

PLURI-CANONICAL MAPS OF VARIETIES OF MAXIMAL ALBANESE DIMENSION IN POSITIVE CHARACTERISTIC

YUCHEN ZHANG

ABSTRACT. We show that if X is a nonsingular projective variety of general type over an algebraically closed field k of positive characteristic and X has maximal Albanese dimension and the Albanese map is separable, then $|4K_X|$ induces a birational map.

1. INTRODUCTION

Let X be a nonsingular projective variety of general type over an algebraically closed field k , $n = \dim X$ and K_X be a canonical divisor. Since K_X is big, for any sufficiently large positive integer m , the linear series $|mK_X|$ induces a birational map. It is an important problem to bound this integer m . For $\text{char } k = 0$, by a result of [HM06], [Takayama06], [Tsuji06] and [Tsuji07], there exists a non-effective bound for m which only depends on the dimension n . When X has maximal Albanese dimension, [CH02] and [JLT11] show the optimal result that $|3K_X|$ is birational. Furthermore, [CH02] shows that if the Albanese dimension is $n - 1$, then $|6K_X|$ is birational, and if the Albanese dimension is $n - 2$, then $|7K_X|$ is birational.

In this paper, we will generalize these results to positive characteristic.

Theorem 1.1. (*See Theorem 5.5*) *Let X be a smooth projective variety of general type over an algebraically closed field k of characteristic $p > 0$. If X has maximal Albanese dimension and the Albanese map is separable, then $|4K_X|$ induces a birational map.*

Our strategy is similar to that in [CH02] where the Fourier-Mukai transform (Lemma 3.1) is used repeatedly to produce sections of mK_X . Their approach uses multiplier ideals and Kawamata-Viehweg vanishing in an essential way. In positive characteristic, the theory of Fourier-Mukai transforms still applies, and multiplier ideals can be replaced by test ideals. However, Kawamata-Viehweg vanishing is known to fail. Inspired by [Hacon11], [Mustaţă11] and [Schwede11], we replace Kawamata-Viehweg vanishing by the Frobenius map and Serre vanishing. Combining this with the Fourier-Mukai transform, we obtain that $|4K_X|$ is birational. It seems that new ideas are required to investigate the third pluri-canonical map.

Acknowledgements. The author would like to thank his advisor Professor Christopher Hacon for suggesting this problem and many useful discussions.

Date: February 25, 2013.

Key words and phrases. Maximal Albanese dimension, pluri-canonical map, test ideal, characteristic $p > 0$.

2. ASYMPTOTIC TEST IDEALS

Suppose that X is a smooth n -dimensional variety over an algebraically closed field k of characteristic $p > 0$. Let ω_X denote the canonical line bundle on X . We denote $F : X \rightarrow X$ the absolute Frobenius morphism, that is given by the identity on the topological space, and by taking the p -th power on regular functions. Let $\text{Tr} : F_*\omega_X \rightarrow \omega_X$ be the trace map and $\text{Tr}^e : F_*^e\omega_X \rightarrow \omega_X$ be the e -th iteration of the trace map.

We follow the definitions given in [Mustață11]. For other equivalent definitions, see [BMS08] and [Schwede11]. Given a nonzero ideal \mathfrak{a} in \mathcal{O}_X , the image $\text{Tr}^e(\mathfrak{a} \cdot \omega_X)$ can be written as $\mathfrak{a}^{[1/p^e]} \cdot \omega_X$ for some ideal $\mathfrak{a}^{[1/p^e]}$ in \mathcal{O}_X . Given a positive real number λ , one can show that

$$\left(\mathfrak{a}^{\lceil \lambda p^e \rceil}\right)^{[1/p^e]} \subseteq \left(\mathfrak{a}^{\lceil \lambda p^{e+1} \rceil}\right)^{[1/p^{e+1}]}$$

for every $e \geq 1$ where $\lceil t \rceil$ means the smallest integer $\geq t$. Hence, there is an ideal $\tau(\mathfrak{a}^\lambda)$, called the **test ideal** of \mathfrak{a} of exponent λ , that is equal to $(\mathfrak{a}^{\lceil \lambda p^e \rceil})^{[1/p^e]}$ for all e large enough.

Test ideals have many similar properties to multiplier ideals. If $\mathfrak{a} \subseteq \mathfrak{b}$, then $\tau(\mathfrak{a}^\lambda) \subseteq \tau(\mathfrak{b}^\lambda)$ for all $\lambda \geq 0$. If m is a positive integer, then $\tau(\mathfrak{a}^{m\lambda}) = \tau((\mathfrak{a}^m)^\lambda)$.

One can also define an asymptotic version of test ideals similar to asymptotic multiplier ideals. Suppose that \mathfrak{a}_\bullet is a graded sequence of ideals on X ($\mathfrak{a}_m \cdot \mathfrak{a}_n \subseteq \mathfrak{a}_{m+n}$) and λ is a positive real number. If m and l are two positive integers such that \mathfrak{a}_m is nonzero, then

$$\tau(\mathfrak{a}_m^{\lambda/m}) = \tau((\mathfrak{a}_m^l)^{\lambda/ml}) \subseteq \tau(\mathfrak{a}_{ml}^{\lambda/ml}).$$

By the Noetherian property, there is a unique ideal $\tau(\mathfrak{a}_\bullet^\lambda)$, called the **asymptotic test ideal** of \mathfrak{a}_\bullet of exponent λ , such that $\tau(\mathfrak{a}_\bullet^\lambda) = \tau(\mathfrak{a}_m^{\lambda/m})$ for all m large enough and sufficiently divisible.

For linear series, let D be a Cartier divisor on X such that $h^0(X, \mathcal{O}_X(mD)) \neq 0$ for some positive integer m . We then define $\tau(\lambda \cdot \|D\|) = \tau(\mathfrak{a}_m^\lambda)$ where \mathfrak{a}_m is the base ideal of the linear series $|mD|$. Then by definition, $\tau(\lambda/r \cdot \|rD\|) = \tau(\lambda \cdot \|D\|)$ for every positive integer r . If D is a \mathbb{Q} -divisor such that $h^0(X, \mathcal{O}_X(mD)) \neq 0$ for some positive integer m satisfying that mD is Cartier, then we put $\tau(\lambda \cdot \|D\|) = \tau(\lambda/r \cdot \|rD\|)$ for some $r > 0$ such that rD is Cartier.

