Appunti Algebra e Geometria

Maicol Battistini

25 maggio 2025

Indice

1	\mathbf{Uni}	ità 1 - Lezioni 1, 2	5
	1.1	Insiemi	5
	1.2	Funzioni e applicazioni	5
	1.3	Numeri complessi	
	1.4	Campo e spazio vettoriale	
	1.5	Combinazione e Indipendenza lineare	
	1.6	Base e dimensione	
		1.6.1 Completamento e estrazione di una base	12
2	Uni	ità 2 - Lezioni 3, 4	13
	2.1	Approfondimenti sulle basi	13
3	Uni	ità 3 - Lezioni 5, 6, 7	17
	3.1	Approfondimento sulle funzioni	17
	3.2	Isomorfismi	
4	∐ni	ità 4 - Lezioni 8, 9	2 4
-	4.1	Matrici	
	1.1	4.1.1 Operazioni tra matrici	
		4.1.2 Prodotto riga per colonna tra matrici	
		4.1.3 Proprietà associativa	
		4.1.4 Matrice identità	
		4.1.5 Matrice inversa	
		4.1.6 Matrici associate ad un'applicazione lineare	
		4.1.7 Matrici invertibili	
		4.1.8 Rango di una matrice	
		4.1.9 Cambiamenti di base	
		4.1.10 Similitudine tra matrici quadrate	
		4.1.11 Conseguenze del teorema del rango	
5	Uni	ità 5 - Lezioni 10, 11, 12	33
	5.1	Metodo di Gauss	
	5.2	Algoritmo di Gauss-Jordan	
	5.3	Determinante di una matrice	
		5.3.1 Esercizio parametrico	
		5.3.2 Geometria affine	
	5.4	Matrici e sistemi lineari	
	5.5	Applicazioni alla geometria analitica	
		5.5.1 Retta passante per due punti	
		5.5.2 Piano passante per tre punti	

6	Unità 6 - Lezioni 13, 14, 15	45
	6.1 Endomorfismi e autovettori	. 45
	6.1.1 Passo 1: Trovare gli autovalori di f	. 46
	6.1.2 Passo 2: Trovare gli autovettori di f per ogni autovalore	
	6.2 Diagonalizzabilità	. 50
	6.3 Blocco di Jordan e decomposizione canonica di Jordan	. 53
7	Unità 7 - Lezioni 16, 17	54
	7.1 Forme bilineari	. 54
	7.2 Teorema di Sylvester	
	7.3 Forme quadratiche e matrice hassiana	. 59
	7.4 Prodotto scalare e base ortonormale	
8	Unità 8 - Lezioni 18, 19, 20	61
	8.1 Isometrie	63

Lista delle definizioni

1.1	Relazione di un insieme	5
1.2	Relazione di equivalenza	5
1.3	Congruenza	5
1.4	Funzione iniettiva	
1.5	Funzione suriettiva	6
1.6	Funzione biunivoca	
1.7	Numero complesso	
1.8	Campo	
1.9	Spazio vettoriale	
1.10	Sottospazio vettoriale	
	Combinazione lineare	
	Span	
	Indipendenza lineare	
	Base	
	Coordinate	
2.1	Base canonica	
2.2	Forma cartesiana e parametrica	
2.3	Somma di sottospazi	
2.3	Somma diretta	
3.1	Applicazione lineare	
3.2	Nucleo di un'applicazione lineare	
3.3	Isomorfismo	
3.4	Isomorfismo di spazi vettoriali	
4.1	Matrice identità	
4.2	Matrice invertibile	
4.3	Matrice associata ad un'applicazione lineare	
4.4	Rango di una matrice	
4.5	Matrici simili	
4.6	Matrice a scala	
4.7	Matrice trasposta	
5.1	Determinante di una matrice	34
5.2	Proprietà della funzione determinante	35
5.3	Determinante di un'applicazione lineare	36
5.4	Prodotto vettoriale	37
5.5	Sottospazio affine	39
5.6	Sottospazi in geometria analitica	
6.1	Endomorfismo	
6.2	Matrice diagonale	
6.3	Autovettore	
6.4	Polinonio caratteristico	_
6.5	Autospazio	
6.6	Molteplità algebrica e geometrica	
6.7	Endomorfismo nilpotente	
6.8	Blocco di Jordan	
7.1	Forma bilineare	
7.2	Forma bilineare simmetrica	
7.3	Matrice di una forma bilineare	
7.4	Matrice simmetrica e antisimmetrica	
7.5	Matrici congruenti	
7.6	Segnatura di una forma bilineare	
7.7	Forma quadratica	
7.8	Caratterizzazione di una forma quadratica	
7.9	Matrice hassiana	
	Prodotto scalare	
7.11	Versore	60

8.1	Angolo convesso
8.2	Distanza euclidea
8.3	Sottospazio ortoganale
8.4	Isometria
8.5	Matrice ortogonale
Lista	dei teoremi
1.1	Teorema fondamentale dell'algebra
2.1	Teorema delle coordinate
2.2	Teorema della dimensione
2.3	Teorema di completamento ed estrazione
2.4	Formula di Grassman
3.1	Teorema del rango
3.2	Teorema dell'estensione lineare
3.3	Isomorfismi e basi
4.1	Teorema della composizione
4.2	Invertibilità
5.1	Teorema di Binet
5.2	Sistema lineare omogeneo associato
5.3	Teorema di Rouché-Capelli
5.4	
6.1	Autovalori e polinomio caratteristico
6.2	Criterio di diagonalizzabilità
6.3	Endomorfismo nilpotente non diagonalizzabile
6.4	Decomposizione canonica di Jordan
7.1	Matrici congruenti e forme bilineari
7.2	Diagonalizzazione di una forma bilineare simmetrica
7.3	Teorema di Sylvester
7.4	Teorema di Sylvester per le forme quadratiche
7.5	Base ortonormale
8.1	Proprietà distanza euclidea
8.2	Isometrie e isomorfismo
8.3	Basi ortonormali e matrice del cambio di base
8.4	Isometrie e basi ortogonali
8.5	Isometrie e matrici ortogonali
0.0	isometrie e matrici ortogonan
Tieta	dei corollari
Lista	der coronari
2.1	
3.1	Isomorfismo e dimensione
4.1	Teorema del rango per le righe
4.2	Rango di una matrice e immagine
5.1	Determinante di una matrice inversa
5.2	Determinante di due matrici simili
7.1	Congruenza e segnatura
•••	G

1 Unità 1 - Lezioni 1, 2

1.1 Insiemi

Definizione 1.1: Relazione di un insieme

Una relazione su un insieme A è un sottoinsieme R di $A \times A$. Scrivo a_1 R a_2 se $(a_1, a_2) \in R$ e dico" a_1 è in relazione con a_2 "

Definizione 1.2: Relazione di equivalenza

Una relazione R è una relazione di equivalenza se valgono le seguenti proprietà:

Riflessiva: $a R a \forall a \in A$

Simmetrica: $a R b \Rightarrow b R A$

Transitiva: $a R a, b R c \Rightarrow a R c$

Definizione 1.3: Congruenza

$$\mathbb{Z} = 0, 1, -1, 2, -2, 3, -3, \dots$$

Sia $n \in \mathbb{Z}, n >= 2$

 $a \equiv b \ (n)$ "a è congruo a b modulo n"

se a - b è multiplo di n (cioè $\exists h \mid a - b = hn$)

Esempi:

$$8 \equiv 23(5)$$
 $8 \not\equiv 17(5)$ $4 \equiv 10, 16, -2, -8(6)$

 $4 \not\equiv 13(6)$

Osservazione. Essere congrui modulo n è una relazione di equivalenza

Dimostrazione. Dimostro le tre proprietà della relazione di equivalenza:

Riflessiva:

$$\forall a \in \mathbb{Z}, \ a \equiv a(n) \text{ perchè } a - a = 0 = 0 \cdot n$$

Simmetrica:

se
$$a \equiv b(n)$$
, allora $b \equiv a(n)$ perchè se $a - b = hn \Rightarrow b - a = -hn$

Transitiva:

se
$$a \equiv b(n)$$
 e $b \equiv c(n)$, allora $a \equiv c(n)$ perchè se $a-b=hn$ e $b-c=kn$, allora $a-c=(a-b)+(b-c)=(h+k)n$

1.2 Funzioni e applicazioni

$$f:X\to Y$$

$$f(a) = b$$

fè una applicazione se ad ogni $a \in X$ corrisponde uno e un solo $b \in Y$

Definizione 1.4: Funzione iniettiva

Una funzione $f:X\to Y$ è iniettiva se:

$$\forall x_1, x_2 \in X \mid x_1 = x_2 \Rightarrow f(x_1) = f(x_2)$$

Ovvero: "due elementi distinti di X vengono mandati in elementi distinti di Y"

Le immagini mediante f sono distinte, cioè ogni elemento di A punta ad un unico elemento di B.

Però è possibile che non tutti gli elementi di B vengano raggiunti.

Definizione 1.5: Funzione suriettiva

Una funzione $f:X\to Y$ è suriettiva se:

$$Y = Im \ f = \{ y \in Y \mid \exists x \in X \mid f(x) = y \}$$

Ovvero: "ogni elemento di Y è immagine di almeno un elemento di X"

Ogni punto dell'insieme B è raggiunto da almeno una freccia.

Però è possibile che più di due elementi di A puntino verso lo stesso elemento di B.

Definizione 1.6: Funzione biunivoca

Una funzione $f:X\to Y$ è biunivoca se è iniettiva e suriettiva, cioè se per ogni $y\in Y$ esiste un solo $x\in X$ tale che f(x)=y

f è sia iniettiva (ad elementi distinti di A corrispondono elementi distinti di B) che suriettiva (ogni elemento di B è raggiunto da una freccia)

Esempio. Una funzione biunivoca è invertibile, cioè $\exists f^{-1}: Y \to X$ tale che $f^{-1} \circ f = Id_X$ e $f \circ f^{-1} = Id_Y$

Invertendo le frecce otteniamo ancora una funzione f¹ è sia iniettiva che suriettiva

Esempio.

$$f_1: \mathbb{R} \to \mathbb{R}, f(1) = x^2$$

Iniettiva? No, perchè f(-1) = f(1) = 1

Suriettiva? No, perchè $Im\ f = \{y \in \mathbb{R} \mid y \ge 0\} \ne \mathbb{R}$

Biunivoca? No, perchè non è iniettiva e non è suriettiva

$$f: \mathbb{R} \to \mathbb{R}^+, f(x) = x^2$$

Nota: $\mathbb{R}^+ = [0, +\infty[$

Iniettiva? No, perchè f(-1) = f(1) = 1

Suriettiva? Sì, perchè $Im\ f = \mathbb{R}^+$

Biunivoca? No, perchè non è iniettiva

$$f: \mathbb{R}^+ \to \mathbb{R}, f(x) = x^2$$

Iniettiva? Sì, perchè $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

Suriettiva? No, perchè $Im\ f = \{y \in \mathbb{R} \mid y \ge 0\} \ne \mathbb{R}$

Biunivoca? No, perchè non è suriettiva

$$f: \mathbb{R}^+ \to \mathbb{R}^+, f(x) = x^2$$

Iniettiva? Sì, perchè $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

Suriettiva? Sì, perchè $Im f = \mathbb{R}^+$

Biunivoca? Sì, perchè è iniettiva e suriettiva

Inversa: $\exists f^{-1}: \mathbb{R}^+ \to \mathbb{R}^+, f^{-1}(y)$ è l'unico $x \in \mathbb{R}^+$ tale che f(x) = y (cioè $f^{-1}(y) = \sqrt{y}$)

1.3 Numeri complessi

Definizione 1.7: Numero complesso

Un numero complesso è un numero della forma:

$$z = a + ib$$

dove $a, b \in \mathbb{R}$ e i è l'unità immaginaria, cioè $i^2 = -1$.

Un numero complesso rientra nell'insieme dei numeri complessi, indicato con \mathbb{C} .

$$\mathbb{C} = \{ a + ib \mid a, b \in \mathbb{R} \}$$

In questo modo $x^2 + 1 = 0$ è risolto da $x = \pm i$. Ogni elemento non nullo di \mathbb{C} ha l'inverso:

$$z = a + ib \neq 0 \Rightarrow z^{-1} = \frac{a - ib}{a^2 + b^2}$$

perchè:

$$z \cdot z^{-1} = (a+ib) \cdot \frac{a-ib}{a^2+b^2} = \frac{a^2+b^2}{a^2+b^2} = 1$$

Teorema 1.1: Teorema fondamentale dell'algebra

Ogni equazione polinomiale a coefficienti in $\mathbb C$ ha soluzioni in $\mathbb C$.

1.4 Campo e spazio vettoriale

Definizione 1.8: Campo

Un campo è un insieme \mathbb{K} con due operazioni **somma** e **prodotto**, commutative e associative, con proprietà distributiva, elementi neutri 0 e 1, opposto di ogni elemento e inverso di ogni elemento non nullo.

- Ogni elemento di X ha un opposto -x.
- Ogni elemento di $X \neq 0$ ha un inverso x^{-1} .

Esempio. \mathbb{N}, \mathbb{Z} non sono campi, $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ sono campi.

Esempio. \mathbb{Z}_5 è un campo? Cioè è vero che se $[a] \neq [0]$ allora $\exists [b] | [a] \cdot [b] = [1]$?

$$[2] \cdot [3] = [6] = [1] \Rightarrow [2]^{-1} = [3], [3]^{-1} = [2]$$

$$[4] \cdot [4] = [16] = [1] \Rightarrow [4]^{-1} = [4]$$

Quindi, \mathbb{Z}_5 è un campo.

Esempio. \mathbb{Z}_4 è un campo?

$$[2] \cdot [2] = [4] = [0] \Rightarrow$$
 l'inverso non esiste

$$[2] \cdot [0] = [0] \neq [1] \Rightarrow$$
 l'inverso non esiste

Quindi, \mathbb{Z}_4 non è un campo.

Osservazione. \mathbb{Z}_p è un campo se p è un numero primo.

Definizione 1.9: Spazio vettoriale

Sia $\mathbb K$ un campo. Uno spazio vettoriale su $\mathbb K$ è un insieme V con due operazioni:

Somma
$$+ : \forall v_1, v_2 \in V \to v_1 + v_2 \in V$$

Prodotto per uno scalare $\cdot : \forall a \in \mathbb{K}, \forall v \in V \rightarrow a \cdot v \in V$

tali che valgano le seguenti proprietà:

Somma: Associativa, Commutativa, Elemento neutro 0, Elemento opposto -v

Prodotto per uno scalare: Associativa, Distributiva rispetto alla somma, Elemento neutro 1

Dato uno spazio vettoriale V su un campo \mathbb{K} , gli elementi di V sono detti **vettori** e gli elementi di \mathbb{K} sono detti **scalari**.

Definizione 1.10: Sottospazio vettoriale

Sia V uno spazio vettoriale su un campo \mathbb{K} . Un sottospazio vettoriale di V è un sottoinsieme U di V non vuoto (cioè $0 \in U$) che è chiuso rispetto alla somma e al prodotto per uno scalare, cioè:

$$u_1, u_2 \in U \Rightarrow u_1 + u_2 \in U$$

$$a \in \mathbb{K}, u \in U \Rightarrow a \cdot u \in U$$

Esempio. Sia $\mathbb{K} = \mathbb{R}$ e $V = \mathbb{R}^2 = \{(x, y) \mid x, y \in \mathbb{R}\}.$

 $U = \{(x,y) \in \mathbb{R}^2 \mid y = 2x\}$ è un sottospazio vettoriale di V perchè dati $v_1 = (x,2x), v_2 = (x',2x') \in U$ e $a \in \mathbb{R}$:

Non vuoto $0 = (0,0) \in U$

Somma
$$v_1 + v_2 = (x + x', 2x + 2x') = (x + x', 2(x + x')) \in U$$

Prodotto
$$a \cdot v_1 = a \cdot (x, 2x) = (a \cdot x, a \cdot 2x) = (a \cdot x, 2a \cdot x) \in U$$

1.5 Combinazione e Indipendenza lineare

Definizione 1.11: Combinazione lineare

Sia V uno spazio vettoriale su un campo \mathbb{K} e $v_1,v_2,...,v_n\in V$. Diciamo che $v\in V$ è una combinazione lineare di $v_1,v_2,...,v_n$ se:

$$\exists a_1, a_2, ..., a_n \in \mathbb{K} \mid v = a_1v_1 + a_2v_2 + ... + a_nv_n$$

Esempio. $\mathbb{K} = \mathbb{R}, V = \mathbb{R}^2, v_1 = (2,0), v_2 = (0,-1), v = (1,3)$ è una combinazione lineare di v_1 e v_2 perchè:

$$\frac{1}{2}v_1 + (-3)v_2 = (1,0) + (0,3) = (1,3) = v$$

Se non li vedo ad occhio, posso risolvere il sistema per cercare i coefficienti:

$$a_1v_1 + a_2v_2 = (2a_1, 0) + (0, -a_2) = (2a_1, -a_2) = (1, 3)$$

$$\begin{cases} 2a_1 = 1 \\ -a_2 = 3 \end{cases} \Rightarrow \begin{cases} a_1 = \frac{1}{2} \\ a_2 = -3 \end{cases}$$

Esempio. $u_1 = (1,0), u_2 = (-1,0), u = (1,3)$ NON è una combinazione lineare di u_1 e u_2 perchè $\forall a_1, a_2 \in \mathbb{R}, a_1u_1 + a_2u_2 = (2a_1,0) + (-a_2,0) = (2a_1 - a_2,0) = (1,3)$ non ha soluzione:

$$\begin{cases} 2a_1 - a_2 = 1\\ 0 = 3 \end{cases}$$

Infatti $\forall a_1, a_2 \in \mathbb{R}, a_1u_1 + a_2u_2 \neq u$

Definizione 1.12: Span

Uno spazio vettoriale V è detto **generato** da un insieme di vettori $v_1, v_2, ..., v_n \in V$ se ogni $v \in V$ è una combinazione lineare di tali vettori. In questo caso V è detto **span** di $v_1, v_2, ..., v_n$ e si scrive:

$$V = \langle v_1, v_2, ..., v_n \rangle$$

Esempio. $V = \mathbb{R}^4 = \{(x_1, x_2, x_3, x_4) \mid x_1, x_2, x_3, x_4 \in \mathbb{R}\}, v_1 = (2, 0, 0, 0), v_2 = (0, 1, -1, 0)$ $U = \langle v_1, v_2 \rangle = \{(a_1v_1 + a_2v_2) \mid a_1, a_2 \in \mathbb{R}\} =$

$$\{(2a_1, 0, 0, 0) + (0, a_2, -a_2, 0) \mid a_1, a_2 \in \mathbb{R}\} =$$
$$\{(2a_1, a_2, -a_2, 0) \mid a_1, a_2 \in \mathbb{R}\} =$$

$$\{(x_1, x_2, x_3, x_4) \mid x_1, x_2, x_3, x_4 \in \mathbb{R}\} \mid \begin{cases} x_2 + x_3 = 0 \\ x_4 = 0 \end{cases}$$

Esempio. $V = \mathbb{R}[x] = \{a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 \mid a_0, a_1, ..., a_n \in \mathbb{R}\}$ $p_1 = x, p_2 = x^2, q = 2x^2 - 7x$ è una combinazione lineare di p_1 e p_2 perchè $q = 2x^2 - 7x = 2x^2 - 7x + 0 \cdot x = 2x^2 - 7x + 0 \cdot x^2$

 $h = 3x^3 - 8x, l = 2x^2 + 3$ non sono combinazioni lineari di p_1 e p_2 perchè $\forall a_1, a_2 \in \mathbb{R}, a_1p_1 + a_2p_2 \neq h, l$. Il sottospazio vettoriale generato da p_1 e p_2 è $\langle p_1, p_2 \rangle = \{a_1p_1 + a_2p_2 \mid a_1, a_2 \in \mathbb{R}\} = \{a_1x + a_2x^2 \mid a_1, a_2 \in \mathbb{R}\}$, ovvero tutti i polinomi di grado ≤ 2 con termine noto nullo.

Osservazione. Un sottoinsieme non vuoto U di uno spazio vettoriale V è un sottospazio vettoriale di $V \Leftrightarrow U$ contiene tutte le combinazioni lineari dei suoi elementi (infatti, dati $u_1, u_2 \in U$ e $u_1 + u_2 \in U$ e $a \in \mathbb{K}$ sono combinazioni lineari particolari)

Definizione 1.13: Indipendenza lineare

Un insieme di vettori $v_1, v_2, ..., v_n \in V$ è detto **linearmente indipendente** se nessuno di loro è combinazione linare degli altri o, equivalentemente, l'unica combinazione lineare che dà come risultato il vettore nullo è quella in cui tutti i coefficienti sono nulli:

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0 \Rightarrow a_1 = a_2 = \dots = a_n = 0$$

Invece, è detto **linearmente dipendente** se esiste almeno un vettore che è combinazione lineare degli altri.

Esempio. $v_1 = (2,0), v_2 = (-1,0)$ sono linearmente dipendenti perchè $v_1 = -2v_2$ (v_1 è combinazione lineare di v_2), ovvero:

$$\exists a_1 = 1, a_2 = 2 \mid a_1v_1 + a_2v_2 = 1 \cdot (2,0) + (2) \cdot (-1,0) = (0,0)$$

Esempio. $u_1 = (2,0), u_2 = (0,-1)$ sono linearmente indipendenti perchè $a_1u_1 \neq u_2 \forall a_1 \in \mathbb{R}$, ovvero:

$$a_1 u_1 + a_2 u_2 = 0 \Leftrightarrow (2a_1, -a_2) = (0, 0)$$

$$\begin{cases} 2a_1 = 0 \\ -a_2 = 0 \end{cases} \Rightarrow \begin{cases} a_1 = 0 \\ a_2 = 0 \end{cases}$$

1.6 Base e dimensione

Definizione 1.14: Base

Sia V uno spazio vettoriale su un campo \mathbb{K} .

Un insieme di vettori $v_1, v_2, ..., v_n \in V$ è detto base di V se sono linearmente indipendenti e generano V, cioè:

$$V = \langle v_1, v_2, ..., v_n \rangle$$

Esempio. $V = \mathbb{R}^2$, $v_1 = (1,0)$, $v_2 = (0,1)$, $v_3 = (2,1)$ generano V ma non sono linearmente indipendenti perchè $v_3 = 2v_1 + v_2$. Invece $v_1 = (1,0)$, $v_2 = (0,1)$ sono linearmente indipendenti e generano V $(a_1v_1 + a_2v_2 = (a_1,a_2))$, quindi sono una base di V.

Esempio. $V = \mathbb{R}^2, v_1 = (2, 1), v_2 = (1, -3)$ sono una base di V? Verifichiamolo:

Linearmente indipendenti? $a_1v_1 + a_2v_2 = 0 \Rightarrow a_1 = a_2 = 0$

$$a_1(2,1) + a_2(1,-3) = (0,0)$$

$$(2a_1 + a_2, a_1 - 3a_2) = (0,0)$$

$$\begin{cases} 2a_1 + a_2 = 0 \\ a_1 - 3a_2 = 0 \end{cases} \Rightarrow \begin{cases} a_1 = 0 \\ a_2 = 0 \end{cases}$$

Generano V? Ovvero che ogni $v = (x, y) \in \mathbb{R}^2$ si scrive come combinazione lineare di v_1 e v_2 .

$$(x,y) = a_1(2,1) + a_2(1,-3)$$
$$(x,y) = (2a_1 + a_2, a_1 - 3a_2)$$
$$\begin{cases} 2a_1 + a_2 = x \\ a_1 - 3a_2 = y \end{cases} \Rightarrow \begin{cases} a_1 = \frac{3x - y}{7} \\ a_2 = \frac{x + y}{7} \end{cases}$$

Quindi, $\exists a_1, a_2 \in \mathbb{R} \mid a_1 v_1 + a_2 v_2 = v$.

Quindi $v_1 = (2, 1), v_2 = (1, -3)$ sono una base di \mathbb{R}^2 .

Esempio. Dire se $v_1 = (1, 1, 0), v_2 = (0, 1, 1), v_3 = (1, 0, 1)$ sono una base di \mathbb{R}^3

Passo 1 Verifico se sono linearmente indipendenti, ovvero se è vero che se $a_1v_1 + a_2v_2 + a_3v_3 = (0,0,0) \Rightarrow a_1 = 0, a_2 = 0, a_3 = 0$

$$a_1(1,1,0) + a_2(0,1,1) + a_3(1,0,1) = (0,0,0)$$

$$(a_1 + a_3, a_1 + a_2, a_2 + a_3) = (0,0,0)$$

$$\begin{cases} a_1 + a_3 = 0 \\ a_1 + a_2 = 0 \\ a_2 + a_3 = 0 \end{cases} \Rightarrow \begin{cases} a_1 = 0 \\ a_2 = 0 \\ a_3 = 0 \end{cases}$$

Sì perchè l'unica soluzione è quella in cui tutti i coefficienti sono nulli. Quindi, v_1, v_2, v_3 sono linearmente indipendenti.

Passo 2 Verifico se generano \mathbb{R}^3 , ovvero se $\forall v \in \mathbb{R}^3, \exists a_1, a_2, a_3 \in \mathbb{R} \mid v = a_1v_1 + a_2v_2 + a_3v_3$

$$\begin{cases}
a_1 + a_3 = x \\
a_1 + a_2 = y \\
a_2 + a_3 = z
\end{cases}
\Rightarrow
\begin{cases}
a_1 - a_2 = x - z \\
a_1 + a_2 = y \\
a_3 = z - a_2
\end{cases}
\begin{cases}
2a_1 = x + y - z \\
-2a_2 = x - y + z \\
a_3 = z + \frac{x - y - z}{2}
\end{cases}
\begin{cases}
a_1 = \frac{x + y - z}{2} \\
a_2 = \frac{x - y - z}{2} \\
a_3 = \frac{x - y + z}{2}
\end{cases}$$

Quindi esiste una soluzione per ogni $v \in \mathbb{R}^3$, quindi v_1, v_2, v_3 generano \mathbb{R}^3 . Di conseguenza, v_1, v_2, v_3 sono una base di \mathbb{R}^3 .

Esempio. Dire se $u_1 = (1,3,2), u_2 = (-1,0,1), u_3 = (2,1,-1)$ sono una base di \mathbb{R}^3

Passo 1 Verifico se sono linearmente indipendenti

$$a_1v_1 + a_2v_2 + a_3v_3 = (0,0,0)$$

$$a_1(1,3,2) + a_2(-1,0,1) + a_3(2,1,-1) = (0,0,0)$$

$$(a_1 - a_2 + 2a_3, 3a_1 + a_3, 2a_1 - a_2 - a_3) = (0,0,0)$$

$$\begin{cases} a_1 - a_2 + 2a_3 = 0 \\ 3a_1 + a_3 = 0 \\ 2a_1 + a_2 - a_3 = 0 \end{cases} \Rightarrow \begin{cases} a_1 - a_2 + 2a_3 = 0 \\ 3a_2 - 5a_3 = 0 \\ 3a_2 - 5a_3 = 0 \end{cases} \Rightarrow \begin{cases} a_1 = -1 \\ a_2 = 5 \\ a_3 = -1 \end{cases}$$

No perchè esiste una soluzione in cui non tutti i coefficienti sono nulli. Quindi u_1, u_2, u_3 non sono linearmente indipendenti.

Passo 2 Verifico se generano \mathbb{R}^3

$$a_1u_1 + a_2u_2 + a_3u_3 = (x, y, z)$$

$$(a_1 - a_2 + 2a_3, 3a_1 + a_3, 2a_1 - a_2 - a_3) = (x, y, z)$$

$$\begin{cases} a_1 - a_2 + 2a_3 = x \\ 3a_1 + a_3 = y \end{cases} \Rightarrow \begin{cases} a_1 - a_2 + 2a_3 = x \\ 3a_2 - 5a_3 = y - 3x \end{cases} \Rightarrow \begin{cases} 0 = y - 3x - z + 2x \Leftarrow x + z = y \\ \dots \end{cases}$$

$$\vdots$$

Facendo combinazioni lineari di u_1, u_2, u_3 si ottengono solo vettori di $\mathbb{R}^3 \mid x+z=y$, quindi u_1, u_2, u_3 non generano \mathbb{R}^3 .

Definizione 1.15: Coordinate

 $a_1, a_2, ..., a_n$ sono dette **coordinate** di v rispetto alla base $v_1, v_2, ..., v_n$.

Esempio. Trovare le coordinate di v = (-4, -8) rispetto alla base $v_1 = (2, 1), v_2 = (1, -3)$ di \mathbb{R}^2 . Basta trovare gli unici $a_1, a_2 \in \mathbb{R}$ tali che $a_1v_1 + a_2v_2 = v$:

$$a_1(2,1) + a_2(1,-3) = (-4,-8)$$

$$(2a_1 + a_2, a_1 - 3a_2) = (-4,-8)$$

$$\begin{cases} 2a_1 + a_2 = -4 \\ a_1 - 3a_2 = -8 \end{cases} \Rightarrow \begin{cases} a_1 = -2 \\ a_2 = -2 \end{cases}$$

1.6.1 Completamento e estrazione di una base

Se si hanno dei vettori linearmente indipendenti che non generano V, si può "**completarli a una** base", cioè aggiungere altri vettori fino ad ottenere una base.

