```
FILE 'HOME' ENTERED AT 16:05:35 ON 28 MAY 2009
=> fil .bec
COST IN U.S. DOLLARS
                                               SINCE FILE
                                                              TOTAL
                                                   ENTRY
                                                             SESSION
FULL ESTIMATED COST
                                                    0.22
                                                               0.22
FILES 'MEDLINE, SCISEARCH, LIFESCI, BIOTECHDS, BIOSIS, EMBASE, HCAPLUS, NTIS,
      ESBIOBASE, BIOTECHNO, WPIDS' ENTERED AT 16:05:57 ON 28 MAY 2009
ALL COPYRIGHTS AND RESTRICTIONS APPLY. SEE HELP USAGETERMS FOR DETAILS.
11 FILES IN THE FILE LIST
=> s polyhydroxyalka? or polyhydroxybuty? or pha or phb or 3hb co
FILE 'MEDLINE'
          783 POLYHYDROXYALKA?
          275 POLYHYDROXYBUTY?
        15868 PHA
         1251 PHB
          284 3HB
      1497763 CO
          106 3HB CO
                (3HB(W)CO)
        17258 POLYHYDROXYALKA? OR POLYHYDROXYBUTY? OR PHA OR PHB OR 3HB CO
L1
FILE 'SCISEARCH'
         1814 POLYHYDROXYALKA?
          757 POLYHYDROXYBUTY?
         9487 PHA
         2844 PHB
          582 3HB
        449788 CO
          251 3HB CO
                (3HB(W)CO)
L2
        12764 POLYHYDROXYALKA? OR POLYHYDROXYBUTY? OR PHA OR PHB OR 3HB CO
FILE 'LIFESCI'
          719 POLYHYDROXYALKA?
          407 POLYHYDROXYBUTY?
         6353 PHA
         1035 PHB
          200 "3HB"
        100593 "CO"
           84 3HB CO
                ("3HB"(W)"CO")
L3
         7518 POLYHYDROXYALKA? OR POLYHYDROXYBUTY? OR PHA OR PHB OR 3HB CO
FILE 'BIOTECHDS'
          901 POLYHYDROXYALKA?
          182 POLYHYDROXYBUTY?
          879 PHA
          788 PHB
          113 3HB
        14307 CO
           45 3HB CO
                (3HB(W)CO)
L4
         1820 POLYHYDROXYALKA? OR POLYHYDROXYBUTY? OR PHA OR PHB OR 3HB CO
FILE 'BIOSIS'
```

1229 POLYHYDROXYALKA?

```
472 POLYHYDROXYBUTY?
         16763 PHA
          1800 PHB
           351 3HB
        243901 CO
           144 3HB CO
                 (3HB(W)CO)
L5
         18968 POLYHYDROXYALKA? OR POLYHYDROXYBUTY? OR PHA OR PHB OR 3HB CO
FILE 'EMBASE'
           999 POLYHYDROXYALKA?
           280 POLYHYDROXYBUTY?
         15528 PHA
          1333 PHB
          291 3HB
        984499 CO
           117 3HB CO
                 (3HB(W)CO)
L6
         17080 POLYHYDROXYALKA? OR POLYHYDROXYBUTY? OR PHA OR PHB OR 3HB CO
FILE 'HCAPLUS'
          2784 POLYHYDROXYALKA?
          3924 POLYHYDROXYBUTY?
         12792 PHA
          4591 PHB
           714 3HB
        967658 CO
           303 3HB CO
                (3HB(W)CO)
L7
         20002 POLYHYDROXYALKA? OR POLYHYDROXYBUTY? OR PHA OR PHB OR 3HB CO
FILE 'NTIS'
             8 POLYHYDROXYALKA?
             9 POLYHYDROXYBUTY?
           419 PHA
            39 PHB
            0 3HB
         37019 CO
             0 3HB CO
                 (3HB(W)CO)
L8
           463 POLYHYDROXYALKA? OR POLYHYDROXYBUTY? OR PHA OR PHB OR 3HB CO
FILE 'ESBIOBASE'
           851 POLYHYDROXYALKA?
           266 POLYHYDROXYBUTY?
          4214 PHA
          1033 PHB
           269 3HB
        153782 CO
           112 3HB CO
                 (3HB(W)CO)
L9
          5330 POLYHYDROXYALKA? OR POLYHYDROXYBUTY? OR PHA OR PHB OR 3HB CO
FILE 'BIOTECHNO'
           528 POLYHYDROXYALKA?
           150 POLYHYDROXYBUTY?
          4427 PHA
           697 PHB
           165 3HB
         52091 CO
            79 3HB CO
                 (3HB(W)CO)
```

```
T<sub>1</sub>10
          5240 POLYHYDROXYALKA? OR POLYHYDROXYBUTY? OR PHA OR PHB OR 3HB CO
FILE 'WPIDS'
           804 POLYHYDROXYALKA?
           900 POLYHYDROXYBUTY?
          1195 PHA
           599 PHB
            74 3HB
        326665 CO
            26 3HB CO
                  (3HB(W)CO)
L11
          2953 POLYHYDROXYALKA? OR POLYHYDROXYBUTY? OR PHA OR PHB OR 3HB CO
TOTAL FOR ALL FILES
L12
       109396 POLYHYDROXYALKA? OR POLYHYDROXYBUTY? OR PHA OR PHB OR 3HB CO
=> s 112 and (feed?(3a)rate# or ferment?(3a)parameter#)
FILE 'MEDLINE'
        245482 FEED?
       1495166 RATE#
          3373 FEED? (3A) RATE#
         44978 FERMENT?
        431827 PARAMETER#
           273 FERMENT? (3A) PARAMETER#
L13
            22 L1 AND (FEED?(3A)RATE# OR FERMENT?(3A)PARAMETER#)
FILE 'SCISEARCH'
        373195 FEED?
       1708468 RATE#
         12696 FEED? (3A) RATE#
         64384 FERMENT?
       1093969 PARAMETER#
           723 FERMENT? (3A) PARAMETER#
L14
            37 L2 AND (FEED? (3A) RATE# OR FERMENT? (3A) PARAMETER#)
FILE 'LIFESCI'
        109296 FEED?
        340468 RATE#
          4404 FEED? (3A) RATE#
         32927 FERMENT?
        110990 PARAMETER#
           385 FERMENT? (3A) PARAMETER#
L15
            26 L3 AND (FEED?(3A)RATE# OR FERMENT?(3A)PARAMETER#)
FILE 'BIOTECHDS'
         17294 FEED?
         44742 RATE#
          1197 FEED?(3A)RATE#
         63953 FERMENT?
         11940 PARAMETER#
           434 FERMENT? (3A) PARAMETER#
L16
            28 L4 AND (FEED?(3A)RATE# OR FERMENT?(3A)PARAMETER#)
FILE 'BIOSIS'
        426228 FEED?
       1571984 RATE#
         13110 FEED? (3A) RATE#
         94172 FERMENT?
        466831 PARAMETER#
           811 FERMENT? (3A) PARAMETER#
L17
            31 L5 AND (FEED? (3A) RATE# OR FERMENT? (3A) PARAMETER#)
```

```
FILE 'EMBASE'
        194469 FEED?
       1309073 RATE#
          2828 FEED? (3A) RATE#
         32924 FERMENT?
        467340 PARAMETER#
           254 FERMENT? (3A) PARAMETER#
L18
            19 L6 AND (FEED?(3A)RATE# OR FERMENT?(3A)PARAMETER#)
FILE 'HCAPLUS'
        586726 FEED?
       2451835 RATE#
         24132 FEED? (3A) RATE#
        212645 FERMENT?
        132452 FERMN
        246733 FERMENT?
                  (FERMENT? OR FERMN)
       1324526 PARAMETER#
          1556 FERMENT? (3A) PARAMETER#
L19
            48 L7 AND (FEED? (3A) RATE# OR FERMENT? (3A) PARAMETER#)
FILE 'NTIS'
         48523 FEED?
        187888 RATE#
          1296 FEED? (3A) RATE#
          2579 FERMENT?
        136764 PARAMETER#
            18 FERMENT? (3A) PARAMETER#
L20
             0 L8 AND (FEED?(3A)RATE# OR FERMENT?(3A)PARAMETER#)
FILE 'ESBIOBASE'
        112077 FEED?
        490595 RATE#
          4120 FEED? (3A) RATE#
         25350 FERMENT?
        179075 PARAMETER#
           354 FERMENT? (3A) PARAMETER#
L21
            25 L9 AND (FEED? (3A) RATE# OR FERMENT? (3A) PARAMETER#)
FILE 'BIOTECHNO'
         24649 FEED?
        166001 RATE#
           876 FEED? (3A) RATE#
         23461 FERMENT?
         60195 PARAMETER#
           212 FERMENT?(3A)PARAMETER#
L22
            13 L10 AND (FEED?(3A)RATE# OR FERMENT?(3A)PARAMETER#)
FILE 'WPIDS'
        803519 FEED?
        677038 RATE#
         18742 FEED? (3A) RATE#
         65816 FERMENT?
            44 FERMN
         65828 FERMENT?
                  (FERMENT? OR FERMN)
        255492 PARAMETER#
           118 FERMENT? (3A) PARAMETER#
L23
            14 L11 AND (FEED? (3A) RATE# OR FERMENT? (3A) PARAMETER#)
TOTAL FOR ALL FILES
L24
           263 L12 AND (FEED?(3A) RATE# OR FERMENT?(3A) PARAMETER#)
```

