In [1]:
 import numpy as np
 import pandas as pd
 import warnings
 warnings.filterwarnings('ignore')

In [2]: red_wine_data = pd.read_csv('https://raw.githubusercontent.com/btkhimsar/DataSets

In [3]: red_wine_data.head()

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	-
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	

In [4]: red_wine_data.shape

Out[4]: (1599, 12)

In [5]: red_wine_data.describe()

Out[5]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000

```
In [6]: red wine data.columns
'pH', 'sulphates', 'alcohol', 'quality'],
               dtype='object')
 In [7]: red wine data['quality'].unique()
 Out[7]: array([5, 6, 7, 4, 8, 3], dtype=int64)
 In [8]: red wine data['quality'].nunique()
 Out[8]: 6
 In [9]: red_wine_data['quality'].value_counts()
 Out[9]: 5
               681
               638
         6
         7
               199
         4
                53
         8
               18
         3
               10
         Name: quality, dtype: int64
         red_wine_data.rename(columns={'fixed acidity':'fixed_acidity','volatile acidity':
In [10]:
Out[10]:
               fixed_acidity
                           volatile_acidity citric_acid residual_sugar
                                                               chlorides free_sulfur_dioxide total_
             0
                       7.4
                                  0.700
                                             0.00
                                                           1.9
                                                                  0.076
                                                                                    11.0
             1
                       7.8
                                  0.880
                                             0.00
                                                           2.6
                                                                  0.098
                                                                                    25.0
             2
                       7.8
                                  0.760
                                             0.04
                                                           2.3
                                                                  0.092
                                                                                    15.0
             3
                      11.2
                                  0.280
                                             0.56
                                                           1.9
                                                                  0.075
                                                                                    17.0
             4
                       7.4
                                  0.700
                                             0.00
                                                           1.9
                                                                  0.076
                                                                                    11.0
                       6.2
                                  0.600
                                             0.08
                                                           2.0
                                                                  0.090
                                                                                    32.0
          1594
          1595
                       5.9
                                  0.550
                                             0.10
                                                           2.2
                                                                  0.062
                                                                                    39.0
                                                                  0.076
                                                                                    29.0
          1596
                       6.3
                                  0.510
                                             0.13
                                                           2.3
```

2.0

3.6

0.075

0.067

1599 rows × 12 columns

5.9

6.0

0.645

0.310

0.12

0.47

1597

1598

32.0

18.0

In [11]: red_wine_data.isna()

Out[11]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcol
0	False	False	False	False	False	False	False	False	False	False	Fa
1	False	False	False	False	False	False	False	False	False	False	Fa
2	False	False	False	False	False	False	False	False	False	False	Fa
3	False	False	False	False	False	False	False	False	False	False	Fa
4	False	False	False	False	False	False	False	False	False	False	Fa
1594	False	False	False	False	False	False	False	False	False	False	Fa
1595	False	False	False	False	False	False	False	False	False	False	Fa
1596	False	False	False	False	False	False	False	False	False	False	Fa
1597	False	False	False	False	False	False	False	False	False	False	Fa
1598	False	False	False	False	False	False	False	False	False	False	Fa

1599 rows × 12 columns

```
In [12]: red_wine_data.isna().sum()
```

Out[12]: fixed acidity 0 volatile acidity 0 citric acid 0 residual sugar 0 chlorides 0 free sulfur dioxide 0 total sulfur dioxide density 0 рΗ 0 sulphates 0 alcohol 0 quality dtype: int64

```
In [13]: red_wine_data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1599 entries, 0 to 1598
         Data columns (total 12 columns):
          #
              Column
                                    Non-Null Count Dtype
         _ _ _
                                    -----
                                                    ----
          0
              fixed acidity
                                    1599 non-null
                                                    float64
              volatile acidity
                                    1599 non-null
                                                    float64
          1
          2
              citric acid
                                    1599 non-null
                                                    float64
          3
              residual sugar
                                   1599 non-null
                                                    float64
                                    1599 non-null
          4
              chlorides
                                                    float64
          5
              free sulfur dioxide 1599 non-null
                                                    float64
              total sulfur dioxide 1599 non-null
                                                    float64
          6
          7
              density
                                    1599 non-null
                                                    float64
                                                    float64
          8
              рΗ
                                    1599 non-null
          9
                                                    float64
              sulphates
                                    1599 non-null
          10 alcohol
                                    1599 non-null
                                                    float64
                                    1599 non-null
                                                    int64
          11 quality
         dtypes: float64(11), int64(1)
         memory usage: 150.0 KB
         duplicate=red_wine_data[red_wine_data.duplicated()]
In [14]:
         duplicate.shape
Out[14]: (240, 12)
In [15]: import matplotlib.pyplot as plt
         import seaborn as sns
In [16]: y=red wine data['quality']
         X=red_wine_data.drop(red_wine_data['quality'],inplace=True)
```

In [17]: red_wine_data.hist(bins=10,figsize=(16,12))
plt.show()

In [18]: red_wine_data.corr()

Out[18]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	
fixed acidity	1.000000	-0.254398	0.671410	0.114616	0.093650	-0.154536	-0.114387	0.668582	-(
volatile acidity	-0.254398	1.000000	-0.551206	0.002691	0.061790	-0.009841	0.077683	0.022580	C
citric acid	0.671410	-0.551206	1.000000	0.142135	0.203428	-0.062613	0.033668	0.365729	-(
residual sugar	0.114616	0.002691	0.142135	1.000000	0.054904	0.186785	0.202718	0.355577	-(
chlorides	0.093650	0.061790	0.203428	0.054904	1.000000	0.005293	0.047110	0.200734	-(
free sulfur dioxide	-0.154536	-0.009841	-0.062613	0.186785	0.005293	1.000000	0.667660	-0.021810	(
total sulfur dioxide	-0.114387	0.077683	0.033668	0.202718	0.047110	0.667660	1.000000	0.070902	-(
density	0.668582	0.022580	0.365729	0.355577	0.200734	-0.021810	0.070902	1.000000	-(
рН	-0.682678	0.233098	-0.540720	-0.084971	-0.265023	0.071316	-0.065474	-0.342598	1
sulphates	0.182851	-0.260545	0.311429	0.003772	0.370793	0.051157	0.042388	0.148474	-(
alcohol	-0.062303	-0.201714	0.107572	0.040552	-0.222395	-0.070349	-0.206664	-0.496641	(
quality	0.124330	-0.391616	0.228214	0.014504	-0.128786	-0.050443	-0.184133	-0.174029	-(

In [19]: plt.figure(figsize=(16,12))
sns.heatmap(red_wine_data.corr(),cmap='bwr',annot=True)

Out[19]: <AxesSubplot:>

In [20]: sns.pairplot(red_wine_data)

Out[20]: <seaborn.axisgrid.PairGrid at 0x22cb8753f70>

In []: