

CS4379: Parallel and Concurrent Programming CS5379: Parallel Processing

Lecture 21

Dr. Yong Chen
Associate Professor
Computer Science Department
Texas Tech University

Lecture Video

Please view the lecture video either from Teams or from the below link:

https://texastechuniversity.sharepoint.com/sites/CS4379-CS5379/Shared%20Documents/General/Lecture21.mp4

Course Info

Lecture Time: TR, 12:30-1:50

Lecture Location: ECE 217

Sessions: CS4379-001, CS4379-002, CS5379-001, CS5379-D01

Instructor: Yong Chen, Ph.D., Associate Professor

Email: yong.chen@ttu.edu

Phone: 806-834-0284

Office: Engineering Center 315

Office Hours: 2-4 p.m. on Wed., or by appointment

TA: Mr. Ghazanfar Ali, Ghazanfar.Ali@ttu.edu

TA Office hours: Tue. and Fri., 2-3 p.m., or by appointment

TA Office: EC 201 A

More info:

http://www.myweb.ttu.edu/yonchen

http://discl.cs.ttu.edu; http://cac.ttu.edu/; http://nsfcac.org

Outline

Questions?

All-to-all scatter/All-to-all personalized communication

All-to-all Scatter

- Algorithms often require each processor to send different data to each of the other processors
- This operation is called an all-to-all personalized communication or an all-to-all scatter or total exchange
- At the start of an all-to-all scatter, each processor has pm words of data; at the end each processor has a copy of the m words that originated at each of the other processors, pm words in all
- Naïve all-to-all scatter using p one-to-all scatters

All-to-all Scatter

$\mathbf{M}_{0,p-1}$	$\mathbf{M}_{1,p-1}$	$M_{p-1, p-1}$		$\mathbf{M}_{\mathrm{p-1,0}}$	$\mathbf{M}_{p-1,1}$	$\mathbf{M}_{p-1, p-1}$
•	•	•		•	•	•
$M_{0,1}$	$M_{1,1}$	$M_{p-1,1}$		$M_{1,0}$	$M_{1,1}$	$M_{1,p-1}$
$M_{0,0}$	$M_{1,0}$	$M_{p-1,0}$	All-to-all personalized	$M_{0,0}$	$M_{0,1}$	$M_{0,p-1}$
0	1	• (p-1)	<pre>communication </pre>	0	1 .	• • (p-1)

SF Routing on Ring

- Every processor consolidates all the data to be sent and sends a single message to the next processor on the ring in the first step
- In every subsequent step, processors retain part of the message received for themselves and send the rest to the next processor on the ring

SF Routing on Ring

SF Routing on Ring

Steps?

$$(p-1)$$

Cost?

$$\left(t_S + \frac{1}{2}mt_w p + t_h\right)(p-1)$$

SF Routing on 2d Torus

Two-phase algorithm (similar to others for 2d-mesh/torus)

First phase:

- Processors consolidate messages into groups meant for each processor column
- The ring method is applied to each processor row independently

Second phase:

- Now the messages in each processor are sorted into groups meant for each processor row
- The ring method is applied to each processor column independently

SF Routing on 2d Torus

(b) Data distribution at the beginning of second phase

SF Routing on 2d Torus

Steps?

$$2(\sqrt{p}-1)$$

Cost?

$$(2t_s + t_w mp + 2t_h)(\sqrt{p} - 1)$$

SF Routing on Hypercube

- Take log(p) steps for a p processor hypercube
- In the i-th step, every processor exchanges half of messages with the neighboring processor along the i-th dimension (i.e. the processor label differs in the i-th least significant bit)
- At each stage, every processor holds p messages, p/2 of these are consolidated into a single message for exchange with a neighboring processor
- Cost

$$\left(t_s + \frac{1}{2}t_w mp + t_h\right) \log(p)$$

SF Routing on Hypercube

- (a) Initial distribution of messages
- (b) Distribution before the second step

(c) Distribution before the third step

(d) Final distribution of messages

CT Routing

- Cut-through routing performs similarly
- Does not provide benefits over store-and-forward for allto-all scatters/gathers

Readings

Reference book ITPC – Chapter 4, 4.5

Reference book has algorithm descriptions too

Questions?

Questions/Suggestions/Comments are always welcome!

Write me: yong.chen@ttu.edu

Call me: 806-834-0284

See me: ENGCTR 315

If you write me an email for this class, please start the email subject with [CS4379] or [CS5379].