Homework 4 PSTAT 223A Alex Bernstein

November 12, 2018

Problem 7.1

Find the generator of the following Itô diffusions. Note that $f \in \mathcal{C}_b^2$ in all cases (twice continuously differentiable and bounded).

(i) $dX_t = \mu X_t dt + \sigma dB_t$

Proof. We know $b(X_t,t)=\mu X_t$ and $\sigma(X_t,t)=\sigma$, so our generator is:

$$Af(x) = \mu x \frac{\mathrm{d}f}{\mathrm{d}x} + \frac{1}{2}\sigma^2 \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}$$

(ii) $dX_t = rX_t dt + \alpha X_t dB_t$

Proof. We have $b(X_t,t) = rX_t$ and $\sigma(X_t,t) = \alpha X_t$ so

$$Af(x) = rx\frac{\mathrm{d}f}{\mathrm{d}x} + \frac{x^2\alpha^2}{2}\frac{\mathrm{d}^2f}{\mathrm{d}x^2}$$

(iii) $dY_t = rdt + \alpha Y_t dB_t$

Proof. We have $b(t, X_t) = r$ and $\sigma(t, X_t) = \alpha Y_t$ so

$$Af(x) = r\frac{\mathrm{d}f}{\mathrm{d}x} + \frac{\alpha^2 x^2}{2} \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}$$

(iv) $dY_t = \begin{bmatrix} dt \\ dX_t \end{bmatrix}$ where X_t is as in (i)

Proof. Note that

$$\begin{bmatrix} dt \\ dX_t \end{bmatrix} = \begin{bmatrix} 1 \\ \mu X_t \end{bmatrix} dt + \begin{bmatrix} 0 \\ \sigma \end{bmatrix} dB_t$$

so letting $x_2 = x$ and $x_1 = t$:

$$Af(x) = \frac{\mathrm{d}f}{\mathrm{d}x_1} + \mu x \frac{\mathrm{d}f}{\mathrm{d}x_2} + \frac{1}{2}\sigma^2 \frac{\mathrm{d}^2 f}{\mathrm{d}x_2^2}$$
$$= \frac{\mathrm{d}f}{\mathrm{d}t} + \mu x \frac{\mathrm{d}f}{\mathrm{d}x} + \frac{1}{2}\sigma^2 \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}$$

(v) $\begin{bmatrix} dX_1 \\ dX_2 \end{bmatrix} = \begin{bmatrix} 1 \\ X_2 \end{bmatrix} dt + \begin{bmatrix} 0 \\ e^{X_1} \end{bmatrix} dB_t$

Proof.

$$Af(x) = \frac{\mathrm{d}f}{\mathrm{d}X_1} + X_2 \frac{\mathrm{d}f}{\mathrm{d}X_2} + \frac{1}{2}e^{X_1} \frac{\mathrm{d}^2f}{\mathrm{d}X_2^2}$$

 $(\text{vi}) \ \, \begin{bmatrix} dX_1 \\ dX_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} dt + \begin{bmatrix} 1 & 0 \\ 0 & X_1 \end{bmatrix} \begin{bmatrix} dB_1 \\ dB_2 \end{bmatrix}$

Proof.

$$Af(x) = \frac{\mathrm{d}f}{\mathrm{d}X_1} + \frac{1}{2} \frac{\mathrm{d}^2 f}{\mathrm{d}X_1^2} + \frac{1}{2} X_1^2 \frac{\mathrm{d}^2 f}{\mathrm{d}X_2^2}$$

(vii) $X_t = (X_1, X_2, ..., X_n)$ where

$$dX_k(t) = r_k X_k dt + X_k \cdot \sum_{j=1}^n \alpha_{kj} dB_j; \quad 1 \le k \le n$$

Proof.

$$Af(x) = \sum_{k=1}^{n} r_k X_k \frac{\mathrm{d}f}{\mathrm{d}X_k} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} X_i X_j \left(\sum_{k=1}^{n} \alpha_{ik} \alpha_{jk} \right) \frac{\mathrm{d}^2 f}{\mathrm{d}x_i \mathrm{d}x_j}$$

Problem 7.2

Find the Itô diffusion whose generator is the following:

(i)
$$Af(x) = f'(x) + f''(x); f \in C_0^2(\mathbf{R})$$

Proof.

$$Af(x) = b(X_t)\frac{\mathrm{d}f}{\mathrm{d}x} + \frac{1}{2}\sigma^2\frac{\mathrm{d}^2f}{\mathrm{d}x^2}$$

so $b(X_t) = 1$ and $\sigma(X_t)^2 = 2$, so

$$dX_t = dt + \sqrt{2}dB_t$$

(ii) $Af(t,x) = \frac{\partial f}{\partial t} + cx\frac{\partial f}{\partial x} + \frac{1}{2}\alpha^2x^2\frac{\partial^2 f}{\partial x^2}; f \in C_0^2(\mathbf{R}^2)$ where c, α are constants.

Proof. let $b(x_1) = 1$ and $b(x_2) = cx$, and $\sigma = \alpha x$ where $x_1 = t$ and $x_2 = x$. Then:

$$\begin{bmatrix} \mathrm{d}X_1 \\ \mathrm{d}X_2 \end{bmatrix} = \begin{bmatrix} 1 \\ cx_2 \end{bmatrix} dt + \begin{bmatrix} 0 \\ \alpha x_2 \end{bmatrix} dB_t$$

(iii) $Af\left(x_1,x_2\right) = 2x_2\frac{\partial f}{\partial x_1} + \ln\left(1 + x_1^2 + x_2^2\right)\frac{\partial f}{\partial x_2} + \frac{1}{2}\left(1 + x_1^2\right)\frac{\partial^2 f}{\partial x_1^2} + x_1\frac{\partial^2 f}{\partial x_1\partial x_2} + \frac{1}{2}\cdot\frac{\partial^2 f}{\partial x_2^2}; \quad f \in C_0^2\left(\mathbf{R}^2\right)$

Proof. Translating the above two-dimensional process into the Itô diffusion gives us:

$$\begin{bmatrix} \mathrm{d}X_1 \\ \mathrm{d}X_2 \end{bmatrix} = \begin{bmatrix} 2X_2 \\ \log(1 + X_1^2 + X_2^2) \end{bmatrix} dt + \begin{bmatrix} X_1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} dB_1 \\ dB_2 \end{bmatrix}$$

Problem 7.4

Let B_t^x be a 1-dimensional Brownian Motion starting at $x \in \mathbb{R}_+$. Put $\tau = \inf\{t > 0; B_t^x = 0\}$.

(i) Prove $\tau < \infty$ a.s. \mathcal{P}^x for all x > 0.

Proof. Let 0 < x < k for some k. Let $\tau_k = \inf\{t > 0; B_t = 0 \text{ or } B_t = k\}$. τ_k is an exit time, so $\mathcal{P}^x(\tau_k < \infty) = 1$. We apply Dynkin's formula to f(x) = x, have Af(x) = 0 and let $\mathcal{P}^x(X_{\tau_k} = k) = p_k$:

$$\mathbb{E}^{x}(X_{\tau_{k}}) = x$$

$$X_{\tau_{k}}p_{k} + 0(1 - p_{k}) = x$$

$$p_{k} = \frac{x}{X_{\tau_{k}}} = \frac{x}{k}$$

So

$$\mathcal{P}^{x}(\tau < \infty) = \lim_{k \to \infty} \left(1 - \mathcal{P}^{x}(\tau_{k} = k) \right) = \lim_{k \to \infty} \left(1 - p_{k} \right)$$
$$= \lim_{k \to \infty} \left(1 - \frac{x}{k} \right) = 1$$

So $\tau < \infty$ a.s.

(ii) Prove that $\mathbb{E}^x(\tau_k) = \infty$ for all x > 0

Proof. We use the same exit time formulation as in the previous part and apply Dynkin's formula to $f(x) = x^2$, and $Af(x) = \frac{1}{2}2 = 1$:

$$\mathbb{E}^{x}(X_{\tau_{k}}^{2}) = x^{2} + \mathbb{E}^{x}\left(\int_{0}^{\tau_{k}} Af(X_{s})ds\right)$$

