Home > Posts > Cheat Sheet: Adding Math Notation to Markdown

Cheat Sheet: Adding Math Notation to Markdown

Apr 2, 2024 · 7 min read · Documentation Linux Mac Windows Markdown LaTeX Markdown VSCode

A quick-reference guide, with examples, on how to add math notation to Markdown documents.

The scope of mathematical notation included in this cheat sheet is drawn from the Math Notation Cheat Sheet poster, created by Dominic Walliman , included here with permission. The associated YouTube video, which is excellent, is The Map of Mathematics .

There are two ways to include math notation in Markdown. First, inline, which means that the notation is included in the paragraph or sentence, with the flow of text.

The second is as separate code blocks, so that the notation is shown in it's own paragraph.

Inline math notation is wrapped in single-dollar signs. For example, for the square of "x", just type x^2 , which is then formatted as x^2 . This is $T_E X$ notation.

Alternatively, code blocks of \LaTeX begin and end with two dollar signs, wrapped inside triple backticks. For example...

The above is rendered as:

$$\sum_{k=3}^{5} k^2 = 3^2 + 4^2 + 5^2 = 50$$

2. LaTeX Cheat Sheet @

Tip: These tables are wide, so you may need to scroll horizontally to see all the columns, or rotate your phone to landscape.

2.1. Arithmetic 🔗

Notation	Example	Inline	Code Block
Addition	a+b	\$a+b\$	\$\$ a+b \$\$

2.2. Equality 🔗

Notation	Example	Inline	Code Block	
	•			

Equals	3 = 1 + 2	\$3=1+2\$	\$\$ 3=1+2 \$\$
Not Equals	3 eq 4	\$3\neq4\$	\$\$ 3\neq4 \$\$
Identical / Equivalent To	$a\equiv b$	\$a \equiv b\$	\$\$ a \equiv b \$\$
Proportional To	$a \propto b$	\$a \propto b\$	<pre>\$\$ a \propto b \$\$</pre>
Approximately Equal To	$\sin(0.01)pprox 0.01$	\$\sin(0.01) \approx 0.01\$	\$\$ \sin(0.01) \approx 0.01 \$\$

2.3. Comparison 🔗

Notation	Example	Inline	Code Block
a Less Than b a Greater Than b	$egin{aligned} a < b \ a > b \end{aligned}$	\$a <b\$ \$a>b\$</b\$ 	\$\$ a <b \$\$</b
a Less Than or Equal To b a Greater Than or Equal To b	$egin{aligned} a & \leq b \ a & \geq b \end{aligned}$	\$a \leq b\$ \$a \geq b\$	\$\$ a \leq b \$\$
a Much Smaller Than b a Much Larger Than b	$a \ll b \ a \gg b$	\$a \ll b\$ \$a \gg b\$	\$\$ a \ll b \$\$

•

upyesp

Notation	Example	Inline	Code Block
Factorial	$egin{array}{l} 5! = 5 imes \ 4 imes 3 imes \ 2 imes 1 \end{array}$	<pre>\$5!=5 \times 4 \times 3 \times 2 \times 1\$</pre>	\$\$ 5!=5 \times 4 \times 3 \times 2 \times 1 \$\$
Absolute Value	-5 = 5	\$ -5 =5\$	\$\$ -5 =5 \$\$
Function Of	$f(x) = 2x^2$	\$f(x)=2x^2\$	\$\$ f(x)=2x^2 \$\$
Change or Difference	$\Delta x = \ x_1 - x_0$	\$\Delta x = x_1 - x_0\$	\$\$ \Delta x = x_1 - x_0 \$\$
Pi	$\pi = 3.14159\dots$	\$\pi = 3.14159\$	\$\$ \pi \$\$
Euler's Constant	$e=2.71828\dots$	\$e = 2.71828\$	\$\$ e = 2.71828 \$\$
Sum	$\sum_{k=3}^{5} k^2 = \ 3^2 + 4^2 + \ 5^2 = 50$	\$ \displaystyle\sum_{k=3} ^5 k^2=3^2 + 4^2 + 5^2 =50\$	<pre>\$\$ \displaystyle\sum_{k=3} }^5 k^2=3^2 + 4^2 + 5^2 =50 \$\$</pre>
Series Product	$\prod_{x=2}^{4} x^2 = 2^2 imes 3^2 imes 4^2 = 576$	\$ \displaystyle\prod_{x=2} }^4 x^2 = 2^2 \times 3^2 \times 4^2 = 576\$	<pre>\$\$ \displaystyle\sum_{k=2} }^4 k^2=2^2 \times 3^2 \times 4^2 = 576 \$\$</pre>

