Mesh Hydrodynamics Results

Mladen Ivkovic

Laboratory of Astrophysics École Polytechnique Fédérale de Lausanne

February 21, 2020

Contents

1	Not	ation	3
2	Advection		
	2.1	Piecewise Constant	4
	2.2	Piecewise Linear	4
	2.3	Order of Convergence	2
	2.4	Conclusions	7
	2.5	Future Debugging Hints	2
		2.5.1 When you're using downwind differencing	2
		2.5.2 When the CFL condition is violated	8
3	Slop	pe and Flux Limiters 4	3
	3.1	Slope Limiters	3
		3.1.1 What slope limiters have in common	5
		3.1.2 Effects on linear advection	8

1 Notation

We are working on numerical methods. Both space and time will be discretized.

Space will be discretized in cells which will have integer indices to describe their position. Time will be discretized in fixed time steps, which may have variable lengths. Nevertheless the time progresses step by step.

The lower left corner has indices (0,0) in 2D. In 1D, index 0 also represents the leftmost cell.

We have:

- integer subscript: Value of a quantity at the cell, i.e. the center of the cell. Example: U_i , U_{i-2} or $U_{i,j+1}$ for 2D.
- non-integer subscript: Value at the cell faces, e.g. $\mathbf{F}_{i-1/2}$ is the flux at the interface between cell i and i-1, i.e. the left cell as seen from cell i.
- integer superscript: Indication of the time step. E.g. U^n : State at timestep n
- non-integer superscript: (Estimated) value of a quantity in between timesteps. E.g. $\mathbf{F}^{n+1/2}$: The flux at the middle of the time between steps n and n+1.

2 Advection

2.1 Piecewise Constant

Figure 1: Piecewise constant advection with positive fixed global velocity $v_x=1$. $C_{CFL}=0.9,\ nx=500$

Figure 2: Piecewise constant advection with positive fixed global velocity $v_x=1$. $C_{CFL}=0.1,\ nx=500$

Figure 3: Piecewise constant advection with positive fixed global velocity $v_x=1$. $C_{CFL}=1.0,\ nx=500$

Figure 4: Piecewise constant advection with NEGATIVE fixed global velocity $v_x=-1$. $C_{CFL}=0.9,\ nx=100$

Figure 5: Piecewise constant advection with fixed global velocity $v_x = 1, v_y = 0$. $C_{CFL} = 0.9, nx = 100$. ICs were a step function. This is 2D without Strang splitting, done naively.

Figure 6: Piecewise constant advection with fixed global velocity $v_x = 1, v_y = 0$. $C_{CFL} = 0.9, nx = 100$. ICs were a step function. With Strang splitting.

Figure 7: Piecewise constant advection with fixed global velocity $v_x = 0, v_y = 1$. $C_{CFL} = 0.9, nx = 100, t = 1$. ICs were a step function. Without Strang splitting, done naively.

Figure 8: Piecewise constant advection with fixed global velocity $v_x = 0, v_y = 1$. $C_{CFL} = 0.9, nx = 100, t = 1$. ICs were a step function. With Strang splitting.

Figure 9: Piecewise constant advection with fixed global velocity $v_x = v_y = 1$. $C_{CFL} = 0.9$, nx = 100, t = 1. ICs were a step function. This is 2D without Strang splitting, done naively.

Figure 10: Piecewise constant advection with fixed global velocity $v_x = v_y = 1$. $C_{CFL} = 0.9$, nx = 100, t = 1. ICs were a step function. This is 2D with Strang splitting.

2.2 Piecewise Linear

Figure 11: Piecewise linear advection with positive fixed global velocity $v_x=1$. $C_{CFL}=0.9,\; nx=100$

Figure 12: Piecewise linear advection with fixed global velocity $v_x = 1, v_y = 0$. $C_{CFL} = 0.9, nx = 100$. ICs were a step function. Without Strang splitting.

Figure 13: Piecewise linear advection with fixed global velocity $v_x = 1, v_y = 0$. $C_{CFL} = 0.9, nx = 100$. ICs were a step function. With Strang splitting.

Figure 14: Piecewise linear advection with fixed global velocity $v_x = 0, v_y = 1$. $C_{CFL} = 0.9$, nx = 100. ICs were a step function. Without Strang splitting.

Figure 15: Piecewise linear advection with fixed global velocity $v_x = 0, v_y = 1$. $C_{CFL} = 0.9, nx = 100$. ICs were a step function. With Strang splitting.

