1 Spherical Harmonics

The most popular, call it standard, definition of the spherical harmonics is

$$Y_{\ell}^{m}(\theta,\varphi) \triangleq N_{\ell}^{m} P_{\ell}^{m}(\cos\theta) e^{im\varphi}$$

where the normalization is given by

$$N_{\ell}^{m} \triangleq \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}}$$

2 Numerical considerations

2.1 Normalization

As can be gleaned by looking at the asymptotics of the terms, computing N_{ℓ}^{m} and $P_{\ell}^{m}(z)$ separately causes numerical problems as ℓ becomes large. Empirically, these problems emerge around $\ell=150$.

Direct computation of normalized or semi-normalized associated Legendre functions, which essentially computes $N_{\ell}^{m} P_{\ell}^{m}(z)$ holistically, is a better numerical strategy.

We use the Schmidt semi-normalized Legendre functions because they are implemented in MATLAB as legendre(1,m,'sch'). Empirically, if problems emerge then they are for $\ell > 2000$.

2.1.1 Schmidt semi-normalized associated Legendre functions

As defined and implemented in MATLAB, the Schmidt semi-normalized (associated) Legendre functions are:

$$SP(N,M;X) = P(N,X), M = 0$$

= $(-1)^M * sqrt(2*(N-M)!/(N+M)!) * P(N,M;X), M > 0$

that is,

$$SP_{\ell}^{m}(z) \triangleq \begin{cases} P_{\ell}^{m}(z) & m = 0\\ (-1)^{m} \sqrt{\frac{2(\ell - m)!}{(\ell + m)!}} P_{\ell}^{m}(z) & m > 0 \quad (m \le \ell) \end{cases}$$

(available in MATLAB as legendre(1,m,'sch').

In summary, the normalized associated Legendre functions and not the standard associated Legendre functions should be used when computing the spherical harmonics.

2.2 Symmetry

For negative m we note

$$Y_{\ell}^{-m}(\theta,\varphi) = (-1)^m \overline{Y_{\ell}^m(\theta,\varphi)}$$

so we only need to compute positive orders m. That is, if we have computed $Y_{\ell}^{m}(\theta,\varphi)$ for m>0 then we can simply determine $Y_{\ell}^{m}(\theta,\varphi)$ for m<0.

In summary, with a few sign flips we can get the negative order spherical harmonics from the positive ones.

2.3 More robust spherical harmonic computation

Define

$$S_{\ell}^{m}(z) \triangleq (-1)^{m} \sqrt{\frac{2(\ell - m)!}{(\ell + m)!}} P_{\ell}^{m}(z), \quad m \ge 0 \quad (m \le \ell)$$

and so we have

$$S_{\ell}^{m}(z) = \begin{cases} \sqrt{2} \, SP_{\ell}^{0}(z) & m = 0\\ SP_{\ell}^{m}(z) & m > 0 \end{cases}$$
 (1)

in terms of the Schmidt semi-normalized Legendre functions (available in MATLAB as legendre(1,m,'sch')). Further define

$$Q_{\ell} \triangleq \sqrt{\frac{2\ell+1}{8\pi}}$$

Then we have

$$Y_{\ell}^{m}(\theta,\varphi) = \begin{cases} (-1)^{m} Q_{\ell} S_{\ell}^{m}(\cos\theta) e^{im\varphi} & m \geq 0 \quad (0 \leq m \leq \ell) \\ (-1)^{m} \overline{Y_{\ell}^{-m}(\theta,\varphi)} & m < 0 \quad (-\ell \leq m < 0) \end{cases}$$

2.3.1 MATLAB implementation

The Schmidt semi-normalized Legendre functions are available in MATLAB so we only need to modify the m=0 case, (??). The following code computes $Y_{\ell}^{m}(\theta,\varphi)$ for $\ell\geq 0$ and $m\in\{-\ell,\ldots,\ell\}$ on a separable grid in θ and ϕ :

```
function [Ylm,theta,phi] = sphereHarm(1,m,tt,pp)
%sphereHarm spherical harmonic of degree 1 and order m
   if isvector(tt) && isvector(pp) && abs(m)<=1 && 1>=0
      tt=tt(:)'; pp=pp(:)'; % ensure they are row vectors
      [theta,phi]=ndgrid(tt,pp);
      Sl=legendre(1,cos(tt),'sch');
      Sl(1,:)=Sl(1,:)*sqrt(2); % m=0 adjustment
      Ql=sqrt((2*l+1)/(8*pi));
      Slm=Sl(abs(m)+1,:)'; % pull out <math>S_l^m
      Ylm=(-1)^m*Ql*kron(ones(size(pp)),Slm).*exp(1j*abs(m)*phi);
      if m<0
         Ylm=(-1)^m*conj(Ylm);
      end
   else
      error('** invalid inputs or out-of-range')
   end
end
```