FIFA Top 5% Player Performance Analysis (2017–2021)

This notebook explores how player attributes like **preferred foot**, **nationality**, **age**, **acceleration**, **agility**, and **BMI** impact **wage** and **potential rating** for the **top 5% of FIFA players** from 2017 to 2021.

o Objective

To validate the hypothesis that:

"The top 5% of FIFA 21 players are faster (higher acceleration and agility) than those in FIFA 17."

Dataset Source: Sofifa via Kaggle

```
In [1]: import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        import warnings
        warnings.filterwarnings('ignore')
        # Load data from 'Data' folder
        players17 df = pd.read csv('Data/players 17.csv')
        players18_df = pd.read_csv('Data/players_18.csv')
        players19_df = pd.read_csv('Data/players_19.csv')
        players20_df = pd.read_csv('Data/players_20.csv')
        players21_df = pd.read_csv('Data/players_21.csv')
        # Add season labels
        players17_df["season"] = 2017
        players18_df["season"] = 2018
        players19_df["season"] = 2019
        players20_df["season"] = 2020
        players21_df["season"] = 2021
        # Top 5% filter
        def top_5_percent(df):
            return df.nlargest(int(0.05 * len(df)), 'overall')
        dfs = [top_5_percent(df) for df in [players17_df, players18_df, players19
        df = pd.concat(dfs)
        # Calculate BMI
        df['BMI'] = df['weight_kg'] / ((df['height_cm'] / 100) ** 2)
        df.rename(columns={
            'movement_acceleration': 'acceleration',
            'movement_agility': 'agility',
            'short_name': 'name',
            'wage_eur': 'wage'
        }, inplace=True)
        df.drop_duplicates(inplace=True)
```

```
df.reset_index(drop=True, inplace=True)
df.head()
```

Out[1]:	sofifa_id		player_url	name	long_name	age	do
	0	20801	https://sofifa.com/player/20801/c- ronaldo-dos	Cristiano Ronaldo	Cristiano Ronaldo dos Santos Aveiro	31	1985 02 0
	1	158023	https://sofifa.com/player/158023/lionel- messi/	L. Messi	Lionel Andrés Messi Cuccittini	29	1987 06 2
	2	190871	https://sofifa.com/player/190871/neymar- da-sil	Neymar	Neymar da Silva Santos Júnior	24	1992 02 0
	3	167495	https://sofifa.com/player/167495/manuel- neuer/	M. Neuer	Manuel Neuer	30	1986 03 2
	4	176580	https://sofifa.com/player/176580/luis- suarez/1	L. Suárez	Luis Alberto Suárez Díaz	29	1987 01-2

5 rows × 108 columns

Preferred Foot vs Potential and Wage

```
In [2]: sns.catplot(x='preferred_foot', y='potential', data=df, kind='bar', palet
    plt.title("Potential by Preferred Foot")
    plt.tight_layout()
    plt.show()

sns.catplot(x='preferred_foot', y='wage', data=df, kind='bar', palette='c
    plt.title("Wage by Preferred Foot")
    plt.tight_layout()
    plt.show()
```


06/08/2025, 20:59

Nationality vs Wage and Potential

```
In [3]: top5_nations = df['nationality'].value_counts().head(5).index.tolist()
    top5_df = df[df['nationality'].isin(top5_nations)]

sns.catplot(y='nationality', x='wage', data=top5_df, kind='bar', aspect=2
    plt.title("Top 5 Nationalities by Wage")
    plt.tight_layout()
    plt.show()

sns.catplot(y='nationality', x='potential', data=top5_df, kind='bar', asp
    plt.title("Top 5 Nationalities by Potential")
    plt.tight_layout()
    plt.show()
```


Age vs Wage and Potential

Acceleration vs Wage and Potential

```
In [5]: sns.lmplot(x='acceleration', y='wage', data=df, aspect=2)
plt.title("Wage by Acceleration")
plt.tight_layout()
plt.show()

sns.lmplot(x='acceleration', y='potential', data=df, aspect=2)
plt.title("Potential by Acceleration")
plt.tight_layout()
plt.show()
```


6 Agility vs Wage and Potential

```
In [6]: sns.lmplot(x='agility', y='wage', data=df, aspect=2)
plt.title("Wage by Agility")
plt.tight_layout()
plt.show()

sns.lmplot(x='agility', y='potential', data=df, aspect=2)
plt.title("Potential by Agility")
plt.tight_layout()
plt.show()
```


BMI vs Wage and Potential

```
In [7]: sns.regplot(x='BMI', y='wage', data=df)
plt.title("Wage by BMI")
plt.tight_layout()
plt.show()

sns.regplot(x='BMI', y='potential', data=df)
plt.title("Potential by BMI")
plt.tight_layout()
plt.show()
```


Conclusion

- Preferred foot had minimal impact on wage or potential.
- **Nationality** influences both wage and potential. Argentina, Portugal, and Brazil dominate.
- Age shows players peak in potential between 26–30.
- Acceleration and agility significantly impact both wage and potential.
- BMI trends suggest leaner players earn more.

Mypothesis confirmed:

Top 5% FIFA 21 players were faster than those in FIFA 17.