Data Platform Local Environment Walkthrough & QA Test Suite

This document provides a step-by-step learning resource and a practical QA test suite to set up and validate a robust local data platform environment. By following these steps and executing the test cases, you will gain hands-on experience with key technologies and develop a deeper understanding of the platform's functionality and operational aspects. This version introduces additional complexity to demonstrate the system's flexibility in handling different data types and its scalability.

This walkthrough leverages the architectural principles, setup guides, and best practices detailed in the "Building Enterprise-Ready Data Platforms: Core Handbook" and its associated Deep-Dive Addendums.

1. General Setup: Laying the Foundation

These steps are foundational and apply to all testing activities.

1.1. Prerequisites Installation

Action: Ensure your local machine has the necessary software installed.

- Install <u>Docker Desktop</u> (or Docker Engine if on Linux).
- Install Git.
- Install <u>Python 3.x</u> with pip.
- Verify docker-compose is installed (usually included with Docker Desktop, or install separately if not).

1.2. Project Repository Setup

Action: Clone the project mono-repo, which contains all necessary code and configuration files.

- Navigate to your desired development directory in your terminal.
- Execute: git clone <your-repo-url>/data-ingestion-platform
- Change into the cloned directory: cd data-ingestion-platform

2. Local Environment Setup: The Progressive Path

This section guides you through building the local data platform incrementally, mirroring the "Progressive Complexity Path" outlined in the Core Handbook. Each track builds upon the previous one.

Reference: For detailed docker-compose.yml configurations and specific instructions, refer to the **Progressive Path Setup Guide Deep-Dive Addendum**.

2.1. Starter Track Setup: Minimal Single-Machine Setup

Purpose: Understand foundational data ingestion and structured storage. **Components:** FastAPI (Ingestor), PostgreSQL, MinIO (S3 compatible data lake). **Setup Steps:**

1. Configure docker-compose.yml:

- o Open the docker-compose.yml file in the project root.
- Uncomment the services for fastapi ingestor, postgres, and minio.
- Comment out all other services (Kafka, Spark, Airflow, etc.) to keep the setup minimal.
- Ensure the data/postgres and data/minio directories exist in your project root for persistent volumes (Docker will create them if they don't).

2. Bring Up Services:

Execute the onboard.sh script (from Progressive Path Setup Guide Deep-Dive
 Addendum) or manually run: docker compose up --build -d

3. Initial Verification:

- Access FastAPI health check: http://localhost:8000/health (Expected: HTTP 200 OK with a success message).
- Access MinIO Console: http://localhost:9001 (Login with minioadmin/minioadmin).
 Expected: Console loads successfully.
- Connect to PostgreSQL: Use a client (e.g., psql) to connect to localhost:5432 with user user, password password, database main_db. Expected: Connection successful, basic tables are present (if migrations run automatically).
- Check Docker logs for all services: docker compose logs -f (Expected: No critical errors, services show healthy startup messages).

2.2. Intermediate Track Setup: Adding Streaming Capabilities

Purpose: Introduce real-time data streams and distributed transformations. Components (in addition to Starter): Apache Kafka, Apache Spark. Setup Steps:

1. Configure docker-compose.yml:

- Open docker-compose.yml.
- Uncomment (or keep uncommented) fastapi ingestor, postgres, minio.
- Uncomment the services for zookeeper, kafka, and spark (and optionally spark-history-server).
- Comment out other Advanced Track services.
- Review fastapi_ingestor's environment variables to ensure it publishes to multiple Kafka topics (e.g., KAFKA_BROKER: kafka:29092, KAFKA_TOPIC_FINANCIAL, KAFKA_TOPIC_INSURANCE).
- Verify spark service is configured to connect to Kafka and MinIO.
- Ensure data/spark-events exists for Spark history server logs.
- Note on Spark Scalability (Local Simulation): In a local Docker Compose environment, "more Spark nodes" is simulated by allocating more resources (cores, memory) to the single spark service or by running multiple spark-worker services if configured. The conceptual docker-compose.yml and Spark job

submissions will imply this parallelism.

2. Bring Up Services:

 Run the onboard.sh script again or docker compose up --build -d. The onboard.sh script should now be updated to initialize **both** raw financial transactions and raw insurance claims Kafka topics.

