只有具备AI名企的内部培养经历和大型商用交付项目的经验,才能获得行业认可!

授课完成,可到深兰全国分子公司项目组实践参与在研项目 不仅仅是授课,同时让你获得AI名企大型商用交付项目的经验

A人工智能课程大纲

37 个项目覆盖AI所有领域

名校+名企联合培养, 权威人工智能认证

第一阶段 Python 基础编程

第1章 Python 基础

- 1.1 Python 语言介绍
- 1.2 Python 环境安装
- 1.3 Python 开发工具安装及使用
- 1.4 编写第一个 Python 程序

第2章 Python 变量和数据类型

- 2.1 Python 语法特点
- 2.2 变量定义及命名规范
- 2.3 Python 数据类型介绍
- 2.4 运算符操作

第3章 字符串、列表、元组的处理

- 3.1 字符串处理(索引、切片、常用函数)
- 3.2 列表处理(索引、切片、常用函数)
- 3.3 元组处理(索引、切片、常用函数)

第4章 字典和集合的处理

- 4.1 字典处理(字典的定义,字典常用函数)
- 4.2 集合处理(集合的定义,集合常用函数)

第5章 条件控制和循环语句

- 5.1 if 语句介绍和使用
- 5.2 while 循环语句介绍和使用
- 5.3 for 循环语句介绍和使用
- 5.4 列表推导式
- 5.5 内置函数

第6章 函数

- 6.1 函数结构定义
- 6.2 函数参数
- 6.3 局部变量和全局变量
- 6.4 匿名函数
- 6.5 高阶函数

第7章 面向对象编程

- 7.1 面向对象编程介绍
- 7.2 定义类
- 7.3 继承和多态
- 7.4 类属性和实例属性

- 7.5 访问限制
- 7.6 类方法和静态方法

第8章 模块和包

- 8.1 模块简介
- 8.2 模块制作
- 8.3 dir()函数
- 8.4 标准模块

第9章 数据结构

- 9.1 排序算法
- 9.2 分治法
- 9.3 动态规划
- 9.4 贪心算法

第10章 数据库

- 10.1 MySQL 关系型数据库
- 10.2 Redis 非关系型数据库

第二阶段 Python 高级编程

- 1、 文件读写操作
- 2、 正则表达式
- 3、 错误 & 异常
- 4、 zip 拉链操作
- 5、 高阶函数
- 6、匿名函数
- 7、装饰器
- 8、闭包
- 9、闭包陷阱
- 10、生成器和迭代器
- 11、特殊方法(魔术方法)

第三阶段

Numpy 与数据分析,Pandas 与数据处理,Matplotlib

第1章 NumPy 快速入门

- 1.1 NumPy 数组对象
- 1.2 创建多维数组
- 1.3 多维数组的切片和索引
- 1.4 改变数组的维度
- 1.5 数组的组合
- 1.6 数组的分割
- 1.7 数组的属性
- 1.8 数组的转换

第2章 Pandas 数据分析

- 2.1 series 数据结构
- 2.2 series 数据数学运算
- 2.3 dataframe 数据结构创建
- **2.4** dataframe 数据分析
- 2.5 dataframe 读写 csv、excel

第3章 Matplotlib

- 3.1 绘制折线图
- 3.2 绘制柱状图
- 3.3 绘制散点图
- 3.4 绘制饼图

第四阶段 机器学习经典算法

第1章 机器学习概述

- 1.1 机器学习定义
- 1.2 机器学习、人工智能和深度学习的关系
- 1.3 机器学习基本概念和常用的应用场景
- 1.4 机器学习、数据分析、数据挖掘的区别与联系
- 1.5 机器学习分类
- 1.6 机器学习数据处理流程

第2章 KNN

- 2.1 KNN 算法原理
- 2.2 KNN 算法 python list 实现
- 2.3 KDTree

实战任务一: KNN 伪代码

实战任务二:基于鸢尾花数据的 KNN 案例

第3章 回归算法

3.1 线性回归算法

- 3.2 多项式扩展
- 3.3 正则化、Lasso&Ridge
- 3.4 机器学习调参

实战任务一: Linear 伪代码

实战任务二:基于解析式的 Linear 回归 python 实现

实战任务三:基于波士顿房屋价格的线性回归和多项式扩展

第4章 梯度下降

- 4.1 梯度下降算法原理
- 4.2 BGD\SGD\MBGD

实战任务一: 梯度下降 python 实现

第5章 Logistic&Softmax

- 5.1 Odds 几率
- 5.2 Logistic 原理
- 5.3 Softmax 原理

实战任务一:基于乳腺癌数据的 Softmax 分类 实战任务二:基于信贷评估数据的 Logistic 分类

第6章 特征工程

- 6.1 了解特征工程在机器学习当中的重要性
- 6.2 特征预处理
- 6.3 特征提取
- 6.4 特征选择和特征的降维
- 6.5 归一化、标准化
- 6.6 字典数据提取、OneHot、TF-IDF
- 6.7 Jieba 分词
- 6.8 PCA 降维和 LDA 降维

