数字逻辑设计

王鸿鹏

计算机科学与技术学院 wanghp@hit.edu.cn

时序逻辑电路的分析方法

确定系统变量(输入变量、输出变量、状态变量)

- ① 列驱动方程(控制函数)
- ② 列输出方程(输出函数)
- ③ 列状态方程(次态方程)
- ④ 列写状态转换表
- ⑤ 画出状态图
- ⑥ 画出波形图(如必要)

• 异步时序电路

同步时序逻辑电路分

$$J_1=K_1=1$$
 $Q_2^{n+1}=X\oplus Q_1^{n}\oplus Q_2^{n}$

$$J_2=K_2=X\oplus Q_1^n$$
 $Q_1^{n+1}=\overline{Q_1^n}$

<u>\(\q 1 \) . </u>	1110						
顼	沙	Q ₂ ⁿ⁺¹ Q ₁ ⁿ⁺¹ / Z					
Q ₂ n	Q_1^n	X=0	X=1				
0	0	01/0	11/1				
0	1	10/0	00/0				
1	0	11/0	01/0				
1	1	00/1	10/0				

状态转换表

 $Z = X \cdot CP \cdot Q_2 \overline{{}^{n}Q_1} \overline{{}^{n} \cdot X} \cdot CP \cdot Q_2 {}^{n}Q_1 {}^{n}$

 $= X \cdot CP \cdot \overline{Q_2}^n \overline{Q_1}^n + \overline{X} \cdot CP \cdot Q_2^n Q_1^n$

输入	现	态	次	态	输出
Х	$\mathbf{Q_2}^{n}$	Q_1^n	$\mathbf{Q}_2^{\mathrm{n+1}}$	\mathbf{Q}_1^{n+1}	Z
0	0	0	0	1	0
0	0	1	1	0	0
0	1	0	1	1	0
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	0	1	0
1	1	1	1	0	0
	•	•			

例1 同步时序逻辑电路分析

④ 状态转换表

现	态	$Q_2^{n+1} Q_1^{n+1} / Z$					
Q ₂ n	$\mathbf{Q_1}^{\mathbf{n}}$	X=0	X=1				
0	0	01/0	11/1				
0	1	10/0	00/0				
1	0	11/0	01/0				
1	1	00/1	10/0				

⑤ 状态图

结论: 模4可逆计数器

■ X=0: 加计数

■ X=1: 减计数

Z: 进位和借位输出标志

同步时序逻辑电路分析

$$D_4 = Y_3^n \qquad Y_4^{n+1}$$

$$D_3 = Y_2^n$$

$$D_2 = Y_1^n$$

$$D_1 = \overline{Y_3^n \overline{Y_1}^n} \overline{Y_4^n}$$

$$= Y_1^n \overline{Y_4^n} + \overline{Y_3^n} \overline{Y_4^n}$$

$\mathbf{Y}_4^{n+1} = \mathbf{Y}_3^n$

$$Y_3^{n+1} = Y_2^n$$

$$Y_2^{n+1} = Y_1^n$$

$$Y_1^{n+1} = Y_1^n \overline{Y_4^n} + \overline{Y_3^n} \overline{Y_4^n}$$

状态转换表

和太

	现	<u>ک۲</u>			かち			
Y_4^n	Y_3^n	$\mathbf{Y_2}^{n}$	Y ₁ ⁿ	Y_4^{n+1}	Y_3^{n+1}	Y ₂ n+1	Y ₁ n+1	
0	0	0	0	0	0	0	1	1
0	0	0	1	0	0	1	1	2
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	1	3
0	1	0	0	1	0	0	0	
0	1	0	1	1	0	1	1	
0	1	1	0	1	1	0	0	
0	1	1	1	1	1	1	1	4
1	0	0	0	0	0	0	0	8
1	0	0	1	0	0	1	0	
1	0	1	0	0	1	0	0	
1	0	1	1	0	1	1	0	
1	1	0	0	1	0	0	0	7
1	1	0	1	1	0	1	0	
1	1	1	0	1	1	0	0	6
1	1	1	1	1	1	1	0	5

次太

マモ ママ

例2 同步时序逻辑电路分析

③ 状态转换表

	现	态			次	态		序号
Y ₄ n	Y ₃ n	Y ₂ ⁿ	Y ₁ n	Y ₄ n+1	Y ₃ n+1	Y ₂ n+1	Y ₁ n+1	
0	0	0	0	0	0	0	1	1
0	0	0	1	0	0	1	1	2
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	1	3
0	1	0	0	1	0	0	0	
0	1	0	1	1	0	1	1	
0	1	1	0	1	1	0	0	
0	1	1	1	1	1	1	1	4
1	0	0	0	0	0	0	0	8
1	0	0	1	0	0	1	0	
1	0	1	0	0	1	0	0	
1	0	1	1	0	1	1	0	
1	1	0	0	1	0	0	0	7
1	1	0	1	1	0	1	0	
1	1	1	0	1	1	0	0	6
1	1	1	1	1	1	1	0	5

④ 状态图

模8计数器(格雷码输出),能够自启动

同步时序逻辑电路分析方法总结

确定系统变量(输入变量、输出变量、状态变量)

- ① 列写三组方程 激励方程(控制函数)、状态方程(次态方程)、输出方程
- ② 列写状态转换表写出所有输入及现态的取值组合; 将各取值组合带入次态方程和输出方程,计算次态和输出 从表中第一行开始,寻找状态转换规律;
- ③ 画出完整的状态图;
- ④ 得出电路功能,并说明能否自启动

