

Approximation Algorithms for the Maximum Leaf Spanning Tree Problem on Acyclic Digraphs

Nadine Schwartges · Joachim Spoerhase · Alexander Wolff

WAOA '11

Lehrstuhl für Informatik I

Universität Würzburg, Germany

Problem Definition

Given a **digraph** *G* with **root** *r*, find an *r*-rooted **spanning tree** with the **maximum number of leaves**.

Problem Definition

Given a **digraph** *G* with **root** *r*, find an *r*-rooted **spanning tree** with the **maximum number of leaves**.

Undirected graphs

classical NP-hard problem listed by Garey & Johnson ['74]

Undirected graphs

- classical NP-hard problem listed by Garey & Johnson ['74]
- 3-approximation by local search [Lu and Ravi '90] $\rightsquigarrow O(n^5)$ running time

Undirected graphs

- classical NP-hard problem listed by Garey & Johnson ['74]
- 3-approximation by local search [Lu and Ravi '90] $\rightsquigarrow O(n^5)$ running time
- 3-approximation in (almost) linear time by expansion-based approach
 [Lu and Ravi '98]

Undirected graphs

- classical NP-hard problem listed by Garey & Johnson ['74]
- 3-approximation by local search [Lu and Ravi '90] $\rightsquigarrow O(n^5)$ running time
- 3-approximation in (almost) linear time by expansion-based approach
 [Lu and Ravi '98]
- Iinear-time 2-approximation by expansion [Solis-Oba '98]

Undirected graphs

- classical NP-hard problem listed by Garey & Johnson ['74]
- 3-approximation by local search [Lu and Ravi '90] $\rightsquigarrow O(n^5)$ running time
- 3-approximation in (almost) linear time by expansion-based approach
 [Lu and Ravi '98]
- Iinear-time 2-approximation by expansion [Solis-Oba '98]

Digraphs

- \circ $\sqrt{\mathsf{OPT}}$ -approximation [Drescher and Vetta, '10]
- 92-approximation [Daligault and Thomassé, 10]

Undirected graphs

- classical NP-hard problem listed by Garey & Johnson ['74]
- 3-approximation by local search [Lu and Ravi '90] $\rightsquigarrow O(n^5)$ running time
- 3-approximation in (almost) linear time by expansion-based approach
 [Lu and Ravi '98]
- Iinear-time 2-approximation by expansion [Solis-Oba '98]

Digraphs

- \circ $\sqrt{\mathsf{OPT}}$ -approximation [Drescher and Vetta, '10]
- 92-approximation [Daligault and Thomassé, 10]
- What about special classes of digraphs?

Undirected graphs

- classical NP-hard problem listed by Garey & Johnson ['74]
- 3-approximation by local search [Lu and Ravi '90] $\rightsquigarrow O(n^5)$ running time
- 3-approximation in (almost) linear time by expansion-based approach
 [Lu and Ravi '98]
- Iinear-time 2-approximation by expansion [Solis-Oba '98]

Digraphs

- \circ $\sqrt{\mathsf{OPT}}$ -approximation [Drescher and Vetta, '10]
- 92-approximation [Daligault and Thomassé, 10]

Our Results for DAGs

- MaxSNP-hard, i.e., no PTAS
- linear-time 4-approximation algorithm
- Iinear-time 2-approximation algorithm (expansion-based)

Our Results for DAGs

- MaxSNP-hard, i.e., no PTAS
- linear-time 4-approximation algorithm
- linear-time 2-approximation algorithm (expansion-based)

```
Input: acyclic digraph G with root r
Output: spanning tree T
mark r
F \leftarrow \operatorname{expand}(G)
T \leftarrow \operatorname{connect}(G, F)
return T
```



```
Input: acyclic digraph G with root r
Output: spanning tree T
mark r
F \leftarrow \operatorname{expand}(G)
T \leftarrow \operatorname{connect}(G, F)
return T
```



```
Input: acyclic digraph G with root r
Output: spanning tree T
mark r
F \leftarrow \operatorname{expand}(G)
T \leftarrow \operatorname{connect}(G, F)
return T
```


