Experiment 2

March 15, 2018

Simulation Details

Considered K = 3, T = 1001, N = 500. Report statistics at t = 1000 The Bandit priors that were considered:

- Uniform: Draw the mean rewards for the arms from [0.25, 0.75]
- "HeavyTail": We took the mean rewards to be randomly drawn from Beta($\alpha = 0.6, \beta = 0.6$). With this distribution it was likely to have arms that were at the extremes (close to 1 and close to 0) but also some of the arms with intermediate value means.
- Needle-in-haystack
 - 1. High 2 arms with mean 0.50, 1 arm with mean 0.70 (+0.20)

Algorithms considered:

- 1. ThompsonSampling with priors of Beta(1,1) for every arm.
- 2. DynamicGreedy with priors of Beta(1,1) for every arm
- 3. Bayesian Dynamic ϵ -greedy with priors of Beta(1,1) for every arm and $\epsilon = 0.05$

Agent Algorithms considered:

- 1. HardMax
- 2. HardMaxWithRandom
- 3. SoftMax ($\alpha = 10$)

Memory Sizes

1. 100

Simulation Procedure

```
1: for Each prior p do
       Generate true distribution from p (except for needle-in-haystack, just use p itself)
       Generate T \times K realizations for the arms
3:
4:
       for Each agent algorithm agentalg do
          for Each principal algorithm pair principalalg1, principalalg2 do
5:
6:
              for N simulations do
7:
                 Give the agents 5 observations from each principal
                 Give principal 2 200 free observations (the agents also get these observations)
8:
                 Run simulation for T periods
9:
              end for
10:
          end for
11:
      end for
13: end for
```

Results

All results are reported for memory size = 100.

The rows represent Principal 1 and the columns represent Principal 2. Thus, the cell (1, 2) represents principal 1 playing Thompson Sampling and principal 2 playing DynamicEpsilonGreedy. In this experiment remember that principal 2 gets 200 free observations.

Within each cell, the following data are presented:

- 1. The first row displays the sample mean market share for principal 1 as well as a 95% confidence band of the mean.
- 2. The second row displays the sample variance of the market share and in parentheses are 95 % confidence bands for the variance.
- 3. The third row displays the % of simulations that resulted in "extreme" market shares. Extreme market shares are defined as being simulations were one of the principals (either principal 1 or 2) ended up with 90% or more of the market.

Results for HardMax t = 1000 Needle In Haystack High

	ThompsonSampling	DynamicEpsilonGreedy	DynamicGreedy
ThompsonSampling	0.1 +/- 0.022	0.13 +/- 0.026	0.28 +/- 0.036
	0.063 (0.056, 0.072)	0.086 (0.076, 0.097)	0.17 (0.15, 0.19)
	Extreme Shares: 87 %	Extreme Shares: 88 %	Extreme Shares: 84 %
DynamicEpsilonGreedy	0.093 +/- 0.022	0.18 +/- 0.031	0.26 +/- 0.035
	0.064 (0.056, 0.072)	0.12 (0.11, 0.14)	0.16 (0.14, 0.18)
	Extreme Shares: 91 %	Extreme Shares: 89 %	Extreme Shares: 86 %
DynamicGreedy	0.11 +/- 0.024	0.18 +/- 0.03	0.23 +/- 0.033
	0.072 (0.064, 0.081)	0.12 (0.1, 0.13)	0.14 (0.13, 0.16)
	Extreme Shares: 87 %	Extreme Shares: 88 %	Extreme Shares: 85 %

Results for HardMaxWithRandom t = 1000 Needle In Haystack High

	ThompsonSampling	DynamicEpsilonGreedy	DynamicGreedy
ThompsonSampling	0.17 +/- 0.023	0.3 +/- 0.031	0.34 +/- 0.034
	0.067 (0.059, 0.076)	0.13 (0.11, 0.14)	0.15 (0.13, 0.17)
	Extreme Shares: 73 %	Extreme Shares: 66 %	Extreme Shares: 71 %
DynamicEpsilonGreedy	0.22 +/- 0.026	0.26 +/- 0.029	0.37 +/- 0.034
	0.088 (0.078, 0.1)	0.11 (0.094, 0.12)	0.15 (0.13, 0.17)
	Extreme Shares: 67 %	Extreme Shares: 68 %	Extreme Shares: 66 %
DynamicGreedy	0.23 +/- 0.026	0.29 +/- 0.03	0.37 +/- 0.033
	0.086 (0.076, 0.097)	0.12 (0.1, 0.13)	0.14 (0.12, 0.16)
	Extreme Shares: 65 %	Extreme Shares: 65 %	Extreme Shares: 63 %

