المكاملة المصدية Lab Work

السنة أولعــ ماستر فيزياء 2022-2023

قسم الفيزياء كلية الملوم الصـ قيقة جاممة الشهيد. حمه لخضر بالوادعي

Becer Zoubir

تهدف هذه التطبيقات لتعلم برمجة طرق المكاملة العددية الشائعة في بعد واحد او ابعاد متعددة. بالتحديد هذه

لطرق هي: قاعدة المستطيلات اللأمامية Forward Rectangles قاعدة المستطيلات الخلفية Backward Rectangles

قاعدة سيمبسون Simpson Rule

قاعدة النقطة الوسطية Midpoint Rule

قاعدة شبه المنحرف Trapezoidal Rule

قاعدة تربيعات غوص Gauss Quadrature

ملخص طرق المكاملة في بعد واحد

تعطي هذه الطرق حسابا تقريبيا للتكاملات من الشكل:

$$S = \int_{a}^{b} f(x) \, dx.$$

حيث f(x) دالة حقيقية للمتغير الحقيقي x معرفة على المجال المغلق [a,b] ومعطاة إما في شكلها الرياضي الصريح او في شكل قيم منفصلة N دالة حقيقية للمتغير الحقيقي x معرفة على المجال التكامل في شكل مجموع تكاملات جزئية بتقسيم المجال [a,b] الى مجالات جزئية عددها x وعليه نكتب:

$$S = \int_a^b f(x) dx = \sum_{n=1}^N S_n; \quad S_n = \int_{x_n}^{x_{n+1}} f(x) dx; \quad x_{n+1} = x_n + \Delta x_n; \ \Delta x_n = x_{n+1} - x_n; x_1 = a.$$

قاعدة المستطيلات اللأمامية Forward Rectangles

$$S = \sum_{n=1}^{N} S_n ; \quad S_n = f(x_n) \Delta x_n ; \quad \Delta x_n = x_{n+1} - x_n; \ x_{n+1} = x_n + \Delta x_n; \ x_1 = a.$$

في حالة ما اذا كانت الخطوة $\Delta x_n = \Delta x$ ثابتة تأخذ عبارة التكامل الصورة التالية:

$$S = \sum_{n=1}^{N} S_n$$
; $S_n = f(x_n) \Delta x$; $\Delta x = \frac{b-a}{N}$; $x_n = a + (n-1) \Delta x$.

المستطيلات الخلفية Backward Rectangles

$$S = \sum_{n=1}^{N} S_n; \quad S_n = f(x_{n+1}) \Delta x_n; \quad \Delta x_n = x_{n+1} - x_n; \ x_{n+1} = x_n + \Delta x_n; \ x_1 = a.$$

$$S = \sum_{n=1}^{N} S_n; \quad S_n = \frac{f(x_n) + f(x_{n+1})}{2} \Delta x_n; \quad \Delta x_n = x_{n+1} - x_n; \ x_{n+1} = x_n + \Delta x_n; \ x_1 = a.$$

قاعدة النقطة الوسطية Midpoint Rule

$$S = \sum_{n=1}^{N} S_n \; ; \quad S_n = f(x_{n+\frac{1}{2}}) \Delta x_n \; ; \quad \Delta x_n = x_{n+1} - x_n ; \; x_{n+\frac{1}{2}} = x_n + \frac{1}{2} \Delta x_n ; \; x_1 = a.$$

قاعدة سيمبسون بخطوة واحدة One Step Simpson Rule

$$S = \sum_{n=1}^{N} S_n; \quad S_n = \frac{f(x_n) + 4f(x_{n+\frac{1}{2}}) + f(x_{n+1})}{6} \Delta x_n; \quad \Delta x_n = x_{n+1} - x_n; \ x_{n+1} = x_n + \Delta x_n; \ x_1 = a.$$

قاعدة سيمبسون بخطوتين Two Steps Simpson Rule

هذه القاعدة تستخدم خطوتين متتاليتين ولاشتقاق علاقة بسيطة لها يشترط ثبات الخطوة وان يكون عدد التقسيمات N زوجي.

