analysis

April 18, 2023

1 Tugas Besar Probabilitas dan Statistika

1.0.1 Analisis Data dan Tes Hipotesis

Michael Jonathan Halim - 13521124 Enrique Alifio Ditya - 13521142

2 Import Necessary Libraries

```
[92]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  import plotly.express as px
  import scipy
  from math import sqrt
  from scipy.stats import t, f
  from IPython.display import Markdown, display
```

3 Import Dataset

```
[93]: df = pd.read_csv("../data/anggur.csv")
      df
[93]:
           fixed acidity volatile acidity citric acid residual sugar chlorides \
                                                 0.1813
      0
                   5.90
                                    0.4451
                                                               2.049401
                                                                          0.070574
      1
                   8.40
                                    0.5768
                                                 0.2099
                                                               3.109590
                                                                          0.101681
```

2	7.54	0.5918	0.3248	3.673744	0.072416	
3	5.39	0.4201	0.3131	3.371815	0.072755	
4	6.51	0.5675	0.1940	4.404723	0.066379	
	•••	•••	•••			
995	7.96	0.6046	0.2662	1.592048	0.057555	
996	8.48	0.4080	0.2227	0.681955	0.051627	
997	6.11	0.4841	0.3720	2.377267	0.042806	
998	7.76	0.3590	0.3208	4.294486	0.098276	
999	5.87	0.5214	0.1883	2.179490	0.052923	

	free sul	fur dioxide	total	sulfur	dioxide	density	pН	sulphates	\
0		16.593818			42.27	0.9982	3.27	0.71	
1		22.555519			16.01	0.9960	3.35	0.57	
2		9.316866			35.52	0.9990	3.31	0.64	
3		18.212300			41.97	0.9945	3.34	0.55	
4		9.360591			46.27	0.9925	3.27	0.45	
		•••			•••				
995		14.892445			44.61	0.9975	3.35	0.54	
996		23.548965			25.83	0.9972	3.41	0.46	
997		21.624585			48.75	0.9928	3.23	0.55	
998		12.746186			44.53	0.9952	3.30	0.66	
999		16.203864			24.37	0.9983	3.29	0.70	
	alcohol	quality							
0	8.64	7							
1	10.03	8							
2	9.23	8							
3	14.07	9							
4	11.49	8							
	•••	•••							
995	10.41	8							
996	9.91	8							
997	9.94	7							
998	9.76	8							
999	10.17	7							

[1000 rows x 12 columns]

4 Exploratory Data Analysis

For a full and thorough overview of the dataset, you can open the EDA.html file in the public folder.

4.1 Descriptive Statistics

In this section, we will examine a brief overview of the dataset.

4.1.1 Missing Values

```
[94]: missing_values = df.isnull().sum(axis=0)
nan_cols = missing_values[missing_values > 0]
display(Markdown(f"Missing_Data: {len(nan_cols)}"))
```

Missing Data: 0

The dataset contains no missing data.

4.1.2 Feature Information

[95]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1000 non-null	float64
1	volatile acidity	1000 non-null	float64
2	citric acid	1000 non-null	float64
3	residual sugar	1000 non-null	float64
4	chlorides	1000 non-null	float64
5	free sulfur dioxide	1000 non-null	float64
6	total sulfur dioxide	1000 non-null	float64
7	density	1000 non-null	float64
8	рН	1000 non-null	float64
9	sulphates	1000 non-null	float64
10	alcohol	1000 non-null	float64
11	quality	1000 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 93.9 KB

Based on the information above, all features are of numeric type

4.1.3 Statistical Summary

[96]: df.describe()

[96]:		fixed acidit	y vo:	latile a	cidity	citric	acid	residual	sugar	\	
	count	1000.00000	0	1000.	000000	1000.0	00000	1000.	000000		
	mean	7.15253	0	0.	520838	0.2	70517	2.	567104		
	std	1.20159	8	0.	095848	0.0	49098	0.	987915		
	min	3.32000	0	0.	139900	0.1	16700	0.	032555		
	25%	6.37750	0	0.	456100	0.2	37800	1.	896330		
	50%	7.15000	0	0.	524850	0.2	72200	2.	519430		
	75%	8.00000	0	0.	585375	0.3	02325	3.	220873		
	max	11.49000	0	0.	805100	0.4	09600	5.	550755		
		chlorides	free	sulfur	dioxide	total	sulfu	r dioxide	đ	lensity	\
	count	1000.000000		1000	.000000		10	00.000000	1000.	000000	
	mean	0.081195		14	.907679		•	40.290150	0.	995925	
	std	0.020111		4	.888100			9.965767	0.	002020	
	min	0.015122		0	.194679			3.150000	0.	988800	
	25%	0.066574		11	.426717		;	33.785000	0.	994600	
	50%	0.082167		14	.860346		•	40.190000	0.	996000	
	75%	0.095312		18	.313098			47.022500	0.	997200	

max	0.140758	27.462525		69.960000	1.002600
	рН	sulphates	alcohol	quality	
count	1000.000000	1000.000000	1000.000000	1000.000000	
mean	3.303610	0.598390	10.592280	7.958000	
std	0.104875	0.100819	1.510706	0.902802	
min	2.970000	0.290000	6.030000	5.000000	
25%	3.230000	0.530000	9.560000	7.000000	
50%	3.300000	0.595000	10.610000	8.000000	
75%	3.370000	0.670000	11.622500	9.000000	
max	3.710000	0.960000	15.020000	10.000000	

4.1.4 Mode

```
[97]: def show_feature_modes(df):
    for col in df.columns:
        if df[col].nunique() == df[col].count():
            display(Markdown(f"{col}: Contains all unique values"))
        else:
            modes = df[col].mode().to_list()
            mode_str = ", ".join(str(mode) for mode in modes)
            display(Markdown(f"{col}: {mode_str}"))
```

[98]: show_feature_modes(df)

fixed acidity: 6.54

volatile acidity: 0.5546

citric acid: 0.3019

residual sugar: Contains all unique values

chlorides: Contains all unique values

free sulfur dioxide: Contains all unique values

total sulfur dioxide: 35.2, 37.25, 39.64, 40.61, 41.05, 41.59, 44.51

density: 0.9959, 0.9961, 0.9965, 0.997

pH: 3.34

sulphates: 0.59

alcohol: 9.86, 10.31

quality: 8

4.1.5 Median

volatile acidity

citric acid

chlorides

residual sugar

	-		
[99]:	df.median()		
[99]:	fixed acidity	7.150000	
	volatile acidity	0.524850	
	citric acid	0.272200	
	residual sugar	2.519430	
	chlorides	0.082167	
	free sulfur dioxide	14.860346	
	total sulfur dioxide	40.190000	
	density	0.996000	
	рН	3.300000	
	sulphates	0.595000	
	alcohol	10.610000	
	quality	8.000000	
	dtype: float64		
	4.1.6 Variance		
[100]:	di.var()		
[100]:	fixed acidity	1.443837	
	volatile acidity	0.009187	
	citric acid	0.002411	
	residual sugar	0.975977	
	chlorides	0.000404	
	free sulfur dioxide	23.893519	
	total sulfur dioxide	99.316519	
	density	0.000004	
	рН	0.010999	
	sulphates	0.010164	
	alcohol	2.282233	
	quality	0.815051	
	dtype: float64		
	4.1.7 Range		
[101]:	<pre>range_df = df.max() - d</pre>	df.min()	
	<pre>print(range_df)</pre>		
	fixed acidity	8.170000	
		0 665000	

0.665200

0.292900

5.518200

0.125635

free sulfur dioxide 27.267847
total sulfur dioxide 66.810000
density 0.013800
pH 0.740000
sulphates 0.670000
alcohol 8.990000
quality 5.000000

dtype: float64

4.1.8 Unique Values

[102]: df.nunique()

[102]: fixed acidity 417 volatile acidity 879 citric acid 769 residual sugar 1000 chlorides 1000 free sulfur dioxide 1000 total sulfur dioxide 881 density 107 рΗ 61 sulphates 60 alcohol 490 quality 6 dtype: int64

From the output above, we can see that most of the features on the data contain a high number of unique values. The reason for this could be that the features are all of numerical type. On the other side, the target variable quality is a categorical column of numeric type, containing six different levels of quality.

