



# CanSat 2024 Preliminary Design Review (PDR) Outline Version 1.1

#2070 Makara Aerospace and Avionics Team



#### **Presentation Outline**



| Section                                              | Presenter            |
|------------------------------------------------------|----------------------|
| Systems Overview                                     | Alexander Maximilian |
| Sensor Subsystem Design                              | Rakha Raditya        |
| Descent Control Design                               | Nathaniel            |
| Mechanical Subsystem Design                          | Alvin Hadar          |
| Communication and Data Handling ( ) Subsystem Design | Riki Syahputra       |
| Electrical Power Subsystem (EPS) Design              | Daffa Farrel         |
| Flight Software (FSW) Design                         | Rifki Pratama        |
| Ground Control System (GCS) Design                   | Lucinda Laurent      |
| CanSat Integration and Test                          | Muhammad Aksal       |
| Mission Operations and Analysis                      | Daffa Farrell        |
| Requirements Compliance                              | Radian Epifania      |
| Management                                           | Radian Epifania      |



#### **Team Organization**







# **Acronyms**



| А      | Analysis                        |
|--------|---------------------------------|
| CDH    | Communication and Data Handling |
| CDR    | Critical Design Review          |
| CONOPS | Concept of Operations           |
| D      | Demonstration                   |
| DCS    | Descent Control System          |
| EPS    | Electrical Power Subsystem      |
| FSW    | Flight Software                 |
| G      | Ground                          |
| GCS    | Ground Control Station          |
| GUI    | Graphical User Interface        |
| I      | Inspection                      |
| I2C    | Inter-Integrated Circuit        |

Presenter: Alexander Maximilian

| I/O    | Input-Output                                        |
|--------|-----------------------------------------------------|
| XCTU   | XBee Configuration and Test Utility                 |
| Т      | Test                                                |
| WPF    | Windows Presentation Foundation                     |
| EEPROM | Electrically Erasable Programmable Read-Only Memory |





The purpose of this section is to introduce the reviewer to the overall requirements and configuration of the CanSat. This provides a basis for the details presented in the subsystem sections.

# **Systems Overview**

#### **Alexander Maximilian**



#### **Mission Summary (1/2)**



#### **Main Objectives**

Design a Cansat that shall carry a single large hen's egg and operate as a nose cone during ascent.

- Design a CanSat that shall take the place and function of the nose cone during ascent.
- CanSat is launched to a maximum 725 meters above the launch site, and being deployed when the rocket parachute ejection charge fires.
- CanSat shall descend utilizing an aero breaking heat shield at a rate of 10 to 30 meters per second.
- At 100 meters, the CanSat shall detach the aero-breaking heat shield, and simultaneously deploy a parachute to reduce the descent rate to less than 5 meters per second.
- The Cansat shall land with the egg intact.
- The Cansat shall include sensors for tracking altitude using air pressure, internal temperature, battery voltage, GPS position and a tilt sensor for stability verification during descent. A pitot tube shall be included to measure the ascent speed and descent speed



#### **Mission Summary (2/2)**



 A video recording camera shall be included to captue the horizontal view during ascent and landing. During descent, the camera shall point and maintain in determined direction.

## **Bonus Objectives**

In this year competition, we planned to not include the bonus objective the pointing aft camera, since we are more prioritizing the system to maintain the direction of mandatory camera capture. Also, in the purpose to give more space for our egg containment design. The bonus objective is not being attempted due to low possibility of success.

#### **External Objective**

- Qualified until the final stage in Cansat 2024 competition for the first time
- Gain experience and portfolio in engineering project
- Improve skills and knowledge in aerospace engineering
- Efficiently realize functional, high-performing Cansat



# **System Requirement Summary (1/9)**



| Req | Description                                                                                                                                                                            | Description |   | Verification |   |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|--------------|---|---|
| #   | <b>Description</b>                                                                                                                                                                     | Subsystem   | А | 1            | Т | D |
| C1  | The Cansat shall function as a nose cone during the rocket ascent portion of the flight.                                                                                               | MECH        | Х | Х            | Х | Х |
| C2  | The Cansat shall be deployed from the rocket when the rocket motor ejection charge fires.                                                                                              | FSW         | Х | Х            |   | Х |
| СЗ  | After deployment from the rocket, the Cansat shall deploy its heat shield/aerobraking mechanism.                                                                                       | MECH, FSW   | Х | Х            |   | Х |
| C4  | A silver or gold mylar streamer of 50 mm width and 1.5 meters length shall be connected to the Cansat and released at deployment. This will be used to locate and identify the Cansat. | MECH        |   | Х            |   |   |
| C5  | At 100 meters, the Cansat shall deploy a parachute and release the heat shield.                                                                                                        | MECH, FSW   |   | Х            | Х | Х |
| C6  | Upon landing, the Cansat shall stop transmitting data.                                                                                                                                 | CDH         |   |              |   | Х |
| C7  | Upon landing, the Cansat shall activate an audio beacon                                                                                                                                | FSW         |   |              |   | Х |
| C8  | The Cansat shall carry a provided large hens egg with a mass range of 51 to 65 grams                                                                                                   | MECH        |   | х            | Х |   |
| C9  | 0 altitude reference shall be at the launch pad                                                                                                                                        | FSW         |   | Х            | X |   |



## System Requirement Summary (2/9)



| Req | Description                                                                                                                                                                                                          |            |   | Verifi | cation |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|--------|--------|---|
| #   | <b>Description</b>                                                                                                                                                                                                   | Subsystem  | Α | -1     | Т      | D |
| C10 | During descent with the heat shield deployed, the descent rate shall be between 10 to 30 m/s.                                                                                                                        | MECH       | Х |        | Х      |   |
| C11 | At 100 meters, the Cansat shall have a descent rate of less than 5 m/s.                                                                                                                                              | MECH       | Х |        | Х      |   |
| C12 | Cost of the Cansat shall be under \$1000. Ground support and analysis tools are not included in the cost of the Cansat. Equipment from previous years shall be included in this cost, based on current market value. | MANAGEMENT |   | х      |        |   |
| S1  | The Cansat mass shall be 900 grams +/- 10 grams without the egg being installed.                                                                                                                                     | MECH       | Х | Х      | Х      |   |
| S2  | Nose cone shall be symmetrical along the thrust axis.                                                                                                                                                                | MECH       | X | х      |        |   |
| S3  | Nose cone radius shall be exactly 71 mm                                                                                                                                                                              | MECH       |   | X      |        |   |
| S4  | Nose cone shoulder radius shall be exactly 68 mm                                                                                                                                                                     | MECH       |   | Х      |        |   |
| S5  | Nose cone shoulder length shall be a minimum of 50 mm                                                                                                                                                                | MECH       |   | Х      |        |   |
| S6  | Cansat structure must survive 15 Gs vibration                                                                                                                                                                        | MECH       |   | Х      | х      |   |
| S7  | Cansat shall survive 30 G shock.                                                                                                                                                                                     | MECH       |   | Х      | Х      |   |



# System Requirement Summary (3/9)



| Req | Description                                                                                                                                                | Cubayatam |   | Verification |   |   |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|--------------|---|---|--|--|
| #   | <b>Description</b>                                                                                                                                         | Subsystem | А | -1           | Т | D |  |  |
| S8  | The Cansat shall perform the function of the nose cone during rocket ascent.                                                                               | MECH      | Х | Х            | Х | Х |  |  |
| S9  | The rocket airframe can be used to restrain any deployable parts of the Cansat but shall allow the Cansat to slide out of the payload section freely.      | MECH      |   | Х            |   | Х |  |  |
| S10 | The rocket airframe can be used as part of the Cansat operations.                                                                                          | MECH      | Х | Х            |   |   |  |  |
| S11 | All electronics and mechanical components shall be hard mounted using proper mounts such as standoffs, screws, or high performance adhesives.              | MECH, EPS |   | Х            |   |   |  |  |
| M1  | No pyrotechnical or chemical actuators are allowed.                                                                                                        | MECH      |   | Х            |   |   |  |  |
| M2  | Mechanisms that use heat (e.g., nichrome wire) shall not be exposed to the outside environment to reduce potential risk of setting the vegetation on fire. | MECH      |   | Х            | Х |   |  |  |
| МЗ  | All mechanisms shall be capable of maintaining their configuration or states under all forces.                                                             | MECH      |   | Х            | Х |   |  |  |
| M4  | Spring contacts shall not be used for making electrical connections to batteries.  Shock forces can cause momentary disconnects.                           | MECH, EPS |   | Х            |   |   |  |  |



# System Requirement Summary (4/9)



| Req | Description                                                                                                                                                                                                                                          |                |   | Verifi | catior | h |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---|--------|--------|---|
| #   | <b>Description</b>                                                                                                                                                                                                                                   | Subsystem      | А | 1      | т      | D |
| M5  | The Cansat shall deploy a heat shield after deploying from the rocket                                                                                                                                                                                | MECH, FSW      |   |        |        | Х |
| M6  | The heat shield shall be used as an aerobrake and limit the descent rate to 10 to 30 m/s.                                                                                                                                                            | MECH           | х |        | Х      |   |
| M7  | At 100 meters, the Cansat shall release a parachute to reduce the descent rate to less than 5 m/s.                                                                                                                                                   | MECH           | Х |        | Х      |   |
| M8  | The Cansat shall protect a hens egg from damage during all portions of the flight.                                                                                                                                                                   | MECH           |   | Х      | X      |   |
| M9  | If the nose cone is to be considered as part of the heat shield, the documentation shall identify the configuration.                                                                                                                                 | MECH, FSW      | Х |        |        | Х |
| M10 | After the Cansat has separated from the rocket and if the nose cone portion of the Cansatis to be separated from the rest of the Cansat, the nose cone portion shall descend at less than 10 meters/second using any type of descent control device. | MECH, FSW, EPS | Х | Х      | Х      |   |
| E1  | Lithium polymer batteries are not allowed.                                                                                                                                                                                                           | EPS            |   | Х      |        |   |
| E2  | Battery source may be alkaline, Ni-Cad, Ni-MH or Lithium. Lithium polymer batteries are not allowed. Lithium cells must be manufactured with a metal package similar to 18650 cells. Coin cells are allowed.                                         | EPS            |   | х      |        |   |



# **System Requirement Summary (5/9)**



| Req | Description                                                                                                                                                                                                                            | Subovetow |   | Verifi | cation | h |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|--------|--------|---|
| #   | <b>Description</b>                                                                                                                                                                                                                     | Subsystem | Α | - 1    | Т      | D |
| E3  | Easily accessible power switch is required                                                                                                                                                                                             | EPS, MECH |   | Х      |        |   |
| E4  | Power indicator is required                                                                                                                                                                                                            | EPS       |   | Х      |        |   |
| E5  | The Cansat shall operate for a minimum of two hours when integrated into the rocket.                                                                                                                                                   | EPS       | Х | х      | Х      |   |
| X1  | XBEE radios shall be used for telemetry. 2.4 GHz Series radios are allowed. 900 MHz XBEE radios are also allowed.                                                                                                                      | CDH       |   | Х      |        |   |
| X2  | XBEE radios shall have their NETID/PANID set to their team number.                                                                                                                                                                     | CDH       |   | Х      |        |   |
| ХЗ  | XBEE radios shall not use broadcast mode.                                                                                                                                                                                              | CDH       |   | Х      |        |   |
| X4  | The Cansat shall transmit telemetry once per second.                                                                                                                                                                                   | CDH       |   |        | Х      |   |
| X5  | The Cansat telemetry shall include altitude, air pressure, temperature, battery voltage, Cansat tilt angles, air speed, command echo, and GPS coordinates that include latitude, longitude, altitude and number of satellites tracked. | CDH, FSW  |   | Х      | Х      |   |



# **System Requirement Summary (6/9)**



| Req | Description                                                                            | Cubayatam | , | Verification |   |   |  |
|-----|----------------------------------------------------------------------------------------|-----------|---|--------------|---|---|--|
| #   | <b>Description</b>                                                                     | Subsystem | Α | 1            | Т | D |  |
| SN1 | Cansat shall measure its speed with a pitot tube during ascent and descent.            | FSW       |   |              | Χ | Х |  |
| SN2 | Cansat shall measure its altitude using air pressure.                                  | FSW       |   |              | Х | Х |  |
| SN3 | Cansat shall measure its internal temperature.                                         | FSW       |   |              | Х | Х |  |
| SN4 | Cansat shall measure its angle stability with the aerobraking mechanism deployed.      | FSW       |   |              | Х | Х |  |
| SN5 | Cansat shall measure its rotation rate during descent.                                 | FSW       |   |              | Х | Х |  |
| SN6 | Cansat shall measure its battery voltage.                                              | FSW, EPS  |   |              | Х | Х |  |
| SN7 | The Cansat shall include a video camera pointing horizontally.                         | FSW       |   |              | Х | Х |  |
| SN8 | The video camera shall record the flight of the Cansat from launch to landing.         | FSW       |   |              | Х | Х |  |
| SN9 | The video camera shall record video in color and with a minimum resolution of 640x480. | FSW       |   | Х            |   |   |  |



# **System Requirement Summary (7/9)**



| Req | Description                                                                                                                                | Cubayatam |   | Verifi | catior | า |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|--------|--------|---|
| #   | <b>Description</b>                                                                                                                         | Subsystem | Α | 1      | Т      | D |
| G1  | The ground station shall command the Cansat to calibrate the altitude to zero when the Cansat is on the launch pad prior to launch.        | GCS,FSW   |   |        | Х      | Х |
| G2  | The ground station shall generate csv files of all sensor data as specified in the Telemetry Requirements section.                         | GCS       |   | Х      |        | Х |
| G3  | Telemetry shall include mission time with 1 second or better resolution.                                                                   | GCS       |   | Х      | Х      |   |
| G4  | Configuration states such as zero altitude calibration shall be maintained in the event of a processor reset during launch and mission.    | GCS       |   | Х      |        |   |
| G5  | Each team shall develop their own ground station.                                                                                          | GCS       | Х | Х      | X      | x |
| G6  | All telemetry shall be displayed in real time during descent on the ground station.                                                        | GCS       |   | Х      | Х      |   |
| G7  | All telemetry shall be displayed in engineering units (meters, meters/sec, Celsius, etc.) and the units shall be indicated on the displays | GCS       |   | х      |        |   |
| G8  | Teams shall plot each telemetry data field in real time during flight                                                                      | GCS       |   | Х      | Х      | Х |
| G9  | The ground station shall include one laptop computer with a minimum of two hours of battery operation, XBEE radio and an antenna.          | GCS       |   | х      | Х      |   |



# System Requirement Summary (8/9)



| Req | Description                                                                                                                                                                                                                                         | Cubaratan |   | Verification |   |   |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|--------------|---|---|--|--|
| #   | <b>Description</b>                                                                                                                                                                                                                                  | Subsystem | Α | 1            | т | D |  |  |
| G10 | The ground station must be portable so the team can be positioned at the ground station operation site along the flight line. AC power will not be available at the ground station operation site.                                                  | GCS       | х | х            |   |   |  |  |
| G11 | The ground station software shall be able to command the payload to operate in simulation mode by sending two commands, SIMULATION ENABLE and SIMULATION ACTIVATE.                                                                                  | GSC, FSW  |   | Х            |   | Х |  |  |
| G12 | When in simulation mode, the ground station shall transmit pressure data from a csv file provided by the competition at a 1 Hz interval to the Cansat.                                                                                              | GCS       |   | Х            | Х |   |  |  |
| G13 | The ground station shall use a table top or handheld antenna.                                                                                                                                                                                       | GCS       | Х | Х            |   |   |  |  |
| G14 | Because the ground station must be viewed in bright sunlight, the displays shall be designed with that in mind, including using larger fonts (14 point minimum), bold plot traces and axes, and a dark text on light background theme.              | GCS       |   | х            |   |   |  |  |
| G15 | The ground system shall count the number of received packets. Note that this number is not equivalent to the transmitted packet counter, but it is the count of packets successfully received at the ground station for the duration of the flight. | GCS       |   | Х            | Х | Х |  |  |



# System Requirement Summary (9/9)



| Req | Description                                                                                                                                                                                           |               |   | Verificat |   |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---|-----------|---|---|
| #   | <b>Description</b>                                                                                                                                                                                    | Subsystem     | Α | 1         | Т | D |
| F1  | The flight software shall maintain a count of packets transmitted which shall increment with each packet transmission throughout the mission. The value shall be maintained through processor resets. | FSW, CDH      |   | х         | х | х |
| F2  | The Cansat shall maintain mission time throughout the whole mission even with processor resets or momentary power loss.                                                                               | FSH, EPS      | Х |           | Х |   |
| F3  | The Cansat shall have its time set to within one second UTC time prior to launch.                                                                                                                     | FSW           |   | Х         | Х |   |
| F4  | The flight software shall support simulated flight mode where the ground station sends air pressure values at a one second interval using a provided flight profile csv file.                         | FSW, CDH, GCS |   |           |   | Х |
| F5  | In simulation mode, the flight software shall use the radio uplink pressure values in place of the pressure sensor for determining the payload altitude.                                              | FSW, CDH      |   | Х         |   | Х |
| F6  | The payload flight software shall only enter simulation mode after it receives the SIMULATION ENABLE and SIMULATION ACTIVATE commands.                                                                | FSW           |   | Х         |   | Х |



**Parachute** 

# System Level CanSat Configuration Trade & Selection



#### **Design A:**

Presenter: Alexander Maximilian



#### **GENERAL DESCRIPTION**

1 Phase Parachute

The heat shield is integrated with the nose cone

The nose cone is connected to the payload via a locking mechanism at the bottom of the payload,

Nose cone and heatshield will be deployed after reaching a certain height

The egg containment is directly integrated into the payload, featuring a dual-layer design aimed at ensuring the safety of the egg



## System Level CanSat Configuration Trade & Selection





Presenter: Alexander Maximilian

#### **Pros**

- Increased stability post-launch
- Amplified latitude for alterations and integration
- Convenient alterations to the Printed Circuit Board or electrical components
- A simplified release mechanism for both the nose cone and heat shield

#### Cons

- Manufacturing Complexity
- Exposed components emerge upon the detachment of both the nose cone and heat shield.



