

Instituto Tecnológico y de Estudios Superiores de Monterrey

Modelación Numérica de Sistemas Estocásticos F2006B

Recocido Simulado para el problema del empaquetamiento

Jorge Daniel de la Torre Gallegos, A01635519

Prof. Antonio Ortiz Ambriz

Domingo 20 de octubre de 2024

1. Empaquetamiento aleatorio

1.1. Algoritmo

El algoritmo empleado para determinar la fracción de empaquetamiento se basa en el método propuesto por Zhang y Huang en su estudio titulado "A Simulated Annealing Algorithm for the Circles Packing Problem" [1], con algunas modificaciones adaptadas para un contenedor cuadrado.

Función Objetivo

La función objetivo utilizada es la energía potencial elástica de extrusión. La energía entre dos objetos elásticos es proporcional a la profundidad del traslape entre ellos

$$u_{ij} = kd_{ij}^2$$
, $i = 1, 2, \dots, N$, $j = 0, 1, \dots, N$, $j \neq i$,

k es una constante de proporcionalidad, k>0. Para el programa se utilizó k=1. La profundidad del traslape se calcula de la siguiente forma:

$$d_{ij} = \begin{cases} R_i + R_j - \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}, & \text{si } \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} < R_i + R_j, \\ 0, & \text{de lo contrario.} \end{cases}$$

El exterior del contenedor también se considera un objeto elástico, entonces la energía entre cualquier círculo y el contenedor es

$$d_{i0x} = \begin{cases} L_x - R_i - x_i, & \text{si } R_i + x_i > L_x, \\ 0, & \text{de lo contrario,} \end{cases}$$
 (1)

$$d_{i0y} = \begin{cases} L_y - R_i - y_i, & \text{si } R_i + y_i > L_y, \\ 0, & \text{de lo contrario,} \end{cases}$$

$$d_{i0} = \sqrt{d_{i0x}^2 + d_{i0y}^2}.$$

$$(2)$$

La energía potencial del circulo i es

$$U_i = \sum_{i=1, j \neq i}^{N} u_{ij}, i = 1, 2, \dots, N \text{ y } j = 0, 1, \dots, N.$$

Por lo tanto la energía total del sistema es

$$U(X) = U(x_1, y_1, x_2, y_2, \cdots, x_N, y_N) = \sum_{i=1}^{N} U_i.$$

De esta forma podemos optimizar el problema de empaquetamiento para esta energía potencial, es decir, podemos encontrar la configuración $X^* = (x_1^*, y_1^*, x_2^*, y_2^*, \cdots, x_N^*, y_N^*)$ tal que $U(X^*)$ sea un mínimo. Si $U(X^*) = 0$ entonces X^* es una solución al problema, en cambio si $U(X^*) > 0$ entonces el problema en particular no tiene solución.

Función de Paso

Para la función de paso, primero se elige uno de los círculos aleatoriamente, y después se propone una nueva posición para dicho círculo (X'). La forma para generar la nueva posición es la siguiente:

$$dx_{ij} = \frac{x_i - x_j}{D_{ij}} d_{ij},$$

$$dy_{ij} = \frac{y_i - y_j}{D_{ij}} d_{ij},$$

en el caso particular cuando j = 0 se aplican las ecuaciones (1) y (2)

$$dx_{i0} = d_{i0y},$$

$$dy_{i0} = d_{i0y}.$$

donde D_{ij} representa la distancia entre el círculo i y el círculo j, D_{i0} es la distancia del centro del contenedor al centro del círculo i, dx_{ij} es la proyección de d_{ij} en el eje horizontal y dy_{ij} es la proyección de d_{ij} en ele eje vertical (ver Figura 1.1). Entonces, la siguiente posición del

círculo i es

$$\begin{cases} x'_{i} = x_{i} + dx_{i0} + \sum_{j \neq i}^{N} dx_{ij} \\ y'_{i} = y_{i} + dy_{i0} + \sum_{j \neq i}^{N} dy_{ij} \end{cases}$$

En el documento [1], los autores mencionan que esta forma de generar X' reduce significativamente el rango de búsqueda y ayuda a que el proceso iterativo converga rápidamente.

Figura 1.1: Ilustración de las distancias y proyecciones entre círculos y el contenedor

1.2. Región 24x24

La fracción de empaquetamiento para una región de 24x24 unidades es:

$$\Phi = 0.5061$$

Figura 1.2: Resultados obtenidos para el empaquetamiento de 100 círculos de radios $r_a=1$ (80) y $r_b=0.8$ (20).

1.3. Máxima fracción de empaquetamiento

La máxima fracción de empaquetamiento encontrada fue:

 $\Phi = 0.78$

Figura 1.3: Configuración final

Bibliografía

[1] Zhang, D., & Huang, W. (2004). A simulated annealing algorithm for the circles packing problem. In Lecture notes in computer science (pp. 206–214). https://doi.org/10.1007/978-3-540-24685-5_26