4.1.9 Skewness

[103]: df.skew()

[103]:	fixed acidity	-0.028879
	volatile acidity	-0.197699
	citric acid	-0.045576
	residual sugar	0.132638
	chlorides	-0.051319
	free sulfur dioxide	0.007130
	total sulfur dioxide	-0.024060
	density	-0.076883
	рН	0.147673
	sulphates	0.149199
	alcohol	-0.018991
	quality	-0.089054

dtype: float64

Skewness is a statistical measure that indicates the symmetry of the distribution of a variable. A skewness value of 0 indicates a perfectly symmetrical distribution, while a positive or negative value indicates that the distribution is skewed to the right or left, respectively.

In the provided output, the skewness values for the columns implies the following:

Columns	Skewness	Interpretation
fixed acidity	-0.028879	Almost symmetrical distribution
volatile acidity	-0.197699	Moderately skewed to the left
citric acid	-0.045576	Almost symmetrical distribution
residual sugar	0.132638	Moderately skewed to the right
chlorides	-0.051319	Almost symmetrical distribution
free sulfur dioxide	0.007130	Almost symmetrical distribution
total sulfur dioxide	-0.024060	Almost symmetrical distribution
density	-0.076883	Almost symmetrical distribution
рН	0.147673	Moderately skewed to the right
sulphates	0.149199	Moderately skewed to the right
alcohol	-0.018991	Almost symmetrical distribution
quality	-0.089054	Almost symmetrical distribution

4.1.10 Kurtosis

[104]:	df.kurtosis()	

[104]:	fixed acidity	-0.019292
	volatile acidity	0.161853
	citric acid	-0.104679
	residual sugar	-0.042980
	chlorides	-0.246508
	free sulfur dioxide	-0.364964
	total sulfur dioxide	0.063950
	density	0.016366
	рН	0.080910
	sulphates	0.064819
	alcohol	-0.131732
	quality	0.108291
	dtype: float64	

Kurtosis is a statistical measure that describes the shape of the distribution of a variable, specifically the degree of peakedness and thickness of the tails compared to a normal distribution. A kurtosis value of 0 indicates a normal distribution, while a positive value indicates a more peaked and thicker-tailed distribution (leptokurtic), and a negative value indicates a flatter and thinner-tailed distribution (platykurtic).

In the provided output, the kurtosis values for the columns are as follows:

Columns	Kurtosis	Interpretation
fixed acidity	-0.019292	Slightly platykurtic
volatile acidity	0.161853	Slightly leptokurtic
citric acid	-0.104679	Slightly platykurtic
residual sugar	-0.042980	Slightly platykurtic
chlorides	-0.246508	Moderately platykurtic
free sulfur dioxide	-0.364964	Moderately platykurtic
total sulfur dioxide	0.063950	Slightly leptokurtic
density	0.016366	Slightly leptokurtic
рН	0.080910	Slightly leptokurtic
sulphates	0.064819	Slightly leptokurtic
alcohol	-0.131732	Slightly platykurtic
quality	0.108291	Slightly leptokurtic

4.1.11 Quartiles and Interquartile Range

Columns	Q25	Q75	IQR	Cut Off	Lower Bound	Upper Bound
fixed acidity	6.3775	8.0	1.6225	2.4338	3.9437	10.4338
volatile acidity	0.4561	0.5854	0.1293	0.1939	0.2622	0.7793
citric acid	0.2378	0.3023	0.0645	0.0968	0.141	0.3991
residual sugar	1.8963	3.2209	1.3245	1.9868	-0.0905	5.2077
chlorides	0.0666	0.0953	0.0287	0.0431	0.0235	0.1384
free sulfur dioxide	11.4267	18.3131	6.8864	10.3296	1.0971	28.6427
total sulfur dioxide	33.785	47.0225	13.2375	19.8563	13.9287	66.8788
density	0.9946	0.9972	0.0026	0.0039	0.9907	1.0011

Columns	Q25	Q75	IQR	Cut Off	Lower Bound	Upper Bound
рН	3.23	3.37	0.14	0.21	3.02	3.58
sulphates	0.53	0.67	0.14	0.21	0.32	0.88
alcohol	9.56	11.6225	2.0625	3.0937	6.4663	14.7162
quality	7.0	9.0	2.0	3.0	4.0	12.0

Quartiles divides a dataset into four equal parts. Q1 or the first quartile is the value that separates the lowest 25% of the data. Q2 or the second quartile is the value that separates the data into two equal parts. Q3 or the third quartile is the value that separates the highest 25% of the data.

The interquartile range (IQR) is a measure of the spread of a dataset with quartiles. The formula for IQR:

$$IQR = Q_3 - Q_1$$

While the upper and lower bound cutoff for outlier detection by IQR method is defined by the following formula:

$$Bound = \pm 1.5 \times IQR$$

In the provided output, the IQR values for the columns are as follows:

Columns	IQR	Interpretation
fixed acidity	1.6225	Moderately variable
volatile acidity	0.1293	Relatively less variable
citric acid	0.0645	Relatively less variable
residual sugar	1.3245	Moderately variable
chlorides	0.0287	Relatively less variable
free sulfur dioxide	6.8864	Moderately variable
total sulfur dioxide	13.2375	Highly variable
density	0.0026	Relatively less variable
рН	0.14	Moderately variable
sulphates	0.14	Moderately variable
alcohol	2.0625	Moderately variable
quality	2.0	Moderately variable

4.2 Univariate Analysis

In this section, we will analyze each feature of the dataset in isolation. We will also conduct normality testing to check whether a feature is normally distributed.

4.2.1 Brief Introduction

4.2.2 Histograms

Histograms shows the frequency distribution of the data in a column. The x-axis represents the values of the column, while the y-axis shows the frequency of those values.

4.2.3 Boxplots

Boxplots displays the distribution of the data in a compact manner. It shows the quartiles of the distribution, with the horizontal line in the box representing the median, the top and bottom of the box representing the first and third quartiles, and the whiskers representing the range of the data.

4.2.4 Normal test

A normal test is a statistical method used to determine whether a set of data is normally distributed, which means that it follows a normal or Gaussian distribution. In this section, we will use D'Agostino-Pearson test provided by the scipy library. the D'Agostino-Pearson test is based on the following null hypothesis: the data comes from a normal distribution. The test statistic is a combination of the measures of skewness and kurtosis, and the p-value is computed based on the null distribution of this test statistic under the assumption that the data are normally distributed.

```
[107]: def hist_box_plot(data):
    # Create a figure with two subplots
    fig, ax = plt.subplots(ncols=2, figsize=(12, 4))

# Create a histogram subplot
    sns.histplot(data=data, ax=ax[0], kde=True)
    ax[0].set_xlabel('Values')
    ax[0].set_ylabel('Frequency')
    ax[0].set_title('Histogram')

# Create a boxplot subplot
    sns.boxplot(data=data, ax=ax[1])
    ax[1].set_xlabel('Values')
    ax[1].set_ylabel('Distribution')
    ax[1].set_title('Boxplot')

# Display the plot
    plt.show()
```

```
[108]: def describe_feature(data, feature):
    hist_box_plot(data[feature])

# Calculate statistics
median = data[feature].median()
q1 = data[feature].quantile(0.25)
q3 = data[feature].quantile(0.75)
```

```
iqr = q3 - q1
           lower = q1 - 1.5 * iqr
           upper = q3 + 1.5 * iqr
           # Create description
           if (feature != 'pH'):
               description = f"### {feature.capitalize()}\n"
           else:
               description = "### pH\n"
           description += f"The distribution of `{feature}` is:\n"
           if data[feature].skew() < -1 or data[feature].skew() > 1:
               description += "- Highly skewed\n"
           elif data[feature].skew() < -0.5 or data[feature].skew() > 0.5:
               description += "- Moderately skewed\n"
           else:
               description += "- Approximately symmetric\n"
           # Central tendency
           description += f''- The median is {median:.2f}\n"
           # Spread
           if data[feature].kurtosis() > 3:
               description += "- Heavy-tailed\n"
           elif data[feature].kurtosis() < 3:</pre>
               description += "- Light-tailed\n"
           else:
               description += "- Mesokurtic\n"
           # Boxplot
           description += f"\nThe boxplot of `{feature}` shows:\n"
           description += f''- The median is \{median: .2f\}\n''
           description += f"- The first quartile is {q1:.2f}\n"
           description += f''- The third quartile is \{q3:.2f\}\n''
           description += f''- The interquartile range is iqr:.2f\n"
           description += f"- Values below {lower:.2f} or above {upper:.2f} are_
        ⇔considered outliers\n"
           # Display description
           display(Markdown(description))
[109]: def normality_test(df, col, alpha):
           statistic_value, p_value = scipy.stats.normaltest(df[col])
           message = "After conducting the normality test, we get:\n\n"
           message += f"Statistic Value: {statistic_value}\n\n"
           message += f"P-Value: {p_value}\n\n"
```

```
if(p_value < alpha):
    message += f"With {(1.0 - alpha) * 100}% confidence, we can conclude
that the {col} feature is not normally distributed"
    else:
        message += f"With {(1.0 - alpha) * 100}% confidence, we can conclude
that the {col} feature is normally distributed"
    display(Markdown(message))</pre>
```

Fixed Acidity

[110]: describe_feature(df, 'fixed acidity')

4.2.5 Fixed acidity

The distribution of fixed acidity is: - Approximately symmetric - The median is 7.15 - Light-tailed

The boxplot of fixed acidity shows: - The median is 7.15 - The first quartile is 6.38 - The third quartile is 8.00 - The interquartile range is 1.62 - Values below 3.94 or above 10.43 are considered outliers

The fixed acidity feature has a bell-shaped distribution resembling a normal distribution. It has a tendency to be centrally clustered around the value 7, spreading across ranges of 3 to 11.

From the boxplot, we can see that this feature have most of the values ranging from 6 to 8, with 7 being the median. It also has minimal datapoints on the whiskers indicating that it does not have many outliers.

```
[111]: normality_test(df, 'fixed acidity', 0.05)
```

After conducting the normality test, we get:

Statistic Value: 0.14329615661430725

P-Value: 0.9308584274486692

With 95.0% confidence, we can conclude that the fixed acidity feature is normally distributed

Volatile Acidity

[112]: describe_feature(df, 'volatile acidity')

4.2.6 Volatile acidity

The distribution of volatile acidity is: - Approximately symmetric - The median is 0.52 - Light-tailed

The boxplot of volatile acidity shows: - The median is 0.52 - The first quartile is 0.46 - The third quartile is 0.59 - The interquartile range is 0.13 - Values below 0.26 or above 0.78 are considered outliers

The volatile acidity feature has a bell-shaped distribution resembling a normal distribution. It has a tendency to be centrally clustered around the value 0.5, with values a little bit shifted to the right.

From the boxplot, we can see that this feature have most of the values ranging from 0.45 to 0.6, with 0.5 being the median. It also has moderate amount of datapoints on the whiskers indicating outliers.

[113]: normality_test(df, 'volatile acidity', 0.05)

After conducting the normality test, we get:

Statistic Value: 7.581251985533493

P-Value: 0.022581461594113835

With 95.0% confidence, we can conclude that the volatile acidity feature is not normally distributed

Citric Acid

[114]: describe_feature(df, 'citric acid')

4.2.7 Citric acid

The distribution of citric acid is: - Approximately symmetric - The median is 0.27 - Light-tailed

The boxplot of citric acid shows: - The median is 0.27 - The first quartile is 0.24 - The third quartile is 0.30 - The interquartile range is 0.06 - Values below 0.14 or above 0.40 are considered outliers

The citric acid feature has a bell-shaped distribution resembling a normal distribution. It has a tendency to be centrally clustered around the value 0.25, with values that has minimal spread.

From the boxplot, we can see that this feature have most of the values ranging from 0.25 to 0.3, with 0.25 being the median. It also has moderate amount of datapoints on the whiskers indicating outliers.

```
[115]: normality_test(df, 'citric acid', 0.05)
```

After conducting the normality test, we get:

Statistic Value: 0.7663607229418252

P-Value: 0.6816899375976969

With 95.0% confidence, we can conclude that the citric acid feature is normally distributed

Residual Sugar

[116]: describe_feature(df, 'residual sugar')

4.2.8 Residual sugar

The distribution of residual sugar is: - Approximately symmetric - The median is 2.52 - Light-tailed

The boxplot of residual sugar shows: - The median is 2.52 - The first quartile is 1.90 - The third quartile is 3.22 - The interquartile range is 1.32 - Values below -0.09 or above 5.21 are considered outliers

The residual sugar feature has a bell-shaped distribution resembling a normal distribution. It has a tendency to be centrally clustered around the value 2.5, with a little bit of skewness to the left.

From the boxplot, we can see that this feature have most of the values ranging from 2 to 3, with 2.5 being the median. It also has minimal amount of datapoints on the whiskers indicating that most of the values lie between Q1 and Q3.

```
[117]: normality_test(df, 'residual sugar', 0.05)
```

After conducting the normality test, we get:

Statistic Value: 2.9862716504538622

P-Value: 0.22466703321310558

With 95.0% confidence, we can conclude that the residual sugar feature is normally distributed

```
Chlorides
[118]: describe_feature(df, 'chlorides')
```


4.2.9 Chlorides

The distribution of chlorides is: - Approximately symmetric - The median is 0.08 - Light-tailed

The boxplot of chlorides shows: - The median is 0.08 - The first quartile is 0.07 - The third quartile is 0.10 - The interquartile range is 0.03 - Values below 0.02 or above 0.14 are considered outliers

The chlorides feature has a bell-shaped distribution resembling a normal distribution. It has a tendency to be centrally clustered around the value 0.08, with jagged frequencies having the most at around 0.09.

From the boxplot, we can see that this feature has most of the values ranging from 0.06 to 0.09, with 0.08 being the median. It also has minimal amount of datapoints on the whiskers indicating it does not have many outliers.

```
[119]: normality_test(df, 'chlorides', 0.05)
```

After conducting the normality test, we get:

Statistic Value: 3.538242355484952

P-Value: 0.17048274704296862

With 95.0% confidence, we can conclude that the chlorides feature is normally distributed

```
Free Sulfur Dioxide
[120]: describe_feature(df, 'free sulfur dioxide')
```


4.2.10 Free sulfur dioxide

The distribution of free sulfur dioxide is: - Approximately symmetric - The median is 14.86 - Light-tailed

The boxplot of free sulfur dioxide shows: - The median is 14.86 - The first quartile is 11.43 - The third quartile is 18.31 - The interquartile range is 6.89 - Values below 1.10 or above 28.64 are considered outliers

The free sulfur dioxide feature has a bell-shaped distribution resembling a normal distribution. It has a tendency to be centrally clustered around the value 15, having a wide spread of values around 0 to 25.

