ECE 509: Convex Optimization

Homework #7

Rutgers: Spring 2024

April 11, 2024

Name: Ravi Raghavan Extension: No

Problem 1. Voronoi description of halfspace. Let a and b be distinct points in \mathbb{R}^n . Show that the set of all points that are closer (in Euclidean norm) to a than b, i.e., $\{x : ||x-a||_2 \le ||x-b||_2\}$, is a halfspace. Describe it explicitly as an inequality of the form $c^T x < d$. Draw a picture.

Solution. We can see that the following two sets are equivalent:

$$S_1 = S_2$$
 where $S_1 = \{x : ||x - a||_2 \le ||x - b||_2\}$ and $S_2 = \{x : ||x - a||_2^2 \le ||x - b||_2^2\}$

Let's work with S_2 since it will be a lot easier

```
S_{2} = \{x : ||x - a||_{2}^{2} \le ||x - b||_{2}^{2}\}
S_{2} = \{x : ||x||_{2}^{2} - 2 < x, a > +||a||_{2}^{2} \le ||x||_{2}^{2} - 2 < x, b > +||b||_{2}^{2}\}
S_{2} = \{x : -2 < x, a > +||a||_{2}^{2} \le -2 < x, b > +||b||_{2}^{2}\}
S_{2} = \{x : 2 < x, b - a > \le ||b||_{2}^{2} - ||a||_{2}^{2}\}
S_{2} = \{x : 2(b - a)^{T}x \le ||b||_{2}^{2} - ||a||_{2}^{2}\}
S_{2} = \{x : (b - a)^{T}x \le 0.5(||b||_{2}^{2} - ||a||_{2}^{2})\}
```

If we set c=b-a and $d=0.5(||b||_2^2-||a||_2^2)$, we can express S_2 as follows: $S_2=\{x:c^Tx\leq d\}$ This is a closed half-space

Problem 2. Which of the following sets S are polyhedra? If possible, express S in the form $S = \{x | Ax \leq b, Fx = g\}$

(b) Yes S is a polyhedra.

Let $M_1 = [a_1, a_2, ..., a_n] \in \mathbb{R}^{1xn}$ and let $M_2 = [a_1^2, a_2^2, ..., a_n^2] \in \mathbb{R}^{1xn}$ Let F be the vertical concatentation of 1^T , M_1 , and M_2 . Let g be $[1, b_1, b_2]^T$ Let A = -I

We can express S, via compact notation, as $S = \{x | Ax \leq 0, Fx = g\}$

Note: Just to confirm, \leq when applied to 2 vectors means component-wise \leq

(c) S is NOT a Polyhedra. Let's analyze why this is the case.

First we must look at the statement $x^Ty \leq 1$ for all $||y||_2 = 1$. Our goal is to take all these inequalities and express them in the form $Ax \leq b$, where A is a matrix, \leq when applied to 2 vectors means component-wise \leq , and b is a vector. So, given a y where $||y||_2 = 1$, we can put this y in a row of A. $Ax \leq 1$, where each row of A is a feasible value of y, would capture the statement $x^Ty \leq 1$ for all $||y||_2 = 1$.

However, the number of vectors y where $||y||_2 = 1$ is infinite. Hence, our matrix A would have to have infinite rows which is clearly not possible.

Another way of looking at it is like this:

S is the intersection of an infinite number of halfspaces. As per definition, polyhedra are the intersection of a FINITE number of halfspaces.

We have proved why S is NOT a polyhedra.

Problem 3. Hyperbolic sets. Show that the hyperbolic set is $\{x \in \mathbb{R}^2_+ : x_1x_2 \geq 1\}$ is convex. As a generalization, show that $\{x \in \mathbb{R}^2_+ : \prod_{i=1}^n x_i \geq 1\}$ is convex. Hint. If $a, b \geq 0$ and $0 \leq \theta \leq 1$, then $a^{\theta}b^{1-\theta} \leq \theta a + (1-\theta)b$

Solution. Let's start by proving that the *hyperbolic set* is $S = \{x \in \mathbb{R}^2_+ : x_1x_2 \ge 1\}$ is convex. Let's have two vectors j and k that are in S. Let the elements of j be j_1, j_2 . Let the elements of k be k_1, k_2

We want to prove that $\theta j + (1 - \theta)k \in S$.

