OBJEKTOVÝ NÁVRH APLIKACE

15.4.2022

Tým: BV

Členové:

Jakub Burian bjakub@students.zcu Hleb Hnatsiuk hleb0375@students.zcu.cz

Obsah

1. Úvod	3
1.1 Účel systému	3
2. Kontext a architektura systému	3
2.1 Kontext systému	3
2.2 Architektura systému	3
2.3 Zvolená technologie, programovací jazyk ad., důvody	3
3. Typy informací zpracovávané systémem	3
4. Návrh systému	4
4.1 UML Diagram	4
4.2 Třída Drawable	4
4.2.1 Konstruktor	4
4.3 Třída Game	5
4.3.1 Konstruktor	5
4.4 Třída GUI	5
4.4.1 Konstruktor	5
4.5 Třída Highlight	5
4.5.1 Konstruktor	5
4.6 Třída Player	6
4.6.1 Konstruktor	6
4.7 Třída Target	6
4.7.1 Konstruktor	6
4.8 Třída Walls	6
4.8.1 Konstruktor	6

1. Úvod

Tento dokument popisuje návrh softwarového systému. Bude popsán kontext systému a celková architektura systému. Návrh systému slouží jako kostra pro implementaci a jako dokumentace pro jeho pozdější údržbu.

1.1 Účel systému

Systém bude využíván jako herní terapie pro děti s postižením.

2. Kontext a architektura systému

2.1 Kontext systému

Systém bude spuštěn na webové stránce, kde bude spolupracovat s uživatelem, nejprve v menu a poté během hry.

2.2 Architektura systému

Obr. 1 diagram komponentů

2.3 Zvolená technologie, programovací jazyk ad., důvody

Pro vytvoření webové hry jsme zvolili javascript. JavaScript je spolu s HTML a CSS jednou ze tří základních technologií v základní sadě nástrojů pro frontend. JavaScript se používá k vytváření aplikací, které běží v prohlížeči na straně klienta.

3. Typy informací zpracovávané systémem

Veškeré informace, které systém zpracovává, se získávají kliknutím na myš, touchpad nebo obrazovku (v případě zařízení s dotykovou obrazovkou), která implementuje všechny potřebné datové struktury a způsoby jejich načítání.

4. Návrh systému

Hlavním úkolem systému je vygenerovat průchozí bludiště a umožnit uživateli ovládat postavu, aby se dostala k východu.

4.1 UML Diagram

Obr. 2 UML diagram

4.2 Třída Drawable

Třída slouží k výběru technologie pro vizuální část systému.

4.2.1 Konstruktor

V konstruktoru je proveden výběr technologie zodpovědné za vizualizaci systému.

4.2.2 Metody

* draw - metoda pro vizualizaci prvků systému, které se dědí v jiných třídách.

4.3 Třída Game

Třída bude sloužit jako hlavní třída aplikace.

4.3.1 Konstruktor

Slouží k vyvolání metody generování náhodného labyrintu, metody generování stěn, metody generování cílů a metody inicializace postav.

4.3.2 Metody

- * createMaze metoda slouží k náhodnému generování bludiště.
- * createWalls metoda slouží k generování zdí.
- * **update** metoda je volána při každém cyklu hry. Je zodpovědná za ukazování možných cest pohybu a detekování, zda-li je postava v cíli.
- * draw metoda se používá k vizualizaci všech grafických prvků hracího pole.
- * **click** metoda je volána když se zaregistruje kliknutí na obrazovku. Přepočítá souřadnice na souřadnice *cavnasu* a předá je metodě *handleClick*.
- * handleClick pokud se na předaných souřadnicích nachází zvýrazněná možná cesta, hráč se začne pohybovat směrem k těmto souřadnicím.

4.4 Třída GUI

Zodpovědná za zobrazování jednotlivých GUI prvků (menu, statistiky).

4.4.1 Konstruktor

V konstruktoru se nastaví akce (eventy), které se mají stát při kliknutí na tlačítka v menu.

4.4.2 Metody

- * toggleMenu otevírá/zavírá menu
- * updateStats aktualizuje statistiky na UI v průběhu hry.
- * victory metoda je volána když postava dorazí do cíle. Zobrazí výherní tabulku se statistikami.

4.5 Třída Highlight

Třída slouží k vizuální implementaci aktuálních možných cest postavy.

4.5.1 Konstruktor

V konstruktoru se nastaví pozice bloku (části) možné cesty.

4.5.2 Metody

* draw - metoda slouží k vizualizaci předpokládané cesty postavy.

4.6 Třída Player

Třída slouží k pohybu postavy.

4.6.1 Konstruktor

V konstruktoru se nastaví startovní pozice hráče (krtka).

4.6.2 Metody

- * getTime metoda slouží k časování animace.
- * updateTime metoda nejprve odpočítává čas.
- * update metoda se slouží k výpočtu směru pohybu postavy.
- * draw metoda se slouží ke změně rámečků postavy.
- * move metoda se slouží ke změně umístění postavy.

4.7 Třída Target

Třída slouží k vizualizaci konečného cíle v bludišti.

4.7.1 Konstruktor

V konstruktoru se nastaví pozice cíle.

4.7.2 Metody

* draw - metoda slouží k vizualizaci konečného cíle (postýlky) v bludišti.

4.8 Třída Walls

Třída slouží k vizualizaci stěn bludiště.

4.8.1 Konstruktor

V konstruktoru se nastaví pozice bloku zdi a typ zdi (podle typu se následně volí obrázek zdi).

4.8.2 Metody

* draw - třída slouží k vizualizaci jednotlivých prvků stěn bludiště.