Teoría del Cerebro y Neuroinformática

Preprocesamiento Visual

Maestría en Ciencias en Computación

Proprocesamiento visual

De preprocesamiento visual a visión de alto nivel

- Al principio del preprocesamiento visual, la información agrupada por una neurona (≈ campo receptivo) puede ser bastante local.
- Eventualmente:
 - La visión de alto nivel da una interpretación general de la escena orientada a la acción.
- Entre tanto:
 - La visión de bajo nivel debe proporcionar una representación intermedia rica en descriptores explícitos de bordes y regiones en la imagen.
- La visión de bajo nivel puede necesitar interactuar con la visión de alto nivel para poder completar su tarea.

Inhibición lateral

 La inhibición lateral es la estructuración de una red tal que las neuronas inhiban a (algunos de) sus vecinos.

Funciones de la inhibición lateral:

- mejora de contraste
- selección máxima
- aprendizaje competitivo

Bandas de Mach

 Los fundamentos para entender este fenómeno fueron puestos por el físico Ernst Mach en 1865 quien notó la ilusión óptica ahora conocida como bandas de Mach:

Bandas de Mach

- Mach desarrolló un modelo de la retina en el que había
 - acoplamiento inhibitorio entre células con k_{jp}
 disminuyendo en función de la distancia x_{jp} desde el elemento retinal j hasta el elemento retinal p.
 - Asumió que se trataba de una inhibición divisiva:

$$r_p = I_p$$
. [K $I_p / \Sigma_j I_j k_{pj}$]

 Este patrón de conectividad es un ejemplo de inhibición lateral - cada célula es inhibida lateralmente.

Bandas de Mach

Inhibición lateral somatosensorial

- El estudio de la inhibición lateral no se ha limitado a la visión.
- von Békésy estudió procesos similares en el sentido del tacto, como se resume en su libro clásico, Sensory Inhibition (1967).

Inhibición lateral en la retina

- El campo receptivo de una célula ganglionar es la región del campo visual en la que la estimulación modifica su actividad.
- El campo receptivo concéntrico de una célula ganglionar de la retina es una realización neurofisiológica de la inhibición lateral.
- La red a la que está embebida dicha neurona puede generar otras propiedades (por ejemplo, sensibilidad al movimiento).

Inhibición lateral en la retina

ON-center, OFF-surround

- Ranas, Mamíferos, Humanos:
 - Ojo simple: una lente para todos los receptores
- Insectos, Crustáceos:
 - Ojo compuesto: Una lente para cada receptor

Inhibición lateral en la retina

Una curva gaussiana tiene la expresión matemática

$$G = k \cdot e^{\frac{-x^2}{2\sigma}}$$

- donde
 - k grande significa un pico más alto
 - σ grande significa una dispersión más amplia.
- Una representación popular de la inhibición lateral es la diferencia de Gaussianas
- donde los parámetros de la diferencia

$$k_e \cdot e^{\frac{-x^2}{2\sigma_e}} - k_i \cdot e^{\frac{-x^2}{2\sigma_i}}$$

- debe satisfacer las relaciones $k_e > k_i$ y $\sigma_e < \sigma_i$.
- 2D → Sombrero Mexicano

El ojo lateral del Limulus

- Nuevos descubrimientos importantes en la inhibición lateral provienen del trabajo de Hartline y Ratliff y colegas en el ojo lateral del Limulus, el cangrejo de herradura.
- Se trata de un ojo compuesto, que está constituido por una serie de receptores, llamados ommatidia, cada uno con su propia lente incorporada. Cada ommatidio tiene su propio axón.

