Curs 3

Cuprins

- 1 Izomorfisme de algebre multisortate
- Zipuri Abstracte de Date
- 3 Termeni. Algebră de termeni.
- 4 Algebre inițiale

Amintiri

Definiție

- O signatură multisortată este o pereche (S, Σ) , unde
 - \square $S \neq \emptyset$ este o mulțime de sorturi.
 - \square Σ este o mulțime de simboluri de operații de forma

$$\sigma: s_1 s_2 \dots s_n \to s$$
.

Amintiri

Definiție

- O signatură multisortată este o pereche (S, Σ) , unde
 - \square $S \neq \emptyset$ este o mulțime de sorturi.
 - \square Este o mulțime de simboluri de operații de forma

$$\sigma: s_1s_2\ldots s_n \to s$$
.

Definiție

- O algebră multisortată de tip (S,Σ) este o structură $\mathcal{A}=(A_S,A_\Sigma)$ unde
 - \square $A_S = \{A_s\}_{s \in S}$ este o mulțime S-sortată (mulțimea suport).
 - \square $A_{\Sigma} = \{A_{\sigma}\}_{\sigma \in \Sigma}$ este o familie de operații astfel încât
 - □ dacă $\sigma: s_1 \dots s_n \to s$ în Σ , atunci $A_\sigma: A_{s_1} \times \dots \times A_{s_n} \to A_s$ (operatie).
 - □ dacă σ : \rightarrow s în Σ , atunci $A_{\sigma} \in A_{s}$ (constantă).

Amintiri

Fie două (S, Σ) -algebre $\mathcal{A} = (A_S, A_{\Sigma})$ și $\mathcal{B} = (B_S, B_{\Sigma})$.

Definiție

Un morfism de (S, Σ) -algebre $h : A \to \mathcal{B}$ este o funcție S-sortată $h = \{h_s\}_{s \in S} : \{A_s\}_{s \in S} \to \{B_s\}_{s \in S}$ care verifică condiția de compatibilitate:

- \square pt. or. $\sigma : \rightarrow s \dim \Sigma$ avem $h_s(A_{\sigma}) = B_{\sigma}$.
- \square pt. or. $\sigma: s_1 \dots s_n \to s$ din Σ și or. $a_1 \in A_{s_1}, \dots, a_n \in A_{s_n}$ avem $h_s(A_{\sigma}(a_1, \dots, a_n)) = B_{\sigma}(h_{s_1}(a_1), \dots, h_{s_n}(a_n)).$

Izomorfisme de algebre multisortate

Definiție și proprietăți

Definiție

Un Σ -morfism $h: \mathcal{A} \to \mathcal{B}$ se numește izomorfism dacă există un Σ -morfism $g: \mathcal{B} \to \mathcal{A}$ astfel încât $h; g = 1_A$ și $g; h = 1_B$.

- \square Dacă Σ -morfismul g de mai sus există, atunci este unic:
 - lacksquare fie un Σ -morfism $f:\mathcal{B} o\mathcal{A}$ astfel încat $h;f=1_A$ și $f;h=1_B$
 - \square avem g = g; $1_A = g$; (h; f) = (g; h); $f = 1_B$; f = f
- \square Deoarece g este unic, de obicei se notează h^{-1}
- \Box h; $h^{-1} = 1_A$ și h^{-1} ; $h = 1_B$
- $\Box (1_A)^{-1} = 1_A$

Proprietăți

Propoziție

Fie $h: A \to B$ un Σ -morfism. Atunci

h este izomorfism \Leftrightarrow este funcție S-sortată bijectivă.

Demonstrație

- (\Rightarrow) Presupunem că h este izomorfism.
 - □ Atunci există Σ-morfismul $h^{-1}: \mathcal{B} \to \mathcal{A}$ a.î. $h; h^{-1} = 1_{\mathcal{A}}$ și $h^{-1}; h = 1_{\mathcal{B}}$.
 - \square Deducem că h_s ; $h_s^{-1} = 1_{A_s}$ și h_s^{-1} ; $h_s = 1_{B_s}$, or. $s \in S$.
 - \square Deci h_s este inversabilă, și deci bijectivă, pt. or. $s \in S$.
 - \square În concluzie, h este funcție S-sortată bijectivă.

Demonstrație (cont.)

