One Fourth Labs

Basics of Probability Theory

What are the axioms of Probability

1. Consider the following sample space

 Ω

- 2. For any event A,
 - a. $0 \le P(A) \le 1$
- 3. If A_1 , A_2 ,... A_n are disjoint events, ie $A_i \cap A_j = \emptyset$ $\forall (!i) = j$
 - a. $P(\cup A_i) = \sum_i P(A_i)$
 - b. The probability of the union of all the events is equal to the sum of the individual probabilities of those events
 - c. $P(\cup A_i) = P(A_1) + P(A_2) + P(A_3) + P(A_4) + P(A_5)$
- 4. If Ω is the universal set containing all the events, then
 - a. $P(\Omega) = 1$

One Fourth Labs

Random Variable Intuition

What is a Random Variable (intuition)

- 1. Suppose a student gets one of 3 possible grades in a course: A, B, C
- 2. One way of interpreting this is that there are 3 possible events here.
 - a. For eg, to find P(A) we take $\frac{No. of students with A grade}{Total No. of students}$
- 3. Another way of looking at this is that there is a random variable G which maps each student to one of the 3 possible values

- 4. Here, the random variable G is treated more like a function that serves to map a student to a grade
- 5. And we are interested in P(G = g) where $g \in \{A, B, C\}$
- 6. The benefit of this is that we can use multiple random variables on the same set to map to different outcomes

One Fourth Labs

Random Variable Formal Definition

What is a random variable (formal definition)

- 1. A random variable is a function which maps each outcome in Ω to a value
- 2. In the previous example, G (or $f_{\it grade}$) maps each student in $\,\Omega\,$ to a value: A, B or C
- 3. The event Grade=A is a shorthand for the event
 - $\text{a.}\quad \{\omega \ \in \ \Omega: f_{\textit{grade}} = A\}$
 - b. In other words, All the elements such that when you apply $f_{\it grade}$ the answer is A
 - c. Grade is a random variable
 - d. P(grade = A) = $\frac{\{\omega \in \Omega: f_{grade} = A\}}{Total \ number \ of \ students}$
 - e. In the context of our example

- 4. This also applies to multiclass classification
 - a. Mapping one Letter to its respecting vowel, and consonant.

5. Here, it would be P(Consonant= π) and P(Vowel = 1)

One Fourth Labs

Random Variable Continuous and Discrete

What are continuous and discrete random variables

- 1. A random variable can either take a continuous values/Real values (ie, weight, height)
- 2. Or discrete values(ie, Grade, Nationality)
- 3. For the scope of this course, we will mostly be dealing with discrete random variables. le, P(Vowels), P(Consonants) which all draw from a fixed set of discrete values

One Fourth Labs

Probability Distribution

What is a marginal distribution?

1. Consider a random variable G for grades

G	P(G=g)
А	0.1
В	0.2
С	0.7

- 2. The above table represents the marginal distribution over G
 - a. $(G = g) \forall g \in A, B, C$
- 3. i.e. The probability of every possible value that the random variable can take (sums to 1)
- 4. We denote this marginal distribution compactly by P(G)

One Fourth Labs

True and Predicted Distribution

What are true and predicted distributions

1. Consider the above example

G	P(G=g) (y)	(ŷ)
А	0.1	0.2
В	0.2	0.3
С	0.7	0.5

- 2. Here, y refers to the true distribution, or the actual probabilities for each value of G
- 3. And \hat{y} is the predicted distribution, or what we estimate the probabilities to be based on our observations
- 4. To measure the degree of correctness of our predictions, we can use a loss function.
- 5. However, Squared-error function might not be appropriate as it doesn't factor in some of the basic assumption of probability theory, ie P(G) >= 0 and <= 0, etc
- 6. So, we must select a different loss function that is more rooted in probability theory (Cross Entropy)

One Fourth Labs

Certain Events

Events with 100% probability

- 1. We need something better than the squared error loss
- 2. Consider the scenario of a random variable X that maps to the winner in a tournament of 4 teams: A, B, C, D
- 3. We stop watching after the semi-finals, so we are unaware of the outcome, but in truth, team A has won, thus it is a certain event, with probabilities (P(A) = 1, P(B) = 0, P(C) = 0, P(D) = 0).

×	P(X=x) True distribution, unknown to us.	ŷ Predicted by us
А	1 (Certain event)	0.6
В	0	0.2
С	0	0.15
D	0	0.15

4. Before the tournament's completion, based on the point we have watched till(Semi-finals), we can predict the probabilities of each team's chance at victory (P(A) = 0.6, P(B) = 0.2, P(C) = 0.15, P(D) = 0.15)

One Fourth Labs

Why do we care about Distributions

Let us put it into the context of our final project

- 1. Consider the signboard with the text 'Mumbai'. Now our classifier is analysing the text character by character, and a random variable <u>char</u> maps the character to one of the 26 possible characters in the english language
- 2. For the first character **M**, we know the True distribution intuitively.

char	Y = P(char=c) The certain event/True distribution	ŷ Obtained from model
a	0	0.01
b	0	0.01
	0	0.01
m	1	0.7
	0	0.01
Z	0	0.01

3. We compute the difference between the True and Predicted distributions using squared-error loss or some other loss function. From this, it is clear why we use distributions in the scope of our learning.