MA 101 (Mathematics - I)

Tutorial Problems 5: (Differentiation 3,4,5a)

1. Find the following by using L'Hôpital's Rules, whenever needed. Do not forget to check the conditions needed for using L'Hôpital's Rules.

(i)
$$\lim_{x \to 0+} \left(\frac{1}{x} - \frac{1}{\operatorname{Arctan} x} \right)$$
 (ii) $\lim_{x \to \infty} \frac{x + \ln x}{x \ln x}$ (iii) $\lim_{x \to 0+} (1 + 3/x)^x$ (iv) $\lim_{x \to \infty} x^{1/x}$

(ii)
$$\lim_{x \to \infty} \frac{x + \ln x}{x \ln x}$$

(iii)
$$\lim_{x \to 0+} (1+3/x)^x$$

(iv)
$$\lim_{x \to \infty} x^{1/x}$$

Solution:

(i)
$$\lim_{x \to 0+} \left(\frac{1}{x} - \frac{1}{\tan^{-1}x}\right) = \lim_{x \to 0+} \frac{\tan^{-1}x - x}{x \tan^{-1}x} \left(\frac{0}{0}\right) = \lim_{x \to 0+} \frac{\frac{1}{1+x^2} - 1}{\tan^{-1}x + \frac{x}{1+x^2}} = \lim_{x \to 0+} \frac{-x^2}{(1+x^2)\tan^{-1}x + x}$$

by LR1, if the last limit exists. The last limit is in the form $(\frac{0}{0})$, and therefore equals

$$\lim_{x \to 0+} \frac{-2x}{(1+x^2)\frac{1}{1+x^2} + 2x\tan^{-1}x + 1} = \lim_{x \to 0+} \frac{-2x}{2 + 2x\tan^{-1}x} = \frac{0}{2} = 0.$$

(ii) $\lim_{x\to\infty}\frac{x+\ln x}{x\ln x}$ $\left(\frac{\infty}{\infty}\right)=\lim_{x\to\infty}\frac{1+\frac{1}{x}}{\ln x+1}$, by LR2, if the last limit exists. The last limit is 0, since for $\epsilon>0$ we have

$$\left| \frac{1 + \frac{1}{x}}{\ln x + 1} \right| < \frac{2}{\ln x} < \epsilon,$$

if $x > \max\{1, e^{2/\epsilon}\} = M$, say. Therefore the given limit is zero.

(iii) Suppose $f(x) = (1 + 3/x)^x$ for x > 0. Then $\ln f(x) = x \ln(1 + 3/x) = \frac{\ln(1 + 3/x)}{1/x}$. Since $\ln(1 + 3/x)$ and 1/x are differentiable on (0,1], and $\lim_{x\to 0+} \ln(1+3/x) = \lim_{x\to 0+} 1/x = \infty$, by LH2

$$\lim_{x \to 0+} \ln f(x) = \lim_{x \to 0+} \frac{\frac{1}{1+3/x} \cdot \frac{-3}{x^2}}{\frac{-1}{x^2}} = \lim_{x \to 0+} \frac{3x}{x+3} = 0.$$

Since Exp is continuous, $\lim_{x\to 0} f(x) = \lim_{x\to 0} e^{\ln f(x)} = e^{\left(\lim_{x\to 0} \ln f(x)\right)} = e^0 = 1.$

(iv) Similar to (iii). Ans. 1.

2. Let $f: \mathbb{R} \to \mathbb{R}$ have second derivative at $c \in \mathbb{R}$. Prove that $\lim_{h \to 0} \frac{f(c+h) - 2f(c) + f(c-h)}{h^2} = f''(c)$.

Give example of a function $f: \mathbb{R} \to \mathbb{R}$ and a point $c \in \mathbb{R}$ for which the above limit exists, but f''(c) does not exist.

