

Computer vision

Computer Vision Problems

Image Classification

Object detection

Deep Learning on large images

Edge detection example

Computer Vision Problem

Andrew Ng

Vertical edge detection

103x1 + 1x1 +2+1 + 0x0 + 5x0 +7x0+1x7 +8x-1+2x-1=-5

3	0	1	2 -10	7-0	4-1	Convolution				
1	5	8	9	3-0	1-1		-5	-4	0	8
2		2	5	1	3	*	-10	-2	2	3
01	1	3	1	7	8-1		0	-2	-4	-7
4	2	1	6	2	8	3×3	-3	-2	-3(-16
2	4	5	2	3	9	-> filtor		4x	4	
		6×6	•			kenel				

Vertical edge detection

1					
10	10	10	0	O	0
10	10	10	0	0	0
10	10	10	0	0/	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
6 x 6					

	<u>U</u>	
	0	<u>-1</u>
1	0	-1
1	0	-1
	3×3	

<u> </u>					
0	30	30	0		
0	30	30	0		
0	30	30	0		
0	30	30	0		
14x4					

*

More edge detection

Vertical edge detection examples

0	30	30	0			
0	30	30	0			
0	30	30	0			
0	30	30	0			

→	

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

Andrew Ng

Vertical and Horizontal Edge Detection

1 1 1 0 0 0 -1 -1 -1

Horizontal

1	1	1
0	0	0
-1	-1	-1

Learning to detect edges

\int	3	0	1	2	7	4
	1	5	8	9	3	1
	2	7	2	5	1	3
	0	1	3	1	7	8
	4	2	1	6	2	8
	2	4	5	2	3	9

C	en ituleuna
	$\widehat{w_1}\widehat{w_2}\widehat{w_3}$
\times	$\overline{w_4}\overline{w_5}\overline{w_6}$
	$w_7 w_8 w_9$
	7.17

M	0	
0	0	0
7	C C	-3

Padding

Valid and Same convolutions

"Valid":
$$n \times n$$
 \times $f \times f$ \longrightarrow $\frac{n-f+1}{4} \times n-f+1$ $6 \times 6 \times 3 \times 3 \times 3 \longrightarrow 4 \times 4$

"Same": Pad so that output size is the <u>same</u> as the input size.

nt2p-ft1 ×n+2p-ft1

$$p=\frac{f-1}{2}$$
 $p=\frac{f-1}{2}$

Andrew Ng

Strided convolutions

Strided convolution

- to reduce actuation rize - to reduce computational local

3	4	4		
1	0	2		
-1	0	3		
7~7				

=

91	100	83			
69	3	127			
44	72	74			
3 × 3					

$$\left[\frac{n+2p-f}{s} + 1 \right] \times \left[\frac{n+2p-f}{s} + 1 \right]
 = \frac{4}{2} + 1 = 3$$

Summary of convolutions

$$n \times n$$
 image $f \times f$ filter padding p stride s

$$\left[\frac{n+2p-f}{s}+1\right] \times \left[\frac{n+2p-f}{s}+1\right]$$

Technical note on cross-correlation vs. convolution

Convolution in math textbook:

27	3	7 ⁵	4	6	2
6	6	94	8	7	4
3	4	83	3	8	9
7	8	ന	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

· In motherwatics, the convolution operation requires preliminarily flipping the fieter. In ML this step is omitted and what is called "convolution" is actually a "cross-correlation" between 2 modrices.

(A*B) * C = A × B * C)

the filter's

minoring, which

we don't use in TL

is used to hove this popular, world

in signed processing but Andrew Ng

not necessarily in The.

Convolutions over volumes

Convolutions on RGB images

Convolutions on RGB image 4 x 4 numbers Andrew Ng

Multiple filters

One layer of a convolutional network

Number of parameters in one layer

If you have 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?

Summary of notation

If layer l is a convolution layer:

```
f^{[l]} = filter size
    p^{[l]} = \text{padding}
                                                      Output:
    s^{[l]} = \text{stride}
    n_c^{[l]} = number of filters
→ Each filter is: fth x ha
                                                          ATL) > M × NH × NW × NC
    Activations: 0 -> 1 + × 1 = 12
    Weights: f^{(1)} \times f^{(1)} \times n^{(1-1)} \times n^{(1)}
bias: n_c^{(1)} - (1,1,1,n^{(1)}) #f:(tos is leger l.
```


A simple convolution network example

Example ConvNet

$$\frac{n+2p-f}{5} + 1 = 37$$

General trend of the activations through a CNN:

of sofe Shrinks

* no, chounels increases

Types of layer in a convolutional network:

```
Convolution (CONV) ←
Pooling (POOL) ←
Fully connected (FC) ←
```


Pooling layers

Pooling layer: Max pooling

Shrinks activation maps by only retoining important info.

INTVITION: the ochration of a feter molicates how much the defected feature explears in the importinge.

- e performed on each channel independently o no parameters to bearn!

Pooling layer: Max pooling

Pooling layer: Average pooling

1 3 2 1
2 9 1 1
1 4 2 3
5 6 1 2

Summary of pooling

Hyperparameters:

f: filter size s: stride

Max or average pooling

$$\begin{array}{c}
N_{H} \times N_{W} \times N_{C} \\
N_{H} - f + 1 \\
\times N_{C}
\end{array}$$

Convolutional neural network example

Neural network example CONVZ 80015 pool (DNV) Marpho 28 x 28 x 6 10×10×16 32232436 By convention, pooling loyer is ossociated with the previous lager because it does not have lumnoble ponoms 0,1,2,....9 Softnax (10 outputs) NH, Nw / (120,400) (120)

CONU-POOL-CONV-POOL-EC-EC-EC-SOFTMAX

Andrew Ng

Neural network example

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	_ 3,072 a ^{tol}	0
CONV1 (f=5, s=1)	8 fillers 8 rite 5x5x3 (28,28,8)	6,272	608 <
POOL1	(14,14,8)	1,568	0
CONV2 (f=5, s=1)	(10,10,16)	1,600	3216 🥌
POOL2	(5,5,16)	400	0 ←
FC3	(120,1)	120	48120 7
FC4	(84,1)	84	10164
Softmax	(10,1)	10	850

Why convolutions?

Why convolutions

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image. (As apposed to a FC loyer connected to an image, which would probably reliable the some feature muchal times in different units).

Sparsity of connections: In each layer, each output value

Sparsity of connections: In each layer, each output value depends only on a small number of inputs.

Putting it together

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J