3. FOURIER-MUKAI TRANSFORM

We recall some facts about the Fourier-Mukai Transform from [Mukai81]. Let A be an abelian variety of dimension g , \hat{A} be the dual abelian variety and P be the normalized Poincaré line bundle on $A \times \hat{A}$. For any $\hat{a} \in \hat{A}$, we let $P_{\hat{a}} = P|_{A \times \hat{a}}$. The **Fourier-Mukai functor** $R\hat{S} : D(A) \rightarrow D(\hat{A})$ is given by $R\hat{S}(\mathcal{F}) = Rp_{\hat{A},*}(p_A^*\mathcal{F} \otimes P)$. There is a corresponding functor $RS : D(\hat{A}) \rightarrow D(A)$ such that $RS \circ R\hat{S} = (-1_A)^*[-g]$ and $R\hat{S} \circ RS = (-1_{\hat{A}})^*[-g]$.

We will need the following result.

Proposition 3.1. *Let \mathcal{F} be a non-zero coherent sheaf on A such that $H^i(A, \mathcal{F} \otimes P_{\hat{a}}) = 0$ for all $\hat{a} \in \hat{A}$ and all $i > 0$. If $\mathcal{F} \rightarrow k(a)$ is a surjective morphism for some $a \in A$, then the induced map $H^0(A, \mathcal{F} \otimes P_{\hat{a}}) \rightarrow k(a)$ is surjective for general $\hat{a} \in \hat{A}$.*

Proof. See [Hacon11, 2.1]. □

4. VANISHING THEOREMS

Suppose $f : X \rightarrow A$ is a nontrivial morphism where X is a smooth variety of general type over an algebraic closed field k of characteristic $p > 0$ and A is an abelian variety. Let K_X be a canonical divisor. Since K_X is big, we have $K_X \sim_{\mathbb{Q}} H + E$ where H is an ample \mathbb{Q} -divisor and E is an effective \mathbb{Q} -divisor. Let $\Delta = (1 - \epsilon)K_X + \epsilon E$, where $\epsilon \in \mathbb{Q}$ and $0 < \epsilon < 1$. Fix a positive integer l such that $l\Delta$ is Cartier. Although Δ is not necessarily effective, since K_X is big and E is effective, we have the Iitaka dimension $\kappa(X, l\Delta) \geq 0$. For any positive integer r , let $\mathcal{F}_r = \mathcal{O}_X((r+1)K_X) \otimes \tau(\|r\Delta\|)$.

Let \mathfrak{a}_m be the base ideal of the linear series $|ml\Delta|$. By the definition of the asymptotic test ideal, we can fix a positive integer m' sufficiently large and divisible such that $\tau(\|r\Delta\|) = \tau(\mathfrak{a}_{\bullet}^{r/l}) = \tau(\mathfrak{a}_{m'}^{r/m'l})$. We may assume $m' = rm$ for some positive integer m . Then $\tau(\|r\Delta\|) = \tau(\mathfrak{a}_{rm}^{1/ml})$. For every $e \gg 0$, we have $\tau(\mathfrak{a}_{rm}^{1/ml}) = (\mathfrak{a}_{rm}^{\lceil p^e/ml \rceil})^{[1/p^e]}$. Hence, the iterated trace map Tr^e gives a surjection

$$\text{Tr}^e : F_*^e(\mathfrak{a}_{rm}^{\lceil p^e/ml \rceil} \cdot \mathcal{O}_X(K_X)) \rightarrow \tau(\|r\Delta\|) \cdot \mathcal{O}_X(K_X).$$

Tensoring with $\mathcal{O}_X(rK_X)$, we have a surjection

$$F_*^e(\mathfrak{a}_{rm}^{\lceil p^e/ml \rceil} \cdot \mathcal{O}_X((rp^e + 1)K_X)) \rightarrow \mathcal{F}_r.$$

Let $\widetilde{\mathcal{F}}_{r,e} = \mathfrak{a}_{rm}^{\lceil p^e/ml \rceil} \cdot \mathcal{O}_X((rp^e + 1)K_X)$. Then the surjection above is $F_*^e \widetilde{\mathcal{F}}_{r,e} \rightarrow \mathcal{F}_r$. Since \mathfrak{a}_{rm} is the base ideal of $|rml\Delta|$, the evaluation gives a surjection

$$H^0(X, \mathcal{O}_X(rml\Delta)) \otimes \mathcal{O}_X(-rml\Delta) \rightarrow \mathfrak{a}_{rm},$$

hence a surjection

$$V_{r,e} \otimes \mathcal{O}_X(-rml[p^e/ml]\Delta) \rightarrow \mathfrak{a}_{rm}^{\lceil p^e/ml \rceil},$$

where $V_{r,e} = \text{Sym}^{\lceil p^e/ml \rceil} H^0(X, \mathcal{O}_X(rml\Delta))$. Tensoring with $\mathcal{O}_X((rp^e + 1)K_X)$, we have a surjection

$$\mathcal{F}_{r,e} = V_{r,e} \otimes \mathcal{O}_X(-rml[p^e/ml]\Delta + (rp^e + 1)K_X) \rightarrow \widetilde{\mathcal{F}}_{r,e},$$

hence a surjection $F_*^e \mathcal{F}_{r,e} \rightarrow \mathcal{F}_r$ since F^e is affine.

