Primer Orden Interpretaciones y distinguibilidad

Herman Schinca

18 de Febrero, 2016

Un repasito

¿Qué es un lenguaje de Primer Orden?

Un repasito

- símbolos lógicos y auxiliares: x ' \forall \neg \rightarrow ()
- símbolos de cada lenguaje particular $\mathcal{L} = \mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$, donde
 - $\mathcal C$ es un conjunto de símbolos de constantes (puede ser $\mathcal C=\emptyset$)
 - $\mathcal F$ es un conjunto de símbolos de funciones (puede ser $\mathcal F=\emptyset$)
 - $\mathcal P$ es un conjunto de símbolos de predicados $(\mathcal P \neq \emptyset)$

Un repasito

- Tenemos términos y fórmulas.
- Podemos utilizar los símbolos \exists \lor \land en reemplazo de las fórmulas correspondientes.

Un repasito: interpretación de un lenguaje

Una \mathcal{L} -estructura \mathcal{A} de un lenguaje $\mathcal{L} = \mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$ es

- un conjunto A no vacío, se lo llama universo o dominio
- las siguientes asignaciones:
 - ullet para cada símbolo de constante $c\in\mathcal{C}$, un elemento fijo

$$c_{\mathcal{A}} \in A$$

• para cada símbolo de función \emph{n} -aria $f \in \mathcal{F}$, una función

$$f_A:A^n\to A$$

• para cada símbolo de predicado n-ario $P \in \mathcal{P}$, una relación

$$P_{\mathcal{A}} \subseteq A^n$$

Las funciones f_A y predicados P_A son siempre totales.

Decidir si las siguientes interpretaciones son apropiadas para los siguientes lenguajes, en donde f es un símbolo unario y g es binario:

1.

$$C = \{c\}, \mathcal{F} = \{f, g\}, \mathcal{P} = \{P, =\}$$

$$U_A = \mathbb{Q}$$

$$c_A = \frac{2}{3}$$

$$f_A(a) = \frac{a}{a^2 + 1}$$

$$g_A(a, b) = a + b$$

$$a P_A b \quad \text{sii} \quad a \le b$$

2.

$$\mathcal{C}=\{c\}, \mathcal{F}=\{f,g\}, \mathcal{P}=\{P,=\}$$
 $U_B=$ cjto. de todas las listas de enteros
 $c_B=[1,2,3,4,5,6,7]$
 $f_B(I)=$ quedarse únicamente con las posiciones pares de $I_B(I_1,I_2)=$ concatenar I_1 con I_2
 I_1 P_B I_2 sii la long. de I_1 es menor o igual que la long. de I_2

3.

$$\mathcal{C} = \emptyset, \mathcal{F} = \{h\}, \mathcal{P} = \{=\}$$
 $U_{\mathcal{C}} = \text{cjto.}$ de todas las listas de enteros $h_{\mathcal{C}}(I) = \text{longitud de } I$

Debemos chequear:

- a) El universo U es no vacío;
- b) la interpretación de cada constante pertenece al universo *U* elegido;
- c) la interpretación de cada función es total y tiene como imagen a elementos del universo *U*;
- d) la interpretación de cada predicado es total.

Decidir si las siguientes fórmulas son i) universalmente válidas, ii) válidas en alguna interpretación del ejercicio anterior, iii) satisfacibles, o iv) insatisfacibles.

- a) $\exists x (f(x) = x)$
- b) $\forall x (P(x, f(x)))$
- c) P(x, f(y))

Veamos que no es universalmente válida. Sea I una interpretación donde el universo son los naturales y $f_I(n) = n + 1$. Sea v una valuación cualquiera.

I,
$$v \models \exists x \ (f(x) = x)$$

sii hay algún valor n en U_I tal que $I, v[x \mapsto n] \models f(x) = x$
sii hay algún valor n en U_I tal que $v[x \mapsto n](f(x)) =_I v[x \mapsto n](x)$
sii hay algún valor n en U_I tal que $f_I(v[x \mapsto n](x)) =_I v[x \mapsto n](x)$
sii hay algún valor n en U_I tal que $f_I(n) =_I n$

Veamos ahora si la fórmula vale en la estructura A del ejercicio anterior.

$$C = \{c\}, \mathcal{F} = \{f, g\}, \mathcal{P} = \{P, =\}$$

$$U_A = \mathbb{Q}$$

$$c_A = \frac{2}{3}$$

$$f_A(a) = \frac{a}{a^2 + 1}$$

$$g_A(a, b) = a + b$$

$$a P_A b \quad \text{sii} \quad a \le b$$

Sea
$$v$$
 una valuación cualquiera: A, $v \models \exists x (f(x) = x)$

- sii hay algún valor a en U_A tal que $A, v[x \mapsto a] \models f(x) = x$
- sii hay algún valor a en U_A tal que $v[x \mapsto a](f(x)) =_A v[x \mapsto a](x)$
- sii hay algún valor a en U_A tal que $f_A(v[x \mapsto a](x)) =_A v[x \mapsto a](x)$
- sii hay algún valor a en U_A tal que $f_A(a) =_A a$
- sii hay algún valor a en U_A tal que $\frac{a}{a^2+1}=_A a$

