Nonlinear Perron-Frobenius Theory and Lyapunov functions for monotone systems

Björn S. Rüffer bjoern@rueffer.info

SST group, University of Paderborn, Germany

Thursday, 18th July 2013 Reykjavik University, Iceland

Positive matrices

A matrix $A = (a_{ij}) \in \mathbb{R}^{n \times m}$ is called positive (nonnegative) if $a_{ij} > 0$ $(a_{ij} \ge 0)$ for all i, j. For matrices $A \in \mathbb{R}^{n \times n}$,

$$\rho(A) \coloneqq \max\{|\lambda|: Ax = \lambda x \text{ for some } \lambda \in \mathbb{C} \text{ and } x \in \mathbb{C}^n \setminus \{0\}\}$$

is called the spectral radius of A.

Theorem (Perron 1907)

Let A be a positive $n \times n$ matrix. Then

- (i) $\rho(A) > 0$ is an algebraically simple eigenvalue of A
- (ii) the corresponding eigenvector $v \in \mathbb{R}^n$ is unique and positive
- (iii) any nonnegative eigenvector is a multiple of v
- (iv) each eigenvalue $\lambda \neq \rho(A)$ satisfies $|\lambda| < \rho(A)$

Monotone systems

- Let A be a nonnegative $n \times n$ matrix. Then $0 \le x \le y$ implies $Ax \le Ay$, when \le is the componentwise partial ordering.
- Assume $\rho(A) < 1$. Then the origin is globally asymptotically stable for

$$X^+ = AX$$
.

Consider this system on $\mathbb{R}^n_+ \coloneqq \{x \in \mathbb{R}^n : x \ge 0\}.$

- ▶ Let $\widetilde{A} := A + \epsilon E$ for some $\epsilon > 0$ such that $\rho(\widetilde{A}) < 1$ and denote by $0 \ll \sigma \in \mathbb{R}^n$ the associated Perron vector.
- We have

$$A\sigma \ll A\sigma + \epsilon E\sigma = \widetilde{A}\sigma = \rho(\widetilde{A})\sigma \ll \sigma.$$

A simple Lyapunov function

- ▶ Observe that for any $x \in \mathbb{R}^n_+$ there is a unique smallest scalar $r \ge 0$ such that $x \le r\sigma$.
- ► This r is given by $V(x) := \max_{i=1...n} \frac{X_i}{\sigma_i}$.
- V is order-preserving, radially unbounded, and positive definite.
- ▶ For $x \in \mathbb{R}^n_+$, $x \neq 0$, V satisfies

$$V(Ax) \le V(AV(x)\sigma) \le V(V(x)\rho(\widetilde{A})\sigma)$$

= $V(x)\rho(\widetilde{A})V(\sigma) < V(x)$.

So V is a 'global' Lyapunov function for $x^+ = Ax$ on the set \mathbb{R}^n_+ .

Outline

- Monotone (=order-preserving) systems defined on cones
- Local in addition to global asymptotic stability
- Lyapunov functions inspired by Perron vectors

Space and cone

- ▶ Let X a locally compact real Hilbert space (i.e., \mathbb{R}^n)
 - Let $K \subset X$ a closed, pointed, and salient cone with nonempty interior int K, i.e.,

$$K + K \subset K$$
, $rK = K \quad \forall r \ge 0$, $K \cap (-K) = \{0\}$. Denote by 1 a distinguished element of int K .

Space and cone

- Let X a locally compact real Hilbert space (i.e., \mathbb{R}^n)
- Let K ⊂ X a closed, pointed, and salient cone with nonempty interior int K, i.e.,

$$K+K\subset K$$
, $rK=K$ $\forall r\geq 0$, $K\cap (-K)=\{0\}$. Denote by 1 a distinguished element of int K .

Let $H_r := \{x \in X : \langle x, 1 \rangle = r\}$ a hyperplane for all r > 0, such that

$$C_r := H_r \cap K$$

- is compact (it will also be convex).
- ▶ For r > 0 we define the projection $P_r: K \setminus \{0\} \to C_r$ by

$$P_r x \coloneqq \underset{y \in C_r}{\operatorname{arg \, min \, min}} \|\alpha x - y\|.$$

Closed partial ordering

- We write $x \le y$ iff $y x \in K$;
- we write x < y iff $x \le y$ and $x \ne y$;
- we write $x \ll y$ iff $y x \in \text{int } K$.

