OLLSCOIL NA hÉIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK

COLÁISTE NA hOLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK

SUMMER EXAMINATIONS, 2010

B.E. DEGREE (ELECTRICAL)

POWER ELECTRONICS, DRIVES AND ENERGY CONVERSION EE4001

Prof. C. Delabie Dr. M. Creed Dr. J.G. Hayes

Time allowed: 3 hours

Answer *four* out of six questions. All questions carry an equal weighting of 20 marks.

The use of departmental-approved non-programmable calculators is permitted.

1. Induction Motor Characterization

The specification table for Westinghouse induction motors is provided as an (a) attachment. Consider the 75 kW, four-pole machine with 400 V (line-line), 50 Hz applied in the delta configuration. Estimate the per-phase equivalent circuit parameters: R_R , P_{CFW} , L_{LS} , L_{LR} , and L_{M} . Assume $R_S = 117 \text{ m}\Omega$ and L_{LS} equals L_{LR} for this class of machine.

[10 marks]

A four-pole star-connected induction motor used in an electric vehicle application has (b) the following per-phase equivalent circuit parameters: $R_{\rm S} = 11.8 \text{ m}\Omega$, $L_{\rm LS} = 0.0972 \text{ mH}$, $L_{\rm M} = 2.0 \text{ mH}$, $L_{\rm LR} = 0.0772 \text{ mH}$, and $R_{\rm R} = 12.9 \text{ m}\Omega$. When supplied by a current-controlled inverter outputting 93 A at 200 Hz, the motor generates an output torque of 40 Nm at 5945 rpm. Core, friction and windage losses are estimated at 2.3 kW at this speed. Determine approximate values for the input perphase voltage, power factor, and efficiency at this operating point.

[10 marks]

2. Induction Motor Inrush and Speed Control

(a) Sketch the wiring diagram for the volts/hertz control of the induction machine.

[4 marks]

- (b) The specification table for the Westinghouse 22 kW, 8-pole induction motor, with 400 V (line-line), 50 Hz applied in the delta configuration, is provided as an attachment.
 - (i) What are the initial starting line current and torque for a direct-on-line start?
 - A volts/hertz controller with voltage boost is integrated into the delta-wired drive. The series resistance is estimated to be 0.43Ω .
 - (ii) Determine approximate values for the starting frequency, current, and voltage in order to supply the specified starting torque.
 - (iii) Maintaining rated airgap flux, what are the electrical line voltage, current, frequency, and power factor sourced from the inverter, when developing 50 % of the rated torque at 75 % of the rated speed?

Use the formula
$$slope = \frac{V_{ph,rated} - R_S \cdot I_{R,rated}}{f_{rated}}$$
 for low-voltage boost.

[16 marks]

3. AC Machines Space Vectors and Vector Control of the Induction Motor

A four-pole star-connected induction motor used in a servo application has the following per-phase equivalent circuit parameters:

$$R_{\rm S} = 1.77~\Omega$$
, $L_{\rm LS} = 14~{\rm mH}$, $L_{\rm M} = 369~{\rm mH}$, $L_{\rm LR} = 12~{\rm mH}$, and $R_{\rm R} = 1.34~\Omega$.

At the rated condition of 460 V line-line, 60 Hz, the machine pulls 3.753 A at a lagging power factor of 0.822. At time t = 0, the machine is in steady state.

- (i) Taking the per-phase input voltage as the reference, calculate the per-phase rotor current phasor and the per-phase rotor flux-linkage phasor.
- (ii) Align the *d*-axis with the rotating rotor flux linkage state vector and calculate the rotor current and the rotor flux-linkage space vectors.
- (iii) Calculate λ_{rd} and i_{rq} and the resulting electromagnetic torque and slip.
- (iv) Calculate the three phase currents at time t = 0.

Note the following equations:

$$\begin{split} \vec{i}_s &= \frac{3}{2} \sqrt{2} I_s \angle \theta_{ls} = \sqrt{\frac{3}{2}} \left(i_{sd} + j i_{sq} \right) \\ \overrightarrow{\lambda_r}(t) &= -L_r \vec{i_r}(t) + L_m \vec{i_s}(t) \\ T_{em} &= \frac{P}{2} \lambda_{rd} i_{rq} \text{ and } \omega_{slip} = \frac{2}{P} \frac{R_r i_{rq}}{\lambda_{rd}} \\ \begin{pmatrix} i_a(t) \\ i_b(t) \\ i_c(t) \end{pmatrix} &= \sqrt{\frac{2}{3}} \begin{pmatrix} \cos \theta_{da} & -\sin \theta_{da} \\ \cos \left(\theta_{da} + 240^o \right) & -\sin \left(\theta_{da} + 240^o \right) \\ \cos \left(\theta_{da} + 120^o \right) & -\sin \left(\theta_{da} + 120^o \right) \end{pmatrix} \begin{pmatrix} i_{sd} \\ i_{sq} \end{pmatrix} \\ \theta_{da} &= \omega t + \theta_{\lambda r} \end{split}$$

[20 *marks*]

4. Power Electronics Converters

- (a) In a regulated flyback converter with a 1:1 turns ratio, $V_0 = 12 \text{ V}$, V_1 is 12-24 V, P_{load} is 6-60 W and the switching frequency is 200 kHz.
 - (i) Calculate the maximum value of the magnetizing inductance $L_{\rm m}$ that can be used if the converter is always required to operate in a complete demagnetization (equivalent to a discontinuous-conduction) mode. Assume ideal components.
 - (ii) Sketch to scale the transformer primary and secondary current waveforms at full power and low input voltage.
 - (iii) Determine the maximum voltage across the switch at full power and high input voltage

[6 *marks*]

(b) The Toyota Prius uses a 20 kW bidirectional converter to generate a 500 V dc link voltage from the 200 V NiMH battery. This higher voltage allows the efficiency, range, and emissions of the vehicle to be optimized. The bidirectional converter has an inductance of 435 uH and switches at 10 kHz.

The vehicle is operating in motoring mode and the bi-directional converter is required to act as a boost and provide a half power level of 10 kW. For this 10 kW condition:

- (i) Calculate the rms currents in the inductor and in the output and input capacitors.
- (ii) Calculate the switch average and rms currents.

[6 *marks*]

- (c) The system parameters of a permanent-magnet dc motor supplied by a switch-mode PWM dc-dc converter are as follows: armature resistance $R_a = 0.1 \,\Omega$, armature inductance $L_a = 1$ mH, motor constant k = 0.07 V/(rad/s), dc bus voltage $V_d = 12$ V, switching frequency $f_s = 20$ kHz, and amplitude of triangular waveform control voltage $V_{\rm tri} = 5$ V. The motor is spinning forward at a speed of 750 rpm and acts as a generator supplied by a full-load torque of -0.7 Nm.
 - (i) Calculate the following: (a) the applied armature voltage V_{AB} ; (b) duty ratios for the overall converter, pole A, and pole B; (c) the control voltage, and (d) the peak-to-peak ripple on the armature current.
 - (ii) Calculate the rms currents in the upper and lower MOSFET switches of pole A. [8 marks]

5. DC Machines

(a) A 100 kW compound generator, of terminal ratings 250 V and 400 A, has an armature resistance (including brushes) of 0.025 Ω and the attached magnetization curve. There are 1000 shunt-field turns per pole and 3 series-field turns per pole. Compute the shunt field current required at full load when the generator speed is 1100 rpm. Include the effects of armature reaction.

[6 marks]

(b) The specification sheet for the Maxon 250 W, 48 V, 6500 rpm, EC dc motor is attached. Compute the armature current, applied voltage, and machine efficiency for the condition shown in line 10 of motor data. What are the amplitude of per-phase back emf and the rms per-phase current?

[6 marks]

(c) The specification sheet for the TK 164-110-04 permanent magnet motor is attached. Estimate the no-load core, friction and windage losses and determine the per-phase no-load current. Under full-load determine the applied per-phase current and voltage, power factor for the full power condition under water cooling: 6.41 kW output power at 173.29 rad/s. Note that the specified winding parameters are twice the per-phase parameters.

