學號:R06946009 系級: 資料科學碩一 姓名:林庭宇

請實做以下兩種不同 feature 的模型,回答第 (1)~(3) 題:

- 1. 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- 2. 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數),討論兩種 feature 的影響

	抽全部 9 小時內的污染源 feature 的一次項(加 bias)	抽全部 9 小時内 pm2.5 的一次 項當作 feature(加 bias)
Public Score	7.83378	7.44013
Private Score	5.50413	5.62719
Total RMSE Score	6.76992	6.59624

在都抽九小時的情況下,只抽 pm2.5 所訓練出來的模型表現比較好,以下是我的推測

抽全部汙染源:18 種特徵前 9 小時的值都使用,可能造成模型過於複雜,Variance 過大,造成最後的 RMSE 分數較差

只抽取 pm2.5: pm2.5 是一個很重要的特徵,取 9 小時很正確,且模型相較於前者簡單,Variance 較小,RMSE 分數較好

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

	抽全部 5 小時內的污染源 feature 的一次項(加 bias)	抽全部 5 小時內 pm2.5 的一次 項當作 feature(加 bias)
Public Score	7.74074	7.57651
Private Score	5.37642	5.79427
Total RMSE Score	6.66427	6.74452

在都抽五小時的情況下,抽全部特徵所訓練出來的模型表現比較好,以下是其變化

抽全部汙染源:18 種特徵從取前 9 小時改成取前 5 小時,使模型變得較簡單,Variance 縮小,最後 RMSE 分數比取 9 小時還來得好

只抽取 pm2.5: pm2.5 是一個很重要的特徵,改取 5 小時不是很好,且造成模型簡單過頭,導致最後的 RMSE 分數比取 9 小時的時候差

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

	抽全部汙染源	抽全部汙染源	抽 PM2.5	抽 PM2.5
	Training RMSE	Kaggle RMSE	Training RMSE	Kaggle RMSE
0.1	5.878286	6.76992	6.123022	6.596247
0.01	5.878284	6.76991	6.123022	6.596241
0.001	5.878284	6.76991	6.123022	6.596241
0.0001	5.878284	6.76991	6.123022	6.596241

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^{u} ,其標註(label)為一存量 y^{u} ,模型參數為一向量 w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 n=1Nyn-xnw2 。若將所有訓練資料的特徵值以矩陣 $X=[x^{\text{u}}x^{\text{u}}...x^{\text{u}}]^{\text{u}}$ 表示,所有訓練資料的標註以向量 $y=[y^{\text{u}}y^{\text{u}}...y^{\text{u}}]^{\text{u}}$ 表示,請問如何以 X 和 y 表示可以最小化損失函數的向量 w ?請寫下算式並選出正確答案。(其中 $X^{\text{u}}X$ 為 invertible)

- a. $(X^TX)X^Ty$
- b. $(X^TX)^{-0}X^Ty$
- c. $(X^TX)^{-1}X^Ty$
- d. $(X^TX)^{-2}X^Ty$

