2.3: More Operations On Fetr

Exercise 1:

- ∀x (x∈F → x∈ P(A)).
 ∀x (x∈F → ∀y(y∈x → y∈A))
- (b) $\forall x (x \in A \rightarrow x \in \{2n+1 \mid n \in M\})$ $\forall x (x \in A \rightarrow \exists n \in N(x = 2n+1))$
- $\bigcirc \forall x (x \in \{n^2 + n + 1 \mid n \in \mathbb{N}\} \rightarrow x \in \{2n + 1 \mid n \in \mathbb{N}\})$ $\forall n \in \mathbb{N} \exists m \in \mathbb{N} (n^2 + n + 1 = 2m + 1)$
- (d) TVX (X & P(i \ Ai) \rightarrow X & U P(Ai)).

 \[
 \begin{align*}
 \begin{align*

Exercise 2:

- @ XEUF XXEUG BAEF(XEA) A BAEG(XEA) BAEF(XEA) A VAEG(XEA)
- (y e {x eB| x x C} → y eA) Vy ((y eB xy x C) → y eA)
- © Vi € I(x € (A i U B i)) Vi € I(x € A i V X € B i)
- (Vie I (x e Ai) v Vie I (x e Bi)

Exercise 3:

$$\mathcal{P}(\{\emptyset\}) = \{x \mid x \subseteq \{\emptyset\}\}$$

$$= \{\emptyset\}, \emptyset\}$$

Exercise 4:

NF = Ered, blue } UF = Ered, green, blue, orange, purple}

Exercise 5:

 $0F = \emptyset$ $0F = \{3,7,12,5,16,23\}$

Exercise 6:

 $A_{3} = \{2, 3, 1, 4\}$ $A_{3} = \{3, 4, 2, 6\}$ $A_{4} = \{4, 5, 3, 8\}$ $A_{5} = \{5, 6, 4, 10\}$ $A_{6} = \{4\}$

6 : Ai = {4} UAi = {2,3,1,4,6,5,8,10}

Evercise 7:

Us Ay = { Bach, Goethe, Hume, Mozart, Washington }

yer Ay = { Goethe, Home, Washington}

Barcise 8:

@ The stakements are not equivalent.

Exercise 9:

$$x \in (\bigcup_{i \in I} A_i) \setminus (\bigcup_{i \in I} B_i)$$

 $x \in (\bigcup_{i \in I} A_i) \land x \not\in (\bigcup_{i \in I} B_i)$
 $\exists i \in I(x \in A_i) \land \forall i \in I(x \not\in B_i)$

x e (UAi) (Bi) X E (U Ai) 1 Xx (in Bi) (igax) I + iE ~ (iA+x) I + iE

Exercise 10:

x = U (Ai (Bi)

X e (U Ai) (U Bi)

BieI(xe Ain Bi)

∃i€I(x€Ai) ∧ ∃i€I(x€Bi)

∃i €I(x € Aia X € Bi)

I= {1, 2}, Ai= {i}, Bi= {i-1} $Ai = \{0\}$ $A_1 = \{1\}$ $B_2 = \{0\}$ $A_3 = \{2\}$ $B_4 = \{1\}$

U (AinBi) = Ø $(U_{e_{T}}Ai) \cap (U_{e_{T}}Bi) = \{1, 2\} \cap \{0, 1\} = \{1\}$

The statements are not equivalent.

Exercise 11:

 $x \in \mathcal{P}(A \cap B)$ $\forall y (y \in x \rightarrow y \in A \cap B)$ $\forall y (y \in x \rightarrow (y \in A \land y \in B))$ $\forall y \in x (y \in A \land y \in B)$ $x \in \mathcal{F}(A) \cap \mathcal{F}(B)$ $x \in \mathcal{F}(A) \land x \in \mathcal{F}(B)$ $\forall y (y \in x \rightarrow y \in A) \land \forall y (y \in x \rightarrow y \in B)$ $\forall y \in x (y \in A) \land \forall y \in x (y \in B)$ $\forall y \in x (y \in A \land y \in B)$.