Apply the following formulae:

$$T_{\rm EM} = 3 \cdot k \cdot I_{ph(rms)}$$
 and $E_{ph(rms)} = k \cdot \omega$

[8 marks]

6. Power Semiconductors

(a) The IRFPS40N60K power MOSFET (see attached specification sheets) from International Rectifier operates in a boost converter with a dc link voltage $V_d = 480 \text{ V}$, and load current $I_o = 20 \text{ A}$. The MOSFET is driven by a gate drive IC outputting a square-wave voltage v_{GG} , of amplitude 0 V to +10 V, in series with an external gate resistance $R_G = 4.3 \Omega$. Assume the diode has a 1V forward drop and no reverse recovery.

Useful formula: RC discharge time
$$t = -RC \ln \left[\frac{v_c - (-V_{GG})}{V_{ci} - (-V_{GG})} \right]$$

- (i) Determine the following parameters from the data sheet at a junction temperature of 100°C: maximum threshold voltage, minimum forward transconductance, gate-source capacitance, gate-drain capacitance, maximum on-state resistance, maximum gate voltage at the 20 A load current, and maximum conduction drop across MOSFET at 20 A.
- (ii) Sketch $v_{GG}(t)$, $v_{GS}(t)$, $v_{DS}(t)$, and $i_D(t)$ during turn-off of the MOSFET. Note the approximate voltage levels on waveforms.
- (iii) Calculate the following (a) turn-off delay time t_{doff} , (b) voltage rise time t_{vr} , and (c) current fall time t_{fv} at a junction temperature of 100°C. Sketch the basic switching circuit under analysis in each case.

[12 *marks*]

(b) The 2003 Toyota Prius uses a 20 kW bidirectional converter to generate a 500 V dc link voltage from the 200 V NiMH battery. The bidirectional converter has an inductance of 435 uH and switches at 10 kHz.

At full power in generating (buck) mode, the inductor carries 100 Adc with a peak-to-peak ripple of 27.6 A, and the rms/average currents in the IGBT and diode are 63.4 A/40 A and 77 A/60 A, respectively. Determine the typical power loss at 125 C due to conduction and switching in the upper IGBT and lower diode for this full-power condition when using the SEMiX252GB126HDs as the half-bridge module (see attached specification sheets on pages 12 to 14).

[8 *marks*]

