Отчет по Лабораторной работе №16

Дисциплина: Имитационное моделирование

Шошина Евгения Александровна, НФИ-01-22

Содержание

Цель работы	5
Задание	6
Теоретическое введение	7
Выполнение лабораторной работы	8
Выводы	19
Список литературы	20

Список иллюстраций

1	Модель для первой стратегии обслуживания	8
2	Результат моделирования для первой стратегии обслуживания	9
3	Модель для второй стратегии обслуживания	9
4	Результат моделирования для второй стратегии обслуживания	10
5	Сравнительная таблица	10
6	Модель для первой стратегии обслуживания с одним пропускным	
-	пунктом	11
7	Результат моделирования для первой стратегии обслуживания с	
_	одним пропускным пунктом	12
8	Модель для первой стратегии обслуживания с тремя пропускными	
	пунктами	13
9	Результат моделирования для первой стратегии обслуживания с	
	тремя пропускными пунктами	14
10	Модель для первой стратегии обслуживания с четырьмя пропуск-	
	ными пунктами	15
11	Результат моделирования для первой стратегии обслуживания с	
	четырьмя пропускными пунктами	16
12	Модель для второй стратегии обслуживания с тремя пропускными	
	пунктами	16
13	Результат моделирования для второй стратегии обслуживания с	
	тремя пропускными пунктами	17
14	Модель для второй стратегии обслуживания с четырьмя пропуск-	
	ными пунктами	17
15	Результат моделирования для второй стратегии обслуживания с	
	четырьмя пропускными пунктами	18

Список таблиц

Цель работы

Определить: - характеристики качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска; - наилучшую стратегию обслуживания автомобилей на пункте пограничного контроля; - оптимальное количество пропускных пунктов.

Задание

- 1. Составить модель для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель
- 2. Составить модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом;
- 3. Свести полученные статистики моделирования в таблицу
- 4. По результатам моделирования сделать вывод о наилучшей стратегии обслуживания автомобилей;
- 5. Изменив модели, определить оптимальное число пропускных пунктов (от 1 до 4) для каждой стратегии при условии, что:
- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
- среднее число автомобилей, одновременно находящихся на контрольно-пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин

Теоретическое введение

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель: "'GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей TEST LE QOther1, QOther2,Obsl $_2$; длина оч. 1<= длине оч. 2 TEST E QOther1, QOther2,Obsl $_1$; длина оч. 1= длине оч. 2 TRANSFER 0.5,Obsl $_1$,Obsl $_2$; длины очередей равны, ; выбираем произв. пункт пропуска ; моделирование работы пункта 1 Obsl $_1$ QUEUE Other1 ; присоединение к очереди 1 SEIZE punkt1 ; занятие пункта 1 DEPART Other1 ; выход из очереди 1 ADVANCE 4,3 ; обслуживание на пункте 1 RELEASE punkt1 ; освобождение пункта 1 TERMINATE ; автомобиль покидает систему

; моделирование работы пункта 2 Obsl_2 QUEUE Other2; присоединение к очереди 2 SEIZE punkt2; занятие пункта 2 DEPART Other2; выход из очереди 2 ADVANCE 4,3; обслуживание на пункте 2 RELEASE punkt2; освобождение пункта 2

TERMINATE ; автомобиль покидает систему ; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта, ; указывающего на окончание рабочей недели; (7 дней х 24 часа х 60 мин = 10080 мин) ТЕRMINATE 1; остановить моделирование START 1; запуск процедуры моделирования "'

Выполнение лабораторной работы

1. Составили модель для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами (рис. [-@fig:001]).

```
GENERATE (Exponential(1,0,1.75));
TEST LE Q$Other1,Q$Other2,Obs1_2;
TEST E Q$Other1,Q$Other2,Obsl 1;
TRANSFER 0.5, Obsl 1, Obsl 2;
Obsl 1 QUEUE Other1 ;
SEIZE punkt1 ;
DEPART Other1 ;
ADVANCE 4,3;
RELEASE punkt1 ;
TERMINATE
Obsl 2 QUEUE Other2;
SEIZE punkt2 ;
DEPART Other2 ;
ADVANCE 4,3;
RELEASE punkt2 ;
TERMINATE
GENERATE 10080 ;
TERMINATE 1 ;
START 1 ;
```

