4 rūšys molekulių, dvi grupės

Adeninas(A), Guaninas(G) Purinai

Citozinas(C), Timinas(T) Pirimidinai

- A visada stovi prieš T
- G visada stovi prieš C

A visada stovi prieš T

G visada stovi prieš C

Seka: AGCGCT

Komplementari seka: TCGCGA

 Tam kad apibūdinti DNR seką užtenka išvadinti DNR bazes vienoje grandinėje.

Mutacijos

 Mutacijos DNR sekoje atsiranda atsitiktinai. Žmogus turi apie ~40 mutacijų atsitiktinai atsiradusių ir nerastų nei viename tėve.

Mutacijos

 Mutacijos DNR sekoje atsiranda atsitiktinai.

Bazių pakeitimas

- Dažniausia mutacijų forma
- Bazė yra pakeičiama kita baze

Bazių pakeitimas

- Tranzicija: Pur į Pur, Pyr į Pyr
- Transversija: Pur į Pyr, Pyr į Pur

Bazių pakeitimas

Esminis klausimas

Kaip nuspręsti kiek mutacijų skiria sekas?

S0: Bendras protėvis

S1: Palikuonis sekos S0

S2: Palikuonis sekos S1

S0: ATGTCGCCTGATAATGCC...

S2: ATGCCGCGTGATAATGCC...

S0: Bendras protėvis

S1: Palikuonis sekos S0

S2: Palikuonis sekos S1

S0: ATGTCGCCTGATAATGCC...

l I

S2: ATGCCGCGTGATAATGCC...

Stebimų mutacijų skaičius: 2

S0: Bendras protėvis

S1: Palikuonis sekos S0

S2: Palikuonis sekos S1

S0: ATGTCGCCTGATAATGCC...

S1: ATGCCGCTTGACAATGCC...

S2: ATGCCGCGTGATAATGCC...

Faktinis mutacijų skaičius: 5

S0 : Bendras protėvis

S1: Palikuonis sekos S0

S2: Palikuonis sekos S1

S0: ATGTCGCCTGATAATGCC...

S1: ATGCCGCTTGACAATGCC...

S2: ATGCCGCGTGATAATGCC...

Faktinis mutacijų skaičius: 5

(dalis yra paslėptos mutacijos)

Ko mes norime?

- Palyginti pradinę ir galutinę DNR seką?
- Sukurti matematinį modelį rasti visas įvykusias mutacijas įtraukiant ir paslėptas mutacijas.

Reality...

- Beveik niekada neturime protėvio sekos. Tik kartais turime keletą susijusių organizmų iš praeities.
- Dažniausiai turime sekas tik dabar gyvenančių palikuonių, bet niekada neturime informacijos apie dabar neegzistuojančių organizmų sekas.

Realybė...

 Kai mes lyginame dvi sekas ir bandome atkurti mutacijas, kurioms vykstant jos atsirado, mes nežinome paskutinio bendro protėvio sekos.

Ortologinės sekos

- Duotai DNR sekai mes galime rasti panašias sekas DNR duombazėse.
- Jei genas randamas viename organizme, mes galme greitai identifikuoti panašių genų sekas susijusiuose organizmuose.

Ortologinės sekos

 Jei genas turi panašią funkciją, mes galime pagrįstai teikgti kad jos kilo iš bendro protėvio ir yra ortologinė.

Sąliginė tikimybė

Apibrėžimas

Esant dviems galimiems įvykiams E ir F, sąlyginė tikimybė kad įvyks įvykis E įvykus įvykiui F apibrėžiama taip:

$$P(F \mid E) = \frac{P(F \cap E)}{P(E)}$$

Tarkim yra 40-bazių ilgio protėvio seka S_0 ir palikuonio seka S_1

 S_0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT

Suskaičiuojam įvykusius bazių pakeitimus:

 $S_0: ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT$

$\overline{S_1 \setminus S_0}$	\overline{A}	\overline{G}	C	\overline{T}
\overline{A}	7	0	1	1
G	1	9	2	0
C	0	2	7	2
T	1	0	1	6

Galime įvertinti $P(S_1 = i | S_0 = j)$

 $S_0: ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT$

$\overline{S_1 \setminus S_0}$	\overline{A}	\overline{G}	C	\overline{T}
\overline{A}	7	0	1	1
G	1	9	2	0
C	0	2	7	2
<i>T</i>	1	0	1	6

Galime įvertinti $P(S_1 = i | S_0 = j)$

 $S_0: ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT$

$\overline{S_1 \setminus S_0}$	\overline{A}	7
\overline{A}	7	$P(S_1 = A \mid S_0 = A) = \frac{7}{9}$
G	1	$P(S_1 = G \mid S_0 = A) = \frac{1}{9}$
\boldsymbol{C}	0	$P(S_1 = C \mid S_0 = A) = 0$
<u></u>	1	$P(S_1 = T \mid S_0 = A) = \frac{1}{9}$

Q1: Kokia suma yra 16-os langelių? Kodėl?

