Bill Davis 605.441 Problem Set 3

1. (6.13) A safe expression is one in which there can only be a finite number of results. An expression can be guaranteed to be safe if all the results of the expression come from the expressions domain. This prevents expressions like a tuple is not in relation r. Since there are an infinite number of relations that are not r, this expression is unsafe.

```
2.(6.16)
(a) (c)
    Relational Algebra \pi_{lname.fname}(\sigma_{superssn=33344555}(EMPLOYEE))
    Tuple Relational \{t^{(2)s}|\exists (e)(\text{EMPLOYEE}(e) \hat{e}[\text{Super\_ssn}] = 33344555\}
     t[0]=e[Lname] t[1] = e[Fname]
    Domain Relational { Lname, Fname | EMPLOYEE(Fname, Lname,
    Super_SSN) \hat{Super_ssn} = 3344555
    The result of the query is (Smith, John), (Narayan, Ramesh),
    (English, Joyce)
(b) (e)
    Relational Algebra \pi_{lname,fname} (EMPLOYEE \bowtie_{ssn=essn} PROJECT)
    \div \pi_{Pno}(PROJECT))
    Tuple Relational \{t^{(2)} | \forall (p)(PROJECTS(w) \hat{\exists}(w)\exists (e)(WORKS\_ON)(w)\}
      EMPLOYEE(e) \hat{w}[Pno] = p[Pnumber] \hat{w}[Essn] = e[ssn] \hat{v}[Essn]
    t[1] = e[Lname] \cdot t[2] = e[Fname]
    Domain Relational
    { Lname, Fname — \forall (p, e) (PROJECT(p) \hat{EMPLOYEE}(e) \hat{}
    (\exists (w)(WORKS_ON(w) \hat w = p) 
    The result of this query is \emptyset
(c) (f) Domain Relational
    \pi_{lname,fname}(WORKS\_ON \bowtie_{ssn=essn} EMPLOYEE) - \pi_{lname,fname}(EMPLOYEE)
    Tuple Relational
    \{t^{(2)}| \forall (E)(EMPLOYEE(E) \land \forall (w)(WORKS\_ON)(w) \land NOT(p[ssn])\}
    = w[essn]) \hat{t}[1] = e[Lname] \hat{t}[2] = e[Fname].
```

The result of this query is \emptyset

3. (6.22)

(a)	(a)	P	Q	R	A	В	\mathbf{C}
		10 10	a	5	10	b	6
		10	a	5	10	b	5
		25	a	6	10 25	c	3

	Р	Q	R	Α	В	C
(b) (d)	15	b	8	10	b	6
	15	b	8	10	b	5