\leftrightarrow	E	Y	YY	Z	YZ	YYZ
E	15)	Y	YY	2	12	472
Y	7	YY		YZ	142	7
YY	74	(,)	Y	YYZ	7	YZ
Z	7			E	Y	14
YZ	YZ				44	[]
YYZ	YYZ					Y

mod > Calindar math is ISOMORPHILL To Dwed 7 + med 4 40° C-72 270673 40-67

⊗ 5	0	1	2	3	4
0	0	O	9	0	0
1	0		2		7
2	\bigcirc	2	L(\sim
3	\circ	3			2
4	0		3	2	

Definition: a *group* is a set of elements, together with an operation that satisfies the following rules.

- closure: using the operation on two elements of the group yields an element of the group.
- associative law: (a b) c = a (b c).
- *identity element*: one of the elements, e, is such that a e = e a = a, for any element a in the group.
- inverse element: every element a has an inverse a' such that a a' = a' a = e Some groups are *commutative* (a b = b a) and some are not.