erformance Da 2kW-315kW

22kW-315kW TEFC, CLASS F, S1 (MCR) DUTY

		Full Speed (RPM)	Frame No.	Rated Torque (Nm)	380	rent (a at voits 400			ciency at load 75%		i de la como de la com	wer Fac at load 75%	-	D.C.L. Starting current (%FLC)	D.O.C. Starting Torque (%FLT)	Puil out Torque (%FLT)	Rotor inertia mr² (kg.m²)	Max load inertia inr ² (kg.m°)	pressure (dB(A)) (avg no
							26.0		No.			Name of Street				0.11	0.071	0.50	
												27 2	0.84						'1
Section Sect													0.72						1.5
196							-												
18													0.82				0.12	0.83	79
18	30	1465	D200L	196	55.8	53.1	51.1	91.8	92	91.4	0.89	0.85	0.74	700-	230	303	0.25	2.5	68
37 2950 D200L 120 66,9 63.6 61.3 92.1 92.0 91.0 0.91 0.89 0.87 750 220 29.8 0.13 0.93 .99 37 1475 D2250 400 69.8 63.6 69.2 4.82 19.5 91.8 99.9 687 0.31 0.81 0.81 9.88 64 37 735 D2805 481 77.8 42.9 17.2 91.5 91.5 91.5 91.5 91.5 91.5 0.9 0.0 0.66 600 200 240 14.4 21.6 62 45.5 68 44.7 79.9 77.0 92.5 92.3 91.5 0.80 0.85 0.77 750 200 314 0.84 8.15 91.7 78.7 92.5 92.3 91.3 0.80 0.83 0.75 750 200 314 0.84 4.15 68 62 53.5 105 0.88	30	980	D225M	292	58.3	55.4	53.4	91.8	92.0	90,6	0.85	0.82	0.75	620	235	284	0.53	6.3	76
37	30	730	D250M	392	61.0	57.9	55.9	90.8	90.8	89.2	0.82	0.77	0.65	582	198	298	0.81	12	61
17 18 18 18 18 18 18 18	37	2950	D200L	120		63.6	61.3		92.0							100			1.0
17						•													8 A. A.
45 2960 0225M. 145 81.8 77.7 74.9 92.5 92.1 91.0 0.90 0.88 0.82 790 270 369 0.22 1.5 79 45 477 0225M 297 84.1 799 77.0 92.5 92.3 91.5 0.88 0.85 0.77 750 200 344 0.45 45 66 45 980 0280N 586 84.1 89.4 86.1 92.0 91.8 89.5 0.79 0.71 0.65 660 200 240 1.7 26 62 55 2965 0250M 177 101 95.7 92.2 93.0 92.1 90.3 0.89 0.86 0.80 770 190 348 0.31 211 79 55 1475 0250M 356 101 96.0 92.6 93.0 92.8 91.3 0.90 0.86 0.83 775 700 220 316 0.64 6.4 6.9 55 980 0280M 535 105 99.5 95.9 92.8 92.5 90.5 0.86 0.83 0.75 700 220 316 0.64 6.4 6.9 57 797 02805 241 34 128 123 93.3 92.9 91.2 0.91 0.89 0.86 0.80 770 230 270 1.6 1.6 1.6 6.6 57 735 0315S 714 111 106 102 92.8 92.7 90.5 0.86 0.83 0.75 700 230 270 1.6 1.6 1.6 1.6 1.7 1.7 1.8 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.8 1.7 1.8 1.8 1.7 1.8 1.8 1.7 1.8 1.7 1.8 1.8 1.7 1.8 1.8 1.8 1.7 1.8 1.8 1.7 1.8 1.8 1.8 1.7 1.8 1				4 2						17.7	2.00	'				٠.			
45	-																* * **		J
45 980 0280S 438 859 81.7 76.7 92.5 92.3 90.0 0366 0.83 0.75 70.0 230 270 1 16 66 66 45 735 0280M 565 541 89.4 86.1 92.0 91.8 89.5 0.79 0.71 0.65 660 200 240 1.7 26 62 62 62 62 62 62 6					196	4.4										10000		er de la	1,546,354
45 735 D280M S85			2.5						-			6 Contract		1000		1.2	r garani.	21 22 A	100
55 2965 D250M 177 101 957 92.2 93.0 92.1 90.3 0.89 0.86 0.70 190 368 0.31 2.1 79 55 1475 D250M 356 101 96.0 92.6 92.8 91.3 0.90 0.86 0.77 700 220 316 0.64 6.4 69 55 735 D30155 714 111 106 102 92.8 92.7 90.0 0.81 0.71 0.65 660 80 220 1.6 69 67 75 2971 D2805 241 134 128 123 93.3 92.9 912 0.91 0.88 0.86 640 220 250 0.58 2.9 80 75 735 935 935 732.2 910 0.86 0.83 0.75 700 200 240 10 72 735 735 931 93.5										44.0									2.2
55 1475 D250M 356 101 96.0 92.6 93.0 92.8 91.3 0.90 0.86 0.79 700 220 316 0.64 6.4 69 55 980 D280M 535. 174 111 106 102 92.8 92.7 90.0 0.81 0.71 0.65 660 180 220 1.6 69 67 75 2971 D280S 241 134 128 123 93.3 92.9 91.2 0.80 0.86 640 220 250 0.58 2.9 80 75 935 D315S 766 142 135 130 93.5 93.2 91.0 0.66 0.83 0.75 700 200 249 3.93 39 70 75 735 D315M 971 151 144 139 93.5 92.7 0.92 0.86 0.02 260 0.67 3.3																			
55 735 D315S 714 111 106 102 92.8 92.7 90.0 0.81 0.71 0.65 660 180 220 4.6 69 67 75 2971 D280S 241 134 128 123 93.3 92.9 91.2 0.91 0.86 640 220 250 0.58 2.9 80 75 1485 D280S 421 137 130 126 94.2 94.2 92.0 0.86 0.75 700 250 240 1.0 7.3 77 735 D315M 791 151 144 139 93.0 92.8 90.2 0.86 0.72 0.65 600 180 220 5.4 64 67 90 2965 D280M 290 152 146 93.7 92.5 92.7 0.90 0.86 700 230 250 0.67 3.3 80 90 235 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100</td> <td></td> <td>3.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>e futilización fil</td>										100		3.5							e futilización fil
75 2971 D280S 241 134 128 123 93.3 92.9 91.2 0.91 0.89 0.86 640 220 250 0.58 2.9 80 75 1485 D280S 482 137 130 126 94.2 94.2 93.2 0.88 0.86 0.79 730 250 240 1.0 7.3 77.2 75 735 0315M 766 142 135 130 93.5 93.2 91.0 0.86 0.83 0.75 700 200 240 3.9 39 70 75 735 0315M 974 151 144 139 93.0 92.8 90.2 0.86 0.72 0.65 660 180 220 0.67 3.3 80 90 935 0315M 991 170 161 155 93.8 93.5 91.2 0.86 0.83 0.76 700 200	55	980	.D280M	536	105	99.5	95,9	92.8	92.5	90:5	0.86	0.83	0.75	700	230	270	1.6	19	66
75 1485 D280S 482 137 130 126 94.2 94.2 93.2 0.88 0.86 0.79 730 250 240 1.0 7.3 72 75 935 0315S 766 142 135 130 93.5 93.2 91.0 0.86 0.83 0.75 700 200 240 3.9 39 70 75 735 0315M 974 151 144 139 93.0 92.8 90.2 0.81 0.72 0.65 660 180 220 5.4 64 67 90 935 0315M 919 170 161 155 93.8 93.5 912 0.86 0.81 720 240 240 1.4 9.7 72 9.9 93.0 0.80 0.81 720 240 246 45.8 70 9.0 9.0 8.0 0.86 660 180 220 0.4 4.5	55	735	D315S	714	111	106	102	92.8	92.7	90.0	0.81	0.71	0.65	660:	180	220	4.6	69	67
75 935 0315S 766 142 135 130 93.5 93.2 91.0 0.86 0.83 0.75 700 200 240 3.9 39 70 75 735 0315M 974 151 144 139 93.0 92.8 90.2 0.81 0.72 0.65 660 180 220 5.4 64 67 90 2955 D280M 579 162 154 146 93.7 93.5 92.7 0.92 0.90 0.66 700 230 250 0.67 33.3 80 90 935 0315M 919 170 161 165 93.8 93.5 91.2 0.86 0.83 0.76 700 200 240 4.6 45.8 70 110 2975 0315S 353 195 186 179 94.0 93.5 91.9 0.91 0.89 0.86 640 180 2	7.5	2971	D280S	241	134	128	123	93.3	92.9	91.2	0.91	0.89	0.86	640	220	250	0.58	2.9	80
75 735 D315M 974 151 144 139 93.0 92.8 90.2 0.81 0.72 0.65 660 180 220 5.4 64 67 90 2965 D280M 290 159 152 146 93.7 93.5 92.7 0.92 0.90 0.86 700 230 250 0.67 3.3 80 90 1484 D280M 579 162 154 148 94.4 94.2 93.0 0.89 0.88 0.81 720 240 240 1.4 9.77 72 90 935 D315M 919 170 161 155 93.8 93.5 91.2 0.86 0.83 0.76 700 200 240 4.6 45.8 70 10 2975 D315L 1169 178 169 163 93.8 93.5 91.2 0.80 0.82 0.72 0.65 660 180 230 61 73 67 110 2975 D315L 1169 178 169 189 94.0 93.5 91.9 0.91 0.89 0.86 640 180 230 61 73 81 10 1485 D315L 1123 207 196 189 94.0 93.7 91.4 0.86 0.83 0.76 700 210 240 240 1.1 5.7 81 110 1485 D315L 1429 217 206 199 94.0 93.8 90.4 0.82 0.72 0.66 660 180 230 6.6 79 67 132 2975 D315L 1429 217 206 199 94.0 93.8 90.4 0.82 0.72 0.66 660 190 230 6.6 79 67 132 2975 D315L 1348 245 232 224 94.5 94.5 93.4 99.1 0.89 0.87 590 170 240 1.8 8.8 81 132 1485 D315M 849 240 228 220 94.8 94.5 93.4 0.91 0.89 0.87 590 170 240 1.8 8.8 81 132 1485 D315M 849 240 228 220 94.8 94.5 93.4 0.91 0.89 0.87 590 170 240 1.8 8.8 81 132 1485 D315M 849 240 228 220 94.8 94.5 93.1 0.88 0.86 0.81 560 180 260 3.5 24 78 132 99.5 D315L 1544 279 265 256 95.2 94.9 93.5 93.2 90.4 0.82 0.73 0.66 650 190 200 10 125 75 160 2975 D315L 544 279 265 256 95.2 94.9 93.5 93.2 0.88 0.86 0.81 560 190 200 10 125 75 160 2975 D315L 544 279 265 256 95.2 94.9 93.5 93.2 0.89 0.86 650 190 200 10 125 75 200 2975 D315L 164 279 265 256 95.2 94.9 93.5 93.2 0.89 0.86 650 190 200 10 125 75 200 2975 D315L 164 279 265 256 95.2 94.9 93.5 93.2 0.89 0.86 650 190 200 10 125 75 200 2975 D315L 164 279 265 256 95.2 94.9 94.5 93.7 0.89 0.86 650 190 200 12 140 75 200 2975 D315L 164 279 265 256 95.2 94.9 94.5 93.7 0.89 0.86 650 190 200 12 140 75 200 2975 D315L 164 279 265 256 95.2 94.9 94.6 93.6 0.89 0.86 60.0 190 200 12 140 75 200 2975 D315L 164 279 265 256 95.2 94.9 94.8 94.5 91.0 0.88 0.84 0.76 700 200 200 8.8 88 70 160 2975 D315L 166 249 348 331 319 95.0 94.5 91.0 0.88 0.84 0.76 700 200 200 200 8.8 88 70 160 2975 D315L 166 24 348 331 319 95.0 94.5 91.0 0.88 0.88 0.84 0.76 700 200 200 200 8.	75	1485	D280S	482	137	130	126	94.2	94.2	93.2	0.88	0.86	0.79	730	250	240	1.0	7.3	72
