Week 5 Wednesday highlights

• Compare sets using one-to-one, onto, and invertible functions.

-(i) Aug 3

• Define cardinality using one-to-one, onto, and invertible functions.

- (ii) Aug &

• Differentiate between important sets of numbers

Reasoning about the cardinality of sets

A finite set is one whose distinct elements can be counted by a natural number.

Examples of finite sets: \emptyset , $\{\sqrt{2}\}$

An **infinite** set is a set that is not finite. *Examples of infinite sets*:

The set of integers

The set of positive integers

The set of nonnegative integers

 $\left\{ \begin{array}{c} \{\dots,-2,-1,0,1,2,\dots\} \\ \{1,2,\dots\} \\ \{0,1,2,\dots\} \end{array} \right.$ $\left\{ \begin{array}{c} \frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z} \text{ and } q \neq 0 \right\} \end{array}$

The set of rational numbers

The set of real numbers

The **cardinality** of a set A is the size of the set and is denoted by |A|.

The cardinality of a finite set is the number of distinct elements in A.

Can we use the subset relationship to reason about the relative cardinality of sets?

 $A = \{1, 2, 3\}$ $B = \{1, 2, 3, 4\}$ $A \subset B \implies |A| < |B| \implies we can say this since <math>A \lor R$ are countably finite

Motivating question: Are some of the above sets bigger than others?

Analogy: Musical chairs

People try to sit down when the music stops

Person♥ sits in Chair 1, Person® sits in Chair 2,

Person⊙ is left standing!

What does this say about the number of chairs and the number of people?

Defining functions A function is defined by its (1) domain, (2) codomain, and (3) rule assigning each element in the domain exactly one element in the codomain. The domain and codomain are nonempty sets. The rule can be depicted as a table, formula, English description, etc.

(zyBooks 2.3, Rosen p139)

Example: $f_A: \mathbb{R}^+ \to \mathbb{Q}$ with $f_A(x) = x$ is **not** a well-defined function because

 π $f_A(\pi)$ is undefined because $\pi \notin Q$

Example: $f_B: \mathbb{Q} \to \mathbb{Z}$ with $f_B\left(\frac{p}{q}\right) = p + q$ is **not** a well-defined function because

$$\frac{f_{2}}{2} = \frac{1}{4} = \frac{1}{2} \qquad f_{B}(\frac{2}{4}) = f_{B}(\frac{1}{2}) = 6$$

$$f_{B}(\frac{1}{2}) = 3$$

Example: $f_C: \mathbb{Z} \to \mathbb{R}$ with $f_C(x) = \frac{x}{|x|}$ is **not** a well-defined function because

x=0 division by 0 is not defined

Definition (zyBooks 9.1, Rosen p141): A function $f: D \to C$ is **one-to-one** (or injective) means for every a, b in the domain D, if f(a) = f(b) then a = b.

Definition: For sets A, B, we say that the cardinality of A is no bigger than the cardinality of B, and write $|A| \leq |B|$, to mean there is a one-to-one function with domain A and codomain B.

In the analogy: The function $sitter: \{Chair1, Chair2\} \rightarrow \{Person \heartsuit, Person \heartsuit, Person \heartsuit\}$ given by $sitter(Chair1) = Person \heartsuit$, $sitter(Chair2) = Person \heartsuit$, is one-to-one and witnesses that

is a onl-one
$$|\{Chair1, Chair2\}| \leq |\{Person \otimes, Person \otimes, Person \otimes\}|$$

Let S_2 be the set of RNA strands of length 2.

Statement	True/False, justification
$ \{\mathtt{A},\mathtt{U},\mathtt{G},\mathtt{C}\} \leq S_2 $	Refine a one-one for $f: \{A, U, G_1, C\} \longrightarrow S_2$ should be well-defined
	$\forall x \in SA, U, G, C \subseteq f(x) = XX$ observe that $XX \notin S_2$ since AA, UU, GG, CC $GA \longrightarrow GA$ $GA \longrightarrow $
$ \{\mathtt{A},\mathtt{U},\mathtt{G},\mathtt{C}\}\times\{\mathtt{A},\mathtt{U},\mathtt{G},\mathtt{C}\} \leq S $	1/A, U, G, C } \(\sigma \) \
	Thee $f: \{A,U,G,C\} \times \{A,U,G,C\} \longrightarrow S_2$
	$f(x) = x$ since $S_2 = \{A, U, G, C\} \times \{A, U, G, C\}$ by definition.

Definition (Rosen p143): A function $f: D \to C$ is **onto** (or surjective) means for every b in the codomain, there is an element a in the domain with f(a) = b.

every element in C in mapped to some element in D. Formally, $f: D \to C$ is onto means $4b \in C = b$

Definition: For sets A, B, we say that the cardinality of A is no smaller than the cardinality of B, and write $|A| \geq |B|$, to mean there is an onto function with domain A and codomain B.

In the analogy: The function $triedToSit: \{Person \heartsuit, Person \heartsuit, Person \heartsuit\} \rightarrow \{Chair1, Chair2\}$ given by $triedToSit(Person \mathfrak{D}) = Chair1, triedToSit(Person \mathfrak{D}) = Chair2, triedToSit(Person \mathfrak{D}) = Chair2, is$ onto and witnesses that

$$|\{Person \heartsuit, Person \heartsuit, Person \heartsuit\}| \ge |\{Chair1, Chair2\}|$$

Let S_2 be the set of RNA strands of length 2.