Since we know that $j \in S$ and $k \in S$, we can state the following:

- $j_1 \ge 0, j_2 \ge 0$
- $j_1 j_2 \ge 1$
- $k_1 \ge 0, k_2 \ge 0$
- $k_1k_2 \ge 1$

For $0 \le \theta \le 1$, since $j_1 \ge 0, j_2 \ge 0$ and $k_1 \ge 0, k_2 \ge 0$, we can see that $0 \le j_1^{\theta} k_1^{1-\theta} \le \theta j_1 + (1-\theta)k_1$ and $0 \le j_2^{\theta} k_2^{1-\theta} \le \theta j_2 + (1-\theta)k_2$.

$$j_1^{\theta} k_1^{1-\theta} j_2^{\theta} k_2^{1-\theta} = (j_1 j_2)^{\theta} (k_1 k_2)^{1-\theta}$$

Since $j_1j_2 \ge 1$ and $k_1k_2 \ge 1$, we can say that:

$$j_1^{\theta} k_1^{1-\theta} j_2^{\theta} k_2^{1-\theta} = (j_1 j_2)^{\theta} (k_1 k_2)^{1-\theta} \ge 1$$

Since $j_1^{\theta} k_1^{1-\theta} \le \theta j_1 + (1-\theta)k_1$ and $j_2^{\theta} k_2^{1-\theta} \le \theta j_2 + (1-\theta)k_2$

$$1 \le j_1^{\theta} k_1^{1-\theta} j_2^{\theta} k_2^{1-\theta} \le (\theta j_1 + (1-\theta)k_1)(\theta j_2 + (1-\theta)k_2)$$

Furthermore, since $j_1 \ge 0, j_2 \ge 0$ and $k_1 \ge 0, k_2 \ge 0$, we know that $\theta j_1 + (1-\theta)k_1 \ge 0$ and $\theta j_2 + (1-\theta)k_2 \ge 0$

We have finished proving that $\theta j + (1 - \theta)k \in S$.

Let S be $\{x \in \mathbb{R}^2_+ : \prod_{i=1}^n x_i \ge 1\}$. Let's have two vectors j and k that are in S. Let the elements of j be $j_1, j_2, ..., j_n$. Let the elements of k be $k_1, k_2, ..., k_n$

We want to prove that $\theta j + (1 - \theta)k \in S$.

Since we know that $j \in S$ and $k \in S$, we can state the following:

- $j_1 \ge 0, j_2 \ge 0,, j_n \ge 0$
- $j_1 j_2 j_3 ... j_n \ge 1$
- $k_1 \ge 0, k_2 \ge 0,, k_n \ge 0$
- $k_1 k_2 k_3 ... k_n > 1$

For $i \in [1, n]$, $j_i, k_i \ge 0$ and $0 \le \theta \le 1$, we can see that $0 \le j_i^{\theta} k_i^{1-\theta} \le \theta j_i + (1-\theta)k_i$.

We can also see that:

$$\prod_{i=1}^{n} j_i^{\theta} k_i^{1-\theta} = (\prod_{i=1}^{n} j_i)^{\theta} (\prod_{i=1}^{n} k_i)^{1-\theta}$$

Since $j_1j_2j_3...j_n \ge 1$ and $k_1k_2k_3...k_n \ge 1$, we can say that:

$$\prod_{i=1}^n j_i^\theta k_i^{1-\theta} = (\prod_{i=1}^n j_i)^\theta (\prod_{i=1}^n k_i)^{1-\theta} \geq 1$$

Since $j_i^{\theta} k_i^{1-\theta} \le \theta j_i + (1-\theta)k_i$,

$$1 \le \prod_{i=1}^{n} j_i^{\theta} k_i^{1-\theta} \le \prod_{i=1}^{n} \theta j_i + (1-\theta)k_i$$

Furthermore, since $j_1 \ge 0, j_2 \ge 0,, j_n \ge 0$ and $k_1 \ge 0, k_2 \ge 0,, k_n \ge 0$, we know that $\theta j_i + (1 - \theta)k_i \ge 0$ as well.

