TABLE I
SUMMARY OF THE HYPERPARAMETER SEARCH SPACE USED FOR THE XGBOOST REGRESSOR, WHEN RUNNING SMAC3 [?] AND THE SELECTED CONFIGURATION FOR ALL INPUT COMBINATIONS.

Hyperparameters	Our XGBoost Regressor										
Tryperparameters	Search Space	Input 1	Input 2	Input 3	Input 4	Input 5	Input 6	Input 7	Input 8		
eta	Uniform Float ∈ [0.0001, 0.5]		0.06818	0.04942	0.04457	0.07178	0.06647	0.04901	0.04798		
gamma	Uniform Integer $\in [0, 10]$	1	7	2	1	7	3	3	2		
number estimate	Uniform Integer ∈ [100, 1000]	972	155	932	880	230	913	715	949		
max depth	Uniform Integer $\in [1, 10]$	10	10	10	10	10	10	10	10		
min child weight	Uniform Integer ∈ [1, 100]	95	6	87	67	59	83	84	84		
max delta step	Uniform Integer $\in [0, 10]$	7	10	0	1	5	3	10	1		
subsample	Uniform Float $\in [0.5, 1]$	0.647	0.9632	0.5042	0.5068	0.6114	0.5486	0.507	0.5038		
colsample bytree	Uniform Float $\in [0.5, 1]$	0.9825	0.9517	0.8671	0.868	0.7449	0.8242	0.9927	0.7814		
colsample bylevel	Uniform Float $\in [0.5, 1]$	0.9819	0.9223	0.8572	0.839	0.9264	0.7642	0.9479	0.8407		
colsample bynode	Uniform Float $\in [0.5, 1]$	0.8042	0.9155	0.6173	0.7416	0.9802	0.924	0.8621	0.9989		

TABLE II
TABLE SUMMARIZING THE HYPERPARAMETER SEARCH SPACE USED FOR THE FEED-FORWARD DEEP NEURAL NETWORK, WHEN RUNNING SMAC3 [?] AND
THE SELECTED CONFIGURATION FOR ALL INPUT COMBINATIONS.

Hyperparameters			Our F	eed-Forwa	rd Neural N	Network			
	Search Space	Input 1	Input 2	Input 3	Input 4	Input 5	Input 6	Input 7	Input 8
Batch Size	Categorical [256, 512]	256	512	256	512	512	512	512	512
Learning Rate	$\begin{array}{c} \text{Categorical} \\ a \times e^{-c} \\ \text{for } a \in \mathbb{N}^+ \text{ and } \in [1,9] \\ c \in \mathbb{N}^+ \text{ and } \in [2,5] \end{array}$	0.0003	0.0002	0.0005	0.0006	0.0003	0.0006	0.0004	0.0005
Number of Layers (L)	Uniform Int Lower: 4 Upper: 12	7	10	7	7	7	9	7	8
Numebr of Neurons in Layer i for $i \in [0, L]$	Uniform Int Lower: 50 Upper: 1000 Step: 10	[860, 670, 160, 580, 900, 1000, 440]	[590,300, 820,520, 90,670, 850,120, 330,570]	[620, 470, 120, 620, 830, 890, 350]	[730, 390, 120, 630, 770, 720, 380]	[820,740, 190,740, 1000,850, 430]	[580,710, 600,170, 270,350, 70,780, 690]	[580,580, 160,450, 920,920, 380]	[470,600, 440,830, 790,900, 190,270]
Activation function in Layer i for $i \in [0, L]$	Categorical [sigmoid, relu, hardtanh, tanh, leakyrelu, elu]	leakyrelu, relu,	hardtanh, elu,	elu, leakyrelu, leakyrelu,	sigmoid,	[tanh, relu, elu, leakyrelu, elu, relu, leakyrelu]	ieakyreiu,	leakyrelu, hardtanh, sigmoid, relu	[tanh, relu, elu, leakyreli hardtanh, leakyrelu, elu, leakyreli
Negative Slope for Leakyrelu	Categorical $a \times e^{-1}$ for $a \in \mathbb{N}^+$ and $\in [1, 9]$	0.5	0.7	0.4	0.2	0.1	0.4	0.3	0.6

TABLE III

TABLE SUMMARIZING THE HYPERPARAMETER SEARCH SPACE USED FOR THE TRANSFORMER ENCODER, WHEN RUNNING SMAC3 [?] AND THE SELECTED CONFIGURATION FOR ALL INPUT COMBINATIONS.