$$= x^{2} + \mathbb{E}^{x}(\tau_{k})$$

$$0\mathcal{P}^{x}(X_{\tau_{k}} = 0) + k^{2}\mathcal{P}^{x}(X_{\tau_{k}} = k) = x^{2} + \mathbb{E}^{x}(\tau_{k})$$

$$(\text{letting } \mathcal{P}^{x}(X_{\tau_{k}} = k) = p_{k})$$

$$\mathbb{E}^{x}(\tau_{k}) = k^{2}p_{k} - x^{2}$$

Combining with p_k derived in the previous part:

$$\mathbb{E}^{x}(\tau_{k}) = k^{2} \frac{x}{k} - x^{2} = kx - x^{2}$$
$$\mathbb{E}^{x}(\tau) = \lim_{k \to \infty} \mathbb{E}^{x}(\tau_{k}) = \infty$$

as expected.

Problem 7.9

Let X_t be a geometric Brownian Motion, i.e.

$$dX_t = rX_t dt + \alpha X_t dB_t, \quad X_0 = x > 0,$$

 $B_t \in \mathbb{R}$; r, α are constants.

(i) Find the generator A of X_t and compute Af(x) when $f(x) = x^{\gamma}$; x > 0, γ constant.

Proof.

$$Af(x) = rx\frac{\mathrm{d}f}{\mathrm{d}x} + \frac{1}{2}\alpha^2 x^2 \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}$$
$$A(x^{\gamma}) = rx\gamma x^{\gamma-1} + \frac{1}{2}ga^2 x^2 \gamma(\gamma - 1)x^{\gamma-2}$$
$$= x^{\gamma} \left(r\gamma + \frac{1}{2}\alpha^2(\gamma^2 - \gamma)\right)$$

(ii) If $r < \frac{1}{2}\alpha^2$ then $X_t \longrightarrow 0$ as $t \longrightarrow \infty$, a.s. Q^x , but what is the probability p that X_t , when starting from x < R ever hits R?

Proof. We will apply Dynkin's Formula with $f(x) = x^{\gamma_1}$ where $\gamma_1 = 1 - \frac{2r}{\alpha^2}$. Note that solving the above SDE defining the Geometric Brownian Motion with $X_0 = x$ gives us:

$$X_t = xe^{\left(r - \frac{\alpha^2}{2}\right)t + \alpha B_t}$$

Applying our known value of γ_1 to the generator for x^{γ_1} gives us:

$$\begin{split} A(x^{\gamma_1}) &= x^{\gamma_1} \Big(r (1 - \frac{2r}{\alpha^2}) + \frac{1}{2} \alpha^2 (1 - \frac{2r}{\alpha^2}) (-\frac{2r}{\alpha^2}) \Big) \\ &= x^{\gamma_1} \Big(r (1 - \frac{2r}{\alpha^2}) + \frac{1}{2} \alpha^2 (-\frac{2r}{\alpha^2} + \frac{4r^2}{\alpha^4}) \Big) \\ &= x^{\gamma_1} 0 = 0 \end{split}$$

Now, define $\tau_R = \inf\{t > 0; X_t = 0 \text{ or } X_t = R\}$. This is an exit time, and $0 < X_0 = x < R$, so $\mathcal{P}^x(\tau_R < \infty) = 1$. Putting this together, we get:

$$\mathbb{E}^{x}(X_{\tau_{R}}^{\gamma_{1}}) = x^{\gamma_{1}}$$
$$0\mathcal{P}^{x}(X_{\tau_{R}} = 0) + R^{\gamma_{1}}\mathcal{P}^{x}(X_{\tau_{R}} = R) = x^{\gamma_{1}}$$
$$p_{R} = \mathcal{P}^{x}(X_{\tau_{R}} = R) = \left(\frac{x}{R}\right)^{\gamma_{1}}$$

as expected.

