Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model? (arxiv)

Key Highlights

問題

- **這篇論文旨在解決什麼問題?** 這篇論文研究了強化學習用可驗證獎勵(RLVR)是 否真的能讓大型語言模型(LLMs)獲得基礎模型所沒有的新推理能力,還是僅僅 利用了基礎模型中已存在的推理模式。
- 現有的方法是什麼,它們有哪些限制? 當前的RLVR方法從預訓練的基礎模型開始,通過基於自動可計算的獎勵(數學中的正確答案或程式碼中的通過單元測試) 進行強化學習來優化它們。雖然RLVR在經驗上已經顯示出成功並且廣泛被認為能 讓LLMs自動發展新推理模式,但其潛在的有效性並沒有被嚴格的評估指標充分檢 驗。

解決方案

- 這篇論文提出了什麼解決方案?這篇論文提出使用大k值的pass@k評估指標來嚴格評估基礎模型和RLVR訓練模型的推理能力邊界,並在不同模型家族、RL算法和推理基準上進行系統實驗。
- **這個想法的靈感來自哪裡?是否受其他論文的影響?** 這種方法的靈感來自於需要超越傳統的平均案例評估指標(貪婪解碼、核取樣),這些指標可能低估模型的潛力。pass@k指標源自程式碼生成,被擴展到所有可驗證獎勵任務。
- 這個方法有什麼理論基礎支持? pass@k指標揭示了模型是否有能力通過多次嘗試解決問題,提供了一個更穩健的推理邊界視圖。該方法使用了無偏、低變異估計技術來準確計算pass@k值。

實驗

- 實驗表現如何?數學、程式碼和視覺推理的實驗表明,雖然RLVR模型在小k值(例如,k=1)上超過基礎模型,但在k大的情況下,基礎模型具有更高的pass@k得分。隨著RLVR訓練的進展,推理能力邊界往往收縮。
- 這個方法有什麼限制或假設?該方法假設pass@k能準確反映推理能力邊界。在數學領域,高k值存在"幸運猜測"的可能性,作者透過手動的CoT驗證進行了解決。評估依賴於可驗證的獎勵,可能不能捕捉推理質量的所有方面。

創新

• 這篇論文做出了哪些重要或新穎的發現?該論文揭示了當前的RLVR方法並未誘發根本上新的推理模式—所有RLVR模型生成的推理路徑都已存在於基礎模型的抽樣分佈中。RLVR提升了抽樣效率,但並未擴展推理範圍,並且通常會收縮它。不同的RLVR算法表現相似且距離最優有很大差距,而蒸餾可以真正擴展推理能力超越基礎模型。

評論 / 評價

- **這篇論文有什麼限制嗎?** 該研究主要專注於可驗證獎勵任務,可能無法推廣到其他 推理領域。對數學CoTs的手動驗證過程有範圍限制。該論文並未深入探討解決方 案,只是識別了問題。
- 這篇論文有效地證明了其論點嗎?是的,該論文透過在多個模型家族、基準和RL算法上的系統實驗提供了全面證據。發現透過準確度分佈分析、困惑度分析和覆蓋分析得到支持,使論點充分證明且令人信服。

Comprehensive Analysis

Introduction

摘要

- 這篇引言對用驗證性獎勵的強化學習(RLVR)方法如何增強大型語言模型的推理 能力進行了關鍵性評估。
- 作者挑戰了普遍認為RLVR能夠使LLMs發展超越其基礎模型的真正新穎推理能力的 觀點。

重點發現:-RLVR改善了抽樣效率,但並沒有創造根本上新的推理模式。-RLVR模型在低k值(k=1)時表現優於基礎模型,但在高k值的pass@k評估中表現不佳。-RLVR模型生成的推理路徑在基礎模型的抽樣分佈中已經存在。-六種流行的RLVR算法表現相似,並未充分發揮基礎模型的潛力。-相比之下,知識蒸餾能通過引入新模式來真正擴展推理能力。

主要結論: - 當前的RLVR方法主要是重新組織現有的推理能力,而不是創造新的推理能力,這表明推理能力仍然受限於原始基礎模型。 - 作者呼籲改進RL範式,以激發LLMs推理能力的真正潛力。

"While RLVR improves sampling efficiency towards correct paths, we surprisingly find that current training does not elicit fundamentally new reasoning patterns."

雖然RLVR提高了朝正確路徑進行採樣的效率,但我們驚訝地發現,目前的訓練並沒有引 發根本上新的推理模式。 "Further coverage and perplexity analysis shows that the reasoning paths generated by RLVR models are already included in the base models' sampling distribution, suggesting that their reasoning abilities originate from and are bounded by the base model."

