1992 HG2

$$a \cdot b \cdot c$$
 為非零實數,且 $\frac{a+b-c}{c} = \frac{a-b+c}{b} = \frac{-a+b+c}{a}$ 。

若
$$x = \frac{(a+b)(b+c)(c+a)}{abc}$$
 及 $x < 0$,求 x 的值。

$$a, b, c$$
 are non-zero real numbers such that $\frac{a+b-c}{c} = \frac{a-b+c}{b} = \frac{-a+b+c}{a}$.

If
$$x = \frac{(a+b)(b+c)(c+a)}{abc}$$
 and $x < 0$, find the value of x.

1996 HI10

因式分解
$$x^2(y-z) + y^2(z-x) + z^2(x-y)$$
。

Factorize
$$x^{2}(y-z) + y^{2}(z-x) + z^{2}(x-y)$$
.

1996 FG7.3

若
$$p,q,r$$
 是非零實數, $p^2+q^2+r^2=1$,

$$p\bigg(\frac{1}{q}+\frac{1}{r}\bigg)+q\bigg(\frac{1}{r}+\frac{1}{p}\bigg)+r\bigg(\frac{1}{p}+\frac{1}{q}\bigg)+3=0 \ , \ \mathcal{Z} \ c=p+q+r \ , \ 求 \ c \ 的最大值。$$

If p, a, r are non-zero real numbers:

$$p^2 + q^2 + r^2 = 1$$
, $p\left(\frac{1}{q} + \frac{1}{r}\right) + q\left(\frac{1}{r} + \frac{1}{p}\right) + r\left(\frac{1}{p} + \frac{1}{q}\right) + 3 = 0$ and $c = p + q + r$,

find the largest value of c.

1998 FG1.2

已知
$$\frac{a}{2b+c} = \frac{b}{2c+a} = \frac{c}{2a+b}$$
且 $a+b+c \neq 0$ 。若 $q = \frac{2b+c}{a}$,求 q 的數值。

Given that
$$\frac{a}{2b+c} = \frac{b}{2c+a} = \frac{c}{2a+b}$$
 and $a+b+c \neq 0$.

If
$$q = \frac{2b+c}{a}$$
, find the value of q.

1998 FG3.4

已知
$$x+y+z=0$$
、 $x^2+y^2+z^2=1$ 及 $d=2(x^4+y^4+z^4)$, 求 d 的數值。

Given that x + y + z = 0, $x^2 + y^2 + z^2 = 1$ and $d = 2(x^4 + y^4 + z^4)$, find the value of d.

1999 FI2.1

若
$$x \cdot y$$
及 z 為正實數使得 $\frac{x+y-z}{z} = \frac{x-y+z}{y} = \frac{-x+y+z}{x}$,

且
$$a = \frac{(x+y)\cdot(y+z)\cdot(z+x)}{xyz}$$
 , 求 a 之值。

If x, y and z are positive real numbers such that $\frac{x+y-z}{z} = \frac{x-y+z}{y} = \frac{-x+y+z}{x}$

at
$$\frac{x+y-z}{z} = \frac{x-y+z}{y} = \frac{-x+y+z}{x}$$

and
$$a = \frac{(x+y)\cdot(y+z)\cdot(z+x)}{xyz}$$
, find the value of a.

2000 FI1.2

設
$$a+b+c=0$$
 。已知 $\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}=25-3Q$,求 Q 的值。

Let
$$a + b + c = 0$$
.

Given that
$$\frac{a^2}{2a^2 + bc} + \frac{b^2}{2b^2 + ac} + \frac{c^2}{2c^2 + ab} = 25 - 3Q$$
, find the value of Q.

2001 FG1.1

已知
$$(a+b+c)^2 = 3(a^2+b^2+c^2)$$
 及 $a+b+c=12$ 。求 a 的值。

Given that $(a + b + c)^2 = 3(a^2 + b^2 + c^2)$ and a + b + c = 12, find the value of a.

2004 HI3

若
$$x+y+z=10$$
, $x^2+y^2+z^2=10$ 及 $xy+yz+zx=m$, 求 m 的值。

If x + y + z = 10, $x^2 + y^2 + z^2 = 10$ and xy + yz + zx = m, find the value of m.

2012 FG4.3

設
$$xyzt = 1$$
。

若
$$R = \frac{1}{1+x+xy+xyz} + \frac{1}{1+y+yz+yzt} + \frac{1}{1+z+zt+ztx} + \frac{1}{1+t+tx+txy}$$
 ,

求
$$R$$
的值。

Let
$$xyzt = 1$$
.

If
$$R = \frac{1}{1+x+xy+xyz} + \frac{1}{1+y+yz+yzt} + \frac{1}{1+z+zt+ztx} + \frac{1}{1+t+tx+txy}$$
,

find the value of R.

2014 HI2

已知
$$a = 2014x + 2011$$
, $b = 2014x + 2013$ 及 $c = 2014x + 2015$ 。

求
$$a^2 + b^2 + c^2 - ab - bc - ca$$
 的值。

Given that a = 2014x + 2011, b = 2014x + 2013 and c = 2014x + 2015.

Find the value of $a^2 + b^2 + c^2 - ab - bc - ca$.

2022 P2O7

已知
$$x+y+z=1$$
, $x^2+y^2+z^2=2$ 及 $x^3+y^3+z^3=3$ 。求 $x^4+y^4+z^4$ 的值。

Given that
$$x + y + z = 1$$
, $x^2 + y^2 + z^2 = 2$ and $x^3 + y^3 + z^3 = 3$.

Find the value of $x^4 + y^4 + z^4$.

Answers

1992 HG2	1996 HI10	1996 FG7.3	1998 FG1.2	1998 FG3.4
-1	-(x-y)(y-z)(z-x)	1	3	1
1999 FI2.1	2000 FI1.2	2001 FG1.1	2004 HI3	2012 FG4.3
8	8	4	45	1
2014 1112	2022 P2Q7			
2014 HI2	25			
12	6			