A Semantics-Driven Approach to Improving DataRaceBench's OpenMP Standard Coverage

Chunhua "Leo" Liao, Pei-Hung Lin, Markus Schordan, and Ian Karlin

DataRaceBench

- DataRaceBench v 1.0.1 released in Aug, 2017
 - Learning from LINPACK for HPC
- Includes typical OpenMP code patterns with or without data races
- Generates quantitative metrics based on true/false X positives/negatives
- Discovers strengths and limitations of data race detection tools

https://github.com/LLNL/dataracebench

Example microbenchmarks

```
1. ...
2. int i,x;
3. #pragma omp parallel for
4. for (i=0;i<100;i++)
5. { x=i; }
6. printf("x=%d",x);
7. ...
```

Race-yes: missing data sharing clauses

One data race pair x@5 vs. x@5

lastprivatemissing-orig-yes.c

```
1. ...
2. int i,x;
3. #pragma omp parallel for lastprivate (x)
4. for (i=0;i<100;i++)
5. { x=i; }
6. printf("x=%d",x);
7. ...
```

Race-no: use of data sharing clauses

lastprivate-orig-no.c

A common question to us

- How comprehensive is this benchmark suite?
- Contributions of this paper
 - A novel semantics-driven approach to defining a space to be covered
 - Analyze DataRaceBench's coverage of the space
 - Add new microbenchmarks to improve the coverage
 - Re-evaluate some tools for new insights

Semantic analysis of data races

"A data race can occur when two concurrent threads access a shared variable and when at least one access is a write, and the threads use no explicit (synchronization) mechanism to prevent the accesses from being simultaneous."

 A complete benchmark should cover all semantic dimensions and their combinations: cartesian product D1 x D2 x D3

Narrow down the scope

- Parallel (concurrent) semantics: information indicating if a code region will be executed concurrently or not
- Shared semantics: information describing if a variable is visible and accessible by multiple threads or not.
- Synchronization semantics: any information deciding if there is any synchronization mechanism to prevent the shared accesses to a variable from being simultaneous or not.

Semantic labels

Categorize relevant OpenMP 4.5 directives, clauses, or rules and assign labels

Semantics Category	Semantic Labels
Parallel	PD01-PD26: parallel, for, sections, single, master, simd, for simd, task, taskloop, taskloop simd, parallel for, parallel sections, target parallel, target teams, etc.
	PC01-PC04: if, num_threads, collapse(), num_teams()
Shared	NIC01-NIC06: not referenced in a construct rules IDT01-IDT07: implicitly determined rules PDT01-PDT09: predetermined attribute rules DSC01-DSC07: explicit data-sharing clauses, such as default, shared, private, firstprivate, lastprivate, reduction, and linear.
Synchronization	N01-N10: nowait, critical, barrier, taskwait, taskgroup, atomic, flush, ordered (both clause and directive), depend

Flowchart of data-sharing attribute rules

NIC01-NIC06: Not referenced in a construct rules

IDT01-IDT07: implicitly determined rules PDT01-PDT09: predetermined attribute rules

DSC01-DSC07: data-sharing clauses

Example NIC rules: not referenced in a construct

The order of the six rules (NIC 1-6) in the specification is rather ad-hoc, we reorganized them, sometimes split them, as follows:

- Declared inside the called routine
 - NIC1: if the variable uses static storage, it is shared
 - NIC6: otherwise, it is private
- File-scope or namespace-scope variable
 - NIC2.1: threadprivate if the variable is in a threadprivate directive
 - NIC2.2: shared otherwise
- Function arguments in C++
 - NIC5.1: same as actual arguments if passed by reference
 - NIC5.2: private if passed by values (not explicitly listed in OpenMP)
- Dynamic storage:
 - NIC3 objects with dynamic storage duration are shared.
- Static data members
 - NIC4.1: threadprivate if within a threadprivate directive
 - NIC4.2: shared otherwise

Coverage Analysis

Definition: for each semantic label

- It is covered if there is a microbenchmark using the corresponding construct, clause or rule
- For simplicity, a combined construct is treated as covered if the corresponding individual constructs are covered

Methods

- Simple keyword search: if some directives or clauses are used in the benchmark suite or not
 - E.g. collapse, depend, taskgroup, etc.
- Source analysis tool, CoverageAnalyzer, to recognize code patterns
 - Built using the ROSE source-to-source compiler framework
 - PDT8: locally declared variables, if they have static storage duration-> shared
 - NIC rules: Not In a construct rules (a variable referenced within a region, but not within a construct)

Analysis results for DataRaceBench v1.0.1

	Parallel		Sync.			
		NIC	PDT	IDT	DSC	
Semantic Label Count	30	9	12	8	7	10
Covered Labels	PD1-4,6,8,11		2,3,5.1	2,3,4.1,6	2-6	1,10
	12,14,15,PC02		$5.2,\!6$			
Covered Label Count	11	0	5	4	5	2
Coverage Ratio	36.67%	0.0%	41.67%	50.0%	71.43%	20.0%

