1 Definujte metrický prostor a sférickou metriku. Dokažte, že hemisféra není plochá.

Definice (Metrický prostor): Metrický prostor je dvojice (M,d) množiny $M \neq \emptyset$ a zobrazení

$$d: M \times M \to \mathbb{R}$$

zvaného metrika či vzdálenost, které $\forall x, y, z \in M$ splňuje:

- 1. $d(x,y) = 0 \iff x = y$
- 2. d(x,y) = d(y,x)
- 3. $d(x,y) \le d(x,z) + d(z,y)$

Z těchto podmínek plyne i $d(x,y) \ge 0$.

Příklad (Sférická metrika): Jako

$$S := \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^3 = 1\}$$

si označíme jednotkovou sféru v euklidovském prostoru \mathbb{R}^n . Funkci $s:S\times S\to [0,\pi]$ definujeme pro $\overline{x},\overline{y}\in S$ jako

$$s(\overline{x}, \overline{y}) = \begin{cases} 0 \dots \overline{x} = \overline{y} \\ \varphi \dots \overline{x} \neq \overline{y} \end{cases}$$

kde φ je úhel sevřený dvěma polopřimkami procházejícímí počátkem $\overline{0}$ a body \overline{x} a \overline{y} . Tento úhel je vlastně délka kratšího z oblouků mezi body \overline{x} a \overline{y} na jednotkové kružnici vytknuté na S rovinou určenou počátkem a body \overline{x} a \overline{y} . Funkci s nazveme sférickou metrikou.

Věta (H není plochá): Metrický prostor (H,s) není izometrický žádnému Euklidovskému prostoru (X,e_n) s $X\subset\mathbb{R}^n$

Důkaz: Následující vlastnost vzdáleností daných čtyřmi body t, u, v a w v Euklidovském prostoru (\mathbb{R}^n, e_n) není splňena v (H, s):

$$e_n(t,u) = e_n(t,v) = e_n > 0 \land e_n(t,w) = e_n(w,u) = \frac{1}{2}e_n(t,u) \Rightarrow e_n(w,v) = \frac{\sqrt{3}}{2}e_n(t,v) \ (\langle e_n(t,v) \rangle).$$

Podle předpokladu implikace body t,u a v tvoří rovnostranný trojúhelník se stranou délky x>0 a w má od t i u vzdálenost $\frac{x}{2}$. Podle předchozího tvrzení je pak w středem úsečky tu. Tyto čtyři body jsou tedy koplanární(leží v jedné rovině) a úsečka vw je výčka spoštěná z vrcholu v rovnostranného trojúhélníka tuv na stranu tu. Podle Pythagorovy věty se její délka $e_2(v,w)=e_n(v,w)$ rovná $\frac{\sqrt{3}}{2}x$, což říká závěr implikace.

Na hemisféře (H,s) nalezneme čtyři různé body t,u,v a w splňující předpoklad předchozí implikace, ale ne její závěr. Z toho plyne, že izometrie mezi hemisférou a Euklidovským prostorem neexistuje, protože každá izometrie ze své definice implikaci zachovává. Tyto body jsou

$$t = (1, 0, 0), u = (0, 1, 0), v = (0, 0, 1) \text{ a } w = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right).$$

Patrně $s(t,u)=s(t,v)=s(u,v)=\frac{\pi}{2}$ a $s(t,w)=s(w,u)=\frac{1}{2}s(t,u)=\frac{\pi}{4}$. Bod v je "severní pól" $(x_3=0)$ a w je střed oblouku tu. Ale všechny body na rovníku mají od pólu vzdálenost $\frac{\pi}{2}$. Takže s(w,v)=s(t,v) a závěr implikace neplatí.

2 Dokažte Ostrowskiho větu.

Definice (p-adický řád): Nechť $p \in \{2, 3, 5, 7, 11, \dots\}$ je prvočíslo a nechť $n \in \mathbb{Z}$ je nenulové celé číslo. Jako p-adický řád čísla n definujeme

$$\operatorname{ord}_p(n) := \max(\{m \in \mathbb{N}_0 : p^m \mid n\})^1$$

Dále ještě $\forall p$ definujeme $\operatorname{ord}_{p}(0) := +\infty$.

