Lycée Qualifiant Zitoun

Année scolaire : 2024-2025

Niveau: Tronc commun scientifique

Durée totale : 5h

Contenus du programme :

• Ecriture et notations;

• Exemples des nombres irrationnels;

- Opérations dans \mathbb{R} , propriétés;

• Les puissances et leurs propriétés;

• Puissance de 10; écriture d'un décimal;

• Les identités remarquables : $(a+b)^2$, $(a-b)^2$, a^2-b^2 , a^3-b^3 et a^3+b^3 ;

• développement et factorisation.

Les capacités attendues :

• Reconnaître les relation entre les nombres et distinguer les différents ensembles de nombres;

• Déterminer l'écriture convenable d'une expression algébrique selon la situation étudiée.

A Recommandations pédagogiques :

- On fera la synthèse des connaissances acquises par les élèves à propos des nombres puis on introduira les symboles relatifs aux ensembles de nombres et on fera la distinction entre ces ensembles ;
- On introduira, à partir d'activités et d'exercices, la racine carrée d'un entier naturel qui n'est pas un carré parfait comme Exemple de nombre irrationnel ;
- On rappellera, à partir d'activités, les propriétés des opérations dans l'ensemble $\mathbb R$ et les différentes identités remarquables qui doivent être renforcées par les deux identités a^3-b^3 et a^3+b^3 ;
- On devra renforcer et soutenir les propriétés et les techniques relatives aux opérations dans \mathbb{R} chaque fois que l'occasion se présente dans les différents chapitres du programme.

1. Ensembles des nombres :

1.1. L'ensemble des entiers naturels \mathbb{N} :

Les nombres entiers naturels forment un ensemble que l'on note \mathbb{N} .

On écrit :
$$\mathbb{N} = \{0; 1; 2; 3; 4; 5; \dots; 101; \dots; 4678; \dots; 8999; \dots \}$$

Notation:

78 est un entier naturel, alors 78 est un élément de \mathbb{N} , on dit que 16 appartient à \mathbb{N} . On écrit 78 $\in \mathbb{N}$.

-78 n'est pas un entier naturel, alors -78 n'est pas un élément de N, on dit que -78 n'appartient pas à N. On écrit 16 ∉ N.

1.2. L'ensemble des entiers relatifs \mathbb{Z} :

Les nombres entier relatifs forment un ensemble que l'on note \mathbb{Z} .

On écrit
$$\mathbb{Z} = \{.....; -3; -2; -1; 0; 1; 2; 3;\}$$

Notation:

Tout élément de \mathbb{N} est un élément de \mathbb{Z} . On dit que \mathbb{N} est une partie de \mathbb{Z} ou que \mathbb{N} est inclus dans \mathbb{Z} . On écrit : $\mathbb{N} \subset \mathbb{Z}$.

Exemple 1

$$15 \in \mathbb{N}$$
 ; $1,5 \notin \mathbb{Z}$; $\sqrt{9} \in \mathbb{N}$; $\frac{10}{2} \in \mathbb{N}$; $-\sqrt{25} \notin \mathbb{N}$

1.3. L'ensemble des nombres décimaux \mathbb{D} :

Les nombres décimaux forment un ensemble que l'on note
$$\mathbb{D}$$
. On a $\mathbb{D}=\left\{\frac{a}{10^p}; a\in\mathbb{Z} \text{ et } p\in\mathbb{N}\right\}$.

Exemple 2

$$0.5 = \frac{5}{10} \in \mathbb{D} \quad ; \quad 7 = \frac{7}{10^0} \in \mathbb{D} \quad ; \quad 4.29 = \frac{429}{10^2} \in \mathbb{D} \quad ; \quad -4.059 = \frac{4059}{10^3} \in \mathbb{D}$$

Remarque:

Tout nombre entier relatif a s'écrit sous la forme $\frac{a}{10^0}$ (p=0), donc appartient à \mathbb{D} . Donc $\mathbb{Z} \subset \mathbb{D}$.

1.4. L'ensemble des nombres rationnels Q

Les nombres rationnels forment un ensemble que l'on note \mathbb{Q} .

$$\mathbb{Q} = \left\{ \frac{a}{b} ; \ a \in \mathbb{Z} \text{ et } b \in \mathbb{Z}^* \right\}$$

Exemple 3

$$\frac{1}{3} \in \mathbb{Q} \ ; \ \frac{-5}{11} \in \mathbb{Q} \ ; \ \frac{9}{11} \in \mathbb{Q} \ ; \ \frac{-49}{37} \in \mathbb{Q}$$

Remarque:

- Tout nombre rationnel peut s'écrire sous forme d'un nombre à décimales périodiques après la virgule. Par Exemple : $\frac{5}{11}$ **0,454545...** (la période ici est **45**).
- Tout nombre décimal peut s'écrire sous la forme $\frac{a}{10^p}$ (où $a \in \mathbb{Z}$ et $p \in \mathbb{N}$), et appartient donc à \mathbb{Q} (en prenant $b = 10^p$). Donc $\mathbb{D} \subset \mathbb{Q}$.

