Számítógép-hálózatok

5. Adatkapcsolati réteg II. Közeghozzáférési alréteg

Tartalom

- Dinamikus csatornakiosztás
 - ALOHA
 - -CSMA
 - Ütközésmentes protokollok
 - Vezeték nélküli protokollok
- Példák:
 - Ethernet
 - WiFi
- Címzés az adatkapcsolati rétegben
- A hálózati kapcsolók működése

Ismétlés: réteges szerkezet

Adatkapcsolati réteg feladatai

- Keretezés
 - Hol vannak az adatelemek határai?
 - Hol kezdődik a bájt?
 - Hol kezdődik egy csomag?
- Hibakezelés
 - Hibadetekció
 - Hibajavítás
 - Szükség szerint keretek újraküldése
 - Hiba detektálása esetén
- Címzés
 - A címzett és a feladó állomás azonosítása
- Közeghozzáférés
 - Egy csatorna, több eszköz
 - Külön alréteg

A csatornakiosztás problémája

- Statikus csatornakiosztás
 - Időosztásos: TDMA
 - Frekvenciaosztásos: FDMA
 - Kódosztásos: CDMA
 - Minden felhasználó fix sávszélességet kap
 - Jól működik, ha a felhasználók forgalma kb. állandó
 - Pl. trönkvonalak
 - Internetforgalom nem állandó
 - Változó intenzitás
 - Löketek: akár 1:1000 arányú ingadozás
 - A csatornák többsége az idő többségében tétlen → pazarlás
- Jobban működik a dinamikus csatornakiosztás

Dinamikus csatornakiosztás

- Feltételezések:
 - Egyetlen közös csatorna van, ezen kell osztozni
 - A felhasználók forgalma egymástól független
 - Az esetleges ütközések megfigyelhetők
- Technikai lehetőségek:
 - Folytonos vagy réselt
 - Vivőérzékelés van/nincs

Többszörös hozzáférésű protokollok

- ALOHA
- Vivőjel-érzékeléses többszörös hozzáférésű protokollok
- Ütközésmentes protokollok
- Vezeték nélküli LAN protokollok

ALOHA (1)

Protokoll:

- Ha van mit adni, akkor adj!
- Üzenet sikeres vételét nyugtázzuk
- Ha nem jön nyugta, akkor később újra megpróbáljuk
 - Véletlen várakozási idő múlva
 - (különben az egyszer ütközött keretek újra meg újra ütköznének)

• Egyszerű, de...

- Mi van, ha több állomás is egyszerre akar adni?
- Ütközés... Az üzenetek elvesznek.
- A javításra szolgál az újraküldés

ALOHA (2)

- Kis forgalomra jó
- Nagy forgalom esetén sok ütközés
 - ... és sok újraküldés, ami újabb ütközések forrása lehet
- Optimális eset

ALOHA (3)

- Időszeletelt v. réselt ALOHA (Slotted ALOHA)
- Réselés:
 - A csomagok csak meghatározott pillanatokban kezdődhetnek
- Teljesítmény javul:
 - A sávszélesség 36%-a használható ki

Vivőjel-érzékeléses többszörös hozzáférésű protokollok

- Perzisztens és nem-perzisztens CSMA
 - 1-perzisztens CSMA (Carrier Sense Multiple Access)
 - Nemperzisztens CSMA
 - p-perzisztens CSMA
- CSMA ütközésdetektálással
 - CSMA/CD (CSMA with Collision Detection)

CSMA (1)

- ALOHA továbbfejlesztése
 - Vivőjel-figyelés
- 1-perzisztens CSMA
 - Adás előtt belehallgatunk a csatornába
 - Ha valaki ad, várunk.
 - Ha a csatorna szabaddá válik, akkor adni kezdünk
 - Gond: mi van, ha többen is várnak adásra (ütközés)

CSMA(2)

- p-perzisztens CSMA
 - Időszeletelt
 - -ha szabad a csatorna
 - p valószínűséggel ad
 - (1-p) valószínűséggel várakozik egy időszeletnyi időt, majd újra próbálkozik
 - Ha foglalt a csatorna
 - Vár, majd újra próbálkozik

CSMA(3)

- Nem perzisztens CSMA
 - Nincs folyamatos csatornafigyelés
 - Ha szabad a csatorna
 - ad
 - Ha foglalt a csatorna
 - később (véletlen idő múlva) ismét ellenőrzi

CSMA ütközésérzékeléssel (1)

