ĐỀ KHỞI ĐỘNG 10

Câu 1: Trong không gian Oxyz, cho tam giác ABC có A(2;1;0), B(-1;3;1), C(8;2;-4).

Trọng tâm của tam giác ABC là

A.
$$G(3;2;-1)$$

B.
$$G(3;-2;-1)$$

D.
$$G(3;-2;1)$$

Câu 2: Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như sau:

Khẳng định nào sai?

A.Hàm số f(x) nghịch biến trên (0;1) **B.**Hàm số f(x) nghịch biến trên (-1;0)

C.Hàm số f(x) nghịch biến trên \mathbb{R}

D.Hàm số f(x) nghịch biến trên

Câu 3: Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên.

Giá trị cực đại của hàm số là

Câu 4: Tập nghiệm của bất phương trình $3^{x-1} \ge 1$ là

$$\mathbf{A}.[1;+\infty)$$

$$\mathbf{B}.(-\infty;0]$$

$$C.(1;+\infty)$$

$$\mathbf{D}.[0;+\infty)$$

Câu 5: Cho cấp số cộng (u_n) thoả mãn $u_1 + u_3 = 6$. Số hạng u_2 bằng

Câu 6: Đồ thị của hàm số nào sau đây có tiệm cận đứng?

A.
$$y = \frac{x}{x^2 + 1}$$

$$\mathbf{B.}\ y = e^{x}$$

C.
$$y = \frac{1}{x}$$

$$\mathbf{D.} \ y = x^2 - x$$

Câu 7: Cho khối lăng trụ có chiều cao bằng 3a, diện tích đáy bằng $2a^2$. Thể tích khối lăng trụ đã cho bằng

$$\mathbf{A.}a^3$$

B.
$$6a^{3}$$

C.
$$3a^{3}$$

D.
$$2a^{3}$$

Câu 8: Trong không gian Oxyz, cho đường thẳng $d: \frac{x}{3} = \frac{y+1}{2} = \frac{z-3}{1}$. Điểm nào dưới đây thuộc đường

thẳng d

A.
$$P(0;-1;2)$$

B.
$$N(0;-1;-3)$$
 C. $M(3;1;4)$

D.
$$Q(3;1;2)$$

Câu 9: Cho hàm số f(x) có đồ thị như hình bên.

Hàm số f(x) đồng biến trong khoảng nào dưới đây?

A. $(-1; +\infty)$ **B.** $(-\infty; 1)$

C. $(1;+\infty)$ **D.** (-1;1)

Câu 10: Cho hàm số $f(x) = e^{3x}$. Khẳng định nào sau đây đúng?

$$\mathbf{A.} \int f(x) dx = \frac{1}{3} e^x + C$$

$$\mathbf{B.} \int f(x) dx = e^{3x} + C$$

$$\mathbf{C.} \int f(x) dx = \frac{1}{3}e^{3x} + C$$

$$\mathbf{D.} \int f(x) dx = 3e^{3x} + C$$

Câu 11: Với a là số thực dương tùy ý, $\log(10a^2)$ bằng

- **A.** $1 2 \log a$
- **B.** 2 log *a*
- **C.** $2 + 2 \log a$
- **D.** $1 + 2 \log a$

Câu 12: Giá trị nhỏ nhất của hàm số $y = x^3 - 3x^2 + 2$ trên đoạn [1;5] bằng

D. 52

Câu 13: Trên khoảng $(0;+\infty)$, đạo hàm của hàm số $y = \log_5 x$ là

- **A.** $y' = \frac{1}{x \ln 5}$ **B.** $y' = \frac{\ln 5}{x}$ **C.** $y' = \frac{1}{x}$

Câu 14: Cho hình phẳng (D) được giới hạn bởi các đường $x = 0, x = \pi, y = 0$ và $y = -\sin x$. Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức

$$\mathbf{A.}\ V = \pi \int_{0}^{\pi} \left| \sin x \right| dx$$

$$\mathbf{B.} \ V = \pi \int_{0}^{\pi} \sin^2 x dx$$

A.
$$V = \pi \int_{0}^{\pi} |\sin x| dx$$
 B. $V = \pi \int_{0}^{\pi} \sin^{2} x dx$ **C.** $V = \pi \left| \int_{0}^{\pi} (-\sin x) dx \right|$ **D.** $V = \int_{0}^{\pi} \sin^{2} x dx$

Câu 15: Hàm số $y = (x-2)^{\sqrt{3}}$ có tập xác định là

- **A.** $\mathbb{R}\setminus\{2\}$
- **B.** $(2; +\infty)$
- **C.** R
- **D.** $[2;+\infty)$

Câu 16: Cho hình nón có bán kính đáy $r = \sqrt{3}$ và độ dài đường sinh l = 4. Tính diện tích xung quanh của hình nón đã cho

- **A.** $S_{xq} = 8\sqrt{3}\pi$ **B.** $S_{xq} = 12\pi$ **C.** $S_{xq} = 4\sqrt{3}\pi$ **D.** $S_{xq} = \sqrt{39}\pi$

Câu 17: Trong không gian Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 - 8x + 10y - 6z + 49 = 0$. Tính bán kính Rcủa mặt cầu (S).

