

Aula 2

Prof Tanilson Dias dos Santos

Universidade Aberta do Brasil – UAB Universidade Federal do Tocantins - UFT

Relembrando o que Vimos na Aula 1

- Apresentação da Disciplina;
- Conceitos Básicos de Lógica de Programação;
- Introdução aos Fluxogramas.

Roteiro da Aula 2

- Feedback Aula 1: Fórum, Questionário, Vídeo, etc;
- Prazo para fechamento do Fórum Semanal: até o dia anterior à próxima aula (Fóruns aulas 1 e 2 fecha dia 26 de Maio);
- Exercícios com Fluxogramas (loops);
- Testes de Mesa e Tabela Verdade;
- Exercícios com Fluxogramas (Desvio Multi-Condicional);

Sobre Fluxograma

- Estudamos o funcionamento de elementos Básicos de fluxogramas;
- Início/Fim de Algoritmo, Processamento de Dados, Leitura e Impressão de Valores, Condicional, etc;
- Enfatizar alguns comandos:
 - Para Comparação usamos (em fluxogramas) o operador "=="
 - O operador "=" serve como comando de atribuição

Relembrando o Funcionamento de Elementos

 Representa o INICIO e o FIM de um Algoritmo.

 Utilizado para operações que exigem PROCESSAMENTO de Dados ou Operações Aritiméticas.

 Efetua teste condicional, isto é, toma uma DECISÃO. Possui uma entrada, e duas saídas: VERDADEIRO E FALSO.

Relembrando o Funcionamento de Elementos

• LEITURA de dados via teclado.

 Impressão de dados na tela, isto é MOSTRAR algum texto.

 Linha de FLUXO. Liga outros símbolos e indica a sequência de operações.

Problema 1 - Repetição

 Escrever o fluxograma para um programa conte de 1 até 10 e imprima cada número para o usuário.

A saída deve ser: "1 2 3 4 5 6 7 8 9 10"

- Pensem: como podemos fazer isso?
- Uma solução esdrúxula seria colocar 10 elementos de impressão em sequência; ou
- Colocar a String como mensagem de impressão;
- Mas a ideia do exercício é identificar repetição de uma ação.

Problema 1 - Repetição

A ideia geral da proposta é a seguinte:

- Cria-se uma variável para funcionar como contador;
- Um comando de decisão testa o limite do intervalo;
- Dentro do laço de repetição há o incremento da variável;
- Enquanto a condição for satisfeita a repetição é executada.

Problema 2 - Repetição

 Escrever o fluxograma para um programa que: pergunte ao usuário quantos números ele quer dar como entrada. Em seguida leia todos os números. Ao final apresente o valor do somatório dos números lidos.

Teste de Mesa

Teste de Mesa

- Atribuição de valores e teste de como o seu programa deve funcionar;
- No teste de mesa você consegue:
 - 1. Testar Lógica do Algoritmo;
 - Verificar o Comportamento do Código;
 - 3. Identificar Erros de Implementação.
- Você precisa mapear o código (variáveis e demais elementos) por linha, ou fluxograma por elemento.

- Vamos estudar a Lógica Proposicional;
- Uma proposição é uma sentença declarativa que pode ser verdadeira ou falsa, mas não ambas simultaneamente;
- São princípios básicos da lógica:
 - 1- <u>Princípio da Identidade</u>: todo elemento é idêntico a si mesmo. Exemplo carro é igual a carro; pedra é igual a pedra; flor é igual a flor;
 - 2- <u>Princípio da não contradição</u>: duas informação contraditórias não podem ser verdadeiras ou falsas ao mesmo tempo, uma delas deve ser verdadeira e a outra falsa;
 - 3- <u>Princípio do terceiro excluído</u>: toda proposição pode assumir apenas dois valores
 VERDADEIRO ou FALSO, não existe uma terceira opção.

- Todas as sentenças a seguir são proposições:
 - 1. Brasília é a capital do Brasil;
 - 2. Araguaína é a capital do Tocantins;
 - 3. 1**+**1 = 2;
 - 4. 2+2=3.

Obs. As sentenças 1 e 3 são verdadeiras mas as 2 e 4 são falsas.

