Resolution Principle

Mădălina Erașcu

West University of Timişoara and Institute e-Austria Timişoara bvd. V. Parvan 4, Timişoara, Romania

 ${\tt madalina.erascu@e-uvt.ro}$

Outline

Resolution Principle

Resolution Principle for the Propositional Logic Resolution Principle for First-Order Logic Substitution Unification Resolution Principle for FOL

Outline

Resolution Principle

Resolution Principle for the Propositional Logic Resolution Principle for First-Order Logic

Unification

Resolution Principle for FO

Goal: finding a decision procedure (algorithm) to verify the validity/inconsistency/unsatisfiability of a formula.

Goal: finding a decision procedure (algorithm) to verify the

Bad news: there is no general decision procedure to decide the validity of a formula in first-order logic (FOL) (due to Church and Turing). validity/inconsistency/unsatisfiability of a formula.

Bad news: there is no general decision procedure to decide the validity of a formula in Good news: there are proof procedures which can verify if a FOL formula is valid if it Goal: finding a decision procedure (algorithm) to verify the first-order logic (FOL) (due to Church and Turing). validity/inconsistency/unsatisfiability of a formula.

is indeed valid.

Goal: finding a decision procedure (algorithm) to verify the validity/inconsistency/unsatisfiability of a formula.

Bad news: there is no general decision procedure to decide the validity of a formula in Good news: there are proof procedures which can verify if a FOL formula is valid if it first-order logic (FOL) (due to Church and Turing).

Bad news: if a FOL formula is invalid there is no proof procedure proving that (they is indeed valid.

will not terminate).

Goal: finding a decision procedure (algorithm) to verify the validity/inconsistency/unsatisfiability of a formula.

Bad news: there is no general decision procedure to decide the validity of a formula in first-order logic (FOL) (due to Church and Turing).

Good news: there are proof procedures which can verify if a FOL formula is valid if it is indeed valid.

Resolution principle works directly on a set of clauses to test the unsatisfiability of a

will not terminate).

Bad news: if a FOL formula is invalid there is no proof procedure proving that (they

Bad news: there is no general decision procedure to decide the validity of a formula in Good news: there are proof procedures which can verify if a FOL formula is valid if it Goal: finding a decision procedure (algorithm) to verify the first-order logic (FOL) (due to Church and Turing). validity/inconsistency/unsatisfiability of a formula.

Bad news: if a FOL formula is invalid there is no proof procedure proving that (they is indeed valid.

Resolution principle works directly on a set of clauses to test the unsatisfiability of a will not terminate).

<mark>ldea:</mark> check whether the set S of clauses contains the \square (empty) clause. If so, then Sis unsatisfiable. If not, check whether it can be derived.

Definition

For any two clauses C_1 and C_2 , if there is a literal L_1 in C_1 that is complementary to a literal L_2 in C_2 , then delete L_1 and L_2 from C_1 and C_2 , respectively, and construct the disjunction of the remaining clauses. The constructed clause is a resolvent of C_1 and

Definition

For any two clauses C_1 and C_2 , if there is a literal L_1 in C_1 that is complementary to a literal L_2 in C_2 , then delete L_1 and L_2 from C_1 and C_2 , respectively, and construct the disjunction of the remaining clauses. The constructed clause is a resolvent of C_1 and

Example

 $C_1: P \vee R$ $C_2: \neg P \vee Q$

The resolvent of C_1 and C_2 is $R \vee Q$.

Definition

For any two clauses C_1 and C_2 , if there is a literal L_1 in C_1 that is complementary to a literal L_2 in C_2 , then delete L_1 and L_2 from C_1 and C_2 , respectively, and construct the disjunction of the remaining clauses. The constructed clause is a resolvent of C_1 and C_2 .

Example

$$C_1 : \neg P \lor Q \lor R$$

 $C_2 : \neg Q \lor R$

The resolvent of C_1 and C_2 is $\neg P \lor R \lor S$.

Definition

For any two clauses C_1 and C_2 , if there is a literal L_1 in C_1 that is complementary to a literal L_2 in C_2 , then delete L_1 and L_2 from C_1 and C_2 , respectively, and construct the disjunction of the remaining clauses. The constructed clause is a resolvent of C_1 and C_2 .

Example

$$C_1 : \neg P \lor Q$$

 $C_2 : \neg P \lor R$

There is no resolvent of C_1 and C_2 .

