Column Vectors

1 Vectors in \mathbb{C}^n

Definition 1.1. Column Vector

A **column vector** is an ordered list of complex numbers, written in a vertical array:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_n \end{bmatrix}, \quad \text{where } v_i \in \mathbb{C}.$$
The number in position i of the vertex $v_i \in \mathbb{C}$.

The number in position i of the vector \mathbf{v} is the i^{th} entry or component of \mathbf{v} , written as $[\mathbf{v}]_i$.

Definition 1.2. n-Dimensional Vector

A vector with n entries is called **n-dimensional**.

Definition 1.3. n-Dimensional Space

The set of all n-dimensional vectors is **n-dimensional space**, and is written as \mathbb{C}^n .

2 Properties of Vectors in \mathbb{C}^n

Definition 2.1. Vector Equality

Two vectors
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
, and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ in \mathbb{C}^n are equal, if

$$[\mathbf{u}]_i = [\mathbf{v}]_i, \ i = 1, 2, \dots, n$$

Definition 2.2. Vector Addition

If
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ are vectors in \mathbb{C}^n , then the **sum** of \mathbf{u} and \mathbf{v} is

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}$$

Definition 2.3. Scalar Multiplication

If
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \in \mathbb{C}^n$$
, and $\alpha \in \mathbb{C}$, then $\alpha \mathbf{u} = \begin{bmatrix} \alpha u_1 \\ \alpha u_2 \\ \vdots \\ \alpha u_n \end{bmatrix}$

The following algebraic properties of vectors can be proven from these 3 definitions.

Theorem 2.1. Properties of Column Vectors

If \mathbf{u} , \mathbf{v} , and \mathbf{w} are in \mathbb{C}^n , and a and b are in \mathbb{C} , then:

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

2.
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

$$3. \mathbf{u} + \mathbf{0} = \mathbf{u}$$

4.
$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$
, where $-\mathbf{u} = (-1)\mathbf{u}$

5.
$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$$

$$6. (a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$$

7.
$$a(b\mathbf{u}) = (ab)\mathbf{u}$$

8.
$$1u = u$$

Definition 2.4. Conjugate of a Column Vector

If **u** is in \mathbb{C}^n , then the **conjugate** of **u** is $\overline{\mathbf{u}}$, where

$$[\overline{\mathbf{u}}]_i = [\overline{\mathbf{u}}]_i, \quad i = 1, \dots, n$$

Theorem 2.2. Conjugate of a Sum of Vectors

If \mathbf{u} and \mathbf{v} are in \mathbb{C}^n , then

$$\overline{\mathbf{u} + \mathbf{v}} = \overline{\mathbf{u}} + \overline{\mathbf{v}}$$

Theorem 2.3. Conjugate of a Scalar Product

If $\mathbf{u} \in \mathbb{C}^n$ and $\alpha \in \mathbb{C}$, then

$$\overline{\alpha}\overline{\mathbf{u}} = \overline{\alpha} \ \overline{\mathbf{u}}$$

3 Geometry of Vectors in \mathbb{R}^2

Vectors in \mathbb{R}^2 can be thought of as points in the plane, and in \mathbb{R}^3 as points in 3-dimensional space. For example, the vector

$$\begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

can be thought of as the point (1, -3) in the x-y coordinate system. We will refer to vectors as points and points as vectors as it suits our purposes.

Vectors in \mathbb{R}^2 can be added geometrically (graphically) using the *parallelogram* rule.

Theorem 3.1. Parallelogram Rule

To add \mathbf{u} and \mathbf{v} , draw a parallelogram with vertices at the origin, (v_1, v_2) , and (u_1, u_2) . The fourth vertex of the parallelogram corresponds to the point $\mathbf{u} + \mathbf{v}$.

4 Linear Combinations

Definition 4.1. Linear Combination

A linear combination of a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$ is a vector that is formed by multiplying the vectors in the set by scalars and adding them up. We can write a linear combination using sigma notation:

$$\mathbf{u} = \sum_{i=1}^{n} c_i \mathbf{v}_i, \ c_i \in \mathbb{C}$$

We would say that ${\bf u}$ is a linear combination of the vectors in the set $\{{\bf v}_1,{\bf v}_2,\ldots {\bf v}_n\}$.

