(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-315725

(43)公開日 平成11年(1999)11月16日

(51) Int.Cl.6		識別記号	FΙ					
F02B	37/013		F02B 3	7/00	301	В		
	37/16				303E			
	37/18		3	7/12	301E			
			3 0 1 K					
			審査請求	未請求	請求項の数9	OL	(全 12 頁)	
(21)出願番号		特願平10-121312	(71)出願人	000005348				
(== / — — — — — — — — — —				富士重工業株式会社				
(22)出顧日		平成10年(1998) 4月30日	新宿区西新宿一	宿区西新宿一丁目7番2号				
			(72)発明者	加茂	圭 介			
				東京都新宿区西新宿一丁目7番2号 富士 重工業株式会社内				
			(72)発明者	村 田	巌			
				東京都新宿区西新宿一丁目7番2号 富士				
				重工業	株式会社内			
			(72)発明者	糸 長	達 也			
				東京都新宿区西新宿一丁目7番2号		2号 富士		
				重工業株式会社内				
			(74)代理人	弁理士	佐藤 一雄	(外3名)	
				最終頁に続く				

(54) 【発明の名称】 レシプロエンジン用多段過給システム

(57)【要約】

【課題】 高空域を長時間にわたって飛行可能な航空機に用いて好適なレシプロエンジン用多段過給システムを 提供する。

【解決手段】 本発明のレシプロエンジン用多段過給システム100は、互いに直列に接続された複数段の過給器と、これらの過給器の作動を制御する制御手段とを備える。各段の過給器は、タービンを迂回するタービン側バイパス路と、圧縮機を迂回する圧縮機側バイパス路と、タービン側バイパス路を流れる排気の流量を制御するウェイストゲートバルブと、圧縮機側バイパス路を流れる吸気の流量を制御するブリードバルブと、圧縮機の下流側に配置された圧力センサとをそれぞれ有する。そして、前記制御手段は、前記圧力センサからの信号を受けて各バルブを制御する。

【特許請求の範囲】

【請求項1】航空機用レシプロエンジンに昇圧させた吸 気を供給するための多段過給システムであって、

互いに直列に接続された複数段の過給器と、これらの過 給器の作動を制御する制御手段とを備え、

各段の前記過給器は、

前記レシプロエンジンからの排気を受けて回転するタービンと、このタービンによって駆動されて前記レシプロエンジンに供給する吸気を昇圧させる圧縮機と、

前記排気を前記タービンを迂回させて上流側から下流側 10 に直接供給するタービン側バイパス路と、

前記圧縮機で昇圧させた吸気を前記圧縮機を迂回させて 前記圧縮機の下流側から上流側に戻す圧縮機側バイパス 路と、

前記タービン側バイパス路を流れる前記排気の流量を制 御するウェイストゲートバルブと、

前記圧縮機側バイパス路を流れる前記吸気の流量を制御するブリードバルブと、

前記ウェイストゲートバルブおよび前記ブリードバルブ をそれぞれ作動させるバルブ作動手段と、

前記圧縮機の下流側に配置された圧力センサとをそれぞ れ有し.

かつ前記制御手段は、

前記圧力センサからの信号を受けて前記バルブ作動手段 の作動を制御し、各段の前記過給器の作動を制御することを特徴とするレシプロエンジン用多段過給システム。

【請求項2】前記制御手段は、ある段の前記圧力センサから得られた圧力値がその段における所定値に達したときに、その段の前記バルブ作動手段を操作して前記タービン側バイパス路および前記圧縮機側バイパス路を閉じ、その段の前記タービンおよび前記圧縮機を作動させることを特徴とする請求項1に記載のレシプロエンジン用多段過給システム。

【請求項3】予め設定された飛行高度における各段の過給器の圧縮機の上流側と下流側における吸気の圧力の比がそれぞれ等しくなるように、各段毎の前記所定値を定めることを特徴とする請求項2に記載のレシプロエンジン用多段過給システム。

【請求項4】前記制御手段は、各段の前記圧力センサから得られた圧力値の単位時間あたりの増加率が所定の値 40を越えたときに、前記ブリードバルブを開いてその段の圧縮機で昇圧させた前記吸気の一部を前記圧縮機側バイパス路を介してその段の前記圧縮機の上流側に戻すことを特徴とする請求項1乃至3のいずれかに記載のレシプロエンジン用多段過給システム。

【請求項5】前記ウェイストゲートバルブは、その間度と前記タービン側バイパス路を流れる前記排気の量とを比例させる制御が可能な弁体を有することを特徴とする請求項1乃至4のいずれかに記載のレシプロエンジン用多段過給システム。

-

【請求項6】前記ブリードバルブは、その開度と前記圧縮機側バイパス路を流れる前記吸気の量とを比例させる制御が可能な弁体を有することを特徴とする請求項1乃至5のいずれかに記載のレシプロエンジン用多段過給システム。

