Yanyue Xie

xie.yany@northeastern.edu https://yanyuexie.com

RESEARCH INTERESTS

- Efficient deep learning (quantization and pruning)
- Algorithm-hardware co-design
- FPGA acceleration for deep learning
- Electronic design automation

EDUCATION

Northeastern University, Boston, MA, USA

Sept. 2020 - Aug. 2025 (Expected)

Ph.D. student, Department of Electrical and Computer Engineering

Advisors: Prof. Xue (Shelley) Lin and Prof. Yanzhi Wang

GPA 3.97/4.0

Fudan University, Shanghai, China

Sept. 2016 - June 2020

B.E. in Microelectronic Science and Engineering

GPA 3.60/4.0

PROFESSIONAL EXPERIENCE

ByteDance Inc., CA, USA

May. 2024 - Aug. 2024

Research Intern, Seed Foundation Machine Learning System Team

Mentor: An Xu, Zhi Zhang Large language model pruning

Futurewei Technologies Inc., CA, USA

May. 2023 - Sept. 2023

Research Intern, Strategy Technology Team

Mentor: Wei Wang, Wei Jiang

Efficient learned image compression model

PUBLICATIONS

- [C17] Yanyue Xie, Zhi Zhang, Ding Zhou, Cong Xie, Ziang Song, Xin Liu, Yanzhi Wang, Xue Lin, and An Xu, "MoE-Pruner: Pruning Mixture-of-Experts Large Language Model using the Hints from Its Router", (Under review).
- [C16] Yanyue Xie, Zhengang Li, Dana Diaconu, Suranga Handagala, Miriam Leeser, and Xue Lin, "LUTMUL: Exceed Conventional FPGA Roofline Limit by LUT-based Efficient Multiplication for Neural Network Inference", 30th Asia and South Pacific Design Automation Conference (ASPDAC 2025).
- [C15] Lei Lu, Yanyue Xie, Wei Jiang, Wei Wang, Xue Lin, and Yanzhi Wang, "HybridFlow: Infusing Continuity into Masked Codebook for Extreme Low-Bitrate Image Compression", 32nd ACM Multimedia (ACMMM 2024).
- [C14] Geng Yang, Yanyue Xie, Zhong Jia Xue, Sung-En Chang, Yanyu Li, Peiyan Dong, Jie Lei, Weiying Xie, Yanzhi Wang, Xue Lin, and Zhenman Fang, "SDA: Low-Bit Stable Diffusion Acceleration on Edge FPGAs", 34th International Conference on Field-Programmable Logic and Applications (FPL 2024).
- [C13] Zhengang Li, Alec Lu, Yanyue Xie, Zhenglun Kong, Mengshu Sun, Hao Tang, Zhong Jia Xue, Peiyan Dong, Caiwen Ding, Yanzhi Wang, Xue Lin, and Zhenman Fang, "Quasar-ViT: Hardware-Oriented Quantization-Aware Architecture Search for Vision Transformers", ACM International Conference on Supercomputing (ICS 2024).
- [C12] Yanyue Xie*, Peiyan Dong*, Geng Yuan, Zhengang Li, Masoud Zabihi, Chao Wu, Sung-En Chang, Xufeng Zhang, Xue Lin, Caiwen Ding, Nobuyuki Yoshikawa, Olivia Chen, and Yanzhi Wang, "SuperFlow: A Fully-Customized RTL-to-GDS Design Automation Flow for Adiabatic Quantum-Flux-Parametron Superconducting Circuits", 2024 Design, Automation & Test in Europe Conference (DATE 2024) (*Equal contributions).