2

1.5. L'ensemble des nombres réels $\mathbb R$:

Définition 5

- Tout nombre qui n'est pas rationnel est appelé nombre irrationnel.
- Les nombres rationnels les nombres irrationnels forment un ensemble que l'on note \mathbb{R} .

 $\mathbb{R} = \{ \text{Les nombres rationnel et les nombres irrationnel} \}$

Exemple 4

- 1. $\frac{4}{5} \in \mathbb{R}$; $1,556 \in \mathbb{R}$; $-8.33 \in \mathbb{R}$; $\frac{-58}{99}$; $\sqrt{2} \in \mathbb{R}$; $\sqrt{2} \notin \mathbb{Q}$; $\pi \notin \mathbb{Q}$
- 2. Le nombre x=0,1234567891011121314151617... est un nombre irrationnel, car les nombres après la virgule n'est pas périodique. $(x \notin \mathbb{Q})$

Remarque:

- Tout élément de $\mathbb Q$ est un élément de $\mathbb R$ c'est-à-dire $\mathbb Q \subset \mathbb R$.
- Tout nombre réel soit rationnel ou irrationnel.
- On a $\mathbb{N} \subset \mathbb{Z}$ et $\mathbb{Z} \subset \mathbb{D}$ et $\mathbb{D} \subset \mathbb{Q}$ et $\mathbb{Q} \subset \mathbb{R}$. On écrit $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$.

2. Opérations dans \mathbb{R} et propriétés :

2.1. Règle fondamentales de développement et de factorisation :

Proposition 1

Soient a, b et c des nombres réels. On a :

$$a \times (b+c) = a \times b + a \times c$$
$$(b+c) \times a = b \times a + c \times a$$
$$(a+b)(c+d) = ac + ad + bc + bd$$

3

Exemple 5

- 1. Dévellopement : 3(2x+5y) et $-\sqrt{2}(\sqrt{3}x-4y)$ et $4x(x^2+x-3)$
- 2. Factorisation: 13x + 26 et $\sqrt{2}x + \sqrt{2}$ et 4(x-2) + (x-3)(x-2)

2.2. Identités remarquables :

Activité 1

Soient a et b deux nombres réels.

1. Développer $(a+b)^3$ et $(a-b)^3$

Proposition 2

Soient a et b deux nombres réels. On a :

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$a^{2} - b^{2} = (a-b)(a+b)$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

Exemple 6

- 1. Développer : $(x+3)^2$; $(3a-5)^2$; $(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})$
- 2. Factoriser: $49x^2 25$; $x^2 + 2x y^2 + 1$;

Application 1

- 1. Dévelloper : $A = (x+2)^3$; $B = (2x-3\sqrt{2})^3$
- 2. Factoriser: $C = x^3 8$; $D = 8x^3 + 27$
- 3. Calculer sans utiliser calculatrice : 99^2 ; 101^2

3. Puissance d'un nombre :

3.1. Puissance d'un nombre réel :

Proposition 3

Soit a et b deux nombres réels non nuls et soit n et p deux entiers relatifs :

•
$$a^n \times a^p = a^{n+p}$$

•
$$\frac{1}{a^p} = a^{-p}$$

•
$$\frac{a^n}{a^p} = a^{n-p}$$

•
$$(a^n)^p = a^{np}$$

•
$$a^n \times b^n = (a \times b)^n$$

4

•
$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$

Exemple 7

1.
$$5^{-2} \times 5^4 = 5^{-2+4} = 5^2$$

4.
$$2^3 \times 3^3 = (2 \times 3)^3 = 6^3 = 216$$

2.
$$\frac{3^4}{3^5} = 3^{4-5} = 3^{-1} = \frac{1}{3}$$

3.
$$(2^3)^2 = 8^2 = 64$$

5.
$$\frac{15^3}{5^3} = (\frac{15}{5})^3 = 3^3 = 27$$

3.2. Puissance du nombre 10 :

Proposition 4

Pour tout entier naturel n, on a:

$$10^n = \underbrace{10000000000}_{\text{n zéros}}$$

 et

$$10^{-n} = \underbrace{0.00000000001}_{n \text{ zéros}}$$

Exemple 8

1.
$$10^5 = 100000 (5 \text{ zéros})$$

3.
$$10^{-7} = 0.0000001$$
 (7 zéros)

2.
$$10^{-4} = 0.00001$$
 (4 zéros)

3.3. Écriture scientifique:

Définition 6

Tout nombre décimal positif peut s'écrire sous la forme $a \times 10^p$ où $a \in \mathbb{D}$ tel que $1 \le a \le 10$ et $p \in \mathbb{Z}$. L'écriture $a \times 10^p$ s'appelle l'écriture scientifique.

Remarque:

Si le nombre est négatif, alors son écriture scientifique est : $-a \times 10^p$ où $a \in \mathbb{D}$ et $1 \le a \le 10$ et $p \in \mathbb{Z}$.

Exemple 9

- L'écritute scientifique du nombre 124,55 est $1,2455 \times 10^2$.
- L'écritute scientifique du nombre 0,00025 est $2,5 \times 10^{-4}$.
- L'écritute scientifique du nombre 11,00007 est $1,100007\times 10^1.$