Solution: Since f''(c) exists, there is an inverval (c-r,c+r), r>0, on which f is differentiable. For $h \in (-r,r), \text{ define } g(h) = f(c+h) - 2f(c) + f(c-h). \text{ Then, } \lim_{h \to 0} g(h) = 0, \text{ and } g'(h) = f'(c+h) - f'(c-h).$

By, LH1, the given limit is $\lim_{h\to 0} \frac{g'(h)}{2h} = \lim_{h\to 0} \frac{f'(c+h) - f'(c-h)}{2h}$, if it exists. Now,

$$\lim_{h \to 0} \frac{f'(c+h) - f'(c-h)}{2h} = \frac{1}{2} \left[\lim_{h \to 0} \frac{f'(c+h) - f'(c)}{h} + \lim_{h \to 0} \frac{f'(c-h) - f'(c)}{-h} \right] = \frac{1}{2} \left[f''(c) + f''(c) \right] = f''(c).$$

Hence the limit is f''(c).

Example of a functions for which the limit exists, but f''(c) does not exist:

(1) Define
$$f: \mathbb{R} \to \mathbb{R}$$
 by $f(x) = \begin{cases} 1, & x > 0, \\ 0, & x = 0, \\ -1, & x < 0. \end{cases}$
The corresponding limit with $c = 0$ is 0, since

The corresponding limit with c=0 is 0, since f(h)-2f(0)+f(-h)=0. The function is not even

continuous at 0.

- (2) Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$, if $x \ge 0$, and $f(x) = -x^2$, if x < 0. Then f has continuous derivative. Moreover, for any $h \in \mathbb{R}$, f(-h) = -f(h) and therefore f(h) 2f(0) + f(-h) = 0. However, f''(0) does not exist.
- 3. For x > 0 show that $|(1+x)^{1/3} (1+\frac{1}{3}x-\frac{1}{9}x^2)| < (5/81)x^3$. Use this inequality to approximate $\sqrt[3]{1.2}$ and $\sqrt[3]{2}$, and find the bounds for errors in the estimations.

Solution: For x > -1, consider $f(x) = (1+x)^{1/3}$. Then f has derivates of all orders. We have

$$f'(x) = \frac{1}{3}(1+x)^{-2/3}, \ f''(x) = \frac{-2}{9}(1+x)^{-5/3}, \ f^{(3)}(x) = \frac{10}{27}(1+x)^{-8/3}.$$

Therefore, for x > 0, by Taylor's theorem, there is $c \in (0, x)$ such that

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(c)}{3!}x^3 = 1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}(1+c)^{-8/3}x^3.$$

Therefore, $|(1+x)^{1/3} - (1 + \frac{1}{3}x - \frac{1}{9}x^2)| < (5/81)x^3$, since $(1+c)^{-8/3} < 1$.

$$\sqrt[3]{1.2} = f(1/5) = 1 + 1/15 - 1/225 = 239/225 \approx 1.06222$$
, Error $< \frac{1}{25 \cdot 81} < 0.0005$.

$$\sqrt[3]{2} = f(1) = 1 + \frac{1}{3} - \frac{1}{9} = 11/9$$
, Error < 5/81.

4. Find the Taylor series of $\sin x \cos 3x$ about 0. What is the domain of convergence (the set in which f is given by the Taylor series)?

Solution: We have $f(x) = \sin x \cos 3x = \frac{1}{2}(\sin 4x - \sin 2x)$, and

$$f^{(n)}(x) = \frac{1}{2} \left[\frac{d^n}{dx^n} \sin 4x - \frac{d^n}{dx^n} \sin 2x \right].$$

Therefore

$$f^{(n)}(0) = \begin{cases} 0, & \text{if } n \text{ is even,} \\ \frac{1}{2}(4^n - 2^n) & \text{if } n = 4k + 1, k \ge 0, \\ -\frac{1}{2}(4^n - 2^n) & \text{if } n = 4k + 3, \ k \ge 0. \end{cases}$$

Thus, the Taylor series for f is

$$T(f,0) = \frac{4-2}{2}x - \frac{4^3-2^3}{2 \cdot 3!}x^3 + \frac{4^5-2^5}{2 \cdot 5!}x^5 - \frac{4^7-2^7}{2 \cdot 7!}x^7 + \cdots$$

Moreover, $|f^{(n)}(x)| < \frac{1}{2}(4^n + 2^n) < 4^n$. Therefore, for $x \in \mathbb{R}$, $|R_n| = \frac{|f^{(n+1)}(c)|}{(n+1)!}|x|^{n+1} \le \frac{(4|x|)^{n+1}}{(n+1)!} \to 0$ (Use ratio test.) Thus, the doamin of convergence of the Taylor series is \mathbb{R} .

