Statistical Foundations of Prior-Data Fitted Networks [5] Author: Prof.Dr. Thomas Nagler

Introduction

Problem Setup

Speaker: Felix Barrez TAMBE NDONFACK

University of Freiburg
Department of Mathematical Stochastics, Mathematical Institute

July 16, 2025

universität freiburg

1 / 18

References

Outline

Introduction

- 1 Introduction
- 2 Problem Setup
- 3 PFN Objective and Consistency of PPDs
- 4 Progress in learning architectures and empirical analyses

universität freiburg

2/18

References

Literature Review and Motivation for PFNs

Problem Setup

Introduction

Prior-Data Fitted Networks (PFNs), introduced by *Müller et al.* (2021) [3], are a novel machine learning method for tabular data inspired by Bayesian nonparametrics and meta-learning. Built on Transformer architecture, PFNs use set-valued inputs of training and test samples to make predictions in a single forward pass.

PFNs approximate Bayesian inference via in-context learning. Bayesian inference involves updating beliefs about model parameters based on data by computing the posterior $p(\Theta|\mathcal{D})$ and deriving predictions via:

- Via Variational Inference or MCMC, the estimation of $p(\Theta|\mathcal{D}_{train})$ has been done.
- To make prediction for a new data point x_{test}, [3] compute the predictive distribution as

$$p(y_{\text{test}} \mid x_{\text{test}}, \mathcal{D}_{\text{train}}) = \int_{\Theta} p(\Theta \mid \mathcal{D}_{\text{train}}) p(y_{\text{test}} \mid x_{\text{test}}, \Theta) d\Theta$$

- Instead, PFNs directly approximate $p(y_{\text{test}} \mid x_{\text{test}}, \mathcal{D}_{\text{train}})$ using the following steps:
 - **1** Sample datasets $\mathcal{D}^{(i)} \sim p(\mathcal{D})$ and split into $\mathcal{D}^{(i)}_{train}$ and $\mathcal{D}^{(i)}_{test} = \{x^{(i)}_{test}, y^{(i)}_{test}\}$.
 - **Train** a model to predict $y_{\text{test}}^{(i)}$ from $\{x_{\text{test}}^{(i)}, \mathcal{D}_{\text{train}}\}$.
 - The model learns to approximate $p(y_{\text{test}} | x_{\text{test}}, \mathcal{D})$ in a single forward pass.

universität freiburg

4 / 18

References

References

5/18

Details for PFNs

Problem Setup

Introduction

00000

Let us have a look at this summary of the illustration of [3]

Figure: Visualisation of PFN. We sample datasets from an a priori and fit an PFN to examples of these datasets.

Given a real dataset, we feed it and a test point into the PFN and approximate Bayesian inference in a single forward propagation.

universitätfreiburg

Objectives

Problem Setup

Introduction

00000

- **I** Establish a **theoretical foundation** for Prior-Data Fitted Networks (PFNs):
 - Formalize PFNs as approximations of Bayesian posterior predictive distributions (PPDs).
 - Characterize KL-optimality and Monte-Carlo training dynamics.
- Identify statistical mechanisms driving in-context learning:
 - Decompose error into bias and variance components.
 - Derive conditions for vanishing variance (sensitivity analysis) and bias (locality).
- 3 Analyze the role of transformer architecture:
 - Prove variance decay rates (O(1/n)) and bias limits.
 - Validate empirically with TabPFN and localization techniques.

universität freiburg

6 / 18

References

Research Questions

Problem Setup

Introduction

00000

- **Theoretical Learnability**: Under what prior conditions does the PPD converge to the true $p_0(y \mid x)$?
- Approximation Quality: How do the prior Π , size distribution Π_N , and model class $\{q_\theta\}$ influence PFN training?
- In-Context Learning: Why can a pre-trained PFN improve predictions on $n > N_{\text{pre-train}}$?
 - Variance: Does transformer symmetry/sensitivity ensure O(1/n) decay?
 - Bias: Why does localization become necessary?
- Architectural Impact: How do attention heads in transformers limit bias reduction?

universität freiburg

7 / 18

References

universität freiburg

Formal Setup

Introduction

Classification Task:

Problem Setup

0

- Features: $X \in \mathcal{X} \subseteq \mathbb{R}^d$, Labels: $Y \in \mathcal{Y}$.
- Observed data: $\mathcal{D}_n = \{(Y_i, X_i)\}_{i=1}^n \sim p_0$, i.i.d.
- Goal: Estimate $p_0(y \mid x) = \mathbb{P}(Y = y \mid X = x)$.

universität freiburg

9/18

References

Introduction

Classification Task:

Problem Setup

iassincation rask.

