naive_bayes_pet

October 18, 2024

0.1 Mengimpor pustaka yang diperlukan

```
[1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

0.2 Mengimpor dataset

```
[2]: dataset = pd.read_csv('pet_adoption_data.csv')
```

[3]: print(dataset.head(10))

	PetID	PetType	Breed	${\tt AgeMonths}$	Color	Size	${\tt WeightKg}$	\
0	500	Bird	Parakeet	131	Orange	Large	5.039768	
1	501	Rabbit	Rabbit	73	White	Large	16.086727	
2	502	Dog	Golden Retriever	136	Orange	Medium	2.076286	
3	503	Bird	Parakeet	97	White	Small	3.339423	
4	504	Rabbit	Rabbit	123	Gray	Large	20.498100	
5	505	Dog	Labrador	70	Brown	Large	20.986261	
6	506	Bird	Parakeet	169	Brown	Small	10.902613	
7	507	Cat	Siamese	13	Orange	Large	7.252683	
8	508	Bird	Parakeet	49	Brown	Medium	24.597598	
9	509	Bird	Parakeet	60	Gray	Large	7.295994	

	Vaccinated	${\tt HealthCondition}$	${\tt TimeInShelterDays}$	${\tt AdoptionFee}$	PreviousOwner	\
0	1	0	27	140	0	
1	0	0	8	235	0	
2	0	0	85	385	0	
3	0	0	61	217	1	
4	0	0	28	14	1	
5	0	0	87	301	1	
6	1	0	70	440	1	
7	1	0	3	137	0	
8	1	1	69	405	0	
9	0	0	73	231	1	

AdoptionLikelihood

0 0

```
0
1
2
                       0
3
                       0
4
                       0
5
                       0
6
                       0
7
                       1
8
                       0
9
                       0
```

[4]: print(dataset.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2007 entries, 0 to 2006
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	PetID	2007 non-null	int64
1	PetType	2007 non-null	object
2	Breed	2007 non-null	object
3	AgeMonths	2007 non-null	int64
4	Color	2007 non-null	object
5	Size	2007 non-null	object
6	WeightKg	2007 non-null	float64
7	Vaccinated	2007 non-null	int64
8	HealthCondition	2007 non-null	int64
9	${\tt TimeInShelterDays}$	2007 non-null	int64
10	AdoptionFee	2007 non-null	int64
11	PreviousOwner	2007 non-null	int64
12	AdoptionLikelihood	2007 non-null	int64
		. (-)	

dtypes: float64(1), int64(8), object(4)

memory usage: 204.0+ KB

None

[5]: # periksa nilai yang hilang di setiap kolom print(dataset.isnull().sum())

PetIDPetType Breed AgeMonths Color Size WeightKg Vaccinated HealthCondition ${\tt TimeInShelterDays}$ AdoptionFee PreviousOwner AdoptionLikelihood 0 dtype: int64

0.3 Encoding data kategori (Atribut)

```
[6]: from sklearn.preprocessing import LabelEncoder
      categorical_cols = dataset.select_dtypes(include=['object']).columns
      label_encoders = {}
      for col in categorical_cols:
          label_encoders[col] = LabelEncoder()
          dataset[col] = label_encoders[col].fit_transform(dataset[col])
 [7]: # definisikan kolom kategorikal dan numerik
      # kolom_kategorikal = ['PetType', 'Breed', 'Color', 'Size']
      # kolom_numerik = ['AqeMonths', 'WeightKg', 'TimeInShelterDays', 'AdoptionFee',
       → 'PreviousOwner']
 [8]: # from sklearn.preprocessing import LabelEncoder
      # encoding kolom kategorikal
      # label_encoder = LabelEncoder()
      # for kolom in kolom_kategorikal:
            dataset[kolom] = label_encoder.fit_transform(dataset[kolom])
 [9]: print("Tipe data setelah encoding:")
      print(dataset.dtypes)
     Tipe data setelah encoding:
     PetID
                              int64
     PetType
                             int32
     Breed
                             int32
     AgeMonths
                             int64
     Color
                             int32
     Size
                             int32
                           float64
     WeightKg
                             int64
     Vaccinated
                             int64
     HealthCondition
                             int64
     TimeInShelterDays
     AdoptionFee
                             int64
     PreviousOwner
                             int64
     AdoptionLikelihood
                             int64
     dtype: object
[10]: # Menampilkan dataset yang sudah diolah
      dataset.head()
```

