

Codebase RAG

Deep Learning 2Q 2025 - ITBA

- 1. Problema
- 2. Desafíos
- 3. Implementación
- 4. Resultados
- 5. Conclusiones

El Problema

Los LLMs como ChatGPT son útiles para generar y explicar código, pero tienen limitaciones críticas:

- No pueden acceder a repositorios fácilmente
- **Context window limitado** : imposible cargar codebases completos
- Sin conocimiento actualizado de proyectos en desarrollo
- Copiado y pegado manual: workflow ineficiente y propenso a errores

Solución: Codebase RAG

Sistema de Retrieval-Augmented Generation especializado en código fuente que:

- Indexa repositorios completos (ZIP o GitHub)
- Búsqueda semántica inteligente de snippets relevantes
- Respuestas contextualizadas usando LLMs con retrieval
- Soporte multilenguaje: 30+ lenguajes de programación
- Ejemplos de uso:
 - "¿Cómo funciona la autenticación en este proyecto?"
 - "Explica la arquitectura del módulo de pagos"
 - "¿Dónde se maneja el error 404?
 - "Generá tests para el modulo X"

Desafios

002

Desafío I: Parsing Inteligente

Problema: el código no es texto plano, tiene una estructura sintáctica (funciones, clases, bloques) que debe preservarse.

Desafíos específicos:

- Split ingenuo rompe contexto: dividir por caracteres "destruye" funciones completas
- Cada lenguaje tiene sintaxis diferente: Python usa indentación, C++ usa llaves, etc...
- **Archivos grandes** : ¿cómo dividir sin perder coherencia semántica?

Impacto:

Chunks mal formados → retrieval ineficaz → respuestas incorrectas

Desafío 2: Búsqueda Semántica

Problema: relacionar la query en lenguaje natural con snippets técnicos de código.

Desafíos específicos:

- Vocabulario diferente: usuario dice "validar", código dice "authenticate"
- Conceptos abstractos: "flujo de autenticación" vs. código específico
- Selección de k : ¿cuántos snippets recuperar?
 - Muy pocos → falta contexto
 - Muchos → ruido

Desafío 3: Integración Multi-Proveedor

Problema: diferentes LLMs tienen APIs, formatos y capacidades distintas.

Desafíos específicos:

- APIs incompatibles: OpenAI usa formato de mensajes, Gemini usa strings, etc...
- Modelos diferentes: GPT-5 vs. Gemini 2.5 Flash tienen fortalezas distintas
- **Configuración**: temperatura, max tokens, system prompts varían

Requisito:

Arquitectura flexible que permita cambiar de proveedor sin modificar la lógica del RAG.

Desafío 4: Evaluación de Calidad

Problema: a diferencia de clasificación (accuracy), evaluar generación de texto es subjetivo.

Preguntas clave:

- Faithfulness: ¿la respuesta es fiel al código recuperado?
- Relevancy: ¿responde lo que preguntó el usuario?
- Context quality: ¿recuperamos los snippets correctos?

Complejidad:

- Ground truth manual es costoso de generar
- Métricas tradicionales (BLEU, ROUGE) no capturan calidad semántica
- Necesitamos evaluar retrieval + generación por separado

Implementación — 003

Arquitectura


```
from langchain_text_splitters import LanguageParser
parser = LanguageParser(language=detected_lang)
chunks = parser.split_documents(document)
```

Tree-sitter + LangChain

La solución al desafío I (parsing) es usar tree-sitter, un parser universal que entiende la sintaxis de múltiples lenguajes

Ventajas:

- Preserva estructura sintáctica (funciones completas, clases)
- 30+ lenguajes soportados con parsers específicos
- Integración con LangChain para fácil uso
- Parser threshold configurable (tamaño mínimo de chunks)

ChromaDB para Retrieval

La solución al desafío 2 (búsqueda semántica) es la combinación de ChromaDB con SentenceTransformers.

