AIR QUALITY CHECKING AND TRACKING FOR ENVIRONMENTAL COMPLIANCE: An IoT-Based Air Quality Monitoring System

2024IT006

Alvarez, Ivan Kenneth

Hipolito, Brian Xavier

Miran, Jason Rey

Valdez, Reiner Gabrielle

Prof. Leonnel de Mesa

AIR QUALITY CHECKING AND MONITORING FOR ENVIRONMENTAL COMPLIANCE: An IoT-Based Air Quality Monitoring System

INTRODUCTION

2020

AIR POLLUTION IN THE PHILIPPINES AC Smith. In 2020 the Philippines ranked 6th among Southeast Asian countries with the most polluted air. Myanmar Myanmar 91.58 86.05 Vietnam Cambodia 78.19 78.00 76.81 Thailand 74.84 Philippines - Air Quality Index (AQI) In 2018, the Philippines had 45.3 CHINA 14th Most Polluted Air air pollution related deaths for every 100,000 people. **PHILIPPINES** 6th Most Polluted Air in Asia and 29th Worldwide The third highest in the world SINGAPORE according to the WHO. No.1 Cleanest Air in Asia

Health and environment scorecard Philippines

2022

STATEMENT OF THE PROBLEM

The absence of a dedicated air quality monitoring station from CENRO limits access to real-time data, making it difficult to detect pollution levels and enforce effective environmental policies.

OBJECTIVES OF THE STUDY

The general objective of this study is to design and implement an IoT-based air quality monitoring system for the City of Cabuyao, capable of detecting specific air pollutants emitted from various pollution sources within the city.

OVERVIEW OF SCOPE AND FEATURES

- Gas Detection, Temperature and Humidity Monitoring and Location Tracking,
- Web-Based Monitoring System and LCD Interface, and
- Power and Internet Connection Management.

Pollutants (NO₂, SO₂ CO, CO₂)

Temperature and Humidity

Coordinates

METHODOLOGY

Figure 5. Scrum Methodology (p.59)

Location

- Cabuyao Bayan Sidewalk
- Pulo Barangay Hall Intersection

Location Testing

Ideal System Installation

Figure 7. Ideal System Installation Setup (p.79)

Block Diagram

Figure 8. Block Diagram of the System Setup (p.80)

Air Quality Monitoring System Architecture Diagram

System Architecture

Self-Calibration Testing

Sensor Datasheet

Dependence of the MQ sensors on temperature and humidity.

#define CORA .00035
#define CORB .02718
#define CORC 1.39538
#define CORD .0018
#define CORE -.003333333
#define CORF -.001923077
#define CORG 1.130128205