Theorem

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Observations:

- If we have two unit clauses, then the resolvent of them, if there is one, is the empty clause □.
- If a set S of clauses is unsatisfiable, we can use the resolution principle to generate □ from S.

Theorem

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Observations:

- ▶ If we have two unit clauses, then the resolvent of them, if there is one, is the empty clause \Box .
- If a set S of clauses is unsatisfiable, we can use the resolution principle to generate □ from S.

Theorem

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Observations:

- If we have two unit clauses, then the resolvent of them, if there is one, is the empty clause □.
- ▶ If a set S of clauses is unsatisfiable, we can use the resolution principle to generate \Box from S.

Theorem

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Observations:

- If we have two unit clauses, then the resolvent of them, if there is one, is the empty clause □.
- ▶ If a set S of clauses is unsatisfiable, we can use the resolution principle to generate \Box from S.

Example

Let S be

$$\neg P \lor Q$$
 (1)

$$\neg Q$$
 (2)

$$P$$
 (3)

From (1) and (2), we obtain P (4); from (3) and (4), we obtain \square . Hence, \square is a logical consequence of S. Hence, S is unsatisfiable.

Theorem

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Observations:

- If we have two unit clauses, then the resolvent of them, if there is one, is the empty clause □.
- ▶ If a set S of clauses is unsatisfiable, we can use the resolution principle to generate \Box from S.

Example

Let S be

$$P \vee Q$$
 (1)

$$\neg P \lor Q$$
 (2)

$$P \vee \neg Q$$
 (3)

$$\neg P \lor \neg Q$$
 (4)

From (1) and (2), we obtain Q (5); from (3) and (4), we obtain $\neg Q$ (6). From (5) and (6), we obtain \square . Hence, S is unsatisfiable.

Motivation: apply resolution principle to FOL formulas.

Example: Let

 $C_1: P[x] \vee Q[x]$ $C_2: \neg P[f[x]] \vee R$

Motivation: apply resolution principle to FOL formulas.

Example: Let

 $C_1:$ $P[x] \lor Q[x]$ $C_2:$ $\neg P[f[x]] \lor R[x]$

Motivation: apply resolution principle to FOL formulas.

Example: Let

 $C_1:$ $P[x] \lor Q[x]$ $C_2:$ $\neg P[f[x]] \lor R[x]$

Let $x \to f[a]$ in C_1 , $x \to a$ in C_2 .

Motivation: apply resolution principle to FOL formulas.

Example: Let

$$C_1:$$
 $P[x] \lor Q[x]$
 $C_2:$ $\neg P[f[x]] \lor R[x]$

Let $x \to f[a]$ in C_1 , $x \to a$ in C_2 .

We have

$$C_1': P[f[a]] \vee Q[f[a]]$$

 $C_2': \neg P[f[a]] \vee R[a]$

Motivation: apply resolution principle to FOL formulas.

Example: Let

$$C_1:$$
 $P[x] \lor Q[x]$
 $C_2:$ $\neg P[f[x]] \lor R[x]$

Let $x \to f[a]$ in C_1 , $x \to a$ in C_2 .

We have

$$C'_1$$
: $P[f[a]] \lor Q[f[a]]$
 C'_2 : $\neg P[f[a]] \lor R[a]$

 C_1' and C_2' are ground (no variables) instances.

Motivation: apply resolution principle to FOL formulas.

Example: Let

$$C_1:$$
 $P[x] \lor Q[x]$
 $C_2:$ $\neg P[f[x]] \lor R[x]$

Let $x \to f[a]$ in C_1 , $x \to a$ in C_2 .

We have

$$C_1':$$
 $P[f[a]] \lor Q[f[a]]$
 $C_2':$ $\neg P[f[a]] \lor R[a]$

 C'_1 and C'_2 are ground (no variables) instances.

A resolvent of C'_1 and C'_2 is

$$C_3': \qquad Q[f[a]] \vee R[a]$$

Motivation: apply resolution principle to FOL formulas.

Example: Let

$$C_1:$$
 $P[x] \lor Q[x]$
 $C_2:$ $\neg P[f[x]] \lor R[x]$

Let $x \to f[x]$ in C_1 . We have

$$C_1^*$$
: $P[f[x]] \vee Q[f[x]]$

 C_1^* is an instance of C_1 .

