Turibius Rozario

turibius@bu.edu · Boston, MA 02134

Objective

To pursue a PhD in Mechanical Engineering with a focus in integrating renewable energy sources, improving energy efficiency, and mitigating environmental effects.

Education

Boston University (BU)

May 2030

PhD in Mechanical Engineering (ME)

University of Maryland, Baltimore County (UMBC)

May 2025

BS in ME, Minor in Computer Science (CS)

3.91/4.00 GPA

Audited Courses: Energy Within Environmental Constraints (HarvardX, EdX), Fundamentals of Fluid Power (University of Minnesota, Coursera), Energy Sources for the Future (UMBC)

Skills

Programming C++, HTML / CSS, LATEX, MATLAB & Simulink, Python

Software Ardupilot, Inkscape, Keras, PHREEQC, PyTorch, SolidWorks, GNU/Linux

Hardware Arduino, BeagleBone, Raspberry Pi, Sensor Modules

Technical abilities 3D Printing, Hand Lamination, Model Aircraft Pilot, Power Tools, Soldering

Awards & Honors

Student Leadership Award, UMBC May 2025 VTSI Sustained Research Award, UMBC October

2023 - May 2024

President's List, UMBC S-STEM Scholar, UMBC January 2022 – January 2024

June 2022 – June 2023

Research Experience

Integration of Controls and Neural Networks

November 2021 – January 2025

ME Department, UMBC

Mentor: Dr. Ankit Goel (ankgoel@umbc.edu)

- Develop novel neural network training methods such as finite time estimation and FSolve, and improve their long-term approximation by integrating extended kalman filters.
- Manufacture 2D simultaneous localization and mapping platform for future research and coursework.

Magnesium Extraction Methods from Seawater

Summer 2024

ME Department, University of Wisconsin, Madison (UW)

Mentor: Dr. Michael Wagner (mjwagner2@wisc.edu)

- Compiled existing and novel methods of magnesium salt precipitation and magnesium metal extraction to produce several start-to-finish methods for extracting magnesium from seawater.
- Determined costs, energy demands, concentrations, temperature, pressure, and other factors associated with each reaction in the extraction process.

Design of a Hardware-in-the-Loop Test System for Wave Energy Harvesting Summer 2023 ME Department, University of Minnesota, Twin Cities (UMN)

Mentor: Dr. James Van de Ven (vandeven@umn.edu)

- Used equations for fluid flow and computations on system efficiency and size to scale down the full-scale system into lab space model validation purposes.
- Designed custom parts and fittings for hydraulic components, drafted an overall assembly model, and produced a bill of materials for test system.

Publications & Presentations

Undergraduate Research and Career Advancement Day, UMBC

April 16, 2025

Abstract title: "UMBC Multidisciplinary Capstone: Design and Development of an Autonomous Fixed-Wing UAV for Long-Range Payload Delivery".

- P. Oveissi, **T. Rozario**, A. Goel. "A Novel Neural Filter to Improve Accuracy of Neural Network Models of Dynamic Systemss". Submitted to: 2025 IEEE Conference on Control Technology and Applications. Status: **Accepted**.
- **T. Rozario**, P. Oveissi, A.Goel. "Matrix-Based Representations and Gradient-Free Algorithms for Neural Network Training". Submitted to: 2024 International Conference on Machine Learning and Applications (ICMLA). Status: **Accepted**.

Summer Undergraduate Research Experience Poster Session, UW

July 31, 2024

Poster title: "Magnesium Extraction Methods from Seawater".

Undergraduate Research and Career Advancement Day, UMBC

April 10, 2024

Abstract title: "Modelling Dynamic Systems Using Neural Networks".

Summer Undergraduate Research Expo, UMN

August 10, 2023

Abstract title: "Design of a Lab-Scale Ocean Wave-Powered Desalination System".

Undergraduate Research and Career Advancement Day, UMBC

April 12, 2023

Abstract title: "A Tutorial on Neural Networks and Gradient-free Training".

Co-curricular Activities

American Institute of Aeronautics and Astronautics (AIAA), Design, Build, Fly (DBF) Project Lead Student Unmanned Aerial Systems (SUAS) Captain

September 2021 – May 2024

February 2023 – May 2025

- Utilized lift, drag, kinematic, and other equations to produce a structural and propulsion system design for a vertical take-off and landing (VTOL) vehicle, capable of travelling 15 miles for 25 minutes while having a gross weight of 12.5 kg for the SUAS Competition.
- Led the DBF team to the international DBF competition, and for the first time in UMBC history, successfully complete a flight mission.
- Led the SUAS team to the international SUAS competition for the very first time in UMBC history, and placed 19th out of 81 teams.
- Simultaneously managed a team of 17 members in DBF and 15 members in SUAS, and hosted general events for the UMBC community with 12 to 35 participants in all events.

Student Government Association, First Year Ambassador

September 2021 – May 2022

 Hosted campus-wide wellness events for over 200 people and initiated proposals with university stakeholders.