Lemma 4.1. *Fix $r > 0$. Then $R^i f_*(F_*^e \mathcal{F}_{r,e}) = 0$ for all $i > 0$ and all e large enough.*

Proof. First, we prove that $R^i f_* \mathcal{F}_{r,e} = 0$ for all $i > 0$ and all e large enough. Since $V_{r,e}$ is a vector space over k , we only need to show that

$$R^i f_* \mathcal{O}_X(-rml[p^e/ml]\Delta + (rp^e + 1)K_X) = 0.$$

But

$$\begin{aligned} & -rml[p^e/ml]\Delta + (rp^e + 1)K_X \\ &= -rmls\Delta + (rmls - rt + 1)K_X \\ &= (1 - rt)K_X + rmls(K_X - \Delta), \end{aligned}$$

where $p^e = mls - t$ and $0 \leq t < ml$. Noticing that $K_X - \Delta \sim_{\mathbb{Q}} \epsilon H$ which is ample, we may apply Serre vanishing. For each value of $t \in [0, ml - 1]$, we have $R^i f_* \mathcal{O}_X((1 - rt)K_X + rmls(K_X - \Delta)) = 0$ for all s large enough, i.e., all e large enough. Thus $R^i f_* \mathcal{F}_{r,e} = 0$.

Now, since F^e is exact and commutes with f , we have

$$R^i f_*(F_*^e \mathcal{F}_{r,e}) = R^i(f \circ F^e)_* \mathcal{F}_{r,e} = R^i(F^e \circ f)_* \mathcal{F}_{r,e} = R^i F_*^e(f_* \mathcal{F}_{r,e}) = 0$$

for all $i > 0$ and all e large enough. \square

Lemma 4.2. *Fix $r > 0$. There is an integer $M > 0$ such that $H^i(A, f_*(F_*^e \mathcal{F}_{r,e}) \otimes P) = 0$ for all $i > 0$, $e > M$ and $P \in \text{Pic}^0(A)$.*

Proof. The proof is similar to that of Lemma 4.1. By Lemma 4.1 and the projection formula, $R^i f_*(F_*^e \mathcal{F}_{r,e} \otimes f^* P) = 0$ for all $i > 0$ and e large enough. Hence, by a spectral sequence argument, it suffices to prove that $H^i(X, F_*^e \mathcal{F}_{r,e} \otimes f^* P) = 0$ or equivalently that $H^i(X, \mathcal{F}_{r,e} \otimes f^* P^{\otimes p^e}) = 0$. We only need to show that

$$H^i(X, \mathcal{O}_X(-rml \lceil p^e / ml \rceil \Delta + (rp^e + 1)K_X) \otimes f^* P^{\otimes p^e}) = 0.$$

Assume that $p^e = mls - t$ where $0 \leq t < ml$. Since $K_X - \Delta \sim_{\mathbb{Q}} \epsilon H$ is ample, by Fujita vanishing, for each value of t , there is an $M_t > 0$ such that for all $e > M_t$ and all nef line bundles \mathcal{N} on X , we have

$$H^i(X, \mathcal{O}_X((1 - rt)K_X + rmls(K_X - \Delta)) \otimes \mathcal{N}) = 0.$$

Let $M = \max\{M_t\}$, then

$$H^i(X, \mathcal{O}_X(-rml \lceil p^e / ml \rceil \Delta + (rp^e + 1)K_X) \otimes \mathcal{N}) = 0$$

for all $e > M$ and all nef line bundles \mathcal{N} . In particular, we can take $\mathcal{N} = f^* P^{\otimes p^e}$. The lemma follows. \square

5. MAIN RESULTS

Fix a positive integer m such that $\tau(\|r\Delta\|) = \tau(\mathfrak{a}_{rm}^{1/ml})$. Let \mathcal{I} be an ideal sheaf in \mathcal{O}_X . In our applications, $\mathcal{I} = \mathcal{O}_X$ or $\mathcal{I} = \mathcal{I}_x$, where \mathcal{I}_x is the maximal ideal of closed point. The composition of the two surjections, $F_*^e \mathcal{F}_{r,e} \rightarrow \mathcal{F}_r$ and $\mathcal{F}_r \rightarrow \mathcal{F}_r \otimes \mathcal{O}_X / \mathcal{I}$, is still surjective. We define $(F_*^e \mathcal{F}_{r,e})_{\mathcal{I}}$ to be the kernel of this composition. Then $(F_*^e \mathcal{F}_{r,e})_{\mathcal{O}_X} = F_*^e \mathcal{F}_{r,e}$. Since the composition $(F_*^e \mathcal{F}_{r,e})_{\mathcal{I}} \rightarrow F_*^e \mathcal{F}_{r,e} \rightarrow \mathcal{F}_r \rightarrow \mathcal{F}_r \otimes \mathcal{O}_X / \mathcal{I}$ is 0, it factors through the kernel of $\mathcal{F}_r \rightarrow \mathcal{F}_r \otimes \mathcal{O}_X / \mathcal{I}$, which is $\mathcal{F}_r \otimes \mathcal{I}$ providing that,

the intersection of the co-supports of $\tau(\|r\Delta\|)$ and \mathcal{I} is empty. $(*)_r$

We have a map $(F_*^e \mathcal{F}_{r,e})_{\mathcal{I}} \rightarrow \mathcal{F}_r \otimes \mathcal{I}$, and by the 5-lemma, it is surjective. This is summarized in the following commutative diagram.

$$\begin{array}{ccccccc} 0 & \longrightarrow & (F_*^e \mathcal{F}_{r,e})_{\mathcal{I}} & \longrightarrow & F_*^e \mathcal{F}_{r,e} & \longrightarrow & \mathcal{F}_r \otimes \mathcal{O}_X / \mathcal{I} \longrightarrow 0 \\ & & \downarrow & & \downarrow & & \parallel \\ 0 & \longrightarrow & \mathcal{F}_r \otimes \mathcal{I} & \longrightarrow & \mathcal{F}_r & \longrightarrow & \mathcal{F}_r \otimes \mathcal{O}_X / \mathcal{I} \longrightarrow 0 \end{array}$$

Remark 5.1. The condition $(*)_r$ is true if $\mathcal{I} = \mathcal{O}_X$ or $\mathcal{I} = \mathcal{I}_x$ where x is not in the co-support of $\tau(\|r\Delta\|)$. And $(*)_r$ implies $(*)_s$ if $r \geq s$, since $\tau(\|r\Delta\|) \subseteq \tau(\|s\Delta\|)$.

