First Tothill analysis

Ariel Hippen

2023-02-01

Contents

Cell composition
Cell composition by survival
Kaplan Meier curves
Subtypes
Having run the TCGA to thill data through BayesPrism, this notebook compares the samples' cell type composition with their subtype annotations from the Way pipeline and the patients' survival status/time.
<pre>suppressPackageStartupMessages({ library(data.table) library(SingleCellExperiment) library(dplyr) library(yaml) library(stringr) library(ggplot2) library(survival) library(ggfortify) })</pre>
<pre>params <- read_yaml("//config.yml") data_path <- params\$data_path local_data_path <- params\$local_data_path</pre>
<pre>plot_path <- params\$plot_path</pre>
<pre>tothill <- fread(paste(local_data_path, "deconvolution_output",</pre>
<pre>## Warning in melt.data.table(tothill): id.vars and measure.vars are internally ## guessed when both are 'NULL'. All non-numeric/integer/logical type columns are ## considered id.vars, which in this case are columns [cell_type,]. Consider ## providing at least one of 'id' or 'measure' vars in future.</pre>

Cell composition

Switch so cell types are columns and samples are rows for easier analysis
cell_types <- tothill\$cell_type

tothill\$cell_type <- NULL
tothill_t <- t(as.matrix(tothill))
colnames(tothill_t) <- cell_types
tothill_t <- as.data.frame(tothill_t)</pre>

Cell composition by survival

```
# Load survival data
tothill_survival <- fread(paste(local_data_path, "Tothill", "tothill_survival.tsv",</pre>
                             sep = "/"))
# Combine survival data with %
tothill_t$unique_patient_ID <- rownames(tothill_t)</pre>
tothill_master <- full_join(tothill_survival, tothill_t)</pre>
## Joining, by = "unique_patient_ID"
tothill_master$Immune <- tothill_master$Macrophages + tothill_master$Monocytes + tothill_master$`Plasma
  tothill_master$DC + tothill_master$`NK cells` + tothill_master$pDC + tothill_master$`B cells` + tothi
 tothill_master$`Mast cells`
g <- ggplot(tothill_master, mapping = aes(x=tothill_master$days_to_death, y=tothill_master$Fibroblasts)
  geom_point() + xlab("OS (days)") + ylab("% Fibroblasts")
plotfile <- paste(plot_path, "evaluation_plots", "tothill_survival_by_fibroblasts.png", sep = "/")</pre>
png(filename = plotfile); g; dev.off()
## Warning: Removed 2 rows containing missing values (`geom_point()`).
## pdf
##
## Warning: Removed 2 rows containing missing values (`geom_point()`).
```



```
g <- ggplot(tothill_master, mapping = aes(x=tothill_master$days_to_death, y=tothill_master$Epithelial
    geom_point() + xlab("OS (days)") + ylab("% Epithelial cells")
plotfile <- paste(plot_path, "evaluation_plots", "tothill_survival_by_epithelial.png", sep = "/")
png(filename = plotfile); g; dev.off()

## Warning: Removed 2 rows containing missing values (`geom_point()`).</pre>
## pdf
## 2
```

Warning: Removed 2 rows containing missing values (`geom_point()`).


```
g <- ggplot(tothill_master, mapping = aes(x=tothill_master$days_to_death, y=tothill_master$Immune)) +
    geom_point() + xlab("OS (days)") + ylab("% Immune")
plotfile <- paste(plot_path, "evaluation_plots", "tothill_survival_by_immune.png", sep = "/")
png(filename = plotfile); g; dev.off()

## Warning: Removed 2 rows containing missing values (`geom_point()`).

## pdf
## 2</pre>
```

Warning: Removed 2 rows containing missing values (`geom_point()`).


```
g <- ggplot(tothill_master, mapping = aes(x=tothill_master$days_to_death, y=tothill_master$`Endothelial
    geom_point() + xlab("OS (days)") + ylab("% Endothelial cells")
plotfile <- paste(plot_path, "evaluation_plots", "tothill_survival_by_endothelial_cells.png", sep = "/"
png(filename = plotfile); g; dev.off()

## Warning: Removed 2 rows containing missing values (`geom_point()`).

## pdf
## 2</pre>
```

Warning: Removed 2 rows containing missing values (`geom_point()`).

