

TRABALHO - IDENTIFICAÇÃO DE SISTEMAS

Raphael Timbó Silva

Professor: Daniel Castello

Rio de Janeiro Janeiro de 2017

Sumário

Lista de Figuras Lista de Tabelas Lista de Abreviaturas							
				1	Intr	rodução	1
					1.1	Sistema utilizado	1
	1.2	Resposta do sistema	2				
2	Dac	los Pseudo-Experimentais	4				
	2.1	Resposta do sistema no tempo	4				
	2.2	Adição do ruído	8				
3	Pro	jeto do Filtro Adaptativo	10				
	3.1	Algoritmo LMS	10				
	3.2	Implementação do filtro	12				
4	Res	sultados e Discussões	14				
	4.1	Resultados para F_0	14				
		4.1.1 Adaptação do filtro	14				
		4.1.2 FRF do filtro	15				
		4.1.3 Predição	17				
5	Cor	nclusões	18				
Referências Bibliográficas							
\mathbf{A}	Alg	umas Demonstrações	20				

Lista de Figuras

1.1	Sistema utilizado na análise	1
1.2	FRF para o sistema em análise	3
1.3	Aplicação de força e medição na massa m_2	3
1.4	FRF para input em m_2 e medição em m_2	3
2.1	Frequência de excitação para a força F_0	5
2.2	Resposta no tempo para a força F_0 com $N=1000$	5
2.3	Resposta no tempo para a força F_0 com $N=5000$	6
2.4	Frequência de excitação para a força F_1	7
2.5	Resposta no tempo para a força F_1 com $N = 5000$	7
2.6	Resposta no tempo para a força F_2 com $N = 5000$	8
2.7	Sinal puro e sinal corrompido para F_0 e $SNR = 90. \dots \dots$	9
2.8	Sinal puro e sinal corrompido para F_0 e $SNR = 10. \dots \dots$	9
2.9	Sinal puro e sinal corrompido para F_2 e $SNR = 10. \dots \dots$	9
3.1	Configuração utilizada no algoritmo para filtros adaptativos	10
4.1	Evolução do filtro para $F=F_0,\ N=1000$ e $SNR=90$	14
4.2	Evolução do filtro para $F=F_0,\ N=1000$ e $SNR=10$	15
4.3	FRF do filtro obtido para $F=F_0,N=1000$ e $SNR=90.\dots$	16
4.4	FRF do filtro obtido para $F=F_0,N=1000$ e $SNR=10.\dots$	16
4.5	Predição do filtro obtido com $F = F_0$, $N = 1000$ e $SNR = 90$	17

Lista de Tabelas

Lista de Abreviaturas

FIR Finite Impulse Response, p. 1

FRF Função de Resposta em Frequência, p. 2

SNR Signal to Noise Ratio, p. 4

Introdução

O presente trabalho tem por objetivo apresentar os resultados e conclusões referentes ao projeto final da disciplina Identificação de Sistemas.

O trabalho consiste na análise de um sistema através do projeto de um filtro adaptativo FIR (Finite Impulse Response).

1.1 Sistema utilizado

O sistema utilizado é mostrado na fig. 1.1.

Figura 1.1: Sistema utilizado na análise.

Para este sistema temos que a energia cinética é:

$$T = \frac{1}{2} [m_0 \dot{q}_0(t)^2 + m_1 \dot{q}_1(t)^2 + m_2 \dot{q}_2(t)^2] = \frac{1}{2} \dot{\mathbf{q}}^T(t) M \dot{\mathbf{q}}(t)$$
(1.1)

onde

$$\mathbf{q}(\mathbf{t}) = [q_0(t) \ q_1(t) \ q_2(t)]^T$$

é o vetor de configuração e

$$M = \begin{bmatrix} m_0 & 0 & 0 \\ 0 & m_1 & 0 \\ 0 & 0 & m_2 \end{bmatrix}$$

é a matriz de massa do sistema.

A energia potencial tem a expressão:

$$V = \frac{1}{2} [k_0 q_0(t)^2 + k_1 (q_1(t) - q_0(t))^2 + k_2 q_2(t)^2]$$

$$= \frac{1}{2} [(k_0 + k_1) q_0(t)^2 + (k_1 + k_2) q_1(t)^2 + (k_2) q_2(t)^2 - 2k_1 q_0(t) q_1(t) - 2k_2 q_2(t)$$

$$= \frac{1}{2} \dot{\mathbf{q}}^T(t) K \dot{\mathbf{q}}(t)$$
(1.2)

onde

$$K = \begin{bmatrix} k_0 + k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix}$$

é a matriz de rigidez do sistema.

Para o sistema utilizado temos que $m_i = 1 \ kg \ e \ k_i = 1600 \ N/m$.

