GRADO EN MATEMÁTICAS - CURSO 2023-2024 ASIGNATURA: ESTADÍSTICA MULTIVARIANTE

RELACIÓN 1 (TEMA 1)

1. Sea Y un vector aleatorio definido por

$$Y = \alpha + DX + Z$$

con α un vector $p \times 1$, D una matriz $p \times r$, \boldsymbol{X} un vector aleatorio con distribución $N_r(\mathbf{0}, \Sigma_{\boldsymbol{X}})$ ($\Sigma_{\boldsymbol{X}}$ no singular) y \boldsymbol{Z} un vector aleatorio con distribución $N_p(\mathbf{0}, \sigma^2 I_p)$, siendo \boldsymbol{X} y \boldsymbol{Z} independientes. Entonces:

- a) Obtener la distribución de Y.
- b) Obtener la distribución del vector conjunto $egin{pmatrix} Y \\ X \end{pmatrix}$.
- c) Probar que $E[X|Y] = \Sigma_X D' \Sigma_Y^{-1} (Y \alpha)$.
- d) Probar que Y|X tiene distribución $N_p(\alpha + DX, \sigma^2 I_p)$.
- 2. En relación con el ejercicio anterior, probar que los resultados obtenidos siguen siendo válidos en el caso en que sea $\Sigma_{\boldsymbol{X}}$ singular, con la salvedad de que en el apartado (d) se tendrá que la distribución de $\boldsymbol{Y}|\boldsymbol{X}$ es $N_p(\boldsymbol{\alpha}+D\Sigma_{\boldsymbol{X}}\Sigma_{\boldsymbol{X}}^-\boldsymbol{X},\sigma^2I_p)$, siendo $\Sigma_{\boldsymbol{X}}^-$ una inversa generalizada de la matriz $\Sigma_{\boldsymbol{X}}$ (es decir, alguna matriz tal que $\Sigma_{\boldsymbol{X}}\Sigma_{\boldsymbol{X}}^-\Sigma_{\boldsymbol{X}}=\Sigma_{\boldsymbol{X}}$). [Para ello, tener en cuenta que el resultado sobre condicionamiento en la distribución normal multivariante se cumple en el caso en que la matriz Σ pueda ser singular, reemplazando $\Sigma_{(11)}^{-1}$ por $\Sigma_{(11)}^-$ (análogamente, $\Sigma_{(22)}^{-1}$ por $\Sigma_{(22)}^-$)]
- 3. Sea $\boldsymbol{X} \sim N_p(\boldsymbol{\mu}, \Sigma)$ y sea $\boldsymbol{\alpha} \in \mathbb{R}^p$. Probar que

$$E[(oldsymbol{lpha}'(oldsymbol{X}-oldsymbol{\mu}))^k] = \left\{egin{array}{ll} rac{(2m)!}{2^m m!} (oldsymbol{lpha}' \Sigma oldsymbol{lpha})^m & ext{, si} \quad k=2m \ 0 & ext{, si} \quad k=2m-1 \ \end{array}
ight.$$
 (impar)

[Resultado auxiliar: Sea $X \sim N(0, \sigma^2)$. Entonces, los momentos de X vienen dados por

$$E[X^k] = \left\{ egin{array}{ll} \sigma^k(k-1)!! & \mbox{, si } k \mbox{ es par} \\ 0 & \mbox{, si } k \mbox{ es impar} \end{array}
ight.$$

siendo n!! el factorial doble de n, definido por el producto de todos los enteros entre 1 y n con la misma paridad ('par' o 'impar') que n

4. Sea $X \sim N_p(\mathbf{0}, \Sigma)$, con $\operatorname{rango}(\Sigma) = k$. Sea la descomposición espectral de Σ dada por $\Sigma = H\Lambda H'$, con el particionamiento $H = (H_1|H_2)$, $\Lambda = \begin{pmatrix} D & 0 \\ \hline 0 & 0 \end{pmatrix}$, siendo $D = \operatorname{diag}(\lambda_1, \dots, \lambda_k)$, con $\lambda_1, \dots \lambda_k > 0$. Probar que $\Sigma^+ = H_1 D^{-1} H_1'$ es la matriz inversa de Moore-Penrose de Σ , es decir, satisface las condiciones:

a)
$$\Sigma\Sigma^{+}\Sigma = \Sigma$$

b)
$$\Sigma^{+}\Sigma\Sigma^{+}=\Sigma^{+}$$

c)
$$(\Sigma^+\Sigma)' = \Sigma^+\Sigma$$

d)
$$(\Sigma \Sigma^+)' = \Sigma \Sigma^+$$

5. Sea $\Sigma = (\sigma_{ij})$ una matriz 3×3 simétrica tal que

$$\sigma_{11} = \sigma_{22} = \sigma_{33} = 1, \quad \sigma_{12} = 0.$$

Probar que, al menos para $(\sigma_{13}+\sigma_{23})>\frac{3}{2}$, Σ no es una matriz definida positiva.

