Exercise 5.1. Let $T \in \mathcal{L}(V)$. Show that 9 is an eigenvalue of $T^2 \iff 3$ or -3 is an eigenvalue of T.

Proof.

- (\Rightarrow) We have $T^2 9I$ is not injective since 9 is an eigenvalue of T^2 , then $(T 3I)(T + 3I) = T^2 9I$ is not injective means one of T 3I and T + 3I is not injective, thus 3 or -3 is an eigenvalue of T.
- (\Leftarrow) Similarly, we have $(T-3I)(T+3I)v = (T^2-9I)v = 0$ (if 3 is an eigenvalue of T) or $(T+3I)(T-3I)v = (T^2-9I)v = 0$ (if -3 is an eigenvalue of T).

Exercise 5.2. Let V a vector space over \mathbb{C} and $T \in \mathcal{L}(V)$ has no eigenvalue. Show that any subspace of V that is invariant under T is either $\{0\}$ or infinite dimension.

Proof. Let $U \subseteq V$ a subspace that is invariant under T, and non-zero $u \in U$. We can repeatly apply T to u, say u, Tu, T^2u, \cdots . Suppose k > 0 is minimum such that u, Tu, \cdots, T^ku is linear dependent, we have $p \in \mathcal{P}(\mathbb{C})$ with $\deg p = k$ such that p(T) = 0. Clearly p is not constants, thus it has a zero since p is a polynomial of complex coefficient. Thus such zero is an eigenvalue of T.

Exercise 5.3. Let n > 1 an integer, and $T \in \mathcal{L}(F^n)$ is defined by:

$$T(x_0, \dots, x_{n-1}) = (x_0 + \dots + x_{n-1}, \dots, x_0 + \dots + x_{n-1})$$

- Find all eigenvalue and eigenvector of T.
- Find the minimal polynomial of T.

Proof.

- Observe that range $T = \operatorname{span}((1, \dots, 1))$, thus $T(1, \dots, 1) = n(1, \dots, 1)$.
- Observe that $T(x_0, \dots, x_{n-1}) = (x_0 + \dots + x_{n-1})(1, \dots, 1)$ and $T^2(x_0, \dots, x_{n-1}) = n(x_0 + \dots + x_{n-1})(1, \dots, 1)$, thus $p(T) = nT T^2 = 0$.

Exercise 4 is kinda hard, sorry.

Exercise 5.6. Let $T \in \mathcal{L}(F^2)$ is defined by T(w,z) = (-z,w). Find the minimal polynomial of T.

Proof. Observe that $T^2(w,z) = T(-z,w) = (-w,-z) = (-1)(w,z)$, thus the minimal polynomial of T is $p(T) = I + T^2$.

Exercise 5.7. • Given an example that the minimal polynomial of ST is not equal to TS's.

• Suppose V is finite and $S, T \in \mathcal{L}(V)$. Show that the minimal polynomial of ST is equal to TS's if one of S and T is invertible.

Hint: Show that S is invertible and $p \in \mathcal{P}(F)$ implies $p(TS) = S^{-1}p(ST)S$.

Proof.

• The idea is to find S, T such that $ST \neq 0$ but TS = 0. We can find S(x, y) = (x, 0) and T(x, y) = (y, 0) holds:

$$(ST)(x,y) = S(y,0) = (y,0)$$

 $(TS)(x,y) = T(x,0) = (0,0)$

Thus the minimal polynomial of ST is not 0 but TS one does.

• Suppose S is invertible and $p \in \mathcal{L}(F)$ is the minimal polynomial of TS, then $p(TS) = S^{-1}p(ST)S$ since i-th term of $S^{-1}p(ST)S$ has form $S^{-1}c_i(ST)^iS = c_i(S^{-1}S)(TS)^{i-1}(TS) = c_i(TS)^i$. Thus $S^{-1}p(ST)S = 0$ and then p(ST) = 0. We will show that p is the minimal polynomial of ST, suppose $q \in \mathcal{L}(F)$ such that q(ST) = 0, then $0 = S^{-1}q(ST)S = q(TS)$, therefore $\deg q = \deg p$. Hence p is the minimal polynomial of ST.