 $F \leftarrow \emptyset$ **foreach** node v in G **do**

$$F \leftarrow \emptyset$$
foreach node v in G **do**

| **if** $v \notin F$ **then**
| $\bot F \leftarrow F + v$

$$F \leftarrow \emptyset$$
foreach node v in G **do**

| **if** $v \notin F$ **then**
| $F \leftarrow F + v$
| $U_v \leftarrow$ unmarked children of v


```
F \leftarrow \emptyset
 foreach node v in G do
      if v \notin F then
       F \leftarrow F + v
      U_v \leftarrow unmarked children of v
      if |U_v| \ge 2 then
          F \leftarrow F + U_v
```


$$F \leftarrow \emptyset$$

foreach node v in G do

| if $v \notin F$ then
| $\bot F \leftarrow F + v$
| $U_v \leftarrow$ unmarked children of v
| if $|U_v| \ge 2$ then
| $F \leftarrow F + U_v$
| foreach $u \in U_v$ do
| $F \leftarrow F + (v, u)$

$$F \leftarrow \emptyset$$

foreach node v in G do

| if $v \notin F$ then
| $\bot F \leftarrow F + v$
| $U_v \leftarrow$ unmarked children of v
| if $|U_v| \geq 2$ then
| $F \leftarrow F + U_v$
| foreach $u \in U_v$ do
| $F \leftarrow F + (v, u)$

every $u \in U_v$ has exactly one incoming edge in F

$$F \leftarrow \emptyset$$
foreach node v in G do

| if $v \notin F$ then
| $L F \leftarrow F + v$
| $U_v \leftarrow$ unmarked children of v
| if $|U_v| \ge 2$ then
| $F \leftarrow F + U_v$
| foreach $u \in U_v$ do
| $F \leftarrow F + (v, u)$
| mark u

$$F \leftarrow \emptyset$$
foreach node v in G do

| if $v \notin F$ then
| $L F \leftarrow F + v$
| $U_v \leftarrow$ unmarked children of v
| if $|U_v| \ge 2$ then
| $F \leftarrow F + U_v$
| foreach $u \in U_v$ do
| $F \leftarrow F + (v, u)$
| mark u

$$F \leftarrow \emptyset$$
foreach node v in G do

| if $v \notin F$ then
| $L F \leftarrow F + v$
| $U_v \leftarrow$ unmarked children of v
| if $|U_v| \ge 2$ then
| $F \leftarrow F + U_v$
| foreach $u \in U_v$ do
| $F \leftarrow F + (v, u)$
| mark u

$$F \leftarrow \emptyset$$
foreach node v in G do

| if $v \notin F$ then
| $\bot F \leftarrow F + v$
| $U_v \leftarrow$ unmarked children of v
| if $|U_v| \ge 2$ then
| $F \leftarrow F + U_v$
| foreach $u \in U_v$ do
| $F \leftarrow F + (v, u)$
| mark u


```
Input: acyclic digraph G with root r
Output: spanning tree T
mark r
F \leftarrow \operatorname{expand}(G)
T \leftarrow \operatorname{connect}(G, F)
return T
```


foreach unmarked node v do

foreach unmarked node v do choose arbitrary incoming edge e of v in G

foreach unmarked node v **do**choose arbitrary incoming
edge e of v in G $F \leftarrow F + e$

foreach unmarked node v do choose arbitrary incoming edge e of v in G $F \leftarrow F + e$ $mark \ v$

foreach unmarked node v do choose arbitrary incoming edge e of v in G $F \leftarrow F + e$ $mark \ v$

foreach unmarked node v do choose arbitrary incoming edge e of v in G $F \leftarrow F + e$ $mark \ v$

Lemma. Given an acyclic digraph G, the algorithm computes a spanning tree of G.

Lemma. Given an acyclic digraph G, the algorithm computes a spanning tree of G.

- ▶ If a node is marked,
 - it has exactly one incoming edge in F (except r)

Lemma. Given an acyclic digraph G, the algorithm computes a spanning tree of G.

