```
In [22]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import pyplot
import seaborn as sns
import statsmodels.api as smf
```

In [23]: df=pd.read_excel('CocaCola_Sales_Rawdata.xlsx')

In [24]:

df.head()

Out [24]:

	Quarter	Sales
0	Q1_86	1734.827000
1	Q2_86	2244.960999
2	Q3_86	2533.804993
3	Q4_86	2154.962997
4	Q1 87	1547.818996

In [25]: df.describe()

Out [25]:

	Sales
count	42.000000
mean	2994.353308
std	977.930896
min	1547.818996
25%	2159.714247
50%	2782.376999
75%	3609.250000
max	5253.000000

RangeIndex: 42 entries, 0 to 41
Data columns (total 2 columns):
Column Non-Null Count Dtype

--- ----- ------ -----0 Quarter 42 non-null object 1 Sales 42 non-null float64

dtypes: float64(1), object(1) memory usage: 800.0+ bytes

In [27]: df.isnull().sum()

Out[27]: Quarter 0 Sales 0 dtype: int64

deyper into-

In [28]: sns.lineplot(x="Quarter",y="Sales",data=df)

Out[28]: <AxesSubplot:xlabel='Quarter', ylabel='Sales'>

In [29]: seasonal_ts_add=smf.tsa.seasonal_decompose(df["Sales"],freq=10)
 seasonal_ts_add.plot()

/var/folders/9_/ckpgdd3s4qzg3w1zytsfvsmh0000gn/T/ipykernel_21859/4
189873342.py:1: FutureWarning: the 'freq'' keyword is deprecated,
use 'period' instead

seasonal_ts_add=smf.tsa.seasonal_decompose(df["Sales"],freq=10)


```
In [30]: df.hist()
    pyplot.show()
```


In [31]: sns.boxplot(data=df['Sales'])

Out[31]: <AxesSubplot:>


```
In [32]: quarter =['Q1','Q2','Q3','Q4']
```

```
In [33]: p = df["Quarter"][0]
p[0:2]
df['quarter']= 0

for i in range(42):
    p = df["Quarter"][i]
    df['quarter'][i]= p[0:2]
df.head()
```

/var/folders/9_/ckpgdd3s4qzg3w1zytsfvsmh0000gn/T/ipykernel_21859/2
825882259.py:7: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['quarter'][i]= p[0:2]

/opt/anaconda3/lib/python3.9/site-packages/pandas/core/indexing.py
:1732: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self._setitem_single_block(indexer, value, name)

Out[33]:

	Quarter	Sales	quarter
0	Q1_86	1734.827000	Q1
1	Q2_86	2244.960999	Q2
2	Q3_86	2533.804993	Q3
3	Q4_86	2154.962997	Q4
4	Q1_87	1547.818996	Q1

```
In [34]: quarter_dummies = pd.DataFrame(pd.get_dummies(df['quarter']))
    df1 = pd.concat([df,quarter_dummies],axis = 1)
    df1.head()
```

Out [34]:

	Quarter	Sales	quarter	Q1	Q2	Q3	Q4
0	Q1_86	1734.827000	Q1	1	0	0	0
1	Q2_86	2244.960999	Q2	0	1	0	0
2	Q3_86	2533.804993	Q3	0	0	1	0
3	Q4_86	2154.962997	Q4	0	0	0	1
4	Q1_87	1547.818996	Q1	1	0	0	0

```
In [35]: df1["t"] = np.arange(1,43)
    df1["t_squared"] = df1["t"]*df1["t"]
    df1["log_Sales"] = np.log(df1["Sales"])
    df1.head()
```

Out[35]:

	Quarter	Sales	quarter	Q1	Q2	Q3	Q4	t	t_squared	log_Sales
(Q1_86	1734.827000	Q1	1	0	0	0	1	1	7.458663
1	Q2_86	2244.960999	Q2	0	1	0	0	2	4	7.716443
2	Q3_86	2533.804993	Q3	0	0	1	0	3	9	7.837477
3	Q4_86	2154.962997	Q4	0	0	0	1	4	16	7.675529
4	Q1_87	1547.818996	Q1	1	0	0	0	5	25	7.344602

```
In [36]: Train = df1.head(30)
Test = df1.tail(10)
```

In [37]: # L I N E A R

import statsmodels.formula.api as smf

```
linear_model = smf.ols('Sales~t',data=Train).fit()
pred_linear = pd.Series(linear_model.predict(pd.DataFrame(Test['t'
rmse_linear = np.sqrt(np.mean((np.array(Test['Sales'])-np.array(pre
print("RMSE Linear: ",rmse_linear)
```

RMSE Linear: 777.6287139221071

In [38]: # Exponential Exp = smf.ols('log_Sales~t',data=Train).fit() pred_Exp = pd.Series(Exp.predict(pd.DataFrame(Test['t']))) rmse_Exp = np.sqrt(np.mean((np.array(Test['Sales'])-np.array(np.exp print("RMSE Exponential: ",rmse_Exp)

