U datacamp

Python For Data Science NumPy Cheat Sheet

Learn NumPy online at www.DataCamp.com

Numpy

The NumPy library is the core library for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays

Use the following import convention:

>>> import numpy as np

NumPy Arrays

Creating Arrays

```
>>> a = np.array([1,2,3])
>>> b = np.array([(1.5,2,3), (4,5,6)], dtype = float)
>>> c = np.array([[(1.5,2,3), (4,5,6)],[(3,2,1), (4,5,6)]], dtype = float)
```

Initial Placeholders

```
>>> np.zeros((3,4)) #Create an array of zeros
>>> np.ones((2,3,4),dtype=np.int16) #Create an array of ones
>>> d = np.arange(10,25,5) #Create an array of evenly spaced values (step value)
>>> np.linspace(0,2,9) #Create an array of evenly spaced values (number of samples)
>>> e = np.full((2,2),7) #Create a constant array
>>> f = np.eye(2) #Create a 2X2 identity matrix
>>> np.random.random((2,2)) #Create an array with random values
>>> np.empty((3,2)) #Create an empty array
```

1/0

Saving & Loading On Disk

```
>>> np.save('my_array', a)
>>> np.savez('array.npz', a, b)
>>> np.load('my_array.npy')
```

Saving & Loading Text Files

```
>>> np.loadtxt("myfile.txt")
>>> np.genfromtxt("my_file.csv", delimiter=',')
>>> np.savetxt("myarray.txt", a, delimiter=" ")
```

Asking For Help

Inspecting Your Array

```
>>> a.shape #Array dimensions
>>> len(a) #Length of array
>>> b.ndim #Number of array dimensions
>>> e.size #Number of array elements
>>> b.dtype #Data type of array elements
>>> b.dtype.name #Name of data type
>>> b.astype(int) #Convert an array to a different type
```

Data Types

```
>>> np.int64 #Signed 64-bit integer types
>>> np.float32 #Standard double-precision floating point
>>> np.complex #Complex numbers represented by 128 floats
>>> np.bool #Boolean type storing TRUE and FALSE values
>>> np.object #Python object type
>>> np.string_ #Fixed-length string type
>>> np.unicode_ #Fixed-length unicode type
```

Array Mathematics

Arithmetic Operations

```
>>> g = a - b #Subtraction
array([[-0.5, 0. , 0. ],
       [-3., -3., -3.]]
>>> np.subtract(a,b) #Subtraction
>>> b + a #Addition
array([[ 2.5, 4. , 6. ],
       [ 5. , 7. , 9. ]])
>>> np.add(b,a) Addition
>>> a / b #Division
 array([[ 0.6666667, 1. , 1. ],
       [0.25, 0.4, 0.5]
>>> np.divide(a,b) #Division
>>> a * b #Multiplication
 array([[ 1.5, 4., 9.],
       [ 4. , 10. , 18. ]])
>>> np.multiply(a,b) #Multiplication
>>> np.exp(b) #Exponentiation
>>> np.sqrt(b) #Square root
>>> np.sin(a) #Print sines of an array
>>> np.cos(b) #Element-wise cosine
>>> np.log(a) #Element-wise natural logarithm
>>> e.dot(f) #Dot product
array([[ 7., 7.],
       [7., 7.]
```

Comparison

```
>>> a == b #Element-wise comparison
array([[False, True, True],
        [False, False, False]], dtype=bool)
>>> a < 2 #Element-wise comparison
array([True, False, False], dtype=bool)
>>> np.array_equal(a, b) #Array-wise comparison
```

Aggregate Functions

```
>>> a.sum() #Array-wise sum
>>> a.min() #Array-wise minimum value
>>> b.max(axis=0) #Maximum value of an array row
>>> b.cumsum(axis=1) #Cumulative sum of the elements
>>> a.mean() #Mean
>>> b.median() #Median
>>> a.corrcoef() #Correlation coefficient
>>> np.std(b) #Standard deviation
```

Copying Arrays

```
>>> h = a.view() #Create a view of the array with the same data
>>> np.copy(a) #Create a copy of the array
>>> h = a.copy() #Create a deep copy of the array
```