实战任务: 特征工程实战

第7章 决策树

- 7.1 信息熵
- 7.2 决策树原理与构建
- 7.3 决策树可视化

实战任务一:信息熵与不纯度 python 实现 实战任务二: Python 实现决策树构建过程

实战任务三:基于鸢尾花数据的决策树案例及其可视化

第8章 集成学习

- 8.1 集成学习思想
- 8.2 Bagging、随机森林
- 8.3 Adaboost 算法原理
- 8.4 GBDT 算法原理
- 8.5 XGBoost 算法原理

8.6 Stacking 算法原理

实战任务一: Bagging 思想 python 实现

实战任务二: 随机森林案例

实战任务三: Boosting 思想 python 实现 实战任务四: Adaboost 思想 python 实现 实战任务五: GBDT 思想 python 实现

实战任务六:基于鸢尾花数据的 stacking 分类案例 实战任务七:基于时间和电压数据的 stacking 回归案例

第9章 SVM

9.1 感知器模型

实战任务一: 感知器模型的 python 实现

9.2 硬间隔 SVM

9.3 软间隔 SVM

9.4 核函数

9.5 SMO

9.6 SVR

实战任务一: 感知器模型 python 实现

实战任务二:基于鸢尾花数据的不同分类器比较

实战任务三:不同核函数 SVM 比较

第10章 贝叶斯

10.1 朴素贝叶斯算法原理

10.2 贝叶斯网络

实战任务一:基于鸢尾花数据的朴素贝叶斯案例

第11章 Kmeans

11.1 K-means 算法原理

11.2 K-means++

11.3 K-means||

11.4 Mini batch K-means

11.5 聚类评估指标

实战任务一: Python 实现 K-means 伪代码 实战任务二: 基于鸢尾花数据的 K-means 案例

实战任务三: K-means 肘方法案例

项目一: 电信用户流失预测任务

项目背景及数据介绍 分析及数据预处理 特征工程 模型选型及优化 结果预测

项目二: 天池金融风控项目

项目背景解读及数据解读 数据预处理及特征工程 模型选型及构建 结果预测及提交

(NLP、推荐方向)

第一阶段 深度学习基础

第1章 循环神经网络

- 1.1 全连接神经网络(BP 算法)
- 1.2 RNN 详解
- 1.3 LSTM 详解
- 1.4 GRU 详解
- 1.5 LSTM Attention 机制
- 1.6 LSTM 改进之 DT-LSTM
- 1.7 LSTM 改进之 LatticeLSTM
- 1.8 全局特征嵌入

项目一:基于 LSTM 时间序列的股票预测

第2章 transformer

- 2.1 Transform
- 2.2 Transformer 详解
- 2.3 Self-Attention
- 2.4 Multi-head Attention

第二阶段 企业项目之自然语言处理实战

项目一:语言模型,NLP深度学习技术的基石

语言模型应用场景, 技术背景

从 word2vec 到 Bert, 再到霸屏的 ALBERT 设计原理详解和论文阅读

BERT 特征之字符特征嵌入

BERT 特征之位置特征嵌入

BERT 特征之句子特征嵌入

BERT 特征抽取之 transformer 结构设计

遮蔽语言模型

Transformer 多头注意力机制详解

Transformer 层归一化机制

多任务损失函数设计

样本标签自动产生

ALBERT 因式分解 Factorized embedding parameterization

ALBERT 跨层参数共享 Cross-Layer Parameter Sharing

ALBERT 段落连续性任务 Inter-sentence coherence loss

ALBERT 代码调试、性能调优核心源码分析

中文数据准备和格式预处理

ALBERT 模型训练及参数调试

ALBERT 模型预测

项目二: 多标签文本分类(淘宝京东评价数据评分,大众汽车客户评价分类,法律类似案件推荐,相似新闻分类)

