

济南华茂科技有限公司

专业的蓝牙产品供应商:远控、数据采集蓝牙模块创始提供商 国内最早的蓝牙串口模块+蓝牙远控二合一模块开发商 专业提供蓝牙模块整体(软、硬件)解决方案 可根据客户要求定制各种蓝牙模块及蓝牙方案 济南市高新技术企业

SIG成员、CE认证

十一届全运会综合缴费通信技术软件系统提供商

地址:济南市高新区齐鲁软件园 D-4019、4020

电话: 15168830999

网站: http://www.jnhuamao.cn

支持: webmaster@jnhuamao.cn

最齐全、最方便、最稳定的蓝牙数传、远控、数据采集模块

----主从一体,透明传输,替代串口线

----**远程控制**,透明传输,无须单片机

----远程数据采集、透明传输,无须单片机

一、产品参数

蓝牙协议: Bluetooth Specification V2.1+EDR、V2.0+EDR、V2.1、V2.0

USB 协议: USB V1.1、V2.0

工作频率: 2.4GHz ISM band

调制方式: GFSK(Gaussian Frequency Shift Keying)

发射功率: ≤4dBm, Class 2

灵 敏 度: ≤-84dBm at 0.1% BER

传输速率: Asynchronous: 2.1Mbps(Max) / 160 kbps

Synchronous: 1Mbps/1Mbps

安全特性: Authentication and encryption

支持服务: Bluetooth SPP(主模式 & 从模式)

供电电源: +3.3VDC 50mA

工作温度: -5~+65 Centigrade

外观尺寸: 26.9mm x 13mm x 2.2 mm、27.4*12.5*4.3mm、etc.

二、产品概述

HM 系列蓝牙模块采用 CSR BlueCore、TI CC2540 芯片,配置 256Kb、6-8Mbit 的软件存储空间,支持 AT 指令,用户可根据需要更改 SPP 角色(主、从模式)以及串口波特率、设备名称、配对密码等参数,使用灵活。

HM 系列蓝牙模块分为透传模块、远控模块、数据采集(pio)等三个大系列(硬件相同,仅软件不同)。透传模块可以替代传统的串口线。远控模块故名思议,可以远程接收上位机的控制指令,来控制模块的设置及控制模块 PIO 口的输出,以达到远程控制的目的,使用远控版本的模块,您只需要搭建外围电路即可,无须另外配置单片机,节省您的单片机及配套电路的软硬件成本开销。使您的产品性能更稳定,成本更低。

HM 系列蓝牙模块经过多年研发, 已经开发出 11 个系列, 20 多个型号的蓝

牙模块产品(客户定制产品未列入其中),目前是蓝牙模块提供厂商中系列最多,产品线最丰富的厂家。有完整的蓝牙解决方案及完善的服务体质,同时也使得 HM 系列蓝牙模块极具市场影响力。

HM 系列蓝牙模块使用多层电路板,半孔、沉金工艺,真材实料,每块蓝牙模块出厂前均通过了 3386 自动调频,与市面上的蓝牙模块有着本质的区别,并且绝对不使用翻新、拆机 IC,充分保证了产品的稳定性。

HM-01、HM-02 系列蓝牙模块采用邮票孔方式,适用于批量贴片生产;引出 IO 多,适合于不用要求的客户。

HM-03 系列蓝牙模块采用插座方式,载板上只需要焊接一个 2*6PIN, pitch=2.0mm 的插针,避免蓝牙模块再次经过回流焊接,同时方便客户更换,适用于 DIY 或小批量的客户,大批量客户同样适用。

HM-04 系列蓝牙模块采用 IC 封装方式(天线需 Layout 到您的电路板上),您只需要按照我们的技术规格进行 PCB 排布使用即可,无需专用的底板和转接板,产品功能更稳定,保密性更好。适合成熟产品批量生产。

HM-05 、 HM-06 系列蓝牙模块, 采用最小的封装, 只有13.5MM*18.5MM*2.3MM 大小,适用于袖珍设备的使用,方便灵活。

HM-07 系列蓝牙模块,封装尺寸同 HM-05、HM-06 相同,IC 内置过滤器,配合精确的阻抗控制,使得信号更强,性能更稳定。

HM-09 系列蓝牙模块,封装尺寸同 HM-01, HM-02 相同,IC 内置了滤波器,配合精确的阻抗控制,信号更强,传输更稳定。为 HM-01, HM-02 理想的低价代用品,管脚封装与市面上大多数的蓝牙模块相同,但价格更低,性能更稳定,相信是您理想的选择。

