lineare Regression

Überblick

- 1. Einsatzgebiet
- Vorhersage über
 Methode der kleinsten
 Quadrate
- 3. Regressionsgleichung
- 4. Voraussetzungen

- 5. Güte der Vorhersage
 - Standardschätzfehler
 - Konfidenzintervall
- 6. Kreuzvalidierung
- 7. Regression zur Mitte

1. Sinn & Zweck

- Vorhersage einer Variable durch eine andere
 - vorherzusagende Variable (y) =
 - zur Vorhersage verwendete Variable (x) =
- Bsp: Vorhersage...
 - durch
 - durch

2. Vorhersage-Prinzip

Methode der kleinsten Quadrate

 Regressionsgerade wird so durch die Punktewolke gelegt, daß der quadrierte Vorhersagefehler über alle Probanden minimal ist:

$$\sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = min$$

3. Regressionsgleichung I

Beispiel

$$\hat{y}_i = 0.20 \cdot x_i + 1.00$$

Für Patientin mit einem Depressionswert von 20 soll der Ängstlichkeitswert geschätzt werden:

Regressionsgleichung II

$$b_{yx} = r_{xy} \cdot \frac{s_y}{s_x}$$

$$a_{yx} = \overline{y} - b_{yx} \cdot \overline{x}$$

$$0$$

$$1$$

$$2$$

$$3$$

4. Vorraussetzungen

1.

2

3

4.

5

6.

5. Güte der Vorhersage: Standardschätzfehler

_

lacktriangle

•

Standardschätzfehler: Formeln

• Stichprobe:

Populationsschätzung:

$$s_{y.x} = s_y \cdot \sqrt{1 - r_{xy}^2}$$

$$\hat{\sigma}_{y.x} = \sqrt{\frac{N}{N-2}} \cdot s_{y.x}$$

- nimmt ab (Schätzung wird genauer!):
 - _

 - _

Konfidenzintervall

- = Bereich, in dem ein wahrer Wert mit einer bestimmten Wahrscheinlichkeit liegt.
- Bei normalverteilten Variablen liegen 95% aller Werte in einem Bereich von Mittelwert ± 1.96 Standardabweichungen.

Aus der z-Tabelle:

$$z(p=0.025) = -1.96$$

$$z(p=0.975)=1.96$$

Konfidenzintervall

- Über den Standardschätzfehler, kann ein Konfidenzintervall berechnet werden, in dem mit bspw. 95%iger Wahrscheinlichkeit der wahre y-Wert liegt
- Stichprobe:

$$KI = \hat{y}_i \pm 1.96 \cdot s_{y.x}$$

• Populationsschätzung:

$$KI = \hat{y}_i \pm 1.96 \cdot \hat{\sigma}_{y.x}$$

6. Kreuzvalidierung: Überprüfung der externen Validität

- (1)Berechnung der Regressionsgleichung R₁anhand der Stichprobe S₁.
- (2)Anwendung der Regressiongleichung R₁ auf die zweite Stichprobe S₂.
- (3) Vergleich der vorhergesagten Kriteriumswerte mit den wahren Kriteriumswerten in S₂.

Berechnung der Regressionsgleichung R₂ anhand der Stichprobe S₂.

Anwendung der Regressiongleichung R₂ auf die Stichprobe S₁.

Vergleich der vorhergesagten Kriteriumswerte mit den wahren Kriteriumswerten in S₁.

7. Regression zur Mitte

- Problem, wenn bei wiederholter Messung die Personen der Stichprobe zu Beginn Extremwerte haben.
- Dann findet man statistisch einen Zusammenhang, der teilweise zufällig entstanden ist.

Übersicht über Abweichungen

- Varianz/
 Standardabweichung
 - Maß für Streuung individueller Werte

$$\hat{\sigma}_{x}^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}}{N - 1}$$

- Standardfehler
 - Maß für Streuung der Stichprobenkennwerteverte ilung (Mittelwert, Median)
 - Konfidenzintervall

$$\widehat{\sigma}_{\overline{x}} = \sqrt{\frac{\widehat{\sigma}_{x}^{2}}{N}} = \frac{\widehat{\sigma}_{x}}{\sqrt{N}}$$

- Standardschätzfehler
 - Maß für Streuung tatsächlicher y-Werte um Regressionsgerade
 - Konfidenzintervall

$$\hat{\sigma}_{y.x} = \sqrt{\frac{n}{n-2}} \cdot s_{y.x}$$