Name:						15.	Aug 2009	
Legi Nr.:								
Vorlesung g	gehört im FS	2009: ja	nein					
Prüfungsklausur								
	Vorlesung Halbleiterbauelemente 227-0056-00S, Dozent: Prof. A. Schenk Maximale Punktzahl: 61							
Achtung: Ihr Name muss auf jedem Lösungsblatt erscheinen! Schreiben Sie neben numerischen Resultaten stets die Herleitungen und verwendete Formeln auf Ihr Lösungsblatt!								
Es müssen nicht alle Aufgaben gelöst werden für die Höchstnote. Verweilen Sie also nicht zu lange bei einer Aufgabe, die Ihnen Schwierigkeiten bereitet!								
	A f 1 1	A f 1 0	A f 1 - 2	A C 1 - 4	A £ 1 -	T-4-1	l	
	Aufgabe 1	Aufgabe 2	Aufgabe 3	Aufgabe 4	Aufgabe 5	Total		

Punktetabelle nicht ausfüllen, nur für die Assistenten!

Zahlenwerte verwendeter Naturkonstanten: Materialparameter

- h Planck'sches Wirkungsquantum = $6.625 \cdot 10^{-34} Js$
- c Lichtgeschwindigkeit im Vakuum = $3 \cdot 10^8 m/s$
- g Elementarladung = $1.602 \times 10^{-19} \,\mathrm{C}$
- $k_{\rm B}$ Boltzmann-Konstante = $8.62 \cdot 10^{-5} eV/K = 1.38 \cdot 10^{-23} \text{ J/K}$
- $k_{\rm B}T/q$ Thermospannung = 0.0259V bei $300\,{\rm K}$
- m_e Ruhemasse des Elektrons = $9.11 \times 10^{-31} \, kg$
- ε_0 absolute Dielektrizitätskonstante = $8.854 \times 10^{-14} \, \text{F/cm}$

Zahlenwerte verwendeter Materialparameter für Silizium:

- $N_{\rm c}^{Si}$ effektive Zustandsdichte im Leitungsband (Si,300K) = $2.8 \times 10^{19} \, {\rm cm}^{-3}$
- $N_{\rm v}^{Si}$ effektive Zustandsdichte im Valenzband (Si,300K) = $1.04 \times 10^{19} \, {\rm cm}^{-3}$
- $\varepsilon_{\mathrm{Si}}$ relative Dielektrizitätskonstante von Si = 11.9
- E_q^{Si} Bandlücke des Silizium bei 300 K = 1.12 eV
- $\varepsilon_{\rm ox}$ relative Dielektrizitätskonstante von SiO₂ = 3.9
- χ' Modifizierte Elektronenaffinität von Silizium = 3.25 V

Zahlenwerte verwendeter Materialparameter für GaAs:

- E_a^{GaAs} Bandlücke von GaAs bei 300 K = 1.42 eV
- $m_n^{\rm GaAs}$ Effektive Masse im Leitungsband von GaAs $m_n^{\rm GaAs} = 0.067 m_e$
- $m_p^{\rm GaAs}$ Effektive Masse im Valenzband von GaAs $m_p^{\rm GaAs} = 0.48 m_e$

Wenn nicht anders erwähnt, gehen Sie von einer Temperatur von 300 Kelvin aus.