進一步的覆蓋範圍和困惑度分析顯示,RLVR模型生成的推理路徑已經包含在基礎模型的 採樣分佈內,這表明它們的推理能力來源於並受限於基礎模型。

"This underscores the need for improved RL paradigms—such as continual scaling and multi-turn agent-environment interaction—to unlock this potential."

這強調了改進RL範式的需求——例如持續擴展和多回合代理-環境交互——以釋放這一潛力。

Preliminaries

摘要

本節介紹了用於訓練語言模型的**可驗證獎勵強化學習 (RLVR)** 的基本原理。以下是關鍵組成部分:

• 可驗證獎勵框架:

- 使用一個確定性驗證器 V,根據模型的最終答案是否完全正確提供二元反饋 (0 或 1)
- \circ 目標是訓練一種語言模型策略 $\pi\theta$,使其在提示的分佈中最大化期望獎勵
- 可能包括格式獎勵,以鼓勵將推理過程與最終答案適當分開

• RLVR 演算法:

- 。主要使用**近端策略優化 (PPO)**,具有截斷的代理目標
- 。 通過價值網絡進行優勢估計
- 。可選應用 KL 發散約束,以防止策略偏離原始模型太遠
- 。屬於從即時樣本學習的策略梯度類強化學習方法

訓練目標:

- 。最大化正確答案樣本的對數似然
- 。 最小化錯誤答案樣本的似然
- 。本節還提到將引入 pass@k 指標來評估推理邊界,這比 best-of-N 替代方案 更被偏好

這一框架基本上允許使用二元正確性反饋來訓練語言模型,而不是傳統的監督學習方法。

• 本摘要未提供任何圖像。

"A deterministic verifier V returns a binary reward: $r = V(x, y) \in \{0, 1\}$, where r = 1 if and only if the model's final answer is exactly correct."

一個確定性的驗證器 V 返回一個二進制獎勵: $r = V(x, y) \in \{0, 1\}$,只有當模型的最終答案完全正確時,r = 1。

"The goal of RL is to learn a policy to maximize the expected reward: $J(\theta) = Ex \sim D E[y \sim \pi \theta(\cdot|x)[r]]$, where D is the distribution of prompts."

強化學習的目標是學習一個策略來最大化期望獎勵: $J(\theta) = Ex \sim D E[y \sim \pi \theta(\cdot | x)[r]]$,其中 D 是提示的分佈。

"In the context of verifiable rewards, the training objective generally maximizes the log-likelihood of samples with correct answers and minimizes the likelihood of those with incorrect answers."

在可驗證獎勵的情境下,訓練目標通常是最大化具有正確答案樣本的對數似然,並最小化具有錯誤答案樣本的似然。

RLVR's Effect on Reasoning Capacity Boundary

以下是筆記的翻譯:

- 本節描述了評估 RLVR(從視覺推理中進行強化學習)如何影響模型推理能力的實驗方法。
- 研究人員進行了全面的實驗,將基本模型和 RLVR 增強模型在數學、代碼生成和視 覺推理三個領域進行比較。
- 關鍵方法選擇:
 - **取樣參數**:溫度為0.6,top-p為0.95,最多16,384個tokens
 - 。**公平比較方法**:兩個模型使用相同的零樣本提示(無少樣本示例,以避免基礎模型出現偏差)
 - 。 **一致性評估**:在評估期間使用與RLVR訓練相同的提示
- 顯著發現:儘管基礎模型在沒有少樣本指導的情況下經常生成格式不佳的輸出,但 在給予充足的取樣機會時,它們仍能生成正確的解決方案和格式良好的響應,這表 明即使在沒有明確格式指導的情況下,也存在潛在的推理能力。

"For evaluation of the base model, a common practice is to include fewshot examples in the prompt to guide the output. However, to ensure a fair and unbiased comparison, we deliberately avoid using few-shot prompts for base models, eliminating any potential confounding effects on reasoning that might be introduced by in-context examples."

在基準模型的評估中,常見的做法是將少量示例包含在提示中以引導輸出。然而,為了確保公平和無偏的比較,我們刻意避免在基準模型中使用少量示例提示,消除上下文範例可能引入的任何潛在混淆效應。

"Interestingly, although base models often produce unformatted or non-sensical responses without few-shot guidance, we observe that with sufficient sampling, they are still capable of generating correctly formatted outputs and successfully solving complex problems."

有趣的是,即使基準模型在沒有少量示例指導的情況下經常產生未格式化或不合邏輯的回應,我們觀察到通過足夠的抽樣,它們仍能生成正確格式的輸出並成功解決複雜問題。

"Our analysis is organized by task category, covering three representative domains: mathematics, code generation, and visual reasoning."

