

Tel: 021-51035886

Fax: 021-50277833

Email: sales@hitrendtech.com
Web: http://www.hitrendtech.com

版本更新说明

版本号	修改时间	修改内容
V1. 0	2014-2-21	初版

目 录

1. HT6015/6017/6115	8
1.1 简介	
1.2 框图	
1.3 引脚排列	
1.4 引脚定义	11
2. 存储器模块	15
2.1 概述	
2.2 存储器映射图	16
2.3 FLASH 操作	
2.3.1 Flash 的读保护	
2.3.2 Code Flash 的操作说明	
2.3.3 Information Flash 的操作说明	
2.4 写保护寄存器说明	
2.5 特殊功能寄存器列表	
2.6 特殊功能寄存器说明	20
3. 时钟单元	23
3.1 时钟分类	23
3.2 时钟框图	23
3.3 时钟停振检测框图	25
3.4 时钟说明	
3.4.1 内部低频RC 时钟 (Flrc)	
3.4.2 内部高频RC 时钟 (Fhrc)	
3.4.3 外部低频晶振时钟(Fosc)	
3.4.4 内部高频 MEMS 时钟 (Fmems)	
3.4.5 内部低频时钟(Flf)	
3.4.6 内部 PLL 时钟(Fpll)	
3.4.7 时钟安全机制	
3.4.8 时钟异常状态处理	
3.5 特殊功能寄存器列表	
3.6 特殊功能寄存器说明	28
4. 电源单元	36
4.1 概述	36
4.2 框图	
4.3 电源单元详细功能说明	
4.3.1 电源切换	
4.3.2 电源实时监测	
4.3.3 内建 1.5V 电源	37

4.3.4 BOR 检测功能(BOR_DET)	37
4.3.5 系统电源检测功能(VCC_DET)	38
4.3.6 低电压检测功能(LVD_DET)	39
4.3.7 VCC_DET, BOR_DET 分时检测时序	39
4.4 特殊功能寄存器列表	40
4.5 特殊功能寄存器说明	40
5. 工作模式	45
5.1 芯片电源域分配	45
5.2 工作模式	45
5.3 睡眠模式(SLEEP)	46
5.3.1 SLEEP 模式下各模块开关	
5.3.2 SLEEP 模式下的唤醒	46
5.3.3 从 SLEEP 模式唤醒后的唤醒方式确认	47
5.3.4 进入 Sleep 模式	47
5.4 待机模式(HOLD)	47
5.4.1 进入 Hold 模式	47
5.5 特殊功能寄存器列表	48
5.6 特殊功能寄存器说明	48
6. GPIO 模块	51
6.1 概述	51
6.2 芯片引脚描述	
6.3 I/O 端口基地址列表	55
6.4 特殊功能寄存器说明	55
7. 中断模块	60
7.1 中断向量说明	60
7.2 特殊功能寄存器列表	
7.3 特殊功能寄存器说明	
8. RESET 模块	
8.1 复位优先级	65
8.2 复位说明	65
8.2.1 上电复位	65
8.2.2 低电压检测复位	66
8.2.3 外部引脚复位	67
8.2.4 掉电复位	67
8.2.5 看门狗复位	68
8.2.6 软复位	68
8.2.7 调试复位	69
8.2.8 唤醒复位	69
8.3 特殊功能寄存器列表	70
8.4 特殊功能寄存器说明	70

9. UART/7816 通讯模块	73
9.1 功能说明	73
9.2 波特率计算	74
9.3 串口通讯模式说明	74
9.3.1 方式1	74
9.3.2 方式2	75
9.3.3 方式 3	75
9.3.4 方式4	76
9.4 7816 接收和发送	77
9.4.1 7816 数据发送	77
9.4.2 7816 数据接收	77
9.4.3 7816 通讯示意图	77
9.5 特殊功能寄存器列表	80
9.6 特殊功能寄存器说明	80
10. LCD 模块	87
10.1 概述	87
10.2 LCD 与 GPIO 口复用表	87
10.3 LCD 框图	87
10.4 输出波形	88
10.5 LCD 显示操作	90
10.6 特殊功能寄存器列表	90
10.7 特殊功能寄存器说明	91
11. WDT 模块	94
11.1 概述	94
11.2 工作模式	
11.3 特殊功能寄存器列表	
11.4 特殊功能寄存器说明	
12. 定时器模块	97
12.1 定时器单元概述	97
12.2 周期性定时功能	97
12.3 PWM 功能	97
12.4 捕获功能	98
12.4.1 输入捕获模式	98
12.5 中断功能	99
12.5.1 定时周期中断	
12.5.2 捕获中断	
12.5.3 比较中断	99
12.6 特殊功能寄存器列表	
12.7 特殊功能寄存器说明	
13. SPI 模块	104

13.1 概述	104
13.2 详细功能说明	
13.2.1 SPI 主要特征	104
13.2.2 SPI 模块框图	
13.2.3 SPI 接口传输格式	
13.2.4 主机模式传输格式	105
13.2.5 从机模式传输格式	102
13.2.6 中断功能	108
13.3 特殊功能寄存器列表	109
13.4 特殊功能寄存器说明	109
14. I2C 模块	112
14.1 概述	112
14.2 框图	112
14.3 功能描述	112
14.3.1 操作模式	11.
14.3.2 串行时钟生成	11
14.3.3 中断生成	
14.4 特殊功能寄存器列表	113
14.5 特殊功能寄存器说明	113
15. RTC 模块	121
15.1 概述	121
15.2 功能描述	121
15.3 硬件自动时钟校正	121
15.4 RTC 补偿系数寄存器和 INFO FLASH 对应关系	121
15.5 时间和万年历	122
15.6 中断功能	122
15.7 RTC 指示寄存器读写流程	123
15.7.1 读取 RTC 指示寄存器流程	12.
15.7.2 写入 RTC 指示寄存器流程	12.
15.8 校时记录	124
15.9 特殊功能寄存器列表	124
15.10 特殊功能寄存器说明	126
16. TBS 模块	136
16.1 概述	136
16.2 功能描述	136
16.3 特殊功能寄存器列表	136
16.4 特殊功能寄存器说明	136
17. 3DES&RAND 模块	143
17.1 特殊功能寄存器列表	143
17.2 特殊功能寄存器说明	143

18. SYSTEM TICK 定时器模块	149
18.1 SYSTEM TICK 定时器概述	149
18.2 SYSTEM TICK 定时器特性	
18.3 SYSTEM TICK 定时器框图	149
18.4 特殊功能寄存列表	150
18.5 特殊功能寄存器说明	151
19. 电气规格	153
19.1 DC 参数	153
19.2 极限参数	154
19.3 功耗参数	154
19.4 外部 ADC 参数	155
19.5 VBAT 测试参数	156
19.6 VCC 测试参数	156
20. 封装	157

1. HT6015/6017/6115 概述

1.1 简介

HT6015/6017/6115 是多功能、高性能、低功耗单相智能电表专用 MCU 芯片,内部集成了 Cortex-MO 处理器、时钟管理、电源管理、硬件 3DES 加密和真随机数发生器、硬件自动温度补偿 RTC、PLL、高频 RC、低频 RC、LCD 驱动等单元,以及 NVIC 和 DEBUG 调试功能。其中,支持每秒补偿机制的 RTC 单元,芯片为其提供了两种不同的时钟源,对应到两种不同的封装形式:一种是将 MEMS 内置,以此作为 RTC 时钟源,支持真正的无晶振方案,用户量产中无需对 RTC 进行再校正;另一种则是以外置的 32.768KHz 晶体作为 RTC 时钟源,通过芯片内部集成的时钟自动数字补偿单元,协助用户在无需其软件参与的情况下,实现 RTC 的自动补偿。

- 工作电压范围: 2.2V~5.5V
- 工作温度范围: -45℃~85℃
- 采用 ARM Cortex-MO CPU Core、128K Flash+512bytes Information Flash、8K SRAM
- 高速度: CPU 最高工作频率达到 22M,程序执行 0 等待
- 低功耗: Hold 模式下最低功耗 3.3uA
 Sleep 模式下最低功耗 2.7uA
- RTC: 支持内置 MEMS 和外置 32K 低频晶体的两种封装形式
- RTC 补偿: RTC 内置曲线数字补偿,全温度范围 RTC 补偿无需用户软件参与
- LCD: 支持 4COM, 6COM, 8COM 的 LCD 显示, SEG 接口最多支持 37 段(80 PIN)
- 供电方式: 独立的 RTC 供电引脚,在芯片内除 RTC 模块之外的所有模块不供电的情况下, RTC 模块仍然可以保持独立工作
- 高精度温度传感器: -45度 ~ +85度 温度范围内,温度传感器一致性优于正负1度
- 2路硬件 7816 功能
- 内置硬件 3DES 加密/解密算法
- 硬件不可关闭 WDT 模块,保证系统可靠运行
- 采用绿色封装: 80PIN: HT6115、HT6015; 64PIN: HT6017

1.2 框图

1.3 引脚排列

1.4 引脚定义

80	64	标识	引脚类型	第一复用	第二复用	引脚说明
PIN	PIN			功能	功能	
1	1	OSCI ^{注6}	IN			晶振时钟引脚
2	2	VBAT	POWER			电池电压采样
3	3	PE. 7	IN/OUT	LVDIN		外部电压检测
4	4	TEST	IN			测试引脚(低电平有效,内部上拉),滤波 2us
5	5	/RST	IN			复位信号(低电平有效,内部 上拉),滤波 2us
6		PA. 11	IN/OUT	INT6		滤波 2us
7	6	PA. 10	IN/OUT	INT5		滤波 2us
8	7	PA. 9	IN/OUT	INT4		滤波 2us
9		PD. 0	IN/OUT	SEG16		
10		PD. 1	IN/OUT	SEG17		
11		PD. 2	IN/OUT	SEG18		
12	8	PD. 3	IN/OUT	SEG19		
13	9	PD. 4	IN/OUT	SEG20		输出驱动 5mA
14	10	PD. 5	IN/OUT	SEG21		输出驱动 5mA
15	11	PD. 6	IN/OUT	SEG22		输出驱动 5mA
16	12	PD. 7	IN/OUT	SEG23		输出驱动 5mA
17	13	PD. 8	IN/OUT	COMO		
18	14	PD. 9	IN/OUT	COM1		
19	15	PD. 10	IN/OUT	COM2		
20	16	PD. 11	IN/OUT	COM3		
21	17	PD. 12	IN/OUT	COM4	SEG24	
22	18	PD. 13	IN/OUT	COM5	SEG25	
23	19	PD. 14	IN/OUT	COM6	SEG26	
24	20	PD. 15	IN/OUT	COM7	SEG27	
25	21	PC. 8	IN/OUT	TOUT1		输出驱动 5mA
26	22	PC. 0	IN/OUT	TX1		输出驱动 30mA
27	23	PC. 1	IN/OUT	RX1		滤波 2us
28	24	PC. 4	IN/OUT	SPI_MOSI	RX5	滤波 2us,输出驱动 5mA
29	25	PC. 5	IN/OUT	SPI_MISO	TX5	输出驱动 5mA
30	26	PC. 6	IN/OUT	SPI_CLK		输出驱动 5mA
31	27	PC. 7	IN/OUT	SPI_CS		输出驱动 5mA
32	28	PA. 5	IN/OUT	INTO		滤波 2us

33		PA. 0	IN/OUT	SEG28		
34		PA. 1	IN/OUT	SEG29		
35		PA. 2	IN/OUT	SEG30		
36		PA. 3	IN/OUT	SEG31		
37	29	PC. 2	IN/OUT	RX0		滤波 2us
38	30	PC. 3	IN/OUT	TX0		
39	31	PC. 9	IN/OUT	TMR2		输出驱动 5mA
40	32	PC. 10	IN/OUT	TMR3		输出驱动 5mA
41	33	PA. 6	IN/OUT	INT1		TEST=0 时,该引脚功能为 JTAGWDTEN 滤波 2us,输出驱动 30mA
42	34	PA. 4	IN/OUT	SEG32		
43	35	PA. 7	IN/OUT	INT2	SEG33	滤波 2us,输出驱动 30mA
44	36	PA. 8	IN/OUT	INT3	SEG34	滤波 2us,输出驱动 30mA
45		PB. 0	IN/OUT	SEG0		
46		PB. 1	IN/OUT	SEG1		
47		PB. 2	IN/OUT	SEG2		
48		PB. 3	IN/OUT	SEG3		
49	37	PB. 4	IN/OUT	SEG4		
50	38	PB. 5	IN/OUT	SEG5		
51	39	VDD	POWER			内部 1.5V 输出,需外接 0.1uF 滤波电容
52	40	DGND	GND			芯片数字地
53	41	VCC	POWER			电源输入,需外接 10uF 和 0.1uF 滤波电容
54	42	PB. 6	IN/OUT	SEG6		
55	43	PB. 7	IN/OUT	SEG7		
56	44	PB. 8	IN/OUT	SEG8		
57	45	PB. 9	IN/OUT	SEG9		
58	46	PB. 10	IN/OUT	SEG10		
59	47	PC. 11	IN/OUT	TX2		输出驱动 5mA
60	48	PC. 12	IN/OUT	RX2		滤波 2us
61	49	PC. 13	IN/OUT	SCL		
62	50	PC. 14	IN/OUT	SDA		
63		PE. 0	IN/OUT	TMRO		
64		PE. 1	IN/OUT	TX4	TOUT2	输出驱动 5mA

65		PE. 2	IN/OUT	RX4	7816_0	滤波 2us
66	51	PE. 3	IN/OUT	CLKOUT		7816 CLK
67	52	PE. 4	IN/OUT	RX3	7816_1	滤波2us
68	53	PE. 5	IN/OUT	TX3		
69		PE. 6	IN/OUT	TMR1		
70	54	PB. 11	IN/OUT	SEG11		
71	55	PB. 12	IN/OUT	SEG12		JTAG 通讯: TDO
72	56	PB. 13	IN/OUT	SEG13		JTAG 通讯: TMS
73	57	PB. 14	IN/OUT	SEG14		JTAG 通讯: TDI
74	58	PB. 15	IN/OUT	SEG15		JTAG 通讯: TCK
75	59	PE. 8	IN/OUT			
76	60	PA. 12	IN/OUT	SEG35	ADCIN0	
77	61	PA. 13	IN/OUT	SEG36	ADCIN1	
78	62	VRTC	POWER			时钟电源输入
79	63	AGND	GND			芯片模拟地
80	64	OSCO ^{注6}	OUT			晶振时钟引脚

- 注: 1. IN=输入; OUT=输出; POWER=电源; GND=地。
 - 2. 数字输出引脚都可配开漏功能(Open Drain)。
 - 3. 数字输入引脚(除 RST/TEST/JTAGWDTEN,这三个引脚内部恒定上拉)都可配上拉功能。
 - 4. 红色的引脚标记为 64PIN 时缺省的引脚。
 - 5. PA. 6 引脚为一个特殊引脚, 当 TEST=0 时,该引脚为输入 JTAG_WDTEN 功能。
 - 6. OSCI 和 OSCO 在 HT6115 中为 AGND。

2. 存储器模块

2.1 概述

HT6015/6017/6115 内置可编程高可靠 128K Flash+512 bytes Information Flash 和 8K RAM。 其中 Flash 具有读保护功能,可进行读、写、页擦除和全擦除操作,Flash 的特性如下:

- Flash 字节读取时间: 40ns
- Flash字节写时间: 20us (max)
- Flash页擦除时间: 2ms (max)
- Flash全擦除时间: 10ms (max)
- Code Flash页面大小: 1K bytes/page
- Information Flash: 256 bytes/page
- 擦写次数: 100,000 次
- 数据保持时间: 20年 (min)
- 操作温度: -45 度到+105 度

2.2 存储器映射图

2.3 Flash 操作

2.3.1 Flash 的读保护

Flash 空间具有读保护功能,可以防止用户代码被读取。

将 Flash 的 00000FC1H 地址写入非 0FFH 的值后,开启读保护功能,128K Flash 空间的数据无法读出,Information Flash 中的数据依旧可以读出。(在线仿真时需要实时读取 Flash 内容,读保护下不能实现在线仿真)。

2.3.2 Code Flash 的操作说明

128K Code Flash 可以执行写/页擦除/全擦除操作,说明如下(伪代码举例,后同)。

1. 推荐首先使用宏定义的方式来实现对 Memory 中的地址写入操作,HT6015/6017/6115 支持字节操作,半字操作,字操作。

宏定义方式:

#define M8(adr) (*((uint8_t *) (adr)))
#define M16(adr) (*((uint16_t *) (adr)))
#define M32(adr) (*((uint32_t *) (adr)))

以上宏定义实现对 Flash 地址 addr 的取址

2. 对 128K Code Flash 的字节写操作流程:

WPREG = 0xA55A;

FLASHLOCK = 0x7A68; //unlock flash memory

FLASHCON = 0x01; //program

M32(prog_address) = prog_data; //prog_data 为需要编写的数据(32bit),

//prog_address 为需要写入的 flash 地址

//M16(prog_address) = prog_data; //prog_data 为需要编写的数据(16bit),

//prog_address 为需要写入的 flash 地址

//M8(prog_address) = prog_data; //prog_data 为需要编写的数据(8bit),

//prog_address 为需要写入的 flash 地址

//当进行字(32bit)写入时,prog_address 以 4 为单位递增 //当进行半字(16bit)写入时,prog_address 以 2 为单位递增 //当进行字节 (8bit)写入时,prog_address 以 1 为单位递增

while (FLASHCON.BUSY) //等待 flash 写操作完成,最长 20us .

3. 对 128K Code Flash 的页擦除操作流程:

WPREG = 0xA55A;

FLASHLOCK = 0x7A68; //unlock flash memory

FLASHCON = 0x02; //page erase

M32(prog_address) = prog_data; //prog_data 可以为任意的数据(32bit),

//prog_address 为需要擦除的 Flash 页内的任意一个地址

while (FLASHCON.BUSY) //等待 flash 页擦除操作完成,最长 2ms

;

4. 对 128K Code Flash 的全擦除操作流程:

WPREG = 0xA55A;

FLASHLOCK = 0x7A68; //unlock flash memory

FLASHCON = 0x03; // mass erase

M32(prog_address) = prog_data; //prog_data 可以为任意的数据(32bit),

// prog_address 为 128K Flash 的任意地址

while (FLASHCON.BUSY) //等待 flash 全擦除操作完成,最长 10ms

//全擦除会导致用户执行的代码全部被擦除掉

2.3.3 Information Flash 的操作说明

Information Flash 的写/页擦除/全擦除操作与 Code Flash 的写/擦除操作方式是一样的,区别在于 Flash 地址不一样,以及对 Information Flash 操作还需要再配置一个解锁的寄存器,如下所示:

FLASHLOCK = 0x7A68; //unlock flash memory

INFOLOCK = 0xF998; //unlock information flash memory

上面的两个解锁寄存器都需要配置,用户才可以操作 Information Flash,其他操作同上 Code Flash 操作。

Information Flash 共 512bytes (0x00040000~0x000401FF), 分 2 页, 256bytes/页, 其中第 2 页 (0x00040100~0x000401FF) 存储有芯片出厂信息,请勿进行写/擦除操作。

2.4 写保护寄存器说明

被写保护的寄存器分布在 CMU 模块, PMU 模块和 GPIO 模块, 列表如下, 寄存器详细说明见各个具体章节:

CMU模块寄存器基地址: 0x4000F000				
偏移地址				
0x00	WPREG	0x0000	写保护控制寄存器	

0x04	SYSCLKCFG	0x0002	系统时钟配置寄存器(写保护)
0x08	OSCADJ	0x0001	OSC 时钟电流偏置调整寄存器(写保护)
0x0C	LRCADJ	0x0009	低频 RC 调整寄存器(写保护)
0x10	HRCADJ	0x003D	高频 RC 调整寄存器(写保护)
0x14	HRCDIV	0x0001	高频 RC 分频寄存器(写保护)
0x1C	SYSCLKDIV	0x0001	系统时钟分频寄存器(写保护)
0x24	CLKOUTSEL	0x0002	CLKOUT 时钟选择寄存器(写保护)
0x28	CLKOUTDIV	0x0000	CLKOUT 时钟分频寄存器(写保护)
0x2C	CLKCTRL0	0x04E0	内部模块使能寄存器 0 (写保护)
0x30	CLKCTRL1	0x0000	内部模块使能寄存器1(写保护)
0x34	FLASHCON	0x0000	Flash 访问控制寄存器(写保护)

	PMU 模块寄存器基地址: 0x4000F400				
偏移地址					
	0x00	PMUCON	0x0017	PMU配置寄存器(写保护)	

GPIO模块寄存器基地址:

0x40011000(PA端口);

0x40011100(PB端口);

0x40011200(PC端口);

0x40011300(PD端口);

0x40011400(PE端口);

偏移地址	名称	复位值	功能描述
0x00	IOCFG	0x0000	端口功能配置寄存器1(写保护)
0x04	AFCFG	0x0000	端口功能配置寄存器 2 (写保护)

RTC 模块寄存器基	RTC 模块寄存器基地址: 0x4000C000								
偏移地址	名称	复位值	功能描述						
0x18	SECR	0x0000	秒寄存器 (写保护)						
0x1C	MINR	0x0000	分寄存器 (写保护)						
0x20	HOURR	0x0000	时寄存器 (写保护)						
0x24	DAYR	0x0001	日寄存器 (写保护)						
0x28	MONTHR	0x0001	月寄存器 (写保护)						
0x2C	YEARR	0x0000	年寄存器 (写保护)						
0x30	WEEKR	0x0001	周寄存器(写保护)						

2.5 特殊功能寄存器列表

CMU模块寄存器基地址: 0x4000F000

偏移地址	名称	读写方式	复位值	功能描述
0x00	WPREG	R/W	0x0000	写保护控制寄存器
0x34	FLASHCON	R/W	0x00	Flash 控制寄存器(写保护)
0x38	FLASHLOCK	W	0x0000	Flash 锁定寄存器
0x50	INFOLOCK	W	0x0000	Information Flash 锁定寄存器

2.6 特殊功能寄存器说明

WPREG			基地址:	0x4000F	0x4000F000			
(写保护智	(写保护寄存器)		偏移地址:	00H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				WDDEC	[15.0]			
Write:	WPREG[15:8]							
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				WPREG	[7.0]			
Write:				WPREG	[1:0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
WPREG[15:0]	1. WPREG 写入 0xA55A,则关闭写保护功能,用户可以写操作被保护的寄存器。
	2. WPREG 写非 0xA55A,则开启写保护功能,用户禁止写操作被保护的寄存器。
	3. 读该寄存器:
	0x0001:表示写保护关闭,用户可以写操作被保护的寄存器
	0x0000: 表示写保护开启,用户禁止写操作被保护的寄存器

FLASHCON (Flash 控	(写保护) 制寄存器)		基地址: 偏移地址:	0x4000F 34H	F000			
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	v	v	X	v	BUSY	F0P[1.07
Write:	Λ	Λ	Λ	Λ	Λ	X	rur [1:0]
Reset:	0	0	0	0	0	0	0	0

位	功能描述
BUSY	FLASH 忙标志位
	0:表示 Flash 空闲,可以进行操作。
	1:表示 Flash 正在进行写/擦除操作。
	只读状态寄存器位,写入无效。

FOP[1:0]	FLASH 操作	模式选择	
	F0P1	F0P0	FLASH 操作
	0	0	处于 Flash 只读模式
	0	1	对 STR/STRH 所指 FLASH 区执行 Flash 写操作
	1	0	对 STR/STRH 所指 FLASH 区执行 Flash 页擦除操作
	1	1	对 STR/STRH 所指 FLASH 区执行 Flash 全擦除操作
	1	1	对 STR/STRH 所指 FLASH 区执行 Flash 全擦除操

FLASHLOCK			基地址:	0x4000F	0x4000F000				
(Flash 锁)	(Flash 锁定寄存器)			38H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:		WDW[15 0]							
Write:	KEY[15:8]								
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	KEY[7:0]								
Write:				KEYL	<i>(</i> :U)				
Reset:	0	0	0	0	0	0	0	0	

位	功能描述				
KEY[15:0]	Flash 锁定控制位				
	对该寄存器写入 0x7A68 后, FLASH 被解锁,用户可以写操作 FLASH。				
	写入非 0x7A68 数据后, FLASH 被锁定,用户禁止写操作 FLASH。				
	默认为锁定状态,Flash 不可执行写/页擦除/全擦除 操作				
	该寄存器读取无意义,只能写入				

INFOLOCK	基地址			0x4000F	7000			
(InfoFlas	(InfoFlash 锁定寄存器)		偏移地址:	50H				
	Bit15	14	13	12	11	10	9	Bit8
Read:		WDW[15 0]						
Write:	KEY[15:8]							
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				NEA [7.0]			
Write:	KEY[7:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述					
KEY[15:0]	Information Flash 锁定控制					
	对该寄存器写入 0xF998 后, Information FLASH 被解锁,用户可以写操作					

Information FLASH。
写入非 0xF998 数据后,Information FLASH 被锁定,用户禁止写操作 Information
FLASH.
默认为锁定状态,Information Flash 不可执行写/页擦除/全擦除 操作

3. 时钟单元

3.1 时钟分类

测试温度范围: -45℃~85℃

क्रा अंग	频率	精度	功耗			
名称	州 华	作 及	MIN	TYP	MAX	
内部低频 RC 时钟 (Flrc)	32KHz	TBD		1uA		
内部高频 RC 时钟 (Fhrc)	8MHz	TBD		95uA		
外部低频 OSC 晶振(Fosc)	32.768KHz			500nA		
内部 MEMS 晶振 (Fmems)	524. 288KHz			2uA		
内部 PLL(Fpll)	22.020096MHz			250uA		

3.2 时钟框图

时钟符号说明:

Flrc: 内部低频 RC 时钟(32KHz),也作为看门狗时钟源。

Fhrc: 内部高频RC时钟(8MHz)。

Fosc: 外部低频OSC晶振时钟(32.768KHz)。

Fmems: 内部高频MEMS时钟(524288Hz)。

F1f: 内部选择的低频时钟(32.768KHz),来源为Fosc或者Fmems。

Fp11: 内部PLL产生的高频时钟(22.020096MHz),来源为F1f。

3.3 时钟停振检测框图

3.4 时钟说明

3.4.1 内部低频 RC 时钟(Flrc)

内部低频 RC 时钟振荡频率为 32 KHz,提供给看门狗使用,可以选择该低频 RC 时钟作为系统时钟 (SYSCLK SEL[2:0]=000)。

在 Sleep 或 Hold 模式下,内部低频 RC 时钟可由用户软件关闭,控制位为 CTRLBYFLASH 寄存器的 LRC EN 位。

3.4.2 内部高频 RC 时钟(Fhrc)

