

IEE352 - Procesamiento Digital de Señales

Clase 06: Transformada Z

Dr. Marco A. Milla Sección Electricidad y Electrónica (SEE) Pontificia Universidad Católica del Perú (PUCP)

email: milla.ma@pucp.edu.pe

Definición

Dado un sistema LTI, tenemos que

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k],$$

si consideramos $x[n] = z^n$, secuencia de exponenciales complejos, tenemos que

$$y[n] = \sum_{k=-\infty}^{\infty} h[k] z^{n-k} = \sum_{k=-\infty}^{\infty} h[k] z^{-k} z^{n},$$

$$H(z)$$

donde z^n es función propia de los sistemas LTI y H(z) es la transformada Z de h[n].

Definición

La transformada Z bilateral está definida de la siguiente forma,

Directa:
$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
 (bilateral)

Inversa:
$$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$
 (Integral de Cauchy)

Nota: Versión discreta de la transformada de Laplace.

Relación con la DTFT

Para $z = e^{j\omega}$ tenemos que

$$X(z = e^{j\omega}) = \sum_{n = -\infty}^{\infty} x[n] e^{-j\omega n} = X(\omega)$$

$$\mathcal{Z}\{x[n]\}_{z=e^{j\omega}} = \text{DTFT}\{x[n]\}.$$

La DTFT es la transformada Z evaluada en el círculo unitario (|z| = 1).

Región de convergencia y existencia de la Transformada Z

Dado $z = re^{j\omega}$, tal que r = |z| y $\omega = \angle z$, tenemos que

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] r^{-n} e^{-j\omega n} = \text{DTFT}\{x[n]r^{-n}\}.$$

X(z) existe si la secuencia $x[n]r^{-n}$ es absolutamente integrable (o sumable),

$$\Longrightarrow |X(z)| \le \sum_{n} |x[n]r^{-n}| < \infty.$$

La región de convergencia está definida por los valores de r=|z| para los cuales X(z) converge o existe.

Ejemplo: Escalón unitario

El escalón unitario x[n] = u[n] no es absolutamente integrable sin embargo tiene transformada Z que se puede calcular de la siguiente forma,

$$X(z) = \sum_{n=0}^{\infty} u[n] z^{-n} = \sum_{n=0}^{\infty} z^{-n} = \frac{1}{1 - z^{-1}}, \qquad |z| > 1.$$

Notar que
$$\sum_{n=0}^{\infty} |z^{-n}| < \infty$$
, cuando $|z| > 1$.

Fracciones de polinomios

Para una clase importante de funciones, la transformada Z se pude expresar como una fracción de polinomios.

$$X(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \dots + a_N z^{-N}} = \frac{\sum_{n=0}^{M} b_n z^{-n}}{\sum_{n=0}^{N} a_n z^{-n}} = \frac{B(z)}{A(z)},$$

donde las raíces de B(z) son los ceros de X(z), mientras que las raíces de A(z) corresponden a los polos de X(z).

Ejemplo: Exponencial causal

Dado $x[n] = a^n u[n]$ una señal exponencial causal (secuencia de lado derecho), tenemos que,

$$X(z) = \sum_{n = -\infty}^{\infty} a^n u[n] z^{-n} = \sum_{n = 0}^{\infty} (a z^{-1})^n = \frac{1}{1 - a z^{-1}}$$
$$= \frac{z}{z - a}, \quad |az^{-1}| < 1 \implies |z| > |a|.$$

|z| > |a|ROC

donde z = 0 es un cero y z = a es un polo de X(z).

Nota: Si |a| < 1 entonces, $DTFT\{x[n]\}$ converge o existe.

Ejemplo: Exponencial anticausal

Dado $x[n] = -a^n u[-n-1]$ una señal exponencial anticausal (secuencia de lado izquierdo), tenemos que,

$$X(z) = -\sum_{n=-\infty}^{\infty} a^n u[-n-1] z^{-n} = -\sum_{n=-\infty}^{-1} (a z^{-1})^n = -\sum_{n=1}^{\infty} (a z^{-1})^{-n}$$
$$= 1 - \sum_{n=0}^{\infty} (a^{-1} z)^n = 1 - \frac{1}{1 - a^{-1} z} = \frac{1}{1 - a z^{-1}},$$

ROC: $|a^{-1}z| < 1 \implies |z| < |a|$.