```
[10]:
         PetID PetType Breed AgeMonths Color Size
                                                         WeightKg Vaccinated \
      0
           500
                      0
                                      131
                                               3
                                                         5.039768
                             2
                                                     0
                                                                             1
      1
           501
                      3
                                       73
                                               4
                                                     0 16.086727
                                                                             0
                             5
      2
           502
                      2
                             0
                                      136
                                               3
                                                     1
                                                         2.076286
                                                                             0
      3
                      0
                             2
                                       97
                                               4
                                                     2
                                                                             0
           503
                                                          3.339423
                      3
                                                                             0
      4
           504
                             5
                                      123
                                               2
                                                     0 20.498100
         HealthCondition TimeInShelterDays AdoptionFee PreviousOwner
      0
                                         27
                                                      140
                       0
                       0
                                          8
                                                      235
                                                                       0
      1
      2
                       0
                                         85
                                                                       0
                                                      385
      3
                       0
                                         61
                                                      217
                                                                       1
      4
                                         28
                       0
                                                       14
                                                                       1
         AdoptionLikelihood
      0
      1
                          0
      2
                          0
      3
                          0
      4
                          0
[11]: # Memilih fitur dan label
      X = dataset.iloc[:, [3, 9]].values
      y = dataset.iloc[:, -1].values
[12]: import seaborn as sns
      numerical_data = dataset.select_dtypes(include=['number'])
      # Menghitung matriks korelasi
      correlation_matrix = dataset.corr()
      # Visualisasi matriks korelasi
      plt.figure(figsize=(10, 8))
      sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')
      plt.title('Matriks Korelasi')
      plt.show()
```


0.4 Pembagian dataset

```
[14]: # 7. Memeriksa bentuk dan tipe data setelah pembagian print("\nBentuk X_train:", X_train.shape) print("Tipe data X_train:", X_train.dtype)
```

Bentuk X_train: (1605, 2) Tipe data X_train: int64