【請求項7】前記バルブ作動手段は、エンジン潤滑油の 圧力を用いて前記ウェイストゲートバルブおよび前記ブ リードバルブを作動させることを特徴とする請求項1乃 至6のいずれかに記載のレシプロエンジン用多段過給シ ステム。

【請求項8】前記圧力センサが、絶対圧力を検出することを特徴とする請求項1乃至7のいずれかに記載のレシプロエンジン用多段過給システム。

【請求項9】前記圧縮機が遠心圧縮機であることを特徴とする請求項1乃至8のいずれかに記載のレシプロエンジン用多段過給システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は航空機用レシプロエンジンの多段過給システムに関し、より詳しくは、高度25Km以上の高空域を長時間にわたって飛行可能な航空機のレシプロエンジンに用いる多段過給システムに関する。

[0002]

【従来の技術】近年、地球の大気の挙動を調査する等の各種の研究のために、高度25km以上の高空域を長時間にわたって飛行可能な航空機の開発が進められている。このような航空機に用いる推進システムとしては、ジェットエンジンおよび多段過給機付きレシプロエンジンが挙げられるが、これらは次のような特徴を有している。

【0003】ジェットエンジンには多段構造の軸流圧縮機が使用されているが、この軸流圧縮機は、高度の上昇により圧縮機翼列のレイノルズ数が低下すると剥離が生じる。そして、この剥離が後段側の圧縮機翼列に影響し、圧縮機効率の低下を招く。高度とレイノルズ数との関係を示した図8から明らかなように、軸流圧縮機の臨界レイノルズ数はRe=50000で、その高度は約20kmとなる。これにより、より高度の高い領域を飛行すると圧縮機が正常に作動しなくなってしまう。また、ジェットエンジンは燃料消費率が高いため、ジェットエンジンによる高空域の長時間飛行は困難となる。

【0004】一方、圧縮機には軸流圧縮機、遠心圧縮機、斜流圧縮機があるが、これらの圧縮機におけるレイノルズ数低下に伴う剥離の特性は以下の通りである。すなわち、

①軸流圧縮機は多段構造であるため、前段の剥離が後段 に影響する。

②遠心圧縮機のインペラーに生じた剥離は、遠心力により再付着する。

③斜流圧縮機は遠心圧縮機と同等の特性を示す。

したがって、レイノルズ数の影響による圧縮機効率を勘案すると、高度25km以上の高空域を飛行する航空機の推進システムには、遠心圧縮機若しくは斜流圧縮機を用いなければならないことが判る。

【0005】レシプロエンジンにおいては、高度上昇に伴う空気密度の低下よりエンジン出力が低下する。そこで、過給器を用いてエンジン吸気を地上における大気圧と同等の圧力まで昇圧させることにより、エンジンの出力を確保できる。また、レシプロエンジンは燃料消費率 10が小さいため、限られた燃料搭載量で長時間にわたる飛行が可能となる。

【0006】ところで、図9に示したように、既存の過給器における圧力比の最大値は、船舶用で約4.5:1程度である。これにより、このような過給器を1段のみ備えたレシプロエンジンにおいては、地上と同等なエンジン出力が得られる飛行高度は、大気圧が地上の約1/4.5となる高度約11kmが限界となる。また、この過給器を2段組み合わせたレシプロエンジンについて検討すると、到達可能な飛行高度は、大気圧が地上大気圧の1/(4.5×4.5)=1/20となる高度約21kmが限界となる。したがって、高度25km以上の高空域の飛行を可能とするためには、3段以上の過給器をレシプロエンジンに組み合わせる必要がある。

【0007】次に、高々度領域の飛行を可能とする3段 過給器付きレシプロエンジンに関する諸外国における技 術動向について説明する。

【0008】まず最初に、高度24kmまでの到達飛行実績を有するドイツ製航空機STRATO2Cに搭載された、GROB社製の3段過給器付きレシプロエンジン 30について説明する。図10に示したように、このエンジンの過給器は、高圧段過給機1および2軸の低・中圧段過給機2,3から構成され、高度7kmより低い高度域を飛行する場合には高圧段過給機1のみを使用するが、高度7kmより高い高度域を飛行する場合には、高圧段過給機1および低・中圧段過給機2,3のすべてを作動させて過給圧を供給する。

【0009】また、NASAが進めているERAST

(Environmental Research Aircraftand Sensor Techno logy) プログラムにおいては、高度約25kmにおける 40 飛行を目標として、3段過給器付きレシプロエンジンの 開発研究が進められている。図11に示したように、このエンジンにおける過給機の高、中、低圧段の各タービン11,12,13は、1つの配管14によってつながっている。これにより、エンジンの排気エネルギは高、中、低圧段の各タービン11,12,13のすべてを駆動し、高、中、低圧段の各圧縮機15,16,17を作動させて過給するようになっている。そして、必要以上の過給圧が得られる場合には、エンジンのスロットル1 8およびウェイストゲートバルブ19を操作することに 50 る。

4

より過給圧を制御するものと考えられる。

[0010]