- CSMA/CD (CSMA with Collision Detection)
 - Vivőérzékelés: ha forgalom van, nem adunk
 - Ha szabad a csatorna, lehet adni
 - Adás közben figyelés: van ütközés?
 - Ha igen, akkor adás felfüggesztése,...
 - Várakozás véletlen ideig,...
 - Újra próbálkozás

CSMA ütközésérzékeléssel (2)

- Mikor lehet ütközés?
 - Ha 2 állomás egyszerre kezd
- De mennyire egyszerre?
 - Ha a csatorna késleltetése D, akkor D idő eltolással is kezdhetnek és nem érzékelik a másik vivőjét
- Mennyi idő múlva vesszük észre az ütközést?
 - Max. 2D idő múlva
 - Tehát: ha 2D ideig sikeresen adunk, akkor nincs ütközés
- Klasszikus Ethernet ezt használta

- Miért van az Ethernet csomagnak minimális mérete (64bájt)?
- Miért van az Ethernet kábel maximális hossza meghatározva?

Ütközésmentes protokollok Helyfoglalásos protokoll

- Az adatátvitel előtt az állomások megegyeznek, hogy kik és milyen sorrendben adhatnak
- Bittérkép (Bit-map) protokoll
 - Minden állomás egy biten jelzi igényét
 - Az adatokat ilyen sorrendben adják

Ütközésmentes protokollok Vezérjeles gyűrű (Token Ring)

- Pontosan egy vezérjel (token) van a hálózatban
- Akinél a token van, az adhat
- A tokent adás után továbbadják
- RPR: Resilient Packet Ring (IEEE802.17)
 - ISP-k nagyvárosi gyűrűhálózataiban használják

Vezérjeles gyűrű

Vezeték nélküli LAN protokollok (1)

- Nehézség CSMA/CD-hez képest:
 - Nem lehet az ütközést detektálni (vagy ad, vagy vesz, egyszerre nem megy)
 - Nem mindenki hall mindenkit (rádió hatótávolság)
 - Rejtett terminál problémája
 - Megvilágított terminál problémája

Rejtett terminál problémája

Vezeték nélküli LAN protokollok (2) MACA

- Multiple Access with Collision Avoidance
- Az adattovábbítás előtt egy rövid handshake
 - RTS: Request To Send (Adási engedély kérése)
 - CTS: Clear To Send (Adás engedélyezve)
- Aki hallja az RTS-t vagy CTS-t, annak az adás ideje alatt csöndben kell maradni

Kétirányú adatkapcsolatok típusai

- Fél(half)-duplex
 - Kétirányú kommunikáció
 - Egy eszköz egy időben csak az egyik irányt használhatja
 - -Pl. WiFi

- Teljes(full)-duplex
 - Kétirányú kommunikáció
 - Egy eszköz egy időben mindkét irányt használhatja
 - Pl. kapcsolt Ethernet

Példák

- Ethernet
- WiFi

A klasszikus Ethernet fizikai rétege

- 1973, Xerox PARC, Bob Metcalfe
- 10Mbit/s sebességű, half duplex
- Egy hosszú koax-kábelre voltak felfűzve a gépek
 - 1 szegmens max. 500m
 - Szegmensek között ismétlők (repeater)
 - Max. távolság: 2.5km
- Manchester kódolást használt

Klasszikus Ethernet MAC-alréteg (1) Ethernet keretformátum

- Előtag: 10101... 1011
 - Vevő szinkronizáció
- Címek: címzett, forrás
- Típus/hossz:
 - ha ≤1536 (0x0600), akkor hossz, különben típus (pl. IPv4 = 0x0800)
- Adatmező: legfeljebb 1500bájt
- Kitöltés: keret mérete min 64 bájt legyen
- Ellenőrző összeg: CRC
 - Ha rossz, keretet eldobják. Nincs újraküldés

Bájtok	8	6	6	2	0-1500	0-46	4
(a)	Előtag	Címzett	Forráscím	Típus	Adatmező	Kitöltés	Ellenőrző összeg
					- >>		
(b)	Előtag S F	Címzett	Forráscím	Hossz	Adatmező	Kitöltés	Ellenőrző összeg

Címzés az adatkapcsolati rétegben (1)

- Minden eszköznek van egy fizikai címe
 - Ez egyedi minden eszközre
 - Pl. Ethernet MAC-address: 48 bit
 - 12 darab hexadecimális számjegy. Pl.: 84:3a:4b:b5:63:c1
 - Első 6 számjegy (OUI): gyártó
 - Második 6 számjegy: egyedi a gyártó termékeiben
- Célja: azonos hálózaton belül (egymást látó eszközök) a címzett (és a feladó) azonosítása
 - Lehet unicast, multicast és broadcast cím

Címzés az adatkapcsolati rétegben (2)

