Representation Learning — Module 1

Christopher Zach

Department of Electrical Engineering Chalmers University

Lecture, Sep 2020

Outline

- Introduction
- Background
- Proper scoring rules
 - Noise-contrastive estimation
 - Score matching
- Exercise 1

Organization

Frontal lecture with breaks and discussion segments

Monday	9-12	Intro, background and proper scoring rules
	13-17	Noise-contrastive estimation, score matching
Tuesday	9-12	Latent variable models I

Fika breaks at around 10:00 and 15:00

Homework

Small-scale numerical experiments for hands-on experience

13-17 Latent variable models II

- Form groups (ideally two students in each group)
- Submit little report describing how your thoughts, implementation & results
- "Engineer's notes"
- Submit via email (zach@chalmers.se) by end of November

https://drive.google.com/file/d/1aKP85-4R3z8QTks7dRwmTVgxjL0NWY21/view?usp=sharing https://drive.google.com/file/d/1JFn44JGIXXOO_sc0AHRN16R4MhAEfA_9/view?usp=sharing

Introduction

What is representation learning?

From Wikipedia:

In machine learning, feature learning or representation learning is a set of techniques that allows a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task. $[\dots]$

Feature learning can be either supervised or unsupervised.

- In supervised feature learning, features are learned using labeled input data.
 Examples include supervised neural networks, multilayer perceptron and (supervised) dictionary learning.
- In unsupervised feature learning, features are learned with unlabeled input data.
 Examples include dictionary learning, independent component analysis, autoencoders, matrix factorization and various forms of clustering.

- I do not fully agree with Wiki's definition of supervised feature learning
 - Features from supervised learning are often too task-specific
 - You want to extract information about data beyond a particular task

Representing data = encoding+decoding data?

- Supervised feature learning includes (IMHO)
 - Multi-task learning
 - Shared DNN backbone for multiple tasks
 - Extract representations useful for a variety of problems
 - Weakly supervised tasks with virtually unlimited training data
 - Image colorization
 - Image completion / inpainting
 - Solving visual puzzles
 - Siamese DNNs to predict image relations e.g. from videos
 - Feature learnign using contrastive losses

I will not talk about any of these approaches
I will talk about *energy-based models (EBMs)*

Focus on established methods and a few extensions

Energy-based model (EBM)

An EBM is a function $E_{\theta}: \mathcal{X} \to \mathbb{R}_{\geq 0}$ (depending on parameters θ) that assigns a scalar energy value to an input. The interpretations of E_{θ} is as follows:

- $E_{\theta}(x) \approx 0$: x is "correct" or "likely"
- $E_{\theta}(x) \gg 0$: x is "incorrect" or "unlikely"
- Connecting some EBMs with probabilities

$$E_{\theta}(x) = -\log p_{\theta}(x)$$

Some EBMs are unnormalized likelihoods

$$E_{\theta}(x) = -\log p_{\theta}(x) + c$$

- We may not always be interested in
- Learning: estimate θ from training data $\{x_i\}$ such that

$$E_{\theta}(x) \approx 0 \text{ for } x = x_i$$
 $E_{\theta}(x) \text{ is large for } x \not\approx x_i$

- Often $E_{\theta}(x) \to \infty$ with $||x|| \to \infty$
 - "Likely" data is a bounded region in X

Energy-based model (EBM)

An EBM is a function $E_{\theta}: \mathcal{X} \to \mathbb{R}_{\geq 0}$ (depending on parameters θ) that assigns a scalar energy value to an input. The interpretations of E_{θ} is as follows:

- $E_{\theta}(x) \approx 0$: x is "correct" or "likely"
- $E_{\theta}(x) \gg 0$: x is "incorrect" or "unlikely"
- Connecting some EBMs with probabilities

$$E_{\theta}(x) = -\log p_{\theta}(x)$$

Some EBMs are unnormalized likelihoods

$$E_{\theta}(x) = -\log p_{\theta}(x) + c$$

- We may not always be interested in
- Learning: estimate θ from training data $\{x_i\}$ such that

$$E_{\theta}(x) \approx 0 \text{ for } x = x_i$$

 $E_{\theta}(x)$ is large for $x \approx x_i$ for any

- Often $E_{\theta}(x) \to \infty$ with $||x|| \to \infty$
 - "Likely" data is a bounded region in \mathcal{X}

Energy-based model (EBM)

An EBM is a function $E_{\theta}: \mathcal{X} \to \mathbb{R}_{\geq 0}$ (depending on parameters θ) that assigns a scalar energy value to an input. The interpretations of E_{θ} is as follows:

- $E_{\theta}(x) \approx 0$: x is "correct" or "likely"
- $E_{\theta}(x) \gg 0$: x is "incorrect" or "unlikely"
- Connecting some EBMs with probabilities

$$E_{\theta}(x) = -\log p_{\theta}(x)$$

Some EBMs are unnormalized likelihoods

$$E_{\theta}(x) = -\log p_{\theta}(x) + c$$

- We may not always be interested in c
- Learning: estimate θ from training data $\{x_i\}$ such that

$$E_{\theta}(x) \approx 0 \text{ for } x = x_i$$

 $E_{\theta}(x)$ is large for $x \not\approx x_i$ for any i

- Often $E_{\theta}(x) \to \infty$ with $||x|| \to \infty$
 - "Likely" data is a bounded region in \mathcal{X}

Energy-based model (EBM)

An EBM is a function $E_{\theta}: \mathcal{X} \to \mathbb{R}_{\geq 0}$ (depending on parameters θ) that assigns a scalar energy value to an input. The interpretations of E_{θ} is as follows:

- $E_{\theta}(x) \approx 0$: x is "correct" or "likely"
- $E_{\theta}(x) \gg 0$: x is "incorrect" or "unlikely"
- Connecting some EBMs with probabilities

$$E_{\theta}(x) = -\log p_{\theta}(x)$$

Some EBMs are unnormalized likelihoods

$$E_{\theta}(x) = -\log p_{\theta}(x) + c$$

- We may not always be interested in c
- Learning: estimate θ from training data $\{x_i\}$ such that

$$E_{\theta}(x) \approx 0 \text{ for } x = x_i$$

 $E_{\theta}(x)$ is large for $x \not\approx x_i$ for any i

- Often $E_{\theta}(x) \to \infty$ with $||x|| \to \infty$
 - "Likely" data is a bounded region in A

Energy-based model (EBM)

An EBM is a function $E_{\theta}: \mathcal{X} \to \mathbb{R}_{\geq 0}$ (depending on parameters θ) that assigns a scalar energy value to an input. The interpretations of E_{θ} is as follows:

- $E_{\theta}(x) \approx 0$: x is "correct" or "likely"
- $E_{\theta}(x) \gg 0$: x is "incorrect" or "unlikely"
- Connecting some EBMs with probabilities

$$E_{\theta}(x) = -\log p_{\theta}(x)$$

Some EBMs are unnormalized likelihoods

$$E_{\theta}(x) = -\log p_{\theta}(x) + c$$

- We may not always be interested in c
- Learning: estimate θ from training data $\{x_i\}$ such that

$$E_{\theta}(x) \approx 0$$
 for $x = x_i$ $E_{\theta}(x)$ is large for $x \not\approx x_i$ for any i

- Often $E_{\theta}(x) \to \infty$ with $||x|| \to \infty$
 - ullet "Likely" data is a bounded region in ${\mathcal X}$
 - Example: dictionary learning

Contents

Quickly changing research topic, 100s of new publications every year

Focus on fundamentals and established theory

- Introduction
- Background: a short recap on probability theory
- Proper scoring rules
 - General theory
 - Noise contrastive estimation
 - Score matching
- Latent variable models
 - Variational Bayes (VAE & VNCE)
 - Boltzmann machines
 - Dictionary learning and sparse coding

Caveat: I will focus on image and image-like data

Contents

Quickly changing research topic, 100s of new publications every year

Focus on fundamentals and established theory

- Introduction
- Background: a short recap on probability theory
- Proper scoring rules
 - General theory
 - Noise contrastive estimation
 - Score matching
- Latent variable models
 - Variational Bayes (VAE & VNCE)
 - Boltzmann machines
 - Dictionary learning and sparse coding

Caveat: I will focus on image and image-like data

Outline

- Introduction
- Background
- Proper scoring rules
 - Noise-contrastive estimation
 - Score matching
- Exercise 1

A recap of probability theory

Why?

- One major branch of unsupervised representation learning is tightly connected to estimating parameters of probability distributions
- These distributions can be continuous or discrete
 - Measure-theoretic introduction of probabilities unifies and generalizes notation.

$$Pr(A) = \sum_{x \in A} p(x)$$
 vs. $Pr(A) = \int_A p(x) dx$.

- It is a beautiful theory
- Recap of conditional probabilities, Bayes' theorem etc.

Probability space

A probability space space is a triple (Ω, \mathcal{F}, P) , where

- lacktriangledown Ω is the sample set (think of Ω as elementary random events)
- ② $\mathcal F$ is the set of possible events and forms a σ -algebra
 - **①** With $A \in \mathcal{F}$ we also have $(\Omega \setminus A) \in \mathcal{F}$
 - **2** $A_i \in \mathcal{F}$ for all $i \in \mathbb{N}$ we also have $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$
- $\ \ \ \ P:\mathcal{F} \rightarrow [0,1]$ is the probability measure satisfying $P(\Omega)=1$ and

$$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i})$$
 if $\{A_{i}:A_{i}\in\mathcal{F}\}_{i\in\mathbb{N}}$ are pairwise disjoint

Null set

A null set $A \in \mathcal{F}$ has P(A) = 0.

- \emptyset is always a null set, but there can be $A \neq \emptyset$ such that P(A) = 0.
- If P(A)=1, then $P(\Omega\setminus A)=0$ and $\Omega\setminus A$ is a null set. The event A occurs almost surely (a.s.).

Example

• Infinite number of dice rolls: $\Omega = \bigotimes_{i=1}^{\infty} \{1, \dots, 6\}$ (uncountable set of sequences). Strong law of large numbers,

$$P\left(\lim_{N\to\infty}\frac{\sum_{i=1}^{N}X_i}{N}=\frac{7}{2}\right)=1.$$

 $\lim_{N\to\infty}\sum_{i=1}^N X_i/N$ does not hold for every sample sequence, e.g. $A_1=(1)_{i\in\mathbb{N}}$, but $P(A_1)=0$. The probability of all these "atypical" sequences is 0.

Null set

A null set $A \in \mathcal{F}$ has P(A) = 0.

- \emptyset is always a null set, but there can be $A \neq \emptyset$ such that P(A) = 0.
- If P(A)=1, then $P(\Omega\setminus A)=0$ and $\Omega\setminus A$ is a null set. The event A occurs almost surely (a.s.).

Example

• Infinite number of dice rolls: $\Omega = \bigotimes_{i=1}^{\infty} \{1, \dots, 6\}$ (uncountable set of sequences). Strong law of large numbers,

$$P\left(\lim_{N\to\infty}\frac{\sum_{i=1}^{N}X_i}{N}=\frac{7}{2}\right)=1.$$

 $\lim_{N\to\infty}\sum_{i=1}^N X_i/N$ does not hold for every sample sequence, e.g. $A_1=(1)_{i\in\mathbb{N}}$, but $P(A_1)=0$. The probability of all these "atypical" sequences is 0.

Examples

$$P(A) = \sum_{\omega \in A} p(\omega) \quad \forall A \subseteq \Omega,$$

where $p:\Omega\to [0,1]$ is the *probability mass function* with $\sum_{\omega\in\Omega}p(\omega)=1$.

- ② $\Omega = [0,1]$. $\mathcal{F} = 2^{\Omega}$? No, more complicated. 2^{Ω} is too large to find a P with the right properties. Most useful working example: Borel algebras and Lebesgue measures.
- Borel algebra \mathcal{B} : smallest σ -algebra that contains intervals $[a, b] \subseteq [0, 1]$ (or $[a, b] \subseteq \mathbb{R}$).
- ① Lebesgue measure λ : extension of $\lambda([a,b])=a-b$ to all sets from \mathcal{B} . Generalization to higher dimensions via Cartesian products. The Lebesgue measure corresponds to our intuitive notions of length, area and volume.

Examples

$$P(A) = \sum_{\omega \in A} p(\omega) \quad \forall A \subseteq \Omega,$$

where $p:\Omega\to [0,1]$ is the *probability mass function* with $\sum_{\omega\in\Omega}p(\omega)=1$.

- ② $\Omega = [0,1]$. $\mathcal{F} = 2^{\Omega}$? No, more complicated. 2^{Ω} is too large to find a P with the right properties. Most useful working example: Borel algebras and Lebesgue measures.
- Borel algebra \mathcal{B} : smallest σ -algebra that contains intervals $[a, b] \subseteq [0, 1]$ (or $[a, b] \subseteq \mathbb{R}$).
- ① Lebesgue measure λ : extension of $\lambda([a,b])=a-b$ to all sets from \mathcal{B} . Generalization to higher dimensions via Cartesian products. The Lebesgue measure corresponds to our intuitive notions of length, area and volume.

Examples

 \bullet $\Omega \subseteq \mathbb{N}, \mathcal{F} = 2^{\Omega}$ and P is given by

$$P(A) = \sum_{\omega \in A} p(\omega) \quad \forall A \subseteq \Omega,$$

where $p:\Omega\to [0,1]$ is the *probability mass function* with $\sum_{\omega\in\Omega}p(\omega)=1$.

- ② $\Omega = [0,1]$. $\mathcal{F} = 2^{\Omega}$? No, more complicated. 2^{Ω} is too large to find a P with the right properties. Most useful working example: Borel algebras and Lebesgue measures.
- **③** Borel algebra \mathcal{B} : smallest σ -algebra that contains intervals $[a,b] \subseteq [0,1]$ (or $[a,b] \subseteq \mathbb{R}$).
- **①** Lebesgue measure λ : extension of $\lambda([a,b])=a-b$ to all sets from \mathcal{B} . Generalization to higher dimensions via Cartesian products. The Lebesgue measure corresponds to our intuitive notions of length, area and volume.