Figure 16: Piecewise linear advection with fixed global velocity $v_x = v_y = 1$. $C_{CFL} = 0.9$, nx = 100. ICs were a step function. Note that despite of the strong oscillations, the total density is conserved! (Unless the oscillations get too big for floats to handle). Without Strang splitting.

Figure 17: Piecewise linear advection with fixed global velocity $v_x = v_y = 1$. $C_{CFL} = 0.9$, nx = 100. ICs were a step function. Note that despite of the strong oscillations, the total density is conserved! (Unless the oscillations get too big for floats to handle) With Strang splitting.

Figure 18: Piecewise linear advection with fixed global velocity $v_x = v_y = 1$. $C_{CFL} = 0.1$, nx = 100. ICs were a step function. Note the lower CFL condition compared to fig 16. Without Strang splitting.

2.3 Order of Convergence

Figure 19: Convergence Study with respect to cell size Δx using the L1 norm. Points are measurements, the straight lines are fitted curves, with their slope given in the legend. For an accurate comparison, the simulations are stopped after the same number of steps. This way, the C_{cfl} can also be kept constant throughout the different Δx . Initial conditions was a Gaussian profile.

Figure 20: Convergence Study with respect to cell size Δx using the L1 norm. Points are measurements, the straight lines are fitted curves, with their slope given in the legend. For an accurate comparison, the simulations are stopped after the same number of steps. This way, the C_{cfl} can also be kept constant throughout the different Δx . Initial conditions was a step function.

Figure 21: Convergence Study with respect to time step size Δt using the L1 norm. Points are measurements, the straight lines are fitted curves, with their slope given in the legend. For an accurate comparison, the simulations are stopped after the same number of steps, and Δx is kept constant. Highest Δt corresponds to $C_{cfl}=0.001$. Initial conditions was a Gaussian profile.

Figure 22: Convergence Study with respect to time step size Δt using the L1 norm. Points are measurements, the straight lines are fitted curves, with their slope given in the legend. For an accurate comparison, the simulations are stopped after the same number of steps, and Δx is kept constant. Highest Δt corresponds to $C_{cfl} = 0.001$. Initial conditions was a step function.

Figure 23: Convergence Study with respect to the Courant number C_{cfl} using the L1 norm. Points are measurements, the straight lines just connect the dots. For an accurate comparison, the simulations are stopped after the same number of steps, and Δx is kept constant. Initial conditions was a Gaussian profile.

Figure 24: Convergence Study with respect to the Courant number C_{cfl} using the L1 norm. Points are measurements, the straight lines just connect the dots. For an accurate comparison, the simulations are stopped after the same number of steps, and Δx is kept constant. Initial conditions was a step function.

2.4 Conclusions

- Advection is diffusive (fig 1).
- It is diffusive even if $C_{CFL} = 1!$ (fig 3). This is most probably because of round-off/float errors. For high t, the whole shape moves a bit to the right even.
- Using a lower CFL number leads to stronger diffusion. Compare figs. 1 and 2. Why?

We are solving the 1D advection equation with c being a constant velocity:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0 \tag{1}$$

Discretising this equation, we get (using an explicit time scheme and upwind differencing):

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + \frac{u_i^n - u_{i-1}^n}{\Delta x} = 0 (2)$$

This is however not an exact expression, but only an approximate one. If we use a Taylor expansion

$$u_i^{n+1} = u_i^n + \Delta t \frac{\partial u}{\partial t} + \frac{\Delta t^2}{2} \frac{\partial^2 u}{\partial t^2} + O(\Delta t^3)$$
 (3)

$$u_{i-1}^n = u_i^n - \Delta x \frac{\partial u}{\partial x} + \frac{\Delta x^2}{2} \frac{\partial^2 u}{\partial x^2} + O(\Delta x^3)$$
 (4)

and insert it into eq 2, we get (neglecting third order terms from now on)

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} + \frac{1}{2} \Delta t \frac{\partial^2 u}{\partial t^2} - c \frac{\Delta x}{2} \frac{\partial^2 u}{\partial x^2} = 0$$
 (5)

$$\Rightarrow \frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = -\frac{1}{2} \Delta t \frac{\partial^2 u}{\partial t^2} + c \frac{\Delta x}{2} \frac{\partial^2 u}{\partial x^2}$$
 (6)

$$= 0 + Err \tag{7}$$

$$Err = -\frac{1}{2}\Delta t \frac{\partial^2 u}{\partial t^2} + c \frac{\Delta x}{2} \frac{\partial^2 u}{\partial x^2}$$
 (8)

which is the advection equation 1 plus some error term.

