Lecture 4

Multivariate Normal Distribution, Copula, and Nonparametric Density Estimation

Readings: Zelterman, 2015 Chapters 5, 6, 7, Izeman, 2008 Chapter 4.1, 4.3, 4.5

DSA 8070 Multivariate Analysis September 12 - September 16, 2022

> Whitney Huang Clemson University

Notes

Agenda

- **Multivariate Normal Distribution**
- Geometry of the Multivariate Normal Density
- 3 Copula
- Monparametric Density Estimation

Notes			

The Multivariate Normal Distribution

Just as the univariate normal distribution tends to be the most important distribution in univariate statistics, the multivariate normal distribution is the most important distribution in multivariate statistics

- Mathematical Simplicity: It is easy to obtain multivariate methods based on the multivariate normal distribution
- Central Limit Theorem: The sample mean vector is going to be approximately multivariate normally distributed when the sample size is sufficiently large
- Many natural phenomena may be modeled using this distribution (perhaps after transformation)

į	Multivariate Normal Distribution, Copula, and Nonparametric Density Estimation
	Multivariate Normal Distribution

Notes			

Review: Univariate Normal Distributions

The probability density function of the normal distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\},$$

where μ and σ^2 are its mean and variance, respectively.

 $\left(\frac{x-\mu}{\sigma}\right)^2=(x-\mu)(\sigma^2)^{-1}(x-\mu)$ is the squared statistical distance between x and μ in standard deviation units

Multivariate Normal Distributions

If we have a p-dimensional random vector that is distributed according to a multivariate normal distribution with mean vector $\boldsymbol{\mu}$ = $(\mu_1, \mu_2, \cdots, \mu_p)^T$ and covariance matrix $\Sigma = \{(\sigma_{ij})\}\$, the probability density function is

$$f(\boldsymbol{x}) = \frac{1}{2\pi^{\frac{p}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right\}.$$

Notes

Review: Central Limit Theorem (CLT)

The sampling distribution of the mean will become approximately normally distributed as the sample size becomes larger, irrespective of the shape of the population distribution!

Let
$$X_1, X_2, \cdots, X_n \overset{i.i.d.}{\sim} F$$
 with $\mu = \mathrm{E}[X_i]$ and $\sigma^2 = \mathrm{Var}[X_i]$. Then $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n} \overset{d}{\to} \mathrm{N}(\mu, \frac{\sigma^2}{n})$ as $n \to \infty$.

Notes

CLT In Action

- Generate 100 (n) random numbers from an Exponential distribution (population distribution)
- Compute the sample mean of these 100 random numbers
- Repeat this process 120 times

Multivariate Normal Distribution, Copula, and Nonparametric Density Estimation
CLEMS
Multivariate Normal Distribution
47

Copula, and Nonparametric Density Estimation	
CLEMS N I V E R S I Y Y	
Normal Distribution	

Notes

Properties of the Multivariate Normal Distribition

• If $X \sim N(\mu, \Sigma)$, then any subset of X also has a multivariate normal distribution

Example: Each single variable $X_i \sim N(\mu_i, \sigma_i^2), \quad i = 1, \dots, p$

ullet If $X \sim \mathrm{N}(\mu, \Sigma)$, then any linear combination of the variables has a univariate normal distribution

Example: If $Y = a^T X$. Then $Y \sim N(a^T \mu, a^T \Sigma a)$

 Any conditional distribution for a subset of the variables conditional on known values for another subset of variables is a multivariate distribution

Example:
$$X_1|X_2 = x_2 \sim N(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$

otes	

Example: Linear Combination of the Cholesterol Measurements [source: Penn State Univ. STAT 505]

Cholesterol levels were taken 0, 2, and 4 days following the heart attack on n patients. The mean vector is:

	Variable	Mean
	X_1 (0-day)	259.5
$ar{oldsymbol{x}}$ =	X_2 (2-day)	230.8
	X_3 (4-day)	221.5

and the covariance matrix

$$\mathbf{S} = \begin{bmatrix} 2276 & 1508 & 813 \\ 1508 & 2206 & 1349 \\ 813 & 1349 & 1865 \end{bmatrix}$$

Suppose we are interested in Δ = X_2 – X_1 , the difference between the 2-day and the 0-day measurements. We can write the linear combination of interest as

$$\Delta = \boldsymbol{a}^T \boldsymbol{X} = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

Distribution, Copula, and Nonparametric Density Estimation
CLEMS (1)
Multivariate Normal Distribution

Notes			

Cholesterol Measurements Example Cont'd

ullet The mean value for the difference Δ is

$$\begin{bmatrix} -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 259.5 \\ 230.8 \\ 221.5 \end{bmatrix} = -28.7$$

ullet The variance for Δ is

$$\begin{bmatrix} -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2276 & 1508 & 813 \\ 1508 & 2206 & 1349 \\ 813 & 1349 & 1865 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -768 & 698 & 536 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

$$= 1466$$

• If we assume these three variables together follows a multivariate normal distribution, then Δ follows a univariate normal distribution

Notes

Bivariate Normal Distribution

Let's focus bivariate normal distributions first as we can visualize them to facilitate our understanding. Suppose we have X_1 and X_2 jointly follows a bivariate normal distribution:

$$\left(\begin{array}{c} X_1 \\ X_2 \end{array}\right) \sim \mathcal{N} \left[\left(\begin{array}{cc} \mu_1 \\ \mu_2 \end{array}\right), \left(\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array}\right) \right]$$