3. Initial Verification:

- Verify Starter Track components are running and healthy.
- Check Kafka topic creation: docker exec -it kafka kafka-topics --bootstrap-server localhost:9092 --list (Expected: Both raw_financial_transactions and raw_insurance_claims topics are listed).
- Check Spark History Server: http://localhost:18080 (if enabled). Expected: Spark History Server UI is accessible.

4. Generate External Data:

- Run the simulate_data.py script (from Progressive Path Setup Guide Deep-Dive Addendum). This script is designed to continuously send mock financial transactions and insurance claims to the FastAPI Ingestor, which in turn publishes them to their respective Kafka topics.
- python3 simulate_data.py

5. Trigger Spark Jobs:

- Manually submit two separate Spark streaming jobs from the spark container: one to consume from the financial Kafka topic and write to a financial Delta Lake path, and another for insurance data.
- For Financial Data: docker exec -it spark spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.5.0,io.delta:delta-core_2.12:2.4.0 --conf spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension --conf spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog --conf spark.hadoop.fs.s3a.endpoint=http://minio:9000 --conf spark.hadoop.fs.s3a.access.key=minioadmin --conf spark.hadoop.fs.s3a.secret.key=minioadmin --conf spark.hadoop.fs.s3a.path.style.access=true pyspark_jobs/streaming_consumer.py raw_financial_transactions kafka:29092 s3a://raw-data-bucket/financial_data_delta
- For Insurance Data: docker exec -it spark spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.5.0,io.delta:delta-core_2.12:2.4.0 --conf spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension --conf spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog --conf spark.hadoop.fs.s3a.endpoint=http://minio:9000 --conf spark.hadoop.fs.s3a.access.key=minioadmin --conf spark.hadoop.fs.s3a.secret.key=minioadmin --conf spark.hadoop.fs.s3a.path.style.access=true pyspark_jobs/streaming_consumer.py raw insurance claims kafka:29092 s3a://raw-data-bucket/insurance data delta

2.3. Advanced Track Setup: The Full Production-Ready Stack

Purpose: Integrate orchestration, observability, lineage, and metadata management for a comprehensive environment.

Components (in addition to Intermediate): Apache Airflow, OpenTelemetry & Grafana Alloy, Grafana, Spline, OpenMetadata, MongoDB, cAdvisor.

Setup Steps:

1. Configure docker-compose.yml:

- Open docker-compose.yml.
- Uncomment ALL services including airflow-init, airflow-webserver, airflow-scheduler, airflow-worker, mongodb, openmetadata, grafana, grafana-alloy, cAdvisor, spline.
- Ensure all environment variables for inter-service communication are correctly set.
- Ensure necessary data/ subdirectories for persistent volumes exist.
- Mount airflow_dags and observability directories as volumes for Airflow DAGs and Grafana configurations. These airflow_dags should now include separate DAGs for financial and insurance data pipelines to demonstrate complexity.

2. Bring Up Services:

 Run the onboard.sh script or docker compose up --build -d. The airflow-init service will set up Airflow's database and load DAGs.

3. Initial Verification:

- Verify Intermediate Track components are running and healthy.
- Access Airflow UI: http://localhost:8080 (login admin/admin). Expected: Airflow UI accessible, multiple DAGs (e.g., for financial and insurance data) are listed (though not necessarily running).
- Access Grafana UI: http://localhost:3000 (initially anonymous or configure adminuser). Expected: Grafana UI accessible.
- Access OpenMetadata UI: http://localhost:8585. Expected: OpenMetadata UI accessible.
- Verify Spline UI: http://localhost:8081. Expected: Spline UI accessible.
- Check Docker logs for all new services (e.g., grafana-alloy, cAdvisor). Expected:
 Services start without critical errors.

3. QA Test Suite for Data Platform Proficiency

This section provides a detailed, comprehensive test suite designed for a QA tester to validate the functionality and operational aspects of the data platform, demonstrating proficiency relevant to both Lead Data Engineer and AWS Engineer roles.

Reference: This test suite draws heavily from the Testing & Observability Patterns
Deep-Dive Addendum, DR & Runbooks Deep-Dive Addendum, and Cloud Migration +
Terraform Snippets Deep-Dive Addendum.

