Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Курсовая работа По дискретной математике Часть 1 Вариант 140

Выполнил:

Петров Вячеслав Маркович Р3108

Проверил:

Поляков Владимир Иванович

Оглавление

Условие	3
Габлица истинности	
Представление булевой функции в аналитическом виде	4
Минимизация булевой функции методом Квайна-Мак-Класки	4
а) Нахождение простых импликант	4
б) Составление импликантной таблицы	5
Минимизация булевой функции на картах Карно	7
Определение МДНФ	
Определение МКНФ	7
- Преобразование минимальных форм булевой функции	
Факторизация и декомпозиция для МДНФ:	8
Факторизация и декомпозиция для МКНФ:	8
- Синтез комбинационных схем в булевом базисе	8
Булев базис	
сокращенный булев базис (И, НЕ)	
Универсальный базис (И-НЕ, 2 входа)	
1	

Условие

Условия при которых f=1: $1 \le |x_3x_2x_1-x_5x_4| \le 3$ Условия при которых f=d: $|x_3x_2x_1-x_5x_4| = 0$

Таблица истинности

	$X_1X_2X_3X_4X_5$	$X_3X_2X_1$	$(X_3X_2X_1)_{10}$	X_5X_4	$(X_5X_4)_{10}$	-	f
N							
0	00000	000	0	00	0	0	d
	00001	000	0	10	2	2	1
2	00010	000	0	01	1	1	1
3	00011	000	0	11	3	3	1
4	00100	100	4	00	0	4	0
5	00101	100	4	10	2	2	1
6	00110	100	4	01	1	3	1
7	00111	100	4	11	3	1	1
8	01000	010	2	00	0	2	1
9	01001	010	2	10	2	0	d
10	01010	010	2	01	1	1	1
11	01011	010	2	11	3	1	1
12	01100	110	6	00	0	6	0
13	01101	110	6	10	2	4	0
14	01110	110	6	01	1	5	0
15	01111	110	6	11	3	3	1
16	10000	001	1	00	0	1	1
17	10001	001	1	10	2	1	1
18	10010	001	1	01	1	0	d
19	10011	001	1	11	3	2	1
20	10100	101	5	00	0	5	0
21	10101	101	5	10	2	3	1
22	10110	101	5	01	1	4	0
23	10111	101	5	11	3	2	1
24	11000	011	3	00	0	3	1
25	11001	011	3	10	2	1	1
26	11010	011	3	01	1	2	1
27	11011	011	3	11	3	0	d
28	11100	111	7	00	0	7	0
29	11101	111	7	10	2	5	0
30	11110	111	7	01	1	6	0
31	11111	111	7	11	3	4	0
JI	11111	111	′	11	ی		U

Представление булевой функции в аналитическом виде

Канонический вид КДНФ : $(\neg x1 \land \neg x2 \land \neg x3 \land \neg x4 \land x5) \lor (\neg x1 \land \neg x2 \land \neg x3 \land x4 \land \neg x5) \lor (\neg x1 \land \neg x2 \land \neg x3 \land x4 \land x5) \lor (\neg x1 \land \neg x2 \land x3 \land x4 \land x5) \lor (\neg x1 \land \neg x2 \land x3 \land x4 \land \neg x5) \lor (\neg x1 \land \neg x2 \land x3 \land x4 \land x5) \lor (\neg x1 \land x2 \land \neg x3 \land x4 \land \neg x5) \lor (\neg x1 \land x2 \land \neg x3 \land x4 \land x5) \lor (\neg x1 \land x2 \land \neg x3 \land x4 \land x5) \lor (x1 \land \neg x2 \land \neg x3 \land x4 \land x5) \lor (x1 \land \neg x2 \land \neg x3 \land \neg x4 \land x5) \lor (x1 \land \neg x2 \land \neg x3 \land \neg x4 \land x5) \lor (x1 \land \neg x2 \land x3 \land x4 \land x5) \lor (x1 \land \neg x2 \land x3 \land x4 \land x5) \lor (x1 \land \neg x2 \land x3 \land x4 \land x5) \lor (x1 \land x2 \land \neg x3 \land x4 \land x5) \lor (x1 \land x2 \land x3 \land x4 \land x5) \lor (x1 \land x2 \land x3 \land x4 \land x5) \lor (x1 \land x2 \land x3 \land x4 \land x5) \lor (x1 \land x2 \land x3 \land x4 \land x5) \lor (x1 \land x2 \land x3 \land x4 \land x5) \lor (x1 \land x2 \land x3 \land x4 \land x5) \lor (x1 \land x2 \land x3 \land x4 \land x5) \lor (x1 \land x2 \land x3 \land x4 \land x5) \lor (x1 \land x2 \land x3 \land x4 \land x5) \lor (x1 \land x2 \land x3 \land x4 \land x5$

