

המכללה האקדמית תל אביב יפו בית הספר למדעי המחשב

מבני נתונים, 121111 ד"ר שראל כהן, ד"ר מור פרי תשפ"ד, סמסטר ב', מועד ב', 26/07/2024

	מספר זהות:
--	------------

משך הבחינה: 3 שעות ללא חומר עזר למעט דפי העזר המצורפים לטופס הבחינה ומחשבון.

> לפניך בחינה בחלקים: חלק א - שאלות סגורות - 48 נקודות חלק ב - שאלות פתוחות - 52 נקודות הנחיות למענה מופיעות בתחילת כל חלק.

> > בהצלחה!

חלק א - שאלות סגורות - 48 נקודות

• חלק זה מורכב משש שאלות רב-ברירה, 8 נק' לכל שאלה.

שאלה מס' 1 (8 נק')

נתונות 5 טענות, (הניחו שכל הלוגריתמים הם בבסיס 2):

$$n^{\mathrm{nlog}\,n} = \Omega(\,2^{n!}):1$$
 טענה $(n)^{\frac{1}{10}} = O(\log n):2$ טענה $\frac{\log n}{\log\log n} = \Omega\left(\frac{\sqrt{n}}{\log n}\right):3$ טענה $(n)^{\frac{1}{100}} = \Omega\left(\frac{\sqrt{n}}{\log n}\right):3$ טענה $(n)^{\frac{2n}{1000}} = \Omega(3^{\mathrm{nlog}\,n}):4$ טענה $(n)^{\frac{2n}{10000}} = \Omega(3^{\mathrm{nlog}\,n}):3$ טענה $(n)^{\frac{2n}{100000}} = \Omega(3^{\mathrm{nlog}\,n}):4$

מה מההיגדים הבאים נכון:

- א. יש טענה נכונה אחת והיתר שגויות.
- ב. יש שתי טענות נכונות והיתר שגויות.
- ג. יש שלוש טענות נכונות והיתר שגויות.
- ד. יש ארבע טענות נכונות והיתר שגויות.
 - ה. כל חמש הטענות נכונות.
 - ו. כל חמש הטענות שגויות.

שאלה מס' 2 (8 נק')

נתונה הפונקציה הבאה שעושה שימוש בפונקציה calc שתוגדר בהמשך:

```
int func (int A[], int n) {
    int i,j,k,sum;
    if (n<=1)
        return 1;
    sum=0
    for (i=2;\,i\leq n\;;\,i=i*i)
        for (j=2;\,j\leq 2^i\;;\,j=j*j)
        sum ++
    k = calc(n)
    for (j=1;\,j<=k;\,j++)
        sum += func(A, n/2);
    return sum
}
```

הפונקציה נקראת עם מערך A וגודלו n. הניחו שעלות חישוב הפונקציה calc היא (O(1).

 $\theta(n \log n)$ הדר טוענת: אם $\operatorname{calc}(n)=1$, אז עלות היא $\operatorname{calc}(n)=1$ ליאור טוענת: אם $\operatorname{calc}(n)=1$, אז עלות היא $\operatorname{calc}(n)=1$ יוליה טוענת: אם $\operatorname{calc}(n)=1$, אז עלות היא $\operatorname{calc}(n)=1$ מיטל טוענת: אם $\operatorname{calc}(n)=1$, אז עלות היא $\operatorname{calc}(n)=2$ מיטל טוענת: אם $\operatorname{calc}(n)=2$, אז עלות היא $\operatorname{calc}(n)=2$ מאיה טוענת: אם $\operatorname{calc}(n)=2$, אז עלות היא $\operatorname{calc}(n)=2$

מה מההיגדים הבאים נכון:

- א. ליאור צודקת והשאר טועות.
- ב. מיטל צודקת והשאר טועות.
- ג. ליאור ומיטל צודקות והשאר טועות.
- ד. הדר ומיטל צודקות והשאר טועות.
- ה. הדר ומאיה צודקות והשאר טועות.
- ו. אף היגד מההיגדים האחרים אינו נכון.

שאלה מס' 3 (8 נק')

נתונים שני עצי 2-3 ${\mathcal T}_2$ ו ${\mathcal T}_3$, שכל אחד מהם מחזיק ${\mathcal T}_2$ מפתחות.