 $S_0: ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT$

$\overline{S_1 \setminus S_0}$	\overline{A}	\overline{G}	C	\overline{T}
\overline{A}	7	0	1	1
G	1	9	2	0
C	0	2	7	2
<i>T</i>	1	0	1	6

Kam lygios eilučių sumos?

 S_0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT

$\overline{S_1 \setminus S_0}$	\overline{A}	\overline{G}	C	\overline{T}
\overline{A}	7	0	1	1
G	1	9	2	0
C	0	2	7	2
<i>T</i>	1	0	1	6

Galime sudaryti sąlyginės tikimybės matricą $P(S_1 = i | S_0 = j)$

Kokia yra suma kiekvieno stulpelio? Kodėl?

40-bazių ilgio protėvio seka S₀ ir palikuonio seka S₁. Turim sąlyginės tikimybės matricą.

 S_0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT

$\overline{S_1 \setminus S_0}$	A	\overline{G}	C	\overline{T}
\overline{A}	7	0	1	1
G	1	9	2	0
C	0	2	7	2
<i>T</i>	1	0	1	6

$$P(S_1 = i \mid S_0 = j)$$

Apibrėžimai

$$P_i = P($$
 i tipo bazé), $i \in \Omega = \{A, G, C, T\}$

$$P_{i|j} = P(S_1 = i \mid S_0 = j), i \in \Omega$$

Kiekvienai sekai S_k galimpibrėžti pasiskirstymo vektorių p_k

$$p_k = \begin{bmatrix} P_A & P_G & P_C & P_T \end{bmatrix}^T$$

$$p_0 = [P_A \quad P_G \quad P_C \quad P_T]^T = \begin{bmatrix} \frac{9}{40} & \frac{11}{40} & \frac{11}{40} & \frac{9}{40} \end{bmatrix}^T$$

 S_0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT

$$P_{i|j} = P(S_1 = i \mid S_0 = j)$$

$$p_1 = \begin{bmatrix} P_A & P_G & P_C & P_T \end{bmatrix}^T = \begin{bmatrix} \frac{9}{40} & \frac{12}{40} & \frac{11}{40} & \frac{8}{40} \end{bmatrix}^T$$

 S_0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT

$$G = \begin{cases} 1 & 9 & 11 & 9 \\ 0 & \frac{1}{9} & \frac{9}{11} & \frac{2}{11} & 0 \\ 0 & \frac{2}{11} & \frac{7}{11} & \frac{2}{9} \\ 1 & 1 & 6 \end{cases}$$

$$P_{i|j} = P(S_1 = i \mid S_0 = j)$$

Kokia yra sąsaja tarp p₀, p₁ ir p_{i|i}?

$$p_{0} = \begin{bmatrix} \frac{9}{40} & \frac{11}{40} & \frac{11}{40} & \frac{9}{40} \end{bmatrix}^{T}$$

$$p_{1} = \begin{bmatrix} \frac{9}{40} & \frac{12}{40} & \frac{11}{40} & \frac{8}{40} \end{bmatrix}^{T}$$

$$p_{2} = \begin{bmatrix} \frac{9}{40} & \frac{12}{40} & \frac{11}{40} & \frac{8}{40} \end{bmatrix}^{T}$$

$$p_{3} = \begin{bmatrix} \frac{9}{40} & \frac{12}{40} & \frac{11}{40} & \frac{8}{40} \end{bmatrix}^{T}$$

$$p_{4} = \begin{bmatrix} \frac{9}{40} & \frac{12}{40} & \frac{11}{40} & \frac{8}{40} \end{bmatrix}^{T}$$

$$p_{4} = \begin{bmatrix} \frac{9}{40} & \frac{12}{40} & \frac{11}{40} & \frac{8}{40} \end{bmatrix}^{T}$$

$$p_{5} = \begin{bmatrix} \frac{9}{40} & \frac{12}{40} & \frac{11}{40} & \frac{8}{40} \end{bmatrix}^{T}$$

$$p_{5} = \begin{bmatrix} \frac{9}{40} & \frac{12}{40} & \frac{11}{40} & \frac{8}{40} \end{bmatrix}^{T}$$

$$p_{6} = \begin{bmatrix} \frac{9}{40} & \frac{12}{40} & \frac{11}{40} & \frac{8}{40} \end{bmatrix}^{T}$$

$$p_{6} = \begin{bmatrix} \frac{9}{40} & \frac{12}{40} & \frac{11}{40} & \frac{8}{40} \end{bmatrix}^{T}$$

$$p_{6} = \begin{bmatrix} \frac{9}{40} & \frac{12}{40} & \frac{11}{40} & \frac{8}{40} \end{bmatrix}^{T}$$

$$P_{i|j} = P(S_1 = i \mid S_0 = j)$$

Perėjimo matrica

Užkoduokime sąlygines tikimybes į matricą.