 $\begin{array}{l} KKH\Phi\colon (x1\vee x2\vee \neg x3\vee x4\vee x5) \ \land \ (x1\vee \neg x2\vee \neg x3\vee x4\vee x5) \ \land \ (x1\vee \neg x2\vee \neg x3\vee x4\vee x5) \ \land \ (x1\vee \neg x2\vee \neg x3\vee x4\vee x5) \ \land \ (\neg x1\vee x2\vee \neg x3\vee x4\vee x5) \ \land \ (\neg x1\vee \neg x2\vee \neg x3\vee x4\vee x5) \ \land \ (\neg x1\vee \neg x2\vee \neg x3\vee x4\vee x5) \ \land \ (\neg x1\vee \neg x2\vee \neg x3\vee x4\vee x5) \ \land \ (\neg x1\vee \neg x2\vee \neg x3\vee x4\vee x5) \ \land \ (\neg x1\vee \neg x2\vee \neg x3\vee x4\vee x5) \ \land \ (\neg x1\vee \neg x2\vee \neg x3\vee x4\vee x5) \ \end{array}$

Минимизация булевой функции методом Квайна-Мак-Класки а) Нахождение простых импликант

N₂	\mathbf{K}^{0}		N₂	K ¹			\mathbf{K}^2		K ³		\mathbf{K}^4	№	Z(f)
1	00000	√	1	0000X	1-2	✓	000XX	✓	0X0XX	✓	XX0XX	1	XX0XX
2	00001	√	2	000X0	1-3	√	0X00X	√	X00XX	√		2	X0XX1
3	00010	✓	3	X0000	1-13	√	X000X	✓	XX00X	✓		3	00X1X
4	00011	✓	4	0X000	1-8	✓	X00X0	✓	XX0X0	√		4	0XX11
5	00101	✓	5	00X01	2-5	✓	0X0X0	✓	1X0XX	✓			
6	00110	✓	6	000X1	2-4	✓	XX000	✓	X0XX1				
7	00111	✓	7	0X001	2-9	✓	00X1X		X10XX	✓			
8	01000	✓	8	X0001	2-14	✓	00XX1	✓	XX01X	✓			
9	01001	✓	9	0001X	3-4	✓	010XX	✓	XX0X1	✓			
10	01010	✓	10	00X10	3-6	✓	0X01X	✓					
11	01011	✓	11	0X010	3-10	✓	100XX	✓					
12	01111	✓	12	X0010	3-15	✓	1X00X	✓					
13	10000	✓	13	00X11	4-7	✓	1X0X0	✓					
14	10001	✓	14	0X011	4-11	✓	X001X	✓					
15	10010	✓	15	X0011	4-16	√	X00X1	✓					
16	10011	✓	16	001X1	5-7	√	X0X01	✓					
17	10101	✓	17	X0101	5-17	√	X100X	✓					
18	10111	✓	18	0011X	6-7	√	X10X0	√					
19	11000	✓	19	0X111	7-12	√	XX001	✓					
20	11001	✓	20	X0111	7-18	√	XX010	√					
21	11010	√	21	0100X	8-9	✓	0XX11						

22	11011	√	22	010X1	9-11	√	10XX1	✓			
			23	X1001	9-20	√	110XX	✓			
			24	0101X	10-11	√	1X01X	✓			
			25	X1010	10-21	>	1X0X1	√			
			26	01X11	11-12	>	X01X1	✓			
			27	X1011	11-22	√	X0X11	✓			
			28	1000X	13-14	✓	X101X	✓			
			29	100X0	13-15	✓	X10X1	✓			
			30	1X000	13-19	✓	XX011	✓			
			31	100X1	14-16	✓					
			32	1X001	14-20	✓					
			33	1001X	15-16	✓					
			34	1X010	15-21	✓					
			35	10X11	16-18	✓					
			36	1X011	16-22	✓					
			37	101X1	17-18	✓					
			38	1100X	19-20	✓					
			39	110X0	19-21	✓					
			40	110X1	20-22	✓					
			41	1101X	21-22	✓					
			42	10X01	14-17	✓					
			43	X1000	8-19	✓					
			44	010X0	8-10	✓					

б) Составление импликантной таблицы

Простые										0-к	убы	-						
импликанты (максимальные кубы)	0 0 0 0 1	0 0 0 1 0	0 0 0 1	0 0 1 0 1	0 1 1 0	0 1 1 1	0 1 0 0		0 1 0 1	0 1 1 1 1 1 1	1 0 0 0	1 0 0 0	1 0 0 1 1	1 0 1 0 1		1 0 0 0		1 1 0 1 0
	1	2	3	4	5	6	7	8	9	10	1 1	12	13	14	15	16	17	18
-1. XX0XX	┿	┿	╁	+	+	\vdash	+	+	+	\vdash	+	+	*		H	+	*	*
2. X0XX1	+		+	+	Н	*						*	ŀ	+	*			+
- 3. 00X1X		+	+	H	+	+	H	H	H			\vdash		+				+
4. 0XX11	+		+	+	H	+		+	+	+				+			+	+

Вычеркнем из таблицы строки, соответствующие существенным импликантам, а также столбцы, соответствующие вершинам, покрываемым существенными импликантами.

