Elevate Labs Internship: Task 6 - Password Strength Evaluation

1 Create multiple passwords with varying complexity

Below is a table of passwords created with the name "Vamsi" instead of "Kishan", varying in complexity:

Password	Reason		
Vamsi	All lowercase, common keyboard pat-		
	tern, extremely easy to guess		
Vamsi1212	Adds numbers but still predictable and		
	commonly used		
Vamson	Mix of uppercase, lowercase, number,		
	symbol but short in length		
Vam5i@1	Increased length, good use of numbers		
	and symbols		
V1msi@13	9 characters, high randomness, strong		
	mix of characters		
V1ms4i@5@1@226 characters, fully randomized, in-			
	cludes all 64 character types		

2 Use uppercase, lowercase, numbers, symbols, and length variations

All passwords above are created with a variety of:

- Uppercase letters
- Lowercase letters
- Numbers
- Special characters
- Different lengths (6 to 16+ characters)

3 Test each password on password strength checker

Tools Used:

- PasswordMeter
- Kaspersky Password Checker

4 Note scores and feedback from the tool

I tested six self-created passwords using online password strength checkers (PasswordMeter and Kaspersky Password Checker) on Kali Linux using Firefox browser. Below is a detailed table showing the strength level, score, and feedback for each:

Password	Strength	Score	Feedback / Reason
Vamsi	Very	8%	All lowercase letters only. Name-
	Weak		based and very short. Easily guess-
			able and common.
Vamsi1212	Good	53%	Includes numbers, but predictable
			pattern. Repetition lowers security.
			Still based on personal name.
Vamsen	Moderate	42%	Uses uppercase and special charac-
			ter. Still too short (only 6 charac-
			ters). Vulnerable to brute-force at-
			tacks.
VaM5i@1	Strong	78%	8 characters, good mix of numbers,
			letters, and symbol. Better unpre-
			dictability. Satisfies minimum se-
			curity standards.
VaMsi@13	Very	87%	9 characters. Higher random-
	Strong		ness. Strong use of mixed charac-
			ter types and placement.
VaM5i@5@1@2	2 08 tra	100%	16 characters long. Excellent
			complexity with numbers, upper-
			case, lowercase, multiple symbols.
			Hard to guess and resists dictio-
			nary/brute force attacks.

5 Identify best practices for creating strong passwords

- Use at least 12-16 characters
- Include uppercase, lowercase, numbers, and symbols
- Avoid using personal data like name, DOB, mobile number
- Do not use keyboard patterns (e.g., asdf, qwerty)

- Avoid common words and passwords found in breach lists
- Use password managers to generate and store complex passwords
- Enable Two-Factor Authentication (2FA) for additional security
- Consider using passphrases with uncommon word combinations

6 Write down tips learned from the evaluation

From my testing and research:

- · Longer passwords are significantly stronger
- Randomness matters more than just using special characters
- Short but complex passwords can still be weak due to predictability
- Reusing passwords across sites is a major security risk
- Passphrases like Monkey\$C1limbsOrangeTree2025 are both memorable and secure
- Tools like Bitwarden or NordPass help manage unique passwords for every site
- 2FA adds an essential layer of defense beyond just passwords

7 Research common password attacks

Attack Type	Description	Prevention
Brute Force	Tries every possible combina-	Use long, complex pass-
	tion	words
Dictionary At-	Uses list of common pass-	Avoid dictionary words
tack	words or personal info	and personal info
Credential	Uses leaked credentials from	Use unique passwords
Stuffing	data breaches to access other	for every account
	accounts	
Phishing	Tricks users into entering	Always verify URLs,
	passwords on fake sites or	don't click unknown
	through fake messages	links
Keylogging	Malware captures keystrokes	Use updated antivirus,
	to steal passwords	avoid suspicious down-
		loads

8 Summarize how password complexity affects security

Password strength greatly depends on length and character complexity. Simple passwords like Vamsi are easy to guess, while longer, more complex ones

like V1ms4i@5@1@2208 are highly secure. By using a mix of uppercase, low-ercase, numbers, and special characters, and avoiding predictable patterns, the strength increases significantly. Tools like PasswordMeter and Kaspersky Password Checker showed that strong, random passwords score much higher and are far more resistant to brute-force and dictionary attacks. Strong passwords are essential for basic cybersecurity protection.