Рис. 1: Модель для первой стратегии обслуживания

Результат моделирования для первой стратегии обслуживания

	START TIME 0.000		IME BLOCKS		STORAGES 0	
	NAME OBSL_1 OBSL_2 OTHER1 OTHER2 PUNKT1 PUNKT2		VALUE 5.000 11.000 10000.000 10001.000 10003.000 10002.000			
LABEL	LO	C BLOCK TYPE	ENTRY COL	INT CURRENT C	OUNT RETRY	
	1	GENERATE	5853	C	0	
	2	TEST	5853	C	0	
	3	TEST	4162	C	0	
	4	TRANSFER	2431	C	0	
OBSL 1	5	QUEUE	2928	387	0	
_	6	SEIZE	2541	C	0	
	7	DEPART	2541	C	0	
	8	ADVANCE	2541	1	0	
	9	RELEASE	2540	C	0	
	10	TERMINATE	2540	C	0	
OBSL 2	11	QUEUE	2925	388	0	
	12	SEIZE	2537	C	0	
	13	DEPART	2537	C	0	
	14	ADVANCE	2537	1	0	
	15	RELEASE	2536	C	0s	
	16	TERMINATE	2536	C	0	
	17		1	C	0	
	18	TERMINATE	1	C	0	
FACILITY	ENTRI	ES UTIL. AVE	. TIME AVAII	. OWNER PENE	INTER RETRY	DELA
PUNKT2	253	7 0.996	3.957 1	5078 0	0 0	38
PUNKT1	254	0.997	3.955 1	5079 0	0 0	38
OUEUE	MAX	CONT. ENTRY EN	TRY(0) AVE.C	CONT. AVE.TIM	E AVE.(-0)	RETR
OTHER1		387 2928		98 644.10		
OTHER2		388 2925		14 644.82		

Рис. 2: Результат моделирования для первой стратегии обслуживания

2. Составили модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом;(рис. [-@fig:003]).

```
Pie Edit Search View Command Window Help

punkt STORAGE 2

GENERATE (Exponential(1,0,1.75));

QUEUE Other;
ENTER punkt,1;
DEPART Other;
ADVANCE 4,3;
LEAVE punkt,1;S
TERMINATE;

GENERATE 10080;
TERMINATE 1;
START 1;
```

Рис. 3: Модель для второй стратегии обслуживания

Результат моделирования для второй стратегии обслуживания

	GPS	S World	i Simu	lation	Repor	t - Un	title	d Model 1	.13.1	
		субба	ота, м	ая 24,	2025	19:54:	12			
	STADE	TIME		END	TIME	BLOCK		CILITIES	STORAGES	
		.000						0	31URAGES	
	U	.000		1008	0.000	9		U	1	
	NAM	F				VALUE				
	OTHER				100	01.000				
	PUNKT					00.000				
	FORKI				100	00.000				
LABEL		LOC	BLOC	K TYPE	E	NTRY C	OUNT	CURRENT C	OUNT RETRY	
		1	GENE	RATE		5719		0	0	
		2	QUEU	E		5719		668	0	
		3	ENTE	R		5719 5051		0	0	
		4	DEPA	RT		5051		0		
		5	ADVA			5051		2	0	
		6	LEAV	E		5049		0	0	
		7	TERM	INATE		5049		0	0	
		8	GENE	RATE		1		0	0	
		9	TERM	INATE		1			0	
OUEUE		W2.V							E AVE.(-0	
OTHER									8 607.56	
OIHER		668	668	5/19	4	344	.466	607.13	8 607.56	2 0
STORAGE		CAD	DEM	WTN W		NEDIEC	2111	NIE C	UTIL. RETRY	DELVA
PUNKT									1.000 0	
PUNKI		4	0	U	4	2021	μ	2.000	1.000	000
FFC XN	PRT	BD		ASSEM	CURR	FNT N	FXT	PARAMETER	VALUE	
5721	0	10080	466	5721	0					
5051	0	10081	269	5051	5					
5052	0	10083	431	5052	5		6			
5722		20160.								
	233		1111							

Рис. 4: Результат моделирования для второй стратегии обслуживания

3. Свели полученные статистики моделирования в таблицу (рис. [-@fig:005]).