Lebesgue integral

- Riemann integral: approximation of the area under a function via horizontal rectangles
- Lebesgue integral: approximation a function via superlevel sets (vertical slabs)
- Assume $f: \Omega \to [0, \infty), A \in \mathcal{F}$, and a measure μ given

$$\int_A f \, d\mu = \int_0^\infty \mu(\{x \in A : f(x) > t\}) \, dt.$$

Densities

Absolute continuity

Let μ and ν be two measures on (Ω, \mathcal{F}) . We say ν is absolutely continuous w.r.t. μ $(\nu \ll \mu)$ if $\mu(A) = 0$ implies $\nu(A) = 0$ for all $A \in \mathcal{F}$.

Radon-Nykodym

If $\nu \ll \mu$, then there exists a measureable function $f: \Omega \to \mathcal{F} \to [0, \infty)$ such that

$$\nu(A) = \int_A f(\omega) d\mu(\omega).$$

15/75

PMFs and PDFs

Probability mass functions (pmfs) are densities w.r.t. the counting measure card(A)

$$P(A) = \sum_{x \in A} p(x)$$

ullet Probability density functions (pdfs) are densities w.r.t. the Lebesgue measure λ

$$P(A) = \int_A f(\omega) d\lambda(\omega)$$

$$= \int_A f(\omega) d\omega \qquad \text{if } f \text{ is continuous (Riemann-integrable)}$$

TL;DR

Summation if the base measure is the counting measure, integral if the base measure is the Lebesgue measure (length of intervals).

I will use the integral notation for both discrete and continuous distributions.

16/75

Random variables

A random variable (RV) X is a measurable function $\Omega \to \mathbb{R}$.

$$Pr(X \le x) = P(\{\omega \in \Omega : X(\omega) \le x\}).$$

That is why *X* needs to be measurable.

- Random variables map general, possibly non-numerical events to numerical values.
- Allows to talk about expected value etc.,

$$\mathbb{E}[X] = \int_{\Omega} X(\omega) dP(\omega)$$

Law of the unconscious statistician (LOTUS)

$$\mathbb{E}[g(X)] = \int_{\Omega} g(X(\omega)) dP(\omega) = \begin{cases} \sum_{x} p(x)g(x) & p \text{ is a pmf} \\ \int f(x)g(x) dx & f \text{ is a pdf} \end{cases}$$

Random variables

A random variable (RV) X is a measurable function $\Omega \to \mathbb{R}$.

$$Pr(X \le x) = P(\{\omega \in \Omega : X(\omega) \le x\}).$$

That is why *X* needs to be measurable.

- Random variables map general, possibly non-numerical events to numerical values.
- Allows to talk about expected value etc.,

$$\mathbb{E}[X] = \int_{\Omega} X(\omega) dP(\omega)$$

Law of the unconscious statistician (LOTUS)

$$\mathbb{E}[g(X)] = \int_{\Omega} g(X(\omega)) dP(\omega) = \begin{cases} \sum_{x} p(x)g(x) & p \text{ is a pmf} \\ \int f(x)g(x) dx & f \text{ is a pdf} \end{cases}$$

Conditional probabilities

Conditional probability

Given two events $A, B \in \mathcal{F}$, define

$$P(A|B) := \frac{P(A \cap B)}{P(B)}$$
 or $P(A \cap B) := P(A|B)P(B)$

Further, let X be a RV and define a new RV

$$P(A|X = x)(\omega) := P(A|X(\omega) = x).$$

P(A|X=x) is technically a RV mapping events to real numbers from [0,1].

Bayes' theorem

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)} = \frac{P(A \cap B)}{P(A)}$$

Conditional probabilities

Marginal distribution / law of total probability

$$P(A) = P(A|B)P(B) + P(A|\bar{B})P(\bar{B}) \qquad \bar{B} := \Omega \setminus B$$

$$P(A) = \sum_{i} P(A|B_{i})P(B_{i}) = \sum_{i} P(A \cap B_{i}) \qquad \{B_{i}\}_{i \in \mathbb{N}} \text{ is a partition of } \Omega$$

For joint distribution $P_{X,Y}(\cdot,\cdot)$

$$P_X(A) = \int \mathbf{1}[x \in A] dP_{X,Y}(x,y).$$

 $P_X(A)$ is the marginal distribution. Often used for pmfs and pdfs:

$$p(x) = \sum_{y} p(x, y) \qquad p(x) = \int p(x, y) \, dy$$

Convexity

Convex functions

A function $f: \mathcal{X} \to \mathbb{R}$ is convex iff for all $x, x' \in \mathcal{X}$ and all $\alpha \in [0, 1]$ we have

$$f(\alpha x + (1 - \alpha)x') \le \alpha f(x) + (1 - \alpha)f(x')$$

Convex functions can be written as supremum of affine functions

$$f ext{ convex } \iff f(x) = \sup_{\tau} a_{\tau}^T x + b_{\tau}$$

Useful sufficient conditions

$$f''(x) \ge 0$$

$$\nabla^2 f(x) \succeq 0 \qquad \forall x \in \mathcal{X}$$

Jensen's inequality

Let x be a RV with distribution p. Then

$$f(\mathbb{E}_{x \sim p}[x]) \leq \mathbb{E}_{x \sim p}[f(x)]$$

Outline

- Introduction
- Background
- Proper scoring rules
 - Noise-contrastive estimation
 - Score matching
- Exercise 1

Main scenario

Estimate distribution parameters to fit given data

Given data samples $\{x_1, \ldots, x_N\} \sim p_d(x)$ and parametric distribution $p_{\theta}(\cdot)$

$$\theta^* = \arg\min_{\theta \in \mathbb{R}^n} \sum_{i=1}^M \ell(p_{\theta}(x), x_i)$$

What are good choices for ℓ ?

Issues to consider

- We have only access to samples $x \sim p_d$, not p_d itself
- We would like that θ^* to approach the true parameters with $M \to \infty$
 - Consistency of the estimate (a.s.)
 - Requires that $p_d = p_{\hat{\theta}}$ for some $\hat{\theta}$
- ullet Our model distribution p_{θ} is usually unnormalized

Main scenario

Discussion

- What is the connection to representation / feature learning?
- ② How would you estimate the parameters of p_{θ} from data samples?
- **3** Why will p_{θ} often be unnormalized?

Main scenario

Estimate distribution parameters to fit given data

Given data samples $\{x_1,\ldots,x_N\} \sim p_d(x)$ and parametric distribution $p_\theta(\cdot)$

$$\theta^* = \arg\min_{\theta \in \mathbb{R}^n} \sum_{i=1}^M \ell(p_{\theta}(x), x_i)$$

- Maximize log-likelihood: $\max_{\theta} \sum_{i} \log p_{\theta}(x_{i})$
 - $\ell(p, x) = -\log p(x)$
 - Only works for "simple" distributions p_{θ}
- VAE (variational auto-encoder, auto-encoding variational Bayes)
 - ℓ is upper bound on $-\log p_{\theta}(x)$
- Proper scoring rules
 - In one line: minimize Bregman divergence between $p_d(x)$ and $p_{\theta}(x)$
 - Noise-contrastive estimation, score matching
- *f*-divergences (generative adversarial networks, GANs)
- Wasserstein distance
- Normalizing flows

Estimate distribution parameters to fit given data

Given data samples $\{x_1, \dots, x_N\} \sim p_d(x)$ and parametric distribution $p_{\theta}(\cdot)$

$$\theta^* = \arg\min_{\theta \in \mathbb{R}^n} \sum_{i=1}^M \ell(p_{\theta}(x), x_i)$$

- Maximize log-likelihood: $\max_{\theta} \sum_{i} \log p_{\theta}(x_{i})$
 - $\ell(p, x) = -\log p(x)$
 - Only works for "simple" distributions p_{θ}
- VAE (variational auto-encoder, auto-encoding variational Bayes)
 - ℓ is upper bound on $-\log p_{\theta}(x)$
- Proper scoring rules
 - In one line: minimize Bregman divergence between $p_d(x)$ and $p_{\theta}(x)$
 - Noise-contrastive estimation, score matching
- *f*-divergences (generative adversarial networks, GANs)
- Wasserstein distance
- Normalizing flows

Estimate distribution parameters to fit given data

Given data samples $\{x_1, \dots, x_N\} \sim p_d(x)$ and parametric distribution $p_{\theta}(\cdot)$

$$\theta^* = \arg\min_{\theta \in \mathbb{R}^n} \sum_{i=1}^M \ell(p_{\theta}(x), x_i)$$

- Maximize log-likelihood: $\max_{\theta} \sum_{i} \log p_{\theta}(x_{i})$
 - $\ell(p, x) = -\log p(x)$
 - Only works for "simple" distributions p_{θ}
- VAE (variational auto-encoder, auto-encoding variational Bayes)
 - ℓ is upper bound on $-\log p_{\theta}(x)$
- Proper scoring rules
 - In one line: minimize Bregman divergence between $p_d(x)$ and $p_{\theta}(x)$
 - Noise-contrastive estimation, score matching
- f-divergences (generative adversarial networks, GANs)
- Wasserstein distance
- Normalizing flows

Estimate distribution parameters to fit given data

Given data samples $\{x_1, \dots, x_N\} \sim p_d(x)$ and parametric distribution $p_{\theta}(\cdot)$

$$\theta^* = \arg\min_{\theta \in \mathbb{R}^n} \sum_{i=1}^M \ell(p_{\theta}(x), x_i)$$

- Maximize log-likelihood: $\max_{\theta} \sum_{i} \log p_{\theta}(x_{i})$
 - $\ell(p, x) = -\log p(x)$
 - Only works for "simple" distributions p_{θ}
- VAE (variational auto-encoder, auto-encoding variational Bayes)
 - ℓ is upper bound on $-\log p_{\theta}(x)$
- Proper scoring rules
 - In one line: minimize Bregman divergence between $p_d(x)$ and $p_{\theta}(x)$
 - Noise-contrastive estimation, score matching
- *f*-divergences (generative adversarial networks, GANs)
- Wasserstein distance
- Normalizing flows

Overview

Proper scoring rules (PSRs) are one way to design losses ℓ with certain performance guarantees.

- PSRs unify a number of proposed methods for learning distributions
 - Maximum likelihood estimation
 - Score matching
 - Noise-contrastive estimation
 - Learning of graphical models using pseudo-likelihoods
- T. Gneiting & A.E. Raftery, "Strictly proper scoring rules, prediction, and estimation"
- A.P. Dawid & M. Musio, "Theory and applications of proper scoring rules"

Bregman divergence

Bregman divergence

Let f be a diff'able convex function. The Bregman divergence $D_f(w||v)$ is defined as

$$D_f(w||v) := f(w) - (f(v) + \nabla f(v)^T (w - v)).$$

- $D_f(w||v) \geq 0$.
- If f is strictly convex, then $D_f(w||v) = 0$ iff w = v.
- $D_f(w||v)$ can be interpreted as linearization error of a convex function
- f linearized at v linearization error measured at w

- Let $\Omega = \{1, \dots, K\}$ be a finite set
- $p, q \in \mathbb{P}(\Omega)$ be probability measures

$$\mathbb{P}(\Omega) = \left\{ p \in [0, 1]^K : \sum_{x=1}^K p(x) = 1 \right\}$$

• $F: \mathbb{P}(\Omega) \to \mathbb{R}$ be a diff'able convex function

$$D_{F}(p||q) = F(p) - F(q) - \nabla F(q)^{T}(p - q)$$

$$= F(p) - F(q) - \sum_{x=1}^{K} \frac{\partial F(q)}{\partial q(x)} (p(x) - q(x))$$

Minimize $D_F(p||q)$ w.r.t. $q = (q_1, \ldots, q_K)$:

$$\arg \min_{q} D_{F}(p||q) = \arg \min_{q} -F(q) - \sum_{x=1}^{K} \frac{\partial F(q)}{\partial q(x)} (p(x) - q(x))$$
$$= \arg \max_{q} F(q) + \sum_{x=1}^{K} \frac{\partial F(q)}{\partial q(x)} (p(x) - q(x))$$

- Let $\Omega = \{1, \dots, K\}$ be a finite set
- $p, q \in \mathbb{P}(\Omega)$ be probability measures

$$\mathbb{P}(\Omega) = \left\{ p \in [0, 1]^K : \sum_{x=1}^K p(x) = 1 \right\}$$

• $F: \mathbb{P}(\Omega) \to \mathbb{R}$ be a diff'able convex function

$$D_{F}(p||q) = F(p) - F(q) - \nabla F(q)^{T}(p - q)$$

$$= F(p) - F(q) - \sum_{x=1}^{K} \frac{\partial F(q)}{\partial q(x)} (p(x) - q(x))$$

Minimize $D_F(p||q)$ w.r.t. $q=(q_1,\ldots,q_K)$:

$$\arg \min_{q} D_{F}(p||q) = \arg \min_{q} -F(q) - \sum_{x=1}^{K} \frac{\partial F(q)}{\partial q(x)} (p(x) - q(x))$$
$$= \arg \max_{q} F(q) + \sum_{x=1}^{K} \frac{\partial F(q)}{\partial q(x)} (p(x) - q(x))$$

Using
$$\sum p(x) = 1$$
:
$$q^* = \arg\max_q F(q) + \sum_{x=1}^K \frac{\partial F(q)}{\partial q(x)} (p(x) - q(x))$$
$$= \arg\max_q \sum_{x=1}^K p(x) \left(F(q) + \frac{\partial F(q)}{\partial q(x)} \right) - \sum_{x=1}^K \frac{\partial F(q)}{\partial q(x)} q(x)$$
$$= \arg\max_q \sum_{x=1}^K p(x) \underbrace{\left(F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'=1}^K \frac{\partial F(q)}{\partial q(x')} q(x') \right)}_{=:S(q,x)}$$
$$= \arg\max_q \sum_x p(x) S(q,x) = \arg\max_q \mathbb{E}_{x \sim p} \left[S(q,x) \right]$$

Using
$$\sum p(x) = 1$$
:
$$q^* = \arg\max_q F(q) + \sum_{x=1}^K \frac{\partial F(q)}{\partial q(x)} (p(x) - q(x))$$

$$= \arg\max_q \sum_{x=1}^K p(x) \left(F(q) + \frac{\partial F(q)}{\partial q(x)} \right) - \sum_{x=1}^K \frac{\partial F(q)}{\partial q(x)} q(x)$$

$$= \arg\max_q \sum_{x=1}^K p(x) \left(F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'=1}^K \frac{\partial F(q)}{\partial q(x')} q(x') \right)$$

$$= \arg\max_q \sum_{x=1}^K p(x) S(q, x) = \arg\max_q \mathbb{E}_{x \sim p} \left[S(q, x) \right]$$

28/75

Using
$$\sum p(x) = 1$$
:
$$q^* = \arg\max_q F(q) + \sum_{x=1}^K \frac{\partial F(q)}{\partial q(x)} (p(x) - q(x))$$

$$= \arg\max_q \sum_{x=1}^K p(x) \left(F(q) + \frac{\partial F(q)}{\partial q(x)} \right) - \sum_{x=1}^K \frac{\partial F(q)}{\partial q(x)} q(x)$$

$$= \arg\max_q \sum_{x=1}^K p(x) \left(F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'=1}^K \frac{\partial F(q)}{\partial q(x')} q(x') \right)$$

$$= \arg\max_q \sum_{x=1}^K p(x) S(q, x) = \arg\max_q \mathbb{E}_{x \sim p} \left[S(q, x) \right]$$

28/75

Using
$$\sum p(x) = 1$$
:
$$q^* = \arg\max_q F(q) + \sum_{x=1}^K \frac{\partial F(q)}{\partial q(x)} (p(x) - q(x))$$

$$= \arg\max_q \sum_{x=1}^K p(x) \left(F(q) + \frac{\partial F(q)}{\partial q(x)} \right) - \sum_{x=1}^K \frac{\partial F(q)}{\partial q(x)} q(x)$$

$$= \arg\max_q \sum_{x=1}^K p(x) \underbrace{\left(F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'=1}^K \frac{\partial F(q)}{\partial q(x')} q(x') \right)}_{=:S(q,x)}$$

$$= \arg\max_q \sum_x p(x) \sum_{x=1}^K p(x) S(q,x) = \arg\max_q \mathbb{E}_{x \sim p} \left[S(q,x) \right]$$

Proper scoring rule (PSR)

For a diff'able convex function F define

$$S(q,x) := F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'=1}^{K} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$S(q,p) := \mathbb{E}_{x \sim p} [S(q,x)]$$

S is called a proper scoring rule (PSR). If F is strictly convex, then S is a strictly PSR.