=> s 124 not 2004-2009/py

FILE 'MEDLINE'

3617229 2004-2009/PY

L25 12 L13 NOT 2004-2009/PY

FILE 'SCISEARCH'

6763499 2004-2009/PY

(20040000-20099999/PY)

L26 17 L14 NOT 2004-2009/PY

FILE 'LIFESCI'

987314 2004-2009/PY

L27 11 L15 NOT 2004-2009/PY

FILE 'BIOTECHDS'

126371 2004-2009/PY

L28 16 L16 NOT 2004-2009/PY

FILE 'BIOSIS'

3182607 2004-2009/PY

L29 17 L17 NOT 2004-2009/PY

FILE 'EMBASE'

3084904 2004-2009/PY

L30 15 L18 NOT 2004-2009/PY

FILE 'HCAPLUS'

7311518 2004-2009/PY

L31 25 L19 NOT 2004-2009/PY

FILE 'NTIS'

91595 2004-2009/PY

L32 0 L20 NOT 2004-2009/PY

FILE 'ESBIOBASE'

1825208 2004-2009/PY

L33 14 L21 NOT 2004-2009/PY

FILE 'BIOTECHNO'

586 2004-2009/PY

L34 13 L22 NOT 2004-2009/PY

FILE 'WPIDS'

6303593 2004-2009/PY

L35 6 L23 NOT 2004-2009/PY

TOTAL FOR ALL FILES

L36 146 L24 NOT 2004-2009/PY

=> dup rem 136

PROCESSING COMPLETED FOR L36

L37 57 DUP REM L36 (89 DUPLICATES REMOVED)

=> d tot

ANSWER 1 OF 57 BIOTECHDS COPYRIGHT 2009 THOMSON REUTERS on STN Production of 2-hydroxyacid-containing polymer for forming medical device, involves expressing in organism exogenous genes encoding polyhydroxyalkanoate synthase and enzyme(s) for the production of 2-hydroxyacyl Coenzyme-A;

 ${\tt vector-mediated\ polyhydroxyalkanoate-synthase\ gene\ transfer}$

and expression in host cell for recombinant protein production and polymer preparation $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

- AU MARTIN D P; SKRALY F A
- AN 2004-10980 BIOTECHDS
- PI US 20030211131 13 Nov 2003
- L37 ANSWER 2 OF 57 HCAPLUS COPYRIGHT 2009 ACS on STN
- TI Effect of periodic feeding in sequencing batch reactor on substrate uptake and storage rates by a pure culture of Amaricoccus kaplicensis
- SO Water Research (2003), 37(11), 2764-2772 CODEN: WATRAG; ISSN: 0043-1354
- AU Aulenta, Federico; Dionisi, Davide; Majone, Mauro; Parisi, Antonio; Ramadori, Roberto; Tandoi, Valter
- AN 2003:357761 HCAPLUS
- DN 139:184703
- L37 ANSWER 3 OF 57 BIOTECHDS COPYRIGHT 2009 THOMSON REUTERS on STN
- TI Evaluation of spectrofluorometry as a tool for estimation in fed-batch fermentations;
 - Alcaligenes eutrophus fermentation for poly-beta-hydroxybutyrate production and process optimization
- SO BIOTECHNOLOGY AND BIOENGINEERING; (2003) 83, 1, 104-111 ISSN: 0006-3592
- AU HAGEDORN A; LEGGE RL; BUDMAN H
- AN 2003-15154 BIOTECHDS
- L37 ANSWER 4 OF 57 BIOTECHDS COPYRIGHT 2009 THOMSON REUTERS on STN
- TI Production of polyhydroxyalkanoate from starch and/or derivatives for making polymers and copolymers, by incubating an polyhydroxyalkanoate-producing microorganism in medium containing starch and/or derivatives;
 - polymer preparation by bacterium or yeast fermentation for drug delivery, orthopedic implant, tissue engineering and cardiovascular disorder therapy
- AU LAPOINTE R; LAMBERT A; SAVARD L
- AN 2002-17381 BIOTECHDS
- PI US 20020031812 14 Mar 2002
- L37 ANSWER 5 OF 57 MEDLINE on STN DUPLICATE 1
- TI Effect of Vitreoscilla hemoglobin biosynthesis in Escherichia coli on production of poly(beta-hydroxybutyrate) and fermentative parameters.
- SO FEMS microbiology letters, (2002 Sep 10) Vol. 214, No. 2, pp. 223-7. Journal code: 7705721. ISSN: 0378-1097.
- AU Yu Huimin; Shi Yue; Zhang Yanping; Yang Shengli; Shen Zhongyao
- AN 2002490888 MEDLINE
- L37 ANSWER 6 OF 57 Elsevier Biobase COPYRIGHT 2009 Elsevier Science B.V. on STN
- AN 2002261226 ESBIOBASE
- TI Effect of Vitreoscilla hemoglobin biosynthesis in Escherichia coli on production of poly(β -hydroxybutyrate) and fermentative parameters
- AU Yu, Huimin; Shi, Yue; Zhang, Yanping; Shen, Zhongyao; Yang, Shengli CS Yu, Huimin; Shi, Yue; Zhang, Yanping; Shen, Zhongyao (Department of
- CS Yu, Huimin; Shi, Yue; Zhang, Yanping; Shen, Zhongyao (Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing 100084 (CN)); Yang, Shengli (Shanghai Research Center of Biotechnology, Academic Sinica, Shanghai 200233 (CN)) EMAIL: yuhm@mail.tsinghua.edu.cn
- SO FEMS Microbiology Letters (10 Sep 2002) Volume 214, Number 2, pp. 223-227, 12 refs.
 - CODEN: FMLED7 ISSN: 0378-1097

DOI: 10.1016/S0378-1097(02)00887-X PUT S037810970200887X CY Netherlands Journal; Article DTLA English SLEnglish ED Entered STN: 1 Feb 2009 Last updated on STN: 1 Feb 2009 ANSWER 7 OF 57 HCAPLUS COPYRIGHT 2009 ACS on STN Quality control of polyhydroxyalkanoates in fed-batch culture ΤI based on a metabolic reaction model SO Computer Applications in Biotechnology 2001: Modelling, Monitoring and Control of Biotechnical Processes, A Proceedings Volume from the IFAC International Conference, 8th, Quebec City, QC, Canada, June 24-27, 2001 (2002), Meeting Date 2001, 201-206. Editor(s): Dochain, Denis; Perrier, Michel. Publisher: Pergamon Press, Oxford, UK. CODEN: 69DEI4; ISBN: 0-08-043681-1 ΑU Shimizu, Hiroshi; Chanprateep, Suchada; Hirunruttanakorn, Adisak; Kikuya, Kensuke; Shioya, Suteaki ΑN 2002:784810 HCAPLUS DN 138:3707 L37 ANSWER 8 OF 57 MEDLINE on STN DUPLICATE 2 The storage of acetate under anoxic conditions. TΙ Water research, (2001 Aug) Vol. 35, No. 11, pp. 2661-8. SO Journal code: 0105072. ISSN: 0043-1354. ΑU Dionisi D; Majone M; Ramadori R; Beccari M AN 2002020788 MEDLINE ANSWER 9 OF 57 Elsevier Biobase COPYRIGHT 2009 Elsevier Science B.V. on L37 STN 2001122786 ESBIOBASE AN ΤI The storage of acetate under anoxic conditions Dionisi, D.; Majone, M.; Beccari, M.; Ramadori, R. ΑU CS Dionisi, D.; Majone, M.; Beccari, M. (Department of Chemistry, Univ. Sapienza, Piazza A. M., Rome (IT)); Ramadori, R. (Water Research Institute, Natl. Res. Cncl., Via Reno, 1, 00198, Rome (IT)) EMAIL: majone@axrma.uniromal.it SO Water Research (Aug 2001) Volume 35, Number 11, pp. 2661-2668, 34 refs. CODEN: WATRAG ISSN: 0043-1354 DOI: 10.1016/S0043-1354(00)00562-5 PUI S0043135400005625 CY United Kingdom DT Journal; Article English LA SL English Entered STN: 1 Feb 2009 ED Last updated on STN: 1 Feb 2009 L37 ANSWER 10 OF 57 BIOSIS COPYRIGHT (c) 2009 The Thomson Corporation on STN Immunostimulatory effects of anionic alkali mineral complex solution Barodon in porcine lymphocytes. Abstracts of the General Meeting of the American Society for Microbiology, (2001) Vol. 101, pp. 747-748. print. Meeting Info.: 101st General Meeting of the American Society for Microbiology. Orlando, FL, USA. May 20-24, 2001. American Society for

