

SEQUENCE LISTING

GENERAL INFORMATION:

(i) APPLICANT: FALCO, SAVERIO CARL ALLEN, STEPHEN M.

RAFALSKI, J. ANTONI HITZ, WILLIAM D. KINNEY, ANTHONY J.

ABELL, LYNNE N. THORPE, CATHERINE J.

- (ii) TITLE OF INVENTION: PLANT AMINO ACID BIOSYNTHETIC ENZYMES
- (iii) NUMBER OF SEQUENCES: 43
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: E. I. DU PONT DE NEMOURS AND COMPANY
- (B) STREET: 1007 MARKET STREET
- (C) CITY: WILMINGTON
- (D) STATE: DELAWARE
- (E) COUNTRY: USA
- (F) ZIP: 19898
- (v) COMPUTER READABLE FORM:
- (A) MEDIUM TYPE: DISKETTE, 3.50 INCH
- (B) COMPUTER: IBM PC COMPATIBLE
- (C) OPERATING SYSTEM: MICROSOFT WINDOWS 95
- (D) SOFTWARE: MICROSOFT WORD VERSION 7.0A
- (vi) CURRENT APPLICATION DATA:
- (A) APPLICATION NUMBER: US/10/734,698
- (B) FILING DATE: 12-Dec-2003
- (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
- (A) APPLICATION NUMBER: 60/048,771
- (B) FILING DATE: 6-Jun-1997
- (viii) ATTORNEY/AGENT INFORMATION:
- (A) NAME: MAJARIAN, WILLIAM R.
- (B) REGISTRATION NUMBER: 41,173
- (C) REFERENCE/DOCKET NUMBER: BB-1087
- (G) TELEPHONE: 302-992-4926
- (H) TELEFAX: 302-773-0164
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 908 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: csiln.pk0042.a3

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ACGCGGGACA	GATAAGTGGC	ATGGACGAGC	CGCTGGAGAT	CCCTGTGCTG	AACGACCTCA	60
CCATGGTTCT	GGGCTCCATA	GCGCAGTCGA	GAGCAACCGG	CGTGGTGGTC	GACTTCAGCG	120
AGCCTTCAGC	TGTTTACGAC	AATGTCAAGC	AGGCAGCGGC	GTTTGGTCTG	AGCAGCGTCG	180
TCTACGTTCC	GAAAATCGAG	CTAGAGACAG	TGACTGAACT	GTCAGCGTTC	TGCGAGAAGG	240
CAAGCGGCTG	CTTGGTTGCG	CCAACGCTGT	CGATTGGGTC	CGTGCTCCTT	CAGCAAGCGG	300
CTATACAGGC	CTCGTTCCAC	TACAGCAACG	TTGAGATTGT	GGAATCGAGA	CCAAACCCAT	360
CGGATCTTCC	ATCGCAAGAT	GCAATCCAGA	TTGCAAACAA	CATATCAGAC	CTTGGTCAGA	420
TATACAACAG	GGAAGATATG	GATTCCAGCA	GTCCAGCCAG	AGGCCAGCTG	CTCGGGGAAG	480
ACGGAGTGCG	CGTGCACAGC	ATGGTTCTCC	CTGGTCTCGT.	CTCCAGCACG	TCGATCAACT	540
TCTCTGGCCC	AGGAGAGATG	TACACCTTAC	GGCATGACGT	TGCGAATGTT	CAGTGCCTGA	600
TGCCAGGACT	GATCCTGGCG	ATACGGAAGG	TGGTGCGGTT	CAAGAACTTG	ATTTATGGGC	660
TAGAGAAGTT	CTTGTAGTGA	ACAACAAACA	ACCAATGCAA	AACATCGACA	GGCAACAGGC	720
AAGGCAGATA	TCATCTGACG	TCGCAACAAC	CAAAACGACA	GAGATTTGGA	AAATAAAGGC	780
TGCACAGAAG	ACGTCTGGGG	TTTTGTGTGC	ACCAGGCTGC	GCAGAGAACG	TCTGTCATTT	840
TGTGTGCACC	ACTACGGCAC	TACCTGCTGA	GCGCGATTTT	TATAAAAAAG	GCATGGGAGG	900
GAGATCAT						908

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 224 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vii) IMMEDIATE SOURCE:
- (B) CLONE: csiln.pk0042.a3
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Ala Gly Gln Ile Ser Gly Met Asp Glu Pro Leu Glu Ile Pro Val Leu 1 5 10 15

Asn Asp Leu Thr Met Val Leu Gly Ser Ile Ala Gln Ser Arg Ala Thr 20 25 30

Gly Val Val Val Asp Phe Ser Glu Pro Ser Ala Val Tyr Asp Asn Val 35 40 45

Lys	Gln 50	Ala	Ala	Ala	Phe	Gly 55	Leu	Ser	Ser	Val	Val 60	Tyr	Val	Pro	Lys		
Ile 65	Glu	Leu	Glu	Thr	Val 70	Thr	Glu	Leu	Ser	Ala 75	Phe	Cys	Glu	Lys	Ala 80		
Ser	Gly	Cys	Leu	Val 85	Ala	Pro	Thr	Leu	Ser 90	Ile	Gly	Ser	Val	Leu 95	Leu		
Gln	Gln	Ala	Ala 100	Ile	Gln	Ala	Ser	Phe 105	His	Tyr	Ser	Asn	Val 110	Glu	Ile		
Val	Glu	Ser 115	Arg	Pro	Asn	Pro	Ser 120	Asp	Leu	Pro	Ser	Gln 125	Asp	Ala	Ile		
Gln	Ile 130	Ala	Asn	Asn	Ile	Ser 135	Asp	Leu	Gly	Gln	Ile 140	Tyr	Asn	Arg	Glu		
Asp 145	Met	Asp	Ser	Ser	Ser 150	Pro	Ala	Arg	Gly	Gln 155	Leu	Leu	Gly	Glu	Asp 160		
Gly	Val	Arg	Val	His 165	Ser	Met	Val	Leu	Pro 170	Gly	Leu	Val	Ser	Ser 175	Thr		
Ser	Ile	Asn	Phe 180	Ser	Gly	Pro	Gly	Glu 185	Met	Tyr	Thr	Leu	Arg 190	His	Asp		
Val	Ala	Asn 195	Val	Gln	Cys	Leu	Met 200	Pro	Gly	Leu	Ile	Leu 205	Ala	Ile	Arg		
Lys	Val 210	Val	Arg	Phe	Lys	Asn 215	Leu	Ile	Tyr	Gly	Leu 220	Glu	Lys	Phe	Leu		
(2)	I	NFORI	ITAN	ON FO	OR SI	EQ II	ои о	: 3 :									
		i)				ARAC'I			3:								
		A) B)	LENG TYP	3TH: 3: 1		eic a	_	airs									
		C)		ANDEI		_	sing]	le									
		D)		OLOGY		linea											
	(ii)	MOL	ECULI	E TYI	PE:	CDNA	Ą									
	•	vii) B)	CLO			OURCE 2.pk(.d3									
	(xi)	SEQ	JENC	E DES	SCRIE	OITS	1: 5	SEQ I	ED NO	0:3:						
AAGA	ATTG	GCA (GGAG	TAA	GC AC	GCAA	AGGT	с сто	CTGCT	CAA	CGC	AGATO	SCC (GCCAT	TCTCAG		60
AGC	ACAA	TCA A	AGGT	rgtt2	AT C	ATTGO	GGCC	ACA)AAA	GAGA	TTG	GAAG?	AAC (GCA/	ATAGCG	1	20
GCAC	STAA	GTA A	AAGC	AAGG	GG A	ATGG	AGCT	r GC	AGGG	GCCA	TAG	ATTC	CA C	GTGT	ATAGGC	1	80
CTAC	SATG	CAG	GAGA	SATA	AG TO	GGCA7	rgggz	A AGA	AACC	CTGG	AAA	TCCC	GT (GCTC?	AATGAT	2	40
CTC	ACAA	TGG 1	TTCT	GGC:	rc a	ATTGO	CACA	A ACC	CAGAC	GCAA	CTG	SAGTO	GT (GGTTC	SATTTT	3	00
AGTO	GAAC	CTT (CAAC	rgtt:	ra To	SATA	ATGTO	C AAA	ACAGO	GCA						3	39

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: rls2.pk0017.d3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Lys Ile Gly Arg Arg Asn Ala Ala Lys Val Leu Cys Ser Thr Gln Met

5 10 15

Pro Pro Ser Gln Ser Thr Ile Lys Val Val Ile Ile Gly Ala Thr Lys
20 25 30

Glu Ile Gly Arg Thr Ala Ile Ala Ala Val Ser Lys Ala Arg Gly Met 35 40 45

Glu Leu Ala Gly Ala Ile Asp Ser Gln Cys Ile Gly Leu Asp Ala Gly 50 55 60

Glu Ile Ser Gly Met Gly Arg Thr Leu Glu Ile Pro Val Leu Asn Asp 65 70 75 80

Leu Thr Met Val Leu Gly Ser Ile Ala Gln Thr Arg Ala Thr Gly Val 85 90 95

Val Val Asp Phe Ser Glu Pro Ser Thr Val Tyr Asp Asn Val Lys Gln
100 105 110

Ala

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 275 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Synechocystus sp
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Ala Asn Gln Asp Leu Ile Pro Val Val Val Asn Gly Ala Ala Gly
1 5 10 15

Lys Met Gly Arg Glu Val Ile Lys Ala Val Ala Gln Ala Pro Asp Leu 20 25 30 Gln Leu Val Gly Ala Val Asp His Asn Pro Ser Leu Gln Gly Gln Asp 35 40 45

Ile Gly Glu Val Val Gly Ile Ala Pro Leu Glu Val Pro Val Leu Ala 50 55 60

Asp Leu Gln Ser Val Leu Val Leu Ala Thr Gln Glu Lys Ile Gln Gly 65 70 75 80

Val Met Val Asp Phe Thr His Pro Ser Gly Val Tyr Asp Asn Val Arg 85 90 95

Ser Ala Ile Ala Tyr Gly Val Arg Pro Val Val Gly Thr Thr Gly Leu 100 105 110

Ser Glu Gln Gln Ile Gln Asp Leu Gly Asp Phe Ala Glu Lys Ala Ser 115 120 125

Thr Gly Cys Leu Ile Ala Pro Asn Phe Ala Ile Gly Val Leu Leu Met 130 135 140

Gln Gln Ala Ala Val Gln Ala Cys Gln Tyr Phe Asp His Val Glu Ile 145 150 155 160

Ile Glu Leu His His Asn Gln Lys Ala Asp Ala Pro Ser Gly Thr Ala 165 170 175

Ile Lys Thr Ala Gln Met Leu Ala Glu Met Gly Lys Thr Phe Asn Pro 180 185 190

Pro Ala Val Glu Glu Lys Glu Thr Ile Ala Gly Ala Lys Gly Gly Leu 195 200 205

Gly Pro Gly Gln Ile Pro Ile His Ser Ile Arg Leu Pro Gly Leu Ile 210 215 220

Ala His Gln Glu Val Leu Phe Gly Ser Pro Gly Gln Leu Tyr Thr Ile
225 230 235 240

Arg His Asp Thr Thr Asp Arg Ala Cys Tyr Met Pro Gly Val Leu Leu 245 250 255

Gly Ile Arg Lys Val Val Glu Leu Lys Gly Leu Val Tyr Gly Leu Glu 260 265 270

Lys Leu Leu 275

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1012 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vii) IMMEDIATE SOURCE:
- (B) CLONE: chp2.pk0008.h4

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

60	GCCGAGATTG	TCGGTTTATA	GTTGCTTCGC	AATGGAGTCC	GATGTGTGGT	TATTGCCAGA
120	ATCGTTCCTG	TGCTGGAAAG	TTCATACTGG	AGATTCACTA	GGGGACAAAT	AAAATCTGCA
180	TCTGGACTAG	GCCTATCCTT	ATATGGGCGA	GTAAAGGTTG	TGATGGGCAG	AAATACAAAG
240	GAATTGGCAG	TGTTCAAGCT	ACAAAGCTGT	GCTACCAAGA	AAAACTGCTA	ACATCCCCAC
300	TGTGTCACAT	AAACCCTCAC	TTAGCATGGG	GTCACATGTG	AACATGGCAT	TTGAGGGCTT
360	GAAATTGGGC	AAAACTTAGC	TCGACGATTT	GTATTGCAGG	TGAGTTAAAG	TTGGTGCAAA
420	GTACAGGTTT	CACAGAATTC	CTCGCACAAA	ATGTTTCCTG	GCATCATGAA	CTAAATTTGA
480	ACTCTTGCCT	TGCTGGAGCA	GGGAACGTGG	ATGCGGGTCT	ACACCTCAAA	TGTCTCGCTC
540	GCTGAGCGGA	TGAGGGTCGA	CAGCTGTTCT	GTGGTTGTTG	TGCTTGTGCA	GTGGTACTGG
600	GATGACAATC	GTGGAGGGAG	TGGAAATTGA	GGCGGGCCAT	TGATTTGCCT	AATGTGTAGT
660	CACTAGGTAC	ATCTGTTGTT	TCTTTTATGG	GCAGAGGTCG	GACTGGTCCT	ATGTTTACAT
720	TTATAGTATC	GTGAGATTGG	CTCAGAGCTT	TTGGCTGCCA	GATAGAAGGG	TGGGGACCAA
780	TATGATTGCT	TATTCTTAAT	CTTGTTCAGA	TACCAGTACA	AGTGTTCTGG	CATGAAACAG
840	TTTTGTACTC	AGTGTTCMCC	GAAGCATTCT	GCTTCCTTTT	AGCMGTAGAG	TGATTTGGGT
900	ATTTTCYGTT	CYTTCCCACC	GGTAACATGT	ACACTACATG	TCAGGTTTGA	CTTTAGTTTG
960	GATTTGTCTT	GTTTTCTATA	TTTTAGTATT	GCCAATGCAG	GTAAGTGAAC	TCTTTTCTTT
1012	TG	GCCTATTTCC	TATGAATGCT	TATTTTCTGG	GCTTACTACT	GATGCACTGG

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 217 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vii) IMMEDIATE SOURCE:
- (B) CLONE: chp2.pk0008.h4
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Leu Pro Glu Met Cys Gly Asn Gly Val Arg Cys Phe Ala Arg Phe Ile 1 5 10 15

