Package 'methanogenlab'

April 15, 2022

Type Package

Version 0.1.2

Title Methanogenesis Model

Description Evolves a closed system undergoing methanogenesis.	
Imports microbialkitchen, CHNOSZ, mathjaxr	
Remotes KopfLab/microbialkitchen	
RdMacros mathjaxr	
License What license is it under?	
Encoding UTF-8	
LazyData true	
RoxygenNote 7.1.1	
R topics documented:	
alkalinity	2
aqueous.step	2
biomass.coefficient	3
calculate.Kgas	3
calculate.KH	4
carbon.yield	4
CH4.coefficient	5
gibbs.step	5
growth	6
H2.coefficient	7 7
methanogenesis.DIC	8
<u> </u>	10
č	11
	12
•	13
<u>.</u>	14
Index	15

2 aqueous.step

alkalinity

Calculates solution alkalinity

Description

'alkalinity()' Uses the calculate_closed_system_alkalinity function from Sebastian Kopf's microbialkitchen R package to calculate media alkalinity

Usage

```
alkalinity(
  pH,
  nDIC,
  VolumeSolution,
  VolumeHeadspace,
  temperature,
  K.CO2HCO3,
  K.HCO3CO3
)
```

Arguments

pH pH of the system.

nDIC Moles of dissolved inorganic carbon

VolumeSolution Volume of liquid in the closed system, in liters.

VolumeHeadspace

Volume of gaseous head space in the closed system, in liters.

temperature of the system, in Kelvin.

K.CO2HCO3 Equilibrium constant for the dissociation of CO2(aq) to HCO3-(aq).
 K.HCO3CO3 Equilibrium constant for the dissociation of HCO3- (aq) to CO3- (aq).

Value

alkalinity of the solution, in millimolar.

aqueous.step

Uses Henry's Law to calculate dissolved gas concentrations

Description

'aqueous.step()' calculates the aqueous concentration at each step using the current pressure.

```
aqueous.step(P.step, K)
```

biomass.coefficient 3

Arguments

P. step the current pressure in the system.

K Henry's equilibrium constant of the gas.

Value

Dissolved gas concentration, in molar.

biomass.coefficient Amount of biomass produced for every DIC consumed

Description

'biomass.coefficient()' calculates the amount of biomass produced for every mol of DIC consumed

Usage

```
biomass.coefficient(biomass.yield, carbon.fraction)
```

Arguments

biomass.yield mass of dry biomass produced per mol of product. carbon.fraction

w/w percent C of biomass, expressed as a decimal.

Value

biomass produced, in mol/mol DIC

calculate.Kgas Calculates Henry's constant for a gas

Description

'calculate.Kgas()' uses the provided Bunsen coefficient and moles per volume of gas to calculate Henry's constant.

Usage

```
calculate.Kgas(bunsen, temperature, pressure)
```

Arguments

bunsen The Bunsen coefficient for the gas.

temperature Temperature of the system, in Kelvin.

pressure The pressure of the system, in atm.

4 carbon.yield

Calculate. No Calculates equilibrium constants using CHNOSZ	calculate.KH	Calculates equilibrium constants using CHNOSZ
---	--------------	---

Description

'calculate.KH()' utilizes the subcrt function from Jeffrey Dick's CHNOSZ R package to calculate equilibrium constants.

Usage

```
calculate.KH(reactants, moles, phases, temperature, pressure)
```

Arguments

reactants	A vector of all components involved in the reaction, both reactants and products.
moles	A vector of the molar coefficients for the reaction, with negative values indicating reactants and positive values indicating products.
phases	A vector of the phases for all components in the reaction, either "aq", "l", or "g".
temperature	Temperature of the system, in Kelvin.
pressure	The pressure of the system, in atm.

Details

For the following chemical equilibrium:

$$CO_2(aq) + H_2O(l) \rightleftharpoons HCO_3^{2-}(aq) + H^+(aq)$$

an example can found below

Examples

```
calculate\_KH(c("CO2","H2O","HCO3-","H+"),c(-1,-1,1,1),c("aq","l","aq","aq"),\ 273.15+37,1.7)
```

	carbon.yield	Biomass to carbon yield
--	--------------	-------------------------

Description

'carbon.yield()' converts the known organism-specific biomass yield per mol of product into carbon yield.

```
carbon.yield(biomass.yield, carbon.fraction)
```

CH4.coefficient 5

Arguments

```
biomass.yield mass of dry biomass produced per mol of product. carbon.fraction
```

w/w percent C of biomass, expressed as a decimal.

Value

carbon yield, in mol C/mol product

CH4.coefficient

Amount of CH4 produced for every DIC consumed

Description

'CH4.coefficient()' calculates the amount of CH4 produced for every mol of DIC consumed.