Cero z = 0 y Polo z = a.

Nota: Si |a| > 1 entonces, $DTFT\{x[n]\}$ converge o existe.

Ejemplo: Suma de exponenciales

Dado
$$x[n] = \left(-\frac{1}{3}\right)^n u[n] - \left(\frac{1}{2}\right)^n u[-n-1]$$
, tenemos que
$$\left(-\frac{1}{3}\right)^n u[n] \stackrel{\mathscr{Z}}{\longleftrightarrow} \frac{1}{1 + \frac{1}{3}z^{-1}}, \quad |z| > \frac{1}{3}$$
$$-\left(\frac{1}{2}\right)^n u[-n-1] \stackrel{\mathscr{Z}}{\longleftrightarrow} \frac{1}{1 - \frac{1}{2}z^{-1}}, \quad |z| < \frac{1}{2}$$

Por linealidad,

$$X(z) = \frac{1}{1 + \frac{1}{3}z^{-1}} + \frac{1}{1 - \frac{1}{2}z^{-1}} = \frac{2z(z - \frac{1}{12})}{(z + \frac{1}{3})(z - \frac{1}{2})}.$$

Polos: $z = -\frac{1}{3}$, $z = \frac{1}{2}$,

Ceros: $z = 0, z = \frac{1}{12}$.

ROC: Intersección de dos regiones, $|z| > \frac{1}{3}$ y $|z| < \frac{1}{2}$, entonces $\frac{1}{3} < |z| < \frac{1}{2}$.

Secuencias de longitud finita

Si x[n] es de longitud finita ($N_1 \le n \le N_2$), entonces

$$X(z) = \sum_{n=N_1}^{N_2} x[n]z^{-n}$$
 no tiene problemas de convergencia.

Ejemplo: Dado
$$x[n] = \begin{cases} a^n, & 0 \le n \le N-1 \\ 0, & n < 0, n \ge N \end{cases}$$
, tenemos que

$$X(z) = \sum_{n=0}^{N-1} a^n z^{-n} = \sum_{n=0}^{N-1} (az^{-1})^n = \frac{1 - (az^{-1})^N}{1 - az^{-1}} = \frac{1}{z^{N-1}} \frac{z^N - a^N}{z - a}.$$

X(z) converge para a finito y $z \neq 0$.

N-1 ceros: $z_k = ae^{j2\pi k/N}$, k = 1,...,N-1N-1 polos: z = 0.

Secuencias de longitud finita

Dado
$$X(z) = \frac{1}{z^{N-1}} \frac{z^N - a^N}{z - a}$$
, si consideramos $N = 8$ y $0 < a < 1$,

7 ceros: $z_k = ae^{j\pi k/4}$, k = 1,...,7

7 polos: z = 0.

ROC: |z| > 0

Propiedades de la región de convergencia

1. El ROC es un anillo o disco en el plano Z centrado en el origen,

$$0 \le r_R < |z| < z_L \le \infty.$$

- 2. La DTFT de x[n] converge si y solo si el ROC de X(z) incluye el círculo unitario.
- 3. El ROC no contiene polos.
- 4. Si x[n] es una secuencia de duración finita, es decir que vale cero fuera del intervalo finito $N_1 \le n \le N_2$, entonces el ROC es el plano Z, excepto posiblemente en z=0 o $z=\infty$.

Propiedades de la región de convergencia

5. Si x[n] es una secuencia de lado derecho ($x[n] = 0, n < N_1$), el ROC se extiende hacia afuera desde el polo de mayor magnitud hacia (e incluyendo posiblemente) $z = \infty$.

