Математическое программирование, лекция 4

1. Метод дихотомии - расстояние между точками х_1, х 2 задается малой величиной б<=Е

$$x_1=(a_0+b_0-oldsymbol{\sigma})/2$$
 и $x_2=(a_0+b_0+oldsymbol{\sigma})/2$

2. Метод Фибоначчи.

последовательность чисел Фибоначчи вырабатывается рекуррентной формулой: $F(n+2) = F(n+1) + F_n$, где n=1, 2, ... и $F_1=F_2=1$. Начальными членами

где n=1, 2, ... и F_1=F_2=1. Начальными членами последовательности будут 1, 1, 2, 3, 5, 8, 13, 21, ..., n-е число Фибоначчи может быть вычислено также по формуле Бинэ:

$$F_n = ([(1 + sqrt(5))/2)]^n - [(1 - sqrt(5))/2]^n)/sqrt(5)$$

Метод Фибоначчи состоит в просмотре точек, дробящих интервалы в отношениях, заданных числами F(n-1), F(n-2) Т.е. если принять длину исходного интервала за Fn, то длиной k-того интервала будет F(n-k), а его пробные внутренние точки будут отстоять от левой границы на F(n-k-2) и на F(n-k-1) причем в одной из них значение функции всегда известно из предыдущего шага. Рассмотрим метод Фибоначчи, если n=2,3,4,5,... вычислений функции. Исходный интервал $[a_0,b_0]$.

Шаг 1. На 1-о1 итерации вычисляем пробные точки на начальном интервале по следующим формулам:

$$x_1=a_0+F_n/F_(n+2)*(b_0-a_0) \ x_2=a_0+F_n+1/F_(n+2)*(b_0-a_0)=a_0+b_0-x_1$$
и вычисляем значения функции $f(x_1)$ и $f(x_2)$

Шаг 2. Сравниваем $f(x_1)$ и $f(x_2)$ и сокращаем интервал неопределенности, получая новый интервал [a_1, b_1] след. образом:

- 1) Если f(x_1) < f(x_2), то полагаем a_1 = a_0, b_1 = x_2, x_2 = x_1. Т.е. исключаем правую часть исходного интервала подынтервал (x_2, b_0]
- 2) Если f(x_1) > f(x_2), то полагаем a_1 = x_1, b_1 = b_0, x_1 = x_2. Т.е. исключаем левую часть исходного интервала подынтервал [a_0, x_1]

Шаг 3. Считаем новые х_1 и х_2 по формулам:

$$egin{aligned} x_1 &= a_1 + (F_(n-1))/(F_(n+1))(b_1-a_1) \ x_1 &= a_1 + F_(n)/(F_(n+1))(b_1-a_1) \end{aligned}$$

Результатом поиска методом Фибоначчи с n вычислениями функции является интервал неопределенности

 $|(b_(n-1)-a_(n-1))|/2$, составляющий $1/F_(n+2)$ части функции

Если на n-ом шаге надо получить решение с точность E, то должно выполняться условие:

$$|b_n-1-a_n-1|/2=|b_0-a_0|/F_n+2<=E$$

Отсюда получаем: $|b_0-a_0|/E<=F_(n+2)$

3. Метод золотого сечения

С ростом n из-за того, что $F_n/F_(n+2)$ бесконечная десятичная дробь с точкой минимума вследствие погрешностей вычислений.

Рассмотрим минимизацию функции на единичном интервале [0, 1].

$$t/1=(1-t)/t$$

или $1-t=t^2$

Решая это квадратичное уравнение, получаем $t_1, 2=(-1+-sqrt(5))/2$ Положительное решение t=0.618, соответственно 1-t=0.382 $lim(F_n-1/F_n)=t=0.618$

При использовании метода золотого сечения на каждой k- ой итерации интервал неопределенности сокращается до величины $t(b_k-1-a_k-1)=0.618(b_k-1-a_k-1)$ Если исходный интервал имеет единичную длину, то величина интервала, получаемая в результате n вычислений значений функции равна $t^(n-1)$

$$t/(1-t) = (1-t)/(t-(1-t))$$
 или $(1-t)^2 = 2t^2 - t$ или $1-2t+t = 2t^2 - t^2$ или $1-t = t^2$

Шаг 1. На 1-ой итерации вычисляем пробные точки на начальном интервале по следующим формулам:

$$x_1 = a_0 + (1-t)(b_0 - a_0) = a_0 + 0.382(b_0 - a_0) \ x_2 = a_0 + t(b_0 - a_0) = a_0 + 0.618(b_0 - a_0)$$

Шаг 2. Сравниваем $f(x_1)$ и $f(x_2)$ и сокращаем Шаг 3. Проверяем критерий останова $|b_k-a_k| <= E$

Шаг 4. На 2ой и последующих итерациях производим расчет только той точки и значение функции в ней, которые необходимо обновить: в случае 1 вычисляем новое значение x_1 и $f(x_1)$; в случае 2 вычисляем x_2 и $f(x_2)$

При этом применяем те же формулы (3, 5), только используем новые границы интервала, полученные на предыдущей итерации. Возвращаемся к шагу 2

Тема 2. Безусловная оптимизация функций одной переменной

Численные методы точечного оценивания с полиноминальной интерполяцией и с использованием производных

- 1. Метод точечного оценивания с квадратичной интерполяцией
- 2. Метод использования производных
- 3. Мы ведь сравниваем функцию в трех точка или двух, при этом мы не смотрим на значение величин, волнует только оно больше или меньше. В данных методах используется дополнительная информация в сравнениях точек.

Гладкая (непрерывно дифференцируемая) - функция, которая будет иметь первую производную на всем множестве определении функции (то есть не равна +-inf)

Метод основан на теореме Вейерштрасса - любую гладкую непрерывную f можно аппроксимировать с любой точностью полиномом достаточно высокого порядка.

Если есть полином первой степени - х

второй - х^2

третий - х^3

Если мы говорим о полиноме 10го порядка, значит имеем ввиду, что там есть x^10

Мы можем подобрать такой полином, который будет описывать функцию очень точно и скорее всего он будет высокого порядка. Мы можем заменить нашу функцию полиномом и найти оптимум этого полинома.

Согласно теореме Вейерштрасса качество оценки координаты точки оптимума, получаемых с помощью аппроксимирующего полинома, можно повысить 2-мя способами:

- Использованием полинома более высокого порядка;
- Уменьшением интервала аппроксимации
 К данной группе относят в основном только 2 метода:
- Метод с квадратичной интерполяцией (метод Пауэлла)
- Метод кубической интерполяции (метод Дэвидона) Суть в том, что для построения функции кубического

полинома нужно брать 4 точки, но в методе Дэвидона достаточно 2х

Если задана последовательность точек $x_1,\,x_2,\,x_3$ и известны соответствующие этим точкам значения функции $f_1=f(x_1),\,f_2=f(x_2),\,f_3=f(x_3),$ то функция может быть аппроксимирована квадратичной функцией

$$q(x) = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2)$$

Причем значения a_0, a_1, a_2, определяются из условия совпадения значений функций полинома в трех указанных точках.