

Wochenplan Nr.: _____ Erledigt: Zeitraum: <u>10.09 - 16.09</u>

Montag: Geben Sie die Steigung und den y-Achsenabschnitt der linearen Funktion an.

(a)
$$f(x) = 3x$$

(b)
$$f(x) = \frac{1}{5}x + 2$$

(c)
$$f(x) = -\frac{4}{3}x - \frac{5}{2}$$

(d)
$$f(x) = 1,5x + 0,5$$

Dienstag: Bestimmen Sie die Funktionsgleichung der wie folgt gegebenen linearen Funktion. Die Gerade steigt um ein Drittel pro Einheit auf der x-Achse und geht durch den Punkt P(-3|-4).

Mittwoch: Bestimmen Sie jeweils die Gleichung zu der Geraden, die durch P geht und die Steigung m hat.

(a)
$$P(2|5); m = 3$$

(b)
$$P(4|-2)$$
; $m=0$

(c)
$$P(-3|1)$$
; $m = -1$

(d)
$$P(1,5|0,5); m=-4$$

Donnerstag: Käpt'n Blaubär fährt mit seinem Tankschiff A bei einer Durchschnittsgeschwindigkeit von $400\ sm$ pro Tag von Hong Kong nach Hamburg.

Hein Blöd steuert Tankschiff B von Hamburg nach Hong Kong mit $550\ sm$ pro Tag zurück.

- (b) Geben Sie die Funktionsgleichung von f_A bzw. f_B an, die die Fahrt der Tanker A bzw B beschreiben.
- (c) Stellen Sie zu jeder Funktion eine Wertetabelle auf.
- (d) Nach wie vielen Tagen können sich Käpt'n Blaubär und Hein Blöd auf hoher See zuwinken?

Freitag: Zei Motorradfahrer fahren auf derselben Straße von A nach B. Die beiden Orte sind $270 \ km$ voneinander entfernt.

Fahrer M1 fährt um 9 Uhr ab und hält eine Durchschnittsgeschwindigkeit von $45~\frac{km}{h}$. 75 Minuten später startet Fahrer M2 und fährt durchschnittlich $60~\frac{km}{h}$.

- (a) Stellen Sie den Sachverhalt mithilfe zweier Funktionen dar.
- (b) Ermitteln Sie durch Rechnung die Ankunftszeiten der beiden Fahrer.
- (c) Zu welchem Zeitpunkt treffen sich die beiden Fahrer? Wie weit sind sie zu diesem Zeitpunkt vom Startpunkt entfernt?