Logic Exercises 3

1. Which of the following five formulas are in disjunctive normal form (DNF), and which ones are in conjunctive normal form (CNF)?

$$p \wedge \neg (q \vee r)$$
, $p \vee q \vee \neg r$, $p \wedge q \wedge \neg r$, $p \vee (q \wedge \neg r)$, $p \wedge (q \vee \neg r)$

2. Construct formulas in DNF and in CNF that are semantically equivalent to the formula ϕ , based on its truth table:

p	q	r	ϕ
Т	T	T	T
T	T	F	F
T	F	Т	F
T	F	F	F
F	T	T	Т
F	T	F	F
F	F	T	Т
F	F	F	F

- 3. (a) Express the formula $p \to q$ using only the Sheffer stroke | (and p and q).
 - (b) Express the formula $p \leftrightarrow q$ using only the Sheffer stroke | (and p and q).
 - (c) Build a tautology and a contradiction using only the Sheffer stroke (and a propositional variable).
- 4. (a) Show that $\{\neg, \rightarrow\}$ is an adequate system of connectives (meaning that every truth table can be expressed using a formula built from only these connectives and some propositional variables).
 - (b) Argue that $\{\land, \lor, \rightarrow\}$ is not an adequate system of connectives.
 - (c) Is $\{\neg, \leftrightarrow\}$ an adequate system of connectives?
- 5. (a) Determine a CNF of the formula $(\neg q \land r) \to (p \land \neg q)$ by applying the algorithm CNF.
 - (b) Do the same for the formula $\neg \neg p \rightarrow \neg (p \rightarrow \neg p)$.
 - (c) Apply the criterion for determining whether a CNF is a tautology (which was treated in the lecture) to the CNFs you constructed in (a) and (b).
 - (d) Formulate an analogous criterion to determine whether a DNF is a contradiction.

1

- 6. Is a DNF a contradiction if and only if each disjunct contains literals p and $\neg p$ for some p? If so, argue that this is the case. If not, give a counterexample.
- 7. Apply the DPLL procedure to the following CNFs, to check if they are satisfiable.
 - (a) $p \land \neg p$
 - (b) $p \vee \neg p$
 - (c) $(p \lor q) \land (\neg p \lor q) \land (p \lor \neg q)$
 - (d) $(p \lor q \lor \neg r) \land (\neg p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg r) \land r$
 - (e) $(p \lor q) \land (\neg p \lor q) \land (p \lor \neg q) \land (\neg p \lor \neg q)$
 - (f) $(p \lor q \lor r) \land (\neg p \lor q \lor r) \land (p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor r)$