6. Si x[n] es una secuencia de lado izquierdo ($x[n] = 0, n > N_2$), el ROC se extiende hacia adentro desde el polo de menor magnitud hacia (e incluyendo posiblemente) z = 0.

$$|z| < \min |z_p|$$

Propiedades de la región de convergencia

7. Una secuencia de dos lados es de duración infinita. Si x[n] es una secuencia de 2 lados, el ROC es un anillo en el plano Z limitado por 2 polos y no contiene ningún polo.

8. El ROC es una región conectada no pueden haber regiones separadas.

Propiedades de la Transformada Z

Linealidad

$$x_1[n] \overset{\mathcal{Z}}{\longleftrightarrow} X_1(z), \quad \mathsf{ROC} = R_{x_1} \\ x_2[n] \overset{\mathcal{Z}}{\longleftrightarrow} X_2(z), \quad \mathsf{ROC} = R_{x_2} \\ \end{aligned} \implies ax_1[n] + bx_2[n] \overset{\mathcal{Z}}{\longleftrightarrow} aX_1(z) + bX_2(z)$$

El nuevo ROC incluye $R_{\chi_1} \cap R_{\chi_2}$.

Nota: Si $R_{\chi_1} \cap R_{\chi_2} = \emptyset$ entonces la transformada de la suma no existe.

Desplazamiento en el tiempo

$$x[n-n_o] \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-n_o}X(z)$$

El ROC resultante puede añadir o eliminar polos en z = 0 o $z = \infty$.

Propiedades de la Transformada Z

Multiplicación por una secuencia exponencial

$$z_o^n x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z/z_o)$$
, ROC = $|z_o| R_x$.

Diferenciación en el dominio Z

$$nx[n] \xrightarrow{\mathcal{Z}} -z \frac{dX(z)}{dz}$$
, el ROC se mantiene igual al original.

Conjugación de una secuencia compleja

$$x^*[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X^*(z^*), ROC = R_x$$
.

Inversión temporal

$$x[-n] \stackrel{\mathscr{Z}}{\longleftrightarrow} X(1/z), \text{ROC} = \frac{1}{R_x}.$$

Propiedades de la Transformada Z

Convolución

$$x_1[n] * x_2[n] \xrightarrow{\mathcal{Z}} X_1(z)X_2(z)$$
, cuyo ROC contiene $R_{x_1} \cap R_{x_2}$.

Demostración:

Dado
$$y[n] = \sum_{k=-\infty}^{\infty} x_1[k]x_2[n-k]$$
 tenemos que

$$Y(z) = \sum_{n=-\infty}^{\infty} \left\{ \sum_{k=-\infty}^{\infty} x_1[k] x_2[n-k] \right\} z^{-n}$$

$$= \sum_{k=-\infty}^{\infty} x_1[k] \sum_{n=-\infty}^{\infty} x_2[n-k] z^{-n} = \sum_{k=-\infty}^{\infty} x_1[k] \sum_{m=-\infty}^{\infty} x_2[m] z^{-(m+k)}$$

$$= \sum_{k=-\infty}^{\infty} x_1[k] z^{-k} \sum_{m=-\infty}^{\infty} x_2[m] z^{-m} = X_1(z) X_2(z).$$

Representación de un Sistema LTI

Un sistema LTI queda completamente caracterizado por su respuesta impulsiva h[n] tal que su salida y[n] para una entrada x[n] está dada por

$$y[n] = h[n] * x[n].$$

Aplicando la propiedad de convolución de la transformada Z podemos escribir

$$Y(z) = H(z)X(z)$$

donde H(z) es la transformada Z de la respuesta impulsiva h[n] y se le conoce como la función de transferencia del sistema.

Representación de un Sistema LTI

Dado un sistema LTI caracterizado por una ecuación de diferencias,

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k],$$

podemos tomar la la transformada Z de ambos lados de la ecuación y obtener que

$$\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z) \implies H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}.$$

En este caso, la función de transferencia H(z) tiene la forma de un quebrado de polinomios y se puede calcular su correspondiente respuesta impulsiva h[n] aplicando la transformada inversa.

