Feature Selection (FS)

- · FS is one of 3 main tasks for Machine Learning
- A patient may have cancer or not (disease class label)
- An image have keywords descriptors (class labels)
- A data instance (image, patients) have class labels due to many factors/reasons.
- · FS finds the most important factors for classification
 - Most relevant genes for a dieses
 - e.g. select smoking for lung cancer

Many FS methods/algorithms

- T- test, F- test, chi-statistic
- Mutual information
- ReliefF (relevant-non-relevant)
- mRMR (minimum redundancy maximum relevance, Ding & Peng, 2005)
- many others

Our 2 feature selection papers cited 5821 times Chris H.Q. Ding Google Scholar Professor of computer science, University of Texas, Arlington Q machine learning, data mining, bioinformatics, computer vision Verified email at uta.edu - Homepage Cited by Year 26550 16516 Feature selection based on mutual information criteria of i10-index 236 max-dependency, max-relevance, and min-redundancy 4468 H Peng, F Long, C Ding IEEE Transactions on pattern analysis and machine intelligence 27 (8), 1226-1238 Minimum redundancy feature selection from microarray gene expression data 1353 2005 rmatics and computational biology 3 (02), 185-205 Co-authors View all. K-means clustering via principal component analysis Heng Huang 2004 C Ding, X He Proceedings of the twenty-first international conference on Machine learning, 29 Tao Li (李涛) Multi-class protein fold recognition using support vector machines Feiping Nie and neural networks CHQ Ding, I Dubchak Bioinformatics 17 (4), 349-358 Horst Simon Hongyuan Zha 査宏远 A min-max cut algorithm for graph partitioning and data clustering Hua Wang Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on ... C. Ding, NMF for data clustering and combinatorial optimization

Feature Selection (FS)

• FS finds the most important factors for classification

3

Feature Selection (FS)

• FS finds the most important factors for classification

Feature Selection Example: lung cancer Singer Factors: smoking, expose to asbestos, etc Multi factors: increase risk much more RISK FACTOR COMBINATIONS INCREASE ODDS OF LUNG CANCER HO RISK FACTORS ASBESTOS EXPOSURE ASBESTOS EXPOSURE ASBESTOS EXPOSURE THE RISK THE RIS

Feature Selection Example: What are distinctive features to distinguish between men and women? old vs young? St Marco Square, Venice

C. Ding, NMF for data clustering and combinatorial optimization

1.1

Feature Selection Example: What are distinctive features to distinguish between men and women? old vs young? St Marco Square, Venice

Venice is sinking because too many visitors!

C. Ding, NMF for data clustering and combinatorial optimization

Feature Selection (FS)

- FS finds the most important factors for classification
- Classifiers do feature analysis

Rule-based classifier: match features to rules

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
human	warm	yes	no	no	mammals
python	cold	no	no	no	reptiles
salmon	cold	no	no	yes	fishes
whale	warm	yes	no	yes	mammals
frog	cold	no	no	sometimes	amphibians
komodo	cold	no	no	no	reptiles
bat	warm	yes	yes	no	mammals
pigeon	warm	no	yes	no	birds
cat	warm	yes	no	no	mammals
leopard shark	cold	yes	no	yes	fishes
turtle	cold	no	no	sometimes	reptiles
penguin	warm	no	no	sometimes	birds
porcupine	warm	yes	no	no	mammals
eel	cold	no	no	yes	fishes
salamander	cold	no	no	sometimes	amphibians
gila monster	cold	no	no	no	reptiles
platypus	warm	no	no	no	mammals
owl	warm	no	yes	no	birds
dolphin	warm	yes	no	yes	mammals
eagle	warm	no	yes	no	birds

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Feature Selection (FS)

- FS finds the most important factors for classification
- Classifiers do feature analysis
 - All classifiers uses features to make prediction
- IRIS data feature selection example

Iris Data Set

- Iris Plant data set.
 - Can be obtained from the UCI Machine Learning Repository http://www.ics.uci.edu/~mlearn/MLRepository.html
 - From the statistician Douglas Fisher
 - Three flower types (classes):
 - · Setosa
 - Versicolour
 - Virginica
 - Four attributes/features
 - · Sepal length
 - · Sepal width
 - Petal length
 - · Petal width

Virginica. Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office guide to plant species. Northeast National Technical Center, Chester, PA. Courtesy of USDA NRCS Wetland Science Institute.

