Homework 4 (Due Date: Nov. 13, 2007)

1. Consider a binary symmetric channel with $Y_i = X_i \oplus Z_i$, where \oplus is mod 2 addition, and $X_i, Y_i \in \{0,1\}$.

Suppose that $\{Z_i\}$ has constant marginal probabilities $\Pr(Z_i = 1) = p$ and $\Pr(Z_i = 0) = 1 - p$, but that Z_1, Z_2, \dots, Z_n are not necessarily independent. Let C = 1 - H(p). Show that

$$\max_{p(x_1, x_2, \dots, x_n)} I(X_1, X_2, \dots, X_n; Y_1, Y_2, \dots, Y_n) \ge nC$$

Comment on the implications.

2. Consider the channel $Y = X + Z \pmod{13}$, where

$$Z = \begin{cases} 1, & \text{with probability } \frac{1}{3} \\ 2, & \text{with probability } \frac{1}{3} \\ 3, & \text{with probability } \frac{1}{3} \end{cases}$$

and $X \in \{0, 1, \dots, 12\}.$

- (a) Find the capacity.
- (b) What is the maximizing $p^*(x)$?

3. Using two channels.

- (a) Consider two discrete memoryless channels $(\mathcal{X}_1, p(y_1|x_1), \mathcal{Y}_1)$ and $(\mathcal{X}_2, p(y_2|x_2), \mathcal{Y}_2)$ with capacities C_1 and C_2 respectively. A new channel $(\mathcal{X}_1 \times \mathcal{X}_2, p(y_1|x_1) \times p(y_2|x_2), \mathcal{Y}_1 \times \mathcal{Y}_2)$ is formed in which $x_1 \in \mathcal{X}_1$ and $x_2 \in \mathcal{X}_2$, are *simultaneously* sent, resulting in y_1, y_2 . Find the capacity of this channel.
- (b) Find the capacity C of the union 2 channels $(\mathcal{X}_1, p(y_1|x_1), \mathcal{Y}_1)$ and $(\mathcal{X}_2, p(y_2|x_2), \mathcal{Y}_2)$ where, at each time, one can send a symbol over channel 1 or channel 2 but not both. Assume the output alphabets are distinct and do not intersect. Show $2^C = 2^{C_1} + 2^{C_2}$.
- 4. Consider a time-varying discrete memoryless binary symmetric channel. Let Y_1, Y_2, \dots, Y_n be conditionally independent given X_1, X_2, \dots, X_n , with conditional distribution given by $p(y^n|x^n) = \prod_{i=1}^n p_i(y_i|x_i)$, as shown below.

(a) Find $\max_{p(x)} I(X^n; Y^n)$.

- (b) We now ask for the capacity for the time invariant version of this problem. Replace each p_i , $1 \le i \le n$, by the average value $\bar{p} = \frac{1}{n} \sum_{j=1}^{n} p_j$, and compare the capacity to part (a).
- 5. Suppose a binary symmetric channel of capacity C_1 is immediately followed by a binary erasure channel of capacity C_2 . Find capacity C of the resulting channel.

Now consider an arbitrary discrete memoryless channel $(\mathcal{X}, p(y|x), \mathcal{Y})$ followed by a binary erasure channel, resulting in an output

$$\tilde{Y} = \begin{cases} Y, & \text{with probability } 1 - \alpha \\ e, & \text{with probability } \alpha \end{cases}$$

where e denotes erasure. Thus the output \mathcal{Y} is erased with probability α What is the capacity of this channel?

6. We wish to encode a Bernoulli(α) process V_1, V_2, \cdots for transmission over a binary symmetric channel with error probability p.

$$V^{n} \longrightarrow X^{n}(V^{n}) \longrightarrow 0$$
 $V^{n} \longrightarrow V^{n} \longrightarrow V$

Find conditions on α and p so that the probability of error $p(\hat{V}^n \neq V^n)$ can be made to go to zero as $n \to \infty$.

- 7. Let (X_i, Y_i, Z_i) be i.i.d. according to p(x, y, z). We will say that (x^n, y^n, z^n) is jointly typical [written $(x^n, y^n, z^n) \in A_{\epsilon}^{(n)}$] if
 - $2^{-n(H(X)+\epsilon)} \le p(x^n) \le 2^{-n(H(X)-\epsilon)}$
 - $2^{-n(H(Y)+\epsilon)} \le p(y^n) \le 2^{-n(H(Y)-\epsilon)}$
 - $2^{-n(H(Z)+\epsilon)} < p(z^n) < 2^{-n(H(Z)-\epsilon)}$
 - $2^{-n(H(X,Y)+\epsilon)} \le p(x^n, y^n) \le 2^{-n(H(X,Y)-\epsilon)}$
 - $2^{-n(H(X,Z)+\epsilon)} \le p(x^n, z^n) \le 2^{-n(H(X,Z)-\epsilon)}$
 - $2^{-n(H(Y,Z)+\epsilon)} \le p(y^n, z^n) \le 2^{-n(H(Y,Z)-\epsilon)}$
 - $2^{-n(H(X,Y,Z)+\epsilon)} \le p(x^n, y^n, z^n) \le 2^{-n(H(X,Y,Z)-\epsilon)}$

Now suppose that $(\tilde{X}^n, \tilde{Y}^n, \tilde{Z}^n)$ is drawn according to $p(x^n)p(y^n)p(z^n)$. Thus, $\tilde{X}^n, \tilde{Y}^n, \tilde{Z}^n$ have the same marginals as $p(x^n, y^n, z^n)$ but are independent. Find (bounds on) $\Pr\{(\tilde{X}^n, \tilde{Y}^n, \tilde{Z}^n) \in A_{\epsilon}^{(n)}\}$ in terms of the entropies H(X), H(Y), H(Z), H(X, Y), H(X, Z), H(Y, Z) and H(X, Y, Z).

8. Twenty questions.

- (a) Player A chooses some object in the universe, and player B attempts to identify the object with a series of yes-no questions. Suppose that player B is clever enough to use the code achieving the minimal expected length with respect to player A's distribution. We observe that player B requires an average 38.5 questions to determine the object. Find a rough lower bound to the number of objects in the universe.
- (b) Let X be uniformly distributed over $\{1, 2, \dots, m\}$. Assume that $m = 2^n$. We ask random questions: Is $X \in S_1$? Is $X \in S_2$? ... until only one integer remains. All 2^m subsets S of $\{1, 2, \dots m\}$ are equally likely.
 - i. How many deterministic questions are needed to determine X?
 - ii. Without loss of generality, suppose that X = 1 is the random object. What is the probability that object 2 yields the same answers as object 1 for k questions?
 - iii. What is the expected number of objects in $\{2, 3, \dots, m\}$ that have the same answers to the questions as those of the correct object 1?