Definition 4.2. Span

The **span** of a set of vectors is the set of all linear combinations of the vectors in the set.

We can write the span of a set in set notation as follows. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$ is a set of vectors in \mathbb{C}^n then

The span of
$$S = \langle S \rangle = \{ \mathbf{u} \in \mathbb{C}^n \mid \mathbf{u} = \sum_{i=1}^n c_i \mathbf{v}_i, \ c_i \in \mathbb{C} \}$$

If W is a set and $\langle S \rangle = W$, then we say S spans W.

Example 4.1. Let

$$S = \left\{ \begin{bmatrix} -1\\0\\2 \end{bmatrix}, \begin{bmatrix} 3\\1\\-5 \end{bmatrix}, \begin{bmatrix} 1\\1\\4 \end{bmatrix} \right\}$$

List 5 different vectors in $\langle S \rangle$, and find the (entire) span of S. How many vectors are in $\langle S \rangle$?

Here are some vectors in S. As you can see, we could come up with lots more.

$$\begin{bmatrix} -1\\0\\2 \end{bmatrix} \in \langle S \rangle$$

$$2 \begin{bmatrix} -1\\0\\2 \end{bmatrix} = \begin{bmatrix} -2\\0\\4 \end{bmatrix} \in \langle S \rangle$$

$$3 \begin{bmatrix} -1\\0\\2 \end{bmatrix} = \begin{bmatrix} -3\\0\\6 \end{bmatrix} \in \langle S \rangle$$

$$-2 \begin{bmatrix} -1\\0\\2 \end{bmatrix} = \begin{bmatrix} 2\\0\\-4 \end{bmatrix} \in \langle S \rangle$$

$$\begin{bmatrix} -1\\0\\2 \end{bmatrix} + \begin{bmatrix} 3\\1\\-5 \end{bmatrix} = \begin{bmatrix} 2\\1\\-3 \end{bmatrix} \in \langle S \rangle$$

$$3 \begin{bmatrix} -1\\0\\2 \end{bmatrix} + 2 \begin{bmatrix} 3\\1\\-5 \end{bmatrix} = \begin{bmatrix} 3\\2\\-4 \end{bmatrix} \in \langle S \rangle$$

By definition, $\langle S \rangle$ is the set of all linear combinations of the vectors in S, which we can write using the set notation above.

$$\langle S \rangle = \left\{ c_1 \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 1 \\ -5 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} \mid c_1, c_2, c_3 \in \mathbb{C} \right\}$$

Since there are infinitely many complex numbers to choose from for each of c_1, c_2 , and c_3 , there are infinitely many vectors in $\langle S \rangle$.

Example 4.2. Let $S = \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$. Find $\langle S \rangle$.

Since we are not given specific vectors, we can write $\langle S \rangle$ as the set of all linear combinations of \mathbf{u} , \mathbf{v} , and \mathbf{w} .

$$\langle S \rangle = \{ c_1 \mathbf{u} + c_2 \mathbf{v} + c_3 \mathbf{w} \mid c_1, c_2, c_3 \in \mathbb{C} \}$$

Example 4.3. Let

$$S = \left\{ \begin{bmatrix} -1\\0\\2 \end{bmatrix}, \begin{bmatrix} 3\\1\\-5 \end{bmatrix}, \begin{bmatrix} 1\\1\\4 \end{bmatrix} \right\}$$

Is
$$\begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix}$$
 in $\langle S \rangle$? Does S span \mathbb{C}^3 ?

 $\begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix} \text{ is in } \langle S \rangle \text{ if it can be written as a linear combination of the vectors in } S.$

In other words, if the vector equation

$$c_1 \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 1 \\ -5 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix}$$

is consistent.

