WELCOME TO

Inferential Statistics

Population and Sample

The <u>population</u> we wish to study are always so large that we are unable to gather information from every case thus we choose a <u>sample</u> – a carefully chosen subset of the population.

We use information gathered from the cases in the sample to generalize to the population

A large community college has about 25,000 students. In a study of 85 students from college, it was determined that about 60 of the students have moderate or high math anxiety.

- The population is all the students at this college.
- The sample is the 85 students whose math anxiety was measured.

Statistical Hypothesis

Statistic:

Mathematical characteristics of samples.

Parameter:

Mathematical characteristics of populations.

Statistics are used to estimate parameters.

Statistic

x : sample means : sample standard deviation

Sample Statistic

Parameter

 μ : population mean

 σ : population standard deviation

Population Parameters

Statistical Hypothesis

Statistical Hypothesis: A claim about the value of a parameter or population characteristic.

Example Hypothesis:

- Average per student soda expenses in US high schools is 75 cents.
- d < 10 %, where d is the percentage of defective helmets for a given manufacturer.

Steps of a Hypothesis Test

Steps for hypothesis testing:

- 1. Formulate the hypothesis to be tested.
- 2. Determine the appropriate test statistic and calculate it using the sample data.
- 3. Comparison of test statistic to critical region to draw initial conclusions.
- 4. Calculation of p-value.
- 5. Conclusion, written in terms of the original problem.

Statistical Hypothesis - STEP 1

STEP 1 - Formulate the hypothesis to be tested.

Null vs Alternative Hypotheses

In any hypothesis-testing problem, there are always two competing hypotheses under consideration:

- 1. Null hypothesis (H_0) : A statement about the value of a population parameter that is assumed to be true for the purpose of testing.
- 1. <u>Alternative hypothesis</u> (H_1) : A statement about the value of a population parameter that is assumed to be true only if the Null Hypothesis is rejected during testing.

Example: A food company has a policy that stated weight match actual weight.

The quality control statistician decides to test the claim that a 16 ounce bottle of Soy sauce contains on average 16 ounces.

Ho: The mean amount of Soy Sauce is 16 ounces

Ha: The mean amount of Soy Sauce is not 16 ounces.

Ho: μ=16 Ha: μ ≠16

The Objective of Hypothesis Testing

We check if there strong evidence for the alternative hypothesis? We initially favour claim null hypothesis (H_0) will not be rejected unless the sample evidence provides significant support for the alternative assertion (H_a or H_1)

The two possible conclusions:

- 1. Reject H0.
- 2. Fail to reject H0.

Example: Paint Product

Example:

Suppose a company is considering marketing a new type of paint that it produces.

The true average wear life with the current paint is known to be 1000 hours. With μ denoting the true average life for the new paint, the company would not want to make any (costly) changes unless evidence strongly suggested that μ exceeds 1000.

An appropriate problem formulation would involve testing:

$$H_0$$
: μ = 1000 against H_a : μ > 1000.

For switching to the new paint represented by ${\rm H_a}$ -> It would take conclusive evidence to justify rejecting ${\rm H_0}$

Alternative hypothesis is the hypothesis that we are trying to prove and which is accepted if we have sufficient evidence to reject the null hypothesis.

Statistical Hypothesis - STEP 2

<u>STEP 2</u> - Determine the appropriate test statistic and calculate it using the sample data

Test Statistics

A test statistic is a rule, based on sample data, for deciding whether to reject H0.

The test statistic is a function of the sample data that will be used to make a decision about whether the null hypothesis should be rejected or not.

Example:

Company A produces circuit boards, but 10% of them are defective. Company B claims that they produce fewer defective circuit boards. Given is a random sample of circuit boards n = 200 from Company B.

$$H_0$$
: $p = .10$ versus H_a : $p < .10$

Which test statistic is "best"?

Choice of a particular test procedure must be based on the probability the test will produce incorrect results.

Errors in Hypothesis Testing

A type I error is when the null hypothesis is rejected despite of it being true.

