BUSS 3620.人工智能导论 搜索

刘佳璐

安泰经济与管理学院

上海交通大学

BUSS 3620.人工智能导论

#1. 搜索问题的一些定义

刘佳璐

安泰经济与管理学院

上海交通大学

什么是搜索?

什么是搜索?

搜索

• 寻找问题的答案

•游戏:下一步

• 迷宫: 最佳路线

- 智能体 Agent
 - 感知其环境并对该环境采取行动的实体

车/人

- 状态 State
 - 智能体及其环境的一种配置

2	4	5	7
8	3	1	11
14	6		10
9	13	15	12

12	9	4	2
8	7	3	14
	1	6	11
5	13	10	15

15	4	10	3
13	1	11	12
9	5	14	7
6	8		2

- 初始状态Initial State
 - 智能体开始的状态、搜索的开始

- 行动 Actions
 - 在某种状态下可以执行的选择
 - Action(s) 函数
 - 输入: 状态 s
 - 功能: 找到状态s下可以执行的所有(合法)行动
 - 输出: 行动集合(Action set)

12

- 转换模型 Transitional model
 - 描述在某种状态下执行合法行动后到达的状态
 - Result(*s, a*) 函数(后继函数)
 - 输入: 状态s, 行动a
 - 功能: 找到在状态s 执行行动a后到达的新的状态
 - 输出:新的状态s

- 转换模型 Transitional model
 - 描述在某种状态下执行合法行动后到达的状态
 - Result(*s, a*) 函数(后继函数)
 - 输入: 状态s, 行动a
 - 功能: 找到在状态s 执行行动a后到达的新的状态
 - 输出:新的状态s

- 状态空间 State space
 - 从初始状态开始,经过一系列的行动,所到达的全部状态集合

2	4	5	7
8	3	1	11
14	6	10	
9	13	15	12

2	4	5	7
8	3	1	11
14	6	10	12
9		13	1 5

2	4	5	7
8	3	1	11
14	6		12
9	13	10	1 5

2	4	5	7
8	3	1	11
14	6		10
9	13	15	12

2	4	5	7
8	3	1	
14	6	10	11
9	13	15	12

- 状态空间 State space
 - 从初始状态开始,经过一系列的行动,所到达的全部状态集合

- 目标测试 Goal test
 - 确定给定状态是否为目标状态

- 路径耗散 Path cost
 - 在状态之间进行转移所需的代价

- 路径耗散 Path cost
 - 在状态之间进行转移所需的代价

- 输出一个能够让**智能体**从初始状态(initial state)到目标状态(goal state)的**解(solution)**
 - 初始状态 Initial state
 - 行动 Actions
 - 转换模型 Transition models
 - 目标测试 Goal test
 - 路径耗散函数 Path cost function

练习#1

- 将如图所示的迷宫问题抽象成搜索问题
 - 初始状态 Initial state
 - 行动 Actions
 - 转换模型 Transition models
 - 目标测试 Goal test
 - 路径耗散函数 Path cost function

有问题吗?

• 请随时举手提问。

BUSS 3620.人工智能导论

#2. 搜索问题的求解

刘佳璐

安泰经济与管理学院

上海交通大学

求解

- •解 Solution
 - 从初始状态到目标状态之间的行动序列

- 最优解 Optimal solution
 - 路径耗散最低的解

求解

- 节点 Node
 - 储存如下信息的数据结构
 - 一个状态 A state
 - 父节点 A parent (产生当前节点/状态的那个节点/状态)

• 路径耗散 A path cost (从初始节点/状态到当前节点所需的代价)

- 探索边界(活结点集合) Frontier
 - 所有下一步可以探索但尚未探索的节点集合

求解

- 从一个包含初始状态(initial state)的探索边界(frontier)开始
- 重复:
 - 如果探索边界(frontier)是空的,那么问题就无解
 - 否则:从探索边界(frontier)中选择并移除一个节点
 - 如果这个节点就是目标状态,那么返回问题的解
 - 否则:扩展这个节点,将生成的节点添加到探索边界(frontier)中