【発明が解決しようとする課題】ところで、上述したGROB社製の3段過給器付レシプロエンジンにおいては、高圧段過給機1が、エンジンの排気エネルギーを排気ウェイストゲートバルブ4を介して排気管5にバイパスさせるとともに、高圧段圧縮機によって得られた過給圧を高圧段ブリードバルブ6を介して排気管7にバイパスさせることにより過給圧を側御している。このように、圧縮機によって得られた過給圧を排気管にバイパスさせることにより、すなわち過給圧を排気管に捨てることにより制御するということは、圧縮機が必要以上の仕事を行っていることとなり、システム効率の低い制御方式となっている。

【0011】また低・中圧段過給機2,3においては、高圧段過給機1のタービン出口から低・中圧段タービンまでが1つの配管8でつながっているため、高圧段タービンの排気エネルギーにより低・中圧段のタービンが同時に駆動される。これにより、低・中圧段の圧縮機が過給の必要の有無に係わらず常に駆動されるため、駆動損失が大きい。さらに、低・中圧段の圧縮機から得られる必要以上の過給圧は、高圧段過給器と同様に、低圧段ブリードバルブ9Lおよび中圧段ブリードバルブ9Iよって排気管にバイパスさせるようになっており、システム効率が低くなっている。

【0012】一方、上述したNASAの3段過給器付きレシプロエンジンにおいては、タービン側の配管14が1つにつながっているため、エンジンの排気エネルギーが高・中・低圧段の各タービン11,12,13を常に駆動している。これにより、低・中・高圧段の各圧縮機15,16,17が常に作動するため、駆動損失が大きい。

【0013】また、低高度領域においては3段全ての過給機を作動させる必要性はない。しかしながら、このシステムは3段全ての過給機を常に駆動しているため、低高度領域において必要となる過給圧を各段の過給機で分担することになる。これにより、飛行高度に応じて各段の圧縮機を効率の良い領域で使用することができず、システム全体の効率を低下させる。

【0014】さらに、このシステムにおいては各タービンが連動して駆動されるため、タービンおよび圧縮機の応答に時間遅れが生じる。これにより、突風等の影響による急激な圧力変動がエンジンの吸・排気に生じた場合、応答の時間遅れに起因してエンジンの作動不安定となり、制御が困難になる可能性もある。

【0015】そこで、本発明の目的は、上述した従来技術が有する問題点を解消し、高度25km以上の高空域を長時間にわたって飛行可能な航空機に用いて好適なレシプロエンジン用多段過給システムを提供することにあ

[0016]

【課題を解決するための手段】上記の課題を解決する本 発明は、航空機用レシプロエンジンに昇圧させた吸気を 供給するための多段過給システムであって、互いに直列 に接続された複数段の過給器と、これらの過給器の作動 を制御する制御手段とを備える。また、各段の前記過給 器は、前記レシプロエンジンからの排気を受けて回転す るタービンと、このタービンによって駆動されて前記レ シプロエンジンに供給する吸気を昇圧させる圧縮機と、 前記排気を前記タービンを迂回させて上流側から下流側 10 に直接供給するタービン側バイパス路と、前記圧縮機で 昇圧させた吸気を前記圧縮機を迂回させて前記圧縮機の 下流側から上流側に戻す圧縮機側バイパス路と、前記タ ービン側バイパス路を流れる前記排気の流量を制御する ウェイストゲートバルブと、前記圧縮機側バイパス路を 流れる前記吸気の流量を制御するブリードバルブと、前 記ウェイストゲートバルブおよび前記ブリードバルブを それぞれ作動させるバルブ作動手段と、前記圧縮機の下 流側に配置された圧力センサとをそれぞれ有する。そし て、前記制御手段は、前記圧力センサからの信号を受け 20 て前記バルブ作動手段の作動を制御し、各段の前記過給 器の作動を制御する。

【0017】好ましくは、前記制御手段は、ある段の前記圧力センサから得られた圧力値がその段における所定値に達したときに、その段の前記バルブ作動手段を操作して前記タービン側バイパス路および前記圧縮機側バイパス路を閉じ、その段の前記タービンおよび前記圧縮機を作動させる。なお、予め設定した飛行高度における各段の過給器の圧縮機の上流側と下流側における吸気圧力の比がそれぞれ等しくなるように、各段毎の前記所定値30を定めることができる。

【0018】また、前記制御手段は、各段の前記圧力センサから得られた圧力値の単位時間あたりの増加率が所定の値を越えたときに、前記ブリードバルブを開いてその段の圧縮機で昇圧させた前記吸気の一部を前記圧縮機側バイパス路を介してその段の前記圧縮機の上流側に戻す。

【0019】前記ウェイストゲートバルブは、その開度と前記タービン側バイパス路を流れる前記排気の量とを比例させる制御が可能な弁体を有する。同様に、前記ブ 40リードバルブは、その開度と前記圧縮機側バイパス路を流れる前記吸気の量とを比例させる制御が可能な弁体を有する。