Esempio. $v_1 = (1,0,0), v_2 = (0,1,0)$ sono linearmente indipendenti ma non generano \mathbb{R}^3 : $\langle v_1, v_2 \rangle = \{(x,y,z) \mid z=0\}$ Aggiungendo $v_3 = (0,0,1)$ si ottiene una base di \mathbb{R}^3 : $\langle v_1, v_2, v_3 \rangle = \mathbb{R}^3$.

 v_1, v_2, v_3 sono linearmente indipendenti perchè $a_1v_1 + a_2v_2 + a_3v_3 = 0 \Rightarrow a_1 = a_2 = a_3 = 0$. v_3 poteva essere qualsiasi vettore con $z \neq 0$

Se invece si hanno dei vettori che generano V si può "estrarne una base", cioè rimuovere dei vettori linearmente dipendenti fino ad ottenere una base.

Esempio. $V = \mathbb{R}^2, v_1 = (1,0), v_2 = (2,0), v_3 = (0,1), v_4 = (2,5)$ generano V ma non sono linearmente indipendenti perchè $v_4 = 2v_1 + 5v_3$ e $v_2 = 2v_1$. Scartando v_2 e v_4 si ottiene una base di \mathbb{R}^2 : $\langle v_1, v_3 \rangle = \mathbb{R}^2$. Un'altra estrazione possibile sarebbe stata $\langle v_2, v_3 \rangle = \mathbb{R}^2$.

2 Unità 2 - Lezioni 3, 4

2.1 Approfondimenti sulle basi

Teorema 2.1: Teorema delle coordinate

Un insieme di vettori $v_1, v_2, ..., v_n$ è una base di uno spazio vettoriale $V \Leftrightarrow$ ogni vettore $v \in V$ può essere scritto in modo unico come combinazione lineare di $v_1, v_2, ..., v_n$, ovvero:

$$\forall v \in V, \exists ! a_1, a_2, ..., a_n \in \mathbb{K} \mid v = a_1 v_1 + a_2 v_2 + ... + a_n v_n$$

Nota: Il simbolo ∃! vuol dire "esiste ed è unico".

Dimostrazione. Dimostrazione del teorema delle coordinate per i due versi:

 \Rightarrow Siano $v_1, v_2, ..., v_n$ una base di V, cioè generano V e sono linearmente indipendenti.

Quindi, $\forall v \in V, \exists a_1, a_2, ..., a_n \in \mathbb{K} \mid v = a_1 v_1 + a_2 v_2 + ... + a_n v_n$.

Per dimostrare l'unicità, supponiamo che esistano $b_1, b_2, ..., b_n \in \mathbb{K} \mid v = b_1v_1 + b_2v_2 + ... + b_nv_n$.

Sottraendo, $0 = v - v = (a_1 - b_1)v_1 + (a_2 - b_2)v_2 + ... + (a_n - b_n)v_n$.

Poichè $v_1, v_2, ..., v_n$ sono linearmente indipendenti, allora $a_1 - b_1 = a_2 - b_2 = ... = a_n - b_n = 0 \Rightarrow a_1 = b_1, a_2 = b_2, ..., a_n = b_n$. Per cui, $a_1, a_2, ..., a_n$ sono uniche.

 \Leftarrow Per ipotesi $\forall v \in V, \exists ! a_1, a_2, ..., a_n \in \mathbb{K} \mid v = a_1v_1 + a_2v_2 + ... + a_nv_n$.

Dunque $v_1, v_2, ..., v_n$ generano V e, poichè $0 \in V$, gli unici coefficienti pesibili sono $a_1 = a_2 = ... = a_n = 0$.

Per cui, $v_1, v_2, ..., v_n$ sono linearmente indipendenti. e quindi sono una base di V.

Teorema 2.2: Teorema della dimensione

Sia V uno spazio vettoriale su un campo \mathbb{K} . Tutte le basi di V hanno lo stesso numero di elementi, detto **dimensione** di V e indicato con dim V.

Teorema 2.3: Teorema di completamento ed estrazione

Sia V uno spazio vettoriale di dimensione dimV=d. Allora:

- 1. Qualunque insieme linearmente indipendente di V è composto da $k \leq d$ vettori. Posso completare l'insieme a una base di V aggiungendo d-k vettori.
- 2. Qualunque insieme che genera V è composto da h vettori con $h \geq d$. Posso estrarre una base di V selezionando d vettori.

Corollario 2.1

Se V ha dim n, un insieme $v_1, v_2, ..., v_n$ è linearmente indipendente se e solo se genera V.

Esempio. Determinare la dimensione di \mathbb{R}^3

Una base di \mathbb{R}^3 è formata da tre vettori linearmente indipendenti che generano \mathbb{R}^3 .

Ad esempio, $v_1 = (1,0,0), v_2 = (0,1,0), v_3 = (0,0,1)$ è una base di \mathbb{R}^3 e quindi dim $\mathbb{R}^3 = 3$.

Definizione 2.1: Base canonica

Una base è detta canonica se è formata dai vettori della base standard, cioè:

$$\begin{split} \mathbb{R}^n &\to \text{Base canonica} \\ \mathbb{R}^1 &\to (1) \\ \mathbb{R}^2 &\to (1,0), (0,1) \\ \mathbb{R}^3 &\to (1,0,0), (0,1,0), (0,0,1) \\ \mathbb{R}^4 &\to (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) \\ \mathbb{R}^n &\to (1,0,...,0), (0,1,...,0), ..., (0,0,...,1) \end{split}$$

Esempio. Determinare una base canonica di \mathbb{R}^3

Una base canonica di \mathbb{R}^3 è formata dai vettori (1,0,0),(0,1,0),(0,0,1). Dato però il vettore (3/2,7,4), determinare le sue coordinate rispetto alla base canonica di \mathbb{R}^3 .

$$(3/2,7,4) = a_1(1,0,0) + a_2(0,1,0) + a_3(0,0,1)$$

$$(3/2,7,4) = (a_1,0,0) + (0,a_2,0) + (0,0,a_3)$$

$$(3/2,7,4) = (a_1,a_2,a_3)$$

$$\begin{cases} a_1 = 3/2 \\ a_2 = 7 \\ a_3 = 4 \end{cases}$$

Osservazione. Uno spazio vettoriale ha tante basi diversi. Le coordinate di un vettore rispetto a una base dipendono dalla base scelta.

Definizione 2.2: Forma cartesiana e parametrica

Sia U un sottospazio di dimensione dim U=k in uno spazio V di dimensione dim V=n con $(k \le n)$.

In forma parametrica U esprime tutti i suoi vettori in funzione di k parametri.

In forma cartesiana U esprime tutti i suoi vettori in funzione di n-k equazioni cartesiane.

Esempio. Dati $V = \mathbb{R}^5$, $v_1 = (1, 2, 0, 0, 1)$, $v_2 = (0, 0, 1, 0, -1)$ posso scrivere il sottospazio generato da v_1 e v_2 in forma cartesiana e parametrica.

Forma cartesiana
$$U = \langle v_1, v_2 \rangle = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \mid x_2 = 2x_1, x_4 = 0, x_5 = x_1 - x_2\}$$

Forma parametrica $U = \langle v_1, v_2 \rangle = \{tv_1 + sv_2 \mid t, s \in \mathbb{R}\} = \{(t, 2t, s, 0, t - s) \mid t, s \in \mathbb{R}\}$

In questo caso dim U=2 perchè v_1,v_2 sono linearmente indipendenti e generano U. Nella forma parametrica, t e s sono detti **parametri** mentre in quella cartesiana è individuata da 3 (5 - 2) equazioni cartesiane.

Esempio. Sia $V = \mathbb{R}^3$ e

$$U = \langle (1,1,0), (0,0,1) \rangle = \{ t(1,1,0) + s(0,0,1) \mid t,s \in \mathbb{R} \} = \{ (t,t,s) \mid t,s \in \mathbb{R} \}$$

$$W = \langle (1,0,0), (0,1,-1) \rangle = \{ a(1,0,0) + b(0,1,-1) \mid a,b \in \mathbb{R} \} = \{ (a,b,-b) \mid a,b \in \mathbb{R} \}$$

Calcolare $U \cap W$.

Per calcolare l'intersezione tra due sottospazi vettoriali, trasformo i vettori in forma cartesiana:

$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x = y\}$$

$$W = \{(x, y, z) \in \mathbb{R}^3 \mid y = -z\}$$

A questo punto, calcolo l'intersezione tra le due equazioni:

$$U \cap W = \{(x, y, z) \in \mathbb{R}^3 \mid x = y, y = -z\} = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = -z\}$$

In forma parametrica:

$$U \cap W = \{t(1, 1, -1) \mid t \in \mathbb{R}\}\$$

Le dimensioni di U e W sono rispettivamente 2 e 2, quindi dim $(U \cap W) = 1$.

Proposizione. Siano U e W due sottospazi vettoriali di uno spazio vettoriale V. Allora $U \cap W$ è un sottospazio vettoriale di V. In altri termini, "l'intersezione di due sottospazi è un sottospazio".

Quindi, $u_1 + u_2 \in U \cap W$.

Allo stesso modo si dimostra che $\forall a \in \mathbb{K}, u \in U \cap W \Rightarrow a \cdot u \in U \cap W$.

Osservazione. In generale, l'unione di due sottospazi vettoriali $(U \cup W)$ non è un sottospazio vettoriale.

Esempio.
$$V = \mathbb{R}^2, U = \{(x, y) \in \mathbb{R}^2 \mid x = 0\}, W = \{(x, y) \in \mathbb{R}^2 \mid y = 0\}$$

L'unione è $U \cup W = \{(x, y) \in \mathbb{R}^2 \mid x = 0 \lor y = 0\}$

Se prendiamo un vettore di ogni sottospazio possiamo facilmente dimostrare che $U \cup W$ non è un sottospazio vettoriale.

$$u = (0,1) \in U, w = (1,0) \in W \Rightarrow u + w = (0,1) + (1,0) = (1,1) \notin U \cup W$$

Definizione 2.3: Somma di sottospazi

Siano U e W due sottospazi vettoriali di uno spazio vettoriale V. La somma di U e W è il sottospazio vettoriale $U+W=\{u+w\mid u\in U, w\in W\}$.

Proposizione. U + W è un sottospazio vettoriale di V.

Dimostrazione. Se $u_1, u_2 \in U + W \Rightarrow \exists w_1, w_2 \in W, u_1, u_2 \in U \mid v_1 = u_1 + w_1, v_2 = u_2 + w_2$.

$$v_1 + v_2 = (u_1 + w_1) + (u_2 + w_2) = (u_1 + u_2) + (w_1 + w_2) \in U + W$$

Si nota che $u_1 + u_2 \in U$ e $w_1 + w_2 \in W$.

Allo stesso modo si dimostra che $\forall a \in \mathbb{K}, v \in U + W \Rightarrow a \cdot v \in U + W$.

Esempio. Dati $V = \mathbb{R}^4, U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_3 = 0, x_4 = 0\}, W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 = 0, x_4 = 0\}$ Calcolare U + W.

Passo 1 Scrivere U e W in forma parametrica

$$U = \{(a, b, 0, 0) \mid a, b \in \mathbb{R}\}$$
 dim $U = 2$
$$W = \{(0, t, s, 0) \mid t, s \in \mathbb{R}\}$$
 dim $W = 2$

Passo 2 Calcolare U + W

$$U + W = \{u + w \mid u \in U, w \in W\} = \{(a, b, 0, 0) + (0, t, s, 0) \mid a, b, t, s \in \mathbb{R}\}$$

= \{(a, b + t, s, 0) \cap a, b, t, s \in \mathbb{R}\} \text{dim } U + W = 3

In forma cartesiana, $U + W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 = 0 \lor x_4 = 0\}.$

Teorema 2.4: Formula di Grassman

Siano U e W due sottospazi vettoriali di uno spazio vettoriale V. Allora

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

Dimostrazione. Otteniamo progressivamente le basi di $U \cap W$, U e W e le loro dimensioni.

 $\mathbf{U} \cap \mathbf{W}$ Sia $v_1, ..., v_l$ una base di $U \cap W$ e quindi $\dim(U \cap W) = l$.

U Completiamo la base di $U \cap W$ a una base di $U: v_1, ..., v_k, u_1, ..., u_m$. Quindi dim U = l + m.

W Completiamo la base di $U \cap W$ a una base di $W: v_1, ..., v_k, w_1, ..., w_n$. Quindi dim W = l + n.

 $\mathbf{U} + \mathbf{W}$ Unendo le basi di U e W si ottiene la base di $U + W : v_1, ..., v_k, u_1, ..., u_m, w_1, ..., w_n$ Quindi $\dim(U + W) = l + m + n$.

Esempio. Sia $V = \mathbb{R}^4, U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 = x_2, x_4 = 0\}, W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 = -x_2, x_4 = 0\}$

$$U \cap W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 = x_2 = -x_2 = 0, x_4 = 0\} = \{(0, 0, x_3, 0) \mid x_3 \in \mathbb{R}\}\$$

Una possibile base di $U \cap W$ è (0,0,1,0), quindi dim $(U \cap W) = 1$.

Una possibile base di U è $(1,1,x_3,0),(0,0,0,1),$ quindi dim U=2.

Una possibile base di $W \in (1, -1, x_3, 0), (0, 0, 0, 1),$ quindi dim W = 2.

Per la formula di Grassman, $\dim(U+W) = \dim U + \dim W - \dim(U\cap W) = 2+2-1=3$. In effetti, una base di U+W è data da $v_1,u_1,w_1,$ cioè $U+W=\{tu+su,rw,t,s,r\in\mathbb{R}\}=\{(0,0,t,0),(s,s,0,0),(r,-r,0,0)\mid t,s,r\in\mathbb{R}\}=\{(s+r,s-r,t,0)\mid t,s,r\in\mathbb{R}\}=\{(x_1,x_2,x_3,x_4)\in\mathbb{R}^4\mid x_4=0\}.$

Definizione 2.4: Somma diretta

La somma di due sottospazi U+W è detta **diretta** se $U\cap W=\{0\}$. In tal caso, si scrive $U\oplus W$.

Proposizione. U,W formano una somma diretta \Leftrightarrow ogni vettore $v \in U \oplus W$ può essere scritto in modo unico come somma di un vettore $u \in U$ e un vettore $w \in W \Leftrightarrow$ l'unione di una base di U e una base di $U \oplus W$.

Dimostrazione. Dimostriamo entrambe le implicazioni:

 $\Leftrightarrow \text{ Se } V = U \oplus W \text{ allora } V = U + W, \text{ quindi } \forall v \in V \exists u \in U, w \in W \mid v = u + w.$ Supponiamo che $\exists u' \in U, w' \in W \mid v = u' + w' = u + w \Rightarrow u - u' = w - w' \text{ in cui } u - u' \in U \text{ e} w - w' \in W.$

Tuttavia, dato che $U \cap W = \{0\}$, allora $u - u' = w - w' = 0 \Rightarrow u = u', w = w'$. Viceversa se ogni v si scrive in modo unico, la somma deve essere diretta per lo stesso ragionamento.

 \Leftrightarrow Se $u_1, ..., u_n$ è una base di U e $w_1, ..., w_m$ è una base di W, allora ogni $v \in V$ si scrive in modo unico come v = u + w con $u \in U, w \in W$. Quindi: $v = (a_1u_1 + ... + a_nu_n) + (b_1w_1 + ... + b_mw_m)$, perciò $u_1, ..., u_n, w_1, ..., w_m$ è una base di V. Similarmente il viceversa.

Esempio. $V = \mathbb{R}^2, U = \{(x,0) \mid x \in \mathbb{R}\}, W = \{(0,y) \mid y \in \mathbb{R}\}$

 $U \cap W = \{0\}$. D'altra parte, ogni $(x, y) \in V$ si scrive in modo unico come (x, y) = (x, 0) + (0, y). Quindi $V = U + W = U \oplus W$.

Una base di U è (1,0), una base di W è (0,1), quindi una base di V è (1,0), (0,1).

Esempio. $V = \mathbb{R}^3, U = \{(x, y, z) \mid z = 0\}, W = \{(x, y, z) \mid x = 0\}$

 $U \cap W = \{(x, y, z) \mid z = 0, x = 0\} \neq \{(0, 0, 0)\}.$

Quindi V=U+W ma $V\neq U\oplus W.$ Infatti, ogni vettore di V si scrive come somma di un vettore di U e un vettore di W, ma non in modo

Ad esempio, (2,7,-3) = (2,7,0) + (0,0,-3) = (2,0,0) + (0,7,-3).

3 Unità 3 - Lezioni 5, 6, 7

3.1 Approfondimento sulle funzioni

Definizione 3.1: Applicazione lineare

Siano V e U due spazi vettoriali su un campo \mathbb{K} . Un'applicazione $f:V\to U$ è lineare se valgono entrambe le proprietà:

$$f(v_1 + v_2) = f(v_1) + f(v_2) \qquad \forall v_1, v_2 \in V$$

$$f(a \cdot v) = a \cdot f(v) \qquad \forall a \in \mathbb{K}, \forall v \in V$$

Oppure, equivalentemente, f è lineare $\Leftrightarrow \forall v_1, v_2 \in V, \forall a_1, a_2 \in \mathbb{K}$:

$$f(a_1v_1 + a_2v_2) = a_1f(v_1) + a_2f(v_2)$$

Esempio. $f: \mathbb{R}^3 \to \mathbb{R}^2, f(x, y, z) = (2z, x + y)$ è lineare?

Dati due vettori $v_1=(x_1,y_1,z_1), v_2=(x_2,y_2,z_2)\in\mathbb{R}^3$ e uno scalare $a\in\mathbb{R}$, verifico se le operazioni sono compatibili:

Somma:

$$f(v_1 + v_2) = f(x_1 + x_2, y_1 + y_2, z_1 + z_2) = (2(z_1 + z_2), x_1 + x_2 + y_1 + y_2)$$

$$f(v_1) + f(v_2) = (2z_1, x_1 + y_1) + (2z_2, x_2 + y_2) = (2z_1 + 2z_2, x_1 + x_2 + y_1 + y_2)$$

$$= (2(z_1 + z_2), x_1 + x_2 + y_1 + y_2)$$

Prodotto per uno scalare:

$$f(a \cdot v) = f(ax, ay, az) = (2az, ax + ay)$$

 $a \cdot f(v) = a \cdot (2z, x + y) = (2az, ax + ay)$

Quindi f è lineare, dato che i risultati coincidono.

Esempio. $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (2x, y^2)$ è lineare?

Dati due vettori $v_1=(x_1,y_1), v_2=(x_2,y_2)\in\mathbb{R}^2$ e uno scalare $a\in\mathbb{R}$, verifico se le operazioni sono compatibili:

Somma:

$$f(v_1 + v_2) = f(x_1 + x_2, y_1 + y_2) = (2(x_1 + x_2), (y_1 + y_2)^2) = (2(x_1 + x_2), y_1^2 + 2y_1y_2 + y_2^2)$$
$$f(v_1) + f(v_2) = (2x_1, y_1^2) + (2x_2, y_2^2) = (2(x_1 + x_2), y_1^2 + y_2^2)$$

Prodotto per uno scalare:

$$f(a \cdot v) = f(ax, ay) = (2ax, (ay)^{2})$$
$$a \cdot f(v) = a \cdot (2x, y^{2}) = (2ax, ay^{2})$$

Quindi f non è lineare, dato che i risultati non coincidono.

Esempio. $f: \mathbb{R}^2 \to \mathbb{R}^3, f(x,y) = (0, x+y, 1)$ è lineare?

Dati due vettori $v_1=(x_1,y_1), v_2=(x_2,y_2)\in\mathbb{R}^2$ e uno scalare $a\in\mathbb{R}$, verifico se le operazioni sono compatibili:

Somma:

$$f(v_1 + v_2) = f(x_1 + x_2, y_1 + y_2) = (0, (x_1 + x_2) + (y_1 + y_2), 1) = (0, x_1 + x_2 + y_1 + y_2, 1)$$
$$f(v_1) + f(v_2) = (0, x_1 + y_1, 1) + (0, x_2 + y_2, 1) = (0, x_1 + x_2 + y_1 + y_2, 2)$$

Prodotto per uno scalare:

$$f(a \cdot v) = f(ax, ay) = (0, ax + ay, 1)$$
$$a \cdot f(v) = a \cdot (0, x + y, 1) = (0, ax + ay, a)$$

Quindi f non è lineare, dato che i risultati non coincidono.

Sia $f: V \to U$ un'applicazione lineare. f è suriettiva \Leftrightarrow Im f = U.

Proposizione. Im f è un sottospazio vettoriale di U.

Dimostrazione. Im $f = \{u \in U \mid \exists v \in V \mid f(v) = u\}.$

Siano $u_1, u_2 \in \text{Im } f$, quindi $\exists v_1, v_2 \in V \mid f(v_1) = u_1 \text{ e } f(v_2) = u_2$.

Allora $u_1 + u_2 = f(v_1) + f(v_2) = f(v_1 + v_2)$, quindi $u_1 + u_2 \in \text{Im } f$ (un elemento di V è mandato in $u_1 + u_2$).

Allo stesso modo, $\forall a \in \mathbb{K}, u \in \text{Im } f \Rightarrow \exists v \in V \mid f(v) = u \Rightarrow f(av) = a \cdot f(v) = a \cdot u \in \text{Im } f$. Quindi Im f è un sottospazio vettoriale di U.

Definizione 3.2: Nucleo di un'applicazione lineare

Sia $f:V\to U$ un'applicazione lineare. Il **nucleo** di f è l'insieme dei vettori di V che risultano in 0 dopo l'applicazione di f:

$$\ker f = \{ v \in V \mid f(v) = 0 \}$$

Proposizione. ker f è un sottospazio vettoriale di V.

Dimostrazione. Devo verificare che le proprietà di un sottospazio vettoriale siano rispettate, sapendo che, dato un $v \in \ker f$, per definizione f(v) = 0:

 $\ker f$ non è vuoto perchè $0 \in \ker f$ (dato che f(v-v) = f(v) - f(v) = 0).

Se $v_1, v_2 \in \ker f \Rightarrow \text{ anche } v_1 + v_2 \in \ker f, \text{ perchè } f(v_1 + v_2) = f(v_1) + f(v_2) = 0.$

Se $v \in \ker f$ e $a \in \mathbb{K} \Rightarrow f(av) = af(v) = a \cdot 0 = 0 \Rightarrow av \in \ker f$.

Quindi ker f è un sottospazio vettoriale di V.

Proposizione. f è iniettiva $\Leftrightarrow \ker f = \{0\}$

Dimostrazione. Dimostriamo entrambi i versi:

 \Rightarrow Devo dimostrare che se f è iniettiva allora ker $f = \{0\}$.

Dalla precedente dimostrazione, f(0) = 0 è sempre vero, quindi $0 \in \ker f$. Se esistesse un altro $v \in V$ tale che f(v) = 0, contraddirrebbe la definizione di iniettività. Quindi $\ker f = \{0\}$.

 \Leftarrow Devo dimostrare che se ker $f = \{0\}$ allora f è iniettiva.

Quindi, supponiamo che ker $f = \{0\}$. Vogliamo mostrare che se $f(v_1) = f(v_2) \Rightarrow v_1 = v_2$.

Dato che f è lineare e sappiamo che $f(v_1) = f(v_2)$, $f(v_1) - f(v_2) = 0 \Rightarrow f(v_1 - v_2) = 0$.

Quindi $v_1 - v_2 \in \ker f = \{0\} \Rightarrow v_1 - v_2 = 0 \Rightarrow v_1 = v_2.$

Di conseguenza, f è iniettiva per definizione.

Esempio. $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x+y,2x+2y) è iniettiva? Devo verificare se Ker $f = \{0\}$.

$$f(x,y) = (x+y, 2x+2y) = (0,0) \Rightarrow \begin{cases} x+y=0 \\ 2x+2y=0 \end{cases} \Rightarrow \begin{cases} x=0 \\ y=0 \end{cases}$$

Quindi Ker $f = \{0\}$ e f è iniettiva. Inoltre, Im $f = \{(x, y) \in \mathbb{R}^2 \mid x + y = 0\} = \{(x, -x) \mid x \in \mathbb{R}\}.$

Teorema 3.1: Teorema del rango

Sia $f: V \to U$ un'applicazione lineare. Allora:

 $\dim V = \dim \ker f + \dim \operatorname{Im} f$

Dimostrazione. Sia $v_1, v_2, ..., v_k$ una base di ker f e completiamola a una base di V:

 $v_1, v_2, ..., v_k, v_{k+1}, ..., v_n$.

Sia $u \in \text{Im } f$, cioè $u \in U$ e $\exists v \in V \mid f(v) = u$.

Poichè $v_1, ..., v_k, v_{k+1}, ..., v_n$ sono una base di V, $\exists ! a_1, a_2, ..., a_n \in \mathbb{K} \mid v = a_1v_1 + a_2v_2 + ... + a_nv_n$ per il teorema delle coordinate.

Quindi $u = f(v) = f(a_1v_1 + ... + a_kv_k + a_{k+1}v_{k+1} + ... + a_nv_n) = a_1f(v_1) + ... + a_kf(v_k) + a_{k+1}f(v_{k+1}) + ... + a_nf(v_n).$

Cioè $\forall u \in \text{Im } f \exists ! a_{k+1}, ..., a_n \in \mathbb{K} \mid u = a_{k+1} f(v_{k+1}) + ... + a_n f(v_n), \text{ infatti } f(v_1) = f(v_2) = ... = f(v_k) = 0 \text{ perchè } v_1, v_2, ..., v_k \in \ker f.$

Quindi $f(v_{k+1}), ..., f(v_n)$ sono linearmente indipendenti e formano una base di Im f. Perciò dim ker f = k, dim V = n, dim Im f = n - k.

Esempio. $V = \mathbb{R}^3 = U, f : V \to U, f(x, y, z) = (x - y, y - z, z - x)$ è iniettiva o suriettiva? Qual'è la dimensione di ker f? Definire anche Im f.

Devo verificare se Ker $f = \{0\}$.

Formalmente, $\ker f = \{v \in V \mid f(v) = 0\} = \{(x, y, z) \in V \mid f(x, y, z) = (0, 0, 0)\} = \{(x, y, z) \in V \mid x = y = z\} = \{(t, t, t) \mid t \in \mathbb{R}\}.$

Quindi, dim ker $f = 1 \neq 0$, quindi f non è iniettiva.

Per il teorema del rango, dim $V = \dim \ker f + \dim \operatorname{Im} f$, quindi dim $\operatorname{Im} f = \dim V - \dim \ker f = 3 - 1 = 2 \neq 3$, quindi f non è suriettiva.

Troviamo Im f: Troviamo una base di ker f: $v_1 = (1, 1, 1)$. Completiamolo ora a una base di V: $v_2 = (1, 0, 0), v_3 = (0, 1, 0)$.

 $f(v_1) = (0,0,0), f(v_2) = (1,0,-1), f(v_3) = (-1,1,0).$

 $f(v_2), f(v_3)$ sono linearmente indipendenti e non nulli, quindi formano una base di Im f.

Quindi Im $f = \{t(1,0,-1) + s(-1,1,0) \mid t,s \in \mathbb{R}\} = \{(t-s,s,-t) \mid t,s \in \mathbb{R}\} = \{(x,y,z) \in V \mid x+y+z=0\}.$

Esempio. $V = \mathbb{R}[x]_{\leq 2} = \{ax^2 + bx + c \mid a, b, c \in \mathbb{R}\}, U = V, f : V \to U, f(p(x)) = p'(x) = 2ax + b.$ Trovare ker f e Im f e le loro dimensioni.

Im $f = \{\text{polinomi di grado } \leq 1\} = \{ax + b \mid a, b \in \mathbb{R}\} = \mathbb{R}[x] \leq 1$.

 $\ker f = \{ p(x) \in V \mid p'(x) = 0 \} = \{ ax^2 + bx + c \mid 2ax + b = 0 \Rightarrow a = 0, b = 0 \} = \{ c \mid c \in \mathbb{R} \}.$

Quindi dim ker f = 1, dim Im f = 2.

Per il teorema del rango, dim $V=\dim\ker f+\dim \text{ Im } f=1+2=3.$

Proposizione. Conseguenze del teorema del rango, data un'applicazione lineare $f: V \to U$:

- 1. Se $\dim V > \dim U,\, f$ non è iniettiva.
- 2. Se $\dim V < \dim U$, f non è suriettiva.
- 3. Se dim $V = \dim U$, allora f è iniettiva $\Leftrightarrow f$ è suriettiva.

Dimostrazione. Dimostriamo i tre punti:

- 1. $\dim \ker f = \dim V \dim \operatorname{Im} f \ge \dim V \dim U > 0 \Rightarrow \ker f \ne \{0\}$. Quindi f non è iniettiva.
- 2. dim Im $f = \dim V \dim \ker f < \dim U \Rightarrow \text{ Im } f \neq U$. Quindi f non è suriettiva.
- 3. $\dim V = \dim \operatorname{Im} f + \dim \ker f = \dim U$ Se f è iniettiva, $\dim \ker f = 0$, quindi $\dim \operatorname{Im} f = \dim U$ cioè $\operatorname{Im} f = U$ e f è suriettiva. Viceversa, se f è suriettiva, $\dim \operatorname{Im} f = \dim U$, quindi $\dim \ker f = 0$ e f è iniettiva.

3.2 Isomorfismi

Definizione 3.3: Isomorfismo

Un'applicazione lineare è chiamata isomorfismo se è biunivoca.