.3 בעץ \mathcal{T}_2 הדרגה של כל קדקוד פנימי היא 2, ובעץ \mathcal{T}_3 הדרגה של כל קדקוד פנימי היא

מבצעים הכנסה של מפתח חדש לכל אחד מהעצים באמצעות הפעולה וnsert מבצעים הכנסה של מפתח חדש לכל אחד מהעצים באמצעות הפעולה ל \mathcal{T}_2 , נסמן ב \mathcal{X}_2 את מספר הקדקודים הפנימיים שעברו פיצול במהלך ההכנסה ל

 \mathcal{T}_3 ונסמן ב x_3 את מספר הקדקודים הפנימיים שעברו פיצול במהלך ההכנסה ל

 $? X_3$ מה ניתן להגיד על סדרי הגודל של

- $x_3 = \Theta(\log n)$ א. בטוח ש $x_2 = O(1)$
- $x_3 = O(1)$ ב. יכול להיות ש $x_2 = O(1)$ וגם
- . $x_3 = \theta(\log n)$ וגם $x_2 = \theta(\log n)$ ג. יכול להיות ש
 - . $x_3 = O(1)$ וגם $x_2 = \theta(\log n)$ ד. בטוח ש
- ה. יש יותר מתשובה נכונה אחת מבין התשובות א-ד.
 - ו. אף אחת מהתשובות א-ד אינה נכונה.

שאלה מס' 4 (8 נק')

$\theta((n \log n)^2)$ נתון אלגוריתם שזמן הריצה הממוצע שלו הוא

טענה 1: בטוח שזמן הריצה של האלגוריתם במקרה הגרוע הוא $O(n^4)$ (נקרא: או גדול)

טענה 2: בטוח שזמן הריצה של האלגוריתם במקרה הטוב הוא (נקרא: או גדול) טענה 2

טענה 3: ייתכן שזמן הריצה של האלגוריתם במקרה הגרוע הוא $O(n^2)$ (נקרא: או גדול)

(נקרא: או קטן) ס $(n \log n)$ ייתכן שזמן הריצה של האלגוריתם במקרה הטוב הוא

 $\omega(n\log n)$ טענה 5: ייתכן שזמן הריצה של האלגוריתם במקרה הטוב הוא

מה מההיגדים הבאים נכון:

- א. 4,5 נכונות והיתר שגויות.
- ב. 3,4,5 נכונות והיתר שגויות.
- ג. 1,3,4 נכונות והיתר שגויות.
 - ד. 2,5 נכונות והיתר שגויות.
- ה. יש רק טענה נכונה אחת והיתר שגויות.
 - ו. אף היגד מההיגדים האחרים אינו נכון.

שאלה מס' 5 (8 נק')

נתון האלגוריתם הבא הנקרא SortTogether, המקבל בקלט מערך [Al] ואת גודלו n. המערך מכיל את כל המספרים השלמים מ1 עד n באיזשהו סדר (מופע אחד של כל מספר).

:SortTogether(A[],n) תיאור האלגוריתם

- (מיון מהיר) Quick Sort על \sqrt{n} האיברים השמאליים מריצים את אלגוריתם -
- (מיון מיזוג) Merge Sort על יתר האיברים (מיון הימניים) מריצים את אלגוריתם $n-\sqrt{n}$
- ממזגים את שני החלקים הממוינים (\sqrt{n} האיברים השמאליים ו $\sqrt{n}-\sqrt{n}$ האיברים הממוינים באמצעות הפעולה .Merge

בהנחת התפלגות אחידה על הקלט (כלומר, כל פרמוטציה של המספרים 1 עד n יכולה להופיע בקלט באותה ההסתברות), מה זמן הריצה של אלגוריתם SortTogether במקרה הגרוע, ומה זמן הריצה במקרה הממוצע?

- $\theta(n \log n)$ ובמקרה הממוצע $\theta(n \log n)$ א. במקרה הגרוע
 - $\theta(n \log n)$ ב. במקרה הגרוע $\theta(n^2)$ ובמקרה הממוצע
 - $\theta(n)$ ובמקרה הממוצע $\theta(n \log n)$ ובמקרה הממוצע
 - ד. במקרה הגרוע $\theta(n^2)$ ובמקרה הממוצע π. במקרה
- ה. לא ניתן לקבוע במדויק את סדרי הגודל של זמני הריצה לפי נתוני השאלה.
 - ו. אף אחת מהתשובות א-ה אינה נכונה.

שאלה מס' 6 (8 נק')

נתונה טבלת ערבול עם שרשור בגודל m=4.

