Agrégation Interne

Égalités et inégalités

Exercice 1

1. On se donne un entier $n \ge 1$ et des réels x_1, \dots, x_n . Montrer que :

$$\left(\sum_{k=1}^{n} x_k\right)^2 \le n \sum_{k=1}^{n} x_k^2$$

Dans quel cas a-t'on égalité?

2. En déduire une condition nécessaire et suffisante, sur les réels a et b, pour que l'application $\varphi: (x,y) \mapsto a \sum_{i=1}^n x_i y_i + b \sum_{1 \leq i \neq j \leq n} x_i y_j \text{ définissent un produit scalaire sur } \mathbb{R}^n, \text{ où } n \geq 2.$

Exercice 2 Montrer que pour tout entier $n \geq 1$, on a :

$$\sum_{k=1}^{n} k\sqrt{k} \le \frac{n(n+1)}{2\sqrt{3}}\sqrt{2n+1}$$

Exercice 3 On se donne un entier $n \ge 1$ et des réels x_1, \dots, x_n strictement positifs.

1. Montrer que :

$$\left(\sum_{k=1}^{n} x_k\right) \left(\sum_{k=1}^{n} \frac{1}{x_k}\right) \ge n^2$$

Dans quel cas a-t'on égalité?

2. Montrer que :

$$\sum_{k=1}^{n} \frac{1}{k^2} \ge \frac{6n}{(n+1)(2n+1)}$$

Exercice 4

1. Montrer que pour tous réels a, b et λ , on a:

$$(2\lambda - 1) a^2 - 2\lambda ab = \lambda (a - b)^2 - \lambda b^2 + (\lambda - 1) a^2$$

2. Soit q la forme quadratique définie sur $E = \mathbb{R}^n$ par :

$$q(x) = \sum_{k=1}^{n} (2k - 1) x_k^2 - 2 \sum_{k=1}^{n-1} k x_k x_{k+1}$$

- (a) Effectuer une réduction de q en combinaison linéaire de carrés de formes linéaires indépendantes.
- (b) Préciser le rang le noyau et la signature de q.
- 3. On note $(x,y)=(x_1,\cdots,x_n,y_1,\cdots,y_n)$ un vecteur de $H=\mathbb{R}^{2n}$ et Q la forme quadratique définie sur H par :

$$Q(x,y) = \sum_{k=1}^{n} (y_k^2 - 2x_k y_k)$$

1

- (a) Effectuer une réduction de Q en combinaison linéaire de carrés de formes linéaires indépendantes.
- (b) Préciser le rang le noyau et la signature de Q.

4. Pour $n \ge 1$ et $x = (x_1, \dots, x_n)$ dans \mathbb{R}^n , on définit $y = (y_1, \dots, y_n)$ par :

$$y_k = \frac{1}{k} \sum_{j=1}^k x_j$$

(a) Montrer que :

$$\begin{cases} x_1 = y_1 \\ \forall k \in \{2, \dots, n\}, \ x_k = ky_k - (k-1)y_{k-1} \end{cases}$$

(b) Montrer que:

$$Q\left(x,y\right) =-q\left(y\right)$$

(c) En déduire :

$$\sum_{k=1}^{n} y_k^2 \le \sum_{k=1}^{n} 2x_k y_k$$

puis montrer que :

$$\sum_{k=1}^{n} y_k^2 \le 4 \sum_{k=1}^{n} x_k^2$$

(d) En déduire que si $(x_n)_{n\geq 1}$ est une suite de réels telle que la série $\sum x_n^2$ soit convergente et si $(y_n)_{n\geq 1}$ est la suite des moyennes de Cesàro définie par $y_n=\frac{1}{n}\sum_{j=1}^n x_j$ pour tout $n\geq 1$, alors la série $\sum y_n^2$ est convergente et $\sum_{n=1}^{+\infty}y_n^2\leq 4\sum_{n=1}^{+\infty}x_n^2$.

Exercice 5 Soit $f \in C^0([a,b],\mathbb{R})$. Montrer que :

$$\left(\int_{a}^{b} f(t) dt\right)^{2} \le (b-a) \int_{a}^{b} f^{2}(t) dt$$

Dans quel cas a-t'on égalité?

Exercice 6 Soit $f \in C^0([a,b], \mathbb{R}_+^*)$. Montrer que $\left(\int_a^b \frac{1}{f(t)} dt\right) \left(\int_a^b f(t) dt\right) \ge (b-a)^2$. Dans quel cas a-t'on égalité?

Exercice 7 Soit $f \in C^1([a,b], \mathbb{R})$ telle que f(a) = 0. Montrer que :

$$\int_{a}^{b} |f(t)|^{2} dt \le \frac{(b-a)^{2}}{2} \int_{a}^{b} |f'(t)|^{2} dt$$

Exercice 8 Soit $f(z) = \sum_{n=0}^{+\infty} \alpha_n z^n$ une fonction développable en série entière sur D(0,R) avec $0 < R \le +\infty$. Montrer que si |f| admet un maximum local en 0, elle est alors constante (principe du maximum).

Dans un espace préhilbertien E, on a l'égalité du parallélogramme :

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

Elle est caractéristique des normes déduites d'un produit scalaire. Précisément, on a le résultat suivant.

Exercice 9 Soit $(E, \|\cdot\|)$ un espace vectoriel normé réel. On note :

$$\mu(E) = \sup_{(x,y)\neq(0,0)} \frac{\|x+y\|^2 + \|x-y\|^2}{2(\|x\|^2 + \|y\|^2)}$$

Montrer que les assertions suivantes sont équivalentes :

- 1. $\forall (x,y) \in E^2$, $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$;
- 2. la norme $\|\cdot\|$ dérive d'un produit scalaire sur E;
- 3. $\mu(E) = 1$;
- 4. pour x, y fixés dans E, $||x + ty||^2$ est un trinôme en t.