Esempio. $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x+y,x-y) è un isomorfismo? Devo verificare se f è lineare e se è biunivoca.

Linearità Dati due vettori $v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$ e uno scalare $a \in \mathbb{R}$, verifico se le operazioni sono compatibili:

$$f(v_1 + v_2) = f(x_1 + x_2, y_1 + y_2) = ((x_1 + x_2) + (y_1 + y_2), (x_1 + x_2) - (y_1 + y_2))$$

$$f(v_1) + f(v_2) = (x_1 + y_1, x_1 - y_1) + (x_2 + y_2, x_2 - y_2) = ((x_1 + x_2) + (y_1 + y_2), (x_1 + x_2) - (y_1 + y_2))$$

$$f(a\cdot v) = f(ax,ay) = (ax+ay,ax-ay) = a(x+y,x-y) = a\cdot f(v)$$

$$a\cdot f(v) = a\cdot (x+y,x-y) = (ax+ay,ax-ay) = f(ax,ay)$$

Quindi f è lineare.

Iniettività Devo verificare se Ker $f = \{0\}$.

$$f(x,y) = (x+y, x-y) = (0,0) \Rightarrow \begin{cases} x+y=0 \\ x-y=0 \end{cases} \Rightarrow \begin{cases} x=0 \\ y=0 \end{cases}$$

Quindi Ker $f = \{0\}$ e f è iniettiva.

Suriettività Devo verificare se Im $f = \mathbb{R}^2$.

Im
$$f = \{(x + y, x - y) \mid x, y \in \mathbb{R}\} = \{(x_1, x_2) \mid x_1, x_2 \in \mathbb{R}\} = \mathbb{R}^2$$

Quindi f è suriettiva.

Quindi f è lineare e biunivoca, quindi è un isomorfismo.

Osservazione. Una applicazione lineare $f: V \to U$ è un isomorfismo $\Leftrightarrow \ker f = \{0\}$ e Im f = V.

Definizione 3.4: Isomorfismo di spazi vettoriali

Due spazi vettoriali V e U su un campo \mathbb{K} si dicono **isomorfi** se esiste un isomorfismo $f:V\to U$ e scriviamo $V\cong U$.

Proposizione. "Essere isomorfi" è una relazione di equivalenza.

Dimostrazione. Devo verificare che la relazione sia riflessiva, simmetrica e transitiva:

Riflessività Se V è uno spazio vettoriale, allora $f:V\to V, f(v)=v$ è un isomorfismo (V è isomorfo a se stesso).

Simmetria Se V è isomorfo a U, allora esiste un isomorfismo $f: V \to U$. Allora $f^{-1}: U \to V$ è un isomorfismo, quindi U è isomorfo a V.

Transitività Se V è isomorfo a U e U è isomorfo a W, allora esistono due isomorfismi $f:V\to U$ e $g:U\to W$.

Allora la composizione $g \circ f : V \to W$ è un isomorfismo, quindi V è isomorfo a W.

Esempio. $\mathbb{K} = \mathbb{R}, V = \mathbb{K}[x]_{\leq 2} = \{ax^2 + bx + c \mid a, b, c \in \mathbb{K}\}, U = \mathbb{R}^3 = \{(a, b, c) \mid a, b, c \in \mathbb{K}\}, f : V \to U, f(ax^2 + bx + c) = (a, b, c) \ \text{è un isomorfismo?}$

f è lineare, iniettiva e suriettiva, quindi è un isomorfismo.

Quindi V e U sono isomorfi, quindi $V \cong U$.

Proposizione. 1. La composizione di applicazioni lineari è un'applicazione lineare.

- 2. La composizione di isomorfismi è un isomorfismo.
- 3. L'applicazione inversa di un isomorfismo è un isomorfismo.

Dimostrazione. Siano $f: V \to U, g: U \to W$ due applicazioni lineari.

1. Devo verificare che la composizione $g \circ f : V \to W$ sia lineare, ovvero $\forall v_1, v_2 \in V, a \in \mathbb{K}$:

$$(g \circ f)(v_1 + v_2) = g(f(v_1 + v_2)) = g(f(v_1) + f(v_2)) = g(f(v_1)) + g(f(v_2))$$

= $(g \circ f)(v_1) + (g \circ f)(v_2)$
 $(g \circ f)(av) = g(f(av)) = g(af(v)) = ag(f(v)) = a(g \circ f)(v)$

Quindi $q \circ f$ è lineare.

2. Dalla definizione, la composizione di applicazioni iniettive è iniettiva e la composizione di applicazioni suriettive è suriettiva.

Infatti, se $f \in g$ sono iniettive allora $\ker f = \{0\}$, $\ker g = \{0\} \Rightarrow \ker(g \circ f) = \ker g \circ \ker f = \{0\}$. Analogamente, se $f \in g$ sono suriettive allora $\operatorname{Im} f = V$, $\operatorname{Im} g = U \Rightarrow \operatorname{Im} (g \circ f) = \operatorname{Im} g \circ \operatorname{Im} f =$ W. Quindi $g \circ f$ è iniettiva e suriettiva (biunivoca), ovvero è un isomorfismo.

3. Sappiamo che se f è biunivoca, allora esiste f^{-1} . Mostriamo che se f è lineare, anche f^{-1} lo è:

Siano $u_1, u_2 \in U$, vogliamo mostrare che $f^{-1}(u_1 + u_2) = f^{-1}(u_1) + f^{-1}(u_2)$. Poichè f è biunivoca, $\exists ! v_1, v_2 \in V \mid f(v_1) = u_1 \text{ e } f(v_2) = u_2$. Allora $f^{-1}(u_1 + u_2) = f^{-1}(f(v_1) + f(v_2)) = f^{-1}(f(v_1 + v_2)) = v_1 + v_2 = f^{-1}(u_1) + f^{-1}(u_2)$. Analogamente $\forall a \in \mathbb{K}, u \in U, \exists v \in V \mid f(v) = u, f^{-1}(au) = f^{-1}(af(v)) = f^{-1}(f(av)) = av = f^{-1}(av)$ $af^{-1}(u)$.

Esempio. Dire se $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (2x+y,x-y) è un isomorfismo e, se sì, calcolare f^{-1} . $\ker f = \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = (0,0)\}, \text{ cioè:}$

$$f(x,y) = (2x+y, x-y) = (0,0) \Rightarrow \begin{cases} 2x+y=0 \\ x-y=0 \end{cases} \Rightarrow \begin{cases} x=y \\ 2x+x=0 \Rightarrow 3x=0 \Rightarrow x=0 \end{cases} \Rightarrow y=0$$

Quindi $\ker f = \{0\}$ e f è iniettiva.

Dalla dimensione dell'immagine, dim Im $f = \dim V - \dim \ker f = 2 - 0 = 2$ (dal teorema del rango), quindi Im $f = \mathbb{R}^2$ e f è suriettiva.

Quindi f è un isomorfismo.

Calcoliamo f^{-1} , ovvero cerchiamo l'unico $(t,s) \in \mathbb{R}^2$ tale che f(x,y) = (t,s):

$$f(x,y) = (2x + y, x - y) = (t,s) \Rightarrow \begin{cases} 2x + y = t \\ x - y = s \end{cases}$$
$$\Rightarrow \begin{cases} x = \frac{t+s}{3} \\ y = \frac{t-2s}{3} \end{cases}$$

Quindi $f^{-1}(t,s) = (\frac{t+s}{3}, \frac{t-2s}{3}).$

Teorema 3.2: Teorema dell'estensione lineare

Siano V, U spazi vettoriali su un campo \mathbb{K} e $v_1, v_2, ..., v_n$ una base di $V, u_1, u_2, ..., u_n$ vettori di U.

Allora $\exists ! f : V \to U$ tale che $f(v_1) = u_1, f(v_2) = u_2, ..., f(v_n) = u_n$.

Dimostrazione. Sia $v \in V$. Poichè $v_1, v_2, ..., v_n$ sono una base di V, $\exists ! a_1, a_2, ..., a_n \in \mathbb{K} \mid v = a_1v_1 + a_2v_2 + ... + a_nv_n$.

Per la linearità $f(v) = f(a_1v_1 + a_2v_2 + ... + a_nv_n) = a_1f(v_1) + a_2f(v_2) + ... + a_nf(v_n) = a_1u_1 + a_2u_2 + ... + a_nu_n$.

Quindi f esiste ed è unica (associa univocamente ogni $v \in V$ a un $u \in U$).

Esempio. $V = \mathbb{R}^2 = U, v_1 = (1, 1), v_2 = (1, -1), v = (3, 1), u_1 = 2v_1 - v_2, u_2 = 3v_1 - 2v_2.$ Sia $f: V \to U$ tale che $f(v_1) = u_1, f(v_2) = u_2.$

Calcolare f(v).

Sapendo che $v = a_1v_1 + a_2v_2$, calcoliamo a_1 e a_2 :

$$v = (3,1) = a_1(1,1) + a_2(1,-1) \Rightarrow \begin{cases} a_1 + a_2 = 3 \\ a_1 - a_2 = 1 \end{cases} \Rightarrow \begin{cases} a_1 = 2 \\ a_2 = 1 \end{cases}$$

Quindi $v = 2v_1 + 1v_2$.

Calcoliamo f(v):

$$f(v) = f(2v_1 + v_2) = 2f(v_1) + f(v_2) = 2u_1 + u_2 = 2(2v_1 - v_2) + (3v_1 - 2v_2) = (7v_1 - 4v_2)$$

Quindi $f(v) = 7v_1 - 4v_2 = (3, 11)$.

Esempio. Sia $V = \mathbb{R}^2$, $e_1 = (1,0)$, $e_2 = (0,1)$, dire se esiste ed è unica un'applicazione lineare $f: V \to V$ tale che $f(e_1) = (2,1)$, $f(e_2) = (-1,3)$.

Poichè e_1, e_2 è una base di V, per il teorema dell'estensione lineare esiste ed è unica un'applicazione lineare $f: V \to V$ tale che $f(e_1) = (2,1), f(e_2) = (-1,3)$. In effetti ogni vettore $v = (x,y) \in V$ si può scrivere come $v = xe_1 + ye_2$ e quindi $f(v) = xf(e_1) + yf(e_2) = x(2,1) + y(-1,3) = (2x - y, x + 3y)$.

Esempio. Siano $f: \mathbb{R}^2 \to \mathbb{R}^2$, $v_1 = (2, -1)$, $v_2 = (4, -2)$. Esiste un'unica applicazione lineare tale che $f(v_1) = (1, 0)$, $f(v_2) = (3, -1)$?

Osserviamo che $v_2 = 2v_1$, quindi $f(v_2) = 2f(v_1)$. Ma $f(v_2) = (3, -1) \neq 2(1, 0) = (2, 0)$.

Quindi non esiste un'unica applicazione lineare che soddisfi le condizioni.

Esempio. $f: \mathbb{R}^2 \to \mathbb{R}^2, v_1 = (2, -1), v_2 = (4, -2)$. Esiste un'applicazione lineare tale che $f(v_1) = (1, 1), f(v_2) = (2, 2)$? Se sì, è unica?

Osserviamo che $v_2 = 2v_1$, quindi $f(v_2) = 2f(v_1)$: le condizioni sono soddisfatte.

Completiamo v_1 a una base di \mathbb{R}^2 : v_1, v_2 è una base di \mathbb{R}^2 .

Per ogni scelta di v_2 non esiste un'unica applicazione lineare che soddisfi le condizioni (per il teorema dell'estensione lineare), ma ce ne sono infinite.

Il teorema dell'estensione lineare indica che per sapere chi è f è sufficiente conoscere cosa fa sui vettori di una base di V.

Esempio. $V = \mathbb{R}^2, U = \mathbb{R}^2, v_1 = (3, -2)$. Esiste una e una sola applicazione lineare $f: V \to U$ tale che $f(v_1) = l1 = (1, 0)$?

Osserviamo che v_1 non è una base di V, quindi non posso applicare il teorema dell'estensione lineare. Infatti, posso completare v_1 a una base di V, ad esempio $v_1 = (3, -2), v_2 = (1, 1)$.

So che $f(v_1) = (1,0)$ ma $f(v_2)$ può essere scelto arbitrariamente (ad esempio $f(v_2) = (0,1)$ o $f(v_2) = (1,1)$).

Quindi f esiste ma non è unica.

Esempio. $V = \mathbb{R}^3, U = \mathbb{R}^3, v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (2, 3, 0).$

Dire se esiste ed è unica un'applicazione lineare $f: V \to U$ tale che $f(v_1) = (1,1,0), f(v_2) = (0,0,1), f(v_3) = (5,5,7).$

Osserviamo che $v_3 = 2v_1 + 3v_2$, quindi $f(v_3) = 2f(v_1) + 3f(v_2)$. Di conseguenza, v_1, v_2, v_3 non è una base di V.

Quindi, se f esiste ed è lineare, $(5,5,7) = f(v_3) = 2f(v_1) + 3f(v_2) = 2(1,1,0) + 3(0,0,1) = (2,2,3)$, che non è possibile.

Quindi non esiste un'applicazione lineare f che soddisfi le condizioni.

Esiste invece un'applicazione lineare $g: V \to U$ tale che $g(v_1) = (1,1,0), g(v_2) = (0,0,1), g(v_3) = (2,2,3)$?

Sì, infatti $g(v_3) = 2g(v_1) + 3g(v_2) = 2(1,1,0) + 3(0,0,1) = (2,2,3)$, ma non è unica.

Posso infatti completare v_1, v_2 a una base di V, ad esempio $v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_4 = (0, 0, 1)$ e posso scegliere $g(v_4)$ arbitrariamente.

Teorema 3.3: Isomorfismi e basi

Un'applicazione lineare è un isomorfismo ⇔ manda basi in basi.

Cioè se $f: V \to U$ è un isomorfismo e $v_1, v_2, ..., v_n$ è una base di V, allora $f(v_1), f(v_2), ..., f(v_n)$ è una base di U.

Dimostrazione. Dimostriamo entrambi i versi dell'implicazione:

 \Rightarrow Sia $f:V\to U$ un isomorfismo e $v_1,v_2,...,v_n$ sia una base di V. Si vuole dimostrare che $f(v_1),f(v_2),...,f(v_n)$ è una base di U.

Sia $u \in U$. Poichè f è un isomorfismo, $\exists ! v \in V \mid f(v) = u$.

Poichè $v_1, v_2, ..., v_n$ è una base di $V, \exists ! a_1, a_2, ..., a_n \in \mathbb{K} \mid v = a_1v_1 + a_2v_2 + ... + a_nv_n$.

Poichè f è lineare, $u = f(v) = f(a_1v_1 + a_2v_2 + ... + a_nv_n) = a_1f(v_1) + a_2f(v_2) + ... + a_nf(v_n)$.

Quindi $\forall u \in U \ \exists ! a_1, a_2, ..., a_n \in \mathbb{K} \ | \ u = a_1 f(v_1) + a_2 f(v_2) + ... + a_n f(v_n).$

Quindi $f(v_1), f(v_2), ..., f(v_n)$ è una base di U.

 \Leftarrow Sia $f: V \to U$ un'applicazione lineare, e $v_1, v_2, ..., v_n$ sia una base di V e sia $f(v_1), f(v_2), ..., f(v_n)$ una base di U.

Si vuole dimostrare che f è un isomorfismo, cioè che $\forall u \in U \ \exists ! v \in V \mid f(v) = u$.

Per il teorema delle coordinate $\exists ! a_1, a_2, ..., a_n \in \mathbb{K} \mid u = a_1 f(v_1) + a_2 f(v_2) + ... + a_n f(v_n) = f(a_1 v_1 + a_2 v_2 + ... + a_n v_n)$, perchè $f(v_1), f(v_2), ..., f(v_n)$ è una base di U.

Poichè f è lineare, $u = f(a_1v_1 + a_2v_2 + ... + a_nv_n)$.

Poichè $a_1,...,a_n$ esistono e sono unici, $v=a_1v_1+a_2v_2+...+a_nv_n$ è unico.

Quindi $v \in V \mid f(v) = u$, quindi f è un isomorfismo.

Esempio. Dati $v_1 = (1, 1), v_2 = (1, -1), u_1 = (0, 2), u_2 = (-1, 0), \text{ dire se:}$

- 1. Esiste un'applicazione lineare $f: \mathbb{R}^2 \to \mathbb{R}^2$ tale che $f(v_1) = u_1, f(v_2) = u_2$. Se esiste, è unica?
- 2. f è un isomorfismo?
- 3. $f(v_1), f(v_2)$ è una base?

Soluzione:

- 1. Poichè v_1, v_2 è una base di \mathbb{R}^2 , esiste ed è unica un'applicazione lineare $f: \mathbb{R}^2 \to \mathbb{R}^2$ tale che $f(v_1) = u_1, f(v_2) = u_2$.
- 2. Poichè u_1, u_2 è una base di \mathbb{R}^2 , f è un isomorfismo.
- 3. Poichè $e_1=(0,0), e_2=(-1,0)$ è una base e poichè f è un isomorfismo e manda basi in basi, $f(v_1), f(v_2)$ è una base.

Esempio. 1. Esiste ed è unica un'applicazione lineare $f : \mathbb{R}^2 \to \mathbb{R}^2$ tale che $f(v_1) = u_1, f(v_2) = u_2$ dove $v_1 = (1, 1), v_2 = (1, -1), u_1 = (-1, 2), u_2 = (2, -4)$?

- 2. In tal caso, f è un isomorfismo?
- 3. Trovare Im f e Ker f.

Soluzione:

- 1. Poichè v_1, v_2 è una base di \mathbb{R}^2 , esiste ed è unica un'applicazione lineare $f: \mathbb{R}^2 \to \mathbb{R}^2$ tale che $f(v_1) = u_1, f(v_2) = u_2.$
- 2. Poichè u_1, u_2 non è una base di \mathbb{R}^2 , f non è un isomorfismo. Si può verificare che $u_2 = 2u_1$, quindi non sono linearmente indipendenti (quindi non è una base).
- 3. Sia $v \in \mathbb{R}^2$. Poichè v_1, v_2 è una base di \mathbb{R}^2 , $\exists ! a_1, a_2 \in \mathbb{R} \mid v = a_1v_1 + a_2v_2 \Rightarrow f(v) = a_1u_1 + a_2u_2 = a_1v_1 + a_2v_2 \Rightarrow f(v) = a_1u_1 + a_2u_2 = a_1v_1 + a_2v_2 \Rightarrow f(v) = a_1u_1 + a_2u_2 = a_1v_1 + a_2v_2 \Rightarrow f(v) = a_1u_1 + a_2u_2 = a_1v_1 + a_2v_2 \Rightarrow f(v) = a_1u_1 + a_2u_2 = a_1v_1 + a_2v_2 \Rightarrow f(v) = a_1u_1 + a_2u_2 = a_1v_1 + a_2v_2 \Rightarrow f(v) = a_1v_1 + a_2v_2 \Rightarrow f(v)$ $a_1(-1,2) + a_2(2,-4) = (-a_1 + 2a_2, 2a_1 - 4a_2).$

Quindi Im $f = \{f(v), v \in V\} = \{(-a_1 + 2a_2, 2a_1 - 4a_2) \mid a_1, a_2 \in \mathbb{R}\} = \{(-t, 2t) \mid t \in \mathbb{R}\}.$ Poichè dim Im f = 1, per il teorema del rango dim Ker f = 2 - 1 = 1, quindi Ker f è dato da una equazione cartesiana in \mathbb{R}^2 .

Poichè $u_2 = -2u_1$, cioè $2u_1 + u_2 = 0$ allora $f(2v_1 + v_2) = 2f(v_1) + f(v_2) = 2u_1 + u_2 = 0$, quindi $2v_1 + v_2 = (3,1) \in \text{Ker } f.$

Dunque Ker $f = \langle (3,1) \rangle = \{ (3s,s) \mid s \in \mathbb{R} \} = \{ (x,y) \in \mathbb{R}^2 \mid x - 3y = 0 \}.$

Corollario 3.1: Isomorfismo e dimensione

Due spazi vettoriali su K con la stessa dimensione sono isomorfi tra loro.

Dimostrazione. Siano $V \in U$ due spazi vettoriali su un campo \mathbb{K} con dim $V = \dim U = n$. Inoltre, siano $v_1, v_2, ..., v_n$ una base di V e $u_1, u_2, ..., u_n$ una base di U.

Per il teorema dell'estensione lineare, esiste ed è unica un'applicazione lineare $f:V\to U$ tale che $f(v_1) = u_1, f(v_2) = u_2, ..., f(v_n) = u_n.$

Per il teorema dell'isomorfismo e basi f è un isomorfismo.

Esempio. Sia $V = \mathbb{R}^n$ e $U = \mathbb{R}[x]_{\leq n} = \mathbb{R}[x]_{\leq n-1} = \{\text{polinomi di grado }; n\} \Leftrightarrow \{a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1}\}$. Base di V: $e_1 = (1,0,0,\dots,0), e_2 = (0,1,0,\dots,0), \dots, e_n = (0,0,\dots,0,1)$. Base di U: $u_1 = 1, u_2 = x, u_3 = x^2, \dots, u_n = x^{n-1}$.

Esiste un'unica applicazione lineare $f: V \to U$ tale che $f(e_1) = u_1, f(e_2) = u_2, ..., f(e_n) = u_n$ e tale fè un isomorfismo.

Esempio. Sia $V = M_{2,3}(\mathbb{R}) = \{ \text{ matrici } 2 \times 3 \text{ a coefficienti } \in \mathbb{R} \} = \{ \begin{pmatrix} a & c & e \\ b & d & f \end{pmatrix} \mid a, b, c, d, e, f \in \mathbb{R} \}.$

V è uno spazio vettoriale rispetto alla somma coefficiente per coefficiente e al prodotto per uno scalare.

$$\begin{pmatrix} 2 & 0 & 11 \\ 1 & 3 & 4 \end{pmatrix} + \begin{pmatrix} 3 & \frac{1}{2} & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 5 & \frac{1}{2} & 11 \\ 1 & 3 & 7 \end{pmatrix}$$
$$3 \cdot \begin{pmatrix} 2 & 0 & 11 \\ 1 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 6 & 0 & 33 \\ 3 & 9 & 12 \end{pmatrix}$$

Qual'è la dimensione di V?

Cerchiamo una base di V. Sia $e_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, e_4 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, e_5 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, e_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

 $e_1,e_2,e_3,e_4,e_5,e_6 \text{ \`e una base di V perch\'e} \ \forall \begin{pmatrix} a & c & e \\ b & d & f \end{pmatrix} \in V \ \exists ! (a,b,c,d,e,f) \in \mathbb{R}^6 \ | \ \begin{pmatrix} a & c & e \\ b & d & f \end{pmatrix} = 0$

 $ae_1 + be_2 + ce_3 + de_4 + ee_5 + fe_6$.

Quindi dim V = 6 e V è isomorfo a \mathbb{R}^6 .

Unità 4 - Lezioni 8, 9 4

Matrici 4.1

Operazioni tra matrici

$$M_{2,3}(\mathbb{R}) = \left\{ \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \mid a,b,c,d,e,f \in \mathbb{R} \right\}$$

 $M_{2,3}(\mathbb{R})$ è lo spazio vettoriale delle matrici 2×3 a coefficienti reali. La somma è data da:

$$\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} + \begin{pmatrix} a' & b' & c' \\ d' & e' & f' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' & c+c' \\ d+d' & e+e' & f+f' \end{pmatrix}$$

Il prodotto per uno scalare è dato da:

$$\lambda \cdot \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} = \begin{pmatrix} \lambda a & \lambda b & \lambda c \\ \lambda d & \lambda e & \lambda f \end{pmatrix}$$

 $M_{2,3}(\mathbb{R})$ con queste operazioni è uno spazio vettoriale su \mathbb{R} . Che dimensione ha?

Matrici elementari

$$e_{1_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, e_{1_2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, e_{1_3} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, e_{2_1} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, e_{2_2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, e_{2_3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Queste matrici sono linearmente indipendenti e generano $M_{2,3}(\mathbb{R})$. Quindi dim $M_{2,3}(\mathbb{R}) = 6$ e $M_{2,3}(\mathbb{R}) \cong \mathbb{R}^6$. Infatti:

$$\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} = a \cdot e_{1_1} + b \cdot e_{1_2} + c \cdot e_{1_3} + d \cdot e_{2_1} + e \cdot e_{2_2} + f \cdot e_{2_3}$$

Inoltre, $M_{2,3}(\mathbb{R})$ è isomorfo a \mathbb{R}^6 .

4.1.2 Prodotto riga per colonna tra matrici

$$M \in M_{r,s}(\mathbb{R}), N \in M_{s,t}(\mathbb{R})$$

Per calcolare il prodotto $M \cdot N$ è necessario che il numero di colonne di M sia uguale al numero di righe di N.

Esempio.

$$M = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, N = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 3 & 1 & 2 & 4 \\ 0 & 1 & 2 & 0 \end{pmatrix}$$

$$\begin{split} M \cdot N &= \begin{pmatrix} 2 \cdot 2 + (-1) \cdot 3 + 0 \cdot 0 & 2 \cdot 0 + (-1) \cdot 1 + 0 \cdot 1 & 2 \cdot 1 + (-1) \cdot 2 + 0 \cdot 2 & 2 \cdot 0 + (-1) \cdot 4 + 0 \cdot 0 \\ 3 \cdot 2 + 0 \cdot 3 + 1 \cdot 0 & 3 \cdot 0 + 0 \cdot 1 + 1 \cdot 1 & 3 \cdot 1 + 0 \cdot 2 + 1 \cdot 2 & 3 \cdot 0 + 0 \cdot 4 + 1 \cdot 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 & -1 & 0 & -4 \\ 6 & 1 & 5 & 0 \end{pmatrix} \end{split}$$

Nota: $M \cdot N \in M_{r,t}(\mathbb{R})$.

In generale, il prodotto $M \cdot N$ è una matrice $r \times t$ e ha alla i-esima riga e j-esima colonna l'elemento:

$$(M \cdot N)_{ij} = \sum_{k=1}^{s} M_{ik} \cdot N_{kj}$$

4.1.3 Proprietà associativa

$$M \in M_{r,s}(\mathbb{R}), N \in M_{s,t}(\mathbb{R}), R \in M_{t,u}(\mathbb{R})$$

 $(MN)R = M(NR)$

dove:

• $(MN)R \in M_{r,t}(\mathbb{R});$

• $M(NR) \in M_{s,u}(\mathbb{R});$

Esempio.

$$M = \begin{pmatrix} 2 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}, N = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}, R = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 1 & 0 \end{pmatrix}$$

$$MN = \begin{pmatrix} 4 & 7 \\ 0 & 1 \\ 2 & 3 \end{pmatrix} \qquad (MN)R = \begin{pmatrix} 8 & 11 & 12 \\ 0 & 1 & 0 \\ 4 & 5 & 6 \end{pmatrix}$$

$$NR = \begin{pmatrix} 4 & 5 & 6 \\ 0 & 1 & 0 \end{pmatrix} \qquad M(NR) = \begin{pmatrix} 8 & 11 & 12 \\ 0 & 1 & 0 \\ 4 & 5 & 6 \end{pmatrix}$$

4.1.4 Matrice identità

Definizione 4.1: Matrice identità

La matrice identità I_n è la matrice quadrata $n \times n$ che ha 1 sulla diagonale principale e 0 altrove. Ad esempio su \mathbb{R}^3 :

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Osservazione.

$$M \in M_{r,s}(\mathbb{R})$$
$$MI_s = I_r M = M$$

Esempio.

$$M = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$MI_3 = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} = M$$
$$I_2M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} = M$$

4.1.5 Matrice inversa

Definizione 4.2: Matrice invertibile

Una matrice $A \in M_{n,n}(\mathbb{R})$ è invertibile se esiste una matrice $B \in M_{n,n}(\mathbb{R})$ tale che:

$$AB = BA = I_n$$

La matrice B è chiamata matrice inversa di A.

Esempio. Mostriamo che la matrice A è invertibile utilizzando la matrice B come matrice inversa.

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$
$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$
$$BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$

Quindi A è invertibile e B è la matrice inversa di A.

Osservazione. Un'applicazione lineare $f: V \to U$ è un isomorfismo \Leftrightarrow è invertibile, cioè $\exists f^{-1}: U \to V \mid f \circ f^{-1} = id_u$ e $f^{-1} \circ f = id_v$. In altre parole, se A è la matrice di f in una base $v_1, v_2, ..., v_n$ di V allora f è invertibile $\Leftrightarrow A$ è invertibile, cioè esiste una matrice A^{-1} tale che $A \cdot A^{-1} = A^{-1} \cdot A = I_n$ $(A^{-1}$ è la matrice di f^{-1}).

4.1.6 Matrici associate ad un'applicazione lineare

Definizione 4.3: Matrice associata ad un'applicazione lineare

Sia $f: V \to U$ un'applicazione lineare. Siano B una base di V e C una base di U. La **matrice associata** ad f rispetto alle basi B e C è la matrice $M_C^B(f)$ che ha nella colonna j le coordinate dell'immagine del j-esimo vettore della base B rispetto alla base C:

Esempio. $f: \mathbb{R}^3 \to \mathbb{R}^2$ tale che f(x, y, z) = (x + y, y - z).