- Algumas sentenças que não são proposições:
 - 1. Que horas são?
 - 2. Leia isto cuidadosamente.
 - 3. x + 1 = 2.
 - 4. x + y = z.

Obs. As sentenças 1 e 2 não são proposições porque não são sentenças declarativas, enquanto as sentenças 3 e 4 não são proposições porque não são nem verdadeiras nem falsas.

- Definição 1: Seja p uma proposição, a negação de p é indicada por ¬p,
 lê-se "não p".
- Exemplos. Qual seria a negação das seguintes proposições:
- 1. Hoje é sábado.

- <u>Definição 1</u>: Seja p uma proposição, a negação de p é indicada por ¬p,
 lê-se "não p".
- Exemplos. Qual seria a negação das seguintes proposições:
- 1. Hoje é sábado.
- 2. Hoje <mark>não</mark> é sábado.

- <u>Definição 1</u>: Seja p uma proposição, a negação de p é indicada por ¬p,
 lê-se "não p".
- Exemplos. Qual seria a negação das seguintes proposições:
- 1. Essa questão é muito difícil.

- Definição 1: Seja p uma proposição, a negação de p é indicada por ¬p,
 lê-se "não p".
- Exemplos. Qual seria a negação das seguintes proposições:
- 1. Essa questão é muito difícil.
- 2. Essa questão não é muito difícil.

- Definição 1: Seja p uma proposição, a negação de p é indicada por ¬p,
 lê-se "não p".
- Exemplos. Qual seria a negação das seguintes proposições:
- 1. Se não chover, então eu vou jogar bola.
- 2. Se chover, então eu vou jogar bola.

A Tabela Verdade da Negação, isto é do conectivo Not é a seguinte:

р	¬ р
V	F
F	V

Conectivo AND (∧)

- Definição 2: Sejam p, q proposições, a conjunção de p e q, indicada por p ∧ q, p AND q, é a proposição p e q lê-se "p e q". A conjunção p∧q é verdadeira quando ambas proposições são verdadeiras, falsa caso contrário.
 - **Exemplos.** Encontre a conjunção das proposições p e q, em que p é a proposição "Hoje é sexta-feira" e q é a proposição "Hoje está chovendo".
 - Solução: A conjunção p ∧ q dessas proposições é a proposição "Hoje é sexta-feira e hoje está chovendo". Essa proposição é verdadeira em uma sexta-feira chuvosa e é falsa em qualquer outro caso.

Conectivo AND (∧)

 Tabela verdade para a conjunção, isto é para o conectivo AND é a seguinte:

р	q	p∧q
V	V	V
V	F	F
F	V	F
F	F	F

Conectivo OR (v)

- <u>Definição 3</u>: Sejam p, q proposições, a disjunção de p e q, indicada por p v q, p OR q, é a proposição p v q lê-se "p ou q". A disjunção p v q é falsa quando ambas proposições são falsas, verdadeira caso contrário.
- **Exemplos.** "Estudantes do curso de matemática ou do curso de ciência da computação podem assistir essa aula."

Conectivo OR (v)

 Tabela verdade para a disjunção, isto é para o conectivo OR é a seguinte:

р	q	pvq
V	V	V
V	F	V
F	V	V
F	F	F

- Sejam as proposições:
- p = hoje é sábado.

COMPUTAÇÃO

• q = hoje está chovendo.

Como seria a Conjunção p ∧ q ?

- Sejam as proposições:
- p = hoje é sábado.
- q = hoje está chovendo.

Como seria a Conjunção p ∧ q ?

• Hoje é sábado e está chovendo.

- Sejam as proposições:
- p = hoje é sábado.

COMPUTAÇÃO

• q = hoje está chovendo.

Como seria a Disjunção p v q ?

- Sejam as proposições:
- p = hoje é sábado.
- q = hoje está chovendo.

Como seria a Disjunção p v q ?

• Hoje é sábado ou está chovendo.

- Sejam as proposições:
- p = hoje é sábado.

COMPUTAÇÃO

• q = hoje está chovendo.

Como seria a expressão p v ¬ q ?

- Sejam as proposições:
- p = hoje é sábado.
- q = hoje está chovendo.