We have shown that $\theta j_i + (1 - \theta)k_i \in S$ and that S is a convex set!

Problem 4. Problem 2.16:

Show that if S_1 and S_2 are convex sets in \mathbb{R}^{m+n} , then so is their partial sum $S = \{(x, y_1 + y_2) : x \in \mathbb{R}^m, y_1, y_2 \in \mathbb{R}^n, (x, y_1) \in S_1, (x, y_2) \in S_2\}$

Solution. Let's say that we have two points in S, namely $(x_1, y_{11} + y_{12})$ and $(x_2, y_{21} + y_{22})$. To prove that S is convex, we need to show that $\theta(x_1, y_{11} + y_{12}) + (1 - \theta)(x_2, y_{21} + y_{22})$ is in S.

Based on the definition of S, we can see the following:

- $(x_1, y_{11}) \in S_1$
- $(x_1, y_{12}) \in S_2$
- $(x_2, y_{21}) \in S_1$
- $(x_2, y_{22}) \in S_2$

Since S_1 and S_2 are convex, based on the definition of convex sets, we can see that:

- $\theta(x_1, y_{11}) + (1 \theta)(x_2, y_{21}) \in S_1$ $(\theta x_1 + (1 - \theta)x_2, \theta y_{11} + (1 - \theta)y_{21}) \in S_1$
- $\theta(x_1, y_{12}) + (1 \theta)(x_2, y_{22}) \in S_2$ $(\theta x_1 + (1 - \theta)x_2, \theta y_{12} + (1 - \theta)y_{22}) \in S_1$

By definition of Set S, we can see that:

$$(\theta x_1 + (1 - \theta)x_2, \theta y_{11} + (1 - \theta)y_{21} + \theta y_{12} + (1 - \theta)y_{22}) \in S$$

$$(\theta x_1 + (1 - \theta)x_2, \theta(y_{11} + y_{12}) + (1 - \theta)(y_{21} + y_{22})) \in S$$

$$\theta(x_1, y_{11} + y_{12}) + (1 - \theta)(x_2, y_{21} + y_{22})$$
 is in S.

Problem 5 (Problem 2.19(a)). Linear-fractional functions and convex sets. Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be the linear-fractional function

$$f(x) = (Ax + b)/(c^{T}x + d), \ domf = \{x | c^{T}x + d > 0\}$$
(1)

In this problem, we study the inverse image of a convex set C under f, *i.e.*,

$$f^{-1}(C) = \{ x \in dom f : f(x) \in C \}$$
 (2)

For each of the following sets $C \subseteq \mathbb{R}^n$, give a simple description of $f^{-1}(C)$

Solution. Let's look at the halfspace $C = \{y : g^T y \leq h\}$ (with $g \neq 0$).

$$f^{-1}(C) = \{x : g^{T}((Ax+b)/(c^{T}x+d)) \le h, c^{T}x+d > 0\}$$

Since $c^T x + d > 0$

$$f^{-1}(C) = \{x : g^T(Ax + b) \le h(c^Tx + d), c^Tx + d > 0\}$$

$$f^{-1}(C) = \{x : g^T A x + g^T b \le h c^T x + h d, c^T x + d > 0\}$$

$$f^{-1}(C) = \{x : (g^T A - hc^T)x \le hd - g^T b, c^T x + d > 0\}$$

$$f^{-1}(C) = \{x : g^T(Ax + b) \le h(c^Tx + d), c^Tx + d > 0\}$$

$$f^{-1}(C) = \{x : g^TAx + g^Tb \le hc^Tx + hd, c^Tx + d > 0\}$$

$$f^{-1}(C) = \{x : (g^TA - hc^T)x \le hd - g^Tb, c^Tx + d > 0\}$$

$$f^{-1}(C) = \{x : (A^Tg - ch^T)^Tx \le hd - g^Tb, c^Tx + d > 0\}$$

Let's call a new vector $p^T=(A^Tg-ch^T)^T$ and $q=hd-g^Tb$ $f^{-1}(C)=\{x:p^Tx\leq q,c^Tx+d>0\}$

We can see that $f^{-1}(C)$ is just the intersection of a halfspace and the domain of f!

