Toolbox

Fredrik Meyer

October 30, 2014

1 Techniques

1.1 Compute the ideal of an affine toric variety

Suppose given an affine toric X_{σ} defined by a full-dimensional rational polyhedral convex cone in $N_{\mathbb{R}} \simeq \mathbb{R}^d$. Then the coordinate ring of X_{σ} is given by the semigroup algebra $k[S_{\sigma}]$, where $S_{\sigma} = \sigma^{\vee} \cap M$.

Here σ^{\vee} is the dual cone and M is the dual lattice N^{\vee} . There is a canonical k-algebra basis for $k[S_{\sigma}]$ given by the *Hilbert basis* of the semigroup $\sigma^{\vee} \cap M$. This gives us a presentation $k[\mathbf{x}] \to k[S_{\sigma}]$.

Thus there are three steps in computing the toric ideal:

- 1. First compute the dual cone σ^{\vee} .
- 2. Compute a Hilbert basis $\{m_1, \dots, m_r\}$ of $\sigma^{\vee} \cap M$.
- 3. Compute the kernel of the map

$$k[x_1, \cdots, x_r] \to k[S_\sigma]$$

 $x_i \mapsto m_i.$

Here is a Macaulay2 session that starts with a cone $\sigma \subseteq \mathbb{N}_{\mathbb{R}}$, and prints the corresponding toric ideal.

```
M = matrix{{3,1},{1,2}}
C = posHull M
Cd = dualCone C
hB = transpose matrix apply(hilbertBasis Cd, a -> entries a_0)
I = toricGroebner(hB, QQ[vars(0..#hB-1)])
```