3.1. Starter Track Test Cases (FastAPI, PostgreSQL, MinIO)

Relevant Roles: Lead Data Engineer, AWS Engineer (simulating API Gateway/Lambda, RDS,

Test ID	Objective	Preconditions	Steps	Expected Results
ST-API-001	Verify successful	All Starter Track	1. Send a valid	HTTP 200 OK
	ingestion of valid	services are up	financial	response from
	financial	and healthy.	transaction POST	FastAPI. Console
	transaction via		request to	output shows
	FastAPI.		http://localhost:80	"Financial
			00/ingest-financi	transaction
			al-transaction/	ingested
			using	successfully".
			simulate_data.py	
			or curl. python3	
			simulate_data.py	
			(let it run for ~10	
			seconds, then	
			stop).	
ST-API-002	Verify FastAPI	All Starter Track	1. Send an invalid	HTTP 422
	rejects invalid	services are up	financial	Unprocessable
		and healthy.	transaction POST	Entity response.
	transaction data.		request (e.g.,	Response body
			timestamp:	contains
			"invalid-date",	"validation error"
			amount:	details.
			"not-a-number")	
			to	
			http://localhost:80	
			00/ingest-financi	
			al-transaction/.	
ST-DB-001	,	ST-API-001	1. Connect to	The ingested
	transaction data is	passed.		financial
	persisted in			transaction
	PostgreSQL.		- · ·	record(s) are
			, .	visible in the
				database. Data
				types match
			•	expectations.
			FROM	
			financial_transacti	
			ons; or SELECT	
			COUNT(*) FROM	
			financial_transacti	

			ons;).	
ST-S3-001	Verify raw data is stored in MinIO (simulated S3).	ST-API-001 passed.	MinIO console at http://localhost:90 01. 2. Navigate to the raw-data-bucket.	
ST-CONTAINER- 001		All Starter Track services are up.	2. Run docker compose logs -f.	All expected containers (fastapi_ingestor, postgres, minio) are running and healthy. Logs show normal operation without critical errors or frequent restarts.

3.2. Intermediate Track Test Cases (Kafka, Spark)

Relevant Roles: Lead Data Engineer, AWS Engineer (simulating MSK, Glue/EMR)

Test ID	Objective	Preconditions	Steps	Expected Results
IT-KAFKA-001	Verify FastAPI	All Intermediate	1. In one terminal,	Messages (JSON
	successfully	Track services are	run: docker exec	payloads) from
	publishes	up and healthy.	-it kafka	simulate_data.py
	messages to both	simulate_data.py	kafka-console-co	appear in the
	financial and	is running.	nsumer	Kafka consumer's
	insurance Kafka		bootstrap-serve	output for <i>both</i>
	topics.		r localhost:29092	topics.
			topic	
			raw_financial_tran	
			sactions	
			from-beginning.	
			2. In another	
			terminal, run:	
			docker exec -it	

			lı a	
			kafka 	
			kafka-console-co	
			nsumer	
			bootstrap-serve	
			r localhost:29092	
			topic	
			raw_insurance_cla	
			ims	
			from-beginning.	
IT-SPARK-001	Verify Spark	All Intermediate	1. Monitor Spark	Both Spark jobs
	Structured	Track services are	UI at	start, process
	Streaming	up and healthy.	http://localhost:18	input batches, and
	consumes from	IT-KAFKA-001	080 for both	new Delta Lake
	specific Kafka	passed (data is	running Spark	files (parquet,
	topics and writes	being produced to	jobs. 2. Check	delta log)
	to respective raw	both topics).	MinIO console	appear in their
	Delta Lake paths.	Spark jobs for	(raw-data-bucket)	respective MinIO
			for both	paths. Spark UI
		are submitted (as	financial_data_del	-
		in Section 2.2,		for both jobs and
		Step 5).	insurance_data_d	_
			elta paths.	
IT-SPARK-002	Verify Spark batch	All Intermediate	1. Manually submit	Both Spark batch
	jobs transform			jobs complete
	ľ	up and healthy.	batch_transformat	
		'	ions.py Spark jobs	-
	types to curated	contains data		and insurance
	• •	from		data are written to
		IT-SPARK-001 for		their respective
				curated-data-buc
		,	* '	ket paths as Delta
			configured to read	•
			from	
			raw-data-bucket/f	
			inancial_data_delt	
			a and	
			raw-data-bucket/i	
			nsurance_data_de	
			Ita and write to	
			curated-data-buc	
			ket/financial data	
			curated and	
			curated-data-buc	
i		İ	purateu-uata-buc	

