References

- [AK15] Z. Anastassi and A. Kosti. "A 6(4) optimized embedded Runge–Kutta–Nyström pair for the numerical solution of periodic problems". In: *Journal of Computational and Applied Mathematics* 275 (2015), pp. 311–320.
- [Arc+11] B. Archinal, M. A'Hearn, E. Bowell, A. Conrad, G. Consolmagno, R. Courtin, T. Fukushima, D. Hestroffer, J. Hilton, G. Krasinsky, G. Neumann, J. Oberst, P. Seidelmann, P. Stooke, D. Tholen, P. Thomas, and I. Williams. "Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009". In: Celestial Mechanics and Dynamical Astronomy 109.2 (2011), pp. 101–135.
- [BCM07] S. Blanes, F. Casas, and A. Murua. "Splitting methods for non-autonomous linear systems". In: *International Journal of Computer Mathematics* 84.6 (2007), pp. 713–727.
- [BCRoo] S. Blanes, F. Casas, and J. Ros. "Processing Symplectic Methods for Near-Integrable Hamiltonian Systems". In: *Celestial Mechanics and Dynamical Astronomy* 77.1 (2000), pp. 17–36.
- [BCR01a] S. Blanes, F. Casas, and J. Ros. "High-order Runge–Kutta–Nyström geometric methods with processing". In: *Applied Numerical Mathematics* 39.3–4 (2001). Themes in Geometric Integration, pp. 245–259.
- [BCRo1b] S. Blanes, F. Casas, and J. Ros. "New Families of Symplectic Runge–Kutta–Nyström Integration Methods". In: Numerical Analysis and Its Applications. Ed. by L. Vulkov, P. Yalamov, and J. Waśniewski. Vol. 1988. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2001, pp. 102–109.
- [BCR99] S. Blanes, F. Casas, and J. Ros. "Symplectic Integration with Processing: A General Study". In: SIAM Journal on Scientific Computing 21.2 (1999), pp. 711–727.
- [Beuo3] H. Beust. "Symplectic integration of hierarchical stellar systems". In: *Astronomy & Astrophysics* 400 (Mar. 2003), pp. 1129–1144.
- [Bla+13] S. Blanes, F. Casas, A. Farrés, J. Laskar, J. Makazaga, and A. Murua. "New families of symplectic splitting methods for numerical integration in dynamical astronomy". In: *Applied Numerical Mathematics* 68 (2013), pp. 58–72.
- [BMo2] S. Blanes and P. C. Moan. "Practical Symplectic Partitioned Runge–Kutta and Runge–Kutta–Nyström Methods". In: *Journal of Computational and Applied Mathematics* 142.2 (May 2002), pp. 313–330.
- [Bra+14] B. K. Bradley, B. A. Jones, G. Beylkin, K. Sandberg, and P. Axelrad. "Bandlimited implicit Runge-Kutta integration for Astrodynamics". In: *Celestial Mechanics and Dynamical Astronomy* 119.2 (2014), pp. 143–168.
- [CGMo8] M. P. Calvo, S. González-Pinto, and J. Montijano. "Global error estimation based on the tolerance proportionality for some adaptive Runge–Kutta codes". In: *Journal of Computational and Applied Mathematics* 218.2 (2008). The Proceedings of the Twelfth International Congress on Computational and Applied Mathematics, pp. 329–341.
- [Cha73] J. F. Chandler. "Determination of the Dynamical Properties of the Jovian System by Numerical Analysis". PhD thesis. Massachusetts Institute of Technology, 1973.
- [Chi97] S. A. Chin. "Symplectic integrators from composite operator factorizations". In: *Physics Letters A* 226.6 (1997), pp. 344–348.
- [CHMR96] M. P. Calvo, D. J. Higham, J. I. Montijano, and L. Rández. "Global error estimation with adaptive explicit Runge–Kutta methods". In: *IMA Journal of Numerical Analysis* 16.1 (1996), pp. 47–63.
- [CKoo] S. Chin and D. Kidwell. "Higher-order force gradient symplectic algorithms". In: *arXiv* 62 (Dec. 2000), p. 8746.