Brackets &	[] ()	<pre>\$[\ldots] (\ldots)\$</pre>	\$\$	
Parenthese	S		[\ldots] (\ldots)	
			\$\$	

2.5. Angles 🔗

Notation	Example	Inline	Code Block
Angle	_	\$\angle\$	\$\$ \angle \$\$
Degree, Arc Min, Arc Sec	30°45′30″	\$30\degree45\rq30\rq\rq\$	\$\$ 30\degree45\rq30\rq\rq \$\$
Radians	$360\degree = 2\pi rad$	\$360\degree = 2\pi rad\$	\$\$ 360\degree = 2\pi rad \$\$

2.6. Probability & Statistics 🔗

Notation	Example	Inline	Code Block
Probability of Event A	$P(A)$ or $\Pr(A)$	\$P(A)\$ or \$\Pr(A)\$	\$\$ P(A) \$\$
Intersection Prob. of A & B	$P(A\cap B)$	\$P(A \cap B)\$	\$\$ P(A \ca pB) \$\$
Union Prob. of A or B	$P(A \cup B)$	\$P(A \cup B)\$	\$\$ P(A \cup B) \$\$

Conditional Prob. of A Given B	P(A B)	\$P(A B)\$	\$\$ P(A B) \$\$
Median	$ ilde{x}$	<pre>\$\tilde{x}\$</pre>	<pre>\$\$ \tilde{x} \$\$</pre>
Population Mean	$\mu,\overline{x},\langle x angle$	<pre>\$\mu , \overline{x} , \langle x \rangle\$</pre>	<pre>\$\$ \mu , \overline{x} , \langle x \rangle \$\$</pre>
Standard Deviation	σ	\$\sigma\$	\$\$ \sigma \$\$
Varience	σ^2	\$\sigma^2\$	\$\$ \sigma^2 \$\$

2.7. Linear Algebra 🔗

2.7.1. Linear Algebra: Vectors 🔗

Notation	Example	Inline	Code Block
Vectors	$\mathbf{v}\overline{v}\overline{v}$	\$ \mathbf{v}\overline{v}\vec{v}\$	<pre>\$\$ \mathbf{v} \overline{v \vec{v} \$\$</pre>
Row Vector	$egin{array}{ccc} v = \ ig(1 & 2 & 3ig) \end{array}$	<pre>\$v=\begin{pmatrix} 1&2&3\end{pmatrix}\$</pre>	<pre>\$\$ v = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}</pre>

			ΨΨ
Column Vector	$w = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$	<pre>\$w=\begin{pmatrix} 4\cr5\cr6\cr\end{pmatrix}\$</pre>	<pre>\$\$ w=\begin{pmatrix} 4 \cr 5 \cr 6 \cr \end{pmatrix} \$\$</pre>
Dot Product	$egin{array}{c} \mathbf{v} \cdot \mathbf{w} \ (v,w) \ \langle v w angle \end{array}$	<pre>\$\mathbf{v} \cdot \mathbf{w}\$ \$ \left<v w\right="" ="">\$</v></pre>	<pre>\$\$ \mathbf{v}\cdot\mathbf (v,w) \left<v w \right=""> \$\$</v w></pre>
Cross Product	v imes w	\$v \times w\$	\$\$ v \times w \$\$
Length of v	v	\$ v \$	\$\$ v \$\$
Norm of v	v	\$ v \$	\$\$ v \$\$

