Chapter 3 Assignment — Polynomial and Rational Functions: Strategies, Practice, and Challenges

Assignment: Chapter 3

Name:	Date:

How to use this set: Each topic begins with *Strategy Notes* and a *Worked Example* to model thinking for harder problems. Then try the *Practice* (skill-building) and the *Challenge* (beyond-exam) items. Show full reasoning and state domain restrictions when relevant.

1. Topic 1: Polynomial Functions and Their Graphs

Strategy Notes. Analyze end behavior using leading term, determine intercepts, and use symmetry or factoring where possible. Track multiplicity to predict whether a graph *crosses* or *touches* the axis at a zero.

Worked Example. Analyze $p(x) = -\frac{1}{2}(x-1)^2(x+2)^3$.

End behavior from the leading term $-\frac{1}{2}x^5$: as $x \to -\infty$, $p(x) \to +\infty$; as $x \to +\infty$, $p(x) \to -\infty$. Zeros: x = 1 (even multiplicity 2, the graph touches the axis) and x = -2 (odd multiplicity 3, the graph crosses with a flattening). y-intercept at x = 0: $p(0) = -\frac{1}{2}(-1)^2(2)^3 = -4$. Sketch using these features and the fact that a fifth-degree has at most four turning points.

Practice.

(a) For $g(x) = -(x-3)^2(x+1)(x+4)$, determine end behavior, all x- and y-intercepts, and whether the graph crosses or only touches at each intercept. Sketch a clean graph.

(b) Find a monic quartic whose graph has x-intercepts at -2 (double), 1 (simple), and 5 (simple). State the y-intercept and the number of local extrema.

(c) Suppose h(x) is a cubic with leading coefficient -3 and zeros -1 (double) and 4. Write h(x) in factored form and expand.

Assignment: Chapter 3

Challenge.

(a) Design a fifth-degree polynomial with integer coefficients whose only real zeros are -2 (multiplicity 2) and 3 (multiplicity 1), and whose graph has y-intercept -12. Give one possible formula and justify that it meets all conditions.

2. Topic 2: Dividing Polynomials — Long/Synthetic, Remainder, and Factor Theorems

Assignment: Chapter 3

Strategy Notes. Align powers for long division. For synthetic division, use the zero of the divisor. The Remainder Theorem gives f(c) as the remainder when dividing by (x-c); the Factor Theorem states (x-c) is a factor iff f(c) = 0.

Worked Example. Let $f(x) = 2x^5 - 5x^3 + 4x - 7$. Divide by x - 2 using synthetic division and interpret the remainder.

Synthetic division with c=2 gives quotient $2x^4+4x^3+3x^2+6x+16$ and remainder 25. By the Remainder Theorem, f(2)=25; therefore (x-2) is not a factor.

Practice.

- (a) Use long division to find the quotient and remainder when $P(x) = 3x^4 x^3 + 2x 5$ is divided by $x^2 x + 1$.
- (b) Find all real numbers k such that x+1 is a factor of $Q(x)=4x^3+kx^2-7x+k-3$.

(c) Compute R(x) and the remainder when $S(x) = 5x^4 + 2x^3 - 9x + 8$ is divided by x + 2 using synthetic division; then evaluate S(-2).

Challenge.

(a) Let $f(x) = ax^3 + bx^2 + cx + d$ with integers a, \ldots, d . Suppose f(2) = 5 and f(-1) = 0, and x + 1 divides f'(x). Determine a nontrivial f(x) with integer coefficients.

(b) Prove or disprove: If f(x) has integer coefficients and (x-c) divides f(x), then (x-c) also divides $f(x^2)$.

3. Topic 3: Real Zeros of Polynomials — Rational Root Test and Multiplicity

Strategy Notes. Use the Rational Root Test to list candidates; apply synthetic division to confirm. Factor fully and use multiplicity to describe the behavior at each zero. Use sign charts to solve polynomial inequalities.

Assignment: Chapter 3

Worked Example. Use the Rational Root Test to factor

$$p(x) = 2x^4 - x^3 - 14x^2 - 5x + 6.$$

Candidates are $\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}$. Testing shows $x = 3, -2, \frac{1}{2}, -1$ are zeros, hence

$$p(x) = (x-3)(x+2)(2x-1)(x+1).$$

Practice.

- (a) Factor completely over \mathbb{R} : $q(x) = 3x^4 8x^3 17x^2 + 2x + 8$.
- (b) Solve the inequality $\frac{x^4 5x^2 + 4}{x^2 4x + 3} > 0$ using a sign chart. State domain restrictions clearly.

(c) A quartic r(x) has leading coefficient 1, zeros -2 (double) and $\frac{3}{2}$, and r(0) = 6. Determine r(x).

Challenge.

(a) For $s(x) = 2x^3 - x^2 - 5x + 3$, show there is a real zero in (0,1) but no rational zeros in that interval. Then locate the zero to two decimal places.

4. Topic 4: Complex Numbers — Algebra and Powers of i

Strategy Notes. Use (a+bi)(c+di) = (ac-bd) + (ad+bc)i and rationalize denominators with complex conjugates. Reduce powers with $i^2 = -1$ and $i^{4k+r} = i^r$.

Worked Example. Compute $\frac{-1+4i}{5+i}$ in a+bi form and reduce i^{73} .

Multiply numerator and denominator by 5-i to get $\frac{(-1+4i)(5-i)}{26} = \frac{-5+i+20i-4i^2}{26} = \frac{-1+21i}{26}$. Also $i^{73} = i^{4\cdot 18+1} = i$.

Practice.

(a) Let
$$w = -1 + 4i$$
 and $z = 5 + i$. Compute $2w - 3z$ and $w \overline{z}$.

(b) Simplify
$$\frac{3-2i}{1+2i}$$
 and $\frac{2+i}{1-i}$.

(c) Evaluate
$$\frac{(1-2i)^5}{(1+i)^3}$$
 in $a+bi$ form.

Challenge.

(a) Let $x, y \in \mathbb{R}$ with $y \neq 0$. Show that $\frac{-y + xi}{x + yi}$ is purely imaginary.

5. Topic 5: Complex Zeros and the Fundamental Theorem of Algebra

Strategy Notes. Real-coefficient polynomials have complex zeros in conjugate pairs. Combine known real zeros with quadratic factors from conjugate pairs; match coefficients to determine unknowns.

Assignment: Chapter 3

Worked Example. Find a cubic with real coefficients and leading coefficient 2 whose zeros include $\frac{1}{2}$ and $2 \pm 3i$.

Because coefficients are real, both $2 \pm 3i$ occur. Thus

$$f(x) = (x^2 - 4x + 13)(2x - 1) = 2x^3 - 9x^2 + 30x - 13.$$

Practice.

(a) A quartic with real coefficients has zeros 2 (double) and $1 \pm i$. Write it in factored form and expand to a real polynomial.

(b) Construct the least-degree monic polynomial with zeros -3 and 1-2i. Find its constant term and y-intercept.

Challenge.

(a) Suppose f(x) is a monic quartic with integer coefficients and all zeros integers. If the constant term is -24 and the sum of the zeros is 5, list all possible multisets of zeros up to ordering.

6. Topic 6: Rational Functions — Asymptotes, Holes, and Graphing

Strategy Notes. Factor numerator/denominator to detect holes (common factors) and vertical asymptotes (denominator zeros not cancelled). Use degree comparison for end behavior: horizontal, slant, or non-existent. Plot intercepts and key points; use sign charts across vertical asymptotes.

Assignment: Chapter 3

Worked Example. Analyze

$$R(x) = \frac{x^2 - 5x + 6}{x^2 - 4x + 3}.$$

Factor to find potential cancellations and vertical asymptotes: $R(x) = \frac{(x-2)(x-3)}{(x-1)(x-3)} = \frac{x-2}{x-1}$ with a hole at x=3. Domain excludes x=1,3. Intercepts: x=2 (crosses), y-intercept R(0)=2. Horizontal asymptote y=1 (equal degrees; ratio of leading coefficients). Sketch using a sign chart across x=1.

Practice.

(a) For $r(x) = \frac{x^2 - 6x + 8}{x^2 - 4x - 12}$, determine domain, vertical/horizontal asymptotes, holes, and intercepts. Indicate sign on each interval of the domain.

(b) Determine the slant asymptote of $s(x) = \frac{x^3 - 9x + 10}{x^2 - 4}$ and state the behavior near each vertical asymptote.

Challenge.

(a) Find all real parameters a such that the graphs of $y = \frac{x^2 - ax + 1}{x - a}$ and y = 1 intersect in exactly one point. Justify.

7. Topic 7: Polynomial and Rational Inequalities — Sign Charts and Domain

Strategy Notes. For $\frac{N(x)}{D(x)} \square 0$: factor N and D completely; list critical points (zeros of N and D). Exclude denominator zeros from the solution. Use multiplicity: an *even* multiplicity does not change sign across that point. Test one value in each interval or track sign changes logically. Include endpoints only when the inequality is non-strict and the point is not excluded by the domain.

Worked Example. Solve
$$\frac{(x+1)^2(x-3)}{x^2-4} \leq 0$$
.

Domain: $x \neq -2, 2$. Critical points in order: $-\infty < -2 < -1 < 2 < 3 < \infty$. Using signs (or a chart): the expression is negative on $(-\infty, -2)$ and (2, 3), positive on (-2, -1), (-1, 2), and $(3, \infty)$. Since ≤ 0 , include negative intervals and zeros of the numerator that are in the domain. Solution:

$$(-\infty, -2) \cup \{-1\} \cup (2, 3].$$

Practice.

(a) Solve $\frac{(x-4)^2(x+2)}{(x-1)(x+3)} \ge 0$ and sketch the solution on a number line. State domain restrictions first.

- (b) Solve $x^5 4x^3 + 3x \le 0$ by factoring and using multiplicity to minimize testing.
- (c) Solve $\frac{x^2-9}{x^2-4x-12} < 0$ and express the answer in interval notation, clearly distinguishing cancellations from domain exclusions.

Challenge.

(a) Find all real numbers k such that $\frac{x^2-4x+k}{(x-1)(x-3)}>0$ for every $x\in(-\infty,1)\cup(3,\infty)$. Justify your conditions on k.