Exercise 5.8. Let $T \in \mathcal{L}(\mathbb{R}^2)$ is the operator that "rotates 1 degree counter-clockwise", find the minimal polynomial of T.

Note that it is **NOT** $x^{180} + 1$ even $T^{180} = -I$.

Proof. Note that there is some λ such that $Tv - \lambda v = \alpha T^2 v$ (We can show that $\lambda = \alpha$), however the calculation is too complicate.

 λ should be $\frac{\sin(1^{\circ})}{\sin(2^{\circ})}$, thus $p(T) = -\lambda I + T - \lambda T^2$.

We suppose all v below has length 1, thus $v = (\cos \theta, \sin \theta)$, this doesn't lose the generalizability since $p(T)(\alpha v) = \alpha(p(T)v)$.

For the first component of $p(T)v = -\lambda v + Tv - \lambda T^2v$, we have:

$$\frac{\sin(1^\circ)}{\sin(2^\circ)}(-\cos\theta - \cos(\theta + 2^\circ))$$

$$=\frac{\sin(1^\circ)}{\sin(2^\circ)}(-\cos\theta - (\cos\theta\cos(2^\circ) - \sin\theta\sin(2^\circ)))$$

$$=\frac{\sin(1^\circ)}{\sin(2^\circ)}(-\cos\theta - \cos\theta\cos(2^\circ)) + \sin\theta\sin(1^\circ)$$

$$=\cos\theta\frac{\sin(1^\circ)}{\sin(2^\circ)}(-1 - \cos(2^\circ)) + \sin\theta\sin(1^\circ)$$

where $\sin \theta \sin(1^\circ)$ cancels a part of $(Tv)_1 = \cos(\theta + 1^\circ) = \cos\theta \cos(1^\circ) - \cos\theta \cos(1^\circ)$

 $\sin \theta \sin(1^\circ)$. Thus we will show that $\frac{\sin(1^\circ)}{\sin(2^\circ)}(-1-\cos(2^\circ)) = -\cos(1^\circ)$.

$$\frac{\sin(1^{\circ})}{\sin(2^{\circ})}(-1-\cos(2^{\circ}))$$

$$=\frac{\sin(1^{\circ})}{2\sin(1^{\circ})\cos(1^{\circ})}(-(\cos^{2}(1^{\circ})+\sin^{2}(1^{\circ}))-\cos^{2}(1^{\circ})+\sin^{2}(1^{\circ}))$$

$$=\frac{1}{2\cos(1^{\circ})}(-\cos^{2}(1^{\circ})-\cos^{2}(1^{\circ}))$$

$$=\frac{1}{2\cos(1^{\circ})}(-2\cos^{2}(1^{\circ}))$$

$$=-\cos(1^{\circ})$$

For the second component of p(T)v, we have:

$$\frac{\sin(1^\circ)}{\sin(2^\circ)}(-\sin\theta - \sin(\theta + 2^\circ))$$

$$= \frac{\sin(1^\circ)}{\sin(2^\circ)}(-\sin\theta - \sin\theta\cos(2^\circ) - \cos\theta\sin(2^\circ))$$

$$= \sin\theta \frac{\sin(1^\circ)}{\sin(2^\circ)}(-1 - \cos(2^\circ)) - \cos\theta\sin(1^\circ)$$

similarly, we have $p(T)v_2 = \sin(\theta + 1^\circ) = \sin\theta\cos(1^\circ) + \cos\theta\sin(1^\circ)$ we will show that $\frac{\sin(1^\circ)}{\sin(2^\circ)}(-1-\cos(2^\circ)) = -\cos(1^\circ)$, which is proven above.

