

GILLES KRATZER, APPLIED STATISTICS GROUP, UZH SONJA HARTNACK, VETSUISSE, UZH

ECVPH WORKSHOP, ZURICH 7-9 MAY 2019

http://r-bayesian-networks.org/ gilles.kratzer@math.uzh.ch sonja.hartnack@access.uzh.ch

REGRESSION MODELS: LM & GLM


```
# load required packages
library(car)
head(Prestige)
```

	${\tt education}$	income	women	prestige	census	type
<pre>gov.administrators</pre>	13.11	12351	11.16	68.8	1113	prof
general.managers	12.26	25879	4.02	69.1	1130	prof
accountants	12.77	9271	15.70	63.4	1171	prof
purchasing.officers	11.42	8865	9.11	56.8	1175	prof
chemists	14.62	8403	11.68	73.5	2111	prof
physicists	15.64	11030	5.13	77.6	2113	prof

> str(Prestige)

'data.frame': 102 obs. of 6 variables: \$ education: num 13.1 12.3 12.8 11.4 14.6 ... \$ income : int 12351 25879 9271 8865 8403 11030 8258 14163 11377 11023 ... \$ women : num 11.16 4.02 15.7 9.11 11.68 ... \$ prestige : num 68.8 69.1 63.4 56.8 73.5 77.6 72.6 78.1 73.1 68.8 ...

\$ census : int 1113 1130 1171 1175 2111 2113 2133 2141 2143 2153 ...

\$ type : Factor w/ 3 levels "bc", "prof", "wc": 2 2 2 2 2 2 2 2 2 ...

```
# Subset the data to keep only income and education
newdata = Prestige[,c(1:2)]
summary(newdata)

plot(newdata)
```



```
summary(lm(formula = income~education,
          data = newdata))
                 Call:
                 lm(formula = income ~ education, data = newdata)
                 Residuals:
                     Min 1Q Median 3Q Max
                 -5493.2 -2433.8 -41.9 1491.5 17713.1
                 Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
                  (Intercept) -2853.6 1407.0 -2.028 0.0452 *
                 education 898.8 127.0 7.075 2.08e-10 ***
                 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                 Residual standard error: 3483 on 100 degrees of freedom
                 Multiple R-squared: 0.3336, Adjusted R-squared: 0.3269
```

F-statistic: 50.06 on 1 and 100 DF, p-value: 2.079e-10

Simple linear model: definition

In univariate linear regression a dependant variable is explained linearly through a single independent variable:

Dependent variable, measured values, observations

Independent variable, measured values, observations

Errors follows a normal distribution 0 mean, constant variance

Linear model: assumptions

- 1. Linear relationship
- 2. Multivariate normality
- 3. Homoscedasticity
- 4. No or little multicollinearity
- 5. No autocorrelation

Normal Q-Q

Residuals vs Fitted

In R 4 diagnostic plots are return

- Residual vs Fitted Values
- Normal Q-Q Plot
- Scale Location Plot
- Residuals vs Leverage Plot

Linear model: assumptions

- 1. Linear relationship
- 2. Multivariate normality
- 3. Homoscedasticity
- 4. No or little multicollinearity
- No autocorrelation

In R 4 diagnostic plots are returned:

- Residual vs Fitted Values (1)
- Normal Q-Q Plot (2)
- Scale Location Plot (3)
- Residuals vs Leverage Plot (outliers)

Linear model: assumptions

- Linear relationship
- Multivariate normality
- Homoscedasticity
- No or little multicollinearity
- No autocorrelation

Linear model: linear relationship

Linear model: linear relationship

Linear model: linear relationship

- Linear relationship
- Multivariate normality
- Homoscedasticity
- No or little multicollinearity

Error term should be normally distributed

$$\epsilon \sim \mathbf{N}(\mathbf{0}, \sigma^2)$$

Conditional response should be normally distributed $(\mathbf{y} \mid \mathbf{x}) \sim \mathbf{N}(\mathbf{X}^{\mathbf{T}}\boldsymbol{\beta}, \sigma^2)$

Linear model: Normality

- Linear relationship
- Multivariate normality
- Homoscedasticity
- No or little multicollinearity

Linear model: Normality

- Linear relationship
- Multivariate normality
- Homoscedasticity
- No or little multicollinearity
- No autocorrelation

Linear model: Homoscedasticity (= same variance)

- Linear relationship
- Multivariate normality
- Homoscedasticity
- No or little multicollinearity

Linear model: Homoscedasticity

- Linear relationship
- Multivariate normality
- Homoscedasticity
- No or little multicollinearity
- No autocorrelatio

Homoskedasticity is Evident

Heteroskedasticity is Evident


```
Call:
lm(formula = income ~ ., data = Prestige)
Residuals:
   Min
            10 Median
                           30
                                  Max
-7752.4 -954.6 -331.2 742.6 14301.3
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
             7.32053 3037.27048
                                  0.002
                                        0.99808
(Intercept)
education
            131.18372 288.74961 0.454 0.65068
            -53.23480 9.83107 -5.415 4.96e-07 ***
women
            139.20912 36.40239 3.824 0.00024 ***
prestige
              0.04209 0.23568 0.179 0.85865
census
            509.15150 1798.87914
                                  0.283
                                         0.77779
typeprof
typewc
                                  0.296
                                         0.76757
            347.99010 1173.89384
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2633 on 91 degrees of freedom
  (4 observations deleted due to missingness)
Multiple R-squared: 0.6363, Adjusted R-squared: 0.6123
F-statistic: 26.54 on 6 and 91 DF, p-value: < 2.2e-16
```


Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.32053 3037.27048 0.002 0.99808
education 131.18372 288.74961 0.454 0.65068
women -53.23480 9.83107 -5.415 4.96e-07 ***
prestige 139.20912 36.40239 3.824 0.00024 ***
census 0.04209 0.23568 0.179 0.85865
typeprof 509.15150 1798.87914 0.283 0.77779
typewc 347.99010 1173.89384 0.296 0.76757
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Intercept?
- Estimate?
- Std Error? Std Deviation?
- t value?
- P value?