A resolvent of

$$C_2: \neg P[f[x]] \lor R[x]$$

 $C_1^*: P[f[x]] \lor Q[f[x]]$

ĺ

$$C_3: Q[f[x]] \vee R[x]$$

 C_3' is an instance of C_3 . C_3 is the most general clause

Motivation: apply resolution principle to FOL formulas.

Example: Let

$$C_1:$$
 $P[x] \lor Q[x]$
 $C_2:$ $\neg P[f[x]] \lor R[x]$

Let $x \to f[x]$ in C_1 . We have

$$C_1^*$$
: $P[f[x]] \vee Q[f[x]]$

 C_1^* is an instance of C_1 .

A resolvent of

$$C_2:$$
 $\neg P[f[x]] \lor R[x]$ $C_1^*:$ $P[f[x]] \lor Q[f[x]]$

i

$$C_3: Q[f[x]] \vee R[x]$$

 C_3' is an instance of C_3 . C_3 is the most general clause.

Motivation: apply resolution principle to FOL formulas.

Example: Let

 $C_1:$ $P[x] \lor Q[x]$ $C_2:$ $\neg P[f[x]] \lor R[x]$

Let $x \to f[x]$ in C_1 . We have

 $C_1^*: P[f[x]] \vee Q[f[x]]$

 C_1^* is an instance of C_1 .

A resolvent of

 C_2 : $\neg P[f[x]] \lor R[x]$ C_1^* : $P[f[x]] \lor Q[f[x]]$

is

Motivation: apply resolution principle to FOL formulas.

Example: Let

$$C_1:$$
 $P[x] \lor Q[x]$
 $C_2:$ $\neg P[f[x]] \lor R[x]$

Let $x \to f[x]$ in C_1 . We have

$$C_1^*$$
: $P[f[x]] \vee Q[f[x]]$

 C_1^* is an instance of C_1 .

A resolvent of

$$C_2: \neg P[f[x]] \lor R[x]$$

 $C_1^*: P[f[x]] \lor Q[f[x]]$

is

$$C_3$$
: $Q[f[x]] \vee R[x]$

 C_3' is an instance of C_3 . C_3 is the most general clause.

Motivation: apply resolution principle to FOL formulas.

Example: Let

$$C_1:$$
 $P[x] \lor Q[x]$
 $C_2:$ $\neg P[f[x]] \lor R[x]$

Let $x \to f[x]$ in C_1 . We have

$$C_1^*: \qquad P[f[x]] \vee Q[f[x]]$$

 C_1^* is an instance of C_1 .

A resolvent of

$$C_2:$$
 $\neg P[f[x]] \lor R[x]$
 $C_1^*:$ $P[f[x]] \lor Q[f[x]]$

is

$$C_3$$
: $Q[f[x]] \vee R[x]$

 C_3' is an instance of C_3 . C_3 is the most general clause.

A substitution σ is a finite set of the form $\{v_1 \to t_1, ..., v_n \to t_n\}$ where every t_i is a term different from v_i and no two elements in the set have the same variable v_i .

Let σ be defined as above and E be an expression. Then $E\sigma$ is an expression obtained from E by replacing simultaneously each occurrence of v_i in E by the term t_i

Example: Let
$$\sigma = \{x \to z, z \to h[a, y]\}$$
 and $E = f[z, a, g[x], y]$. Then $E\sigma = f[h[a, y], a, g[z], y]$.

A substitution σ is a finite set of the form $\{v_1 \to t_1, ..., v_n \to t_n\}$ where every t_i is a term different from v_i and no two elements in the set have the same variable v_i .

Let σ be defined as above and E be an expression. Then $E\sigma$ is an expression obtained from E by replacing simultaneously each occurrence of v_i in E by the term t_i

Example: Let
$$\sigma = \{x \to z, z \to h[a, y]\}$$
 and $E = f[z, a, g[x], y]$. Then $E\sigma = f[h[a, y], a, g[z], y]$.

A substitution σ is a finite set of the form $\{v_1 \to t_1, ..., v_n \to t_n\}$ where every t_i is a term different from v_i and no two elements in the set have the same variable v_i .

Let σ be defined as above and E be an expression. Then $E\sigma$ is an expression obtained from E by replacing simultaneously each occurrence of v_i in E by the term t_i

Example: Let
$$\sigma = \{x \to z, z \to h[a, y]\}$$
 and $E = f[z, a, g[x], y]$. Then $E\sigma = f[h[a, y], a, g[z], y]$.