Ala Glu Ile Glu Asn Leu Gln Gly Thr Asn Arg Phe Thr Ile His Thr 20 25 30

Gly Ala Gly Lys Ile Val Pro Glu Ile Gln Ser Asp Gly Gln Val Lys 35 40 45

Val	Asp 50	Met	Gly	Glu	Pro	Ile 55	Leu	Ser	Gly	Leu	Asp 60	Ile	Pro	Thr	Lys
Leu 65	Leu	Ala	Thr	Lys	Asn 70	Lys	Ala	Val	Val	Gln 75	Ala	Glu	Leu	Ala	Val 80
Glu	Gly	Leu	Thr	Trp 85	His	Val	Thr	Cys	Val 90	Ser	Met	Gly	Asn	Pro 95	His
Cys	Val	Thr	Phe 100	Gly	Ala	Asn	Glu	Leu 105	Lys	Val	Leu	Gln	Val 110	Asp	Asp
Leu	Lys	Leu 115	Ser	Glu	Ile	Gly	Pro 120	Lys	Phe	Glu	His	His 125	Glu	Met	Phe
Pro	Ala 130	Arg	Thr	Asn	Thr	Glu 135	Phe	Val	Gln	Val	Leu 140	Ser	Arg	Ser	His
Leu 145	Lys	Met	Arg	Val	Trp 150	Glu	Arg	Gly	Ala	Gly 155	Ala	Thr	Leu	Ala	Cys 160
Gly	Thr	Gly	Ala	Cys 165	Ala	Val	Val	Val	Ala 170	Ala	Val	Leu	Glu	Gly 175	Arg
Ala	Glu	Arg	Lys 180	Cys	Val	Val	Asp	Leu 185	Pro	Gly	Gly	Pro	Leu 190	Glu	Ile
Glu	Trp	Arg 195	Glu	Asp	Asp	Asn	His 200	Val	Tyr	Met	Thr	Gly 205	Pro	Ala	Glu
Val	Val	Phe	Tyr	Gly	Ser	Val	Val	His							

(2) INFORMATION FOR SEQ ID NO:8:

210

(i) SEQUENCE CHARACTERISTICS:

215

- (A) LENGTH: 481 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vii) IMMEDIATE SOURCE:
- (B) CLONE: rls48.pk0036.h10
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

TGTATCCGGC GCCGACGGTG TGATCTTCGT CATGCCGGGG GTCAATGGCG CGGACTACAC 60

CATGAGGATC TTCAACTCGG ACGGCAGTGA GCCGGAGATG TGTGGCAATG GAGTCCGTTG 120

CTTTGCCCGG TTTATAGCTG AGCTTGAAAA CCTACAGGGA ACACATAGCT TCAAAAATCA 180

CACTGGCGCT GGGCTAATCA TTCCTGAAAT ACAAAATGAT GGCAAGGTAA AGGTTGATAT 240

GGGCCAGCCC ATTCTCTCTG GACCAGATAT TCCAACAAAA CTGCCATCCA CCAAGAATGA 300

AGCCGTTGTC CAAGCTGATT TGGGCAGTTG ATGGCTCAAC ATGGCAAGTA ACCTGTGTTA 360

GCATGGGCAA	TCCACATTGT GTCACATTTG GCACAAAGGA GCTCAAGGTT TTGCATGTTG	420
ATGATTAAAG	CTTAATGATA TTGGGGCCTA AATTCAGCAT CATGAAATGT TCCTGCCCCA	480
С		481
(2) INFOR	MATION FOR SEQ ID NO:9:	
(i) (A) (B) (C) (D)	SEQUENCE CHARACTERISTICS: LENGTH: 85 amino acids TYPE: amino acid STRANDEDNESS: not relevant TOPOLOGY: linear	
(ii)	MOLECULE TYPE: peptide	
(vii) (B)	IMMEDIATE SOURCE: CLONE: rls48.pk0036.h10	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:9:	
Val Ser Gly 1	Ala Asp Gly Val Ile Phe Val Met Pro Gly Val Asn Gly 5 10 15	
Ala Asp Tyr	Thr Met Arg Ile Phe Asn Ser Asp Gly Ser Glu Pro Glu 20 25 30	
Met Cys Gly 35	Asn Gly Val Arg Cys Phe Ala Arg Phe Ile Ala Glu Leu 40 45	
Glu Asn Leu 50	Gln Gly Thr His Ser Phe Lys Ile His Thr Gly Ala Gly 55 60	
Leu Ile Ile 65	Pro Glu Ile Gln Asn Asp Gly Lys Val Lys Val Asp Met 70 75 80	
Gly Gln Pro	Ile Leu 85	
(2) INFOR	MATION FOR SEQ ID NO:10:	
(i) (A) (B) (C) (D)	SEQUENCE CHARACTERISTICS: LENGTH: 1301 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:10:	
ATCCCTTATT	AAGCAGGGGT TTCGCGGCGC GAGACGGTGA CACTGGCAGA GTGGAATTTC	60
CGCCGCCATT	CGAAGCTACA GCGATGGCCA TAACCGCCAC CATTTCCGTT CCCCTCACAT	120
CCCCCAGTCG	CCGCACTCTC ACCTCCGTCA ATAGCCTCTC TCCCCTTTCT ACCCGATCCA	180
CTTTGCCCAC	ACCGCAACGC ACTTTCAAAT ACCCTAATTC GCGCCTCGTC GTGTCTTCCA	240

TGAGCACCGA	AACAGCCGTC	AAAACTTCAT	CCGCCTCCTT	CCTCAACCGC	AAGGAGTCCG	300
GCTTCCTCCA	TTTCGCCAAG	TACCACGGCC	TCGGAAACGA	CTTCGTTTTG	ATTGACAATA	360
GAGACTCCTC	CGAGCCCAAG	ATCAGTGCTG	AGAAAGCGGT	GCAACTGTGT	GATCGGAACT	420
TCGGCGTTGG	AGCTGACGGA	GTTATCTTTG	TCTTGCCTGG	CATCAGTGGC	ACCGATTATA	480
CCATGAGGAT	TTTTAACTCT	GATGGTAGTG	AGCCTGAGAT	GTGTGGCAAT	GGAGTTCGAT	540
GCTTTGCCAA	ATTTGTTTCT	CAGCTTGAGA	ATTTACATGG	GAGGCATAGT	TTTACCATTC	600
ATACTGGTGC	TGGTCTGATT	ATTCCTGAAG	TCTTGGAGGA	TGGAAATGTC	AGAGTTGATA	660
TGGGGGAGCC	AGTTCTTAAA	GCCTTGGATG	TGCCTACTAA	ATTACCTGCA	AATAAGGATA	720
ATGCTGTTGT	TAAATCACAG	CTAGTTGTAG	ATGGAGTTAT	TTGGCATGTG	ACCTGTGTTA	780
GCATGGGGAA	TCCACACTGT	GTAACTTTCA	GTAGAGAAGG	AAGCCAGAAT	TTGCTTGTTG	840
ATGAATTGAA	GCTAGCAGAA	ATTGGGCCAA	AATTTGAACA	TCATGAGGTG	TTCCCTGCAC	900
GAACTAACAC	AGAGTTTGTG	CAAGTATTAT	CTAACTCTCA	CTTGAAAATG	CGTGTTTGGG	960
AGCGGGGAGC	AGGAGCAACC	CTAGCCTGTG	GAACTGGAGC	TTGTGCTACT	GTTGTTGCAG	1020
CAGTTCTTGA	GGGTCGTGCT	GGGAGGAATT	GCACGGTTGA	TCTACCTGGA	GGGCCTCTTC	1080
AGATTGAGTG	GAGGGAGGAA	GATAATCATG	TTTATATGAC	AGGCTCAGCC	GATGTAGTTT	1140
ATTATGGTTC	TTTGCCCCTT	TGATATGTTG	CCCCCATTGT	TAAACCCAAT	ATGGAATTAG	1200
GAATTGGTGA	ATAATATTTG	TATGAGAGGT	GGACTTTCTG	CTTGTTCCTA	ATATTTTGCC	1260
ACGTCTTTAT	ААААААААА	ААААААААА	АААААААА	A		1301

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 359 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Ala Ile Thr Ala Thr Ile Ser Val Pro Leu Thr Ser Pro Ser Arg

1 10 15

Arg Thr Leu Thr Ser Val Asn Ser Leu Ser Pro Leu Ser Thr Arg Ser 20 25 30

Thr Leu Pro Thr Pro Gln Arg Thr Phe Lys Tyr Pro Asn Ser Arg Leu 35 40 45

Val Val Ser Ser Met Ser Thr Glu Thr Ala Val Lys Thr Ser Ser Ala 50 55 60

Ser Phe Leu Asn Arg Lys Glu Ser Gly Phe Leu His Phe Ala Lys Tyr His Gly Leu Gly Asn Asp Phe Val Leu Ile Asp Asn Arg Asp Ser Ser 90 Glu Pro Lys Ile Ser Ala Glu Lys Ala Val Gln Leu Cys Asp Arg Asn Phe Gly Val Gly Ala Asp Gly Val Ile Phe Val Leu Pro Gly Ile Ser Gly Thr Asp Tyr Thr Met Arg Ile Phe Asn Ser Asp Gly Ser Glu Pro Glu Met Cys Gly Asn Gly Val Arg Cys Phe Ala Lys Phe Val Ser Gln 155 Leu Glu Asn Leu His Gly Arg His Ser Phe Thr Ile His Thr Gly Ala 170 Gly Leu Ile Ile Pro Glu Val Leu Glu Asp Gly Asn Val Arg Val Asp Met Gly Glu Pro Val Leu Lys Ala Leu Asp Val Pro Thr Lys Leu Pro Ala Asn Lys Asp Asn Ala Val Val Lys Ser Gln Leu Val Val Asp Gly Val Ile Trp His Val Thr Cys Val Ser Met Gly Asn Pro His Cys Val Thr Phe Ser Arg Glu Gly Ser Gln Asn Leu Leu Val Asp Glu Leu Lys 250 Leu Ala Glu Ile Gly Pro Lys Phe Glu His His Glu Val Phe Pro Ala 265 Arg Thr Asn Thr Glu Phe Val Gln Val Leu Ser Asn Ser His Leu Lys 280 Met Arg Val Trp Glu Arg Gly Ala Gly Ala Thr Leu Ala Cys Gly Thr 290 Gly Ala Cys Ala Thr Val Val Ala Ala Val Leu Glu Gly Arg Ala Gly 310 315 Arg Asn Cys Thr Val Asp Leu Pro Gly Gly Pro Leu Gln Ile Glu Trp 325 Arg Glu Glu Asp Asn His Val Tyr Met Thr Gly Ser Ala Asp Val Val 345

Tyr Tyr Gly Ser Leu Pro Leu 355

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 602 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vii) IMMEDIATE SOURCE:
- (B) CLONE: wlm24.pk0030.q4
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CTCCACCGCC CCCTCCTCGG GCGGTCGCCT CCTCCGTCCG TTCTGTGGGA ATCCGCGCCC 60 CCGCCGCGC GTCGCCTCGA TGGCCGTGTC CGCTCCCAAG TCGCCAGCCG CCGCCTCGTT 120 CCTCGAGCGC CGCGAGTCCG AGCGCGCGCT CCACTTCGTG AAGTACCAGG GCCTCGGCAA 180 CGACTTCATA ATGGTCGACA ACAGGGATTC GGCCGTACCG AAGGTGACAC CGGAGGAGGC 240 GGCGAAGCTA TGCGACCGAA ACTTTGGGTA TTGGGTGCTG ATGGCGTCAT CTTCGTCCTG 300 CCGGGGGTCA ACGGCGCGGA CTACACTATG AGGATATTCA ACTCCGATGG CAGCAACCGG 360 AATGTNTGGN ATGGATTCGT TGCTTGCTCG CTTTATACGG AGTTGAAATC TACANGGAAA 420 CATACTTCAA AACAANAGGG GGCTGGATTA ATATCCTGAA ATANANACAT GNAAGTTANG 480 TNATATGGGC AACAATCTTA TGGCANATTT CANAAAATGC ATCACAAGAT AACTTNTAAA 540 ACGATTGAAT TAGGCAANAG AANTACCGTT ATAGGAACCC ATGAANCTTG TNAAATTAAG 600 GT602

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 80 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vii) IMMEDIATE SOURCE:
- (B) CLONE: wlm24.pk0030.g4
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Ala Leu His Phe Val Lys Tyr Gln Gly Leu Gly Asn Asp Phe Ile Met 1 5 10 15

Val Asp Asn Arg Asp Ser Ala Val Pro Lys Val Thr Pro Glu Glu Ala 20 25 30

Ala Lys Leu Cys Asp Arg Asn Phe Gly Xaa Gly Ala Asp Gly Val Ile 35 40 45

Phe Val Leu Pro Gly Val Asn Gly Ala Asp Tyr Thr Met Arg Ile Phe 50 55 60

Asn Ser Asp Gly Ser Asn Arg Asn Val Trp Xaa Gly Phe Val Ala Cys 65 70 75 80

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 279 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Synechocystus sp
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Met Ala Leu Ser Phe Ser Lys Tyr His Gly Leu Gly Asn Asp Phe Ile 1 5 10 15

Leu Val Asp Asn Arg Gln Ser Thr Glu Pro Cys Leu Thr Pro Asp Gln 20 25 30

Ala Gln Gln Leu Cys Asp Arg His Phe Gly Ile Gly Ala Asp Gly Val
35 40 45

Ile Phe Ala Leu Pro Gly Gln Gly Gly Thr Asp Tyr Thr Met Arg Ile
50 55 60

Phe Asn Ser Asp Gly Ser Glu Pro Glu Met Cys Gly Asn Gly Ile Arg 65 70 75 80

Cys Leu Ala Lys Phe Leu Ala Asp Leu Glu Gly Val Glu Glu Lys Thr 85 90 95

Tyr Arg Ile His Thr Leu Ala Gly Val Ile Thr Pro Gln Leu Leu Ala 100 105 110

Asp Gly Gln Val Lys Val Asp Met Gly Glu Pro Gln Leu Leu Ala Glu 115 120 125

Leu Ile Pro Thr Thr Leu Ala Pro Ala Gly Glu Lys Val Val Asp Leu 130 135 140

Pro Leu Ala Val Ala Gly Gln Thr Trp Ala Val Thr Cys Val Ser Met 145 150 155 160

Gly Asn Pro His Cys Leu Thr Phe Val Asp Asp Val Asp Ser Leu Asn 165 170 175

Leu Thr Glu Ile Gly Pro Leu Phe Glu His His Pro Gln Phe Ser Gln 180 185 190

Arg Thr Asn Thr Glu Phe Ile Gln Val Leu Gly Ser Asp Arg Leu Lys 195 200 205

Met Arg Val Trp Glu Arg Gly Ala Gly Ile Thr Leu Ala Cys Gly Thr 210 215 220 Gly Ala Cys Ala Thr Val Val Ala Ala Val Leu Thr Gly Arg Gly Asp 225 230 235 240

