Rebecca Wei

Northwestern University

Jan 25, 2017

Outline

- Question: What do algebras form?
- **Answer 1:** A category in categories (*HH*⁰)
- Derived Answer 1: A category in dg cocategories (Hochschild cochains...)
- **Answer 2:** A 2-category with a trace functor (HH_0)
- Derived Answer 2: A category in dg cocategories with a trace functor (Hochschild chains...)

Outline

- Question: What do algebras form?
- **Answer 1:** A category in categories (*HH*⁰)
- Derived Answer 1: A category in dg cocategories (Hochschild cochains...)
- **Answer 2:** A 2-category with a trace functor (HH_0)
- Derived Answer 2: A category in dg cocategories with a trace functor (Hochschild chains...) up to homotopy

- Objects: algebras A, B, ...
- 1-Morphisms: bimodules _AM_B
- 1-Composition: ${}_AM_B \otimes_B {}_BN_C$
- 2-Morphisms: morphisms of bimodules

- Objects: algebras A, B, ...
- 1-Morphisms: ${}_{f}B, f: A \rightarrow B$ map of algebras
- 1-Composition: ${}_{A}M_{B} \otimes_{B} {}_{B}N_{C}$
- 2-Morphisms: morphisms of bimodules

- Objects: algebras A, B, ...
- 1-Morphisms: ${}_{f}B, f: A \rightarrow B$ map of algebras
- 1-Composition: ${}_AM_B \otimes_B {}_BN_C$
- 2-Morphisms:

$$HH^0(A, {}_gB_f) \cong Z_A({}_gB_f) \mapsto \{\text{maps of bimodules } {}_fB \to_g B\}$$

$$b \mapsto (M_b : b' \mapsto b \cdot b')$$

Rebecca Wei (Northwestern University)

- Objects: algebras A, B, ...
- 1-Morphisms: ${}_{f}B, f: A \rightarrow B$ map of algebras
- 1-Composition: ${}_{A}M_{B}\otimes_{B}{}_{B}N_{C}$
- 2-Morphisms:

$$HH^0(A, {}_gB_f) \cong Z_A({}_gB_f) \mapsto \{ \text{maps of bimodules } {}_fB \to_g B \}$$

$$b \mapsto (M_b : b' \mapsto b \cdot b')$$

Can we use Hochschild cohomology or cochains instead of HH⁰?

∢ロト (個) (重) (重) (重) のQで

Derived Answer 1: Algebra form a category in dg cocategories.

- Objects: algebras A, B, ...
- Morphisms: a dg cocategory Bar(Hoch(A, B))
- Composition:
 - : $Bar(Hoch(A, B)) \otimes Bar(Hoch(B, C)) \rightarrow Bar(Hoch(A, C))$ associative map of dg cocategories

Defining Bar(Hoch(A, B))

- Hoch(A, B) is a dg category with
 - Objects: algebra maps $f: A \rightarrow B$
 - Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}B_{g}), {}_{f}\delta_{g})$
 - Composition: cup product on cochains

$$\phi \in C^{p}(A,_{f}B_{g})$$

$$\psi \in C^{q}(A,_{g}B_{h})$$

$$(\phi \cup \psi)(a_{1},...,a_{p+q}) = \pm \phi(a_{1},...,a_{p})\psi(a_{p+1},...,a_{q})$$

Defining Bar(Hoch(A, B))

- Hoch(A, B) is a dg category with
 - Objects: algebra maps $f: A \rightarrow B$
 - Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}B_{g}), {}_{f}\delta_{g})$
 - Composition: cup product on cochains
- ② Bar : DGCat → DGCocat

Defining Bar(Hoch(A, B))

- Hoch(A, B) is a dg category with
 - Objects: algebra maps $f: A \rightarrow B$
 - Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}B_{g}), {}_{f}\delta_{g})$
 - Composition: cup product on cochains
- **2** $Bar: DGCat \rightarrow DGCocat$ Bar(Hoch(A)) has the same objects as Hoch(A).