Como seria a expressão p v ¬ q ?

Hoje é sábado ou não está chovendo.

Exemplo 2

- Decida se o professor vai pescar no final de semana. Sejam as proposições:
- p = hoje é domingo.
- q = hoje está fazendo Sol.

O professor pesca se a expressão p v q for verdadeira. Leve em conta que hoje é sábado e o dia está ensolarado.

Exemplo 2

- Decida se o professor vai pescar no final de semana. Sejam as proposições:
- p = hoje é domingo. [Se é sábado, então p = FALSE]
- q = hoje está fazendo Sol.
 [Se o dia está ensolarado, então q = TRUE]

O professor pesca se a expressão p v q for verdadeira. Leve em conta que hoje é sábado e o dia está ensolarado.

Exemplo 2

- Decida se o professor vai pescar no final de semana. Sejam as proposições:
- p = hoje é domingo.
- q = hoje está fazendo Sol.

O professor pesca se a expressão p ∧ q for verdadeira. Leve em conta que hoje é sábado e o dia está ensolarado.

- Dadas duas proposições p, q podemos apresentar todas as possíveis saídas de qualquer expressão contendo essas duas proposições através de uma tabela verdade com 2ⁿ linhas, onde n é o número de proposições presentes na expressão.
- Construir a tabela verdade para as seguintes expressões lógicas:

• (¬pvq)v(p∧q)

р	q	(7	р	V	q)	V	(р	٨	q)
V	٧												
V	F												
F	٧												
F	F												

• (¬ p v q) v (p ∧ q): obs. Ordem de execução

			2	1	3	1		4		1	3	1	
р	q	(7	р	v	q)	v	(р	٨	q)
V	V		F	V	V	V		V		V	V	V	
V	F		F	V	F	F		F		V	F	F	
F	٧		V	F	V	V		V		F	F	V	
F	F		V	F	V	F		V		F	F	F	

• (¬p ∨ ¬q) ∧ (¬p ∧ q)

р	q	(٦	р	V	٦	q)	V	(7	p	٨	q)
V	V														
V	F														
F	٧														
F	F														

- Dadas as seguintes proposições:
 - o q = o dia está ensolarado.
 - q = o mar está calmo.

Eu vou andar de barco se: (p ∧ q) v (¬ q)

Eu vou andar de barco se: (p ∧ q) v (¬ q)

р	q	(р	٨	q)	V	7	q
V	٧								
V	F								
F	V								
F	F								

- Dadas as seguintes proposições:
 - p = o dia está ensolarado.
 - q = terminei todas minhas obrigações.
- Sabendo que o dia está chuvoso e eu terminei minhas obrigações. Qual das expressões a seguir está correta?

 Sabendo que o dia está chuvoso e eu terminei minhas obrigações. Qual das expressões a seguir está correta e qual está errada?

•
$$(p \land q) \lor q = FALSE$$

 Sabendo que o dia está chuvoso e eu terminei minhas obrigações. Qual das expressões a seguir está correta e qual está errada?

•
$$(p \land q) \lor q = FALSE \rightarrow TRUE$$

Tarefas Semanais

- Refazer Exercícios da Aula;
- Responder Questionário Avaliativo;
 (IMPORTANTE! Estudem antes de tentar resolver o questionário!)
- Responder Fórum;
- Monitoria dia 24/05 às 19h;
- Fazer leitura recomendada ("Apostila de Lógica.pdf" pág. 1 a
 5);
- Instalar compilador de Portugol (recomendo Portugol Studio);
- Estudar Tabelas Verdade.

Conclusão e Próxima Aula

- Aula de Hoje:
 - Exercícios sobre Fluxogramas;
 - Fundamentos de Lógica;
 - Introdução à Tabela Verdade.
- Próxima Aula:
 - Exercícios com Fluxogramas;
 - Utilizar expressões lógicas na programação.

Dúvidas até aqui? Muitas, Provavelmente

- Conseguiram instalar um compilador de Portugol?
- Vamos precisar para a próxima aula!

Aula 2

Prof Tanilson Dias dos Santos

Universidade Aberta do Brasil – UAB Universidade Federal do Tocantins - UFT

