

COMISSÃO DE EXAMES DE ADMISSÃO

EXAME DE FÍSICA - 2004

Duração: 120 minutos

LEIA ATENTAMENTE AS SEGUINTES INSTRUÇÕES:

- 1. A prova é constituída por trinta (30) perguntas, todas com quatro (4) alternativas de resposta, estando correcta somente UMA (1) das alternativas.
- Para cada questão assinale a resposta escolhida na FOLHA DE RESPOSTAS que lhe foi fornecida no inicio do exame. Não será aceite qualquer outra folha adicional.
- 3. Pinte o rectângulo com a letra correspondente à resposta escolhida. Por exemplo
- 4. Preencha a lápis HB, pois contrariamente ao preenchimento por esferográfica, os erros podem ser totalmente apagados sem deixar nenhuma marca que possa perturbar a leitura da máquina óptica.
- 5. Se o candidato tiver certeza de que as respostas assinaladas a lápis são as definitivas, PODE passar à esferográfica de tinta azul ou preta.

BOM TRABALHO!

1. Um motorista percorre uma distância de 80 km a uma velocidade constante de 20 km/h e, em seguida, percorre uma distância de 160 km a uma velocidade de constante de 80 km/h. A velocidade média escalar do motorista é

 $\frac{A}{C}$ 60 km/h, $\frac{A}{C}$ 100 km/h

<u>B</u> 50 km/h D 40 km/h

2. A figura abaixo representa o movimento de dois objectos I e II. O ponto de intersecção dos gráficos I e II fisicamente significa que neste momento de tempo os objectos I e II:

- A. Estão a mesma distância do ponto de referência.
- B. Possuem a mesma velocidade.
- C. Possuem a mesma aceleração.
- D. Possuem trajectórias que se cruzam.
- 3. A velocidade de um peão que se move em linha recta, sobre uma superfície horizontal lisa, varia em função do tempo de acordo com o gráfico V = V(t) ao lado. Considere v dado em km/h e t em horas. Nas primeiras 4 horas o peão percorreu

<u>A</u> 40 km C 30 km <u>B</u> 20 km D 60 km

4. Se no problema anterior, o peão passar da origem no instante t=0, então ao fim de 8 horas estará afastado da origem

<u>A</u> 30 km

<u>B</u> 25 km D 40 km

- <u>C</u> 35 km
- 5. O peão do problema anterior realiza, em geral, movimento variado. Mas, especificamente nos trechos 2-4 e 6-8 horas pode-se considerar que o peão realiza

<u>A</u> movimento uniformemente acelerado

<u>B</u> movimento uniforme

<u>C</u> movimento uniformemente retardado

<u>D</u> acelerado e retardado respectivamente

6. Uma pedra é lançada verticalmente para cima, no vácuo. No ponto mais alto da trajectória a velocidade da pedra é nula e a sua aceleração é

 \underline{A} 9,8 m/s² e dirigida para cima

<u>B</u> depende da massa da pedra

<u>C</u> nula

 $\overline{\underline{D}}$ 9,8 m/s² e dirigida para baixo

7. Um carro desce um plano inclinado que faz com a horizontal um ângulo de 30º à velocidade constante. A aceleração do carro é igual a

 \underline{A} 9,8 m/s²

 \underline{B} 0 m/s²

 \underline{C} 4,5 m/s²

<u>D</u> depende da massa do carro

8. Um rapaz deixa cair uma pedra de um prédio de altura *h*. Desprezando o atrito do ar a velocidade com que a <u>pedra</u> atinge o solo pode ser calculada pela expressão:

 \underline{A} $\sqrt{2h/g}$

 $\underline{\mathbf{B}}$ $\sqrt{2hg}$

 \underline{C} $\sqrt{g/2h}$

 $\underline{\mathbf{D}}$ $\sqrt{1/(2hg)}$

9.	Quando um corpo cai livremente a partir de certa altura e sem resistência do ar, então, no âmbito da conservação de energia tem lugar o seguinte:						
	<u>A</u> <u>C</u>	Energia cinétic	ca é conservada ias conservam-se	,	<u>B</u> <u>D</u>	~ .	encial é conservada $E_c + E_p$ é conservada
	Uma bola de massa <i>m</i> largada em A, a uma altura de 2,20 m, passa por um trilho circular de raio 0,5 m (veja a figura ao lado). A bola sai do trilho em B, a altura de 0,20 m, com a velocidade igual a 10 m/s B 20 m/s						
<u>/</u>	<u>A</u> <u>C</u>	10 m/s 1,0 m/s		<u>В</u> <u>D</u>	20 m/s $2.0 m/s$	3	
_	_	,		_	, ,		uudaadaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
11.	Considere o problema anterior. Durante o movimento, a bola exerce sobre o trilho uma força variável. Ao passar pela parte inferior do trilho o valor dessa força é						
	<u>A</u> <u>C</u>	igual a mg inferior a mg			<u>B</u> <u>D</u>	superior a mg	5
	<u>C</u>	illicitor a mg			<u>D</u>	Zelo	
12.	No problema anterior o bloco atinge a base, mas, no plano horizontal, percorre 20 m e pára devido ao atrito entre o bloco e o plano. O valor do coeficiente de atrito é						
	<u>A</u> <u>C</u>	0,50 0,40			<u>В</u> <u>D</u>	0 , 25	
13.	Para qu	ie o corpo se		ima con	n uma ao	celeração de .	um corpo 8 kg de massa 5 m/s² é preciso puxar a
	<u>C</u>	120 N			D	13 N	
14.	Um corpo homogéneo flutua na água com 1/4 de seu volume mergulhado. Tomando a densidade de água igual 1 g/cm³, a densidade do corpo é						
		1,25 g/cm ³ 0,25 g/cm ³		1		0,75 g/cm ³ 0,90 g/cm ³	
15.	Um cilindro está verticalmente em equilíbrio na zona de separação de dois líquidos sobrepostos de densidades 2 g/cm³ e 1,5 g/cm³. Se 4/5 do volume do cilindro estiver no liquido inferior. A densidade do material com que o cilindro foi feito será						
	<u>A</u> <u>C</u>	$1,75 \text{ g/cm}^3$	•		<u>B</u>	$3,5 \text{ g/cm}^3$	
	<u>C</u>	$1,3 \text{ g/cm}^3$			<u>D</u>	$1,9 \text{ g/cm}^3$	
16.	Um gás ideal está a uma pressão de 1,5 atm e ocupa um volume de 3 litros, a temperatura de 600 K. Mantendo a temperatura constante e reduzindo o volume para 1 litro, a pressão do gás passará a ser de						
	<u>A</u> <u>C</u>	1,5 atm 0,5 atm		<u>B</u> <u>D</u>	0,75 atn 4,5 atn		
17.	tempera						tre a pressão P (em Pa) e a ofre uma transformação a
F	P(MPa)		P(MPa)		P(MPa)		P(MPa)
-							
-							
		T(K)	T(K)			T(K)	T(K)
	<u> </u>	<u>\</u>	<u>B</u>		<u> </u>	<u>C</u>	<u>D</u>

18. Um gás ideal, inicialmente no estado A, sofre um ciclo de transformações com a ordem seguinte: uma expansão isotérmica, seguida duma compressão isobárica e no fim um aquecimento isocórico. Qual é o gráfico que representa correctamente este ciclo?