Nota: Y(z) = H(z)X(z) es la transformada Z de la salida y[n] del sistema cuando este se encontraba inicialmente en reposo.

Causalidad y estabilidad

Un sistema LTI es causal si la respuesta impulsiva h[n] satisface la condición

$$h[n] = 0, \qquad n < 0.$$

Un sistema LTI es causal \iff el ROC de la función de transferencia H(z) es el exterior de un círculo (de radio r) que incluye $z=\infty$.

Nota: $\lim_{z\to\infty} H(z) < \infty$.

Causalidad y estabilidad

Teorema de valor inicial

Si x[n] es causal entonces

$$x[0] = \lim_{z \to \infty} X(z) .$$

Prueba: Dado que x[n] es causal, tenemos que

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n} = x[0] + x[1]z^{-1} + x[2]z^{-2} + x[3]z^{-3} + \dots$$

Obviamente, si $z \to \infty$ entonces $z^{-n} \to 0$ para n > 0,

$$\implies \lim_{z \to \infty} X(z) = x[0].$$

Causalidad y estabilidad

Un sistema LTI es BIBO estable \iff el ROC de la función de transferencia H(z) incluye el círculo unitario.

Es decir si y solo si la $DTFT\{h[n]\}$ existe, ya que

$$H(z)|_{z=e^{j\omega}} = DTFT\{h[n]\}$$
.

Nota: $|H(\omega)| < \infty$ implica que $\sum |h[n]| < \infty$.

Causalidad y estabilidad - Notas

- 1. Estabilidad no implica causalidad o viceversa.
- 2. Si el sistema es causal, la condición de BIBO estabilidad puede expresar de la siguiente forma.

Un sistema LTI causal es BIBO estable \iff Todos los polos de H(z) están dentro del círculo unitario.

Respuesta de un sistema que no está inicialmente en reposo

Dado un sistema discreto caracterizado por

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k],$$

que no se encuentra inicialmente en reposo (condiciones iniciales diferentes de cero), consideremos que la transformada Z de lado derecho de la salida toma la siguiente forma

$$Y^{+}(z) = \sum_{n=0}^{\infty} y[n] z^{-n}.$$

Además, asumiendo que x[n] es causal tal que $X^+(z) = X(z)$, tenemos que

$$\mathcal{Z}^+ \left\{ \sum_{k=0}^N a_k y[n-k] \right\} = \mathcal{Z}^+ \left\{ \sum_{k=0}^M b_k x[n-k] \right\}.$$

Respuesta de un sistema que no está inicialmente en reposo

Operando, tenemos que

$$\sum_{k=0}^{N} a_k \sum_{n=0}^{\infty} y[n-k]z^{-n} = \sum_{k=0}^{M} b_k \sum_{n=0}^{\infty} x[n-k]z^{-n}.$$

En esta expresión tenemos que

$$\sum_{n=0}^{\infty} y[n-k]z^{-n} = z^{-k} \sum_{n=0}^{\infty} y[n-k]z^{-(n-k)} = z^{-k} \sum_{n=-k}^{\infty} y[n]z^{-n} = z^{-k} \left\{ Y^{+}(z) + \sum_{n=-k}^{-1} y[n]z^{-n} \right\}$$

$$\sum_{n=0}^{\infty} x[n-k]z^{-n} = z^{-k}X(z).$$

Reemplazando términos tenemos que

$$\sum_{k=0}^{N} a_k z^{-k} \left\{ Y^+(z) + \sum_{n=1}^{k} y[-n] z^n \right\} = \sum_{k=0}^{M} b_k z^{-k} X(z) .$$

Respuesta de un sistema que no está inicialmente en reposo

Agrupando términos finalmente tenemos que

$$Y^{+}(z) = \frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}} X(z) - \frac{\sum_{k=1}^{N} a_{k} z^{-k} \left\{ \sum_{n=1}^{k} y[-n] z^{n} \right\}}{\sum_{k=0}^{N} a_{k} z^{-k}} = H(z)X(z) + \frac{N_{o}(z)}{A(z)}.$$

H(z)X(z) corresponde a la respuesta de estado cero o inicialmente en reposo (respuesta particular o forzada).

