UChicago Measure and Integration Notes

Notes by Agustín Esteva, Lectures by Kenig, Books by Stein and Sakarchi,

Academic Year 2024-2025

${\bf Contents}$

1	Lec	tures	2
	1.1	Tuesday, Jan 21: Measurable Sets	2
	1.2	Thursday, Jan 23: Constructing a Non-Measurable Set and Measurable Functions	5
	1.3	Tuesday, Jan 28: Measurable Functions	8
	1.4	Thursday, Jan 30: Constructing the Lebesgue Integral	10
	1.5	Tuesday, Feb 4: Littlewood's Three Principles	12
	1.6	Tuesday, Feb 11: The Lebesgue Integral	14
	1.7	Thursday, Feb 18: The Lebesgue Integral, Bounded Convergence Theorem, Fatou	16
	1.8	Tuesday, Feb 25: The Completeness of L^1	21
	1.9	Thursday Feb 27: Invariance Properties	23

1 Lectures

1.1 Tuesday, Jan 21: Measurable Sets

Definition 1. We say that $E \subset \mathbb{R}^d$ is *measurable* if, given $\epsilon > 0$, there exists an open set O such that $E \subset O$ and

$$m_*(O-E) < \epsilon$$

This is almost equivalent to saying that

$$m_*(O) \le m_*(E) + \epsilon$$

Proposition 1. The following are properties of measurable sets:

- (a) If O is open, then O is measurable (they cover themselves)
- (b) If $m_*(E) = 0$, then E is measurable.
- (c) A countable union of measurable sets is measurable.
- (d) Closed sets are measurable
- (e) Complements are measurable

Proposition 2. A countable intersection of measurable sets is measurable.

Proof. Let

$$E = \bigcap E_j$$
,

where E_j is measurable for all j. Then we get that by DeMorgan's law:

$$\bigcap E_j = \left(\bigcup E_j\right)^c,$$

so we are done by the previous proposition.

Theorem 1. Suppose E_1, E_2, \ldots are measurable and mutually disjoint, then

$$m\left(\bigcup E_j\right) = \sum_j m(E_j).$$

Proof. We claim that if E is measurable, and $\epsilon > 0$, then there exists some closed $F \subset E$ such that $m(E - F) < \epsilon$. To see this, consider that E^c is measurable, and thus there exists an open set O such that $m_*(O - E^c) < \epsilon$. We let $F = O^c$, and then $F \subset E$, and F is closed. Then we have that $O - E^c = O \cap E = F \cap E$. We know that $m(O \cap E) < \epsilon$. Note that we have that

$$E - F = E \cap F^c = E \cap O$$

and thus $m(E - F) < \epsilon$.

Assume E_j are bounded for all j. By the previous claim, there exists a closed $F_j \subset E_j$ such that

$$m(E_j - F_j) < \frac{\epsilon}{2^j}$$

for all j. Note that by boundedness of E_j and by closedness of F_j , the F_j are compact and disjoint. Fix $N \in \mathbb{N}$, then we have that

$$m\left(\bigcup_{1}^{N} F_{j}\right) = \sum_{1}^{N} m(F_{j})$$

Let $E = \bigcup E_j$, then we have that $\bigcup F_j \subset E_j$. Thus, we have that

$$m(E) \ge m(\bigcup_{j=1}^{N} E_j) = \sum_{j=1}^{N} m(E_j).$$

Thus, we get that

$$m(E) \ge \sum_{j=1}^{N} m(F_j) \ge \sum_{j=1}^{N} m(E_j) - \frac{\epsilon}{2^j} \ge \sum_{j=1}^{N} m(E_j) - \epsilon.$$

Letting $N \to \infty$, we get that

$$m(E) \ge \sum_{j=1}^{\infty} m(E_j).$$

By subadditivity, we also have that

$$m(E) \le \sum_{j=1}^{\infty} m(E_j).$$

For the general case, find cubes $Q_k \subset Q_{k+1}$ such that $\bigcup Q_k = \mathbb{R}^d$. Then let $E_{j,k} = E_j \cap (Q_k - Q_{k-1})$. Then we have that $E = \bigcup_{k,j} E_{k,j}$, where the $E_{k,j}$ are disjoint and bounded. Then we have by the work done above that

$$m(E_j) = \sum_{j} \sum_{k} m(E_{k,j}) = \sum_{j} m(E_j)$$

Corollary 1. Suppose $\{E_j\}$ is a countable collection of measurable subsets of \mathbb{R}^d . Assume further that $E_j \subset E_{j+1}$, and that $E = \bigcup_j E_j$. Then we have that

$$m(E) = \lim_{n \to \infty} m(E_n).$$

If, on the other hand, the E_j decrease to E, that is, $E = \bigcap_j E_j$, then if $m(E_k) < \infty$, then

$$m(E) = \lim_{n \to \infty} m(E_n)$$

Proof. For the first result, let $G_1 = E_1$, $G_2 = E_2 - E_1$, and so on until

$$G_n = E_n - E_{n-1}.$$

Obviously, the G_k are measurable and disjoint and $E = \bigcup_k G_k$. Then

$$m(E) = \sum_{k=1}^{\infty} m(G_k) = \lim_{n \to \infty} \sum_{k=1}^{n} m(G_k) = m \left(\lim_{n \to \infty} \bigcup_{k=1}^{N} G_k \right) = m \left(\lim_{n \to \infty} E_n \right)$$

For the second result, we assume without loss of generality that $E_1 < \infty$, and we set $G_1 = E_1 - E_2$, $G_2 = E_2 - E_3$. Again, the G_k are mutually disjoint and measurable and

$$E_1 = E \cup \bigcup_{k=1}^{\infty} G_k.$$

Thus, we get that (letting $N \to \infty$)

$$m(E_1) = m(E) + \sum_{k=1}^{N} m(G_k) = m(E) + \sum_{k=1}^{\infty} m(G_k) - m(G_{k+1}) = m(E) + m(E_1) - m(E_N).$$

Theorem 2. Suppose $E \subset \mathbb{R}^d$, E is measurable. Then for all $\epsilon > 0$:

- (a) There exists an open O with $E \subset O$ such that $m(O E) < \epsilon$.
- (b) There exists a closed F with $F \subset E$ such that $m(E F) < \epsilon$.
- (c) If $m(E) < \infty$, then there exists a compact set K such that $K \subset F$ and $m(E K) < \epsilon$.
- (d) If $m(E) < \infty$, then there exists $F = \bigcup Q_j$ such that $m(E \triangle F) < \epsilon$. (note that the symmetric difference refers to the points belonging to only one of the sets).

Proof. (i) and (ii) have already been proved. For (iii), pick F closed such that $F \subset E$ and $m(E - F) < \frac{\epsilon}{2}$. Let $K_m = F \cap \overline{B_m(0)}$. Evidently, each K_m is compact and we have that

$$E - K_m \downarrow E - F$$
.