(iii) If $r > \frac{1}{2}\alpha^2$ then $X_t \xrightarrow{t \to \infty} \infty$. Let $\tau = \inf\{t > 0; X_t \ge R\}$. Use Dynkin's formula with $f(x) = \log x, x > 0$ to prove that

$$E^x[\tau] = \frac{\ln \frac{R}{x}}{r - \frac{1}{2}\alpha^2}$$

Proof. Let $\tau_{\rho} = \inf\{t > 0X_t = R \text{ or } X_t = \rho\}$ where $0 < \rho < x = X_0 < R$. We therefore have that τ_{ρ} is an exit time and $\mathcal{P}^x(\tau_{\rho} < \infty) = 1$. Applying the the diffusion generator to $\log x$ and integrating that from 0 to τ_{ρ} gives us:

$$A \log(X_s) = r - \frac{1}{2}a^2$$
$$\int_0^{\tau_\rho} A \log(X_s) ds = \int_0^{\tau_\rho} \left(r - \frac{1}{2}a^2\right) ds = \tau_\rho \left(r - \frac{1}{2}a^2\right)$$

Applying Dynkin's formula gives to $\log X_{\tau_a}$ gives us:

$$\mathbb{E}^{x}(\log(X_{\tau_{\rho}})) = \log(x) + \mathbb{E}^{x}\left(\int_{0}^{\tau_{\rho}} A \log(X_{s}) ds\right)$$
$$= \log(x) + \left(r - \frac{1}{2}a^{2}\right) \mathbb{E}^{x}(\tau_{\rho})$$
$$\mathcal{P}^{x}(\log(X_{\tau_{\rho}}) = \rho) \log \rho + \mathcal{P}^{x}(\log(X_{\tau_{\rho}}) = R) \log R = \log(x) + \left(r - \frac{1}{2}a^{2}\right) \mathbb{E}^{x}(\tau_{\rho}).$$

Let $p_R = \mathcal{P}^x(X_{\tau_\rho}) = R$ so $\mathcal{P}^x(\log(X_{\tau_\rho}) = \rho) = 1 - p_R$. We now have:

$$(1 - p_R) \log \rho + p_R \log R = \log(x) + \left(r - \frac{1}{2}\alpha^2\right) \mathbb{E}^x(\tau_\rho)$$

$$\mathbb{E}^x(\tau_\rho) = \frac{p_R(\log R - \log \rho) + \log \rho - \log x}{r - \frac{1}{2}\alpha^2}$$

$$= \frac{p_R \log R + (1 - p_R) \log \rho - \log x}{r - \frac{1}{2}\alpha^2}$$

From the previous part, we know:

$$\mathbb{E}(X_{\tau_{\rho}}^{\gamma_{1}}) = p_{R}R^{\gamma_{1}} + (1 - p_{R})\rho^{\gamma_{1}} = x^{\gamma_{1}}$$

so

$$p_R = \frac{x^{\gamma_1} - \rho^{\gamma_1}}{R^{\gamma_1} - \rho^{\gamma_1}}$$

and

$$1 - p_R = \frac{R^{\gamma_1} - x^{\gamma_1}}{R^{\gamma_1} - \rho^{\gamma_1}}$$

Taking

$$\lim_{\rho \longrightarrow 0} (1 - p_R) \log \rho = \lim_{\rho \longrightarrow 0} \frac{R^{\gamma_1} - x^{\gamma_1}}{R^{\gamma_1} - \rho^{\gamma_1}} \log \rho$$

$$(\text{L'Hopital's Rule}) = \lim_{\rho \longrightarrow 0} \frac{R^{\gamma_1} - x^{\gamma_1}}{-\gamma_1 \rho^{\gamma_1 - 1}} \rho^{-1}$$

$$= \lim_{\rho \longrightarrow 0} -\frac{R^{\gamma_1} - x^{\gamma_1}}{\gamma_1 \rho^{\gamma_1}}$$

$$(\text{Note that } \gamma_1 < 0 \text{ so } -\gamma_1 > 0) = \lim_{\rho \longrightarrow 0} \frac{-\rho^{-\gamma_1}}{\gamma_1} = 0.$$

Similarly,

$$\lim_{\rho \to 0} p_R = \lim_{\rho \to 0} \frac{x^{\gamma_1} - \rho^{\gamma_1}}{R^{\gamma_1} - \rho^{\gamma_1}}$$
$$= \lim_{\rho \to 0} \frac{x^{\gamma_1} \rho^{-\gamma_1} - 1}{R^{\gamma_1} \rho^{-\gamma_1} - 1} = 1,$$

$$\mathbb{E}^{x}(\tau_{\rho}) = \frac{p_{R} \log R + (1 - p_{R}) \log \rho - \log x}{r - \frac{1}{2}\alpha^{2}}$$
$$\frac{\rho \longrightarrow 0}{r - \frac{1}{2}\alpha^{2}} \frac{\log R - \log x}{r - \frac{1}{2}\alpha^{2}}$$
$$= \frac{\log\left(\frac{R}{x}\right)}{r - \frac{1}{2}\alpha^{2}} = \mathbb{E}^{x}(\tau)$$

as expected.

