TARTU ÜLIKOOL MATEMAATIKA-INFORMAATIKATEADUSKOND

Matemaatika instituut Matemaatika eriala

Priit Lätt

Minkowski aegruumi geomeetriast

Bakalaureusetöö (6 EAP)

Juhendaja: Viktor Abramov

Autor:	"iaa	ınuar 2013
Juhendaja:	jaa	nuar 2013
Lubada kaitsmisele		
Professor	jaa	nuar 2013

TARTU 2013

Sisukord

1	Vajalikud eelteadmised	3
	1.1 ptk	3
2	2 Minkowski ruumi geomeetriline struktuur	
	2.1 Skalaarkorrutise definitsioon ja omadused	4

Sissejuhatus

Märgime, et töös kasutame summade tähistamisel Einstein'i summeerimiskokkulepet. See tähendab, kui meil on indeksid i ja j, mis omavad väärtusi $1, \ldots, n$ $(n \in \mathbb{N})$, siis kirjutame

$$x^{i}e_{a} = \sum_{a=1}^{n} x^{i}e_{i} = x^{1}e_{1} + x^{2}e_{2} + \dots + x^{n}e_{n},$$

$$\lambda_{j}^{i} x^{j} = \sum_{j=1}^{n} = \lambda_{1}^{i} x^{1} + \lambda_{2}^{i} x^{2} + \dots + \lambda_{n}^{i} x^{n},$$

$$\eta_{ij}u^iv^j=\eta_{11}u^1v^1+\eta_{12}u^1v^2+\cdots+\eta_{1n}u^1v^n+\eta_{21}u^2v^1+\cdots+\eta_{nn}u^nv^n,$$
ja nii edasi.

1 Vajalikud eelteadmised

Selles patükis toome välja definitsioonid ja tähtsamad tulemusedd, mida läheb tarvis töö järgmistes osades. Lihtsamad tulemused, millele on pööratud tähelepanu kursustes Algebra I või Geomeetria II, esitame seejuures tõestusteta.

1.1 ptk

2 Minkowski ruumi geomeetriline struktuur

2.1 Skalaarkorrutise definitsioon ja omadused

Olgu V n-mõõtmeline vektorruum üle reaalarvude korpuse. Me ütleme, et kujutus $g:V\times V\to\mathbb{R}$ on bilineaarvorm, kui g on mõlema muutuja järgi lineaarne, see tähendab $g\left(\alpha_1u_1+\alpha_2u_2,v\right)=\alpha_1g\left(u_1,v\right)+\alpha_2g\left(u_2,v\right)$ ja $g\left(u,\alpha_1v_1+\alpha_2v_2\right)=\alpha_1g\left(u,v_1\right)+\alpha_2g\left(u,v_2\right)$ kus α_1 ja α_2 on suvalised reaalarvud ning u,u_1,u_2,v,v_1 ja v_2 on vektorruumi V elemendid.

Olgu $u, v \in V$. Bilineaarvormi g nimetatakse sümmeetriliseks, kui g(u, v) = g(v, u) ja mittekidunuks, kui u = 0 järeldub tingumusest iga $v \in V$ korral g(u, v) = 0.

Definitsioon 1. Mittekidunud sümmeetrilist bilineaarvormi $g: V \times V \to \mathbb{R}$ nimetatakse skalaarkorrutiseks. Vektorite u ja v skalaarkorrutist tähistame sageli ka kujul $u \cdot v$.

Näide 1. Vaatleme ruumi \mathbb{R}^n . Olgu $u = (u^1, u^2, \dots, u^n)$, $v = (v^1, v^2, \dots, v^n) \in \mathbb{R}^n$. Lihtne on veenduda, et kujutus $q(u, v) = u^1v^1 + u^2v^2 + \dots + u^nv^n$ on skalaarkorrutis.

Näites 1 defineeritud skalaarkorrutis on positiivselt määratud, see tähendab iga $v \neq 0$ korral g(v,v) > 0. Kui g(v,v) < 0 kõikide $v \neq 0$ korral, siis ütleme, et g on negatiivselt määratud ja kui g pole ei positiivselt ega negatiivselt määratud, siis öeldakse, et g on määramata.

Definitsioon 2. Kui g on skalaarkorrutis vektorruumil V, siis nimetame vektoreid u ja v g-ortogonaalseks, või lihtsalt ortogonaalseks, kui g roll on kontekstist selge, kui g(u,v)=0. Kui $W\subset V$ on alamruum, siis ruumi W ortogonaalne täiend W^{\perp} defineeritakse võrdusega $W^{\perp}=\{u\in V: \forall v\in Wg(u,v)=0\}$.

Definitsioon 3. Skalaarkorrutise g poolt määratud ruutvormiks nimetame kujutust $Q: V \to \mathbb{R}$, kus $Q(v) = g(v, v) = v \cdot v$.

Lause 1. Olgu g_1 ja g_2 kaks skalaarkorrutist vektorruumil V, mis rahuldavad tingimust $g_1(u, u) = g_2(u, u)$ iga $v \in V$ korral. Siis kehtib $g_1(u, u) = g_2(u, u)$ kõikide $u, v \in V$ korral.

Tõestus. Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Teoreem 1. Olgu V reaalne n-mõõtmeline vektorruum ning olgu $g: V \times V \to \mathbb{R}$ skalaarkorrutis. Vektorruumil V leidub baas $\{e_1, e_2, \ldots, e_n\}$ nii, et $g(e_i, e_j) = 0$ kui $i \neq j$ ja $Q(e_i) = \pm 1$ iga $i = 1, 2, \ldots, n$ korral. Enamgi veel, baasivektorite arv, mille korral $Q(e_i) = -1$ on sama kõikide neid tingimusi rahuldavate baaside korral sama.

 $T\~oestus$. Arvestades $Gram^1$ -Schmidti 2 algoritmi muutub teoreemi t $\~o$ estus ilmseks.

Skalaarkorrutise g suhtses ortonormaalse baasi $\{e_1, e_2, \ldots, e_n\}$ vektorite arvu r, mille korral $Q(e_i) = -1, i \in \{1, 2, \ldots, n\}$, nimetame skalaarkorrutise g indeksiks. Järgnevas eeldame, et ortonormeeritud baasid on indekseeritud nii, et baasivektorid e_i , mille korral $Q(e_i) = -1$, paiknevad loetelu lõpus, ehk ortonormeeritud baasi

$$\{e_1, e_2, \dots, e_{n-r}, e_{n-r+1}, \dots, e_n\}$$

korral $Q(e_i)=1$, kui $i=1,2,\ldots,n-r$, ja $Q(e_i)=-1$, kui $i=n-r+1,\ldots,n$. Tähistades $u=u^ie_i$ ja $v=v^ie_i$ saame sellise baasi suhtes skalaarkorrutise g arvutada järgmiselt:

$$g(u,v) = u^{1}v^{1} + u^{2}v^{2} + \dots + u^{n-r}v^{n-r} - u^{n-r+1}v^{n-r+1} - \dots - u^{n}v^{n}.$$

¹Jørgen Pedersen Gram (1850 – 1916) - taani matemaatik

²Erhard Schmidt (1876 – 1959) - Tartus sündinud saksma matemaatik