RMSE Exponential: 600.0893693739741

```
In [39]: # Quadratic

Quad = smf.ols('Sales~t+t_squared',data=Train).fit()
pred_Quad = pd.Series(Quad.predict(Test[["t","t_squared"]]))
rmse_Quad = np.sqrt(np.mean((np.array(Test['Sales'])-np.array(pred_print("RMSE Quadratic: ",rmse_Quad)
```

RMSE Quadratic: 680.2527854192889

```
In [40]: Additive seasonality

dd_sea = smf.ols('Sales~Q1+Q2+Q3+Q4',data=Train).fit()
    red_add_sea = pd.Series(add_sea.predict(Test[['Q1', 'Q2', 'Q3', 'Q4']
    mse_add_sea = np.sqrt(np.mean((np.array(Test['Sales'])-np.array(predict("RMSE Additive seasonality: ",rmse_add_sea)
```

RMSE Additive seasonality: 1898.3504804157517

In [41]: #Additive Seasonality Quadratic

add_sea_Quad = smf.ols('Sales~t+t_squared+Q1+Q2+Q3+Q4',data=Train).
pred_add_sea_quad = pd.Series(add_sea_Quad.predict(Test[['Q1', 'Q2'
rmse_add_sea_quad = np.sqrt(np.mean((np.array(Test['Sales'])-np.arr
print("RMSE Additive Seasonality Quadratic:",rmse_add_sea_quad)

RMSE Additive Seasonality Quadratic: 607.8520720183552

In [42]: # Multiplicative Seasonality

Mul_sea = smf.ols('log_Sales~Q1+Q2+Q3+Q4',data = Train).fit()
pred_Mult_sea = pd.Series(Mul_sea.predict(Test))
rmse_Mult_sea = np.sqrt(np.mean((np.array(Test['Sales'])-np.array(np.int("RMSE Multiplicative Seasonality:",rmse_Mult_sea)

RMSE Multiplicative Seasonality: 1951.0349399697623

In [43]: # Multiplicative Additive Seasonality

Mul_Add_sea = smf.ols('log_Sales~t+Q1+Q2+Q3+Q4',data = Train).fit()
pred_Mult_add_sea = pd.Series(Mul_Add_sea.predict(Test))
rmse_Mult_add_sea = np.sqrt(np.mean((np.array(Test['Sales'])-np.arr
print("RMSE Multiplicative Additive Seasonality:",rmse_Mult_add_sea

RMSE Multiplicative Additive Seasonality: 449.40354891629227

In [44]: # Testing

Out [44]:

	MODEL	RMSE_Values
0	rmse_linear	777.628714
1	rmse_Exp	600.089369
2	rmse_Quad	680.252785
3	rmse_add_sea	1898.350480
4	rmse_add_sea_quad	607.852072
5	rmse_Mult_sea	1951.034940
6	rmse_Mult_add_sea	449.403549

[['Q3_96', 'Q3'], ['Q4_96', 'Q4'], ['Q1_97', 'Q1'], ['Q2_97', 'Q2']]

Out [45]:

	Quarter	quarter
0	Q3_96	Q3
1	Q4_96	Q4
2	Q1_97	Q1
3	O2 97	02

```
In [46]: # Create dummies and T and T-Squared columns

dummies = pd.DataFrame(pd.get_dummies(forecast['quarter']))
forecast1 = pd.concat([forecast,dummies],axis = 1)

forecast1["t"] = np.arange(1,5)
forecast1["t_squared"] = forecast1["t"]*forecast1["t"]
print("\nAfter Dummy, T and T-Square\n\n",forecast1.head())
```

After Dummy, T and T-Square

```
Q3
   Quarter quarter
                     Q1
                         02
                                 Q4 t t_squared
    Q3 96
                          0
0
                Q3
                     0
                              1
                                  0
                                      1
                                                  1
    04 96
                                                  4
1
                04
                     0
                          0
                                  1
                                      2
                                                  9
                                     3
2
    01 97
                01
                     1
                          0
                              0
                                  0
3
    Q2_97
                          1
                                                 16
                02
                     0
                                  0
                                      4
```

```
In [47]: # Forecasting using Additive Seasonality Quadratic Model
    model_full = smf.ols('Sales~t+t_squared+Q1+Q2+Q3+Q4',data=df1).fit(
    pred_new = pd.Series(model_full.predict(forecast1))
    pred_new
    forecast1["forecasted_sales"] = pd.Series(pred_new)
```

```
In [48]: Final_predict = forecast1.loc[:, ['Quarter', 'forecasted_sales']]
Final_predict
```

Out [48]:

	Quarter	forecasted_sales
0	Q3_96	2180.858824
1	Q4_96	1851.383709
2	Q1_97	1635.419724
3	Q2_97	2284.261547

```
In [ ]:
```