### Data Science Lab - 5

Academic year 2019-2020

Lecturer Falco J. Bargagli-Stoffi

IMT School for Advanced Studies Lucca & KU Leuven

# Causal Inference - Introduction

### Why Causal Inference?

- Correlation is not causation: simple correlations can lead to misguided policies
- Among many different options, important to choose the most effective intervention
- Accurate cost-benefit analysis

## Causality Frameworks

• Rubin Causal Model (Imbens & Rubin, 2015)



• Angrist & Pischke (2009)



Pearl (2000)



## RCM (1980): Potential Outcomes Framework



## RCM (1980): Set Up

- Rubin's potential outcome framework (1974):
  - Given a set of N units, indexed by i = 1, ..., N. Let  $W_i$  be the binary indicator of the reception of the treatment:

$$W_i \in \{0, 1\}$$

 Given this notation and SUTVA we can postulate the existence of a pair of potential outcomes for each unit:

$$Y_i^{obs} = Y_i(W_i) = \begin{cases} Y_i(0) & if \ W_i = 0 \\ Y_i(1) & if \ W_i = 1 \end{cases}$$

 We can define the Causal Effect as a simple difference between the potential outcome under treatment and under control:

$$\tau_i = Y_i(1) - Y_i(0)$$

## RCM (1974): Science World

• Imagine that we want to assess the effect (causal effect) of a job training (treatment) on a pool of students (units)

| ID | Education $X_i$ | ${\sf Treated} \\ W_i$ | No job training $Y_i(0)$ | Job training $Y_i(1)$ | Treatment effect $	au_i = Y_i(1) - Y_i(0)$ |
|----|-----------------|------------------------|--------------------------|-----------------------|--------------------------------------------|
| 1  | High school     | 0                      | 0                        | 1                     | 1                                          |
| 2  | High school     | 1                      | 0                        | 1                     | 1                                          |
| 3  | High school     | 1                      | 1                        | 1                     | 0                                          |
| 4  | College         | 1                      | 1                        | 1                     | 0                                          |
| 5  | College         | 0                      | 1                        | 1                     | 0                                          |
| 6  | College         | 0                      | 0                        | 1                     | 1                                          |

• Average Treatment Effect (ATE):

$$\bar{\tau} = \bar{Y}(1) - \bar{Y}(0)$$
= 1 - 0.5
= 0.5

## RCM (1974): Real World

| ID | $\begin{array}{c}Education\\X_i\end{array}$ | ${\sf Treated} \\ W_i$ | No job training $Y_i(0)$ | Job training $Y_i(1)$ | Treatment effect $	au_i = Y_i(1) - Y_i(0)$ |
|----|---------------------------------------------|------------------------|--------------------------|-----------------------|--------------------------------------------|
| 1  | High school                                 | 0                      | 0                        | ?                     | ?                                          |
| 2  | High school                                 | 1                      | ?                        | 1                     | ?                                          |
| 3  | High school                                 | 1                      | ?                        | 1                     | ?                                          |
| 4  | College                                     | 1                      | ?                        | 1                     | ?                                          |
| 5  | College                                     | 0                      | 1                        | ?                     | ?                                          |
| 6  | College                                     | 0                      | 0                        | ?                     | ?                                          |

Average Treatment Effect:

$$\bar{\tau} = 0.66$$

32% bigger: why this bias?

### Selection Bias (intuition)

 People do not randomly select into various programs which we would like to evaluate

| ID                         | Education $X_i$                                             | $\begin{array}{c} Treated \\ W_i \end{array}$ | No job training $Y_i(0)$   | Job training $Y_i(1)$ | Treatment effect $\tau_i = Y_i(1) - Y_i(0)$ |  |  |  |  |
|----------------------------|-------------------------------------------------------------|-----------------------------------------------|----------------------------|-----------------------|---------------------------------------------|--|--|--|--|
| 1<br>2<br>3<br>4<br>5<br>6 | High school High school High school College College College | 0<br>1<br>1<br>1<br>0<br>0                    | 0<br>?<br>?<br>?<br>1<br>0 | ? 1 1 1 ? ?           | $r_i = r_i(1) - r_i(0)$ ? ? ? ? ? ? ? ?     |  |  |  |  |
|                            |                                                             |                                               |                            |                       |                                             |  |  |  |  |