We know by the previous corollary that

$$m(E - F) = \lim_{m \to \infty} (E - K_m),$$

and so for m large, $m(E - K_m) < \epsilon$.

For (iv), we pick closed $\{Q_j\}$ such that $E \subset \bigcup Q_j$ and $\sum Q_j \leq m(E) + \frac{\epsilon}{2}$. Thus, the series is convergent, and there exists some large N such that $\sum_{N+1}^{\infty} |Q_j| \leq \frac{\epsilon}{2}$. Now we let $F = \bigcup_{j=1}^{N} Q_j$. We thus get that

$$m(E\triangle F) = m(E - F) + m(F - E)$$

$$= \sum_{N+1}^{\infty} m(Q_j) + (\sum m(Q_j) - m(E))$$

$$< \epsilon.$$

1.2 Thursday, Jan 23: Constructing a Non-Measurable Set and Measurable Functions

Lemma 1. Suppose $a \in \mathbb{R}$, then $m^*(E+a) = m^*(E)$.

Proof. Note that $E + a = \{x + a : x \in E\}$. Pick $E \subset^{\infty} \bigcup Q_i$ such that $\sum |Q_i| \le m^*(E) + \epsilon$, then

$$E \subseteq \bigcup_{i=1}^{\infty} (Q_i + a) \implies m^*(E + a) \ge \sum |Q_i + a| + \epsilon.$$

For the reverse direction, consider that

$$m^*(E+a) \le m^*((E+a)-a) = (E).$$

Theorem 3. (Axiom of Choice) If $\mathscr{E} = \{S_{\alpha} : \alpha \in \mathscr{A}, S_{\alpha} \neq \emptyset \ \forall \alpha \in \mathscr{A}\}$, then there exists a function $f : \mathscr{E} \to \bigcup S_{\alpha}$ such that $f(S_{\alpha}) \in S_{\alpha}$.

Define \sim from [0,1] such that $x \sim y$ if $x - y \in \mathbb{Q}$. Thus,

$$[0,1] = \bigcup_{x \in [0,1]} [x].$$

As an example,

$$[0] = \mathbb{Q} \cap [0,1], \qquad [\frac{1}{\sqrt{2}}] = \{\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} + \frac{1}{4}, \dots\}$$

Using the Axiom of Choice, pick $\alpha \in [x]$ such that if $[x] \neq [y]$, then $\alpha_x \neq \alpha_y$. Define

$$N := \{\alpha_{[x]}\}.$$

Theorem 4. N is not measurable.

Proof. Suppose it is. Define $\{r_k\} = \mathbb{Q} \cap [-1,1]$, and define $N_k = N + r_k$. We claim that $N_k \cap N_j = \emptyset$ when $k \neq j$. To see this, let x be in the intersection, then

$$x = \alpha_1 + r_k = \alpha_2 + r_j \implies \alpha_1 - \alpha_2 = r_j - r_k \in \mathbb{Q} \implies \alpha_1 = \alpha_2 \implies r_j = r_k$$

contradiction the fact that $k \neq j$. We further claim that

$$[0,1] \subseteq \bigcup N_k \subseteq [-1,2].$$

The second inclusion is by construction. Let $x \in [0,1]$, then there exists some $\alpha \in [x]$, and thus

$$\alpha \in N \implies x - a \in \mathbb{Q} \implies x = \alpha + r_k \implies x \in N_k$$

By the first claim, we have that by translation invariance, that

$$m(\bigcup N_k) = \sum m(N_k) = \sum m(N) = \{0, \infty\}.$$

But then

$$1 = m([0,1]) \le m(\bigcup N_k) \le m([-1,2]) = 3,$$

which is a contradiction. \Box

Definition 2. A collection of sets $S \subset P(X)$ is a σ -algebra if:

- (a) $X \in S$;
- (b) If $\{E_i\} \in S$, then $\bigcup E_i \in S$.
- (c) If $E \in S$, then $E^c \in S$.

Example 1.1. Examples of σ -algebras:

- (a) $S = {\emptyset, X}$
- (b) Set of measurable sets.
- (c) $2^{\mathbb{R}}$

Lemma 2. Suppose \mathscr{F}_{α} , $\alpha \in \mathscr{A}$ is a collection of σ -algebras on X, then

$$\mathscr{F} = \bigcap_{\alpha} \mathscr{F}_{\alpha}$$

is a σ -algebra.

Proof. Since $X \in \mathscr{F}_{\alpha}$ for all α , then $X \in \mathscr{F}$. Suppose $\{E_i\} \in \mathscr{F}$, then for all α , $\{E_i\} \in \mathscr{F}_{\alpha}$, and thus

$$\bigcup E_i \in \mathscr{F}_{\alpha}$$

for all α , and because this holds for all α , then we are done. The proof for the third property is the same as the previous one.

Definition 3. If $\mathscr{E} \subseteq P(X)$, then we define

$$\sigma(\mathscr{E}) := \bigcap_{\mathscr{E} \subseteq \mathscr{F}_\alpha} \mathscr{F}_\alpha$$

Definition 4. The Borel σ -algebra, $\mathscr{B}(\mathbb{R}^n)$, is defined to be $\sigma(O)$, where $O \subseteq \mathbb{R}^n$ are open.

Proposition 3. \mathcal{B} satisfies the following properties:

- (a) All open sets are in the \mathscr{B}
- (b) All closed sets are in \mathscr{B}
- (c) If $E \in \mathcal{B}$, then E is measurable.

Definition 5. A set is G_{δ} if $E = \bigcap O_i$, where O_i is open.

A set is F_{σ} if $E = \bigcup F_i$, where F_i is closed.

Theorem 5. $A \subseteq \mathbb{R}^n$ is measurable if and only there exists a $G \in G_\delta$ set such that $A \subseteq G$ and $m^*(G-A) = 0$. The symmetric claim holds for F_σ sets as well.

Proof. (\Longrightarrow) If A is measurable, then there exists $O_n \supset A$ open such that $m^*(O_n - A) < \frac{1}{n}$. We let $G = \bigcap O_n$.

 (\Leftarrow) Since null sets are measurable, then since A = G - (G - A), so A is measurable.

Remark 1. Let $E\mathbb{R}^d$, then

$$\chi_E(x) = \begin{cases} 1, & x \in E \\ 0, & x \notin E \end{cases}.$$

It would make sense for $\chi_E(x)$ to be measurable when E is measurable!

Definition 6. A simple function is defined to be

$$f(x) = \sum_{k=1}^{n} a_k \chi_{E_k}(x), \qquad m(E) < \infty.$$

Definition 7. A **step function** is defined to be

$$f = \sum_{k=1}^{n} a_k \chi_{R_k}, \qquad R_k \text{ rect}$$

Definition 8. Let $f: \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$. We say f is **finite value** if $f(x) \neq \{\pm \infty\}$ for all $x \in \mathbb{R}^d$

Definition 9. We say f is **measurable** if for all $a \in \mathbb{R}$, $f^{-1}([-\infty, a))$ is measurable. In other words,

$$m(\{x \mid f(x) < a\}) < \infty.$$

Theorem 6. f is measurable if and only if for all $a \in \mathbb{R}$, $\{x \mid f(x) \leq a\}$ is measurable.

