STA250 Probability and Statistics

Chapter 8 Notes

Sampling Distributions

Asst. Prof. Abdullah YALÇINKAYA

Ankara University, Faculty of Science, Department of Statistics

STA250 Probability and Statistics

Reference Book

This lecture notes are prepared according to the contents of

"PROBABILITY & STATISTICS FOR ENGINEERS & SCIENTISTS by Walpole, Myers, Myers and Ye"

- □ A <u>population</u> is the set (possibly infinite) of all possible observations of interest.
 - Examples: All likely voters in the next election All parts produced today
 All sales receipts for November
- □ A sample is a subset of a population.
 - Examples: 1000 voters selected at random for interview
 A few parts selected for destructive testing
 Random receipts selected for audit
 - Our goal is to make <u>inferences</u> about the population based on an analysis of the sample.
 - Observations in a <u>random sample</u> are made independently and at random. Here, random variables $X_1, X_2, ..., X_n$ in the sample all have same distribution as the population, X.

- □ What would happen if we took many samples of 10 subjects from the population? Here's how to answer this question:
 - Take a large number of samples of size 10 from the population
 - Calculate the sample mean \bar{x} for each sample.
 - Make a histogram of the values of \bar{x} .
 - Examine the shape, center, and spread of the distribution displayed in the histogram.

FIGURE 11.2

The idea of a sampling distribution: take many samples from the same population, collect the \overline{x} 's from all the samples, and display the distribution of the \overline{x} 's. The histogram shows the results of 1000 samples.

Source: The basic Practice of Statistics, Moore, D., Notz, W., Fligner, M., New York, Sixth Edition.

- □ What can we say about the shape, center and spread of this distribution?
- □ **Shape:** It looks Normal! Detailed examination confirms that the distribution of *x* from many samples is very close to Normal.
- □ **Center:** The mean of the 1000 x's is 24.95. That is, the distribution is centered very close to the population mean 25.
- □ **Spread:** The standard deviation of the $1000 \ x's$ is 2.217, notably smaller than the standard deviation 7 of the population of individual subjects.

□ Why Sample?

- Less time consuming than census
- Less costly to administer than a census
- It is possible to obtain statistical results of a sufficiently **high precision** based on samples.

Simple Random Samples

- Every object in the population has an equal chance of being selected
- Objects are selected independently
- □ Samples can be obtained from a table of random numbers or computer random number generators
- A simple random sample is the ideal against which other sample methods are compared

Other Sampling Methods

- □ In a **systematic** sample, a random starting point is selected, and then every *k*th item thereafter is selected for the sample
- In a stratified sample, the population is divided into several groups, called strata, and then a random sample is selected from each stratum
- In clustered sampling, the population is divided into primary units,
 then samples are drawn from the primary units

Inferential Statistics

- Drawing conclusions and/or making decisions concerning a population based only on sample data
- □ Our goal is to make <u>inferences</u> about the population based on an analysis of the sample.

Sample Statistics

- □ Any function of the random variables X_1 , X_2 , ..., X_n making up a random sample is called a <u>statistic</u>.
- The most important statistics, as we have seen are the sample mean, sample variance and sample standard deviation:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1} = \frac{n \sum_{i=1}^{n} X_{i}^{2} - (\sum_{i=1}^{n} X_{i})^{2}}{n(n-1)}$$

Sampling Distributions

- A sampling distribution a distribution of all of the possible values of a statistic for a given size sample selected from a population
 - The sample consists of independent and identically distributed (i.i.d.) observations $X_1, X_2, ..., X_n$ from the population.
 - Based on the sampling distributions of \bar{x} and S for samples of size n, we will make inferences about the population mean and variance μ and σ .
 - We could approximate the sampling distribution of \bar{x} by taking a large number of random samples of size n and plotting the distribution of the \bar{x} values.

Sampling Distribution of the Sample Mean

- A probability distribution of all possible sample means of a given sample size.
 - For a given sample size, the mean of all possible sample means selected from a population is equal to the population mean
 - There is less variation in the distribution of the sample mean than in the population distribution
 - The sampling distribution of the sample mean tends to become bell-shaped

Expected Value and Standart Error of the Sample Mean

- □ Let X₁, X₂, . . . X_n represent a random sample from a population
 - The sample mean value of these observations is defined as