Показатель				
Показатель	пункт 1	пункт 2	В целом	стратегия 2
Поступило автомобилей	2928	2925	5853	6719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина очереди	393	393	786	668
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Рис. 5: Сравнительная таблица

- 4. По результатам моделирования сделали вывод, что наилучшей стратегией обслуживания автомобилей является "стратегия 2".
- 5. Изменив модели, определили оптимальное число пропускных пунктов (от 1 до 4):

Для первой стратегии - 4 Для второй стратегии - 3 и 4

• Составили модель для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются одним пропускным пунктом

```
GENERATE (Exponential(1,0,1.75));

QUEUE Other; присоединение к очереди 1
SEIZE punkt; занятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
RELEASE punkt; освобождение пункта 1
TERMINATE;

GENERATE 10080;
TERMINATE 1;
START 1;
```

Рис. 6: Модель для первой стратегии обслуживания с одним пропускным пунктом

Результат моделирования для первой стратегии обслуживания с одним пропускным пунктом

			Simulation					
		суббо	та, мая 24,	2025 2	0:10:05			
	START	TIME	END	TIME	BLOCKS	FACILITIES	STORAGES	
		0.000	1008	0.000	9	1	0	
	NAI	ΜE		Ţ				
	OTHER			1000				
	PUNKT			1000	1.000			
LABEL			BLOCK TYPE					č
		1	GENERATE QUEUE		5744		0 0	
		2	QUEUE SEIZE DEPART		5744	323		
		3	SEIZE		2511		0 0	
					2511		0 0	
			ADVANCE				1 0	
		6	RELEASE		2510		0 0	
			TERMINATE		2510		0 0	
			GENERATE		1		0 0	
		9	TERMINATE		1		0 0	
FACILITY		ENTRIES	UTIL. A	VE. TIM	E AVATI	. OWNER PEN	D INTER RE	PRY DELAY
PUNKT			1.000					
QUEUE		MAX O	ONT. ENTRY I	ENTRY (C) AVE.O	ONT. AVE.TI	ME AVE.(-	-0) RETRY
OTHER		3234 3	233 5744	1	1617.6	76 2838.8	19 2839.	313 0
			ASSEM			T PARAMETE	R VALUE	
2512	0	10080.	255 2512	5	6			
5746	0		384 5746					
5747	0	20160	000 5747	0	8			

Рис. 7: Результат моделирования для первой стратегии обслуживания с одним пропускным пунктом

• Составили модель для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются тремя пропускными пунктами

```
GENERATE (Exponential(1,0,1.75));
TRANSFER 0.33,go,Obsl_3;
go TRANSFER 0.5,Obsl_1,Obsl_2 ;
; моделирование работы пункта 1
Obsl_1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punktl; занятие пункта 1
DEPART Other1; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
RELEASE punktl; освобождение пункта 1
TERMINATE; автомобиль покидает систему
  моделирование работы пункта 2
Obsl_2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 3
Obsl_3 QUEUE Other3 ; присоединение к очереди 3
SEIZE punkt3 ; занятие пункта 3
DEPART Other3 ; выход из очереди 3
ADVANCE 4,3 ; обслуживание на пункте 3
RELEASE punkt3 ; освобождение пункта 3
TERMINATE ; автомобиль покидает систему
GENERATE 10080 ;
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 8: Модель для первой стратегии обслуживания с тремя пропускными пунктами

Результат моделирования для первой стратегии обслуживания с тремя пропускными пунктами

LABEL	LOC	BLO	CK TY	PΕ	ENTR'	Y COUNT	CURRE	ENT CO	T/IUC	RETRY	
	1	GEN	ERATE		5	547		0		0	
	2	TRA	NSFER		5	547		0		0	
GO	3	TRA	NSFER		3	682		0		0	
OBSL 1	4	QUE	UE		1	853		1		0	
	5	SEI	ZE		1	852		0		0	
	6	DEP	ART		1	852		0		0	
	7	ADV.	ANCE		1	852		1		0	
	8	REL	EASE		1	851		0		0	
	9	TER	MINATE	2	1	851		0		0	
OBSL 2	10	QUE	UE		1	829		0		0	
_	11	SEI	ZE		1	829		0		0	
	12	DEP	ART		1	829		0		0	
	13	ADV.	ANCE		1	829		0		0	
	14	REL	EASE		1	829		0		0	
	15	TER	MINATE	2	1829					0	
OBSL 3	16	QUE	UE		1865			3		0	
	17	SEI	IZE 1862			0		0			
	18	DEP	ART		1	862		0		0	
	19	ADV.	ANCE		1	862		1		0	
	20	REL	EASE		1	861		0		0	
	21	TER	MINATE	2	1	861		0		0	
	22	GEN	ERATE			1		0		0	
	23	TER	MINATE	2		1		0		0	
FACILITY	ENTRIES	יוע	TT.	AVE.	TIME :	AVATI	OWNER	PEND	TNTE	R RETRY	DELAY
PUNKT2	1829				3.952		0				0
PUNKT3	1862	0	.740		4.006	1	5534	0	0	0	3
PUNKT1	1852	0	.727		3.957	1	5546	0	0	0	1
QUEUE	MAX C	ONT.	ENTR	ENT	RY(0)	AVE.CON	T. AVE	E.TIME	E A	VE. (-0)	RETRY
OTHER2	11	0	1829		508					8.482	
OTHER3	13	3	1869		513	1.134	1	6.132	2	8.458	0
OTHER1	9	1	1853	3	529	0.929)	5.055	5	7.075	0

Рис. 9: Результат моделирования для первой стратегии обслуживания с тремя пропускными пунктами

• Составили модель для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются четырьмя пропускными пунктами

