Wishart分布とその性質 多変量正規分布の推定とBox-Cox変換

山北倫太郎

June 25, 2025

目次

① Wishart分布

7.1 はじめに

$$ullet$$
 X = $\begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}$ は標本行列を表す。

- ullet $ar{\mathbf{x}}$ と \mathbf{S} は、それぞれ μ と Σ の一貫性のある不偏推定量を提供する 。
 - nx̄ = X'1 (標本平均ベクトル(x̄))
 - ここで、1は n 次元のベクトルで、すべての要素が1である。
 - $(n-1)S = X'X n\bar{x}\bar{x}'$ (標本共分散行列(S))
 - Sは母集団の共分散行列の不偏推定量であり、X'X は標本行列の転置と自身の積である。

7.1 はじめに

- 7.2節では、 x_1, \ldots, x_n が独立同分布で $x \sim N_p(\mu, \Sigma)$ かつ $\Sigma > 0$ の場合の μ と Σ の最尤推定量が導出される。
- x と S の同時分布に関する基本的な結果が命題7.1で証明される。
- 7.3節では、Wishart分布の基本的な特性が研究される。
- 7.4節では、データの多変量正規性を高めるためのBox-Cox変換が提示される。

7.2 x と S の同時分布

- 正規性がある場合、x と S はいくつかの点で「最適」である。
- V = (n-1)S とする。
- X の確率密度関数は様々な方法で記述できる。

$$f(X) = (2\pi)^{-np/2} |\Sigma|^{-n/2} \exp\left[-\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)' \Sigma^{-1} (x_i - \mu)\right]$$

$$= (2\pi)^{-np/2} |\Sigma|^{-n/2} e^{-\frac{n}{2}\mu' \Sigma^{-1}\mu} etr\left[-\frac{1}{2} tr \Sigma^{-1} X' X + n\mu' \Sigma^{-1} \bar{x}\right]$$

$$= (2\pi)^{-np/2} |\Sigma|^{-n/2} etr\left[-\frac{1}{2} [V + n(\bar{x} - \mu)(\bar{x} - \mu)'] \Sigma^{-1}\right]$$
(7.1)

山北倫太郎 June 25, 2025 5 / 39

確率変数ベクトル $X=(x_1,\ldots,x_p)'$ が平均ベクトル μ と共分散行列 Σ を持つ多変量正規分布に従う場合、その確率密度関数 f(x) は次のように表される。

p次元多変量正規分布の確率密度関数 (p.d.f.)

$$f(x) = (2\pi)^{-p/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right)$$

- ここで、x は確率変数ベクトル X がとりうる値を示す p 次元の列ベクトルである。
- μ は、各確率変数の平均値を要素とする p 次元の平均ベクトルである。
- Σ は、 $p \times p$ の共分散行列であり、各確率変数間の分散と共分散を表す対称な正定値行列である。

山北倫太郎 June 25, 2025 6 / 39

2行目

 $\exp[\operatorname{tr}(igtimes)] = \operatorname{etr}(igtimes)$ の記法を用いると、確率密度関数は次のように表される。

$$\begin{split} & (\mathbf{x_i} - \mu)' \Sigma^{-1} (\mathbf{x_i} - \mu) \\ & = (\mathbf{x_i'} - \mu') \Sigma^{-1} (\mathbf{x_i} - \mu) \\ & = \mathbf{x_i'} \Sigma^{-1} \mathbf{x_i} - \mathbf{x_i'} \Sigma^{-1} \mu - \mu' \Sigma^{-1} \mathbf{x_i} + \mu' \Sigma^{-1} \mu \\ & = \mathbf{x_i'} \Sigma^{-1} \mathbf{x_i} - 2 \mathbf{x_i'} \Sigma^{-1} \mu + \mu' \Sigma^{-1} \mu \end{split}$$

• ここで、 $\mu'\Sigma^{-1}x_i$ はスカラー値であり、スカラーの転置は自分自身なので、 $\mu'\Sigma^{-1}x_i=(x_i'\Sigma^{-1}\mu)'$ です。 したがって、 $x_i'\Sigma^{-1}\mu$ と $\mu'\Sigma^{-1}x_i$ は同じスカラー値を表します。

2行目(続き)

 $\exp[\operatorname{tr}(igtimes)] = \operatorname{etr}(igtimes)$ の記法を用いると、確率密度関数は次のように表される。

$$\begin{split} & (\mathbf{x}_{i} - \mu)' \Sigma^{-1} (\mathbf{x}_{i} - \mu) \\ & = (\mathbf{x}'_{i} - \mu') \Sigma^{-1} (\mathbf{x}_{i} - \mu) \\ & = \mathbf{x}'_{i} \Sigma^{-1} \mathbf{x}_{i} - \mathbf{x}'_{i} \Sigma^{-1} \mu - \mu' \Sigma^{-1} \mathbf{x}_{i} + \mu' \Sigma^{-1} \mu \\ & = \mathbf{x}'_{i} \Sigma^{-1} \mathbf{x}_{i} - 2 \mathbf{x}'_{i} \Sigma^{-1} \mu + \mu' \Sigma^{-1} \mu \end{split}$$