Jialu Liu | SJTU ACEM

• 找到从 A 到 E 的路径

搜索边界 Frontier:

- 重复:
 - 如果探索边界(frontier)是空的,那么问题就无解
 - · 否则: 从探索边界(frontier)中选择并移除一个节点
 - 如果这个节点就是目标状态,那么返回问题的解
 - 否则:扩展这个节点,将生成的节点添加到探索边界(frontier)中

• 找到从 A 到 E 的路径

搜索边界 Frontier:

- 重复:
 - 如果探索边界(frontier)是空的,那么问题就无解
 - · 否则: 从探索边界(frontier)中选择并移除一个节点
 - 如果这个节点就是目标状态,那么返回问题的解
 - 否则:扩展这个节点,将生成的节点添加到探索边界(frontier)中

• 找到从 A 到 E 的路径

搜索边界 Frontier:

- 重复:
 - 如果探索边界(frontier)是空的,那么问题就无解
 - · 否则: 从探索边界(frontier)中选择并移除一个节点
 - 如果这个节点就是目标状态,那么返回问题的解
 - 否则:扩展这个节点,将生成的节点添加到探索边界(frontier)中

• 找到从 A 到 E 的路径

搜索边界 Frontier:

- 重复:
 - 如果探索边界(frontier)是空的,那么问题就无解
 - · 否则: 从探索边界(frontier)中选择并移除一个节点
 - 如果这个节点就是目标状态,那么返回问题的解
 - 否则:扩展这个节点,将生成的节点添加到探索边界(frontier)中

• 找到从 A 到 E 的路径

搜索边界 Frontier:

- 重复:
 - 如果探索边界(frontier)是空的,那么问题就无解
 - · 否则: 从探索边界(frontier)中选择并移除一个节点
 - 如果这个节点就是目标状态,那么返回问题的解
 - 否则:扩展这个节点,将生成的节点添加到探索边界(frontier)中

• 找到从 A 到 E 的路径

搜索边界 Frontier:

- 重复:
 - 如果探索边界(frontier)是空的,那么问题就无解
 - 否则: 从探索边界(frontier)中选择并移除一个节点
 - 如果这个节点就是目标状态,那么返回问题的解
 - 否则:扩展这个节点,将生成的节点添加到探索边界(frontier)中

• 找到从 A 到 E 的路径

搜索边界 Frontier:

- 重复:
 - 如果探索边界(frontier)是空的,那么问题就无解
 - 否则: 从探索边界(frontier)中选择并移除一个节点
 - 如果这个节点就是目标状态,那么返回问题的解
 - 否则:扩展这个节点,将生成的节点添加到探索边界(frontier)中

• 找到从 A 到 E 的路径

搜索边界 Frontier:

- 重复:
 - 如果探索边界(frontier)是空的,那么问题就无解
 - 否则: 从探索边界(frontier)中选择并移除一个节点
 - 如果这个节点就是目标状态,那么返回问题的解
 - 否则:扩展这个节点,将生成的节点添加到探索边界(frontier)中

• 找到从 A 到 E 的路径

搜索边界 Frontier:

- 重复:
 - 如果探索边界(frontier)是空的,那么问题就无解
 - 否则: 从探索边界(frontier)中选择并移除一个节点
 - 如果这个节点就是目标状态,那么返回问题的解
 - 否则:扩展这个节点,将生成的节点添加到探索边界(frontier)中

• 找到从 A 到 E 的路径

搜索边界 Frontier:

- 重复:
 - 如果探索边界(frontier)是空的,那么问题就无解
 - 否则: 从探索边界(frontier)中选择并移除一个节点
 - 如果这个节点就是目标状态,那么返回问题的解
 - 否则:扩展这个节点,将生成的节点添加到探索边界(frontier)中

这个方法会出现什么问题?

• 找到从 A 到 E 的路径

搜索边界 Frontier:

这个方法会出现什么问题?

• 找到从 A 到 E 的路径

搜索边界 Frontier:

这个方法会出现什么问题?

