# class18.0

Ilyas Darif

2025-03-06

# Pertussis (a.k.a Whooping Cough) is a deadlily lung infection caused by the bacteria B. Pertussis

The CDC tracks Pertussis cases around the US. https://tinyurl.com/pertussiscdc

We can "scrape" this data useing the R datapasta package

#### head(cdc)

```
year cases
1 1922 107473
2 1923 164191
3 1924 165418
4 1925 152003
5 1926 202210
6 1927 181411
```

```
library(ggplot2)
ggplot(cdc) + aes(x = year, y = cases) + geom_line() + geom_vline(xintercept = 1946, col="bl")
```



There were high cases numbers before the first wP (whole-cell) vaccine roll out in 1946 then a rapid decline in case numbers untill 2004 when we have our first large-scale outbreaks of pertussis again. There is also a notable COVID related dip and recent rapid rise

Q. what is different about the immune response to infection if you had an older wP vaccine vs the newer aP vaccine?

## Computational Models of Immunity Pertussis Boost (CMI-PB)

The CMI-PB project aims to address this key question : what is different between aP and wP individuals

We can get all the data from this ongoing project via JSON API calls. for this we will use the **jsonlite** package

```
library(jsonlite)
subject <- read_json("https://www.cmi-pb.org/api/v5_1/subject", simplifyVector = TRUE)
head(subject)</pre>
```

|   | subject_id | infancy_vac | biological_sex |     |          | etl | nnicity        | race  |
|---|------------|-------------|----------------|-----|----------|-----|----------------|-------|
| 1 | 1          | wP          | Female         | Not | Hispanic | or  | ${\tt Latino}$ | White |
| 2 | 2          | wP          | Female         | Not | Hispanic | or  | Latino         | White |

```
3
           3
                      wP
                                  Female
                                                         Unknown White
4
           4
                      wP
                                    Male Not Hispanic or Latino Asian
           5
5
                      wP
                                    Male Not Hispanic or Latino Asian
6
           6
                      wP
                                  Female Not Hispanic or Latino White
  year_of_birth date_of_boost
                                    dataset
     1986-01-01
                   2016-09-12 2020_dataset
1
2
     1968-01-01
                   2019-01-28 2020_dataset
3
     1983-01-01
                   2016-10-10 2020_dataset
4
     1988-01-01
                   2016-08-29 2020_dataset
                   2016-08-29 2020_dataset
5
     1991-01-01
6
     1988-01-01
                   2016-10-10 2020_dataset
```

Q. How many individuals "subject" are in this dataset?

#### nrow(subject)

[1] 172

Q. How many wp and aP primmed individuals are in this dataset?

#### table(subject\$infancy\_vac)

aP wP 87 85

Q. How many male/female are there?

#### (table(subject\$biological\_sex))

Female Male 112 60

#### table(subject\$race, subject\$biological\_sex)

|          |               |        | Female | Male |
|----------|---------------|--------|--------|------|
| American | Indian/Alaska | Native | 0      | 1    |
| Asian    |               |        | 32     | 12   |

| Black or African American                 | 2  | 3  |
|-------------------------------------------|----|----|
| More Than One Race                        | 15 | 4  |
| Native Hawaiian or Other Pacific Islander | 1  | 1  |
| Unknown or Not Reported                   | 14 | 7  |
| White                                     | 48 | 32 |

This Data is not representative of the US population but it is the biggest dataset of its type so lets see what we can learn...