- [C11] Zhengang Li, Geng Yuan, Tomoharu Yamauchi, Masoud Zabihi, Yanyue Xie, Peiyan Dong, Xulong Tang, Nobuyuki Yoshikawa, Devesh Tiwari, Yanzhi Wang, and Olivia Chen, "SupeRBNN: Randomized Binary Neural Network Using Adiabatic Superconductor Josephson Devices", 56th IEEE/ACM International Symposium on Microarchitecture (MICRO 2023).
- [C10] Dana Diaconu, Yanyue Xie, Mehmet Gungor, Suranga Handagala, Xue Lin, and Miriam Leeser, "Machine Learning Across Network-Connected FPGAs", 2023 IEEE High Performance Extreme Computing Conference (HPEC 2023).
- [C9] Zhengang Li*, Yanyue Xie*, Peiyan Dong*, Olivia Chen, and Yanzhi Wang, "Algorithm-Software-Hardware Co-Design for Deep Learning Acceleration", 60th ACM/IEEE Design Automation Conference (DAC 2023) (*Equal contributions).
- [C8] Sung-En Chang, Geng Yuan, Alec Lu, Mengshu Sun, Yanyu Li, Xiaolong Ma, Zhengang Li, **Yanyue Xie**, Minghai Qin, Xue Lin, Zhenman Fang, and Yanzhi Wang, "ESRU: Extremely Low-Bit and Hardware-Efficient Stochastic Rounding Unit Design for 8-Bit DNN Training", 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE 2023).
- [C7] Zhenglun Kong, Haoyu Ma, Geng Yuan, Mengshu Sun, **Yanyue Xie**, Peiyan Dong, Xin Meng, Xuan Shen, Hao Tang, Minghai Qin, Tianlong Chen, Xiaolong Ma, Xiaohui Xie, Zhangyang Wang, and Yanzhi Wang, "Peeling the Onion: Hierarchical Reduction of Data Redundancy for Efficient Vision Transformer Training", 37th AAAI Conference on Artificial Intelligence (AAAI 2023).
- [C6] Peiyan Dong, Mengshu Sun, Alec Lu, Yanyue Xie, Kenneth Liu, Zhenglun Kong, Xin Meng, Zhengang Li, Xue Lin, Zhenman Fang, and Yanzhi Wang, "HeatViT: Hardware-efficient adaptive token pruning for vision transformers", 29th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2023).
- [C5] Geng Yuan, Sung-En Chang, Qing Jin, Alec Lu, Yanyu Li, Yushu Wu, Zhenglun Kong, Yanyue Xie, Peiyan Dong, Minghai Qin, Xiaolong Ma, Xulong Tang, Zhenman Fang, and Yanzhi Wang, "You Already Have It: A Generator-Free Low-Precision DNN Training Framework using Stochastic Rounding", European Conference on Computer Vision (ECCV 2022).
- [C4] Zhengang Li, Mengshu Sun, Alec Lu, Haoyu Ma, Geng Yuan, Yanyue Xie, Hao Tang, Yanyu Li, Miriam Leeser, Zhangyang Wang, Xue Lin, and Zhenman Fang, "Auto-ViT-Acc: An FPGA-Aware Automatic Acceleration Framework for Vision Transformer with Mixed-Scheme Quantization", 32nd International Conference on Field-Programmable Logic and Applications (FPL 2022).
- [C3] Peiyan Dong*, Yanyue Xie*, Hongjia Li*, Mengshu Sun, Olivia Chen, Nobuyuki Yoshikawa, and Yanzhi Wang, "TAAS: A Timing-Aware Analytical Strategy for AQFP-Capable Placement Automation", 59th ACM/IEEE Design Automation Conference (DAC 2022) (*Equal contributions).
- [C2] Zhifeng Lin, Yanyue Xie, Gang Qian, Jianli Chen, Sifei Wang, Jun Yu, and Yao-Wen Chang, "Timing-Driven Placement for FPGAs with Heterogeneous Architectures and Clock Constraints", 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE 2021).
- [C1] Zhifeng Lin, Yanyue Xie, Gang Qian, Sifei Wang, Jun Yu, and Jianli Chen, "Late Breaking Results: An Analytical Timing-Driven Placer for Heterogeneous FPGAs", 57th ACM/IEEE Design Automation Conference (DAC 2020).
- [J2] Jianli Chen, Zhifeng Lin, Yanyue Xie, Wenxing Zhu, and Yao-Wen Chang, "Mixed-Cell-Height Placement with Complex Minimum-Implant-Area Constraints", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 11, pp. 4639-4652, Nov. 2022, doi: 10.1109/TCAD.2021.3133855.
- [J1] Zhifeng Lin, Yanyue Xie, Peng Zou, Sifei Wang, Jun Yu, and Jianli Chen, "An Incremental Placement Flow for Advanced FPGAs with Timing Awareness", *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, vol. 41, no. 9, pp. 3092-3103, Sept. 2022, doi: 10.1109/TCAD.2021.3120070.
- [P1] Masoud Zabihi, Yanyue Xie, Zhengang Li, Peiyan Dong, Geng Yuan, Olivia Chen, Massoud Pedram, and Yanzhi Wang, "A Life-Cycle Energy and Inventory Analysis of Adiabatic Quantum-Flux-Parametron Circuits", arXiv preprint arXiv:2307.12216.

