ПРАКТИЧЕСКАЯ РАБОТА № 10

РАСЧЕТ ОБОРУДОВАНИЯ ДЛЯ КОРМОРАЗДАЧИ

4.1 Теоретическая часть

Состояние здоровья и продуктивность животных и птицы зависят не только от качества, уровня и полноценности их кормления, но и в значительной мере от своевременной и правильной выдачи кормов. По трудоемкости на эту операцию приходится около 40% общих трудовых затрат по уходу за животными и птицей.

Механизация раздачи кормов на фермах и комплексах осуществляется кормораздатчиками, к которым предъявляются следующие *требования*:

- быть универсальными с точки зрения раздачи кормов с различными физико-механическими свойствами,
- простыми по устройству, надежными и удобными в эксплуатации;
- обеспечить нормированную раздачу корма с допустимыми отклонениями от нормы;
 - не допускать ухудшения свойств и потерь корма;
- обеспечить время раздачи корма в одном помещении до 30 минут для мобильных и 20 минут для стационарных раздатчиков;
- не создавать излишнего шума в помещении, легко очищаться от остатков корма и других загрязнений, быть надежными в работе.

Кроме того, мобильные раздатчики кормов должны быть высокоманевренными, устойчивыми, высокопроходимыми, быстро и надежно сцепляться с агрегатируемой машиной и отсоединяться от нее.

При проектировании животноводческих зданий должно быть предусмотрено применение комплексной механизации производственных процессов. Выбор средств механизации кормораздачи зависит прежде всего от количества и физикомеханических свойств кормов. Наиболее широкое применение в практике нашли мобильные и стационарные средства кормораздачи.

					Практическая работа №10					
Изм.	Лист	№ докум.	Подпись	Дата	,					
Разр	αδ.				Расчет оборудования для	Лит	7.	Лист	Листов	
Провер.							1	5		
Реценз.					кормораздачи	ГГТУ гр. С-31				
Н. Контр.									C-31	
Утве	рд.									

Отклонение от предписанной нормы на одну голову животного для стебельных кормов допускается в диапазоне \pm 15%, а для концентрированных кормов \pm 5%. Возвратимые потери корма не должны превышать \pm 1%, а невозвратимые — не допускаются.

Продолжительность операции раздачи кормов в одном помещении должна быть не более 30 мин (при использовании мобильных средств) и 20 мин (при раздаче кормов стационарными средствами).

Кормораздатчик КТУ-10(объем бункера -10м^3) грузоподъемностью 3,5 т предназначен для транспортировки и раздачи зеленой массы, силоса и сенажа на фермах крупного рогатого скота и в летних лагерях.

КТУ-10А агрегатируется с тракторами класса 14 или 9 кН. Может работать в коровниках с кормовым проходом шириной не менее 2,2 м и высотой кормушек не более 0,75 м.

4.2 Расчетная часть

Исходные данные:

Поголовье коров: m =голов; Кратность кормления в сутки: $n_{\partial} =$ раза в сутки. Средний расход кормосмесей на одну корову в сутки:

 $q = \kappa c$

Таблица исходных данных по вариантам

	1	2	3	4	5	6	7	8	9	10	
m	200	250	300	250	200	160	150	300	220	180	
$n_{\scriptscriptstyle m J}$	3	2	2	3	2	2	3	2	2	3	
q	40	45	50	35	45	40	42	46	50	45	
t _k c	3600	3200	3400	2400	2800	3000	2000	2200	2500	3600	
$V_{,M}^3$	10										
g	600	500	550	650	500	600	650	550	600	650	
$\mathbf{k}_{\scriptscriptstyleH}$					0.	,8					
$arphi_{\scriptscriptstyle 3an}$		0,85									
$t_{\rm II}$	3000	2800	2900	2000	2100	2500	1800	1700	2000	3000	
M_0		•			1			•	•		
l_k	1.2	1,3	1,4	1.2	1,3	1,4	1.2	1,3	1,4	1.2	
K_3					1,	05					
$d_{\tilde{o}}$	1,5	1,7	1,8	1,2	1,6	1,5	1,4	1,5	1,7	1,8	
$h_{ar{o}}$	1,8	1,7	1,6	1,5	1.6	1.6	1,8	1,7	1,6	1,5	
b	1.5	1.6	1.5	1.6	1.5	1.6	1.5	1.6	1.5	1.6	
h	1.8	1.9	1.8	1.9	1.8	1.9	1.8	1.9	1.8	1.9	
Vагр						,7					
K_{δ}					0,9						
K_{o}					0,9						
b_1	0.5	0.6	0.4	0.5	0.6	0.4	0.5	0.6	0.4	0.5	
h_1		·	·	·	0.0		·	·	·		
k_{ck}					0.	.8					
$\mathbf{k}_{\mathbf{k}}$		-	-	-	0.9	95	-	-	-		
n					1						

