CALCUL DIFFÉRENTIEL

Exercice 1. Sur la figure ci-dessous sont représentées sur l'intervalle [-6;6] plusieurs courbes notées (C), (D) et (E).

• La courbe (C) correspond à la courbe représentative de la fonction y = f(x).

111

- La courbe (D) est une droite d'équation y = g(x).
- La courbe (E) est une droite d'équation y = h(x).

- 1. Donner l'équation y = g(x) de la droite (D).
- 2. Donner l'équation y = h(x) de la droite (E).
- 3. Déterminer les solutions de l'équation f(x) = 0.
- 4. Déterminer les solutions de l'inéquation f(x) > 0.
- 5. Déterminer les solutions de l'équation f(x) = g(x).
- 6. Déterminer les solutions de l'inéquation $f(x) \geq g(x)$.
- 7. Établir le tableau de signe de la fonction dérivée f'.
- 8. Établir de tableau de variations de la fonction f.
- 9. Donner la valeur de f'(-4).
- 10. Donner la valeur de f'(0).
- 11. Donner la valeur de f'(4).

- 12. Donner l'équation de la droite tangente à la courbe (C) au point d'abscisse x=-4.
- 13. Établir le tableau de variations de la fonction dérivée f'.

Exercice 2. Soient les points A, B, C, D, E et F situés sur la courbe représentative d'une fonction f, de dérivée f':

	\boldsymbol{x}	y = f(x)	f'(x)
A	-1	-6	11
В	0	0	2
C	1	0	-1
D	1,5	$-\frac{3}{8}$	$-\frac{1}{4}$
E	2	0	2
F	3	6	11

- Représenter les points A, B, C, D, E et F tracer les tangentes à la courbe C_f (courbe représentative de f) en chacun de ces points.
- 2. Tracer à la main la courbe s'inscrivant dans l'ensemble des tangentes.

Exercice 3. Soit la fonction f définie par

$$y = f(x) = x^3 - 33x^2 + 216x.$$

- 1. Trouver les valeurs de x pour lesquelles f(x) = 0.
- 2. Calculer la dérivée f' (notée aussi $\frac{dy}{dx}$) et étudier le signe de la dérivée.
- 3. Calculer la dérivée seconde f'' et étudier la convexité de y = f(x).
- 4. Déterminer le tableau des variations de f.
- 5. Représenter la fonction y = f(x).

Exercice 4. Soit la fonction y = f(x) définie par

$$f(x) = 2x^3 + x - \sin x.$$

Calcul différentiel 113

- 1. Calculer la dérivée f' (notée aussi $\frac{dy}{dx}$).
- 2. Étudier le signe de la dérivée.
- 3. Déterminer le tableau de variations de f.
- 4. Calculer la dérivée seconde f'' et étudier la convexité de f.
- 5. Représenter la fonction f.

Exercice 5. Calculer les dérivées des fonctions définies par les expressions :

$$x^{2}e^{x} \qquad e^{x}\cos x \qquad x \ln x$$

$$\frac{\sin x}{x} \qquad \frac{x}{1+x^{2}}$$

$$\frac{1}{\sin x} \qquad \frac{1}{\cos x} \qquad \frac{1}{\tan x}$$

$$e^{-x^{2}} \qquad \ln(\cos x) \qquad \sin(\frac{1}{x})$$

$$(1+x)^{4} \qquad (1+x^{2})^{4} \qquad \sin^{6}(x^{2})$$

Rappel : Une fonction F est une primitive d'une fonction f si :

$$F' = f$$
.

Une primitive de la fonction f est notée

$$\int f(x)dx$$
.

Exercice 6. Calculer les primitives :

$$\int x^5 dx \qquad \int \frac{1}{\sin^2 x} dx \qquad \int e^{2x} dx$$
$$\int \frac{5}{x} dx \qquad \int (x+1)^4 dx \quad \int x(x^2+3)^7 dx$$

Calcul différentiel 115

Correction 1. 1. Equation de la droite $(D): y = g(x) = -\frac{1}{2}x + 1$.

- 2. Equation de la droite (E): $y = h(x) = \frac{2}{3}x 2$.
- 3. Solutions de l'équation f(x) = 0:

$$\mathcal{S} = \{-2; 2\}.$$

4. Solutions de l'inéquation $f(x) \ge 0$:

$$\mathcal{S} = [-2; 2].$$

5. Solutions de l'équation f(x) = q(x):

$$S = \{-1, 2, 6\}.$$

6. Solutions de l'inéquation f(x) > q(x):

$$S = [-1; 2] \cup \{6\}$$

7. Tableau de signe de f':

x	-6		0		5		6
Signe f'		+	0	_	0	+	

8. Tableau des variations de f:

x	-6		0		5		6
Variations de f	(-4)	7	2	>	(-3)	7	(-2)

- 9. Par lecture graphique : f'(-4) = 2
- 10. Par lecture graphique : f'(0) = 0
- 11. Par lecture graphique : f'(4) = -2, 5
- 12. L'équation de la droite tangente à la courbe (C) au point d'abscisse x=-4 est :

$$y = f'(-4)(x - (-4)) + f(-4)$$
$$= 2(x + 4) + (-2)$$
$$= 2x + 6$$

13. Tableau des variations de f':

	x	-6		-4		-3		-2		2		3		4	(6
ſ	Variations de f'		7	2	7	0	7	2?	7	(-3)?	7	0	7	$(-\frac{5}{2})$	7	

Correction 2. Placer les points $A,\ B,\ C,\ D,\ E$ et F et tracer en ces points les tangentes à la courbe représentative.