Sorting Arrays

```
>>> a.sort() #Sort an array
>>> c.sort(axis=0) #Sort the elements of an array's axis
```

Subsetting, Slicing, Indexing

```
>>> a[2] #Select the element at the 2nd index
                                                                                               1 2 3

    1.5
    2
    3

    4
    5
    6

>>> b[1,2] #Select the element at row 1 column 2 (equivalent to b[1][2])
>>> a[0:2] #Select items at index 0 and 1
                                                                                              1 2 3
array([1, 2])

    1.5
    2
    3

    4
    5
    6

>>> b[0:2,1] #Select items at rows 0 and 1 in column 1
array([ 2., 5.])
>>> b[:1] #Select all items at row 0 (equivalent to b[0:1, :])

    1.5
    2
    3

    4
    5
    6

 array([[1.5, 2., 3.]])
>>> c[1,...] #Same as [1,:,:]
array([[[ 3., 2., 1.],
          [ 4., 5., 6.]]])
>>> a[ : :-1] #Reversed array a array([3, 2, 1])
Boolean Indexing
                                                                                                1 2 3
>>> a[a<2] #Select elements from a less than 2
array([1])
Fancy Indexing
>>> b[[1, 0, 1, 0],[0, 1, 2, 0]] #Select elements (1,0),(0,1),(1,2) and (0,0)
array([ 4. , 2. , 6. , 1.5])
>>> b[[1, 0, 1, 0]][:,[0,1,2,0]] #Select a subset of the matrix's rows and columns
array([[ 4. ,5. , 6. , 4. ],
        [1.5, 2., 3., 1.5],
        [ 4. , 5. , 6. , 4. ],
        [1.5, 2., 3., 1.5]
```

```
Array Manipulation
Transposing Array
>>> i = np.transpose(b) #Permute array dimensions
```

```
Changing Array Shape
>>> b.ravel() #Flatten the array
>>> q.reshape(3,-2) #Reshape, but don't change data
```

Adding/Removing Elements

>>> i.T #Permute array dimensions

```
>>> h.resize((2,6)) #Return a new array with shape (2,6)
>>> np.append(h,g) #Append items to an array
>>> np.insert(a, 1, 5) #Insert items in an array
>>> np.delete(a,[1]) #Delete items from an array
```

>>> np.concatenate((a,d),axis=0) #Concatenate arrays

Combining Arrays

```
array([ 1, 2, 3, 10, 15, 20])
>>> np.vstack((a,b)) #Stack arrays vertically (row-wise)
array([[ 1. , 2. , 3. ],
       [ 1.5, 2. , 3. ],
       [ 4. , 5. , 6. ]])
>>> np.r_[e,f] #Stack arrays vertically (row-wise)
>>> np.hstack((e,f)) #Stack arrays horizontally (column-wise)
array([[ 7., 7., 1., 0.],
       [7., 7., 0., 1.]
>>> np.column_stack((a,d)) #Create stacked column-wise arrays
array([[ 1, 10],
       [ 2, 15],
       [ 3, 20]])
>>> np.c_[a,d] #Create stacked column-wise arrays
```

Splitting Arrays

```
>>> np.hsplit(a,3) #Split the array horizontally at the 3rd index
[array([1]),array([2]),array([3])]
>>> np.vsplit(c,2) #Split the array vertically at the 2nd index
[array([[[ 1.5, 2. , 1. ],
         [ 4. , 5. , 6. ]]]),
array([[[ 3., 2., 3.],
        [ 4., 5., 6.]]])]
```


Data Wrangling

with pandas Cheat Sheet http://pandas.pydata.org

Pandas <u>API Reference</u> Pandas <u>User Guide</u>

Creating DataFrames

	2	5	8	11		
	3	6	9	12		
df = pd.DataFrame(
	{"a	a" :	[4, 5,	6],		
	"t	o" :	[7, 8,	9],		
	"(c" :	[10, 1	1, 12]},	

index = [1, 2, 3])

Specify values for each column.

```
df = pd.DataFrame(
    [[4, 7, 10],
    [5, 8, 11],
    [6, 9, 12]],
    index=[1, 2, 3],
    columns=['a', 'b', 'c'])
Specify values for each row.
```

		а	b	С
N	v			
D	1	4	7	10
	2	5	8	11
е	2	6	9	12

Method Chaining

Most pandas methods return a DataFrame so that another pandas method can be applied to the result. This improves readability of code.