Self-Calibration Testing

WebPlotDigitizer

Self-Calibration Testing

R - Script

```
MQ gas sensor datasheet correlation function coefficients estimation and constants estimations
   1 # An R script to estimate MQ gas sensors correlation curve and compute Ro, min and max Rs/Ro
   3 # Copyright (c) Davide Gironi, 2016
   5 # Released under GPLv3.
   6 # Please refer to LICENSE file for licensing information.
   8 # How to use this script:
   9 # 1) set limits as datasheet curve ("xlim" and "ylim")
              xlim = c(10, 1000)
              ylim = c(0.1, 10)
  13 # 2) find out datasheet curve points, and write it out (to "pointsdata")
            each line it's a point on cartesian coordinate system
            the useful WebPlotDigitizer app can help you extract points from the graph
              pointsdata = "
                10.052112405371744, 2.283698378106183
                20.171602728600178, 1.8052797165878915
  28 #
                30.099224396434586, 1.5715748803154423
  21 #
                50.09267987761949, 1.3195287228519417
                80.38812026903305, 1.1281218760133969
                90.12665922665023, 1.0815121769656304
                100.52112405371739, 1.0430967861855598
                199.62996638292853, 0.8000946404902397
  27 # 3) optional for Ro estimation: measure the sensor resistance (set it to "mres" ohm value) at
```

```
45 Fact Input values
AM white - come, peeces
AT plie - con. L. 1883
All Microsom + 8
#5 margon w #
50 mrss + 8
11 mpp - 8
12 poletodeta e "
13 3631-344456613465, #.HBB665B567968464
$4 DEDISABLESCENDERS, #. CHRECKERSCENDERS
31. 1322.498187657888E, #. 00961881857980736
56 2626,0047212520006, 0.15060002624056624
12 1033,0137055255701, 0.14172591202915133
58 1187.2284298359887, 6.19989843433379558
38 974,1364121765886, 4.2157438631374789
60 BET.725589801007, 0.23378973729650607
63 49.18569857176667, 1.5H76654826678931
63" 50.934179000495525; 1.1058573730054562
43 68.67636348673247, 3.2756652486772335
44 79-902001A4580224, 1:1584009505200[1]
45 87,99399938811316, 1,662361344376269
68. BF.5675642007200, 0.002661278520002
47 ST.5675642007286, W.99264327853600T
OR $17.90002000548886, #: ###$6828H7572541
OR $36.0056465527ERGE, 0.0045568ERGES6737
TW 154.85798579885448, 0.7666428532999161
P1 193.000100000033204, 0.000031531300060
FJ T93.00013000933204, 0.010621533160060
F1 251, herriessessort, 0.5862538252068841
34 292,7757353647226, 0,4585649298427371
25 255, $1672501879536; 0.4852613448278961
76 387.7337738858543A, A, 5785738883524236
77 686 675868489683, 0.3325836885686571
78 557,7172845879285, 0.303867257557170)
79 588.46765353792, 4.2602374321764938
00 677.2300000738004, 0.700494275395545
## TOM.SESSESTSBOOKA, #.2557840857880764
```

Output

Correlation function coefficients
Estimated a
100
Estimated b
1.513

[Execution complete with exit code 0]

Self-Calibration Testing

Table 7. Constants used in reading gas measurements (p.77)

Gas	ATMO (ppm)	PARa	PARb
SO2	0.045	3.90719	1.99513
NO2	0.065	284.8729	0.49825
CO	6.0	100.0023	1.513
CO2	423.85	116.60206	2.76903

Third-party Testing

Table 9. Third Party-Testing Results (Test #1) (p.80)

Pollutants	Reference Device Reading (in ppm)	Actual Device Reading (in ppm)	Accuracy	Remark
СО	3.71	3.696	99.98%	EXCELLENT
CO ₂	411.6	411.69	99.62%	EXCELLENT
SO_2	0.0344	0.03419	99.39%	EXCELLENT
NO_2	0.0267	0.02657	99.51%	EXCELLENT

Table 10. Third Party-Testing Results (Test #2) (p.80)

Pollutants	Reference Device Reading (in ppm)	Actual Device Reading (in ppm)	Accuracy	Remark
СО	3.78	3.779	98.54%	EXCELLENT
CO_2	411.7	411.714	98.39%	EXCELLENT
SO_2			98.53%	EXCELLENT
NO_2	0.038	0.03787	98.42%	EXCELLENT
	0.0272	0.02724		

Table 10. Third Party-Testing Results (Test #3) (p.81)

Pollutants	Reference	Actual Device	Accuracy	Remark
	Device Reading	Reading (in ppm)		
	(in ppm)			
СО	3.84	3.833	98.33%	EXCELLENT
CO_2	411.7	411.669	98.79%	EXCELLENT
SO ₂	0.038	0.03805	98.53%	EXCELLENT
NO ₂	0.0274	0.02745	98.43%	EXCELLENT

Third-party Testing

Table 9. Results of Paired t-test (p.82)

Pollutants	Average of Reference Device Readings (in ppm)	Average of Actual Device Readings (in ppm)	p-value	Remark
СО	3.776	3.769	0.1902	No
				Significant Difference
CO₂	411.66	411.69	0.5643	No
				Significant
				Difference
SO₂	0.0368	0.0367	0.3356	No
				Significant
				Difference
NO_2	0.0271	0.0270	0.8406	No
				Significant
				Difference

REAL-TIME MONITORING OF AQI

Setup of the Device

Table 13. Average concentration of Pollutants in Pulo Barangay Hall Intersection (p.84)

