REDES NEURAIS

Thaís de Almeida Ratis Ramos

Baseado nas aulas de Thaís Gaudencio e Yuri Malheiros - UFPB

INSPIRAÇÃO BIOLÓGICA

- > 0 cérebro é o principal órgão associado à inteligência e aprendizagem
- O cérebro é composto por uma rede complexa de aproximadamente 100 bilhões de neurônios interconectados
- Existem mais de 500 trilhões de conexões entre neurônios no cérebro humano
- Mesmo as maiores redes neurais artificiais de hoje não chegam perto do cérebro humano

INSPIRAÇÃO BIOLÓGICA

A unidade básica de uma rede neural é o neurônio artificial

Neurônios artificiais são modelados como neurônios biológicos do cérebro, nos quais são estimulados por entradas

NEURÔNIO

Em 1943, McCullock e Pitts propuseram um modelo de neurônio artificial: perceptron

Modelo linear utilizado para classificação binária

Classificação Linear

$$Z = 0.5 \times 2 + 2 \times -1 + 1 \times 3 = 2$$

$$A = F_a(2)$$

FUNÇÕES DE ATIVAÇÃO

Várias funções podem ser usadas como função de ativação (F_a)

Função Sigmóide:

$$f_a(z) = \frac{1}{1 + e^{-z}}$$

FUNÇÕES DE ATIVAÇÃO

Várias funções podem ser usadas como função de ativação (F_a)

Função ReLU:

 $f_a(z) = \max(0, z)$

Podemos usar o neurônio artificial para diferentes problemas

Ele nos fornece uma saída de acordo com as entradas

O resultado do processamento das entradas para fornecer uma saída é determinado pela função de ativação e pelos pesos

Gatos e cachorros:

	Peso	Altura	Classe
0	20	44	Cachorro
1	15	43	Cachorro
2	12	28	Cachorro
3	15	49	Cachorro
4	7	28	Gato
5	7	25	Gato
6	9	25	Gato
7	4	24	Gato

Dada a altura e o peso, vamos fazer o neurônio ter:

Saída • se for um gato
Saída • se for um cachorro

Quais são os valores de w?

Podemos tentar encontrá-los manualmente, porém este é um processo complexo e muitas vezes inviável

Como não sabemos os pesos iniciais, vamos iniciá-los aleatoriamente $w_1 = 0,25$

 $w_2 = 0,66$

Em seguida, vamos calcular a saída para

 $x_1 = 7$

 $x_2 = 28$

Esperado	Obtido	Ajuste	Esperado - Obtido
0	0	<u>.</u>	0
0	1	Diminuir W	-1
1	0	Aumentar W	1
1	1	E.	0

Para isso, eu preciso saber o erro, ou seja a diferença entre o valor esperado e o valor obtido

Quanto maior o erro, maior precisa ser o ajuste dos valores de w

Então, vamos atualizar w, da seguinte forma:

$$w_1 \leftarrow w_1 + \eta \ (esperado - obtido) \ x_1$$

Taxa de aprendizagem: controla o tamanho da atualização

Cada ajuste vai melhorando um pouco a rede neural

Vamos ajustar os pesos para cada um dos exemplos dos dados de treinamento

$$w_1 \leftarrow w_1 + \eta(esperado - obtido)x_1$$

 $w_2 \leftarrow w_2 + \eta(esperado - obtido)x_2$

Em muitos casos, fazer uma atualização para cada exemplo pode não ser suficiente

Por isso, costumamos atualizar para cada exemplo e em seguida refazer o processo várias vezes

Esse número de vezes é chamado de épocas

Temos como resultado:

Usando o neurônio com a estrutura que fizemos, sempre teremos uma fronteira linear partindo da origem

Para permitir que a fronteira possa se deslocar no eixo X, vamos adicionar uma entrada extra no neurônio chamada de viés

- O viés geralmente recebe 1 como entrada
- O peso dessa entrada segue o comportamento das outras

VIÉS (BIAS)

$$b = 0$$

4

$$f(x) = x^2 + b$$

VIÉS (BIAS)

ESTRUTURA DO PERCEPTRON

Função de ativação de Heaviside:
$$f(v) = \begin{cases} 0 & v < 0 \\ 1 & v > = 0 \end{cases}$$

Como vimos, o perceptron possui a limitação de criar apenas fronteiras lineares

Ele não consegue classificar bem um conjunto de dados dessa forma:

$$Z_1 = 0.5 \times 0.3 + 0.1 \times -1 = 0.049$$

$$A_1 = F_a(0.049) = 0.51$$

O algoritmo é semelhante ao que fizemos para apenas um neurônio

Iniciamos os pesos de forma aleatória

Entramos com os dados de treinamento e comparamos o resultado da rede com o resultado esperado

Ajustamos os pesos de acordo com o erro

TREINANDO UMA REDE NEURAL

O valor de A₃ é a saída da rede. Podemos compará-lo diretamente com o resultado dos dados de treinamento