Kaplan Meier curves

```
# Put the samples into quartiles based on fibroblast content
ggplot(tothill_master, mapping = aes(x=Fibroblasts)) + geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
quantiles <- quantile(tothill_master$Fibroblasts)</pre>
q1 <- quantiles[2]
q3 <- quantiles[4]
tothill_master$high_fibro <- ifelse(tothill_master$Fibroblasts > q3, 1, 0)
# Get Kaplan-Meier curves
tothill_master$vital_status <- recode(tothill_master$vital_status,</pre>
                               "deceased"=1,
                               "living"=0)
km_treatment<-survfit(km~high_fibro,data=tothill_master,type='kaplan-meier',conf.type='log')
plotfile <- paste(plot_path, "evaluation_plots", "tothill_KaplanMeier_fibroblasts.png", sep = "/")</pre>
png(filename = plotfile)
autoplot(km_treatment)
dev.off()
```

pdf

2

autoplot(km_treatment)

Subtypes

```
# Compare cell type proportions of subtypes
g <- ggplot(tothill_t, mapping = aes(x=Subtype, y=Fibroblasts)) + geom_boxplot()
plotfile <- paste(plot_path, "evaluation_plots", "tothill_fibroblasts_by_subtype.png", sep = "/")
png(filename = plotfile); g; dev.off()

## pdf
## 2</pre>
```



```
g <- ggplot(tothill_t, mapping = aes(x=Subtype, y=`Epithelial cells`)) + geom_boxplot()
plotfile <- paste(plot_path, "evaluation_plots", "tothill_epithelial_by_subtype.png", sep = "/")
png(filename = plotfile); g; dev.off()

## pdf
## 2</pre>
```



```
g <- ggplot(tothill_t, mapping = aes(x=Subtype, y=Immune)) + geom_boxplot()
plotfile <- paste(plot_path, "evaluation_plots", "tothill_immune_by_subtype.png", sep = "/")
png(filename = plotfile); g; dev.off()

## pdf
## 2</pre>
```



```
g <- ggplot(tothill_t, mapping = aes(x=Subtype, y=`Endothelial cells`)) + geom_boxplot()
plotfile <- paste(plot_path, "evaluation_plots", "tothill_endothelial_by_subtype.png", sep = "/")
png(filename = plotfile); g; dev.off()
## pdf</pre>
```



```
# Compare cell type proportions of subtypes for k=3
g <- ggplot(tothill_t, mapping = aes(x=factor(ClusterK3_kmeans), y=Fibroblasts)) + geom_boxplot()
plotfile <- paste(plot_path, "evaluation_plots", "tothill_fibroblasts_by_subtype_k3.png", sep = "/")
png(filename = plotfile); g; dev.off()

## pdf
## 2</pre>
```



```
g <- ggplot(tothill_t, mapping = aes(x=factor(ClusterK3_kmeans), y=`Epithelial cells`)) + geom_boxplot(
plotfile <- paste(plot_path, "evaluation_plots", "tothill_epithelial_by_subtype_k3.png", sep = "/")
png(filename = plotfile); g; dev.off()</pre>
```

pdf ## 2


```
g <- ggplot(tothill_t, mapping = aes(x=factor(ClusterK3_kmeans), y=Immune)) + geom_boxplot()
plotfile <- paste(plot_path, "evaluation_plots", "tothill_immune_by_subtype_k3.png", sep = "/")
png(filename = plotfile); g; dev.off()

## pdf</pre>
## pdf
```



```
g <- ggplot(tothill_t, mapping = aes(x=factor(ClusterK3_kmeans), y=`Endothelial cells`)) + geom_boxplot
plotfile <- paste(plot_path, "evaluation_plots", "tothill_endothelial_by_subtype_k3.png", sep = "/")
png(filename = plotfile); g; dev.off()</pre>
```

pdf ## 2

