Parte A

1. [punti 3]

Si enunci e dimostri la proprietà del luogo delle radici relativa all'appartenenza di punti reali al luogo esponendo sia il caso del luogo diretto che quello del luogo inverso.

2. [punti 4]

Tracciare i diagrammi di Bode ed il diagramma polare relativi alla rete anticipatrice $C(s) = \frac{1+\tau s}{1+\alpha\tau s}$ determinando in particolare l'anticipo massimo di fase e la corrispondente pulsazione.

3. [punti 4]

Sia dato un generico sistema dinamico orientato da u (ingresso) ad y (uscita) e descritto dall'equazione differenziale $\sum_{i=0}^{n} a_i D^i y(t) = \sum_{i=0}^{m} b_i D^i u(t)$.

Note le condizioni iniziali al tempo 0- come $y_-, Dy_-, ..., D^{n-1}y_-$ e $u_-, Du_-, ..., D^{m-1}u_-$ e l'azione forzante $u(t), t \ge 0$, determinare la trasformata di Laplace della risposta $y(t), t \ge 0$.

Nota: riportare i ragionamenti ed i passaggi che permettono l'individuazione dell'espressione Y(s) cercata.

4. [punti 5]

Tre carrelli, ciascuno di massa m, e collegati fra di loro con molle di costante elastica pari a k come mostrato in figura costituiscano un sistema dinamico orientato da f ad x_1 , rispettivamente forza applicata e posizione al e del carrello di sinistra. Nelle condizioni iniziali di quiete e con le molle a riposo si abbia $x_1 = 0$, $x_2 = 0$ e $x_3 = 0$. Trascurando gli attriti si determinino l'equazione differenziale e la funzione di trasferimento di tale sistema.

Parte B

5. [punti 5]

Determinare l'evoluzione forzata y(t) in risposta alla rampa $u(t) = 2t \cdot 1(t)$ di un sistema con funzione di trasferimento $G(s) = \frac{1}{(s+1)^4}$.

Determinare inoltre il grado massimo di continuità di y(t) su \mathbb{R} .

6. [punti 5]

Sia dato il sistema retroazionato di figura dove $L(s) = \frac{(1-s)^2}{s(1+s)^2(s+4)}$.

- a. Tracciare il diagramma polare della risposta armonica $L(j\omega)$ determinando in particolare l'asintoto e l'intersezione del diagramma con l'asse reale negativo.
- b. Utilizzando il criterio di Nyquist dimostrare che il sistema retroazionato è asintoticamente stabile.
- c. Determinare il margine di ampiezza M_A .

7. [punti 5]

Tracciare il luogo delle radici dell'equazione

$$1 + \frac{s+a}{(s+1)(s+2)(s+2a)} = 0 \text{ per } a \ge 0.$$

Si determinio mediante una stima numerica le radici doppie presenti nel luogo. Esporre dettagliatamente il metodo numerico scelto considerando che un errore di $\pm 10\%$ nella stima è accettabile al fine del tracciamento qualitativo richiesto.

8. [punti 5]

Sia dato lo schema di sistema di controllo di figura

dove $P(s) = \frac{4}{s+2}$. Determinare un controllore C(s) di ordine minimo ed il blocco algebrico

 $F \in \mathbb{R}$ affinché il sistema di controllo soddisfi le seguenti specifiche:

- 1. rejezione infinita asintotica al disturbo sinusoidale $d(t) = 3\sin(2t+4)$,
- 2. sistema retroazionato con poli dominanti in $-2 \pm j$,
- 3. costante di posizione $K_n = 4$,
- 4. in condizioni nominali l'errore a regime in risposta ad un gradino del riferimento sia nullo.