Вся таблица вычеркнулась, поэтому ядро покрытия и есть минимальное покрытие.

$$T = \begin{cases} XX0XX \\ X0XX1 \\ 00X1X \\ 0XX11 \end{cases}$$

$$C_{min} = \begin{cases} XX0XX \\ X0XX1 \\ 00X1X \\ 0XX11 \end{cases}$$

$$S^a = 9$$

$$S^b = 13$$

МДНФ: $\neg x_3 \lor \neg x_2 x_5 \lor \neg x_1 \neg x_2 x_4 \lor \neg x_1 x_4 x_5$

Минимизация булевой функции на картах Карно Определение МДНФ

 X_4X_5

	00	01	11	10					
00	d	1	1	1					
01		1	1	1					
11			1						
10	1	d	1	1					
$x_1 = 0$									

	00	01	11	10						
00	1	1	1	d						
01		1	1							
11										
10	1	1	d	1						
$x_1 = 1$										

$$C_{\min} = \begin{cases} XX0XX \\ X0XX1 \\ 00X1X \\ 0XX11 \end{cases}$$

 X_2X_3

$$S^a = 9$$
, $S^b = 13$

МДНФ: $\neg x_3 \lor \neg x_2 x_5 \lor \neg x_1 \neg x_2 x_4 \lor \neg x_1 x_4 x_5$

Определение МКНФ

X4X5

		00	01	11	10	
	00	d				
	01	0				L
X_2X_3	11	0	0		0	
	10					

		00 01		11	10	
00					d	
01		0			0	
11		0	0	0	0	
10	Ī			d		

$$x_1 = 0$$

$$x_1 = 1$$

$$C_{min} = \begin{cases} XX100 \\ 1X1X0 \\ 111XX \\ X11X0 \\ X110X \end{cases}$$

$$S^a = 15, S^b = 20$$

 $MKH\Phi \colon (\neg x_3 \lor x_4 \lor x_5) \land (\neg x_1 \lor \neg x_3 \lor x_5) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3 \lor x_5) \land (\neg x_2 \lor \neg x_3 \lor x_4)$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция для МДНФ:

$$f = \neg x_3 \ V \ \neg x_2 x_5 \ V \ \neg x_1 \neg x_2 x_4 \ V \ \neg x_1 x_4 x_5$$
 (S_Q = 13) Декомпозиция невозможна
$$f = \neg x_3 \ V \ \neg x_2 x_5 \ V \ \neg x_1 x_4 (\neg x_2 \ V \ x_5)$$
 (S_Q = 10)

Факторизация и декомпозиция для МКНФ:

$$f = (\neg x_3 \lor x_4 \lor x_5) \land (\neg x_1 \lor \neg x_3 \lor x_5) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3 \lor x_5) \land (\neg x_2 \lor \neg x_3 \lor x_4)$$

$$(S_0 = 20)$$

Декомпозиция невозможна

$$f = (\neg x_3 \lor \neg x_2 x_5 \lor \neg x_1 x_4) \land (\neg x_2 \lor \neg x_3 \lor x_5)$$
 (S_Q = 12)

Синтез комбинационных схем в булевом базисе

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

Схема по упрощенной МКНФ:

$$f = (\neg x_3 \mathsf{V} \neg x_2 x_5 \mathsf{V} \neg x_1 x_4) \land (\neg x_2 \mathsf{V} \neg x_3 \mathsf{V} x_5) \qquad (S_Q = 12)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{x_3 \overline{\overline{x_2} x_5} \overline{\overline{x_1} x_4 \overline{x_2} \overline{\overline{x_5}}}}$$
 (S_Q = 14)

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{x_3 \overline{x_2} x_5} \overline{\overline{x_1} x_4} \overline{x_2 x_3 \overline{x_5}}$$
 (S_Q = 16)

Универсальный базис (И-НЕ, 2 входа)

МДНФ:

$$f = \overline{x_3 \overline{\overline{x_2} x_5} \overline{\overline{x_1}} \overline{\overline{x_4}} \overline{\overline{x_2}} \overline{\overline{x_5}}}$$
 (S_Q = 16)

МКНФ:

$$f = \overline{x_3 \overline{\overline{x_2} x_5}} \overline{\overline{x_1} \overline{x_4}} \overline{x_2} \overline{\overline{x_5}}$$
 (S_Q = 12)

