Generatori di numeri casuali e metodi Montecarlo (parte3)

Laboratorio Trattamento Numerico dei Dati Sperimentali

Prof. L. Carminati Università degli Studi di Milano

Simulazione di misure sperimentali

- □ Consideriamo un esperimento di misura reale che si effettua nel laboratorio di fisica e cerchiamo di utilizzare i numeri casuali per costruire una simulazione della misura. Obiettivi :
 - ☐ Comprendere il comportamento dell'apparato di misura
 - Ottenere indicazioni su come migliorare l'apparato di misura
- Misurazione dell'indice di rifrazione del prisma in funzione della lunghezza d'onda della luce (λ), e la verifica sperimentale della legge di dispersione secondo la formula di Cauchy

$$n(\lambda) = \sqrt{A + \frac{B}{\lambda^2}}.$$

Simulazione di misure sperimentali : la procedura sperimentale

- □ Tolgo il prisma dall'apparato, posiziono la lampada e misuro θ_0 ovvero l'angolo del raggio non deflesso
- Inserisco il prisma e misuro $\theta_m(\lambda_1)$ di deflessione minimia relativo ad una certo colore (λ_1)
- Ora posso quindi calcolare l'indice di rifrazione come $n(\lambda_1) = \frac{\sin\left(\frac{\delta_m(\lambda_1) + \alpha}{2}\right)}{\sin\left(\frac{\alpha}{2}\right)}$

- A questo punto posso cambiare riga e misurare $n(\lambda_2) = \frac{\sin(\frac{\delta_m(\lambda_2) + \alpha}{2})}{\sin(\frac{\alpha}{2})}$
- ☐ Con due misure e due incognite posso invertire la relazione di Cauchy per determinare i coefficienti A e B secondo le relazioni

$$A = \frac{\lambda_2^2 n(\lambda_2)^2 - \lambda_1^2 n(\lambda_1)^2}{\lambda_2^2 - \lambda_1^2} \qquad B = \frac{n(\lambda_2)^2 - n(\lambda_1)^2}{\frac{1}{\lambda_2^2} - \frac{1}{\lambda_1^2}}$$

 \square Calcolo gli errori su A (σ_A) e B (σ_B) : propagazione degli errori con correlazione θ_0 correla i $\delta_m(\lambda)$!

1. Costruzione di una simulazione

- Si procede a rovescio : si <u>assume di conoscere il risultato della misura</u> (nel nostro caso A e B)
 - □ La cosa non ci deve stupire: la simulazione <u>non è predittiva</u>, va utilizzata per la comprensione dell'apparato sperimentale (esempio, stima degli errori che ci aspettiamo)
- □ Conosciamo i valori "veri" di A e B
- $lue{}$ Calcoliamo i valori "veri" degli indici di rifrazione per le lunghezze d'onda di test λ_1 e λ_2

$$n(\lambda_1) = \sqrt{A + \frac{B}{\lambda_1}}$$
 e $n(\lambda_2) = \sqrt{A + \frac{B}{\lambda_2}}$

□ Calcoliamo

$$\delta_m(\lambda_1) = 2\operatorname{asin}(n(\lambda_1)\sin\frac{\alpha}{2}) - \alpha$$
 e $\delta_m(\lambda_2) = 2\operatorname{asin}(n(\lambda_2)\sin\frac{\alpha}{2}) - \alpha$

- \square Scelgo un θ_0 arbitrario
- \Box Calcolo $\theta_m(\lambda_1) = \theta_0 + \delta_m(\lambda_1)$ e $\theta_m(\lambda_2) = \theta_0 + \delta_m(\lambda_2)$

2. Esecuzione della simulazione

L'esecuzione della simulazione procede esattamente ripercorrendo i passi che lo sperimentatore avrebbe fatto in laboratorio

Genero le pseudo-misure : a partire dalle misure "vere" della slide precedente simulo il processo di misura con una smearing gaussiano di larghezza pari all'incertezza σ_{θ} sulla misura degli angoli

$$\theta_0^{mis} = Rand. Gaus(\theta_0, \sigma_\theta)$$

$$\theta_m^{mis}(\lambda_1) = Rand. Gaus(\theta_m(\lambda_1), \sigma_\theta)$$

$$\theta_m^{mis}(\lambda_2) = Rand. Gaus(\theta_m(\lambda_2), \sigma_\theta)$$

- lacksquare Determino poi $\delta_m^{mis}(\lambda_1) = \theta_m^{mis}(\lambda_1) \theta_0^{mis}$ e $\delta_m^{mis}(\lambda_2) = \theta_m^{mis}(\lambda_2) \theta_0^{mis}$
- $\Box \text{ Determiniamo } n^{mis}(\lambda_1) = \frac{\sin\left(\frac{\delta_m^{mis}(\lambda_1) + \alpha}{2}\right)}{\sin\left(\frac{\alpha}{2}\right)} \text{ e } n^{mis}(\lambda_2) = \frac{\sin\left(\frac{\delta_m^{mis}(\lambda_2) + \alpha}{2}\right)}{\sin\left(\frac{\alpha}{2}\right)}$
- ☐ A questo punto con due misure e due incognite posso invertire la relazione di Cauchy per determinare i coefficienti

$$A^{mis} = \frac{\lambda_2^2 n^{mis} (\lambda_2)^2 - \lambda_1^2 n^{mis} (\lambda_1)^2}{\lambda_2^2 - \lambda_1^2} \qquad B^{mis} = \frac{n^{mis} (\lambda_2)^2 - n^{mis} (\lambda_1)^2}{\frac{1}{\lambda_2^2} - \frac{1}{\lambda_1^2}}$$