A morphism from f_0 to f_n in Bar(Hoch(A))

$$\begin{split} &\Delta(\phi_1...\phi_n) = \sum_{0 \leq i \leq n} \pm \phi_1...\phi_i \otimes \phi_{i+1}...\phi_n \\ &|\phi_1...\phi_n| = \sum_{1 \leq i \leq n} |\phi_i| - n \\ &d_{Bar(Hoch(A))} = \tilde{d}_{Hoch(A)} + d_{\cup} \end{split}$$

Rebecca Wei (Northwestern University)

Derived Answer 1: Algebra form a category in dg cocategories.

- Objects: algebras A, B, \dots
- Morphisms: a dg cocategory Bar(Hoch(A, B))
- Composition:
 - : $Bar(Hoch(A, B)) \otimes Bar(Hoch(B, C)) \rightarrow Bar(Hoch(A, C))$ associative map of dg cocategories

Outline

- Question: What do algebras form?
- **Answer 1:** A category in categories (*HH*⁰)
- Derived Answer 1: A category in dg cocategories (Hochschild cochains...)
- **Answer 2:** A 2-category with a trace functor (HH_0)
- Derived Answer 2: A category in dg cocategories with a trace functor (Hochschild chains...) up to homotopy

Definition

(Kaledin): A <u>trace functor</u> on a 2-category C is:

- for each $A \in Obj(\mathcal{C})$, a functor $TR_A : \mathcal{C}(A,A) \to k mod$
- for each pair $A, B \in Obj(\mathcal{C})$, a natural transformation $\tau_!(A, B)$

• such that $\tau_!(B,A) \circ \tau_!(C,B) \circ \tau_!(A,C) = id$

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥९○

Definition

(Kaledin): A <u>trace functor</u> on a 2-category C is:

- for each $A \in Obj(\mathcal{C})$, a functor $TR_A : \mathcal{C}(A,A) \to k mod$
- for each pair $A, B \in Obj(\mathcal{C})$, a natural transformation $\tau_!(A, B)$
- such that $\tau_!(B,A) \circ \tau_!(C,B) \circ \tau_!(A,C) = id$

4 □ ト ← □ ト ← 亘 ト ← 亘 り へ ○ ○

Definition

(Kaledin): A $\underline{\text{trace functor}}$ on a 2-category $\mathcal C$ is:

• for each $A \in Obj(\mathcal{C})$, a functor $TR_A : \mathcal{C}(A,A) \to k - mod$ $TR_A : \text{bimodule }_A M_A \mapsto M/[A,M] = HH_0(A,M)$

Definition

(Kaledin): A <u>trace functor</u> on a 2-category C is:

- for each $A \in Obj(\mathcal{C})$, a functor $TR_A : \mathcal{C}(A,A) \to k mod$ $TR_A : \text{bimodule }_A M_A \mapsto M/[A,M] = HH_0(A,M)$
- for each pair $A, B \in Obj(\mathcal{C})$, a natural transformation $\tau_!(A, B)$

$${}_{A}M_{B}\otimes_{B}{}_{B}N_{A}/[A,M\otimes_{B}N]\xrightarrow{\tau_{1}(A,B)}{}_{B}N_{A}\otimes_{A}{}_{A}M_{B}/[B,N\otimes_{A}M]$$
 $m\otimes n\mapsto n\otimes m$

such that $\tau_1(B, A) \circ \tau_1(C, B) \circ \tau_1(A, C) = id$

(Kaledin): A <u>trace functor</u> on a 2-category C is:

• for each $A \in Obj(\mathcal{C})$, a functor $TR_A : \mathcal{C}(A,A) \to k - mod$

$$\mathcal{C}(A,A)(f,g)\otimes_k TR_A(g) \to TR_A(f)$$

• for each pair $A, B \in Obj(\mathcal{C})$, a natural transformation $\tau_!(A, B)$

• such that $\tau_1(B,A) \circ \tau_1(C,B) \circ \tau_1(A,C) = id$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ り♀○

(Kaledin): A <u>trace functor</u> on a 2-category C is:

• for each $A \in Obj(\mathcal{C})$, a left module T(A) over $\mathcal{C}(A,A)$

$$\mathcal{C}(A,A)(f,g)\otimes_k TR_A(g) \to TR_A(f)$$

• for each pair $A, B \in Obj(\mathcal{C})$, a natural transformation $\tau_!(A, B)$

• such that $\tau_1(B,A) \circ \tau_1(C,B) \circ \tau_1(A,C) = id$

オロトオ部トオミトオミト ミ めのぐ

(Kaledin): A <u>trace functor</u> on a 2-category C is:

• for each $A \in Obj(\mathcal{C})$, a left module T(A) over $\mathcal{C}(A,A)$

$$\mathcal{C}(A,A)(f,g)\otimes_k TR_A(g) \to TR_A(f)$$

• for each pair $A, B \in Obj(\mathcal{C})$, a map of modules $\tau_!(A,B) : m^*T(A) \to \tau^*m^*T(B)$ over $\mathcal{C}(A,B) \otimes \mathcal{C}(B,A)$

• such that $\tau_1(B,A) \circ \tau_1(C,B) \circ \tau_1(A,C) = id$

40 40 40 40 40 40 60 60

(Kaledin): A <u>trace functor</u> on a 2-category C is:

• for each $A \in Obj(\mathcal{C})$, a left module T(A) over $\mathcal{C}(A,A)$

$$\mathcal{C}(A,A)(f,g)\otimes_k TR_A(g) \to TR_A(f)$$

• for each pair $A, B \in Obj(\mathcal{C})$, a map of modules $\tau_!(A,B) : m^*T(A) \to \tau^*m^*T(B)$ over $\mathcal{C}(A,B) \otimes \mathcal{C}(B,A)$

• such that $\tau^{*2}\tau_1(B,A)\circ\tau^*\tau_1(C,B)\circ\tau_1(A,C)=id$

Let $\mathcal C$ be a category in k-linear categories. Let $\chi(\mathcal C)$ be the k-linear category with

- Objects = $\{A \to A, \ A \to B \to A, \ A \to B \to C \to A : A, B, C \in Obj(\mathcal{C})\}$
- Morphisms = {linear combinations of compositions of rotations τ_i s.t. $\tau_i^{i+1} = id$, i = 0, 1, 2}.

Let $\mathcal C$ be a category in k-linear categories. Let $\chi(\mathcal C)$ be the k-linear category with

- Objects = $\{A \rightarrow A, \ A \rightarrow B \rightarrow A, \ A \rightarrow B \rightarrow C \rightarrow A : A, B, C \in Obj(\mathcal{C})\}$
- Morphisms = {linear combinations of compositions of rotations τ_i s.t. $\tau_i^{i+1}=id$, i=0,1,2}.

A trace functor on C gives a functor

$$\chi(\mathcal{C}) \to \mathcal{D} = \{ (k\text{-lin category, module}) \}$$

$$(A \to A) \mapsto (\mathcal{C}(A, A), T(A))$$

$$(A \to B \to A) \mapsto (\mathcal{C}(A, B) \otimes \mathcal{C}(B, A), m^*T(A))$$

$$(A \to B \to C \to A) \mapsto (\mathcal{C}(A, B) \otimes \mathcal{C}(B, C) \otimes \mathcal{C}(C, A), m^{*2}T(A))$$

$$\tau_1 : (A \to B \to A) \to (B \to A \to B) \mapsto \tau_1(A, B)$$

$$\tau_2 : (A \to B \to C \to A) \to (C \to A \to B \to C) \mapsto m^*\tau_1(A, C)$$

 $au_1^2=id,\; au_2^3=id\mapsto \text{relations in definition of trace functor}$

Let $\mathcal C$ be a category in k-linear categories. Let $\chi(\mathcal C)$ be the k-linear category with

- Objects = $\{A \to A, \ A \to B \to A, \ A \to B \to C \to A : A, B, C \in Obj(\mathcal{C})\}$
- Morphisms = {linear combinations of compositions of rotations τ_i s.t. $\tau_i^{i+1}=id,\ i=0,1,2$ }. Why stop at n=2? What about δ , σ ?