HM-10 为 4.0 蓝牙模块(BLE),采用 TI CC2540 为主控芯片,封装尺寸与 HM-09 相同。

HM-11 为 4.0 蓝牙模块(BLE),采用 TI CC2540 为主控芯片,封装尺寸与 HM-06 相同。

三、应用领域

工业遥控、遥测

POS 系统,蓝牙键盘、鼠标、游戏手柄

汽车检测设备 便携、电池供电医疗器械 自动化数据采集 蓝牙遥控玩具 无线 LED 显示系统 蓝牙打印机 智能家居、工业控制

四、产品型号

HM 系列蓝牙模块共分为 12 个系列, 20 多个子型号, 根据封装、主控 IC、 蓝牙版本的不同划分不同的产品型号,请按照您的需求进行选用:

型号	电压	尺寸(mm)	容量	主控 IC	蓝牙版本
HM-01	3.3V	26.9*13*2.2	外置 8M	BC417143	V2.1+EDR
HM-02A	2.5-3.7V	26.9*13*2.2	内置 6M	BC31A223	V2.1
HM-02B	2.5-3.7V	26.9*13*2.2	内置 6M	BC41C671	V2.1+EDR
HM-03A	2.5-3.7V	27.4*12.5*4.3	内置 6M	BC31A223	V2.1
HM-03B	2.5-3.7V	27.4*12.5*4.3	内置 6M	BC41C671	V2.1+EDR
HM-04A	3.3V	暂不外售			
HM-04B	3.3V	暂不外售			
HM-05/06A	2.5-3.7V	13.5*18.5*2.3	内置 6M	BC31A223	V2.1
HM-05/06B	2.5-3.7V	13.5*18.5*2.3	内置 6M	BC41C671	V2.1+EDR
HM-07	2.5-3.7V	13.5*18.5*2.3	内置 8M		V2.1+EDR
HM-08	3.3V	26.9*13*2.5	内置 8M		V2.1+EDR
HM-09	2.5-3.7V	26.9*13*2.2	内置 8M		V2.1+EDR
HM-10	2.5-3.7V	26.9*13*2.2	256Kb	CC2540	V4.0 BLE
HM-11	2.5-3.7V	13.5*18.5*2.3	256Kb	CC2540	V4.0 BLE
HM-15	5V	65*32*16	256Kb	CC2540	V4.0 BLE

五、产品证书

六、产品图片

HM-04 系列产品,目前尚未投放国内市场销售,图片及相关技术参数涉及商业 机密,在此不便一一列出。

七、产品技术规格说明

7.1、HM-01 系列电路系统整合图

7.2、HM-01 系列原理图

7.3、HM-01, HM-02, HM-09, HM-10 产品尺寸及标注

7.4、HM-01, HM-02, HM-09, HM-10 焊盘尺寸及间距

7.5、HM-01, HM-02, HM-09, HM-10 管脚定义

管脚序号	管脚名称	管脚说明	
1	UART_TX	UART	
2	UART_RX	UART	
3	UART_CTS	UART	

4	UART_RTS	UART	
5	PCM_CLK	PCM 数字音频接口,接外部 CODEC	
6	PCM_OUT	PCM 数字音频接口,接外部 CODEC	
7	PCM_IN	PCM 数字音频接口,接外部 CODEC	
8	PCM_SYNC	PCM 数字音频接口,接外部 CODEC	
9	AIO0	模拟输入、输出 IO 口	
10	AIO1	模拟输入、输出 IO 口	
11	RESETB	系统复位,低电平有效	
12	VCC	电源 3.3V	
13	GND	地	
14	GND	地	
15	USB_D-	USB DATA 负极,差分线	
16	SPI_CSB	SPI 调试端口,悬空	
17	SPI_MOSI	SPI 调试端口,悬空	
18	SPI_MISO	SPI 调试端口,悬空	
19	SPI_CLK	SPI 调试端口,悬空	
20	UB_D+	USB DATA 正极,差分线	
21	GND	地	
22	GND	地	
23	PIO0	按键管脚,详见附注说明	
24	PIO1	LED 管脚,详见附注说明	
25	PIO2	数字输入、输出 IO 口	
26	PIO3	数字输入、输出 IO 口	
27	PIO4	数字输入、输出 IO 口	
28	PIO5	数字输入、输出 IO 口	
29	PIO6	数字输入、输出 IO 口	
30	PIO7	数字输入、输出 IO 口	
31	PIO8	数字输入、输出 IO 口	
32	PIO9	数字输入、输出 IO 口	