- Linear relationship
- Multivariate normality
- Homoscedasticity
- No or little multicollinearity
- No autocorrelation
- Multicollinearity = predictors that are correlated
- Inflate standard errors
- Warning signs:
 - Regression coefficients change a lot
 - Pairwise correlations
- Solution: VIF (Variance inflation factors), correlation plot

- Linear relationship
- Multivariate normality
- Homoscedasticity
- No or little multicollinearity
- No autocorrelation

- 1. Regress the Kth predictor on rest of the predictors in the model
- 2. Compute the Rsq

$$VIF = \frac{1}{1 - R_{sq}}$$

```
library(car)
mod2 <- lm(mpg ~ ., data=mtcars)</pre>
vif(mod2)
> vif(mod2)
              disp
      cyl
                          hp
                                  drat
                                              wt
                                                      qsec
                                                                  vs
                                                                                    gear
15.373833 21.620241
                    9.832037
                              3.374620 15.164887
                                                 7.527958 4.965873 4.648487
     carb
 7,908747
```

- Linear relationship
- Multivariate normality
- Homoscedasticity
- No or little multicollinearity
- No autocorrelation

```
library(corrplot)
corrplot(cor(mtcars[, -1]))
```


- Linear relationship
- Multivariate normality
- Homoscedasticity
- No or little multicollinearity
- No autocorrelation

Autocorrelation could be check using acf() plot

- Time serie regression
- Mixed models

- Linear relationship
- Multivariate normality
- Homoscedasticity
- No or little multicollinearity
- No autocorrelation

```
model<-lm(formula = income~education,
    data = newdata)
acf(model$residuals)</pre>
```

Series model\$residuals

Clearly autocorrelated!

- Linear relationship
- Multivariate normality
- Homoscedasticity
- No or little multicollinearity
- No autocorrelation

Generalized Linear Model

- GLM are extensions of linear models that allow the dependant variable to be non-normal
- It allows the error term to follow another distribution

Challenger dataset:

- Estimate probability of defect in function of temperature
- Logistic regression

$$p = P(\text{defect}) = \frac{1}{1 + \exp(-\beta_0 - \beta_1 x)}$$

$$g(p) = \log(\frac{p}{1-p}) = \beta_0 + \beta_1 x$$

Generalized Linear Model

Generalized Linear Model

A GLM is made of three components:

- A random component:
 - Conditional distribution of Y given the explanatory variables X

$$\mathbf{E}[y_i \mid \mathbf{X_i}] = \mu_i$$

The systematic component: a linear function of the predictors called the linear predictor

$$\eta = \mathbf{X}\beta \text{ or } \eta_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}$$

An invertible link function:

$$g(\mu_i) = \eta_i = \mathbf{X}_i^T \beta$$
$$g^{-1}(\eta_i) = \mu_i$$

GLM: link functions

Link name	Function: $\eta_i = g(\mu_i)$	Inverse: $\mu_i = g^{-1}$	(η_i)
identity	μ_i	η_i	
square-root	$\sqrt{\mu_i}$	η_i^2	Standard
log	$\log_e(\mu_i)$	$\exp(\eta_i)$	transformations
inverse	μ_i^{-1}	η_i^{-1}	used with traditiona
inverse-square	μ_i^{-2}	$\eta_i^{-1/2}$	linear models
logit	$\log_e \frac{\mu_i}{1-\mu_i}$	$\frac{1}{1+\exp(-\eta_i)}$	Dinamial data
probit	$\Phi^{-1}(\mu_i)$	$\Phi(\eta_i)$	Binomial data
log-log	$-\log_e[-\log_e(\mu_i)]$	$\exp[-\exp(-\eta_i)]$	

comp. $\log_e[-\log_e(1-\mu_i)]$ $1-\exp[-\exp(\eta_i)]$

GLM:

- For every type of distribution, a default canonical link function exists
- Relationship between mean and variance

Family	Notation	Canonical link	Range of y	Variance function, $\mathcal{V}(\mu \mid \eta)$
Gaussian	$N(\mu,\sigma^2)$	identity: μ	$(-\infty, +\infty)$	ϕ
Poisson	$Pois(\mu)$	$\log_e(\mu)$	$0,1,\ldots,\infty$	μ
Negative-Binomial	$NBin(\mu, \theta)$	$\log_e(\mu)$	$0,1,\ldots,\infty$	$\mu + \mu^2/\theta$
Binomial	$\operatorname{Bin}(n,\mu)/n$	$\operatorname{logit}(\mu)$	$\{0,1,\ldots,n\}/n$	$\mu(1-\mu)/n$
Gamma	$G(\mu, \nu)$	μ^{-1}	$(0,+\infty)$	$\phi\mu^2$
Inverse-Gaussian	$IG(\mu, \nu)$	μ^2	$(0, +\infty)$	$\phi\mu^3$

Clustering?

Assumptions of linear model violated if:

- several measurements from clusters
- several measurements from the same individuals over time

GLM versus GLMM

Linear model

$$y_j = \alpha + \beta x_j + \epsilon_j$$

Random intercept linear mixed model

$$y_{ij} = \alpha_i + \beta_i x_{ij} + \epsilon_{ij}$$
, with $\epsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$

Predictor Variable x

Harrison et al. (2018)

Thank you for your attention