- ▶ If a node is marked,
 - it has exactly one incoming edge in F (except r) and
 - no further incoming edges are added.

Lemma. Given an acyclic digraph G, the algorithm computes a spanning tree of G.

- ▶ If a node is marked,
 - it has exactly one incoming edge in F (except r) and
 - no further incoming edges are added.
- ► At the end of the algorithm every node is marked.

Lemma. Given an acyclic digraph G, the algorithm computes a spanning tree of G.

- ▶ If a node is marked,
 - it has exactly one incoming edge in F (except r) and
 - no further incoming edges are added.
- ► At the end of the algorithm every node is marked.
- ⇒ spanning tree

Observation. Procedure expand yields forest *F*.

Observation. Procedure expand yields forest F.

Def. Let

$$\mathbf{F} = F - \{\text{isolated nodes}\} \\
= \{T_0, \dots, T_k\},$$

Observation. Procedure expand yields forest *F*.

Def. Let

- $\mathbf{F} = F \{\text{isolated nodes}\} \\
 = \{T_0, \dots, T_k\},$
- $ightharpoonup r_i \leftarrow \text{root of } T_i$

Observation. Procedure expand yields forest *F*.

Def. Let

- $\mathbf{F} = F \{\text{isolated nodes}\} \\
 = \{T_0, \dots, T_k\},$
- ▶ r_i ← root of T_i and
- ▶ \bar{L} ← set of leaves in \bar{F} .

Lemma 1. For i = 0, ..., k, any subtree $T_i \in \bar{F}$ has at least $(|V(T_i)| + 1)/2$ leaves.

Lemma 1. For i = 0, ..., k, any subtree $T_i \in \overline{F}$ has at least $(|V(T_i)| + 1)/2$ leaves.

Lemma 1. For i = 0, ..., k, any subtree $T_i \in \overline{F}$ has at least $(|V(T_i)| + 1)/2$ leaves.

Lemma 1. For i = 0, ..., k, any subtree $T_i \in \overline{F}$ has at least $(|V(T_i)| + 1)/2$ leaves.

Lemma 1. For i = 0, ..., k, any subtree $T_i \in \overline{F}$ has at least $(|V(T_i)| + 1)/2$ leaves.

Lemma 1. For i = 0, ..., k, any subtree $T_i \in \overline{F}$ has at least $(|V(T_i)| + 1)/2$ leaves.

Expand F in appropriate order: top-down.

Every expansion

- creates at least two leaves and
- ► destroys exactly one leaf.

Lemma 1. For i = 0, ..., k, any subtree $T_i \in \overline{F}$ has at least $(|V(T_i)| + 1)/2$ leaves.

Expand F in appropriate order: top-down.

Every expansion

- creates at least two leaves and
- ▶ destroys exactly one leaf.

 \Rightarrow at least $|V(T_i)|/2$ leaves for each $T_i \in \bar{F}$

Lemma 2. Procedure connect creates a tree with at least $|\bar{L}| - k$ leaves.

Lemma 2. Procedure connect creates a tree with at least $|\bar{L}| - k$ leaves.

Lemma 2. Procedure connect creates a tree with at least $|\bar{L}| - k$ leaves.

Lemma 3. $OPT \le |V(\bar{F})| - k$.

Lemma 3. $OPT \le |V(\bar{F})| - k$.

Let T^* be an optimum spanning tree.

Lemma 3. $OPT \le |V(\bar{F})| - k$.

Let T^* be an optimum spanning tree.

For

- \triangleright each root r_i and
- ▶ each leaf ℓ of T^* outside of $V(\bar{F})$ identify a unique internal node in T^* .

Lemma 3. $OPT \le |V(\bar{F})| - k$.

Let T^* be an optimum spanning tree.

For

- \triangleright each root r_i and
- ▶ each leaf ℓ of T^* outside of V(F) identify a unique internal node in T^* .

 \Rightarrow exclusion of k nodes of $V(\bar{F})$

Lemma 3. $OPT \le |V(\bar{F})| - k$.

Let T^* be an optimum spanning tree.

