Tutorial-3 Winter 2024 Basic Electronics (ECE113)

Q1: In the given following circuit (Figure-1), find the value of voltage across 100 ohm (V_p) by using nodal analysis.

Q2: By bottom node as reference node (Figure-2), find the all node voltages and current through 7 Ω resistance by using nodal analysis.

Q3: Find all node voltages with the help of nodal analysis in the given following circuit (Figure-3).

Figure 3

 $\underline{\bf Q4}$: In the given following circuit (Figure-4), find all node voltages and power dissipation in 1 Ω resistance.

Q5: In the given following circuit (Figure-5), find all node voltages and power delivered by 1V ideal voltages source.

<u>Q6</u>: In the given following circuit (Figure-6), find the value of voltage across 3 Ω resistance by using nodal analysis.

 $\underline{\mathbf{Q7}}$: In the given circuit (Figure-7), set of two **5 volt**, practical voltage source are connected in across the load (4 Ω). Both sources are represented by their actual voltage and internal resistance. Do the following analysis-

(a) Find out the current across the load (4Ω) .

- **(b)** Is there any internal current in between the two practical sources? If yes then what is the value?
- (c) What will happen, when both practical sources are replaced by ideal voltage source?

Figure 7