

Teoria da Computação FCT-UNL 2023-2024 Problem Set 3 Autómatos Finitos Deterministas

- - (a) $L=\{0^{2n}\mid n\in\mathbb{N}\}$ (b) $L=\{(01)^n\mid n\in\mathbb{N}\}$ (c) A linguagem L das strings sobre $\{0,1\}$ que contêm pelos menos dois 0s e pelo menos um
- (d) A linguagem L das strings sobre $\{0,1\}$ que contêm exactamente dois 0s e pelo menos dois 1s.
- (e) A linguagem L das strings sobre $\{0,1\}$ com um número par de 0s e um número impar de
- (f) A linguagem L das strings sobre {0, 1} que não contêm a substring 010.

- (l) $L=\{0,1\}^{\bullet}\setminus\{\varepsilon\}$
- Para cada um dos AFDs que construiu nas alíneas (a)-(g) do Exercicio 1, descreva a seq de estados percorridos no input 0100110 e diga se esta string é aceite ou não.
- 3. Seja Luma linguagem regular. Quando é que temos $\varepsilon \in L?$
- 4. Para cuda uma das linguagens L abaixo descreva um AFD que a reconhece através do seu diagrama de estados. Sugestão: Primeiro construa um AFD que reconhece o complemento L e depois converta-o para um AFD que reconhece L.
 - (a) A linguagem L sobre $\{a,b\}$ cujas strings não contêm a substring ab.

- $\begin{array}{l} \text{(b)} \ \ L = \{a,b\}^{\star} \setminus \{a^m b^n \mid m,n \in \mathbb{N}\} \\ \text{(c)} \ \ L = \{a,b\}^{\star} \setminus (\{a\}^{\star} \cup \{b\}^{\star}) \end{array}$
- (d) A linguagem L sobre {a, b} cujas strings n\u00e3o cont\u00e9m exactamente dois as
- 6. Dada uma string w = w₁w₂...w_n ∈ Σ* definimos o sen reverso rev(w) = w_nw_{n-1}...w₂se₁. Para uma linguagem L ∈ Σ*, definimos rev(L) = {rev(w) | w ∈ L}. Mostre que se L è regular cut\(\hat{o}\) rev(L) amb\(\hat{e}\) \(\hat{o}\) regular.
- 7. Seja $L_n = \{0^k \mid k \text{ \'e múltiplo de } n\}$. Mostre que L_n \'e regular para qualquer $n \in \mathbb{N}^+$
- 8. Para uma linguagem $L \subseteq \Sigma^*$ definimos a operação

 $\mathsf{noPrefix}(L) = \{w \in L \mid \mathsf{nenhum} \mathsf{prefixo} \mathsf{proprio} \mathsf{de} w \mathsf{pertence} \mathsf{a} L\}.$

Mostre que se L é regular então noPrefix(L) também é regular.

9. Para duas linguagens A e B definimos

 $A/B = \{ w \mid wx \in A \text{ para algum } x \in B \}.$

Mostre que se A é regular e B é uma linguagem qualquer, então A/B também é regular

@a) L={02n | nEIN}

e) segs binárias com nºpan di Os en ímpar di 1s

c) segs binários com > 2 zero, p, e > 1 mm, 1

9, - falta , zeros e j uni para acertar

f) segs binários que não contêm a substring 010

h) segs O's de tamanho divisinel por 2 on 3

Ex ax abb, abba, ba, \(\Rightarrow\) toder on sign entry a eb exceto angue terminum em b

d) segs sobre 39,57 que não contêm exatamente 2 ais

9, = 1= n de a's

DLn= (0" | n divide K} n EINT

/*o automato terá n estado em que o estado acerte só será o 9n */ Fixemos n EIN + ggl Descrevemos

AFD N=(S, E, S, S, F) que Reconhece Ln 5={90,91, 19 nont - intuição 9, 1 = K/M

$$F = \{9, \}$$

 $S(9, 0) = 9_{(1+1)/1}$