$$M = \begin{bmatrix} P_{A|A} & P_{A|G} & P_{A|C} & P_{A|T} \\ P_{G|A} & P_{G|G} & P_{G|C} & P_{G|T} \\ P_{C|A} & P_{C|G} & P_{C|C} & P_{C|T} \\ P_{T|A} & P_{T|G} & P_{T|C} & P_{T|T} \end{bmatrix}$$

$$P_{i|j} = P(S_1 = i \mid S_0 = j)$$

$$M = \begin{bmatrix} P_{A|A} & P_{A|G} & P_{A|C} & P_{A|T} \\ P_{G|A} & P_{G|G} & P_{G|C} & P_{G|T} \\ P_{C|A} & P_{C|G} & P_{C|C} & P_{C|T} \\ P_{T|A} & P_{T|G} & P_{T|C} & P_{T|T} \end{bmatrix} = \begin{bmatrix} \frac{7}{9} & 0 & \frac{1}{11} & \frac{1}{9} \\ \frac{1}{9} & \frac{9}{11} & \frac{2}{11} & 0 \\ 0 & \frac{2}{11} & \frac{7}{11} & \frac{2}{9} \\ \frac{1}{9} & 0 & \frac{1}{11} & \frac{6}{9} \end{bmatrix}$$

$$T = \frac{1}{9} & 0 & \frac{1}{11} & \frac{6}{9}$$

$$p_1 = Mp_0$$

$$\begin{bmatrix} \frac{9}{40} \\ \frac{12}{40} \\ \frac{11}{40} \\ \frac{11}{40} \end{bmatrix} = \begin{bmatrix} \frac{7}{9} & 0 & \frac{1}{11} & \frac{1}{9} \\ \frac{1}{9} & \frac{9}{11} & \frac{2}{11} & 0 \\ 0 & \frac{2}{11} & \frac{7}{11} & \frac{2}{9} \\ \frac{1}{40} & \frac{1}{40} \\ \frac{8}{40} \end{bmatrix} \begin{bmatrix} \frac{9}{40} \\ \frac{11}{40} \\ \frac{1}{9} & 0 & \frac{1}{11} & \frac{6}{9} \end{bmatrix} \begin{bmatrix} \frac{9}{40} \\ \frac{11}{40} \\ \frac{9}{40} \end{bmatrix}$$

$$p_1 = Mp_0$$

$$\begin{bmatrix} \frac{9}{40} \\ \frac{12}{40} \\ \frac{11}{40} \\ \frac{8}{40} \end{bmatrix} = \begin{bmatrix} \frac{7}{9} & 0 & \frac{1}{11} & \frac{1}{9} \\ \frac{1}{9} & \frac{9}{11} & \frac{2}{11} & 0 \\ \frac{2}{11} & \frac{7}{11} & \frac{2}{9} & \frac{11}{40} \\ \frac{1}{9} & 0 & \frac{1}{11} & \frac{6}{9} \end{bmatrix} \begin{bmatrix} \frac{9}{40} \\ \frac{11}{40} \\ \frac{9}{40} \end{bmatrix}$$

$$p_1 = Mp_0$$

$$\begin{bmatrix}
\frac{9}{40} \\
\frac{12}{40} \\
\frac{11}{40} \\
\frac{1}{40} \\
\frac{8}{40}
\end{bmatrix} = \begin{bmatrix}
\frac{7}{9} & 0 & \frac{1}{11} & \frac{1}{9} \\
\frac{1}{9} & \frac{9}{11} & \frac{2}{11} & 0 \\
0 & \frac{2}{11} & \frac{7}{11} & \frac{2}{9} \\
\frac{1}{9} & 0 & \frac{1}{11} & \frac{6}{9}
\end{bmatrix} \begin{bmatrix}
\frac{9}{40} \\
\frac{11}{40} \\
\frac{9}{40}
\end{bmatrix}$$

$$\begin{bmatrix} ? \\ \end{bmatrix} = \begin{bmatrix} P_{A|A} & P_{A|G} & P_{A|C} & P_{A|T} \\ P_{G|A} & P_{G|G} & P_{G|C} & P_{G|T} \\ P_{C|A} & P_{C|G} & P_{C|C} & P_{C|T} \\ P_{T|A} & P_{T|G} & P_{T|C} & P_{T|T} \end{bmatrix} \begin{bmatrix} P(S_0 = A) \\ P(S_0 = G) \\ P(S_0 = C) \\ P(S_0 = T) \end{bmatrix}$$

Estimation

• Naudojant perėjimo matricą galime įvertinti bazių pasiskirstymo vektorių P_k palikuonių kartų sekose. S_k , k = 1, 2, 3, ...

$$p_k = Mp_{k-1}$$

$$M = [P_{i|j}] = [P(S_k = i | S_{k-1} = j)]$$

Kas iš to?