- Features: $X \in \mathcal{X} \subseteq \mathbb{R}^d$, Labels: $Y \in \mathcal{Y}$.
- Observed data: $\mathcal{D}_n = \{(Y_i, X_i)\}_{i=1}^n \sim p_0$, i.i.d.
- Goal: Estimate $p_0(y \mid x) = \mathbb{P}(Y = y \mid X = x)$.

Bayesian Nonparametric Framework:

- Treat p_0 as a realization of a random $p \sim \Pi$, where Π is a *prior* over models.
- Posterior predictive distribution (PPD):

$$\pi(y \mid x, \mathcal{D}_n) = \int p(y \mid x) d\Pi(p \mid \mathcal{D}_n).$$

■ Key assumption: Prior factorizes as $\Pi(p) = \Pi(p(y \mid x)) \cdot \Pi(p(x))$.

universitätfreiburg

Felix Ndonfack UF

9/18

References

References

Introduction

Problem Setup

- Features: $X \in \mathcal{X} \subseteq \mathbb{R}^d$, Labels: $Y \in \mathcal{Y}$.
- Observed data: $\mathcal{D}_n = \{(Y_i, X_i)\}_{i=1}^n \sim p_0$, i.i.d.
- Goal: Estimate $p_0(y \mid x) = \mathbb{P}(Y = y \mid X = x)$.

Bayesian Nonparametric Framework:

- Treat p_0 as a realization of a random $p \sim \Pi$, where Π is a *prior* over models.
- Posterior predictive distribution (PPD):

$$\pi(y \mid x, \mathcal{D}_n) = \int p(y \mid x) d\Pi(p \mid \mathcal{D}_n).$$

■ Key assumption: Prior factorizes as $\Pi(p) = \Pi(p(y \mid x)) \cdot \Pi(p(x))$.

Prior-Data Fitted Networks (PFNs):

- Goal: Approximate $\pi(y \mid x, \mathcal{D}_n)$ with a parametric model q_θ .
- Training objective (KL-optimality):

$$\theta^* = \arg\max_{\theta} \mathbb{E}_{\Pi_N} \mathbb{E}_{\Pi} \left[\log q_{\theta}(Y \mid X, \mathcal{D}_N) \right],$$

where $\mathcal{D}_N \sim \Pi$, $N \sim \Pi_N$.

Architecture: Transformer networks (permutation-equivariant, Handles Sarable rapiburg

PFN Objective and Consistency of PPDs

universität freiburg

References

Goal: Learn parametric $q_{\theta}(y \mid x, \mathcal{D}_n)$ to approximate the PPD $\pi(y \mid x, \mathcal{D}_n)$.

Theorem: Optimality of PPD

$$\pi = \arg\max_{q \in \mathcal{Q}} \mathbb{E}_{\Pi} \left[\log q(Y \mid X, \mathcal{D}_n) \right],$$

where
$$\mathcal{Q} = \left\{ q: (\mathcal{Y} \times \mathcal{X})^{n+1}
ightarrow [0,1] \, \middle| \, \sum_{y \in \mathcal{Y}} q(y \mid \cdot, \cdot) = 1
ight\}$$
 .

Proof Sketch:

- By definition, π minimizes $KL(\pi || q)$.
- Law of iterated expectations and non-negativity of KL divergence.

Training PFNs:

■ Monte Carlo approximation of θ^* :

$$\hat{\theta} = \arg\max_{\theta} \sum_{j=1}^{m} \log q_{\theta}(Y_j \mid X_j, \mathcal{D}^{(j)}),$$

where $\mathcal{D}^{(j)} \sim \Pi$, $N_i \sim \Pi_N$.

■ Π_N : Size prior (e.g., uniform on $\{1, \ldots, 1023\}$).

universitätfreiburg

July 16, 2025

11 / 18

Consistency of PPDs

Question: When does $\pi(y \mid x, \mathcal{D}_n)$ converge to $p_0(y \mid x)$? Assumptions:

(A1): Prior Π contains a KL-optimal p*, i.e.,

$$p^* = \arg\min_{p \in \mathcal{P}} \mathsf{KL}(p^* || p_0).$$

(A2): Prior mass concentrates near p^* (metric entropy condition).

Theorem: Consistency

$$\pi(y \mid x, \mathcal{D}_n) \xrightarrow{n \to \infty} p^*(y \mid x)$$
 a.s. for p_0 -a.e. (y, x) .

