本节内容

数据的存储和排列

大小端模式

多字节数据在内 存里一定是占连 续的几个字节 最高有效 字节(MSB) 最低有效 字节(LSB)

4字节 int: 01 23 45 67 H

19088743 D

0000 0001 0010 0011 0100 0101 0110 0111 B

便于人 类阅读

大端方式

 0800Н
 0801Н
 0802Н
 0803Н

 ...
 01Н
 23Н
 45Н
 67Н
 ...

便于机器处理

小端方式

	0800H	0801H	0802H	0803H	
•••	67H	45H	23H	01H	•••

边界对齐

现代计算机通常是按字节编址,即每个字节对应1个地址 通常也支持按字、按半字、按字节寻址。 假设存储字长为32位,则1个字=32bit,半字=16bit。每次访存只能读/写1个字

字节1	字节 2	字节 3	填充
半字 1		半字 2	
半字3		į	真充
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>.</u>	· · · · · · · · · · · · · · · · · · ·	

访问一个字/半字都只需一次访存

图 2.10 边界对齐方式

	字节 1	字节 2	字节3	半字 1-1	
	半字 1-2	半	半字 3-1		
	半字 3-2	字 1-1			
	字 1-2				

访问一个字/半字 可能要两次访存

图 2.11 边界不对齐方式