Taller de Álgebra 1 Ejercicios

April 19, 2021

1. La sucesión de los números de Fibonacci es la sucesión de enteros $(f_n)_{n\geq 0}$ tal que

$$f_0 = 0$$
, $f_1 = 1$, $f_{n+2} = f_{n+1} + f_n$, $\forall n \ge 0$.

Escriba una función fibonacci :: Integer -> Integer tal que fibonacci n sea el n-ñesimo número de Fibonacci.

```
*Main> fibonacci 30
832040
*Main> fibonacci 2
1
*Main> fi
fibonacci filter
*Main> fibonacci 0
```

2. La sucesión de los números de Lucas es la sucesión de enteros $(l_n)_{n\geq 0}$ tal que

$$l_0 = 2$$
, $l_1 = 1$, $l_{n+2} = l_{n+1} + l_n$, $\forall n \ge 0$.

Escriba una función lucas :: Integer \rightarrow Integer tal que lucas n sea el n-ñesimo número de Lucas.

```
*Main> lucas 25
167761
*Main> lucas 10
123
*Main> lucas 2
3
```

3. Si a, b, c y d son números enteros, definimos una sucesión de enteros $(x_n)_{n\geq 0}$ de manera que

$$l_0 = a$$
, $l_1 = b$, $l_{n+2} = cl_{n+1} + dl_n$, $\forall n \ge 0$.

Defina una función

```
sucesión :: Integer -> Integer -> Integer -> Integer -> Integer -> Integer
```

tal que sucesión a b c d e n sea el n-ésimo elemento de esa sucesión.

Use esta función sucesión para dar nuevas deficiones de las sucesiones fibonacci y lucas de los ejercicios anteriores

```
*Main> sucesión 3 4 5 6 7 76  
*Main> sucesión 7 6 5 4 3 19  
*Main> sucesión 2 2 2 2 2 4
```

4. Usando la función fibonacci que escribió en el ejercicio ?? ¿puede calcular el 100-ésimo o 1000-ésimo número de Fibonacci? Estos dos números son

$$f_{100} = 354224848179261915075$$

У

$$\begin{split} f_{1000} = 4346655768693745643568852767504062580256466051737178040248 \\ 1729089536555417949051890403879840079255169295922593080322 \\ 6347752096896232398733224711616429964409065331879382989696 \\ 49928516003704476137795166849228875, \end{split}$$

respectivamente — el segundo tiene 209 dígitos.

¿Puede determinar cuántas veces se hace la suma de dos números para calcular fibonacci 10 usando la definición que dio? ¿Cómo cree que yo pude calcular f_{1000} ?

- 5. Escriba un programa que le permita encontrar el primer número de Fibonacci cuyas últimas tres cifras son 946.
- 6. El triangulo de Pascal es la siguiente tabla triangular cuyas primeras filas son las siguientes:

		k										
		0	1	2	3	4	5	6	7	8	9	10
\overline{n}	0	1										
	1	1	1									
	2	1	2	1								
	3	1	3	3	1							
	4	1	4	6	4	1						
	5	1	5	10	10	5	1					
	6	1	6	15	20	15	6	1				
	7	1	7	21	35	35	21	7	1			
	8	1	8	28	56	70	56	28	8	1		
	9	1	9	36	84	126	126	84	36	9	1	
	10	1	10	45	120	210	252	210	120	45	10	1

que se arma de la siguiente manera:

- la columna con n=0 está completa con 1,
- la diagonal en la que n = k está completa con 1,
- todas todas las otras entradas son la suma de la que está arriba y la que está justo arriba a la izquierda: por ejemplo el 126 que está en la fila 9 y la columna 4 es la suma del 70 que está inmediatamente arriba y el 56 que está a la izquierda de este.

Escriba una función pascal :: Integer -> Integer -> Integer tal que la expresión | pascal n k| sea el entero que está en la tabla en la fila n-ésima y la columa k-ésima.

```
*Main> pascal 20 10
184756
*Main> pascal 6 3
20
*Main> pascal 8 5
```

7. Escriba una función dígitoMásFrecuente :: Integer -> Integer tal que cada vez que n es un entero positivo dígitoMásFrecuente n sea el número de $\{0, \ldots, n\}$ que más veces aparece como dígito de n. Si hay «empates», elija el más chico.

```
*Main> dígitoMásfrecuente 1223334444
4

*Main> dígitoMásfrecuente 111222333
1

*Main> dígitoMásfrecuente 333222111
1

*Main> dígitoMásfrecuente 1234567890
0

*Main> dígitoMásfrecuente 1
1

*Main> dígitoMásfrecuente 7
```

8. Escriba una función dígitosDecrecientes :: Integer -> Bool tal que para cada entero positivo n la expresión dígitosDecrecientes n sea True O False dependiendo de si los dígitos de n decrecen de derecha a izquierda.

```
*Main> dígitoDecrecientes 12345
True

*Main> dígitoDecrecientes 111222233334444455555
True

*Main> dígitoDecrecientes 1112222333344344455555
False

*Main> dígitoDecrecientes 9876542321
False
```

9. Escriba una función dígitosOrdenados :: Integer -> Bool tal que para cada entero positivo n la expresión dígitosDecrecientes n sea True o False dependiendo de si los dígitos de n o bien crecen o bien decrecen de derecha a izquierda.

```
*Main> dígitosOrdenados 12345
True

*Main> dígitosOrdenados 54321
True

*Main> dígitosOrdenados 55444333222111
True

*Main> dígitosOrdenados 122334444555777999
True

*Main> dígitosOrdenados 123454321
False

*Main> dígitosOrdenados 1221212
False
```