Convocatoria ordinaria de junio-Geometría II 1º Doble Grado en Ingeniería Informática y Matemáticas 18 de junio 2018

X Para cada $a\in\mathbb{R}$ se considera la métrica g_a de \mathbb{R}^3 cuya forma cuadrática asociada está dada por

 $\omega_a(x, y, z) = x^2 + y^2 + az^2 + 2axz - 4ayz.$

 $\ \, {\bf a} \ \, (1,5 \ {\tt PUNTOS})$ Calcula el índice, el rango y clasifica la métrica g_a según el valor de a.

b) (0,5 puntos) ¿Son (\mathbb{R}^3 , g_0) y (\mathbb{R}^3 , g_2) isométricos? ¿Son (\mathbb{R}^3 , g_{-1}) y (\mathbb{R}^3 , g_2) isométricos?

(2 puntos) Sea (V, g) un espacio métrico no degenerado con $\dim(V) \ge 2$ y U un subespacio de $V, U \ne \{0\}, U \ne V$. Prueba que son equivalentes las siguientes afirmaciones:

a) Toda base ortonormal de (U, g_U) puede extenderse a una base ortonormal de (V, g).

b) $V = U \oplus U^{\perp}$. Suma ortogonal

En un plano vectorial euclídeo (V,g) y respecto de una base $B=\{v_1,v_2\}$ se sabe que

$$||v_1|| = \sqrt{3}$$
, $||v_2|| = 2$, $\not\preceq (v_1, v_2) = \frac{\pi}{6}$.

Se pide:

(1,5 puntos) Calcula la matriz en la base B de la simetría ortogonal respecto de la recta $L(v_1 + v_2)$.

(1,5) Puntos) Demuestra que el endomorfismo h de V dado por

$$h(v_1) = -6v_1 + 3v_2$$
, $h(v_2) = -4v_1 + 2v_2$

es autoadjunto y calcula una base ortonormal de (V,g) formada por vectores propios de h.

Sea (V,g) un espacio vectorial euclídeo y f un endomorfismo de V que verifica

$$g(f(u),v) = -g(u,f(v))\;, \forall u,v \in V$$
 .

Se pide:

a) (1 PUNTO) Demuestra que Ker(f) e Im(f) son subespacios ortogonales de V.

b) (1 PUNTO) Demuestra que $V = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$.

c) (1 PUNTO) Demuestra que si B es una base ortonormal de (V,g) entonces M(f,B) es antisimétrica.