			I	
			ket/insurance_dat	
			a_curated	
			respectively. 2.	
			Monitor Spark UI	
			at	
			http://localhost:18	
			080. 3. Check	
			MinIO console	
			(curated-data-bu	
			cket).	
IT-DELTA-001	/erify Delta Lake	IT-SPARK-002	1. Modify	The new field is
 A	ACID properties	passed.	simulate_data.py	added to the
	conceptual:		to add a new	financial Delta
s	chema evolution)		optional field to	Lake table
fo	or a specific data		the financial	schema without
ty	ype.		transaction data	error, and existing
			(e.g., notes: "some	data remains
			text"). 2. Restart	readable.
			simulate_data.py.	Querying shows
			3. Re-run the	the new column
			financial data	as null for old
			streaming_consu	records and
			mer.py Spark job	populated for new
			configured with	ones.
			mergeSchema	
			option to write to	
			raw-data-bucket/f	
			inancial_data_delt	
			a. 4. Query the	
			financial Delta	
			Lake table with	
			Spark.	

3.3. Advanced Track Test Cases (Airflow, Observability, Lineage, Metadata)

Relevant Roles: Lead Data Engineer, AWS Engineer (simulating MWAA, Managed Grafana/ADOT, Glue Data Catalog)

Test ID	Objective	Preconditions	Steps	Expected Results
AT-AIRFLOW-001	Verify Airflow can	All Advanced	1. Access Airflow	Both DAGs run
	successfully	Track services are	UI at	successfully to
	orchestrate	up and healthy.	http://localhost:80	completion. Task

	separate data ingestion DAGs for financial and insurance data.		and trigger financial_ingestion _dag.py and insurance_ingesti on_dag.py (or similar DAGs that call FastAPI for	specific data
			respective data types). 3. Monitor the DAG run statuses in Airflow UI.	
AT-AIRFLOW-00 2	transformation DAGs for financial and	Track services are up and healthy. Data exists in respective raw Delta Lake zones from	1. Access Airflow UI. 2. Unpause and trigger financial_transfor mation_dag.py and insurance_transfor mation_dag.py (or similar DAGs that submit Spark jobs for respective data types). 3. Monitor the DAG run statuses in Airflow UI and Spark UI (http://localhost:18 080). 4. Check MinIO for new data in respective curated zones.	corresponding Spark jobs complete, and curated financial and insurance data appear in MinIO.
AT-OBS-001	Verify Grafana dashboards display real-time metrics for multiple data streams .		ľ '	populate with real-time data for

		<u> </u>	IC E LABIDDO	<u> </u>
			for FastAPI RPS,	usage across all
			1	components.
			consumer lag for	
			both financial and	
			insurance topics,	
			Spark CPU	
			utilization, etc. 4.	
			(Optional but	
			recommended)	
			Inspect Grafana	
			Alloy's	
			configuration	
			(observability/alloy	
			-config.river) to	
			understand how it	
			collects telemetry	
			from different	
			services.	
AT-OBS-002	Verify alerts are	All Advanced	1. (Simulate)	An alert for "High
	triggered for	Track services are	Artificially create a	Kafka Consumer
	defined SLO	up.	high Kafka	Lag" specific to
	violations		consumer lag on	the affected topic
	(conceptual) for a		one of the topics	(raw_financial_tra
	specific data		(e.g.,	nsactions) is
	stream.		raw_financial_tran	triggered,
			sactions) by	containing
			pausing the Spark	summary,
			consumer	description,
			associated with it.	remediation,
			2. Monitor Grafana	dashboard_link,
			alert panel or	and runbook_link
			configured alert	as per
			notification	configuration.
			channel.	
AT-LINEAGE-001	Verify Spline	AT-AIRFLOW-002	1. Access Spline UI	The Spline UI
	captures data	passed.		displays visual
	lineage for		http://localhost:80	representations of
	multiple distinct		1	the data flow for
	Spark jobs.		both the financial	both financial and
			and insurance	insurance
			Spark jobs	pipelines, showing
				transformations
			Airflow. 3. Drill	from raw to
L		·		

