10 The Exponential and Logarithm Functions

Some texts define e^x to be the inverse of the function $\ln x = \int_1^x 1/t \, dt$. This approach enables one to give a quick definition of e^x and to overcome a number of technical difficulties, but it is an unnatural way to define exponentiation. Here we give a complete account of how to define $\exp_b(x) = b^x$ as a continuation of rational exponentiation. We prove that \exp_b is differentiable and show how to introduce the number e.

Powers of a Number

If n is a positive integer and b is a real number, the power b^n is defined as the product of b with itself n times:

$$b^n = b \cdot b \cdot \dots \cdot b$$
 (n times)

If b is unequal to 0, so is b^n , and we define

$$b^{-n} = \frac{1}{h^n} = \frac{1}{b} \dots \frac{1}{b}$$
 (*n* times).

We also set

$$h^0 = 1$$

If b is positive, we define $b^{1/2} = \sqrt{b}$, $b^{1/3} = \sqrt[3]{b}$, etc., since we know how to take roots of numbers. Recall that $\sqrt[n]{b}$ is the unique positive number such that $(\sqrt[n]{b})^n = b$; i.e., $\sqrt[n]{y}$ is the inverse function of x^n . Formally, for n a positive integer, we define

$$b^{1/n} = \sqrt[n]{b}$$
 (the positive *n*th root of *b*)

and we define

$$b^{-1/n} = \frac{1}{b^{1/n}}$$

Worked Example 1 Express $9^{-1/2}$ and $625^{-1/4}$ as fractions.

Solution
$$9^{-1/2} = 1/9^{1/2} = 1/\sqrt{9} = \frac{1}{3}$$
 and $625^{-1/4} = 1/\sqrt[4]{625} = \frac{1}{5}$.

Worked Example 2 Show that, if we assume the rule $b^{x+y} = b^x b^y$, we are forced to define $b^0 = 1$ and $b^{-x} = 1/b^x$.

Solution If we set x = 1 and y = 0, we get $b^{1+0} = b^1 \cdot b^0$, i.e., $b = b \cdot b^0$ so $b^0 = 1$. Next, if we set y = -x, we get $b^{x-x} = b^x b^{-x}$, i.e., $1 = b^0 = b^x b^{-x}$, so $b^{-x} = 1/b^x$. (Notice that this is an argument for defining b^0 , $b^{-1/n}$, and b^{-n} the way we did. It does not prove it. Once powers are defined, and only then, can we claim that rules like $b^{x+y} = b^x b^y$ are true.)

Finally, if r is a rational number, we define b^r by expressing r as a quotient m/n of positive integers and defining

$$b^r = (b^m)^{1/n}$$

We leave it to the reader (Exercise 8) to verify that the result is independent of the way in which r is expressed as a quotient of integers. Note that $b^{m/n}$ is always positive, even if m or n is negative.

Thus the laws of exponents,

$$b^n b^m = b^{n+m} \quad \text{and} \quad b^n / b^m = b^{n-m}$$
 (i)

$$(b^n)^m = b^{nm} (ii)$$

$$(bc)^n = b^n c^n (iii)$$

which are easily seen for integer powers from the definition of power, may now be extended to rational powers.

Worked Example 3 Prove (i) for rational exponents, namely,

$$b^{m_1/n_1} b^{m_2/n_2} = b^{(m_1/n_1) + (m_2/n_2)}$$
 (i')

Solution From (iii) we get

$$(b^{m_1/n_1} b^{m_2/n_2})^{n_1 n_2} = (b^{m_1/n_1})^{n_1 n_2} (b^{m_2/n_2})^{n_1 n_2}$$

By (ii) this equals

$$((b^{m_1/n_1})^{n_1})^{n_2}((b^{m_2/n_2})^{n_2})^{n_1}$$

By definition of $b^{m/n}$, we have $(b^{m/n})^n = b^m$, so the preceding expression is

$$(b^{m_1})^{n_2}(b^{m_2})^{n_1} = b^{m_1 n_2} b^{m_2 n_1}$$

again by (ii), which equals

$$h^{m_1 n_2 + m_2 n_1}$$

by (i).

Hence

$$(b^{m_1/n_1} b^{m_2/n_2})^{n_1 n_2} = b^{m_1 n_2 + m_2 n_1}$$

SO

$$b^{m_1/n_1}b^{m_2/n_2}=(b^{(m_1n_2+m_2n_1)})^{1/n_1n_2}$$

By the definition $b^{m/n} = (b^m)^{1/n}$, this equals

$$b^{(m_1n_2+m_2n_1)/n_1n_2} = b^{(m_1/n_1)+(m_2/n_2)}$$

as required.

Similarly, we can prove (ii) and (iii) for rational exponents:

$$(b^{m_1/n_1})^{m_2/n_2} = b^{m_1 m_2/n_1 n_2}$$
 (ii')

$$(bc)^{m/n} = b^{m/n}c^{m/n}$$
 (iii')

Worked Example 4 Simplify $(x^{2/3}(x^{-3/2}))^{8/3}$.