Arg Arg Cys Thr Val Glu Leu Pro Gly Gly Asn Leu Glu Ile Glu Trp
245 250 255

Ser Ala Gln Asp Asn Arg Leu Tyr Met Thr Gly Pro Ala Gln Arg Val 260 265 270

Phe Ser Gly Gln Ala Glu Ile 275

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1160 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: cc2.pk0031.c9
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GTCGGCTGCG CGTCCACGGG AGACACCTCC GCCGCGCTCT CGGCCTACTG CGCAGCCGCG 60 GGAATCCCCG CCATCGTGTT CCTGCCAGCG GACCGCATCT CGCTGCAGCA GCTCATCCAG 120 CCGATCGCCA ACGGCGCCAC CGTGCTCTCT CTAGACACTG ATTTTGATGG CTGCATGCGG 180 CTCATTCGCG AGGTCACTGC AGAGCTGCCA ATCTACCTTG CCAATTCGCT CAACCCGCTC 240 CGCCTTGAGG GGCAGAAGAC AGCGGCCATC GAGATATTGC AGCAGTTCAA TTGGCAGGTG 300 CCAGATTGGG TCATTGTTCC AGGAGGCAAT CTTGGGAATA TCTATGCATT CTACAAGGGG 360 TTTGAGATGT GCCGCGTTCT TGGACTTGTT GATCGCGTGC CACGGCTTGT CTGCGCACAG 420 GCTGCAAATG CAAATCCATT GTACCGGTAC TACAAGTCAG GTTGGACTGA GTTTGAGCCA 480 CAAACTGCCG AGACTACATT TGCATCTGCG ATACAGATTG GTGATCCTGT ATCTGTTGAC 540 CGTGCGGTGG TCGCGCTGAA GGCCACTGAC GGTATTGTGG AGGAGGCTAC AGAGGAGGAG 600 CTAATGGATG CAACGGCGCT TGCTGACCGC ACTGGGATGT TTGCTTGCCC ACATACTGGG 660 GTTGCACTTG CTGCTTTGTT TAAGCTTCAG GGTCAGCGTA TAATTGGCCC TAATGACCGC 720 ACTGTGGTTG TTAGCACAGC TCATGGGCTG AAGTTCACGC AGTCAAAGAT TGACTACCAT 780 GACAAAAACA TCAAAGACAT GGTTTGCCAG TATGCTAATC CACCGATCAG TGTGAAGGCT 840 GACTTTGGTT CTGTGATGGA TGTTCTCCAG AAAAATCTCA ATGGTAAGAT ATAAAGTTAT 900 ATGATTAATT AACCCTCCAA ACTGTTTTTT TTTGTTTTTT CGTTCCAGGA ATTTTATTCC 960

TGAGTCTTTC A	ACTTTGTTT GGTGAACATG GTATGGTGCT AAAATCTAGA CCTAATACCI
TGTAGTACTA C	STTCTGGAGG CTCTTTTGGT TGTAGGTCGA AGTGGATAGA GCTGTTCCTT
GTACTTTATC T	GTTTCATGT AATATGAATA ATAAATTATG GTCTAAATAT TTGAATAAAA
AATCGTTTGG A	ATGACCCAC
(2) INFORM	MATION FOR SEQ ID NO:16:
(i) (A) (B) (C) (D)	SEQUENCE CHARACTERISTICS: LENGTH: 297 amino acids TYPE: amino acid STRANDEDNESS: not relevant TOPOLOGY: linear
(ii)	MOLECULE TYPE: peptide
(vii) (B)	IMMEDIATE SOURCE: CLONE: cc2.pk0031.c9
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:16:
Val Gly Cys 1	Ala Ser Thr Gly Asp Thr Ser Ala Ala Leu Ser Ala Tyr 5 10 15
Cys Ala Ala	Ala Gly Ile Pro Ala Ile Val Phe Leu Pro Ala Asp Arg 20 25 30
Ile Ser Leu 35	Gln Gln Leu Ile Gln Pro Ile Ala Asn Gly Ala Thr Val 40 45
Leu Ser Leu 50	Asp Thr Asp Phe Asp Gly Cys Met Arg Leu Ile Arg Glu 55 60
Val Thr Ala 65	Glu Leu Pro Ile Tyr Leu Ala Asn Ser Leu Asn Pro Leu 70 . 75 80
Arg Leu Glu	Gly Gln Lys Thr Ala Ala Ile Glu Ile Leu Gln Gln Phe

1020

1080

1140

1160

Asn Ile Tyr Ala Phe Tyr Lys Gly Phe Glu Met Cys Arg Val Leu Gly

Asn Trp Gln Val Pro Asp Trp Val Ile Val Pro Gly Gly Asn Leu Gly
100 105 110

Leu Val Asp Arg Val Pro Arg Leu Val Cys Ala Gln Ala Ala Asn Ala 130 135 140

Asn Pro Leu Tyr Arg Tyr Tyr Lys Ser Gly Trp Thr Glu Phe Glu Pro 145 150 155 160

Gln Thr Ala Glu Thr Thr Phe Ala Ser Ala Ile Gln Ile Gly Asp Pro 165 170 175

Val Ser Val Asp Arg Ala Val Val Ala Leu Lys Ala Thr Asp Gly Ile 180 185 190

Val	Glu	Glu 195	Ala	Thr	Glu	Glu	Glu 200	Leu	Met	Asp	Ala	Thr 205	Ala	Leu	Ala		
Asp	Arg 210	Thr	Gly	Met	Phe	Ala 215	Cys	Pro	His	Thr	Gly 220	Val	Ala	Leu	Ala		
Ala 225	Leu	Phe	Lys	Leu	Gln 230	Gly	Gln	Arg	Ile	Ile 235	Gly	Pro	Asn	Asp	Arg 240		
Thr	Val	Val	Val	Ser 245	Thr	Ala	His	Gly	Leu 250	Lys	Phe	Thr	Gln	Ser 255	Lys		
Ile	Asp	Tyr	His 260	Asp	Lys	Asn	Ile	Lys 265	Asp	Met	Val	Cys	Gln 270	Tyr	Ala		
Asn	Pro	Pro 275	Ile	Ser	Val	Lys	Ala 280	Asp	Phe	Gly	Ser	Val 285	Met	Asp	Val		
Leu	Gln 290	Lys	Asn	Leu	Asn	Gly 295	Lys	Ile									
(2)	II	IFORI	(ATIC	ON FO	OR SE	EQ II	NO:	17:									
	1) 1) 1) 7) 1)	A) B) C) C) ii) vii) B) Ki)	LENC TYPE STRA TOPO MOLE IMME CLON	ETH: ANDER COLOGY COLIN COLOGY COLIN COLOGY COLIN COLOGY COLO	nucle ONESS	baseic assistance beic assistance controlled by beic assistance controlled by by by controlled by by by by controlled by	se pacid singlar cDNA	airs Le A		ID NO):17:	·					
ATGO	CTTC	GCA A	GTAC	CTCC	AA CO	CCGC	CTGTC	AGC	CGTG	AAGG	CTG	CTT	rgg (CGCCC	STGATO	3	6
GATO	TGC	rga <i>i</i>	AGAAC	BAGG	CT CA	AAGGG	CAAC	CTO	CTGAC	GCGC	CTGT	rgcc1	rgg (CTAAI	GCAAT	Г	12
CAAC	TGAT	TTG (SAATO	CAG	rg gi	TTC	TCGC	TAT	rcgg	GGG	TCTT	TTAC	GC :	rtcac	TAAAE	Г	18
CTGT	CTGC	GT 1	CAGAC	CTAT	T GI	TTGT	rggac	TTT	ragc <i>i</i>	AGGA	GAAT	rggc7	TAT (CTCTC	CTGC	Ā	24
AGAC	TGGC	CGC 7	CTTI	CTTC	FT GO	CTACC	BAATO	TGT	TACO	CATG	GATA	ATA	AGT (GTAG7	CGCT	3	30
TCGC	ATTO	GAA T	TAATO	CAAA	AA AA	AAAN											32
(2)	II	1FORI	ATIC	ON FO	OR SE	EQ II	NO:	18:									
	(<i>I</i> (E	i) A) 3) C)	LENC TYPE STRA	ETH:	amino ONESS	amir aci	no ac id not n	cids									
	()	ii)	MOLE	CULI	TYE	E:	pept	ide									

(vii) IMMEDIATE SOURCE:
(B) CLONE: cs1,pk0058.g5

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

 Met Ala Cys Lys Tyr Ser Asn Pro Pro Val Ser Val Lys Ala Asp Phe
 1 5 10 15

 Gly Ala Val Met Asp Val Leu Lys Lys Arg Leu Lys Gly Lys Leu
 20 25 30
- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 528 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: rls72.pk0018.e7
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

ACACCCAACA CGCAGACTTG ACAGATTCTG CTACTACAAA TCCTGCATAT TTAACAGCGC 60 TGCAACTCGA CGATGGAGAA CGGTGCTGCA ACCAACGGGG CGTCGGAGAA GTCGCACTCT 120 CCTTCACAGA CCTACCTCTC CACAAGGGGA GACGATTATG GGCTCTCATT CGAGACCGTC 180 GTCCTCAAAG GTCTTGCGGC TGACGGGGGT CTTTTCCTGC CCGAGGAAGT GCCCGCGGCA 240 ACCGAGTGGC AAAGCTGGAA AGACCTGCCC TACACCGAGC TTGCCGTCAA GGTTCTCAGC 300 TTGTACATCT CCCCGCCGA GGTGCCGACG GAAGACCTCA GGGCGCTCGT CGAGCGCAGC 360 TACTCGACCT TCCGATCCAA GGAGGTTGTG CCGCTGGTGA AGCTGGAGGA CAACCTTCAC 420 CTGCTGGAGC TATTCCACGG CCCCAACTAC TCGTTCAAGG ACTGCGCGCT GCAATTCCTT 480 GGTAACCTCN TCGAGTACTT TTGACTCNCA AGAACAAGGG AAAGGAGG 528

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 143 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: rls72.pk0018.e7
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Met Glu Asn Gly Ala Ala Thr Asn Gly Ala Ser Glu Lys Ser His Ser 1 5 10 15

							•										
Pro	Ser	Gln	Thr 20	Tyr	Leu	Ser	Thr	Arg 25	Gly	Asp	Asp	Tyr	Gly 30	Leu	Ser		
Phe	Glu	Thr 35	Val	Val	Leu	Lys	Gly 40	Leu	Ala	Ala	Asp	Gly 45	Gly	Leu	Phe		
Leu	Pro 50	Glu	Glu	Val	Pro	Ala 55	Ala	Thr	Glu	Trp	Gln 60	Ser	Trp	Lys	Asp		
Leu 65	Pro	Tyr	Thr	Glu	Leu 70	Ala	Val	Lys	Val	Leu 75	Ser	Leu	Tyr	Ile	Ser 80		
Pro	Ala	Glu	Val	Pro 85	Thr	Glu	Asp	Leu	Arg 90	Ala	Leu	Val	Glu	Arg 95	Ser		
Tyr	Ser	Thr	Phe 100	Arg	Ser	Lys	Glu	Val 105	Val	Pro	Leu	Val	Lys 110	Leu	Glu		
Asp	Asn	Leu 115	His	Leu	Leu	Glu	Leu 120	Phe	His	Gly	Pro	Asn 125	Tyr	Ser	Phe		
Lys	Asp 130	Cys	Ala	Leu	Gln	Phe 135	Leu	Gly	Asn	Leu	Xaa 140	Glu	Tyr	Phe			
(2)	II	VFORI	OITAN	ON FO	OR SI	EQ II	ON O	:21:									
	(1 (1	i) A) 3) C)	LENG TYPI STRA	JENCI GTH: E: 1 ANDEI OLOGY	57: nucle ONES	l bas	se pa acid sing	airs	S:								
	(:	ii)	MOLI	ECULI	TYI	PE:	cDNA	A									
		/ii) 3)	CLO	EDIA:		OURCI . 06a(
	(2	ki)	SEQU	JENCI	E DES	SCRII	OITS	N: 5	SEQ :	D NO	0:21	:					
GGA:	rgca <i>i</i>	ATG (GTGC	AGGC:	rg A	rtcc <i>i</i>	ACTGO	G AA	rgtto	CATA	TGT	CCAC	ACA (CTGG	GTGGC	60	
TCT	GCGG	GCG (CTTA	rtaa(C TO	GAGG	AATC	3 TGC	GGGT	TATC	GGT	GCGG	STG A	AGAGO	GTTGT	120	
GGT	GTG	AGC I	ACTG	CACA	rg ga	ATTG	AAGT"	r TG	CACAC	BAGC	AAG	ATTG	ATT A	ATCAT	TCTGG	180	
GCT	CATTO	CCT (GGAA'	rggg	CC G	CTATO	GCTA!	A CC	CGCT	GTT	TCG	TTA	AGG (CGGAT	TTTTGG	240	
ATC	GTC	ATG (GATG:	TTCT	CA AC	GAT'	CTT	G CA	CAAC	AAGT	CCC	CCGA	CTT :	raac <i>i</i>	AAGTCT	300	
TGA	CGTT	GCC 2	AAGT	AAGT:	T T	AGTTO	CGGG	3 TT:	TTTT(CTGA	TTA	AAGA:	rgt :	TTTT?	AAACAT	360	

(2) INFORMATION FOR SEQ ID NO:22:

ACTTGTACAG AGATTTNAAA GNTTAATTTC N

420

480

540

571

GTTTGTGTNC ACTTTCGGTC GTTATTATGG ATTTGTAAGA TTGGGCCCAA GTATTCGAGG

GTTTGATTTC AAACAACATG CTTCTGGTGA CGCAATGCAA ATTTCGGNGC ATAACATCAT

TGTCGAAGAT GGATCNCGAC CGATGAAACT GTGTGGCAAG TAATGAGAAG AAAATAGGGC

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 104 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vii) IMMEDIATE SOURCE:
- (B) CLONE: sel.06a03
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Asp Ala Met Val Gln Ala Asp Ser Thr Gly Met Phe Ile Cys Pro His

1 10 15

Thr Gly Val Ala Leu Ala Ala Leu Ile Lys Leu Arg Asn Arg Gly Val 20 25 30

Ile Gly Ala Gly Glu Arg Val Val Val Val Ser Thr Ala His Gly Leu
35 40 45

Lys Phe Ala Gln Ser Lys Ile Asp Tyr His Ser Gly Leu Ile Pro Gly 50 55 60

Met Gly Arg Tyr Ala Asn Pro Leu Val Ser Val Lys Ala Asp Phe Gly 65 70 75 80

Ser Val Met Asp Val Leu Lys Asp Ser Cys Thr Thr Ser Pro Pro Thr 85 90 95

Leu Thr Ser Leu Asp Val Ala Lys

- (2) INFORMATION FOR SEQ ID NO:23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2191 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: sr1.pk0003.f6
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GCTTCCTCTT CTCTGTTTCA GTCTCTCCT TTCTCTCC AAACCTCTAA ACCCTACGCG 60

CCTCCCAAAC CCGCCGCCA CTTCGTTGTC CGCGCCCAAT CCCCCCTCAC TCAGAACAAC 120

AACTCCTCCT CCAAGCATCG CCGCCCGCC GACGAGAACA TCCGCGACGA GGCCCGCCGC 180

ATCAATGCGC CCCACGACCA CCACCTCTTC TCGGCCAAGT ACGTCCCCTT CAACGCCGAC 240

TCCTCCTCCT CCTCCTCCAC GGAGTCCTAC TCGCTCGACG AGATCGTCTA CCGCTCCCAA 300

TCCGGCGGCC	TCCTGGACGT	CCAGCACGAC	ATGGATGCCC	TCAAGCGTTT	CGACGGCGAG	360
TACTGGCGCA	ACCTCTTCGA	CTCGCGCGTG	GGCAAAACCA	CCTGGCCTTA	CGGCTCCGGC	420
GTCTGGAGCA	AAAAAGAATG	GGTCCTCCCC	GAGATCCACG	ACGACGATAT	CGTCTCCGCC	480
TTCGAGGGTA	ACTCCAACCT	CTTCTGGGCC	GAGCGTTTCG	GCAAACAGTT	CCTCGGCATG	540
AACGATTTGT	GGGTCAAACA	CTGCGGAATC	AGCCACACGG	GCAGCTTCAA	GGATCTCGGC	600
ATGACCGTCC	TCGTCAGCCA	GGTCAATCGC	TTGAGAAAAA	TGAACCGCCC	CGTCGTCGGT	660
GTTGGTTGCG	CCTCCACCGG	TGACACATCG	GCCGCTTTAT	CCGCCTATTG	CGCTTCCGCT	720
GCCATTCCTT	CCATTGTGTT	TTTGCCTGCT	AATAAAATCT	CTCTTGCCCA	ACTTGTTCAG	780
CCTATTGCCA	ATGGAGCCTT	TGTGTTGAGT	ATCGACACTG	ATTTTGATGG	TTGCATGCAG	840
TTGATCAGAG	AAGTCACTGC	TGAATTGCCT	ATTTATTTGG	CTAACTCTCT	CAACAGTTTG	900
AAGTTGGAAG	GGCAGAAAAC	TGCTGCTATT	GAGATTCTGC	AGCAGTTTGA	TTGGCAGGTT	960
CCTGATTGGG	TCATTGTGCC	TGGAAGCAAC	CTTGGCAACA	TTTATGCCTT	TTACAAAGGG	1020
TTTAAGATGT	TTCAAGAGCT	TGGGCTTGTG	GATAAGATTC	CAAGGCTTGT	TTGTGCTCAG	1080
GCTGCCAATG	CTGATCCTTT	GTATTTGTAC	TTTAAATCCG	GGTGGAAGGA	GTTTAAGCCT	1140
GTGAAGTCGA	GCACTACATT	TGCTTCTGCC	ATTCAAATTG	GTGATCCTGT	TTCCATTGAC	1200
AGGGCGGTTC	ACGCGCTAAA	GAGTTGCGAT	GGGATTGTGG	AGGAGGCCAC	GGAGGAGGAG	1260
TTGATGGATG	CTACAGCGCA	GGCGGATTCT	ACTGGGATGT	TTATTTGCCC	CCACACCGGG	1320
GTTGCTTTAA	CTGCATTGTT	TAAGCTCAGG	AACAGCGGGG	TTATTAAGGC	CACTGATAGG	1380
ACTGTGGTGG	TTAGCACTGC	TCATGGCTTG	AAGTTCACTC	AGTCCAAGAT	TGATTACCAT	1440
TCTAAGGACA	TCAAGGACAT	GGCTTGCCGC	TATGCTAACC	CGCCCATGCA	AGTGAAGGCA	1500
GACTTTGGCT	CGGTTATGGA	TGTTTTGAAG	ACGTATTTGC	AGAGTAAGGC	TCATTAGGTT	1560
AGCATTGCAA	GTTTTGCTCC	TCCTGAGTTT	GCTCATTATT	TACTTACTTT	TAGGCACTAC	1620
TGCTGTATTG	TCTTTTCTAT	GAGCTAGGTT	TGAGTGTTGT	AATAATTTGC	TTGCTGCATT	1680
ATGTATGCCG	TCTAGTGTTC	CATATTGGGC	ATCATCCTTA	GTATTTGTTG	TAGATTTTCT	1740
TTGCTGAGCA	TTTGATATAA	TAGCTCAAGT	AGGAAAATGA	ATTGGGTACT	ATGAGGAATG	1800
CATATCATTG	GCTTGTTATT	ACTGGATTCC	AGACCACCCC	AAAAGAAAAT	AATTCCAAAA	1860
AATATAATTA	GAACAAATTT	CGTCCTTGTT	ATGCTGTTGG	CATTAAGCTC	AGTGTGGGTA	1920
TTACCAAGCA	ACTCGAAATC	AAGAGAAAAA	AAAATTGACA	GCAAAGGAGC	TGCATTGTTG	1980
GACTGAGTCA	CATCACTTCA	TTGCTATGTC	GTCATATTTC	GTTGAATTAC	GGGAAGGCAG	2040
CATGCACAGC	AATATGCAGC	GATTAACTGA	AGCCACACCG	CACACATTGA	AGTAGTAGTC	2100

2191

- (2) INFORMATION FOR SEQ ID NO:24:
 - SEQUENCE CHARACTERISTICS: (i)
 - (A) LENGTH: 518 amino acids
 - (B) TYPE: amino acid
 - STRANDEDNESS: not relevant (C)
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: srl.pk0003.f6
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Ala Ser Ser Ser Leu Phe Gln Ser Leu Pro Phe Ser Leu Gln Thr Ser

Lys Pro Tyr Ala Pro Pro Lys Pro Ala Ala His Phe Val Val Arg Ala

Gln Ser Pro Leu Thr Gln Asn Asn Ser Ser Ser Lys His Arg Arg

Pro Ala Asp Glu Asn Ile Arg Asp Glu Ala Arg Arg Ile Asn Ala Pro

His Asp His His Leu Phe Ser Ala Lys Tyr Val Pro Phe Asn Ala Asp

Ser Ser Ser Ser Ser Thr Glu Ser Tyr Ser Leu Asp Glu Ile Val

Tyr Arg Ser Gln Ser Gly Gly Leu Leu Asp Val Gln His Asp Met Asp 105

Ala Leu Lys Arg Phe Asp Gly Glu Tyr Trp Arg Asn Leu Phe Asp Ser 120

Arg Val Gly Lys Thr Trp Pro Tyr Gly Ser Gly Val Trp Ser Lys 135

Lys Glu Trp Val Leu Pro Glu Ile His Asp Asp Asp Ile Val Ser Ala 150

Phe Glu Gly Asn Ser Asn Leu Phe Trp Ala Glu Arg Phe Gly Lys Gln 165 170

Phe Leu Gly Met Asn Asp Leu Trp Val Lys His Cys Gly Ile Ser His 180 185

Thr Gly Ser Phe Lys Asp Leu Gly Met Thr Val Leu Val Ser Gln Val 200

Asn Arg Leu Arg Lys Met Asn Arg Pro Val Val Gly Val Gly Cys Ala 210 215 220

Ser Thr Gly Asp Thr Ser Ala Ala Leu Ser Ala Tyr Cys Ala Ser Ala 225 230 235 Ala Ile Pro Ser Ile Val Phe Leu Pro Ala Asn Lys Ile Ser Leu Ala Gln Leu Val Gln Pro Ile Ala Asn Gly Ala Phe Val Leu Ser Ile Asp 260 265 Thr Asp Phe Asp Gly Cys Met Gln Leu Ile Arg Glu Val Thr Ala Glu 280 Leu Pro Ile Tyr Leu Ala Asn Ser Leu Asn Ser Leu Lys Leu Glu Gly 290 295 Gln Lys Thr Ala Ala Ile Glu Ile Leu Gln Gln Phe Asp Trp Gln Val Pro Asp Trp Val Ile Val Pro Gly Ser Asn Leu Gly Asn Ile Tyr Ala Phe Tyr Lys Gly Phe Lys Met Phe Gln Glu Leu Gly Leu Val Asp Lys Ile Pro Arg Leu Val Cys Ala Gln Ala Ala Asn Ala Asp Pro Leu Tyr Leu Tyr Phe Lys Ser Gly Trp Lys Glu Phe Lys Pro Val Lys Ser Ser Thr Thr Phe Ala Ser Ala Ile Gln Ile Gly Asp Pro Val Ser Ile Asp 390 395 Arg Ala Val His Ala Leu Lys Ser Cys Asp Gly Ile Val Glu Ala Thr Glu Glu Leu Met Asp Ala Thr Ala Gln Ala Asp Ser Thr Gly Met Phe Ile Cys Pro His Thr Gly Val Ala Leu Thr Ala Leu Phe Lys Leu Arg Asn Ser Gly Val Ile Lys Ala Thr Asp Arg Thr Val Val Val Ser Thr Ala His Gly Leu Lys Phe Thr Gln Ser Lys Ile Asp Tyr His 475 Ser Lys Asp Ile Lys Asp Met Ala Cys Arg Tyr Ala Asn Pro Pro Met 490 Gln Val Lys Ala Asp Phe Gly Ser Val Met Asp Val Leu Lys Thr Tyr 500 505 510

(2) INFORMATION FOR SEQ ID NO:25:

Leu Gln Ser Lys Ala His 515

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 643 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vii) IMMEDIATE SOURCE:
- (B) CLONE: wrl.pk0085.h2
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

GCTCATCCAG CCCATCGCCA ACGGCGCCAC GGTGCTCTCG CTTGACACGG ATTTCGACGG 60 ATGCATGCGG CTTATCAGGG AGGTGACAGC TGAGCTGCCC ATATACCTCG CAAACTCACT 120 CAACTCGCTT CCGGCTGGAG GGGCAGAAGA CTGCAGCCAT CCGAGATATT GCAACANTCA 180 ATTGCAGGT GCCCGGACTG GGTCACATCC CAAGGAGGCA ATCTGGGGGGA ACATTTTATG 240 CTTTCCTACA AGGATTTNAA TTTCCGTGTC CTTNGCTAGT TGATTNCCTT CCNACTCCTT 300 GTTANTNCAA NAGGCCGCCA ACGCAAACCC ACTGTACCCG TACTACAATC CTGGGGTGAC 360 TGATTCCAT CCACTTGNTT GCCGGGACAA TTTNCATCCN GCAACAATTT GGGGATTCCA 420 TATCNATTAC CNTCGGTTTT TTCNCCCTNA AAGGACNNAT GATTNTCCNA GGAACTCCNN 480 AGGNGGATCA AGGATCCAAA GGCTTTCTAC TCACTGGAAN TTGCTTCCCA ANACGGGGTT 540 CACTNCCGCC CGTTAAACCC NTGACAAGTA TAATGGACAA CACNCCGGGG TNTATNACAA 600 CGGCAANTTN AAANCAAGTT NATCATTAGA ACNGGAANTT NCC 643

- (2) INFORMATION FOR SEQ ID NO:26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 84 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: wrl.pk0085.h2
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Leu Ile Gln Pro Ile Ala Asn Gly Ala Thr Val Leu Ser Leu Asp Thr 1 5 10 15

Asp Phe Asp Gly Cys Met Arg Leu Ile Arg Glu Val Thr Ala Glu Leu 20 25 30

Pro Ile Tyr Leu Ala Asn Ser Leu Asn Ser Leu Xaa Leu Glu Gly Gln 35 40 45

Lys Thr Ala Ala Ile Arg Asp Ile Ala Thr Xaa Asn Trp Gln Val Pro 50 60

Gly Leu Gly His Ile Pro Arg Arg Gln Ser Xaa Thr Phe Tyr Ala Phe 65 70 75 80

Leu Gln Gly Phe

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 525 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: Arabidopsis thaliana
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Leu Ser Ser Cys Leu Phe Asn Ala Ser Val Ser Ser Leu Asn Pro Lys

1 10 15

Gln Asp Pro Ile Arg Arg His Arg Ser Thr Ser Leu Leu Arg His Arg 20 25 30

Pro Val Val Ile Ser Cys Thr Ala Asp Gly Asn Asn Ile Lys Ala Pro 35 40 45

Ile Glu Thr Ala Val Lys Pro Pro His Arg Thr Glu Asp Asn Ile Arg
50 55 60

Asp Glu Ala Arg Arg Asn Arg Ser Asn Ala Val Asn Pro Phe Ser Ala 65 70 75 80

Lys Tyr Val Pro Phe Asn Ala Ala Pro Gly Ser Thr Glu Ser Tyr Ser 85 90 95

Leu Asp Glu Ile Val Tyr Arg Ser Arg Ser Gly Gly Leu Leu Asp Val
100 105 110

Glu His Asp Met Glu Ala Leu Lys Arg Phe Asp Gly Ala Tyr Trp Arg 115 120 125

Asp Leu Phe Asp Ser Arg Val Gly Lys Ser Thr Trp Pro Tyr Gly Ser 130 135 140

Gly Val Trp Ser Lys Glu Trp Val Leu Pro Glu Ile Asp Asp Asp 145 150 155 160

Asp Ile Val Ser Ala Phe Glu Gly Asn Ser Asn Leu Phe Trp Ala Glu
165 170 175

Arg Phe Gly Lys Gln Phe Leu Gly Met Asn Asp Leu Trp Val Lys His 180 185 190

- Cys Gly Ile Ser His Thr Gly Ser Phe Lys Asp Leu Gly Met Thr Val 195 200 205
- Leu Val Ser Gln Val Asn Arg Leu Arg Lys Met Lys Arg Pro Val Val 210 215 220
- Gly Val Gly Cys Ala Ser Thr Gly Asp Thr Ser Ala Ala Leu Ser Ala 225 230 235 240
- Tyr Cys Ala Ser Ala Gly Ile Pro Ser Ile Val Phe Leu Pro Ala Asn 245 250 255
- Lys Ile Ser Met Ala Gln Leu Val Gln Pro Ile Ala Asn Gly Ala Phe 260 265 270
- Val Leu Ser Ile Asp Thr Asp Phe Asp Gly Cys Met Lys Leu Ile Arg 275 280 285
- Glu Ile Thr Ala Glu Leu Pro Ile Tyr Leu Ala Asn Ser Leu Asn Ser 290 295 300
- Leu Arg Leu Glu Gly Gln Lys Thr Ala Ala Ile Glu Ile Leu Gln Gln 305 310 315 320
- Phe Asp Trp Gln Val Pro Asp Trp Val Ile Val Pro Gly Gly Asn Leu 325 330 335
- Gly Asn Ile Tyr Ala Phe Tyr Lys Gly Phe Lys Met Cys Gln Glu Leu 340 345 350
- Gly Leu Val Asp Arg Ile Pro Arg Met Val Cys Ala Gln Ala Asn 355 360 365
- Ala Asn Pro Leu Tyr Leu His Tyr Lys Ser Gly Trp Lys Asp Phe Lys 370 375 380
- Pro Met Thr Ala Ser Thr Thr Phe Ala Ser Ala Ile Gln Ile Gly Asp 385 390 395 400
- Pro Val Ser Ile Asp Arg Ala Val Tyr Ala Leu Lys Lys Cys Asn Gly
- Ile Val Glu Glu Ala Thr Glu Glu Glu Leu Met Asp Ala Met Ala Gln
 420 425 430
- Ala Asp Ser Thr Gly Met Phe Ile Cys Pro His Thr Gly Val Ala Leu
 435 440 445
- Thr Ala Leu Phe Lys Leu Arg Asn Gln Gly Val Ile Ala Pro Thr Asp 450 455 460
- Arg Thr Val Val Val Ser Thr Ala His Gly Leu Lys Phe Thr Gln Ser 465 470 475 480
- Lys Ile Asp Tyr His Ser Asn Ala Ile Pro Asp Met Ala Cys Arg Phe 485 490 495
- Ser Asn Pro Pro Val Asp Val Lys Ala Asp Phe Gly Ala Val Met Asp 500 505 510

Val Leu Lys Ser Tyr Leu Gly Ser Asn Thr Leu Thr Ser 515 520 525

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1478 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vii) IMMEDIATE SOURCE:
- (B) CLONE: cen1.pk0064.f4
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

CAACAGTGGT	CCTTGAGGGG	GACTCATATG	ATGAAGCTCA	GTCATATGCA	AAATTGCGTT	60
GCCAGCAGGA	AGGCCGCACA	TTTGTACCTC	CTTTTGACCA	TCCTGATGTC	ATCACTGGAC	120
AAGGAACTAT	CGGCATGGAA	ATTGTTAGGC	AGCTGCAAGG	TCCACTGCAT	GCAATATTTG	180
TACCTGTTGG	AGGTGGTGGA	TTAATTGCTG	GAATTGCTGC	CTATGTAAAA	CGGGTTCGCC	240
CAGAGGTGAA	AATAATTGGA	GTGGAACCCT	CAGATGCAAA	TGCAATGGCA	TTATCCTTGT	300
GTCATGGTAA	GAGGGTCATG	TTGGAGCATG	TTGGTGGGTT	TGCTGATGGT	GTAGCTGTCA	360
AAGCTGTTGG	GGAAGAAACA	TTTCGCCTGT	GCAGAGAGCT	AGTAGATGGC	ATTGTTATGG	420
TCAGTCGAGA	TGCTATTTGT	GCTTCAATAA	AGGATATGTT	TGAGGAGAAA	AGAAGTATCC	480
TTGAACCTGC	TGGTGCCCTT	GCATTGGCTG	GGGCTGAAGC	CTACTGCAAA	TACTATAACT	540
TGAAAGGAGA	AACTGTGGTT	GCAATAACTA	GTGGGGCAAA	TATGAACTTT	GATCGACTTA	600
GACTAGTAAC	CGAGCTAGCT	GATGTTGGCC	GAAAACGGGA	AGCAGTGTTA	GCTACATTTC	660
TGCCAGAGCG	GCAGGGAAGC	TTCAAAAAAT	TCACAGAATT	GGTTGGCAGG	ATGAATATTA	720
CTGAATTCAA	ATACAGATAC	GATTCTAATG	CAAAAGATGC	CCTTGTTCTT	TACAGTGTTG	780
GCATCTACAC	TGACAATGAG	CTTGGAGCAA	TGATGGATCG	CATGGAATCT	GCGAAACTGA	840
GGACTGTTAA	CCTTACTGAC	AATGATTTGG	CAAAGGACCA	CCTTAGATAC	TTTATTGGAG	900
GAAGATCAGA	AATAAAAGAT	GAACTGGTTT	ACCGGTTCAT	TTTCCCGGAA	AGGCCTGGGG	960
CCCTTATGAA	ATTTTTGGAC	ACGTTTAGTC	CTCGTTGGAA	CATCAGCCTT	TTCCATTACC	1020
GTGCACAGGG	TGAAGCTGGA	GCAAATGTAT	TAGTTGGTAT	ACAAGTGCCG	CCAGCAGAAT	1080
TTGATGAATT	CAAGAGTCAT	GCCAACAATC	TTGGGTACGA	GTACATGTCA	GAGCACAACA	1140
ATGAGATATA	CCGGTTGCTG	TTGCGTGACC	CAAAGGTCTA	ATGTATATGC	CTTTGCTCCC	1200
ATAATAAGTT	GGTGACACTT	TTCAAGGAAG	ATTTTGCTCC	AAGGTAGAAG	TTGCGAGTTT	1260

CIICAA	GIIG .	AAA 1	JAAG	JC A.	CAC	CAAA.	1 614	AGC I	I CGG	1610	JCCA.	ICI	GIIII	ACTCAG
TTAGAT	CATG	TAGT	GTAT	CA G	TTGT	GTAT	C TT	rgtt	GTTG	TGC	rtcg:	rga '	TCTC	ATTTA
TTGCTT	TGTG	CACC'	TAGA	GG T	rgtc:	TAAA	A AT	GATA:	ACCG	ATA	rgtt.	ATC	TAAA	TATCTA
ATAATG	ATTA	TGTG	ATTG'	rg A	TTAA	AAAG	G GG	GGGC	CC					
(2)	INFOR	MATI	ON FO	OR SI	EQ II	ON O	:29:							
	(i) (A) (B) (C) (D)	LENG TYP: STR	GTH: E: 6	392 amino ONES	2 am:	not i	acid	S						
	(ii)	MOL	ECUL	E TYI	PE:	pept	tide							
	(vïi) (B)					E: 0064	.f4							
	(xi)	SEQ	UENCI	E DES	SCRI	PTIO	N: 8	SEQ :	ID NO	0:29	:			
Thr Va 1	l Val	Leu	Glu 5	Gly	Asp	Ser	Tyr	Asp 10	Glu	Ala	Gln	Ser	Tyr 15	Ala
Lys Le	u Arg	Cys 20	Gln	Gln	Glu	Gly	Arg 25	Thr	Phe	Val	Pro	Pro 30	Phe	Asp
His Pr	o Asp 35	Val	Ile	Thr	Gly	Gln 40	Gly	Thr	Ile	Gly	Met 45	Glu	Ile	Val
Arg Gl 50		Gln	Gly	Pro	Leu 55	His	Ala	Ile	Phe	Val 60	Pro	Val	Gly	Gly
Gly Gl	y Leu	Ile	Ala	Gly 70	Ile	Ala	Ala	Tyr	Val 75	Lys	Arg	Val	Arg	Pro 80
Glu Va	l Lys	Ile	Ile 85	Gly	Val	Glu	Pro	Ser 90	Asp	Ala	Asn	Ala	Met 95	Ala
Leu Se		Cys 100		-	-	Arg			Leu	Glu	His	Val 110	-	Gly
Phe Al	a Asp 115	Gly	Val	Ala	Val	Lys 120	Ala	Val	Gly	Glu	Glu 125	Thr	Phe	Arg
Leu Cy 13		Glu	Leu	Val	Asp 135	Gly	Ile	Val	Met	Val 140	Ser	Arg	Asp	Ala
Ile Cy 145	s Ala	Ser	Ile	Lys 150	Asp	Met	Phe	Glu	Glu 155	Lys	Arg	Ser	Ile	Leu 160
Glu Pr	o Ala	Gly	Ala	Leu	Ala	Leu	Ala	Gly	Ala	Glu	Ala	Tyr	Cys	Lys

Tyr Tyr Asn Leu Lys Gly Glu Thr Val Val Ala Ile Thr Ser Gly Ala

Asn	Met	Asn 195	Phe	Asp	Arg	Leu	Arg 200	Leu	Val	Thr	Glu	Leu 205	Ala	Asp	Val
Gly	Arg 210	Lys	Arg	Glu	Ala	Val 215	Leu	Ala	Thr	Phe	Leu 220	Pro	Glu	Arg	Gln
Gly 225	Ser	Phe	Lys	Lys	Phe 230	Thr	Glu	Leu	Val	Gly 235	Arg	Met	Asn	Ile	Thr 240
Glu	Phe	Lys	Tyr	Arg 245	Tyr	Asp	Ser	Asn	Ala 250	Lys	Asp	Ala	Leu	Val 255	Leu
Tyr	Ser	Val	Gly 260	Ile	Tyr	Thr	Asp	Asn 265	Glu	Leu	Gly	Ala	Met 270	Met	Asp
Arg	Met	Glu 275	Ser	Ala	Lys	Leu	Arg 280	Thr	Val	Asn	Leu	Thr 285	Asp	Asn	Asp
Leu	Ala 290	Lys	Asp	His	Leu	Arg 295	Tyr	Phe	Ile	Gly	Gly 300	Arg	Ser	Glu	Ile
Lys 305	Asp	Glu	Leu	Val	Tyr 310	Arg	Phe	Ile	Phe	Pro 315	Glu	Arg	Pro	Gly	Ala 320
Leu	Met	Lys	Phe	Leu 325	Asp	Thr	Phe	Ser	Pro 330	Arg	Trp	Asn	Ile	Ser 335	Leu
Phe	His	Tyr	Arg 340	Ala	Gln	Gly	Glu	Ala 345	Gly	Ala	Asn	Val	Leu 350	Val	Gly
Ile	Gln	Val 355	Pro	Pro	Ala	Glu	Phe 360	Asp	Glu	Phe	Lys	Ser 365	His	Ala	Asn
Asn	Leu 370	Gly	Tyr	Glu	Tyr	Met 375	Ser	Glu	His	Asn	Asn 380	Glu	Ile	Tyr	Arg
Leu 385	Leu	Leu	Arg	Asp	Pro 390	Lys	Val								
(2)	I	IFOR	(ATIC	ON FO	OR SI	EQ II	ONO:	:30:							
	(I (C	i) A) B) C)	LENG TYPI STRA	ETH: E: r ANDEI	728 nucle ONES	ARACT bas eic a s: s linea	se pa acid sing]	airs	3:						
	(:	Li)	MOLI	ECULI	TYI	PE:	CDNA	A							
	-	/ii) 3)				OURCE L.pk(. h7							
	()	ci)	SEQ	JENCI	E DES	CRIE	OIT	J: S	SEQ]	D NO	0:30	:			
AAA	TAT	rgt A	AGCA	AATA	CC AC	TGG#	AGCA	A ACA	ATGAZ	ATTT	TGA	DAAAT	CTT (CGGG:	TTGTAA
CTG	AACTT	rgc :	TAAT	TTGO	T C	TAA	CAAC	G AGO	CTG	rgct	GGC	AACTO	GTT A	ATGG	CAGAGG

AGCCTGGCAG TTTCAAACAA TTTTGTGAAT TGGTGGGGCA GATGAACATA ACAGAATTCA

AATACAGATA	TAACTCAAAT	GAGAAGGCAG	TTGTCCTTTA	CAGTGTTGGG	GTTCACACAA	240
TCTCCGAACT	AAGAGCAATG	CAGGAGAGGA	TGGAATCTTC	TCAGCTCAAA	ACTTACAATC	300
TCACAGAAAG	TGACTTGGTG	AAAGACCACT	TGCGTTACTT	GATGGGAGGC	CGATCAAACG	360
TTCAGAATGA	GGTCTTTGTC	GTCTCACCTT	TCCAAGAAAG	ACTGGTGCTT	TGATGAAATT	420
TTTGGACCCT	TCAGTCCACG	TTGGGATATT	AGTTTATCCA	TTACCGAGGG	GAGGTGAAAC	480
TGGAGCAAAC	TGCTAGTTGG	NTACAGGTAC	CAAAATGAGA	TAGATGAGTC	CATGATCGTG	540
CTAACAAACT	GGATATGATT	ATAAGTGGNA	ATATGTGATG	NCTCAGCTCA	ATCNCGATGG	600
GGNTTAAGCA	CTGCATATGG	GNATTAGGGG	NAGNTACANT	TAAATTCACG	GCCTCAAGNT	660
AAGCATANTN	TAGGAACTAG	CTTTACAGGG	GGCTACNANT	TAACCGNGTA	TTTTTTTGA	720
GATGANNG						728

