## 实验报告

#### 【实验内容】

1.使用74LS151设计一个带控制端的半加半减器,输入为S、A、B,其中S为功能选择口。S=0加法,S=1减法。分别进行静态测试和动态测试。

| S | 输入1 | 输入2 | 输出 Y | 进/借位 C <sub>n</sub> |
|---|-----|-----|------|---------------------|
| 0 | A   | В   | A+B  | 进位                  |
| 1 | A   | В   | A-B  | 借位                  |

表 3-9 带控制端的半加半减器功能表

2.使用74LS150设计一个函数发生器。输入为S0、S1、A、B,其中S0、S1为功能选择口。

| 输     | 输出    |       |  |
|-------|-------|-------|--|
| $S_1$ | $S_0$ | Y     |  |
| 0     | 0     | A · B |  |
| 0     | 1     | A+B   |  |
| 1     | 0     | А⊕В   |  |
| 1     | 1     | Ā     |  |

#### 【实验原理】

74LS151(8 路数据选择器)和 74LS150(16 路数据选择器)可以从一组输入数据选出某一个信号输出,经常用于输入选择。可根据产生的最小项,同时产生或电路。相比于 3-8 译码器,电路更加完备,可以大大简化电路设计,但一个输出需要用一个数据选择器。

# 【实验设计与结果】

## 半加半减器的静态测试

## 首先我们可以画出真值表

| S   | A     | B     | Y        | Cn      |       |
|-----|-------|-------|----------|---------|-------|
| 0   | 0     | 0     | 0        | 0       |       |
| 0   | 0     | 1     | 1        | 0       |       |
| 0   | 1     | 0     | 1        | 0       |       |
| 0   | 1     | 1     | 0        | 1       | Asim  |
| 1   | 0     | 0     | 0        | 0       | 907   |
| 1   | 0=    | 91,4  | 1        | E9/= (a | 4 1/2 |
| 1   | 1     | 0     | 1        | 0       | AG    |
| 1   | 1     | 1219  | D        | 0-1     | f. cp |
| PER | 69=19 | F. CR | The same | 4 = 10  | 92.7  |

## 可设计出如下电路



在上方的 74LS151 取 X1、X2、X5、X6 连高电平, X0、X3、X4、X7 接地;在下方的 74LS151 取 X3、X5 连高电平, X0、X1、X2、X4、X6、X7 接地。左边的三个激励源由上至下对应真值表 B、A、S,分别连接在两片 74LS151 的 A、B、C 接口。最后在两个 74LS151 的输出上接上电压表 (上 Y 下 Cn) 再接地,形成回路。以下是静态测试(3 个样例)



000->00



011->01



110->10

### 由结果可知电路设计正确

## 半加半减器的动态测试



我们保持对两片 74LS151 的 8 路数据不变,即在上方的 74LS151 取 X1、X2、X5、X6 连高电平,X0、X3、X4、X7 接地;在下方的 74LS151 取 X3、X5 连高电平,X0、X1、X2、X4、X6、X7 接地。将 74LS197 的 Q0、Q1、Q2 分别连入两片 74LS151的 A、B、C接口,分别对应真值表的 B、A、S,并将 CLOCK 调到 10kHz。然后我们将 CP(时钟)、S、A、B、Y、Cn 分别连到右边逻辑分析仪的 A0、A1、A2、A3、A4、A5 接口,观察并记录波形。



实验中我发现 A4 (即 Y) 的波形产生了冒险现象,所以我在 Y 的输出上并上了一个 0.1uF 的小电容,即可解决问题。由上图观察可知,Y 经历 0110 的循环,Cn 经历 00010100 的循环,且与前几个波形分别对应,所以该电路设计正确。

# 函数发生器的静态测试

# 首先我们画出真值表



发现 Y = m3 + m5 + m6 + m7 + m9 + m10 + m12 + m13

#### 可设计出如下电路:



在 74LS150 芯片的 X3、X5、X6、X7、X9、X10、X12、X13 接高电平, X0、X1、X2、X4、X8、X11、X14、X15 接地。左边四个激励源分别接上 74LS150 芯片的 A、B、C、D,分别对应真值表的 B、A、S0、S1。最后在 74LS150 的输出上加 7404 反相器可得正确输出,再接上电压表接地形成回路。

#### 以下是静态测试 (三个样例):



0100 -> 0 0 + 0 = 0



0110 -> 1 1 + 0 = 1



1100->1 0取非是1

由结果可知电路设计正确

#### 函数发生器的动态测试



在 74LS150 芯片的 X3、X5、X6、X7、X9、X10、X12、X13 接高电平, X0、X1、X2、X4、X8、X11、X14、X15 接地。左边一个 74LS197 的 Q0、Q1、Q2、Q3 分别连到 74LS150 的 A、B、C、D 上,分别代表真值表上的 B、A、S0、S1。然后我们将 CP(时钟)、S1、S0、A、B、Y 分别连接到右边逻辑分析仪的 A0、A1、A2、A3、A4、A5 上,观察并记录波形。



实验中我发现 A5 (即 Y) 的波形产生了冒险现象,所以我在 Y 的输出上并上了一个 0.1uF 的小电容,即可解决问题。由上图观察可知, Y 经历 0001011101101100的循环,且与另外几个波形分别对应,所以该电路设计正确。

#### 【实验心得】

本次实验我学会了用 74LS151 芯片设计一个带控制端的半加半减器,也学会了用 74LS150 芯片设计一个函数发生器。对于实验中产生的冒险现象,我也知道了如何解决。一个组合逻辑电路设计通常需要先画出真值表,再通过真值表得出相应的表达式,最后即可设计出正确的电路。这次实验也相对比较简单,但完成时的喜悦与自豪感还是那么强烈。