2.7.2. Linear Algebra: Matrices 🔗

Notation	Example	Inline	Code Block
Matrix, 2 By 3	$A=egin{bmatrix}1&2&3\4&5&6\end{bmatrix}$	\$A=\begin{bmatrix} 1&2&3\cr4&5&6\end{bmatrix}\$	\$\$ A= \begin{bmatrix} 1 & 2 & 3 \cr 4 & 5 & 6

			(0110 [01100] ±71]
			\$\$
Product	$A\cdot B$	\$A \cdot B\$	\$\$ A \cdot B \$\$
Hadamard Product	$A\circ B$	\$A \circ B\$	\$\$ A \circ B \$\$
Kronecker Product	$A\otimes B$	\$A \otimes B\$	\$\$ A \otimes B \$\$
Transposed Matrix	A^T	\$A^T\$	\$\$ A^T \$\$
Hermitian Matrix or Conjugate Transpose	$A^{\dagger} \ A^*$	\$A^\dag\$ \$A^\ast\$	\$\$ A^\dag A^\ast \$\$
Inverse Matrix	A^{-1}	\$A^{-1}\$	\$\$ A^{-1} \$\$
Determinant	A	\$ A \$	\$\$ A \$\$
Norm	A	\$ A \$	\$\$ A \$\$

2.8. Calculus 🔗

upyesp

		and a	
Example Function: $y=rac{x^2}{4}$	$y=rac{x}{4}$	\$y = \frac{x^2}{4}\$	<pre>\$\$ y = \frac{x^2}{4} \$\$</pre>
Integration (Limits: 1 to 4)	$A= \int_1^4 rac{x^2}{x} dx$	\$A = \int_1^4 \frac{x^2}{x} dx\$	<pre>\$\$ A = \int_1^4 \frac{x^2}{x} dx \$\$</pre>
Differentiation			
First Derivative With Respect To \boldsymbol{x}	$rac{df}{dx}$	\$\frac{df}{dx}\$	\$\$ \frac{df}{dx} \$\$
Partial Derivative With Respect To \boldsymbol{x}	$rac{\partial f}{\partial x}$	<pre>\$\frac{\partial f} {\partial x}\$</pre>	<pre>\$\$ \frac{\partial f} {\partial x} \$\$</pre>
First and Second Derivative of Function	$f' \ f''$	\$f\rq\$ \$f\rq\rq\$	\$\$ f\rq f\rq\rq \$\$
First and Second Derivative With Respect To Time	$\dot{f} \ \ddot{f}$	\$\dot f\$ \$\ddot f\$	<pre>\$\$ \dot f \ddot f \$\$</pre>

2.9. Complex Numbers 🔗

Notation	Example	Inline	Block
Imaginary Unit i	z=3+2i	\$z=3+2i\$	\$\$ z=3+2i \$\$

10 of 15

Real Part Of Complex Number	$\Re(z)=3$ $\mathrm{Re}(z)=3$	<pre>\$\Re(z)=3\$ \$\operatorname{Re} (z)=3\$</pre>	<pre>\$\$ \Re(z)=3 \operatorname{Re} (z)=3 \$\$</pre>
Imaginary Part Of Complex Number	$\Im(z)=2 \ { m Im}(z)=2$	<pre>\$\Im(z)=2\$ \$\operatorname{Im} (z)=2\$</pre>	<pre>\$\$ \Im(z)=2 \operatorname{Im} (z)=2 \$\$</pre>
Complex Conjugate	$ar{z}=z^*=\ 3-2i$	\$\bar{z}=z^*=3-2i\$	\$\$ \bar{z}=z^*=3-2i \$\$

