COSC264 Introduction to Computer Networks and the Internet

Introduction to Routing- Link State Routing

Dr Barry Wu

Wireless Research Centre

University of Canterbury

barry.wu@canterbury.ac.nz

A quick review

- Layer approach and services
- Hierarchical routing and Autonomous System (AS)
- Routing vs forwarding
- Classification of routing algorithms

Hierarchical routing in the Internet

Routing and Forwarding

Outline – today

- Network layer overview
- Routing overview
- Link-state routing (Dijkstra's algorithm)
- Distance-vector routing (Bellman-Ford)
- Summary

Routing Algorithms and Routing Protocols

Intra-AS Routing

Routing Protocols	Routing Algorithms
RIP	Bellman-Ford (Distance-vector) Algorithm
OSFP	Dijkstra's Algorithm
BGP	Bellman-Ford (Distance-vector) Algorithm

Inter-AS Routing

The Internet routing protocols (RIP, OSPF, and BGP) are *load-insensitive*.

Euler and Graph Theory

- Seven Bridges of Königsberg. 1783
- Wiki

Modeling a network

- Modeled as a graph
 - Routers ⇒ nodes
 - Link ⇒ edges

- Edge labels (called metrics) can be interpreted differently
 - as costs, e.g., delay, monetary transmission costs, geographical distance
 - as available resources, e.g., number of available phone trunks, current available capacity given the set of flows that already use this link

Routing algorithms

- To find least cost path
 - Shortest path if all link costs equal (measures hops)

Link State Routing

- Each router has complete network picture
 - Topology, Link costs
- How does each router get the global state?
 - Each router reliably floods information about its neighbors to every other router;
 - All routers have consistent information;

Link State: Control Traffic

- Each node floods its local information
- Each node ends up knowing the entire network topology node

Link State: Node State

Flooding could be a danger!

There are sophisticated algorithms doing the broadcasting job! (Controlled flooding, spanning-tree broadcast)

Link State Routing

- Each router independently calculates the leastcost path from itself to every other router;
 - Using Dijkstra's Algorithm;
 - Generates a forwarding table for every destination;

Dest.	Next-hop
u	x
V	у
• • •	•••

Dijkstra's Algorithm

INPUT:

Network topology (graph), with link costs

OUTPUT:

Least cost paths from one node to all other nodes

Dijkstra's Algorithm

- S: nodes whose least-cost path already known
 - Initially, $S = \{u\}$ where u is the source node
 - Add one node to S in each iteration
- D(v): current cost of path from source to node v
 - Initially, D(v) = c(u,v) for all nodes v adjacent to u
 - ... and D(v) = ∞ for all other nodes v
 - Continually update D(v) as shorter paths are learned
- p(v): predecessor node along path from source to v, that is next to v
- c(i,j): link cost from node i to j; cost infinite if not direct neighbors; ≥ 0

Dijkstra's Algorithm

```
Initialization:
                     S = \{u\} / *u \text{ is the source } */
                    for all nodes v
                            if v is adjacent to u {
                                           then D(v) = c(u,v) / * cost of neighbor known * left cost of nei
5
                                           else D(v) = \infty / * cost of others unknown* /
                   Loop
                        find w not in S with the smallest D(w)
 10 add w to S
11 update D(v) for all v adjacent to w and not in S:
12
                                       D(v) = min\{D(v), D(w) + c(w,v)\}
                         /* new cost to v is either old cost to v or known
                     shortest path cost to w plus cost from w to v */
 ∜3 until all nodes in S
```

S	Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
<u>C</u>)	Α	2,A	5,A	1,A	∞	∞
1							
2	<u> </u>						
3	3						
4	-						
5							


```
1 Initialization:
2 S = {A};
3 for all nodes v
4 if v is adjacent to A
5 then D(v) = c(A,v);
6 else D(v) = ∞;
...
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	(1,A)	∞	∞
1						
2						_
3						
4						
5						


```
▶ 8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;</li>
13 until all nodes in S;
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
→ 1	AD					
2						
3						
4						
5						

8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;

11 update D(v) for all v adjacent to w and not in S:

12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;

-13 until all nodes in S;

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
→ 1	AD					∞
2						
3						
4						
5						

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
→ 1	AD	2,A				∞
2						
3						
4						
5						


```
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;</li>
13 until all nodes in S;
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
→ 1	AD	2,A	4,D	1,A		∞
2						
3						
4						
5						


```
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;</li>
13 until all nodes in S;
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
→ 1	AD	2,A	4,D	1,A	2,D	∞
2						
3						
4						
5						


```
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;</li>
13 until all nodes in S;
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD	2,A	4,D	1,A	2,D	∞
2	ADE	2,A	3,E	1,A	2,D	
3						
4						
5						


```
Noop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;</li>
13 until all nodes in S;
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD	2,A	4,D	1,A	2,D	∞
2	ADE	2,A	3,E	1,A	2,D	4,E
3						
4						
5						


```
→ 8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;</li>
13 until all nodes in S;
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E) ,p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD	2,A	4,D	1,A	2,D	∞
2	ADE	2,A	3,E	1,A	2,D	4,E
3	ADEB	2,A	3,E	1,A	2,D	4,E
4			,			

5

