

Universidad Nacional de Colombia Facultad de Ciencias

Topología General Taller III

Nateo Andrés Manosalva Amaris	
ergio Alejandro Bello Torres	

1. a) Un G_{δ} -conjunto en un espacio X es un conjunto A que es igual a una intersección numerable de conjuntos abiertos de X. Demuestra que en un espacio T_1 de primera numerabilidad, cada conjunto unitario es un G_{δ} -conjunto.

Demostración. Sea $\{x\}$ un conjunto unitario arbitrario, como X es 1−contable, entonces existe $B_x = \{B_i\}_{i \in \mathbb{N}}$ una base contable para x, es claro que $x \in \bigcap_{i=1}^{\infty} B_i$, falta ver que dado $y \neq x$, $y \notin \bigcap_{i=1}^{\infty} B_i$, como $y \neq x$, entonces existen V_x y V_y vecindades de x y y respectivamente tal que $y \notin V_x$ y $x \notin V_y$ ya que X es T_1 , esto es nos da que exite B_i tal que $y \notin B_i$, lo que concluye el resultado.

b) Existe un espacio familiar en el cual cada conjunto unitario es un G_δ -conjunto, pero que no satisface el axioma de primera numerabilidad. ¿Cuál es?

Solución. Este espacio es \mathbb{R}^{ω} con la topología de cajas, este espacio no es 1-contable ya que dado $x=(x_n)_n$ y una colección $\{U_i:i\in\mathbb{N}\}$ de vecindades de x, podemos suponer que $U_i=\prod_n(a_n^{(i)},b_n^{(i)})$ donde $a_n^{(i)}< x_n< b_n^{(i)}$, tomando $c_n=\frac{a_n^{(n)}+x_n}{2}$ y $d_n=\frac{x_n+b_n^{(n)}}{2}$ se sigue que $V=\prod_n(c_n,d_n)$ es una vecindad de x, pero $U_n\not\subset V$ para cada n.

Note ahora que dado $x = (x_n)_n$, tome $U_i = \prod_n \left(x_n - \frac{1}{i}, x_n + \frac{1}{i}\right)$ para cada i, en efecto $\bigcap_i U_i = \{x\}$

2. Demuestra que si X tiene una base numerable $\{B_n\}$, entonces toda base $\mathscr C$ de X contiene una base numerable para X. [Sugerencia: Para cada par de índices n, m para los cuales sea posible, elige $C_{n,m} \in \mathscr C$ tal que $B_n \subset C_{n,m} \subset B_m$.]

Demostración. Sea $x \in X$, ya que \mathscr{B} es base, existe $m \in \mathbb{N}$ tal que $x \in B_m$, como \mathscr{C} también es base, existe C tal que $x \in C \subseteq B_m$, aplicando nuevamente la definición de base, llegamos a que existe n tal que $x \in B_n \subseteq C \subseteq B_m$, denotemos entonces a este C por $C_{n,m}$, así, para $n, m \in \mathbb{N}$ podemos escoger $C_{n,m}$ de tal manera que $B_n \subseteq C_{n,m} \subseteq B_m$.

Veamos que $\mathscr{C}' := \{C_{n,m} \in \mathscr{C} : n, m \in \mathbb{N}, B_n \subseteq C_{n,m} \subseteq B_m\}$ es una base contable para X. La primera propiedad se sigue directamente de como construimos \mathscr{C}' . Ahora sean $x \in X$, C_{n_1,m_1} y C_{n_2,m_2} tales que $x \in C_{n_1,m_1} \cap C_{n_2,m_2}$, como $C_{n_1,m_1} \cap C_{n_2,m_2}$ es abierto en X, existe B_{m_3} tal que $x \in B_{m_3} \subseteq C_{n_1,m_1} \cap C_{n_2,m_2}$, siguiendo el razonamiento anterior encontramos C_{n_3,m_3} tal que $x \in B_{n_3} \subseteq C_{n_3,m_3} \subseteq B_{m_3}$ de ésta manera $x \in C_{n_3,m_3} \subseteq C_{n_1,m_1} \cap C_{n_2,m_2}$, por lo tanto \mathscr{C}' es una base para X.

