

Lehrgebiet für Grundlagen der Informatik Prof. Dr. Heiko Körner

4. Übung zur Vorlesung Theoretische Informatik I

Aufgabe 1 (•): Es seien $L, L' \subseteq \Sigma^*$ zwei Sprachen. Die Konkatenation von L und L' besteht aus der Menge

$$L \cdot L' := \{ww' \mid w \in L \land w' \in L'\} .$$

Statt $L \cdot L'$ schreibt man wieder einfach LL'. Berechnen Sie für die Sprachen $L := \{\varepsilon, a, aa\}$ und $L' := \{ab, ba\}$ die Sprachen LL' und L'L.

Aufgabe 2 (••): Die Kleenesche Hülle L^* einer Sprache $L\subseteq \Sigma^*$ ist definiert als die Menge aller Wörter, die jeweils durch Konkatenation endlich vieler Wörter aus L gebildet werden können. Es gilt also:

$$L^* := \{x_1 x_2 \dots x_k \mid k \ge 0, x_i \in L\}$$
.

Ganz ähnlich definiert man die $positive\ H\ddot{u}lle\ von\ L\ durch$

$$L^+ := \{x_1 x_2 \dots x_k \mid k \ge 1, x_i \in L\}$$
.

- a) Für welche Sprachen L ist die Kleenesche Hülle L^* endlich? Begründen Sie Ihre Antwort.
- b) Was ist $(L^*)^*$? Begründen Sie Ihre Antwort.
- c) Geben Sie für $L := \{1, 1011\}$ fünf Wörter aus L^+ an.
- d) Für welche Sprache L ist L^+ leer? Begründen Sie Ihre Antwort.
- e) Für welche Sprachen L ist L^+ endlich? Geben Sie jeweils L und L^+ an und begründen Sie Ihre Antwort.
- f) Was ist $(L^+)^+$? Begründen Sie Ihre Antwort.

Aufgabe 3 ($\bullet \bullet$): Sei $L \subseteq \Sigma^*$ eine beliebige Sprache. Es sei ferner

$$L^* := \{x_1 x_2 \dots x_k \mid k \ge 0, x_i \in L\}$$
 und $L^+ := \{x_1 x_2 \dots x_k \mid k \ge 1, x_i \in L\}$.

Zeigen oder widerlegen Sie:

- a) $L^* = L^+ \cup \{\varepsilon\}$
- b) $L^+ = L^* \setminus \{\varepsilon\}$

Aufgabe 4 (\bullet): Vereinfachen Sie die folgenden Ausdrücke durch Anwendung der O-Notation so weit wie möglich und ordnen Sie sie nach wachsender Komplexität an (ohne Beweis):

$$0.7\sqrt[3]{n}$$
 $3^{\frac{n}{2}}$ $7n^3 - 4n^2 + \log n$ $10^{-6}n^{\frac{5}{2}}$ $24n + \log_{10}^2 n$ $47n\log n$.

Aufgabe 5 (\bullet): Vereinfachen Sie die folgenden Ausdrücke durch Anwendung der Ω -Notation und ordnen Sie sie nach wachsender Komplexität von links nach rechts an (ohne Beweis):

$$13.2n^{1.5}$$
 $1.7\sqrt[3]{n}$ $23\log_5 n$ $2^{n/5}$ $17n^3 - 4n$ $2n\log_7 n$ $9n^4 + \log_3 n + 1$.