【0020】前記バルブ作動手段は、エンジン潤滑油の 圧力を用いて前記ウェイストゲートバルブおよび前記ブ リードバルブを作動させるようにすることができる。

【0021】前記圧力センサは、絶対圧力を検出する。 また、前記圧縮機を遠心圧縮機とする。

【0022】すなわち、本発明のレシプロエンジン用多 段過給システムは、各段の過給器のウェイストゲートバ 50 6

ルブおよびブリードバルブを個別に制御することにより、各段の過給機を個別に、他の段の過給器に依存することなく作動させることができる。これにより、既存のシステムのように複数段の過給器の全てを常に作動させる必要がないから、駆動損失を低減させてエンジンの燃料消費率を低下させることができる。

【0023】また、ある段の圧力センサから得られた圧力値がその段における所定値に達したときに、その段のウェイストゲートバルブおよびブリードバルブを制御してその段のタービンおよび圧縮機を作動させることができる。これにより、航空機の飛行高度に対応させて各段の過給機をそれぞれ最も効率の良い領域で作動させ、システム全体の効率を向上させることができる。

【0024】また、各段毎に設定する前記所定値の値を適切に定めれば、各段の過給器の圧縮機の上流側と下流側における吸気圧力の比を、予め設定した飛行高度においてそれぞれ等しくすることができる。これにより、エンジン吸気を昇圧させる圧縮仕事を圧縮過程PV線図の等温線に接近させて行わせることができるから、圧縮仕事の仕事量を低減させて、システム全体の効率を向上させることができる。

【0025】また、本発明のレシプロエンジン用多段過給システムにおいては、圧縮機で昇圧させた吸気の一部を取り出してエンジンに供給しない場合にも、取り出した吸気をその圧縮機の上流側に戻す。これにより、圧縮機で昇圧させた吸気を排気通路に捨てる従来のシステムとは異なり、圧縮機に必要以上の仕事をさせる必要がないため、システム全体の効率を向上させることができる

【0026】また、本発明のレシプロエンジン用多段過給システムは、各段の圧縮機の下流側から上流側に吸気を戻す圧縮機側バイパス路にブリードバルブを有している。これにより、飛行中に遭遇した突風等の影響によりエンジン吸気圧に急激な変動が生じた場合には、タービン側バイパス路に設けたウェイストゲートバルブと圧縮機側バイパス路に設けたブリードバルブとを連動させることにより、エンジンに供給する吸気の圧力側御の不安定さを低減させ、エンジンの作動を迅速に安定させることができる。

[0027]

【発明の実施の形態】以下、本発明に係る一実施形態のレシプロエンジン用多段過給システムを、図1乃至図7を参照して詳細に説明する。ここで、図1は本発明に係る一実施形態のレシプロエンジン用多段過給システムの構成を示す模式図、図2は図1中に示したウェイストゲートバルブおよびブリードバルブの作動を説明する模式図、図3は各段の過給器の圧力比を等しくした場合の圧縮過程PV線図、図4は各段の過給器の圧力比を不均等とした場合の圧縮過程PV線図、図5は図1中に示した高圧段の過給器の作動を説明するフローチャート図、図

6は図1中に示した中圧段の過給器の作動を説明するフローチャート図、図7は図1中に示した低圧段の過給器の作動を説明するフローチャート図である。

【0028】図1に示したように、本実施形態のレシプロエンジン用多段過給システム100は、航空機用エンジン20に供給する吸気を昇圧させる高圧段過給器30、中圧段過給器40,低圧段過給器50からなる3段の過給器と、これらの過給器にそれぞれ設けられたウェイストゲートバルブW1,W2,W3およびブリードバルブB1,B2,B3と、各段の過給器の圧縮機出口側10にそれぞれ設けられた圧力センサP1,P2,P3と、これらの圧力センサが検出した圧力値に基づいて前記バルブの作動を制御する図示されない制御手段を備えている。

【0029】前記高圧段過給器30は、前記エンジン20の排気管21からの排気を受け入れる排気導入管31と、受け入れた排気によって駆動される高圧段タービン32と、この高圧段タービン32たこの高圧段タービン32を持出する排気管33とを有している。また、この高圧段過給器30は、排気導入管31に受け入れた排気を高圧段タービン32を迂回させて下流側の排気管33に直接供給するタービン側バイパス路34を有している。そして、このタービン側バイパス路34を流れる排気の流量を制御するウェイストゲートバルブW1が設けられている。

【0030】さらに、この高圧段過給器30は、前記中 圧段過給器40から吸気を受け入れる吸気導入管35 と、高圧段タービン32によって駆動されて前記吸気導 入管35を介して受け入れた吸気を昇圧させる高圧段圧 縮機36と、この高圧段圧縮機36によって昇圧された 吸気をエンジン20の吸気管22に供給する吸気供給管 37とを有している。また、この高圧段過給器30は、 高圧段圧縮機36によって昇圧された吸気を前記吸気供 給管37内から取り出して上流側の吸気導入管35に戻す圧縮機側バイパス路38を有している。そして、この 圧縮機側バイパス路38の途中には、この圧縮機側バイパス路38を流れる吸気の流量を制御するブリードバル ブB1が設けられている。さらに、前記吸気供給管37 には、エンジン20に供給する吸気を冷却するインター クーラー39が設けられている。

