מבני נתונים הרצאה מספר 7
עץ בינארי
מרצה: חופית דורון

	עצים
בין שורש העץ לצומת.	עומק∖רמה – מספר הקשתות שיש לעבור ו
ו לצומת הנמצאת ברמה הגבוהה	גובה העץ - המרחק המקסימלי בין השורש ביותר בעץ.
л.	🗲 דרגה של צומת – מספר הבנים שיש לצומו
•	ב B הוא צאצא של צומת A הוא צאצא של צומת שבכל שלב במסלול ההתקדמות היא מאב לו
	אב קדמון - צומת A הוא אב קדמון של צונ A אב קדמון של צונ ל- B שבכל שלב במסלול ההתקדמות היא מ

_		

 ≺ מכנה צומת בעץ בינארי: ≺ מפתח. ≺ DATA - המידע שעלינו לשמור (INT, FLOAT, STRUCT,). ≺ מצביע לבן הימני. ≺ מבציע לבן השמאלי. ≺ מצביע לאב (לא בכל עץ בינארי יופי מצביע לאב). ≺ לעיתים המפתח הוא גם ה- DATA. 	עץ בינארי	
 ✓ DATA - המידע שעלינו לשמור (,INT, FLOAT, STRUCT). ✓ מצביע לבן הימני. ✓ מבציע לבן השמאלי. ✓ מצביע לאב (לא בכל עץ בינארי יופי מצביע לאב). 	מבנה צומת בעץ בינארי:	>
≺ מצביע לבן הימני. ≺ מבציע לבן השמאלי. ≺ מצביע לאב (לא בכל עץ בינארי יופי מצביע לאב).	< מפתח.	
	ת DATA - המידע שעלינו לשמור (,INT, FLOAT, STRUCT).	
. מצביע לאב (לא בכל עץ בינארי יופי מצביע לאב).	מצביע לבן הימני.	
	. מבציע לבן השמאלי	
לעיתים המפתח הוא גם ה- DATA.	מצביע לאב (לא בכל עץ בינארי יופי מצביע לאב).	
	יעיתים המפתח הוא גם ה- DATA.	>
	:00	

תרגיל
בתבו פונקציה המקבלת מספר ומכניסה אותו לעץ החיפוש הבינארי.
🗲 כתבו פונקציה המקבלת מספר ובודקת האם הוא נמצא בעץ.
🗲 כתבו תוכנית המאפשרת בחירת פעולה בתפריט:
א הוספת מספר לעץ
חיפוש מספר בעץ 🥕
≺יציאה

חיפוש צומת בעץ בינארי	0
ר חיפוש ערך בעץ בינארי יתבצע על ידי השוואת הערך שאותו אנו מחפשים ∠ לערך הנמצא בשורש העץ, במידה והערך שווה נוכל להחזיר את הצומת ∖ להחזיר ערך TRUE.	
במידה והערך אותו אנו מחפשים גדול מהערך שנמצא בשורש נמשיך לבצע מיפוש בתת העץ הימני.	
במידה והערך אותו אנו מחפשים קטן מהערך הנמצא בשורש נמשיך לבצע חיפוש בתת בעץ השמאלי.	

חיפוש צומת בעץ בינארי	0
גמשיך בפעולת החיפוש על ידי התייחסות לתת העץ כעץ ששורשו הוא הבן הימני \ השמאלי.	
 < פעולת החיפוש תסתיים באחת מ-2 האפשרויות: < נמצא את האיבר שחיפשנו בעת ביצוע ההשוואה נגיע לתת עץ ששורשו שווה ל NULL – משמעותו שהערך שחיפשנו איננו קיים בעץ. 	
O(N) סיבוכיות הפעולה	0
O(LOGN). כאשר מדובר בעץ כמעט שלם\מאוזן הסיבוכיות היא.	


```
bool search (Node* head, int num)

{
    while (head!= NULL)
    if (head->data == num)
        return true;
    if (num > head->data)
        head = head->right;
    else
        head = head->left;
    }
    return false;
}
```

הוספת צומת בעץ בינארי
על מנת לבצע הוספה של צומת לעץ בינארי, תחילה נבצע שלבי חיפוש של 🗲
הצומת בעץ על מנת לאתר את המיקום המתאים להוספת הצומת.
בכל שלב נשווה את הערך אותו נרצה להוסיף לערך הנמצא בשורש העץ.
במידה והערך אותו נרצה להוסיף גדול מהערך שנמצא בשורש נמשיך להתקדם לתת העץ הימני.
במידה והערך אותו נרצה להוסיף קטן מהערך שנמצא בשורש נמשיך בהתקדם לתת העץ השמאלי.
20 yet met arous arous to 0

~ y-	בינאר	ז בעץ	ז צומו	הוספר	
	.NUI	L עץ שערכו	ד שנגיע לתת	בפעולה זו ע	נמשיך ≻
ל הצומת.	בצע הוספה ש	מיקום אליו נ	1 נמצא את ה	שנגיע ל-IULL	ברגע 🗲
			0(1)	יות הפעולה (1	סיבוכי >
.O(L	OGN) ת היא	ווזן הסיבוכיוו	מעט שלם\מא	מדובר בעץ כ	כאשר >
					(

```
Node* innert(Node* head, int num)

Node* curr = head;
Node* curr = num;
temp->tight = NULL;
temp->tight = NULL)

| head = NULL;
temp:
| return head;
| while((curr->data < num && curr->right!= NULL) || (curr->data >= num && curr->left!= NULL))
| if (curr->data < num)
| curr = curr->left;
| if (curr->data < num)
| curr->curr->right = temp;
| curr->left = temp:
| curr->left = temp
```



```
PREORDER

void preorder(Node* head)

if (head == NULL)

return;

printf("%d ",head->data);

preorder(head->left);

preorder(head->right);

}
```

```
INORDER

void inorder(Node* head)
{
    if (head == NULL)
        return;
        inorder(head->left);
        printf("%d ",head->data);
        inorder(head->right);
}

25 /px loud news book bit
```

```
POSTORDER

void postorder(Node* head)
{
   if (head == NULL)
        return;
   postorder(head->left);
   postorder(head->right);
   printf("%d ",head->data);
}

26 ret newl tream team he?
```

```
מחיקת צומת בעץ בינארי

על מנת לבצע מחיקה של צומת תחילה יש לחפשו.

ישנם 3 מקרים למחיקה של צומת:

הצומת הוא עלה (אין לו בנים).

לצומת יש בן אחד.

לצומת יש ב בנים.
```


