朱雷

南方科技大学

台州楼 429, 学苑大道 1088 号, 深圳, 518055

https://www.acmrsg.org/zhu

zhul3@sustech.edu.cn 0755-26601426

职业经历

2019.12 至今	南方科技大学 助理教授
2019.07 - 2019.12	哈佛-史密松天体物理中心 研究员
2017.01 - 2019.07	哈佛大学 博士后

教育背景

2016.12	博士(工程科学)哈佛大学
	导师: Daniel J. Jacob
2011.06	硕士(环境科学)北京大学
	<u>导师</u> : 宋宇
2008.06	学士(环境科学)南开大学

发表论文

第一及通讯作者(*)

- **Zhu, L.***, G. González Abad, C. R. Nowlan, *et al.*: Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns, *Atmos. Chem. Phys. Discuss.*, https://doi.org/10.5194/acp-2019-1117, in review, 2020.
- **Zhu, L.***, Jacob, D. J., Eastham, S. D., *et al.*: Effect of sea salt aerosol on tropospheric bromine chemistry, *Atmos. Chem. Phys.*, 19, 6497-6507, 2019.
- **Zhu, L.***, L. J. Mickley, D. J. Jacob *et al.*: Long-term (2005–2014) trends in formaldehyde (HCHO) columns across North America as seen by the OMI satellite instrument: Evidence of changing emissions of volatile organic compounds, *Geophys. Res. Lett.*, 44, 7079–7086, 2017.
- **Zhu, L.***, D. J. Jacob, F. N. Keutsch *et al.*: Formaldehyde (HCHO) as a Hazardous Air Pollutant: Mapping surface air concentrations from satellite and inferring cancer risks in the United States, *Environ. Sci. Technol.*, 51, 5650–5657, 2017.
- **Zhu, L.***, D. J. Jacob, P. S. Kim *et al.*: Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC⁴RS aircraft observations over the southeast US, *Atmos. Chem. Phys.*, 16, 13477–13490, 2016.
- **Zhu, L.***, D. J. Jacob, L. J. Mickley *et al.*: Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns, *Environ. Res. Lett.*, 9, 114004, 2014.
- **Zhu, L.**, X. Huang, H. Shi *et al.*: Transport pathways and potential sources of PM₁₀ in Beijing, *Atmos. Environ.*, 45, 594–604, 2011.

合作作者

- Wang, X. et al. including L. Zhu: Direct links between hygroscopicity and mixing state of ambient aerosols: estimating particle hygroscopicity from their single-particle mass spectra, Atmos. Chem. Phys. 2020.
- Souri, A. et al. including L. Zhu: An Inversion of NOx and NMVOC Emissions using Satellite Observations during the KORUS-AQ Campaign and Implications for Surface Ozone over East Asia, Atmos. Chem. Phys. Discuss., 2020.