3. Sea *X* un espacio con una base numerable; sea *A* un subconjunto no numerable de *X*. Demuestra que hay una cantidad no contable de puntos de *A* que son de acumulación en *A*.

$$B = \bigcup_{y \in A' \cap A} \{x_n^{(y)}\} \subseteq A$$

es contable, pues es unión contable de conjuntos contables, por lo tanto A-B es no contable, lo cual implica que tiene un punto de acumulación p que pertenece a A-B, en particular $p \in A \cap A'$ sin embargo $A \cap A' \subseteq B$, lo cual es una contradicción, luego $A \cap A'$ es no contable. \square

4. Demuestra que todo espacio métrico compacto X tiene una base numerable. [Sugerencia: Sea \mathcal{A}_n un cubrimiento finito de X por bolas de radio 1/n.]

Demostración. Dado $n \in \mathbb{N}$, considere el cubrimiento \mathcal{A}_n de las bolas de radio 1/n, como X es compacto entonces A_n tiene un subcubrimiento finito, digamos \mathcal{B}_n , note que

$$\bigcup_{i=1}^{\infty} \mathscr{B}_i$$

es una base contable ya que dado $x \in B(x,r)$, existe $n \in \mathbb{N}$ tal que $r > \frac{1}{n}$ para todo r > 0 por la propiedad arquimediana, luego existe $B_{k_n} \in \bigcup_{i=1}^{\infty} \mathscr{B}_i$ tal que $x \in B_{k_n} \subset B(x,r)$

5. *a*) Demuestra que todo espacio métrico con un subconjunto denso contable tiene una base contable.

Demostración. Sea $A \subset X$ tal que $\overline{A} = X$, note que $B = \bigcup_{a \in A} B(a,r)$ tal que $r \in \mathbb{Q}$ es una base contable.

b) Demuestra que todo espacio métrico de Lindelöf tiene una base contable.

Demostración. Considere el cobrimiento $\mathcal{A}_n = \{B\left(x, \frac{1}{n}\right) : x \in X\}$, como (X, d) es Lindelöf entonces \mathcal{A}_n tiene un subcubrimiento contable, luego

$$\bigcup_{i=1}^{\infty} \mathscr{A}_i$$

es un base contable ya que unión contable de contables es contable.

6. Demuestra que \mathbb{R}_ℓ e I_0^2 no son metrizables.

Demostración. Ya que \mathbb{R}_{ℓ} es separable, pero no 2-contable, no puede ser métrico, pues en un espacio métrico estas dos propiedades son equivalenetes.

Ahora, consideremos I_0^2 , por el punto anterior tenemos que en un espacio métrico ser Lindelöf y 2-contable son propiedades equivalentes. De esta manera, si I_0^2 fuera metrizable, como es Lindelöf, sería 2-contable, luego todo subespacio de I_0^2 sería 2-contable y por lo tanto Lindelöf. Sin embargo, el subespacio $[0,1]\times(0,1)$ no es Lindelöf, luego I_0^2 no puede ser metrizable. \square

- 7. ¿Cuáles de nuestros cuatro axiomas de numerabilidad satisface S_{Ω} ? ¿Qué ocurre con \bar{S}_{Ω} ?
- 8. ¿Cuáles de nuestros cuatro axiomas de numerabilidad satisface \mathbb{R}^{ω} con la topología uniforme? Ya que \mathbb{R}^{ω} es métrico, es 1-contable. No es separable pues el conjunto $\{0,1\}^{\omega}$ es discreto en \mathbb{R}^{ω} . Como en espacios métricos ser 2-contable, separable y Lindelöf son equivalentes, éste esapcio solo cumple el primer axioma.
- 9. Sea *A* un subespacio cerrado de *X*. Demuestre que si *X* es Lindelöf, entonces *A* es Lindelöf. Muestre con un ejemplo que si *X* tiene un subconjunto denso numerable, *A* no necesariamente tiene un subconjunto denso numerable.

Demostración. Sea \mathscr{C} un cubrimiento de A, como A es cerrado entonces $\mathscr{C} \cup A^c$ es un cubrimiento de X, como X es Lindelöf entonces tiene un subcubrimiento contable, digamos

$$\bigcup_{i=1}^{\infty} C_i \cup A^C = X,$$

con $C_i \in \mathcal{C}$, luego $A = \bigcup_{i=1}^{\infty} C_i$

El ejemplo en cuestión es el plano de Sorgenfrey: Como el plano es producto finito de espacios separables, es separabe, ahora considere la recta L dada por la ecuación y=-x, luego, si consideramos el abierto $U=[a,1)\times[-a,1)$, vemos que $U\cap L=\{a\}$, por tanto los puntos son abiertos en L y así, L tiene la topología discreta, por tanto no tiene un subconjunto denso contable.