Higher treatment rate & higher treatment effects:  $W_i \not\perp \!\!\! \perp Y_i(0), Y_i(1)$ 

### Selection Bias (mathematical intuition)

- As noted above, simply comparing those who are and are not treated may provide a misleading estimate of a treatment effect
- This problem can be efficiently described by using mathematical expectation notation to denote population averages:

$$\begin{array}{lll} \bar{\tau} & = & \mathbb{E}[Y_i(1)|W_i=1] - \mathbb{E}[Y_i(0)|W_i=0] \\ & = & \underbrace{\mathbb{E}[Y_i(1)-Y_i(0)|W_i=1]}_{\text{Average Treatment Effect on the Treated}} + \underbrace{\left[\mathbb{E}[Y_i(0)|W_i=1] - \mathbb{E}[Y_i(0)|W_i=0]\right]}_{\text{Selection bias}}$$

- Thus, the naive contrast can be written as the sum of two components, ATET, plus Selection Bias
- Average earnings of non-trainees,  $\mathbb{E}[Y_i(0)|W_i=0]$ , may not be a good standing for the earnings of trainees had they not been trained,  $\mathbb{E}[Y_i(0)|W_i=1]$

#### Possible solutions

- The problem of selection bias motivates the use of:
  - Random assignment (ex-ante) → experimental set-up



② Unconfoundedness (ex-post) → observational studies



 $\odot$  Instrumental variable (ex-post)  $\rightarrow$  observational studies

### Random Assignment

- Random assignment ensures that the potential earnings of trainees had they not been trained are well-represented by the randomly selected control group
- Formally, when  $W_i$  is randomly assigned, then:

$$\mathbb{E}[Y_i|W_i=1] - \mathbb{E}[Y_i|W_i=0] = [Y_i(1) - Y_i(0)|W_i=1] = E[Y_i(1) - Y_i(0)]$$

 $\bullet$  Replacing  $E[Y_i|W_i=1]$  and  $E[Y_i|W_i=0]$  with the corresponding sample analog provides a consistent estimate of ATE

## Unconfoundedness (or CIA)

- The Unconfoundedness assumption states that conditional on observed characteristics, the selection bias disappears
- Formally, we overcome the problem that we have seen at slide 9, because:  $W_i \perp \!\!\! \perp Y_i(0), Y_i(1)|X_i$ This holds true even if conditioning just on:  $e(x) = P(W=1|X_i=x)$
- Given unconfoundedness, comparison of average effects of job training have a causal interpretation:

$$\bar{\tau} = \mathbb{E}[Y_i(1)|W_i = 1, X_i] - \mathbb{E}[Y_i(0)|W_i = 0, X_i] = \mathbb{E}[Y_i(1) - Y_i(0)|X_i]$$

- This can be generalized to the case of a continuous treatment variable (i.e effects of education on employment):  $s_i \perp \!\!\! \perp Y_{s_i}|X_i$
- Conditional on  $X_i$ , what is the average causal effect of a one-year increase in collage attendance?

$$\mathbb{E}[Y_i|s_i = s, X_i] - \mathbb{E}[Y_i|s_i = s - 1, X_i] = \mathbb{E}[f_i(s) - f_i(s - 1)|X_i]$$

### Using regression to summarize

- Since  $s_i$  takes on many values, there are as many average causal effects as the possible increments in  $s_i$
- Regression is a weighted average of the individual specific difference:  $f_i(s) f_i(s-1)$
- Then if we assume that:

$$f_i(s) = Y_i = \underbrace{\beta_0 + \beta_1 s + \eta_i}_{\eta_i = X_i^T \gamma + \epsilon_i \text{ where } \mathbb{E}[\eta_i] = X_i^T \gamma}_{}$$

• If unconfoundedness holds:

$$\mathbb{E}[f_i(s)|X_i, s_i] = \mathbb{E}[f(s_i)|X_i] = \beta_0 + \beta_1 s + \mathbb{E}[\eta_i] = \beta_0 + \beta_1 s + X_i^T \gamma$$