			down into the	curated Delta
			execution plan for	Lake for each.
			each.	
AT-METADATA-0	Verify	All Advanced	1. Access	OpenMetadata UI
01	OpenMetadata	Track services are	OpenMetadata UI	displays
	ingests and	up. Airflow DAGs	at	comprehensive
	catalogs metadata	for OpenMetadata	http://localhost:85	metadata for all
	for multiple data	ingestion are	85. 2. Browse or	relevant platform
	types and	configured/run for	search for	components and
	components.	all relevant	•	data types. Assets
		sources.	(e.g., Kafka topics,	
				and contain
				expected details
				and their
			_	respective
				lineage.
			endpoints). 3.	
			Check for	
			associated	
			schema, data	
			quality, and	
			lineage	
			information for	
			these distinct	
AT DEDUC COA	-		assets.	0 /
AT-DEBUG-001	Troubleshoot a		1. Pause the Spark	
		services are	container handling	
		running and	only financial data	r - I
		ingesting data.	(docker compose	
	specific topic.			financial data
			5 5	stream. Troubleshooting
			Spark service, or ideally a specific	steps successfully
				pinpoint the
			are configured, or	' ' I
				the issue (e.g.,
				unpausing Spark)
			Airflow). This will	allows lag to
			· ·	reduce.
			consumer lag to	
			build up on the	
			raw_financial_tran	
			sactions topic. 2.	
			pactions topic, z.	