33	PIO10	数字输入、输出 IO 口
34	PIO11	数字输入、输出 IO 口

7.6、HM-02, HM-03, H-09 电路系统整合图

7.7、HM-03 原理图

HM-03 原理图在 HM-01 原理图的基础上省略掉了平时用不到的 PIO 口及 PCM 数字音频输入、输出口,请参照 HM-01 系列原理图。

7.8、HM-03产品尺寸及标注

7.9、HM-03 焊盘及间距

7.10、HM-03 管脚定义

管脚序号	管脚名称	管脚说明
1	PIO1	LED 管脚,见附注说明
2	SPI_CSB	SPI 调试端口,悬空
3	UART_CTS	UART
4	SPI_MOSI	SPI 调试端口,悬空
5	UART_TX	UART
6	VCC	电源 V3.3
7	UART_RX	UART
8	GND	地
9	UART_RTS	UART
10	SPI_MISO	SPI 调试端口,悬空
11	PIO0	按键管脚,详见附注说明
12	SPI_CLK	SPI 调试端口,悬空

7.11、HM-05、HM-06 电路系统整合图

7.12、HM-05、HM-06、HM-07 原理图

HM-05、HM-06、HM-07 原理图在 HM-01 原理图的基础上省略掉了平时用不到的 PIO 口及 PCM 数字音频输入、输出口,请参照 HM-01 系列原理图。

7.13、HM-05、HM-06、HM-07, HM-11 产品尺寸及标注

7.14、HM-05、HM-06、HM-07, HM-11 焊盘尺寸及间距

7.15、HM-05、HM-06、HM-07, HM-11 管脚定义

管脚序号	管脚名称	管脚说明
1	UART_RTS	UART
2	UART_TX	UART
3	UART_CTS	UART
4	UART_RX	UART
5	SPI_MOSI	SPI 调试端口,悬空
6	SPI_CSB	SPI 调试端口,悬空
7	SPI_CLK	SPI 调试端口,悬空
8	SPI_MISO	SPI 调试端口,悬空
9	VCC	电源 V3.3
10	NC	悬空或 VCC
11	RESETB	低电平复位,至少5ms
12	GND	地
13	PIO3	数字输入、输出 IO 口

14	PIO2	数字输入、输出 IO 口
15	PIO1	LED 管脚,见附注说明
16	PIO0	按键管脚,详见附注说明

7.16、HM-07 电路系统整合图

7.17、HM-07 原理图

HM-07 原理图在 HM-01 原理图的基础上省略掉了平时用不到的 PIO 口及 PCM 数字音频输入、输出口,请参照 HM-01 系列原理图。

7.18、HM-07 产品尺寸及标注

HM-07产品尺寸外封装与HM-05,HM-06完全一致,可以直接替换。

7.19、HM-07 管脚定义

管脚序号	管脚名称	管脚说明
1	UART_RTS	UART
2	UART_TX	UART
3	UART_CTS	UART
4	UART_RX	UART
5	SPI_MOSI	SPI 调试端口,悬空
6	SPI_CSB	SPI 调试端口,悬空
7	SPI_CLK	SPI 调试端口,悬空
8	SPI_MISO	SPI 调试端口,悬空
9	VCC	电源 V3.3
10	NC	悬空或 VCC
11	RESETB	低电平复位,至少5ms
12	GND	地
13	PIO3	数字输入、输出 IO 口
14	PIO2	数字输入、输出 IO 口
15	PIO1	LED 管脚,见附注说明
16	PIO0	按键管脚, 详见附注说明

7.20、HM-15

HM-15 是基于 HM-10 扩展而来,真正的 USB 扩展,而非串口转出,速度更快,更稳定。

7.21、HM 系列蓝牙模块与单片机连接注意要点:

HM 系列蓝牙模块的工作电压推荐用 3.3V,与 3.3V 单片机直接连接即可, 当需要与 5V 单片机连接时,请按照以下原理图进行连接

7.22、LAYOUT 注意要点

HM 系列蓝牙模块工作在 2.4G 无线频段,应尽量避免各种因素对无线收发的影响,注意以下几点:

- 7.22.1、包围蓝牙模块的产品外壳避免使用金属,当使用部分金属外壳时, 应尽量让模块天线部分远离金属部分。
 - 7.22.2、产品内部金属连接线或者金属螺钉,应尽量远离模块天线部分。
- 7.22.3、模块天线部分应靠载板 PCB 四围放置,不允许放置于板中,且天线下方载板铣空,与天线平行的方向,不允许铺铜或走线。直接把天线部分直接露出载板,也是比较好的选择。
 - 7.22.4、模块下方尽量铺大片 GND, 走线尽量往外围延伸。
- 7.22.5、建议在基板上的模块贴装位置使用绝缘材料进行隔离,例如在该位置放一个整块的丝印(TopOverLay)

八、附注:

8.1、按键管脚(PIO0)说明

PIO0 为输入管脚,短按控制,或者输入约 100ms 的高电平单次脉冲,可以实现以下功能:

8.1.1、模块设置为 SPP 主机模式时:

未连接状态时,清除配对信息(若存在配对设备信息)

已连接状态时,主动发起断开连接,延时 500ms 后重启,重新搜索连接从设备:

在断开连接时: 重新搜索连接从设备。

8.1.2、模块设置为 SPP 从机时:

在已连接状态时: 主动发起断开连接, 重新进入被搜索状态, 等待主机配对 和连接;

在断开连接时:重新进入被搜索状态,等待主机配对和连接。

注 1: PIOO 控制断开连接是主动发起连接,属于正常的断开连接,远端蓝牙设备不会一直处于重新确认的状态。(可以用 IVT 软体观察,如果是异常断开, IVT 软体 10 秒钟左右才会提示断开连接,此时无法进行连接其他蓝牙串口模块操作)

8.2、LED 管脚(PIO1)说明

PIO1 为输出管脚,显示模块当前工作状态:

工作模式一:

待机状态慢闪——重复 500ms 脉冲;

配对状态快闪——重复 100ms 脉冲;

连接状态长亮——高电平。

工作模式二:

待机状态和配对状态——无输出;

连接状态长亮——高电平.

九、AT 指令集:

HM 系列蓝牙模块出厂默认的串口配置为:波特率 9600,无校验,数据位 8,停止位 1。

本说明以上位机为电脑,模块参数为出厂设置时进行配置说明。

将模块通过 RS-232 电平转换连接到电脑 COM 口,使用串口调试助手,按 照 9600,N,8,1 进行配置,打开串口后,发送大写 AT(AT 后没有\r\n),若返回 OK, 说明配置成功。

注意: 本模块不可以直接连接电脑 COM 口,需经过 RS-232 电平转换,否则将会损坏模块。

设置 AT 指令必须在蓝牙模块未连接或断开 SPP 链接时才可以(上电或配对后都可以,如果连接 SPP,串口输入的数据将会直接发送到远端蓝牙设备串口输出管脚,此时只需要断开连接既可)。

1、测试

指令	应答	参数
AT	OK	无

例:发送AT,返回OK。

2、查询、设置波特率

指令	应答	参数
查询: AT+BAUD?	OK+BAUD:[para1]	Para1:波特率
设置: AT+BAUD[para1]	OK+Set:[para1]	1~C,分别代表: 1200、

	2400、4800、9600、19200、
	38400、57600、115200、
	230400、460800、921600、
	1382400
	默认: 4 (9600)

例子如下:

发送: AT+BAUD1

返回: OK+SetBaud:1200

发送: AT+BAUD2

返回: OK+SetBaud:2400

1-----1200

2-----2400

3-----4800

4-----9600

5----19200

6-----38400

7----57600

8-----115200

9-----230400

A-----460800

B-----921600

C----1382400

注:不建议用在超过 115200 的波特率,信号的干扰会使系统不稳定。设置超过 115200 后用电脑无法使用,要用单片机编程于高于 115200 才能使用此波特率和重新发 AT 命令设低波特率。

注: 在使用低于 9600 波特率的时候,请注意自身硬件电路设计以及使用 AT 指令进行配置时,需要延时,1200 时延时 1500ms,2400 时延时 1100ms,4800 时延时。700ms,其余波特率延时 300~500ms,并且妥善处理误码(单片机侧)