Proof. We can write

$$\{f \leq a\} = \bigcap \{f < a + \frac{1}{k}\},$$

and since the countable intersection of measurable sets is measurable, we are done. For the other direction, consider that

$$\{f < a\} = \bigcup \{f \le a - \frac{1}{k}\}.$$

1.3 Tuesday, Jan 28: Measurable Functions

Proposition 4. If f is finite valued, then f is measurable if and only if $f^{-1}(O)$ is measurable for all O open if and only if $f^{-1}(F)$ is measurable for all F closed.

This It follows immediately that

Proposition 5. If f is continuous on \mathbb{R}^d , then f is measurable. Moreover, if f is measurable, finite valued, and Φ is continuous on \mathbb{R} , then $\Phi \circ f$ is measurable.

Proof. We prove the second statement. Since Φ is continuous, we have that $O_a = \Phi^{-1}((-\infty, a))$ is open. Since f is measurable, we have that $f^{-1}(O_a)$ is measurable, and thus $(\Phi \circ f)((-\infty, a)) = f^{-1}(\Phi^{-1}((-\infty, a)))$

Proposition 6. Suppose $\{f_n\}$ is a sequence of measurable functions. Then $\sup_n f_n(x)$ and $\inf_n f_n(x)$, $\lim \sup_n f_n(x)$ and $\lim \inf_n f_n(x)$ are all measurable.

Proof. Consider that

$$\{\sup_{n} f_n(x) > a\} = \bigcup_{n} \{f_n(x) > a\}$$

We also have that $-\inf_n(-f_n(x)) = \sup_n f_n(x)$ and that

$$\limsup_{n} f_n(x) = \inf_{n} (\sup_{k} \ge n f_k(x))$$

As a quick consequence, we have that if the f_n are measurable, then $\lim_{n\to\infty} f_n(x) = f(x)$ is measurable.

Proposition 7. (a) Suppose that f is measurable, then f^k is measurable.

(b) If f and g are measurable, then f + g and fg are measurable (given that f and g are finite valued).

Proof. The first is a simple consequence of Proposition 5. We claim that

$$\{f+g>a\} = \bigcup_{r\in\mathbb{R}} (f>a-r) \cap \{g>r\}.,$$

which proves the second. Consider now that

$$fg = \frac{1}{4} \left[(f+g)^2 - (f-g)^2 \right]$$

Definition 10. We say that f and g are equal almost everywhere, or equal a.e. if $m\{f(x) \neq g(x)\} = 0$.

Proposition 8. If f is measurable and f = g a.e, then g is measurable.

Remark 2. If f_n are measurable and $\lim_{n\to\infty} f_n(x) = g(x)$ a.e, then g is measurable.

Theorem 7. Suppose $f \geq 0$ and measurable on \mathbb{R}^d . Then there exists an increasing sequence of non-negative simple functions (φ_k) such that

$$\varphi_k(x) \le \varphi_{k+1}(x), \qquad \lim_{k \to \infty} \varphi_k(x) = f(x). \qquad \forall x$$

Proof. For each k, subdivide the values of f which fall in [0, k]. Partition [0, k] into subintervals $[\frac{j-1}{2^k}, \frac{j}{2^k}]$. Define

$$\tilde{\varphi_k}(x) = \begin{cases} \frac{j-1}{2^k}, & f(x) \in \left[\frac{j-1}{2^k}, \frac{j}{2^k}\right] \\ k, & f(x) \ge k \end{cases},$$

Obviously, $\tilde{\phi_k}$ is measurable and $\tilde{\varphi_k} \leq \tilde{k+1}$.

When $f(x) = \infty$, we have that $\tilde{\varphi_k}(x) = k$ for any k, so then $\varphi_k \uparrow f$. On the other hand, suppose $f(x) < \infty$, then there exists some k_0 such that for all $k > k_0$, f(x) < k, and

$$0 \le f(x) - \tilde{\varphi_k} \le \frac{1}{2^k} \implies \tilde{\varphi_k} \to f.$$

Define

$$\varphi_k(x) = \tilde{\varphi_k}(x) \cdot \chi_{B_k(0)}.$$

Because $\chi_{B_k(0)} \leq \chi_{B_{k+1}(0)}$, we have that $\varphi_k(x) \leq \varphi_{k+1}(x)$.

Let x be fixed, and choose k such that |x| < k, then $\varphi_k(x) = \tilde{\varphi_k(x)}$.

1.4 Thursday, Jan 30: Constructing the Lebesgue Integral

Remark 3. To handle negative functions, then consider the general case when f is measurable. Then let

$$f_{+} = \max(f(x), 0), \qquad f_{-} = \max(-f(x), 0).$$

Both are nonnegative, and we have that

$$f(x) = f_{+}(x) - f_{-}(x).$$

Thus, when $f \leq 0$, we have that

$$f_{+}(x) = 0,$$
 $f_{-}(x) = -f(x).$

Theorem 8. Suppose f is measurable. Then there exists a sequence $(\varphi_k) \to f$ such that φ_k are simple functions with $|\varphi_k| \le |\varphi_{k+1}|$. In particular, we have that

$$|\varphi_k(x)| \le |f(x)|, \quad \forall k, x$$

Proof. From Theorem 7, we can pick a sequence $(\varphi_k^{(i)})$, where $i = \{1, 2\}$ such that

$$0 \le \varphi_{k+1}^{(1)}(x) \le \varphi_{k+1}^{(1)}, \varphi_k^{(1)} \uparrow f_+(x),$$

and similarly for $\varphi_k^{(2)} \uparrow f(x)$.

$$\varphi_k := \varphi_k^1 - \varphi_k^2 \to f(x).$$

It remains to be seen that

$$|\varphi_k(x)| = \varphi_k^1 + \varphi_k^2.$$

If $f_+=0$, then $\varphi_k^{(1)}=0$, and so

$$\varphi_k(x) = -\varphi_k^{(2)},$$

and so our claim is proven.

If $f_- = 0$, then $\varphi_k^{(2)} = 0$, and so

$$\varphi_k(x) = \varphi_k^{(1)},$$

and so our claim is proven.

When $f_+(x) > 0$, then $f_-(x) = 0$, and so $\varphi - k^{(2)} = 0$, and |f(x)| = f(x) and thus our claim is proven. Similarly for when $f_-(x) < 0$.

Theorem 9. Suppose f is measurable. Then there exists a sequence of step functions $(\psi_k(x))$ such that

$$\psi_k(x) \to f(x)$$
 a.e.

