Eigenvalues and Eigenvectors 5.1 Introduction

Eigenvalue equation $Ax = \lambda x$.

Now we have the fundamental equation of this chapter. It involves two unknowns λ and x. It is an algebra problem, and differential equations can be forgotten! The number λ (lambda) is an *eigenvalue* of the matrix A, and the vector x is the associated *eigenvector*. Our goal is to find the eigenvalues and eigenvectors, λ 's and x's, and to use them.

Notice that $Ax = \lambda x$ is a nonlinear equation; λ multiplies x. If we could discover λ , then the equation for x would be linear. In fact we could write λIx in place of λx , and bring this term over to the left side:

$$(A - \lambda I)x = 0. (9)$$

The identity matrix keeps matrices and vectors straight; the equation $(A - \lambda)x = 0$ is shorter, but mixed up. This is the key to the problem:

The vector x is in the nullspace of $A - \lambda I$.

The number λ is chosen so that $A - \lambda I$ has a nullspace.

Of course every matrix has a nullspace. We want a *nonzero* eigenvector x, the nullspace of $A - \lambda I$ must contain vectors other than zero. In short, $A - \lambda I$ must be singular.

5A The number λ is an eigenvalue of A if and only if $A - \lambda I$ is singular:

$$\det(A - \lambda I) = 0. \tag{10}$$

This is the characteristic equation. Each λ is associated with eigenvectors x:

$$(A - \lambda I)x = 0$$
 or $Ax = \lambda x$. (11)

In our example, we shift A by λI to make it singular:

Subtract
$$\lambda I$$
 $A - \lambda I = \begin{bmatrix} 4 - \lambda & -5 \\ 2 & -3 - \lambda \end{bmatrix}$.

Note that λ is subtracted only from the main diagonal (because it multiplies *I*).

Determinant
$$|A - \lambda I| = (4 - \lambda)(-3 - \lambda) + 10$$
 or $\lambda^2 - \lambda - 2$.

factoring into $\lambda^2 - \lambda - 2 = (\lambda + 1)(\lambda - 2)$. That is zero if $\lambda = -1$ or $\lambda = 2$, as the general formula confirms:

Eigenvalues
$$\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{9}}{2} = -1 \text{ and } 2.$$

There are two eigenvalues, because a quadratic has two roots. Every 2 by 2 matrix $A - \lambda I$ has λ^2 (and no higher power of λ) in its determinant.

The values $\lambda = -1$ and $\lambda = 2$ lead to a solution of $Ax = \lambda x$ or $(A - \lambda I)x = 0$. A matrix with zero determinant is singular, so there must be nonzero vectors x in its nullspace. In fact the nullspace contains a whole *line* of eigenvectors; it is a subspace!

$$\lambda_1 = -1:$$
 $(A - \lambda_1 I)x = \begin{bmatrix} 5 & -5 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$

The solution (the first eigenvector) is any nonzero multiple of x_1 :

Eigenvector for
$$\lambda_1$$
 $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

You might notice that the columns of $A - \lambda_1 I$ give x_2 , and the columns of $A - \lambda_2 I$ are multiples of x_1 . This is special (and useful) for 2 by 2 matrices.

In the 3 by 3 case, I often set a component of x equal to 1 and solve $(A - \lambda I)x = 0$ for the other components. Of course if x is an eigenvector then so is 7x and so is -x. All vectors in the nullspace of $A - \lambda I$ (which we call the *eigenspace*) will satisfy $Ax = \lambda x$. In our example the eigenspaces are the lines through $x_1 = (1, 1)$ and $x_2 = (5, 2)$.

Before going back to the application (the differential equation), we emphasize the steps in solving $Ax = \lambda x$:

- 1. Compute the determinant of $A \lambda I$. With λ subtracted along the diagonal, this determinant is a polynomial of degree n. It starts with $(-\lambda)^n$.
- 2. Find the roots of this polynomial. The n roots are the eigenvalues of A.
- 3. For each eigenvalue solve the equation $(A \lambda I)x = 0$. Since the determinant is zero, there are solutions other than x = 0. Those are the eigenvectors.

The key equation was $Ax = \lambda x$. Most vectors x will not satisfy such an equation. They change direction when multiplied by A, so that Ax is not a multiple of x. This means that *only certain special numbers are eigenvalues, and only certain special vectors* x *are eigenvectors*. We can watch the behavior of each eigenvector, and then combine these "normal modes" to find the solution. To say the same thing in another way, the underlying matrix can be diagonalized.

Example 1. Everything is clear when A is a *diagonal matrix*:

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$
 has $\lambda_1 = 3$ with $x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\lambda_2 = 2$ with $x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

On each eigenvector A acts like a multiple of the identity: $Ax_1 = 3x_1$ and $Ax_2 = 2x_2$.

Other vectors like x = (1,5) are mixtures $x_1 + 5x_2$ of the two eigenvectors, and when A multiplies x_1 and x_2 it produces the eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 2$:

A times
$$x_1 + 5x_2$$
 is $3x_1 + 10x_2 = \begin{bmatrix} 3 \\ 10 \end{bmatrix}$.

This is Ax for a typical vector x—not an eigenvector. But the action of A is determined by its eigenvectors and eigenvalues.

Example 2. The eigenvalues of a *projection matrix* are 1 or 0!

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \quad \text{has} \quad \lambda_1 = 1 \quad \text{with} \quad x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad \lambda_2 = 0 \quad \text{with} \quad x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

We have $\lambda = 1$ when x projects to itself, and $\lambda = 0$ when x projects to the zero vector.