Suppose x is a point in X such that x is not in the co-support of the ideals $\tau(\|r\Delta\|)$ or \mathcal{I} . Then the restriction to the point x gives a surjection $\mathcal{F}_r \otimes \mathcal{I} \rightarrow \mathcal{F}_r \otimes k(x) \cong k(x)$. Hence, a surjection $\phi_{r,e,\mathcal{I}} : (F_*^e \mathcal{F}_{r,e})_{\mathcal{I}} \rightarrow \mathcal{F}_r \otimes k(x)$. Let $(F_*^e \mathcal{F}_{r,e})_{\mathcal{I},x}$ be the kernel of $\phi_{r,e,\mathcal{I}}$.

Let $f : X \rightarrow A$ be a nontrivial separable morphism where A is an abelian variety.

Theorem 5.2. Fix $e > 0$ and r a positive integer. Let \mathcal{I} be an ideal sheaf in \mathcal{O}_X satisfying $(*)_r$. Suppose that x is a point in X such that

- (1) x is not in the co-support of $\tau(\|r\Delta\|)$ or \mathcal{I} ,
- (2) $f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I},x} \neq f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I}}$,
- (3) $H^i(A, f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I}} \otimes P) = 0$ for all $i > 0$ and all $P \in \text{Pic}^0(A)$.

Then the homomorphism $H^0(X, (F_*^e \mathcal{F}_{r,e})_{\mathcal{I}} \otimes f^*P) \rightarrow H^0(X, \mathcal{F}_r \otimes \mathcal{I} \otimes f^*P \otimes k(x)) \cong k(x)$ induced by $\phi_{r,e,\mathcal{I}}$ is surjective for general $P \in \text{Pic}^0(A)$. Moreover, x is not a base point of $\mathcal{F}_r \otimes \mathcal{I} \otimes f^*P$ for general $P \in \text{Pic}^0(A)$.

Proof. Pushing forward the exact sequence

$$0 \rightarrow (F_*^e \mathcal{F}_{r,e})_{\mathcal{I},x} \rightarrow (F_*^e \mathcal{F}_{r,e})_{\mathcal{I}} \rightarrow \mathcal{F}_r \otimes k(x) \rightarrow 0,$$

we have

$$0 \rightarrow f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I},x} \rightarrow f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I}} \rightarrow f_*(\mathcal{F}_r \otimes k(x)) \rightarrow R^1 f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I},x} \rightarrow \cdots.$$

Let $a = f(x)$. Since f is separable, we have that a is reduced, hence $f_*(\mathcal{F}_r \otimes k(x)) \cong k(a)$. By assumption, $f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I},x} \rightarrow f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I}}$ is not an isomorphism, which implies that the kernel of $k(a) \rightarrow R^1 f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I},x}$ is not 0. But the kernel is a sub-sheaf of $k(a)$ who has no non-zero sub-sheaf other than itself. Hence the kernel is $k(a)$ and we have an exact sequence

$$0 \rightarrow f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I},x} \rightarrow f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I}} \rightarrow k(a) \rightarrow 0.$$

Applying Proposition 3.1 to the surjection $f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I}} \rightarrow k(a)$, we have the surjection $H^0(f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I}} \otimes P) \rightarrow k(a)$ for general $P \in \text{Pic}^0(A)$. Hence, the theorem follows. For the moreover part, noticing that the surjection factors through $H^0(\mathcal{F}_r \otimes \mathcal{I} \otimes f^*P)$, we have the induced homomorphism $H^0(\mathcal{F}_r \otimes \mathcal{I} \otimes f^*P) \rightarrow k(x)$ is also surjective. \square

The following corollary is useful in the case of maximal Albanese dimension.

Corollary 5.3. Suppose f is finite over an open subset U in A . Fix $e > 0$ and r a positive integer. Let \mathcal{I} be an ideal sheaf in \mathcal{O}_X satisfying $(*)_r$. Suppose that x is a point in X such that

- (1) x is not in the co-support of $\tau(\|r\Delta\|)$ or \mathcal{I} ,
- (2) $a = f(x) \in U$,
- (3) $H^i(A, f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I}} \otimes P) = 0$ for all $i > 0$ and all $P \in \text{Pic}^0(A)$.

Then the conclusion of Theorem 5.2 still holds.

Proof. By Theorem 5.2, we only need to show that $f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I},x} \neq f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I}}$. Recall that we have an exact sequence

$$0 \rightarrow f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I},x} \rightarrow f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I}} \rightarrow f_*(\mathcal{F}_r \otimes k(x)) \rightarrow R^1 f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I},x} \rightarrow \cdots.$$

If $f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I},x} = f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I}}$, we have that the map $f_*(\mathcal{F}_r \otimes k(x)) \rightarrow R^1 f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I},x}$ is nonzero. So the stalk of $R^1 f_*(F_*^e \mathcal{F}_{r,e})_{\mathcal{I},x}$ at a is nonzero. But as f is finite over a , the higher direct images are 0 at a , a contradiction. \square

Theorem 5.2 also gives information on the base locus of $\mathcal{O}_X(2K_X) \otimes f^*P$ for general $P \in \text{Pic}^0(A)$.

Corollary 5.4. Fix $e > M$ as in Lemma 4.2. Suppose that x is a point in X such that

- (1) x is not in the co-support of $\tau(\|\Delta\|)$,

$$(2) \quad f_*(F_*^e \mathcal{F}_{1,e})_{\mathcal{O}_X,x} \neq f_*(F_*^e \mathcal{F}_{1,e}).$$

Then x is not a base point of $\mathcal{F}_1 \otimes f^*P$ for general $P \in \text{Pic}^0(A)$. Hence x is not a base point of $\mathcal{O}_X(2K_X) \otimes f^*P$ for general $P \in \text{Pic}^0(A)$.

Proof. The first part of the corollary follows directly from Theorem 5.2 and Lemma 4.2. And the second part follows from the facts that $\mathcal{F}_1 = \mathcal{O}_X(2K_X) \otimes \tau(\|\Delta\|)$ and $\tau(\|\Delta\|)$ is an ideal. \square

We are ready to prove the main result.