Yoo, B. [Reprint author]; Choi, S.; Kim, S.; Yang, S.; Koo, H.; Seo, S.

[Reprint author]; Park, B.; Yoo, H.; Park, Y.

Microbiology. ISSN: 1060-2011.

ΑIJ

- AN 2002:233447 BIOSIS
- L37 ANSWER 11 OF 57 SCISEARCH COPYRIGHT (c) 2009 The Thomson Corporation on STN DUPLICATE 3
- TI Food availability and immune capacity in serin (Serinus serinus) nestlings
- SO BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY, (APR 2001) Vol. 49, No. 5, pp. 333-339.

ISSN: 0340-5443.

- AU Hoi-Leitner M (Reprint); Romero-Pujante M; Hoi H; Pavlova A
- AN 2001:387487 SCISEARCH
- L37 ANSWER 12 OF 57 Elsevier Biobase COPYRIGHT 2009 Elsevier Science B.V. on STN
- AN 2001106070 ESBIOBASE
- TI Food availability and immune capacity in serin (Serinus serinus) nestlings
- AU Hoi-Leitner, M.; Romero-Pujante, M.; Hoi, H.; Pavlova, A.
- CS Hoi-Leitner, M.; Romero-Pujante, M.; Hoi, H.; Pavlova, A. (Konrad Lorenz Inst. Compar. Ethology, Savoyenstrasse 1a, 1160 Vienna (AT))
- SO Behavioral Ecology and Sociobiology (2001) Volume 49, Number 5, pp. 333-339, 57 refs.

CODEN: BESOD6 ISSN: 0340-5443 DOI: 10.1007/s002650000310

- CY Germany
- DT Journal; Article
- LA English
- SL English
- ED Entered STN: 1 Feb 2009
 Last updated on STN: 1 Feb 2009
- L37 ANSWER 13 OF 57 MEDLINE on STN DUPLICATE 4
- TI Multivariable control of alcohol concentrations in the production of polyhydroxyalkanoates (PHAs) by Paracoccus denitrificans.
- SO Biotechnology and bioengineering, (2001 Jul 20) Vol. 74, No. 2, pp. 116-24.

Journal code: 7502021. ISSN: 0006-3592.

- AU Chanprateep S; Abe N; Shimizu H; Yamane T; Shioya S
- AN 2001276729 MEDLINE
- L37 ANSWER 14 OF 57 Elsevier Biobase COPYRIGHT 2009 Elsevier Science B.V. on STN
- AN 2001151014 ESBIOBASE
- TI Multivariable control of alcohol concentrations in the production of polyhydroxyalkanoates (PHAs) by Paracoccus denitrificans
- AU Chanprateep, Suchada; Abe, Naoya; Shimizu, Hiroshi; Shioya, Suteaki; Yamane, Tsuneo
- CS Chanprateep, Suchada; Abe, Naoya; Shimizu, Hiroshi; Shioya, Suteaki (Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (JP)); Yamane, Tsuneo (Department of Applied Biological Mechanism and Functions, Graduate School of Agricultural Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (JP))

EMAIL: shioya@bio.eng.osaka-u.ac.jp

SO Biotechnology and Bioengineering (20 Jul 2001) Volume 74, Number 2, pp. 116-124, 25 refs.

CODEN: BIBIAU ISSN: 0006-3592

DOI: 10.1002/bit.1101

- CY United States of America
- DT Journal; Article
- LA English
- SL English
- ED Entered STN: 1 Feb 2009

Last updated on STN: 1 Feb 2009

- L37 ANSWER 15 OF 57 MEDLINE on STN DUPLICATE 5
- Production of PHA from starchy wastewater via organic acids. TI
- Journal of biotechnology, (2001 Mar 30) Vol. 86, No. 2, pp. 105-12. SO Journal code: 8411927. ISSN: 0168-1656.
- ΑU Yu J
- 2001259766 ΑN MEDLINE
- L37 ANSWER 16 OF 57 Elsevier Biobase COPYRIGHT 2009 Elsevier Science B.V. on
- ESBIOBASE ΑN
- TΙ Production of PHA from starchy wastewater via organic acids
- ΑU Yu, Jian
- CS Yu, Jian (Department of Chemical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (HK)) EMAIL: kejianyu@ust.hk
- Journal of Biotechnology (30 Mar 2001) Volume 86, Number 2, pp. 105-112, SO 9 refs.

CODEN: JBITD4 ISSN: 0168-1656

DOI: 10.1016/S0168-1656(00)00405-3

- PUI S0168165600004053
- CY Netherlands
- DT Journal; Article
- LA English
- English SL
- ED Entered STN: 1 Feb 2009 Last updated on STN: 1 Feb 2009
- L37 ANSWER 17 OF 57 SCISEARCH COPYRIGHT (c) 2009 The Thomson Corporation on DUPLICATE 6 STN
- Feeding strategy of propionic acid for production of TΙ poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Ralstonia eutropha
- BIOCHEMICAL ENGINEERING JOURNAL, (SEP 2001) Vol. 8, No. 2, pp. 103-110. SO ISSN: 1369-703X.
- ΑU Yu J (Reprint); Du G C C; Chen J; Lun S Y
- ΑN 2001:618525 SCISEARCH
- L37 ANSWER 18 OF 57 MEDLINE on STN
- Immunostimulatory effects of anionic alkali mineral complex solution ΤI Barodon in porcine lymphocytes.
- SO Journal of veterinary science (Suwon-si, Korea), (2001 Apr) Vol. 2, No. 1, pp. 15-24. Journal code: 100964185. ISSN: 1229-845X.
- Yoo B W; Choi S I; Kim S H; Yang S J; Koo H C; Seo S H; Park B K; Yoo H S; ΑU Park Y H
- 2003536016 MEDLINE ΑN
- L37 ANSWER 19 OF 57 WPIDS COPYRIGHT 2009 THOMSON REUTERS on STN
- Commercial production of 4-hydroxybenzoic acid, useful in producing low TΙ cost liquid crystal polymers, comprises using mutant Escherichia coli cells, which overproduce chorismate, transformed with the pMCP2 plasmid
- US 6030819 A 20000229 (200021)* EN 8[3] WO 2000018943 A1 20000406 (200025) EN PΙ

RW: AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE W: JP SG

- AMARATUNGA M; JOHNSON B F; LOBOS J H; WILLIAMS E D ΙN
- L37 ANSWER 20 OF 57 MEDLINE on STN DUPLICATE 7
- Accumulation of Poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans ΤI during growth with octanoate in continuous culture at different dilution rates.