Veamos ahora si la fórmula vale en la estructura B del ejercicio anterior.

$$\mathcal{C} = \{c\}, \mathcal{F} = \{f,g\}, \mathcal{P} = \{P,=\}$$

$$U_B = \text{cjto. de todas las listas de enteros}$$

$$c_B = [1,2,3,4,5,6,7]$$

$$f_B(I) = \text{quedarse unicamente con las posiciones pares de } I$$

$$g_B(I_1,I_2) = \text{concatenar } I_1 \text{ con } I_2$$

$$I_1 P_B I_2 \quad \text{sii} \quad \text{la long. de } I_1 \text{ es menor o igual que la long. de } I_2$$

B,
$$v \models \exists x \ (f(x) = x)$$

sii hay algún valor I en U_B tal que $B, v[x \mapsto I] \models f(x) = x$
sii hay algún valor I en U_B tal que $v[x \mapsto I](f(x)) =_B v[x \mapsto I](x)$
sii hay algún valor I en U_B tal que $f_B(v[x \mapsto I](x)) =_B v[x \mapsto I](x)$
sii hay algún valor I en U_B tal que $f_B(I) =_B I$

$$\forall x(P(x, f(x)))$$
, ¿es universalmente válida?

Veamos qué sucede en la interpretación A. Tomemos una valuación v cualquiera.

A,
$$v \models \forall x (P(x,f(x)))$$

sii todo valor a en U_A cumple $A, v[x \mapsto a] \models P(x,f(x))$
sii todo valor a en U_A cumple $v[x \mapsto a](x)$ P_A $v[x \mapsto a](f(x))$
sii todo valor a en U_A cumple a P_A $f_A(v[x \mapsto a](x))$
sii todo valor a en U_A cumple a P_A $f_A(a)$
sii todo valor a en U_A cumple $a \in \frac{a}{a^2+1}$

De modo similar, tomemos una valuación v cualquiera para la interpretación B.

¿Será válida bajo alguna interpretación?

Veamos qué sucede en una interpretación I tal que su universo son los naturales, P_A es la operación de menor o igual y f_A es la identidad.

```
I, v \models \forall x (P(x,f(x)))

sii todo valor n en U_I cumple I, v[x \mapsto n] \models P(x,f(x))

sii todo valor n en U_I cumple v[x \mapsto n](x) P_I v[x \mapsto n](f(x))

sii todo valor n en U_I cumple n P_I f_I(v[x \mapsto n](x))

sii todo valor n en U_I cumple n P_I f_I(n)

sii todo valor n en U_I cumple n \in n
```

¿Será universalmente válida? ¿Válida en las interpretaciones del ejercicio anterior? ¿Satisfacible al menos?

Por ejemplo, tomemos la estructura A y sea v_1 una valuación tal que $v_1(x)=10, v_1(y)=0$

$$A, v_1 \models P(x, f(y)) \quad \text{sii} \quad v_1(x) P_A v_1(f(y))$$

$$\text{sii} \quad 10 P_A f_A(v_1(y))$$

$$\text{sii} \quad 10 P_A \frac{0}{0^2 + 1}$$

$$\text{sii} \quad 10 \le 0$$

¿Es satisfacible en esta interpretación?

Sea v_2 otra valuación tal que $v_2(x) = 0$, $v_2(y) = 1$, luego:

$$A, v_2 \models P(x, f(y)) \quad \text{sii} \quad v_2(x) \ P_A \ v_2(f(y))$$

$$\text{sii} \quad 0 \ P_A \ f_A(v_2(y))$$

$$\text{sii} \quad 0 \ P_A \ \frac{1}{1^2 + 1}$$

$$\text{sii} \quad 0 \le \frac{1}{2}$$

Análogamente con la interpretación B. Tomemos una valuación v_3 tal que $v_3(x) = [3,1], v_3(y) = []$:

$$B, v_3 \models P(x, f(y))$$
 sii $v_3(x) P_B v_3(f(y))$
sii $[3, 1] P_B f_B(v_3(y))$
sii $[3, 1] P_B f_B([])$
sii $|[3, 1]| \leq |[]|$
sii $2 \leq 0$

 ξ Es satisfacible en esta interpretación? ξ Tarea!

Definición: Distinguibilidad

Dada una interpretación I_1 , se dice que un elemento a de un universo de interpretación U_1 es distinguible sii existe una fórmula ϕ tal que tiene una única variable libre x que cumple:

$$\mathsf{I},\,\mathsf{v}\models\phi\quad\mathsf{sii}\quad \mathit{v}(\mathsf{x})=\mathsf{a}$$

En otras palabras, hay una fórmula que es cierta para a y falsa para todo otro elemento del universo de interpretación.