- If we assume  $\epsilon_i$  to be uncorrelated with  $s_i$  and  $X_i$  then  $\beta_1$  is the causal effect
- Yet, note that we assume that observable characteristics  $X_i$  are the only reason why  $s_i$  and  $\eta_i$  are correlated

#### **Omitted Variable Bias**

- Let  $Y_i = \beta_0 + \beta_1 s_i + A_i^T \gamma + e_i$  where the vector  $A^T$  stands for ability (factors such as intelligence, motivation etc)
- $\bullet$  If unconfoundedness holds given  $A_i$  then  $\beta_1$  is the coefficient of a linear causal model
- ullet But what happens if we cannot measure  $A_i$  i.e. we leave it out of the regression?

$$\frac{Cov(Y_i, s_i)}{V(s_i)} = \frac{Cov\left(\left[\beta_0 + \beta_1 s_i + A_i^T \gamma + e_i\right], s_i\right)}{Var(s_i)} = \underbrace{\beta_1}_{\text{causal effect}} + \underbrace{\gamma^T \delta_{A_s}}_{\text{OV bias}}$$

where  $\delta_{A_s}$  is the vector of coefficients from the regression of  $A_i$  on  $s_i$ 

 Take home message: the more regressor your include (longer regression), the less your causal estimand is biased Machine Learning and Causality
Using CART to estimate heterogenous causal
effect

## Machine Learning and Causality

- Econometrics/ Statistics/ Social Science
  - Formal theory of causality
    - Potential outcomes methods (Rubin) maps onto economic approaches
  - Well-developed and widely used tools for estimation and inference of causal effect in experimental and observational studies
    - Used by social science, policy-makers, development organizations, medicine, business, experimentation
  - Weaknesses
    - Non-parametric approaches fail with many covariates
    - Model selection unprincipled

#### Motivations

- Experiments and Data-Mining
  - Concerns about ex-post "data-mining"
    - In medicine, scholars are required to pre-specify analysis plan (similar in economic field experiments)
- How is it possible to deal with sets of treatment effects among subsets of the entire population?
- Estimate of treatment effect heterogeneity needed for optimal decision-making

#### Definition 1 (Athey and Imbens, 2015; 2016)

- Estimating heterogeneity by features in causal effects in experimental or observational studies
- 2 Conduct inference about the magnitude of the differences in the treatment effects across subsets of the population

#### Causal Inference Framework

- Causal inference in observational studies:
  - As we saw previously, assuming unconfoundedness to hold, we can treat observations as having come from a randomized experiment
  - Therefore we can define the conditional average treatment effect (CATE) as follows:

$$\tau(x) = E[Y_i(1) - Y_i(0)|X_i = x]$$

• The population average treatment effect then is:

$$\tau^p = E[Y_i(1) - Y_i(0)] = E[\tau(X_i)]$$

## Why is CATE important?

- There are a variety of reasons that researchers wish to conduct estimation and inference on  $\tau(x)$ :
  - It my be used to assign future units to their optimal treatment (in presence of different levels of the treatment):

$$W_i^{opt} = \max \tau(X_i)$$

If we don't pre-specify the sub-populations it can be the case that the overall effect is negative, but it can be positive on subpopulations, then:

$$W_i^{PTE} = \mathbf{1}_{\tau(X_i)>0}$$

e.g.: treatment is a drug  $\rightarrow$  prescribe it just to those who benefit from it

### Using Trees to Estimate Causal Effects

#### Athey and Imbens (2015; 2016) propose 3 different approaches:

- Approach I: Analyze two groups separately:
  - Estimate  $\hat{\mu}(1,x)$  using dataset where  $W_i=1$
  - Estimate  $\hat{\mu}(0,x)$  using dataset where  $W_i=0$
  - Preform within group cross-validation to choose tuning parameters
  - Predict  $\hat{\tau} = \hat{\mu}(1, x) \hat{\mu}(0, x)$

- Approach II: Estimate  $\mu(w,x)$  using just one tree:
  - Estimate  $\hat{\mu}(1,x)$  and  $\hat{\mu}(0,x)$  using just one tree
  - Preform within tree cross-validation to choose tuning parameters
  - Predict  $\hat{\tau} = \hat{\mu}(1, x) \hat{\mu}(0, x)$ • Estimate is zero for x where
  - Estimate is zero for x wher tree does not split on w