内部高频 RC 时钟频率为 8MHz,可以选择该高频 RC 时钟的分频输出时钟(分频设置位为 HRC DIV[1:0])作为系统时钟(SYSCLK SEL[2:0]=010)。

内部高频 RC 时钟全温度范围内精度误差小于 3%。

系统复位后,系统时钟默认选择内部高频 RC 时钟(SYSCLK SEL[2:0]=010)。

选择内部高频 RC 作为系统时钟时,不能关闭内部高频 RC 时钟,对 HRC_EN 写"0"操作无效。

3.4.3 外部低频晶振时钟(Fosc)

HT6015/6017 芯片外接低功耗晶体震荡器, 时钟频率 Fosc=32768Hz, 以 Fosc 作为系统的内部低频

时钟 Flf, 芯片内部集成了其震荡所需的电阻和电容。

3.4.4 内部高频 MEMS 时钟 (Fmems)

HT6115 芯片内部集成了 MEMS 时钟振荡器, 时钟频率 Fmems=524288Hz。

3.4.5 内部低频时钟(Flf)

芯片通过硬件 Bonding 方式选择 F1f 的时钟源 (Fmems 或 Fosc),同时芯片内给出时钟选择标志位 LF_SEL_STA, LF_SEL_STA 为只读时钟状态标志位。如果 LF_SEL_STA=0,说明 Fosc 作为低频时钟 F1f 的时钟源;如果 LF_SEL_STA=1,说明 Fmems 作为低频时钟 F1f 的时钟源,此时 F1f 为 Fmems 的 16 分频。

内部低频时钟 F1f 也作为内部 PLL 的时钟源。

3.4.6 内部 PLL 时钟 (Fpll)

内部 PLL 用于对内部低频时钟 F1f (32768Hz) 倍频 (倍频值=672), 以对系统提供最高达 22.020096MHz 的高频时钟 Fp11。

3.4.7 时钟安全机制

芯片内部集成有 3 个独立的时钟停振检测模块,分别对内部低频时钟 F1f, PLL 输出时钟 Fp11,和内部高频时钟 Fhrc 作检测。低频时钟停振检测功能默认开启,3 个停振检测模块均可以由用户软件关闭,控制位分别为 LF_DET_EN, PLL_DET_EN, HRC_DET_EN。

时钟停振检测模块的时钟源为内部低频 RC 时钟 Flrc。

当对应的的时钟停振检测模块功能开启时,内部低频时钟 F1f (来源为 Fosc 或者 Fmems) 发生停振, PLL 时钟 Fp11 发生停振, 或内部高频 RC 时钟 Fhrc 发生停振,都会产生相应的时钟故障标志 (LF FLAG, PLL FLAG, HRC FLAG)。

当停振检测模块检测到 Flf 停振,系统给出时钟停振标志 LF_FLAG,如系统时钟 Fsys 选择 Flf 或 Fpl1 (Flf 为 Fpl1 的时钟源)时,系统会由硬件强制将系统时钟 Fsys 切换到内部低频 RC 时钟 Flrc,且产生中断(NMI 中断),同时将寄存器 SYSCLK SEL[2:0]的值置为 000。

当停振检测模块检测到 Fp11 停振,系统给出时钟停振标志 PLL_FLAG ,如系统时钟 Fsys 选择 Fp11 时,系统会由硬件强制将系统时钟 Fsys 切换到内部低频 RC 时钟 F1rc,且产生中断 (NMI 中断),同时将寄存器 $SYSCLK_SEL[2:0]$ 的值置为 000。

当停振检测模块检测到 Fhrc 停振,系统给出标志位 HRC_FALG,如系统时钟 Fsys 选择 Fhrc 时,系统不会由硬件强制切换系统时钟,此时系统将停止运行,等待看门狗复位。

3.4.8 时钟异常状态处理

- 1. 系统运行于低频时钟 F1f 时,如 PLL 停振,芯片硬件不做任何处理,仅给出停振标志位 PLL_FLAG。
- 2. 系统运行于低频时钟 F1f 时,如 F1f 的时钟源(Fosc 或 Fmems)停振,系统时钟由硬件强制切换到 F1rc,同时产生 NMI 中断。
- 3. 系统运行于 PLL 时钟 Fp11 时,如 F1f 停振或 Fp11 停振,系统时钟由硬件强制切换到 F1rc,同时产生 NMI 中断。

3.5 特殊功能寄存器列表

CMU模块寄存器基地址: 0x4000F000									
偏移地址 名称 读写方式 复位值 功能描述									
0x00	WPREG	R/W	0x0000	写保护控制寄存器					
0x04	SYSCLKCFG	R/W	0x0002	系统时钟配置寄存器(写保护)					

0x08	RESERVED	R/W	0x0001	该寄存器用户不要修改
0x0C	LRCADJ	R/W	0x0009	LRC 时钟调整寄存器(写保护)
0x10	HRCADJ	R/W	0x003D	HRC 时钟调整寄存器(写保护)
0x14	HRCDIV	R/W	0x0001	HRC 时钟分频寄存器(写保护)
0x18	CLKSTA	R	0x0000	时钟状态寄存器 (只读)
0x1C	SYSCLKDIV	R/W	0x0001	系统时钟分频寄存器 (写保护)
0x24	CLKOUTSEL	R/W	0x0002	CLKOUT 时钟选择寄存器(写保护)
0x28	CLKOUTDIV	R/W	0x0000	CLKOUT 时钟分频寄存器(写保护)
0x2C	CLKCTRLO	R/W	0x24E0	内部模块使能寄存器 0(写保护)
0x30	CLKCTRL1	R/W	0x0000	内部模块使能寄存器1(写保护)
0x54	RESERVED	W	0x0000	该寄存器用户不要修改

3.6 特殊功能寄存器说明

WPREG (写保护智	寄存器)		基地址: 偏移地址:	0x4000F 00H	7000						
	Bit15	14	13	12	11	10	9	Bit8			
Read:		WDDG [1 F o]									
Write:		WPREG[15:8]									
Reset:	0	0	0	0	0	0	0	0			
	Bit7	6	5	4	3	2	1	Bit0			
Read:				WDDEC	[7.0]						
Write:	WPREG [7:0]										
Reset:	0	0	0	0	0	0	0	0			

位	功能描述									
WPREG[15:0]	4. WPREG 写入 0xA55A,则关闭写保护功能,用户可以写操作被保护的寄存器。									
	5. WPREG 写非 0xA55A,则开启写保护功能,用户禁止写操作被保护的寄存器。									
	6. 读该寄存器:									
	0x0001:表示写保护关闭,用户可以写操作被保护的寄存器									
	0x0000:表示写保护开启,用户禁止写操作被保护的寄存器									

SYSCLKCFO	SYSCLKCFG (写保护)			0x4000F	0x4000F000				
(系统时钟配置寄存器)			偏移地址:	04H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	v	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	WCLKEN	X	X	X	X	SYSCLK_SEL[2:0]		:0]	

Ī	Write:								
	Reset:	0	0	0	0	0	0	1	0

位		-							
WCLKEN	时钟配置寄存器写保护位 如果用户要更改系统时钟选择,必须同时将 WCLKEN 位置 1,例如: 'b1xxxxxxx, 才可以对系统时钟选择位 SYSCLK_SEL[2:0]进行写操作。								
SYSCLK_SEL[2:0]	系统时钟选择控制位:								
	SYSCLK_	SEL[2:0]		系统时钟选择Fsys					
	0	0	0	Flrc					
	0	0	1	Flf					
	0	1	0	Fhrc(Default)					
	0 1 1 Fpll								
	1	X	X	Fmems					
	1. 系统时钟可作为芯片 GPIO 的时钟源。	十内部硬件外	设模块的时钞	中源,经分频后也可作为 CPU 和					
	2. 如果 LF_SEL_STA 状时钟的操作是无效的		写 SYSCLK_SI	EL[2:0] = "1xx"切换到 Fmems					
	3. 复位后,系统时钟默		频 RC 时钟 Fb	nrc (SYSCLK _SEL[2:0]=010)。					
	4. 当选择内部低频时针	中Flf 作为系	统时钟时,检	测到低频时钟 Flf(来自于 Fosc					
	或 Fmems)发生停振 钟 Flrc,同时系统			将 Fsys 切换到内部低速 RC 时:0]被置为 000					
	或 Fmems) 或者 PLL	发生停振,」	比时系统会由	i测到低频时钟 F1f(来自于 Fosc 硬件强制将 Fsys 切换到内部低 K_SEL[2:0]被置为 000。					

LRCADJ (1	写保护)		基地址:	0x4000F	0F000			
(LRC 时钟调整寄存器)			偏移地址:	0CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	X	V	LDC ADTEC OF			
Write:	Å	Å	λ	X	LRC_ADJ[3:0]			
Reset:	0	0	0	0	1	0	0	1

位	功能描述
LRC_ADJ[3:0]	LRC 输出频率调节控制位

用户不要修改该寄存器的默认值

HRCADJ(写 (HRC 时钟	号保护) 中调整寄存器	器)	基地址: 偏移地址:	0x4000F 10H	F000				
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	v	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	X	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	V	V	UDG ADTES OF						
Write:	X	X	HRC_ADJ[5:0]						
Reset:	0	0	1	1	1	1	0	1	

位	功能描述
HRC_ADJ[5:0]	HRC 输出频率调节控制位
	用户不要修改该寄存器的默认值

HRCDIV (写保护)		基地址:	0x4000F	0x4000F000				
(HRC 时钟	中分频寄存器	器)	偏移地址:	14H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	X	X	X	X	X	IIDC DI	V[1.0]	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	HRC_DI	V[1.U]	
Reset:	0	0	0	0	0	0	0	1	

位			功能描述
HRC_DIV[1:0]	HRC 时钟分频设置:	1	
	HRC_DIV[1:0]	RC分频后的时钟Fhrc'
	0	0	Fhrc
	0	1	Fhrc/2(Default)
	1	0	Fhrc/4
	1	1	Fhrc/8

CLKSTA	基地址:	0x4000F000
(时钟状态寄存器)	偏移地址:	18H

	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	v	V	v	V	V
Write:	X	X	X	Λ	X	X	X	X
	0	0	0	0	0	0	0	0
Reset	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	DECEDVED	PLL_FLAG	HRC_FLAG	v	LF_SEL_STA	LF_FLAG
Write:	X	X	RESERVED	X	X	X	X	X
Reset	0	0	0	0	0	0	0	0

注: 此寄存器是只读状态寄存器

位	功能描述
RESERVED	该指示位无意义
PLL_FLAG	PLL 时钟 Fp11 停振标志
	0: 正常。
	1: 停振。
HRC_FLAG	内部高频 RC 时钟 Fhrc 停振标志
	0: 正常。
	1: 停振。
LF_SEL_STA	内部低频时钟 Flf 状态标志
	0: 低频时钟源为 Fosc。
	1: 低频时钟源为 Fmems。
	注:用来指示芯片的低频时钟源为 Fmems 或 Fosc, 反映 Bonding 引脚的状态。
LF_FLAG	内部低频时钟 Flf 停振标志
	0: 正常
	1: 停振
	(在 SLEEP 或 Hold 模式下,如果内部低频 RC 时钟 Flrc 关闭,内部低频时钟 Flf
	停振检测模块 LF_DET 默认输出为检测 LF 时钟正常,即 LF_FLAG =0;只有当系统时
	钟Fsys选择为内部低频时钟Flf或者PLL输出时钟Fpll下时,如停振检测模块检测
	到相应时钟停振,系统时钟会强制切换到内部低频 RC 时钟 Flrc,同时修改寄存器
	SYSCLK_SEL[2:0]的值为 000。)

SYSCLKDIV(写保护)			基地址:	0x4000F	F000				
(系统时针	钟分频寄存4	器)	偏移地址:	1CH					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	V	V	V	V	V	CDI	ICLY DIVEO	. 0.]	
Write:	X	X	X	X	X	CPO	CPUCLK_DIV[2:0]		
Reset:	0	0	0	0	0	0	0	1	

位				功能描述
CPUCLK_DIV[2:0]	CPU 时	钟分频	设置:	
	CPUCL	K_DIV	[2:0]	CPU时钟选择(Fcpu)
	0	0	0	Fsys
	0	0	1	Fsys/2(Default)
	0	1	0	Fsys/4
	0	1	1	Fsys/8
	1	0	0	Fsys/16
	1	0	1	Fsys/32
	1	1	0	Fsys/64
	1	1	1	Fsys/128

CLKOUTSEL	CLKOUTSEL (写保护)			0x4000F	7000				
(CLKOUT	时钟选择寄	存器)	偏移地址:	24H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	V	V	V	V	V	V	V	V	
Write:	X	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	V	V	V	X	X	CLI	ZOUT CELEO	ΓΛ.	
Write:	X	X	X	Λ	Λ	CLr	CLKOUT_SEL[2:0]		
Reset:	0	0	0	0	0	0	1	0	

位		功能描述									
CLKOUT_SEL[2:0]	CLKOUT	[时钟轴	渝出引	脚配置							
	CLKOU	JT_SEL	[2:0]	CLKOUT时钟选择							
	0	0									
	0	0	1	Flf							
	0 1 0			Fhrc(Default)							
	0	1	1	Fsys							
	1	X	X	Fmems							
				部时钟源从 CLKOUT 引脚引出,以观测 IDIV 寄存器将内部时钟分频后引出,							

	CLKOUTDIV(写保护) (CLKOUT 时钟分频寄存器)		基地址: 偏移地址:	0x4000F 28H	000			
(0233003	Bit15	14	13	12	11	10	9	Bit8

Read:	v	V	v	V	v	V	V	V
Write:	Λ	X	Λ	X	Λ	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	V	V	V		CLVOUT	TV[2.0]	
Write:	Λ	Λ	Λ	Λ		CLKOUT_I	111[9:0]	
Reset:	0	0	0	0	0	0	0	0

位	功能描述
CLKOUT_DIV[3:0]	CLKOUT 输出频率 $=$ $CLKOUT$ 选择的时钟源 $2 \times (CLKOUT _DIV[30] + 1)$

CLKCTRLO (写保护)			基地址:	0x4000F	⁶ 000			
(内部模块使能控制寄存器 0)			偏移地址:	2CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	v	3DES_RA	1P5LB0R	CLKOUT_	WDT EN	OCC CLD	HRC_DET	PLL_DET
Write:	X	D_EN	_EN	EN	WDT_EN	OSC_SLP	_EN	_EN
Reset:	0	0	1	0	0	1	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	LF_DET_	RESERVE	IIDC EN	DII EM	TOC EN	CDI EN	I CD EN	V
Write:	EN	D	HRC_EN	PLL_EN	I2C_EN	SPI_EN	LCD_EN	X
Reset:	1	1	1	0	0	0	0	0

位	功能描述
3DES_RAD_EN	3DES/随机数生成器 模块使能位
	0: 关闭(default)
	1: 打开
1P5LBOR_EN	LDO 内部 LBOR 使能位 (用户不要修改这个寄存器位)
	0: 关闭
	1: 打开 (default)
CLKOUT_EN	CLKOUT 使能信号
	0: 关闭(default)
	1: 打开
WDT_EN	在 Sleep 和 Hold 模式下选择是否关闭 Watch dog 功能
	0: 关闭(default)
	1: 打开
OSC_SLP	OSC 低功耗使能控制位 (用户需要将这个寄存器位修改为 0)
	0: 小功耗
	1: 大功耗 (default)
HRC_DET_EN	HRC 时钟检测模块控制位

	0: 关闭 HRC 时钟停振检测单元 (default)
	1: 使能 HRC 时钟停振检测单元
PLL_DET_EN	PLL 时钟检测模块控制位
	0: 关闭 PLL 时钟停振检测单元 (default)
	1: 使能 PLL 时钟停振检测单元
LF_DET_EN	LF 时钟检测模块控制位(F1f 可能来自于外部 OSC 或者 MEMS)。
	0: 关闭 LF 时钟停振检测单元
	1: 使能 LF 时钟停振检测单元 (default)
RESERVED	用户不要修改这个寄存器位
HRC_EN	HF RC 时钟振荡器使能位
	0: 关闭高频 RC 时钟模块;
	1: 使能高频 RC 时钟模块;(default)
	注意: 当用户选择 Fsys 为 Fhrc 时,此时不能关闭 HRC_EN,该寄存器位写入无效
PLL_EN	PLL 模块时钟使能位
	0: 关闭 PLL 模块 (default)
	1: 使能 PLL 模块
	注意: 当用户选择 Fsys 为 Fpll 时,此时不能关闭 PLL_EN,该寄存器位写入无效
I2C_EN	I2C 模块时钟使能位
	0: 关闭 I2C 模块 (default)
	1: 使能 I2C 模块
SPI_EN	SPI 模块时钟使能位
	0: 关闭 SPI 模块 (default)
	1: 使能 SPI 模块
LCD_EN	LCD 模块时钟使能位
	0: 关闭 LCD 模块 (default)
	1: 使能 LCD 模块

CLKCTRL1	(写保护)		基地址:	0x4000F	7000			
(内部模块使能控制寄存器1)			偏移地址:	30H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	UART5_E	UART4_7
Write:	Λ	A	Λ	Λ	Λ	Λ	N	816_EN
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	UART3_7	UART2_E	UART1_E	UARTO_E	TMD2 EM	TMD9 EN	TMD1 EN	TMDO EN
Write:	816_EN	N	N	N	TMR3_EN	TMR2_EN	TMR1_EN	TMRO_EN
Reset:	0	0	0	0	0	0	0	0

位	功能描述
UART5_EN	UART5 时钟使能位
	0: 关闭

	1: 使能
UART4_7816	UART4 时钟使能位
_EN	0: 关闭
	1: 使能
UART3_7816	UART3 时钟使能位
_EN	0: 关闭;
	1: 使能
UART2_EN	UART2 时钟使能位
	0: 关闭
	1: 使能
UART1_EN	UART1 时钟使能位
	0: 关闭
	1: 使能
UARTO_EN	UARTO 时钟使能位
	0: 关闭
	1: 使能
TMR3_EN	Timer3 时钟使能位
	0: 关闭
	1: 使能
TMR2_EN	Timer2 时钟使能位
	0: 关闭
	1: 使能
TMR1_EN	Timer1 时钟使能位
	0: 关闭
	1: 使能
TMRO_EN	Timer0 时钟使能位
	0: 关闭
	1: 使能

4. 电源单元

4.1 概述

PMU 为芯片的电源管理单元,功能如下:

- 监测系统电源 VCC 和低电压检测输入端 LVDIN,当供电电压低于或高于设定阈值时产生中断信号。
- 监测系统电源 VCC,可以根据设定阈值产生 BOR、LBOR、POR 复位信号。
- 测量电池电压 VBAT,用于估算电池电量,给出报警标志。
- 测量系统电源 VCC,可用于调整 LCD 驱动的对比度等。
- 测量芯片引脚 ADCINO, ADCIN1 的电压。
- 为芯片内部数字模块提供 1.5V 电源

(VCC, VBAT, ADCINO, ADCIN1 测得值寄存器在 TBS 单元)

4.2 框图

4.3 电源单元详细功能说明

4.3.1 电源切换

芯片供电电源的切换由芯片外部电路来完成。一般将5V主电源和3.6V电池通过两个二极管并联后输入到芯片的VCC引脚,来实现电源的无缝切换。

4.3.2 电源实时监测

PMU单元共内置5个电源检测模块,分别实时监测工作电源状态,并将监测结果以三个中断信号和三个复位信号的形式反馈给用户。

● LVD_DET模块:

监测外部引脚LVDIN的电压,当电压低于或高于1.185V时,置位LVDIF标志位;如果使能了LVDIE中断,就会产生LVD中断。

● VCC DET模块:

监测系统电源VCC的电压,当电压低于或高于设定阈值时,置位VCCIF标志位;如果使能VCC 检测中断(VCCIE),就会产生VCC中断;检测阈值可通过寄存器VDETCFG的位VCC_LVL[3:0]来设置。

● BOR DET模块:

监测系统电源VCC的电压,当电压低于或高于设定阈值时,置位BORIF标志位;如果设置BOR模块产生中断信号(BORRST=0),同时使能BOR检测中断(BORIE),就会产生BOR中断;如果设置BOR模块产生复位信号(BORRST=1),当电压低于设定阈值时,将会立即产生BOR复位。检测阈值可通过寄存器VDETCFG的位BOR LVL[1:0]来设置。

● LBOR DET模块:

监测系统电源VCC的电压,当电压掉落到阈值1.6V时,产生LBOR掉电复位。

● POR DET模块:

监测系统电源VCC的电压, 当电压上升到阈值0.3V时,产生POR上电复位。

4.3.3 内建 1.5V 电源

芯片内部通过子模块 VREG 将 VCC 电压调制成 1.5V 电压,供芯片内部的 1.5V 工作域使用,并通过引脚 VDD 输出。在输出引脚 VDD 上需要外接 0.1uF 电容,以协助芯片提供稳定的 1.5V 内部数字电源(详见"工作模式"章节下的"芯片电源域分配")。

4.3.4 BOR 检测功能(BOR_DET)

如果用户设置 BOR 模块产生复位信号 (BORRST=1),当 BOR 检测模块检测到系统电源 VCC 低于设定电压 Vbor 时,BOR 检测模块内部信号 BOROUT 输出低电平,内部复位信号 IRST 也将变为低电平,复位状态寄存器 RSTSTA的 BOR 标志位被置为 1。当 BOR 检测模块检测到系统电源 VCC 电压高于设定电压 Vbor

时,BOR 检测模块内部信号 BOROUT 输出高电平,在该高电平持续的 1024 个 Flrc 周期后,内部复位信号 IRST 也变为高电平。

Vbor 具有迟滞特性,迟滞电压为 200mV, BOR 模块的检测阈值 Vbor 可通过 VDETCFG 中的 BOR_LVL[1:0]设置。

掉电复位 BOR 产生时,下面的事件将会发生:

- 产生一个 BOR 脉冲
- 内部复位信号 IRST 有效
- 计数 1024 个 Flrc
- 复位状态寄存器 RSTSTA 的掉电复位标志位 BOR 被设置为 1。
- CPU 从 0000H 开始执行程序

LBOR_DET与 BOR_DET 的检测过程基本相同。

BOR 复位信号示意图

4.3.5 系统电源检测功能(VCC_DET)

VCC 检测信号示意图

4.3.6 低电压检测功能(LVD_DET)

LVD 检测信号示意图

注意: LVD DET功能不能配置为分时开启。

4.3.7 VCC DET, BOR DET 分时检测时序

系统在Hold或Sleep低功耗模式下时,为进一步降低系统功耗,VCC_DET & BOR_DET采用分时开启的方式工作:

其中Period为VCC_DET和BOR_DET检测模块分时开启的周期,可通过VDETPCFG寄存器的VDET_PRD[2:0]位设置。 Δ t是分时检测时每个周期内VCC_DET和BOR_DET工作的时间,可通过VDETPCFG寄存器的VDET_TIME[1:0]位设置。

LVD DET 功能不能分时开启。

建议用户在实际应用中:

上电时使用 VCC_DET 或 BOR_DET 模块检测系统电源 VCC 的电压,即检测电源的后级状态,以使系统能进入一个可靠的状态。

掉电时使用 LVD_DET 模块检测外部引脚 LVDIN 的电压,即检测电源的前级状态,以使系统能快速的检测到电源异常,并作相应的处理。

4.4 特殊功能寄存器列表

PMU 模块寄存器	PMU 模块寄存器基地址: 0x4000F400						
偏移地址	名称	读写方式	复位值	功能描述			
0x00	PMUCON	R/W	0x0017	PMU配置寄存器(写保护)			
0x04	VDETCFG	R/W	0x0069	电源检测阈值配置寄存器			
0x08	VDETPCFG	R/W	0x0022	电源检测时间周期配置存器			
0x0C	PMUIE	R/W	0x0000	PMU中断使能寄存器			
0x10	PMUIF	R/W	0x0000	PMU中断标志寄存器			
0x14	PMUSTA	R	0x0000	PMU状态指示寄存器			

4.5 特殊功能寄存器说明

PMUCON (写保护)			基地址:	0x4000F	F400			
(PMU 配置寄存器)			偏移地址:	00H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	RESERVE	Hold_LD	X	LVDDET_	BORRST	BORDET_
Write:	Λ	Λ	D	0	Λ	EN	16MMOd	EN
Reset:	0	0	0	1	0	1	1	1

位	功能描述
RESERVED	该寄存器位用户不要修改
Hold_LDO	在 Hold 模式下选择打开/关闭 大功耗 LDO (默认打开)
	0: 关闭大功耗 LD0
	1: 打开大功耗 LDO (default)
	当用户需要在 Hold 模式下达到最低功耗时,可以将该大功耗 LDO 关闭,届时芯
	片自动切换使用低驱动能力低功耗的 LDO
LVDDET_EN	LVD_DET 模块使能信号,监测 LVDIN 输入引脚
	0: 关闭 LVD_DET 模块
	1: 开启 LVD_DET 模块(default)
BORRST	BOR复位/中断选择位
	0: VCC电压低/高于设定阈值时产生BOR中断
	1: VCC电压低于VDETCFG[1:0]设定阈值时产生BOR复位(default)
BORDET_EN	BOR_DET 模块使能信号
	0: 关闭 BOR_DET 模块

1: 开启 BOR_DET 模块 (default)

VDETCFG			基地址:	0x4000F	400			
(电源检测	(电源检测阈值配置寄存器)		偏移地址:	04H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	DECE	DVED		VCC IV	ו רס. ס		DOD IV	τ [1.Λ]
Write:	RESERVED			VCC_LV	L[3:U]		BOR_LV	L[1:0]
Reset:	0	1	1	0	1	0	0	1

该寄存器位序 VCC_DET检测	阈值控制位	Ţ.							
VCC_DET检测				该寄存器位用户不要修改					
	VCC_LV	L[3:0]		检测电压					
0	0	0	0	2. 4V					
0	0	0	1	2. 6V					
0	0	1	0	2. 8V					
0	0	1	1	3. 0V					
0	1	0	0	3. 2V					
0	1	0	1	3. 4V					
0	1	1	0	3. 6V					
0	1	1	1	3. 8V					
1	0	0	0	4. 0V					
1	0	0	1	4. 2V					
1	0	1	0	4.4V (default)					
1	0	1	1	4. 6V					
1	1	0	0	4. 8V					
1	1	0	1	5V					
1	1	1	X	5V					
		T		1					
	ı		电压						
			default)						
1									
1	1	2.8V							
	0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 BOR_DET检测 0 0	0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0	0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 2 2 2 4 0 1 2 2 6	0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 2 2 0 1 2 4 0 2 6					