- Historically, the convention is to maximize PSRs (higher scores are better)
 - What about $\Omega = \mathbb{R}^D$?

$$S(q,x) := F(q) + \frac{\partial F(q)}{\partial q(x)} - \int \frac{\partial F(q)}{\partial q(x')} q(x') dx'$$

F can be recovered from S via

$$S(q,q) = \mathbb{E}_{x \sim q} [S(q,x)]$$

$$= \sum_{x} q(x) \left(F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x') \right)$$

$$= F(q) + \sum_{x} q(x) \frac{\partial F(q)}{\partial q(x)} - \sum_{x} q(x) \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$= F(q) + \sum_{x} q(x) \frac{\partial F(q)}{\partial q(x)} - \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$= F(q)$$

• S(q,q) = F(q) can also be interpreted as generalized (negated) entropy

F can be recovered from S via

$$S(q,q) = \mathbb{E}_{x \sim q} [S(q,x)]$$

$$= \sum_{x} q(x) \left(F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x') \right)$$

$$= F(q) + \sum_{x} q(x) \frac{\partial F(q)}{\partial q(x)} - \sum_{x} q(x) \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$= F(q) + \sum_{x} q(x) \frac{\partial F(q)}{\partial q(x)} - \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$= F(q)$$

• S(q,q) = F(q) can also be interpreted as generalized (negated) entropy

F can be recovered from S via

$$S(q,q) = \mathbb{E}_{x \sim q} [S(q,x)]$$

$$= \sum_{x} q(x) \left(F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x') \right)$$

$$= F(q) + \sum_{x} q(x) \frac{\partial F(q)}{\partial q(x)} - \sum_{x} q(x) \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$= F(q) + \sum_{x} q(x) \frac{\partial F(q)}{\partial q(x)} - \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$= F(q)$$

 \bullet S(q,q)=F(q) can also be interpreted as generalized (negated) entropy

30/75

F can be recovered from S via

$$S(q,q) = \mathbb{E}_{x \sim q} [S(q,x)]$$

$$= \sum_{x} q(x) \left(F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x') \right)$$

$$= F(q) + \sum_{x} q(x) \frac{\partial F(q)}{\partial q(x)} - \sum_{x} q(x) \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$= F(q) + \sum_{x} q(x) \frac{\partial F(q)}{\partial q(x)} - \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$= F(q)$$

• S(q,q) = F(q) can also be interpreted as generalized (negated) entropy

F can be recovered from S via

$$S(q,q) = \mathbb{E}_{x \sim q} [S(q,x)]$$

$$= \sum_{x} q(x) \left(F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x') \right)$$

$$= F(q) + \sum_{x} q(x) \frac{\partial F(q)}{\partial q(x)} - \sum_{x} q(x) \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$= F(q) + \sum_{x} q(x) \frac{\partial F(q)}{\partial q(x)} - \sum_{x'} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$= F(q)$$

 \bullet S(q,q)=F(q) can also be interpreted as generalized (negated) entropy

Why are PSRs useful?

Monte Carlo approximation of $D_F(p||q)$

$$-D_F(p||q) \doteq \mathbb{E}_{x \sim p}[S(q,x)] \approx \frac{1}{N} \sum_i S(q,x_i)$$

We only need iid samples $(x_i)_{i=1}^N$ with $x_i \sim p$

• Let *S* be a strictly PSR. With $N \to \infty$:

$$\frac{1}{N} \sum\nolimits_i S(q, x_i) \overset{\text{a.s.}}{\to} \mathbb{E}_{x \sim p} \big[S(q, x) \big] \doteq - D_F(q \| p)$$

Since $D_F(p||q) = 0$ iff q = p (modulo null sets)

- $p = q^* = \arg \max_q -D_F(q||p) = \arg \min_q D_F(q||p)$ unique solution
- q* consistent estimator of p

- Logarithmic scoring rule
- Let $F(p) = \sum_{x} p(x) \log p(x)$ be the (negated) Shannon entropy

$$S(q, x) = F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'=1}^{K} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$= F(q) + 1 + \log q(x) - \sum_{x'=1}^{K} q(x') \left(1 + \log q(x')\right)$$

$$= \log q(x) + F(q) - \sum_{x'=1}^{K} q(x') \log q(x') + 1 - \sum_{x'=1}^{K} q(x')$$

$$= \log q(x)$$

- Maximum likelihood
- $S(q,x) = \log q(x)$ depends only on q(x) but not on q(x') for any $x' \neq x$
- Local proper scoring rule

- Logarithmic scoring rule
- Let $F(p) = \sum_{x} p(x) \log p(x)$ be the (negated) Shannon entropy

$$S(q,x) = F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'=1}^{K} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$= F(q) + 1 + \log q(x) - \sum_{x'=1}^{K} q(x') \left(1 + \log q(x')\right)$$

$$= \log q(x) + F(q) - \sum_{x'=1}^{K} q(x') \log q(x') + 1 - \sum_{x'=1}^{K} q(x)$$

$$= \log q(x)$$

- Maximum likelihood
- $S(q,x) = \log q(x)$ depends only on q(x) but not on q(x') for any $x' \neq x$
- Local proper scoring rule

- Logarithmic scoring rule
- Let $F(p) = \sum_{x} p(x) \log p(x)$ be the (negated) Shannon entropy

$$S(q,x) = F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'=1}^{K} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$= F(q) + 1 + \log q(x) - \sum_{x'=1}^{K} q(x') \left(1 + \log q(x')\right)$$

$$= \log q(x) + F(q) - \underbrace{\sum_{x'=1}^{K} q(x') \log q(x')}_{=F(q)} + 1 - \underbrace{\sum_{x'=1}^{K} q(x)}_{=1}$$

- Maximum likelihood
- $S(q,x) = \log q(x)$ depends only on q(x) but not on q(x') for any $x' \neq x$
- Local proper scoring rule

- Logarithmic scoring rule
- Let $F(p) = \sum_{x} p(x) \log p(x)$ be the (negated) Shannon entropy

$$S(q, x) = F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'=1}^{K} \frac{\partial F(q)}{\partial q(x')} q(x')$$

$$= F(q) + 1 + \log q(x) - \sum_{x'=1}^{K} q(x') \left(1 + \log q(x')\right)$$

$$= \log q(x) + F(q) - \sum_{x'=1}^{K} q(x') \log q(x') + 1 - \sum_{x'=1}^{K} q(x)$$

$$= \log q(x)$$

$$= \log q(x)$$

- Maximum likelihood!
- $S(q,x) = \log q(x)$ depends only on q(x) but not on q(x') for any $x' \neq x$
- Local proper scoring rule

Quadratic (or Brier) scoring rule

$$F(p) = \frac{1}{2} ||p||^2 = \frac{1}{2} \sum_{x} p(x)^2$$

- Exercise for now: what is S(q, x)?
- Recall

$$S(q,x) = F(q) + \frac{\partial F(q)}{\partial q(x)} - \sum_{x'=1}^{K} \frac{\partial F(q)}{\partial q(x')} q(x')$$

- Quadratic (or Brier) scoring rule: $F(p) = \frac{1}{2} ||p||^2$
 - Yields $S(q, x) = q(x) ||q||^2/2$
 - Non-local PSR

$$||q||^2 = \sum_{x'} q(x)^2 = \langle q, q \rangle_{\mathbb{R}^K}$$
 $||q||_{L_2}^2 = \int q(x)^2 dx = \langle q, q \rangle_{L_2}$

- Spherical scoring rule with S(q, x) = q(x)/||q|
- Local PSR only depend on q(x), not on q(x') for $x' \neq x$
 - Logarithmic score
 - Hyvärinen score (score matching): depends on derivatives of q(x)
- S(q,x) = q(x) is not a PSR!
 - Discussion: optimal parameter μ of a Gaussian (with $\sigma = 1$)

$$\max_{\mu \in \mathbb{R}} \frac{1}{\sqrt{2\pi}} \sum_{i} \exp\left(-\frac{(x_i - \mu)^2}{2}\right)$$

- Quadratic (or Brier) scoring rule: $F(p) = \frac{1}{2} ||p||^2$
 - Yields $S(q, x) = q(x) ||q||^2/2$
 - Non-local PSR

$$||q||^2 = \sum_{x'} q(x)^2 = \langle q, q \rangle_{\mathbb{R}^K}$$
 $||q||_{L_2}^2 = \int q(x)^2 dx = \langle q, q \rangle_{L_2}$

- Spherical scoring rule with S(q, x) = q(x)/||q||
- Local PSR only depend on q(x), not on q(x') for $x' \neq x$
 - Logarithmic score
 - Hyvärinen score (score matching): depends on derivatives of q(x)
- S(q,x) = q(x) is not a PSR!
 - ullet Discussion: optimal parameter μ of a Gaussian (with $\sigma=1$)

$$\max_{\mu \in \mathbb{R}} \frac{1}{\sqrt{2\pi}} \sum_{i} \exp\left(-\frac{(x_i - \mu)^2}{2}\right)$$

- Quadratic (or Brier) scoring rule: $F(p) = \frac{1}{2} ||p||^2$
 - Yields $S(q, x) = q(x) ||q||^2/2$
 - Non-local PSR

$$\|q\|^2 = \sum_{\mathbf{x}'} q(\mathbf{x})^2 = \langle q, q \rangle_{\mathbb{R}^K} \qquad \qquad \|q\|_{L_2}^2 = \int q(\mathbf{x})^2 \, d\mathbf{x} = \langle q, q \rangle_{L_2}$$

- Spherical scoring rule with S(q, x) = q(x)/||q||
- Local PSR only depend on q(x), not on q(x') for $x' \neq x$
 - Logarithmic score
 - Hyvärinen score (score matching): depends on derivatives of q(x)
- S(q,x) = q(x) is not a PSR!
 - Discussion: optimal parameter μ of a Gaussian (with $\sigma = 1$)

$$\max_{\mu \in \mathbb{R}} \frac{1}{\sqrt{2\pi}} \sum_{i} \exp\left(-\frac{(x_i - \mu)^2}{2}\right)$$

- Quadratic (or Brier) scoring rule: $F(p) = \frac{1}{2} ||p||^2$
 - Yields $S(q, x) = q(x) ||q||^2/2$
 - Non-local PSR

$$||q||^2 = \sum_{x'} q(x)^2 = \langle q, q \rangle_{\mathbb{R}^K}$$
 $||q||_{L_2}^2 = \int q(x)^2 dx = \langle q, q \rangle_{L_2}$

- Spherical scoring rule with S(q, x) = q(x)/||q||
- Local PSR only depend on q(x), not on q(x') for $x' \neq x$
 - Logarithmic score
 - Hyvärinen score (score matching): depends on derivatives of q(x)
- S(q,x) = q(x) is not a PSR!
 - Discussion: optimal parameter μ of a Gaussian (with $\sigma=1$)

$$\max_{\mu \in \mathbb{R}} \frac{1}{\sqrt{2\pi}} \sum_{i} \exp\left(-\frac{(x_i - \mu)^2}{2}\right)$$

Proper scoring rules for Bernoulli RVs

Let z be a Bernoulli RV

$$p_{\theta}(z=1) = \theta \qquad \qquad p_{\theta}(z=0) = 1 - \theta$$

for a $\theta \in [0, 1]$

- N training samples {z_i}
- ηN ones in the training set with $\eta \in (0,1)$
- Logarithmic PSR

$$\max_{\theta \in (0,1)} \eta \log \theta + (1-\eta) \log (1-\theta)$$

First order optimality

$$\frac{\eta}{\theta} - \frac{1 - \eta}{1 - \theta} \stackrel{!}{=} 0 \iff \frac{\eta}{\theta} = \frac{1 - \eta}{1 - \theta} \iff \eta(1 - \theta) = (1 - \eta)\theta \iff \eta = \theta$$

Proper scoring rules for Bernoulli RVs

Let z be a Bernoulli RV

$$p_{\theta}(z=1) = \theta \qquad p_{\theta}(z=0) = 1 - \theta$$

• N training samples $\{z_i\}$

for a $\theta \in [0,1]$

- ηN ones in the training set with $\eta \in (0,1)$
- Quadratic PSR

$$\begin{aligned} & \max_{\theta \in (0,1)} \eta \left(\theta - \frac{1}{2} \left\| \begin{pmatrix} \theta \\ 1 - \theta \end{pmatrix} \right\|^2 \right) + (1 - \eta) \left(1 - \theta - \frac{1}{2} \left\| \begin{pmatrix} \theta \\ 1 - \theta \end{pmatrix} \right\|^2 \right) \\ & = \max_{\theta \in (0,1)} \eta \theta + (1 - \eta)(1 - \theta) - \frac{1}{2} \left\| \begin{pmatrix} \theta \\ 1 - \theta \end{pmatrix} \right\|^2 \end{aligned}$$

First order optimality

$$0 \stackrel{!}{=} \eta - (1 - \eta) - \theta - (\theta - 1) \iff 2\eta = 2\theta$$

Recall our starting point:

Estimate distribution parameters to fit given data

Given data samples $\{x_1, \dots, x_N\} \sim p_d(x)$ and parametric distribution $p_{\theta}(\cdot)$

$$\theta^* = \arg\min_{\theta \in \mathbb{R}^n} \sum_{i=1}^M \ell(p_{\theta}(\cdot), x_i)$$

What are good choices for ℓ ?