$$S = \sum_{n=1}^{N/2} S_n \; ; \quad S_n = \frac{f(x_{2n-1}) + 4f(x_{2n}) + f(x_{2n+1})}{3} \Delta x \; ; \quad \Delta x = \frac{b-a}{N} ; \; x_n = a + (n-1)\Delta x.$$

قاعدة تربيعات غوص Gauss Quadrature.

$$S = \sum_{n=1}^{N} S_n$$
; $S_n = \int_{x_n}^{x_{n+1}} f(x) dx = \sum_{m=1}^{M} \omega_m f(x_m)$;

هذه القاعدة تحسب التكامل باستخدام جمع موزون لنقاط معاينة $(x_m; \quad m=1,...,M)$ محددة بعناية داخل كل مجال عنصري او على كامل المجال ولهذه النقاط كذلك اوزان مقابلة w_m محددة بذكاء تجعل من هذا الجمع يساوي القيمة الحقيقية لتكامل كثيرات الحدود من الدرجة 2M-1 فإن هذا الجمع يأخذ افضل قيمة له. عادة ما يفضل في هذه الطريقة التعبير عن التكامل على الحدود العامة a0 و a1 و a1 و a2 و المتحدام التحول الخطي التالي: a3 و a4 و a4 ان اشتراط a5 عند a6 عند a7 و a8 عند a8 عند a9 عند a9 عند a9 عند a9 و عند a9 و عليه يأخذ التكامل العنصري a9 الشكل التالي a9 و a9 و a9 و عليه يأخذ التكامل العنصري a9 الشكل التالي

$$\int_{x_n}^{x_{n+1}} f(x)dx = \frac{1}{2}(x_{n+1} - x_n) \int_{-1}^{1} f\left[\frac{x_{n+1} - x_n}{2}t + \frac{x_n + x_{n+1}}{2}\right] dt = \frac{\Delta x_n}{2} \int_{-1}^{1} F(t)dt$$

حيث $F(t)=f\left[(x_{n+1}-x_n)t/2+(x_n+x_{n+1})/2
ight]$ حيث $F(t)=f\left[(x_{n+1}-x_n)t/2+(x_n+x_{n+1})/2
ight]$ لتوضيف هذه الطريقة على المجال F(t)=t الى نقاط t_m واوزان على المجال رصدت في جداول حسب عدد النقاط المختار T(t)=t الى نقاط T(t)=tالنقاط على المجال المعطى نستخدم التحويل الخطي السابق والذي يفضي للنتائج النهائية التالية:

$$S = \sum_{n=1}^{N} S_n; \quad S_n = \frac{\Delta x_n}{2} \sum_{m=1}^{M} \omega_m f(x_m); \quad \Delta x_n = x_{n+1} - x_n; x_{n+1} = x_n + \Delta x_n; \ x_1 = a;$$
$$x_m = \frac{\Delta x_n}{2} t_m + x_{n+\frac{1}{2}}.$$

من أجل عدد نقاط M تقرأ القيم t_m وأوزانها الموافقة ω_m من جداول معطاة وتوظف مباشرة في الجمع الموزون السابق.

جدول ١: وسانط طريقة مستطيلات غوص.					
(Order) الرتبة	w_m	t_m	M		
3	1	$-1/\sqrt{3}$	2		
	1	$1/\sqrt{3}$			
5	5/9	$-\sqrt{0.6}$	3		
	8/9	0			
	5/9	$\sqrt{0.6}$			
7	0.3478548451	-0.8611363116	4		
	0.6521451549	-0.3399810436			
	0.6521451549	0.3399810436			
	0.3478548451	0.8611363116			

f(x)	x_1	x_2	x_3	x_4

 f_1 0.864331647570159 1.910375697429960 2.995183148739897 4.124262867199374

 f_2 1.064072410739394 2.134268270179443 3.259613531562442 4.451602992306452

 f_3 0.941160951769604 2.016533364602922 3.163669316396373 4.394360597966114

ملخص طرق المكاملة في ابعاد متعددة

يمكن تعميم طرق المكاملة العددية في بعد واحد الى بعدين او اكثر. للتسهيل نعرض في ما يلي طريقة النقطة الوسطية في بعدين لحساب التكاملات من الشكل:

$$S = \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) \, dx dy.$$

قاعدة النقطة الوسطية في بعدينMidpoint Rule

في هذه الطريقة يقسم مجال التكامل الى خلايا مستطيلة عن طرق تقسيم كل اتجاه عددا من التقسيمات Ny و Ny مثلا قد تكون منتظمة او غير منتظمة. في الحالة المنتظمة تصبح مساحة كل خلية مساوية الى $\frac{b_x-a_x}{Ny} imes \frac{b_y-a_y}{Ny}$ بهذا يصبح التكامل عبارة عن مجموع تكاملات على الخلايا العنصرية:

$$S = \sum_{n=1}^{N_x} \sum_{m=1}^{N_y} S_{n,m}; \ S_{n,m} = \int_{x_n}^{x_{n+1}} \int_{y_m}^{y_{m+1}} f(x,y) dx dy$$

$$S = \sum_{n=1}^{N_x} \sum_{m=1}^{N_y} S_{n,m}; \quad S_{n,m} \approx f(x_{n+\frac{1}{2}}, y_{m+\frac{1}{2}}) \Delta x_n \Delta y_m$$

$$\Delta x_n = x_{n+1} - x_n; \quad x_{n+\frac{1}{2}} = x_n + \frac{1}{2} \Delta x_n; \quad x_1 = a_x.$$

$$\Delta y_m = y_{m+1} - y_m; \quad y_{m+\frac{1}{2}} = y_m + \frac{1}{2} \Delta y_m; \quad y_1 = a_y.$$

في حالة ما اذا كانت التقسيمات متساوية في كل اتجاه تأخذ عبارة التكامل الصورة التالية:

$$S = \sum_{n=1}^{N_x} \sum_{m=1}^{N_y} S_{n,m} ; \quad S_{n,m} = f(x_{n+\frac{1}{2}}, y_{m+\frac{1}{2}}) \Delta x \Delta y$$
$$\Delta x = x_{n+1} - x_n; \quad x_{n+\frac{1}{2}} = a_x + (n - \frac{1}{2}) \Delta x.$$
$$\Delta y = y_{m+1} - y_m; \quad y_{m+\frac{1}{2}} = a_y + (m - \frac{1}{2}) \Delta y.$$

بالتعميم الى d بعد وبخطوات Δ متساوية فى جميع الاتجاهات نجد

$$S = \Delta^d \sum_{n_1=1}^{N_1} \cdots \sum_{n_d=1}^{N_d} S_{n_1,\dots,n_d} ; \quad S_{n_1,\dots,n_d} = f(x_{n_1+\frac{1}{2}},\dots,x_{n_d+\frac{1}{2}})$$

$$\Delta x = x_{n+1} - x_n; \quad x_{n+\frac{1}{2}} = a + (n - \frac{1}{2})\Delta; \quad n = n_1 : n_d$$

$$\epsilon = \sum_{n=1}^{N_x} \sum_{m=1}^{N_y} \epsilon_{n,m}; \ \epsilon_{n,m} = \int_{x_n}^{x_{n+1}} \int_{y_m}^{y_{m+1}} f(x,y) dx dy - f(x_{n+\frac{1}{2}}, y_{m+\frac{1}{2}}) \Delta x_n \Delta y_m$$

$$x_{n+\frac{1}{2}} = \tilde{x}_n = x_n + \frac{1}{2} \Delta x_n.$$

$$y_{m+\frac{1}{2}} = \tilde{y}_m = y_m + \frac{1}{2} \Delta y_m.$$

$$\begin{split} \epsilon_{n,m} &= \int_{x_n}^{x_{n+1}} \int_{y_m}^{y_{m+1}} f(x,y) dx dy - f(\widetilde{x}_n, \widetilde{y}_m) \Delta x_n \Delta y_m \\ &= \int_{x_n}^{x_{n+1}} \int_{y_m}^{y_{m+1}} dx dy \left\{ f(\widetilde{x}_n, \widetilde{y}_m) + (x - \widetilde{x}_n) f_x(\widetilde{x}_n, \widetilde{y}_m) + \frac{(x - \widetilde{x}_n)^2}{2!} f_{xx}(\widetilde{x}_n, \widetilde{y}_m) \right. \\ &+ (y - \widetilde{y}_m) f_y(\widetilde{x}_n, \widetilde{y}_m) + \frac{(y - \widetilde{y}_m)^2}{2!} f_{yy}(\widetilde{x}_n, \widetilde{y}_m) \\ &+ (x - \widetilde{x}_n) (y - \widetilde{y}_m) f_{xy}(\widetilde{x}_n, \widetilde{y}_m) + \dots \right\} - f(\widetilde{x}_n, \widetilde{y}_m) \Delta x_n \Delta y_m. \end{split}$$

