Ethereum

Recap of the Last Lecture

- Sybil Attack
 - Adversary impersonates many different nodes to outnumber the honest nodes.
- Sybil Resistance
 - Proof-of-Work: must solve computationally hard puzzle to propose block
- Bitcoin and Nakamoto Consensus
 - Longest chain rule
- Incentives in Bitcoin
 - Block rewards (3.125BTC)
 - Transaction fees
 - Can these incentives guarantee honest participation?

State Machine Replication in 1 slide

Let LOG_t^i denote the log learned by a client i at time t.

Then, a **secure** SMR protocol satisfies the following guarantees:

Safety (Consistency):

• For any two clients i and j, and times t and s: either $LOG_t^i \leq LOG_s^j$ is true or $LOG_s^j \leq LOG_t^i$ is true or both (Logs are consistent).

Liveness:

• If a transaction tx is input to an honest replica at some time t, then for all clients i, and times $s \ge t + T_{conf}$: $tx \in LOG_s^i$.

spend

censorship

Limitations of Bitcoin

Recall: UTXO contains (hash of) ScriptPK

• simple script: indicates conditions when UTXO can be spent

Limitations:

- Difficult to maintain state in multi-stage contracts
- Difficult to enforce global rules on assets

A simple example: rate limiting. My wallet manages 100 UTXOs.

Desired policy: can only transfer 2BTC per day out of my wallet

Active currencies by date of introduction

Year of introduction	Currency ¢	Symbol ¢	Founder(s) +	Hash algorithm •	Programming language of \$ implementation	Consensus mechanism	Notes +
2009	Bitcoin	BTC, ^[3] XBT,	Satoshi Nakamoto	SHA-256d ^{[4][5]}	C++[6]	PoW ^{[5][7]}	The first and most widely used decentralized ledger currency, [8] with the highest market capitalization as of 2018. ^[9]
2011	Litecoin	LTC, Ł	Charlie Lee	Scrypt	C++ ^[10]	PoW	One of the first cryptocurrencies to use scrypt as a hashing algorithm.
2011	Namecoin	NMC	Vincent Durham ^{[11][12]}	SHA-256d	C++ ^[13]	PoW	Also acts as an alternative, decentralized DNS.
2012	Peercoin	PPC	Sunny King (pseudonym) [citation needed]	SHA-256d[citation needed]	C++ ^[14]	PoW & PoS	The first cryptocurrency to use both PoW and PoS functions.
2013	Dogecoin	DOGE, XDG, Đ	Jackson Palmer & Billy Markus ^[15]	Scrypt ^[16]	C++ ^[14]	PoW	Based on the Doge internet meme.
2013 ^{[17][18]}	Gridcoin	GRC	Rob Hälford ^[19]	Scrypt	C++ ^[20]	Decentralized PoS	Linked to citizen science through the Berkeley Open Infrastructure

for Network

2014	Monero	XMR	Monero Core Team	RandomX	C++ ^[40]	PoW	Privacy-centric coin based on the CryptoNote protocol with improvements for scalability and decentralization.
2014	Titcoin	ТІТ	Edward Mansfield & Richard Allen ^[41]	SHA-256d	TypeScript, C+ +[42]	PoW	The first cryptocurrency to be nominated for a major adult industry award. [43]
2014	Verge	XVG	Sunerok	Scrypt, x17, groestl, blake2s, and lyra2rev2	C, C++ ^[44]	PoW	Features anonymous transactions using Tor.
2014	Stellar	XLM	Jed McCaleb	Stellar Consensus Protocol (SCP) [45]	C, C++ ^[46]	Stellar Consensus Protocol (SCP) [45]	Open-source, decentralized global financial network.
2014	Vertcoin	VTC	David Muller ^[47]	Verthash ^[48]	C++ ^[49]	PoW	Aims to be ASIC resistant.
2015	Ethereum	ЕТН, Ξ	Vitalik Buterin ^[50]	Ethash ^[51]	C++, Go ^[52]	PoW, PoS	Supports Turing-complete smart contracts.
2015	Ethereum Classic	ETC		EtcHash/Thanos ^[53]		PoW	An alternative version of Ethereum ^[54] whose blockchain does not include the DAO hard fork. ^[55] Supports Turing-complete smart contracts.

