WHAT IS CLAIMED IS:

1

24

2	(Currently Amended) 1. A method of simulating physical dynamics of a
3	, predetermined set of objects that are part of a computer/video game, the objects
4	connected to each other at one or more respective links, with at least one link representing
5	a hard contact between separate objects, wherein the method utilizes a game system
6	comprising a collision subsystem, a dynamics subsystem, a game logic subsystem, a
7	graphics subsystem and one or more central processing units supporting the game system;
8	the method further comprising:
9	a. grouping a first and a second object in the predetermined set of
10	objects to define a first binary object;
11	b. solving for the physical dynamics of the objects in the first binary
12	object at a first set of links;
13	c. grouping a third object to the first binary object to define a second
14	binary object, the third object having at least one link to the first binary object, thereby
15	defining a second set of links;
16	d. solving a solution for the physical dynamics of the objects in the
17	second binary object at the second set of links; and
18	e. recursively grouping additional objects to create additional binary
19	objects and solving for the physical dynamics of the additional binary objects.
20	(Original) 2. The method of claim 1 including the step of
21	providing, for each link, one or more link weight values operable to constrain the
22	solution.
23	(Currently Amended) 3. The method of claim 2 further including the step of

performing an iterative solution method multiple times where at least one link weight

1	value is adjusted at each iteration	
2	(Original) 4.	The method of claim 3 where the link weight values
3	are adjusted to maintain a set	of constraints on the links within a predetermined
4	acceptable tolerance.	
5	(Original) 5.	The method of claim 4 where the set of constraints
6	includes the following constrain	ts: the objects cannot interpenetrate each other and no
7	adhesive normal forces are applied	ed at the links.
8	(Original) 6.	The method of claim 5 where the predetermined
9	acceptable tolerance includes a pr	redetermined amount of interpenetration at a link.
10	(Original) 7.	The method of claim 6 where the predetermined
11	acceptable tolerance includes a pr	redetermined amount of adhesive normal force at a link.
12	(Currently Amended) 8.	The method of claim 7 where the set of constraints
13	further includes the constraint that	at, at a respective link, either the relative lateral motion is
14	zero or the friction force at the	link is equal to the normal force times a coefficient of
15	friction.	
16	(Original) 9.	The method of claim 8 where the predetermined
17	acceptable tolerance includes a p	predetermined difference between the friction force at a
18	link and the normal force times the	ne coefficient of friction.
19	(Currently Amended) 10.	A method of simulating physical dynamics of a
20	predetermined set of objects the	nat are part of a computer video game, the objects
21	connected to each other by at leas	t one respective link, and where at least one object is not
22	a rigid body, wherein the me	thod utilizes a game system comprising a collision

subsystem, a dynamics subsystem, a game logic subsystem, a graphics subsystem and one

1	or more central processing units supporting the game system; the method further
2	comprising:
3	a. providing, for at least one object, a set of reaction values
4	describing the motion of the object in response to applied forces;
5	b. solving for the physical dynamics of the set of objects using the
6	reaction values;
7	c. changing the reaction values in response to force for at least one
8	object to provide a set of adjusted reaction values;
9	d. solving for the physical dynamics of the objects using the set of
10	adjusted reaction values; and
11	e. repeating steps c and e until the solution of step d is within a
12	predetermined acceptable tolerance.
13	(Original) 11. The method of claim 10 further including the step of
14	creating a nested grouping of a plurality of binary objects from the objects in the set.
15	(Currently Amended) 12. The method of claim 11 where the step of solving a
16	solution for the physical dynamics of the objects includes the step of starting with the
17	most deeply nested binary object and proceeding outward, solving for the physical
18	dynamics of the objects in the binary objects at the respective links.
19	(Original) 13. The method of claim 12 further including the step of
20	providing, for each link, one or more link weight values operable to constrain the
21	solution.
22	(Original) 14. The method of claim 13 where the step of changing
23	the reaction values for at least one object further includes the step of adjusting at least one
24	link weight value.