Tidy Data – A foundation for wrangling in pandas

In a tidy data set:

in its own column

Tidy data complements pandas's **vectorized operations**. pandas will automatically preserve observations as you manipulate variables. No other format works as intuitively with pandas.

Reshaping Data – Change layout, sorting, reindexing, renaming

- df.sort_values('mpg')
 Order rows by values of a column (low to high).
- df.sort values('mpg', ascending=False)
 Order rows by values of a column (high to low).
- df.rename(columns = {'y':'year'})
 Rename the columns of a DataFrame
- df.sort index()
 Sort the index of a DataFrame
- df.reset index()

Reset index of DataFrame to row numbers, moving index to columns.

df.drop(columns=['Length', 'Height'])
Drop columns from DataFrame

Subset Observations - rows

df[df.Length > 7]

Extract rows that meet logical criteria.

df.drop_duplicates()

Remove duplicate rows (only considers columns).

df.<u>sample(frac=0.5)</u>

Randomly select fraction of rows.

- df.sample(n=10) Randomly select n rows.
- df.nlargest(n, 'value')
 Select and order top n entries.
- df.nsmallest(n, 'value')
 Select and order bottom n entries.
- df.head(n)
 Select first n rows.
- df.tail(n)
 Select last n rows.

Subset Variables - columns

- df[['width', 'length', 'species']]
 Select multiple columns with specific names.
- df['width'] or df.width
 Select single column with specific name.
- df.filter(regex='regex')
 Select columns whose name matches
 regular expression regex.

Using query

query() allows Boolean expressions for filtering rows.

- df.query('Length > 7')
- df.query('Length > 7 and Width < 8')</pre>

Subsets - rows and columns

Use **df.loc**[] and **df.iloc**[] to select only rows, only columns or both.

Use **df.at**[] and **df.iat**[] to access a single value by row and column.

First index selects rows, second index columns.

- df.<u>iloc</u>[10:20]
 - Select rows 10-20.
- df.iloc[:, [1, 2, 5]]
 Select columns in positions 1, 2 and 5 (first column is 0).
- df.<u>loc</u>[:, 'x2':'x4']

Select all columns between x2 and x4 (inclusive).

- df.loc[df['a'] > 10, ['a', 'c']]
 Select rows meeting logical condition, and only
 the specific columns .
- df.iat[1, 2] Access single value by index
- df.at[4, 'A'] Access single value by label

	Logic in Python (and pandas)					
<	Less than	!=	Not equal to			
>	Greater than	<pre>df.column.isin(values)</pre>	Group membership			
==	Equals	pd.isnull(<i>obj</i>)	Is NaN			
<=	Less than or equals	pd.notnull(<i>obj</i>)	Is not NaN			
>=	Greater than or equals	&, ,~,^,df.any(),df.all()	Logical and, or, not, xor, any, all			

regex (Regular Expressions) Examples		
'\.'	Matches strings containing a period '.'	
'Length\$'	Matches strings ending with word 'Length'	
'^Sepal'	Matches strings beginning with the word 'Sepal'	
'^x[1-5]\$'	Matches strings beginning with 'x' and ending with 1,2,3,4,5	
'^(?!Species\$).*'	Matches strings except the string 'Species'	

Cheatsheet for pandas (http://pandas.pydata.org/ originally written by Irv Lustig, Princeton Consultants, inspired by Rstudio Data Wrangling Cheatsheet

Summarize Data

df['w'].value counts()

Count number of rows with each unique value of variable

len(df)

of rows in DataFrame.

df.shape

Tuple of # of rows, # of columns in DataFrame.

df['w'].nunique()

of distinct values in a column.

df.describe()

Basic descriptive and statistics for each column (or GroupBy).

pandas provides a large set of summary functions that operate on different kinds of pandas objects (DataFrame columns, Series, GroupBy, Expanding and Rolling (see below)) and produce single values for each of the groups. When applied to a DataFrame, the result is returned as a pandas Series for each column. Examples:

sum()

Sum values of each object.

count()

Count non-NA/null values of each object.

median()

Median value of each object. quantile([0.25,0.75])

Quantiles of each object.

apply(function)

Apply function to each object.

min()

Minimum value in each object.

max()

Maximum value in each object.

mean()

Mean value of each object.

var()

Variance of each object.

std()

Standard deviation of each

object.