ここで、 $\mu'\Sigma^{-1}\mathbf{x_i}$ はスカラー値であり、スカラーの転置は自分自身なので、 $\mu'\Sigma^{-1}\mathbf{x_i}=(\mathbf{x_i'}\Sigma^{-1}\mu)'$ です。したがって、 $\mathbf{x_i'}\Sigma^{-1}\mu$ と $\mu'\Sigma^{-1}\mathbf{x_i}$ は同じスカラー値を表します。

|2行目(さらに続き)

- μ' は平均ベクトル μ の転置を表し、 μ はp次元の列ベクトルなので、 μ' は1行p列の行ベク
- Σ^{-1} は共分散行列 Σ の逆行列を表し、 Σ は $\mathsf{p}^*\mathsf{p}$ の正方行列なので、 Σ^{-1} も $\mathsf{p}^*\mathsf{p}$ の正方行列 \mathfrak{p}
- x_i はp次元の列ベクトルであり、 x_i はその転置で1行p列の行ベクトルになります。 よって、 $(x_i - \mu)'\Sigma^{-1}(x_i - \mu)$ はスカラー値であります。
- また、 $\mu'\Sigma^{-1}\mu$ は、 $\mathrm{e}^{-\frac{1}{2}\mathrm{n}\mu'\Sigma^{-1}\mu}$ の形で指数関数に含まれます。

1項目

• 行列のトレースは、行列の対角成分の総和であり、 $\operatorname{tr}(A) = \sum_i a_{ii}$ で定義される。

トレースの性質

- tr(AB) = tr(BA)
- $tr(A) = \sum_{i=1}^{n} a_{ii}$, ここで $A = (a_{ij})$ は $n \times n$ 行列である。

$$\begin{split} \sum_{i=1}^{n} x_i' \Sigma^{-1} x_i &= \sum_{i=1}^{n} tr \left(\Sigma^{-1} x_i x_i' \right) \\ &= tr \left(\Sigma^{-1} \sum_{i=1}^{n} x_i x_i' \right) \\ &= tr (\Sigma^{-1} X' X) \end{split}$$

1項目 (続き)

•
$$X = \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}$$
 であるから、 $X'X = \sum_{i=1}^n x_i x_i'$ となる。

- ここで、x_i は x_i の転置を表し、x_ix_i は x_i の外積を表す。
- ullet Σ^{-1} は共分散行列の逆行列であり、 $\mathbf{x_i}\mathbf{x_i'}$ は $\mathbf{x_i}$ の外積を表す。

$$\begin{split} \sum_{i=1}^{\mathsf{n}} -2\mathsf{x}_{i}'\Sigma^{-1}\mu &= -2(\sum_{i=1}^{\mathsf{n}}\mathsf{x}_{i}')\Sigma^{-1}\mu \\ &= -2\left(\sum_{i=1}^{\mathsf{n}}\mathsf{x}_{i}'\right)\Sigma^{-1}\mu \\ &\sum_{i=1}^{\mathsf{n}}\mathsf{x}_{i}' = (\mathsf{x}_{1}'+\dots+\mathsf{x}_{n}') = (\mathsf{n}\bar{\mathsf{x}})'$$
 ా శ్రీ వి లి లో
$$&= -2(\mathsf{n}\bar{\mathsf{x}})'\Sigma^{-1}\mu \\ &= -2\mathsf{n}\bar{\mathsf{x}}'\Sigma^{-1}\mu \end{split}$$

$$\sum_{i=1}^{n} \mu' \Sigma^{-1} \mu$$
はスカラー値であり、これが n 回足されます。

$$\sum_{i=1}^{n} \mu' \Sigma^{-1} \mu = n \mu' \Sigma^{-1} \mu$$

したがって、これら3つの項を合わせると、指数部分は次のようになります。

$$\begin{split} \sum_{i=1}^{n} (\mathbf{x_i} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x_i} - \boldsymbol{\mu}) &= \sum_{i=1}^{n} \mathbf{x_i'} \boldsymbol{\Sigma}^{-1} \mathbf{x_i} - 2 \mathbf{n} \bar{\mathbf{x}}' \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} + \mathbf{n} \boldsymbol{\mu}' \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \\ &= tr(\boldsymbol{\Sigma}^{-1} \mathbf{X}' \mathbf{X}) - 2 \mathbf{n} \bar{\mathbf{x}}' \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} + \mathbf{n} \boldsymbol{\mu}' \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \end{split}$$

山北倫太郎 June 25, 2025 13 / 39

まとめると

$$\begin{split} &-\frac{1}{2}\left[\mathrm{tr}(\boldsymbol{\Sigma}^{-1}\mathbf{X}'\mathbf{X})-2\mathbf{n}\bar{\mathbf{x}}'\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}+\mathbf{n}\boldsymbol{\mu}'\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}\right]\\ &=-\frac{1}{2}\mathrm{tr}(\boldsymbol{\Sigma}^{-1}\mathbf{X}'\mathbf{X})+\mathbf{n}\bar{\mathbf{x}}'\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}-\frac{\mathbf{n}}{2}\boldsymbol{\mu}'\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} \end{split}$$