Poznámka (Rozšíření ord $_p(\cdot)$ na zlomky): Pro nenulové $\alpha=\frac{a}{b}\in\mathbb{Q}$ definujeme

$$\operatorname{ord}_p(\alpha) := \operatorname{ord}_p(a) - \operatorname{ord}_p(b)$$

Jinak opět $\operatorname{ord}_p(0) = \operatorname{ord}_p(\frac{0}{h}) := +\infty.$

Definice (p-adická norma): Fixujeme reálnou konstantu $c \in (0,1)$ a definujeme funkci $|\cdot|_p : \mathbb{Q} \to [0,+\infty)$ jako

$$\left|\frac{a}{b}\right|_{p} := c^{\operatorname{ord}_{p}\left(\frac{a}{b}\right)}$$

kde klademe $|0|_p = c^{+\infty} := 0$

Definice (Kanonická p-adická norma): Pro $\alpha \in \mathbb{Q}$ a prvočíslo p je kanonická p-adická norma $||\cdot||_p$ definovaná jako

$$||\alpha||_p := p^{-\operatorname{ord}_p(\alpha)}$$

to jest v obecné p-adické normě $||\cdot||_p$ klademe $c:=\frac{1}{p}$.

Tvrzení: Nechť $\|\cdot\|$ je netriviální norma na tělese \mathbb{Q} . Potom $\exists n \in \mathbb{N} : n \geq 2 \land \|n\| \neq 1$.

Tvrzení: Pro každá dvě nesoudělná $a, b \in \mathbb{Z}$ existují čísla $c, d \in \mathbb{Z}$, že

$$ac + bd = 1$$

Věta (A. Ostrowski): Nechť $||\cdot||$ je norma na tělese racionálních čísel \mathbb{Q} . Pak nastává jedna ze tří následujících možností.

- 1. Je to triviální norma.
- 2. Existuje reálné $c \in (0,1]$ takové, že $||x|| = |x|^c$.
- 3. Existuje reálné $c \in (0,1)$ a prvočíslo p, že $||x|| = |x|_p = c^{ord_p(x)}$ (kde $c^{\infty} := 0$).

Modifikovaná absolutní hodnota a p-adické normy jsou tedy jediné netriviální normy na tělese racionálních čísel.

Důkaz: Nechť $\|\cdot\|$ je netriviální. Pak díky prvnímu z pomocných tvrzení existuje $n \in \mathbb{N} \setminus \{1\}$, že $\|n\| \neq 1$. Máme dva případy.

1. Existuje $n \in \mathbb{N}$, že ||n|| > 1. Jako n_0 označíme nejmenší takové n. Patrně $n_0 \ge 2$ a

$$1 \le m < n_0 \Rightarrow ||m|| \le 1.$$

Existuje jednoznačné reálné číslo c > 0, že

$$||n_0|| = n_0^c$$
.

 $^{^{1}\}cdot\mid\cdot$ značí relaci dělitelnosti.

Každé $n \in \mathbb{N}$ lze při základu n_0 zapsat jako

$$n = a_0 + a_1 n_0 + a_2 n_0^2 + \dots + a_s n_0^s$$
, kde $a_i, s \in \mathbb{N}_0, 0 \le a_i < n_0$ a $a_s \ne 0$.

Pro $n_0 = 10$ jde o obvyklý zápis v desítkové soustavě. Takže

$$||n|| = ||a_0 + a_1 n_0 + a_2 n_0^2 + \dots + a_s n_0^s||$$

$$\leq \sum_{j=0}^s ||a_j|| \cdot ||n_0||^j$$

$$\leq \sum_{j=0}^s n_0^{js} \leq n_0^{sc} \sum_{i=0}^\infty \left(\frac{1}{n_0^c}\right)^i$$

$$\leq n^c C, \text{ kde } C := \sum_{i=0}^\infty \left(\frac{1}{n_0^c}\right)^i$$

Tedy

$$\forall n \in \mathbb{N}_0 : ||n|| \le Cn^c$$
.