$$S = \int_0^1 x^2 \, dx.$$

- 1. احسب رباضيا القيمة الفعلية لهذا التكامل.
- N=10 عدد تقسيمات N=10. اكتب يرنامج فورترون لحساب قيمة التكامل المعطى بطرق المكاملة السابقة باستخدام عدد تقسيمات
 - 3. اعد برمجة البرنامج باستخدلم برامج جزئية من نوع function
 - N=10 قارن بين دقة هذه الطرق من اجل نفس عدد التقسيمات N=10
- 1,2,3,4,5,6,7,8,9,10,11 عدل في البرنامج السابق ليحسب البرنامج الخطأ بدلالة عدد التقسيمات $N=2^k$ حيث يأخذ k القيم 1.
- 6. بين ان الخطأ يتغير اما وفقا لـ 1/N او $1/N^3$ او $1/N^3$ حسب الطريقة المختارة وذلك عن طريق رسم الاخطاء بدلالة عدد التقسيمات باستخدام برنامج للرسم متوفر لك.

لنعتبر الان التكامل التالي:

$$S = \int_{-1}^{1} \int_{-1}^{1} xy \sin(xy) dx dy.$$

- $N_x=N_x=1$ على البرنامج السابق اكتب برنامج فورترون لحساب قيمة التكامل المعطى بطريقة النقطة الوسطية باستخدام عدد تقسيمات $N_x=1$ الكل اتجاه.
 - .2 عدل في البرنامج لحساب حجم كرة نصف قطرها R=1 في R=1 ابعاد باستخدام N=300 لكل اتجاه.

$$V_{d} = \int_{x_{1}^{2} + \dots + x_{d}^{2} \leq R^{2}} dx_{1} \dots dx_{d}$$

$$= 2 \int dx_{1} \dots dx_{d-1} \sqrt{R^{2} - x_{1}^{2} - \dots - x_{d-1}^{2}}$$

$$= \int_{x_{1}^{2} + \dots + x_{d}^{2} \leq R^{2}} r^{d-1} dr d\Omega_{d-1}$$

$$= \frac{R^{d}}{d} \int d\Omega_{d-1}$$

$$= \frac{R^{d} 2\pi^{\frac{d}{2}}}{d\Gamma\left(\frac{d}{2}\right)}$$

$$\Gamma(1) = 1, \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \Gamma(n+1) = n\Gamma(n)$$

وسطحها بالعلاقة

$$S_{d-1} = \int_{x_1^2 + \dots + x_d^2 = R^2} dx_1 \dots dx_d$$
$$= R^{d-1} \frac{2\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}\right)}.$$

- N ارسم لوغاريتم القيمة المطلقة للخطأ المطلق (الكلى) بدلالة لوغاريتم .N
- 5. اعد برمجة البرنامج باستخدام الميزة التراجعية للدالة المكاملة باستخدام التعليمة: recursive والشكل التراجعي لعبارة الحجم

$$V_{d} = \int_{-R}^{+R} dx_{d} \int_{x_{1}^{2} + \dots + x_{d-1}^{2} \le R^{2} - x_{d}^{2}} dx_{1} \dots dx_{d-1}$$

$$= \int_{-R}^{+R} dx_{d} \int_{0}^{\sqrt{R^{2} - x_{d}^{2}}} r^{d-2} dr \int d\Omega_{d-2}$$

$$= \frac{V_{d-1}}{R^{d-1}} \int_{-R}^{+R} dx_{d} \left(R^{2} - x_{d}^{2}\right)^{\frac{d-1}{2}}.$$

6. احسب حجوم الكرات في الابعاد d=4,5,6,7,8,9,10 وقارنها بالقيم الحقيقية الموافقة.