Auxiliar 5

Profesor: Mario Riquelme H. Profesores auxiliares: Jose Chesta, Felipe Isaule

Viernes 27 de Marzo de 2014

- **P1.** Dos partículas de masas m_1 y m_2 , que están unidas por una cuerda de largo d, se mueven sin roce por el interior de un tubo horizontal que gira con velocidad angular constante en torno a la vertical. Inicialmente se suelta al sistema en reposo con la partícula de masa m_1 a una distancia R del eje de giro.
- a) Escriba las ecuaciones de movimiento y sepárelas en ecuaciones escalares
- b) Resuelva las ecuaciones de movimiento y encuentre las distancias de las partículas al eje $\rho_1(t)$ y $\rho_2(t)$ como funciones explícitas del tiempo.
- c) Calcule la tensión de la cuerda

- **P2.** Una barra rígida ideal sin masa de largo L = a + b puede girar en un plano vertical en torno a un punto fijo O que separa a la barra en un brazo de largo a y otro de largo b. En los extremos de la barra hay partículas de masas m_1 y m_2 .
- a) Determine el momento angular y el torque, con respecto a O, del sistema
- b) De lo anterior obtenga la ecuación dinámica para el ángulo ϕ e intégrela una vez
- c) Si el sistema es soltado desde el reposo con $\phi \sim 0$, este se acerca o se aleja de $\phi = 0$?

- **P3.** Una barra rígida de largo 2R y masa m tiene uno de sus extremos fijo al punto O, que actúa como pivote. Inicialmente $(t=0^-)$ la barra está en posición vertical y en reposo. En el instante t=0 una partícula de masa m golpea a la barra en su punto medio y se queda pegada a ella. La partícula traía velocidad horizontal de magnitud v_0 . El preoceso de choque y pegado no involucra fuerzas externas al sistema.
- a) Obtenga el valor del momento angular con respecto al punto O del sistema antes de la colisión.
- b) Calcule el momento angular con respecto al punto O del sistema barra-partícula para una velocidad angular arbitraria $\dot{\phi}$
- c) Usando los resultados anteriores, deduzca la velocidad angular inicial $\dot{\phi}_0$ (para $t=0^+$) del péndulo barraparticula
- d) Obtenga la velocidad angular $\dot{\phi}$ en función de ϕ