Results for SoftMax t = 1000 Needle In Haystack High

	ThompsonSampling	DynamicEpsilonGreedy	DynamicGreedy
ThompsonSampling	0.43 +/- 0.0082	0.46 +/- 0.012	0.52 +/- 0.016
	0.0088 (0.0078, 0.01)	0.018 (0.016, 0.02)	0.033 (0.029, 0.037)
	Extreme Shares: 0 %	Extreme Shares: 0 %	Extreme Shares: 0 %
DynamicEpsilonGreedy	0.42 +/- 0.011	0.46 +/- 0.013	0.5 +/- 0.017
	0.016 (0.014, 0.018)	0.023 (0.021, 0.027)	0.036 (0.032, 0.041)
	Extreme Shares: 0 %	Extreme Shares: 0 %	Extreme Shares: 0 %
DynamicGreedy	0.39 +/- 0.013	0.44 +/- 0.015	0.49 +/- 0.017
	0.022 (0.02, 0.025)	0.03 (0.026, 0.034)	0.039 (0.034, 0.044)
	Extreme Shares: 0 %	Extreme Shares: 0 %	Extreme Shares: 0 %

Results for HardMax t = 1000 Heavy Tail

	ThompsonSampling	DynamicEpsilonGreedy	DynamicGreedy
ThompsonSampling	0.042 +/- 0.014	0.081 +/- 0.021	0.12 +/- 0.027
	0.026 (0.023, 0.03)	0.06 (0.053, 0.068)	0.091 (0.081, 0.1)
	Extreme Shares: 93 %	Extreme Shares: 93 %	Extreme Shares: 93 %
DynamicEpsilonGreedy	0.11 +/- 0.022	0.15 +/- 0.026	0.16 +/- 0.028
	0.062 (0.055, 0.071)	0.087 (0.077, 0.099)	0.099 (0.088, 0.11)
	Extreme Shares: 84 %	Extreme Shares: 81 %	Extreme Shares: 83 %
DynamicGreedy	0.14 +/- 0.024	0.2 +/- 0.031	0.18 +/- 0.027
	0.077 (0.068, 0.088)	0.13 (0.11, 0.14)	0.097 (0.086, 0.11)
	Extreme Shares: 82 %	Extreme Shares: 83 %	Extreme Shares: 76 %

Results for HardMaxWithRandom t = 1000 Heavy Tail

	ThompsonSampling	DynamicEpsilonGreedy	DynamicGreedy
ThompsonSampling	0.12 +/- 0.018	0.17 +/- 0.024	0.21 +/- 0.028
	0.042 (0.037, 0.048)	0.073 (0.065, 0.083)	0.1 (0.092, 0.12)
	Extreme Shares: 80 %	Extreme Shares: 75 %	Extreme Shares: 76 %
DynamicEpsilonGreedy	0.17 +/- 0.021	0.27 +/- 0.026	0.25 +/- 0.027
	0.055 (0.049, 0.063)	0.09 (0.08, 0.1)	0.095 (0.084, 0.11)
	Extreme Shares: 67 %	Extreme Shares: 54 %	Extreme Shares: 62 %
DynamicGreedy	0.21 +/- 0.024	0.31 +/- 0.029	0.3 +/- 0.028
	0.077 (0.068, 0.087)	0.11 (0.096, 0.12)	0.1 (0.091, 0.12)
	Extreme Shares: 63 %	Extreme Shares: 55 %	Extreme Shares: 54 %