Date le basi canoniche E^3 e E^2 di \mathbb{R}^3 e \mathbb{R}^2 , la matrice associata ad f rispetto a queste basi è:

$$M_{E^2}^{E^3}(f) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

Infatti:

$$f(e_1) = f(1,0,0) = (1,0) = 1e_1 + 0e_2$$

$$f(e_2) = f(0,1,0) = (1,1) = 1e_1 + 1e_2$$

$$f(e_3) = f(0,0,1) = (0,-1) = 0e_1 - 1e_2$$

Se aggungiamo una nuova base C=((1,1),(1,-1)) di \mathbb{R}^2 , la matrice associata ad f rispetto a E^3 e C è:

$$M_C^{E^3}(f) = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ 0 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Infatti:

$$f(e_1) = f(1,0,0) = (1,0) = \frac{1}{2}(1,1) + \frac{1}{2}(1,-1) + 0(0,0)$$

$$f(e_2) = f(0,1,0) = (1,1) = \frac{1}{2}(1,1) + \frac{1}{2}(1,-1) + 0(0,0)$$

$$f(e_3) = f(0,0,1) = (0,-1) = \frac{1}{2}(1,1) + \frac{1}{2}(1,-1) + (-\frac{1}{2})(0,0)$$

Per il teorema dell'estensione lineare, la matrice associata ad f rispetto alle basi B e C determina univocamente f.

Osservazione. La matrice ottenuta dipende dalle basi scelte. Se scelgo basi diverse, ottengo matrici diverse.

Esempio. $V = \mathbb{R}^3, U = \mathbb{R}^2, f : V \to U, f(x, y, z) = (2x + y, x - 3z).$ Consideriamo la base $v_1 = (1, -1, 0), v_2 = (2, 1, 0), v_3 = (0, 1, 1)$ di V e la base $u_1 = (0, -1), u_2 = (2, 0)$ di U.

Scriviamo la matrice associata ad f rispetto a queste basi.

Calcoliamo $f(v_1), f(v_2), f(v_3)$:

$$f(v_1) = f(1, -1, 0) = (2 \cdot 1 + (-1), 1 \cdot (-1), 1 \cdot 1 - 3 \cdot 0) = (1, 1) = -1u_1 + \frac{1}{2}u_2$$

$$f(v_2) = f(2, 1, 0) = (2 \cdot 2 + 1, 2 - 3 \cdot 0) = (5, 2) = -2u_1 + \frac{5}{2}u_2$$

$$f(v_3) = f(0, 1, 1) = (2 \cdot 0 + 1, 0 - 3 \cdot 1) = (1, -3) = -2u_1 + \frac{1}{2}u_2$$

Quindi la matrice associata ad f rispetto alle basi scelte è:

$$A = \begin{pmatrix} -1 & -2 & -2\\ \frac{1}{2} & \frac{5}{2} & \frac{1}{2} \end{pmatrix}$$

Matrice associata e prodotto tra matrici Sia $f: V \to U$ un'applicazione lineare e siano B e C due basi di V e U rispettivamente.

La matrice associata ad f rispetto a $B \in C$ è la matrice $A = M_C^B(f)$. Per calcolare f(v) per ogni $v \in V$ si può calcolare $A \cdot v$, in quanto le coordinate di v rispetto alla base C si ottengono tramite il prodotto tra la matrice associata e il vettore v.

Esempio. $V = \mathbb{R}^3, U = \mathbb{R}^2, f : V \to U, f(x, y, z) = (2x + y, x - 3z).$

$$A = M_{E_3}^{E_2}(f) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

Calcolare f(2,3,1).

$$f(2,3,1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 2 + 1 \cdot 3 + 0 \cdot 1 \\ 0 \cdot 2 + 1 \cdot 3 - 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

Quindi f(2,3,1) = (5,2).

Esempio. $id: V \to V$ con $id(v) = v \ \forall v \in V$. Sia B una base di V. Chi è $M_B^B(id)$?

$$M_B^B(id) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_n$$

Infatti:

$$id(v_1) = v_1 = 1v_1 + 0v_2 + 0v_3$$

 $id(v_2) = v_2 = 0v_1 + 1v_2 + 0v_3$
 $id(v_3) = v_3 = 0v_1 + 0v_2 + 1v_3$

Teorema 4.1: Teorema della composizione

Siano B una base di V, C una base di U e D una base di W. Siano $M_C^B(f)$ e $M_D^C(g)$ le matrici associate rispettivamente ad f e g rispetto a B, C e C, D. Allora la matrice associata alla composizione $g \circ f$ rispetto a B e D è data da:

$$M_D^B(g \circ f) = M_D^C(g) \cdot M_C^B(f)$$

Dimostrazione. $v = (x_1, ..., x_n)_B \in V$. f(v) = ?. $M_C^B(f)$ ha le colonne $f(v_1), ..., f(v_n)$, quindi moltiplicandolo per v otteniamo:

$$M_C^B(f) \cdot v = M_C^B(f) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

Quindi $f(v) = (y_1, ..., y_m)_C$.

$$M_D^C(g) \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} z_1 \\ \vdots \\ z_r \end{pmatrix}$$

Quindi $g(f(v)) = (z_1, ..., z_r)_D$. Ora sostituiamo i due risultati:

$$M_D^C(g) \cdot M_C^B(f) \cdot v = \begin{pmatrix} z_1 \\ \vdots \\ z_r \end{pmatrix}$$

Per la proprietà associativa del prodotto tra matrici, possiamo scrivere:

$$M_D^C(g \circ f) \cdot v = (M_D^C(g) \cdot M_C^B(f)) \cdot v = \begin{pmatrix} z_1 \\ \vdots \\ z_r \end{pmatrix}$$

Esempio. $f: \mathbb{R}^2 \to \mathbb{R}^2$ tale che f(x,y) = (2x-y,x+y) e $g: \mathbb{R}^2 \to \mathbb{R}^2$ tale che g(x,y) = (x-y,y+3x). Calcolare la matrice associata alla composizione $g \circ f$ rispetto alla base canonica di \mathbb{R}^2 .

La matrice associata ad f rispetto alla base canonica è:

$$M_E^E(f) = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$$

La matrice associata ad g rispetto alla base canonica è:

$$M_E^E(g) = \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix}$$

La matrice associata alla composizione $g \circ f$ rispetto alla base canonica è:

$$M_E^E(g \circ f) = M_E^E(g) \cdot M_E^E(f) = \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 0 \\ 7 & 4 \end{pmatrix}$$

Osservazione. $M_C^B(f)$ è invertibile e $M_C^B(f)^{-1} = M_R^C(f^{-1})$.

4.1.7 Matrici invertibili

Proposizione. $f:U\to V$ è un isomorfismo \Leftrightarrow la matrice associata ad f rispetto a B e C $(M_C^B(f))$ è invertibile.

Dimostrazione.

 \Rightarrow Se f è un isomorfismo, allora esiste un'applicazione lineare $g:V\to U$ tale che $g\circ f=id_U$ e $f\circ g=id_V$.

La matrice associata ad g rispetto a C e B è $M_B^C(g) = M_C^B(f)^{-1}$.

$$M_B^C(g) \cdot M_C^B(f) = M_B^C(g \circ f) = M_B^B(id_U) = I_n$$

 \Leftarrow Se $M_C^B(f)$ è invertibile, allora esiste una matrice A^{-1} tale che $A \cdot A^{-1} = A^{-1} \cdot A = I_n$.

Definiamo $g: V \to U$ in modo che le immagini dei vettori di C abbiano le coordinate rispetto a B date da A^{-1} , ovvero vogliamo $M_B^C(g) = A^{-1}$.

Utilizzando la composizione:

$$M_B^C(q) \cdot M_C^B(f) = M_C^C(q \circ f)$$

dove $M_C^B(f) = A \cdot A^{-1} = I_n$. Quindi $f \circ g = id$.

Teorema 4.2: Invertibilità

Una matrice quadrata A $n \times n$ è invertibile \Leftrightarrow le sue colonne sono linearmente indipendenti.

Dimostrazione. Poniamo $f:\mathbb{R}^n \to \mathbb{R}^n$ e $M_E^E(f)=A$. Per la proprietà precedente, A è invertibile \Leftrightarrow f è un isomorfismo.

Per il teorema isomorfismi e basi, f è un isomorfismo \Leftrightarrow le colonne di A sono linearmente indipendenti.

Esempio. Consideriamo la matrice $A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$. I vettori $v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ e $v_2 = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$ sono linearmente indipendenti, perchè $av_1 = \begin{pmatrix} 2a \\ a \end{pmatrix} \neq v_2 = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$ quindi v_1, v_2 sono una base. Per il teorema precedente, A è invertibile. In effetti esiste ed è unica un'applicazione lineare $f: \mathbb{R}^2 \to \mathbb{R}^2$ tale che f(1,0) = (2,1) e f(0,1) = (5,3). La sua matrice è A, perchè $f(1,0) = v_1 = 2e_1 + e_2$ e $f(0,1) = v_2 = 5e_1 + 3e_2$, ovvero $\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$ Se $v \in \mathbb{R}^2$ allora $v = (x, y) = x(1, 0) + y(0, 1) = xe_1 + ye_2$ e $f(v) = xf(e_1) + yf(e_2) = xv_1 + yv_2 = (2x + 5y, x + 3y)$. In effetti f(x, y) = (2x + 5y, x + 3y) è invertibile. Sia $u = (a, b) \in \mathbb{R}^2 \mid u = f(v)$ cioè u = (2x + 5y, x + 3y) = (a, b). Risolviamo il sistema:

$$\begin{cases} 2x + 5y = a \\ x + 3y = b \end{cases} \Rightarrow \begin{cases} x = \frac{3a - 5b}{1} \\ y = \frac{2b - a}{1} \end{cases} \Rightarrow (3a - 5b, 2b - a)$$

Quindi $\forall u \in \mathbb{R}^2 \ \exists ! v = (x, y) \mid f(v) = u \text{ ovvero } f^{-1}(u) = (3a - 5b, -a + 2b).$ Quindi la matrice di f^{-1} è $A^{-1} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$.

Esempio. Consideriamo la matrice $A = \begin{pmatrix} -1 & 2 \\ 3 & -6 \end{pmatrix}$. I vettori $v_1 = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ e $v_2 = \begin{pmatrix} 2 \\ -6 \end{pmatrix} = -2v_1$ non sono linearmente dipendenti. Quindi per il teorema dell'Invertibilità, A non è invertibile. In effetti l'unica applicazione tale che $f(e_1) = v_1$ e $f(e_2) = v_2$ è f(x,y) = (-x+2y,3x-6y). Inoltre, Ker $f = \{(x,y) \in \mathbb{R}^2 \mid \begin{cases} -x + 2y = 0 \\ 3x - 6y = 0 \end{cases} \Leftrightarrow \begin{cases} x = 2y \\ 0y = 0 \end{cases} \Leftrightarrow x = 2y \}$ quindi dim ker f = 1 e dim Im f = 2 - 1 = 1. Per questo f non è iniettiva, nè suriettiva e quindi non è invertibile, cioè $\not\exists f^{-1} \mid f \circ f^{-1} = id = f^{-1} \circ f$. Quindi non esiste una matrice A^{-1} tale che $A \cdot A^{-1} = A^{-1} \cdot A = I_2$.

4.1.8 Rango di una matrice

Definizione 4.4: Rango di una matrice

Il rango di una matrice A qualunque è il massimo numero di colonne linearmente indipendenti.

Esempio.
$$rK\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} = 2, rK\begin{pmatrix} -1 & 2 \\ 3 & -6 \end{pmatrix} = 1, rK\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0, rK\begin{pmatrix} 1 & 2 & 0 & 1 & 2 \\ 3 & 6 & 0 & -1 & -2 \end{pmatrix} = 2.$$

Proposizione. Una matrice $A n \times n$ è invertibile \Leftrightarrow il suo rango è massimo, cioè rK(A) = n.

Esempio. $V = \mathbb{R}[x]_{<4}, d: V \to V, p(x) \mapsto p'(x)$ nella base $\mathcal{B} = \{1, x, x^2, x^3\}.$

La matrice di $d \in D = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}, rK(D) = 3.$ I vettori colonna non sono linearmente indipen-

denti perchè $v_1 = 0$.

Quindi D non è invertibile cioè non esiste D^{-1} . Inoltre, d non è un isomorfismo.

Cambiamenti di base 4.1.9

Sia $f: V \to U$ un'applicazione lineare e siano B, B' due basi di V e C, C' due basi di U.

La matrice associata ad f rispetto a B e C è $M_C^B(f)$, mentre la matrice associata ad f rispetto a B'

Se B' è una base di V e C' è una base di U, allora la matrice associata ad f rispetto a B' e C' è data da:

$$M_{C'}^{B'}(f) = M_{C'}^{C}(f) \cdot M_{C}^{B}(f) \cdot M_{B}^{B'}(v)$$

dove $M_B^{B'}(v)$ è la matrice del cambiamento di base da B a B'.

Esempio. Siano $b_1 = (0, 1, 1), b_2 = (1, 1, 0), b_3 = (0, 0, 1).$ $B = (b_1, b_2, b_3)$ è una base di \mathbb{R}^3 .

Sia
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 data da $M_E^B(f) = \begin{pmatrix} 13 - 1 \\ 44 - 5 \\ 31 - 6 \end{pmatrix}$.

a. Verificare che
$$M_B^B(f) = \begin{pmatrix} 3 & 1 & -4 \\ 1 & 3 & -1 \\ 0 & 0 & -2 \end{pmatrix}$$
.

Basta calcolare $f(b_1), f(b_2), f(b_3)$:

$$f(b_1) = f(0,1,1) = (0,1,1) = 3(0,1,1) + 1(1,1,0) + (-4)(0,0,1)$$

$$f(b_2) = f(1,1,0) = (1,3,-1) = 3(0,1,1) + 1(1,1,0) + (-4)(0,0,1)$$

$$f(b_3) = f(0,0,1) = (4,-5,-6) = (3)(0,1,1) + (4)(1,1,0) + (-5)(0,0,-2)$$

b. Determinare $M_E^E(f)$.

$$\begin{split} M_E^E(f) &= M_E^B(f) \cdot M_B^B(v) \\ &= \begin{pmatrix} 1 & 3 & -1 \\ 4 & 4 & -5 \\ 3 & 1 & -6 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 3 & 1 & -4 \\ 1 & 3 & -1 \\ 0 & 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \\ &= \begin{pmatrix} -2(3) + (-4)(-2) + (1)(0) \\ (-2)(-4) + (-1)(-2) + (3)(0) \\ (3)(-2) + (1)(-2) + (-6)(-2) \end{pmatrix} = \begin{pmatrix} 10 \\ 10 \\ 12 \end{pmatrix} \end{split}$$

4.1.10 Similitudine tra matrici quadrate

Definizione 4.5: Matrici simili

Due matrici $A, A' n \times n$ si dicono simili se esiste una matrice $n \times n$ invertibile H tale che:

$$A' = H^{-1} \cdot A \cdot H$$

Esempio.

1.
$$A = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$$
 e $M = \begin{pmatrix} \frac{7}{3} & -\frac{5}{3} \\ \frac{5}{3} & -\frac{10}{3} \end{pmatrix}$ sono simili perchè $M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{-1} \cdot A \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

2. Data M precedente e $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, M e I_2 non sono simili perchè $\forall B, B^{-1} \cdot I_2 \cdot B = B^{-1} \cdot B = I_2 \neq M$.

Proposizione. Due matrici simili rappresentano uno stesso endomorfismo (un'applicazione lineare $f: V \to V$ in cui dominio e codominio coincidono) rispetto a basi diverse.

Dimostrazione. Siano A, A' due matrici simili e sia H la matrice invertibile tale che $A' = H^{-1} \cdot A \cdot H$. Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ tale che $M_E^E(f) = A$.

(cioè f è l'endomorfismo che manda i vettori della base canonica nelle colonne di A).

Sia B la base data dalle colonne di H (ricordiamo che se H è invertibile, le sue colonne formano una base), cioè $H = M_E^B(f)$.

$$A' = H^{-1} \cdot A \cdot H$$

$$M_B^B(f) = H^{-1} \cdot M_E^E(f) \cdot H$$

Quindi $M_B^B(f) = A'$.

4.1.11 Conseguenze del teorema del rango

Corollario 4.1: Teorema del rango per le righe

$$rK(A) = rK(A^T)$$

Corollario 4.2: Rango di una matrice e immagine

$$rK(A) = \dim \operatorname{Im} f$$

Il corollario precedente è una conseguenza del teorema del rango per le righe perchè data una

$$\text{matrice } A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \text{ se } f : \mathbb{R}^n \to \mathbb{R}^m \text{ è un'applicazione lineare, allora } M_E^E(f) = A,$$
 cioè $f(e_i) = i$ -esima colonna di A

Osservazione. ker $f = \{x \in \mathbb{R}^n \mid Ax = 0\}$, quindi dim ker f = n - rK(A) (n- il numero di equazioni indipendenti.

Possiamo anche verificarlo con la formula di Grassmann:

$$\dim V = \dim \operatorname{Im} f + \dim \ker f \Rightarrow n = \dim rk(A) + (n - rk(A))$$

Definizione 4.6: Matrice a scala

Una matrice $A \in M_{m,n}(\mathbb{K})$ è a scala se:

- Le righe nulle di A sono tutte in fondo alla matrice.
- Il primo coefficiente non nullo di ogni riga non nulla è più a destra del primo coefficiente non nullo della riga precedente.

$$A = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 0 & -2 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
è a scala.

Osservazione. Se A è una matrice a scala, il rango di A è uguale al numero di righe non nulle.

Definizione 4.7: Matrice trasposta

La matrice trasposta A^T di una matrice A è la matrice ottenuta scambiando le righe con le colonne, cioè facendo una riflessione rispetto alla diagonale principale.

Esempio.
$$A = \begin{pmatrix} 3 & 1 & 7 \\ -1 & 0 & 4 \end{pmatrix}, A^T = \begin{pmatrix} 3 & -1 \\ 1 & 0 \\ 7 & 4 \end{pmatrix}.$$

Osservazione. Per come è definito il prodotto riga per colonna tra matrici, $(A \cdot B)^T = B^T \cdot A^T$.

5 Unità 5 - Lezioni 10, 11, 12

5.1 Metodo di Gauss

Esempio. Risolvere il sistema lineare:

$$\begin{cases} 2x_1 - x_2 + x_3 + 2x_4 = 1\\ 4x_1 - x_2 - 3x_3 - x_4 = -1\\ -2x_1 - x_2 + x_3 + x_4 = 1\\ x_1 + x_2 + x_3 + x_4 = 2 \end{cases}$$

Passo 1 Sommo a ciascuna equazione (dalla seconda in poi) la prima moltiplicata per un coefficiente tale che il termine x_1 nelle altre equazioni si annulli.

R1
$$2x_1 - x_2 + x_3 + 2x_4 = 1$$

$$-2R1 + R2$$

$$R1 + R3$$

$$\mathbf{0x_1} + x_2 - 5x_3 - 5x_4 = -3$$

$$\mathbf{0x_1} - 2x_2 + 2x_3 + 3x_4 = 2$$

$$-\frac{1}{2}R1 + R4$$

$$\mathbf{0x_1} + \frac{3}{2}x_2 + \frac{1}{2}x_3 + 0x_4 = 1$$

Passo 2 Vado avanti di una equazione. Non tocco più la prima e neanche la seconda, ma sommo a ciascuna equazione (dalla terza in poi) la seconda moltiplicata per un coefficiente tale che il termine x_2 nelle altre equazioni si annulli.

R1
$$2x_1 - x_2 + x_3 + 2x_4 = 1$$
R2
$$x_2 - 5x_3 - 5x_4 = -3$$

$$2R2 + R3$$

$$\mathbf{0x_2} - 8x_3 - 7x_4 = -4$$

$$-\frac{3}{2}R2 + R4$$

$$\mathbf{0x_2} + 8x_3 + \frac{15}{2}x_4 = 6$$

Passo 3 Vado avanti di una equazione. Non tocco più la prima, la seconda e neanche la terza, ma sommo a ciascuna equazione (dalla quarta in poi) la terza moltiplicata per un coefficiente tale che il termine x_3 nelle altre equazioni si annulli.

R1
$$2x_1 - x_2 + x_3 + 2x_4 = 1$$

R2 $-5x_3 - 5x_4 = -3$
R3 $-8x_3 - 7x_4 = -4$
R3 + R4 $\mathbf{0x_3} + \frac{1}{2}x_4 = 2$

Passo 4 Finite le equazioni per trovare la soluzione del sistema, risalgo dall'ultima risolvendo le equazioni e sostituendo le incognite di volta in volta:

R4
$$\frac{1}{2}x_4 = 2 \Rightarrow x_4 = 4$$
R3
$$-8x_3 - 7 \cdot 4 = -4 \Rightarrow x_3 = 1$$
R2
$$-5 \cdot 1 - 5 \cdot 4 = -3 \Rightarrow x_2 = 17$$
R1
$$2x_1 - 17 + 1 + 2 \cdot 4 = 1 \Rightarrow x_1 = -3$$

Ho trovato così l'unica soluzione del sistema: $x_1 = -3, x_2 = 17, x_3 = 1, x_4 = 4$.

Quando ci sono infinite soluzioni, il metodo di gauss permette di trovare una soluzione generale.

5.2 Algoritmo di Gauss-Jordan

Sia A una matrice $m \times n$ invertibile. Dalla matrice $(A|I_n)$ si può ottenere la matrice $(I_n|A^{-1})$ applicando l'algoritmo di Gauss. Allora $B = A^{-1}$.

Esempio. $A = \begin{pmatrix} 3 & 5 \\ 2 & 4 \end{pmatrix}$.

Costruisco la matrice $(A|I_2)$ fino ad ottenere $(I_n|B)$:

$$\begin{pmatrix} 3 & 5 & | & 1 & 0 \\ 2 & 4 & | & 0 & 1 \end{pmatrix} \Rightarrow \frac{R1}{-\frac{2}{3}R1 + R2} \Rightarrow \begin{pmatrix} 3 & 5 & | & 1 & 0 \\ 0 & \frac{2}{3} & | & -\frac{2}{3} & 1 \end{pmatrix} \Rightarrow \frac{1}{3}R_{1}\frac{3}{2}R_{2} \Rightarrow \begin{pmatrix} 1 & \frac{5}{3} & | & \frac{1}{3} & 0 \\ 0 & 1 & | & -1 & \frac{3}{2} \end{pmatrix}$$
$$\Rightarrow R_{1} - \frac{5}{3}R_{2}R_{2} \Rightarrow \begin{pmatrix} 1 & 0 & | & 2 & -\frac{5}{3} \\ 0 & 1 & | & -1 & \frac{3}{2} \end{pmatrix}$$

Quindi $A^{-1} = \begin{pmatrix} 2 & -\frac{5}{3} \\ -1 & \frac{3}{2} \end{pmatrix}$, che è uguale a quella ottenuta con $A^{-1} = \frac{1}{\det A} \cdot \operatorname{cof}(A)^T$.

5.3 Determinante di una matrice

Definizione 5.1: Determinante di una matrice

Il determinante di una matrice è una funzione det : $M_{n,n}(\mathbb{K}) \to \mathbb{K}$ tale che det $A \neq 0 \Leftrightarrow rk(A) = n \Leftrightarrow A$ è invertibile.

Matrici 1×1 , A = (a): È invertibile $\Leftrightarrow a \neq 0$, quindi $A^{-1} = (a^{-1})$ e $\underline{\det A = a}$, ovvero il suo unico elemento.

Matrici 2×2 , $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$: Poniamo $\det A = ad - bc$.

Matrici $n \times n$: Per n > 1, riduciamo il calcolo del determinante al determinante di matrici più piccoli mediante la **regola di Laplace**:

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det A_{ij}$$

dove $i, j \in \{1, ..., n\}$ e A_{ij} è la matrice $(n-1) \times (n-1)$ ottenuta da A cancellando la riga i e la colonna j.

Oppure possiamo utilizzare le righe:

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det A_{ij}$$

Approfondimento sulle matrici 2×2 Verifichiamo che si ha det $A \neq 0 \Leftrightarrow A$ è invertibile, o equivalentemente det $A = 0 \Leftrightarrow A$ non è invertibile.

 \Rightarrow Sia det A=ad-bc=0, vogliamo quindi mostrare che rk(A)<2 cioè che le righe di A sono linearmente dipendenti.

Consideriamo la prima riga $r_1 = (a, b)$:

- se (a,b) = (0,0) allora r_1 è la riga nulla e quindi rk(A) < 2.
- se $(a,b) \neq (0,0)$ allora abbiamo $a \neq 0$ oppure $b \neq 0$. Nel caso in cui $a \neq 0$, si ha $d = \frac{bc}{a}$ e quindi $\begin{pmatrix} a & b \\ c & \frac{bc}{a} \end{pmatrix}$. Da qui poniamo $\alpha = \frac{c}{a} \Rightarrow c = \alpha \cdot a$ e $d = \frac{bc}{a} = \alpha \cdot b$. Quindi $A = \begin{pmatrix} a & b \\ \alpha \cdot a & \alpha \cdot b \end{pmatrix}$ e quindi la seconda riga è un multiplo della prima, quindi rk(A) < 2.

 \Leftarrow Supponiamo che le due righe siano linearmente indipendenti, cioè che A sia invertibile, cioè che $(a,b)=\alpha\cdot(c,d)$: Allora $\det\begin{pmatrix} \alpha\cdot c & \alpha\cdot d \\ c & d \end{pmatrix}=\alpha^2\cdot(ad-bc)=0.$

Esempio.

$$A = \begin{pmatrix} -3 & 0 & 0 & 4 \\ 7 & 2 & 11 & 9 \\ 2 & 0 & -1 & 3 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$\det A = 0 \cdot \det A^{(1,2)} + (-1)^{2+2} \cdot 2 \cdot \det A^{(2,2)} + 0 \cdot \det A^{(3,2)} + 0 \cdot \det A^{(4,2)} =$$

$$= 2 \cdot \det \begin{pmatrix} -3 & 0 & 4 \\ 2 & -1 & 3 \\ 1 & 0 & 0 \end{pmatrix}$$

$$= 2 \cdot (-1)^{2+2} \cdot (-1) \cdot \det \begin{pmatrix} -3 & 4 \\ 1 & 0 \end{pmatrix}$$

$$= -2 \cdot (-1)^{1+2} \cdot 4 \cdot \det 1 = 8$$

Dato che det $A=8\neq 0, A$ è invertibile.

Esempio.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 0 & 5 \\ 1 & 3 & 2 \end{pmatrix}$$
.

Calcoliamo il determinante di A utilizzando la seconda colonna:

$$\det A = -a_{12} \cdot \det A^{(1,2)} + a_{22} \cdot \det A^{(2,2)} - a_{32} \cdot \det A^{(3,2)}$$

$$= -2 \cdot \det \begin{pmatrix} 4 & 5 \\ 1 & 2 \end{pmatrix} + 0 \cdot \det A^{(2,2)} - 3 \cdot \det \begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$$

$$= -2(4 \cdot 2 - 5 \cdot 1) - 3(1 \cdot 5 - 3 \cdot 4)$$

$$= -6 + 21$$

$$= 15$$

Definizione 5.2: Proprietà della funzione determinante

Alternante Il determinante cambia segno se scambiamo due righe o due colonne, ovvero det $A' = -\det A$ se A' è la matrice trasformata.

Multilineare Siano A, B due matrici che hanno tutte le colonne uguali tranne la colonna j. Sia C la matrice che ha le colonne diverse da j uguali a quelle di A e la colonna j di C è a volte la colonna j di A più b volte la colonna j di B.

Quindi $C_{ij} = a \cdot A_{ij} + b \cdot B_{ij}$ e det $C = a \cdot \det A + b \cdot \det B$.

La stessa cosa vale anche per le righe.

Determinante dell'identità $\det I_n = 1$.

Determinante della trasposta $\det A = \det A^T$.

Invertibilità det $A \neq 0 \Leftrightarrow A$ è invertibile.

Osservazione. Il determinante è l'unica funzione $f:M_{n,m}(\mathbb{K})\to\mathbb{K}$ che soddisfa le prime tre proprietà.

Osservazione. Se moltiplico una riga di A per un numero k, il determinante di A viene moltiplicato per k:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}; B = \begin{pmatrix} 1 & 2 & 3 \\ -8 & -10 & -12 \\ 7 & 8 & 9 \end{pmatrix}$$
$$\Rightarrow \det B = -2 \cdot \det A$$

Osservazione. La trasformazione elementare di Gauss (cioè sommare a una riga un multiplo di un'altra) non cambia il determinante, quindi:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \Rightarrow R_2 - R_1 \Rightarrow C = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \\ 7 & 8 & 9 \end{pmatrix} \Rightarrow \det C = \det A$$

Per la multilinearità: $\det C = \det A - \det B = \det A$ con $B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 7 & 8 & 9 \end{pmatrix}$.

Proposizione. Il determinante di una matrice a scala è il prodotto dei coefficienti sulla diagonale principale.

