

Explicit Congestion Notification in QUIC

Magnus Westerlund, Ericsson Based on the Design Team Proposal

Pull Request: https://github.com/quicwg/base-drafts/pull/1372

Overview

- Overview of Proposal
 - Capability Check
 - ACK_ECN Frame
 - Continuous Verification
 - Congestion Experience Response
 - Connection Migration
- Open Issues
 - ACK Frequency and Recovery Period
 - Packet Duplication
 - ECN Black Hole Mitigation

Proposal – ECN Capability Check

- Capability Check to
 - Verify that path don't bleach
 - Verify that sender and receiver are capable of marking and receiving mark
- ECN Capability is handled per send direction
 - Thus, ECN may be used only in one direction
- Started with first packets that may be ACKed
 - Client: Initial Packet
 - Server: Handshake Packet
- Mark all packets sent as ECT
 - ECT(0) is default
 - ECN Experiments may use ECT(1), see RFC 8311

- Terminology:
 - ECT: ECN Capable Transport
 - ECT(0): ECT marking 0, i.e. 10
 - ECT(1): ECT marking 1, i.e. 01
 - ECN-CE: Congestion Experience, i.e. 11
 - Not-ECT: ECN not used, i.e. 00

Proposal – ACK_ECN Frame

- A Variant of the ACK frame
 - Adds Counters for the ECN markings
 - ECT(0), ECT(1), ECN-CE
- Used if endpoint will ACK any packet which was received with ECN markings where
 - ECN field is not Not-ECT
- Counters Cumulative since session start

```
Largest Acknowledged (i)
                           ACK Delay (i)
                        ACK Block Count (i)
                           ACK Blocks (*)
                            ECN Block
|# ECT(0) marked packets (i)
|# ECT(1) marked packets (i)
|# ECN-CE marked packets (i)
```

Proposal – Capability Check Verification

- Sender verifies it send path by
 - Receiving an ACK_ECN frame
 - Calculating total number of marked and ACKed packets
 - Add New ACKed to local counter
 - Calculate Total number of ECN marked packets
 - Sum of the three ACK counters
 - Compare if Total_ECN_marked >= Total_ACKed
 - If True ECN works given that Total_ACKED non-zero
 - Larger than for packet duplication

- Detecting failures
 - Not all packets ECN marked
 - ECN Bleaching
 - Receive ACK rather than ACK_ECN
 - Indicates no packets with markings reached receiver
 - Bleaching
 - Sender incapable of marking
 - Receiver incapable of reading marks
- On failure turn off ECT marking

Proposal – Continuous Verification

- After Successful Initial Capability Check
 - On each ACK_ECN:
 - Calculate Total_ACKed packets and compare with ECN counter
 - Perform comparison
 - If Total_ACKed is bigger than sum of counters then disable ECN
- Implements rather strict behavior in regards to ECN Bleaching
 - Ensures that ECN-CE marks are not missed
 - Avoid favoring connection's packets compared to not-ECT traffic

- Any packet duplications that are recorded in ECN counters will increase insensitivity to bleaching
 - Proposed that any packet duplicates are not included in ECN counters
 - Report first packet only
 - Raised issues that transport draft clarifies duplicate handling in general:
 - https://github.com/quicwg/basedrafts/issues/1405

Proposal – Congestion Experienced

=

- When receivers receive packet with ECN-CE marking
 - Immediate ack, i.e. not full ACK delay
 - In recovery period normal ACK frequency
- Sender compares ECN-CE counter for each ACK_ECN packet received.
 - If larger than previously stored ECN-CE counter
 - Event at Largest Acknowledged
 - Congestion event
 - Start Recovery Period
 - Reduce CWND same as loss does
 - ECN Experiment to change function

Proposal – Connection Migration

- Connection Migration possibly new path
 - Check if new path is ECN capable
- If ECN was enabled up to connection migration
 - Continue with continuous verification
- If ECN was disabled prior to connection migration
 - Re-run Capability Check
 - Enable ECT on all packets from the first non-probe one
 - Store packet number from where ECT was enabled
 - Store ECT-Counters from latest
 ACK_ECN and what highest PN was
 ACKed