Klasszikus Ethernet MAC-alréteg (2) Közeghozzáférés

1-perzisztens CSMA/CD

- Keret küldését elkezdi, amint a csatorna szabad
- Küldés alatt ellenőrzés. → Ütközés esetén megáll és véletlen ideig vár

Kettes exponenciális visszalépés (binary exponential backup)

- Első ütközés után 0 vagy 1 időszelet várakozás
- Második ütközés után 0, 1, 2, vagy 3 időszelet várakozás
- N-edik ütközés után 0 és 2^N-1 időszelet között választ várakozási időt
- 10-ik ütközés után nem nő tovább a várakozási idő (max 1023 időszelet)
- 16-ik ütközés után feladja

Ütközést biztosan érzékelni kell

- Minimum 64 bit-es kerethossz
 - 10Mb/s x 64bit = 64µs
- Ennél a körülfordulási időnek kisebbnek kell lenni
 - 50µs-ban határozták meg
 - Ebből kb. 2.5km kábelhossz adódik (ismétlőkkel együtt)

Kapcsolt Ethernet (1)

- A sorba fűzött elrendezésben nehéz a hibakeresés
- Egy kábelhiba sok állomás leszakadását okozza
- Új elrendezés:
 - Minden állomás külön kábellel csatlakozik egy központi elosztóba (hub)
 - Az elosztó köti össze a kábeleket egymással
 - Meglévő telefonkábelt lehetett használni (UTP)
- Probléma:
 - minden csatlakozó állomás egyetlen közös ütközési tartományba tartozik
 - A csatorna sávszélességén (10Mb/s) osztozik mindenki
 - Itt is CSMA/CD kell

port

Kapcsolt Ethernet (2)

- Kapcsoló (switch):
 - Csak azokat a portokat kapcsolja össze, amelyek egymással forgalmaznak (full duplex módon)
 - Párhuzamosan több független forgalom is zajlódhat egymás zavarása nélkül
 - Nincs ütközés!
 - Mindenkinek rendelkezésre áll a teljes sávszélesség

Kapcsolt Ethernet (3)

- Mi történik, ha több forrás is egy célnak akar adni?
 - Ütközés lenne, de…
 - ... a switch pufferel: az adatot egy ideig tárolja, majd küldi, amikor lehet
- Hogyan tudja, melyik porton melyik állomás van?
 - Megtanulja (Isd. később)

Gyors Ethernet

- 100Mb/s sebesség
- Megoldások:

Név	Kábel	Max. szegmens	Kódolás
100Base-T4	UTP cat-3, 4 pár	100m	8B/6T (T: ternary)
100Base-TX	UTP cat-5, 2 pár	100m	4B/5B
100Base-FX	Optikai kábel	2000m	Inverz NRZ és 4B/5B

- Késleltetés < kerethossz kényszert be kell tartani, ha ütközés lehet
 - 100Base-T4 és 100Base-TX esetén a szegmenshosszt csökkentették
 - 100Base-FX esetén switch használata kötelező

Gigabites Ethernet

Név	Vezeték	Max. szegmens	Előnyők
1000Base-SX	Fényvezető szál	550 m	Többmódusú fényvezető szál (50 vagy 62,5 µm átmérő)
1000Base-LX	Fényvezető szál	5000 m	Egy- (10 μm átmérő) vagy többmódusú (50 vagy 62,5 μm átmérő) fényvezető szál
1000Base-CX	2 pár STP	25 m	Árnyékolt sodrott érpár
1000Base-T	4 pár UTP	100 m	Szabványos 5-ös kategóriájú UTP

- 1Gb/s sebesség
- Duplex mód
 - Kapcsoló használata esetén
 - Nem kell CDMA/CD, így a kábelhosszt csak a jelerősség határozza meg
- Fél-duplex mód
 - Elosztó használata esetén
 - CDMA/CD kell,
 - -így a kábelhosszt csökkenteni kell (25m)...
 - -... vagy vivőjel-kiterjesztés: a keret hosszát a hardver megnöveli, a másik oldalon pedig az extra biteket leszedi → elég hosszú lesz keret
- Kódolás: 8B/10B
- Forgalomszabályozás:
 - Ha az adó túl gyorsan ad, a vevő PAUSE (SZÜNET) kerettel kérhet időt
- Óriáskeret (Jumbo Frame)
 - 1500B-nál nagyobb keretek használata (max 9kB)
 - nem szabványos, de a legtöbb gyártó támogatja

10 Gigabites Ethernet

- 10Gb/s sebesség
- Alkalmazás:
 - Adatközpontokban
 - Nagy sávszélességű trönkvonalakon
- Nincs CSMA/CD

