

Computer Vision

Color

Technische Hochschule Rosenheim Winter 2024/25 Prof. Dr. Jochen Schmidt

Electromagnetic Spectrum

 $\lambda = c/f$ f = frequency [Hz] $\lambda = \text{wavelength [m]}$ $c = \text{speed of light; in a vacuum, } c \approx 2.9979 \cdot 10^8 \text{ m/s}$ $\mu W = \text{microwaves, THz} = \text{Terahertz radiation, IR} = \text{infrared, UV} = \text{ultraviolet}$

Solar Spectrum

The original uploader was <u>Degreen</u> at <u>German Wikipedia</u>. Improved <u>Baba66</u> (opt <u>Perhelion</u>) on request; En. translation <u>Locusta</u> Fr. translation <u>Eric Bajart</u> Nl. translation <u>BoH</u>, <u>Sonne Strahlungsintensitaet</u>, <u>CC BY-SA 2.0 DE</u>

Perception of Brightness by the Human Eye

Sensitivity of the human eye to brightness

Spectral sensitivity of the cone cells

V': dark-adapted eye

V: light-adapted eye

each curve normalized to maximum 1

Additive and Subtractive Color Mixing

CIE Color Experiment

Color measurement experiment to empirically determine the color values with regard to the CIE primary colors

Color Values of the Spectral Colors According to CIE

Color value of any spectrum:

$$R_{\text{CIE}} = \int_{380 \,\text{nm}}^{780 \,\text{nm}} I(\lambda) \bar{r}(\lambda) d\lambda$$

$$G_{\text{CIE}} = \int_{380 \,\text{nm}}^{780 \,\text{nm}} I(\lambda) \bar{g}(\lambda) d\lambda$$

$$B_{\text{CIE}} = \int_{380 \,\text{nm}}^{780 \,\text{nm}} I(\lambda) \bar{b}(\lambda) d\lambda$$

Scaled so that white light leads to

$$R_{\text{CIE}} = G_{\text{CIE}} = B_{\text{CIE}}$$

CIE Standard Color Value Functions

CIE standard color space Color coordinates: *X*, *Y*, *Z*

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0.49 & 0.31 & 0.20 \\ 0.17697 & 0.81240 & 0.01063 \\ 0.00 & 0.01 & 0.99 \end{pmatrix} \begin{pmatrix} R_{\text{CIE}} \\ G_{\text{CIE}} \\ B_{\text{CIE}} \end{pmatrix}$$

$$Y: \text{Brightness} = \text{gray value image}$$

Y: Brightness = gray value image

spectral sensitivity of 20 mobile phone cameras

from: Tominaga, S.; Nishi, S.; Ohtera, R. Measurement and Estimation of Spectral Sensitivity Functions for Mobile Phone Cameras. Sensors 2021, 21, 4985. https://doi.org/10.3390/s21154985

CIE (x, y, z) Color Space

Characterization of a color independent of brightness: 2D is sufficient → Normalization

Calculation of the normalized color value components x, y, z from standard color values X, Y, Z:

$$x = \frac{X}{X + Y + Z}$$
 $y = \frac{Y}{X + Y + Z}$ $z = \frac{Z}{X + Y + Z}$

As x + y + z = 1: one color component is redundant \Rightarrow z discarded

x, *y*: Chromaticity coordinates: describe color independent of brightness *Y*: Luminance coordinate

(x, y, Y) completely describes a color value

CIE Standard Color Chart (Chromaticity Diagram)

Additive color mixing:

- $oldsymbol{\circ}$ given: Chromaticity coordinates of N colors
- by additive mixing we get all colors within the convex hull

CIE Standard Color Chart – Restrictions

- Standard color values x, y cannot be interpreted easily (e.g. as hue or saturation)
- Distance between two points in the color chart ≠ Distance (similarity) of the associated colors
 - resolution of green is very fine
 - resolution of blue is very coarse
 - a certain distance in the x-direction can appear visually significantly smaller than the same distance in the y-direction
- Position of perfect black is not well-defined (because of $X = Y = Z = 0 \rightarrow$ denominator)

$$x = \frac{X}{X + Y + Z}$$

→ Depending on the application, other color spaces are more suitable

Color Spaces – Classification

CIELAB Color Space

- results from non-linear transformation
- L*: Brightness
- a^* , b^* : Color differences to green component
- colors arranged in a circle around the white point $(L^* = 100, a^* = b^* = 0)$
- achromatic colors: $a^* = b^* = 0$
- black: $L^* = 0$, $a^* = b^* = 0$
- Polar coordinates *C*, *h* illustrative:
 - h = hue angle
 - C = radius (chroma) = saturation

RGB Color Space

- additive color mixing:
 Red (R), Green (G), Blue (B)
- Value range: 0 − 1
- Used for: Monitors, cameras, projectors
- RGB color spaces and color gamuts vary depending on the device
- device-independent: sRGB

sRGB – linear

is obtained from XYZ space by

$$\begin{pmatrix} R_s \\ G_s \\ B_s \end{pmatrix} = \begin{pmatrix} 3,2410 & -1,5374 & -0,4986 \\ -0,9692 & 1,8760 & 0,0416 \\ 0,0556 & -0,2040 & 1,0570 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

- if a value becomes negative → value = 0
- if a value > 1 \rightarrow value = 1
- these colors cannot be represented in sRGB
- transformation sRGB to XYZ: invert matrix
- sRGB non-linear → results from linear sRGB by gamma correction

Gamma Correction

Equalization of

• often: c = 1

- Non-linearities in human perception
- non-linear characteristics of devices (monitor, camera)
- Gamma correction of an intensity *I*:

$$I_g = cI^{\gamma}$$

$$c, \gamma > 0, \qquad I \in [C^{I_g}]$$

Transformation is reversible

J. Schmidt

L/4

from: [Gonzalez08]

Gamma Correction

Original

 $\gamma = 3$

$$\gamma = 4$$

 $\gamma = 5$

$$c = 1$$

sRGB – non-linear

- usually: additional non-linear gamma correction on top of (linear) sRGB
- adjusts intensities to human perception
- improves display on monitors
- corrected sRGB values are still in [0; 1]

$$\begin{pmatrix} R_s' \\ G_s' \\ B_s' \end{pmatrix} = \begin{pmatrix} f_{\gamma}(R_s) \\ f_{\gamma}(G_s) \\ f_{\alpha}(B_s) \end{pmatrix} \quad \text{with } f_{\gamma}(x) = \begin{cases} 1,055x^{\frac{1}{2,4}} - 0,055 & \text{if } x > 0,00304 \\ 12,92x & \text{if } x \le 0,00304 \end{cases}$$

HSV/HSL/HSI

- H = Hue (*Farbton*)
 - S = Saturation (Sättigung)
 - V = Value, L = Luminance, I = Intensity (Brightness, *Helligkeit*)
 - all three color spaces are slightly different
 - values can be easily interpreted
- Intensity coordinate
 - weighs all channels equally
 - does not correspond to the human perception of brightness
- Calculation of HSI from gamma-corrected sRGB:

$$H = \arctan \frac{\sqrt{3}(G'_s - B'_s)}{2R'_s - G'_s - B'_s} \qquad I = \frac{1}{3}(R'_s + G'_s + B'_s) \qquad S = 1 - \frac{\min\{R'_s, G'_s, B'_s\}}{I}$$

Hue, Saturation, Brightness

Brightness (Y) and color difference signals (U, V / C_B, C_R)

Usage

YUV: PAL television standard

• YC_BC_R: JPEG

Calculation from gamma-corrected sRGB:

$$Y = 0.299R'_{S} + 0.587G'_{S} + 0.114B'_{S}$$

$$U = 0.493(B'_{S} - Y)$$

$$C_{B} = 0.564(B'_{S} - Y)$$

$$V = 0.877(R'_{S} - Y)$$

$$C_{R} = 0.713(R'_{S} - Y)$$

Sources

[Beyerer16] Beyerer, J., Puente Leon, F., Frese, Ch.: *Machine Vision*, Springer, 2016.

[Gonzalez08] Gonzalez, R.C., Woods, R.E.: *Digital Image Processing*, Prentice Hall International, 3rd edition, 2008.