 $N_o(z)/A(z)$ corresponde a la respuesta de entrada cero (respuesta característica u homogénea).

Para obtener y[n], para $n \ge 0$, debemos tomar la transformada inversa de $Y^+(z)$.

Métodos para el cálculo de la transformada Z inversa

La transformada Z inversa está definida como una integral de Cauchy,

$$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz,$$

donde la curva cerrada C debe estar dentro del ROC.

Métodos para el cálculo de la transformada Z inversa:

- 1. Evaluación de la integral de Cauchy (teorema del residuo)
- 2. Por inspección simple
- 3. Expansión en fracciones parciales
- 4. Expansión en series de potencia

Expansión en fracciones parciales

Dado

$$X(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}},$$

podemos reescribir X(z) de la siguiente forma

$$X(z) = \frac{b_0 \prod_{k=1}^{M} (1 - c_k z^{-1})}{a_0 \prod_{k=1}^{N} (1 - d_k z^{-1})},$$

donde c_k son ceros de X(z) y d_k son polos de X(z).

Expansión en fracciones parciales

Si M < N y los polos son de primer orden, entonces

$$X(z) = \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}}, \text{ donde } A_k = (1 - d_k z^{-1})X(z) \Big|_{z = d_k}.$$

Para determinar x[n] debemos definir el ROC de X(z).

Recordar que $X(z) = \frac{1}{1 - az^{-1}}$ tiene dos posibles inversas según el ROC,

$$|z| > |a| \Longrightarrow x[n] = a^n u[n],$$

 $|z| < |a| \Longrightarrow x[n] = -a^n u[-n-1].$

Expansión en fracciones parciales - Ejemplo

Dado

$$X(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})(1 - \frac{1}{2}z^{-1})}, \qquad |z| > \frac{1}{2}$$

tenemos que

$$X(z) = \frac{A_1}{1 - \frac{1}{4}z^{-1}} + \frac{A_2}{1 - \frac{1}{2}z^{-1}}.$$

Calculando los coeficientes A_1 y A_2 obtenemos

$$A_1 = (1 - \frac{1}{4}z^{-1})X(z)\Big|_{z = \frac{1}{4}} = \frac{1}{1 - \frac{1}{2} \cdot 4} = -1 \quad \text{y} \quad A_2 = (1 - \frac{1}{2}z^{-1})X(z)\Big|_{z = \frac{1}{2}} = \frac{1}{1 - \frac{1}{4} \cdot 2} = 2.$$

Expansión en fracciones parciales - Ejemplo

Entonces

$$X(z) = \frac{-1}{1 - \frac{1}{4}z^{-1}} + \frac{2}{1 - \frac{1}{2}z^{-1}},$$

luego

$$x[n] = -\left(\frac{1}{4}\right)^n u[n] + 2\left(\frac{1}{2}\right)^n u[n].$$

Expansión en fracciones parciales

• Si $M \ge N$ y los polos son de primer orden, entonces

$$X(z) = \sum_{r=0}^{M-N} B_r z^{-r} + \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}}, \text{ donde } A_k = (1 - d_k z^{-1})X(z) \Big|_{z=d_k}.$$

 B_r se obtiene a partir de divisiones sucesivas del numerador y denominador, el proceso termina cuando el residuo es de grado menor que el denominador. Nota: $B_r z^{-r} \stackrel{\mathcal{Z}^{-1}}{\Longleftrightarrow} B_r \delta[n-r]$.

• Si $M \ge N$ y hay un polo $z = d_i$ de orden s, entonces

$$X(z) = \sum_{r=0}^{M-N} B_r z^{-r} + \sum_{k=1,\,k\neq i}^{N} \frac{A_k}{1-d_k z^{-1}} + \sum_{m=1}^{s} \frac{C_m}{(1-d_i z^{-1})^m}\,,$$
 donde
$$C_m = \frac{1}{(s-m)!(-d_i)^{s-m}} \left\{ \frac{d^{s-m}}{dw^{s-m}} (1-d_i z^{-1})^s X(w^{-1}) \right\}_{w=d_i^{-1}}.$$

 B_r y A_k son calculados de misma forma que arriba. Nota: $nx[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} -z \frac{d}{dz}X(z)$.

