Sayısal İşaret İşleme Yaz Okulu Final Sınavı

1. x(n) bir giriş dizisi ve $h_i(n)$ ise (i = 1, 2, 3, 4 için) DZD bir sistemin impuls cevabı olmak üzere, şekil 1 deki sistemi göz önüne alalım.

Giriş-çıkış ilişkisini etkilemeksizin, şekil 1 deki sistem aşağıdaki gibi ifade edilebildiğine göre h(n) sistemini, $h_1(n)$, $h_2(n)$, $h_3(n)$ ve $h_4(n)$ terimleri cinsinden ifade ediniz.

$$x(n)$$
 $h(n)$
 $y(n)$

2. İlk koşulları sıfır olan ve aşağıdaki fark denklemi ile belirlenen DZD sistemin, x(n) = u(n) birim basamak işaretine olan cevabını bulunuz.

$$v(n) - 8v(n-1) + 16v(n-2) = 2x(n) - 5x(n-1) + 6x(n-2)$$

- **3.a.** $f(t) \leftrightarrow F(\omega)$ ise, $f[3-(\frac{t}{2})]$ in Fourier dönüşümünü dönüşüm özelliklerini kullanarak belirleyiniz.
- **3.b.** f(t) işaretinin Fourier dönüşümü $F(\omega) = \frac{1}{\omega^2} \cdot e^{3\omega}$ olarak verildiğine göre, dönüşüm özelliklerini kullanarak $f(t-3).e^{j2t}$ ifadesinin Fourier dönüşümünü bulunuz.
- **4.** $f_c = 500$ Hz olmak üzere, $x(t) = 2\sin \omega_c t$ analog işaretinin $\omega_0 = 2500\pi$ rad/sn aralıklarla örneklenmesi durumunda, x(nT) nin frekans spektrumunu f veya ω domeninde grafik çizerek belirleyiniz. İşaretin tekrar bozulmadan elde edilebilmesi için daha sonra ne yapılması gerektiğini belirtiniz. Çizdiğiniz grafiğin absis ve ordinatının isimlerini ve işaretin genliğini mutlaka belirtiniz.

Süre 60 dakikadır. Başarılar.