05 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2071 Bhadra

Exam. Level	Regular / Back		
	BE	Full Marks	80
Programme	BCE, BME, BGE	Pass Marks	32
Year / Part	1/11	Time	3 hrs.

[5]

[5]

[4]

[6]

Subject: -. Basic Electrical Engineering (EE451)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- a) Define ideal current source. Show that if α₁ is the resistance temperature coefficient of a conductor at temperature t₁ °C then resistance temperature coefficient at t₂ °C is

given by
$$\frac{\alpha_1}{1 + \alpha_1(t_2 - t_1)}$$
. [5]

- b) A coil has a resistance of 18 Ω when its mean temperature is 20°C and of 20 Ω when its mean temperature is 50°C. Find its mean temperature rise when its resistance is 21 Ω and the ambient temperature is 15°C.
- c) Find V_{XY} in the figure. [5]

2. a) Find equivalent resistance of the given network.

b) Determine the value of R for maximum power to R and calculate the power delivered under this condition.

c) Calculate the voltage drop across 3 Ω resistor using Superposition Theorem in the circuit given below.

- 3. a) Explain super node and needs with suitable example.
 - b) Define capacitance and inductance. Also classify the capacitors on the basis of geometrical shapes.
 - c) Calculate the Rms value and Average value of the voltage wave given below and hence compute the form factor. [8]

- a) Explain the operation of purely capacitive circuit excited by a sinusoidal source and hence prove that average power consumed by such circuit is zero. Draw necessary waveforms.
 - b) For the circuit given below, calculate the current I. Draw the phasor diagram of the circuit.

 [6]

c) The supply system is 230 V, 3-phase, 50 Hz. Determine the readings of wattmeters W₁ and W₂. Phase sequence is AB-BC-CA. [7]

- 5. a) Derive the equation for the instantaneous current when A.C. voltage is supplied to a series R-L circuit. Draw phasor diagrams and analyze power in the circuit.
 - b) Calculate the amount of current through the neutral of a balanced 3-phase star connected circuit. Also verify with the phasor diagram. [3]
 - c) An electric circuit is being supplied by an a.c. source of 100 V rms. The circuit has a resistance of 10 Ω , inductor of 12 Ω reactance and capacitance of 8 Ω reactance connected in series. Compute the active power and power factor of the circuit.

[6]

[6]

[4]

[4]

[6]