【0031】また、前記ウェイストゲートバルブW1および前記ブリードバルブB1は、図2に示したように、エンジン20の潤滑油圧力によって作動するアクチュエータW11およびB11と、これらのアクチュエータW11, B11が開閉動作する弁体W12およびB12をそれぞれ有している。なお、アクチュエータの作動源として別に発生させた油圧や電気サーボモータを用いることもできる。そして、前記弁体W12およびB12の作動によって、ウェイストゲートバルブW1およびブリードバルブB1の開度と、前記タービン側バイパス路3450

,

を流れる排気の流量および前記圧縮機側バイパス路38 を流れる吸気の流量とがそれぞれ比例するようになっている。

【0032】前記中圧段過給器40は、高圧段過給器30の排気管33から排出される排気を受け入れる排気導入管41と、受け入れた排気によって駆動される中圧段タービン42と、このタービンから排気を排出する排気管43とを有している。また、この中圧段過給器40は、排気導入管41に受け入れた排気を中圧段タービン42を迂回させて下流側の排気管43に直接供給するタービン側バイパス路44を有している。そして、このタービン側バイパス路44を流れる排気の流量を制御するウェイストゲートバルブW2が設けられている。

【0033】さらに、この中圧段過給器40は、前記低 圧段過給器50から吸気を受け入れる吸気導入管45 と、中圧段タービン42によって駆動されて前記吸気導 入管 4 5 を介して受け入れた吸気を昇圧させる中圧段圧 縮機46と、この中圧段圧縮機46によって昇圧された 吸気を高圧段過給器30の吸気導入管35に供給する吸 気供給管47とを有している。また、この中圧段過給器 40は、中圧段圧縮機46によって昇圧された吸気を前 記吸気供給管 4 7 内から取り出して上流側の吸気導入管 45に戻す、圧縮機側バイパス路48を有している。そ して、この圧縮機側バイパス路48の途中には、この圧 縮機側バイパス路48を流れる吸気の流量を制御するブ リードバルブB2が設けられている。さらに、前記吸気 供給管47には、高圧段過給器30の吸気導入管35に 供給する吸気を冷却するインタークーラー49が設けら れている。

【0034】また、前記ウェイストゲートバルブW2および前記ブリードバルブB2は、前述した高圧段過給器30のウェイストゲートバルブW1およびブリードバルブB1と同様の構造を有し、その開度と、タービン側バイパス路44を流れる排気の流量および圧縮機側バイパス路48を流れる吸気の流量とが比例するようになっている。

【0035】前記低圧段過給器50は、中圧段過給器40の排気管43から排出される排気を受け入れる排気導入管51と、受け入れた排気によって駆動される低圧段タービン52と、このタービンから排気を排出する排気管53とを有している。また、この低圧段過給器50は、排気導入管51に受け入れた排気を低圧段タービン52を迂回させて下流側の排気管53に直接供給するタービン側バイパス路54を有している。そして、このタービン側バイパス路54を流れる排気の流量を制御するウェイストゲートバルブW3が設けられている。

【0036】さらに、この低圧段過給器50は、大気を 受け入れる大気導入管55と、低圧段タービン52によ って駆動されて前記大気導入管55を介して受け入れた 大気を昇圧させる低圧段圧縮機56と、この低圧段圧縮 機56によって昇圧された吸気を中圧段過給器40の吸 気導入管45に供給する吸気供給管57とを有してい る。また、この低圧段過給器50は、低圧段圧縮機56 によって昇圧された吸気を吸気供給管57内から取り出 して上流側の大気導入管55に戻す圧縮機側バイパス路58を有している。そして、この圧縮機側バイパス路58の途中には、この圧縮機側バイパス路58の流量を制御するブリードバルブB3が設けられてい 10 ス

【0037】また、前記ウェイストゲートバルブW3および前記ブリードバルブB3は、前述した高圧段過給器30のウェイストゲートバルブW1およびブリードバルブB1と同様の構造を有し、その開度と、タービン側バイパス路54を流れる排気の流量および圧縮機側バイパス路58を流れる吸気の流量とが比例するようになっている。

【0038】すなわち、本実施形態のレシプロエンジン用多段過給システム100においては、各圧縮機36,46,56で昇圧させた吸気の一部を取り出してエンジンに供給しない場合にも、取り出した吸気をその圧縮機36,46,56の上流側に戻す。これにより、圧縮機で昇圧させた吸気を排気通路に捨てる従来のシステムとは異なり、圧縮機に必要以上の仕事をさせる必要がないため、システム全体の効率を向上させることができる。【0039】また、前記圧力センサP1,P2,P3は、それぞれ各段の過給器30,40,50の吸気供給管37,47,57内の吸気の圧力を検出する。さらに、低圧段過給器50の前記大気導入管55内の大気の圧力を検出するために、圧力センサS4が設けられている。

【0040】一方、マイクロコンピュータから構成される前記制御手段は、各段のウェイストゲートバルブW1,W3およびブリードバルブB1,B2,B3の開閉を個別に制御し、各段のタービン32,42,52および圧縮機36,46,56を、他の段の過給器に依存することなく個別に制御する。これにより、本実施形態のレシプロエンジン用多段過給システム100は、既存のシステムのように複数段の過給器の全てを常に作40動させる必要がないため、駆動損失を低減させてエンジンの燃料消費率を低下させることができる。

【0041】また、前記制御手段は、前記センサP1, P2, P3によって検出された圧力が各段毎に設定した所定値に達したときに初めて、各段のタービン32, 42,52および圧縮機36,46,56を個別に作動させる。これにより、本実施形態のレシプロエンジン用多段過給システム100は、航空機の飛行高度に応じて、各段の過給機をそれぞれ最も効率が良い領域で作動させ、システム全体の効率を向上させることができる。

10

【0042】また、各段毎に設定する前記所定値の値を 適切に定めれば、各段の過給器の圧縮機の上流側および 下流側における吸気の圧力比を、予め設定した飛行高度 においてそれぞれ等しくすることができる。すると、各 段の過給器30,40,50が吸気を昇圧させる圧縮仕 事は、図3に示した圧縮過程PV線図において「1→A \rightarrow B→C→D→E→2」の経路で行われる。これに対し て、各段の過給器の圧力比が等しくない場合には、各段 の過給器30、40、50が吸気を昇圧させる圧縮仕事 は、図4に示した圧縮過程PV線図において「 $1 \rightarrow a \rightarrow$ $b \rightarrow c \rightarrow d \rightarrow e \rightarrow 2$ 」の経路で行われることになり、斜 線を付した領域の面積が大きい分だけ仕事量が多くなっ てしまう。すなわち、本実施形態のレシプロエンジン用 多段過給システム 100 によれば、エンジンの吸気を昇 圧させる圧縮仕事の仕事量を低減させて、システム全体 の効率を向上させることができる。

【0043】また、制御手段は、センサP1、P2、P3によって検出された圧力の単位時間あたりの変化率が急激に増加すると、ブリードバルブB1、B2、B3の開度を調節し、各段の圧縮機36、46、56の下流側から上流側に昇圧した吸気の一部を戻す。これにより、飛行中に遭遇した突風等の影響によりエンジン吸気圧に急激な変動が生じた場合でも、各ウェイストゲートバルブW1、W2、W3と各ブリードバルブB1、B2、B3とを連動させることにより、エンジンに供給する吸気の圧力の不安定さを低減し、エンジンの作動を迅速に安定させることができる。

【0044】次に、上述のように構成された本実施形態のレシプロエンジン用多段過給システム100の作動制御について、図5乃至図7に示したフローチャートを参照し、航空機が離陸して上昇する場合を例に取って説明する

【0045】離陸時には、ステップ(以下Sと表す)1において、高圧段過給器30のウェイストゲートバルブW1およびブリードバルブB1のみを閉じ、中圧段過給器40および低圧段過給器50のウェイストゲートバルブW2,W3およびブリードバルブB2,B3は開いておく。これにより、高圧段過給器30のみが作動し、中圧段過給器40および低圧段過給器50は作動しない。

【0046】エンジンが全開にされると、エンジン20からの排気はその全量が高圧段過給器30タービン32を通って排出される。しかしながら、高圧段過給器30は所定の高度に達して初めて高効率の圧力比が得られる設定なので、離陸時における圧縮効率は悪く、エンジン20に供給される吸気は殆ど昇圧されない。

【0047】 離陸して高度が増加し大気圧が徐々に下がると、高圧段タービン32の上流側と下流側との圧力差が広がってタービン32の回転数が増加するので、高圧段圧縮機36が作動する。これにより、エンジン20の吸気管22に供給される吸気圧は地上の大気圧と等しく

吸気の昇圧度合いは低いが、航空機がさらに上昇するに 連れて中圧段タービン42の上流側と下流側との差圧が 拡大し、中圧段タービン42の回転数が増加するので、

12

中圧段圧縮機 4 6 による吸気の昇圧度合いも高まる。 【0054】中圧段過給器 4 0 の S 1 1 ~ S 1 7 における動作は、高圧段過給器 3 0 の S 2 ~ S 8 における動作と同一であるから説明を省略する。そして、 S 1 8 において、中圧段過給器 4 0 に供給される大気の圧力 P 3 が所定値 P 3 0 を上回っていることが確認される場合には、 S 3 ~ S 1 8 のループを反復する。これに対して、中圧段過給器 4 0 に供給される大気の圧力 P 3 が所定値 P 3 0 を下回ったことが確認されたときには、低圧段過給器 5 0 を用いた過給が必要になった場合、すなわち図 3 に示した圧縮過程 P V線図における B 点に達した場合

