Zadanie 1.

Niech T będzie czasem likwidacji szkody, mierzonym w taki sposób, że T=0 gdy szkodę zlikwidowano w ciągu tego samego roku, w którym do niej doszło, T=1 jeśli w ciągu następnego roku, T=2 jeśli jeszcze w następnym roku itd. W tabeli poniżej podany jest rozkład zmiennej T (taki sam bez względu na to, w którym roku do szkody doszło).

j	0	1	2	3	4
Pr(T=j)	0.1	0.4	0.25	0.15	0.1

Niech n_t oznacza ilość szkód, które zaszły w ciągu roku t. Mamy dane na ten temat z roku t_0 oraz kilku lat poprzednich:

t	t_0	$t_0 - 1$	$t_0 - 2$	$t_0 - 3$	$t_0 - 4$
n_{t}	640	532	468	410	297

Oznaczmy przez A zdarzenie, iż szkoda, wylosowana ze zbioru szkód do których doszło w latach od t_0-4 do t_0 włącznie, na koniec roku t_0 oczekuje jeszcze na likwidację.

Warunkowa wartość oczekiwana E(T/A) wynosi:

- (A) 1.75
- (B) 2.12
- (C) 2.40
- (D) 2.75
- (E) 3.15

Zadanie 2.

Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci:

$$U_n = u + c \cdot n - S_n$$
, $n = 0,1,2,...$

gdzie $S_n = W_1 + W_2 + ... + W_n$ jest procesem o przyrostach niezależnych o rozkładzie wykładniczym, danym na półosi dodatniej gęstością:

$$f_W(x) = \frac{1}{2} \cdot \exp\left(-\frac{x}{2}\right),$$

zaś nadwyżka początkowa u = 2

i składka za okres czasu wynosi c = 2

Prawdopodobieństwo, iż do ruiny dojdzie w ciągu dwóch pierwszych okresów, a więc iż zajdzie zdarzenie: $\{U_1 < 0 \mid \text{lub} \mid U_2 < 0\}$, wynosi (w przybliżeniu do trzeciego miejsca dziesiętnego):

- (A) 0.199
- (B) 0.235
- (C) 0.271
- (D) 0.334
- (E) 0.370

Zadanie 3.

Zmienna losowa:

$$S = Y_1 + ... + Y_N$$

ma złożony rozkład Poissona o parametrze intensywności $\lambda = E(N) = \frac{1}{4}$. W tabeli poniżej podano rozkład prawdopodobieństwa składnika Y. W tejże tabeli podano także obliczone dla k = 0,1,...,5 prawdopodobieństwa Pr(S = k).

k	$\Pr(Y=k)$	$\Pr(S=k)$
0	0	0,778801
1	0,1	0,019470
2	0,3	0,058653
3	0,2	0,040402
4	0,1	0,022652
5	0,1	0,022944
6	0,2	

Pr(S = 6) wynosi (w przybliżeniu do trzeciego miejsca dziesiętnego):

- (A) 0.040
- (B) 0.041
- (C) 0.042
- (D) 0.043
- (E) 0.044

Zadanie 4.

Rozkład wartości szkody Y określony na dodatniej półosi i posiadający skończoną wartość oczekiwaną dany jest dystrybuantą F. Dla dwóch punktów d_1 i d_2 znamy wartości dystrybuanty oraz wartości oczekiwane nadwyżki szkody ponad udział własny d_i :

i	d_{i}	$F(d_i)$	$E[(Y-d_i)_+]$
1	1	0.48	0.64
2	3	0.88	0.16

Warunkowa przedziałowa wartość oczekiwana zmiennej Y: $E(Y/Y \in (d_1, d_2])$ wynosi:

- (A) 1.20
- (B) 1.24
- (C) 1.48
- (D) 1.60
- (E) 2.20

Uwaga: podany przedział jest lewostronnie otwarty a prawostronnie domknięty, bo dystrybuanta rozumiana jest tutaj jako: $F(x) \doteq Pr(Y \le x)$

Zadanie 5.

Wartość pojedynczej szkody Y ma rozkład jednostajny na przedziale (0,10). Rozważamy klasyczny model procesu nadwyżki ubezpieczyciela U(t) w czasie ciągłym. Tak więc szkody pojawiają się zgodnie z procesem Poissona z intensywnością λ , a intensywność składki (napływającej w sposób ciągły) wynosi:

$$c = \frac{6}{5} \cdot \lambda \cdot E(Y).$$

Przyjmujemy iż nadwyżka poczatkowa jest zerowa.