Let

$$\theta = \{x_1 \to t_1, ..., x_n \to t_n\}$$

 $\lambda = \{y_1 \to u_1, ..., y_n \to u_n\}$

Then the composition of θ and λ ($\theta \circ \lambda$) is obtained from the set

$$\{x_1 \rightarrow t_1\lambda, ..., x_n \rightarrow t_n\lambda, y_1 \rightarrow u_1, ..., y_n \rightarrow u_n\}$$

by deleting any element $x_j \to t_j \lambda$ for which $x_j = t_j \lambda$ and any element $y_i \to u_i$ such that y_i is among $\{x_1, ..., x_n\}$.

Example 1:

$$\theta = \{x \to f[y], y \to z\}$$
$$\lambda = \{x \to a, y \to b, z \to y\}$$

Then

$$\theta \circ \lambda = \{x \to f[b], y \to y, x \to a, y \to b, z \to y\}$$
$$= \{x \to f[b], z \to y\}$$

Example 2

$$\theta_1 = \{x \to a, y \to f[z], z \to y\}$$

$$\theta_2 = \{x \to b, y \to z, z \to g[x]\}$$

Then

$$\theta_1 \circ \theta_2 = \{x \to a, y \to f[g[x]], z \to z, x \to b, y \to z, z \to g[x]\}$$
$$= \{x \to a, y \to f[g[x]]\}$$

Example 1:

$$\theta = \{x \to f[y], y \to z\}$$
$$\lambda = \{x \to a, y \to b, z \to y\}$$

Then

$$\theta \circ \lambda = \{x \to f[b], y \to y, x \to a, y \to b, z \to y\}$$
$$= \{x \to f[b], z \to y\}$$

Example 2:

$$\theta_1 = \{x \to a, y \to f[z], z \to y\}$$

$$\theta_2 = \{x \to b, y \to z, z \to g[x]\}$$

Then

$$\theta_1 \circ \theta_2 = \{x \to a, y \to f[g[x]], z \to z, x \to b, y \to z, z \to g[x]\}$$
$$= \{x \to a, y \to f[g[x]]\}$$

Example 1:

$$\theta = \{x \to f[y], y \to z\}$$
$$\lambda = \{x \to a, y \to b, z \to y\}$$

Then

$$\theta \circ \lambda = \{x \to f[b], y \to y, x \to a, y \to b, z \to y\}$$
$$= \{x \to f[b], z \to y\}$$

Example 2:

$$\theta_1 = \{x \to a, y \to f[z], z \to y\}$$

$$\theta_2 = \{x \to b, y \to z, z \to g[x]\}$$

Then

$$\theta_1 \circ \theta_2 = \{x \to a, y \to f[g[x]], z \to z, x \to b, y \to z, z \to g[x]\}$$
$$= \{x \to a, y \to f[g[x]]\}$$

Substitution (cont'd)

Example 1:

$$\theta = \{x \to f[y], y \to z\}$$
$$\lambda = \{x \to a, y \to b, z \to y\}$$

Then

$$\theta \circ \lambda = \{x \to f[b], y \to y, x \to a, y \to b, z \to y\}$$
$$= \{x \to f[b], z \to y\}$$

Example 2:

$$\theta_1 = \{x \to a, y \to f[z], z \to y\}$$

$$\theta_2 = \{x \to b, y \to z, z \to g[x]\}$$

Then

$$\theta_1 \circ \theta_2 = \{x \to a, y \to f[g[x]], z \to z, x \to b, y \to z, z \to g[x]\}$$
$$= \{x \to a, y \to f[g[x]]\}$$

Unification

A substitution θ is called a <u>unifier</u> for a set $\{E_1,...,E_k\}$ iff $E_1\theta=...=E_k\theta$. The set $\{E_1,...,E_k\}$ is said to be <u>unifiable</u> iff there exists an unifier for it.

A unifier σ for a set $\{E_1,...,E_k\}$ of expressions is a most general unifier iff for each unifier θ for the set there is a substitution λ such that $\theta = \sigma \circ \lambda$.

Example:

The set $\{P[a,y],P[x,f[b]]\}$ is unifiable since $\sigma=\{x\to a,y\to f[b]\}$ is a unifier for the set.

