Chapter Seven

Key Management

Key Management

Public-key cryptosystem helps to solve key distribution problems

- # Two aspects of key management:
 - □ distribution of public keys
 - use of public-key cryptosystem to distribute secret keys

Distribution of Public Keys

- ☐ Distribution of public keys can be performed using:
 - public-key authority
 - public-key certificates

Public-Key Distribution by PA

If A and B want to communicate each other, they will register their public keys $(K_{pub, A} \text{ and } K_{pub, B})$ to the public authority.

Thus the authority can send encrypted message to A as well as to B.

Public key distribution

☐ After registration PA gives them (A and B) the public key of the authority.

Public Key Distribution by PA

- □ Suppose A needs current public key of B.
 - 1) A sends a message to PA (public-key authority) as follows:

$$M_1$$
 = Request | | Time1.

2) The authority sends cipher text to A:

$$C_1 = E(K_{p, auth}, [K_{pub, B} | M_1])$$

Where $K_{p, auth}$ is the private key of the authority.

Public key Distribution By PA

 \square A will decrypt C_1 using the public key of the authority and get the public key of \square :

$$P_1 = D (K_{pub,Auth}, C_1)$$

 $P_1 = K_{pub, B} | M_1$

A got the public key of the authority after the registration of his public key to the authority.

Public Key Distribution

3) Now A will send an encrypted message to B as follows:

$$C_2 = E (K_{pub,B}, [ID_A | | N_1])$$

Where N_1 is called nonce, which is generally a random number.

A will send C_2 to get a response from B to ensure that $K_{pub,B}$ is the public key of B. Now B should say 'yes' it belongs to him.

Previous Three Steps at a Glance

- 1) M_1 = Request | | Time1. [Request from A]
- 2) $C_1 = E(K_{p, auth}, [K_{pub, B}||M_1])$ [Response from PA]
- 3) $C_2 = E(K_{pub,B},[ID_A||N_1])$ [Cipher Message from A]

Public Key Distribution

To give response to A's message, B should send an encrypted message. So that masqarand can not know his public key. To send an encrypted message to A, B has to know the public key of A.

4) Now B sends a request to the authority as follows:

 M_2 = Request | | Time 2

Public key Distribution

5)The authority sends an encrypted message to B as follows:

$$C_3 = E(K_{p, auth}, [K_{pub, A} | M_2])$$

By decrypting the message B gets the public key of A.

Public Key Distribution

6) B responds to A with an encrypted message as follows:

$$C_4 = E (K_{pub, A}, [N_1 | N_2])$$

A decrypts C_4 and get N_1 , which proves that B sends C_4 as response. Because no one except B knows N_1 , whis was sent by A.

7) A responds to B as follows:

$$C_5 = E (K_{\text{pub, B}}, N_2)$$

Similarly B decrypts C_5 and became sure that the message was from A (by getting N_2).

Public Key Distribution

$$C_4 = E (K_{pub, A}, [N_1 | N_2])$$

$$C_5 = E (K_{\text{pub, B}}, N_2)$$

Public Key Distribution at a Glance

Public Key Distribution

(1)
$$M_1$$
 = Request | Time1. [A Request | PA]
(2) C_1 = E (K_p , auth, [K_{pub} , B | M_1]) [PA Response | A]
(3) C_2 = E (K_{pub} , B, [ID_A | N_1]) [A Message | B]
(4) M_2 = Request | Time 2 [B Request | PA]
(5) C_3 = E (K_p , auth, [K_{pub} , A | M_2]) [PA Response | B]
(6) C_4 = E (K_{pub} , A, [N_1 | N_2]) [B Reply | A]
(7) C_5 = E (K_{pub} , B, N_2)

Public-Key Authority

PR = Private key, PU = Public key

Public-key Distribution through Certificate Authority

- # User A registers his public key to the certificate authority (CA).
- # The CA sends a certificated (encrypted message containing public key of A) to A.
- # Similarly B registers his public key to the CA.
- # The CA sends a certificate to B.
- # If A and B wants to share secret message, A and B will exchange their certificate.