Dimostrazione.

$$A = \begin{pmatrix} a & d & e \\ 0 & b & f \\ 0 & 0 & c \end{pmatrix} \Rightarrow \det A = a \cdot \det \begin{pmatrix} b & f \\ 0 & c \end{pmatrix} = a \cdot b \cdot c$$

Esempio. Verificare se i seguenti vettori formano una base di \mathbb{R}^4 :

$$v_1 = (-3, 7, 2, 1), v_2 = (0, 2, 0, 0), v_3 = (0, 11, -1, 0), v_4 = (4, 9, 3, 0)$$

Soluzione utilizzando il determinante:

$$\det \begin{pmatrix} -3 & 0 & 0 & 4 \\ 7 & 2 & 11 & 9 \\ 2 & 0 & -1 & 3 \\ 1 & 0 & 0 & 0 \end{pmatrix} = 8 \neq 0 \Rightarrow \grave{e} \text{ invertibile}$$

 $\Leftrightarrow v_1, v_2, v_3, v_4$ sono linearmente indipendenti \Leftrightarrow sono una base di \mathbb{R}^4 .

Teorema 5.1: Teorema di Binet

Date $A \in B$ due matrici $n \times n$, si ha:

$$\det(A \cdot B) = \det A \cdot \det B$$

Osservazione. NON è vero che det(A + B) = det A + det B.

Corollario 5.1: Determinante di una matrice inversa

Se A è invertibile, allora $\det A^{-1} = \det(A)^{-1}$.

Dimostrazione. Per il teorema di Binet, $\det A \cdot \det A^{-1} = \det(A \cdot A^{-1}) = \det I_n = 1.$

Corollario 5.2: Determinante di due matrici simili

Se due matrici A e B sono simili, allora hanno lo stesso determinante: $\det A = \det B$.

Dimostrazione. Se A e A' sono simili, allora $\exists H$ invertibile tale che $A' = H^{-1} \cdot A \cdot H$. Quindi det $A' = \det(H^{-1}) \cdot \det A \cdot \det H = \det A$.

Osservazione. Se due matrici hanno determinanti diversi, allora non sono simili.

Definizione 5.3: Determinante di un'applicazione lineare

Data $f: V \to V$ un'applicazione lineare, definiamo $det(f) = \det(A)$ dove A è la matrice di f rispetto a una base di V. Per la proposizione precedente, il determinante non dipende dalla base scelta. Inoltre, se f è un isomorfismo, allora $det(f) \neq 0$.

Prodotto vettoriale

Definizione 5.4: Prodotto vettoriale

Il prodotto vettoriale di due vettori $\underline{u},\underline{v}\in\mathbb{R}^3$ è un vettore $\in\mathbb{R}^3$ definito come il determinante della matrice formata dai tre vettori:

$$\underline{u} \wedge \underline{v} = \det \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ \underline{e_1} & \underline{e_2} & \underline{e_3} \end{pmatrix}$$

dove l è un vettore unitario (cioè di modulo 1) che non appartiene al piano generato da u e v.

Esempio. $\underline{\mathbf{u}} = (1, 3, 0), \, \underline{\mathbf{v}} = (2, -5, 1).$

Calcoliamo il prodotto vettoriale $\underline{u} \wedge \underline{v}$:

$$\underline{u} \wedge \underline{v} = \det \begin{pmatrix} 1 & 3 & 0 \\ 2 & -5 & 1 \\ \underline{e_1} & \underline{e_2} & \underline{e_3} \end{pmatrix} = \underline{e_1}(3 \cdot 1 - 0 \cdot (-5)) - \underline{e_2}(1 \cdot 1 - 0 \cdot 2) + \underline{e_3}(1 \cdot (-5) - 3 \cdot 2)$$

$$= e_1(3) - e_2(1) + e_3(-11) = (3, -1), -11)$$

Osservazione. Il vettore $\underline{u} \wedge \underline{v}$ è perprendicolare al piano individuato da \underline{u} e \underline{v} in \mathbb{R}^3 , se sono linearmente indipendenti.

Calcolo delle equazioni di un sottospazio utilizzando il determinante e il rango Sia V un sottospazio di \mathbb{R}^n generato da k vettori linearmente indipendenti u_1, u_2, \dots, u_k .

Caso 1: $\mathbf{k} = \mathbf{n} - \mathbf{1}$ Sia n = 4 e $U = \{(1, 0, 2, 1), (2, 1, 0, 0), (0, 1, 1, 0)\}.$

Un vettore generico (x,y,z,t) appartiene a $V\Leftrightarrow$ è combinazione lineare dei 3 vettori della base, ovvero:

$$rk \begin{pmatrix} 1 & 0 & 2 & 1 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ x & y & z & t \end{pmatrix} = 3 \Rightarrow \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ x & y & z & t \end{pmatrix} = 0$$

Facciamo lo sviluppo rispetto alla quarta riga:

$$\det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ x & y & z & t \end{pmatrix}$$

$$= -x \cdot \det \begin{pmatrix} 0 & 2 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} + y \cdot \det \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} - z \cdot \det \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} + t \cdot \det \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$= -x + 2y - 2z + t(4+1) = -x + 2y - 2z + 5t = 0$$

Caso 2: $\mathbf{k} < \mathbf{n} - \mathbf{1}$ Sia n = 4 e $U = \{(1, 2, 0, 1), (3, 1, 2, 0)\}.$

 $\dim U = 2 \Rightarrow$ il sottospazio V è generato da 4-2=2 equazioni.

Un vettore generico (x,y,z,t) appartiene a $V\Leftrightarrow$ è combinazione lineare dei 2 vettori della base, ovvero:

$$rk \begin{pmatrix} 1 & 2 & 0 & 1 \\ 3 & 1 & 2 & 0 \\ x & y & z & t \end{pmatrix} = 2$$

Riduciamo la matrice a scala:

$$\begin{pmatrix} 1 & 2 & 0 & 1 \\ 3 & 1 & 2 & 0 \\ x & y & z & t \end{pmatrix}$$

$$\Rightarrow R_2 - 3R_1$$

$$\Rightarrow \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & -5 & 2 & -3 \\ 0 & y - 2x & z & t - x \end{pmatrix}$$

$$\Rightarrow 5R_3 \Rightarrow \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & -5 & 2 & -3 \\ 0 & 5(y - 2x) & 5z & 5(t - x) \end{pmatrix}$$

$$\Rightarrow R_3 + (y - 2x)R_2 \Rightarrow \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & -5 & 2 & -3 \\ 0 & 0 & 5z + 2(y - 2x) & 5(t - x) - 3 \end{pmatrix}$$

$$\Rightarrow \begin{cases} 5z + 2(y - 2x) = 0 \\ 5(t - x) - 3 = 0 \end{cases} \Rightarrow \begin{cases} -4x + 2y + 5z = 0 \\ x - 3y + 5t = 0 \end{cases}$$

Il determinante permette di formulare anche una regola per calcolare il **prodotto vettoriale**, cioè un'operazione $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(u,v) = u \wedge v$, molto usata in fisica. Se $u = (a_1, a_2, a_3)$ e

$$v = (b_1, b_2, b_3), \text{ allora } u \land v = \det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ e_1 & e_2 & e_3 \end{pmatrix} = e_1(a_2b_3 - a_3b_2) - e_2(a_1b_3 - a_3b_1) + e_3(a_1b_2 - a_2b_1).$$

Esempio. $(1,2,3) \wedge (-1,0,2) = (4,-5,2)$.

Il prodotto vettoriale eredita le proprietà del determinante:

- Altalenante: $u \wedge v = -v \wedge u$.
- Multilineare: $(au + bv) \wedge w = a(u \wedge w) + b(v \wedge w)$.

5.3.1Esercizio parametrico

Esempio. Al variare del parametro t, determinare il rango della matrice $A = \begin{pmatrix} 3 & -2 & t \\ 0 & 1 & 2 \\ t & -1 & -2 \end{pmatrix}$.

$$\det(A) = 0 + (-1)^{2+2} \cdot 1 \cdot \det\begin{pmatrix} 3 & t \\ t & -2 \end{pmatrix} + (-1)^{3+3} \cdot 2 \cdot \det\begin{pmatrix} 3 & -2 \\ t & -1 \end{pmatrix} = -6 - t^2 - 2(-3 + 2t) = -6 - t^2 + 6 - 4t = -t^2 - 4t = -t(t+4).$$

- Se $t \neq 0, -4 \Rightarrow \det(A) \neq 0 \Rightarrow rK(A) = 3$. A è invertibile.
- Se t = 0, -4, rk(A) < 3:

$$-t = 0$$
 $\begin{pmatrix} 3 & -2 & 0 \\ 0 & 1 & 2 \\ 0 & -1 & -2 \end{pmatrix}$ $\Rightarrow rK(A) = 2$. (I vettori colonna 1 e 2 sono linearmente indipendenti).

$$-t = -4 \begin{pmatrix} 3 & -2 & -4 \\ 0 & 1 & 2 \\ -4 & -1 & -2 \end{pmatrix} \Rightarrow rK(A) = 2. \quad \text{(I vettori colonna 1 e 2 sono linearmente indipendenti)}.$$

Esempio. Al variare di $t \in \mathbb{R}$, calcolare la dimensione di Im e Ker dell'applicazione $f_t : \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f_t(x, y, z) = (3x - 2y + tz, y + 2z, tx - y - 27)$. Nella base canonica $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$, la matrice di f_t è $A = \begin{pmatrix} 3 & -2 & t \\ 0 & 1 & 2 \\ t & -1 & -2 \end{pmatrix}$.

$$(0,0,1)$$
, la matrice di f_t è $A = \begin{pmatrix} 3 & -2 & t \\ 0 & 1 & 2 \\ t & -1 & -2 \end{pmatrix}$

Quindi, se $t \neq 0, -4 \Rightarrow \dim \operatorname{Im} f_t = rk(A) = 3$ e dim ker $f_t = 3 - 3 = 0 \Rightarrow f_t$ è un isomorfismo. Se $t = 0, -4 \Rightarrow \dim \operatorname{Im} f_t = rk(A) = 2$ e dim ker $f_t = 3 - 2 = 1 \Rightarrow f_t$ non è nè iniettiva nè suriettiva.

5.3.2 Geometria affine

Definizione 5.5: Sottospazio affine

Un sottoinsieme S di \mathbb{K}^n è detto sottospazio affine se è ottenuto traslando un sottospazio vettoriale U per un vettore v:

$$S = \{U + v \mid v \in \mathbb{K}^n\}$$

Inoltre, $\dim S = \dim U$.

Esempio. Consideriamo in \mathbb{R}^2 $U = \langle (-1,1) \rangle$ e S = U + (1,1).

$$U \ ensuremath{\`{e}} \ x + y = 0 \ e \ S \ ensuremath{\`{e}} \ x + y = 2.$$

Osservazione. Il vettore p di translazione NON è unico, ad esempio possiamo prendere anche (3, -1).

Teorema 5.2: Sistema lineare omogeneo associato

Sia Ax = b un sistema lineare e A la matrice $m \times n$ dei coefficienti. Consideriamo il sistema lineare omogeneo associato Ax = 0. Allora:

- 1. L'insieme U delle soluzioni del sistema omogeneo è un sottospazio vettoriale di \mathbb{K}^n di dimensione n rk(A).
- 2. L'insieme S delle soluzioni del sistema non omogeneo, se non è vuoto, è un sottospazio affine di \mathbb{K}^n di dimensione n rk(A), ottenuto traslando U con qualsiasi $p \in S$ cioè $S = \{p + u \mid u \in U\}$.

Dimostrazione. Verifichiamo i due punti:

- 1. Siano $u_1, u_2 \in U$ (cioè $Au_1 = 0, Au_2 = 0$, quindi $A(u_1 + u_2) = Au_1 + Au_2 = 0 + 0 = 0$). Analogamente, se $u \in U$ e $k \in \mathbb{K}$, allora A(ku) = kAu = k0 = 0, quindi $ku \in U$. Alla luce di questi risultati, U è un sottospazio vettoriale di \mathbb{K}^n .
- 2. Sia $u \in U$ (cioè Au = 0) e $p \in S$ (cioè Ap = b). Allora $u + p \in S$ perchè A(u + p) = Au + Ap = 0 + b = b, quindi $\{p + u \mid u \in U\} \subseteq S$. Siano $p, p' \in S$ (cioè Ap = b, Ap' = b); allora A(p p') = Ap Ap' = b b = 0, cioè $p p' \in U$. Quindi p' = p + u con $u \in U$, cioè $S \subseteq \{p + u \mid u \in U\} \Rightarrow S = \{p + u \mid u \in U\}$.

5.4 Matrici e sistemi lineari

Consideriamo un sistema lineare di m equazioni in n incognite:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Il sistema può essere riscritto nella forma matriciale $A \cdot x = B$ dove:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}$$

e si chiamano rispettivamente matrice dei coefficienti, vettore delle incognite e vettore dei termini noti. Inoltre, data una applicazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ tale che $A = M_{E_n}^{E_m}(f)$, il sistema Ax = b è equivalente a f(x) = b.

Osservazione. La scrittura di un sistema Ax = b è comoda anche per svolgere rapidamente il metodo di Gauss.

Osservazione. Risolvere il sistema vuol dire esprimere il vettore b come combinazione lineare delle colonne della matrice A, cioè:

$$x_1 \cdot \begin{pmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{pmatrix} + x_2 \cdot \begin{pmatrix} a_{12} \\ a_{22} \\ \dots \\ a_{m2} \end{pmatrix} + \dots + x_n \cdot \begin{pmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}$$

Quindi il sistema è risolubile se e solo se la colonna b è combinazione lineare delle colonne della matrice A.

Esempio. Risolvere il sistema:

$$\begin{cases} x + 2y - z = 1 \\ 2x - y + z = 3 \\ -x + y - 2z = -2 \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 2 & -1 & | & 1 \\ 2 & -1 & 1 & | & 3 \\ -1 & 1 & -2 & | & -2 \end{pmatrix}$$

Inizio a fare le operazioni secondo il metodo di Gauss:

$$\begin{cases} \frac{6}{5}z = -\frac{2}{5} \Rightarrow z = -\frac{2}{3} \\ -5y + 3z = 1 \Rightarrow -5y + 3 \cdot (-\frac{2}{3}) = 1 \Rightarrow y = 1 \\ x + 2y - z = 1 \Rightarrow x + 2 - (-\frac{2}{3}) = 1 \Rightarrow x = 0 \end{cases}$$

Teorema 5.3: Teorema di Rouché-Capelli

Il sistema lineare Ax = b è risolvibile se e solo se rk(A) = rk(A|b).

Dimostrazione. Per l'osservazione precedente, il sistema è risolvibile se e solo se il numero di colonne indipendenti in A|b non aumenta rispetto ad A (cioè $\operatorname{rk}(A) = \operatorname{rk}(A|b)$).

Conseguenza Per capire se un sistema è risolvibile, possiamo considerare la matrice completa A|b, ridurla tramite Gauss ad una matrice a scala A'|b' e verificare se $\operatorname{rk}(A') = \operatorname{rk}(A'|b')$.

Esempio.

$$\begin{cases} x_1 + 2x_2 + x_3 = 2 \\ x_2 - x_3 = 6 \\ x_1 + 3x_3 = -10 \end{cases}$$

$$A|b = \begin{pmatrix} 1 & 2 & 1 & | & 2 \\ 0 & 1 & -1 & | & 6 \\ 1 & 0 & 3 & | & -10 \end{pmatrix} \Rightarrow \begin{matrix} R_1 \\ R_3 - R_1 \\ R_2 - 2R_1 \end{matrix} \Rightarrow \begin{pmatrix} 1 & 2 & 1 & | & 2 \\ 0 & 1 & -1 & | & 6 \\ 0 & -2 & 2 & | & -12 \end{pmatrix}$$
$$\Rightarrow \begin{matrix} R_1 \\ R_2 \\ R_3 + 2R_2 \end{matrix} \Rightarrow \begin{pmatrix} 1 & 2 & 1 & | & 2 \\ 0 & 1 & -1 & | & 6 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Quindi:

$$rk(A) = 2$$
$$rk(A|b) = 2$$

 $rk(A) = rk(A|b) \Rightarrow il sistema è risolvibile.$

$$A|b = \begin{pmatrix} 1 & -2 & | & 3 \\ -2 & 4 & | & -6 \end{pmatrix}.$$

Esempio. $A = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}, b = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$. Trovare x tale che Ax = b. $A|b = \begin{pmatrix} 1 & -2 & | & 3 \\ -2 & 4 & | & -6 \end{pmatrix}$. rk(A) = rk(A|b) = 1, per il teorema di Rouché-Capelli il sistema ammette soluzione, cioè $\exists x_1, x_2 \mid \begin{pmatrix} 3 \\ -6 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ -2 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ 4 \end{pmatrix}$. Cioè $\exists x_1, x_2 \mid \begin{cases} x_1 - 2x_2 = 3 \\ -2x_1 + 4x_2 = -6 \end{cases}$ cioè il sistema ammette soluzioni.

Esempio. Trovare, se esiste, un polinomio di grado ≤ 2 tale che p(2) = 0, p(1) = 3, p(0) = 1, p(-1) = 0

Sia $p(x) = ax^2 + bx + c$.

$$\begin{cases} 4a + 2b + c = 0 \\ a + b + c = 3 \\ c = 1 \\ a - b + c = 2 \end{cases} A = \begin{pmatrix} 4 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix} \qquad A|b = \begin{pmatrix} 4 & 2 & 1 & | & 0 \\ 1 & 1 & 1 & | & 3 \\ 0 & 0 & 1 & | & 1 \\ 1 & -1 & 1 & | & 2 \end{pmatrix}$$

$${\rm rk}(A) = 3, {\rm rk}(A|b) = 4 \ {\rm perch\`e} \ \det A|b = \det \begin{pmatrix} 4 & 2 & 0 \\ 1 & 1 & 3 \\ 1 & -1 & 2 \end{pmatrix} - \det \begin{pmatrix} 4 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} = 28 \neq 0.$$

Quindi per il teorema di Rouché-Capelli il sistema non ha soluzione

Teorema 5.4

Consideriamo il sistema Ax = b con n incognite:

- 1. Se $\operatorname{rk}(A) = rk(A|b) = n$, il sistema ha una soluzione unica.
- 2. Se $\operatorname{rk}(A) = \operatorname{rk}(A|b) < n$, il sistema ha infinite soluzioni (se $\mathbb{K} = \mathbb{R}$).

Dimostrazione. 1. Riduciamo il sistema ad uno a scala ed eliminiamo le righe nulle in fondo.

Quindi A'x = b' dove la matrice A', avendo n colonne, essendo in scala e non avendo righe nulle è della forma $n \times n$, ovvero:

$$A' = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Di conseguenza, A' è invertibile.

Moltiplichiamo l'equazione A'x = b' per A'^{-1} e otteniamo $x = A'^{-1}b'$. Quindi il sistema ha una soluzione unica.

2. Caso speciale:
$$b = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}$$
 e quindi $Ax = 0$.

L'insieme delle soluzioni è proprio $\ker F$ (dove F era tale che $A=M_{E_n}^{E_m}(F)$). Sappiamo che dim $\ker F=n-\dim(\operatorname{Im} F)=n-\operatorname{rk}(A)>0$. Quindi $\ker F$ contiene infiniti elementi.

Caso generale con b qualunque: chiamamo $U = \ker F$ determinato nel caso precedente. Quindi se $u \in U \Rightarrow Au = 0$. Per il teorema di Rouché-Capelli, sappiamo che esiste una soluzione e la chiamiamo $v \in \mathbb{R}^n$, quindi: $A \cdot v = b$.

Inoltre, $\forall u \in U$ si ha che u + v è ancora una soluzione, infatti: A(u + v) = Au + Av = 0 + b = b.

Esempio.

$$\begin{cases} x + 2y - z = 1 \\ 2x + 7y - 5z = 1 \\ -x + y - 2z = -2 \end{cases}$$

Consideriamo il sistema omogeneo associato:

$$\begin{cases} x + 2y - z = 0 \\ 2x + 7y - 5z = 0 \\ -x + y - 2z = 0 \end{cases}$$

Quindi:

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 7 & -5 \\ -1 & 1 & -2 \end{pmatrix} \Rightarrow A|b = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & -3 \\ 0 & 3 & -3 \end{pmatrix} \Rightarrow y = z \Rightarrow x = z - 2y = -z$$

Quindi $U = \{(-z, z, z) \mid z \in \mathbb{R}\}$. Quindi passiamo alla matrice associata al sistema originale:

$$A = \begin{pmatrix} 1 & 2 & -1|1 \\ 2 & 7 & -5|1 \\ -1 & 1 & -2|-2 \end{pmatrix} \Rightarrow A|b = \begin{pmatrix} 1 & 2 & -1|1 \\ 0 & 3 & -3|-1 \\ 0 & 3 & -3|-1 \end{pmatrix} \Rightarrow \begin{cases} z = 0 \\ 3y = -1 \Rightarrow y = -\frac{1}{3} \\ x + 2y = 1 \Rightarrow x = 1 - 2y = \frac{5}{3} \end{cases} \Rightarrow v = (\frac{5}{3}, -\frac{1}{3}, 0)$$

Quindi l'insieme delle soluzioni è $S=\{(-z,z,z)+(\frac{5}{3},-\frac{1}{3},0)\mid z\in\mathbb{R}\}=\{(\frac{5}{3}-z,-\frac{1}{3}+z,z)\mid z\in\mathbb{R}\}.$

5.5 Applicazioni alla geometria analitica

5.5.1 Retta passante per due punti

Consideriamo due punti $P_1(x_1, y_1), P_2(x_2, y_2)$ in $\mathbb{R}^2, P_1 \neq P_2$. Trovare la retta che passa per P_1 e P_2 . Una retta in \mathbb{R}^2 è data dall'equazione ax + by = c. Si vuole quindi trovare a, b, c.

Osservazione. Se ax + by = c è l'equazione di una retta, anche 2ax + 2by = 2c lo è. Quindi a, b, c non sono univoci.

Esempio. $P_1(1,3), P_2(3,2).$

La retta passante per P_1 e P_2 è data da ax + by = c.

$$\begin{cases} a+3b=c \\ 3a+2b=c \end{cases} \Rightarrow \begin{pmatrix} 1 & 3 & | & c \\ 3 & 2 & | & c \end{pmatrix} \Rightarrow \begin{matrix} R1 \\ R2-3R1 \end{matrix} \Rightarrow \begin{pmatrix} 1 & 3 & | & c \\ 0 & -7 & | & -2c \end{pmatrix} \Rightarrow \begin{cases} -7b=-2c \Rightarrow b=\frac{2}{7}c \\ a+3\cdot\frac{2}{7}c=c \Rightarrow a=\frac{5}{7}c \end{cases}$$

Quindi: $S = \{ (\frac{1}{7}t, \frac{2}{7}t, t) \mid t \in \mathbb{R} \}.$

5.5.2 Piano passante per tre punti

Consideriamo tre punti $P_1(x_1, y_1, z_1), P_2(x_2, y_2, z_2), P_3(x_3, y_3, z_3)$ in $\mathbb{R}^3, P_1, P_2, P_3$ non allineati. Trovare il piano che passa per P_1, P_2, P_3 . Un piano in \mathbb{R}^3 è dato dall'equazione ax + by + cz = d. Si vuole quindi trovare a, b, c, d.

Esempio. $P_1 = (1,0,0), P_2 = (0,1,1), P_3 = (2,0,-1).$ La retta passante per P_1, P_2, P_3 è data da ax + by + cz = d.

$$\begin{cases} a+b=d \\ b+c=d \\ 2a-c=d \end{cases} \Rightarrow \begin{cases} a=t \\ b=d-c=0 \\ c=-d+2a=t \\ d=t \end{cases}$$

Quindi: $S = \{(t, 0, t, t) \mid t \in \mathbb{R}\}$. Una equazione del piano è x + z = 1.

Osservazione. p è un sottospazio affine di dimensione 2 di \mathbb{R}^3 . S è un sottospazio affine di dimensione 1 di \mathbb{R}^4 .

Esempio. $P_1 = (2,0,-1), P_2 = (3,1,0), P_3 = (4,2,1).$ La retta passante per P_1, P_2, P_3 è data da ax + by + cz = d.

$$\begin{cases} 2a - c = d \\ 3a + b = d \\ 4a + 2b + c = d \end{cases} \Rightarrow gauss \begin{cases} 2a - c = d \\ b + \frac{3}{2}c = -\frac{1}{2}d \\ 2b + 3c = -d \end{cases} \Rightarrow \begin{cases} 2a - c = d \\ b + \frac{3}{2}c = -\frac{1}{2}d \\ 0 = 0 \end{cases} \Rightarrow \begin{cases} a = \frac{c+d}{2} = \frac{1}{2}t + \frac{1}{2}s \\ b = -\frac{1}{2}d - \frac{3}{2}c = -\frac{1}{2}t - \frac{3}{2}s \\ c = s \\ d = t \end{cases}$$

Quindi: $S = \{(\frac{1}{2}t + \frac{1}{2}s, -\frac{1}{2}t, -\frac{3}{2}t, s, t) \mid s, t \in \mathbb{R}\}$. Abbiamo ottenuto un sottospazio affine di dimensione 2 perchè P_1, P_2, P_3 sono allineati, quindi P non è unico.

Definizione 5.6: Sottospazi in geometria analitica

- Un punto in \mathbb{R}^n è un sottospazio affine di dimensione 0.
- Una retta in \mathbb{R}^n è un sottospazio affine di dimensione 1.
- Un piano in \mathbb{R}^n è un sottospazio affine di dimensione 2.
- Un iperpiano in \mathbb{R}^n è un sottospazio affine di dimensione n-1.

Dati due punti distinti di \mathbb{K}^n , esiste un'unica retta che li contiene.

Dati tre punti non allineati di \mathbb{K}^n , esiste un unico piano che li contiene. Se invece i tre punti sono allineati, esistono infiniti piani che li contengono.

Osservazione. Un piano in \mathbb{R}^3 passante per tre punti esiste ed è unico se i tre punti non sono allineati, cioè se i vettori $\overrightarrow{P_1P_2}$, $\overrightarrow{P_1P_3}$ non sono proporzionali/paralleli.

Esempio.
$$P_1 = (2,0,-1), P_2 = (3,1,0), P_3 = (4,2,1).$$
 $\overrightarrow{P_1P_2} = (3-2,1-0,0-(-1)) = (1,1,1)$ e $\overrightarrow{P_1P_3} = (4-2,2-0,1-(-1)) = (2,2,2).$ Quindi $\overrightarrow{P_1P_2}$ è parallelo a $\overrightarrow{P_1P_3}$ e quindi i tre punti sono allineati.

Osservazione. Le rette sono iperpiani di \mathbb{R}^2 e i piani sono iperpiani di \mathbb{R}^3 .

Osservazione. Gli iperpiani sono determinati da un'equazione del tipo $a_1x_1 + a_2x_2 + ... + a_nx_n = b$.

Esempio. Determinare la retta passante per i punti P(3,1,-1), Q(2,2,1).

$$\overrightarrow{PQ} = (2-3, 2-1, 1-(-1)) = (-1, 1, 2).$$
 Quindi la retta è data da $\{P+t\overrightarrow{PQ}, t \in \mathbb{R}\} = \{(3, 1, -1) + t(-1, 1, 2), t \in \mathbb{R}\} = \{(3-t, 1+t, -1+2t), t \in \mathbb{R}\}$

 \mathbb{R} . Posso esprimere la retta $r = \{3-t, 1+t, -1+2t\}$ anche tramite equazioni cartesiane con x = 3 - t, y = 1 + t, z = -1 + 2t.

$$\begin{cases} x + y = 4 (= 3 - t + t + 1) \\ 2x + z = 5 (= 6 - 2t - 1 + 2t) \end{cases}$$

Bastano due equazioni (dim \mathbb{R}^3 – dim M=3-1=2) per determinare la retta, ma non sono uniche, perchè ci sono infiniti piani che passano per una retta.

Esempio. Trovare l'intersezione della retta $r = \{3-t, t+1, 2t-1\}$ con il piano di equazione x+2y-z=1

Trovo t sostituendo x, y, z con le equazioni della retta:

$$3-t+2(t+1)-(2t-1) = 3$$
$$(3-t)+2(t+1)-(2t-1) = 3$$
$$3-t+2t+2-2t+1 = 3$$
$$t = 3$$

Sostituendo in r ho il punto di intersezione: $(3-3,3+1,2\cdot 3-1)=(0,4,5)$.

Esempio. Trovare la retta r' parallela alla retta $r = \{3-t, t+1, 2t-1\}$ e passante per il punto

Se r' è parallela a r, allora avrà lo stesso vettore di direzione $\overrightarrow{v} = (-1, 1, 2)$ di r. Inoltre, poichè r' passa per P, allora $r' = \{P' + t\overrightarrow{v}, t \in \mathbb{R}\} = \{(5, -2, 3) + t(-1, 1, 2), t \in \mathbb{R}\} = \{(-t + 5, t - 2, 2t + 3), t \in \mathbb{R}\}.$

Esempio. Trovare, se esiste, l'intersezione tra la retta $r = \{3-t, t+1, 2t-1\}$ e il piano x+2y-z=3e la retta $r'' = \{(2s - 1, 3s + 1, s + 5), s \in \mathbb{R}\}.$

Se esiste un punto di intersezione esistono $t, s \in \mathbb{R}$ tali che:

$$\begin{cases} 3 - t = 2s - 1 \\ t + 1 = 3s + 1 \\ 2t - 1 = s + 5 \end{cases} \Rightarrow \begin{cases} 3 - 3s = 2s - 1 \\ t = 3s \\ 6s - 1 = s + 5 \end{cases} \Rightarrow \begin{cases} 4 = 5s \\ t = 3s \\ 6 = 5s \end{cases}$$

Quindi non c'è soluzione: r, r'' sono parallele e non si intersecano. D'altra parte, non sono paralleli perchè i vettori di direzione (-1,1,2) e (2,3,1) non sono l'uno il multiplo dell'altro. In questo caso, r, r'' sono sghembe.

