计量经济学

第六讲:一元线性回归(二)

黄嘉平

工学博士 经济学博士 深圳大学中国经济特区研究中心 讲师

办公室 粤海校区汇文楼2613

E-mail huangjp@szu.edu.cn
Website https://huangjp.com

主要内容

- 假设检验和置信区间
- X 为二值变量时的回归
- 异方差和同方差
- Gauss-Markov 定理

假设检验和置信区间

回归系数的大样本抽样分布

• 在 OLS 假设成立,且满足大样本条件时,回归系数的估计量 $\hat{\beta}_0$ 和 $\hat{\beta}_1$ 服从联合正态分布。其边缘分布分别是

$$\widehat{\beta}_0 \sim N(\beta_0, \sigma_{\widehat{\beta}_0}^2),$$

$$\sigma_{\widehat{\beta}_0}^2 = \frac{1}{n} \frac{\text{var}(H_i u_i)}{[E(H_i^2)]^2}, \quad 其中 H_i = 1 - \left[\frac{\mu_X}{E(X_i^2)}\right] X_i$$

$$\widehat{\beta}_1 \sim N(\beta_1, \sigma_{\widehat{\beta}_1}^2),$$

$$\sigma_{\widehat{\beta}_1}^2 = \frac{1}{n} \frac{\text{var}[(X_i - \mu_X) u_i]}{[\text{var}(X_i)]^2}$$

β_1 的假设检验

• t 统计量的一般形式:

$$t = \frac{\text{估计量 - 假设值}}{\text{估计量的标准误}}$$

• β_1 的双边假设:

$$H_0: \beta_1 = \beta_{1,0}; \quad H_1: \beta_1 \neq \beta_{1,0}$$

• *t* 统计量为

$$t = \frac{\widehat{\beta}_1 - \beta_{1,0}}{\text{SE}(\widehat{\beta}_1)},$$

其中
$$SE(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\hat{\beta}_1}^2}, \ \hat{\sigma}_{\hat{\beta}_1}^2 = \frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^n (X_i - \overline{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2\right]^2}$$

STAR 数据的回归结果

Model 1: OLS, using observations 1-420

Dependent variable: testscr

	coefficient	std. error	t-ratio	p-value
const	698.933	9.46749	73.82	6.57e-242 ***
	-2.27981	0.479826	-4.751	2.78e-06 ***

Mean dependent var	654.1565	S.D. dependent var	19.05335
Sum squared resid	144315.5	S.E. of regression	18.58097
R-squared	0.051240	Adjusted R-squared	0.048970
F(1, 418)	22.57511	P-value(F)	2.78e-06
Log-likelihood	-1822.250	Akaike criterion	3648.499
Schwarz criterion	3656.580	Hannan-Quinn	3651.693

回归结果的表述方式

• 我们的回归模型是

$$testscr = \beta_0 + \beta_1 str + u_i$$

• 通常可以将回归结果用等式形式表述

$$\widehat{\text{testscr}} = 698.9 - 2.28 \times \text{str}, \quad R^2 = 0.051, \, \text{SER} = 18.6$$

此时,回归系数估计值下方的括号内为该系数估计量的**标准误**。

注:在括号内填写 t 值也是可以接受的,因为通常原假设都为 $\beta_k = 0$ 。但填写标准误的优点更大,且被更广泛地采用。无论填写哪个量,都需要在文章中适当的地方准确告知读者你填写的是什么。

β_1 的置信区间

• β_1 的 95% 双侧置信区间为:

$$[\hat{\beta}_1 - 1.96 \text{ SE}(\hat{\beta}_1), \hat{\beta}_1 + 1.96 \text{ SE}(\hat{\beta}_1)]$$

• X 的变化引起的预期效应的置信区间

当 X 的变化量为 Δx 时,对应的 Y 的预期变化为 $\beta_1 \Delta x$,其 95% 置信区间为

$$[\hat{\beta}_1 \Delta x - 1.96 \text{ SE}(\hat{\beta}_1) \Delta x, \hat{\beta}_1 \Delta x + 1.96 \text{ SE}(\hat{\beta}_1) \Delta x]$$