Ethereum: on-chain Turing machine

- **New coins:** ERC-20 standard interface
- DeFi: exchanges, lending, stablecoins, derivatives, etc.
- Insurance
- DAOs: decentralized organizations
- NFTs/RWAs: Managing asset ownership (ERC-721 interface)

Bitcoin as a state transition system

Bitcoin rules:

$$F_{bitcoin}: S \times I \rightarrow S$$

S: set of all possible world states, $s_0 \in S$ genesis state

I: set of all possible inputs

Ethereum as a state transition system

Much richer state transition functions

⇒ one transition executes an entire program

Running a program on a blockchain (DAPP)

The Ethereum system

One block every 12 seconds (~150 Tx per block)

Block proposer receives Tx fees for block (+tips)

Total of 22,320 Showing blocks	0,076 blocks between #22320051 to	#22320075)						ta First <	Page 1 of 892804 > Last	
Block	Slot	Age	Txn	Fee Recipient	Gas Used	Gas Limit	Base Fee	Reward	Burnt Fees (ETH)	
22320075	11537250 🖸	12 secs ago	24	beaverbuild [2,685,596 (7.49%)	35,859,005	0.38 Gwei	0.01779 ETH	0.001022 (5.43%)	
22320074	11537249 🖸	24 secs ago	101	Titan Builder (7,261,660 (20.27%)	35,824,022	0.411 Gwei	0.11841 ETH	0.002985 (2.46%)	
22320073	11537248 🖸	36 secs ago	116	beaverbuild [11,139,310 (31.12%)	35,789,073	0.431 Gwei	0.01311 ETH	0.004806 (26.82%)	
22320072	11537247 🖸	48 secs ago	214	beaverbuild 🖟	18,582,746 (51.97%)	35,754,158	0.429 Gwei	0.01272 ETH	0.007978 (38.53%)	
22320071	11537246 🖸	1 min ago	74	O quasarbuilder.eth	4,560,917 (12.74%)	35,789,107	0.473 Gwei	0.0025 ETH	0.002159 (46.31%)	
22320070	11537245 🖸	1 min ago	198	Titan Builder (18,624,070 (52.09%)	35,754,192	0.47 Gwei	0.02157 ETH	0.008772 (28.91%)	
22320069	11537244	1 min ago	98	🗘 quasarbuilder.eth 🕒	7,673,629 (21.48%)	35,719,311	0.507 Gwei	0.00724 ETH	0.003892 (34.93%)	
2320068	11537243 🖸	1 min ago	134	Titan Builder 🚇	15,544,269 (43.56%)	35,684,464	0.515 Gwei	0.01089 ETH	0.008012 (42.38%)	

The Ethereum system

One block every 12 seconds (~150 Tx per block)

Block proposer receives Tx fees for block (+tips)