- Lu, X. et al. including L. Zhu: Development of the global atmospheric general circulation-chemistry model BCC-GEOS-Chem v1.0: model description and evaluation, Geosci. Model Dev., 2019.
- Chance, K. et al. including L. Zhu: TEMPO Green Paper; Chemistry, physics, and meteorology experiments with the Tropospheric Emissions: Monitoring of Pollution instrument, *Proc. SPIE 11151, Sensors, Systems, and Next-Generation Satellites XXIII*, 111510B (10 October 2019).
- Shen, L., D. J. Jacob, L. Zhu et al.: The 2005–2016 Trends of Formaldehyde Columns Over China Observed by Satellites: Increasing Anthropogenic Emissions of Volatile Organic Compounds and Decreasing Agricultural Fire Emissions, *Geophys. Res. Lett.*, 46, 2019.
- Zhang, Y. et al. including L. Zhu: Satellite-Observed Changes in Mexico's Offshore Gas Flaring Activity Linked to Oil/Gas Regulations, *Geophys. Res. Lett.*, 46, 1879–1888, 2019.
- Wang, X. et al. including L. Zhu: The role of chlorine in tropospheric chemistry, Atmos. Chem. Phys., 19, 3981–4003, 2019.
- Song, S. *et al.* including **L. Zhu**: Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze, *Atmos. Chem. Phys.*, 19, 1357–1371, 2019.
- Sun, K., **Zhu**, L., K. Cady-Pereira *et al.*: A physics-based approach to oversample multi-satellite, multispecies observations to a common grid, *Atmos. Meas. Tech.*, 11, 6679–6701, 2018.
- Kaiser, J., D. J. Jacob, L. Zhu *et al.*: High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US, *Atmos. Chem. Phys.*, 18, 5483–5497, 2018.
- Miller, C. C. *et al.* including **L. Zhu**: Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data, *Atmos. Chem. Phys.*, 17, 8725–8738, 2017.
- Travis, K. R. *et al.* including **L. Zhu**: Why do models overestimate surface ozone in the Southeast United States?, *Atmos. Chem. Phys.*, 16, 13561–13577, 2016.
- Fisher, J. A. *et al.* including **L. Zhu**: Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC⁴RS) and ground-based (SOAS) observations in the Southeast US, *Atmos. Chem. Phys.*, 16, 5969–5991, 2016.
- Yu, K. *et al.* including **L. Zhu**: Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions, *Atmos. Chem. Phys.*, 16, 4369–4378, 2016.
- Marais, E. A. *et al.* including **L. Zhu**: Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO₂ emission controls, *Atmos. Chem. Phys.*, 16, 1603–1618, 2016.
- Kim, P. S. *et al.* including **L. Zhu**: Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model, *Atmos. Chem. Phys.*, 15, 10411–10433, 2015.
- Li, M., X. Huang, L. Zhu *et al.*: Analysis of the transport pathways and potential sources of PM₁₀ in Shanghai based on three methods, *Sci. Tot. Environ.*, 414, 525–534, 2012.
- Huang, X. et al. including **L. Zhu**: Mercury Emissions from Biomass Burning in China, *Environ. Sci. Technol.*, 45, 5650–5657, 2011.
- Song, Y. *et al.* including **L. Zhu**: A new emission inventory for nonagricultural open fires in Asia from 2000 to 2009, *Environ. Res. Lett.*, 5, 014014, 2011.
- Wang, B., L. Zhu, Z. Gong *et al.*: Introduction to the methods of parameter estimation for environmental monitoring data set with truncated data below a detection limit, *Acta Science Circumstantiae.*, 29, 1345–1350, 2009.

部分所获奖项

学术认可

美国气象学会年度特殊奖项 2020

Atmospheric Pollution Research 认可审稿人 2019

NASA、美国内政部 William T. Pecora 团队奖	2018
Atmospheric Environment 杰出审稿人	2017
NASA 团队成就奖	2015
南开大学优秀毕业生	2008

教学

哈佛大学杰出教学认证 2013

奖学金

史密松大体物埋观测台访问科学家奖学金	2019
哈佛大学能源与环境研究生奖学金	2014 - 2016
北京大学研究生奖学金	2008 - 2010
诺维信奖学金	2007
国家奖学金	2007
南开大学奖学金	2005 - 2006

学术报告

口头报告

Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns, *AGU Fall Meeting*, 2019, San Francisco, CA, USA.

Satellite remote sensing of trace gases: principles, methods, and applications for air quality studies, *Atmospheric Chemistry Forum* (online), November 30, 2019 (受邀).

Satellite remote sensing for air quality applications, with a focus on formaldehyde (HCHO), University of Illinois at Urbana-Champaign, Champaign, IL, 2019 (受邀).

Satellite remote sensing for air quality applications, with a focus on formaldehyde (HCHO), Institute of Atmospheric Physics Chinese Academy of Sciences, Beijing, China, 2019, (受邀).

Satellite remote sensing for air quality applications, with a focus on formaldehyde (HCHO), Peking University, Beijing, China, 2019 (受邀).

Satellite remote sensing for air quality applications, with a focus on formaldehyde (HCHO), Southern University of Science and Technology, Shenzhen, China, 2019 (受邀).

Modeling of tropospheric halogen (Cl-Br-I) chemistry: cycling, debromination, and impact, *The 1st Regional GEOS-Chem Asia Meeting*, Nanjing, China, 2018.

Mapping surface air concentrations from OMI and inferring cancer risks: implications for TEMPO, *TEMPO Science Meeting*, Cambridge, MA, 2017 (受邀).

Observing atmospheric formaldehyde from space: validation, intercomparison, trend analysis and public health implications, *AGU Fall Meeting*, San Francisco, CA, 2016.

Observing atmospheric formaldehyde from space: Validation, intercomparison, trend analysis and public health implications, *Aura Science Meeting*, Rotterdam, The Netherlands, 2016.

Mapping of surface formaldehyde (HCHO) from space for air quality management, *The 9th NASA Air Quality Applied Sciences Team Meeting*, St. Louis University, St. Louis, MO, 2015.