Usage

```
CH4.coefficient(biomass.yield, carbon.fraction)
```

Arguments

```
\begin{tabular}{ll} biomass.yield & mass of dry biomass produced per mol of product. \\ carbon.fraction & \end{tabular}
```

w/w percent C of biomass, expressed as a decimal.

Value

CH4 produced, in mol/mol DIC

gibbs.step

Calculates Gibbs free energy

Description

'gibbs.step()' calculates the Gibbs free energy at each step in the model for a given Q and standard Gibbs free energy.

Usage

```
gibbs.step(standard.gibbs, Q, temperature)
```

Arguments

standard.gibbs The standard Gibbs free energy of formation of the reaction in J/mol

Q Current reaction quotient

temperature Temperature of the system, in Kelvin.

6 growth

growth	Determines the number of new cells generated for a given time step size and
growth	

Description

Determines the number of new cells generated for a given time step size and

Usage

```
growth(
  cells.initial,
  CO2,
  is.CO2.limiting = NA,
  Ks.CO2,
  H2,
  is.H2.limiting = NA,
  Ks.H2,
  umax,
  time.step
)
```

Arguments

cells.initial	Number of cells currently in the system.
C02	Current dissolved CO2
is.CO2.limiting	
	Boolean. Determines whether to use the Monod equation for CO2. NA by default (limiting contribution determined by the proportion of current CO2 and Ks.CO2).
Ks.CO2	Half-saturation constant for CO2 (microorganism dependent).
H2	Current dissolved H2
is.H2.limiting	Boolean. Determines whether to use the Monod equation for H2. NA by default (limiting contribution determined by the proportion of current H2 and Ks.H2).
Ks.H2	Half-saturation constant for H2 (microorganism dependent).
umax	Maximum growth rate for the microorganism, hr^-1
time.step	Step size in time, in hours. 0.1 hrs by default.

Value

Number of new cells made

H2.coefficient 7

H2.coefficient

Amount of H2 consumed for every DIC consumed

Description

'H2.coefficient()' calculates the amount of H2 consumed for every mol of DIC consumed.

Usage

```
H2.coefficient(biomass.yield, carbon.fraction)
```

Arguments

 $\begin{tabular}{ll} biomass.yield & mass of dry biomass produced per mol of product. 2.4 g/mol product by default. \\ carbon.fraction & \begin{tabular}{ll} carbon.fraction & \begin{ta$

w/w percent C of biomass, expressed as a decimal. 0.44 by default.

Value

H2 consumed, in mol/mol DIC

init

Determines initial conditions from initial inputs

Description

'init()' sets up the initial environment to be used by the methanogenesis model.

```
init(
 CH4.initial,
 K.CH4,
 H2.initial,
 K.H2,
 DIC.initial,
 pH.initial,
 K.C02,
 temperature,
 VolumeSolution,
 VolumeHeadspace,
  inoculum.cell.number,
 biomass.yield,
 carbon.fraction,
 cell.weight,
 K.CO2HCO3,
 K.HC03C03
)
```

8 methanogenesis.DIC

Arguments

CH4.initial	Concentration of initial dissolved CH4, in molarity.	
K.CH4	Henry's constant for CH4. NA by default (calculated by CHNOSZ).	
H2.initial	Concentration of initial dissolved H2, in molarity.	
K.H2	Henry's constant for H2. NA by default (calculated by CHNOSZ).	
DIC.initial	Concentration of initial dissolved inorganic carbon, in molarity.	
pH.initial	initial pH.	
K.C02	Henry's constant for CH4. NA by default (calculated by CHNOSZ).	
temperature	Temperature of the system, in Kelvin.	
${\tt Volume Solution}$	Volume of liquid in the closed system, in liters.	
VolumeHeadspace		
	Volume of gaseous head space in the closed system, in liters.	
inoculum.cell.r	number	
	Initial number of cells. 1e6 by default.	
biomass.yield	mass of dry biomass produced per mol of product. 2.4 g/mol product by default.	
carbon.fraction	1	
	w/w percent C of biomass, expressed as a decimal. 0.44 by default.	
cell.weight	individual cell mass, in grams. 30e-15 by default.	
K.CO2HCO3	Equilibrium constant for the dissociation of $CO2(aq)$ to $HCO3$ -(aq). NA by default (calculated by CHNOSZ).	
K.HCO3CO3	Equilibrium constant for the dissociation of HCO3- (aq) to CO3- (aq). NA by default (calculated by CHNOSZ).	

