Jason Downing Email: jason_downing@student.uml.edu Foundations of Computer Science Homework # - Chapter 4 + Chapter 5 12/1/2016

Since I started this assignment early, and I had some time left before the assignment was due, I decided to do the following **Extra Credit** problems:

1. ??

4.2 Consider the problem of determining whether a DFA and a regular expression are equivalent. Express this problem as a language and show that it is decidable.

We can describe this problem as the language: $AB_{DFA,REX} = \{\langle D,R \rangle | D \text{ is a DFA, R is a regular expression and } L(D) = L(R)\}$. The following Turing Machine (TM) M decides $AB_{DFA,REX}$:

M = "On input $\langle D, R \rangle$:

- 1. Convert the regular expression R to an equivalent DFA A using the procedure that is given in Theorem 1.28.
- 2. Use the TM C for deciding $AB_{DFA,REX}$ in Theorem 4.5, on input $\langle D,A\rangle$.
- 3. If R accepts, accept.
- 4. If R rejects, reject."

4.3 Let $ALL_{DFA} = \{\langle A \rangle | A \text{ is a } DFA \text{ and } L(A) = \sum^* \}$. Show that ALL_{DFA} is decidable.

Let $ALL_{DFA} = \{\langle A \rangle | A \text{ is a } DFA \text{ that recognizes } \sum^*$. The TM M decides ALL_{DFA} :

 $M = "On input \langle A \rangle$ where A is a DFA:

- 1. Construct DFA B that recognizes $\overline{L(A)}$ which is described in the 1.10 exercise.
- 2. Run TM T from Theorem 4.4 on the input $\langle B \rangle$, where T will decide $E_D F A$.
- 3. If T accepts, accept.
- 4. If T rejects, reject."
- **4.4** Let $A\epsilon_{CFG} = \{\langle G \rangle | G \text{ is a } CFG \text{ that generates } \epsilon \}$. Show that $A\epsilon_{CFG}$ is decidable.

Let $A\epsilon_{CFG} = \{\langle G \rangle | G \text{ is a } CFG \text{ that generates } \epsilon \}$. The following TM M will decide $A\epsilon_{CFG}$:

M = "On input $\langle G \rangle$ where G is a CFG:

- 1. Run TM S from Theorem 4.6 on input $\langle G, \epsilon \rangle$, where S is a decider for $A\epsilon_{CFG}$.
- 2. If S accepts, accept.
- 3. If S rejects, reject."

4.6 Let X be the set $\{1, 2, 3, 4, 5\}$ and let Y be the set $\{6, 7, 8, 9, 10\}$. We describe the functions $f: X \to Y$ and $g: X \to Y$ in the following tables. Answer each part and give a reason for each negative answer.

	f(n)	n	g(n)
	6	1	10
2 3 4 5	7	2	9
3	6	3	8
4	7	4	7
5	6	5	6

a. Is f one-to-one?

Answer: No, f is not one-to-one because we can find a case that shows it is not. Which is when f(1) = f(3), as well as f(2) = f(4) and f(3) = f(5).

b. Is f onto?

Answer: No, f is not onto because there is no case that exists where $x \in X$ is f(x) = 10.

c. Is f a correspondence?

Answer: No, f is not a correspondence because f is not one-to-one and onto.

d. Is g one-to-one?

Answer: Yes, g is one-to-one.

e. Is q onto?

Answer: Yes, g is onto.

f. Is g a correspondence?

Answer: Yes, g is a correspondence because g is one-to-one and onto.

4.7 Let \mathcal{B} be the set of all infinite sequences over $\{0,1\}$. Show that \mathcal{B} is uncountable using a proof by diagonalization.

We can assume that B is countable, and that a correspondence $f: \mathcal{N} \to \mathcal{B}$ exists. We can then construct x in \mathcal{B} that does not pair with anything in \mathcal{N} . We can then let $x = x_1, x_2, \ldots$ Let $x_i = 0$ if we find that $f(i)_i = 1$, and we can also say that $x_i = 1$ if we find that $f(i)_i = 0$ where $f(i)_i$ is the ith bit of f(i). This will let us make sure that x is not in f(i) for any i because it is different then the f(i) in the ith symbol. As a result, a contradiction will occur, and this proves that \mathcal{B} is uncountable.

4.8 Let $T = \{(i, j, k) | i, j, k \in \mathcal{N}\}$. Show that T is countable.

We can demonstrate that T is one-to-one with the following function: $f: T \to \mathcal{N}$. We can let $f(i,j,k) = 2^i 3^j 5^k$. The function f is one-to-one because when $a \neq b$, $f(a) \neq f(b)$. As a result, T is countable.

5.1 Show that EQ_{CFG} is undecidable.

We can show that EQ_{CFG} is undecidable by showing a contradiction for EQ_{CFG} that is decidable. We can construct a decider, D, for $ALL_{CFG} = \{\langle G \rangle | G \text{ is a } CFG \text{ and } L(G) = \sum^* \}$ that is as follows:

D = "On input $\langle G \rangle$:

- 1. Construct a CFG C such that $L(C) = \sum^*$.
- 2. Run the decider for EQ_{CFG} on the input $\langle G, C \rangle$
- 3. If it accepts, we accept.
- 4. If it rejects, we reject."

5.2 Show that EQ_{CFG} is co-Turing-recognizable.

We can show that EQ_{CFG} is co-Turing-recognizable by showing a Turing Machine (TM) T which will recognize the complement of EQ_{CFG} :

$$T =$$
 "On input $\langle G, H \rangle$:

- 1. Generate the strings $x \in \sum^*$ lexicographically.
- 2. Test each string x and see whether $x \in L(G)$ and $x \in L(H)$ are true, using the algorithm for A_{CFG} .
- 3. If we find that one of the tests accepts, and the other rejects, then we mark it as accept.
- 4. Otherwise, we continue."

5.3 Find a match in the following instance of the Post Correspondence Problem:

$$\{\left[\frac{ab}{abab}\right], \left[\frac{b}{a}\right], \left[\frac{aba}{b}\right], \left[\frac{aa}{a}\right]\}$$

One possible match is:

$$[\frac{ab}{abab}] \quad [\frac{ab}{abab}] \quad [\frac{aba}{b}] \quad [\frac{b}{a}] \quad [\frac{b}{a}] \quad [\frac{aa}{a}] \quad [\frac{aa}{a}]$$

5.4 If $A \leq_m B$, and B is a regular language, does that imply that A is a regular language? Why, or why not?

Answer: No, this does not imply that A is a regular language. One example that shows it is not a regular language is: $\{a^nb^nc^n|n \geq 0\} \leq_m \{a^nb^n|n \geq 0\}$

The reduction is what first tests whether the input is a member of $\{a^nb^nc^n|n \ge 0\}$. If it is a member, then it outputs the string ab, and if it is not a member then it just outputs the string a.

EXTRA CREDIT SECTION BEGINS HERE