```
GENERATE (EXPONENTIAL (1,0,1.75));

TRANSFER 0.5,a,b;
a TRANSFER 0.5,obsl_1,obsl_2;
b TRANSFER 0.5,obsl_3,obsl_4;

; MODENINOBARNE PAGOTM NYHKTA 1
OBSl_1 (QUEUE Other1; npucoedinhene k overedu 1
SEIZE punkt1; Sahstue nyhkta 1
DEPART Other1; BMNOD M3 overedu 1
ADVANCE 4,3; obcnyxubarne ha nyhkta 1
TERMINATE; abtomobush nokudaet cuctemy

; MODENINOBARNE PAGOTM NYHKTA 2
Obsl_2 QUEUE Other2; npucoedinhene k overedu 2
SEIZE punkt2; Sahstue nyhkta 2
DEPART Other2; BMNOD M3 overedu 2
ADVANCE 4,3; obcnyxubarne ha nyhkta 2
TERMINATE; abtomobush nokudaet cuctemy

; MODENINOBARNE CUCTEMY

; MODENINOBARNE PAGOTM NYHKTA 3
Obsl_3 QUEUE Other3; npucoedinhene k overedu 3
SEIZE punkt3; Sahstue nyhkta 3
Obsl_3 QUEUE Other3; npucoedinhene k overedu 3
SEIZE punkt3; Sahstue nyhkta 3
DEFART Other3; BMNOD M3 overedu 3
ADVANCE 4,3; obcnyxubarne ha nyhkta 3
TERMINATE; abtomobush nokudaet cuctemy

; MODENINOBARNE PAGOTM NYHKTA 4
Obsl_4 QUEUE Other4; npucoedinhene k overedu 4
SEIZE punkt4; Sahstue nyhkta 4
Obsl_4 QUEUE Other4; npucoedinhene k overedu 4
ADVANCE 4,3; obcnyxubarne na nyhkta 4
OBEPART Other4; BMNOD M3 overedu 4
ADVANCE 4,3; obcnyxubarne na nyhkta 4
TERMINATE; abtomobush nokudaet cuctemy
```

Рис. 10: Модель для первой стратегии обслуживания с четырьмя пропускными пунктами

Результат моделирования для первой стратегии обслуживания с тремя пропускными пунктами

LABEL	LOC	BLOCK TYP	E EN	TRY COUNT	CURRE	NT COU	NT R	ETRY	
	1	GENERATE		5622		0		0	
	2	TRANSFER		5622		0		0	
A	3	TRANSFER		2831		0		0	
В	4	TRANSFER		2791		0		0	
OBSL 1	5	QUEUE		1465		0		0	
1 5		SEIZE		1465		0		0	
	7	DEPART		1465		0		0	
		ADVANCE		1465		1		0	
	9	RELEASE		1464		0		0	
	10	TERMINATE		1464		0		0	
OBSL 2	11	QUEUE		1366		0		0	
=	12	SEIZE		1366		0		0	
	13	DEPART		1366		0		0	
	14	ADVANCE		1366		0		0	
	15	RELEASE		1366		0		0	
	16	TERMINATE		1366		0		0	
OBSL 3	17	QUEUE		1378		0		0	
	18	SEIZE		1378		0		0	
	19	DEPART		1378		0		0	
	20	ADVANCE		1378		0		0	
	21	RELEASE		1378		0		0	
	22	TERMINATE		1378		0		0	
OBSL 4	23	QUEUE		1413		0		0	
-		SEIZE		1413		0		0	
	25	DEPART		1413		0		0	
	26	ADVANCE		1413		1		0	
	27	RELEASE		1412		0		0	
	28	TERMINATE		1412		0		0	
	29	GENERATE		1		0		0	
	30	TERMINATE		1		0		0	
FACILITY	ENTRIES	UTIL.	AVE. TIM	AVAIL.	OWNER	PEND I	NTER	RETRY	DELAY
PUNKT4		0.557		71 1					0
PUNKT3		0.545		39 1	0		0		
PUNKT2	1366			93 1	0				0
PUNKT1		0.584			5621	0			0
	2.00	0.007	110.		0022				
QUEUE		ONT. ENTRY							
OTHER4		0 1413			5	2.958		5.325	
OTHER3	8	0 1378	655	0.34	5	2.527		4.816	
OTHER2	6	0 1366	625	0.36	3	2.676		4.934	
OTHER1	6	0 1465	590	0.49	2	3.385		5.667	0

Рис. 11: Результат моделирования для первой стратегии обслуживания с четырьмя пропускными пунктами

• Составили модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются тремя пропускными пунктами