# System Level CanSat Configuration Trade & Selection



#### Design B:



Presenter: Alexander Maximilian

#### **GENERAL DESCRIPTION**

1 Phase Parachute

1 Phase Heat shield

Nose cone and heatshield will be deployed after reaching a certain height

The egg container is securely connected to the payload to ensure the preservation of egg integrity.



# System Level CanSat Configuration Trade & Selection





#### **Pros**

- Decreased utilization of arms
- Reduced weight

#### Cons

- Increased reliance on Printed Circuit Board
- Assembly complexity
- Inequitable weight distribution within the Cansat receptacle
- The electronic components become visible when the nose cone dna heat shield is detached.



#### **System Level Configuration Selection**



#### SELECTION: Design A

Design A was ultimately selected as our final option due to its superior ease of assembly, cost-effectiveness, and operational efficiency. Additionally, the placement of electrical components is advantageous, offering ample more space for electronics, and the weight distribution in Design A is significantly improved. With Design A, the likelihood of failures during parachute, nose cone and heat shield deployment is substantially reduced





## Physical Layout (1 of 3)



#### **Launch Configuration:**



#### **Deployment Configuration:**





# Physical Layout (2 of 3)







## Physical Layout (3 of 3)



#### **Payload Mechanics:**





## **System Concept of Operations (1/2)**



670 - 725 meters





Descent with heatshield at 10-30[m/s], flight software activates camera horizontal stabilization

100 meters



Rocket ascending



Parachute opens, Cansat decent at less than 5 [m/s]

0 meters



Rocket launch site

Landing, while keeping the egg intact





#### System Concept of Operations (2/2)



- Team briefing
- Turn on all power switches
- Communication check
- Final verification of CanSat
- Cansat inserted into rocket

Pre-Launch

Launch

- Rocket launch initiation
- Data transmission activated
- Apex reached
- Detach Cansat from rocket (max 750m)
- Activate camera stabilization functionality for decent capturing
- Deployment of aerobreaking heatshield, descent with velocity of 10-30 m/s.
- At 100m, detach the heat shield which integrated to the nose cone, while releasing the parachute to reduce decent rate below 5 m/s
- Terminate telemetry transmission
- Retrieve Cansat
- Assess the state of Cansat
- Assess the post-flight condition of the egg
- Analyze data

Presenter: Alexander Maximilian

- Prepare for PFR
- Presentation of PFR

**Post-Launch** 



#### Launch Vehicle Compatibility (1/2)



- Include a dimensioned drawing that shows clearances with the payload section
  - Focus on launch configuration
  - Include all descent control apparatus (no sharp protrusions)
  - At PDR this may be allocated dimensions (if this is the case, these should be requirements at the system and subsystem levels)
  - What is the clearance? (Leave margin to allow easy deployment!)



#### Launch Vehicle Compatibility (2/2)



#### Mission Guide Rocket Payload Dimensions:

- Diameter 136 mm
- Height 350 mm

#### **Cansat Dimensions:**

- Diameter 140 mm
- Height 428,2 mm

#### **Payload Dimensions:**

- Diameter 120 mm
- Height 326,742 mm

#### **Payload Parachute Dimensions**

- Diameter 1000 mm
- Height 300 mm

#### **Heatshield Dimensions**

- Diameter 320 mm
- Height 200 mm

#### **Nose Cone Dimensions**

Diameter – 140 mm

Presenter: Alexander Maximilian

Height – 100 mm







# Sensor Subsystem Design

Rakha Raditya



Presenter: Rakha Raditya

# **Sensor Subsystem Overview**



| Component                | Туре                            | Function                                        |  |  |
|--------------------------|---------------------------------|-------------------------------------------------|--|--|
| BME 280                  | Pressure and temperature sensor | Gets atmospheric pressure and air temperature   |  |  |
| Voltage Divider          | Voltage sensor                  | Gets battery voltage measurement                |  |  |
| ASPD-4525                | Speed sensor                    | Measure the speed of an object                  |  |  |
| MPU9250                  | Tilt and rotation sensor        | Gets angles or slope of an object, as a compass |  |  |
| Ublox NEO-M8N            | GPS                             | Gets latitude and longitude                     |  |  |
| Raspberry Pi Camera v1.3 | Video Camera                    | Records the videos needed                       |  |  |



# Payload Air Pressure Sensor Trade & Selection



| Sensor  | Dimension<br>s (mm)  | interface | Mass (g) | Operating<br>Voltage (V) | Operating<br>Current<br>(uA) | Max.<br>update<br>rate (Hz) | Range<br>(hPa) | Cost (USD<br>) |
|---------|----------------------|-----------|----------|--------------------------|------------------------------|-----------------------------|----------------|----------------|
| BME 280 | 19 x 16 x 3          | I2C, SPI  | 1        | 5                        | 3.6                          | 250                         | 300 - 1100     | \$3.90         |
| BMP 390 | 20 x 15 x 3          | I2C, SPI  | 1        | 3.3                      | 3.2                          | 200                         | 300 - 1250     | \$10.95        |
| DPS 310 | 25.5 x 17.7<br>x 4.6 | I2C, SPI  | 1        | 1.7 - 3.6                | 1.7                          | 200                         | 300 - 1200     | \$6.95         |

#### Selected Tilt Sensor: BME 280

- More readily accessible in our region.
- Optimal cost-to-performance ratio.
- Sleek and light

Presenter: Rakha Raditya

Accuracy can be increased by connecting external sensors





# Payload Air Temperature Sensor Trade & Selection



| Sensor    | Dimension<br>s (mm)  | interface | Mass (g) | Operating<br>Voltage<br>(V) | Operating<br>Current (uA) | Max.<br>update<br>rate (Hz) | Temperature<br>Range (°C) | Cost<br>(USD) |
|-----------|----------------------|-----------|----------|-----------------------------|---------------------------|-----------------------------|---------------------------|---------------|
| BME 280   | 19 x 16 x 3          | I2C, SPI  | 1        | 5                           | 3.6                       | 250                         | -40 - +85                 | \$3.90        |
| BMP 388   | 21.6 x 16.6<br>x 3   | I2C, SPI  | 0.1      | 1.71 - 3.6                  | 3.4                       | 200                         | -40 - +85                 | \$9.95        |
| MPL 115A2 | 25.5 x 17.7<br>x 4.6 | I2C       | 0.61     | 2.375 - 5.5                 | 6                         | 200                         | -40 - +85                 | \$9.95        |

Selected Tilt Sensor: BME 280

- More readily accessible in our region.
- Sleek and lightweight.

Presenter: Rakha Raditya

Can be used in multiple measurements





# Payload Battery Voltage Sensor Trade & Selection



| Sensor                   | Weight (g) | Error rate | Voltage Range<br>(V) | Interface | Cost (USD) |  |
|--------------------------|------------|------------|----------------------|-----------|------------|--|
| Teensy 4.1<br>Analog Pin | 0          | < 1 %      | Any                  | Analog    | \$0        |  |
| BMP 390                  | >0         | < 1 %      | 0 - 36               | I2C       | \$9.95     |  |

Selected Tilt Sensor: **Analog Pin**Combines accelerometer and gyroscope

Uncomplicated yet precise

Presenter: Rakha Raditya

Avoids the requirement for additional component





# Payload Speed Sensor Trade & Selection



| Sensor    | Supply<br>voltage (V) | Weight (g) | Dimension<br>(mm) | Interface | Pressure<br>range (psi) | Speed<br>range<br>(km/h) | Cost (USD) |
|-----------|-----------------------|------------|-------------------|-----------|-------------------------|--------------------------|------------|
| ASPD-4525 | 4 - 6                 | 3.5        | 20 x 20 x 14      | I2C       | 1                       | 360                      | \$62.07    |
| ASPD-7002 | 4.8 - 5.2             | 4          | 20 x 20 x 14      | I2C       | 0.3                     | 200                      | \$45.98    |
| DLVR-L10D | 4-6                   | 4          | 22 x 22 x<br>12.5 | I2C, CAN  | 0.36                    | 250                      | \$89.91    |

#### Selected Speed Sensor: ASPD-4525

- Optimal cost-to-performance speed range.
- Lightweight

Presenter: Rakha Raditya

Wide measurement range for air pressure.





# Payload Tilt Sensor Trade & Selection



| Sensor  | Dimension<br>s (mm) | interface                          | Mass (g) | Operating<br>Voltage (V) | Current | Gyroscope<br>Full-Scale<br>Range        | Resolutin<br>(bits) | Cost (USD<br>) |
|---------|---------------------|------------------------------------|----------|--------------------------|---------|-----------------------------------------|---------------------|----------------|
| BNO055  | 3.8 x 5.2 x<br>1.13 | HID-I2C,<br>I <sup>2</sup> C, UART | 3        | 3.3                      | 12.3    | ±250, ±500,<br>±1000, and<br>±2000°/sec | 14                  | \$25.57        |
| MPU9250 | 3 x 3 x 1           | I2C, SPI                           | 3        | 2.4 – 3.6                | 0.4     | ±250, ±500,<br>±1000, and<br>±2000°/sec | 16                  | \$5.01         |
| MPU6050 | 14 x 12 x 2         | I2C                                | 3        | 2.9 – 3.6                | 0.4     | ±250, ±500,<br>±1000, and<br>±2000°/sec | 12                  | \$1.85         |

#### Selected Tilt Sensor: MPU9250

- Combines accelerometer, gyroscope, and magnetometer
- Has lower noise
- High accuracy

Presenter: Rakha Raditya

Optimal cost-to-performance ratio





# Rotation Sensor Trade & Selection



| Sensor  | Dimension<br>s (mm) | interface                          | Mass (g) | Operating<br>Voltage (V) | Curront | Gyroscope<br>Full-Scale<br>Range        | Resolutin<br>(bits) | Cost (USD<br>) |
|---------|---------------------|------------------------------------|----------|--------------------------|---------|-----------------------------------------|---------------------|----------------|
| BNO055  | 3.8 x 5.2 x<br>1.13 | HID-I2C,<br>I <sup>2</sup> C, UART | 3        | 3.3                      | 12.3    | ±250, ±500,<br>±1000, and<br>±2000°/sec | 14                  | \$25.57        |
| MPU9250 | 3 x 3 x 1           | I2C, SPI                           | 3        | 2.4 – 3.6                | 0.4     | ±250, ±500,<br>±1000, and<br>±2000°/sec | 16                  | \$5.01         |
| MPU6050 | 14 x 12 x 2         | I2C                                | 3        | 2.9 – 3.6                | 0.4     | ±250, ±500,<br>±1000, and<br>±2000°/sec | 12                  | \$1.85         |

#### Selected Tilt Sensor: MPU9250

- Combines accelerometer, gyroscope, and magnetometer
- Has lower noise
- High accuracy

Presenter: Rakha Raditya

Optimal cost-to-performance ratio





## Payload GPS Sensor Trade & Selection



| Sensor                      | Supply<br>voltage (V) | Current<br>(mA) | Interface         | Sensitivity<br>(dBm) | Position accuracy (m) | Max.<br>update<br>rate (Hz) | No.<br>of channel | Cost (USD<br>) |
|-----------------------------|-----------------------|-----------------|-------------------|----------------------|-----------------------|-----------------------------|-------------------|----------------|
| Adafruit<br>Ultimate<br>GPS | 3.0 - 5.5             | 20              | UART              | -165                 | 1.8                   | 10                          | 66                | 39,92          |
| Ublox<br>NEO-M8N            | 2.7 V - 3.6<br>V      | 10              | UART, I2C         | -166                 | 2.5                   | 10                          | 72                | 11.89          |
| Ublox NEO-<br>6M            | -0.5 - 3.6            | 10              | I2C, UART,<br>SPI | -161                 | 2.5                   | 5                           | 50                | 9.59           |

#### Selected GPS Sensor: Ublox NEO-M8N

- High positional accuracy
- High refresh rate

Presenter: Rakha Raditya

- More readily accessible in our region
- Fast locking time due to # of channels





## **Payload Camera Trade & Selection**



| Sensor                                   | Supply<br>voltage (V) | Current<br>(mA) | Size (mm)<br>L x W x H | Weight (g) | Video File<br>Type | Resolution<br>(px) | Interface | Cost (USD<br>) |
|------------------------------------------|-----------------------|-----------------|------------------------|------------|--------------------|--------------------|-----------|----------------|
| Raspberry<br>Pi Camera<br>Module<br>v1.3 |                       | 20              | 25 x 24 x 9            | 3          | MJPEG              | 640 x 480          | CSI       | 6.2            |
| OV7670<br>Camera                         | 3.3 - 5               | 20              | 30.5 x 30.5<br>x 3     | 20         | RAW RGB            | 640 x 480          | SCCB, SPI | \$4.83         |
| Quelima<br>SQ11                          | 5                     | 200             | 23 x 23 x<br>23        | 5.2        | AVI                | 1280 X<br>780      | Digital   | \$3.26         |

### Selected GPS Sensor: Raspberry Pi Camera v1.3

- Interoperable with our SBC, offering a userfriendly interface.
- Sleek and lightweight.
- Low power usage.

Presenter: Rakha Raditya

High image quality.





Presenter: Rakha Raditya

### **Bonus Camera Trade and Selection**



As stated previously in Mission Summary, we decided to not include the Bonus Camera to the Cansat in this year competition.





## **Descent Control Design**

### **Nathaniel**



### **Descent Control Overview**



670 - 725 meters





Descent with heatshield at 10-30[m/s], flight software activates camera horizontal stabilization

100 meters



Rocket ascending



Parachute opens, Cansat decent at less than 5 [m/s]

0 meters

Presenter: Nathaniel



Rocket launch site

Landing, while keeping the egg intact





## Payload Aerobraking Descent Control Strategy Selection and Trade (1/3)



#### Design A:

Design A heat shield is composed of six arms, each of which is attached to six poles through a joint. This arm will serve to broaden the heat shield diameter, facilitating the descent of the payload to a targeted velocity of less than 20 m/s. The poles, arms, and base of the heat shield will be covered with cloth/fabric, rendering it ideal as an aerodynamic braking device.

#### Pros:

- Increased surface area, allowing for easier reduction of payload descent rate
- Highly compact

Presenter: Nathaniel

- Adaptable to future configurations

#### Cons:

- Challenging to manufacture





# Payload Aerobraking Descent Control Strategy Selection and Trade (2/3)



#### **Design B:**

Design B heat shield is comprised of six rods. The rods and the extensive circular base of the heat shield will be enshrouded in cloth/fabric, rendering it a suitable aerodynamic braking device.



#### Pros:

Facile to fabricate

#### Cons:

- Inferior compactness
- Exorbitant unused space
- The ample base of the heat shield may bear an undue burden
- Inflexible to future modifications





# Payload Aerobraking Descent Control Strategy Selection and Trade (3/3)



### We selected: Design A

Design A encompasses a more expansive realm, thereby facilitating a more efficient deceleration of the payload's rate of descent. It is remarkably compact and adaptable to future configurations







## Payload Aerobraking Descent Stability Control Strategy Selection and Trade (1/3)



#### Design A:

Design A's heat shield relies upon atmospheric currents to attain descent stability, conceived to be aerodynamic and thereby enable the flow of air to mitigate the velocity of the payload's descent, all the while ensuring a smooth and stable plummet of the payload





## Payload Aerobraking Descent Stability Control Strategy Selection and Trade (2/3)



#### Design B:

Design B's heat shield also avails itself of atmospheric currents for stability during descent, though while the rods are arranged in an aerodynamic manner, the broad and flat circular foundation plate was not engineered to be aerodynamic, potentially leading to an unsteady plummet





## Payload Aerobraking Descent Stability Control Strategy Selection and Trade (3/3)



### We selected: Design A

The aerodynamic design of Design A portends a more stable descent trajectory





# Payload Rotation Control Strategy Selection and Trade (1/3)



### Design A:

Presenter: Nathaniel

Design A's heatshield is intended to be not excessively aerodynamic to prevent unstable rolling movement, yet the nose cone don't have any additional fins or patterns. Also the dome-like form which is relatively wide in angle helps to reduce incoming rotation.

