

Olimpiada Națională de Matematică Etapa Națională, Iași, 16 aprilie 2022

CLASA a VIII-a

Problema 1. a) Arătați că, dacă $a,b \in [1,\infty)$, atunci $\frac{1}{1+a^2} + \frac{1}{1+b^2} \geqslant \frac{2}{1+ab}$.

b) Fie $x,y,z\in[0,\infty)$, cu proprietatea că 2x+2y+2z+xy+yz+zx=9. Arătați că:

$$\frac{1}{x^2 + 2x + 2} + \frac{1}{y^2 + 2y + 2} + \frac{1}{z^2 + 2z + 2} \geqslant \frac{3}{5}.$$

Problema 2. Fie $a, b \in \mathbb{R}$ cu proprietatea că $|ax + b| \leq 1$, pentru orice $x \in [-1, 1]$.

- a) Arătați că $|a^2 + ab + 2b| \leq 2$.
- b) Aflați numerele a și b pentru care $|a^2 + ab + 2b| = 2$.

Problema 3. În interiorul cubului ABCDA'B'C'D' se consideră piramida patrulateră regulată SABCD cu baza ABCD, astfel încât $\sphericalangle((SA'B'), (SC'D')) = 30^\circ$. Fie punctul M pe latura A'D' pentru care $\sphericalangle A'B'M = 30^\circ$.

- a) Aflați unghiul dintre apotema piramidei SABCD și planul (ABC).
- b) Determinați tangenta unghiului dintre planele (MAB') și (SAB).

Problema 4. Se consideră numărul natural n, cu $n \ge 2$. Spunem că numărul S este special, dacă pentru orice scriere a lui n sub forma $n = n_1 + n_2 + \ldots + n_k$, cu $k, n_1, n_2, \ldots, n_k \in \mathbb{N}^*$ și $n_1 \le n_2 \le \ldots \le n_k$, există numerele $a_1, a_2, \ldots, a_k \in \mathbb{N}$, astfel încât $a_1 < a_2 < \ldots < a_k$ și $a_1n_1 + a_2n_2 + \ldots + a_kn_k = S$.

- a) Arătați că numărul $n^2 2n$ nu este special.
- b) Aflați toate numerele speciale.

Olimpiada Națională de Matematică Etapa Națională, Iași, 16 aprilie 2022

CLASA a VIII-a – soluții și bareme

Problema 1.

- a) Arătați că, dacă $a,b \in [1,\infty)$, atunci $\frac{1}{1+a^2} + \frac{1}{1+b^2} \geqslant \frac{2}{1+ab}$.
- b) Fie $x, y, z \in [0, \infty)$ cu proprietatea că 2x + 2y + 2z + xy + yz + zx = 9. Arătați că:

$$\frac{1}{x^2+2x+2}+\frac{1}{y^2+2y+2}+\frac{1}{z^2+2z+2}\geqslant \frac{3}{5}.$$

Soluție. a) Inegalitatea este echivalentă cu $(a-b)^2(ab-1) \ge 0$. Deoarece $ab \ge 1$, inegalitatea

b) Egalitatea
$$2x + 2y + 2z + xy + yz + zx = 9$$
 este echivalentă cu:

$$(x+1)(y+1)+(y+1)(z+1)+(z+1)(x+1)=12.$$
 1p

Fie a = x + 1, b = y + 1, c = z + 1. Inegalitatea de demonstrat se rescrie

$$\frac{1}{1+a^2} + \frac{1}{1+b^2} + \frac{1}{1+c^2} \geqslant \frac{3}{5},\tag{1}$$

unde numerele reale $a, b, c \ge 1$ verifică relația ab + bc + ca = 12.