SO Applied and environmental microbiology, (2000 Aug) Vol. 66, No. 8, pp. 3408 - 14.Journal code: 7605801. ISSN: 0099-2240. Report No.: NLM-PMC92163. Durner R; Witholt B; Eqli T ΑU 2001075781 MEDLINE ΑN ANSWER 21 OF 57 Elsevier Biobase COPYRIGHT 2009 Elsevier Science B.V. on L37 STN ESBIOBASE AN Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans ΤT during growth with octanoate in continuous culture at different dilution rates ΑU Durner, R.; Witholt, B.; Egli, T. CS Durner, R.; Witholt, B.; Egli, T. (Department of Microbiology, EAWAG, Uberlandstrasse 133, CH-8600 Dubendorf (CH)) Applied and Environmental Microbiology (2000) Volume 66, Number 8, pp. SO 3408-3414, 42 refs. CODEN: AEMIDF ISSN: 0099-2240 DOI: 10.1128/AEM.66.8.3408-3414.2000 CY United States of America DT Journal; Article LA English SL English ED Entered STN: 31 Jan 2009 Last updated on STN: 31 Jan 2009 L37 ANSWER 22 OF 57 SCISEARCH COPYRIGHT (c) 2009 The Thomson Corporation on DUPLICATE 8 Poly(beta-hydroxybutyric acid) thermoplastic production by Alcaligenes ΤТ lotus: Behavior of fed-batch cultures SO BIOPROCESS ENGINEERING, (MAY 2000) Vol. 22, No. 5, pp. 441-449. ISSN: 0178-515X. Chisti Y (Reprint); Grothe E ΑU 2000:395075 SCISEARCH ΑN ANSWER 23 OF 57 Elsevier Biobase COPYRIGHT 2009 Elsevier Science B.V. on L37 STN 2000120025 **ESBIOBASE** AN Poly(β -hydroxybutyric acid) thermoplastic production by Alcaligenes TTlatus: Behavior of fed-batch cultures ΑU Grothe, E.; Chisti, Y. CS Grothe, E. (Department of Chemical Engineering, University of Waterloo, Waterloo, Ont. N2L 3G1 (CA)); Chisti, Y. (Department of Chemical Engineering, University of Almeria, E-04071 Almeria (ES)) Bioprocess Engineering (2000) Volume 22, Number 5, pp. 441-449, 30 refs. SO CODEN: BIENEU ISSN: 0178-515X CY Germany Journal; Article DT LA English SLEnglish Entered STN: 31 Jan 2009 ED Last updated on STN: 31 Jan 2009 L37 ANSWER 24 OF 57 MEDLINE on STN DUPLICATE 9 Effect of controlling lactate concentration and periodic change in DO concentration on fermentation characteristics of a mixed culture of

production.

SO Journal of bioscience and bioengineering, (2000) Vol. 89, No. 4, pp. 323-8.

Journal code: 100888800. ISSN: 1389-1723.

Lactobacillus delbrueckii and Ralstonia eutropha for PHB

- AU Tohyama M; Takagi S; Shimizu K
- AN 2005557065 MEDLINE
- L37 ANSWER 25 OF 57 Elsevier Biobase COPYRIGHT 2009 Elsevier Science B.V. on STN
- AN 2000119943 ESBIOBASE
- TI Effect of controlling lactate concentration and periodic change in DO concentration on fermentation characteristics of a mixed culture of Lactobacillus delbrueckii and Ralstonia eutropha for PHB production
- AU Tohyama, Masayuki; Takagi, Seiji; Shimizu, Kazuyuki
- CS Tohyama, Masayuki; Takagi, Seiji; Shimizu, Kazuyuki (Dept. of Biochemical Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502 (JP))
- Journal of Bioscience and Bioengineering (2000) Volume 89, Number 4, pp. 323-328, 17 refs.

CODEN: JBBIF6 ISSN: 1389-1723

DOI: 10.1016/S1389-1723(00)88953-7

- CY Japan
- DT Journal; Article
- LA English
- SL English
- ED Entered STN: 31 Jan 2009 Last updated on STN: 31 Jan 2009
- L37 ANSWER 26 OF 57 MEDLINE on STN DUPLICATE 10
- TI Effects of nitrogen feeding on the accumulation of poly-beta-hydroxybutyrate with Alcaligenes eutrophus.
- SO Wei sheng wu xue bao = Acta microbiologica Sinica, (2000 Jun) Vol. 40, No. 3, pp. 290-5.

 Journal code: 21610860R. ISSN: 0001-6209.
- AU Du G; Chen J; Yin H; Gao H; Lun S
- AN 2003041763 MEDLINE
- L37 ANSWER 27 OF 57 SCISEARCH COPYRIGHT (c) 2009 The Thomson Corporation on STN DUPLICATE 11
- TI Effect of total nutrient feed on production of poly-3-hydroxybutyrate by Methylobacterium sp ZP24 grown on sugars
- SO JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, (NOV 2000) Vol. 25, No. 5, pp. 276-279.
 ISSN: 1367-5435.
- AU Desai A J (Reprint); Yellore V S; Ghatnekar M S; Pai J S
- AN 2001:62630 SCISEARCH
- L37 ANSWER 28 OF 57 Elsevier Biobase COPYRIGHT 2009 Elsevier Science B.V. on STN
- AN 2001013635 ESBIOBASE
- TI Effect of total nutrient feed on production of poly-3-hydroxybutyrate by Methylobacterium sp. ZP24 grown on sugars
- AU Yellore, V.S.; Desai, A.J.; Ghatnekar, M.S.; Pai, J.S.
- CS Yellore, V.S.; Desai, A.J. (Department of Microbiology and Biotechnology Centre, Faculty of Science, Maharaja Sayajirao University of Baroda, Baroda 390002 (IN)); Ghatnekar, M.S.; Pai, J.S. (Division of Foods and Fermentation Technology, University Department of Chemical Technology, Matunga 400019 (IN))
- SO Journal of Industrial Microbiology and Biotechnology (2000) Volume 25, Number 5, pp. 276-279, 20 refs. CODEN: JIMBFL ISSN: 1367-5435 DOI: 10.1038/sj.jim.7000073
- CY United Kingdom
- DT Journal; Article
- LA English

- SL English
- ED Entered STN: 1 Feb 2009 Last updated on STN: 1 Feb 2009
- L37 ANSWER 29 OF 57 BIOTECHDS COPYRIGHT 2009 THOMSON REUTERS on STN
- TI Kinetic analysis on inhibited growth and poly(3-hydroxybutyrate) formation of Alcaligenes eutrophus on acetate under nutrient-rich conditions;

effect of acetic acid on poly-beta-hydroxybutyrate production

SO Process Biochem.; (2000) 36, 3, 201-07

CODEN: PBCHE5 ISSN: 0032-9592

- AU Wanq J; *Yu J
- AN 2000-13866 BIOTECHDS
- L37 ANSWER 30 OF 57 BIOTECHDS COPYRIGHT 2009 THOMSON REUTERS on STN
- TI Continuous microbiological production of biodegradable polymer, e.g. polyhydroxybutyric acid; poly-beta-hydroxybutyrate production
- AU Babel W; Maskow T
- AN 2000-01367 BIOTECHDS
- PI DE 19820168 4 Nov 1999
- L37 ANSWER 31 OF 57 SCISEARCH COPYRIGHT (c) 2009 The Thomson Corporation on STN DUPLICATE 13
- TI Estimation of residual biomass, PHB, and nutrient concentrations by supplied amount of ammonia solution in fermentation of Alcaligenes latus
- SO JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, (OCT 1999) Vol. 9, No. 5, pp. 554-561.

ISSN: 1017-7825.

- AU Lee Y W (Reprint); Yamane T
- AN 1999:836273 SCISEARCH
- L37 ANSWER 32 OF 57 Elsevier Biobase COPYRIGHT 2009 Elsevier Science B.V. on STN
- AN 2000009838 ESBIOBASE
- TI Estimation of residual biomass, PHB, and nutrient concentrations by supplied amount of ammonia solution in fermentation of Alcaligenes latus
- AU Lee, Yong-Woo; Yamane, Tsuneo
- CS Lee, Yong-Woo (Res. Inst. of Biodegradable Polymers, Dept. of Biochemical Engineering, Yanbian Univ. of Sci. and Technology, Beishan St., Yanji, Jilin 133,000 (CN)); Yamane, Tsuneo (Dept. of Applied Biological Sciences, School of Bioagricultural Sciences, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 4,648,610 (JP)) EMAIL: ywlee@ybust.edu.cn
- SO Journal of Microbiology and Biotechnology (Oct 1999) Volume 9, Number 5, pp. 554-561, 23 refs.

 CODEN: JOMBES ISSN: 1017-7825
- CY Republic of Korea
- DT Journal; Article
- LA English
- SL English
- ED Entered STN: 31 Jan 2009 Last updated on STN: 31 Jan 2009
- L37 ANSWER 33 OF 57 MEDLINE on STN DUPLICATE 14
- TI Closed-loop control of bacterial high-cell-density fed-batch cultures: production of mcl-PHAs by Pseudomonas putida KT2442 under single-substrate and cofeeding conditions.
- SO Biotechnology and bioengineering, (1999 Nov 5) Vol. 65, No. 3, pp. 306-15. Journal code: 7502021. ISSN: 0006-3592.

