draculagray

Capítulo 5: Aplicaciones del complejo de Rips 5.1 Espacios $\delta-$ hiperbólicos

Haydeé Peruyero

9 de noviembre de 2023

Contenidos

Espacios $\delta-$ hiperbólicos

Espacios métricos geodésicos

Definición Sea (Y, d) un espacio métrico. Una trayectoria geodésica entre dos puntos $x, y \in (Y, d)$ es una mapeo $\gamma: [0, l] \longrightarrow Y$ con $\gamma(0) = x$ y $\gamma(l) = y$ y con la propiedad que $d(\gamma(t), \gamma(t')) = |t - t'|$ para cualesquiera $t, t' \in [0, l]$.

Espacios δ —hiperbólicos

Definición Sea (Y, d) un **espacio métrico geodésico**, es decir, cualesquiera dos puntos se pueden unir por una geodésica, no necesariamente única.

Espacios δ -hiperbólicos

Definición Sea (Y,d) un **espacio métrico geodésico**, es decir, cualesquiera dos puntos se pueden unir por una geodésica, no necesariamente única. El espacio Y se llama δ -**hiperbólico** (con $\delta > 0$) si para cualquier triángulo geodésico, cada lado está contenido en una δ -vecindad de la unión de los otros dos lados (estos triángulos se llaman δ -**delgados**).

Espacios δ -hiperbólicos

Definición Sea (Y,d) un **espacio métrico geodésico**, es decir, cualesquiera dos puntos se pueden unir por una geodésica, no necesariamente única. El espacio Y se llama δ -**hiperbólico** (con $\delta > 0$) si para cualquier triángulo geodésico, cada lado está contenido en una δ -vecindad de la unión de los otros dos lados (estos triángulos se llaman δ -**delgados**). Decimos que Y es **hiperbólico** si es δ -hiperbólico para algún $\delta > 0$.

Triángulo $\delta-$ delgado

Cualquier espacio de diámetro acotado es hiperbólico.

- Cualquier espacio de diámetro acotado es hiperbólico.
- ▶ El plano Euclidiano no es $\delta-$ hiperbólico, para cualquier $\delta>0$ un triángulo suficientemente grande equilátero no es $\delta-$ delgado.

- Cualquier espacio de diámetro acotado es hiperbólico.
- El plano Euclidiano no es $\delta-$ hiperbólico, para cualquier $\delta>0$ un triángulo suficientemente grande equilátero no es $\delta-$ delgado.
- ▶ El plano hiperbólico \mathbb{H} , con curvatura constante negativa -1 es δ -hiperbólico para algún δ .

Para un espacio métrico (X, d), un subconjunto $A \subset X$ se dice que es r—**denso** si para cualquier punto $x \in X$ existe un punto $a \in A$ tal que d(x, a) > r.

Para un espacio métrico (X, d), un subconjunto $A \subset X$ se dice que es r-**denso** si para cualquier punto $x \in X$ existe un punto $a \in A$ tal que d(x, a) > r.

Dado un t>0, podemos asociarle a cualquier espacio métrico abstracto (X,d) un espacio topológico $R_t(X)$ llamado el **complejo de Vieroris-Rips**. Este se define como el subcomplejo del simplejo "full" Σ formado por los puntos de X, donde $\sigma \subset X$ es un simplejo de R_t cuando el diámetro de σ es menor a t.

Teorema 5.1.3 Sea Y un espacio métrico δ -hiperbólico y sea $X\subseteq Y$ un subconjunto finito r-denso. Entonces para cualquier $t>4\delta+6r$, cada subcomplejo de $R_t(X)$ se contrae a un punto en $R_t(X)$.

Teorema 5.1.3 Sea Y un espacio métrico δ -hiperbólico y sea $X \subseteq Y$ un subconjunto finito r-denso. Entonces para cualquier $t > 4\delta + 6r$, cada subcomplejo de $R_t(X)$ se contrae a un punto en $R_t(X)$.

Observación: Dado un espacio métrico δ -hiperbólico Y, si desconocemos el valor de δ , el teorema nos suguiere una forma de obtener una cota inferior de δ . Si tenemos un subconjunto r-denso $X\subseteq Y$ para el cual $R_t(X)$ es no contraible, entonces $\delta\geq \frac{1}{4}(t-6r)$. La contractibilidad podría ser más fácil de verificar que encontrar el valor de δ directamente.

Conexión con la profundidad de la frontera

Observación 5.1.4. Sea (Y,d) una variedad δ -hiperbólica, localmente compacta y geodésico (uniquely geodesic?). Sea $\hat{Y} \subset Y$ un subconjunto geodésicamente convexo y compacto y sea $X \subset \hat{Y}$ r-denso finito en \hat{Y} .

Conexión con la profundidad de la frontera

Observación 5.1.4. Sea (Y,d) una variedad δ -hiperbólica, localmente compacta y geodésico (uniquely geodesic?). Sea $\hat{Y} \subset Y$ un subconjunto geodésicamente convexo y compacto y sea $X \subset \hat{Y}$ r-denso finito en \hat{Y} .

Por el teorema anterior, lo que vamos a obtener en este caso es que la profundidad de la frontera del complejo de Rips correspondiente va a satisfacer $\beta(R(X)) \leq 5r + 4\delta$, entonces la barra finita más larga va a estar necesariamente contenida en $(0,6r+4\delta]$.

Conexión con la profundidad de la frontera

Observación 5.1.4. Sea (Y,d) una variedad δ -hiperbólica, localmente compacta y geodésico (uniquely geodesic?). Sea $\hat{Y} \subset Y$ un subconjunto geodésicamente convexo y compacto y sea $X \subset \hat{Y}$ r-denso finito en \hat{Y} .

Por el teorema anterior, lo que vamos a obtener en este caso es que la profundidad de la frontera del complejo de Rips correspondiente va a satisfacer $\beta(R(X)) \leq 5r + 4\delta$, entonces la barra finita más larga va a estar necesariamente contenida en $(0,6r+4\delta]$.

En particular, tomando la densidad de X como $r=\delta$, se obtiene que $\beta(R(X)) \leq 10\delta$, lo que da una conexión entre la profundidad de la frontera y la geometría de los espacios δ -hiperbólicos.

Grupos Hiperbólicos

Sea Γ un grupo finitamente generado y sea S un conjunto finito de generadores de Γ (simétrico). El **grafo de Cayley**

 $G = G(\Gamma, S) = (V, E)$ de Γ está formada como sigue:

- **E**I conjunto de vértices es V = Γ.
- Para cada $X \in \Gamma$, $s \in S$, los vértices x, xs se unen con una arista, es decir, el conjunto de aristas es $E = \{(x, xs) : x \in \Gamma, s \in S\}.$

Longitud de la palabra

La **longitud de la palabra** de un elemento γ en Γ , $I_S(\gamma)$, es el entero más pequeño $n \geq 0$ para el cual existen $s_1, ..., s_n \in S \cup S^{-1}$ tal que $\gamma = s_1...s_n$.

Longitud de la palabra

La longitud de la palabra de un elemento γ en Γ , $I_S(\gamma)$, es el entero más pequeño $n \geq 0$ para el cual existen $s_1,...,s_n \in S \cup S^{-1}$ tal que $\gamma = s_1...s_n$.

Ejemplo: \mathbb{Z} con conjunto generador $S = \{2, 3\}$. La longitud del elemento 1 es:

$$\mathbb{Z}$$
, $S = \{2, 3\}$

La métrica de la palabra d_S se define como

$$\mathsf{d}_{\mathcal{S}}(\gamma_1,\gamma_2)=\mathit{I}_{\mathcal{S}}(\gamma_1^{-1}\gamma_2).$$

La métrica de la palabra d_S se define como

$$\mathsf{d}_{\mathcal{S}}(\gamma_1,\gamma_2) = \mathit{I}_{\mathcal{S}}(\gamma_1^{-1}\gamma_2).$$

$$-4 -3 -2 -1 0 1 2 3 4 5 6$$
 $\mathbb{Z}, S = \{1\}$

Ejemplo: \mathbb{Z} con conjunto generador $S = \{1\}$.

La métrica de la palabra d_S se define como

$$\mathsf{d}_{\mathcal{S}}(\gamma_1,\gamma_2)=\mathit{l}_{\mathcal{S}}(\gamma_1^{-1}\gamma_2).$$

$$-4 -3 -2 -1 0 1 2 3 4 5 6$$
 $\mathbb{Z}, S = \{1\}$

Ejemplo: $\mathbb Z$ con conjunto generador $S=\{1\}$. Si consideramos ahora a $\mathbb Z$ como conjunto generador, la distancia entre cualesquiera dos elementos es 1.

