MATH5210 ANALYSIS

Assignment 4 Monotone Convergence Theorem Philip Nelson

1

Let $\{a_n\}$ be a sequence of non-negative real numbers. Show that the partial sums for the infinite series $\sum_{n=1}^{\infty} a_n$ form a monotone series.

2

What is the approximation property for the infimum of a set A? If $m = \inf(\mathbf{A})$, prove that there is a sequence $a_n \in \mathbf{A}$ with $\lim a_n = m$.

The approximation property for the infimum of a set **A** states Suppose that $m = \inf(\mathbf{A})$

Then for any $\epsilon > 0, \exists x \in \mathbf{A} \text{ s.t. } m \leq x \leq m + \epsilon$

Since $m = \inf(\mathbf{A})$, $\{a_n\}$ is bounded below and has a greatest upper bound (gub) s.t. $\operatorname{gub}(\{a_n\}) = m$. We will prove will prove that $\lim_{n \to \infty} a_n = m$. Let $\epsilon > 0$ be given. We have to find N s.t. $|a_n - m| < \epsilon$ and $a_n - m$ is always

positive because $a_n > m$. So $a_n - m < \epsilon$ for all n > N.

Then by the approximation property of the infimum of **A**, there exists an $x \in$ $\{a_n\}$ s.t. $m \le x < m + \epsilon$ where $x = a_N$. So

$$a_N \le m + \epsilon \tag{1}$$

Finally if n > N, then because of monotone decreasing

$$a_N < a_n$$
 (2)

Combining 1 and 2 gives us $m + \epsilon > a_N > a_n$. Thus $a_n - m < \epsilon$ for all n > N.

3

Give a detailed proof of the MCT in the case of a monotone decreasing sequence which is bounded below. Follow the proof given in class.

4

If 0 < r < 1, show that $\lim_{n \to \infty} r^n = 0$. Note that with $a_n = r^n$, $a_{n+1} = ra_n$. What happens if $0 \le r \le 1$?

5

Let $a_1 \in (0,1)$ Prove that $a_{n+1} = \sqrt{a_n + 1} - 1$ is a increasing sequence which converges to 0. What happens if $a_0 = 0$, if $a_0 = -1$?

6

Suppose $a_1 \ge 2$ and $a_{n+1} = 2 + \sqrt{a_n - 2}$. Show that a_n converges to 2 or 3. How does the limit depend upon the value of a_1

7

(Bonus) Let $0 < b_1 < a_1$ and let

$$a_{n+1} = \frac{a_n + b_n}{2}$$
 and $b_{n+1} = \sqrt{a_n b_n}$

 \mathbf{a}

Show that $0 < b_n < a_n$

\mathbf{b}

Show that b_n is increasing and bounded above.

 \mathbf{c}

Show that a_n is decreasing and bounded below.

\mathbf{d}

Show that $0 < a_{n+1} - b_{n+1} < (a_1 - b_1)/2^n$

e

Conclude that the sequences a_n and b_n converge to a common limit.