90 2965 D280M 290. 159 152 146 93.7 93.5 92.7 0.92 0.90 0.86 700 230 250 0.67 3.3 80 90 1484 D280M 579 162 154 148 94.4 94.2 93.0 0.89 0.88 0.81 720 240 240 1.4 9.77 72 90 935 D315M 919 170 161 155 93.8 93.5 91.2 0.86 0.83 0.76 700 200 240 4.6 45.8 70 90 735 D315L 169 178 169 163 93.8 93.5 91.2 0.86 0.83 0.76 700 200 240 4.6 45.8 70 110 2975 D315S 353 195 186 179 94.0 93.5 91.9 0.91 0.89 0.86 640 180 230 6.1 5.7 81 110 1485 D315S 707 201 191 184 94.5 94.2 93.0 0.88 0.85 0.80 580 190 270 3.0 21 78 110 735 D315L 1429 217 206 199 94.0 93.7 91.4 0.86 0.83 0.76 700 210 240 5.2 52 52 85 110 735 D315M 424 233 222 214 94.5 94.5 93.4 0.91 0.89 0.87 590 170 240 1.8 8.8 81 132 1485 D315M 849 240 228 220 94.8 94.5 93.4 0.91 0.89 0.87 590 170 240 1.8 8.8 81 132 1485 D315M 849 240 228 220 94.8 94.5 93.2 93.0 1.88 0.86 0.81 560 180 260 3.5 24 78 132 935 D315L 1348 245 232 224 94.2 93.9 91.5 0.87 0.83 0.86 0.81 560 180 260 3.5 24 78 132 935 D315L 1348 245 232 224 94.2 93.9 91.5 0.87 0.83 0.86 0.81 560 180 260 3.5 24 78 132 745 D355M 1692 262 249 240 93.5 93.2 90.4 0.82 0.73 0.86 650 190 200 10 125 75 160 2975 D315M 291 277 267 94.8 94.5 93.7 0.92 0.89 0.86 0.81 560 180 260 3.5 24 78 160 1485 D315L 1029 288 273 264 94.9 93.6 93.6 0.89 0.86 0.82 520 170 240 4.0 228 82 160 990 D355M 1543 291 277 267 94.8 94.5 93.6 0.89 0.86 0.82 520 170 240 4.0 28 82 160 990 D355M 1543 291 277 267 94.8 94.5 93.6 0.89 0.86 0.80 560 190 200 10 125 75 160 2975 D315L 642 348 331 319 95.0 94.9 93.8 0.92 0.89 0.86 0.80 560 190 200 12 140 75 200 1485 D315L 1266 359 341 329 95.5 93.2 90.4 0.83 0.73 0.66 650 190 200 12 140 75 200 140 1485 D315L 1266 359 341 329 95.5 95.2 94.5 93.8 0.92 0.89 0.87 590 170 240 4.0 28 82 200 990 D355M 1929 363 345 333 95.0 94.5 93.8 0.92 0.89 0.86 0.80 0.80 0.80 0.80 0.80 0.80 0.80	75	935	:D315S	766	142	135	130	93.5	93.2	91.0	0.86	0.83	0.75	700	200	240	3.9	39	70
90 1484 D280M 579 162 154 148 94.4 94.2 93.0 0.89 0.88 0.81 720 240 240 1.4 9.77 72 90 935 D315M 919 170 161 155 93.8 93.5 91.2 0.86 0.83 0.76 700 200 240 4.6 45.8 70 90 735 D315L 1169 178 169 163 93.8 93.5 90.3 0.82 0.72 0.65 660 180 230 6.1 73 67 110 2975 D315S 353 195 186 179 94.0 93.5 91.9 0.91 0.89 0.86 640 180 240 1.1 5.7 81 110 1485 D315E 707 201 191 184 94.5 94.2 93.0 0.88 0.85 0.80 580 190 270 3.0 21 78 110 935 D315L 1123 207 196 189 94.0 93.7 91.4 0.86 0.83 0.76 700 210 240 5.2 52 85 110 735 D315M 424 233 222 214 94.5 94.5 94.5 93.4 0.91 0.89 0.87 590 170 240 1.8 8.8 81 132 1485 D315M 849 240 228 220 94.8 94.5 93.5 0.87 0.83 0.86 0.86 0.80 560 180 260 3.5 24 78 132 2975 D315L 1429 286 232 224 94.2 93.0 91.5 0.87 0.83 0.76 700 210 230 6.6 79 67 132 745 D355M 1692 262 249 240 93.5 93.2 90.4 0.82 0.73 0.66 650 180 260 3.5 24 78 160 2975 D315L 514 279 265 256 95.2 94.9 93.7 0.92 0.89 0.86 0.80 190 200 10 125 75 160 2975 D315L 1633 291 277 267 94.8 94.5 93.6 0.89 0.86 0.82 520 170 240 4.0 28 82 160 990 D355M 1543 291 277 267 94.8 94.5 93.6 0.89 0.86 0.80 0.80 700 220 250 2.0 10 84 160 1485 D315L 1638 291 277 267 94.8 94.5 93.7 0.92 0.89 0.86 700 220 250 2.0 10 28 82 160 990 D355M 1543 291 277 267 94.8 94.5 93.2 90.4 0.83 0.73 0.66 650 190 200 10 125 75 160 2975 D315L 642 38 331 319 95.0 94.6 93.6 0.89 0.86 0.81 500 200 200 8.8 88 70 160 1485 D315L 1266 359 341 329 95.0 94.9 93.8 0.92 0.89 0.86 0.80 500 190 200 12 140 75 200 2975 D315L 563 386 367 354 94.8 94.5 91.7 0.88 0.84 0.76 700 200 200 8.8 88 70 160 745 D355M 1529 363 345 333 95.0 94.5 94.5 91.0 0.89 0.86 0.81 500 220 240 4.5 31 82 200 990 D355M 1542 241 449 427 411 95.0 94.5 91.0 0.89 0.86 0.81 600 220 240 4.5 31 82 200 990 D355M 1502 437 415 400 95.5 95.2 94.5 90.0 0.86 0.81 600 220 240 4.5 31 82 250 1490 D355M 1602 437 415 400 95.5 95.0 94.5 91.0 0.89 0.86 0.80 0.80 0.80 0.80 0.80 0.80 0.80							139												
90. 935																			
90 735 D315L 1169 178 169 163 93.8 93.5 90.3 0.82 0.72 0.65 660 180 230 6.1 73 67 110 2975 D315S 353 195 186 179 94.0 93.5 91.9 0.91 0.89 0.86 640 180 240 1.1 5.7 81 110 1485 D315S 707 201 191 184 94.5 94.2 93.0 0.88 0.85 0.80 580 190 270 3.0 21 78 110 935 D315L 1123 207 196 189 94.0 93.7 91.4 0.86 0.83 0.76 700 210 240 5.2 52 85 110 735 D315L 1429 217 206 199 94.0 93.8 90.4 0.82 0.72 0.66 660 190 230 6.6 79 67 132 2975 D315M 424 233 222 214 94.5 94.5 93.4 0.91 0.89 0.87 590 170 240 1.8 8.8 81 132 1485 D315M 849 240 228 220 94.8 94.5 93.1 0.88 0.86 0.81 560 180 260 3.5 24 78 132 935 D315L 1348 245 232 224 94.2 93.9 91.5 0.87 0.83 0.76 700 210 230 5.5 555 70 132 745 D355M 1692 262 249 240 93.5 93.2 90.4 0.82 0.73 0.66 650 190 200 10 125 75 160 2975 D315L 1029 288 273 264 94.9 94.6 93.6 0.89 0.86 0.89 0.86 700 220 250 2.0 10 84 160 1485 D315L 1029 288 273 264 94.9 94.6 93.6 0.89 0.86 0.89 0.86 650 190 200 12 140 28 82 160 990 D355M 1543 291 277 267 94.8 94.5 93.2 90.4 0.82 0.73 0.66 650 190 200 12 140 75 200 2975 D315L 642 348 331 319 95.0 94.9 93.2 90.4 0.83 0.73 0.66 650 190 200 12 140 75 200 2975 D315L 642 348 331 319 95.0 94.9 93.6 0.89 0.86 0.81 600 220 240 4.5 31 82 200 990 D355M 804 432 411 396 95.5 95.2 94.5 90.8 0.80 0.80 0.81 600 220 240 4.5 31 82 200 990 D355M 804 432 411 396 95.5 95.0 94.5 90.0 0.80 0.80 0.80 0.80 0.80 0.80 0.80																	100	+1.	7.0
110 2975 D315S 353 195 186 179 94.0 93.5 91.9 0.91 0.89 0.86 640 180 240 1.1 5.7 81 110 1485 D315S 707 201 191 184 94.5 94.2 93.0 0.88 0.85 0.80 580 190 270 3.0 21 78 110 935 D315L 1123 207 196 189 94.0 93.7 91.4 0.86 0.83 0.76 700 210 240 5.2 52 85 110 735 D315L 1429 217 206 199 94.0 93.8 90.4 0.82 0.72 0.66 660 190 230 6.6 79 67 132 2975 D315M 424 233 222 214 94.5 94.5 94.5 93.4 0.91 0.89 0.87 590 170 240 1.8 8.8 81 132 1485 D315M 849 240 228 220 94.8 94.5 93.1 0.88 0.86 0.81 560 180 260 3.5 24 78 132 745 D355M 1692 262 249 240 93.5 93.2 90.4 0.82 0.73 0.66 650 190 200 10 125 75 160 2975 D315L 514 279 265 256 95.2 94.9 93.7 0.92 0.89 0.86 700 220 250 2.0 10 84 160 1485 D315L 1029 288 273 264 94.9 94.6 93.6 0.89 0.86 0.82 520 170 240 4.0 28 82 160 990 D355M 1543 291 277 267 94.8 94.5 91.7 0.88 0.84 0.76 700 200 200 8.8 88 70 160 745 D355M 2051 313 298 287 93.5 93.2 90.4 0.83 0.73 0.66 650 190 200 12 140 75 200 2975 D315L 642 348 331 319 95.0 94.9 93.8 0.92 0.89 0.86 0.80 50.0 170 240 4.0 28 82 200 990 D355M 1543 291 277 267 94.8 94.5 91.7 0.88 0.84 0.76 700 200 200 8.8 88 70 180 745 D355M 2051 313 298 287 93.5 93.2 94.5 91.0 0.89 0.86 0.81 600 220 240 4.5 31 82 200 2975 D315L 642 348 331 319 95.0 94.5 91.0 0.88 0.84 0.76 700 200 200 200 12 140 75 200 275 D315L 642 348 331 319 95.0 94.5 91.0 0.89 0.86 0.81 600 220 240 4.5 31 82 200 990 D355M 804 432 411 396 95							100		3.3						5 A			1 1 1	
110															100		100		1. 1. 1. 1. 1. 1.
110 935 0315L 1123 207 196 189 94.0 93.7 91.4 0.86 0.83 0.76 700 210 240 5.2 52 85 110 735 0315L 1429 217 206 199 94.0 93.8 90.4 0.82 0.72 0.66 660 190 230 6.6 79 67 132 2975 0315M 424 233 222 214 94.5 94.5 93.4 0.91 0.89 0.87 590 170 240 1.8 8.8 81 132 1485 0315M 849 240 228 220 94.8 94.5 93.1 0.88 0.86 0.81 560 180 260 3.5 24 78 132 935 0315L 1348 245 232 224 94.2 93.9 91.5 0.87 0.83 0.76 700 210 230 5.5 55 70 132 745 0355M 1692 262 249 240 93.5 93.2 90.4 0.82 0.73 0.66 650 190 200 10 125 75 160 2975 0315L 514 279 265 256 95.2 94.9 94.9 93.7 0.92 0.89 0.86 700 220 250 2.0 10 84 160 1485 0315L 1029 288 273 264 94.9 94.6 93.6 0.89 0.86 0.82 520 170 240 4.0 28 82 160 990 0355M 1543 291 277 267 94.8 94.5 91.7 0.88 0.84 0.76 700 200 200 8.8 88 70 160 745 0355M 2051 313 298 287 93.5 93.2 90.4 0.83 0.73 0.66 650 190 200 12 140 75 200 2975 0315L 642 348 331 319 95.0 94.9 93.8 0.92 0.89 0.86 0.81 600 220 240 45 31 82 200 990 0355M 1526 359 341 329 95.2 94.9 93.8 0.92 0.89 0.86 0.80 0.80 0.80 0.80 0.80 0.80 0.80									100								100000		