- (⇐) Presupunem că *h* este funcție *S*-sortată bijectivă.
 - \square Pt. or. $s \in S$ există $h_s^{-1}: B_s \to A_s$ a.î. $h_s; h_s^{-1} = 1_{A_s}$ și $h_s^{-1}; h_s = 1_{B_s}$.
 - \square Definim Σ -morfismul $h^{-1} = \{h_s^{-1}\}_{s \in S}$.
 - Evident avem

$$(h; h^{-1})_s = h_s; h_s^{-1} = 1_{A_s} = (1_A)_s$$

 $(h^{-1}; h)_s = h_s^{-1}; h_s = 1_{B_s} = (1_B)_s$

Deci h; $h^{-1} = 1_A$ și h^{-1} ; $h = 1_B$.

Demonstrație (cont.)

Trebuie să arătăm că funcția S-sortată $h^{-1}: B \to A$ este Σ -morfism.

- \square Fie $\sigma: s_1 \ldots s_n \to s$ în Σ și $(b_1, \ldots, b_n) \in B_{s_1} \times \ldots \times B_{s_n}$.
- \square Cum h este Σ -morfism, pt. $h_{s_1}^{-1}(b_1) \in A_{s_1}, \ldots, h_{s_n}^{-1}(b_n) \in A_{s_n}$ avem

$$h_{s}(A_{\sigma}(h_{s_{1}}^{-1}(b_{1}),\ldots,h_{s_{n}}^{-1}(b_{n}))) = B_{\sigma}(h_{s_{1}}(h_{s_{1}}^{-1}(b_{1})),\ldots,h_{s_{n}}(h_{s_{n}}^{-1}(b_{n})))$$

$$= B_{\sigma}(b_{1},\ldots,b_{n}).$$

 \square Aplicăm h_s^{-1} în ambele părti și obținem:

$$A_{\sigma}(h_{s_1}^{-1}(b_1),\ldots,h_{s_n}^{-1}(b_n))=h_{s}^{-1}(B_{\sigma}(b_1,\ldots,b_n)),$$

 \square Deci $h^{-1}: \mathcal{B} \to \mathcal{A}$ este izomorfism.

Proprietăți

Propoziție

Compunerea a două izomorfisme $f:\mathcal{A}\to\mathcal{B}$ și $g:\mathcal{B}\to\mathcal{C}$ este un izomorfism. Mai mult,

$$(f;g)^{-1}=g^{-1};f^{-1}.$$

Demonstrație

Exercițiu!

Σ-algebre izomorfe

Definiție

Două Σ -algebre $\mathcal A$ și $\mathcal B$ sunt izomorfe dacă există un izomorfism $f:\mathcal A\to\mathcal B$.

- \square Dacă \mathcal{A} și \mathcal{B} sunt izomorfe, notăm $\mathcal{A} \simeq \mathcal{B}$.
- \square Dacă $\mathcal{A} \simeq \mathcal{B}$, atunci $A_s \simeq B_s$, or. $s \in \mathcal{S}$.
- \square $\mathcal{A} \simeq \mathcal{A}$ (1_A este izomorfism)
- $\ \ \square \ \mathcal{A} \simeq \mathcal{B} \Rightarrow \mathcal{B} \simeq \mathcal{A}$
- \square $\mathcal{A}\simeq\mathcal{B}$ și $\mathcal{B}\simeq\mathcal{C}\Rightarrow\mathcal{A}\simeq\mathcal{C}$
- □ Relația de izomorfism este o relație de echivalența (reflexivă, simetrică și tranzitivă).

Exemple

Exempli

```
NAT = (S = \{nat\}, \Sigma = \{0 : \rightarrow nat, succ : nat \rightarrow nat\})
NAT-algebra A: A_{nat} := \mathbb{N}, A_0 := 0, A_{succ}(x) := x + 1
NAT-algebra \mathcal{B}: B_{nat} := \{0,1\}, B_0 := 0, B_{succ}(x) := 1 - x
NAT-algebra C: C_{nat} := \{2^n \mid n \in \mathbb{N}\}, C_0 := 1, C_{succ}(2^n) := 2^{n+1}
\mathcal{A} \not\simeq \mathcal{B}
  \square nu există niciun NAT-morfism g:\mathcal{B}\to\mathcal{A}
A \sim C
  h = \{h_{nat}\}: \{A_{nat}\} \to \{C_{nat}\}, h_{nat}(n) := 2^n
  ☐ h este izomorfism
```

Observație

Algebrele izomorfe sunt "identice" (modulo redenumire).