 Galime modeliuoti mutacijų dažnius ir jų pokyčius iš kartos į kartą įvertinant ir įvykusias paslėptas mutacijas mutacijas

S0: ATGTCGCCTGATAATGCC...

S1: ATGCCGCTTGACAATGCC...

S2: ATGCCGCGTGATAATGCC...

Faktinis mutacijų skaičius: 5

(dalis yra *paslėptos mutacijos*)

Kam to reikia

Galime rasti tikrus atstumus tarpsekų

Atstumas tarp diejų sekų

- Filogenezėje reikia apibrėžti atstumą tarp dviejų sekų.
- Jis turi parodyti vidutinį mutacijų dažnį per poziciją, įskaitant nematomas mutacijas.

S0: ATGTCGCCTGATAATGCC...

:

S: ATGCCGCGTGATAATGCC...

Atstumas tarp diejų sekų

- Matematiniai modeliai
 - Jukes-Cantor
 - Kimura

Prielaidos

- Bazių pakeitimo (mutacijų) tikimybė išlieka pastovi iš kartos į kartą.
- Mutacijos sekai S_{k-1} virstant seka S_k priklauso tik nuo sekos S_{k-1} .
- Bazė mutuoti į be kurią kitą bazę turi vienodą tikimybę.

DNR pakaitai

- Ilgą laiką nukleotidas duotoje pozicijoje išlieka tas pats.
- Bet periodiškai tas nukleotidas pasikeičia (visoje populiacijoje)
- Tai vadinama pakaita kai dominuojantis nukleotidas konkrečioje pozicijoje pakeičiamas kitu.

Markov'o grandinė pakaitų modeliavimui

- Galimos keturios būklė "a", "c", "g", "t"
- Grandinė veikia bėgant laiko vienetams būklė gali pasikeisti einant nuo vieno laiko taško prie kito
- Laiko vienetau gali būti pasirenkami bet kaip (tarkim kas 20000 generacijų)

Prielaidos

- Bazių pakeitimo (mutacijų) tikimybė išlieka pastovi iš kartos į kartą.
- Mutacijos sekai S_{k-1} virstant seka S_k priklauso tik nuo sekos S_{k-1} .
- Bazė mutuoti į be kurią kitą bazę turi vienodą tikimybę.

- Tarkim kad α yra mažas.
- Mutacijos yra "retos"

Perėjimo matrica P

	A	С	G	T
A	1-a	α/3	α/3	α/3
С	α/3	1-α	α/3	α/3
G	α/3	α/3	1-α	α/3
T	α/3	α/3	α/3	1-α

- Tarkim kad α yra mažas.
- Mutacijos yra "retos"

Perėjimo matrica P		A	С	G	Т
α yra parametras	A	1-α	α/3	α/3	α/3
priklausantis nuo to , ką	С	α/3	1-α	α/3	α/3
reiškia laiko vienetas.	G	α/3	α/3	1-α	α/3
Jei laiko vienetas atitinka daug generacijų, α bus didesnis	T	α/3	α/3	α/3	1-α

- α yra parametras priklausantis nuo to , ką reiškia laiko vienetas.
- Jei laiko vienetas atitinka daug generacijų, α bus didesnis
- α bazės pakeitimo sekos pozicijoje tikimybė per laiko vienetą.
- Pakeitimas reiškia, kad yra 3 galimi pakeitimai (pvz. C → {A,G,T})
- Nesant bazės pakeitimui yra viena galimybė (pvz. C → C)

	Α	С	G	Т
A	1-α	α/3	α/3	α/3
C	α/3	1-α	α/3	α/3
G	α/3	α/3	1-α	α/3
Т	α/3	α/3	α/3	1-α

Jukes-Cantor modelis. Supratimui.

- Tarkim yra perėjimo matrica P, ir tikimybių vektorius v (eilutė)
- Ką w = v P atitiktų ?
- Jei v atitinka keturių nukleotidų esamą pasiskirstymą pozicijoje, tai w atitiktų nukleotidų pasiskirstymą sekančiu laiko momentu.

Jukes-Cantor modelis. Supratimui.