Using the definitions of vector addition and scalar multiplication, we can write this vector equation as:

$$c_1 \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 1 \\ -5 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} c_1(-1) \\ c_1(0) \\ c_1(2) \end{bmatrix} + \begin{bmatrix} c_2(3) \\ c_2(1) \\ c_2(-5) \end{bmatrix} + \begin{bmatrix} c_3(1) \\ c_3(1) \\ c_3(4) \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} -c_1 \\ 0c_1 \\ 2c_1 \end{bmatrix} + \begin{bmatrix} 3c_2 \\ 1c_2 \\ -5c_2 \end{bmatrix} + \begin{bmatrix} 1c_3 \\ 1c_3 \\ 4c_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix}$$

Then we can use the definition of vector equality to write a system of equations:

$$-c_1 + 3c_2 + 1c_3 = 3$$
$$0c_1 + 1c_2 + 1c_3 = 2$$
$$2c_1 - 5c_2 + 4c_3 = 7$$

$$\begin{bmatrix} -1 & 3 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 2 & -5 & 4 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -\frac{7}{5} \\ 0 & 1 & 0 & -\frac{1}{5} \\ 0 & 0 & 1 & \frac{11}{5} \end{bmatrix}$$

Therefore

$$c_1 = -\frac{7}{5} \quad c_2 = -\frac{1}{5} \quad c_3 = \frac{11}{5}$$

and

$$-\frac{7}{5} \begin{bmatrix} -1\\0\\2 \end{bmatrix} - \frac{1}{5} \begin{bmatrix} 3\\1\\-5 \end{bmatrix} + \frac{11}{5} \begin{bmatrix} 1\\1\\4 \end{bmatrix} = \begin{bmatrix} 3\\2\\7 \end{bmatrix}$$

Because this vector equation is consistent, we can conclude that $\begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix}$ is in $\langle S \rangle$.

Now consider the question of whether S spans \mathbb{C}^3 . This is harder to answer because this is asking if every single vector in \mathbb{C}^3 is in $\langle S \rangle$, and there are too many to check them one-by-one like we just did.

As is often the case, we can answer this general question with a theorem.

Theorem 4.1. Spanning Sets

Let A be an $m \times n$ matrix, let S be the set containing the column vectors of A, and let B be the reduced row-echelon form of A. The following statements are logically equivalent:

- 1. The system $\mathcal{LS}(A, \mathbf{b})$ is consistent for all \mathbf{b} in \mathbb{C}^m .
- 2. Every **b** in \mathbb{C}^m can be written as a linear combination of the vectors in S.
- 3. $\langle S \rangle = \mathbb{C}^m$.
- 4. B has a pivot in every row.

Proof. Consider the system of linear equations $\mathcal{LS}(A, \mathbf{b})$, where A is $m \times n$. If B has a pivot in every row, then there cannot be a pivot in the last column of the augmented matrix, by the definition of reduced row-echelon form. Therefore the system is consistent, and since this result does not depend on \mathbf{b} , it is consistent for any (i.e. every) $\mathbf{b} \in \mathbb{C}^m$.

Since $\mathcal{LS}(A, \mathbf{b})$ can be written as a vector equation with the variables as coefficients of the column vectors of A set equal to \mathbf{b} , this vector equation is also consistent. That means \mathbf{b} can be written as a linear combination of the vectors in S, which means that $\mathbf{b} \in \langle S \rangle$. Since \mathbf{b} is an arbitrary vector in \mathbb{C}^m , every vector in \mathbb{C}^m is in $\langle S \rangle$, and $\langle S \rangle = \mathbb{C}^m$.

Finally, if $\langle S \rangle = \mathbb{C}^m$, then every vector **b** in \mathbb{C}^m can be written as a linear combination of the vectors in S, which means there must be a pivot in every row of B, since it is the reduced row-echelon form of the coefficient matrix of the system $\mathcal{LS}(A, \mathbf{b})$.

The logical connections in the proof above are worth noting:

$$4 \implies 1 \implies 2 \implies 3 \implies 4$$

That was a lot of work, but it allows us to go back and answer the last question from example 4.3 very easily.