Expansión en fracciones parciales - Ejemplo

Calculando B_o :

$$X(z) = 2 + \frac{5z^{-1} - 1}{(1 - \frac{1}{2}z^{-1})(1 - z^{-1})} = 2 + \frac{A_1}{1 - \frac{1}{2}z^{-1}} + \frac{A_2}{1 - z^{-1}},$$

Expansión en fracciones parciales - Ejemplo

Calculando A_1 y A_2 :

$$A_1 = \frac{5z^{-1} - 1}{1 - z^{-1}} \bigg|_{z=1/2} = -9, \quad \text{y} \quad A_2 = \frac{5z^{-1} - 1}{1 - \frac{1}{2}z^{-1}} \bigg|_{z=1} = 8.$$

Entonces

$$X(z) = 2 - \frac{9}{1 - \frac{1}{2}z^{-1}} + \frac{8}{1 - z^{-1}}.$$

Considerando |z| > 1, entonces $x[n] = 2\delta[n] - 9\left(\frac{1}{2}\right)^n u[n] + 8u[n]$.

Expansión por series de potencia

Dada la transformada Z

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

tenemos que

$$X(z) = \dots + x[-2]z^2 + x[-1]z^1 + x[0] + x[1]z^{-1} + x[2]z^{-2} + \dots$$

Los valores de x[n] se pueden encontrar a partir de expresar X(z) como una serie de potencias de z.

Expansión por series de potencia

Ejemplo: Dada la función logarítmica

$$X(z) = \log(1 + az^{-1}), |z| > |a|.$$

Usando la expansión de log(1 + x) para |x| < 1 tenemos que

$$X(z) = \sum_{n=1}^{\infty} \frac{(-1)^n a^n}{n} z^{-n}.$$

Luego,

$$x[n] = \begin{cases} \frac{(-1)^n a^n}{n}, & n \ge 1, \\ 0, & n \le 0. \end{cases}$$

Expansión por series de potencia

Ejemplo: Fracciones de polinomios

$$X(z) = \frac{1}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}} = \frac{1}{(1 - \frac{1}{2}z^{-1})(1 - z^{-1})}.$$

* ROC: |z| > 1 (causal)

$$1 \div \left(1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}\right) = \underbrace{1}_{x[0]} + \underbrace{\frac{3}{2}}_{x[1]} z^{-1} + \underbrace{\frac{7}{4}}_{x[2]} z^{-2} + \dots$$

* ROC: $|z| < \frac{1}{2}$ (no causal)

$$1 \div \left(\frac{1}{2}z^{-2} - \frac{3}{2}z^{-1} + 1\right) = \underbrace{2}_{x[-2]} z^2 + \underbrace{6}_{x[-3]} z^3 + \underbrace{14}_{x[-4]} z^4 + \dots$$

Expansión por series de potencia

* ROC: |z| > 1 (causal)

$$1 \div \left(1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}\right) = \underbrace{1}_{x[0]} + \underbrace{\frac{3}{2}}_{x[1]} z^{-1} + \underbrace{\frac{7}{4}}_{x[2]} z^{-2} + \dots$$

$$\frac{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}}{1 + \frac{3}{2}z^{-1} + \frac{7}{4}z^{-2} + \dots}$$

Expansión por series de potencia

* ROC: $|z| < \frac{1}{2}$ (no causal)

$$1 \div \left(\frac{1}{2}z^{-2} - \frac{3}{2}z^{-1} + 1\right) = \underbrace{2}_{x[-2]} z^2 + \underbrace{6}_{x[-3]} z^3 + \underbrace{14}_{x[-4]} z^4 + \dots$$

Muchas gracias!