

A-Z Machine Learning using Azure Machine Learning (AzureML)

Hands on AzureML: From Azure Machine Learning Introduction to Advance Machine Learning Algorithms. No Coding Required.

BEST SELLER ★★★ ★ 4.3 (215 ratings) 1,597 students enrolled

Created by Jitesh Khurkhuriya Last updated 3/2018 Denglish English

Tive Conlies

Section 7 Regression

© litesh Khu

Regression Analysis

 Statistical process for estimating the relationships among variables

 Relationship between a dependent variable and one or more independent variables (or 'predictors')

The predictor is a continuous variable

 Can also be used to infer causal relationships between dependent and independent variables.

Regression Analysis

 Statistical process for estimating the relationships among variables

 Relationship between a dependent variable and one or more independent variables (or 'predictors')

• The predictor is a continuous variable

 Can also be used to infer causal relationships between dependent and independent variables.

Causal Relationship?

Linear Regression

Simple Regression

$$Y = \beta_0 + \beta_1 X$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \dots + \beta_n X_n$$

-1115E

Simple Linear Regression

© litesh kms

Hrs Studied	Marks		
(X)	(Y)		
0	40		
2	52		
3	53		
4	55		
4	56		
5	72		
6	71		
6	88		
7	56		
7	74		
8	89		
9	67		
9	89		
5.38	66.31		
Mean			

	X – Mean (A)	Y – Mean (B)	A^2	A*B 141.66
	-5.38	-26.31	28.99	141.66
-				
-				M
\mid				We ,
-			13	
-		"KUN,		
-	1	In.		
ŀ	Jitesh K			
0	1			
			S	um

Hrs Studied (X)	Marks (Y)	
0	40	
2	52	
3	53	
4	55	
4	56	
5	72	
6	71	
6	88	
7	56	
7	74	
8	89	
9	67	
9	89	
5.38	66.31	
Mean		

X – Mean (A)	Y – Mean (B)	A^2	A*B
-5.38	-26.31	28.99	141.66
-3.38	-14.31	11.46	48.43
-2.38	-13.31	5.69	31.73
-1.38	-11.31	1.92	15.66
-1.38	-10.31	1.92	14.27
-0.38	5.69	0.15	2.19
0.62	4.69	0.38	2.89
0.62	21.69	10 .38	13.35
1.62	-10.31	2.61	-16.65
1.62	7.69	2.61	12.43
2.62	22.69	6.84	59.35
3.62	0.69	13.07	2.50
3.62	22.69	13.07	82.04
		89.08	405.46
		S	um

$$Y = b0 + b1X$$

$$b1 = \frac{\sum (x - \overline{x}) (Y - \overline{Y})}{\sum (x - \overline{x})^2}$$

$$= 405.46 / 89.08$$

$$= 4.55$$

Hrs Studied	Marks	
(X)	(Y)	
0	40	
2	52	
3	53	
4	55	
4	56	
5	72	
6	71	
6	88	
7	56	
7	74	
8	89	
9	67	
9	89	
5.38	66.31	
Mean		

Hrs Studied	Marks	
(X)	(Y)	
0	40	
2	52	
3	53	
4	55	
4	56	
5	72	
6	71	
6	88	
7	56	
7	74	
8	89	
9	67	
9	89	
5.38	66.31	
Mean		

rive Conlies

Common Regression Terms

© litesh khu!

Ordinary Least Square

Ordinary Least Square

Mean Absolute Error

Mean absolute error (MAE) is a quantity used to measure how close forecasts or predictions are to the eventual outcomes.

Root Mean Square Error

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (yi - \hat{y}i)_{ine}^{2}}$$

- Very commonly used and makes for an excellent general purpose error metric for numerical predictions.
- Compared to the similar Mean Absolute Error, RMSE amplifies and severely punishes large errors.

Relative Absolute Error

iine Coniese

R Squared or Coefficient of Determination

© litesh Khu

Coefficient of Determination

Hrs Studied	Marks	
(X)	(Y)	
0	40	
2	52	
3	53	
4	55	
4	56	
5	72	
6	71	
6	88	
7	56	
7	74	
8	89	
9	67	
9	89	
5.38	66.31	
Mean		

Hrs Studied	Marks		
(X)	(Y)		
0	40		
2	52		
3	53		
4	55		
4	56		
5	72		
6	71		
6	88		
7	56		
7	74		
8	89		
9	67		
9	89		
5.38	66.31		
Mean			

Hrs Studied	Marks		
(X)	(Y)		
0	40		
2	52		
3	53		
4	55		
4	56		
5	72		
6	71		
6	88		
7	56		
7	74		
8	89		
9	67		
9	89		
5.38	66.31		
Mean			

Y = 41.8 + 4.55X
"IKPU
Ch Kho.
e lites,

Predicted Marks Ŷ
41.80
50.90
55.45
60.00
60.00
64.55
69.10
69.10
73.65
73.65
78.20
82.75
82.75

