11. Aligning Language Models (Basics)

Overview

What is alignment

- Prompting converts a task to a native LM task, but model performance is sensitive to prompts
- · Goal: make human-AI communication natural and efficient
- · So that we can just ask the model to do any task

Capability vs alignment

- Capability: What things is the model able to do?
- Alignment: What things does the model choose to do?
 - Align with human values
 - Provide truthful information and express uncertainty
 - Be careful with potentially harmful information
 - Clarify user intentions and preferences

Challenges in alignment

- Implicit rules: not articulated but assumed in human interaction
 - e.g. Explicit task: answer questions on topic X
 Implicit rules: Don't make up stuff. Don't use toxic language. Don't give information that's potentially harmful.
 - The implicit rules may be context dependent:
 - Translation: what if the source text is toxic?
- · Oversight: provide supervision on alignment
 - One obvious way to align models is to train them on supervised data (later)
 - But how can we supervise models on tasks that beyond human capabilities?
- Diversity: whose values should the model be aligned with?
 - Different (cultural/ethnic/gender/religious/etc.) groups agree with different answers to the same question

Approaches to alignment

- Prompting: ask the model to behave according to human values
- Finetuning / Supervised learning: show the model the right response in various context
- Reinforcement learning: reward / punish the model when its behavior is aligned / unaligned with humans

Prompting

Prompting the model to answer questions truthfully

Prompts can be overwritten — ask it to ignore previous prompts

Summary

Prompt engineering: instruct the model to behave in a certain way

Pros:

- Easy to do-anyone can play around with it
- Efficient—no parameter updates
- · First thing to try

Cons:

- Unprincipled—no idea why it works or doesn't work
- Unreliable—performance can have high variance
- Unsafe—easy to bypass

Supervised finetuning

- How do we teach the model the right behavior?
- Going back to supervised learning: demonstrate the right behavior
 - Input: user prompt (task specification)
 - o Output: (aligned) response
- Key challenge: data collection

How to get the prompts and responses?

What kind of data do we need?

Idea 1: use existing NLP benchmarks

But this is not what we ask ChatGPT to do! Distribution shift.

- Problem: Gap between training and test data
- Straightforward **solution**: collect training data that is similar to test data

 How do we know what test data is like?
- Get some pilot data
 which requires a working-ish model first!

Tricky cases

- Recall that we want the model to infer user intention
- But also to make the right decisions that align with human values
- So it's important to include examples that invovle alignment decisions
- Open question: how to handle trade-off between helpfulness and harmfulness?
 e.g., user may request to generate toxic sentences for data augmentation

Summary

Supervised finetuning: train the model to respond in an aligned way on human-annotated prompt-response data

Pros:

- · Relatively reliable—generalize to unseen data
- User friendly—doesn't require extensive prompt engineering
- Simple training pipeline—standard finetuning

Cons:

- · Need a warm start—pilot data to decide what data to collect
- Expensive—data needs to cover many uses cases
- · Compute—need to update very large models

Reinforcement learning

Motivation:

- Demonstrations are expensive to obtain—can we learn from weaker signals?
- For many tasks, humans (and animals) only get signal on whether they succeeded or not

Goal: learning from experience by maximizing the expected reward

At each time step t, an agent

• is in a **state** $s_t \in S$ (S is the state space)

- takes an $action \ a_t \in A \ \ (A ext{ is the action space})$
- transitions to the next state s_{t+1} according to a **transition function** $p(\cdot | s_t, a_t)$
- obtains a **reward** $r(s_t,a_t)$ according to the **reward function** $r:S imes A o \mathbb{R}$

The agent uses a **policy** π to decide which actions to take in a state:

- Deterministic: $\pi(s) = a$
- Stochastic: $\pi(a|s) = \mathbb{P}(A=a|S=s)$

A policy π_{θ} defines a distribution $p_{\theta}(\tau)$ over **trajectories** $\tau = (a_1, s_1, ..., a_T, s_T)$.