 $\theta_0, \theta_m(\lambda_1), \theta_m(\lambda_2)$

 A^{mis}, B^{mis}

Mettiamo tutto insieme

Implementazione

Costruttore: inizializza tutte le variabili "vere" della simulazione

Esegui (): genera la pseudomisura

Analizza(): a partire dalla pseudomisura calcola A e B

```
#ifndef _ESPERIMENTOPRISMA_H_
#define _ESPERIMENTOPRISMA_H_
#include "RandomGen.h"
class EsperimentoPrisma {
 public :
 EsperimentoPrisma( unsigned int seed );
  ~EsperimentoPrisma() {;};
  void Esequi();
  void Analizza();
 double getAmis() { return m A misurato ; };
 // .... aggiungere i metodi necessari
 private:
 // generatore di numeri casuali, il
                                vero motore della simulazione
  RandomGen m rgen ;
 // parametri dell'apparato sperimentale
 double m_lambda1, m_lambda2, m_alpha, m_sigmat;
  // valori delle quantita' misurabili :
 // input : valori assunti come ipotesi nella simulazione
  // misurato : valore dopo la simulazione di misura
  double m_A_input, m_A_misurato;
  double m_B_input, m_B_misurato;
  double m_n1_input, m_n1_misurato;
  double m n2 input, m n2 misurato;
  double m_dm1_input, m_dm1_misurato;
  double m_dm2_input, m_dm2_misurato;
  double m_th0_input, m_th0_misurato;
  double m_th1_input, m_th1_misurato;
  double m_th2_input, m_th2_misurato;
};
#endif
```

Implementazione

Costruttore: lista di inizializzazione per inizializzare le variabili (indispensabile per m_rgen)

```
#include "EsperimentoPrisma.h"
EsperimentoPrisma::EsperimentoPrisma( unsigned int seed ):
 m rgen( seed ).
 m_lambda1(579.1E-9),
 m_lambda2(404.7E-9),
 m_alpha(60.*M_PI/180.),
 m_sigmat(0.3E-3).
 m_A_{input(2.7)}
 m_B_input(60000E-18)
 // calcolo degli indici di rifrazione attesi
 m_n1_input = sqrt( m_A_input + m_B_input / (m_lambda1*m_lambda1) );
 m_n2_input = sqrt( m_A_input + m_B_input / (m_lambda2*m_lambda2) );
 // theta0 e' arbitrario, scelgo M_PI/2.
 m_th0_input = M_PI/2.;
 // determino theta1 e theta2
 m_dm1_input = 2.*asin( m_n1_input * sin (0.5 * m_alpha) ) - m_alpha ;
 m_th1_input = m_th0_input + m_dm1_input ;
 m_dm2_input = 2.*asin(m_n2_input * sin(0.5 * m_alpha)) - m_alpha;
 m_th2_input = m_th0_input + m_dm2_input;
```


Implementazione

```
#include "EsperimentoPrisma.h"
                               #include "TApplication.h"
                               #include "TH1F.h"
                               int main() {
                                 TApplication app("app",0,0);
                                                                   Costruisco un oggetto di tipo
                                 int nsimul = 1000;
                                                                      EsperimentoPrisma
                                 EsperimentoPrisma p(1);
                                 TH1F hA("A", "A", 100, 2.68, 2.72);
                                                                                   Ciclo sulle simulazione
                                 for ( int k=0 ; k < nsimul ; k++ ) {
 Due steps di simulazione:
                                   p.Esegui();
Esegui() e Analizza()
                                   p.Analizza();
                                   hA.Fill(p.getAmis());
                                 }
                                                              Dopo ogni simulazione accedo al
                                                                   valore di A "misurato"
                                 hA.Draw();
                                 app.Run();
```

Generatori di numeri casuali

Un evento reale misurato nel rivelatore ATLAS di possible decadimento del bosone di Higgs in $2e2\mu$ in associazione ad un bosone Z che decade in due μ

In blu: una simulazione di cosa avrei dovuto vedere dall'analisi dei dati raccolti dal rivelatore ATLAS se esistesse un bosone di Higgs come predetto dalla teoria con una massa di 125 GeV.

Conclusive remarks

☐ Abbiamo cercato di mettere in evidenza l'importanza dell'approccio numerico nell'affrontare alcuni argomenti di analisi e fisica generale ☐ Abbiamo studiato il C++ (e ROOT/gnuplot per la visualizzazione): non è l'unico linguaggio disponibile ma probabilmente è quello più complesso (quindi didatticamente funziona bene). I tools di visualizzazione sono vari. ☐ Esame : cercate di farlo il prima possible ! ☐ Consegna esercizi va effettuata prima della prova pratica ☐ Prova pratica: in presenza, dura 2 ore. Avrete a disposizione tutto il codice scritto durante il laboratorio e tutti i libri/appunti che volete ☐ Esame orale: revisione degli eventuali errori commessi nella prova pratica. Argomenti trattati nelle lezioni di teoria ☐ Il laboratorio LCM è aperto tutti i giorni 10.30-12.30 e 14.30-16.30 per esercitazioni e supporto student ☐ Aperture straordinarie del labCalcolo per la preparazione esame Speriamo di aver gettato le basi di un vostro futuro coinvolgimento in argomenti di calcolo e simulazione numerica che verranno approfonditi e resi più specifici nei corsi

successivi.