Let's fix $\mu_1 = \mu_2 = 0$ and $\sigma_1^2 = \sigma_2^2 = 1$

Notes

Notes

Exponent of Multivariate Normal Distribution

Recall the multivariate normal density:

$$f(\boldsymbol{x}) = \frac{1}{2\pi^{\frac{p}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp \left\{ -\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \right\}.$$

This density function only depends on x through the squared Mahalanobis distance: $(x - \mu)^T \Sigma^{-1} (x - \mu)$

- For bivariate normal, we get an ellipse whose equation is $(x - \mu)^T \Sigma^{-1} (x - \mu) = c^2$ which gives all \boldsymbol{x} = (x_1, x_2) pairs with constant density
- These ellipses are call contours and all are centered around μ
- A constant probability contour equals
 - = all \boldsymbol{x} such that $(\boldsymbol{x} \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} \boldsymbol{\mu}) = c^2$
 - = surface of ellipsoid centered at μ

Multivariate Normality and Outliers

The variable d^2 = $(\boldsymbol{X} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{X} - \boldsymbol{\mu})$ has a chi-square distribution with p degrees of freedom , i.e., $d^2 \sim \chi_p^2$ if $X \sim \mathrm{N}(\mu, \Sigma) \Rightarrow$ we can exploit this result to check multivariate normality and to detect outliers

- Sort $(\boldsymbol{x}_i - \bar{\boldsymbol{x}})^T \boldsymbol{S}^{-1} (\boldsymbol{x}_i - \bar{\boldsymbol{x}})$ in an increasing order to get sample quantiles
- Calcaute the theoretical quantiles using the chi-square quantiles with $p = \frac{i-0.5}{n}, \quad i = 1, \dots, n$
- Plot sample quantile against theoretical quantiles

Eigenvalues and Eigenvectors of Σ and the Geometry of the Multivariate Normal Density

Let $\boldsymbol{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}),$ where $\boldsymbol{\mu} = (10, 5)^T$ and $\boldsymbol{\Sigma} =$ The 95% probability contour is shown below

Next, we talk about how to "draw" this contour

Notes

Notes

Probability Contours

ullet The solid ellipsoid of values x satisfy

$$(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \le c^2 = \chi^2_{df = p, \alpha}$$
 e have $p = 2$ and

Here we have
$$p$$
 = 2 and α = 0.05 \Rightarrow c = $\sqrt{\chi^2_{2,0.05}}$ = 2.4478

• Major axis: $\mu \pm c\sqrt{\lambda_1 e_1}$, where (λ_1, e_1) is the first eigenvalue/eigenvector of Σ .

$$\Rightarrow \lambda_1 = 68.316, \quad e_1 = \begin{bmatrix} -0.9655 \\ -0.2604 \end{bmatrix}$$

• Minor axis: $\mu \pm c\sqrt{\lambda_2 e_2}$, where (λ_2, e_2) is the second eigenvalue/eigenvector of Σ .

$$\Rightarrow \lambda_2 = 4.684, \quad \boldsymbol{e}_2 = \begin{bmatrix} 0.2604 \\ -0.9655 \end{bmatrix}$$

Normal Distribution, Copula, and Nonparametric Density Estimation
CLEMS N

Notes		

Notes

Example: Wechsler Adult Intelligence Scale [source: Penn State Univ. STAT 505]

We have data (wechslet.txt) on 37 subjects (n = 37) taking the Wechsler Adult Intelligence Test, which consists four different components: 1) Information; 2) Similarities; 3) Arithmetic; 4) Picture Completion.

- $\ensuremath{ f O}$ Calculate the sample mean vector \bar{x} and covariance matrix S
- $igothermal{igothermal{O}}$ Compute the eigenvalues and eigenvectors of S and give a geometry interpretation
- Diagnostic the multivariate normal assumption

Normal Distribution, Copula, and Nonparametric Density Estimation				
CLEMS N				
Geometry of the Multivariate Normal Density				

Notes

Beyond Normality: Copula [Sklar, 1959; Joe, 1997]

A copula is a multivariate cumulative distribution function for which the marginal probability distribution of each variable is uniform on the interval $\left[0,1\right]$

$$\begin{split} F(x_1, \cdots, x_p) &= \mathbb{Pr}(X_1 \leq x_1, \cdots, X_p \leq x_p) \\ &= \mathbb{Pr}(F_1^{-1}(U_1) \leq x_1, \cdots, F_p^{-1}(U_p) \leq x_p) \\ &= \mathbb{Pr}(U_1 \leq F_1(x_1), \cdots, U_p \leq F_p(x_p)) \\ &= C\left(F_1(x_1), \cdots, F_p(x_p)\right) \end{split}$$

- Copulas are used to model the dependence between random variables
- Copula approach has becomes popular in many areas, e.g., quantitative finance as it allows for separate modeling of marginal distributions and dependence structure

Distribution, Copula, and Nonparametric Density Estimation				
CLEMS N				
Copula				

Notes

An Illustration of Bivariate Gaussian Copula

Left: Normal marginals + Gaussian Copula (ρ = 0.7) **Right:** Exponential marginals + Gaussian Copula (ρ = 0.7)

Multivariate Normal Distribution, Copula, and Nonparametric Density Estimation
Normal Density Copula Nonparametric Density Estimation
419

Notes ______

More Examples

Notes			

Old Faithful Geyser Data

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone NP

Distribution, Copula, and Nonparametric Density Estimation	
CLEMS#N	
Multivariate Normal Distribution	
Geometry of the Multivariate Normal Density	
Copula	
Nonparametric Density Estimation	

Notes			

Hisograms of Old Faithful Data

Notes			

Kernel Density Estimates of Old Faithful

Notes		

Notes			