Problem 7.18

(i) Let

$$dX_t = b(X_t) dt + \sigma(X_t) dB_t; \quad X_0 = x$$

be a 1-dimensional Itô diffusion witch characteristic operator \mathcal{A} . Let $f \in \mathcal{C}^2(\mathbb{R})$ be a solution to the differential equation

$$Af(x) = b(x)f'(x) + \frac{1}{2}\sigma^2(x)f''(x) = 0; \quad x \in \mathbf{R}$$

let $(a,b) \subset \mathbb{R}$ be an open interval such that $x \in (a,b)$ and put

$$\tau = \inf \left\{ t > 0; X_t \notin (a, b) \right\}.$$

Assume that $\tau < \infty$ a.s. Q^x and define

$$p = \mathcal{P}^x \left[X_\tau = b \right].$$

Use Dynkin's formula to prove that

$$p = \frac{f(x) - f(a)}{f(b) - f(a)}$$

Proof. We know by definition, $\mathcal{A}f(x) = 0$, and τ is an exit time, so $\mathcal{P}^x(\tau < \infty) = 1$. Applying Dynkin's formula, and noting the expectation on the RHS is 0:

$$\mathbb{E}^{x}(f(X_{\tau})) = f(x) + 0$$

$$f(a)\mathcal{P}^{x}(X_{\tau} = a) + f(b)\mathcal{P}^{x}(X_{\tau} = b) = f(x)$$

$$f(a)(1-p) + f(b)p = f(x)$$

$$p = \frac{f(x) - f(a)}{f(b) - f(a)}$$

as expected. \Box

(ii) Now specialize to the process

$$X_t = x + B_t; \quad t \ge 0.$$

Prove that

$$p = \frac{x - a}{b - a}$$

Proof. $X_t = x + B_t$. Note that $dX_t = dB_t$, so this is a Brownian Motion (that starts at $x \neq 0$). We therefore have $\mathcal{A}f(x) = \frac{1}{2}\frac{\mathrm{d}^2 f}{\mathrm{d}x^2}$. Letting f(x) = x gives us $\mathcal{A}f(x) = \mathcal{A}x = 0$. We therefore have:

$$x = \mathbb{E}^{x}(X_{\tau}) = bp + a(1-p)$$
$$p = \frac{x-a}{b-a}$$

as expected \Box

(iii) Find p if

$$X_t = x + \mu t + \sigma B_t; \quad t > 0$$

where $\mu, \sigma \in \mathbb{R}$ are nonzero constants.

Proof. $X_t = x + \mu t + B_t$ so $dX_t = \mu dt + dB_t$. We therefore have $\mathcal{A}f(x) = \mu \frac{\mathrm{d}f}{\mathrm{d}x} + \frac{\sigma^2}{2} \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}$. Finding a solution to $\mathcal{A}f(x) = 0$ gives us the straightforward solution to a homogeneous ODE given by:

$$f(x) = e^{\left(\frac{-2\mu x}{\sigma^2}\right)} + c$$

(We let c=0 w.l.o.g.) Applying Dynkin's formula gives us:

$$\mathbb{E}^{x}(f(X_{\tau})) = f(x) + 0$$
$$(1 - p)e^{\left(\frac{-2\mu a}{\sigma^{2}}\right)} + pe^{\left(\frac{-2\mu b}{\sigma^{2}}\right)} = e^{\left(\frac{-2\mu x}{\sigma^{2}}\right)}$$

solving for p gives us:

$$p = \frac{e^{\left(\frac{-2\mu x}{\sigma^2}\right)} - e^{\left(\frac{-2\mu a}{\sigma^2}\right)}}{e^{\left(\frac{-2\mu b}{\sigma^2}\right)} - e^{\left(\frac{-2\mu a}{\sigma^2}\right)}}$$