계산력 연습

[영역] 5.기하

중 3 과정

5-5-1.원과 현_원의 중심과 현의 수직이등분선, 현의 길이

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2016-10-25

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다. ◇ 「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

- 1. 중심각의 크기와 호, 현의 길이: 한 원 또는 합동인 두 원에서
- 1) 크기가 같은 두 중심각에 대한 호의 길이와 현의 길이는 각각 같다.
- 2) 길이가 같은 두 호 또는 두 현에 대한 중심각의 크기는 같다.
- 3) 중심각의 크기와 호의 길이는 정비례한다.
- 4) 중심각의 크기와 현의 길이는 정비례하지 않는다.

2. 원의 중심과 현의 수직이등분선

- 1) 원의 중심에서 현에 내린 수선은 그 현을 이등분한다.
- $\Rightarrow \overline{AB} \perp \overline{OM}$ 이면 $\overline{AM} = \overline{BM}$
- 2) 원에서 현의 수직이등분선은 그 원의 중심을 지난다.

- 1) 한 원의 중심으로부터 같은 거리에 있는 두 현의 길이는 같다.
- $\Rightarrow \overline{OM} = \overline{ON}$ 이면 $\overline{AB} = \overline{CD}$
- 2) 한 원에서 길이가 같은 두 현은 두 원의 중심으로 부터 같은 거리에 있다.
- \Rightarrow $\overline{AB} = \overline{CD}$ 이면 $\overline{OM} = \overline{ON}$

현의 수직이등분선의 증명

- ullet $\overline{OA} = \overline{OB}$ (원의 반지름)이고, $\angle OMA = \angle OMB = 90^\circ$, \overline{OM} 은 공통이므로 $\triangle OAM \equiv \triangle OBM(RHS 합동)$ 따라서 $\overline{AM} = \overline{BM}$ 이다.

중심각의 크기와 호, 현의 길이의 관계

☑ 다음 그림의 원 O에서 $\angle AOB = \angle BOC$ 일 때, 다음 설명 중 옳은 것에는 O표, 옳지 않은 것에는 ×표를 하여라.

1. $\widehat{AB} = \widehat{BC}$ ()

2. $\overline{AB} = \overline{BC}$

3. $\widehat{AC} = 2\widehat{AB}$ ()

4. $\overline{AC} = 2\overline{AB}$

5. $\triangle AOB = \triangle BOC$ ()

6. $\triangle AOC = 2\triangle AOB$ ()

☑ 다음 그림의 원 ○에 대한 설명 중 옳은 것에는 ○표, 옳지 않은 것에는 ×표 하여라.

7. $\angle AOB = \angle COD$ ⊆ 때, $\overline{AB} \neq \overline{CD}$ ()

8. $\angle AOB = \angle COD \mathbf{2} \mathbf{m}, \widehat{AB} = \widehat{CD}$ ()

9. $\overline{AB} = \overline{CD} \supseteq \overline{M}$. $\angle AOB = \angle COD$ ()

10. $\widehat{AB} = \widehat{CD} \supseteq \mathbf{W}, \angle AOB = \angle COD$ ()

11. $\angle COE = 2 \angle AOB$ **2** \mathbf{m} , $\overline{CE} = 2\overline{AB}$ ()

12. $\angle COE = 2 \angle AOB$ **2** \mathbf{W} , $\widehat{CE} = 2\widehat{AB}$ ()

ightharpoonup 다음 그림의 원 ho에서 r의 값을 구하여라.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

26.

27.

28.

29.

30.

31.

32.

33.

□ 다음 그림의 원 ○에서 ∠x의 크기를 구하여라.

35.

36.

37.

38.

39.

40.

현의 수직이등분선

$lacksymbol{\square}$ 다음 그림의 원 Ω 에서 x의 값을 구하여라.

41.

42.

43.

44.

45.

48.

49.

50.

☑ 다음 그림에서 x의 값을 구하여라.

51.

52.

53.

54.

55.

56.

57.

60.

61.

62.

63.

64.

☑ 다음 그림의 원 ○에서 반지름의 길이를 구하여라.

65.

66.

67.

68.

71.

ightharpoonup 다음 그림의 원 ho에서 r의 값을 구하여라.

72.

73.

74.

☑ 다음 그림에서 ÂB는 원의 일부분이다.