- Tarkim, kad mes galime rasti tokį vektorių φ, kad
 φ P = φ
- Jei tikimybių pasiskirstymas yra φ, tai jis ir ateityje bus lygus φ ateityje.
- Tai vadinama stacionariu Markovo grandinės pasiskirstymu.

Jukes-Cantor modelis. Supratimui.

- Galima patkrinti, kad vektorius φ = (0.25, 0.25, 0.25, 0.25) tenkina sąlygą φ P = φ
- Taigi jei pozicija vystysis pakankamai ilgai, bus vienodos galimybės visiems keturiems nukleotidams joje būti.
- Tai labai ilgo laikotarpio spėjimas...bet ar galime išreikšti nukleotidų pasiskirstymą pozicijoje laiko funkcija?

- Atsiminkit radom φ tokį, kad
- $\bullet \ \phi P = \phi$
- Toks vektorius vadinamas tikriniu vektoriumi,
 o atitinkanti tikrinė vertė yra 1.
- Apskritai jei u P = λ u (sakalaras λ), λ yra vadinama tikrine verte ir u yra kairysis tikrinis vektorius P matricai.

- Panašiai jei P $v^T = \lambda v^T$, tai u yra vadinamas dešniuoju tikriniu vektoriumi.
- Apskritai gali būti daug tikrinių verčių λ_j ir atitinkamų kairiųjų ir dešiniųjų tikrinių vektorių u_i ir v_i.
- Taigi galime parašyti P kaip:

$$P = \sum_{j} \lambda_{j} u_{j} v_{j}^{T}$$

$$\stackrel{\text{A}}{\underset{\text{C}}{\underset{\text{A/3}}{\text{A/3}}}} \stackrel{\text{C}}{\underset{\text{G}}{\underset{\text{G}}{\text{A/3}}}} \stackrel{\text{G}}{\underset{\text{T}}{\text{A/3}}} \stackrel{\text{C}}{\underset{\text{A/3}}{\text{A/3}}} \stackrel{\text{G}}{\underset{\text{T}}{\text{A/3}}} \stackrel{\text{C}}{\underset{\text{A/3}}{\text{A/3}}} \stackrel{\text{T}}{\underset{\text{A/3}}{\text{A/3}}} \stackrel{\text{C}}{\underset{\text{A/3}}{\text{A/3}}} \stackrel{\text{T}}{\underset{\text{A/3}}{\text{A/3}}} \stackrel{\text{C}}{\underset{\text{A/3}}{\text{A/3}}} \stackrel{\text{T}}{\underset{\text{A/3}}{\text{A/3}}} \stackrel{\text{C}}{\underset{\text{A/3}}{\text{A/3}}} \stackrel{\text{T}}{\underset{\text{A/3}}{\text{A/3}}} \stackrel{\text{C}}{\underset{\text{A/3}}{\text{A/3}}} \stackrel{\text{T}}{\underset{\text{A/3}}{\text{A/3}}} \stackrel{\text{C}}{\underset{\text{A/3}}{\text{A/3}}} \stackrel{\text{T}}{\underset{\text{A/3}}{\text{A/3}}} \stackrel{\text{T}}{\underset{\text{A/3}}} \stackrel{\text{T}}{\underset{\text{$$

 Kadangi musu matrica P yra simetriška, tai kairysis tikrinis vektorius yra lygu dešiniojo tikrinio vektoriaus (tai pačiai tikrinei vertei) transpozicijai. Taigi u_i=v_i ir P galime parašyti kaip:

$$P = \sum_{j} \lambda_{j} v_{j} v_{j}^{T}$$

Matricos P tikriniai vektoriai v_n ir tikrines vertes λ_n

Matrica P

$$\lambda_{2..4} = 1-4\alpha/3$$
:
 $v_2 = 1/4 (-1 -1 \ 1 \ 1)^T$
 $v_3 = 1/4 (-1 -1 \ 1 \ 1)^T$
 $v_4 = 1/4 (1 \ -1 \ 1 \ -1)^T$

 $\lambda_1 = 1: V_1 = 1/4 (1 1 1 1)^T$

$$P = \sum_{j} \lambda_{j} v_{j} v_{j}^{T}$$

 Tuomet, kiekvienam teigiamam sveikam skaičiui t bus teisinga lygybė

$$P^t = \sum_{j} \lambda^t_{j} v_j v_j^T$$

- Kodėl Pt mums turi rūpėti?
- •Todėl, kad P^t mums parodo, koks bus pasiskirstymas bazių po t laiko žingsnių.
- Jeigu bazių pasiskirstymas pozicijoje pradžioje buvo lygus vektoriuo v^T, tai tada P^tv^T bus atitinkamas pasiskirstymas po t laiko žingsnių.

