Bridging y Switching (Ethernet)

UNLP – Fac. De Informática 2020

Contenido

- Dispositivos de LAN.
- Tablas de MAC.
- Métodos de Switching.
- Spanning Tree Protocol.
- Administración.
- VLANs.

М.

Dispositivos de LAN

- Dominio de Colisión vs. Dominio de Broadcast.
- Micro-segmentación.
- Dispositivos:
 - Repetidor.
 - □Bridge.
 - □ Switch.
 - Router.

Repetidor/Hub

- Repetidor: amplificador digital, dos puertos. Regenera la señal une dominios de colisión generando un único, permite extensión.
- **Hub:** repetidor multipuerto. Usado en 10BaseT y 100BaseT.

Repetidor

Cascadas/Uplinks (N2N)

Permitir interconectar concentradores y repetidores para extender la red.

Dominio de Colisión

- Hasta donde pueden extenderse las colisiones.
- Hasta donde llega la señal de una trama unicast.
- Todas las estaciones en el mismo dominio de colisiones ven los datos transmitidos de cada una.
- Un repetidor o un hub extienden un dominio de colisión.

Hubs y Colisiones

Tipos de Hubs

- Hubs pasivos: solo envían la señal por todos los puertos restantes.
- Hubs activos: regeneran la señal, mayor alcance.
- Hubs inteligentes: pueden poseen administración, permiten detectar problemas.
- Los hubs pueden detectar colisiones y generar JAMs.

Bridge

Bridge: Poder adaptar entre dos protocolos de nivel de enlace o físico, pueden ser diferentes. Dividir dominio de colisión.

- Dividir la red en partes más pequeñas: dominios de colisiones.
- Permitir escalabilidad.
- Implementado por software.
- Dos puertos en general.
- Bridge Ethernet podría adaptar dos tecnologías de nivel físicas, e.g.: 10Base2 y 10BaseT.

Bridge

Switch

- **Switch:** un bridge multipuerto que trabaja con la misma tecnología de enlace y física en c/u.
- Trabaja en hardware, ASIC, múltiples puertos.
- Puertos trabajan en FDX, micro-segmentación.

Cyadita

Switching

Razones para usar switches en una red:

- Dividir la red en partes más pequeñas (dominios de colisiones, micro-segmentación).
- Seguridad: VLANs, admin.
- Mejorar el rendimiento de la red. FDX vs. HDX.
- No hay colisiones.
- Los switches tienen menor delay.
- Actualidad Switches multilayers o L3/capa3.

.

Bridging/Switching

Funciones del switch

- Aprender direcciones MAC: El dispositivo guarda las direcciones MAC asociadas a cada puerto en una base de datos.
- Reenviar / filtrar paquetes:
 Al recibir una trama, el switch revisa su base de datos MAC para determinar a través de que puerto puede alcanzar la dirección de destino.
- Evitar bucles de capa 2:
 Los switches administran los bucles de redundancia con STP. Bridges solo una instancia de STP, switches podrían correr varias,

SwitchingAprendizaje de direcciones

SwitchingAprendizaje de direcciones

SwitchingAprendizaje de direcciones

Switching Reenvío / filtrado de paquetes

SwitchingTramas broadcast/multicast

SwitchingMétodos de Conmutación

Store and Forward (Almacena y Envía):

- Lee toda la trama y chequea CRC.
- Mas seguro.

Fragment Free (Libre de Fragmetos):

Lee los primeros 64 bytes.

Cut-through (de corte):

- Lee hasta la dirección destino.
- Más rápido.

Características Extras

Switches Administrables

- Administracion remota:
 - IN-Band.
 - OUT-Band.
- SNMP.
- VLANs.
- QoS.
- Ruteo L3 (MLS).
- Agregación de Enlaces (Ether-channel) 802.3ae.
- Flow-Control.

Mantenimiento del Switch

Conectarse al switch por medio de una conexion de consola

- Brindan la interfaz Web , ssh o telnet para administración.
- Además brindan monitoréo por SNMP.

Mantenimiento del Switch

- Los administradores de red deben documentar y mantener los archivos de configuración operacional de los dispositivos de red.
- Debe realizarse una copia de seguridad del archivo de configuración actual en un servidor o en un disco.
- También debe realizarse una copia de seguridad del firmware/OS en un servidor local. Entonces se puede recargarlo en la memoria flash si es necesario.

VLANs

- Dividir un switch en switches virtuales cada uno sobre una VLAN (Virtual LAN).
- Cada VLAN es un dominio de broadcast independiente.
- Para lograr conectividad se deben conectar mediante uplinks o routers.
- Los uplinks compartidos entre VLANs marcan el tráfico con TAGs: 802.1Q tagged ports/trunks:

٠.

VLANs (separadas)

- Divide dominios de broadcast independientes.
- Cada puerto en una VLAN (dominio).

VLANs (conectadas)

Interconectar VLANs mediante dispositivo L3 (router).

VLANs (uplinks)

Hacer uplinks entre VLANs requeriria un enlace por VLAN si cada puerto solo en una VLAN.

VLANs (tagging)

Puertos especiales de trunking, taggeados.

VLANs (tagging)

VLANs (route on stick)

VLANs (multilayer switch)

- Dispositivos L2/L3, switches-routers integrados.
- Mayor eficiencia.

Referencias:

- Cisco CCNAv3.1.
- Data & Computer Communications (6th Edition), William Stallings.
- http://www.ieee802.org/
- Ethernet: The Definitive Guide. Charles E. Spurgeon. O'Reilly and Associate. Feb 2000. 1st. Edition.