Test cases:

i. Two complex numbers

Enter the real and imaginary components of the first complex number.

$$(a1) + i(b1)$$

 $a1 = 5$
 $b1 = 2$

Enter the real and imaginary components of the second complex number. $\ensuremath{\mathsf{E}}$

$$(a2) + i(b2)$$

 $a2 = 9$
 $b2 = 12$

The product of the two numbers is: 21.0000 + i78.0000

The quotient of the two numbers is: 0.3067 - i0.1867

ii. Two real numbers

Enter the real and imaginary components of the first complex number.

$$(a1) + i(b1)$$

 $a1 = 0.44$
 $b1 = 0.7$

Enter the real and imaginary components of the second complex number.

$$(a2) + i(b2)$$

 $a2 = 3.9$
 $b2 = 7.192$

The product of the two numbers is: -3.3184 + i5.8945

The quotient of the two numbers is: 0.1009 - i0.0065

iii. Two imaginary numbers

Enter the real and imaginary components of the first complex number.

$$(a1) + i(b1)$$

 $a1 = 0$
 $b1 = -1$

Enter the real and imaginary components of the second complex number.

$$(a2) + i(b2)$$

 $a2 = 0$
 $b2 = -5$

The product of the two numbers is: -5.0000 + i-0.0000

The quotient of the two numbers is: 0.2000 + i0.0000

iv. Real number and an imaginary number

Enter the real and imaginary components of the first complex number.

$$(a1) + i(b1)$$

 $a1 = 0.3571$
 $b1 = 1$

Enter the real and imaginary components of the second complex number.

$$(a2) + i(b2)$$

 $a2 = 0$
 $b2 = -3$

The product of the two numbers is: 3.0000 - i1.0713

The quotient of the two numbers is: -0.3333 + i0.1190

v. Imaginary number and a real number

Enter the real and imaginary components of the first complex number.

$$(a1) + i(b1)$$

 $a1 = 0$
 $b1 = 3$

Enter the real and imaginary components of the second complex number.

$$(a2) + i(b2)$$

 $a2 = 9.9$
 $b2 = 1$

The product of the two numbers is: -3.0000 + i29.7000

The quotient of the two numbers is: 0.0303 + i0.3000

vi. Zero and a complex number

Enter the real and imaginary components of the first complex number.

$$(a1) + i(b1)$$

 $a1 = 0$
 $b1 = 0$

Enter the real and imaginary components of the second complex number.

$$(a2) + i(b2)$$

 $a2 = 4$
 $b2 = 4$

The product of the two numbers is: 0.0000 + i0.0000

The quotient of the two numbers is: 0.0000 + i0.0000

vii. Complex number and zero

Enter the real and imaginary components of the first complex number.

$$(a1) + i(b1)$$

 $a1 = 10$
 $b1 = 0.01$

Enter the real and imaginary components of the second complex number.

$$(a2) + i(b2)$$

 $a2 = 0$
 $b2 = 0$

The product of the two numbers is: 0.0000 + i0.0000

The quotient of the two numbers is: NaN - iNaN