

Joint Velocity-Growth Flow Matching for Single-Cell Dynamics Modeling

Dongyi Wang, Yuanwei Jiang, Zhenyi Zhang, Xiang Gu, Peijie Zhou, Jian Sun School of Mathematics and Statistics, Xi'an Jiaotong University, China School of Mathematical Sciences, Peking University, Beijing, China

NEURAL INFORMATION PROCESSING SYSTEMS

Background & Motivation

Single-cell RNA seq yields unpaired and unbalanced data.

Simulation-based models (e.g., TIGON, DeepRUOT)

- Growth rate
- Scalability

Simulation-free models (e.g., OT-CFM, SF2M)

- Growth rate
- Scalability

Trajectory and growth reconstruction

Growth rate

Simulation gene

Mouse Hematopoiesis

EB

Scalability

Our Approach: Velocity-Growth Flow Matching via SROT

- Dynamic understanding of semi-relaxed OT (SROT) (v, g can be decoupled from SROT plan)
- Build a novel dynamic process between unbalanced distributions based on dynamic SROT
- 3. Regress $\tilde{\boldsymbol{v}}$, $\tilde{\boldsymbol{g}}$ using neural networks $\left\|v_{\theta}(\mathbf{x}_t,t)-(\mathbf{x}_1^j-\mathbf{x}_0^i)\right\|^2+\left|g_{\omega}(\mathbf{x}_t,t)-\log([\pi^{0\to1}\mathbf{1}_m]_i)\right|^2$

$$\mathcal{L}(\theta,\omega) = \mathcal{L}_{\text{VGFM}}(\theta,\omega) + \mathcal{L}_{\text{OT}}(\theta,\omega)$$
 Flow matching loss Distribution fitting loss

Experiments

Mass matching

Wasserstein-1 distance and Relative mass error

Method	Simulation Gene (2D)		Dyngen (5D)		Gaussian (1000D)	
	$\overline{\mathcal{W}_1}$	RME	$\overline{\mathcal{W}_1}$	RME	$\overline{\mathcal{W}_1}$	RME
OT-CFM* [22]	0.302	_	3.926	_	10.126	
OT-MFM* [38]	0.311		3.976	_	11.008	_
UDSB [57]	0.665	0.192	1.914	0.658	N/C	N/C
TIGON [23]	0.099	0.065	1.029	0.542	N/C	N/C
DeepRUOT [26]	0.068	0.016	0.474	0.199	N/C	N/C
VGFM	0.046	0.006	0.420	0.053	3.010	0.037

Training and analysis on 2k gene space