Tipuri Abstracte de Date

☐ Un tip abstract de date este o mulțime de date (valori) și operații asociate lor, a căror descriere (specificare) este independentă de implementare.

- □ Un tip abstract de date este o mulţime de date (valori) şi operaţii asociate lor, a căror descriere (specificare) este independentă de implementare.
- □ O algebră este formată dintr-o mulțime de elemente și o mulțime de operații.

- ☐ Un tip abstract de date este o mulțime de date (valori) și operații asociate lor, a căror descriere (specificare) este independentă de implementare.
- O algebră este formată dintr-o mulțime de elemente și o mulțime de operații.
- ☐ Algebrele pot modela tipuri de date.

- □ Un tip abstract de date este o mulțime de date (valori) și operații asociate lor, a căror descriere (specificare) este independentă de implementare.
- □ O algebră este formată dintr-o mulțime de elemente și o mulțime de operații.
- ☐ Algebrele pot modela tipuri de date.
- Două algebre izomorfe au același comportament, deci trebuie să fie modele ale aceluiași tip de date. Aceasta asigură independența de implementare.

 \square O signatură (S,Σ) este interfața sintactică a unui tip abstract de date.

- \square O signatură (S, Σ) este interfața sintactică a unui tip abstract de date.
- \square O (S, Σ) -algebră $\mathcal{A} = (A_S, A_{\Sigma})$ este o posibilă implementare.

- \square O signatură (S,Σ) este interfața sintactică a unui tip abstract de date.
- \square O (S, Σ) -algebră $\mathcal{A} = (A_S, A_{\Sigma})$ este o posibilă implementare.
- \square Dacă $\mathcal{A} \simeq \mathcal{B}$, atunci \mathcal{A} și \mathcal{B} implementează același tip de date.

- \square O signatură (S, Σ) este interfața sintactică a unui tip abstract de date.
- \square O (S, Σ) -algebră $\mathcal{A} = (A_S, A_{\Sigma})$ este o posibilă implementare.
- \square Dacă $\mathcal{A} \simeq \mathcal{B}$, atunci \mathcal{A} și \mathcal{B} implementează același tip de date.

Definiție

Un tip abstract de date este o clasă $\mathfrak C$ de (S,Σ) -algebre cu proprietatea că oricare două (S,Σ) -algebre din $\mathfrak C$ sunt izomorfe:

$$\mathcal{A}, \mathcal{B} \in \mathfrak{C} \Rightarrow \mathcal{A} \simeq \mathcal{B}.$$

 $[\mathcal{A}] := \{\mathcal{B} \ (S, \Sigma) \text{-algebră} \mid \mathcal{A} \simeq \mathcal{B}\}$ este tip abstract de date.

Termeni. Algebră de termeni.

Termeni fără variabile

Fie (S, Σ) o signatură multisortată.

Definiție

Mulțimea S-sortată a termenilor fără variabile,

$$T_{\Sigma}$$
,

este cea mai mică mulțime de șiruri finite peste alfabetul

$$L = \bigcup_{w,s} \Sigma_{w,s} \cup \{(,)\} \cup \{,\}$$

care verifică:

- **1** Dacă $\sigma : \to s$ în Σ , atunci $\sigma \in (T_{\Sigma})_s$,
- 2 Dacă $\sigma: s_1 \dots s_n \to s$ în Σ și $t_i \in (T_{\Sigma})_{s_i}$, or. $1 \leq i \leq n$, atunci $\sigma(t_1, \dots, t_n) \in (T_{\Sigma})_s$.

Exemple

Exempli

```
NATBOOL = (S, \Sigma)

\square S = \{bool, nat\}

\square \Sigma = \{T : \rightarrow bool, F : \rightarrow bool, 0 : \rightarrow nat, s : nat \rightarrow nat, \leq : nat \ nat \rightarrow bool\}

T_{NATBOOL}:

\square (T_{NATBOOL})_{nat} = \{0, s(0), s(s(0)), \ldots\}

\square (T_{NATBOOL})_{bool} = \{T, F, \leq (0, 0), \leq (0, s(0)), \ldots\}

Câteva şiruri care nu sunt termeni: \leq (T, F), s \leq (0), Ts(0), \ldots
```

Exemple

Exempli

```
NATEXP = (S, \Sigma)

\square S = \{nat\}

\square \Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat, + : nat nat \rightarrow nat\}

T_{NATEXP}:

\square (T_{NATEXP})_{nat} = \{0, s(0), s(s(0)), \dots, + (0, 0), \star(0, +(s(0), 0)), \dots\}

Câteva şiruri care nu sunt termeni: +(0), 0(s)s(0), \star(s(0)), \dots
```

Mulțime de variabile

Fie (S, Σ) o signatură multisortată.

