after calling calcu(2.4, 5)?

```
procedure calcu(a: real number, n: positive integer)
   if n = 1 then calcu(a, n) := a
   else calcu(a, n) := a + calcu(a, n - 1)
```

Select one:

- 12
- None
- 2.4
- 7.4
- 6.4

Question 34
Complete
Mark 1.0 out of 1.0

[7049] Determine whether a graph with the degree sequence 4, 3, 2, 2, 1 has a Hamilton path, a Hamilton circuit.

Select one:

- Hamilton path: no, Hamilton circuit: yes
- Hamilton path: yes, Hamilton circuit: no
- O Hamilton path: no, Hamilton circuit: no
- Hamilton path: yes, Hamilton circuit: yes

The correct answer is: Hamilton path: yes, Hamilton circuit: no

Question **35**

Complete

Mark 1.0 out of 1.0

[870] Set up a binary search tree for the following list 5.5, 3.3, 6.6, 2.2, 4.4, 7.7. Write the PRE-ORDER traversal of the tree.

Select one:

- None of the others
- 2.2, 3.3, 4.4, 5.5, 6.6, 7.7
- 5.5, 3.3, 2.2, 4.4, 6.6, 7.7
- 2.2, 4.4, 3.3, 7.7, 6.6, 5.5

The correct answer is: 5.5, 3.3, 2.2, 4.4, 6.6, 7.7

24/2020	Assignment 3 - SE150 2: Attempt review	
Question 36 Complete Mark 1.0 out of 1.0		
[657] How many bit strings of length four whic	ch no three consecutive (liên tiếp) 0s, using a tree diagram to count.	
Select one: None		
13		
1214		
O 15		
The correct answer is: 13		
Question 37 Complete		
Mark 1.0 out of 1.0		
[824] Which one is a prefix code?(i) A: 01 Select one: Both (i) only (ii) only None	B: 101 C: 111 D: 00(ii) A: 101 B: 010 C: 111 D: 1001	
None		

The correct answer is: Both

L4/2020	Assignment 5 - GE 150 2. Attempt review
Question 38	
Complete	
Mark 1.0 out of 1.0	
[520] By induction hypothesis, for any positive integer in	n, the sum 1*(1!) +2*(2!)++n*(n!) can be equivalent to:
Select one:	
(n^2) - 1	
○ (n+2)! - 2	
○ (n+2)! - n	
The correct answer is: (n+1)! - 1	
Question 39	
Complete	
Mark 1.0 out of 1.0	
	procedure tinh(n : positive integer)
[546] Consider the algorithm:What is the output if n =	15? if n = 1 return 1
	else return $n + tinh(n-1)$
Select one:	
○ 16	
○ None	
© 225	
15	
120	

4/2020	Assignment 3 - SE 150 2. Attempt review	
Question 40 Complete		
Mark 1.0 out of 1.0		
[624] How many integers	n {1, 2, 3,, 100} are divisible by 2 but not by 5 ?	
Select one:		
○ 39		
40		
O 50		
○ None		
O 49		
The correct answer is: 40		
Question 41		
Complete		
Mark 1.0 out of 1.0		
[262] If a set A has 3 elem	ents, then number of elements in (A \times A) \times A is	
Select one:		
27		
○ None		
O 9		
O 2^27		

24/2020	Assignment 3 - SE150 2: Attempt review
Question 42	
Complete	
Mark 0.0 out of 1.0	
[260] Let N = {	0, 1, 2, 3,} and f: $N \rightarrow N$; $f(n) = (n-3)^2Which one is true? (i) f(6) = f(0) (ii) f is one-to-one$
Select one:	
None	
Both	
(ii)	
(i)	
The correct an	swer is: (i)
Question 43	
Complete	
Mark 1.0 out of 1.0	
[423] How may	y prime numbers are there between 1 to 20?
Select one:	
O 7	
O 5	
⊚ 8	
O 6	

Question 44	
Complete	
Mark 1.0 out of 1.0	

[7048] Given the adjacency matrix of an undirected graph with vertices {a, b, c} abca 213b 10 1c 310How many paths of length 2 are there from the vertex b to the vertex a in this graph?