From the boxplot, we can see that this feature has most of the values ranging from 12 to 18, with 15 being the median. It also has little to no amount of datapoints on the whiskers indicating outliers.

[121]: normality_test(df, 'free sulfur dioxide', 0.05)

After conducting the normality test, we get:

Statistic Value: 8.099074980855514

P-Value: 0.01743043451827735

With 95.0% confidence, we can conclude that the free sulfur dioxide feature is not normally distributed

Total Sulfur Dioxide
[122]: describe_feature(df, 'total sulfur dioxide')

4.2.11 Total sulfur dioxide

The distribution of total sulfur dioxide is: - Approximately symmetric - The median is 40.19 - Light-tailed

The boxplot of total sulfur dioxide shows: - The median is 40.19 - The first quartile is 33.78 - The third quartile is 47.02 - The interquartile range is 13.24 - Values below 13.93 or above 66.88 are considered outliers

The total sulfur dioxide feature has a bell-shaped distribution resembling a normal distribution. It has a tendency to be centrally clustered around the value 40, with high frequency around the median.

From the boxplot, we can see that this feature has most of the values ranging from 35 to 45, with 40 being the median. It also has moderate amount of datapoints on the whiskers indicating outliers.

[123]: normality_test(df, 'total sulfur dioxide', 0.05)

After conducting the normality test, we get:

Statistic Value: 0.3276640291639825

P-Value: 0.848846101395726

With 95.0% confidence, we can conclude that the total sulfur dioxide feature is normally distributed

Density

[124]: describe_feature(df, 'density')

4.2.12 Density

The distribution of density is: - Approximately symmetric - The median is 1.00 - Light-tailed

The boxplot of density shows: - The median is 1.00 - The first quartile is 0.99 - The third quartile is 1.00 - The interquartile range is 0.00 - Values below 0.99 or above 1.00 are considered outliers

The density feature has a bell-shaped distribution resembling a normal distribution. It has a tendency to be centrally clustered around the value 0.996, with minimal spread ranging around 0.990 to 1.002.

From the boxplot, we can see that this feature has most of the values ranging from 0.995 to 0.997, with 0.996 being the median. It also has a moderately high amount of datapoints on the whiskers indicating outliers.

```
[125]: normality_test(df, 'density', 0.05)
```

After conducting the normality test, we get:

Statistic Value: 1.026581544320803

P-Value: 0.5985227325531981

With 95.0% confidence, we can conclude that the density feature is normally distributed

```
pH
[126]: describe_feature(df, 'pH')
```


4.2.13 pH

The distribution of pH is: - Approximately symmetric - The median is 3.30 - Light-tailed

The boxplot of pH shows: - The median is 3.30 - The first quartile is 3.23 - The third quartile is 3.37 - The interquartile range is 0.14 - Values below 3.02 or above 3.58 are considered outliers

The pH feature has a bell-shaped distribution resembling a normal distribution. It has a tendency to be centrally clustered around the value 3.3, with values a little bit skewed to the left.

From the boxplot, we can see that this feature has most of the values ranging from 3.23 to 3.38, with 3.3 being the median. It also has moderate amount of datapoints on the whiskers indicating outliers.

[127]: normality_test(df, 'pH', 0.05)

After conducting the normality test, we get:

Statistic Value: 3.9786546459928545

P-Value: 0.13678740824860436

With 95.0% confidence, we can conclude that the pH feature is normally distributed

Sulphates

[128]: describe_feature(df, 'sulphates')

4.2.14 Sulphates

The distribution of sulphates is: - Approximately symmetric - The median is 0.59 - Light-tailed

The boxplot of sulphates shows: - The median is 0.59 - The first quartile is 0.53 - The third quartile is 0.67 - The interquartile range is 0.14 - Values below 0.32 or above 0.88 are considered outliers

The sulphates feature has a bell-shaped distribution resembling a normal distribution. It has a tendency to be centrally clustered around the value 0.6, with values spreading around 0.3 to 0.9.

From the boxplot, we can see that this feature has most of the values ranging from 0.52 to 0.68, with 0.6 being the median. It also has moderate amount of datapoints on the whiskers indicating outliers.

```
[129]: normality_test(df, 'sulphates', 0.05)
```

After conducting the normality test, we get:

Statistic Value: 3.948820277859041

P-Value: 0.13884318628391681

With 95.0% confidence, we can conclude that the sulphates feature is normally distributed

```
Alcohol
[130]: describe_feature(df, 'alcohol')
```


4.2.15 Alcohol

The distribution of alcohol is: - Approximately symmetric - The median is 10.61 - Light-tailed

The boxplot of alcohol shows: - The median is 10.61 - The first quartile is 9.56 - The third quartile is 11.62 - The interquartile range is 2.06 - Values below 6.47 or above 14.72 are considered outliers

The alcohol feature has a bell-shaped distribution resembling a normal distribution. It has a tendency to be centrally clustered around the value 11, with values spread around 6 to 14.

From the boxplot, we can see that this feature has most of the values ranging from 9 to 11.5, with 10.5 being the median. It also has moderate amount of datapoints on the whiskers indicating outliers.

[131]: normality_test(df, 'alcohol', 0.05)

After conducting the normality test, we get:

Statistic Value: 0.7740076714171271

P-Value: 0.6790884901361043

With 95.0% confidence, we can conclude that the alcohol feature is normally distributed

Quality

[132]: describe_feature(df, 'quality')

4.2.16 Quality

The distribution of quality is: - Approximately symmetric - The median is 8.00 - Light-tailed

The boxplot of quality shows: - The median is 8.00 - The first quartile is 7.00 - The third quartile is 9.00 - The interquartile range is 2.00 - Values below 4.00 or above 12.00 are considered outliers

The quality feature is the target variable with values ranging from 5 to 10. The dataset contains the highest frequency of quality level with the value of 8, followed by 7 and 9.

From the boxplot, we can see that this feature does not have any outliers, as the feature is of categoric type containing numerical values, having integer classes from 5 to 10.

```
[133]: normality_test(df, 'quality', 0.05)
```

After conducting the normality test, we get:

Statistic Value: 1.8893087092494893

P-Value: 0.3888139394184818

With 95.0% confidence, we can conclude that the quality feature is normally distributed

4.2.17 Proportion of the Target Variable

[135]: plot_classes(df['quality'])

	•	
0	5	5
1	6	38
2	7	248
3	8	449
4	9	223
5	10	37

Quality Count

From the pie chart, we can infer that the quality classes are highly imbalanced, with class 8 having the highest proportion.

4.3 Multivariate Analysis

In this section, we will analyze the underlying relationships and interactions between the variables in the dataset.

4.3.1 Feature Correlation

```
[136]: plt.figure(figsize = (12.5,7.5))
  plt.title("Correlation Matrix", fontsize = 18)
  sns.heatmap(df.corr(), cmap = 'coolwarm_r', annot = True)
  plt.xticks(fontsize=12, rotation = 90)
  plt.yticks(fontsize=12, rotation = 0)
  plt.show()
```


The correlation matrix reveals that the alcohol feature has a strong positive correlation with the target variable, followed by fixed acidity and residual sugar. This suggests that higher quality wines generally have high alcohol contents. Furthermore, we can also see that the correlation between the predictor variables are minimal, indicating that there is little multicollinearity among the non-target variables.

