Rapport de Métrologie

Bobine 101 MQXFS

Michela Semeraro

Eugenio Cavanna

Sommaire

1. RAISON DU DOCUMENT	3
2. DOCUMENTS UTILISÉ	3
3. HARDWARE ET SOFTWARE	3
4. OBJECTIFS DES MESURES	3
5. CONDICIONNES DE MESURE	3
A. LIEU DE MESURE	3
B. DATE D'INTERVETION	3
C. CONDICIONNE DES ENVIRONTS	3
D. MAIN D'ŒUVRE	
E. COFIGURACION DES MESURES ET NOMENCLATURE	
POSITION	
NOMENCLATURE CONVENTION DES SIGNES	
F. MODE D'INTERVENTION	
MESURE DES CROSS-SECTIONS	
MESURE DES SURFACES	
6. MESURES	11
A. DEFORMATION GLOBALE DE LA BOBINE (SYSTEME DE	
REFERENCE GLOBALE)	
CROSS-SECTIONS	
SURFACES COMPARAISON	
B. DEFORMATION DES CROSS-SECTIONS (SYSTEME DE	1/
REFERENCE LOCAL)	18
C. COMPARAISON DES CROSS-SECTIONS	
7 CONCLUSIONS	24

1. RAISON DU DOCUMENT

La raison du document est l'inspection dimensionnelle de la bobine 101 de QXF.

2. DOCUMENTS UTILISÉ

[DC01] modèle CAD LHCMQXFM0077.stp

3. HARDWARE ET SOFTWARE

Les mesures ont été effectuées avec l'instrument FARO Edge Arm 2,7 m.

Probe sphère de 3mm.

Le software utilisé est Polyworks 2014.

4. OBJECTIFS DES MESURES

Vérification dimensionnelle de la bobine 101 après imprégnation.

La référence utilisée a été le CAD du dummy coil aluminium.

5. CONDICIONNES DE MESURE

a. LIEU DE MESURE

Les opérations ont eu lieu dans le bâtiment 927 du CERN, Prevessin, France.

b. DATE D'INTERVETION

Les mesures ont été effectuées entre le 29/01/2015 et le 30/01/2015

c. CONDICIONNE DES ENVIRONTS

La température a été mesurée entre 19°C et 21°C.

d. MAIN D'ŒUVRE

Les mesures ont été faites par l'étudiante technique Michela Semeraro.

e. COFIGURACION DES MESURES ET NOMENCLATURE

• Position

La bobine a été positionnée sur deux supports. Les supports (Figure 1) Figure 1: Support ont été élevés grâce à deux blocs de aluminium (Figure 2) positionnés entre le support e le table que s'appuie au table de travail (Figure 3).

Figure 1: Support

Figure 2 : bloc d' aluminium

Figure 3 : bobine, supports et blocs

La position de la bobine est résumée dans les photos suivantes

Figure 4 : position de la bobine

Figure 5 : position de la bobine

Figure 6 : position de la bobine

Nomenclature

A suivre un schéma de nomenclature pour les différentes surfaces de la bobine.

Figure 7 : schème de nomenclature

• Convention des signes

f. MODE D'INTERVENTION

L'influence des environnements est considéré négligeable.

Le Bras Faro Edge a été positionné à plus ou moins 260 mm de la pièce pour avoir un espace de travail optime.

• Mesure des Cross-Sections

Avant de commencer il faut réaliser la calibration du bras Faro Edge a en suivant la procédure du software.

E09-05-13-28903-Reference Encoders.

La calibration du Probe 3mm a été faite en suivant la procédure *Hole compensation* et le *Single Point Articulation Test (SPAT)* dont les résultats sont dans les Annexes.

6 points ont été pris pour réaliser l'alignement de la pièce avec le CAD. (Figure 8 ; Figure 9 ; Figure 10 ; Table 1)

Figure 8: points d'alignement pour les cross sections

Figure 9: points d'alignement pour les cross sections

Figure 10: points d'alignement pour les cross sections

Table 1: points d'alignement pour les cross sections

Les mesures ont été pris en partent du mi plan de la pièce (axis Y du système de référence) chaque 200mm en suivant la méthode *Projection* (pag. 683 IMInspect Reference Guide 2014).

Mesure des surfaces

Comme les mesures ont été prises le jour après, le procès de calibration a été répété (résultats dans les Annexes).

Pour l'alignement on a pris les mêmes 6 point de l'alignement pour les cross sections.

Table 2 : points d'alignement pour les surfaces

Pour les mesures on a collectionné plusieurs lignes suivant l'axis Y du système de référence.

Un cross section du mi plan du pole a été créé sur le software Polyworks et les mesures ont été prises suivant la méthode *Projection* (pag. 683 IMInspect Reference Guide 2014)

6. MESURES

Vu que la bobine réale est plus longue que la bobine théorique (CAD) de plusieurs millimètres, les mesures de la longueur avec le software n'ont été pas possibles.

Pour avoir une idée de sa longueur on a pris les mesures avec le pied coulis en suivant le schème en bas :

Figure 11: mesure longueur

mesure 1	1518,7 mm
mesure 2	1519,5 mm
mesure 3	1519,4 mm
Δ	0,8

a. Déformation globale de la bobine (système de référence globale)

• Cross-sections

Figure 12 : schème des cross-sections

La méthode utilisée pour mesurer les différences entre model CAD et bobine réale est le « Best fit object oriented ».