- 5. (a) Show that for $n \ge 0$, $\lim_{x \to 0} \frac{e^{-1/x^2}}{x^n} = 0$.
 - (b) Use induction to prove Leibniz's rule for the *n*-th derivative of a product:

$$(fg)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x)g^{(k)}(x).$$

(c) Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} e^{-1/x^2}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Show that f is infinitely differentiable on \mathbb{R} and find $f^{(n)}(0)$ for $n \in \mathbb{N}$.

- (d) What is the Taylor series of f about 0, and on what interval is it defined?
- (e) Does the remainder term for f at 0 in Taylor's theorem converge to zero as $n \to \infty$?
- (f) On what set does the Taylor series converge to f?

Solution:

(a) Put t = 1/x. As $x \to 0+$, $t \to \infty$. Also $\frac{e^{-1/x^2}}{x^n} = \frac{t^n}{e^{t^2}}$, and $\lim_{t \to \infty} \frac{t^n}{e^{t^2}}$ is of (∞/∞) form. BY LH2,

$$\lim_{t\to\infty}\frac{t^n}{e^{t^2}}=\lim_{t\to\infty}\frac{nt^{n-1}}{2te^{t^2}}=\frac{n}{2}\lim_{t\to\infty}\frac{t^{n-2}}{e^{t^2}}.$$

Since $\lim_{t\to\infty}\frac{1}{e^{t^2}}=0$ and $\lim_{t\to\infty}\frac{t}{e^{t^2}}=0$ (because $e^{t^2}>t^2$), by repeated application of the above, we get

$$\lim_{x \to 0+} \frac{e^{-1/x^2}}{x^n} = \lim_{t \to \infty} \frac{t^n}{e^{t^2}} = 0.$$

We also have $\lim_{x\to 0-} \frac{e^{-1/x^2}}{x^n} = \lim_{x\to 0+} \frac{e^{-1/x^2}}{(-x)^n} = 0.$

(b) (Note: here $f^{(0)}$ means f.) We have (fg)' = f'g + fg', that is, the statement is true for n = 1. Assume

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)}.$$

Then

$$\begin{split} (fg)^{(n+1)} &= \sum_{k=0}^{n} \binom{n}{k} \left[f^{(n-k+1)} g^{(k)} + f^{(n-k)} g^{(k+1)} \right] \\ &= \sum_{k=0}^{n} \binom{n}{k} f^{(n-k+1)} g^{(k)} + \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k+1)} \\ &= f^{(n+1)} g^{(0)} + \sum_{k=1}^{n} \binom{n}{k} f^{(n-k+1)} g^{(k)} + \sum_{k=0}^{n-1} \binom{n}{k} f^{(n-k)} g^{(k+1)} + f^{(0)} g^{(n+1)} \\ &= f^{(n+1)} g^{(0)} + \sum_{k=1}^{n} \binom{n}{k} f^{(n-k+1)} g^{(k)} + \sum_{k=1}^{n} \binom{n}{k-1} f^{(n-(k-1))} g^{(k)} + f^{(0)} g^{(n+1)} \\ &= f^{(n+1)} g^{(0)} + \sum_{k=1}^{n} \binom{n}{k} + \binom{n}{k-1} f^{(n+1)-k)} g^{(k)} + f^{(0)} g^{(n+1)} \\ &= f^{(n+1)} g^{(0)} + \sum_{k=1}^{n} \binom{n+1}{k} f^{(n+1)-k)} g^{(k)}, \end{split}$$

that is, the statement is true for n + 1. By induction, the result follows.