El ojo lateral del Limulus

Inhibición recurrente vs. no recurrente

Inhibición no recurrente

 En la inhibición no recurrente, la señal inhibidora es una combinación simple de las excitaciones actuales

$$r_1 = e_1 - K e_2$$

 $r_2 = e_2 - K e_1$

- en la que la excitación local se reduce (inhibida lateralmente) por K veces la excitación del vecino.
- Los efectos de la inhibición no recurrente están estrictamente localizados ya que las r dependen directamente de la e

Inhibición recurrente

 En la inhibición recurrente, la señal enviada a los vecinos está sujeta a su efecto inhibidor

$$r_1 = e_1 - K r_2$$

 $r_2 = e_2 - K r_1$

 Como resultado, esto es realmente un ecuación dinámica (y por lo tanto de propagación):

$$r_1(t+dt) = e_1 - K r_2(t)$$

 $r_2(t+dt) = e_2 - K r_1(t)$

 para algún incremento de tiempo convenientemente pequeño dt, y la salida final r1 y r2 será el valor de equilibrio.

¿Qué tipo de inhibición lateral usa el Limulus?

 Hartline ideó un experimento elegante para demostrar que el ojo lateral de Limulus empleaba la inhibición recurrente. Considérese la estimulación de 3 áreas A, B y C de la retina.

- No recurrente: $A > A + B \approx A + B + C$
- Recurrente: A > A + B < A + B + C

Detectores de características y codificación de información

Antecedentes en la Teoría de la Información

 Claude Shannon 1948 - abordó la cuestión de la comunicación fiable (de mensajes telefónicos) en presencia de ruido:

Información en ensamble ≈ Reducción media de la incertidumbre al recibir un mensaje

R = Tasa de transmisión de información C = Capacidad del canal

 El teorema de Shannon: Con una codificación adecuada, puede lograr mensajes con precisión arbitraria en cualquier caso R < C.

Detectores de características y codificación de información

- Buscando las características visuales que proporcionan la mayor cantidad de información
- Attneave 1954 señaló que siempre que tengamos información a priori sobre un conjunto de "mensajes", podemos usarla para lograr una descripción mas económica que de otro modo sería imposible de obtener.

La cabeza del gato durmiente de Attneave

Preprocesamiento visual en la rana

- Etología el estudio del comportamiento animal.
- Patrones fijos de acción consisten en una serie de acciones que se desencadenan por un estímulo clave.
 - El patrón se ejecuta completamente aunque se retire el estímulo.

Patrones fijos de acción Estímulos clave

Pez espinoso

Gusano y antigusano

Ganso o Halcón

Lo que el ojo de la rana le dice al cerebro de la rana

- Pitts & McCulloch 1947: How we know universals. (TMB2 4.1)
- Un sistema neuronal de reconocimiento de patrones estructurado en términos de una pila de "colectores" neuronales, con cada colector o capa, proporcionando un mapa retinotópico de la ubicación de alguna característica específica en el conjunto de estímulos. Lettvin y Maturana buscaron en la rana las estructuras hipotetizadas por McCulloch y Pitts.

Lo que el ojo de la rana le dice al cerebro de la rana

- Esperaban encontrar las transformaciones grupales que Pitts y McCulloch propusieron para fundamentar el reconocimiento de patrones invariantes. Esto no se dio, pero
- Lettvin, Maturana, McCulloch y Pitts 1959 descubrieron detectores de características en capas en un cerebro real: un descubrimiento trascendental.

Lo que el ojo de la rana le dice al cerebro de la rana

- **GRUPO I. LOS DETECTORES DE LIMITES** (Campos receptivos de 2° a 4° de diámetro): responden a cualquier límite definido entre dos tonos de gris en el campo receptivo en cualquier orientación.
- GRUPO II. LOS DETECTORES DE LÍMITES OSCUROS CONVEXOS "Detectores de bichos" (Campos receptivos de 3° a 5°): también responden sólo a límites definidos entre dos grises, pero sólo si ese límite es curvo, siendo el área más oscura convexa y si se mueve o se ha movido el límite.
- GRUPO III. LOS DETECTORES DE CAMBIO DE CONTRASTE O EN MOVIMIENTO (Campos receptivos de 7 ° a 11 ° de diámetro: responden invariablemente en amplios rangos de iluminación a una silueta que se mueve a velocidad constante a través de un fondo que no cambia.
- GRUPO IV. LOS DETECTORES DE OSCORUCIMIENTO
 "Detectores de enemigos" (campo receptivo de 15 ° de diámetro):
 responden a cualquier oscurecimiento en todo el campo receptivo
 ponderado por la distancia desde el centro de ese campo.

