1. (25 Points) Let X and Y be two independent identically distributed random variables taking on values in N (the natural numbers) with

$$P({\mathbf{X} = i}) = P({\mathbf{Y} = i}) = \frac{1}{2^i}, \quad i = 1, 2, 3, \dots$$

- (a) Find $P(\{\min(\mathbf{X}, \mathbf{Y}) = k\})$, for $k \in \mathbf{N}$.
- (b) Find $P(\{X = Y\})$.
- (c) Find $P(\{\mathbf{Y} > \mathbf{X}\})$.
- (d) Find $P(\{\mathbf{Y} = k\mathbf{X}\})$ for a given natural number k.

2. (25 Points) Let $\{X_n\}_{n\geq 1}$ be a sequence of binomially distributed random variables, with the *n*-th random variable X_n having pmf

$$p_{\mathbf{X}_n}(k) = P(\{\mathbf{X}_n = k\}) = \binom{n}{k} p_n^k (1 - p_n)^{n-k}, \qquad k = 0, \dots, n, \qquad p_n \in (0, 1).$$

Show that, if the p_n have the property that $np_n \to \lambda$ as $n \to \infty$, where λ is a positive constant, then the sequence $\{X_n\}_{n\geq 1}$ converges in distribution to a Poisson random variable X with mean λ .

Hint: You may find the following fact useful:

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$$

- 3. (25 Points) Let X(t) be a real Gaussian random process with mean function $\mu(t)$ and autocovariance function $C_{XX}(t_1, t_2)$.
 - (a) Write the expression for the *n*-th order characteristic function of $\mathbf{X}(t)$ in terms of $\mu(t)$ and $C_{XX}(t_1, t_2)$.
 - (b) Show that the probabilistic description of X(t) is completely characterized by $\mu(t)$ and autocovariance function $C_{XX}(t_1, t_2)$.
 - (c) Show that if X(t) is wide-sense stationary then it is also strict-sense stationary.
- 4. (25 Points) Let $X_1, X_2, X_3, ...$ be a sequence of independent, identically distributed random variables, each having Cauchy pdf

$$f(x) = \frac{1}{\pi(1+x^2)}, \quad -\infty < x < \infty.$$

Let

$$Y_n = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i.$$

Find the pdf of Y_n . Describe how the pdf of Y_n depends on n. Does the sequence Y_1, Y_2, Y_3, \ldots converge in distribution? If yes, what is the distribution of the random variable it converges to?