Proof. Suppose that

$$f(x) = \chi_E(x),$$

where E is a measurable set of finite measure, then apply the previous theorem. Let $\epsilon > 0$. There exist cubes Q_j such that $E \subset \bigcup_{j=1}^N Q_j$ and

$$m(\Delta \bigcup_{j=1}^{N} Q_j) < \epsilon.$$

Thus, there exist almost disjoint rectangles $\tilde{R}_1, \dots, \tilde{R}_n$ such that

$$\bigcup_{j=1}^{N} Q_j = \bigcup_{j=1}^{M} \tilde{R}_j,$$

then find $R_j \subset \tilde{R_j}$. We have that R_j are disjoint and

$$m(E\Delta \bigcup_{j=1}^{M} R_j) \le 2\epsilon.$$

Thus, except for a set of measure $\leq 2\epsilon$, we have that

$$f(x) = \sum_{j=1}^{M} \chi_{R_j}(x)$$

For all $k \geq 1$, there exists a step function $\psi_k(x)$ such that if

$$E_k = \{x : f(x) \neq \psi_k(x)\},\$$

then $m(E_k) \leq \frac{1}{2^k}$. Thus,

$$F_K = \bigcup_{j=K+1}^{\infty} E_j, \qquad F = \bigcap_{k=1}^{\infty} F_K.$$

By the Borel-Cantelli lemma, we have that m(F) = 0. To see that $\psi_k \to f$ for $x \in F^c$ consider that

$$F^c = \bigcup_{j=1}^{\infty} \bigcap_{k \ge j} F_k^c.$$

Thus, if $x \in F^c$, then there exists a j such that than $x \in \bigcap_{k \ge j} F_k^c$, and then $\psi_k(x) = f(x)$.

1.5 Tuesday, Feb 4: Littlewood's Three Principles

- (a) Every measurable set is a finite union of intervals. (For intuition, look at Theorem 2.d)
- (b) Every measurable function is continuous almost everywhere. (Lusin)
- (c) Every pointwise convergence sequence of measurable functions is uniformly convergence. (Egorov)

We begin with (c).

Theorem 10. (Egorov) Let $\{f_k(x)\}$ be a sequence on measurable functions on a measurable set E such that $m(E) < \infty$. Assume that $f_n(x) \to f$ almost everywhere. Then for all $\epsilon > 0$, there exists $A_{\epsilon} \subset E$ such that A_{ϵ} is closed and $m(E \setminus A_{\epsilon}) < \epsilon$. Moreover, $f_n(x) \to f(x)$ uniformly for $x \in A_{\epsilon}$.

Proof. Without loss of generality, we suppose

$$f_n(x) \to f(x) \qquad \forall \ x \in E.$$

For each $k, n \in \mathbb{N}$, define

$$E_k^n = \{ x \in E \; ; \; |f_j(x) - f(x)| < \frac{1}{n}, \quad \forall j \ge k \}.$$

Obviously, we have that

$$E_k^n \subset E_{k+1}^n, \qquad E_k^n \uparrow E \implies E = \bigcup_{k=1}^{\infty} E_k^n = \lim_{n \to \infty} E_k^n,$$

and so

$$\lim_{t \to \infty} m(E_k^n) = m(E).$$

There exists some k_m such that $m(E) - m(E^{k_n}_{k_m}) = m(E \setminus E^n_{k_m}) < \frac{1}{2^n}$. Thus,

$$|f_j(x) - f(x)| < \frac{1}{2n}$$
 $j \ge k_m, \ x \in E_{n_m}^n$.

Let $\epsilon > 0$. Choose N such that

$$\sum_{N}^{\infty} \frac{1}{2^n} < \frac{\epsilon}{2},$$

and so if we define

$$\tilde{A}_{\epsilon} = \bigcap_{m \ge N} E_{k_m}^n.$$

Thus,

$$m(E \setminus \tilde{A}_{\epsilon}) = m(E \cap \bigcup_{m \geq N} (E_{k_m}^n)^c) = m(\bigcup E \cap (E_{k_m}^n)^c) = m(\bigcup E \setminus E_{k_m}^n) \leq \sum_{N=1}^{\infty} \frac{1}{2^n} < \frac{\epsilon}{2}$$

Let $\delta > 0$ and let $\frac{1}{n} < \delta$, then for any $x \in \tilde{A}_{\epsilon}$, we have that $x \in E_{k_m}^n$, and thus if $j \ge n$, we have that

$$|f_j(x) - f(x)| < \frac{1}{n} < \delta,$$

and so f is uniformly continuous on \tilde{A}_{ϵ} .

By Theorem 2, there exists some closed $A_{\epsilon} \subset \tilde{A}_{\epsilon}$ such that $m(\tilde{A}_{\epsilon} \setminus A_{\epsilon}) < \frac{\epsilon}{2}$.

Theorem 11. (Luzin) Suppose f is measurable and finite valued on E, where E is of finite measure. For all $\epsilon > 0$, there exists a closed F_{ϵ} such that $m(F \setminus F_{\epsilon}) < \epsilon$ and $f|_{F_{\epsilon}}$ is continuous.

Proof. Let (f_n) be a sequence of step functions such that $f_n \to f$ almost everywhere. Find $E_n \subset E$ such that $m(E_n) < \frac{1}{2^n}$ and f_n are continuous on E_n^c (since we would be taking only the value 1 or 0 on this set). By Egorov, there exists a closed set $A_{\frac{\epsilon}{3}}$ such that $f_n \to f$ uniformly on $A_{\frac{\epsilon}{3}}$ and $m(A_{\frac{\epsilon}{3}}) < \frac{\epsilon}{3}$. Let

$$F:=A_{\frac{\epsilon}{3}}\setminus\bigcup_{n\geq N}E_n=A_{\frac{\epsilon}{3}}\cap\bigcup_{n\geq N}E_n^c.$$

Thus, we have that

$$m(E \setminus F') = m(E \cap (\bigcup_{n \ge N} A_{\frac{\epsilon}{3}} \cap E_n^c)^c) = m(E \cap \bigcap_{n \ge N} A_{\frac{\epsilon}{3}}^c \cup E_n) \le m(E \setminus A_{\frac{\epsilon}{3}}) + m(E \setminus E \cap \bigcap_{m \ge n} E_n) < \frac{2\epsilon}{3}.$$

We know that $f_n \to f$ uniformly on F', and since each f_n is continuous on F', then f is continuous on F'. There exists a closed $F_{\epsilon} \subset F'$ closed such that $m(F' \setminus F_{\epsilon}) < \frac{\epsilon}{3}$

1.6 Tuesday, Feb 11: The Lebesgue Integral

We will build the integral in four steps

- (a) Simple functions
- (b) Bounded functions
- (c) Supported on sets with final measure
- (d) Non-negative functions

Then we will generalize.

Remark 4. Let $\varphi(x)$ be simple, then

$$\varphi(x) := \sum_{i=k}^{n} a_k \chi_{E_k}(x).$$

We run into a problem!

$$0 = \chi_E(x) - \chi_E(x),$$

so if we define the integral as simply the $\sum a_k \times m(E_k)$, we run into a uniqueness problem.