110 735 D315L 1429 217 206 199 94.0 93.8 90.4 0.82 0.72 0.66 660 190 230 6.6 79 67 132 2975 D315M 424 233 222 214 94.5 94.5 93.4 0.91 0.89 0.87 590 170 240 1.8 8.8 81 132 1485 D315M 849 240 228 220 94.8 94.5 93.1 0.88 0.86 0.81 560 180 260 3.5 24 78 132 935 D315L 1348 245 232 224 94.2 93.9 91.5 0.87 0.83 0.76 700 210 230 5.5 55 70 132 745 D355M 1692 262 249 240 93.5 93.2 90.4 0.82 0.73 0.66 650 190 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>* *</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>14.5</td><td>100 PM</td><td>and the second</td></t<>							* *									1000	14.5	100 PM	and the second
132 2975 D315M 424 233 222 214 94.5 94.5 93.4 0.91 0.89 0.87 590 170 240 1.8 8.8 81 132 1485 D315M 849 240 228 220 94.8 94.5 93.1 0.88 0.86 0.81 560 180 260 3.5 24 78 132 935 D315L 1348 245 232 224 94.2 93.9 91.5 0.87 0.83 0.76 700 210 230 5.5 55 70 132 745 D355M 1692 262 249 240 93.5 93.2 90.4 0.82 0.73 0.66 650 190 200 10 125 75 160 2975 D315L 1029 288 273 264 94.9 94.6 93.6 0.89 0.86 0.82 520 170 <																		79	5 . I I I I I I I I I I I I I I I I I I
132 935 D315L 1348 245 232 224 94.2 93.9 91.5 0.87 0.83 0.76 700 210 230 5.5 55 70 132 745 D355M 1692 262 249 240 93.5 93.2 90.4 0.82 0.73 0.66 650 190 200 10 125 75 160 2975 D315L 514 279 265 256 95.2 94.9 93.7 0.92 0.89 0.86 700 220 250 2.0 10 84 160 1485 D315L 1029 288 273 264 94.9 94.6 93.6 0.89 0.86 0.82 520 170 240 4.0 28 82 160 990 D355M 1543 291 277 267 94.8 94.5 91.7 0.88 0.84 0.76 700 200 <t< td=""><td>132</td><td>2975</td><td>D315M</td><td>424</td><td>233</td><td>222</td><td>214</td><td>94.5</td><td></td><td></td><td>0.91</td><td>0.89</td><td>0.87</td><td>590</td><td>170</td><td>240</td><td>1.8</td><td>8.8</td><td>810</td></t<>	132	2975	D315M	424	233	222	214	94.5			0.91	0.89	0.87	590	170	240	1.8	8.8	810
132 745 D355M 1692 262 249 240 93.5 93.2 90.4 0.82 0.73 0.66 650 190 200 10 125 75 160 2975 D315L 514 279 265 256 95.2 94.9 93.7 0.92 0.89 0.86 700 220 250 2.0 10 84 160 1485 D315L 1029 288 273 264 94.9 94.6 93.6 0.89 0.86 0.82 520 170 240 4.0 28 82 160 990 D355M 1543 291 277 267 94.8 94.5 91.7 0.88 0.84 0.76 700 200 200 8.8 88 70 160 745 D355M 2051 313 298 287 93.5 93.2 90.4 0.83 0.73 0.66 650 190 <t< td=""><td>132</td><td>1485</td><td>D315M</td><td>849</td><td>240</td><td>228</td><td>220</td><td>94.8</td><td>94.5</td><td>93.1</td><td>0.88</td><td>0.86</td><td>0.81</td><td>560</td><td>-180</td><td>260</td><td>3.5</td><td>24</td><td>78</td></t<>	132	1485	D315M	849	240	228	220	94.8	94.5	93.1	0.88	0.86	0.81	560	-180	260	3.5	24	78
160 2975 D315L 514 279 265 256 95.2 94.9 93.7 0.92 0.89 0.86 700 220 250 2.0 10 84 160 1485 D315L 1029 288 273 264 94.9 94.6 93.6 0.89 0.86 0.82 520 170 240 4.0 28 82 160 990 D355M 1543 291 277 267 94.8 94.5 91.7 0.88 0.84 0.76 700 200 200 8.8 88 70 160 745° D355M 2051 313 298 287 93.5 93.2 90.4 0.83 0.73 0.66 650 190 200 12 140 75 200 2975 D315L 642 348 331 319 95.0 94.9 93.8 0.92 0.89 0.87 590 170 <	132	935	D315L	1348	245	232	224	94.2	93.9	91.5	0.87	0.83	0.76	700	210	230	5.5	55	7.0
160 1485 D3151 1029 288 273 264 94.9 94.6 93.6 0.89 0.86 0.82 520 170 240 4.0 28 82 160 990 D355M 1543 291 277 267 94.8 94.5 91.7 0.88 0.84 0.76 700 200 200 8.8 88 70 160 745 D355M 2051 313 298 287 93.5 93.2 90.4 0.83 0.73 0.66 650 190 200 12 140 75 200 2975 0315L 642 348 331 319 95.0 94.9 93.8 0.92 0.89 0.87 590 170 250 2.3 11 84 200 1485 D315L 1286 359 341 329 95.2 95.2 94.5 0.89 0.86 0.81 600 220 <	132	745	D355M	1692	262:	249	240	93.5	93.2	90.4	0.82	0.73	0.66	650	190	200	10	125	75
160 990 D355M 1543 291 277 267 94.8 94.5 91.7 0.88 0.84 0.76 700 200 200 8.8 88 70 160 745° D355M 2051° 313 298 287 93.5 93.2 90.4 0.83 0.73 0.66 650 190 200 12 140 75 200 2975 D315L 642 348 331 319 95.0 94.9 93.8 0.92 0.89 0.87 590 170 250 2.3 11 84 200 1485 D315L 1286 359 341 329 95.2 95.2 94.5 0.89 0.86 0.81 600 220 240 4.5 31 82 200 990 D355M 1929 363 345 333 95.0 94.5 91.8 0.88 0.84 0.76 700 200	160	2975	D315L	514	279	265-	256	95.2	94.9	93.7				700		250	2.0	10.	84
160 745 D355M 2051 313 298 287 93.5 93.2 90.4 0.83 0.73 0.66 650 190 200 12 140 75 200 2975 D315L 642 348 331 319 95.0 94.9 93.8 0.92 0.89 0.87 590 170 250 2.3 11 84 200 1485 D315L 1286 359 341 329 95.2 94.5 0.89 0.86 0.81 600 220 240 4.5 31 82 200 990 D355M 1929 363 345 333 95.0 94.5 91.8 0.88 0.84 0.76 700 200 200 9.6 96 77 200 745 D355L 2563 386 367 354 94.8 94.5 91.0 0.83 0.74 0.67 650 190 200 <td< td=""><td>160</td><td></td><td></td><td></td><td></td><td>273</td><td>264</td><td>94.9</td><td>94.6</td><td>93.6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>	160					273	264	94.9	94.6	93.6									-
200 2975 0315L 642 348 331 319 95.0 94.9 93.8 0.92 0.89 0.87 590 170 250 2.3 11 84 200 1485 0315L 1286 359 341 329 95.2 95.2 94.5 0.89 0.86 0.81 600 220 240 4.5 31 82 200 990 0355M 1929 363 345 333 95.0 94.5 91.8 0.88 0.84 0.76 700 200 200 9.6 96 77 200 745 0355L 2563 386 367 354 94.8 94.5 91.0 0.83 0.74 0.67 650 190 200 13 154 75 250 2970 0355M 804 432 411 396 95.5 95.0 94.5 0.92 0.90 0.86 730 160 220 3.0 15 88 250 1490 0355M 1602 437 415 400 95.5 95.2 91.8 0.91 0.87 0.77 680 230 230 5.8 40 86 250 990 0355L 2411 449 427 411 95.0 94.5 91.0 0.89 0.84 0.67 700 230 250 11 105 77																100			- C
200 1485 D315L 1286 359 341 329 95.2 95.2 94.5 0.89 0.86 0.81 600 220 240 4.5 31 82 200 990 D355M 1929 363 345 333 95.0 94.5 91.8 0.88 0.84 0.76 700 200 200 9.6 96 77 200 745 D355L 2563 386 367 354 94.8 94.5 91.0 0.83 0.74 0.67 650 190 200 13 154 75 250 2970 D355M 804 432 411 396 95.5 95.0 94.5 0.92 0.90 0.86 730 160 220 3.0 15 88 250 1490 D355M 1602 437 415 400 95.5 95.2 91.8 0.91 0.87 0.77 680 230 230 5.8 40 86 250 990 D355L 2411 449 427 411 95.0 94.5 91.0 0.89 0.84 0.67 700 230 250 11 105 77																			· (.
200 990 D355M 1929 363 345 333 95.0 94.5 91.8 0.88 0.84 0.76 700 200 200 9.6 96 77 200 745 D355L 2563 386 367 354 94.8 94.5 91.0 0.83 0.74 0.67 650 190 200 13 154 75 250 2970 D355M 804 432 411 396 95.5 95.0 94.5 0.92 0.90 0.86 730 160 220 3.0 15 88 250 1490 D355M 1602 437 415 400 95.5 95.2 91.8 0.91 0.87 0.77 680 230 230 5.8 40 86 250 990 D355L 2411 449 427 411 95.0 94.5 91.0 0.89 0.84 0.67 700 230 250 11 105 77													•						
200 745 D355L 2563 386 367 354 94.8 94.5 91.0 0.83 0.74 0.67 650 190 200 13 154 75 250 2970 D355M 804 432 411 396 95.5 95.0 94.5 0.92 0.90 0.86 730 160 220 3.0 15 88 250 1490 D355M 1602 437 415 400 95.5 95.2 91.8 0.91 0.87 0.77 680 230 230 5.8 40 86 250 990 D355L 2411 449 427 411 95.0 94.5 91.0 0.89 0.84 0.67 700 230 250 11 105 77													1.0						100
250 2970 D355M 804 432 411 396 95.5 95.0 94.5 0.92 0.90 0.86 730 160 220 3.0 15 88 250 1490 D355M 1602 437 415 400 95.5 95.2 91.8 0.91 0.87 0.77 680 230 230 5.8 4D 86 250 990 D355L 2411 449 427 411 95.0 94.5 91.0 0.89 0.84 0.67 700 230 250 11 105 77																			
250 1490 D355M 1602 437 415 400 95.5 95.2 91.8 0.91 0.87 0.77 680 230 230 5.8 4D 86 250 990 D355L 2411 449 427 411 95.0 94.5 91.0 0.89 0.84 0.67 700 230 250 11 105 77																			
250 990 D355L 2411 449 427 411 95.0 94.5 91.0 0.89 0.84 0.67 700 230 250 11 1 105 77																100			
510 Exte 0000E 1010 510 510 510 701 500 700 000 100 100 100 100 100 100 100 1	319	2970	D355L	1013	543	516	497	95.8	95.3	94.8	0.92	0.90	0.86	730	160	220	4.2	21:	88
315 1490 D355L 2019 549 522 503 95.8 95.5 92.0 0.91 0.88 0.77 680 230 230 6.8 48 86	315	1490	D355L	2019	549	522	503	95.8	95.5	92.0	0.91	0.88	0.77	680	230	230	6.8	48	86