Pollutants	Prototype Reading	Accepted Ambient	Remark	
		Value		
CO	7.959	9	ACCEPTABLE	
CO_2	391.036	400	ACCEPTABLE	
SO_2	0.072	0.07	ACCEPTABLE	
NO_2	0.04	0.08	ACCEPTABLE	

Table 14. Average concentration of Pollutants in Cabuyao Bayan Sidewalk (p.84)

Pollutants Prototype Readi		Accepted Ambient	Remark	
		Value		
СО	7.832	9	ACCEPTABLE	
CO_2	372.560	400	ACCEPTABLE	
SO_2	0.071	0.07	ACCEPTABLE	
NO_2	0.042	0.08	ACCEPTABLE	

REAL-TIME MONITORING OF AQI

Compatibility Testing

Compatibility Testing were performed in various platform to ensure the smooth usage of the website in both mobile and desktop. The ideal resolution for desktop is 1920x1080 and mobile is 1080x2340

User Acceptance Test Results

Results showed the most of the respondents strongly agree with the statements form the User Acceptance questionnaire

Unit Testing

SCREEN-RECORDING LINK

All the functions of the website were tested individually to see if they will run as intended.

<u>lable 15-16. Co</u>	mpatible Desktop and Mobile Browsers (p.85)					
Platform	Chrome	Firefox	Safari	Edge		
Mac				N/A		
Windows			N/A			
Android			N/A			
iOS						

Objective 1:3.509

Objective 2:3.5

Objective 3: 3.475

PASSED

CONCLUSION

RECOMMENDATIONS

Thank You

Website Presentation

Schematic Diagram

Hardware

Figure 11. Device Components (p.76)

System Flowchart

$$Res = \left(\frac{(4095)}{VAL} - 1\right) x R_{load}$$

VAL is the analog sensor value **Rload** is a fixed load resistance of the sensor

$$Res = \left(rac{(4095)}{VAL} - 1
ight) x R_{load}$$

 $Correction\ Factor = CORa\ x\ t\ x\ t$ $CORb\ x\ t + CORc$ $(h-33)\ x\ CORd$

constants *CORa* to *CORg* are predefined values provided by the manufacturer and are used to calibrate each sensor during the data processing stage

$$Res = \left(\frac{(4095)}{VAL} - 1\right) x R_{load}$$

 $Correction\ Factor = CORe\ x\ t\ +\ CORf\ x\ h\ +\ CORg$

constants *CORa* to *CORg* are predefined values provided by the manufacturer and are used to calibrate each sensor during the data processing stage

$$Res = \left(rac{(4095)}{VAL} - 1
ight) x R_{load}$$

Correction Factor = $CORa \ x \ t \ x \ t$ $CORb \ x \ t + CORc$ $(h - 33) \ x \ CORd$

 $Correction\ Factor = CORe\ x\ t\ +\ CORf\ x\ h\ +\ CORg$

$$Corrected \ Res = rac{Res}{Correction \ Factor}$$

$$Res = \left(rac{(4095)}{VAL} - 1
ight) x R_{load}$$

 $Correction\ Factor = CORa\ x\ t\ x\ t$ $CORb\ x\ t + CORc$ $(h-33)\ x\ CORd$

 $Correction\ Factor = CORe\ x\ t\ +\ CORf\ x\ h\ +\ CORg$

$$Corrected \ Res = rac{Res}{Correction \ Factor}$$

$$Corrected \ R_0 = Corrected \ Res \ x \left(\left(rac{ATMO}{PARa}
ight)^{rac{1}{PARb}}
ight)$$

ATMO is the value of the pollutant in clean air.