Public-key Certificate

 $C_A = E(K_{p, Auth}, [T_1 || ID_A || K_{pub, A}])$

Public Certificate

 $C_B = E(K_{p, Auth}, [T_1 || ID_B || K_{pub, B}])$

Public key certificate

```
C_A = E(K_{p, Auth}, [T_1 || ID_A || K_{pub, A}])

C_B = E(K_{p, Auth}, [T_1 || ID_B || K_{pub, B}])
```


Both A and B knew the public key of CA and they can decrypt the certificates (C_A, C_B) . Thus they will get the public key of each other.

Public-Key Certificates

PU = Public key, PR = Private key

Secret key distribution

- ☐ In symmetric or private key cryptosystem both parties share the same key for encryption and decryption.
- Secret or private key can be distributed using public key encryption. The following is the way of distribution:
- # Suppose A and B wish to share the secret. If key and the key is in possession of A, then A encrypts the secret key using public key of B and sends to B. B decrypts the message and gets the secret key.

Secret key distribution

However in this process there is a drawback: how B ensures that the encrypted message is from A.

So, to share the secret key at first A and B will authenticate each other. Next A will send secret key in cipher text (encrypted secret key) to B.

Secret key distribution

- ☐ The process is as follows:
- 1) A sends an encrypted message to B.

$$C_1 = E (K_{pub, B}, [N_1 | | ID_A]).$$

2) B responds as sending another cipher text

$$C_2 = E(K_{pub, A}, [N_1 | N_2])$$

Where N_1 and N_2 are nonce.

Secret key distribution.

A responds with the following cipher text

3)
$$C_3 = E(K_{pub, B}, N_2)$$
.

A now sends the encrypted secret key in cipher text as follows:

4)
$$C_4 = E(K_{pub,.B}, [N_1 | K_s]).$$

Where K_s is the secret key.

Secret key distribution at a glance

- 1) $C_1 = E(K_{pub, B}, [N_1 | | ID_A])$ [Initiative from A]
- 2) $C_2 = E(K_{pub, A}, [N_1 | N_2])$ [Response from B]
- 3) $C_3 = E(K_{pub, B}, N_2)$ [Response from A]
- 4) $C_4 = E(K_{pub,.B}, [N_1 | K_s])$ [Key from A].
- B recognizes A by ID_A. A recognizes and authenticates B by
- N_1 . B authenticates A by N_2 . After recognition and authentication A sends secret key.

Pictorial view of key distribution

Distribution of Secret Key

 $PU = Public key, K_s = Secret key$

Diffie-Hellman (D-H) key exchange

The scheme was first publicly published by W. Diffie and M. Hellman in 1976.

It is a cryptographic protocol that allows two parties without prior knowledge to share secret key over an insecure communication channel.

The synonym of Diffe-Hellman key exchange scheme is Diffie-Hellman key agreement scheme.

Diffie-Hellman Key Exchange

Diffie-Hellman Key exchange

■ Verification:

1)
$$K = S^y \mod p = (g^x \mod p)^y \mod p = g^{xy} \mod p$$

2)
$$K = R^x \mod p = (g^y \mod p)^x \mod p = g^{xy} \mod p$$

Diffie-Hellman key Exchange

☐ Example:

Suppose A and B share the secret.

- 1) Select p = 29 and g = 2
- 2) A chooses a **secret** integer x = 8 and computes $S = g^x \mod p = 2^8 \mod 29 = 24$
- 3) B choose a **secret** integer y = 18 and computes, $R = g^y \mod p = 2^{18} \mod 29 = 13$
- 4) A computes, $K = R^x \mod p = R^8 \mod 29$ = 13⁸ mod 29 = 16
- 5) B computes, $K = S^y \mod p = 24^{18} \mod 29 = 16$.

Thank You.