4.3.2 Alcohol vs Quality

```
[137]: # Group the data by the 'quality' column and calculate the mean of 'alcohol'
alcohol_by_quality = df.groupby('quality')['alcohol'].mean()

# Plot a line chart of the average 'alcohol' value for each 'quality' level
alcohol_by_quality.plot(kind='line', x='quality', y='alcohol')
plt.xlabel('Quality')
plt.ylabel('Average Alcohol')
plt.title('Average Alcohol by Quality')
plt.show()
```


From the line plot above, we can conclude that the alcohol feature has a linear relationship towards the quality of wine.

4.3.3 Fixed Acidity vs Quality

Similar to alcohol, the fixed acidity feature also have an approximately linear relationship with the quality variable.

4.3.4 Residual Sugar vs Alcohol

```
[139]: # Group the data by the 'quality' column and calculate the mean of 'residual_
sugar'
residual_sugar_by_quality = df.groupby('quality')['residual sugar'].mean()

# Plot a line chart of the average 'residual sugar' value for each 'quality'_
slevel
residual_sugar_by_quality.plot(kind='line', x='quality', y='residual sugar')
plt.xlabel('Quality')
plt.ylabel('Average Residual Sugar')
plt.title('Average Residual Sugar by Quality')
plt.show()
```


From this insight, we can say that the quality of wine improves exponentially towards the residual sugar feature.

5 Hypothesis Testing

In this section, we will conduct single-sample and multisample hypothesis testing on the dataset.

5.1 Single-sample Hypothesis

```
display(Markdown(f"T-Value : {t_value}"))
           display(Markdown(f"P-Value : {p_value}"))
           return t_value, p_value
[141]: def z_test_proportion(sample, qualified_sample, proportion):
           n = len(sample)
           x = len(qualified_sample)
           p = x / n
           z_value = (p - proportion) / sqrt((proportion * (1 - proportion) / n))
           p_value = scipy.stats.norm.sf(abs(z_value)) * 2
           display(Markdown(f"n : {n}"))
display(Markdown(f"x : {x}"))
           display(Markdown(f"Z-Value : {z_value}"))
           display(Markdown(f"P-Value : {p value}"))
[142]: def calculate_t_critical_value(LOS, degree):
            critical_value = scipy.stats.t.ppf(LOS, degree)
           return critical_value
      5.1.1 1. Is the mean pH value greater than 3.29?
      Step 1: Specifying the null hypothesis (H0)
      H0: The mean pH value equals to 3.29 ( = 3.29)
      Step 2: Specifying the alternative hypothesis (H1)
      H1: The mean pH value is greater than 3.29 \, (> 3.29) (one-tailed test)
      Step 3: Decide the level of significance ()
        = 0.05
      Step 4: Choosing the appropriate statistical test and determine the critical area
      Statistical test = T-Test \rightarrow Variance of population is unknown Critical area = t > t0.95, 999
[143]: t_critical_value = calculate_t_critical_value(0.95, len(df) - 1)
       display(Markdown(f"Critical Value = {t_critical_value}"))
       display(Markdown(f"So, the t-value must be greater than {t_critical_value} to__
         →reject the null hypothesis"))
      Critical Value = 1.646380345427535
      So, the t-value must be greater than 1.646380345427535 to reject the null hypothesis
      Step 5: Calculate T-Test and P-Value from Data Sample
```

The formula of t-value:

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

[144]: t_value, p_value = t_test_mean(df, "pH", 3.29, 1)

Computed Average: 3.303610000000003

Computed Standard Derivation: 0.10487548220040155

T-Value: 4.103780793366056

P-Value: 0.9999780204169363

Step 6: Make a decision and conclusion

Reject H0 and conclude that the mean pH value is greater than 3.29 because the T-Value is greater than the critical value (t > 1.646) and the P-Value is also far greater than 0.95 (1 - level of significance)

5.1.2 2. Is the mean of Residual Sugar not equal to 2.5?

Step 1: Specifying the null hypothesis (H0)

H0: the mean of Residual Sugar equals to 2.5 (= 2.5)

Step 2: Specifying the alternative hypothesis (H1)

H1: the mean of Residual Sugar is not equal to 2.5 (2.5) (two-tailed test)

Step 3: Decide the level of significance ()

= 0.05

Step 4: Choosing the appropriate statistical test and determine the critical area

Statistical test = T-Test \rightarrow Variance of population is unknown Critical area = t < t0.025, 999 and t > t0.975, 999

Critical Value = ± 1.962341461133449

So, the t-value must be greater than 1.962341461133449 or less than - 1.962341461133449 to reject the null hypothesis

Step 5: Calculate T-Test and P-Value from Data Sample

The formula of t-value:

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

```
[146]: t_value, p_value = t_test_mean(df, "residual sugar", 2.5, 2)
```

Computed Average: 2.5671036825067572

Computed Standard Derivation: 0.9879154365046932

T-Value: 2.147961943553881

P-Value: 0.031956726708622485

Step 6: Make a decision and conclusion

Reject H0 and conclude that the mean Residual Sugar value is not equal to 2.5 but greater than 2.5 because the T-Value is greater than the critical value (t > 1.962) and the P-Value is also less than 0.05 (level of significance)

5.1.3 3. Is the mean value of the first 150 rows of the sulphates column not equal to 0.65?

Step 1: Specifying the null hypothesis (H0)

H0: = 0.65

Step 2: Specifying the alternative hypothesis (H1)

H1: 0.65 (two-tailed test)

Step 3: Decide the level of significance ()

= 0.05

Step 4: Choosing the appropriate statistical test and determine the critical area

Statistical test = T-Test \rightarrow Variance of population is unknown Critical area = t < t0.025, 149 and t > t0.975, 149

```
[147]: t_critical_value = abs(calculate_t_critical_value(0.025, 149))

display(Markdown(f"Critical Value = \xB1 {t_critical_value}"))

display(Markdown(f"So, the t-value must be greater than {t_critical_value} or_

oless than - {t_critical_value} to reject the null hypothesis"))
```

Critical Value = ± 1.9760131776791554

So, the t-value must be greater than 1.9760131776791554 or less than - 1.9760131776791554 to reject the null hypothesis

Step 5: Calculate T-Test and P-Value from Data Sample

The formula of t-value:

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

	fixed ac	idity	volat	ile a	cidity	citric a	acid	resid	lual su	ıgar	chlori	des
0		5.90			0.4451		1813		2.049	_	0.070	
1		8.40			0.5768		2099		3.109	9590	0.101	
2		7.54			0.5918		3248		3.673		0.072	416
3		5.39			0.4201		3131		3.371	.815	0.072	755
4		6.51			0.5675	0.3	1940		4.404	1723	0.066	379
 145		 6.95			 0.6208	 O '	2290		 2.754	 1654	0.112	577
146		7.75			0.4674		3274		3.217		0.108	
147		9.05			0.4682		2965		3.764		0.079	
148		6.91			0.6403		1973		0.978		0.050	
149		7.37			0.3637		3091		2.073		0.058	
	free sul	fur di	oxide	tota	l sulfui	r dioxide	e de	nsity	рН	ຮາງໄ	phates	\
0	1100 bul		93818	0000	ı bullul	42.2		.9982	3.27	bul	0.71	`
1			55519			16.0		.9960			0.57	
2			16866			35.5		.9990			0.64	
3			12300			41.9		.9945			0.55	
4			60591			46.2		.9925	3.27		0.45	
							•••	•••				
145		17.5	74028			49.5	6 0	.9955	3.35		0.73	
146		11.8	98973			35.76	6 0	.9996	3.34		0.79	
147		15.5	33967			27.50	0 0	.9934	3.26		0.73	
148		20.3	51469			38.9	2 0	.9962	3.10		0.63	
149		22.4	07884			64.03	3 0	.9924	3.39		0.60	
	alcohol	quali	ty									
0	8.64		7									
1	10.03		8									
2	9.23		8									
3	14.07		9									
4	11.49		8									
	•••	•••										
145	10.18		8									
146	11.11		8									
147	10.95		9									
148	11.67		8									

[150 rows x 12 columns]

[149]: t_value, p_value = t_test_mean(sample_first_150_anggur, "sulphates", 0.65, 2)

Computed Average: 0.605866666666688

Computed Standard Derivation: 0.10886964477104122

T-Value: -4.964843393315906

P-Value: 1.8590151213970785e-06

Step 6: Make a decision and conclusion

Reject H0 and conclude that the mean Sulphates value is not equal to 0.65 but less than 0.65 because the T-Value is far less than the critical value (t < -1.976) and the P-Value is also far less than 0.05 (level of significance)

5.1.4 4. Is the mean value of total sulfur dioxide below 35?