Grundlagen der Halbleiterphysik

- (1) a) Betrachten Sie ein n-dotiertes Stück Galliumarsenid (GaAs) bei 300 K, wobei die Dotierkonzentration $N_{\rm D}=10^{16}\,{\rm cm^{-3}}$ beträgt. Für die folgenden drei Teilaufgaben wird angenommen, dass die Dotieratome vollständig ionisiert sind und dass Boltzmann-Statistik gilt. Die Parameter für Galliumarsenid sind : $E_g^{\rm GaAs}=1.42\,{\rm eV}$, $m_n^{\rm GaAs}=0.067m_e$ und $m_n^{\rm GaAs}=0.48m_e$.
 - i. (3 Punkte) Bestimmen Sie die effektiven Zustandsdichten N_c^{GaAs} , N_v^{GaAs} und die intrinsische Dichte n_i^{GaAs} .
 - ii. (3 Punkte) Berechnen Sie weiter die Elektronenkonzentration n_0 und die Löcherkonzentration p_0 sowie den Abstand des Fermi-Niveaus zur Leitungsbandkante $E_c^{\text{GaAs}} E_F$.
 - iii. (2 Punkte) Wie gross muss $N_{\rm D}$ gewählt werden, damit das Ferminiveau $0.2\,{\rm eV}$ unter der Leitungsbandkante zu liegen kommt ?
 - b) In dieser Aufgabe wird ein Widerstand auf der Basis von Galliumarsenid für eine Arbeitstemperatur zwischen 300 K und 400 K entworfen. Die Länge des Widerstandes beträgt $L=10\mu\mathrm{m}$, wobei eine Versorgungsspannung von 1 V anliegt. Das Ziel ist eine Stromdichte von $12\mathrm{kA/cm^2}$. Für die n-Dotierung verwendet man Selen, dessen Energieniveau sich 5.9 meV unterhalb der Leitungsbandkante befindet. Nur die Bandlücke des Halbleiters, die effektiven Massen und das Energieniveau der Donatoren dürfen als temperaturunabhängig angenommen werden. Elektron- und Lochbeweglichkeiten sind:

$$\begin{array}{ll} \mu_n(300K) = 7500cm^2/Vs & \mu_n(400K) = 6500cm^2/Vs \\ \mu_p(300K) = 850cm^2/Vs & \mu_p(400K) = 600cm^2/Vs \end{array}$$

- i. (3 Punkte) Gehen Sie von einer vollständiger Ionisierung der Donatoratome aus. Welche Donatoren-Konzentration N_D muss man für den Widerstand wählen, um bei 300 K die gewünschte Stromdichte zu erhalten?
- ii. (2 Punkte) Bestimmen Sie die Anzahl der gebundenen Elektronen im Donatorzustand relativ zur gesamten Anzahl der Elektronen bei 300 K.
- iii. (2 Punkte) Beantworten Sie die Fragen aus (a) und (b) für eine Temperatur von 400 K. Ist die Annahme der vollständigen Ionisation für die berechneten Fälle gerechtfertigt, d.h. sind weniger als 1% der Elektronen am Donator gebunden?

PN - Diode

(2) a) (4 Punkte) Berechnen Sie den Verlauf des elektrischen Feldes E(x) einer Si PN-Diode. Benutzen Sie für Ihre Rechnung eine <u>lineare</u> Raumladungsdichte

$$\rho_l(x) = \begin{cases} c \cdot x & \text{für } -x_0 < x < x_0 \\ 0 & \text{sonst} \end{cases} ,$$
(1)

wobei c eine positive Konstante ist. Gehen Sie hierfür von der eindimensionalen Poissongleichung aus. Benennen Sie alle in der Poissongleichung vorkommenden Grössen.

b) (2 Punkte) Wie unterscheidet sich qualitativ der Verlauf von E(x) aus Teilaufgabe (a) zu einer PN-Diode mit gebietsweise konstanter Raumladungsdichte

$$\rho_k(x) = \begin{cases} -c_p & \text{für } -x_p < x < 0 \\ c_n & \text{für } 0 < x < x_n \end{cases}, \tag{2}$$