Exercise 12: x & P(AUB) Vy (y & x -> y & AUB) Vy (y & x -> (y & A v y & B)) Vy & x (y & Av y & B)

x & P(A) UP(B) x & P(A) v x & P(B) Vy (yex > yeA) v Vy (yex > yeB) Vy & x(yeA) v Vy ex(yeB)

Let $A = \{1, 2\}$, $B = \{2, 3\}$ $AUB = \{1, 2, 3\}$ $\mathcal{P}(AUB) = \{\{1, 2, 3\}, \{2, 3\}, \{1, 2\}, \{2, 3\}, \{1, 2\}, \{2, 3\}, \{1, 2\}, \{2, 3\}, \{1, 2\}, \{2, 3\}, \{$

P(A) = {13, f23, {1,23, \$} P(B) = {123, 133, {2,33, \$} P(A) U P(B) = {113, {23, {33, {1,23, {2,33, {1,23,

Exercise 13:

\[\times \times

- B XE (NF) N (NG) XE(NF) A XE (NG) VA (AEF → XEA) A VA (AEG → XEA) VA (AEF , XEA) A VA (AEG → XEA) VA (AEF , XEA) A VA (AEG V XEA) VA (AEF , AEG) V XEA) VA (AEF V AEG) V XEA) VA (AEF V AEG) - XEA) VA (FUG) (XEA) XE N(FUG)
- C x & (Ai \ Bi)

 Vi & I (x & Ai \ Bi)

 Vi & I (x & Ai \ X & Bi)

 Vi & I (x & Ai \ X & Bi)

 Vi & I (x & Ai \ X & Bi)

 Vi & I (x & Ai) \ Vi & I (x & Bi)

 X & (Ai \ Ai \ X & U Bi

 X & (Ai \ Ai \ Ai \ Bi)

Exercise 14:

 $B_{3} = A_{1,3} \cup A_{2,3} = \{1,3,4\} \cup \{2,3,5\} = \{1,2,3,4,5\}$ $B_{4} = A_{1,4} \cup A_{2,4} = \{1,4,5\} \cup \{2,4,6\} = \{1,2,4,5,6\}$ $D_{je_{3}} B_{j} = \bigcap_{j=3} (\bigcup_{i \in I} A_{i,j}) = \{1,2,4,5\}$ $C_{ie_{2}} (A_{i,3} \cap A_{i,4}) = (A_{1,3} \cap A_{1,4}) \cup (A_{2,3} \cap A_{2,4})$

© $i \in (A_{i,3} \cap A_{i,4}) = (A_{i,3} \cap A_{i,4}) \cup (A_{2,3} \cap A_{2,4})$ = $(\{1,3,4\} \cap \{1,4,5\}) \cup (\{2,3,5\} \cap \{2,4,6\})$ = $\{1,4\} \cup \{2\} = \{1,2,4\}$

They are not equal.

A ≠ jeJ (ieI Ai,j)
 ∀j ∈ J(x ∈ (ieI Ai,j))
 ∀j ∈ J Hi ∈ I (x ∈ Ai,j)
 They are not equivalent.

XE GET (JEJAL,j)

HIETY-EJ(XEAL,j)

Exercise 15:

@ Proof: Suppose that $F = \varnothing$. Note that $UF = \{x \mid \exists A (A \in F + X \in A)\}$.

Here, the only subset of F is \varnothing , and \varnothing has no elements. Thus, there is no A such that $A \in F$, and so $UF = \varnothing$. The statement $x \in UF$ must be false because UF has no elements. Also, note that $U\varnothing = \varnothing$.

© Suppose that $F = \emptyset$. Note that $\bigcap F = \{x \mid \forall A (A \in F \to x \in A)\}$. \emptyset that no elements. Thus, $A \in F \to x \in A$ is vacuously true (because there is no A such that $A \in F$), and so, no matter what x is, $x \in \bigcap F$. Note that $\bigcap F = U$

Exercise 16:

@ Applying the fact to the say R: (RER +> RER).

D'A set of all sets cannot be a unherse of discourse.