Obtain more data from CMI-PB

```
specimen <- read_json("http://cmi-pb.org/api/v5_1/specimen", simplifyVector = TRUE)
ab_data <- read_json("http://cmi-pb.org/api/v5_1/plasma_ab_titer", simplifyVector = TRUE)</pre>
```

## head(specimen)

|   | specimen_id  | subject_id   | actual  | _day_relative_ | to_boost |
|---|--------------|--------------|---------|----------------|----------|
| 1 | 1            | 1            |         |                | -3       |
| 2 | 2            | 1            |         |                | 1        |
| 3 | 3            | 1            |         |                | 3        |
| 4 | 4            | 1            |         |                | 7        |
| 5 | 5            | 1            |         |                | 11       |
| 6 | 6            | 1            |         |                | 32       |
|   | planned_day_ | _relative_to | o_boost | specimen_type  | visit    |
| 1 |              |              | 0       | Blood          | 1        |
| 2 |              |              | 1       | Blood          | 2        |
| 3 |              |              | 3       | Blood          | 3        |
| 4 |              |              | 7       | Blood          | 4        |
| 5 |              |              | 14      | Blood          | 5        |
| 6 |              |              | 30      | Blood          | 6        |

# head(ab\_data)

|   | specimen_id | isotype | <pre>is_antigen_specific</pre> | antigen | MFI        | MFI_normalised |
|---|-------------|---------|--------------------------------|---------|------------|----------------|
| 1 | 1           | IgE     | FALSE                          | Total   | 1110.21154 | 2.493425       |
| 2 | 1           | IgE     | FALSE                          | Total   | 2708.91616 | 2.493425       |
| 3 | 1           | IgG     | TRUE                           | PT      | 68.56614   | 3.736992       |
| 4 | 1           | IgG     | TRUE                           | PRN     | 332.12718  | 2.602350       |
| 5 | 1           | IgG     | TRUE                           | FHA     | 1887.12263 | 34.050956      |
| 6 | 1           | IgE     | TRUE                           | ACT     | 0.10000    | 1.000000       |

```
unit lower_limit_of_detection
1 UG/ML 2.096133
2 IU/ML 29.170000
3 IU/ML 0.530000
4 IU/ML 6.205949
5 IU/ML 4.679535
6 IU/ML 2.816431
```

I now have 3 tables of data from CMI-PB: subject, specimen, and ab\_data. I need to join these tables so I will have all the info i need to work with.

for this we will use the  ${\tt inner\_join}()$  function from the  ${\tt dplyr}$  package.

#### library(dplyr)

```
Attaching package: 'dplyr'
```

The following objects are masked from 'package:stats':

```
filter, lag
```

The following objects are masked from 'package:base':

```
intersect, setdiff, setequal, union
```

```
meta <- inner_join(subject, specimen)</pre>
```

Joining with `by = join\_by(subject\_id)`

#### head(meta)

```
subject_id infancy_vac biological_sex
                                                       ethnicity race
1
           1
                      wP
                                  Female Not Hispanic or Latino White
2
           1
                      wΡ
                                  Female Not Hispanic or Latino White
3
           1
                                  Female Not Hispanic or Latino White
                      wΡ
                                  Female Not Hispanic or Latino White
4
           1
                      wΡ
5
           1
                      wP
                                  Female Not Hispanic or Latino White
                                  Female Not Hispanic or Latino White
           1
                      wP
  year_of_birth date_of_boost
                                    dataset specimen_id
```

```
1
     1986-01-01
                    2016-09-12 2020_dataset
                                                        1
2
     1986-01-01
                    2016-09-12 2020_dataset
                                                        2
3
                    2016-09-12 2020_dataset
                                                        3
     1986-01-01
4
     1986-01-01
                    2016-09-12 2020_dataset
                                                        4
                    2016-09-12 2020_dataset
                                                        5
5
     1986-01-01
                    2016-09-12 2020_dataset
     1986-01-01
                                                        6
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
1
                                                                         Blood
2
                              1
                                                               1
                                                                         Blood
3
                              3
                                                               3
                                                                         Blood
4
                              7
                                                              7
                                                                         Blood
5
                              11
                                                              14
                                                                         Blood
6
                              32
                                                              30
                                                                         Blood
  visit
1
      1
2
      2
3
      3
4
      4
5
      5
      6
```