We have now one answer:

Choose a strictly convex and diff'able function F and set

$$\ell(p_{\theta}, x) = -S(p_{\theta}, x),$$

where S is the PSR induced by F.

Big assumption

There exists a $\hat{\theta}$ such that $p_d = p_{\hat{\theta}}$.

Discussions

- Mis-specification: what happens if p_d cannot be represented as $p_{\hat{\theta}}$?
- Robustness: which PSRs might be more robust when the training data is contaminated by outliers?
- Ideal setting: why are we not done yet?

Big assumption

There exists a $\hat{\theta}$ such that $p_d = p_{\hat{\theta}}$.

Discussions

- Mis-specification: what happens if p_d cannot be represented as $p_{\hat{\theta}}$?
 - Different PSRs lead to different estimates θ^*
- Robustness: which PSRs might be more robust when the training data is contaminated by outliers?
- Ideal setting: why are we not done yet?

Discussion: Robustness

Which PSRs might be more robust when the training data is contaminated by outliers?

Discussion

Why are we not done yet?

- Non-local PSRs only easy to use for discrete (categorical) RVs
 - For continuous RVs we need to compute e.g., $\int q(x)^2 dx$
 - At least as difficult as computing $Z = \int q(x) dx$
- Non-local PSRs also not tractable for discrete RVs with many states
 - Quantized images: 256^{3×1000×1000} possible values
- Logarithmic PSR is maximum likelihood
 - We need to work with normalized models
- PSRs do not work directly with latent variable models

We give examples addressing some issues:

- Working with unnormalized models: NCE and score matching
- Working with latent variable models: variational Bayes and VAE
- Working with unnormalized and latent variable models: VNCE

Outline

- Introduction
- Background
- Proper scoring rules
 - Noise-contrastive estimation
 - Score matching
- Exercise 1

Noise-contrastive estimation

Overview

Noise-contrastive estimation (NCE)

- casts estimation of distribution parameters as supervised learning problem
- jointly estimates the unknown partition function / normalization constant
- applies logarithmic PSR to estimate parameters of a binary RV
- T. Hastie, R. Tibshirani & J. Friedman, "The Elements of Statistical Learning", Sec. 14.2.4
- M. Gutmann & A. Hyvärinen, "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models"

Noise-contrastive estimation

Given

- Samples $\{x_1, \ldots, x_N\}$ from unknown data distribution p_d
- Fully known noise distribution p_n (e.g. multi-variate Gaussian)
 - We can evaluate $p_n(x)$ for any x and sample from p_n easily

Goal: estimate parameters of p_{θ} that models/approximates p_d

Idea:

• Randomly choose $z \in \{0,1\}$ whether to draw a sample from p_d or p_n

$$p_{d,n}(x|z=0) = p_d(x)$$

$$p_{d,n}(x|z=1)=p_n(x)$$

• We use a prior p(z) on z: select $\eta \in (0,1)$

$$p(z=0)=\eta$$

$$p(z=1)=1-\eta$$

Exercise now: what is $p_{d,n}(z|x)$?

Noise-contrastive estimation

Recall Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

In our setting

$$p_{d,n}(z|x) = \frac{p_{d,n}(x|z)p(z)}{p_{d,n}(x)}$$

From the previous slide

$$p_{d,n}(x|z=0) = p_d(x)$$
 $p(z=0) = \eta$
 $p_{d,n}(x|z=1) = p_n(x)$ $p(z=1) = 1 - \eta$

Recall law of total probability

$$p_{d,n}(x) = p_{d,n}(x|z=0)p(z=0) + p_{d,n}(x|z=1)p(z=1)$$

= $p_d(x)\eta + p_n(x)(1-\eta)$

Recall Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

In our setting

$$p_{d,n}(z|x) = \frac{p_{d,n}(x|z)p(z)}{p_{d,n}(x)}$$

From the previous slide

$$p_{d,n}(x|z=0) = p_d(x)$$
 $p(z=0) = \eta$
 $p_{d,n}(x|z=1) = p_n(x)$ $p(z=1) = 1 - \eta$

Recall law of total probability

$$p_{d,n}(x) = p_{d,n}(x|z=0)p(z=0) + p_{d,n}(x|z=1)p(z=1)$$

= $p_d(x)\eta + p_n(x)(1-\eta)$

Recall Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

In our setting

$$p_{d,n}(z|x) = \frac{p_{d,n}(x|z)p(z)}{p_{d,n}(x)}$$

From the previous slide

$$p_{d,n}(x|z=0) = p_d(x)$$
 $p(z=0) = \eta$
 $p_{d,n}(x|z=1) = p_n(x)$ $p(z=1) = 1 - \eta$

Recall law of total probability

$$p_{d,n}(x) = p_{d,n}(x|z=0)p(z=0) + p_{d,n}(x|z=1)p(z=1)$$

= $p_d(x)\eta + p_n(x)(1-\eta)$

Recall Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

In our setting

$$p_{d,n}(z|x) = \frac{p_{d,n}(x|z)p(z)}{p_{d,n}(x)}$$

From the previous slide

$$p_{d,n}(x|z=0) = p_d(x)$$
 $p(z=0) = \eta$
 $p_{d,n}(x|z=1) = p_n(x)$ $p(z=1) = 1 - \eta$

Recall law of total probability

$$p_{d,n}(x) = p_{d,n}(x|z=0)p(z=0) + p_{d,n}(x|z=1)p(z=1)$$

= $p_d(x)\eta + p_n(x)(1-\eta)$

From previous slide

$$p_{d,n}(x) = \eta p_d(x) + (1 - \eta)p_n(x)$$

Apply Bayes

$$p_{d,n}(z=0|x) = \frac{p_{d,n}(x|z=0)p(z=0)}{p_{d,n}(x)} = \frac{\eta p_d(x)}{\eta p_d(x) + (1-\eta)p_n(x)}$$

$$p_{d,n}(z=1|x) = \frac{p_{d,n}(x|z=1)p(z=1)}{p_{d,n}(x)} = \frac{(1-\eta)p_n(x)}{\eta p_d(x) + (1-\eta)p_n(x)}$$

• We rewrite $\eta = 1/(1+\nu)$ (hence $1-\eta = \nu/(1+\nu)$) for a $\nu > 0$

$$p_{d,n}(z=0|x) = \frac{p_d(x)}{p_d(x) + \nu p_n(x)}$$
 $p_{d,n}(z=1|x) = \frac{\nu p_n(x)}{p_d(x) + \nu p_n(x)}$

$$p_{d,n}(z|x) = \frac{(1-z)p_d(x) + \nu z p_n(x)}{p_d(x) + \nu p_n(x)}$$

From previous slide

$$p_{d,n}(x) = \eta p_d(x) + (1 - \eta)p_n(x)$$

Apply Bayes

$$\begin{aligned} p_{d,n}(z=0|x) &= \frac{p_{d,n}(x|z=0)p(z=0)}{p_{d,n}(x)} = \frac{\eta p_d(x)}{\eta p_d(x) + (1-\eta)p_n(x)} \\ p_{d,n}(z=1|x) &= \frac{p_{d,n}(x|z=1)p(z=1)}{p_{d,n}(x)} = \frac{(1-\eta)p_n(x)}{\eta p_d(x) + (1-\eta)p_n(x)} \end{aligned}$$

• We rewrite $\eta=1/(1+\nu)$ (hence $1-\eta=\nu/(1+\nu)$) for a $\nu>0$

$$p_{d,n}(z=0|x) = \frac{p_d(x)}{p_d(x) + \nu p_n(x)}$$
 $p_{d,n}(z=1|x) = \frac{\nu p_n(x)}{p_d(x) + \nu p_n(x)}$

$$p_{d,n}(z|x) = \frac{(1-z)p_d(x) + \nu z p_n(x)}{p_d(x) + \nu p_n(x)}$$

From previous slide

$$p_{d,n}(x) = \eta p_d(x) + (1 - \eta)p_n(x)$$

Apply Bayes

$$\begin{aligned} p_{d,n}(z=0|x) &= \frac{p_{d,n}(x|z=0)p(z=0)}{p_{d,n}(x)} = \frac{\eta p_d(x)}{\eta p_d(x) + (1-\eta)p_n(x)} \\ p_{d,n}(z=1|x) &= \frac{p_{d,n}(x|z=1)p(z=1)}{p_{d,n}(x)} = \frac{(1-\eta)p_n(x)}{\eta p_d(x) + (1-\eta)p_n(x)} \end{aligned}$$

• We rewrite $\eta=1/(1+\nu)$ (hence $1-\eta=\nu/(1+\nu)$) for a $\nu>0$

$$p_{d,n}(z=0|x) = \frac{p_d(x)}{p_d(x) + \nu p_n(x)}$$
 $p_{d,n}(z=1|x) = \frac{\nu p_n(x)}{p_d(x) + \nu p_n(x)}$

$$p_{d,n}(z|x) = \frac{(1-z)p_d(x) + \nu z p_n(x)}{p_d(x) + \nu p_n(x)}$$

From previous slide

$$p_{d,n}(x) = \eta p_d(x) + (1 - \eta)p_n(x)$$

Apply Bayes

$$p_{d,n}(z=0|x) = \frac{p_{d,n}(x|z=0)p(z=0)}{p_{d,n}(x)} = \frac{\eta p_d(x)}{\eta p_d(x) + (1-\eta)p_n(x)}$$
$$p_{d,n}(z=1|x) = \frac{p_{d,n}(x|z=1)p(z=1)}{p_{d,n}(x)} = \frac{(1-\eta)p_n(x)}{\eta p_d(x) + (1-\eta)p_n(x)}$$

• We rewrite $\eta=1/(1+\nu)$ (hence $1-\eta=\nu/(1+\nu)$) for a $\nu>0$

$$p_{d,n}(z=0|x) = \frac{p_d(x)}{p_d(x) + \nu p_n(x)}$$
 $p_{d,n}(z=1|x) = \frac{\nu p_n(x)}{p_d(x) + \nu p_n(x)}$

$$p_{d,n}(z|x) = \frac{(1-z)p_d(x) + \nu z p_n(x)}{p_d(x) + \nu p_n(x)}$$

ullet Posterior induced by true data distribution p_d

$$p_{d,n}(z|x) = \frac{(1-z)p_d(x) + \nu z p_n(x)}{p_d(x) + \nu p_n(x)}$$

Posterior induced by model distribution p_θ

$$p_{\theta,n}(z|x) = \frac{(1-z)p_{\theta}(x) + \nu z p_n(x)}{p_{\theta}(x) + \nu p_n(x)}$$

 p_{θ} has our parameters of interest

- NCE: use logarithmic PSR to align $p_{\theta,n}$ with $p_{d,n}$
 - We need only samples from $p_{d,n}(x,z)$
 - Construction of training data $\{(x_i, z_i)\}$

$$z_i \sim p(z)$$
 $x_i \sim \begin{cases} p_d(x) & \text{if } z = 0\\ p_n(x) & \text{if } z = 1 \end{cases}$

47/75

ullet Posterior induced by true data distribution p_d

$$p_{d,n}(z|x) = \frac{(1-z)p_d(x) + \nu z p_n(x)}{p_d(x) + \nu p_n(x)}$$

Posterior induced by model distribution p_θ

$$p_{\theta,n}(z|x) = \frac{(1-z)p_{\theta}(x) + \nu z p_n(x)}{p_{\theta}(x) + \nu p_n(x)}$$

p_{θ} has our parameters of interest

- NCE: use logarithmic PSR to align $p_{\theta,n}$ with $p_{d,n}$
 - We need only samples from $p_{d,n}(x,z)$
 - Construction of training data $\{(x_i, z_i)\}$

$$z_i \sim p(z)$$
 $x_i \sim \begin{cases} p_d(x) & \text{if } z = 0\\ p_n(x) & \text{if } z = 1 \end{cases}$

Posterior induced by true data distribution p_d

$$p_{d,n}(z|x) = \frac{(1-z)p_d(x) + \nu z p_n(x)}{p_d(x) + \nu p_n(x)}$$

• Posterior induced by model distribution p_{θ}

$$p_{\theta,n}(z|x) = \frac{(1-z)p_{\theta}(x) + \nu z p_n(x)}{p_{\theta}(x) + \nu p_n(x)}$$

 p_{θ} has our parameters of interest

- NCE: use logarithmic PSR to align $p_{\theta,n}$ with $p_{d,n}$
 - We need only samples from $p_{d,n}(x,z)$
 - Construction of training data $\{(x_i, z_i)\}$

$$z_i \sim p(z)$$
 $x_i \sim \begin{cases} p_d(x) & \text{if } z = 0\\ p_n(x) & \text{if } z = 1 \end{cases}$