3、设置串口校验

指令	应答	参数
查询: AT+CHK?	OK+CHK:[para]	无
设置: AT+CHK[para]	OK+Set:[para]	Para 范围 0,1,2
		0:无校验
		1: ODD
		2: EVEN

注:默认无校验。

4、设置停止位

指令	应答	参数
查询: AT+STOP?	OK+STOP:[para]	无
设置: AT+STOP[para]	OK+Set:[para]	Para 范围 1,2
		1: 1 停止位
		2: 2 停止位

注: 默认停止位1

5、串口综合设置指令(Query/Set uart)

指令	应答	参数
查询: AT+UART?	OK+UART:[para1],	Para1:波特率
	[para2], [para3]	1~C,分别代表:
设置:	OK+Set:[para1] [para2]	1200、2400、4800、
AT+UART[para1][para2][para3]	[para3]	9600、19200、38400、
		57600、115200、
		230400、460800、
		921600、1382400
		默认: 4 (9600)
		Para2:校验位
		取值范围(0,1,2),分
		别代表: 0: 无校验,
		1: ODD 校验, 2:

	EVEN 校验。默认: 0
	(无校验)。
	Para3:停止位
	取值范围(1,2),
	分别代表: 1 位停止
	位和2位停止位。默
	认1(1位停止位)。

6、模块自检指令(Module self check)

指令	应答	参数
AT+SECH?	OK+SECH:OKAY 自检成功	无
	OK+SECH:FAIL 自检失败	

7、模块程序存储扇区检测指令(Module application sectors check)

指令	应答	参数
AT+APCH?	OK+APCH:OKAY 检测成功	无
	OK+APCH:FAIL 检测失败	

8、模块温度查询指令(Query module temperature)

指令	应答	参数
AT+TEMP?	OK+TEMP:[temp value]	无

9、模块等待连接时的状态(Query/Set module discoverable status)

指令	应答	参数
查询: AT+DISC?	OK+DISC:[para1]	Para1: 0,1,2
设置: AT+ DISC [para1]	OK+Set:[para1]	0:可发现可连接
		1:只可发现
		2:只可连接
		默认: 0

10、 PIOO(KEY)口响应功能(Query/Set PioO function)

指令	应答	参数
查询: AT+KEY?	OK+KEY:[para1]	Para1: 0~1
设置: AT+ KEY[para1]	OK+Set:[para1]	0:按键时只取消当前的操

作,返回	待机状态
1:不但取》	肖当前状态,并
且恢复出	厂设置
默认: 0	

11、 PIO1(LED)口输出状态(Query/Set Pio1 output status)

指令	应答	参数
查询: AT+LED?	OK+LED:[para1]	Para1: 0~1
设置: AT+ LED [para1]	OK+Set:[para1]	0:待机时慢闪,配对时快
		闪,连接后常亮
		1:平时不帝, 只有连接后
		常亮
		默认: 0

12、 设置模块 PIO 口输出(长指令,该指令执行后,会自动保存设置)

指令	应答	参数
查询: AT+PIO?	OK+PIO:[para]	无
设置: AT+PIO[para]	OK+Set:[para]	HM-03 不适用该条指令
		HM-05,06,07 只有 PIO2,
		PIO3 可以使用
		Para 长度为 10 位,每位
		的值为0或1,(0:不输
		出,1输出高电平)

HM-01, HM-02, HM-09 有 12 个 PIO 引出, 其中 PIO0, PIO1 系统占用, 其他的 10 个 PIO 口可以用此 AT 指令是否输出高电平。

指令解释: AT+PIO00000000000, AT+PIO 后共有 10 位, 分别代表模块的 PIO2 到 PIO11 的管脚,每位取值只有 0, 1, 0 代表不输出,1 代表输出高电平。举例:

设置 PIO2,PIO3 输出高电平,指令: AT+PIO1100000000

设置 PIO2~PIO11 全部输出高电平,指令: AT+PIO1111111111

注:该指令设置后,须重新给模块上电,该设置值才能生效。

13、 设置模块 PIO 口输出(短指令,该指令执行后,不会保存设置值, 仅当前有效,重新上电后无效)

指令	应答	参数
查询: AT+PIO[para1]?	OK+PIO:[para1][result]	无
AT+PIO[para1][para2]	OK+Set:[para1][para2]	HM-03 不适用该条指令
		HM-05,06,07 只有 PIO2,
		PIO3 可以使用
		Paral 为要设置的 PIO 口
		取值范围为(2,3,4,5,
		6, 7, 8, 9, A, B). Para2
		为要设置的值,值为0或
		1, (0: 输出低电平, 1 输
		出高电平)

举例:

查询 PIO2 口电平状态

发送: AT+PIO2?