- Três cargas pontuais positivas encontram-se numa mesma recta, de tal modo que a distância entre a primeira e a segunda carga seja duas vezes maior do que a distância entre a segunda e a terceira carga. Se considerar Q₁=2Q₃, a força que Q₁ exerce sobre Q₂ será
 - \underline{A} 2 vezes maior do que a força que Q_3 exerce sobre Q_2
 - \underline{B} 4 vezes menor do que a força que Q_3 exerce sobre Q_2
 - <u>C</u> 8 vezes maior do que a força que Q₃ exerce sobre Q₂
 - \underline{D} 2 vezes menor do que a força que Q_3 exerce sobre Q_2
- 20. Duas cargas pontuais Q₁ e Q₂ estão separadas por uma distância *d*. Sabe-se que existe um ponto O entre as duas cargas onde o campo eléctrico é nulo. Nestas condições
 - A As cargas são de sinal igual e o potencial em O é diferente de zero
 - B As cargas são de sinais contrários e o potencial em O é sempre nulo
 - C As cargas são de sinais contrários e o potencial em O é diferente de zero
 - D As cargas são de sinal igual e o potencial em O é sempre nulo.
- 21. Sejam M e N dois pontos no interior de um capacitor de placas paralelas, separadas por uma distância d uma da outra. Considere E o campo eléctrico entre as placas, o ponto M a uma distância d/8 próximo duma das placas e N a distância d/8 próximo da outra placa. A diferença de potencial entre os pontos M e N será expressa por

 $\underline{\mathbf{A}}$ Ed/8

 $\underline{\underline{B}}$ 3Ed/4

- \underline{C} Ed \underline{D} Ed/C
- 22. Considere um circuito simples alimentado por uma bateria de 36 V e de resistência interna 2 Ω . A energia eléctrica dissipada durante um minuto, devido ao aquecimento numa resistência externa de 70 Ω é

<u>A</u> 105 J C 20 kJ

<u>B</u> 12 kJ <u>D</u> 1,05 kJ

- 23. Um objecto não punctiforme é colocado em frente dum espelho côncavo a uma distância superior ao raio da curvatura do espelho. A imagem deste objecto formada no espelho será
 - A Real, invertida e encontra-se entre o vértice e o centro da curvatura.
 - <u>B</u> Virtual, direita e encontra-se atrás do espelho
 - <u>C</u> Real, direita e encontra-se entre o vértice e o centro de curvatura
 - D Virtual, invertida e encontra-se antes do centro da curvatura
- 24. Um objecto luminoso MN é colocado em frente duma lente convergente, com focos F_1 e F_2 . Se o objecto estiver entre foco F_1 e a lente, a sua imagem encontra-se

 \underline{A} \acute{A} esquerda da F_1

 \underline{B} À direita da F_2

 $\overline{\underline{C}}$ Entre a lente e F_2

 $\underline{\mathbf{D}}$ Entre \mathbf{F}_1 e a lente

25. Considere o problema anterior. A imagem formada neste caso será

A real, invertida, menor

 \underline{B} real, direita e maior

 $\overline{\underline{C}}$ virtual, invertida maior

 $\overline{\underline{D}}$ virtual, direita e maior

26. Ao passar por um prisma óptico, um raio incidente sofre variações na sua trajectória. Indique a variante correcta

<u>A</u>

- 27. Uma corrente contínua I passa ao longo dum fio infinito, entrando verticalmente numa folha. Neste caso, na folha, as linhas de indução do campo magnético criado pela corrente são
 - linhas circulares concêntricas com sentido anti-horário
 - <u>B</u> linhas radiais convergentes
 - <u>C</u> linhas circulares concêntricas com sentido horário
 - D linhas radiais divergentes
- 28. Um voltímetro tem uma resistência interna de 200Ω e como limite de escala de medição 5V. Pretende-se com este voltímetro medir tensão até 100V. Para tal que resistência adicional se deve associar ao voltímetro?

A. 1800Ω

B. 2800Ω

C. 3800Ω

D. 3800Ω

29. Considerando o circuito representado na figura ao lado, determine a indicação do voltímetro se as forças electromotrizes e as resistências internas dos elementos associados são E1=1,5V; r1=0,2Ω e E2=2V e r2=0,3Ω, respectivamente. (Desprezar a corrente que passa pelo voltímetro e a resistência dos condutores da associação.)

A. 1,7 V

B. 2,7 V

C. 3,7 V

D. 4,7 V

30. Um segmento condutor recto e horizontal, de 10 cm de comprimento e 4,0 g de massa, percorrido por uma corrente 5,0 A, apresenta-se em equilíbrio sob acções exclusivas da gravidade e de um campo magnético de indução B igual a

0,08 T

0.008 T

<u>A</u> <u>C</u> 2 T

D 0,8 T