Also important is the notation $x \ngeq y$. It means that $x \trianglerighteq y$ does not hold. This is not the same as $x \lessdot y$ or $x \lessdot y$.

Dynamical system

 \mathbb{T} denotes either \mathbb{R}_+ or \mathbb{Z}_+ . A forward complete dynamical system is a continuous map $\phi \colon \mathbb{T} \times X \to X$ satisfying

$$\phi(0,x) = x \qquad \forall x \in X \text{ and}$$

$$\phi(t,\phi(s,x)) = \phi(t+s,x) \qquad \forall t,s, \ \forall x \in X.$$

The system is monotone if

$$x \le y$$

implies

$$\phi(t,x) \leq \phi(t,y)$$

for all t > 0.

Stability notions

A point $x^* \in X$ is an equilibrium if $\phi(t, x^*) \equiv x^*$. We consider only systems with a unique equilibrium, which without loss of generality is the origin.

An equilibrium point x^* is (globally) attractive if for all x in a neighborhood of x^* (for all $x \in X$), $\lim_{t\to\infty} \phi(t,x) = x^*$.

An equilibrium point x^* is stable, if for all $\epsilon > 0$ there exists a $\delta > 0$ such that $\|x - x^*\| < \delta$ implies $\|\phi(t, x) - x^*\| < \epsilon$ for all t > 0.

trivial Lemma

A monotone system with unique equilibrium at the origin leaves K and -K invariant.

Monotone systems have monotone Lyapunov functions

Converse Lyapunov results based on Sontag's Lemma on \mathcal{KL} -functions define

$$V(x) \coloneqq \sup_{t \ge 0} \alpha(|\phi(t, x)|) e^t$$

where α is continuous, positive definite, strictly increasing, unbounded, locally Lipschitz, cf. yesterday's talk by Chris.

When restricted to K, V is monotone!

Lemma

If a monotone system evolving on a cone is (globally) asymptotically stable, then it admits a monotone Lyapunov function.

Non-ordering conditions as definition

We say that ϕ with equilibrium at the origin satisfies the non-ordering conditions globally, if

- for all x > 0 all t > 0, we have $\phi(t, x) \ngeq x$;
- for all x < 0 all t > 0, we have $\phi(t, x) \nleq x$.

Non-ordering conditions as definition

We say that ϕ with equilibrium at the origin satisfies the non-ordering conditions locally, if

- for all x > 0 in a neighborhood of the origin and all t > 0, we have $\phi(t, x) \ngeq x$;
- for all x < 0 in a neighborhood of the origin and all t > 0, we have $\phi(t, x) \nleq x$.

Attractivity \Longrightarrow non-ordering conditions

Lemma

Let the origin be attractive. Then

- (i) for all x > 0 in the region of attraction and all t > 0, we have $\phi(t,x) \ngeq x$;
- (ii) for all x < 0 in the region of attraction and all t > 0, we have $\phi(t,x) \nleq x$.

Proof. Assume that there were $\overline{x} > 0$, t > 0, s.t. $\phi(t, \overline{x}) \ge \overline{x} > 0$.

Applying $\phi(t,\cdot)$ repeatedly yields $\phi((k+1)t,\overline{x}) \ge \overline{x} > 0$.

Letting $k \to \infty$ we obtain a contradiction to the attractivity of 0.

Hence such \overline{x} cannot exist and necessarily $\phi(t,x) \ngeq x$ for all x > 0 and all t > 0, proving the lemma (other case follows by symmetric argument).

A fixed point result

Let the origin be an equilibrium for ϕ and let $Tx \coloneqq \phi(1,x)$. Then $T: K \to K$ with T0 = 0 is a monotone map. For r > 0 assume that $Tx \neq 0$ for all $x \in C_r$ and define $T_r: C_r \to C_r$ by

$$T_r x \coloneqq (P_r \circ T)(x) = P_r(Tx).$$

Lemma on fixed points

Assume (for now) that $Tx \neq 0$ for all $x \in C_r$. Then the map T_r has a fixed point in C_r .

Proof. By construction T_r is a map from a compact convex set into itself, so the result is an application of Brouwer's or Schauder's fixed point theorem.

Thoughts about the fixed point

The fixed point does not have to be unique. Think of Tx = qx with $q \in (0,1)$. Then T_r is just the identity map on C_r .