Theorem 5.5. *Let X be a smooth projective variety of general type over an algebraic closed field k of characteristic $p > 0$. If X has maximal Albanese dimension and the Albanese map is separable, then $|4K_X|$ induces a birational map.*

Proof. Suppose A is the Albanese variety and $f : X \rightarrow A$ is the Albanese map. Since f is generically finite, there is an open subset U of A such that f is finite over U . And since f is separable, we have that $K_X = f^*K_A + R_f = R_f \geq 0$. As usual, we let $\mathcal{F}_r = \mathcal{O}_X((r+1)K_X) \otimes \tau(\|r\Delta\|)$ and $\mathfrak{a}_m = \mathfrak{bs}(|ml\Delta|)$. We fix a positive integer m such that $\tau(\|r\Delta\|) = \tau(\mathfrak{a}_m^{1/ml})$ for $r = 1, 2, 3$ and define

$$\widetilde{\mathcal{F}}_{r,e} = \mathfrak{a}_m^{\lceil p^e/ml \rceil} \cdot \mathcal{O}_X((rp^e + 1)K_X),$$

$$\mathcal{F}_{r,e} = V_{r,e} \otimes \mathcal{O}_X(-rml \lceil p^e/ml \rceil \Delta + (rp^e + 1)K_X),$$

where $V_{r,e} = \text{Sym}^{\lceil p^e/ml \rceil} H^0(X, \mathcal{O}_X(rml\Delta))$. Let

$$\widetilde{\mathcal{F}}_{1,e}^- = \mathfrak{a}_m^{\lceil p^e/ml \rceil} \cdot \mathcal{O}_X(p^e K_X) = \widetilde{\mathcal{F}}_{1,e} \otimes \mathcal{O}_X(-K_X),$$

$$\mathcal{F}_{1,e}^- = V_{1,e} \otimes \mathcal{O}_X(-ml \lceil p^e/ml \rceil \Delta + p^e K_X) = \mathcal{F}_{1,e} \otimes \mathcal{O}_X(-K_X).$$

Claim: For $e \gg 0$, we have $R^i f_*(F_*^e \mathcal{F}_{1,e}^-) = 0$ and $H^i(A, f_*(F_*^e \mathcal{F}_{1,e}^-) \otimes P) = 0$ for all $i > 0$ and $P \in \text{Pic}^0(A)$.

The claim follows immediately from the proofs of Lemma 4.1 and 4.2.

We fix an integer $e \gg 0$ such that $H^i(A, f_* \mathcal{G} \otimes P) = 0$ holds for all $i > 0$ and all $\mathcal{G} \in \{\mathcal{F}_{1,e}, \mathcal{F}_{2,e}, \mathcal{F}_{3,e}, \mathcal{F}_{1,e}^-\}$. By a general point $a \in A$, we mean a point $a \in U$. By a general point $x \in X$, we mean a point $x \in f^{-1}(U)$ such that x is not in the co-supports of $\mathfrak{a}_m^{\lceil p^e/ml \rceil}$ or $\tau(\|3\Delta\|)$ (hence, not in the co-supports of $\tau(\|2\Delta\|)$ or $\tau(\|\Delta\|)$ by Remark 5.1) and that x is not in the support of K_X .

Our strategy is: First, by Theorem 5.2, we have that x is not a base point of $\mathcal{F}_1 \otimes f^*P$ for general $P \in \text{Pic}^0(A)$. Then, by comparing \mathcal{F}_1 and \mathcal{F}_2 via $\mathcal{F}_{1,e}^-$, we show that x is not a base point of $\mathcal{F}_2 \otimes f^*P$ for all $P \in \text{Pic}^0(A)$. Using this fact, we show that $\mathcal{F}_2 \otimes f^*P$ separates points for general $P \in \text{Pic}^0(A)$. Finally, by comparing \mathcal{F}_2 and \mathcal{F}_3 via $\mathcal{F}_{1,e}^-$, we have that $\mathcal{F}_3 \otimes f^*P$ separates points for all $P \in \text{Pic}^0(A)$. Hence, so does \mathcal{F}_3 .

Step 1. By Lemma 4.2 and Corollary 5.3 with $r = 1$ and $\mathcal{I} = \mathcal{O}_X$, we have that for general $x \in X$, the homomorphism

$$H^0(X, F_*^e \mathcal{F}_{1,e} \otimes f^*P) \rightarrow H^0(X, \mathcal{F}_1 \otimes f^*P \otimes k(x)) \cong k(x)$$

is surjective for general $P \in \text{Pic}^0(A)$.

Step 2. We show that for general $x \in X$, the homomorphism

$$H^0(X, F_*^e \mathcal{F}_{2,e} \otimes f^* Q) \rightarrow H^0(X, \mathcal{F}_2 \otimes f^* Q \otimes k(x)) \cong k(x)$$

is surjective for all $Q \in \text{Pic}^0(A)$.

Since $\mathfrak{a}_m^{[p^e/ml]}$ is an ideal, we have an inclusion $\widetilde{\mathcal{F}_{1,e}}^- \rightarrow \mathcal{O}_X(p^e K_X)$. Tensoring with the vector bundle $\mathcal{F}_{1,e}$, we have an inclusion

$$\widetilde{\mathcal{F}_{1,e}}^- \otimes \mathcal{F}_{1,e} \rightarrow \mathcal{O}_X(p^e K_X) \otimes \mathcal{F}_{1,e},$$

whose cokernel is supported on the co-support of $\mathfrak{a}_m^{[p^e/ml]}$. Pushing forward by the Frobenius, we get another inclusion

$$F_*^e(\widetilde{\mathcal{F}_{1,e}}^- \otimes \mathcal{F}_{1,e}) \rightarrow F_*^e(\mathcal{O}_X(p^e K_X) \otimes \mathcal{F}_{1,e}) \cong \mathcal{O}_X(K_X) \otimes F_*^e(\mathcal{F}_{1,e}),$$

whose cokernel is still supported on the co-support of $\mathfrak{a}_m^{[p^e/ml]}$. Hence, the induced morphism