Handling Missing Data

df.dropna()

Drop rows with any column having NA/null data.

df.fillna(value)

Replace all NA/null data with value.

Make New Columns

df.assign(Area=lambda df: df.Length*df.Height) Compute and append one or more new columns.

df['Volume'] = df.Length*df.Height*df.Depth Add single column.

pd.qcut(df.col, n, labels=False) Bin column into n buckets.

pandas provides a large set of vector functions that operate on all columns of a DataFrame or a single selected column (a pandas Series). These functions produce vectors of values for each of the columns, or a single Series for the individual Series. Examples:

min(axis=1) max(axis=1) Element-wise min.

Element-wise max. clip(lower=-10, upper=10) abs()

Trim values at input thresholds Absolute value.

Group Data

df.groupby(by="col")

Return a GroupBy object, grouped by values in column named "col".

df.groupby(level="ind")

Return a GroupBy object, grouped by values in index level named "ind".

All of the summary functions listed above can be applied to a group. Additional GroupBy functions:

size()

Size of each group.

agg(function)

Aggregate group using function.

The examples below can also be applied to groups. In this case, the function is applied on a per-group basis, and the returned vectors are of the length of the original DataFrame.

shift(1)

Copy with values shifted by 1.

rank(method='dense')

Ranks with no gaps.

rank(method='min')

Ranks. Ties get min rank.

rank(pct=True)

Ranks rescaled to interval [0, 1].

rank(method='first') Ranks. Ties go to first value. shift(-1)

Copy with values lagged by 1.

cumsum()

Cumulative sum.

cummax()

Cumulative max.

cummin()

Cumulative min.

cumprod()

Cumulative product.

Windows

df.expanding()

Return an Expanding object allowing summary functions to be applied cumulatively.

df.rolling(n)

Return a Rolling object allowing summary functions to be applied to windows of length n.

Plotting

df.plot.hist() Histogram for each column df.plot.scatter(x='w',y='h') Scatter chart using pairs of points

Combine Data Sets

bdf adf x1 x2 x1 x3 A 1 A T B 2 D T C 3

Standard Joins

х3 pd.merge(adf, bdf, 1 Т how='left', on='x1') 2 F Join matching rows from bdf to adf. 3 NaN

pd.merge(adf, bdf, A 1.0 T how='right', on='x1') 2.0 Join matching rows from adf to bdf. D NaN

pd.merge(adf, bdf, how='inner', on='x1') 2 Join data. Retain only rows in both sets.

x2 x3 pd.merge(adf, bdf, how='outer', on='x1') Join data. Retain all values, all rows. 3 NaN D NaN T

Filtering Joins

x1 x2 adf[adf.x1.isin(bdf.x1)] All rows in adf that have a match in bdf. A 1

B 2

x1 x2 adf[~adf.x1.isin(bdf.x1)]

C 3 All rows in adf that do not have a match in bdf.

ydf zdf x1 x2 x1 x2 A 1 B 2 C 3 B 2 C 3 D 4

Set-like Operations

D 4

x1 x2

A 1

x1 x2 pd.merge(ydf, zdf) B 2 Rows that appear in both ydf and zdf C 3 (Intersection).

pd.merge(ydf, zdf, how='outer') A 1 Rows that appear in either or both ydf and zdf B 2 (Union). C 3

> pd.merge(ydf, zdf, how='outer', indicator=True) .query('_merge == "left_only"') .drop(columns=[' merge'])

Rows that appear in ydf but not zdf (Setdiff).

Cheatsheet for pandas (http://pandas.pydata.org/) originally written by Irv Lustig, Princeton Consultants, inspired by Rstudio Data Wrangling Cheatsheet