Problem 6 (Problem 3.17). Suppose $p < 1, p \neq 0$. Show that the function

$$f(x) = (\sum_{i=1}^{n} x_i^p)^{\frac{1}{p}}$$
(3)

with $dom f = \mathbb{R}^n_{++}$ is concave. This includes as special cases $f(x) = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}$ and the harmonic mean $f(x) = (\sum_{i=1}^n \frac{1}{x_i})^{-1}$. Hint. Adapt the proofs for the log-sum-exp function and the geometric mean in 3.1.5

Solution. Gradient: $\frac{\partial f}{\partial x_k} = \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}-1} x_k^{p-1}$

Jacobian:

Jacobian:
$$\frac{\partial^2 f}{\partial^2 x_k} = (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1}{p}-2}[x_k^{2p-2} - x_k^{p-2} \sum_{i=1}^n x_i^p] \frac{\partial^2 f}{\partial x_k \partial x_l} = (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1}{p}-2} x_l^{p-1} x_k^{p-1}$$

It is clear that we can express $\nabla^2 f(x)$ as follows:

$$\nabla^2 f(x) = (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1}{p}-2}[qq^T - (\sum_{i=1}^n x_i^p)diag(x_1^{p-2}, x_2^{p-2}, \dots, x_n^{p-2})] \text{ where } q_i = x_i^{p-1}$$

For concavity, we need $v^T \nabla^2 f(x) v \leq 0$ to hold true for all $x \in \mathbb{R}^n_{++}$

$$\begin{split} v^T \nabla^2 f(x) v &= (1-p) (\sum_{i=1}^n x_i^p)^{-\frac{1}{p}} [v^T q q^T v (\sum_{i=1}^n x_i^p)^{\frac{2}{p}-2} - (\sum_{i=1}^n x_i^p)^{\frac{2}{p}-1} v^T diag(x_1^{p-2}, x_2^{p-2}, \dots, x_n^{p-2}) v] \\ v^T \nabla^2 f(x) v &= (1-p) (\sum_{i=1}^n x_i^p)^{-\frac{1}{p}} [(\sum_{i=1}^n x_i^{p-1} v_i)^2 ((\sum_{i=1}^n x_i^p)^{\frac{1}{p}-1})^2 - (\sum_{i=1}^n x_i^p)^{\frac{2}{p}-1} v^T diag(x_1^{p-2}, x_2^{p-2}, \dots, x_n^{p-2}) v] \\ v^T \nabla^2 f(x) v &= (1-p) (\sum_{i=1}^n x_i^p)^{-\frac{1}{p}} [(\sum_{i=1}^n ((\sum_{i=1}^n x_i^p)^{\frac{1}{p}-1}) x_i^{p-1} v_i)^2 - \sum_{i=1}^n x_i^{p-2} v_i^2 ((\sum_{i=1}^n x_i^p)^{\frac{2}{p}-1})] \end{split}$$

The Cauchy Schwartz Inequality tell us that $(a^T a)(b^T b) \geq (a^T b)^2$

If we set $a_i = x_i^{\frac{p}{2}}((\sum_{i=1}^n x_i^p)^{\frac{-1}{2}})$ and we set $b_i = x_i^{\frac{p-2}{2}}v_i((\sum_{i=1}^n x_i^p)^{\frac{1}{p}-\frac{1}{2}})$, substituting this into the Cauchy Schwartz inequality allows us to see that

$$(\sum_{i=1}^n x_i^p)((\sum_{i=1}^n x_i^p)^{-1})(\sum_{i=1}^n x_i^{p-2}v_i)((\sum_{i=1}^n x_i^p)^{\frac{2}{p}-1}) \geq (\sum_{i=1}^n x_i^{p-1}v_i)^2((\sum_{i=1}^n x_i^p)^{\frac{2}{p}-2})$$

