Answers - Integrating factor method (page ??)

1.
$$\frac{dy}{dx} + 2y = 4$$
; $y(0) = 4$

$$p(x)=2$$
, so set integrating factor to $\mu=e^{\int 2 dx}=e^{2x}$

Multiply equation by μ :

$$e^{2x} \frac{dy}{dx} + 2e^{2x} y = 4e^{2x}$$

Note that $\frac{d}{dx}e^{2x}y = e^{2x}\frac{dy}{dx} + 2e^{2x}y$, which is the same as the left hand side of the equation.

Rewrite the equation as $\frac{d}{dx}e^{2x}y = 4e^{2x}$

Integrating both sides:

$$\int \frac{d}{dx}e^{2x}y = \int 4e^{2x} \, dx$$

$$e^{2x}y = 2e^{2x} + c$$

Substituting in y(0) = 4, we get:

$$e^{0}4 = 2e^{0} + c \Rightarrow 4 = 2 + c \Rightarrow c = 2$$

$$e^{2x}y = 2e^{2x} + 2$$

Rearranging to solve:

$$y = 2 + \frac{2}{e^{2x}} = 2 + 2e^{-2x}$$

2.
$$\frac{dy}{dx} + 2y = e^{4x}$$
; $y(0) = 4$

$$p(x) = 2$$
, so integrating factor $\mu = e^{2x}$

New equation is:

$$e^{2x}\frac{dy}{dx} + 2e^{2x}y = e^{6x}$$

The left hand side is the same as $\frac{d}{dx}\left(e^{2x}y\right) = e^{2x}\frac{dy}{dx} + 2e^{2x}y$, so we can rewrite the equation as:

$$\frac{d}{dx}\Big(e^{2x}y\Big) = e^{6x}$$

Integrating both sides:

$$\int \frac{d}{dx} \left(e^{2x} y \right) = \int e^{6x} \, dx$$

$$e^{2x}y = \frac{e^{6x}}{6} + c$$

Substitute y(0) = 4:

$$e^{0}4 = \frac{e^{0}}{6} + c \Rightarrow 4 = \frac{1}{6} + c \Rightarrow c = \frac{23}{6}$$

$$e^{2x}y = \frac{e^{6x}}{6} + \frac{23}{6}$$

$$y = \frac{e^{4x}}{6} + \frac{23}{6e^{2x}}$$

3.
$$\frac{dy}{dx} + y = e^{-x}$$
; $y(0) = 1$

$$p(x) = 1 \Rightarrow \mu = e^x$$

$$e^x \frac{dy}{dx} + e^x y = 1$$

Since LHS = $\frac{d}{dx}(e^xy)$, we rewrite the equation:

$$\frac{d}{dx}(e^x y) = 1$$

Integrate:

$$\int \frac{d}{dx} (e^x y) = \int 1 \, dx$$

$$e^x y = x + c$$

Substitute in y(0) = 1:

$$e^0 \times 1 = 0 + c \Rightarrow c = 1$$

$$e^x y = x + 1$$

$$y = \frac{x}{e^x} + \frac{1}{e^x}$$

4.
$$\frac{dy}{dx} + 2xy = x; y(1) = 1$$

$$p(x) = 2x \Rightarrow \mu = e^{x^2}$$

$$e^{x^2} \frac{dy}{dx} + 2e^{x^2} xy = xe^{x^2}$$

Notice that the LHS is same as $\frac{d}{dx}(e^{x^2}y)$, so we can rewrite the equation:

$$\frac{d}{dx}(e^{x^2}y) = xe^{x^2}$$

Integrate:

$$\int \frac{d}{dx} (e^{x^2} y) = \int x e^{x^2} dx$$

$$e^{x^2}y = \frac{e^{x^2}}{2} + c$$

Substitute y(1) = 1:

$$e^1 1 = \frac{e^1}{2} + c \Rightarrow c = \frac{e}{2}$$

$$e^{x^2}y = \frac{e^{x^2}}{2} + \frac{e}{2}$$

$$y = \frac{1}{2} + \frac{e^{(1-x^2)}}{2}$$

5.
$$\frac{dy}{dx} + 3x^2y = e^{x-x^3}$$
; $y(0) = 2$

$$p(x) = 3x^2 \Rightarrow \mu = e^{x^3}$$

$$e^{x^3} \frac{dy}{dx} + 3e^{x^3} x^2 y = e^x$$

The LHS is the same as $\frac{d}{dx} \left(e^{x^3} y \right)$ so we can rewrite the equation:

$$\frac{d}{dx}\left(e^{x^3}y\right) = e^x$$

Integrating:

$$\int \frac{d}{dx} \left(e^{x^3} y \right) = \int e^x \, dx$$

$$e^{x^3}y = e^x + c$$

Substitute y(0) = 2:

$$e^0 \times 2 = e^0 + c \Rightarrow c = 1$$

$$e^{x^3}y = e^x + 1$$

$$y = e^{(x-x^3)} + \frac{1}{e^{x^3}}$$

6.
$$4\frac{dy}{dx} + y = 3x; y(2) = 6$$

Divide by 4 to get the equation into standard form:

$$\frac{dy}{dx} + \frac{1}{4}y = \frac{3x}{4}$$

$$p(x) = \frac{1}{4} \Rightarrow \mu = e^{\frac{x}{4}}$$

$$e^{\frac{x}{4}}\frac{dy}{dx} + e^{\frac{x}{4}}\frac{y}{4} = e^{\frac{x}{4}}\frac{3x}{4}$$

