MATHEMATICS

A. GROTHENDIECK

This text has been transcribed and edited by Mateo Carmona. Remarks, comments, and corrections are welcome.

https://agrothendieck.github.io/

CONTENTS

1950	7
Sur la complétion du dual d'un espace vectoriel localement convexe	7
Quelques résultats relatifs à la dualité dans les espaces (F)	9
Critères généraux de compacité dans les espaces vectoriels localement convexes	10
1951	10
Quelques résultats sur les espaces vectoriels topologiques	11
Sur une notion de produit tensoriel topologique d'espaces vectoriels topologique	es, et une classe remarqu
1952	12
Critères de compacité dans les espaces fonctionnels généraux	13
Résumé des résultats essentiels dans la théorie des produits tensoriels topologique	ies et desespaces nucléai
Produits tensoriels topologiques et espaces nucléaires	15
1953	15
Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$	16

Sur certains espaces de fonctions nolomorphes. Il	19
1954	19
La théorie de Fredholm	20
Quelques points de la théorie des produits tensoriels topologiques	21
Espaces vectoriels topologiques	22
Topological vector spaces	23
Sur certains sous-espaces vectoriels de L^p	24
Résultats nouveaux dans la théorie des opérations linéaires. I	25
Résultats nouveaux dans la théorie des opérations linéaires. II	26
Sur les espaces (F) et (DF)	27
1955	27
Produits tensoriels topologiques et espaces nucléaires	28
Une caractérisation vectorielle-métrique des espaces L_1	29
Réarrangements de fonctions et inégalités de convexité dans les algèbres de von N	eumann munies d
A General Theory of Fibre Spaces with Structure Sheaf	31
Introduction	31

Sur les espaces de solutions d'une classe générale d'équations aux dérivées partielles 17

18

32

Sur certains espaces de fonctions holomorphes. I

II. Sheaves of sets	35
III. Group bundles and sheaves of groups	36
IV. Fibre spaces with structure sheaf	36
V. The classification of fibre spaces with structure sheaf	36
1956	36
Résumé de la théorie métrique des produits tensoriels topologiques	37
Théorèmes de finitude pour la cohomologie des faisceaux	38
La théorie de Fredholm	39
Sur un mémoire de A. Weil : Généralisation des fonctions abéliennes	40
Sur certaines classes de suites dans les espaces de Banach, et le théorème de Dvoret	zky-Rogers 4
Généralités sur les groupes algébriques affines. Groupes algébriques affines comm	utatifs 42
Compléments de géométrie algébrique. Espaces de transformations	43
Les théorèmes de structure fondamentaux pour les groupes algébriques affines	44
1957	44
Sous-groupes de Cartan, éléments réguliers. Groupes algébriques affines de dimer	sion 1 45
Sur la classification des fibrés holomorphes sur la sphère de Riemann	46
Un résultat sur le dual d'une C*-algèbre	47
Sur Quelques Points d'Algèbre Homologique	48
Some Aspects of Homological Algebra	49

SUR LA COMPLÉTION DU DUAL D'UN ESPACE VECTORIEL LOCALEMENT CONVEXE¹

Note² de M. Alexandre Grothendieck, présentée par M. Élie Cartan.

Soient E un espace vectoriel localement convexe, S un ensemble de parties bornées, convexes, symétriques et fermées de E, E_S' (resp. \widehat{E}_S'), l'espace des formes linéaires sur E continues (resp. dont les restrictions aux éléments de S sont continues), munis de la topologie de la convergence uniforme sur les éléments de S. Soit E_0 le sous-espace engendré par $\cup S$

[]

Proposition 1. — Si les éléments de S sont précompacts, pour que E_S' soit complet, il faut (et il suffit) que la restriction à E_0 de tout $u \in \widehat{E}_S'$ soit continue.

On se ramène en effet facilement à la

Proposition 2. — Si les éléments de S sont précompacts, E'_S est dense dans \widehat{E}'_S .

[] Comme le dual de *E* est le même pour la topologie donnée et sa topologie faible, et que les ensembles bornés sont faiblement précompacts, ces propositions seront d'application assez générale. Signalons la

Corollaires. —

1° Si $E_0 = E$ et si les éléments de S sont précompacts, le complété de E_S' s'identifie à \widehat{E}_S' .

²Séance du 6 février 1950.

C. R., 1950, ier Semestre. (T. 230 N° 7.).

- 2° Si E'_S est complet, il en est de même de E'_r pour $T \supset S$ (S, T ensembles de parties bornées de E, sans plus).
 - En utilisant le fait que E s'identifie à un dual topologique de son dual faible, on obtient de plus :
- 3° Le complété de E s'identifie à l'espace des formes linéaires sur son dual dont les restrictions aux parties équicontinues sont faiblement continues, muni de la topologie de la convergence uniforme sur ces parties. (On retrouve en particulier le complété pour la topologie faible.)
- 4° Si E est complet, toute topologie localement convexe plus fine qui a même dual, et plus généralement qui puisse se définir par une famille de seminormes semi-continues (soit : par un système fondamental de voisinages convexes fermés) est encore complète. [En particulier la topologie forte de Mackey associée³ et la topologie induite par le bidual fort⁴ sont encore complétes.]
- 5° Si E est complet, toute forme linéaire sur son dual dont les restrictions aux parties équicontinues sont faiblement continues est faiblement continue. On retrouve ainsi un fait connu pour les espaces de Fréchet et leurs limites inductives⁴.

