Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

ЛАБОРАТОРНА РОБОТА № 1

з дисципліни «Методи обчислень та похибки експерименту» на тему «ЗАГАЛЬНІ ПРИНЦИПИ ОРГАНІЗАЦІЇ ЕКСПЕРИМЕНТІВ З ДОВІЛЬНИМИ ЗНАЧЕННЯМИ ФАКТОРІВ»

ВИКОНАВ:

студент II курсу ФІОТ

групи ІО-92

Варіант-18

Соболь Денис Дмитрович

ПЕРЕВІРИВ:

ас. Регіда П. Г.

Мета: Вивчити основні поняття, визначення, принципи теорії планування експерименту на основі яких вивчити побудову формалізованих алгоритмів проведення експерименту і отримання формалізованої моделі об'єкта. Закріпити отримані знання практичним їх використанням при написанні програми, що реалізує завдання на лабораторну роботу.

Завдання на лабораторну роботу

- 1) Використовуючи програму генерації випадкових чисел, провести трьохфакторний експеримент в восьми точках (три стовбці і вісім рядків в матриці планування заповнити її випадковими числами). Рекомендовано взяти обмеження до 20 при генерації випадкових чисел, але врахувати можливість зміни обмеження на вимогу викладача. Програма створюється на основі будь-якої мови високого рівня.
- 2) Визначити значення функції відгуків для кожної точки плану за формулою лінійної регресії:

$$Y = a_0 + a_1 X_1 + a_2 X_2 + a_3 X_3$$

де a_0 , a_1 , a_2 , a_3 довільно вибрані (для кожного студента різні) коефіцієнти, постійні протягом усього часу проведення експерименту.

- 3) Виконати нормування факторів. Визначити значення нульових рівнів факторів. Знайти значення відгуку для нульових рівнів факторів і прийняти його за еталонне Уэт.
- 4) Знайти точку плану, що задовольняє критерію вибору оптимальності (див. табл.1).

Варіанти обираються по номеру в списку в журналі викладача.

218	max(Y)
-----	--------

Виконання лабораторної роботи

1. Записати рівняння регресії $Y = a_0 + a_1 * X_1 + a_2 * X_2 + a_3 * X_3$ з числовими значеннями коефіцієнтів a_0 , a_1 , a_2 , a_3 .

a0	1
a1	1
a2	5
a3	5

$$Y = 1 + 1*X_1 + 5*X_2 + 5*X_3$$

2. Використовуючи генератор випадкових чисел визначимо значення факторів у точках експерименту. А також обчислимо функцію відгуку в кожній точці.

Num	X1	X2	ХЗ	Υ
1	5	15	13	146
2	8	5	1	39
3	19	1	0	25
4	11	10	9	107
5	7	0	9	53
6	2	15	18	168
7	15	9	14	131
8	3	4	2	34
X0	10,5	7,5	9	
Dx	8,5	7,5	9	

Xn1	Xn2	Xn3
-0,64706	1	0,444444
-0,29412	-0,33333	-0,88889
1	-0,86667	-1
0,058824	0,333333	0
-0,41176	-1	0
-1	1	1
0,529412	0,2	0,555556
-0,88235	-0,46667	-0,77778

3. Для кожного фактора X_i визначимо нульовий рівень X_{0i} , проведемо нормування і знайдемо функцію відгуку від нульових рівнів факторів: $Y_{\text{эт}} = Y(X_{01}, X_{02}, X_{03})$

$$\mathbf{Y} = 1 + 1 * X_{01} + 5 * X_{02} + 5 * X_{03} = 1 + 1 * 10,5 + 5 * 7,5 + 5 * 9 = 1 + 10,5 + 37,5 + 45 = \mathbf{94}$$

4. Знайти точку плану, що задовольняє заданому критерію оптимальності.