Definition 11. The **canonical form** of φ , a simple function, is such that φ takes finitely many different values on disjoint sets.

Remark 5. (Existence) Suppose φ takes the values c_1, \ldots, c_m which are all distinct (we throw out repeats). Let

$$F_k := \{x \; ; \; \varphi(x) = c_k\}.$$

Note first that F_k is measurable. Then note that for $k \neq k'$, then $F_k \cap F_{k'} = \emptyset$. Evidently

$$\varphi(x) = \sum_{k=1}^{M} c_k \chi_{F_k}(x).$$

Becase $m(E_j) < \infty$ for each j, and $F_k \subset \bigcup_{j=1}^N E_j$, and thus $m(F_k) < \infty$.

Definition 12. Let $\varphi(x) = \sum_{k=1}^{M} c_k \chi_{F_k}$ be the canonical representation of a simple function φ , then the **Lebesgue integral** of φ is

$$\int \varphi = \sum_{k=1}^{M} c_k m(F_k)$$

Remark 6. If E is measurable, then $\chi_E(\varphi)$ is simple. Then by definition,

$$\int_{E} \varphi = \int \varphi \cdot \chi_{E}$$

Proposition 9. The following hold

(a) If $\varphi = \sum_{i=1}^{N} a_k \chi_{E_k}$ is any representation of φ as a simple function, then

$$\int \varphi = \sum_{k=1}^{N} a_k m(E_k).$$

(b) If φ and ψ are simple, and $a, b \in \mathbb{R}$, then

$$\int (a\varphi + b\psi) = a \int \varphi + b \int \psi$$

(c) Suppose E, F are disjoint measurable sets with finite measure, then

$$\int_{E \cup F} \varphi = \int_{E} \varphi + \int_{F} \varphi$$

(d) Suppose $\varphi \leq \psi$ where both are simple. Then

$$\int \varphi \le \int \psi$$

(e) Let φ be a simple function, then $|\varphi|$ is a simple function and

$$\left| \int \varphi \right| \le \int |\varphi|$$

Proof. (a) Consider first the case when

$$\varphi(x) = \sum_{k=1}^{N} a_k \chi_{E_k},$$

such that E_k are mutually disjoint but the a_k are not necessarily distinct. For all $a \neq 0$ such that $a \in \{a_k\}$, we define $E'_a = \bigcup E_{k_a}$, such that $a_k = a$. Evidently, E'_a are disjoint and measurable. Moreover, $m(E'_a) = \sum m(E_{k_a})$. Thus, $\phi = \sum a\chi_{E'_a}$, which is the canonical representation of φ . Thus, we find that

$$\int \varphi = \sum am(E'_a) = \sum a\sum m(E_{k_a}) = \sum a_k m(E_k)$$

Now for the general case, suppose $\varphi = \sum a_k \chi_{E_k}$. Refine

$$\bigcup_{k=1}^{N} E_k = \bigcup_{j=1}^{m} E_j^*,$$

where the E_j^* are mutually disjoint, and for each k,

$$E_k = \bigcup E_k^* \cdot E_j^* \subset E_k.$$

For each j, we let $a_j^* = \sum a_k$, where $E_k \supset E_j^*$. Thus, we have decomposed it to the first case.

- (b) Obvious
- (c) Obvious with $\chi_{E \cup F} = \chi_E + \chi_F$
- (d) Obvious with $\varphi \geq 0$ case.
- (d) Obvious from triangle inequality of summations of the canonical representation

1.7 Thursday, Feb 18: The Lebesgue Integral, Bounded Convergence Theorem, Fatou

I missed the class where the integral was constructed with (b) bounded functions and (d) None-negative functions. Srry.

Theorem 12. (Bounded Convergence Theorem) Suppose (f_n) is a sequence of measurable functions, all uniformly bounded by some M > 0, all suppose on some finitely measurable E, with $f_n(x) \to f(x)$ almost everywhere. Then

$$\lim_{n \to \infty} \int f_n = \int f$$

The proof pretty much uses Ergorov's Theorem (Look at Tuesday, Feb 4: Littlewood's Three Principles)

Theorem 13. Suppose f is Riemann integrable on [a, b], then f is measurable and

$$\int_{[a,b]}^{\mathcal{R}} f = \int_{[a,b]}^{\mathcal{L}} f$$

Proof. By definition of the Riemann integral, f is bounded by some M>0. There exist $(\varphi_k), (\psi_k)$ step functions uniformly bounded by M, and the φ_k are increasing and the ψ_k are decreasing. Here, φ_k and ψ_k are the infemum and supremum over the sub intervals of partitions.

$$\lim_{k \to \infty} \int_{[a,b]}^{\mathcal{R}} \varphi_k = \lim_{k \to \infty} \int_{[a,b]}^{\mathcal{R}\psi = \int_{[,]}^{\mathcal{R}}}$$

For step functions, we obviously have that since the Riemann integral of the step function is the Lebesgue integral of the step function, then

$$\lim_{k \to \infty} \int_{[a,b]}^{\mathscr{R}} \varphi_k = \lim_{k \to \infty} \int_{[a,b]}^{\mathscr{L}} \varphi_k, \qquad \lim_{k \to \infty} \int_{[a,b]}^{\mathscr{R}} \psi_k = \lim_{k \to \infty} \int_{[a,b]}^{\mathscr{L}} \psi_k. \tag{1}$$

Since both sequences are monotonic and bounded, we define

$$\tilde{\varphi} := \lim_{k \to \infty} \varphi_k, \qquad \tilde{\psi} := \lim_{k \to \infty} \psi_k,$$

and clearly,

$$\tilde{\varphi} \leq f \leq \tilde{\psi}$$
.

Limits of measurable functions are measurable, and the bounded convergence theorem yields that

$$\lim_{k\to\infty}\int_{[a,b]}^{\mathscr{L}}\varphi_k=\int_{[a,b]}^{\mathscr{L}}\widetilde{\varphi}$$

$$\lim_{k \to \infty} \int_{[a,b]}^{\mathscr{L}} \psi_k = \int_{[a,b]}^{\mathscr{L}} \widetilde{\psi}$$

Using, (1), we see that

$$\int_{[a,b]}^{\mathscr{L}} \widetilde{\varphi} = \int_{[a,b]}^{\mathscr{L}} \widetilde{\psi} = \int_{[a,b]}^{\mathscr{L}} f,$$

and so

$$\int_{[a,b]}^{\mathcal{L}} (\widetilde{\psi} - \widetilde{\varphi}) = 0.$$

Since $\widetilde{\psi} \geq \widetilde{\varphi}$, then by a classic result, we have that $\widetilde{\psi} = \widetilde{\varphi}$ a.e., and so they also equal f a.e. Moreover, $\psi_k \to f$ a.e., and so by the BCT,

$$\lim_{k\to\infty}\int_{[a,b]}^{\mathscr{L}}\psi_k=\int_{[a,b]}^{\mathscr{L}}f,$$

and we are done by (1) and the results above.

