

Bengaluru, India

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Resume Shortlisting and Ranking with Transformers

Vinaya James

SRN: R20MTA11

Date: 27-08-2022

M.Tech in Artificial Intelligence

Capstone Project Presentation Year: I

race.reva.edu.in

Agenda

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

01	Introduction
	Background Current status Why this study
വാ	Literature Review

02 Literature Review

Seminal works | Summary | Research Gap

03 Problem Statement

Technical/Functional Problem

07 Software Design

Software | Hardware

High Level | Low Level Design Diagrams

Project Methodology

06 Resources Specification

Conceptual Framework | Research Design

04 Project Objectives

Primary & Secondary Objectives | Expected Outcome

08 Implementation

Demo | Application | Use cases

09 Testing and Validation

Test Results | Learnings

10 Analysis and Results

Key Findings | Insights

12 Suggestions and Conclusion

Insights | Next Step | Future Scope

13 Annexure

References | Publications | Plagiarism Score

Introduction

Background | Current status | Why this topic

In a business or organization, it is indeed critical to make the proper hiring decisions for particular positions for Human Resources Manager or a Head-hunter.

All resumes should be manually reviewed to identify possible applicants. Besides, screening process will take a lot of time and effort.

Especially, large companies like "Google" frequently receive hundreds of thousands of resumes each year for job applications

Our aim of this project is to reduce the screening time of resumes and short list the best N number of engineers for the interview process based on the job description.

As a result, automation is introduced to make the work easy with time-saving.

Literature Review

Title of papers	Auther and	Journal	Major Insights	Reserch Gap
	Year	Source		
	Vaswani et al. 2017	https://ar xiv.org/a bs/1706. 03762	 Transformer, a model architecture entirely on an attention mechanism to draw global dependencies between input and output and overcomes the parallelization problem. A self-attention network for the neural sequence-to-sequence task. Transformer allows for significantly more parallelization and can reach a new state of the art in translation quality. English-to-German translation task : BLEU score of 28:4 English-to-French translation task : BLEU score of 41:0 	Extend the Transformers to address problem to efficiently handle large inputs and outputs such as images, audio and videos.

Literature Review

Title of papers	Author	Journal Source	Major Insights	Research Gap
	and Year			
BERT: Pre- training of deep bidirectional transformers for language understanding	Devlin et al. 2019	the North American Chapter of the	 Iintroduced a new language representation model called BERT Improved the fine-tuning based approaches by proposing BERT: Bidirectional Encoder Representations from Transformers autoencoding pre-trained language model BERT, a deep bidirectional Transformers model: Mask Language Model (MLM) and next sentence prediction 	 For auto-regressive tasks there is no clear way of training BERT. Since it is bidirectional and inputting the target during training would lead to a target leakage.
			4. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5%	

Literature Review

Title of papers		Journal	Major Insights	Reserch Gap
	and Year	Source		
Evaluation of	Choi et al.	2020	1. This paper explores on sentence embedding models for	Evaluation of centance
BERT and		25th	BERT and ALBERT.	embedding with larger
ALBERT	2021	Internati		
Sentence		onal	network for SBERT and SALBERT	ALBERT-large and
Embedding		Confere	3. CNN architecture improves ALBERT models	ALBERT-xlarge
Performance on		nce on	substantially more than BERT models for STS	
Downstream		Pattern	benchmark	
NLP Tasks		Recognit	4. ALBERT has a better performance than BERT when	
		ion	fine-tuned on STSb. SALBERT has much lower	
		(ICPR)	performance than SBERT.	
			5. The performance of SALBERT catches up with SBERT	
			when the CNN architecture applies, but CNN-	
			SALBERT is still slightly inferior to CNN-SBERT	

Literature Review

Title of papers		Journal	Major Insights	Reserch Gap
Transformer	and Year González et	Source Informati	1 A model for irony detection (English and Spanish)	How Multi-head self-
based contextualization of pre-trained word embeddings for irony detection in Twitter	al 2020	on Processi ng &	 A model for irony detection (English and Spanish) based on the contextualization of pre-trained Twitter word embeddings by means of the Transformer architecture. This system was the first ranked system in the Spanish corpus and it has achieved the second-best result on the English corpus 	attention mechanisms of the Transformer architecture address the irony detection problem.

Literature Review

Title of papers		Journal Source	Major Insights	Reserch Gap
	and Year			
Improving the	Mandala et	8th International	1. A cluster-based automatic text summarization	1. Many variants of the pre-
Performance of	al. 2021	Conference on	system using Sentence-BERT (SBERT) to perform	trained SBERT model can be
the Extractive		Advanced	sentence embedding and topic modeling processes	compared or need to try with
Text		Informatics:	to improve the summarization technique	different scoring methods
Summarization		Concepts, Theory	2. Result shows that the application of SBERT for	like Named entity
by a Novel		and Applications	sentence embedding, topic modeling and	recognition
Topic Modeling		(ICAICTA)	calculation of cosine similarity can improve the	2. It is also necessary to
and Sentence			quality of the resulting summary because SBERT	refine the parameter tuning
Embedding			can represent the semantic meaning of sentences	procedure to find a more
Technique using			better.	precise combination of
SBERT				parameters.