Folosind punctul a), obtinem succesiv:

$$\frac{1}{1+a^2} + \frac{1}{1+b^2} \geqslant \frac{2}{1+ab}, \quad \frac{1}{1+b^2} + \frac{1}{1+c^2} \geqslant \frac{2}{1+bc} \quad \text{si} \quad \frac{1}{1+c^2} + \frac{1}{1+a^2} \geqslant \frac{2}{1+ca}.$$

Adunând membru cu membru inegalitățile precedente, deducem că:
$$\frac{1}{1+a^2} + \frac{1}{1+b^2} + \frac{1}{1+c^2} \geqslant \frac{1}{1+ab} + \frac{1}{1+bc} + \frac{1}{1+ca} \ (2) \ \dots \ \mathbf{2p}$$

Utilizând inegalitatea dintre media aritmetică și media armonică pentru numerele 1 + ab, 1 + bc și 1 + ca, deducem că:

$$\frac{1}{1+ab} + \frac{1}{1+bc} + \frac{1}{1+ca} \geqslant \frac{9}{(1+ab) + (1+bc) + (1+ca)} = \frac{3}{5},$$

Problema 2. Fie $a, b \in \mathbb{R}$ cu proprietatea că $|ax + b| \leq 1$, pentru orice $x \in [-1, 1]$.

- a) Arătați că $|a^2 + ab + 2b| \leq 2$.
- b) Aflati numerele a și b pentru care $|a^2 + ab + 2b| = 2$.

Înlocuind x = 1 și apoi x = -1, din ipoteză obținem $|a + b| \le 1$ și $|a - b| \le 1$.

Rezultă că și
$$\frac{a+b}{2} \in [-1,1]$$
. Obținem $\left| a \cdot \frac{a+b}{2} + b \right| \leqslant 1$, adică $\left| a^2 + ab + 2b \right| \leqslant 2$ **1p**

b) Pentru a=0, din $|a^2+ab+2b|=2$ obținem $b\in\{-1,1\}$. Perechile (a,b)=(0,1) și (a,b)=(0,-1) verifică proprietatea

$$(\mathcal{P}): |ax+b| \leq 1$$
, pentru orice $x \in [-1, 1]$,

Vom arăta că, pentru $a \neq 0$, nu se obțin alte soluții. Presupunem, prin absurd, că există o

pereche (a,b) de numere reale, cu proprietatea (\mathcal{P}) , astfel încât $a \neq 0$ și $|a^2 + ab + 2b| = 2$. Considerăm funcția de gradul întâi $f: \mathbb{R} \to \mathbb{R}$, f(x) = ax + b. Egalitatea $|a^2 + ab + 2b| = 2$ este echivalentă cu $\left| f\left(\frac{a+b}{2}\right) \right| = 1$. Proprietatea (\mathcal{P}) se rescrie:

$$|f(x)| \leq 1$$
, pentru orice $x \in [-1, 1]$.

Singurele valori ale lui x pentru care este posibil ca |f(x)| = 1 sunt x = 1 și x = -1, deci este necesar fie ca $\frac{a+b}{2}=1$, fie ca $\frac{a+b}{2}=-1$ 2p

În prima situație, obținem a = b = 1, iar în cea de-a doua, deducem a = b = -1. Cu aceste valori ale lui $a ext{ si } b$, proprietatea din enunt devine

$$|x+1| \leq 1$$
, pentru orice $x \in [-1,1]$,

ceea ce este absurd, deoarece afirmatia precedentă este falsă (un contraexemplu este x=1). Ca urmare, presupunerea făcută este falsă, deci problema nu are soluții (a,b), cu $a \neq 0$. 1p

Problema 3. În interiorul cubului ABCDA'B'C'D' se consideră piramida patrulateră regulată SABCD cu baza ABCD, astfel încât $\sphericalangle((SA'B'),(SC'D'))=30^\circ$. Fie punctul M pe latura A'D' pentru care $\not < A'B'M = 30^\circ$.

- a) Aflați unghiul dintre apotema piramidei SABCD și planul (ABC).
- b) Determinați tangenta unghiului dintre planele (MAB') și (SAB).

Solutie.

b) Cum triunghiurile MA'A și MA'B' sunt congruente (C.C.), deducem că $\not \sim MAA' = 30^\circ$, deci $\not \sim MAD = 60^\circ$. Așadar $\not \sim (MA, (ABCD)) = \not \sim (SU, (ABCD)) = 60^\circ$.