Results for SoftMax t = 1000 Heavy Tail

	ThompsonSampling	DynamicEpsilonGreedy	DynamicGreedy
ThompsonSampling	0.44 +/- 0.0059	0.48 +/- 0.0083	0.48 +/- 0.011
	0.0045 (0.004, 0.0052)	0.009 (0.008, 0.01)	0.015 (0.013, 0.017)
	Extreme Shares: 0 %	Extreme Shares: 0 %	Extreme Shares: 0 %
DynamicEpsilonGreedy	0.43 +/- 0.0084	0.46 +/- 0.0087	0.47 +/- 0.012
	0.0092 (0.0081, 0.01)	0.0098 (0.0087, 0.011)	0.018 (0.016, 0.021)
	Extreme Shares: 0 %	Extreme Shares: 0 %	Extreme Shares: 0 %
DynamicGreedy	0.44 +/- 0.0099	0.47 +/- 0.011	0.49 +/- 0.011
	0.013 (0.011, 0.014)	0.016 (0.014, 0.018)	0.015 (0.014, 0.017)
	Extreme Shares: 0.2 %	Extreme Shares: 0.2 %	Extreme Shares: 0 %

Results for HardMax t = 1000 Uniform

	ThompsonSampling	DynamicEpsilonGreedy	DynamicGreedy
ThompsonSampling	0.092 +/- 0.02	0.14 +/- 0.026	0.19 +/- 0.03
	0.053 (0.047, 0.06)	0.089 (0.079, 0.1)	0.11 (0.1, 0.13)
	Extreme Shares: 86 %	Extreme Shares: 84 %	Extreme Shares: 81 %
DynamicEpsilonGreedy	0.16 +/- 0.026	0.18 +/- 0.028	0.19 +/- 0.03
	0.089 (0.079, 0.1)	0.1 (0.089, 0.11)	0.12 (0.1, 0.13)
	Extreme Shares: 80 %	Extreme Shares: 76 %	Extreme Shares: 82 %
DynamicGreedy	0.18 +/- 0.029	0.19 +/- 0.029	0.23 +/- 0.031
	0.11 (0.095, 0.12)	0.11 (0.099, 0.13)	0.12 (0.11, 0.14)
	Extreme Shares: 81 %	Extreme Shares: 79 %	Extreme Shares: 75 %

Results for HardMaxWithRandom t = 1000 Uniform

	ThompsonSampling	DynamicEpsilonGreedy	DynamicGreedy
ThompsonSampling	0.22 +/- 0.024	0.27 +/- 0.028	0.31 +/- 0.031
	0.076 (0.067, 0.086)	0.1 (0.091, 0.12)	0.12 (0.11, 0.14)
	Extreme Shares: 60 %	Extreme Shares: 61 %	Extreme Shares: 61 %
DynamicEpsilonGreedy	0.27 +/- 0.026	0.3 +/- 0.028	0.35 +/- 0.03
	0.088 (0.078, 0.1)	0.1 (0.091, 0.12)	0.12 (0.11, 0.14)
	Extreme Shares: 54 %	Extreme Shares: 54 %	Extreme Shares: 53 %
DynamicGreedy	0.25 +/- 0.026	0.32 +/- 0.029	0.36 +/- 0.03
	0.086 (0.076, 0.098)	0.11 (0.099, 0.13)	0.12 (0.11, 0.14)
	Extreme Shares: 59 %	Extreme Shares: 55 %	Extreme Shares: 52 %

Results for SoftMax t = 1000 Uniform

	ThompsonSampling	DynamicEpsilonGreedy	DynamicGreedy
ThompsonSampling	0.45 +/- 0.0084	0.47 +/- 0.0099	0.51 +/- 0.013
	0.0091 (0.0081, 0.01)	0.013 (0.011, 0.014)	0.021 (0.018, 0.024)
	Extreme Shares: 0 %	Extreme Shares: 0 %	Extreme Shares: 0 %
DynamicEpsilonGreedy	0.44 +/- 0.01	0.46 +/- 0.011	0.49 +/- 0.014
	0.013 (0.012, 0.015)	0.016 (0.014, 0.018)	0.024 (0.021, 0.027)
	Extreme Shares: 0 %	Extreme Shares: 0 %	Extreme Shares: 0.2 %
DynamicGreedy	0.43 +/- 0.011	0.46 +/- 0.012	0.49 +/- 0.013
	0.017 (0.015, 0.019)	0.019 (0.017, 0.021)	0.022 (0.02, 0.025)
	Extreme Shares: 0 %	Extreme Shares: 0 %	Extreme Shares: 0.2 %

Comments: The story I seem to get from this is (roughly) that the worse the algorithm that the incumbent plays is, the better the entrant will do. Thus, the incumbent should want to play a better algorithm. However, in order for the entrant to do as well as possible, the entrant should in fact play a worse algorithm! This is interesting but I'm not sure it is intuitive.