- mit den positiven Konstanten c_p und c_n ? (Keine Rechnung wie in Teilaufgabe (a) notwendig.)
- c) (2 Punkte) Gehen Sie von nun an von einer gebietsweise konstanten Raumladungsdichte $\rho_k(x)$ wie in Teilaufgabe (b) aus. Wie hoch ist die eingebaute Spannung V_{bi} für eine Silizium PN-Diode bei einer Temperatur von 300K mit den Dotierdichten $1.2 \cdot 10^{18} \ cm^{-3}$ im p-dotierten Silizium und $5.7 \cdot 10^{15} \ cm^{-3}$ im n-dotierten Silizium. Verwenden Sie für Ihre Rechnungen eine intrinsische Ladungsträgerdichte von $10^{10} \ cm^{-3}$.
- d) (4 Punkte) Berechnen Sie die Diffusionsstromdichten der Minoritätsladungsträger an den Raumladungszonenrändern für eine angelegte Vorwärtsspannung von 0.5 V. Berechnen Sie desweiteren die Gesamtstromdichte, die durch die Diode fliesst, für eine angelegte Rückwärtsspannung von 0.5 V. Approximieren Sie die Konzentration der Minoritätselektronen im Gleichgewicht durch $n_{p0} \approx n_i^2/N_a$. Entsprechendes gelte für Minoritätslöcher. Entnehmen Sie die Dotier- und intrinsische Dichte aus Teilaufgabe (c). Desweiteren benötigen Sie $D_n = 25 \text{ cm}^2/s$, $D_p = 10 \text{ cm}^2/s$ und $\tau_{p0} = \tau_{n0} = 5 \cdot 10^{-7} \text{ s}$

Schottky Diode

(3) Betrachten Sie einen Schottky-Kontakt bei Raumtemperatur. Das Metall hat eine Austrittsarbeit (work function) von $\Phi_m = 5.1\,\mathrm{V}$, das Silizium sei leicht dotiert mit $N_d = 10^{16}\,\mathrm{cm}^{-3}$. Es darf die effektive Leitungsbandzustandsdichte $N_c = 2.8 \cdot 10^{19}\,\mathrm{cm}^{-3}$ und die Elektronenaffinität $\chi = 4.05\,\mathrm{V}$ angenommen werden. Für die Stromberechnung verwenden Sie die Richardson-Konstante

$$A = \frac{4\pi \cdot e \cdot m_n^* \cdot k_B^2}{h^3} = 158 \frac{A}{cm^2 \cdot K^2}$$

Berechnen Sie folgende Grössen:

- a) (3 Punkte Die Schottky-Barriere Φ_{B0} und das eingebaute Potential V_{bi} für ein Elektron beim Übergang vom Metall zum Halbleiter und umgekehrt.
- b) (2 Punkte) Die Raumladungszonenweite und das Maximum des elektrischen Feldes im Idealfall, d.h. unter Vernachlässigung des Bildkraft-Effekts.
- c) (2 Punkte) Die Gesamtstromdichte J im Idealfall mit einer angelegten Vorwärtsspannung $V_a = 0.6 \,\mathrm{V}$.
- d) (1 Punkt) Die Raumladungszonenweite unter Vorwärtsspannung.
- e) (2 Punkte) Die Verringerung $\Delta\Phi$ der Potentialbarriere durch den Bildkraft-Effekt und die Position x_m des Maximums. Das elektrische Feld wird zu $E=3\cdot 10^4\,\mathrm{V/cm}$ angenommen.
- f) (2 Punkte) Die Gesamtstromdichte J bei Vorwärtsspannung V_a unter Berücksichtigung des Bildkraft-Effektes.

Bipolartransistor

(4) Wir betrachten einen **NPN** Bipolar Transistor aus Silizium, der die Querschnittsfläche $A = 100 \mu \text{m}^2$ habe. Es sind folgende Grössen bekannt:

Geometrie: $W_E = 2\mu m, W_B = 1\mu m, W_C = 10\mu m$

Dotierung: $N_E = 1.5 \cdot 10^{18} \text{cm}^{-3}, N_B = 1.2 \cdot 10^{17} \text{cm}^{-3}, N_C = 2.8 \cdot 10^{14} \text{cm}^{-6}$

Beweglichkeiten: $\mu_E=250\frac{cm2}{Vs}, \mu_B=350\frac{cm2}{Vs}, \mu_C=450\frac{cm2}{Vs}$

Lebensdauern: $\tau_E = 6.4 \cdot 10^{-8} s$, $\tau_B = 2.0 \cdot 10^{-7} s$, $\tau_C = 3.0 \cdot 10^{-7} s$

Sonstiges: $n_i = 10^{10} \text{cm}^{-3}$

Durch äussere Einflüsse (z.B. Lichteinfall) fliesse in diesem Transistor ein Generationsstrom im gesperrten BC-Übergang von $I_{\rm G}=10^{-6}{\rm A}$. Es gelte $V_{\rm CE}=3{\rm V}$. Die Spannung $V_{\rm BE}$ ist unbekannt und soll im Verlauf der Aufgabe berechnet werden, es kann aber angenommen werden, dass sich der Transistor im Forward-Active Betrieb befindet.