• 找到从 A 到 E 的路径

搜索边界 Frontier:

• 找到从 A 到 E 的路径

• 找到从 A 到 E 的路径

• 找到从 A 到 E 的路径

• 找到从 A 到 E 的路径

• 找到从 A 到 E 的路径

• 找到从 A 到 E 的路径

求解 - 修改版本

- 从一个包含初始状态(initial state)的探索边界(frontier)开始
- · 初始化一个空的已探索集合(empty explore set)
- 重复:
 - 如果探索边界(frontier)是空的,那么问题就无解
 - 否则:从探索边界(frontier)中选择并移除一个节点
 - 如果这个节点就是目标状态,那么返回问题的解
 - 否则:
 - 将这个节点加入到已探索集合
 - 扩展这个节点,如果生成的节点不在已探索结合,那么添加这个节点到探索边界(frontier)中

• 后进先出 Last-in first-out (堆栈数据结构 stack data structure)

Jialu Liu | SJTU ACEM

- 后进先出 Last-in first-out (堆栈 stack)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 后进先出 Last-in first-out (堆栈 stack)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 后进先出 Last-in first-out (堆栈 stack)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 后进先出 Last-in first-out (堆栈 stack)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 后进先出 Last-in first-out (堆栈 stack)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 后进先出 Last-in first-out (堆栈 stack)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 后进先出 Last-in first-out (堆栈 stack)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 后进先出 Last-in first-out (堆栈 stack)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 后进先出 Last-in first-out (堆栈 stack)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 后进先出 Last-in first-out (堆栈 stack)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 后进先出 Last-in first-out (堆栈 stack)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 后进先出 Last-in first-out (堆栈 stack)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

已探索集合 Explored set:

・深度优先搜索 Depth-first search (DFS)

练习#2

• 使用DFS找到从A到B的路径

• 多种选择:

•右,上,左,下

深度优先搜索 Depth-first search

- 总是扩展边界中最深的节点的搜索算法
 - 只要状态是有限的, 就能找到解决方案

- 后进先出 Last-in first-out (堆栈数据结构 stack data structure)
- 先进先出 First-in first out (队列数据结构 queue data structure)

- 先进先出 First-in first out (队列 queue)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 先进先出 First-in first out (队列 queue)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 先进先出 First-in first out (队列 queue)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 先进先出 First-in first out (队列 queue)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 先进先出 First-in first out (队列 queue)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 先进先出 First-in first out (队列 queue)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 先进先出 First-in first out (队列 queue)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 先进先出 First-in first out (队列 queue)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 先进先出 First-in first out (队列 queue)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 先进先出 First-in first out (队列 queue)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 先进先出 First-in first out (队列 queue)
- 找到从 A 到 E 的路径

搜索边界 Frontier:

- 先进先出 First-in first out (队列 queue)
- 找到从 A 到 E 的路径

已探索集合 Explored set:

• 广度优先搜索 Breadth-first search

练习#3

• 使用BFS找到从A到B的路径

• 多种选择:

• 左, 上, 右, 下

Jialu Liu | SJTU ACEM

广度优先搜索 Breadth-first search

- 总是扩展边界中最浅的节点的搜索算法
 - 可能需要探索非常多的节点来找到解

- 深度优先搜索
 - 可能<u>并不总是</u>找到最佳解 决方案

有问题吗?

• 请随时举手提问。

BUSS 3620.人工智能导论

#3. 代码示例: 迷宫

刘佳璐

安泰经济与管理学院

上海交通大学

代码框架

• 步骤:

Jialu Liu | SJTU ACEM

101

解迷宫 – 让计算机明白迷宫

读取迷宫(图片?字符?)