- Kódolás: 64B/66B

Név	Vezeték	Max. szegmens	Előnyök
10GBase-SR	Fényvezető szál	300 m-ig	Többmódusú fényvezető szál (0,85 µm hullámhossz)
10GBase-LR	Fényvezető szál	10 km	Egymódusú fényvezető szál (1,3 µm hullámhossz)
10GBase-ER	Fényvezető szál	40 km	Egymódusú fényvezető szál (1,5 µm hullámhossz)
10GBase-CX4	4 pár twinax	15 m	Twinaxiális rézkábel
10GBase-T	4 pár UTP	100 m	6a-s kategóriájú UTP

Twinax: mint koax, de 2 vezetéket tartalmaz

16 feszültségszintet használ

Vezeték nélküli LAN-ok (WiFi)

- 802.11 architektúra
- 802.11 fizikai réteg
- 802.11 MAC alréteg protokoll
- 802.11 keretszerkezet

A 802.11 fizikai felépítése (1)

Két működési mód

- Infrastruktúra mód
 - Kell egy hozzáférési pont (Access Point- AP)
 - Minden kliensgép az AP-hez csatlakozik
 - Az AP csatlakozik a másik hálózathoz
 - Általában ezt használjuk

Ad-hoc hálózat

- AP nélkül működik
- Közvetlenül tudnak egymásnak kereteket küldeni
- Ritkán használt

A 802.11 fizikai felépítése (2)

- A 802.11 protokollok néhány változata
- Általában OFDM és BPSK, QPSK, QAM-xx moduláció

A 802.11 MAC protokoll (1)

- Rádió fél-duplex →
 - CSMA/CD nem működik vezeték nélküli hálózatokban
- CSMA/CA (CSMA with Collision Avoidance) Ütközés elkerülés
- Szabályok:
 - Vivőérzékelés, szabad csatornára vár
 - Ütközés esetén kettes exponenciális visszalépés
 - Adás előtt véletlenszerű ideig vár
 - Várakozás alatt is ellenőrzi a csatornát
 - Ha foglalt, akkor a várakozást felfüggeszti (óra leáll)
 - Ha szabad, a várakozást folytatja (óra ketyeg)
 - A várakozási idő végén kezd adni
 - Vevő nyugtát küld (az esetleges ütközést ebből látjuk)

A 802.11 MAC protokoll (2)

A 802.11 MAC protokoll (3)

- Továbbra is gond: rejtett terminál problémája
 - Ezen segít a virtuális vivőérzékelés (opcionális)
 - Hasonló a MACA-ban alkalmazott RTS/CTS megoldáshoz
 - NAV (Network Allocation Vector): hálózatkiosztási vektor
 - Az üzenet tartalmazza az üzenet időtartamát
 - Aki hallja, a saját NAV-ját frissíti ezzel az adattal és csöndben marad erre az időre
- Egyéb stratégiák:
 - A hibaarány függvényében változtatják az átviteli sebességet (sok hiba → csökkentett sebesség)
 - Keretek szabdalása kisebb darabokra (kis keret → kisebb a hiba esélye)
 - AP képes a kereteket pufferelni: az állomások két adás-vétel között alhatnak (energiatakarékosság)

A 802.11 MAC protokoll (4)

- Versengést tovább segíti a keretek közötti várakozási időintervallumok
- Különböző típusú kereteknek különböző hosszúságú várakozási ideje van
 - SIFS: Rövid vezérlő üzenetek (RTS, CTS)
 - AIFS1: nagy prioritású keretek
 - DIFS: normál prioritás
 - AIFS2: alacsony prioritású keretek
 - EIFS: hibás keretek javítása

A 802.11 MAC protokoll (5) Keret felépítése

A 802.11 MAC protokoll (6) Szolgáltatások

- Kapcsolódás
 - Kezdeti kapcsolódás
 - Újrakapcsolódás (kiterjedt hálózatban váltás AP-k között)
 - Szétkapcsolás
- Adatkézbesítés
 - Nincs garancia (Ethernetnél sincs!)
- Biztonsági szolgáltatások
 - Hitelesítés (pl. WPA2 WiFi protected Access 2)
- Prioritások, energiagazdálkodás
 - Pl. beszédforgalom előny élvezhessen
 - Adási teljesítmény szabályzás

Kapcsolás az adatkapcsolati rétegben

- Hidak, kapcsolók
- Öntanuló hidak
- Feszítőfás hidak
- Ismétlők, elosztók, hidak, kapcsolók, útválasztók és átjárók

Hidak, kapcsolók (1)

