A számítástudomány alapjai 2022. I. félév 3. gyakorlat

1. Határozzuk meg a legrövidebb utakat az alábbi gráfokban az s és a t csúcs között a Dijkstra-algoritmussal!

2. Határozzuk meg az alábbi bal oldali gráfban a legrövidebb utakat az s és a többi csúcs között a Bellman-Ford algoritmussal!

- 3. Határozzuk meg a fenti jobb oldali gráfban az egyes csúcsok közti legrövidebb utakat a Floyd algoritmus segítségével!
- 4. Az alábbi ábrákon gráfok részletei láthatóak, amin épp a Dijkstra algoritmust hajtjuk végre. Az a,b és c csúcsokat már bevettük a megvizsgált csúcsok halmazába, a csúcsok mellett zárójelben vannak feltüntetve, hogy a kezdőponttól milyen távol vannak. Melyik csúcsot fogja bevenni következőnek a Dijkstra algoritmus és milyen távolsággal?

5. Az alábbi K_4 (irányítatlan) gráfok éleire írjunk pozitív egész élsúlyokat úgy, hogy ha a Dijkstra algoritmust s-ből indítjuk, akkor a vastagon szedett élek mentén adja a legrövidebb utakat; a csúcsokat minden esetben (egyértelműen) 1, 2, 3 sorrendben látogatja meg; az élsúlyok összege a lehető legkisebb.

- 6. **[PZH-2010]** Adott egy G gráf, az e él hosszát jelölje l(e). Minden él hosszát növeljük meg 2-vel, azaz legyen l'(e) = l(e) + 2 minden élre. Tegyük fel, hogy u és v között P egy legrövidebb út az l' élhosszokkal. Igaz-e, hogy P biztosan egy legrövidebb út u és v között az l élhosszokra nézve is?
- 7. **[ZH-2014 alapján]** Legyenek a 7 csúcsú G gráf pontjai v_1 , v_2 , v_3 , v_4 , v_6 , v_8 és v_9 , valamint akkor legyen v_i és v_j szomszédos, ha i és j relatív prímek. Ekkor a v_iv_j él hosszúsága |i-j|. Határozzuk meg a v_1 csúcsból minden más csúcsba egy-egy legrövidebb utat.
- 8. [PZH-2014] Legyen $V(G) = \{v_3, v_4, \dots, v_{10}\}$, és $v_i v_j \in E(G)$, ha i és j nem relatív prímek, azaz van 1-nél nagyobb közös osztójuk. Legyen a $v_i v_j$ él hossza $\min(i, j) 1$. Határozzuk meg a v_5 csúcsból minden más csúcsba egy-egy legrövidebb utat, ha van.
- 9. **[ZH-2008]** Határozzuk meg a lenti bal oldali gráfban az élsúlyokat úgy, hogy a Dijkstra algoritmus rossz eredményt adjon!

- 10. **[ZH-2011]** Legyen a G = (V, E) gráf csúcshalmaza $V = \{27, 28, \ldots, 33\}$, él pedig akkor fusson két csúcs között, ha indexeik relatív prímek: $E = \{ij : (i, j) = 1\}$. Rajzoljuk le G diagramját, indítsunk a 27 csúcsból szélességi bejárást, valamint határozzuk meg a bejáráshoz tartozó fát és a többi csúcsnak a 27 csúcstól való távolságát.
- 11. Úgy tűnik a Galaktikus Föderáció kezd kilábalni a gazdasági csődjéből (miután sikerült visszaállítani a centralizált galaktikus pénznem, a blemflarck értékét 0-ról 1-re). Rick Sanchez azonban ezt nem hagyhatja annyiban, az intergalaktikus terrorista ismét monetáris csapást készül mérni. A föderációs adatbázisokat meghekkelve Rick átállította a galaxis pénzeinek árfolyamát az alábbi táblázat alapján, mely azt írja le, hogy egy adott pénz egységéért mennyit kap egy másikból (pl. itt 16 flurboért 1 brapple-t lehet kapni). Rick terve az, hogy ügyes átváltásokkal végtelen sok pénzt fog tudni termelni magának. Sikerülni fog-e ez neki emellett a módosított árfolyam mellett.

	Blemflarck	Brapple	Flurbo	Schmeckle	Smidgen
Blemflarck	1:1	8:1	1:2	4:1	128:1
Brapple	1:4	1:1	16:1	1:2	8:1
Flurbo	4:1	16:1	1:1	4:1	64:1
Schmeckle	4:1	8:1	1:4	1:1	8:1
Smidgen	1:4	1:8	4:1	4:1	1:1