Варіант:	218
MAX(Y):	168

Код програми

```
from random import *
from tkinter.filedialog import *

class Window:
    def __init__(self):
        self.root = Tk()
        self.root.title("Лабораторна робота №1")
        self.root.geometry("700x800")
        self.root.configure(background="#8cb6da")
        self.leb_autor = Label(self.root, text="Соболь Д.Д.\nIO-92\n Вариант
№18", font=("Times New Roman", 20), justify=CENTER, bg="#8cb6da")
```

```
self.leb autor.place(x=250, v=25)
       self.root.resizable(False, False)
       self.a0 = randint(0, 20)
       self.al = randint(0, 20)
       self.a2 = randint(0, 20)
       self.a3 = randint(0, 20)
       self.X1 = []
       self.X2 = []
       self.X3 = []
       for i in range (0, 8):
           self.X1.append(randint(0, 20))
           self.X2.append(randint(0, 20))
           self.X3.append(randint(0, 20))
       self.Y=[]
       for i in range (0, 8):
           self.Y.append(self.a0 + self.a1 * self.X1[i] + self.a2 *
self.X2[i] + self.a3 * self.X3[i])
       self.X0 = [((max(self.X1) + min(self.X1)) / 2), ((max(self.X2) +
min(self.X2)) / 2), ((max(self.X3) + min(self.X3)) / 2)]
       self.dx = [(max(self.X1) - self.X0[0]), (max(self.X2) - self.X0[1]),
(max(self.X3) - self.X0[2])]
       self.XN1 = []
       self.XN2 = []
       self.XN3 = []
       for i in range (0, 8):
           self.XN1.append(round((self.X1[i] - self.X0[0]) / self.dx[0], 1))
           self.XN2.append(round((self.X1[i] - self.X0[1]) / self.dx[1], 1))
           self.XN3.append(round((self.X1[i] - self.X0[2]) / self.dx[2], 1))
       self.Yet = self.a0 + self.a1 * self.X0[0] + self.a2 * self.X0[1] +
self.a3 * self.X0[2]
       self.MAXY = max(self.Y)
       self.IND MAX y = self.Y.index(self.MAXY)
       self.tp = [self.X1[self.IND MAX y], self.X2[self.IND MAX y],
self.X3[self.IND MAX y]]
       self.fkv = self.a0 + self.a1 * self.X1[self.IND MAX y] + self.a2 *
self.X2[self.IND MAX y] + self.a3 * self.X3[self.IND MAX y]
       self.lab names = Label(self.root, text="Nº
                                                 X1
                                                               х3
             XN3", font=("Times New Roman", 17), justify=CENTER, bg="#8cb6da")
       self.lab names.place(x=80, y=140)
       self.xi=80
       self.yi=180
       for i in range(8):
           self.text i=str(i+1)+" | "+str(self.X1[i])+" |
"+str(self.XN3[i])
           self.lab i=Label(self.root, text=self.text i,font=("Times New
Roman", 17), justify=CENTER, bg="#8cb6da")
           self.lab i.place(x=self.xi,y=self.yi+i*40)
       self.text x0 = "X0 | " + str(self.X0[0]) + " | " + str(self.X0[1]) + "
```

```
self.lab x0 = Label(self.root, text=self.text x0,font=("Times New
Roman", 17), justify=CENTER, bg="#8cb6da")
                 self.lab x0.place(x=70, y=500)
                 self.text dx = "dx | " + str(self.dx[0]) + " | " + str(self.dx[1]) +
    | " + str(self.dx[2]) + " | |
                 self.lab dx = Label(self.root, text=self.text dx, font=("Times New
Roman", 17), justify=CENTER, bg="#8cb6da")
                 self.lab dx.place(x=70, y=540)
                 self.text a = "a0 = "+str(self.a0) + ", a1 = "+str(self.a1) + ", a2 = " + str(self.a1) + ", a2 = " + str(self.a1) + ", a2 = " + str(self.a1) + ", a2 = " + str(self.a2) + ", a2 = " +
"+str(self.a2)+", \overline{a3} = "+str(self.a3)
                 self.lab a = Label(self.root, text=self.text a, font=("Times New
Roman", 17), justify=CENTER, bg="#8cb6da")
                 self.lab a.place(x=80, y=620)
                 self.text y1 = "Y = " + str(self.a0) + " + " + str(self.a1) + "*X1"
+"+" + str(self.a2) + "*X2" + "+" + str(self.a3) + "*X3"
                 self.lab y1 = Label(self.root, text=self.text y1, font=("Times New
Roman", 17), justify=CENTER, bg="#8cb6da")
                 self.lab y1.place(x=80, y=660)
                 self.text y2 = "YeT = " + str(self.a0) + " + " + str(self.a1) + "*" +
str(self.X0[0]) + "+" + str(self.a2) + "*" + str(self.X0[1]) + "+" +
str(self.a3) + "*" + str(self.X0[2]) + " = " + str(self.Yet)
                 self.lab y2 = Label(self.root, text=self.text y2, font=("Times New
Roman", 17), justify=CENTER, bg="#8cb6da")
                 self.lab y2.place(x=80, y=700)
                 self.text OTP = "MAX(Y) = " + str(self.MAXY) + " = Y(" +
str(self.tp[0]) + ", " + str(self.tp[1]) + ", " + str(self.tp[2]) + ")"
                 self.lab OTP = Label(self.root, text=self.text OTP, font=("Times New
Roman", 17), justify=CENTER, bg="#8cb6da")
                 self.lab OTP.place(x=80, y=740)
                 self.root.mainloop()
def main():
        print("Моя група: IO-92\nMiй варіант: 18")
        Window()
       __name__ == "__main__":
        main()
```

Перевірка роботи програми:

Соболь Д.Д. IO-92

×

Вариант №18

$$a0 = 1$$
, $a1 = 7$, $a2 = 16$, $a3 = 9$
 $Y = 1 + 7*X1+16*X2+9*X3$
 $YeT = 1 + 7*9.5+16*10.0+9*7.0 = 290.5$
 $MAX(Y) = 517 = Y(19, 20, 7)$

Відповіді на контрольні запитання

- 1. З чого складається план експерименту?
- 2. Що називається спектром плану?
- 3. Чим відрізняються активні та пасивні експерименти?
- 4. Чим характеризується об'єкт досліджень? Дайте визначення факторному простору.

- 1. Сукупність усіх точок плану векторів X_i (для $i=1,2,\ldots,N$) утворює план експерименту. Таким чином, план експерименту описується матрицею, яка містить N рядків і K стовбців. Кожен рядок матриці означає точку плану експерименту, а стовпчик фактор експерименту.
- 2. Сукупність усіх точок плану, що відрізняються рівнем хоча б одного фактора (різних строк матриці планування), називається спектром плану. Матриця, отримана із усіх різних строк плану називається матрицею спектра плану.
- 3. В пасивному експерименті існують контрольовані, але некеровані вхідні параметри ми не маємо можливості втручатись в хід проведення експерименту, і виступаємо в ролі пасивного користувача. В активному існують керовані і контрольовані вхідні параметри ми самі являємось адміністраторами нашої системи.
 - 4.Об'єкт досліджень характеризується функцією відгуку.

Факторний простір – множина усіх параметрів експерименту, значення яких ми можемо контролювати.

Висновок

В результаті виконання лабораторної роботи вивчено основні поняття, визначення, принципи теорії планування експерименту на основі яких вивчено побудову формалізованих алгоритмів проведення експерименту і отримання формалізованої моделі об'єкта.

Закріплено отримані знання практичним їх використанням при написанні програми, що реалізує завдання на лабораторну роботу.

Робота виконана успішно.

Мета досягнута.