となり、2行目の指数部分と完全に一致します。

$$\begin{split} \sum_{i=1}^{n} (x_{i} - \mu)' \Sigma^{-1}(x_{i} - \mu) &= \sum_{i=1}^{n} \left((x_{i} - \bar{x}) + (\bar{x} - \mu) \right)' \Sigma^{-1} \left((x_{i} - \bar{x}) + (\bar{x} - \mu) \right) \\ &= \sum_{i=1}^{n} (x_{i} - \bar{x})' \Sigma^{-1}(x_{i} - \bar{x}) + \sum_{i=1}^{n} (\bar{x} - \mu)' \Sigma^{-1}(\bar{x} - \mu) \\ &+ 2 \sum_{i=1}^{n} (x_{i} - \bar{x})' \Sigma^{-1}(\bar{x} - \mu) \end{split}$$

3行目(続き)

ここで、最後の項は

$$2\left(\sum_{i=1}^{n} (x_{i} - \bar{x})\right)' \Sigma^{-1}(\bar{x} - \mu) = 2(n\bar{x} - n\bar{x})' \Sigma^{-1}(\bar{x} - \mu) = 0$$

となるので、

$$\begin{split} \sum_{i=1}^{n} (x_i - \mu)' \Sigma^{-1}(x_i - \mu) &= \sum_{i=1}^{n} (x_i - \bar{x})' \Sigma^{-1}(x_i - \bar{x}) + n(\bar{x} - \mu)' \Sigma^{-1}(\bar{x} - \mu) \\ & V = (n-1)S = \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})' \end{split}$$

証明

$$\begin{split} \sum_{i=1}^{n} (x_{i} - \bar{x})(x_{i} - \bar{x})' &= \sum_{i=1}^{n} \left[x_{i}x'_{i} - x_{i}\bar{x}' - \bar{x}x'_{i} + \bar{x}\bar{x}' \right] \\ &= \sum_{i=1}^{n} x_{i}x'_{i} - \sum_{i=1}^{n} x_{i}\bar{x}' - \sum_{i=1}^{n} \bar{x}x'_{i} + \sum_{i=1}^{n} \bar{x}\bar{x}' \\ &= X'X - n\bar{x}\bar{x}' - n\bar{x}\bar{x}' + n\bar{x}\bar{x}' \\ &= X'X - n\bar{x}\bar{x}' \\ &= (n-1)S \end{split}$$

したがって、 $\sum_{i=1}^n (x_i - \bar{x})(x_i - \bar{x})' = (n-1)S = V$ である。

証明(各項の詳細な計算)

● ∑_{i=1}ⁿ x_ix_i': 標本行列 X は各行が x_i'(x_i

は列ベクトル)として定義されるので、
$$X = \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix}$$
。 その転置は $X' = (x_1 \ x_2 \ \dots \ x_n)$

となる。 したがって、 $X'X = \sum_{i=1}^n x_i x_i'$ 。

- $\sum_{i=1}^{n} x_i \overline{x}'$: \overline{x}' は和のインデックス i に依存しないので、 $\sum_{i=1}^{n} x_i \overline{x}' = (\sum_{i=1}^{n} x_i) \overline{x}' = n \overline{x} \overline{x}'$ 。
- ullet $\sum_{i=1}^n \overline{x} x_i'$: \overline{x} も和のインデックス i に依存しないので、 $\sum_{i=1}^n \overline{x} x_i' = \overline{x} (\sum_{i=1}^n x_i') = n \overline{x} \overline{x}'$ 。
- \bullet $\sum_{i=1}^{n} \overline{xx}'$: これは n 回足し合わせるので、 $n\overline{xx}'$ 。

7.2 x と S の同時分布

- ullet (X'X, $ar{\mathbf{x}}$) (または (S, $ar{\mathbf{x}}$) のような一対一関数) は、 (Σ,μ) の最小十分完全統計量である。
- Rao-Blackwell/Lehmann-Schefféの定理により、不偏推定量の中で (x̄, S) は最小分散を持つ。
- $n-1 \ge p$ の場合の最尤推定量 (MLE) $\hat{\mu}$ と $\hat{\Sigma}$ を得るには、対数尤度関数を最小化する。

$$\ln|\Sigma| + \operatorname{tr} \frac{1}{\mathsf{n}} \mathsf{V} \Sigma^{-1} + (\bar{\mathsf{x}} - \mu)' \Sigma^{-1} (\bar{\mathsf{x}} - \mu)$$
 (7.2)

• 最尤推定量は $\hat{\mu} = \bar{\mathbf{x}}$ と $\hat{\Sigma} = \frac{1}{\mathsf{n}}\mathsf{V}$ である。

Rao-Blackwellの定理とLehmann-Schefféの定理

定理 (Rao-Blackwell)