- Let S be any (strictly) PSR
- NCE objective by taking expectation w.r.t. p_{d,n}

$$J(\theta) = \mathbb{E}_{(x,z) \sim p_{d,n}(x,z)} \left[S(p_{\theta,n}(z|x),z) \right]$$

$$= \mathbb{E}_{(x,z) \sim p_{d,n}(x,z)} \left[S\left(\frac{(1-z)p_{\theta}(x) + \nu z p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, z \right) \right]$$

$$= \mathbb{E}_{z \sim p(z), x \sim p_{d,n}(x|z)} \left[S\left(\frac{(1-z)p_{\theta}(x) + \nu z p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, z \right) \right]$$

$$= \eta \mathbb{E}_{x \sim p_{d}} \left[S\left(\frac{p_{\theta}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 0 \right) \right] + (1-\eta) \mathbb{E}_{x \sim p_{n}} \left[S\left(\frac{\nu p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 1 \right) \right]$$

$$\propto \mathbb{E}_{x \sim p_{d}} \left[S\left(\frac{p_{\theta}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 0 \right) \right] + \nu \mathbb{E}_{x \sim p_{n}} \left[S\left(\frac{\nu p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 1 \right) \right]$$

- Let S be any (strictly) PSR
- NCE objective by taking expectation w.r.t. $p_{d,n}$

$$J(\theta) = \mathbb{E}_{(x,z) \sim p_{d,n}(x,z)} \left[S(p_{\theta,n}(z|x), z) \right]$$

$$= \mathbb{E}_{(x,z) \sim p_{d,n}(x,z)} \left[S\left(\frac{(1-z)p_{\theta}(x) + \nu z p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, z \right) \right]$$

$$= \mathbb{E}_{z \sim p(z), x \sim p_{d,n}(x|z)} \left[S\left(\frac{(1-z)p_{\theta}(x) + \nu z p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, z \right) \right]$$

$$= \eta \mathbb{E}_{x \sim p_{d}} \left[S\left(\frac{p_{\theta}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 0 \right) \right] + (1-\eta) \mathbb{E}_{x \sim p_{n}} \left[S\left(\frac{\nu p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 1 \right) \right]$$

$$\propto \mathbb{E}_{x \sim p_{d}} \left[S\left(\frac{p_{\theta}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 0 \right) \right] + \nu \mathbb{E}_{x \sim p_{n}} \left[S\left(\frac{\nu p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 1 \right) \right]$$

- Let S be any (strictly) PSR
- NCE objective by taking expectation w.r.t. p_{d,n}

$$J(\theta) = \mathbb{E}_{(x,z) \sim p_{d,n}(x,z)} \left[S(p_{\theta,n}(z|x), z) \right]$$

$$= \mathbb{E}_{(x,z) \sim p_{d,n}(x,z)} \left[S\left(\frac{(1-z)p_{\theta}(x) + \nu z p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, z \right) \right]$$

$$= \mathbb{E}_{z \sim p(z), x \sim p_{d,n}(x|z)} \left[S\left(\frac{(1-z)p_{\theta}(x) + \nu z p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, z \right) \right]$$

$$= \eta \mathbb{E}_{x \sim p_{d}} \left[S\left(\frac{p_{\theta}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 0 \right) \right] + (1-\eta) \mathbb{E}_{x \sim p_{n}} \left[S\left(\frac{\nu p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 1 \right) \right]$$

$$\propto \mathbb{E}_{x \sim p_{d}} \left[S\left(\frac{p_{\theta}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 0 \right) \right] + \nu \mathbb{E}_{x \sim p_{n}} \left[S\left(\frac{\nu p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 1 \right) \right]$$

- Let S be any (strictly) PSR
- NCE objective by taking expectation w.r.t. p_{d,n}

$$J(\theta) = \mathbb{E}_{(x,z) \sim p_{d,n}(x,z)} \left[S(p_{\theta,n}(z|x), z) \right]$$

$$= \mathbb{E}_{(x,z) \sim p_{d,n}(x,z)} \left[S\left(\frac{(1-z)p_{\theta}(x) + \nu z p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, z \right) \right]$$

$$= \mathbb{E}_{z \sim p(z), x \sim p_{d,n}(x|z)} \left[S\left(\frac{(1-z)p_{\theta}(x) + \nu z p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, z \right) \right]$$

$$= \eta \mathbb{E}_{x \sim p_{d}} \left[S\left(\frac{p_{\theta}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 0 \right) \right] + (1-\eta) \mathbb{E}_{x \sim p_{n}} \left[S\left(\frac{\nu p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 1 \right) \right]$$

$$\propto \mathbb{E}_{x \sim p_{d}} \left[S\left(\frac{p_{\theta}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 0 \right) \right] + \nu \mathbb{E}_{x \sim p_{n}} \left[S\left(\frac{\nu p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 1 \right) \right]$$

- Let S be any (strictly) PSR
- NCE objective by taking expectation w.r.t. p_{d,n}

$$J(\theta) = \mathbb{E}_{(x,z) \sim p_{d,n}(x,z)} \left[S(p_{\theta,n}(z|x), z) \right]$$

$$= \mathbb{E}_{(x,z) \sim p_{d,n}(x,z)} \left[S\left(\frac{(1-z)p_{\theta}(x) + \nu z p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, z \right) \right]$$

$$= \mathbb{E}_{z \sim p(z), x \sim p_{d,n}(x|z)} \left[S\left(\frac{(1-z)p_{\theta}(x) + \nu z p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, z \right) \right]$$

$$= \eta \mathbb{E}_{x \sim p_{d}} \left[S\left(\frac{p_{\theta}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 0 \right) \right] + (1-\eta) \mathbb{E}_{x \sim p_{n}} \left[S\left(\frac{\nu p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 1 \right) \right]$$

$$\propto \mathbb{E}_{x \sim p_{d}} \left[S\left(\frac{p_{\theta}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 0 \right) \right] + \nu \mathbb{E}_{x \sim p_{n}} \left[S\left(\frac{\nu p_{n}(x)}{p_{\theta}(x) + \nu p_{n}(x)}, 1 \right) \right]$$

• Choose $S(q, z) = \log q(z)$

$$J(\theta) \propto \mathbb{E}_{x \sim p_d} \left[\log \frac{p_{\theta}(x)}{p_{\theta}(x) + \nu p_n(x)} \right] + \nu \mathbb{E}_{x \sim p_n} \left[\log \frac{\nu p_n(x)}{p_{\theta}(x) + \nu p_n(x)} \right]$$
$$\approx \frac{1}{N} \sum_{i=1}^{N} \log \frac{p_{\theta}(x_i)}{p_{\theta}(x_i) + \nu p_n(x_i)} + \frac{1}{N} \sum_{i=1}^{\nu N} \log \frac{\nu p_n(x_i')}{p_{\theta}(x_i') + \nu p_n(x_i')}$$

with $x_i \sim p_d$ and $x_i' \sim p_n$

- This is noise-contrastive estimation
- Learning distribution parameters by binary classification
 - Classifier distinguishes between real data and noise samples
 - Superficially similar to GANs
- In practice p_n should be as close to p_d as possible
 - Theory only requires that p_d and p_n overlap

$$p_d(x) > 0 \implies p_n(x) > 0$$

• Choose $S(q, z) = \log q(z)$

$$\begin{split} J(\theta) &\propto \mathbb{E}_{x \sim p_d} \left[\log \frac{p_{\theta}(x)}{p_{\theta}(x) + \nu p_n(x)} \right] + \nu \mathbb{E}_{x \sim p_n} \left[\log \frac{\nu p_n(x)}{p_{\theta}(x) + \nu p_n(x)} \right] \\ &\approx \frac{1}{N} \sum_{i=1}^{N} \log \frac{p_{\theta}(x_i)}{p_{\theta}(x_i) + \nu p_n(x_i)} + \frac{1}{N} \sum_{i=1}^{\nu N} \log \frac{\nu p_n(x_i')}{p_{\theta}(x_i') + \nu p_n(x_i')} \end{split}$$

with $x_i \sim p_d$ and $x_i' \sim p_n$

- This is noise-contrastive estimation
- Learning distribution parameters by binary classification
 - Classifier distinguishes between real data and noise samples
 - Superficially similar to GANs
- In practice p_n should be as close to p_d as possible
 - Theory only requires that p_d and p_n overlap

$$p_d(x) > 0 \implies p_n(x) > 0$$

• Choose $S(q, z) = \log q(z)$

$$\begin{split} J(\theta) &\propto \mathbb{E}_{x \sim p_d} \left[\log \frac{p_{\theta}(x)}{p_{\theta}(x) + \nu p_n(x)} \right] + \nu \mathbb{E}_{x \sim p_n} \left[\log \frac{\nu p_n(x)}{p_{\theta}(x) + \nu p_n(x)} \right] \\ &\approx \frac{1}{N} \sum_{i=1}^{N} \log \frac{p_{\theta}(x_i)}{p_{\theta}(x_i) + \nu p_n(x_i)} + \frac{1}{N} \sum_{i=1}^{\nu N} \log \frac{\nu p_n(x_i')}{p_{\theta}(x_i') + \nu p_n(x_i')} \end{split}$$

with $x_i \sim p_d$ and $x_i' \sim p_n$

- This is noise-contrastive estimation
- Learning distribution parameters by binary classification
 - Classifier distinguishes between real data and noise samples
 - Superficially similar to GANs
- In practice p_n should be as close to p_d as possible
 - Theory only requires that p_d and p_n overlap

$$p_d(x) > 0 \implies p_n(x) > 0$$

What about unnormalized models?

$$p_{\theta}(x;\theta) = \frac{1}{Z(\theta)} p_{\theta}^{0}(x;\theta)$$

 $Z(\theta) = \int p_{\theta}^{0}(x;\theta) dx$ is hard to compute

- Solution: add Z to the set of parameters!
 - In practice add $c = \log Z$
 - Numerical stability
- Strictly PSR makes sure that

$$c \stackrel{N \to \infty}{\to} \log \int p_{\theta}^{0}(x; \theta^{*}) dx$$
 a.s

Discussion

What are pros and cons of NCE?

Caveats

- Curse of dimensionality
 - In high dimensions you need many noise samples to carve out p_{θ}
- Interpolation regime
 - Finite sets $\{x_i\}$ and $\{x_i'\}$ and overparametrized p_{θ}
 - NCE loss can approach zero, θ unbounded
- Be careful to model p_{θ} right!
 - You want to model properties of p_d not of p_n
 - It is easy to have a "good" solution if p_{θ} detects features in (simple) noise

$$\log p_{\theta}(x) = \sum_{k} \log \left(1 + e^{w_{k}^{T} x}\right)$$
 okay
$$\log p_{\theta}(x) = -\sum_{k} \log \left(1 + e^{w_{k}^{T} x}\right)$$
 back

Caveats

- Curse of dimensionality
 - ullet In high dimensions you need \emph{many} noise samples to carve out $p_{ heta}$
- Interpolation regime
 - Finite sets $\{x_i\}$ and $\{x_i'\}$ and overparametrized p_{θ}
 - NCE loss can approach zero, θ unbounded
- Be careful to model p_{θ} right!
 - You want to model properties of p_d not of p_d
 - It is easy to have a "good" solution if p_{θ} detects features in (simple) noise

$$\log p_{\theta}(x) = \sum_{k} \log \left(1 + e^{w_k^T x}\right) \qquad \text{okay}$$

$$\log p_{\theta}(x) = -\sum_{k} \log \left(1 + e^{w_k^T x}\right) \qquad \text{bad}$$

Lecture

Caveats

- Curse of dimensionality
 - In high dimensions you need many noise samples to carve out p_{θ}
- Interpolation regime
 - Finite sets $\{x_i\}$ and $\{x_i'\}$ and overparametrized p_{θ}
 - NCE loss can approach zero, θ unbounded
- Be careful to model p_{θ} right!
 - You want to model properties of p_d not of p_n
 - It is easy to have a "good" solution if p_{θ} detects features in (simple) noise

$$\log p_{\theta}(x) = \sum_k \log\left(1 + e^{w_k^T x}\right) \qquad \text{okay}$$

$$\log p_{\theta}(x) = -\sum_k \log\left(1 + e^{w_k^T x}\right) \qquad \text{bad}$$

Lecture

Overview

Conditional NCE (cNCE) is a variant of NCE that

- perturbs the real training data instead of using a separate noise distribution
- therefore distinguishes between real data and nearby noisy samples
- is not able to estimate the partition function
- Ceylan & Gutmann, "Conditional Noise-Contrastive Estimation of Unnormalised Models"

- As with NCE, we convert the problem by matching suitable posteriors
- Let $p_n(x|x')$ be a noise distribution conditioned (dependend) on x', e.g.

$$p_n(x|x') = \mathcal{N}(x;x',\sigma^2\mathsf{I})$$

• For given $z \in \{0, 1\}$ model the conditional probabilities

$$p_d(x, x'|z) = \begin{cases} p_d(x)p_n(x'|x) & \text{if } z = 0\\ p_d(x')p_n(x|x') & \text{if } z = 1 \end{cases}$$

$$p_\theta(x, x'|z) = \begin{cases} p_\theta(x)p_n(x'|x) & \text{if } z = 0\\ p_\theta(x')p_n(x|x') & \text{if } z = 1 \end{cases}$$

- ullet $z\in\{0,1\}$ determines whether the 1st or the 2nd element in a pair is the clean data
 - Clean data comes from p_d or p_θ

- As with NCE, we convert the problem by matching suitable posteriors
- Let $p_n(x|x')$ be a noise distribution conditioned (dependend) on x', e.g.

$$p_n(x|x') = \mathcal{N}(x;x',\sigma^2 \mathbf{I})$$

• For given $z \in \{0,1\}$ model the conditional probabilities

$$p_{d}(x, x'|z) = \begin{cases} p_{d}(x)p_{n}(x'|x) & \text{if } z = 0\\ p_{d}(x')p_{n}(x|x') & \text{if } z = 1 \end{cases}$$

$$p_{\theta}(x, x'|z) = \begin{cases} p_{\theta}(x)p_{n}(x'|x) & \text{if } z = 0\\ p_{\theta}(x')p_{n}(x|x') & \text{if } z = 1 \end{cases}$$

- ullet $z\in\{0,1\}$ determines whether the 1st or the 2nd element in a pair is the clean data
 - Clean data comes from p_d or p_θ

Recall

$$p_{\theta}(x, x'|z) = \begin{cases} p_{\theta}(x)p_n(x'|x) & \text{if } z = 0\\ p_{\theta}(x')p_n(x|x') & \text{if } z = 1 \end{cases}$$