- 6. Sea $Z \sim N_p(\mathbf{0}, I_p)$. Sean $Y_1 = C_1 Z$ e $Y_2 = C_2 Z$, con C_i una matriz $k_i \times p$, $k_i \leq p$ (i = 1, 2). Encontrar una condición necesaria y suficiente para la independencia de Y_1 e Y_2 .
- 7. Sea $\boldsymbol{Y} \sim N_3(\boldsymbol{\mu}, \Sigma)$, donde

$$\mu = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 6 & 1 & -2 \\ 1 & 13 & 4 \\ -2 & 4 & 4 \end{pmatrix}$$

- a) Encontrar la distribución de $Z = 2Y_1 Y_2 + 3Y_3$.
- b) Encontrar la distribución conjunta de $Z_1=Y_1+Y_2+Y_3$ y $Z_2=Y_1-Y_2+2Y_3$.
- c) Encontrar la distribución de Y_2 .
- d) Encontrar la distribución conjunta de Y_1 e Y_3 .
- e) Encontrar la distribución conjunta de Y_1 , Y_3 y $\frac{1}{2}(Y_1+Y_2)$.
- f) Encontrar un vector Z tal que $Z=(T')^{-1}(Y-\mu)\sim N_3(\mathbf{0},I)$, siendo T la matriz correspondiente a la factorización de Cholesky, $\Sigma=T'T$.
- g) Encontrar un vector Z tal que $Z=\Sigma^{-\frac{1}{2}}(Y-\mu)\sim N_3(\mathbf{0},I)$, siendo $\Sigma^{-\frac{1}{2}}$ la inversa de la matriz correspondiente a la factorización en raíz cuadrada, $\Sigma=\Sigma^{\frac{1}{2}}\Sigma^{\frac{1}{2}}$.
- 8. Sea $oldsymbol{Y} \sim N_3(oldsymbol{\mu}, \Sigma)$, donde

$$\mu = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 4 & -3 & 0 \\ -3 & 6 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

¿Cuáles de las variables y vectores aleatorios siguientes son independientes?:

- a) $Y_1 \in Y_2$.
- b) $Y_1 \in Y_3$.
- c) $Y_2 \in Y_3$.
- d) (Y_1, Y_2) e Y_3 .
- e) (Y_1, Y_3) e Y_2 .

9. Suponer que ${\pmb Y}$ y ${\pmb X}$ son subvectores de dimensiones respectivas 2×1 y 3×1 , con ${\pmb \mu}$ y Σ conjuntas correspondientemente particionadas según

$$\boldsymbol{\mu} = \begin{pmatrix} 3 \\ -2 \\ 4 \\ -3 \\ 5 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 14 & -8 & 15 & 0 & 3 \\ -8 & 18 & 8 & 6 & -2 \\ \hline 15 & 8 & 50 & 8 & 5 \\ 0 & 6 & 8 & 4 & 0 \\ 3 & -2 & 5 & 0 & 1 \end{pmatrix}.$$

Suponer que $egin{pmatrix} m{Y} \\ m{X} \end{pmatrix} \sim N_5(m{\mu}, \Sigma).$

- a) Encontrar E[Y|X].
- b) Encontrar Cov(Y|X).
- 10. Suponer que las variables aleatorias X e Y tienen función de distribución conjunta

$$F(x,y) = \Phi(x)\Phi(y)[1 + \alpha(1 - \Phi(x))(1 - \Phi(y))],$$

siendo $|\alpha| \leq 1$ y denotando $\Phi(\cdot)$ la función de distribución normal estándar. Probar que las distribuciones marginales correspondientes a X e Y son normales estándar.

11. Sean X_1, X_2, \ldots vectores aleatorios independientes tales que $X_i \sim N_m(\mu, \Sigma)$, $i=1,2,\ldots$, y sea

$$oldsymbol{S}_N = \sum_{i=1}^N oldsymbol{X}_i.$$

Para $N_1 < N_2$:

- a) Encontrar la distribución de $(S_{N_1}', S_{N_2}')'$.
- b) Encontrar la distribución condicionada de $oldsymbol{S}_{N_1}'$ dada $oldsymbol{S}_{N_2}'.$
- 12. Suponer que $\boldsymbol{X} \sim N_3(\boldsymbol{0}, \Sigma)$, siendo

$$\Sigma = \left[\begin{array}{ccc} 1 & \rho & 0 \\ \rho & 1 & \rho \\ 0 & \rho & 1 \end{array} \right].$$

¿Existe algún valor de ρ para el cual las variables $X_1+X_2+X_3$ y $X_1-X_2-X_3$ sean independientes?