

Using Python to span the gap between education, research, and industry applications in geophysics

Lindsey Heagy

& Rowan Cockett, Gudni Rosenkjaer, Seogi Kang, Doug Oldenburg, et al.

Industry & Applied

Research

Geophysics!

Subsurface: Physical Properties and Contrasts

Geophysics!

How?

- Framework
- Modularity
- Testing
- In the open.

How?

Research

Problem: How do we model and invert

Research

Approach: Split it into two problems using primary-secondary

Details...

- Multiple variable physical properties
- Primary problem: 2D problem with 3D fields
 - o problem formulation

```
In []: EM.FDEM.

EM.FDEM.ProblemFDEM_b

EM.FDEM.ProblemFDEM_e

EM.FDEM.ProblemFDEM_h

EM.FDEM.ProblemFDEM_j
```

- Secondary Problem: source depends on the model
 - need derivatives in inverse problem
- **)** ...

Research

Resources & Practices:

Applied / Industry

Problem: How do we plug in electromagnetic models that include Drilling well casing into existing workflows? Mud 1 S/m Galvanic 1.5 km Inductive Source Source Above 1410m Reservoir: 1.5 km Casing Mode 10 Ωm 50m Shale: 5 Ωm Resistive Region Reservoir: 50m 150 Ωm 50 Ωm 10m Below Reservoir: To depth 30 Ωm

Applied / Industry

Approach: Replace complex casing model with a simpler model that can be included in existing codes

Applied / Industry

Resources & Practices:

Testing!
Ran 366 tests in 136.939s
OK

Packaging

>>> computeCasingCurrents(geologyModel,casingModel,sourceType,sourceLoc)

Education

Problem: Electromagnetics??

$$\nabla \times \vec{E} + i\omega \vec{B} = 0$$

$$\nabla \times \mu^{-1} \vec{B} - \sigma \vec{E} = \vec{J}_{s}$$

Education

Approach: Lower barriers to entry by exposing an appropriate level of detail and making it interactive!

In [11]:

DC Resistivity

$$\nabla \cdot \sigma \nabla \phi = -s$$


```
In [9]: # Construct A Matrix
Div, Sigma, Grad = getOperators(mesh, sigma)
A = Div * Sigma * Grad # looks like the equation!
Ainv = Solver(A)
```


Where we are headed

Package	State
SimPEG	~
? simpegEM	C
? simpegMT	C
simpegFLOW	Δ
	<u> </u>
	<u> </u>
simpegSEIS	AC
simpegGPR	dc.

"Lego Color Bricks" by Alan Chia - Lego Color Bricks. Licensed under CC BY-SA 2.0 via Wikimedia Commons

Want more?

simpeg.xyz

github.com/simpeg

3pt.xyz

<u>lindsey@simpeg.xyz</u>

Except where noted, this work is licensed under a Creative Commons Attribution 4.0 International License

