Projectors

Note Title

LECTURE 08

Projectors

Def. A matrix $P \in \mathbb{R}^{m \times m}$ is called a projector if $P^2 = P$ idempotent

In general

(1-P)X V = P X range(P)

this angle may not be 90°.

null (P)

Let & E range (P)

Then = X \in IR^m s.t. P X = V

P V = P (P X) = P² X = P X = V

In other words, once & E range (P)

then applying P to & does not change & U

("shadows remain as shadows.")

also, $\forall x \in \mathbb{R}^m$, $Px - x \in \text{null}(P)$ why? $P(Px - x) = P^2x - Px$ = Px - Px = 0Def. Let $P \in \mathbb{R}^{m \times m}$ be a projector.

Def. Let PER be a projector.

Then I-P is also a projector and is called the complementary projector to P.

Let's check
$$I-P$$
 is a projector.
 $(I-P)^2 = (I-P)(I-P)$
 $= I-P-P+P^2$
 $= I-P$

I-P is a projector onto null(P)!

Thu range (I-P) = null(P)

null(I-P) = range(P)

i.e., P & I-P: really complementary!

on the other hand,

take any & & range (I-P).

Then, = X & |R| s.t.

Apply P to both sides: $PV = P(I-P) \times = (P-P^2) \times = 0$ i.e., $V \in null(P)$

So, range (I-P) \subset null (P) \subset Hence we have range (I-P) = null (P) \subset It's now easy to prove the other statement: null (I-P) = range (P) by writing $\tilde{P} = I - P$ and repeat the above argument for \tilde{P} .

Thm $\text{null}(I-P) \cap \text{null}(P) = \{0\}.$ i.e., $\text{range}(P) \cap \text{null}(P) = \{0\}.$

(Proof) Take any $\forall \in \text{null}(I-P) \cap \text{null}(P)$ Then, $(I-P) \forall = 0 & P \forall = 0$ $\Rightarrow \forall = 0$

These theorems imply that
"A projector separates IR" into
two spaces, i.e.,
IR" = range (P) + null (P)"

In other words, $\forall \forall \in \mathbb{R}^{m}, \exists \forall_{i} \in range(P),$ $\exists \forall_{2} \in rull(P), s.t.$

 $V = V_1 + V_2$ and this decomposition is unique for a given projector P.

why? Suppose this decomposition is not unique. Then
$$= \times \in \mathbb{R}^m$$
, $\times \neq 0$ s.t. $\forall = (\forall_1 + \times) + (\forall_2 - \times)$
 $\in \text{range}(\mathbb{E}) \quad \in \text{null}(\mathbb{P})$

But this means that $\times \in \text{range}(\mathbb{P}) \quad \& \quad \times \in \text{null}(\mathbb{P})$

i.e., $\times \in \text{range}(\mathbb{P}) \cap \text{null}(\mathbb{P})$
 $= \{0\}.$
 $\Rightarrow \times = 0.$

a simple example
$$P = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{2 \times 2} \quad P^2 = P$$

$$I - P = \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix} \quad (I - P)^2 = I - P$$

$$range(P) = span([0])$$

$$null(P) = span([-1]),$$

So,
$$\mathbb{R}^2 = \text{Span}([0]) + \text{Span}([-1])$$

This is not an orthogonal decomp.

This is not an orthogonal decomp.

This is not an orthogonal decomp.

The span ([-1]) and the span ([-1]) are the span ([-1])

Def. A projector $P \in \mathbb{R}^{m \times m}$ is said to be orthogonal if range $(P) \perp null(P)$

Ex. Consider P = [00] in IR²

This is the orthogonal projector onto "X-axis". The complementary proj. is also orthogonal, i.e., orth. proj. onto "y-axis", and

IR² = Span([0]) & Span([0]).

orthogonal

Note: Do not confuse an orthogonal projector P with an orthogonal matrix!

what happens if P is a projector and is an orthogonal matrix? $P^{2} = P \quad (proj.); P^{T} = P^{-1}(orth.mat)$ $P^{T}P^{2} = P^{T}P \qquad P^{T}P = I$ $P^{T}P^{2} = I \qquad \Rightarrow P = I$

Thm A projector P is an orthogonal projector iff $P^T = P$, i.e., symmetric.