Präsenzaufgaben

Aufgabe 1: Zahlendarstellung I (Binär).

Aufgabe 1:a)
$$55_{10} = \underline{110111}_2$$
 (32+16+4+2+1).

Aufgabe 1:b)
$$42_{10} = \underline{101010}_2$$
 (32+8+2).

Aufgabe 1:c)
$$127_{10} = \underline{11111111}_2$$
.

Aufgabe 1:d)
$$73951_{10} = \underline{10010000011011111}_2$$
.

Aufgabe 2: Zahlendarstellung II (Hex).

Aufgabe 2:a)
$$224_{10} = \underline{E0}_{16}$$
.

Aufgabe 2:b)
$$69_{10} = \underline{45}_{16}$$
.

Aufgabe 2:c)
$$171_{10} = AB_{16}$$
.

Aufgabe 2:d)
$$57005_{10} = \underline{DEAD}_{16}$$
.

Aufgabe 3: Zahlenbereiche.

Aufgabe 3:a) Größte vorzeichenlose 5-Bit-Zahl:
$$2^5 - 1 = 31$$
.

Aufgabe 3:b) Anzahl verschiedener Werte mit 32 Bit:
$$2^{32} = 4294967296$$
.

Aufgabe 3:c) Größte 5-Bit-Zahl im 2-Komplement:
$$2^4 - 1 = 15$$
.

Aufgabe 3:d) Kleinste 5-Bit-Zahl im 2-Komplement:
$$-2^4 = -16$$
.

Aufgabe 3:e) UNIX-Zeit (vorzeichenlos 32 Bit): 2106 (
$$\approx 136$$
 Jahre nach 1970).

Aufgabe 4: 2er-Komplement (8 Bit).

Aufgabe 4:a)
$$+9 \Rightarrow 00001001$$

Aufgabe 4:b)
$$-42 \Rightarrow \underline{11010110}$$
 (00101010 invertieren $\rightarrow 11010101$, $+1 \rightarrow 11010110$)

Aufgabe 4:c)
$$+127 \Rightarrow 011111111$$

Aufgabe 4:d)
$$-128 \Rightarrow 10000000$$

Aufgabe 5: BCD.

Aufgabe 5:a)
$$9 \Rightarrow 1001$$

Aufgabe 5:b)
$$42 \Rightarrow 0100\ 0010$$

Aufgabe 5:c)
$$524 \Rightarrow 0101\ 0010\ 0100$$

Hausaufgaben

Aufgabe 1: Tabelle vervollständigen.

Aufgabe 1:a)
$$12_{10} = \underline{1100}_2 = \underline{C}_{16}$$

Aufgabe 1:b)
$$85_{10} = \underline{1010101}_2 = \underline{55}_{16}$$

Aufgabe 1:c)
$$3529_{10} = \underline{110111001001}_2 = \underline{DC9}_{16}$$

Aufgabe 2: Addition (vorzeichenlos, Binär).

Aufgabe 2:a) $1011_2 + 0001_2 = 1100_2 = 12_{10}$, Overflow: nein.

Aufgabe 2:b) $10011_2 + 10100_2 = \underline{100111_2} = 39_{10}$, Overflow: ja (5-Bit-Bereich 0..31).

Aufgabe 3: Addition (2er-Komplement, 8 Bit).

Aufgabe 3:a) $00101010_2 (= 42) + 10000000_2 (-128) = 10101010_2 (-86)$. Overflow: nein.

Aufgabe 3:b) $01000011_2 (= 67) + 01000100_2 (= 68) = 10000111_2 (-121)$. Overflow: [ja].

Aufgabe 4: Subtraktion (2er-Komplement, 8 Bit).

Aufgabe 4:a) $10 - 63 = \underline{-53}$ (= 11001011₂); mit 8 Bit darstellbar: [ja].

Aufgabe 4:b) $-50 - 80 = \underline{-130}$; nicht mit 8 Bit darstellbar (Bereich -128... + 127): nein (Overflow).

Aufgabe 5: Größer oder kleiner? (vorzeichenlos)

Aufgabe 5:a) $1111_2 = 15 \text{ vs. } F_{16} = 15 \Rightarrow \boxed{\text{gleich}}$

Aufgabe 5:b) $10101_2 = 21$ vs. $AC_{16} = 172 \Rightarrow \boxed{\text{zweite ist größer}}$

Aufgabe 5:c) $10010101_2 = 149 \text{ vs. } 8C_{16} = 140 \Rightarrow \boxed{\text{erste ist gr\"oßer}}$

Hinweis: Ergebnisse gemäß offiziellem Lösungsvorschlag; Format und Begründungen didaktisch ergänzt.