10. Demuestra que si X es un producto numerable de espacios con subconjuntos densos numerables, entonces X tiene un subconjunto denso numerable.

Demostración. Sea $X = \prod_{i=1}^{\infty} X_i$ tal que para cada X_i existe D_i contable denso en X_i . Ahora, sea $x \in X$ fijo pero arbitrario, $x = (x_i)_{i \in \mathbb{N}}$ y sea $K \subset \mathbb{N}$ finito, considere B_K el subespacio de X que consiste de los puntos $y = (y_i)_{i \in \mathbb{N}}$ tales que $y_i = x_i$ para $i \in \mathbb{N} - K$ y $y_i = w_i$ para $i \in K$ donde $w_i \in D_i$, note que B_K es contable, pues es isomorfo a $\prod_{i \in K} D_i$ el cual es contable por ser producto finito de conjuntos contables. Ahora sea

$$D = \bigcup_{\substack{K \subset \mathbb{N} \\ |K| < |\mathbb{N}|}} B_K$$

D es contable pues es unión contable de conjuntos contables. D es denso en X: en efecto, sea $p \in X$ y $U = \prod_{i \in \mathbb{N}} U_i$ una vecindad básica de p, con esto tenemos que $U_i = X_i$ para todos salvo

finitos naturales i, además, en los índices restantes $D_i \cap U_i \neq \emptyset$ pues $\overline{D_i} = X_i$, de esta manera existe $K \subseteq \mathbb{N}$ finito tal que existe $y \in B_K \cap U$, luego $U \cap D \neq \emptyset$, por lo tanto D es denso en X.

11. Sea $f: X \to Y$ una función continua. Demuestra que si X es Lindelöf, o si X tiene un subconjunto denso numerable, entonces f(X) satisface la misma condición.

Demostración. Sea $\{B_{\alpha}\}_{\alpha}$ un cubrimiento de f(X), $A_{\alpha} = f^{-1}(B_{\alpha})$ es abierto en X ya que f es continua y $\{A_{\alpha}\}_{\alpha}$ cubre a X, como X es Lindelöf, entonces existe un subcubrimiento contable $\{f^{-1}(B_{\alpha_i})\}_{i\in\mathbb{N}}$, luego $\{(B_{\alpha_i})\}_{i\in\mathbb{N}}$ es un cubrimiento contable de f(X).

Suponga que X tiene un subconjunto denso contable D, como f es continua entonces

$$f(\overline{D}) = f(X) \subset \overline{f(D)},$$

esto nos da que f(D) es denso en f(X) y como D es contable entonces F(D) también. \Box

- 12. Sea $f: X \to Y$ una aplicación continua y abierta. Demuestra que si X satisface el primer o segundo axioma de numerabilidad, entonces f(X) satisface el mismo axioma.
 - Demostración. i) Sea X un espacio 1-contable, luego dado $x \in X$ existe una base contable de vecindades de x, $\mathscr{B}_x = \{B_i\}_{i \in \mathbb{N}}$. Veamos que $\mathcal{V}_{f(x)} = \{f[B_i]\}_{i \in \mathbb{N}}$ es una base contable de vecindades de f(x): ya que f es abierta $f[B_i]$ es abierto en f(X), más aún como $x \in B_i$, $f[B_i]$ es una vecindad de f(x). Ahora, sea V una vecindad de f(x), por continuidad, existe una vecindad U de X tal que X
 - ii) Sea X un espacio 2-contable, luego tiene una base contable $\mathscr{B} = \{B_i\}_{i \in \mathbb{N}}$. Considere $\mathscr{V} = \{f[B_i]\}_{i \in \mathbb{N}}$ y sea $y \in f(X)$, por definición existe $x \in X$ tal que y = f(x) y como \mathscr{B} es base, existe B_i tal que $x \in B_i$ y por tanto $y \in f[B_i]$. Ahora sean $f[B_{i_1}], f[B_{i_2}] \in \mathscr{V}$, por propiedades de la imagen inversa, se tiene que $f^{-1}[f[B_{i_1}] \cap f[B_{i_2}]] = f^{-1}[f[B_{i_1}]] \cap f^{-1}[f[B_{i_2}]]$, como $B_{i_1} \subseteq f^{-1}[f[B_{i_1}]]$ y $B_{i_2} \subseteq f^{-1}[f[B_{i_2}]]$ tenemos que $B_{i_1} \cap B_{i_2} \subseteq f^{-1}[f[B_{i_1}] \cap f[B_{i_2}]]$ y como \mathscr{B} es base, existe B_{i_3} tal que $B_{i_3} \subseteq B_{i_1} \cap B_{i_2} \subseteq f^{-1}[f[B_{i_1}] \cap f[B_{i_2}]]$, de esta manera $f[B_{i_3}] \subseteq f[B_{i_1}] \cap f[B_{i_2}]$, con lo cual concluimos que \mathscr{V} es base para f(X).

