A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 5EC

Bookmark

Show all steps: (

ON

Problem

Use part 4 to prove that $Gal(\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q}) = S_3$.

Step-by-step solution

Step 1 of 2

The objective is to show that $Gal(\mathbb{Q}(\sqrt[3]{2},i\sqrt{3}):\mathbb{Q})\cong S_3$.

Comment

Step 2 of 2

The group $Gal(\mathbb{Q}(\sqrt[3]{2},i\sqrt{3});\mathbb{Q})$, being of order six, must be isomorphic to either $\mathbb{Z}/6\mathbb{Z}$ or S_3 .

Claim: $Gal(\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}): \mathbb{Q}) \cong S_3$.

Show that $Gal(\mathbb{Q}(\sqrt[3]{2},i\sqrt{3});\mathbb{Q})$ is not abelian.

Calculate the effect of both $\sigma_2\sigma_4$ and $\sigma_4\sigma_2$ on the element $\sqrt[3]{2}$:

The automorphism $\ \sigma_2$ and $\ \sigma_4$ is as follows:

$$\sigma_2 : \begin{cases} \sqrt[3]{2} \mapsto \omega \sqrt[3]{2} \\ i \mapsto i\sqrt{3} \end{cases} \quad \sigma_4 : \begin{cases} \sqrt[3]{2} \mapsto \sqrt[3]{2} \\ i \mapsto -i\sqrt{3} \end{cases}$$

$$\sigma_2 \sigma_4 \left(\sqrt[3]{2}\right) = \sigma_2 \left(\sqrt[3]{2}\right)$$
$$= \omega^{\sqrt[3]{2}}$$

whereas

$$\sigma_4 \sigma_2 \left(\sqrt[3]{2}\right) = \sigma_4 \left(\omega \sqrt[3]{2}\right)$$
$$= \sigma_4 \left(\omega\right) \sigma_4 \left(\sqrt[3]{2}\right)$$
$$= \omega^2 \sqrt[3]{2}.$$

Thus , $\sigma_2\sigma_4$ and $\sigma_4\sigma_2$ are not the same function , so this group of automorphism is not abelian.

Therefore , $Gal\Big(\mathbb{Q}\Big(\sqrt[3]{2},i\sqrt{3}\Big)\colon\mathbb{Q}\Big)\cong S_3.$

Comment