A trace functor on C gives a functor

$$\chi(\mathcal{C}) \to \mathcal{D} = \{ (k\text{-lin category, module}) \}$$

$$(A \to A) \mapsto (\mathcal{C}(A, A), T(A))$$

$$(A \to B \to A) \mapsto (\mathcal{C}(A, B) \otimes \mathcal{C}(B, A), m^*T(A))$$

$$(A \to B \to C \to A) \mapsto (\mathcal{C}(A, B) \otimes \mathcal{C}(B, C) \otimes \mathcal{C}(C, A), m^{*2}T(A))$$

$$\tau_1 : (A \to B \to A) \to (B \to A \to B) \mapsto \tau_1(A, B)$$

$$\tau_2 : (A \to B \to C \to A) \to (C \to A \to B \to C) \mapsto m^*\tau_1(A, C)$$

 $au_1^2=id,\; au_2^3=id\mapsto {
m relations}\; {
m in}\; {
m definition}\; {
m of}\; {
m trace}\; {
m functor}\;$

Let $\mathcal C$ be a category in dg cocategories. Let $\chi_\infty(\mathcal C)$ be the dg category with

- Objects = $\{A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0 : A_i \in Obj(\mathcal{C}), n \geq 0\}$
- Morphisms = {linear combinations of compositions of

rotations
$$\tau_n: \mathcal{A} \mapsto (A_n \to A_0 \to ... \to A_n)$$

coboundaries $\delta_{j,n}: \mathcal{A} \mapsto (A_0 \to ... \to A_j \to A_{j+2 \pmod{n+1}} \to ... \to A_0)$
codegeneracies $\sigma_{i,n}: \mathcal{A} \mapsto (A_0 \to ... \to A_i \to A_i \to ... \to A_0)$
where $\mathcal{A} := (A_0 \to ... \to A_n \to A_0)$, subject to the cyclic relations} [0]

40,40,40,40,00

Let \mathcal{D}_{∞} be the dg category with

- Objects = $\{(\text{dg cocategory}, \text{dg comodule})\}$
- Morphisms:

$$\mathcal{D}^p_{\infty}\big((B_1,C_1),(B_0,C_0)\big) := \begin{cases} F:B_1 \to B_0 \ dg \ functor, \\ F_!:C_1 \to F^*C_0 \ degree-p \ linear \ map \end{cases}$$

$$d_{D_{\infty}}(F,F_!) = (F,[d,F_!] = d_{F^*C_0} \circ F_! \pm F_! \circ d_{C_1})$$

 F^*C_0 is the categorified version of co-extension of scalars:

$$F^*C_0 = ker(B_1 \otimes C_0 \Rightarrow B_1 \otimes B_0 \otimes C_0)$$

<ロ> <個> <個> < 種 > < 種 > < 種 > < 種 > < 種 > < 種 > < 種 > < 種 > < で 。

Let \mathcal{D}_{∞} be the dg category with

- Objects = $\{(\text{dg cocategory}, \text{dg comodule})\}$
- Morphisms:

$$\mathcal{D}^{p}_{\infty}\big((B_{1},C_{1}),(B_{0},C_{0})\big) := \begin{cases} F:B_{1} \to B_{0} \ dg \ functor, \\ F_{!}:C_{1} \to F^{*}C_{0} \ degree-p \ linear \ map \end{cases}$$

$$d_{D_{\infty}}(F,F_{!}) = (F,[d,F_{!}] = d_{F^{*}C_{0}} \circ F_{!} \pm F_{!} \circ d_{C_{1}})$$

 F^*C_0 is the categorified version of co-extension of scalars:

$$F^*C_0 = ker(B_1 \otimes C_0 \Rightarrow B_1 \otimes B_0 \otimes C_0)$$

Can we give a dg functor $\chi(\mathcal{C}) \to \mathcal{D}_{\infty}$?

イロト (部) (意) (意) (意) (9)()

Let \mathcal{D}_{∞} be the dg category with

- Objects = $\{(\text{dg cocategory}, \text{dg comodule})\}$
- Morphisms:

$$\mathcal{D}^p_{\infty}\big((B_1,C_1),(B_0,C_0)\big) := \begin{cases} F:B_1 \to B_0 \ dg \ functor, \\ F_!:C_1 \to F^*C_0 \ degree-p \ linear \ map \end{cases}$$

$$d_{D_{\infty}}(F,F_!) = (F,[d,F_!] = d_{F^*C_0} \circ F_! \pm F_! \circ d_{C_1})$$

 F^*C_0 is the categorified version of co-extension of scalars:

$$F^*C_0 = ker(B_1 \otimes C_0 \rightrightarrows B_1 \otimes B_0 \otimes C_0)$$

Can we give a dg functor $\chi(\mathcal{C}) \to \mathcal{D}_{\infty}$?

No, but we can give an A_{∞} -functor.