 $\overline{AM} = \overline{BM}, \ \overline{AB} \perp \overline{CM}$ 일 때, 이 원의 반지름의 길이를 구하여라.

75.

76.

77.

78.

현의 길이

ightharpoonup 다음 그림과 같이 원 O에서 $\overline{AB} \perp \overline{OM}, \overline{CD} \perp \overline{ON}$ 이고, $\overline{AM} = \overline{CN}$ 일 때, 다음 중 옳은 것에는 \bigcirc 표, 옳지 않은 것에 는 ×를 하여라.

80. $\overline{AB} = \overline{CD}$

()

81. $\overline{OM} = \overline{BM}$)

82. $\widehat{AB} \neq \widehat{CD}$

)

 $\overline{OM} = \overline{ON}$ 83.

)

 $\overline{\mathrm{CD}} = 3\overline{\mathrm{AM}}$ 84.

)

85. $\Delta OAB \equiv \Delta OCD$

-)
- ☑ 다음 그림의 원 ○에서 x의 값을 구하여라.
- 86.

87.

88.

89.

90.

91.

92.

95.

96.

97.

98.

ightharpoonup 다음 그림의 원 ho에서 r의 값을 구하여라.

99.

100

101

102

103

ightharpoonup 다음 그림에서 $\angle x$ 의 크기를 구하여라.

104

105

106

107

108

 \square 다음 그림과 같이 원 \bigcirc 에서 \triangle ABC가 내접하고 있다. $\overline{OM} = \overline{ON}$ 일 때, $\angle x$ 의 크기를 구하여라.

109

110

111

112

113

정답 및 해설

- 1) 🔾
- 2) 🔾
- 3) 🔾
- 4) ×
- Arr 중심각의 크기와 현의 길이는 정비례하지 않으므로 Arr Arr
- 5) 🔾
- 6) ×
- △ABC = △BOC 이므로 2△AOB = □AOCB
 이때 △AOC < □AOCB 이므로 △AOC < 2△AOB(거짓)
 </p>
- 7) ×
- \Rightarrow $\angle AOB = \angle COD일 때, \overline{AB} = \overline{CD}$
- 8) 🔾
- 9) 🔾
- 10) 🔾
- 11) ×
- ⇒ 중심각의 크기와 현의 길이는 정비례하지 않는다.
- 12) 🔾
- 13) 5
- $\ \, \ \, \ \, \ \,$ 크기가 같은 두 중심각에 대한 현의 길이는 같으므로 x=5
- 14) 8
- ⇒ 크기가 같은 두 중심각에 대한 현의 길이는 같다.
- 15) 12
- ⇒ 크기가 같은 두 중심각에 대한 호의 길이는 같다.
- 16) 7
- 17) 58
- $\ \ \, \ \, \ \,$ 길이가 같은 두 호에 대한 중심각의 크기는 같으므로 $x\!=\!58$
- 18) 10
- \Rightarrow 크기가 같은 두 중심각에 대한 호의 길이는 같으므로 $x\!=\!10$
- 19) 120
- ⇒ 길이가 같은 두 현에 대한 중심각의 크기는 같으므로

$$x = 120$$

- 20) 4
- \Rightarrow 2: $x = 10^{\circ}$: 20° \therefore x = 4
- 21) 3
- $\Rightarrow x:9=15^{\circ}:45^{\circ}$ $\therefore x=3$
- 22) 12
- \Rightarrow 8: $x = 40^{\circ} : 60^{\circ}$ $\therefore x = 12^{\circ}$
- 23) 4
- $\Rightarrow x:16=20^{\circ}:80^{\circ}$ $\therefore x=4$
- 24) 9
- 25) 45
- \Rightarrow 25: $x = 50^{\circ} : 90^{\circ}$ $\therefore x = 45$
- 26) 7
- $\Rightarrow x:21=25^{\circ}:75^{\circ}$ $\therefore x=7$
- 27) 8
- $\Rightarrow 40^{\circ}:100^{\circ}=x:20$ 이므로 x=8
- 28) 120
- \Rightarrow 40°:x°=6:18이므로 x=120
- 29) 20
- \Rightarrow 10: $x = 50^{\circ}$: 100° $\therefore x = 20$
- 30) 30
- $\Rightarrow 25:5=150^{\circ}:x^{\circ}$ $\therefore x=30$
- 31) 10
- $\Rightarrow x:5=80^{\circ}:40^{\circ}$ $\therefore x=10^{\circ}$
- 32) 30
- \Rightarrow 4:2=60°:x° $\therefore x = 30$
- 33) 40
- $\Rightarrow x:6=200^{\circ}:30^{\circ}$ $\therefore x=40^{\circ}$
- 34) 72
- \Rightarrow 12:8=(180°-x°):x°이므로 12x=8(180-x) 20x=1440 $\therefore x$ =72
- 35) 80°
- ⇒ 길이가 같은 두 현에 대한 중심각의 크기는 같다.
- 36) 60°
- \Rightarrow 6:3 = $\angle x$:30° $\therefore \angle x$ = 60°
- 37) 30°
- \Rightarrow 2:8 = $\angle x$:120° $\therefore x = 30°$