³Cf. G. W. MACKEY, Transactions of the Amer. Math. Soc., 57, 1945, p. 155-207 et 59, 1946, p. 530-537 ⁴Cf. J. DIEUDONNÉ, et L. SCHWARTZ, La dualité dans les espaces (F) et (LF) (à paraître aux Annales de Grenoble, 1950).

QUELQUES RÉSULTATS RELATIFS À LA DUALITÉ DANS LES ESPACES $(F)^5$

Note⁶ de M. Alexandre Grothendieck, présentée par M. Arnaud Denjoy.

Soient E un espace (F), E' son dual fort, E'' son bidual fort $[?]^1$. Les résultats suivants répondent partiellement à certaines questions posées dans [?].

Proposition 1. — Toute partie bornée dénombrable de E'' est contenue dans l'adhérence faible d'une partie bornée de E.

⁶Séance du 30 octobre 1950

 $^{^{1}}$ J. DIEUDONNÉ et L. SCHWARTZ, La dualité dasn les espaces (F) et (LF) (à paraître aux *Annales de Grenoble*, 1950). La terminologie est celle de cet article.

CRITÈRES GÉNÉRAUX DE COMPACITÉ DANS LES ESPACES VECTORIELS LOCALEMENT CONVEXES. PATHOLOGIES DES ESPACES $(LF)^2$

Note³ de M. Alexandre Grothendieck, présentée par M. Arnaud Denjoy.

La première partie de cette Note

1. —

³Séance du 30 octobre 1950

Soit C un espace de Banach

A GENERAL THEORY OF FIBRE SPACES WITH STRUCTURE SHEAF

Introduction

When one tries to state in a general algebraic formalism the various notions of fibre space: general fibre spaces (without structure group, and maybe not even locally trivial); or fibre bundle with topological structure group G as expounded in the book of Steenrod ([]); or the "differeniable" and "analytic" (real or complex) variants of theses notions; or the notions of algebraic fibre spaces (over an abstract field k) - one is led in a natural way to the notion of fibre space with a structure sheaf G. This point of view is also suggested a priori by the possibility, now classical, to interpret the (for instance "topological") classes of fibre bundles on a space X, with abelian structure group G, as the elements of the first cohomology group of X with coefficients in the sheaf G of germs of continuous maps of X into G; the word "continuous" being replaced by "analytic" respectively "regular" if G is supposed an analytic respectively an algebraic group (the space X being of course accordingly an analytic or algebraic variety). The use of cohomological methods in this connection have proved quite useful, and it has become natural, at least as a matter of notation, even when G is not abelian, to denote by $H^1(X, \mathbf{G})$ the set of classes of fibre spaces on X with structure sheaf \mathbf{G} , \mathbf{G} being as above a sheaf of germs of maps (continuous, or differentiable, or analytic, or algebraic as the case may be) of X into G. Here we develop systematically the notion of fibre space with structure sheaf G, where G is any sheaf of (not necessarily abelian) groups, and of the

first cohomology set $H^1(X, \mathbf{G})$ of X with coefficients in \mathbf{G} . The first four chapters contain merely the first definitions concerning general fibre spaces, sheaves, fibre spaces with composition law (including sheaves of groups) and fibre spaces with structure sheaf. The functor aspect of the notions dealt with has been stressed throughout, and as it now appears should have been stressed even more. As the proofs of most of the facts stated reduce of course to straightforward verifications, they are only sketched or even omitted, the important point being merely a consistent order in the statement of the main facts. In the las chapter, we define the cohomology set $H^1(X,\mathbf{G})$ of X with coefficients in the sheaf of groups \mathbf{G} ,

I. General fibre spaces

Unless otherwise stated, none of the spaces to occur in this report have to be supposed separated.

1.1 Notion of fibre space

Definition 1.1.1. — A fibre space over a space X is a triple (X, E, p) of the space X, a space E and a continuous map p of E into X.

We do not require p to be onto, still less to b open, and if p is onto, we do not require the topology of X to be the quotient topology of E by the map p. For abbreviation, the fibre space (X, E, p) will often be denoted by E only, it being understood that E is provided with the supplementary structure consisting of a continuous map p of E into the space X. E is called the *base space* of the fibre space, E the *projection*, and for any E is closed if E is closed if E is closed is the *fibre* of E (which is closed if E).

Given two fibre spaces (X, E, p) and (X', E', p'), a homomorphism of the first into the second is a pair of continuous maps $f: X \longrightarrow X'$ and $g: E \longrightarrow E'$, such that p'g = f p, i.e. commutativity holds in the diagram

$$E \xrightarrow{g} E'$$

$$\downarrow^{p'} X \xrightarrow{f} X'$$

Then g maps fibres into fibres (but not necessarily *onto*!); furthermore, if p is surjective, then f is uniquely determined by g. The continuous map f of X into X' being given, g will be called also a f-homomorphism of E into E'. If, moreover, E" is a fibre space over X', f' a continuous map $X' \longrightarrow X''$ and $g' : E' \longrightarrow E''$ a f'-homomorphism, then g'g is a f'f-homomorphism. If f is the identity map of X onto X, we say also X-homomorphism instead of f-homomorphism. If we speak of homomorphisms of fibre spaces over X, without further comment, we will always mean X-homomorphisms.

