

Matemática discreta, lógica algorítmica, complejidad computacional y extracción de información.

Clase 1

INTEL·LIGÈNCIA ARTIFICIAL I BIG DATA

Màster de Formació Professional

Objetivo

Identificar conceptos básicos de matemática discreta, lógica algorítmica y complejidad computacional para el tratamiento automático de la información. Extraer información y conocimiento automáticamente a partir de grandes volúmenes de datos.

INTEL·LIGÈNCIA ARTIFICIAL I BIG DATA

Màster de Formació Professional

Estructura de la clase

Parte 1:

Ice breaker.

Parte 2:

Teoría

Parte 3:

Práctica mediante ejercicios o juegos.

#StucomÉsDemà

Matemática Discreta

Estructuras finitas o contables, como conjuntos, grafos y secuencias.

Ejemplo:

El estudio de los conjuntos.

#StucomÉsDemà

Matemática Discreta

- 1. ∈ Pertenencia: Indica que un elemento pertenece a un conjunto.
 - Ejemplo: $3 \in A$ significa que el número 3 pertenece al conjunto A.
- 2. ∉ No pertenencia: Indica que un elemento no pertenece a un conjunto.
 - Ejemplo: $4 \notin A$ significa que el número 4 no pertenece al conjunto A.
- 3. C Subconjunto: Un conjunto es subconjunto de otro si todos sus elementos están contenidos en el otro conjunto.
 - Ejemplo: $B \subseteq C$ significa que B es un subconjunto de C.
- 4. U Unión: Representa el conjunto que contiene todos los elementos de ambos conjuntos.
 - Ejemplo: $A \cup B = \{1, 2, 3, 4, 5\}$ es la unión de $A \vee B$.
- 5. \(\cap \cdot\) Intersección: Representa el conjunto que contiene solo los elementos comunes a ambos conjuntos.

Matemática Discreta

- 6. \ Diferencia: Representa los elementos que están en un conjunto pero no en el otro.
 - Ejemplo: $A \setminus B = \{1, 2\}$ es la diferencia de A menos B.
- 7. Ø Conjunto vacío: Representa un conjunto que no contiene ningún elemento.
 - Ejemplo: $A \cap D = \emptyset$ significa que A y D no tienen elementos en común.
- 8. |A| Cardinalidad: Indica el número de elementos en el conjunto A.
 - Ejemplo: Si $A = \{1, 2, 3\}$, entonces |A| = 3.

Matemática Discreta

https://es.khanacademy.org/math/statistics-probability/probability-library/basic-set-ops/e/basic_set_notation

Conceptos que se trabajan:

• Puesta en práctica en 7 preguntas de conocimiento y uso de la notación.

#StucomÉsDemà

Lógica Algorítmica

La **lógica algorítmica** es el proceso de crear una secuencia clara y estructurada de pasos (algoritmo) para resolver un problema o realizar una tarea.

Complejidad Computacional

La **complejidad computacional** mide la eficiencia de un algoritmo en términos de tiempo y espacio (memoria) que requiere para ejecutarse, dependiendo del tamaño de la entrada.

Lógica Algorítmica y Complejidad Computacional

https://lightbot.lu/

Conceptos que se trabajan:

- Matemática Discreta: Trabaja con la idea de conjuntos y relaciones, ya que cada nivel tiene un conjunto finito de pasos posibles.
- Lógica Algorítmica: Los jugadores crean algoritmos simples usando funciones y bucles.
- Complejidad Computacional: Los niveles más avanzados implican pensar en la optimización de instrucciones, lo cual lleva a analizar la eficiencia de los algoritmos.

CENTRO CÒRSEGA 933218377 C/Còrsega, 409

08037 Barcelona

Extracción de información

La extracción de información con estadísticas descriptivas es esencial porque permite obtener una visión rápida y clara de las características principales de los datos. Estas medidas nos ayudan a identificar patrones, valores atípicos y posibles problemas, facilitando un análisis más profundo y preciso en pasos posteriores.

Extracción de información

https://www.kaggle.com/code/caromoreno cast1/extracci-n-informaci-n-clase-1

Conceptos que se trabajan:

- Primer contacto con base de datos: Trabaja con la idea de cargar datos
- Estadísticas descriptivas: Trabaja la familiarización con resumen de datos
- Extracción de la información: Trabaja el concepto de qué me dicen a priori los datos?

#StucomÉsDemà

INTEL·LIGÈNCIA ARTIFICIAL I BIG DATA

Màster de Formació Professional