Tato nerovnost ve skutečnosti platí dokonce s C=1. PRo každé $m,n\in\mathbb{N}$ multiplikativita normy a předchozí nerovnost dávají

$$||n||^m = ||n^m|| \le C(n^m)^c = C(n^c)^m.$$

Vezmeme-li zde m-tou odmocninu, dostaneme $\|n\| \leq C^{\frac{1}{m}} n^c$. Pro $m \to \infty$ máme $C^{\frac{1}{m}} \to 1$. Takže skutečně

$$\forall n \in \mathbb{N}_0 : ||n|| \le n^c.$$

Nyní podobně odvodíme opačnou nerovnost $||n|| \geq n^c, n \in \mathbb{N}_0$. Pro každé $n \in \mathbb{N}$ hořejší zápis čísla n při základu n_0 dává

$$n_0^{s+1} > n \ge n_0^s$$
.

Podle Δ -ové nerovnosti máme

$$||n_0||^{s+1} = ||n_0^{s+1}|| \le ||n|| + ||n_0^{s+1} - n||.$$

Tedy

$$||n|| \ge ||n_0||^{s+1} - ||n_0^{s+1} - n|| \ge n_0^{(s+1)c} - (n_0^{s+1} - n)^c$$

$$\ge n_0^{(s+1)c} - (n_0^{s+1} - n_0^s)^c = n_0^{(s+1)c} \left(1 - \left(1 - \frac{1}{n_0}\right)^c\right)$$

$$\ge n^c C', \text{ kde } C' := 1 - \left(1 - \frac{1}{n_0}\right)^c > 0.$$

Trik s m-tou odmocninou opět dává

$$\forall n \in \mathbb{N}_0 : ||n|| > n^c$$

a tedy

$$\forall n \in \mathbb{N}_0 : ||n|| = n^c.$$

Z multiplikativity normy dostáváme $||x|| = |x|^c$ pro každý zlomek $x \in \mathbb{Q}$. Podle tvrzení výše je $c \in (0,1]$. Odvodili jsme, že platí případ 2 Ostrowskiho věty.

2. Zbývá případ, kdy pro každé $n \in \mathbb{N}$ je $||n|| \le 1$ a existuje $n \in \mathbb{N}$, že ||n|| < 1. Nechť n_0 je nejmenší takové n, opět $n_0 \ge 2$. Tvrdíme, že $n_0 = p$ je prvočíslo. Kdyby totiž n_0 mělo rozklad $n_0 = n_1 n_2$ s $n_i \in \mathbb{Z}$ a $1 < n_1, n_2 < n_0$, dostali bychom spor

$$1 > ||n_0|| = ||n_1 n_2|| = ||n_1|| \cdot ||n_2|| = 1 \cdot 1 = 1,$$

kde jsme použili multiplikativitu normy a to, že $\|m\|=1$ pro každé $m\in\mathbb{N}$ s $1\leq m< n_0$. Ukážeme, že každé jiné prvočíslo $q\neq p$ má normu $\|q\|=1$. Pro spor nechť $q\neq p$ je další prvočíslo s normou $\|q\|<1$. Vezmeme tak velké $m\in\mathbb{N}$, že $\|p\|^m,\|q\|^m<\frac{1}{2}$. Podle známého výsledku v elementární teorii čísel výše existují celá čísla a a b, že $aq^m+bp^m=1$. Znormování této rovnosti dává spor

$$1 = ||1|| = ||aq^m + bp^m|| \le ||a|| \cdot ||q||^m + ||b|| \cdot ||p||^m < 1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = 1.$$

Zde jsme využili trojúhelníkovou nerovnost, multiplikativitu normy a to, že nyní $||a|| \le 1$ pro každé $a \in \mathbb{Z}$.

Tedy ||q|| = 1 pro každé prvočíslo q různé od p. Odtud pomocí multiplikativity normt a rozkladu nenulového zlomku x na součin mocnin prvočísel dostáváme vyjádření

$$||x|| = \left\| \prod_{q=2,3,5,\dots} q^{\operatorname{ord}_{q}(x)} \right\| = \prod_{q=2,3,5,\dots} \left\| q^{\operatorname{ord}_{q}(x)} \right\| = ||p||^{\operatorname{ord}_{p}(x)}$$
$$= c^{\operatorname{ord}_{p}(x)} \text{ kde } c := ||p|| \in (0,1).$$

Též $||0|| = c^{\operatorname{ord}_p(0)} = c^{\infty} = 0$. Dostali jsme případ 3 Ostrowskiho věty.