Every fixed point x_r^* of T_r must satisfy

$$Tx_r^* = \lambda x_r^*$$

for some $\lambda \in (0, \infty)$.

 $\lambda \geq 1$ implies $Tx_r^* \geq x_r^*$, which is not compatible with $Tx \ngeq x$ for all $x \in C_r$. So necessarily $\lambda \in (0,1)$ if we assume the non-ordering condition and hence

$$Tx_r^* < x_r^*.$$

The sequence $0 \le T^{k+1} x_r^* \le T^k x_r^* \le \ldots \le T x_r^* < x_r^*$ is bounded, ordered, hence convergent, and it can only converge to the origin if the non-ordering conditions hold.

A converse result

Lemma

Let the origin be an equilibrium of ϕ and let ϕ satisfy the non-ordering conditions.

Assume there exist points $x_* \ll 0 \ll x^*$ satisfying $Tx_* \gg x_*$ and $Tx^* \ll x^*$.

Then the origin is asymptotically stable (w.r.t. ϕ) and the order intervals

$$[x_*, 0]$$
 $[0, x^*]$ $[x_*, x^*]$

are contained in the region of attraction.

Proof

Let us consider $x \in [0, x^*]$. Monotonicity implies $0 \le \phi(k+1, x) \le T^{k+1}x \le T^kx \le T^kx^* \longrightarrow 0$ as $k \to \infty$.

The case $x \in [x_*, 0]$ is shown with symmetric arguments.

If $x \ngeq 0$ and $x \nleq 0$ but $x \in [x_*, x^*]$ we can *wedge* it from two sides with similar arguments. This shows attractivity.

The fact that $T([x_*, x^*])$ is bounded implies stability.

A 'fixed' point with strict descent

So far, the non-ordering conditions alone for r > 0 only give us $x^* \in C_r$ such that $Tx^* < x^*$. We want $Tx^* \ll x^*$. As $Tx \ngeq x$ for all $x \in C_r$, we can find an $\epsilon = \epsilon(r) > 0$ such that

$$\widetilde{T}x := Tx + \epsilon 1 \ngeq x$$
 for all $x \in C_r$.

By application of the fixed point lemma we find $\widetilde{X}_r^* \in C_r$ such that

$$T\widetilde{x}_r^* \ll \widetilde{T}\widetilde{x}_r^* < \widetilde{x}_r^*$$
.

A local converse result

In summarizing the construction on the previous slides we obtain:

Theorem

If the origin is an equilibrium for ϕ and if ϕ satisfies the non-ordering conditions (locally is enough) then the origin is locally asymptotically stable.

However, we do not obtain a global result: For the standard partial order on \mathbb{R}^2 , $\mathbb{T} = \mathbb{Z}$, any $\lambda \in (0, 1)$, and

$$\phi(1,x) \coloneqq \begin{pmatrix} \lambda x_1 + x_1^2 x_2 + x_2 \\ \lambda x_2 \end{pmatrix}$$
 one can show that the origin is not globally attractive [R-2010 *Positivity*] (but the non-ordering conditions are satisfied).

Ingredients for a global result

Clearly, we have to assume more. Define the sets

$$\Psi_{-} \coloneqq \left\{ x \in K \colon Tx \le x \right\} \subset K$$

$$\Psi_{+} \coloneqq \left\{ x \in -K \colon Tx \ge x \right\} \subset -K.$$

and write again $\Psi_{\scriptscriptstyle \pm}$ to refer to either of the two.

We say that a set Y is positively (negatively) unbounded (±-unbounded for short) if for all $x \in X$ there is a $y \in Y$ such that $y \ge x$ ($y \le x$).

A global result

Proposition

If the origin is an equilibrium for ϕ , if ϕ satisfies the non-ordering conditions on X, and if the sets Ψ_{\pm} are, respectively, \pm -unbounded, then the origin is globally asymptotically stable.

Proof. For any x > 0 we can find a $y \ge x$ with $y \in \Psi_-$, so that $0 \le x \le y$ and $Ty \le y$. Combined this yields $0 \le T^k x \le T^k y \to 0$. The remainder is similar to the proof of the local result.

See [R-2010 *Positivity*] for some classes of systems and conditions guaranteeing \pm -unboundedness of Ψ_{\pm} . Homogeneity also does the trick.