1	(Original) 15. The method of claim 14 where the link weight
2	values are adjusted to maintain a set of constraints on the links within a predetermined
3	acceptable tolerance.
4	(Currently Amended) 16. A method of simulating physical dynamics of a
5	predetermined set of objects that are part of a computer/video game, the objects
6	connected to each other at one or more respective links, with at least one link representing
7	a hard contact between separate objects, wherein the method utilizes a game system
8	comprising a collision subsystem, a dynamics subsystem, a game logic subsystem, a
9	graphics subsystem and one or more central processing units supporting the game system;
10	the method further comprising:
11	a. grouping the objects in the predetermined set of objects into two
12	binary objects to define a first binary object and a second binary object;
13	b. grouping the objects in the first binary object into a subgroup of
14	binary objects to define a nested group of binary objects in the first binary object;
15	c. grouping the objects in the second binary object into a subgroup of
16	binary objects to define a nested group of binary objects in the second-binary object; and
17	d. starting with the most deeply nested binary object and proceeding
18	outward, solving a solution for the physical dynamics of the objects in the binary objects
19	at the respective links.
20	(Original) 17. The method of claim 16 including the step of
21	providing, for each link, one or more link weight values operable to constrain the
22	solution.
23	(Currently Amended) 18. The method of claim 17 further including the step of
24	performing an iterative solution method multiple times where at least one link weight

1	value is adjusted at each itera	ation.	
2	(Original)	19.	The method of claim 18 where the link weigh
3	values are adjusted to main	tain a se	et of constraints on the links within a predetermined
4	acceptable tolerance.		
5	(Original)	20.	The method of claim 19 where the set of constraints
6	includes the following cons	straints:	the objects cannot interpenetrate each other and no
7	adhesive normal forces are a	pplied a	t the links.
8	(Original)	21.	The method of claim 20 where the predetermined
9	acceptable tolerance includes	s a prede	etermined amount of interpenetration at a link.
10	(Original)	22.	The method of claim 21 where the predetermined
11	acceptable tolerance includes	s a prede	etermined amount of adhesive normal force at a link.
12	(Currently Amended)	23.	The method of claim 22 where the set of constraints
13	further includes the constrain	nt that, a	at a respective link, either the relative lateral motion is
14	zero or the friction force at	the linl	k is equal to the normal force times a coefficient of
15	friction.		
16	(Original)	24.	The method of claim 23 where the predetermined
17	acceptable tolerance include	s a prec	determined difference between the friction force at a
18	link and the normal force time	nes the c	coefficient of friction.
19	(Currently Amended)	25.	A method of simulating the physical dynamics of a
20	predetermined set of object	ets that	are part of a computer/video game, the objects
21	connected to each other at or	ne or mo	ore links, at least one object represented by a plurality
22	of polygons, wherein the	method	l utilizes a game system comprising a collision

subsystem, a dynamics subsystem, a game logic subsystem, a graphics subsystem and one .

1	or more central processing	units	supporting the game system; the method further
2	comprising:		
3	a. creating a	nested	grouping of a plurality of binary objects from the
4	objects in the set, at least one	binary	object containing two or more links; and
5	b. starting wi	th the	most deeply nested binary object and proceeding
6	outward, solving for the phys	ical dy	namics of the objects in the binary objects at said one
7	or more links.		
8	(Original)	26.	The method of claim 25 where the solution
9	maintains a set of constraints	on the	links within a predetermined acceptable tolerance.
10	(Original)	27.	The method of claim 26 where the set of constraints
11	includes the following const	raints:	the objects cannot interpenetrate each other and no
12	adhesive normal forces are ap	plied a	at the links.
13	(Original)	28.	The method of claim 27 where the predetermined
14	acceptable tolerance includes	a prede	etermined amount of interpenetration at a link.
15	(Original)	29.	The method of claim 28 where the predetermined
16	acceptable tolerance includes	a prede	etermined amount of adhesive normal force at a link.
17	(Currently Amended)	30.	The method of claim 29 where the set of constraints
18	further includes the constraint	that, a	at a respective link, either the relative lateral motion is
19	zero or the friction force at t	he linl	k is equal to the normal force times a coefficient of
20	friction.		
21	(Original)	31.	The method of claim 30 where the predetermined
22	acceptable tolerance includes	a pred	determined difference between the friction force at a
23	link and the normal force time	s the c	coefficient of friction.
24	(Original)	32.	The method of claim 31 including the step of

1	providing, for each link, one or more link weight values operable to constrain the			
2	solution.			
3	(Currently Amended) 33. The method of claim 32 further including the step of			
4	performing an iterative solution method multiple times where at least one link weight			
5	value is adjusted at each iteration.			
6	(Currently Amended) 34. A method of simulating the physical dynamics of a			
7	predetermined set of objects that are part of a video game, the objects connected to each			
8	other at at least one respective link, wherein the method utilizes a game system			
9	comprising a collision subsystem, a dynamics subsystem, a game logic subsystem, a			
10	graphics subsystem and one or more central processing units supporting the game system;			
11	the method further comprising:			
12	a. providing \underline{a} set of equations that when solved define a solution to			
13	the physical dynamics of the predetermined set of objects, the solution having the			
14	following constraints: the objects cannot interpenetrate each other and no adhesive			
15	normal forces can be applied at the links;			
16	b. assigning at least one link weight to each of the links in the			
17	predetermined set of objects;			
18	c. solving for the physical dynamics of the objects using the assigned			
19	weights using an iterative solution method;			
20	d. adjusting the assigned link weights if the constraints are violated at			
21	a link;			
22	e. solving an iterative solution for the physical dynamics of the			