回应: OK+PIO20 低电平。或是 OK+PIO21 高电平

设置 PIO2 口为高电平

发送: AT+PIO21

回应: OK+SetPio:21

14、 查询、设置设备名称

指令	应答	参数
查询: AT+NAME?	OK+NAME[para1]	Para1:设备名称
设置: AT+NAME[para1]	OK+Set[para1]	最长 12 位数字或字母,
		含中划线和下划线,不建
		议用其它字符。
		默认: HMSoft

例子如下:

发送: AT+NAMEname

返回: OK+SetName:name

参数 name: 所要设置的当前名称,即蓝牙被搜索到的名称。12 个字符以内。

例: 发送 AT+NAMEbill_gates

返回 OK+SetName:bill_gates

这时蓝牙模块名称改为 bill_gates

15、 恢复默认设置

指令	应答	参数
AT+DEFAULT	OK+DEFAULT	无

恢复模块默认出厂设置值,模块的所有设置均会被重置,恢复到出厂时状态,恢复出厂设置后,模块延时500ms后重启,如无必要,请慎用。

16、 模块复位,重启

指令	应答	参数
AT+RESTART	OK+RESTART	无

该指令执行后,模块将延时 500ms 后重启。

17、 查询、设置主从模式

指令	应答	参数
查询: AT+ROLE?	OK+ROLE:[para1]	Para1: M或S
设置: AT+ROLE[para1]	OK+Set:[para1]	M:主设备
		S: 从设备
		默认: S

18、 查询、设置配对密码

指令	应答	参数
查询: AT+PIN?	OK+PIN:[para1]	Paral: 密码
设置: AT+PIN[para1]	OK+Set:[para1]	最长 12 位数字或字母
		默认: 1234

例子如下:

发送: AT+PINxxxx

返回: OK+SetPin:xxxx

例: 发送 AT+PIN8888

返回 OK+SetPin:8888

这时蓝牙模块配对密码改为8888,模块在出厂时的默认配对密码是1234。

19、 查询、设置是否每次连接都需要配对

指令	应答	参数
查询: AT+AUTH?	OK+AUTH:[para1]	Para1: 0或1
设置: AT+AUTH[para1]	OK+SetAuth:[para1]	0: 不需要
		1: 需要
		默认: 0 (不需要)

20、 清除主设备配对信息

指令	应答	参数
AT+CLEAR	OK+CLEAR	无

清除成功连接过的设备地址码信息

备注:此指令只有在主设备时才有效;从设备时不接受此指令,发送此指令 没有回复,也不执行。

21、 搜索并连接新的蓝牙串口从设备(*)

指令	应答	参数
AT+SEARCH	OK	无

先清除已配对信息,延时150ms 后重启进入搜索状态

注:此指令只有在主设备时才有效;从设备时不接受此指令,发送此指令没有回复,也不执行。

22、 连接最后一次连接的蓝牙串口从设备(*)

指令	应答	参数
AT+CONLAST	OK	无

如果配对信息已被清除或连接不到最后一次设备,则进入搜索状态。

注:此指令只有在主设备时才有效;从设备时不接受此指令,发送此指令没有回复,也不执行。

23、 连接指定蓝牙地址的从设备(*)

指令	应答	参数
AT+CONN[para1]	OK	Para1: 蓝牙地址码
		地址码顺序为 uap1~4,
		nap 5~6, lap7~12

如果连接不到指定设备,则进入搜索状态。

注:此指令只有在主设备时才有效;从设备时不接受此指令,发送此指令没有回复,也不执行。

24、 查询、设置软件版本

指令	应答	参数
查询: AT+VERSION	版本信息	无
查询: AT+VERSION?		

25、 系统帮助

指令	应答	参数
查询: AT+HELP?	帮助信息	无

26、 查询成功连接过的远程主机地址

指令	应答	参数
查询: AT+RADD?	OK+ADDR:MAC 地址	无

注: 只能显示在主模式下成功连接过的地址。从模式下被动连接的地址不显示。

27、 查询本机 MAC 地址

指令	应答	参数
查询: AT+LADD?	OK+LADD:MAC 地址	无
或者: AT+ADDR?		