Correction 3. Soit la fonction $y = f(x) = x^3 - 33x^2 + 216x$.

1. Nous souhaitons résoudre l'équation :

$$f(x) = x^3 - 33x^2 + 216x = 0$$

$$x^3 - 33x^2 + 216x = 0 \iff x(x^2 - 33x + 216) = 0$$

$$\iff x = 0 \text{ ou } x^2 - 33x + 216 = 0$$

$$\iff x = 0 \text{ ou } x = 9 \text{ ou } x = 24$$

Remarque Les solutions de l'équation du second degré

$$x^2 - 33x + 216 = 0$$

, de discriminant $\Delta = b^2 - 4ac = (-33)^2 - 4 \times 216 = 225 \text{ sont}$:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{33 \pm \sqrt{1089 - 864}}{2} = \frac{33 \pm 15}{2}$$

soient

$$x = 9$$
 ou $x = 24$

Finalement,

$$y = f(x) = 0 \iff x = 0$$
 ou $x = 9$ ou $x = 24$

2. La dérivée de y = f(x) par rapport à x est :

$$\frac{dy}{dx} = f'(x) = 3x^2 - 66x + 216 = 3(x^2 - 22x + 72)$$

Pour factoriser la quantité $(x^2-22x+72)$, il suffit de chercher les solutions de l'équation du second degré $x^2-22x+72=0$. Nous en déduisons l'égalité

$$3(x^2 - 22x + 216) = 3(x - 4)(x - 18)$$

Finalement

$$\frac{dy}{dx} = f'(x) = 0 \iff x = 4 \text{ ou } x = 18$$

La fonction dérivée f' est positive pour $x \in]-\infty; 4[\cup]18; +\infty[$.

Calcul différentiel 117

3. La dérivée seconde est :

$$\frac{d^2y}{dx^2} = f''(x) = 6x - 66$$

L'étude du signe de la dérivée seconde :

$$f''(x) \ge 0 \Leftrightarrow 6x - 66 \ge 0$$

 $\Leftrightarrow x > 11$

La fonction est concave sur $]-\infty;11]$ et convexe sur $[11;+\infty[$.

4. Tableau de signe de f', variations de f, convexité-concavité

x	$-\infty$		0		4		9		11		18		24		$+\infty$
f"		_		_		_		_	0	+		+		+	
f'		+		+	0	_		_		_	0	+		+	
Var. f	$-\infty$	7	0	7	400	7	0	7	P.I.(-286)	7	-972	7	0	7	$+\infty$

5. Représentation graphique de f par un schéma

Correction 4. Soit

$$y = f(x) = 2x^3 + x - \sin x$$

1. Pour la dérivée f', nous obtenons :

$$f'(x) = 6x^2 + 1 - \cos x$$

2. Remarquons:

$$\begin{aligned} -1 & \leq \cos(x) \leq 1 & \Leftrightarrow & -1 \leq -\cos(x) \leq 1 \\ & \Leftrightarrow & 0 \leq 1 - \cos(x) \leq 2 \\ & \Leftrightarrow & 6x^2 \leq 1 - \cos(x) + 6x^2 \leq 2 + 6x^2 \end{aligned}$$

Nous déduisons

$$f'(x) > 0, \quad \forall \ x \in \mathbb{R}$$

et la seule solution de l'équation f'(x) = 0 est x = 0.

Le tableau de variations de f est

x	$-\infty$		0		$+\infty$
f'(x)			+		
f	$-\infty$	7	0	7	$+\infty$

3. La dérivée seconde de f est f'' définie par :

$$f''(x) = 12x + \sin(x)$$

Pour étudier le signe de f'', nous étudions les variations de f''.

$$f^{(3)}(x) = 12 + \cos(x)$$

x	$-\infty$		0		$+\infty$
$f^{(3)}$			+		
Var f''	$-\infty$	7	0	7	$+\infty$
Signe $f''(x)$		_	0	+	

Nous déduisons f concave sur $]-\infty;0]$ et f convexe sur $[0;+\infty[$.

4. Représentation de la fonction f

Correction 5. Pour simplifier, pour toute fonction u, on confondra la notation de u en tant que fonction avec u(x) en tant qu'expression de la fonction u de la variable x.