Niech $T = \inf\{t: t \ge 0, U(t) < 0\}$ oznacza moment czasu, w którym dochodzi do ruiny (przyjmujemy $T = \infty$ jeśli dla dowolnego $t \ge 0$ nadwyżka jest nieujemna).

Rozważmy funkcję:

$$G(h) = \Pr((T < \infty) \land (U(T) < -h)), h \ge 0,$$

która określa prawdopodobieństwo zdarzenia, iż do ruiny dojdzie, i że deficyt w momencie ruiny przekroczy wartość h.

Niech h^* oznacza taką wartość h, dla której G(h) = 0.3.

*h** wynosi:

- (A) $2\sqrt{3}$
- (B) $\frac{9}{2}$
- (C) $1+2\sqrt{3}$
- (D) $\frac{10}{3}$
- (E) 4

Zadanie 6.

Wartość pojedynczej szkody Y ma rozkład jednostajny na przedziale (0,10). Rozważamy klasyczny model procesu nadwyżki ubezpieczyciela U(t) w czasie ciągłym. Tak więc szkody pojawiają się zgodnie z procesem Poissona z intensywnością λ , a intensywność składki (napływającej w sposób ciągły) wynosi: $c = \frac{4}{2} \cdot \lambda \cdot E(Y)$.

Przyjmujemy iż nadwyżka początkowa wynosi u = 10.

Niech $T = \inf\{t: t \ge 0, U(t) < 0\}$ oznacza moment czasu, w którym dochodzi do ruiny (przyjmujemy $T = \infty$ jeśli dla dowolnego $t \ge 0$ nadwyżka jest nieujemna).

Prawdopodobieństwo ruiny:

$$\Psi = \Pr(T < \infty)$$

przybliżamy metodą de Vyldera, otrzymując w rezultacie liczbę Ψ_{dV} .

 Ψ_{dV} (w przybliżeniu do drugiego miejsca dziesiętnego) wynosi:

- (A) $\Psi_{dV} \approx 0.29$
- (B) $\Psi_{dV} \approx 0.36$
- (C) $\Psi_{dV} \approx 0.45$
- (D) $\Psi_{dV} \approx 0.74$
- (E) nie da się wyznaczyć, bo brakuje informacji o wartości parametru λ

Uwaga: metoda de Vyldera polega na tym, iż Ψ_{dV} wyznaczamy jako dokładne prawdopodobieństwo ruiny dla procesu aproksymującego $U_{dV}(t)$, w którym szkody pojawiają się zgodnie z procesem Poissona, ich rozkład jest wykładniczy (β_{dV}) , zaś parametry procesu aproksymującego $(c_{dV}, \lambda_{dV}, \beta_{dV})$ są tak dobrane, aby przyrosty procesu aproksymującego i przyrosty procesu aproksymowanego miały takie same momenty trzech pierwszych rzędów.

Zadanie 7.

W pewnym portfelu ryzyk łączna wartość szkód:

$$S = Y_1 + Y_2 + ... + Y_N$$

ma złożony rozkład Poissona o parametrze częstotliwości λ oraz rozkładzie wartości pojedynczej szkody Y ciągłym, danym dystrybuantą F.

Niech:

$$Y_{M,i} = \min\{Y_i, M\}; i = 1,2,..., N, \text{ oraz niech:}$$

$$S_M = Y_{M,1} + ... + Y_{M,N}$$
,

gdzie S_M oznacza tę część łącznej wartości szkód S, która pozostaje na udziale ubezpieczyciela (po scedowaniu nadwyżki każdej szkody z tego portfela ponad M na reasekuratora). Rozważamy możliwość zmiany poziomu zachowku M w kontrakcie reasekuracyjnym, i wpływ takiej zmiany na charakterystyki zmiennej losowej S_M .

Przy założeniu, że:

$$\lambda = 10,$$
 $M = 10,$ $F(M) = 0.9$

pochodna momentu centralnego trzeciego rzędu tej zmiennej:

$$\frac{\partial}{\partial M} E \left[\left(S_M - E(S_M) \right)^3 \right]$$

wynosi:

- (A) 300
- (B) 900
- (C) 2700
- (D) 3000
- (E) 9000

Zadanie 8.

