Banco sem tratamento "none"

Itens a, b e c.

Abaixo, um sumário da ANOVA para o modelo simples (I) (considerando apenas o tratamento)

```
Df Sum Sq Mean Sq F value Pr(>F)
Treatment 3 10769 3590 17.39 4.27e-09 ***
Residuals 96 19817 206
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

e seus coeficientes:

```
(Intercept) Treatment1 virgin Treatment8 pregnant Treatment8 virgin 64.80 -8.04 -1.44 -26.08
```

Agora, para o modelo com interação (II)

```
Df Sum Sq Mean Sq F value Pr(>F)
                           6675 32.335 1.4e-07 ***
Type
                   6675
Partners
                                 11.489 0.00102 **
               1
                   2372
                           2372
Type:Partners
               1
                   1722
                           1722
                                  8.343 0.00479 **
Residuals
              96
                  19817
                            206
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

e seus coeficientes:

```
(Intercept) Typevirgem Partners8
64.80 -8.04 -1.44
Typevirgem:Partners8
-16.60
```

Notamos semelhanças no resultado do teste de hipótese (evidências de efeito do tratamento), nos valores de alguns coeficientes e na soma de quadrados dos resíduos. Notamos que o modelo com interação apresenta individualmente os resultados para os fatores, ao invés de agrupar tudo como tratamento, o que pode ser benéfico na análise.

Da tabela ANOVA com modelo com interações, concluímos que os parceiros, os tipos, e a interação entre parceiro e tipo são estatisticamente significantes para o modelo a $\alpha=5\%$ de significância.

Item d

Esperamos que os resíduos sigam distribuição normal. Verificamos pelo QQ-Plot:

e comparação dos resíduos vs. ajustados

Resíduos vs Valores preditos

Comparação dos resíduos por tipo

Comparação dos resíduos por parceiros

Apesar de apresentar algumas divergências, os resíduos parecem seguir normalidade por quantis. Verificaremos com alguns testes:

Para o teste de Shapiro-Wald:

Shapiro-Wilk normality test

data: residuos W = 0.98972, p-value = 0.6419

Para o teste de Levene:

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 3 0.4027 0.7514
96

Para o teste de Bartlett

Bartlett test of homogeneity of variances

data: Longevity by Type
Bartlett's K-squared = 0.32431, df = 1, p-value = 0.569

Bartlett test of homogeneity of variances

data: Longevity by Partners
Bartlett's K-squared = 1.0564, df = 1, p-value = 0.304

Bartlett test of homogeneity of variances

data: Longevity by interaction(Type, Partners)
Bartlett's K-squared = 1.6876, df = 3, p-value = 0.6397

Concluímos que o modelo pode ser aplicado pois não há evidências para rejeitar a hipótese de que os resíduos seguem distribuição normal. Conferimos um sumário do modelo:

Call:

lm(formula = Longevity ~ Type * Partners, data = dat2)

Residuals:

Min 1Q Median 3Q Max -35.76 -8.76 1.46 9.01 32.20

Coefficients:

	Estimate	Std.	Error	t value	Pr(> t)	
(Intercept)	64.800		2.874	22.551	< 2e-16	***
Typevirgem	-8.040		4.064	-1.978	0.05074	
Partners8	-1.440		4.064	-0.354	0.72386	
Typevirgem:Partners8	-16.600		5.747	-2.888	0.00479	**
Signif. codes: 0 '*:	**' 0.001	'** [']	0.01	'*' 0.05	'.' 0.1	' ' 1

Residual standard error: 14.37 on 96 degrees of freedom Multiple R-squared: 0.3521, Adjusted R-squared: 0.3318 F-statistic: 17.39 on 3 and 96 DF, p-value: 4.273e-09

Encontramos um \mathbb{R}^2 baixo, mas isto é esperado para um modelo com mais de um fator.