```
[15]: # Menampilkan hasil pembagian
      print("Ukuran X_train:", X_train.shape)
      print("Ukuran X_test:", X_test.shape)
      print("Ukuran y_train:", y_train.shape)
      print("Ukuran y_test:", y_test.shape)
     Ukuran X_train: (1605, 2)
     Ukuran X_test: (402, 2)
     Ukuran y_train: (1605,)
     Ukuran y_test: (402,)
[16]: # Menampilkan nilai X_train dan y_train
      print("\nFitur Pelatihan (X_train):")
      print(X_train)
      print("\nTarget Pelatihan (y_train):")
      print(y_train)
     Fitur Pelatihan (X_train):
     [[ 68 74]
      [172 44]
      [169 43]
      [ 19 31]
      [155 87]
      [ 34 83]]
     Target Pelatihan (y_train):
     [1 0 0 ... 1 0 0]
[17]: # Menampilkan nilai X_test dan y_test
      print("\nFitur Pengujian (X_test):")
      print(X_test)
      print("\nTarget Pengujian (y_test):")
      print(y_test)
     Fitur Pengujian (X_test):
     [[116 71]
      [165 52]
      [106 22]
      [ 31 52]
      [125 39]
      [161 64]
      [ 3 42]
      [ 56
            2]
      [117 18]
      [ 5 32]
      [151 19]
```

- [172 31]
- [59 20]
- [120 1]
- [3 86]
- [98 2]
- [152 14]
- [65 6]
- [84 9]
- [82 8]
- [68 57]
- [141 71]
- [139 30]
- [94 81]
- [139 55]
- [170 49]
- [114 13]
- [129 15]
- [41 35]
- [74 77]
- [44 24]
- [55 19]
- [35 67]
- [92 37]
- [159 13]
- [137 60]
- [69 37]
- [115 16]
- [170 11]
- [65 28]
- [166 4]
- [34 66]
- [35 10]
- [35 46]
- 89] [33
- [153 23]
- [46 60]
- [121 33]
- [155 52] [100
- 29]
- [95 85]
- [40 53]
- [21 48]
- [148 47]
- [4 78]
- [165 34]
- [16 15]
- [148 48]
- 29] [65

- [142 13]
- [149 31]
- [149 81]
- [44 59]
- [128 53]
- [8 63]
- [144 54]
- [110 2]
- [175 46]
- [66 26]
- [149 81]
- [56 6]
- [137 19]
- [51 6]
- [107
- 49] [86
- 34]
- [173 15]
- [134 58]
- [29 7]
- [46 75]
- [169 66] [22
- 8] [126 20]
- [89 51]
- [113 46]
- [77 44] [161 44]
- [25 83]
- [45 12]
- [96 27]
- [51 9]
- [64 65]
- [141 21]
- [28 35]
- [162 65]
- 59] [120
- [118 40]
- [28 7]
- [74 56]
- [34 55]
- [55 36]
- [55 20]
- [54 6]
- [163 47]
- [112 51]
- [6 23]
- 35] [41
- 72] [116

- [125 39]
- [64 66]
- [172 14]
- [82 8]
- [137 37]
- 84]
- [170 [86 60]
- [47 78]
- [92 43] [87 10]
- [9 34] 13] [16
- [174 85]
- [113 70]
- [3 27]
- [107 76]
- [177 50]
- [122 35]
- [109 65]
- [169 4]
- [129 57]
- [122 45]
- [125 40]
- [147 76]
- [42 3]
- [42 21]
- [179 3]
- [106 15]
- [49 58]
- [70 74]
- 78] [162
- [19 52]
- [156 11]
- 19] [41 [149 62]
- 25] [129
- [65 88]
- [24 56]
- [78 77]
- [146 66]
- [78 26]
- [73 57]
- [109 83]
- [162 18]
- [70 8]
- [171 23]
- [40 5]
- [30 20]

- [33 12]
- [154 68]
- [87 31]
- 33] [98
- [34 89]
- [21 79]
- [136 73]
- [101 57]
- [88 14]
- [2 5]
- [101 70]
- [79 82]
- [159 7]
- [73 29]
- [149 38]
- [163 45]
- [102 28] [143
- 54]
- [137 17] [129
- 71]
- [136 86]
- [163 64]
- [167 68]
- [30 38]
- [87 73]
- [134 10]
- [86 26]
- [18 40]
- [22 67]
- [161 5]
- [149 65]
- [29 42]
- [143 1]
- [4 74]
- [74 38]
- [116 30]
- [173 10]
- [153 66]
- [119 51]
- [120
- 22]
- [175 60]
- [124 31]
- 18] [112 [108
- 34]
- [148 85]
- [172 70] [161 84]
- 45] [140

- [58 34]
- [131 84]
- [128 77]
- [137 13]
- [138 66]
- [41 47]
- [82 21]
- [149 51]
- 8 49]
- [75 37]
- [10 8]
- [17 49]
- 8 89]
- [81 14]
- [17
- 42]
- [86 30]
- [140 72]
- [121 86]
- [43 6]
- [124 7]
- [82 1]
- [1 24]
- [56 63]
- [46 38]
- [49 64]
- [82 6]
- [118 32]
- [116 46]
- [152 67]
- [132 33]
- [168 7]
- [179 38]
- [154 57]
- 52] [158
- 35] [178
- [149 7]
- [76 34]
- [139 10]
- [29 61]
- [72 66]
- [20 73]
- [41 69] 8] 41]
- [2 66]
- [127 61]
- [46 17]
- [115 37]
- [13 11]

- [105 76]
- [113 22]
- [115 36]
- [173 52]
- [20 66]
- [109 74]
- [30 51]
- 2] [94
- [108 82]
- [27 53]
- [158 63]
- [37 72]
- [52 81]
- [85 87]
- [124 68]
- [116 15]
- [165 83]
- [26 24]
- [19 39]
- [98 20]
- [89 17]
- [133 82]
- [3 56]
- [98 61]
- [175 42] [82
- 74] [51 42]
- [121 10]
- [84 57]
- [145 57]
- [47 7]
- [66 14]
- [160 62]
- 17] [70
- [28 63]
- [17 54]
- [141 89]
- [130 2]
- [5 3]
- [127 52]
- [104 41]
- [36 48]
- 74] [10 [69 37]
- [118 54]
- [158 80]
- [128 47]
- [58 69]

- [57 62]
- [144 9]
- [100 24]
- [172 55]
- [111 36]
- [115 36]
- [66 67]
- [96 84]
- [79 80]
- [27 48]
- [100 82]
- [14 47]
- [23 1]
- [127 30]
- [98 5]
- [38 52]
- [54 8]
- [107
- 73] [54 15]
- [47 27]
- [79 85]
- [179 72]
- [81 40]
- [90 51]
- [126 30]
- [175 3]
- [55 48]
- [4 52]
- [159 18]
- [126 49]
- [57 2]
- [12 6]
- [57 2]
- [163 68]
- [118 43]
- [77 59]
- [54 54]
- [176 61]
- [12 81]
- [16 54]
- [24 61]
- [4 5]
- [137 22]
- [17 47]
- [108 47]
- [69 31]
- [141 83] [178 71]

- [176 21]
- [142 15]
- [30 19]
- [59 23]
- [28 10]
- [84 66]
- [66 2]
- [59 9]
- [156 60]
- [30 41]
- [11 72]
- 87] [4
- [14 7]
- [13 17]
- [41 59]
- [102 53]
- [109 51]
- [178 79]
- [127 81]
- 73] [153
- [169 44]
- [178 10]
- [49 2]
- [88 61]
- [8 41]
- [32 63]
- [141 49]
- [87 16]
- [163 9]
- [79 67]
- [150 88]
- [133 6]
- 3] [165
- [153 87]
- [63 87]
- [176 8]
- [120 64]
- [143 30]
- [143 48]
- [136 72]
- [144 87]
- [104 68] [3
- 70] [19 25]
- [119 48] [170 42]
- [87 87]
- 66] [126