23

objects using the adjusted weights; and

1	f. repeating steps d. and e. until a solution is within a predetermined
2	acceptable tolerance.
3	(Currently Amended) 35. The method of claim 34 wherein a
4	predetermined acceptable tolerance includes a predetermined amount of adhesive normal
5	force at a link.
6	(Original) 36. The method of claim 35 wherein the predetermined
7	acceptable tolerance includes a predetermined amount of interpenetration between two
8	objects at a link.
9	(Original) 37. The method of claim 36 wherein the weights are
10	decreased for links where adhesive normal force is applied.
11	(Original) 38. The method of claim 37 wherein the weights are
12	increased for links where interpenetration occurs.
13	(Currently Amended) 39. A method of simulating the physical dynamics of a
14	predetermined set of objects that are part of a video game, the objects connected to each
15	other at one or more respective links, wherein the method utilizes a game system
16	comprising a collision subsystem, a dynamic subsystem, a game logic subsystem, a
17	graphics subsystem and one or more central processing units supporting the game system;
18	the method further comprising:
19	a. providing a set of equations that when solved define a solution to
20	the physical dynamics of the predetermined set of objects, the solution having the
21	following constraints: the objects cannot interpenetrate each other and no adhesive
22	normal forces can be applied at the links, and that, at a respective link, either the relative
23	lateral velocity is zero, or the friction force is equal to the normal force at the link times a
24	coefficient of friction;

1	b. assigning at	least one link weight to each of the links in the
2 .	predetermined set of objects;	
3	c. solving for t	he physical dynamics of the objects using the assigned
4	weights using an iterative solution	method;
5	d. adjusting the	e link weights assigned to the links if the constraints
6	are violated at a link;	•
7	e. solving an	iterative solution for the physical dynamics of the
8	objects using the adjusted weights;	and
9	f. repeating ste	eps d. and e. until a solution is within a predetermined
10	acceptable tolerance.	
11	(Original) 40.	The method of claim 39 wherein a predetermined
12	acceptable tolerance includes a pre-	determined amount of adhesive normal force at a link.
13	(Original) 41.	The method of claim 40 wherein the predetermined
14	acceptable tolerance includes a pr	redetermined amount of interpenetration between two
15	objects at a link.	
16	(Currently Amended) 42.	The method of claim 41 where the predetermined
17	acceptable tolerance includes a pro-	edetermined difference between the friction force at a
18	link and the normal force times a co	pefficient of friction.
19	(Original) 43.	The method of claim 42 wherein the weights are
20	decreased for links where adhesive	normal force is applied.
21	(Original) 44.	The method of claim 43 wherein the weights are
22	increased for links where interpene	tration occurs.
23	(Currently Amended) 45.	A system for simulating the physical dynamics of a

1	set of objects within a video gar	me, the objects connected to each other at one or more
2	respective links, the system comp	rising:
3	a. a binary d	ivision unit having logic operable to create a nested
4	grouping of a plurality of binary of	bjects from the objects in the set;
5	b. a dynamics	s unit having logic operable to solve a set of physical
6	dynamics equations; and	
7	c. one or mor	re central processing units supporting the system.
8	(Original) 46.	The system of claim 45 where the dynamics unit
9	comprises a set of multiple proce	ssors, each processor operable to solve a set of physical
10	dynamics equations.	
11	(Original) 47.	The system of claim 46 where said multiple
12	processors are used to solve the dy	ynamics equations of multiple binary objects in parallel.
13	(Currently Amended) 48.	The system of claim 47 where each link includes
14	one or more link weight values op	erable to constrain a solution.
15	(Currently Amended) 49.	The system of claim 48 where the dynamics unit
16	further comprises logic operable	to perform an iterative solution method multiple times
17	wherein one or more link weight v	values are adjusted at each iteration.
18	(Original) 50.	The system of claim 49 where the link weight
19	values are adjusted to maintain a	set of constraints for each link within a predetermined
20	tolerance.	
21	(Original) 51.	The system of claim 50 where said set of constraints
22	includes the following constraints	s: the objects cannot interpenetrate each other and no
23	adhesive normal force is applied.	
24	(Original) 52.	The system of claim 51 where the set of constraints

- further includes the constraint that, at a respective link, either the relative lateral motion
- between the objects is zero or the friction force at the link is equal to the normal force
- 3 multiplied by a coefficient of friction.