-

NOV 09, 2022

WORKS FOR ME 1

ONA extraction from fecal samples

DO

dx.doi.org/10.17504/protocols.io.5jyl8jnorg2w/v1

Anique Ahmad¹, Arya Gautam¹, Tsedenia Denekew¹, Aashish Jha¹

¹New York University, Abu Dhabi

Aashish Jha: jhaar@nyu.edu

COMMENTS 0

ABSTRACT

DNA Extraction from fecal samples

DOI

dx.doi.org/10.17504/protocols.io.5jyl8jnorg2w/v1

PROTOCOL CITATION

Anique Ahmad, Arya Gautam, Tsedenia Denekew, Aashish Jha 2022. DNA extraction from fecal samples. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.5jyl8jnorg2w/v1

LICENSE

This is an open access protocol distributed under the terms of the <u>Creative</u> <u>Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

protocols.io

1

Citation: Anique Ahmad, Arya Gautam, Tsedenia Denekew, Aashish Jha DNAÃÂ extraction from fecal samples https://dx.doi.org/10.17504/protocols.io.5jyl8jnorg2w/v1

CREATED

Sep 16, 2022

LAST MODIFIED

Nov 09, 2022

PROTOCOL INTEGER ID

70128

GUIDELINES

Sample Type	Maximum Input
Feces	200 mg
Soil	250 mg
Liquid Samples ¹ and Swab Collections ²	250 µl
Cells (isotonic buffer, e.g. PBS)	50-100 mg (wet weight) (109 bacterial and 108 yeast cells)
Samples in DNA/RNA Shield™,3	≤ 1 ml

Table 1. Sample type and maximum input for DNA extraction using this protocol

MATERIALS TEXT

ZymoBIOMICS DNA Extraction Kit
Fecal samples
Homogenizing pestle
Liquid nitrogen or dry ice
Ice box with ice
1.5 ml microcentrifuge tubes
Vortex
Omni Bead Ruptor Elite bead beater
Centrifuge

BEFORE STARTING

Label the following:

ZR BashingBeadTM Lysis Tubes (0.1 & 0.5 mm)

 ${\sf ZymoSpin^{TM}\,III\text{-}F\,Filter\,in\,Collection\,Tube}$

Collection Tube

ZymoSpinTM II-CR Column in Collection Tube

ZymoSpinTM III-HRC Filter in Collection Tube

2 Sets of 1.5 ml microcentrifuge tubes (not provided with kit)

■ Spin the labelled ZR BashingBeadTM Lysis Tubes (0.1 & 0.5 mm) for 10 seconds in a mini-centrifuge to

2

ensure that the beads have settled at the bottom

- Include 1 control per batch and assign its position randomly.
- Transfer fecal sample to ZR BashingBead™ Lysis Tube (0.1 & 0.5 mm) and add ZymoBIOMICS™ Lysis Solution:

10s

- Flash frozen fecal samples will be solid and an aliquot (♣ 15 mg) of feces is expected in a 2mL container (Table 1). Add ♣ 250 μL of ZymoBIOMICS™ Lysis Solution to the fecal sample and homogenize evenly using the homogenizing pestle while submerged in liquid nitrogen (or on dry ice). Once the sample is homogenized, add another ♣ 500 μL of ZymoBIOMICS™ Lysis Solution such that the final volume is ♣ 750 μL . Mix well by vortexing.
 - Spin the sample container for 00:00:10 in a minicentrifuge.
 - Transfer the entire \bot 750 μ L of the sample mix into the ZR BashingBead \bot Lysis Tube (0.1 & 0.5 mm) and proceed to Step 2.
- 1.2 Fecal samples collected using Zymo DNA/RNA Shield™ will exist as a solution (Table 1). Mix the sample by shaking well or vortexing. Add up to Δ 250 μL of such sample to a ZR BashingBead™ Lysis Tube (0.1 & 0.5 mm). Adjust final volume to Δ 1 mL with ZymoBIOMICS™ Lysis Solution. Cap the tube tightly and proceed to Step 2.

Secure in a Omni Bead Ruptor Elite bead beater fitted with a 2 ml tube holder assembly and process at max speed (30 m/s) for 00:05:00 . Rest for 00:05:00 .

3 Centrifuge the ZR BashingBead[™] Lysis Tubes (0.1 & 0.5 mm) in a microcentrifuge at \geq 10000 x g, 00:01:00.

Transfer up to Δ 600 μ L supernatant to the Zymo- $Spin^{7}$ III-F Filter in the labelled Collection Tube and centrifuge at $8.000 \times g$, 00:01:00. Discard the Zymo- $Spin^{7}$ III-F Filter.

10m

5	Add \bot 600 μ L of ZymoBIOMICS [™] DNA Binding Buffer to the filtrate in <i>the labelled Collection Tube</i> from Step 4. Mix well.	
5.1	Repeat so that the final volume of ZymoBIOMICS™ DNA Binding Buffer added is	
6	Transfer $\ \ \ \ \ \ \ \ \ \ \ \ \ $	11
6.1	Discard the flow through from the Collection Tube and repeat step 6.	
7	Add	11
8	Add ZymoBIOMICS™ DNA Wash Buffer 2 to the <i>Zymo-Spin™ IICR Column</i> in a Collection Tube and centrifuge at 10.000 x g, 00:01:00 . Discard the flow-through.	11
9	Repeat with ∠ 200 µL ZymoBIOMICS™ DNA Wash Buffer 2 to the <i>Zymo-Spin™ IICR Column</i> in a Collection Tube and centrifuge at 10.000 x g, 00:01:00	11
10	Transfer the Zymo-Spin™ IICR Column to a clean 1.5 ml microcentrifuge tube and add (50 µl minimum) ZymoBIOMICS™ DNase/RNase Free Water directly to the column matrix and incubate for (50 00:05:00). Centrifuge at (10.000 x g, 00:01:00) to elute the DNA	61
11	Place a <i>Zymo-Spin™ III-HRC Filter</i> in <i>a new Collection Tube</i> and add ∠ 600 µL ZymoBIOMICS™	31

3m

- 12 Transfer the eluted DNA (Step 10) to a prepared Zymo-Spin™ III-HRC Filter in a clean 1.5 ml microcentrifuge tube and centrifuge at exactly (16.000 x g, 00:03:00
- 13 The filtered DNA is now suitable for PCR and other downstream applications. Eluted DNA should be frozen ($-30 \text{ to } -15^{\circ}\text{C} \text{ or } -90 \text{ to } -65^{\circ}\text{C}$)