 $\hat{\theta}$ がパラメータ θ の不偏推定量であり、T が十分統計量であるとする。このとき、 $\hat{\theta}^* = \mathsf{E}[\hat{\theta} \mid \mathsf{T}]$ と定義すると、

- \bullet $\hat{\theta}^*$ は θ の不偏推定量である。
- $Var(\hat{\theta}^*) \leq Var(\hat{\theta})$ が成り立つ。

定理 (Lehmann-Scheffé)

T がパラメータ θ の完全かつ十分な統計量であるとする。もし $\hat{\theta}^*=g(T)$ が T の関数であり、かつ θ の不偏推定量であるならば、 $\hat{\theta}^*$ は θ の最小分散不偏推定量 (MVUE) である。

なぜ $(X'X,\bar{x})$ または (S,\bar{x}) なのか?

多変量正規分布の確率密度関数(尤度関数)の指数部分を見返すと、 μ と Σ を含む項が、X'X と \bar{x} の形で表現されていることがわかります。特に、

$$\operatorname{etr}\left\{-\frac{1}{2}\left[\mathsf{V}+\mathsf{n}(\bar{\mathsf{x}}-\mu)(\bar{\mathsf{x}}-\mu)'\right]\Sigma^{-1}\right\}$$

という形で書けることから、観測されたデータ X の情報のうち、パラメータ μ と Σ に影響を与える部分は、本質的に V (または S) と \bar{x} に集約されていることが読み取れます。これにより、これらが十分統計量であることが示唆

山北倫太郎 June 25, 2025 21 / 39

前提となる事実

- ullet $x_i \sim N_p(\mu, \Sigma)$ (i.i.d.)
- ullet $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $(n-1)S = \sum_{i=1}^{n} (x_i \overline{x})(x_i \overline{x})'$ [これは $(n-1)S = X'X n\overline{x}\overline{x}'$ に等しい]
- ullet $(ar{\mathsf{x}},\mathsf{S})$ が $(oldsymbol{\Sigma},oldsymbol{\mu})$ に対して最小十分かつ完全な統計量である。

ステップ1: 不偏性 (Unbiasedness) の確認

<u>a. x が μ</u> の不偏推定値であること

$$E[\overline{x}] = E\left[\frac{1}{n} \sum_{i=1}^{n} x_i\right]$$
$$= \frac{1}{n} \sum_{i=1}^{n} E[x_i]$$

各 x_i は $\mathsf{N}_\mathsf{p}(\mu,\Sigma)$ に従うため、 $\mathsf{E}[\mathsf{x}_\mathsf{i}] = \mu$ です。

$$= \frac{1}{\mathsf{n}} \sum_{\mathsf{i}=1}^{\mathsf{n}} \mu$$
$$= \frac{1}{\mathsf{n}} (\mathsf{n}\mu)$$

山北倫太郎 Wishart分布とその性質 June 25, 2025

23/39

ステップ1: 不偏性 (Unbiasedness) の確認

<u>b. S が ∑</u> の不偏推定値であること

$$\begin{split} \mathsf{E}[\mathsf{S}] &= \mathsf{E}\left[\frac{1}{\mathsf{n}-1}\sum_{i=1}^{\mathsf{n}}(\mathsf{x}_i-\overline{\mathsf{x}})(\mathsf{x}_i-\overline{\mathsf{x}})'\right] \\ &= \frac{1}{\mathsf{n}-1}\mathsf{E}\left[\sum_{i=1}^{\mathsf{n}}(\mathsf{x}_i\mathsf{x}_i'-\mathsf{x}_i\overline{\mathsf{x}}'-\overline{\mathsf{x}}\mathsf{x}_i'+\overline{\mathsf{x}}\overline{\mathsf{x}}')\right] \\ &= \frac{1}{\mathsf{n}-1}\left(\sum_{i=1}^{\mathsf{n}}\mathsf{E}[\mathsf{x}_i\mathsf{x}_i']-\sum_{i=1}^{\mathsf{n}}\mathsf{E}[\mathsf{x}_i\overline{\mathsf{x}}']-\sum_{i=1}^{\mathsf{n}}\mathsf{E}[\overline{\mathsf{x}}\mathsf{x}_i']+\sum_{i=1}^{\mathsf{n}}\mathsf{E}[\overline{\mathsf{x}}\overline{\mathsf{x}}']\right) \end{split}$$