Select one:

- O 5
- O 3
- 0 6
- 4
- None of the others

The correct answer is: 4

Question 45

Complete

Mark 1.0 out of 1.0

[622] How many 15 bit-strings either start with 00 or end with 111?

Select one:

- (2^13) * (2^12) * (2^10)
- 2^10
- (2^13) + (2^12) (2^10)
- $(2^13) + (2^12)$

The correct answer is: $(2^13) + (2^12) - (2^10)$

/24/2020	Assignment 3 - SE150 2: Attempt review
Question 46	
Complete	
Mark 1.0 out of 1.0	
[519] For any integer m>=3, the series 1+3+5++(2*m	n-1) can be equivalent to
Select one:	
○ 3 * m * m + 4	
⊚ m*m	
O m + 1	
O 2 * m + 2	
The correct answer is: m * m	
Question 47	
Complete	
Mark 1.0 out of 1.0	
[654] How many different license plates can be made if followed by three digits, given that they have distinct le	f each plate contains a sequence of three English letters (NOT CASE-SENSITIVE)
ionowed by times digital, given that they have distinct to	sters and algres.
Select one:	
O 11232000	
O 17576000	

0 140608000 95472000

24/2020 As	signment 3 - SE150 2: Attempt review
Question 48	
Complete	
Mark 1.0 out of 1.0	
[319] Suppose that we have the following sequence 1, 3, 5, ,7, 8 halves of the sequence. What is the total complexity of this open	3, 9,, 99, 2, 4, 6, 8, 10,, 100If the binary search algorthm is applied on two eration?
Select one:	
O(3n)	
O(logn)	
O(n)	
O(n/2)	
○ None	
The correct answer is: O(logn)	
Question 49	
Complete	
Mark 0.0 out of 1.0	
[249] Study the following statements, where A is the set {a,b,c}.	(i) $P(A)$ has 8 elements (ii) $\{a\} \in A$
Select one:	
○ false, false	
o false, true	
true, false	
true, true	

The correct answer is: true, false

24/2020	Assignment 3 - SE150 2: Attempt review
Question 50 Complete Mark 1.0 out of 1.0	
[504] For any integer n >=, we can prov	ve by mathematical induction that n! < pow(n,n) (the power of n with n times, n.nn).
Select one or more:	
☑ 2	
□ 0	
☑ 3	
1	
The correct answers are: 2, 3	
Question 51	
Complete Mark 1.0 out of 1.0	
	e whether the argument is valid or not valid.(i) Everyone enrolled in the university has lived in a 7. Therefore, Mia is not enrolled in the university.(ii) A convertible car is fun to drive. Isaac's car is fun to drive.
Select one:	
(i): invalid, (ii): invalid	
(i): valid, (ii): not valid	
(i): inalid, (ii): valid	
(i): valid, (ii): valid	

The correct answer is: (i): valid, (ii): not valid

Question 52	
Complete	
Mark 1.0 out of 1.0	

[608] How many steps needed to move n disks on the peg 1 to peg 2 with intermediate peg 3, whenever n is a nonnegative integer?

Select one:

- 2^n 1
- 2^(n-1)
- 2^n + 1
- 2^n

The correct answer is: 2ⁿ - 1

```
Question 53
Complete
Mark 1.0 out of 1.0
```

[552] Which of the following function can be used to locate an element x in a DECREASING array by binary search method?

```
int bsearch(int a[100], int x, int dau, int cuoi)
    int giua = a[(d + c)/2];
    if (x > a[giua]) return bsearch(a, x, giua + 1, cuoi);
    if (x < a[giua]) return bsearch(a, x, dau, giua - 1);</pre>
    return giua; // x is at giua
int bsearch_1(int a[100], int x, int dau, int cuoi)
    if (dau > cuoi) return -1; // not found
    int giua = a[(d + c)/2];
    if (x > a[giua]) return bsearch_1(a, x, giua + 1, cuoi);
    if (x < a[giua]) return bsearch_1(a, x, dau, giua - 1);</pre>
    return giua; // x is at giua
int bsearch 2(int a[100], int x, int dau, int cuoi)
    if (dau > cuoi) return -1; // not found
    int giua = a[(d + c)/2];
    if (x < a[giua]) return bsearch_2(a, x, giua + 1, cuoi);
if (x > a[giua]) return bsearch_2(a, x, dau, giua - 1);
    return giua; // x is at giua
```