Grįžtant prie Jukes-Cantor modelio

- Minėjome, kad ϕ = (.25,.25,.25) yra kairysis P matricos tikrinis vektorius su tikrine verte .
- Kaip jau rodyta, J-C perėjimo matrica P be šios tikrinės vertės turi tikrinę vertę (1-4 α /3) ir po matematinių manipuliacijų gautume šios matricos P tokią spektrinę $P^t = \sum_j \lambda^t_{\ j} v_j v_j^T$ dekompoziciją:

$$P^{t} = \begin{bmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{bmatrix} + (1 - \frac{4}{3}\alpha)^{t} \begin{bmatrix} 3/4 & -1/4 & -1/4 & -1/4 \\ -1/4 & 3/4 & -1/4 & -1/4 \\ -1/4 & -1/4 & 3/4 & -1/4 \\ -1/4 & -1/4 & -1/4 & 3/4 \end{bmatrix}$$

- Tarkim kad α yra mažas.
- Mutacijos yra "retos"

Perėjimo matrica

$$(P(\alpha)) = \begin{bmatrix}
1-\alpha & \alpha/3 & \alpha/3 & \alpha/3 \\
\alpha/3 & 1-\alpha & \alpha/3 & \alpha/3 \\
\alpha/3 & \alpha/3 & 1-\alpha & \alpha/3 \\
\alpha/3 & \alpha/3 & \alpha/3 & 1-\alpha
\end{bmatrix}$$

$$p_0 = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}^T$$

$$\alpha/3 & \alpha/3 & \alpha/3 & 1-\alpha\end{bmatrix}$$

 q(t)=sąlyginė tikimybė, kad bazė esamuoju laiko momentu (t) momentu yra ta pati, kaip ir bazė pradiniu laiko momentu (t=0).

$$P(\alpha)^{t} = \begin{bmatrix} \frac{1}{4} + \frac{3}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} + \frac{3}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \end{bmatrix}$$

q(t)=kokia dalis sekos pozicijų neturi stebimų pozicijų.

$$P(\alpha)^{t} = \begin{bmatrix} \frac{1}{4} + \frac{3}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \end{bmatrix}$$

$$P(\alpha)^{t} = \begin{bmatrix} \frac{1}{4} + \frac{3}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} + \frac{3}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \end{bmatrix}$$

p(t)=1-q(t)=dalis sekos pozicijų,kuriose yra stebimos mutacijos.

$$P(\alpha)^{t} = \begin{bmatrix} \frac{1}{4} + \frac{3}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} + \frac{3}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{2}{4} \left(1 - \frac{2}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{2}{4} \left(1$$

$$\frac{1}{4} + \frac{3}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \begin{vmatrix} \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \end{vmatrix}$$

$$\frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \begin{vmatrix} \frac{1}{4} + \frac{3}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{3}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{3}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{3}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{3}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{4}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} & \frac{1}{4} - \frac{4}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{4}{4} \left(1 - \frac{4}{3} \alpha \right)^{t} \\ \frac{1}{4} - \frac{4}{$$

$$p(t) = 1 - q(t)$$

 p(t)=1-q(t)=dalis sekos pozicijų,kuriose yra stebimos mutacijos.

$$P(\alpha)^{t} = \begin{bmatrix} \frac{1}{4} + \frac{3}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1$$

$$p(t) = 1 - q(t)$$

 p gali būti nustatyta lyginant dvi duotas sekas

$$P(\alpha)^{t} = \begin{bmatrix} \frac{1}{4} + \frac{3}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} \\ \frac{1}{4} - \frac{1}{4} \left(1 - \frac{4}{3}\alpha\right)^{t} & \frac{1}{4} - \frac{1}{4} \left(1$$

$$p(t) = 1 - q(t)$$

Example from 4.1

Dalis pozicijų, kurose stebimos mutacijos

$$p = \frac{2}{18} = 0.11$$

S0: ATGTCGCCTGATAATGCC...

1 1

S2: ATGCCGCGTGATAATGCC...

Sekoje stebimos mutacijos: 2

 Žinomam p (ir t), J-C atstumas tarp dviejų sekų S₀ ir S₁ apibrėžiamas taip:

$$d_{JC}(S_0, S_1) = -\frac{3}{4} \ln \left(1 - \frac{4}{3} p \right)$$

 S_0 : ATGTCGCCTGATAATGCC...

 S_1 : ATGCCGCGTGATAATGCC...

 Žinomam p (ir t), J-C atstumas tarp dviejų sekų S₀ ir S₁ apibrėžiamas taip:

$$d_{JC}(S_0, S_1) = -\frac{3}{4} \ln\left(1 - \frac{4}{3}p\right)$$

 S_0 : ATGTCGCCTGATAATGCC...

