Workshop 9

COMP20008 Elements of Data Processing

Learning outcomes

By the end of this class, you should be able to:

- explain the similarities/differences between classification and regression
- explain how predictions are made for decision trees and k-nearest neighbours classifiers
- use decision trees and k-nearest neighbours classifiers in Python

Q1: Classification and regression

What is classification? What is regression? What is the difference between the two?

Q1: Classification and regression

What is classification? What is regression? What is the difference between the two?

	Classification	Regression
Commonality	Both are prediction problen maps an input to an output	
Difference	Output is a class label	Output is a continuous value

Q1: Classification and regression

What is classification? What is regression? What is the difference between the two?

Regression

E.g. predicting the weather conditions: "sunny", "cloudy", "rainy", "windy", "snowy"

E.g. predicting the temperature in degrees Celsius

Decision trees

Example: predicting survival of passengers on the Titanic

survived	name	sex	age	sibsp	parch	fare	pclass
No	Mr. Owen Harris	М	22	1	0	7.25	3
Yes	Mrs. John Bradl	F	38	1	0	71.283	1
Yes	Miss. Laina Hei	F	26	0	0	7.925	3
Yes	Mrs. Jacques He	F	35	1	0	53.1	1
No	Mr. William Hen	М	35	0	0	8.05	3
No	Mr. James Moran	М	27	0	0	8.4583	3
No	Mr. Timothy J M	М	54	0	0	51.862	1
No	Master. Gosta L	М	2	3	1	21.075	3
:	i .	:	:	:	:	:	÷

- Need to choose a splitting rule when adding a node to the tree.
- Splitting rule should achieve high purity

Low node purity

Entropy as a measure of impurity

The entropy at a node t is

$$H(t) = -\sum_{y=1}^{n_y} p_y \log p_y$$

where p_{v} is the relative frequency of class y at node t.

- High node purity when H(t) = 0
- Low node purity when $H(t) = \log n_y$ where n_y is the number of classes

Information gain as a splitting criterion

- Information gain can be used to measure the quality of a split
- It compares the entropy of the parent node (before splitting) with the entropy of the child nodes (after splitting)

Suppose we would like to insert a node in a decision tree. Decide which feature should be used for splitting based on the information gain.

Fea	ture A	Feature B	Class label
	Т	F	+
	Т	Т	+
	Τ	T	+
	Т	F	-
	Т	Т	+
	F	F	-
	F	F	-
	F	F	-
	Т	Т	-
	Т	F	_

Feature A	Feature B	Class label
Т	F	+
Т	Т	+
Т	Т	+
Т	F	_
Т	Т	+
F	F	_
F	F	_
F	F	_
Т	Т	_
Т	F	_

Begin computing the entropy of parent node t

$$H(t) = -\sum_{y \in \text{classes}} p_y \log p_y$$
$$= -\frac{4}{10} \log \frac{4}{10} - \frac{6}{10} \log \frac{6}{10}$$
$$= 0.9710$$

у	p_y
+	4/10
-	6/10

Feature A	Feature B	Class label
Т	F	+
Т	Т	+
Т	Т	+
Т	F	_
Т	Т	+
F	F	_
F	F	_
F	F	_
Т	Т	_
Т	F	_

Now split on A and compute H(t|A)

$$H(t|A) = \frac{N(A=T)}{N}H(A=T) + \frac{N(A=F)}{N}H(A=F)$$
$$= \frac{7}{10} \times 0.9852 + \frac{3}{10} \times 0 = 0.6897$$

$$H(A = T) = -\frac{4}{7}\log\frac{4}{7} - \frac{3}{7}\log\frac{3}{7} = 0.9852$$
 $H(A = F) = -\frac{3}{3}\log\frac{3}{3} = 0$

А	у	p_{y}
T	+	4/7
Τ	-	3/7

А	у	$p_{oldsymbol{y}}$
F	+	0/3
F	-	3/3

Feature A	Feature B	Class label
Т	F	+
Т	Т	+
Т	Т	+
Т	F	_
Т	Т	+
F	F	_
F	F	-
F	F	-
Т	Т	_
Т	F	_

Now split on A and compute H(t|B)

$$H(t|B) = \frac{N(B=T)}{N}H(B=T) + \frac{N(B=F)}{N}H(B=F)$$
$$= \frac{4}{10} \times 0.8113 + \frac{6}{10} \times 0.6500 = 0.7145$$

$$H(B=T) = -\frac{3}{4}\log\frac{3}{4} - \frac{1}{4}\log\frac{1}{4} = 0.8113$$
 $H(B=F) = -\frac{1}{6}\log\frac{1}{6} - \frac{5}{6}\log\frac{5}{6} = 0.6500$

В	у	$p_{\mathbf{y}}$
T	+	3/4
Т	-	1/4

$$H(B=F) = -\frac{1}{6}\log\frac{1}{6} - \frac{5}{6}\log\frac{5}{6} = 0.6500$$

В	у	$p_{\mathbf{y}}$
F	+	1/6
F	-	5/6

For split on A:

$$IG(t, A) = H(t) - H(t|A) = 0.9710 - 0.6897 = 0.2813$$

For split on B:

$$IG(t,B) = H(t) - H(t|B) = 0.9710 - 0.7145 = 0.2565$$

So we split on feature A as it maximises the information gain

k-nearest neighbours (kNN) classifier

- Predict the class of an instance based on the majority class of the k nearest neighbours
- Need to specify a distance function to determine the k nearest neighbours
- Feature scaling is often important to achieve good performance

Χ	0.5	3.0	4.5	4.6	4.9	5.2	5.3	5.5	7.0	9.5
У	-	-	+	+	+	-	-	+	-	-

Classify x = 5.0 according to its 1-, 3-, 5-, and 9-nearest neighbours

How does the parameter k affect the k-NN classifier? What would be the behaviour as $k \to \infty$

How does the parameter k affect the k-NN classifier? What would be the behaviour as $k \to \infty$

- ullet Larger k reduces the affect of noise, but can smooth the decision boundaries between classes too aggressively
- In the limit $k \to \infty$, the predicted label is the majority class w.r.t. the entire dataset

Q4: Decision trees and missing values

Describe two ways a decision tree could be used to classify a test instance when it has missing features.

Q4: Decision trees and missing values

Describe two ways a decision tree could be used to classify a test instance when it has missing features.

Option 1

Impute the missing features. Then use the decision tree as normal.

Q4: Decision trees and missing values

Describe two ways a decision tree could be used to classify a test instance when it has missing features.

Option 2

Marginalize over the missing features. When we encounter a node that splits on a missing feature:

- The test instance is split among the child nodes according to the split proportions of the training set
- Continue traversing the tree
- End up with a distribution over the class labels
- Choose the class with the highest probability