

THWESTERN POLYTECHNICAL UNIVERSITY

徐爽

西北工业大学理学院概率统计教研室

第二节 中心极限定理

● 一、问题的提出

● 二、中心极限定理

一、问题的提出

大数定律: 满足一定条件的随机变量序列的

算数平均值依概率收敛。

$$\lim_{n\to\infty} P\left\{ \frac{\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{n} \sum_{i=1}^{n} E(X_i) \right| < \varepsilon \right\} = 1$$

$$A$$

$$Y_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p} E(Y_n)$$

西北工业大学概率统计教研室

若
$$X_i \sim N(2,3)$$
,

则
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{p} 2$$

X_1 ,	X_2 ,	X_3 ,	X_4 ,	X_5 ,	X_6 ,	X_7 ,	X_8 ,	X_9 ,	X_{10}	, X
4.5211	-4.4151	10.7240	0.9385	2.0687	3.5602	1.1187	-1.9960	-2.0851	1.4143	2.1200
-0.6641	-0.5188	4.4757	-0.4708	1.2140	1.9399	-0.5438	-4.9896	3.3651	1.3472	1.6740
2.3003	6.0638	6.1369	-2.7312	-3.2506	1.8957	-1.3604	-2.3473	-0.5461	1.0907	1.8494
0.3664	-1.2165	-1.1745	3.5239	1.1430	-0.3945	9.5780	3.0005	0.9953	2.0691	1.6199
2.9106	4.8829	0.5942	2.8460	-0.4941	5.0561	6.9665	3.1741	3.6584	2.1539	2.0553
0.1990	2.3721	1.1826	2.1004	-0.9376	1.6003	2.9226	3.3550	5.1173	4.4782	1.6360
3.4699	6.3101	5.2953	-2.0010	-1.4692	-0.1436	-1.7714	1.6091	-1.3529	6.5809	1.9810
4.2181	-3.8827	1.1664	5.3825	0.3993	6.0542	-0.5964	2.5511	5.7820	3.4007	1.8734
7.1357	1.4069	4.1046	3.0505	-4.0079	1.3257	1.4704	0.5715	3.9804	1.3709	2.1550
1.4176	-1.6235	-4.1554	1.1028	4.8927	0.2329	4.3742	4.5861	1.7964	3.8756	1.9405

但我们无法得知 其收敛的速度,即:

给定
$$n, P\left\{\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-2\right|<\varepsilon\right\}=?$$

$$Y_n = \frac{1}{n} \sum_{i=1}^n X_i \sim F(x)$$
?

引例 高尔顿(Galton)板实验

n层钉子

$$P_{\pm} = P_{\pm} = 1/2$$

每个格子中小球的个数

统计特性 😯

西北工业大学概率统计教研室

则
$$X_k \sim B(1, \frac{1}{2})$$
, $k = 1, 2, \dots n$, 且 X_1, X_2, \dots, X_n 相互独立。

小球下落到最底层的水平位置

$$Y_n = \sum_{k=1}^n X_k \sim B(n, \frac{1}{2})$$

$$\sim N(\mu, \sigma^2)$$

中心极限定理

定理4.7 棣莫佛-拉普拉斯(De Movire - Laplace)中心极限定理

设随机变量 Y_n 服从二项分布B(n,p),则对任意x,

有

$$\lim_{n\to\infty} P\left\{\frac{Y_n - np}{\sqrt{np(1-p)}} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt = \Phi(x)$$

A. De Moivre (1667-1754)

表明 若
$$Y_n \sim B(n,p),$$

则有
$$Y_n^* = \frac{Y_n - np}{\sqrt{np(1-p)}} \sim AN(0,1)$$

 $E(Y_n) = np$ $D(Y_n) = np(1-p)$

近似服从标准正态分布

P.-S. Laplace (1749-1827)

正态分布是二项分布的极限分布

 $X \sim B(100, 0.2)$

$$P(X \le b) = \sum_{k=0}^{b} C_{100}^{k} 0.2^{k} 0.8^{100-k}$$

$$\approx \Phi(\frac{b-20}{\sqrt{16}})$$

中心极限定理

De Moivre-Laplace中心极限定理

$$Y_{n} \sim B(n,p)$$

$$\downarrow$$

$$Y_{n} = \sum_{i=1}^{n} X_{i}$$

$$\downarrow$$

$$X_{n} = \sum_{i=1}^{n} X_{i}$$

$$\downarrow$$

$$X_{n} \sim B(1,p)$$

$$\downarrow$$

$$\frac{\sum_{i=1}^{n} X_{i} - np}{\sqrt{np(1-p)}} \sim AN(0,1)$$

$$\frac{1}{\sqrt{np(1-p)}} \sim AN(0,1)$$

$$\frac{1}{\sqrt{np(1-p)}} \sim AN(0,1)$$

定理4.6 林德伯格-列维(Lindeberg-Levy)中心极限 定理

设随机变量 $X_1, X_2, ..., X_n$ 相互独立,服从同一分布,

且存在

$$E(X_i) = \mu$$
, $D(X_i) = \sigma^2 \neq 0$ (i=1, 2,..., n)

则对任意x,有

$$\lim_{n\to\infty} P\left\{\frac{\sum_{i=1}^{n} X_{i} - n\mu}{\sqrt{n\sigma}} \le x\right\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt = \Phi(x)$$
(证明略)

表明

$$E(X_i) = \mu, D(X_i) = \sigma^2$$
 独立同分布

$$\Rightarrow E(\sum_{i=1}^{n} X_i) = n\mu, D(\sum_{i=1}^{n} X_i) = n\sigma^2$$

大量相互独立同分布的随机变量的和

标准化后近似服从初

Xi之间没有相互依赖关系 对总和的影响在概率意义下均衡

$$Y_n^* = \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n\sigma}} \sim AN(0,1)$$

$$\sum_{i=1}^{n} X_{i} \sim AN\left(n\mu, n\sigma^{2}\right)$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim AN\left(\mu, \frac{\sigma^2}{n}\right)$$

例2 一船舶在某海区航行,已知每遭受一次海浪的冲击,纵摇角大于 3°的概率为1/3,若船舶遭受了90000次波浪冲击,问其中有29500~30500次纵摇角大于 3°的概率是多少?