המפתחות המגיעים למבנה נבחרים באופן אקראי מהתחום {0,...,399 בהתפלגות הבאה:

$$\frac{1}{200}$$
 כל איבר מהתחום $\{0,...,99\}$ בהסתברות

$$\frac{1}{600}$$
וכל איבר מהתחום $\{100,...,399\}$ בהסתברות

 $\{0,...,399\}$ שימו לב שההתפלגות בשאלה זו אינה אחידה. לשם השוואה, בהתפלגות אחידה, כל איבר מהתחום $\{0,...,399\}$

$$(\frac{1}{400}$$
 נבחר בהסתברות

איזו מהפונקציות הבאות היא פונקציית ערבול אחידה לפי נתוני השאלה?

$$h(k) = k \mod 4$$
 א.

$$h(k) = k \mod 400$$
 .ב

$$h(k) = \left\lfloor \frac{k}{100} \right\rfloor . \lambda$$

$$h(k) = \left\lfloor \frac{k}{100} \right\rfloor \mod 4 . T$$

ה. יש יותר מתשובה נכונה אחת מבין התשובות א-ד.

ו. אף אחת מהתשובות א-ד אינה נכונה.

חלק ב - שאלות פתוחות - 52 נקודות

תשובות שתרשמנה	לא תיבדקנה	המוקצה לכך.	בחן במקום	טופס המו	ַנל גבי	עליהן ע	יש לענות	שאלות,	ז יש שתי	בחלק זר	•
									טיוטה.	מחברות ה	בנ

• נסחו במפורש ובמדויק כל תוצאה שהוכחנו בכיתה ואתם משתמשים בה.

שאלה מס' 7 (26 נק')

ברצוננו לממש את טיפוס הנתונים המופשט תור. כלומר, את הפעולות: MakeEmpty()

IsEmpty() EnQueue(x) DeQueue()

ברשותכם רק 2 מחסניות S_2, S_1 כטיפוס נתונים מופשט (ADT), עם הפעולות הבאות:

MakeEmpty() IsEmpty() Push(x) Pop()

זמן הריצה של כל סדרה של n פעולות של התור במימוש שלכם נדרש להיות $\theta(n)$, בהינתן שכל פעולת מחסנית $\theta(1)$ מבוצעת ב

בפתרון שלכם אין להשתמש בתוצאות שראינו בכיתה בהקשר של שאלה זו.

	MakeEmpty() תיאור
	IsEmpty() תיאור
אמנד 6 אמנד	

	
EnQueue(x) תיאור	
DeQueue() תיאור	

	$\mathcal{O}(n)$ הוכחה שזמן הריצה של כל סדרה של \mathbf{n} פעולות תור הוא
	$\Omega(n)$ הוכחה שזמן הריצה של כל סדרה של מ פעולות תור הוא
Ш	

 $T(n) = \Omega($

שאלה מס' 8

שאלה זו עוסקת במבנה הנתונים ערימה.

<u>שאלה מס' 8.1 (13 נק')</u>

נתון האלגוריתם של פלויד לבניית ערימת מקסימום ממערך בגודל ח.

for (i = n/2-1; i >= 0; i--)FixHeap(i);

> נתחו את זמן הריצה של האלגוריתם של פלויד על ערימה שהיא עץ שלם. חשבו והסבירו את כל שלבי החישוב.

בסעיף זה אין להשתמש בתוצאות שראינו בכיתה בהקשר של ניתוח זה.

 $\sum_{i=1}^{\infty} \frac{i}{2^i} = 2$ מותר להשתמש בטענה:

זמן הריצה של האלגוריתם של פלויד

$T(n) = \theta($)			

הוכחה:

۷	

T(n) = O(
`` ',	

שאלה מס' 8.2 (13 נק'<u>)</u>

ראינו כיצד מתבצעת הפעולה deleteMax בערימת מקסימום, ושזמן הריצה של הפעולה במקרה הגרוע הוא (log n) כאשר מתבצעת על ערימה בגודל n.

בُסעיף זה נתייחס לבעיית ה deleteMax ולא לאלגוריתם הספציפי שראינו עבורה, ונבחן האם קיים אלגוריתם טוב יותר.

בעיית ה deleteMax מוגדרת כך:

n בגודל H בלט: ערימת מקסימום

בעל ערך מקסימלי. H' פרט לאחד בעל ערך מקסימלי. H' פרט לאחד בעל ערך מקסימלי. H' פלט: ערימת מקסימום

ס(log n) או הפריכו: קיים אלגוריתם לבעיית ה deleteMax שזמן הריצה שלו במקרה הגרוע הוא (נקרא: או קטן).

	הוכחה/הפרכה
1	