Azzolini Riccardo 2019-05-14

Numeri complessi

1 Coppie ordinate di numeri reali

Siano $x, y \in \mathbb{R}$. Allora, (x, y) è una coppia ordinata di numeri reali.

Sull'insieme delle coppie ordinate di numeri reali si definiscono le operazioni di addizione e moltiplicazione come segue:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) (x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1)$$
 $\forall x_1, x_2, y_1, y_2 \in \mathbb{R}$

Osservazione:

$$(0,1) \cdot (0,1) = (0-1, 0+0) = (-1,0)$$

2 Campo dei numeri complessi

L'insieme delle coppie ordinate (x, y) di numeri reali con le operazioni di addizione e moltiplicazione definite come sopra si dice **campo dei numeri complessi** e si indica con \mathbb{C} .

 $Osservazione: \mathbb{C}\ non$ è un insieme ordinato: si possono confrontare le singole componenti, ma non le coppie.

3 Forma algebrica

Il numero complesso $z=(x,y)\in\mathbb{C},\ x,y\in\mathbb{R}$ si scrive in forma algebrica come z=x+iy, dove:

- i = (0,1) si chiama unità immaginaria;
- x si dice **parte reale** di z, e si scrive Re(z) = x;
- y si dice parte immaginaria di z, e si scrive Im(z) = y.

Osservazione: $\mathbb{R} \subset \mathbb{C}$. Infatti, se $x \in \mathbb{R}$, lo si può scrivere come x + 0i.

4 Moltiplicazione e quadrato di i

Il quadrato dell'unità immaginaria è $i^2 = -1$.

Ciò si può giustificare in base alla definizione della moltiplicazione tra numeri complessi, oppure si può supporre che $i^2 = -1$ e ricavare la definizione della moltiplicazione.

4.1 Dalla moltiplicazione a $i^2 = -1$

$$i = (0,1)$$

$$i^2 = i \cdot i = (0,1) \cdot (0,1) = (-1,0)$$

$$(-1,0) = -1 + 0i = -1$$

4.2 Da $i^2 = -1$ alla moltiplicazione

Si suppone che esista i tale che $i^2 = -1$. Allora, dati due numeri complessi

$$z_1 = (x_1, y_1) = x_1 + iy_1$$
 $z_2 = (x_2, y_2) = x_2 + iy_2$

li si può moltiplicare in forma algebrica applicando la regola del prodotto di due binomi

$$(x_1, y_1)(x_2, y_2) = (x_1 + iy_1)(x_2 + iy_2)$$

$$= x_1x_2 + ix_1y_2 + ix_2y_1 + i^2y_1y_2$$

$$= x_1x_2 - y_1y_2 + i(x_1y_2 + x_2y_1)$$

$$= (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$$

e il risultato così ottenuto corrisponde alla definizione della moltiplicazione tra coppie ordinate di numeri reali.

5 Numero immaginario puro

Un numero $z \in \mathbb{C}$ con Re(z) = 0, cioè z = iy, $y \in \mathbb{R}$, si dice **immaginario puro**.

6 Rappresentazione sul piano cartesiano

I numeri complessi si possono rappresentare sul piano cartesiano. Ad esempio:

7 Modulo

Se $z=x+iy,\; x,y\in\mathbb{R},$ il **modulo** di z è

$$|z| = \sqrt{x^2 + y^2}$$

ed è un numero reale maggiore o uguale a 0.

Osservazioni:

- $|z| = 0 \iff z = 0$.
- |z| è la lunghezza del vettore che va dall'origine al punto corrispondente a z nel piano cartesiano.

8 Complesso coniugato

Dato un numero complesso $z=x+iy,\ x,y\in\mathbb{R},$ si dice suo **complesso coniugato** il numero complesso

$$\overline{z} = \operatorname{Re}(z) - i\operatorname{Im}(z) = x - iy$$

Nel piano cartesiano, il coniugato si ottiene riflettendo rispetto all'asse x.