- **A.** R = 1. **B.** $R = \sqrt{151}$. **C.** $R = \sqrt{99}$. **D.** R = 7.

Câu 18: Cho hàm số y = f(x) liên tục và không âm trên đoạn [-1;3]. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và các đường thẳng y = 0; x = -1; x = 3 là

A.
$$S = \pi \int_{-1}^{3} f^{2}(x) dx$$
 B. $S = \int_{-1}^{3} f(x) dx$ **C.** $S = \pi \int_{-1}^{3} f(x) dx$ **D.** $S = \int_{-1}^{3} f^{2}(x) dx$

B.
$$S = \int_{-1}^{3} f(x) dx$$

$$\mathbf{C.} \ S = \pi \int_{-1}^{3} f(x) dx$$

D.
$$S = \int_{-1}^{3} f^2(x) dx$$

Câu 19: Cho hình chữ nhật ABCD có AB = 4, AD = 3 quay xung quanh cạnh AD ta được một hình trụ. Chiều dài đường sinh của hình trụ đó bằng

3 D

A. 7

B. 4

C. 5

D. 3

Câu 20: Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên Số nghiệm thực của phương trình f(x) = 2 là

A. 1

B. 2

C. 4

D. 3

Câu 21: Cho hàm số y = f(x) có đồ thị là đường cong trong hình vẽ bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục tung là

- **A.** (-1;0)
- **B.** (0;1)
- **C.** (1;0)
- **D.** (0;-1)

Câu 22: Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và $SA = a\sqrt{2}$. Thể tích của khối chóp S.ABCD bằng

- **A.** $\frac{\sqrt{2}a^3}{1}$
- **B.** $\frac{\sqrt{2}a^3}{4}$
- **C.** $\sqrt{2}a^3$
- **D.** $\frac{\sqrt{2}a^3}{3}$

Câu 23: Tập nghiệm của phương trình $\log_2(x^2 - x + 2) = 1$ là

- **A.** $\{-1;0\}$
- **B.** {1}

Câu 24: Cho hàm số f(x) liên tục trên \mathbb{R} và $\int_{-\infty}^{\infty} [3f(x) + x] dx = 12$ thì $\int_{-\infty}^{\infty} f(x) dx$ bằng

- **A.** $-\frac{10}{2}$

D. $\frac{10}{2}$

Câu 25: Trong không gian Oxyz, cho hai điểm A(0;1;1) và B(1;2;3). Phương trình của mặt phẳng (P)đi qua A và vuông góc với đường thẳng AB là

A. x+3y+4z-7=0

B. x+3y+4z-26=0

C. x+y+2z-3=0

D. x + v + 2z - 6 = 0

Câu 26: Tính diện tích mặt cầu ngoại tiếp hình lập phương có cạnh bằng a

- **A.** $4\pi a^2$
- **C.** $12\pi a^2$
- **D.** $3a^{2}$

Câu 27: Cho hàm số $f(x) = x^2 + \frac{1}{2x-1}$. Khẳng định nào dưới đây đúng?

- **A.** $\int f(x) dx = 2x + \frac{1}{2} \ln |2x 1| + C$
- **B.** $\int f(x) dx = \frac{x^3}{3} \frac{1}{2} \ln |2x 1| + C$
- C. $\int f(x)dx = \frac{x^3}{3} + 2\ln|2x 1| + C$ D. $\int f(x)dx = \frac{x^3}{3} + \frac{1}{2}\ln|2x 1| + C$

Câu 28: Trong không gian Oxyz, khoảng cách giữa đường thẳng $\Delta : \frac{x-1}{2} = \frac{y+2}{1} = \frac{z-1}{2}$ và mặt phẳng