Step 1: Specifying the null hypothesis (**H0**)

H0: = 35

Step 2 : Specifying the alternative hypothesis (H1)

H1: < 35 (one-tailed test)

Step 3: Decide the level of significance ()

= 0.05

Step 4: Choosing the appropriate statistical test and determine the critical area

Statistical test = T-Test \rightarrow Variance of population is unknown Critical area = t < t0.05, 999

```
[150]: t_critical_value = calculate_t_critical_value(0.05, 999)

display(Markdown(f"Critical Value = {t_critical_value}"))

display(Markdown(f"So, the t-value must be less than {t_critical_value} to___

oreject the null hypothesis"))
```

Critical Value = -1.6463803454275356

So, the t-value must be less than -1.6463803454275356 to reject the null hypothesis

Step 5: Calculate T-Test and P-Value from Data Sample

The formula of t-value:

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

```
[151]: t_value, p_value = t_test_mean(df, "total sulfur dioxide", 35, 1)
```

Computed Average: 40.290150000000075

Computed Standard Derivation: 9.965767376218295

T-Value: 16.786387372296968

P-Value: 1.0

Step 6: Make a decision and conclusion

Do not reject H0 and cannot conclude that the mean total sulfur dioxide is less than 35 because the T-Value is not less than the critical value (t > -1.6464) and the P-Value is also not less than 0.05 (level of significance)

5.1.5 5. Is the proportion of the total sulfur dioxide that is more than 40, not the same as 50%?

Step 1 : Specifying the null hypothesis (**H0**)

H0: p = 0.5

Step 2 : Specifying the alternative hypothesis (H1)

H1: p 0.5

Step 3: Decide the level of significance ()

= 0.05

Step 4: Choosing the appropriate statistical test and determine the critical area

Statistical test = Z-Test \rightarrow Proportion, not mean Critical area = Z < Z0.025 and Z > Z0.975

Critical Value = ± 1.9599639845400545

So, the t-value must be greater than 1.9599639845400545 or less than - 1.9599639845400545 to reject the null hypothesis

Step 5: Calculate Z-Test and P-Value from Data Sample

The formula of z-value:

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

```
[153]: tsd_more_than_40 = df[df["total sulfur dioxide"] > 40] tsd_more_than_40
```

[153]:	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	\
0	5.90	0.4451	0.1813	2.049401	0.070574	
3	5.39	0.4201	0.3131	3.371815	0.072755	
4	6.51	0.5675	0.1940	4.404723	0.066379	

5		9.18	0.3332	0.24		2.633		0.082	
6		4.29	0.4997	0.29	932	3.781	844	0.079	1649
 992		 5.62	 0.4597	 0.28	368	 2.314	 .833	0.041	796
993		4.88	0.5899	0.27		3.004		0.095	
995		7.96	0.6046	0.26		1.592		0.057	
997		6.11	0.4841	0.37	2.377267		0.042806		
998		7.76	0.3590	0.32		4.294		0.098	
	free sul	fur dioxide	total sulfur	dioxide	density	рН	sulp	hates	\
0		16.593818		42.27	0.9982	3.27	_	0.71	
3		18.212300		41.97	0.9945	3.34		0.55	
4		9.360591		46.27	0.9925	3.27		0.45	
5		12.232170		51.05	0.9965	3.40		0.63	
6		10.152389		44.26	0.9969	3.47		0.44	
• •				•••			•		
992		21.445849		41.54	0.9980			0.71	
993		22.288864		45.74	0.9947			0.79	
995		14.892445		44.61	0.9975			0.54	
997		21.624585		48.75	0.9928			0.55	
998		12.746186		44.53	0.9952	3.30		0.66	
	alcohol	quality							
0	8.64	7							
3	14.07	9							
4	11.49	8							
5	10.82	8							
6	9.76	7							
 992	 11.23	 8							
993	8.57	6							
995	10.41	8							
997	9.94	7							
998	9.76	8							

[512 rows x 12 columns]

[154]: z_test_proportion(df, tsd_more_than_40, 0.5)

n: 1000 x: 512

$$\begin{split} & \text{Z-Value}: \ 0.7589466384404118} \\ & \text{P-Value}: \ 0.4478844782641115} \end{split}$$

Step 6: Make a decision and conclusion

Don't reject H0 and cannot conclude that the proportion of total sulfur dioxide is not equal to 50

because the Z-Value is not less than the critical value (Z > -1.96) and not greater than the critical value (Z < 1.96)

5.2 Multi-sample Hypothesis Testing

```
[155]: def compare_two_variance(sample1, sample2, LOS):
    F = sample1.var() / sample2.var()
    p = scipy.stats.f.cdf(F, len(sample1) - 1, len(sample2) - 1)

if p < LOS:
    return False
    else:
        return True</pre>
```

```
[156]: def two_sample_hypothesis_test(data1, data2, alpha, d0, tail, equal_var=False,
        ⇔operator="Not Equal"):
           Perform a hypothesis test using the t-test.
           Parameters:
           data1 (series): The first data to be tested.
           data2 (series): The second data to be tested.
           alpha (float): The level of significance for the test.
           d0 (float): The difference between mean.
           tail (int): The type of test to be performed (1 or 2) tailed.
           operator (string) : Less, Greater, or Not Equal
           Returns:
           results (Series): A Pandas Series containing the test statistic, p-value,
        ⇔and conclusion.
           11 11 11
           # Calculate the sample variance
           s1 = data1.std()
           s2 = data2.std()
           n1, n2 = len(data1), len(data2)
           # Perform the t-test
           if equal_var:
               # Calculate the degrees of freedom
               dof = n1 + n2 - 2
               # Calculate t-statistic
               sp = sqrt(((n1-1) * (s1**2) + (n2-1) * (s2**2)) / (n1+n2-2))
               t_stat = ((data1.mean() - data2.mean()) - d0)/(sp * sqrt(1/n1 + 1/n2))
           else:
               # Calculate the degrees of freedom
```

```
dof = (s1**2 / n1 + s2**2 / n2)**2 / (((s1**2/n1)**2/(n1-1)) + ((s2**2/n1)**2/(n1-1)) + ((s2**
\rightarrow n2)**2/(n2-1)))
                             t_stat = ((data1.mean() - data2.mean()) - d0)/(sqrt(s1**2/n1 + s2**2/n1 + s
→n2))
           if tail == 2:
                            p_val = 2 * (1 - scipy.stats.t.cdf(abs(t_stat), dof))
           else:
                            p_val = scipy.stats.t.cdf(t_stat, dof)
           # Determine the critical value and the rejection region
           if tail == 2:
                            cv = t.ppf(1 - alpha / 2, dof)
                            not_crit_region = (-cv, cv)
           else:
                             cv = t.ppf(1 - alpha, dof)
                             if t_stat < 0:</pre>
                                              not_crit_region = (-float("inf"), -cv)
                             else:
                                              not_crit_region = (cv, float("inf"))
           # Determine the conclusion
           if tail == 2:
                             if p_val / 2 < alpha and t_stat not in not_crit_region:</pre>
                                              conclusion = 'Reject the null hypothesis'
                             else:
                                              conclusion = 'Fail to reject the null hypothesis'
           else:
                             if operator == "Less":
                                               if p_val < alpha and t_stat not in not_crit_region:</pre>
                                                               conclusion = 'Reject the null hypothesis'
                                                               conclusion = 'Fail to reject the null hypothesis'
                             else: # Greater
                                               if p_val > alpha and t_stat not in not_crit_region:
                                                                conclusion = 'Reject the null hypothesis'
                                              else:
                                                               conclusion = 'Fail to reject the null hypothesis'
           # Create a Pandas Series with the results
           results = pd.Series({
                              'test statistic': t_stat,
                             'p-value': p_val,
                             'conclusion': conclusion
           })
           return results
```

```
[157]: def calculate_f_critical_value(dfnum, dfden, alpha):
    """
    Calculates the F critical value for a given alpha level and degrees of freedom
    for the numerator and denominator.

Parameters:
    dfnum (int): Degrees of freedom for the numerator.
    dfden (int): Degrees of freedom for the denominator.
    alpha (float): Alpha level for the test.

Returns:
    f_crit (float): F critical value.
    """

f_crit = f.ppf(1 - alpha, dfnum, dfden)
    return f_crit
```