- W.l.o.g. we can assume p(z = 0) = p(z = 1) = 1/2
- The posterior $p_{\theta}(z|x,x')$ is given by

$$p_{\theta}(z=0|x,x') = \frac{p_{\theta}(x,x'|z=0)p(z=0)}{p_{\theta}(x,x'|z=0)p(z=0) + p_{\theta}(x,x'|z=1)p(z=1)}$$

$$= \frac{p_{\theta}(x)p_{n}(x'|x)}{p_{\theta}(x)p_{n}(x'|x) + p_{\theta}(x')p_{n}(x|x')}$$

$$p_{\theta}(z=1|x,x') = \frac{p_{\theta}(x')p_{n}(x|x')}{p_{\theta}(x)p_{n}(x'|x) + p_{\theta}(x')p_{n}(x|x')}$$

- In this formulation we cannot estimate the partition function as it cancels
 - The posterior is invariant to scaling of p_{θ}

Recall

$$p_{\theta}(x, x'|z) = \begin{cases} p_{\theta}(x)p_n(x'|x) & \text{if } z = 0\\ p_{\theta}(x')p_n(x|x') & \text{if } z = 1 \end{cases}$$

- W.l.o.g. we can assume p(z = 0) = p(z = 1) = 1/2
- The posterior $p_{\theta}(z|x,x')$ is given by

$$p_{\theta}(z=0|x,x') = \frac{p_{\theta}(x,x'|z=0)p(z=0)}{p_{\theta}(x,x'|z=0)p(z=0) + p_{\theta}(x,x'|z=1)p(z=1)}$$

$$= \frac{p_{\theta}(x)p_{n}(x'|x)}{p_{\theta}(x)p_{n}(x'|x) + p_{\theta}(x')p_{n}(x|x')}$$

$$p_{\theta}(z=1|x,x') = \frac{p_{\theta}(x')p_{n}(x|x')}{p_{\theta}(x)p_{n}(x'|x) + p_{\theta}(x')p_{n}(x|x')}$$

- In this formulation we cannot estimate the partition function as it cancels
 - The posterior is invariant to scaling of p_{θ}

Recall

$$p_{\theta}(x, x'|z) = \begin{cases} p_{\theta}(x)p_n(x'|x) & \text{if } z = 0\\ p_{\theta}(x')p_n(x|x') & \text{if } z = 1 \end{cases}$$

- W.l.o.g. we can assume p(z = 0) = p(z = 1) = 1/2
- The posterior $p_{\theta}(z|x,x')$ is given by

$$p_{\theta}(z=0|x,x') = \frac{p_{\theta}(x,x'|z=0)p(z=0)}{p_{\theta}(x,x'|z=0)p(z=0) + p_{\theta}(x,x'|z=1)p(z=1)}$$

$$= \frac{p_{\theta}(x)p_{n}(x'|x)}{p_{\theta}(x)p_{n}(x'|x) + p_{\theta}(x')p_{n}(x|x')}$$

$$p_{\theta}(z=1|x,x') = \frac{p_{\theta}(x')p_{n}(x|x')}{p_{\theta}(x)p_{n}(x'|x) + p_{\theta}(x')p_{n}(x|x')}$$

- In this formulation we cannot estimate the partition function as it cancels
 - The posterior is invariant to scaling of p_{θ}

Let S be a PSR

$$J(\theta) = \mathbb{E}_{(x,x',z) \sim p_{d}(x,x',z)} \left[S\left(p_{\theta}(z|x,x'), z \right) \right]$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_{d}(x), x' \sim p_{n}(x'|x)} \left[S\left(\frac{p_{\theta}(x)p_{n}(x'|x)}{p_{\theta}(x)p_{n}(x'|x) + p_{\theta}(x')p_{n}(x|x')}, 0 \right) \right]$$

$$+ \frac{1}{2} \mathbb{E}_{x' \sim p_{d}(x), x \sim p_{n}(x|x')} \left[S\left(\frac{p_{\theta}(x)p_{n}(x'|x) + p_{\theta}(x')p_{n}(x|x')}{p_{\theta}(x)p_{n}(x'|x) + p_{\theta}(x')p_{n}(x|x')}, 1 \right) \right]$$

• Assume $p_n(x|x') = p_n(x'|x)$

$$J(\theta) = \frac{1}{2} \mathbb{E}_{x \sim p_d(x), x' \sim p_n(x'|x)} \left[S\left(\frac{p_{\theta}(x)}{p_{\theta}(x) + p_{\theta}(x')}, 0\right) \right]$$

+
$$\frac{1}{2} \mathbb{E}_{x' \sim p_d(x), x \sim p_n(x|x')} \left[S\left(\frac{p_{\theta}(x')}{p_{\theta}(x) + p_{\theta}(x')}, 1\right) \right]$$

55/75

Let S be a PSR

$$J(\theta) = \mathbb{E}_{(x,x',z) \sim p_d(x,x',z)} \left[S\left(p_{\theta}(z|x,x'), z \right) \right]$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d(x), x' \sim p_n(x'|x)} \left[S\left(\frac{p_{\theta}(x) p_n(x'|x)}{p_{\theta}(x) p_n(x'|x) + p_{\theta}(x') p_n(x|x')}, 0 \right) \right]$$

$$+ \frac{1}{2} \mathbb{E}_{x' \sim p_d(x), x \sim p_n(x|x')} \left[S\left(\frac{p_{\theta}(x) p_n(x'|x) + p_{\theta}(x') p_n(x|x')}{p_{\theta}(x) p_n(x'|x) + p_{\theta}(x') p_n(x|x')}, 1 \right) \right]$$

• Assume $p_n(x|x') = p_n(x'|x)$

$$J(\theta) = \frac{1}{2} \mathbb{E}_{x \sim p_d(x), x' \sim p_n(x'|x)} \left[S\left(\frac{p_{\theta}(x)}{p_{\theta}(x) + p_{\theta}(x')}, 0\right) \right]$$
$$+ \frac{1}{2} \mathbb{E}_{x' \sim p_d(x), x \sim p_n(x|x')} \left[S\left(\frac{p_{\theta}(x')}{p_{\theta}(x) + p_{\theta}(x')}, 1\right) \right]$$

Let S be a PSR

$$J(\theta) = \mathbb{E}_{(x,x',z) \sim p_d(x,x',z)} \left[S\left(p_{\theta}(z|x,x'), z \right) \right]$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d(x), x' \sim p_n(x'|x)} \left[S\left(\frac{p_{\theta}(x) p_n(x'|x)}{p_{\theta}(x) p_n(x'|x) + p_{\theta}(x') p_n(x|x')}, 0 \right) \right]$$

$$+ \frac{1}{2} \mathbb{E}_{x' \sim p_d(x), x \sim p_n(x|x')} \left[S\left(\frac{p_{\theta}(x) p_n(x'|x) + p_{\theta}(x') p_n(x|x')}{p_{\theta}(x) p_n(x'|x) + p_{\theta}(x') p_n(x|x')}, 1 \right) \right]$$

• Assume $p_n(x|x') = p_n(x'|x)$

$$\begin{split} J(\theta) &= \frac{1}{2} \mathbb{E}_{x \sim p_d(x), x' \sim p_n(x'|x)} \left[S\left(\frac{p_{\theta}(x)}{p_{\theta}(x) + p_{\theta}(x')}, 0\right) \right] \\ &+ \frac{1}{2} \mathbb{E}_{x' \sim p_d(x), x \sim p_n(x|x')} \left[S\left(\frac{p_{\theta}(x')}{p_{\theta}(x) + p_{\theta}(x')}, 1\right) \right] \end{split}$$

Let S be the logarithmic PSR

$$J(\theta) = \frac{1}{2} \mathbb{E}_{x \sim p_d(x), x' \sim p_n(x'|x)} \left[\log \left(\frac{p_{\theta}(x)}{p_{\theta}(x) + p_{\theta}(x')} \right) \right]$$
$$+ \frac{1}{2} \mathbb{E}_{x' \sim p_d(x), x \sim p_n(x|x')} \left[\log \left(\frac{p_{\theta}(x')}{p_{\theta}(x) + p_{\theta}(x')} \right) \right]$$

• The two terms are the same (renaming x and x')

$$J(\theta) = \mathbb{E}_{x \sim p_d(x), x' \sim p_n(x'|x)} \left[\log \left(\frac{p_{\theta}(x)}{p_{\theta}(x) + p_{\theta}(x')} \right) \right]$$
$$= \mathbb{E}_{x \sim p_d(x), x' \sim p_n(x'|x)} \left[\log p_{\theta}(x) - \log \left(p_{\theta}(x) + p_{\theta}(x') \right) \right]$$

- Only conceptual swapping of the elements (x, x')
- Relies on symmetry of S: S(q(0), 0) = S(q(1), 1)
 - One can design asymmetric PSRs

Let S be the logarithmic PSR

$$J(\theta) = \frac{1}{2} \mathbb{E}_{x \sim p_d(x), x' \sim p_n(x'|x)} \left[\log \left(\frac{p_{\theta}(x)}{p_{\theta}(x) + p_{\theta}(x')} \right) \right]$$
$$+ \frac{1}{2} \mathbb{E}_{x' \sim p_d(x), x \sim p_n(x|x')} \left[\log \left(\frac{p_{\theta}(x')}{p_{\theta}(x) + p_{\theta}(x')} \right) \right]$$

The two terms are the same (renaming x and x')

$$J(\theta) = \mathbb{E}_{x \sim p_d(x), x' \sim p_n(x'|x)} \left[\log \left(\frac{p_{\theta}(x)}{p_{\theta}(x) + p_{\theta}(x')} \right) \right]$$
$$= \mathbb{E}_{x \sim p_d(x), x' \sim p_n(x'|x)} \left[\log p_{\theta}(x) - \log \left(p_{\theta}(x) + p_{\theta}(x') \right) \right]$$

- Only conceptual swapping of the elements (x, x')
- Relies on symmetry of S: S(q(0), 0) = S(q(1), 1)
 - One can design asymmetric PSRs

Let S be the logarithmic PSR

$$J(\theta) = \frac{1}{2} \mathbb{E}_{x \sim p_d(x), x' \sim p_n(x'|x)} \left[\log \left(\frac{p_{\theta}(x)}{p_{\theta}(x) + p_{\theta}(x')} \right) \right]$$
$$+ \frac{1}{2} \mathbb{E}_{x' \sim p_d(x), x \sim p_n(x|x')} \left[\log \left(\frac{p_{\theta}(x')}{p_{\theta}(x) + p_{\theta}(x')} \right) \right]$$

The two terms are the same (renaming x and x')

$$J(\theta) = \mathbb{E}_{x \sim p_d(x), x' \sim p_n(x'|x)} \left[\log \left(\frac{p_{\theta}(x)}{p_{\theta}(x) + p_{\theta}(x')} \right) \right]$$
$$= \mathbb{E}_{x \sim p_d(x), x' \sim p_n(x'|x)} \left[\log p_{\theta}(x) - \log \left(p_{\theta}(x) + p_{\theta}(x') \right) \right]$$

- Only conceptual swapping of the elements (x, x')
- Relies on symmetry of S: S(q(0), 0) = S(q(1), 1)
 - One can design asymmetric PSRs

- We are given *N* data samples $\{x_i\}$ and generate $x_i' \sim p_n(x_i)$
- The sample version of the cNCE objective is

$$J(\theta) = \frac{1}{N} \sum_{i} \left[\log p_{\theta}(x_i) - \log \left(p_{\theta}(x_i) + p_{\theta}(x_i') \right) \right]$$

- When is J large?
 - If $p_{\theta}(x) \gg p_{\theta}(x')$ where x is real (clean) data and x' is a perturbed sample
- Conditional NCE aims for p_{θ} ($\log p_{\theta}$) to be a local maximum at real samples x_i
 - It shares this property with score matching discussed next

- We are given *N* data samples $\{x_i\}$ and generate $x_i' \sim p_n(x_i)$
- The sample version of the cNCE objective is

$$J(\theta) = \frac{1}{N} \sum_{i} \left[\log p_{\theta}(x_i) - \log \left(p_{\theta}(x_i) + p_{\theta}(x_i') \right) \right]$$

- When is J large?
 - If $p_{\theta}(x) \gg p_{\theta}(x')$ where x is real (clean) data and x' is a perturbed sample
- Conditional NCE aims for p_{θ} ($\log p_{\theta}$) to be a local maximum at real samples x_i
 - It shares this property with score matching discussed next

Outline

- Introduction
- Background
- Proper scoring rules
 - Noise-contrastive estimation
 - Score matching
- Exercise 1

Overview

Score matching

- ullet fits model parameters such that training samples are preferably local maxima of $\log p_{ heta}$
- works with unnormalized models, but does not estimate Z
- is a non-trivial instance of a local PSR
- works only for continuous data
- A. Hyvärinen, "Estimation of Non-Normalized Statistical Models by Score Matching"

- Origin of the name
 - $s(\theta) = \nabla_{\theta} f(\theta)$ is called the "score" in statistics
 - Score used here: $\nabla_x \log p(x)$
- Choice of strictly convex F

$$F(q) = \frac{1}{2} \mathbb{E}_{x \sim q} \left[\|\nabla_x \log q(x)\|^2 \right] = \frac{1}{2} \int q(x) \|\nabla_x \log q(x)\|^2 dx$$
$$= \frac{1}{2} \int \frac{\|\nabla_x q(x)\|^2}{q(x)} dx$$

- Why is F convex
- What is S(q, x)?

- Origin of the name
 - $s(\theta) = \nabla_{\theta} f(\theta)$ is called the "score" in statistics
 - Score used here: $\nabla_x \log p(x)$
- Choice of strictly convex F

$$F(q) = \frac{1}{2} \mathbb{E}_{x \sim q} \left[\|\nabla_x \log q(x)\|^2 \right] = \frac{1}{2} \int q(x) \|\nabla_x \log q(x)\|^2 dx$$
$$= \frac{1}{2} \int \frac{\|\nabla_x q(x)\|^2}{q(x)} dx$$

- Why is F convex?
- What is S(q, x)?