NOTES

- 1. Data is based on tests to EN60034.
- 2. Tolerance: EN60034.
- 3. All data is subject to change without prior notification. Not to be used for installation purposes without referring to TECO Electric Europe Limited.

Page 6

Fig. 9-14. Magnetization curves for a 250-V 1200-r/min dc machine.

Order Number

M 1:4

Stock program
Standard program

]Standard program !Special program (on request!)

200	Special program (on request!)	i i	ar ar	and the second second second second		and the second	5 546	tanggan ti an a	A STANDARD STANDARD
	un de la parte de la partica de la compación de la partica de la compación de	Y-circuit	136207	136208	136209			7 - 40)	
	The second secon	Δ-circuit				136210	136211	. //36212	TO ME A CHETTAIN TO
	for Data		ska na nasanin	1 4 7 th ac			10000	e a service of Septile 199	1. J. bear sough their single his weeks with
and the second	Assigned power rating	W	250	250	250	250	250	250	erio esta por la compansión de la como do como de la co
***************************************	Nominal voltage	Volt	24.0	36.0	48.0	24.0	36.0	48.0	
3	No load speed	rpm	5300	6300	6500	9100	11000	11100	and the second second
4	Stall torque	mixim	2250	3000	3250	3910	5260	5670 %	British (See Constitution Costs)
5	Speed / torque gradient	rpm / mNm	2.40	2.10	2.00	2.34	2.10	1.97	The state of the s
6	No load current	mA .	435	370	290	1139	1062	818	E TO TERMINETE SERVICE TO SERVICE
7	Terminal resistance phase to phase	Ohm	0.46	0.64	1.04	0.15	0.21	0.35	. 10 _.
8	Max. permissible speed	rpm	12000	12000	12000	12000	12000	12000	artika (m. 1966)
g	Max. continuous current at 5000 rpm	A	7.10	6.00	4.70	12.50	10.60	8.20	and the second of the second
10	Max. continuous torque at 5000 rpm	mNm	283	300	306	286	303	304	\$P\$\$P\$100000000000000000000000000000000
11	Max. efficiency	%	83	85	85	84	85	86	and the second second second
12	Torque constant	mNm/A	43.3	54.0	71.0	25.0	31.2	41.0	
13	Speed constant	rpm / V	220	175	135	382	306	233	the second of th
14	Mechanical time constant	ms	5.	5	5	5	5	5	union telegraphy (Alemania Markelli)
15	Rotor inertia	gcm²	209	209	209	209	209	209	nakan di salah
16	Terminal inductance phase to phase	mH	0.170	.0.260	0.440	0.060	0:090	0.150	
17	Thermal resistance housing-ambient	K/W	1.7	1.7	1.7	1.7	1.7	1.7	a farming a second control of
18	Thermal resistance winding-housing	K/W	ារវ		1.1	1.1	ានា	ជាជា	Parado e e e e e e e e e e e e e e e e e e e
19	Thermal time constant winding	S	16	16	16	16	16	16	The second second second second
20	Thermal time constant stator		850	850	850	850	850	850	ie volgovi i siglijeni i sili 1991. godina i 1991. godi

Motor connections Screw fitting for cable PG7 Axial play at axial load < 20 N > 20 N max. 0.14 mm Preloaded ball bearing