Изм.	Лист	№ докум.	Подпись	Дата

Необходимо рассчитать массовый суточный расход кормов по формуле 4.2.1:

$$Q_{i.cym} = q \cdot m \tag{4.2.1}$$

где: q - суточное количество корма-смеси на одну корову, кг; m - количество коров;

$$Q_{i.cym} =$$
 , K Γ

Разовая дача корма всему поголовью найдем по формуле 4.2.2:

$$Q_{pas} = \frac{Q_{cym}}{K_p} \tag{4.2.2}$$

где: K_p - кратность кормления;

$$Q_{pa3} =$$
 , KG

Расход кормораздающей системы рассчитываем по формуле 4.2.3:

$$W_{\kappa.c.} = \frac{Q_{pas}}{t_k} \tag{4.2.3}$$

где: t_k - время кормления, c;

$$W_{\kappa.c.} =$$
 , $\kappa\Gamma/c$

Расход мобильного кормораздатчика по формуле 4.2.4:

$$W_{_{M.K.}} = \frac{V \cdot g \cdot k_{_{u}} \cdot \varphi_{_{3an}}}{t_{_{u}}} \tag{4.2.4}$$

где: V - вместимость бункера, M^3 ;

g - плотность укладки корма в бункере, кг/м³;

 k_u - коэффициент использования рабочего времени;

 $\varphi_{\it 3an}$ - коэффициент заполнения бункера;

$$W_{_{M.K.}} =$$
 , $\kappa \Gamma / c$

Количество кормораздатчиков найдем по формуле 4.2.5:

						Лист
					Практическая работа №10	2
Изм.	Лист	№ докум.	Подпись	Дата]

$$n_{\kappa} = \frac{W_{\kappa.c.}}{W_{M.\kappa.}} \tag{4.2.5}$$

$$n_{\kappa} =$$
 , штук

Расчетная линейная плотность корма:

$$q_m = \frac{q \cdot M_o}{l_k} \tag{4.2.6}$$

где: q - норма разовой выдачи корма на одну голову, кг; M_o - число голов на одно корма-место; l_κ - длина корма-места, м;

$$q_m =$$
 , $\kappa \Gamma / M$

Потребная масса корма в бункере определяется по формуле 4.2.7:

$$M_{\delta} = q \cdot m \cdot n \cdot k_{3} \tag{4.2.7}$$

где: q - разовая дача корма, кг на 1 голову;

m - число голов в ряду;

n - число рядов;

 $k_{\scriptscriptstyle 3}$ - коэффициент запаса;

$$M_{\tilde{o}} =$$
 , KG

Объем бункера найдем по формуле 4.2.8:

$$V_{\delta} = \frac{M_{\delta}}{g \cdot \varphi_{san}} \ (4.2.8)$$

$$V_{\delta} = \qquad , \, \text{M}^{3}$$

Найдем длину бункера исходя из размеров корма-прохода и высоты ворот по формуле 4.2.9:

$$l_{\delta} = \frac{V_{\delta}}{d_{\delta} \cdot h_{\delta}} \tag{4.2.9}$$

						Лист
					Практическая раδота №10	,
Изм.	Лист	№ докум.	Подпись	Дата		4

где: d_{δ} - ширина бункера; h_{δ} - высота бункера;

$$l_{\tilde{0}} =$$
 , M

Найдем необходимую скорость подающего транспортера по формуле 4.2.10:

$$v_n = \frac{q_{\scriptscriptstyle M} \cdot v_{\scriptscriptstyle azp}}{b \cdot h \cdot g} \tag{4.2.10}$$

где: b - ширина монолита корма в бункере;

h - высота монолита;

 v_{azp} - скорость агрегата;

$$v_n =$$
 , M/c

Найдем среднюю скорость продольного транспортера по формуле 4.2.11:

$$v_{n.cp} = \frac{v_n \cdot k_{\delta}}{k_o} \tag{4.2.12}$$

где: k_{δ} - коэффициент буксования трактора;

 k_o - коэффициент отставания корма;

$$v_{n,cp} =$$
 , M/c

Расчетная скорость выгрузного транспортера найдется по формуле 4.2.13:

$$v_{g,m} = \frac{q_{M} \cdot v_{azp} \cdot k_{\delta}}{b_{1} \cdot h_{1} \cdot g \cdot k_{c\kappa} \cdot k_{\kappa}}$$
(4.2.13)

где: b_{I} - ширина выгрузного желоба, м;

 h_{I} - высота слоя корма на выходе из желоба, м;

 $k_{c\kappa}$ - коэффициент скольжения корма;

 k_{κ} - коэффициент учитывающий потери объема из-за цепи тр-ра;

$$v_{_{e.m}} =$$
 , M/c

ВЫВОД:

						Лист
					Практическая раδота №10	Е
Изм.	Лист	№ докум.	Подпись	Дата	·	כן