High Dimensional Data Analysis Individual Assignment: S2, 2024

Department of Econometrics and Business Statistics, Monash University

Due Date: 11th October 2024 at 4:30PM

Questions for ETF3500 and ETF5500 students

- 1. Consider the $n \times 3$ data matrix **Y** The data matrix stores n observations of the 3 dimensional vector $\mathbf{y} = (y_1, y_2, y_3)$. The data matrix has been demeaned. Use this information to answer the following questions. (5 marks).
- **S** denote the sample covariance matrix of **Y**. State the sample covariance matrix of **Y**. Be sure to clearly define any quantities needed to state **S**, as well as the dimension of **S**.
- What is the dimension of an arbitrary eigenvector associated with **S**?
- Let $X = \mathbf{Y}\beta$, where β is a (3×1) vector. What is the dimension of the sample covariance matrix of X? State the sample covariance matrix of X in terms of \mathbf{S} .
- 2. Let \mathbf{w} be the eigenvector of \mathbf{S} corresponding to the largest eigenvalue. In addition, let \mathbf{v} be any arbitrary column vector, whose dimension is the same as that of \mathbf{w} . Discuss whether the following matrix operations are conformable. If the operation is conformable, state the dimension of the product. (5 marks)
- w'Y
- ww'
- $\mathbf{w}\mathbf{v}'$
- S'Y
- $\mathbf{Y}\mathbf{w} + \mathbf{v}'$
- 3. Let $\mathbf{X} = \mathbf{Y}\mathbf{C}'$, where

$$\mathbf{C} = \left[\begin{array}{c} \mathbf{w}' \\ \mathbf{u}' \end{array} \right],$$

 ${\bf w}$ is defined in Question 2, and ${\bf u}$ is the eigenvector of ${\bf S}$ corresponding to the second largest eigenvalue. What does the matrix ${\bf X}$ contain? Derive the expression for the sample covariance of ${\bf X}$, in terms of ${\bf S}$. (5 marks)

4. What does it mean for \mathbf{w} and \mathbf{u} to be orthogonal? Prove that the sample covariance matrix of \mathbf{X} is diagonal when \mathbf{w} and \mathbf{u} are orthogonal.

(5 marks)

[Hint: Consider expressing the covariance matrix of **X** as a function of the eigenvalues, λ_w and λ_u , associated with the eigenvectors **w** and **u**, respectively.]

Questions for ETF5500 students only

5. Let us construct a **new variable A**, whose $(n \times 1)$ vector of observations is constructed by $\mathbf{a} = \frac{1}{\sqrt{\lambda_w}} \mathbf{x}_1$ and a **new variable B**, whose $(n \times 1)$ vector of observations is constructed by $\mathbf{b} = \frac{1}{\sqrt{\lambda_w}} \mathbf{x}_2$. The terms \mathbf{x}_i is the i^{th} column of the matrix \mathbf{X} , defined in Question 3; and the terms λ_w and λ_u are defined in Question 4. Let us collect these two new variables into a new $(n \times 2)$ data matrix $\mathbf{Z} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \end{bmatrix}$. Prove that the sample covariance matrix of \mathbf{Z} is an identity matrix. You MUST use the result from Question 4 in your derivation.

(5 marks)

[Hint: Write \mathbf{Z} in terms of \mathbf{X} , and derive its covariance matrix.]