•

 S_1 : ATGCCGCGTGATAATGCC...

α=bazės (simbolio) pakeitimo į kitą dažnis [pakaitų sk. per poziciją per laiko vienetą]

t=laiko vientų skaičius

αt=pakaitų sk. per poziciją įvykęs per t laiko vienetų

 α =bazės (simbolio) pakeitimo į kitą dažnis [pakaitų sk. per poziciją per laiko vienetą] t=laiko vientų skaičius

αt=pakaitų sk. per poziciją įvykęs per t laiko vienetų

p(t) - dalis sekos pozicijų, kuriose yra stebimos mutacijos.

$$p = \frac{3}{4} - \frac{3}{4} \left(1 - \frac{4}{3} \alpha \right)^{t}$$

$$t = \frac{\ln\left(1 - \frac{4}{3}p\right)}{\ln\left(1 - \frac{4}{3}\alpha\right)} \approx \frac{\ln\left(1 - \frac{4}{3}p\right)}{-\frac{4}{3}\alpha}$$
 kai α yra mažas

α=bazės (simbolio) pakeitimo į kitą dažnis [pakaitų sk. per poziciją per laiko vienetą]

t=laiko vientų skaičius

αt=pakaitų sk. per poziciją įvykęs per t laiko vienetų

$$p = \frac{3}{4} - \frac{3}{4} \left(1 - \frac{4}{3}\alpha\right)^{t}$$

$$t = \frac{\ln\left(1 - \frac{4}{3}p\right)}{\ln\left(1 - \frac{4}{3}\alpha\right)} \approx \frac{\ln\left(1 - \frac{4}{3}p\right)}{-\frac{4}{3}\alpha}$$

$$\alpha t \approx -\frac{3}{4}\ln\left(1 - \frac{4}{3}p\right)$$

Jukes-Cantor Atstumas

Stebimas atstmas tarp sekų d tai realus atstumas tarp sekų:

$$K \approx -\frac{3}{4} \ln \left(1 - \frac{4}{3} d \right)$$

Tai yra Jukes-Cantor formulė(įsiminkit).

Tarkim 40-bazių ilgio pirmykštė ir dabartinė seka yra:

 S_0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT

$\overline{S_1 \setminus S_0}$	\overline{A}	\overline{G}	C	\overline{T}
\overline{A}	7	0	1	1
G	1	9	2	0
C	0	2	7	2
<u></u>	1	0	1	6

Tarkim 40-bazių ilgio pirmykštė ir dabartinė seka yra:

 S_0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT

$$p = \frac{11}{40} = 0.275$$

$$d_{JC} = -\frac{3}{4} \ln \left(1 - \frac{4}{3} \cdot \frac{11}{40} \right) \approx 0.3426$$

- 0.275 stebimų pakaitų per poziciją dažnis.
- 0.3426 prognozuojamas realiai įvykusių pakaitų per poziciją dažnis

 S_0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT

$$p = \frac{11}{40} = 0.275$$

$$d_{JC} = -\frac{3}{4} \ln \left(1 - \frac{4}{3} \cdot \frac{11}{40} \right) \approx 0.3426$$

11 stebimų pakaitų

13.7 suprognozuotų pakaitų.

 S_0 : ACTTGTCGGATGATCAGCGGTCCATGCACCTGACAACGGT

$$p = \frac{11}{40} = 0.275$$

$$d_{JC} = -\frac{3}{4} \ln \left(1 - \frac{4}{3} \cdot \frac{11}{40} \right) \approx 0.3426$$

Jukes-Cantor Atstumas

Jukes-Cantor formulė:

$$K \approx -\frac{3}{4} \ln \left(1 - \frac{4}{3} d \right)$$

Esant mažam d $ln(1+x) \approx x$: $K \approx d$

faktinis atstumas ≈ stebimas atstumas

Esant mutacijų įsotinimui: d ↑ ¾ : K →∞

Jei pasikeitė 3/4 lyginamų sekų bazių - atstumas tampa nebenustatomas.

Atsitiktinėm sekoms JC atstumo apskaičiuoti negalima.