Esempio. Sia $\mathbb{K} = \mathbb{Z}_3$. Trovare tutti gli elementi del piano di \mathbb{K} di equazione 2x + y + z = 1. Osserviamo che poichè $\mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\}$, allora ha $3^3 = 27$ elementi e un piano in esso avrà $3^2 = 9$ elementi. $p = \{(\overline{0}, \overline{0}, \overline{1}), (\overline{0}, \overline{1}, \overline{0}), (\overline{0}, \overline{2}, \overline{2}), (\overline{1}, \overline{0}, \overline{2}), (\overline{1}, \overline{1}, \overline{1}), (\overline{1}, \overline{2}, \overline{0}), (\overline{2}, \overline{0}, \overline{0}), (\overline{2}, \overline{1}, \overline{2}), (\overline{2}, \overline{2}, \overline{1})\}.$

Esempio. Trovare tutti i polinomi $p(x) \in \mathbb{R}[x]_{\leq 3}$ tali che $\begin{cases} p(1) = 4 \\ p'(1) = 1 \\ p''(1) = -2 \end{cases}$ Sappiamo che $p(x) = \cos^3 + L^{-2}$.

Sappiamo che $p(x) = ax^3 + bx^2 + cx + d$. Costruisco il sistema calcolando le derivate:

$$\begin{cases} p(x) = ax^3 + bx^2 + cx + d \\ p'(x) = 3ax^2 + 2bx + c \\ p''(x) = 6ax + 2b \end{cases} \Rightarrow \begin{cases} a + b + c + d = 4 \\ 3a + 2b + c = 1 \\ 6a + 2b = -2 \end{cases} \Rightarrow \begin{cases} a = t \\ b = -1 - 3t \\ c = 3t + 3 \\ d = -t + 2 \end{cases}$$

L'insieme dei polinomi che verificano queste condizioni è $\{tx^3+(-1-3t)x^2+(3t+3)x+(-t+2), t \in \mathbb{R}\}.$

Se invece cerco un polinomio che, oltre a soddisfare le condizioni precedenti, verifichi anche p'''(1) =-6, allora la soluzione è unica: p'''(x) = 6a, quindi $6a = -6 \Rightarrow a = -1 \Rightarrow t = -1$ e sostituendo $p(x) = -x^3 + 2x^2 + 3.$

Esempio. Trovare il piano passante per i punti $P_0(1,0,1), P_1(2,-1,0), P_2(-1,1,1)$. Per prima cosa trovo i vettori di direzione:

$$\overrightarrow{v_1} = \overrightarrow{P_0P_1} = (2 - 1, -1 - 0, 0 - 1) = (1, -1, -1)$$

$$\overrightarrow{v_2} = \overrightarrow{P_0P_2} = (-1 - 1, 1 - 0, 1 - 1) = (-2, 1, 0)$$

Quindi il piano è dato da $\{P_0 + t\overrightarrow{v_1} + s\overrightarrow{v_2}, t, s \in \mathbb{R}\} = \{(1,0,1) + t(1,-1,-1) + s(-2,1,0), t, s \in \mathbb{R}\} = \{(1+t-2s,-t+s,1-t), t, s \in \mathbb{R}\} = \{(x,y,z) \in \mathbb{R}^3 \mid x+2y-z=0\}.$

6 Unità 6 - Lezioni 13, 14, 15

6.1 Endomorfismi e autovettori

Definizione 6.1: Endomorfismo

Sia V uno spazio vettoriale su \mathbb{K} . Un endomorfismo è una applicazione lineare $f:V\to V$.

Definizione 6.2: Matrice diagonale

Una matrice $D(n \times n)$ è detta **diagonale** se $d_{ij} = 0 \ \forall i \neq j$ (cioè se è nulla al di fuori della diagonale principale).

$$D = \begin{pmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{pmatrix}$$

Osservazione. Due matrici diagonali sono semplici da moltiplicare tra loro:

$$D = \begin{pmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{pmatrix}, E = \begin{pmatrix} e_{11} & 0 & \cdots & 0 \\ 0 & e_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e_{nn} \end{pmatrix}.$$

$$DE = \begin{pmatrix} d_{11}e_{11} & 0 & \cdots & 0 \\ 0 & d_{22}e_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn}e_{nn} \end{pmatrix}$$

Inoltre, det $D = d_{11}d_{22}...d_{nn}$ e se det $D \neq 0$ (cioè $d_i \neq 0 \forall i$) allora D è invertibile e $D^{-1} = \begin{pmatrix} \frac{1}{d_{11}} & 0 & \cdots & 0 \\ 0 & \frac{1}{d_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{d_{nn}} \end{pmatrix}$.

Inoltre
$$\forall m \in \mathbb{Z} \setminus \{0\}, D^m = \begin{pmatrix} d_{11}^m & 0 & \cdots & 0 \\ 0 & d_{22}^m & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn}^m \end{pmatrix}.$$

Definizione 6.3: Autovettore

Sia V uno spazio vettoriale su \mathbb{K} e $f:V\to V$ un endomorfismo. Un vettore $v\in V,v\neq 0$ è detto **autovettore** di f se $\exists \lambda\in\mathbb{K}, f(v)=\lambda v.$ λ è detto **autovalore** di f.

Esempio. $\mathbb{K} = \mathbb{R}, V = \mathbb{R}^2, f : V \to V, f(x, y) = (2y, 2x)$

• e_1 non è un autovettore perchè $f(e_1) = f(1,0) = 2e_2 = (0,2) \neq \lambda(1,0)$.

- e_2 non è un autovettore perchè $f(e_2) = f(0,1) = 2e_1 = (2,0) = 2(0,1)$.
- $v_1 = (1,1)$ è un autovettore di autovalore 2 perchè $f(v_1) = f(1,1) = (2,2) = 2(1,1) = 2v_1$.
- $v_2 = (1, -1)$ è un autovettore di autovalore -2 perchè $f(v_2) = f(1, -1) = (-2, 2) = -2(1, -1) = -2v_2$.

Matrici di f:

Base
$$e_1, e_2 \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$
 Non è diagonale Base $v_1, v_2 \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$ È diagonale

Osservazione. Se $f:V\to V$ è un endomorfismo e $v_1,v_2,...,v_n$ è una base di V composta da autovettori di f allora:

$$f(v_1) = \lambda_1 v_1 = \lambda_1 v_1 + 0v_2 + \dots + 0v_n$$

$$f(v_2) = \lambda_2 v_2 = 0v_1 + \lambda_2 v_2 + \dots + 0v_n$$

$$\vdots$$

$$f(v_n) = \lambda_n v_n$$

Quindi la matrice di f rispetto alla base $v_1, v_2, ..., v_n$ è diagonale:

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Passi generali per rispondere alle domande "Si può diagonalizzare f?", "Si può trovare una base di V in cui la matrice di f è diagonale?", "esiste una base di V composta da autovettori di f?":

- 1. Trovare gli autovalori di f (se esistano).
- 2. Per ogni autovalore λ trovare gli autovettori corrispondenti.

6.1.1 Passo 1: Trovare gli autovalori di f

Definizione 6.4: Polinonio caratteristico

Sia V uno spazio vettoriale su \mathbb{K} e $f:V\to V$ un endomorfismo. Il polinomio $p(\lambda)=\det(f-\lambda I)$ è detto **polinomio caratteristico** di f.

Teorema 6.1: Autovalori e polinomio caratteristico

Sia V uno spazio vettoriale su \mathbb{K} , $f:V\to V$ un endomorfismo e p(x) il suo polinomio caratteristico. Allora $\lambda_i\in\mathbb{K}$ è un autovalore di $f\Leftrightarrow p(\lambda_i)=0$.

Dimostrazione. λ_i è un autovalore di $f \Leftrightarrow \exists v \in V, v \neq 0$ tale che $f(v) = \lambda_i v \Leftrightarrow (f - \lambda_i I)(v) = 0 \Leftrightarrow \exists v \in V, v \neq 0 \mid (f - \lambda_i I)(v) = f(v) - \lambda_i v = \lambda_i v - \lambda_i v = 0 \Leftrightarrow \exists v \in V, v \neq 0 \mid v \in \ker(f - \lambda_i V) \Leftrightarrow \ker(f - \lambda_i I) \neq \{0\} \Leftrightarrow f - \lambda_i I$ non è iniettiva e quindi non è un isomorfismo $\Leftrightarrow p(\lambda_i) = \det(f - \lambda_i I) = 0$.

Esempio. $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (2y,2x). Scrivo la matrice di f in una base qualsiasi, ad esempio quella canonica $e_1 = (1,0)$, $e_2 = (0,1)$:

$$f(e_1) = f(1,0) = (0,2) = 0(1,0) + 2(0,1) = 2e_2$$

$$f(e_2) = f(0,1) = (2,0) = 2(1,0) + 0(0,1) = 2e_1$$

$$A = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

Calcolo il polinomio caratteristico:

$$p(\lambda) = \det(A - \lambda I_2) = \det\begin{pmatrix} -\lambda & 2\\ 2 & -\lambda \end{pmatrix} = \lambda^2 - 4 = 0 \Rightarrow \lambda^2 = 4 \Rightarrow \lambda = \pm 2$$

Quindi gli autovalori di f sono $\lambda_1 = 2, \lambda_2 = -2$.

Per definizione gli autovettori sono i vettori $v \neq 0$ tali che $f(v) = \lambda v$, quindi, dato un vettore v = (x, y):

$$f(x,y) = 2v$$

$$(2y,2x) = (2x,2y)$$

$$\begin{cases} 2y = 2x \\ 2x = 2y \end{cases} \Rightarrow \begin{cases} y = x \\ x = y \end{cases} \Rightarrow y = x$$

Quindi gli autovettori di f sono i vettori $(x, x), x \in \mathbb{R}$, ad esempio $(1, 1), (2, 2), (3, 3), \dots$ Analogamente per $\lambda_2 = -2$ dato un vettore v = (x, y):

$$f(x,y) = -2v$$

$$(2y,2x) = (-2x, -2y)$$

$$\begin{cases} 2y = -2x \\ 2x = -2y \end{cases} \Rightarrow \begin{cases} y = -x \\ x = -y \end{cases} \Rightarrow y = -x$$

Quindi gli autovettori di f sono i vettori $(x, -x), x \in \mathbb{R}$, ad esempio $(1, -1), (2, -2), (3, -3), \dots$

Esempio. $f: \mathbb{R}^3 \to \mathbb{R}^3, f(x, y, z) = (2x, -4x - 2y - 8z, -4z).$

Scrivo la matrice di f in una base qualsiasi, ad esempio quella canonica $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$:

$$f(e_1) = f(1,0,0) = (2, -4,0) = 2e_1 - 4e_2 + 0e_3$$

$$f(e_2) = f(0,1,0) = (0, -2,0) = 0e_1 - 2e_2 + 0e_3$$

$$f(e_3) = f(0,0,1) = (0,0,-4) = 0e_1 + 0e_2 - 4e_3$$

$$A = \begin{pmatrix} 2 & 0 & 0 \\ -4 & -2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$$

Calcolo il polinomio caratteristico:

$$p(\lambda) = \det(A - \lambda I_3) = \det\begin{pmatrix} 2 - \lambda & 0 & 0 \\ -4 & -2 - \lambda & 0 \\ 0 & 0 & -4 - \lambda \end{pmatrix} = (2 - \lambda)(-2 - \lambda)(-4 - \lambda) = 0$$

$$\Rightarrow \lambda_1 = 2, \lambda_2 = -2, \lambda_3 = -4$$

Troviamo gli autovettori per ciascun autovalore, dato un vettore v = (x, y, z):

• $\lambda_1 = 2$:

$$f(v) = \lambda_1 v \Rightarrow (2x, -4x - 2y - 8z, -4z) = (2x, 2y, 2z)$$

$$\begin{cases} 2x = 2x \\ -4x - 2y - 8z = 2y \\ -4z = 2z \end{cases} \Rightarrow \begin{cases} 0 = 0 \\ 4y = -4x \\ z = 0 \end{cases} \Rightarrow \begin{cases} y = -x \\ z = 0 \end{cases}$$

Quindi gli autovettori di f per $\lambda_1 = 2$ sono i vettori (x, -x, 0), ad esempio $(1, -1, 0), (2, -2, 0), (3, -3, 0), \dots$

• $\lambda_2 = -2$:

$$f(v) = \lambda_2 v \Rightarrow (2x, -4x - 2y - 8z, -4z) = (-2x, -2y, -2z)$$

$$\begin{cases} 2x = -2x \\ -4x - 2y - 8z = -2y \\ -4z = -2z \end{cases} \Rightarrow \begin{cases} 4x = 0 \\ -2y = -2x \\ z = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ 0 = 0 \\ z = 0 \end{cases}$$

Quindi gli autovettori di f per $\lambda_2 = -2$ sono i vettori (0, y, 0), ad esempio $(0, 1, 0), (0, 2, 0), (0, 3, 0), \dots$

• $\lambda_3 = -4$:

$$f(v) = \lambda_3 v \Rightarrow (2x, -4x - 2y - 8z, -4z) = (-4x, -4y, -4z)$$

$$\begin{cases} 2x = -4x \\ -4x - 2y - 8z = -4y \\ -4z = -4z \end{cases} \Rightarrow \begin{cases} 6x = 0 \\ -2y + 8z = 0 \\ 0 = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 4z \end{cases}$$

Quindi gli autovettori di f per $\lambda_3 = -4$ sono i vettori (0, 4z, z), ad esempio $(0, 4, 1), (0, 8, 2), (0, 12, 3), \dots$

Possiamo verificare che $v_1 = (1, -1, 0), v_2 = (0, 1, 0), v_3 = (0, 4, 1)$ sono una base di \mathbb{R}^3 composta da autovettori di f. Sappiamo già da $f(v) = \lambda v$ che la matrice di f rispetto a questa base è diagonale:

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$$

Tuttavia, se il polinomio caratteristico non ha i suoi zeri in \mathbb{K} , allora non è detto che esistano autovettori.

Esempio. $\mathbb{K} = \mathbb{Q}, f : \mathbb{Q}^2 \to \mathbb{Q}^2, f(x, y) = (2y, x), \mathbb{Q} = \{ \text{ numeri razionali } \}.$ Scrivo la matrice di f in una base qualsiasi, ad esempio quella canonica $e_1 = (1, 0), e_2 = (0, 1)$:

$$f(e_1) = f(1,0) = (0,1) = 0e_1 + 1e_2$$

$$f(e_2) = f(0,1) = (2,0) = 2e_1 + 0e_2$$

$$A = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$$

Calcolo il polinomio caratteristico:

$$p(\lambda) = \det(A - \lambda I_2) = \det\begin{pmatrix} -\lambda & 2\\ 1 & -\lambda \end{pmatrix} = \lambda^2 - 2 = 0 \Rightarrow \lambda^2 = 2 \Rightarrow \lambda = \pm \sqrt{2} \notin \mathbb{Q}$$

Quindi $f:\mathbb{Q}^2\to\mathbb{Q}^2$ non può essere diagonalizzata, ma può essere diagonalizzata in \mathbb{R}^2 (perchè $\sqrt{2}\in\mathbb{R}$).

Esempio. $\mathbb{K} = \mathbb{R}, f : \mathbb{R}^2 \to \mathbb{R}^2, f(x,y) = (y,-x)$. Scrivo la matrice di f in una base qualsiasi, ad esempio quella canonica $e_1 = (1,0), e_2 = (0,1)$:

$$f(e_1) = f(1,0) = (0,-1) = 0e_1 - 1e_2$$

$$f(e_2) = f(0,1) = (1,0) = 1e_1 + 0e_2$$

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} A - \lambda I_2 = \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix}$$

Calcolo il polinomio caratteristico:

$$p(\lambda) = \det(A - \lambda I_2) = \det\begin{pmatrix} -\lambda & 1\\ -1 & -\lambda \end{pmatrix} = \lambda^2 + 1 = 0 \Rightarrow \lambda^2 = -1 \Rightarrow \lambda = \pm i \notin \mathbb{R}$$

Quindi $f: \mathbb{R}^2 \to \mathbb{R}^2$ non può essere diagonalizzata, ma può essere diagonalizzata in \mathbb{C}^2 (perchè $i \in \mathbb{C}$). Troviamo gli autovettori per ciascun autovalore, dato un vettore v = (x, y):

• $\lambda_1 = i$:

$$f(v) = \lambda_1 v \Rightarrow (y, -x) = (iy, -ix)$$

$$\begin{cases} y = iy \\ -x = -ix \end{cases} \Rightarrow \begin{cases} y = ix \\ x = iy \end{cases} \Rightarrow y = ix$$

Quindi gli autovettori di f per $\lambda_1 = i$ sono i vettori $(x, ix), x \in \mathbb{R}$, ad esempio (1, i), (2, 2i), (3, 3i), ...

• $\lambda_2 = -i$:

$$f(v) = \lambda_2 v \Rightarrow (y, -x) = (-iy, -ix)$$

$$\begin{cases} y = -iy \\ -x = -ix \end{cases} \Rightarrow \begin{cases} y = -ix \\ x = -iy \end{cases} \Rightarrow y = -ix$$

Quindi gli autovettori di f per $\lambda_2 = -i$ sono i vettori $(x, -ix), x \in \mathbb{R}$, ad esempio $(1, -i), (2, -2i), (3, -3i), \dots$

6.1.2 Passo 2: Trovare gli autovettori di f per ogni autovalore

Definizione 6.5: Autospazio

Sia V uno spazio vettoriale su \mathbb{K} , $f:V\to V$ un endomorfismo e $\lambda_i\in\mathbb{K}$ un autovalore di f. L'autospazio di f relativo all'autovalore λ_i è l'insieme $V_{\lambda_i}=\{v\in V\mid f(v)=\lambda_i v\}$.

Proposizione. V_{λ_i} è un sottospazio vettoriale di V.

Dimostrazione. Se
$$v_1, v_2 \in V_{\lambda_i} \Rightarrow f(v_1) = \lambda_i v_1$$
 e $f(v_2) = \lambda_i v_2 \Rightarrow f(v_1 + v_2) = f(v_1) + f(v_2) = \lambda_i v_1 + \lambda_i v_2 = \lambda_i (v_1 + v_2) = v_1 + v_2 \in V_{\lambda_i}$.

Analogamente, se $a \in \mathbb{K}$, $f(av) = af(v) = a\lambda_i v = \lambda_i (av)$, quindi $av \in V_{\lambda_i}$.

Proposizione. Se $\lambda_i \neq \lambda_j$ allora $V_{\lambda_i} \cap V_{\lambda_j} = \{0\}$.

Dimostrazione. Sia
$$v \in V_{\lambda_i} \cap V_{\lambda_j}$$
, con $\lambda_i \neq \lambda_j$. Allora $\lambda_i v = f(v) = \lambda_j v \Rightarrow (\lambda_i - \lambda_j)v = 0 \Rightarrow v = 0$. Nota: $\lambda_i - \lambda_j \neq 0$ perchè $\lambda_i \neq \lambda_j$.

Definizione 6.6: Molteplità algebrica e geometrica

Sia V uno spazio vettoriale su \mathbb{K} , $f:V\to V$ un endomorfismo e $\lambda_i\in\mathbb{K}$ un autovalore di f. La **molteplicità geometrica** di λ_i è la dimensione dell'autospazio V_{λ_i} , cioè $m_g(\lambda_i)=\dim V_{\lambda_i}$. La **molteplicità algebrica** di λ_i è la sua molteplicità come soluzione dell'equazione $p(\lambda)=0$, cioè quante volte λ_i annulla il polinomio caratteristico $p(\lambda)$.

Esempio. $f : \mathbb{R}^2 \to \mathbb{R}^2, f(x, y) = (3x + y, 3y).$

Scrivo la matrice di f in una base qualsiasi, ad esempio quella canonica $e_1 = (1,0), e_2 = (0,1)$:

$$f(e_1) = f(1,0) = (3,0) = 3e_1 + 0e_2$$

$$f(e_2) = f(0,1) = (1,3) = 1e_1 + 3e_2$$

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$$

Calcolo il polinomio caratteristico:

$$p(\lambda) = \det(A - \lambda I_2) = \det\begin{pmatrix} 3 - \lambda & 1\\ 0 & 3 - \lambda \end{pmatrix} = (3 - \lambda)^2$$

Calcolo la molteplicità algebrica di $\lambda = 3$:

$$p(\lambda) = (\lambda - 3)^2 = 0 \Rightarrow (\lambda - 3)(\lambda - 3) = 0 \Rightarrow \lambda = 3$$

 $m_a(3) = 2$ (perchè annulla 2 volte $p(x)$)

Troviamo gli autovettori per $\lambda = 3$, dato un vettore v = (x, y):

$$f(v) = \lambda v \Rightarrow (3x + y, 3y) = (3x, 3y)$$

$$\begin{cases} 3x + y = 3x \\ 3y = 3y \end{cases} \Rightarrow \begin{cases} y = 0 \\ 3y = 3y \end{cases}$$

Quindi gli autovettori di f per $\lambda=3$ sono i vettori $(x,0),x\in\mathbb{R}$, ad esempio (1,0),(2,0),(3,0),...L'autospazio V_3 è quindi $V_3=\{v\in\mathbb{R}^2\mid f(v)=3v\}=\{(x,y)\in\mathbb{R}^2\mid y=0\}.$ La molteplicità geometrica di $\lambda=3$ è $m_q(3)=\dim V_3=1.$

Proposizione. Sia λ_i un autovalore di $f: V \to V$. Allora $1 \le m_q(\lambda_i) \le m_a(\lambda_i)$.

Dimostrazione. $m_g(\lambda_i) \geq 1$ perchè se $m_g(\lambda_i) = 0$ allora $V_{\lambda_i} = \{0\}$ e quindi non ci sarebbero autovettori $v \in V, v \neq 0$ tali che $f(v) = \lambda_i v$ e quindi λ_i non sarebbe un autovalore di f, contraddicendo la definizione stessa di autovalore.

Sia ora $h = m_q(\lambda_i) = \dim V_{\lambda_i}$ e mostriamo che $m_a(\lambda_i) \geq h$.

Presa una base $\{v_1, v_2, ..., v_h\}$ di V_{λ_i} , completiamola ad una base di V aggiungendo $v_{h+1}, ..., v_n$. Scriviamo la matrice di f rispetto a questa base:

$$f(v_{1}) = \lambda_{i}v_{1} = \lambda_{i}v_{1} + 0v_{2} + \dots + 0v_{n}$$

$$f(v_{2}) = \lambda_{i}v_{2} = 0v_{1} + \lambda_{i}v_{2} + \dots + 0v_{n}$$

$$\vdots$$

$$f(v_{h}) = \lambda_{i}v_{h} = 0v_{1} + 0v_{2} + \dots + \lambda_{i}v_{h}$$

$$f(v_{h+1}) = \lambda_{i}v_{h+1} = a_{1,h+1}v_{1} + a_{2,h+1}v_{2} + \dots + a_{h,h+1}v_{h} + \lambda_{i}v_{h+1}$$

$$\vdots$$

$$f(v_{n}) = \lambda_{i}v_{n} = a_{1,n}v_{1} + a_{2,n}v_{2} + \dots + a_{h,n}v_{h} + \lambda_{i}v_{n}$$

$$A - \lambda I_{n} = \begin{pmatrix} \lambda_{i} - \lambda & 0 & \cdots & 0 & a_{1,h+1} \\ 0 & \lambda_{i} - \lambda & \cdots & 0 & a_{2,h+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -\lambda & a_{h,h+1} \\ 0 & 0 & \cdots & 0 & -\lambda \end{pmatrix}$$

Quindi $\det(A - \lambda I_n) = (\lambda_i - \lambda)^h \cdot q(\lambda)$, dove $q(\lambda)$ è un polinomio di grado n - h. Quindi il fattore $(\lambda_i - \lambda)^h$ è presente nel polinomio caratteristico $p(\lambda)$ almeno h volte, cioè $m_a(\lambda_i) \geq h$.

6.2 Diagonalizzabilità

Teorema 6.2: Criterio di diagonalizzabilità

Sia $f:V\to V$ un endomorfismo e siano $\lambda_1,...,\lambda_k$ i suoi autovalori. f è diagonalizzabile se e solo se valgono entrambe le condizioni:

- 1. $\lambda_i \in \mathbb{K}$ per ogni i = 1, 2, ..., k, ovvero tutti gli autovalori sono nel campo.
- 2. $m_a(\lambda_i) = m_g(\lambda_i)$ per ogni i = 1, 2, ..., k, ovvero la molteplicità algebrica è uguale alla molteplicità geometrica per ogni autovalore.

Dimostrazione. Supponiamo che valga la condizione 1, cioè $\lambda_1,...,\lambda_k\in\mathbb{K}$ e consideriamo gli autospazi $V_{\lambda_1},...,V_{\lambda_k}$.

Sia $U = V_{\lambda_1} \oplus ... \oplus V_{\lambda_k}$, cioè U è la somma diretta degli autospazi (perchè $V_{\lambda_i} \cap V_{\lambda_j} = \{0\}$ se $\lambda_i \neq \lambda_j$). Sia \mathcal{B}_1 una base di V_{λ_1} , ..., \mathcal{B}_t una base di V_{λ_k} ; quindi poichè la somma è diretta $\mathcal{B} = \mathcal{B}_1 \cup ... \cup \mathcal{B}_t$ è una base di U. Quindi dim $U = \dim V_{\lambda_1} + ... + \dim V_{\lambda_k} = m_g(\lambda_1) + ... + m_g(\lambda_k)$.

D'altra parte dim $V = n = \text{grado di } p(x) = m_a(\lambda_1) + ... + m_a(\lambda_k)$.

Se vale la condizione 2 allora dim $U = \dim V$ e quindi U = V e quindi \mathcal{B} è una base di V composta da autovettori di f e quindi la matrice di f rispetto a \mathcal{B} è diagonale.

Se non vale la condizione 2 allora dim $U = m_g(\lambda_1) + ... + m_g(\lambda_k) < m_a(\lambda_1) + ... + m_a(\lambda_k) = \dim V$ e quindi B è una base di U, ma non di V. Posso completarla ad una base di V solo aggiungendo vettori che non sono autovettori di f e quindi la matrice di f rispetto a \mathcal{B} non è diagonale.

Osservazione. Se valgono 1 e 2 la dimostrazione ci fornisce un algoritmo esplicito per trovare la base di autovettori di V: basta unire le basi degli autospazi.

Esempio. Consideriamo $\mathbb{K} = \mathbb{R}, V = \mathbb{R}^3, f : V \to V, f(x, y, z) = (x - 3y + 3z, 3x - 5y + 3z, 6x - 6y + 4z).$ Trovare, se possibile, una base di \mathbb{R}^3 in cui la matrice di f è diagonale.

Scrivo la matrice di f in una base qualsiasi, ad esempio quella canonica $e_1 = (1,0,0), e_2 = (0,1,0), e_3 =$

(0,0,1):

$$f(e_1) = f(1,0,0) = (1,3,6) = 1e_1 + 3e_2 + 6e_3$$

$$f(e_2) = f(0,1,0) = (-3,-5,-6) = -3e_1 - 5e_2 - 6e_3$$

$$f(e_3) = f(0,0,1) = (3,3,4) = 3e_1 + 3e_2 + 4e_3$$

$$A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$

Calcolo il polinomio caratteristico:

$$p(\lambda) = \det(A - \lambda I_3) = \det\begin{pmatrix} 1 - \lambda & -3 & 3\\ 3 & -5 - \lambda & 3\\ 6 & -6 & 4 - \lambda \end{pmatrix} = (\lambda + 2)^2 (\lambda - 4)$$

Quindi gli autovalori di f sono $\lambda_1 = -2, \lambda_2 = 4$ con molteplicità algebrica rispettivamente $m_a(-2) = 2, m_a(4) = 1.$

Troviamo gli autovettori per $\lambda_1 = -2$, dato un vettore v = (x, y, z):

$$V_{\lambda_1} = \{ v \in \mathbb{R}^3 \mid f(v) = -2v \}$$

$$f(v) = \lambda_1 v \Rightarrow (x - 3y + 3z, 3x - 5y + 3z, 6x - 6y + 4z) = (-2x, -2y, -2z)$$

$$\begin{cases} x - 3y + 3z = -2x \\ 3x - 5y + 3z = -2y \\ 6x - 6y + 4z = -2z \end{cases} \Rightarrow \begin{cases} 3x - 3y + 3z = 0 \\ 3x - 3y + 3z = 0 \\ 6x - 6y + 6z = 0 \end{cases} \Rightarrow x + z = y \Rightarrow m_g(-2) = 2$$

Quindi gli autovettori di f per $\lambda_1=-2$ sono i vettori $(x,x+z,z),x,z\in\mathbb{R},$ ad esempio (1,1,0),(2,2,0),(3,3,0),... Di conseguenza la base $\mathbb{B}_1=\{(1,1,0),(0,1,1)\}$ è la base di V_{λ_1} .

