MAT139 – Álgebra Linear para Computação Lista de Exercícios 4 – 30/08/2011

Prof. Claudio Gorodski

1. Descreva im A, ker A, im A^t e ker A^t no caso em que

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

- 2. Se o produto de duas matrizes é a matriz nula, AB = 0, mostre que im $B \subset \ker A$.
- 3. Suponha que A é uma matriz m por n de posto r. Sob que condições sobre esses números temos que:
 - a. Ax = b tem infinitas soluções em x para qualquer b dado?
 - b. Ax = b tem exatamente uma solução em x para qualquer b dado?
 - c. Existem vetores b para os quais Ax = b não tem soluções?
 - d. A tem uma inversa bi-lateral: existe A^{-1} tal que $AA^{-1} = A^{-1}A = I$?
 - e. A tem uma inversa à esquerda: existe B tal que BA = I?
 - f. A tem uma inversa à direita: existe C tal que AC = I?
- 4. Existe uma matriz A tal que $(1\ 1\ 1)^t$ pertence a im $A^t \cap \ker A$?
- 5. Suponha que a única solução de Ax = 0 (m equações em n incógnitas) é a trivial, x = 0. Qual é então o posto de A? Por quê?
- 6. Determinar uma matriz 1 por 3 cujo núcleo consista dos vetores de \mathbf{R}^3 satisfazendo $x_1 + 2x_2 + 4x_3 = 0$.
- 7. Calcular uma inversa à esquerda ou uma inversa à direita, se elas existirem, para as seguintes matrizes:

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad T = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}.$$

8. Se V é o subespaço de ${f R}^3$ gerado pelos vetores

$$\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \quad \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \quad \begin{pmatrix} 1\\5\\0 \end{pmatrix},$$

exibir matrizes A e B tais que V é o espaço das linhas de A e é o núcleo de B.

9. Exiba uma matriz com as propriedades listadas ou explique por que tal matriz não pode existir:

1

 $a. \ \ \text{Espaço das colunas cont\'em} \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) \text{e espaço das linhas cont\'em} \left(\begin{array}{c} 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ 2 \end{array} \right).$

- b. Espaço das colunas tem como base $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ e núcleo tem como base $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$.
- c. Espaço das colunas é \mathbf{R}^4 e espaço das linhas é $\mathbf{R}^3.$
- 10. Qual é a curva-imagem do círculo $x^2+y^2=1$ pela transformação linear ${\bf R}^2\to {\bf R}^2$ definida pela matriz $A=\left(\begin{array}{cc}2&0\\0&1\end{array}\right)$?
- 11. Escrever a matriz 3 por 3 que representa as transformação do ${f R}^3$ que:
 - a. projeta todo vetor sobre o plano xy;
 - b. reflete todo vetor em relação ao plano xy;
 - c. roda o plano xy de 90 graus e deixa o eixo z fixo.
- 12. Escreva a matriz A 4 por 4 que representa uma permutação cíclica: (x_1, x_2, x_3, x_4) é transformado em (x_2, x_3, x_4, x_1) . Verifique diretamente que $A^3 = A^{-1}$.
- 13. Escreva uma matriz A 4 por 3 que representa o "right shift": cada vetor (x_1, x_2, x_3) é transformado em $(0, x_1, x_2, x_3)$. Exiba também uma matriz B 3 por 4 para o "left shift" que leva (x_1, x_2, x_3, x_4) em (x_2, x_3, x_4) . Como são as matrizes AB e BA?
- 14. Seja $V = \mathcal{P}_3$ o espaço vetorial dos polinômios de grau no máximo 3 mais o vetor nulo. Seja W o subespaço de V formado pelos vetores p satisfazando $\int_0^1 p(x)dx = 0$. Verifique que W é um subespaço de V e calcule uma base e a dimensão de W.
- 15. Seja \mathcal{P}_n o espaço vetorial dos polinômios de grau no máximo n mais o vetor nulo. Representar as seguintes transformações lineares por matrizes em relação à base canônicas dos espaçoes em questão:
 - $a. D^2: \mathcal{P}_3 \to \mathcal{P}_3$, one D é a derivação de polinômios.
 - b. $T: \mathcal{P}_3 \to \mathbf{R}, T(p(t)) = p(0).$
 - c. $T: \mathcal{P}_3 \to \mathcal{P}_4, T(p(t)) = (1+t)p(t).$