Correction exercice nº6

Partie A.

1. En écrivant pour $x \neq 0$, $\frac{x-1}{x+1} = \frac{1-\frac{1}{x}}{1+\frac{1}{x}}$, on voit que $\lim_{x+\to+\infty} \frac{x-1}{x+1} = 1$.

Comme $\lim_{x \to +\infty} e^{-x} = 0$, on a donc $\lim_{x \to +\infty} f(x) = 1$.

On en déduit que la droite d'équation y = 1 est asymptote horizontale à (\mathscr{C}) au voisinage de $+\infty$.

2. f est dérivable sur appartenant à $[0; +\infty[$. $\forall x \in [0; +\infty[$,

$$f'(x) = \frac{x+1-x+1}{(x+1)^2} - (-e^{-x})$$
$$= \frac{2}{(x+1)^2} + e^{-x}$$

 $\forall x \ge 0, \ f'(x) > 0$ car somme de deux termes supérieurs strictement à zéro : on en déduit que la fonction f est strictement croissante sur $[0; +\infty[$ avec f(0) = -2 :

X	0	и	+∞
Variation de f	-2 -	0	→ 1

3. (T_0) : y = f'(0)(x-0) + f(0) avec f'(0) = 3 et f(0) = -2 on a alors:

$$(T_0): y = 3x - 2$$

- 4. f est continue car dérivable sur $[0; +\infty[$
 - La fonction f est strictement croissante sur $[0; +\infty[$.

Or $0 \in [-2; 1[$ (intervalle image de l'intervalle $[0; +\infty[$ par la fonction f), donc d'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution, notée u, dans l'intervalle $[0; +\infty[$.

5. On a f(1) < 0 et f(2) > 0 donc 1 < u < 2. De plus f(1,5) < 0 et f(1,6) donc d'après la méthode de balayage, on en déduit que :

Partie B.

1. Sur $[0; +\infty[$, f_n est dérivable et sur cet intervalle :

$$f'_n(x) = \frac{x + n?x + n}{(x + n)^2} + e^{?x}$$

= $\frac{2n}{(x + n)^2} + e^{?x}$

Pour tout réel $x \ge 0$ on a $f_n'(x) > 0$ car somme de deux termes positifs non nuls : la fonction f_n est donc strictement croissante sur $[0; +\infty[$.

On a $f_n(0) = -2$ et quel que soit n, $\lim_{x \to +\infty} \frac{x-n}{x+n} = 1$, car $\frac{x-n}{x+n} = \frac{1-\frac{n}{x}}{1+\frac{n}{x}}$ pour $x \neq = 0$ et d'autre part $\lim_{x \to +\infty} e^{2x} = 0$, donc par somme des limites $\lim_{x \to +\infty} f_n(x) = 1$.

x	0	+∞
Variation de f_n	-2	1

- 2. (a) $f_n(n) = -e^{-n} < 0$, car quel que soit n, $e^{-n} > 0$.
 - (b) Soit \mathcal{P}_n la proposition : $e^{n+1} > 2n+1$.
 - *Initialisation*. Vérifions que \mathcal{P}_0 est vraie.

Si n = 0, on a $e^{0+1} > 2 \times 0 + 1$ ou encore e > 1 et donc \mathcal{P}_0 est vraie.

• *Hérédité*. Soit $n \in \mathbb{N}$. Supposons \mathcal{P}_n vraie soit $\mathrm{e}^{n+1} > 2n+1$ et montons que \mathcal{P}_{n+1} est vraie soit $\mathrm{e}^{n+2} > 2n+3$.

Par hypothèse de récurrence, $e^{n+1} > 2n+1$ d'où en multipliant chaque membre par e > 0: $e^{n+2} > e(2n+1)$.

Or
$$(2n+1)e > 2n+3 \iff 2n(e-1) > 3?e \iff n > \frac{3-e}{2(e-1)}$$
 (1)

car (e-1 > 0).

Or
$$\frac{3-e}{2(e-1)} \approx 0.08$$
.

 \mathcal{P}_{n+1} est donc vraie.

 \mathcal{P}_0 est vraie et est héréditaire à partir du rang n=0, \mathcal{P}_n est donc vraie pour tout entier naturel n.

$$\forall n \in \mathbb{N}, e^{n+1} > 2n+1$$

Ainsi:

$$f_n(n+1) = \frac{n+1-n}{n+1+n} - e^{-(n+1)}$$

$$= \frac{1}{2n+1} - e^{-(n+1)}$$

$$= \frac{1}{2n+1} - \frac{1}{e^{(n+1)}}$$

$$= \frac{e^{(n+1)} - (2n+1)}{e^{(n+1)}(2n+1)}$$

Or d'après la question précédente le numérateur est supérieur à zéro et par ailleurs le dénominateur produit de deux facteurs supérieurs à zéro est supérieur à zéro, donc $f_n(n+1) > 0$.

- (c) f_n est continue car dérivable sur [n; n+1]
 - La fonction f_n est strictement croissante sur $[0; +\infty[$ donc sur [n; n+1].

Or $f_n(n) < 0$ et $f_n(n+1) > 0$ donc d'après le corollaire du théorème des valeurs intermédiaires, l'équation $f_n(x) = 0$ admet une unique solution, notée u_n , dans l'intervalle [n; n+1].

3. D'après la question précédente, $n \ge u_n$ et $\lim_{n \to +\infty} n = +\infty$. D'après le théorème de comparaison des limites, $\lim_{n \to +\infty} u_n = +\infty$.

Pour $n \neq = 0$, on a $n \leq u_n \leq n+1 \Rightarrow 1 \leq \frac{u_n}{n} \leq 1+\frac{1}{n}$. Or $\lim_{n \to +\infty} \frac{1}{n} = 0$, d'après le théorème de comparaison des limites : $\lim_{n \to +\infty} \frac{u_n}{n} = 1$.