- AU Kellerhals M B; Kessler B; Witholt B
 AN 1999415709 MEDLINE

 L37 ANSWER 34 OF 57 Elsevier Biobase Co
- L37 ANSWER 34 OF 57 Elsevier Biobase COPYRIGHT 2009 Elsevier Science B.V. on STN
- AN 1999228392 ESBIOBASE
- TI Closed-loop control of bacterial high-cell-density fed-batch cultures: Production of mcl-PHAs by Pseudomonas putida KT2442 under single-substrate and cofeeding conditions
- AU Kellerhals, Michele B.; Kessler, Birqit; Witholt, Bernard
- CS Kellerhals, Michele B.; Kessler, Birgit; Witholt, Bernard (Institute of Biotechnology, ETH Honggerberg, CH-8093 Zurich (CH))
 EMAIL: bw@biotech.biol.ethz.ch
- SO Biotechnology and Bioengineering (5 Nov 1999) Volume 65, Number 3, pp. 306-315, 30 refs.

 CODEN: BIBIAU ISSN: 0006-3592

 DOI: 10.1002/(SICI)1097-0290(19991105)65:3<306::AID-BIT8>3.0.CO;2-0
- CY United States of America
- DT Journal; Article
- LA English
- SL English
- ED Entered STN: 31 Jan 2009

 Last updated on STN: 31 Jan 2009
- L37 ANSWER 35 OF 57 MEDLINE on STN DUPLICATE 15
- TI Production of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Erwinia sp. USMI-20.
- SO International journal of biological macromolecules, (1999 Jun-Jul) Vol. 25, No. 1-3, pp. 95-104.

 Journal code: 7909578. ISSN: 0141-8130.
- AU Majid M I; Akmal D H; Few L L; Agustien A; Toh M S; Samian M R; Najimudin N; Azizan M N
- AN 1999343044 MEDLINE
- L37 ANSWER 36 OF 57 Elsevier Biobase COPYRIGHT 2009 Elsevier Science B.V. on STN
- AN 1999149588 ESBIOBASE
- TI Production of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Erwinia sp. USMI-20
- AU Majid, M.I.A.; Akmal, D.H.; Few, L.L.; Agustien, A.; Toh, M.S.; Samian, M.R.; Najimudin, N.; Azizan, M.N.
- CS Majid, M.I.A.; Akmal, D.H. (National Poison Centre, Universiti Sains Malaysia, 11800 M., Penang (MY)); Few, L.L.; Agustien, A.; Toh, M.S.; Samian, M.R.; Najimudin, N.; Azizan, M.N. (School of Biological Sciences, Universiti Sains Malaysia, 11800 M., Penang (MY)) EMAIL: misa@usm.my
- SO International Journal of Biological Macromolecules (Jun 1999) Volume 25, Number 1-3, pp. 95-104, 15 refs. CODEN: IJBMDR ISSN: 0141-8130 DOI: 10.1016/S0141-8130(99)00020-3
- PUI S0141813099000203
- CY Netherlands
- DT Journal; (Conference Paper)
- LA English
- SL English
- ED Entered STN: 31 Jan 2009 Last updated on STN: 31 Jan 2009
- L37 ANSWER 37 OF 57 SCISEARCH COPYRIGHT (c) 2009 The Thomson Corporation on STN DUPLICATE 16
- TI Control of a mixed culture of Lactobacillus delbrueckii and ralstonia eutropha for the production of PHB from glucose via lactate

- SO BIOCHEMICAL ENGINEERING JOURNAL, (SEP 1999) Vol. 4, No. 1, pp. 45-53. ISSN: 1369-703X.
- AU Shimizu K (Reprint); Tohyama M
- AN 1999:728373 SCISEARCH
- L37 ANSWER 38 OF 57 HCAPLUS COPYRIGHT 2009 ACS on STN
- TI Studies on the production of poly- β -hydroxybutyric acid by fed-batch culture with DO-stat method employing Alcaligenes eutrophus mutant B510
- SO Huanjing Kexue Xuebao (1999), 19(1), 6-10 CODEN: HKXUDL; ISSN: 0253-2468
- AU Zhuang, Guoqiang; Li, Aiying; Wen, Xin; Qi, Qingsheng; Xu, Ping; Qu, Yinbo
- AN 1999:104227 HCAPLUS
- DN 130:236524
- L37 ANSWER 39 OF 57 HCAPLUS COPYRIGHT 2009 ACS on STN
- TI Process for production of bacterial cells containing poly-3-hydroxybutyric acid
- SO U.S., 12 pp., Cont.-in-part of U.S. Ser. No. 298,428, abandoned. CODEN: USXXAM
- IN Minagawa, Shunichiro; Imagawa, Shigeki; Terao, Iwao; Tahara, Torakazu
- AN 1997:616972 HCAPLUS
- DN 127:233632
- OREF 127:45591a,45594a

	PATENT NO.	KIND DATE		APPLICATION NO.	DATE
ΡI	US 5667996	A	19970916	US 1995-507576	19950726
	JP 07075590	A	19950320	JP 1993-225899	19930910
	JP 07099984	A	19950418	JP 1993-250674	19931006
	JP 07099985	A	19950418	JP 1993-250675	19931006

- L37 ANSWER 40 OF 57 WPIDS COPYRIGHT 2009 THOMSON REUTERS on STN
- TI Magnetic card, IC card processing equipment has pulse switching circuit that selects signals which are fed to external interruption type input terminal element and card feed rate counter circuit of CPU
- PI JP 09062795 A 19970307 (199720)* JA 9[7] JP 3178996 B2 20010625 (200138) JA 9
- IN TOKITA M
- L37 ANSWER 41 OF 57 MEDLINE on STN DUPLICATE 17
- TI Experimental optimization of fed-batch culture for poly-beta-hydroxybutyric acid production.
- SO Biotechnology and bioengineering, (1997 Dec 20) Vol. 56, No. 6, pp. 697-705.
 - Journal code: 7502021. ISSN: 0006-3592.
- AU Lee J H; Hong J; Lim H C
- AN 2008464250 IN-PROCESS
- L37 ANSWER 42 OF 57 Elsevier Biobase COPYRIGHT 2009 Elsevier Science B.V. on STN
- AN 1997262115 ESBIOBASE
- TI Experimental optimization of fed-batch culture for poly- β -hydroxybutyric acid production
- AU Lee, Jung Heon; Hong, Juan; Lim, Henry C.
- CS Lee, Jung Heon; Hong, Juan; Lim, Henry C. (Dept. of Chem. and Biochem. Eng., University of California, Irvine, CA 92697-2575 (US))
 EMAIL: hclim@uci.edu
- SO Biotechnology and Bioengineering (20 Dec 1997) Volume 56, Number 6, pp. 697-705, 17 refs.
 - CODEN: BIBIAU ISSN: 0006-3592
 - DOI: 10.1002/(SICI)1097-0290(19971220)56:6<697::AID-BIT13>3.0.CO;2-5 Published by: John Wiley & Sons Inc

- CY United States of America
- DT Journal; Article
- LA English
- SL English
- ED Entered STN: 31 Jan 2009 Last updated on STN: 31 Jan 2009
- L37 ANSWER 43 OF 57 MEDLINE on STN
- TI A comparison of parenteral hyperalimentation and early enteral feeding regarding systemic immunity after major hepatic resection—the results of a randomized prospective study.

DUPLICATE 18

- SO Hepato-gastroenterology, (1997 Jan-Feb) Vol. 44, No. 13, pp. 205-9. Journal code: 8007849. ISSN: 0172-6390.
- AU Shirabe K; Matsumata T; Shimada M; Takenaka K; Kawahara N; Yamamoto K; Nishizaki T; Sugimachi K
- AN 1997211147 MEDLINE
- L37 ANSWER 44 OF 57 Elsevier Biobase COPYRIGHT 2009 Elsevier Science B.V. on STN
- AN 1997054164 ESBIOBASE
- TI A comparison of parenteral hyperalimentation and early enteral feeding regarding systemic immunity after major hepatic resection The results of a randomized prospective study
- AU Shirabe, Ken; Matsumata, Takashi; Shimada, Mitsuo; Takenaka, Kenji; Kawahara, Naoyuki; Yamamoto, Kazuharu; Nishizaki, Takashi; Sugimachi, Keizo
- CS Shirabe, Ken; Matsumata, Takashi; Shimada, Mitsuo; Takenaka, Kenji; Kawahara, Naoyuki; Yamamoto, Kazuharu; Nishizaki, Takashi; Sugimachi, Keizo (Department of Surgery II, Faculty of Medicine, Kyushu University, Fukuoka 812 (JP), 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812 (JP))
- SO Hepato-Gastroenterology (1997) Volume 44, Number 13, pp. 205-209, 22 refs.

