题目 3: 已知数列 $\{a_n\}$ 为等差数列,且满足 $a_{2n}=2a_n+1(n\in\mathbb{N}^*)$ 。 (1) 若 $a_1=1$,求 $\{a_n\}$ 的前 n 项和 S_n ;

◆ロト ◆昼 ト ◆ 夏 ト ◆ 夏 ・ か ♀ で

题目 3: 已知数列 $\{a_n\}$ 为等差数列,且满足 $a_{2n}=2a_n+1(n\in\mathbb{N}^*)$ 。 (1) 若 $a_1=1$,求 $\{a_n\}$ 的前 n 项和 S_n ;

解:

(1) 当 n = 1 时,由 $a_{2n} = 2a_n + 1$ 得 $a_2 = 2a_1 + 1 = 3$,所以等差数列 $\{a_n\}$ 的公差为 $a_2 - a_1 = 3 - 1 = 2$,

题目 3: 已知数列 $\{a_n\}$ 为等差数列,且满足 $a_{2n} = 2a_n + 1(n \in \mathbb{N}^*)$ 。 (1) 若 $a_1 = 1$,求 $\{a_n\}$ 的前 n 项和 S_n ;

解:

(1) 当 n = 1 时,由 $a_{2n} = 2a_n + 1$ 得 $a_2 = 2a_1 + 1 = 3$,所以等差数列 $\{a_n\}$ 的公差为 $a_2 - a_1 = 3 - 1 = 2$,

所以等差数列 $\{a_n\}$ 的通项公式为 $a_n = a_1 + 2(n-1) = 2n-1$,

题目 3: 已知数列 $\{a_n\}$ 为等差数列,且满足 $a_{2n} = 2a_n + 1(n \in \mathbb{N}^*)$ 。 (1) 若 $a_1 = 1$,求 $\{a_n\}$ 的前 n 项和 S_n ;

解:

(1) 当 n = 1 时,由 $a_{2n} = 2a_n + 1$ 得 $a_2 = 2a_1 + 1 = 3$,所以等差数列 $\{a_n\}$ 的公差为 $a_2 - a_1 = 3 - 1 = 2$,

所以等差数列 $\{a_n\}$ 的通项公式为 $a_n = a_1 + 2(n-1) = 2n-1$,

所以前
$$n$$
 项和为 $S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(1 + 2n - 1)}{2} = n^2$

题目 3: 已知数列 $\{a_n\}$ 为等差数列,且满足 $a_{2n} = 2a_n + 1(n \in \mathbb{N}^*)$ 。 (1) 若 $a_1 = 1$,求 $\{a_n\}$ 的前 n 项和 S_n ;

解:

(1) 当 n = 1 时,由 $a_{2n} = 2a_n + 1$ 得 $a_2 = 2a_1 + 1 = 3$,所以等差数列 $\{a_n\}$ 的公差为 $a_2 - a_1 = 3 - 1 = 2$,

所以等差数列 $\{a_n\}$ 的通项公式为 $a_n = a_1 + 2(n-1) = 2n-1$,

所以前
$$n$$
 项和为 $S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(1 + 2n - 1)}{2} = n^2$

题目 3: 已知数列 $\{a_n\}$ 为等差数列,且满足 $a_{2n}=2a_n+1(n\in\mathbb{N}^*)$ 。 (2) 若数列 $\{b_n\}$ 满足 $\frac{5}{b_2}-\frac{1}{b_1}=\frac{3}{4}$,且数列 $\{a_n\cdot b_n\}$ 的前 n 项和 $T_n=(3n-4)2^{n+1}+8$,

题目 3: 已知数列 $\{a_n\}$ 为等差数列,且满足 $a_{2n}=2a_n+1(n\in\mathbb{N}^*)$ 。 (2) 若数列 $\{b_n\}$ 满足 $\frac{5}{b_2}-\frac{1}{b_1}=\frac{3}{4}$,且数列 $\{a_n\cdot b_n\}$ 的前 n 项和 $T_n=(3n-4)2^{n+1}+8$,

解: (2) 当
$$n=1$$
 时, $a_1 \cdot b_1 = T_1 = (3-4) \cdot 2^2 + 8 = -4 + 8 = 4$,所以 $b_1 = \frac{4}{a_1}$,

题目 3: 已知数列 $\{a_n\}$ 为等差数列,且满足 $a_{2n}=2a_n+1(n\in\mathbb{N}^*)$ 。 (2) 若数列 $\{b_n\}$ 满足 $\frac{5}{b_2}-\frac{1}{b_1}=\frac{3}{4}$,且数列 $\{a_n\cdot b_n\}$ 的前 n 项和 $T_n=(3n-4)2^{n+1}+8$,