28、 查询、设置模块上电是否立即工作

指令	应答	参数
查询: AT+IMME?	OK+IMME:[para1]	Para1: 0 或 1
设置: AT+IMME[para1]	OK+Set:[para1]	0: 上电等待
		1: 上电立即工作
		默认:1(上电工作)

该指令设置模块上电后是否立即开始工作。

该指令只有主模式下适用,从模式下既不工作,也不回应。

若 IMME 为 0,若模块在主模式下,上电后,只响应 AT 指令,而不进行搜索或连接工作。此功能可与 AT+WORK 配合使用,以达到上电后对模块设置的目的。

29、 立即工作指令

指令	应答	参数
查询: AT+WORK	OK+WORK	无

该指令与 IMME 指令配合工作,当 IMME 指令设置为上电工作时(IMME=1),若模块有记忆的成功连接过的设备地址,则模块会立即尝试连接,TCON数值随之生效,若无记忆成功连接过的设备地址,则进入搜索状态。若 IMME 指令设置为上电等待时(IMME=0),则需等待该指令方进入工作状态,接收到该指令后,模块延时 500ms 进入工作状态(连接或搜索),进入工作状态后 TCON设置的数值随之生效。

该指令只有主模式下应用,从模式下既不回应,也不工作。

30、 设置主模式下尝试连接时间

指令	应答	参数
查询: AT+TCON?	OK+TCON:[para]	无
设置: AT+TCON[para]	OK+Set:[para]	Para 范围 0000~9999
		0000 代表持续连接, 其余
		代表尝试的秒数

注:该指令只在主模式下有效,当模块记住了上一次成功链接的地址后,再次开机自动尝试连接该地址分钟数由此参数控制,超过该数值,会自动进入搜索状态,0000为一直尝试连接。

31、 设置模块工作类型

指令	应答	参数
查询: AT+TYPE?	OK+TYPE:[para]	无
设置: AT+TYPE[para]	OK+Set:[para]	Para 范围 0~2
		0: 普通透传模式

	1: 远程控制、透传模式
	2: PIO 采集、透传模式
	默认: 0, 普通透传模式

注: 普通透传模式,是指主从一体的普通串口传输模块。

远程控制透传模式:是指模块、手机或是 PC 机(以下简称上位机)通过蓝牙适配器与我公司的蓝牙模块连接上之后,上位机可以通过 AT 指令控制蓝牙模块 PIO 和修改我公司的蓝牙模块的信息,直到上位机发送 AT+START 后,模块才切换为普通透传模式,在远控模式下,上位机发送 20个字节以内的数据,并且不是以"AT"开头,将会被透传至模块的串口输出(从 619 版本开始支持)。

PIO 采集模式:是指上位机通过蓝牙适配器与我公司的蓝牙模块连接上之后,当蓝牙模块的 10 路 PIO 口输入状态发生变化时,根据 AT+TPIO 参数设置间隔,向上位机报告 PIO 状态,发送内容格式同 AT+PIO?指令回复格式,直到上位机发送 AT+START 后,模块才切换为普通透传模式。

如果没有通过 AT+TYPEO 指令将模块设置回普通透传模式,只是通过 AT+START 让模块切换为普通透传模式,则下次上电后,模块的 TYPE 值不 会有变化。

32、 设置 PIO 采集模式下, PIO 输入状态触发时向上位机报告的时间音 隔

指令	应答	参数
查询: AT+TPIO?	OK+TPIO:[para]	无
设置: AT+TPIO[para]	OK+Set:[para]	Para 范围 0000~9999
		0000 代表只发送一次, 其
		余数值代表两次发送之
		间的间隔毫秒数值

注:该指令只在 PIO 采集模式下有效,当模块设置成为 PIO 数据采集模式后, PIO2~PIO11 共计 10 路 PIO 口,有任意一路被触发(触发条件为输入高电平时),则模块会根据此参数设置的发送间隔(毫秒为单位)向上位机(连接时)或者串口(未连接时)发送 PIO 口状态字符串,(字符串格式同 AT+PIO?

