Supplementary Information Identification of novel sesquiterpene synthase genes that mediate the biosynthesis of valerianol, which was an unknown ingredient of tea Jun-ichiro Hattan¹, Kazutoshi Shindo², Tetsuya Sasaki³, Fumina Ohno¹, Harukuni Tokuda⁴, Kazuhiko Ishikawa⁵, and Norihiko Misawa^{1*} ¹ Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan ² Department of Food and Nutrition, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan ³ Industrial Research Institute of Ishikawa, 2-1 Kuratsuki, Kanazawa-shi, Ishikawa 920-8203, Japan ⁴ Department of Complementary and Alternative Medicine, Clinical R&D, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa-shi, Ishikawa 920-8640, ⁵ National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda-shi, Osaka 563-8577, Japan *To whom correspondence should be addressed. E-mail: n-misawa@ishikawa-pu.ac.jp Phone: 81 76 227 7525, Fax: 81 76 227 7557 (Ishikawa Prefectural University)

- Supplementary Table S1 Terpenes and their ratio in the volatile compounds trapped by solid phase
- micro-extraction from the flowers of Camellia hiemalis

Component	content (%)
cis-Linalool oxide	1.37
Linalool	5.15

Component	content (70)
cis-Linalool oxide	1.37
Linalool	5.15
β-Elemene	0.08
α-Terpineol	0.11
Epoxylinalool	0.79
Elemol	0.1
Hexahydrofarnesyl acetone	0.89
Eugenol	80.94
Guaiol	0.39
α-Muurolene	0.1
α-Eudesmol	0.07
β -Eudesmol	0.14
Total	90.13

Supplementary Table S2 Classification of amino acid substitutions observed in ChTPS1 clones

amino acid	location and interaction in the molecule	expected effects of substitutions on the enzyme activity
W42	surface	no effect
A68	surface, entrance of the cleft	unclear
E78	hydrogen bonding with H122, E121	E78Q has no effect
G139	loop*	G139C has no effect
V145	internal	unclear
G185	loop*	possibly changes the conformation
S290	surface	no effect
V295	internal	unclear
D317	surface	no effect
L319	internal	unclear
L321	surface	no effect
D365	surface	no effect
A395	surface	no effect
E399	surface	no effect
A443	internal	unclear
R477	surface, loop*, forming an ionic bond with E487	R477H possibly change the loop structure
M503	internal	unclear
K541	surface, loop*, hydrogen bonding with D542	K541N possibly change the peak1 productivity

