Exersice Sheet 4

Sample Solution ——

Task 1: Chain Complete Partial Orders

(a): **TRUE**

Let $d \sqsubseteq_1 d'$. Then $\{d, d'\}$ is a chain.

Thus
$$f(d') = f(\underbrace{\sqcup_1 \{d, d'\}}) \stackrel{f \text{ continous}}{=} \sqcup_2 \{f(d), f(d')\} \stackrel{\text{def. L.U.B}}{\sqsupset_2} f(d).$$

Therefore $f(d) \sqsubseteq_2 f(d')$ holds.

Alternatively: True by Definition 7.15.

(b): <u>FALSE</u>

Let $S = \{ x \in \mathbb{Q} \mid x \le \sqrt{2} \}.$

Then S is a chain, but $\Box S = \sqrt{2} \notin \mathbb{Q}$.

(c): FALSE

Let
$$(D_1, \sqsubseteq) = (\mathbb{N} \cup \{\infty\}, \leq)$$
 and

Let
$$(D_1, \sqsubseteq) = (\mathbb{N} \cup \{\infty\}, \leq)$$
 and $f: D_1 \to D_1, x \mapsto \begin{cases} 0, & x < \infty \\ \infty & x = \infty \end{cases}$.

$$f$$
 is monotonic, because $x \le y \Rightarrow f(x) = \begin{cases} 0 & \le f(y) & \text{if } x < \infty \\ \infty & \le f(y) & \text{if } x = y = \infty \end{cases}$.

However, $f(\sqcup \mathbb{N}) \nleq \sqcup f(\mathbb{N})$.

(d): TRUE

Since $f(p) \sqsubseteq p$, it suffices to prove $p \sqsubseteq f(p)$.

(f(p) = p')First note that f(p) implies $f(f(p)) \sqsubseteq f(p)$

Since p is the least element with $f(p) \sqsubseteq p$, we have $p \sqsubseteq p' = f(p)$.

Thus p = f(p) holds.

Task 2: repeat-until Loops

Task 3: Closed Sets