#### dim(subject)

[1] 172 8

#### dim(specimen)

[1] 1503 6

#### dim(meta)

[1] 1503 13

Now we can join our ab\_data table to 'meta so we have all the info we need about antibody levels.

```
abdata <- inner_join(meta, ab_data)</pre>
```

Joining with `by = join\_by(specimen\_id)`

#### head(abdata)

```
subject_id infancy_vac biological_sex
                                                        ethnicity race
1
           1
                       wP
                                   Female Not Hispanic or Latino White
2
           1
                                   Female Not Hispanic or Latino White
                       wP
3
           1
                       wP
                                   Female Not Hispanic or Latino White
4
           1
                       wP
                                   Female Not Hispanic or Latino White
5
           1
                       wP
                                   Female Not Hispanic or Latino White
6
           1
                       wP
                                   Female Not Hispanic or Latino White
  year_of_birth date_of_boost
                                     dataset specimen_id
     1986-01-01
1
                    2016-09-12 2020_dataset
                                                        1
2
                                                        1
     1986-01-01
                    2016-09-12 2020_dataset
3
                                                        1
     1986-01-01
                    2016-09-12 2020_dataset
4
     1986-01-01
                    2016-09-12 2020_dataset
                                                        1
5
     1986-01-01
                    2016-09-12 2020_dataset
                                                        1
6
     1986-01-01
                    2016-09-12 2020_dataset
                                                        1
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
                             -3
                                                                         Blood
1
                                                              0
2
                             -3
                                                              0
                                                                         Blood
                             -3
3
                                                              0
                                                                         Blood
4
                              -3
                                                              0
                                                                         Blood
5
                             -3
                                                              0
                                                                         Blood
6
                             -3
                                                              0
                                                                         Blood
  visit isotype is_antigen_specific antigen
                                                      MFI MFI_normalised unit
      1
            IgE
                               FALSE
                                        Total 1110.21154
                                                                 2.493425 UG/ML
1
2
      1
                                        Total 2708.91616
            IgE
                                FALSE
                                                                 2.493425 IU/ML
3
      1
            IgG
                                 TRUE
                                           PT
                                                 68.56614
                                                                 3.736992 IU/ML
                                          PRN
                                               332.12718
4
      1
            IgG
                                 TRUE
                                                                 2.602350 IU/ML
5
      1
            IgG
                                 TRUE
                                          FHA 1887.12263
                                                               34.050956 IU/ML
                                 TRUE
                                          ACT
                                                  0.10000
                                                                 1.000000 IU/ML
6
      1
            IgE
  lower_limit_of_detection
1
                   2.096133
2
                  29.170000
3
                   0.530000
4
                   6.205949
5
                   4.679535
6
                   2.816431
```

Q. How many different antibody isotypes are there in this dataset?

# length(abdata\$isotype)

[1] 61956

#### table(abdata\$isotype)

IgE IgG IgG1 IgG2 IgG3 IgG4 6698 7265 11993 12000 12000 12000

#### table(abdata\$antigen)

| ACT  | BETV1 | DT   | FELD1 | FHA   | FIM2/3 | LOLP1 | LOS  | Measles | OVA  |
|------|-------|------|-------|-------|--------|-------|------|---------|------|
| 1970 | 1970  | 6318 | 1970  | 6712  | 6318   | 1970  | 1970 | 1970    | 6318 |
| PD1  | PRN   | PT   | PTM   | Total | TT     |       |      |         |      |
| 1970 | 6712  | 6712 | 1970  | 788   | 6318   |       |      |         |      |

i what a plot of antigen levels across the whole dataset

```
ggplot(abdata) +
aes(MFI, antigen) +
geom_boxplot()
```

Warning: Removed 1 row containing non-finite outside the scale range (`stat\_boxplot()`).



```
ggplot(abdata) +
aes(MFI_normalised, antigen) +
geom_boxplot()
```



Antigens like FIM2/3, PT, FELD1have quite a large range of values. Others like Measles dont show much activity

