

If we consider model 3, then it would be most complex model.

If we only consider model 1 and 2, then model 2 is more complex than model 1.

1-d:	model 1:	model 2	model 3	
	TI 0.77	- 10.75577	100007	55
	1 13	1 13 65	1 13 0	65
	1-6	L11670 J	1 1-6 D	70

model 3 has 3 features: x1-x1*x3, x1*x3 and x2

1-e: model 2, for 2 reasons: (1) model 2 has less MSE than model 1 (2) model 3'show training error is much lower than 1ts validation error, which may implies overfrong.	
2. feature selection; XI — rainfall X2 — fertilizer X3 — average temperature X4 — number of sunny days result	

Linear model: y=no+wixit wzxz+wzx3+ w4x4

y — crop yields

3-01.		
X=	7 28540 -	
^-	1 40133	
	1 39900	1
	1 0	9.14
	1 0	
	1 42050	
1 35	1 43220	-
130.3		25
-	40400	1
	L 54506]	7 3

 $y = (-6.3*10^{(-5)})*x + 124$

$$\frac{3-d}{755} = \frac{555}{560.5} = \frac{12.087}{560.5} = \frac{30.02}{5}$$

$$3-f-b: [wo] = [160]$$

3-f-c after removing the noise

$$3-f-d$$
: 284.89

$$R^2 = \frac{284.89}{558.875} = 0.51$$

4-0	$RSS(w) = \sum_{i=1}^{N} (y_i^2 - y_i^2)^2$
	$=\sum_{i=1}^{N}(wx_i-y_i)^2$
	= 11 Xw-y1/2
	$= (Xw-y)^T (Xw-y)$
	= WXXW-ZWXTY+YTY

$$4-b \nabla_{w} = 2x^{T}xw - 2x^{T}y = 0$$

$$x^{T}x w = x^{T}y \qquad w = x^{T}x$$

w is scalar, so I write in this way.

S-exp(y) W, x) =
$$p(z)$$

$$gii' = yui' - w' xui'$$

$$W_{mL} = argmax T1 p(zui')$$

$$Liw = T1 p(zui')$$

$$log(Liw) = \sum_{i=1}^{N} log zb e$$

$$= (Nlog 2b) + \sum_{i=1}^{N} -b |z^{(i)}|$$

$$log(Liw) = \int_{7^{N}} |y^{(i)} - w^{(i)}| dx$$

$$log(Liw) = \int_{7^{N}} |y^{(i)} - w^{(i)}| dx$$

$$= -b \sum_{i=1}^{N} |y^{(i)} - w^{(i)}| dx$$

5-b

Log Probability Densities

The probability of noise data appearing in Laplace Distribution is higher than Gaussian Distribution, therefore the Laplace model would be more robust than the Gaussian.