ここで、各項を評価します。

- $\mathsf{E}[\mathsf{x}_i\mathsf{x}_i'] = \mathsf{Cov}(\mathsf{x}_i) + \mathsf{E}[\mathsf{x}_i]\mathsf{E}[\mathsf{x}_i'] = \Sigma + \mu\mu'_{\,\circ}$
- $\mathsf{E}[\overline{\mathsf{x}}\overline{\mathsf{x}}'] = \mathsf{Cov}(\overline{\mathsf{x}}) + \mathsf{E}[\overline{\mathsf{x}}]\mathsf{E}[\overline{\mathsf{x}}'] = \frac{1}{\mathsf{n}}\Sigma + \mu\mu' \ (\because \overline{\mathsf{x}} \sim \mathsf{N}_{\mathsf{p}}(\mu, \frac{1}{\mathsf{n}}\Sigma))_{\mathsf{o}}$
- $\nabla^{\mathbf{n}}$ $\mathbf{F}[\mathbf{v}.\overline{\mathbf{v}}'] \mathbf{F}[(\nabla^{\mathbf{n}} \mathbf{v}.)\overline{\mathbf{v}}'] \mathbf{F}[\mathbf{n}\overline{\mathbf{v}}\overline{\mathbf{v}}'] \mathbf{n}\mathbf{F}[\overline{\mathbf{v}}\overline{\mathbf{v}}'] \mathbf{n}(\frac{1}{2}\mathbf{\Sigma} + \mathbf{u}\mathbf{u}') \mathbf{\Sigma} + \mathbf{n}\mathbf{u}\mathbf{u}'$ $\mathbf{v}_{\mathsf{i}\mathsf{s}\mathsf{h}\mathsf{a}\mathsf{r}}\mathbf{v}$ $\mathbf{v}_{\mathsf{i}\mathsf{s}\mathsf{h}\mathsf{a}\mathsf{r}}\mathbf{v}$ $\mathbf{v}_{\mathsf{i}\mathsf{s}\mathsf{h}\mathsf{a}\mathsf{r}}\mathbf{v}$

ステップ1: 不偏性 (Unbiasedness) の確認 (続き)

b. S が ∑ の不偏推定値であること (続き)

これらを E[S] の式に代入します。

$$\begin{split} \mathsf{E}[\mathsf{S}] &= \frac{1}{\mathsf{n}-1} \left(\sum_{\mathsf{i}=1}^\mathsf{n} (\mathbf{\Sigma} + \boldsymbol{\mu} \boldsymbol{\mu}') - (\mathbf{\Sigma} + \mathsf{n} \boldsymbol{\mu} \boldsymbol{\mu}') - (\mathbf{\Sigma} + \mathsf{n} \boldsymbol{\mu} \boldsymbol{\mu}') + \mathsf{n} (\frac{1}{\mathsf{n}} \mathbf{\Sigma} + \boldsymbol{\mu} \boldsymbol{\mu}') \right) \\ &= \frac{1}{\mathsf{n}-1} \left(\mathsf{n} \mathbf{\Sigma} + \mathsf{n} \boldsymbol{\mu} \boldsymbol{\mu}' - \mathbf{\Sigma} - \mathsf{n} \boldsymbol{\mu} \boldsymbol{\mu}' - \mathbf{\Sigma} - \mathsf{n} \boldsymbol{\mu} \boldsymbol{\mu}' + \mathbf{\Sigma} + \mathsf{n} \boldsymbol{\mu} \boldsymbol{\mu}' \right) \\ &= \frac{1}{\mathsf{n}-1} ((\mathsf{n}-1) \mathbf{\Sigma}) \\ &= \mathbf{\Sigma} \end{split}$$

したがって、 $E[S] = \Sigma$ であり、S は Σ の不偏推定値です。

山北倫太郎 June 25, 2025 25 25 39

ステップ2: Rao-Blackwell / Lehmann-Scheffé の定理の適用

Lehmann-Schefféの定理の記述

Lehmann-Schefféの定理は、「もし、ある統計量 T が完全かつ十分 (Complete and Sufficient) であり、 $\hat{\theta}^* = g(T)$ が T の関数であり、かつパラメータ θ の不偏推定値であるならば、 $\hat{\theta}^*$ は θ の最小分散不偏推定量 (MVUE) である」と述べています。

定理の適用

- パラメータ θ は (μ, Σ) に対応します。
- 統計量 T は (\bar{x}, S) に対応します。テキストには、 $(X'X, \bar{x})$ (または (S, \bar{x}) のような1対1関数) が (Σ, μ) に対して最小十分かつ完全であることが述べられています。
- \bar{x} は $T = (\bar{x}, S)$ の関数(具体的には第一成分)であり、ステップ1で μ の不偏推定値であることを示しました。
- ullet S は T = (\overline{x},S) の関数(具体的には第二成分)であり、ステップ1で Σ

山北倫太郎 Wishart分布とその性質 June 25, 2025

26/39

結論

上記の条件がすべて満たされるため、Lehmann-Schefféの定理により、 \bar{x} は μ のMVUEであり、 S は Σ のMVUEであると結論付けられます。したがって、 (\bar{x},S) は (Σ,μ) のMVUEであると述べることができます。

最尤推定値 (MLE) の目的

• この式 $\ln |\Sigma| + \operatorname{tr} \frac{1}{n} V \Sigma^{-1} + (\overline{x} - \mu)' \Sigma^{-1}(\overline{x} - \mu)$ (7.2)