E para A₁ e A₂? Quais são os valores esperados? Não temos esses dados

TREINANDO UMA REDE NEURAL

Para treinar uma rede com multicamadas usamos o algoritmo backpropagation

Nele, vamos definir uma função que mede o erro da saída da rede

Também conseguimos calcular através do gradiente da função de erro, em qual sentido devemos ajustar os pesos para que o erro diminua

CORREÇÃO DE ERROS

Calculamos o erro para um exemplo através da função:

$$e_k = d_k - y_k$$

Onde:

e - Sinal de erro

d - Saída desejada apresentada durante o treinamento

y - Saída real da rede

APRENDIZADO POR CORREÇÃO DE ERROS

- O processo de aprendizado por correção de erros utiliza algoritmos para caminhar sobre a curva de erros, com o intuito de alcançar o menor valor de erro possível, o mínimo global
- Muitas vezes o algoritmo não alcança este mínimo global, atingindo o que chamamos de mínimo local. Caso este erro alcançado seja desfavorável, é necessário recomeçar o processo de aprendizagem

Gráfico de uma possível superfície de erro mostrando os mínimos locais e o mínimo global

APRENDIZADO POR CORREÇÃO DE ERROS

Para correção do erro, os pesos devem ser ajustados de forma a aproximar a saída real à desejada

$$\Delta wi(n) = \eta e(n) xi(n)$$

Onde:

QUE MINIMIZEM O ERRO (E) ENTRE A SAÍDA DA REDE NEURAL E A SAÍDA DESEJADA

ENCONTRAR O VETOR (MATRIZ) DE PESOS SINÁPTICOS (W*)

MÉTODO DO GRADIENTE

Vetor que indica o sentido e a direção onde a função crescerá mais rápido

MÉTODO DO GRADIENTE

Vetor que indica o sentido e a direção onde a função crescerá mais rápido

BACKPROPAGATION

Sinal de erro se origina em um neurônio de saída e se propaga para trás (camada por camada) através da rede

CORREÇÃO DOS PESOS - REGRA DELTA

GRADIENTE LOCAL

Camada de saída

Camada oculta

BACKPROPAGATION

```
function backpropagation-algorithm
   (network, training examples, learning rate)
   network <- initialize weights(randomly)</pre>
   start loop
      for each example in training-examples do
         // Computação para frente (Propagação)
         network out = rna output (network, example)
         // Computação para trás (Retropropagação)
         example err = actual out - network out
         local gradient = calc gradient(example err)
```

BACKPROPAGATION

Atualiza os pesos dos neurônios da camada de saída j (regra delta)

for each previous-layer in network do

Compute o erro em cada nó

Atualiza os pesos dos neurônios da camada (regra delta)

end for

end for
end loop quando rede convergir
return network

TAXA DE APRENDIZAGEM

REGRA DELTA COM TERMO DO MOMENTUM

Permite aumentar a taxa de aprendizado, evitando risco de instabilidade

Leva em consideração a variação dos pesos da iteração anterior:

- Variação de pesos com o mesmo sinal: Acelera a descida
- Variação de pesos com sinais opostos: Reduz o ajuste nos pesos (estabiliza o algoritmo)

Pode evitar que o processo de aprendizagem termine em um mínimo local raso

$$0 \leq \alpha < 1$$

MODOS DE TREINAMENTO: ESTOCÁSTICO, POR LOTE E MINI-LOTE

MODOS DE TREINAMENTO

Baseado na forma de atualização dos pesos, temos 3 modos de treinamento:

- Estocástico Ajuste de pesos é realizado após a apresentação de cada exemplo
- Por lote (batch) Ajuste de pesos é realizado após a apresentação de todo os exemplos à rede (fim da época)
- Mini-lote (mini-batch) Ajuste de pesos é realizado após a apresentação de um subconjunto de exemplos

ESTOCÁSTICO

Vantagens:

- > Ajuda a escapar de mínimos locais
- Mais simples de implementar
- > Pode tirar vantagens de dados (exemplos) redundantes

Desvantagens:

- > Estimar o erro baseado em um único exemplo não é uma boa aproximação do erro real
- > Treinamento muito lento
- Mais difícil provar teoricamente que o algoritmo converge

POR LOTE (BATCH)

Vantagens:

- Estimativa precisa do gradiente
- > Convergência mais rápida sob condições simples
- Mais fácil de paralelizar

Desvantagens:

> Pode ficar preso em mínimos locais

POR MINI-LOTE (MINI-BATCH)

Bom balanço entre o modo estocástico e o modo por lote:

- Convergência mais rápida (modo por lote)
- > Evita mínimos locais

CRITÉRIOS DE PARADA

Existem alguns critérios razoáveis para a convergência:

- > Vetor gradiente alcançar um limiar suficiente pequeno
- > Taxa de variação do erro muito pequena entre as épocas (ex: menor que 1%)
- Rede apresenta um bom desempenho de generalização, ou seja, funciona bem com um outro conjunto de exemplos (conjunto de validação)