• Why is F convex?

$$F(q) = \frac{1}{2} \int \frac{\|\nabla_x q(x)\|^2}{q(x)} dx$$

- ∇_x is linear operator
- We have quadratic-over-linear terms

$$\frac{\|Ax\|^2}{b^Tx}$$

- Convex when $b^T x > 0!$
- Extension to $\{x: b^T x \ge 0\}$ possible
 - Yields constraint Ax = 0 whenever $b^Tx = 0$

We recall

$$S(q,x) = F(q) + \frac{\partial F(q)}{\partial q(x)} - \int \frac{\partial F(q)}{\partial q(x')} q(x') dx'$$

Main problem: what is

$$\frac{\partial F(q)}{\partial q(x)} = \frac{1}{2} \frac{\partial}{\partial q(x)} \left(\int q(x') \left\| \nabla_x \log q(x') \right\|^2 dx' \right)$$

- Solution 1: calculus of variations
- Solution 2: we guess S and recover F(q) = S(q, q)

Use infinite dimensional Hilbert spaces: A is a linear operator

$$\langle f, g \rangle = \int f(x)g(x) dx$$
 $\langle Af, g \rangle = \langle f, A^T g \rangle$

• $A = \nabla$: integration by parts (related to divergence thm and Green's identities)

$$\int_{-\infty}^{\infty} f'g \, dx = f(x)g(x)\Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} fg' \, dx$$

Assume $f(x) \to 0$ and $g(x) \to 0$ for $||x|| \to \infty$

$$\int_{-\infty}^{\infty} f'g \, dx = -\int_{-\infty}^{\infty} fg' \, dx$$

Higher dimensions (sum over dimensions)

$$\int \operatorname{div}(f)g \, dx = \langle \operatorname{div}(f), g \rangle = -\int f^T \nabla g \, dx = -\langle f, \nabla g \rangle \implies \nabla^T = -\operatorname{div}(f) = -\operatorname{d$$

ullet Δ is the Laplace operator

$$\Delta f(x) = \operatorname{div} \nabla_{x} f(x) = -\nabla_{x}^{T} \nabla_{x} f(x) = \sum_{j=1}^{d} \frac{\partial^{2} f(x)}{\partial x_{j}^{2}}$$

Use infinite dimensional Hilbert spaces: A is a linear operator

$$\langle f, g \rangle = \int f(x)g(x) dx$$
 $\langle Af, g \rangle = \langle f, A^T g \rangle$

• $A = \nabla$: integration by parts (related to divergence thm and Green's identities)

$$\int_{-\infty}^{\infty} f'g \, dx = f(x)g(x)\Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} fg' \, dx$$

Assume $f(x) \to 0$ and $g(x) \to 0$ for $\|x\| \to \infty$

$$\int_{-\infty}^{\infty} f'g \, dx = -\int_{-\infty}^{\infty} fg' \, dx$$

Higher dimensions (sum over dimensions)

$$\int \operatorname{div}(f)g \, dx = \langle \operatorname{div}(f), g \rangle = -\int f^T \nabla g \, dx = -\langle f, \nabla g \rangle \implies \nabla^T = -\operatorname{div}(f) = -\operatorname{d$$

ullet Δ is the Laplace operator

$$\Delta f(x) = \operatorname{div} \nabla_{x} f(x) = -\nabla_{x}^{T} \nabla_{x} f(x) = \sum_{j=1}^{d} \frac{\partial^{2} f(x)}{\partial x_{j}^{2}}$$

Use infinite dimensional Hilbert spaces: A is a linear operator

$$\langle f, g \rangle = \int f(x)g(x) dx$$
 $\langle Af, g \rangle = \langle f, A^T g \rangle$

• $A = \nabla$: integration by parts (related to divergence thm and Green's identities)

$$\int_{-\infty}^{\infty} f'g \, dx = f(x)g(x)\Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} fg' \, dx$$

Assume $f(x) \to 0$ and $g(x) \to 0$ for $||x|| \to \infty$

$$\int_{-\infty}^{\infty} f'g \, dx = -\int_{-\infty}^{\infty} fg' \, dx$$

Higher dimensions (sum over dimensions)

$$\int \operatorname{div}(f)g \, dx = \langle \operatorname{div}(f), g \rangle = -\int f^T \nabla g \, dx = -\langle f, \nabla g \rangle \implies \nabla^T = -\operatorname{div}$$

Δ is the Laplace operator

$$\Delta f(x) = \operatorname{div} \nabla_x f(x) = -\nabla_x^T \nabla_x f(x) = \sum_{j=1}^d \frac{\partial^2 f(x)}{\partial x_j^2}$$

Our guess for S

$$S(q, x) = -\frac{1}{2} \|\nabla_x \log q(x)\|^2 - \Delta \log q(x)$$

$$S(q,q) = \mathbb{E}_{x \sim q} [S(q,x)] = \int q(x)S(q,x) dx$$

$$= -\int q(x) \left(\frac{1}{2} \|\nabla_x \log q(x)\|^2 + \Delta \log q(x)\right) dx$$

$$= -\int \left(\frac{1}{2} \frac{\|\nabla_x q(x)\|^2}{q(x)} - q(x)\nabla_x^T \nabla_x \log q(x)\right) dx$$

$$= -\frac{1}{2} \left\langle \frac{\nabla_x q}{q}, \nabla_x q \right\rangle + \left\langle q, \nabla_x^T \nabla_x \log q \right\rangle$$

$$= -\frac{1}{2} \left\langle \frac{\nabla_x q}{q}, \nabla_x q \right\rangle + \left\langle \nabla_x q, \frac{\nabla_x q}{q} \right\rangle = \frac{1}{2} \left\langle \nabla_x q, \frac{\nabla_x q}{q} \right\rangle = \frac{1}{2} \int \frac{\|\nabla_x q(x)\|^2}{q(x)} dx$$

Our guess for S

$$S(q, x) = -\frac{1}{2} \|\nabla_x \log q(x)\|^2 - \Delta \log q(x)$$

$$S(q,q) = \mathbb{E}_{x \sim q} \left[S(q,x) \right] = \int q(x) S(q,x) \, dx$$

$$= -\int q(x) \left(\frac{1}{2} \| \nabla_x \log q(x) \|^2 + \Delta \log q(x) \right) dx$$

$$= -\int \left(\frac{1}{2} \frac{\| \nabla_x q(x) \|^2}{q(x)} - q(x) \nabla_x^T \nabla_x \log q(x) \right) dx$$

$$= -\frac{1}{2} \left\langle \frac{\nabla_x q}{q}, \nabla_x q \right\rangle + \left\langle q, \nabla_x^T \nabla_x \log q \right\rangle$$

$$= -\frac{1}{2} \left\langle \frac{\nabla_x q}{q}, \nabla_x q \right\rangle + \left\langle \nabla_x q, \frac{\nabla_x q}{q} \right\rangle = \frac{1}{2} \left\langle \nabla_x q, \frac{\nabla_x q}{q} \right\rangle = \frac{1}{2} \int \frac{\| \nabla_x q(x) \|^2}{q(x)} dx$$

Our guess for S

$$S(q, x) = -\frac{1}{2} \|\nabla_x \log q(x)\|^2 - \Delta \log q(x)$$

$$S(q,q) = \mathbb{E}_{x \sim q} [S(q,x)] = \int q(x)S(q,x) dx$$

$$= -\int q(x) \left(\frac{1}{2} \|\nabla_x \log q(x)\|^2 + \Delta \log q(x)\right) dx$$

$$= -\int \left(\frac{1}{2} \frac{\|\nabla_x q(x)\|^2}{q(x)} - q(x)\nabla_x^T \nabla_x \log q(x)\right) dx$$

$$= -\frac{1}{2} \left\langle \frac{\nabla_x q}{q}, \nabla_x q \right\rangle + \left\langle q, \nabla_x^T \nabla_x \log q \right\rangle$$

$$= -\frac{1}{2} \left\langle \frac{\nabla_x q}{q}, \nabla_x q \right\rangle + \left\langle \nabla_x q, \frac{\nabla_x q}{q} \right\rangle = \frac{1}{2} \left\langle \nabla_x q, \frac{\nabla_x q}{q} \right\rangle = \frac{1}{2} \int \frac{\|\nabla_x q(x)\|^2}{q(x)} dx$$

Our guess for S

$$S(q, x) = -\frac{1}{2} \|\nabla_x \log q(x)\|^2 - \Delta \log q(x)$$

$$S(q,q) = \mathbb{E}_{x \sim q} [S(q,x)] = \int q(x)S(q,x) dx$$

$$= -\int q(x) \left(\frac{1}{2} \|\nabla_x \log q(x)\|^2 + \Delta \log q(x)\right) dx$$

$$= -\int \left(\frac{1}{2} \frac{\|\nabla_x q(x)\|^2}{q(x)} - q(x)\nabla_x^T \nabla_x \log q(x)\right) dx$$

$$= -\frac{1}{2} \left\langle \frac{\nabla_x q}{q}, \nabla_x q \right\rangle + \left\langle q, \nabla_x^T \nabla_x \log q \right\rangle$$

$$= -\frac{1}{2} \left\langle \frac{\nabla_x q}{q}, \nabla_x q \right\rangle + \left\langle \nabla_x q, \frac{\nabla_x q}{q} \right\rangle = \frac{1}{2} \left\langle \nabla_x q, \frac{\nabla_x q}{q} \right\rangle = \frac{1}{2} \int \frac{\|\nabla_x q(x)\|^2}{q(x)} dx$$

Our guess for S

$$S(q, x) = -\frac{1}{2} \|\nabla_x \log q(x)\|^2 - \Delta \log q(x)$$

$$S(q,q) = \mathbb{E}_{x \sim q} [S(q,x)] = \int q(x)S(q,x) dx$$

$$= -\int q(x) \left(\frac{1}{2} \|\nabla_x \log q(x)\|^2 + \Delta \log q(x) \right) dx$$

$$= -\int \left(\frac{1}{2} \frac{\|\nabla_x q(x)\|^2}{q(x)} - q(x)\nabla_x^T \nabla_x \log q(x) \right) dx$$

$$= -\frac{1}{2} \left\langle \frac{\nabla_x q}{q}, \nabla_x q \right\rangle + \left\langle q, \nabla_x^T \nabla_x \log q \right\rangle$$

$$= -\frac{1}{2} \left\langle \frac{\nabla_x q}{q}, \nabla_x q \right\rangle + \left\langle \nabla_x q, \frac{\nabla_x q}{q} \right\rangle = \frac{1}{2} \left\langle \nabla_x q, \frac{\nabla_x q}{q} \right\rangle = \frac{1}{2} \int \frac{\|\nabla_x q(x)\|^2}{q(x)} dx$$

Recall PSR

$$S(q, x) = -\frac{1}{2} \|\nabla_x \log q(x)\|^2 - \Delta \log q(x)$$

- Depends only on q(x) not q(x') for any $x' \neq x$
 - and 1st and 2nd derivatives of q at x
 - A local PSR
- S(q,x) = S(q/c,x) for any c > 0
 - We cannot directly estimate the partition function of q
 - We can compare likelihood ratio of two points $q(x)/q(x^\prime)$

• For an unknown data distribution p_d the goal is to minimize

$$J_{SM}(\theta) = \mathbb{E}_{x \sim p_d} \left[-S(p_{\theta}, x) \right] = \mathbb{E}_{x \sim p_d} \left[\frac{1}{2} \left\| \nabla_x \log p_{\theta}(x) \right\|^2 + \Delta \log p_{\theta}(x) \right]$$

Given N training samples {x_i} its sample version is

$$\frac{1}{N} \sum_{i} \left(\frac{1}{2} \left\| \nabla_{x} \log p_{\theta}(x_{i}) \right\|^{2} + \Delta \log p_{\theta}(x_{i}) \right) \to \min_{q}$$

- 1st term: x_i aims to be a critical point of $\log p_{\theta}$
- 2nd term: x_i should be a local maximum of $\log p_{\theta}$

• In the original paper, Hyvärinen started from the following objective

$$J(q) = \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla_x \log q(x) - \nabla_x \log p_d\|^2 \right]$$

$$\stackrel{!}{=} \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \mathbb{E}_{x \sim p_d} \left[\langle \nabla \log q(x), \nabla \log p_d(x) \rangle \right]$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \int p_d(x) \left\langle \nabla \log q(x), \nabla \log p_d(x) \right\rangle dx$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \int \left\langle \nabla \log q(x), \nabla p_d(x) \right\rangle dx$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \left\langle \nabla \log q, \nabla p_d \right\rangle$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \left\langle \nabla^T \nabla \log q, p_d \right\rangle$$

$$= \mathbb{E}_{x \sim p_d} \left[\frac{1}{2} \|\nabla \log q\|^2 + \Delta \log q(x) \right]$$

Matching of scores (in the L²-sense)

In the original paper, Hyvärinen started from the following objective

$$J(q) = \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla_x \log q(x) - \nabla_x \log p_d\|^2 \right]$$

$$\stackrel{=}{=} \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \mathbb{E}_{x \sim p_d} \left[\langle \nabla \log q(x), \nabla \log p_d(x) \rangle \right]$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \int p_d(x) \langle \nabla \log q(x), \nabla \log p_d(x) \rangle dx$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \int \langle \nabla \log q(x), \nabla p_d(x) \rangle dx$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \langle \nabla \log q, \nabla p_d \rangle$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \langle \nabla^T \nabla \log q, p_d \rangle$$

$$= \mathbb{E}_{x \sim p_d} \left[\frac{1}{2} \|\nabla \log q\|^2 + \Delta \log q(x) \right]$$

Matching of scores (in the L²-sense)

• In the original paper, Hyvärinen started from the following objective

$$J(q) = \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla_x \log q(x) - \nabla_x \log p_d\|^2 \right]$$

$$\stackrel{\cdot}{=} \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \mathbb{E}_{x \sim p_d} \left[\langle \nabla \log q(x), \nabla \log p_d(x) \rangle \right]$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \int p_d(x) \left\langle \nabla \log q(x), \nabla \log p_d(x) \right\rangle dx$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \int \left\langle \nabla \log q(x), \nabla p_d(x) \right\rangle dx$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \left\langle \nabla \log q, \nabla p_d \right\rangle$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \left\langle \nabla^T \nabla \log q, p_d \right\rangle$$

$$= \mathbb{E}_{x \sim p_d} \left[\frac{1}{2} \|\nabla \log q\|^2 + \Delta \log q(x) \right]$$

• Matching of scores (in the L^2 -sense)