- を最小化するのは、未知のパラメータである平均ベクトル μ と共分散行列 Σ の最尤推定値 (Maximum Likelihood Estimates, MLE) を求めるためです.
- 最尤推定法は、観測されたデータが最も「もっともらしい」と思われるようなパラメー
- これを数学的に行うには、データの確率密度関数(または確率質量関数)をパラメータ

尤度関数から対数尤度関数へ

● 多変量正規分布の場合、観測された標本行列 X の同時確率密度関数 (尤度関数) は、以下のような形をしていました:

$$f(\mathsf{X}) = (2\pi)^{-\frac{\mathsf{np}}{2}} |\mathbf{\Sigma}|^{-\frac{\mathsf{n}}{2}} \mathsf{etr} \left\{ -\frac{1}{2} [\mathsf{V} + \mathsf{n}(\overline{\mathsf{x}} - \boldsymbol{\mu})(\overline{\mathsf{x}} - \boldsymbol{\mu})'] \mathbf{\Sigma}^{-1} \right\}$$
 (7.1)

- この尤度関数を直接最大化する代わりに、通常は計算が容易な対数尤度関数を最大化し
- 上記の確率密度関数に自然対数 In を取ると、以下のようになります:

$$\begin{split} & \mathsf{Inf}(\mathsf{X}) = \mathsf{In}\left((2\pi)^{-\frac{\mathsf{np}}{2}}|\mathbf{\Sigma}|^{-\frac{\mathsf{n}}{2}}\mathsf{etr}\left\{-\frac{1}{2}[\mathsf{V} + \mathsf{n}(\overline{\mathsf{x}} - \boldsymbol{\mu})(\overline{\mathsf{x}} - \boldsymbol{\mu})']\mathbf{\Sigma}^{-1}\right\}\right) \\ & = -\frac{\mathsf{np}}{2}\mathsf{In}(2\pi) - \frac{\mathsf{n}}{2}\mathsf{In}|\mathbf{\Sigma}| - \frac{1}{2}\mathsf{tr}\left([\mathsf{V} + \mathsf{n}(\overline{\mathsf{x}} - \boldsymbol{\mu})(\overline{\mathsf{x}} - \boldsymbol{\mu})']\mathbf{\Sigma}^{-1}\right) \end{split}$$

山北倫太郎 June 25, 2025 29 / 39

対数尤度関数の簡略化と最小化

- この対数尤度関数を $I(\Sigma, \mu)$ と表すとき、MLEを得るためには $I(\Sigma, \mu)$ を最大化する必要があります.
- ここで、定数項である $-\frac{np}{2} ln(2\pi)$ はパラメータ Σ や μ に依存しないため、最大化には影響しません.
- したがって、最大化すべきは残りの項です:

$$\mathsf{I}(\boldsymbol{\Sigma}, \boldsymbol{\mu}) \propto -\frac{\mathsf{n}}{2}\mathsf{In}|\boldsymbol{\Sigma}| - \frac{1}{2}\mathsf{tr}\left([\mathsf{V} + \mathsf{n}(\overline{\mathsf{x}} - \boldsymbol{\mu})(\overline{\mathsf{x}} - \boldsymbol{\mu})']\boldsymbol{\Sigma}^{-1}\right)$$

- この式を最大化することは、符号を反転させて最小化することと同じです.
- ullet そして、全体を $\frac{n}{2}$ で割っても最大化/最小化の結果は変わらないため、以下の式を最小化することになり

$$\begin{split} &\frac{1}{\mathsf{n}}\mathsf{tr}\left([\mathsf{V}+\mathsf{n}(\overline{\mathsf{x}}-\boldsymbol{\mu})(\overline{\mathsf{x}}-\boldsymbol{\mu})']\boldsymbol{\Sigma}^{-1}\right)+\mathsf{ln}|\boldsymbol{\Sigma}|\\ &=\frac{1}{\mathsf{n}}\mathsf{tr}(\mathsf{V}\boldsymbol{\Sigma}^{-1})+\frac{1}{\mathsf{n}}\mathsf{tr}(\mathsf{n}(\overline{\mathsf{x}}-\boldsymbol{\mu})(\overline{\mathsf{x}}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1})+\mathsf{ln}|\boldsymbol{\Sigma}|\\ &=\frac{1}{\mathsf{n}}\mathsf{tr}(\mathsf{V}\boldsymbol{\Sigma}^{-1})+\mathsf{tr}((\overline{\mathsf{x}}-\boldsymbol{\mu})(\overline{\mathsf{x}}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1})+\mathsf{ln}|\boldsymbol{\Sigma}| \end{split}$$

