Задача 1. Точки сочленения

Имя входного файла: 1.in
Имя выходного файла: 1.out
Ограничение по времени: 2 секунда
Ограничение по памяти: 64 мегабайта

Формат входного файла

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и ребер графа соответственно ($n \le 20~000$, $m \le 200~000$).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i – номерами концов ребра ($1 \le b_i$, $e_i \le n$).

Формат выходного файла

Первая строка выходного файла должна содержать одно натуральное число b – количество точек сочленения в заданном графе. На следующей строке выведите b целых чисел – номера вершин, которые являются точками сочленения, в возрастающем порядке.

Nº	1.in	1.out
	9 12	3
	12	1
	2 3	2
	4 5	3
	2 6	
	2 7	
1	8 9	
	13	
	14	
	15	
	6 7	
	38	
	3 9	

Задача 2. Мосты

Имя входного файла: 2.in
Имя выходного файла: 2.out
Ограничение по времени: 2 секунда
Ограничение по памяти: 64 мегабайта

Формат входного файла

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и ребер графа соответственно ($n \le 20~000$, $m \le 200~000$).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i – номерами концов ребра ($1 \le b_i$, $e_i \le n$).

Формат выходного файла

Первая строка выходного файла должна содержать одно натуральное число b- количество мостов в заданном графе. На следующей строке выведите b целых чисел — номера ребер, которые являются мостами, в возрастающем порядке. Ребра нумеруются с единицы в том порядке, в котором они заданы во входном файле.

Nº	2.in	2.out
	67	1
	1 2	3
	23	
1	3 4	
1	13	
	4 5	
	4 6	
	5 6	

Задача 3. Авиаперелеты

Имя входного файла: 3.inИмя выходного файла: 3.outОграничение по времени: 2 секундаОграничение по памяти: 64 мегабайта

Главного конструктора Айбека попросили разработать новую модель самолета для компании «Air Бубундия». Оказалось, что самая сложная часть заключается в подборе оптимального размера топливного бака.

Формат входного файла

Первая строка входного файла содержит натуральное число n ($1 \le n \le 1000$) — число городов в Бубундии. Далее идут n строк по n чисел каждая. j-ое число в i-ой строке равно расходу топлива при перелете из i-ого города в j-ый. Все числа не меньше нуля и меньше 10^9 . Гарантируется, что для любого i в i-ой строчке i-ое число равно нулю.

Формат выходного файла

Первая строка выходного файла должна содержать одно число - оптимальный размер бака.

Nº	3.in	3.out
	4	10
	0 10 12 16	
1	11 0 8 9	
	10 13 0 22	
	13 10 17 0	

Задача 4. Деки на 6 мегабайтах

Имя входного файла: 4.in
Имя выходного файла: 4.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 6 мегабайта

Напишите программу, которая умеет оперировать большим количеством деков. Дек – это «очередь с двумя концами».

Формат входного файла

Первая строка входного файла содержит общее количество команд n ($0 \le n \le 150~000$). Каждая из следующих n строк содержит описание команды:

- «pushfront A B» вставить число В в начало дека А;
- «pushback A B» вставить число В в конец дека А;
- *«popfront A»* удалить первый элемент дека *A*;
- «popback A» удалить последний элемент дека A;

Для каждой команды параметры A и B – целые числа от 1 до 150 000 включительно.

Формат выходного файла

Для каждой команды popfront или popback выведите удаляемое число. Гарантируется, что перед выполнением команды удаления соответствующий дек не пуст.

Nº	4.in	4.out
	9	71819
	pushfront 1 71819	1
	pushback 2 71820	11
	pushback 1 1	71820
1	popfront 1	
1	popfront 1	
	pushfront 2 10	
	pushback 2 11	
	popback 2	
	popback 2	

Задача 5. Топологическая сортировка

Имя входного файла:5.inИмя выходного файла:5.outОграничение по времени:2 секундаОграничение по памяти:64 мегабайта

Дан ориентированный невзвешенный граф. Необходимо его топологически отсортировать.

Формат входного файла

В первой строке входного файла даны два целых числа N и $M(1 \le N \le 100\ 000,\ 1 \le M \le 100\ 000)$ — количество вершин и ребер в графе соответственно. Далее в M строках перечислены ребра графа. Каждое ребро задается парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходного файла

Вывести любую топологическую сортировку графа в виде последовательности номеров вершин. Если граф невозможно топологически отсортировать, вывести -1.

Nº	5.in	5.out
	66	463125
	12	
	3 2	
1	4 2	
	25	
	65	
	4 6	

Задача 6. Приезд СЭС

Имя входного файла: 6.in
Имя выходного файла: 6.out
Ограничение по времени: 2 секунда
Ограничение по памяти: 64 мегабайта

Сегодня в лагерь приехала СЭС. Первым, кто узнал об этой новости, был Асылбек, и теперь он, конечно же, хочет рассказать об этом всем ЛКШатам. Более того, Асылбек хочет, чтобы как можно больше школьников узнали новость впревые именно от него.

Сложность состоит в том, что как только кто-то узнает о приезде СЭС (не обязательно от Асылбека), он тут же рассказывает об этом всем, о ком знает, где тот живет. Заметьте, что это отношение не симметричное: т.е., если школьник A знает, где живет школьник B, то школьник B может и не знать, где живет A.

При этом, между двумя рассказами Асылбека новость успевает дойти до всех, до кого только можно.

Понятно, что в зависимости от порядка, в котором Асылбек должен рассказать о приезде СЭС, так чтобы впервые эти школьники узнали эту новость именно от него. Для всех остальных школьников требуется определить, в результате какого по счету Асылбекина рассказа они узнают о приезде СЭС.

Формат входного файла

Первой строка входного файла содержит два целых числа N и M ($1 \le N \le 20~000$, $1 \le M \le 200~000$) — количество школьников и связей типа: школьник A знает, где живет школьник B. В последующих M строках идут описания этих связей в формате A B.

Формат выходного файла

На первой строке выведите число школьников, узнавших о приезде СЭС непосредственно от Асылбека. На следующей строке выведите Н чисел — для каждого школьника выведите номер Асылбекина рассказа, в результате которого он узнает о приезде СЭС.

Nº	6.in	6.out
	67	2
	12	222111
	2 3	
1	31	
1	45	
	5 6	
	6 4	
	2 4	