NIC01-NIC06: Not referenced in a construct rules

IDT01-IDT07: implicitly determined rules

PDT01-PDT09: predetermined attribute rules

DSC01-DSC07: data-sharing clauses

Improved coverage for v1.2.0

 44 new microbenchmarks added into v1.2.0 to cover the missed semantic labels (72+44=116)

	Parallel		Shared					
		NIC	PDT	IDT	DSC			
Semantic Label Count	30	9	12	8	7	10		
Covered Labels	all	all	all	all	all	all		
Covered Label Count	30	9	12	8	7	10		
Coverage Ratio	100%	100%	100%	100%	100%	100%		

NIC01-NIC06: Not referenced in a construct rules

IDT01-IDT07: implicitly determined rules PDT01-PDT09: predetermined attribute rules

DSC01-DSC07: data-sharing clauses

Example new microbenchmarks

```
class A {
public:
  static int ctr;
  static int pctr;
#pragma omp threadprivate(pctr)
int A:: ctr = 0:
int A:: pctr = 0;
A a;
void foo()
   a \cdot ctr++;
   a.pctr++;
int main()
#pragma omp parallel
     foo();
```

```
#include <stdio.h>
int a[100][100];
int main()
{
   int i, j;
#pragma omp parallel for ordered(2)
   for (i = 0; i < 100; i++)
      for (j = 0; j < 100; j++)
      {
        a[i][j] = a[i][j] + 1;
#pragma omp ordered depend(sink:i-1,j) \
            depend (sink:i,j-1)
            printf ("test_i=\mathrew{d_i}=\mathrew{d_n}",i,j);
#pragma omp ordered depend(source)
      }
   return 0;
}</pre>
```

Race-yes using static data members (NIC4) DRB086-static-data-member-orig-yes.cpp

Race-no using ordered (N08, N09) DRB094-doall2-ordered-orig-no.c

More example new microbenchmarks

```
// ...
double a[len];

/* Initialize with some values*/
for (i=0; i<len; i++)
    a[i]= ((double)i)/2.0;

#pragma omp target map(tofrom: a[0:len])
#pragma omp teams num_teams(2)

{
    a[50]*=2.0;
}
```

Race-no using taskgroup (N05) DRB107-taskgroup-orig-no.c

Race-yes using target+teams(PD18) DRB116-target-teams-orig-yes.c

Evaluation

Tool	Version	Compiler
Archer	towards_tr4 branch	Clang/LLVM 4.0.1
Intel Inspector	2018 (build 522981)	Intel Compiler 18.0.1

DataRaceBench

— https://github.com/LLNL/dataracebench v1.2.0

Hardware

- Quartz cluster of the Livermore Computing Center @LLNL
- Each node: 2 Intel Xeon E5-2695 v4 processors, 18-core each, hyper threading support

Execution configuration

- Intel Inspector: inspxe-cl -collect ti3 -knob scope=extreme -knob stackdepth=16 -knob use-maximum-resources=true
- 72 threads, repeat 5 times, 10-minutes timeout

Numbers of positive, negative and N/A results

Term	Meaning in our context
True Positive (TP)	Detecting data races in a race-yes program
False Positive (FP)	Detecting data races in a race-no program
True Negative (TN)	Not detecting data races in a race-no program
False Negative (FN)	Not detecting data races in a race-yes program
TP/FN	Mixed results with true positives and false negatives
TN/FP	Mixed results with true negatives and false positives
Not Available (N/A)	Compile-time seg. fault (CSF), Unsupported feature (CUN) Runtime seg. fault (RSF), Runtime timeout (RTO)

Tool	Race:Yes				Race:No			
	TP	TP/FN	FN	N/A	TN	TN/FP	FP	N/A
Archer	15	0	0	4	17	0	0	8
Intel Inspector	19	0	0	0	21	1	(2)	1