			Observe Grafana	
			"Kafka Consumer	
			Lag" dashboard,	
			specifically for the	
			financial topic. 3.	
			Follow debug	
			steps from	
			"Common	
			Gotchas & Debug	
			Playbooks"	
			(Section 5.7 in	
			Testing &	
			Observability	
			Addendum):	
			check Spark job	
			status (Spark UI	
			for the financial	
			job), review logs,	
			inspect Kafka	
			offsets for	
			raw_financial_tran	
			sactions.	
AT-PERF-001	Run a basic load	All Advanced	1. Start the Locust	Locust shows
	test and observe	Track services are	load generator:	simulated traffic
		Track services are up and healthy.	1	simulated traffic for both data
			1 -	for both data
	performance		locust -f locust_fastapi_ing	for both data
	performance metrics for		locust -f locust_fastapi_ing	for both data types. Grafana reflects increased
	performance metrics for multiple data		locust -f locust_fastapi_ing estor.pyhost http://localhost:80	for both data types. Grafana reflects increased
	performance metrics for multiple data		locust -f locust_fastapi_ing estor.pyhost http://localhost:80 00. 2. Access	for both data types. Grafana reflects increased RPS, stable (or
	performance metrics for multiple data		locust -f locust_fastapi_ing estor.pyhost http://localhost:80 00. 2. Access Locust UI at	for both data types. Grafana reflects increased RPS, stable (or slightly increasing)
	performance metrics for multiple data		locust -f locust_fastapi_ing estor.pyhost http://localhost:80 00. 2. Access Locust UI at	for both data types. Grafana reflects increased RPS, stable (or slightly increasing) latency, and manageable Kafka
	performance metrics for multiple data		locust -f locust_fastapi_ing estor.pyhost http://localhost:80 00. 2. Access Locust UI at http://localhost:80 89 and start a test	for both data types. Grafana reflects increased RPS, stable (or slightly increasing) latency, and manageable Kafka
	performance metrics for multiple data		locust -f locust_fastapi_ing estor.pyhost http://localhost:80 00. 2. Access Locust UI at http://localhost:80 89 and start a test with moderate	for both data types. Grafana reflects increased RPS, stable (or slightly increasing) latency, and manageable Kafka lag for both data
	performance metrics for multiple data		locust -f locust_fastapi_ing estor.pyhost http://localhost:80 00. 2. Access Locust UI at http://localhost:80 89 and start a test with moderate users/spawn rate.	for both data types. Grafana reflects increased RPS, stable (or slightly increasing) latency, and manageable Kafka lag for both data streams,
	performance metrics for multiple data		locust -f locust_fastapi_ing estor.pyhost http://localhost:80 00. 2. Access Locust UI at http://localhost:80 89 and start a test with moderate users/spawn rate.	for both data types. Grafana reflects increased RPS, stable (or slightly increasing) latency, and manageable Kafka lag for both data streams, indicating the system can handle
	performance metrics for multiple data		locust -f locust_fastapi_ing estor.pyhost http://localhost:80 00. 2. Access Locust UI at http://localhost:80 89 and start a test with moderate users/spawn rate. Locust will send both financial and	for both data types. Grafana reflects increased RPS, stable (or slightly increasing) latency, and manageable Kafka lag for both data streams, indicating the system can handle
	performance metrics for multiple data		locust -f locust_fastapi_ing estor.pyhost http://localhost:80 00. 2. Access Locust UI at http://localhost:80 89 and start a test with moderate users/spawn rate. Locust will send both financial and insurance data. 3.	for both data types. Grafana reflects increased RPS, stable (or slightly increasing) latency, and manageable Kafka lag for both data streams, indicating the system can handle basic
	performance metrics for multiple data		locust -f locust_fastapi_ing estor.pyhost http://localhost:80 00. 2. Access Locust UI at http://localhost:80 89 and start a test with moderate users/spawn rate. Locust will send both financial and insurance data. 3.	for both data types. Grafana reflects increased RPS, stable (or slightly increasing) latency, and manageable Kafka lag for both data streams, indicating the system can handle basic heterogeneous
	performance metrics for multiple data		locust -f locust_fastapi_ing estor.pyhost http://localhost:80 00. 2. Access Locust UI at http://localhost:80 89 and start a test with moderate users/spawn rate. Locust will send both financial and insurance data. 3. Observe Grafana	for both data types. Grafana reflects increased RPS, stable (or slightly increasing) latency, and manageable Kafka lag for both data streams, indicating the system can handle basic heterogeneous
	performance metrics for multiple data		locust -f locust_fastapi_ing estor.pyhost http://localhost:80 00. 2. Access Locust UI at http://localhost:80 89 and start a test with moderate users/spawn rate. Locust will send both financial and insurance data. 3. Observe Grafana dashboards for	for both data types. Grafana reflects increased RPS, stable (or slightly increasing) latency, and manageable Kafka lag for both data streams, indicating the system can handle basic heterogeneous
	performance metrics for multiple data		locust -f locust_fastapi_ing estor.pyhost http://localhost:80 00. 2. Access Locust UI at http://localhost:80 89 and start a test with moderate users/spawn rate. Locust will send both financial and insurance data. 3. Observe Grafana dashboards for FastAPI RPS,	for both data types. Grafana reflects increased RPS, stable (or slightly increasing) latency, and manageable Kafka lag for both data streams, indicating the system can handle basic heterogeneous

	insurance topics	
	during the test.	

3.4. AWS Engineer Focus Test Cases (Cloud Concepts, IaC, CI/CD, DR)

Relevant Roles: AWS Engineer, Lead Data Engineer

These test cases are primarily conceptual demonstrations and discussions of how the local environment prepares for or mirrors AWS best practices. Actual execution would require an AWS account and provisioned resources.

Test ID	Objective	Preconditions	Steps	Expected Results
			(Conceptual/Dis	(Conceptual/Dis
			cussion)	cussion)
AE-CLOUD-001	Demonstrate	N/A	1. For each local	Correct mapping
	understanding of		component	of local services
	local to AWS		(FastAPI, Kafka,	to AWS managed
	service mapping		Spark, MinIO,	services is
	for expanded		Airflow, Grafana,	articulated,
	components.		MongoDB),	emphasizing how
			identify its primary	/increased
			AWS replacement	complexity (more
			as per the "Cloud	topics, jobs)
			Migration +	translates to
			Terraform	specific AWS
			Snippets	service
			Deep-Dive	configurations.
			Addendum". 2.	Benefits of
			Specifically	managed services
			discuss how	are clearly
			multiple Kafka	explained.
			topics map to	
			MSK, how multiple	
			Spark jobs map to	
			Glue jobs or EMR	
			steps, and how	
			distinct Airflow	
			DAGs map to	
			MWAA DAGs. 3.	
			Discuss the	
			benefits	
			(scalability,	
			managed service,	
			operational	
			overhead	