- [CS93a] M. P. Calvo and J. M. Sanz-Serna. "High-Order Symplectic Runge-Kutta-Nyström Methods". In: SIAM Journal on Scientific Computing 14.5 (1993), pp. 1237–1252.
- [CS93b] M. P. Calvo and J. M. Sanz-Serna. "The Development of Variable-step Symplectic Integrators with Application to the Two-body Problem". In: *SIAM Journal on Scientific Computing* 14.4 (July 1993), pp. 936–952.

- [DEP87a] J. R. Dormand, M. E. A. El-Mikkawy, and P. J. Prince. "Families of Runge-Kutta-Nyström Formulae". In: *IMA Journal of Numerical Analysis* 7.2 (1987), pp. 235–250.
- [DEP87b] J. R. Dormand, M. E. A. El-Mikkawy, and P. J. Prince. "High-Order Embedded Runge–Kutta–Nyström Formulae". In: *IMA Journal of Numerical Analysis* 7.4 (1987), pp. 423–430.
- [DM11] F. Diele and C. Marangi. "Explicit symplectic partitioned Runge–Kutta–Nyström methods for non-autonomous dynamics". In: *Applied Numerical Mathematics* 61.7 (2011), pp. 832–843.
- [Emeo7] V. V. Emel'yanenko. "A method of symplectic integrations with adaptive time-steps for individual Hamiltonians in the planetary *N*-body problem". In: *Celestial Mechanics and Dynamical Astronomy* 98.3 (2007), pp. 191–202.
- [ERo3] M. El-Mikkawy and E. D. Rahmo. "A new optimized non-FSAL embedded Runge-Kutta-Nyström algorithm of orders 6 and 4 in six stages". In: *Applied Mathematics and Computation* 145.1 (2003), pp. 33–43.
- [Eve85] E. Everhart. "An Efficient Integrator that Uses Gauss-Radau Spacings". In: *Dynamics of Comets: Their Origin and Evolution*. Ed. by A. Carusi and G. B. Valsecchi. Vol. 115. Astrophysics and Space Science Library. Springer Netherlands, 1985, pp. 185–202.
- [Far+13] A. Farrés, J. Laskar, S. Blanes, F. Casas, J. Makazaga, and A. Murua. "High precision symplectic integrators for the Solar System". In: *Celestial Mechanics and Dynamical Astronomy* 116.2 (2013), pp. 141–174.
- [Fin87] J. M. Fine. "Low order practical Runge–Kutta–Nyström methods". In: *Computing* 38.4 (1987), pp. 281–297.
- [FMLGo8] A. Fienga, H. Manche, J. Laskar, and M. Gastineau. "INPOPo6: a new numerical planetary ephemeris". In: *Astronomy & Astrophysics* 477.1 (2008), pp. 315–327.
- [Fol+14] W. M. Folkner, J. G. Williams, D. H. Boggs, R. S. Park, and P. Kuchynka. "The Planetary and Lunar Ephemerides DE430 and DE431". In: *Interplanetary Network Progress Report* 42.196 (2014).
- [HMR08] E. Hairer, R. I. McLachlan, and A. Razakarivony. "Achieving Brouwer's law with implicit Runge–Kutta methods". In: *BIT Numerical Mathematics* 48.2 (2008), pp. 231–243.
- [HMSo9] E. Hairer, R. I. McLachlan, and R. D. Skeel. "On energy conservation of the simplified Takahashi-Imada method". In: *Mathematical Modelling and Numerical Analysis* 43.4 (2009). ID: unige:5211, pp. 631–644.
- [HSo5] E. Hairer and G. Söderlind. "Explicit, Time Reversible, Adaptive Step Size Control". In: SIAM Journal on Scientific Computing 26.6 (2005), pp. 1838–1851.
- [JA12] B. A. Jones and R. L. Anderson. "A Survey of Symplectic and Collocation Integration Methods for Orbit Propagation". In: *AAS/AIAA Spaceflight Mechanics Meeting*. Vol. 143. Advances in the Astronautical Sciences. 2012.
- [Jon12] B. Jones. "Orbit Propagation Using Gauss-Legendre Collocation". In: AIAA/AAS Astro-dynamics Specialist Conference. Guidance, Navigation, and Control and Co-located Conferences. 2012.