Primarily, to compensate rotation in video capturing with camera (as required in the guidebook), it is also prepared camera active rotation feedback control using DC motor with PID, where the setpoint is the

azimuth and degree deviation as the feedback





# Payload Rotation Control Strategy Selection and Trade (2/3)



### Design B:

Presenter: Nathaniel

Design B's physical system also rely on the shorter form of heatshield, and but without any active control for camera capturing. Less in total weight of the Cansat since there is no rotating actuator which typically way heavier than other supporting components.





# Payload Rotation Control Strategy Selection and Trade (3/3)



### We selected: Design A

Way more reliable for the camera to capture video in one determined direction, regardless of any unwanted disturbances.





# Payload Parachute Descent Control Strategy Selection and Trade



### Payload Parachute Descent Strategy

#### Type 1 Configuration: Dome Type

- Effortless production
- Spill holes enhance stability
- Requires minimal space when compressed
- Significantly increased drag coefficient



#### Type 2 Configuration: X Type

- Enhanced stability
- Decreased drag coefficient
- Reduced weight
- · Facilitates stacking.





### **Descent Rate Estimates (1/3)**



#### **Descent Rate Estimation Overview**

- The terminal velocity during each phase of descent shall be quantified through a variety of parameters
- The utilization of a parachute will serve as a means to regulate the rate of descent of the probe.

#### Apogee to 100m

Presenter: Nathaniel

Parameter used : CanSat's round

heatshield diameter 28cm

**Desired rate**: parachute diameter **28cm** 

Decent rate of 12.5 +/- 5 m/s

#### From 100m to 0m

- Parameter used : CanSat's round parachute diameter 1m

**Desired rate**: parachute diameter **1m**Decent Rate of 5m/s +/- 3.5m/s





### **Descent Rate Estimates (2/3)**



### **Descent with Heatshield (Apogee to 100m)**

Using variabel to calculate the descent with heatshield

$$v = \sqrt{\frac{2 \times m \times g}{\rho \times A \times Cd}} \quad \text{``mightarrow} \quad \text{M = Mass ( Heatshield + Cansat) = +/- 0,9}$$

$$g = 9.8 \quad \text{m/s (gravitation)}$$

$$P = 1.225 \text{ kg/m^3 ( Air Density In Texas)}$$

- M = Mass (Heatshield + Cansat) = +/- 0.9kg

- » A = Area Used Heatshield (Circular area of half sphere)
- Cd = Drag Coefficient Half Sphere = 0,42



$$v = \sqrt{\frac{2 \times 0.9 kg \times 9.8 m/s}{1.225 kg/m^3 \times (\pi \times 0.16 \times 0.16) \times 0.42}} = 20.6 \text{ m/s}$$

By utilizing the Equation and Parameters utilized for calculating the descent rate of the payload utilizing the heat shield from an altitude of apogee to 100m, it was determined to be approximately 20.6 m/s, thereby adhering to the competition's requirement of a descent rate between 10m/s to 30m/s. The Parameter utilized in this calculation was the circular area of a hemispherical shape, calculated to be approximately 804 cm<sup>2</sup>, and the drag coefficient of a hemispherical shape, determined to be 0.42



### **Descent Rate Estimates (3/3)**



### **Descent with Parachute (100m to 0m)**

Using variabel to calculate the descent with parachute

$$v = \sqrt{\frac{2 \times m \times g}{\rho \times A \times Cd}} \quad \text{``M = Mass (Cansat) = +/- 0.6kg}$$

$$\text{``g = 9.8 m/s (gravitation)}$$

$$\text{``B = 4.225 kg/m^{3.2} (Air Density)}$$

- $P = 1.225 \text{ kg/m}^3$  (Air Density In Texas)
- $\rightarrow$  A = Area Used (parachute r = 50 cm)
- Cd = Drag Coefficient Dome Type (1.5)

$$v = \sqrt{\frac{2 \times 0.6 kg \times 9.8 m/s}{1.225 kg/m^3 \times (\pi \times 0.5 \times 0.5) \times 1.5}} = 2.8 \text{ m/s}$$



The descent velocity of the cansat from 100m to the ground will be calculated by applying a specific set of parameters to an equation. Utilization of a dome-shaped parachute is envisioned to regulate the rate of descent. The calculated descent velocity of 2.8 m/s, as derived from the equation, was deemed suitable in the competition's requirement of a velocity below 5 m/s, given the utilization of a 50 cm radius (100 cm diameter) dome-shaped parachute.





## **Mechanical Subsystem Design**

### **Alvin Hadar**



### **Mechanical Subsystem Overview (1/4)**





Presenter: Alvin Hadar

Parachute

Main Body Enclosure

**Material: HDPE** 

**Plastic** 

Camera Window Material: Acrylic





## **Mechanical Subsystem Overview (2/4)**







Heat Shield Attachment Lock System

Material: Filamen



### **Mechanical Subsystem Overview (3/4)**







## **Mechanical Subsystem Overview (4/4)**







## Payload Mechanical Layout of Components Trade & Selection (1/2)



#### **DESIGN A:**

Presenter: Alvin Hadar



## GENERAL DESCRIPTION (Chosen Design A)

Simpler release parachute mechanism

Larger space for Electric Component

Even weight distribution

More Compact, more spacing in the chassis

Combined material: ABS and Polyfoam

Have sharp edges



# Payload Mechanical Layout of Components Trade & Selection (2/2)



#### **DESIGN B**:

Presenter: Alvin Hadar



#### **GENERAL DESCRIPTION**

Simpler release parachute mechanism

Less space for Electric Component

Have a lighter weight.

More unstable because centre of mass is spred out.

More Fragile

Combined material: ABS and Polyfoam

Doesn't have sharp edges



## Payload Aerobraking Pre Deployment Configuration Trade & Selection (1/3)



#### **DESIGN A:**

Presenter: Alvin Hadar

The aerobraking heatshield utilizes is designed to surround the wall of the payload, which connected to centralized servo mechanism to keep the structure remained closed until the Cansat's sensory system (tilt sensor and altimeter) detected significant pitch movement, meaning it's deployed from the rocket.

By default, the closing angle of aerobraking structure isn't perfectly 90 degrees. Instead, it is given a margin to help our Cansat hold on to the wall of payload section of the rocket more rigidly, supported by spring's suspension of the heatshield.







# Payload Aerobraking Pre Deployment Configuration Trade & Selection (2/3)



#### **DESIGN B:**

Presenter: Alvin Hadar

The heat shield's slider is connected to its rods at the center below the payload section, and the movement of the former regulates the extension of the latter, as seen in the figure.

The slider is attached to a tensioned spring, which keeps the heat shield compactly stowed inside the Cansat. To keep the slider in this position and prevent the spring from slackening, a solenoid actuator is used, piercing the slider pole of the heat shield and retaining it until deployment.







## Payload Aerobraking Pre Deployment Configuration Trade & Selection (3/3)



We selected: Design A

Design A will be able to stow the payload more securely until the time of deployment, while only consume much lesser space







## Payload Aerobraking Deployment Configuration Trade & Selection (1/3)



#### **DESIGN B:**

Presenter: Alvin Hadar

The cansat is safeguarded inside the rocket and, upon reaching an altitude of 725 meters above the Earth's surface, it will initiate a descent, rotating to position the nose towards the Earth owing to its center of gravity. Within moments, the heatshield will be activated, shielding the payload from heat and decelerating the rate of descent.

Simultaneously, the actuator will receive an activation signal, inducing it to retract and relinquish the slider. This action will relieve the spring's tension and facilitate the slider's descent, deploying the heat shield in the process





# Payload Aerobraking Deployment Configuration Trade & Selection (2/3)



#### **DESIGN A:**

Presenter: Alvin Hadar

The payload is secured within the confines of the rocket and upon reaching the altitude of 725 meters above the earth's surface, will start to fall while rotating to the nose facing the earth due to its center of gravity. In a matter of seconds, the heatshield will deploy and protecting the payload from the heat while slowing down the descent rate.

When the altitude of 100 meters, heatshield and nose cone will be released from the payload and at the same time, parachute will be deployed and slows even more the cansat until it touches the ground.





# Payload Aerobraking Deployment Configuration Trade & Selection (3/3)



### We selected: Design A

Design A will mitigate potential deployment anomalies by utilizing a more meticulously structured and regulated deployment mechanism also efficent in use of space due to the integration of payload and the heatshield.





## Payload Aerobraking Release Trade & Selection





#### **Aerobraking Release Step By Step**

- 1 The nose cone is connected to the payload using a locking mechanism that secures the supports from the nose cone.
- 2. The system will engage the lock by sliding the locking bar.
- 3 Upon sliding, the nose cone will disengage and cause the heat shield to be realeased.

Presenter: Alvin Hadar

Nose Cone Post Deployment



# Payload Parachute Deployment Configuration Trade & Selection





#### **Parachute Deployment Step By Step**

- The parachute is carefully folded and tethered to the top of the payload
- 2. At a specified altitude, a servo located at its base activates, pulling the rubber band and releasing the parachute tether
- 3. The chute spontaneously unfurls to its full extent.
- 4. The parachute reduces the velocity of the payload until it reaches the ground.



# Payload Egg Containment Configuration Trade & Selection





- The egg container consists of two sections, each comprising two layers. The eggs will be placed inside the container, which is directly attached to the payload, by opening the top part of the container.
- The primary layer employs cushioning material aimed at diminishing interstices to minimize egg displacement within the container, therefore there is still some margin to hold on the ununiform size of egg (51 to 65 gr). The second layer is fabricated from styrofoam to enhance structural integrity while ensuring lightweight properties of the receptacle.



### **Electronics Structural Integrity**





- The payload components, including the Teensy 4.1, Xbee S3B, Battery, BME 280, MPU 9250, and GPS Ublox Neo, ASPD 4525 and JGA25-370 DC Motord are affixed to the payload utilizing standoff screws.
- The battery is secured within the payload via mounting fixtures.
- The pilot tube is affixed to its holder located at the underside of the payload, whereas the antenna is interconnected with the XBee S3B module and also a dedicated holder within the payload structure to accommodate the antenna securely.



## Mass Budget (1/4)



| Component Name                      | Mass (g) | Obtain Method | Margins (g) |
|-------------------------------------|----------|---------------|-------------|
| XBEE                                | 6,5      | D             | -           |
| Monopole Antenna                    | 5,00     | Е             | +/- 0,50    |
| MPU 9250                            | 2,00     | D             | -           |
| BME 280                             | 1,00     | D             | -           |
| Raspberry Pi v 1.3<br>Camera Module | 3        | D             | -           |
| Panasonic NCR18650                  | 95,00    | D             | -           |
| Holder 18650 2 slot                 | 6,00     | Е             | +/- 0,50    |
| LED                                 | 2,00     | E             | +/- 0,50    |
| Teensy 4.1                          | 10,00    | D             |             |
| GPS Ublox NEO-M8N                   | 16,00    | Website       |             |
| Buzzer                              | 5,00     | Website       |             |



Presenter: Alvin Hadar

# Mass Budget (2/4)



### **Electronics Mass Chart**

| Component Name         | Mass (g) | Obtain Method | Margins(g) |
|------------------------|----------|---------------|------------|
| Sandisk Micro-SD 8GB   | 1,00     | E             | +/- 0,50   |
| ASPD-4525 + Pitot tube | 33,00    | Website       | -          |
| SG-90 Microservo       | 9,00     | Е             | -          |
| MT3608                 | 1,00     | D             | +/- 0,50   |
| Switch                 | 2,00     | Е             | +/- 0,50   |
| Mosfet                 | 4,00     | Е             | +/- 0,50   |
| DRV8833 Motor Driver   | 4,00     | Е             | +/- 0,50   |
| JGA25-370+enconder     | 85,00    | Website       | -          |
| Cable + header         | 20,00    | Е             | +/- 0,50   |
| PCB                    | 30,00    | E             | +/- 0,50   |
| Total Electronics      | 340.5    |               | +/- 5      |



Presenter: Alvin Hadar

# Mass Budget (3/4)



### **Structural Mass Chart**

| Component<br>Name        | Mass (g) | Obtain Method | Margins (g) |
|--------------------------|----------|---------------|-------------|
| Parachute                | 6        | E,M           | +/- 0,50    |
| Nose Cone                | 140      | E,M           | +/- 0,50    |
| Aerobreaking Syte m      | 270      | D             |             |
| Structure Body           | 55       | D             | -           |
| Casing                   | 12       | D             | -           |
| Bent Acyrlic             | 15       | Е             | +/- 0,5     |
| Bottom and Top<br>Cover  | 2        | D             | +/- 0,5     |
| Micro spring             | 5        | 10            | +/- 0,5     |
| DC Motor Bracket         | 2        | М             |             |
| Screws, bolts, nuts, etc | 30       | E             | +/- 0,5     |
| Egg Containement         | 20       | E,M           | +/- 0,50    |
| Total Container          | 557      |               | +/- 3,5     |



# Mass Budget (4/4)



#### **Total Mass Chart**

| Component Name     | Mass (g)            | Obtain Method | Margins (g) |
|--------------------|---------------------|---------------|-------------|
| Electronics        | 340,5               |               | +/-5        |
| Structural         | 557                 | Е             | +/-3        |
| Total Mass Payload | 897,5               | Е             | +/- 8       |
| Margin             | 897,5 - 900 = -2,5g | Uncertainties | +/- 8       |

### Legends:

E = Estimate

D = Data Sheet

M = Measured

Presenter: Alvin Hadar

**If too heavy:** Change in one of the battery, research on alternative for heatshield structural material, heashield, nose cone, rods, etc.

If too light: Include additional sand-filled or metal body concentrated close to the center of mass of the Cansat





# Communication and Data Handling (CDH) Subsystem Design

Riki Syahputra



Presenter: Riki Syahputra

# Payload Command Data Handler (CDH) Overview







# Payload Processor & Memory Trade & Selection (1/2)



| Component              | Supply voltage (V) | Process or speed (MHz) |       | VO Pins           | Interfaces               | Memory                                                 | Size (mm) L<br>x W x H     | Weight | Cost (USD) |
|------------------------|--------------------|------------------------|-------|-------------------|--------------------------|--------------------------------------------------------|----------------------------|--------|------------|
| Teensy 4.<br>1         | 5                  | 600                    | 5     | 55 GPIO<br>35 PWM | 3 I2C<br>3 SPI<br>8 UART | Flash (79<br>36K)<br>RAM (10<br>24K)<br>EEPROM<br>(4K) | 60.96<br>x 17.78<br>x 1.57 | 10     | 31.5       |
| Raspberry<br>Pi Zero W | 5                  | 1000                   | 14.4  | 27 GPIO<br>4 PWM  | 2 I2C<br>2 SPI<br>1 UART | RAM<br>(512 MB)                                        | 65 x 30 x<br>5             | 9      | 35.00      |
| Raspbeery<br>Pi Pico   | 5                  | 133                    | 18.76 | 28 GPIO<br>16 PWM | 2 I2C<br>2 SPI<br>2 UART | Flash<br>(1984<br>KB)<br>SRAM<br>(264KB)               | 51 x 21 x<br>1             | 3      | 23.00      |

### Selected: Teensy 4.1 & Raspberry Pi Zero W

- Lightweight
- Good performance with fast boot time and processing speed
- Has many pins for each interface
- Has ADC pins

Presenter: Riki Syahputra

- Support and easy to interface with our selected camera
- Had the experience to work with







# Payload Processor & Memory Trade & Selection (2 of 2)



| Component                                         | Storage (GB) | Interface        | Transfer rate                              | Cost (USD) |
|---------------------------------------------------|--------------|------------------|--------------------------------------------|------------|
| SanDisk Ultra 8<br>GB Class 10/UHS-I<br>microSDHC | 8            | Directly mounted | Read: Up to 100MB/s<br>Write: Up to 65MB/s | 2,09       |
| V-Gen Micro SD<br>Card                            | 8            | Directly mounted | Read: Up to 100MB/s<br>Write: Up to 48MB/s | 5.00       |

# Selected: SanDisk Ultra 8 GB Class 10/UHS-I microSDHC

- Higher transfer rate
- Cheaper

Presenter: Riki Syahputra





Presenter: Riki Syahputra

# **Payload Real-Time Clock**



| Component               | Independent<br>Power Sourc<br>e | Interface | Built-in<br>Temperature Compe<br>nsated Crystal | Cost (USD)   |
|-------------------------|---------------------------------|-----------|-------------------------------------------------|--------------|
| Teensy 4.1 internal RTC | Yes (CR2032<br>)                | Internal  | No                                              | 0 (included) |
| DS3231                  | Yes (CR2032<br>)                | I2C       | Yes                                             | 2,40         |
| DS1307                  | Yes (CR2032<br>)                | I2C       | No                                              | 0.84         |

### Selected: **Teensy 4.1 internal RTC**

- Fast time retrieval
- No need to introduce another component





# **Payload Antenna Trade & Selection**



| Component                   | Frequency<br>Range | Gain | Pattern             | Connection | Cost(\$) |
|-----------------------------|--------------------|------|---------------------|------------|----------|
| Modem Router<br>GSM Antenna | 700-2700 Mhz       | 8dBi | Omnidirecti<br>onal | RP - SMA   | \$1.94   |
| WiFi Antenna                | 433-2700 Mhz       | 6dBi | Omnidirectio nal    | SMA        | \$2.58   |

### Selected Tilt Sensor: Modem Router GSM Antenna

- Higher in gain and narrower bandwidth.
- Low price.