$$\alpha : F_*^e(\widetilde{\mathcal{F}_{1,e}}^- \otimes \mathcal{F}_{1,e}) \otimes k(x) \rightarrow \mathcal{O}_X(K_X) \otimes F_*^e(\mathcal{F}_{1,e}) \otimes k(x)$$

is an isomorphism providing that x is general. Since $\mathfrak{a}_m^2 \subseteq \mathfrak{a}_{2m}$, we have a morphism $\widetilde{\mathcal{F}_{1,e}}^- \otimes \widetilde{\mathcal{F}_{1,e}} \rightarrow \widetilde{\mathcal{F}_{2,e}}$. Combining with the morphism $\mathcal{F}_{1,e} \rightarrow \widetilde{\mathcal{F}_{1,e}}$, we have that

$$\widetilde{\mathcal{F}_{1,e}}^- \otimes \mathcal{F}_{1,e} \rightarrow \widetilde{\mathcal{F}_{1,e}}^- \otimes \widetilde{\mathcal{F}_{1,e}} \rightarrow \widetilde{\mathcal{F}_{2,e}}.$$

On the other hand, since $\tau(\|\Delta\|)$ and $\tau(\|2\Delta\|)$ are ideals, the induced inclusions $\mathcal{F}_1 \otimes k(x) \rightarrow \mathcal{O}_X(2K_X) \otimes k(x)$ and $\mathcal{F}_2 \otimes k(x) \rightarrow \mathcal{O}_X(3K_X) \otimes k(x)$ are both isomorphisms providing that x is general. Hence, there is a morphism

$$\mathcal{F}_1 \otimes k(x) \rightarrow \mathcal{O}_X(K_X) \otimes \mathcal{F}_1 \otimes k(x) \cong \mathcal{O}_X(3K_X) \otimes k(x) \cong \mathcal{F}_2 \otimes k(x).$$

Combining the discussion above and the trace maps $F_*^e \mathcal{F}_{r,e} \rightarrow F_*^e \widetilde{\mathcal{F}_{r,e}} \rightarrow \mathcal{F}_r$, we have the following commutative diagram:

$$\begin{array}{ccccccc} F_*^e \mathcal{F}_{1,e} \otimes k(x) & \longrightarrow & \mathcal{O}_X(K_X) \otimes F_*^e \mathcal{F}_{1,e} \otimes k(x) & \xrightarrow[\alpha^{-1}]{} & F_*^e(\widetilde{\mathcal{F}_{1,e}}^- \otimes \mathcal{F}_{1,e}) \otimes k(x) & \longrightarrow & F_*^e \widetilde{\mathcal{F}_{2,e}} \otimes k(x) \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ \mathcal{F}_1 \otimes k(x) & \xrightarrow{\simeq} & \mathcal{O}_X(K_X) \otimes \mathcal{F}_1 \otimes k(x) & = & \mathcal{O}_X(K_X) \otimes \mathcal{F}_1 \otimes k(x) & \xrightarrow{\simeq} & \mathcal{F}_2 \otimes k(x). \end{array}$$

The surjectivities of the first, second and last vertical maps are induced by the surjectivity of $F_*^e \mathcal{F}_{r,e} \rightarrow \mathcal{F}_r$. The third map is the same as the second map.

Noticing that $\mathcal{F}_{1,e}$ is a vector bundle, we have that the morphism $\widetilde{\mathcal{F}_{1,e}}^- \otimes \mathcal{F}_{1,e} \rightarrow \widetilde{\mathcal{F}_{2,e}}$ is equivalent to a morphism $\widetilde{\mathcal{F}_{1,e}}^- \rightarrow \mathcal{H}\text{om}_{\mathcal{O}_X}(\mathcal{F}_{1,e}, \widetilde{\mathcal{F}_{2,e}})$. We have

$$\begin{aligned} F_*^e \widetilde{\mathcal{F}_{1,e}}^- &\rightarrow F_*^e \mathcal{H}\text{om}_{\mathcal{O}_X}(\mathcal{F}_{1,e}, \widetilde{\mathcal{F}_{2,e}}) \\ &\rightarrow \mathcal{H}\text{om}_{\mathcal{O}_X}(F_*^e \mathcal{F}_{1,e}, F_*^e \widetilde{\mathcal{F}_{2,e}}) \\ &\rightarrow \mathcal{H}\text{om}_{\mathcal{O}_X}(F_*^e \mathcal{F}_{1,e} \otimes k(x), F_*^e \widetilde{\mathcal{F}_{2,e}} \otimes k(x)) \end{aligned}$$

which is the top row of the commutative diagram above. This induces a morphism between $\mathcal{F}_1 \otimes k(x)$ and $\mathcal{F}_2 \otimes k(x)$. Indeed, for any $a \in \mathcal{F}_1 \otimes k(x)$, we have some $b \in F_*^e \mathcal{F}_{1,e} \otimes k(x)$ (maybe not unique) mapped to a by the first vertical arrow in the commutative diagram. Applying the top row induced by $F_*^e \widetilde{\mathcal{F}_{1,e}}^-$ and then the

last vertical arrow on b , we get some $c \in \mathcal{F}_2 \otimes k(x)$ which is independent of the choice of b since the diagram commutes. Hence, we have a morphism

$$F_*^e \widetilde{\mathcal{F}_{1,e}}^- \rightarrow \text{Hom}_{\mathcal{O}_X}(\mathcal{F}_1 \otimes k(x), \mathcal{F}_2 \otimes k(x)) \cong k(x).$$

This morphism is nonzero, and hence surjective, providing that x is not in the support of the effective divisor K_X , since the bottom row of the commutative diagram are all isomorphisms in this case. Combining with the surjection $\mathcal{F}_{1,e}^- \rightarrow \widetilde{\mathcal{F}_{1,e}}^-$, we have the following surjection:

$$F_*^e \mathcal{F}_{1,e}^- \rightarrow \text{Hom}_{\mathcal{O}_X}(\mathcal{F}_1 \otimes k(x), \mathcal{F}_2 \otimes k(x)) \cong k(x).$$

