Welcome to STAT 302, Intro to Probability

Instructor: Alexandre Bouchard Fall 2015

Plan for today:

- Logistics.
- Why you should care about probability.

To get this information & more

- Main website:
 http://www.stat.ubc.ca/~bouchard/courses/stat302-fa2015-16/
 - Piazza (contact link on webpage)
 - Click on 'Files' to get lecture slides, assignments, etc.

Administrative details

- Prerequisites: Math 200 or 226 (which may be taken concurrently), or equivalent
- Exclusions: Stat 241/251, Math 302
- Textbook: A first course in probability Sheldon Ross
 - 9th edition recommended
 - Suggested, optional exercises posted on website

Assessment

- Assignments (4), 20%
 - We encourage you to discuss your work with other students...
 - However, you must write up your own solutions independently.
 - No extension possible!

Assessment

- Midterm, 25%
 - Date: Wed Oct 28 (check this week that this date is not a problem)
 - No make-up exam!

Assessment

- Webwork/clickers, 5%
 - Get your clicker this week! (I will start using clicker questions by Monday Sep 14)
 - More on this soon
- Final, 50%
 - After lectures are over
 - Date announced centrally by University
 - You must pass the final to pass the course

To get help

- Four great TAs: Tingting (Crystal) Zhao, Yongliang (Vincent)
 Zhai, Jie Cui, Richard Hsia
- We use Piazza:
 - Sign up by following the 'Contacts' tab of the course webpage
 - We will only respond to question posted on Piazza (unless it is a personal matter)
- Come to office hours!
 - Place, time: see 'Contacts' tab of course website
 - Additional hours will be posted when assignment/exam is coming up

What STAT 302 is about:

- Probability spaces: arguably the best quantitative tool to model reality
- Properties of probability spaces
- Lots of examples

Why this topic is important

- Fundamental tool in statistics, computer science, physics, econometrics, ... and increasingly, biology, linguistics, sociology, ...
 - Creating models
 - Inverting them (Bayesian statistics/conditioning)
 - Computational power of randomness
- Also a branch of pure math in its own right
- Replacing logic as the philosophical foundations of science and cognition?

('Dawning of the age of stochasticity', D. Mumford)

Probability in action: Diverse examples

Engineering, technology, logistics

The Search for Malaysia Airlines Flight 370

Goal: finding the location of the crash

Question: how to prioritize search

How to reconcile several sources of partial info:

- Last known position
- Fuel range
- Last satellite ping

http://tinyurl.com/lhzrufa

Ex. I

Bayesian Search

1966: Palomares B-52 crash

1968: USS Scorpion disappearance

Ex. I

Conditioning

- Say you search in the square of highest success probability
 - You find nothing
 - What should you do next?
 - Note: even if the submarine is there, you might have missed it!
- Probability as a calculus of belief and uncertainty

Bayes theorem (Thomas Bayes), 1763

http://tinyurl.com/pcznhml

Al and machine learning: Speech recognition

???

Al and machine learning: Speech recognition

How are ???

Rational behavior and uncertainty

General question: how to act when

- we are facing uncertainty
- errors have different costs

Examples: - fraud detection

- medical diagnosis
- spam classifiers

Key tool: expected value

Ecology: Estimating animal population sizes

Example: finding the number of Sockeye salmon in the Pacific Ocean (!)

Very important problem for conservation, setting fishing quotas, etc.

Insight: the capturerecapture trick

Population

Recapture and count

Examples:

Assessing significance

- Histogram of births organized by month:
- Question: are births uniform across months?
- Note: even if the answer is yes, we would expect small differences across months.
 - How small?

Genetics: inheritable diseases

Randomness in inheritance:

Genotype inheritance

1) Flip a fair coin to decide if you inherit mom's T or A

Genotype inheritance

- I) Flip a fair coin to decide if you inherit mom's T or A
- 2) Flip another fair coin to decide if you inherit dad's T or A

Genotype inheritance

- I) Flip a fair coin to decide if you inherit mom's T or A
- 2) Flip another fair coin to decide if you inherit dad's T or A

Larger family trees

- A larger example where W is dominant over w
- Goals:
 - genetic counseling
 - finding genetic factor of diseases / traits
- Complication factor
 - incomplete data

Larger family trees

- A larger example where W is dominant over w
- Goals:
 - genetic counseling
 - finding genetic factor of diseases / traits
- Complication factor
 - incomplete data

Larger family trees

- A larger example where W is dominant over w
- Goals:
 - genetic counseling
 - finding genetic factor of diseases / traits
- Complication factor
 - incomplete data

Technique: marginalization

Phylogenetics: Reconstruction of ancient species

Goals:

- better understand ancient species
- revive them?
- Data: fossil DNA
- Limitation: degrades after few 1000s years
- Are dinosaurs' genomes completely lost?

Phylogenetic tree

 Idea: use the genomes from the descendants of dinosaurs (modern birds)

 We know how DNA change over time (probabilistically)

Marginalization of unknowns (as in family tree example)

 Additional challenge: structure of tree is unknown

Outline of the course

- Discrete probability models
- Conditioning and Bayes
- Expectation
- Continuous probability models
- Asymptotics

Random variables

- Fundamental object of study
- ullet Examples of a random variable X
 - The height of a UBC student picked at random
 - Gambling example ('Rademacher coin')

Surprising challenge

- Sums of random variables
 - Omnipresent
 - Taking the sum of variables is easy, so taking the sum of random variables should also be easy, right?
 - Not quite... consider for example the problem of computing the probability that the sum of 100 coins is greater that 50.
 - Would have been hard in the pre-computer era
 - Generalized versions of this problem still hard with computer

Asymptotics to the rescue

- Another surprise: sums of random variables can be approximated by something simple when large number of terms involved
- No matter what each X is!!!
 (almost)
- Also explains why we will spent disproportionate amount of time on some specific types of random variables (normal/ gaussian, Poisson, ...)

300 coins