VDETPCFG			基地址:	0x4000F	400			
(电源检测周期配置存器)			偏移地址:	08H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read	X	X	RESERVE	VDET TI	ME[1.0]	VI	DET PRD[2:0	าไ
Write	Λ	Λ	D	\DE1_11	MIT [I . O]	VI	JΕ1_1 ΚD [Δ. (,]
Reset:	0	0	1	0	0	0	1	0

位				功能描述	述
RESERVED	该寄存器位用户不要修改,无意义				
VDET_TIME	Hold&Sle	ep 模式 ⁻	F VCC_DI	ET, BOR_DET 分时松	注测的时间设定
[1:0]	VDET_Ti	me[1:0]	检测的	†间	
	0	0	300us	(default)	
	0	1	;	360 us	
	1	0	4	480 us	
	1	1		560 us	
VDET_PRD[2:0]		eep 模式 ⁻ T_ PRD[2: 0 0 1 1 0 0		ET, BOR_DET 分时检 检测周期 16.5ms 33ms 67ms(default) 134ms 268ms 536ms	於测的周期设定 - - -
	1	1	0	1072 ms	
	1	1	1	2144 ms	

PMUIE			基地址:	0x4000F	F400			
(PMU 中断使能寄存器)		偏移地址:	0CH					
	Bit15	14 13 12			11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X

Write:								
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read	V	V	V	RESERVE	V	LVDIE	DODIE	VCCIE
Write	Λ	Λ	Λ	D	Λ	LVDIE	BORIE	VCCIE
Reset:	0	0	0	0	0	0	0	0

注:需要同时使能 PMUIE 使能的中断才有效。

位	功能描述
RESERVED	该寄存器位用户不要修改
	LVD检测中断使能位
LVDIE	0: 关闭
	1: 允许
BORIE	BOR检测中断使能位
	0: 关闭
	1: 允许
VCCIE	VCC检测中断使能位
	0: 关闭
	1: 允许

PMUIF			基地址:	0x4000F	₹400			
(PMU 中)	(PMU 中断标志寄存器)		偏移地址:	10H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read	v	X	v	RESERVE	v	LVDIE	DODIE	VCCIE
Write	X	Λ	X	D	X	LVDIF	BORIF	VCCIF
Reset:	0	0	0	0	0	0	0	0

注:该寄存器不能被 Wake_UP 唤醒复位。

	THE WAS TO THE PERSON OF THE
位	功能描述
RESERVED	该寄存器位用户不要修改,无意义
LVDIF	LVD检测中断标志位
	当外部引脚LVDIN电压下降到低于1.18V或上升到高于1.18V时,该位置1,软件写0清
	0.
BORIF	BOR检测中断标志位
	当内部工作电压VCC下降到低于设定阈值或上升到高于设定阈值时,并且在BORRST=0
	的情况下,该位置1,软件写0清0。
VCCIF	VCC检测中断标志位
	当系统电源VCC电压下降到低于设定阈值或上升到高于设定阈值时,该位置1,软件
	写0清0。

PMUSTA			基地址:	0x4000F	0x4000F400				
(PMU 状态寄存器寄存器)			偏移地址:	14H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read	X	X	Х	RESERVE	v	LVD_FLG	BOR_FLG	VCC_FLG	
Write	Λ	Λ	Λ	D	X	X	X	X	
Reset:	0	0	0	0	0	0	0	0	

注: 该寄存器为只读寄存器。

位	功能描述
RESERVED	该寄存器位用户不要修改,读取无意义
LVD_FLG	LVDIN 引脚电压状态
	0:表示 LVDIN 引脚电压小于 1.18V 阈值
	1:表示 LVDIN 引脚电压大于 1.18V 阈值
BOR_FLG	工作电压 VCC 电压状态
	0:表示 VCC 小于设定阈值 (BOR_LVL[3:0])
	1:表示 VCC 大于设定阈值 (BOR_LVL[3:0])
VCC_FLG	系统电源 VCC 电压状态
	0: 表示 VCC 小于设定阈值 (VCC_LVL[3:0])
	1:表示 VCC 大于设定阈值(VCC_LVL[3:0])

5. 工作模式

5.1 芯片电源域分配

5.2 工作模式

芯片共有三个硬件配置的模式: 正常模式, 调试模式, 测试模式

TEST PIN	JTAGWDTEN	工作模式
	(PA6)	
0	0	调试模式
		看门狗硬件禁止,可软件开启
		PB12, PB13, PB14, PB15 被固定为 JTAG 接口
0	1	测试模式
1	X	正常模式
		芯片内部所有模块电源正常供电,系统时钟和模块开关配置根据用户软件
		决定。
		看门狗不能被禁止,只能在 Sleep 或 Hold 模式下通过关闭内部低频 RC 时
		钟来禁止看门狗功能

5.3 睡眠模式 (Sleep)

5.3.1 SLEEP 模式下各模块开关

- 数字电源LDO 1P5关闭,其供电的模块相应关闭;
- VRTC供电模块不关闭,RTC相关的晶振电路,TBS模块,分频补偿电路一直开启;
- 进入Sleep后,如果用户配置开启BOR和VCC检测功能,则BOR_DET和VCC_DET模块会由硬件分时 开启以降低功耗;
- WDT默认开启,在SLEEP模式下,WDT计数溢出时,系统会发生WDT复位,但可以配置WDT_EN =0 在SLEEP模式下关闭WDT(详见CLKCTRL0寄存器);
- 进入SLEEP之前,如果配置LCD、TBS模块开启,在进入SLEEP模式后,即可实现LCD静态显示, 温度和电池电压测量功能;
- 为降低SLEEP模式下的功耗,可以在进入SLEEP模式之前,配置GPI0的状态(详见GPI0章节), 控制好芯片和外设的状态,防止通过GPI0往外部漏电;
- 如果用户期望在Sleep达到最低功耗:
 - (1) CLKCTRLO和CLKCTRL1寄存器全部清0
 - (2) CTRLBYFLASH中的LRC EN清0, 关闭内部低频RC

5.3.2 SLEEP 模式下的唤醒

CPU从SLEEP状态下唤醒等同复位,因此不进入中断向量,不会执行中断服务程序,程序从复位地址0000H开始执行。

在SLEEP模式下,Reset复位信号是不可被屏蔽的,包括POR,BOR,LBOR,外部RESET PIN上产生的外部复位信号,以及内部的WDT复位信号。当系统进入SLEEP模式后,如果以上复位信号产生,能够使芯片出现复位动作,程序从复位地址0000H开始执行。

要实现在 SLEEP 模式下的唤醒功能,进入 SLEEP 模式前需进行以下功能配置,必需先使能总中断: (1) 外部 INT 中断和串口 RX 引脚唤醒: 相应的 PIN 要配置为 INT 和 RX 功能(详细见 GPIO 单元),并使能外部中断和 UART 中断。当相应 PIN 上出现下降沿并保持低电平不少于 2 个 Fcpu 的时间,CPU 可从 SLEEP 模式下唤醒。注意,这里的 Fcpu 时钟为 CPU 时钟分频寄存器的输出时钟,如果用户在进入 Sleep 之前 CPU 时钟分频寄存器 SYSCLKDIV 的分频值过大 (如 1/128),则会造成外部唤醒 PIN 上要给出很长时间(超过 2 个 Fcpu 时钟)的低电平信号,才能将芯片从 SLEEP 模式下唤醒。(2) RTC 中断唤醒: 配置 RTC 总中断使能,配置对应 RTC 的子中断源(仅配置 RTCIE 相应位中断使能),当 RTC 使能的中断时间到时,或者 RTC 使能的闹钟定时或定时器定时时间到时,可以让CPU 从 SLEEP 模式下唤醒。

(3) **PMU 中断和 TBS 中断唤醒**:配置 PMU, TBS 总中断使能,使能 PMU, TBS 对应的子中断源(配置 PMUIE 和 TBSIE 相应位中断使能),当电源检测超过阈值或温度检测超过阈值时,可以让 CPU从 SLEEP 模式下唤醒。

5.3.3 从 SLEEP 模式唤醒后的唤醒方式确认

从SLEEP模式唤醒后,可以查询复位标志寄存器(RSTSTA寄存器的WKR位),如果该位为1,则说明确实发生了唤醒复位,然后再通过唤醒标志寄存器WAKEIF确定具体的唤醒源,其中:

- 1) WAKEIF的RTCWKIF位为1,表示CPU是由RTC中断信号引起了唤醒.具体的中断源由RTC的8种中断源确定,可以查询RTCIF对应的位来确认是哪种RTC中断引起的唤醒,详细见RTC单元。
- 2) WAKEIF的PMUWKIF位为1,表示CPU是由PMU中断信号引起了唤醒.具体的中断源由PMU的4种中断源确定,可以查询PMUIF对应的位来确认是BORIF、VCCIF、LVDIF,详细见PMU单元(电源单元)。

5.3.4 进入 Sleep 模式

Sleep模式通过CortexMO的系统自带指令WFI进入,即使在调试状态下,也是可以进入Sleep模式的,进入Sleep后VDD PIN输出为零。

进入Sleep指令如下; SCR = 0x04; WFI();

5.4 待机模式 (Hold)

Hold 模式与 Sleep 模式的区别就是在 Hold 模式下,LDO_1P5 是由用户控制开关的(控制位),数字的 LDO_LowPower 供电一直打开,但是由于其低输出驱动能力(20-30uA),导致在这个状态下,很多数字功能模块不能使能,用户可配置开启大功耗大输出驱动能力的 LDO_1P5 来适应其应用的需求。

为了降低 Hold 模式下的功耗, BOR DET, VCC DET 模块由芯片硬件分时开启。

如果系统在进入 Hold 模式之前配置了中断使能,在进入 Hold 模式后发生相应的中断事件,则会导致芯片从 Hold 模式下唤醒,并进入相应的中断处理程序。

WDT默认开启,在Hold模式下,WDT计数溢出时,系统会发生WDT复位,但可以配置WDT_EN=0在HOLD模式下关闭WDT(详见CLKCTRL0寄存器);

5.4.1 进入 Hold 模式

Hold模式通过CortexMO的系统自带指令WFI进入。 进入Hold指令如下: SCR = 0x00;

WFI():

5.5 特殊功能寄存器列表

基地址: 0xE000ED00							
偏移地址	名称	读写方式	复位值	功能描述			
0x10	SCR	R/W	0x0000	系统控制寄存器			

基地址: 0x4000F400							
偏移地址	名称	读写方式	复位值	功能描述			
0x18	WAKEIF	R/W	0x0000	唤醒源标志寄存器			

5.6 特殊功能寄存器说明

SCR 基地址: 0xE000ED10								
(系统控制寄存器)			偏移地址:	10H				
	Bit31 30			28•	··11	10	9	Bit8
Read:		COD[01 0]						
Write:		SCR[31:8]						
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				RESERVE		SLEEPDE	RESERVE	
Write:				D		EP	D	
Reset:	0	0	0	0	0	0	0	0

位	功能描述
SLEEPDEEP	=1: 在执行 WFI 指令后,芯片进入 Sleep 模式 =0: 在执行 WFI 指令后,芯片进入 Hold 模式

WAKEIF			基地址:	址: 0x4000F400				
(唤醒标志寄存器)			偏移地址:	扁移地址: 18H				
Bit31 30 29			29	28	27	26	25	Bit24
Read:	v	v	v	v	v	v	X	RESERVE
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	D
Reset:	0	0	0	0	0	0	0	0

	Bit23	22	21	20	19	18	17	Bit16	
Read:	WDTWKIF	X	X	RTCWKIF	TBSWKIF	X	X	X	
Write:	WDIWKIF	Λ	Λ	KICWKIF	IDOMVIL	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	RX5WKIF	RX4WKIF	RX3WKIF	RX2WKIF	RX1WKIF	RXOWKIF	INT6WKI	
Write:	Λ	Λ	LYMCYY	KA4WK1F	LYSMVIL	KAZWKIF	KVIMKIL	KAOWKII	F
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	INT5WKI	INT4WKI	INT3WKI	INT2WKI	INT1WKI	INTOWKI	V	DMIWMIE	
Write:	F	F	F	F	F	F	X	PMUWKIF	
Reset:	0	0	0	0	0	0	0	0	

注: Sleep 唤醒和 Hold 唤醒共用此标志位

该寄存器为只读寄存器,它永远会保持上一次导致芯片唤醒的唤醒源头,当一个新的唤醒事件产生时候,由硬件产生新的唤醒源标志,同时将之前的唤醒标志清 0

位	功能描述						
RESERVED	该寄存器位用户不要修改,无意义						
WDTWKIF	WDT中断唤醒						
	WDT 中断唤醒发生时,设置标志位为 1						
RTCWKIF	RTC唤醒标志						
	SLEEP/HOLD模式下RTC中断发生时将会产生RTC唤醒,此位置为1。(具体RTC那个						
	唤醒源头需要查看RTCIF寄存器)						
TBSWKIF	TBS唤醒标志						
	SLEEP/HOLD模式下TBS中断发生时将会产生TBS唤醒,此位置为1。(具体TBS那个						
	唤醒源头需要查看TBSIF寄存器)						
RX5WKIF	RX5唤醒标志						
	RX5唤醒发生时,设置标志位为1,硬件进入SLEEP/HOLD后再唤醒则清除之前的标						
	志						
RX4WKIF	RX4唤醒标志						
	RX4唤醒发生时,设置标志位为1,硬件进入SLEEP/HOLD后再唤醒则清除之前的标						
	志						
RX3WKIF	RX3唤醒标志						
	RX3唤醒发生时,设置标志位为1,硬件进入SLEEP/HOLD后再唤醒则清除之前的标						
	志						
RX2WKIF	RX2唤醒标志						
	RX2唤醒发生时,设置标志位为1,硬件进入SLEEP/HOLD后再唤醒则清除之前的标						
	志						
RX1WKIF	RX1唤醒标志						
	RX1唤醒发生时,设置标志位为1,硬件进入SLEEP/HOLD后再唤醒则清除之前的标						
	志						
RXOWKIF	RX0唤醒标志						

	RXO唤醒发生时,设置标志位为1,硬件进入SLEEP/HOLD后再唤醒则清除之前的标
	志
INT6WKIF	INT6唤醒标志
	INT6唤醒发生时,设置标志位为1,硬件进入SLEEP/HOLD后再唤醒则清除之前的标
	志
INT5WKIF	INT5唤醒标志
	INT5唤醒发生时,设置标志位为1,硬件进入SLEEP/HOLD后再唤醒则清除之前的标
	志
INT4WKIF	INT4唤醒标志
	INT4唤醒发生时,设置标志位为1,硬件进入SLEEP/HOLD后再唤醒则清除之前的标
	志
INT3WKIF	INT3唤醒标志
	INT3唤醒发生时,设置标志位为1,硬件进入SLEEP/HOLD后再唤醒则清除之前的标
	志
INT2WKIF	INT2唤醒标志
	INT2唤醒发生时,设置标志位为1,硬件进入SLEEP/HOLD后再唤醒则清除之前的标
	志
INT1WKIF	INT1唤醒标志
	INT1唤醒发生时,设置标志位为1,硬件进入SLEEP/HOLD后再唤醒则清除之前的标
	志
INTOWKIF	INTO唤醒标志
	INTO唤醒发生时,设置标志位为1,硬件进入SLEEP/HOLD后再唤醒则清除之前的标
	志
PMUWKIF	PMU唤醒标志
	SLEEP/HOLD模式下PMU事件发生时将会产生PMU唤醒,此位置为1,硬件进入
	SLEEP/HOLD后再唤醒则清除之前的标志(具体哪个PMU唤醒源需要查看PMUIF寄存
	器。)

6. GPIO 模块

6.1 概述

HT6015和HT6115提供PA[0..13], PB[0..15], PC[0..14], PD[0..15], PE[0..8]并行端口,支持70个双向I/0引脚,可以分别配置成输入或者输出模式。作为输入方式时,内部上拉88K电阻可配置。各个I/0都具有最小3mA的驱动能力,部分具备大驱动能力的I0如引脚说明里所述。

HT6017提供的I/0包括: PA[4..10, 12, 13], PB[4..15], PC[0..14], PD[3..15], PE[3..5, 7, 8], 支持54个双向I/0引脚,功能与HT6015和HT6115相同。

6.2 芯片引脚描述

80	64	标识	引脚类型	第一复用	第二复用	引脚说明
PIN	PIN			功能	功能	
1	1	OSCI ^{注6}	IN			晶振时钟引脚
2	2	VBAT	POWER			电池电压采样
3	3	PE. 7	IN/OUT	LVDIN		外部电压检测
4	4	TEST	IN			测试引脚(低电平有效,内部上拉),滤波 2us
5	5	/RST	IN			复位信号(低电平有效,内部 上拉),滤波 2us
6		PA. 11	IN/OUT	INT6		滤波 2us
7	6	PA. 10	IN/OUT	INT5		滤波 2us
8	7	PA. 9	IN/OUT	INT4		滤波 2us
9		PD. 0	IN/OUT	SEG16		
10		PD. 1	IN/OUT	SEG17		
11		PD. 2	IN/OUT	SEG18		
12	8	PD. 3	IN/OUT	SEG19		
13	9	PD. 4	IN/OUT	SEG20		输出驱动 5mA
14	10	PD. 5	IN/OUT	SEG21		输出驱动 5mA
15	11	PD. 6	IN/OUT	SEG22		输出驱动 5mA
16	12	PD. 7	IN/OUT	SEG23		输出驱动 5mA
17	13	PD. 8	IN/OUT	COMO		
18	14	PD. 9	IN/OUT	COM1		
19	15	PD. 10	IN/OUT	COM2		
20	16	PD. 11	IN/OUT	COM3		
21	17	PD. 12	IN/OUT	COM4	SEG24	
22	18	PD. 13	IN/OUT	COM5	SEG25	
23	19	PD. 14	IN/OUT	COM6	SEG26	
24	20	PD. 15	IN/OUT	COM7	SEG27	
25	21	PC. 8	IN/OUT	TOUT1		输出驱动 5mA
26	22	PC. 0	IN/OUT	TX1		输出驱动 30mA
27	23	PC. 1	IN/OUT	RX1		滤波 2us
28	24	PC. 4	IN/OUT	SPI_MOSI	RX5	滤波 2us,输出驱动 5mA
29	25	PC. 5	IN/OUT	SPI_MISO	TX5	输出驱动 5mA
30	26	PC. 6	IN/OUT	SPI_CLK		输出驱动 5mA
31	27	PC. 7	IN/OUT	SPI_CS		输出驱动 5mA
32	28	PA. 5	IN/OUT	INTO		滤波 2us

		ī		T		<u>, </u>
33		PA. 0	IN/OUT	SEG28		
34		PA. 1	IN/OUT	SEG29		
35		PA. 2	IN/OUT	SEG30		
36		PA. 3	IN/OUT	SEG31		
37	29	PC. 2	IN/OUT	RX0		滤波 2us
38	30	PC. 3	IN/OUT	TX0		
39	31	PC. 9	IN/OUT	TMR2		输出驱动 5mA
40	32	PC. 10	IN/OUT	TMR3		输出驱动 5mA
41	33	PA. 6	IN/OUT	INT1		TEST=0 时,该引脚功能为 JTAGWDTEN 滤波 2us,输出驱动 30mA
42	34	PA. 4	IN/OUT	SEG32		
43	35	PA. 7	IN/OUT	INT2	SEG33	滤波 2us,输出驱动 30mA
44	36	PA. 8	IN/OUT	INT3	SEG34	滤波 2us,输出驱动 30mA
45		PB. 0	IN/OUT	SEG0		
46		PB. 1	IN/OUT	SEG1		
47		PB. 2	IN/OUT	SEG2		
48		PB. 3	IN/OUT	SEG3		
49	37	PB. 4	IN/OUT	SEG4		
50	38	PB. 5	IN/OUT	SEG5		
51	39	VDD	POWER			内部 1.5V 输出, 需外接 0.1uF 滤波电容
52	40	DGND	GND			芯片数字地
53	41	VCC	POWER			电源输入,需外接 10uF 和 0.1uF 滤波电容
54	42	PB. 6	IN/OUT	SEG6		
55	43	PB. 7	IN/OUT	SEG7		
56	44	PB. 8	IN/OUT	SEG8		
57	45	PB. 9	IN/OUT	SEG9		
58	46	PB. 10	IN/OUT	SEG10		
59	47	PC. 11	IN/OUT	TX2		输出驱动 5mA
60	48	PC. 12	IN/OUT	RX2		滤波 2us
61	49	PC. 13	IN/OUT	SCL		
62	50	PC. 14	IN/OUT	SDA		
63		PE. 0	IN/OUT	TMRO		
64		PE. 1	IN/OUT	TX4	TOUT2	输出驱动 5mA

65		PE. 2	IN/OUT	RX4	7816_0	滤波 2us
66	51	PE. 3	IN/OUT	CLKOUT		7816 CLK
67	52	PE. 4	IN/OUT	RX3	7816_1	滤波2us
68	53	PE. 5	IN/OUT	TX3		
69		PE. 6	IN/OUT	TMR1		
70	54	PB. 11	IN/OUT	SEG11		
71	55	PB. 12	IN/OUT	SEG12		JTAG 通讯: TDO
72	56	PB. 13	IN/OUT	SEG13		JTAG 通讯: TMS
73	57	PB. 14	IN/OUT	SEG14		JTAG 通讯: TDI
74	58	PB. 15	IN/OUT	SEG15		JTAG 通讯: TCK
75	59	PE. 8	IN/OUT			
76	60	PA. 12	IN/OUT	SEG35	ADCINO	
77	61	PA. 13	IN/OUT	SEG36	ADCIN1	
78	62	VRTC	POWER			时钟电源输入
79	63	AGND	GND			芯片模拟地
80	64	OSCO ^{注6}	OUT			晶振时钟引脚

- 注: 1. IN=输入; OUT=输出; POWER=电源; GND=地。
 - 2. 数字输出引脚都可配开漏功能(Open Drain)。
 - 3. 数字输入引脚(除 RST/TEST/JTAGWDTEN,这三个引脚内部恒定上拉)都可配上拉功能。
 - 4. 红色的引脚标记为 64PIN 时缺省的引脚。
 - 5. PA. 6 引脚为一个特殊引脚,当 TEST=0 时,该引脚为输入 JTAG_WDTEN 功能。
 - 6. OSCI 和 OSCO 在 HT6115 中为 AGND。

6.3 I/O 端口基地址列表

GPIO 模块寄存器基地址:

0x40011000(PA端口);

0x40011100(PB端口);

0x40011200(PC 端口);

0x40011300(PD端口);

0x40011400(PE 端口).

0X40011400(1E	州川 戸 / ;			
偏移地址	名称	读写方式	复位值	功能描述
0x00	IOCFG	R/W	0x0000	端口功能配置寄存器1(写保护)
0x04	AFCFG	R/W	0x0000	端口功能配置寄存器 2(写保护)
0x08	PTDIR	R/W	0x0000	端口方向配置寄存器
0x0C	PTUP	R/W	0x0000	端口上拉配置寄存器
0x10	PTDAT	R/W	0x0000	端口数据寄存器
0x14	PTSET	W	0x0000	端口设置寄存器(只写)
0x18	PTCLR	W	0x0000	端口复位寄存器(只写)
0x1C	PTTOG	W	0x0000	端口翻转寄存器 (只写)
0x20	PTOD	R/W	0xFFFF	端口 Open Drain 功能配置寄存器

GPIO 模块寄存器	GPI0 模块寄存器基地址: 0x40011500(大电流端口);											
偏移地址 名称 读写方式 复位值 功能描述												
0x00	HDPORT	R/W	0x0000	大电流端口配置寄存器								

6.4 特殊功能寄存器说明

IOCFG(写	保护)		基地址:	0x40011	.0000x400	011400			
(端口功能	(端口功能配置寄存器1)			00H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:				PT[1	5.0]				
Write:				PILI	0:0]				
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:				DT [*	7.07				
Write:		PT[7:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
PT[15:0]	端口 IO 功能配置位
	0:对应的端口配置为 GPI0

1:对应的端口配置为功能 PIN

AFCFG(写保护)			基地址: 偏移地址:		0x400110000x40011400				
(物口切目	(端口功能配置寄存器2)			04 П					
	Bit15	14	13	12	11	10	9	Bit8	
Read:				PT[1	E.0]				
Write:				PILI	9:0]				
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:				DT [7	7.07				
Write:		PT[7:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
PT[15:0]	端口复用功能配置位(此寄存器只在对应端口配置为功能 PIN 时才有效)
	0: 复用功能 1
	1: 复用功能 2

PTDIR			基地址:	0x40011	0x400110000x40011400				
(端口方向	句配置寄存	器)	偏移地址:	08H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:				PT[1	E.0]				
Write:				PILI	o:⊗]				
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:				DT [/	7.07				
Write:		PT[7:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
PT[15:0]	端口方向配置位(此寄存器只在对应端口配置为 GPIO 时才有效)
	0: 输入
	1: 输出

PTUP		基地址: 0x400110000x40011400							
(端口上	位配置寄存	器)	偏移地址:	0CH	ОСН				
	Bit15	14	13	12	12 11 10 9 Bit8				
Read:				PT[1	E.0]				
Write:				PILI	0:0]				

Reset:	0	0	0	0	0	0	0	0			
	Bit7	6	5	4	3	2	1	Bit0			
Read:		Dm[5 o]									
Write:		PT[7:0]									
Reset:	0	0	0	0	0	0	0	0			

位	功能描述
PT[15:0]	端口上拉配置位(此寄存器只在对应端口配置为数字输入时才有效)
	0: 使能上拉
	1: 禁止上拉(浮空)

PTDAT			基地址:	0x40011	0x400110000x40011400				
(端口数排	居寄存器)		偏移地址:	10H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:		PT[15:8]							
Write:									
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:				D.T. [7	7.07				
Write:				PT[7	(:U]				
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
PT[15:0]	端口数据位(此寄存器只在对应端口配置为 GPIO 时才有效)
	当端口配置为输入时为读到的 I0 口状态
	0: 读到的为低电平
	1: 读到的为高电平
	当端口配置为输出时
	0: 输出低电平
	1: 输出高电平

PTSET			基地址:	0x40011	0x400110000x40011400			
(端口设置	(端口设置寄存器)			14H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	PT[15:8]							
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	X	X	X	X	X	X
Write:	PT[7:0]							

									×
Reset:	0	0	0	0	0	0	0	0	

注:本寄存器只可写入。

位	功能描述
PT[15:0]	端口设置位(此寄存器只在对应端口配置为 GPIO 且输出时才有效)
	0: 写 0 无效
	1: 写 1 将对应的端口输出高电平(同时更新 PTDAT 中对应的值)