让计算机明白迷宫 (读取信息)

获得迷宫的信息 (初始状态?目标状态) (可以执行的行动)

解迷宫 – 让计算机明白迷宫

- 在txt文件中表示迷宫(易于阅读)
 - # 表示墙壁
 - 空格表示可以同行的路径
 - A 代表起始状态
 - B 代表目标状态

解迷宫 - 让计算机明白迷宫

- •初始化迷宫
 - 读取迷宫txt文件
 - 验证是否含有初始状态和目标状态
 - 找到可以执行的行动
 - 确定迷宫的高度和宽度
 - 找到墙壁的位置(由(i, j)表示)
 - 找到起始状态和目标状态的位置
 - 初始化迷宫的解(空的)

```
class Maze():
           def __init__(self, filename):
               # Read file
               with open(filename) as f:
                   contents = f.read()
               # Validate start and goal
               if contents.count("A") != 1:
                   raise Exception("maze must have exactly one start point")
               if contents.count("B") != 1:
                   raise Exception("maze must have exactly one goal")
               # Determine height and width of maze
56
               contents = contents.splitlines()
57
               self.height = len(contents)
58
               self.width = max(len(line) for line in contents)
```

解迷宫 - 让计算机明白迷宫

- 初始化迷宫
 - 读取迷宫txt文件
 - 验证是否含有初始状态和目标状态
 - 找到可以执行的行动
 - 确定迷宫的高度和宽度
 - 找到墙壁的位置(由(i, j)表示)
 - 找到起始状态和目标状态的位置
 - 初始化迷宫的解(空的)


```
# Keep track of walls
self.walls = []
for i in range(self.height):
    row = []
    for j in range(self.width):
        try:
            if contents[i][j] == "A":
                self.start = (i, j)
                row.append(False)
            elif contents[i][j] == "B":
                self.qoal = (i, j)
                row.append(False)
            elif contents[i][j] == " ":
                row.append(False)
            else:
                row.append(True)
        except IndexError:
            row.append(False)
    self.walls.append(row)
self.solution = None
```

解迷宫-搜索解

搜索解 (深度优先搜索,广度优先搜索)

Jialu Liu | SJTU ACEM

106

解迷宫-搜索解

- 节点 Node
 - 一个状态 A state
 - 父节点 A parent (产生当前节点/状态的那个节点/状态)
 - 一个行动 An action (从父节点/状态到当前节点/状态所执行的那个动作)

• 练习#4: 定义一个类Node, 包含上述属性

解迷宫-搜索解

- 探索边界 Frontier
 - 添加节点
 - 查看节点是否已经在探索边界里
 - 判断探索边界是否是空的
 - 选择并移除一个节点
 - 后进先出 Last-in first-out (stack)
 - 先进先出 First-in first-out (queue)

练习#5

- 定义一个类StackFrontier
 - 有一个属性frontier
 - 初始时为一个空的列表
 - 有四个方法
 - add
 - contains_state
 - empty
 - remove

Jialu Liu | SJTU ACEM

练习#5

- add函数
 - 功能:将一个node添加到frontier中
- contains_state函数
 - 功能: 查看某个状态是否已经在 frontier中了
 - 输入: 一个状态state
 - 输出: True or False

- empty函数
 - 功能: 判断frontier是否是空的
 - 输出: True or False
- remove函数
 - 功能:如果frontier是空的,报错 "empty frontier",否则移除并选择 frontier中的最后一个节点
 - 输出: 选中的node

练习#6

- 定义一个类 QueueFrontier
 - 继承自父类 StackFrontier
 - 更改remove函数
 - 功能:如果frontier是空的,报错 "empty frontier",否则移除并选择frontier中的第一个节点
 - 输出: 选中的node

解迷宫-搜索解

- actions(state):找到某个状态可以执行的所有合法行动
 - 行动: Up, down, left, right
 - 合法
 - 不在迷宫外
 - 不会碰到墙

```
def neighbors(self, state):
                row, col = state
104
                candidates = [
105
                     ("up", (row - 1, col)),
106
107
                     ("down", (row + 1, col)),
                     ("left", (row, col - 1)),
108
                     ("right", (row, col + 1))
109
110
111
                result = []
112
                for action, (r, c) in candidates:
113
                     if 0 <= r < self.height and <math>0 <= c < self.width and not self.walls[r][c]:
114
                         result.append((action, (r, c)))
115
                 return result
116
```

