Ejercicio A: ¿Cuál es la tasa de baudios de la Ethernet clásica de 10-Mbps?

La tasa de baudios es la cantidad de intervalos de niveles de voltaje por segundo. En total hay 20 millones de estos intervalos, por lo tanto son 20 millones de baudios.

Ejercicio 23: ¿Cuál es la máxima tasa de bits alcanzable por un modem estándar V.32 si la tasa de baudios es 1200 y no se usa corrección de errores?

Para cada punto hay un número de 5 b.

Tenemos 1200 baudios que son 1200 símbolos por segundo.

 $1200 \times 5 = 6000 \text{ bps}.$

Ejercicio 46: Un receptor CDMA recibe los siguientes chips: (-1, +1, -3, +1, -1, -3, +1, +1). Asumir que la secuencia de chips definida en la figura de abajo, ¿cuáles estaciones transmitieron, y cuales bits cada una envió?

$$A = (-1 -1 -1 +1 +1 -1 +1 +1)$$

$$B = (-1 -1 +1 -1 +1 +1 +1 -1)$$

$$C = (-1 + 1 - 1 + 1 + 1 + 1 - 1 - 1)$$

$$D = (-1 + 1 - 1 - 1 - 1 - 1 + 1 - 1)$$

$$(-1, +1, -3, +1, -1, -3, +1, +1) * A / 8 = (1 -1 + 3 + 1 -1 +3 +1 +1)/8 = 8/8 = 1$$
 A transmitió un 1.

Hagamos el D:

$$(-1, +1, -3, +1, -1, -3, +1, +1) * D / 8 = (1 +1 +3 -1 +1 +3 +1 -1)/8 = 8/8 = 1$$
 D transmitió un 1.

Completar los otros casos.

Ejercicio E: Producir 8 secuencias de chip de largo 8 ortogonales 2 a 2.

Usamos matrices de Hadamard.

$$W1 = (1)$$

W2

1	1
1	-1

W4

1	1	1	1
1	-1	1	-1
1	1	-1	-1
1	-1	-1	1

W8

1	1	1	1	1	1	1	1
1	-1	1	-1	1	-1	1	-1
1	1	-1	-1	1	1	-1	-1
1	-1	-1	1	1	-1	-1	1
1	1	1	1	-1	-1	-1	-1
1	-1	1	-1	-1	1	-1	1
1	1	-1	-1	-1	-1	1	1
1	-1	-1	1	-1	1	-1	1

Las filas de W8 son las secuencias de chips deseadas o pedidas.

$$W_{2n} = \frac{W_n}{W_n} \frac{W_n}{\overline{W}_n}$$

Ejercicio G: ¿Cómo se hace en ADSL con una señal digital que quiere ser enviada por un cable telefónico? Explicar mecanismos de modulación y tipo de multiplexado usados para lograrlo. ¿Cómo se hace con lo que llega en el cable de cobre a la casa para entregarlo al teléfono y como señal digital al computador?

Using discrete multitone modulation.

Se convierte señal digital en 250 substreams digitales. Cada substream digital se modula usando QAMX (con un máximo de 15 b por baudio). Las señales anáogicas resultantes se multiplexan por división de frecuencia usando OFDM.

El spliter separa la parte de la voz de la llamada telefónica y la manda al teléfono de la parte de los datos que es enviado al modem. El modem demultiplexa la parte de los datos y convierte a digital obteniendo cada substream de los datos, esos substreams son combinados para obtener la codificación de manchester de etherne.

Ejercicio 50: Usando el alojamiento de espectro mostrado en la figura de abajo y la información dada en el texto, ¿Cuántos Mbps un sistema de cable aloja para subida si se usa QPSK? ¿Cuántos para bajada suponiendo que se usa QAM 64?

Para bajada: 750 - 550 = 200 MHz. Se usa QAM64 (6 b por simbolo)

Para subida 42 - 5 = 37 MHz Se usa QPSK (2 b por simbolo) Se puede asumir que se puede detectar un símbolo por Hz. Para bajada: 200 millones de Hz x 6 b = 1200 Mbps Para subida: 37 millones de Hz x 2 b = 74 Mbps