Analog Electronic Circuits (EC2.103): Quiz-1

Date: 21st April, 2022, Duration: 45 minutes, Max. Marks: 10

Instructions:

• Clearly write your assumptions (if any)

- · Numerical answers must be correct upto two places of decimal to get any credit
- Refrain from copying
- You can use your lecture notebooks and own handwritten short notes in the exam hall
- Mobile phone, computers can not be used during exam
- 1. (a) For the network shown in figure 1, what is the value of $v_C(t)$ at $t=\infty$? It is given that, at $t=0^-, v_C(t)=0$ V. [1 Mark]

Figure 1

- (b) What is the time constant τ for the circuit. [1 Mark] (Hint: $\tau = R_{eq}C_{eq}$, where R_{eq} is the effective resistance across capacitor)
- (c) Find the expression of voltage across capacitor $(v_c(t))$ as a function of time. [1 Mark] (Hint: You can use $y(t) = y(\infty) + (y(0) y(\infty))e^{-t/\tau}$)
- (d) Find the value of $v_c(t)$ at t=200 ms. [1 Mark] (answer must be correct upto two places of decimal)
- (e) For the circuit shown in figure 2, $V_{in} = 1.8sin(2\pi 2000t) V$. Plot V_D and report its minimum value. [1 Mark]

Figure 2

(f) For the circuit shown in figure 3, $V_0 = 5 V$. Find values of V_1 and V_2 correct upto two places of decimal. (Hint: $I_D = I_0(e^{V_D/V_T} - 1)$, $V_T = 25 \text{ mV}$ at room temperature.) [1 Mark]

Figure 3

2. For the circuit shown in figure 4(a), it is given that $R_1=10~M\Omega$, $C_1=2~pF$, $R_2=5M\Omega$ and $C_2=50~pF$. As shown in figure 4(b), an input step voltage V_{IN} is applied to the circuit. As shown in the figure, V_{IN} changes from $V_1=1~V$ to $V_2=2~V$ in $t_r=10~ps$ time. Find the values of $V_{C1}(t=0-)$, $V_{C1}(t=0+)$ and $I_{C1}(t=0+)$. [2 Mark] (Hint: You can assume t_r is very small and from t=0 to $t=t_r$ all current flows through capacitors only. I=Cdv/dt)

Figure 4

3. For the circuit shown in figure 5, plot voltage transfer characteristic (V_{OUT} vs V_{IN}) considering ideal diodes. Also plot $V_{OUT}(t)$ as a function of time for $V_{in} = 12sin(\omega_0 t) V$. Clearly label axis and values on all plots to get any credit. [2 Mark]

