7. Matrix examples

7.1. Geometric transformations

Let us create a rotation matrix, and use it to rotate a set of points $\pi/3$ radians (60 deg). The result is in Figure 7.1.

```
In []: Rot = lambda theta: [[np.cos(theta), -np.sin(theta)],
         [np.sin(theta), np.cos(theta)]]
         R = Rot(np.pi/3)
Out[]: [[0.50000000000001, -0.8660254037844386],
          [0.8660254037844386, 0.5000000000000001]]
In [ ]: #create a list of 2-D points
         points =
         \rightarrow np.array([[1,0],[1.5,0],[2,0],[1,0.25],[1.5,0.25],[1,0.5]])
         #Now rotate them
         rpoints = np.array([R @ p for p in points])
         #Show the two sets of points
         import matplotlib.pyplot as plt
         plt.ion()
         plt.scatter([c[0] for c in points], [c[1] for c in points])
         plt.scatter([c[0] for c in rpoints],[c[1] for c in rpoints])
         plt.show()
```

7.2. Selectors

Reverser matrix. The reverser matrix can be created from an identity matrix by reversing the order of its rows. The numpy function np.flip() can be used for this purpose.

Figure 7.1.: Counterclockwise rotation by 60 degrees applied to six points.

Permutation matrix. Let's create a permutation matrix and use it to permute the entries of a vector. In Python, you can directly pass the permuted indexes to the vector.

7.3. Incidence matrix

Incidence matrix of a graph. We create the incidence matrix of the network shown in Figure 7.3 in VMLS.

Dirichlet energy. On page 135 of VMLS we compute the Dirichlet energy of two potential vectors associated with the graph of Figure 7.2 in VMLS.

7.4. Convolution

The numpy function np.convolve() can be used to compute the convolution of the vectors a and b. Let's use this to find the coefficients of the polynomial

$$p(x) = (1+x)(2-x+x^2)(1+x-2x^2) = 2+3x-3x^2-x^3+x^4-2x^5$$