解迷宫-搜索解

- 从一个包含初始状态(initial state)的探索边界(frontier)开始
- · 初始化一个空的已探索集合(empty explore set)
- 重复:
 - 如果探索边界(frontier)是空的,那么问题就无解
 - 否则:从探索边界(frontier)中选择并移除一个节点
 - 如果这个节点就是目标状态,那么返回问题的解
 - 否则:
 - 将这个节点加入到已探索集合
 - 扩展这个节点,如果生成的节点不在已探索结合,那么添加这个节点到探索边界(frontier)中

解迷宫 - 搜索解

```
def solve(self):
                """Finds a solution to maze, if one exists."""
                # Keep track of number of states explored
                                                                             138
                self.num_explored = 0
123
124
                # Start with a frontier that contains the initial state
                start = Node(state=self.start, parent=None, action=None)
                frontier = StackFrontier()
                frontier.add(start)
128
                # Start with an empty explore set
                                                                             148
                self.explored = set()
                # Keep looping until solution found
                while True:
134
135
                                                                             154
                    # If the frontier is empty, then there is no solution
                    if frontier.empty():
                        raise Exception("no solution")
                                                                             158
                    # remove (select) a node from the frontier
140
                    node = frontier.remove()
141
142
                    self.num_explored += 1
```

```
while True:
   # If the frontier is empty, then there is no solution
   if frontier.empty():
       raise Exception("no solution")
   # remove (select) a node from the frontier
   node = frontier.remove()
   self.num_explored += 1
   # If the node contains goal state, return the solution
   if node.state == self.goal:
        actions = []
       cells = []
       while node.parent is not None:
           actions.append(node.action)
           cells.append(node.state)
           node = node.parent
        actions.reverse()
        cells.reverse()
       self.solution = (actions, cells)
       return
   # Else:
   # Add the node to the explore set
   self.explored.add(node.state)
   # Expand node, add resulting nodes to the frontier if they aren't already in the frontier or the explored set
   for action, state in self.neighbors(node.state):
       if not frontier.contains_state(state) and state not in self.explored:
            child = Node(state=state, parent=node, action=action)
            frontier.add(child)
```

简易成果(给自己/程序员看)

输出成果

美观成果(给领导/普通群众看)

115

Jialu Liu | SJTU ACEM

- 简易成果(在终端中输出成果)
 - 【代表墙壁
 - 空格表示可以同行的路径
 - * 表示找到的解
 - A 代表起始状态
 - B 代表目标状态

- 简易成果(在终端中输出成果)
 - 代表墙壁
 - 空格表示可以同行的路径
 - * 表示找到的解
 - A 代表起始状态
 - B 代表目标状态

```
def print(self):
               solution = self.solution[1] if self.solution is not None else None
               print()
               for i, row in enumerate(self.walls):
                   for j, col in enumerate(row):
                       if col:
                           print(" , end="")
                       elif (i, j) == self.start:
                           print("A", end="")
92
                       elif (i, j) == self.goal:
                           print("B", end="")
                       elif solution is not None and (i, j) in solution:
                           print("*", end="")
                       else:
                           print(" ", end="")
                   print()
               print()
```

- 美观成果(给领导/普通群众看)
 - 墙壁: (0, 0, 128)深蓝色
 - 可通行的路径: (237, 240, 252)白色
 - 找到的解: (220, 235, 113)黄色
 - 起始状态: (255, 0, 0)红色
 - 目标状态: (0, 171, 28)绿色
 - 已探索过: (212, 97, 85)棕色


```
168
            def output_image(self, filename, show_solution=True, show_explored=False):
                from PIL import Image, ImageDraw
170
                cell_size = 50
171
                cell_border = 2
                # Create a blank canvas
174
                img = Image.new(
                    "RGBA",
                    (self.width * cell_size, self.height * cell_size),
177
                    (100,149,237) # light blue
178
                draw = ImageDraw.Draw(img)
179
                solution = self.solution[1] if self.solution is not None else None
                for i, row in enumerate(self.walls):
                    for j, col in enumerate(row):
                        # Walls
                        if col:
187
                            # dark blue
                            fill = (0, 0, 128)
                        # Start
                        elif (i, j) == self.start:
                            # red
                            fill = (255, 0, 0)
                        # Goal
                        elif (i, j) == self.goal:
                            # green
198
                            fill = (0, 171, 28)
```

```
199
                        # Solution
                        elif solution is not None and show_solution and (i, j) in solution:
                            # yellow
                            fill = (220, 235, 113)
                        # Explored
                        elif solution is not None and show_explored and (i, j) in self.explored:
                            # brown
                            fill = (212, 97, 85)
208
                        # Empty cell
                        else:
                            # white
                            fill = (237, 240, 252)
                        # Draw cell
                        draw.rectangle(
                            ([(j * cell_size + cell_border, i * cell_size + cell_border),
                             ((j + 1) * cell_size - cell_border, (i + 1) * cell_size - cell_border)]),
218
                            fill=fill
                                                   截图(Alt + A)
                img.save(filename)
```

