课后作业3

吴潇然 地理信息科学 2018011881

Q3: 土壤的 δ^{13} C 与植被的 δ^{13} C 比谁更高?

A3: 土壤的δ¹³C 更高,约高出 1‰。

呼吸作用对于 C 元素而言是有机物转化为 CO_2 的过程,会发生动力学非平衡分馏,即在化学反应过程中,由于 12 C 比 13 C 的原子质量更轻, 12 C 更容易参与呼吸作用反应过程从而发生约 1%的同位素分馏。若不考虑土壤呼吸(植物根呼吸和土壤微生物呼吸),土壤中的 C 元素几乎全部来自于植物,则土壤与植被的 δ^{13} C 相等;考虑土壤呼吸,产物 CO_2 携带较多 12 C 逸出土壤,土壤中的 δ^{13} C 相对富集,最终土壤的 δ^{13} C 比植被的 δ^{13} C 高约 1%。

O4: 什么情况是厌氧条件?

A4: 浅层土壤的水淹环境和深层土壤环境。

厌氧条件是指土壤中的氧气严重不足,使得土壤呼吸(包括植物根呼吸和土壤微生物呼吸)难以发生,有机物无法完全分解的环境。浅层土壤接近大气,可获得氧气,因此常产生厌氧条件的是水淹环境,如沼泽、水稻土等。深层土壤由于距大气较远,难以直接获得氧气,也会形成厌氧条件。

Q5: 甲烷氧化: CH₄和 CO₂ 谁的 δ ¹³C 更高?

A5: 甲烷的δ¹³C 更高。

甲烷的氧化过程是 CH_4 逐步转化为 CO_2 ,该过程会发生动力学非平衡分馏,在化学反应过程中,由于 ^{12}C 比 ^{13}C 的原子质量更轻, ^{12}C 更容易参与反应过程从而发生同位素分馏,故 ^{13}C 在反应物中富集,甲烷的 $\delta^{13}C$ 更高。

Q6: T \uparrow \rightarrow C_i/C_a? \rightarrow δ ¹³C_{plant}?

A6: C_i/C_a下降, δ¹³C_{plant}上升。

 C_i 是植物气孔中的 CO_2 浓度, C_a 为大气中的 CO_2 浓度。随着温度升高,植被为了减少水分散失,会通过关闭气孔以降低蒸腾作用,而此时光合作用仍在消耗气孔内的 CO_2 ,且气孔得不到大气的补充,因此 C_i 比低温时更低, C_a 不变,故 C_i/C_a 下降。根据公式: $\delta^{13}C_{plant}=\delta^{13}C_{atm}-a-(b-a)C_i/C_a$,a 与 b 是经验定值,当 C_a 不变时, C_i/C_a 下降, $\delta^{13}C_{plant}$ 上升。

Q7: WUE 与δ¹³C_{plant}什么关系?

A7: 正相关

WUE (water use efficiency) 是植物水分利用率,是指蒸腾单位水分能固定的碳; δ^{13} C_{plant} 是植被中 13 C 含量。两者公式如下:

$$WUE = \frac{C_a(1-C_i/C_a)}{(e_i-e_a)1.6} \,, \ \, \delta^{13}C_{plant} = \delta^{13}C_{atm} - a - (b-a)C_i/C_a \label{eq:WUE}$$

由公式可知, C_a 不变时,WUE 和 $\delta^{13}C_{plant}$ 均与 C_i/C_a 呈负相关,因此在其他条件相同时,两者为正相关。

Q8: 为什么δ¹³C_{plant}没变, 但是 WUE 增加?

A8:根据公式iWUE = $C_a \times (29 + \delta^{13}C_{plant} - \delta^{13}C_{atm})/39.36$ 可知,影响 WUE 的因子除了 $\delta^{13}C_{plant}$ 还有 C_a 、 $\delta^{13}C_{atm}$,因此在其他条件不变时, C_a 增加或 $\delta^{13}C_{atm}$ 减小也会使 WUE 增加。

O9: 土壤δ13C 从树干位置到外缘直到草地,逐渐增加,为什么?

A9: C3 植物与 C4 植物有不同的固碳模式,C3 植物的 Rubisco 酶对 12 C 有显著的选择性,因此在相同环境下,C3 植物的 δ^{13} C 会低于 C4 植物,通常木本植物是 C3 植物,草本植物是 C4 植物。从树干位置到外缘直到草地的空间路径上,可以理解为 C4 植被的凋落逐渐减少,C3 植被凋落物逐渐增加,由于土壤的 C 元素几乎都来自植被,因此当地土壤与表层植被的 δ^{13} C 几乎相同,故在此方向上,土壤 δ^{13} C 逐渐增加,且近似于 C3 植物 δ^{13} C 到 C4 植物 δ^{13} C 的过渡过程。

Q10: 有研究者利用牧民手里的毛毡的 δ^{13} C 研究当地几百年前的植被,请问可研究哪些问题? 相关原理是什么?

A10: 可以进行以下研究

(1) 毛毡测年

利用羊毛制成的毛毡保留有当时的 ¹⁴C,根据 ¹⁴C 的衰变周期可以对毛毡进行定年。

(2) 植被变化研究

C3 植被与 C4 植被的 δ^{13} C 有差异,通过草 \rightarrow 羊 \rightarrow 毛毡的 C 元素传递路径,可以利用羊毛的 δ^{13} C 推测所吃的草的类型,即当时的植被环境。

(3) CO₂ 历史变化研究

如能通过(2)推定当时植被的 δ^{13} C,可以进一步根据公式 δ^{13} C_{plant} = δ^{13} C_{atm} – a – (b – a)C_i/C_a,在通过其他方式获得 δ^{13} C_{atm} 或 C_a中的一个量后推知另一个量。