Cylindrical and Spherical Coordinates

Cylindrical Coordinates

- 1. Plot the following points whose cylindrical coordinates are given
 - (a) $4, \pi/3, -2$
 - (b) 4, 0, 2

- 2. Convert from rectangular to cylindrical coordinates:
 - (a) (-1,1,1)
 - (b) $(-2, 2\sqrt{3}, 3)$

- $3. \ \,$ Convert from cylindrical coordinates to rectangular coordinates
 - (a) $(4, \pi/3, -2)$
 - (b) (4,0,2)

4. Sketch the solid described by the following

(a)

$$0 \le r \le 2, \quad -\pi/2 \le \theta \le \pi/2, \quad 0 \le z \le 1$$

(b)

$$0 \le \theta \le \pi/2, \quad r \le z \le 2$$

5. Describe in words or draw a rough sketch of the surface whose equation is given

(a)
$$\theta = \pi/4$$

(b)
$$r = 15$$

(c)
$$z = 4 - r^2$$

(d)
$$2r^2 + z^2 = 1$$

6. Convert the given equation to cylindrical coordinates

(a)
$$x^2 - 4x + y^2 + z^2 = 1$$

(b)
$$z = x^2 - y^2$$

Spherical Coordinates

- 7. Plot the following points whose spherical coordinates are given then find the rectangular coordinates for the same point.
 - (a) $(6, \pi/3, \pi/6)$

(b) $(3, \pi/2, 3\pi/4)$

- 8. Convert from rectangular to spherical coordinates:
 - (a) (0, -2, 0)

(b) $(1, 0, \sqrt{3})$

- 9. Identify or describe in words or sketch the surface whose equation is given
 - (a) $\rho = 3$

(b) $\rho = \sin \theta \sin \phi$

10. Write the equation in spherical coordinates

(a)
$$z^2 = x^2 + y^2$$

(b)
$$x + 2y + 3z = 1$$

(c)
$$x^2 + z^2 = 9$$