(P): 2x-2y-z+4=0 bằng

- **A.** $\frac{8}{2}$
- **B.** 3

C. 2

D. $\frac{1}{3}$

Câu 29: Cho $2^x = 5$. Giá trị của biểu thức $A = 4^{x+1} + 2^{2-x}$ bằng

- A. $\frac{24}{5}$
- **B.** 5
- **D.** $\frac{504}{25}$

Câu 30: Cho hình lăng trụ đứng ABC. A'B'C' có đáy ABC là tam giác vuông tại B, BA = a, $BC = a\sqrt{3}$, cạnh bên AA' = 2a (tham khảo hình vẽ) Góc giữa đường thẳng A'C với mặt phẳng (ABC) bằng

- **A.** 60°
- **B.** 90°
- **C.** 45°
- **D.** 30°

C. $\frac{a^3}{2}$

A'C'. Tính thể tích tứ diện ACOM biết khoảng cách giữa hai đường thẳng AM,CO bằng $\frac{4a}{\Omega}$

B. $\frac{a^3}{12}$

A. $\frac{a^3}{\epsilon}$

Câu 41: Cho hàm số $y = f(x) = 2x^3 + ax^2 + bx(a, b \in \mathbb{R})$. Biết hàm số y = f'(x) có đồ thị như hình vẽ. Diện tích của hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và y = f'(x) bằng $\frac{m}{n} (m \in \mathbb{Z}, n \in \mathbb{N})$ và $\frac{m}{n}$ là phân số tối giản.

Khi đó m + 3n bằng

- **A.** 65
- **B.** 70
- **C.** 80
- **D.** 74

Câu 42: Có bao nhiều số nguyên m để phương trình $\left[4^x - 257.2^x + 256\right].\log_8\left(x+m\right) = 0$ có đúng hai nghiệm phân biệt?

A. 8

B. 9

C. 7

D. 6

Câu 43: Trong không gian Oxyz, cho hai điểm A(-1;-1;0), B(0;1;0) và mặt phẳng (P): x+y+z+2=0. Gọi M(a;b;c) với (b<0) thuộc mặt phẳng (P) sao cho $AM=\sqrt{2}$ và mặt phẳng (ABM) vuông góc với mặt phẳng (P). Khoảng cách từ điểm M đến mặt phẳng x-2y-2z+4=0 bằng

- **A.** $\frac{5}{3}$
- **B.** 1

C. 2

D. 3

Câu 44: Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị hàm số y = f'(x) như hình vẽ. Hỏi có tất cả bao nhiều giá trị nguyên của tham số $m \in [-50;50]$ để hàm số $y = f(1-2x)-2mx^2+(4m+2)x+1$ nghịch biến trên khoảng (0;1)?

- **A.** 50
- **B**. 53
- **C.** 52
- **D.** 51

Câu 45: Biết rằng tồn tại các số hữu tỷ a, b, c sao cho $\int_{1}^{e} \frac{(x^3 + 1) \ln x + x^2 + 1}{x \ln x + 1} dx = a.e^3 + b + c.\ln(e+1)$,

(với e = 2,71828... là cơ số của logarit tự nhiên). Giá trị của biểu thức $T = a^2 + 8b^2 + c^2$ bằng

A. 2.

- **B.** $\frac{7}{4}$.
- **C.** 5.

D. $\frac{16}{9}$.

Câu 46: Biết hàm số $f(x) = ax^3 + bx^2 + 3x + 1$ $(a,b \in \mathbb{R}, a \neq 0)$ đạt cực trị tại hai điểm x_1 , x_2 thỏa mãn $x_1 + x_2 = 4$ và $f(x_1) + f(x_2) = \frac{10}{3}$. Gọi y = g(x) là hàm số bậc nhất có đồ thị đi qua hai điểm cực trị của đồ thị hàm số y = f(x). Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) bằng

 $\mathbf{A} \cdot \frac{1}{6}$

B. $\frac{1}{12}$

 $\mathbf{C} \cdot \frac{1}{3}$

D. $\frac{1}{2}$

Tài Liệu Ôn Thi Group

Tài Liệu Ôn Thi Group

BẢNG ĐÁP ÁN

1.A	2.C	3.B	4.A	5.B	6.C	7.B	8.C	9.C	10.C
11.D	12.B	13.A	14.B	15.B	16.C	17.A	18.B	19.D	20.D
21.D	22.D	23.D	24.D	25.C	26.B	27.D	28.B	29.C	30.C
31.C	32.A	33.B	34.B	35.C	36.D	37.A	38.B	39.C	40.A
41.C	42.A	43.A	44.D	45.A	46.A	47.B	48.A	49.B	50.A

TAILE ON THE PARTY OF THE PARTY