5.2.1 1. Can the mean of fixed acidity for the first and second half of the data be considered the same?

Step 1 : Specifying the null hypothesis (**H0**)

H0: mean of fixed acidity first half = mean of fixed acidity second half

Step 2: Specifying the alternative hypothesis (H1)

H1: mean of fixed acidity first half mean of fixed acidity second half

Step 3 : Decide the level of significance () $\,$

= 0.05

Step 4: Choosing the appropriate statistical test and determine the critical area

Statistical test = T-Test \rightarrow Variance of population is unknown but proofed that both variances are equal with F-Test Critical area = t < t0.025, 998 and t > t0.975, 998

The formula of F-Test:

$$F = \frac{s_1^2}{s_2^2}$$

Variances are equal.

Critical Value = ± 1.962343846216334

So, the t-value must be greater than 1.962343846216334 or less than - 1.962343846216334 to reject the null hypothesis

Step 5: Calculate T-Test and P-Value from Data Sample

The formula of t-test two sample with equal variances but unknown:

$$t = \frac{(\bar{x_1} - \bar{x_2}) - d_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

The formula of s_n :

$$s_p = \sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}}$$

```
[160]: two_sample_hypothesis_test(df['fixed acidity'][:len(df)//2], df['fixed_ocidity'][len(df)//2:], 0.05, 0, 2, eq_var)
```

[160]: test statistic 0.026041 p-value 0.97923

conclusion Fail to reject the null hypothesis

dtype: object

Step 6: Make a decision and conclusion

Don't reject H0 and cannot conclude that the mean of fixed acidity first half is not equal to the mean of fixed acidity second half because the T-Value is not less than the critical value (T > -1.96) and not greater than the critical value (T < 1.96)

5.2.2 2. Is the difference between the mean of chlorides for the first and second half of the data equals to 0.001?

Step 1: Specifying the null hypothesis (**H0**)

H0: mean of chlorides first half - mean of chlorides second half = 0.001

Step 2 : Specifying the alternative hypothesis (H1)

H1: mean of chlorides first half - mean of chlorides second half 0.001

Step 3: Decide the level of significance ()

= 0.05

Step 4: Choosing the appropriate statistical test and determine the critical area

Statistical test = T-Test \rightarrow Variance of population is unknown but proofed that both variances are equal with F-Test Critical area = t < t0.025, 998 and t > t0.975, 998

The formula of F-Test:

$$F = \frac{s_1^2}{s_2^2}$$

Variances are equal.

```
[162]: t_critical_value = abs(calculate_t_critical_value(0.025, 998))

display(Markdown(f"Critical Value = \xB1 {t_critical_value}"))

display(Markdown(f"So, the t-value must be greater than {t_critical_value} or_u

shess than - {t_critical_value} to reject the null hypothesis"))
```

Critical Value = ± 1.962343846216334

So, the t-value must be greater than 1.962343846216334 or less than - 1.962343846216334 to reject the null hypothesis

Step 5 : Calculate T-Test and P-Value from Data Sample

The formula of t-test two sample with equal variances but unknown:

$$t = \frac{(\bar{x_1} - \bar{x_2}) - d_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

The formula of s_p :

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

```
[163]: two_sample_hypothesis_test(df['chlorides'][:len(df)//2],__

df['chlorides'][len(df)//2:], 0.05, 0.001, 2, eq_var)
```

```
[163]: test statistic -0.467317
p-value 0.640375
conclusion Fail to reject the null hypothesis
dtype: object
```

Step 6: Make a decision and conclusion

Don't reject H0 and cannot conclude that the mean of fixed acidity first half is not equal to the mean of fixed acidity second half because the T-Value is not less than the critical value (T > -1.96) and not greater than the critical value (T < 1.96)

5.2.3 3. Can the mean of volatile acidity and sulphates for the first 25 rows of the data be considered the same?

Step 1: Specifying the null hypothesis (**H0**)

H0: mean of volatile acidity first 25 rows = mean of sulphates first 25 rows

Step 2: Specifying the alternative hypothesis (H1)

H1: mean of volatile acidity first 25 rows mean of sulphates first 25 rows

Step 3 : Decide the level of significance ()

= 0.05

Step 4: Choosing the appropriate statistical test and determine the critical area

Statistical test = T-Test \rightarrow Variance of population is unknown and proofed that both variances are equal with F-Test Critical area = t < t0.025, 48 and t > t0.975, 48

The formula of F-Test:

$$F = \frac{s_1^2}{s_2^2}$$

Variances are equal.

```
[165]: s1 = df['volatile acidity'][:25].std()
s2 = df['sulphates'][:25].std()
n1, n2 = 25, 25
dof = n1 + n2 - 2
print("Degree of freedom =", dof)
```

Degree of freedom = 48

Critical Value = $\pm~2.010634754696446$

So, the t-value must be greater than 2.010634754696446 or less than - 2.010634754696446 to reject the null hypothesis

Step 5 : Calculate T-Test and P-Value from Data Sample

The formula of t-test two sample with equal variances but unknown:

$$t = \frac{(\bar{x_1} - \bar{x_2}) - d_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

The formula of s_n :

$$s_p = \sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}}$$

[166]: two_sample_hypothesis_test(df['volatile acidity'][:25], df['sulphates'][:25], 0.
05, 0, 2, eq_var)

[166]: test statistic -2.637482 p-value 0.011223 conclusion Reject the null hypothesis

dtype: object

Step 6: Make a decision and conclusion

Reject H0 and conclude that the mean of volatile acidity first 25 rows is not equal to the mean of sulphates first 25 rows because the T-Value is less than the critical value (T < -2.016) and the P-Value is also less than the level of significance.

5.2.4 4. Can the variance of residual sugar for the first and second half of the data be considered the same?

Step 1 : Specifying the null hypothesis (**H0**)

H0: ² First half = ² Second half

Step 2: Specifying the alternative hypothesis (H1)

H1: ² First half ² Second half

Step 3: Decide the level of significance ()

= 0.05

Step 4: Choosing the appropriate statistical test and determine the critical area

Statistical test = F-Test \rightarrow Compare the ratio of the variances of the two samples to a critical value that depends on the degrees of freedom of the two samples.