La métrica de la palabra d_S se define como

$$\mathsf{d}_{\mathcal{S}}(\gamma_1,\gamma_2)=\mathit{I}_{\mathcal{S}}(\gamma_1^{-1}\gamma_2).$$

Ejemplo: \mathbb{Z} con conjunto generador $S = \{2,3\}$. La distancia entre los elementos 1 y 4 es:

Métrica en el grafo de Cayley

La métrica de la palabra se corresponde a una métrica d en el grafo de Cayley Γ : la distancia entre dos vértices en V es la longitud de la trayectoria más corta que los une en G.

Sea $\Gamma = \mathbb{F}_k$, con $k \geq 2$ el grupo libre en el conjunto de k elementos. Tomemos el conjunto generador $S = \{s_1, s_1^{-1}, ..., s_k, s_k^{-1}\}$. Entonces el grafo de Cayley correspondiente es el árbol con raíz 1, con una rama saliendo de la raíz por cada elemento en S y cualquier otro vértice tiene grado 2k.

- ▶ Sea $\Gamma = \mathbb{F}_k$, con $k \ge 2$ el grupo libre en el conjunto de k elementos. Tomemos el conjunto generador $S = \{s_1, s_1^{-1}, ..., s_k, s_k^{-1}\}$. Entonces el grafo de Cayley correspondiente es el árbol con raíz 1, con una rama saliendo de la raíz por cada elemento en S y cualquier otro vértice tiene grado 2k.
- Sea $\Gamma = \pi_1(\Sigma_g)$, donde Σ_g es la superficie orientable compacta de género $g \ge 2$. Tomemos como conjunto generador el conjunto con g elementos y sus inversas:

$$\Gamma = \{a_1, b_1, ..., a_g, b_g : [a_1, b_1] \cdots [a_g, b_g] = 1\}$$

Para el caso especial del toro (g=1), el grafo de Cayley de Γ es ${f Z}^2$

Grupo hiperbólico

Consideremos la realización topológica de Y del grafo de Cayley G de Γ , es decir darle a cada arista del grafo una métrica que extienda d, donde cada arista tenga longitud 1.

Grupo hiperbólico

Consideremos la realización topológica de Y del grafo de Cayley G de Γ , es decir darle a cada arista del grafo una métrica que extienda d, donde cada arista tenga longitud 1.

Supongamos que el espacio métrico (Y, d) es δ -hiperbólico para algún $\delta > 0$, entonces decimos que el grupo Γ es **hiperbólico**.

Sea $\Gamma = \mathbb{F}_k$, con $k \geq 2$ el grupo libre en el conjunto de k elementos y sea $S = \{s_1, s_1^{-1}, ..., s_k, s_k^{-1}\}$ su conjunto generador finito. Entonces el grafo de Cayley correspondiente es un árbol que no tiene triángulos, es así δ -hiperbólico para cualquier $\delta > 0$, entonces el grupo libre es hiperbólico.

Grafo de Cayley de F_2 .

Grupos libres de torsión

Sea Γ un grupo libre de torsión, es decir, para cualquier elemento $1 \neq g \in G$, para todo $n \in \mathbb{N}$, $g^n = 1$. Fijemos un conjunto generador finito S. Consideremos la realización geométrica (Y, d) del grafo de Cayley $G = G(\Gamma, S)$ y supongamos que es δ -hiperbólico para algún $\delta > 0$, es decir el grupo Γ es hiperbólico.

Grupos libres de torsión

Sea Γ un grupo libre de torsión, es decir, para cualquier elemento $1 \neq g \in G$, para todo $n \in \mathbb{N}$, $g^n = 1$. Fijemos un conjunto generador finito S. Consideremos la realización geométrica (Y, d) del grafo de Cayley $G = G(\Gamma, S)$ y supongamos que es δ -hiperbólico para algún $\delta > 0$, es decir el grupo Γ es hiperbólico.

Sea $x=\Gamma$ la colección de vértices del grafo combinatorio G. Notemos que X es 1—denso en su realización geométrica (Y,d), entonces (por un argumento que veremos más adelante) para cualquier $t>6+4\delta$, el complejo $R_t(X)$ es contraible.

Por definición, Γ actúa **transitívamente** en X: para cualquier $x, y \in X$, existe un elemento $g \in \Gamma$, tal que gx = y, donde $g = yx^{-1}$.