Exercise 5.9. Let $T \in \mathcal{L}(V)$ such that for some basis of V, $\mathcal{M}(T)$ consists of rational numbers. Try to explain why the coefficients of the minimal polynomial of T is rational numbers.

Proof. I don't know, because \mathbb{Q} is also a field?

Exercise 5.11. Let V a vector space and $\dim V = 2$ and $T \in \mathcal{L}(V)$ such that $\mathcal{M}(T)$ for some basis of V is $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$. Show that:

•
$$T^2 - (a+d)T + (ad - bc)I = 0$$

• the minimal polynomial of T is:

$$\begin{cases} z - a & \text{if } b = c = 0 \text{ and } a = d \\ z^2 - (a+d)z + (ad - bc) & \text{otherwise} \end{cases}$$

Proof.

$$\mathcal{M}(T^2 - (a+d)T + (ad-bc)I)$$

$$= \begin{bmatrix} a & c \\ b & d \end{bmatrix}^2 - (a+d) \begin{bmatrix} a & c \\ b & d \end{bmatrix} + (ad-bc)I$$

$$= \begin{bmatrix} a^2 + bc & ac + bd \\ ab + bd & bc + d^2 \end{bmatrix} - \begin{bmatrix} a^2 + ad & ac + cd \\ ab + bd & ad + d^2 \end{bmatrix} + \begin{bmatrix} ad - bc & 0 \\ 0 & ad - bc \end{bmatrix}$$

• If b=c=0 and a=d, then T is a scalar multiple of identity operator, thus T = aI and p(T) = -aI + T = 0. Otherwise, $T^2 - (a+d)T + (ad - aI)T + (a$ bc)I=0.

Exercise 5.13. Let V finite, $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(F)$. Show that there is a unique $r \in \mathcal{P}(F)$ such that p(T) = r(T) where deg p is less than the degree of the minimal polynomial of T.

Proof. Let q the minimal polynomial of T.

If deg $p < \deg q$, then r = p. The uniqueness is guaranteed by deg $p < \deg q$ (try (p-s)(T) where p(T) = s(T) and $\deg s < \deg q$).

If deg $p >= \deg q$, then p = sq + r where $s, r \in \mathcal{P}(F)$ with deg r < $\deg q$. Then p(T) = s(T)q(T) + r(T) = r(T) since q(T) = 0. The uniqueness is guaranteed by the property of division.

Exercise 5.14. Let V finite, $T \in \mathcal{L}(V)$ with minimal polynomial p(z) = 4 + $5z - 6z^2 - 7z^3 + 2z^4 + z^5$. Find the minimal polynomial of T^{-1} .

Proof. Suppose p is the minimal polynomial of T, then we can repeatly apply T^{-1} to p(T), say $T^{-(\deg p)}(p(T))$, then it should be 0, and the coefficients are reversed, that is, $p_{\deg p}I + p_{\deg p-1}T^{-1} + \cdots + p_0(T^{-1})^{\deg p}$. So the answer is $1 + 2z^1 - 7z^2 - 6z^3 + 5z^4 + 4z^5$.

Exercise 5.16. Let $a_0, \dots, a_{n-1} \in F$ and T an operator over F^n . Its matrix (about the standard basis) is:

$$\begin{bmatrix} 0 & & & -a_0 \\ 1 & 0 & & -a_1 \\ & 1 & \ddots & & -a_2 \\ & & \ddots & & \vdots \\ & & 1 & 0 & -a_{n-2} \\ & & & 1 & -a_{n-1} \end{bmatrix}$$

. Show that the minimal polynomial of T is:

$$p(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + z^n$$

Proof. We first need some property of this matrix, we will see it moves all number to the left when we repeatly self-multily T. We can see the k-th column of T^p is equal to k+1-th column of T^{p-1} , thus it is also equal to i-th column if T^j where $1 \le i, j \le n$ and i+j=k+p. In fact, j can be 0 and we have $T^0 = I$ and the property still holds.

