PHYS305 Homework# 5

Due on 25Nov2021

Q#1:

In the figure below \vec{p}_1 and \vec{p}_2 are perfect dipoles a distance r apart. What is the torque on p1 due to p2? What is the torque on p2 due to p1?

$$\mathbf{p}_1$$

Q#2: Show that the interaction energy of two dipoles separated by a displacement r is:

$$U = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^3} [\vec{p}_1 \cdot \vec{p}_2 - 3(\vec{p}_1 \cdot \hat{r})(\vec{p}_2 \cdot \hat{r})]$$

Q#3: A sphere of radius R carries a polarization $\vec{P}(r) = k\vec{r}$, where k is a constant and \vec{r} is the vector from the center.

- (a) Calculate the bound charges σ_b and ρ_b .
- (b) Find the electric field inside and outside the sphere.

Q#4: A very long cylinder, of radius a, carries a uniform polarization P perpendicular to its axis. Find the electric field inside the cylinder. Show that the field outside the cylinder can be expressed in the form:

$$\vec{E}(r) = \frac{a^2}{2\varepsilon_o s^2} \left[2(\vec{P}.\hat{s})\hat{s} - \vec{P} \right]$$

Q#5: A thick spherical shell of inner radius a and outer radius b, is made of a dielectric material with a "frozen-in" polarization:

$$\vec{P} = \frac{k}{r}\hat{r}$$

Where k is a constant and r is the distance from the center. Find the electric field in all three regions by:

- a) Locate all the bound charge and use Gauss's law to calculate the field it produces.
- b) Find electric displacement D and then find E from using equation $[\vec{D} = \varepsilon_o \vec{E} + \vec{P}]$

Q#6: Suppose that the field inside a large piece of dielectric is \vec{E}_o , so that the electric displacement is $\vec{D}_o = \varepsilon_o \vec{E}_o + \vec{P}$

- a) Now a small spherical cavity is hollowed out of the material. Find the field at the center of the cavity in terms of \vec{E}_o and \vec{P} . Also find the electric displacement at the center of the cavity interms of \vec{D}_o and \vec{P} . [Assume
- b) Do the same for a long needle-shaped cavity running parallel to \vec{P} .

the polarization is frozen-in]

c) Do the same for a thin wafer-shaped cavity perpendicular to \vec{P} .

Q#7: A metal sphere of radius a carries a charge Q. It is surrounded out to raidus b, by linear dielectric material of permittivity ε . Find the potential at the center of the sphere relative to infinity.

Q#8: The space between the plates of a parallel-plate capacitor is filled with two slabs of linear dielectric material. Each slab has thickness a so that the total distance between the plates is 2a. Slab 1 has a dielectric constant of 2 and slab 2 has dielectric constant of 1.5. The free charge density on the top plate is σ and on the bottom plate is $-\sigma$.

- a) Find the electric displacement in each slab.
- b) Find the electric field in each slab.
- c) Find the polarization in each slab.
- d) Find the potential difference between the plates.
- e) Find the location and amount of all bound charges.

Q#9: An uncharged conducting sphere of radius a is coated with a thick insulating shell (dielectric constant ϵ_r) out to radius b. This object is now placed in an otherwise uniform electric field Eo. Find the electric field in the insulator.

Q#10: A spherical conductor of raidus a, carries a charge Q as shown in the figure, It is surrounded by a linear dielectric material of susceptibility χ_e out to radius b. Find the energy of this configuration.

Q#11:

An electric dipole \vec{p} , pointing in the y-direction is placed midway between two large conducting plates, as shown in the figure below, each plate makes a small angle θ with respect to the x-axis and they are maintained at potentials $\pm V$.

What is the direction of net force on \vec{p} ?

