

Índice

- 1 Objetivos de Aprendizaje
- 2 Motivación
- 3 Intuición trás los Arboles de Decisión
- 4 Construcción de los Arboles de Decisión
- 5 Formalización de los Arboles de Decisión
- 6 Lectura y visionado de vídeos

Objetivos de Aprendizaje

- Ser capaces de explicar la intuición tras el algoritmo.
- Ser capaces de formalizar matemáticamente el algoritmo.
- Ser capaces de contruir un Arbol de Decisión empleando la Ganancia de Información o empleando Gini.
- Ser capaces de generar un modelo básico de clasificación basado en el algoritmo de Arboles de decisión.

Motivación

En el ámbito de los negocios

- Emplear datos históricos de ventas para predecir las consecuencias de decisiones
- Emplear datos demográficos para encontrar posibles clientes
- Emplear datos históricos para predecir qué clientes nos van a abandonar

Motivación

En otros ámbitos:

- En ML para detección de objetos.
- En juegos de interacción. Kinect (2011-2017)

Intuición trás los Arboles de Decisión

Tomando decisiones con respecto a los atributos puedo llegar a caracterizar los datos

Pregunta: ¿Cúal es la probabilidad.

- a priori de estrella?
- y después del primer nodo (false)? y del primer nodo (true)?

Intuición trás los Arboles de Decisión

Intuición trás los Arboles de Decisión

Simafore.com

Ejercicio: ¿Podemos permitirnos hacer esperar al cliente?

	Alt	Bar	Vier	Hamb	Lleno	Prec	Lluv	Res	Tipo	Estim	HacerEsp
x ^{1}	Si	No	No	Si	Algo	\$\$\$	No	Si	Frances	0-10	Si
x{2}	Si	No	No	Si	Lleno	\$	No	No	Thai	30-60	No
x ^{3}	No	Si	No	No	Algo	\$	No	No	Burger	0-10	Si
x{4}	Si	No	Si	Si	Lleno	\$	No	No	Thai	10-30	Si
x ^{5}	Si	No	Si	No	Lleno	\$\$\$	No	Si	Frances	>60	No
x{6}	No	Si	No	Si	Algo	\$\$	Si	Si	Italiano	0-10	Si
x ^{7}	No	Si	No	No	Nada	\$	Si	No	Burger	0-10	No
x{8}	No	No	No	Si	Algo	\$\$	Si	Si	Thai	0-10	Si
x{9}	No	Si	Si	No	Lleno	\$	Si	No	Burger	>60	No
x{10}	Si	Si	Si	Si	Lleno	\$\$\$	No	Si	Italiano	10-30	No
x{11}	No	No	No	No	Nada	\$	No	No	Thai	0-10	No
x ^{12}	Si	Si	Si	Si	Lleno	\$	No	No	Burger	30-60	Si

	Lleno	HacerEsp
$X^{\{1\}}$	Algo	Si
$X^{\{2\}}$	Lleno	No
$X^{\{3\}}$	Algo	Si
$X^{\{4\}}$	Lleno	Si
$X^{\{5\}}$	Lleno	No
$X^{\{6\}}$	Algo	Si
$x^{\{7\}}$	Nada	No
$x^{\{8\}}$	Algo	Si
$x^{\{9\}}$	Lleno	No
$X^{\{10\}}$	Lleno	No
$X^{\{11\}}$	Nada	No
$X^{\{12\}}$	Lleno	Si

Pregunta: ¿Necesita este tipo de algoritmo...

que los atributos sean numéricos? (aplicar cat2num) escalar? (p.e. z-score) discretizar?

Pregunta: ¿Qué atributo seleccionaremos como root (raiz)?

¿Cúal divide de forma más discriminativa los datos?

¿Cúal obtiene subconjuntos menos heterogéneos?

¿Qué utilizo como medida de discriminación?

Pregunta: ¿Cúal aporta más información?

¿Cúal es más discriminativo? ¿Cuál consigue subconjuntos menos heterogéneos?

13/23 EHU

Construyendo Arbol: Entropía

Entropía

La entropía mide la heterogeneidad de un a muestra. Cuanto mas heterogénea más entropía.

$$H(\pi) = -\sum \pi \log(\pi)$$

· Clasificación binaria:

$$H(\frac{pos}{pos+neg},\frac{neg}{pos+neg}) = -\frac{pos}{pos+neg}log_2\frac{pos}{pos+neg} - \frac{neg}{pos+neg}log_2\frac{neg}{pos+neg}$$

· Clasificación multiclase:

$$H(P(c_1),...,P(c_n)) = -\sum_{c=1}^n P(c_i) \log(P(c_i))$$

Construyendo Arbol: Intuición de Entropía

Const. Arbol: Entropía estim. y ganancia de inf.

Ahora ya tengo todo lo que necesito:

- Tengo los datos (grupo de instancias) antes de tomar la decisión
- Tengo las posibles decisiones (atributos)
- Tengo una medida que calcula lo heterogéneo que es un grupo de instancias

Pregunta: ¿tiene sentido...

- calcular la heterogeneidad antes de aplicar un atributo como decisor
- calcular la estimación de heterogeneidad después de aplicar un atributo como decisor
- 3 considerar la resta de ambos como ganancia de información o tasa de discriminación del decisor?

