Visual Servoing TP: Free Camera 3D Pose Control

Erol Ozgur *
January 16, 2014

1 Problem

We want to move a camera from its current Cartesian pose to a desired Cartesian pose (see Fig. 1). We assume that we can measure the Cartesian pose of the camera at every instant of time using a sensor. Please do the following exercises:

Figure 1: Camera pose control. Blue camera shows the initial pose of the camera, and the red camera shows the desired pose of the camera.

- 1. Discuss how to realize this 3D pose control.
- 2. Reformulate the problem mathematically.
- 3. Draw a block diagram of this 3D pose control.

^{*}Author is with Pascal Institute, IFMA, Clermont-Ferrand, France, erol.ozgur@ifma.fr

- 4. Before simulation in matlab, define the steps of the algorithm for this 3D pose control.
- 5. Write the matlab code to simulate this 3D pose control.
- 6. Plot the errors of the 3D pose control versus time.

2 Problem Reformulation

Let Cartesian pose of the object be **X** and it is expressed with respect to a reference fixed frame R and in R. Let the current location be at A and the desired location be at B. Then find a control law $\xi = (\nu, \omega)$ that will update the Cartesian pose **X** of the object from $\mathbf{X}_{A/R}$ to $\mathbf{X}_{B/R}$ while time t goes from initial time t_i to final time t_f .

3 Solution

Let $s(\mathbf{X}) \in \Re^{6 \times 1}$ be the another representation of the Cartesian pose $\mathbf{X} \in \Re^{4 \times 4}$ as follows:

$$\mathbf{X} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}, \qquad s(\mathbf{X}) = \begin{bmatrix} \mathbf{t} \\ \mathbf{u}\theta \end{bmatrix}$$
 (1)

where $\mathbf{u} \theta$ corresponds to the rotation \mathbf{R} . Here \mathbf{u} is a unit rotation axis and θ is the rotation angle around this axis \mathbf{u} .

$$\mathbf{e} = s\left(\left(\mathbf{X}_{B/R}\right)^{-1} * \mathbf{X}_{A(t)/R}\right) = s\left(\mathbf{X}_{A(t)/B}\right)$$
(2)

Taking the time derivative of the error function when it is expressed as \mathbf{e} , allows us to appear the control law ξ as below:

$$\dot{\mathbf{e}} = \mathbf{L}_e \, \xi_{A(t)/B} \tag{3}$$

where \mathbf{L}_e is the interaction matrix between the error dynamics and the control law. We then force the error decrease exponentially towards zero by imposing $\dot{\mathbf{e}} = -\lambda \mathbf{e}$. This yields the control law as follows:

$$\xi_{A(t)/B} = -\lambda \mathbf{L}_e^{-1} \mathbf{e}, \qquad \lambda > 0$$
 (4)

where control law $\xi_{A(t)/B}$ can be explicitly written as below:

$$\xi_{A(t)/B} = \begin{bmatrix} \nu \\ \omega \end{bmatrix}_{A(t)/B} = \begin{bmatrix} -\lambda \mathbf{R}^T \mathbf{t} \\ -\lambda \theta \mathbf{u} \end{bmatrix}_{A(t)/B}$$
 (5)

We should then express the control law $\xi_{A(t)/B}$ with respect to the fixed reference frame R rather than desired pose frame B. This can be done as follows:

$$\xi_{A(t)/R} = \begin{bmatrix} \mathbf{R} & [\mathbf{t}]_{\times} \mathbf{R} \\ \mathbf{0}_{3\times 3} & \mathbf{R} \end{bmatrix}_{B/R} \xi_{A(t)/B}$$
 (6)

where rotation matrix \mathbf{R} and the translation vector \mathbf{t} come from the Cartesian pose $\mathbf{X}_{B/R}$ of the desired location at B expressed with respect to the fixed reference frame at R. Notation $[\mathbf{t}]_{\times}$ implies the skew symmetric matrix of the given translation vector \mathbf{t} .

Afterwards, we can update the current Cartesian pose of the camera as follows:

$$\mathbf{X}_{A(t+\Delta t)/R} = \begin{bmatrix} \Delta t \left[\omega\right]_{\times} & \Delta t \nu \\ \mathbf{0}_{1\times 3} & 1 \end{bmatrix}_{A(\Delta t)/R} \mathbf{X}_{A(t)/R}$$
(7)

4 Matlab Simulation

Open the file "FreeCamera3DPoseControlTP.m", which is located in the folder "tp_matlab_student", and then complete it with your servoing algorithm to simulate the 3D pose control.

Appendix - Matlab Functions

- $\mathbf{x} = \mathbf{uthetat2dq}(\mathbf{u}, \theta, \mathbf{t})$ computes the dual quaternion \mathbf{x} from given rotation unit axis \mathbf{u} , rotation angle θ , and translation vector \mathbf{t} .
- $(\mathbf{u}, \theta, \mathbf{R}, \mathbf{t}) = \mathbf{dualq2uthetaRt}(\mathbf{x})$ computes the rotation unit axis \mathbf{u} , rotation angle θ , rotation matrix \mathbf{R} , and translation vector \mathbf{t} from given dual quaternion \mathbf{x} .
- $\mathbf{x} = \mathbf{muldualpq}(\ \mathbf{p},\ \mathbf{q}\)$ multiplies two given dual quaternions, e.g., \mathbf{p} and \mathbf{q} , and gives the result dual quaternion, e.g., \mathbf{x} .
- $\mathbf{x}^{-1} = \mathbf{conjdualqsimple}(\mathbf{x})$ computes the inverse of a given dual quaternion.
- plot_pose(X, color) plots the 3D frame of a given Cartesian pose X in a defined color, e.g., for red
 'r', for blue 'b'.
- plot_camera(X, color) plots the camera at a given Cartesian pose X with a defined color, e.g., for red 'r', for blue 'b'.
- s = skew(t) computes the skew symmetric matrix, e.g., s, of a given vector, e.g., t.

There are also the following standard functions of Matlab which can help you to visualize the 3D pose control: clf; hold on; plot3; drawnow; axis; view.