Q.037

- (1) 任意の実数 x に対して $\cos(2x) + cx^2 \ge 1$ が成り立つような 定数 c の値の範囲を求めよ。 ★3 (北海道大 2001)
- (2) $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ における $\cos x + \frac{\sqrt{3}}{4} x^2$ の最大値を求めよ。 $\pi > 3.1, \sqrt{3} > 1.7$ は用いてよい。 $\bigstar 3$ (京大理系 2013)

(1)

関数 f(x) を、 $f(x) = \cos(2x) + cx^2$ とする。これは偶関数であるから、 $x \ge 0$ を考えればよい。これを微分すると、 $f'(x) = -2\sin(2x) + 2cx$,

$$f''(x) = -4\cos(2x) + 2c$$
 である。 $c < 0$ の場合、 $f\left(\frac{\pi}{4}\right) = c\left(\frac{\pi}{4}\right)^2 < 0$ となり題意を満たさない。

 $0 \leq c < 2$ のとき、f''(0) = -4 + 2c < 0 となる。 $\cos(2\alpha) = \frac{c}{2}$ を満た す α を用いて、 $0 < x < \alpha$ の範囲で f''(x) < 0 であり、f'(x) は単調 減少する。f'(0) = 0 であるから、 $0 < x < \alpha$ の範囲で f'(x) < 0 とな り、f(x) は単調減少する。f(0) = 1 であるから、 $0 < x < \alpha$ の範囲で f(x) < 1 となる。よって題意を満たさない。 $c \ge 2$ のとき、常に $f''(x) \ge 0$ であるから、f'(x) は常に単調増加する。 f'(0) = 0 であるから、常に $f'(x) \ge 0$ となって、f(x) は常に単調増加することがわかる。f(0) = 1 であったから、この場合には題意が満たさ

以上によって、求める c の範囲は、 $c \geq 2$ 。

(2)

関数 g を、 $g(x) = \cos x + \frac{\sqrt{3}}{4}x^2$ で定める。 関数 g は偶関数であるから、 $0 \le x \le \frac{\pi}{2}$ の範囲で考えれば十分。ここで、 $g'(x) = -\sin x + \frac{\sqrt{3}}{2}x$,

$$g''(x) = -\cos x + \frac{\sqrt{3}}{2}$$
 となる。

$$g''\left(\frac{\pi}{6}\right) = 0$$
 であることを踏まえて増減表を書くと、

	x	0		$\frac{\pi}{6}$		$\frac{\pi}{2}$			
	g''	$-1 + \frac{\sqrt{3}}{2}$	_	0	+	$\frac{\sqrt{3}}{2}$			
	g'	0	>	$-\frac{1}{2} + \frac{\sqrt{3}\pi}{12}$	7	$-1+\frac{\sqrt{3}\pi}{4}$			

となる。ここで、 $\sqrt{3}\pi > 1.7 \times 3.1 = 5.27$ だから、 $-\frac{1}{2} + \frac{\sqrt{3}\pi}{12} < 0$ *1,

 $-1+rac{\sqrt{3}\pi}{4}>0$ がわかる。中間値の定理より、開区間 $\left(rac{\pi}{6},rac{\pi}{2}
ight)$ 内の α であって、 $g(\alpha)=0$ を満たすものが存在する。これを用いて改めて増減 表を書くと、

x	0		α		$\frac{\pi}{2}$
g'	0	_	0	+	$-1 + \frac{\sqrt{3}\pi}{4}$
g	1	×	$g(\alpha)$	7	$\frac{\sqrt{3}\pi^2}{16}$

となる。 $\sqrt{3}\pi^2 > 1.7 \times 3.1^2 = 16.337$ だから、 $\frac{16}{16} > 1$ がわかる。

したがって、求める最大値は $\frac{\sqrt{3}\pi^2}{16}$ $(x = \pm \frac{\pi}{2} \text{ のとき})$ 。

 $^{^{*1}}$ 増減表から明らかではある。