 CODEN: HEGAD4 ISSN: 0172-6390
- CY Germany
- DT Journal; Article
- LA English
- SL English
- ED Entered STN: 31 Jan 2009 Last updated on STN: 31 Jan 2009
- L37 ANSWER 45 OF 57 BIOTECHDS COPYRIGHT 2009 THOMSON REUTERS on STN
- TI Production of poly-beta-hydroxybutyrate (PHB) by fed-batch fermentation using hollow fiber membrane system; polymer production by Alcaligenes eutrophus
- SO J.Chem.Eng.Jpn.; (1996) 29, 5, 893-97 CODEN: JCEJAC ISSN: 0021-9592
- AU Oh J T; Kim W S
- AN 1996-14972 BIOTECHDS
- L37 ANSWER 46 OF 57 BIOTECHDS COPYRIGHT 2009 THOMSON REUTERS on STN
- TI Preparation of poly-beta-hydroxybutyric acid polymers; systems control of Methylobacterium extorquens two-stage fermentation on methanol with N-starvation
- AU Groleau D; Bourque D; Pomerleau Y
- AN 1995-12194 BIOTECHDS
- PI US 5434062 18 Jul 1995
- L37 ANSWER 47 OF 57 HCAPLUS COPYRIGHT 2009 ACS on STN
- ${\tt TI}$ Process for production of bacterial cells containing poly-3-hydroxybutyric acid.
- SO Eur. Pat. Appl., 18 pp. CODEN: EPXXDW

```
Minagawa, Shunichiro; Imagawa, Shigeki; Terao, Iwao; Tahara, Torakazu
TM
    1995:506331 HCAPLUS
ΑN
    122:237934
DN
OREF 122:43479a,43482a
                                        APPLICATION NO.
    PATENT NO. KIND DATE
                                                             DATE
    _____
                      ____
                                         _____
                                                               _____
                       A2
PΙ
    EP 643138
                             19950315
                                        EP 1994-114108
                                                              19940908
    EP 643138
                       А3
                             19980114
    EP 643138
                       В1
                             20030312
        R: DE, FR, GB, IT
    JP 07075590 A
                             19950320
                                        JP 1993-225899
                                                               19930910
                                         JP 1993-250674
    JP 07099984
                       Α
                             19950418
    JP 07099985
                       Α
                              19950418
                                         JP 1993-250675
                                                               19931006
L37 ANSWER 48 OF 57 SCISEARCH COPYRIGHT (c) 2009 The Thomson Corporation on
                                                     DUPLICATE 20
    PRODUCTION OF POLY(BETA-HYDROXYBUTYRATE-CO-BETA-HYDROXYVALERATE) BY
ТΤ
    2-STAGE FED-BATCH FERMENTATION OF ALCALIGENES-EUTROPHUS
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, (OCT 1995) Vol. 5, No. 5, pp.
SO
    292-296.
    ISSN: 1017-7825.
    LEE I Y (Reprint); KIM G J; SHIN Y C; CHANG H N; PARK Y H
ΑU
ΑN
    1995:761274 SCISEARCH
L37 ANSWER 49 OF 57 WPIDS COPYRIGHT 2009
                                              THOMSON REUTERS on STN
    Polyester compsn. comprising two poly:hydroxy-alkanoate cpds. - including
ΤI
    one in (semi)crystalline form, as nucleant, for paper, fabric, hygiene
    articles, sustained drug or agrochemical release system, adhesive, etc.
PΙ
    WO 9428070
                  A1 19941208 (199503)* EN 18[0]
        RW: AT BE CH DE DK ES FR GB GR IE IT LU MC NL OA PT SE
         W: AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KG KP KR KZ
            LK LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US
            UZ VN
                   A 19941220 (199512) EN
    AU 9467275
    FI 9505645
                  A 19951123 (199607) FI
    NO 9504748
                  A 19951123 (199607) NO
    EP 700418
                  A1 19960313 (199615) EN [0]
         R: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
    JP 08510498
                  W 19961105 (199708) JA 22[0]
                  B 19971113 (199803) EN
    AU 683466
    US 5693389
                  A 19971202 (199803) EN 5[0]
ΙN
    LIGGAT J J
L37 ANSWER 50 OF 57 WPIDS COPYRIGHT 2009 THOMSON REUTERS on STN
    New strain ATCC 55366 od Methylobacterium extorquens - producing high
ТΤ
    yields of poly-beta-hydroxybutyrate polymer when grown on methanol
    US 5302525 A 19940412 (199417)* EN 14[0]
PT
                   A 19940525 (199431)# EN
    CA 2083621
                   C 20000620 (200043)# EN
    CA 2083621
    BOURQUE D; GROLEAU D; POMERIEAU Y; POMERLEAU Y
IN
     ANSWER 51 OF 57 BIOTECHDS COPYRIGHT 2009 THOMSON REUTERS on STN
L37
TI
     Equipment and operation for fermentative PHB production using
     gaseous substrate to guarantee safety from explosion;
        poly-beta-hydroxybutyrate production by Alcaligenes eutrophus by gas
        phase fermentation of hydrogen, oxygen and carbon dioxide
SO
     J.Chem.Eng.Jpn.; (1993) 26, 2, 225-27
     CODEN: JCEJAC
ΑU
     Ishizaki A; Tanaka K; Takeshita T; Kanemaru T; Shimoji T; Kawano T
     1993-07106 BIOTECHDS
ΑN
```

ANSWER 52 OF 57 BIOTECHDS COPYRIGHT 2009 THOMSON REUTERS on STN

T.37

- TI Physiologically motivated strategies for control of the fed-batch cultivation of recombinant Escherichia coli for phenylalanine production; effect of glucose feeding, tyrosine feeding, oxygen supply; fed-batch culture; systems control
- SO J.Ferment.Bioeng.; (1991) 71, 5, 350-55 CODEN: JFBIEX
- AU Konstantinov K B; Nishio N; Seki T; *Yoshida T
- AN 1991-10001 BIOTECHDS
- L37 ANSWER 53 OF 57 BIOTECHDS COPYRIGHT 2009 THOMSON REUTERS on STN
- TI Kinetics and effect of nitrogen source feeding on production of poly-beta-hydroxybutyric acid by fed-batch culture; using Protomonas extorquens
- SO Appl.Microbiol.Biotechnol.; (1986) 24, 5, 366-69 CODEN: EJABDD
- AU Suzuki T; *Yamane T; Shimizu S
- AN 1986-12147 BIOTECHDS
- L37 ANSWER 54 OF 57 LIFESCI COPYRIGHT 2009 CSA on STN
- TI Characterization of intracellular accumulation of poly- beta -hydroxybutyrate (PHB) in individual cells of Alcaligenes eutrophus H16 by flow cytometry.
- SO BIOTECHNOL. BIOENG., (1984) vol. 26, no. 8, pp. 982-987.
- AU Srienc, F.; Arnold, B.; Bailey, J.E.
- AN 84:26678 LIFESCI
- L37 ANSWER 55 OF 57 HCAPLUS COPYRIGHT 2009 ACS on STN
- TI Extraction of poly(β -hydroxybutyric acid)
- SO Brit. UK Pat. Appl., 4 pp.
- CODEN: BAXXDU
- IN Walker, John
- AN 1982:545715 HCAPLUS
- DN 97:145715
- OREF 97:24295a,24298a

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
ΡI	GB 2089823	A	19820630	GB 1981-35734	19811126
	GB 2089823	В	19840627		

- L37 ANSWER 56 OF 57 HCAPLUS COPYRIGHT 2009 ACS on STN
- TI Extraction of poly(3-hydroxybutyric acid) from microbial cells
- SO Eur. Pat. Appl., 20 pp.
 - CODEN: EPXXDW
- IN Holmes, Paul Arthur; Wright, Leonard Frederick; Alderson, Barry; Senior, Peter James
- AN 1980:619324 HCAPLUS
- DN 93:219324
- OREF 93:35023a,35026a