Evaluation report: part 1

Microbenchmark Program	R							
		Archer		ner	Intel Ins		spector	
		min 1	nax	trmo	min	max	tuno	
		race -	race	type	race	race	type	
DRB073-doall2-orig-yes.c	Y	84 -	92	TP	2 -		TP	
DRB074-flush-orig-yes.c	Y	1 -	3	TP	1 -	- 1	TP	
DRB075-getthreadnum-orig-yes.c	Y	71 -	71	TP	1 -	- 1	TP	
DRB076-flush-orig-no.c	N	0 -	0	TN	0 -	- 0	TN	
DRB077-single-orig-no.c	N	0 -	0	TN	0 -	- 0	TN	
DRB078-taskdep2-orig-no.c	N	0 -	0	TN	0 -		TN	
DRB079-taskdep3-orig-no.c	N	0 -	0	TN	0 -	- 0	TN	
DRB080-func-arg-orig-yes.c	Y	71 -	71	TP	1 -	- 1	TP	
DRB081-func-arg-orig-no.c	N	0 -	0	TN	0 -	- 0	TN	
DRB082-declared-in-func-orig-yes.c	Y	71 -	71	TP	1 -	- 1	TP	
DRB083-declared-in-func-orig-no.c	N	0 -	0	TN	0 -	- 0	TN	
DRB084-threadprivatemissing-orig-yes.c	\mathbf{Y}	71 -	71	TP	1 -	- 1	TP	
DRB085-threadprivate-orig-no.c	N	_		CSF	0 -	- 0	TN	
DRB086-static-data-member-orig-yes.cpp	Y	_		CSF) 1 -	- 1	TP	
DRB087-static-data-member2-orig-yes.cpp	Y	_		CSE	1 -	- 1	TP	
DRB088-dynamic-storage-orig-yes.c	\mathbf{Y}	71 -	71	TP	1 -	- 1	TP	
DRB089-dynamic-storage2-orig-yes.c	\mathbf{Y}	71 -	71	TP	1 -	- 1	TP	
DRB090-static-local-orig-yes.c	Y	71 -	71	TP	1 -	- 1	TP	
DRB091-threadprivate2-orig-no.c	N	_		CSF	0 -	- 0	TN	
DRB092-threadprivatemissing2-orig-yes.c	Y	71 -	71	TP	1 -	- 1	TP	
DRB093-doall2-collapse-orig-no.c	N	0 -	0	TN	0 -	- 0	TN	
DRB094-doall2-ordered-orig-no.c	N	_		CUN	0 -	- 0	RTO	

Evaluation report: part 2

Microbenchmark Program	R	Data Race Detection Tools					
		Archer		Int	tel Ins	spector	
		min n	nax	trino	min	max	type
		race r	ace	type	race	race	type
DRB095-doall2-taskloop-orig-yes.c	Y	_		CUN	2 -	2	TP
DRB096-doall2-taskloop-collapse-orig-no.c	N	-		CUN	/ 0 -		FP TN
DRB097-target-teams-distribute-orig-no.c	N	0 -	0	RSF	0 -	. 0	TN
DRB098-simd2-orig-no.c	N	0 -	0	TN	0 -	. 0	TN
DRB099-targetparallelfor2-orig-no.c	N	0 -	0	TN	0 -		TN
DRB100-task-reference-orig-no.cpp	N	_		CUN	0 -		TN
DRB101-task-value-orig-no.cpp	N	0 -	0	TN	0 -		TN
DRB102-copyprivate-orig-no.c	N	-		CSF	0 -	. 0	TN
DRB103-master-orig-no.c	N	0 -	0	TN	0 -	. 0	TN
DRB104-nowait-barrier-orig-no.c	N	0 -	0	TN	0 -		TN
DRB105-taskwait-orig-no.c	N	0 -	0	TN	3 -	4	(FP)
DRB106-taskwaitmissing-orig-yes.c	Y	35 -	48	RTO TP	4 -	. 6	TP
DRB107-taskgroup-orig-no.c	N	0 -	0	$\overline{\text{TN}}$	1 -		FP
DRB108-atomic-orig-no.c	N	0 -	0	TN	0 -	. 0	TN
DRB109-orderedmissing-orig-yes.c	Y	71 -	71	TP	1 -	. 1	TP
DRB110-ordered-orig-no.c	N	0 -	0	TN	0 -	. 0	TN
DRB111-linearmissing-orig-yes.c	Y	73 -	85	TP	1 -	. 2	TP
DRB112-linear-orig-no.c	N	-		CUN	0 -	. 0	TN
DRB113-default-orig-no.c	N	0 -	0	TN	0 -	. 0	TN
DRB114-if-orig-yes.c	Y	42 -	48	TP	1 -	. 1	TP
DRB115-forsimd-orig-yes.c	Y	44 -	47	TP	1 -	. 1	TP
DRB116-target-teams-orig-yes.c	Y	0 -	0	RSF	1 -	. 1	TP

Conclusion

- A semantics-driven approach to coverage analysis and improvement of DataRaceBench v.1.0.1
 - Defined semantics labels in three categories
 - Developed coverage analysis using a source-to-source analyzer
 - 44 new microbenchmarks were added to improve the coverage
 - https://github.com/LLNL/dataracebench v.1.2.0 released
- Re-evaluated two tools
 - Intel Inspector supported more microbenchmarks without compilation or runtime errors than Archer did
 - Archer did better than Inspector to support taskwait and taskgroup
- Surprises
 - Evaluations of dynamic tools also evaluate compilers
 - Found a misuse of the term construct in OpenMP 4.5
 - Declare simd is called construct: conflicting executable vs. non-executable semantics
 - The data-sharing attribute rules: surprisingly difficult
 - Need an official refined algorithm, like the one deciding the number of threads

Future work

- OpenMP runtime library routines and environment variables
- Better coverage analysis for cartesian product of the semantics dimensions
- Automatic approach to microbenchmark generation

Acknowledgement

Lawrence Livermore National Security, LLC, via projects LDRD 17-ERD-023. Archer developers: Joachim Protze@RWTH Aachen Univ., Dong Ahn@LLNL John-Mellor Crummey @ Rice Univ.