SC201 Lecture 3

Gradient Descent

1 (1 1			
n(t	(b, b)	=		

< _____ Gradient Descent > (BGD)

Α	$=\theta - \alpha$	`	١
v	- 0 - u i		,

$$b = b - \alpha$$

• 往 ______ 的方向走去

Steepest Descent

Non-Steepest Descent

<	Gradient Descent >		
	(SGD)		

$$\theta = \theta - \alpha \left(\underline{} \right)$$

$$b = b - \alpha$$
 (_____)

• 往 ______ 的方向走去

Hypothesis Function (Model)

<degree1 polynomial>

$$J = \frac{1}{2m} \sum_{i=1}^{m} (\theta X i + b - y i)^{2}$$

$$\Rightarrow \boxed{\frac{dJ}{d\theta}} =$$

<degree2 polynomial>

$$J = \frac{1}{2m} \sum_{i=1}^{m} (\theta' x i^{2} + \theta x i + b - y i)^{2}$$

From Learning to Predicting

<degree1 polynomial>

$$\theta = \theta - \alpha(dJ_d\theta)$$

 $b = b - \alpha(dJ_d\theta)$

Learn Parameters

prediction = ____

<degree2 polynomial>

$$\theta' = \theta' - \alpha(dJ d\theta')$$

$$\theta = \theta - \alpha(dJ d\theta)$$

Learn Parameters

$$b = b - \alpha(dJ_db)$$

prediction = ____

Supervised Learning

Input data has

Output is _____

• Housing Price

< Regression Problem >

• Steering wheel angle

< Classification Problem >

Output is _____

- Benign/ Malignant Tumor
- Good/ Bad Review

Problems of using linear regression on binary classification

(tumor size)

linear regression → logistic regression

$$\langle k = \theta x + b \rangle \longrightarrow \langle h = \frac{1}{1 + e^k} \rangle$$

- ① Bounded between ___ and ___
- ② Changes faster around
- ③ _____ are easy to predict!

< Sigmoid function >

sigmoid(k) =
$$\sigma(k) = \frac{1}{1 + e^{ik}}$$

• when k is ∞ (huge tumor)

$$\Rightarrow \frac{1}{1 + e^{-\infty}} = \underline{\hspace{1cm}}$$

• when k is $-\infty$ (tiny tumor)

$$\Rightarrow \frac{1}{1+e^{\infty}} = \underline{\hspace{1cm}}$$

• when k is 0 (the threshold for good/bad tumor)

$$\Rightarrow \frac{1}{1+e^0} = \underline{\hspace{1cm}}$$

 $\begin{cases} \text{if k} \underline{\hspace{0.5cm}} 0 \to \sigma(k) \underline{\hspace{0.5cm}} 0.5 \to \text{predict } \underline{\hspace{0.5cm}} \\ \text{if k} \underline{\hspace{0.5cm}} 0 \to \sigma(k) \underline{\hspace{0.5cm}} 0.5 \to \text{predict } \underline{\hspace{0.5cm}} \end{aligned}$

$$\mathbf{h} = \sigma(\theta \mathbf{x}) = \frac{1}{1 + e^{-(\theta \mathbf{x})}}$$

Regression Problem >

|Convex Function |

$$\frac{1}{2m}\sum_{i=1}^{m}(\theta Xi - yi)^2$$

There is _____ minimum (local min ___ global min)

|Non-convex Function|

Depends on

minimums

(local min ___ global min)

Loss Function for Logistic Regression

$$L =$$
_____ (where $hi = \sigma(\theta xi)$)

如果hi預測 0.85 ⇒ L = -log(_____) = ____ 如果hi預測 0.2 ⇒ L = -log(____) = ____

When yi == ⇒ loss function is convex

-log(1-h)

When yi == ⇒ loss function is convex

Cost Function for Logistic Regression

Gradient Descent for Logistic Regression

Gradient Descent for Linear Regression

$$\frac{dJ}{dhi} =$$

$$\frac{dhi}{dki} =$$

$$\frac{dki}{d\theta} =$$

$$\frac{dJ}{d\theta} =$$