项目背景介绍和企业应用场景

bert 和卷积神经网络加全局 attention 机制算法效果展示及 99%准确率如何炼成的

bert 和卷积神经网络加全局 attention 机制多标签文本分类前沿算法架构设计

数据格式设计和标签样例

制作自己的数据集

Bert 特征抽取模块设计

卷积神经网络特征优化

全局 attention 机制特征的融合

Bert 输入数据的改进

把 TPU 支持切换为 GPU 支持

损失函数的设计原理

模型的训练和参数优化

模型的预测和部署

项目三:基于虚拟对抗技术命名实体识别系统(顺丰快递寄件物品,地址等识别;医疗辅助决策系统药品,疾病,症状;知识图谱实体识别等核心技术)

命名实体识别效果展示

命名实体识别项目背景和企业应用场景介绍

命名实体识别全球准确率最高模型介绍

对抗学习详解

虚拟对抗学习详解

有标签和无标签数据多任务联合学习详解

特征设计和模型嵌入

语言模型的嵌入

特征提取模块详解

网络的结构设计和参数详解

训练数据的自动生成和人工标注修复错误

训练数据转化为模型需要的格式

核心代码详解:调试、难点语法分析、调优、重写和升级

模型的训练和参数调整

模型的预测和企业化部署

项目四:基于多任务学习联合模型的知识抽取系统(构建百度知心、搜狗知立方、谷歌 freebase 和微软 Microsoft Concept Graph 等行业知识图谱核心技术)

知识抽取系统效果展示和分析

知识抽取系统行业背景和企业应用场景介绍

全球准确率最高知识抽取模型介绍和详解

联合模型结构和模块详解

非联合模型结构和联合模型结构异同和性能分析

实体识别模块设计

关系分类模块设计

特征融合模块详解

标签表征和嵌入模块详解

特征的提取、表征和嵌入

联合模型实体关系标签转化和预测

多任务损失函数的设计和详解

Softmax 单标签和 Sigmoid 多标签区别

如何解决多实体对多关系问题

模型升级之加入对抗学习

模型升级之加入半监督学习和无标签数据

模型训练和参数调整

模型预测和企业部署

第三阶段 企业项目之推荐系统实战

推荐系统企业的应用背景,场景以及技术架构

推荐系统离线评价指标 AUC、MAP、NDCG 等

推荐系统在线评价方式 AB Test 及实现方式

推荐系统协同过滤体系召回算法

推荐系统矩阵分解 MF 体系召回算法

推荐系统 FM、FFM 体系相关召回、精排算法

推荐系统 LR、GBDT+LR 体系相关精排算法

推荐系统 DeepFM、xDeepFM 体系相关精排算法

推荐系统 DSSM 体系的双塔结构召回、精排算法

推荐系统 YoutubeNet 体系的召回、精排算法

推荐系统 DIN、DIEN 深度兴趣网络体系相关的精排算法

推荐系统 MMOE、ESMM 多目标任务融合体系的相关算法

推荐系统向量召回算法及服务实现

推荐系统整体系的项目实现,包括召回、过滤、精排等各阶段规则模型和业务逻辑、融

合

项目实战一:基于知识图谱的推荐系统实战

Neo4j 应用及优化介绍

Neo4j 数据管理、应用方式介绍

基于知识图谱的推荐架构体系介绍 基于知识图谱的召回、精排等各阶段规则模型的设计及开发 部署、优化、上线、监测

项目实战二: 电影推荐项目实战

电影推荐项目概要和背景介绍

电影数据的采集、标注和预处理

推荐系统架构体系介绍

推荐系统召回、过滤、粗排、精排、重排各个核心模块的实现策略及常用算法讲解 基于深度学习、Transformer等技术栈的模型设计

多维度的模型融合

系统上线部署、优化

线上模型更新、AB 测试

项目实战三:基于 DIN 系列模型的序列推荐系统

DIN 体系算法原理讲解

DIN 体系算法上线相关推荐架构讲解

DIN 算法模型部署、优化、上线

线上模型更新、AB测试

项目实战四:基于 MMOE 系列模型的多目标推荐系统

多目标推荐系统应用场景介绍

多目标推荐系统现有技术缺陷介绍

MMOE体系多目标算法结构原理讲解

模型校准

线上模型更新、AB测试

(CV方向)

第一阶段 OpenCV PIL 与图形处理代码实战

- 1、OpenCV 安装
- 2、摄像头操作
- 3、图像基本操作
- 4、颜色空间转换
- 5、阈值分割
- 6、图像几何变换
- 7、图像混合
- 8、平滑图像
- 9、边缘检测

