Y POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell'Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Anno Accademico 2014 – 2015

Algoritmi adattativi per il risparmio energetico di sistemi broadcast via Bluetooth

Relatore: Prof. Raffaela Mirandola

Correlatore: Dott. Diego Perez

- Introduzione
- Stato dell'arte
- Analisi di fattibilità
- Architettura della soluzione
- Simulazioni e risultati
- Conclusioni

Introduzione

- Stato dell'arte
- Analisi di fattibilità
- Soluzione
- Simulazioni e risultati
- Conclusioni

Sommario

- Introduzione
- Stato dell'arte
 - Bluetooth Low Energy
 - Modello di rete
 - Gossip
- Analisi di fattibilità
- Soluzione
- Simulazioni e risultati
- Conclusioni

Bluetooth Low Energy

Il Bluetooth Low Energy:

- Rilasciato nel 2010, con la versione v4.0
- Niente suddivisione in calssi
- Basso consumo energetico
- Bassa latenza di trasmissione
- Ottimizzata per la trasmissione di piccole informazioni
- Vasto insieme di applicazioni sul mercato
- Retrocompatibilità: prodotti in Smart e Smart Ready

BLE – Consumo Energetico

Bluetooth Classic (≤v.3)

	Potenza (mW)	Potenza (dBm)	Distanza (m)
Classe 1	100	20	~100
Classe 2	2.5	4	~10
Classe 3	1	0	~1

Bluetooth Low Energy (v.4)

Potenza masima all'output	Potenza minima all'output	
10 mW (10 dBm)	0.01 mW (-20 dBm)	

Distanza:

- Dipende dal trasmettitore
- Rilevazioni sperimentali:
 - ~15m
 - ~50m
 - ≥ 100m (in campo aperto)

BLE – Link Layer

Macchina a stati:

- Standby
- Scanning
- Advertising
- Initiating
- Connection
 - Master
 - Slave

Sommario

- Introduzione
- Stato dell'arte
 - Bluetooth Low Energy
 - Modello di rete
 - Gossip
- Analisi di fattibilità
- Soluzione
- Simulazioni e risultati
- Conclusioni

Modello di rete – caratteristiche scenario

Situazione normale

- Presenza di una struttura di rete
- Lo smistamento dei messaggi è completamente in carico alla rete stessa
- Controlli e sicurezza centralizzati
- L'infrastruttura ha una visione globale della rete

Situazione di emergenza

- Assenza di una struttura di rete
- Assenza di conoscenza globale della rete
- Assenza controlli centralizzati
- Visione locale della rete
- Rete Peer-to-Peer

Modello di rete – Random Geometric Graph

Random Geometric Graph $G(N,\rho)$:

- Modello di rete P2P
- Distanza geomentrica ρ
- Adatto a modellare reti wireless o reti ad hoc in cui la distanza fisica tra i dispositivi è un parametro significativo
- Alta edge-dependency
- Bassa degree variance
- Sinergia con BLE

Introduzione

- Stato dell'arte
 - Bluetooth Low Energy
 - Modello di rete
 - Gossip
- Analisi di fattibilità
- Soluzione
- Simulazioni e risultati
- Conclusioni

Gossip - introduzione

- Paradigma computazionale orientato allo studio della diffusione di proprietà e informazioni in ambienti eterogenei, con approccio probabilistico come accade in natura
- Modelli adatti per lo studio della diffusione di epidemie e della diffusione di informazioni ("Epidemic algorithms for replicated database maintenance", Xerox Research Center, 1987)
- Anni 2000: nascita applicazioni per reti P2P
- Esempi reali:
 - Amazon S3 (Simple Storage System)
 - Cassandra: database distribuito utilizzato nelle prime versioni di Facebook
 - Bittorrent

Gossip - categorizzazione

Stati epidemici:

- Suscettibile (Suscettible)
- Contagiato (Inefcted)
- Rimosso (Removed)

Classificazione:

- Suscettible Infected (SI)
- Suscettible Infected Removed (SIR)
- Suscettible Infected Suscettible (SIS)

Metodi di diffusione:

- Pull
- Push
- Pull&Push

Categorie:

- Anti-entropy (SI)
- Rumor mongering (SIR)

Gossip – algoritmo di Fixed Fanout

Fixed_Fanout(*msg,fanout*):

- Algoritmo di gossip per reti P2P
- Assenza di componente probabilistica
- Usa metodo "Push"
- Seleziona casualmente "fanout" nodi dall'insieme dei nodi vicini
- Se l'insieme di nodi vicini è minore di "fanout", esegue una trasmissione broadcast a tutti i nodi vicini
- Si conosce a priori il numero di trasmissioni che verranno effettuate

- Introduzione
- Stato dell'arte
- Analisi di fattibilità
- Soluzione
- Simulazioni e risultati
- Conclusioni

Analisi di fattibilità – studio energetico

Analisi di fattibilità – studio energetico

Impatto sugli smartphone:

- Numero trasmissioni possibili
- Durata

- Introduzione
- Stato dell'arte
- Analisi di fattibilità
- Soluzione
- Simulazioni e risultati
- Conclusioni

Soluzione – progettazione logica

Mappare gli stati del Link Layer del BLE con gli stati di gossip

- Numero trasmissioni possibili
- Durata

- Introduzione
- Stato dell'arte
- Analisi di fattibilità
- Soluzione
- Simulazioni e risultati
- Conclusioni

- Introduzione
- Stato dell'arte
- Analisi di fattibilità
- Soluzione
- Simulazioni e risultati
- Conclusioni

Grazie!