Q. Are there differences at this whole\_dataset level between aP and wP?

```
ggplot(abdata) +
  aes(MFI_normalised, antigen, col=infancy_vac) +
  geom_boxplot()
```



```
ggplot(abdata) +
  aes(MFI_normalised, antigen, col=infancy_vac) +
  geom_boxplot()
```



# facet\_wrap(~infancy\_vac)

<ggproto object: Class FacetWrap, Facet, gg>

compute\_layout: function

draw\_back: function
draw\_front: function
draw\_labels: function
draw\_panels: function
finish\_data: function
init\_scales: function
map\_data: function

params: list

setup\_data: function
setup\_params: function

shrink: TRUE

train\_scales: function

vars: function

super: <ggproto object: Class FacetWrap, Facet, gg>

#### **Examine IgG Ab titer levels**

For this I need to select out just isotype IgG

```
igg <- abdata |> filter(isotype == "IgG")
head(igg)
```

```
subject_id infancy_vac biological_sex
                                                        ethnicity race
1
           1
                       wP
                                   Female Not Hispanic or Latino White
2
           1
                       wP
                                   Female Not Hispanic or Latino White
3
           1
                                   Female Not Hispanic or Latino White
                       wP
4
                                   Female Not Hispanic or Latino White
           1
                       wP
5
           1
                       wΡ
                                   Female Not Hispanic or Latino White
6
           1
                       wP
                                   Female Not Hispanic or Latino White
  year_of_birth date_of_boost
                                     dataset specimen_id
     1986-01-01
                    2016-09-12 2020_dataset
1
2
     1986-01-01
                    2016-09-12 2020_dataset
                                                        1
3
     1986-01-01
                    2016-09-12 2020_dataset
                                                        1
                                                        2
4
     1986-01-01
                    2016-09-12 2020_dataset
                                                        2
5
     1986-01-01
                    2016-09-12 2020_dataset
     1986-01-01
                    2016-09-12 2020_dataset
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
                             -3
                                                              0
                                                                         Blood
1
2
                             -3
                                                              0
                                                                         Blood
3
                             -3
                                                              0
                                                                         Blood
4
                              1
                                                              1
                                                                         Blood
5
                              1
                                                                         Blood
                                                              1
6
                                                                         Blood
  visit isotype is_antigen_specific antigen
                                                     MFI MFI_normalised unit
                                TRUE
1
      1
            IgG
                                           PT
                                                68.56614
                                                                3.736992 IU/ML
2
      1
            IgG
                                TRUE
                                          PRN
                                               332.12718
                                                                2.602350 IU/ML
3
      1
            IgG
                                TRUE
                                          FHA 1887.12263
                                                               34.050956 IU/ML
      2
4
            IgG
                                TRUE
                                           PT
                                                41.38442
                                                                2.255534 IU/ML
5
      2
                                TRUE
                                          PRN
                                               174.89761
                                                                1.370393 IU/ML
            IgG
                                               246.00957
                                TRUE
                                                                4.438960 IU/ML
            IgG
                                          FHA
  lower_limit_of_detection
1
                   0.530000
2
                   6.205949
3
                   4.679535
4
                   0.530000
5
                   6.205949
```

4.679535

6

A overview boxplot:

```
ggplot(igg) +
  aes(MFI_normalised, antigen, col=infancy_vac) +
  geom_boxplot()
```



Digging in further to look at the time of IgG isotype PT antigen levels across aP and wP indviduals:

```
col=infancy_vac,
    group=subject_id) +
geom_point() +
geom_line() +
geom_vline(xintercept=0, linetype="dashed") +
geom_vline(xintercept=14, linetype="dashed") +
labs(title="2021 dataset IgG PT",
    subtitle = "Dashed lines indicate day 0 (pre-boost) and 14 (apparent peak levels)")
```

# 2021 dataset IgG PT

Dashed lines indicate day 0 (pre-boost) and 14 (apparent peak levels)