- 10、腐蚀与膨胀
- 11、轮廓与特征
- 12、直方图
- 13、模板匹配
- 14、霍夫变换

项目实战一: Python 性能优化之内存优化与加速

项目实战二: 凸包轮廓特征的手势识别

项目实战三: Harris 角点检测

项目实战四:基于 Shi-Tomasi 特征检测

项目实战五:基于 SIFT 特征特征工业品缺陷识别

第二阶段 深度学习基础

第1章 CV 深度学习必备知识

- 1.1 全连接神经网络(BP 算法)
- 1.2 CNN 卷积神经网络
- 1.3 各种激活函数理解与对比
- 1.4 池化 (pooling) 的作用和选择
- 1.5 Dropout 和 Dropconnect 提升模型准确率
- 1.6 Batch Normalization (BN) 批归一化显神通
- 1.7 Layer Normalization, IN, GN 原理应用场景与实战
- 1.8 参数初始化技巧
- 1.9 学习率策略详解
- 1.10 优化器进阶
- 1.11 数据增强的手段

第2章 卷积神经网络

- 2.1 Bottleneck 结构之参数压缩
- 2.2 反卷积与转置卷积
- 2.3 膨胀卷积
- 2.4 可变形卷积
- 2.5 残差结构之 ResNet, ResNext
- 2.6 倒残差结构 MobileNetv1, v2, v3
- 2.7 通道注意力机制之 senet
- 2.8 全局特征值 gcnet

项目一: 手写数字识别系统

项目二:图像识别和分类系统

第三阶段 企业项目之计算机视觉

项目一: 人脸识别(支付宝刷脸支付,公安部人脸认证,人脸考勤等)

人脸识别效果展示

人脸识别项目背景,应用场景,实现原理

不同人脸识别算法 Center Loss,SphereFace,Cosine Margin Loss,Angular Margin Loss 优缺点分析,如何设计高准确率的人脸检测模型

人脸识别损失函数设计原理

Arcface 等论文导读及算法详解

人脸识别数据标注方法,标签生成

人脸识别算法的架构和模块详解

数据增强与样本不均衡处理

模型源码讲解之人脸识别特征提取网络设计

模型源码讲解之 Arcface 代码实现

模型源码讲解之模型优化及准确率提升技巧

模型源码讲解之预测模块实现和部署

项目二: 半监督图像识别分类(用少量标注数据构建企业级高精度图像识别系统)

项目三: OCR 文字识别

项目四: 智慧工地

项目五: Virtual adversarial learning 虚拟对抗学习半监督图像识别及代码实现

项目六:数据增强之 Mixup 半监督图像识别及代码实现

项目七:超强半监督技术之 ICT 图像识别及代码实现

项目八:超强半监督技术之 Mixmatch 图像识别及代码实现

项目九:目标检测(一种工业缺陷检测,违规车牌检测,自动驾驶等核心技术)

目标检测效果展示

目标检测项目背景和应用场景

目标检测常用算法 rcnn、fast rcnn、faster rcnn、cascad rcnn、ssd、yolov3,retinanet 介绍及原理

RPN 网络结构及原理

ROI pooling 实现

anchors 生成原理

NMS 和 Soft-NMS

上采样

膨胀卷积

多任务损失函数设计

IOU 计算原理

边框回归

目标分类损失函数设计和改进

难样本挖掘之 focus loss 设计

目标检测评价指标介绍

算法准确率提升之检测框集成

算法准确率提升之特征集成

制作自己的目标检测数据之数据标注 制作自己的目标检测数据之数据转化为结构化数据 模型源码讲解之模块设计思想 模型源码讲解之代码剖析 模型源码讲解之代码详细调试 模型的训练和调参技巧 模型的部署及预测

项目十: 行人重识别和大规模图像检索

图像检索效果展示 行人重识别和大规模图像检索的项目背景和应用场景 重点、难点详解

行人重识别当前全球准确率最高模型详解

ABD-Net 网络架构和论文导读

特征加入 Attention 和多样性设计详解

Orthogonality Regularization 正交正则化: 一种多样化特征神器

通道权重模块详解

位置权重模块详解

全局特征嵌入和融合

数据标注和转化

模型源码讲解之代码详细调试

模型训练和参数调优

模型预测

(高性能部署)