Unification

A substitution θ is called a <u>unifier</u> for a set $\{E_1,...,E_k\}$ iff $E_1\theta=...=E_k\theta$. The set $\{E_1,...,E_k\}$ is said to be <u>unifiable</u> iff there exists an unifier for it.

A unifier σ for a set $\{E_1,...,E_k\}$ of expressions is a most general unifier iff for each unifier θ for the set there is a substitution λ such that $\theta = \sigma \circ \lambda$.

Example:

The set $\{P[a,y],P[x,f[b]]\}$ is unifiable since $\sigma=\{x\to a,y\to f[b]\}$ is a unifier for the set.

Unification

A substitution θ is called a <u>unifier</u> for a set $\{E_1,...,E_k\}$ iff $E_1\theta=...=E_k\theta$. The set $\{E_1,...,E_k\}$ is said to be <u>unifiable</u> iff there exists an unifier for it.

A unifier σ for a set $\{E_1,...,E_k\}$ of expressions is a most general unifier iff for each unifier θ for the set there is a substitution λ such that $\theta=\sigma\circ\lambda$.

Example:

The set $\{P[a,y],P[x,f[b]]\}$ is unifiable since $\sigma=\{x\to a,y\to f[b]\}$ is a unifier for the set.

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by

- locating the first symbol (starting from the left) at which not all the expressions in W have exactly the same symbol and then
- extracting from each expression in W the subexpression that begins with the symbol occupying that position.

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by

- locating the first symbol (starting from the left) at which not all the expressions in W have exactly the same symbol and then
- extracting from each expression in W the subexpression that begins with the symbol occupying that position.

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by

- ▶ locating the first symbol (starting from the left) at which not all the expressions in *W* have exactly the same symbol and then
- extracting from each expression in W the subexpression that begins with the symbol occupying that position.

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by

- ▶ locating the first symbol (starting from the left) at which not all the expressions in *W* have exactly the same symbol and then
- extracting from each expression in W the subexpression that begins with the symbol occupying that position.

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by

- ▶ locating the first symbol (starting from the left) at which not all the expressions in *W* have exactly the same symbol and then
- ightharpoonup extracting from each expression in W the subexpression that begins with the symbol occupying that position.

Unification Algorithm

- **1.** $k := 0, W_k := W, \sigma_k := \varepsilon$
- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- If there exists v_k, t_k ∈ D_k s.t. v_k is a variable which does not occur in t_k, go to
 Otherwise, stop; W is not unifiable.
- **4.** Let $\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$ and $W_{k+1} = W_k\{v_k \to t_k\}$
- **5.** k = k + 1 and go to 2.

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- 2. $W = \{Q[a], Q[b]\}$
- 3. $W = \{P[x], P[f[x]]\}$
- **4.** $W = \{P[x], Q[y]\}$

Unification Algorithm

- **1.** k := 0, $W_k := W$, $\sigma_k := \varepsilon$
- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- If there exists v_k, t_k ∈ D_k s.t. v_k is a variable which does not occur in t_k, go to
 Otherwise, stop; W is not unifiable.
- **4.** Let $\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$ and $W_{k+1} = W_k\{v_k \to t_k\}$
- **5.** k = k + 1 and go to 2.

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- 2. $W = \{Q[a], Q[b]\}$
- 3. $W = \{P[x], P[f[x]]\}$
- **4.** $W = \{P[x], Q[y]\}$

Unification Algorithm

- **1.** k := 0, $W_k := W$, $\sigma_k := \varepsilon$
- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- If there exists v_k, t_k ∈ D_k s.t. v_k is a variable which does not occur in t_k, go to
 Otherwise, stop; W is not unifiable.
- **4.** Let $\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$ and $W_{k+1} = W_k\{v_k \to t_k\}$
- 5. k = k + 1 and go to 2.

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- 2. $W = \{Q[a], Q[b]\}$
- 3. $W = \{P[x], P[f[x]]\}$
- **4.** $W = \{P[x], Q[y]\}$

Unification Algorithm

- **1.** k := 0, $W_k := W$, $\sigma_k := \varepsilon$
- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- If there exists v_k, t_k ∈ D_k s.t. v_k is a variable which does not occur in t_k, go to
 Otherwise, stop; W is not unifiable.
- **4.** Let $\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$ and $W_{k+1} = W_k\{v_k \to t_k\}$
- 5. k = k + 1 and go to 2.