™ Most recent epochs					& Most recent blocks					View more
Epoch	Time	Final	Eligible (ETH)	Voted	Epoch	Slot	Block	Status	Time	Proposer
277,716	4 mins ago	No	31,554,170	Calculating	277,716	8,886,932	19,684,318	Proposed	36 secs ago	§ 83040
277,715	10 mins ago	No	31,553,914	30,332,095 (96.13%)	277,716	8,886,931	19,684,317	Proposed	48 secs ago	1 108539
277,714	17 mins ago	No	31,553,658	30,462,868 (96.54%)	277,716	8,886,930	19,684,316	Proposed	60 secs ago	† 779402
277,713	23 mins ago	Yes	31,553,402	31,434,609 (99.62%)	277,716	8,886,929	19,684,315	Proposed	1 min ago	∳ 689930
277,712	30 mins ago	Yes	31,553,146	31,416,561 (99.57%)	277,716	8,886,928	19,684,314	Proposed	1 min ago	i 314514
277,711	36 mins ago	Yes	31,552,890	31,368,498 (99.42%)	277,716	8,886,927	19,684,313	Proposed	1 min ago	342876
277,710	42 mins ago	Yes	31,553,114	31,366,034 (99.41%)	277,716	8,886,926	19,684,312	Proposed	1 min ago	† 760102
277,709	49 mins ago	Yes	31,552,858	31,349,780 (99.36%)	277,716	8,886,925	19,684,311	Proposed	1 min ago	327141
277,708	55 mins ago	Yes	31,552,602	31,374,356 (99.44%)	277,716	8,886,924	19,684,310	Proposed	2 mins ago	4 63824
277,707	1 hr 2 mins ago	Yes	31,552,730	31,375,574 (99.44%)	277,716	8,886,923	19,684,309	Proposed	2 mins ago	• 565635
277,706	1 hr 8 mins ago	Yes	31,552,954	30,005,878 (95.1%)	277,716	8,886,922	19,684,308	Proposed	2 mins ago	651628
277,705	1 hr 14 mins ago	Yes	31,553,178	31,346,519 (99.35%)	277,716	8,886,921	19,684,307	Proposed	2 mins ago	∳ 665055

Ethereum is Proof-of-Stake (POS)

In a Proof-of-Stake protocol, nodes lock up (i.e., stake) their coins in the protocol to become eligible to participate in consensus.

The more coins staked by a node...

- Higher the probability that the node is elected as a leader.
- Larger the weight of that node's actions.

If a node is caught doing an adversarial action (e.g., sending two values), it can be punished by burning its locked coins (stake)!

This is called *slashing*.

Thus, in a Proof-of-Stake protocol, nodes can be held *accountable* for their actions (unlike in Bitcoin, where nodes do not lock up coins).

A bit about the Beacon chain (Eth2 consensus layer)

To become a validator: stake (lock up) at least 32 ETH

Validators:

- sign blocks to express correctness (finalized once enough sigs)
- occasionally act as block proposer (chosen at random)
- correct behavior ⇒ get <u>new ETH</u> every epoch (32 blocks) small reward for attesting, large reward for proposing
- incorrect behavior ⇒ get <u>slashed</u> (lose ETH)
 cannot distinguish incorrect from malicious so must punish

Blocks are proposed for slots

What happens within a slot?

Incentivized to behave correctly

Validator locks up 32 ETH.

Annual validator income (an example):

• Issuance: 1.0 ETH

• Tx fees: 0.4 ETH

• MEV: 0.4 ETH

• Total: 1.8 ETH (5.6% return on 32 ETH staked)

In practice: staking provider (e.g., Ankr or LIOD) takes a cut

How does slashing work?

- Slashed for breaking protocol rules
 - Double sign
 - Surround vote
- Penalty:
 - Exited from the beacon chain + lose % of staked ETH
 - When many validators are slashed: you lose more
- Incentive for slashing:
 - Receive rewards for reporting evidence of slashable offences.

Does anybody get slashed?

What security do get from this?

Consensus in the Internet Setting

- Sybil resistance
- Dynamic availability
 - (Liveness under changing part.)

Block rewards (carrot)

➤ to incentivize participation!

- Consensus in the Internet Setting
 - Sybil resistance
 - Dynamic availability
- Block rewards (carrot)
- Finality and accountable safety
- Slashing (stick)
 - to punish protocol violation!

Accountable Safety

Accountability implies Finality

Accountability implies Finality:

Accountable safety (with resilience $\frac{n}{3}$) implies finality (with resilience $\frac{n}{3}$).

(Accountable safety:) if the protocol can punish at least $\frac{n}{3}$ adv. nodes after a safety violation (and is safe when there are less than $\frac{n}{3}$ adv. nodes),

Then **(Finality:)** it must be safe when there are less than $\frac{n}{3}$ adv. nodes even under <u>asynchrony</u>.