2.10. Greek Alphabet 🔗

Letter	Lower	Inline	Upper	Inline
Alpha	α	\$\alpha\$	A	\$\Alpha\$
Beta	β	\$\beta\$	В	\$\Beta\$
Gamma	γ	\$\gamma\$	Γ	\$\Gamma\$
Delta	δ	\$\delta\$	Δ	\$\Delta\$
Epsilon	ϵ	\$\epsilon\$	E	\$\Epsilon\$
Zeta	ζ	\$\zeta\$	\mathbf{Z}	\$\Zeta\$
Eta	η	\$\eta\$	Н	\$\Eta\$
Theta	θ	\$\theta\$	Θ	\$\Theta\$
Iota	L	\$\iota\$	I	\$\Iota\$

Карра	κ	\$\kappa\$	K	\$\Kappa\$
Lambda	λ	\$\lambda\$	Λ	\$\Lambda\$
Mu	μ	\$\mu\$	M	\$\Mu\$
Nu	ν	\$\nu\$	N	\$\Nu\$
Xi	ξ	\$\xi\$	Ξ	\$\Xi\$
Omicron	o	\$\omicron\$	O	\$\Omicron\$
Pi	π	\$\pi\$	П	\$\Pi\$
Rho	ρ	\$\rho\$	P	\$\Rho\$
Sigma	σ	\$\sigma\$	Σ	\$\Sigma\$
Tau	au	\$\tau\$	\mathbf{T}	\$\Tau\$
Upsilon	v	\$\upsilon\$	Υ	\$\Upsilon\$
Phi	ϕ	\$\phi\$ Bash: Productivity Sh	Φ ortcuts	\$\Phi\$
Chi	χ	\$\chi\$	X	\$\Chi\$
Psi	ψ	\$\psi\$	Ψ	\$\Psi\$
Omega	ω	\$\omega\$	Ω	\$\Omega\$

3. History Of Adding Math Notation To Markdown Documents

LaTeX is sometimes stylised as \LaTeX . Typesetting is based on \Tau X, created by Donald Knuth \Join .

Open source editor, VSCode, supports math typesetting with \LaTeX , showing the notation as you type. The Live Preview Pane is enabled with Ctrl + K + V. No other libraries, extensions or apps need to be installed. Rendering in Live Preview is performed by $\texttt{KaTeX} \nearrow$, a fast, easy-to-use JavaScript library for \Tau math rendering on the web.

upyesp

CC BY-NC-ND 4.0

Related Posts

Getting Started With Markdown	Jan 23, 2024
LaTeX & KaTeX Math Rendering: The Double Backslash \\ in Markdown	Sep 16, 2021
Markdown, Mathematical Expressions and VSCode	Jul 27, 2021
Add Diagrams to Markdown Using Mermaid	Jan 23, 2024
Launching Windows Apps From Within WSL	Jan 22, 2024

Contents

Including Math Notation in Markdown

LaTeX Cheat Sheet

Arithmetic

Equality

Comparison

Algebra

Angles

Probability & Statistics

Linear Algebra

Calculus

Complex Numbers

Greek Alphabet

History Of Adding Math Notation To Markdown Documents

Recent Posts

Bash: Productivity Shortcuts

How to Use a Passkey With SSH

Windows 11, 2024 Snipping Tool Fix Save Location

Add Diagrams to Markdown Using Mermaid

Series

Markdown 6 Windows SSH 2 Windows Subsystem for Linux 2 Windows Terminal 2

Categories

Windows 14 Linux 9 Documentation 8 MySQL 4 Mac 3

Tags

Markdown 6 PowerShell 5 MySQL 4 SQL 4 VSCode 4 WSL 4 Bash 3 Diagrams 3 **KaTeX** 3 Python 2 LaTeX 3 Explorer 2 PlantUML 2 Edge 1 OneDrive 1 Mermaid 1 NerdFonts 1 PDF 1 RaspberryPi 1 ALL 24

Copyright © 2021-2024 upyesp. All Rights Reserved.

•