X为二值变量时的回归

二值变量

Binary variable

- 二值变量(binary variable)即为只取两个值的变量,通常为分类变量,因此去值可以设为 0 或 1。二值变量也称作指示变量(indicator variable)或虚拟变量(dummy variable)。
- 当唯一的回归变量为二值变量时,回归分析等价于对均值之差的分析:

$$Y_i = \beta_0 + \beta_1 D_i + u_i, \quad D_i \in \{0,1\}$$

则
$$Y_i = \beta_0 + u_0$$
 $(D_i = 0)$, $Y_i = \beta_0 + \beta_1 + u_0$ $(D_i = 1)$, 因此 $E(Y_i \mid D_i = 0) = \beta_0$, $E(Y_i \mid D_i = 1) = \beta_0 + \beta_1$, 即

$$\beta_1 = E(Y_i \mid D_i = 1) - E(Y_i \mid D_i = 0)$$

课后练习 (不需提交)

• 使用 STAR 数据集,根据 ${
m str}$ 变量定义二值变量 D_i

$$D_i = \begin{cases} 1 & \text{if str} < 20\\ 0 & \text{if str} \ge 20 \end{cases}$$

- 用 gretl 对模型 $Y_i = \beta_0 + \beta_1 D_i + u_i$ 进行回归分析,找到系数 β_1 的统计值和标准误。
- 令 str_L 为 str < 20 的子集, str_H 为 $str \ge 20$ 的子集。针对两个子集中 testscr 的均值进行比较,并对均值差为零的原假设进行检验(参考3.4节)。比较检验结果和回归分析结果。

异方差和同方差

异方差的定义

• 如果对于任意的 i=1,2,...,n, $var(u_i \mid X_i = x)$ 为常数且不依赖于 x 时,误差项 u_i 是**同方差的(homoskedastic)**,否则,误差项是**异方差的(heteroskedastic)**。

同方差

异方差

同方差和 OLS 假设

- OLS 估计量的无偏性、一致性、服从渐近正态分布的性质只要求 OLS 假设,与同方差或异方差无关。
- 如满足同方差和 OLS 假设,则 OLS 估计量是 BLUE 的。(5.5 节 Gauss-Markov 定理)
- 同方差和异方差时, \hat{eta}_0 和 \hat{eta}_1 的标准误的表达式不同:

- 异方差时:
$$\operatorname{SE}(\widehat{\beta}_1) = \sqrt{\widehat{\sigma}_{\widehat{\beta}_1}^2}$$
, $\widehat{\sigma}_{\widehat{\beta}_1}^2 = \frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^n (X_i - \overline{X})^2 \widehat{u}_i^2}{\left[\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2\right]^2}$ 异方差稳健标准误(heteroskedasticity-robust SE, or HC1) See, e.g., MacKinnon & White (1985).

• 同方差时:
$$SE(\hat{\beta}_1) = \sqrt{\tilde{\sigma}_{\hat{\beta}_1}^2}$$
, $\tilde{\sigma}_{\hat{\beta}_1}^2 = \frac{SER^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$

我们应该假设同方差吗?

- 异方差出现在很多现实经济现象和数据中,如收入、性别。
- 假设同方差的优点
 - 实践上: 令回归系数的 OLS 统计量标准误的计算变的略简单;
 - 理论上:可推导出 OLS 统计量具有 BLUE 性质(后述)。
- 假设同方差的缺点
 - 如果事实是异方差,则 OLS 统计量标准误将会计算错误,导致错误的检验结果。
- 假设同方差或异方差,都不影响 OLS 统计量的估计值、无偏性、一致性和服从渐进正态分布。
- 因此,我们应该承认异方差的普遍存在,并默认使用异方差稳健标准误。

在 gretl 中使用异方差稳健标准误

偏好设置 Tools > Preferences > General...

