GEOMETRIA DIFERENCIAL

Seminari II El pla hiperbòlic Es considera una superfície S que admet una parametrització global definida al semiplà superior $\mathbb{H}=\{(x,y)\in\mathbb{R}^2\mid y>0\}$ en la qual la primera forma fonamental I té coeficients $E=G=\frac{1}{y^2}$ i F=0. Una tal superfície s'anomena pla hiperbòlic. Identifiquem S amb \mathbb{H} a través d'aquesta parametrització.

Exercici 11.1. Comproveu que la mesura d'angles de \mathbb{H} coincideix amb la mesura d'angles euclidiana en el punt de coordenades (x, y).

Solució: Si $v, w \in T_{(x,y)}\mathbb{H}^2$ llavors $\langle v, w \rangle_{\text{hip}} = \frac{1}{y^2} \langle v, w \rangle_{\text{eucl}}$. Els cosinus coincideixen i ja ho tenim.

Exercici 11.2. Calculeu l'àrea de la regió $R_1 = \{(x,y) : 0 < x < 1, 1 < y < \infty\}$. Comproveu que la regió $R_2 = \{(x,y) : 0 < x < 1, 0 < y < 1\}$ té àrea infinita.

Solució:

$$A(R_1) = \int_{R_1} \sqrt{EG - F^2} dx dy = \int_0^1 \int_1^\infty \frac{1}{y^2} dy dx = 1, \quad A(R_2) = \int_0^1 \frac{1}{y^2} dy = \infty.$$

Exercici 11.3. Es posible determinar, a partir de les dades anteriors, les línies de curvatura de S? I les línies asimptòtiques?

Solució: No. Les línies assimptòtiques i les línies de curvatura es calculen mitjançant la segona forma fonamental que no sabem quina és.

Exercici 11.4. Determinem les geodèsiques $\gamma(t) = (x(t), y(t))$:

(a) Deduïu, fent servir les equacions d'Euler-Lagrange, que les equacions de les geodèsiques en aquestes coordenades estan donades per

$$\begin{cases} \ddot{x} - \frac{2}{y}\dot{x}\dot{y} &= 0\\ \ddot{y} + \frac{1}{y}\dot{x}^2 - \frac{1}{y}\dot{y}^2 &= 0 \end{cases}$$

1 2L - 2L =0 } tolor.

i que per tant els símbols de Christoffel són $-\Gamma_{11}^2=\Gamma_{12}^1=\Gamma_{21}^1=\Gamma_{22}^2=-\frac{1}{y}$ i la resta zero.

Solució:

a) Derivem $L = y^{-2}(\dot{x}^2 + \dot{y}^2)$:

$$\frac{\partial L}{\partial x} = 0, \qquad \frac{\partial L}{\partial y} = -2y^{-3}(\dot{x}^2 + \dot{y}^2), \qquad \frac{\partial L}{\partial \dot{x}} = 2y^{-2}\dot{x}, \qquad \frac{\partial L}{\partial \dot{y}} = 2y^{-2}\dot{y}$$
$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = 2y^{-3}(y\ddot{x} - 2\dot{x}\dot{y}), \qquad \frac{d}{dt}\frac{\partial L}{\partial \dot{y}} = 2y^{-3}(\ddot{y}y - 2\dot{y}^2).$$

Substituïnt a

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0, \qquad \frac{d}{dt}\frac{\partial L}{\partial \dot{y}} - \frac{\partial L}{\partial y} = 0,$$

surt.

(b) Comproveu que la curvatura de Gauss de \mathbb{H} és constant K=-1.

Solució:

$$K = \frac{1}{E} (\Gamma_{11}^1 \Gamma_{12}^2 + \Gamma_{11}^2 \Gamma_{22}^2 - \Gamma_{12}^1 \Gamma_{11}^2 - \Gamma_{12}^2 \Gamma_{12}^2 + (\Gamma_{11}^2)_v - (\Gamma_{12}^2)_u).$$

(c) Comproveu que les semirectes verticals $\gamma(t) = (x_0, e^{at})$ són geodèsiques.

Es comprova i surt.

(d) Deduïu de les equacions del primer apartat que les geodèsiques compleixen $\dot{x}/y^2 = ct$. Veieu que llavors es té que $\cos \phi/y = ct$. on ϕ és l'angle format per la geodèsica γ amb les rectes horitzontals y = ct al punt considerat.