Deoarece $AB \subset (SAB)$ și $AB \perp AM$, rezultă că $\sphericalangle((MAB'), (SAB)) = \sphericalangle(B'T, AB)$. Cum $A'B' \parallel AB$, rezultă că $\sphericalangle((MAB'), (SAB)) = \sphericalangle(B'T, A'B') = \sphericalangle(A'B'T, \dots 1p)$

Problema 4. Se consideră numărul natural n, cu $n \ge 2$. Spunem că numărul S este special, dacă pentru orice scriere a lui n sub forma $n = n_1 + n_2 + \ldots + n_k$, cu $k, n_1, n_2, \ldots, n_k \in \mathbb{N}^*$ și $n_1 \le n_2 \le \ldots \le n_k$, există numerele $a_1, a_2, \ldots, a_k \in \mathbb{N}$, astfel încât $a_1 < a_2 < \ldots < a_k$ și $a_1n_1 + a_2n_2 + \ldots + a_kn_k = S$.

- a) Arătati că numărul $n^2 2n$ nu este special.
- b) Aflați toate numerele speciale.

n-1. În consecință, $n^2-2n=a+b(n-1)\geqslant b(n-1)\geqslant (n-1)^2=n^2-2n+1$, fals.

Fie $S=t\cdot n$, cu $t\in\mathbb{N}$. Pentru k=2, $n_1=1$ și $n_2=n-1$, numărul n se scrie n=1+(n-1), și există $a_1,a_2\in\mathbb{N}$, cu $a_1< a_2$, astfel încât $S=t\cdot n=a_1+a_2(n-1)< a_2+a_2(n-1)=na_2$. Rezultă că $a_2>t$, deci $a_2\geqslant t+1$.

Din $t \cdot n = a_1 + a_2(n-1) \geqslant a_2(n-1) \geqslant (t+1)(n-1)$, obţinem $t \geqslant n-1$ 1p Arătăm că pentru orice $p \in \mathbb{N}$, cu $p \geqslant n-1$, numărul $S_p = pn$ este special.

Fie $k \in \mathbb{N}^*$ și $n_1, n_2, \dots, n_k \in \mathbb{N}^*$, $n_1 \leqslant n_2 \leqslant \dots \leqslant n_k$, astfel încât $n = n_1 + n_2 + \dots + n_k$. Avem:

$$S_{n-1} = n^2 - n = (n_1 + n_2 + \dots + n_k)^2 - (n_1 + n_2 + \dots + n_k) = n_1(n_1 - 1) + n_2(2n_1 + n_2 - 1) + n_3(2n_1 + 2n_2 + n_3 - 1) + \dots + n_k(2n_1 + 2n_2 + \dots + 2n_{k-1} + n_k - 1).$$

Pentru p > n-1, scriem $pn = n(n-1+p-n+1) = n(n-1)+n(p-n+1) = S_{n-1}+n(p-n+1)$. Cu numerele a_1, a_2, \ldots, a_k alese anterior, deducem că:

$$S_p = pn = a_1n_1 + a_2n_2 + \ldots + a_kn_k + (n_1 + n_2 + \ldots + n_k)(p - k + 1),$$

deci
$$S_p = (a_1 + p - k + 1) \cdot n_1 + (a_2 + p - k + 1) \cdot n_2 + \ldots + (a_k + p - k + 1) \cdot n_k$$
.
Pentru $A_1 = a_1 + p - n + 1, A_2 = a_2 + p - n + 1, \ldots, A_k = a_k + p - n + 1$, obținem $0 < A_1 < A_2 < \ldots < A_k$ și $S_p = A_1 n_1 + a_2 n_2 + \ldots + a_k n_k$.

Aşadar, pentru orice $p \in \mathbb{N}$, cu $p \geqslant n-1$, numerele $S_p = pn$ sunt speciale. 1p