ΛΥΣΗ

α) Ο κύκλος C_1 έχει κέντρο K(1,1) και ακτίνα $\rho=3$ ενώ ο κύκλος C_2 έχει κέντρο $\Lambda(4,4)$ και ακτίνα $\rho=3$.

Έχουμε $\lambda_{\rm KA} = \frac{4-1}{4-1} = 1$, άρα η ΚΛ βρίσκεται στην ευθεία με εξίσωση $y-1=1(x-1) \Leftrightarrow y=x$, δηλαδή η διάκεντρος βρίσκεται στην διχοτόμο της γωνίας $x \hat{\rm O} y$.

β) Για να βρούμε τα σημεία τομής των κύκλων C_1 και C_2 θα λύσουμε το σύστημα των εξισώσεών τους. Αφαιρώντας κατά μέλη παίρνουμε $(x-1)^2 + (y-1)^2 - (x-4)^2 - (y-4)^2 = 0 \Leftrightarrow (x-1)^2 - (x-4)^2 = (y-4)^2 - (y-1)^2 \Leftrightarrow 3(2x-5) = -3(2y-5) \Leftrightarrow 2x-5 = 5-2y \Leftrightarrow y=5-x.$

Αντικαθιστώντας την τιμή του y στην $(x-1)^2+(y-1)^2=9$, $\beta \rho \text{iσκουμε} (x-1)^2+(4-x)^2=9 \Leftrightarrow 2x^2-10x+8=0 \Leftrightarrow x^2-5x+4=0 \Leftrightarrow x_1=1, x_2=4 \quad \text{με} \quad \text{τις}$ αντίστοιχες τιμές $y_1=4, y_2=1$. Τελικά τα σημεία τομής των κύκλων C_1 και C_2 είναι C_2 είναι C_3 και C_4 είναι C_4 είνα C_4 ε

γ) Το σημείο A(x,y) ανήκει στην ευθεία που ανήκουν τα σημεία Κ και Λ με εξίσωση, όπως βρήκαμε στο α) ερώτημα, y=x αν αι μόνο αν οι συντεταγμένες του επαληθεύουν την εξίσωση. Οπότε έχουμε A(x,x).

Eίναι
$$\overrightarrow{AB} = (1-x, 4-x)$$
 και $\overrightarrow{A\Gamma} = (4-x, 1-x)$.

Ακόμα
$$\left(AB\Gamma\right) = \frac{1}{2}\left|\det\left(\overrightarrow{AB},\overrightarrow{A\Gamma}\right)\right| = \frac{1}{2}\begin{vmatrix}1-x & 4-x\\4-x & 1-x\end{vmatrix} = \frac{1}{2}\left|(1-x)^2-\left(4-x\right)^2\right| = \frac{1}{2}\left|6x-15\right|.$$

$$\mathsf{Ophote}\,\,\big(\mathsf{AB}\Gamma\big) = \frac{21}{2} \Leftrightarrow \frac{1}{2} \big|6x - 15\big| = \frac{21}{2} \Leftrightarrow \big|6x - 15\big| = 21 \Leftrightarrow \begin{cases} 6x - 15 = 21 \\ 6x - 15 = -21 \end{cases} \Leftrightarrow \begin{cases} x = 6 \\ x = -1 \end{cases}.$$

Τελικά βρήκαμε δύο σημεία της ευθείας y=x, τα A(6,6) και A'(-1,-1), που σχηματίζουν με τα σημεία τομής B και Γ τρίγωνο εμβαδού $\frac{21}{2}\tau.\mu.$, όπως φαίνεται στο παρακάτω σχήμα.