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 152 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vii) IMMEDIATE SOURCE:
- (B) CLONE: sfl1.pk0055.h7
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Asn Ile Val Ala Ile Thr Ser Gly Ala Asn Met Asn Phe Asp Lys Leu

1 10 15

Arg Val Val Thr Glu Leu Ala Asn Val Gly Arg Lys Gln Glu Ala Val

Leu Ala Thr Val Met Ala Glu Glu Pro Gly Ser Phe Lys Gln Phe Cys 35 40 45

Glu Leu Val Gly Gln Met Asn Ile Thr Glu Phe Lys Tyr Arg Tyr Asn 50 60

Ser Asn Glu Lys Ala Val Val Leu Tyr Ser Val Gly Val His Thr Ile 65 70 75 80

Ser Glu Leu Arg Ala Met Gln Glu Arg Met Glu Ser Ser Gln Leu Lys 85 90 95

Thr Tyr Asn Leu Thr Glu Ser Asp Leu Val Lys Asp His Leu Arg Tyr 100 105 110

Leu Met Gly Gly Arg Ser Asn Val Gln Asn Glu Val Phe Val Val Ser 115 120 125

Pro Xaa Pro 130	Arg Lys Thr Gly Ala Leu Met Lys Phe Leu Asp Xaa Phe 135 140	
Ser Pro Arg 145	Trp Asp Ile Ser Leu 150	
(2) INFORM	MATION FOR SEQ ID NO:32:	
(A) (B) (C)	SEQUENCE CHARACTERISTICS: LENGTH: 572 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
• •	IMMEDIATE SOURCE: CLONE: sre.pk0044.f3	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:32:	
AAAGACCTGG T	TGCTTTGATG AAATTTTTGG ACCCCTTCAG TCCACGTTGG AATATCAGTT	60
TATTCCATTA C	CCGAGGGGAG GGTGAAACTG GAGCAAATGT GCTAGTTGGA ATACAGGTAC	120
CCAAAAGTGA G	SATGGATGAG TTCCACGATC GTGCCAACAA ACTTGGATAT GATTATAAAG	180
TGGTGAATAA T	TGATGATGAC TTCCAGCTTC TAATGCACTG ATGATGGTTT TAGGCACTTG	240
CCATTATTGT G	STATTTTAGT CAACAAGTTT GCCATATTTA ATATTTCCAC GGTCGTTTCT	300
AAAAGTTGGA T	TGGGGAAAAA AGGTGGAAAG GAAGTGGCCT TCAGACATGT CATTAGTTGA	360
TTAGAGGAAC A	AACTAGTTCT TTTTACCTAA TGCGGCGTCT TATTACATTT TTTATAATCT	420
GTAATTTATG T	TTTTTTTGTT GTTGTTAACA TTGGAATCTT ATAATGTTGT TGCCTGGTCT	480
TTTGTGTCTG T	PAATATAAGT GTCTTCAAAA GGTTGTTTGC TAAATTTCAG CAGCCTAAAA	540
AAAAAAAAA A	AA AAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAA	572
(2) INFORM	MATION FOR SEQ ID NO:33:	
(A) (B) (C)	SEQUENCE CHARACTERISTICS: LENGTH: 72 amino acids TYPE: amino acid STRANDEDNESS: not relevant TOPOLOGY: linear	
(ii)	MOLECULE TYPE: peptide	
	IMMEDIATE SOURCE: CLONE: sre.pk0044.f3	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:33:	
Arg Pro Gly	Ala Leu Met Lys Phe Leu Asp Pro Phe Ser Pro Arg Trp 5 10 15	

Asn Ile Ser Leu Phe His Tyr Arg Gly Glu Gly Glu Thr Gly Ala Asn 20 25 30

Val Leu Val Gly Ile Gln Val Pro Lys Ser Glu Met Asp Glu Phe His
35 40 45

Asp Arg Ala Asn Lys Leu Gly Tyr Asp Tyr Lys Val Val Asn Asn Asp 50 55 60

Asp Asp Phe Gln Leu Leu Met His 65 70

- (2) INFORMATION FOR SEQ ID NO:34:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 507 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Burkholderia capacia
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Met Ala Ser His Asp Tyr Leu Lys Lys Ile Leu Thr Ala Arg Val Tyr 1 5 10 15

Asp Val Ala Phe Glu Thr Glu Leu Glu Pro Ala Arg Asn Leu Ser Ala
20 25 30

Arg Leu Arg Asn Pro Val Tyr Leu Lys Arg Glu Asp Asn Gln Pro Val

Phe Ser Phe Lys Leu Arg Gly Ala Tyr Asn Lys Met Ala His Ile Pro

Ala Asp Ala Leu Ala Arg Gly Val Ile Thr Ala Ser Ala Gly Asn His 65 70 75 80

Ala Gln Gly Val Ala Phe Ser Ala Ala Arg Met Gly Val Lys Ala Val 85 90 95

Ile Val Val Pro Val Thr Thr Pro Gln Val Lys Val Asp Ala Val Arg
100 105 110

Ala His Gly Gly Pro Gly Val Glu Val Ile Gln Ala Gly Glu Ser Tyr 115 120 125

Ser Asp Ala Tyr Ala His Ala Leu Lys Val Gln Glu Glu Arg Gly Leu 130 135 140

Thr Phe Val His Pro Phe Asp Asp Pro Tyr Val Ile Ala Gly Gln Gly 145 150 155 160

Thr Ile Ala Met Glu Ile Leu Arg Gln His Gln Gly Pro Ile His Ala 165 170 175

- Ile Phe Val Pro Ile Gly Gly Gly Leu Ala Ala Gly Val Ala Ala 180 185 190
- Tyr Val Lys Ala Val Arg Pro Glu Ile Lys Val Ile Gly Val Gln Ala 195 200 205
- Glu Asp Ser Cys Ala Met Ala Gln Ser Leu Gln Ala Gly Lys Arg Val 210 215 220
- Glu Leu Ala Glu Val Gly Leu Phe Ala Asp Gly Thr Ala Val Lys Leu 225 230 235 240
- Val Gly Glu Glu Thr Phe Arg Leu Cys Lys Glu Tyr Leu Asp Gly Val 245 250 255
- Val Thr Val Asp Thr Asp Ala Leu Cys Ala Ala Ile Lys Asp Val Phe 260 265 270
- Gln Asp Thr Arg Ser Val Leu Glu Pro Ser Gly Ala Leu Ala Val Ala 275 280 285
- Gly Ala Lys Leu Tyr Ala Glu Arg Glu Gly Ile Glu Asn Gln Thr Leu 290 295 300
- Val Ala Val Thr Ser Gly Ala Asn Met Asn Phe Asp Arg Met Arg Phe 305 310 315 320
- Val Ala Glu Arg Ala Glu Val Gly Glu Ala Arg Glu Ala Val Phe Ala 325 330 335
- Val Thr Ile Pro Glu Glu Arg Gly Ser Phe Lys Arg Phe Cys Ser Leu 340 345 350
- Val Gly Asp Arg Asn Val Thr Glu Phe Asn Tyr Arg Ile Ala Asp Ala 355 360 365
- Gln Ser Ala His Ile Phe Val Gly Val Gln Ile Arg Arg Gly Glu 370 380
- Ser Ala Asp Ile Ala Ala Asn Phe Glu Ser His Gly Phe Lys Thr Ala 385 390 395 400
- Asp Leu Thr His Asp Glu Leu Ser Lys Glu His Ile Arg Tyr Met Val 405 410 415
- Gly Gly Arg Ser Pro Leu Ala Leu Asp Glu Arg Leu Phe Arg Phe Glu 420 425 430
- Phe Pro Glu Arg Pro Gly Ala Leu Met Lys Phe Leu Ser Ser Met Ala 435 440 445
- Pro Asp Trp Asn Ile Ser Leu Phe His Tyr Arg Asn Gln Gly Ala Asp 450 455
- Tyr Ser Ser Ile Leu Val Gly Leu Gln Val Pro Gln Ala Asp His Ala 465 470 475 480
- Glu Phe Glu Arg Phe Leu Ala Ala Leu Gly Tyr Pro Tyr Val Glu Glu 485 490 495

Ser Ala Asn Pro Ala Tyr Arg Leu Phe Leu Ser 500 505

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1582 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vii) IMMEDIATE SOURCE:
- (B) CLONE: cc3.mn0002d2
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

ACGAGACGAG	TCCCCTCCCC	CCACCTCGCC	TCACCCAACC	GGAACGAACA	AGTTACCATC	60
TCATCCCAAC	CCCGCCTCGA	CCGGATCTCG	TCGGACTCGG	ATCCGCCCGA	CCACCCGCG	120
CCGCCGCAGA	TCAAAGAAGA	TGGCAGCTCT	CGACACCTTC	CTCTTCACCT	CGGAGTCTGT	180
GAACGAGGGA	CACCCTGACA	AGCTCTGCGA	CCAGGTCTCA	GATGCCGTTC	TTGACGCTTG	240
CCTTGCTGAG	GACCCTGACA	GCAAGGTTGC	TTGTGAGACC	TGCACCAAGA	CCAACATGGT	300
CATGGTCTTT	GGTGAGATCA	CCACCAAGGC	CAATGTCGAC	TACGAGAAGA	TTGTCAGGGA	360
GACCTGCCGC	AACATTGGTT	TTGTGTCAAA	CGATGTCGGG	CTTGACGCTG	ACCACTGCAA	420
GGTGCTCGTG	AACATTGAGC	AGCAGTCCCC	TGATATTGCT	CAGGGTGTGC	ATGGCCACTT	480
CACCAAGCGC	CCCGAGGAGA	TTGGAGCTGG	TGACCAGGGA	CACATGTTCG	GGTATGCGAC	540
CGATGAGACC	CCTGAGTTGA	TGCCCCTCAG	CCATGTCCTT	GCCACCAAGC	TAGGTGCTCG	600
TCTCACCGAG	GTCCGCAAGA	ACGGAACCTG	CCCCTGGCTC	AGGCCTGATG	GGAAGACCCA	660
GGTGACAGTC	GAGTACCGCA	ATGAGGGTGG	TGCCATGGTC	CCCATCCGTG	TCCACACCGT	720
CCTCATCTCC	ACCCAGCACG	ACGAGACAGT	GACCAATGAT	GAGATCGCTG	CTGACCTGAA	780
GGAGCATGTC	ATCAAGCCTA	TCATCCCTGA	GCAGTACCTT	GACGAGAAGA	CCATCTTCCA	840
CCTTAACCCA	TCCGGCCGCT	TTGTCATTGG	TGGACCTCAC	GGCGATGCTG	GCCTCACTGG	900
CCGCAAGATC	ATCATTGACA	CCTACGGTGG	CTGGGGAGCC	CATGGCGGTG	GCGCTTTCTC	960
CGGCAAGGAC	CCAACCAAGG	TTGACCGCAG	CGGAGCCTAT	GTCGCGAGGC	AGGCTGCCAA	1020
GAGCATCGTC	GCCAGCGGCC	TTGCTCGCCG	CGCCATCGTC	CAGGTGTCCT	ACGCCATCGG	1080
CGTGCCCGAG	CCTCTCTCCG	TGTTTGTCGA	CACGTACGGC	ACCGGCGCGA	TCCCCGACAA	1140
GGAGATCCTC	AAGATTGTCA	AGGAGAACTT	CGATTTCAGG	CCTGGCATGA	TTATCATCAA	1200
CCTTGACCTC	AAGAAAGGCG	GCAACGGGCG	CTACCTCAAG	ACGGCAGCCT	ACGGCCACTT	1260

CGGAAGGGAC	GACCCTGACT	TCACCTGGGA	GGTGGTGAAG	CCACTCAAGT	CGGAGAAACC	1320
TTCTGCCTAA	GGCGGCCTTT	TTTTCAGTAA	GAAGCTTTTG	GTGGTCTGCT	GTGCTTAATC	1380
ATGCTTTTAT	ATGGCTTCTA	CATGTTGTGG	TTCTTTCTTG	ATCTGCACCG	CGCTTATCGT	1440
TTGTGTTGTA	CTGCCCTAAT	AAGTGGTGCT	TATGAGGACT	GTTTCTGGTT	TTGCTGCTTA	1500
TGTTGTAATG	CTTTGAAACA	ATGAAAGAAG	CTACAGGCCA	CAGCTATTTT	GAGAAGTAAT	1560
GGAACCTCGT	GCCGTTTTGA	TT				1582

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 396 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vii) IMMEDIATE SOURCE:
- (B) CLONE: cc3.mn0002.d2
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Met Ala Ala Leu Asp Thr Phe Leu Phe Thr Ser Glu Ser Val Asn Glu