Preloaded ball bearing

Max. ball bearing loads

axial (dynamic) 20 N

radial (5 mm from flange) 180 N

Force for press fits (static) 170 N

(static, shaft supported) 5000 N

Radial play ball bearing 0.02 mm

Ambient temperature range -20 ... +125°C

Max, permissible winding temperature +125°C

1150 g

IP54

2 pole permanent magnet

Weight of motor

Protection

- Values listed in the table are nominal.
- Connection (Cable AWG 16) Motor winding 1 Cable 2 Motor winding 2 Motor winding 3 Cable 3 Connection (Cable AWG 24) Cable white Hall sensor 3 Cable brown Hall sensor 2 Cable green Hall sensor 1 GND Cable yellow V_{Hall} 4.5 ... 24 VDC Cable grey
- Options: Temperature monitoring
 PTC resistance micropille 110°C
 R 25°C < 0.5 kΩ
 - R 105°C = 1.2 ... 1.5 kΩ R 115°C = 7 ... 13 kΩ R 120°C = 18 ... 35 kΩ
- For winng diagram for Hall sensors, see p. 26
- Options: motor connection with plug

Comments Details on page 149 Operating n [rpm] Curve of constant assigned power rating 14000 250 Watt Continuous operation 12000 in observation of above listed thermal resistance (lines 17 and 18) the maximum permissible winding 10000 temperature will be reached during continuous oper-8000 ation at 25°C ambient. = Thermal limit 6000 4000 Short term operation The motor may be briefly overloaded (recurring). 2000 300 M [mNm] 200 100 T[A] 136209 Motor with high resistance winding 3 136210 Motor with low resistance winding 10 12 .6 :8

maxon EC motor 161

Digital Encoder

Details page 241

Details page 247

Ø28 mm, 24 VDC

Details page 270

Resolver

Ø26 mm 10 V

Brake

0.4 Nm

500 CPT, 3 channels

HP HEDL 9140

Technical Data Summary TK 164

High power medium speed spindle motors Applications: Applications:
Direct drive lathes
Swiss type lathes
Speed up to 5000 rpm, 40-200 Nm
Short duty constant power

	Symbol	TK 164-60-04	TK 164-110-03	TK 164-250-09	Units
Reference data (winding independent)				······································	
Nominal torque, \$1,0 speed, conduction+convection cooled IC 418 1)	Tn¢	19	40	106	Nmrms
Nominal torque, \$1, 0 speed, water cooled 2)	Tnw	37	80	209	Nmrms
Peak torque, S6 10% 1)	Tpk	54	114	302	Nmrms
Maximum torque 3)	Tul	93	171	389	Nm
Maximum structural speed	Pn	500	500	500	rad/sec
Critical flux control torque 4)	Pf	86	157	366	Nm
Motor constant	Tw	2,33	3,63	6.31	Nm/sqrt(W)
Pole number	PN	12	12	12	
Connection		Υ	ΥΥ		
Physical data (winding independent)					
Rotor inertia	Jm	4.30	7,30	1.0	mkam2
Acceleration at maximum torque	apk	12576	15595		rad/s2
Outer diameter	Dout	164	164	164	mm
Roter hole diameter	Din	96	96		1
Overall stator length	Stkout	102		96	mm
Stack length	Stk	60	152	292	mm
	Msta		110	250	mm
Stator mass Rotor mass		4,8	8	17	kg
···	Mrot	1,3	2,4		kg
Insulation Protection		Class H - F	Class H - F	Class H - F	
1101001011] IF 001	1P 00}	17 00	
Thermal data (winding independent)					····
Thermal imp, assumed for cond. Cooling 1)	Rthc	0.390	0,214	0.093	K/W
Thermal impedance, motor to cooling frame 2)	Rthw	0,092	0,050	0.021	K/W
Thermal capacity	Cth	2,016	3.360	7,140	ĴŹΚ
Thermal time constant cond cooling 1)	Tc	786	719	664	sec
Thermal time constant, water cooled 2)	Tw	185	168	150	sec
Loss at Tnc	LOc	267	491	1,120	W
Loss at Tnw	LOW	1,030	1.880	4.380	W
	CfI	3.0	5.4	12.6	lit/min
Coolant flow, 5 C temp rise, 35 C inlet Treshold of built-in PTC	PTCt	130	130		oC
Electrical data (winding dependent)		Y		···	
Nominal speed (knee speed) 5)	WN	173,29	173,99	52,40	rad/sec
Nominal power, water cooling, knee speed 6)	Pnw	6,43	13,92		kW
Back E.M.F. between phases	Ke	1,80	1,76	5,13	
Torque constant	Kt	3,13	3,05	8,89	Nm/Arms
Temp.coeff. of E.M.F. and Kt	dKe/dT	-0,09	-0,09	-0,09	
Winding resistance, 20oC	Rw	2,69	1,06	2,98	Ohm
Winding inductance	Lw	12,63	6,58	24,00	mH
Nominal current, zero speed 1)	InO	6,08	13,12	11,92	Arms
Nominal current, zero speed, 2)	in	12,46	27,62	24,74	Arms
Maximum current 3)	lpk	37,19	70,12	54,69	Arms
Frequency	fn	166	166	50	Hz
Efficiency at rated power 6)	п	0,86	0,88	0,71	

- Definitions:

 1) Motor assembled in light alloy case with outer surface = 500% of
 2) Water cooled motor, water inlet temperature = 35 C, copper temp, 120
 3) Torque at which magnetic saturation prevents further overloading
 4) Knee torque corresponding to unlimited constant power operation
 5) Limit of constant torque operation with 400 Vac supply

SMPS MOSFET

PD - 94384A

IRFPS40N60K

HEXFET® Power MOSFET

$V_{\rm DSS}$	R _{DS(on)} typ.	ID
600V	0.110 Ω	40A

International IER Rectifier

Applications

- Hard Switching Primary or PFC Switch
- Switch Mode Power Supply (SMPS)
- Uninterruptible Power Supply
- · High Speed Power Switching
- Motor Drive

Benefits

- Low Gate Charge Qg results in Simple Drive Requirement
- Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
- · Fully Characterized Capacitance and Avalanche Voltage and Current
- Enhanced Body Diode dv/dt Capability

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, Vos @ 10V	40	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	24	Α
I _{DM}	Pulsed Drain Current ①	160	
P _D @T _C = 25°C	Power Dissipation	570	W
	Linear Derating Factor	4,5	W/°C
V _{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ②	7.5	V/ns
Tj	Operating Junction and	-55 to + 150	received and the second
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300	O°
	(1.6mm from case)		1

Avalanche Characteristics

Symbol	Parameter	Тур.	Max.	Units
EAS	Single Pulse Avalanche Energy©	ANTONIO CONTRACTOR OF THE PROPERTY OF THE PROP	600	mJ
AR	Avalanche Current®	Manufacture 1 mars	40	Α
E _{AR}	Repetitive Avalanche Energy®		57	mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
Résc	Junction-to-Case®		0.22	
Recs	Case-to-Sink, Flat, Greased Surface	0.24		"C/W
Reja	Junction-to-Ambient®		40	

www.irf.com

10/20/04

IRFPS40N60K

International ICR Rectifier

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	600			V	V _{GS} = 0V, I _D = 250μA
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient		0.63		V/°C	Reference to 25°C, l _D = 1mA®
R _{DS(cm)}	Static Drain-to-Source On-Resistance		0.110	0.130	Ω	V _{GS} = 10V, I _D = 24A
V _{GS(th)}	Gate Threshold Voltage	3.0		5,0	V	V _{DS} = V _{GS} , I _D = 250μA
1	Desir to Course Legland Aument			50	uА	V _{DS} = 600V, V _{GS} = 0V
IDSS	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 480V$, $V_{GS} = 0V$, $T_{J} = 125$ °C
1	Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage			100		V _{GS} = 30V
lgss				~100	nA	$V_{GS} = -30V$

Dynamic @ T_J = 25°C (unless otherwise specified)