Then, the *i*-th column of T^n is equal to *n*-th column (the last one) of T^i ,

and it is produced by
$$T^{i-1}\begin{bmatrix} -a_0 \\ -a_1 \\ \vdots \\ -a_{n-1} \end{bmatrix}$$
, which is equal to

$$T_i^n = -a_0 T_1^{i-1} - a_1 T_2^{i-1} - \dots - a_{n-1} T_n^{i-1}$$

which is equal to $T^n v_i$ where v_i is *i*-th standard basis of F^n , that is, $\begin{bmatrix} \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$. We

may rewrite the equation into

$$T^{n}v = -a_{0}T^{0}v - a_{1}T^{1}v - \dots - a_{n-1}T^{n-1}v$$

where $T^0v = T_i^0 = T_1^{i-1}$, $T^1v = T_i^1 = T_2^{i-1}$ and so on.

Thus all v vector in standard basis has p(T)v = 0, thus p(T) = 0.

For minimal, we can see T is invertible, thus $p(T)v_1 = 0$ (recall that T moves number to the left, thus the first column of T^i is the i-th columns of T). means there is a (non-zero) linear combination of columns of T that is equal to 0. Thus deg $p \ge n$ since T the columns are linear independent.

Exercise 5.17. Let V finite and $T \in \mathcal{L}(V)$ and p is the minimal polynomial of T. Let $\lambda \in F$, show that the minimal polynomial of $T - \lambda I$ is $q(z) = p(z + \lambda)$.

Proof. $q(T - \lambda I) = p((T - \lambda I) + \lambda I) = p(T) = 0$. Suppose r is the minimal polynomial of $T - \lambda I$, then $s(z) = r(z - \lambda)$ and $s(T) = r(T - \lambda I) = 0$, thus $\deg r = \deg p = \deg q$.

Exercise 5.18. Let V finite and $T \in \mathcal{L}(V)$, and p is the minimal polynomial of T. Let $\lambda \in F$ that $\lambda \neq 0$, show that the minimal polynomial of λT is $q(z) = \lambda^{\deg p} p(\frac{z}{\lambda})$.

Proof. $q(\lambda T) = \lambda^{\deg p} p(\frac{1}{\lambda}(\lambda T)) = \lambda^{\deg p} p(T) = 0$. $\lambda^{\deg p}$ only makes q a monic polynomial.

Suppose r is the minimal polynomial of λT , then $s(z) = \frac{1}{\lambda^{\deg p}} r(\lambda z)$ and $s(T) = \frac{1}{\lambda^{\deg p}} r(\lambda T) = 0$, thus $\deg s = \deg r = \deg p = \deg q$.

Exercise 5.19. Let V finite and $T \in \mathcal{L}(V)$. Let $\mathcal{E} \subseteq \mathcal{L}(V)$ a subspace, defined by

$$\mathcal{E} = \{ q(T) \mid q \in \mathcal{P}(F) \}$$

Show that dim \mathcal{E} is equal to the degree of the minimal polynomial of T.

Proof. We can see $I, T, T^2, \dots, T^{\deg p-1}$ is linear independent (since p is the minimal polynomial of T) where p is the minimal polynomial of T. For any $q \in \mathcal{P}(F)$ where $\deg q \geq \deg p$, then q = sp + r where $s, r \in \mathcal{P}(F)$ and $\deg r < \deg p$, therefore $q(T) = s(T)p(T) + r(T) = r(T) \in \operatorname{span}(I, T, T^2, \dots, T^{\deg p-1})$.

Exercise 5.20. let $T \in \mathcal{L}(F^4)$, which eigenvalues are 3, 5, 8. Show that $(T - 3I)^2(T - 5I)^2(T - 8I)^2 = 0$.