O amortecimento utilizado será o proporcional: $C=\alpha M+\beta K$. Iremos analisar o caso em que $\alpha=10^{-3}$ e $\beta=10^{-3}$.

1.2 Resposta do sistema

O sistema em questão possui a resposta FRF (Função de Resposta em Frequência) apresentada na fig. 1.2

Para nossa análise iremos considerar uma força aplicada na massa 2 (m_2) e a medição nesta mesma massa, conforme ilustrado na fig. 1.3. A aplicação da força nessa massa corresponde à FRF que pode ser visualizada no canto inferior direito (input=2 e output=2). A FRF em questão é também mostrada na fig. 1.4

Figura 1.3: Aplicação de força e medição na massa m_2 .

Figura 1.4: FRF para input em m_2 e medição em m_2 .

Dados Pseudo-Experimentais

2.1 Resposta do sistema no tempo

Para a construção dos dados pseudo-experimentais foram observados os seguintes casos:

Forçamento:

- $F_0(t) = A_0 sin(2\pi f_0 t)$ (Considere $\frac{\omega_1}{2\pi} \le f_0 \le \frac{\omega_2}{2\pi}$)
- $F_1(t) = A_1 sin(2\pi f_1 t) + A_2 sin(2\pi f_2 t)$ (Escolha $\frac{0.8\omega_1}{2\pi} \le f_j \le \frac{1.2\omega_2}{2\pi}$ e $A_2 = 2A_1$; j = 1, 2)
- $F_2(t) = \text{ruído branco}$

Número de amostras N:

- N = 1000
- N = 5000

Valores para a relação entre sinal e ruído - SNR (Signal to Noise Ratio):

- SNR = 90
- SNR = 50
- SNR = 10

A fig. 2.1 mostra a posição da frequência de excitação para a aplicação da força F_0 , em que uma amplitude $A_0=1$ foi utilizada.

A fig. 2.2 mostra a resposta no tempo do sistema ao aplicarmos a força F_0 na frequência mostrada na fig. 2.1 para uma amostragem N = 1000. Podemos observar que, para N = 1000, temos uma excitação de aproximadamente 16 segundos e ainda

Figura 2.1: Frequência de excitação para a força F_0 .

Figura 2.2: Resposta no tempo para a força F_0 com ${\cal N}=1000.$

Figura 2.3: Resposta no tempo para a força F_0 com N = 5000.

temos algum transiente na resposta no tempo. Também é possível observar que essa parcela apresenta mais que uma frequência de oscilação.

A fig. 2.3 mostra a resposta no tempo para N=5000. Neste caso, o tempo vai até aproximadamente 80 segundos e podemos observar que a parcela transiente é praticamente inexistente após os 20 segundos de excitação. Após esse tempo, é esperado que o sistema oscile apenas na frequência de excitação.

Para a força F_1 a fig. 2.4 mostra as frequências de excitação que foram aplicadas na massa m_2 . Podemos notar que nesse caso as forças aplicadas estão próximas as frequências naturais do sistema.

A fig. 2.5 mostra a resposta no tempo para F_1 com $A_1 = 1$, $A_2 = 2$ e N = 5000. Como esperado, notamos um aumento na amplitude de 1×10^{-3} m para 1×10^{-2} m quando comparado à força F_0 .

O último caso de forçamento é mostrado na fig. 2.6 onde um ruído branco com variância 1 é aplicado ao sistema.

Figura 2.4: Frequência de excitação para a força F_1 .

Figura 2.5: Resposta no tempo para a força F_1 com N=5000.

Figura 2.6: Resposta no tempo para a força F_2 com N=5000.

2.2 Adição do ruído

Conforme mostrado no item 2.1, a análise será feita para três diferentes níveis de ruído (SNR = 90, 50, 10).

Temos então que o sinal utilizado para o projeto do filtro será:

$$y = y^{ideal} + n (2.1)$$

onde n representa um ruído inserido no sinal.

Para calcularmos a amplitude do ruído inserido 'n' utilizaremos a eq. (2.2).

$$SNR = 20log_{10}\left(\frac{A_s}{A_n}\right) \to A_n = \frac{A_s}{10^{SNR/20}}$$
 (2.2)

Abaixo (fig. 2.7, fig. 2.8 e fig. 2.9), são mostrados alguns resultados comparando o sinal puro e o sinal corrompido para um determinado nível de ruído.

Figura 2.7: Sinal puro e sinal corrompido para F_0 e SNR=90.

Figura 2.8: Sinal puro e sinal corrompido para ${\cal F}_0$ e SNR=10.

Figura 2.9: Sinal puro e sinal corrompido para F_2 e SNR=10.

Projeto do Filtro Adaptativo

Para o algoritmo do filtro adaptativo CASTELLO e ROCHINHA [2] apresentam algumas opções que podem ser utilizadas. No caso do presente trabalho o algoritmo LMS (Least Mean Squares) foi escolhido.

