Cross-lingual NLU: Mitigating Language-Specific Impact in Embeddings Leveraging Adversarial Learning

Saedeh Tahery, Sahar Kianian, Saeed Farzi^{1, 3}

- 1. K. N. Toosi University of Technology, Iran
- 2. Shahid Rajaee Teacher Training University, Iran
- 3. Fondazione Bruno Kessler, Italy

Introduction

Problem definition:

- **Objective**: Mitigating language-specific impact without compromising the intended semantic information → Generating **language-independent** representations
- NLU: Intent Detection (ID), Slot Filling (SF)

- Application: Serving as the foundation for Task-oriented dialogue systems.
- Major challenge: Dealing with low-resource languages
 Lacking sufficient data; Time-intensive data collection

Methodology \mathcal{L}_{SF} slots $\mathcal{L}_{T_{1}}$ $\alpha \mathcal{L}_{SF} + \beta \mathcal{L}_{ID}$ $-\lambda \mathcal{L}_D$ Frozen Task-specific Layers layers **Discriminator** Ge input shared representations utterance $^{\prime}\beta\mathcal{L}_{ID}$ Task-specific layers \mathcal{L}_D \mathcal{L}_{ID} intents output D: Binary Classifier (MLP), G: Language-independent Representation Generator (Bi-LSTM), SF: Sequence-Tagger (Bi-LSTM + Softmax), ID: Multi-class Classifier (MLP)

- Exploring the effect of cross-lingual transfer in NLU by introducing a model rooted in adversarial learning using Generative Adversarial Networks.
- User utterances are projected using multilingual-BERT (mBERT), with its layers remaining frozen during training → Lightweight Model (~7 million trainable parameters)
- **Generator G** works to **create language-independent** representations that are shared across different **task-specific layers** and **discriminator D**.
- **Discriminator D**'s primary function is to determine the **language identity** of the input utterance.
- These two components interact adversarially, each trying to outdo the other.
- As this competitive process unfolds, language-specific information in the embedding vectors gradually gets mitigated.

Methodology-Training

- The auxiliary data is used solely to determine its language identity, without utilizing any labels.
- Training models effectively by incorporating both high-resource and low-resource language data, providing a foundation in the **high-resource language** that benefits their adaptability to **low-resource languages**.

Main Results

Dataset: Facebook Multilingual (3 languages, 12 intent and 11 slot types)

in the ID task and more than 50% for the SF task on Spanish data.
 The results are generally better for ID

Zero-shot

The results are generally better for ID than SF across all languages.

attains more than 70%

of supervised learning

adaptation

- A similar trend is observed for Italian and Persian, both of which are generated through automatic translation.
- results decrease The drastically for Thai, especially SF, for probably due nature, as the of absence spaces between words.

The dotted line represents the performance of supervised learning over English.

Conclusion

- The study encompasses five different languages, including both Latin and non-Latin ones, in the context of natural language understanding.
- Since contextual embeddings generated by language models encompass intertwined linguistic and semantic features, the model's performance in the discriminator role heavily relies on **the quality of the initial representations** they establish.
- Our current approach **excels** in **zero-shot scenarios** for **Latin** languages like Spanish. However, it encounters **limitations** when applied to languages **distant** from English, such as **Thai** and **Persian**.