PARa, and **PARb** are gas-specific calibration constants used to convert the sensor's analog readings into gas concentrations, expressed in parts per million

$$Res = \left(rac{(4095)}{VAL} - 1
ight) x R_{load}$$

 $Correction\ Factor = CORa\ x\ t\ x\ t$ $CORb\ x\ t + CORc$ $(h-33)\ x\ CORd$

 $Correction\ Factor = CORe\ x\ t\ +\ CORf\ x\ h\ +\ CORg$

$$Corrected \ Res = rac{Res}{Correction \ Factor}$$

$$Corrected \; R_0 = Corrected \; Res \; x \left(\left(rac{ATMO}{PARa}
ight)^{rac{1}{PARb}}
ight)$$

$$Corrected \ PPM = para \ x \ pow \left(\left(\frac{CorrectedRes}{CorrectedR0} \right)^{-parb} \right)$$

Thank You

Third-Party Testing

Accuracyformula

$$accuracy = 1 - \ \dfrac{|(Va - Ve)|}{Ve} \cdot \ 100$$

Pairedt-testformula

$$t=rac{D}{s_{D/\sqrt{n}}}$$

Va = actual value

Ve = expected value

t = t-value

D = mean of differences

 S_D = standard deviation

n = no. of samples

Third-Party Testing

Accuracy

Table 9. Third Party-Testing Results (Test #1) (p.80)

Pollutants	Reference	Actual Device	Accuracy	Remark
	Device Reading	Reading (in ppm)		
	(in ppm)			
СО	3.71	3.696	99.98%	EXCELLENT
CO_2	411.6	411.69	99.62%	EXCELLENT
SO_2	0.0344	0.03419	99.39%	EXCELLENT
NO_2	0.0267	0.02657	99.51%	EXCELLENT

$$accuracy = 1 - \frac{|(Va - Ve)|}{Ve} \cdot 100$$

$$NO_2$$
 accuracy = $1 - \frac{|(0.02657 - 0.0267)|}{0.0267}$ * 100

 NO_2 accuracy = 99.51%

Third-Party Testing

Pairedt-test

CO2 Instrument	CO2 System	NO2 Instrument	NO2 System	SO2 Instrument	SO2 System	CO Instrument	CO System	
411.6	411.6887	0.0267	0.02657	0.0344	0.03419	3.71	3.696	
411.7	411.714	0.0272	0.02724	0.038	0.03787	3.78	3.779	
411.7	411.669	0.0274	0.02745	0.038	0.03805	3.84	3.833	
Average	Average	Average	Average	Average	Average	Average	Average	
411.6667	411.6906	0.0271	0.02709	0.0368	0.0367	3.77666667	3.76933	
Accuracy		Accuracy		Accuracy		Accuracy		
99.99	99.9941971		99.95077529		2701	99.80544747		

	excel formula for solving	p-value of a paired t-tes	t				
= t.test(array1,array2,tails(two),type(paired)							
t-test p-value	t-test p-value	t-test p-value	t-test p-value				
0.564298854	0.840636185	0.33556805	0.190168809				
		Appendix I	P(p.126)				

			• • •
CO2	1	2	3
Instrument	411.6	411.7	411.7
System	411.6887	411.714	411.669

$$t=rac{D}{s_{D/\sqrt{n}}}$$

STEP 5

H_o: do not reject (claim)

H₁:reject

There is enough evidence to support the claim

STEP 1
 STEP 2

$$H_0: \mu_1 = \mu_2$$
 (claim)
 $a=0.05$
 $H_1: \mu_1 \neq \mu_2$
 $d.f=3-1=2$
 $CV=4.303$

STEP 3

	1	2	3
CO2	-0.0887	-0.014	0.031

$$\bar{D}$$
=-0.0239 S_D =0.06046097915 n =3
$$t = \frac{-0.0239}{0.06046097915} = -0.6847$$