Value

A data frame to be used for the methanogenesis function.

methanogenesis.DIC Steps through DIC consumption during a methanogenesis reaction

Description

'methanogenesis.DIC()' calculates CH4 produced, H2 consumed, CO2 consumed, pH, and Gibbs free energy changes as dissolved inorganic carbon is consumed.

```
methanogenesis.DIC(
   CH4.initial,
   K.CH4 = NA,
   H2.initial,
   K.H2 = NA,
   DIC.initial,
   pH.initial,
   K.CO2 = NA,
   temperature,
```

methanogenesis.DIC 9

```
VolumeSolution,
VolumeHeadspace,
K.CO2HCO3 = NA,
K.HCO3CO3 = NA,
delta.DIC = 1e-04,
inoculum.cell.number = 1e+06,
biomass.yield = 2.4,
carbon.fraction = 0.44,
cell.weight = 3e-14
)
```

Arguments

CH4.initial	Concentration of initial dissolved CH4, in molarity.	
K.CH4	Henry's constant for CH4. NA by default (calculated by CHNOSZ).	
H2.initial	Concentration of initial dissolved H2, in molarity.	
K.H2	Henry's constant for H2. NA by default (calculated by CHNOSZ).	
DIC.initial	Concentration of initial dissolved inorganic carbon, in molarity.	
pH.initial	initial pH.	
K.C02	Henry's constant for CH4. NA by default (calculated by CHNOSZ).	
temperature	Temperature of the system, in Kelvin.	
VolumeSolution	Volume of liquid in the closed system, in liters.	
VolumeHeadspace		
·	Volume of gaseous head space in the closed system, in liters.	
K.CO2HCO3	Equilibrium constant for the dissociation of $CO2(aq)$ to $HCO3-(aq)$. NA by default (calculated by CHNOSZ).	
K.HC03C03	Equilibrium constant for the dissociation of HCO3- (aq) to CO3- (aq). NA by default (calculated by CHNOSZ).	
delta.DIC	step size, in millimolar DIC. 0.1 mM by default.	
inoculum.cell.number		
	Initial number of cells. 1e6 by default.	
biomass.yield	mass of dry biomass produced per mol of product. 2.4 g/mol product by default.	
carbon.fraction		
	w/w percent C of biomass, expressed as a decimal. 0.44 by default.	
cell.weight	individual cell mass, in grams. 30e-15 by default.	

Value

A data frame of the model results

Examples

```
methanogenesis(CH4.initial = 1e-6,H2.initial = 5e-4,DIC.initial = 3.2e-3,pH.initial = 7.5,temperature = 273.15
```

10 methanogenesis.time

methanogenesis.time

Steps through time during a methanogenesis reaction

Description

'methanogenesis.time()' calculates CH4 produced, H2 consumed, CO2 consumed, pH, and Gibbs free energy changes as dissolved inorganic carbon is consumed over time.

Usage

```
methanogenesis.time(
  CH4.initial,
  K.CH4 = NA,
  H2.initial,
  K.H2 = NA,
  is.H2.limiting = NA,
  Ks.H2,
  DIC.initial,
  pH.initial,
  K.CO2 = NA,
  is.CO2.limiting = NA,
  Ks.CO2,
  umax,
  temperature,
  VolumeSolution,
  VolumeHeadspace,
  K.CO2HCO3 = NA,
  K.HCO3CO3 = NA,
  time.step = 0.1,
  total.time = 5,
  inoculum.cell.number = 1e+06,
  biomass.yield = 2.4,
  carbon.fraction = 0.44,
  cell.weight = 3e-14
)
```

Arguments

CH4.initial	Concentration of initial dissolved CH4, in molarity.
K.CH4	Henry's constant for CH4. NA by default (calculated by CHNOSZ).
H2.initial	Concentration of initial dissolved H2, in molarity.
K.H2	Henry's constant for H2. NA by default (calculated by CHNOSZ).
is.H2.limiting	Boolean. Determines whether to use the Monod equation for H2. NA by default (limiting contribution determined by the proportion of current H2 and Ks.H2).
Ks.H2	Half-saturation constant for H2 (microorganism dependent).
DIC.initial	Concentration of initial dissolved inorganic carbon, in molarity.
pH.initial	initial pH.
K.C02	Henry's constant for CH4. NA by default (calculated by CHNOSZ).

PCO2 11

is.CO2.limiting

Boolean. Determines whether to use the Monod equation for CO2. NA by default (limiting contribution determined by the proportion of current CO2 and

Ks.CO2).

Ks. CO2 Half-saturation constant for CO2 (microorganism dependent).

umax Maximum growth rate for the microorganism, hr^{-1}

temperature Temperature of the system, in Kelvin.

VolumeSolution Volume of liquid in the closed system, in liters.