LHS is the same as $\frac{d}{dx}e^{\frac{x}{4}}y$ so we can rewrite the equation:

$$\frac{d}{dx}e^{\frac{x}{4}}y = e^{\frac{x}{4}}\frac{3x}{4}$$

Integrating both sides:

$$\int \frac{d}{dx} e^{\frac{x}{4}} y = \int e^{\frac{x}{4}} \frac{3x}{4} dx$$

$$e^{\frac{x}{4}}y = \frac{3}{4} \int e^{\frac{x}{4}}x \, dx$$

We can Integrate by Parts for the RHS, remembering that $f'g = fg - \int g'f$:

$$f' = e^{\frac{x}{4}}$$

$$f = 4e^{\frac{x}{4}}$$

$$g = x$$

$$q' = 1$$

So the integral is:

$$\frac{3}{4} \int e^{\frac{x}{4}} x \, dx = \frac{3}{4} \left[4xe^{\frac{x}{4}} - \int 4e^{\frac{x}{4}} \, dx \right] = \frac{3}{4} \left[4xe^{\frac{x}{4}} - 16e^{\frac{x}{4}} \right] = 3xe^{\frac{x}{4}} - 12e^{\frac{x}{4}} + c$$

Returning to the differential equation, we now have:

$$e^{\frac{x}{4}}y = 3xe^{\frac{x}{4}} - 12e^{\frac{x}{4}} + c$$

Substituting y(2) = 6:

$$e^{\frac{2}{4}} \times 6 = 6e^{\frac{2}{4}} - 12e^{\frac{2}{4}} + c \Rightarrow c = 12e^{\frac{1}{2}}$$

$$e^{\frac{x}{4}}y = 3xe^{\frac{x}{4}} - 12e^{\frac{x}{4}} + 12e^{\frac{1}{2}}$$

$$y = 3x - 12 + 12e^{(\frac{1}{2} - \frac{x}{4})}$$

7.
$$x \frac{dy}{dx} + y = 1; x > 0, y(1) = 1$$

Divide the equation by x to get into standard form:

$$\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x}$$

$$p(x) = \frac{1}{x} \Rightarrow \mu = e^{\int \frac{1}{x}} dx = e^{\ln x} = x$$

Multiply equation by μ :

$$x\frac{dy}{dx} + y = 1$$

The LHS is the same as $\frac{d}{dx}(xy)$ therefore we can rewrite the equation as:

$$\frac{d}{dx}xy = 1$$

Integrate:

$$\int \frac{d}{dx} xy = \int 1 \, dx$$

$$xy = x + c$$

Substitute y(1) = 1:

$$1 = 1 + c \Rightarrow c = 0$$

$$xy = x$$

So the solution to the differential equation is y = 1

8.
$$x \frac{dy}{dx} + 5y = \frac{3}{x^5 \ln(x)}; x \ge e; y(e) = 1$$

Divide the equation by x to get into standard form:

$$\frac{dy}{dx} + \frac{5y}{x} = \frac{3}{x^6 \ln(x)}$$

$$p(x) = \frac{5}{x} \Rightarrow \mu = e^{\int \frac{5}{x} dx} = e^{5 \ln(x)} = e^{\ln(x^5)} = x^5$$

$$x^5 \frac{dy}{dx} + 5x^4 y = \frac{3}{x \ln(x)}$$

The LHS is the same as $\frac{d}{dx}(x^5y)$ so we can rewrite the equation:

$$\frac{d}{dx}(x^5y) = \frac{3}{x\ln(x)}$$

Integrating:

$$\int \frac{d}{dx}(x^5y) = \int \frac{3}{x\ln(x)} dx$$

We use integration by substitution for the RHS:

$$u = \ln(x) \Rightarrow du = \frac{1}{x}dx$$

$$\int \frac{3}{u} du = 3 \ln (u) = 3 \ln (\ln (x))$$

$$x^5y = 3\ln\left(\ln\left(x\right)\right) + c$$

Substituting in y(e) = 1:

$$e^5 = 3\ln\left(\ln\left(e\right)\right) + c$$

$$e^5 = 3 \ln 1 + c$$

$$c = e^5$$

$$x^5y = 3\ln(\ln(x)) + e^5$$

$$y = \frac{3\ln(\ln(x)) + e^5}{x^5}$$

9.
$$2\frac{dy}{dx} + 4xy = (x+1)e^{2x}; y(e) = e^{-x}$$

Divide the equation by 2 to put it into standard form.