Problem Statement

Technical | Functional

- Manually selecting the most pertinent applicants from a lengthy list of potential candidates is difficult.
- Finding people who fit a given job profile is a vital task for the majority of firms. As online hiring becomes more common, traditional hiring methods become less successful.
- Finding the most pertinent multilingual candidates through the manual hiring process is therefore one of the most important issues in multilingual job offers and resumes.
- In order to facilitate job seekers' access to recruitment opportunities and lessen the amount of human labour involved in the hiring process, an automatic recruiting system is necessary.
- To solve the challenge of finding the right candidate out of hundred resumes, this project explores to build a resume shortlisting and ranking with Transformers.

Project Objectives

Approved by AICTE, New Delhi	Primary & Secondary Objectives Expected Outcom
The three objectives of this study are;	
☐ Collect the resumes as per the defined JD	
The resumes are collected by HR from	online job platforms, Referrals from existing employees, and third-party
consultancies. But getting the exact JD	related resumes are challenging For this project collected around two
hundred resumes.	
☐ Build a custom algorithm to shortlist the res	ume as per the JD given
Once the ResumeParser extracts the skills	to pandas. Based on the JD provided by HR the resumes matches will be
shortlisted and moved to a list.	
☐ Create a ranking algorithm to get the best or	it of shortlisted resumes.
With the help of cosine similarity and SBF	ERT model, the project ranks the resumes

Project Methodology

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Conceptual Framework | Research Design

Resource Specifications

Software | Hardware | Others

□ NLTK
☐ ResumeParser is used for the extraction of required data like Name, Mobile Number, Email Address, Skills.
□ EDA
Step 1: Divide the text into words.
Step 2: Eliminate all punctuation and symbols and, if desired, lowercase all words.
Step 3: Eliminate the stop words.
Step 4: Use the Snowball Stemming Algorithm to stem the words.
Step 5: Add parenthesis to each word before adding the field names (if appropriate).
☐ Encoding: BERT and SBERT
☐ Cosine similarity with the job description

Software Design

High | Low Level Designs

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

The suggested model will be required the below inputs:

- 1. Resumes
- 2. Job description

Implementation

Demo | Application | Use cases

Two hundred resumes were collected as part of data sets. SBERT for the STS task, permits two steps in the prediction of similarity:

Step: (1) First, using a sentence encoder, obtain sentence embeddings for each sentence.

Step: (2) Next, as the model-predicted similarity SBERT and BERT, compute the cosine similarity between the two embeddings of the input sentence pair.

Testing and Validation

Test Results | Learnings

More specifically, it find that the sentence embedding that outperforms the Classical Laest Squares (CLS) vector is obtained by averaging over the SBERT context embeddings in the final one or two layers.

The degree of semantic similarity among top-ranking terms in each topic is measured by correlativity

SBERT gives better solution than BERT when a comparison of top ten ranked resumes based on JD.

Analysis and Results

Key Findings | Insights

SBERT performs better than the BERT in terms of correlation.

Data Set	Model	Correlation value for Similarity
OTO1	SBERT	0.42649
STS1	BERT	0.194206
ОТОО	SBERT	0.378602
STS2	BERT	0.119996
07700	SBERT	0.377433
STS3	BERT	0.047986
OTTO 4	SBERT	0.374302
STS4	BERT	0.156387
OTTOR	SBERT	0.373682
STS5	BERT	0.182748
omos.	SBERT	0.373111
STS6	BERT	0.048559

Correlation value for Similarity

Suggestions and Conclusion

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Insights | Next Step | Future Scope

- The Proposed SBERT transform helps recruiters screen resumes more quickly and effectively, cutting the cost of hiring. As a result, the business will have access to a possible applicant, who will then be successfully put in a company that values his or her abilities and skill set.
- This method evaluates candidates' skills and ranks them in accordance with the job description and skill requirements of the employing organization. To provide a fast overview of each candidate's qualifications, a summary of their resume is supplied.
- The usage of Artificial Intelligence techniques or any other effective sentence embedding transformers will be made for further improvement.

References

Bibliography | Webliography

- 1. Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
- 2. González, José Ángel, Lluís-F.Hurtado, and FerranPla. "Transformer based contextualization of pre-trained word embeddings for irony detection in Twitter." Information Processing & Management 57.4 (2020): 102262.
- 3. H. Choi, J. Kim, S. Joe and Y. Gwon, "Evaluation of BERT and ALBERT Sentence Embedding Performance on Downstream NLP Tasks," 2020 25th International Conference on Pattern Recognition (ICPR), 2021, pp. 5482-5487, doi: 10.1109/ICPR48806.2021.9412102.
- 4. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics
- 5. P. S. Suryadjaja and R. Mandala, "Improving the Performance of the Extractive Text Summarization by a Novel Topic Modeling and Sentence Embedding Technique using SBERT," 2021 8th International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA), 2021, pp. 1-6, doi: 10.1109/ICAICTA53211.2021.9640295

Annexure

Additional Information | Plagiarism score

Resume Shortlisting and Ranking with Transformers

ORIGINALITY REPORT

Approved by AICTE, New Delhi

13% SIMILARITY INDEX

5%
INTERNET SOURCES

10% PUBLICATIONS

3% STUDENT PAPERS

Bengaluru, India

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

