Com a calculadora de Fibonacci você

pode gerar uma lista de números de Fibonacci a partir de valores de início e fim de n. Você também pode calcular um único número na Sequência de Fibonacci, F_n , para qualquer valor de n até n = ± 500 .

Sequência de Fibonacci

A Sequência de Fibonacci é um conjunto de números de tal forma que cada número na sequência é a soma dos dois números que imediatamente a precedem.

$$F_0 = 0, \quad F_1 = F_2 = 1,$$

е

$$F_n = F_{n-1} + F_{n-2}$$

Por exemplo, calculando F_4

$$F_4 = F_{4-1} + F_{4-2} \ F_4 = F_3 + F_2 \ F_4 = 2 + 1 \ F_4 = 3$$

Os primeiros 15 números da sequência, de F_0 para F_{14} , são

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377

Fórmula da Sequência de Fibonacci

A fórmula para a Sequência de Fibonacci calcular um único Número de Fibonacci é:

$$F_n = rac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}}$$

ou

$$F_n = ((1 + \sqrt{5})^n - (1 - \sqrt{5})^n) / (2^n \times \sqrt{5})$$

para inteiros positivos e negativos n.

Uma equação simplificada para calcular um número de Fibonacci para apenas inteiros positivos de n é:

$$F_n = \left[rac{(1+\sqrt{5})^n}{2^n\sqrt{5}}
ight]$$

ou

$$F_n = [((1 + \sqrt{5})^n) / (2^n \times \sqrt{5})]$$

onde os colchetes em [x] representam a função inteira mais próxima. Simplificando, isso significa arredondar para cima ou para baixo para o inteiro mais próximo.

Uma versão mais compacta da fórmula utilizada é:

$$F_n=rac{z\partial \!\!\!/-?P}{\sqrt{5}}$$

ou

$$F_n = (?? ^n - ?? ^n) / \sqrt{5}$$

onde is, a letra grega phi, é a Proporção Áurea (1 = +5) / 2 $\sqrt{1.618034...}$ e ?? , a letra grega psi, is ?? = (1 - $\sqrt{5}$) / 2 \approx -0.618034...

Uma vez que pode ser mostrado que ?? ^n é pequeno e fica ainda menor à medida que n fica maior, quando apenas trabalhando com inteiros positivos de n, a fórmula compacta do Número de Fibonacci é verdadeira:

$$F_n = \left[rac{zarphi}{\sqrt{5}}
ight] = \left[rac{(1+\sqrt{5})^n}{2^n\sqrt{5}}
ight]$$

onde os colchetes em [x] representam a função inteira mais próxima, conforme definido acima.

Números de Fibonacci Negativos

Salvo indicação em contrário, as fórmulas acima serão mantidas para valores negativos de n no entanto, pode ser mais fácil de encontrar F_n e resolver para F_n usando a seguinte equação.

$$F_{-n} = (-1)^{n+1} F_n$$

Colocando de outra maneira, quando n é estranho, não, $F_n = F_n$ e quando n é mesmo, é mesmo, $F_n = F_n$.

Se você está gerando uma sequência de n à mão e trabalhando em direção ao infinito negativo, você pode reafirmar a equação da sequência acima e usar isso como ponto de partida:

$$F_0=0, \quad F_1=F_2=1,$$
 e

$$F_n = F_{n+2} - F_{n+1}$$

Por exemplo com n = -4 e referenciando a tabela abaixo

$$F_{-4} = F_{-4+2} - F_{-4+1} \ F_{-4} = F_{-2} - F_{-3} \ F_{-4} = -1 - 2 \ F_{-4} = -3$$

F_{-9} para F_9

F₋₉ para F₉

n	F _n
-9	34
-8	-21
-7	13
-6	-8
-5	5
-4	-3
-3	2
-2	-1
-1	1
0	0
1	1
2	1
3	2
4	3
5	5

6	8
7	13
8	21
9	34

Referências

Knuth, D. E., A Arte da Programação de Computadores. Volume I. Algoritmos Fundamentais, Addison-Wesley, 1997, Boston, Massachusetts. páginas 79-86

<u>Chandra, Pravin</u> e <u>Weisstein, Eric W.</u> "Número Fibonacci." De <u>MathWorld</u>um Recurso Web Wolfram. https://mathworld.wolfram.com/FibonacciNumber.html