UserAcceptance Test

SCORING

Questionnaire

Strongly disagree-1 Disagree-2 Agree-3

Strongly agree-4

Formula

$$I_p = \frac{I_{Hi} - I_{Lo}}{BP_{HI} - BP_{Lo}} (C_p - BP_{Lo}) + I_{Lo}.$$

Where Ip = the index for pollutant p

Cp = the truncated concentration of pollutant p

BPHI = the concentration breakpoint that is greater than or equal to Cp

BPLo = the concentration breakpoint that is less than or equal to Co

IH = the AQI value corresponding to BPHI

ILo = the AQI value corresponding to BPLo

These Bre	akpoints		equal this AQI	and this category				
O₃ (ppm) 8-hour	O ₃ (ppm) 1-hour ¹	PM _{2.5} (μg/m³) 24-hour	PM ₁₀ (μg/m³) 24-hour	CO (ppm) 8-hour	SO ₂ (ppb) 1-hour	NO ₂ (ppb) 1-hour	AQI	
0.000 - 0.054	-	0.0 - 9.0	0 - 54	0.0 - 4.4	0 - 35	0 - 53	0 - 50	Good
0.055 - 0.070		9.1 – 35.4	55 - 154	4.5 - 9.4	36 - 75	54 - 100	51 - 100	Moderate
0.071 - 0.085	0.125 - 0.164	35.5 – 55.4	155 - 254	9.5 - 12.4	76 - 185	101 - 360	101 - 150	Unhealthy for Sensitive Groups
0.086 - 0.105	0.165 - 0.204	(55.5 - 125.4) ³	255 - 354	12.5 - 15.4	³ 186 - 304	361 - 649	151 - 200	Unhealthy
0.106 - 0.200	0.205 - 0.404	(125.5 - (225.4) ³	355 - 424	15.5 - 30.4	³ 305 - 604)	650 - 1249	201 - 300	Very unhealthy
0.201-(2)	0.405+	225.5+	425+	30.5+	³ 605+	1250+	301+	Hazardous ⁴

Formula

These Breakpoints								and this category
O₃ (ppm) 8-hour	O ₃ (ppm) 1-hour ¹	PM _{2.5} (μg/m³) 24-hour	PM ₁₀ (μg/m³) 24-hour	CO (ppm) 8-hour	SO ₂ (ppb) 1-hour	NO ₂ (ppb) 1-hour	AQI	
0.000 - 0.054	-	0.0 - 9.0	0 - 54	0.0 - 4.4	0 - 35	0 - 53	0 - 50	Good
0.055 - 0.070		9.1 – 35.4	55 - 154	4.5 - 9.4	36 - 75	54 - 100	51 - 100	Moderate
0.071 - 0.085	0.125 - 0.164	35.5 – 55.4	155 - 254	9.5 - 12.4	76 - 185	101 - 360	101 - 150	Unhealthy for Sensitive Groups
0.086 - 0.105	0.165 - 0.204	(55.5 - 125.4) ³	255 - 354	12.5 - 15.4	³ 186 - 304	361 - 649	151 - 200	Unhealthy
0.106 - 0.200	0.205 - 0.404	(125.5 - (225.4) ³	355 - 424	15.5 - 30.4	³ 305 - 604)	650 - 1249	201 - 300	Very unhealthy
0.201-(²)	0.405+	225.5+	425+	30.5+	³ 605+	1250+	301+	Hazardous ⁴

COppmvalue=7.959ppm

$$BP_{LO} = 4.5$$
 $I_{LO} = 51$ $C_P = 7.959$ $BP_{HI} = 9.4$ $I_{HI} = 100$

$$COAQI = \frac{100 - 51}{9.4 - 4.5} * (7.832 - 4.5) + 51$$

$$COAQI = 84$$

$$I_p = \frac{I_{Hi} - I_{Lo}}{BP_{HI} - BP_{Lo}} (C_p - BP_{Lo}) + I_{Lo}.$$

Formula

These Breakpoints								and this category
O₃ (ppm) 8-hour	O ₃ (ppm) 1-hour ¹	PM _{2.5} (μg/m³) 24-hour	PM ₁₀ (μg/m³) 24-hour	CO (ppm) 8-hour	SO ₂ (ppb) 1-hour	NO ₂ (ppb) 1-hour	AQI	
0.000 - 0.054	-	0.0 - 9.0	0 - 54	0.0 - 4.4	0 - 35	0 - 53	0 - 50	Good
0.055 - 0.070		9.1 – 35.4	55 - 154	4.5 - 9.4	36 - 75	54 - 100	51 - 100	Moderate
0.071 - 0.085	0.125 - 0.164	35.5 – 55.4	155 - 254	9.5 - 12.4	76 - 185	101 - 360	101 - 150	Unhealthy for Sensitive Groups
0.086 - 0.105	0.165 - 0.204	(55.5 - 125.4) ³	255 - 354	12.5 - 15.4	³ 186 - 304	361 - 649	151 - 200	Unhealthy
0.106 - 0.200	0.205 - 0.404	(125.5 - (225.4) ³	355 - 424	15.5 - 30.4	³ 305 - 604)	650 - 1249	201 - 300	Very unhealthy
0.201-(²)	0.405+	225.5+	425+	30.5+	³ 605+	1250+	301+	Hazardous ⁴

