Guided Projects Artificial Intelligence & Machine Learning

Guided Projects: Unsupervised Learning

Mean-Shift: Single Object Tracking in Images

Name	Lakshmi Thirunavukkarasu
Course	Al and ML (Batch 5)
Problem	Perform object tracking in a video using mean shift object
Statement	tracking algorithm.

Software requirements prerequisites

Anaconda

Python 3.8

Python Packages

OpenCv

NumPy

Matplotlib

Steps

1. Take the first frame of the video

```
In [7]: 1 cap = cv.VideoCapture('slow_traffic_small.mp4')
2 ret,frame = cap.read()
3 frame.shape
Out[7]: (360, 640, 3)
```

2. Use Contour methods to identify the object

```
#Convert into gray scale image
img_grey = cv.cvtColor(frame,cv.COLOR_BGR2GRAY)
plt.imshow(img_grey,cmap = 'gray')
plt.show()
```

```
#set a thresh
thresh = 230
#get threshold image
ret,thresh_img = cv.threshold(img_grey, thresh, 255, cv.THRESH_BINARY)
#find contours
contours, hierarchy = cv.findContours(thresh_img, cv.RETR_TREE, cv.CHAIN_APPROX_NONE)
```

3. Identify the Max Contour Area

4. Mark the area of interest

Mark the region of interest(ROI)

Out[12]: <matplotlib.image.AxesImage at 0x193054c1790>

5. Calculate the histogram of the ROI

```
In [16]: 1
    track_window = (x1,y1,x2,y2)
    roi = frame[y1:y2, x1:x2]
    hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
    mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
    roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])
    cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
```

6. Perform object Tracking