Por definición, Γ actúa **transitívamente** en X: para cualquier $x, y \in X$, existe un elemento $g \in \Gamma$, tal que gx = y, donde $g = yx^{-1}$. También Γ actúa **libremente** en X: dado $g, h \in \Gamma$, si gx = hx para algún x, entonces g = h, solo hay que multiplicar por x^{-1} .

- Por definición, Γ actúa **transitívamente** en X: para cualquier $x, y \in X$, existe un elemento $g \in \Gamma$, tal que gx = y, donde $g = yx^{-1}$. También Γ actúa **libremente** en X: dado $g, h \in \Gamma$, si gx = hx para algún x, entonces g = h, solo hay que multiplicar por x^{-1} .
- Como Γ es libre de torsión, también actúa libremente en los símplices en $R_t(X)$. De lo contrario, existiría un simplejo σ y $g \neq 1$ en Γ con $g\sigma = \sigma$. Pero entonces después de un número finito de iteraciones, también algún vértice sería fijado por $g^n \neq 1$ para algún $n \in \mathbf{N}$.

Entonces, consideremos $K = R_t(X)/\Gamma$. Para $t > 6 + 4\delta$, el espacio $R_t(X)$ es contraible, entonces es simplemente conexo, así $R_t(X)$ es el cubriente universal de K, con $\pi_1(K) = \Gamma$ y $\pi_n(K) = 1$ para todo $n \neq 1$. Estos espacios son llamados los espacio Eilenberg-MacLane $K(\Gamma, 1)$.

- Entonces, consideremos $K = R_t(X)/\Gamma$. Para $t > 6 + 4\delta$, el espacio $R_t(X)$ es contraible, entonces es simplemente conexo, así $R_t(X)$ es el cubriente universal de K, con $\pi_1(K) = \Gamma$ y $\pi_n(K) = 1$ para todo $n \neq 1$. Estos espacios son llamados los espacio Eilenberg-MacLane $K(\Gamma, 1)$.
- Notemos que K es un complejo finito, ya que todas las bolas de radio t cercanas al 1 ∈ X consisten de solo un número finito de puntos, siendo Γ finitamente generado. Así el 2-esqueleto en K es finito, entonces Γ es finitamente presentado, es decir puede ser definido con un conjunto finito de relaciones entre los generadores, el número de 2-simplices es una cota superior para el número de relaciones.

Teorema 5.1.3

Teorema 5.1.3 Sea Y un espacio métrico δ -hiperbólico y sea $X \subseteq Y$ un subconjunto finito r-denso. Entonces para cualquier $t > 4\delta + 6r$, cada subcomplejo de $R_t(X)$ se contrae a un punto en $R_t(X)$.

Prueba Teorema 5.1.3

Fijemos un punto base $x_0 \in X$, algún $t > 4\delta + 6r$, y un subcomplejo $L \subseteq R_t(X)$. Consideremos los siguientes dos casos:

Prueba Teorema 5.1.3

Fijemos un punto base $x_0 \in X$, algún $t > 4\delta + 6r$, y un subcomplejo $L \subseteq R_t(X)$. Consideremos los siguientes dos casos:

Supongamos que $d(x_0, v) < \frac{t}{2}$ para todo $v \in L$. Entonces $d(v_1, v_2) < t$ para cualquier par $v_1, v_2 \in L$, entonces L está contenido en un simplejo "lleno" en $R_t(X)$, por lo tanto es contraible.

Fijemos un punto base $x_0 \in X$, algún $t > 4\delta + 6r$, y un subcomplejo $L \subseteq R_t(X)$. Consideremos los siguientes dos casos:

- Supongamos que $d(x_0, v) < \frac{t}{2}$ para todo $v \in L$. Entonces $d(v_1, v_2) < t$ para cualquier par $v_1, v_2 \in L$, entonces L está contenido en un simplejo "lleno" en $R_t(X)$, por lo tanto es contraible.
- Supongamos que existe $v \in L$ tal que $d(x_0, v) \ge \frac{t}{2}$, y fijemos v como un vértice para el cual $d(x_0, v)$ es maximal. Vamos a homotopar gradualmente L dentro de $R_t(X)$ hasta llegar al primer caso.

Por la desigualdad del triángulo

$$\rho \leq \frac{t}{2} + r$$

Por la desigualdad del triángulo

$$\rho \leq \frac{\iota}{2} + r$$

У

$$\rho \ge \frac{t}{2} - r > 2\delta + 3r - 3 = 2\delta + 2r,$$

Por la desigualdad del triángulo

$$\rho \leq \frac{t}{2} + t$$

)

$$\rho \geq \frac{t}{2} - r > 2\delta + 3r - 3 = 2\delta + 2r,$$

en particular

$$ho \geq rac{t}{2} - r > 2\delta + 2r$$
 y $ho < t$.