Ventajas:

- ChromaDB: persistente, rápida, fácil de usar
- **SentenceTransformers**: embeddings BERT especializados en similitud semántica
- **k = 5 snippets:** balance entre contexto y ruido
- Metadata filtering: por lenguaje, archivo, etc...

Strategy Pattern + Factory Pattern

Para abstracción de proveedores.

Características:

- Interfaz uníficada : generate(messages) para todos
- Auto-detección de API keys desde .env
- Conversión de formatos:
 OpenAl messages ↔ Gemini strings
- Extensible: agregar Claude, local models, etc...

Evaluación con RAGAS

La solución encontrada para el cuarto desafío (evaluación de cálidad) fue el uso del Framework RAGAS (Retrieval-Augmented Generation Assessment).

- Características : LLM evaluador aislado (no contamina el cache del generador)
- Validación de dependencias de métricas (ground truth)
- Dataset generator para crear casos de prueba
- Versión tracking para reproducibilidad
- Export múltiple: CSV, JSON, Excel

```
from ragas.metrics import (
   faithfulness,
   answer_relevancy,
   context_precision,
   context_recall
```

Stack Tecnológico

Parsing & Loading

- tree-sitter + LangChain LanguageParser
- Request a la api de Github para clonado de repos
- zipfile para extracción

Retrieval

- ChromaDB (base vectorial persistente)
- SentenceTransformers (embeddings)

Generación

- Modelos disponibles en la API de OpenAI
- Modelos disponibles en la API de Gemini

Stack Tecnológico

Evaluación

- RAGAS (metrics + datasets)
- Pandas para análisis de resultados

CLI & Utils

- argparse para interfaz de línea de comandos
- python-dotenv para configuración
- logging para debugging

Configuración JSON

- **Problema:** diferentes casos de uso requieren diferentes parámetros, se busca no modificar el código
- Solución: configuración mediante extensiva a archivos JSON
- Ventajas:
 - Configuraciones predefinidas (default, optimal, fast, chat, reranking...)
 - Experimentación fácil (cambiar modelo, k docs, estrategia de reranking)
 - Sin modificar código (todo en JSON)

```
"model": {
    "provider": "openai",
    "name": "gpt-4o-mini",
    "temperature": 0.7
  "retrieval": {
    "k_documents": 5
  "rerank": {
    "enabled": true,
    "strategy": "cross_encoder",
    "retrieve_k": 15,
    "top_n": 5
  "embeddings": {
    "model_name": "all-MiniLM-L6-v2"
```



```
"rerank": {
    "enabled": true,
    "strategy": "mmr",
    "retrieve_k": 15,
    "top_n": 5
}
// Candidatos iniciales
// Documentos finales
}
```

Reranking de Documentos

- Problema: la búsqueda vectorial puede recuperar documentos redundantes o imprecisos
- Implementamos dos estrategias:
 - Cross-Encoder (precisión):
 - Mejora precisión
 - Menor velocidad
 - Ideal para queries técnicas
 - MMR Maximal Marginal Relevance (diversidad):
 - MMR = λ x Relevancia (1λ) x Similaridad
 - **■** Reduce redundancia entre documentos
 - Ideal para queries exploratorias

Chat Interactivo

- Motivación: explorar codebases requiere múltiples preguntas con contexto acumulado
- Características:
 - Indexación única al inicio
 - Contexto conversacional
 - RAG completo por query (retrieval + reranking + generation)
 - Comandos:
 - /help
 - /clear
 - /exit
 - Modo single-shot también disponible (-p)

Dataset

Codebases reales para testing:

- 1. SMTP-Protos (C)
 - Servidor de email non-blocking con I/O multiplexing
 - ~ 3 000 líneas de código
- 2. <u>Jam.py</u> (Python)
 - Framework web low-code para desarrollo rápido
 - Aplicaciones database-driven
 - ~ 17 500 líneas de código
- 3. NumPy (Python/C)
 - Librería científica fundamental de Python
 - Código mixto Python + C con optimizaciones SIMD
 - ~ 100 000+ líneas
- 4. Codebase RAG (Python)
 - La implementación de este proyecto
 - ~3200 lineas de código

Objetivo: evaluar generalización del sistema RAG en proyectos reales de diferentes dominios, lenguajes y complejidades.

