Name:	
MATH 100	"I am serious. And don't call me
	Shirley."
Fall 2021	
HW 4: Due 10/06	– Dr. Rumack, Airplane

Problem 1. (10pt) Determine if the relations f(x) and g(x) shown below are functions. Explain why or why not.

Problem 2. (10pt) Determine if the relations f(x) and g(x) shown below are functions. Explain why or why not.

\boldsymbol{x}	f(x)	x	g(x)
1	5	5	2
2	-5	6	e
3	4	8	-3
4	1	9	2.43
5	0	5	1

Problem 3. (10pt) Determine if the relations f(x) and g(x) shown below are functions. Explain why or why not.

$$f(x) = 9.87x + 10$$

$$g(x) = x^2 - x + 1$$

Problem 4. (10pt) Suppose f(x) is the function given below.

- (a) What is the domain of f(x)?
- (b) What is the codomain of f(x)?
- (c) What is the range of f(x)?

Problem 5. (10pt) Suppose f(x) and g(x) are the functions given below.

x	-2	0	1	3	4	5	10
f(x)	-1	-7	5	-2	π	19	10
g(x)	17	1	12	0	4	8	6

Compute the following:

(a)
$$f(1) =$$

(b)
$$g(0) =$$

(c)
$$(f+g)(5) =$$

(d)
$$(f-g)(-2) =$$

(e)
$$(6f)(1) =$$

(f)
$$\left(\frac{f}{g}\right)(10) =$$

(g)
$$f(4)g(5) =$$

(h)
$$f(2+g(0)) =$$

(i)
$$(f \circ g)(0) =$$

(j)
$$(g \circ f)(3) =$$

Problem 6. (10pt) Suppose f(x) and g(x) are the functions given below.

$$f(x) = 5x - 1$$

$$g(x) = x^2 + 2x + 3$$

Compute the following:

(a)
$$f(1) =$$

(b)
$$g(0) =$$

(c)
$$f(1) - 2g(1) =$$

(d)
$$f(x) - g(x) =$$

(e)
$$f(x)g(x) =$$

(f)
$$\left(\frac{f}{g}\right)(x) =$$

(g)
$$(g \circ f)(1) =$$

(h)
$$f(g(0)) =$$

(i)
$$(f \circ g)(x) =$$

(j)
$$(g \circ f)(x) =$$