Const. Arbol: Entropía estim. y ganancia de inf.

atributos-decisores (features): $F = \{f_1, f_2, ..., f_n\}$ ramas del decisor: $V = \{v_1, v_2, ..., v_n\}$

Entropía Estimada y Ganancia de Información

$$\begin{split} EH(f_j) &= \sum_{i=1}^{V} \frac{p_i + n_i}{p_{padre} + n_{padre}} H\bigg(\frac{p_i}{(p_i + n_i)}, \frac{n_i}{(p_i + n_i)}\bigg) \\ IG(f) &= H\bigg(\frac{p_{padre}}{p_{padre} + n_{padre}}, \frac{n_{padre}}{p_{padre} + n_{padre}}\bigg) - EH(f) \end{split}$$

Formalización del los Arboles de Decisión

Recordemos: \mathcal{D}^{train} , \mathcal{D}^{dev} , \mathcal{D}^{test}

$$\begin{aligned} & \mathcal{X}^{train} = \{x^{\{1\}}, x^{\{2\}}, ... x^{\{n\}}\}, \mathcal{X}^{dev} = \{x^{\{n+1\}}, x^{\{n+2\}}, ... x^{\{l\}}\}, \\ & \mathcal{X}^{test} = \{x^{\{l+1\}}, x^{\{l+2\}}, ... x^{\{z\}}\} \end{aligned}$$

n es tamaño de la muestra train, l-n+1 el tamaño del dev, z-l-n+1 (i.e. núm. instancias de entrenamiento, de desarrollo, de test)

$$Y^{train} = \{y^{d\{1\}}, y^{d\{2\}}, ... y^{d\{n\}}\}, Y^{dev} = \{y^{d\{n+1\}}, y^{d\{n+2\}}, ... y^{d\{l\}}\}\}$$

$$Y^{test} = \{y^{d\{l+1\}}, y^{d\{l+2\}}, ... y^{d\{z\}}\}$$

Las Y contienen los valores reales a acertar

Obviamente Y^{train} contiene n valores porque cada instancia de X^{train} tendrá su clase real asociada, lo mismo para el dev y test

$$\begin{split} &\mathcal{D}^{train} = \{(x^{\{1\}}, y^{d\{1\}}), (x^{\{2\}}, y^{d\{2\}}), ... (x^{\{n\}}, y^{d\{n\}})\} \\ &\mathcal{D}^{dev} = \{(x^{\{n+1\}}, y^{d\{n+1\}}), (x^{\{n+2\}}, y^{d\{n+2\}}), ... (x^{\{l\}}, y^{d\{l\}})\} \\ &\mathcal{D}^{test} = \{(x^{\{l+1\}}, y^{d\{l+1\}}), (x^{\{l+2\}}, y^{d\{l+2\}}), ... (x^{\{z\}}, y^{d\{z\}})\} \\ & \text{Idealmente } \mathcal{D}^{train} \cap \mathcal{D}^{dev} \cap \mathcal{D}^{test} = \emptyset \end{aligned}$$

Formalización de los Arboles de Decisión

```
F = f_1, f_2, ..., f_n
```

Algorithm 1 ArbolDec(\mathcal{D}, F)

```
Pred=la clases más frecuente en \mathcal{D}
if todas clases \in \mathcal{D} son iquales then
   return Pred
else if F esta vacio then
   return Pred
else if D esta vacio then
   Pred = \arg \max(Prob(\mathcal{D}\{train\}|f) \text{ return } Pred
else
   for each f_i \in F do
       NO \subseteq \mathcal{D}|f_i = false
       SI \subseteq \mathcal{D}|f_i = true
       score(f_i) = GananciaDeInf(f_i)
   end for
   f_{max} = \arg\max(score(F))
   NO \subseteq \mathcal{D}|f_{max} = false
   SI \subseteq \mathcal{D}|f_{max} = false
   F = F - f_{max}
   iza = ArbolDec(NO, F)
   drch = ArbolDec(SI, F)
   return Nodo(f,izd,drch)
end if
```

Ventajas y Desventajas

Ganancia de Inf. vs. Gini

Desvent: Tienden a sobreajustar (overfiting). Es decir, generalizan poco.

- Pequeños cambios en la muestra = gran impacto en predic (high variance algorithm).
- Posibles soluciónes:
 - Poda (imponer un max. profundidad)
 - min. num. instancias
 - Threshold de IG...

Vent: Altamente interpretables

Vent: Preprocesado min. (no cat2num, no escalado...)

Vent: No hace falta una muestra muy grande

Ganancia de Inf. y Gini

Ganancia de Inf. vs. Gini

$$IG(f) = H\left(\frac{p_{padre}}{p_{padre} + n_{padre}}, \frac{n_{padre}}{p_{padre} + n_{padre}}\right) - EH(f)$$

Gini

$$Gini(f_i) = 1 - \sum_{i=1}^{n} Prob(i)^2$$

Ejercicio: Elegir la raiz aplicando Gini ...

$$Gini(f_i = Lleno)$$

$$Gini(f_i = Tipo)$$

21/23

Lecturas y vídeos recomendados

- "Artificial Intelligence: A Modern Approach", eBook, Global Edition (English Edition) S. Russell P.Norvig Pearson Chap 18.3 https://cs.calvin.edu/courses/cs/344/kvlinden/resources/AIMA-3rd-edition.pdf
- Vídeo con un ejemplo de cómo aplicar el índice Gini https://es.coursera.org/lecture/ build-decision-trees-syms-neural-networks/ gini-index-example-rPvWM

Bibliografía

 "Artificial Intelligence: A Modern Approach", eBook, Global Edition (English Edition) S. Russell P.Norvig Pearson Chap 18.3 https://cs.calvin.edu/courses/cs/344/kvlinden/resources/AIMA-3rd-edition.pdf