

Pràctica virtual

Grup: 34 Cognoms: Duran Lopez

Nom: Marc

Data: 10/10/2020

Qualificació:

Podeu afegir més fulls si us falta per algun dels exercicis

2.1 Divisor de tensió

Resolució del problema previ (apartat 1.3)

Valors mesurats

valors "aleatoris" de les resistències, $R_1^*=R_1+n_1-5$, $R_2^*=R_2+n_2-5$

DNI: 47894988H

 $R_1(100\Omega) = R_1^* = R_1 + n_1 - 5 R_1^* = 100 + 4 - 5 = 99\Omega$

 $R_2(200\Omega) = R_2^* = R_2 + n_2 - 5 R_2^* = 200 + 7 - 5 = 202\Omega$

Intensitats teòriques i experimentals (els valors teòrics són els que resulten al problema previ, on heu utilitzat els valors nominals)

$I^{\text{te}} = 16.67 \text{ mA}$	$I^{\text{ex}} = -0.0166113 \text{ A}$
$V_{\rm AB}^{\rm te}$ = 1.67 V	$V_{\rm AB}^{\rm ex} = 1.64452 \text{ V}$
$V_{\rm BC}^{\rm te}$ = 3.33 V	$V_{\rm BC}^{\rm ex} = 3.35548 \text{ V}$

Captura de pantalla del circuit implementat amb una eina de simulació

2.2 Resistència equivalent: Circuit 1

Resolució del problema previ (apartat 1.4)

Valors mesurats

Resistència equivalent

valors "aleatoris" de les resistències

DNI: 47894988H

$R_1(100\Omega)=99 \Omega$	$R_4(100\Omega) = 104 \Omega$
$R_2(100\Omega) = 102 \Omega$	$R_5(100\Omega)=99 \Omega$
$R_3(100\Omega) = 103 \Omega$	

Circuit 1

$V_{\rm C}^{ m te}$ = 0.5 V	$V_{\rm C}^{\rm ex} = 0.507463 \text{ V}$
$V_{\rm D}^{\rm te} = 0.5 \text{ V}$	$V_{\rm D}^{\rm ex} = 0.502415 \text{ V}$
$I_1^{\text{te}} = 5 \text{ mA}$	$I_1^{\text{ex}} = -0.00497512 \text{ A}$
$I_2^{\text{te}} = 5 \text{ mA}$	$I_2^{\text{ex}} = -0.00483092 \text{ A}$
$I_{\varepsilon}^{\text{te}} = 10\text{mA}$	$I_{\varepsilon}^{\text{ex}} = -0.00980604 \text{ A}$
$R_{eq}^{\text{te}} = 100 \Omega$	$R_{\varepsilon q}^{\text{ex}} = 101.97794 \Omega$

Captura de pantalla del circuit implementat amb una eina de simulació

2.3 Resistència equivalent: Circuit 2

Resolució del problema previ (apartat 1.5)

Valors mesurats

Circuit 2

$V_{\rm C}^{\rm te} = 0.5 \mathrm{V}$	$V_{\rm C}^{\rm ex} = 0.506201 \text{ V}$
$V_{\mathrm{D}}^{\mathrm{te}}$ = 0.5 V	$V_{\rm D}^{\rm ex} = 0.503715 \text{ V}$
$I_1^{\text{te}} = 5 \text{ mA}$	$I_1^{\text{ex}} = -0.00498787 \text{ A}$
$I_2^{\text{te}} = 5 \text{ mA}$	$I_2^{\text{ex}} = -0.00484341 \text{ A}$
$I_{\varepsilon}^{\text{te}} = 10\text{mA}$	$I_{\varepsilon}^{\text{ex}} = -0.00980617 \text{ A}$
$R_{\varepsilon q}^{\text{te}} = 100 \ \Omega$	$R_{\varepsilon q}^{\text{ex}} = 101.9766127 \ \Omega$

Captura de pantalla del circuit implementat amb una eina de simulació