For

- \triangleright each root r_i and
- ▶ each leaf ℓ of T^* outside of $V(\bar{F})$ identify a unique internal node in T^* .

show the uniqueness

 \Rightarrow exclusion of k nodes of $V(\bar{F})$

Take the first node in $V(\bar{F})$ on the way from r_i or ℓ to r.

Claim: This node is unique.

Take the first node in $V(\bar{F})$ on the way from r_i or ℓ to r.

Claim: This node is unique.

Assume to the contrary that u is the unique node of v and w.

case 1: $u, v, w \in \text{path}$ case 2:

case 2: $u, v, w \notin path$

Take the first node in $V(\bar{F})$ on the way from r_i or ℓ to r.

Claim: This node is unique.

Assume to the contrary that u is the unique node of v and w. case 1: u, v, $w \in \text{path}$ case 2: u, v, $w \notin \text{path}$

Take the first node in $V(\bar{F})$ on the way from r_i or ℓ to r.

Claim: This node is unique.

Assume to the contrary that u is the unique node of v and w. case 1: u, v, $w \in \text{path}$ case 2: u, v, $w \notin \text{path}$

Take the first node in $V(\bar{F})$ on the way from r_i or ℓ to r.

Claim: This node is unique.

Assume to the contrary that u is the unique node of v and w.

case 1: $u, v, w \in path$

case 2: $u, v, w \notin path$

Take the first node in $V(\bar{F})$ on the way from r_i or ℓ to r.

Claim: This node is unique.

Assume to the contrary that u is the unique node of v and w.

case 1: $u, v, w \in path$

case 2: $u, v, w \notin path$

procedure expand

Putting things together...

Lemma 1. For i = 0, ..., k, any subtree $T_i \in \overline{F}$ has at least $(|V(T_i)| + 1)/2$ leaves.

Lemma 2. Procedure connect creates a tree with at least $|\bar{L}| - k$ leaves.

Lemma 3. $OPT \leq |V(\bar{F})| - k$.

Putting things together...

Lemma 1. For i = 0, ..., k, any subtree $T_i \in \overline{F}$ has at least $(|V(T_i)| + 1)/2$ leaves.

Lemma 2. Procedure connect creates a tree with at least $|\bar{L}| - k$ leaves.

$$\Rightarrow \geq |\bar{L}| - k \geq \sum_{i=0}^{k} \frac{|V(T_i)| + 1}{2} - k = \frac{|V(\bar{F})| - k}{2}$$

Lemma 3. $OPT \le |V(\bar{F})| - k$.

Putting things together...

Lemma 1. For i = 0, ..., k, any subtree $T_i \in \overline{F}$ has at least $(|V(T_i)| + 1)/2$ leaves.

Lemma 2. Procedure connect creates a tree with at least $|\bar{L}| - k$ leaves.

$$\Rightarrow \geq |\bar{L}| - k \geq \sum_{i=0}^{k} \frac{|V(T_i)| + 1}{2} - k = \frac{|V(\bar{F})| - k}{2}$$

Lemma 3. $OPT \leq |V(\bar{F})| - k$.

 \Rightarrow ratio 2

Summary.

MaxSNP-hardness for DAGs

Summary.

- MaxSNP-hardness for DAGs
- linear-time 4- and 2-approximation algorithms for DAGs improving upon 92-approximation for general digraphs

Summary.

- MaxSNP-hardness for DAGs
- linear-time 4- and 2-approximation algorithms for DAGs improving upon 92-approximation for general digraphs

Open questions

expansion-approach extendable to general digraphs?

Summary.

- MaxSNP-hardness for DAGs
- linear-time 4- and 2-approximation algorithms for DAGs improving upon 92-approximation for general digraphs

Open questions

- expansion-approach extendable to general digraphs?
- better results (DAGs or general) by multi-stage expansion?

Summary.

- MaxSNP-hardness for DAGs
- linear-time 4- and 2-approximation algorithms for DAGs improving upon 92-approximation for general digraphs

Open questions

- expansion-approach extendable to general digraphs?
- better results (DAGs or general) by multi-stage expansion?

Thank you!