$$\frac{dy}{dx} + 2xy = \frac{(x+1)e^{2x}}{2}$$

$$p(x) = 2x \Rightarrow \mu = e^{x^2}$$

$$e^{x^2} \frac{dy}{dx} + 2e^{x^2} xy = \frac{(x+1)e^{x^2+2x}}{2}$$

The LHS is the same as $\frac{d}{dx} \left(e^{x^2} y \right)$ so we can rewrite the equation:

$$\frac{d}{dx}\left(e^{x^2}y\right) = \frac{(x+1)e^{x^2+2x}}{2}$$

Integrate:

$$\int \frac{d}{dx} \left(e^{x^2} y \right) = \int \frac{(x+1)e^{x^2+2x}}{2} \, dx$$

Using a substitution of $u=e^{x^2+2x}$, $du=(2x+2)e^{x^2+2x}dx$. Therefore, $\frac{1}{4}du=\frac{(x+1)e^{x^2+2x}}{2}dx$

$$\frac{1}{4} \int 1 \, du = \frac{u}{4}$$

Giving us:
$$e^{x^2}y = \frac{e^{x^2+2x}}{4} + c$$

Substituting in y(e) = e:

$$e^{e^2}e = \frac{e^{e^2+2e}}{4} + c$$

$$e^{e^2+1} = \frac{e^{e^2+2e}}{4} + c$$

$$c = \frac{4e^{e^2 + 1} - e^{e^2 + 2e}}{4}$$

$$e^{x^2}y = \frac{e^{x^2 + 2x}}{4} + \frac{4e^{e^2 + 1} - e^{e^2 + 2e}}{4}$$

$$y = \frac{e^{2x}}{4} + \frac{e^{e^2 - x^2}(4e - e^{2e})}{4}$$

10.
$$3\frac{dy}{dx} - 3\sin(2x)y = e^{-\cos^2(x)}; y\left(\frac{3\pi}{2}\right) = \pi$$

Divide by 3 to get the equation into standard form:

$$\frac{dy}{dx} - \sin(2x)y = \frac{e^{-\cos^2(x)}}{3}$$
$$p(x) = -\sin(2x) \Rightarrow \mu = e^{\frac{\cos(2x)}{2}}$$

$$e^{\frac{\cos(2x)}{2}} \frac{dy}{dx} - e^{\frac{\cos(2x)}{2}} \sin(2x) y = \frac{e^{\frac{\cos(2x)}{2} - \cos^2(x)}}{3}$$

The LHS is the same as $\frac{d}{dx} \left(e^{\frac{\cos(2x)}{2}} y \right)$ so we can rewrite the equation.

$$\frac{d}{dx}\left(e^{\frac{\cos(2x)}{2}}y\right) = \frac{e^{\frac{\cos(2x)}{2} - \cos^2(x)}}{3}$$

Before integrating, we can simplify the RHS a little bit. Using the Cosine Double Angle rule, we know $\cos^2{(x)} = \frac{\cos{(2x)} + 1}{2}$. Therefore, the RHS will be $\frac{e^{\frac{\cos{(2x)} - (\frac{\cos{(2x)} + 1}{2})}}{3}}{3} = \frac{e^{-\frac{1}{2}}}{3}$

Giving us:

$$\frac{d}{dx}\left(e^{\frac{\cos(2x)}{2}}y\right) = \frac{e^{-\frac{1}{2}}}{3}$$

Integrating:

$$\int \frac{d}{dx} \left(e^{\frac{\cos(2x)}{2}} y \right) = \int \frac{e^{-\frac{1}{2}}}{3} dx$$
$$e^{\frac{\cos(2x)}{2}} y = \frac{e^{-\frac{1}{2}} x}{3} + c$$

Substituting $y(\frac{3\pi}{2}) = \pi$, we get:

$$e^{\frac{\cos(3\pi)}{2}\pi} = \frac{e^{-\frac{1}{2} \times \frac{3\pi}{2}}}{3} + c$$

$$\pi e^{-\frac{1}{2}} = \frac{\pi e^{-\frac{1}{2}}}{2} + c$$

$$c = \frac{\pi}{e^{\frac{1}{2}}} - \frac{\pi}{2e^{\frac{1}{2}}} = \frac{\pi}{2e^{\frac{1}{2}}}$$

$$e^{\frac{\cos(2x)}{2}}y = \frac{e^{-\frac{1}{2}}x}{3} + \frac{\pi}{2e^{\frac{1}{2}}}$$

$$e^{\frac{\cos(2x)}{2}}y = \frac{x}{3e^{\frac{1}{2}}} + \frac{\pi}{2e^{\frac{1}{2}}}$$

$$e^{\frac{\cos(2x)}{2}}y = \frac{2x+3\pi}{6e^{\frac{1}{2}}}$$

$$y = \frac{2x + 3\pi}{6e^{\frac{1+\cos(2x)}{2}}}$$

$$y = \frac{2x + 3\pi}{6e^{\cos^2(x)}}$$