Troviamo gli autovettori per $\lambda_2 = 4$, dato un vettore v = (x, y, z):

$$V_{\lambda_2} = \{ v \in \mathbb{R}^3 \mid f(v) = 4v \}$$

$$f(v) = \lambda_2 v \Rightarrow (x - 3y + 3z, 3x - 5y + 3z, 6x - 6y + 4z) = (4x, 4y, 4z)$$

$$\begin{cases} x - 3y + 3z = 4x \\ 3x - 5y + 3z = 4y \\ 6x - 6y + 4z = 4z \end{cases} \Rightarrow \begin{cases} -6x = -3z \\ -6x = -3z \\ x = y \end{cases} \Rightarrow \begin{cases} x = y \\ z = 2x \end{cases} \Rightarrow m_g(4) = 1$$

Quindi gli autovettori di f per $\lambda_2 = 4$ sono i vettori $(t, t, 2t), t \in \mathbb{R}$, ad esempio $(1, 1, 2), (2, 2, 4), (3, 3, 6), \dots$ Di conseguenza la base $\mathbb{B}_2 = \{(1, 1, 2)\}$ è la base di V_{λ_2} .

Per il teorema di diagonalizzabilità f è diagonalizzabile se e solo se $m_a(-2) = m_g(-2)$ e $m_a(4) = m_g(4)$, cioè se e solo se $m_a(-2) = 2 = m_g(-2)$ e $m_a(4) = 1 = m_g(4)$.

La base di autovettori di f è quindi $\mathcal{B} = \mathbb{B}_1 \cup \mathbb{B}_2 = \{(1,1,0),(0,1,1),(1,1,2)\}$. In questa base la matrice di f è diagonale:

$$f(v_1) = -2v_1 + 0v_2 + 0v_3$$

$$f(v_2) = 0v_1 - 2v_2 + 0v_3$$

$$f(v_3) = 0v_1 + 0v_2 + 4v_3$$

$$D = \begin{pmatrix} -2 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & 4 \end{pmatrix}$$

Esempio. Dati $f: \mathbb{R}^4 \to \mathbb{R}^4$, f(x, y, z, w) = (y, z, w, 0), dire se f è diagonalizzabile e in caso affermativo trovare una base di autovettori.

Scrivo la matrice di f in una base qualsiasi, ad esempio quella canonica $e_1 = (1, 0, 0, 0), e_2 = (0, 1, 0, 0), e_3 =$

 $(0,0,1,0), e_4 = (0,0,0,1)$:

$$f(e_1) = f(1,0,0,0) = (0,0,0,0) = 0e_1 + 0e_2 + 0e_3 + 0e_4$$

$$f(e_2) = f(0,1,0,0) = (1,0,0,0) = 1e_1 + 0e_2 + 0e_3 + 0e_4$$

$$f(e_3) = f(0,0,1,0) = (0,1,0,0) = 0e_1 + 1e_2 + 0e_3 + 0e_4$$

$$f(e_4) = f(0,0,0,1) = (0,0,1,0) = 0e_1 + 0e_2 + 1e_3 + 0e_4$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Calcolo il polinomio caratteristico:

$$p(\lambda) = \det(A - \lambda I_4) = \det\begin{pmatrix} -\lambda & 1 & 0 & 0 \\ 0 & -\lambda & 1 & 0 \\ 0 & 0 & -\lambda & 1 \\ 0 & 0 & 0 & -\lambda \end{pmatrix} = -\lambda \det\begin{pmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 0 & 0 & -\lambda \end{pmatrix} = -\lambda(-\lambda)^3 = \lambda^4$$

Quindi l'unico autovalore di $f \in \lambda = 0$ con molteplicità algebrica $m_a(0) = 4$.

 $f(x,y,z,w) = 0 \cdot (x,y,z,w) \Rightarrow (y,z,w,0) = (0,0,0,0) \Rightarrow y = z = w = 0$. Quindi l'autospazio $V_{\lambda_1} = \{v \in \mathbb{R}^4 \mid f(v) = 0v\} = \{(x,y,z,w) \in \mathbb{R}^4 \mid y = z = w = 0\} = \{(x,0,0,0) \mid x \in \mathbb{R}\}$ con base $\{e_1\} = \{(1,0,0,0)\} \Rightarrow m_g(0) = 1$.

Per il teorema di diagonalizzabilità f è diagonalizzabile se e solo se $m_a(0) = m_g(0)$, cioè se e solo se 4 = 1, che è falso.

Quindi f non è diagonalizzabile.

Definizione 6.7: Endomorfismo nilpotente

Un endomorfismo $f: V \to V$ si dice **nilpotente** se esiste un $n \in \mathbb{N}$ tale che $f^n = 0$, cioè $f \circ \dots \circ f(v) = 0 \ \forall v \in V$.

Osservazione. f è nilpotente \Leftrightarrow la matrice di f rispetto ad una base di V è nilpotente, cioè esiste un $n \in \mathbb{N}$ tale che $A^n = 0$.

Teorema 6.3: Endomorfismo nilpotente non diagonalizzabile

Se un endomorfismo $f:V\to V$ è nilpotente allora f non è diagonalizzabile.

Dimostrazione. Sia λ un autovalore di f e sia v un suo autovettore, cioè $v \neq 0, f(v) = \lambda v$.

Poichè f è nilpotente esiste un $n \in \mathbb{N}$ tale che $f(v)^n = 0$, cioè $f(v) \circ ... \circ f(v) = 0$.

D'altra parte $f^n(v) = f^{n-1}(\lambda v) = \lambda f^{n-1}(v) = \dots = \lambda^n v$.

Quindi $\lambda^n v = 0 \Rightarrow \lambda^n = 0$ (perchè $f^n(v) = 0$) e quindi $\lambda = 0$.

Quindi l'unico autovalore di f è $\lambda=0$. Quindi poichè $f\neq 0$, l'autospazio V_0 non è tutto lo spazio V, cioè $m_g(0)<\dim V$ e quindi $m_a(0)=m_g(0)<\dim V$. Quindi f non è diagonalizzabile.

Esempio. $A = \begin{pmatrix} 5 & 2 & 0 \\ 0 & 5 & 2 \\ 0 & 0 & 5 \end{pmatrix}$ è una matrice non diagonalizzabile. A si può scrivere come somma di una

matrice diagonalizzabile (anzi già diagonale) e di una matrice nilpotente:

$$A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} + \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

A quindi non è nilpotente ma non si diagonalizza.

Esempio. $V = \mathbb{R}^3[x]_{\leq 3} = \{a_x^3 + b_x^2 + c_x + d \mid a, b, c, d \in \mathbb{R}\}.$ $d: V \to V, d(p(x)) = p'(x) = 3ax^2 + 2bx + c$ è un endomorfismo nilpotente perchè $d^4(p(x)) = 0 \forall p(x) \in C$

V.

In effetti nella base $1, x, x^2, x^3$ la matrice di d è:

ottenuta calcolando $d(1)=0, d(x)=1, d(x^2)=2x, d(x^3)=3x^2.$ Quindi $d^4(p(x))=0 \forall p(x) \in V$ e quindi d è nilpotente.

6.3 Blocco di Jordan e decomposizione canonica di Jordan

Definizione 6.8: Blocco di Jordan

Sia $A \in M_n(\mathbb{K})$ una matrice non diagonalizzabile.

Un blocco di Jordan di A è una matrice quadrata $J \in M_k(\mathbb{K})$ della forma:

$$J = \begin{pmatrix} \lambda_i & 1 & 0 & \cdots & 0 \\ 0 & \lambda_i & 1 & \cdots & 0 \\ 0 & 0 & \lambda_i & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_i \end{pmatrix}$$

dove λ è l'autovalore di A e k è la molteplicità geometrica di $\lambda.$

In sostanza, un blocco di Jordan è una matrice diagonale con tutti gli elementi uguali a λ e con una riga di 1 sulla diagonale superiore.

 $p(\lambda)=(\lambda_i-\lambda)\cdot\det J_{\lambda_i,n-1}=\ldots=(\lambda_i-\lambda)^n\Rightarrow$ l'unico autovalore di J è λ_i e la molteplicità algebrica è $m_a(\lambda_i)=n$. $\forall n>1 J_{\lambda_i,n}$ non è diagonalizzabile. Notiamo che $J_{\lambda_i,1}$ è somma di una matrice diagonale e di una matrice nilpotente.

Esempio. $J_{7,3} = \begin{pmatrix} 7 & 1 & 0 \\ 0 & 7 & 1 \\ 0 & 0 & 7 \end{pmatrix}$ è un blocco di Jordan di ordine 3. Controllare se è diagonalizzabile:

$$p(\lambda) = \det(J_{7,3} - \lambda I_3) = \det\begin{pmatrix} 7 - \lambda & 1 & 0\\ 0 & 7 - \lambda & 1\\ 0 & 0 & 7 - \lambda \end{pmatrix} = (7 - \lambda)^3 \Rightarrow \lambda_1 = 7 \Rightarrow m_a(7) = 3$$

$$V_7 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid J_{7,3}(x_1, x_2, x_3) = 7(x_1, x_2, x_3)\} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid \begin{pmatrix} 7 & 1 & 0 \\ 0 & 7 & 1 \\ 0 & 0 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid J_{7,3}(x_1, x_2, x_3) \in \mathbb{R}^3 \mid J_{7,3}(x_1,$$

$$\begin{pmatrix}
7x_1 \\
7x_2 \\
7x_3
\end{pmatrix} = \begin{cases}
7x_1 + x_2 = 7x_1 \\
7x_2 + x_3 = 7x_2 \\
7x_3 = 7x_3
\end{cases} \Rightarrow \begin{cases}
x_2 = 0 \\
x_3 = 0
\end{cases} \text{ Quindi } V_7 = \{(x, 0, 0) \mid x \in \mathbb{R}\} \text{ e } m_g(7) = 1 \Rightarrow J_{7,3} \text{ non } m_g(7) = 1 \Rightarrow J_{7,3} \text{ points}$$

$$\frac{1}{2} \text{ diagonalization in } m_g(7) = 1 \Rightarrow J_{7,3} \text{ non } m_g(7) = 1 \Rightarrow J_{7,3} \text$$

Teorema 6.4: Decomposizione canonica di Jordan

Sia $f: V \to V$ un endomorfismo e siano $\lambda_1, ..., \lambda_k$ i suoi autovalori. Allora:

- 1. $f = f_d + f_n$, dove f_d è una applicazione diagonalizzabile mentre f_n una una applicazione nilpotente. Tale decomposizione è unica e diagonalizzabile $\Leftrightarrow f_n = 0$.
- 2. Esiste una base di V in cui la matrice di f è la forma canonica di Jordan (dove per ciascun autovalore λ_i si hanno $m_q(\lambda_i)$ blocchi di Jordan, la cui somma delle dimensioni è $m_a(\lambda_i)$):

$$\begin{pmatrix} J_{\lambda_1,n_1} & 0 & \cdots & 0 \\ 0 & J_{\lambda_2,n_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{\lambda_k,n_k} \end{pmatrix}$$

Esempio. Sia $f: \mathbb{R}^6 \to \mathbb{R}^6$ con autovalori $\lambda_1 = 7, \lambda_2 = 3, \lambda_3 = -2$ e con $m_a(\lambda_1) = 3, m_a(\lambda_2) = 2, m_a(\lambda_3) = 1$. e $mg(\lambda_1) = mg(\lambda_2) = mg(\lambda_3) = 1$ (quindi f non è diagonalizzabile). Per il teorema precedente, esiste una base di \mathbb{R}^6 in cui la matrice di f è:

$$\begin{pmatrix}
J_{7,3} & 0 & 0 & 0 \\
0 & J_{3,2} & 0 & 0 \\
0 & 0 & J_{-2,1}
\end{pmatrix} = \begin{pmatrix}
7 & 1 & 0 & 0 & 0 & 0 \\
0 & 7 & 1 & 0 & 0 & 0 \\
0 & 0 & 7 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 3 & 1 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 & -2
\end{pmatrix}$$

7 Unità 7 - Lezioni 16, 17

7.1 Forme bilineari

Definizione 7.1: Forma bilineare

Sia V uno spazio vettoriale su \mathbb{K} .

Una forma bilineare su V è una applicazione $\beta: V \times V \to \mathbb{K}$ che è lineare rispetto a ciascuna variabile, cioè:

- 1. $\beta(a_1v_1 + a_2v_2, u) = a_1\beta(v_1, u) + a_2\beta(v_2, u)$
- 2. $\beta(v, a_1u_1 + a_2u_2) = a_1\beta(v, u_1) + a_2\beta(v, u_2)$

Esempio. Siano $V: \mathbb{R}^2, \beta: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \beta(v,u) = 2x_1y_1 + x_1y_2 - x_2y_2, v = (x_1, x_2), u = (y_1, y_2).$ Verificare se β è una forma bilineare.

Definiamo $v' = (x'_1, x'_2)$, dobbiamo verificare che $\beta(av + a'v', u) = a\beta(v, u) + a'\beta(v', u)$ e $\beta(v, au + au') = a\beta(v, u) + a'\beta(v, u')$.

$$av + a'v' = a(x_1, x_2) + a'(x'_1, x'_2) = (ax_1 + a'x'_1, ax_2 + a'x'_2)$$

$$\beta(av + a'v', u) = 2(ax_1 + a'x'_1)y_1 + (ax_1 + a'x'_1)y_2 - (ax_2 + a'x'_2)y_2$$

$$= 2ax_1y_1 + 2a'x'_1y_1 + ax_1y_2 + a'x'_1y_2 - ax_2y_2 - a'x'_2y_2$$

$$= a(2x_1y_1 + x_1y_2 - x_2y_2) + a'(2x'_1y_1 + x'_1y_2 - x'_2y_2)$$

$$= a\beta(v, u) + a'\beta(v', u)$$

La prima condizione è verificata. La seconda condizione è simile:

$$au + a'u' = a(y_1, y_2) + a'(y'_1, y'_2) = (ay_1 + a'y'_1, ay_2 + a'y'_2)$$

$$\beta(v, au + a'u') = 2x_1(ay_1 + a'y'_1) + x_1(ay_2 + a'y'_2) - x_2(ay_2 + a'y'_2)$$

$$= 2ax_1y_1 + 2a'x'_1y_1 + ax_1y_2 + a'x'_1y_2 - ax_2y_2 - a'x'_2y_2$$

$$= a(2x_1y_1 + x_1y_2 - x_2y_2) + a'(2x'_1y_1 + x'_1y_2 - x'_2y_2)$$

$$= a\beta(v, u) + a'\beta(v, u')$$

Quindi β è una forma bilineare.

Esempio. Siano $V = \mathbb{R}^2$, $v = (x_1, x_2)$, $u = (y_1, y_2)$, $v' = (x'_1, x'_2)$. Verificare se $\beta(v, u) = x_1 x_2 + y_1 y_2$ è una forma bilineare.

$$\beta(av + a'v', u) = (ax_1 + a'x_1')(ax_2 + a'x_2') + y_1y_2$$

$$= a^2x_1x_2 + a'^2x_1'x_2' + aa'x_1'x_2 + y_1y_2$$

$$\neq a\beta(v, u) + a'\beta(v', u)$$

$$= ax_1x_2 + ay_1y_2 + a'x_1'x_2' + a'y_1'y_2'$$

Quindi β non è una forma bilineare.

Esempio. Sia $V = \mathbb{K}^n$, $v = (x_1, x_2, ..., x_n)$, $u = (y_1, y_2, ..., y_n)$ e sia $\beta(v, u) = x_1y_1 + x_2y_2 + ... + x_ny_n$ un "prodotto scalare standard". Si verifica facilmente che β è bilineare, quindi è un prodotto scalare.

Esempio. Siano $a,b \in \mathbb{R}$ e sia $V = \{\text{funzioni continue } f : [a,b] \to \mathbb{R}\}$. Date $f,g \in V$, ovvero $f,g:[a,b] \to \mathbb{R}$, si definisce $\beta(f,g) = \int_a^b f(t)g(t)dt$. Questa è una forma bilineare perchè $\int_a^h (f(t) + h(t))g(t)dt = \int_a^b f(t)g(t)dt + \int_a^b h(t)g(t)dt$ e $\int_a^b h(t)f(t) + f(t)f(t)dt = \int_a^b f(t)g(t)dt$

Definizione 7.2: Forma bilineare simmetrica

Una forma bilineare $\beta: V \times V \to \mathbb{K}$ si dice **simmetrica** se $\beta(v, u) = \beta(u, v) \ \forall v, u \in V$. Una forma bilineare $\beta: V \times V \to \mathbb{K}$ si dice **antisimmetrica** se $\beta(v, u) = -\beta(u, v) \ \forall v, u \in V$.

Esempio. Sia $V = \mathbb{R}^2$ su $\mathbb{K} = \mathbb{R}$ e siano $v = (x_1, x_2), u = (y_1, y_2).$

- 1. Verificare se $\beta(v,u)=2x_1y_1-3x1y_2-3x_2y_1+4x_2y_2$ è simmetrica. $\beta(u,v)=2y_1x_1-3y_1x_2-3y_2x_1+4y_2x_2=2x_1y_1-3x_1y_2-3x_2y_1+4x_2y_2=\beta(v,u)$. Quindi β è simmetrica.
- 2. Verificare se $\beta(v,u)=x_1y_2-x_2y_1$ è antisimmetrica. $\beta(u,v)=y_1x_2-y_2x_1=-x_1y_2+x_2y_1=-\beta(v,u)$. Quindi β è antisimmetrica.

Osservazione. $\beta = \det(\begin{smallmatrix} x_1 & y_1 \\ x_2 & y_2 \end{smallmatrix})).$

- 3. Verificare se $\beta(v,u)=2x_1y_2+3x_2y_1-5x_2y_1$ è simmetrica o antisimmetrica. $\beta(u,v)=2y_1x_2-5x_1y_2+3y_2x_1\neq\beta(v,u).$ $\beta(u,v)=2y_1x_2-5x_1y_2+3y_2x_1\neq-\beta(v,u).$ Quindi β non è simmetrica ne antisimmetrica. Lo si può vedere anche con un esempio numerico: $\beta((1,0),(1,1))=2$ e $\beta((1,1),(1,0))=3$.
- 4. Può esistere una forma bilineare che sia sia simmetrica che antisimmetrica? $\beta(v,u) = \beta(u,v) = -\beta(v,u) \Rightarrow \beta(v,u) = -\beta(v,u) \Rightarrow 2\beta(v,u) = 0 \Rightarrow \beta(v,u) = 0 \ \forall v,u \in V$. Quindi solo la forma bilineare nulla è sia simmetrica che antisimmetrica.

Osservazione. Ogni forma bilineare β si può scrivere come somma di una forma bilineare simmetrica β_s e di una forma bilineare antisimmetrica β_a :

$$\beta(v, u) = \beta_s(v, u) + \beta_a(v, u)$$
$$\beta_s(v, u) = \frac{\beta(v, u) + \beta(u, v)}{2}$$
$$\beta_a(v, u) = \frac{\beta(v, u) - \beta(u, v)}{2}$$

Definizione 7.3: Matrice di una forma bilineare

La matrice di una forma bilineare $\beta: V \times V \to \mathbb{K}$ rispetto ad una base $\mathcal{B} = \{v_1, v_2, ..., v_n\}$ di V è la matrice $A \in M_n(\mathbb{K})$ tale che $a_{ij} = \beta(v_i, v_j)$.

Osservazione. Se
$$v = a_1v_1 + ... + a_nv_n$$
, $u = b_1v_1 + ... + b_nv_n$ allora $\beta(v, u) = (a_1, ..., a_n)A\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$.

Esempio. Sia $v_1 = (1, 1), v_2 = (1, -1)$ una base di $V = \mathbb{R}^2$ e $\beta(v, u) = x_1y_1 + 2x_1y_2 - x_2y_1 + 3x_2y_2$ una forma bilineare su V. Trovare la matrice di β rispetto alla base $\mathcal{B} = \{v_1, v_2\}$.

$$\beta(v_1, v_1) = 1 + 2 - 1 + 3 = 5$$

$$\beta(v_1, v_2) = 1 - 2 - 1 - 3 = -5$$

$$\beta(v_2, v_1) = 1 + 2 + 1 - 3 = 1$$

$$\beta(v_2, v_2) = 1 - 2 + 1 + 3 = 3$$

$$A = \begin{pmatrix} 5 & -5 \\ 1 & 3 \end{pmatrix}$$

Definizione 7.4: Matrice simmetrica e antisimmetrica

Una matrice $A \in M_n(\mathbb{K})$ si dice **simmetrica** se $A = A^T$ e si dice **antisimmetrica** se $A = -A^T$.

Esempio. 1. $A = \begin{pmatrix} 3 & 4 \\ 4 & 2 \end{pmatrix}$ è simmetrica.

- 2. $B = \begin{pmatrix} 0 & -3 \\ 3 & 0 \end{pmatrix}$ è antisimmetrica.
- 3. $C = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}$ non è nè simmetrica nè antisimmetrica.
- 4. $D = \begin{pmatrix} 1 & 4 & -3 \\ 4 & 7 & 9 \\ -3 & 9 & 5 \end{pmatrix}$ è simmetrica.
- 5. $E = \begin{pmatrix} 0 & 5 & -6 \\ -5 & 0 & 1 \\ 6 & -1 & 0 \end{pmatrix}$ è antisimmetrica.
- 6. $F = \begin{pmatrix} 3 & 5 & -6 \\ -5 & 1 & 1 \\ 6 & -1 & 7 \end{pmatrix}$ non è nè simmetrica nè antisimmetrica.

Osservazione. Una forma bilineare β è simmetrica \Leftrightarrow la sua matrice rispetto ad una base è simmetrica.

Analogamente, una forma bilineare β è antisimmetrica \Leftrightarrow la sua matrice rispetto ad una base è antisimmetrica.

Osservazione. Se una forma bilineare β è antisimmetrica e $\beta = 0$ allora sicuramente non è diagonale. L'unica matrice antisimmetrica che è anche diagonale è la matrice nulla.

Se invece β è simmetrica allora si può trovare una base in cui la sua matrice è diagonale.

Definizione 7.5: Matrici congruenti

Due matrici A, M si dicono **congruenti** se esiste una matrice invertibile B tale che $M = B^T A B$.

Teorema 7.1: Matrici congruenti e forme bilineari

Due matrici A, M sono congruenti \Leftrightarrow rappresentano la stessa forma bilineare.

Dimostrazione. Siano $\mathcal{B} = \{v_1, v_2, ..., v_n\}$ e $\mathcal{B}' = \{u_1, u_2, ..., u_n\}$ due basi di V. Siano $v = a_1v_1 + ... + a_nv_n = x_1u_1 + ... + x_nu_n$ e $u = b_1v_1 + ... + b_nv_n = y_1u_1 + ... + y_nu_n$.

Sia
$$B$$
 la matrice del cambiamento di base da \mathcal{B} a \mathcal{B}' , cioè $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = B \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ e $\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$.

Allora $\beta(v,u) = (a_1,...,a_n)A \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} B^T A B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} M \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$.

Osservazione. Se β è simmetrica si può sempre trovare una base diagonalizzante.

I tre usi delle matrici

Sistemi lineari La matrice di un sistema lineare Ax = b è la matrice in cui sono scritti i coefficienti del sistema. Due matrici A, M rappresentano sistemi **equivalenti** (cioè hanno la stessa soluzione) \Leftrightarrow applicando l'algoritmo di Gauss si ottiene la stessa matrice a scala.

Applicazioni lineari La matrice di un'applicazione lineare $f: V \to W$ è la matrice in cui A_{ij} è l'*i*-esima coordinata del vettore $f(v_j)$ nella base $v_1, ..., v_n$. Due matrici A, M rappresentano la stessa applicazione lineare \Leftrightarrow sono **simili**, cioè $\exists B$ tale che $M = B^{-1}AB$.

Forme bilineari La matrice di una forma bilineare è la matrice in cui $A_{ij} = \beta(v_i, v_j)$. Due matrici A, M rappresentano la stessa forma bilineare \Leftrightarrow sono **congruenti**, cioè $\exists B$ tale che $M = B^T A B$.

Teorema 7.2: Diagonalizzazione di una forma bilineare simmetrica

Sia $\beta: V \times V \to \mathbb{K}$ una forma bilineare simmetrica.

Allora esiste una base $u_1, ..., u_n$ di V tale che la matrice di β rispetto a \mathcal{B} è diagonale $(\beta(v_i, v_i) = 0 \forall i \neq j)$.

In altre parole, se A è una matrice simmetrica allora esiste una matrice diagonale che è congruente ad A.

Dimostrazione. Definiamo una base qualsiasi di $V : \{w_1, w_2, ..., w_n\}$.

- 1. Se $\beta(w_1, w_1) \neq 0$ vado allo step 2. Se $\beta(w_1, w_1) = 0$ ma $\exists i \mid \beta(w_i, w_i) \neq 0$ allora scambio w_1 con w_i e vado allo step 2. Se $\beta(w_i, w_i) = 0 \ \forall i \in \{1, ..., n\}$ allora cerco i, j tali che $\beta(w_i, w_j) \neq 0$ e scambio w_1 con $w_i + w_j$, w_2 con w_j , w_i con w_1 e w_j con w_2 e vado allo step 2.
- 2. Dal passo 1, $\beta(w_1, w_1) \neq 0$. Definiamo una nuova base $w_1', w_2', ..., w_n'$ tale che $w_1' = w_1$ e $w_i' = w_i \frac{\beta(w_i, w_1)}{\beta(w_1, w_1)} w_1 \ \forall i \neq 1$, in questo modo $\beta(w_1', w_i) = \beta(w_1, w_i) \frac{\beta(w_1, w_i)}{\beta(w_1, w_1)} \beta(w_1, w_1) = 0 \ \forall i = \{2, ..., n\}.$

Ora w'_1 non lo tocco più e riapplico il passo 1 e passo 2 a $w'_2, ..., w'_n$.

Dopo n-1 iterazioni si ottiene una base $u_1, u_2, ..., u_n$ tale che la matrice β rispetto a tale base è diagonale.

Esempio. Sia $B: \mathbb{R}^2 \to \mathbb{R}^2$ con $B(e_1, e_1) = 2$, $B(e_1, e_2) = 3$, $B(e_2, e_1) = 3$, $B(e_2, e_2) = 1$. Quindi $A = \begin{pmatrix} 2 & 3 \\ 3 & 1 \end{pmatrix}$. La matrice A è simmetrica, quindi per il teorema precedente esiste una base u_1, u_2 di \mathbb{R}^2 tale che la matrice di B rispetto a tale base è diagonale.

Passo 1 $\beta(u_1, u_1) = 2 \neq 0$, quindi vado al passo 2.

Passo 2 Definisco $w_1' = e_1, w_2' = e_2 - \frac{\beta(e_2, e_1)}{\beta(e_1, e_1)} e_1 = e_2 - \frac{3}{2} e_1$ in modo che $\beta(w_1', w_2') = \beta(e_1, e_2) - \frac{\beta(e_1, e_2)}{\beta(e_1, e_1)} \beta(e_1, e_1) = 3 - \frac{3}{2} 2 = 0$ e $\beta(w_2', w_2') = \beta(e_2, e_2) - \frac{\beta(e_2, e_1)}{\beta(e_1, e_1)} \beta(e_1, e_2) = 1 - \frac{3}{2} 3 = -\frac{7}{2}$.

Nella nuova base $\{w_1', w_2'\}$ la matrice di B è:

$$\begin{pmatrix} 2 & 0 \\ 0 & -\frac{7}{2} \end{pmatrix}$$

Quindi la matrice di B rispetto alla base $\{w'_1, w'_2\}$ è diagonale.

7.2 Teorema di Sylvester

Definizione 7.6: Segnatura di una forma bilineare

Sia $\beta:V\times V\to\mathbb{R}$ una forma bilineare simmetrica su uno spazio vettoriale V di dimensione finita.

La **segnatura** di β è la tripletta (n_+, n_-, n_0) dove:

- n_+ è il numero di autovettori di β con autovalore positivo;
- n_{-} è il numero di autovettori di β con autovalore negativo;
- n_0 è il numero di autovettori di β con autovalore nullo.

La segnatura è indipendente dalla base scelta.

Teorema 7.3: Teorema di Sylvester

Sia V uno spazio vettoriale su \mathbb{R} e $\beta: V \times V \to \mathbb{R}$ una forma bilineare simmetrica.

Allora esiste una base $u_1, u_2, ..., u_n$ di V tale che la matrice di β rispetto a tale base è diagonale con n_+ elementi $1, n_-$ elementi -1 e n_0 elementi 0:

Dimostrazione. Per il teorema di diagonalizzazione esiste una base $u_1, ..., u_n$ tale che la matrice di β rispetto a tale base è diagonale. Quindi:

- (a) $\beta(u_i, u_i) = a_i > 0 \ \forall i = \{1, ..., n_+\}$
- (b) $\beta(u_i, u_j) = a_i < 0 \ \forall i = \{n_+ + 1, ..., n_+ + n_-\}$
- (c) $\beta(u_i, u_j) = 0 \ \forall i = \{n_+ + n_- + 1, ..., n\}$

Ora, nei casi (a) e (b) posso definire $v_i = \frac{1}{\sqrt{|a_i|}}u_i$ in modo che $\beta(v_i, v_i) = 1$ nel caso a e $\beta(v_i, v_i) = -1$ nel caso b.

Per il caso (c) posso definire $v_i = u_i$ in modo che $\beta(v_i, v_i) = 0$. Omettiamo la seconda parte della dimostrazione (la segnatura non dipende dalla base scelta ma solo da β .

Teorema 7.4: Teorema di Sylvester per le forme quadratiche

Sia V uno spazio vettoriale su \mathbb{C} e sia β una forma bilineare simmetrica su V.