Definiție

O mulțime de variabile este o mulțime S-sortată $X = \{X_s\}_{s \in S}$ astfel încât

- $\square X_s \cap X_{s'} = \emptyset$, or. $s, s' \in S$, $s \neq s'$,
- $\square X_s \cap \{\sigma\}_{\sigma:s_1...s_n \to s \in \Sigma} = \emptyset,$
- $\square X_s \cap \{\sigma\}_{\sigma: \to s \in \Sigma} = \emptyset.$
- \square Simbolurile de variabile sunt distincte între ele și sunt distincte de simbolurile de operații/constante din Σ .

Termeni (expresii)

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Definiție

Mulțimea S-sortată a termenilor cu variabile din X,

$$T_{\Sigma}(X)$$
,

este cea mai mică mulțime de șiruri finite peste alfabetul

$$L = \bigcup_{s \in S} X_s \cup \bigcup_{w,s} \Sigma_{w,s} \cup \{(,)\} \cup \{,\}$$

care verifică:

- $1 X \subseteq T_{\Sigma}(X),$
- **2** Dacă $\sigma : \to s$ în Σ , atunci $\sigma \in T_{\Sigma}(X)_s$,
- 3 Dacă $\sigma: s_1 \dots s_n \to s$ în Σ și $t_i \in T_{\Sigma}(X)_{s_i}$, or. $1 \leq i \leq n$, atunci $\sigma(t_1, \dots, t_n) \in T_{\Sigma}(X)_s$.
- \Box $t \in T_{\Sigma}(X)$ se numește termen (expresie).
- \square Notăm cu Var(t) mulțimea variabilelor care apar în termenul t.
- $\Box T_{\Sigma} = T_{\Sigma}(\emptyset)$

Exemple

Exempli

```
NATEXP = (S, \Sigma)
             \square S = \{nat\}
               \square \Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat,
                                                                                     +: nat nat \rightarrow nat, \star: nat nat \rightarrow nat\}
X:
             \square X_{nat} = \{x, y\}
  T_{NATEXP}(X):
                \Box T_{NATEXP}(X)_{nat} = \{0, x, y, s(0), s(x), s(y), s(s(0)), s(s(x)), \dots, s(s(x)), s(x), s(y), 
                                                                                                                                                   +(0,0),+(0,x),\star(0,+(s(0),0)),\ldots
 Câteva șiruri care nu sunt termeni: +(x), 0x, 0(s)s(0), \star(s(0)), \ldots
```

Exemple

Exemplu

```
STIVA = (S, \Sigma)
  \square S = \{elem, stiva\}
  \square \Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva, push : elem stiva <math>\rightarrow stiva,
              pop : stiva \rightarrow stiva, top : stiva \rightarrow elem
X:
  \square X_{elem} = \{x, y\} \text{ si } X_{stiva} = \emptyset
T_{STIVA}(X):
  \Box T_{STIVA}(X)_{elem} = \{0, x, y, top(pop(empty)),
                               top(push(x, empty)), \ldots)
  \Box T_{STIVA}(X)_{stiva} = \{empty, push(y, empty), pop(empty), \}
                               push(top(empty), empty), ...}
Câteva șiruri care nu sunt termeni: pop(0), (pop)top(empty), empty(y)
```

Inducția pe termeni

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Fie P o proprietate astfel încât:

□ pasul inițial:

$$P(x) = true$$
, or. $x \in X$, $P(\sigma) = true$, or. $\sigma : \rightarrow s$.

□ pasul de inducție:

pt. or.
$$\sigma: s_1 \dots s_n \to s$$
 și or. $t_1 \in T_{\Sigma}(X)_{s_1}, \dots, t_n \in T_{\Sigma}(X)_{s_n}$, dacă $\mathbf{P}(t_1) = \dots = \mathbf{P}(t_n) = true$, atunci $\mathbf{P}(\sigma(t_1, \dots, t_n)) = true$.

Atunci P(t) = true, oricare $t \in T_{\Sigma}(X)$.