PTCLR			基地址:	0x40011	.0000x40	011400		
(端口复位	立寄存器)		偏移地址:	18H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:		PT[15:8]						
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	X	X	X	X	X	X
Write:	PT[7:0]							
Reset:	0	0	0	0	0	0	0	0

注:本寄存器只可写入。

位	功能描述
PT[15:0]	端口复位位(此寄存器只在对应端口配置为 GPIO 且输出时才有效)
	0: 写 0 无效
	1: 写 1 将对应的端口输出低电平(同时更新 PTDAT 中对应的值)

PTTOG			基地址:	0x40011	0x400110000x40011400				
(端口翻转寄存器)			偏移地址:	1CH					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	PT[15:8]								
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	X	X	X	X	X	X	X	
Write:	PT[7:0]								
Reset:	0	0	0	0	0	0	0	0	

注:本寄存器只可写入。

位	功能描述
PT[15:0]	端口翻转位(此寄存器只在对应端口配置为 GPIO 且输出时才有效)
	0: 写 0 无效
	1: 写 1 将使对应的端口输出电平发生翻转(同时更新 PTDAT 中对应的值)

PTOD (端口开漏配置寄存器)			基地址: 偏移地址:		10000x400	011400		
	Bit15	14	13	12	11	10	9	Bit8
Read:		DW[15 0]						
Write:		PT[15:8]						
Reset:	1	1	1	1	1	1	1	1
	Bit7	6	5	4	3	2	1	Bit0
Read:				DT [7.07			
Write:				PT[<i>[</i> : U]			
Reset:	1	1	1	1	1	1	1	1

位	功能描述
PT[15:0]	端口开漏配置位(此寄存器只在对应端口配置为数字输出时才有效)
	0: 开漏功能使能(开漏输出,输出高为浮空,输出低为低)
	1: 开漏功能无效(推挽输出,输出高为高,输出低为低)

HDPORT				0x4001	1500				
(大电流端口配置寄存器)			偏移地址:	00H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	V	X	V	X	X	X	X	X
Write:	Λ	Λ	X	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	ead:	v v	V	X	PA8HD	PA7HD	DACIID	DCOUD	
Write:	Write: X		X	Λ	ГАОПИ	ra/nD	PA6HD	PC0HD	
Reset:	0	0	0	0	0	0	0	0	

注: 该寄存器为单独的起始地址

位	功能描述
PASHD, PA7HD,	端口大电流驱动配置(分别对应 PA8, PA7, PA6, 和 PC0 端口)
PA6HD, PC0HD	0: 普通驱动能力
	1: 超大电流驱动能力(20mA-30mA)

7. 中断模块

7.1 中断向量说明

系统中断	中断号	中断使能	中断标志	功能描述
NMI	X			硬件强制切换低频 RC 中断
PMU	0	PMUIE. LVDIE	PMUIF. LVDIF	LVD检测中断
		PMUIE. BORIE	PMUIF. BORIF	BOR检测中断
		PMUIE. VCCIE	PMUIF. VCCIF	VCC检测中断
3DES	1		DES3RANDIF. RANDIF	随机数生成中断
			DES3RANDIF. DES3IF	DES3 计算完成中断
INTO-6	2-8	EXTIE. RIE[6:0]	EXTIF. RIF[6:0]	外部输入引脚上升沿中断
		EXTIE. FIE[6:0]	EXTIF. FIF[6:0]	外部输入引脚下降沿中断
UARTO-5	9-14	UARTCON. RXIE	UARTSTA. RXIF	UART 接收中断
(UART3 和		UARTCON. TXIE	UARTSTA. TXIF	UART 发送中断
UART4 有 7816		ISO7816CON. PRDI	ISO7816STA. PRDIF	7816 溢出中断(UART3, UART4)
功能)		Е		
		ISO7816CON. RXIE	ISO7816STA. RXIF	7816 接收中断(UART3,UART4)
		ISO7816CON. TXIE	ISO7816STA. TXIF	7816 发送中断(UART3,UART4)
TMR0-3	15-18	TMRIE. CMPIE	TMRIF. CMPIF	比较中断
		TMRIE. CAPIE	TMRIF. CAPIF	捕获中断
		TMRIE. PRDIE	TMRIF. PRDIF	周期性溢出中断
TBS	19	TBSIE. VCCIE	TBSIF. VCCIF	电源电压测量中断
		TBSIE. ADC1IE	TBSIF. ADC1IF	ADC 通道 1 测量中断
		TBSIE. ADCOIE	TBSIF. ADCOIF	ADC 通道 0 测量中断
		TBSIE. VBATIE	TBSIF. VBATIF	电池电压测量中断
		TBSIE. TMPIE	TBSIF. TMPIF	温度测量中断
RTC	20	RTCIE. ALMIE	RTCIF. ALMIF	RTC 闹铃中断
		RTCIE. RTC2IE	RTCIF. RTC2IF	RTC 定时器 2 中断
		RTCIE. RTC1IE	RTCIF. RTC1IF	RTC 定时器 1 中断
		RTCIE. MTHIE	RTCIF. MTHIF	RTC 月中断
		RTCIE. DAYIE	RTCIF. DAYIF	RTC 日中断
		RTCIE. HRIE	RTCIF. HRIF	RTC 小时中断
		RTCIE. MINIE	RTCIF. MINIF	RTC 分钟中断
		RTCIE. SECIE	RTCIF. SECIF	RTC 秒中断
I2C	21		I2CCON. SI	I2C 传输中断
SPI	22		SPISTA. SPIF	SPI 传输完成中断

		SPISTA. MODF	SPI 传输错误中断
WDT	23		看门狗溢出中断
	24		

注: 只有 UART3 和 UART4 有 7816 功能,因此只有该两个通讯端口有 7816 溢出中断,7816 接收中断和 7816 发送中断

7.2 特殊功能寄存器列表

寄存器地址	名称	读写方式	复位值	功能描述
0xE000E100	ISER	R/W	0x00000000	中断使能配置寄存器
0xE000E180	ICER	R/W	0x00000000	中断禁止配置寄存器
0xE000E200	ISPR	R/W	0x00000000	中断标志置位寄存器
0xE000E280	ICPR	R/W	0x00000000	中断标志清零寄存器
0xE000E400-0xE000E41C	IPRO-IPR7	R/W	0x00000000	中断优先级寄存器

基地址: 0x400	基地址: 0x40011800									
偏移地址	名称	读写方式	复位值	功能描述						
0x00	EXTIE	R/W	0x0000	外部中断输入边沿控制寄存器						
0x04	EXTIF R/W 0x0000		0x0000	外部中断输入滤波器设置						
0x08	RESERVED	R/W	0x0000	该寄存器用户不要修改						

7.3 特殊功能寄存器说明

ISER		寄存器地址: 0xE000E100						
(中断使能配制寄存器)								
				Bit31	···BitO			
Read:				SETNA	[21.0]			
Write:				SEINA	[31:0]			
Reset:	0	0	0	•••	0	0	0	0

中断使能寄存器,该寄存器写1置1,使能中断,写0无效。

共32个控制位对应32个中断,每一位的对应关系见中断向量说明,如:

SETNA[0]对应 PMU

SETNA[1]对应 3DES

SETNA[2]对应 INTO

SETNA[3]对应 INT1

推荐使用 CortexMO 库函数中的 NVIC_Enable IRQ 来使能中断

ICER		寄存器地址: 0xE000E180						
(中断禁止配置寄存器)								
				Bit31	···BitO			
Read:				CLRENA	[21.0]			
Write:				CLIENA	[31.0]			
Reset:	0	0	0	•••	0	0	0	0

中断禁止寄存器,共 32 个控制位对应 32 个中断,该寄存器写 1 清 0,禁止中断,写 0 无效,该寄存器和 ISER 联动,如果将 ICER 的 bit0 置 1,则 ICER 和 ISER 的 bit0 都会被清 0。

每一位的对应关系见中断向量说明。

推荐使用 CortexMO 库函数中的 NVIC_Disable IRQ 来禁止中断

ISPR (中断标志置位寄存器)			寄存器地均	止: 0xE000F	200			
				Bit31	··Bit0			
Read:				SETPENI)[21.0]			
Write:				SEIFENI	0[31:0]			
Reset:	0	0	0	•••	0	0	0	0

中断标志置位寄存器,该寄存器写1置1,写0无效,可通过查询该寄存器来查询内核中断标志。 共32个控制位对应32个中断,每一位的对应关系见中断向量说明。

推荐使用 CortexMO 库函数中的 NVIC_SetPending IRQ 来置位中断标志

ICPR		寄存器地址: 0xE000E280						
(中断标志清零寄存器)								
				Bit31	··Bit0			
Read:				CLRPENI)[21.0]			
Write:				CLRPENI	[31:0]			
Reset:	0	0	0	•••	0	0	0	0

中断标志清零寄存器,该寄存器写 1 清 0,清除中断标志,写 0 无效,该寄存器和 ISPR 联动,如果将 ICPR 的 bit0 置 1,则 ICPR 和 ISPR 的 bit0 都会被清 0。

共32个控制位对应32个中断,每一位的对应关系见中断向量说明。

推荐使用 CortexMO 库函数中的 NVIC_ClearPending IRQ 来清零中断标志

IPRO	IPR7	寄存器地址: 0xE000E4000xE000E417
(中断优约	- 投級寄存器)	
		Bit31···Bit0
Read:		Priority [31:0]
Write:		riiority [31.0]

Reset:	0	0	0	•••	0	0	0	0

地址	寄存器名	功能描述
0xE000E400	IPRO	中断优先级配置,Interrupt0 Interrupt3
		Bit[31:30]: Interrupt3 优先级
		Bit[23:22]: Interrupt2 优先级
		Bit[15:14]: Interrupt1 优先级
		Bit[7:6]: Interrupt0 优先级
0xE000E404	IPR1	中断优先级配置,Interrupt4 Interrupt7
0xE000E408	IPR2	中断优先级配置,Interrupt8 Interrupt11
0xE000E40C	IPR3	中断优先级配置,Interrupt12 Interrupt15
0xE000E410	IPR4	中断优先级配置,Interrupt16 Interrupt19
0xE000E414	IPR5	中断优先级配置,Interrupt20 Interrupt23
0xE000E418	IPR6	中断优先级配置,Interrupt24 Interrupt27
0xE000E41C	IPR7	中断优先级配置,Interrupt28 Interrupt31

推荐使用 CortexMO 库函数中的 NVIC_SetPriority 来设置中断优先级

EXTIE			基地址:	0x40011	1800			
(外部中的	斯边沿配置 1	寄存器)	偏移地址:	00H				
	Bit15	14	13	12	11	10	9	Bit8
Read:					RIE[6:0]			
Write:					KIE[O:O]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:					EIE[G.O]			
Write:					FIE[6:0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
RIE[6:0]	INT 外部输入引脚上升沿中断使能
	0: 禁止
	1: 使能
FIE[6:0]	INT 外部输入引脚下降沿中断使能
	0: 禁止
	1: 使能

EXTIF	基地址:	0x40011800
(外部中断标志寄存器)	偏移地址:	04H

	Bit15	14	13	12	11	10	9	Bit8
Read:					RIF[6:0]			
Write:					KIL[O:O]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:					EIE[6.0]			
Write:					FIF[6:0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
RIF[6:0]	INT 外部输入引脚上升沿中断标志
	0: 未产生中断
	1: 产生中断
FIF[6:0]	INT 外部输入引脚下降沿中断标志
	0: 未产生中断
	1: 产生中断

8. Reset 模块

8.1 复位优先级

芯片共有8种复位方式,可分三种复位优先级。

下表中的复位主要是指芯片中除了 RTC 模块之外的所有模块的复位。

RTC 模块为独立的, RTC 模块的复位只会被其独立的 VRTC 引脚电源的上电 POR 而复位。

序号	复位源	复位等级	不能复位的寄存器
1	上电复位 (POR)	一级	1,复位状态寄存器 RSTSTA
2	低电压掉电复位 (LBOR)	纵	
3	外部引脚 /RST 复位		1,复位状态寄存器 RSTSTA
4	 掉电复位 (BOR)	二级	2, PMU 模块的寄存器: PMUCON, VDETCFG,
4	坪电友也(DOM)		VDETPCFG
_	五河41年 (m , 1p)		1,复位状态寄存器 RSTSTA
5	看门狗复位 (WatchDog)		2, PMU 模块的寄存器: PMUCON, VDETCFG,
			VDETPCFG
6	调试复位(Debug Reset)	三级	3, GPIO 模块的寄存器: IOCFG, AFCFG, PTDIR,
			PTUP, PTDAT, PTOD 4, LCD 相关寄存器: LCDCLK, LCDCR, LCD BUF[i]
7	 唤醒复位(WakeUp Reset)		5, CMU 相关寄存器: CLKCTRLO, CLKCTRL1,
	大田文臣 ("alteep Rebee")		HRCDIV, HRCADJ

- 注 1: RSTSTA 的 POR 复位标志和 LBOR 复位标志之间可以互相清除
- 注 2: LRCADJ 会被 Watchdog 和 Debug Reset 复位
- 注 3: 软复位 (SoftReset) 属于 ARM Cortex MO 内核自带复位,不能复位所有寄存器

8.2 复位说明

任何复位源产生复位后, CPU 的程序指针恢复到 0000H, 绝大部分寄存器恢复到缺省值:

- 1) POR, LBOR 和 BOR 复位时,内部复位信号 IRST 将保持有效,并保持 1024 个 Flrc
- 2) 外部 RST, WDT Reset, SoftReset, Debug Reset, WakeUp Reset 复位时,内部 IRST 信号有效,并保持 64 个 Flrc。
 - 3) 只有 VRTC 引脚的 POR 复位会对 RTC 模块复位

8.2.1 上电复位

当电源第一次加到芯片上时,上电复位电路将会产生一个 POR 脉冲,指示发生上电。内部复位信号 IRST 保持为低电平,1024 个 F1rc 后,IRST 才会变为高电平。

上电复位 POR 产生时,下面的事件将会发生:

- 产生一个 POR 脉冲
- 第一次 POR 复位会将 RTC 模块复位(RTC 的复位只能由 VRTC 的电源的上电 POR 复位)
- 内部复位信号 IRST 有效
- 计数 1024 个 Flrc
- 复位状态寄存器 RSTSTA 的上电复位标志位 POR 被设置为 1, 其他 RSTSTA 为被清为 0。
- CPU 从地址 0000H 执行程序

上电复位 POR 说明

8.2.2 低电压检测复位

低电压检测复位(LBOR)在掉电后重新上电的复位过程与上电复位(POR)相同。

LBOR 复位说明

8.2.3 外部引脚复位

外部复位引脚/RST 出现比 2us 宽的低电平时,内部复位信号 IRST 有效,复位状态寄存器的复位标志位 RST 被设置为 1;内部复位信号 IRST 有效脉宽为 64 个 Flrc。

如果/RST 低电平脉宽比 2us 窄,系统不发生复位。

外部引脚复位说明

8.2.4 掉电复位

当掉电检测电路检查到电源电压低于电压 Vbor 时,BOR 输出低电平,内部复位信号 IRST 将变为低电平,复位状态寄存器 RSTSTA 的 BOR 标志位被置为 1。当掉电检测电路检测到电源电压高于电压 Vbor 时,BOR 输出高电平,IRST 在 1024 个 F1rc 时间之后变为高电平。

掉电复位 BOR 产生时,下面的事件将会发生:

- 产生一个 BOR 脉冲
- 内部复位信号 IRST 有效
- 计数 1024 个 Flrc
- 复位状态寄存器 RSTSTA 的掉电复位标志位 BOR 被设置为 1, 其他 RSTSTA 为被清为 0。
- CPU 从 0000H 开始执行程序

BOR 复位说明

8.2.5 看门狗复位

WatchDog Timer 溢出时将会产生导致内部复位 IRST 有效,复位状态寄存器的 WDT 复位标志位 WDT 被设置为 1。WDT 的复位脉宽为 64 个 Fosc。

WDT 复位

8.2.6 软复位

当向系统控制块的应用中断与控制状态寄存器寄存器 AIRCR 的 bit2 写入 1 时,则产生一个软复位。

软复位

8.2.7 调试复位

这种复位只在 JTAG 调试状态下才有可能产生。

调试复位

8.2.8 唤醒复位

出现唤醒事件时,按照下面顺序执行:

- 内部复位信号 IRST 有效
- 复位状态寄存器 RSTSTA 的掉电复位标志位 WKR 被设置为 1
- 计数 64 个 Flrc 后,释放内部复位信号 IRST

唤醒复位

8.3 特殊功能寄存器列表

基地值: 0x4000F400 (与 PMU 模块相同)					
偏移地址	名称	读写方式	复位值	功能描述	
0x30	RSTSTA	R/W		复位标志寄存器	

基地值: 0xE00	00ED00			
偏移地址	名称	读写方式	复位值	功能描述
0x0C	AIRCR	R/W		应用中断与控制状态寄存器

8.4 特殊功能寄存器说明

RSTSTA			基地址:	0x4000F	7400			
(复位标志	齿寄存器)		偏移地址:	30H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	Hold_Fl	Sleep_	V	v	V	v	V	роррст
Write:	ag	Flag	X	X	X	X	X	BORRST
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	DebugRS	SoftRS	Г ↓ ВСТ	RESERVE	Wakeup	WDTDCT	LDODDCT	DODDCT
Write:	T	T	ExtRST	D	RST	WDTRST	LBORRST	PORRST
Reset:	0	0	0	0	0	0	0	0

位 功能描述

Hold_flag	Hold 模式下中断唤醒标志位
	0: 未发生 Hold 模式下中断唤醒标志位
	1: 发生了 Hold 模式下中断唤醒标志位
	写 0 清 0
Sleep_flag	Sleep 模式下中断唤醒标志位
	0: 未发生 Sleep 模式下唤醒
	1: 发生了 Sleep 模式下唤醒
	写 0 清 0
BORRST	BOR 复位标志位
	0: 未发生 BOR 复位
	1: 发生了 BOR 复位
	写 0 清 0
DebugRST	调试复位复位标志位
	0: 未发生 Debug Reset 复位
	1: 发生了 Debug Reset 复位
	写 0 清 0
SoftRST	软复位复位标志位
	0: 未发生 Soft Reset 复位
	1: 发生了 Soft Reset 复位
	写 0 清 0
ExtRST	外部 RST 复位标志位
	0: 未发生 RST 复位
	1: 发生了 RST 复位
	写 0 清 0
RESERVED	该标志位对用户无意义
WakeupRST	唤醒复位复位标志位
	0: 未发生 Wakeup Reset 复位
	1: 发生了 Wakeup Reset 复位
	写 0 清 0
WDTRST	Watch Dog 复位标志位
	0: 未发生 WDT 复位
	1: 发生了 WDT 复位
	写 0 清 0
LBORRST	LBOR 复位标志位
	0: 未发生 LBOR 复位
	1: 发生了 LBOR 复位
	写 0 清 0
PORRST	POR 复位标志位
	0: 未发生 POR 复位
	1: 发生了 POR 复位
	写 0 清 0

AIRCR (应用中断与控制状态寄存器)			基地址: 偏移地址:		0xE000ED00 0CH				
	Bit31	30	29	28•	··11	10	9	Bit8	
Read:				A TDCD	[91.0]				
Write:	AIRCR [31:8]								
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:						SYSRESE	RESERVE		
Write:						TREQ	D		
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
SYSRESETREQ	=1: 芯片发生软复位
	=0: 无效

9. UART/7816 通讯模块

9.1 功能说明

UART 串行通信模块实现与外部设备的异步串行通信。 特点:

- 共六路UART
- UART3, UART4分别与两路7816接口复用,通过MODESEL寄存器选择
- 波特率可软件设置,最高波特率115200
- 全双工通信口,可配置为红外调制输出,红外调制极性可选
- 发送支持1个停止位或2个停止位
- 数据位宽支持7或8位
- 硬件自动完成奇偶校验,数据接收完成的同时判断并提示奇偶校验错误,给出标志。
- 接收/发送中断使能分别独立

串口提供灵活的全双工异步通信的接收器/发送器,通过寄存器 UARTCON 配置串口工作在不同的工作模式,列举如下:

- 方式 1: 通过 TXD 发送或通过 RXD 接收 7 个数据位, 无奇偶校验, 波特率可变。
- 方式 2: 通过 TXD 发送或通过 RXD 接收 7 个数据位,和 1 个奇偶校验位,波特率可变。
- 方式 3: 通过 TXD 发送或通过 RXD 接收 8 个数据位,无奇偶校验,波特率可变。
- 方式 4: 通过 TXD 发送或通过 RXD 接收 8 个数据位,和 1 个奇偶校验位,波特率可变。

六路UART的输出TX0~TX5都可以调制成38K红外信号。调制信号的占空比可调,最大波特率不超过2400bps。

六路 UART 的输入 RXO $^{\sim}$ RX5 也都可以配置作为外部中断的输入,可以很方便的实现在 SLEEP 和 HOLD 模式下的外部通信唤醒功能。

芯片最多提供两路IS07816接口,支持2个外部7816设备。 7816接口主要特点如下:

- 两路7816接口与UART3, UART4分别复用,通过MODESEL寄存器选择
- 波特率设置与UART波特率设置相同,常用波特率覆盖,最高波特率115200
- 响应位长度支持1、1.5或2bit,发送奇偶校验支持奇、偶和固定校验
- 支持收发数据状态查询,硬件给出接收/发送数据正确性,给出标志
- 接收/发送中断使能分别独立,支持错误重收发功能和重收发次数设置

9.2 波特率计算

串口波特率由波特率生成器的值确定:

波特率 =
$$\frac{Fsys}{2 \times (SREL + 1)}$$

其中 SREL 是 16 位无符号数; Fsys 是系统时钟。

9.3 串口通讯模式说明

9.3.1 方式 1

方式 1 是一种标准的异步通信方式,每帧包含 9 或 10 位数据信息: 1 位起始位(0),7 位数据位(低位在前),1 或 2 位停止位(1)。在这种方式中,TXD 引脚为数据发送端,RXD 引脚为数据接收端,其波形如下图所示:

图示: 方式1时串行接收数据信息

在方式 1 中,发送状态时,当一帧中最后一个数据发送完时,发送中断标志 TI 置"1";接收状态时,接收完最后一个数据位时,接收中断标志 RI 置 1。

9.3.2 方式 2

方式 2 是每帧包含 10 或 11 位数据信息: 1 位起始位 (0), 7 位数据位 (低位在前), 1 位奇偶校验数据位,1或 2 位停止位(1)。TXD 引脚为数据发送端,RXD 引脚为数据接收端,其波形如下图所示:

图示:方式2时串行接收数据信息

9.3.3 方式 3

方式 3 是一种标准的异步通信方式,每帧包含 10 或 11 位数据信息: 1 位起始位 (0),8 位数据位 (低位在前),1 或 2 位停止位 (1)。在这种方式中,TXD 引脚为数据发送端,RXD 引脚为数据接收端,其波形如下图所示:

图示: 方式3时串行发送数据信息

图示: 方式3时串行接收数据信息

9.3.4 方式 4

方式 4 是使用第 9 位数据的通信方式,每帧包含 11 或 12 位数据信息: 1 位起始位 (0),8 位数据位 (低位在前),1 个奇偶校验或自定义数据位,1 或 2 位停止位 (1)。TXD 引脚为数据发送端,RXD 引脚为数据接收端,其波形如下图所示:

图示: 方式 4 时串行接收数据信息

9.4 7816 接收和发送

9.4.1 7816 数据发送

对数据缓冲寄存器SBUF3/4进行写操作即可以启动一次发送数据流程,该流程包括几个步骤。

发送起始位(0); (第 1ETU)
 发送 8bit 数据位; (第 2-9ETU)

3. 发送 1bit 校验位; (第 10ETU)

4. 读取接收到的 CKACK 信号; 如果 CKACK=0, TX_PAR 置为"1", 如果 CKACK=1, TX_PAR 置为 "0"; (第 11ETU)

5. 处于发送等待状态, 2个 ETU;

6. 此时一个数据帧发送完成, SDIF= "1", 如果 SDIE=1,则此状态结束时,产生发送中断。

如果 CKACK=1,或禁止自动重发(AUTOTXEN=0),则 UART 接口回到 IDLE 状态。如果 CKACK=0,且使能自动重发(AUTOTXEN=1),则 UART 接口进入重发等待状态。

9.4.2 7816 数据接收

在IDLE状态下,如果在接收端口(IO)上检测到下降沿,即启动一次接收数据流程。该流程包括几个步骤,每一步均需要一个或者几个ETU。

接收起始位(0);
 接收 8bit 数据位;
 接收 1bit 校验位;
 (第2-9ETU)
 (第10ETU)

4. 向发送端发送CKACK信号。如果校验正确,或者禁止自动重收(AUTORXEN =0),则发送1, 否则发送0。(**CKACK的宽度,可以通过ACKLEN**[1:**0**]**来配置**)

校验位	AUTORXEN	7816I0
正确	"0"禁止自动重收	"1"
正确	"1"使能自动重收	"1"
错误	"0"	"0"
错误	"1"	"0"

5. 此状态结束时,回到 IDLE 状态,产生接收中断。在中断中判断,如果校验正确,读取接收SBUF中的数据。(在接收的过程中,如果程序有对SBUF3/4写入的动作,该写入是无效的,需要等待)

9.4.3 7816 通讯示意图

HT6XXX 和从机接收端通讯数据示意图

HT6XXX进行通信时,收发一个bit 的需要的时间被定义为基础时间单位ETU (Elementary Time Unit)。发送端发送完一个数据帧后,接收端需要一定的时间对接收到的数据进行校验,然后再根据校验结果发送下一个数据帧或重发上一帧数据,即,连续发送两个数据帧之间的等待时间,该等待时间被定义为检测时间GT (Guarding Time),一般,1 GT = 3 ETU。

红外调制控制寄存器

红外调制脉宽调整寄存器

9.5 特殊功能寄存器列表

UART模块寄存器基地址: 0x40005000(UART0端口); 0x40006000(UART1端口); 0x40007000(UART2端口); 0x40008000(UART3端口); 0x40009000(UART4端口);								
	0x40000000 (UART5端口);							
偏移地址	名称	读写方式	复位值	功能描述				
0x00	MODESEL	R/W	0x0000	串口功能选择寄存器				
0x04	UARTCON	R/W	0x0000	UART 功能配置寄存器				
0x08	IS07816C0N	R/W	0x0000	7816 功能配置寄存器				
0x0C	SREL	R/W	0x0000	串口波特率发生寄存器				
0x10	SBUF R/W 0x0000 串口数据缓冲寄存器							
0x14	UARTSTA	R/W	0x0000	UART 状态寄存器				
0x18	ISO7816STA	R/W	0x0000	7816 状态寄存器				

