课程代码: 16200041 试卷 (B)

课程名称: 概率论与数理统计

题号	_	11	111	四	五	六	七	八	九	+	总分
得分											
签字											

注意事项: 所有的答案都必须写在答题纸(答题卡)上,答在试卷上一律无效。

- 一、填空题(本题共6小题,每小题3分,满分18分)
 - 1. 若事件 $A \setminus B$ 为两个事件,满足P(A) = 0.7, P(A B) = 0.3,则 $P(\overline{AB}) = _____.$
 - 2. 已知随机变量 X 服从参数为 2 的泊松分布,则 E(3X-2)=
- 3. 已知随机变量 $X \sim N(2,4)$,且 aX + b 服从标准正态分布,则 $a = _____$, $b = _____$.
 - 4. 已知随机变量 X与Y 同分布,且 X 的概率函数为

若P(XY=0)=1,则P(X=Y)=_____.

- 5. 从 1、2、3、4、5 中任取一个数记为 X,再从 1,...,X 中任取一个数,记为 Y,则 EY =_____.
- 6. 设总体 X 服从参数为 $(\theta-1)$ 的指数分布, (X_1, X_2, \dots, X_n) 是来自总体 X 的样本,则总体参数 θ 的矩估计量 .
- 二、单项选择题(本题共6小题,每小题3分,满分18分)
 - 1. 若事件A、B为两个随机事件,且0 < P(B) < 1,且 $AB = \bar{A} \bar{B}$,则 $P(A|\bar{B}) + P(\bar{A}|B) = ().$
 - (A) 2 (B) 1.5 (C) 1

樂那

俳

(D) 0.5

2. 已知随机变量X的分布函数为

$$F(x) = \begin{cases} 0, & x < -1 \\ \frac{1}{8}, & x = -1 \\ ax + b, & -1 < x < 1 \\ 1, & 1 \le x \end{cases}$$

而 $P{X=1}=\frac{1}{4}$,则().

- (A) $a = \frac{1}{2}, b = \frac{1}{2}$ (B) $a = \frac{7}{16}, b = \frac{9}{16}$
- (C) $a = \frac{3}{8}, b = \frac{3}{8}$ (D) $a = \frac{5}{16}, b = \frac{7}{16}$

3. 已知随机变量(X,Y)的联合密度为

$$f(x,y) = \begin{cases} 6x, & 0 \le x \le y \le 1 \\ 0, & 其它 \end{cases}$$

则 $P(X+Y\leq 1)=$ ().

- (A) $\frac{1}{2}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) $\frac{1}{5}$

4. 设随机变量 X = Y 的期望分别为 2 和-2,方差分别为 1 和 4,而相关系数 为-0.5,则由切比雪夫不等式有().

- (A) $P\{|X+Y| \ge 6\} \le \frac{11}{12}$ (B) $P\{|X+Y| \ge 6\} \ge \frac{11}{12}$
- (C) $P\{|X+Y| \ge 6\} \ge \frac{1}{12}$ (D) $P\{|X+Y| \ge 6\} \le \frac{1}{12}$

5. 若随机变量 X = Y 服从二维正态分布,则随机变量 Z = X + Y = W = X - Y不相关充要条件是().

- (A) EX = EY (B) $EX^2 (EX)^2 = EY^2 (EY)^2$
- (C) $EX^2 = EY^2$ (D) $EX^2 + (EX)^2 = EY^2 + (EY)^2$

6. 设两个总体 $X \sim N(0,16)$ 与 $Y \sim N(0,36)$ 相互独立, (X_1,X_2,X_3) 和 (Y_1,Y_2) 分别为来自总体 X与Y的样本,若 $Z = \frac{m(X_1 + X_2 + X_3)^2}{n(Y_1 + Y_2)^2}$ 服从F分布,则有

().

(A)
$$m=2, n=5$$
 (B) $m=3, n=2$

(B)
$$m = 3, n = 1$$

(C)
$$m = 5, n = 2$$

(C)
$$m=5, n=2$$
 (D) $m=3, n=5$

三、计算题(本题共4小题,每小题10分,满分40分)

1. 设连续型随机变量 X 的密度函数为

$$f(x) = \begin{cases} \frac{1}{4}(x+2), & -2 < x \le 0 \\ \frac{1}{2}\cos x, & 0 < x < \frac{\pi}{2} \\ 0, & \sharp \dot{\Xi} \end{cases}$$

求(1) X的分布函数;(2) $P(-1 < X < 1), P(X \ge \frac{\pi}{4})$.

2. 设二维随机向量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} Ce^{-y}, 0 < x < y \\ 0, 其他 \end{cases}$$

试求: (1) 常数C;

- (2) 边缘密度函数 $f_{x}(x), f_{y}(y)$, 并讨论 X 和 Y 的独立性;
- (3) P(X+Y<1).
- 3. 设二维离散型随机变量(X,Y)的联合分布为

X Y	-1	1
1	0.5	0.25
2	0.25	0

求 (1) EX, EY, DX, DY; (2) Cov(X,Y); (3) ρ_{xy} ; (4) $Cov(X^2,Y^2)$.

4. 已知随机变量 X 服从区间 $[0,\theta]$ 上的均匀分布,其中 $\theta>0$ 为未知参数, (X_1,X_2,\cdots,X_n) 是来自总体 X 的样本, (x_1,x_2,\cdots,x_n) 是样本观测值, 求 θ 的极大似然估计量.

四、应用题(本题共2小题,每小题10分,满分20分)

- 1. 甲、乙、丙三人向同一飞机射击,且三人的射击水平相当,击中飞机的 概率均为 0.6. 如果只有一人击中,则飞机被击落的概率为 0.2; 如果只有两人击中,则飞机被击落的概率为 0.6; 如果三人都击中,则飞机必被击落. 求飞机被击落的概率.
- 2. 食堂为1000名学生服务,每个学生去食堂吃早餐的概率为0.6,去与不去食堂用餐互不影响. 问食堂想以99.7%的把握保障供应,每天应准备多少份早餐? ($\Phi_0(2.75)=0.997$,其中 $\Phi_0(x)$ 是标准正态分布函数)

五、证明题(本题共1小题,满分4分)

设 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 是 θ 的两个无偏估计,且 $D\hat{\theta}_1 = {\sigma_1}^2$, $D\hat{\theta}_2 = {\sigma_2}^2$,如果 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 相互独立,证明

$$\hat{\theta} = c\,\hat{\theta}_1 + (1-c)\hat{\theta}_2 \quad , \quad 0 \le c \le 1$$

是 θ 的无偏估计,并确定 c 的值,使得 $D\hat{\theta}$ 达到最小.