Learning Objectives

- <u>Describe</u> correlation in terms of direction, magnitude, and form
- <u>Build</u> intuitions about correlations based on visual scatterplots
- <u>Calculate</u> correlation coefficient and the coefficient of determination given sets of data
- <u>Describe</u> other correlation statistics and when we might use them

Pearson's
$$r = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{N}}{\sqrt{\left[\sum X^2 - \frac{(\sum X)^2}{N}\right]\left[\sum Y^2 - \frac{(\sum Y)^2}{N}\right]}}$$

ID	X	Y
А	1	2
В	3	5
С	4	3
D	6	7
E	7	5

Value of X plotted against value of Y

Pearson's
$$r = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{N}}{\sqrt{\left[\sum X^2 - \frac{(\sum X)^2}{N}\right]\left[\sum Y^2 - \frac{(\sum Y)^2}{N}\right]}}$$

ID	X	Y
А	1	2
В	3	5
С	4	3
D	6	7
E	7	5

Value of zX plotted against value of zY

Pearson's
$$r = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{N}}{\sqrt{\left[\sum X^2 - \frac{(\sum X)^2}{N}\right]\left[\sum Y^2 - \frac{(\sum Y)^2}{N}\right]}}$$

ID	Х	Y
А	1	2
В	3	5
С	4	3
D	6	7
E	7	5
N =	$\Sigma X =$	$\Sigma Y =$

Pearson's
$$r = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{N}}{\sqrt{\left[\sum X^2 - \frac{(\sum X)^2}{N}\right]\left[\sum Y^2 - \frac{(\sum Y)^2}{N}\right]}}$$

ID	X	Y	X ²	Y ²	XY
А	1	2	1	4	2
В	3	5	9	25	15
С	4	3	16	9	12
D	6	7	36	49	42
E	7	5	49	25	35
N = 6	$\Sigma X = 21$	$\Sigma Y = 22$	$\Sigma X^2 = 111$	$\Sigma Y^2 = 112$	$\Sigma XY = 106$

Pearson's
$$r = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{N}}{\sqrt{\left[\sum X^2 - \frac{(\sum X)^2}{N}\right]\left[\sum Y^2 - \frac{(\sum Y)^2}{N}\right]}}$$

$$N = 5$$

$$\Sigma X = 21$$

$$\Sigma Y = 22$$

$$(\Sigma X)^{2} = (\Sigma Y)^{2} = \Sigma X^{2} = 111$$

$$\Sigma Y^{2} = 112$$

$$\Sigma XY = 106$$

$$106 - \frac{(21)(22)}{5}$$

Pearson's
$$r = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{N}}{\sqrt{\left[\sum X^2 - \frac{(\sum X)^2}{N}\right]\left[\sum Y^2 - \frac{(\sum Y)^2}{N}\right]}}$$

$$N = 5$$

$$\Sigma X = 21$$

$$\Sigma Y = 22$$

$$(\Sigma X)^{2} = (\Sigma Y)^{2} = \Sigma X^{2} = 111$$

$$\Sigma Y^{2} = 112$$

$$\Sigma XY = 106$$

$$\frac{106 - \frac{(21)(22)}{5}}{\sqrt{([111 - \frac{???}{5}][112 - \frac{???}{5}])}}$$

Pearson's
$$r = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{N}}{\sqrt{\left[\sum X^2 - \frac{(\sum X)^2}{N}\right]\left[\sum Y^2 - \frac{(\sum Y)^2}{N}\right]}}$$

$$N = 5$$
 $\Sigma X = 21$
 $\Sigma Y = 22$
 $(\Sigma X)^2 = 441$
 $(\Sigma Y)^2 = 484$
 $\Sigma X^2 = 111$
 $\Sigma Y^2 = 112$
 $\Sigma XY = 106$

$$\frac{106 - \frac{(21)(22)}{5}}{\sqrt{([111 - \frac{441}{5}][112 - \frac{484}{5}])}}$$

Pearson's
$$r = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{N}}{\sqrt{\left[\sum X^2 - \frac{(\sum X)^2}{N}\right]\left[\sum Y^2 - \frac{(\sum Y)^2}{N}\right]}}$$

$$N = 5$$
 $\Sigma X = 21$
 $\Sigma Y = 22$
 $(\Sigma X)^2 = 441$
 $(\Sigma Y)^2 = 484$
 $\Sigma X^2 = 111$
 $\Sigma Y^2 = 112$
 $\Sigma XY = 106$

$$\frac{106 - \frac{462}{5}}{\sqrt{([111 - \frac{441}{5}][112 - \frac{484}{5}])}}$$