0x0000

0x0000

注: 7816 的相关寄存器只对 UART3 与 UART4 的基地址有效

R/W

R/W

9.6 特殊功能寄存器说明

IRCON

IRDUTY

0x30

0x34

MODESEL			基地址:	基地址: 0x40005000—0x40009000; 0x40000000					
(串口功能	(串口功能选择寄存器)		偏移地址:	00H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	V	v	v	X	X	X	v	
Write:	Λ	X	X	X	Λ	Λ	Λ	X	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	X	X	X	X	V	V	Mada	
Write:	Å	X	Λ	λ	Λ	X	X	Mode	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
Mode	串口功能选择控制位:
	0: UART 功能
	1: 7816 功能

UARTCON (UART 功)	(UART 功能配置寄存器)			0x40005 04H	6000—0x400	009000; 0x	40000000	
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	v	v	X	X	RESERVE	UNEG	ST0PSEL
Write:	Λ	X	X	Λ	Λ	D	UNEG	STUPSEL
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	LENSEL	PARITYS	EI [1.0]	PARITYE	RXIE	TXIE	RXEN	TXEN
Write:	LENSEL	rakiiis	EL[1:0]	N	KAIE	IAIE	KAEN	IAEN
Reset:	0	0	0	0	0	0	0	0

位	功能描述
RESERVED	该控制位用户不要修改,默认为 0
UNEG	UART 通讯中的正逻辑或者是负逻辑
	0: 正逻辑(默认)
	1: 负逻辑
STOPSEL	UART 通讯停止位长度选择位
	1: 2bit
	0: 1bit
LENSEL	UART 通讯数据长度选择位
	1: 7bit
	0: 8bit
PARITYSEL	UART 奇偶校验选择位
	11: 固定为 1
	00: 固定为 0
	01: 奇校验
	10: 偶校验
PARITYEN	UART 奇偶校验使能位
	1: 使能
	0: 禁止
RXIE	UART 接收中断使能位
	1: 使能
	0: 禁止
TXIE	UART 发送中断使能位
	1: 使能
	0: 禁止
RXEN	UART 接收使能位
	1: 使能
	0: 禁止
TXEN	UART 发送使能位
	1: 使能
	0: 禁止

ISO7816CON			基地址:	0x40008	0x40008000—0x40009000				
(7816 功	(7816 功能配置寄存器)		偏移地址:	08H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	7816PAR	AUTORXE	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	ITY	N	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	AUTOTXE	REPTR1	REPTRO	ACKLEN1	ACKLENO	PRDIE	RXIE	TXIE	
Write:	N	KEFIKI	KEFIKU	ACKLENI	ACKLENU	FRUIE	KAIE	IAIE	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
7816PARITY	奇偶校验选择位
	0: 偶校验
	1: 奇校验
AUTORXEN	自动重接收使能位
	1: 使能
	0: 禁止
AUTOTXEN	自动重发送使能位
	1: 使能
	0: 禁止
REPTR[1:0]	自动重收重发的次数上限
	00:0次
	01: 1次
	10: 2次
	11: 3次
ACKLEN[1:0]	响应位的长度
	00: 1bit
	01: 1.5bit
	10/11: 2bit
PRDIE	上溢中断使能位
	1: 使能
	0: 禁止
RXIE	接收中断使能位
	1: 使能
WAT D	0: 禁止
TXIE	发送中断使能位
	1: 使能
	0: 禁止

SREL (串口波物	寺率发生寄	存器)	基地址: 偏移地址:		5000—0x400	009000; 0x	40000000	
	Bit15	14	13	12	11	10	9	Bit8
Read:				CDEL [15.07			
Write:				SREL[19:0]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				CDEL	7.07			
Write:	SREL[7:0]							
Reset:	0	0	0	0	0	0	0	0

串口/7816波特率发生寄存器,是一个16 位的波特率分频系数,其值可为0 $^{\sim}$ 65535 之间的任一整数,最高波特率为115200。波特率计算公式:

波特率 =
$$\frac{Fsys}{2 \times (SREL + 1)}$$

SBUF			基地址:	0x40005	0x40005000—0x40009000; 0x40000000				
(串口数技	(串口数据缓冲寄存器)			10H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:		CDUP[7, 0]							
Write:	SBUF[7:0]								
Reset:	0	0	0	0	0	0	0	0	

低 8 位有效,对寄存器 SBUF 写操作,则串口将开始向外传输发送缓存数据;对寄存器 SBUF 读操作,则串口将从串行接收缓存中读取数据。

UARTSTA			基地址:	基地址: 0x40005000—0x40009000; 0x40000000					
(UART 状	(UART 状态寄存器)		偏移地址:	14H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	v	v	X	X	DADITV	DVIE	TVIE	
Write:	Λ	X	X	Λ	A	PARITY	RXIF	TXIF	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述				
PARITY	接收时奇偶校验的状态				
	1: 错误				
	0: 正确				
	写 0 清零,写 1 无效。				
RXIF	接收中断标志				
	1: 接收数据完成,可从寄存器 SBUF 中读出				
	0:接收数据还未完成				
	写 0 清零,写 1 无效。				
TXIF	发送中断标志				
	1: 发送完成				
	0: 发送未完成				
	写 0 清零,写 1 无效。				

IS07816ST (7816 状	'A 态寄存器)		基地址: 偏移地址:					
Bit15 14			13	12	11	10	9	Bit8
Read:	V	V	V	V	V	V	V	V
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	V	V	RXERRST	TXERRST	DDDIE	DVIE	TVIE
Write:	Λ	X	X	AT	AT	PRDIF	RXIF	TXIF
Reset:	0	0	0	0	0	0	0	0

位	功能描述
RXERRSTAT	接收数据的状态
	1: 错误
	0: 正确
	写 0 清零,写 1 无效。
TXERRSTAT	发送数据的状态
	1: 错误
	0: 正确
	写 0 清零,写 1 无效。
PRDIF	接收上溢中断标志
	1: 产生上溢;
	0: 未产生上溢;
	写 0 清零,写 1 无效。
RXIF	接收中断标志
	1: 接收数据完成,可从寄存器 SBUF 中读出
	0: 接收数据还未完成

	写 0 清零,写 1 无效。
TXIF	发送中断标志
	1: 发送完成
	0: 发送未完成
	写 0 清零,写 1 无效。

IRCON			基地址:	: 0x40005000—0x40009000; 0x40000000				
(红外调制控制寄存器)			偏移地址:	30H				
	Bit15 14		13	12	11	10	9	Bit8
Read:	V	V	V	V	V	V	Х	V
Write:	X	X	X	X	X	X	Λ	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	V	V	TDI VI	TDTV
Write:	X	X	X	X	X	X	IRLVL	IRTX
Reset:	0	0	0	0	0	0	0	0

位	功能描述
IRLVL	红外调制输出极性选择
	1: 负极性。
	0: 正极性。
IRTX	红外调制功能使能控制
	1: 使能 TX 输出的红外调制功能。
	0: 关闭 TX 输出的红外调制功能。

注意: 只有 PLL_EN=1, PLL 打开的情况下,写 IRTX=1 的红外调制使能功能才是有效的。(否则写这两位使能无效的,因为红外调制没有时钟源)

IRDUTY			基地址:	0x40005	0x40005000—0x40009000; 0x40000000				
(红外调制脉宽寄存器)			偏移地址:	34H					
	Bit15 14		13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	v	v	X	X	v	TDDUTY	V[1.0]	
Write:	X X		X	Λ	Λ	X	IRDUT	1[1:0]	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
IRDUTY[1:0]	调制波形占空比配置

00: 50%
01: 25%
10: 12.5%
11: 6.25%

10. LCD 模块

10.1 概述

LCD 驱动单元最多可以支持 33 (Segment) * 8 (Common) 输出。主要特征如下:

- 软件可编程驱动方式。(具体要根据最终的 GPIO 引脚来定)
- 33 Segments * 8 Commons (264)
- 35 Segments * 6 Commons (210)
- 37 Segments * 4 Commons (148)
- 软件控制对比度可调
- LCD 驱动电压可选, LCD 驱动电压可选
- 1/3 Bias, 1/4 Bias 可选
- 1/3、1/4、1/6、1/8 Duty 可选

10.2 LCD 与 GPIO 口复用表

LCD 引脚定义	功能引脚定义	芯片引脚定义
COMO-COM3	PD. 8—PD. 11	PD. 8/COMOPD. 11COM3
SEGO-SEG15	PB. 0PB. 15	PB. 0/SEG0PB. 15/SEG15
SEG16-SEG23	PD. 0—PD. 7	PD. 0/SEG16—PD. 7/SEG23
SEG24/COM4—SEG27/COM7	PD. 12—PD. 15	PD. 12/SEG24/COM4—PD. 15/SEG27/COM7
SEG28—SEG32	PA. 0—PA. 4	PA. 0/SEG28—PA. 4/SEG32
SEG33—SEG34	PA. 7—PA. 8	PA. 7/SEG33—PA. 8/SEG34
SEG35—SEG36	PA. 12—PA. 13	PA. 12/SEG35—PA. 13/SEG36

10.3 LCD 框图

LCD 驱动单元采用 1/3Bias 工作方式,LCD 的电源由 VLCD 提供,LCD 驱动电压 VLCD1、VLCD2、VLCD3 由内部的电阻网络生成。

LCD 电压来自 VLCD 引脚,但是不能比 VCC 大,即 VLCD≤VCC。VLCD1、VLCD2 和 VLCD3 是 LCD 输出 波形的内部偏置电压。

VLCD(Vbias)用于控制 LCD 对比度,参考 LCD 对比度部分。

LCD 的显示数据放在寄存器 LCD_BUF 中,用于控制 LCD segment 的开关。当将某一段对应的 SEG 和 COM 都为 1 时,该段就会被点亮;否则不被点亮。

在不需要 LCD 显示时,LCD_EN(**CLKCTRLO.1**)写为 0 ,可以关闭 LCD 单元。LCD 关闭后,所有的 SEG 和 COM 都输出高电平,内部电阻分压网络以及模拟电路被关闭,LCD 单元的时钟也被关闭。

10.4 输出波形

LCD 输出波形的 Duty, 取决于需要的 COM 数, 提供三种 Duty:

- ◆ DUTY[1:0]=00: 1/4 duty--COM0、COM1、COM2、COM3 被使用
- ◆ DUTY[1:0]=01: 1/6 duty--COMO 到 COM5 都被使用
- ◆ DUTY[1:0]=1x: 1/8 duty--COMO 到 COM7 都被使用

LCD 驱动电压:

LCD 电压来自 VLCD, VLCD≤VCC。VLCD1、VLCD2 和 VLCD3 是 LCD 输出波形的内部偏置电压。

• VLCD=VCC-Vbias

Vbias 用于控制 LCD 对比度,参考 LCD 对比度部分。

COM 输出波形:

① 1/4 Duty 输出波形

使用 COMO/1/2/3 都被使用。1 帧等于 4 个 LCD 波形时钟周期。

SEGMENT 输出波形:

① 1/4 Duty

10.5 LCD 显示操作

LCD 的显示数据寄存器写功能:

LCD 单元的显示输出是采用往 LCD BUFF 内写入和对应得 SEG 输出的数据来输出显示的 LCD 段码。 37 Bytes 寄存器做为 LCD BUFF,操作方式与一般寄存器相同,同时与 LCD 的对应关系如下:

地址 LCD_BUF[0]对应 SEG0 (COM7—COM0)

地址 LCD_BUF[1]对应 SEG1 (COM7—COM0)

地址 LCD_BUF[2]对应 SEG2 (COM7—COM0)

地址 LCD_BUF[33]对应 SEG33 (COM7—COM0)

10.6 特殊功能寄存器列表

基地址: 0x4000D000								
偏移地址	名称	读写方式	复位值	功能描述				
0x00	LCDCLK	R/W	0x0080	LCD 时钟频率选择寄存器				
0x04	LCDCR	R/W	0x0009	LCD 驱动控制寄存器				
$0x10+i\times4$	LCD_BUF[i]	R/W	0x0000	LCD 显示数据寄存器				
(i=0~36)								

10.7 特殊功能寄存器说明

LCD Clo	ck Register	(LCDCLK	基地址:	0x4000I	0000			
LCD 时钟频率选择寄存器)			偏移地址:	00H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	DIACCTI	V	V	DUTAI	DUTYO	LCLVA	LCLV1	LCLVO
Write:	BIASCTL	X	X	DUTY1	DUTY0	LCLK2	LCLK1	LCLK0
Reset:	1	0	0	0	0	0	0	0

位	功能描述						
BIASCTL	偏压驱动选择位 1:表示选择1/3 bias 偏压驱动 0:表示选择1/4 bias 偏压驱动						
	LCD的dut	y控制选择(泣				
	DUTY1	DUTY0	COMMON选择	Duty			
	0	0	Com0~Com3	1/4 duty			
DUTY[2:0]	0	1	Com0~Com5	1/6 duty			
	1	X	Com0~Com7	1/8 duty			
	LCD扫描频率选择位:						
LCLK[2:0]	LCD 单元的时钟来自低频时钟频率 Flf, Flf 经过分频之后作为 LCD 波形扫描频率						
		Flcd, Flcd 可以通过寄存器 LCLK[2:0]进行配置(详见下表)。LCD 帧扫描频率					
	Ffrm=Flcd*	'duty。如:	1/4 duty 时, 帧扫描频	率 Ffrm=Flcd/4。			

LCLK			Frame rate(Hz)				
LCLK2	LCLK1	LCLK0	1/4	1/6	1/8		
1	0	0	128	85. 3	64		
0	0	0	64	42. 7	32		
0	0	1	32	21. 3	16		
0	1	0	16	10. 7	8		
0	1	1	8	5. 3	4		

LCD 驱动挡		· (LCDCR	基地址: 偏移地址:	0x4000D000 04H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	v	v	v	X	X	X	v	X	
Write:	X	X	X	Λ	Λ	Λ	X	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	ECCET1	FCSET0	EC	I.C	VDCEL 2	VDCEL 2	VDCEL 1	VDCEL 0	
Write:	FCSET1	rcse10	FC	LC	VRSEL3	VRSEL2	VRSEL 1	VRSEL 0	
Reset:	1	0	0	0	1	0	0	1	

位	功能描述						
	快速充电时间选择位						
	FCSET1	F1 FCSET0 快速充电时间					
ECCET[1.0]	0	0	1/8个Flcd周期				
FCSET[1:0]	0	1	1/16个Flcd周期				
	1	0	1/32个Flcd周期				
	1	1	1/64个Flcd周期				
	快速充电模	式选择位					
	和LC配	和LC配合使用,用于确定LCD充电模式。					
	缺省状态下,LCD 分压网络的电阻 RLCD 为 37KΩ。根据 LCD 差异,可以选择						
FC	RLCD=146KΩ,此时流过电阻网络的电流较小。						
	在选择RLCD=146KΩ时,设置控制位FC位1,可以选择快速充电模式,也就是说,						
	每次LCD输出波形改变时,先选择RLCD=37KΩ进行快速充电,然后再切换到RLCD=146K						
	Ω模式。快	速充电时间可以	从通过FCSET[1:0]进行选择。				
	慢速充电模	式选择位					
	和FC配合,	用于确定LCD充	1				
	FC	LC	LCD充电模式				
LC	X	0	RLCD=37KΩ,大电流充电模式				
	0	1	RLCD=146KΩ,小电流充电模式				
	1	1	短时间大电流,快速充电模式				

	LCD显示	对比度设	置位			
	VRSEL3	VRSEL2	VRSEL1	VRSEL0	1/3 bias 对比度 (% of VLCD)	1/4 bias 对比度 (% of VLCD)
	0	0	0	0	99.83	99.86
	0	0	0	1	93.63	95.17
	0	0	1	0	88.13	90.83
	0	0	1	1	83.27	86.9
	0	1	0	0	78.87	83.27
	0	1	0	1	74.93	79.97
VRSEL[3:0]	0	1	1	1	71.37	76.67
[]	1	0	0	0	68.17	74.07
	1	0	0	1	65.13	71.37
	1	0	1	0	62.47	68.93
	1	0	1	1	59.97	66.63
	1	1	0	0	57.67	64.5
	1	1	0	1	55.53	62.47
	1	1	1	0	53.57	60.6
	1	1	1	1	51.7	58.8

11. WDT 模块

11.1 概述

只有处于 Sleep 或 Hold 模式下,看门狗才可以通过关闭低频 RC 时钟或 WDT_EN 控制位而被关闭。Watchdog Timer 是一个特殊的定时器,其时钟为内部低频 RC 时钟,计时器计满预定时间则发出溢出脉冲,产生 WDT 复位信号或 WDT 中断信号;在溢出脉冲发生前将 Watchdog Timer 清零,则不会发出 WDT 复位。特点如下:

- 采用硬件狗设计
- SLEEP或者HOLD模式下WDT开启/关闭可选
- SLEEP模式下可以通过WDT唤醒复位
- HOLD模式下可以通过WDT中断唤醒或复位
- 可以通过外部引脚 JTAG_WDTEN进行控制

11.2 工作模式

WDT_EN(CLKCTRLO.11)软件控制位和外部引脚 JTAG_WDTEN配合使用。当JTAG_WDTEN拉高时,无论WDTEN位等于0还是等于1,WDT均被使能;当JTAG_WDTEN拉低时,WDT_EN=1(CLKCTRLO.11=1),使能WDT计数;WDT EN=0,表示关闭WDT计数,并且将WDT CNT进行清零。

在 Normal 模式下:

TEST	JTAG_WDTEN	WDT_EN	WDT 模块
0	0	0	关闭
0	0	1	开启
0	1	X	开启
1	X	0	开启
1	X	1	开启

在 Sleep 或 Hold 模式下:

WDT EN=0 (CLKCTRLO. 11=0), 在 SLEEP 或 HOLD 模式下屏蔽掉 WDT 的 CLK, WDT 功能无效。

注意: 当 WDT 被关闭时,需要同时对 WDT Counter 清零,确保 WDT 重新打开后,计时是从 0 开始进行。

WDT_EN 的控制位对应到 WDT 的功能控制位:

WDT_EN	WDT 功能在 SLEEP 和 HODE 模式下的状态
1	开启
0	关闭

11.3 特殊功能寄存器列表

WDT 模块寄存器基地值: 0x40010000

偏移地址	名称	读写方式	复位值	功能描述
0x00	WDTCFG	R/W	0x00	看门狗 WDT 配置寄存器
0x04	WDTCLR R/W 0x0040 看门狗喂狗与时		看门狗喂狗与时间配置寄存器	
0x08	WDTCNT	R	0x0000	看门狗计数寄存器(只读)

11.4 特殊功能寄存器说明

WDTCFG			基地址:	0x40010	0000			
(WDT 配置寄存器)			偏移地址:	00H				
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	V	V	v	v	X	X	INT RST
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	1111_1/21
Reset:	0	0	0	0	0	0	0	0

位	功能描述
INT_RST	设置 WDT 计数溢出后产生复位还是产生中断
	0: 产生复位
	1: 产生中断

WDTCLR			基地址:	0x40010	0x40010000					
(WDT 喂狗与时间配置寄存器)			偏移地址:	04H						
	Bit15	14	13	12	11	10	9	Bit8		
Read:	0	0	0	0	0	0	0	0		
Write:	CLR[7:0]									
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:	ODM[Z o]									
Write:	SET[7:0]									
Reset:	0	1	0	0	0	0	0	0		

位	功能描述
CLR[7:0]	WDT 喂狗控制位:
	当该8bit写入0xAA,则清狗,清除WDT内部计数器WDTCNT,写入其他值无效
	该高 8bit 只能写入,不能读取,读出值永远为 0
SET[7:0]	WDT 溢出时间设置:
	WDT 溢出时间=64ms * (1+SET[7:0])
	SET[7:0]为 8 位无符号数,由上面公式可以得出,最短的定时时间为 64ms,最长
	为 16384ms。默认为 4160ms。

WDTCNT (WDT 计数	() () () () () () () () () () () () () (基地址: 偏移地址:	0x40010 08H	0000				
	Bit15	14	13	12	11	10	9	Bit8	
Read:				CNT []	15:0]				
Write:	X	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	CNT[7:0]								
Write:	X	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述			
CNT[15:0]	WDT 计数寄存器:			
	指示当前 WDT 内部的计数值			

12. 定时器模块

12.1 定时器单元概述

通用定时器的主要部分是一个 16 位计数器和相关的周期以及比较寄存器。计数器的时钟由系统时钟(Fsys)通过定时器单元内的一个预分频器(TMRDIV)分频得到。当计数器寄存器 TMRCNT达到周期寄存器(TMRPRD)或者比较寄存器(TMRCMP)的值时,都会产生中断标志 TMRIF,如果使能相应的中断 TMRIE,则会触发定时器中断。

所有定时器寄存器的配置都需要在 CLKCTRL1 寄存器中打开相应的定时器模块。

12.2 周期性定时功能

定时器的时钟源即系统时钟 Fsys,可根据 SYSCLKSEL[2:0]选择为:内部低频 RC 时钟 (Flrc),内部高频 RC 时钟 (Fhrc'),内部低频时钟 (Flf),外部 MEMS 晶振时钟 (Fmems),和系统时钟 (Fsys)。

定时器的时钟源经选定后,可经预分频器 TMRDIV 对定时器时钟源进行分频,然后定时器的计数器 TMRCNT 对预分频器后的时钟进行计数,当计数器 TMRCNT 的值 TMRCNT 与周期寄存器 TMRPRD 的值相等时,产生周期中断标志,如果使能周期中断(TMRIE. 0),则触发相应的周期中断函数。在周期中断标志产生后,计数器 TMRCNT 的值自动清零,然后自动重新开始计数。

所有定时器寄存器的配置都需要在 CLKCTRL1 寄存器中打开相应的定时器模块。

12.3 PWM 功能

所有定时器寄存器的配置都需要在 CLKCTRL1 寄存器中打开相应的定时器模块。 PWM 功能可通过寄存器 TMRCON. MODE [1..0]配置,配置成功后,相应的 GPIO 复用功能 TMR 引脚会

输出波形。PWM 的周期和占空比可通过寄存器 TMRPRD, TMRCMP 进行配置。当使能了计数器 (CNTEN)之后, 计数器开始计数, 当计数器 TMRCNT 的值等于比较寄存器 TMRCMP 的值时, PWM 输出管脚发生电平翻转。计数器继续计数, 当计数器 TMRCNT 的值等于周期寄存器 TMRPRD 的值时, PWM 输出管脚再次发生电平翻转。PWM 输出波形如下图所示:

PWM 计数方式可以分为向上计数,向下计数以及中央对齐方式。上图为向上计数方式。

假如系统时钟选择为 PLL 产生的 22M 时钟,Timer 预分频寄存器 TMRDIV 默认值为 0(不分频),定时器 0 选择了 PWM 模式,向上计数方式,初始电平为高电平。若要想 PWM 占空比(高电平比上周期)为 30%。则 TMRCMP/ TMRPRD=30%。 根据需要的周期值来确定 TMRPRD 寄存器的值。TMRPRD 最大的周期时间为 0xFFFF/(22M/(TMRDIV+1))=2.9789ms

12.4 捕获功能

12.4.1 输入捕获模式

在输入捕获模式下,假如设定上升沿检测,当 Timer0~Timer3 管脚上检测到上升沿,计数器的当前值被锁定到捕获寄存器中。当捕获事件发生时,相应的捕获中断标志 TMRIF.1 被置 1,如果使能中断 (TMRIE.1=1),将产生中断。捕获检测可以选择上升沿,下降沿方式。

12.5 中断功能

12.5.1 定时周期中断

当计数器的值 TMRCNT 与周期寄存器的值 TMRPRD 相等时,如使能了周期中断 TMRIE. PRDIE=1,则发生周期中断。

12.5.2 捕获中断

当检测到外部输入信号相应沿时,如使能了捕获中断 TMRIE. CMPIE=1,则发生捕获中断。TMRCNT 的值被锁定到 TMRCAP 中。

12.5.3 比较中断

当计数器的值 TMRCNT 与比较寄存器的值 TMRCMP 相匹配时,如使能了比较中断 TMRIE. CMPIE=1,则发生比较中断。

12.6 特殊功能寄存器列表

TMR 模块寄存器基地址:

0x40001000 (TMR0);

0x40002000 (TMR1);

0x40003000 (TMR2);

0x40004000 (TMR3);

偏移地址	名称	读写方式	复位值	功能描述
0x00	TMRCON	R/W	0x0000	控制寄存器
0x04	TMRDIV	R/W	0x0000	预分频寄存器
0x08	TMRPRD	R/W	0x0000	周期寄存器
0x0C	TMRCAP	R/*W	0x0000	捕获数据寄存器
0x10	TMRCNT	R/*W	0x0000	计数器寄存器
0x14	TMRCMP	R/W	0x0000	比较器寄存器
0x18	TMRIE	R/W	0x0000	中断使能寄存器
0x1C	TMRIF	R/W	0x0000	中断标志寄存器

12.7 特殊功能寄存器说明

TMRCON	TMRCON			0x400010000x40004000				
(定时器控制寄存器)			偏移地址:	00H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	RESERVED	PWMHL	DWAC	[1.0]	CCMODE	MODI	F[1.0]	CMTEM
Write:	LESEVAED LAMMHT		PWMC[1:0]		CCMODE MODE[1:0]		CNTEN	
Reset:	0	0	0	0	0	0	0	0

位	功能描述
RESERVED	用户需要把这个寄存器配置为 0
PWMHL	PWM 初始电平选择(当定时器被配置为 PWM 功能):
	0: 高电平
	1: 低电平
PWMC[1:0]	PWM 工作模式选择(当定时器被配置为 PWM 功能):
	00: 向上计数
	01: 向下计数
	1X: 中央对齐
CCMODE	捕获电平沿选择(当定时器被配置为捕获功能):
	0: 上升沿
	1: 下降沿
MODE[1:0]	Timer 功能选择:
	00: 无意义
	01: PWM 功能 (需将 GPIO 配置为 TMRx 功能)
	10: 捕获功能 (需将 GPIO 配置为 TMRx 功能)
	11: 周期定时功能
CNTEN	计数器使能位:
	0: 关闭
	1: 使能

TMRDIV			基地址:	0x40001	0x400010000x40004000			
(预分频图	寄存器)		偏移地址:	04H				
	Bit15	14	13	12	11	10	9	Bit8
Read:		TMDD1V[7.0]						
Write:	TMRDIV[7:0]							
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0

Read:				TMDDII	/[7.0]			
Write:	TMRDIV[7:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
TMRDIV[15:0]	预分频的范围在 0-65535 之间
	经预分频器后的频率等于输入频率的 1/(TMRDIV[15:0] +1)