Select one:

- bsearch_1
- None
- bsearch
- bsearch_2

The correct answer is: bsearch_2

Question **54**Complete

Mark 1.0 out of 1.0

[7107] Let 3 undirected graphs. Select CORRECT statements:

Select one:

- Only one of them has an Euler circuit
- Each of them has an Euler path.
- Each of them has an Euler curcuit
- No graph has both Euler path and Euler circuit

The correct answer is: Only one of them has an Euler circuit

Question **55**

Complete

Mark 1.0 out of 1.0

[408] The binary notation of 231 is

Select one:

- 11100111
- 0 11100011
- 0 11010111
- 0 10111011

Question 56 Complete	
Mark 1.0 out of 1.0	
[322] What is the best big-O complexity of the algorithm above?	procedure $tim(a_1, a_2, a_3,, a_n)$: integers) for i:= 2 to n for k:=1 to i-1 if $a_k = a_i$ then print(k) break
Select one: None of the others	
O(n^2)	
O(n)	
O(log n)	
O(n log(n))	
The correct answer is: O(n^2)	
Question 57	
Complete Mark 1.0 out of 1.0	
[303] Which is the big-O estimate of worst–complexity of Merge Select one: O(n^3) O(n^2) O(n * log(n)) O(n)	e sort.
The correct answer is: O(n * log(n))	

Complete Mark 1.0 out of 1.0	Question 58	
Mark 1.0 out of 1.0	Complete	
	Mark 1.0 out of 1.0	

[7053] The degree sequence of a graph is the sequence of the degrees of the vertices of the graph in nonincreasing order. Select an invalid degree sequence of a simple graph.

Select one:

- 0 8, 8, 6, 6, 3, 3, 2, 2
- 0 7, 7, 6, 6, 4, 4, 1
- 0 6, 6, 5, 5, 4, 4, 2, 2
- 0 5, 5, 3, 3, 2, 2, 1, 1

The correct answer is: 7, 7, 6, 6, 4, 4, 1

Question **59**

Complete

Mark 1.0 out of 1.0

[407] DECRYPT the message "CRR" by Caesar cipher.

Select one:

- DSS
- OOT
- ZOO
- ANN

· · · · · · · · · · · · · · · · · · ·
Question 60 Complete
Mark 1.0 out of 1.0
Mark 1.0 Out Of 1.0
[868] Use HUFFMAN coding to encode the following symbols with the frequencies listed: A: 0.08, B: 0.10, C: 0.12, D: 0.15, E: 0.20, F: 0.35. The encoding produced encodes
Select one:
 A by 00, B by 10, C by 010, D by 011, E by 110, and F by 111
None of the others
 A by 111, B by 110, C by 010, D by 011, E by 10, and F by 00
A by 111, B by 110, C by 011, D by 010, E by 10, and F by 00
The correct answer is: A by 111, B by 110, C by 011, D by 010, E by 10, and F by 00
Question 61
Complete
Mark 1.0 out of 1.0
[833] Using alphabetical order, construct a binary search tree for the words in the sentence "Men make houses, women make homes." How many comparisons are needed to locate the word "homes"?
Select one:
O 3
O 2
 None of the others
4
O 1

[405] Which of the following is the GREATEST COMMON DIVISOR of 120 and 80 (using their prime factorizations as follows:120=2.2.2.3.5, 80=2.2.2.2.5)?