Item e

Temos um modelo cela de referência:

$$L_{ijk} = \tau_i + \beta_j + (\tau \beta)_{ij} + \epsilon_{ijk}$$

Esse modelo descreve a longevidade como combinação do efeito do tipo τ , dos parceiros β e sua interação $\tau\beta$. Como concluímos que todos os parâmetros são estatisticamente significantes nesse modelo, podemos dizer que tanto o número de parceiros como seu tipo afetam a longevidade das moscas. Também, como observamos na análise da interação dos fatores, há evidências para afirmar que existe efeito sobre a longevidade da mosca quando fica com números diferentes de parceiros do mesmo tipo. Por exemplo, quando fica com várias parceiras virgens. Como a interação é significativa, notamos também que se trata de um modelo não aditivo.

Item f

Faremos a ANOVA para o modelo de dois fatores, mas sem interação

```
Df Sum Sq Mean Sq F value
                                          Pr(>F)
                  6675
                           6675
                                  30.06 3.32e-07 ***
Type
              1
                  2372
                                  10.68
                                          0.0015 **
Partners
                           2372
Residuals
             97
                 21540
                            222
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

e seus coeficientes:

Notamos semelhanças no resultado do teste de hipótese (evidências de efeito do tratamento), nos valores de alguns coeficientes e na soma de quadrados dos resíduos. Notamos que o modelo com interação apresenta individualmente os resultados para os fatores, ao invés de agrupar tudo como tratamento, o que pode ser benéfico na análise.

Da tabela ANOVA com modelo com interações, concluímos que os parceiros, os tipos, e a interação entre parceiro e tipo são estatisticamente significantes para o modelo a $\alpha=5\%$ de significância.

ltem g Esperamos que os resíduos sigam distribuição normal. Verificamos pelo QQ-Plot:

e comparação dos resíduos vs. ajustados

Resíduos vs Valores preditos

Comparação dos resíduos por tipo

Comparação dos resíduos por parceiros

Apesar de apresentar algumas divergências, os resíduos parecem seguir normalidade por quantis. Verificaremos com alguns testes:

Para o teste de Shapiro-Wald:

Shapiro-Wilk normality test

data: residuos W = 0.98076, p-value = 0.1522

Para o teste de Bartlett

Bartlett test of homogeneity of variances

data: Longevity by Type
Bartlett's K-squared = 0.32431, df = 1, p-value = 0.569

Bartlett test of homogeneity of variances

data: Longevity by Partners
Bartlett's K-squared = 1.0564, df = 1, p-value = 0.304

Concluímos que o modelo pode ser aplicado pois não há evidências para rejeitar a hipótese de que os resíduos seguem distribuição normal. Conferimos um sumário do modelo:

Call:

lm(formula = Longevity ~ Type + Partners, data = dat2)

Residuals:

```
Min 1Q Median 3Q Max -31.61 -10.89 1.05 10.79 28.39
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 68.950 2.581 26.714 < 2e-16 ***

Typevirgem -16.340 2.980 -5.483 3.32e-07 ***

Partners8 -9.740 2.980 -3.268 0.0015 **

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 14.9 on 97 degrees of freedom Multiple R-squared: 0.2958, Adjusted R-squared: 0.2813 F-statistic: 20.37 on 2 and 97 DF, p-value: 4.112e-08

Encontramos um \mathbb{R}^2 baixo, mas isto é esperado para um modelo com mais de um fator.

Item e

Temos um modelo cela de referência:

$$L_{ijk} = \tau_i + \beta_j + (\tau\beta)_{ij} + \epsilon_{ijk}$$

Esse modelo descreve a longevidade como combinação do efeito do tipo τ , dos parceiros β e sua interação $\tau\beta$. Como concluímos que todos os parâmetros são estatisticamente significantes nesse modelo, podemos dizer que tanto o número de parceiros como seu tipo afetam a longevidade das moscas. Também, como observamos na análise da interação dos fatores, há evidências para afirmar que existe efeito sobre a longevidade da mosca quando fica com números diferentes de parceiros do mesmo tipo. Por exemplo, quando fica com várias parceiras virgens. Como a interação é significativa, notamos também que se trata de um modelo não aditivo.