3 Dokažte Heine-Borelovu větu.

Tvrzení (Topologická spojitost): Nechť $f: M \to N$ je zobrazení mezi metrickými prostory (M,d) a (N,e). prostorem

$$f \text{ je spojit\'e} \iff \forall \text{ OM } A \subset N : f^{-1}[A] = \{x \in M \mid f(x) \in A\} \subset M \text{ je OM}.^2$$

Toto tvrzení platí i pro uzavřené množiny.

Tvrzení (Spojitý obraz kompaktu): Nechť(M,d) a (N,e) jsou metrické prostory, $X \subset M$ je neprázdná kompaktní množina a

$$f: X \to N$$

je spojitá funkce. Pak obraz $f[X] \subset N$ je kompaktní množina.

Tvrzení (Spojitost inverzu): Nechť $f: X \to N$ je spojité zobrazení z neprázdné kompaktní množiny $X \subset M$ v metrickém prostoru (M,d) do (N,e). Potom inverzní zobrazení

$$f^{-1}:f[X]\to X$$

je spojité.

Definice (Homeomorfismus): Zobrazení $f: M \to N$ mezi metrickými prostory (M,d) a (N,e) je jejich homeomorfismus, je-li f bijekce a jsou-li f a f^{-1} spojitá zobrazení. Pokud mezi (M,d) a (N,e) existuje homeomorfismus, jsou homeomorfní.

²OM zkracuje sousloví "otevřená množina".

Definice (Topologická kompaktnost): Podmnožina $A \subset M$ metrického prostoru (M, d) je topologicky kompaktní, pokud každý systém otevřených množin $\{X_i \mid i \in I\}$ v M platí:

$$\bigcup_{i\in I} X_i\supset A\Rightarrow \exists \text{ konečná množina } J\subset I:\bigcup_{i\in J} X_i\supset A.$$

Věta (Heine-Borelova): $Podmnožina \ A \subset M \ metrického prostoru (M, d) je kompaktní, právě když je topologicky kompaktní.$

Důkaz: Bez újmy na obecnosti můžeme vzít A = M.

• Implikace \Rightarrow :

Nechť (M,d) je kompaktní metrický prostor a

$$M = \bigcup_{i \in I} X_i$$

je jeho otevřené pokrytí, takže každá množina X_i je otevřená. Nalezneme jeho konečné podpokrytí. Nejprve dokážeme, že

$$\forall \delta > 0 \,\exists$$
 konečná množina $S_{\delta} \subset M: \bigcup_{a \in S_{\delta}} B(a, \delta) = M.$

Kdyby to tak nebylo, pak by existovalo $\delta_0 > 0$ a posloupnost $(a_n) \subset M$, že $m < n \Rightarrow d(a_m, a_n) \ge \delta_0$ — ve sporu s předpokládanou kompaktností množiny M tato posloupnost nemá konvergentní podposloupnost. Skutečně, kdyby(negujeme hořejší tvrzení o δ a S_δ) existovalo $\delta_0 > 0$, že pro každou konečnou množinu $S \subset M$ je

$$M \setminus \bigcup_{a \in S} B(a, \delta_0) \neq \emptyset,$$

pak — máme-li již definované body a_1, a_2, \ldots, a_n s $d(a_i, a_j) \geq \delta_0$ pro každé $1 \leq i < j \leq n$ — vezmeme $a_{n+1} \in M \setminus \bigcup_{i=1}^n B(a_i, \delta_0)$ a a_{n+1} má od každého bodu a_1, a_2, \ldots, a_n vzdálenost alespoň δ_0 . Tak definujeme celou posloupnost (a_n) .