Presenter: Riki Syahputra

Be able to connect in RP-SMA connection.





# **Payload Radio Configuration**



| Component    | Frequency Band<br>(MHz) | Transmitting<br>Power | Receiver Sensitivity |       |
|--------------|-------------------------|-----------------------|----------------------|-------|
| XBEE Pro S3B | 902 – 908               | Up to 24 dBm          | -101 dBm             | 51.02 |
| XBEE Pro S2C | 2.400 - 2.483           | Up to 15.9 dBm        | -100 dBM             | 41.42 |

#### RADIO CONFIGURATION

**NETID**: 2070

Presenter: Riki Syahputra

Configuration Mode: Unicast

Transmission Control: 1Hz data transmission to Ground

Station

The data transmission will be stopped if Ground Station commands the telemetry to be off.





Presenter: Riki Syahputra

# **Payload Telemetry Format (1/3)**



| INDEX | NDEX DATA DATA SAMPLES DESCRIPTION |         |                                                                                                                                                |  |
|-------|------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1     | TEAM_ID                            | 2070    | Team ID number                                                                                                                                 |  |
| 2     | MISSION TIME                       | 1:23:40 | Time elapsed since startup                                                                                                                     |  |
| 3     | PACKET COUNT                       | 1       | Counter of transmitted packets                                                                                                                 |  |
| 4     | MODE                               | F       | 'F' for flight mode and 'S' for simulation mode                                                                                                |  |
| 5     | STATE                              | А       | Using letters, A, B, C, D, E, F to represent current state of LAUNCH_WAIT, ASCENT, ROCKET_SEPARATION, DESCENT, HS_RELEASE, LANDED respectively |  |
| 6     | ALTITUDE                           | 35.2    | Current altitude measured in meters above sealevel, 1 decimal point accuracy                                                                   |  |
| 7     | AIR_SPEED                          | 12.3    | The air speed in meters per second measured with the pitot tube during both ascent and descent                                                 |  |
| 8     | HS_DEPLOYED                        | Р       | P indicates the heatshield is deployed, N otherwise.                                                                                           |  |
| 9     | PC_DEPLOYED                        | С       | 'C' indicates the Probe parachute is deployed (at 100 m), 'N' otherwise.                                                                       |  |
| 10    | TEMPERATURE                        | 25.6    | The temperature in degrees Celsius with a resolution of 0.1 degrees.                                                                           |  |



Presenter: Riki Syahputra

# Payload Telemetry Format (2/3)



| INDEX | DATA           | DATA SAMPLES | DESCRIPTION                                                                                   |
|-------|----------------|--------------|-----------------------------------------------------------------------------------------------|
| 11    | VOLTAGE        | 3.3          | The battery voltage in volts with a resolution of 0.1 volts.                                  |
| 12    | PRESSURE       | 1013.2       | The air pressure of the sensor used.                                                          |
| 13    | GPS TIME       | 65           | Time generated by the GPS measured in seconds                                                 |
| 14    | GPS_ALTITUDE   | 124.5        | altitude from the GPS receiver in meters above mean sea level with a resolution of 0.1 meters |
| 15    | GPS_LATITUDE   | 0.0001       | Lattitude coordinate generated by the GPS.                                                    |
| 16    | GPS_LO NGITUDE | 0.0003       | Longitude coordinate generated by the GPS.                                                    |
| 17    | GPS_SATS       | 8            | Number of GPS being tracked by the receiver                                                   |
| 18    | TILT_X, TILT_Y | 34,40        | angles of the CanSat X and Yaxes in degrees                                                   |
| 19    | ROT_Z          | 45.6         | The rotation angle in the z-axis in units of degrees.                                         |
| 20    | CMD_ECHO       | "CXON"       | the text of the last command received and processed by the CanSat, Either CXON or SP101325    |



# Payload Telemetry Format (3/3)



# The payload data format is sent at a frequency of 1 Hz

### Data Format

Presenter: Riki Syahputra

The data transmitted will follow the format below

TEAM\_ID, MISSION\_TIME, PACKET\_COUNT, MODE, STATE, ALTITUDE, AIR\_SPEED, HS\_DEPLOYED, PC\_DEPLOYED, TEMPERATURE, VOLTAGE, PRESSURE, GPS\_TIME, GPS\_ALTITUDE, GPS\_LATITUDE, GPS\_LONGITUDE, GPS\_SATS, TILT\_X, TILT\_Y, ROT\_Z, CMD\_ECHO

# Example data packet

1092,01:23:4Q,1,F,A,35.2,12.3,P,C,25.6,3.3,1Q13.2,65,124.5,Q.QQQ1,Q.QQ03,8,34.4Q,45.6,CXON

The presented format match the Competition Guide requirements



### **Payload Command Format**



## Type & Command Format

- CX: CMD,<TEAM\_ID>,CX,<ON\_OFF>
- ST: CMD,<TEAM\_ID>, ST,<UTC\_TIME>|GPS
- SIM: CMD,<TEAM\_ID>,SIM,<MODE>
- SIMP: CMD,<TEAMID>,SIMP,<PRESSURE>
- CAL: CMD,<TEAM ID>,CAL
- BCN: CMD,<TEAM ID>,BCN,ON|OFF

## Example Data

Presenter: Riki Syahputra

- CX: "CMD,2070,CX,ON"
- ST: "CMD,2070,ST,17:25:20"
- SIM: "CMD,2070,SIM,ENABLE"
- SIMP: "CMD,2070,SIMP,100000"
- CAL: "CMD,2070,CAL"
- BCN: "CMD,2070,BCN,ON"





# Electrical Power Subsystem (EPS) Design

**Daffa Farrell** 



# **EPS Overview**



| Component Type    | Purpose                                                                          |
|-------------------|----------------------------------------------------------------------------------|
| Battery           | Supplies power to the components, 3.6V nominal voltage                           |
| Switch / Mosfet   | Connects and disconnects power                                                   |
| Voltage Regulator | Adjusts the voltage to the appropriate level that the sensors and processor need |
| Sensor            | Provides environment measurement                                                 |
| Microcontroller   | Receive and process data obtained from sensor and to control the actuator        |
| Actuator          | To control the heatshield                                                        |



# Payload Electrical Block Diagram (1 of



2)





# Payload Electrical Block Diagram (2 of



2)





## Payload Power Trade & Selection



| No. | Model<br>Name              | Type            | Voltage<br>(V) | Capacity<br>(mAh) | Weight<br>(g) | Max continu<br>ous dischar<br>ge (A) | Size<br>(mm)            | Cost(\$) | Quant<br>ity |
|-----|----------------------------|-----------------|----------------|-------------------|---------------|--------------------------------------|-------------------------|----------|--------------|
| 1.  | Panasonic<br>NCR18650<br>B | Lithium<br>Ion  | 3.7            | 3400              | 48            | 4.875                                | 65 x 18                 | \$2      | 1            |
| 2.  | LG HG2                     | Lithium<br>Ion  | 3.6            | 3000              | 50            | 20                                   | 65 x 18                 | \$3.75   | 1            |
| 3.  | Vapcell<br>N40 18650       | Lithium<br>Ion  | 3.6            | 4000              | 48            | 10                                   | 18.3 ± 0.2 * 65.0 ± 0.3 | \$7.68   | 1            |
| 4.  | CR2302                     | Lithium<br>Cell | 3              | 230               | 3             | Lilan Dattam                         | 23 x 2                  |          |              |

Selected Battery: Panasonic NCR18650B &

#### **CR2302**

Very high capacity

High current capacity

Lighter weight

Presenter: Daffa Farrell

Suitable to our design



#### Li-lon Battery Configuration :

2 singular cell arranged in separately to each system affixed to a switch, furnishing the necessary energy to the payload.

**CR2302** is used to maintain the RTC clock whilst if there is momentary power less



# Payload Power Budget (1/5)



# Payload Power Budget (Main)

| No. | Component        | Voltage (<br>V) | Current<br>(A) | Duty Cycl<br>e (%) | Qty | Power (W)  | Power Consumption<br>(Wh) | Source                 |
|-----|------------------|-----------------|----------------|--------------------|-----|------------|---------------------------|------------------------|
| 1.  | Teensy<br>4.1    | 5               | 0.1            | 100                | 1   | 0.5        | 1.0                       | Estimate-<br>Datasheet |
| 2.  | BME 280          | 3.3             | 2.8u           | 100                | 1   | 0.00000924 | 0.00001848                | Estimate-<br>Datasheet |
| 3.  | XBEE<br>900 HP   | 3.3             | 0.23           | 100                | 1   | 0.759      | 1.518                     | Estimate-<br>Datasheet |
| 4.  | ASPD-<br>4525    | 3.3             | 0.005          | 100                | 1   | 0.017      | 0.034                     | Estimate-<br>Datasheet |
| 5.  | Ublox Neo<br>M8N | 5               | 0.025          | 100                | 1   | 0.125      | 0.25                      | Estimate-<br>Datasheet |



# Payload Power Budget (2/5)



| No. | Component                           | Voltage (<br>V) | Current<br>(A) | Duty Cycl<br>e (%) | Qty | Power (W) | Power Consumption<br>(Wh) | Source                 |
|-----|-------------------------------------|-----------------|----------------|--------------------|-----|-----------|---------------------------|------------------------|
| 6.  | MPU 9250                            | 3.3             | 0.1            | 100                | 1   | 0.33      | 0.66                      | Estimate-<br>Datasheet |
| 8.  | LED                                 | 5               | 0.02           | 100                | 1   | 0.1       | 0.2                       | Estimate               |
| 9.  | JGA25-37<br>0 DC<br>Motor w/<br>enc | 6               | 0.5            | 50                 | 1   | 3         | 3                         | Estimate-<br>Datasheet |
| 10. | DDRV883<br>3 Motor<br>Driver        | 6               | 3m             | 100                | 1   | 0.018     | 0.036                     | Estimate-<br>Datasheet |
| 11. | SG-90<br>Micro<br>servo             | 5               | 0.25           | 5                  | 5   | 6.25      | 0.625                     | Estimate               |



# Payload Power Budget (3/5)



# Total Final Power is power consumed by all of the boost converter with approximately 85% efficiency

| Total Power Consumed (Wh) | Total Final Power (W) |
|---------------------------|-----------------------|
| 7.323                     | 11.099                |

# Payload Power Budget

| Available Total Power (Wh) | Total Final Power Consumption (Wh) 2 hours |
|----------------------------|--------------------------------------------|
| 3.7 V x 3.4 Ah = 12.58     | 7.323                                      |

### **Power Consumption Margin**

 $(12.58 - 7.323)/12.58 \times 100\% = 41.79\%$ 

Our power source is sufficient to power the Payload (main) for 2 hours 50 minutes



# Payload Power Budget (4/5)



# Payload Power Budget (Camera)

| No. | Component                                    | Voltage (V) | Current (A) | Duty Cycle<br>(%) | Power (W)  | Power Consumption<br>(Wh) | Source                 |
|-----|----------------------------------------------|-------------|-------------|-------------------|------------|---------------------------|------------------------|
| 1.  | Raspberry<br>Pi Zero W                       | 3.3         | 0.3         | 100               | 0.99       | 1.98                      | Estimate-<br>Datasheet |
| 2.  | BME 280                                      | 3.3         | 2.8u        | 100               | 0.00000924 | 0.00001848                | Estimate-<br>Datasheet |
| 3.  | Raspberry<br>Pi Camera<br>Module Re<br>v 1.3 | 3.3         | 0.02        | 100               | 0.066      | 0.132                     | Estimate-<br>Datasheet |

 Total Final Power is power consumed by all of the boost converter with approximately 85% efficiency

| Total Power Consumed (Wh) | Total Final Power (W) |
|---------------------------|-----------------------|
| 2.11                      | 1.056                 |



# Payload Power Budget (5/5)



# Payload Power Budget (Camera)

| Available Total Power (Wh) | Total Final Power Consumption (Wh) 2 hours |
|----------------------------|--------------------------------------------|
| 3.7 V x 3.4 Ah = 12.58     | 2.11                                       |

### **Power Consumption Margin**

 $(12.58 - 2.11) / 12.58 \times 100\% = 83.23\%$ 

Our power source is sufficient to power the Payload (camera) for 3 hours 33 minutes





# Flight Software (FSW) Design

### Rifki Pratama



## FSW Overview (1/2)



### **Programming Languages:**

• C/C++

### **Development Environment:**

Arduino IDE

Presenter: Rifki Pratama

### **FSW Payload Tasks:**

- Obtain sensor readings and transmit them to the Ground Control Station in congruence with the CanSat specifications.
- Undertake the calibration of the sensors.
- Perform data processing.
- Preserve the system's information in the EEPROM for recovery contingencies.



# FSW Overview (2/2)







# Payload FSW State Diagram (1/2)







## Payload FSW State Diagram (2/2)



### FSW Data Recovery for Payload:

- Processor reset events may occur due to temporary power outages or software malfunctions. In such cases, previously recorded sensor measurement data will be retrieved from the EEPROM.
- Recoverable data includes mission time, packet count, and software state.
- Data recovery will occur at a rate of 1 Hz.



### **Simulation Mode Software**



The flight software of the Cansat will only transition to simulation mode upon receipt of the "SIM ENABLE" or "SIM ACTIVATE command from the Ground Control Station (GCS)

The GCS will transmit simulated barometric pressure readings, which will be monitored by flight software as SIMP commands, at a rate of 1 Hz to the payload, effectively replacing the readings from the actual pressure sensor in altitude calculations and for use by the flight software algorithms.

### **Simulation Mode Commands:**

#### **SIM - Control Command:**

CMD, <TEAM ID>, SIM, <MODE>

MODE: ENABLE to enable simulation mode, ACTIVATE to activate simulation mode, and DISABLE to both disable and deactivate simulation mode

### SIMP - Simulated Pressure Data

CMD,<TEAM ID>,SIMP,<PRESSURE>

PRESSURE unit in Pascal



# **Software Development Plan (1/3)**



# **Software Development Sequence Plan**





# **Software Development Plan (2/3)**



### **Prototype and Testing Approach:**

- Each component is individually evaluated using a breadboard setup
- Evaluation results are monitored via the Arduino Serial Monitor

### **Verification Procedure:**

- The planned CanSat sensors will be subjected to testing
- The algorithms for deployment of the secondary parachute and probe release will be evaluated
- The mechanism for data recovery will be thoroughly assessed.

### **Development Team**

- Riki Awal Syahputra
- Rifki Pratama

Presenter: Rifki Pratama

Lucinda Laurent



# **Software Development Plan (3/3)**



| Subsystem                   | Development Sequence                                                                                                                                                 |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sensors                     | <ol> <li>Selecting the most suitable sensors.</li> <li>Functionality test program each sensor with Teensy 4.1 (C/C++)</li> <li>Integrate all sensors code</li> </ol> |  |
| Xbee Radio                  | <ol> <li>Configure and test communication</li> <li>Integrate sensors with Xbee and ensure the data can be transmitted at 1Hz (Payload)</li> </ol>                    |  |
| Flight Control              | Program closed feedback control system                                                                                                                               |  |
| Probe Release<br>Mechanisms | Program release a probe that shall open a heat shield with a descent rate of 10 to 30 meters/seconds.                                                                |  |
| Software State              | Program change the state of the software using the altitude sensor as data                                                                                           |  |
| Audio Beacon                | Audio beacon for make it easier to search Cansat                                                                                                                     |  |
| Integrate All               | Integrate the software subsystem and ensure that the data can be transmitted at 1 Hz from payload to GCS                                                             |  |





# **Ground Control System (GCS) Design**

### **Lucinda Laurent**



Presenter: Lucinda Laurent

### **GCS Overview**







# **GCS** Design





| Specification                           |                                                                               |  |  |  |
|-----------------------------------------|-------------------------------------------------------------------------------|--|--|--|
| Ground station battery life             | Approximately 2.5 hours                                                       |  |  |  |
| Overheating mitigation                  | Cooling fan and umbrella to keep the ground station away from direct sunlight |  |  |  |
| Operating system auto-update mitigation | Disable the Windows Update feature                                            |  |  |  |



### **GCS Antenna Trade & Selection**



| Component                | Frequency<br>Range | Gain   | Pattern     | Range (KM) | Cost(\$) |
|--------------------------|--------------------|--------|-------------|------------|----------|
| Antenna Yagi<br>TXR185   | 700-2700 Mhz       | 25dBi  | Directional | ~ 30       | \$17.841 |
| BetaFPV<br>Antenna Moxon | 2400 Mhz           | 5.4dBi | Directional | ~ 11       | \$8.772  |
| Antenna Grid             | 2400-2483 Mhz      | 19dBi  | Directional | -          | \$12.865 |

#### Selected: Antenna Yagi TXR185

- The gain is greater than the others
- The distance coverage is very large
- Adequate frequency range
- Had some past experiences with it





Presenter: Lucinda Laurent

## GCS Software (1/3)



# How will Telemetry be displayed in real time and how will it be recorded?

- Telemetry Data will be displayed live in the user interface on the next slide
- In addition, all the data will be recorded to a CSV file named Flight\_2070.csv
- The software can also send Simulation mode command to the payload



## GCS Software (2/3)



- Commercial off the shelf (COTS) software packages used
  - WPF (Windows Presentation Foundation)
  - XCTU (Xbee Program Software)
- Real-time plotting software design





## GCS Software (3/3)



#### Command software and interface

- Telemetry ON/OFF
- Simulation Mode
- Set Time
- Simulated pressure Data
- Calibrate Altitude to Zero
- Control Audio Beacon

#### Simulation mode

Presenter: Lucinda Laurent

- The initiation of the mode shall commence through the transmission of a command signal from the Ground Control Station (GCS) to the Payload
- Upon receipt of the signal, the Payload shall then emit dummy or simulated data to the GCS
- The GCS software shall depict the data received via its designated port





# **CanSat Integration and Test**

### **Muhammad Aksal**



Presenter: Aksal

# CanSat Integration and Test Overview (1/2)



#### **Descent Control Tests**

- Parachute Testing
- Payload Descent Stability Testing

#### **Mechanical Subsystem Tests**

- Payload Heatshield and Parachute Deployment and Release Testing
- Payload Egg Containment Testing

#### **Sensor Subsystem Tests**

- Operational test
- Integration test

#### **CDH Tests**

- Communication test
- Data storage test

#### **EPS Subsystem Tests**

- Battery capacity test
- Current draw test

#### **FSW Subsystem Tests**

- Payload release mechanism test
- Camera stabilization test
- Reset Recovery (EEPROM) test

#### **GCS Tests**

- Communication Tests
- Laptop Battery durability tests



Presenter: Muhammad Aksal

# CanSat Integration and Test Overview (2/2)



| Test Plans Test Plans            |                                                                                                             |  |  |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subsystem level test             | Every subsystem test mentioned earlier will be carried out.                                                 |  |  |  |  |
| Integrated level functional test | Integration of the subsystems will be inspected. Any necessary adjustments and corrections will be applied. |  |  |  |  |
| Environmental test               | Testing the readiness of CanSat on various environmental condition                                          |  |  |  |  |
| Simulation test                  | Simulating the mission on CanSat.                                                                           |  |  |  |  |



## **Subsystem Level Testing Plan (1/2)**



#### **Sensors**

- The accuracy and validity of the output measurements will be confirmed by a comprehensive evaluation of the sensors' performance.
- The sensors will be integrated with the SBC and other subsystems, and then reexamined to ensure optimal performance in a range of situations.