3.1 Algoritmo LMS

Como mostrado por DINIZ [1], a configuração normalmente aplicada para identificação de sistemas com filtros adaptativos é mostrada na fig. 3.1. Nesta configuração temos que x(k) é o sinal de entrada, o sinal de saída do sistema que desejamos identificar é d(k) e a saída do filtro é y(k). Estes sinais são comparados e o erro e(k) é calculado.

Figura 3.1: Configuração utilizada no algoritmo para filtros adaptativos.

Os valores de saída do filtro são calculados a partir de uma combinação linear dos seus coeficientes e do sinal de entrada, isto é:

$$y(k) = \sum_{i=0}^{N} w_i(k)x_i(k) = \mathbf{w}^T(k)\mathbf{x}(k)$$
(3.1)

onde $\mathbf{w}(k)$ representa os coeficientes do filtro.

Para aplicações onde o vetor do sinal de entrada é uma versão atrasada do mesmo sinal, isto é: $x_0(k) = x(k), x_1(k) = x(k-1), ..., x_N(k) = x(k-N), y(k)$ é o resultado da aplicação de um filtro FIR ao sinal de entrada x(k). Neste caso temos:

$$y(k) = \sum_{i=0}^{N} w_i(k)x(k-i) = \mathbf{w}^T(k)\mathbf{x}(k)$$
(3.2)

onde $\mathbf{x}(k) = [x(k) \ x(k-1) \ \dots \ x(k-N)]^T$.

O MSE (Mean Square Error) pode ser calculado como:

$$\xi(k) = E[e^{2}(k)] = E[d^{2}(k) - 2d(k)y(k) + y^{2}(k)]$$
(3.3)

Podemos reescrever a eq. (3.3):

$$\xi = E[d^2(k)] - 2\mathbf{w}^T \mathbf{p} + \mathbf{w}^T \mathbf{R} \mathbf{w}$$
(3.4)

onde $p = E[d(k)\mathbf{x}(k)]$ é o vetor de correlação cruzada entre o sinal desejado e o sinal de entrada e $\mathbf{R} = E[\mathbf{x}(k)\mathbf{x}^T(k)]$ é a matriz de correlação do sinal de entrada.

Se ${\bf p}$ e ${\bf R}$ são conhecidos, podemos encontrar a solução para ${\bf w}$ que minimiza $\xi.$ O gradiente do MSE relativo aos coeficientes é:

$$\mathbf{g}_{\mathbf{w}} = \frac{\partial \xi}{\partial \mathbf{w}} = \left[\frac{\partial \xi}{\partial w_0} \frac{\partial \xi}{\partial w_1} ... \frac{\partial \xi}{\partial w_N} \right] = -2\mathbf{p} + 2\mathbf{R}\mathbf{w}$$
 (3.5)

Igualando o gradiente a zero encontramos o vetor de coeficientes que minimiza ξ :

$$\mathbf{w}_0 = \mathbf{R}^{-1} \mathbf{p} \tag{3.6}$$

Se boas estimativas $\hat{\mathbf{p}}$ e $\hat{\mathbf{R}}$ estão disponíveis podemos buscar uma solução:

$$\mathbf{w}(k+1) = \mathbf{w}(k) - \mu \hat{\mathbf{g}}_{\mathbf{w}}(k) \tag{3.7}$$

$$= \mathbf{w}(k) + 2\mu(\hat{\mathbf{p}}(k) - \hat{\mathbf{R}}(k)\mathbf{w}(k))$$
(3.8)

para k = 0, 1, 2, ..., onde $\hat{\mathbf{g}}_{\mathbf{w}}(k)$ representa uma estimativa do gradiente da função objetivo com respeito aos coeficientes do filtro.

Uma possível solução é estimar o gradiente com estimativas instantâneas de ${\bf R}$ e de ${\bf p}$.

$$\hat{\mathbf{R}}(k) = \mathbf{x}(k)\mathbf{x}^{T}(k) \tag{3.9}$$

$$\hat{\mathbf{p}}(k) = d(k)\mathbf{x}(k) \tag{3.10}$$

Temos então que a estimativa para o gradiente é:

$$\hat{\mathbf{g}}_{\mathbf{w}}(k) = -2e(k)\mathbf{x}(k) \tag{3.11}$$

Chegamos então ao algoritmo LMS em que a equação de atualização é:

$$\mathbf{w}(k+1) = \mathbf{w}(k) + 2\mu e(k)\mathbf{x}(k) \tag{3.12}$$

onde o fator de convergência μ deve ser escolhido em um range que garanta a convergência.

3.2 Implementação do filtro

O filtro será implementado em Python como explicado abaixo.