- a) (3 Punkte) Berechnen Sie die Diffusionslängen der Minoritätsträger in Emitter, Basis und Kollektor. In welchen Gebieten ist Rekombination vernachlässigbar?
- b) (4 Punkte) Welche Spannung $V_{\rm BE}$ muss angelegt werden, damit der Basisstrom verschwindet: $I_{\rm B}=0$. Hinweis: Im gesuchten Fall muss der Generationsstrom gleich dem Minoritätsträgerstrom im Emitter sein.
- c) (2 Punkte) Berechnen Sie die effektive Breite der Basis.
- d) (3 Punkte) Berechnen Sie den Kollektorstrom. Hinweis: Vernachlässigen Sie die Rekombinationsströme.

MOS und MOSFET

- (5) Betrachten Sie eine MOS-Struktur bestehend aus einem n^+ -Polysilizium Gate, SiO_2 -Oxid und einem p-dotiertem Halbleiter-Substrat aus Silizium. Nehmen Sie an, dass das Ferminiveau im n^+ -Polysilizium Gate an der Leitungsbandkante liegt. Die Dotierungskonzentration im p-Substrat sei $N_A = 2 \cdot 10^{16}$ cm⁻³, die Oxiddicke $t_{ox} = 20$ nm. Es darf mit $n_i = 10^{10}$ cm⁻³ gerechnet werden.
 - a) (2 Punkte) Berechnen Sie Φ_{ms} .
 - b) (4 Punkte) Berechnen Sie die Schwellspannung V_T , wenn die Flachbandspannung bei $V_{FB} = -1.1 \,\mathrm{V}$ liegt. (Hinweis: Überlegen Sie sich, was der Unterschied zwischen Φ_{ms} und V_{FB} hinsichtlich der Flächenladung im Oxid $Q_{ss'}$ bedeutet.)

Betrachten Sie nun einen MOSFET mit einem p-dotiertem Halbleiter-Substrat aus Silizium. Die Dotierungskonzentration im p-Substrat betrage wieder $N_A = 2 \cdot 10^{16}$ cm⁻³. Die weiteren Angaben entnehmen Sie der Tabelle 1. Die Strommessungen entnehmen Sie Tabelle 2 (Die Tabellen sind auf der letzten Seite).

c) (4 Punkte) Berechnen Sie anhand der Strommessungen V_T und die Mobilität μ der Elektronen in der Inversionsschicht, wenn $V_{GS} = 2$ V. Hinweis: Nehmen Sie an, dass sich der MOSFET bei $V_{DS} = 1$ V noch nicht im Sättigungsbereich befindet.

Tabelle 1: Doping und Geometrie des MOSFETS

N_A	W	L	C_{ox}
$2 \cdot 10^{16} \mathrm{cm}^{-3}$	$1\mu\mathrm{m}$	$5\mu\mathrm{m}$	$7 \cdot 10^{-8} \mathrm{Fcm^{-2}}$

Tabelle 2: Drain - Strommessungen des MOSFETS bei $V_{GS}=2\,V$

	$V_{DS} = 0.1 \mathrm{V}$	$V_{DS} = 0.5 \mathrm{V}$	$V_{DS} = 1.0 \mathrm{V}$
I_D	$7.182 \cdot 10^{-7} \mathrm{A}$	$2.961 \cdot 10^{-6} \mathrm{A}$	$4.347 \cdot 10^{-6} \mathrm{A}$