If $f \geq 0$, then recall we construct its Lebesgue integral by

$$\int f = \sup \int g,$$

where $0 \le g \le f$, g are bounded by M, and $\sup g$ has finite measure.

Proposition 10. If f is integrable, then $f(x) < \infty$ a.e.

Proof. Let $E_k = \{x : f(x) > k\}$, then $k\chi_{E_k} \le k$, and so

$$km(E_k) \le \int f < \infty,$$

and so $m(E_k) \to 0$ by moving the k to the other side. Thus, since $E_k \downarrow E_{\infty}$, then

$$m(E_{\infty})=0.$$

Proposition 11. If $\int f = 0$, and $f \ge 0$, then f = 0 a.e.

Proof. If g is bounded w support of finite measure, then

$$0 \le \int g \le f$$
,

but g = 0, and so $\sup g = f = 0$. Define

$$\widetilde{E}_k = \{x : f(x) > \frac{1}{k}\},\$$

and thus

$$\frac{1}{k}m(\tilde{E}_k) \le \int f = 0,$$

and so $m(\widetilde{E}_k) = 0$, and so

$$\{x : f(x) > 0\} = \bigcup_{k} \widetilde{E}_{k} \implies m(x : f(x) > 0) = 0.$$

Lemma 3. (Fatou's Lemma) Suppose (f_n) is non-negative and measurable, and $f(x) = \lim_{n \to \infty} f_n(x)$ a.e. Then

$$\int f \le \liminf_{n \to \infty} \int f_n.$$

Proof. Let $0 \le g \le f$, with g bounded and has finitely measured support E. Let $g_n = \min(g, f_n)$. Evidently, g_n is bounded and support of g_n is contained in E. Notice that $g_n \to g$ a.e. Using the bounded convergence theorem, we have that

$$\lim_{n \to \infty} \int g_n = \int g$$

$$\int g_n \le \int f_n \implies \int g \le \liminf_{n \to \infty} \int f_n,$$

and so taking the supremum over all such g yields the result.

Corollary 2. (Monotone Convergence Theorem) Suppose $f_n \geq 0$, f_n is measurable with $0 \leq f_n \leq f$ such that $f_n \to f$ a.e. Then

$$\lim_{n \to \infty} \int f_n = \int f$$

Proof. We have that

$$f_n \le f \implies \int f_n \le \int f \implies \limsup_{n \to \infty} \int f_n \le \int f.$$

By Fatou's Lemma, we have that

$$\int f \le \liminf_{n \to \infty} \int f_n.$$

Thus, the limit exists and it equals the integral of the limit.

Corollary 3. Consider $\sum_{k\geq 0} a_k(x)$, with $a_k\geq 0$ and measurable. Then

$$\int \sum a_k(x) = \sum \int a_k$$

and if

$$\sum_{k=0}^{\infty} \int a_k < \infty,$$

then $\sum a_k(x)$ converges a.e.

Proof. Let $f_n(x) = \sum_{k=1}^n a_k(x)$ and $f(x) = \sum_{k=1}^\infty a_k(x)$. Then $f_n(x) \geq 0$, and $f_n \uparrow f$. By the monotone convergence theorem, we have that

$$\int \sum_{k=1}^{\infty} a_k(x) = \lim_{n \to \infty} \int f_n(x) = \lim_{n \to \infty} \int \sum_{k=1}^n a_k(x) = \lim_{n \to \infty} \sum_{k=1}^n \int a_k(x) = \sum_{k=1}^{\infty} \int a_k(x).$$

For the second claim, we have that if $\sum \int a_k < \infty$, then $\int \sum a_k < \infty$, and so $\sum a_k < \infty$ by Proposition 10.

Lemma 4. (Borel-Cantelli) Suppose (E_k) . Define

$$E := \{x : x \in \bigcup E_k \text{ i.o.}\}.$$

That is,

$$E = \bigcap_{n=1}^{\infty} \bigcup_{k>m}^{\infty} E_k.$$

If $m(E_k) < \infty$, then m(E) = 0.

Proof. Let $a_k(x) = \chi_{E_k}$, since $x \in E$, then

$$\sum a_k(x) = \infty \iff \sum m(E_k) = \sum \int a_k < \infty,$$

and so $\sum a_k < \infty$ a.e, and so we are done.

We will begin our final stage of constructing the integral. If f is real valued, then f is Lebesgue integrable if |f| is.

Definition 13. Suppose f is integrable. Then

$$f^+ = \max(0, f), \qquad f^- = \max(0, -f).$$

Thus,

$$|f| = f^+ - f^-.$$

Moreover, we say that f is **Lebesgue Integrable** if f^+ and f^- are integrable. If f is integrable, then

$$\int f = \int f^+ - \int f^-$$

Proposition 12. Suppose $f = f_1 - f_2$, where $f_i \ge 0$ is measurable and integrable. Then

$$\int f = \int f_1 - \int f_2.$$

Proof. We have that $f = f^+ - f^-$, and so

$$f^+ - f^- = f_1 - f_2.$$

Thus,

$$f^+ + f_2 = f_1 + f^- \implies \int f^+ + \int f_2 = \int f_1 + \int f^- \implies \int f = \int f^+ - \int f^- = \int f^1 - \int f^2$$

Proposition 13. If f is integrable, then $|f(x)| < \infty$ a.e.

Proposition 14. The integral of Lebesgue measurable functions is linear, additive, monotonic, and satisfies the triangle inequality.

Proposition 15. Let f be integrable on \mathbb{R}^d , $\epsilon > 0$. Then

ullet there exists a set B of finite measure such that

$$\int_{B^c} |f| < \epsilon$$

• (absolute continuity) There exists a $\delta>0$ such that if $m(E)\leq \delta$, then $\int_E |f|\leq \epsilon$.

Proof. Without loss of generality, let $f \geq 0$. Let

$$B_N := \{ ||x|| < N \}, \quad f_N(x) = f(x) \chi_{B_N}(x).$$

Evidently, $f_N \geq 0$ and $f_N \uparrow f$. Thus, we use the monotone convergence theorem:

$$\int f = \lim_{N \to \infty} \int f_N = \lim_{N \to \infty} \int f(x) \chi_{B_N} = \lim_{N \to \infty} \int_{B_N} f(x).$$

Thus, for large N:

$$|\int f - \int_{B_N} f| = |\int_{B_N^c} f| < \epsilon$$

For (ii), let

$$E_N := \{ x \in : f(x) < N \}, \qquad f_N = \chi_{E_N} f.$$

Then $f_N \geq 0$, $f_N \uparrow f$. Let $\epsilon > 0$. Again, by the monotone convergence therem, for large $n \geq N$,

$$\int f - f_n < \frac{\epsilon}{2}.$$

Let $\delta > 0$ such that $N\delta \leq \frac{\epsilon}{2}$. Thus, if $m(E) < \delta$, then

$$\int_{E} f = \int_{E} f - f_N + \int_{E} f_N \le \frac{\epsilon}{2} + \int_{E_N \cap E} f < \frac{\epsilon}{2} + m(E_N)N < \epsilon$$

Theorem 14. (Dominated Convergence Theorem) Suppose (f_N) is measurable, $f_n(x) \to f(x)$ a.e. If $|f_x(x)| \le g(x)$, where g is integrable, then

$$\int |f_n - f| \to 0 \implies \int f_n \to \int f$$

Proof. Let $E_N = \{x : |x| \le N, |g(x)| \le N\}$. Let $\epsilon > 0$. By the previous proposition, letting $g_n = g\chi_{E_n}$ there exists some N such that $\int_{E_N^c} g < \epsilon$.