PAT	PATENT NO.		KIND		DATE		APPLICATION NO.			DATE			
PI EP	1512	3			A1		1980	0903		ΕP	1980-300431		19800214
EP	1512	3			В1		1982	1222					
	R:	BE,	CH,	DE,	FR,	GB,	IT,	LU,	NL				
ZA	80008	803			A		1981	0624		ZA	1980-803		19800212
EP	3669	9			A1		1981	0930		ΕP	1981-200352		19800214
EP	3669	9			В1		1983	0202					
EP	EP 36699			В2		1987	0902						
	R:	BE,	CH,	DE,	FR,	GB,	IT,	LU,	NL				
AU	8055	606			Α		1980	0828		ΑU	1980-55606		19800215
AU	5299	81			В2		1983	0630					
DK	8000	733			A		1980	0822		DK	1980-733		19800220
JP	5511	8394			A		1980	0911		JΡ	1980-21041		19800221

RO 79661	A1	19820817	RO 1980-100264	19800221
US 4324907	A	19820413	US 1980-125483	19800222

- L37 ANSWER 57 OF 57 HCAPLUS COPYRIGHT 2009 ACS on STN
- TI Protein quality of the hydrogen-oxidizing bacterial strain Alcaligenes eutrophus in broiler feed. Part 1: Growth and feed conversion with increasing replacement of soybean meal with bacterial mass
- SO Archiv fuer Gefluegelkunde (1979), 43(4), 129-38 CODEN: AGEFAB; ISSN: 0003-9098
- AU Greife, H.; Molnar, S.; Guenther, K. D.
- AN 1980:21018 HCAPLUS
- DN 92:21018
- OREF 92:3583a,3586a
- => d ab 15,17,20,22,24,26,29,35,45,47,48,53,57
- L37 ANSWER 15 OF 57 MEDLINE on STN DUPLICATE 5 Polyhydroxyalkanoate (PHA) was produced from a starchy AΒ wastewater in a two-step process of microbial acidogenesis and acid polymerization. The starchy organic waste was first digested in a thermophilic upflow anaerobic sludge blanket (UASB) reactor to form acetic (60-80%), propionic (10-30%) and butyric (5-40%) acids. The total volatile fatty acids reached 4000 mg 1(-1) at a chemical oxygen demand (COD) loading rate of 25-35 g l(-1) day(-1). A carbon balance indicates that up to 43% of the organic carbon in the starchy waste went to the organic acids and the rest to biogas, volatile suspended solids and residual sludge accumulated in the reactor. The acid composition profile was affected by COD loading rate: a medium rate around 9 g 1(-1) day(-1)gave a high propionic acid content (29% wt) and a high rate around 26 g 1(-1) day(-1) led to a high butyric acid content (34% wt). The acids in the effluent solution after microfiltration were utilized and polymerized into PHA by bacterium Alcaligenes eutrophus in a second reactor. Fifty grams of PHA was produced from 100 g total organic carbon (TOC) utilized, a yield of 28% based on TOC, which is comparable with 55 g PHA per 100 g TOC of pure butyric and propionic acids used. PHA formation from individual acids was further investigated in a semi-batch reactor with three acid feeding rates. With a limited nitrogen source (80-100 mg NH(3) per liter), the active biomass of A. eutrophus, not including the accumulated PHA in cells, was maintained at a constant level (8-9 g l(-1)) while PHA content in the cell mass increased continuously in 45 h; 48% PHA with butyric acid and 53% PHA with propionic acid, respectively. Polyhydroxybutyrate was formed from butyric acid and poly(hydroxybutyrate-hydroxyvalerate) formed from propionic acid with 38% hydroxyvalerate.
- L37 ANSWER 17 OF 57 SCISEARCH COPYRIGHT (c) 2009 The Thomson Corporation on STN DUPLICATE 6
- The effects of propionic acid feeding strategy on production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] were studied with Ralstonia eutropha. Flask culture revealed that the time and concentration of propionic acid addition had significant effects on cell growth, P(3HB-co-3HV) synthesis, and HV fraction in the copolymer. In fed-batch culture, a low ratio of propionic acid to glucose (P/G) led to high dry cell weight (DCW), P(3HB-co-3HV) content and productivity, but low HV unit fraction. A high P/G ratio led to, on the other hand, high HV unit fraction but the low P(3HB-co-3HV) content and productivity. The specific P(3HB-co-3HV) synthetic rate and the specific HV synthetic rate declined in fed-batch cultures, which deteriorated with high P/G feeding due to the inhibitory effect of

propionic acid accumulated in the culture broth. According to the non-steady state synthesis of P(3HB-co-3HV) by R. eutropha, an optimal feeding strategy to control the propionic acid accumulation was developed and demonstrated. The propionic acid feeding rate was reduced with time, and DCW, P(3HB-co-3HV) concentration, P(3HB-co-3HV) reached 52.1 gl(-1), 40.8 gl(-1), 78.3% and 16.2 mol%, respectively. P(3HB-co-3HV) productivity was 0.74 gl(-1) h(-1). (C) 2001 Elsevier Science B.V. All rights reserved.

L37 ANSWER 20 OF 57 MEDLINE on STN Pseudomonas oleovorans ATCC 29347 was grown in chemostat culture at AΒ different dilution rates with mineral media varying in their ratios of octanoate to ammonia (C(0)/N(0) ratio). At all dilution rates tested, three distinct growth regimes were observed: (i) carbon limitation with NH(4)(+) in excess at low C(0)/N(0) ratios, (ii) purely nitrogen-limited growth conditions at high C(0)/N(0) ratios with residual octanoate in the culture supernatant, and (iii) an intermediate zone of dual-nutrient-limited growth conditions where both the concentration of octanoate and that of ammonia were very low. The dual-nutrient-limited growth zone shifted to higher C(0)/N(0) ratios with decreasing dilution rates, and the extension of the dual-nutrient-limited growth zone was inversely proportional to the growth rate. The cells accumulated the storage compound medium-chain-length poly[(R)-3-hydroxyalkanoate] (mcl-PHA) during dual (C and N)-nutrient-limited and N-limited growth conditions. Within the dual-nutrient-limited growth zone, the cellular mcl-PHA contents increased when the C(0)/N(0) ratio in the feed was increased, whereas the cellular mcl-PHA level was independent from the feed C(0)/N(0) ratio during N-limited growth. monomeric composition of the accumulated mcl-PHA was independent of both the dilution rate and the feed C(0)/N(0) ratio and consisted of 12 mol% 3-hydroxyhexanoic acid and 88 mol% 3-hydroxyoctanoic acid. Accumulation of mcl-PHA led to an increase in the cellular C/N ratio and to changes in elemental growth

L37 ANSWER 22 OF 57 SCISEARCH COPYRIGHT (c) 2009 The Thomson Corporation on STN DUPLICATE 8

AΒ Fed-batch culture of Alcaligenes latus, ATCC 29713, was investigated for producing the intracellular bioplastic poly(beta-hydroxybutyric acid), PHB. Constant rate feeding, exponentially increasing feeding rate, and pH-stat fed batch methods were evaluated. pH-stat fed batch culture reduced or delayed accumulation of the substrate in the broth and led to significantly enhanced PHB productivity relative to the other modes of feeding. Presence of excessive substrate appeared to inhibit PHB synthesis, but not the production of cells. In fed-batch culture, the maximum specific growth rate (0.265 h(-1)) greatly exceeded the value (0.075 h(-1))previously observed in batch culture of the same strain. Similarly the maximum PHB production rate (up to $1.15 \text{ g} \cdot 1(-1) \cdot h(-1)$) was nearly 8-fold greater than values observed in batch operations. Fed-batch operation was clearly superior to batch fermentation for producing PHB. A low growth rare was not a prerequisite for PHB accumulation, but a reduced or delayed accumulation of substrate appeared to enhance PHB accumulation. Under the best conditions, PHB constituted up to 63% of dry cell mass after 12 h of culture. The average biomass yield coefficient on sucrose was about 0.35, or a little less than in batch fermentations. The highest PHB concentrations attained were about 18 g . 1(-1) .

yields for nitrogen and carbon.