TMRPRD	⊢ 00 \		基地址:		.0000x400	004000		
(周期寄存	子器)		偏移地址:	08H				
	Bit15	14	13	12	11	10	9	Bit8
Read:		(MADDDD [15 0]						
Write:		TMRPRD[15:8]						
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	TWDDDD[7, 0]							
Write:	TMRPRD[7:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述			
TMRPRD[15:0]	该寄存器是一个 16 的周期寄存器			
	计数的周期寄存器和 PWM 的周期寄存器都是该寄存器			

TMRCAP			基地址:	0x40001	.0000x400	004000		
(捕获数据	居寄存器)		偏移地址:	0CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:		MIDGAD[15 0]						
Write:		TMRCAP[15:8]						
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	TMRCAP[7:0]							
Write:				IMRCAI	2[1:0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
TMRCAP[15:0]	当发生捕获事件时,当前计数器的值被存到该寄存器里

TMRCNT	基地址:	0x400010000x40004000
(计数寄存器)	偏移地址:	10H

	Bit15	14	13	12	11	10	9	Bit8
Read:		WINDOWN[15 O]						
Write:	TMRCNT[15:8]							
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:		mmonin[a o]						
Write:	TMRCNT[7:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
TMRCNT[15:0]	计数器当前的计数值

TMRCMP (比较寄存	字器)		基地址: 偏移地址:		.0000x400	004000		
	Bit15	14	13	12	11	10	9	Bit8
Read:		TMRCMP[15:8]						
Write:				IMRUMP	[19:6]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	TMRCMP[7:0]							
Write:				1 MRCMI	[[:0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
TMRCMP[15:0]	比较寄存器有两个功能:
	(1) Timer 做 PWM 功能的时候,当计数器未达到 TMRPRD 周期设定之前,而先达
	到 TMRCMP 的设定值的时候,TMRx 输出翻转
	(2) Timer 做周期定时功能的时候,当设定了 TMRCMP 的值,TMRCNT 如果计数到
	与 TMRCMP 相同的时候, 会置位 TMRIF. 2 (CMPIF) 标志, 如果使能相应的中断
	TMRIE.2(CMPIE),则芯片会产生中断,同时 TMRCNT 会继续计数直到与
	TMRPRD 寄存器相同,再从 0 开始重新计数。

TMRIE			基地址: 偏移地址:		0x400010000x40004000				
(定时器)	(定时器中断使能寄存器)			18H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	v	X	v	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	X	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	X	X	X	X	CMPIE	CAPIE	PRDIE	

Write:								
Reset:	0	0	0	0	0	0	0	0

位	功能描述
CMPIE	比较中断使能
	0: 关闭
	1: 使能
CAPIE	捕获中断使能
	0: 关闭
	1: 使能
PRDIE	定时周期中断使能
	0: 关闭
	1: 使能

TMRIF			基地址:	0x40001	0000x400	004000		
(定时器中	(定时器中断标志寄存器)			1CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	OVIE	CMDIE	CADIE	DDDIE
Write:	X	X	X	X	OVIF	CMPIF	CAPIF	PRDIF
Reset:	0	0	0	0	0	0	0	0

位	功能描述
OVIF	溢出中断标志
	当 TMRCNT 计数到超过 0xFFFF 时候产生该标志位,表明计数器发生了溢出
	该寄存器位的指示用户可以忽略。
CMPIF	比较中断标志
	0: 未产生中断
	1: 产生中断(写0清0)
CAPIF	捕获中断标志
	0: 未产生中断
	1: 产生中断(写0清0)
PRDIF	定时周期中断标志
	0: 未产生中断
	1: 产生中断(写0清0)

13. SPI 模块

13.1 概述

SPI 模块的芯片引脚为 PC. 7/SPI_CS、PC. 6/SPI_CLK、PC. 4/SPI_MOSI/RX5 和 PC. 5/SPI_MISO/TX5。 SPI 模块可以实现在 MCU 和外围设备(包含外部 MCU)之间的全双工同步串行通讯。这里提到的 MCU 或者外围设备必须包含 SPI 模块。包含下列特征:

- 全双工模式
- 三线同步传输
- 主机和从机模式
- 7种主机波特率
- 从机时钟最高至 Fcpu/4
- 极性和相位可编程的串行时钟
- 写冲突处理机制
- 8位数据传输,高字节在前,低字节在后
- 8位从机选择接口,控制外部从机
- 与主机 CPU 的专用功能寄存器接口
- 无二义端口,标准的 SPI

13.2 详细功能说明

串行外设接口(SPI)允许芯片与其他设备以半/全双工、同步、串行方式通信。此接口可以被配置成主模式,并为从设备提供通信时钟(SCK)。

13.2.1 SPI 主要特征

- 3线全双工同步传输
- 主模式或从模式操作
- 7 个主模式频率 (fcpu 的 2/4/8/16/32/64/128 分频)
- 在输入引脚 SPI CS 上的电平和下降沿侦测
- 可编程的时钟极性和相位
- 可触发中断的专用发送和接收标志

13.2.2 SPI 模块框图

13.2.3 SPI 接口传输格式

下图显示了数据传输的主要格式。根据 SPI 模块的设置,数据的每一位在主时钟(SCK)的上升沿(CPOL=0)或下降沿(CPOL=1)被传送。数据在主时钟(SCK)的下降沿(CPOL=0)或上升沿(CPOL=1)被接收。这适用于主模式或从模式的传输器/接收器,前提是 SCK 是传输过程中的主时钟。如果 CPHA被置位,第一位(MSB)将在 SCK 的第一个动态沿时通过 MOSI/MISO 被发送。如果 CPHA 被清零,第一位(MSB)将在 SCK 的第一个动态沿之前半个周期被发送。

除此之外,输入数据在每一位传输一半时被取样,在这个时钟周期的相反的电平上,数据被移位 到输出信号 MOSI 上。

13.2.4 主机模式传输格式

SPI 默认为主机模式。

在主机模式中,SPI 等待程序向寄存器 SPIDAT 中写入数据。如果向 SPIDAT 的写入动作完成,传输就开始。在时钟 SCK 的发送沿,数据被移位到输出引脚 MOSI 上。同时,从从机传送过来的另一字节的数据被移位到主机的输入引脚 MISO 上。

主机模式数据传输格式

13.2.5 从机模式传输格式

首先,需要写寄存器 SPICON 中的 MSTR=0,以配置 SPI 进入从机模式。另外配置 SPI_EN=1 以打开 SPI 模块使能。

从机模式数据传输格式

在从机模式中,SPI 等待输入信号 SPI_CS 的低电平,当抓到 SPI_CS 的下降沿,传输开始,直到传输完成,SPI_CS 都需要保持低电平状态。寄存器 SPCON 中 CPHA 的状态决定传输的开始位置,当 CPHA 被清零,从机必须在 SCK 信号的第一个下降沿之前开始传输;当 CPHA 被置位,从机会把 SCK 信号的第一个下降沿做为传输的开始标志。

13.2.6 中断功能

名称	SPI 中断标志描述
SPIF	当传输完成,该标志位被硬件置位
MODF	当 SPI_CS 的状态与主从模式设置有冲突

13.3 特殊功能寄存器列表

SPI 模块寄存器	SPI 模块寄存器基地址: 0x4000B000										
偏移地址	名称	读写方式	复位值	功能描述							
0x00	SPICON	R/W	0x0000	SPI 控制寄存器							
0x04	SPISTA	R/W	0x0000	SPI 状态寄存器							
0x08	SPIDAT	R/W	0x0000	SPI 数据寄存器							
0x0C	SPISSN	R/W	0x00FF	SPI 从机选择寄存器							

13.4 特殊功能寄存器说明

SPICON			基地址:		0x4000B000				
(控制寄存器)			偏移地址:	00H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	CCDIC		CDD[9.0]		CDIIA	CDOI	мстр	CDI EN	
Write:	SSDIS		SPR[2:0]		СРНА	CP0L	MSTR	SPI_EN	
Reset:	0	0	0	0	0	0	0	0	

位				功能描述							
SSDIS	SS控制位										
	0: 在主/从	0: 在主/从模式中打开SPI_CS输入									
	1: 在主/从	1: 在主/从模式中关闭 SPI_CS 输入,该情况下不会产生 MODF 中断请求;在从									
	模式中, 若	模式中,若 CPHA=0,则该位无效									
SPR[2:0]	SPI时钟速率	率控制位(主	模式时用)								
		SPR[2:0]		SPI时钟速率							
	0	0	0	Fsys/2							
	0	0	1	Fsys/4							
	0	1	0	Fsys/8							
	0	1	1	Fsys/16							
	1	0	0	Fsys/32							
	1	0	1	Fsys/64							
	1	1	0	Fsys/128							
	1	1	1	不产生主时钟							
СРНА	时钟相位										
	0: 表示高值	立(MSB)将 ^z	在SCK的第一	一个动态沿之前半个周期被发送							
	1: 表示高值	立(MSB)将 ^z	在SCK的第一	一个动态沿通过被发送							

CPOL	时钟极性
	0: SCK在空闲状态时被设置为低电平
	1: SCK在空闲状态时被设置为高电平
MSTR	SPI模式选择位
	0: 从机模式
	1: 主机模式
SPI_EN	SPI使能位
	0: 关闭SPI模块
	1: 打开 SPI 模块

SPISTA				基地址:	0x4000E	8000			
(状态寄存	字器)			偏移地址:	04H				
	Bit1	5	14	13	12	11	10	9	Bit8
Read:	Х		X	X	X	X	X	X	X
Write:	Λ		Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0		0	0	0	0	0	0	0
	Bit7	7	6	5	4	3	2	1	Bit0
Read:	Х		X	X	X	SPIF	WCOL	SSERR	MODF
Write:	Λ		Λ	Λ	Λ	21 11	WCOL	SSERIK	MODI
Reset:	0		0	0	0	0	0	0	0
位					ڔ	力能描述			
SPII	Ŧ.			标志位 由硬件置位	,只能通过	先读寄存器	SPISTA,然	后读寄存器	SPIDAT来
WCOI	J			突时由硬件	置位;必须注	通过先读寄	存器SPISTA	,然后读寄存	字器SPIDAT
SSER	同步从机错误标志位					亥位(设置			
MODE	7	模式 当SP 适的	故障标志 I_CS引脚 电平状态	位 状态与设置 时,硬件自动 可被复位;					

SPIDAT (数据寄存器)			基地址: 偏移地址:	0x4000B000 t: 08H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	v	v	v	v	v	v	v	Х
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0

	Bit7	6	5	4	3	2	1	Bit0			
Read:		CDIDAT[7.0]									
Write:		SPIDAT[7:0]									
Reset:	0	0	0	0	0	0	0	0			

注:寄存器SPIDAT是数据寄存器的一个读/写缓冲。当向SPIDAT中写入数据,是直接写入移位寄存器中(没有传输缓冲);从SPIDAT中读数据,返回的是接收缓冲中的数据,而非移位寄存器。

SPISSN			基地址:	0x4000F	3000			
(从机选择寄存器)			偏移地址:	0CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	X	v	v	v	v	v	SSN0
Write:	X	Λ	X	X	X	X	X	SSNU
Reset:	0	0	0	0	0	0	0	0

注: SPISSN是一个可读/写寄存器,它可用来选择一个独立的外部SPI从机设备

当芯片做 SPI 通讯的主机时,使用 SSNO 控制位可以控制芯片外部 SPI_CS 引脚的高低电平。

14. I2C 模块

14.1 概述

I2C 模块的芯片引脚为 PC. 13/SCL 和 PC. 14/SDA。

I2C 模块提供一个符合 Philips I2C 总线规范的串行接口,用两根线实现设备与总线之间的数据传输,通过状态寄存器 I2CSTA 反映了 I2C 总线控制器的实时状态。

14.2 框图

I2C 模块功能框图

14.3 功能描述

I2C 用两根线实现设备与总线之间的数据传输: 串行时钟 SCL 和串行数据 SDA。每一个与总线相连的设备都有一个唯一的地址。I2C 是一个真正的多主机总线,它包含冲突侦测和仲裁机制,以防止多个主机同时开始数据传输时的数据丢失。

14.3.1 操作模式

I2C 数据传输是以 8-bit 进行双向数据传输,标准模式下可达 100kbit/s 的传输速率,快速模式可达 400kbit/s 的速率。它可以下边四种模式工作:

- 主机发送模式:串行数据通过 SDA 输出,串行时钟通过 SCL 输出
- 主机接收模式:串行数据通过SDA输入,串行时钟通过SCL输出
- 从机接收模式:串行数据通过SDA输入,串行时钟通过SCL输入
- 从机发送模式:串行数据通过 SDA 输出,串行时钟通过 SCL 输入

14.3.2 串行时钟生成

当 I2C 处于主机模式时,可编程的时钟发生器提供 SCL 时钟; 当 I2C 处于从机模式时,时钟发生器被关闭,接收来自主机的时钟。时钟发生器的输出频率可以由寄存器 I2CCON 中的位 CR[9:0]控制,其中包含 I2CCON[0···1], I2CCON[8···14]。

14.3.3 中断生成

IIC产生中断时,寄存器 I2CCON中的标志位 SI 会被置位。

14.4 特殊功能寄存器列表

微控制器与 I2C 组件的接口通过以下四个特殊功能寄存器来实现:

I2C 模块寄存器	I2C 模块寄存器基地址: 0x4000A000										
偏移地址	名称	读写方式	复位值	功能描述							
ООН	I2CDAT	R/W	0000Н	I2C数据寄存器							
04H	I2CADR	R/W	0000Н	I2C地址寄存器							
08H	I2CCON	R/W	4000H	I2C控制寄存器							
ОСН	I2CSTA	R/W	0000Н	I2C状态寄存器							

14.5 特殊功能寄存器说明

I2CDAT (I2C 数据寄存器)			基地址: 偏移地址:	0x4000 <i>l</i> 00H	0000					
(120 致)	Bit15	14	13	12	11	10	9	Bit8		
Read:	X	X	X	X	v	v	X	v		
Write:	Λ	λ	Λ	Λ	X	X	λ	X		
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:	19CDAT[7.0]									
Write:		I2CDAT[7:0]								

Reset:	0	0	0	0	0	0	0	0

寄存器I2CDAT是将要被传送到总线上的数据,或者是刚从总线上接收到的数据。寄存器I2CDAT没有设置影子寄存器,也没有双缓存,所以当I2C中断发生时,MCU需要及时从它读取数据,以免数据丢失。

I2CADR			基地址:	0x4000A	0x4000A000					
(地址寄存器)			偏移地址:	04H	04H					
	Bit15	14	13	12	11	10	9	Bit8		
Read:	X	X	X	X	X	X	X	X		
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ		
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:		TOCARDEZ O								
Write:	- I2CADR[7:0]									
Reset:	0	0	0	0	0	0	0	0		

位	功能描述						
I2CADR[7:1]	I2C从机地址(7位)						
I2CADR[0]	呼叫地址确认位						
	当此位置1时,呼叫地址可以被识别,否则不能被识别。						

I2CCON			基地址:	0x4000A	0x4000A000					
(控制寄存器)			偏移地址:	08H						
	Bit15	14	13	12	11	10	9	Bit8		
Read:	X				CR[9:3]					
Write:	Λ				CK[9.3]					
Reset:	0	1	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:	CR2	ENS1	STA	CTO	CT	Λ Λ	CD [1.07		
Write:	CR2	ENSI	SIA	STO SI AA CR[1:0]						
Reset:	0	0	0	0	0	0	0	0		

位	功能描述						
CR[9:0]	I2C时钟频率控制位						
	I2C CLOCK=Fsys/(CR[9:0]+1)/4						
ENS1	I2C 使能位						
	1: 使能IIC模块;						
	0: 关闭IIC模块;						
STA	开始标志位						
	1: 检查IIC总线的状态,如果空闲则生成开始信号;						
	0: 不会生成开始信号;						

ST0	停止标志位
	1: 当处于主机模式,则向总线传输停止信号
	0: 不向总线传输停止信号;
SI	中断标志位
	当进入25种IIC状态之一时,SI由硬件置位,唯一不置位的状态是"F8H";写0清0,
	写1无影响。
AA	生成应答标志位
	1: 应答在以下情况下被返回: 接收到自身作为从机的地址; gc被置位的情况下接
	收到地址呼叫; 主机接收模式下一个字节接收完成; 从机接收模式下一个字节接收
	完成;
	0: 非应答在以下情况下被返回: 主机接收模式下一个字节接收完成; 从机接收模
	式下一个字节接收完成;

I2CSTA(状态寄存器)			基地址: 偏移地址:		0x4000A000 0CH						
	Bit15	14	13	12	11	10	9	Bit8			
Read:	V	V	X	X	X	X	X	X			
Write:	X	X			Λ	Λ	Λ				
Reset:	0	0	0	0	0	0	0	0			
	Bit7	6	5	4	3	2	1	Bit0			
Read:			I O C C T A F 4 · O	1		V	V	V			
Write:			[2CSTA[4:0]	J		X	X	X			
Reset:	0	0	0	0	0	0	0	0			

位	功能描述
I2CSTA[4:0]	I2C状态码

寄存器 I2CSTA 反映 I2C 模块的实时状态。这个寄存器的低三位始终为 0。总共有 26 种可能的状态。当进入 25 种状态的其中一种时,都会产生中断;唯一一种不产生中断的情况是状态 F8H。在下表中,"SLA"指从机地址,"R"指与从机地址一起传送的读/写位是读,"W"指与从机地址一起传送的读/写位是写。

I2C 主机发送模式状态描述如下:

状态		应用	程序面				
八心	I2C 状态	I2CDAT	I2CCON				I2C 硬件响应
1 (11-3		12CDA1	sta	sto	si	aa	
08H	起始条件已被发	加载 SLA+W	X	0	0	X	SLA+W 将被发送
	送						ACK 将被接收
10H	重复起始条件已	加载 SLA+W	X	0	0	X	同上
	被发送	或者					
		加载 SLA+R	X	0	0	X	SLA+R 将被发送

							I2C 将转换为"主接收器"
							120 特科探別 主接収益
18H	SLA+W 已被发送;	 加载数据字节	0	0	0	X	数据字节将被发送;
1011	ACK 已被接收	WH #X 3X WH 1 14		U		Λ	ACK 将被接收
	NON LINE 1948	 或无动作	1	0	0	X	重复起始条件将被发送
		或无动作 或无动作	0	1	0	X	全是是如果目的极久达 终止条件将被发送; sto 标
		30.00TF		1		Λ	志将被复位
		 或无动作	1	1	0	X	起始条件被发送后将再发送
			1	1		Λ	一个终止条件; sto 标志将
							被复位
20H	SLA+W 己被发送;	加载数据字节	0	0	0	X	数据字节将被发送;
2011	"not ACK"已被	7447/X/JH J 1				11	ACK 将被接收
	接收	 或无动作	1	0	0	X	重复起始条件将被发送
		或无动作	0	1	0	X	终止条件将被发送: sto 标
		7,7,3,7,11					志将被复位
		 或无动作	1	1	0	X	起始条件被发送后将再发送
		7 2 - 7 7 7 7					一个终止条件; sto 标志位
							将被复位
28H	I2CDAT 的数据字	加载数据字节	0	0	0	X	数据字节将被发送;
	节已被发送;						将发送 ACK 字节
	ACK 已被接收	或无动作	1	0	0	X	重复起始条件将被发送。
		或无动作	0	1	0	X	终止条件将被发送; sto 标
							志将被复位
		或无动作	1	1	0	X	起始条件被发送后将再发送
							一个终止条件 ; sto 标志将
							被复位
30H	I2CDAT 的数据字	数据字节	0	0	0	X	数据字节将被发送;
	节已被发送						ACK 将被接收
		或无动作	1	0	0	X	重复起始条件将被发送;
		或无动作	0	1	0	X	终止条件将被发送; sto 标
							志将被复位
		或无动作	1	1	0	X	起始条件被发送后将再发送
							一个终止条件; sto 标志将
							被复位
38H	SLA+R/W 或数据	无动作	0	0	0	X	I2C 总线将被释放;将进入
	字节仲裁失败	キ マール		_			"未寻址从机"状态;
		或无动作	1	0	0	X	当总线空闲时将发送一个起
							始条件

I2C 主机接收模式状态描述如下:

状态	I2C 状态	应用程序配置	I2C 硬件响应
----	--------	--------	----------

代码		TOODAT		I2C	CON		
		I2CDAT	sta	sto	si	aa	
08H	起始条件已被发	加载 SLA+R	X	0	0	X	SLA+R 将被发送;
	送						ACK 将被接收
10H	重复起始条件已	加载 SLA+R	X	0	0	X	同上
	被发送	或者					
		加载 SLA+W	X	0	0	X	SLA+W 将被发送;
							I2C 将转换为"主接收"模
							式
38H	"not ACK"位仲	无动作	0	0	0	X	I2C 总线将被释放; I2C 将会
	裁失败	或者			_		进入"从机"模式
		无动作	1	0	0	X	当总线空闲时将发送一个起
4077	27 4 B = 34 40 W	マコル					始条件
40H	SLA+R 已被发送;	无动作	0	0	0	0	数据字节将被接收;
	ACK 已被接收	或者	0	0	0	1	将返回"not ACK"
		无动作 	0	0	0	1	数据字节将被接收;
48H	SLA+R 已被发送:		1	0	0	X	将返回"not ACK" 重复起始条件将被发送
48П	SLA+K 已被反送; "not ACK"已被		0	1	0	X	型复起始条件将被及送 终止条件将被发送; sto 标
	接收	以几列作	0	1	0	Λ	志将被复位 志将被复位
	1918	 或无动作	1	1	0	X	起始条件被发送后将再发送
		以几约11-	1	1	0	Λ	一个终止条件; sto 标志将
							被复位
50H	数据字节已被接	读取数据字节	0	0	0	0	数据字节将被接收;
	收;	或者					将返回"not ACK"
	已返回 ACK	读取数据字节	0	0	0	1	数据字节将被接收;
							将返回 ACK
58H	数据字节将被接	读取数据字节	1	0	0	X	重复起始条件将被发送
	收;	或者					
	已返回"not ACK"	读取数据字节	0	1	0	X	终止条件将被发送; sto 标
		或者					志将被复位
		读取数据字节	1	1	0	X	起始条件被发送后将再发送
							一个终止条件 ; sto 标志将
							被复位

I2C 从机接收模式状态描述如下:

状态		应用	程序面				
八心	I2C 状态	I2CDAT	I2CCON			I2C 硬件响应	
1 (14)		12CDA1	sta	sto	si	aa	
60H	自身的 SLA+W 己	无动作	X	0	0	0	数据字节将被接收并返回
	被接收;						"not ACK"

	已返回 ACK	或无动作	X	0	0	1	数据字节将被接收并返回
	Leg non		11			1	ACK
68H	主机 SLA+R/W 仲 裁失败; 自身的	无动作	X	0	0	0	数据字节将被接收并返回 "not ACK"
	SLA+W 已被接收, 返回 ACK	或无动作	X	0	0	1	数据字节将被接收并返回 ACK
70H	呼叫地址(00H) 已被接收;已返	无动作	X	0	0	0	数据字节将被接收并返回 "not ACK"
	回 ACK	或无动作	X	0	0	1	数据字节将被接收并返回 ACK
78H	主机 SLA+R/W 仲 裁失败; 呼叫地	无动作	X	0	0	0	数据字节将被接收并返回 "not ACK"
	址已被接收,返 回 ACK	或无动作	X	0	0	1	数据字节将被接收并返回 ACK
80H	预先写入自身 SLV 地址; DATA	读取数据字节 或者	X	0	0	0	数据字节将被接收并返回 "not ACK"
	字节已被接收; 返回 ACK	读取数据字节	X	0	0	1	数据字节将被接收并返回 ACK
88H	预先写入自身 SLA; DATA 字节已 被接收;返回	读取数据字节 或者	0	0	0	0	切换为"未寻址从机"模式; 不识别自身从机地址或呼叫 地址
	"not ACK"	读取数据字节 或者	0	0	0	1	切换为"未寻址从机"模式; 识别自身从机地址或呼叫地 址
		读取数据字节 或者	1	0	0	0	切换为"未寻址从机"模式; 不识别自身从机地址或呼叫 地址;当总线空闲时将发送 一个起始条件
		读取数据字节	1	0	0	1	切换为"未寻址从机"模式; 识别自身从机地址或呼叫地 址; 当总线空闲时将发送一 个起始条件
90Н	预先写入呼叫地 址; DATA 字节已	读取数据字节 或者	X	0	0	0	数据字节将被接收并返回 "not ACK"
	被接收;返回 ACK	读取数据字节	X	0	0	1	数据字节将被接收并返回 ACK
98H	预先写入呼叫地址; DATA 字节已被接收; 返回 ACK	读取数据字节 或者	0	0	0	0	切换为"未寻址从机"模式; 不识别自身从机地址或呼叫 地址
		读取数据字节 或者	0	0	0	1	切换为"未寻址从机"模式; 识别自身从机地址或呼叫地 址

		读取数据字节 或者 读取数据字节	1	0	0	1	切换为"未寻址从机"模式; 不识别自身从机地址或呼叫地址;当总线空闲时将发送一个起始条件切换为"未寻址从机"模式;识别自身从机地址或呼叫地址;当总线空闲时将发送一个起始条件
АОН	终止条件或重复 起始条件在被配 置为 SLV/REC 或 SLV/TRX 时被接 收	无动作 或者 无动作 或者	0	0	0	0	切换为"未寻址从机"模式; 不识别自身从机地址或呼叫 地址 切换为"未寻址从机"模式; 识别自身从机地址或呼叫地
		无动作 或者	1	0	0	0	址 切换为"未寻址从机"模式; 不识别自身从机地址或呼叫 地址;当总线空闲时将发送 一个起始条件
		无动作	1	0	0	1	切换为"未寻址从机"模式; 识别自身从机地址或呼叫地 址; 当总线空闲时将发送一 个起始条件

I2C 从机发送模式状态描述如下:

状态		应用	程序面	置			
1人心 代码	I2C 状态	I2CDAT		I2C	CON		I2C 硬件响应
1(1号		12CDA1	sta	sto	si	aa	
A8H	自身 SLA+R 已被	加载数据字节	X	0	0	0	最后一个数据字节将被发送
	接收;返回 ACK	或者					并接收 ACK
		加载数据字节	X	0	0	1	数据字节将被发送; ACK 将
							被接收
ВОН	主机 SLA+R 仲裁	加载数据字节	X	0	0	0	最后一个数据字节将被发送
	失败;自身 SLA+R	或者					并接收 ACK
	已被接收; 返回	加载数据字节	X	0	0	1	数据字节将被发送; ACK 将
	ACK						被接收
В8Н	数据字节已被发	加载数据字节	X	0	0	0	最后一个数据字节将被发送
	送; ACK 已被接收	或者					并接收 ACK
		加载数据字节	X	0	0	1	数据字节将被发送; ACK 将
							被接收
СОН	数据字节已被发	无动作	0	0	0	0	切换为"未寻址从机"模式;
	送; "not ACK"	或者					不识别自身从机地址或呼叫