#### CDH

- It will be verified whether the CDH components are operating proficiently, including the data transmission quality.
- Writing operation will be used to assess the SD card recording data permanently.

#### **EPS**

- The batteries will be tested to determine whether they can run at least two hours under the necessary load.
- To ensure that every part is operating as needed, the current draw will be measured.

#### Radio communications

Presenter: Muhammad Aksal

Range test and transmission quality will be carried out.



## **Subsystem Level Testing Plan (2/2)**



#### **FSW**

- After a thorough examination of the sensors accuracy and output reliability, it will be integrated with the SBC and other subsystems and retested to ensure optimal performance in a range of conditions.
- A rotating device will be utilized to mimic possible disturbance causing rolling action toward the Cansat, while monitoring the actual positional value versus the set point result plot

#### Mechanical

- It will be verified that the heatshield release mechanism works as intended.
- Both the deployment mechanism supported by the servo/stepper motor and the heat shield's capacity to work as intended will be functionally assessed.

#### **Descent Control**

Presenter: Muhammad Aksal

- CanSat's stability will be examined at different elevations.
- Drop tests will be carried out at various altitudes to verify that the heatshield and parachute are effective in slowing the payload's descent.



### **Integrated Level Functional Test Plan**



#### **Descent test**

Using an unmanned aerial vehicle, a drop test will be conducted to evaluate the
accelerometer and parachute's functioning. The electrical components will be
removed before the CanSat is dropped from different heights.

#### **Communication test**

 In order to account for any possible wind drift or changes in horizontal or vertical distance during the flight, the transmitter (on the CanSat) and receiver (on the ground) will be separated by 1000 meters to test the radio's transmission and receiving capabilities.

#### Mechanism test

 Experimenti under various settings, including activating the heat shield to evaluate its mechanism, to functionally test the servo/stepper motor mechanism and heat shield.

#### **Deployment test**

Presenter: Muhammad Aksal

 In order to test the payload deployment system and ensure that the payload is securely released from the container, the payload will be deployed utilizing a servo/stepper motor mechanism.



### **Environmental Test Plan (1/5)**



#### **Drop Test**

The purpose of this experiment is to determine whether the parachute and the point where it connects to the container can survive the turbulent separation from the rocket payload. A 61-cm non-stretch cord, with one end attached to a static point and the other to the parachute, will be used to simulate the drop test described in the CanSat Competition Guidebook. The CanSat's structure must not show any signs of fracturing or deformation because it will be dropped. Making sure the CanSat can withstand a shock of 30 Gs to its system is the aim of this test. The steps in the methodology are as follows:

- Turn on the CanSat.
- Verify the status of the telemetry transmission.
- With the cord attached, raise the CanSat until the eye bolt and parachute are in line with the cord's attachment points.
- IV. Release the CanSat.

Presenter: Muhammad Aksal

- $\mathsf{V}_{\scriptscriptstyle{\bullet}}$  Verify that there was no power outage for the CanSat.
- VI. Look for any indications of damage or perhaps loose parts.
- VII. Verify telemetry is still being received



## **Environmental Test Plan (2/5)**



#### **Thermal Test**

This test is meant to find out how well the CanSat and its container perform in a hot environment. The manual states that the Cansat can get up to 30 degree Celcius. The purpose of this test is to determine whether temperature variations will cause any materials to deform, weaken, change in properties, or malfunction. A temperature chamber will be set up and heated using a heat gun in order to achieve this. The steps are as follows:

- Place the CanSat within the chamber that is heated.
- . Activate the CanSat.

Presenter: Muhammad Aksal

- III. Shut down and lock the heat chamber.
- IV. Turn on the heating element.
- V. When the interior temperature hits 60 degrees Celsius, pay attention to the temperature and turn off the heat source. When the temperature falls to 55 degrees Celsius, turn it back on.
- VI. For two hours, keep the test circumstances in place.
- VII. To ensure that the CanSat has survived the heat exposure and is operating as intended, turn off the heat source and perform functional tests as well as a visual inspection.
- VIII. Test all mechanisms and structures to make sure their integrity hasn't been compromised while the CanSat is still hot. To avoid getting hurt, use caution.
- X. Verify that the strength of the composite materials and epoxy joints has not diminished.



## **Environmental Test Plan (3/5)**



#### **Vibration Test**

In this test, a random orbital sander is used. Instead of spinning, this portable power tool works in an erratic rhythm. Random orbital sanders operate at set orbits per minute (opm) of between 200 and 233 Hz, or 12,000 and 14,000 opm. The test makes use of the sander's power-up and power-down cycles. The sander takes a moment to reach its maximum speed of 14,000 opm. It does not do it quickly. The CanSat may experience some resonances during this transitional phase. The following are the steps in the procedure:

- . Turn the CanSat on.
- II. Check to make sure accelerometer data is being gathered.
- III. Turn on the sander.
- Wait five seconds after the sander has reached its maximum speed.
- V. Reduce the sander's power to a complete stop.
- VI. Steps iii to v should be repeated four times.
- VII. Examine the CanSat for wear and tear and for functionality.
- VIII. Verify that data from accelerometers is still being gathered.
- X. Turn off the CanSat.



## **Environmental Test Plan (4/5)**



#### **Fit Check**

Presenter: Muhammad Aksal

This check includes some dimension measurement tools to ensure our Cansat fit properly in side the open space payload section. Rulers, measurement tape measurement bow, and caliper, etc will be utilized to verify the accuracy of our design. Additionally, similar size container is prepared to pre-verify the before in-competition check. The steps in the procedure are as follows:

- I. Measuring Nose Cone and its shoulder diameter/radius
- II. Measuring Nose Cone length
- Werifying symmetry of the Nose Cone, with slope degree in some points as the parameter
- V.Confirm the dimension of payload in length and diameter below the maximum, as well as the angle deviation
- V. Prepare and self-test in our container prototype, to verify proper fit.



### **Environmental Test Plan (5/5)**



#### **Vacuum Test**

Presenter: Muhammad Aksal

The purpose of this test is to confirm the payload(s)' deployment operation. A bucket or pail that holds five gallons (18+ liters) can be used to easily construct a vacuum chamber. You can cover the bucket with a polycarbonate sheet that is ¼ inch or 6 mm thick, or you can use a lid. Acrylic should not be used since it can break. To pull a vacuum, using a shop vacuum or vacuum cleaner:

- 1. Place the CanSat, fully charged and configured, in the vacuum chamber and suspend it.
- II. To begin drawing a vacuum, turn on the vacuum.
- III. Once the max height has been attained, stop the vacuum and keep an eye on the telemetry.
- V. As the air gradually enters the vacuum chamber, keep an eye on the CanSat's performance.
- V. Gather and store telemetry data.
- VI. Saved telemetry data access opened for judges to review



### **Simulation Test Plan**



#### Simulation Test

Presenter: Muhammad Aksal

With the use of a drone, we will conduct a drop test to mimic the mission's circumstances. In an attempt to duplicate the mission, we will attempt to drop the CanSat at different altitudes. This test will be performed to ensure that every system is functional and able to withstand the real-world conditions. We'll ensure that all ensuing mechanisms function correctly and that telemetry data collection is timely. The pressure used in this test will come from the CSV data that is sent by the ground station rather than the pressure sensor in order to comply with the requirements.





# **Mission Operations & Analysis**

**Daffa Farrell** 



# Overview of Mission Sequence of Events (1/4)



| Arrival                                      | Pre-Launch                                                                                                                              | Launch Preparation                  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|
| Team's arrival at Launch site                | GCS on site deployment                                                                                                                  | Assembly of CanSat major components |  |
| Inspection of the CanSat's                   | Replacement and adjustment of the electronics (if necessary)                                                                            | Mechanic inspection                 |  |
| condition  Verification of the CanSat's      | Remediation of any damages sustained by the CanSat (if                                                                                  | Ensure payload is securely packed.  |  |
| weight and dimensions                        | applicable)                                                                                                                             | Ensure CanSat structural            |  |
| Preparing and examining the GCS and antennas | Peruse the field score sheet and checklist.                                                                                             | integrity Final examination before  |  |
|                                              | Communicational inspection and labeling of the receptacle and payload with the team's contact information (including the email address) | launch.                             |  |



# Overview of Mission Sequence of Events (2/4)



| Mission                                                   | Recovery                                      | Analysis                                                               |  |
|-----------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------|--|
|                                                           |                                               |                                                                        |  |
| Initiating the Launch                                     | Recovery initiation                           | Data analysis and acquisition                                          |  |
| Monitoring the ascent and descent of the CanSat           | Using the buzzer and GPS to locate the CanSat |                                                                        |  |
| Preparation of the retrieval crew                         |                                               | Transmitting the telemetry data file to the line judges for evaluation |  |
| Recovery crew preparation                                 |                                               |                                                                        |  |
| Observing the landing area                                |                                               | Evaluating the performance of the launch day team                      |  |
| Ensuring the security of the data received from the probe |                                               | Evaluation of the mission                                              |  |
|                                                           |                                               | Preparation for the development of the Post Flight Review              |  |



Presenter: Daffa Farrell

# Overview of Mission Sequence of Events (3/4)



## Team member roles and responsibilities

| Roles                   | Member name          |
|-------------------------|----------------------|
| Mission Control Officer | Radian Epifania      |
|                         | Alexander Maximilian |
| CanSat Crew             | Daffa Farrell        |
|                         | Rakha Raditya        |
|                         | Riki Ardiansyah      |
| Ground Station Crew     | Lucinda Laurent      |
|                         | Rakha Raditya        |
|                         | Alvin Hadar          |
| CanSat Recovery Crew    | Nathaniel            |
|                         | Muhammad Aksal       |



Presenter: Daffa Farrell

# Overview of Mission Sequence of Events (4/4)



#### **Antenna Construction and Ground System Setup**

- 1. Prepare the Ground Control Station's equipment.
- 2. Connect the XBEE Pro s3b to the laptop via an XBEE adapter, then use an RP-SMA cable to connect the antenna to the XBEE.
- 3. To ensure that all information is received, do a communicational evaluation.

|                                                             | CanSat Assembly                                                                                                                                    |                            | CanSat Test                                                                                                                                                                               |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CanSat. 2. Fix each of 3. A technical 4. Verify the CanSat. | of the key components of the constituent in place. all inspection of the mechanisms. structural integrity of the last examination prior to launch. | 1.<br>2.<br>3.<br>4.<br>5. | Verification of the compatibility and mass of the CanSat. Communicational examination Calibration of sensors. Inspection of electrical components A thorough investigation of the CanSat. |



# Mission Operations Manual Development Plan



#### **Mission Operation Manual Outline:**

Configuration of Ground Control Station

The arrangement and examination of communication systems, and testing of aerial communications.

Assemblage of CanSat

The amalgamation of the CanSat's primary elements, and a comprehensive assessment of its apparatus.

CanSat Integration with Rocket

A thorough clearance inspection of the CanSat, and a final examination prior to launch.

Launch Procedure

Presenter: Daffa Farrell

To be executed by the event coordinator.

Extraction Procedure

Retrieval and data procurement.

Overall Objectives of Missionary Operations Manual

To guarantee that every team member comprehends the competition regulations and procedures during the competition, to ensure the team is capable of conducting the competition safely.



## **CanSat Location and Recovery**



## **Container and Payload Recovery**

Container will be red colored to aid recovery search

A sonorous signal of a high-pitched buzzer shall serve as an aid to the retrieval search

The final recorded position of the GPS shall facilitate the retrieval search

The abode and the point of contact of the team's delegate shall be inscribed on the outer structure of the component





The purpose of this section is to summarize and cross reference the compliance to the CanSat Competition Mission Guide requirements.

# **Requirements Compliance**

Radian Epifania



### **Requirements Compliance Overview**



The majority of the CanSat's payload and container designs are complete. What remains to be progressed on is the realization and testing.

#### **Color Explanation**

Presenter: Radian Epifania

- Green = The majority of the work has been completed.
- Yellow = Requirements that must be met before the CanSat may be built and tested. We
  estimated that we may finish in the upcoming weeks. After fabricating and inspecting the
  structure's orderly parts, we'll proceed with further testing and modeling.
- Red = Serious issue, as of the present moment, there is none.



## **Requirements Compliance (1/9)**



| Rqmt<br>Num | Requirement                                                                                                                                                                            | Comply / No<br>Comply /<br>Partial | X-Ref<br>Slide(s) Demon<br>strating<br>Compliance | Team Comments<br>or Notes                               |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------|---------------------------------------------------------|
| C1          | The Cansat shall function as a nose cone during the rocket ascent portion of the flight.                                                                                               | Comply                             | 17, 18, 19,<br>20, 21                             |                                                         |
| C2          | The Cansat shall be deployed from the rocket when the rocket motor ejection charge fires.                                                                                              | Partial                            | 41                                                | In design yes, but<br>we haven't created a<br>prototype |
| С3          | After deployment from the rocket, the Cansat shall deploy its heat shield/aerobraking mechanism.                                                                                       | Comply                             | 62, 65                                            |                                                         |
| C4          | A silver or gold mylar streamer of 50 mm width and 1.5 meters length shall be connected to the Cansat and released at deployment. This will be used to locate and identify the Cansat. | No Comply                          | -                                                 | We haven't included in our design                       |
| C5          | At 100 meters, the Cansat shall deploy a parachute and release the heat shield.                                                                                                        | Comply                             | 68                                                |                                                         |
| C6          | Upon landing, the Cansat shall stop transmitting data.                                                                                                                                 | Comply                             | 98, 99                                            |                                                         |
| C7          | Upon landing, the Cansat shall activate an audio beacon.                                                                                                                               | Comply                             | 98, 99                                            |                                                         |
| C8          | The Cansat shall carry a provided large hens egg with a mass range of 51 to 65 grams                                                                                                   | Comply                             | 70                                                |                                                         |
| C9          | 0 altitude reference shall be at the launch pad.                                                                                                                                       | Comply                             | 98, 112                                           |                                                         |



