Lecture 6: Depth-first search

Artificial Intelligence CS-GY-6613-I Julian Togelius julian.togelius@nyu.edu

From Arad to Bucharest

Depth-first search

- Expand deepest unexpanded node
- Implementation: fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Complete? No: fails in infinite-depth spaces, spaces with loops
 - Modify to avoid repeated states along path
 - complete in finite spaces
- Time? O(bm): terrible if m is much larger than d
 - but if solutions are dense, may be much faster than breadthfirst
- Space? O(bm): linear space!
- Optimal? No

From Arad to Bucharest

Depth-limited search

 Depth-first search with depth limit I; nodes at depth I have no successors

```
function Depth-Limited-Search (problem, limit) returns soln/fail/cutoff
Recursive-DLS (Make-Node (Initial-State [problem]), problem, limit)

function Recursive-DLS (node, problem, limit) returns soln/fail/cutoff
cutoff-occurred? ← false
if Goal-Test [problem] (State [node]) then return Solution (node)
else if Depth [node] = limit then return cutoff
else for each successor in Expand (node, problem) do
result ← Recursive-DLS (successor, problem, limit)
if result = cutoff then cutoff-occurred? ← true
else if result ≠ failure then return result
if cutoff-occurred? then return cutoff else return failure
```

Iterative deepening

Do depth-limited search at increasing depths

```
function Iterative-Deepening-Search (problem) returns a solution, or failure inputs: problem, a problem for depth \leftarrow 0 to \infty do result \leftarrow Depth-Limited-Search (problem, depth) if <math>result \neq \text{cutoff then return } result
```

Summary of algorithms

Criterion	Breadth-	Uniform-	Depth-	Depth-	Iterative
	First	Cost	First	Limited	Deepening
Complete?	Yes	Yes	No	No	Yes
Time	$O(b^{d+1})$	$O(b^{\lceil C^*/\epsilon ceil})$	$O(b^m)$	$O(b^l)$	$O(b^d)$
Space	$O(b^{d+1})$	$O(b^{\lceil C^*/\epsilon ceil})$	O(bm)	O(bl)	O(bd)
Optimal?	Yes	Yes	No	No	Yes