Ejercicio 1. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {0, 1}, que acepte el conjunto de palabras que inician en "0".

Q = {START, S0, S1}

q0 = START

F = { S0 }

f(START, 0) = S0

f(S0, 0) = S0

f(S0, 1) = S0

f (START, 1) = S1

f(S1, 1) = S1

f(S1, 0) = S1

ACCEPT:

010101

011111

000001

01

001

REJECT:

11000

11111

100000

101

Reject: 111 -- Pass

Ejercicio 2. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {0, 1}, que acepte el conjunto de palabras que terminan en "1".

 $\sum = \{0,1\}$

Q = {START, S0, S1}

q0 = START

 $F = {S1}$

f(START, 0) = S0

f(S0, 0) = S0

f(S0, 1) = S1

f (START, 1) = S1

f(S1, 1) = S1

f(S1, 0) = S0

ACCEPT:

000001

11111

010101

11111

000001111

REJECT:

11000

111110

100000

1001

Ejercicio 3. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {0, 1}, que acepte el conjunto de palabras que contienen la subcadena "01".

$$\sum = \{0,1\}$$

Q = {START, S0, S1}

q0 = START

$$F = {S1}$$

f(START, 0) = S0

f(S0, 0) = S0

f(S0, 1) = S1

f (START, 1) = SART

f (S1, 1) = S1

f (S1, 0) = S1

ACCEPT:

01

00001

111101

00100

00111100

REJECT:

00

11111

110

10000

Ejercicio 4. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {0, 1}, que acepte el conjunto de palabras que no contienen la subcadena "01".

$$\sum = \{0,1\}$$

Q = {START, S0, S1, S2}

q0 = START

 $F = \{S0, S2\}$

f(START, 0) = S0

f(S2, 0) = S0

f(S0, 0) = S0

f(S2, 1) = S2

f(S0, 1) = S1

f (START, 1) = S2

f(S1, 1) = S1

f(S1, 0) = S1

ACCEPT:

00

11111

110

10000

11110

REJECT:

01

00001

111101

00100

Ejercicio 5. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {a, b, c}, que acepte el conjunto de palabras que inician con la subcadena "ac" o terminan con la subcadena "ab".

Q = {START, S0, S1, S2, S3, S4, S5}

q0 = START

 $F = \{S1, S2\}$

f(START, a) = S0

f(S0, c) = S2

f(S0, b) = S1

f(S2, a) = S2

f(S2, b) = S2

f(S2, c) = S2

f(S1, b) = S1

f(START, b) = S3

f(S1, a) = S5

f(S1, b) = S3

f(S1, c) = S4

f(S3, b) = S3

f(S3, a) = S5

f(S3, c) = S4

f(S4, b) = S3

f(S4, a) = S5

f(S4, c) = S4

f(S5, a) = S5

f(S5, c) = S4

f(S5, b) = S1

f(START, c) = S4

ACCEPT:

acabbbac

ac

abab

ab

bbab

REJECT:

abc

aacba

bacaca

abc

ca

bac

Ejercicio 6. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {a, b, c}, que acepte el conjunto de palabras que inician con la subcadena "ac" y no terminan con la subcadena "ab".

 $\sum = \{a,b,c\}$

Q = {START, S0, S1, S2}

q0 = START

 $F = {S3}$

f(START, a) = S0

f (START, b) = S1

f(S0, b) = S1

f(S0, c) = S3

f(START, C) = SART

f(S1, c) = S1

f(S3, a) = S3

f(S3, b) = S3

f(S3, c) = S3

ACCEPT:

acabbbac

ac

acbac

acb

acba

REJECT:

ab

aacbab

bacaca

abc

са

Ejercicio 7. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {a, b, c}, que acepte el conjunto de palabras que inician con la subcadena "ac" o no terminan con la subcadena "ab".

$$\sum = \{a,b,c\}$$

Q = {START, S0, S1, S2, S3, S4, S5}

q0 = START

F = {S2, S3, S4, S5}

f(START, a) = S0

f(S0, c) = S2

f(S0, b) = S1

f(S2, a) = S2

f(S2, b) = S2

f(S2, c) = S2

f(S1, b) = S1

f(START, b) = S3

f(S1, a) = S5

f(S1, b) = S3

f(S1, c) = S4

f(S3, b) = S3

f(S3, a) = S5

f(S3, c) = S4

f(S4, b) = S3

f(S4, a) = S5

f(S4, c) = S4

f(S5, a) = S5

f(S5, c) = S4

f(S5, b) = S1

f(START, c) = S4

ACCEPT:

acabbbac

ac

abc

bacaca

abc

REJECT:

ccab

abab

ab

bbab

ccaacab

Ejercicio 8. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {a, b, c}, que acepte el conjunto de palabras que no inician con la subcadena "ac" y no terminan con la subcadena "ab".

Q = {START, S0, S1, S2, S3, S4, S5}

q0 = START

F = {S3, S4, S5}

f(START, a) = S0

f(S0, c) = S2

f(S0, b) = S1

f(S2, a) = S2

f(S2, b) = S2

f(S2, c) = S2

f(S1, b) = S1

f(START, b) = S3

f(S1, a) = S5

f(S1, b) = S3

f(S1, c) = S4

f(S3, b) = S3

f(S3, a) = S5

f(S3, c) = S4

f(S4, b) = S3

f(S4, a) = S5

f(S4, c) = S4

f(S5, a) = S5

f(S5, c) = S4

f(S5, b) = S1

f(START, c) = S4

ACCEPT:

abc

bacaca

abc

abbb

ccccc

REJECT:

ccab

abab

bbab

ccaacab

acabbbac

Ejercicio 9. Obtenga un Autómata Finito No Determinista (AFND) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que no contienen la subcadena "01".

 $\sum = \{0,1\}$

Q = {START, S0, S1, S2}

q0 = START

 $F = {S0, S2}$

f(START, 0) = S0

f (START, 1) = S2

f(S0, 0) = S0

f(S0, 1) = S1

f(S2, 0) = S0

f(S2, 1) = S2

ACCEPT:

11111

10000

11110

111000

11

REJECT:

01

111101

10101

00001

Ejercicio 10. Obtenga un Autómata Finito No Determinista (AFND) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician en la subcadena "ac" y terminan en la subcadena "ab".

 $\sum = \{a,b,c\}$

Q = {START, S0, S1, S2, S3, S4, S5, S6, S7, S8}

q0 = START

 $F = {S3}$

f(START, a) = S0

f(START, b) = S6

f (START, c) = S7

f(S0, c) = S1

f(S0, a) = S8

f(S0, b) = S6

f(S1, b) = S4

f(S1, a) = S2

f(S1, c) = S5

f(S2, a) = S2

f(S2, b) = S3

f(S2, c) = S5

f(S4, a) = S2

f(S4, b) = S4

f(S4, c) = S5

f(S5, a) = S2

f(S5, b) = S4

f(S5, c) = S5

f(S6, a) = S8

f(S6, b) = S6

f(S6, c) = S7

f(S7, a) = S8

f(S7, b) = S6

f(S7, c) = S7

f(S8, a) = S8

f(S8, b) = S6

f(S8, c) = S7

ACCEPT:

acab

acbbbbcab

accab

acbbbab

acaaab

REJECT:

bab

cabcba

acbabc

abcba

ababb