Per la primera equació,

$$\frac{d}{dt}\frac{\dot{x}}{y^2} = \frac{\ddot{x}}{y^2} - 2\frac{\dot{x}\dot{y}}{y^3} = \frac{1}{y^2}(\ddot{x} - \frac{2}{y}\dot{x}\dot{y}) = 0$$

Per tant $\frac{\dot{x}}{v^2}$ és constant. Com que també $|\gamma'|$ és constant, deduïm

$$\frac{\cos\phi}{y} = \frac{E\dot{x}}{y|\gamma'|\sqrt{E}} = \frac{\dot{x}}{y^2|\gamma'|} = ct.$$

De la relació $\cos\phi/y=ct.$ veiem que unes geodèsiques tornen cap avall i altres $\phi=\pi/2$ són les de l'apartat anterior.

$$\cos \phi = \frac{\langle (1,0),87\rangle}{\langle (0,4)|81\rangle} = \frac{\frac{2}{32}}{\frac{2}{3}\cdot 1} = \frac{21}{3} \Rightarrow \frac{\cos \phi}{3} = \frac{21}{32} = \frac{21}{32} = \frac{21}{32}$$

(e) Proveu que les semicircumferències (euclidianes) a \mathbb{H} amb centre a la recta y=0 compleixen la relació $\frac{1}{y}\cos\phi=ct$. Proveu que les geodèsiques γ de S són de la forma $x=x_0+r\cos\theta,\ y=r\sin\theta$, on $\theta=\theta(t)$ compleix l'equació $\ddot{\theta}=\dot{\theta}^2\cot\theta$.

Solució: És evident que $\cos \phi = \sin \theta = \frac{y}{r}$ (veure dibuix). Això demostra la primera afirmació. Per a la segona part, no usem formalment aquest fet, sinó que plantegem $\gamma(t) = r(\cos \theta(t), \sin \theta(t))$ i calculem:

$$\dot{x} = -r\dot{\theta}\sin\theta \qquad \qquad \ddot{x} = -r\dot{\theta}^2\cos\theta - r\ddot{\theta}\sin\theta$$

$$\dot{y} = r\dot{\theta}\cos\theta \qquad \qquad \ddot{x} = -r\dot{\theta}^2\sin\theta + r\ddot{\theta}\cos\theta$$

I per tant les equacions (a) es converteixen en

$$0 = \ddot{x} - \frac{2}{y}\dot{x}\dot{y} = r\dot{\theta}^2\cos\theta - r\ddot{\theta}\sin\theta \tag{11.3}$$

$$0 = \ddot{y} + \frac{1}{y}(\dot{x}^2 - \dot{y}^2) = r\ddot{\theta}\cos\theta - r\frac{\cos^2\theta}{\sin\theta}\dot{\theta}^2$$
(11.4)

que equivalen totes dues a $\ddot{\theta} = \dot{\theta}^2 \cot \theta$. Tota solució donarà lloc a una corba que compleix les equacions de les geodèsiques.

- (f) Per resoldre $\ddot{\theta} = \dot{\theta}^2 \cot \theta$ busquem $\theta = \theta(t)$ de manera que t sigui un múltiple del paràmetre arc s de γ . Comproveu que $s = \int \frac{1}{\sin \theta} d\theta = \log \left(\tan \frac{\theta}{2} \right)$ i que per tant $\theta = 2 \arctan e^s = 2 \arctan e^{at+b}$.
 - (g) Deduïu, com a conclusió, que les geodèsiques (no verticals) de H estan donades per

$$x(t) = x_0 + r \frac{1 - e^{2(at+b)}}{1 + e^{2(at+b)}}, \qquad y(t) = r \frac{2e^{at+b}}{1 + e^{2(at+b)}}.$$

Can gre
$$S = (x_0, 0) + r(c_0, 0) + r(c_0, 0) = 0$$
 $S = \int_{-\infty}^{\infty} \frac{d\theta}{\sqrt{r_0}}$

Exercici 11.5. Proveu que les aplicacions de la forma $\Psi_1(x,y) = \frac{1}{x^2+y^2}(x,y)$, $\Psi_2(x,y) = (kx,ky)$ i $\Psi_3(x,y) = (x+c,y)$ són isometries de \mathbb{H}^2 , on $k > 0, c \in \mathbb{R}$.