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- 2. $W = \{Q[a], Q[b]\}$
- 3. $W = \{P[x], P[f[x]]\}$
- **4.** $W = \{P[x], Q[y]\}$

Unification Algorithm

- **1.** k := 0, $W_k := W$, $\sigma_k := \varepsilon$
- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- If there exists v_k, t_k ∈ D_k s.t. v_k is a variable which does not occur in t_k, go to
 Otherwise, stop; W is not unifiable.
- **4.** Let $\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$ and $W_{k+1} = W_k\{v_k \to t_k\}$.
- 5. k = k + 1 and go to 2

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- 2. $W = \{Q[a], Q[b]\}$
- 3. $W = \{P[x], P[f[x]]\}$
- **4.** $W = \{P[x], Q[y]\}$

Unification Algorithm

- **1.** k := 0, $W_k := W$, $\sigma_k := \varepsilon$
- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- If there exists v_k, t_k ∈ D_k s.t. v_k is a variable which does not occur in t_k, go to
 Otherwise, stop; W is not unifiable.
- **4.** Let $\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$ and $W_{k+1} = W_k\{v_k \to t_k\}$.
- 5. k = k + 1 and go to 2.

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- 2. $W = \{Q[a], Q[b]\}$
- 3. $W = \{P[x], P[f[x]]\}$
- **4.** $W = \{P[x], Q[y]\}$

Unification Algorithm

- **1.** k := 0, $W_k := W$, $\sigma_k := \varepsilon$
- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- If there exists v_k, t_k ∈ D_k s.t. v_k is a variable which does not occur in t_k, go to
 Otherwise, stop; W is not unifiable.
- **4.** Let $\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$ and $W_{k+1} = W_k\{v_k \to t_k\}$.
- 5. k = k + 1 and go to 2.

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- 2. $W = \{Q[a], Q[b]\}$
- 3. $W = \{P[x], P[f[x]]\}$
- 4. $W = \{P[x], Q[y]\}$

Unification Algorithm

- **1.** k := 0, $W_k := W$, $\sigma_k := \varepsilon$
- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- If there exists v_k, t_k ∈ D_k s.t. v_k is a variable which does not occur in t_k, go to
 Otherwise, stop; W is not unifiable.
- **4.** Let $\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$ and $W_{k+1} = W_k\{v_k \to t_k\}$.
- 5. k = k + 1 and go to 2.

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- 2. $W = \{Q[a], Q[b]\}$
- 3. $W = \{P[x], P[f[x]]\}$
- 4. $W = \{P[x], Q[y]\}$

Unification Algorithm

- **1.** k := 0, $W_k := W$, $\sigma_k := \varepsilon$
- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- If there exists v_k, t_k ∈ D_k s.t. v_k is a variable which does not occur in t_k, go to
 Otherwise, stop; W is not unifiable.
- **4.** Let $\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$ and $W_{k+1} = W_k\{v_k \to t_k\}$.
- 5. k = k + 1 and go to 2.

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- **2.** $W = \{Q[a], Q[b]\}$
- 3. $W = \{P[x], P[f[x]]\}$
- 4. $W = \{P[x], Q[y]\}$

Unification Algorithm

- **1.** k := 0, $W_k := W$, $\sigma_k := \varepsilon$
- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- 3. If there exists v_k , $t_k \in D_k$ s.t. v_k is a variable which does not occur in t_k , go to 4. Otherwise, stop; W is not unifiable.
- **4.** Let $\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$ and $W_{k+1} = W_k\{v_k \to t_k\}$.
- 5. k = k + 1 and go to 2.

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- **2.** $W = \{Q[a], Q[b]\}$
- 3. $W = \{P[x], P[f[x]]\}$
- 4. $W = \{P[x], Q[y]\}$

Unification Algorithm

- **1.** k := 0, $W_k := W$, $\sigma_k := \varepsilon$
- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- 3. If there exists v_k , $t_k \in D_k$ s.t. v_k is a variable which does not occur in t_k , go to 4. Otherwise, stop; W is not unifiable.
- **4.** Let $\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$ and $W_{k+1} = W_k\{v_k \to t_k\}$.
- 5. k = k + 1 and go to 2.

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- **2.** $W = \{Q[a], Q[b]\}$
- 3. $W = \{P[x], P[f[x]]\}$
- **4.** $W = \{P[x], Q[y]\}$

- Unification algorithm allows application of the resolution principle the same as for propositional logic.
- Resolution principle is complete i.e. □ is always derived if the set of clauses is unsatisfiable.