Pro spor nyní předpokládejme, že hořejší otevřené pokrytí množiny M množinami X_i nemá konečné podpokrytí. Tvrdíme, že odtud vyplývá, že

$$\forall n \in \mathbb{N} \,\exists b_n \in S_{\frac{1}{n}} \,\forall i \in I : B\left(b_n, \frac{1}{n}\right) \not\subset X_i.$$

Kdyby to tak nebylo, pak
(negujeme předchozí tvrzení) by existovalo $n_0 \in \mathbb{N}$, že pro každ
é $b \in S_{\frac{1}{n_0}}$ existuje $i_b \in I$, že $B\left(b,\frac{1}{n_0}\right) \subset X_{i_b}$. Pak ale, protože $M = \bigcup_{b \in S_{\frac{1}{n_0}}} B\left(b,\frac{1}{n_0}\right)$, dávají indexy $J = \{i_b \mid b \in S_{\frac{1}{n_0}}\} \subset I$ ve sporu s předpokladem konečné podpokrytí množiny M.

Na samostatném řádku uvedené tvrzení o n a b_n tak platí a lze vzít posloupnost $(b_n) \subset M$. Podle předpokladu má konvergentní podposloupnost b_{k_n} s $b := \lim b_{k_n} \in M$. Protože X_i pokrývají M, existuje $j \in I$, že $b \in X_j$. Díky otevřenosti X_i existuje r > 0, že $B(b,r) \subset X_j$. Vezmeme tak velké $n \in \mathbb{N}$, že $\frac{1}{k_n} < \frac{r}{2}$ a $d(b,b_{k_n}) < \frac{r}{2}$. Pro každé $x \in B\left(b_{k_n},\frac{1}{k_n}\right)$ pak podle Δ -ové nerovnosti máme, že $d(x,b) \le d(x,b_{k_n}) + d(b_{k_n},b) < \frac{r}{2} + \frac{r}{2} = r$. Tedy

$$B\left(b_{k_n}, \frac{1}{k_n}\right) \subset B(b, r) \subset X_j,$$

ve sporu s hořejší vlastností bodů b_n . Předpoklad, že konečné podpokrytí neexistuje, vede ke sporu. Proto pokrytí M množinami $X_i, i \in I$, má konečné podpokrytí.

• Implikace \Leftarrow :

Předpokládáme, že každé otevřené pokrytí množiny M má konečné podpokrytí a odvodíme z toho, že každá posloupnost $(a_n) \subset M$ má konvergentní podposloupnost. Nejprve ukážeme, že předpoklad

$$\forall b \in M \,\exists r_b > 0 : M_b := \{ n \in \mathbb{N} \mid a_n \in B(b, r_0) \}$$
 je konečná

vede ke sporu. Z pokrytí $M=\bigcup_{b\in M}B(b,r_b)$ bychom totiž vybrali konečné podpokrytí dané konečnou množinou $N\subset M$ a nahlédli, že existuje n_0 , že $n\geq n_0\Rightarrow a_n\notin\bigcup_{b\in N}B(b,r_b)$, protože množina indexů $\bigcup_{b\in N}M_b$ je konečná (konečné sjednocení konečných množin). To je spor, protože $\bigcup_{b\in N}B(b,r_b)=M$. Předpoklad tedy neplatí a naopak je pravda, že

$$\exists b \in M \ r > 0 : M_r := \{ n \in N \mid a_n \in B(b,r) \}$$
 je nekonečná.

Teď už lehce z (a_n) vybereme konvergentní podposloupnost (a_{k_n}) a limitou b. Nechť už jsme definovali indexy $1 \leq k_1 < k_2 < \cdots < k_n$, že $d(b,a_{k_i}) < \frac{1}{i}$ pro $i=1,2,\ldots,n$. Množina indexů $M_{\frac{1}{n+1}}$ je nekonečná, takže můžeme zvolit takové $k_{n+1} \in \mathbb{N}$, že $k_{n+1} > k_n$ a $k_{n+1} \in M_{\frac{1}{n+1}}$. Pak i $d(b,a_{k_{n+1}}) < \frac{1}{n+1}$. Takto je definována posloupnost (a_{k_n}) konvergující kb.

4 Dokažte existenci n-tých odmocnin v \mathbb{C} .

Poznámka: Komplexní jednotková kružnice

$$S := \{ z \in \mathbb{C} \mid |z| = 1 \} \subset \mathbb{C}$$

je souvislá množina.