For any $Q \in \text{Pic}^0(A)$, we can pick $P \in \text{Pic}^0(A)$ such that P and $Q \otimes P^\vee$ are both general. Applying Corollary 5.3 to the surjection $F_*^e \mathcal{F}_{1,e}^- \rightarrow \text{Hom}_{\mathcal{O}_X}(\mathcal{F}_1 \otimes k(x), \mathcal{F}_2 \otimes k(x))$, since $Q \otimes P^\vee$ is general, we get a surjection

$$H^0(X, F_*^e \mathcal{F}_{1,e}^- \otimes f^*(Q \otimes P^\vee)) \rightarrow \text{Hom}_{\mathcal{O}_X}(\mathcal{F}_1 \otimes f^*P \otimes k(x), \mathcal{F}_2 \otimes f^*Q \otimes k(x)).$$

Combining with the fact from Step 1, that $H^0(X, F_*^e \mathcal{F}_{1,e}^- \otimes f^*P) \rightarrow H^0(X, \mathcal{F}_1 \otimes f^*P \otimes k(x))$ is surjective, we have a surjection

$$H^0(X, F_*^e \mathcal{F}_{1,e}^- \otimes F_*^e \mathcal{F}_{1,e} \otimes f^*Q) \rightarrow H^0(X, \mathcal{F}_2 \otimes f^*Q \otimes k(x)).$$

Noticing that by the commutative diagram above, this surjection factors through $H^0(X, F_*^e \mathcal{F}_{2,e} \otimes f^*Q)$. Therefore, we have that the homomorphism

$$H^0(X, F_*^e \mathcal{F}_{2,e} \otimes f^*Q) \rightarrow H^0(X, \mathcal{F}_2 \otimes f^*Q \otimes k(x))$$

is surjective for all $Q \in \text{Pic}^0(A)$.

Step 3. We show that for general $x_1, x_2 \in X$ and general $P \in \text{Pic}^0(A)$, we can find a section in $F_*^e \mathcal{F}_{2,e} \otimes f^*P$ which induces a section in $\mathcal{F}_2 \otimes f^*P$ vanishing at x_1 but not x_2 .

We only need to show that the map

$$H^0(X, (F_*^e \mathcal{F}_{2,e})_{\mathcal{I}_{x_1}} \otimes f^*P) \rightarrow H^0(X, \mathcal{F}_2 \otimes \mathcal{I}_{x_1} \otimes f^*P \otimes k(x_2)) \cong k(x_2)$$

is surjective. Noticing that x_1 is not in the co-support of $\tau(\|2\Delta\|)$, we have that \mathcal{I}_{x_1} satisfies $(*)_2$. Applying Corollary 5.3 with $r = 2$ and $\mathcal{I} = \mathcal{I}_{x_1}$, it suffices to check $H^i(A, f_*(F_*^e \mathcal{F}_{2,e})_{\mathcal{I}_{x_1}} \otimes P) = 0$ for all $i > 0$ and all $P \in \text{Pic}^0(A)$.

First we show that $R^i f_*(F_*^e \mathcal{F}_{2,e})_{\mathcal{I}_{x_1}} = 0$ for $i > 0$. Pushing forward the exact sequence

$$0 \rightarrow (F_*^e \mathcal{F}_{2,e})_{\mathcal{I}_{x_1}} \rightarrow F_*^e \mathcal{F}_{2,e} \rightarrow \mathcal{F}_2 \otimes k(x_1) \rightarrow 0$$

gives

$$f_*(F_*^e \mathcal{F}_{2,e}) \rightarrow k(a_1) \rightarrow R^1 f_*(F_*^e \mathcal{F}_{2,e})_{\mathcal{I}_{x_1}} \rightarrow R^1 f_*(F_*^e \mathcal{F}_{2,e}) = 0$$

and

$$R^i f_*(F_*^e \mathcal{F}_{2,e})_{\mathcal{I}_{x_1}} \cong R^i f_*(F_*^e \mathcal{F}_{2,e}) = 0$$

for all $i \geq 2$, where $a_1 = f(x_1)$. As in the proof of Theorem 5.2 (notice that $(F_*^e \mathcal{F}_{2,e})_{\mathcal{I}_{x_1}} = (F_*^e \mathcal{F}_{2,e})_{\mathcal{O}_X, x_1}$), one sees that $f_*(F_*^e \mathcal{F}_{2,e}) \rightarrow k(a_1)$ is surjective, so $R^1 f_*(F_*^e \mathcal{F}_{2,e})_{\mathcal{I}_{x_1}} = 0$.

Now, by a spectral sequence argument, we only need to show that $H^i(X, (F_*^e \mathcal{F}_{2,e})_{\mathcal{I}_{x_1}} \otimes f^*P) = 0$ for all $i > 0$ and all $P \in \text{Pic}^0(A)$. We have the short exact sequence

$$0 \rightarrow (F_*^e \mathcal{F}_{2,e})_{\mathcal{I}_{x_1}} \otimes f^*P \rightarrow F_*^e \mathcal{F}_{2,e} \otimes f^*P \rightarrow \mathcal{F}_2 \otimes f^*P \otimes k(x_1) \rightarrow 0.$$

By taking the cohomology, we have

$$H^0(X, F_*^e \mathcal{F}_{2,e} \otimes f^* P) \rightarrow k(x_1) \rightarrow H^1(X, (F_*^e \mathcal{F}_{2,e})_{\mathcal{I}_{x_1}} \otimes f^* P) \rightarrow H^1(X, F_*^e \mathcal{F}_{2,e} \otimes f^* P) = 0$$

and

$$H^i(X, (F_*^e \mathcal{F}_{2,e})_{\mathcal{I}_{x_1}} \otimes f^* P) \cong H^i(X, F_*^e \mathcal{F}_{2,e} \otimes f^* P) = 0,$$

for all $i \geq 2$. Since by Step 2, $H^0(X, F_*^e \mathcal{F}_{2,e} \otimes f^* P) \rightarrow k(x_1)$ is surjective, we have $H^1(X, (F_*^e \mathcal{F}_{2,e})_{\mathcal{I}_{x_1}} \otimes f^* P) = 0$.

