LTI SYSTEM PROPERTIES & IMPULSE RESPONSE

System properties

Stability (BIBO)
Memory (depend on current input only)
Causality (does not depend on future inputs)
Linearity
Time invariance

Memoryless, LTI
Memoryless, LTI
Memoryless, LTI
LTI

For LTI systems:

$$h(t)$$
 Completely determine Input-output behaviors

Thus, stability, memory, causality are related to h(t)/h[n].

a). If an LTI system is MEMORYLESS

$$x[n] \rightarrow h[n] \rightarrow y[n]$$

$$y[n] = h[n] * x[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$= \dots + h[-2]x[n+2] + h[-1]x[n+1] + h[0]x[n]$$

$$+ h[1]x[n-1] + h[2]x[n-2] + \dots$$

Memoryless: y[n] depends on x[n] ONLY. Thus, h[k] = 0 for $k \neq 0$. The same is true for CT LTI systems.

<u>Conclusion:</u> LTI systems

Memoryless
$$\longleftarrow$$
 $h[k] = c\delta[k]$

$$h(\tau) = c\delta(\tau)$$

b) If an LTI system is CAUSAL:

$$y[n] = \dots + h[-1]x[n+1] + h[0]x[n] + h[1]x[n-1] + \dots$$

To make y[n] depend ONLY on x[n] and/or x[k] k < n, must have

$$DT : h[k] = 0 \text{ for } k < 0$$

$$CT: h(\tau) = 0 \text{ for } \tau < 0$$

c) If an LTI system is STABLE: BIBO stable: if

$$|x[n]| \le M_x < \infty \implies |y[n]| \le M_y < \infty$$

$$|y[n]| = |x[n] * h[n]|$$

$$= \left| \sum_{k=-\infty}^{\infty} h[k] x[n-k] \right|$$

$$\leq \sum_{k=-\infty}^{\infty} |h[k]| |x[n-k|]$$

$$\leq \left\{ \sum_{k=-\infty}^{\infty} |h[k]| \right\} M_x < \infty$$

If LTI BIBO stable
$$\leftrightarrow \sum_{k=-\infty}^{\infty} |h[k]| < \infty$$
: absolutely summable

- $\sum |\cdot| < \infty$ is a sufficient condition for BIBO
- $\sum |\cdot| < \infty$ is also a necessary condition for BIBO

$$\sum_{k=-\infty}^{\infty} |h[k]| < \infty \longleftrightarrow \text{BIBO Stable}$$

$$\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty \longleftrightarrow \text{BIBO Stable}$$

First-order autoregressive (recursive) system $y[n] = \rho y[n-1] + x[n]$, with h[n] = 0 for n < 0

- a) Impulse response?
- b) Is system causal, memoryless, BIBO stable?

Solution:

a) Let
$$x[n] = \delta[n] \longrightarrow h[n] = \rho h[n-1] + \delta[n]$$
 Thus $h[k] = 0$ for $k < 0$, $h[0] = 1$, $h[1] = \rho$, $h[2] = \rho^2$, $h[3] = \rho^3 \cdots h[n] = \rho^n (n > 0)$
$$h[n] = \rho^n u[n]$$

- b)
- Causal, because h[n] = 0 for k < 0
- System is NOT memoryless, because $h[n] \neq c\delta[n]$

$$\sum_{k=\infty}^{\infty} |h[k]| = \sum_{k=\infty}^{\infty} |\rho^{k}| = \begin{cases} \infty & \text{if } |\rho| \ge 1 \\ < \infty & \text{if } |\rho| < 1 \end{cases}$$

• Therefore, system is stable if $|\rho| < 1$

STEP RESPONSE:

$$\begin{array}{c} x[n] \to H \to y[n] \\ x(t) & y(t) \end{array}$$

Step response: if
$$x[n] = u[n] \Rightarrow y[n] = s[n]$$

$$s[n] = h[n] * u[n]$$

$$= \sum_{k=-\infty}^{\infty} h[k]u[n-k]$$

$$= \sum_{k=-\infty}^{n} h[k]u[n-k] + \sum_{k=n+1}^{\infty} h[k]u[n-k]$$

$$s[n] = \sum_{k=-\infty}^{n} h[k]$$

For a CT system:

$$s(t) = \int_{-\infty}^{t} h(\tau) d\tau$$

Note: a)
$$h(t) = \frac{d}{dt}s(t)$$

$$\delta(t) = \frac{d}{dt}u(t) \to \boxed{\mathbf{H}} \to h(t) = \frac{d}{dt}s(t)$$

b)
$$s[n] = h[n] + \sum_{k=-\infty}^{n-1} h[k]$$

$$= h[n] + s[n-1]$$

$$h[n] = s[n] - s[n-1]$$
 COMPARE $h(t) = \frac{d}{dt}s(t)$

$$h(t) = \frac{d}{dt}s(t)$$

Ε

$$u[n] \to h[n] = \rho^n u[n] \to y[n] = ??$$

$$|\rho| < 1$$

• We know $h[n] = \rho^n u[n]$

$$s[n] = \sum_{k=-\infty}^{n} h[k]$$

$$= \sum_{k=-\infty}^{n} \rho^{k} u[k] = \left(\sum_{k=0}^{n} \rho^{k}\right) u[n] = \frac{1 - \rho^{n+1}}{1 - \rho} u[n]$$

$$\frac{1 - \rho^{n+1}}{1 - \rho}$$