### The CATE Transformation of the Outcome

- ullet The authors' goal is to develop an algorithm that generally leads to an accurate approximation of  $\hat{ au}$  the Conditional Average Treatment Effect.
  - Ideally we would measure the quality of the approximation in terms of goodness of fit using the MSE:

$$Q^{infeas} = \frac{1}{N} \sum_{i=1}^{N} (Y_i(1) - Y_i(0) - \hat{\tau}(X_i))^2$$

② We can address this problem of infeasibility by transforming the outcome using the treatment indicator  $W_i$  and e(X):

$$Y_i^* = Y_i^{obs} \cdot \frac{W_i - e(X_i)}{(1 - e(X_i)) \cdot e(X_i)}$$

Then:

$$E[Y_i^*|X_I = x] = \tau(x)$$

### How to estimate the In-Sample Goodness of fit?

• The ideal goodness of fit measure would be:

$$Q^{infeas}(\hat{\tau}) = \mathbb{E}[(\tau_i - \hat{\tau}(X_i))^2].$$

• A useful proxy that can be used for the goodness of fit measure is:

$$\mathbb{E}[\tau_i^2 | X_i \in S_j] = \frac{1}{N} \sum_i \hat{\tau}(x_i)^2.$$

This leads to our In-sample goodness of fit function:

$$Q^{is} = -\frac{1}{N} \sum_{i} \hat{\tau}(x_i)^2.$$

### Transformed Outcome Tree Model

- Approach 3:
  - Model and Estimation
    - Model Type: Tree structure
    - Estimator  $\hat{\tau}_i^{TOT}$ : sample average treatment effect within leaf
  - ② Criterion function (for fixed tuning parameter  $\lambda$ )
    - In-sample Goodness-of-fit function:

$$Q^{is} = -MSE = -\frac{1}{N} \sum_{i=1}^{N} (\hat{\tau}_{i}^{TOT})^{2}$$

• Structure and use of criterion:

$$Q^{crit} = Q^{is} - \lambda \times leaves$$

- Select member of set of candidate estimators that maximizes  $Q^{crit}$ , given  $\lambda$
- Cross-validation approach
  - Out-of-Sample Goodness-of-fit function:

$$Q^{oos} = -MSE = -\frac{1}{N} \sum_{i=1}^{N} (\hat{\tau}_{i}^{TOT} - Y_{i}^{*})^{2}$$

• Approach: select tuning parameter  $\lambda$  with highest  $Q^{os}$ 

## Critique to the TOT approach

• Transformation of the Outcome in a randomized set-up:

$$Y_{i}^{*} = Y_{i}^{obs} \cdot \frac{W_{i} - p}{(1 - p) \cdot p} = \begin{cases} \frac{1}{p} \cdot Y_{i}^{obs} & if \ W_{i} = 1\\ -\frac{1}{1 - p} \cdot Y_{i}^{obs} & if \ W_{i} = 0 \end{cases}$$

- ullet Within a leaf the sample average of  $Y_i^*$  is not the most efficient estimator of treatment effect
- The proportion of treated units within the leaf is not the same as the overall sample proportion
- We use a weighted estimator similar to the Hirano, Imbens and Ridder (2003) estimator

### Causal Tree Approach

• In details the Treatment Effect in a generic leaf  $X_i$  is:

$$\tau^{CT}(X_i) = \frac{\sum_{j:X_j \in \mathbb{X}_j} Y_i^{obs} \cdot \frac{W_i}{\hat{e}(X_i)}}{\sum_{j:X_j \in \mathbb{X}_j} \frac{W_i}{\hat{e}(X_i)}} - \frac{\sum_{j:X_j \in \mathbb{X}_j} Y_i^{obs} \cdot \frac{(1-W_i)}{(1-\hat{e}(X_i))}}{\sum_{j:X_j \in \mathbb{X}_j} \frac{(1-W_i)}{(1-\hat{e}(X_i))}}$$