By the bounded convergence theorem, since $f_n\chi_{E_n} \leq g$ for all $f, E_N \subset B_N$ (finite measure), then

$$\int_{E_n} f_n \to f.$$

Thus, we find that

$$\int |f_n - f| = \int_{E_N} |f_n - f| + \int_{E_N^c} |f_n - f|$$

$$< \epsilon + 2 \int_{E_N^c} g$$

$$< \epsilon$$

1.8 Tuesday, Feb 25: The Completeness of L^1

Definition 14. A complex valued function is a function such that f(x) = u(x) + iv(x), where $u(x), v(x) \in \mathbb{R}$ for all x.

Remark 7. We note that

$$|f(x)| = (u^2(x) + v^2(x))^{\frac{1}{2}},$$

and f is measurable if and only if u, v are measurable. We say that f is integrable if and only if |f(x)| is integrable. Moreover, f is integrable on E measurable if $\chi_E f$ is integrable.

Proposition 16. If $a \in \mathbb{C}$ and f is integrable, then af is integrable.

Proof. We can express a as $a = \alpha + i\beta$ and so

$$af = (\alpha + i\beta)(u + iv) = (au - \beta v) + i(\alpha v + \beta u)$$

It remains to check that |af| = |a||f|.

Definition 15. We say that

$$L^1 := \{f : |f| \text{ is integrable}\}$$

and L^1 is equipped with

$$||f||_{L^1} = \int |f|$$

Proposition 17. Suppose $f, g \in L^1(\mathbb{R}^d)$, then

- (a) $||af||_{L^1} = |a|||f||_{L^1}$
- (b) $||f + g||_{L^1} \le ||f||_{L^1} + ||g||_{L^1}$
- (c) $||f||_{L^1} = 0$ if and only if $f \equiv 0$
- (d) $d(f,g) = ||f g||_{L^1}$

Thus, L^1 is a normed space.

Theorem 15. (Riesz-Fischer) L^1 is complete.

Proof. Suppose $(f_n) \in L^1$ is Cauchy, then for large $n, m > N_k$ we have that

$$||f_n - f_m||_{L^1} = \int |f_n(x) - f_m(x)| dx < \frac{1}{2^k}.$$

Thus, if there exists a subsequence where $n_k = \sum N_K$ such that

$$||f_{n_{k+1}} - f_{n_k}|| < \frac{1}{2^k}.$$

Thus, let

$$f(x) := f_{n_1}(x) + \sum_{k=1}^{\infty} f_{n_{k+1}}(x) - f_{n_k}(x).$$

To show this f is well defined, first we have that

$$g(x) = |f_{n_1}(x)| + \sum_{k=1}^{\infty} |f_{n_k+1}(x) - f_{n_k}(x)|.$$

First, $g \ge 0$ and

$$\int |f_{n_1}(x)| + \sum_{k=1}^{\infty} |f_{n_k+1}(x) - f_{n_k}(x)| dx = \int f_{n_1}(x) + \sum_{k=1}^{\infty} \int |f_{n_k+1}(x) - f_{n_k}(x)| \le \int |f_{n_1}| + \sum_{k=1}^{\infty} \frac{1}{2^k} < \infty,$$

and so $g \in L^1$. By the dominated convergence theorem, we have that $f_j \in L^1$, where

$$|f_j(x)| := \left| f_{n_1}(x) + \sum_{k=1}^j f_{n_{k+1}}(x) - f_{n_k}(x) \right|,$$

and since $f_j \to f$, and $|f_j| \in L^1$, then by the dominated convergence theorem,

$$\int |f_j| \le \int g \implies \int |f| \le \int g.$$

Thus, $f \in L^1$, and so $|f| < \infty$ almost everywhere. Consider that by telescoping the sum, we have that

$$f_j(x) = f_{n_{j+1}},$$

and so $f_{n_{k+1}}(x) \to f$ a.e. Thus, since our subsequence converges to f and (f_n) is Cauchy, then the series converges to f pointwise almost everywhere. By Egorov's theorem, we are done.

Definition 16. A family \mathscr{F} is dense in L^1 if for any $\epsilon > 0$ and for any $f \in L^1$, there exists some $g \in \mathscr{F}$ such that $||f - g|| < \epsilon$.

Theorem 16. The following families \mathscr{F} are dense in L^1 :

- (a) Simple functions
- (b) Step functions
- (c) Continuous functions with compact support

1.9 Thursday Feb 27: Invariance Properties

For a function on \mathbb{R}^d , $h \in \mathbb{R}^d$, we denote $f_h(x) = f(x - h)$.

Proposition 18. Suppose f is integrable. Then f_h is integrable and

$$\int f_h = \int f$$

Proof. Suppose in the degenerate case that $f = \chi_E$, where E is measurable. Then of course, $f_h = \chi_{E_h}$ where E_h is E translated by h, and so f is integrable since m(E+h) = m(E). Thus we know this is true for simple functions, and we can approximate all L^1 functions by simple functions and so we conclude.

The following two proofs are similar

Proposition 19. Suppose f is integrable, then if $\delta > 0$, then $f_{\delta}(x) = f(\delta x)$ is integrable. Moreover,

$$\int f_{\delta} = \delta^d \int f$$

Proposition 20. Suppose f(x) is integrable, then f(-x) is integrable and

$$\int f(x) = \int f(-x)$$

Proposition 21. Suppose $f \in L^1$, then $||f_h - f||_{L^1} \xrightarrow{h \to 0} 0$.

Proof. If g is continuous w compact support, then g is uniformly continuous. Thus,

$$\int |g_h(x) - g(x)| dx \xrightarrow{|h| \to 0} 0$$

Thus, if $f \in L^1$, then

$$||f_h - f|| \le ||f_h - g_h|| + ||g_h - g|| + ||g - f|| = 2||f - g|| + ||g_h - g||,$$

where the first term on the RHS is less than ϵ since C([a,b]) is dense in L^1 .