Canonical Lyapunov functions (discrete-time case)

Let T have an equilibrium at the origin. Assume we can find a parameterized path $\sigma\colon\mathbb{R}\to K\cup(-K)$ such that

- σ is continuous, $\sigma(0) = 0$;
- r < s implies $\sigma(r) \ll \sigma(s)$;
- ► $T\sigma(r) \ll \sigma(r)$ for all r > 0 and $T\sigma(r) \gg \sigma(r)$ for all r < 0;
- the image of σ is \pm -unbounded.

Think of $x \ge 0$, but define for all $x \in X$,

$$V_{+}(x) := \min\{r \ge 0: \sigma(r) \ge x\}$$
$$= \max \sigma_{i}^{-1}(x_{i})$$
when $K = \mathbb{R}_{+}^{n}$

- V_+ is strictly increasing: $x \ll y$ implies $V_+(x) < V_+(y)$;
- We can find $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that $\alpha_1(\|x\|) \le V_+(x) \le \alpha_2(\|x\|)$ for $x \ge 0$;

$$x \le \sigma(V_{+}(x)) \qquad | T(\cdot)$$

$$Tx \le T\sigma(V_{+}(x)) \ll \sigma(V_{+}(x)) \qquad | V_{+}(\cdot)$$

$$V_{+}(Tx) < V_{+}(\sigma(V_{+}(x))) = V_{+}(x)$$

The resulting global Lyapunov function

Define $V_{-}(x) := \min\{r \ge 0: \sigma(-r) \le x\}$ for all $x \in X$ but consider $x \le 0$.

Now combine V_+ and V_- to obtain

$$V(x) \coloneqq \max\{V_+(x), V_-(x)\}.$$

Theorem (discrete-time version)

- Let ϕ be given by $\phi(1,x) = Tx$ and assume T0 = 0.
- Assume the existence of σ introduced two slides ago.
- ▶ Then V is a strict, global Lyapunov function for ϕ .

The ODE version is conceptually very similar.

Existence of σ I

Nonlinear Perron-Frobenius Theory¹ provides conditions for existence of a Perron vector for, e.g., homogeneous maps on general cones K, that is, maps $T:K\to K$ such that

$$T(\lambda x) = \lambda T(x)$$

for all $x \in K$, and all scalar $\lambda > 0$.

¹Highly recommended reading:

Existence of σ II

Proposition

Let ϕ be given by $\phi(1, x) = Tx$ and assume T0 = 0 and that T satisfies the non-ordering conditions (globally).

The path σ as introduced three slides ago exists if Ψ_{\pm} is \pm -unbounded.

(Sketch:) Origin is GAS by previous proposition, so there exists some Lyapunov function (ask Chris for details).

Robustness argument gives a $\widetilde{\mathcal{T}}\gg\mathcal{T}$ so that origin is GAS w.r.t. $x^+=\widetilde{\mathcal{T}}x$, and $\Psi_\pm(\widetilde{\mathcal{T}})$ is \pm -unbounded.

Fixed point argument yields two \pm -unbounded solutions $\overline{\phi}$ and $\underline{\phi}$ that evolve in Ψ_- , resp., Ψ_+ for all times. These can be reparameterized to become σ .

The robustness guarantees strict descent of T along σ .

Unboundedness of Ψ_{+}

Lemma

Let ϕ be given by $\phi(1,x) = Tx$ and assume T0 = 0 and that Tsatisfies the non-ordering conditions (globally).

The sets Ψ_+ are \pm -unbounded if there exists an $\alpha \in \mathcal{K}_{\infty}$ s.t.

$$T(x) \ge \alpha(\|x\|) 1$$
 for all $x \in K$

and

$$T(x) \le -\alpha(\|x\|) 1$$
 for all $x \in -K$

(Sketch:) Fixed point theorem on a set C_r + the yellow condition to guarantee that the fixed point can be chosen arbitrarily large.

Not a necessary condition, e.g., $T \equiv 0$.

Conclusions and outlook

Conclusion

- Asymptotic stability
 local non-ordering conditions
- GAS does not imply the existence of a Lyapunov function of the presented type
- ► Level sets of V₊ are order intervals

Directions for future work

- Other types of Lyapunov functions, e.g. if $\nu^T A \ll \nu^T$ and $\nu \gg 0$, then $W(x) = \nu^T x$ is a Lyapunov function for $x^+ = Ax$ on \mathbb{R}^n .
- How does this extend to general monotone mappings T?