Now using eq. 1 we find:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0 \tag{9}$$

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$
(9)
$$\frac{\partial^2 u}{\partial t^2} + c \frac{\partial^2 u}{\partial t \partial x} = 0$$
(10)

$$2) \quad \frac{\partial u}{\partial t} = -c \frac{\partial u}{\partial x} \tag{11}$$

2)
$$\frac{\partial u}{\partial t} = -c\frac{\partial u}{\partial x}$$
 (11)

$$\Rightarrow 3) \frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$$
 (12)

This gives us for the error term:

$$Err = -\frac{1}{2}\Delta t \frac{\partial^2 u}{\partial t^2} + c \frac{\Delta x}{2} \frac{\partial^2 u}{\partial x^2}$$
 (13)

$$= -\frac{c^2 \Delta t}{2} \frac{\partial^2 u}{\partial x^2} + c \frac{\Delta x}{2} \frac{\partial^2 u}{\partial x^2}$$
 (14)

$$= \frac{c\Delta x}{2} \left(1 - \frac{c\Delta t}{\Delta x} \right) \frac{\partial^2 u}{\partial x^2} \tag{15}$$

Inserting the CFL condition:

$$\frac{c\Delta t_{max}}{\Delta x} = C_{cfl} \le 1 \tag{16}$$

we obtain:

$$Err = \frac{c\Delta x}{2} \left(1 - C_{cfl} \right) \frac{\partial^2 u}{\partial x^2} \tag{17}$$

The second derivative in space is characteristic for diffusion. But you can immediately see that the diffusion term (coefficient) depends on C_{cfl} , and indeed increases with decreasing C_{cfl} !

• 2D advection:

For advection only in x or y direction, respectively, the method reduces to the one dimensional case, and the results are identical when using Strang splitting or the naive case. Compare figs 5 vs 6, and 7 vs 8. But when we have both v_x and v_y be non-zero, the naive method (i.e. without Strang splitting, where we just extend the 1D method to 2D and don't think about it) starts getting "stripes" perpendicular to the diagonal along which it is being advected along (fig 9 vs 10). The reason is that a) the upwinding is not complete, i.e. the value $u_{i-1,j-1}$ along the diagonal in the naive case never gets properly advected to $u_{i,j}$, and b) the method is diffusive, so the diffused material from $u_{i-1,j}$ and $u_{i,j-1}$ come together in that cell, messing everything up. Letting the code run for longer times actually leads to stripe-like instabilities. See also fig 16.

• The piecewise linear scheme can/will introduce oscillations around sharp edges (fig 11. The oscillations can go into the negative regime. Even though it's unphys-

ical, the total density content remains constant! This is because the scheme is fundamentally conservative.

• On the order of convergence:

- Dependence on Δx :

For the smooth Gaussian profile IC: The results are nicely as expected, fig. 19. The piecewise constant advection is of $\mathcal{O}(\Delta x)$, piecewise linear is of $\mathcal{O}(\Delta x^2)$. Remember that the order of convergence computation on paper gives you only the upper boundary of the error, so a faster convergence is possible, but shouldn't be greater than 1 order than predicted, which we have here.

For the step function in fig 20 we see as expected that the convergence rate drops to $\mathcal{O}(\Delta x)$ because that's what slope limiters do. So then why is the unlimited linear method also dropping to first order? The computations we did on paper for the order estimate assume a smooth initial condition, which we don't have here. It turns out having a discontinuity drops your order of convergence.

- Dependence on Δt :

Fixing the time step Δt is essentially the same as fixing the Courant number C_{cfl} for an already fixed velocity u and grid spacing Δx . For the order of convergence to be measured w.r.t. Δt , we must start with a Δt that implies a very low C_{cfl} . The reason is that C_{cfl} determines the amplitude of the diffusivity, see eqn. 17 and fig. 23 So for a good comparison, we need to start with a low enough C_{cfl} such that the difference in diffusivity is negligible. Otherwise, you don't see the power law that emerges.

