Vector Functions & Functions of Several Variables (Group 2)

Teddy (Domain, Range/Level Lines):

- 1. Find the domain & range of the function $z=f(x,y)=\sqrt{25-x^2-y^2}$
- 2. Find the domain & range of the function $z=f(x,y)=\sqrt{2y-3x+6}$
- 3. Find the domain, range, level lines & graph of the function $z=f(x,y)=\ln(3y-x^2)$
- 4. Find the domain, range, level lines & graph of the function $z=f(x,y)=\sqrt{x^2+y^2}$

Emily (Partial Derivatives):

- 1. Find $\frac{df}{dx}$ and $\frac{df}{dy}$ f(x,y)= 5xy- 7x²- y²+ 3x- 6y+2
- 2. Find $\frac{df}{dx}$ and $\frac{df}{dy}$ f(x,y) = e^{xy} ln y + $\cos^2(3x-y^2)$

Wade (Limits: Methods 1 & 2):

- 1. Find $\lim_{(x,y)\to(0,0)} \frac{-5e^{-y}\sin(4x)}{2x}$
- 2. Find $\lim_{(x,y)\to(3,0)} \frac{\sqrt{3x-y}-3}{3x-y-9}$ by rewriting the fraction first. $3x-y\neq 9$

Kaitlyn (Limits: Methods 3 & 4):

- 1. Show that $\lim_{(x,y)\to(0,0)}\frac{xy^2}{x^2+y^8}$ does not exist by approaching the limit from different directions
- 2. Show that $\lim_{(x,y)\to(0,0)} \frac{x^5-yx^4}{(x^2+y^2)^{5/2}}$ does not exist by converting the limit to polar coordinates

Amanda Karram (Notation, TNB, Curvature):

- 1. Find T, N, B and k (curvature) for $r(t) = \langle 12 \sin(t)i + 12 \cos(t)j + 9tk \rangle$.
- 2. Find the tangent line to the graph of $r(t) = \langle t, -sin(t), cos(t) \rangle$ at t=0. $t \in [-\pi, \pi]$

Regan (Location and Intersections):

- 1) Does $\mathbf{r}(t) = \langle t \cos t, t \sin t, t \rangle t = [-\pi, \pi]$ lie on the cone $x^2 + y^2 + z^2 = 0$? Prove your answer.
- 2) What is the intersection of the curve $\mathbf{r}(t) = \langle tcost, tsint, t \rangle$
 - a) With the plane $z = \pi/2$?
 - b) With the plane x 2z = 0?

Jake (Gradients and Directional Derivatives):

Gradients

- 1. Compute the gradient of $f(x,y)=25-x^2-y^2$ at the point (3,4).
- 2. Compute the gradient of $f(x,y)=(tan(x+y^2))/e^{3xy}$ at the point $(\Box/3,0)$.

Directional Derivatives

- 3. Find the directional derivative of $f(x,y)=e^{xy}+3x^2y$ at (0,2) in the direction of $v=<\cos(\Box/3)$, $\sin(\Box/3)>$
- 4. Find $D_v f(1,0,1/2)$ for $f(x,y,z)=\cos(xy)+e^{yz}+\ln(xz)$ in the direction v=i+2j+2k

Robert Delaney (Length):

1. Calculate the length of the following vector function.

$$r(t) = \cos(5t), 5t, \sin(5t) >$$

$$0 < t < \pi /4$$

2. Calculate the length of the following vector function.

$$r(t)=(3e^{t}sint)i + (3e^{t})j + (3e^{t}cost)k$$

$$-\ln(4) \le t \le \ln(4)$$