

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Magnetic 2: Survey and Data

Instructor: Dikun Yang Feb – May, 2019

Contents

- Magnetic dipole field
- Types of magnetization
 - Remanent
 - Induced
- Magnetic data measurement
- Magnetic data corrections

Magnetic Dipole Field at Different Scales

$$\mathbf{B}(\mathbf{r}) =
abla imes \mathbf{A} = rac{\mu_0}{4\pi} \left(rac{3\mathbf{r}(\mathbf{m} \cdot \mathbf{r})}{r^5} - rac{\mathbf{m}}{r^3}
ight).$$

Composite Field

Can you:

- Draw field lines for B_A from a buried dipole
- Draw the inducing field B₀ on the surface
- Draw the total field $|B| = |B_0 + B_A|$ on the surface

Composite Field (BYO)

Arbitrary Magnetic Dipole Applet

https://github.com/yangdikun/magLab
MagDipole.ipynb

```
# define a dipole
dipoleloc = (0.,0.,-1.)
dipoleL = 2.
dipoledec, dipoleinc = 0., 0.
dipolemoment = 1e13
```

```
# geomagnetic field in Tesla, degree, degree
B0, Binc, Bdec = 53600e-9, -45., 0.
```

Induced Magnetic Dipole Applet

geosci-labs/ MagneticDipoleApplet.ipynb

Types of Magnetization

Induced:

- Same direction as B₀
- Depend on inducing field and susceptibility

Remanent:

Memorize external field direction when cooled down

Magnetic field: B or H?

 \vec{B} : Magnetic Flux Density $(Wb/m^2 = \text{Tesla})$

 \vec{H} : Magnetic Field (A/m)

$$ec{M}=\kappaec{H}$$

$$\vec{B} = \mu \vec{H} = \mu_0 (1 + \kappa) \vec{H} = \mu_0 (\vec{H} + \vec{M})$$

 $\mu = \text{magnetic permeability}$ $\mu = \mu_0 (1 + \kappa)$

Magnetic permeability of free space:

$$\mu_0 = 4\pi \times 10^{-7}$$

Susceptibility is a convenient indicator of material's magnetic property: zero for non-magnetic and a positive value for magnetic.

Magnetic Susceptibility (S.I. Units)

Magnifier of H

Remanent Magnetization

- Magnetic material cooling through Curie temperature (~550 C) acquires a magnetic field in the direction of the earth's field.
- Final magnetization sum of induced and remnant magnetization: $ec{m}=ec{m}_I+ec{m}_R$

Remanent Magnetism

- Small scale: UXO, rebar, drums
- Large scale: geologic units.
 Sea floor spreading

Three Ingredients

- Inducing field (B₀)
 - Uniform and strong
- Induced field
 - From present-day magnetization
 - Small object behaves like a dipole
 - Induced magnetization in the same direction as B₀
 - Field (usually small) proportional to B₀
 - A linear relation susceptibility
- Remanent field
 - From ancient magnetization
 - Independent of B₀ (can be large)

Magnetometers

- Total field |B|
 - Proton precession (NMR)
 - Cesium vapour magnetometer
- Vector field B_x, B_y, B_z
 - Fluxgate
 - Hall effect
 - SQUID: superconducting quantum interference devices

Magnetic sensors to acquire data

Multi-scale Nature of Magnetic Field

Assumptions used in this conceptual model?

- B₀ is constant in space
- B₀ is constant in time
- A single magnetized body sufficiently small for dipole approximation
- Non-magnetic outside of the body

Time Variations of the Earth's Field

- External sources
 - Solar wind (micro-seconds, minutes, hours)
 - Solar storms (hours, days, months)
- Man made sources
 - Power lines (50/60 Hz plus harmonics) DC
 - Motors, generators, electronic equipment
- Internal sources
 - Fluctuations in core (days millions of years)

Base station correction

- Set out another magnetometer (base station)
- Assume time-dependent variations at the base stations are the same as at the observation location
- Synchronize the times
- Perform a correction by subtraction

Regional Removal

- Any magnetic measurement is superposition of fields from many objects at different scales
- Example: magnetic data for UXO could include

Regional removal (assuming no magnetic objects larger than a certain length scale)

Regional Removal

Before: details about the deposit masked by the regional field

After: target of interest better revealed

$$\Delta B = B^{obs} - B^{regional}$$

Upward Continuation

- Low-pass filter: remove shortwavelength signals from small near-surface objects
- As if data are measured at higher elevations
- Highlight regional trends

Reduction to Pole (RTP)

Experiment with: geosci-labs/MagneticDipoleApplet.ipynb

- Same object buried at the center of the map
- Inclination determines the direction of magnetization we may observe different patterns
- RTP: process the data as if the inducing field (B₀) is purely vertical (at poles)

Inclination=0 Inclination=45

Inclination=90

Summary

- Magnetic dipole model (important!)
- Draw the composite field
- Magnetization
 - Induced: Geological Objects
 - Remanent: Iron, steel
- Data measurement and correction
 - Recall gravity...