高数竞赛阶段练习 4 学号______ 姓名_____

一、填空题

1. 设函数 z = f(xy, yg(x)), 其中函数 f 具有二阶连续偏导数, 函数 g(x) 可导且在 x = 1 处取得

极值
$$g(1) = 1$$
,则 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=1\\y=1}} = \underline{\qquad}$;

2. 设函数 F(u,v) 具有连续的偏导数,且 $F'_u \cdot F'_v > 0$,函数 y = f(x) 由

$$F\left(\ln x - \ln y, \frac{x}{y} - \frac{y}{x}\right) = 0$$
 确定,则 $f'(x) = \underline{\qquad}$;

- 3. 设函数 f(x,y) 在点 (2,-2) 处可微,满足 $f(\sin(xy)+2\cos x, xy-2\cos y)=1+x^2+y^2+0(x^2+y^2)$, $0(x^2+y^2)$ 表示比 x^2+y^2 为高阶无穷小(当 $(x,y)\to(0,0)$ 时),则该曲面 z=f(x,y) 在点 (2,-2,f(2,-2)) 处的切平面方程 ______;
- 4. 设函数 $f(x,y) = \begin{cases} \frac{x^2y^2}{\left(x^2 + y^2\right)^{\frac{3}{2}}}, x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0 \end{cases}$, 则 f(x,y) 在 (0,0) <u>连续</u>(填连续或不

连续)_____(填可微或不可微);

5. 设函数 z = z(x, y) 由 $x^2 + y^2 + z^2 = yf\left(\frac{z}{y}\right)$ 所确定,其中 f 可导且 $2z \neq f'\left(\frac{z}{y}\right)$,则

$$(x^2 - y^2 - z^2)\frac{\partial z}{\partial x} + 2xy\frac{\partial z}{\partial y} =$$

- 6. 函数 $f(x, y) = x^4 + y^4 (x + y)^2$ 的极值情况: ______;
- 7. 点 (2,1,-3) 到直线 $\frac{x-1}{1} = \frac{y+3}{-2} = \frac{z}{2}$ 的距离为_____;
- 8. 点 A(1,2-1) , B(5,-2,3) 在平面 $\Pi: 2x-y-2z=3$ 的两侧,过点 A,B 作球面 Σ 使其在平面 Π 上截得的圆 Γ 最小,则球面 Σ 的球心坐标为 ;
- 9. 函数 u(x,y) 具有连续的二阶偏导数,算子 A 定义为 $A(u) = x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$,则

程
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$$
 的形式为______;

- 10. 函数 $f(x,y) = e^{-x}(ax+b-y^2)$ 中常数 a,b满足条件_____时, f(-1,0) 为其极大值.
- 11. $\triangle(-1,6,1)$ 关于直线 $\frac{x-4}{3} = \frac{y+1}{1} = \frac{z+2}{-2}$ 的对称点的坐标是_____;
- 12. 已知函数 F(u,v,w) 可微, $F'_u(0,0,0)=1$, $F'_v(0,0,0)=2$, $F'_w(0,0,0)=3$, 函数

$$z = f(x, y) \oplus F(2x - y + 3z, 4x^2 - y^2 + z^2, xyz) = 0$$
 确定,满足 $f(1, 2) = 0$,则 $f'_x(1, 2) = ___$;

13.
$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x^2 + xy + y^2}{x^4 + y^4} \sin(x^4 + y^4) = \underline{\hspace{1cm}};$$

14.
$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x+y}{x^2 - xy + y^2} \sin(x^2 - xy + y^2) = \underline{\hspace{1cm}};$$

15. 设函数
$$f(x, y) = \int_0^{xy} e^{xt^2} dt$$
,则 $\frac{\partial^2 f}{\partial x \partial y}|_{(1,1)} = \underline{4e}$.

二、设 f(x,y) 在平面区域 D上可微,线段 PQ位于 D内,点 P,Q的坐标为 P(a,b), Q(x,y),

求证: 在线段 PQ上存在点 $M(\xi,\eta)$, 使得

$$f(x, y) = f(a,b) + f'_x(\xi, \eta)(x-a) + f'_y(\xi, \eta)(y-b)$$
.

三、已知函数 z = z(x, y) 由方程 $(x^2 + y^2)z + \ln z + 2(x + y + 1) = 0$ 确定,求 z = z(x, y) 的极值.

四、证明当 $x \ge 0$, $y \ge 0$ 时, $e^{x+y-2} \ge \frac{1}{12} (x^2 + 3y^2)$.

五、已知曲面 $x^2+2y^2+4z^2=8$ 与平面 x+2y+2z=0 的交线 Γ 是椭圆, Γ 在 xOy 平面上的投影 Γ_1 也是椭圆. (1) 求椭圆 Γ_1 的四个顶点 A_1,A_2,A_3,A_4 的坐标(A_i 位于第 i 象限,i=1,2,3,4);(2)判断椭圆 Γ 的四个顶点在 xOy 平面上的投影是否是 A_1,A_2,A_3,A_4 ,写出理由.

六、已知二次锥面 $4x^2+\lambda y^2-3z^2=0$ 与平面 x-y+z=0 的交线是一条直线 L. (1) 求常数 λ 的 值,并求 直线 L 的标准方程;(2)平面 Π 通过直线 L,且与球面 $x^2+y^2+z^2+6x-2y-2z+10=0$ 相切,求平面 Π 方程.

七、已知曲线 Γ : $x^2 + 3y^2 + 2xy = 4$ 是 xOy 平面上的椭圆.(1) 求椭圆 Γ 的四个项点的坐标,并求 Γ 所围平面图形的面积; (2) 求椭圆 Γ 上纵坐标最大与最小的点的坐标.

八、求函数 $f(x,y) = 3(x-2y)^2 + x^3 - 8y^3$ 的极值,并证明 f(0,0) = 0 不是 f(x,y) 的极值.

九、己知直线 $L_1: \frac{x-5}{1} = \frac{y+1}{0} = \frac{z-3}{2}$, $L_2: \frac{x-8}{2} = \frac{y-1}{-1} = \frac{z-1}{1}$. 1)证明 L_1 与 L_2 是异面直线; 2)若直线 L 与 L_1 、 L_2 皆垂直相交,交点分别为 P 、 Q ,试求点 P 与 Q 的坐标. 3)求异面直线 L_1 与 L_2 的距离.

十、已知直线 $L_1: \frac{x-5}{1} = \frac{y+1}{0} = \frac{z-3}{2}$, $L_2: \frac{x-8}{2} = \frac{y-1}{-1} = \frac{z-1}{1}$.1)若直线 $L_1 \cup L_2$ 皆垂直相交,交点分别为 $P \cup Q$,试求点 $P \cup Q$ 的坐标;2)求异面直线 $L_1 \cup L_2$ 的距离.