Note Title

10/11/2023

MATRICI ORTOGONALI

Teorema Sia A una matrice mxm (quadrata).

Allora i sequenti 3 fatti sono equivalenti.

- (1) Le righe di A sous ortourmali (< Ri, Rj > = 0 se i + j e 1 se i = j)
- (2) Le colonne di A sous orbonomali (stessa cosa con le colonne)
- (3) $A^{-1} = A^{\dagger}$ (a) $AA^{\dagger} = A^{\dagger}A = Jd$)

Idea della dim. A.A du sta in posizione i, j

Ora la colonna j di At è la riga j di A. Quinoli D'elemento ridiesto è « Ri, Ry >

Questo divostra che Righe ortonormali (=> A.At- Id

Allo stesso modo prendiamo At-A

Riga i esima di At = colonna j-esimo di A

Quindi nel prod. l'el. in posizione i, y è

< ci, cy>

Colonne entonormali (=> At.A = Id Questo dimostra che

Def Una matrice si dice outogonale se e solo se verifica una qualunque delle tre proprietà sopra (e quindi le verifica tente)

 $\begin{pmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{pmatrix} = A$

 $A^{-1} = \frac{1}{4} \begin{pmatrix} \frac{3}{5} - \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix} = A^{+}$

[Roprietà mahici ortogonali]

(3) Se AeB sous subogonali, allora AB è ottogonale

 $(AB)^{-1} = B^{-1}A^{-1} = B^{t}A^{t} = (AB)^{t}$

volendo si può anche verificare che (AB)^t (AB) = B^t A^t A B = B^t B = Id

(2) Se A è subogonale allora Det $(A) = \pm 1$

 $1 = \text{Det}(Jd) = \text{Det}(AA^{t}) = \text{Det}(A) - \text{Det}(A^{t}) = \text{Det}(A)^{2}$

Biuet Det (A) = Det (At)

 \sim Det $(A) = \pm 1$

3 Se A è obogonale, allora At e A sono ortogonali (e coincidono)

Dimi At. (At) = At. A = Id :

(2 bis) Somma / Differences di matrici ortogonali non somo ne cersariamente ortogonali

 $\begin{pmatrix} 10 \\ 01 \end{pmatrix} = A \qquad \begin{pmatrix} 10 \\ 0-1 \end{pmatrix} = B$ $A+B = \begin{pmatrix} 1 & 6 \\ 0 & 0 \end{pmatrix}$

No outog. ortog. ollog

(4) Se A è outogouale, allora λA è outogouale se e solo su $\lambda = \pm 1$

Dim Basta osservare de le righe veugous moltiplicate per le $\langle \lambda Ri, \lambda Rj \rangle = \lambda^2 \langle Ri, Rj \rangle$

e cousiderane i=J.

Esercizio Come sono fatte lutte	le 2×2 outogonali?
La prima riga è un vettore lu Scrive come (cosd, sin d)	igo 2 di nonna 1, quindi si
La seconda riga deve essere di 1 Le possibità sous	
(sind, - cosd) oppure (-sind Quiudi restaus due fipi di u	
	Sind
	L COS & / L + = 3
	AZIONE
Esercizio Scriviamo una 3×3 ortogonale non banale	
Partianno con $v_1 = (2,3,1)$	(a caso)
Prendiamo U2 I U2 =	
Troviamo un v3 Lad entram	
base con vettore a caso e force	ormula ex-unisteriosa, completo la
$\begin{pmatrix} 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 $	50,-2) ~ (-37,25,-1) = 03
Basta dividere ognuro per la radice della sua norma e abbiano	
una matrice outogonale	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e A-1 = Ab
√570 √570 √570	
-37 <u>25</u> -1	