Funzioni Omogenee e differenziabilità

LEMMI PRELIMINARI

FUNZIONI OMOGENEE SONO ASINTOTICAMENTE EQUIVALENTI ALLA NORMA

Se $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ è continua, omogenea di ordine $a \in \mathbb{R}$ e $x \neq 0 \implies f(x) > 0$, allora $f(x) \simeq ||x||^a$ quando $x \to 0$. Infatti la continuità di f implica $\sup_{||y||=1} f(y) \leq C$, per compattezza di $\{||y||=1\}$. Quindi si ha $f(x) = ||x||^a f(\frac{x}{||x||}) \leq ||x||^a \sup_{||y||=1} f(y) = C ||x||^a$. L'altra disuguaglianza $(f(x) \geq D ||x||^a)$ segue nello stesso modo prendendo l'inf.

VERSIONE SEMPLICE

Continuità

Consideriamo una funzione F(x,y) definita da $F(x,y) = \begin{cases} \frac{P_a(x,y)}{Q_b(x,y)} & \text{se } (x,y) \in \mathbb{R}^2, (x,y) \neq (0,0) \\ c & \text{altrimenti} \end{cases}$ dove

 $P_a(x,y)$ e $Q_b(x,y)$ sono funzioni continue ed omogenee di ordine rispettivamente a e b, entrambi positivi (a,b>0).

Supponiamo inoltre che $Q_b(x,y)$ sia tale che $||(x,y)||=1 \implies Q_b(x,y) \neq 0$.

- 1. Se a > b e c = 0, allora F è continua anche in (0,0). Infatti (per il lemma preliminare) $||\frac{P_a(x,y)}{Q_b(x,y)}|| \le C ||(x,y)||^{a-b} = o(1)$ per $(x,y) \to (0,0)$
- 2. Se a < b la funzione F non è limitata oppure F(x,y) = 0 in un piccolo intorno di (0,0)
- 3. Se a=b, allora $L(\theta)=\lim_{r\to 0^+}F(r\cos\theta,r\sin\theta)=\frac{P_a(\cos\theta,\sin\theta)}{Q_b(\cos\theta,\sin\theta)}$
- 4. Se a = b, ed esistono $\theta_1, \theta_2 \in [0, 2\pi)$ tali che $L(\theta_1) \neq L(\theta_2)$, allora F NON è continua in (0, 0)
- 5. Se a = b e per ogni $\theta_1, \theta_2 \in [0, 2\pi)$ si ha $L(\theta_1) = L(\theta_2) = L$, allora F è costante.

Per la 2., 3., 4., 5. basta usare l'identità $F(r\cos\theta,r\sin\theta)=r^{a-b}F(\cos\theta,\sin\theta)$

DIFFEREZIABILITÀ

Consideriamo la funzione F(x,y) definita come sopra e supponiamo che le funzioni P_a e Q_b siano differenziabili su tutto $\mathbb{R}^2 \setminus \{0\}$. Vediamo per quali valori di a,b la funzione F(x,y) ammette un'estensione differenziabile in (0,0)

- 1. Se a-b>1 allora F(x,y) è differenziabile anche nell'origine. Infatti (sempre per il lemma preliminare) si ha $\mid F(x)\mid \leq C\mid\mid x\mid\mid^{a-b}=o(\mid\mid x\mid\mid)$ per $x\to 0$ e si ha quindi che $F(h)-F(0)=0+o(\mid\mid x\mid\mid)$ ovvero che F è differenziabile in (0.0) con differenziale nullo.
- 2. Se 0 < a b < 1 allora F(x,y) NON è differenziabile nell'origine. Infatti supponiamo per assurdo che F sia differenziabile in (0,0). Allora $\exists v \in \mathbb{R}^2$ tale che $F(x) + \langle v \mid x \rangle = o(\mid\mid x\mid\mid)$ per x sufficientemente piccoli. Usando l'omogeneità di F, del prodotto scalare e degli opiccoli, si ha che (sostituendo λx al posto di x) $\lambda^{a-b-1}F(x) + \langle v \mid x \rangle = o(\mid\mid x\mid\mid)$ per λ sufficientemente piccoli. Ma questo è impossibile poiché nel limite $\lambda \to 0$ si ha che LHS NON è un $o(\mid\mid x\mid\mid)$.
- 3. Se a b < 0 F non è differenziabile perché non è nemmeno continua in (0,0)
- 4. Se a b = 0 F è differenziabile se e solo se è costante
- 5. Se a b = 1 F è differenziabile se e solo se è una funzione lineare.

VERSIONE POTENTE

Consideriamo ora la funzione F(x) definita da $F(x)=\left\{ egin{array}{ll} \frac{P_a(x)+o(||x||^a)}{Q_b(x)+o(||x||^b)} & \text{se } x\in\mathbb{R}^2, x\neq 0 \\ c & \text{altrimenti} \end{array} \right.$ Usando la relazione

$$\frac{P_a(r\cos\theta,r\sin\theta) + o(r^a)}{Q_b(r\cos\theta,r\sin\theta) + o(r^b)} = r^{a-b} \left(\frac{P_a(\cos\theta,\sin\theta)}{Q_b(\cos\theta,\sin\theta)} + o(1) \right)$$

si trovano i seguenti casi:

- 1. Se a > b e c = 0 la funzione F è continua
- 2. Se a < b ed esiste y_0 tale che $||y_0|| = 1$ e $P_a(y_0) \neq 0$, allora la funzione F NON è limitata in un intorno di zero.
- 3. Se a < b e $P_a(y) \equiv 0$ allora $F(x) = o(||x||^{a-b})$

Allo stesso modo (ovvero usando la stessa relazione) si ottiene:

- 1. Se a b > 1 e c = 0 la funzione F è differenziabile
- 2. ...