Select one:

- (2^3) * 5
- (2^3) * 3 * 5
- (2^3) * 3 * 5 * (2^4) * 5
- (2^4) * 3 * 5 * (2^4) * 5

The correct answer is: (2^3) * 5

Question **63**

Complete

Mark 1.0 out of 1.0

[435] Suppose that a computer has only the memory locations 0, 1, 2, ..., 29. Using the hashing function h where $h(x) = (x + 5) \mod 30$ to determine the memory locations in which 97, 32, and 16 are stored, we have

Select one:

- 0 12, 7, 16
- 7, 2, 16
- 0 12, 2, 16
- None
- 12, 7, 21

The correct answer is: 12, 7, 21

/24/2020	Assignment 3 - SE150 2: Attempt review
Question 64	
Complete	
Mark 1.0 out of 1.0	
[329] Give a big-O estimate for $(x^2 + x \log x) * (2x + x \log x)$	3).
Select one:	
O(x log(x))	
O(x^2 log(x))	
O(x^2)	
O(x^3)	
The correct answer is: O(x^3)	
Question 65	
Complete	
Mark 1.0 out of 1.0	
[634] A multiple-choice test contains 8 questions. The	ere are four possible answers for each question. In how many ways can a student
answer the questions on the test if the student answe	ers every question?
Select one:	
4^8	
O 1	
○ 32	
None of the others	
○ 8^4	

Question **66**

Complete

Mark 1.0 out of 1.0

[426] Find correct statements

Select one:

- 290 mod 17=1 and -88 mod 13=9
- 290 mod 17=1; -88 mod 13=10
- 290 mod 17=1 and -88 mod 13=-3
- 290 mod 17=1 and -88 mod 13=3

The correct answer is: 290 mod 17=1 and -88 mod 13=3

Question **67**

Complete

Mark 0.0 out of 1.0

[878] Use DEPTH-first search to produce a spanning tree for the given simple graph. Choose a as the root of this spanning tree and assume

that the vertices are ordered alphabetically.

Select one:

- None
- abchglidefjkmn
- abcdefghijklmn
- abgchlmidejnfk
- abchglidefkjnm

The correct answer is: a b c h g l i d e f k j n m

24/2020	Assignment 3 - SE150 2: Attempt review
Question 68	
Complete	
Mark 0.0 out of 1.0	
[7001] Study a simple graph having the degree sequence {5	5,5,4,4,4,3,3,2,2,2,2, 1,1}. This graph has edges.
Select one:	
O None of the others.	
17	
○ 38	
 A number between 20 and 38. 	
O 19	
The correct answer is: 19	
Question 69	
Complete	
Mark 1.0 out of 1.0	
[330] The big-O notation for $f(x) = 4 \log x + 2$ is	
Select one:	
O(x)	
O(logx)	
O None	
O(1)	

The correct answer is: O(logx)

Assignment 3 - SE150 2: Attempt review	
Question 70 Complete Mark 1.0 out of 1.0	
[801] Use Huffman coding algorithm to encode the word "football". What is the average number of bits required to encode a character?	
Select one:	
O 2.45	
None of the others	
O 2.35	
O 2.25	
O 2.5	
The correct answer is: None of the others	
Question 71	
Complete Mark 1.0 out of 1.0	
[233] Study the following rules: (i) f: $Z \rightarrow R$; $f(x) = 1/(2x-1)$ (ii) f: $R \rightarrow R$; $f(x) = 1/(2x-1)$ Which rule describe(s) a function(s)?	
Select one:	
(i)	
O Both	
O None	
(ii)	

Question 72
Complete Mark 1.0 out of 1.0
[338] Find big-O estimate of worst-COMPLEXITY of LINEAR SEARCH algorithm for finding the position of an element in an array of integers.
Select one:
O(n)
O(n^2)
O(log n)
O(1)
The correct answer is: O(n)
The Correct answer is. O(ii)
Question 73
Complete Mark 1.0 out of 1.0
[242] The sum of the first n negative integers (-1, -2, -3,, -n) is given by:
Select one:
- [n * (n-1)] / 2
○ [n * (n+1)] / 2
○ [n * (n-1)] / 2
- [n * (n+1)] / 2
The correct arrays in Fig. (b. † (b. 11) / 2
The correct answer is: - [n * (n+1)] / 2
Question 74
Complete Mark 1.0 out of 1.0
Walk 1.0 Out of 1.0
[529] Which of the following is a recursive definition of the set of bit strings $S = \{1, 111, 111111, 1111111,\}$? (i) String 1 is in S; If string x is in S, then so x11 is.(ii) String 1 is in S; If string x is in S, then so x1 is.
Select one:
(ii)
○ None
O Both
(i)