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- Standard Error of the Mean
 - Different samples of the same size from the same population will yield different sample means

$$\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{n}}$$

 Note that the standard error of the mean decreases as the sample size increases

If the Population is Normal

If a population is normal with mean μ and standard deviation σ , the sampling distribution of \bar{x} is **also normally distributed** with

$$\mu_{ar{\chi}} = \mu$$
 and

$$\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{n}}$$

Proof

Proof: Let X_1 , X_2 , X_n be independent random samples from a population having mean μ and variance σ^2 . Then by using rules of expectation

$$\mu_{\bar{X}} = E(\bar{X}) = E(\Sigma Xi/n)$$

$$= (1/n)E(X_1 + X_2 + + X_n)$$

$$= (1/n)[E(X_1) + E(X_2) + + E(X_n)]$$

$$= (1/n)n\mu = \mu$$

Proof

Proof: Let X_1 , X_2 , X_n be independent random samples from a population having mean μ and variance σ^2 . Then by using rules of expectation

If the Population is not Normal

We can apply the Central Limit Theorem:

- If samples of a particular size are selected from any population, the sampling distribution of the sample mean is approximately a normal distribution. The approximation improves with larger samples.
- If \bar{x} is the mean of a random sample of size n from a population with an arbitrary distribution with mean μ and variance σ^2 , then as $n\to\infty$, the sampling distribution of \bar{x} approaches a normal distribution with mean and standard deviation,

$$\mu_{ar{\chi}} = \mu$$
 and $\sigma_{ar{\chi}} = \frac{\sigma}{\sqrt{n}}$

$$\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{n}}$$

Central Limit Theorem

Central Limit Theorem

How large is large enough!

- For most distributions, n > 30 will give a sampling distribution that is nearly normal
- For normal population distributions, the sampling distribution of the mean is always normally distributed

Central Limit Theorem

How large is large enough!

Z-value for Sampling Distribution of the Mean

 \square Z-value for the sampling distribution of \overline{x} :

$$Z = \frac{(\overline{x} - \mu)}{\sigma_{\overline{x}}} = \frac{(\overline{x} - \mu)}{\frac{\sigma}{\sqrt{n}}}$$

Where:

$$ar{x} = sample \ mean$$

 $\mu = population \ mean$
 $\sigma = population \ standard \ devation$
 $n = sample \ size$

Inferences About the Population Mean

■ We often want to test hypotheses about the population mean (hypothesis testing will be formalized later).

■ Example:

• Suppose a manufacturing process is designed to produce parts with $\mu = 6$ cm in diameter, and suppose σ is known to be .15 cm. If a random sample of 80 parts has $\bar{x} = 6.046$ cm, what is the probability (P-value) that a value this far from the mean could occur by chance if μ is truly 6 cm?

$$z = \frac{6.046 - 6.00}{.15 / \sqrt{80}} = 2.74$$

$$P[|\overline{X} - 6.0| \ge .046] = P[|Z| \ge 2.74] = ?$$

$$P[|Z| \ge 2.74] = 2P[Z \ge 2.74] = 2(1 - .9969) = .0062$$

An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed, with mean equal to 800 hours and a standard deviation of 40 hours. Find the probability that a random sample of 16 bulbs will have an average life of less than 775 hours.

Solution: The sampling distribution of \bar{X} will be approximately normal, with $\mu_{\bar{X}} = 800$ and $\sigma_{\bar{X}} = 40/\sqrt{16} = 10$. The desired probability is given by the area of the shaded

Solution: The sampling distribution of \bar{X} will be approximately normal, with $\mu_{\bar{X}} = 800$ and $\sigma_{\bar{X}} = 40/\sqrt{16} = 10$. The desired probability is given by the area of the shaded region in Figure 8.2.

Figure 8.2: Area for Example 8.4.

Corresponding to $\bar{x} = 775$, we find that

$$z = \frac{775 - 800}{10} = -2.5,$$

and therefore

$$P(\bar{X} < 775) = P(Z < -2.5) = 0.0062.$$

Traveling between two campuses of a university in a city via shuttle bus takes, on average, 28 minutes with a standard deviation of 5 minutes. In a given week, a bus transported passengers 40 times. What is the probability that the average transport time was more than 30 minutes? Assume the mean time is measured to the nearest minute.

Solution: In this case, $\mu = 28$ and $\sigma = 3$. We need to calculate the probability P(X > 30) with n = 40. Since the time is measured on a continuous scale to the nearest minute, an \bar{x} greater than 30 is equivalent to $\bar{x} \ge 30.5$. Hence,

$$P(\bar{X} > 30) = P\left(\frac{\bar{X} - 28}{5/\sqrt{40}} \ge \frac{30.5 - 28}{5/\sqrt{40}}\right) = P(Z \ge 3.16) = 0.0008.$$

There is only a slight chance that the average time of one bus trip will exceed 30 minutes. An illustrative graph is shown in Figure 8.4.