8.1 Esempio

$$z = 1 + i \implies \overline{z} = 1 - i \implies \overline{\overline{z}} = \overline{1 - i} = 1 + i = z$$

8.2 Proprietà del coniugio

• Sia $z = x + iy \implies \overline{z} = x - iy$. Allora,

$$z\overline{z} = (x + iy)(x - iy)$$

$$= x^2 - ixy + ixy - i^2y^2$$

$$= x^2 + y^2$$

$$= |z|^2$$

- $\overline{\overline{z}} = z \quad \forall z \in \mathbb{C}$
- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \quad \forall z_1, z_2 \in \mathbb{C}$
- $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2} \quad \forall z_1, z_2 \in \mathbb{C}$

9 Uguaglianza tra due numeri complessi

Se $z_1 = x_1 + iy_1, x_1, y_1 \in \mathbb{R}$ e $z_2 = x_2 + iy_2, x_2, y_2 \in \mathbb{R}$, allora

$$z_1 = z_2 \iff \begin{cases} x_1 = x_2 \\ y_1 = y_2 \end{cases}$$

L'uguaglianza tra due numeri complessi (in forma algebrica) coincide quindi con due uguaglianze tra numeri reali.

10 Forma trigonometrica

Un numero complesso $z = x + iy \neq 0$ si scrive in forma trigonometrica come

$$z = |z|(\cos\theta + i\sin\theta)$$

dove $\theta = \arg(z) \in \mathbb{R}$, detto **argomento** di z, è un angolo qualsiasi tale che

$$x = |z| \cos \theta$$
$$y = |z| \sin \theta$$

L'argomento, e quindi la scrittura in forma trigonometrica, non sono univoci: se θ è un argomento di z, allora lo è anche $\theta + 2k\pi$ $\forall k \in \mathbb{Z}$. Tra questi, l'unico argomento appartenente all'intervallo $(-\pi,\pi]$ si chiama **argomento principale** di z, e si indica con $\operatorname{Arg}(z) \in (-\pi,\pi]$.

11 Uguaglianza in forma trigonometrica

Siano

$$z_1 = |z_1|(\cos(\arg z_1) + i\sin(\arg z_1))$$

 $z_2 = |z_2|(\cos(\arg z_2) + i\sin(\arg z_2))$

Allora:

$$z_1 = z_2 \iff \begin{cases} |z_1| = |z_2| \\ \arg z_1 = \arg z_2 + 2k\pi, & k \in \mathbb{Z} \end{cases}$$

12 Divisione di numeri complessi in forma algebrica

Siano $z_1 = x_1 + iy_1$ e $z_2 = x_2 + iy_2$, con $z_2 \neq 0$. Per effettuare la divisione

$$\frac{z_1}{z_2} = \frac{x_1 + iy_1}{x_2 + iy_2}$$

e quindi calcolare parte reale e immaginaria del numero risultante, è necessario rendere reale il denominatore. A tale scopo, si moltiplicano sia il numeratore che il denominatore per $\overline{z_2}$:

$$\begin{split} \frac{z_1}{z_2} &= \frac{x_1 + iy_1}{x_2 + iy_2} \\ &= \frac{x_1 + iy_1}{x_2 + iy_2} \cdot \frac{x_2 - iy_2}{x_2 - iy_2} \\ &= \frac{(x_1 + iy_1)(x_2 - iy_2)}{x_2^2 + y_2^2} \\ &= \frac{x_1x_2 - ix_1y_2 + ix_2y_1 + y_1y_2}{x_2^2 + y_2^2} \\ &= \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + i \frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2} \\ &= \frac{\operatorname{Re}\left(\frac{z_1}{z_2}\right)}{\operatorname{Re}\left(\frac{z_1}{z_2}\right)} & \operatorname{Im}\left(\frac{z_1}{z_2}\right) \end{split}$$

12.1 Esempio

$$\frac{1-i}{2+3i} = \frac{(1-i)(2-3i)}{2^2+3^2} = \frac{2-3i-2i-3}{13} = \frac{-1}{13} + i\frac{-5}{13}$$

$$\implies \begin{cases} \operatorname{Re}\left(\frac{1-i}{2+3i}\right) = -\frac{1}{13} \\ \operatorname{Im}\left(\frac{1-i}{2+3i}\right) = -\frac{5}{13} \end{cases}$$