Termeni ca arbori

Un termen $t \in T_{\Sigma}(X)$ poate fi reprezentat ca un arbore arb(t) astfel:

- \square dacă $t = \sigma$ (simbol de constantă), atunci $arb(t) := \sigma$,
- \square dacă $t \in X$ (variabilă), atunci arb(t) := t,
- \square dacă $t = \sigma(t_1, \ldots, t_n)$, atunci arb(t) :=

Exemple

NATEXP =
$$(S, \Sigma)$$
 $S = \{nat\}$
 $\Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat, + : nat \ nat \rightarrow nat, + : nat \ nat \rightarrow nat, + : nat \ nat \rightarrow nat\}$
 $arb(*(0, +(s(0), 0))) =$

Algebra termenilor

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Definiție

Mulțimea S-sortată a termenilor $T_{\Sigma}(X)$ este o (S, Σ) -algebră, numită algebra termenilor cu variabile din X și notată tot $T_{\Sigma}(X)$, cu operațiile definite astfel:

 \square pt. or. $\sigma : \rightarrow s$ din Σ , operația corespunzătoare este

$$T_{\sigma}:=\sigma\in T_{\Sigma}(X)_s$$

 \square pt. or. $\sigma: s_1 \dots s_n \to s$ din Σ , operația corespunzătoare este

$$T_{\sigma}: T_{\Sigma}(X)_{s_1...s_n} \to T_{\Sigma}(X)_s$$

 $T_{\sigma}(t_1, ..., t_n) := \sigma(t_1, ..., t_n)$

or.
$$t_1 \in T_{\Sigma}(X)_{s_1}, \ldots, t_n \in T_{\Sigma}(X)_{s_n}$$
.

 \Box T_{Σ} algebra termenilor fără variabile $(X = \emptyset)$

Exemple

Exempli

```
NATEXP = (S, \Sigma)
                \square S = \{nat\}
                   \square \Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat, s : nat, s 
                                                                                                              +: nat nat \rightarrow nat, \star: nat nat \rightarrow nat\}
 T_{NATEXP}:
                  \Box (T_{NATEXP})_{nat} = \{0, s(0), s(s(0)), \ldots, \}
                                                                                                                                                                                               +(0,0), \star(0,+(s(0),0)),\ldots\}
Algebra termenilor:
                                             Multimea suport: T_{NATEXP}
                                             Operații:
                                                                 \Box T_0 := 0, T_s(t) := s(t),
                                                                 T_+(t_1,t_2) := +(t_1,t_2),
                                                                 T_{\star}(t_1,t_2) := \star(t_1,t_2).
```

Observații

Semantica unui modul în **Maude** (care conține doar declații de sorturi, operații și variabile) este o algebră de termeni.

Algebre inițiale

Algebră inițială

Fie

- \square (S, Σ) o signatură multisortată,
- $\square \Re$ o clasă de (S, Σ) -algebre.

Definiție

O (S, Σ) -algebră $\mathcal{I} \in \mathfrak{K}$ este inițială în \mathfrak{K} dacă pentru orice $\mathcal{B} \in \mathfrak{K}$ există un unic (S, Σ) -morfism $f: \mathcal{I} \to \mathcal{B}$.

Propoziție

 $\mathsf{Dac} \ \ \mathcal{I} \ \mathsf{este} \ \mathsf{ini} \\ \mathsf{\dot{t}ial} \\ \mathsf{\dot{a}} \ \mathsf{\hat{n}} \ \ \mathfrak{K} \ \mathsf{\dot{s}i} \ \ \mathcal{A} \in \mathfrak{K} \ \mathsf{astfel} \ \mathsf{\hat{n}nc} \\ \mathsf{\dot{a}t} \ \ \mathcal{A} \simeq \mathcal{I}, \ \mathsf{atunci} \ \ \mathcal{A} \ \mathsf{este} \\ \mathsf{ini} \\ \mathsf{\dot{t}ial} \\ \mathsf{\dot{a}} \ \mathsf{\hat{n}} \ \ \mathfrak{K}.$

Propoziție

Dacă $\mathcal I$ este inițială în $\mathfrak K$ și $\mathcal A \in \mathfrak K$ astfel încât $\mathcal A \simeq \mathcal I$, atunci $\mathcal A$ este inițială în $\mathfrak K$.

Demonstrație

Cum $A \in \mathfrak{K}$ astfel încât $A \simeq \mathcal{I}$, fie $\iota_A : A \to \mathcal{I}$ un izomorfism.