$$I_p = \frac{I_{Hi} - I_{Lo}}{BP_{HI} - BP_{Lo}} (C_p - BP_{Lo}) + I_{Lo}.$$

SO2ppmvalue=0.072ppm

$$BP_{LO} = 0.036 I_{LO} = 51 C_P = 0.072$$

 $BP_{HI} = 0.075 I_{HI} = 100$

SO2AQI =
$$\frac{100 - 51}{0.075 - 0.035} * (0.071 - 0.075) + 51$$

SO2AQI = 95

Formula

These Bre	akpoints		equal this AQI	and this category				
O₃ (ppm) 8-hour	O ₃ (ppm) 1-hour ¹	PM _{2.5} (μg/m³) 24-hour	PM ₁₀ (μg/m³) 24-hour	CO (ppm) 8-hour	SO ₂ (ppb) 1-hour	NO ₂ (ppb) 1-hour	AQI	
0.000 - 0.054	-	0.0 - 9.0	0 - 54	0.0 - 4.4	0 - 35	0 - 53	0 - 50	Good
0.055 - 0.070		9.1 – 35.4	55 - 154	4.5 - 9.4	36 - 75	54 - 100	51 - 100	Moderate
0.071 - 0.085	0.125 - 0.164	35.5 – 55.4	155 - 254	9.5 - 12.4	76 - 185	101 - 360	101 - 150	Unhealthy for Sensitive Groups
0.086 - 0.105	0.165 - 0.204	(55.5 - 125.4) ³	255 - 354	12.5 - 15.4	³ 186 - 304	361 - 649	151 - 200	Unhealthy
0.106 - 0.200	0.205 - 0.404	(125.5 - (225.4) ³	355 - 424	15.5 - 30.4	³ 305 - 604)	650 - 1249	201 - 300	Very unhealthy
0.201-(²)	0.405+	225.5+	425+	30.5+	³ 605+	1250+	301+	Hazardous ⁴

$$I_p = \frac{I_{Hi} - I_{Lo}}{BP_{HI} - BP_{Lo}} (C_p - BP_{Lo}) + I_{Lo}.$$

NO2ppmvalue=0.04ppm

$$BP_{LO} = 0$$
 $I_{LO} = 0$ $C_P = 0.04$
 $BP_H = 0.053$ $I_H = 50$

$$NO2AQI = \frac{50 - 0}{0.053 - 0} * (0.042-0) + 51$$

NO2AQI = 40

Stress Testing

Expected Packet

Expected Packets =
$$\frac{\text{Test Duration (seconds)}}{600 \text{ seconds}}$$

Expected Packets =
$$\frac{172,800 \text{ seconds}}{600 \text{ seconds}}$$

Test. Duration = 48 hours or 172,800 in seconds

Data Sent every = 10 minutes or 600 in seconds

= 288 Data Packets

Stress Testing

Actual Data Packets after the Stress Testing

Stress Testing

Actual Stress Testing

Table of Results for Actual Data Gathering

Table 13. Average concentration of Pollutants in Pulo Barangay Hall Intersection

Pollutants	Prototype Reading	Accepted Ambient	Remark
		Value	
СО	7.959	9	ACCEPTABLE
CO ₂	391.036	400	ACCEPTABLE
SO ₂	0.072	0.07	ACCEPTABLE
NO ₂	0.04	0.08	ACCEPTABLE