main()

- 确认终端输入的参数格式是正确的
- 读取迷宫
- 解迷宫
- 输出结果

```
dif __name__=="__main__":
            # make sure the terminal argument is in the correct format
            if len(sys.argv) != 2:
                sys.exit("Usage: python maze.py maze.txt")
228
            # Initialize the maze
            m = Maze(sys.argv[1])
            print("Maze:")
            m.print()
234
            # Solve the result
            print("Solving...")
            m.solve()
            # Output the result in the terminal
            print("States Explored:", m.num_explored)
            print("Solution:")
            m.print()
242
243
            # Output the result to general audience
            m.output_image("maze.png", show_explored=True)
```

迷宫#1

迷宫#2

深度优先搜索有可能 在找到解之前探索所 有可能的路径

迷宫 #2

如果目标状态靠近初 始状态,则广度优先 搜索更有效

迷宫#3

广度优先搜索 BFS

深度优先搜索 DFS

深度优先搜索可能并不总是找到最佳解决方案

迷宫

如果目标状态与初始状态相距甚远, 始状态相距甚远, 则广度优先搜索可能需要探索很多步骤

Jialu Liu | SJTU ACEM

有问题吗?

• 请随时举手提问。

BUSS 3620.人工智能导论

#4. 提示性搜索

刘佳璐

安泰经济与管理学院

上海交通大学

迷宫

如果目标状态与初始状态相距甚远, 始状态相距甚远, 则广度优先搜索可能需要探索很多步骤

Jialu Liu | SJTU ACEM

你会怎么做?

- 可能向右
 - 假设:
 - 知道坐标
 - 知道距离

搜索算法

- 无信息搜索 Uninformed search
 - 不使用与问题相关的信息来指导搜索的策略
 - 例如: Depth-first search, Breadth-first search
 - 迷宫的结构不影响搜索策略
- 提示性搜索 Informed search
 - 使用与问题相关的信息来指导搜索的策略,可以让搜索更高效
 - 例如: 迷宫:选择地理位置更接近目标的路线

启发式搜索 Informed search

- 贪婪最佳优先搜索 Greedy best-first search
 - 扩展最接近目标的节点的搜索算法
 - 由启发式函数heuristic function h(n)来估计距离终点的接近程度

启发式函数 Heuristic function

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
Α	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
Α	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
Α	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
Α	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
Α	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
Α	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
A	16	15	14			11	10	9	8	7	6

- 曼哈顿距离 Manhattan distance
 - $|x_1 x_2| + |y_1 y_2|$

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
Α	16	15	14			11	10	9	8	7	6

- 启发式估计可能是不准确的
 - 参考距离,而非真实
- 探索更少的状态
- 重点是好的启发式估计

11		9		7				3	2		В
12		10		8	7	6		4			1
13	12	11		9		7	6	5			2
	13			10		8		6			3
	14	13	12	11		9		7	6	5	4
			13			10					
Α	16	15	14			11	10	9	8	7	6

贪婪最佳优先搜索能够找到最优解吗?

• 练习 #7

贪婪最佳优先搜索能够找到最优解吗?

