- 1. (a) All integers are a multiple of 2.
 - (b) It's false, since $1 \in \mathbb{Z}$ and 1 is not a multiple of 2.
 - (c) There is an integer that is not a multiple of 2.
 - (d) $\exists x \in \mathbb{Z} : (x \text{ is not a multiple of } 2)$
- 2. (a) $(\sqrt{2} < x) \land (x < \sqrt{3})$

(b)
$$\neg \left[\exists x \in \mathbb{Q}, \left(\sqrt{2} < x \right) \land \left(x < \sqrt{3} \right) \right]$$

= $\forall x \in \mathbb{Q}, \left(\sqrt{2} \ge x \right) \lor \left(x \ge \sqrt{3} \right)$

- (c) All rational numbers are equal to or less than $\sqrt{2}$, or equal to or greater than $\sqrt{3}$.
- 3. (a) E(x) = x is even.

$$O(x) = x$$
 is odd.

$$\forall x \in \mathbb{Z}, E(x) \oplus O(x)$$
 where \oplus is an XOR operator.

(b)
$$\exists x \in \mathbb{Z}, (E(x) \land O(x)) \lor (\neg E(x) \land \neg O(x))$$

- (c) There is an integer that is either: both an odd and even integer, or is neither an odd or even integer.
- 4. (a) $\forall x \in \mathbb{Z}, E(x) \implies O(x+1)$
 - (b) $\exists x \in \mathbb{Z}, E(x) \land E(x+1)$
 - (c) There is an integer that even and if you add one to that integer, it's also even.
- 5. (a) ... $\forall x_1, x_2 \in \mathbb{R}, x_1 \le x_2 \implies f(x_1) \ge f(x_2)$

(b) ...
$$\exists x_1, x_2 \in \mathbb{R}, x_1 \le x_2 \land f(x_1) < f(x_2)$$

6. I'm going to define \mathbb{R}^+ as the set of positive real integers.

(a)
$$... \forall x \in \mathbb{R}, \varepsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+, (|x - a| < \delta) \implies (|f(x) - f(a)| < \varepsilon)$$

(b)
$$...\exists x \in \mathbb{R}, \varepsilon \in \mathbb{R}^+, \forall \delta \in \mathbb{R}^+, (|x-a| < \delta) \land (|f(x) - f(a)| \ge \varepsilon)$$