Università degli Studi di Milano

Data Science and Economics (LM-91)

Early-Stage Diabetes Risk Prediction:

which physiological symptoms to watch out for?

Shihab Hamati Nov 3, 2022 Objective

Diabetes is major and growing global problem

- Chronic illness which is the result of the body **not correctly producing or utilizing insulin**, the blood glucose regulating hormone
- About 1 out of every 11 to 12 adults suffer from it
- Direct cause of death of 1.5 million + half a million indirect kidney disease death + one-fifth of cardiovascular deaths

■ 3% increase in diabetes related deaths (2000-19), higher in lower-middle-income countries, at 13%

The goal is to predict the diabetic status

- 520 records and 17 features:
 - -1 numeric feature
 - 15 binary categorical features
 - 1 binary categorical response variable
- 61.5% of the records are diabetic (hospitals have disproportionate access to ill patients)
- This can be corrected for during production, e.g. in logistic regression:

$$\hat{\beta}_0^* = \hat{\beta}_0 + \log \frac{\pi}{1 - \pi} - \log \frac{\tilde{\pi}}{1 - \tilde{\pi}}$$

Exploratory Data Analysis

Dataset contains physiological symptoms

- Overall Characteristic Traits: Age, Gender, Sudden Weight Loss
- Commonly Named Symptoms: Weakness, Muscle Stiffness, Visual Blurring, Itching, Irritability, Delayed Healing
- Medically Named Symptoms:
 - Polyuria: excessive urination either in frequency or volume
 - Polydipsia: excessive thirst
 - Polyphagia: excessive eating
 - Paresis: muscular weakness, partial in this case
 - Alopecia: bodily hair loss
 - Genital Thrush: a fungal infection in the genitals

Diabetics are approximately 2.5 years older

- ANOVA test indicates the mean age in both groups is significantly different
- The age variable does not pass the Shapiro test for normality, but is acceptably bell-shaped

Obesity and sudden weight loss in diabetics

- In line with common medical knowledge, diabetics are more likely to be obese
- Also, sudden and unintentional weight loss is more common in diabetics

Weakness, stiffness, blurring, and irritability are more present in diabetics

- Diabetic patients are more likely to present signs of weakness, muscle stiffness, visual blurring, and irritability
- Itching and delayed healing do not appear to be significantly different across the two groups

Excessive urination and thirst are the most different symptom across classes

- Excessive urination, thirst, or hunger, as well as partial muscular weakness or genital thrush are more prevalent in diabetics
- On the other hand, loss of hair seems to be less prevalent in diabetics

Diabetics tend to present more symptoms

- A new feature was created by simply counting how many symptoms each patient reported in the questionnaire
- Diabetics tend to report twice as many symptoms than non-diabetics

Diabetics tend to present more symptoms

- A new feature was created by simply counting how many symptoms each patient reported in the questionnaire
- Diabetics tend to report twice as many symptoms than non-diabetics

Statistical Models

1 Logistic Regression

- Dataset is split 70% as training and 30% as test
- Logistic regression takes as an input multiple features and outputs a value between 0 and 1.
- This value denoted p(X) is the conditional probability that the response variable is "positive" given X:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_n X_n}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_n X_n}}$$

Coefficients:					
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	2.36265	1.36587	1.730	0.08367	
Age	-0.06586	0.03447	-1.911	0.05606	
GenderMale	-4.04206	0.77206	-5.235	1.65e-07	***
PolyuriaYes	5.16819	1.24070	4.166	3.11e-05	***
PolydipsiaYes	6.82621	1.48174	4.607	4.09e-06	***
sudden.weight.lossYes	0.78488	0.72712	1.079	0.28039	
weaknessYes	2.39592	0.75820	3.160	0.00158	**
PolyphagiaYes	0.99165	0.70983	1.397	0.16241	
Genital.thrushYes	2.49791	0.80174	3.116	0.00184	**
visual.blurringYes	1.91706	0.94529	2.028	0.04256	*
ItchingYes	-3.84983	0.97118	-3.964	7.37e-05	***
IrritabilityYes	0.66696	0.96321	0.692	0.48866	
delayed.healingYes	0.62316	0.81488	0.765	0.44443	
partial.paresisYes	2.37005	0.79030	2.999	0.00271	**
muscle.stiffnessYes	-1.55000	0.90375	-1.715	0.08633	
AlopeciaYes	-0.67015	0.90816	-0.738	0.46056	
ObesityYes	0.16864	0.91390	0.185	0.85360	

1 Logistic Regression

■ The baseline LR model achieves a good test performance with an accuracy of 87.82% and a sensitivity of 92.71%

Training Dataset	Test Dataset		
Reference	Reference		
Prediction Negative Positive	Prediction Negative Positive		
Negative 130 11	Negative 48 7		
Positive 10 213	Positive 12 89		
Accuracy : 0.9423	Accuracy : 0.8782		
Kappa : 0.8783	Kappa : 0.7386		
Sensitivity : 0.9509	Sensitivity : 0.9271		
Specificity: 0.9286	Specificity: 0.8000		
Balanced Accuracy : 0.9397	Balanced Accuracy : 0.8635		