Solució:

$$\frac{\partial \psi_1}{\partial x} = (x^2 + y^2)^{-2} (y^2 - x^2, -2xy), \quad \frac{\partial \psi_1}{\partial y} = (x^2 + y^2)^{-2} (-2xy, x^2 - y^2).$$

$$I(\frac{\partial \psi_1}{\partial x}, \frac{\partial \psi_1}{\partial x}) = (\frac{x^2 + y^2}{y})^2 (x^2 + y^2)^{-4} ((y^2 - x^2)^2 + 4x^2y^2) = \frac{1}{y^2} = E$$

$$I(\frac{\partial \psi_1}{\partial x}, \frac{\partial \psi_1}{\partial y}) = \dots = 0 = F, \qquad I(\frac{\partial \psi_1}{\partial y}, \frac{\partial \psi_1}{\partial y}) = \dots = \frac{1}{y^2} = G$$

$$\begin{cases} Y_1(z) = \frac{1}{2} & \text{Invarior} \\ Y_2(z) = kz & \text{Hantiliz} \\ Y_3(z) = 2+a, \text{ at } R & \text{Drustinis} \end{cases}$$

Exercici 11.6. Donat $c \in \mathbb{R}$ considerem $\Psi(x,y) = \frac{1+c^2}{(x-c)^2+y^2}(x-c,y) + (c,0)$. Proveu que $\Psi(0,e^{-t}) = (x(t),y(t))$ amb x(t),y(t) donades a (11.5) i trobeu x_0,r,a,b .

Indicacions:

Veiem que Ψ és isometria. Per tant $\Psi(0,e^{-t})$ ha de ser geodèsica. No cal calcular $\Psi(0,e^{-t})$.

Exercici 11.7. Donats dos punts $p, q \in \mathbb{H}$, proveu que existeix una geodèsica $\gamma(t)$ de \mathbb{H} tal que $\gamma(0) = p, \gamma(1) = q$. Proveu que la longitud de $\gamma([0, 1])$ és menor o igual que la longitud de qualsevol corba que uneixi $\gamma(0)$ amb $\gamma(1)$.

Indicacions: La primera part es dedueix del que hem vist. Per a la segona part, ens podem reduir al cas en què $\gamma(t)$ és vertical. En aquest cas, es comprova fàcilment que γ minimitza longituds.

Exercici 11.8. Donats $P \in \mathbb{H}$ i $v \in T_P\mathbb{H}$ un vector amb I(v,v) = 1, denotem per $\gamma_{P,v}(s)$ la geodèsica parametritzada per l'arc tal que $\gamma_{P,v}(0) = P$ i $\gamma'_{P,v}(0) = v$. Anomenem circumferència hiperbòlica de radi r i centre P al conjunt $S_r(P) = \{\gamma_{P,v}(r) : v \in T_P\mathbb{H}, I(v,v) = 1\}$.

- a) Dibuixeu amb Sage un parell de circumferències hiperbòliques centrades a P = (0, 1).
- b) Proveu que les circumferències hiperbòliques al semiplà es veuen com circumferències euclidianes.

Per saber més.

- 1. Corbes especials. La circumferència euclidiana de centre (x_0, a) i radi a és tangent a la recta $\{y=0\}$ en el punt $(x_0,0)$ i és ortogonal a totes les geodèsiques que surten aquest punt. Aquest tipus de corbes s'anomenen horocicles i s'obtenen com el límit d'una família de circumferències hiperbòliques que passen per un punt fixat i el centre de les quals tendeix a l'infinit.
 - La intersecció amb H d'una circumferència euclidiana, quan no és una geodèsica, ni una circumferència hiperbòlica, ni un horocicle (i.e. quan talla y=0 en un angle diferent de 0 i $\pi/2$) s'anomena corba equidistant. Tots els punt d'aquesta corba estan a la mateix distància de la geodèsica que talla y = 0 en els mateixos punts.
- 2. Pseudosfera. La pseudosfera (sense un meridià) que hem tractat al seminari anterior és isomètrica a un troç de \mathbb{H} donat per $P = \{(x,y) \in \mathbb{H} : |x| < a^2, y > b^2\}$ (per a, b adequats). Un teorema de Hilbert diu que el plà hiperbòlic (complet) no es pot trobar com a superfície de \mathbb{R}^3 , en canvi un troc d'ell si que es pot trobar, la pseudosfera.

Sage

Hyperbolic Geometry

- Hyperbolic Points
- Hyperbolic Isometries
- Hyperbolic Geodesics
- Hyperbolic Models
- Interface to Hyperbolic Models

Referències:

- Smogorzhevski, A. Acerca de la geometría de Lobachevski. Lecciones populares de matemáticas, 1978. Ed. MIR, Moscú.
- Ratcliffe, John G. Foundations of hyperbolic manifolds. Graduate Texts in Mathematics, 1994. Springer Verlag, NY.

http://doc.sagemath.org/html/en/reference/hyperbolic geometry/index.html

Al CV trobareu un enllaç a una xerrada divulgativa de Geometria Hiperbòlica