山北倫太郎 Wishart分布とその性質 June 25, 2025

30/39

ステップ1: $\hat{\mu} = \bar{x}$ の特定と最後の項の除去

- ullet テキストにあるように、「(最後の項は ≥ 0 なので) $\hat{m{\mu}} = m{x}$ であることは明らか」です。
- この「最後の項」とは、 $+(\bar{\mathbf{x}}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\bar{\mathbf{x}}-\boldsymbol{\mu})$ のことです。
- この項は、 Σ が正定値行列(つまり Σ^{-1} も正定値行列)であるため、常に0以上 (≥ 0) です。
- この項を最小化するためには、その値を0にするのが最も小さい値です。
- $(\overline{\mathbf{x}} \boldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\overline{\mathbf{x}} \boldsymbol{\mu}) = 0$ となるのは、 $\overline{\mathbf{x}} \boldsymbol{\mu} = 0$ のとき、すなわち $\boldsymbol{\mu} = \overline{\mathbf{x}}$ のときです。
- したがって、 μ に関する最尤推定値 $\hat{\mu}$ は \bar{x} であると直ちに分かります。

$$\begin{split} & \text{In}|\boldsymbol{\Sigma}| + \text{tr}\frac{1}{\text{n}}\text{V}\boldsymbol{\Sigma}^{-1} + (\overline{\textbf{x}} - \overline{\textbf{x}})'\boldsymbol{\Sigma}^{-1}(\overline{\textbf{x}} - \overline{\textbf{x}}) \\ = & \text{In}|\boldsymbol{\Sigma}| + \text{tr}\frac{1}{\text{n}}\text{V}\boldsymbol{\Sigma}^{-1} + \boldsymbol{0}'\boldsymbol{\Sigma}^{-1}\boldsymbol{0} \\ = & \text{In}|\boldsymbol{\Sigma}| + \text{tr}\frac{1}{\text{n}}\text{V}\boldsymbol{\Sigma}^{-1} \end{split}$$

山北倫太郎 Wishart分布とその性質 June 25, 2025 31 / 39

ステップ2: $\ln |\Sigma|$ の変形と V の導入

● 最小化すべき式:

$$|\mathsf{ln}|\mathbf{\Sigma}| + \mathsf{tr} \frac{1}{\mathsf{n}} \mathsf{V} \mathbf{\Sigma}^{-1}$$

- ここで、テキストでは「 $\ln |nV^{-1}\Sigma|$ 」という項が導入されています。これは、最小化の
- 行列式の性質を利用します。
 - |AB| = |A||B|
 - |cA| = c^p|A| (ここで c はスカラー、A は p × p 行列)
- $\ln |\Sigma|$ を V を含む形に変換するために、恒等式 $I = V^{-1}V$ を利用することを考えます。

$$\begin{split} & | \text{In} | \boldsymbol{\Sigma} | = | \text{In} | \textbf{V}^{-1} \textbf{V} \boldsymbol{\Sigma} | \\ & = | \text{In} | \textbf{V}^{-1} (\textbf{V} \boldsymbol{\Sigma}) | \\ & = | \text{In} | \text{n} \textbf{V}^{-1} | + | \text{In} | \frac{1}{n} \textbf{V} \boldsymbol{\Sigma} | \end{split}$$

<u>しかし、テキストの変形は異なるアプローチを取っています。テキストの変形は、以</u>T

山北倫太郎

$$|\ln|nV^{-1}\Sigma| + tr\frac{1}{n}V\Sigma^{-1}$$

これは、以下の恒等式(定数を追加・削除しても最小化の問題は変わらない)に基づい

$$|\mathsf{In}|\mathbf{\Sigma}| = |\mathsf{In}|\mathsf{nV}^{-1}\mathbf{\Sigma}| - |\mathsf{In}|\mathsf{nV}^{-1}|$$

ullet ここで、 $\ln |nV^{-1}|$ は Σ に依存しない定数です。

山北倫太郎

• したがって、最小化すべき式 $\ln |\Sigma| + \operatorname{tr} \frac{1}{\mathsf{n}} \mathsf{V} \Sigma^{-1}$ は、定数項 $\ln |\mathsf{n} \mathsf{V}^{-1}|$ を追加(または削除)しても、 Σ の最適値は変わりません。

$$\begin{split} &|n|\boldsymbol{\Sigma}| + tr\frac{1}{n}V\boldsymbol{\Sigma}^{-1} \\ = &(|n|nV^{-1}\boldsymbol{\Sigma}| - |n|nV^{-1}|) + tr\frac{1}{n}V\boldsymbol{\Sigma}^{-1} \\ = &|n|nV^{-1}\boldsymbol{\Sigma}| + tr\frac{1}{n}V\boldsymbol{\Sigma}^{-1} - |n|nV^{-1}| \end{split}$$

テキストでは、この定数項 $-\ln|nV^{-1}|$ を「追加された定数」として無視し、以下の式を最小化することに集点を当てていまっ

7.3 Wishart分布の性質 - 命題

命題 7.3

 $W \sim W_p(m)$ かつ $m \geq p$ ならば、W は確率1で非特異である。

 $W\stackrel{d}{=} Z'Z$ であり、 $Z'=(z_1,\ldots,z_m)$ かつ z_i は独立同分布の $N_p(0,I)$ に従う。 rank $W\stackrel{d}{=}$ rank Z'Z= rank $Z\geq$ rank (z_1,\ldots,z_p) は確率1で p となる。 したがって、rank W は確率1で p となる。