在 gretl 中使用异方差稳健标准误

编程模式

• 在整个程序开始时运行以下命令,可适用于整个程序

```
set force_hc on
set hc_version 1
    # 0 (the original White's) is the default
set robust_z on
```

• 对于单一 OLS 回归,则可以采用以下写法

```
ols yvar xvar --robust
```

(当然,你还是需要提前设置 hc_version)

STAR 数据的回归结果

同方差

Model 1: OLS, using observations 1-420

Dependent variable: testscr

	coefficient	std. error	t-ratio	p-value
const	698.933	9.46749	73.82	6.57e-242 ***
str	-2.27981	0.479826	-4.751	2.78e-06 ***

Mean dependent var	654.1565	S.D. dependent var	19.05335
Sum squared resid	144315.5	S.E. of regression	18.58097
R-squared	0.051240	Adjusted R-squared	0.048970
F(1, 418)	22.57511	P-value(F)	2.78e-06
Log-likelihood	-1822.250	Akaike criterion	3648.499
Schwarz criterion	3656.580	Hannan-Quinn	3651.693

STAR 数据的回归结果

异方差

Model 1: OLS, using observations 1-420

Dependent variable: testscr

Heteroskedasticity-robust standard errors, variant HC1

const 698.933	10.3	644	.		
str –2.27981	. 0.5		67.44 -4.389	0.0000 1.14e-05	*** ***
Sum squared resid 14 R-squared 0. F(1, 418) 19	4.1565 4315.5 051240 .25943 22.250	S.E. of Adjusted P-value(endent varient variegression (1984) F) Triterion	on 18.58	3097 3970 3014

Gauss-Markov 定理

线性条件无偏估计量

Linear conditional unbiased estimator

• 线性条件估计量: 在 $X_1, X_2, ..., X_n$ 的条件下, β_1 的估计量

$$\widetilde{\beta}_1 = \sum_{i=1}^n a_i Y_i$$

被称为线性条件估计量。其中权重 $a_1, a_2, ..., a_n$ 可以依赖于 $X_1, X_2, ..., X_n$ 但不能依赖于 $Y_1, Y_2, ..., Y_n$ 。

- 若 $E(\widetilde{\beta}_1 \mid X_1, X_2, ..., X_n) = \beta_1$,则估计量 $\widetilde{\beta}_1$ 是条件无偏的。
- OLS 估计量是线性的、条件无偏的(证明见附录5.2)。

Gauss-Markov 定理

若三个 OLS 假设成立,且误差同方差,则 OLS 估计量 $\hat{\beta}_1$ 是最佳(最有效的)线性条件无偏估计量(BLUE)。

- 证明见附录 5.2。由附录 5.2 也可知 Gauss-Markov 定理所需要的条件,即 Gauss-Markov 条件(弱于 OLS 假设 + 同方差)。
- Gauss-Markov 定理的局限性:
 - 其条件在实际应用中可能不成立,如同方差性。
 - 存在其他非线性的条件无偏估计量,且又可能比 OLS 估计量更有效。如加权最小二乘估计量(weighted least squares, WLS)、最小绝对变差估计量(least absolute deviations, LAD)。

关于异方差稳健标准误的参考文献

- White, H., (1980). A Heteroskedasticity-consistent Covariance Matrix and a Direct Test for Heteroskedasticity, *Econometrica*, 48, 817-838.
- MacKinnon, J., and White, H., (1985). Some Heteroskedasticityconsistent Covariance Matrix Estimators with Improved Finite Sample Properties, *Journal of Econometrics*, 29, 305-325.
- MacKinnon, J., (2013). Thirty Years of Heteroskedasticity-Robust Inference, in X. Chen and N. R. Swanson (eds.), Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis, Springer, New York.
- Cottrell, A, and Lucchetti, R., (2021). *Gretl User's Guide*, Chapter 22. GNU.