Parameter	Min.	Тур.	Max.	Units	Conditions
Forward Transconductance	21		—	S	$V_{DS} = 50V, I_D = 24A$
Total Gate Charge	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*************	330		I _D = 38A
Gate-to-Source Charge			84	nC	V _{DS} = 480V
Gate-to-Drain ("Miller") Charge			150		V _{GS} = 10V, See Fig. 6 and 13 ⊕
Turn-On Delay Time		47			V _{DD} = 300V
Rise Time		110		ne	f _D = 38A
Turn-Off Delay Time		97			$R_G = 4.3\Omega$
Fall Time		60	Auron		V _{GS} = 10V,See Fig. 10
Input Capacitance		7970	**************************************		V _{GS} = 0V
Output Capacitance		750			V _{DS} = 25V
Reverse Transfer Capacitance		75		pF	f = 1.0MHz, See Fig. 5
Output Capacitance		9440			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Output Capacitance		200			$V_{GS} = 0V$, $V_{DS} = 480V$, $f = 1.0MHz$
Effective Output Capacitance	nimetrica.	260			V _{GS} = 0V, V _{DS} = 0V to 480V ⑤
	Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Output Capacitance Output Capacitance	Forward Transconductance 21 Total Gate Charge —— Gate-to-Source Charge —— Gate-to-Drain ("Miller") Charge —— Turn-On Delay Time —— Rise Time —— Turn-Off Delay Time —— Fall Time —— Input Capacitance —— Output Capacitance ——	Forward Transconductance 21 — Total Gate Charge — — Gate-to-Source Charge — — Gate-to-Drain ("Miller") Charge — — Turn-On Delay Time — 47 Rise Time — 110 Turn-Off Delay Time — 97 Fall Time — 60 Input Capacitance — 7970 Output Capacitance — 75 Output Capacitance — 9440 Output Capacitance — 200	Forward Transconductance 21 — — Total Gate Charge — 330 Gate-to-Source Charge — 84 Gate-to-Drain ("Miller") Charge — 150 Turn-On Delay Time — 47 Rise Time — 110 — Turn-Off Delay Time — 97 — Fall Time — 60 — Input Capacitance — 7970 — Output Capacitance — 75 — Output Capacitance — 9440 — Output Capacitance — 200 —	Forward Transconductance

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions			
ls	Continuous Source Current			40		MOSFET symbol	D		
	(Body Diode)				Α	showing the			
IsM	Pulsed Source Current		***********	160	Α.	integral reverse			
	(Body Diode) ①					p-n junction diode	1,		
V_{SD}	Diode Forward Voltage	***********		1.5	V	T _J = 25°C, I _S = 38	BA, V _{GS} = 0V ④		
1.	5	***************************************	630	950	-	T _J = 25°C	I _F = 38A		
trr	Reverse Recovery Time		730	1090	ns	T _J = 125°C	dí/dt = 100A/µs ®		
Qrr	Reverse Recovery Charge		14	20	цC	T _J = 25°C			
W411	TOTAL STATE OF THE		17	25	μ.	T _J = 125°C			
RRM	Reverse Recovery Current		39	58	Α	T _J = 25°C	***************************************		
ton	Forward Turn-On Time	Intr	insic tu	m-on ti	me is ne	gligible (turn-on is dominated by L _S +L _D)			

Notes:

- ① Repetitive rating; pulse width limited by max, junction temperature.(See Fig. 11)
- ③ I_{SD} \leq 38A, di/dt \leq 224A/µs, V_{DD} \leq V_{(BR)DSS}, T_J \leq 150°C
- 9 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- $\ ^{\odot}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}
- © R_e is measured at T_J approximately 90°C

2

www.irf.com

International ICAR Rectifier

IRFPS40N60K

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

www.irf.com

IRFPS40N60K

International IGR Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

www.irf.com

Saynx 2522 dis 120 filos

Trench IGBT Modules

SEMIX 252GB126HDs

Preliminary Data

Features

- Homogeneous Si
- Trench = Trenchgate technology
 V_{CE(sat)} with positive temperature coefficient
- High short circuit capability

Typical Applications

- AC inverter drives
- UPS
- Electronic Welding

Remarks

 Case temperatur limited to T_C=125°C max.

Absolute	e Maximum Ratings	inequizios Tcase	= 25°C, unless otherwise s	pecified
Symbol	Conditions	European areas	Values	Units
IGBT	1. Carlot A. Jan. Conferin A. N. N. A.			
V _{CES}	T _j = 25 °C		1200	V
I _C	T _j = 150 °C	T _c = 25 °C	270	Α
		T _c = 80 °C	200	A
I _{CRM}	I _{CRM} =2xI _{Cnom}		400	A
V _{GES}			± 20	V
t _{psc}	$V_{CC} = 600 \text{ V; } V_{GE} \le 20 \text{ V;}$ VCES < 1200 V	T _j = 125 °C	10	μs
Inverse l	Diode		1	
l _F	T _j = 150 °C	Τ _c = 25 °C	210	A
		T _c = 80-°C	- · · · 160	Α
I _{FRM}	IFRM = 2xIFnom		400	Α
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 25 °C	1000	Α
Freewhe	eling Diode			
l _F	T _j = °C	T _{case} = °C	10	A
FRM	I _{FRM} = 2xI _{Fnom} , t _p = ms			A
Module				_
I _{t(RMS)}			600	A
T _{vj}			- 40 + 150	°C
T _{stg}			- 40 + 125	°C
V _{isol}	AC, 1 min.		4000	V

Characte	eristics	T _{case} =	25°C, u	nless oth	erwise sp	ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 6.4 \text{ mA}$		5	5,8	6,5	V
CES	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			1	mA
V _{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9	1,1	V
ſ _{CE}	V _{GE} = 15 V	T _j = 25°C		4,7	6,3	mΩ
		T _j = 125°C		7,3	9	mΩ
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V	T _j = 25°C _{chipley} .		1,7	2,15	V
		T _j = 125°C _{chiplev} .		2	2,45	V
C _{ies}				10,7		nF
Coes	$V_{CE} = 25, V_{GE} = 0 \text{ V}$	f = 1 MHz		6,0		nF
C _{res}				0,5		nF
Q_G	V _{GE} = -8 +15V			1050		nC
t _{d(on)}				300		ns
t _r	$R_{Gon} = 3 \Omega$	V _{CC} = 600V		45		ns
E _{on}		I _{Cnom} = 150A		20		mJ
t _{d(off)}	$R_{Goff} = 3 \Omega$	T _j = 125 °C		570		ns
t 4				110		ns
E _{off}			***************************************	21		mJ
R _{th(j-c)}	per IGBT				0,15	K/W

Sawix232ebi23fids

Trench IGBT Modules

SEMIX 252GB126HDs

Preliminary Data

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability

Typical Applications

- AC inverter drives
- UPS
- Electronic Welding

Remarks

 Case temperatur limited to T_C=125°C max.

Characte	eristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse I						
V _F = V _{EC}	I_{Fnom} = 150 A; V_{GE} = 0 V			1,6	1,8	V
		$T_j = 125 ^{\circ}C_{\text{chiplev}}$		1,6	1,8	V
V _{F0}		T _j = 25 °C		1	1,1	V
		T _j = 125 °C		0,8	0,9	V
ι ^k		T _j = 25 °C		4	4,7	mΩ
		T _j = 125 °C		5,3	6	mΩ
RRM	I _{Fnom} = 150 A	T _j = 125 °C		265		A
Q _{rr}	di/dt = 4600 A/µs			43		μC
E _{off}	V _{GE} = -15 V; V _{CC} = 600 V			18		mJ
R _{th(i-c)D}	per diode				0,3	K/W
Freewhe	eļing Diode					
$V_F = V_{EC}$	I _{Fnom} = A; V _{GE} = V	T _j = °C _{chiplev} .				V
V_{F0}		$T_j = ^{\circ}C$ $T_j = ^{\circ}C$ $T_j = ^{\circ}C$				V
r _F		T _j = °C				V
RRM	I _{Fnom} = A	T _j = °C				A
Q _{rr}						μC
E _{off}	V _{GE} = 0 V; V _{CC} = 300 V			****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mJ
	per diode					K/W
Module						
L _{CE}				18		nH
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,7		mΩ
		T _{case} = 125 °C		1		mΩ
R _{th(c-s)}	per module			0,045		K/W
M _s	to heat sink (M5)		3		5	Nm
Mt	to terminals (M6)		2,5		5	Nm
w				290	250	9
	ture sensor	-				
R ₁₀₀	T _c =100°C (R ₂₅ =5 kΩ)			0,493±5%		kΩ
B _{100/125}	R(T)=R ₁₀₀ exp[B _{100/125} (1/T T[K]; B	-1/T ₁₀₀)];		3550±2%		K

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

PEND NAMES NAMED

PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO SO

THEN ENSURE THAT YOU HAVE THE CORRECT EXAM PAPER