A <u>type II error</u> is not rejecting H0 despite of H0 being false.

Example: Covid test kit

- False Negative = Test is Negative despite having Covid = type I error
- False Positive = Test is Positive despite not having Covid = type II error

	₩	
Decision	H_0 Is True	H_0 Is False
Fail to reject H_0	No error	Type II error
Reject H_0	Type I error	No error

Statistical Hypothesis - STEP 3

STEP 3 -Comparison of test statistic to critical region to draw initial conclusions

Level of Significance & Rejection Region

Level of Significance:

The probability of rejecting the null hypothesis when it is actually true - (signified by α)

Critical Region:

Region(s) of the Statistical Model which contain the values of the Test Statistic where the Null Hypothesis will be rejected.

We Specify the largest value of α that can be tolerated, and then find a rejection region with respect to α .

Critical Regions

Critical regions using z tests:

(a) upper-tailed test; (b) lower-tailed test; (c) two-tailed test

One-Tailed Tests of Significance

A test is one-tailed when the alternate hypothesis, Ha, states a direction, such as:

<u>H0</u>: The mean income of females is less than or equal to the mean income of males. <u>Ha</u>: The mean income of females is greater than males.

Equality is part of H₀

<u>Ha</u> determines which tail to test:

 H_a : $\mu > \mu_0$ means test upper tail.

 H_a : $\mu < \mu_0$ means test lower tail.

Left-tailed Test & Right-tailed Test

Two-Tailed Tests of Significance

A test is two-tailed when no direction is specified in the alternate hypothesis Ha, such as:

<u>H0</u>: The mean income of females is equal to the mean income of males.

Ha: The mean income of females is not equal to the mean income of the males.

Equality is part of H₀

<u>Ha</u> determines which tail to test:

 H_a : $\mu \neq \mu_0$ means test both tails.

Two-tailed test

Two-tailed test

 H_a contains the inequality \neq

Statistical Hypothesis - STEP 4

STEP 4 - Calculation of p-value

p-value in Hypothesis Testing

The p-value is the the probability, assuming that the null hypothesis is true, of getting a value of the test statistic - at least as extreme as the computed value.

So, the smaller the P-value, the more evidence there is in the sample data against the null hypothesis and for the alternative hypothesis.

- If the p-value is smaller than the significance level, H0 is rejected.
- If the p-value is larger than the significance level, H0 is not rejected.

Graphic where decision is to Reject Ho

EXAMPLE – Food Quantity

Example:

A food company has a policy that the stated contents of a product match the actual results.

A General Question might be "Does the stated net weight of a food product match the actual weight?"

The quality control statistician decides to test the 16 ounce bottle of Soy Sauce.

A sample of n=36 bottles will be selected hourly and the contents weighed. Assume $\alpha = 0.5$

Ho:
$$\mu$$
=16 Ha: $\mu \neq$ 16

The Statistical Model will be the one population test of mean using the Z Test Statistic and We will choose a significance level of 5%

Conduct Experiment – Food Quantity

Last hour a sample of 36 bottles had a mean weight of 15.88 ounces. From past data, assume the population standard deviation is 0.5 ounces.

Compute the Test Statistic:

$$Z = [15.88 - 16]/[.5/\sqrt{36}] = -1.44$$

For a two tailed test, The Critical Values are at $Z = \pm 1.96$

Decision – Critical Value Method

This two-tailed test has two Critical Value and Two Rejection Regions.

The significance level (a) must be divided by 2 so that the sum of both purple areas is 0.05

The Test Statistic does not fall in the Rejection Regions.

Decision is Fail to Reject Ho.

Statistical Hypothesis - STEP 5

STEP 5 - Conclusion, written in terms of the original problem

Converting Decision to Conclusion

Decision is Fail to Reject Ho.

- There is insufficient evidence to conclude that the mean amount of soy sauce being filled into bottles is not 16 ounces.
- There is insufficient evidence to conclude machine that fills 16 ounce soy sauce bottles is operating improperly.

Much obliged.

TECH I.S.