【0055】すなわち、航空機が上昇して中圧段過給器40に供給される吸気の圧力が所定値P30を下回ると、S19において低圧段過給器50のウェイストゲートバルブW3およびブリードバルブB3を閉じる。これにより、中圧段タービン42から排出された排気の全量が低圧段タービン52に流入するとともに、低圧段圧縮機56によって昇圧された吸気の全量が中圧段圧縮機46に流入するようになる。

であるから、図7のフローチャートに示した制御を開始

【0056】ウェイストゲートバルブW3およびブリードバルブB3を閉じた直後は、低圧段圧縮機56による吸気の昇圧度合いは低いが、航空機がさらに上昇するに連れて低圧段タービン52の上流側と下流側との差圧が拡大し、低圧段タービン52の回転数が増加するので、低圧段圧縮機56による吸気の昇圧度合いも高まる。

【0057】低圧段過給器 $500S20\sim S26$ における動作は、高圧段過給器 $300S2\sim S8$ における動作と同一であるから説明を省略する。そしてS26において、低圧段過給器50から中圧段過給器40に供給される昇圧された吸気の圧力P3が $P31\sim P30$ の範囲内にあることが確認されたときには、 $S3\sim S26$ のループを反復する。

【0058】なお、低圧段圧縮機50に流入する大気の圧力P4の値を絶えずチェックすることにより、航空機が所定高度にまで上昇したか否かを確認することができる。そして、所定高度に達した後はスロットルバルブの開度を調整し、エンジン20の出力を調整して飛行高度の制御を行う。なお、スロットルバルブ23は、応答性を良くするために高圧段過給器30,から昇圧された吸気を受け入れるエンジン20の吸気管22に設けられている。

【0059】また、上述した説明中におれる各所定値、 すなわちP10、P11、d10、d11、P20、P 21、d20、d21、P30、P31、d30、d3 1の各値は、本実施形態のレシプロエンジン用多段過給

なる。なお、高度の増加に伴って高圧段圧縮機36に流入する大気の圧力も低下するが、高圧段タービン32の回転数の増加によって十分な昇圧が可能である。

【0048】S2において、高圧段過給器30からエン ジン20の吸気管22に供給する吸気の圧力P1を、セ ンサP1を用いて絶えずチェックしながら上昇を続け る。このとき、P1の値が所定値P10を越えた場合に は、S3に進んでP1の値の単位時間当たりの変化率を 計算する。そして、この変化率が上昇中に遭遇した突風 等に起因して所定の値 d 1 0 を越えた場合には S 4 に進 10 み、高圧段過給器30のブリードバルブB1を開く。す ると、高圧段圧縮機36によって昇圧した吸気の一部が 吸気供給管37から取り出され、高圧段圧縮機36の上 流側である吸気導入管35に戻されるので、エンジン2 0に供給する吸気の圧力P1を低下させることができ る。そして、S5においてP1の値の単位時間当たりの 変化率が所定の値d11より小さい値に転じたことが確 認されると、S6に進んでブリードバルブB1を閉じそ の後ウェイストゲートバルブW1を開き、高圧段タービ ン32の回転数を制御する。

【0049】なお、P1の値が急激にではないが所定値 P10を越えた場合には、S7に進んでウェイストゲートバルブW1を開き、高圧段タービン32の回転数を制 御する。これにより、高圧段圧縮機36からエンジン20に供給する吸気の圧力を低下させる。そしてS8において、エンジン20に供給する吸気の圧力P1が、所定値P11からP10の範囲内にあるか否かを絶えずチェックする。

【0050】同時に、S9において、中圧段過給器40から高圧段過給器30に供給される吸気の圧力をセンサ 30P2を用いて絶えずチェックする。そして、P2の値が所定値P20を下回っている間は、上述したS3~S9のループを反復する。

【0051】一方、S9において、中圧段過給器40から高圧段過給器30に供給される吸気の圧力P2が所定値P20を下回ったことが確認されたときは、中圧段過給器40を用いた過給が必要になった場合、すなわち図3に示した圧縮過程PV線図におけるD点に達した場合であるから、図6のフローチャートに示した制御を開始する

【0052】すなわち、航空機が上昇して高圧段過給器30に供給される吸気の圧力が所定値P20を下回ると、S10において中圧段過給器40のウェイストゲートバルブW2およびブリードバルブB2を閉じる。これにより、高圧段タービン32から排出された排気の全量が中圧段タービン42に流入するとともに、中圧段圧縮機46によって昇圧された吸気の全量が高圧段圧縮機36に流入するようになる。