Indirect validation of new OMI, GOME-2B and OMPS formaldehyde retrievals using SEAC⁴RS data, *The 7th International Conference of GEOS-Chem*, Harvard University, Cambridge, MA, 2015.

Validation of satellite HCHO observations (OMI, GOME-2B, OMPS) using SEAC⁴RS data, *SEAC⁴RS Science Meeting*, Caltech, Pasadena, CA, 2015.

Anthropogenic emissions of highly reactive volatile organic compounds inferred from oversampling of OMI HCHO columns, *EOS Aura Science Team Meeting 10th year anniversary celebration*, College Park, MD, 2014.

Anthropogenic emissions of highly reactive VOCs (HRVOCs) inferred from oversampling of OMI

- formaldehyde columns, *The 6th NASA Air Quality Applied Sciences Team Meeting*, Rice University, Houston, TX, 2014.
- Math in Nature: finding order in chaos, at Harvard Medical School, *Science in News*, Boston, MA, 2013 (受邀).
- Variability of HCHO over the United States: Implications for VOCs Emissions, *The 5th NASA Air Quality Applied Sciences Team Meeting*, University of Maryland, College Park, MD, 2013.
- A spike in electricity demand due to severe summer heatwaves: Increase of SO₂ emissions detected from space, *The 18th Seminar of JSPS-MOE Core University Program*, Beijing, China, 2010.
- Estimating of fire emissions in Boreal Siberia by satellite data sets, *The 6th Seminar of Environment Modeling and Pollution Controlling*, Beijing, China, 2009.

海报

- Validation of satellite formaldehyde (HCHO) retrievals using aircraft observations and implication for TEMPO, *TEMPO Science Meeting*, University of Wisconsin–Madison, WI, 2019.
- Effect of sea-salt aerosol on tropospheric bromine chemistry, *The 9th International Conference of GEOS-Chem*, Harvard University, Cambridge, MA, 2019.
- Effect of sea-salt aerosol on tropospheric bromine chemistry, *AGU Fall Meeting*, Washington, D.C., 2018. Observing atmospheric formaldehyde from space: trend analysis and public health implications, *The 8th International GEOS-Chem Meeting*, Cambridge, MA, 2017.
- Validation of satellite HCHO retrievals with aircraft (SEAC⁴RS) observations, *Atmospheric Radiation Workshop*, NCAR, Boulder, CO, 2016.
- Anthropogenic emissions of highly reactive volatile organic compounds inferred from oversampling of OMI HCHO columns, *AGU Fall Meeting*, San Francisco, CA, 2014.
- Indirect validation of GOME-2/MetOp-A and B formaldehyde retrievals using SEAC⁴RS data: Preliminary results, *The 7th NASA Air Quality Applied Sciences Team Meeting*, Harvard University, Cambridge, MA, 2014.
- Indirect Validation of GOME-2/MetOp-A and B and New OMI formaldehyde (HCHO) retrievals using SEAC⁴RS data: Preliminary results, *SEAC⁴RS Science Meeting*, NIST, Boulder, CO, 2014.
- Variability of HCHO over the Southeastern United States observed from space: Implications for VOC emissions, *AGU Fall Meeting*, San Francisco, CA, 2012.
- Spikes in electricity demand during severe summer heat waves: Increased SO₂ emissions detected from space, *AGU Fall Meeting*, San Francisco, CA, 2010.

教学与学生指导

教学助理

- o Atmospheric Chemistry and Physics, 研究生课程, 哈佛大学, 2017.
- o *The Fluid Earth: Oceans, Atmosphere, and Climate*, 本科生课程, 哈佛大学, 2013.

学生指导

- o 2博士生后
- o 4博士生
- 0 3 本科生

专业服务

委员会

GEMS 卫星科学委员成员2019 至今OMPS (NPP and NOAA-20) 卫星科学委员成员2018 至今TEMPO 卫星科学委员成员2017 至今

Aura 卫星科学委员成员2016 至今哈佛大学大气科学讲座召集人2016 – 2017SEAC4RS 航测科学委员成员2012 – 2015NASA 空气质量卫星应用科学委员成员2011 – 2015

客座编辑

Remote Sensing

审稿人期刊

Atmosphere, Atmospheric Environment, Atmospheric Chemistry and Physics, Atmospheric Measurement Techniques, Atmospheric Pollution Research, Environmental Science & Technology, Geophysical Research Letters, Journal of Geophysical Research, Nature Climate Change, Remote Sensing

最新更新: 2020年8月1日