24/2020	Assignment 3 - SE150 2: Attempt review
Question 75	
Complete	
Mark 1.0 out of 1.0	
[811] What is the value of following postfix exp	ression: 3 4 * 5 3 - + 2 2 ^ *
Select one:	
O 12	
56	
O 37	
O 9	
The correct answer is: 56	
Question 76	
Complete	
Mark 1.0 out of 1.0	
[518] Which of the following is the base case fo	pr pow(4,n+1) > pow(n+1,2)?
Select one:	
O 54 > 8	
O 16 > 2	
64 > 9	
O 27 < 91	

The correct answer is: 64 > 9

11/24/2020

Question **77**Complete

Mark 1.0 out of 1.0

		$\forall x (P(x) \land Q(x))$
		$\exists x \ (\neg P(x) \land \neg Q(x))$
[111] Determine the NEGATION of the logical expression (where \neg is the negation) $\underline{\underline{b}}$		
	c.	$\exists x (P(x) \land \neg Q(x))$
	đ.	$\exists x \ (\neg P(x) \lor \neg Q(x))$

Select one:

- d.
- a.
- O c.
- O b.

The correct answer is: d.

Question **78**

Complete

Mark 1.0 out of 1.0

[7094] Given the graph. Which statement(s) is (are) TRUE? 3

Select one:

- The graph has no Euler circuit
- An Euler circuit is 1 2 3 4 5 6 7 1
- An Euler circuit is 1 4 6 7 4 5 6 2 7 1 2 3 1
- An Euler circuit is 1 3 2 7 6 5 4 1

The correct answer is: An Euler circuit is 1 4 6 7 4 5 6 2 7 1 2 3 1

4/2020	Assignment 3 - SE150 2: Attempt review
Question 79	
Complete	
Mark 1.0 out of 1.0	
(i) The account after 30 years is	Reposits \$10K in a savings account at a bank yielding 11% per year with interest compounded annually. The $(1.11 - 30) \times 10$ K. (ii) The account after 30 years is $(1.11 \times 30) \times 10$ K. (iii) The account after 30 years is whether that conclusion is valid.
Select one:	
(ii)	
(iii)	
None	
(i)The correct answer is: (i)	
The correct answer is: (i)	
The correct answer is: (i) Question 80	
The correct answer is: (i) Question 80 Complete	
The correct answer is: (i) Question 80 Complete Mark 0.0 out of 1.0	is dryWrite "It is neither cold nor dry" in symbols.
The correct answer is: (i) Question 80 Complete Mark 0.0 out of 1.0	is dryWrite "It is neither cold nor dry" in symbols.
The correct answer is: (i) Question 80 Complete Mark 0.0 out of 1.0 [132] Suppose c: It is cold d: It	is dryWrite "It is neither cold nor dry" in symbols.
The correct answer is: (i) Question 80 Complete Mark 0.0 out of 1.0 [132] Suppose c: It is cold d: It Select one:	is dryWrite "It is neither cold nor dry" in symbols.
The correct answer is: (i) Question 80 Complete Mark 0.0 out of 1.0 [132] Suppose c: It is cold d: It Select one: C A d	is dryWrite "It is neither cold nor dry" in symbols.
The correct answer is: (i) Question 80 Complete Mark 0.0 out of 1.0 [132] Suppose c: It is cold d: It Select one: C A d C A d	is dryWrite "It is neither cold nor dry" in symbols.

The correct answer is: $c \wedge d$