			reduction) of the	
			AWS	
A.F. I.A.O. 0.04	D	A	replacements.	
AE-IAC-001		Access to the	1. Review the	Able to describe
	1	terraform_infra/		the purpose of
		directory.		each Terraform
	Code (IaC) for			module and how
	AWS, handling		S3, MSK,	laC enables
	multiple data			automated,
	flows.		Gateway, RDS,	consistent cloud
				infrastructure
			_	provisioning,
			odules/. 2. Explain	1 '
				multiple distinct
				data pipelines.
			used for	
			environment-spec	
			ific deployments,	
			focusing on how	
			Terraform would	
			manage resources	
			for both financial	
			and insurance	
			data pipelines	
			(e.g., distinct S3	
			paths, Kafka	
			topics, Glue job	
			definitions). 3.	
			Discuss the	
			terraform init,	
			plan, and apply	
			workflow.	
AE-CICD-001	Demonstrate	Access to the	1. Walk through	Able to explain the
	understanding of	.github/workflows/	the Conceptual	flow of the CI/CD
	the CI/CD pipeline	release.yml file.	GitHub Actions	pipeline, how it
	for AWS		Release Workflow.	automates
	deployment,		2. Explain the	deployments to
	including multiple		1	AWS
	application		(Docker images to	environments, and
	components.			the purpose of
	_		and Spark runner),	
			•	Actions steps,
			1	explicitly
			1 1 2 2 1 1 2 1 2	17

			3. Discuss how this pipeline would handle updates to both FastAPI and PySpark jobs, ensuring atomicity and consistency across the different data pipelines.	insurance data pipeline components.
AE-SEC-001	Discuss data security best practices in an AWS context for complex data streams.	N/A	Encryption (in transit with TLS on MSK, at rest with S3 SSE/KMS, RDS encryption). 2. Discuss Secure Credential Management using AWS Secrets Manager for	secure credential management specific to AWS services, considering the separation of concerns for different data types/topics.
AE-MONITOR-00		AT-OBS-001 passed (local observability).	1. Explain how local Grafana + OpenTelemetry concepts translate to AWS CloudWatch Logs, Metrics, Alarms, and AWS Distro for OpenTelemetry (ADOT). 2. Discuss	observability for cloud-based data systems, distinguishing

			Container Insights replaces cAdvisor for container metrics, and how to create dashboards that show metrics for individual Kafka topics and Spark jobs (e.g., consumer lag per topic, job duration per data type).	data streams.
AE-DR-001	Demonstrate understanding of Disaster Recovery (DR) planning in AWS for multiple critical data pipelines.	N/A	1. Define RPO and RTO in the context of both financial and insurance data pipeline components. 2. Discuss the DR Runbook Examples (Kafka failover, Database restoration) and	·
AE-OPTIMIZE-00 1	Discuss how to optimize data retrieval and API consumption in AWS for diverse data needs.	ST-API-001 passed (local API).	AWS Lambda + API Gateway provide scalable API endpoints for different ingestion	Able to explain cloud-native approaches to optimizing data retrieval and providing scalable APIs for downstream

ransaction, consumers,
/ingest-insurance-considering the
claim). 2. Explain varied
how data in S3 requirements of
(Delta Lake) can financial and
be queried insurance data.
efficiently using
services like AWS
Athena or Redshift
Spectrum, and
how different data
models (e.g., star
schemas for
reporting,
denormalized for
analytics) can be
optimized for
specific
consumption
patterns.

4. Conclusion

This comprehensive QA test suite, integrated with the progressive setup guide, provides a robust framework for validating an enterprise-ready data platform. By actively performing these tests and understanding the underlying concepts, you will gain practical, demonstrable proficiency in roles such as Lead Data Engineer and AWS Engineer, solidifying your knowledge across local development, data quality, orchestration, cloud migration, and operational excellence.