The agent's **objective** is to learn a policy π_{θ} (parametrized by θ) that maximizes the expected return: maximize $\mathbb{E}_{\gamma \sim p_{\theta}(\gamma)}[\sum_{t=1}^{T} r(s_{t}, a_{t})]$

Key steps:

• Trial: run policy to generate trajectories

• Error: estimate expected return

· Learn: improve the policy

Challenges:

• Trials could be expensive (e.g., healthcare, education)

• Reward signal could be expensive and sparse (e.g., expert feedback)

· May need many samples to learn a good policy

Policy gradient algorithms

While not converged

1. Sample trajectories from the current policy

2. Estimate return for each trajectories based on observed rewards

3. Take a gradient step on the expected return (w.r.t. the policy)

Notation: let
$$r(\tau) = \sum_{t=1}^{T} r(a_t, s_t)$$
 be the return.

Our objective:
$$J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[r(\tau)] = \sum_{\tau} p_{\theta}(\tau)r(\tau)$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \sum_{\tau} p_{\theta}(\tau) r(\tau) \\ &= \sum_{\tau} \nabla_{\theta} p_{\theta}(\tau) r(\tau) \\ &= \sum_{\tau} p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) r(\tau) \\ &= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau) \right] \end{split}$$

log derivative trick

$$p_{ heta}(au)
abla_{ heta}\log p_{ heta}(au)
onumber
o$$

Good news: the gradient is now inside the expectation

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau) \right]$$
 average gradient of sampled trajectory

But what is $p_{\theta}(\tau)$?

$$p_{\theta}(\tau) = p_{\theta}(a_1, s_1, \dots, a_T, s_T) = p(s_1) \prod_{t=1}^T \pi_{\theta}(a_t \mid s_t) p(s_{t+1} \mid s_t, a_t)$$

$$\log p_{\theta}(\tau) = \log p(s_1) + \sum_{t=1}^T \log \pi_{\theta}(a_t \mid s_t) + \log p(s_{t+1} \mid s_t, a_t)$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^T \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \right) \left(\sum_{t=1}^T r(s_t, a_t) \right) \right]$$

Putting everything together

REINFORCE algorithm:

- 1. Sample *N* trajectories τ^1, \ldots, τ^N from π_θ
- 2. Estimate the gradient:

$$abla_{ heta} J(heta) pprox \sum_{i=1}^{N} \left(\sum_{t=1}^{T}
abla_{ heta} \log \pi_{ heta}(a_{t}^{i} \mid s_{t}^{i})
ight) \left(\sum_{t=1}^{T} r(s_{t}^{i}, a_{t}^{i})
ight)$$

- 3. Update the policy with gradient ascent: $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$
- 4. Go back to 1

How is all this related to LLMs?

Think of tokens as actions:

- Action space: vocabulary $a_t = x_t \in \mathcal{V}$
- State space: history / prefix $s_t = (x_1, \dots, x_{t-1})$
- Policy: a language model $p_{\theta}(x_t \mid x_{< t})$
- Trajectory: a sentence / generation x_1, \ldots, x_T

REINFORCE algorithm on text:

- 1. Sample N generations from the language model p_{θ}
- 2. Estimate the gradient: $\nabla_{\theta} J(\theta) \approx \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log p_{\theta}(x_{t}^{i} \mid x_{< t}^{i}) \right) r(x_{1:T})$
- 3. Update the policy with gradient ascent: $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$
- 4. Go back to 1

What is the algorithm doing?

```
If r(x_{1:T}) is positive, take a gradient step to increase p_{\theta}(x_{1:T}). If r(x_{1:T}) is negative, take a gradient step to decrease p_{\theta}(x_{1:T}).
```

Supervised learning on model generations weighted by rewards

How to get the reward? Next lecture!

Summary

Reinforcement learning: align the model by giving it feedback on whether an output is good or bad Pros:

- Cost-efficient—humans only need to provide judgments/rewards
- General—can be used to model all kinds of human preferences

Cons:

- · Complex pipeline—RL algorithms need more engineering
- Reward hacking—models are good at finding ways to "cheat"
 Generating polite and authorative nonsense
- · Human judgments on some subjects are inherently diverse