- in NHL limitiertes Wissen über Häufigkeit und Bedeutung zytogenetischer Veränderungen
- bisher insbesondere Translokationen mit spezifischen histolog. Subtypen assoziiert:

t(14;18) in FCL und hochmaligen NHL t(8;14) und Varianten in Burkitt-Lymphomen t(11;14) in Mantelzelllymphomen

CGH (comparative genomic hybridization):

Untersuchung des gesamten Genoms in einem einzigen Experiment unter Verwendung genomischer DNA Verwendbarkeit von Paraffinmaterial

 123 der 221 Gewebeproben primärer
 Studienpatienten bisher auswertbar

Rekurrente Veränderungen (> 15% der Fälle):

<u>Zugewinne</u>	<u>Verluste</u>	
7q	6q	
18q	13q	
7 p		
12q		
11q		

Häufigste Histologien der 103 untersuchten Studienfälle:

<u>Histologie</u>	<u>Anzahl</u>	
zentroblastisch	55	
immunoblastisch	16	
HG nicht spezifiziert	23	

55 cb NHL

Chromosomale Imbalancen

16 ib NHL

Auffälligste Unterschiede:

<u>Aberration</u>	<u>cb</u>	<u>ib</u>
dim(6q)	18%	44%
enh/amp(2p13p15)	20%	-
dim(13q)	16%	6%
Median	2	3,5

- Trend zu schlechterem klinischen Verlauf der hier analysierten immunoblastischen NHL geringe Fallzahl, klinische Daten für 40 cb, 13 ib
- Konkordanz zu Publikation von Engelhard et al. Blood, 2291 Vol 89, No 7 (April 1), 1997: pp 2291-2297

- unterschiedliche Muster chromosomaler Veränderungen in ib und cb NHL als zusätzliches Argument für Unterteilung der DLCL entsprechend Kiel-Klassifikation
- schlechtere Prognose der ib-NHL gegenüber cb-NHL aufgrund noch nicht charakterisierter genetischer Aberrationen

Die molekulare Analyse der betreffenden genetischen Veränderungen wird zum Verständnis des klinischen Verhaltens beitragen.

Poliklinik Heidelberg **Michael Baudis Carmen Schulze** Kathrin Walenta Medizinsche Klinik III der Universität Ulm **Martin Bentz Hartmut Döhner**

Deutsches Krebsforschungszentrum Heidelberg **Peter Lichter**

IMISE Leipzig

Markus Löffler

Marita Klöss

Pathologie Lübeck

Alfred C. Feller

H. Merz

Pathologie Würzburg
H.-K. Müller-Hermelink
German Ott

Studienzentrale DSHNHL
Homburg
Michael Pfreundschuh
Lorenz Trümper