Figure 13 : c-s 1

Figure 14 : c-s 2

Figure 15 : c-s 3

Figure 16 : c-s 4

c-s 5 : y = 168,987mm

Figure 17 : c-c 5

c-s 6 : y = 368,987mm

Figure 18 : c-s 6

c-s 7 : y = 568,987mm

Figure 19 : c-s 7

Surfaces

Figure 20 : outer cylinder

Figure 21 : mid planes

Comparaison

Pour ce type de analyse est possible noter la déformation a "banana" dont la valeur maxime est au centre de la bobine, tandis que les valeurs plus bas sont aux extrémités.

La section central ne se considère pas quantitativement représentative vu que ce trouve trop proche au Bras Faro et donc les erreurs sont accrus.

D'un point de vu qualitative ça identifie la section que soufre la déformation positive maxime, donné que on a aussi vérifié avec l'étude des surfaces.

Figure 22 : comparaison c-s 5

Figure 23 : comparaison c-s 7

Figure 24: comparaison c-s 1

b. Déformation des cross-sections (système de référence local)

Dans cette étude on a essayé d'évaluer la différence entre mesure théorique et mesure real en filtrant le composant de la déformation à "banana". Ça veut dire évaluer les dimensions réales de chaque cross-section par rapport à la cross-section théorique de la bobine, donnée par le modèle CAD de la bobine d'Aluminium.

Pour l'évaluer on a utilisé une macro dans Polyworks développée par C. Löffler et déjà testée pour les mesures des bobines de 11T.

Dans cette analyse on ne parle plus d'un nuage globale de points avec le même système de référence, mais plutôt la macro traite les points de chaque section indépendamment des point de les autres sections, ça permet un alignement de chaque section réale avec sa section théorique équivalente, en effaçant le facteur déformation globale.

Chaque section a son best-fit, c'est-à-dire son alignement.

La section central ne se considère pas représentative quantitativement pour la même raison exposée avant.

c-s 1 : y = -631,013mm

Figure 25 : c-s 1

c-s 2 : y = -431,013mm

Figure 26 : c-s 2

c-s 3 : y = -231,013mm

Figure 27 : c-s 3

La cross section numéro 4 n'est pas présentée vu que on ne la considère pas représentative.

Figure 28 : c-s 5

c-s 6 : y = 368,987mm

Figure 29 : c-s 6

c-s 7 : y = 568,987mm

Figure 30 : c-s 7

c. Comparaison des cross-sections

sections	max global	min globale	local max	local min
1	0.443	-0.579	0.01	-0.155
2	0.119	-0.372	0.077	-0.155
3	0.437	-0.619	0.024	-0.167
4	0.595	-0.098	0.806	-0.017
5	0.389	-0.555	0.134	-0.188
6	0.077	-0.202	0.113	-0.159
7	0.0382	-0.561	0.031	-0.14

7. CONCLUSIONS

Les études effectuées nous ont donné comme résultats :

- La bobine réale a la coupe (cross-section) plus petite que la théorique su toute sa longueur. Déviation entre 0,031 mm et 0,188 mm.
- La bobine présente une déformation globale a "banana". Déviation entre 0,548 mm au centre et -0,921 aux extrêmes.

Annexes

Single Point Articulation Performance Test (SPAT)				
Operator	Semeraro			
Computer	PCTE24204	PCTE24204		
Device Serial Number	E09-05-13-	-28903		
Certification Date	18:24:37 0	18:24:37 07-15-13		
Time & Date	15:50:02 01-28-15			
Units	Millimeters			
Probe Calibration	0.000604			
Error Probe Calibration	0.022681			
Date	lan-28	2015 15:4	1	
Date	Jan 20	2013 13.4	1	
Number of Points				
Taken	10			
Index	Х	Υ	Z	
1		27.25168		
2		27.24549		
3		27.23951		
4		27.22984		
5				
6	-632.651	27.23782	-718.906	
7		27.23974		
8		27.23587		
9		27.24424		
10	-632.677	27.23042	-718.889	
(Max-Min)/2	0.016673	0.012489	0.013946	

Single Point Articulation Performance Test (SPAT)				
Operator	Semeraro	Semeraro		
Computer	PCTE24204	PCTE24204		
Device Serial Number	E09-05-13	-28903		
Certification Date	18:24:37 0	18:24:37 07-15-13		
Time & Date	10:33:37 01-29-15			
Units	Millimeters			
Probe Calibration				
Error Probe Calibration	0.024145			
Date	lan-29	2015 10:2	5	
Date	Juli 25	2013 10.2	3	
Number of Points				
Taken	10			
Index	Χ	Υ	Z	
1	-632.673	27.3049	-718.834	
2	-632.678	27.30406	-718.835	
3	-632.664	27.289	-718.849	
4	-632.658	27.27323	-718.856	
5	-632.659	27.26985	-718.861	
6	-632.658	27.27361	-718.864	
7	-632.668	27.27229	-718.849	
8	-632.676	27.26704	-718.839	
9	-632.675	27.27167	-718.844	
10	-632.688	27.26696	-718.85	
(Max-Min)/2	0.014702	0.01897	0.015204	