	己被接收						地址
		无动作	0	0	0	1	切换为"未寻址从机"模式;
		或者					识别自身从机地址或呼叫地
							址
		无动作	1	0	0	0	切换为"未寻址从机"模式;
		或者					不识别自身从机地址或呼叫
							地址; 当总线空闲时将发送
							一个起始条件
		无动作	1	0	0	1	切换为"未寻址从机"模式;
							识别自身从机地址或呼叫地
							址; 当总线空闲时将发送一
							个起始条件
C8H	最后一个数据字	无动作	0	0	0	0	切换为"未寻址从机"模式;
	节已被发送; ACK	或者					不识别自身从机地址或呼叫
	己被接收						地址
		无动作	0	0	0	1	切换为"未寻址从机"模式;
		或者					识别自身从机地址或呼叫地
							业
		无动作	1	0	0	0	切换为"未寻址从机"模式;
		或者					不识别自身从机地址或呼叫
							地址; 当总线空闲时将发送
		T:=1.1/c	1	0	0	1	一个起始条件
		无动作	1	0	0	1	切换为"未寻址从机"模式;
							识别自身从机地址或呼叫地
							址; 当总线空闲时将发送一
							个起始条件

I2C 复合状态:

- \- 44		应用	程序面				
状态 代码	I2C 状态	I2CDAT		I2C	CON		I2C 硬件响应
1 (14-9)		12CDA1	sta	sto	si	aa	
F8H	没有可利用信息	无动作		无动	力作		等待或继续进行当前传递
	的相关状态;						
	si=0						
00Н	MST 或选择从机	无动作	0	1	0	X	只有在"主机"或"被寻址
	模式中的总线错						的从机"模式时 I2C 硬件才
	误						会被触发
							在所有情况下,总线将被释
							放并且 I2C 将切换到"未寻
							址从机"模式。sto 标志将
							被复位

15. RTC 模块

15.1 概述

RTC 单元提供实时时钟、日历功能,自动闰年调整,支持闹钟和周期性中断。

RTC 模块在各种工作模式下都不会被关闭,在低功耗下仍然正常运行。

RTC 输出寄存器、RTC 时钟校正寄存器不会被复位,以保持 RTC 的准确性。

15.2 功能描述

- 提供时钟和日历功能:输出寄存器包含秒、分、时、日、月、年和星期
- 具有自动闰年闰月调整功能
- 1个 RTC 闹铃中断功能
- 2个定时器周期性中断功能
- 5个时间中断功能(秒、分、时、日、月)
- 可输出频率为 1/2/8/16/32/64/128/524288Hz 的方波
- 可输出每秒补偿的校验脉冲
- 增加只读寄存器,用于保存校时的次数

15.3 硬件自动时钟校正

由 RTC 模块读取 TPS 输出的温度值,根据 MEMS/OSC 的温度特性,计算实时频率偏差 dFi,送至分频模块进行时钟校正。芯片内置了一个可修改系数的多项式补偿曲线。

15.4 RTC 补偿系数寄存器和 Info Flash 对应关系

RTC 的补偿系数寄存器在芯片 POR 上电后会自动装载,考虑到系统的可靠性,用户可以软件读取 Information Flash 的对应地址的值,然后再写入到对应的 RTC 模块的寄存器中。

寄存器偏移地址	寄存器名称	Information Flash 对应偏移地址
		(Information Flash 基地址:
		0x00040000)
0x50	DFAH	0x104
0x54	DFAL	0x108
0x58	DFBH	0x10C
0x5C	DFBL	0x110
0x60	DFCH	0x114
0x64	DFCL	0x118
0x68	DFDH	0x11C
0x6C	DFDL	0x120
0x70	DFEH	0x124

0x74	DFEL	0x128
0x78	Toff	0x12C

15.5 时间和万年历

RTC 提供秒、分、时、日、月、年和星期输出寄存器。

通过 RTC 的输出寄存器,可以得到自动闰年校正的万年历功能,其范围从 2000 年 1 月 1 日到 2099 年 12 月 31 日。

15.6 中断功能

RTC 一共提供 8 种中断源, 共用 MCU 的 IRQ-RTC 中断向量, 向量号 20。RTC 的 8 种中断源由 RTCIE 控制其使能。

具体的中断产生条件和中断清除步骤如下:

ALMF: RTC 闹铃中断标志

当小时和分钟与设定的闹钟匹配时,产生RTC 闹铃中断,ALMF 被置为1。

对该位写0清标志。

RTC1F: RTC 定时器 1 中断标志

如设置 RTCTMR1=X, 使能计数 RTC1EN 后, 经过(X+1)*1S 后, 该标志位置位 1。

对该位写0清标志。

RTC2F: RTC 定时器 2 中断标志

如设置 RTCTMR2=X, 使能计数 RTC2EN 后, 经过(X+1)*0.0625S 后, 该标志位置位 1。

对该位写0清标志。

MTHF: 月中断

月计数器 MONTHR 加 1 时,产生一个月中断,MTHF 被置为 1。

对该位写0清标志。

DAYF: 日中断

日期计数器 DAYR 加 1 时,产生一个日中断,DAYF 被置为 1。

对该位写0清标志。

HRF: 小时中断

小时计数器 HOURR 加 1 时,产生一个小时中断,HRF 被置为 1。

对该位写0清标志。

MINF: 分钟中断

分钟计数器 MINR 加 1 时,产生一个分钟中断,MINF 被置为 1。

对该位写0清标志。

SECF: 秒中断

秒计数器 SECR 加 1 时,产生一个秒中断,SECF 被置为 1。

对该位写 0 清标志。

15.7 RTC 指示寄存器读写流程

15.7.1 读取 RTC 指示寄存器流程

在用户需要读取 RTC 指示寄存器(SECR, MINR, HOURR, DAYR, MONTHR, YEARR, WEEKR)的时候,用户应该按照以下流程操作:

15.7.2 写入 RTC 指示寄存器流程

在用户需要更新 RTC 指示寄存器(SECR, MINR, HOURR, DAYR, MONTHR, YEARR, WEEKR)的时候,用户应该按照以下流程操作,请一次性写入所有 7 个 RTC 指示寄存器(UPDATE = RTCWR. 0):

15.8 校时记录

校时次数增加以一次 UPDATE 置 1 为准,无论怎么更新 RTC 寄存器,只要 UPDATE 置 1,则 RTCCNT 加 1.

如果用户写入的值超过正常范围导致写失败 (比如月寄存器写 13),那么只要 UPDATE 置 1,RTCCNT 仍旧加 1。

15.9 特殊功能寄存器列表

RTC 模块寄存	RTC 模块寄存器基地址: 0x4000C000										
偏移地址 名称 读写方式 复位值 功能描述											
0x00	RTCCON	R/W	0x0000	RTC 控制寄存器							

0.04	DEGIN	D /III	0.0000	DESCRIPTION OF THE
0x04	RTCIE	R/W	0x0000	RTC 中断使能寄存器
0x08	RTCIF	R/W	0x0000	RTC 中断标志寄存器
0x0C	ALMR	R/W	0x0000	闹钟寄存器
0x10	RTCTMR1	R/W	0x0000	RTC 定时器 1 计数设置
0x14	RTCTMR2	R/W	0x0000	RTC 定时器 2 计数设置
0x18	SECR	R/W	0x0000	秒寄存器 (写保护)
0x1C	MINR	R/W	0x0000	分寄存器 (写保护)
0x20	HOURR	R/W	0x0000	时寄存器 (写保护)
0x24	DAYR	R/W	0x0001	日寄存器(写保护)
0x28	MONTHR	R/W	0x0001	月寄存器 (写保护)
0x2C	YEARR	R/W	0x0000	年寄存器 (写保护)
0x30	WEEKR	R/W	0x0001	周寄存器 (写保护)
0x34	RTCCNTH	R/W	0x0000	校时次数寄存器高 16 位
0x38	RTCCNTL	R/W	0x0000	校时次数寄存器低 16 位
0x3C	RTCRD	R/W	0x0000	RTC 读控制寄存器
0x40	RTCWR	R/W	0x0000	RTC 写控制寄存器
0x50	DFAH	R/W	XXXX	RTC 硬件补偿常数项系数高位
0x54	DFAL	R/W	XXXX	RTC 硬件补偿常数项系数低位
0x58	DFBH	R/W	XXXX	RTC 硬件补偿一次项系数高位
0x5C	DFBL	R/W	XXXX	RTC 硬件补偿一次项系数低位
0x60	DFCH	R/W	XXXX	RTC 硬件补偿二次项系数高位
0x64	DFCL	R/W	XXXX	RTC 硬件补偿二次项系数低位
0x68	DFDH	R/W	XXXX	RTC 硬件补偿三次项系数高位
0x6C	DFDL	R/W	XXXX	RTC 硬件补偿三次项系数低位
0x70	DFEH	R/W	XXXX	RTC 硬件补偿四次项系数高位
0x74	DFEL	R/W	XXXX	RTC 硬件补偿四次项系数低位
0x78	Toff	R/W	0x0000	温度偏置寄存器
0x7C	RESERVED	R/W	0x6013	保留,用户不要修改该寄存器的值
0x80	RESERVED	R/W	0x2388	保留,用户不要修改该寄存器的值
0x84	RESERVED	R/W	0x2688	保留,用户不要修改该寄存器的值
0x88	RESERVED	R/W	0x0000	保留,用户不要修改该寄存器的值
0x8C	RESERVED	R/W	0x0000	保留,用户不要修改该寄存器的值
0x90	RTCRSTFLAG	R	0x0000	RTC 模块复位标志寄存器
0x94	RTCRSTSET	W	0x0000	RTC 写复位寄存器
0x100	CTRLBYFLASH	R/W		上电后从 Flash 中自动加载寄存器
0x100	CTRLBYFLASH	R/W		上电后从 Flash 中自动加载寄存器

15.10 特殊功能寄存器说明

RTCCON			基地址:	0x40000	0x4000C000					
(RTC 控制寄存器)			偏移地址:	00H	00Н					
	Bit15	14	13	12	11	10	9	Bit8		
Read:	X	X	X	X	X	X	X	X		
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ		
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:	X	RTC2EN	RTC1EN		RESERVE					
Write:	Λ	NICZEN	RICIEN	TOUT[3:0] D						
Reset:	0	0	0	0	0	0	0	0		

位	功能描述
	RTC 定时器 2 使能位
RTC2EN	RTC2EN=0: RTC 定时器 2 被关闭
	RTC2EN=1: RTC 定时器 2 被使能,溢出产生 RTC2IF 标志。
	RTC 定时器 1 使能位
RTC1EN	RTC1EN=0: RTC 定时器 1 被关闭
	RTC1EN=1: RTC 定时器 1 被使能,溢出产生 RTC1IF 标志。
TOUT[3:0]	TOUT输出频率说明见下表
DECEDVED	该控制位默认值为 0
RESERVED	该控制位必须为0,用户可以软件中将该位写0或者不修改其默认值

	TOUT	[3:0]		TOUT	TOUT (PLL 使能)
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	32768Hz (HT6015/6017)	32768Hz (HT6015/6017)
				524288Hz (HT6115)	524288Hz (HT6115)
0	0	1	1	未经高频补偿的 1Hz	高频补偿得到的 1Hz
0	1	0	0	未经高频补偿的 2Hz	高频补偿得到的 2Hz
0	1	0	1	未经高频补偿的 4Hz	高频补偿得到的 4Hz
0	1	1	0	未经高频补偿的 8Hz	高频补偿得到的 8Hz
0	1	1	1	未经高频补偿的 16Hz	高频补偿得到的 16Hz
1	0	0	0	未经高频补偿的 32Hz	高频补偿得到的 32Hz
1	0	0	1	未经高频补偿的 64Hz	高频补偿得到的 64Hz
1	0	1	0	未经高频补偿的 128Hz	高频补偿得到的 128Hz
1	0	1	1	Reserved	Reserved
1	1	X	X	Reserved	Reserved

RTCIE (RTC 中幽	听使能寄存 器	署)	基地址: 偏移地址:	0x40000 04H	0000			
	Bit15	14	13	12	11	10	9	Bit8
Read:	V	V	V	V	V	V	V	V
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	ALMIE	DTCOIL	DTC1 IE	MTHIE	DAVIE	HDTE	MINIE	CECTE
Write:	ALMIE	RTC21E	RTC1IE	MTHIE	DAYIE	HRIE	MINIE	SECIE
Reset:	0	0	0	0	0	0	0	0

位	功能描述
ALMIE	RTC 闹铃中断使能位
	0: 关闭
	1: 打开
RTC2IE	RTC 定时器 2 中断使能位
	0: 关闭
	1: 打开
RTC1IE	RTC 定时器 1 中断使能位
	0: 关闭
	1: 打开
MTHIE	RTC 月中断使能位
	0: 关闭
	1: 打开
DAYIE	RTC 日中断使能位
	0: 关闭
	1: 打开
HRIE	RTC 小时中断使能位
	0: 关闭
	1: 打开
MINIE	RTC 分钟中断使能位
	0: 关闭
	1: 打开
SECIE	RTC 秒中断使能位
	0: 关闭
	1: 打开

RTCIF				基地址:	0x40000	000			
((RTC 中断标志寄存器)			偏移地址:	08H				
	Bit15 14			13	12	11	10	9	Bit8
]	Read:	X	X	X	X	X	X	X	X

Write:								
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	ALMIE	DTCOIE	DTC1 IE	MTHIE	DAVIE	IIDTE	MINIE	CECTE
Write:	ALMIF	RTC2IF	RTC11F	MTHIF	DAYIF	HRIF	MINIF	SECIF
Reset:	0	0	0	0	0	0	0	0

位	功能描述
ALMIF	RTC 闹铃中断标志位
	0: 未产生中断
	1: 产生中断,写 0 清 0
RTC2IF	RTC 定时器 2 中断标志位
	0: 未产生中断
	1: 产生中断,写 0 清 0
RTC1IF	RTC 定时器 1 中断标志位
	0: 未产生中断
	1: 产生中断,写 0 清 0
MTHIF	RTC 月中断标志位
	0: 未产生中断
	1: 产生中断,写 0 清 0
DAYIF	RTC 日中断标志位
	0: 未产生中断
	1: 产生中断,写 0 清 0
HRIF	RTC 小时中断标志位
	0: 未产生中断
	1: 产生中断,写 0 清 0
MINIF	RTC 分钟中断标志位
	0: 未产生中断
	1:产生中断,写0清0
SECIF	RTC 秒中断标志位
	0: 未产生中断
	1: 产生中断,写 0 清 0

ALMR			基地址:	0x40000	0x4000C000				
(闹钟寄存器)			偏移地址:	0CH					
Bit15 14			13	12	11	10	9	Bit8	
Read:	X X		X	X ALMH[5:0]					
Write:	Λ	X	Λ		ALMII[J.U]				
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	X	ALMM[6:0]						

Write:				•				
Reset:	0	0	0	0	0	0	0	0

位	功能描述
ALMH[5:0]	RTC 闹铃中断小时设置,允许写入 0-23 以外的数,但是 RTC 闹铃中断将永远不会
	产生。
ALMM[6:0]	RTC 闹铃中断分钟设置,允许写入 0-59 以外的数,但是 RTC 闹铃中断将永远不会
	产生。
	说明: 当小时和分钟寄存器与闹钟寄存器中的值相匹配时(且秒寄存器为0),才
	会产生中断。

RTCTMR1			基地址:	0x40000	0000			
(RTC 定时器 1 寄存器)			偏移地址:	10H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				CNT [15.07			
Write:				CN1 [.	19:0]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				CNT [7:0]			
Write:								
Reset:	0	0	0	0	0	0	0	0

位	功能描述
CNT[15:0]	最小分格为 1s, 即最小可以每 1 秒产生一次中断, 最大可以每 65536 秒产生
	一次中断,当计数溢出时,置位 RTC1IF 标志。
	CNT[15: 0]用来表示一个 16BIT 的二进制的无符号整数,如果设置 CNT[15:
	0]=00H,表示RTC内部的秒表功能中断每经过(00H+1)*1S =1*1S=1S的计时周期
	后,置位 RTC1IF 标志。
	说明: 当定时器到达设定值时,如果用户没有关闭定时器,则定时器将从 0
	开始重新计数。

RTCTMR2			基地址:	0x40000	0000			
(RTC 定时器 2 寄存器)			偏移地址:	14H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				CNT [15.07			
Write:				CNI [.	19:0]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				CMT	7.0]			
Write:	CNT [7:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
CNT[15:0]	最小分格为 0.0625s, 即最小可以每 0.0625s 秒产生一次中断, 最大可以每
	4096 秒产生一次中断,当计数溢出时,置位 RTC2IF 标志。
	CNT[15:0]用来表示一个 16BIT 的二进制的无符号整数,如果设置 CNT[15:0]
	= 00H , 表示 RTC 内部的秒表功能中断每经过 (00H+1)*0.0625S
	=1*0. 0625S=0. 0625S 的计时周期后,置位 RTC2IF 标志。
	说明: 当定时器溢出时,如果用户没有关闭定时器,则定时器将从0开始重
	新计数。

SECR			基地址:	0x40000	C000			
(RTC 秒寄存器)			偏移地址:	18H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	apole al					
Write:	Λ	Λ	SEC[5:0]					
Reset:	0	0	0	0	0	0	0	0

位	功能描述
SEC[5:0]	秒计数器:
	可设范围: 0-59。写入 0-59 以外的任何数值,对该寄存器没有影响。

MINR			基地址:	0x40000	0000			
(RTC 分寄	(RTC 分寄存器)			1CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	MIN[5:0]					
Write:	Λ	Λ						
Reset:	0	0	0	0	0	0	0	0

位	功能描述
MIN[5:0]	分计数器:
	可设范围: 0-59。写入 0-59 以外的任何数值,对该寄存器没有影响。

HOURR			基地址:	0x40000	0x4000C000				
(RTC 时管	存器)		偏移地址:	20H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	v	v			HOUR[4:0]			
Write:	Λ	X	X		πουκ[4:0]				
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
HOUR[4:0]	时计数器:
	可设范围: 0-23。写入 0-23 以外的任何数值,对该寄存器没有影响。

DAYR			基地址:	0x40000	0000			
(RTC 日春	存器)		偏移地址:	24H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	v	X	X	X	X	X	X	X
Write:	X	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	v	v			DAV[4.0]		
Write:	X	X	X			DAY[4:0]		
Reset:	0	0	0	0	0	0	0	1

位	功能描述
DAY[4:0]	日计数器: 可设范围: 1-28/29/30/31。写入与年、月不匹配的任何数值,对该寄存器没有影响。

MONTHR			基地址:	0x40000	0000			
(RTC 月寄	存器)		偏移地址:	28H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	v	V	X	X	X	X	X	X
Write:	X	X	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	X	X		МОМТИ	[2.0]	
Write:	Λ	Λ	Λ	Λ	MONTH[3:0]			

Reset:	0	0	0	0	0	0	0	1	

位	功能描述
MONTH[3:0]	月计数器:
	可设范围: 1-12。写入 1-12 以外的任何数值,对该寄存器没有影响

YEARR			基地址:	0x40000	0000			
(RTC 年奇	「存器)		偏移地址:	2CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	v	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	X	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	v				YEAR[6:0]			
Write:	X				ICAR[0:U]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
YEAR[6:0]	年计数器:
	可设范围: 0-99。写入 0-99 以外的任何数值,对该寄存器没有影响。

WEEKR			基地址:	0x40000	0000			
(RTC 周奇	(RTC 周寄存器)			30H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	V	v	v	V		WEEK[0.0]	
Write:	X	X	X	X	X		WEEK[2:0]	
Reset:	0	0	0	0	0	0	0	0

位	功能描述
WEEK[2:0]	周计数器:
	可设范围: 1-7。写入 1-7 以外的任何数值,对该寄存器没有影响。

RTCCNTH		基地址:	0x4000C000
(RTC 校时	(RTC 校时次数寄存器高 16 位)		34H
			Bit15···Bit0
Read:			RTCCNTH[15:0]

Write:				2	ζ			
Reset:	0	0	0	0	0	0	0	0

RTCCNTL (RTC 校时次数寄存器低 16 位)			基地址: 偏移地址:	0x40000 38H	0000			
				Bit15	···BitO			
Read:				RTCCNTI	L[15:0]			
Write:				2	ζ			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
RTCCNTH[15:0]	RTCCNTH 和 RTCCNTL 构成 32 位寄存器,用于记录校时次数。该寄存器只读。
RTCCNTL[15:0]	

RTCRD			基地址:	0x40000	0000			
(RTC 读搭	2制寄存器)		偏移地址:	3CH				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	X	X	X	V	X	X	v	READFLA
Write:		Λ Λ		X	A	Λ	X	G
Reset:	0	0	0	0	0	0	0	0

位	功能描述
READFLAG	RTC 指示寄存器读控制位,具体使用参见"RTC 指示寄存器读写流程"

RTCWR			基地址:	0x40000	0000			
(RTC 写控	控制寄存器)		偏移地址:	40H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	V	V
Write:	Λ	Λ	Λ	Λ	Λ	Λ	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	X	V	V	V	V	V	UDDATE
Write:	X	Λ	X	X	X	X	X	UPDATE
Reset:	0	0	0	0	0	0	0	0

位	功能描述
UPDATE	RTC 指示寄存器写控制位,具体使用参见"RTC 指示寄存器读写流程"

Toff			基地址:	0x40000	0000			
(温度偏置	置寄存器)		偏移地址:	78H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				Toff[15.07			
Write:				1011[10.0]			
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:				Toff	7.07			
Write:				1011	[1:0]			
Reset:	0	0	0	0	0	0	0	0

位	功能描述
Toff [15:0]	16 位有符号数,用户不需操作该寄存器

RTCRSTFLAG			基地址:	0x40000	0x4000C000					
(RTC 模块复位标志寄存器)			偏移地址:	90H						
	Bit15 14			12	11	10	9	Bit8		
Read:	X	X	X	X	X	X	X	X		
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ		
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:	v	V	V	v	V	V	DOD	C - C+ DCT		
Write:	X	X	X	X	X	X	POR	SoftRST		
Reset:	0	0	0	0	0	0	0	0		

位	功能描述
PORRST	PORRST 复位标志:
	0: 未发生 POR 复位
	1: 发生了 POR 复位 (写 0 清 0)
SoftRST	SoftRST 复位标志:
	0: 未发生软复位
	1: 发生了软复位(写 0 清 0)

RTCRSTSET			基地址:	0x40000	0x4000C000				
(RTC 写复	夏位寄存器)		偏移地址:	94H					
	Bit15	14	13	12	12 11 10 9 Bit8				
Read:	v	v	v	v	v	v	v	v	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	

Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	V	V	V	V
Write:	X	λ	λ	λ	λ	X	X	λ
Reset:	0	0	0	0	0	0	0	0

位	功能描述
Bit[15:0]	当向此寄存器写入 0xAAAA,再写入 0x5555 时,RTC 与 TBS 模块发生复位,发生复
	位后,RTCRSTSET 寄存器中 SoftReset 会置 1。
	除了 RTC 计时寄存器以及校时次数寄存器,其他所有 RTC 寄存器和 TBS 寄存器都
	会复位。

CTRLBYFLASH			基地址: 偏移地址:	0x40000 100H	0000			
	Bit15	14	13	12	11	10	9	Bit8
Read:				FLASH	[7:0]			
Write:		X						
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	V	V	I DC EN	V
Write:	X	X	X	X	X	X	LRC_EN	X
Reset:	0	0	0	0	0	0	0	0

位	功能描述
此寄存器与 Flash	n 空间中 0x00000FC0 的内容相对应,FLASH[7:0]只能读,不能写
FLASH[7:0]	如果 Flash[7:0]=0xFF,则 Flash 不加密
	其他: Flash 加密,该寄存器位只能读,不能写,复位后从 Flash 的 0x00000FC1
	地址自动装载
LRC_EN	=1, Sleep/Hold下LRC打开
	=0, Sleep/Hold下LRC关闭
	可以直接读写

16. TBS 模块

16.1 概述

芯片可以对温度和 4 路 ADC (VCC, VBAT, ADCINO, ADCIN1) 进行定量的测量,并将测量的结果保存在相应的寄存器中。用户可以根据测量的结果将当前的温度和电池电量在 LCD 上显示或者对 RTC 等模块进行补偿。

16.2 功能描述

TBS主要包括两部分功能:

- 测量 IC 基底的温度
- 测试 4 路 ADC 电压(VCC, VBAT, ADCINO, ADCIN1)

16.3 特殊功能寄存器列表

TBS 模块寄存物	器基地址: 0x4000E	0000		
偏移地址	名称	读写方式	复位值	功能描述
00Н	TBSCON	R/W	0x6541	TBS设置寄存器
04H	TBSIE	R/W	0x0000	TBS中断使能寄存器
08Н	TBSIF	R/W	0x0000	TBS中断标志寄存器
ОСН	TMPDAT	R	0x0000	温度测量输出寄存器
10H	VBATDAT	R	0x0000	电池电压测量输出寄存器
14H	ADCODAT	R	0x0000	ADC通道0测量输出寄存器
18H	ADC1DAT	R	0x0000	ADC通道1测量输出寄存器
1CH	VDRCMP	R/W	0x0000	电池电压比较寄存器
20Н	TBSPRD	R/W	0x0000	TBS打开频率设置寄存器
24H	RESERVED	R/W	0x0200	该寄存器值用户不要修改
28H	VCCDAT	R	0x0000	电源电压测量输出值

16.4 特殊功能寄存器说明

TBSCON (TBS 设置寄存器)			基地址: 偏移地址	0x4000)E000			
	Bit15	14	13	12	11	10	9	Bit8
Read:	VBATCMP	RESERVED	RESERV	RESERVE	DECI	RESERVED		a[1.0]
Write:	VBAICNIP	KESEKVED	ED	D	KESEKVED		Filter[1:0]	
Reset:	0	1	1	0	0	1	0	1

	Bit7	6	5	4	3	2	1	Bit0
Read:	DECEDVED		TBSCLK	VCCEn	ADC1E ₂₂	ADC0En	VBATEn	TMPEn
Write:	RES	RESERVED		VCCEII	ADC1En	ADCUEII	VDAIEII	IMPEH
Reset:	0	0 1		0	0	0	0	1