Theorem 17. (Fubini) Let $x \in \mathbb{R}^{d_1}$ and $y \in \mathbb{R}^{d_2}$, where $\mathbb{R}^d = \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$. Suppose f is a function on \mathbb{R}^d , then the slice of f corresponding on \mathbb{R}^{d_1} is (we hold g constant)

$$f^y(x) := f(x,y)$$

and similarly for the slice for the y's. Then

- (a) f^y is integrable on \mathbb{R}^{d_1}
- (b) $F_y(x) = \int_{\mathbb{R}^{d_1}} f^y(x)$ is integrable on \mathbb{R}^{d_2} .

(c)

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f^y(x) \right) = \int_{\mathbb{R}^d} f$$

Proof. (Step 1) Define

 $\mathscr{F} := \{ \text{integrable functions on } \mathbb{R}^d \text{ such that } a, b, c \text{ hold} \}$

Let $\{f_n\} \subset \mathscr{F}$. For all $k \in [n]$, there exists some $A_k \subset \mathbb{R}^{d_2}$ such that $m(A_k) = 0$ and f_k^y is integrable on \mathbb{R}^d , where $y \notin A_k$. Let $A = \bigcup_{k=1}^N A_k$. Then m(A) = 0 and $y \in A^c$, and f_k^y is measurable and integrable for all $k \leq n$. By linearity, we have that span $\bigcup f_n \subset \mathscr{F}$.

(Step 2) Suppose $\{f_n\} \subset \mathscr{F}$ and either $f_n \uparrow f$ or $f_n \downarrow f$. We claim that either $f \in \mathscr{F}$. Consider $-f_n$, then we can assume WLOG that $f_n \uparrow f$. Now consider $f_n - f_1 \geq 0$, then WLOG, $f_n \geq 0$. Let $A = \bigcup A_n$. the m(A) = 0 and $y \notin A$ and f_n^y is integrable on \mathbb{R}^{d_1} . Thus, by monotone convergence theorem on x,

$$g_n(y) = \int_{\mathbb{R}^{d_1}} f_n^y(x) \uparrow g(y) = \int_{\mathbb{R}^{d_1}} f^y(x) dx$$

By the monotone convergence in y, we have that

$$\int f_k(x,y)dxdy = \int g_k(y) \uparrow \int g(y) = \int \left(\int f(x,y)dx\right)dy$$

(Step 3) Suppose $f = \chi_E$, $E = G_{\delta}$, then $f \in \mathscr{F}$ (if $m(E) < \infty$.)

(a) $E_1 = Q_1 \times Q_2$, where $Q_1 \subset \mathbb{R}^{d_1}$ and $Q_2 \subset \mathbb{R}^{d_2}$ are both open. Then

$$\chi_E(x,y) = \chi_{Q_1 \times Q_2}(x,y) = \chi_{Q_1}(x)\chi_{Q_2}(y),$$

and so for each y, and so for each y, $\chi_E(x,y)$ is measurable in x, and

$$\int \chi_E(x, y) dx = \chi_{Q_2}(y) \int \chi_{Q_1}(x) dx = \chi_{Q_2}(y) |Q_1|$$

and

$$\int \left(\int \chi_E(x,y)dx\right)dy = |Q_2||Q_1| = m(E),$$

and so $\chi_E \in \mathscr{F}$.

- (b) Suppose $E \subset \partial Q$, where $Q \subset \mathbb{R}^d$ is a closed cube. Evidently, m(E) = 0, and so $\int \chi_E(x,y) dx dy = 0$. For almost every y (except for bottom and top lines), E^y has measure 0 on \mathbb{R}^{d_1} , and so $\int \chi_E^y(x) dx = 0$ almost everywhere, and thus $\int \left(\int \chi_E^y(x) dx\right) dy = 0$, and thus $\chi_E \in \mathscr{F}$.
- (c) Suppose $E = \bigcup_{k=1}^K Q_k$, where Q_k are closed cubes with disjoint interiors. Let $\operatorname{int} Q_k = \tilde{Q}_k$. And let χ_E be a finite linear combination of $\chi_{\tilde{Q}_k}$ and χ_{A_k} , where $A_k \subset \partial Q_k$. That is,

$$\chi_E = \sum a_k \left(\chi_{\tilde{Q}_k} + \chi_{A_k} \right),\,$$

and thus by previous steps we know that $\chi_E \in \mathscr{F}$.

(d) Suppose E is open and has finite measure. Then

$$E = \bigcup_{k=1}^{\infty} Q_k,$$

 Q_k closed cubes with disjoint interior. Let $f_k = \sum_{j=1}^k \chi_{Q_j} \in \mathscr{F}$ from stage 3. But $f_k \uparrow \chi_E$, and so then by step 2 we are done.

(e) Suppose E is G_{δ} of finite measure. Since $E \subset G_{\delta}$, then there exists (\tilde{O}_n) such that

$$E = \bigcap \tilde{O}_k$$

E is measurable, and thus $E \subset O$, where O is open and measurable, and so take

$$O_k = O \cap \bigcap_{n=1}^k \tilde{O}_k,$$

and we see that (O_k) is non increasing with

$$E = \bigcap O_k$$
.

Let $f_k = \chi_{O_k}$, then $f_k \in \mathscr{F}$ and $\chi_E \in L^1$ and $f_k \downarrow \chi_E$, and thus $\chi_E \in \mathscr{F}$.

(Step 4) Suppose $E \subset \mathbb{R}^d$ with m(E) = 0. There exists some $G \in G_\delta$ such that $E \subset G$ with m(G) = 0. But by the previous step, $\chi_G \in \mathscr{F}$ with

$$\int \left(\int \chi_G(x,y)dx\right)dy = 0.$$

Thus, for almost every y,

$$\int \chi_G(x,y) dx = 0 = \int_{\mathbb{R}^{d_1}} \chi_G^y x dx.$$

But $E^y \subset G^y$, and so $m_*(E^y) \leq m_*(G^y) = 0$, and thus $m(E^y) = 0$ and $\chi_E^y(x)$ is measurable with integral 0 and thus $\chi_E \in \mathscr{F}$.

(Step 5) Suppose $f = \chi_E$ with $m(E) < \infty$, then $E = G \cup Z$, where $G \in G_\delta$ with $m(G) < \infty$ and m(Z) = 0. Then $\chi_E \in \mathscr{F}$.

(Step 6) Let $f \in L^1$. WLOG, $f \ge 0$. There exist (φ_n) simple functions such that $\varphi_n \uparrow f$, where $\varphi \in \mathscr{F}$ by like step 1 or something. Thus, $f \in \mathscr{F}$.

Theorem 18. Assume $f(x,y) \geq 0$ is measurable on \mathbb{R}^d . Then for almost every $y \in \mathbb{R}^{d_2}$,

- f^y is measurable on \mathbb{R}^{d_1}
- $F^y = \int f^y(x) dx$ is measurable on \mathbb{R}^{d_2}
- $\int F^y = \int f(x,y) dx dy$.