• This estimator is a consistent estimator of:

$$\tau_{\mathbb{X}_j} = \mathbb{E}[Y_i(1) - Y_i(0) | X_i \in \mathbb{X}_j]$$

• The variance can be estimated the Neyman estimator:

$$\hat{\mathbb{V}}_{Neyman} = \frac{s_t^2}{N_t} + \frac{s_c^2}{N_c}$$

These two quantities can be estimated as:

$$\begin{split} s_{t,j}^{te,2} &= \frac{1}{N_t - 1} \sum_{i:W_i = 1} (Y_i(1) - \overline{Y}_t^{obs})^2 = \frac{1}{N_t - 1} \sum_{i:W_i = 1} (Y_i - \overline{Y}_t^{obs})^2 \\ s_{c,j}^{te,2} &= \frac{1}{N_c - 1} \sum_{i:W_i = 0} (Y_i(0) - \overline{Y}_c^{obs})^2 = \frac{1}{N_c - 1} \sum_{i:W_i = 0} (Y_i - \overline{Y}_c^{obs})^2 \end{split}$$

#### Attractive features of Causal trees

- Can easily separate tree construction from treatment effect estimation
- Tree constructed on training sample is independent of sampling variation in the test sample
- Holding tree from training sample fixed, can use standard methods to conduct inference within each leaf of the tree on test sample
- Can use any valid method for treatment effect estimation, not just the methods used in training
- Simulations run by the authors show that the Causal Tree Algorithm outperforms the ST, TT and TOT approaches

## Case Study



Figure: Bargagli-Stoffi & Gnecco (2020)

#### Causal Forests

An individual tree can be *noisy* as we saw in the last lecture  $\rightarrow$  instead, fit a causal forest

- lacktriangledown Draw a sample of size s
- f 2 Split into a  $\cal D$  and  $\cal I$  sample
- lacktriangle Grow a tree on  $\mathcal{D}$
- ullet Estimate the effects on  ${\mathcal I}$

#### Repeat many times

- Pros:
  - **①** Consistency for true t(x)
  - Asymptotic normality
  - Asymptotic variance is estimable
- Cons:
  - Require sample splitting
  - 2 Large samples for asymptotic properties
  - Not interpretable

### Causal rules and interpretability

- In a causal scenario, interpretability can be defined as the ability of the algorithm to identify the subgroups where the effects are heterogeneous
- Decision rules are simple if-then statements regarding several conditions
- Rule-based learning improves interpretability



• Causal Rule Ensemble (CRE) algorithm (Lee, Bargagli-Stoffi and Dominici, 2020)

### Intuition on CRE

Data Science Lab - 5

- Intuition on the CRE algorithm (5 steps):
  - Divide the overall sample into a discovery and estimation sample
  - ② Estimate the unit-level treatment effect  $\tau^d(x)$  (where  $X_i = x$ )
    ③ On the *discovery* build a series of causal rules by regressing  $\tau^d(x)$  on  $X_i$  using random forest (Breiman, 2001) and gradient trees (Friedman, 2001)

 Select the most important rules using stability selection (Meinshausen and Bühlmann, 2010)



**③** On the *estimation* sample estimate the treatment effects by regressing the estimated unit level treatment effects  $\tau^e(x)$  on the selected rules

#### Conclusions

- The main problem to face is the absence of a *ground truth* when we deal with causal inference problems
- The approaches developed are strongly data-driven: selection of subpopulation is optimized by the algorithm
- Work well with randomized experiments and some techniques (i.e., BCF, CRE) control for potential confounding bias
- The approaches are tailored for applications where:
  - there may be many attribute relative to the number of units observed (fat-data)
  - the functional form of the relationship between treatment effects and the attributes of units ins not known

## **Further Readings**

- S.Athey, G.Imbens Machine learning methods for estimating heterogeneous causal effects, 2015
- S.Athey, S.Wager Estimation and Inference of Heterogeneous Treatment Effects using Random Forest, 2015
- L. Breiman. Random Forest, Machine learning, 24:123-140, 2001
- L. Breiman, J.H. Olshen, C.J. Stone. *Classification and Regression Trees*, CRC press, 1984
- T.J. Hastie, R.J. Tibshirani, J.H. Friedman. *The Elements of Statistical Learning*. Speringer, New York, 2009
- K.P. Murphy. Machine Learning. A Probabilistic Perspective. The MIT Press, Cambridge, Massachusetts, 2012