The question was, does S span \mathbb{C}^3 ? Since there was a pivot in every row of the coefficient matrix of the system, by theorem 4.1, the answer is yes, since $\langle S \rangle = \mathbb{C}^3$.

Example 4.4. Let

$$A = \begin{bmatrix} -1 & 3 & 2 \\ 0 & 1 & 1 \\ 2 & -5 & -3 \end{bmatrix}$$

Is $\mathcal{LS}(A, \mathbf{b})$ consistent for all $\mathbf{b} \in \mathbb{C}^3$? Why or why not?

$$A = \begin{bmatrix} -1 & 3 & 2 \\ 0 & 1 & 1 \\ 2 & -5 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = B$$

Since B doesn't have a pivot in every row, all the statements in theorem 4.1 are false. So $\mathcal{LS}(A, \mathbf{b})$ is not consistent for all \mathbf{b} in \mathbb{C}^3 . (It may be consistent for some vectors in \mathbb{C}^3 and inconsistent for others.)

5 Linear Independence

Definition 5.1. Relation of Linear Dependence

Given a set of vectors

$$S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$$

A true equation of the form

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = \mathbf{0}$$

is a relation of linear dependence on S.

Definition 5.2. Trivial Relation of Linear Dependence

Given a set of vectors

$$S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$$

the trivial relation of linear dependence on S is

$$0\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 0\mathbf{v}_n = \mathbf{0}$$

Definition 5.3. Linearly Independent

A set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is **linearly independent** if the only relation of linear dependence on S is the trivial one.

Definition 5.4. Linearly Dependent

If a set of vectors is not linearly independent, it is linearly dependent.

In other words, a set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is linearly dependent if and only if the equation

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = \mathbf{0}$$

has a non-trivial solution.

Theorem 5.1. Linearly Dependent Sets

An indexed set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

Proof. Assume S is linearly dependent. Then there exist scalars c_1, c_2, \ldots, c_p , such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$$

and at least one of the scalars is not zero. Call it c_i . So we have

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_j\mathbf{v}_j + \dots + c_p\mathbf{v}_p = \mathbf{0}$$

$$c_j\mathbf{v}_j = -c_1\mathbf{v}_1 - c_2\mathbf{v}_2 - \dots - c_p\mathbf{v}_p$$

$$\mathbf{v}_j = \left(-\frac{c_1}{c_j}\right)\mathbf{v}_1 + \left(-\frac{c_2}{c_j}\right)\mathbf{v}_2 + \dots + \left(-\frac{c_p}{c_j}\right)\mathbf{v}_p$$

and \mathbf{v}_j is a linear combination of the other vectors in S.

Conversely, assume that \mathbf{v}_j is a linear combination of the other vectors in S. Then we can write

$$\mathbf{v}_{j} = c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + \dots + c_{j-1}\mathbf{v}_{j-1} + c_{j+1}\mathbf{v}_{j+1} + \dots + c_{p}\mathbf{v}_{p}$$

$$1\mathbf{v}_{j} = c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + \dots + c_{j-1}\mathbf{v}_{j-1} + c_{j+1}\mathbf{v}_{j+1} + \dots + c_{p}\mathbf{v}_{p}$$

$$\mathbf{0} = c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + \dots + c_{j-1}\mathbf{v}_{j-1} - 1\mathbf{v}_{j} + c_{j+1}\mathbf{v}_{j+1} + \dots + c_{p}\mathbf{v}_{p}$$

So

$$\sum_{i=1}^p c_i \mathbf{v}_i = \mathbf{0}$$

where $c_i = -1$, and S is linearly dependent.

Corollary 5.1.1. If an indexed set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent, and $\mathbf{v}_1 \neq \mathbf{0}$, then one of the vectors, \mathbf{v}_j , where j > 1, is a linear combination of the preceding vectors, $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{j-1}$.