Fie $\mathcal{B} \in \mathfrak{K}$. Cum \mathcal{I} este inițială, există un unic morfism $f_{\mathcal{B}} : \mathcal{I} \to \mathcal{B}$.

Demonstrăm că există un unic morfism $h: A \to B$:

- **Existența.** Considerăm $h := \iota_{\mathcal{A}}$; $f_{\mathcal{B}} : \mathcal{A} \to \mathcal{B}$. Deoarece compunerea morfismelor este morfism, obținem că h este morfism.
- □ **Unicitatea.** Presupunem că există un alt morfism $g: \mathcal{A} \to \mathcal{B}$. Atunci $\iota_{\mathcal{A}}^{-1}; g: \mathcal{I} \to \mathcal{B}$ este morfism, deci $\iota_{\mathcal{A}}^{-1}; g = f_{\mathcal{B}}$. Rezultă că $g = \iota_{\mathcal{A}}; f_{\mathcal{B}} = h$.

Propoziție

Dacă \mathcal{A}_1 și \mathcal{A}_2 sunt inițiale în \mathfrak{K} , atunci $\mathcal{A}_1 \simeq \mathcal{A}_2$.

Propoziție

Dacă A_1 și A_2 sunt inițiale în \Re , atunci $A_1 \simeq A_2$.

Demonstrație

Cum A_1 și A_2 sunt inițiale în \Re , există

- \square un unic morfism $f: \mathcal{A}_1 \to \mathcal{A}_2$ și
- \square un unic morfism $g: \mathcal{A}_2 \to \mathcal{A}_1$.

Avem f; $g:\mathcal{A}_1 o \mathcal{A}_1$, $1_{\mathcal{A}_1}:\mathcal{A}_1 o \mathcal{A}_1$ și \mathcal{A}_1 inițială, deci f; $g=1_{\mathcal{A}_1}$.

Similar obţinem g; $f = 1_{A_2}$.

În concluzie $\mathcal{A}_1 \simeq \mathcal{A}_2$.

(S, Σ) -algebra inițială

Fie (S, Σ) o signatură multisortată.

- \square Considerăm \mathfrak{K} clasa tuturor (S, Σ) -algebrelor.
- □ \mathcal{I} este (S, Σ) -algebră inițială dacă pentru orice (S, Σ) -algebră \mathcal{B} există un unic morfism $f: \mathcal{I} \to \mathcal{B}$.

Teoremă

Pentru orice (S,Σ) -algebră \mathcal{B} , există un unic morfism $f:T_{\Sigma}\to\mathcal{B}$.

 \Box f(t) este interpretarea termenului $t \in T_{\Sigma}$ în \mathcal{B} .

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f:T_\Sigma \to \mathcal{B}$.

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Existența. Definim $f: T_{\Sigma} \to \mathcal{B}$ prin inducție pe termeni:

(P(t) = "f(t) este definit")

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Existența. Definim $f: T_{\Sigma} \to \mathcal{B}$ prin inducție pe termeni:

$$(P(t) = "f(t) \text{ este definit"})$$

 \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $f_s(\sigma) := B_{\sigma}$.

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Existența. Definim $f: T_{\Sigma} \to \mathcal{B}$ prin inducție pe termeni:

$$(P(t) = "f(t) \text{ este definit"})$$

- \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $f_s(\sigma) := B_{\sigma}$.
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in (T_{\Sigma})_{s_1} \dots, t_n \in (T_{\Sigma})_{s_n}$ astfel încât $f_{s_1}(t_1), \dots, f_{s_n}(t_n)$ definite, atunci $f_s(\sigma(t_1, \dots, t_n)) := \mathcal{B}_{\sigma}(f_{s_1}(t_1), \dots, f_{s_n}(t_n))$.

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Existența. Definim $f: T_{\Sigma} \to \mathcal{B}$ prin inducție pe termeni:

$$(P(t) = "f(t)$$
este definit")

- \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $f_s(\sigma) := B_{\sigma}$.
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in (T_{\Sigma})_{s_1} \dots, t_n \in (T_{\Sigma})_{s_n}$ astfel încât $f_{s_1}(t_1), \dots, f_{s_n}(t_n)$ definite, atunci $f_s(\sigma(t_1, \dots, t_n)) := B_{\sigma}(f_{s_1}(t_1), \dots, f_{s_n}(t_n))$.

