ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

WINTER SEMESTER, 2012-2013

DURATION: 1 Hour 30 Minutes

FULL MARKS: 75

CSE 4303: Data Structures

Programmable calculators are not allowed. Do not write anything on the question paper.

There are <u>4 (four)</u> questions. Answer any <u>3 (three)</u> of them.

Figures in the right margin indicate marks.

1.	a)	What are static and dynamic storage structures? Write one advantage and one disadvantage of each.	6	
	b) c)	Explain how one would increase the precision of a floating point number. Calculate the floating point values represented by the following binary values. Each floating point word is 16 bits long where bit 1 represents sign, bits 2-6 represent the exponent, and bits 7-16 represent the mantissa.	5	
		i. 0000010101000000 ii. 1000010101000000 iii. 0001001010001000	3X3	
	d)	"Arrays are direct access data structures". State why they are called so and state one problem that may arise from direct access.	3	
	e)	Define the term "packed word".	2	
2.	a)	Draw a diagram to show how recursive lists can be used to store the following list of strings: ("cat", "hat", "bat", "ball", "tall", "mall", "bog", "dog", "hog")	5	
	b)	Compare array-based lists and linked lists regarding: i. Type of storage structure, ii. Element access method, iii. Insertion and deletion operation costs.	6	
	c)	With a sequential list of length n , show that if all $(n+1)$ possible locations for an insertion are equally likely, then the expected number of elements that must be moved for an insertion into a sequentially allocated list is $n/2$.	8	
	d)	Given a choice between an array list and a linked list, state and briefly justify which type of list you would use to store the following items in a program: i. A list of 5 integers. ii. A list of customers waiting in line at a store. iii. A list of people in an elevator. iv. A list of students in your class. v. A grocery list.	6X1	
		vi. Scorecard for a team in a cricket match.		
3.	a)	Draw a table to show how a stack is used to convert the following infix equation into Polish notation:		

 $(a + b) \div (c \times (d - e)).$

Your table must show the contents of the stack, input string and output string at each step.

- b) Describe the steps to evaluate a Polish postfix expression. You may write it in pseudocode or describe the steps in short sentences.
- c) What is meant by overflow and underflow in stacks/queues? Explain a simple step that one can take to prevent these errors when writing a code for a stack/queue.
- d) Given the following enqueue times and dequeue times of elements in a queue, draw diagrams to illustrate the changes that occur throughout the lifetime of the queue.

Element	Enqueue Time (s)	Dequeue Time (s)
A	0	6
В	4	10
С	9	14
D	15	17
Е	16	20

- 4. a) Draw a binary search tree given the following series of inputs: 6, 4, 7, 3, 1, 17, 2, 5, 9, 13
 - b) Given the following tree

show the sequence of numbers that would be found by the following traversals:

- i. preorder
- ii. inorder
- iii. postorder
- iv. level order
- c) Draw a tree with nodes labeled A, B, C, etc. From your tree show one example of nodes with the following relationships:
 - i. Father-Son 5X1
 - ii. Brothers
 - iii. 1st cousins
 - iv. 1st cousins, once removed
 - v. 2nd cousins, twice removed
- d) Using diagrams, very briefly explain the implementation of trees using
 - i. LEFT and RIGHT pointers
 - ii. FATHER pointers

4X2

5

5

7

4

2X4