Nettiarpoja on rajaton määrä Veikkauksen kotisivulla, jokaisen ostetun arvan voiton todennäköisyys on 20 %. Pelaaja ostaa 15 arpaa, eli

Eli X ~BIN(15,0.2)

a) Laske todennäköisyys, että 3 voittaa:

$$P(X = k) = {15 \choose k} * 0.2^k * (1 - 0.2)^{15-k}$$

Vastaus:

$$P(X = 3) = {15 \choose 3} * 0.2^{3} * (1 - 0.2)^{15-3}$$

$$= {15 \choose 3} * 0.2^{3} * (0.8)^{12}$$

$$= {15 \choose 3} * 0.2^{3} * (0.8)^{12}$$

$$= 0.250$$

Kerrataan PTKMY2-kurssin stadardointia:

$$\frac{X - \mu}{\sigma} = \frac{Testattava \ arvo - populaation \ keskiarvo}{populaation \ keskihajonta}$$

Stadardoidaan kahden eri henkilön palkkoja:

- a) Suomalainen tienaa 3200 €.
 - a. Maan keskiarvo on 2800 € ja kh on 350 €
- b) Virolainen tienaa 2000 €
 - a. Maan keskiarvo on 1400 € ja kh on 250 €

Vastaukset:

$$Z_{Suomalainen} = \frac{3200 - 2800}{350} = 1.14$$
$$Z_{Virolainen} = \frac{2000 - 1400}{250} = 2.40$$

Opimme PTKMY2-kurssilla, että oman maan tulotasoon suhteutettuna virolainen tienaa enemmän kuin suomalainen.

Nyt PTKMY3-kurssilla kysymmekin: Mikä on todennäköisyys, että satunnaisesti valittu suomalainen tienaa alle 3200€ tai että satunnaisesti valittu virolainen tienaa alle 2000 €.

Eli mikä on kertymäfunktion $P(X_{Suomi} \le 3200 €) = F_{Suomi}(3200€)$

Tämän ratkaisemiseksi tarvitsemme tiedon, että stadardoidut arvot noudattavat N(0,1)-jakaumaa. Jos tiedämme, että millä todennäköisyydellä N(0,1)-jakauma saa X ≤ 1.14 arvon tiedämme, että suomalaisen todennäköisyys tienata 3200 € tai vähemmän on yhtä suuri.

Standardoidun normaalijakauman [N(0,1)] kuva:

Saimme arvon Z = 1.14, joten jos summaamme yllä olevan alueen saamme oikean todennäköisyyden! Onneksi nämä löytyvät suoraan normaalijakauman taulukosta:

Z	,00	,01	,02	,03	,04
0,0	0,5000	0,5040	0,5080	0,5120	0,5160
0,1	0,5398	0,5438	0,5478	0,5517	0,5557
0,2	0,5793	0,5832	0,5871	0,5910	0,5948
0,3	0,6179	0,6217	0,6255	0,6293	0,6331
0,4	0,6554	0,6591	0,6628	0,6664	0,6700
0,5	0,6915	0,6950	0,6985	0,7019	0,7054
0,6	0,7257	0,7291	0,7324	0,7357	0,7389
0,7	0,7580	0,7611	0,7642	0,7673	0,7704
0,8	0,7881	0,7910	0,7939	0,7967	0,7995
0,9	0,8159	0,8186	0,8212	0,8238	0,8264
1,0	0,8413	0,8438	0,8461	0,8485	0,8508
1,1	0,8643	0,8665	0,8686	0,8708	0,8729
1,2	0,8849	0,8869	0,8888	0,8907	0,8925
1,3	0,9032	0,9049	0,9066	0,9082	0,9099

Valitaan ensin pystyriviltä 1.1_ ja sitten vaakariviltä oikea toinen desimaali eli _._4, jolloin saamme oikean tuloksen 0.8729

Eli
$$P(Z \le 1.14) = \Phi(1.14) = 0.8729$$

eli todennäköisyys, että suomalainen tienaa 3200€ tai vähemmän on 87.29 %!

Määrittele nyt todennäköisyys, että virolainen tienaa 2000€ tai vähemmän.

muistutus:
$$Z_{Virolainen} = \frac{2000 - 1400}{250} = 2.40$$

Oikea vastaus on $P(Z \le 2.40) = \Phi(2.40) = 0.9918$

Eli on 99.18 % todennäköisyys, että virolainen tienaa 2000 tai vähemmän.

Jos tiedetään, että 87.29 % suomalaisista tienaa 3200 € tai vähemmän, niin tällöin 1 - 0.8729 = 0.1271 eli 12.71 % tienaa 3200€ tai enemmän.

Määritä

- a) z-jakauman arvo z, jolle $\Phi(z) = 0.9099$
- b) Kuinka suuri pitäisi suomalaisen palkan olla, että 90.99% muista tienaa vähemmän kuin kyseinen yksilö?

Vastaukset:

- a) z = 1.34
- b) sijoitetaan:

$$Z_{Suomalainen} = \frac{a - 2800}{350} = 1.34$$

$$a - 2800 = 1.34 * 350$$
 $a = 1.34 * 350 + 2800$
 $a = 1.34 * 350 + 2800 = 3269 (€)$

- a) Suomalainen tienaa 2400 €.
 - a. Maan keskiarvo on 2800 € ja kh on 350 €

$$Z_{Suomalainen} = \frac{2400 - 2800}{350} = -1.14$$

$$P(Z \le -1.14) = \Phi(-1.14) = 1 - \Phi(1.14) = 1 - 0.8729 = 0.1271$$