13. Demuestre que si X tiene un subconjunto denso numerable, entonces toda colección de conjuntos abiertos disjuntos en X es numerable.

Demostración. Sea D el conjunto denso numerable, dada una colección de conjuntos abiertos disjuntos \mathscr{C} , tenemos que para cada $C \in \mathscr{C}$ existe un $x_C \in C \cap D$. Note que la función

$$f: \mathcal{C} \longrightarrow D$$
$$C \longmapsto f(C) = x_C$$

es inyectiva ya que si $U, V \in \mathcal{C}$ son tal que $U \neq V$, entonces $U \cap V = \emptyset$ y por tanto $x_U \neq x_V$. Esto nos da que $|\mathcal{C}| \leq |D| \leq \aleph_0$

14. Demuestra que si X es Lindelöf y Y es compacto, entonces $X \times Y$ es Lindelöf.

Demostración. Sea \mathscr{C} un cubrimiento por abiertos de $X \times Y$, como Y es compacto tenemos que para cada $x \in X$, $\{x\} \times Y$ es compacto y \mathscr{C} lo cubre, luego existe un subcubrimiento finito $C_x = \{C_i\}_{i \le n}$ además $\bigcup C_x$ es un abierto que contiene a $\{x\} \times Y$, por lo tanto, aplicando el lema del tubo, existe $W_x \subseteq X$ abierto tal que $W_x \times Y \subseteq \bigcup C_x$, así $\{W_x\}_{x \in X}$ es un cubrimiento por abiertos de X, ya que X es Lindelöf obtenemos un subcubrimiento contable $\{W_i\}_{i \in \mathbb{N}}$, ahora, como para cada $W_i \times Y$ existe un subcubrimiento finito de \mathscr{C} , la unión de estos cubrimientos cubre a $X \times Y$, y como es unión contable de conjuntos finitos, es contable. □

15. Considera \mathbb{R}^I con la métrica uniforme, donde I = [0,1]. Sea $\mathscr{C}(I,\mathbb{R})$ el subespacio de funciones continuas. Demuestra que $\mathscr{C}(I,\mathbb{R})$ tiene un subconjunto denso numerable, y por lo tanto una base numerable.

[Sugerencia: Considera aquellas funciones continuas cuyos gráficos consisten en un número finito de segmentos de línea con extremos racionales.]

- 16. *a*) Demuestra que el espacio producto \mathbb{R}^I , donde I = [0, 1], tiene un subconjunto denso numerable.
 - b) Demuestra que si J tiene cardinalidad mayor que $\mathscr{P}(\mathbb{Z}_+)$, entonces el espacio producto \mathbb{R}^J no tiene un subconjunto denso numerable.

[Sugerencia: Si D es denso en \mathbb{R}^J , define $f: J \to \mathcal{P}(D)$ por la ecuación $f(\alpha) = D \cap \pi_{\alpha}^{-1}((a,b))$, donde (a,b) es un intervalo fijo en \mathbb{R} .]

- *17. Considera \mathbb{R}^{ω} con la topología de la caja. Sea \mathbb{Q}^{∞} el subespacio que consiste en secuencias de racionales que terminan en una cadena infinita de ceros. ¿Cuáles de nuestros cuatro axiomas de numerabilidad satisface este espacio?
- *18. Sea *G* un grupo topológico de primera numerabilidad. Demuestra que si *G* tiene un subconjunto denso numerable, o es Lindelöf, entonces *G* tiene una base numerable.

[Sugerencia: Sea $\{B_n\}$ una base numerable en e. Si D es un subconjunto denso numerable de G, demuestra que los conjuntos dB_n , para $d \in D$, forman una base para G. Si G es Lindelöf, elige para cada G un conjunto numerable G tal que los conjuntos G para G para G cubran G Demuestra que cuando G recorre G, estos conjuntos forman una base para G.]