Proof Sketch:

- Posterior concentration: Show $\Pi(p \mid \mathcal{D}_n)$ concentrates around p^*
- Uses Hellinger metric for convergence.
- Borel-Cantelli lemma : Establish almost sure convergence.

universitätfreiburg

12 / 18

Introduction

Progress in learning architectures and empirical analyses

universität freiburg

13 / 18

References

In-Context Learning (ICL)

Problem Setup

Definition

Introduction

Ability of a pre-trained model to adapt to new tasks using only the **context** (input data) provided during inference, *without* parameter updates.

Mechanism in PFNs

- Transformer processes entire dataset \mathcal{D}_n as a sequence.
- Attention heads "attend" to relevant samples in \mathcal{D}_n to predict $P(Y \mid x)$.
- **Key Property**: Predictions improve with larger *n* (unseen during pre-training).

Why It Works (Theoretically)

- **Variance Decay**: Transformer sensitivity to individual samples diminishes as $n \to \infty$.
- Structural Bias: Model architecture implicitly averages over tasks seen during meta-training.

universität freiburg

14 / 18

References

Bias and Locality

Introduction

Error Decomposition

Problem Setup

$$q_{ heta}(y \mid x, \mathcal{D}_n) - p_0(y \mid x) = \underbrace{\text{Variance}}_{O(n^{1/2-\alpha})} + \underbrace{\text{Bias}}_{\text{Depends on locality}}$$

Theorem: Locality Necessity

: For bias $\mathbb{E}[q_{\theta}]-p_0\to 0$, q_{θ} must asymptotically depend *only* on samples (X_i,Y_i) near x.

Transformer Limitation:

- Attention weights $a_i^{(h)}$ assign non-zero mass to *all* samples.
- Bias persists unless explicitly localized.

universitätfreiburg

15 / 18

References

Transformer PFNs: Architecture & Theory

Architecture:

- Input: $\mathcal{D}_n = \{(X_i, Y_i)\}$ + test feature x.
- Multi-head attention: $a_i^{(h)} = \text{SoftMax}(v^\top W_q^{(h)} V_j)$.
- Output: $q_{\theta}(y \mid x, \mathcal{D}_n) = \text{SoftMax}(W_o z)$.

Theoretical Guarantees:

■ **Theorem 6.2:Variance**: $Var \sim O(1/n)$ due to bounded sensitivity.

Theorem 6.3 (Bias Limit)

$$\mathbb{E}[q_{\theta}] \to \overline{q}_{\theta}(y \mid x) = \mathsf{SoftMax}\left(W_o \sum_{h=1}^H W_v^{(h)} \mathbb{E}_{g_h}[V]\right),$$

where q_h is an exponentially tilted measure.

universitätfreiburg

16 / 18

The performance of PFNs hinges on the design of the synthetic priors p(D) used for

pre-training. Notable examples include: **Bayesian Neural Network Prior**: weights are sampled from $\mathcal{N}(0, \sigma^2)$, and

- datasets are generated by applying the sampled network to random inputs [3]. This prior captures uncertainty over neural network parameters.
- Gaussian Process Prior: Hyperparameters (e.g. length scales) are sampled from a meta-prior, and datasets are drawn from the resulting GP. Enables PFNs to approximate GP to approximate GP inference while avoiding cubic complexity [3].
- **TabPFN Prior**: A structural causal model prior with linear relationships and node-specific noise, tailored for tabular data. Achieves state-of-the-art performance on small tabular datasets [2]. It includes Time-series Prior to incorporate seasonality and trends to specialize PFNs for forecasting [1].

These priors demonstrate how domain knowledge can be encoded into PFNs through synthetic data generation, enabling applications ranging from genomics to Bayesian optimization (For further reading, see [4]).

universitätfreiburg

17 / 18

Problem Setup

Introduction

Samuel Dooley, Gurnoor Singh Khurana, Chirag Mohapatra, Siddartha V Naidu, and Colin White.

Forecastpfn: Synthetically-trained zero-shot forecasting.

Advances in Neural Information Processing Systems, 36:2403–2426, 2023.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer that solves small tabular classification problems in a second.

arXiv preprint arXiv:2207.01848, 2022.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.

Transformers can do bayesian inference. arXiv preprint arXiv:2112.10510, 2021.

Samuel Müller, Arik Reuter, Noah Hollmann, David Rügamer, and Frank Hutter. Position: The future of bayesian prediction is prior-fitted. arXiv preprint arXiv:2505.23947, 2025.

Thomas Nagler.

Statistical foundations of prior-data fitted networks.

In International Conference on Machine Learning, pages 25660-25676. PMLR, 2023.

18 / 18

References