(Y − T)^2	$(\hat{Y} - \overline{Y})^2$
(40 – 66.31)^2	(41.8 – 66.31)^2

Hrs Studied	Marks	
(X)	(Y)	
0	40	
2	52	
3	53	
4	55	
4	56	
5	72	
6	71	
6	88	
7	56	
7	74	
8	89	
9	67	
9	89	
5.38	66.31	
Mean		

Y = 41.8 + 4.55X
Why
While
ash K.
like

Prec	licted M Ŷ	arks
	41.80	
	50.90	
	55.45	
	60.00	
	60.00	ON
	64.55	
	69.10	
NS	69.10	
	73.65	
	73.65	
	78.20	
	82.75	
	82.75	

(Y − Y)^2	(Ŷ – Ÿ)^2
692.22	600.74
204.78	237.47
177.16	117.94
127.92	39.82
106.30	39.82
32.38	3.10
22.00	7.78
470.46	7.78
106.30	53.88
59.14	53.88
514.84	141.37
0.48	270.27
514.84	270.27
3028.77	1844.12
SST	SSR

Coefficient of Determination

Sum of Squares Due to Regression

$$SSR = \sum_{i=1}^{n} (\hat{y}i - \bar{y}i)^2$$

Total Sum of Squares

$$SST = \sum_{i=1}^{n} (yi - yi)^2$$

Coefficient of Determination

$$R^{2} = SSR/SST = 1844.12/3028.77$$

$$= 0.60886$$

$$= 0.60886$$
The value \rightarrow Variation in Y is explained by variation

Higher the value \rightarrow Variation in Y is explained by variation in X.

Time Conlise

Gradient Descent

© litesh khun

Hypothesis

"Proposed explanation made on the basis of limited evidence as a starting point for further investigation"

$$h(x) = b0 + b1x$$

Find out value of b0 and b1 such that

for the given observations

Example of Linear Regression

Hrs Studied	Marks
0	40
2	52
3	53
4	55
4	56
5	72
6	71
6	88
7	56
7	74 💥
8	89
9	67
9	89

Cost Function

Hypothesis:
$$h(x) = b0 + b1x$$

$$\frac{1}{2n} \sum_{i=1}^{n} (yi - \hat{y}i)^{20nline} Course$$

$$Outher the property of the course of the co$$

Cost Function

Hypothesis: h(x) = b0 + b1x

Hrs Studied	Marks	b0 = 0; b1 = 1 Marks Predicted
0	40	0
2	52	2
3	53	
4	55	
4	56	SIL:
5	72	khurkhuriyo
6	71	MILK
6	88	Kla
7	56	
7	74	
8	89	
9	67	
9	89	© Jitesh Khurkhuriya -

Azure ML Online Course

Cost Function

Hypothesis: h(x) = b0 + b1x

Hrs Studied	Marks	b0 = 0; b1 = 1 Marks Predicted
0	40	0
2	52	2
3	53	3
4	55	4
4	56	4
5	72	5
6	71	6
6	88	6
7	56	7 sh
7	74	N. C. S.
8	89	8
9	67	9
9	89	9

(Yi — Yi)^2	
1600	
2500	
2500	
2601	
2704	
4489	
4225	
6724	
2401	
4489	
6561	
3364	
6400	

	Con	n			
INE	1 2n	$\sum_{i=1}$	(yi	_	$\hat{y}i)^2$

b0	b1	Cost
0	1	1944.538

© Jitesh Khurkhuriya – Azure ML Online Course

Cost Function Plot

b0	b1	cost
0	1	1944.54
0	2	1610.08
0	3	1311.46
0	5	821.77
0	7	475.46
0	8	356.08
0	10	224.85
0	12	237.00
0	14	392.54
0	15	524.08
0	16	691.46
0	17	894.69
0	18	1133.77
0	20	1719.46
0	21	2066.08

© Jitesh Khurkhuriya – Azure ML Online Course

Cost Function with b0 and b1

Urse

X axis - b1

Y axis - b0

Z = C(b0,b1)

https://academo.org/

Gradient Descent

Gradient Descent

Gradient Descent

Gradient Descent?

Batch Gradient Descent

X1	X2	••••	Xn

$$b_j := b_j - \alpha f(C_i)$$

Does it for number of examples number of features learning rate Sum of All before taking one step (epoch) Long time to reach the bottom

Batch Gradient Descent

Batch Vs Stochastic Gradient Descent

$$b_j := b_j - \alpha f(C_i)$$

Does it for number of examples number of features learning rate

Batch Gradient Descent

Randomly shuffle the dataset

Repeat the steps for every example

Modify the coefficient at every step

Stochastic Gradient Descent

rine Conlies

Decision Tree Regression

© litesh khu!

Decision Tree Terms

© Jitesh Khurkhuriya – Azure ML Online Course

Decision Tree Regression

Decision Tree Regression

Decision Tree Regression

Boosted Decision Tree Regression

MART gradient boosting algorithm.

• Predefined loss function to measure the error in each step.

Azure

- Urse

Thank You and Have a Great Time...!

@ litesh Kms