Cuatro mapas retinotópicos

- Cada una de estas cuatro capas de terminales en el tectum forma un mapa "continuo" de la retina.
- Las cuatro capas están en registro: los puntos en capas diferentes que se apilan uno encima del otro en el tectum corresponden a la misma región de la retina.
- Lettvin encontró varios tipos de células en el tectum.
- Había dos extremos:
 - neuronas de novedad: detección de eventos visuales y novedosos.
 - neuronas de lo mismo: objetos interesantes que aparecen en el campo visual continuamente en el tiempo.

¿Detectores de bichos y detectores enemigos en la retina?

- TMB2 7.3 muestra que la historia anterior es sólo la primera aproximación en desenmarañar los circuitos que permiten a la rana ditinguir al depredador de la presa.
- Tal discriminación implica el cálculo cooperativo de muchas neuronas en la retina, tectum y pretectum, por lo menos.

Preprocesamiento visual en los gatos y los monos

- Ahora vamos a contrastar los preprocesadores retinales de la rana con los de la corteza visual de gato y mono, descubiertos por Hubel y Wiesel a partir de 1962.
- Kuffler caracterizó las células ganglionares de la retina en gato como "on-center off-surround" y "off-center on-surround" utilizando inhibición lateral para proporcionar realce de contraste.
- En el núcleo geniculado lateral, las neuronas parecen ser similares, pero con mayor contraste.

Preprocesamiento visual en los gatos y los monos

- Hubel y Wiesel dividieron las células en la corteza visual primaria en
 - Células simples
 - Células complejas
 - Células hipercomplejas

Preprocesamiento visual en los gatos y los monos

- Células simples (con regiones ON y OFF separadas) que responden a líneas en una orientación específica en un lugar específico
- Células complejas (con regiones ON y OFF mezcladas) que responden a líneas de una orientación dada en distintos lugares.
- Células hipercomplejas que responden a ángulos de tamaño y orientación específica y ubicaciones variables.

- Operación matemática que expresa la forma en que las conexiones recopilan información en una capa para proveer la entrada a otra.
- En la inhibición lateral no recurrente teníamos

$$R(x) = \sum_{j} W(x - j)E(j)$$

 Donde W es el peso sináptico, el cual depende de las distancias entre x y j y E(j) es el estímulo

La ecuación

$$R(x) = \sum_{j} W(x - j)E(j)$$

Es una aproximación a la integral

$$R(x) = \int w(x - y)E(y)dy$$

- La convolución es una integral que expresa la cantidad de superposición de una función g mientras se desplaza sobre otra función f.
 - Por lo tanto, "mezcla" una función con otra.

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$

 La formula de la convolución la abreviamos con el operador *

$$R = w * E$$

 Podemos representar los que ocurre en la inhibición lateral con

$$r_1 = e_1 - ke_2$$
 $r_1 = e_1 - kr_2$
 $r_2 = e_2 - ke_1$ $r_2 = e_2 - kr_1$
 $r = w * e$ $r = e + w * r$

No recurrente

Recurrente

Correlación cruzada

$$(I*K)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

Redes neuronales Convolución

- Podemos pensar que las imágenes son funciones bidimensionales
 - Varias transformaciones de imágenes son convoluciones de una imagen con un kernel

• Un ejemplo simple:

$$(40*0)+(42*1)+(46*0) + (46*0)+(50*0)+(55*0) +$$

 $(52*0)+(56*0)+(58*0) = 42$

Sólo movió el pixel superior un reglón abajo

• Difuminar (promediando pixeles)

0	0	0	0	0
0	1/9	1/9	1/9	0
0	1/9	1/9	1/9	0
0	1/9	1/9	1/9	0
0	0	0	0	0

 Detección de bordes (llevando a valores cercanos a cero pixeles vecinos similares)

0	0	0	0	0
0	0	0	0	0
0	-1	1	0	0
0	0	0	0	0
0	0	0	0	0