位	功能描述
VBATCMP	此位只在 VBATEn 使能的情况下才有效
	VBATCMP=0: 关闭 VBATDAT 与 VDRCMP 两个寄存器的比较
	VBATCMP=1: 使能 VBATDAT 与 VDRCMP 两个寄存器的比较
RESERVED	保留寄存器,用户不要修改该寄存器的值,或者是直接写入其复位值
Filter[1:0]	ADC 输出滤波控制位 (平均次数,只针对温度测量):
	00: 1次
	01: 2次
	10: 4次
	11:8次
RESERVED	保留寄存器,用户不要修改该寄存器的值,或者是直接写入其复位值
TBSCLK_SEL	TBS 系统时钟源选择位:
	当 OSC 时钟时(HT6015/6017):
	TBS 时钟源固定为 F1f=32768Hz
	当 MEMS 时钟时(HT6115):
	0: TBS 时钟源选择为 F1f=32768Hz (Fmems 分频后)
	1: TBS 时钟源选择为 Fmems=524288Hz
VCCEn	VCC 电压测量功能控制位
	0: 关闭
	1: 使能
ADC1En	ADC 通道 1 测量功能控制位:
	0: 关闭
	1: 使能
	注:如使用该功能,用户需在 GPIO 模块将对应 PIN 配置为 ADCIN1 才行
ADC0En	ADC 通道 0 测量功能控制位:
	0: 关闭
	1: 使能
	注:如使用该功能,用户需在 GPIO 模块将对应 PIN 配置为 ADCINO 才行
VBATEn	电池电压测量功能控制位:
	0: 关闭
m roc	1: 使能
TMPEn	温度测量功能控制位:
	0: 关闭
	1: 使能

TBSIE			基地址:	0x4000E	E000			
(TBS 中断使能寄存器)			偏移地址:	04H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	X
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	v	V	VCCIE	VBATCM	ADC1 TE	ADCOTE	VDATIE	TMDIE
Write:	X	X	VCCIE	PIE	ADC11E	ADCOIE	VBATIE	TMPIE
Reset:	0	0	0	0	0	0	0	0

位	功能描述
VCCIE	电源电压测量中断使能位
	0: 关闭
	1: 打开
VBATCMPIE	VBATCMPIE: VBATDAT 小于 VDRCMP 时产生中断
	VBATCMPIE = 0: 中断关闭
	VBATCMPIE = 1: 中断打开
	当 VBATDAT 低于 VDRCMP 时将产生中断,此功能只在使能了电池电压测量(VBATEn)
	以及电池电压比较功能(VBATCMP)时才有效
ADC1 IE	ADC 通道 1 测量中断使能位
	0: 关闭
	1: 打开
ADCOIE	ADC 通道 0 测量中断使能位
	0: 关闭
	1: 打开
VBATIE	电池电压测量中断使能位
	0: 关闭
	1: 打开
TMPIE	温度测量中断使能位
	0: 关闭
	1: 打开

TBSIF			基地址:	0x4000E	E000			
(TBS 中断标志寄存器)			偏移地址:	08H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	v	v	v	v	v	v	v	v
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Reset:	0	0	0	0	0	0	0	0

	Bit7	6	5	4	3	2	1	Bit0
Read:	v	v	VCCIF	VBATCM	ADC1IF	ADCOIF	VBATIF	TMPIF
Write:	X	Λ	VCCIF	PIF	ADCIIF	ADCUIF	VDAIIF	IMPIF
Reset:	0	0	0	0	0	0	0	0

位	功能描述
VCCIF	电源电压测量中断标志位
	0: 未产生中断
	1: 产生中断
VBATCMPIF	VBATCMPIF: VBATDAT 小于 VDRCMP 时产生的中断标志
	VBATCMPIF = 0: 未产生中断
	VBATCMPIF = 1: 产生中断
ADC1IF	ADC 通道 1 测量中断标志位
	0: 未产生中断
	1: 产生中断
ADCOIF	ADC 通道 0 测量中断标志位
	0: 未产生中断
	1: 产生中断
VBATIF	电池电压测量中断标志位
	0: 未产生中断
	1: 产生中断
TMPIF	温度测量中断标志位
	0: 未产生中断
	1: 产生中断

TMPDAT (温度测量	量输出寄存得	器)	基地址: 偏移地址:		0x4000E000 0CH				
		Bit15···Bit0							
Read:		DAT[15:0]							
Write:	X	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[15:0]	温度测量输出寄存器,16位有符号数

温度计算公式:

温度 Tr = 7.045 - TMPDAT *0.00285

其中: Tr为实际的温度(供显示的温度, ℃)

VBATDAT	基地址:	0x4000E000
(电池电压测量输出寄存器)	偏移地址:	10H

		Bit15···Bit0								
Read:		DAT[15:0]								
Write:	X	X	X	X	X	X	X	X		
Reset:	0	0	0	0	0	0	0	0		

位	功能描述
DAT[15:0]	电池电压 VBAT 测量输出寄存器, 16 位有符号数。

电池电压计算公式:

Vbat = (VBATDAT+32832) / 15085;

其中: Vbat为实际电池电压(供显示的电压, V)

ADCODAT (ADC 通道 0 测量输出寄存器)			基地址: 偏移地址:		0x4000E000 14H				
		Bit15···Bit0							
Read:		DAT[15:0]							
Write:	X	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[15:0]	ADC 通道 0 测量输出寄存器, 16 位有符号数。

ADC 通道 0 测量电压计算公式:

Vadc0 = (ADC0DAT+32777) / 77;

其中: VadcO为实际ADC测量电压(供显示的电压, mV)

ADC1DAT (ADC 通道 1 测量输出寄存器)			基地址: 偏移地址:	0x4000F 18H	000				
		Bit15···Bit0							
Read:		DAT[15:0]							
Write:	X	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[15:0]	ADC 通道 1 测量输出寄存器, 16 位有符号数

ADC 通道1测量电压公式同 ADC 通道0。

TBSPRD			基地址:	0x4000E	E000			
(TBS 测试寄存器)			偏移地址:	20H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	VCCPRI	D[1:0]	ADC1PRD

Write:								[1]	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	ADC1PRD[ADCODD	ח[1.0]	VDATDDD [1.0]					
Write:	0]	ADCOPRD[1:0]		VBATPRD[1:0]		TMPPRD[2:0]			
Reset:	0	0	0	0	0	0	0	0	

位		功能描述				
	电源电压测量周期设置:					
	00: 1秒					
VCCPRD[1:0]	01: 2秒					
	10: 8秒					
	11: 16 秒					
	ADC 通道 1 测量周期设置:					
	00: 1秒					
ADC1PRD[1:0]	01: 2秒					
	10: 8 秒					
	11: 16 秒					
	ADC 通道 0 测量周期设置:					
	00: 1秒					
ADCOPRD[1:0]	01: 2秒					
	10: 8秒					
	11: 16秒					
	电池电压测量周期设置:					
	00: 1秒					
VBATPRD[1:0]	01: 2秒					
	10: 8秒					
	11: 16 秒					
	温度测量周期设置:					
	Tps 打开频率如下表所示:					
	当输入为 OSC 时钟时:					
	TMPPRD[2:0]	TBS 打开频率(Hz)				
	000	2				
	001	1				
TMPPRD[2:0]	010	1/2				
	011	1/4				
	100	1/8				
	101	1/16				
	110	1/32				
	111	1/64				
	当输入为 MEMS 时钟时:					

TMPPRD[2:0]	TBS 打开频率(Hz)
000	1/8
001	1/4
010	1/2
011	1
100	2
101	8
110	32
111	128

VCCDAT (电源电压测量输出寄存器)			基地址: 偏移地址:	0x4000F 28H	E000			
		Bit15···Bit0						
Read:		DAT[15:0]						
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[15:0]	电源电压测量输出寄存器,16位有符号数

VCC 电压计算公式:

Vcc = (VCCDAT+32837) /10963;

其中: Vcc为实际VCC电压(供显示的电压, V)

17. 3DES&RAND 模块

硬件 3DES 模块,用户可软件配置相关的密钥和输入/输出数据

17.1 特殊功能寄存器列表

	3DES&RAND 模块寄	· 存器基地址:	0x40012000	
偏移地址	名称	读写方式	复位值	功能描述
00Н	DES3CFG	R/W	0000Н	3DES配置寄存器
04H	DES3STR	W	0000Н	3DES启动命令寄存器
180	DES3FLG	R	0000Н	3DES标志寄存器
ОСН	DES3INH	R/W	00000000Н	3DES输入待加/解密数据高32bit
10H	DES3INL	R/W	00000000Н	3DES输入待加/解密数据低32bit
14H	DES30UTH	R/W	00000000Н	3DES输出已加/解密数据高32bit
18H	DES30UTL	R/W	00000000Н	3DES输出已加/解密数据低32bit
1CH	DES3KEY0H	R/W	00000000Н	3DES密钥寄存器KEYO高32bit
20Н	DES3KEY0L	R/W	00000000Н	3DES密钥寄存器KEYO低32bit
24H	DES3KEY1H	R/W	00000000Н	3DES密钥寄存器KEY1高32bit
28H	DES3KEY1L	R/W	00000000Н	3DES密钥寄存器KEY1低32bit
2CH	DES3KEY2H	R/W	00000000Н	3DES密钥寄存器KEY2高32bit
30H	DES3KEY2L	R/W	00000000Н	3DES密钥寄存器KEY2低32bit
34H	RANDSTR	R/W	0000Н	真随机数启动命令寄存器
38H	RANDDAT	R/W	00000000Н	真随机数数据寄存器
ЗСН	DES3RANDIF	R/W	0000Н	3DES&RAND中断标志

17.2 特殊功能寄存器说明

DES3CFG			基地址:	0x40012	0x40012000				
(3DES 配置寄存器)			偏移地址:	00H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	X	X	X	X	X	X	MODE	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	MODE	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
	编码/解码模式选择控制:
MODE	0: 加密
	1: 解密

DES3STR (3DES 启动寄存器)			基地址: 偏移地址:		0x40012000 04H				
	Bit15···Bit0								
Read:	X								
Write:	DAT[15:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述						
DAT[15:0]	寄存器写入 0x8329 则启动 3DES 传输						
	该控制寄存器只能写入,不能读取。该寄存器读出永远为 0						

DES3FLG			基地址:	0x40012	0x40012000				
(3DES 标志寄存器)			偏移地址:	08H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:									
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	X	X	X	X	X	X	X	BUSY	
Write:								X	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
BUSY	1: 正在进行 3DES 加密/解密
	0: 加密/解密完成
	该寄存器位为只读,不可写
	当加密/解密完成的时候,会产生相应的中断标志,如果中断使能打开,会进入相
	应的中断。3DES 对应中断向量号为 1。

DES3INH			基地址:	0x40012	0x40012000				
(3DES 数据输入高位)			偏移地址:	ОСН					
	Bit31···Bit0								
Read:	DAT[91.0]								
Write:	DAT[31:0]								
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	3DES 输入待加密/解密数据高 32bit

DES3INL (3DES 数据输入低位)			基地址: 偏移地址:		0x40012000 10H				
		Bit31···Bit0							
Read:		DAMEOT OF							
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	3DES 输入待加密/解密数据低 32bit

DES30UTH (3DES 数据输出高位)			基地址: 偏移地址:		0x40012000 14H				
	Bit31···Bit0								
Read:		DATE 01 0]							
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	3DES 输出已加密/解密数据低 32bit

DES30UTL (3DES 数据输出低位)			基地址: 偏移地址:		0x40012000 18H				
				Bit31	∵ Bit0				
Read:				DATE	01.07				
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	3DES 输出已加密/解密数据低 32bit

DES3KEY0H	I	基地址:	0x40012000
(3DES 密钥 0 高 32bit)		偏移地址:	1CH
			Bit31···Bit0
Read:			DAT[31:0]

Write:								
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	3DES 密钥 0 高 32 位,该寄存器可以写入也可以读出

DES3KEYOL (3DES 密钥 0 低 32bit)			基地址: 偏移地址:		0x40012000 20H				
				Bit31	∵ Bit0				
Read:				ם את רכ	01.07				
Write:		DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	3DES 密钥 0 低 32 位,该寄存器可以写入也可以读出

DES3KEY1H (3DES 密钥1高32bit)			基地址: 偏移地址:		0x40012000 24H			
	Bit31···Bit0							
Read:	DATE(01 O)							
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	3DES 密钥 1 高 32 位,该寄存器可以写入也可以读出

DES3KEY1L (3DES 密钥1低 32bit)			基地址: 偏移地址:	0x40012 28H	2000			
	Bit31···Bit0							
Read:		DAT[01_0]						
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	3DES 密钥 1 低 32 位,该寄存器可以写入也可以读出

DES3KEY2H		基地址:	0x40012000	
(3DES 密钥 2 高 32bit)		偏移地址:	2CH	
			Bit31···Bit0	
Read:	DAT[31:0]			

Write:								
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	3DES 密钥 2 高 32 位,该寄存器可以写入也可以读出

DES3KEY2L (3DES 密钥 2 低 32bit)			基地址: 偏移地址:	0x40012000 30H				
				Bit31	··Bit0			
Read:	DAT[01_0]							
Write:	DAT[31:0]							
Reset:	0	0	0	0	0	0	0	0

位	功能描述
DAT[31:0]	3DES 密钥 2 低 32 位,该寄存器可以写入也可以读出

RANDSTR			基地址:	0x40012	2000			
(随机数启动控制位)			偏移地址:	34H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	X	X	X	X	X	X	X	v
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	V	V	V	V	RESERVE	C++	V	C11-C - 1
Write:	X	X	X	X	D	Start	X	C1kSe1
Reset:	0	0	0	0	0	0	0	0

位	功能描述
RESERVED	该寄存器位无意义,用户不要使用
Start	启动控制位 该寄存器位写 1 则启动真随机数生成器,该控制位在随机数生成器生成随机数后由 硬件清 0
ClkSel	真随机数时钟选择控制: 0: Flf 1: Fpll

RANDDAT		基地址:	0x40012000		
(随机数数	数据寄存器)	偏移地址:	38H		
			Bit31···Bit0		
Read:	DAT[31:0]				
Write:			υΑ1 [31.U]		

_										
	Reset:	0	0	0	0	0	0	0	0	

位	功能描述
DAT[31:0]	真随机数数据寄存器,共32位

DES3RANDIF			基地址:	0x40012	0x40012000				
(3DES&RA	(3DES&RAND 中断标志)			3CH					
	Bit15	14	13	12	11	10	9	Bit8	
Read:	X	X	X	X	X	X	X	X	
Write:	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	v	V	V	V	V	V	DANDIE	DECOTE	
Write:	X	X	X	X	X	X	RANDIF	DES31F	
Reset:	0	0	0	0	0	0	0	0	

位	功能描述			
RANDIF	随机数生成中断标志			
DES3IF	DES3 计算完成中断标志			

18. System Tick 定时器模块

18.1 System Tick 定时器概述

System Tick 定时器模块是属于 ARM Cortex-M0 内核的一部分,属于内核自带的功能。

18.2 System Tick 定时器特性

- 24 bit 定时器功能
- 使用系统内核专用的一个中断向量
- 其时钟源为 CPU 的运行时钟 Fcpu

18.3 System Tick 定时器框图

18.4 特殊功能寄存列表

System Tick 模块寄存器基地址: 0xE000E000									
偏移地址	名称	读写方式	复位值	功能描述					
0x10	SYST_CSR	R/W	0x0000	系统定时器控制与状态寄存器					
0x14	SYST_RVR	R/W	0x0000	系统定时器重装载寄存器					
0x18	SYST_CVR	R/W	0x0000	系统定时器当前计数值寄存器					
0x1C	SYST_CALIB	R/W	0x0000	系统定时器校准寄存器					

18.5 特殊功能寄存器说明

SYST_CSR	(系统定时器控制与状	基地址:	0xE000E000				
态寄存器)		偏移地址:	10H				
		Bit	31 … Bit17			Bit16	
Read:	Read:						
Write:	RESERVED						
Reset:	Reset: 0						
	Bit15···Bit2					Bit0	
Read:		DECEDIFE				ENABLE	
Write:	RESERVED NT					ENADLE	
Reset:	0 0						

位	功能描述						
COUNTFLAG	口果 System Tick 定时器向下计数到 0,则该位置 1						
TICKINT	System Tick 定时器中断使能						
	1: 中断使能						
	0: 中断禁止						
	当 System Tick 定时器向下计数到 0 的时候,产生 System Tick 中断						
ENABLE	System Tick 定时器使能寄存器						
	1: 定时器使能						
	0: 定时器禁止						
RESERVED	用户不要修改 RESERVED 的寄存器位的值						

SYST_RVR(系统定时器重装载寄			基地址:	0xE000E	0xE000E000				
存器)			偏移地址:	14H	14H				
		Bit31···Bit24							
Read:		DECEDVED							
Write:	RESERVED								
Reset:	0	0	0	0	0	0	0	0	
				Bit23	∙•BitO				
Read:				DEI OAI)[990]				
Write:	RELOAD[23···0]								
Reset:				()				

位	功能描述					
RELOAD[23···0]	该再装载寄存器为 24bit					
	如果 System Tick 定时器向下计数到 0,则该再装载控制寄存器 RELOAD[23…0]会					
	被装载到 System Tick 定时器模块					
RESERVED	用户不要修改 RESERVED 的寄存器位的值					

SYST_CVR	(系统定时器)	当前计数	基地址:	0xE000E000					
值寄存器)			偏移地址:	18H	18H				
	Bit31···Bit24								
Read:	DECEDVED								
Write:		RESERVED							
Reset:	0	0	0	0	0	0	0	0	
				Bit23	··BitO				
Read:	CLIDDENIE [00 0]								
Write:	CURRENT [23···0]								
Reset:				()				

位	功能描述
CURRENT[23···0]	该系统定时器当前计数值寄存器为 24bit
	该寄存器的数字指示当前系统定时器的计数值,写任意数据到 SYST_CVR 寄存器都
	会导致系统定时器内部计数被清 0,同时清 0 寄存器 SYST_CSR 的 COUNTFLAG 位
RESERVED	用户不要修改 RESERVED 的寄存器位的值

SYST_CALI	B(系统定时	才器校准值	基地址:	0xE000E000		
寄存器)			偏移地址:	1CH		
	Bit31	Bit30		Bit29···Bit24		
Read:	NOREF SKEW		DECEDUED			
Write:	NOKEI	SKEW		RESERVED		
Reset:	0		0			
				Bit23···Bit0		
Read:				TENMS		
Write:	1 EINMS					
Reset:	0					

位	功能描述			
NOREF	=1: 系统没有提供参考时钟给 System Tick 定时器			
	=0: 系统提供了参考时钟给 System Tick 定时器			
SKEW	=1: TENMS 未正确设置			
RESERVED	用户不要修改 RESERVED 的寄存器位的值			
TENMS	=0: System Tick 校准值未知			

19. 电气规格

19.1 DC 参数

符号	参数说明	测试条件	最小	典型	最大	单位
VCC	输入电源	输入电源引脚上的电压	2.2	5	5.5	V
Vih	高电平输入电压	Reset 引脚,TEST 引脚	0.8VCC			V
Vih	高电平输入电压	PC9,PC10,PE0,PE3,PE6	0.6VCC			V
Vih	高电平输入电压	除了电源和地,除了 Reset,	0.7VCC			V
		TEST, PC9,PC10,PE0,PE3,				
		PE6 之外的所有引脚				
Vih	低电平输入电压	除了电源和地之外的所有引			0.2VCC	V
		脚				
Ioh	高电平输出电流	VCC=5V	10			mA
		I/O 口上电压 Vio 降低到				
		0.9VCC				
		测试引脚为:				
		PA.6, PA.7, PA.8, PC.0				
Iol	低电平输出电流	VCC=5V	20			mA
		I/O 口上电压 Vio 升高到				
		0.1VCC				
		测试引脚为:				
		PA.6, PA.7, PA.8, PC.0				
Ioh	高电平输出电流	VCC=5V	5			mA
		I/O 口上电压 Vio 降低到				
		0.9VCC				
		测试引脚为:				
		PD.4,PD.5,PD.6,PD.7				
		PC.5,PC.6,PC.7,PC.8,PC.9,				
		PC.10,PC.11,PE.1				
Iol	低电平输出电流	VCC=5V	5			mA
		I/O 口上电压 Vio 降低到				
		0.9VCC				
		测试引脚为:				
		PD.4,PD.5,PD.6,PD.7				
		PC.5,PC.6,PC.7,PC.8,PC.9,				
		PC.10,PC.11,PE.1				
Ioh	高电平输出电流	VCC=5V	3			mA

		I/O 口上电压 Vio 降低到			
		0.9VCC			
		测试引脚为:			
		除了 PA.6,PA.7,PA.8,PC.0,			
		PD.4,PD.5,PD.6,PD.7			
		PC.5,PC.6,PC.7,PC.8,PC.9,			
		PC.10,PC.11,PE.1			
Iol	低电平输出电流	VCC=5V	3		mA
		I/O 口上电压 Vio 降低到			
		0.9VCC			
		测试引脚为:			
		除了 PA.6,PA.7,PA.8,PC.0,			
		PD.4,PD.5,PD.6,PD.7			
		PC.5,PC.6,PC.7,PC.8,PC.9,			
		PC.10,PC.11,PE.1			

19.2 极限参数

符号	参数说明	测试条件	最小	最大	单位
VCC	输入电源	输入电源引脚上的电压	2.2	5.5	V
Vi	输入电压	所有的数字引脚	0	5.5	V
Via	ADC 输入极限	测试 ADC 引脚输入电压,高于此电压可	0	1.5	V
	电压	能会导致该引脚损坏			
Vib	VBAT 输入极限	测试 VBAT 引脚输入电压,高于此电压可	0	4	V
	电压	能会导致该引脚损坏			
Idd	输入电流	VCC 电源引脚		50	mA
Iss	地上电流	所有 GND 引脚		50	mA
Tstg	存储温度	芯片的极限存储温度	-65	+150	$^{\circ}\!\mathbb{C}$
Vesd	静态 ESD	芯片所有的引脚	-8000	+8000	V
	(HBM)				

19.3 功耗参数

测试条件说明	最小	典型	最大	单位
测试条件: 以下功耗参数均为在 5V 供电下测试得到				
芯片处于 Hold 模式下最低功耗(具体功耗值会根据用户在		3.3		uA
Hold 模式下打开不同的数字模块而不同)				
芯片处于 Sleep 模式下功耗		2.7		uA
芯片在低频 32768Hz 下运行,LCD 开启时的功耗		45		uA

高频 RC 下运行,高频 RC 配置为 8M,CLKOUT 关闭	1.62	mA
高频 RC 下运行,高频 RC 配置为 4M, CLKOUT 关闭	1.16	mA
高频 RC 下运行,高频 RC 配置为 2M,CLKOUT 关闭	0.92	5 mA
高频 RC 下运行,高频 RC 配置为 1M,CLKOUT 关闭	0.80	6 mA
高频 RC 下运行,高频 RC 配置为 500K, CLKOUT 关闭	0.74	7 mA
高频 RC 下运行,高频 RC 配置为 125K,CLKOUT 关闭	0.7	mA
PLL 时钟下运行,CPU 运行 PLL 时钟 22M,所有数字模块打开	4.64	mA
PLL 时钟下运行,CPU 运行 PLL 时钟 11M,所有数字模块打开	3.37	mA
PLL 时钟下运行,CPU 运行 PLL 时钟 5.5M,所有数字模块打开	2.71	mA
PLL 时钟下运行,CPU 运行 PLL 时钟 2.75M,所有数字模块打开	2.38	mA
PLL 时钟下运行,CPU 运行 PLL 时钟 1.375M,所有数字模块打开	2.21	mA

测试条件说明	最小	典型	最大	单位		
测试条件: 以下功耗参数均为在 5V 供电下测试得到	测试条件: 以下功耗参数均为在 5V 供电下测试得到					
高频 RC 模块功耗(HRC)		95		uA		
低频 RC 模块功耗(LRC)		1		uA		
PLL 模块功耗		240		uA		
RTC 模块功耗(含 TBS 补偿)		1.2		uA		
LCD 模块功耗(快速充电模式)		8		uA		
BOR 模块功耗		7		uA		
LVDIN 模块		6		uA		
VCC=3.6V 下测试, TMP 温度检测模块(在 Sleep/Hold 模式		45		uA		
下为分时开启)						
VCC=3.6V 下测试, VBAT 电池检测模块(在 Sleep/Hold 模		45		uA		
式下为分时开启)						
VCC=3.6V 下测试,ADC 外部电压检测模块(在 Sleep/Hold		45		uA		
模式下为分时开启)						
VCC=3.6V 下测试, VCC 电源检测模块(在 Sleep/Hold 模式		45		uA		
下为分时开启)						

19.4 外部 ADC 参数

符号	参数说明	测试条件	最小	典型	最大	单位
Via	ADC 输入电压		0		800	mV
Fc	ADC 转换频率	VCC=5V	1/16		1	Hz
Res	分辨率	VCC=5V		0.012		mv/LSB

19.5 VBAT 测试参数

符号	参数说明	测试条件	最小	典型	最大	单位
Via	VBAT 输入电压		1		4	V
Fc	ADC 转换频率	VCC=5V	1/16		1	Hz
Res	分辨率	VCC=5V		0.066		mv/LSB

19.6 VCC 测试参数

符号	参数说明	测试条件	最小	典型	最大	单位
Via	VCC 输入电压		2.2		5.5	V
Fc	ADC 转换频率		1/16		1	Hz
Res	分辨率			0.09		mv/LSB

20. 封装

HT6015: LQFP80

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	-	0.27
Ь1	0.17	0.20	0.23
С	0.13	_	0.18
c1	0.12	0.127	0.134
D	13.80	14.00	14.20
D1	11.90	12.00	12.10
E	13.80	14.00	14.20
E1	11.90	12.00	12.10
е	0.40	0.50	0.60
Г	0.45	0.60	0.75
L1		1.00REF	
L2		0.25BSC	
R1	0.08	_	_
R2	0.08	_	0.20
θ	0.	3.5*	7*
θ 1	0*	-	_
θ 2	11*	12°	13°
θ 3	11'	12°	13°

NOTES:

BASE METAL

ALL DIMENSIONS REFER TO JEDEC STANDARD MS-026 BDD DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

HT6017: LQFP64

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
Ь	0.18	_	0.27
b1	0.17	0.20	0.23
С	0.13	_	0.18
c1	0.12	0.127	0.134
D	11.80	12.00	12.20
D1	9.90	10.00	10.10
E	11.80	12.00	12.20
E1	9.90	10.00	10.10
e		0.50BSC	
L	0.45	0.60	0.75
L1		1.00REF	
L2		0.25BSC	
R1	0.08	-	ı
R2	0.08	_	0.20
S	0.20	-	ı
θ	0*	3.5°	7*
θ 1	0,	-	_
θ2	11"	12°	13*
θ3	11°	12*	13°

NOTES:

ALL DIMENSIONS MEET JEDEC STANDARD MS-026 BCD DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.