支持向量机-弱对偶性证明

2018年11月22日 星期四 上午9:05

纳来优化问题(原问题)

min (X)

S.t. m;(x)≤0, i=1,...,m

nj(X)=0, j=1,...,N

将带纳来优化问题写成拉格朗I乘子供的形成 拉格朗 I函数:

 $\int_{\mathbb{R}} (x_1, \lambda_1, y_1) = \int_{\mathbb{R}} (x_1) + \sum_{i=1}^{N} y_i y_i$ $\lambda_i \geqslant 0$. y_i 機限制

原问题的无线形式:

min max よ(メンルり) 原问题是关于A的函数 メンルり 、S·t· 入i 3³

从逻辑上思考:

「如果 X违反了 的来 $m_1(X)$, $m_1(X)$ $m_1(X)$ $m_2(X)$ m_2

对 風 性

对偶问题:

max mim よ(x, λ, カ) 対偶凡競是美子 ルカ血酸 S.t. 入; 20

弱对偶性: 对偶问题 《原问题

证明: max min d < min max d

 $\max_{\lambda, \lambda} \min_{\lambda} \int_{X} (\chi_{\lambda} \chi_{\lambda} \chi_{\lambda}) \leq \min_{\lambda} \max_{\lambda} \int_{X} (\chi_{\lambda} \chi_{\lambda} \chi_{\lambda})$

 $\frac{1}{\lambda}$: $\frac{\min_{X} \int (X, \lambda, h)}{A(\lambda, h)} \leq \int (X, \lambda, h) \leq \underbrace{\max_{X} \int (X, \lambda, h)}_{B(X)}$

 $A(\lambda, y) \leq B(x)$

 $\Rightarrow A(\lambda, n) \leq \min B(X)$

=> max A (), n) < min B(X)

-: max min L < min max L