In the original paper, Hyvärinen started from the following objective

$$J(q) = \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla_x \log q(x) - \nabla_x \log p_d\|^2 \right]$$

$$\stackrel{!}{=} \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \mathbb{E}_{x \sim p_d} \left[\langle \nabla \log q(x), \nabla \log p_d(x) \rangle \right]$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \int p_d(x) \left\langle \nabla \log q(x), \nabla \log p_d(x) \right\rangle dx$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \int \left\langle \nabla \log q(x), \nabla p_d(x) \right\rangle dx$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \left\langle \nabla \log q, \nabla p_d \right\rangle$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \left\langle \nabla^T \nabla \log q, p_d \right\rangle$$

$$= \mathbb{E}_{x \sim p_d} \left[\frac{1}{2} \|\nabla \log q\|^2 + \Delta \log q(x) \right]$$

• Matching of scores (in the L^2 -sense)

In the original paper, Hyvärinen started from the following objective

$$J(q) = \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla_x \log q(x) - \nabla_x \log p_d\|^2 \right]$$

$$\stackrel{!}{=} \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \mathbb{E}_{x \sim p_d} \left[\langle \nabla \log q(x), \nabla \log p_d(x) \rangle \right]$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \int p_d(x) \left\langle \nabla \log q(x), \nabla \log p_d(x) \right\rangle dx$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \int \left\langle \nabla \log q(x), \nabla p_d(x) \right\rangle dx$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \left\langle \nabla \log q, \nabla p_d \right\rangle$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \left\langle \nabla^T \nabla \log q, p_d \right\rangle$$

$$= \mathbb{E}_{x \sim p_d} \left[\frac{1}{2} \|\nabla \log q\|^2 + \Delta \log q(x) \right]$$

• Matching of scores (in the L^2 -sense)

In the original paper, Hyvärinen started from the following objective

$$J(q) = \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla_x \log q(x) - \nabla_x \log p_d\|^2 \right]$$

$$\stackrel{!}{=} \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \mathbb{E}_{x \sim p_d} \left[\langle \nabla \log q(x), \nabla \log p_d(x) \rangle \right]$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \int p_d(x) \left\langle \nabla \log q(x), \nabla \log p_d(x) \right\rangle dx$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \int \left\langle \nabla \log q(x), \nabla p_d(x) \right\rangle dx$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \left\langle \nabla \log q, \nabla p_d \right\rangle$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \left\langle \nabla^T \nabla \log q, p_d \right\rangle$$

$$= \mathbb{E}_{x \sim p_d} \left[\frac{1}{2} \|\nabla \log q\|^2 + \Delta \log q(x) \right]$$

Matching of scores (in the L²-sense)

In the original paper, Hyvärinen started from the following objective

$$J(q) = \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla_x \log q(x) - \nabla_x \log p_d\|^2 \right]$$

$$\stackrel{!}{=} \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \mathbb{E}_{x \sim p_d} \left[\langle \nabla \log q(x), \nabla \log p_d(x) \rangle \right]$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \int p_d(x) \left\langle \nabla \log q(x), \nabla \log p_d(x) \right\rangle dx$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \int \left\langle \nabla \log q(x), \nabla p_d(x) \right\rangle dx$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \left\langle \nabla \log q, \nabla p_d \right\rangle$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_d} \left[\|\nabla \log q\|^2 \right] - \left\langle \nabla^T \nabla \log q, p_d \right\rangle$$

$$= \mathbb{E}_{x \sim p_d} \left[\frac{1}{2} \|\nabla \log q\|^2 + \Delta \log q(x) \right]$$

Matching of scores (in the L²-sense)

• Gaussian example ($\Lambda = \Sigma^{-1} \succ 0$)

$$\log p_{\theta}(x) = -\frac{1}{2}(x - \mu)^{T} \Lambda(x - \mu) \qquad \nabla_{x} \log p_{\theta}(x) = -\Lambda(x - \mu)$$
$$\Delta \log p_{\theta}(x) = -\operatorname{trace}(\Lambda) = -\sum_{j} \Lambda_{jj}$$

• Given N samples $\{x_i\}$

$$J(\mu, \Lambda) = \frac{1}{2N} \sum_{i} \|\Lambda(x_{i} - \mu)\|^{2} - \sum_{j} \Lambda_{jj}$$
$$\frac{\partial J}{\partial \mu} = \frac{1}{N} \sum_{i} \Lambda^{2}(\mu - x_{i}) \stackrel{!}{=} 0$$
$$\frac{\partial J}{\partial \Lambda} = \frac{1}{N} \sum_{i} \Lambda(\mu - x_{i})(\mu - x_{i})^{T} - I \stackrel{!}{=} 0$$

Yields exactly the MLE

$$\mu = \frac{1}{N} \sum_{i} x_i \qquad \qquad \Lambda^{-1} = \Sigma = \frac{1}{N} \sum_{i} (\mu - x_i) (\mu - x_i)^T$$

• Gaussian example ($\Lambda = \Sigma^{-1} \succ 0$)

$$\log p_{\theta}(x) = -\frac{1}{2}(x - \mu)^{T} \Lambda(x - \mu) \qquad \nabla_{x} \log p_{\theta}(x) = -\Lambda(x - \mu)$$
$$\Delta \log p_{\theta}(x) = -\operatorname{trace}(\Lambda) = -\sum_{j} \Lambda_{jj}$$

Given N samples {x_i}

$$J(\mu, \Lambda) = \frac{1}{2N} \sum_{i} \|\Lambda(x_{i} - \mu)\|^{2} - \sum_{j} \Lambda_{jj}$$
$$\frac{\partial J}{\partial \mu} = \frac{1}{N} \sum_{i} \Lambda^{2}(\mu - x_{i}) \stackrel{!}{=} 0$$
$$\frac{\partial J}{\partial \Lambda} = \frac{1}{N} \sum_{i} \Lambda(\mu - x_{i})(\mu - x_{i})^{T} - I \stackrel{!}{=} 0$$

Yields exactly the MLE

$$\mu = \frac{1}{N} \sum_{i} x_{i} \qquad \qquad \Lambda^{-1} = \Sigma = \frac{1}{N} \sum_{i} (\mu - x_{i}) (\mu - x_{i})^{T}$$

• Gaussian example ($\Lambda = \Sigma^{-1} \succ 0$)

$$\log p_{\theta}(x) = -\frac{1}{2}(x - \mu)^{T} \Lambda(x - \mu) \qquad \nabla_{x} \log p_{\theta}(x) = -\Lambda(x - \mu)$$
$$\Delta \log p_{\theta}(x) = -\operatorname{trace}(\Lambda) = -\sum_{j} \Lambda_{jj}$$

Given N samples {x_i}

$$J(\mu, \Lambda) = \frac{1}{2N} \sum_{i} \|\Lambda(x_{i} - \mu)\|^{2} - \sum_{j} \Lambda_{jj}$$
$$\frac{\partial J}{\partial \mu} = \frac{1}{N} \sum_{i} \Lambda^{2}(\mu - x_{i}) \stackrel{!}{=} 0$$
$$\frac{\partial J}{\partial \Lambda} = \frac{1}{N} \sum_{i} \Lambda(\mu - x_{i})(\mu - x_{i})^{T} - I \stackrel{!}{=} 0$$

Yields exactly the MLE

$$\mu = \frac{1}{N} \sum_{i} x_i \qquad \qquad \Lambda^{-1} = \Sigma = \frac{1}{N} \sum_{i} (\mu - x_i) (\mu - x_i)^T$$

A connection with auto-encoders

- "An auto-encoder reconstructs the input, which is going through a bottleneck layer"
- Unsupervised feature learning approach

Formal justification? (Probabilistic) interpretation?

- Score matching
 - Vincent, "A Connection Between Score Matching and Denoising Autoencoders"
 - Swersky et al, "On autoencoders and score matching for energy based models"
 - Kamyshanska & Memisevic, "The potential energy of an autoencoder"
- Variational Bayes
 - Discussed later

• Let S be a non-negative function (e.g. $S(z) = \log(1 + \exp(z))$)

$$\log p(x) = -\frac{1}{2} \|x\|^{2} + \sum_{k} S(w_{k}^{T} x) \qquad x \in \mathbb{R}^{d}$$

Now

$$\nabla_{x} \log p(x) = \sum_{k} w_{k} s(w_{k}^{T} x) - x \qquad s(z) = S'(z)$$

$$\Delta \log p(x) = \sum_{k} \operatorname{trace} \left(w_{k} w_{k}^{T} s'(w_{k}^{T} x) \right) - d = \sum_{k} \|w_{k}\|^{2} s'(w_{k}^{T} x) - d$$

Insert into score matching objective

$$J(W) = \mathbb{E}_{x \sim p_d} \left[\left\| x - \sum_k w_k s(w_k^T x) \right\|^2 + \sum_k \left\| w_k \right\|^2 s'(w_k^T x) \right] - d$$

$$= \mathbb{E}_{x \sim p_d} \left[\underbrace{\left\| x - W s(W^T x) \right\|^2}_{\text{reconstruction error / auto-encoder loss}} + \underbrace{\sum_k \left\| w_k \right\|^2 s'(w_k^T x)}_{\text{regularization}} \right] - d$$

• $W s(W^T x)$ is a 1-layer AE with s as its non-linear activation function

70/75

• Let *S* be a non-negative function (e.g. $S(z) = \log(1 + \exp(z))$)

$$\log p(x) = -\frac{1}{2} ||x||^2 + \sum_{k} S(w_k^T x)$$
 $x \in \mathbb{R}^d$

Now

$$\nabla_{x} \log p(x) = \sum_{k} w_{k} s(w_{k}^{T} x) - x \qquad s(z) = S'(z)$$

$$\Delta \log p(x) = \sum_{k} \operatorname{trace} \left(w_{k} w_{k}^{T} s'(w_{k}^{T} x) \right) - d = \sum_{k} ||w_{k}||^{2} s'(w_{k}^{T} x) - d$$

Insert into score matching objective

$$J(W) = \mathbb{E}_{x \sim p_d} \left[\left\| x - \sum_{k} w_k s(w_k^T x) \right\|^2 + \sum_{k} \left\| w_k \right\|^2 s'(w_k^T x) \right] - d$$

$$= \mathbb{E}_{x \sim p_d} \left[\underbrace{\left\| x - W s(W^T x) \right\|^2}_{\text{reconstruction error / auto-encoder loss}} + \underbrace{\sum_{k} \left\| w_k \right\|^2 s'(w_k^T x)}_{\text{requiarization}} \right] - d$$

• $Ws(W^Tx)$ is a 1-layer AE with s as its non-linear activation function

• Let *S* be a non-negative function (e.g. $S(z) = \log(1 + \exp(z))$)

$$\log p(x) = -\frac{1}{2} ||x||^2 + \sum_{k} S(w_k^T x)$$
 $x \in \mathbb{R}^d$

Now

$$\nabla_{x} \log p(x) = \sum_{k} w_{k} s(w_{k}^{T} x) - x \qquad s(z) = S'(z)$$

$$\Delta \log p(x) = \sum_{k} \operatorname{trace} \left(w_{k} w_{k}^{T} s'(w_{k}^{T} x) \right) - d = \sum_{k} ||w_{k}||^{2} s'(w_{k}^{T} x) - d$$

Insert into score matching objective

$$J(W) = \mathbb{E}_{x \sim p_d} \left[\left\| x - \sum_{k} w_k s(w_k^T x) \right\|^2 + \sum_{k} \left\| w_k \right\|^2 s'(w_k^T x) \right] - d$$

$$= \mathbb{E}_{x \sim p_d} \left[\underbrace{\left\| x - W s(W^T x) \right\|^2}_{\text{reconstruction error / auto-encoder loss}} + \underbrace{\sum_{k} \left\| w_k \right\|^2 s'(w_k^T x)}_{\text{regularization}} \right] - d$$

• $W s(W^T x)$ is a 1-layer AE with s as its non-linear activation function

Outline

- Introduction
- Background
- Proper scoring rules
 - Noise-contrastive estimation
 - Score matching
- Exercise 1

Example: fitting Gaussians

Multi-variate Gaussian distribution in D dimensions

$$p(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^D |\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

- When is maximum likelihood estimation easy?
 - \bullet Σ is unconstrained
 - Σ is block-diagonal (why?)
- Precision matrix $\Lambda := \Sigma^{-1}$
- What if components are known to be conditionally independent?
 - If x_i and x_j are conditionally independent, then $\Lambda_{ij} = \Lambda_{ji} = 0$
 - Enforce non-zero pattern on Λ
- Constraints on $\Sigma = \Lambda^{-1}$?
 - In general $NZ(\Sigma) \neq NZ(\Lambda)$
 - ullet Exception: block-diagonal Σ

Example: fitting Gaussians

Multi-variate Gaussian distribution in D dimensions

$$p(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^D |\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

Discussion

- When are components of a Gaussian random vector conditionally independent?
- Are there other benefits in high dimensions?

Exercise 1: fitting Gaussians to MNIST patches

Exercise

MNIST dataset: http://yann.lecun.com/exdb/mnist/

- Convert 8-bit data to [0,1] range and add per-pixel Gaussian noise $\varepsilon \sim \mathcal{N}(0,1/100)$
- Model images patches as Gaussian

$$p_{\theta}(x) = \frac{1}{Z} e^{-\frac{1}{2}(x-\mu)^T \Lambda(x-\mu)}$$

Subtract the empirical mean, leading to

$$p_{\theta}(x) = \frac{1}{Z} e^{-\frac{1}{2}x^{T} \Lambda x}$$

ullet Λ has 2D Laplacian structure: 4-connected neighboring pixels are correlated

Left: samples from a Gaussian with diagonal Λ . Right: 2D Laplacian NZ structure

Exercise 1: fitting Gaussians to MNIST patches

Exercise

MNIST dataset: http://yann.lecun.com/exdb/mnist/

- Estimate Λ via
 - NCE (explain your choice of $p_n(x')$)
- cNCE (explain your choice of $p_n(x'|x)$) or score matching (coin flip)
- Use SGD (or RMSProp or ADAM) for gradient-based optimization
- Visualize samples from p_{θ} (with $A = \Lambda^{-1/2} = \Sigma^{1/2}$)

$$x' \leftarrow \mu + \mathsf{A}\varepsilon \qquad \varepsilon \sim \mathcal{N}(\mathbf{0}, \mathsf{I})$$

- NCE: how close is the estimate of $\log Z$ to $\frac{D}{2}\log(2\pi) + \frac{1}{2}\log|\Sigma|$? $(D=28^2)$
- Bonus exercise: rerun with 8-connected neighborhood assumption