Hyperparameters		Our Transformer Encoder											
Hyperparameters	Search Space	Input 1	Input 2	Input 3	Input 4	Input 5	Input 6	Input 7	Input 8				
Batch Size	Categorical [256, 512]	512	512	512	256	512	256	512	256				
Learning Rate	$\begin{array}{c} \text{Categorical} \\ a \times e^{-c} \\ \text{for } a \in \mathbb{N}^+ \text{ and } \in [1,9] \\ c \in \mathbb{N}^+ \text{ and } \in [2,5] \end{array}$	0.00009	0.00004	0.00009	0.0004	0.004	0.0003	0.00004	0.002				
Number of Layers (L)	Uniform Int Lower: 2 Upper: 8	3	8	3	2	7	4	7	2				
Number of Multi-Heads	Categorical [1, 2, 4, 8]	4	8	4	8	1	4	1	8				
Dropout Rate	Categorical [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Embedding Dimensions	Categorical [32, 64, 128, 256, 512, 1024]	128	128	128	128	64	32	128	64				
Hidden Dimension	Categorical [64, 128, 256, 512, 1024]	512	512	512	512	128	256	128	256				

TABLE IV

RESULTS OF ALL TRAINED NETWORKS OVER ALL 10 FOLDS FOR ALL INPUT COMBINATIONS. THE VALUE IN PARENTHESES REPRESENTS THE STANDARD DEVIATION. THE METRICS ARE CALCULATED OVER ALL CHANNELS AND OVER ALL ELECTRODES. MAE IS CALCULATED ON THE OUTPUT VALUES IN THE ORIGINAL SCALE. NORM. MAE IS CALCULATED ON THE NORMALIZED OUTPUT OF THE NETWORK; THE LOWER, THE BETTER.

		Nb.	MSE	Norm. MSE	MSE	Norm. MSE
		Param.	Over all	Over all Channels		es Only
	Ι.		18.651	0.223	16.804	0.227
	1	806K	(1.732)	(0.022)	(1.645)	(0.023)
		00517	18.818	0.223	16.720	0.226
	2	805K	(1.583)	(0.021)	(1.618)	(0.023)
	3	804K	20.100	0.227	16.784	0.227
<u></u>	3	004K	(1.653)	(0.021)	(1.606)	(0.023)
Ruppel et al. [?]	4	807K	18.209	0.221	16.777	0.227
et	4	00/K	(1.653)	(0.022)	(1.657)	(0.023)
[pdc]	5	819K	18.223	0.223	16.958	0.229
Ruj		013K	(1.640)	(0.022)	(1.639)	(0.023)
	6	812K	18.424	0.222	16.823	0.227
	L	012K	(1.637)	(0.022)	(1.652)	(0.023)
	7	809K	18.421	0.221	16.618	0.225
	'		(1.565)	(0.021)	(1.562)	(0.022)
	8	822K	18.065	0.221	16.803	0.227
			(1.632)	(0.022)	(1.640)	(0.023)
	1	1584K	13.368	0.150	11.446	0.150
		1304K	(1.340)	(0.015)	(1.204)	(0.015)
	2	1041K	14.372	0.159	12.002	0.158
			(1.446)	(0.016)	(1.298)	(0.016)
	3	1209K	15.994	0.168	12.373	0.163
st]	1209K	(1.622)	(0.017)	(1.340)	(0.017)
Boc	4	1694K	13.275	0.152	11.638	0.153
ur XGBoc Regressor	+	1054K	(1.430)	(0.016)	(1.335)	(0.016)
our XGBoost Regressor	5	840K	13.407	0.153	11.774	0.154
0		OTOIX	(1.393)	(0.015)	(1.277)	(0.016)
	6	1046K	13.785	0.156	11.866	0.156
	0	10401	(1.385)	(0.015)	(1.277)	(0.016)
	7	1239K	13.299	0.150	11.375	0.150
	Ľ	12371	(1.330)	(0.015)	(1.182)	(0.015)
	8	1331K	12.873	0.148	11.385	0.150
	0	1331K	(1.255)	(0.014)	(1.156)	(0.014)

