

Department ofComputer Science & Engineering

Thesis Title:

Integrative Trajectory Forecasting for Autonomous Vehicles in Mixed Traffic Environments

Supervised By:

Roll No: 1803170

Md Rakibul Haque

Lecturer,

Dept. of Computer Science & Engineering, RUET.

Presented By:

Md. Nazmul Hossain

ID: 1803170

Topic Outline

- □ Introduction
- □ Literature Review
- Challenges
- Objectives
- Methodology
- Dataset Details
- □ Results & Performance Analysis
- Conclusion
- □ Limitations & Future Work
- References

Introduction

- ☐ Trajectory refers to a path that a vehicle moves through space over time.
- □ For of an autonomous vehicle, trajectory not only the route but also it's motion—speed, acceleration, and direction etc.

Fig – 1: Some Trajectories of Various Vehicle [7].

Introduction (CONT'D)

☐ Mixed traffic environment consists of different types of road users, such as pedestrians, bicycles, motorcycles, cars, and buses, share the same space and interact with each other.

Fig – 2: Mixed Traffic Environment [1].

Literature Review

TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents [2]

Performances:

- > Using previous state-of-the-art approaches in accuracy for trajectory prediction in heterogeneous traffic.
- > Offer real-time performance without assumptions about traffic conditions or the number of agents.

Limitations:

- > The accuracy varies with traffic conditions and the historical data available.
- > Future improvements will consider additional constraints such as lane directions, traffic signals, and rules.

Literature Review (CONT'D)

Interactive Trajectory Prediction for Autonomous Driving via Recurrent Meta Program Induction Network [3]

Performances:

- > Here, behavior estimation based on historical observation of all related cars including the target car and surrounding cars.
- > Also achieving lower mean error rates in trajectory prediction for both longitudinal and lateral directions.

Limitations:

Roll No: 1803170

Future developments are needed for a more advanced generator and observer structure to further reduce prediction errors and to extend the framework to more general scenarios, such as turns at intersections and highway merging.

Literature Review (CONT'D)

TraPHic: Trajectory Prediction in Dense and Heterogeneous Traffic Using Weighted Interactions [4]

Performances:

> It is LSTM-CNN based hybrid network, where consider the fast moving vehicle by increase their weights.

Limitations:

- > It is designed for dense heterogeneous traffic scenarios, it is not effective for sparse traffic.
- Here, do not use any batch normalization and dropout.

Challenges

Objectives

- ☐ Deals with mixed traffic environment consists of various cars, bicycles, bikes, buses, pedestrians etc. in an urban areas.
- ☐ Considering driver dynamic behavior and turning radius.
- ☐ Also increasing the accuracy of the model is an obligatory part of my work.

Methodology

Fig – 3: Methodology.

Methodology (CONT'D)

Fig – 4: Model Flow Chart.

Methodology (CONT'D)

Model Architecture

Fig – 5: GRU-CNN Architecture

Dataset Details

Dataset Name: NGSIM (Next Generation Simulation) Dataset

Source: The NGSIM dataset originates from the Next Generation Simulation (NGSIM) program, a project by the U.S. Department of Transportation (DOT) [5]

Data Collection: The NGSIM dataset was obtained through the utilization of tower-mounted cameras, providing a bird's-eye perspective for data collection.

No. of Frames: 10.2×10^3

Density: 1.85×10^3 per km

Visibility: 0.548 km

Roll No: 1803170

Average Instances per frame

Agent	Avg. Instance
Car	981.4
Bike	3.9
Track	28.2

Dataset Details (CONT'D)

Attributes Details: NGSIM dataset has 25 Attributes. Some of them described below –

Attributes	Details
Positional Data	It represents the spatial position of an object in a frame.
Motion Data	It represents the speed, acceleration etc. of a vehicle.
Vehicle Information	It represents the vehicle id, type, shape, heading etc.
Time Data	It represents the timestamps of a frame capture.

➤ We implemented the model with the NGSIM Dataset —

Average Displacement Error (ADE)	2.86164
Final Displacement Error (FDE)	5.19008

Operation	Value (s)
Data Loading Time	0.418
Training Time	30961.05
Testing Time	119.77

Average Training Loss vs Epoch Curve —

Figure - : Average Training Loss vs Epoch Curve.

> Average Validating Loss vs Epoch Curve -

Figure - : Average Validating Loss vs Epoch Curve.

> Comparison of previous works with our model using NGSIM dataset -

Model	ADE	FDE
RNN-ED [7]	6.86	10.02
S-LSTM [8]	5.73	9.58
S-GAN [9]	5.16	9.42
CS-LSTM [10]	7.25	10.05
TraPHic [4]	5.63	9.91
Our Model	2.86	5.19

Conclusion

In conclusion, our study presents a novel trajectory forecasting model tailored to the NGSIM dataset. Leveraging a custom-designed GRU-CNN architecture, we achieved promising results on trajectory forecasting, which is helpful for autonomous vehicle or advance driver assistance system.

- Utilized GRU for temporal dependency analysis and CNN for capturing dynamic driver behavior and turning radius.
- Use batch normalization and dropout for reduce overfitting.

Roll No: 1803170

• Evaluated our model against existing methodologies, showcasing superior performance metrics.

Limitations & Future Work

Our Model outperform in dense heterogeneous traffic scenarios, but limiting its effectiveness in sparse or homogeneous traffic conditions. So in future a more generalized model can be develop.

Acknowledging the limitations of the NGSIM dataset, future work may involve utilizing datasets with higher density and greater heterogeneity.

References

- [1] "Isometric city crossroad with cars, road intersection, traffic jam, urban downtown street with transport and people" [Online]. Available: https://c8.alamy.com/comp/2GDM3KX/isometric-city-crossroad-with-cars-road-intersection-traffic-jam-urban-downtown-street-with-transport-and-people-vector-illustration-public-and-private-transport-in-residential-area. [Accessed: April 20, 2024].
- [2] Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and D. Manocha, "Traffic predict: Trajectory prediction for heterogeneous traffic-agents,"
- [3] C. Dong, Y. Chen, and J. Dolan, "Interactive trajectory prediction for autonomous driving via recurrent meta induction neural network," pp. 1212–1217.
- [4] R. Chandra, U. Bhattacharya, A. Bera, and D. Manocha, "Traphic: Trajectory prediction in dense and heterogeneous traffic using weighted interactions," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 8483–8492.
- [5] "Next Generation Simulation (NGSIM) Open Data." Accessed on: April 20, 2024.
- [6] "ApolloScape Trajectory Dataset" [Online]. Available: https://apolloscape.auto/trajectory.html#to_download_href. [Accessed: April 20, 2024].

References

- [7] D. Britz, A. Goldie, M.-T. Luong, and Q. Le, "Massive exploration of neural machine translation architectures,".
- [8] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, "Social 1stm: Human trajectory prediction in crowded spaces," .
- [9] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, "Social gan: Socially acceptable trajectories with generative adversarial networks,".
- [10] N. Deo and M. M. Trivedi, "Convolutional social pooling for vehicle trajectory prediction,".

Thank You

Q&A