5.1,3.5,1.4,0.2,Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2,Iris-setosa 4.6,3.1,1.5,0.2,Iris-setosa 5.0,3.6,1.4,0.2,Iris-setosa 5.4,3.9,1.7,0.4,Iris-setosa 4.6,3.4,1.4,0.3,Iris-setosa 5.0.3.4.1.5.0.2.Iris-setosa 4.4,2.9,1.4,0.2,Iris-setosa 4.9.3.1.1.5.0.1.Iris-setosa 5.4,3.7,1.5,0.2,Iris-setosa 4.8,3.4,1.6,0.2,Iris-setosa 4.8.3.0.1.4.0.1.Iris-setosa 4.3,3.0,1.1,0.1,Iris-setosa 5.8,4.0,1.2,0.2,Iris-setosa 5.7,4.4,1.5,0.4,Iris-setosa 5.4,3.9,1.3,0.4,Iris-setosa 5.1,3.5,1.4,0.3,Iris-setosa

7.0,3.2,4.7,1.4,Iris-versicolor 6.4,3.2,4.5,1.5,Iris-versicolor 6.9.3.1.4.9.1.5.Iris-versicolor 5.5,2.3,4.0,1.3,Iris-versicolor 6.5,2.8,4.6,1.5,Iris-versicolor 5.7,2.8,4.5,1.3,Iris-versicolor 6.3,3.3,4.7,1.6,Iris-versicolor 4.9,2.4,3.3,1.0,Iris-versicolor 6.6,2.9,4.6,1.3,Iris-versicolor 5.2.2.7.3.9.1.4.Iris-versicolor 5.0,2.0,3.5,1.0,Iris-versicolor 5.9,3.0,4.2,1.5,Iris-versicolor 6.0.2.2.4.0.1.0.Iris-versicolor 6.1,2.9,4.7,1.4,Iris-versicolor 5.6,2.9,3.6,1.3, Iris-versicolor 6.7,3.1,4.4,1.4,Iris-versicolor 5.6,3.0,4.5,1.5,Iris-versicolor 5.8,2.7,4.1,1.0,Iris-versicolor 6.3,3.3,6.0,2.5,Iris-virginica 5.8,2.7,5.1,1.9,Iris-virginica 7.1,3.0,5.9,2.1,Iris-virginica 6.3,2.9,5.6,1.8,Iris-virginica 6.5,3.0,5.8,2.2,Iris-virginica 7.6,3.0,6.6,2.1,Iris-virginica 4.9,2.5,4.5,1.7,Iris-virginica 7.3,2.9,6.3,1.8,Iris-virginica 6.7,2.5,5.8,1.8,Iris-virginica 7.2,3.6,6.1,2.5,Iris-virginica 6.5,3.2,5.1,2.0,Iris-virginica 6.4,2.7,5.3,1.9,Iris-virginica 6.8,3.0,5.5,2.1,Iris-virginica 5.7,2.5,5.0,2.0,Iris-virginica 5.8,2.8,5.1,2.4,Iris-virginica 6.4,3.2,5.3,2.3,Iris-virginica 6.5,3.0,5.5,1.8,Iris-virginica 7.7,3.8,6.7,2.2,Iris-virginica

C. Ding, NMF for data clustering and combinatorial optimization

Feature selection methods

- Univariate (select each feature independently of others)
 - · Pearson correlation coefficient
 - T-test, f-test
 - Chi-square
 - · mutual information
 - · Relief, etc
- Multivariate (select a subset of features simultaneously)
 - · Subset selection, forward search, floating search
 - Recursive feature elimination
 - Use a classifier's internal structures, such as support vector machine
 - Linear combination of features, i.e., dimension reduction methods (PCA)

Feature selection methods

- Univariate (select one feature independent of others)
 - Pearson correlation coefficient
 - T-test, F-test
 - Chi-square
 - mutual information
 - Relief, etc
- Multivariate (select a subset of features simultaneously)
 - · Subset selection, forward search, floating search
 - Recursive feature elimination
 - Use a classifier's internal structures, such as support vector machine
 - Linear combination of features, i.e., dimension reduction methods (PCA)