The notion of *isomorphism* of a fibre space (X, E, p) onto a fibre space (X', E', p') is clear: it is a homomorphism (f, g) of the first into the second, such that f and g are ontohomeomorphisms.

1.2 Inverse image of a fibre space, inverse homomorphisms

Let (X, E, p) be a fibre space over the space X, and let f be a continuous map of a space X' into X. Then the *inverse image* of the fibre space E by f is a fibre space E' over X'. E' is defined as the subspace of $X' \times E$ of points (x', y) such that f(x') = p(y), the projection p' of E' into the base E' being given by E' into the map E' into E' into E' into E' is then an E'-homomorphism, inducing for each E' a homeomorphism of the fibre of E' over E' onto the fibre of E' over E' onto

1.3 Subspace, quotient, product

Let (X, E, p) be a fibre space, E' any subspace of E, then the restriction p' of p to E', defines E'

[]

1..4 Trivial and locally trivial fibre spaces

Let X and F be two spaces, E the product space, the projection of the product on X defines E as a fibre space over X, called the *trivial fibre space over* X *with fibre* F.

All fibres are canonically homeomorphic with F.

1.5 Definition of fibre spaces by coordinate transformations

Let X be a space, (U_i) a covering of X, for each

1.6 The case of locally trivial fibre spaces

The method of the preceding section for constructing fibre spaces over X will be used mainly in the case where we are given a fibre space over T over X, and where, given an open covering (U_i) of X, we consider the fibre spaces

[]

1.7 Sections of fibre spaces

Definition 1.7.1. — Let (X, E, p) be a fibre space; a section of this fibre space (or, by pleonasm, a section of E over X) is a map x of X into E such that ps is the the identity map of X. The set of continuous sections of E is noted $H^0(X, E)$.

It amounts to the same to say that s is a function the value of which at each $x \in X$ is in the fibre of x in E (which depends on x!).

The existence of a section implies of course that p is onto, and conversely if we do not require continuity. However, we are primarily interested in continuous sections. A section of E over a subset Y of X is by definition a section of E|Y. If Y is open, we write $H^0(Y,E)$ for the set $H^0(Y,E|Y)$ of all continuous sections of E over Y.

 $H^0(X,E)$ as a functor. Let E, E' be two fibre spaces over X, f an X-homomorphism of E into E'. For any section s of E, the composed map f s is a section of E', continuous if s is continuous. We get thus a map, noted f, of $H^0(X,E)$ into $H^0(X,E')$. The usual functor properties are satisfied:

- a. If the two fibre spaces are identical and f is the identity, the so is f.
- b. If f is an X-homomorphism of E into E' and f' an X-homomorphism of E' into E'' (E, E', E'' fibre spaces over X) then (f'f) = f'f.

Let (X, E, p) be a fibre space, f a continuous map of a space X' into X, and E' the inverse image of E under f.

II. Sheaves of sets

Throughout this exposition, we will now use the word "section" for "continuous section".

2.1 Sheaves of sets

Definition 2.1.1. — Let X be a space. A sheaf of sets on X (or simply a sheaf) is a fibre space (E, X, p) with base X, satisfying the condition: each point a of E has an open neighbourhood U such that p induces a homeomorphism of U onto an open subset p(U) of X.

This can be expressed by saying that p is an interior map and a local homeomorphism. It should be kept in mind that, even if X is separated, E is not supposed separated (and will in most important instances not be separated).

[]

- 2.2
- 2.3 Definition of a sheaf by systems of sets
- 2.4 Permanence properties
- 2.5 Subsheaf, quotient sheaf. Homeomorphism of sheaves
- 2.6 Some examples

a.

b.

c.

d. Sheaf of germs of subsets. Let X be a space, for any open set $U \subset X$ let P(U) be the set of subsets of U. If $V \subset U$, consider the map $A \longrightarrow A \cap V$ of P(U) into P(V). Clearly the conditions of transitivity, and of proposition 2.3.1. corollary, are satisfied, so that the sets P(U) appear as the sets $H^0(U, P(X))$ of sections of a well determined sheaf on X, the elements of which are called *germs of sets in X*. Any condition of a local character on subsets of X defines a subsheaf of P(X), for instance the sheaf of *germs*

of closed sets (corresponding to the relatively closed sets in U), or if X is an analytic manifold, the sheaf of germs of analytic sets, etc.

Other important examples of sheaves will be considered in the next chapter.

- III. Group bundles and sheaves of groups
- IV. Fibre spaces with structure sheaf
- V. The classification of fibre spaces with structure sheaf

SOME ASPECTS OF HOMOLOGICAL ALGEBRA¹

¹Translation by M. L. Barr and M. Barr