Proof. Since S is linearly dependent, there exist scalars c_1, c_2, \ldots, c_p , not all zero, such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$$

If $c_p \neq 0$, then

$$c_p \mathbf{v}_p = -c_1 \mathbf{v}_1 - c_2 \mathbf{v}_2 - \dots - c_{p-1} \mathbf{v}_{p-1}$$
$$\mathbf{v}_p = \left(-\frac{c_1}{c_p}\right) \mathbf{v}_1 + \left(-\frac{c_2}{c_p}\right) \mathbf{v}_2 + \dots + \left(-\frac{c_{p-1}}{c_p}\right) \mathbf{v}_{p-1}$$

and \mathbf{v}_p is a linear combination of the preceding vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{p-1}$.

If $c_p = 0$, but $c_{p-1} \neq 0$ then we can write \mathbf{v}_{p-1} as a linear combination of the preceding vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{p-2}$ as

$$\mathbf{v}_{p-1} = \left(-\frac{c_1}{c_{p-1}}\right)\mathbf{v}_1 + \left(-\frac{c_2}{c_{p-1}}\right)\mathbf{v}_2 + \dots + \left(-\frac{c_{p-2}}{c_{p-1}}\right)\mathbf{v}_{p-2}$$

If $c_2 = c_3 = \cdots = c_p = 0$, then $c_1 \mathbf{v}_1 = \mathbf{0}$ and $c_1 \neq 0$ since at least one scalar is not zero. But if $c_1 \mathbf{v}_1 = \mathbf{0}$ and $c_1 \neq 0$, then $\mathbf{v}_1 = \mathbf{0}$, but we are given that $\mathbf{v}_1 \neq \mathbf{0}$, so at least one more scalar must also be non-zero. Call it c_j . Then we can write \mathbf{v}_j as a linear combination of the preceding vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_{j-1}$ as

$$\mathbf{v}_j = \left(-\frac{c_1}{c_j}\right)\mathbf{v}_1 + \left(-\frac{c_2}{c_j}\right)\mathbf{v}_2 + \dots + \left(-\frac{c_{j-1}}{c_j}\right)\mathbf{v}_{j-1}$$

Theorem 5.2. More Vectors Than Entries

Any set of p vectors in \mathbb{C}^n is linearly dependent if p > n.

Proof. Let $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p}$ be a set of vectors in \mathbb{C}^n , where p > n. Let

$$A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_p \end{bmatrix}$$

A is an $n \times p$ matrix which has more columns than rows, with at most n pivots. Therefore the system corresponding to the matrix equation $A\mathbf{x} = \mathbf{0}$ has at least one free variable, and infinitely many solutions. In particular, there is a nontrivial solution. Therefore the columns of A form a linearly dependent set.

Theorem 5.3. Zero Vector Makes Sets Dependent

Any set of vectors in \mathbb{C}^n that contains the zero vector is linearly dependent.

Proof. Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ be a set of vectors in \mathbb{C}^n and assume $\mathbf{v}_j = \mathbf{0}$. Then we can write the non-trivial relation of linear dependence

$$0\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 1\mathbf{v}_j + \dots + 0\mathbf{v}_p = \mathbf{0}$$

and S is linearly dependent.

Theorem 5.4. Linearly Independent Sets of Column Vectors

Let A be an $m \times n$ matrix and let B be the reduced row-echelon form of A. The following statements are logically equivalent.

- 1. The columns of a matrix A form a linearly independent set.
- 2. The homogeneous system $\mathcal{LS}(A, \mathbf{0})$ has only the trivial solution.
- 3. Every column of B is a pivot column.
- 4. The homogeneous system $\mathcal{LS}(A, \mathbf{0})$ has no free variables.

Example 5.1. Let

$$S = \left\{ \begin{bmatrix} -1\\0\\2 \end{bmatrix}, \begin{bmatrix} 3\\1\\-5 \end{bmatrix}, \begin{bmatrix} 1\\1\\4 \end{bmatrix} \right\}$$

Is S linearly independent?

We saw this same set S in example 4.3. We can form a matrix whose columns are the vectors in S and row reduce it:

$$A = \begin{bmatrix} -1 & 3 & 1 \\ 0 & 1 & 1 \\ 2 & -5 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = B$$

Since B has a pivot in every column, by theorem 5.4, S is linearly independent.