Compute feature relevance to class labels

Class label vector

• Categorical values: class names

Feature Vector

- Numerical values: salary in dollars, height in inches, time in seconds, etc
- Categorical values: marriage status, job type, education, etc
- Ordinal values: grades (A-F), ranking (1-10), size(large, medium, small)

Similarity between class label vector and feature vector depends on

- Number of classes
- Feature vector value types

C. Ding, NMF for data clustering and combinatorial optimization

Compute feature relevance to class labels

Similarity between class-label-vector and feature-vector

- Number of classes = 2
 - Express class as (+1,-1)
 - Features are numerical, use Pearson correlation, t-test, Relief, sparse-coding
 - Features are categorical, num_category = 2: use Pearson correction, t-test, Relief
 - Features categorical, num_category >2: use mutual information
- Number of classes > 2
 - Features are numerical, use F-test, Relief, sparse-coding
 - Features are categorical, use mutual information

C. Ding, NMF for data clustering and combinatorial optimization

27

Mutual Information (information gain)

Venn diagram for various information measures associated with correlated variables X and Y. The area contained by both circles is the joint entropy H(X,Y). The circle on the left (red and violet) is the individual entropy H(X), with the red being the conditional entropy H(X|Y). The circle on the right (blue and violet) is H(Y), with the blue being H(Y|X). The violet is the mutual information I(X;Y).

Formally, the mutual information ^[1] of two discrete random variables *X* and *Y* can be defined as:

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(rac{p(x,y)}{p(x) \, p(y)}
ight)$$

where p(x,y) is the joint probability distribution function of X and Y, and p(x) and p(y) are the marginal probability distribution functions of X and Y respectively.

Relation to other quantities [edit]

Mutual information can be equivalently expressed as

$$I(X;Y) = H(X) - H(X|Y) =$$
Information gain
= $H(Y) - H(Y|X)$
= $H(X) + H(Y) - H(X,Y)$
= $H(X,Y) - H(X|Y) - H(Y|X)$

where H(X) and H(Y) are the marginal entropies, H(X|Y) and H(Y|X) are the conditional entropies, H(X,Y) is the joint entropy of X and Y.

Compute feature relevance to class labels

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Mutual information (refund, cheat)

Mutual information (MarStatus, cheat)

Correlation(TaxInc, cheat)

Group TaxInc into {high:100-125K, middle: 85-95K, low: 65-75K} Mutual information (TaxInc, cheat)

C. Ding, NMF for data clustering and combinatorial optimization

20

Compute Mutual information (Marital Status=X, cheat=Y)

	Class =Yes	Class=No	
MarSt=Single	2	2	4
MarSt=Married	0	4	4
MarSt=Divorced	1	1	2
	3	7	10

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(rac{p(x,y)}{p(x) \, p(y)}
ight)$$

$$I(X,Y) = \frac{2}{10} log \frac{\frac{2}{10}}{\frac{4}{10} \frac{3}{10}} + \frac{2}{10} log \frac{\frac{2}{10}}{\frac{4}{10} \frac{7}{10}} + \frac{4}{10} log \frac{\frac{4}{10}}{\frac{4}{10} \frac{7}{10}} + \frac{1}{10} log \frac{\frac{1}{10}}{\frac{2}{10} \frac{3}{10}} + \frac{1}{10} log \frac{\frac{1}{10}}{\frac{2}{10} \frac{7}{10}} = 0.2813$$

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Compute Mutual information (Marital Status=X, cheat=Y)

	Class=Yes	Class=No
MarSt=Single	2	2
MarSt=Married	0	4
MarSt=Divorced	1	1

Mutual-info
$$I(X,Y) = H(Y) - H(Y|X) = Info-gain$$

 $H(Y) = -0.3log(0.3)-(0.7)log(0.7) = 0.8813$

Split on X=Marital Status:

H(Y|X=Single) = -(2/4)log(2/4) - (2/4)log(2/4) = 1

H(Y|X=Married) = 0

H(Y|X=Divorced) = -(1/2)log(1/2)-(1/2)log(1/2) = 1

H(Y|X) = 0.4(1)+0.4(0)+0.2(1)=0.6

Info-Gain = H(Y) - H(Y|X) = 0.8813-0.6 = 0.2813 same as before

Compute Mutual information (refund, cheat)

Tic	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No

Before Splitting:

Entropy(Parent)

 $= -0.3 \log(0.3) - (0.7) \log(0.7) = 0.8813$

	Class	Class
	= Yes	= No
Refund=Yes	0	3
Refund=No	2	4
Refund=?	1	0

Split on Refund:

Entropy(Refund=Yes) = 0

Entropy(Refund=No)

 $= -(2/6)\log(2/6) - (4/6)\log(4/6) = 0.9183$

Entropy(Children)

= 0.3(0) + 0.6(0.9183) = 0.551

 $Gain = 0.9 \times (0.8813 - 0.551) = 0.3303$

Group TaxInc into

{high:100-125K, middle: 85-95K, low: 60-75K}

Compute Mutual information (Taxable Income, cheat)

	Class=Yes	Class=No
High	0	4
Middle	3	0
Low	0	3

Mutual-info
$$I(X,Y) = H(Y) - H(Y|X) = Info-gain$$

 $H(Y) = -0.3log(0.3)-(0.7)log(0.7) = 0.8813$

Split on X =Taxable Income:

H(Y|X=High) = 0 H(Y|X=Middle) = 0H(Y|X=Low) = 0

H(Y|X)=0.4(0)+0.3(0)+0.3(0)=0Info-Gain = H(Y) - H(Y|X) = 0.8813-0=0.8813

F-test (class-label-vector, feature-vector)

Features are numerical

Given a gene expression across n tissue samples $\mathbf{g}=(g_1,g_2,\cdots,g_n),$ the F-statistic is defined as

$$F = \left[\sum_{k} n_{k} (\bar{g}_{k} - \bar{g})^{2} / (K - 1) \right] / \sigma^{2}, \quad (1)$$

where \bar{g} is the average expression across all samples, \bar{g}_k is the average within class C_k , and σ^2 is the pooled variance:

$$\sigma^2 = \left[\sum_k (n_k - 1) \ \sigma_k^2\right] / (n - K)$$

where n_k and σ_k are the size and variance of gene expression within class C_k . For K=2,

$$F = t^2$$
, $t = \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \frac{\bar{g}_1 - \bar{g}_2}{\sigma}$, (2)

F-statistic reduces to t-statistic. We pick genes with large F-values or t-values. When gene follows the Gaussian distribution, f-value follow F(K-1,n-K) distribution. We can compute p-values and confidence levels to assess the test. This is the theory of analysis of variance (ANOVA)

C. Ding, NMF for data clustering and combinatorial optimization

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Compute F-test (TaxInc=X, cheat=Y)

 $\mathbf{g}=(g_1,g_2,\cdots,g_n),$ the F-statistic is defined as

$$F = \left[\sum_{k} n_{k} (\bar{g}_{k} - \bar{g})^{2} / (K - 1) \right] / \sigma^{2}, \quad (1)$$

where \bar{g} is the average expression across all samples, \bar{g}_k is the average within class C_k , and σ^2 is the pooled variance:

$$\sigma^2 = \left[\sum_k (n_k - 1) \ \sigma_k^2\right] / (n - K)$$

where n_k and σ_k are the size and variance of gene expression within class C_k .

Avg(X|Y=no) = (125+100+120+70+60+220+75)/7=110

 $Var(X|Y=no) = [(125-110)^2 + ... + (75-110)^2]/(7-1) = 2975$

Avg(X|Y=yes) = (95+85+90)/3=90

 $Var(X|Y=yes) = [(95-90)^2 + (85-90)^2 + (90-90)^2]/(3-1) = 25$

Avg(X) = (125 + ... + 90)/10 = 104

 $F = [7(110 - 104)^2 + 3(90 - 104)^2]/(2 - 1) / [(7 - 1)*2975 + (3 - 1)*25]/(10 - 2) = 840/(17900/8) = 0.3754$