• 最优: 20步

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		10	9	8	7	6	5	4		2
	13		11						5		3
	14	13	12		10	9	8	7	6		4
			13		11						5
Α	16	15	14		12	11	10	9	8	7	6

如何改进GBFS?

• 最优: 20步

- GBFS
 - 33步
 - 局部最优

如何改进GBFS?

- A* 搜索
 - 扩展 g(n) + h(n) 值最小的节点的搜索算法

- g(n) = 起始节点到当前节点已经产生的代价/成本
- h(n) =当前节点到目标节点的预估代价/成本

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		10	9	8	7	6	5	4		2
	13		11						5		3
	14	13	12		10	9	8	7	6		4
			13		11						5
Α	16	15	14		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		10	9	8	7	6	5	4		2
	13		11						5		3
	14	13	12		10	9	8	7	6		4
			13		11						5
Α	1+16 =17	15	14		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		10	9	8	7	6	5	4		2
	13		11						5		3
	14	13	12		10	9	8	7	6		4
			13		11						5
Α	1+16 =17	2+15 =17	14		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		10	9	8	7	6	5	4		2
	13		11						5		3
	14	13	12		10	9	8	7	6		4
			13		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		10	9	8	7	6	5	4		2
	13		11						5		3
	14	13	12		10	9	8	7	6		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		10	9	8	7	6	5	4		2
	13		11						5		3
	14	13	5+12 =17		10	9	8	7	6		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		10	9	8	7	6	5	4		2
	13		6+11 =17						5		3
	14	6+13 =19	5+12 =17		10	9	8	7	6		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		10	9	8	7	6	5	4		2
	13		6+11 =17						5		3
	14	6+13 =19	5+12 =17		10	9	8	7	6		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		7+10 =17	9	8	7	6	5	4		2
	13		6+11 =17						5		3
	14	6+13 =19	5+12 =17		10	9	8	7	6		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		7+10 =17	8+9 =17	8	7	6	5	4		2
	13		6+11 =17						5		3
	14	6+13 =19	5+12 =17		10	9	8	7	6		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		7+10 =17	8+9 =17	9+8 =17	7	6	5	4		2
	13		6+11 =17						5		3
	14	6+13 =19	5+12 =17		10	9	8	7	6		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		7+10 =17	8+9 =17	9+8 =17	10+7 =17	6	5	4		2
	13		6+11 =17						5		3
	14	6+13 =19	5+12 =17		10	9	8	7	6		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	5	4		2
	13		6+11 =17						5		3
	14	6+13 =19	5+12 =17		10	9	8	7	6		4
			4+13 =17		11						5
Α	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	4		2
	13		6+11 =17						5		3
	14	6+13 =19	5+12 =17		10	9	8	7	6		4
			4+13 =17		11						5
Α	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	13		6+11 =17						5		3
	14	6+13 =19	5+12 =17		10	9	8	7	6		4
			4+13 =17		11						5
Α	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	13		6+11 =17						14+5 =19		3
	14	6+13 =19	5+12 =17		10	9	8	7	6		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	13		6+11 =17						14+5 =19		3
	14	6+13 =19	5+12 =17		10	9	8	7	6		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	13		6+11 =17						14+5 =19		3
	14	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	13		6+11 =17						14+5 =19		3
	14	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	13		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	13		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
Α	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	12		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	8+13 =21		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	11										1
	9+12 =21		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	8+13 =21		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
Α	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	10	9	8	7	6	5	4	3	2	1	В
	10+11 =21										1
	9+12 =21		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	8+13 =21		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	11+10 =21	9	8	7	6	5	4	3	2	1	В
	10+11 =21										1
	9+12 =21		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	8+13 =21		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	11+10 =21	12+9 =21	8	7	6	5	4	3	2	1	В
	10+11 =21										1
	9+12 =21		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	8+13 =21		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	11+10 =21	12+9 =21	13+8 =21	7	6	5	4	3	2	1	В
	10+11 =21										1
	9+12 =21		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	8+13 =21		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
Α	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	11+10 =21	12+9 =21	13+8 =21	14+7 =21	6	5	4	3	2	1	В
	10+11 =21										1
	9+12 =21		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	8+13 =21		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	11+10 =21	12+9 =21	13+8 =21	14+7 =21	15+6 =21	5	4	3	2	1	В
	10+11 =21										1
	9+12 =21		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	8+13 =21		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	11+10 =21	12+9 =21	13+8 =21	14+7 =21	15+6 =21	16+5 =21	4	3	2	1	В
	10+11 =21										1
	9+12 =21		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	8+13 =21		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	11+10 =21	12+9 =21	13+8 =21	14+7 =21	15+6 =21	16+5 =21	17+4 =21	3	2	1	В
	10+11 =21										1
	9+12 =21		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	8+13 =21		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	11+10 =21	12+9 =21	13+8 =21	14+7 =21	15+6 =21	16+5 =21	17+4 =21	18+3 =21	2	1	В
	10+11 =21										1
	9+12 =21		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	8+13 =21		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	11+10 =21	12+9 =21	13+8 =21	14+7 =21	15+6 =21	16+5 =21	17+4 =21	18+3 =21	19+2 =21	1	В
	10+11 =21										1
	9+12 =21		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	8+13 =21		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