Rozważmy dwie zmienne losowe o rozkładach złożonych:

$$X = Y_1 + ... + Y_{N(X)},$$

$$W = Y_1 + \ldots + Y_{N(W)}.$$

W przypadku obu zmiennych rozkład pojedynczego składnika Y jest taki sam, a jego momenty wynoszą:

$$E(Y) = 5$$
; $E(Y^2) = 50$.

Zmienna N(X) ma rozkład Poissona o wartości oczekiwanej równej $\exp(-2)$.

Zmienna N(W) przy danej wartości λ parametru ryzyka Λ ma warunkowy rozkład Poissona o wartości oczekiwanej λ , zaś parametr ryzyka Λ ma rozkład logarytmiczno-normalny taki, że:

$$\ln \Lambda \sim \text{Normalny}(\mu, \sigma^2),$$

gdzie
$$\mu = -2.18$$
,

zaś wartość parametru σ^2 jest tak dobrana, że zachodzi równość: E(W) = E(X).

Stosunek wariancji $\frac{VAR(W)}{VAR(X)}$ wynosi (w przybliżeniu do drugiego miejsca dziesiętnego):

- (A) 1.03
- (B) 1.09
- (C) 1.18
- (D) 1.36
- (E) 1.81

Zadanie 9.

Na podstawie znanej ilości szkód z okresów poprzednich N_0 przeprowadzamy predykcję łącznej wartości szkód:

$$S_1 = Y_1 + \dots + Y_{N_1}$$

na okres następny dla pewnego ryzyka.

Ryzyko pochodzi z populacji, w której parametr ryzyka Λ ma rozkład Gamma (α, β) (przyjęto notację taką że $E(\Lambda) = \frac{\alpha}{\beta}$)

Ilości szkód N_0 i N_1 są warunkowo (przy danej wartości $\Lambda=\lambda$) niezależne, i mają rozkłady:

$$N_0 \sim \text{Poisson}(n \cdot \lambda)$$

 $N_1 \sim \text{Poisson}(\lambda)$.

Ten sam parametr ryzyka Λ różnicuje ryzyka z populacji ze względu na wartość szkód, bowiem zachodzi:

$$E(Y_i/\Lambda = \lambda) = \mu \cdot \lambda$$
,

Jeśli przyjmiemy:

$$\alpha = 5$$
, $\beta = 20$, $n = 20$, $N = 10$;

to predyktor $E(S_1/N_0)$ przyjmie wartość:

- (A) $0.12 \cdot \mu$
- (B) $0.13 \cdot \mu$
- (C) $0.14 \cdot \mu$
- (D) $0.15 \cdot \mu$
- (E) $0.16 \cdot \mu$

Zadanie 10.

Niech *X* oznacza ryzyko związane z bezpośrednimi skutkami finansowymi pewnego wypadku ubezpieczeniowego, zaś *Z* ryzyko związane z jego pośrednimi konsekwencjami. Mamy następujące dane:

X ma rozkład jednostajny na odcinku (0, 1)

$$\Pr(Z > 0/X = x) = x$$

Zmienna Z jest warunkowo (pod warunkiem że Z > 0) niezależna od zmiennej X, i ma pod tym warunkiem rozkład wykładniczy z wartością oczekiwaną równą 1. (*interpretacja: prawdopodobieństwo wystąpienia pośrednich konsekwencji zależy od wartości X*, natomiast jak już te konsekwencje wystąpią, to ich rozmiary nie zależą od wartości X).

VAR(X + Z) wynosi:

- (A) $\frac{2}{3}$
- (B) 1
- (C) $\frac{4}{3}$
- (D) $\frac{5}{3}$
- (E) 2

Egzamin dla Aktuariuszy z 12 stycznia 2002 r.

Matematyka ubezpieczeń majątkowych

Arkusz odpowiedzi*

Imię i nazwisko K L U C Z	ODPOWIEDZI
<u>Dacal</u>	

Zadanie nr	Odpowiedź	Punktacja*
1	С	
2	В	
3	C	
4	D	
5	E	
6	В	
7	A	
8	A	
9	D	
10	В	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.