Figure 8.4: Area for Example 8.5.

Summary

Shipping weights of packed cartons of hand-crafted wood furniture have a mean weight of 215 Kg. The distribution is normal and the standard deviation is 20 Kg.

a- Find the probability of any one carton reaching a weight of 212 kg or more.

Since X(weight of a caton)∼ Normal

$$P(X \ge 212 \text{ Kg}) = P(Z \ge \frac{212 - 215}{20})$$

$$= P(Z \ge -0.15) = 0.5 + 0.0596 = 0.5596$$

Example 3 continue...

b- Find the probability that a group of 10 randomly selected cartons reaching a <u>mean weight</u> of 212 Kg. or more.

Since $X \sim Normal \rightarrow \overline{X} \sim Normal$

$$\sigma_{\bar{X}} = \sigma/\sqrt{n} = 20/\sqrt{10} = 6.32$$

$$P(\bar{X} \ge 212 \text{ Kg}) = P(Z \ge \frac{212 - 215}{6.32})$$

$$= P(Z \ge -0.47) = 0.5 + 0.1808 = 0.6808$$

Sampling Distribution for Sample Proportion

- □ P = the proportion of the population having some characteristic(success)
- □ Sample proportion (\hat{p}) is an estimate of P:

$$\widehat{p} = \frac{X}{n} = \frac{number\ of\ items\ in\ the\ sample\ having\ the\ characteristic\ of\ interest}{sample\ size}$$

- $0 \le \widehat{p} \le 1$
- \square \widehat{p} has a binomial distribution, but can be approximated by a normal distribution when $min[nP, n(1-P)] \ge 5$

Sampling Distirbution for Sample Proportion

Normal approximation:

Properties:

$$E(\hat{P}) = p$$

$$\sigma_{\hat{P}}^2 = Var\left(\frac{X}{n}\right) = \frac{P(1-P)}{n}$$

(where P = population proportion)

Sampling Distribution for Sample Proportion

Proof: Let random variable X distributed Binomial with parameters n and p. Then

$$\mu_{\hat{p}} = E(\hat{p}) = E(X/n) = (1/n)E(X) = (1/n)np = p$$

$$\sigma_{\hat{p}}^2 = Var(\hat{p}) = Var(X/n) = (1/n^2)Var(X)$$

$$= (1/n^2)np(1-p) = \frac{p(1-p)}{n}$$

$$\sigma_{\hat{p}} = \sqrt{p(1-p)/n}$$

Sampling Distribution for Sample Proportion

Z-Value for Proportions

Standardize P to a Z value with the formula:

$$Z = \frac{\hat{P} - P}{\sigma_{\hat{P}}} = \frac{\hat{P} - P}{\sqrt{\frac{P(1 - P)}{n}}}$$

Example (1 of 1)

• If the true proportion of voters who support Proposition A is P = .4, what is the probability that a sample of size 200 yields a sample proportion between .40 and .45?

• i.e.: if
$$P = .4$$
 and $n = 200$, what is $P(.40 \le \hat{P} \le .45)$?

Example (1 of 2)

if P = .4 and n = 200, what is
$$P(.40 \le \hat{P} \le .45)$$
 ?

Find
$$\sigma_{\hat{P}}$$
: $\sigma_{\hat{P}} = \sqrt{\frac{P(1-P)}{n}} = \sqrt{\frac{.4(1-.4)}{200}} = .03464$

Convert to standard normal:

$$P(.40 \le \hat{P} \le .45) = P\left(\frac{.40 - .40}{.03464} \le Z \le \frac{.45 - .40}{.03464}\right)$$
$$= P(0 \le Z \le 1.44)$$

Example (1 of 3)

if p = .4 and n = 200, what is
$$P(.40 \le \hat{P} \le .45)$$
?

Use standard normal table: P(0 ≤ Z ≤ 1.44) = .4251

Sampling Distribution Summary

- □ Normal distribution: Sampling distribution of \bar{x} when σ is known for any population distribution.
 - Also the sampling distribution for the difference of the means of two different samples.
- □ <u>t-distribution</u>: Sampling distribution of \bar{x} when σ is unknown and S is used. Population must be normal.
 - Also the sampling distribution for the difference of the means of two different samples when σ is unknown.
- □ Chi-square (χ^2) distribution: Sampling distribution of S². Population must be normal.
- □ <u>F-distribution</u>: The distribution of the ratio of two χ^2 random variables. Sampling distribution of the ratio of the variances of two different samples. Population must be normal.

Next Lesson

Estimation

See you@