In the following analysis, let's focus on piecewise constant (first order) advection alone. I don't have the theory present for the piecewise linear scheme to back up my findings. What makes things more difficult is that for the piecewise linear advection, Δt also enters the computation of the fluxes between the cells, thus also affects the spatial component. It is not trivial to separate between the Δx and Δx dependence in these cases.

For the Gaussian profile, fig. 21, we get a nice power law with slope 1, as expected. (The piecewise linear methods get close to $\mathcal{O}(\Delta t^{1/2})$. Maybe because they start developing jump discontinuities? Compare fig 37.) For the step profile of the piecewise constant advection, fig. 22, we get $\mathcal{O}(\Delta t^{1/2})$. The reason behind it is that the convergence analysis in theory assumes a smooth initial condition, such that we can use derivatives and Taylor-expansions.

The step function is not smooth though. It can be shown that for a jump discontinuity, the error goes as

$$Err \propto \sqrt{t}$$

So if we have N steps of equal size Δt), if we keep N constant, we get

$$Err \propto \sqrt{\Delta t}$$
 (18)

See LeVeque 2002, chapter 8.6 for details.

which is exactly what we see in fig. 22.

- Dependence on C_{CFL} :

Tweaking around C_{CFL} for a fixed nx and advection velocity u is essentially the same as tweaking Δt . For C_{cfl} comparable to 1 however we see the effects of the increased diffusivity, as described by equation 17. Indeed, measuring the convergence of $0.1 \leq C_{cfl} \leq 0.9$ in figs. 23 and 24 shows that it doesn't behave like a power law at all.

2.5 Future Debugging Hints

Figure 25: Initial conditions used to demonstrate debugging hints. u = 1.

2.5.1 When you're using downwind differencing

Downwind differencing is unphysical and violently unstable. Note how the wave goes in the wrong direction!

Figure 26: Downwind differencing after 1 step.

Figure 27: Downwind differencing after 2 steps.

Figure 28: Downwind differencing after 3 steps.

Figure 29: Downwind differencing after 5 steps.

Figure 30: Downwind differencing after 10 steps.

2.5.2 When the CFL condition is violated

Figure 31: Violating the CFL condition (here $C_{cfl}=1.5$) after 1 step.

Figure 32: Violating the CFL condition (here $C_{cfl} = 1.5$) after 2 steps.

Figure 33: Violating the CFL condition (here $C_{cfl} = 1.5$) after 3 steps.

Figure 34: Violating the CFL condition (here $C_{cfl} = 1.5$) after 5 steps.

Figure 35: Violating the CFL condition (here $C_{cfl} = 1.5$) after 10 steps.

3 Slope and Flux Limiters

3.1 Slope Limiters

Slope limiters are employed because issues arise around numerical schemes because of their discrete nature. For example, a non-limited piecewise linear advection scheme will produce oscillations around jump discontinuities. See **Godunov's Theorem**:

Linear numerical schemes for solving partial differential equations (PDE's), having the property of not generating new extrema (monotone scheme), can be at most first-order accurate.

So the idea is to compute the slope in way that is useful for us based on the current situation of the gas state that we're solving for.

The choice of the slope can be expressed via a function $\phi(r)$. For simple advection, we are solving the equation:

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} + \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{i-1/2}^{n+1/2} - \mathbf{F}_{i+1/2}^{n+1/2} \right)$$
 (19)

If we assume that the states U_i are piecewise linear, i.e.

$$\mathbf{U}(\mathbf{x}) = \mathbf{U}_i(\mathbf{x}_i) + \mathbf{s} \cdot (\mathbf{x} - \mathbf{x}_i) \quad \text{for } \mathbf{x}_{i-1/2} \le \mathbf{x} \le \mathbf{x}_{i+1/2}$$
 (20)

then the expression for the fluxes is given by

$$\mathbf{F}_{i-1/2}^{n+1/2} = \begin{cases} \mathbf{v}_{i-1/2} \cdot \mathbf{U}_{i-1}^{n} + \frac{1}{2} \mathbf{v}_{i-1/2} \cdot \mathbf{s}_{i-1}^{n} (\Delta \mathbf{x} - \mathbf{v}_{i-1/2} \Delta t) & \text{for } \mathbf{v} \ge 0 \\ \mathbf{v}_{i-1/2} \cdot \mathbf{U}_{i}^{n} - \frac{1}{2} \mathbf{v}_{i-1/2} \cdot \mathbf{s}_{i}^{n} (\Delta \mathbf{x} + \mathbf{v}_{i-1/2} \Delta t) & \text{for } \mathbf{v} \le 0 \end{cases}$$