指令返回的数据串格式),若该值设置为 0,则触发时只发送一次(当多路触发,则会发送多次),注意该数值请谨慎使用,若间隔毫秒数值太小,如设置为 0001 则会引起系统不稳定,请根据您的项目需求,妥善设置,以保证系统的稳定性。

33、 远程控制模式切换为普通透传模式

指令	应答	参数
AT+START	OK+START	无

注:该指令仅在模块的 TYPE 类型为 1、2 的情况下才使用,该指令为上位 机发出,与模块用线连接的单片机发出此指令不执行,也不返回。该指令执行,模块由远程控制模式切换为普通透传模式。

34、 查询、设置远程控制模式缓存是否保存

指令	应答	参数
查询: AT+BUFF?	OK+BUFF:[para]	无
设置: AT+BUFF[para]	OK+Set:[para]	para 范围 0~1
		0: 不保存。
		1:保存(最多保存 0xFFFF
		字节的缓存数据)。
		默认: 0, 不保存

注:该指令是指当模块处于远程控制模式时,是否保存与模块用线连接的单片机发送来的数据。数据保存后,当模块切换为普通透传模式时,会自动发送缓存数据给上位机。若不保存,在切换时将丢弃该数据。

35、 查询、设置允许连接的类型

指令	应答	参数
查询: AT+FILT?	OK+FILT:[para1]	Paral: 允许的类型
设置: AT+FILT[para1]	OK+Set:[para1]	默认: C(允许全部)

Paral 取值含义如下:

- 0:Miscellaneous [Ref #2]
- 1:Computer (desktop,notebook, PDA, organizers,)
- 2:Phone (cellular, cordless, payphone, modem, ...)

- 3:LAN /Network Access point
- 4:Audio/Video (headset,speaker,stereo, video display, vcr.....
- 5:Peripheral (mouse, joystick, keyboards,)
- 6:Imaging (printing, scanner, camera, display, ...)
- 7:Wearable
- 8:Toy
- 9:Health
- A:Uncategorized, specific device code not specified
- B:Same Class_Of_Device as self
- C:Dont filter
- 注: 该指令只对主模式起作用,即在控制主模式下模块连接的类型。

36、 设置模块连接通知

指令	应答	参数
查询: AT+NOTI?	OK+NOTI:[para]	无
设置: AT+NOTI[para]	OK+Set:[para]	para 范围 0,1
		0:不通知
		1:发送连接通知

注:该指令设置为1后,若模块成功建立建接,会通过串口发送OK+CONN,断开连接后会发送OK+LOST字符串。

37、 查询 RSSI 值

指令	应答	参数
AT+RSSI?	OK+RSSI:[para1]	Para1 范围:0~-120

该指令仅在模块 TYPE 值为 1, 并且蓝牙连接成功后通过上位机发进行查询。

38、 设置模块 COD 类型

指令	应答	参数
查询: AT+COD?	OK+COD:[para]	无
设置: AT+COD[para]	OK+Set:[para]	para 范围 0000~0xFFFF
		0X0000 杂项设备
		0x1F00 未知设备(默认)

注:该指令设置后,须重新给模块上电,该设置值才能生效。

附注:

- 注1: 所有参数设置后存储在模块内,下次启动时无需再次设置。
- 注 2: AT 指令后标注*号的,表示目前未应用(或己取消)的 AT 指令。
- 注 3: 近期会增加入文件传输,图像传输,信息交换,蓝牙打印,快速打印等标准蓝牙服务,如有更改,恕不另行通知。
- 注 4: HM-05, HM-06 型蓝牙模块焊接注意要点 1, RX (4PIN) 管脚焊接时注意 RX 焊盘距离电感焊盘位置较近, 虽做了阻焊处理, 但是上锡过大, 会有可以引起焊盘与电感焊盘粘连, 导致通迅不正常。
- 注 5: HM-05, HM-06 型蓝牙模块焊接注意要点 2,PIO0(16PIN 管脚)、PIO1(15PIN 管脚)管脚焊接时注意这两个管脚距离模块 RF 部分的焊盘距离较近,虽然了阻焊处理,但是上锡过大,会有可能引起焊盘与焊盘短路,影响蓝牙模块的正常功能。
- 注 6: CMD 指令版本与 AT 指令版本指令相同,只是将 AT 替换成为 CMD 即可。如 AT 为测试,则发 CMD 为测试。
- 注 7: 模块出厂时均通过测试, RF, AT 不会有任何问题, 如出现问题, 请 先排除电路故障, 手机或是适配器故障。
- 注 8: 若您使用山寨的 USB 适配器,会发生乱码,数据假缓冲,不易连接,搜索不到等非正常现象,请更换适配器。