*loop means β -turn

Supplementary Fig. S1 Flowers of scented Camellia, Camellia hiemalis

```
MELVDTPSLEVFEDVVVDRQVAGFDESFWGDYFITN----QKSQSEAWMNERAEELKNEVRSMFQNV-TG 65
MERQ-SMALVGDKEEII-RKSFEYHETVWGDYFIRNYSCLPLEK--ECMIKRVEELKDRVRNLFEET-HD 65
MEKQ-SLTFDGDEEAKIDRKSSKYHESIWGDYFIQNSSLTHAKESTQRMIKRVEELKVQVKSMFKDT-SD 68
MASS-QVGDMVNGNAEPTRHLAKFPESLWGDRFT---SFTLDKQLWDKYGNEIEVLKEQVRSMVVAGGRK 66
MASS-QVGDMVNGNAEPTRHLAKFPESLWGDRFT---SFTLDKQLWDKYGNEIEVLKEQVRSMVVAGGRK 66
ZoTPS1
ZzZSS1
7z7SS2
CbTPS1
ChTPS1
                           ILQTMNLIDTIQLLGLDYHFMEEIAKALDHLKD--VDMSKYGLYEVALHERLLRQKGFNISSDVFKKYKD 133
VLQIMILVDSIQLLGLDYHFEKEITAALRLIYE--ADVENYGLYEVSLRERLLRQHGYNLSPDVFNKFKD 133
LLQLMNLINSIQMLGLDYHFENEIDEALRLIYE--VDDKSYGLYETSLREQLLRQHGYHVSADIFNKFKD 136
AAEQINLINVLERLGVSYHFEKEIEEQLEQLFAKFEDNEDYDLFTIALHERIFRQHGYKMSCDVFNKFRD 136
AAEQINLINVLERLGVSYHFEKEIEEQLEQLFAKFEDNEDYDLFTIALHERIFRQHGYKMSCDVFNKFRD 136
ZoTPS1
ZzZSS1
ZzZSS2
CbTPS1
ChTPS1
                           KEGKEMEELKDDAKGLLSLYNAAYFGTKEETILDEAISFTKDNLTSLLK--DINPPFAKLVSLTLKTPIQ 201
DKGRELPTLNGDAKGLLNLYNAAYLGTHEETILDEAISFTKCQLESLLG--ELEQPLAIEVSLFLETPLY 201
DNGSEISSLNGDAKGLLSLYNVSYLGTHGETILDEAKSFTKPQLVSLMS--ELEQSLAAQVSLFLELPLC 204
SNGEEKETVSNDVGGMLSLYEATYLKIRGEGFLDEAHAFTIAQLESLVGGPHUSSDLSEQVMHALKQSIH 206
SNGEEKETVSNDVQGMLSLYEATYLKIRGEGFLDEAHAFTIAQLESLVGGPHUSSDLSEQVMHALKQSIH 206
ZoTPS1
ZzZSS1
ZzZSS2
CbTPS1
ChTPS1
                           RSMKRIFTRSYISIYQDEPTINETILELAKLDFNMLQCLHQKELKKICAWWNNINLDIMHLNFIRDR
RRTRRLLVRKYIPIYQEKVMRNDTILELAKLDFNLLQSLHQEEVKKITIWWNDLALTKS-LKFARDR
RRNKILLARKYILIYQEDAMRNNVILELAKLNFNLLQSLYQEELKKISIWWNDLAFAKS-LSFTRDR
RGFPRLEAKHFISFYEKDAARNETLLRLAKLDFNQLQLSHREELCHIFRWWKELDLISK-VPYARDR
RGFPRLEAKHFISFYEKDASRNETLLRLAKLDFNQLQLSHREELCHIFRWWKELDLISK-VPYARDR
ZoTPS1
                                                                                                                                                                                                                                                                                          271
                                                                                                                                                                                                                                                                                  VE
                                                                                                                                                                                                                                                                                          270
ZzZSS1
                                                                                                                                                                                                                                                                                          273
ZzZSS2
                                                                                                                                                                                                                                                                                  VE
CbTPS1
                                                                                                                                                                                                                                                                                           275
ChTPS1
                          CYCWSMVIRHERSCSRARLISTKLLMLITVLDDTYDSYSTLEESRLLTDAIQRWNPNEVDQLPEYLRDFF 341
CYYWIVAVYFEPQYSRARVITSKAISLMSIMDDIYDNYSTLEESRLLTEAIERWEPQAVDCVPEYLKDFY 340
GYYWVLTIYFEPQHSRARVICSKVFAFLSIMDDIYDNYGILEECTLLTEAIKRWNPQAIDGLPEYLKDYY 343
CFFWSTCAYYEPQHSVGRAVLTKIVLLLSVTDDTYDAYGTYDELKLYTNAVQRWDASAMDELPDYMKTLY 345
CFFWSTCAYYEPQHSVGRAVLTKIMLLSVTDDTYDAYGTYDELKLYTNAVQRWDYSAMDELPDYMKALY 345
ZoTPS1
ZzZSS1
ZzZSS2
CbTPS1
ChTPS1
                           LKMUNIFQEFENELA-PEEKFRILYLKEEWKIQSQSYFKECQWRDDNYVPKLEEHMRLSIISVGFVLFYC 410
LKLUKTYKDFEDELE-PNEKYRIPYLQEEIKVLSRAYFQEAKWGVERYVPALEEHLLVSLITAGYFAVAC 409
LKLUKTFEEFEDELE-LNEKYRMLYLQDEVKALAISYLQEAKWGIERHVPSLDEHLHNSLISSGSSTVIC 412
RALUNVYDEVERDLAKQGRAYGVHHSKEAFKEIVRSYEIEAEWFKEGYVASFEEYMKNALVTSTGRLHTT 415
RALUNVYDEVERDLAKQGRDYGVHHSKEAFKEIVRSYEIEAEWFKEGYVASFEEYMKNALVTSTGRLHTT 415
ZoTPS1
ZzZSS1
ZzZSS2
CbTPS1
ChTPS1
                           GFLSCMEEAVATKDAFEWFASFPKIIEACATIIRITNDITSMEREOKRAHVASTVDCYMKEYGTSKDVAC 480
ASYVCLG-EDATKETFEWVASSPKILKSCSIHCRLMDDITSHQREOERDHFASTVESYMKEHGTSAKVAC 478
ASFVCMG-EVATKEVFDWLSSFPKVVEACCVIGRLINDIRSHELEOGRDHTASTVESYMKEHDTNVDVAC 481
SCFMCLEADVATTEAFEWILTKPKMVAASGAIGRLVDDVMSNDEEOERGHVATGLDCYMKOHGVSKQEAI 485
SCFMCLEADVATTEAFEWILTKPKMVAASGAIGRLVDDVMSHDEEOERGHVATGLDCYMKORGVSKQEAI 485
ZoTPS1
ZzZSS1
ZzZSS2
CbTPS1
ChTPS1
                          EKLLGFVBDANKTINEELLTETGLSREVIELSFHSAQTTEFVYKHVDAFTEPNTTMKENIFSLLVHPIPI 550
EKLQVMVBQKNKDLNEECLRPTQVARPLIEIILNLSRAMEDIYKHKDTYTNSNTRMKDNVSLIFVESFLI 548
EKLREIVBKANKDLNNESLNPTKVPRLMIERIVNLSKSNEEIYKYNDTYTNSDTTMKDNISLVLVESCDY 551
VELYKMIBNANRDINEEMLKPTAISMKLLIHVLNLSRISDVVYKYVDGYTHP-EIIKDHVISLFEDPIPM 554
VELYKMIBNANRDINEEMLKPTAISMKLLIHVLNLSRISDVVYKYVDGYTHP-EIIKDHVISLFEDPIPM 554
ZoTPS1
ZzZSS1
ZzZSS2
CbTPS1
ChTPS1
ZoTPS1
ZzZSS1
                         --- 548
ZzZSS2
                           FNK 554
ChTPS1
                           --- 554
```