$$\mathbf{F}_{i+1/2}^{n+1/2} = \begin{cases} \mathbf{v}_{i+1/2} \cdot \mathbf{U}_{i}^{n} + \frac{1}{2} \mathbf{v}_{i+1/2} \cdot \mathbf{s}_{i}^{n} (\Delta \mathbf{x} - \mathbf{v}_{i+1/2} \Delta t) & \text{for } \mathbf{v} \ge 0 \\ \mathbf{v}_{i+1/2} \cdot \mathbf{U}_{i+1}^{n} - \frac{1}{2} \mathbf{v}_{i+1/2} \cdot \mathbf{s}_{i+1}^{n} (\Delta \mathbf{x} + \mathbf{v}_{i+1/2} \Delta t) & \text{for } \mathbf{v} \le 0 \end{cases}$$

We can now insert a more general expression for the slopes: Let

$$\theta_{i-1/2} = \begin{cases} +1 & \text{for } \mathbf{v} \ge 0\\ -1 & \text{for } \mathbf{v} \le 0 \end{cases}$$
 (21)

Then

$$\Delta x_{i-\{0,1\}} \mathbf{s}_{i-\{0,1\}} = \frac{1}{2} \Delta x \left[(1 + \theta_{i-1/2}) \mathbf{s}_{i-1}^n + (1 - \theta_{i-1/2}) \mathbf{s}_i^n \right]$$
 (22)

$$\equiv \phi(r_{i-1/2}^n)(\mathbf{U}_i^n - \mathbf{U}_{i-1}^n) \tag{23}$$

$$r_{i-1/2}^{n} = \begin{cases} \frac{\mathbf{U}_{i-1}^{n} - \mathbf{U}_{i-2}^{n}}{\mathbf{U}^{n} - \mathbf{U}_{i-1}^{n}} & \text{for } \mathbf{v} \ge 0\\ \frac{\mathbf{U}_{i-1}^{n} - \mathbf{U}_{i-1}^{n}}{\mathbf{U}_{i}^{n} - \mathbf{U}_{i-1}^{n}} & \text{for } \mathbf{v} \le 0 \end{cases}$$
(24)

This defines ϕ , which will be discussed later. Finally:

$$\mathbf{F}_{i-1/2}^{n+1/2} = \frac{1}{2} \mathbf{v}_{i-1/2} \left[(1 + \theta_{i-1/2}) \mathbf{U}_{i-1}^{n} + (1 - \theta_{i-1/2}) \mathbf{U}_{i}^{n} \right] + \frac{1}{2} |\mathbf{v}_{i-1/2}| \left(1 - \left| \frac{\mathbf{v}_{i-1/2} \Delta t}{\Delta x} \right| \right) \phi(r_{i-1/2}^{n}) (\mathbf{U}_{i}^{n} - \mathbf{U}_{i-1}^{n})$$

$$\mathbf{F}_{i+1/2}^{n+1/2} = \frac{1}{2} \mathbf{v}_{i+1/2} \left[(1 + \theta_{i+1/2}) \mathbf{U}_{i}^{n} + (1 - \theta_{i+1/2}) \mathbf{U}_{i+1}^{n} \right] + \frac{1}{2} |\mathbf{v}_{i+1/2}| \left(1 - \left| \frac{\mathbf{v}_{i+1/2} \Delta t}{\Delta x} \right| \right) \phi(r_{i+1/2}^{n}) (\mathbf{U}_{i+1}^{n} - \mathbf{U}_{i}^{n})$$
(25)

Depending on our choice of ϕ , we can get different slopes. Here for positive velocity only, and for $r = r_{i-1/2}$:

$$\phi(r) = 0 \to \mathbf{s}_i = 0$$
No slopes; Piecewise constant method.
$$\phi(r) = 1 \to \mathbf{s}_i = \frac{\mathbf{U}_i - \mathbf{U}_{i-1}}{\Delta x}$$
Downwind slope (Lax-Wendroff)
$$\phi(r) = r \to \mathbf{s}_i = \frac{\mathbf{U}_{i-1} - \mathbf{U}_{i-2}}{\Delta x}$$
Upwind slope (Beam-Warming)
$$\phi(r) = \frac{1}{2}(1+r) \to \mathbf{s}_i = \frac{\mathbf{U}_i - \mathbf{U}_{i-2}}{2\Delta x}$$
Centered slope (Fromm)

Note that taking the downwind slope is very different from doing downwind differencing! We only use the downwind value to estimate the state inside the cell, not to compute derivatives.