Proof. Suppose p is the minimal polynomial of T, then p(z) = c(z-3)(z-5)(z-8)q(z) since 3, 5, 8 are the eigenvalue of T, thus the zeros of p. Note that deg $q \le 1$ since deg $p \le \dim F^4 = 4$. Since there is no other eigenvalue (thus zero) than 3, 5, 8, q is either 1 or one of z - 3, z - 5, z - 8, thus $(z - 3)^2(z - 5)^2(z - 8)^2$ is polynomial multiple of p, therefore $(T - 3I)^2(T - 5I)^2(T - 8I)^2 = 0$.

Exercise 5.21. Let V finite and $T \in \mathcal{L}(V)$. Show that the degree of the minimal polynomial of T caps at $1 + \dim \operatorname{range} T$.

Proof. IDk

Exercise 5.22. Let V finite and $T \in \mathcal{L}(V)$. Show that T is invertible \iff $I \in \text{span}(T, T^2, \dots, T^{\dim V})$.

Proof.

- (\Rightarrow) Suppose T is invertible, then the minimal polynomial p of T satisfies $p(0) \neq 0$ (since p(0) = 0 implies 0 is a eigenvalues of T). We know deg $p \leq \dim V$, thus there is a linear combination of $T, T^2, \dots, T^{\dim V}$ that is equal to a scalar multiple of I, therefore $I \in \operatorname{span}(T, T^2, \dots, T^{\dim V})$.
- (\Leftarrow) Suppose $I = \lambda_1 T + \lambda_2 T^2 + \cdots + \lambda_{\dim V} T^{\dim V}$, then $I = T(\lambda_1 I + \lambda_2 T + \cdots + \lambda_{\dim V} T^{\dim V 1}) = (\lambda_1 I + \lambda_2 T + \cdots + \lambda_{\dim V} T^{\dim V 1}) T$, thus T is invertible.

Exercise. Let V a vector space and $T \in \mathcal{L}(V)$, v, Tv, \dots, T^kv a list of linear independent vectors but $v, Tv, \dots, T^{k+1}v$ isn't. Show that $T^{k+i}v \in \operatorname{span}(v, Tv, \dots, T^kv)$ for all 0 < i.

Proof. Induction on i.

- Base(i = 1): By assumption.
- Ind(i = i+1): $T^{k+i+1}v = T(T^{k+i}v)$, since $T^{k+i}v \in \text{span}(v, Tv, \dots, T^kv)$, thus it can be write as a linear combination of v, Tv, \dots, T^kv , say $T(\lambda_0v + \lambda_1Tv + \dots + \lambda_kT^kv)$, then $\lambda_0Tv + \lambda_1T^2v + \dots + \lambda_kT^{k+1}v \in \text{span}(v, Tv, \dots, T^kv)$ since $T^{k+1}v \in \text{span}(v, Tv, \dots, T^kv)$.

Exercise 5.23. Let V finite and $T \in \mathcal{L}(V)$. Let $n = \dim V$, show that for any $v \in V$, span $(v, Tv, \dots, T^{n-1}v)$ is invariant under T.

Proof. Note that the list $v, Tv, \dots, T^{n-1}v$ has length $n = \dim V$, thus for the list v, Tv, \dots, T^nv is linear dependent, thus T^nv must be a linear combination of $v, Tv, \dots, T^{n-1}v$.

8

- If $v, Tv, \dots, T^{n-1}v$ is linear dependent, then $T^nv \in \text{span}(v, Tv, \dots, T^{n-1}v)$ (by our lemma exercise).
- Otherwise, the list $v, Tv, \dots, T^n v$ is linear dependent while $v, Tv, \dots, T^{n-1}v$ isn't, therefore $T^n v$ is a linear combination of $v, Tv, \dots, T^{n-1}v$.

Theorem 5.29. $q(T) = 0 \iff q \text{ is a polynomial multiple of the minimal polynomial of <math>T$.

- Proof. (\Rightarrow) Let p the minimal polynomial of T, consider q = sp + r where $\deg r < \deg p$, we may suppose $r \neq 0$. Then 0 = q(T) = s(T)p(T) + r(T) = r(T), which contradict to the assumption that p is the minimal polynomial of T.
 - (\Leftarrow) Trivial.