Statement	True/False, justification
$ S_2 \geq \{\mathtt{A},\mathtt{U},\mathtt{G},\mathtt{C}\} $	True onto for $f: S_2 \longrightarrow \{A, U, G, C\}$ If χ let $\chi = C \cdot \chi'$ where $e: first$ letter in χ $\chi = \chi = C \cdot \chi'$ where $\chi = C \cdot \chi'$ $\chi = \chi = C \cdot \chi'$
	Yx let $\mathcal{H} = C \cdot \mathcal{H}'$ where $e = first$ letter in \mathcal{H}
$ S_2 \geq \{\mathtt{A},\mathtt{U},\mathtt{G},\mathtt{C}\} \times \{\mathtt{A},\mathtt{U},\mathtt{G},\mathtt{C}\} $	
	$f: S_z \longrightarrow \{A, V, G, C\}$ $\times \{A, V, G, C\}$
	YutSz f(n) = x
	infact f'is one-one ly onto.

can also say for is bijective

Definition (Rosen p144): A function $f: D \to C$ is a **bijection** means that it is both one-to-one and onto. The **inverse** of a bijection $f: D \to C$ is the function $g: C \to D$ such that g(b) = a iff f(a) = b.

Example of a bijective function

$$\{A,U,G,C\}$$
 $\times \{A,U,G,C\}$ \longrightarrow S_2
 $\{A,U,G,C\}$ \longrightarrow $\{A,U,G\}$ \longrightarrow \longrightarrow $\{A,U,G\}$ \longrightarrow $\{A,U,G\}$ \longrightarrow \emptyset \longrightarrow

For nonempty sets A, B we say

 $|A| \leq |B|$ means there is a one-to-one function with domain A, codomain B

 $|A| \geq |B|$ means there is an onto function with domain A, codomain B

|A| = |B| means there is a bijection with domain A, codomain B

Cantor-Schroder-Bernstein Theorem: For all nonempty sets,

$$|A| = |B|$$
 if and only if $(|A| \le |B| \text{ and } |B| \le |A|)$ if and only if $(|A| \ge |B| \text{ and } |B| \ge |A|)$

To prove |A| = |B|, we can do any **one** of the following

- Prove there exists a bijection $f: A \to B$;
- Prove there exists a bijection $f: B \to A$;
- Prove there exists two functions $f_1: A \to B$, $f_2: B \to A$ where each of f_1, f_2 is one-to-one.
- Prove there exists two functions $f_1: A \to B$, $f_2: B \to A$ where each of f_1, f_2 is onto.

True or False?
$$|Z^{+}| = |Z^{-}|$$

Thul

$$\int_{ADF} : f : Z \longrightarrow Z^{+}$$

$$T.S.1: f in a bijection$$

$$\forall x \in Z \quad f(x) = |X| \quad [::ex f(-1) = |-1| = 1]$$
(i) f is one-one
$$f_{9i} \in Z \quad \forall x_{2} \in Z^{-} \quad f(x_{1}) = f(x_{2}) \longrightarrow x_{1} = x_{2}$$
So, $|x_{1}| = |x_{2}|$ since x_{1}, x_{2} are $x_{1} = x_{2}$ integers, $x_{1} = x_{2}$

(ii) f is onto $\forall 1_2 \in \mathbb{Z}^+ \ni x_i \in \mathbb{Z}^- \not= f(x_i) = x_2$ Let x_2 be an arbitrary element in \mathbb{Z}^+ then $f(-x_2) = x_2$ thad since $x_3 \in \mathbb{Z}^+, -x_2 \in \mathbb{Z}^ y : \exists x_i = -x_2$ It $f(x_i) = x_2$ Using (ii) $y \in \mathbb{Z}$ by eating.

A set A is **finite** means it is empty or it is the same size as $\{1,\ldots,n\}$ for some $n\in\mathbb{N}$. A set A is **countably infinite** means it is the same size as \mathbb{N} .

Examples of countably infinite sets:

Negative integers
$$\mathbb{Z}^ \mathbb{Z}^-$$
 in countably infinite sets:

List: $-1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11...$

$$f: \mathbb{N} \to \mathbb{Z}^- \text{ with } f(n) = -n - 1$$

Proof. We need to show it is a well-defined function that is one-to-one and onto.

• Well-defined?

Claim: f is a bijection.

Consider an arbitrary element of the domain, $n \in \mathbb{N}$. We need to show it maps to exactly one element of \mathbb{Z}^- .

Corollary: $|\mathbb{N}| = |\mathbb{Z}^-|$

$$f(n) = -n - 1$$

$$-n - 1 \in \mathbb{Z}$$

$$since \ n \ge 0$$

$$(4 - n - 1 \le -1)$$

HaEN HOEN fla)=flb) -> a=b • One-to-one?

Consider arbitrary elements of the domain $a, b \in \mathbb{N}$. We need to show that

$$f(a) = f(b) = -a - 1 = -b - 1$$

$$\Rightarrow -a = -b$$

$$\Rightarrow a = b$$

$$\therefore f \text{ is one-one}$$

$$\forall b \in \mathbb{Z}^- \exists a \in \mathbb{N} \quad f(a) = b$$

• Onto?

Consider arbitrary element of the codomain $b \in \mathbb{Z}^-$. We need witness in \mathbb{N} that maps to b.

Want
$$f(a)=b$$
 $(i-e) - a-1=b$
 $\Rightarrow a+1=-b$
 $\Rightarrow (a=-b-1)$
 $\Rightarrow (a=-b-1)$
 $\Rightarrow (a=-b-1)$

Discrete Mathematics Material created by Mia Minnes and Joe Politz is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License. Adapted for CMPSC40 by Diba Mirza.