```
File Edit Search View Command Window Help

Disconsisted A ;

GENERATE (Exponential (1,0,1.75));

; моделирование работы пункта 1

QUEUE Other; присоединение к очереди 1

ENTER punkt; занятие пункта 1

DEPART Other; выход из очереди 1

ADVANCE 4,3; обслуживание на пункте 1

LEAVE punkt; освобождение пункта 1

TERMINATE; автомобиль покидает систему

GENERATE 10080;

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 12: Модель для второй стратегии обслуживания с тремя пропускными пунктами

Результат моделирования для первой стратегии обслуживания с тремя пропускными пунктами

Рис. 13: Результат моделирования для второй стратегии обслуживания с тремя пропускными пунктами

 Составили модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются четырьмя пропускными пунктами

Рис. 14: Модель для второй стратегии обслуживания с четырьмя пропускными пунктами

Результат моделирования для первой стратегии обслуживания с тремя пропускными пунктами

	010							led Model			
		суббо	Ta, N	иая 24,	2025	21:0	1:02				
	START	TIME		END	TIME	BLO	CKS I	FACILITIE	S STO	RAGES	
		0.000		10080				0		1	
	NAM	1E				VALU					
	OTHER				10	001.0	00				
	PUNKT					0.00					
LABEL		LOC	BLOG	K TYPE		ENTRY	COUNT	CURRENT	COUNT	RETRY	
		1	GENE	ERATE		57	19		0	0	
		2	QUE	JE		57	19		0	0	
		3	ENTE	CR.		57	19		0	0	
		4	DEPA	ART		57	19		0	0	
		5	ADVA	ANCE		57	19		4	0	
		6	LEAV	Æ		57	15		0	0	
		7	TERM	MINATE		57	15		0	0	
				ERATE			1		0	0	
		9	TERM	MINATE			1		0	0	
QUEUE		MAX C	ONT.	ENTRY E	ENTRY	(0) A	VE.CO	NT. AVE.T	IME	AVE. (-0	RET
OTHER								1 0.			
STORAGE		CAP.	REM.	MIN. M	AX.	ENTRI	ES AVI	L. AVE.C	. UTIL	. RETRY	DELA
PUNKT		4	0	0	4	571	9 1	2.253	0.56	3 0	0
FEC XN								PARAMET	ER	VALUE	
5718		10082.									
5717	0	10082.									
5719	0	10083.	393	5719		5	6				
5721	0	10084.	393	5721		0	1				
5720	0	10085.	162	5720		5	6				
	0	20160	000	5722		0	0				

Рис. 15: Результат моделирования для второй стратегии обслуживания с четырьмя пропускными пунктами

Выводы

Определили: - характеристики качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска; - наилучшую стратегию обслуживания автомобилей на пункте пограничного контроля; - оптимальное количество пропускных пунктов.

Список литературы

- 1. Постановка задачи оптимизации и численные методы ее решения [Электронный ресурс]. URL: https://hub.exponenta.ru/post/postanovka-zadachi-optimizatsii-i-chislennye-metody-ee-resheniya356 (дата обращения: 03.01.2023).
- 2. Применение многомерной математической модели для решения задачи оптимизации стратегии технического обслуживания сложных систем [Электронный ресурс]. URL: https://infourok.ru/primenenie-mnogomernoy-matematicheskoy-modeli-dlya-resheniya-zadachi-optimizacii-strategii-tehnicheskogo-obsluzhivaniya-slozhnih-3534388.html (дата обращения: 03.01.2023).
- 3. Бикритериальные задачи оптимизации обслуживания линейно-рассредоточенной группировки стационарных объектов [Электронный ресурс]. URL: https://cyberleninka.ru/article/n/bikriterialnye-zadachi-optimizatsii-obsluzhivaniya-lineyno-rassredotochennoy-gruppirovki-statsionarnyh-obektov (дата обращения: 03.01.2023).
- 4. Таненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб.: Питер, 2015. 1120 с. (Классика Computer Science).
- 5. Robbins A. Bash Pocket Reference. O'Reilly Media, 2016. 156 p.