How does resolution work? Given: formulas $F_1, ..., F_n$ Prove: G by resolution.

- 1. Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- 2. Start derivation and try to obtain the empty clause from the set C of clauses
- In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
- 4. If the empty clause appears, stop: Contradiction found, G is proved
- If no step can be made and the empty clause is not found, then H can not be proved.

- Unification algorithm allows application of the resolution principle the same as for propositional logic.
- Resolution principle is complete i.e. □ is always derived if the set of clauses is unsatisfiable.

How does resolution work? Given: formulas $F_1, ..., F_n$ Prove: G by resolution.

- 1. Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- 2. Start derivation and try to obtain the empty clause from the set C of clauses
- In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
- 4. If the empty clause appears, stop: Contradiction found, G is proved
- If no step can be made and the empty clause is not found, then H can not be proved.

- Unification algorithm allows application of the resolution principle the same as for propositional logic.
- Resolution principle is complete i.e. □ is always derived if the set of clauses is unsatisfiable.

How does resolution work?

- Bring F₁, ..., F_n, ..., ¬G into standard form and write the clauses which are obtained
- 2. Start derivation and try to obtain the empty clause from the set C of clauses
- In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
- 4. If the empty clause appears, stop: Contradiction found, G is proved
- If no step can be made and the empty clause is not found, then H can not be proved.

- Unification algorithm allows application of the resolution principle the same as for propositional logic.
- Resolution principle is complete i.e. □ is always derived if the set of clauses is unsatisfiable.

How does resolution work?

- Bring F₁, ..., F_n, ..., ¬G into standard form and write the clauses which are obtained
- 2. Start derivation and try to obtain the empty clause from the set C of clauses
- In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
- 4. If the empty clause appears, stop: Contradiction found, G is proved
- If no step can be made and the empty clause is not found, then H can not be proved.

- Unification algorithm allows application of the resolution principle the same as for propositional logic.
- ▶ Resolution principle is complete i.e. □ is always derived if the set of clauses is unsatisfiable.

How does resolution work?

Given: formulas $F_1, ..., F_n$

Prove: *G* by resolution.

- 1. Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained

- Unification algorithm allows application of the resolution principle the same as for propositional logic.
- ▶ Resolution principle is complete i.e.

 is always derived if the set of clauses is unsatisfiable.

How does resolution work?

- 1. Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are
 - obtained
 - 2. Start derivation and try to obtain the empty clause from the set ${\it C}$ of clauses.
 - In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
 - 4. If the empty clause appears, stop: Contradiction found, G is proved
 - If no step can be made and the empty clause is not found, then H can not be proved.

- Unification algorithm allows application of the resolution principle the same as for propositional logic.
- Resolution principle is complete i.e. □ is always derived if the set of clauses is unsatisfiable.

How does resolution work?

- 1. Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- 2. Start derivation and try to obtain the empty clause from the set C of clauses.
- In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
- 4. If the empty clause appears, stop: Contradiction found, G is proved
- If no step can be made and the empty clause is not found, then H can not be proved.

- Unification algorithm allows application of the resolution principle the same as for propositional logic.
- Resolution principle is complete i.e. □ is always derived if the set of clauses is unsatisfiable.

How does resolution work?

- 1. Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- 2. Start derivation and try to obtain the empty clause from the set C of clauses.
- In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
- **4.** If the empty clause appears, stop: Contradiction found, *G* is proved.
- If no step can be made and the empty clause is not found, then H can not be proved.

- Unification algorithm allows application of the resolution principle the same as for propositional logic.
- ▶ Resolution principle is complete i.e.

 is always derived if the set of clauses is unsatisfiable.

How does resolution work?

- 1. Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- 2. Start derivation and try to obtain the empty clause from the set C of clauses.
- In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
- **4.** If the empty clause appears, stop: Contradiction found, *G* is proved.
- If no step can be made and the empty clause is not found, then H can not be proved.

Resolution Principle for FOL. Examples

Example 0: Let

 $C_1:$ $P[x] \lor Q[x]$ $C_2:$ $\neg P[a] \lor R[x]$

Apply resolution.

