Genome Informatics 2024

Lesson 6 - Single cell RNA sequencing

Why Single Cell study?

- Hidden variation in gene expression
- Regulatory process of biotechnological or medical relevance
- Relationship between cellular processes and external stimuli

Why Single Cell study?

Developmental biology

- Discover more complicated mechanisms in cellular development
- Confirm the distinct gene expression signatures across different cell types
- Identify functional differences among the same cell cell type

Cancer biology

- Find evidence for models of cancer
- Infer timing of mutations and the drivers
- Evaluate effectiveness of targeted therapy

Microbiology

- Discover low-abundance species that are are difficult to culture in vitro
- Monitor transcriptional gene activation mechanisms for functional annotation

Bulk RNA sequencing vs Single cell

ONE GENOME FROM MANY

A single cell is difficult to isolate, but it can be done mechanically or with an automated cell sorter.

The DNA is extracted and amplified. during which errors can creep in.

Amplified DNA is sequenced.

Errors introduced in earlier steps make sequence assembly difficult; the final sequence can have gaps.

Single cell sequencing

Single cell sequencing applications

Studying heterogeneity

Lineage tracing study

Stochastic gene expression

Liu S and Trapnell C. Single-cell transcriptome sequencing: recent advances and remaining challenges, F1000 Research 2016 (doi: 10.12688/f1000research.7223.1) Junker and van Oudenaarden; Every Cell Is Special: Genome-wide Studies Add a New Dimension to Single-Cell Biology, Cell 2014 (doi: 10.1016/j.cell.2014.02.010)

Single cell sequencing applications

- Non-invasive way to monitor the progress of the disease
- Monitor biological process
- Knockout gene studies

Types of analyses

Within cell type

- · Stochasticity, variability of transcription
- Regulatory network inference
- Allelic expression patterns
- Scaling laws of transcription

Between cell types

- Identify biomarkers
- (Post)-transcriptional differences

Between tissues

- Cell-type compositions
- Altered transcription in matched cell types

Single cell sequencing applications

Development Lineage Tracing

Single Cell RNA-seq: Easy as 1,2, 3, ... 5

Comparison of single cell sequencing methods

	inDrops	10x	Drop-seq	Seq-well	SMART-seq
Cell capture efficiency	~70-80%	~50-65%	~10%	~80%	~80%
Time to capture 10k cells	~30min	10min	1-2 hours	5-10min	
Encapsulation type	Droplet	Droplet	Droplet	Nanolitre well O O O O O O O O O O O O O O O O O O	Plate-based
Library prep	CEL-seq Linear amplification by IVT	SMART-seq Exponential PCR based amplification	SMART-seq Exponential PCR based amplification	SMART-seq Exponential PCR based amplification	SMART-seq Exponential PCR based amplification
Commercial	Yes	Yes			Yes
Cost (~\$ per cell)	~0.06	~0.2	~0.06		1
Strengths	Good cell capture Cost-effective Real-time monitoring Customizable	 Good cell capture Fast and easy to run Parallel sample collection High gene / cell counts 	Cost-effective Customizable	Good cell capture Cost-effective Real-time monitoring Customizable	Good cell capture Good mRNA capture Full-length transcript No UMI
Weaknesses	Difficult to run	Expensive	Difficult to run & low cell capture efficiency	Still new!	Expensive

C. Ziegenhain et al., Comparative Analysis of Single-Cell RNA Sequencing Methods, Molecular Cell 2017 (doi: 10.1016/j.molcel.2017.01.023)

Single cell sequencing alignment and gene count

Cell-gene matrix

Annotated data object

Cell-gene matrix

						30	Cell type 1
	Cell 1	cell 2	cell 3	 cell X		20	Cell type 2
Gene a	3	5	6	 3		10	Cell type 3
gene b	3	5	3	 2		VE2	● Cell type 5
gene c	5	6	5	 4		t-SNE2	Cell type 6
gene d	5	6	7	 8		-10	Cell type 7
						-20	
gene z	7	8	4	 3	_	20	
				1		-30 -3	30 -20 -10 0 10 20 30 t-SNE1

Latent (low-dimensional) representation of data

Principal Component analysis linearly transforming the data into a
new coordinate system where (most
of) the variation in the data can be
described with fewer dimensions than
the initial data

Latent (low-dimensional) representation of data

Uniform Manifold Approximation and Projection (UMAP) tends to better preserve the global structure of the data when projecting from high to low dimensions **UMAP**

Single-cell RNA downstream analysis workflow

Preprocessing

Normalisation

- Gene length might affect the number of captured reads
- Normalize each cell by total counts over all genes, so that every cell has the same total count after normalization.
- Scaling transformation
 - o Log
 - Square root
 - Pearson residual (scTransform)

p	IOK		IOK	
Transcripts detected	14k		14k	
ete	12k		12k	
g de	10k-hi	Scaling	10k	
ipts	8k- 1		8k-	
scri	6k-		6k-	
ans	4k-		4k-	
Tr	2k-		2k	
#	0		0	
	0 500 1000 1500 2000 2500 3000		0	500 1000 1500 2000 2500 3000
	Cell index			Cell index

16k2

Raw data

Gene 1 Gene 2

Cell Type A	Cell Type B	Δ
1	2	1
100	200	100

Log, transform

16k

Cell Type A	Cell Type B	Δ
0	1	1
6.64	7.64	1

Square root transform

Cell Type A	Cell Type B	Δ
1	1.41	0.41
10	14.1	4.1

Normalisation

⇒ Let's quantify the measurement accuracy for *GAPDH* using the **signal-to-noise ratio** (SNR):

$$SNR = \frac{\mu}{\sigma} = \frac{46}{7.4} = 6.2$$
 standard deviation

Normalisation - Pearson residual

Pearson residuals

	Cell Type A (50%)	Cell Type B (50%)	Δ
Gene 1	0.816	1.63	0.814
Gene 2	8.16	16.3	8.14

1. Simple transformations \longrightarrow $y_{ij} = f(x_{ij})$

Gene 1

Gene 2

- Log transform
- Square root transform
- 2. Pearson residuals $y_{ij} = w_j * x_{ij}$
 - \Rightarrow Instead of transforming each measurement individually, Pearson residuals apply a weight to **all** measurements of a gene.
 - ⇒ This makes it so that each gene contributes to the analysis according to **how much evidence** there is that it is non-uniformly expressed.
 - ⇒ This favors genes that are expressed in **only a small fraction of cells**.

Raw data

Cell Type A (50%)	Cell Type B (50%)		
	Subtype 1 (48%)	Subtype 2 (2%)	
0	8	8	
0	0	4.5	

Pearson residuals

Cell Type A (50%)	Cell Type B (50%)		
	Subtype 1 (48%)	Subtype 2 (2%)	
0	4	4	
0	0	15	

Normalisation - Log, square root and Person residual

t-SNE dim. 1

A real-world comparison

$$y = \sqrt{x} + \sqrt{x+1}$$
 (Freeman–Tukey)

Pearson residuals

Batch effects correction

t-SNE plots of the pancreas datasets, before and after MNN correction Each point represents a cell and is coloured by the batch of origin.

Batch effects correction

Clustering - Leiden and Louvain

- The algorithm separates nodes into disjoint communities so as to maximize a modularity score for each community
- "From Louvain to Leiden: guaranteeing well-connected communities"

Clustering and cell type annotation

 Marker genes - genes with statistically significant variation in the specific cluster comparing to the rest of the cells

Scanpy library

- Scalable toolkit for analyzing single-cell gene expression data
- Annotated data object
- Tutorial: <u>Preprocessing and clustering 3k PBMCs</u>