Din principiului inducției pe termeni, f(t) este definită pt. or. $t \in T_{\Sigma}$.

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Existența. Definim $f: T_{\Sigma} \to \mathcal{B}$ prin inducție pe termeni:

$$(P(t) = "f(t)$$
este definit")

- \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $f_s(\sigma) := B_{\sigma}$.
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in (T_{\Sigma})_{s_1} \dots, t_n \in (T_{\Sigma})_{s_n}$ astfel încât $f_{s_1}(t_1), \dots, f_{s_n}(t_n)$ definite, atunci $f_s(\sigma(t_1, \dots, t_n)) := B_{\sigma}(f_{s_1}(t_1), \dots, f_{s_n}(t_n))$.

Din principiului inducției pe termeni, f(t) este definită pt. or. $t \in T_{\Sigma}$. Demonstrăm că f este morfism.

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Existența. Definim $f: T_{\Sigma} \to \mathcal{B}$ prin inducție pe termeni:

$$(P(t) = "f(t)$$
este definit")

- \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $f_s(\sigma) := B_{\sigma}$.
- pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in (T_{\Sigma})_{s_1} \dots, t_n \in (T_{\Sigma})_{s_n}$ astfel încât $f_{s_1}(t_1), \dots, f_{s_n}(t_n)$ definite, atunci $f_s(\sigma(t_1, \dots, t_n)) := B_{\sigma}(f_{s_1}(t_1), \dots, f_{s_n}(t_n))$.

Din principiului inducției pe termeni, f(t) este definită pt. or. $t \in T_{\Sigma}$. Demonstrăm că f este morfism.

 \square dacă $\sigma:\to s\in\Sigma$, atunci $f_s(T_\sigma)=f_s(\sigma)=B_\sigma$;

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Existența. Definim $f: T_{\Sigma} \to \mathcal{B}$ prin inducție pe termeni:

$$(P(t) = "f(t)$$
este definit")

- \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $f_s(\sigma) := B_{\sigma}$.
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in (T_{\Sigma})_{s_1} \dots, t_n \in (T_{\Sigma})_{s_n}$ astfel încât $f_{s_1}(t_1), \dots, f_{s_n}(t_n)$ definite, atunci $f_s(\sigma(t_1, \dots, t_n)) := B_{\sigma}(f_{s_1}(t_1), \dots, f_{s_n}(t_n))$.

Din principiului inducției pe termeni, f(t) este definită pt. or. $t \in T_{\Sigma}$. Demonstrăm că f este morfism.

- \square dacă $\sigma:\to s\in\Sigma$, atunci $f_s(T_\sigma)=f_s(\sigma)=B_\sigma$;
- □ dacă $\sigma: s_1 \ldots s_n \to s \in \Sigma$ și $t_1 \in (T_{\Sigma})_{s_1}, \ldots, t_n \in (T_{\Sigma})_{s_n}$, atunci $f_s(T_{\sigma}(t_1, \ldots, t_n)) = f_s(\sigma(t_1, \ldots, t_n)) = B_{\sigma}(f_{s_1}(t_1), \ldots, f_{s_n}(t_n))$.

Unicitatea. Fie $g: T_{\Sigma} \to \mathcal{B}$ un morfism.

Demonstrăm că g = f prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = f_s(t)")$$

Unicitatea. Fie $g: T_{\Sigma} \to \mathcal{B}$ un morfism.

Demonstrăm că g = f prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = f_s(t)")$$

 \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $g_s(\sigma) = g_s(T_\sigma) = B_\sigma = f_s(\sigma)$.

Unicitatea. Fie $g: T_{\Sigma} \to \mathcal{B}$ un morfism.

Demonstrăm că g = f prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = f_s(t)")$$

- \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $g_s(\sigma) = g_s(T_\sigma) = B_\sigma = f_s(\sigma)$.
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in (T_{\Sigma})_{s_1}, \dots, t_n \in (T_{\Sigma})_{s_n}$ a. î. $g_{s_1}(t_1) = f_{s_1}(t_1), \dots, g_{s_n}(t_n) = f_{s_n}(t_n)$, atunci

Unicitatea. Fie $g: T_{\Sigma} \to \mathcal{B}$ un morfism.

Demonstrăm că g = f prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = f_s(t)")$$

- \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $g_s(\sigma) = g_s(T_\sigma) = B_\sigma = f_s(\sigma)$.

