Modelos de Linguagem Neurais Com Transformers

"The true art of memory is the art of attention" Samuel Johnson, Idler #74, September 1759

Profa Aline Paes alinepaes@ic.uff.br

Tradução

E a vida o que é, diga lá, meu irmão?

¿Y la vida, qué es? Dime tú, hermano.

E a vida o que é, diga lá, meu irmão?

¿Y la vida, qué es? Dime tú, hermano.

E a vida o que é, diga lá, meu irmão?

¿Y la vida, qué es? Dime tú, hermano.

Constrói uma representação da entrada e passa para o decoder

Encoder

Decoder

Usa a representação recebida para gerar a saída

$$P(y_1, y_2, \dots, y_n | X) = \prod_{t=1}^n p(y_t, y_{< t}, X)$$

Inferência - geração de texto

Geração autorregressiva

Embeddings da saída

Embeddings da saída

Embeddings da saída

Embeddings da saída

Encoder-decoder básico

Speech & language Processing

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to Sequence Learning with Neural Networks." *Advances in Neural Information Processing Systems* 27 (2014): 3104-3112.

Pergunta

Como aprender os pesos do encoder?

- a) Usando uma função de custo para o contexto
- b) A partir da função de custo calculada no fim do decoder
- c) Usando uma função de custo para cada componente do encoder
- d) Descobrindo numericamente o máximo da função

 $y_t = \operatorname{softmax}(\hat{y}_{t-1}, z_t, c)$

Bottleneck

http://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Bottleneck

Processa a sequência de entrada e compacta as informações em um vetor de contexto de comprimento fixo. Espera-se que esta representação seja um bom resumo do significado de toda a sequência fonte.

Um decodificador é inicializado com o vetor de contexto para emitir a saída transformada. Os primeiros trabalhos usavam apenas o último estado da rede do codificador como estado inicial do decodificador : como lembrar de tudo aqui??.

Entradas

Entradas

decoder

 $c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum a_k^{(t)} s_k$

Um estado do decoder **h**_t

Entradas

Produto interno

Score da atenção

$$score(h_t, s_k) = h_t \cdot s_k,$$

 $k = 1...m$

Pesos da atenção (softmax)

$$a_k^{(t)} = \frac{exp(score(h_t, s_k))}{\sum_{i=1}^m exp(score(h_t, s_i))}, k = 1 \dots m$$

Contexto da entrada para o passo t do decoder

Saída da atenção (soma ponderada)

$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$

Um estado do decoder **h**_t

Entradas

Bilinear

Score da atenção score(h_t , s_k) = h_t W s_k , k = 1...m

Pesos da atenção (softmax)

$$a_k^{(t)} = \frac{exp(score(h_t, s_k))}{\sum_{i=1}^m exp(score(h_t, s_i))}, k = 1 \dots m$$

Contexto da entrada para o passo t do decoder

Saída da atenção (soma ponderada)

$$c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=1}^m a_k^{(t)} s_k$$

passo t do

decoder

 $c^{(t)} = a_1^{(t)} s_1 + a_2^{(t)} s_2 + \dots + a_m^{(t)} s_m = \sum_{k=0}^{\infty} a_k^{(t)} s_k$

*from CMU Neural Nets for NLP

ponte entre as queries **Estados** (o que procuramos) e do o valor (o que queremos): elas vão encoder apontar em como a kirai atenção deve pesar kono eiga ga os valores, dada a Key consulta Vectors hate $a_1 = 2.1$ **Query Vector** Estado do decoder

Atenção

http://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Modelo de Luong

Alinhamento

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot correspond to the words in the source sentence (English) and the generated translation (French), respectively. Each pixel shows the weight α_{ij} of the annotation of the j-th source word for the i-th target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b-d) three randomly selected samples among the sentences without any unknown words and of length between 10 and 20 words from the test set.

Atenção

encoder

decoder

Todos os tokens Olham uns para os outros Atualizam representações

 $\mathbf{A} \mathbf{X}$

encoder

self-attention

decoder

Todos os tokens

Olham uns para os outros

Atualizam representações

NX

encoder

decoder

Token na saída corrente
Olha para os tokens anteriores
Olha para as representações da entrada
Atualiza representações

Google animation

Self-attention

Figura de https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Três "representações" para cada token

Três "representações" para cada token

Query: "Você tem essa informação?"

Três "representações" para cada token

Query: "Você tem essa informação?"

$$\begin{bmatrix} \mathbf{W}_{\mathsf{K}} \end{bmatrix} \times \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

Key: "Opa, eu tenho a informação que você quer. Me dê relevância (mais peso)"

Três "representações" para cada token

Query: "Você tem essa informação?"

Key: "Opa, eu tenho a informação que você quer. Me dê relevância (mais peso)"

Value: "Aqui está a informação."

Soma ponderada

Atenção mascarada do decoder

Multi-Head attention

Fonte:https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Fonte: https://peltarion.com/blog/data-science/self-attention-video

Multi-Head attention

Fonte:https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Multi-Head attention

Fonte:https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

All you need is attention

encoder

decoder

Só vantagens?

- a) Ver todos os tokens "de uma vez".
- b) Paralelizar por tokens.
- c) Ordem dos tokens.
- d) Tamanho da sequência de entrada.

^{*}Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). **Attention is all you need**. In *Advances in neural information processing systems* (pp. 5998-6008).

^{*}Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). **Attention is all you need**. In *Advances in neural information processing systems* (pp. 5998-6008).

Output **Transformers** Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward Nx Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Decoder-encoder Encoding Encoding attention Input Output Embedding Embedding Inputs Outputs (shifted right)

^{*}Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). **Attention is all you need**. In *Advances in neural information processing systems* (pp. 5998-6008).

Self-attention

^{*}Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In *Advances in neural information processing systems* (pp. 5998-6008).

^{*}Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In *Advances in neural information processing systems* (pp. 5998-6008).

Rede Neural

Output Probabilities

^{*}Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

^{*}Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In *Advances in neural information processing systems* (pp. 5998-6008).

Positional encoding

Posição normalizada

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Output Probabilities

Softmax

INPUT

Je

suis

étudiant

Attention is all that you need?

- Inferência lenta
- Hardware pesado
- Não necessariamente melhores que RNN
- Não convergem com poucos dados

BERT e seus amigos

GPT

- Transformer-decoder
- Unidirecional

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018) Improving Language Understanding by Generative Pre-Training.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019) Language Models are Unsupervised Multitask Learners.

GPT

Auto-regressive language model

^{*} P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer. Generating wikipedia by summarizing long sequences. ICLR, 2018

^{*} Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.

BERT

Discourse Relation

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In *NAACL-HLT* (1).

Lembram das palavras desconhecidas?

- a) Assume que todas elas são um símbolo UNK
- b) Nunca teremos palavras desconhecidas, pois todos os modelos conseguem lidar com o vocabulário inteiro
- c) Ignora e segue em frente

amigos inimagináveis

Tokenizador

Tokenizador

Notebook embeddings