Supplementary Fig. S2 Amino acid alignment of sesquiterpene synthases derived from *Zingiber* plants and *Camellia* plants

3

4

5

6

7

The deduced amino acid sequences of the *Zingiber* terpene synthases (TPSs) together with *Camellia* TPSs, isolated by our group, were aligned. The TPS-conserved motifs RDR, DDxxD, and NSE/DTE [(N/D)Dxx(S/T)xxxE] are indicated by asterisks. Amino acids conserved in all TPSs are shown in black boxes, whereas amino acids that are not conserved between CbTPS1 and ChTPS1

are indicated by +. Arrows indicate the sequences corresponding to the degenerate primers. Three amino acids encircled by a simple square would correspond to E487 in ChTPS1. ZoTPS1, Zingiber officinale β -bisabolene synthase³²; ZzZSS1, Z. zerumbet α -humulene synthase³⁴; ZzZSS2, Z. zerumbet β -eudesmol synthase³³; CbTPS1, Camellia brevistyla hedycaryol synthase³⁰.

Supplementary Fig. S3 Expression analysis of the *Camellia hiemalis ChTps1* gene by reverse transcription (RT)-polymerase chain reaction (PCR). Total RNAs were extracted from 3 independent samples (1-3) of each tissue (flowers, leaves, and stems) and submitted for RT-PCR. Total RNA without a treatment of reverse transcriptase was used as the template for the 'w/o RT' reaction. An actin-like (ACT-like) gene of *C. hiemalis* was amplified as an internal control. Nine samples (three replicates of each tissue) in each row (*ChTps1*, w/o RT, ACT-like) were simultaneously loaded into one gel and electrophoresed.

Supplementary Fig. S4 Schematic diagram of the loop structure around R477. An ionic bond between R477 and E487 was predicted in this model (dotted circle). The atoms were colored as C: yellow, N: blue, O: red, S: green. The backbone of polypeptide was shown in blue line.

Supplementary Fig. S5 Comparison of the *Camellia hiemalis* ChTPS1 and ChTPS1 (R477H) products. Volatile compounds biosynthesized by ChTPS1 and ChTPS1 (R477H) were extracted by decane and analyzed by GC-MS. The chromatograms were overlapped in the same figure (ChTPS1: black, ChTPS1(R477H): pink). Three peaks correspond to those in Fig. 2a.

Supplementary Fig. S6 Comparison of the peak areas obtained by GC-MS analysis of ChTps1a and ChTps1 (R477H) clone's products. Three peak areas, shown in Fig. 2a (Peaks 1-3), of total ion chromatogram were obtained by the analysis. Relative abundance of each peak was depicted when the Peak 2 area of ChTps1a clone was set to 1. Bars represent means \pm standard deviation of three replicates.

Supplementary Fig. S7 Phylogenetic positions of the *ChTps1a-g* genes. The nucleotide sequences of these seven genes were compared phylogenetically.