RESEARCH EXPERIENCES

Accelerating Sparse Neural Networks on FPGA with Dataflow Architecture Jan. 2021 - May 2024 Research Assistant

Advisor: Prof. Xue (Shelley) Lin and Prof. Miriam Leeser, Northeastern University

- Pruned neural networks by applying the ADMM-based pruning algorithm and trained neural networks using quantization-aware training,
- Designed a dataflow architecture to accelerate compressed neural networks inference on FPGAs [C10], [C16]
- Efficient implementation of vision transformer models on FPGAs including mixed-scheme quantization [C4], [C13] and token pruning [C6], [C7], and stable diffusion UNet model on FPGAs [C14].

Timing-Driven Placement for AQFP Superconducting Circuits

Feb. 2021 - May 2024

Research Assistant

Advisor: Prof. Yanzhi Wang, Northeastern University

- Proposed a timing model for the deep-pipelined, four-phase AQFP superconducting circuits,
- Integrated timing cost into the objective function of an analytical placer and improved the maximum operating frequency by 19.17% on average compared with previous methods [C3], [C12],
- Efficient implementation of binarized neural networks on AQFP-based crossbar synapse array [C9], [C11].

Timing-Driven Placement Algorithm for FPGAs

Sept. 2019 - May 2021

Research Assistant

Advisor: Prof. Jianli Chen, School of Microelectronics, Fudan University

• Proposed a timing model for xc7k325t device, validated using Vivado, and integrated the model into a timing-driven placer [C1], [C2], [J1].

AWARDS

DAC Young Fellow	Design Automation Conference	2021
First Prize Scholarship	Fudan University	2020

SKILLS

Programming Languages

Python, C/C++, Verilog, MATLAB, LATEX

Deep Learning Frameworks: PvTorch, TensorFlow, ONNX

EDA Tools: Xilinx Vitis/Vivado Design Suite, Synopsys Design Compiler, Modelsim

COURSES

EECE7205: Fundamentals of Computer Engineering	Prof. Xue (Shelley) Lin
EECE7352: Computer Architecture	Prof. Fabrizio Lombardi
EECE7390: Computer Hardware Security	Prof. Xiaolin Xu
EECE7398: Special Topics: Advances in Deep Learning	Prof. Yanzhi Wang
EECE5640: High-Performance Computing	Prof. David Kaeli
EECE5644: Machine Learning/Pattern Recognition	Prof. Deniz Erdogmus
EECE5642: Data Visualization	Prof. Yun Raymond Fu
EECE7374: Fundamentals of Computer Networks	Prof. Dimitrios Koutsonikolas
EECE5699: Computer Hardware and System Security	Prof. Yunsi Fei
EECE7370: Advanced Computer Vision	Prof. Octavia Camps
EECE7397: Advanced Machine Learning	Prof. Jennifer G. Dy
DS5220: Supervised Machine Learning	Prof. Yanzhi Wang