Unicitatea. Fie $g: T_{\Sigma} \to \mathcal{B}$ un morfism.

Demonstrăm că g = f prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = f_s(t)")$$

- \square pasul inițial: dacă $\sigma:\to s\in \Sigma$, atunci $g_s(\sigma)=g_s(T_\sigma)=B_\sigma=f_s(\sigma)$.

Conform principiului inducției pe termeni, $g_s(t) = f_s(t)$, oricare $t \in T_{\Sigma}$, s, deci g = f.

Consecință

Corolar

 T_{Σ} este (S, Σ) -algebra inițială.

Exempli

 \square (S,Σ) signatură multisortată

Exempli

- \square (S, Σ) signatură multisortată
- \square (S, Σ) -algebra $\mathcal{D} = (D_S, D_{\Sigma})$
 - \square $D_s := \mathbb{N}$, or. $s \in S$,
 - \square dacă $\sigma : \rightarrow s$, atunci $D_{\sigma} := 0$
 - dacă $\sigma: s_1 \dots s_n \to s, \ k_1, \dots, k_n \in \mathbb{N}$, atunci $D_{\sigma}(k_1, \dots, k_n) := 1 + \max(k_1, \dots, k_n)$.

Exempli

- \square (S, Σ) signatură multisortată
- \square (S, Σ) -algebra $\mathcal{D} = (D_S, D_{\Sigma})$
 - \square $D_s := \mathbb{N}$, or. $s \in S$,
 - \square dacă $\sigma : \rightarrow s$, atunci $D_{\sigma} := 0$
 - dacă $\sigma: s_1 \dots s_n \to s, \ k_1, \dots, k_n \in \mathbb{N}$, atunci $D_{\sigma}(k_1, \dots, k_n) := 1 + \max(k_1, \dots, k_n)$.
- \Box $f: T_{\Sigma} \to \mathcal{D}$ unicul morfism

Exemple

- \square (S, Σ) signatură multisortată
- \square (S, Σ) -algebra $\mathcal{D} = (D_S, D_{\Sigma})$
 - \square $D_s := \mathbb{N}$, or. $s \in S$,
 - \square dacă $\sigma : \rightarrow s$, atunci $D_{\sigma} := 0$
 - dacă $\sigma: s_1 \dots s_n \to s, \ k_1, \dots, k_n \in \mathbb{N}$, atunci $D_{\sigma}(k_1, \dots, k_n) := 1 + \max(k_1, \dots, k_n)$.
- \Box $f: T_{\Sigma} \to \mathcal{D}$ unicul morfism
- \square Ce reprezintă valoarea f(t) pentru un termen t?

Exemple

- \square (S, Σ) signatură multisortată
- \square (S, Σ) -algebra $\mathcal{D} = (D_S, D_{\Sigma})$
 - \square $D_s := \mathbb{N}$, or. $s \in S$,
 - \square dacă $\sigma : \rightarrow s$, atunci $D_{\sigma} := 0$
 - dacă $\sigma: s_1 \dots s_n \to s, \ k_1, \dots, k_n \in \mathbb{N}$, atunci $D_{\sigma}(k_1, \dots, k_n) := 1 + \max(k_1, \dots, k_n)$.
- \Box $f: T_{\Sigma} \to \mathcal{D}$ unicul morfism
- \square Ce reprezintă valoarea f(t) pentru un termen t?
 - \Box f(t) este adâncimea arborelui arb(t).

Observații

- Un tip abstract de date este o clasă $\mathfrak C$ de (S,Σ) -algebre cu proprietatea că oricare două (S,Σ) -algebre din $\mathfrak C$ sunt izomorfe $(\mathcal A,\mathcal B\in\mathfrak C\Rightarrow\mathcal A\simeq\mathcal B.)$
- \square Considerăm clasa de (S, Σ) -algebre

$$\mathfrak{I}_{(S,\Sigma)} = \{ \mathcal{I} \mid \mathcal{I} \ (S,\Sigma) \text{-algebră inițială} \}$$

- \square $\mathfrak{I}_{(S,\Sigma)}$ este un tip abstract de date.
- $\square \ T_{\Sigma} \in \mathfrak{I}_{(S,\Sigma)}.$
- Un modul în **Maude** (care conține doar declații de sorturi și operații) definește un astfel de tip abstract de date și construiește efectiv algebra T_{Σ} .

Pe săptămâna viitoare!