

Margarita Aynagoz, Jonathan Hays, Jesse Parent, Blair Sonnen

Wine Quality is Subjective.

Right?

Problem: quality perception is often driven by

- Vintner heritage
- Sensory analysis
- Subjective opinions of sommeliers, etc.
- Brand presence

These are not data-driven inputs.

Can we modernize this (with ML)?

Our solution says yes:

- Measurable composition (physicochemical features)
- Availability of chemical analysis techniques
- Repeatable and reproducible results
- Seemingly endless test subjects

These ARE data-driven inputs.

Good Data Can Provide Proof.

We can prove this using ML analysis:

- 6500-row dataset
- Red and White wine
- chemical properties and quality rating,
- sourced from a region in northwestern Portugal called <u>Vinho Verde</u>.
- Uses oenologist wine evaluations

We envision a future
where producers can
adapt their methods based
on analytical findings,
resulting in improved wine
quality and greater
customer satisfaction.

Wine - A Symbol of Celebration

- A beverage that brings people together.
- Elevates ordinary moments to extraordinary experiences.

Visualizations of features and their relationships with the target variable **quality**.

- Histograms and boxplots to visualize feature distributions.
- Correlation matrices to identify relationships between features and overall quality.
- Create bins for the quality column.

Data Cleanup and Feature Selection:

- Drop the "color" column due to it not being relevant to quality.
- Drop the "free sulfur dioxide" column due to it being highly correlated with "total sulfur dioxide" column.
- Drop the "chlorides", "citric acid", "fixed acidity" columns because of the P-value did not significantly influence quality predictions.

Allow us to focus on the most impactful variables that truly contribute to the quality of wine.

Approach: Jesse

Combine the white and red wine datasets with a new color column

Clean the data (drop nulls (0), de-duplicate (1,177), high correlation (1))

Visually analyze the data and look for relationships and shape of data

Notice relationships

Detect imbalanced output

Use Binning for quality into 0 (bad - 0-5) and 1 (good - 6-10)

Higher accuracy

Analyze feature importance (p-values - Binary Logistic Regression) and drop less important features

P-Values greater than 0.05 were dropped (chlorides: 0.073, fixed acidity: 0.58, citric acid: 0.65)

We did not find a benefit from dropping features in model analysis

Scale Data

Not necessary for all models but benefits Logistic Regression (slight benefit found)

RandomForest handles unscaled data well, but is not adversely impacted by scaling

○Approach: Jesse

Rebalance data using SMOTE and SMOTEENN

More good quality wine results than bad

Random Forest showed no accuracy improvements

Logistic Regression showed negative effect on accuracy

Model Selection - Binary output (quality) = classification mode

Random Forest (Accuracy 76-77%)

Best for high accuracy and capturing complex relationships in the wine data

Logistic Regression (Accuracy 76-77%)

Best for understanding which factors (e.g., acidity, alcohol) strongly impact wine quality Hyperparameter Optimization

GridSearchCV, RandomizedSearchCV, and Custom Approach (Nested Loops)

Random Forest showed 1% additional accuracy increase (78%)

Logistic Regression showed no significant improvement

Conclusions: Jonathan

- Alcohol is the strongest predictor of wine quality
- Volatile acidity and density are strong negative indicators
- Some features (e.g., total sulfur dioxide, pH, color) have minimal impact
- Simplifying models by removing low-impact features improves efficiency
- Correlation and feature importance metrics aligned well

What could have been next?

- Analyzing our results as compared to the <u>2009 paper from Cortez et al</u>.
- Performing additional model runs on SVM with hyperparameter tuning.
- Running these models on Red and White datasets separately.
- Finding more recent data from another region
 - Or a large volume vintner
- Possibly merging crowdsourced ratings into dataset if possible