As was said before, these kinds of slopes will introduce oscillations around jump discontinuities in the advected quantity. See Godunov's theorem and figure 11.

3.1.1 What slope limiters have in common

So the idea behind slope limiters is to find an expression to **monotonize** the states, i.e. to be **Total Variation Diminishing (TVD)**. A method is TVD if:

$$TV(\mathbf{U}^n) \equiv \sum_{j} |\mathbf{U}_{j+1} - \mathbf{U}_{j}|$$
 (27)
 $TV(\mathbf{U}^{n+1}) \le TV(\mathbf{U}^n) \iff \text{method is TVD}$

$$TV(\mathbf{U}^{n+1}) \le TV(\mathbf{U}^n) \quad \Leftrightarrow \quad \text{method is TVD}$$
 (28)

Remember, we express the slopes with the function $\phi(r)$, where

$$r_{i-1/2}^{n} = \begin{cases} \frac{\mathbf{U}_{i-1}^{n} - \mathbf{U}_{i-2}^{n}}{\mathbf{U}_{i}^{n} - \mathbf{U}_{i}^{n}} & \text{for } \mathbf{v} \ge 0\\ \frac{\mathbf{U}_{i+1}^{n} - \mathbf{U}_{i}^{n}}{\mathbf{U}_{i}^{n} - \mathbf{U}_{i-1}^{n}} & \text{for } \mathbf{v} \le 0 \end{cases}$$

r is the ratio of the slopes, a measure of the "curvature", or "monotonicity" in that place. To remove oscillations, we want to go back to a first order expression (piecewise constant expression) when we find an oscillation, i.e. when the numerator and denominator have different signs. We get the piecewise constant expression for $\phi(r) = 0$

 \Rightarrow For slope limiters, we must have $r < 0 \Rightarrow \phi = 0$

Other restrictions follow from the constraint that the method should be TVD and continuous (see Sweby 1984):

$$r \le \phi(r) \le 2r \qquad 0 \le r \le 1 \tag{29}$$

$$1 \le \phi(r) \le r \qquad \qquad 1 \le r \le 2 \tag{30}$$

$$1 \le \phi(r) \le 2 \tag{31}$$

$$\phi(1) = 1 \tag{32}$$

(33)

Effectively, this defines regions in the $r - \phi(r)$ diagram through which the limiters are allowed to pass such that they are still TVD (fig 36)

Popular limiters are:

$$Minmod \phi(r) = minmod(1, r) (34)$$

Superbee
$$\phi(r) = \max(0, \min(1, 2r), \min(2, r)) \quad (35)$$

MC (monotonized central-difference)
$$\phi(r) = \max(0, \min((1+r)/2, 2, 2r)) \quad (36)$$

van Leer
$$\phi(r) = \frac{r + |r|}{1 + |r|} \tag{37}$$

where

$$\min(a, b) = \begin{cases}
a & \text{if } |a| < |b| \text{ and } ab > 0 \\
b & \text{if } |a| > |b| \text{ and } ab > 0 \\
0 & \text{if } ab \le 0
\end{cases}$$
(38)

Their behaviour is shown in fig. 36.

Figure 36: The behaviour for different slope limiters. The grey zone is the zone allowed by the conditions 29 - 31.

3.1.2 Effects on linear advection

Figure 37: The effect of different slope limiters on linear advection, applied to piecewise linear advection (eqns 19, 20)

- All limiters except superbee still contain diffusion. You can't get rid of it entirely, but we got rid of the oscillations.
- The minmod resembles the solution of the piecewise constant advection, but pay attention that this is at much later times!
- Some limiters flatten continuous maxima. Van leer, then MC, then superbee in order of ascending "flattening"
- It's as if superbee tries to produce jump discontinuities

 \bullet For order of convergence study, see figs. 19 - 24, and discussion in section 2.4.

References

- [1] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2002. DOI: 10.1017/CB09780511791253.
- [2] P. K. Sweby. "High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws". en. In: SIAM Journal on Numerical Analysis 21.5 (Oct. 1984), pp. 995–1011. ISSN: 0036-1429, 1095-7170. DOI: 10.1137/0721062.