第一阶段 C++编程

第1章 初识C++

- 1.1 Linux 学习环境搭建
- 1.2 Linux 常用指令学习
- 1.3 C++ 与 Python 对比
- 1.4 Windows C++ 和 Linux C++对比
- 1.5 C++ 编译原理
- 1.6 C++ 开发调试环境搭建
- 1.7 g++ 和 Makefile 编译

第2章 C++基础

- 2.1 C++ 语句
- 2.2 其他 C++ 语句
- 2.3 函数

第3章 处理数据

- 3.1 变量
- 3.2 const 限定符
- 3.3 浮点数
- 3.4 C++ 算术运算符

第4章 复合类型

- 4.1 数组
- 4.2 字符串
- 4.3 string 类简介
- 4.4 结构简介
- 4.5 共用体
- 4.6 枚举
- 4.7 指针和自由存储空间
- 4.8 指针、数组和指针算术
- 4.9 类型组合
- 4.10 数组的替代品

第5章 循环关系和表达式

- 5.1 for 循环
- 5.2 while 循环
- 5.3 do while 循环
- 5.4 基于范围的 for 循环(C++11)
- 5.5 循环和文本输入
- 5.6 嵌套循环和二维数组

第6章 分支语句和逻辑运算符

- 6.1 if 语句
- 6.2 逻辑表达式
- 6.3 字符函数库 cctype
- 6.4 ?: 运算符
- 6.5 switch 语句
- 6.6 break 和 continue 语句
- 6.7 读取数字的循环
- 6.8 文件的输入/输出

第7章 函数 --- C++ 编程模块

- 7.1 函数参数和按值传递
- 7.2 函数、数组和二维数组
- 7.3 函数和 C-风格字符串

- 7.4 函数和结构
- 7.5 函数和 string 对象
- **7.6** 函数和 array 对象
- 7.7 递归
- 7.8 函数指针

第8章 函数探幽

- 8.1 C++内联函数
- 8.2 引用变量
- 8.3 默认参数
- 8.4 函数重载
- 8.5 函数模板

第9章 内存模型和名称空间

- 9.1 单独编译
- 9.2 存储持续性、作用域和链接性
- 9.3 名称空间

第10章 对象和类

- 10.1 过程性编程和面相对象编程
- 10.2 抽象和类
- 10.3 类的构造函数和析构函数
- 10.4 this 指针
- 10.5 对象数组
- 10.6 类作用域
- 10.7 抽象数据类型

第11章 使用类

- 11.1 运算符重载
- 11.2 计算时间:一个运算符重载示例
- 11.3 友元
- 11.4 重载运算符:作为成员函数还是非成员函数
- 11.5 再谈重载: 一个矢量类
- 11.6 类的自动转换和强制类型转换

第12章 类和动态内存分配

- 12.1 动态内存和类
- 12.2 改进后的新 String 类
- 12.3 在构造函数中使用 new 时应注意的事项
- 12.4 有关返回对象的说明
- 12.5 使用指向对象的指针
- 12.6 队列模拟

第13章 类继承

- 13.1 一个简单的基类
- 13.2 继承: is-a 关系
- 13.3 多态公有继承
- 13.4 静态联编和动态联编
- 13.5 访问控制: protected
- 13.6 抽象基类
- 13.7 继承和动态内存分配
- 13.8 类设计回顾

第二阶段 高性能 AI 算法集成和发布平台

基于云计算高并发分布式多种算法集成框架

- 1、算法集成框架模块设计
- 2、高性能异步处理
- 3、多线程技术
- 4、负载均衡
- 5、内存管理与优化
- 6、多模型加载模块设计
- 7、多模型集成模块设计
- 8、多模型预测模块设计
- 9、结果返回和显示
- 10、接口发布
- 11、其他任何语言的接口调用

第三阶段 用 C++实现模型的高性能部署

- 1、理解 RING ALLREDUCE 原理, 实现 DDP 分布式并行训练
- 2、认识并了解 CUDA (Compute Unified Device Architecture)
- 3、学习 CUDA 编程,熟悉 GRIDDIM BLOCKDIMCUDA, CUDA WARPAFFINE,
- 4、CUDASTREAM 和 EVENT 的使用
- 5、学习并掌握 TensorRT 的 CNN 搭建
- 6、TensorRT 的 IMAGE 分类之 ONNX 解析器及配置
- 7、TensorRT 的 IMAGE 分类之 具体推理实现
- 8、TensorRT 的框架使用
- 9、TensorRT 插件
- 10、实现 YOLOv5 CUDA 推理 FLASK 技术应用,模型部署

授课+实践 深兰大型商用交付项目实践等你来参与……