Sea $\mathcal L$ un lenguaje de primer orden con un símbolo de predicado binario \leq . Decidir si todos los elementos del universo de las siguientes interpretaciones son distinguibles (suponiendo clausura reflexotransitiva de \leq).

b)

Ejercicio 3: Notación

Para mayor comodidad definimos la igualdad como una reescritura:

$$x = y \equiv x \le y \land y \le x$$

De forma similar definimos el menor estricto como:

$$x < y \equiv x \le y \land \neg(x = y)$$

¿Es el elemento 4 distinguible del resto de los nodos?

Sea
$$\phi_4 = \forall y (y \leq x)$$

I,v
$$\models \forall y \ (y \le x)$$

sii todo valor a en U_I cumple $I, v[y \mapsto a] \models y \le x$

sii todo valor a en U_I cumple $v[y \mapsto a](y) \le_I v[y \mapsto a](x)$

sii todo valor a en U_I cumple $a \le_I v(x)$

sii todas las siguientes se cumplen
$$\begin{cases} 1 \le_I v(x) \\ 2 \le_I v(x) \\ 3 \le_I v(x) \end{cases}$$

sii $v(x) = 4$

¿Y el elemento 1 es distinguible? ¿Qué fórmula definiría? ¿Y los elementos 2 y 3?

¿Puedo distinguir a todos los elementos?

El 1 se distingue de la misma forma que en 3.a.

Veamos cómo distinguir el 4.

El 4 ya no es mayor o igual a todos pues no es más grande que el 5.

Es el único elemento que tiene 3 elementos distintos que son menores que él.

$$\phi_4 = \exists y, z, w (y \neq z \land z \neq w \land w \neq y \land y < x \land z < x \land w < x)$$

Análogamente, el 5 es el único elemento que tiene exactamente 2 elementos distintos menores que él.

$$\phi_5 = \exists y, z (y \neq z \land y < x \land z < x)$$

$$\phi_5 = \exists y, z (y \neq z \land y < x \land z < x \land \forall w (w < x \rightarrow (w = y \lor w = z)))$$

Por último, veamos cómo distinguir al 2 y al 3.

$$\phi_2 = \exists y (x < y \land \forall z (x < z \rightarrow z = y))$$

$$\phi_3 = \exists y, z (y \neq z \land x < y \land x < z \land \forall w (x < w \rightarrow (w = y \lor w = z)))$$

En todos los casos falta probar que efectivamente las ϕ cumplen lo deseado en la interpretación dada, es decir, como hicimos para ϕ_4 en 3.a.

iTarea!

Ejercicio 4: Enunciado

Sea \mathcal{L} un lenguaje de primer orden con un símbolo de predicado binario \leq . Considerar una interpretación I tal que U_I es un universo finito y totalmente ordenado. Probar que todos los elementos de U_I son distinguibles.

Como U_i es un universo finito y totalmente ordenado podemos reescribirlo como $\{e_1, \ldots, e_n\}$ donde $e_i \leq e_j$ si y sólo si $i \leq j$.

Además sabemos que $e_i < e_j$ pues $e_i \neq e_j$.

Debemos definir n predicados ϕ_1, \ldots, ϕ_n tales que cada uno tiene una única variable libre x y cada ϕ_i es válido únicamente en valuaciones v tales que $v(x) = e_i$.

Distingamos primero a e_1 .

 e_1 cumple que es menor o igual a todos los demás.

$$\phi_1(x) = \forall y (x \le y)$$

¿Cómo distinguimos a 2?

 e_2 es el único elemento estrictamente mayor a e_1 que es más cercano a e_1 .

$$\phi_2(x) = \exists z (\phi_1(z) \land z < x \land \forall w ((z \le w \land w \le x) \rightarrow (w = z \lor w = x)))$$

En general, podemos definir ϕ_i recursivamente:

$$\phi_1(x) = \forall y(x \le y)$$

$$\phi_{i+1}(x) = \exists z(\phi_i(z) \land z < x \land \forall w((z \le w \land w \le x) \to (w = z \lor w = x)))$$

Sólo resta mostrar, vía inducción, que $\phi_i(x)$ es verdadera sólo si la valuación hace a $x = e_i$.

Caso base.

La fórmula $\phi_1(x)$ es cierta sólo cuando x es un elemento menor o igual a todos los demás. Tal elemento es e_1 .

Paso inductivo.

H.I.: la fórmula $\phi_i(z)$ es únicamente verdadera en valuaciones v tales que $v(z) = e_i$.

Partiendo de esto, queremos ver que $\phi_{i+1}(x)$ sólo es verdadera cuando $v(x) = e_{i+1}$.

Por hipótesis inductiva sabemos que la valuación v es tal que $v(z) = e_i$.

Por lo tanto, para que la valuación haga verdadera a z < x debe suceder que v(x) sea un elemento mayor estricto que v(z).

Además, como $\forall w((z \leq w \land w \leq x) \rightarrow (w = z \lor w = x))$ sabemos que todo elemento entre z y x es necesariamente z o necesariamente x, es decir, no hay elementos entre z y x.

Finalmente, teniendo en cuenta que x es un elemento estrictamente mayor a z y tal que está a distancia mínima de z, y $z=e_i$, luego $x=e_{i+1}$.