我們的分析按任務類別組織,涵蓋三個具有代表性的領域:數學、代碼生成和視覺推理。

Deep Analysis

結構化摘要

- 本節提供了關於可驗證獎勵強化學習(RLVR)訓練效果的全面分析。
- 主要發現包括:
 - **主要發現**:與預期相反,基礎模型實際上解決了比RLVR訓練模型更廣泛的問題範圍,這表明RLVR並沒有擴展問題解決能力。
 - 準確性分佈變化:
 - RLVR訓練通過增加高準確率解(接近1.0)和減少低準確率嘗試來改變準確性分佈。
 - 然而,它也增加了完全失敗(準確率為0)的頻率,意味著訓練後更多的 問題變得無法解決。
 - 。**核心洞見**:RLVR的性能提升來自於在基礎模型已能解決的問題上提高了取樣效率,而不是使模型能夠處理新的、先前無法解決的問題。

- 本節還指出,作者將比較RLVR與蒸餾方法,並進行控制實驗以檢查不同的RL算法 和設計選擇,雖然這些細節在這段摘錄中未提供。
- **圖像摘要**:[未提供圖像。]

"Experiments in Section 3 reveal a surprising trend: the base model covers a wider range of solvable problems than the RLVR-trained model."

在第 3 節的實驗中顯示了一個令人驚訝的趨勢:基礎模型涵蓋了比 RLVR 訓練模型更廣泛的可解問題範圍。

"RLVR increases the frequency of high accuracies near 1.0 and reduces the frequency of low accuracies. However, a deviation from this trend is the increased frequency at accuracy 0 — indicating that RLVR leads to more unsolvable problems."

RLVR 增加了接近 1.0 的高準確率頻率並減少了低準確率頻率。然而,偏離這一趨勢的是零準確率頻率的增加——這表明 RLVR 導致更多的不可解決問題。

"This also explains the improvement of RLVR in average scores, driven not by solving new problems but by improving sampling efficiency on problems already solvable by the base model."

這也解釋了 RLVR 在平均得分上的提升,不是通過解決新問題促成的,而是通過提升基礎模型已能解決問題的抽樣效率來實現的。

Related Work

摘要

- 本文的相關工作部分討論了目前視覺推理強化學習 (RLVR) 的研究現狀。
- 作者們突出了文獻中的一個主要缺口:儘管RLVR方法展示了強大的實證性能,但 對於它們實際上如何影響推理能力的理解非常有限。

先前研究的主要發現:-RLVR模型中的反思行為可能來自於原始基礎模型,而非通過RL訓練學到的。-一些研究發現在RLVR訓練後,pass@k性能下降,但分析範圍有限。-先前的研究未能檢查基礎模型與RL訓練模型間的關係。 **本文的貢獻:** - 作者們將自己的工作定位為提供更系統且全面的分析,通過檢查多個模型、任務和RL算法來更好地理解RLVR方法的真實效果。 - 他們的工作彌補了先前研究留下的分析缺口。

"Several studies suggest that reflective behaviors in RLVR models originate from the base models rather than being learned through reinforcement learning."

多項研究表明,RLVR 模型中的反思行為來自基礎模型,而非通過強化學習獲得。

"Another observed a decline in pass@k performance post-RLVR training, but their analysis was limited in scope."

另有研究觀察到 RLVR 訓練後 pass@k 性能下降,但其分析的範圍有限。

"In contrast, our work systematically investigates a wide range of models, tasks, and RL algorithms to accurately assess the effects of current RLVR methods and models."

相比之下,我們的研究系統地調查了多種模型、任務和 RL 算法,以準確評估當前 RLVR 方法和模型的效果。

Conclusion and Discussion

- 本結論部分展示了應用於大型語言模型(LLMs) 的口頭推理強化學習(RLVR)方 法的一個關鍵發現。
- 作者進行了系統性調查並發現:
 - 。**關鍵發現:**當前的RLVR方法**無法**使LLMs開發出超越其基礎模型所擁有的新 推理能力。
 - **含義**:儘管預期RLVR能夠通過強化學習機制(探索和利用)使LLMs持續自 我改進並獲得新的推理模式,但研究顯示,RLVR訓練的模型仍然受限於其原 始基礎模型的推理邊界。
 - **重要性**:這挑戰了普遍認為當前RLVR方法可以解鎖LLMs新推理能力的觀點,表明現有的方法尚未實現強化學習在提高LLM推理能力方面的理論潛力。

Appendix

以下是附錄部分的目錄: - 附錄組織到兩個主要子部分下的「實施細節」: - **A.1 RLVR 演算法** - 討論了無評論版本的 RLVR (強化學習與方差消減) 演算法,這些演算法已被開發用來減少記憶體使用及計算成本。 - **A.2 低方差 pass@k 估計** - 涵蓋估計 pass@k

指標 (代碼生成任務中的常見評估指標) 的方法,以減少方差。 - 附錄側重於實際實施考慮以及優化技術,這些方法在主要論文中提出。

References

No references found.