Pearson's
$$r = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{N}}{\sqrt{\left[\sum X^2 - \frac{(\sum X)^2}{N}\right]\left[\sum Y^2 - \frac{(\sum Y)^2}{N}\right]}}$$

$$N = 5$$

 $\Sigma X = 21$
 $\Sigma Y = 22$
 $(\Sigma X)^2 = 441$
 $(\Sigma Y)^2 = 484$
 $\Sigma X^2 = 111$
 $\Sigma Y^2 = 112$
 $\Sigma XY = 106$

$$\frac{106 - 92.4}{\sqrt{([111 - 88.2][112 - 96.8])}}$$

Pearson's
$$r = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{N}}{\sqrt{\left[\sum X^2 - \frac{(\sum X)^2}{N}\right]\left[\sum Y^2 - \frac{(\sum Y)^2}{N}\right]}}$$

$$N = 5$$

 $\Sigma X = 21$
 $\Sigma Y = 22$
 $(\Sigma X)^2 = 441$
 $(\Sigma Y)^2 = 484$
 $\Sigma X^2 = 111$
 $\Sigma Y^2 = 112$
 $\Sigma XY = 106$

$$\frac{13.6}{\sqrt{([22.8][15.2])}}$$

Pearson's
$$r = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{N}}{\sqrt{\left[\sum X^2 - \frac{(\sum X)^2}{N}\right]\left[\sum Y^2 - \frac{(\sum Y)^2}{N}\right]}}$$

$$N = 5$$

 $\Sigma X = 21$
 $\Sigma Y = 22$
 $(\Sigma X)^2 = 441$
 $(\Sigma Y)^2 = 484$
 $\Sigma X^2 = 111$
 $\Sigma Y^2 = 112$
 $\Sigma XY = 106$

$$\frac{13.6}{\sqrt{346.56}} = \frac{13.6}{18.616} = .7306 = r$$

Why cross-products?

• The *cross-product* is the numerator of the $\Sigma z_{r}z_{r}$

Pearson's r, Table 6.3

Original Data

Pearson's
$$r = \frac{\sum z_x z_y}{N-1}$$

ID	Z weight	Z_{cost}	$z_x^*z_y$
Α	-1.34	-1.34	POS
В	-0.80	-0.80	Pos
С	-0.27	-0.27	Pos
D	0.27	0.27	Pos
Е	0.80	0.80	Pos
F	1.34	1.34	POS
N = 6			$\Sigma = POS+$

Pearson's r, Table 6.3

Cost variable (Y) has been FLIPPED

Pearson's
$$r = \frac{\sum z_x z_y}{N-1}$$

ID	z _{weight}	Z_{cost}	$z_x^*z_y$
Α	-1.34	1.34	NEG
В	-0.80	0.80	Neg
С	-0.27	0.27	Neg
D	0.27	-0.27	Neg
Е	0.80	-0.80	Neg
F	1.34	-1.34	NEG
N = 6			$\Sigma = NEG-$

Pearson's r, Table 6.3

Cost variable (Y) has been RANDOMIZED

Pearson's
$$r = \frac{\sum z_x z_y}{N-1}$$

ID	Z weight	Z_{cost}	z _x *z _y
Α	-1.34	-0.80	POS
В	-0.80	0.27	Neg
С	-0.27	1.34	Pos
D	0.27	-1.34	Neg
Е	0.80	0.27	Pos
F	1.34	0.80	POS
N = 6			$\Sigma = Pos$

Magnitude

Putting words to correlation coefficients

If r is	Interpretation
Equal to 0	No relationship
Between 0 and 0.10	Trivial
Between 0.10 and 0.30	Small to medium
Between 0.30 and 0.50	Medium to large
Greater than 0.50	Large to very large

Coefficient of Determination (r^2)

- How are these two variables related? Use r
 - "relatedness", "covariance"
- How much variability in Y is accounted for by knowing X? Use r²
 - "explained variance"
 - If r = 1, then $r^2 = 1$
 - "All (or 100%) of the variability in Y can be accounted for by variability in X"
 - When r < 1, then $r^2 < r$

Coefficient of Determination (r^2)

- Calculation is simple!
 - $-r^2$ ranges from 0 to +1
 - Why not negative??

Other Correlation Coefficients

- **Pearson's** *r* (linear, normal dist, interval+ variable, no extreme outliers)
- Spearman's rho (r_s, ρ) :
 - Use for ordinal data, or non-normal distributed variables
 - Only assumes variables are ranked
 - Also see Kendall's Tau (τ) & Goodman's Gamma (γ)
- Point biserial r_b
 - Use when 1 var is interval/ratio, 1 var is dichotomous
- Pearson's Phi (φ)
 - Use when both vars are dichotomous
- Eta correlation ratio (η)
 - Use for simple non-linear relationships
 - Common for ANOVA
 - Also see Omega correlation ratio (ω)

