10. Übungsblatt

(1) Polarisationsformel

Es sei X ein komplexer Hilbertraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Zeigen Sie, dass

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) + \frac{\mathrm{i}}{4} (\|x + \mathrm{i}y\|^2 - \|x - \mathrm{i}y\|^2)$$

für alle $x, y \in X$ gilt.

- (2) ISOMETRIE IN HILBERTRÄUMEN: Sei X ein Hilbertraum und $A \in L(X)$ ein beschränkter Operator. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:
 - (a) A ist eine lineare Isometrie.
 - (b) $\langle Ax, Ay \rangle = \langle x, y \rangle$ für alle $x, y \in X$.
 - (c) $A^*A = I$.

Hinweis: Polarisationsformel.

(3) CHARAKTERISIERUNG SELBSTADJUNGIERTER OPERATOREN: Es sei X ein komplexer Hilbertraum und $A \in L(X)$. Zeigen Sie, dass A genau dann selbstadjungiert ist, wenn $\langle Ax, x \rangle \in \mathbb{R}$ für alle $x \in X$ gilt.

Hinweis: Betrachten Sie $\langle A(x + \alpha y), x + \alpha y \rangle$ für $\alpha = 1$ und $\alpha = i$

- (4) KOMPLEXE UND REELLE FUNKTIONALE AUF KOMPLEXEN RÄUMEN: Sei X ein normierter Vektorraum über \mathbb{C} . Zeigen Sie folgende Aussagen:
 - (a) Sei $x^* \in X^*$ und setze

$$f(x) := \operatorname{Re} x^*(x)$$

für alle $x \in X$. Dann ist $f: X \to \mathbb{R}$ eine \mathbb{R} -lineare Abbildung mit $||f||_{X^*} = ||x^*||_{X^*}$.

(b) Sei $g: X \to \mathbb{R}$ eine stetige, \mathbb{R} -lineare Abbildung. Setze

$$x^*(x) := q(x) - iq(ix)$$

für alle $x \in X$. Dann gilt $x^* \in X^*$, $||x^*||_{X^*} = ||g||_{X^*}$ und $\operatorname{Re} x^*(x) = g$.

- (5) DUALITÄT UND FOLGENRÄUME: Seien $1 \le p < \infty$ und $1 < q \le \infty$ mit $\frac{1}{p} + \frac{1}{q} = 1$.
 - (a) Zeigen Sie, dass die Abbildung

$$\ell^1(\mathbb{N}) \to (c_0(\mathbb{N}))^*, \qquad (x_n)_{n \in \mathbb{N}} \mapsto \left[(y_n)_{n \in \mathbb{N}} \mapsto \sum_{n=1}^{\infty} x_n y_n \right]$$

eine bijektive lineare Isometrie ist.

(b) Zeigen Sie, dass die Abbildung

$$\ell^q(\mathbb{N}) \to (\ell^p(\mathbb{N}))^*, \qquad (x_n)_{n \in \mathbb{N}} \mapsto \left[(y_n)_{n \in \mathbb{N}} \mapsto \sum_{n=1}^{\infty} x_n y_n \right]$$

eine bijektive lineare Isometrie ist.

Hinweis: Verwenden Sie, dass span $\{e_n : n \in \mathbb{N}\}$, wobei e_n den n-ten Standardbasisvektor bezeichnet in $c_0(\mathbb{N})$ und $\ell^p(\mathbb{N})$ dicht ist.