			MSE	Norm. MSE	MSE	Norm. MSE	
		Param.	Over all	Channels	Flectrod	es Only	
			14.693	0.168	12.724	0.169	
	1	2233K	(1.386)	(0.015)	(1.252)	(0.016)	
			15.624	0.173	12.965	0.171	
	2	2881K	(1.536)	(0.017)	(1.388)	(0.018)	
			17.010	0.181	13.265	0.175	
ard	3	1701K	(1.314)	(0.014)	(1.105)	(0.014)	
Our Feed-Forward Neural Network	<u> </u>	4.45077	14.712	0.171	13.109	0.173	
d-F	4	1478K	(1.317)	(0.015)	(1.247)	(0.016)	
Fee	_	255477	14.056	0.166	12.721	0.169	
ur]	5	2554K	(1.213)	(0.013)	(1.100)	(0.014)	
0 _		110417	14.476	0.167	12.676	0.168	
	6	1124K	(1.150)	(0.013)	(1.043)	(0.013)	
	7	1794K	15.231	0.177	13.351	0.178	
			(1.344)	(0.016)	(1.242)	(0.016)	
	8	24001/	14.517	0.172	13.204	0.175	
	8	2490K	(1.450)	(0.017)	(1.404)	(0.017)	
	1	500V	13.760	0.156	11.736	0.155	
		599K	(1.400)	(0.016)	(1.280)	(0.016)	
	2	203K	14.534	0.162	12.102	0.160	
			(1.482)	(0.017)	(1.374)	(0.017)	
	3	598K	15.229	0.160	11.595	0.154	
ner	3	390K	(1.617)	(0.017)	(1.328)	(0.017)	
for	4	401K	13.204	0.152	11.564	0.153	
Transfor	4	401K	(1.363)	(0.016)	(1.266)	(0.016)	
Our Transformer Encoder	5	237K	13.441	0.155	11.824	0.156	
Omi)	23/K	(1.241)	(0.014)	(1.147)	(0.015)	
	6	114K	13.669	0.155	11.719	0.155	
	0	114K	(1.505)	(0.018)	(1.376)	(0.018)	
	7	701K	13.927	0.158	11.838	0.157	
	'	/UIK	(1.614)	(0.019)	(1.468)	(0.019)	
	8	103K	12.984	0.149	11.334	0.150	
	o	103K	(1.552)	(0.018)	(1.473)	(0.019)	

TABLE V

EXTENDED SIGNIFICANCE TEST WITH THE CORRECTED PAIRED t-test [?] conducted on different input combinations for all networks. The first value depicts the paired normalized MAE difference in percent over the ten folds, the second value represents t-statistic, and the third value between parenthesis represents the p-value.

	1 vs 2	1 vs 3	1 vs 4	1 vs 5	1 vs 6	7 vs 1	8 vs 1	5 vs 6	8 vs 5
	-0.944%	-1.809%	-0.514%	-0.667%	-0.715%	0.715%	0.584%	-0.048%	-0.083%
Ruppel et al. [?]	-3.723	-7.624	-2.132	-2.975	-3.107	3.107	2.058	-0.575	-0.754
	(0.002)	(0.000)	(0.031)	(0.008)	(0.006)	(0.994)	(0.965)	(0.290)	(0.235)
Our XGBoost	-0.859%	-1.773%	-0.113%	-0.282%	-0.539%	-0.055%	-0.208%	-0.258%	-0.490%
Regressor	-8.660	-9.979	-1.206	-4.143	-5.998	-0.923	-2.889	-2.860	-4.046
	(0.000)	(0.000)	(0.129)	(0.001)	(0.000)	(0.190)	(0.009)	(0.009)	(0.001)
Our Feed-Forward	-0.441%	-1.267%	-0.324%	0.217%	0.133%	0.862%	0.402%	-0.084%	0.620%
Neural Network	-2.222	-5.436	-2.184	0.589	0.373	1.995	0.729	-0.226	1.296
	(0.027)	(0.000)	(0.028)	(0.715)	(0.641)	(0.961)	(0.758)	(0.413)	(0.886)
Our Transformer	-0.587%	-0.391%	0.385%	0.077%	0.083%	0.188%	-0.662%	0.007%	-0.585%
Encoder	-2.479	-1.400	1.074	0.344	0.438	0.461	-1.870	0.019	-1.537
	(0.018)	(0.097)	(0.845)	(0.631)	(0.664)	(0.672)	(0.047)	(0.507)	(0.079)