Table 14. Average concentration of Pollutants in Cabuyao Bayan Sidewalk

Pollutants	Prototype Reading	Accepted Ambient	Remark
		Value	
СО	7.832	9	ACCEPTABLE
CO ₂	372.560	400	ACCEPTABLE
SO ₂	0.071	0.07	ACCEPTABLE
NO ₂	0.042	0.08	ACCEPTABLE

Table 1. National Ambient Air Quality Guideline Values

	She	ort Teri	n ^a		Long Te	rm ^b
Pollutants	μg/NCM	ppm	Averaging Time	μg/NC M	ppm	Averaging Time
Suspended Particulate Matter ^c –		- Italian IIII			A Company of the Comp	
TSP	230 ^d		24 hours	90		1 year ^e
PM-10	150 ^f		24 hours	60		1 yeare
Sulfur Dioxide ^c	111					
	180	0.07	24 hours	80	0.03	1 year
Nitrogen Dioxide						
	150	0.08	24 hours			
Photochemical Oxidants as	7					
Ozone	140	0.07	1 hour			
ESTANIES CO	60	0.03	8 hours			
Carbon Monoxide	35 mg/NCM	30	1 hour			
CONTRACTOR CONTRACTOR	10 mg/NCM	9	8 hours			
Lead ^g	1.5		3 months ^g	1.0		1 year

Table 5. Pollutant Specific Cautionary Statement for the General Public of CO2

Gas	OSHA Permissible Exposure Limit (PEL) Concentration in ppm	%	Cautionary Statement
Carbon Dioxide (CO2)	400	0.04	The average outdoor air level.
	400 - 1,000	< 0.1	A typical level found in occupied spaces with good air exchange.
	1,000 – 2,000	< 0.2	A level associated with complaints of drowsiness and poor air.
	2000 - 5000	< 0.5	A level associated with headaches, sleepiness, and stagnant, stale, stuffy air. Poor concentration, loss of attention, increased heart rate and slight nausea may also be present.
	5,000	0.5	This is the OSHA permissible exposure limit (PEL) for daily workplace exposures. It indicates unusual air conditions where high levels of other gases could also be present. Toxicity or oxygen deprivation could occur.
Causas Cauban Dianida	40, 000	4.0	This level is immediately harmful due to oxygen deprivation.

Source: Carbon Dioxide Health Hazard Information Sheet by fsis.usda.gov (OSHA Standards)

DENR-EMBAQIWebsite

Air Quality Index Monitoring

Annual Air Quality Monitoring (Gases)

Ambient Air Quality Monitoring (PM)

Annual Ambient Air Quality Monitoring (Metro)

EXPERIMENTAL SETTING

System Architecture

Air Quality Monitoring System Architecture Diagram

CITY OF CABUYAO AIR QUALITY MONITORING

History Resources About

CITY OF CABUYAO AIR QUALITY MONITORING

History

MONTHLY

Resources About

YEARLY

HISTORICAL AIR QUALITY INDEX

LOCATION Q City of Cabuyao

IN SELECT DATE

O SELECT LOCATION) (CSV &

EDIT 100 200 100 100

CITY OF CABUYAO AIR QUALITY MONITORING

Map History

Resources

About

Resources

This page is here to help you understand how air quality affects your health. We'll highlight the major pollutants affecting air quality, what they can do to your body, what AQI warnings mean, and what steps you can take to protect yourself and help reduce air pollution. Whether you're staying safe on high-pollution days or just learning the basics, this guide's got your back.

Health Concerns and Advisories

Breathing Difficulties

Cardiovascular Strain

Allergy Reactions

Nasal and Sinus Discomfort

Lowered Immunity

Chronic Respiratory Problems

Breathing Difficulties

Air pollution can trigger airway Inflammation, leading to wheezing, chest tightness, and difficulty breathing.

DO'S:

- ✓ Limit outdoor activities when pollution levels are high.
- √ Use air purifiers to reduce indoor pollutants.
- √ Keep prescribed inhalers or breathing aids ready.
- ✓ Drink warm fluids to soothe airways.

DON'TS:

- X Avoid intense outdoor exercise without protection like a mask.
- X Stay away from smoky or dusty environments.
- X Don't ignore persistent coughing or chest discomfort.