# Requirements Compliance (2/9)



| Rqmt<br>Num | Requirement                                                                                                                                                                                                          | Comply / No<br>Comply /<br>Partial | X-Ref<br>Slide(s) Demon<br>strating<br>Compliance | Team Comments or Notes                                                   |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------|
| C10         | During descent with the heat shield deployed, the descent rate shall be between 10 to 30 m/s.                                                                                                                        | Partial                            | 51                                                | In design yes,<br>but we haven't created<br>a prototype                  |
| C11         | At 100 meters, the Cansat shall have a descent rate of less than 5 m/s.                                                                                                                                              | Partial                            | 52                                                | In design yes,<br>but we haven't created<br>a prototype                  |
| C12         | Cost of the Cansat shall be under \$1000. Ground support and analysis tools are not included in the cost of the Cansat. Equipment from previous years shall be included in this cost, based on current market value. | Comply                             | 150                                               |                                                                          |
| S1          | The Cansat mass shall be 900 grams +/- 10 grams without the egg being installed.                                                                                                                                     | Comply                             | 75                                                |                                                                          |
| S2          | Nose cone shall be symmetrical along the thrust axis.                                                                                                                                                                | Comply                             | 23                                                |                                                                          |
| S3          | Nose cone radius shall be exactly 71 mm                                                                                                                                                                              | Partial                            |                                                   | Tiny margin is intended, add layering later to fit the size is preferred |
| S4          | Nose cone shoulder radius shall be exactly 68 mm                                                                                                                                                                     | Partial                            | 23                                                | Tiny margin is intended, add layering later to fit the size is preferred |
| S5          | Nose cone shoulder length shall be a minimum of 50 mm                                                                                                                                                                | Comply                             | 23                                                |                                                                          |
| S6          | Cansat structure must survive 15 Gs vibration                                                                                                                                                                        | Partial                            | 56                                                | In design yes, but<br>we haven't created a<br>prototype                  |



## Requirements Compliance (3/9)



| Rqmt<br>Num | Requirement                                                                                                                                                | Comply / No<br>Comply /<br>Partial | X-Ref<br>Slide(s) Demon<br>strating<br>Compliance | Team Comments or Notes                                  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------|---------------------------------------------------------|
| S7          | Cansat shall survive 30 G shock.                                                                                                                           | Partial                            | 58                                                | In design yes,<br>but we haven't created<br>a prototype |
| S8          | The Cansat shall perform the function of the nose cone during rocket ascent.                                                                               | Comply                             | 17                                                |                                                         |
| <b>S</b> 9  | The rocket airframe can be used to restrain any deployable parts of the Cansat but shall allow the Cansat to slide out of the payload section freely.      | Partial                            | 17, 18, 62                                        | In design yes,<br>but we haven't created<br>a prototype |
| S10         | The rocket airframe can be used as part of the Cansat operations.                                                                                          | Comply                             | 17                                                |                                                         |
| S11         | All electronics and mechanical components shall be hard mounted using proper mounts such as standoffs, screws, or high performance adhesives.              | Comply                             | 71                                                |                                                         |
| M1          | No pyrotechnical or chemical actuators are allowed.                                                                                                        | Comply                             | -                                                 | We don't use any                                        |
| M2          | Mechanisms that use heat (e.g., nichrome wire) shall not be exposed to the outside environment to reduce potential risk of setting the vegetation on fire. | Comply                             | -                                                 | We don't use any                                        |
| МЗ          | All mechanisms shall be capable of maintaining their configuration or states under all forces.                                                             | Partial                            | 56                                                | In design yes,<br>but we haven't created<br>a prototype |
| M4          | Spring contacts shall not be used for making electrical connections to batteries. Shock forces can cause momentary disconnects.                            | Comply                             | 71                                                |                                                         |



## Requirements Compliance (4/9)



| Rqmt<br>Num | Requirement                                                                                                                                                                                                                                          | Comply / No<br>Comply /<br>Partial | X-Ref<br>Slide(s) Demon<br>strating<br>Compliance | Team Comments<br>or Notes                               |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------|---------------------------------------------------------|
| M5          | The Cansat shall deploy a heat shield after deploying from the rocket.                                                                                                                                                                               | Comply                             | 66                                                |                                                         |
| M6          | The heat shield shall be used as an aerobrake and limit the descent rate to 10 to 30 m/s.                                                                                                                                                            | Partial                            | 51                                                | In design yes,<br>but we haven't created<br>a prototype |
| M7          | At 100 meters, the Cansat shall release a parachute to reduce the descent rate to less than 5 m/s.                                                                                                                                                   | Partial                            | 52                                                | In design yes,<br>but we haven't created<br>a prototype |
| M8          | The Cansat shall protect a hens egg from damage during all portions of the flight.                                                                                                                                                                   | Partial                            | 69                                                | In design yes,<br>but we haven't created<br>a prototype |
| M9          | If the nose cone is to be considered as part of the heat shield, the documentation shall identify the configuration.                                                                                                                                 | Comply                             | 42                                                |                                                         |
| M10         | After the Cansat has separated from the rocket and if the nose cone portion of the Cansatis to be separated from the rest of the Cansat, the nose cone portion shall descend at less than 10 meters/second using any type of descent control device. | Comply                             |                                                   | We don't use this method                                |
| E1          | Lithium polymer batteries are not allowed.                                                                                                                                                                                                           | Comply                             | 91                                                |                                                         |
| E2          | Battery source may be alkaline, Ni-Cad, Ni-MH or Lithium. Lithium polymer batteries are not allowed. Lithium cells must be manufactured with a metal package similar to 18650 cells. Coin cells are allowed.                                         | Comply                             | 91                                                |                                                         |
| E3          | Easily accessible power switch is required                                                                                                                                                                                                           | Comply                             | 89                                                |                                                         |

137



## **Requirements Compliance (5/9)**



| Rqmt<br>Num | Requirement                                                                                                                                                                                                                            | Comply / No<br>Comply /<br>Partial | X-Ref<br>Slide(s) Demon<br>strating<br>Compliance | Team Comments<br>or Notes                               |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------|---------------------------------------------------------|
| E4          | Power indicator is required.                                                                                                                                                                                                           | Comply                             | 89                                                |                                                         |
| E5          | The Cansat shall operate for a minimum of two hours when integrated into the rocket.                                                                                                                                                   | Comply                             | 94, 96                                            |                                                         |
| X1          | XBEE radios shall be used for telemetry. 2.4 GHz Series radios are allowed. 900 MHz XBEE radios are also allowed.                                                                                                                      | Comply                             | 82                                                |                                                         |
| X2          | XBEE radios shall have their NETID/PANID set to their team number                                                                                                                                                                      | Comply                             | 82                                                |                                                         |
| Х3          | XBEE radios shall not use broadcast mode.                                                                                                                                                                                              | Comply                             | 82                                                |                                                         |
| X4          | The Cansat shall transmit telemetry once per second.                                                                                                                                                                                   | Partial                            | 82                                                | In design yes,<br>but we haven't created<br>a prototype |
| X5          | The Cansat telemetry shall include altitude, air pressure, temperature, battery voltage, Cansat tilt angles, air speed, command echo, and GPS coordinates that include latitude, longitude, altitude and number of satellites tracked. | Comply                             | 83, 84, 85                                        |                                                         |
| SN1         | Cansat shall measure its speed with a pitot tube during ascent and descent.                                                                                                                                                            | Comply                             | 34                                                |                                                         |



## **Requirements Compliance (6/9)**



| Rqmt<br>Num | Requirement                                                                                                                         | Comply / No<br>Comply /<br>Partial | X-Ref<br>Slide(s) Demon<br>strating<br>Compliance | Team Comments or Notes |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------|------------------------|
| SN2         | Cansat shall measure its altitude using air pressure.                                                                               | Comply                             | 31                                                |                        |
| SN3         | Cansat shall measure its internal temperature.                                                                                      | Comply                             | 32                                                |                        |
| SN4         | Cansat shall measure its angle stability with the aerobraking mechanism deployed.                                                   | Comply                             | 35                                                |                        |
| SN5         | Cansat shall measure its rotation rate during descent                                                                               | Comply                             | 36                                                |                        |
| SN6         | Cansat shall measure its battery voltage.                                                                                           | Comply                             | 33                                                |                        |
| SN7         | The Cansat shall include a video camera pointing horizontally.                                                                      | Comply                             | 17, 38                                            |                        |
| SN8         | The video camera shall record the flight of the Cansat from launch to landing.                                                      | Comply                             | 99, 100                                           |                        |
| SN9         | The video camera shall record video in color and with a minimum resolution of 640x480.                                              | Comply                             | 38                                                |                        |
| G1          | The ground station shall command the Cansat to calibrate the altitude to zero when the Cansat is on the launch pad prior to launch. | Comply                             | 99, 100, 112                                      |                        |



Presenter: Sandi Sihombing

# **Requirements Compliance (7/9)**



| Rqmt<br>Num | Requirement                                                                                                                                                                                        | Comply / No<br>Comply /<br>Partial | X-Ref<br>Slide(s) Demon<br>strating<br>Compliance | Team Comments<br>or Notes                               |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------|---------------------------------------------------------|
| G2          | The ground station shall generate csv files of all sensor data as specified in the Telemetry Requirements section.                                                                                 | Comply                             | 110                                               |                                                         |
| G3          | Telemetry shall include mission time with 1 second or better resolution                                                                                                                            | Partial                            | 85                                                | In design yes,<br>but we haven't created<br>a prototype |
| G4          | Configuration states such as zero altitude calibration shall be maintained in the event of a processor reset during launch and mission.                                                            | Comply                             | 98                                                |                                                         |
| G5          | Each team shall develop their own ground station.                                                                                                                                                  | Comply                             | 108, 109                                          |                                                         |
| G6          | All telemetry shall be displayed in real time during descent on the ground station.                                                                                                                | Comply                             | 110, 111                                          |                                                         |
| G7          | All telemetry shall be displayed in engineering units (meters, meters/sec, Celsius, etc.) and the units shall be indicated on the displays.                                                        | Comply                             | 111                                               |                                                         |
| G8          | Teams shall plot each telemetry data field in real time during flight.                                                                                                                             | Comply                             | 110                                               |                                                         |
| G9          | The ground station shall include one laptop computer with a minimum of two hours of battery operation, XBEE radio and an antenna.                                                                  | Comply                             | 108                                               |                                                         |
| G10         | The ground station must be portable so the team can be positioned at the ground station operation site along the flight line. AC power will not be available at the ground station operation site. | Comply                             | 108                                               |                                                         |



## Requirements Compliance (8/9)



| Rqmt<br>Num | Requirement                                                                                                                                                                                                                                          | Comply / No<br>Comply /<br>Partial | X-Ref<br>Slide(s) Demon<br>strating<br>Compliance | Team Comments<br>or Notes |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------|---------------------------|
| G11         | The ground station software shall be able to command the payload to operate in simulation mode by sending two commands, SIMULATION ENABLE and SIMULATION ACTIVATE.                                                                                   | Comply                             | 102                                               |                           |
| G12         | When in simulation mode, the ground station shall transmit pressure data from a csv file provided by the competition at a 1 Hz interval to the Cansat.                                                                                               | Comply                             | 102                                               |                           |
| G13         | The ground station shall use a table top or handheld antenna                                                                                                                                                                                         | Comply                             | 108                                               |                           |
| G14         | Because the ground station must be viewed in bright sunlight, the displays shall be designed with that in mind, including using larger fonts (14 point minimum), bold plot traces and axes, and a dark text on light background theme.               | Comply                             | 111                                               |                           |
| G15         | The ground system shall count the number of received packets.  Note that this number is not equivalent to the transmitted packet counter, but it is the count of packets successfully received at the ground station for the duration of the flight. | Comply                             | 85                                                |                           |
| F1          | The flight software shall maintain a count of packets transmitted which shall increment with each packet transmission throughout the mission. The value shall be maintained through processor resets.                                                | Comply                             | 85                                                |                           |
| F2          | The Cansat shall maintain mission time throughout the whole mission even with processor resets or momentary power loss.                                                                                                                              | Comply                             | 101                                               |                           |
| F3          | The Cansat shall have its time set to within one second UTC time prior to launch.                                                                                                                                                                    | Comply                             | 112                                               |                           |



## Requirements Compliance (9/9)



| Rqmt<br>Num | Requirement                                                                                                                                                                   | Comply / No<br>Comply /<br>Partial | X-Ref<br>Slide(s) Demon<br>strating<br>Compliance | Team Comments<br>or Notes |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------|---------------------------|
| F4          | The flight software shall support simulated flight mode where the ground station sends air pressure values at a one second interval using a provided flight profile csv file. | Comply                             | 102                                               |                           |
| F5          | In simulation mode, the flight software shall use the radio uplink pressure values in place of the pressure sensor for determining the payload altitude.                      | Comply                             | 102                                               |                           |
| F6          | The payload flight software shall only enter simulation mode after it receives the SIMULATION ENABLE and SIMULATION ACTIVATE commands.                                        | Comply                             | 102                                               |                           |





# Management

Radian Epifania



## CanSat Budget – Hardware (1/4)



### **Electronic Components**

| Part Name                     | Qty | Unit Cost (\$) | Total Cost (\$) | Status | Consideration |
|-------------------------------|-----|----------------|-----------------|--------|---------------|
| XBEE                          | 1   | 51,58          | 51,58           | Re-Use | Actual        |
| GPS Ublox Neo<br>M8N          | 1   | 11,89          | 11,89           | New    | Actual        |
| BME 280                       | 2   | 3,90           | 7,80            | New    | Actual        |
| MPU 9250                      | 1   | 1,90           | 1,90            | New    | Actual        |
| Teensy 4.1                    | 1   | 54,87          | 54,87           | New    | Actual        |
| Raspberry Pi<br>Camera Module | 1   | 5,46           | 5,46            | New    | Actual        |
| ASPD-4525                     | 1   | 62,07          | 62,07           | New    | Actual        |
| Monopole<br>Antenna           | 1   | 1,90           | 1,90            | New    | Actual        |
| Step Up<br>MT3608             | 3   | 0,33           | 0,99            | New    | Actual        |



# CanSat Budget – Hardware (2/4)



#### **Electronic Components**

| Part Name              | Qty | Unit Cost (\$) | Total Cost (\$) | Status | Consideration |
|------------------------|-----|----------------|-----------------|--------|---------------|
| IRFZ44N                | 2   | 1,00           | 2,00            | New    | Actual        |
| Panasonic<br>NCR18650B | 2   | 6,32           | 12,64           | New    | Actual        |
| Micro-SD 8GB           | 1   | 2,60           | 2,60            | New    | Actual        |
| DRV8833                | 1   | 0,57           | 0,57            | New    | Actual        |
| JGA25-370<br>w/enc     | 1   | 9,62           | 9,62            | New    | Actual        |
| SG-90                  | 2   | 0,82           | 1,64            | New    | Actual        |
| Raspberry Pi<br>Zero W | 1   | 22,17          | 22,17           | Re-Use | Actual        |
|                        |     | Total          | 249,7           |        |               |
|                        |     | Margin         | 24,97           |        |               |



# CanSat Budget – Hardware (3/4)



#### **Mechanical Components**

| Part Name               | Qty | Unit Cost (\$) | Total Cost (\$) | Status | Consideration |
|-------------------------|-----|----------------|-----------------|--------|---------------|
| Heatshield              | 1   | 9.5            | 9.5             | New    | Estimation    |
| Payload and<br>Nosecone | 1   | 24             | 24              | New    | Estimation    |
| Parachute               | 1   | 4.7            | 4.7             | New    | Actual        |
|                         |     | Total          | 38.2            |        |               |
|                         |     | Margin         | 3.8             |        |               |
|                         |     |                |                 |        |               |



## CanSat Budget – Hardware (4/4)



### **Ground Control System**

| Part Name           | Qty | Unit Cost (\$) | Total Cost (\$) | Status | Consideration |
|---------------------|-----|----------------|-----------------|--------|---------------|
| XBEE USB Shield     | 1   | 4,52           | 4,52            | Re-Use | Estimation    |
| XBEE Pro 900HP      | 1   | 51,58          | 51,58           | Re-Use | Estimation    |
| Yagi Antenna TXR185 | 1   | 17,48          | 17,48           | New    | Estimation    |
|                     |     | Total          | 73,58           |        |               |
|                     |     | Margin         | 7,36            |        |               |
|                     |     |                |                 |        |               |



## CanSat Budget – Other Costs (1/3)



#### Income

| Source           | Amount(\$) |
|------------------|------------|
| Last Year income | 0          |
| University       | 400        |
| Sponsors         | 0          |
| Total            | 400        |



# CanSat Budget – Other Costs (2/3)



| Other Cost                    | Quantity               | Unit Cost              | Total Cost             | Consideration          |
|-------------------------------|------------------------|------------------------|------------------------|------------------------|
| Test Facilites<br>& Equipment | Provided by University | Provided by University | Provided by University | Provided by University |
| Airfare                       | 10                     | 1000                   | 10000                  | Estimated              |
| Hotel<br>& Expenses           | 10                     | 550                    | 5500                   | Estimated              |
| Food                          | 10                     | 50                     | 500.00                 | Estimated              |
| Visa                          | 10                     | 160                    | 1600.00                | Actual                 |
| Competition En try Fee        | 1                      | 200.00                 | 200.00                 | Actual                 |
|                               |                        | Total                  | 17800                  |                        |
|                               |                        | Margin                 | 1780                   |                        |



### CanSat Budget – Other Costs (3/3)



| Categories              | Cost(\$) |
|-------------------------|----------|
| Mechanical & Electrical | 287.9    |
| Ground Control Station  | 73.58    |
| Other Costs             | 17800    |
| Total                   | 18161.48 |
| Margin                  | 1816.148 |
| Income                  | 400      |

Procurement of sponsors shall be expeditiously accomplished. In the event that sponsors remain elusive, each consortium member shall resort to utilizing their private funds to defray the expenses.