10 15

Gly His Pro Asp Lys Leu Cys Asp Gln Val Ser Asp Ala Val Leu Asp
20 25 30

Ala Cys Leu Ala Glu Asp Pro Asp Ser Lys Val Ala Cys Glu Thr Cys
35 40 45

Thr Lys Thr Asn Met Val Met Val Phe Gly Glu Ile Thr Thr Lys Ala 50 55 60

Asn Val Asp Tyr Glu Lys Ile Val Arg Glu Thr Cys Arg Asn Ile Gly 65 70 75 80

Phe Val Ser Asn Asp Val Gly Leu Asp Ala Asp His Cys Lys Val Leu
85 90 95

Val Asn Ile Glu Gln Gln Ser Pro Asp Ile Ala Gln Gly Val His Gly
100 105 110

His Phe Thr Lys Arg Pro Glu Glu Ile Gly Ala Gly Asp Gln Gly His
115 120 125

Met Phe Gly Tyr Ala Thr Asp Glu Thr Pro Glu Leu Met Pro Leu Ser 130 135 140

His Val Leu Ala Thr Lys Leu Gly Ala Arg Leu Thr Glu Val Arg Lys 145 150 155 160

Asn Gly Thr Cys Pro Trp Leu Arg Pro Asp Gly Lys Thr Gln Val Thr 165 170 175

- Val Glu Tyr Arg Asn Glu Gly Gly Ala Met Val Pro Ile Arg Val His 180 185 190
- Thr Val Leu Ile Ser Thr Gln His Asp Glu Thr Val Thr Asn Asp Glu
 195 200 205
- Ile Ala Ala Asp Leu Lys Glu His Val Ile Lys Pro Ile Ile Pro Glu 210 215 220
- Gln Tyr Leu Asp Glu Lys Thr Ile Phe His Leu Asn Pro Ser Gly Arg 225 230 235 240
- Phe Val Ile Gly Gly Pro His Gly Asp Ala Gly Leu Thr Gly Arg Lys
 245 250 255
- Ile Ile Ile Asp Thr Tyr Gly Gly Trp Gly Ala His Gly Gly Ala 260 265 270
- Phe Ser Gly Lys Asp Pro Thr Lys Val Asp Arg Ser Gly Ala Tyr Val 275 280 285
- Ala Arg Gln Ala Ala Lys Ser Ile Val Ala Ser Gly Leu Ala Arg Arg 290 295 300
- Ala Ile Val Gln Val Ser Tyr Ala Ile Gly Val Pro Glu Pro Leu Ser 305 310 315 320
- Val Phe Val Asp Thr Tyr Gly Thr Gly Ala Ile Pro Asp Lys Glu Ile 325 330 335
- Leu Lys Ile Val Lys Glu Asn Phe Asp Phe Arg Pro Gly Met Ile Ile 340 345 350
- Ile Asn Leu Asp Leu Lys Lys Gly Gly Asn Gly Arg Tyr Leu Lys Thr 355 360 365
- Ala Ala Tyr Gly His Phe Gly Arg Asp Pro Asp Phe Thr Trp Glu
- Val Val Lys Pro Leu Lys Ser Glu Lys Pro Ser Ala 385 390 395
- (2) INFORMATION FOR SEQ ID NO:37:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2183 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Oryza sativa
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GAATTCTTAT AAATGAACGG AAAATGGAAA AAAAAATTGA TTGGTGCCAC TTCAAAGTTA 60
AATATGCCAA GACGAATTGA TATGTTTCTG CTGTTGTTTT ATGCTCTTGA TTAGTTGATG 120

CGCATGTTCA	ATGATTTATG	ATGTTTGTCT	TTGTGGAAAG	ATTACATGTA	AAGAGTATAG	180
TAGAACCCCT	AAAAGCTAGC	CAGCGATTTC	GCTCTTTTTT	TCCAGGTCTC	CATGATATGT	240
TTACCCCTAA	AAGTGGTATA	TTTATGTGAT	AGTTACAATA	CATAGTGGAC	CACGATTGAT	300
TATGCGTTTA	TGCTGATTCC	GGCAGAAAAT	TGTTAGATTC	CTTGTGCTCT	ATACCTGCTT	360
GTTGCGCTTG	TAGAGAATAT	TACAAATACC	TAACACTTGC	CCAAGGAACT	TAGGAACTTA	420
GTCAACTCTT	TGTAGGGACA	ACTATTTTAG	CCCAAAATTG	TGGTCTTGTC	AGGTGCCAAC	480
AAAACAGCAT	CTTGGCGTAC	ATAAGCTATA	TAGAGGATTA	AAAGGAATGT	TTTGTTCCTT	540
GCTACTGTTT	TTTTAACCTG	TTTACTCAGG	ACAAATTTTG	TTGCATAAAC	CATTTGTTCT	600
AGGGATCAGT	ATTGTCCTCT	CAGTGTGTTA	TGTAAGCATT	TCCAGAAATC	AATTGTCGCT	660
ATCAGCTTCC	CTCACATTAG	CTATCACTTA	TACCCCTTTT	TTTCTCATAG	GCTCACCATG	720
TCCATTTTAT	TCATGATATT	TCTTTGTCTA	AAGTATGTGA	AATACCATTT	TATGCAGATA	780
GGAGAAGATG	GCCGCACTTG	ATACCTTCCT	CTTTACCTCG	GAGTCTGTGA	ACGAGGCCA	840
CCCTGACAAG	CTCTGCGACC	AAGTCTCAGA	TGCTGTGCTT	GATGCCTGCC	TCGCCGAGGA	900
CCCTGACAGC	AAGGTCGCTT	GTGAGACCTG	CACCAAGACA	AACATGGTCA	TGGTCTTTGG	960
TGAGATCACC	ACCAAGGCTA	ACGTTGACTA	TGAGAAGATT	GTCAGGGAGA	CATGCCGTAA	1020
CATCGGTTTT	GTGTCAGCTG	ATGTCGGTCT	CGATGCTGAC	CACTGCAAGG	TGCTTGTGAA	1080
CATCGAGCAG	CAGTCCCCTG	ACATTGCACA	GGGTGTGCAC	GGGCACTTCA	CCAAGCGCCC	1140
TGAGGAGATT	GGTGCTGGTG	ACCAGGGACA	CATGTTTGGA	TATGCAACTG	ATGAGACCCC	1200
TGAGTTGATG	CCCCTCAGCC	ATGTCCTTGC	TACCAAGCTT	GGCGCTCGTC	TTACGGAGGT	1260
TCGCAAGAAT	GGGACCTGCG	CATGGCTCAG	GCCTGACGGG	AAGACCCAAG	TGACTGTTGA	1320
GTACCGCAAT	GAGAGCGGTG	CCAGGGTCCC	TGTCCGTGTC	CACACCGTCC	TCATCTCTAC	1380
CCAGCATGAT	GAGACAGTCA	CCAACGATGA	GATTGCTGCT	GACCTGAAGG	AGCATGTCAT	1440
CAAGCCTGTC	ATTCCCGAGC	AGTACCTTGA	TGAGAAGACA	ATCTTCCATC	TTAACCCATC	1500
TGGTCGCTTC	GTCATTGGCG	GACCTCATGG	TGATGCTGGT	CTCACTGGCC	GGAAGATCAT	1560
CATTGACACT	TATGGTGGCT	GGGGAGCTCA	CGGTGGTGGT	GCCTTCTCTG	GCAAGGACCC	1620
AACCAAGGTT	GACCGCAGTG	GAGCATACGT	CGCAAGGCAA	GCTGCCAAGA	GCATTGTTGC	1680
TAGTGGCCTT	GCTCGCCGCT	GCATTGTCCA	AGTATCATAC	GCCATCGGTG	TCCCAGAGCC	1740
ACTGTCCGTA	TTCGTCGACA	CATACGGCAC	TGGCAGGATC	CCTGACAAGG	AGATCCTCAA	1800
GATTGTGAAG	GAGAACTTCG	ACTTCAGGCC	TGGCATGATC	ATCATCAACC	TTGACCTCAA	1860
GAAAGGCGGC	AACGGACGCT	ACCTCAAGAC	GGCGGCTTAC	GGTCACTTCG	GAAGGGACGA	1920

CCCAGACTTC	ACCTGGGAGG	TGGTGAAGCC	CCTCAAGTGG	GAGAAGCCTT	CTGCCTAAAA	1980
GCTCCCTTTC	GGAGGCTTTT	GCTCTGTCCC	ATTATGGTGT	TTTGTTTCCT	CGCTGCTCAG	2040
CATTGTGATT	CTTAACCTGC	CCCCCGCTGC	CATTTATGCC	CATGCACGCT	ACTTTCCTAA	2100
TAATAAGTAC	TTATAAGGGT	ATTGTGTTTG	AATATTTTAC	CTAGAGGAGG	AGGAGGATTT	2160
GTTATCTGTT	ATTGCTTAAG	CTT				2183

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1485 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vii) IMMEDIATE SOURCE:
- (B) CLONE: \$2.12b06
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

AGCCAAGCCC	CACTCAACCA	CCACACCACT	CTCTCTGCTC	TTCTTCTACC	TTTCAAGTTT	60
TTAAAGTATT	AAGATGGCAG	AGACATTCCT	ATTTACCTCA	GAGTCAGTGA	ACGAGGGACA	120
CCCTGACAAG	CTCTGCGACC	AAATCTCCGA	TGCTGTCCTC	GACGCTTGCC	TTGAACAGGA	180
CCCAGACAGC	AAGGTTGCCT	GCGAAACATG	CACCAAGACC	AACTTGGTCA	TGGTCTTCGG	240
AGAGATCACC	ACCAAGGCCA	ACGTTGACTA	CGAGAAGATC	GTGCGTGACA	CCTGCAGGAA	300
CATCGGCTTC	GTCTCAAACG	ATGTGGGACT	TGATGCTGAC	AACTGCAAGG	TCCTTGTAAA	360
CATTGAGCAG	CAGAGCCCTG	ATATTGCCCA	GGGTGTGCAC	GGCCACCTTA	CCAAAAGACC	420
CGAGGAAATC	GGTGCTGGAG	ACCAGGGTCA	CATGTTTGGC	TATGCCACGG	ACGAAACCCC	480
AGAATTGATG	CCATTGAGTC	ATGTTCTTGC	AACTAAACTC	GGTGCTCGTC	TCACCGAGGT	540
TCGCAAGAAC	GGAACCTGCC	CATGGTTGAG	GCCTGATGGG	AAAACCCAAG	TGACTGTTGA	600
GTATTACAAT	GACAACGGTG	CCATGGTTCC	AGTTCGTGTC	CACACTGTGC	TTATCTCCAC	660
CCAACATGAT	GAGACTGTGA	CCAACGACGA	AATTGCAGCT	GACCTCAAGG	AGCATGTGAT	720
CAAGCCGGTG	ATCCCGGAGA	AGTACCTTGA	TGAGAAGACC	ATTTTCCACT	TGAACCCCTC	780
TGGCCGTTTT	GTCATTGGAG	GTCCTCACGG	TGATGCTGGT	CTCACCGGCC	GCAAGATCAT	840
CATCGATACT	TACGGAGGAT	GGGGTGCTCA	TGGTGGTGGT	GCTTTCTCCG	GGAAGGATCC	900
CACCAAGGTT	GATAGGAGTG	GTGCTTACAT	TGTGAGACAG	GCTGCTAAGA	GCATTGTGGC	960
AAGTGGACTA	GCCAGAAGGT	GCATTGTGCA	AGTGTCTTAT	GCCATTGGTG	TGCCCGAGCC	1020

TTTGTCTGTC	TTTGTTGACA	CCTATGGCAC	CGGGAAGATC	CATGATAAGG	AGATTCTCAA	1080
CATTGTGAAG	GAGAACTTTG	ATTTCAGGCC	CGGTATGATC	TCCATCAACC	TTGATCTCAA	1140
GAGGGGTGGG	AATAACAGGT	TCTTGAAGAC	TGCTGCATAT	GGACACTTCG	GCAGAGAGGA	1200
CCCTGACTTC	ACATGGGAAG	TGGTCAAGCC	CCTCAAGTGG	GAGAAGGCCT	AAGGCCATTC	1260
ATTCCACTGC	AATGTGCTGG	GAGTTTTTTA	GCGTTGCCCT	TATAATGTCT	ATTATCCATA	1320
ACTTTCCACG	TCCCTTGCTC	TGTGTTTTTC	TCTCGTCGTC	CTCCTCCTAT	TTTGTTTCTC	1380
CTGCCTTTCA	TTTGTAATTT	TTTACATGAT	СААСТААААА	ATGTACTCTC	TGTTTTCCGA	1440
CCATTGTGTC	TCTTAATATC	AGTATCAAAA	AGAATGTTCC	AAGTT		1485

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 392 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vii) IMMEDIATE SOURCE:
- (B) CLONE: s2.12b06
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

Met Ala Glu Thr Phe Leu Phe Thr Ser Glu Ser Val Asn Glu Gly His

1 10 15

Pro Asp Lys Leu Cys Asp Gln Ile Ser Asp Ala Val Leu Asp Ala Cys 20 25 30

Leu Glu Gln Asp Pro Asp Ser Lys Val Ala Cys Glu Thr Cys Thr Lys
35 40 45

Thr Asn Leu Val Met Val Phe Gly Glu Ile Thr Thr Lys Ala Asn Val 50 60

Asp Tyr Glu Lys Ile Val Arg Asp Thr Cys Arg Asn Ile Gly Phe Val 65 70 75 80

Ser Asn Asp Val Gly Leu Asp Ala Asp Asn Cys Lys Val Leu Val Asn 85 90 95

Ile Glu Gln Gln Ser Pro Asp Ile Ala Gln Gly Val His Gly His Leu 100 105 110

Thr Lys Arg Pro Glu Glu Ile Gly Ala Gly Asp Gln Gly His Met Phe 115 120 125

Gly Tyr Ala Thr Asp Glu Thr Pro Glu Leu Met Pro Leu Ser His Val 130 135 140

Leu Ala Thr Lys Leu Gly Ala Arg Leu Thr Glu Val Arg Lys Asn Gly
145 150 155 160

Thr Cys Pro Trp Leu Arg Pro Asp Gly Lys Thr Gln Val Thr Val Glu
165 170 175

Tyr Tyr Asn Asp Asn Gly Ala Met Val Pro Val Arg Val His Thr Val 180 185 190

Leu Ile Ser Thr Gln His Asp Glu Thr Val Thr Asn Asp Glu Ile Ala 195 200 205

Ala Asp Leu Lys Glu His Val Ile Lys Pro Val Ile Pro Glu Lys, Tyr 210 215 220

Leu Asp Glu Lys Thr Ile Phe His Leu Asn Pro Ser Gly Arg Phe Val 225 230 235 240

Ile Gly Gly Pro His Gly Asp Ala Gly Leu Thr Gly Arg Lys Ile Ile 245 250 255

Ile Asp Thr Tyr Gly Gly Trp Gly Ala His Gly Gly Ala Phe Ser 260 265 270

Gly Lys Asp Pro Thr Lys Val Asp Arg Ser Gly Ala Tyr Ile Val Arg 275 280 285

Gln Ala Ala Lys Ser Ile Val Ala Ser Gly Leu Ala Arg Arg Cys Ile 290 295 300

Val Gln Val Ser Tyr Ala Ile Gly Val Pro Glu Pro Leu Ser Val Phe 305 310 315 320

Val Asp Thr Tyr Gly Thr Gly Lys Ile His Asp Lys Glu Ile Leu Asn 325 330 335

Ile Val Lys Glu Asn Phe Asp Phe Arg Pro Gly Met Ile Ser Ile Asn 340 345 350

Leu Asp Leu Lys Arg Gly Gly Asn Asn Arg Phe Leu Lys Thr Ala Ala 355 360 365

Tyr Gly His Phe Gly Arg Glu Asp Pro Asp Phe Thr Trp Glu Val Val 370 380

Lys Pro Leu Lys Trp Glu Lys Ala 385 390

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1479 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: Lycopersicon esculentum
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

