Lecture 5: CS677

Sept 5, 2017

Review

- HW1 due September 12
- Cloud computing: students can get a better personal account at: https://console.cloud.google.com/freetrial?ga=2.228461851.-722665125.1503520492&page=1
- · Previous class
 - Weak-perspective projection
 - Projective geometry (very briefly)
 - Camera calibration
 - Computing brightness of image points
 - Shape from shading (basics)
- · Today's objective
 - More on shape from shading
 - Color perception

USC CS677: Computer Vision, Fall 2017

Shape From Shading

- Can we get 3-D shape from intensity variations?
 - Infer depth or orientation of surface at each point
 - Changes may be due to changes in illumination, reflectivity or surface shape
 - Assuming constant illumination and reflectivity, N is still ambiguous
 - We can recover **N.S** but not **N** (is defined on a cone)
- We can get N at occluding contours (perpendicular to viewing direction)
- Can propagate to interior using continuity of surface (i.e. direction doesn't change suddenly)
- Book has sketchy details on p.60
- Techniques effective if no inter-reflections, known reflectance function and constant *albedo*.
- · Useful in very limited cases

3

Photometric stereo

- Assume:
 - A local shading model with set of distant point sources
 - A set of point sources that are infinitely distant
 - A set of images of an object, obtained in exactly the same camera/object configuration but using different sources
 - A Lambertian object (or the specular component has been identified and removed)
- Each image gives one equation for surface normal at each point
 - 2 images can provide a solution with some ambiguity
 - More images provide a unique least mean squared solution
 - Details in the FP book, section 2.2.4
- · Hard to control illumination under most conditions
 - Some applications in industrial inspection/manufacturing tasks

JSC CS677: Computer Vision, Fall 2017

Depth Perception from Real Images

- Humans see depth in 2-D images readily
 - Our absolute distance perception is not accurate but relative accuracy is very high; shapes are not distorted
- · Believe humans use many "cues" that include shading, texture gradients, contours...
 - Known methods depend on many simplifying assumptions which are not valid in images of common scenes
- · Research topic had been dormant for some time but modern machine learning techniques are starting to show promise
 - We will study these towards end of course if time permits

USC CS677: Computer Vision, Fall 2017

Color

- · Color is defined by distribution of energy in different wavelengths in the light spectrum
- · Measured image responses are from integrated product of illumination, reflection and sensor responses
- · Daylight: distribution changes with time and weather - Fig. 3.1
- · Artificial light distribution is different from sunlight - Fig 3.4
- Objects have different spectral albedo
 - Fig. 3.6
- · Sensor responses
 - Fig. 3.3

Illumination Color: natural light • Fig. 3.1

Sensors

- Cameras/eyes sensors rarely receive light of a single wavelength only (exception: laser light)
- Cameras/eyes do not have ability to measure intensity in narrow wavelength bands (they are not spectrometers found in a Physics lab)
- Instead, sensors integrate light in broad wavelength ranges
 - A monochromatic (grey level, b/w) camera has only one sensor type
 - Color images typically have 3 types of sensors

Trichromacy

- Human visual system has only three types of sensors
 - We do not compute *spectrogram* of the incoming light
 - Color cameras typically have sensors with similar responses
- Lack of spectral resolution can cause different spectral distributions to give the same color measurements
 - Yellow Blue = Green, even though this G is not what we would get by adding/subtracting the Y, B light frequencies
- Visible colors can be synthesized by a linear combination of three primary colors
 - Additive for TV, subtractive for paint, print
 - Artifact of our sensory system
 - Two primaries work well for most colors, also some humans are bichromatic (limited color blindness)

13

Representation of Color

- Measurements are in form of a 3-D vector; (R, G, B) values
 - Primaries are standardized, others could be used
- Many linear transformations used for different purposes
 - CMY (Cyan, Magenta, Yellow) is designed for subtractive applications, e.g. printers
 - YUV for digital video (DVD)
 - Y = .3 *R + .59*G + .11*B (luminance)
 - U = .4936 * (B Y)
 - V= .877 *(R Y)
 - · Provides better compression results

14

Human Color Perception

- Hue, Saturation Value (H, S, V)
 - V is value or brightness (same as Y value in YIQ system)
 - Hue: property that separates red from green, for example
 - Saturation: mixture of white light to colored light
 - (hue, sat) define the chromaticity space
- Fig. 3.13 shows transformation from R,G,B to H,S,V
 - Project an RGB point on plane perpendicular to cube diagonal to get hue and saturation values; define value such that all points in the same perpendicular plane have the same value
 - Non-linear transformation, formula not given but easily derived from the figure
 - Slightly different definitions of (h,s,v) exist in literature
 - http://en.wikipedia.org/wiki/HSV_color_space

CIE LAB Space

- Desirable that same small distances in the color space correspond to the same (similar) perceptual differences, regardless of the absolute positions of the points in the space
- CIE (Commission internationale de l'éclairage,) L,a,b transformation, determined empirically, seems to be a good approximation
- First we apply a linear transformation to convert RGB to CIEXYZ
 - [X] [0.412453 0.357580 0.180423] [R]
 - $[Y] = [0.212671 \ 0.715160 \ 0.072169] * [G]$
 - [Z] [0.019334 0.119193 0.950227] [B]
- From CIEXYZ to CIELAB

$$\begin{split} L^* &= 116 \left(\frac{Y}{Y_n}\right)^{\frac{1}{3}} - 16 \\ a^* &= 500 \left[\left(\frac{X}{X_n}\right)^{\frac{1}{3}} - \left(\frac{Y}{Y_n}\right)^{\frac{1}{3}} \right] \\ b^* &= 200 \left[\left(\frac{Y}{Y_n}\right)^{\frac{1}{3}} - \left(\frac{Z}{Z_n}\right)^{\frac{1}{3}} \right] \end{split}$$

Here X_n, Y_n , and Z_n are the X, Y, and Z coordinates of a reference white patch.

Uses of Color

- Spectral albedo is characteristic of surface properties
 - Helps in segmentation as different surfaces are expected to have different "colors"
 - Helps distinguish material properties
 - Ripe vs raw fruit
 - Slippery vs dry ground conditions
 -
- To be effective for these tasks, we need to be able to infer surface spectral *albedo* even though the measurements combine color of illumination, surface and sensor responses (the last one could be calibrated).

Uses of Color

- Spectral albedo is characteristic of surface properties
 - Helps in segmentation as different surfaces are expected to have different "colors"
 - Helps distinguish material properties
 - Ripe vs raw fruit
 - Slippery vs dry ground conditions
 -
- To be effective for these tasks, we need to be able to infer surface spectral *albedo* even though the measurements combine color of illumination, surface and sensor responses (the last one could be calibrated).

Estimating Illumination Color assumption

- · Gray world assumption
 - On the average, world is gray (no single color dominates)
 - Take average values in each channel (R,G,B) to represent illumination color (normalize to unit vector)
- · White patch estimation
 - Assumes that brightest patch in image is "white" (achromatic)
 - Color is due to color of illumination
- Statistics of natural scenes
- •

21

23

22

Next Topics

- We are finished with image formation
- · Next major topics of interest
 - Inference of 3-D
 - Single Images (difficult)
 - From multiple views
 - From direct range sensing
 - Detection and recognition of objects
- Image feature extraction and segmentation
 - Useful for both of the above topics
 - This is what we will study next

Next Class

• FP: Sections 4.1 and 9.3

USC CS677: Computer Vision, Fall 2017

24