מחיקת צומת בעץ בינארי
מקרה 3 – לצומת יש 2 בנים:
:' אפשרות א
עיש למצוא תחילה את הצומת העוקב לצומת שאותה נרצה למחוק.
מכיוון שמדובר בצומת בעלת 2 בנים – צומת העוקב בוודאות ימצא בתת עץ הימני, כלומר עלינו למצוא את הצומת המינימלי בתת העץ הימני.
🖊 נבצע החלפה בין הצומת העוקב לצומת שאותה אנו רוצים למחוק.
בעת נבצע מחיקה של הצומת. 🥕
שימו לב - כאשר מדובר בצומת שאין לה תת עץ ימני העוקב יכול להיות אחד מהאבות הקדמונים של הצומת.)

מחיקת צומת בעץ בינארי	
מקרה 3 – לצומת יש 2 בנים:	
ל אפשרות ב':	
יש למצוא תחילה את הצומת הקודם לצומת שאותה נרצה למחוק.	
מכיוון שמדובר בצומת בעלת 2 בנים – צומת הקודם בוודאות ימצא בתת עץ השמאלי, כלומר עלינו למצוא את הצומת המקסימלי בתת העץ השמאלי.	
🖊 נבצע החלפה בין הצומת הקודם לצומת שאותה אנו רוצים למחוק.	
כעת נבצע מחיקה של הצומת. ➤	
שימו לב - כאשר מדובר בצומת שאין לה תת עץ שמאלי הקודם יכול להיות אחד מהאבות)	
הקדמונים של הצומת.)	1

	ומקסימום איבר הכי שמאלי בעץ.	ת מינימום עץ בינארי תמיד יהיה ה		٠ ۸ تت
הוא	העץ השמאלי (שמכיל ערכים שמאלי שלו הוא NULL צומת זה	י שנגיע לצומת שהבן הי	7 / 1 / / / /	הקט
ים	יי תמיד יהיה האיבר הכי ימני בי עץ הימני (שמכיל ערכים הגדול הוא NULL צומת זה הוא הצומו	זשורש בכל פעם לתת ה	מר אם נתקדם מז	⊄כלו
31 pm 2000	ם כל הזמינה שפורות: ©	۰ 0	קסימלי בעץ.	המק

```
Node* min(Node* head)

(
if (head==NULL)
    return NULL;
    while (head->left!=NULL)
    head = head->left;
    return head;
}
```

```
Node* max(Node* head)

if (head==NULL)
    return NULL;
while (head->right!=NULL)
    head = head->right;
    return head;
}
```

11

```
Node* deleteLeaf (Node* head, Node* prev, Node* curr)

if (head == curr)
{
    free(curr);
    return NULL;
}
if(prev>left == curr)
    prev->left = NULL;
else
    prev->return head;
}

34 rem mediames remained
```

```
Node* deleteTwoSubtrees(Node* head, Node* curr)

Node* temp;
int temp;
int temp;
Node* prev = head;
temp = in(curr>right);
while(prev>right|*temp && prev>left|*temp)
{
    if (prev>right|*temp & to prev>left|*temp)
    clse
        prev = prev>left;
        else
        temp=right(head, prev, temp);
    else
        head = deleteOneSubtree (head, prev, temp);
    else
        head = deleteOneSubtree (head, prev, temp);
    return head;
}

36 return newardse
```

```
Node* delete(Node* head, int num)

{
    Node* curr,temp1,temp2;
    int tempNum;
    Node* prev = head;
    curr = searchNode(head,num);
    if (curr == NULL)
        return head;
    if (curr->left!=NULL && curr->right!=NULL)
    {
        head = deleteTwoSubtrees(head,curr);
        return head;
    }

37 No Ment Nous Months
```

	תרגילים	0
אחרת הביאו דוגמא נגדית.	נכון במידה והטענה נכונה הוכיחו אותה א	ציינו נכון\לא
· · · · · · · · · · · · · · · · · · ·	ת איברים בעץ חיפוש בינארי לא משפיעו ם את A ואחר כך את B, מקבלים אותו עי	
הראשון תמיד הערך הכי	על עץ חיפוש בינארי, האיבר ז PREORD	ER במעבר≽
		קטן.
בין הגובה של שני תתי-	ש בינארי הינו מאוזן ? (עץ שבו ההפרש	כל עץ חיפו ✓כל
	יתו הצומת לעולם אינו גדול מאחד)	עצים של או
30 and reach power service to 0	000	

 _
_
_
_
_
_
_

תרגילים נו פונקציה המקבלת 2 פרמטרים: עץ חיפוש בינארי ומספר שלם K התוכנית ר את האיבר ה- K בגודלו בעץ. לב סיבוכיות החזרת האיבר ה- K בגודלו תהיה (O(N).	תחזיו
נו פונקציה המקבלת כפרמטר עץ חיפוש בינארי ומחזירה עץ שכל צומת שבו את סכום כל הצמתים שקטנים ממנה.	