TABLE VI

EXTENDED SIGNIFICANCE TEST WITH THE CORRECTED PAIRED t-test [?] conducted for all network pairs. The first value depicts the paired normalized MAE difference in percent over the ten folds, the second value represents t-statistic, and the third value between parenthesis represents the p-value.

vs	Our XGBoost	Our FFNN	Our Transformer	Our XGBoost	Our XGBoost	Our Transformer
	Ruppel et al. [?]	Ruppel et al. [?]	Ruppel et al. [?]	Our FFNN	Our Transformer	Our FFNN
	-7.265%	-5.487%	-6.734%	-1.778%	-0.531%	-1.247%
1	-8.688	-6.240	-8.053	-5.188	-1.581	-3.690
	(0.000)	(0.000)	(0.000)	(0.000)	(0.074)	(0.002)
	-7.350%	-5.990%	-7.091%	-1.360%	-0.259%	-1.101%
2	-9.037	-7.084	-8.032	-4.284	-0.704	-5.338
	(0.000)	(0.000)	(0.000)	(0.001)	(0.250)	(0.000)
	-7.302%	-6.029%	-8.152%	-1.272%	0.851%	-2.123%
3	-8.965	-7.134	-10.181	-3.623	3.407	-6.570
	(0.000)	(0.000)	(0.000)	(0.003)	(0.996)	(0.000)
	-7.666%	-5.677%	-7.633%	-1.989%	-0.032%	-1.956%
4	-8.550	-6.088	-7.694	-5.653	-0.106	-11.260
	(0.000)	(0.000)	(0.000)	(0.000)	(0.459)	(0.000)
	-7.651%	-6.371%	-7.478%	-1.279%	-0.173%	-1.107%
5	-8.912	-7.707	-10.302	-3.888	-0.477	-3.810
	(0.000)	(0.000)	(0.000)	(0.002)	(0.322)	(0.002)
	-7.441%	-6.335%	-7.533%	-1.106%	0.092%	-1.197%
6	-9.045	-7.078	-9.174	-3.610	0.303	-3.918
	(0.000)	(0.000)	(0.000)	(0.003)	(0.616)	(0.002)
	-8.036%	-5.340%	-7.261%	-2.696%	-0.774%	-1.921%
7	-9.613	-7.140	-7.370	-5.235	-1.347	-5.899
	(0.000)	(0.000)	(0.000)	(0.000)	(0.105)	(0.000)
	-8.058%	-5.668%	-7.980%	-2.389%	-0.077%	-2.312%
8	-10.024	-5.135	-9.696	-4.242	-0.157	-4.004
	(0.000)	(0.000)	(0.000)	(0.001)	(0.439)	(0.002)

TABLE VII

Number of parameters in thousands, inference time in milliseconds, and floating-point operations per second in millions for all neural networks across all input combinations.

		Our XGBoost			Our FFNN		Our Transformer			
	Num. Param.	Inference (ms)	Num. FLOPS	Num. Param.	Inference (ms)	Num. FLOPS	Num. Param.	Inference (ms)	Num. FLOPS	
1	806K	0.628	1.61M	2233K	0.876	4.46M	599K	1.618	5.97M	
2	805K	0.539	1.61M	2881K	1.173	5.75M	203K	2.982	1.63M	
3	804K	0.539	1.61M	1701K	0.741	3.40M	598K	1.396	3.58M	
4	807K	0.555	1.61M	1478K	0.757	2.95M	401K	1.005	5.59M	
5	819K	0.572	1.65M	2554K	0.833	5.10M	237K	2.995	11.64M	
6	812K	0.552	1.62M	1124K	0.613	2.24M	114K	1.427	2.98M	
7	809K	0.572	1.62M	1794K	0.760	3.58M	701K	2.939	9.89M	
8	822K	0.607	1.65M	2490K	1.002	4.98M	103K	0.988	5.30M	