1 Optimizing the Threshold

■ 100 thresholds (t) were assessed, from 0 to 1 at 0.01 intervals

■ Option 1: Maximize Accuracy (t=0.38-0.4)

■ Option 2: Conservatively Increasing Sensitivity (t=0.23-0.36)

2 Linear Discriminant Analysis (LDA)

- DA models the distribution each feature of each class separately, and then uses Bayes' theorem to flip things around and obtain Pr(Y|X)
- There is a good separation (discrimination) between the output classes, yielding a good test accuracy (88.46%)

Training Dataset	Test Dataset		
Reference	Reference		
Prediction Negative Positive	Prediction Negative Positive		
Negative 138 31	Negative 53 11		
Positive 2 193	Positive 7 85		
Accuracy : 0.9093	Accuracy : 0.8846		
Kappa : 0.8156	Kappa : 0.7593		
Sensitivity : 0.8616	Sensitivity : 0.8854		
Specificity: 0.9857	Specificity: 0.8833		
Balanced Accuracy : 0.9237	Balanced Accuracy : 0.8844		

3 Decision Tree

- Tree based models are simple and interpretable: it segments the prediction space into several simple regions. At each step, the variable and threshold yielding the best separation is chosen
- At the final level, the leaf assigns the majority class to the data points as a prediction
- This model achieve an accuracy higher than the previous two (89.74%)

Training Dataset	Test Dataset		
Reference	Reference		
Prediction Negative Positive	Prediction Negative Positive		
Negative 132 15	Negative 52 8		
Positive 8 209	Positive 8 88		
Accuracy : 0.9368	Accuracy : 0.8974		
Kappa : 0.8678	Kappa : 0.7833		
Sensitivity : 0.9330	Sensitivity : 0.9167		
Specificity: 0.9429	Specificity: 0.8667		
Balanced Accuracy : 0.9379	Balanced Accuracy : 0.8917		

3 Pruning the Tree

■ The earlier decision tree achieves a training accuracy of 93.68%, but a testing accuracy of 89.74%, hinting at a potential overfitting problem

■ The idea of pruning is to achieve a smaller tree with fewer splits, possibly lowering the variance, improving the interpretability, although at the cost of a little more bias

■ An optimal complexity parameter (CP) is chosen from the below plot

3 Pruning the Tree

■ The pruned tree increases the test accuracy (91.67%) and sensitivity (96.88%)

Training Dataset		Test Dataset			
Reference		Reference			
Prediction Ne	gative Po	sitive	Prediction Ne	gative Pos	itive
Negative	121	11	Negative	50	3
Positive	19	213	Positive	10	93
	Accurac	y : 0.9176		Accuracy	: 0.9167
	Kapp	a : 0.8240		Kappa	: 0.8200
S	ensitivit	y : 0.9509	S	ensitivity	: 0.9688
S	pecificit	y : 0.8643	S	pecificity	: 0.8333
Balance	d Accurac	y: 0.9076	Balance	d Accuracy	: 0.9010

4 Random Forest (RF)

- Bagging is a general procedure to reduce the variance of a statistical learning method (and thus improve the model's performance)
- This is achieved by taking repeated samples from the same training dataset, building multiple trees, and taking the average of all predictions
- RF improves on bagged tree by decorrelating the trees thus reducing the variance further
- This is achieved by randomizing the selection of features available to the model at each split

■ The RF achieves the **highest test accuracy** (93.59%) and sensitivity (97.92%)

Training Dataset	Test Dataset
Reference	Reference
Prediction Negative Positive	Prediction Negative Positive
Negative 139 0	Negative 52 2
Positive 1 224	Positive 8 94
Accuracy : 0.9973	Accuracy : 0.9359
Kappa : 0.9942	Kappa : 0.8620
Sensitivity : 1.0000	Sensitivity : 0.9792
Specificity: 0.9929	Specificity: 0.8667
Balanced Accuracy : 0.9964	Balanced Accuracy : 0.9229

4 Random Forest (RF)

■ RF produces a Variable Importance Plot, indicating which variables have the most influence on the performance of the model

Key Findings

Model Comparison

- All models achieve high accuracy and sensitivity results, confirm the validity of the concept of early detection of diabetes from the presence of certain symptoms
- RF achieves highest accuracy and sensitivity
- PT is in close second place, while being the **most interpretable** model (easiest for individuals to apply, compared to the math of LR and LDA, or the digitally stored RF)

Key Results

- Polyuria (excessive urination) and polydipsia (excessive thirst) are by far the strongest indicators of diabetes to watch out for
- **Sudden unintentional weight loss** is also a significant factor in most models at predicting diabetes
- The higher the number of physiological symptoms present from the set studied the more likely a person is diabetic
- Minimal training of community volunteers, the community, and even individuals to simply keep an eye out for the presence of a few symptoms provides a strong and free predictor to identify diabetes at an early stage