Exercice 10 Si p, q sont deux réels strictement positifs tels que $\frac{1}{p} + \frac{1}{q} = 1$, montrer que :

$$\forall u \in \mathbb{R}^{+,*}, \quad \forall v \in \mathbb{R}^{+,*}, \ u^{\frac{1}{p}} v^{\frac{1}{q}} \le \frac{1}{p} u + \frac{1}{q} v$$

Définition 11 Soit $(x_i)_{1 \le i \le p}$ une suite finie de points d'un espace vectoriel E. On dit que $x \in E$ est combinaison linéaire convexe des x_i $(1 \le i \le p)$ si il existe des réels positifs ou nuls $\lambda_1, \dots, \lambda_p$ tels que :

$$\sum_{i=1}^{p} \lambda_i = 1, \quad x = \sum_{i=1}^{p} \lambda_i x_i$$

Exercice 12 Si f est une fonction convexe définie sur une partie convexe d'un espace vectoriel (normé) E, montrer que pour toute combinaison linéaire convexe $\sum_{i=1}^{p} \lambda_i x_i$ d'éléments de I, on a :

$$f\left(\sum_{i=1}^{p} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{p} \lambda_{i} f\left(x_{i}\right)$$

Exercice 13 Si $f : \mathbb{R} \to \mathbb{R}$ est une fonction convexe alors pour toute fonction u continue sur un intervalle [a,b] (avec a < b), montrer que:

$$f\left(\frac{1}{b-a}\int_{a}^{b}u\left(t\right)dt\right) \leq \frac{1}{b-a}\int_{a}^{b}f\circ u\left(t\right)dt$$

Pour toute suite finie $x=(x_i)_{1\leq i\leq n}$ de réels strictement positifs, on note :

$$H(x) = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}, \quad G(x) = \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}, \quad A(x) = \frac{\sum_{i=1}^{n} x_i}{n}$$

les moyennes harmonique, géométrique et arithmétique de x.

En notant $y = \left(\frac{1}{x_i}\right)_{1 \le i \le n}$ on peut remarquer que :

$$H(x) = \frac{1}{A(y)}, \quad G(x) = \frac{1}{G(y)}$$

Avec la concavité de la fonction logarithme on obtient le résultat suivant.

Exercice 14 Avec les notations qui précèdent, montrer que :

$$H\left(x\right) \leq G\left(x\right) \leq A\left(x\right)$$

De manière plus générale, on peut définir, pour toute suite finie $x=(x_i)_{1\leq i\leq n}$ de réels strictement positifs, toute suite $\lambda=(\lambda_i)_{1\leq i\leq n}$ de réels strictement positifs telle que $\sum_{i=1}^n \lambda_i=1$ et tout réel non nul α , la moyenne pondérée d'ordre α par :

$$M(\alpha, x, \lambda) = \left(\sum_{i=1}^{n} \lambda_i x_i^{\alpha}\right)^{\frac{1}{\alpha}}$$

(les x_i sont pondérés par les λ_i).

En notant $x' = \left(\frac{1}{x_i}\right)_{1 \le i \le n}$, on a pour α non nul :

$$M\left(-\alpha, x, \lambda\right) = \left(\sum_{i=1}^{n} \lambda_{i} x_{i}^{-\alpha}\right)^{-\frac{1}{\alpha}} = \frac{1}{\left(\sum_{i=1}^{n} \lambda_{i} \left(\frac{1}{x_{i}}\right)^{\alpha}\right)^{\frac{1}{\alpha}}} = \frac{1}{M\left(\alpha, x', \lambda\right)}$$
(1)

Dans le cas où les x_i sont tous égaux à un même réel $\xi > 0$, on a :

$$M(\alpha, x, \lambda) = \left(\sum_{i=1}^{n} \lambda_i \xi^{\alpha}\right)^{\frac{1}{\alpha}} = \xi \left(\sum_{i=1}^{n} \lambda_i\right)^{\frac{1}{\alpha}} = \xi$$

puisque $\sum_{i=1}^{n} \lambda_i = 1$.

Dans le cas où les λ_i sont tous égaux, on a nécessairement $\lambda_i = \frac{1}{n}$ pour tout i et :

$$M(\alpha, x, \lambda) = \left(\frac{\sum_{i=1}^{n} x_i^{\alpha}}{n}\right)^{\frac{1}{\alpha}}$$

Pour $\alpha = 1$ (et les λ_i sont tous égaux), on reconnaît la moyenne arithmétique A(x) et pour $\alpha = -1$, la moyenne harmonique H(x).

La moyenne géométrique correspond au cas limite $\alpha = 0$.

Exercice 15 Avec les notations qui précèdent, montrer que

1. la fonction $\alpha \mapsto M(\alpha, x, \lambda)$, pour x et λ fixés, se prolonge en une fonction continue sur \mathbb{R} avec :

$$M(0, x, \lambda) = \prod_{i=1}^{n} x_i^{\lambda_i}$$

2. pour x et λ fixés, on a:

$$\lim_{\alpha \to -\infty} M\left(\alpha, x, \lambda\right) = \min_{1 \le i \le n} x_i \ et \ \lim_{\alpha \to +\infty} M\left(\alpha, x, \lambda\right) = \max_{1 \le i \le n} x_i$$

3. En supposant les x_i non tous égaux, la fonction $\alpha \mapsto M(\alpha, x, \lambda)$, pour x et λ fixés, est strictement croissante.