 $K \approx -\frac{3}{4} \ln \left(1 - \frac{4}{3} d \right)$

Jukes-Cantor Atstumas. Dispersija

Jei
$$K = f(d)$$
, tuomet $\delta K = \left(\frac{\partial K}{\partial d}\right) \delta d \Rightarrow \delta K^2 = \left(\frac{\partial K}{\partial d}\right)^2 \delta d^2$
Taigi $\operatorname{Var}(K) = \left(\frac{\partial K}{\partial d}\right)^2 \operatorname{Var}(d)$

Sekų atsiradimas iš pradinės, kurių ilgis n ir pakaitų dažnis d yra binminis procesas procesas: $\operatorname{Prob}(k) = \binom{n}{k} d^k (1-d)^{n-k}$

ir su tokia dispersija: Var(d) = d(1-d)/n

O pagal Jukes-Cantor formule: $\frac{\partial K}{\partial d} = \frac{1}{1 - \frac{4}{3}d}$

Jukes-Cantor Atstumas. Dispersija

dispersija: Var(d) = d(1-d)/n

O pagal Jukes-Cantor formulę:

$$\frac{\partial K}{\partial d} = \frac{1}{1 - \frac{4}{3}d}$$

Taigi:

$$Var(K) \approx \frac{d(1-d)}{n(1-\frac{4}{3}d)^2}$$

Jukes-Cantor Atstumas.

1000 bp ilgio sekos evoliucijos modeliavimas. Pakaitų dažniai pagal JC prielaidas.

- Ne visi pakaitai vienodai tikėtini.
- Tranzicija jos tikimybė sekos pozicijoje (G↔A ir T↔C) yra α
- Transversijos tikimybė (G↔T, G↔C, A↔T, and A↔C) sekos pozicijoje yra β

Atitinkamo Markovo proceso pakaitų matrica:

$$P(\alpha, \beta) = \begin{bmatrix} -\alpha - 2\beta & \alpha & \beta & \beta \\ \alpha & -\alpha - 2\beta & \beta & \beta \\ \beta & \beta & -\alpha - 2\beta & \alpha \\ \beta & \beta & \alpha & -\alpha - 2\beta \end{bmatrix}$$

Pot generacijų pakaitų tikimybė bus:

$$P(t) = P_{K2P}^{t}$$

Reikia nustatyti P(*t*):

tikrines vertes $\{\lambda_i\}$

ir tikrinius vektorius {**v**_i}

Spektrinė dekompozicija M(t):

$$P_{K2P}{}^t = \sum_i \lambda_i^t \mathbf{v}_i \mathbf{v}_i^\mathsf{T}$$

$$P^{n} = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix} + (1 - 4\beta)^{n} \begin{bmatrix} 0.25 & 0.25 & -0.25 & -0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ -0.25 & -0.25 & 0.25 \end{bmatrix}$$

$$+(1-2(\alpha+\beta))^{n} \begin{bmatrix} 0.5 & -0.5 & 0 & 0 \\ -0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & -0.5 \\ 0 & 0 & -0.5 & 0.5 \end{bmatrix}$$

Nustatykite kokia dalis bus tranzicijų per poziciją per t generacijų : P(t)

Nustatykite kokia dalis bus transversijų per poziciją per t generacijų : Q(t)

Atstumas tarp sekų: $K \approx -\frac{1}{2} \ln(1-2P-Q) - \frac{1}{4} \ln(1-2Q)$

Pakaitų dalis $d = P + Q \rightarrow Jukes$ -Cantor

$$P^{n} = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix} + (1-4\beta)^{n} \begin{bmatrix} 0.25 & 0.25 & -0.25 & -0.25 \\ 0.25 & 0.25 & -0.25 & -0.25 \\ -0.25 & -0.25 & 0.25 \end{bmatrix}$$

$$+(1-2(\alpha+\beta))^{n} \begin{bmatrix} 0.5 & -0.5 & 0 & 0\\ -0.5 & 0.5 & 0 & 0\\ 0 & 0 & 0.5 & -0.5\\ 0 & 0 & -0.5 & 0.5 \end{bmatrix}$$

Kiti evoliucijos modeliai

- Atskiria kitus tranzicijos transvercijos tipus naudoja daugiau parametrų
- ...daugybė kitų metodų. Naudojama net 15-os parametrų
- Esmini trūkumas egzistuojančių metodų yra tai, kad remiamasi prielaida, kad simetrinių mutacijų tikimybės yra vienodos

$$prob(A \rightarrow T) = prob(T \rightarrow A)$$

- Gana daug stiprių įrodymų, kad ši prielaida yra klaidinga....
- Ateities iššūkiai...

- 206 mtDNA molekulės iš H. sapiens.
- 2 mtDNA molekulės iš H. neanderthaliensis bei 1856 paskiri fragmentai.
- Visi 208 mėginiai iš GenBanko.
- Homologinė seka 800 bp rasta visuose mėginiuose.

- 206 mtDNA molekulės iš H. sapiens.
- 2 mtDNA molekulės iš H. neanderthaliensis bei 1856 paskiri fragmentai.
- Visi 208 mėginiai iš GenBanko.
- Homologinė seka 800 bp rasta visuose mėginiuose.

