Logiciel: Python, Sage, Maple ou Xcas.

Difficulté : 5/5

Vote électronique

L'objet de ce projet est de travailler à l'aide d'un logiciel adapté sur des calculs sur les grands nombres, et de montrer une des applications du chiffrement à clé publique.

Il faut dans un premier temps réviser l'arithmétique de Terminale S, et notamment la notion de congruence. Si $a \equiv b \ (n)$ et $c \equiv d \ (n)$ alors $ac \equiv bd \ (n)$.

- 1. Programmer l'algorithme du RSA dans votre logiciel. (voir par exemple le livre de Stinson). L'objet de ce projet n'est pas le chiffrement RSA, donc on peut « recopier » sans états d'âmes.
- 2. (a) Ecrire une fonction h_k ($k \in \mathbb{N}^*$) qui, étant donné deux nombres entiers renvoie un entier dont l'écriture binaire a exactement k chiffres non nuls communs avec les deux entiers de départ. Si ce n'est pas possible, la fonction doit renvoyer 0 (ou False).
 - (b) Si les entiers précédents sont pris au hasard parmi les nombres inférieurs à 10^{600} , et que k = 30, quelle est la probabilité que la fonction ne réponde pas 0?
 - (c) Améliorer la fonction précédente pour que les k chiffres soit pris au hasard parmi tous les chiffres communs.
 - Cette fonction va nous permettre de fournir des certificats de vote conforme.
- 3. On appelle C l'autorité principale qui va délivrer les certificats. B sera la personne qui va récupérer les votes, et $A_1, \ldots A_a$ seront les votants ($a \in \mathbb{N}^*$ est le nombre de votants). Dans un premier temps, C va se doter d'une clé publique n produit de deux nombres premiers secrets p et q. C fabrique également les nombres c et d servant à chiffrer et à déchiffrer : $cd \equiv 1 \mod (p-1)(q-1)$. Seul C peut décrypter. On pose $f \colon x \mapsto x^c \mod n$ la fonction de chiffrement de [0; n[dans [0; n[. La fonction de déchiffrement est $f^{-1} \colon x \mapsto x^d \mod n$. On suppose que le vote est « oui » ou « non ». Dans la suite on suppose connus n et c (donc f). On suppose également que k a été choisi.
 - (a) Construire une fonction qui renvoie a nombres aléatoires $v_1, v_2, \dots v_a$ tels que $f(v_i)$ et $f(2v_i \mod n)$ ont au moins k chiffres binaires communs pour tout i.
 - (b) C envoie à chaque votant A_i le nombre v_i, et il envoie à B la liste des certificats h_k(f(v_i), f(2v_i mod n)).
 Les votants choisissent de voter oui ou non en envoyant respectivement à B, soit f(v_i) (vote oui), soit f(2v_i mod n). On appelle e_i ce nombre.
 B vérifie pour chaque votant que le vote est conforme, à l'aide du certificat (faire une fonction pour la vérification).
 Puis B calcule e = ∏_{i=1}^a e_i mod n (on suppose que tout le monde a voté) et envoie e à A.
 - (c) A calcule $f^{-1}(e) \times f^{-1}(\prod_{i=1}^{a} v_i)$ ce qui doit donner une puissance de 2 qui correspond au nombre de personnes ayant voté « non ». Expliquer pourquoi on doit avoir $2^a < n$ pour que ce vote soit valable.
- 4. Simuler un exemple de vote avec 5 votants.
- 5. Améliorer la procédure pour tenir compte des personnes qui s'abstiennent ou votent nul.
- 6. Améliorer la procédure pour des votes avec plus de choix (3, 4, 5 candidats ...). On pourra faire une fonction qui en fonction du nombre de votants et du nombre de choix donne la taille de la clé publique n.