Step 4. We show that for general $x_1, x_2 \in X$ and all $Q \in \text{Pic}^0(A)$, we can find a section in $F_*^e \mathcal{F}_{3,e} \otimes f^* Q$ which induces a section in $\mathcal{F}_3 \otimes f^* Q$ vanishing at x_1 but not x_2 .

For any general points x_1 and x_2 and any $Q \in \text{Pic}^0(A)$, we may pick $P \in \text{Pic}^0(A)$ such that P and $Q \otimes P^\vee$ are both general. Similar to Step 2, for $i = 1$ or 2 , we have the following commutative diagram:

$$\begin{array}{ccccccc} F_*^e \mathcal{F}_{2,e} \otimes k(x_i) & \longrightarrow & \mathcal{O}_X(K_X) \otimes F_*^e \mathcal{F}_{2,e} \otimes k(x_i) & \xrightarrow{\sim} & F_*^e(\widetilde{\mathcal{F}_{1,e}}^- \otimes \mathcal{F}_{2,e}) \otimes k(x_i) & \longrightarrow & F_*^e \widetilde{\mathcal{F}_{3,e}} \otimes k(x_i) \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ \mathcal{F}_2 \otimes k(x_i) & \xrightarrow{\sim} & \mathcal{O}_X(K_X) \otimes \mathcal{F}_2 \otimes k(x_i) & \xlongequal{\quad} & \mathcal{O}_X(K_X) \otimes \mathcal{F}_2 \otimes k(x_i) & \xrightarrow{\sim} & \mathcal{F}_3 \otimes k(x_i). \end{array}$$

And we have that

$$F_*^e \mathcal{F}_{1,e}^- \rightarrow \text{Hom}_{\mathcal{O}_X}(\mathcal{F}_2 \otimes k(x_i), \mathcal{F}_3 \otimes k(x_i)) \cong k(x_i)$$

is surjective. We may apply Corollary 5.3 and get that

$$H^0(X, F_*^e \mathcal{F}_{1,e}^- \otimes f^*(Q \otimes P^\vee)) \rightarrow \text{Hom}_{\mathcal{O}_X}(\mathcal{F}_2 \otimes f^* P \otimes k(x_2), \mathcal{F}_3 \otimes f^* Q \otimes k(x_2))$$

is surjective.

By Step 3, we have a section $s \in H^0(X, F_*^e \mathcal{F}_{2,e} \otimes f^* P)$ restricting to 0 in $\mathcal{F}_2 \otimes f^* P \otimes k(x_1)$ and to nonzero in $\mathcal{F}_2 \otimes f^* P \otimes k(x_2)$. And by the discussion above, we have a section $s^- \in H^0(X, F_*^e \mathcal{F}_{1,e}^- \otimes f^*(Q \otimes P^\vee))$ inducing a nonzero homomorphism between $\mathcal{F}_2 \otimes f^* P \otimes k(x_2)$ and $\mathcal{F}_3 \otimes f^* Q \otimes k(x_2)$. Hence, $s^- \otimes s$ gives a section in $H^0(X, F_*^e \mathcal{F}_{3,e} \otimes f^* Q)$ restricting to 0 in $\mathcal{F}_3 \otimes f^* Q \otimes k(x_1)$ and to nonzero in $\mathcal{F}_3 \otimes f^* Q \otimes k(x_2)$.

Step 5. By Step 4, for all $Q \in \text{Pic}^0(A)$, we have a surjection

$$H^0(X, F_*^e \mathcal{F}_{3,e} \otimes f^* Q) \rightarrow H^0(X, \mathcal{F}_3 \otimes f^* Q \otimes k(x_1, x_2)),$$

where $k(x_1, x_2)$ is the skyscraper sheaf supported on $\{x_1, x_2\}$. Since this surjection factors through $H^0(X, \mathcal{F}_3 \otimes f^* Q)$, we have that $\mathcal{F}_3 \otimes f^* Q$ separates general points for all $Q \in \text{Pic}^0(A)$.

Since $\mathcal{F}_3 = \mathcal{O}_X(4K_X) \otimes \tau(\|3\Delta\|)$ and $\tau(\|3\Delta\|)$ is an ideal, we can conclude that $|4K_X|$ induces a birational map. □

REFERENCES

- [BMS08] M. Blickle, M. Mustaţă and K. E. Smith, *Discreteness and rationality of F-thresholds*, Michigan Math. J. 57 (2008), 463-483.
- [CH02] J. A. Chen and C. Hacon, *Linear series of irregular varieties*, Proceedings of the symposium on Algebraic Geometry in East Asia. World Scientific (2002), 143-153.
- [Hacon11] C. Hacon, *Singularities of pluri-theta divisors in Char p > 0*, preprint, arXiv:1112.2219.

- [HM06] C. Hacon and J. McKernan, *Boundedness of pluricanonical maps of varieties of general type*, Invent. Math. 166 (2006), 1-25.
- [JLT11] Z. Jiang, M. Lahoz and S. Tirabassi, *On the Iitaka fibration of varieties of maximal Albanese dimension*, preprint, arXiv:1111.6279.
- [Mukai81] S. Mukai, *Duality between $D(X)$ and $D(\hat{X})$ with its application to Picard sheaves*, Nagoya Math. J. Vol. 81 (1981), 153-175.
- [Mustaţă11] M. Mustaţă, *The non-nef locus in positive characteristic*, preprint, arXiv:1109.3825v1.
- [Schwede11] K. Schwede, *A canonical linear system associated to adjoint divisors in characteristic $p > 0$* , preprint, arXiv:1107.3833v3.
- [Takayama06] S. Takayama, *Pluricanonical systems on algebraic varieties of general type*, Invent. Math. 165 (2006), 551-587.
- [Tsuji06] H. Tsuji, *Pluricanonical systems of projective varieties of general type. I*, Osaka J. Math. 43 (2006), no. 4, 967-995.
- [Tsuji07] H. Tsuji, *Pluricanonical systems of projective varieties of general type. II*, Osaka J. Math. 44 (2007), no. 3, 723-764.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84102

Current address: 155 S 1400 E Room 233, Salt Lake City, Utah 84112

E-mail address: yzhang@math.utah.edu