The column space of P is filled with eigenvectors, and so is the nullspace. If those spaces have dimension r and n-r, then $\lambda=1$ is repeated r times and $\lambda=0$ is repeated n-r times (always n λ 's):

There is nothing exceptional about $\lambda = 0$. Like every other number, zero might be an eigenvalue and it might not. If it is, then its eigenvectors satisfy Ax = 0x. Thus x is in the nullspace of A. A zero eigenvalue signals that A is singular (not invertible); its determinant is zero. Invertible matrices have all $\lambda \neq 0$.

Example 3. The eigenvalues are on the main diagonal when A is *triangular*:

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 4 & 5 \\ 0 & \frac{3}{4} - \lambda & 6 \\ 0 & 0 & \frac{1}{2} - \lambda \end{vmatrix} = (1 - \lambda)(\frac{3}{4} - \lambda)(\frac{1}{2} - \lambda).$$

The determinant is just the product of the diagonal entries. It is zero if $\lambda = 1$, $\lambda = \frac{3}{4}$, or $\lambda = \frac{1}{2}$; the eigenvalues were already sitting along the main diagonal.

5B The *sum* of the *n* eigenvalues equals the sum of the *n* diagonal entries:

Trace of
$$A = \lambda_1 + \dots + \lambda_n = a_{11} + \dots + a_{nn}$$
. (15)

Furthermore, the *product* of the *n* eigenvalues equals the *determinant* of *A*.

The projection matrix P had diagonal entries $\frac{1}{2}$, $\frac{1}{2}$ and eigenvalues 1, 0. Then $\frac{1}{2} + \frac{1}{2}$ agrees with 1 + 0 as it should. So does the determinant, which is $0 \cdot 1 = 0$. A singular matrix, with zero determinant, has one or more of its eigenvalues equal to zero.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 has trace $a+d$, and determinant $ad-bc$

$$\det(A - \lambda I) = \det \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = \lambda^2 - (\operatorname{trace})\lambda + \operatorname{determinant}$$

Eigshow

There is a MATLAB demo (just type eigshow), displaying the eigenvalue problem for a 2 by 2 matrix. It starts with the unit vector x = (1,0). The mouse makes this vector move around the unit circle. At the same time the screen shows Ax, in color and also moving. Possibly Ax is ahead of x. Possibly Ax is behind x. Sometimes Ax is parallel to x. At that parallel moment, $Ax = \lambda x$ (twice in the second figure).

The eigenvalue λ is the length of Ax, when the unit eigenvector x is parallel. The built-in choices for A illustrate three possibilities: 0, 1, or 2 real eigenvectors.

- 1. There are no real eigenvectors. Ax stays behind or ahead of x. This means the eigenvalues and eigenvectors are complex, as they are for the rotation Q.
- 2. There is only *one* line of eigenvectors (unusual). The moving directions Ax and x meet but don't cross. This happens for the last 2 by 2 matrix below.
- 3. There are eigenvectors in *two* independent directions. This is typical! Ax crosses x at the first eigenvector x_1 , and it crosses back at the second eigenvector x_2 .

Suppose A is singular (rank 1). Its column space is a line. The vector Ax has to stay on that line while x circles around. One eigenvector x is along the line. Another eigenvector appears when $Ax_2 = 0$. Zero is an eigenvalue of a singular matrix.

You can mentally follow x and Ax for these six matrices. How many eigenvectors and where? When does Ax go clockwise, instead of counterclockwise with x?

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Problem Set 5.1

1. Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$. Verify that the trace equals the sum of the eigenvalues, and the determinant equals their product.

3. If we shift to A - 7I, what are the eigenvalues and eigenvectors and how are they related to those of A?

$$B = A - 7I = \begin{bmatrix} -6 & -1 \\ 2 & -3 \end{bmatrix}.$$

- 7. Suppose that λ is an eigenvalue of A, and x is its eigenvector: $Ax = \lambda x$.
 - (a) Show that this same x is an eigenvector of B = A 7I, and find the eigenvalue. This should confirm Exercise 3.
 - (b) Assuming $\lambda \neq 0$, show that x is also an eigenvector of A^{-1} —and find the eigenvalue.

11. The eigenvalues of A equal the eigenvalues of A^{T} . This is because $\det(A - \lambda I)$ equals $\det(A^{T} - \lambda I)$. That is true because ____. Show by an example that the eigenvectors of A and A^{T} are not the same.

12. Find the eigenvalues and eigenvectors of

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$.

22. Compute the eigenvalues and eigenvectors of A and A^2 :

$$A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$$
 and $A^2 = \begin{bmatrix} 7 & -3 \\ -2 & 6 \end{bmatrix}$.

 A^2 has the same ____ as A. When A has eigenvalues λ_1 and λ_2 , A^2 has eigenvalues .

- **25.** From the unit vector $u = (\frac{1}{6}, \frac{1}{6}, \frac{3}{6}, \frac{5}{6})$, construct the rank-1 projection matrix $P = uu^{T}$.
 - (a) Show that Pu = u. Then u is an eigenvector with $\lambda = 1$.
 - (b) If v is perpendicular to u show that Pv = zero vector. Then $\lambda = 0$.
 - (c) Find three independent eigenvectors of P all with eigenvalue $\lambda = 0$.

34. This matrix is singular with rank 1. Find three λ 's and three eigenvectors:

$$A = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 2 & 4 \\ 2 & 1 & 2 \end{bmatrix}.$$