Demo!

- I. Indexación del Código
- 2. Modo Single-Shot
- 3. Modo Chat Interactivo
- 4. Comparación de Configuraciones

Métrica	Componente	¿Qué mide?	GT
Context Precision	Retrieval	¿Documentos bien rankeados?	✓
Context Recall	Retrieval	¿Info completa recuperada?	✓
Faithfulness	Generation	¿Se basa en contexto?	x
Answer Relevancy	Generation	¿Respuesta relevante?	x

Metodología de Evaluación

Marco de Evaluación: RAGAS + Diseño Experimental

- Framework : RAGAS con LLM-as-Judge
- 4 métricas complementarias
- Ground Truth
 - 60 queries curadas (20 técnicas, 20 arquitectonicas, 20 semánticas)
 - Referencias manuales validadas + archivos esperados por query
 - Evaluador LLM aislado (gpt-4.1-mini, T=0.3) para fairness

Diseño Experimental

- A/B Testing con variable única
- Variables controladas (modelo, temperature, embeddings)
- Configuraciones versionadas para reproducibilidad
- Score Range: 0.0 (peor) → 1.0 (perfecto)

Templates de Prompts

Hipótesis: templates con instrucciones explícitas mejorarán faithfulness en un 10% al reducir alucinaciones.

Fundamentos:

- Prompts detallados fuerzan al LLM a citar contexto explícitamente
- Estructura forzada reduce improvisación y deriva del contexto
- Prompts con ejemplos y constraints mejoran adherencia

Análisis y Resultados

Hipótesis parcialmente validada, aumento de faithfulness leve

Insights:

- Template detailed mejora faithfulness pero menos de lo esperado
- Menor Answer Relevancy para el detailed prompt.
- Puede deberse a que está realizando respuestas innecesariamente más largas o detalladas de lo que deberian ser.

Config	Faithfulness	Answer Relevancy	Context Precision	Context Recall
detailed	0.986	0.69	0.599	0.76
default	0.975	0.83	0.557	0.66

k_documents

Hipótesis: existe trade-off Precision ↔ Recall. El punto óptimo se encuentra entre k=5 y k=8.

k<5 → alta precisión/bajo recall

k>10 → degradación por "lost in the middle"

Fundamentos:

- Más documentos llevan a mayor cobertura pero mayor ruido
- LLMs degradan con contextos largos
- Teoría de IR: Precision decrece con k, Recall crece

Análisis y Resultados

Hipótesis parcialmente validada: "Sweet spot" entre Precision y Context Retrieval.

Insights:

- A mayor K. mas documentos por los que basarse. mayor faithfulness.
- Retrieve de mayor cantidad de documentos ayuda al modelo a encontrar su "ground truth", aumentando el context recall.
- Pico de Context Precision en k=8. Mayor K implica que se pueden extraen documentos menos relevantes.

Config	Faithfulness	Answer Relevancy	Context Precision	Context Recall
k=3	0.690	0.576	0.400	0.327
k=8	0.819	0.809	0.732	0.670
k=15	0.9972	0.8322	0.5075	0.8000

Modelos de Embeddings

Hipótesis: all-mpnet-base-v2 (MPNet) mejorará retrieval en +5-10% vs all-MiniLM-L6-v2 (MiniLM) debido a mayor dimensionalidad semántica.

Fundamentos:

- mpnet: 768 dims vs MiniLM: 384 dims → mayor capacidad semántica
- Arquitectura MPNet: pre-training superior con permuted language modeling
- Trade-off 2x más lento en indexing, 2x storage

Análisis y Resultados

Hipótesis validada: MPNet supera consistentemente a MiniLM en todas las métricas, con una mejora promedio del 40.8% en *retrieval*, mayor a la esperada.