Tvrzení: Pro každé nezáporné $x \in \mathbb{R}$ a každé $n \in \mathbb{N}$ existuje nezáporné $y \in \mathbb{R}$ takové, že $y^n = x$.

Tvrzení (Druhá odmocnina v \mathbb{C}): $\forall a + bi \in \mathbb{C}$ máme pro vhodnou volbu znamének v reálných číslech

$$c := \pm \frac{\sqrt{\sqrt{a^2 + b^2} + a}}{\sqrt{2}}$$
 $a \quad d := \pm \frac{\sqrt{\sqrt{a^2 + b^2} - a}}{\sqrt{2}},$

 $\check{z}e\ (c+di)^2 = a+bi.$

Z předchozích dvou tvrzení lze dokázat, že pokud pro každé $u \in S$ a pro každé liché $n \in \mathbb{N}$ $\exists v \in S : v^n = u$, pak platí následující věta.

Věta (n-té odmocniny v \mathbb{C}): Komplexní čísla obsahují všechny n-té odmocniny, tedy

$$\forall u \in \mathbb{C} \ \forall n \in \mathbb{N} \ \exists v \in \mathbb{C} : v^n = u.$$

Důkaz: TODO

5 Dokažte Besselovu nerovnost.

Tvrzení (Ortogonalita sinů a cosinů): Pro každá dvě celá čísla $m,n \geq 0$ je

$$\langle \sin(mx), \cos(nx) \rangle = 0.$$

Pro každá dvě delá čísla $m, n \ge 0$, kromě m = n = 0, je

$$\langle \sin(mx), \sin(nx) \rangle = \langle \cos(mx), \cos(nx) \rangle = \begin{cases} \pi & \dots & m = n \\ 0 & \dots & m \neq n. \end{cases}$$

Konečně

$$\langle \sin(0x), \sin(0x) \rangle = 0$$
 a $\langle \cos(0x), \cos(0x) \rangle = 2\pi$.

Definice (Kosinové a sinové Fourierovy koeficienty): Pro každou funkci $f \in \mathcal{R}(-\pi, \pi)$ definujeme její kosinové Fourierovy koeficienty

$$a_n := \frac{\langle f(x), \cos(nx) \rangle}{\pi} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx, n = 0, 1, \dots$$

a sinové Fourierovy koeficienty

$$b_n := \frac{\langle f(x), \sin(nx) \rangle}{\pi} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx, n = 1, 2, \dots$$

Definice (Fourierova řada funkce): Fourierova řada funkce $f \in \mathcal{R}(-\pi,\pi)$ je trigonometrická řada

$$F_f(x) := \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)),$$

kde a_n a b_n jsou po řadě její kosinové a sinové Fourierovy koeficienty.

Geometricky nahlíženo, pracujeme v nekonečně rozměrném vektorovém prostoru se (skoro) skalárním součinem $\langle \cdot, \cdot \rangle$, v němž jsou "souřadnými osami"(prvky ortogonální báze) funkce

$$\{\cos(nx) \mid n \in \mathbb{N}_0\} \cup \{\cos(nx) \mid n \in \mathbb{N}\}\$$

V kontrastu s kartézskými souřadnicemi bodů v \mathbb{R}^n se ale zdaleka ne každá funkce rovná součtu své Fourierovy řady.

Věta (Besselova nerovnost): Pro Fourierovy koeficienty a_n a b_n funkce $f \in \mathcal{R}(-\pi, \pi)$ platí nerovnost

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \le \frac{\langle f, f \rangle}{\pi} = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2.$$

Důkaz: TODO

6 Spočítejte, že $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

Příklad (Basilejský problém): TODO

- 7 Dokažte, že stejnoměrná limita spojitých funkcí je spojitá funkce.
- 8 Dokažte případ 2 nebo případ 3 Pólyovy věty.
- 9 Dokažte, že $\rho \neq 0$.
- 10 Dokažte Caychy-Goursatovu větu pro obdélníky.
- 11 Vyřešte diferenciální rovnici y' + ay = b.