### **Program Schedule Overview**



| Summary                              |     |            |            | Oc | t |   | Ī | Nov | V |   | T | De | С |   | Т | Jar | 1 |   | П | Fel | ) |   | П | Ma | ır |   |   | <b>А</b> р | r |   |   | Ma | ay |   |   | Ju | n       | _ |   |
|--------------------------------------|-----|------------|------------|----|---|---|---|-----|---|---|---|----|---|---|---|-----|---|---|---|-----|---|---|---|----|----|---|---|------------|---|---|---|----|----|---|---|----|---------|---|---|
| Activity                             | Day | Start      | End        | 1  | 2 | 3 | 4 | 1   | 2 | 3 | 4 | 1  | 2 | 3 | 4 | 1   | 2 | 3 | 4 | 1   | 2 | 3 | 4 | 1  | 2  | 3 | 4 | 1          | 2 | 3 | 4 | 1  | 2  | 3 | 4 | 1  | 2       | 3 | 4 |
| Cansat Competition                   | 252 | 10/1/2023  | 6/8/2024   |    |   |   |   |     |   |   |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    |         |   |   |
| Team Member Recruitment              | 8   | 10/1/2023  | 10/8/2023  |    |   |   |   |     |   | T |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    | $\Box$  |   |   |
| PDR Preparation                      | 115 | 10/9/2023  | 1/31/2024  |    |   |   |   |     |   |   |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    | $\Box$  |   |   |
| Cansat Registration                  | 1   | 11/2/2023  | 11/2/2023  |    |   |   |   |     |   |   |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    | $\prod$ |   |   |
| Midterm Exam                         | 5   | 11/16/2023 | 11/20/2023 |    |   |   |   |     |   | T |   | T  |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    | $\Box$  |   |   |
| Finalterm Exam                       | 5   | 12/18/2023 | 12/22/2023 |    |   |   |   |     | T |   |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    | $\prod$ |   |   |
| New Year Holiday                     | 375 | 12/23/2023 | 12/31/2024 |    |   |   |   |     |   |   |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    | $\Box$  |   |   |
| PDR Submission                       | 1   | 2/2/2024   | 2/2/2024   |    |   |   |   |     |   |   |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    | $\prod$ |   |   |
| PDR Presentation                     | 19  | 2/5/2024   | 2/23/2024  |    |   |   |   |     |   |   |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    |         |   |   |
| Finding Sponsors                     | 147 | 1/3/2024   | 5/28/2024  |    |   |   |   |     |   |   |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    |         |   |   |
| Integration, Testing,<br>Maintenance | 116 | 2/3/2024   | 5/28/2024  |    |   |   |   |     |   |   |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    |         |   |   |
| 2nd Midterms Exam                    | 6   | 3/25/2024  | 3/30/2024  |    |   |   |   |     |   |   |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    |         |   |   |
| CDR Preparation                      | 54  | 1/31/2024  | 3/24/2024  |    |   |   |   |     |   |   |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    | $\Box$  |   |   |
| CDR Submission                       | 1   | 3/29/2024  | 3/29/2024  |    |   |   |   |     | T |   |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    |         |   |   |
| FDR Preparation                      | 89  | 3/1/2024   | 5/28/2024  |    |   |   |   |     |   |   |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    |         |   |   |
| 2nd Finalterm Exam                   | 6   | 6/3/2024   | 6/8/2024   |    |   |   |   |     |   |   |   |    |   |   |   |     |   |   |   |     |   |   |   |    |    |   |   |            |   |   |   |    |    |   |   |    |         |   |   |

Red = Done Blue = On Progress



### **Detailed Program Schedule (1/4)**



| Mechanic                                         | İ                | İ    | İ         | İ         | 1 6 | DCT | 1 | . N | OV      | T   | DE     | - C    | T | JAN    |   | F      | EB      | 1       | MA      | R | 1       | APR     |               | M       | AY      |         | JUN    |
|--------------------------------------------------|------------------|------|-----------|-----------|-----|-----|---|-----|---------|-----|--------|--------|---|--------|---|--------|---------|---------|---------|---|---------|---------|---------------|---------|---------|---------|--------|
| Activity                                         | Assignee         | Days | Start     | End       | _   | 2 3 | 4 | _   | 3       | 4 1 | _      |        | 1 |        | _ | _      |         | 4 1     |         |   | -       |         | $\rightarrow$ | _       | 3       | 4 1     | 2 3 4  |
| Cansat Competition                               | All Team         |      | 10/1/2023 | 6/8/2024  |     |     |   |     |         |     |        |        |   |        |   |        |         |         |         |   |         |         |               |         |         |         | -      |
| Team Member Recruitment                          | All Team         | 8    | 10/1/2023 | 10/8/2023 |     |     | П |     | П       |     |        |        |   |        |   |        | П       | 1       | П       |   | П       |         | П             | 1       | П       | T       |        |
| Analyzing Guidebook                              | All Team         | 1    | 10/8/2023 | 10/8/2023 |     |     | Н | 十   | П       | 十   | $\top$ | $\top$ | П | $\top$ | Н | $\top$ | П       | 十       | П       | 十 | П       | 十       | П             | $\top$  | П       | $\top$  | $\Box$ |
| Researching from previous PDR                    | All Team         | 1    | 10/8/2023 | 10/8/2023 |     |     | П | 十   | П       | 十   | $\top$ | $\top$ | П |        | Т | $\top$ | П       | 十       | П       | 十 | П       | 十       | П             | T       | П       | 十       | П      |
| Researching the mission                          | All Team         | 7    | 10/8/2023 | 10/14/202 |     |     | П | T   | П       | 十   |        |        | П |        | T |        | П       | T       | П       | T | П       | T       | П             | T       | П       | T       | П      |
| Designing the parachute system                   | Nathaniel, Alvin | 96   | 10/28/202 | 1/31/2024 | П   |     |   |     | П       |     |        | T      |   |        |   |        | П       | T       | П       |   | П       | T       | П             | T       | П       | T       | П      |
| Designing the aerobraking shield                 | Nathaniel        | 96   | 10/28/202 | 1/31/2024 | П   |     |   |     | П       |     |        |        |   |        |   |        | П       |         | П       |   | П       |         | П             |         | П       |         |        |
| Designing the egg containement                   | Aksal            | 65   | 11/28/202 | 1/31/2024 |     |     | П |     |         |     |        |        |   |        |   |        |         |         | П       |   |         |         | П             |         | П       |         |        |
| Designing the payload                            | Alvin            | 65   | 11/28/202 | 1/31/2024 |     |     | П |     |         |     |        |        |   |        |   |        |         |         | П       |   |         |         | П             |         | П       |         |        |
| Designing rotation control                       | Mechanic         | 65   | 11/28/202 | 1/31/2024 |     |     |   |     |         |     |        |        |   |        |   |        | П       |         | П       |   | П       |         | П             |         | П       |         |        |
| Material Trade and Mass Budget Estimate Mechanic | Mechanic         | 29   | 1/3/2024  | 1/31/2024 |     |     |   |     | Ш       |     |        |        |   |        |   |        |         |         | Ш       |   | Ш       |         | Ш             |         | Ш       |         |        |
| Finishing PDR                                    | All Team         | 31   | 1/3/2024  | 2/2/2024  |     |     |   |     |         |     |        |        |   |        |   |        |         |         |         |   |         |         |               |         |         |         |        |
| PDR Submission                                   | All Team         | 1    | 2/2/2024  | 2/2/2024  |     |     |   |     | Ш       |     |        |        |   |        |   |        |         |         | Ш       |   |         |         |               |         |         |         |        |
| PDR Presentation                                 | All Team         | 19   | 2/5/2024  | 2/23/2024 |     |     |   |     | Ш       |     |        |        |   |        |   |        |         |         | Ш       |   |         |         | Ш             |         | Ш       |         |        |
| Ordering for materials                           | All Team         | 22   | 2/7/2024  | 2/28/2024 |     |     |   |     |         |     |        |        |   |        |   |        |         |         | Ш       |   |         |         |               |         |         |         |        |
| Implementing the payload                         | Mechanic         | 47   | 2/8/2024  | 3/25/2024 |     |     |   |     | Ш       |     |        |        |   |        |   |        |         |         |         |   |         |         | Ш             |         |         |         |        |
| Testing the prototype                            | All Team         | 47   | 2/8/2024  | 3/25/2024 |     |     |   |     | Ш       |     |        |        |   |        |   |        |         |         |         |   |         |         |               |         |         |         |        |
| Finishing Mechanic Part of CDR                   | Mechanic         | 25   | 3/1/2024  | 3/25/2024 |     |     |   |     | Ш       |     |        |        |   |        |   |        |         |         |         |   | Ш       |         | Ш             |         | Ш       |         |        |
| CDR Submission                                   | All Team         | 1    | 3/29/2024 | 3/29/2024 |     |     |   |     |         |     |        |        |   |        |   |        |         |         |         |   |         |         |               |         |         |         |        |
| CDR Presentation                                 | All Team         | 19   | 4/8/2024  | 4/26/2024 |     |     |   |     | П       |     |        |        |   |        |   |        |         |         | $\prod$ |   |         |         |               |         |         |         |        |
| FDR Preparation                                  | All Team         | 89   | 3/1/2024  | 5/28/2024 |     |     |   |     | Ш       |     |        |        |   |        |   |        |         |         | Ш       |   |         |         | П             |         | П       |         |        |
| 2nd Final Term Exam                              | All Team         | 5    | 6/3/2024  | 6/7/2024  | Ш   |     | Ш |     | П       |     |        |        |   |        |   |        | П       | $\perp$ | Ш       |   | $\prod$ | $\perp$ | П             | $\perp$ | П       |         |        |
| Cansat Competition Main Event                    | All Team         | 2    | 6/8/2024  | 6/9/2024  |     |     |   |     | $\prod$ |     |        |        |   |        |   |        | $\prod$ | $\perp$ | $\prod$ |   | $\prod$ | $\perp$ | $\prod$       | $\perp$ | $\prod$ | $\perp$ |        |

Red = Done Blue = On Progress



### **Detailed Program Schedule (2/4)**



| Electric                                               |                       |      |            |            | 0   | CT      | i       | N | OV      | Ť       | DE | C                  | İ ,     | JAN          |   | FI                 | EB      | Ť            | MA | R       |   | APR |   | M                  | AY      | Ī   | JUN       |           |
|--------------------------------------------------------|-----------------------|------|------------|------------|-----|---------|---------|---|---------|---------|----|--------------------|---------|--------------|---|--------------------|---------|--------------|----|---------|---|-----|---|--------------------|---------|-----|-----------|-----------|
| Activity                                               | Assignee              | Days | Start      | End        | 1 2 | 3       | 4 1     | 2 | 3 4     | 4 1     | 2  | 3 4                | 1       | 2 3          | 4 | 1 2                | 3 4     | 4 1          | 2  | 3 4     | 1 | 2 3 | 4 | 1 2                | 3 4     | 1 1 | 2 3       | 4         |
| Cansat Competition                                     | All Team              | 252  | 10/1/2023  | 6/8/2024   |     |         |         |   |         |         |    |                    | П       |              |   |                    |         |              | П  |         | П |     | П | T                  | П       |     |           | П         |
| Team Member Recruitment                                | All Team              | 8    | 10/1/2023  | 10/8/2023  | П   | П       | Т       | Т | П       | Т       | П  | Т                  | П       | Т            | П | Т                  | П       | Т            | П  | Т       | П | Т   | П | Т                  | П       | П   | П         | П         |
| Analyzing Guidebook                                    | All Team              | 21   | 10/8/2023  | 10/28/2023 |     | П       |         | Т | П       | Т       | П  | Т                  | П       | Т            | П | Т                  | П       | Т            | П  | Т       | П | Т   | П | Т                  | П       | П   | П         | П         |
| Researching from previous PDR                          | All Team              | 21   | 10/8/2023  | 10/28/2023 |     | П       |         | П | П       | Т       | П  | Т                  | П       | Т            | П | Т                  | П       | Т            | П  | Т       | П | Т   | П | Т                  | П       | П   | П         | П         |
| Researching the mission                                | All Team              | 7    | 10/8/2023  | 10/14/2023 |     | П       |         | П | П       | Т       | П  |                    | П       | Т            | П |                    | П       | Т            | П  | Т       | П |     | П |                    | П       | П   | $\Box$    | $\square$ |
| Researching on sensors and cameras                     | Electric              | 11   | 10/28/2023 | 11/7/2023  |     |         |         |   | П       | Т       | П  |                    | П       | Т            | П | Т                  | П       | Т            | П  | Т       | П |     | П |                    | П       | П   | $\Box$    | $\square$ |
| Researching on actuators                               | Daffa                 | 11   | 10/28/2023 | 11/7/2023  |     |         |         |   |         |         | П  |                    | П       |              |   |                    |         |              | П  |         | П |     | П |                    | П       |     | $\coprod$ | П         |
| Researching on microcontrollers                        | Rakha                 | 11   | 10/28/2023 | 11/7/2023  |     |         |         |   |         |         | П  |                    | П       |              |   |                    |         |              | П  |         | П |     | П |                    | П       |     | Ш         | П         |
| Researching on battery                                 | Daffa                 | 11   | 10/28/2023 | 11/7/2023  |     |         |         |   |         |         | П  |                    | П       |              |   |                    |         |              | П  |         | П |     | П |                    | Ш       |     | Ш         | П         |
| Researching on Antennas                                | Daffa, Rakha          | 14   | 11/8/2023  | 11/21/2023 |     | Ш       |         |   |         |         | П  |                    | Ш       |              |   |                    |         |              | П  |         | П |     | Ш |                    | Ш       |     | $\square$ | П         |
| Understanding the mission to be adapted to electronics | Electric              | 14   | 11/8/2023  | 11/21/2023 |     | Ш       |         |   |         |         | Ш  |                    | Ш       |              |   |                    |         |              | Ш  |         | Ш |     | Ш |                    | Ш       |     | $\square$ | П         |
| Designing a PCB design for the payload                 | Electric,<br>Mechanic | 11   | 11/28/2023 | 12/8/2023  |     |         |         |   |         |         |    |                    |         |              |   |                    |         |              |    |         |   |     |   |                    |         |     |           |           |
| Designing a GCS electrical components                  | Electric              | 33   | 12/8/2023  | 1/9/2024   |     | П       |         |   |         | Т       |    |                    |         |              | П |                    |         | Т            | П  | Т       | П |     | П |                    | П       |     | П         | П         |
| Designing the antenna                                  | Electric              | 33   | 12/8/2023  | 1/9/2024   | П   | П       | Т       | Т | П       | Т       |    | Т                  | П       |              | П | Т                  | П       | Т            | П  | Т       | П | Т   | П | Т                  | П       | П   | П         | П         |
| Finishing PDR                                          | All Team              | 30   | 1/3/2024   | 2/1/2024   | П   | П       |         | П | П       | Т       | П  |                    |         | Т            | П |                    | П       | Т            | П  | Т       | П |     | П | Т                  | П       | П   | П         | П         |
| PDR Submission                                         | All Team              | 1    | 2/2/2024   | 2/2/2024   | П   | П       |         | П | П       | Т       | П  |                    | П       | Τ            |   |                    | П       | Т            | П  | Т       | П |     | П |                    | П       | П   | $\Box$    | П         |
| PDR Presentation                                       | All Team              | 19   | 2/5/2024   | 2/23/2024  |     | П       |         |   |         | Т       | П  |                    | П       | T            |   |                    |         | Т            | П  |         | П |     | П |                    | П       |     | $\Box$    | $\square$ |
| Ordering for parts                                     | All Team              | 26   | 1/3/2024   | 1/28/2024  |     | П       |         |   |         |         | П  |                    |         |              |   |                    |         |              | П  |         | П |     | П |                    | П       |     | $\square$ | П         |
| Printing PCB                                           | Daffa                 | 21   | 2/8/2024   | 2/28/2024  |     | П       |         |   |         |         | П  |                    | П       |              |   |                    |         |              | П  |         | П |     | П |                    | П       |     | Ш         | П         |
| Collaborate with Programming to integrate FSW          | All Team              | 23   | 2/28/2024  | 3/21/2024  | П   | П       |         |   |         | Т       | П  |                    |         | Т            | П |                    |         |              |    |         | П |     | П |                    | П       |     | $\Box$    | П         |
| Testing prototype Finishing electrical part of CDR     | All Team              | 44   | 2/8/2024   | 3/22/2024  | П   | П       |         |   | П       | Т       | П  |                    | П       | Т            | П |                    |         |              |    |         | П |     | П |                    | П       |     | $\Box$    | П         |
| CDR Submission                                         | All Team              | 1    | 3/29/2024  | 3/29/2024  | П   | П       |         |   | П       | Т       | П  |                    | П       | Т            | П |                    | П       | Т            | П  |         |   |     | П |                    | П       |     | $\Box$    | $\square$ |
| CDR Presentation                                       | All Team              | 19   | 4/8/2024   | 4/26/2024  |     | $\prod$ | $\perp$ |   | Ш       | $\perp$ | Ш  | $oxed{\mathbb{L}}$ | $\prod$ | $oxed{\Box}$ |   | $oxed{oxed}$       | Ш       | $oxed{oxed}$ | П  | $\perp$ |   |     |   |                    | Ш       |     |           | $\prod$   |
| FDR Preparation                                        | All Team              | 89   | 3/1/2024   | 5/28/2024  |     | П       | Ι       |   | $\prod$ | Ι       | П  | Ι                  | П       | Ι            |   | Ι                  | $\prod$ |              |    |         |   |     |   |                    |         |     |           | $\prod$   |
| 2nd Final Term Exam                                    | All Team              | 5    | 6/3/2024   | 6/7/2024   |     | П       | Τ       | Γ | Π       | Τ       | П  | Τ                  | П       | Τ            |   | Τ                  | Π       | Τ            | П  | Т       | П | Τ   |   |                    |         |     |           | П         |
| Cansat Competition Main Event                          | All Team              | 2    | 6/8/2024   | 6/9/2024   |     | П       | Ι       | L | Ш       | Ι       | П  | Ι                  | П       | I            |   | $oxed{\mathbb{L}}$ | Ш       | Ι            | П  | Ι       | П | Ι   | П | $oxed{\mathbb{T}}$ | $\prod$ |     |           | П         |

Red = Done Blue = On Progress



### **Detailed Program Schedule (3/4)**



| Programming                                 | İ        | İ    |           |           |         | OC. | Т                  | Г | NO    | V   | Г | DE | 0   | Т | JA | N | Ť   | F | EB | Ť | N   | IAR |   | - | APR                     | 2 |   | MAY                     |         |         | JUN | _ |
|---------------------------------------------|----------|------|-----------|-----------|---------|-----|--------------------|---|-------|-----|---|----|-----|---|----|---|-----|---|----|---|-----|-----|---|---|-------------------------|---|---|-------------------------|---------|---------|-----|---|
| Activity                                    | Assignee | Days | Start     | End       | 1       | 2 3 | 3 4                | 1 | 2     | 3 4 | 1 | 2  | 3 4 | 1 | 2  | 3 | 4 1 | 2 | 3  | 4 | 1 2 | 3   | 4 | 1 | 2 3                     | 4 | 1 | 2 3                     | 4       | 1       | 2 3 | 4 |
| Cansat Competition                          | All Team | 252  | 10/1/2023 | 6/8/2024  |         | Τ   |                    |   | Т     |     |   |    | Τ   |   |    | Т |     |   |    | I | Τ   |     |   |   |                         |   |   |                         |         |         |     | Г |
| Team Member Recruitment                     | All Team | 8    | 10/1/2023 | 10/8/2023 |         |     |                    |   | T     |     |   |    | Τ   |   |    | T |     |   | П  | Τ | Τ   | П   |   |   | $oldsymbol{\mathbb{T}}$ |   |   |                         | $\prod$ | $\Box$  |     | E |
| Analyzing Guidebook                         | All Team | 1    | 10/8/2023 | 10/8/2023 |         |     |                    |   | П     |     |   |    | Ι   |   |    | T |     |   | П  | Τ | Ι   |     |   |   | m I                     |   |   |                         | $\prod$ | $\Box$  |     |   |
| Researching from previous PDR               | All Team | 1    | 10/8/2023 | 10/8/2023 |         |     |                    |   |       |     |   |    |     |   |    |   |     |   |    |   |     |     |   |   | $\perp$                 |   |   |                         | $\prod$ | $\prod$ |     |   |
| Researching the mission                     | All Team | 7    | 10/8/2023 | 10/14/202 |         |     |                    |   | T     |     |   |    | Τ   |   |    | T |     |   | П  | Τ | Τ   | П   |   |   | $oldsymbol{\mathbb{T}}$ |   |   |                         | $\prod$ | $\Box$  |     | E |
| Dividing workload between GUI and Payload   | Lucinda  | 7    | 10/8/2023 | 10/14/202 |         |     |                    |   |       |     |   |    |     |   |    |   |     |   | П  |   |     |     |   |   | $\perp$                 |   |   |                         | $\Box$  | $\Box$  |     |   |
| Designing the UI                            | Lucinda  | 79   | 10/28/202 | 1/14/2024 |         | T   |                    |   |       |     |   |    | Τ   |   |    |   |     |   | П  | T | Τ   |     |   |   | $\mathbf{I}$            |   |   |                         | $\prod$ | $\prod$ |     |   |
| Analyzing what need to be put on the UI     | Riki     | 10   | 10/28/202 | 11/6/2023 | П       | Τ   |                    |   | T     |     |   |    | Τ   |   |    | T |     |   | П  | Τ | Τ   | П   |   |   | $oldsymbol{\mathbb{T}}$ |   |   |                         | $\prod$ | $\Box$  |     | E |
| Serial Port coding                          | Lucinda  | 15   | 11/21/202 | 12/5/2023 | П       | Т   |                    |   |       |     |   |    | Ι   |   |    | T |     |   | П  | Τ | Ι   |     |   |   | m I                     |   |   |                         | $\prod$ | $\Box$  |     |   |
| UI coding                                   | Lucinda  | 71   | 11/21/202 | 1/30/2024 |         | T   |                    |   |       |     |   |    | Τ   |   |    |   |     |   | П  | T | Τ   |     |   |   | $\mathbf{I}$            |   |   |                         | $\prod$ | $\prod$ |     |   |
| Binding Data with UI                        | Lucinda  | 61   | 12/1/2023 | 1/30/2024 | П       |     |                    |   |       |     |   |    |     |   |    |   |     |   | П  |   |     |     |   |   | $ m oxed{I}$            |   |   |                         | $\prod$ | $\Box$  |     |   |
| Individual Sensor coding                    | Rifki    | 61   | 12/1/2023 | 1/30/2024 | П       | Т   |                    |   |       |     |   |    | Ι   |   |    |   |     |   | П  | Τ | Ι   |     |   |   | m I                     |   |   |                         | $\prod$ | $\Box$  |     |   |
| Finishing PDR                               | Riki     | 30   | 1/3/2024  | 2/1/2024  |         |     |                    |   |       |     |   |    |     |   |    |   |     |   |    |   |     |     |   |   | $\perp$                 |   |   |                         | $\prod$ | $\prod$ |     |   |
| PDR Submission                              | All Team | 1    | 2/2/2024  | 2/2/2024  | П       |     |                    |   |       |     |   |    |     |   |    |   |     |   | П  |   |     |     |   |   | $ m oxed{I}$            |   |   |                         | $\prod$ | $\Box$  |     |   |
| PDR Presentation                            | All Team | 19   | 2/5/2024  | 2/23/2024 | П       | Т   |                    |   |       |     |   |    | Ι   |   |    | T |     |   |    | Τ | Ι   |     |   |   | m I                     |   |   |                         | $\prod$ | $\Box$  |     |   |
| Integrate Programming with electrical parts | Rifki    | 30   | 2/28/2024 | 3/28/2024 |         | Т   |                    |   | T     |     |   |    | Τ   |   |    |   |     |   |    |   | Ι   |     |   |   | $\mathbf{I}$            |   |   |                         | $\prod$ | $\prod$ |     |   |
| Prototype Testing                           | All Team | 30   | 2/28/2024 | 3/28/2024 | П       |     |                    |   |       |     |   |    |     |   |    |   |     |   |    |   |     |     |   |   | $ m oxed{I}$            |   |   |                         | $\prod$ | $\Box$  |     |   |
| Finishing Programming part of CDR           | Riki     | 30   | 2/28/2024 | 3/28/2024 | П       | Т   |                    |   |       |     |   |    | Ι   |   |    | T |     |   |    |   |     |     |   |   | m I                     |   |   |                         | $\prod$ | $\Box$  |     |   |
| CDR Submission                              | All Team | 1    | 3/29/2024 | 3/29/2024 |         | Т   |                    |   | Т     |     |   |    | Τ   |   |    |   |     |   | П  | Τ | Τ   |     |   |   | $\mathbf{I}$            |   |   |                         | $\prod$ | $\prod$ |     |   |
| CDR Presentation                            | All Team | 19   | 4/8/2024  | 4/26/2024 | $\prod$ | Ι   | $oxed{\mathbf{L}}$ |   | I     | T   |   |    | Ι   |   |    | I | Ι   | Γ | П  | Ι | Ι   |     |   |   |                         |   |   | Ι                       | $\prod$ |         |     | Г |
| FDR Preparation                             | All Team | 89   | 3/1/2024  | 5/28/2024 | Π       |     |                    |   |       |     |   |    |     |   |    |   |     |   |    |   |     |     |   |   |                         |   |   |                         |         | $\prod$ |     |   |
| 2nd Final Term Exam                         | All Team | 5    | 6/3/2024  | 6/7/2024  | $\prod$ | Ι   | $oxed{\mathbb{L}}$ |   | floor |     |   |    | Ι   |   |    |   | I   |   | Ш  | Ι | Ι   |     |   |   | $oldsymbol{\mathbb{I}}$ |   |   | $oldsymbol{\mathbb{I}}$ | $\prod$ |         |     |   |
| Cansat Competition Main Event               | All Team | 2    | 6/8/2024  | 6/9/2024  | П       | Т   | Т                  | П | Т     | Т   |   | Т  | Τ   | П | П  | Т | Т   | Γ | П  | Τ | Τ   | П   | П | T | Т                       | П | П | Т                       | П       |         |     | Г |

Red = Done Blue = On Progress



### **Detailed Program Schedule (4/4)**



| Managerial                              |          | İ    |           |           |   | ОС | T   | Π | NO | V   | Π | DE | С   | Τ | JA | N   | T   | FE | В | Τ   | M | AR | Т | Д   | PR |   | 1   | ИΑΥ | T       |                         | JUN |        |
|-----------------------------------------|----------|------|-----------|-----------|---|----|-----|---|----|-----|---|----|-----|---|----|-----|-----|----|---|-----|---|----|---|-----|----|---|-----|-----|---------|-------------------------|-----|--------|
| Activity                                | Assignee | Days | Start     | End       | 1 | 2  | 3 4 | 1 | 2  | 3 4 | 1 | 2  | 3 4 | 1 | 2  | 3 4 | 1 1 | 2  | 3 | 4 1 | 2 | 3  | 4 | 1 2 | 3  | 4 | 1 2 | 2 3 | 4       | 1                       | 2 3 | 4      |
| Cansat Competition                      | All Team | 252  | 10/1/2023 | 6/8/2024  |   |    |     |   |    |     |   |    | Т   |   |    |     |     |    |   |     |   |    |   |     |    |   |     |     |         |                         |     | $\Box$ |
| Team Member Recruitment                 | All Team | 8    | 10/1/2023 | 10/8/2023 |   |    |     | П |    |     |   | П  |     |   |    |     | П   |    |   |     |   |    |   |     |    | П |     |     | $\prod$ | $oldsymbol{\mathbb{T}}$ | I   | $\Box$ |
| Analyzing Guidebook                     | All Team | 1    | 10/8/2023 | 10/8/2023 |   |    |     |   |    |     |   | П  |     |   |    |     |     |    |   |     |   |    |   |     |    |   |     |     |         | T                       | Ι   | $\Box$ |
| Researching from previous PDR           | All Team | 1    | 10/8/2023 | 10/8/2023 |   |    |     | П |    |     |   | П  |     |   |    |     | П   |    |   | T   |   |    |   |     | Π  |   |     |     |         | Т                       | Ι   | $\Box$ |
| Researching the mission                 | All Team | 7    | 10/8/2023 | 10/14/202 |   |    |     | П |    |     |   | П  | Τ   |   |    | Τ   | Т   |    |   | Τ   | Г |    |   | Т   | Π  | П |     |     | П       | Ι                       | Ι   | $\Box$ |
| Looking for internal funding & sponsors | All Team | 160  | 11/22/202 | 4/29/2024 | П | T  | Т   | П |    |     |   |    | Τ   |   |    |     |     |    |   | Τ   |   |    |   |     |    |   |     |     | П       | Т                       | Τ   | П      |
| Making Proposal                         | All Team | 22   | 11/1/2023 | 11/22/202 | П |    |     |   |    |     |   | П  | Τ   |   |    | Τ   | П   |    |   | Τ   |   |    |   |     | Γ  | П |     |     | П       | Т                       | Т   | П      |
| Making an Estimate of Budget Needed     | All Team | 52   | 1/3/2024  | 2/23/2024 | П | T  |     | П | П  |     | Г | П  | T   |   | П  | Т   | Т   |    |   | Г   |   |    |   | Т   | Γ  | П | Т   |     | П       | Т                       | Т   | П      |
| Sending Proposal                        | Alex     | 12   | 6/1/2024  | 6/12/2024 | П | Т  | Т   | П | Т  | Т   | Г | П  | Т   | П |    | Т   | Т   |    |   | Т   | Т | П  | T | Т   | Г  | П | Т   | Т   | П       | T                       | Т   | П      |
| Administration of Cansat                | Radian   | 32   | 10/1/2023 | 11/1/2023 | П | Т  | Т   |   | Т  | Т   | Г | П  | Т   | П | П  | Т   | Т   | П  | Т | Т   | Т | П  | T | Т   | Г  | П | Т   | Т   | П       | Т                       | Т   | П      |
| Finishing PDR                           | All Team | 30   | 1/3/2024  | 2/1/2024  |   |    |     | П |    |     |   | П  | Τ   |   |    |     |     |    |   | Τ   | Г |    | T | Т   | Γ  | П |     |     | П       | Т                       | Τ   | П      |
| PDR Submission                          | All Team | 1    | 2/2/2024  | 2/2/2024  |   |    |     | П |    |     |   | П  | Τ   |   |    | Τ   |     |    |   | Τ   |   |    |   |     | Γ  |   |     |     | П       | Т                       | Т   | П      |
| PDR Presentation                        | All Team | 19   | 2/5/2024  | 2/23/2024 | П | T  | Т   | П | Т  | Т   | Γ | П  | Т   | П | П  | Т   |     |    |   | T   | Т | П  | T | Т   | Γ  | П | Т   | T   | П       | Т                       | Т   | П      |
| Ordering for materials                  | Alex     | 26   | 1/3/2024  | 1/28/2024 | П | Т  | Т   | П | Т  | Т   | Г | П  | Т   |   | П  | Т   | Г   |    |   | Т   | Т | П  | T | Т   | Г  | П | Т   | Т   | П       | Т                       | Т   | П      |
| Finishing Managerial Part of CDR        | Radian   | 50   | 2/1/2024  | 3/21/2024 | П | T  | Т   | П |    |     |   | П  | Τ   |   |    | Τ   |     |    |   |     |   |    | Т | Т   | Γ  | П |     | П   | П       | Т                       | Τ   | $\Box$ |
| CDR Submission                          | All Team | 1    | 3/29/2024 | 3/29/2024 |   |    |     | П |    |     |   | П  | Τ   |   |    | Τ   | Т   |    |   | Τ   |   |    |   |     | Γ  | П |     |     | П       | Т                       | Τ   | П      |
| CDR Presentation                        | All Team | 19   | 4/8/2024  | 4/26/2024 | П |    |     | П |    |     |   | П  |     |   | П  |     | Т   |    |   |     |   |    |   |     |    |   | Т   | Т   | П       | T                       | T   | П      |
| FDR Preparation                         | All Team | 89   | 3/1/2024  | 5/28/2024 | П |    | Т   | П | T  | Т   |   | П  |     | П | П  | T   | Т   |    | Т |     |   |    |   |     |    |   | Т   | Т   |         | Т                       | T   | П      |
| 2nd Final Term Exam                     | All Team | 5    | 6/3/2024  | 6/7/2024  | П | Τ  | Τ   | П | T  | Ι   |   | П  | Ι   | П |    | Τ   | Γ   |    | T | Ι   |   |    | T | Ι   |    |   |     |     |         |                         | Τ   | П      |
| Cansat Competition Main Event           | All Team | 2    | 6/8/2024  | 6/9/2024  | П | T  | Т   | П | T  | Т   | Γ | П  | Τ   | П | П  | Τ   | Т   | П  | T | Τ   | Γ | П  | T | Т   | Г  | П | Т   | Г   | П       | 7                       |     | П      |

Red = Done Blue = On Progress



# **Conclusions (1/2)**



| Administration                                                                         | on and Finance                                                                                                                                   |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Major Accomplishment                                                                   | Major Unfinished Work                                                                                                                            |
| Application for reimbursement has been written and ready to be sent to the university. | Lack of sponsorship from external entities.                                                                                                      |
| Electronicsan                                                                          | nd Programming                                                                                                                                   |
| Major Accomplishment                                                                   | Major Unfinished Work                                                                                                                            |
| The system(s) have adhered to the specifications in a satisfactory manner.             | The integration and verification procedure has not yet been applied to the system or systems.                                                    |
| Mec                                                                                    | hanics                                                                                                                                           |
| Major Accomplishment                                                                   | Major Unfinished Work                                                                                                                            |
| The blueprint have been created for the processes of implementation and inspection.    | The lack of a prototype prevents us from implementing enhancements to the CanSat design depending on the outcomes of the evaluative experiments. |



#### Conclusions (2/2)



#### Why we are ready for the next stage:

- Our involvement in contests related to aerospatial pursuits has provided us with significant insights and skills.
- Our agenda has been mostly completed within the timeframe specified, leaving us with only the obligation to implement monitoring, starting with the manufacturing and evaluation processes.