	11+10 =21	12+9 =21	13+8 =21	14+7 =21	15+6 =21	16+5 =21	17+4 =21	18+3 =21	19+2 =21	20+1 =21	В
	10+11 =21										1
	9+12 =21		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	8+13 =21		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

- g(n) + h(n)
- 能找到最优解

	11+10 =21	12+9 =21	13+8 =21	14+7 =21	15+6 =21	16+5 =21	17+4 =21	18+3 =21	19+2 =21	20+1 =21	В
	10+11 =21										1
	9+12 =21		7+10 =17	8+9 =17	9+8 =17	10+7 =17	11+6 =17	12+5 =17	13+4 =17		2
	8+13 =21		6+11 =17						14+5 =19		3
	7+14 =21	6+13 =19	5+12 =17		10	9	8	7	15+6 =21		4
			4+13 =17		11						5
A	1+16 =17	2+15 =17	3+14 =17		12	11	10	9	8	7	6

- •满足以下两个条件时, A*搜索的解是最优的:
 - ① 启发式函数 h(n)是可接受的(admissible)
 - 从不高估到目标代价。预估代价要么是准确的,要么比实际代价更小。

- •满足以下两个条件时, A*搜索的解是最优的:
 - ① 启发式函数 h(n)是可接受的(admissible)
 - 从不高估到目标代价。预估代价要么是准确的,要么比实际代价更小。
 - ② 启发式函数 h(n)是一致的(consistent)
 - 对于任意节点n, 以及需要步骤成本(step cost)为c的后续节点n', $h(n) \leq h(n') + c$

- •满足以下两个条件时, A*搜索的解是最优的:
 - ① 启发式函数 h(n)是可接受的(admissible)
 - 从不高估到目标代价。预估代价要么是准确的,要么比实际代价更小。
 - ② 启发式函数 h(n)是一致的(consistent)
 - 对于任意节点n,以及需要步骤成本(step cost)为c的后续节点n', $h(n) \leq h(n') + c$

• 最难的是找到一个好的启发式函数

Jialu Liu | SJTU ACEM

练习#8

- 使用A*搜索找到从A到B的路径
 - 多个选择
 - 按照右,下,左,上的顺序

A* 搜索的现实应用

- 机器人/自动驾驶
 - 为机器人、汽车找到在环境中导航的最佳路径,避开障碍物/行人到达目的地。
- 游戏
 - 帮助非玩家角色 (NPC) 在游戏世界中进行操作,实时战略游戏的也帮助寻路。
- 自然语言处理
 - 在给定单词的情况下,搜索最有可能的成为通顺句子的单词序列。
- 物流
 - 为送货卡车找到最佳路线。
- 图像和视频处理
 - 通过将当前帧与上一帧进行比较来检测和跟踪视频流中的对象。

有问题吗?

• 请随时举手提问。