求数列 $\{b_n\}$ 的通项公式。

解: (2) 当 n=1 时, $a_1 \cdot b_1 = T_1 = (3-4) \cdot 2^2 + 8 = -4 + 8 = 4$,所以 $b_1 = \frac{4}{a_1}$,

$$n=2$$
 时, $a_2 \cdot b_2 = T_2 - T_1 = (6-4) \cdot 2^3 + 8 - 4 = 20$,所以 $b_2 = \frac{20}{a_2}$,

题目 3: 已知数列 $\{a_n\}$ 为等差数列,且满足 $a_{2n}=2a_n+1(n\in\mathbb{N}^*)$ 。 (2) 若数列 $\{b_n\}$ 满足 $\frac{5}{b_2}-\frac{1}{b_1}=\frac{3}{4}$,且数列 $\{a_n\cdot b_n\}$ 的前 n 项和 $T_n=(3n-4)2^{n+1}+8$,

解: (2) 当
$$n=1$$
 时, $a_1 \cdot b_1 = T_1 = (3-4) \cdot 2^2 + 8 = -4 + 8 = 4$,所以 $b_1 = \frac{4}{a_1}$,

$$n=2$$
 时, $a_2 \cdot b_2 = T_2 - T_1 = (6-4) \cdot 2^3 + 8 - 4 = 20$, 所以 $b_2 = \frac{20}{a_2}$,

曲
$$a_{2n} = 2a_n + 1$$
 得 $a_2 = 2a_1 + 1$, 所以 $b_2 = \frac{20}{a_2} = \frac{20}{2a_1 + 1}$,

题目 3: 已知数列 $\{a_n\}$ 为等差数列,且满足 $a_{2n}=2a_n+1(n\in\mathbb{N}^*)$ 。 (2) 若数列 $\{b_n\}$ 满足 $\frac{5}{b_2}-\frac{1}{b_1}=\frac{3}{4}$,且数列 $\{a_n\cdot b_n\}$ 的前 n 项和 $T_n=(3n-4)2^{n+1}+8$,

解: (2) 当
$$n=1$$
 时, $a_1 \cdot b_1 = T_1 = (3-4) \cdot 2^2 + 8 = -4 + 8 = 4$, 所以 $b_1 = \frac{4}{a_1}$,

$$n=2$$
 时, $a_2 \cdot b_2 = T_2 - T_1 = (6-4) \cdot 2^3 + 8 - 4 = 20$,所以 $b_2 = \frac{20}{a_2}$,

曲
$$a_{2n} = 2a_n + 1$$
 得 $a_2 = 2a_1 + 1$,所以 $b_2 = \frac{20}{a_2} = \frac{20}{2a_1 + 1}$,由 $\frac{5}{b_2} - \frac{1}{b_1} = \frac{3}{4}$ 得 $\frac{(2a_1 + 1)}{4} - \frac{a_1}{4} = \frac{a_1 + 1}{4} = \frac{3}{4}$,

曲
$$\frac{5}{b_2} - \frac{1}{b_1} = \frac{3}{4}$$
 得 $\frac{(2a_1+1)}{4} - \frac{a_1}{4} = \frac{a_1+1}{4} = \frac{3}{4}$,

题目 3: 已知数列 $\{a_n\}$ 为等差数列,且满足 $a_{2n} = 2a_n + 1(n \in \mathbb{N}^*)$ 。

(2) 若数列 $\{b_n\}$ 满足 $\frac{5}{b_2} - \frac{1}{b_1} = \frac{3}{4}$,且数列 $\{a_n \cdot b_n\}$ 的前 n 项和 $T_n = (3n-4)2^{n+1} + 8$,

解: (2) 当
$$n=1$$
 时, $a_1 \cdot b_1 = T_1 = (3-4) \cdot 2^2 + 8 = -4 + 8 = 4$,所以 $b_1 = \frac{4}{a_1}$,

$$n=2$$
 时, $a_2 \cdot b_2 = T_2 - T_1 = (6-4) \cdot 2^3 + 8 - 4 = 20$, 所以 $b_2 = \frac{20}{a_2}$,

曲
$$a_{2n} = 2a_n + 1$$
 得 $a_2 = 2a_1 + 1$,所以 $b_2 = \frac{20}{a_2} = \frac{20}{2a_1 + 1}$,由 $\frac{5}{b_2} - \frac{1}{b_1} = \frac{3}{4}$ 得 $\frac{(2a_1 + 1)}{4} - \frac{a_1}{4} = \frac{a_1 + 1}{4} = \frac{3}{4}$,