Solution
$$(x^{2/3}x^{-3/2})^{8/3} = (x^{(2/3)^{-(3/2)}})^{8/3} = (x^{-5/6})^{8/3} = x^{-20/9} = 1/\sqrt[9]{x^{20}}$$
.

Worked Example 5 If b > 1 and p and q are rational numbers with p < q, prove that $b^p < b^q$.

Solution By the laws of exponents, $b^q/b^p = b^{q-p}$. Let z = q - p > 0. We shall show that $b^z > 1$, so $b^q/b^p > 1$ and thus $b^q > b^p$.

Suppose that z=m/n. Then $b^z=(b^m)^{1/n}$. However, $b^m=b\cdot b\cdot \ldots \cdot b$ (m times)>1 since b>1, and $(b^m)^{1/n}>1$ since $b^m>1$. (The *n*th root $c^{1/n}$ of a number c>1 is also greater than 1, since, if $c^{1/n}\leqslant 1$, then $(c^{1/n})^n=c\leqslant 1$ also.) Thus $b^z>1$ if z>0, and the solution is complete.

As a consequence, we can say that if $b \ge 1$ and $p \le q$, then $b^p \le b^q$.

Solved Exercises*

1. Find $8^{-3/2}$ and $8^{1/2}$.

^{*}Solutions appear in the Appendix.

3. Simplify $(x^{2/3})^{5/2}/x^{1/4}$.

4. Verify (ii) if either p or q is zero.

Exercises

1. Simplify by writing with rational exponents:

(a)
$$\left[\frac{\sqrt[4]{ab^3}}{\sqrt{b}}\right]^6$$

(b)
$$\sqrt[3]{\frac{\sqrt{a^3b^9}}{\sqrt[4]{a^6b^6}}}$$

2. Factor (i.e., write in the form $(x^a \pm y^b)(x^c \pm y^d)$, a, b, c, d rational numbers):

(a)
$$x - \sqrt{xy} - 2y$$

(b)
$$x-y$$

(a)
$$x - \sqrt{xy} - 2y$$

(c) $\sqrt[3]{xy^2} + \sqrt[3]{yx^2} + x + y$

(d)
$$x - 2\sqrt{x} - 8$$

(e)
$$x + 2\sqrt{3x} + 3$$

3. Solve for x:

(a)
$$10^x = 0.001$$

(b)
$$5^x = 1$$

(c)
$$2^x = 0$$

(d)
$$x - 2\sqrt{x} - 3 = 0$$
 (factor)

4. Do the following define the same function on (a) (-1,1), (b) (0,3)?

$$f_1(x) = x^{1/2}$$

$$f_2(x) = \sqrt[4]{x^2}$$

$$f_3(x) = (\sqrt[4]{x})^2$$
 (which, if any, are the same?)

5. Based on the laws of exponents which we want to hold true, what would be your choice for the value of 0°? Discuss.

6. Using rational exponents and the laws of exponents, verify the following root formulas.

(a)
$$\sqrt[a]{\sqrt[b]{x}} = \sqrt[ab]{x}$$

$$a\sqrt{b/x} = ab/x$$
 (b) $ac\sqrt{x^{ab}} = c\sqrt{x^b}$

7. Find all real numbers x which satisfy the following inequalities.

(a)
$$x^{1/3} > x^{1/2}$$

(b)
$$x^{1/2} > x^{1/3}$$

(c)
$$x^{1/p} > x^{1/q}$$
, p, q positive odd integers, $p > q$

(d)
$$x^{1/q} > x^{1/p}$$
, p, q positive odd integers, $p > q$

8. Suppose that b > 0 and that p = m/n = m'/n'. Show, using the definition of rational powers, that $b^{m/n} = b^{m'/n'}$; i.e., b^p is unambiguously defined.

The Function $f(x) = b^x$

Having defined $f(x) = b^x$ if x is rational, we wish to extend the definition to allow x to range through all real numbers. If we take, for example, b = 2 and compute some values, we get:

These values may be plotted to get an impression of the graph (Fig. 10-1). It seems natural to conjecture that the graph can be filled in with a smooth curve, i.e., that b^x makes sense for all x.

Fig. 10-1 The plot of some points $(x, 2^x)$ for rational x.

To calculate a number like $2^{\sqrt{3}}$, we should be able to take a decimal approximation to $\sqrt{3}\approx 1.732050808$..., say, 1.7320, calculate the rational power $2^{1.7320}=2^{17320/10000}$, and hope to get an approximation to $2^{\sqrt{3}}$. Experimentally, this leads to reasonable data. On a calculator, one finds the following:

x	2 x
1	2
1.7	3.24900958
1.73	3.31727818
1.732	3.32188010
1.73205	3.32199523
1.7320508	3.32199707
1.732050808	3.32199708