- A mixed culture system was considered in the present research where sugars AΒ such as glucose were converted to lactate by Lactobacillus delbrueckii and the lactate was converted to poly beta-hydroxybutyrate (PHB) by Ralstonia eutropha in one fermentor. Based on the experimental studies on the effect of lactate concentration on the cell growth of both microorganisms, the lactate concentration was controlled at less than 5 q/l using an on-line enzymatic lactate and glucose sensors with the FIA (flow injection analysis) system, and by manipulating the glucose feeding rate. Since L. delbrueckii prefers anaerobic conditions while R. eutropha prefers aerobic conditions, we studied the effect of DO concentration on fermentation characteristics of each microorganism. For the mixed culture, we considered the control scheme of a two inputs and three outputs multivariable system. It was experimentally shown that the periodic fermentation resulted in superior PHB yield with relatively high productivity as compared with the cases where DO concentration was controlled to be constant either at less than 1 ppm or 3 ppm.
- L37 ANSWER 26 OF 57 MEDLINE on STN DUPLICATE 10 On the basis of analysis of PHB fermentation processes, the AB effects of ammonium sulfate feeding rate at PHB formation period on the PHB accumulation by Alcaligenes eutrophus were investigated. It was shown that the complete absence of nitrogen source at PHB formation phase would lead to the decline of PHB synthetic activity, and the obvious influences of different nitrogen feeding rate on PHB synthesis were observed. Higher PHB content, but relative lower cell dry weight, PHB concentration and PHB productivity could be obtained at slower nitrogen feeding rate. The excessive nitrogen feeding rate resulted in the drop of PHB content, which led to the decrease of PHB concentration and PHB productivity. The better results could be achieved when the ammonium sulfate feeding rate was set at around 0.5 g/h.
- ANSWER 29 OF 57 BIOTECHDS COPYRIGHT 2009 THOMSON REUTERS on STN L37 AΒ Acetic acid had an inhibitory effect on Alcaligenes eutrophus ATCC 17699, but could be utilized as a C-source for cell growth and poly-beta-hydroxybutyrate (PHB) production. The primary factors affecting tolerance of A. eutrophus to acetate were the acetate concentration, the cell mass concentration and the nutrients. Maintaining a high cell mass concentration and a low acetate concentration (below 3 g/l) in the fermentor minimized the adverse effect of acetate. In stationary phase with negligible cell growth, the specific rates of acetate utilization and PHB formation based on active biomass (ABM) were 85 mg acetate/g ABM.hr and 8 mg PHB /q ABM.hr, respectively. The acetate uptake rate increased by 10-30% at high acetate concentrations of 5-10 g/l. In the exponential growth phase, the acetate utilization rate reached 160 mg/g ABM.hr and PHB production about 30 mg/g ABM.hr. Since a high final PHB content in cells is desired and can only be achieved in the non-actively-growing cells, an optimal process should have a variation in the cell growth rate by controlling the feeding of growth nutrients with time. (14 ref)
- L37 ANSWER 35 OF 57 MEDLINE on STN DUPLICATE 15

 AB A locally isolated soil microorganism identified as Erwinia sp. USMI-20 has been found to produce poly(3-hydroxybutyrate), P(3HB), from either palm oil or glucose and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), from a combination of palm oil and a second carbon source of either one of the following compounds: propionic acid, n-propanol, valeric acid

and n-pentanol. It was found that Erwinia sp. USMI-20 could produce P(3HB) up to 69 weight% polymer content with a dry cell weight of 4.4 g/l from an initial amount of 14.5 g/l of glucose followed by a feeding rate of glucose at 0.48 g/h glucose. On the other hand, the bacteria can achieve 46 weight% of P(3HB) and a dry cell weight of 3.6 g/l from a batch fermentation in a 10-l fermentor from an initial concentration of 4.6 g/l of palm oil. Further characterisation of the polymer production was also carried out by using different types of palm oil. Among the different palm oils that were used, crude palm oil was the best lipid source for P(3HB) production as compared to palm olein and palm kernel oil. In the production of the copolymer, P(3HB-co-3HV), the highest mole fraction of 3-HV units could be as high as 47 mol% from a single feeding of valeric acid upon initial growth on palm oil.

- L37 ANSWER 45 OF 57 BIOTECHDS COPYRIGHT 2009 THOMSON REUTERS on STN To improve biomass and poly-beta-hydroxybutyrate (PHB) AΒ concentration, fed-batch fermentation using a hollow fiber membrane was introduced. A culture of Alcaligenes eutrophus NCIB 1199 was transferred to a 2.5 l jar fermentor containing (g/l): 6.7 Na2HPO4.H2O, 1.5 KH2PO4, 0.2 MgSO4.7H2O, 60 mg ferrous ammonium citrate, 10 mg CaCl2.2H2O, 1 g yeast extract, and 1 ml trace element solution. Glucose and ammonium phosphate were used as a C- and N source, and their initial concentrations were 30-50 g/l and 2 g/l, respectively. Incubation was at 34 deg, pH 6.8-7.0, 500 rpm, and an air flow rate of 1 l/min. The feeding medium was started at 14 hr when the biomass concentration in the broth was 10 g/l, and the feeding rate was 10 ml/hr. (NH4)2HPO4 concentration was fed intermittently and maintained it's concentration at 0.5-1.3 g/l. At 29 hr (NH4)2HPO4 supply was stopped to promoter PHB accumulation. The cell and PHB concentration reached 47.6 g/l and 28.0 g/l, respectively. The mass transfer coefficient was increased by the flow rate of tube side or shell side, whereas the tube velocity higher than 0.6 cm/sec did not affect the mass transfer coefficient. (13 ref)
- L37 ANSWER 47 OF 57 HCAPLUS COPYRIGHT 2009 ACS on STN

 AB A process is disclosed for accumulating poly-3-hydroxybutyric acid in bacterial cells by continuously fermenting a MeOH-assimilating bacterium in a single fermentation vessel by using MeOH as C source at a limited feeding rate of N, P, or K such that the average retention time for the fermentation is >10 h.
- L37 ANSWER 48 OF 57 SCISEARCH COPYRIGHT (c) 2009 The Thomson Corporation on STN DUPLICATE 20
- Production of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate)
 [poly(HB-co-HV)] from glucose and propionic acid was studied in a
 two-stage fed-batch fermentation using Alcaligenes eutrophus NCIMB 11599.
 When either glucose became sufficient or the feeding
 rate of propionic acid decreased, production of poly(HB-co-HV)
 increased but concomitantly resulted in a reduced fraction of HV. During
 the copolymer accumulation stage, the specific production rate of
 hydroxyvalerate (HV) increased up to 0.013 (g-HV/g-RCM/h) but it decreased
 as propionic acid was accumulated. Control of the propionic acid
 concentration in the medium, therefore, is considered to be one of the
 most important operating parameters for production of poly(HB-co-HV) with
 a higher HV fraction. A high titre of poly(HB-co-HV) (85.6 g/l) with HV
 fraction of 11.4 mol% could be obtained in 50 h by controlling the
 propionic acid concentration at 1 to 4 g/l.
- L37 ANSWER 53 OF 57 BIOTECHDS COPYRIGHT 2009 THOMSON REUTERS on STN

 AB Protomonas extorquens sp. K was grown in a complex salts medium with methanol as sole C-source. The kinetics of poly-beta-hydroxybutyric acid

(PHB) production was studied in fed-batch cultures. The presence of a N-source was required in growth and PHB production phases. The effect of ammonia feeding on PHB production was studied. Ammonia water was initially supplied at a low constant feeding rate after the growth phase, in which the cell mass concentration reached 60 g/l. Feeding with a small quantity of ammonia gave a more rapid increase in intracellular PHB than that obtained without N-source feeding. However, excessive feeding of ammonia resulted in degradation of accumulated PHB and reduced microbial PHB synthetic capacity. A kinetic model of PHB accumulation is proposed. (10 ref)

L37 ANSWER 57 OF 57 HCAPLUS COPYRIGHT 2009 ACS on STN AB Broiler chicks given corn-wheat-soybean meal-based feed in which A. eutrophus PHB-4 H 16 protein (nonnucleic acid) N replaced 10-60% of feed protein N (bacteria at 3.29, 6.58, 10.1, 15.1 and 20.1% of feed) had growth rates 100, 97.0, 100, 96.3 and 74.4% of those of controls, resp. in 28-day expts. Feed utilization was 1.39, 1.40, 1.35, 1.41 and 1.51 kg/kg weight gain as compared with 1.45 and 1.48 for controls. At 45% of feed protein N, the bacterial N had no effect on taste of the meat. The recommended level for A. eutrophus in feed for chicks is \leq 30% of feed protein.

=> log y		
COST IN U.S. DOLLARS	SINCE FILE	TOTAL
	ENTRY	SESSION
FULL ESTIMATED COST	206.15	206.37
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE	TOTAL
	ENTRY	SESSION
CA SUBSCRIBER PRICE	-1.64	-1.64

STN INTERNATIONAL LOGOFF AT 16:17:15 ON 28 MAY 2009