(c) Let $x \neq 0$. Then $f'(x) = e^{-1/x^2} \cdot 2x^{-3}$ and $f''(x) = e^{-1/x^2} \left(-6x^{-4} + 4x^{-6} \right)$. Observe that for $n = 1, 2, f^{(n)}(x) = f(x)P_n(\frac{1}{x})$, where $P_n(t)$ is a polynomial. Suppose $f^{(k)}(x) = f(x)P_k(\frac{1}{x})$ for some polinomial $P_k(t)$. Then

$$f^{(k+1)}(x) = f'(x)P_k(1/x) + f(x)P'(1/x) \cdot \frac{-1}{x^2} = f(x)P_{k+1}(1/x),$$

where $P_{k+1}(t) = 2t^3P_k(t) - t^2P'(t)$, a polynomial. Therefore, for $n \ge 1$, $f^{(n)}(x) = f(x)P_n(\frac{1}{x})$ for some polynomial $P_n(t)$.

Claim: for $n \ge 1$, $f^{(n)}(0) = 0$. Clearly, $f'(0) = \lim_{x \to 0} \frac{e^{-1/x^2}}{x} = 0$, by (a). Suppose $f^{(n-1)}(0) = 0$. Now, for $x \ne 0$, $f^{(n-1)}(x) = f(x) \left(a_0 + \frac{a_1}{x} + \dots + \frac{a_m}{x^m}\right)$ for some $m \in \mathbb{N}, a_0, \dots, a_m \in \mathbb{R}$. Therefore, $f^{(n)}(0) = \lim_{x \to 0} \frac{f^{(n-1)}(x)}{x} = \lim_{x \to 0} \left[f(x) \left(\frac{a_0}{x} + \frac{a_1}{x^2} + \dots + \frac{a_m}{x^{m+1}}\right)\right] = 0$, by (a). Hence, f is infinitely differentiable, and $f^{(n)}(0) = 0$, for all n.

- (d) The Taylor series for f about is $T(f,0) = \sum a_n x^n$, where $a_n = \frac{f^{(n)}(0)}{n!} = 0$.
- (e) Since the Taylor polynomial $T_n(f,0)(x)$ is the zero polynomial, the remainder term of f at $x \neq 0$ is $R_n(x) = f(x) T_n(f,0)(x) = e^{-1/x^2}$, which does not converge to 0 as $n \to \infty$.
- (f) The Taylor series converges to f only on the set $\{0\}$.
- 6. Suppose $a_n \to a$, $b_n \to b$, and a < b. Suppose (c_n) is given by $c_{2n-1} = a_n$, $c_{2n} = b_n$ for $n \in \mathbb{N}$. What can you say about $\limsup c_n$ and $\liminf c_n$? Justify your claim. (Note that b can be ∞ and a can be $-\infty$.)

Solution: The sequence (c_n) is $(a_1, b_1, a_2, b_2, \ldots)$. Let $u = \limsup c_n$ and $\ell = \liminf c_n$. If $b = \infty$, then (c_n) is not bounded above, and so $u = \infty = b$.

Let $b \in \mathbb{R}$. Then (c_n) is bounded above. For $n \in \mathbb{N}$, let $u_n = \text{lub}\{c_k : k \ge n\}$. Let $0 < \epsilon \le \frac{b-a}{2}$ be given. Then there exists $K \in \mathbb{N}$ such that $a_n < b - \epsilon$ and $b_n \in (b - \epsilon, b + \epsilon)$ for $n \ge K$. Then for $n \ge 2K$, $u_n \in [b - \epsilon, b + \epsilon]$, i.e., $|u_n - b| \le \epsilon$. Thus, $u_n \to b$. Since $u_n \to \limsup c_n$, we have $u = \limsup c_n$.

Similarly, [or considering $(-c_n)$] we can show $\ell = a$.