```
[ 61 69]
[ 20 32]
[ 8 17]
[163 43]
[175 17]
[ 49 38]]
Target Pengujian (y_test):
[0\;0\;0\;0\;0\;1\;1\;0\;0\;0\;0\;0\;0\;1\;0\;0\;1\;0\;0\;0\;0\;0\;0\;0\;0\;0\;1\;1\;1\;0\;0\;0\;0\;1\;1
0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 1
```

0.5 Standardisasi fitur

[59 17]

```
[18]: # Standarisasi kolom numerik
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

0.6 Pelatihan model Naive Bayes pada data pelatihan

```
[19]: from sklearn.naive_bayes import GaussianNB
    classifier = GaussianNB()
    classifier.fit(X_train, y_train)
```

[19]: GaussianNB()

0.7 Prediksi hasil data pengujian

```
[20]: y_pred = classifier.predict(X_test)
```

0.8 Evaluasi model

```
[21]: # Menghitung dan menampilkan confusion matrix
from sklearn.metrics import confusion_matrix, accuracy_score
cm = confusion_matrix(y_test, y_pred)
print("\nConfusion Matrix:")
```

```
print(cm)
# Menghitung akurasi
accuracy = accuracy_score(y_test, y_pred)
print(f'Akurasi Model Naive Bayes: {accuracy * 100:.2f}%')
```

```
Confusion Matrix:

[[260 10]

[106 26]]

Akurasi Model Naive Bayes: 71.14%
```

0.9 Visualisasi hasil pelatihan

```
[22]: from matplotlib.colors import ListedColormap
      X set, y set = X train, y train
      X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, __
       0].max() + 1, step = 0.01),
                           np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:,__
       41].max() + 1, step = 0.01))
      plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).
       ⊶reshape(X1.shape),
                   alpha = 0.75, cmap = ListedColormap(('red', 'green')))
      plt.xlim(X1.min(), X1.max())
      plt.ylim(X2.min(), X2.max())
      for i, j in enumerate(np.unique(y_set)):
          plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                      c = ListedColormap(('red', 'green'))(i), label = j)
          plt.title('Klasifikasi Data dengan Naive Bayes (Data Training)')
          plt.xlabel('AgeMonths (Scaled)')
          plt.ylabel('TimeInShelterDays (Scaled)')
          plt.legend(title='Adoption Likelihood', loc='upper right')
          plt.show()
```

C:\Users\RESTU\AppData\Local\Temp\ipykernel_6536\1858157641.py:10: UserWarning:
c argument looks like a single numeric RGB or RGBA sequence, which should be
avoided as value-mapping will have precedence in case its length matches with
x & *y*. Please use the *color* keyword-argument or provide a 2D array with a
single row if you intend to specify the same RGB or RGBA value for all points.
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],

Klasifikasi Data dengan Naive Bayes (Data Training)

0.10 Visualisasi hasil pengujian

```
[23]: from matplotlib.colors import ListedColormap
      X_set, y_set = X_test, y_test
      X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, __
       0].max() + 1, step = 0.01),
                           np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, __
       41].max() + 1, step = 0.01))
      plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).
       ⇒reshape(X1.shape),
                   alpha = 0.75, cmap = ListedColormap(('red', 'green')))
      plt.xlim(X1.min(), X1.max())
      plt.ylim(X2.min(), X2.max())
      for i, j in enumerate(np.unique(y_set)):
          plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                      c = ListedColormap(('red', 'green'))(i), label = j)
          plt.title('Klasifikasi Data dengan Naive Bayes (Data Training)')
          plt.xlabel('AgeMonths (Scaled)')
          plt.ylabel('TimeInShelterDays (Scaled)')
```

```
plt.legend(title='Adoption Likelihood', loc='upper right')
plt.show()
```

C:\Users\RESTU\AppData\Local\Temp\ipykernel_6536\2972547322.py:10: UserWarning:
c argument looks like a single numeric RGB or RGBA sequence, which should be
avoided as value-mapping will have precedence in case its length matches with
x & *y*. Please use the *color* keyword-argument or provide a 2D array with a
single row if you intend to specify the same RGB or RGBA value for all points.
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],

Klasifikasi Data dengan Naive Bayes (Data Training)