```
Noop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;</li>
13 until all nodes in S;
```

Step	start S	D(B),p(B)	D(C),p(C)	D(D) ,p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD	2,A	4,D	1,A	2,D	∞
2	ADE	2,A	3,E	1,A	2,D	4,E
3	ADEB	2,A	3,E	1,A	2,D	4,E
4	ADEBC	2,A	3,E	1,A	2,D	4,E
5		·	,			

- Loop
 - find **w** not in **S** s.t. D(w) is a minimum;
 - 10 add **w** to **S**;
 - update D(v) for all v adjacent to w and not in S:
 - If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;
 - until all nodes in S;

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E) ,p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD	2,A	4,D	1,A	2,D	∞
2	ADE	2,A	3,E	1,A	2,D	4,E
3	ADEB	2,A	3,E	1,A	2,D	4,E
4	ADEBC	2,A	3,E	1,A	2,D	4,E
5	ADEBCF	2,A	3,E	1,A	2,D	4,E

8 Loop

- find **w** not in **S** s.t. D(w) is a minimum;
- 10 add **w** to **S**;
- update D(v) for all v adjacent to w and not in S:
- If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;
- until all nodes in S;

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	Α	2,A	5,A	1,A	∞	∞
1	AD	2,A	4,D	1,A	2,D	∞
2	ADE	2,A	3,E	1,A	2,D	4,E
3	ADEB	2,A	3,E	1,A	2,D	4,E
4	ADEBC	2,A	3,E	1,A	2,D	4,E
5	ADEBCF	2,A	3,E	1,A	2,D	4,E

- → 8 Loop

 9 find w not in S s t D(w) is a minimum
 - find \mathbf{w} not in \mathbf{S} s.t. $D(\mathbf{w})$ is a minimum;
 - 10 add **w** to **S**;
 - 11 update D(v) for all v adjacent to w and not in S:
 - 12 If D(w) + c(w,v) < D(v) then D(v) = D(w) + c(w,v); p(v) = w;
 - 13 until all nodes in S;

The Forwarding Table

- Running Dijkstra at node A gives the shortest path from A to all destinations
- We then construct the forwarding table

Destination	Next hop
В	В
С	D
D	D
E	D
F	D

Dijkstra's Algorithm – set *p(v)*

```
Initialization:
   S = \{u\} / * u \text{ is the source */}
   for all nodes v
     if v is adjacent to u {
5
        then D(v) = c(u,v) / cost of neighbor known*/
        else D(v) = \infty / * cost of others unknown * /
   Loop
    find w not in S with the smallest D(w)
10 add w to S
11 update D(v) for all v adjacent to w and not in S:
       D(v) = min\{D(v), D(w) + c(w,v)\}
    /* new cost to v is either old cost to v or known
    shortest path cost to w plus cost from w to v */
#3 until all nodes in S
```

Dijkstra's Algorithm – set *p(v)*

```
Initialization:
                     S = \{u\} / * u \text{ is the source */}
                     for all nodes v
                            if v is adjacent to u {
                                           then D(v) = c(u,v) / * cost of neighbor known * / * cost of neighbor kno
                                           else D(v) = \infty / * cost of others unknown * /
                   Loop
                        find w not in S with the smallest D(w)
 10 add w to S
11 update D(v) for all v adjacent to w and not in S:
                                       D(v) = min\{D(v), D(w) + c(w,v)\} 
                         /* new cost to v is either old cost to v or known
                     shortest path cost to w plus cost from w to v */
 #3 until all nodes in S
```

Dijkstra's algorithm, discussion

Algorithm complexity: n nodes

- each iteration: need to check every node, w, not in N
- n(n-1)/2 comparisons: O(n²)
- more efficient implementations possible: O(nlogn)
 - Using a min-heap;
 - we can find out the node with min cost in O(logn);
 - Total cost = O(log(n-1) + log(n-2) + ... + log1)
 - = O(nlogn).

Oscillation with link-state routing

Today's Internet routing algorithms are load-insensitive!

a. Initial routing

b. x,y detect better path to w, clockwise

c. x, y, z detect better path to w, counterclockwise

d. x,y,z detect better path to w, clockwise

Summary: Link-State Routing

- Each router broadcasts the link state
 - To give every router a complete view of the graph
- Each router runs Dijkstra's algorithm
 - Compute least-cost paths, then construct forwarding table

References

 [KR3] James F. Kurose, Keith W. Ross, Computer networking: a top-down approach featuring the Internet, 3rd edition.

Acknowledgements

- Slides are developed mainly based on slides from the following two sources:
 - Prof Aleksandar Kuzmanovic's lecture notes for CS340, Northwestern University,

https://users.cs.northwestern.edu/~akuzma/classes/CS340-w05/lecture_notes.htm