Simplication of LHS[Left Hand Side]:

$$(\sum_{i=1}^{n} x_{i}^{p})((\sum_{i=1}^{n} x_{i}^{p})^{-1})(\sum_{i=1}^{n} x_{i}^{p-2} v_{i})((\sum_{i=1}^{n} x_{i}^{p})^{\frac{2}{p}-1}) = (\sum_{i=1}^{n} x_{i}^{p-2} v_{i})((\sum_{i=1}^{n} x_{i}^{p})^{\frac{2}{p}-1})$$

$$= (\sum_{i=1}^{n} x_i^p)^{\frac{2}{p}-1} v^T diag(x_1^{p-2}, x_2^{p-2}, \dots, x_n^{p-2}) v$$

Simplication of RHS[Right Hand Side]:

$$v^{T}qq^{T}v(\sum_{i=1}^{n}x_{i}^{p})^{\frac{2}{p}-2}$$

Since LHS \geq RHS, we can state that:

$$\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{2}{p}-1} v^{T} diag(x_{1}^{p-2}, x_{2}^{p-2}, \dots, x_{n}^{p-2}) v \ge v^{T} q q^{T} v \left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{2}{p}-2}$$

$$v^T q q^T v \left(\sum_{i=1}^n x_i^p\right)^{\frac{2}{p}-2} - \left(\sum_{i=1}^n x_i^p\right)^{\frac{2}{p}-1} v^T diag(x_1^{p-2}, x_2^{p-2}, \dots, x_n^{p-2}) v \le 0$$

Since p < 1 and $x_i \in \mathbb{R}_{++}$, $(1-p)(\sum_{i=1}^n x_i^p)^{\frac{-1}{p}}$ is a positive constant.

$$v^T \nabla^2 f(x) v = (1-p) \left(\sum_{i=1}^n x_i^p \right)^{-\frac{1}{p}} \left[v^T q q^T v \left(\sum_{i=1}^n x_i^p \right)^{\frac{2}{p}-2} - \left(\sum_{i=1}^n x_i^p \right)^{\frac{2}{p}-1} v^T diag(x_1^{p-2}, x_2^{p-2}, \dots, x_n^{p-2}) v \right] \leq 0$$

Hence, since $v^T \nabla^2 f(x) v \leq 0$, we have proven concavity!

Problem 7. Adapt the proof of concavity of the log-determinant function in §3.1.5 to show the following

(a)
$$f(X) = tr(X^{-1})$$
 is convex on $dom f = \mathbb{S}_{++}^n$

Solution. To verify convexity, we can consider an arbitrary line given by X = Z + tV where $Z \in \mathbb{S}^n_{++}$ and $V \in \mathbb{S}^n$

$$\begin{split} g(t) &= f(Z+tV) = tr((Z+tV)^{-1}) \\ &= tr((Z^{\frac{1}{2}}(I+tZ^{\frac{-1}{2}}VZ^{\frac{-1}{2}})Z^{\frac{1}{2}})^{-1}) \\ &= tr((Z^{\frac{-1}{2}}(I+tZ^{\frac{-1}{2}}VZ^{\frac{-1}{2}})^{-1}Z^{\frac{-1}{2}})) \end{split}$$

It is a well known fact that tr(ABC) = tr(BCA) = tr(CAB)

Hence, we can continue our simplification

$$= tr((Z^{\frac{-1}{2}}Z^{\frac{-1}{2}}(I + tZ^{\frac{-1}{2}}VZ^{\frac{-1}{2}})^{-1}))$$

$$= tr((Z^{-1}(I+tZ^{\frac{-1}{2}}VZ^{\frac{-1}{2}})^{-1}))$$

Let us represent $Z^{\frac{-1}{2}}VZ^{\frac{-1}{2}}$ as an Eigenvalue Decomposition of QDQ^T

$$\begin{split} &= tr((Z^{-1}(I + tQDQ^T)^{-1})) \\ &= tr((Z^{-1}(QIQ^T + tQDQ^T)^{-1})) \\ &= tr((Z^{-1}(Q(I + tD)Q^T)^{-1})) \end{split}$$

$$= tr((Z^{-1}Q(I+tD)^{-1}Q^T))$$

Again, we can use the cyclic property of the trace: $= tr((Q^T Z^{-1} Q (I + tD)^{-1}))$

$$=\sum_{i=1}^{n} (Q^{T}Z^{-1}Q)_{ii}(1+t\lambda_{i})^{-1}$$

Note: λ_i are eigenvalues of $Z^{\frac{-1}{2}}VZ^{\frac{-1}{2}}$

Since Z is a positive definite, symmetric matrix, we know that Z^{-1} is a positive definite, symmetric matrix as well. Hence, $(Q^T Z^{-1} Q)_{ii}$ is always positive.