7.2 x と S の同時分布 (続き)

- 一般的な結果として、 $\bar{\mathbf{x}}$ は $N_{\mathbf{p}}(\mu, \Sigma/\mathbf{n})$ に従う。
- 標本行列 X を Z を用いて表す。 X $\stackrel{d}{=}$ ZA′ + 1μ ′, ここで Z \sim $N_n^p(0, I_n \otimes I_p)$ かつ $\Sigma = AA′$ 。
- x̄ と S_x の分布は x̄ と S_z の分布に等しい。
- \bullet P = $n^{-1}11'$ と Q = $I n^{-1}11'$ は直交射影である。
- PZ ⊥ QZ であるため、z ⊥ Sz である。
- ullet Q = HH' は直交基底を与えるため、 $(n-1)S_z=Z'HH'Z=U'U$ となる。

山北倫太郎 June 25, 2025 35 / 39

7.2 x と S の同時分布 (続き)

定義 7.1 Wishart分布

 $W \sim W_p(m)$ ならば $W \stackrel{d}{=} \sum_{i=1}^m z_i z_i'$, ここで z_i は独立同分布で $N_p(0,I)$ に従う。 $V \sim W_p(m,\Sigma)$ ならば $V \stackrel{d}{=} AWA'$, ここで $\Sigma = AA'$ かつ $W \sim W_p(m)$ 。

命題 7.1

 $\mathbf{x_i}$ が独立同分布で $\mathbf{N_p}(\mu,\Sigma)$ に従う場合 ($\mathbf{i}=1,\dots,\mathbf{n}$)、

- $\bar{\mathbf{x}} \sim N_p(\mu, \Sigma/n)$
- $\bullet \ (\mathsf{n}-1)\mathsf{S} \sim \mathsf{W}_{\mathsf{p}}(\mathsf{n}-1,\Sigma)$
- \bullet $\bar{x} \perp S$

7.3 Wishart分布の性質 - 補題

補題 7.1

 $\mathsf{Z} = (\mathsf{z}_{\mathsf{i}\mathsf{j}}) \in \mathbb{R}^{\mathsf{n} \times \mathsf{n}}$ が独立同分布の $\mathsf{N}(0,1)$ に従う場合、 $\mathsf{P}(|\mathsf{Z}| = 0) = 0$ 。

 ${\sf n}=1$ の場合は ${\sf z}_{11}$ が絶対連続分布を持つため、結果は成立する。 ${\sf Z}$ を以下のように分割する。

$$Z = \begin{pmatrix} z_{11} & z_{12}' \\ z_{21} & Z_{22} \end{pmatrix}$$

 $\mathsf{Z}_{22} \in \mathbb{R}^{(\mathsf{n}-1) \times (\mathsf{n}-1)}$ に対して結果が成立すると仮定すると、

$$\begin{split} \mathsf{P}(|\mathsf{Z}| = 0) &= \mathsf{P}(|\mathsf{Z}| = 0, |\mathsf{Z}_{22}| \neq 0) + \mathsf{P}(|\mathsf{Z}| = 0, |\mathsf{Z}_{22}| = 0) \\ &= \mathsf{P}(\mathsf{z}_{11} = \mathsf{z}_{12}'\mathsf{Z}_{22}^{-1}\mathsf{z}_{21}, |\mathsf{Z}_{22}| \neq 0) \\ &= \mathsf{E}[\mathsf{P}(\mathsf{z}_{11} = \mathsf{z}_{12}'\mathsf{Z}_{22}^{-1}\mathsf{z}_{21}, |\mathsf{Z}_{22}| \neq 0 | \mathsf{z}_{12}, \mathsf{z}_{21}, \mathsf{Z}_{22})] = 0 \end{split}$$

7.3 Wishart分布の性質 - 系

系 7.1

 $\mathbf{Z} = (\mathbf{z_{ij}}) \in \mathbb{R}^{\mathsf{n} \times \mathsf{n}}$ が独立同分布の $\mathbf{N}(0,1)$ に従う場合、 $\mathbf{P}(|\mathbf{Z}| = \mathbf{t}) = 0, \forall \mathbf{t}$ 。

 $P(|Z|=t)=E[P(z_{11}=z_{12}'Z_{22}^{-1}z_{21}+t/|Z_{22}|,|Z_{22}|\neq 0|z_{12},z_{21},Z_{22})]=0$ 。 補題7.1と系7.1は、Z が任意の絶対連続分布を持つ場合にも有効である。

7.3 Wishart分布の性質 - 命題

命題 7.3

 $W \sim W_p(m)$ かつ $m \geq p$ ならば、W は確率1で非特異である。

 $W\stackrel{d}{=} Z'Z$ であり、 $Z'=(z_1,\ldots,z_m)$ かつ z_i は独立同分布の $N_p(0,I)$ に従う。 rank $W\stackrel{d}{=}$ rank Z'Z= rank $Z\geq$ rank (z_1,\ldots,z_p) は確率1で p となる。 したがって、rank W は確率1で p となる。