Uma classe class LMSFilter() será criada para o filtro. Essa classe contém uma função de inicialização que possui como argumentos de entrada o número de coeficientes do filtro e o fator de convergência μ . Na criação do filtro os coeficientes são igualados a zero como mostrado no código abaixo.

```
class LMSFilter(object):
    def __init__(self, Nc, mu):
        """
        Iniciar filtro com Nc coeficientes.
        """
        self.Nc = Nc
        self.mu = mu
        # valores iniciais para o filtro w = [0, 0, ..., 0]
        self.w = np.zeros(Nc)
```

O filtro possui uma função predict(self, x) que calcula a saída prevista para o filtro baseado no sinal de entrada x (x(k)). O cálculo é feito conforme a eq. (3.1):

$$y(k) = \sum_{i=0}^{N} w_i(k)x_i(k) = \mathbf{w}^T(k)\mathbf{x}(k)$$
 (3.1 revisitada)

```
def predict(self, x):
    y = self.w @ x
    return y
```

A atualização do filtro é feita pela função update(self, d, x) considerando a eq. (3.12):

$$\mathbf{w}(k+1) = \mathbf{w}(k) + 2\mu e(k)\mathbf{x}(k)$$
 (3.12 revisitada)

```
def update(self, d, x):
    """

Atualizar filtro baseado no sinal de entrada x
    e no valor desejado d.
    """

y = self.w @ x
    e = d - y
    self.w += 2*self.mu * e * x
```

Resultados e Discussões

4.1 Resultados para F_0

4.1.1 Adaptação do filtro

Os resultados da adaptação do filtro para uma força $F_0(t) = A_0 sin(2\pi f_0 t)$ com N = 1000 e SNR = 90 são mostrados na fig. 4.1. O número de coeficientes do filtro (N_c) e o fator de convergência (μ) utilizados são apresentados na figura.

Figura 4.1: Evolução do filtro para $F = F_0$, N = 1000 e SNR = 90.

Para o caso do seno puro podemos o filtro tem uma convergência rápida e com menos de 100 iterações o erro já é próximo de zero.

Figura 4.2: Evolução do filtro para $F = F_0$, N = 1000 e SNR = 10.

Na fig. 4.2 são apresentados os resultados para N=1000 e SNR=10. Podemos observar que, mesmo com um nível de ruído mais elevado, o algoritmo apresentou uma convergência rápida.

4.1.2 FRF do filtro

Na fig. 4.3a é apresentada a FRF do filtro obtido com SNR = 90 considerando o último vetor de coeficientes, e na fig. 4.3b é apresentada a FRF considerando o vetor obtido através do valor esperado dos coeficientes tomando por base as observações da segunda metade do vetor de dados. A fig. 4.4 apresenta os resultados para SNR = 10.

Podemos observar que FRF do filtro obtido não apresenta bons resultados, aproximando-se do valor esperado apenas na frequência de excitação $(34\,\mathrm{rad\,s^{-1}})$. Podemos notar um aumento na amplitude próxima à primeira frequência natural do sistema, mas o valor não se aproxima do esperado. Outro ponto importante é que, para este caso, a FRF do filtro não se mostrou sensível ao nível de ruído. A utilização do último vetor de coeficientes w ou do valor esperado para a segunda metade do vetor de dados também não teve impacto significativo na resposta.

Figura 4.3: FRF do filtro obtido para $F=F_0,\,N=1000$ e SNR=90.

Figura 4.4: FRF do filtro obtido para $F=F_0,\,N=1000$ e SNR=10.

4.1.3 Predição

Para analisarmos a predição do filtro, foi escolhida uma força arbitrária F_3 conforme eq. (4.1)

$$F_3 = B_1 \sin(\omega_1 t) + B_2 \sin(\omega_2 t) + B_3 \sin(\omega_3 t) + \nu \tag{4.1}$$

onde $B_1=1\,\mathrm{N},\ B_2=2\,\mathrm{N}$, $B_3=3\,\mathrm{N},\ \omega_1=14\,\mathrm{rad\,s^{-1}},\ \omega_2=40\,\mathrm{rad\,s^{-1}},\ \omega_3=65\,\mathrm{rad\,s^{-1}}$ e ν é um ruído branco de variância 1.

A

Figura 4.5: Predição do filtro obtido com $F=F_0,\,N=1000$ e SNR=90.

Assim como mostrado por CASTELLO e ROCHINHA [2], no caso analisado o fenômeno de anti-ressonância também não foi capturado pelo LMS.

Conclusões

Referências Bibliográficas

- [1] DINIZ, P. S. Adaptive filtering. Springer, 1997.
- [2] CASTELLO, D. A., ROCHINHA, F. A. "An experimental assessment of transverse adaptive fir filters as applied to vibrating structures identification", *Shock and Vibration*, v. 12, n. 3, pp. 197–216, 2005.

Apêndice A

Algumas Demonstrações