Lema 5.1.8. Bajo las condiciones del Teorema 5.1.3, para cualquier $u \in L$, si d(u, v) < t entonces d(u, v') < t.

Lema 5.1.8. Bajo las condiciones del Teorema 5.1.3, para cualquier $u \in L$, si d(u, v) < t entonces d(u, v') < t.

Usando este lema, notemos que si $\sigma = [v, u_1, u_2, ..., u_k]$ es un simplejo en $L \subset R_t(X)$ y $\sigma' = [v', u_1, u_2, ..., u_k]$ es un simplejo en $R_t(X)$, entonces como d $(v, v') = \rho < t$, obtenemos que $\Sigma = [v, v', u_1, u_2, ..., u_k]$ es también un simplejo en $R_t(X)$.

Lema 5.1.8. Bajo las condiciones del Teorema 5.1.3, para cualquier $u \in L$, si d(u, v) < t entonces d(u, v') < t.

Usando este lema, notemos que si $\sigma = [v, u_1, u_2, ..., u_k]$ es un simplejo en $L \subset R_t(X)$ y $\sigma' = [v', u_1, u_2, ..., u_k]$ es un simplejo en $R_t(X)$, entonces como d $(v, v') = \rho < t$, obtenemos que $\Sigma = [v, v', u_1, u_2, ..., u_k]$ es también un simplejo en $R_t(X)$.

Denotemos por $L'\subset R_t(X)$ al subcomplejo que se obtiene de L al reemplazar el vértice v con v'. Entonces podemos homotopar L a L' dentro de Σ , llevando v a v' lo cual nos lleva cada σ a σ' , y manteniendo fijas todas las caras en L que no contengan a v.

Notemos que por la desigualdad del triangulo, la definición de t y la desigualdad que obtuvimos de ρ :

$$\begin{array}{lll} \mathsf{d}(x_0,v') & \leq & \mathsf{d}(x_0,y) \; + \; \mathsf{d}(y,v') \\ & \leq & \mathsf{d}(x_0,v) - \frac{t}{2} + r \\ & < & \mathsf{d}(x_0,v) - (2\delta + 2r) \\ & < & \mathsf{d}(x_0,v) \end{array}$$

Notemos que por la desigualdad del triangulo, la definición de t y la desigualdad que obtuvimos de ρ :

$$\begin{array}{lll} \mathsf{d}(x_0,v') & \leq & \mathsf{d}(x_0,y) \; + \; \mathsf{d}(y,v') \\ & \leq & \mathsf{d}(x_0,v) - \frac{t}{2} + r \\ & < & \mathsf{d}(x_0,v) - (2\delta + 2r) \\ & < & \mathsf{d}(x_0,v) \end{array}$$

Así, en un número finito de pasos, reemplazando v que nos da la distancia maximal $d(x_0, v)$ por $v^{'}$ como se describió anteriormente, reducimos $d(x_0, v)$ por al menos $2\delta + 2r$, lo cual nos llevará al caso 1.

Prueba del Lemma 5.1.8

Lema 5.1.8. Bajo las condiciones del Teorema 5.1.3, para cualquier $u \in L$, si d(u, v) < t entonces d(u, v') < t.

Prueba del Lemma 5.1.8

Lema 5.1.8. Bajo las condiciones del Teorema 5.1.3, para cualquier $u \in L$, si d(u, v) < t entonces d(u, v') < t.

Demostración.

Supongamos que $u \in L$ satisface que d(u, v) < t. Entonces lo que tenemos que mostrar es que d(u, v') < t.

Prueba del Lemma 5.1.8

Lema 5.1.8. Bajo las condiciones del Teorema 5.1.3, para cualquier $u \in L$, si d(u, v) < t entonces d(u, v') < t.

Demostración.

Supongamos que $u \in L$ satisface que d(u, v) < t. Entonces lo que tenemos que mostrar es que d(u, v') < t.

Consideremos el triángulo geodésico con vértices x_0 , u, v, recordemos nuestra construcción:

Por la δ -hiperbolicidad, y está incluido ya sea en una δ -vecindad de $[x_0, u]$ o en una de [u, v]. Entonces, existe ya sea $w_1 \in [x_0, u]$ para el cual d $(y, w_1) < \delta$ o existe $w_2 \in [v, u]$ para el cual d $(y, w_2) < \delta$.