Exercise 5.25. Let V finite, $T \in \mathcal{L}(V)$, subspace $U \subseteq V$ is invariant under T.

- Show that the minimal polynomial of T is polynomial multiple of the minimal polynomial of T/U.
- Show that

(the minimal polynomial of $T|_{U}$) × (the minimal polynomial of T/U)

is a polynomial multiple of the minimal polynomial of T.

- Proof. Let p the minimal polynomial of T, then p(T/U)(v+U) = p(T)v+U = 0 + U for any $v + U \in V/U$, thus p(T/U) = 0, therefore p is a polynomial multiple of the minimal polynomial of T/U.
 - Let p the minimal polynomial of $T|_U$ and q the minimal polynomial of T/U. Then (pq)(T)v = (p(T)q(T))v = p(T)(q(T)v) where $q(T)v \in U$, thus p(T)(q(T)v) = 0.

Exercise 5.26. Let V finite, $T \in \mathcal{L}(V)$, U is invariant under T. Show that the set of eigenvalues of T is equal to the union of eigenvalues of $T|_{U}$ and T/U.

Proof. This theorem separate the eigenvalues into two parts: eigenvectors in U and eigenvectors not in U (may have intersection).

- (\subseteq) For any $Tv = \lambda v$ where non-zero $v \in V$. If $v \in U$, then $T|_{U}(v) = Tv = \lambda v$. If $v \notin U$, then $(T/U)(v+U) = Tv + U = \lambda v + U = \lambda(v+U)$.
- (2) For any $T|_U(v) = \lambda v$, we have $T|_U(v) = Tv = \lambda v$. The case of T/U is proven in Exercise 5.38 of E5A.

We will use this conclusion several times, so we prove it first.

Exercise. Let p, q two non-constant **monic** polynomial and p = sq, q = tp where s, t two non-zero polynomial. Show that p = q.

Proof. We have p = stp, thus st = 1 and $\deg s = \deg t = 0$. Furthermore, we have p = sq where p and q are monic, thus s must be 1, similar to t, hence s = t = 1 and p = q.

Exercise 5.27. Let F = R and V finite and $T \in \mathcal{L}(V)$. Show that the minimal polynomial of T_C is equal to the T one.

Proof. Let p the minimal polynomial of T and q the minimal polynomial of T_C . We have:

$$p(T_C)(v + iu)$$

$$= p(T)v + ip(T)u$$

$$= 0v + i0u$$

$$= 0$$

and

$$q(T)(v)$$

$$=q(T_C)(v+i0)$$

$$=0$$

thus p = sq and q = tp where s, t are non-zero polynomials, therefore p = q. \square

Exercise 5.28. Let V finite and $T \in \mathcal{L}(V)$. Show that the minimal polynomial of $T' \in \mathcal{L}(V')$ is equal to the T one.

Proof. Let p the minimal polynomial of T and p' the minimal polynomial of T'.

For any $\varphi \in V'$ and $v \in V$, we have $p(T')(\varphi)(v) = \varphi(p(T)v) = \varphi 0 = 0$ (since φ is linear), thus $p(T')(\varphi) = 0$, therefore p(T') = 0.

For any $v \in V$, $p'(T)v = \varphi_1(p'(T)v)v_1 + \cdots = p'(T')(\varphi)(v) + \cdots = 0$, where $v_0, \dots, v_{\dim V-1}$ is a basis of V and $\varphi_0, \dots, \varphi_{\dim V-1}$ is a dual basis. Thus p'(T) = 0.

Hence, p and p' are polynomial multiple to each other, therefore p = p'.

Exercise 5.29. Let V finite, $T \in \mathcal{L}(V)$. Show that $\mathcal{M}(T)$ is upper-triangular for some basis of $V \iff \mathcal{M}(T')$ is upper-triangular for some basis of V'.

Proof. This follows that T and T' have the same minimal polymonial. See Exercise 5.28 in E5B.