例3 异步时序逻辑电路分析

① 输入方程

$$\begin{cases}
J_4 = Y_3^n Y_2^n \\
K_4 = 1 \\
J_3 = K_3 = 1 \\
J_2 = \overline{Y_4}^n, K_2 = 1 \\
J_1 = K_1 = 1
\end{cases}$$

② 次态方程

$$\begin{cases} Y_4^{n+1} = J_4 \overline{Y_4}^n + \overline{K_4} Y_4^n = \overline{Y_4}^n Y_3^n Y_2^n & CP_4 = Y_1 \downarrow \\ Y_3^{n+1} = J_3 \overline{Y_3}^n + \overline{K_3} Y_3^n = \overline{Y_3}^n & CP_3 = Y_2 \downarrow \\ Y_2^{n+1} = J_2 \overline{Y_2}^n + \overline{K_2} Y_2^n = \overline{Y_4}^n \overline{Y_2}^n & CP_2 = Y_1 \downarrow \\ Y_1^{n+1} = J_1 \overline{Y_1}^n + \overline{K_1} Y_1^n = \overline{Y_1}^n & CP_1 \downarrow \end{cases}$$

例3 异步时序逻辑电路分析

② 次态方程

$$\begin{cases} Y_{4}^{n+1} = J_{4}\overline{Y_{4}^{n}} + \overline{K_{4}}Y_{4}^{n} = \overline{Y_{4}^{n}}Y_{3}^{n}Y_{2}^{n} & CP_{4} = Y_{1} \downarrow \\ Y_{3}^{n+1} = J_{3}\overline{Y_{3}^{n}} + \overline{K_{3}}Y_{3}^{n} = \overline{Y_{3}^{n}} & CP_{3} = Y_{2} \downarrow \\ Y_{2}^{n+1} = J_{2}\overline{Y_{2}^{n}} + \overline{K_{2}}Y_{2}^{n} = \overline{Y_{4}^{n}}\overline{Y_{2}^{n}} & CP_{2} = Y_{1} \downarrow \\ Y_{1}^{n+1} = J_{1}\overline{Y_{1}^{n}} + \overline{K_{1}}Y_{1}^{n} = \overline{Y_{1}^{n}} & CP_{1} \downarrow \end{cases}$$

④ 状态图

8421 BCD 码异步加法计数器

③ 状态转换表

◎ 化心状											
现态							时钟				
Y ₄ n	Y ₃ n	Y ₂ n	Y ₁ ⁿ	Y ₄ n+1	Y ₃ n+1	Y ₂ n+1	Y ₁ n+1	cp ₄	cp ₃	cp ₂	cp ₁
0	0	0	0	0	0	0	1	无	无	无	↓
0	0	0	1	0	0	1	0	\downarrow	无	\downarrow	\downarrow
0	0	1	0	0	0	1	1	无	无	无	\downarrow
0	0	1	1	0	1	0	0	\downarrow	\downarrow	\downarrow	\downarrow
0	1	0	0	0	1	0	1	无	无	无	\downarrow
0	1	0	1	0	1	1	0	\downarrow	无	\downarrow	\downarrow
0	1	1	0	0	1	1	1	无	无	无	\downarrow
0	1	1	1	1	0	0	0	\downarrow	\downarrow	\downarrow	\downarrow
1	0	0	0	1	0	0	1	无	无	无	\downarrow
1	0	0	1	0	0	0	0	\downarrow	无	\downarrow	\downarrow
1	0	1	0	1	0	1	1	无	无	无	\downarrow
1	0	1	1	0	1	0	0	\downarrow	\downarrow	\downarrow	\downarrow
1	1	0	0	1	1	0	1	无	无	无	\downarrow
1	1	0	1	0	1	0	0	\downarrow	无	\downarrow	\downarrow
1	1	1	0	1	1	1	1	无	无	无 9	\downarrow
1	1	1	1	0	0	0	0	\downarrow	\downarrow	↓	\downarrow

异步时序逻辑电路分析方法总结

确定系统变量(输入变量、输出变量、状态变量)

- ① 确定每个触发器的时钟由谁供给?
- ② 列写三组方程: 驱动方程、状态方程(次态方程)、输出方程
- ③ 列写状态转换表:
 - a. 从假定(或给定)的某一个初始状态开始,每来一个外输入及外接时钟脉冲,确定与之对应的触发器次态及输出;
 - b. 确定该触发器的状态改变能否给其它触发器提供需要的时钟边沿。若能,则与之相应的其它触发器动作。否则,与之相应的其它触发器 保持;重复该步骤,直到所有触发器的次态都确定为止。
 - c. 该次态成为新的现态,来一个外输入及外接时钟脉冲,重复上述操作,直到所有的2n个现态到次态的转换都已计算完毕;从表中第一行开始,寻找状态转换规律;
- ③ 画出完整的状态图;
- ④ 得出电路功能,并说明能否自启动。

课程目标

- 掌握**布尔代数基础**,具有利用**布尔代数原理及基本逻辑门** 构造**典型逻辑组合部件**的能力
- 掌握**组合逻辑电路**的分析方法及设计方法,具有利用**基本** 逻辑部件及中规模芯片构造组合逻辑电路的能力;
- 掌握**时序逻辑电路**的分析方法及设计方法,具有利用**触发**器、逻辑门、基本逻辑部件构造时序逻辑电路的能力;
- 了解可编程逻辑器件的基本工作原理,具有**利用可编程逻辑器件设计逻辑电路的能力**;
- 培养自主学习的能力,通过查阅器件资料及参考文献,能利用各种基本逻辑部件、中规模芯片及可编程逻辑器件设计一个较为复杂的完整的数字系统。