Critical area = F < F0.05(499, 499) and F > F0.95(499, 499)

Critical Value Upper = ± 1.1918474156364356

Critical Value Lower = ± 0.8390335766814657

So, the t-value must be greater than 1.1918474156364356 or less than - 0.8390335766814657 to reject the null hypothesis

Step 5 : Calculate F-Test from Sample Data

The formula of F-Test:

$$F = \frac{s_1^2}{s_2^2}$$

F-value = 0.9420041066941619

P-value = 0.7475898202376903

Variances are equal.

Step 6: Make a decision and conclusion

Do not reject H0 and cannot conclude that the variance of the first half of residual sugar is not equal to the variance of the second half of residual sugar, as the F-Value is not less than the critical value (F > -1.16) and not greater than the critical value (F < 1.16)

5.2.5 5. Can the proportion of alcohol having a value greater than 7 on the first and second half be considered the same?

Step 1: Specifying the null hypothesis (**H0**)

H0: p1 = p2

Step 2 : Specifying the alternative hypothesis (H1)

H1: p1 > p2

Step 3: Decide the level of significance ()

= 0.05

Step 4: Choosing the appropriate statistical test and determine the critical area

Statistical test = Z-Test \rightarrow Proportion, not mean

Critical area = Z > Z0.95

```
[170]: z_critical_value = scipy.stats.norm.ppf(0.95)

display(Markdown(f"Critical Value = {z_critical_value}"))

display(Markdown(f"So, the Z-Value must be greater than {z_critical_value} to_

oreject the null hypothesis"))
```

Critical Value = 1.6448536269514722

So, the Z-Value must be greater than 1.6448536269514722 to reject the null hypothesis

Step 5: Calculate Z-Test and P-Value from Data Sample

The formula of z-test two sample for proportion:

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

The formula of \hat{p}

$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

```
[171]: first_half_alcohol = df[:len(df)//2].loc[df['alcohol'] > 7]
second_half_alcohol = df[len(df)//2:].loc[df['alcohol'] > 7]
```

[172]: first_half_alcohol

```
[172]:
            fixed acidity volatile acidity citric acid residual sugar chlorides \
                      5.90
                                      0.4451
                                                    0.1813
                                                                   2.049401
       0
                                                                               0.070574
       1
                      8.40
                                      0.5768
                                                    0.2099
                                                                   3.109590
                                                                               0.101681
       2
                      7.54
                                       0.5918
                                                    0.3248
                                                                   3.673744
                                                                               0.072416
       3
                      5.39
                                      0.4201
                                                    0.3131
                                                                   3.371815
                                                                               0.072755
       4
                      6.51
                                       0.5675
                                                    0.1940
                                                                   4.404723
                                                                               0.066379
       . .
                      •••
                                        •••
       494
                      5.94
                                       0.4406
                                                    0.3149
                                                                   3.329801
                                                                               0.097498
       496
                      7.82
                                                    0.2012
                                      0.3760
                                                                   3.743606
                                                                               0.056809
       497
                      7.17
                                      0.5158
                                                    0.1855
                                                                   2.803720
                                                                               0.092192
                                                    0.2382
       498
                      7.57
                                       0.5686
                                                                   3.365912
                                                                               0.041608
       499
                      7.03
                                      0.6953
                                                    0.3534
                                                                   2.328736
                                                                               0.071467
                                                                     pH sulphates \
            free sulfur dioxide total sulfur dioxide density
       0
                       16.593818
                                                  42.27
                                                           0.9982
                                                                   3.27
                                                                               0.71
       1
                       22.555519
                                                  16.01
                                                          0.9960 3.35
                                                                               0.57
       2
                        9.316866
                                                  35.52
                                                          0.9990 3.31
                                                                               0.64
       3
                       18.212300
                                                  41.97
                                                           0.9945 3.34
                                                                               0.55
       4
                        9.360591
                                                  46.27
                                                           0.9925
                                                                   3.27
                                                                               0.45
       . .
       494
                       14.527711
                                                  37.93
                                                           0.9933 3.36
                                                                               0.46
       496
                       18.885695
                                                  47.21
                                                          0.9969 3.31
                                                                               0.55
       497
                       17.949297
                                                  66.99
                                                          0.9963 3.08
                                                                               0.72
       498
                                                  48.37
                                                          0.9979 3.38
                                                                               0.59
                        5.066432
       499
                       13.300705
                                                  49.99
                                                           0.9956 3.48
                                                                               0.52
            alcohol quality
       0
               8.64
                            7
       1
              10.03
                            8
       2
               9.23
                            8
       3
              14.07
                            9
       4
              11.49
                            8
       494
               8.60
                            7
                           10
       496
              14.56
       497
               9.95
                            8
       498
               9.73
                            8
       499
               8.37
```

[495 rows x 12 columns]

[173]: second_half_alcohol

[173]:	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	\
500	8.10	0.6758	0.1956	2.684752	0.079678	
501	7.28	0.6842	0.3041	3.834531	0.094940	
502	6 88	0 4673	0 2766	3 513471	0 074843	

```
1.572885
       504
                      8.71
                                      0.3536
                                                    0.2398
                                                                              0.085907
                                                                   1.705161
       . .
                      •••
                                                    0.2662
                                                                   1.592048
       995
                      7.96
                                      0.6046
                                                                              0.057555
       996
                      8.48
                                      0.4080
                                                    0.2227
                                                                   0.681955
                                                                              0.051627
       997
                      6.11
                                      0.4841
                                                    0.3720
                                                                   2.377267
                                                                              0.042806
       998
                      7.76
                                      0.3590
                                                    0.3208
                                                                   4.294486
                                                                              0.098276
       999
                      5.87
                                      0.5214
                                                    0.1883
                                                                   2.179490
                                                                              0.052923
            free sulfur dioxide total sulfur dioxide
                                                         density
                                                                     pH sulphates \
       500
                       16.506123
                                                  53.75
                                                          0.9972 3.24
                                                                              0.72
       501
                       14.675257
                                                  45.25
                                                          0.9945 3.27
                                                                              0.60
       502
                       11.967985
                                                  42.31
                                                          0.9947 3.35
                                                                              0.49
       503
                       13.856693
                                                  41.27
                                                          0.9971 3.46
                                                                              0.43
       504
                                                  25.59
                                                          0.9960 3.38
                                                                              0.59
                       23.880561
       995
                       14.892445
                                                          0.9975 3.35
                                                                              0.54
                                                  44.61
       996
                       23.548965
                                                  25.83
                                                          0.9972 3.41
                                                                              0.46
                                                          0.9928 3.23
                                                                              0.55
       997
                       21.624585
                                                  48.75
       998
                       12.746186
                                                  44.53
                                                          0.9952 3.30
                                                                              0.66
       999
                       16.203864
                                                  24.37
                                                          0.9983 3.29
                                                                              0.70
            alcohol quality
              12.75
       500
       501
              10.24
                            8
       502
              11.34
                            8
              10.72
       503
                            8
       504
              11.09
                            8
       . .
       995
              10.41
                            8
       996
               9.91
                            8
                            7
       997
               9.94
       998
               9.76
                            8
       999
              10.17
       [495 rows x 12 columns]
[174]: x1 = len(first_half_alcohol)
       x2 = len(second_half_alcohol)
       n1, n2 = len(df) // 2, len(df) // 2
       p1 = x1 / n1
       p2 = x2 / n2
```

0.4955

0.2549

0.091232

503

8.32

p = (x1 + x2) / (n1 + n2)

display(Markdown(f"p1-hat = {p1}")) display(Markdown(f"p2-hat = {p2}")) display(Markdown(f"p-hat = {p}"))

P-Value = 0.5

Step 6: Make a decision and conclusion

Do not reject H0 as the proportion in the first and second half is exactly the same concluded by normal inspection and backed by the Z-test, having the Z-value less than the critical value (Z < 1.96) and the P-value less than 0.95 (1 - level of significance).