Let's now look at $(1+t\lambda_i)^{-1}$. Let's take the second derivative with respect to t. This second derivative is equal to $\frac{2\lambda_i^2}{(1+t\lambda_i)^3}$. The numerator is clearly positive.

We know that $Z+tV\in\mathbb{S}^n_{++}$ This means that $Z^{\frac12}(I+tZ^{\frac{-1}{2}}VZ^{\frac{-1}{2}})Z^{\frac12}\in\mathbb{S}^n_{++}$

This means that $(I + tZ^{\frac{-1}{2}}VZ^{\frac{-1}{2}}) \in \mathbb{S}^n_{++}$ must be True

This means that $1 + t\lambda_i > 0$ must be true for all i!. Hence, the denominator of $\frac{2\lambda_i^2}{(1+t\lambda_i)^3}$ is positive as

We have shown that the second derivative of $(1+t\lambda_i)^{-1}$ is positive over the values of t that are in the domain of g which means that $(1+t\lambda_i)^{-1}$ is a convex function over the domain of g.

 $\sum_{i=1}^{n} (Q^T Z^{-1} Q)_{ii} (1 + t\lambda_i)^{-1}$ is a non-negative weighted sum of convex functions which is convex!

We have completed the proof!

Problem 8. Nonnegative weighted sums and integrals

(a) Show that $f(x) = \sum_{i=1}^r \alpha_i x_{[i]}$ is a convex function of x, where $\alpha_1 \ge \alpha_2 \ge \dots \alpha_r \ge 0$, and $x_{[i]}$ denotes the *ith* largest component of x. (You can use the fact that $f(x) = \sum_{i=1}^r x_{[i]}$ is convex on \mathbb{R}^n)

Solution.
$$f(x) = \alpha_r(\sum_{i=1}^r x_{[i]}) + (\alpha_{r-1} - \alpha_r)(\sum_{i=1}^{r-1} x_{[i]}) + (\alpha_{r-2} - \alpha_{r-1})(\sum_{i=1}^{r-2} x_{[i]}) + \dots + (\alpha_1 - \alpha_2)(x_{[1]})$$

Since $a_i > a_{i+1}$, $a_i - a_{i+1} > 0$.

We know that a non-negative combination of convex functions is convex. Hence, we have completed the proof

(b) Let T(x, w) denote the trigonometric polynomial

$$T(x, w) = x_1 + x_2 \cos w + x_3 \cos 2w + \dots + x_n \cos (n-1)w \tag{4}$$

Show that the function

$$f(x) = -\int_0^{2\pi} \log T(x, w) dw \tag{5}$$

is convex on $\{x \in \mathbb{R}^n : T(x, w) > 0, 0 \le w \le 2\pi\}$

Solution. Let
$$g(x, w) = -\log T(x, w) = -\log(x_1 + x_2 \cos w + x_3 \cos 2w + \dots + x_n \cos(n-1)w)$$

Let's prove that g(x, w) is convex in x when we fix w

$$h(t) = g(z + tv, w) = -\log T(z + tv, w) = -\log(z_1 + tv_1 + (\cos w)(z_2 + tv_2) + (\cos 2w)(z_3 + tv_3) + \dots + (\cos (n-1)w)(z_n + tv_n))$$

$$h'(t) = -\frac{v_1 + v_2 \cos w + v_3 \cos 2w + \dots + v_n \cos (n-1)w}{T(z + tv, w)}$$

$$h''(t) = \frac{(v_1 + v_2 \cos w + v_3 \cos 2w + \dots + v_n \cos (n-1)w)^2}{T(z + tv, w)^2} \ge 0$$

This means that g(x, w) is convex for a fixed w

Hence, $f(x) = \int_0^{2\pi} g(x, w) dw$ is like an infinite non-negative weighted sum. Hence, f(x) is convex!