Ch 4: Orthrynnal Expanding

- I) orthismality
- Det let X be an inner pat space. For x, y e X , x,y are ormoginal (denoted $x \perp y$) if (x,y) = 0.
- Det A syvenu {en} ir (alled an arthryrow) signine hillert spen if endem when n + h if en Lem when n+m.

if in addition, leal = I then segon a ir called orthonormal segrence. sinc thing

$$e_{\lambda} = (1, 0, \dots)$$

$$e_{\lambda} = (0, 1, \dots)$$

$$\vdots$$

$$e_{n} = (0, \dots, 1)$$
orthornam systm.

There is a method called Coun-Schmidt to construct ther & system from linearly independent vectors (HW)

- Some consequencer.
 - O Then (pyth, gorn's thm) let X inner pat space. If e, ... en orthogonal system. Then N = e; N° = ≥ Ne; N° (on by finite-dim)

Pf: LHS =
$$\left(\sum_{j=1}^{n} e_{j} \sum_{j=1}^{n} e_{j}\right)$$

$$= \left(\sum_{j=1}^{n} e_{j} \sum_{j=1}^{n} e_{j}\right)$$

$$= \left(\sum_{j=1}^{n} (e_{j}, e_{j})\right)$$

- For span {e,..., e, }, we can find the closest point to x e X explicitly x

hu we don't med Hilbert spru, we can do it for orthogoil fruite - dim sprins.

Lemma let X inner pat space. Let $\{e_1, \dots, e_n\}$ orthornwal system.

Let $\lambda_1, \dots, \lambda_n$ scalars. For $x \in X$ let $C_j = (x, e_j)$, then $\|x - \sum_{j=1}^{n} \lambda_j e_j\|_2^2 = \|x\|^2 + \sum_{j=1}^{n} |\lambda_j - C_j|^2 - \sum_{j=1}^{n} |C_j|^2$ any with in linear span

$$\frac{1}{2} \left(x - \sum_{j=1}^{n} \lambda_{j} e_{j} , x - \sum_{j=1}^{n} \lambda_{j} e_{j} \right) \\
= (x, x) - \sum_{j=1}^{n} \lambda_{j} (e_{j}, x) - \sum_{j=1}^{n} \overline{\lambda_{j}} (x, e_{j}) + \sum_{j=1}^{n} \lambda_{j} \overline{\lambda_{k}} (e_{j}, e_{k})$$

$$= \left[|x| \left[x - \sum_{j=1}^{n} \lambda_{j} \overline{c_{j}} - \sum_{j=1}^{n} \lambda_{j} c_{j} + \sum_{j=1}^{n} \lambda_{j} \overline{\lambda_{k}} \right] + \sum_{j=1}^{n} \lambda_{j} \overline{\lambda_{k}} (e_{j}, e_{k})$$

This clinit vector is the projection of x on to the spain

$$-\underbrace{\lim_{x \to \infty} \frac{1}{2} \lim_{x \to$$

how to extend this to as dimensional spans?

I) Fourter series

- Def: X hilbert space. Let $\{e_n\}_{n=1}^{\infty}$ be orthoround in X.

For any $x \in X$, define jth former coefficient to be (x, e_j)

and form sense $\sum_{j=1}^{\infty} (x, e_j) e_j$.

ther is clury the if x is in the span ie. $x = \sum_{j=1}^{\infty} (x_j e_j) e_j$ but is this the for any $x \in X^2$

finite dim

A our goal is to show $X = \sum_{j=1}^{\infty} (X, e_j) e_j$ under some conditions!

Thm: If {en} = ir a orthonormal sequence in inner pat space X, then for any x ∈ X,

 $\sum_{j=1}^{\infty} \left| \left(x_{j} e_{j} \right) \right|^{2} \leq \left\| x \right\|^{2}.$

Proof: for any $N \in [N]$, let $y_N = \sum_{j=1}^{N} (x, e_j) e_j$. For previor lemma, we know $\|x - y_N\|^2 = \|x\|^2 - \sum_{j=1}^{N} |(x, e_j)|^2$ (see 0 but $c_j/\lambda_j = c_j$.) $\Rightarrow \sum_{j=1}^{N} |(x, e_j)|^2 = \|x\|^2 - \|x - y_N\|^2 \leq \|x\|^2$.

Show that there is cauchy. $|X_{m}|^{2} = |X_{m}|^{2} =$

= \frac{\text{\lambda} \text{\lambda} \text{\lambda

By completeness of Hilbert space (xm) -> x & X.

we know former sener converges but we don't know what it consequents.

 $\overline{\mathbb{I}}$) Complete with normal sequence. WTS $x = \sum_{j=1}^{\infty} (x, e_j) e_j$

- Def: An orthogonal regional fend in Hilbert ip me X is called complete if the only vector in X that is orthogonal to every en it the 0.