Insights:

- Faithfulness aumenta considerablemente (+0.24) indicando reducción en alucinaciones
- MiniLM presenta rendimiento aceptable considerando su dimensionalidad, pero pierde semántica notable en queries complejas
- Ceiling effect: MPNet se acerca al límite de precisión contextual posible sin sobreajuste.
- Trade-off costo-calidad:
 - MPNet: Mejores respuesta a un costo aproximadamente doble
 - MiniLM: menor costo computacional, adecuado para pipelines ligeros.
- MiniLM sorprendentemente robusto para prototipado rápido o entornos con recursos limitados.

Config	Faithfulness	Answer Relevancy	Context Precision	Context Recall
mpnet	0.97	0.67	0.73	0.67
MiniLM	0.78	0.66	0.52	0.45

Estrategias de Reranking

Hipótesis: Two-stage retrieval con Cross-Encoder mejorará la precisión en +8-12% vs. retrieval directo. MMR tendrá mejora intermedia (+3-5%).

Fundamentos:

- Cross-Encoder: re-evaluá relevancia con model más potente (bi-encoder inicial es rápido pero menos preciso)
- MMR: optimiza diversidad (útil en NLP general, menos en código)

Análisis y Resultados

Insights:

- Sin reranks: Mayor faithfulness y relevancia con la respuesta. Debido a su simplicidad, se pierde documentos importantes en contexto.
- Cross encoder: Mayor answer relevancy. Posiblemente priorizo snippets que fueron más relevantes con el modelo potente, pero se pierde precisión.
- MMR: La diversidad de MMR ayudó en el context recall a costa de la relevancia del resultado final.

Config	Faithfulness	Answer Relevancy	Context Precision	Context Recall
CE (I5→5)	0.925	0.88	0.55	0.7
MMR (15→5)	0.967	0.804	0.557	0.73
No Reranking	0.976	0.838	0.59	0.66

Heterogeneidad Multi-Language

Hipótesis: Repositorios multi-language mostraran menor precision en *retrieval* comparados con repositorios mono-lenguaje.

Fundamentos:

- Embeddings generales capturan peor la semántica de múltiples lenguajes
- Diferencias de sintaxis y convenciones introducen ruido en el espacio vectorial
- Queries ambiguas pueden recuperar *snippets* de lenguaje incorrecto
- La homogeneidad semántica de un solo lenguaje favorece el *clustering* y la precisión contextual

Análisis y Resultados

Hipótesis rechazada: mejora observada (-10.67%) menor que la estimada (10%)

Insights:

- Configuración Optimal: el single-language mejora ligeramente en faithfulness (+9.6%) y answer relevancy (+4.8%), pero pierde en context recall (-23%).
 - Muestra un mejor ajuste cuando la precisión contextual no es prioritaria.
- Predominio multi-language: gana en 9/12 métricas (75%), incluyendo context precision y recall en configuraciones default y fast.
 - Indica mejor recuperación y relevancia en entornos heterogéneos.
- Ceiling effect: las configuraciones con faithfulness inicial alta (~0.98) dejan poco margen de mejora.

Config	Faithfulness	Answer Relevancy	Context Precision	Context Recall
jam-py-v7	0.90	0.70	0.41	0.61
SMTP - Protocolos de comunicacion	0.99	0.73	0.43	0.47

Tamaño del Repositorio

Hipótesis: Context Precision se degradará un 10-15% al escalar de repos pequeños (IK docs) a grandes (40K+ docs) por aumento de signal-to-noise ratio.

Fundamentos:

- Más documentos → mayor probabilidad de falso positivos semánticos
- Embeddings generales capturan similitud superficial
- Vector search retrieval escala sub-linealmente en calidad

Análisis y Resultados Numpy

Hipótesis validada: Context precision bajo en gran parte.

- Demasiados documentos en el espacio vectorial, retrieval poco preciso.
- Context recall bajo en gran parte.
- Faithfulness y Answer Relevancy sospechosamente altos.
- Posiblemente el modelo responde con lo que "ya sabia" de numpy.

Gracias! Preguntas?