- Upon reception of ACK_ECN
 - Check that it ACKs packet after migration was initiated
 - If packet also ACKs packet prior to migration
 - Update stored ECN counters and Highest ACKed PN
 - When only packets after migration are
 ACKed perform ECN counter comparison
- Reception of ACK for packets after connection migration
 - Disable ECN

Issues

- ACK Frequency and Recovery Period
- Packet Duplication
- ECN Blackhole Mitigation

Issue: ACK Frequency and Recovery Period

- ECN-CE marks triggers ACK_ECN with increased ECN-CE counter
- Sender goes into recovery period Starting at sending of PN=7
- Recovery ends with ACKing of PN=7
- Uncertainty if CE marks are during recovery?
- If All CE marks in some congestion event are ACKed prior to the ACK ending recovery then no new Congestion Event
- Thus important to have sufficient ACK frequency in regards to RTT

Recovery

Consideration of QUIC ACK Frequency

- Current ACK rules
 - Max ACK Delay 25 ms
 - May ACK no more often than every 2nd packet unless delayed limit hit
- No Stated consideration of RTT
- Potential issues
 - Low ack rate at LAN RTT (1-5 ms)
 - ECN issues with Recovery for higher Packet Rates
 - For Loopback and Inter Process on same host
 - Allows for optimizations, but either boundary not optimal

Idea: ACK Frequency

- Scale Max_ACK_Delay to min(sRTT/4, 25 ms)
 - Ensures four ACKs per RTT
 - Likely needs clamping at very short RTTs
 - Below 0.5 ms ACK rate becomes high (8000 ACK / Sec)
 - Intra Host Communication range
 - Benefits
 - Ensure ECN does not react twice to a temporary congestion epoch
 - Responsive CWN growth and loss detection at shorter RTT
 - General useful change
 - Downsides
 - Increases number of ACKs in certain areas

Alternative Idea: Receiver side tracking of recovery period

- The receiver knows when it sends an ECN-CE mark, and thus start a recovery period
- Increase ACK frequency from ACK with ECN-CE
 - ACK of ACK likely sent with the packet that starts recovery period
 - Continue with higher frequency until ACK of ACK

- Benefit
 - Would reduce risk of double congestion events
- Downside
 - Extra receiver side processing
 - Uncertainty on when recovery period

Issue: Packet Duplication

- ECN counter are for received markings over all packets so far in connection
- If duplicate packets are counted
 - Increments ECN counters over total of ACKed packets
 - Buffer before detecting ECN bleaching
- Security concern with packet duplicates
 - Enables attacker that can copy valid packets and send replay copies with CE marks
 - Drive down congestion window
 - Without needing to race the original packet

- Proposal
 - Basic packet duplication mechanism
 - Keep basic bit vector or use ACK structure
 - If received packet has PN that matches already received and authenticated packet
 - Drop it!
 - Data structure depth need to be deep enough to at least handle reordering
 - Short RTTs can have larger reordering than min RTT
- https://github.com/quicwg/basedrafts/issues/1405

ECN Blackhole Mitigation

- Sender side only mechanism
 - Thus Optional on what level of complexity versus impact to implement
- Possible Mechanisms
 - Let handshake go into protocol fallback
 - No extra code
 - Retransmit Handshake without ECT
 - Partial marking or probe packets only with ECT marking until one packet verified
 - Then go into continuous verification and mark all

— Refs:

- https://csperkins.org/publications/2015/10/ mcquistin2015ecn-udp.pdf
 - Tested with UDP and TCP towards 2500
 NTP servers
 - 98.97% reachability with ECT after Not-ECT
 - 99.54% reachability of Not-ECT after Not-ECT
 - One test location had only ~90% reachability with ECT
- https://www.bobbriscoe.net/projects/latency/ecn_commag_2018_preprint.pdf
 - Reported no ECN blackholes on 6.5 million different paths

Conclusions

- Have some directions for the issues
- Will address those that are directly related ECN text
- Are there rough consensus to include the functionality in PR?
 - https://github.com/quicwg/basedrafts/pull/1372
 - Capability Check
 - ACK_ECN frame
 - Continuous Verification
 - Classic CE response

 Resolutions to the Issues will be separate Pull Requests