- Elosztó (hub):
 - a kapcsolódó állomások egyetlen ütközési tartományt alkotnak
 - Fél-duplex
- Híd, kapcsoló (bridge, switch):
 - Minden porton külön állomás (nincs ütközés, full-duplex)
 - A kapcsoló az üzeneteket a megfelelő portra továbbítja

- (a) Egy híd, amely két többpontos LAN-t kapcsol össze.
- (b) Hidak (és egy elosztó), amely hét kétpontos állomást kapcsol össze

Hidak, kapcsolók (2)

- De hogyan tudja a híd, hogy melyik portján melyik eszköz van?
- Táblázat (hash):
 - Célállomás fizikai címe csatlakozó port száma
- · Cél: plug-and-play
- A táblázatot meg kell tanulni
- Hátrafelé tanulás (backward learning)
 - A híd a beérkező keretek forráscímeit megvizsgálja
 - A megfelelő porthoz kapcsolva ezeket beírja a táblázatba
- Útválasztás
 - A híd a beérkező keretek célcímeit megvizsgálja:
 - 1. Ha a célcímhez tartozó port és a forrásport azonos, akkor a keretet el kell dobni.
 - 2. Ha a célcímhez tartozó port és a forrásport különböző, akkor a keretet továbbítani kell a célporton.
 - 3. Ha a célport ismeretlen, akkor elárasztást kell alkalmazni és a keretet a forrásport kivételével minden porton ki kell küldeni.

Hidak, kapcsolók (3)

Hátrafelé tanulás (backward learning)

- A híd a beérkező keretek forráscímeit megvizsgálja
- A megfelelő porthoz kapcsolva ezeket beírja a táblázatba

Útválasztás

- A híd a beérkező keretek célcímeit megvizsgálja:
- 1. Ha a célcímhez tartozó port és a forrásport azonos, akkor a keretet el kell dobni.
- Ha a célcímhez tartozó port és a forrásport különböző, akkor a keretet továbbítani kell a célporton.
- 3. Ha a célport ismeretlen, akkor elárasztást kell alkalmazni és a keretet a forrásport kivételével minden porton ki kell küldeni.

 $A \rightarrow D$

B1 táblája üres Kiküldi a keretet a 2,3,4 portokon Beírja az A-1 bejegyzést a táblába B2 táblája üres Kiküldi a keretet az 1,2,3 portokon Beírja az A-4 bejegyzést a táblába

$D \rightarrow A$

<u>B2</u> táblája tartalmazza az A-4 bejegyzést Kiküldi a keretet a 4 porton <u>B1</u> táblája tartalmazza az A-1 bejegyzést Kiküldi a keret az 1 porton

E→F

Hidak, kapcsolók (4)

- Potenciális gond: kör (végtelen ciklus)
- Ez minden nagyobb hálózatban előfordulhat (redundancia)
- Megoldás:
 - A köröket elkerüljük
 - Feszítőfa építése
 - Csak a feszítőfa éleit használjuk az adattovábbítás során

$A \rightarrow D$

B1 táblája üres (nem ismeri a célt)
Kiküldi a keretet a felső porton is (F1)
Kiküldi a keretet az alsó porton is (F2)
B2 táblája üres (nem ismeri a célt)
Kiküldi az F1 keretet az alsó porton is (F4)
Kiküldi az F2 keretet a felső porton is (F3)
Stb.:körbe járnak, közben a többi porton is szétküldődnek

Hidak, kapcsolók (5)

Feszítőfa építése

- Minden híd üzeneteket küld: ki a gyökér, mekkora a távolság tőle (R, D)
- Kezdetben mindenki azt hiszi, saját maga (S) a gyökér: (R=S,D=0)
 - Ha kap egy (R', D') üzenetet kisebb indexű gyökérről, vagy ugyanazon indexű gyökérről kisebb távolsággal, akkor módosítja a saját adatbázisát:
 - Új gyökér bejegyzése (R=R')
 - Távolság: D=D'+1
 - Továbbiakban ezt küldi szét
 - Azt is megjegyezzük, kitől jött ez az üzenet. Ő lesz az ősünk.
- Csak az ős-gyerek kapcsolatotokat használjuk
 - A gyökértől minden csomópontig a legrövidebb úton lehet eljutni
 - Két csomópont között már nem biztos, hogy optimális a távolság

Ismétlők, elosztók, hidak, kapcsolók, útválasztók és átjárók

(Repeaters, Hubs, Bridges, Switches, Routers, Gateways)

- (a) Az egyes eszközök és a rétegek, ahol megtalálhatók.
- (b) Keretek, csomagok és fejrészek