- [LDVo4] V. Lainey, L. Duriez, and A. Vienne. "New accurate ephemerides for the Galilean satellites of Jupiter". In: *Astronomy & Astrophysics* 420.3 (2004), pp. 1171–1183.
- [LJVF89] A. C. Long, J. J. O. Cappellari, C. E. Velez, and A. J. Fuchs. *Goddard Trajectory Determination System (GTDS) Mathematical Theory Revision 1.* Tech. rep. FDD/552-89/001 CSC/TR-89/6001. Computer Sciences Corporation, National Aeronautics, and Space Administration/Goddard Space Flight Center, July 1989.
- [MA92] R. I. McLachlan and P. Atela. "The Accuracy of Symplectic Integrators". In: *Nonlinearity* 5 (1992), pp. 541–562.
- [McLo2] R. I. McLachlan. "Families of High-Order Composition Methods". In: *Numerical Algorithms* 31.1-4 (2002), pp. 233–246.
- [McLo7] R. I. McLachlan. "A New Implementation of Symplectic Runge–Kutta Methods". In: SIAM Journal on Scientific Computing 29.4 (2007), pp. 1637–1649.
- [McL93] R. I. McLachlan. "Symplectic integration of Hamiltonian wave equations". In: *Numerische Mathematik* 66.1 (1993), pp. 465–492.

- [McL95] R. I. McLachlan. "On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods". In: *SIAM Journal on Scientific Computing* 16.1 (Jan. 1995), pp. 151–168.
- [Mon92] O. Montenbruck. "Numerical integration methods for orbital motion". In: *Celestial Mechanics and Dynamical Astronomy* 53.1 (1992), pp. 59–69.
- [MQo2] R. I. McLachlan and G. R. W. Quispel. "Splitting methods". In: *Acta Numerica* 11 (Jan. 2002), pp. 341–434.
- [MRQo6] R. I. Mclachlan, G. Reinout, and W. Quispel. "Geometric Integrators for ODEs". In: J. Phys. A 39 (2006), pp. 5251–5285.
- [New89] X. Newhall. "Numerical Representation of Planetary Ephemerides". In: *Celestial Mechanics* 45 (1989), pp. 305–310.
- [OS94] D. I. Okunbor and R. D. Skeel. "Canonical Runge–Kutta–Nyström methods of orders five and six". In: *Journal of Computational and Applied Mathematics* 51.3 (1994), pp. 375–382.
- [PL10] G. Petit and B. Luzum. *IERS Conventions* (2010). IERS Technical Note 36. International Earth Rotation and Reference Systems Service Convention Centre, 2010.
- [PR14] E. Pellegrini and R. P. Russell. "F and G Taylor Series Solutions to the Circular Restricted Three Body Problem". In: *AAS/AIAA Spaceflight Mechanics Meeting*. Vol. 152. Advances in the Astronautical Sciences. 2014.
- [Sat69] Saturn V Flight Evaluation Working Group. Saturn V Launch Vehicle, Flight Evaluation Report AS-503, Apollo 8 Mission. Tech. rep. MPR-SAT-FE-69-1. George C. Marshall Space Flight Center, Feb. 1969.
- [SM10] J. R. Scott and M. C. Martini. "High-Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration". In: *Journal of Spacecraft and Rockets* 47.1 (2010), pp. 199–202.
- [Som93] B. P. Sommeijer. "Explicit, high-order Runge–Kutta–Nyström methods for parallel computers". In: *Applied Numerical Mathematics* 13.1–3 (1993), pp. 221–240.
- [SQG13] P. W. Sharp, M. A. Qureshi, and K. R. Grazier. "High order explicit Runge–Kutta Nyström pairs". In: Numerical Algorithms 62.1 (2013), pp. 133–148.
- [Sta98] E. M. Standish. *JPL Planetary and Lunar Ephemerides*, *DE405/LE405*. Interoffice Memorandum IOM 312.F–98–048. Jet Propulsion Laboratory, Aug. 1998.
- [Suz90] M. Suzuki. "Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations". In: *Physics Letters A* 146 (June 1990), pp. 319–323.
- [Yos90] H. Yoshida. "Construction of higher order symplectic integrators". In: *Physics Letters A* 150.5–7 (1990), pp. 262–268.