Recap

- -> We defined a knot and a knot diagram.
- -> we defined three Reidemeister moves:

- Chirality (isknot same as neverse?)

Today:
- bridge number

- Alexander polynomial

we need to get a tricoloring on new diegram without changing colors of outbound" Strands.

Is there a knot with crossing number two? 12nd

hold

No! All are unless.

-> (rossing numbe

Theorem Trefoil is authory
not isotopic to the unknot, and cr(trefoil)=3.

Pf. It's tricolorable, and the unknot isn't.

(and tricolorability is isotopy invariant)

Cr(K) <3 because we can draw it with 3 crossings.

C((K) #2 because any knot with crossing number 2 is unknot (but trefoil is not unknot)

(r(K) \$1,0 for same reason.

How to prove crossing number of fig 8 is 4?

(Prove anything with 3 is trefoil or unlinot) and prove figure eight is not unlinot)

Crossing humber too hard to compute! Useless invarient. Tricalorability not precise enough.

We need more invariants!

(these have same defect as crossing II; hard to compute)

Bridge number

a bridge in a knot diegram is an arc that makes I a more overcrossings

the bridge number of a knot is the minimum number of bridges in a diagram for the knot.

Trefoil?

it's actually

at most 3...

Next the: Come up with invariants that aren't changed by Reidemobiler moves, since much easier to calculate Mostly assocrate a polynomial to a know Alexander poly

("Spen relations")

HOMFLY poly