Allora esiste una base $u_1, u_2, ..., u_n$ di V tale che la matrice di β rispetto a tale base è diagonale del tipo:

$$\begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix}$$

dove $r = n_+ + n_-$ indica r volte 1.

Dimostrazione. Come nella dimostrazione precedente, ma nel caso (b) definisco $v_i = \frac{1}{\sqrt{|a_i|}} u_i$ in modo che $\beta(v_i, v_i) = 1$ anche nel caso b.

Osservazione. r è il rango della matrice di β rispetto alla base $\{u_1, u_2, ..., u_n\}$.

Corollario 7.1: Congruenza e segnatura

Due matrici simmetriche $n \times n$ sono congruenti su $\mathbb{R} \Leftrightarrow$ hanno la stessa segnatura. Sono invece congruenti su $\mathbb{C} \Leftrightarrow$ hanno lo stesso rango.

Dimostrazione. Due matrici sono congruenti \Leftrightarrow rappresentano la stessa forma bilineare. Quindi, per il teorema precedente, sono tra loro congruenti \Leftrightarrow sono congruenti alla stessa matrice. \square

Esempio. Le matrici $A=\begin{pmatrix}2&0\\0&3\end{pmatrix}$ e $B=\begin{pmatrix}8&0\\0&-3\end{pmatrix}$ sono congruenti su $\mathbb C$ perchè hanno entrambe rango 2 ma non sono congruenti su $\mathbb R$ perchè hanno segnature diverse (rispettivamente $n_{+_A}=2, n_{-_A}=0$ e $n_{+_B}=1, n_{-_B}1$).

7.3 Forme quadratiche e matrice hassiana

Definizione 7.7: Forma quadratica

Sia V uno spazio vettoriale su $\mathbb R$ e sia $\beta: V \times V \to \mathbb R$ una forma bilineare simmetrica. La **forma quadratica** associata a β è la funzione $q: V \to \mathbb R$:

$$q(v) = \beta(v, v) \ \forall v \in V$$

Esempio. Sia $V = \mathbb{R}^2$, $v = (x_1, x_2)$, $u = (y_1, y_2)$, $\beta(v, u) = 2x_1y_1 + 3x_1y_2 + 3x_2y_1 - x_2y_2$. La forma quadratica associata a β è $q(v) = \beta(v, v) = 2x_1^2 + 6x_1x_2 - x_2^2$.

Osservazione. Si chiama forma quadratica perchè se $a \in \mathbb{R}ev \in V$, $q(av) = \beta(av, av) = a \cdot a \cdot \beta(v, v) = a^2 q(v)$.

Osservazione. q(0) = 0 perchè $q(0) = \beta(0, 0) = \beta(v - v, v - v) = \beta(v, v) - \beta(v, v) = 0$.

Definizione 7.8: Caratterizzazione di una forma quadratica

Sia V uno spazio vettoriale su \mathbb{K} . Una forma quadratica $q:V\to\mathbb{K}$ può essere:

- definita positiva se $q(v) > 0 \ \forall v \neq 0, v \in V$
- definita negativa se $q(v) < 0 \ \forall v \neq 0, q \in V$
- semidefinita positiva se $q(v) \ge 0 \ \forall v \in V$
- semidefinita negativa se $q(v) \leq 0 \ \forall v \in V$
- indefinita se $\exists v_1, v_2 \in V \mid q(v_1) > 0$ e $q(v_2) < 0$

Esempio. Sia $V = \mathbb{R}^2, v = (x_1, x_2).$

- $q(x_1, x_2) = x_1^2 + x_2^2$ è definita positiva, perchè $q(x_1, x_2) = x_1^2 + x_2^2 > 0 \ \forall x_1, x_2 \neq 0$.
- $q(x_1, x_2) = -x_1^2 x_2^2$ è definita negativa, perchè $q(x_1, x_2) = -x_1^2 x_2^2 < 0 \ \forall x_1, x_2 \neq 0$.
- $q(x_1, x_2) = x_1^2$ è semidefinita positiva, perchè $q(x_1, x_2) = x_1^2 \ge 0 \ \forall x_1, x_2, \text{ ma } q(0, x_2) = 0.$
- $q(x_1, x_2) = -x_1^2$ è semidefinita negativa, perchè $q(x_1, x_2) = -x_1^2 \le 0 \ \forall x_1, x_2, \text{ ma } q(0, x_2) = 0.$
- $q(x_1, x_2) = x_1^2 x_2^2$ è indefinita, perchè q(1, 0) = 1 > 0 e q(0, 1) = -1 < 0.
- $q(x_1, x_2) = x_1^2 + 9x_2^2 + 6x_1x_2$ è semidefinita positiva, perchè $q(e_1) = 1 > 0, q(e_2) = -1 < 0$.
- $q(x_1,x_2)=x_1^2+6x_1x_2+9x_2^2=(x_1+3x_2)^2$ è semidefinita positiva, perchè $e=0 \Leftrightarrow x_1=-3x_2$ e quindi q(-3,1)=0.

Osservazione. • q è definita positiva \Leftrightarrow la segnatura di β è $(n_+ = n, n_- = 0, n_0 = 0)$.

- q è definita negativa \Leftrightarrow la segnatura di β è (0, n).
- q è semidefinita positiva \Leftrightarrow la segnatura di β è (r, n-r) con $r \leq n$.
- q è semidefinita negativa \Leftrightarrow la segnatura di β è (n-r,r) con $r \leq n$.
- q è indefinita \Leftrightarrow la segnatura di β è (r,s) con $r,s \neq 0$.

Definizione 7.9: Matrice hassiana

Sia $f: \mathbb{R}^{\ltimes} \to \mathbb{R}$ una funzione di n variabili, derivabile due volte.

Dato $v = (x_1, ..., x_n) \in \mathbb{R}^n$, la matrice hassiana di f in v è la matrice Hf(v) tale che:

$$Hf(v)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}(v)$$

Se le derivate seconde sono continue allora Hf(v) è simmetrica.

La matrice hassiana serve per capire la natura dei punti critici ($\nabla f = 0$). Infatti, se Hf(v) è:

- definita positiva $\Rightarrow f$ ha un punto di minimo locale in v.
- definita negativa $\Rightarrow f$ ha un punto di massimo locale in v.
- indefinita $\Rightarrow f$ ha un punto di sella in v.

7.4 Prodotto scalare e base ortonormale

Definizione 7.10: Prodotto scalare

Un **prodotto scalare** su V è una forma bilineare simmetrica e definita positiva.

Notazioni quando β è un prodotto scalare:

- $\beta(v, u) = \langle v, u \rangle = \langle v, u \rangle = v \cdot u$.
- $q(v) = ||v||^2$, cioè $||v|| = \sqrt{(v, u)}$

Esempio. • $V = \mathbb{R}^n, v = (x_1, x_2, ..., x_n), u = (y_1, y_2, ..., y_n), \beta(v, u) = x_1y_1 + x_2y_2 + ... + x_ny_n$ è un prodotto scalare standard. Infatti, la sua matrice nella base canonica è I_n .

- $V = \{\text{funzioni } [a,b] \to \mathbb{R}\}, \beta(f,g) = \int_a^b f(x)g(x)dx$ è un prodotto scalare? No, la funzione è bilineare e simmetrica ma non è definita positiva perchè $\beta(f,f) = \int_a^b f^2(x)dx \ge 0$ ma $\beta(f,f) = 0 \Leftrightarrow f(x) = 0 \ \forall x \in [a,b].$
- $U = \{f : [a,b] \to \mathbb{R} \mid f \text{ continua}\}, \beta(f,g) = \int_a^b f(x)g(x)dx$ è un prodotto scalare? Sì, pwechè è bilineare, simmetrica e definita positiva peerchè sia $t \neq 0$ allora $\exists p \in]a,b[$ tale che $f(p) \neq 0$ e quindi $\int_a^b f^2(x)dx > 0$.

Definizione 7.11: Versore

Sia $\beta: V \times V \to \mathbb{K}$ un prodotto scalare.

Un vettore $v \in V$ si dice **versore** se ||v|| = 1 cioè se (v, v) = 1.

Inoltre, v, u sono **ortogonali** se (v, u) = 0.

Un insieme di vettori $v_1,...,v_n$ sono **ortonormali** se sono versori tra loro ortogonali, cioè se

$$(v_i, v_j) = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$

Teorema 7.5: Base ortonormale

Per ogni prodotto scalare esiste una base ortonormale.

Dimostrazione. Poichè un prodotto scalare è una forma bilineare simmetrica definita positiva, esiste una base $v_1, ..., v_n$ tale che la matrice di β rispetto a tale base è I_n e quindi $(v_i, v_j) = (I_n)_{ij} =$

$$\begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases} \text{ (cioè } v_1, ..., v_n \text{ è una base ortonormale)}.$$

Esempio. Siano $V = \mathbb{R}^n, v = (x_1, ..., x_n), u = (y_1, ..., y_n).$

 $(v,u)=x_1y_1+x_2y_2+...+x_ny_n$ è una forma bilineare simmetrica definita positiva (perchè nella base canonica la matrice è I_n) \Rightarrow è un prodotto scalare (detto **prodotto scalare standard**).

Quindi $e_1, ..., e_n$ è una base ortonormale di V e $||v|| = \sqrt{(v,v)} = \sqrt{x_1^2 + ... + x_n^2}$.

Esempio. Siano $a, b \in \mathbb{R}$ e $V = \{f : [a, b] \to \mathbb{R} \mid f \text{ continua}\}.$

Definiamo il prodotto scalare $(f,g)=\int_a^b f(t)g(t)dt$ (cioè $||f||=\sqrt{\int_a^b (f(t))^2 dt}$).

È definita positiva perchè $\int_a^b (f(t))^2 dt > 0$ per $f \neq 0$.

Esempio. Siano $V = \mathbb{R}^2$, $\beta((x_1, x_2), (y_1, y_2)) = 2x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2$.

 β è bilineare, simmetrica e la sua matrice rispetto alla base canonica è $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.

 $w_1 = e_1, w_2 = e_2 - \frac{1}{2}e_1$ e in questa base la matrice di β è:

$$\begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

$$v_1 = \frac{1}{\sqrt{2}}w_1 = (\frac{\sqrt{2}}{2}, 0) \text{ e } v_2 = \sqrt{2}w_2 = (\frac{-\sqrt{2}}{2}, \sqrt{2})$$

 $v_1 = \frac{1}{\sqrt{2}}w_1 = (\frac{\sqrt{2}}{2},0)$ e $v_2 = \sqrt{2}w_2 = (\frac{-\sqrt{2}}{2},\sqrt{2})$. In questa base $\beta(v_1,v_1) = \frac{2}{\sqrt{2}^2} = 1$, $\beta(v_2,v_2) = \frac{\sqrt{2}^2}{2} = 1$ e la sua matrice è:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Perciò β è un prodotto scalare e v_1, v_2 è una base ortonormale rispetto a β (non rispetto al prodotto scalare standard).

8 Unità 8 - Lezioni 18, 19, 20

Proposizione. Il prodotto scalare di due vettori è uguale al prodotto scalare standard dei vettori delle loro coordinate rispetto ad una base ortonormale.

Dimostrazione. Sappiamo che, se β è una forma lineare e A è la sua matrice rispetto a una base $v_1, v_2, ..., v_n$, e se $v = a_1v_1 + a_2v_2 + ... + a_nv_n$ e $u = b_1v_1 + b_2v_2 + ... + b_nv_n$, allora $\beta(v, u) = b_1v_1 + b_2v_2 + ... + b_nv_n$

$$(a_1, a_2, ..., a_n)A$$

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

Ora, se β è un prodotto scalare e $v_1, v_2, ..., v_n$ è una base ortonormale, allora $A = I_n$ e quindi $(v, u) = I_n$

$$(x_1, x_2, ..., x_n)I_n \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = x_1y_1 + x_2y_2 + ... + x_ny_n.$$

Proposizione. Se $v_1, v_2, ..., v_n$ sono vettori tra loro ortogonali, allora sono linearmente indipendenti.

Dimostrazione. Supponiamo che $(v_i, v_j) = 0$ per $i \neq j$ e vogliamo mostrare che se $a_1v_1 + a_2v_2 + ... + a_3v_3 + a_3v_4 + a_3v_5 +$ $a_n v_n = 0$ allora $a_1 = a_2 = \dots = a_n = 0$.

In effetti, per ogni
$$\forall i \in \{1,2,...,n\}$$
 abbiamo che $(a_1v_1+a_2v_2+...+a_nv_n,v_i)=a_1(v_1,v_i)+a_2(v_2,v_i)+...+a_n(v_n,v_i)=a_i(v_i,v_i)=0$. Quindi $(v_i,a_1v_1+a_2v_2+...+a_nv_n)=(v_i,0)=0$

Esempio. Consideriamo la forma bilinare su \mathbb{R}^2 , $v = (a_1, a_2)$, $u = (b_1, b_2)$ e $\beta(v, u) = a_1b_1 + 5a_2b_2 + 2a_1b_2 + 2a_2b_1$.

 β è un prodotto scalare?

Osserviamo che è bilineare e simmetrica perchè $\beta(v, u) = a_1b_1 + 5a_2b_2 + 2a_1b_2 + 2a_2b_1 = a_1b_1 + 5a_2b_2 + 2a_1b_2 + 2a_2b_1 = \beta(u, v)$.

è definita positiva?

Nella base canonica, la matrice di β è $A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$. Ponendo $v_1 = (1,0), v_2 = e_2 - 2e_1 = -2e_1 + e_2 = (-2,1)$, abbiamo che $\beta(v_1, v_2) = 0$ e $\beta(v_2, v_2) = 1$.

Nella base $\{v_1, v_2\}$, la matrice di β è I_2 , di conseguenza la segnatura di β è (2,0) e quindi β è definita positiva, cioè è un prodotto scalare.

Proposizione. Disuguaglianza di Carichy-Schwartz

Sia V uno spazio vettoriale su \mathbb{K} e sia $\beta: V \times V \to \mathbb{K}$ un prodotto scalare.

Allora $\forall v, u \in V$ vale che $|\beta(v, u)| \leq \sqrt{\beta(v, v)} \sqrt{\beta(u, u)}$ e l'uguaglianza vale se e solo se v e u sono linearmente dipendenti.

Definizione 8.1: Angolo convesso

L'angolo convesso tra $v,u\in V$ è $\theta=\arccos\left(\frac{\beta(v,u)}{\sqrt{\beta(v,v)}\sqrt{\beta(u,u)}}\right)$.

Definizione 8.2: Distanza euclidea

La distanza euclidea tra due punti
$$P,Q \in \mathbb{R}^n$$
 è $d(P,Q) = ||\overrightarrow{PQ}|| = \sqrt{(x_1-y_1)^2+(x_2-y_2)^2+\ldots+(x_n-y_n)^2}$.

Esempio. P=(3,1), Q=(5,0). Calcolare la distanza euclidea tra P e Q. $d(P,Q)=\sqrt{(3-5)^2+(1-0)^2}=\sqrt{4+1}=\sqrt{5}$.

Teorema 8.1: Proprietà distanza euclidea

La distanza euclidea gode delle seguenti proprietà:

- 1. $d(P,Q) \ge 0$ e $d(P,Q) = 0 \Leftrightarrow P = Q$
- 2. $d(P,Q) = d(Q,P) \ \forall P,Q \in V$
- 3. $d(P,Q) \le d(P,R) + d(R,Q) \forall P,Q,R \in V$ (disuguaglianza triangolare)

Dimostrazione. 1. Poichè un prodotto scalare è definito positivo, $(\overrightarrow{PQ}, \overrightarrow{PQ}) \ge 0$ e quindi $||\overrightarrow{PQ}|| = 0 \Leftrightarrow \overrightarrow{PQ} = 0 \Leftrightarrow P = Q$.

- 2. Se $a \in \mathbb{R}$, $||av|| = \sqrt{(av, av)} = \sqrt{a^2(v, v)} = |a|\sqrt{(v, v)} = |a|||v||$. In particulare, se a = -1, d(P, Q) = ||PQ|| = ||QP|| = d(Q, P).
- 3. $d(P,Q) = ||\overrightarrow{PQ}|| = ||\overrightarrow{PR} + \overrightarrow{RQ}|| \le ||\overrightarrow{PR}|| + ||\overrightarrow{RQ}|| = d(P,R) + d(R,Q).$
- 4. Se $v, w \in V, ||v+w|| \le ||v|| + ||w||$ perchè $||v+w||^2 = (v+w,v+w) = (v,v) + 2(v,w) + (w,w) \le \frac{||v||^2 + 2||v|| \cdot ||w|| + ||w||^2}{PR + RQ} \le \frac{||v||^2 + 2||v|| \cdot ||w|| + ||w||^2}{PQ}$. In particolare per $v = \overrightarrow{PR}, w = \overrightarrow{RQ}, v + w = \overrightarrow{PR}$

Definizione 8.3: Sottospazio ortoganale

Sia U un sottospazio vettoriale. Il **sottospazio ortogonale** di U è $U^{\perp} = \{v \in V \mid \forall u \in U, \beta(v, u) = 0\}.$

Osservazione. Se $v_1, v_2, ..., v_n \in U^{\perp}$ allora $(v_1, u) = 0, (v_2, u) = 0, ..., (v_n, u) = 0 \ \forall u \in U$ e quindi $(v_1 + v_2, u) = (v_1, u) + (v_2, u) = 0 \Rightarrow v_1 + v_2 \in U^{\perp}$. Analogamente, se $v \in U^{\perp}$ e $a \in \mathbb{K}$ allora $(av, u) = a(v, u) = 0 \Rightarrow av \in U^{\perp}$.

Osservazione. Osserviamo anche che $U \cap U^{\perp} = \{0\}$, infatti se $u \in U, U^{\perp}$ allora $(u, u) = 0 \Rightarrow u = 0$.

Inoltre, se $u_1, u_2, ..., u_n$ è una base di U allora $U^{\perp} \Leftrightarrow (v, u_1) = 0, (v, u_2) = 0, ..., (v, u_n) = 0$. Quindi, se dim U = k allora dim V = n, dim $U^{\perp} = n - k$ (è descritto da k equazioni cartesiane). Pertanto, $V = U \oplus U^{\perp}$.

Esempio. $V = \mathbb{R}^5, U = \{(x_1, x_2, x_3, x_4, x_5) \in V \text{ tale che } x_1 - 2x_2 = 0, x_3 = 0ex_4 = x_2 + x_5\}.$ $U = \{(2t, t, 0, t + s, s), s, t \in \mathbb{R}\}.$

Una base di $U \in u_1 = (2, 1, 0, 1, 0), u_2 = (0, 0, 0, 1, 1).$

Rispetto al prodotto scalare standard, $U^{\perp} = \{v \in V \mid (v, u_1) = 0 \forall u \in U\} = \{v \in V \mid (v, u_1) = 0, (v, u_2) = 0\}.$

$$\begin{cases} 2x_1 + x_2 + x_4 = 0 \\ x_1 + x_4 = 0 \end{cases}$$

Quindi $\dim U^\perp=5-2=3$ e $U^\perp=\{\frac{a-c}{2},c,b,-a,a\mid a,b,c\in\mathbb{R}\}.$

Esempio. Trovare in $V = \mathbb{R}^2$ la retta r perprendicolare a $U = \{(x, y) \in \mathbb{R}^2 \mid x + 2y = 0\}$ e passante per il punto P = (2, 3).

Rispetto al prodotto scalare standard, $U = \langle u_1 = (2, -1) \rangle \Rightarrow U^{\perp} = \{ v \in \mathbb{R}^2 \mid (v, u_1) = 0 \} = \{ v \in \mathbb{R}^2 \mid (v, u_1) = 0 \}$.

La retta $r \stackrel{.}{e}$ parallela a U^{\perp} e passante per P=(2,3), quindi $r=\{v\in\mathbb{R}^2\mid 2x-y=2\cdot 2-3=1\}$. L'equazione di $r\stackrel{.}{e} 2x-y=1$.

8.1 Isometrie

Definizione 8.4: Isometria

Sia V uno spazio vettoriale su \mathbb{K} e sia $\beta: V \times V \to \mathbb{K}$ un prodotto scalare. Un'applicazione lineare $f: V \to V$ è un'**isometria** se preserva il prodotto scalare, cioè $(f(v), f(u)) = (v, u) \ \forall v, u \in V$.

Osservazione. "Isometria" = "stessa misura"

Proposizione. f è un isometria $\Leftrightarrow \forall v, u \in V, ||f(v)|| = ||v||.$

Dimostrazione. \Rightarrow Se f è un'isometria, allora $||f(v)|| = \sqrt{(f(v), f(v))} = \sqrt{(v, v)} = ||v||$.

 $\Leftarrow \text{ Dati } v, u \in V, \text{ calcoliamo } ||v+u||^2 - ||v-u||^2 = (v+u,v+u) - (v-u,v-u) = 4(v,u) \Rightarrow (v,u) = \frac{||v+u||^2 - ||v-u||^2}{4}.$

Quindi se f conserva la norma $(v, u) = \frac{||f(v) + f(u)||^2 - ||f(v) - f(u)||^2}{4} = \frac{||v + u||^2 - ||v - u||^2}{4} = (f(v), f(u)).$

Esempio. Sia $V = \mathbb{R}^2$ con il prodotto scalare standard. Dato $v = (x, y) \in V$, consideriamo l'applicazione $f: V \to V$ definita da $f(x, y) = (\frac{\sqrt{3}}{2}x + \frac{1}{2}y, -\frac{1}{2}x + \frac{\sqrt{3}}{2}y)$.

Sì, perchè
$$||v|| = \sqrt{x^2 + y^2}, ||f(v)|| = \sqrt{(\frac{\sqrt{3}}{2}x + \frac{1}{2}y)^2 + (-\frac{1}{2}x + \frac{\sqrt{3}}{2}y)^2} = \sqrt{\frac{3}{4}x^2 + xy + \frac{1}{4}y^2 + \frac{1}{4}x^2 - xy + \frac{3}{4}y^2} = \sqrt{x^2 + y^2} = ||v||.$$

Osservazione. Una isometria conserva le distanze

Proposizione. Se f è un'isometria, allora f conserva gli angoli.

Dimostrazione. In effetti, l'angolo convesso tra $\boldsymbol{v},\boldsymbol{u}$ è:

$$\arccos\left(\frac{(v,u)}{\sqrt{(v,v)}\sqrt{(u,u)}}\right) = \arccos\left(\frac{(f(v),f(u))}{||f(v)|||f(u)||}\right)$$

che è l'angolo convesso tra f(v), f(u).

Osservazione. Non vale il contrario, cioè se f conserva gli angoli non è detto che sia un'isometria.

Teorema 8.2: Isometrie e isomorfismo

Sia V uno spazio vettoriale su \mathbb{K} e sia $\beta: V \times V \to \mathbb{K}$ un prodotto scalare.

Allora $f: V \to V$ è un'isometria se e solo se è un isomorfismo.

Dimostrazione. Sia V uno spazio vettoriale con un prodotto scalare e sia $f:V\to V$ un'isometria rispetto a quel prodotto scalare.

Mostriamo prima che f è iniettiva.

Poichè un prodotto scalare è definito positivo, $||v|| = 0 \Leftrightarrow v = 0$.

Ora, se $v \in \ker f$ allora $f(v) = 0 \Rightarrow ||f(v)|| = 0$ ma poichè f è un'isometria, $||f(v)|| = ||v|| = 0 \Rightarrow v = 0 \Rightarrow \ker f = \{0\}.$

Quindi f è iniettiva.

Mostriamo ora che f è suriettiva: per il teorema del rango, dim $Imf = \dim V - 0$ e quindi f è suriettiva.

Esempio. Non vale il contrario, cioè se f è un isomorfismo non è detto che sia un'isometria.

Definizione 8.5: Matrice ortogonale

Una matrice A è **ortogonale** se $A^tA = I_n$.

Esempio.
$$A = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$
 è ortogonale perchè $A^t A = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2.$

Osservazione. A è ortogonale se e solo se le colonne di A formano una base ortonormale rispetto al prodotto scalare standard.

Teorema 8.3: Basi ortonormali e matrice del cambio di base

ia V uno spazio vettoriale su \mathbb{K} .

Sia $v_1, v_2, ..., v_n$ una base ortonormale di V. Allora sia $v'_1, v'_2, ..., v'_n$ un'altra base ortonormale di V se e solo se la matrice del cambio di base è ortogonale.

 $\label{eq:definition} \textit{Dimostrazione.} \text{ Poichè } v_1, v_2, ..., v_n \text{ è una base ortonormale, cioè } (v_i, v_j) = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}, \text{ allora la}$

matrice di tale prodotto scalare in base $v_1, v_2, ..., v_n$ è I_n .

Quindi se B è la matrice del cambio di base, la matrice del prodotto scalare in base $v'_1, v'_2, ..., v'_n$ è $B^t I_n B = B^t B = I_n$.

Quindi B è ortogonale.

Teorema 8.4: Isometrie e basi ortogonali

na applicazione lineare $f:V\to V$ è un'isometria se e solo se manda basi ortonormali in basi ortonormali.

Dimostrazione. \Rightarrow Sia f una isometria e sia $v_1, v_2, ..., v_n$ una base ortonormale di V.

Allora
$$(f(v_i), f(v_j)) = (v_i, v_j) = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$
, cioè $f(v_1), f(v_2), ..., f(v_n)$ è una base ortonormale di V .

 \Leftarrow Sia $v_1, v_2, ..., v_n$ una base ortonormale di V etale che $f(v_1), f(v_2), ..., f(v_n)$ è una base ortonormale di V.

Si vuole mostrare che f è un'isometria.

Dati $v, u \in V$, scriviamo $v = a_1v_1 + a_2v_2 + ... + a_nv_n$ e $u = b_1v_1 + b_2v_2 + ... + b_nv_n$. Poichè f è lineare, $f(v) = a_1f(v_1) + a_2f(v_2) + ... + a_nf(v_n)$ e $f(u) = b_1f(v_1) + b_2f(v_2) + ... + b_nf(v_n)$.

Allora
$$(v,u)=(a_1,...,a_n)$$
 $\begin{pmatrix} b_1\\b_2\\\vdots\\b_n \end{pmatrix}=a_1b_1+a_2b_2+...+a_nb_n=(f(v),f(u))\ \forall v,u\in V$ cioè f è un'isometria.

Teorema 8.5: Isometrie e matrici ortogonali

n'applicazione lineare $f:V\to V$ è un'isometria se e solo se la sua matrice in una qualsiasi base ortonormale è ortogonale.

Dimostrazione. Sia $v_1, v_2, ..., v_n$ una base ortonormale di V e sia A la matrice di f in tale base, cioè:

$$f(v_1) = a_{11}v_1 + a_{21}v_2 + \dots + a_{n1}v_n$$

$$f(v_2) = a_{12}v_1 + a_{22}v_2 + \dots + a_{n2}v_n$$

$$\vdots$$

$$f(v_n) = a_{1n}v_1 + a_{2n}v_2 + \dots + a_{nn}v_n$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

 $(f(v_i),f(v_j))=(a_{1i}v_1+a_{2i}v_2+\ldots+a_{ni}v_n,a_{1j}v_1+a_{2j}v_2+\ldots+a_{nj}v_n)=a_{1i}a_{1j}+a_{2i}a_{2j}+\ldots+a_{ni}a_{nj}=(v_i,v_j)=(AA^T)_{ij}.$

Quindi $f(f(v_i), f(v_j)) = (v_i, v_j) \Rightarrow AA^T = I_n.f$ è un'isometria se e solo se $f(v_i), ..., f(v_n)$ è una base ortonormale di $V \Leftrightarrow A$ è ortogonale.

Quindi
$$\Leftrightarrow$$
 $(f(v_i), f(v_j)) = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases} \Leftrightarrow A^T A = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases} \Leftrightarrow A^T A = I_n \Leftrightarrow A \text{ è ortogonale.} \quad \Box$

Esempio. $V=\mathbb{R}^2$ con il prodotto scalare standard. $f:V\to V$ definita da f(x,y,<)=(z,x,y). f è un'isometria? Sì perchè $||(x,y,z)||=\sqrt{x^2+y^2+z^2}=\sqrt{z^2+x^2+y^2}=||(z,x,y)||.$

Osservazione. Le nozioni di base ortonormale e isometria dipendono dal prodotto scalare su V.

Proposizione. Sia f un'isometria. Allora det $f=\pm 1$.

Dimostrazione. Fissiamo una base ortonormale $v_1, v_2, ..., v_n$ di V. In tale base la matrice A di f è ortogonale, cioè $A^TA = I_n$. $1 = \det I_n = \det(A^TA) = \det A^T \det A = (\det A)^2 \Rightarrow \det A = \pm 1$.

Osservazione. Non vale l'inversa!

Proposizione. Sia $f: V \to V$ un'isometria e λ un suo autovalore. Se $\lambda \in \mathbb{R}$ allora $\lambda = \pm 1$.

Dimostrazione. Se λ è un autovalore di f allora $\exists v \in V, v \neq 0$ tale che $f(v) = \lambda v$ e quindi $||f(v)|| = ||\lambda v|| = |\lambda|||v|| = ||v|| \Rightarrow |\lambda| = 1 \Rightarrow \lambda = \pm 1$.

Osservazione. Può succedere che una isometria $f:V\to V$ abbia autovalori non reali (ad esempio, numeri complessi).