Example 1: Prove by resolution the following

$$\bigvee_{x} [x] \vee \bigvee_{x} H[x] \quad \not\equiv \quad \bigvee_{x} (F[x] \vee H[x])$$

Example 2: Prove by resolution that G is a logical consequence of F_1 and F_2 where

$$F_1: \quad \forall (C[x] \Rightarrow (W[x] \land R[x]))$$

$$\Xi_2: \hat{\exists}(C[x] \land O[x])$$

 $\Xi: \hat{\exists}(O[x] \land R[x])$

Resolution Principle for FOL. Examples

Example 0: Let

 $C_1:$ $P[x] \lor Q[x]$ $C_2:$ $\neg P[a] \lor R[x]$

Apply resolution.

Example 1: Prove by resolution the following

$$\bigvee_{x} F[x] \lor \bigvee_{x} H[x] \quad \not\equiv \quad \bigvee_{x} (F[x] \lor H[x])$$

Example 2: Prove by resolution that G is a logical consequence of F_1 and F_2 where

$$F_1: \bigvee_{x} (C[x] \Rightarrow (W[x] \land R[x]))$$

$$F_2: \hat{\exists}(C[x] \land O[x])$$

 $G: \hat{\exists}(O[x] \land R[x])$

Resolution Principle for FOL. Examples

Example 0: Let

 $C_1:$ $P[x] \lor Q[x]$ $C_2:$ $\neg P[a] \lor R[x]$

Apply resolution.

Example 1: Prove by resolution the following

$$\forall F[x] \lor \forall H[x] \not\equiv \forall (F[x] \lor H[x])$$

Example 2: Prove by resolution that G is a logical consequence of F_1 and F_2 where

$$F_1: \quad \forall (C[x] \Rightarrow (W[x] \land R[x]))$$

$$F_2: \widehat{\exists}(C[x] \land O[x])$$

$$G: \bigoplus_{x}^{x} (O[x] \wedge R[x])$$

Resolution Principle for FOL. Examples (cont'd)

Example 3: Prove by resolution that G is a logical consequence of F_1 and F_2 where

$$F_{1}: \quad \exists \underset{x}{\exists} \left(P[x] \land \underset{y}{\forall} (D[y] \Rightarrow L[x,y])\right)$$

$$F_{2}: \quad \underset{x}{\forall} \left(P[x] \Rightarrow \underset{y}{\forall} (Q[y] \Rightarrow \neg L[x,y])\right)$$

$$G: \quad \underset{x}{\forall} (D[x] \Rightarrow \neg Q[x])$$

Example 4: Prove by resolution that G is a logical consequence of F where

$$F: \quad \forall \exists (S[x,y] \land M[y]) \Rightarrow \exists (I[y] \land E[x,y])$$

$$G: \quad \neg \exists I[x] \Rightarrow \forall (S[x,y] \Rightarrow \neg M[y])$$

Resolution Principle for FOL. Examples (cont'd)

Example 3: Prove by resolution that G is a logical consequence of F_1 and F_2 where

$$F_{1}: \quad \exists_{x} \left(P[x] \land \forall_{y} (D[y] \Rightarrow L[x,y])\right)$$

$$F_{2}: \quad \forall_{x} \left(P[x] \Rightarrow \forall_{y} (Q[y] \Rightarrow \neg L[x,y])\right)$$

$$G: \quad \forall_{x} (D[x] \Rightarrow \neg Q[x])$$

Example 4: Prove by resolution that G is a logical consequence of F where

$$\begin{array}{lll} F: & \forall\exists (S[x,y] \land M[y]) \Rightarrow \exists (I[y] \land E[x,y]) \\ G: & \neg\exists I[x] \Rightarrow \forall (S[x,y] \Rightarrow \neg M[y]) \end{array}$$

Resolution Principle for FOL. Examples (cont'd)

Example 5: Prove by resolution that G is a logical consequence of F_1, F_2 , and F_3 where

$$F_{1}: \quad \ \ \, \forall (Q[x] \ \Rightarrow \ \neg P[x])$$

$$F_{2}: \quad \ \ \, \forall \left((R[x] \ \land \ \neg Q[x]) \ \Rightarrow \ \ \exists \left(T[x,y] \ \land \ S[y]) \right)$$

$$F_{3}: \quad \ \ \, \exists \left(P[x] \ \land \ \forall \left(T[x,y] \ \Rightarrow \ P[y] \right) \ \land \ R[x] \right)$$

$$G: \quad \ \ \, \exists \left(S[x] \land P[x] \right)$$