曲
$$\frac{5}{b_2} - \frac{1}{b_1} = \frac{3}{4}$$
 得 $\frac{(2a_1+1)}{4} - \frac{a_1}{4} = \frac{a_1+1}{4} = \frac{3}{4}$,

所以
$$a_1 = 2$$
, $a_2 = 2a_1 + 1 = 5$, $a_n = 2 + (n-1)(a_2 - a_1) = 2 + 3(n-1) = 3n - 1$, $b_1 = 2$, $b_2 = 4$,

题目 3: 已知数列 $\{a_n\}$ 为等差数列,且满足 $a_{2n}=2a_n+1(n\in\mathbb{N}^*)$ 。 (2) 若数列 $\{b_n\}$ 满足 $\frac{5}{b_2}-\frac{1}{b_1}=\frac{3}{4}$,且数列 $\{a_n\cdot b_n\}$ 的前 n 项和 $T_n=(3n-4)2^{n+1}+8$,

解: (2) 当
$$n=1$$
 时, $a_1 \cdot b_1 = T_1 = (3-4) \cdot 2^2 + 8 = -4 + 8 = 4$,所以 $b_1 = \frac{4}{a_1}$,

$$n=2$$
 时, $a_2 \cdot b_2 = T_2 - T_1 = (6-4) \cdot 2^3 + 8 - 4 = 20$,所以 $b_2 = \frac{20}{a_2}$,

曲
$$a_{2n} = 2a_n + 1$$
 得 $a_2 = 2a_1 + 1$,所以 $b_2 = \frac{20}{a_2} = \frac{20}{2a_1 + 1}$,
由 $\frac{5}{b_2} - \frac{1}{b_1} = \frac{3}{4}$ 得 $\frac{(2a_1 + 1)}{4} - \frac{a_1}{4} = \frac{a_1 + 1}{4} = \frac{3}{4}$,

由
$$\frac{5}{b_2} - \frac{1}{b_1} = \frac{3}{4}$$
 得 $\frac{(2a_1+1)}{4} - \frac{a_1}{4} = \frac{a_1+1}{4} = \frac{3}{4}$,

所以
$$a_1 = 2$$
, $a_2 = 2a_1 + 1 = 5$, $a_n = 2 + (n-1)(a_2 - a_1) = 2 + 3(n-1) = 3n - 1$, $b_1 = 2$, $b_2 = 4$,

$$n \ge 2$$
 时, $a_n \cdot b_n = T_n - T_{n-1} = (3n-4)2^{n+1} + 8 - (3n-7)2^n - 8 = (3n-1)2^n$,

题目 3: 已知数列 $\{a_n\}$ 为等差数列,且满足 $a_{2n}=2a_n+1(n\in\mathbb{N}^*)$ 。

(2) 若数列 $\{b_n\}$ 满足 $\frac{5}{b_0} - \frac{1}{b_1} = \frac{3}{4}$,且数列 $\{a_n \cdot b_n\}$ 的前 n 项和 $T_n = (3n-4)2^{n+1} + 8$,

求数列 $\{b_n\}$ 的通项公式。

解: (2) 当 n=1 时, $a_1 \cdot b_1 = T_1 = (3-4) \cdot 2^2 + 8 = -4 + 8 = 4$,所以 $b_1 = \frac{4}{-4}$,

n=2 时, $a_2 \cdot b_2 = T_2 - T_1 = (6-4) \cdot 2^3 + 8 - 4 = 20$, 所以 $b_2 = \frac{20}{20}$,

曲 $a_{2n} = 2a_n + 1$ 得 $a_2 = 2a_1 + 1$,所以 $b_2 = \frac{20}{a_2} = \frac{20}{2a_1 + 1}$, 由 $\frac{5}{b_2} - \frac{1}{b_1} = \frac{3}{4}$ 得 $\frac{(2a_1 + 1)}{4} - \frac{a_1}{4} = \frac{a_1 + 1}{4} = \frac{3}{4}$,

所以 $a_1=2$, $a_2=2a_1+1=5$, $a_n=2+(n-1)(a_2-a_1)=2+3(n-1)=3n-1$,

 $b_1 = 2$, $b_2 = 4$,

 $n \ge 2$ 时, $a_n \cdot b_n = T_n - T_{n-1} = (3n-4)2^{n+1} + 8 - (3n-7)2^n - 8 = (3n-1)2^n$,

所以数列 $\{b_n\}$ 的通项公式为 $b_n=2^n$