Calcul différentiel 119

1. Soit $y = x^2 e^x$ du type uv. Dérivée d'un produit :

$$y' = \frac{dy}{dx} = u'v + uv' = 2x e^x + x^2 e^x = (2x + x^2)e^x$$

2. Soit $y = e^x \cos x$ du type uv. Dérivée d'un produit :

$$y' = \frac{dy}{dx} = u'v + uv' = -\sin x \ e^x + \cos x \ e^x = (\cos x - \sin x)e^x$$

3. Soit $y = x \ln x$ du type uv. Dérivée d'un produit :

$$y' = \frac{dy}{dx} = \ln x + x \frac{1}{x} = \ln x + 1$$

4. Soit $y = \frac{\sin x}{x}$ du type $\frac{u}{x}$. Dérivée d'un quotient :

$$y' = \frac{dy}{dx} = \frac{u'v - uv'}{v^2} = \frac{x\cos x - \sin x}{x^2}$$

5. Soit $y = \frac{x}{1+x^2}$ du type $\frac{u}{x}$. Dérivée d'un quotient :

$$y' = \frac{dy}{dx} = \frac{1(1+x^2) - x(2x)}{(1+x^2)^2} = \frac{1+x^2 - 2x^2}{(1+x^2)^2} = \frac{1-x^2}{(1+x^2)^2}$$

6. Soit $y = \frac{1}{\sin(x)}$ du type $\frac{1}{u}$. Dérivée d'une fonction du type $\frac{1}{u}$:

$$y' = \frac{dy}{dx} = -\frac{u'}{u^2} = -\frac{\cos(x)}{(\sin(x))^2}.$$

7. Soit $y = \frac{1}{\cos x}$ du type $\frac{1}{u}$. Dérivée d'une fonction du type $\frac{1}{u}$:

$$y' = \frac{dy}{dx} = -\frac{u'}{u^2} = \frac{-(-\sin x)}{(\cos x)^2} = \frac{1}{\cos x} \tan x$$

8. Soit $y = \frac{1}{\tan x}$ du type $\frac{1}{u}$. Dérivée d'une fonction du type $\frac{1}{u}$:

$$y' = \frac{dy}{dx} = -\frac{u'}{u^2} = -\frac{\frac{1}{(\cos(x))^2}}{(\tan(x))^2} = -\frac{1}{(\cos(x)\tan(x))^2}.$$

9. Soit $y = e^{-x^2}$ du type e^u . Dérivée d'une fonction du type e^u :

$$y' = \frac{dy}{dx} = u'e^u = -2xe^{-x^2}.$$

10. Soit $y = \ln(\cos(x))$ du type $\ln(u)$. Dérivée d'une fonction du type $\ln(u)$:

$$y' = \frac{dy}{dx} = \frac{u'}{u} = -\frac{\sin x}{\cos x} = -\tan x$$

11. Soit $y=\sin(\frac{1}{x})$ du type $v\circ u$. Dérivée d'une fonction du type $v\circ u$ (autrement écrit $v\circ u(x)=v(u(x))$:

$$y' = \frac{dy}{dx} = v' \circ u \times u' = v'(u(x)) \times u'(x) = \cos(\frac{1}{x}) \times (-\frac{1}{x^2}) = -\frac{1}{x^2}\cos(\frac{1}{x}).$$

12. Soit $y=(1+x)^4$ du type u^4 . Dérivée d'une fonction du type u^α :

$$y' = 4u^3u' = 4(1+x)^3$$

13. Soit $y = (1 + x^2)^4$ du type u^4 . Dérivée d'une fonction du type u^{α} :

$$y' = 4u^3u' = 4(1+x^2)^3 \times 2x = 8x(1+x^2)^3$$

14. Soit $y=\sin^6(x^2)$ du type $u\circ v\circ w.$ Dérivée d'une fonction du type $u\circ v\circ w$:

$$y'=u'\circ v\circ w\times v'\circ w\times w'=6\sin^5(x^2)\times\cos(x^2)\times 2x=12x\sin^5(x^2)\cos(x^2)$$

Correction 6. 1. Nous avons $\frac{d}{dx} x^6 = 6x^5$, soit

$$\int x^5 dx = \frac{1}{6}x^6 + C$$

2. Nous avons $\frac{d}{dx} \left(\frac{1}{\tan x} \right) = -\frac{1}{\sin^2 x}$, soit

$$\int \frac{1}{\sin^2 x} dx = -\frac{1}{\tan x} + C$$

3. Nous avons $\frac{d}{dx}e^{2x}=2e^{2x}$, soit

$$\int e^{2x} dx = \frac{1}{2}e^{2x} + C$$

4. Nous avons $\frac{d}{dx} \ln x = \frac{1}{x}$, soit

$$\int \frac{5}{x} dx = 5 \int \frac{1}{x} dx = 5 \ln x + C$$

5. Nous avons $\frac{d}{dx}(x+1)^5 = 5(x+1)^4$, soit

$$\int (x+1)^4 dx = \frac{1}{5}(x+1)^5 + C$$

6. Nous avons $\frac{d}{dx}(x^2+3)^8 = 8(x^2+3)^7 \cdot 2x = 16x(x^2+3)^7$, soit

$$\int x(x^2+3)^7 dx = \frac{1}{16}(x^2+3)^8 + C$$

Correction 7.