解 设A:纵摇角大于 3°,则P(A)=1/3

假设海浪冲击相互独立。

X: 90000次波浪冲击中纵摇角大于 3° 的次数

则X~B(90000, 1/3). 分布律为

$$P\{X=k\}=\binom{90000}{k}\left(\frac{1}{3}\right)^k\left(\frac{2}{3}\right)^{90000-k}, k=1,\dots,90000.$$

所求概率为 $P\{29500 < X \le 30500\}$

$$=\sum_{k=29501}^{30500} \binom{90000}{k} \left(\frac{1}{3}\right)^k \left(\frac{2}{3}\right)^{90000-k}$$

直接计算很麻烦,利用切比雪夫不等式

$$\therefore n = 90000, \quad p = \frac{1}{3},$$

 $P\{29500 < X \le 30500\}$

$$= P\{29500 - np < X - np \le 30500 - np\}$$

$$= P\{|X - 30000| \le 500\} \ge 1 - \frac{npq}{500^2} \approx 0.92$$

只能估计范围,利用棣莫佛-拉普拉斯定理

 $P\{29500 < X \le 30500\}$

$$= P \left\{ \frac{29500 - np}{\sqrt{np(1-p)}} < \frac{X - np}{\sqrt{np(1-p)}} \le \frac{30500 - np}{\sqrt{np(1-p)}} \right\}$$

$$=\Phi\left(\frac{30500-np}{\sqrt{np(1-p)}}\right)-\Phi\left(\frac{29500-np}{\sqrt{np(1-p)}}\right)$$

$$\approx \Phi\left(\frac{5\sqrt{2}}{2}\right) - \Phi\left(-\frac{5\sqrt{2}}{2}\right)$$

$$=2\Phi(3.53)-1=0.9995.$$

例3 设随机变量 $X_1, X_2, ..., X_n$ 相互独立,且 X_i 在区间[-1, 1] 上服从均匀分布(i=1, 2, ..., n), 试证 当 n充分大时,随机变量 $Z_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ 近似服从 正态分布并指出其分布参数.

因为 $X_1, X_2, ..., X_n$ 相互独立,所以 $Y_1, Y_2, ..., Y_n$ 相互独立,根据林德伯格-列维中心极限定理

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} = \frac{1}{n}\sum_{i=1}^{n}Y_{i} \sim AN(E(Y_{i}), \frac{D(Y_{i})}{n})$$

$$X_i \sim U[-1, 1]$$
 $E(X_i) = 0, D(X_i) = \frac{1}{3}$

$$E(Y_i) = E(X_i^2) = D(X_i) + E^2(X_i) = \frac{1}{3}$$

$$D(Y_i) = E(Y_i^2) - [E(Y_i)]^2 = E(X_i^4) - [E(Y_i)]^2$$

因为
$$E(X_i^4) = \int_{-1}^1 x_i^4 \cdot \frac{1}{2} dx_i = \frac{1}{5}$$

所以
$$D(Y_i) = \frac{1}{5} - \left(\frac{1}{3}\right)^2 = \frac{4}{45}$$

$$\therefore Z_n = \frac{1}{n} \sum_{i=1}^n X_i^2 \sim N\left(\frac{1}{3}, \frac{4}{45n}\right).$$

例5 设总体X服从参数为2的指数分布, $X_1, X_1, \dots X_n$ 为来自总体X的简单随机样本,则当 $n \to \infty$ 时,随机

例6设随机变量 $X_1, X_1, \cdots X_n$ 相互独立,均服 从B(1,0.2),则由中心极限定理知,当 $n \to \infty$ 时,

随机变量 $U = \sum_{i=1}^{n} X_{i}$ 近似服从 $\frac{N(0.2n, 0.16n)}{2}$ 分布.

(写出分布参数).

课后思考

中心极限定理

独立同分布

 $\sum_{i=1}^{n} X_{i}^{\text{近似}}$ 正态分布

独立不同分布

内容小结

$$E(X_i) = \mu D(X_i) = \sigma^2$$

独立同分布情形

林德贝格-列维中心极限定理

$$\frac{\sum_{i=1}^{n} X_{i} - n\mu}{\sqrt{n\sigma}} \sim AN(0,1)$$

独立不同分布情形

李雅普诺夫定理

$$Y_n^* = \frac{\sum_{i=1}^n X_i - \sum_{i=1}^n \mu_i}{B_n} \sim AN(0,1)$$

二项分布的正态近似

棣莫佛-拉普拉斯定理

$$Y_n = \sum_{k=1}^n X_k \sim B(n, p)$$

$$\frac{Y_n - np}{\sqrt{np(1-p)}} \sim AN(0, 1)$$

中心极限定理

でルフま大学 NORTHWESTERN POLYTECHNICAL UNIVERSITY