Tenemos que $d(u, v') \le d(u, w_1) + d(w_1, v')$. Vamos a estimar por separado cada sumando.

Tenemos que $d(u, v') \le d(u, w_1) + d(w_1, v')$. Vamos a estimar por separado cada sumando.

Por la maximalidad de $d(x_0, v)$:

$$d(u, w_1) = d(x_0, u) - d(x_0, w_1)$$

$$\leq d(x_0, v) - d(x_0, w_1)$$

$$\leq d(v, w_1)$$

$$\leq d(v, y) + d(y, w_1)$$

$$< \frac{t}{2} + \delta$$

Tenemos que $d(u, v') \le d(u, w_1) + d(w_1, v')$. Vamos a estimar por separado cada sumando.

Por la maximalidad de $d(x_0, v)$:

$$\begin{array}{lcl} \mathsf{d}(u,w_1) & = & \mathsf{d}(x_0,u) - \mathsf{d}(x_0,w_1) \\ & \leq & \mathsf{d}(x_0,v) - \mathsf{d}(x_0,w_1) \\ & \leq & \mathsf{d}(v,w_1) \\ & \leq & \mathsf{d}(v,y) + \mathsf{d}(y,w_1) \\ & \leq & \frac{t}{2} + \delta \end{array}$$

Además, por definición de w_1 y v^{\prime} tenemos que

$$d(w_1, v') \le d(w_1, y) + d(y, v') < r + \delta.$$

Tenemos que $d(u, v') \le d(u, w_1) + d(w_1, v')$. Vamos a estimar por separado cada sumando.

Por la maximalidad de $d(x_0, v)$:

$$\begin{array}{rcl} \mathsf{d}(u,w_1) & = & \mathsf{d}(x_0,u) - \mathsf{d}(x_0,w_1) \\ & \leq & \mathsf{d}(x_0,v) - \mathsf{d}(x_0,w_1) \\ & \leq & \mathsf{d}(v,w_1) \\ & \leq & \mathsf{d}(v,y) + \mathsf{d}(y,w_1) \\ & < & \frac{t}{2} + \delta \end{array}$$

Además, por definición de w_1 y $v^{'}$ tenemos que

$$\mathsf{d}(w_1, v^{'}) \leq \mathsf{d}(w_1, y) + \mathsf{d}(y, v^{'}) < r + \delta.$$

Entonces, por la desigualdad 1,

$$\mathsf{d}(u,v^{'}) \leq \frac{t}{2} + \delta + r + \delta = \frac{t}{2} + (r+2\delta) < t.$$

Caso 2:Existe $w_2 \in [u, v]$, tal que $d(y, w_2) < \delta$

Por la desigualdad del triángulo

$$d(u, v') \le d(u, w_2) + d(w_2, y) + d(y, v').$$

Caso 2:Existe $w_2 \in [u, v]$, tal que $d(y, w_2) < \delta$

Por la desigualdad del triángulo

$$d(u, v') \le d(u, w_2) + d(w_2, y) + d(y, v').$$

Entonces necesitamos estimar $d(u, w_2)$. Notemos que

$$\rho := d(v, v') \leq d(v, w_2) + d(w_2, v') \\
\leq d(v, w_2) + d(w_2, y) + d(y, v') \\
< d(v, w_2) + \delta + r.$$

Caso 2:Existe $w_2 \in [u, v]$, tal que $d(y, w_2) < \delta$

Por la desigualdad del triángulo

$$d(u, v') \le d(u, w_2) + d(w_2, y) + d(y, v').$$

Entonces necesitamos estimar $d(u, w_2)$. Notemos que

$$\rho := d(v, v') \leq d(v, w_2) + d(w_2, v') \\
\leq d(v, w_2) + d(w_2, y) + d(y, v') \\
< d(v, w_2) + \delta + r.$$

Así $d(v, w_2) > \rho - (\delta + r)$. Entonces tenemos que

$$\mathsf{d}(u,w_2) = \mathsf{d}(u,v) - \mathsf{d}(v,w_2) < t - \rho + (\delta + r),$$

y finalmente obtemos que

$$d(u, v') < t - \rho + 2(\delta + r) < t$$

ya que por la desigualdad 1, $ho > 2(\delta + r)$