VolumeHeadspace

Volume of gaseous head space in the closed system, in liters.

K.CO2HCO3 Equilibrium constant for the dissociation of CO2(aq) to HCO3-(aq). NA by

default (calculated by CHNOSZ).

K.HC03C03 Equilibrium constant for the dissociation of HCO3- (aq) to CO3- (aq). NA by

default (calculated by CHNOSZ).

time.step Step size in time, in hours. 0.1 hrs by default.

total.time Length of time the model will run, in hours. Note: the model may break before

the total.time is reached if H2 or DIC runs out.

inoculum.cell.number

Initial number of cells. 1e6 by default.

biomass.yield mass of dry biomass produced per mol of product. 2.4 g/mol product by default.

carbon.fraction

w/w percent C of biomass, expressed as a decimal. 0.44 by default.

cell.weight individual cell mass, in grams. 30e-15 by default.

Value

A data frame of the model results

Examples

methanogenesis(CH4.initial = 1e-6,H2.initial = 5e-4,DIC.initial = 3.2e-3,pH.initial = 7.5,temperature = 273.15

PC02

Calculates CO2 pressure in the head space of the closed system.

Description

'PCO2()' Uses the calculate_closed_system_pCO2 function from Sebastian Kopf's microbialk-itchen R package to calculate pressure of CO2 gas.

12 pH

Usage

```
PCO2(
pH,
nDIC,
VolumeSolution,
VolumeHeadspace,
temperature,
K.CO2HCO3,
K.HCO3CO3
)
```

Arguments

pH of the system.

nDIC Moles of dissolved inorganic carbon

VolumeSolution Volume of liquid in the closed system, in liters.

VolumeHeadspace

Volume of gaseous head space in the closed system, in liters.

temperature of the system, in Kelvin.

K.CO2HCO3 Equilibrium constant for the dissociation of CO2(aq) to HCO3-(aq).K.HCO3CO3 Equilibrium constant for the dissociation of HCO3- (aq) to CO3- (aq).

Value

CO2 pressure in the head space, in atm.

рΗ

Calculates pH of the solution

Description

'pH()' Uses the calculate_closed_system_pH function from Sebastian Kopf's microbialkitchen R package to calculate pH.

```
pH(
   nDIC,
   VolumeSolution,
   VolumeHeadspace,
   temperature,
   alkalinity,
   K.CO2HCO3,
   K.HCO3CO3
)
```

pressure.step 13

Arguments

nDIC Moles of dissolved inorganic carbon

VolumeSolution Volume of liquid in the closed system, in liters.

VolumeHeadspace

Volume of gaseous head space in the closed system, in liters.

temperature Temperature of the system, in Kelvin.

alkalinity initial alkalinity of the system, in millimolar.

K.CO2HCO3 Equilibrium constant for the dissociation of CO2(aq) to HCO3-(aq).
 K.HCO3CO3 Equilibrium constant for the dissociation of HCO3- (aq) to CO3- (aq).

Value

pH of the solution.

pressure.step

Calculates head space pressure

Description

'pressure.step()' calculates head space partial pressure from the total moles of a particular gas in the system using Henry's law and the Ideal Gas law.

Usage

```
pressure.step(n.total.step, K, VolumeSolution, VolumeHeadspace, temperature)
```

Arguments

n.total.step The total number of moles of a gas in the system.

K Henry's constant of the gas.

VolumeSolution Volume of liquid in the closed system, in liters.

VolumeHeadspace

Volume of gaseous head space in the closed system, in liters.

temperature Temperature of the system, in Kelvin.

Value

Partial pressure of the head space.

14 standard.gibbs

standard.gibbs	Calculates standard Gibbs free energy for a given temperature and pressure

Description

'standard.gibbs()' determines the standard Gibbs free energy to be used in 'gibbs.step()'

Usage

```
standard.gibbs(reactants, moles, phases, temperature, pressure = 1)
```

Arguments

reactants A vector of all components involved in the reaction, both reactants and products.

A vector of the molar coefficients for the reaction, with negative values indicating reactants and positive values indicating products.

A vector of the phases for all components in the reaction, either "aq", "l", or "g".

Temperature of the system, in Kelvin.

Pressure The pressure of the system, in atm.

Index

```
alkalinity, 2
{\it aqueous.step}, 2
biomass.coefficient, 3
calculate.Kgas, 3
calculate.KH, 4
carbon.yield, 4
CH4.coefficient, 5
gibbs.step, 5
growth, 6
H2.coefficient, 7
init, 7
{\tt methanogenesis.DIC}, \textcolor{red}{8}
{\tt methanogenesis.time}, 10\\
PC02, 11
pH, 12
pressure.step, 13
standard.gibbs, 14
```