

Istogramma

L'istogramma

- I pixel di una immagine sono una "popolazione" sulla quale possiamo calcolare tutte le quantità statistiche descrittive che si usano normalmente: Media, mediana, varianza, deviazione standard, quartili, percentili ...
- Particolarmente importante è la conoscenza della distribuzione delle frequenze dei toni di grigio: l'istogramma.

Istogramma

- Per ogni livello di grigio, riporta il numero di pixel di quel colore.
- Per una immagine I[m,n] si ha H(k)= numero di pixel di valore k
- E la somma di tutti gli H è esattamente mxn
- L'istogramma è utile a comprendere in maniera immediata le caratteristiche dell'immagine.

Istogramma

Immagini diverse potrebbero avere istogrammi simili!

L'istogramma non tiene conto della **distribuzione spaziale** dei pixel!

Immagine chiara: istogramma più denso a destra

Immagine scura: istogramma più denso a sinistra

Immagine sottoesposta

Immagine sovraesposta

Espansione del contrasto (contrast stretching)

- Serve per aumentare la dinamica di un'immagine il cui istogramma è concentrato su un intervallo limitato dei valori possibili.
- Si ottiene spostando (con appositi algoritmi) i valori di un bin dell'istogramma verso un altro bin non utilizzato.
- L'istogramma apparirà in maniera differente, tipo pettine. Ciò è fatto per mettere in risalto che i bin mancanti sono stati distribuiti lungo altri livelli.

Contrast stretching

Immagine originale

Channel: Gray Toni non usati

Immagine "corretta"

input

stretching

Stretching di Lena

Aritmetica sulle immagini

- Operando aritmeticamente può accadere che un pixel abbia:
- a) Un valore negativo;
- b) Un valore maggiore del massimo (tipicamente 255);
- c) Un valore non intero (facilmente risolubile con una approssimazione o un troncamento);

Normalizzazione

I problemi a) e b) della precedente slide si chiamano problemi di range.

Due le soluzioni più comuni:

- Settare a 0 (nero) i valori negativi e a 255 (bianco) i valori maggiori di 255.
- Ri-normalizzare il range trasformando ciascun valore secondo la equazione:

Equalizzazione

Si parla di immagine equalizzata quando il contributo di ogni differente tonalità di grigio è pressappoco eguale.

Si parla anche di "istogramma" uniforme o appiattito.

L'equalizzazione si ottiene usando appositi algoritmi

Attenzione non sempre la equalizzazione migliora l'immagine!

Immagine equalizzata

zione 8 Mean: 127.46

Level:

Immagine equalizzata

Interazione & Multimedia

Algoritmo di Equalizzazione

 Se r_k è un livello di grigio e n_k il numero di pixel nell'immagine MxN di quel livello di grigio, si può definire

$$p_r(r_k) = \frac{n_k}{MN}$$
 $k = 0, 1, 2, ..., L - 1$

Se facciamo il plot di r_k versus p_r(r_k) quello che si ottiene è l'istogramma dell'immagine.

Algoritmo di Equalizzazione

I nuovi valori di grigio dell'istogramma sono così definiti:

$$s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j)$$
$$= \frac{(L-1)}{MN} \sum_{j=0}^k n_j \qquad k = 0, 1, 2, \dots, L-1$$

Algoritmo di Equalizzazione: Esempio

Sia data una immagine a 3 bit (L=8) con 64x64 pixel (MN=4096) con la seguente distribuzione di intensità:

r_k	n_k	$p_r(r_k) = n_k/MN$			
$r_0 = 0$	790	0.19			
$r_1 = 1$	1023	0.25			
$r_2 = 2$	850	0.21			
$r_3 = 3$	656	0.16			
$r_4 = 4$	329	0.08			
$r_5 = 5$	245	0.06			
$r_6 = 6$	122	0.03			
$r_7 = 7$	81	0.02			

Algoritmo di Equalizzazione:

Esempio

Applicando la formula si ha:

$$s_0 = T(r_0) = 7 \sum_{j=0}^{0} p_r(r_j) = 7 p_r(r_0) = 1.33$$

$$s_1 = T(r_1) = 7 \sum_{j=0}^{1} p_r(r_j) = 7 p_r(r_0) + 7 p_r(r_1) = 3.08$$

$$s_2 = 4.55, s_3 = 5.67, s_4 = 6.23, s_5 = 6.65, s_6 = 6.86, s_7 = 7.00.$$

Arrotondando:

$$s_0 = 1.33 \rightarrow 1$$
 $s_4 = 6.23 \rightarrow 6$
 $s_1 = 3.08 \rightarrow 3$ $s_5 = 6.65 \rightarrow 7$
 $s_2 = 4.55 \rightarrow 5$ $s_6 = 6.86 \rightarrow 7$
 $s_3 = 5.67 \rightarrow 6$ $s_7 = 7.00 \rightarrow 7$

Algoritmo di Equalizzazione: Esempio

$$s_0 = 1.33 \rightarrow 1$$
 $s_4 = 6.23 \rightarrow 6$
 $s_1 = 3.08 \rightarrow 3$ $s_5 = 6.65 \rightarrow 7$
 $s_2 = 4.55 \rightarrow 5$ $s_6 = 6.86 \rightarrow 7$
 $s_3 = 5.67 \rightarrow 6$ $s_7 = 7.00 \rightarrow 7$

Questi sono i valori dell'istogramma equalizzato. Si osservi che ci sono solo cinque livelli distinti. Dato che $r_0 = 0$ è stato trasformato in $s_0 = 1$, ci sono 790 pixel nell'immagine dell'istogramma equalizzato con questo valore (vedi Tabella 3.1). Inoltre, in questa immagine, ci sono 1023 pixel con valore di $s_1 = 3$ e 850 pixel con il valore di $s_2 = 5$. Sia r_3 che r_4 sono stati trasformati nello stesso valore, così ci sono (656 + 329) = 985 pixel nell'immagine equalizzata con questo valore. In modo simile, ci sono (245 + 122 + 81) = 448 pixel con il valore di 7 nell'immagine equalizzata. Dividendo questi numeri per MN = 4096 si ottiene l'istogramma equalizzato della Figura 3.19c.

Algoritmo di Equalizzazione: Esempio

a b c

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

input

equalizzazione

Equalizzazione di Lena

Operazioni sulle immagini

Semplificazione: toni di grigio

- Per semplificare la trattazione del problema lavoreremo solo su immagini a toni di grigio.
- Le medesime operazioni descritte per tali immagini si estendono alle immagini RGB operando separatamente sui tre canali (piani) R, G e B e trattando ciascuno di essi come una immagine a toni di grigio indipendente dagli altri canali (soluzione non sempre apprezzata in ambito della ricerca).

Operazioni sulle immagini

Sono operazioni alterano i valori dei pixel di una immagine.

L'immagine finale apparirà differente da quella iniziale.

Questi operatori lavorano sia su immagini a colori che su immagini a toni di grigio.

Operazione su una immagine

Le elaborazioni nel dominio spaziale possono essere espresse come:

$$g(x, y) = T[f(x, y)]$$

essendo f l'immagine di ingresso alla elaborazione, g quella di uscita e T un operatore su f definito in un intorno di (x,y).

Tipi di operazioni

La dimensione dell'intorno di (x,y) definisce il carattere della elaborazione:

- puntuale (l'intorno coincide con il pixel stesso);
- locale (per esempio una piccola regione quadrata centrata sul pixel);
- globale (l'intorno coincide con l'intera f).

Operatori puntuali

Operatori puntuali

Si dice operatore puntuale, un operatore che preso in input il valore di un pixel ne restituisce uno cambiato che dipende esclusivamente dal valore del pixel in ingresso.

Tipiche operazioni puntuali:

- aggiunta o sottrazione di una costante a tutti i pixel (per compensare sotto o sovraesposizioni);
- inversione della scala dei grigi (negativo);
- espansione del contrasto;
- modifica (equalizzazione o specifica) dell'istogramma;
- presentazione in falsi colori.