GAATTCCTAC AAAGAGGTTA	TTTCTCTCAA	GGGGTAAAAA	GATTGCCCCT	TTTCGACATT	60
TATAATCCTC TTTTTCTCTT	TGTTCGCCGT	TGGGTTCTTC	ACTTTCCTGT	TTCTTGAGAA	120
TGGAAACTTT CTTATTCACC	TCCGAGTCTG	TGAACGAGGG	TCACCCAGAC	AAGCTCTGTG	180
ATCAGATCTC TGATGCAGTT	CTTGATGCCT	GCCTTGAGCA	AGATCCCGAG	AGCAAAGTTG	240
CATGTGAAAC TTGCACCAAG	ACCAACTTGG	TCATGGTCTT	TGGTGAGATC	ACAACCAAGG	300
CTATTGTAGA CTATGAGAAG	ATTGTGCGTG	ACACATGCCG	TAATATTGGA	TTTGTTTCTG	360
ATGATGTTGG TCTTGATGCT	GACAACTGCA	AGGTCCTTGT	TTACATTGAG	CAGCAAAGTC	420
CTGATATTGC TCAAGGTGTC	CACGGCCATC	TGACCAAACG	CCCCGAGGAG	ATTGGTGCTG	480
GTGACCAGGG CCACATGTTT	GGCTATGCAA	CAGATGAGAC	CCCTGAATTA	ATGCCTCTCA	540
GTCACGTGCT TGCAACTAAA	CTTGGTGCCC	GTCTTACAGA	AGTCCGCAAG	AATGGCACCT	600
GCGCCTGGTT GAGGCCTGAT	GGCAAGACCC	AAGTTACTGT	TGAGTATAGC	AATGACAATG	660
GTGCCATGGT TCCAATTAGG	GTACACACTG	TTCTTATCTC	CACCCAACAC	GATGAGACCG	720
TTACCAATGA TGAGATTGCC	CGCGACCTTA	AGGAGCATGT	CATCAAACCA	GTCATCCCAG	780
AGAAGTACCT TGATGAGAAT	ACTATTTTCC	ACCTTAACCC	ATCTGGCCGA	TTCGTTATTG	840
GTGGACCTCA TGGTGATGCT	GGTCTCACTG	GTCGTAAAAT	CATCATCGAC	ACTTATGGTG	900
GTTGGGGTGC TCATGGTGGT	GGTGCTTTCT	CGGGCAAAGA	CCCAACCAAG	GTCGACAGGA	960
GTGGTGCATA CATTGTAAGG	CAGGCTGCAA	AGAGTATCGT	AGCTAGTGGA	CTTGCTCGTA	1020
GATGCATCGT GCAGGTATCT	TATGCCATCG	GTGTGCCTGA	GCCATTGTCT	GTATTCGTTG	1080
ACACCTATGG CACTGGAAAG	ATCCCTGACA	GGGAAATTTT	GAAGATCGTT	AAGGAGAACT	1140
TTGACTTCAG ACCTGGAATG	ATGTCCATTA	ACTTGGATTT	GAAGAGGGGT	GGCAATAGAA	.1200
GATTCTTGAA AACTGCTGCC	TATGGTCACT	TTGGACGTGA	TGACCCCGAT	TTCACATGGG	1260
AAGTTGTCAA GCCCCTCAAG	TGGGAAAAGC	CCCAAGACTA	ATAAGTGCTT	GCCTATGTTT	1320
TTGTTCTTTG TTGTTTGCTT	GTGGCTTTAG	AATCTCCCCC	GTGTTTGCTT	GTTTGTCTTT	1380
GTATTTCTC TTTTGACCCT	TTATTTTGTT	ATTGTCCTGT	TTCCATTGTG	TTGGATGGAT	1440
ATCTTAGGCC TTGGAATATT	AAGGAAAGAA	AAGGAATTC			1479

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1380 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

CCCTCCCTTC	GGTTCATCGG	CCTCCCGATC	GAGCAGTAGA	AGCAGCGCAA	GGGCATCGCT	60
AGCACTAAAG	AAATGGCAGC	CGAGACGTTC	CTCTTCACGT	CCGAGTCTGT	GAACGAGGGC	120
CATCCCGACA	AGCTCTGTGA	CCAAGTCTCC	GACGCCGTCT	TGGATGCCTG	CTTGGCCCAG	180
GATGCCGACA	GCAAGGTCGC	CTGCGAGACC	GTCACCAAGA	CCAACATGGT	CATGGTCTTG	240
GGCGAGATCA	CCACCAAGGC	CACCGTCGAC	TATGAGAAGA	TCGTGCGTGA	CACCTGCCGC	300
AACATCGGTT	TCATCTCTGA	TGACGTTGGT	CTCGACGCCG	ACCGTTGCAA	RGTGCTCGTC	360
AACATCGAGC	AGCAGTCCCC	TGACATTGCC	CAGGGTGTTC	ATGGACACTT	CACCAAGCGT	420
CCCGAAGAAG	TCGGCGCCGG	TGACCAGGGC	ATCATGTTCG	GCTATGCCAC	CGATGAGACC	480
CCTGAGCTGA	TGCCCCTCAA	GCACGTGCTT	GCCACCAAGC	TYGGAGCTCG	CCTCACSGAG	540
GTCCGCAAGA	ATGGCACCTG	CGCCTGGGTC	AGGCCTGACG	GAAAGACCCA	GGTCACAGTC	600
GAGTACCTAA	ACGAGGATGG	TGCCATGGTA	CCTGTTCGTG	TGCACACCGT	CCTCATCTCC	660
ACCCAGCACG	ACGAGACCGT	CACCAACGAC	GAGATTGCTG	CGGACCTCAA	GGAGCATGTC	720
ATCAAGCCGG	TGATCCCCGC	AAAGTACCTC	GATGAGAACA	CCATCTTCCA	CCTGAACCCG	780
TCTGGCCGCT	TCGTCATCGG	CGGCCCCCAC	GGTGACGCCG	GTCTCACCGG	CCGCAAGATC	840
ATCATCGACA	CCTATGGTGG	CTGGGGAGCC	CACGGCGGCG	GTGCCTTCTC	TGGCAAGGAC	900
CCAACCAAGG	TCGACCGYAG	TGGCGCCTAC	ATTGCCAGGC	ARGCCGCCAA	GAGCATCATC	960
GCCAGCGGCC	TCGCACGCCG	CTGCATTGTG	CAGATCTCAT	ACGCCATCGG	TGTGCCTGAG	1020
CCTTTGTCTG	TGTTCGTCGA	CTCCTACGGC	ACCGGCAAGA	TCCCCGACAG	GGAGATCCTC	1080
AAGCTCGTGA	AGGAGAACTT	TGACTTCAGG	CCCGGGATGA	TCAGCATCAA	CCTGGACTTG	1140
AAGAAAGGTG	GAAACAGGTT	CATCAAGACC	GCTGCTTACG	GTCACTTTGG	CCGTGATGAT	1200
GCCGACTTCA	CCTGGGAGGT	GGTGAAGCCC	CTCAAGTTCG	ACAAGGCATC	TGCCTAAGAG	1260
CATGGCATTC	TCTTGGTCTG	CCGCCTCTCA	AGTTCGTCAA	GACGGGATCA	TGTTGCTCCT	1320
GGGAAGTGGG	AAGAAGCATT	AGACATTGAA	GCGACGCTCT	ACACTGGTCT	TGTTGTATGG	1380

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 394 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

- Met Ala Ala Glu Thr Phe Leu Phe Thr Ser Glu Ser Val Asn Glu Gly
 1 5 10 15
- His Pro Asp Lys Leu Cys Asp Gln Val Ser Asp Ala Val Leu Asp Ala
 20 25 30
- Cys Leu Ala Gln Asp Ala Asp Ser Lys Val Ala Cys Glu Thr Val Thr 35 40 45
- Lys Thr Asn Met Val Met Val Leu Gly Glu Ile Thr Thr Lys Ala Thr 50 60
- Val Asp Tyr Glu Lys Ile Val Arg Asp Thr Cys Arg Asn Ile Gly Phe 65 70 75 80
- Ile Ser Asp Asp Val Gly Leu Asp Ala Asp Arg Cys Lys Val Leu Val
 85 90 95
- Asn Ile Glu Gln Gln Ser Pro Asp Ile Ala Gln Gly Val His Gly His 100 105 110
- Phe Thr Lys Arg Pro Glu Glu Val Gly Ala Gly Asp Gln Gly Ile Met 115 120 125
- Phe Gly Tyr Ala Thr Asp Glu Thr Pro Glu Leu Met Pro Leu Lys His 130 135 140
- Val Leu Ala Thr Lys Leu Gly Ala Arg Leu Thr Glu Val Arg Lys Asn 145 150 155 160
- Gly Thr Cys Ala Trp Val Arg Pro Asp Gly Lys Thr Gln Val Thr Val
- Glu Tyr Leu Asn Glu Asp Gly Ala Met Val Pro Val Arg Val His Thr 180 185 190
- Val Leu Ile Ser Thr Gln His Asp Glu Thr Val Thr Asn Asp Glu Ile 195 200 205
- Ala Ala Asp Leu Lys Glu His Val Ile Lys Pro Val Ile Pro Ala Lys 210 215 220
- Tyr Leu Asp Glu Asn Thr Ile Phe His Leu Asn Pro Ser Gly Arg Phe 225 230 235 240
- Val Ile Gly Gly Pro His Gly Asp Ala Gly Leu Thr Gly Arg Lys Ile 245 250 255
- Ile Ile Asp Thr Tyr Gly Gly Trp Gly Ala His Gly Gly Gly Ala Phe 260 265 270
- Ser Gly Lys Asp Pro Thr Lys Val Asp Arg Ser Gly Ala Tyr Ile Ala 275 280 285
- Arg Gln Ala Ala Lys Ser Ile Ile Ala Ser Gly Leu Ala Arg Arg Cys 290 295 300
- Ile Val Gln Ile Ser Tyr Ala Ile Gly Val Pro Glu Pro Leu Ser Val 305 310 315 320

Phe Val Asp Ser Tyr Gly Thr Gly Lys Ile Pro Asp Arg Glu Ile Leu 325 330 335

Lys Leu Val Lys Glu Asn Phe Asp Phe Arg Pro Gly Met Ile Ser Ile 340 345 350

Asn Leu Asp Leu Lys Lys Gly Gly Asn Arg Phe Ile Lys Thr Ala Ala 355 360 365

Tyr Gly His Phe Gly Arg Asp Asp Ala Asp Phe Thr Trp Glu Val Val 370 375 380

Lys Pro Leu Lys Phe Asp Lys Ala Ser Ala 385 390

- (2) INFORMATION FOR SEQ ID NO:43:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1353 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Hordeum vulgare
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

GAATTCCGGA TAGCATCAGC ACAACTGCAC GAGAGCATCT CTACCACCAA AGAAATGGCG

60

GCCGAGACGT TCCTCTTCAC GTCCGAGTCC GTGAACGAGG GCCATCCCGA CAAGCTGTGC 120 GACCAGGTCT CTGACGCCGT CTTGGACGCC TGCTTGGCCC AGGATCCTGA CAGCAAGGTT 180 GCTTGCGAGA CCTGCACCAA GACCAACATG GTCATGGTCT TCGGCGAGAT CACCACCAAG 240 GCCACCGTTG ACTATGAGAA GATTGTGCGC GACACCTGCC GTGACATCGG CTTCATCTCT 300 GACGACGTCG GTCTCGATGC CGACCATTGC AAGGTGCTCG TCAACATCGA GCAGCAATCC 360 CCTGACATTG CCCAGGGTGT TCACGGACAC TTCACCAAGC GTCCAGAAGA GGTCGGCGCC 420 GGTGACCAGG GCATCATGTT TGGCTACGCC ACTGATGAGA CCCCTGAGCT GATGCCCCTC 480 ACCCACATGC TTGCCACCAA GCTCGGAGCT CGCCTCACCG AGGTCCGCAA GAATGGCACC 540 TGCGCCTGGC TCAGGCCTGA TGGAAAGACC CAGGTCACCA TTGAGTACCT AAACGAGGGT 600 GGTGCCATGG TGCCCGTTCG TGTGCACACC GTCCTCATCT CCACCCAGCA TGATGAGACC 660 GTCACCAACG ATGAGATCGC TGCAGACCTC AAGGAGCATG TCATCAAGCC GGTGATTCCC 720 GGGAAGTACC TCGATGAGAA CACCATCTTC CACCTGAACC CATCGGGCCG CTTTGTCATC 780 GGTGGCCCTC ACGGCGATGC CGGTCTCACC GCCCGCAAGA TCATCATCGA CACCTATGGT 840 GGCTGGGGAG CCCACGGCGG CGGTGCCTTC TCTGGCAAGG ACCCTACCAA GGTCGACCGC 900

AGTGGCGCCT	ACATTGCCAG	GCAGGCTGCC	AAGAGCATCA	TCGCCAGCGG	CCTCGCACGC	960
CGGTGCATTG	TGCAGATCTC	ATATGCCATC	GGTGTACCTG	AGCCTTTGTC	TGTGTTCGTC	1020
GACTCCTACG	GCACTGGCAA	GATCCCTGAC	AGGGAGATCC	TCAAGCTCGT	GAAGGAGAAC	1080
TTTGACTTCA	GACCCGGGAT	GATCACGATC	AACCTCGACT	TGAAGAAAGG	TGGAAACAGG	1140
TTCATCAAGA	CAGCTGCTTA	CGGTCACTTT	GGCCGCGATG	ATGCTGACTT	CACCTGGGAG	1200
GTGGTGAAGC	CCCTCAAGTT	CGACAAGGCA	TCTGCTTAAG	AAGAAGACAT	CACATTGAGG	1260
GTTCTTCTTG	GTCTGATGCC	TCTCAAGTTC	GGCAAGGCGG	GATCCTTTTG	CTCCTCGGAA	1320
GTAAGAAGAA	GCATTCAACA	TCGCCCGGAA	TTC			1353