【0053】ウェイストゲートバルブW2およびブリードバルブB2を閉じた直後は、中圧段圧縮機46による 50

1

システム100を効率よく作動させるために、スロット ルバルブ23の開度に応じた値に設定される。

【0060】航空機の降下は、高度をチェックしながら スロットル開度を調整して行う。このとき、所定の高度 になれば自然に圧縮も行われなくなるので、ウェイスト ゲートバルブやブリードバルブは開放しなくてもよい。 【0061】また、前述したように、所定高度での巡航 状態25kmにおいては、各段の圧縮機36,46,5 6の上流側と下流側との吸気圧力の比は等しい。したが って、本実施形態のレシプロエンジン用多段過給システ 10 ム100を用いて高度25kmまで上昇する場合には、 一段当たり約3. 42の圧縮比が得られれば地上の大気 圧と等しい圧力の吸気をエンジン20に供給することが できるが、この約3.42という一段当たりの圧縮比 は、現在の技術で十分達成可能な値である。

[0062]

【発明の効果】以上の説明から明らかなように、本発明 のレシプロエンジン用多段過給システムは、各段の過給 器のウェイストゲートバルブおよびブリードバルブを個 別に制御することにより、各段の過給機を個別に、他の 20 段の過給器に依存することなく作動させることができ る。これにより、既存のシステムのように複数段の過給 器の全てを常に作動させる必要がないから、駆動損失を 低減させてエンジンの燃料消費率を低下させることがで きる。

【0063】また、ある段の圧力センサから得られた圧 力値がその段における所定値に達したときに、その段の ウェイストゲートバルブおよびブリードバルブを制御し てその段のタービンおよび圧縮機を作動させることがで きる。これにより、航空機の飛行高度に対応させて各段 30 の過給機をそれぞれ最も効率の良い領域で作動させ、シ ステム全体の効率を向上させることができる。

【0064】また、各段毎に設定する前記所定値の値を 適切に定めれば、各段の過給器の圧縮機の上流側および 下流側における吸気の圧力比を、予め設定した飛行高度 においてそれぞれ等しくすることができる。これによ り、エンジン吸気を昇圧させる圧縮仕事を圧縮過程PV 線図の等温線に接近させて行わせることができるから、 圧縮仕事の仕事量を低減させて、システム全体の効率を 向上させることができる。

【0065】また、本発明のレシプロエンジン用多段過 給システムにおいては、圧縮機で昇圧させた吸気の一部 を取り出してエンジンに供給しない場合にも、取り出し た吸気をその圧縮機の上流側に戻す。これにより、圧縮 機で昇圧させた吸気を排気通路に捨てる従来のシステム とは異なり、圧縮機に必要以上の仕事をさせる必要がな いから、システム全体の効率を向上させることができ

【0066】また、本発明のレシプロエンジン用多段過 給システムは、各段の圧縮機の下流側から上流側に吸気 50 B1,B2,B3 ブリードバルブ

を戻す圧縮機側バイパス路にブリードバルブを有してい る。これにより、飛行中に遭遇した突風等の影響により エンジン吸気圧に急激な変動が生じた場合には、タービ ン側バイパス路に設けたウェイストゲートバルブと圧縮 機側バイパス路に設けたブリードバルブとを連動させる ことにより、エンジンに供給する吸気の圧力制御の不安 定さを低減させ、エンジンの作動を迅速に安定させるこ とができる。

14

【図面の簡単な説明】

【図1】本発明に係る一実施形態のレシプロエンジン用 多段過給システムの構成を示す模式図。

【図2】図1中に示したウェイストゲートバルブおよび ブリードバルブの作動を説明する模式図。

【図3】各段の過給器の圧力比を等しくした場合の圧縮 過程PV線図。

【図4】各段の過給器の圧力比を不均等とした場合の圧 縮過程PV線図。

【図5】図1中に示した高圧段の過給器の作動を説明す るフローチャート図。

【図6】図1中に示した中圧段の過給器の作動を説明す るフローチャート図。

【図7】図1中に示した低圧段の過給器の作動を説明す るフローチャート図。

【図8】高度とレイノルズ数との関係を示す線図。

【図9】既存の過給器の圧力比を比較する線図。

【図10】ドイツGROB社製の3段過給器付きレシプ ロエンジンの模式図。

【図11】NASAの3段過給器付きレシプロエンジン の模式図。

【符号の説明】

- 20 レシプロエンジン
- 2 1 排気管
- 22 吸気管
- 23 スロットルバルブ
- 30 高圧段過給器
- 32 髙圧段タービン
- 34 タービン側バイパス路
- 36 高圧段圧縮機
- 38 圧縮機側バイパス路
- 40 中圧段過給器
 - 42 中圧段タービン
 - 4.4 タービン側バイパス路
 - 46 中圧段圧縮機
 - 48 圧縮機側バイパス路
 - 50 低圧段過給器
 - 52 低圧段タービン
 - 54 タービン側バイパス路
 - 56 低圧段圧縮機
 - 58 圧縮機側バイパス路

W1, W2, W3 ウェイストゲートバルブ 100 本発明によるレシプロエンジン用多段過給シス テム

(9)

【図8】

【図9】

フロントページの続き

(72)発明者 矢 川 昭 良 東京都新宿区西新宿一丁目7番2号 富士 重工業株式会社内

(72)発明者 栗 原 優 東京都三郎市大沢三丁目 9 番 6 号 株式会 社スバル研究所内