Operatori puntuali

- Un operatore puntuale può essere rappresentato da una funzione che preso in input un valore f(x,y) lo modifica in un valore g(x,y)=T(f(x,y)) con f(x,y) e g(x,y) appartenenti allo stesso campo di definizione (es. entrambi tra 0 e 255).
- Poiché un operatore puntuale dipende solo dal valore del pixel esso è completamente descritto da una tabella come quella che segue:

IN	0	1	2	3	4	5	6	7	
OUT	T(0)	T(1)	T(2)	T(3)	T(4)	T(5)	T(6)	T(7)	

OUT

f(x)

Questa è
universalmente
l'interfaccia che
tutti i programmi
commerciali di
immagini offrono
per la
visualizzazione e
gestione delle
operazioni puntuali

8										
7							X	X	X	
6						X				
5					X					
4				X						
3		X	X							
2	X									
1										
0										
	0	1	2	3	4	5	6	7	8	

LUT

 Questo tipo di grafico si chiama look-up tables (LUT).

In Photoshop: "aggiusta curve"

Negativo

- E' la più semplice operazione puntuale.
- Consiste nell'associare al valore f(x,y) del pixel il valore 255-f(x,y)

Negativo

Come cambia la curva?

Negativo (invert)

Incupimento dell'immagine

Come devo modificare la mia curva?

Incupimento

Schiarimento dell'immagine

Come devo modificare la curva?

Schiarimento

Trasformazione logaritmica

Si tratta di una trasformazione che consente di comprimere la gamma dinamica, permettendo la memorizzazione o la visualizzazione, con una scala dei grigi usuale, di immagini caratterizzate da escursioni di intensità molto ampie. Può essere espressa come:

$$g(x, y) = c \log(1 + f(x, y))$$

 Dove c è una costante positiva che serve a normalizzare il risultato tra 0 e 255.

Trasformazione logaritmica

Trasformazione di potenza

La trasformazione di potenza può essere espressa come:

$$g(x, y) = c(f(x, y))^{\gamma}$$

dove c e γ sono costanti positive. La costante c è scelta di volta in volta in modo da normalizzare i valori di s nell'intervallo [0, 255]. Come vedremo, per valori di γ minori di 1 la trasformazione ha effetti analoghi alla trasformazione logaritmica (espansione della dinamica per bassi valori di f, compressione della dinamica per alti valori di f), mentre per valori di γ maggiori di 1 la trasformazione ha esattamente gli effetti opposti.

LUT al variare di gamma

FIGURE 3.6 Plots of the equation $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases). All curves were scaled to fit in the range shown.

Esempi

Originale

Gamma=10

Gamma=3

Gamma=17

a b c d

FIGURE 3.8

(a) Magnetic resonance image (MRI) of a fractured human spine. (b)-(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 0.6, 0.4, \text{ and }$ 0.3, respectively. (Original image courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center.)

a b c d

FIGURE 3.9

(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c=1 and $\gamma=3.0$, 4.0, and 5.0, respectively. (Original image for this example courtesy of NASA.)

Applicazione di gamma alla resa dei monitor

Su un monitor CRT (con γ= 2.5) si può applicare una correzione pre-processando l'input con la corrispondente funzione inversa: g(x,y) = f(x,y)^{1/2.5}= f(x,y)^{0.4}

Binarizzazione

- Produce una immagine che ha solo due livelli: nero e bianco.
- Si ottiene scegliendo una soglia T e mettendo a nero tutti i pixel il cui valore è minore a T e a bianco tutti gli altri.

Binarizzazione

Come si agisce sulla curva?

Binarizzazione

Come cambia l'istogramma?

Variazioni di contrasto

- Aumentare il contrasto, significa rendere più evidenti le differenze di colore.
- Ciò si ottiene andando a cambiare il valore di un pixel con un altro che sia più scuro o più chiaro.

Aumento del contrasto

Aumento del contrasto

Come si deve cambiare la curva?

Aumento del contrasto

Altro esempio

Diminuizione di contrasto

Diminuizione del contrasto

Come cambio la curva?

Diminuizione del contrasto

Curve non monotone

- È possibile fare delle variazioni alle curve in modo che questa diventi non monotona.
- Un esempio è la "solarizzazione"

Curve non monotone

Ecco come si deve cambiare la curva:

Solarizzazione