38) 75°

$$\Rightarrow$$
 12:4 = $\angle x$:25° $\therefore x = 75$ °

39) 180°

$$\Rightarrow$$
 27:6 = $\angle x$:40° $\therefore x = 180°$

40) 105°

$$\Rightarrow$$
 5:35=15°: $\angle x$ $\therefore x = 105°$

41) 11

$$\Rightarrow \overline{AM} = \overline{BM} = 11 \text{cm}$$
 $\therefore x = 11$

42) 14

44) 3

$$\Rightarrow \overline{\mathrm{AM}} = \overline{\mathrm{BM}} = 3 \,\mathrm{cm}$$
 $\therefore x = 3 \,\mathrm{cm}$

45) 5

$$\Rightarrow \overline{AM} = \overline{BM} = 5cm$$
 $\therefore x = 5$

46) 8

$$\Rightarrow \overline{AM} = \overline{BM} = 8cm$$
 $\therefore x = 8$

47) 5

48) 6

$$\Rightarrow \overline{AM} = \overline{BM} = 6cm$$
 $\therefore x = 6$

49) 9

$$\Rightarrow$$
 $\overline{AH} = \frac{1}{2}\overline{AB} = 9$ 이므로 $x = 9$

50) 8

$$\Rightarrow \overline{AB} = 2\overline{AH} = 80$$
으로 $x = 8$

51) 16

$$\Rightarrow \overline{AM} = \sqrt{10^2 - 6^2} = 8 \text{ (cm)}$$

$$\therefore x = 2\overline{AM} = 16$$

52) 8

$$\overline{AM} = \sqrt{5^2 - 3^2} = 4 \text{ (cm)}$$

 $\therefore x = 2\overline{AM} = 8$

53) $6\sqrt{3}$

$$\overline{AM} = \sqrt{6^2 - 3^2} = 3\sqrt{3} \text{ (cm)}$$

 $\therefore x = 2\overline{AM} = 6\sqrt{3}$

54) $4\sqrt{3}$

$$\Rightarrow$$
 $\overline{AH} = \sqrt{4^2 - 2^2} = 2\sqrt{3}$ 이므로 $x = 2\overline{AH} = 4\sqrt{3}$

55) 3

$$\Rightarrow$$
 $\overline{\mathrm{AH}} = \frac{1}{2}\overline{\mathrm{AB}} = 4$ 이므로 $x = \sqrt{5^2 - 4^2} = 3$

56) $2\sqrt{5}$

$$\Rightarrow \overline{AH} = \overline{BH} = 40$$
 으로 $x = \sqrt{6^2 - 4^2} = 2\sqrt{5}$

57) $\sqrt{13}$

$$\Leftrightarrow$$
 $\overline{\mathrm{AH}} = \frac{1}{2}\overline{\mathrm{AB}} = 3$ 이므로 $x = \sqrt{3^2 + 2^2} = \sqrt{13}$

58) 5

$$\Rightarrow x^2 = 3^2 + (x-1)^2$$
이므로 $x = 5$

59) 10

$$\Rightarrow$$
 $\overline{AH} = \frac{1}{2}\overline{AB} = 8$ 이므로 $x = \sqrt{8^2 + 6^2} = 10$

60) 9

$$\Rightarrow \overline{AH} = \sqrt{15^2 - 12^2} = 90$$
 으로 $x = \overline{AH} = 9$

61) $2\sqrt{13}$

$$\overline{\text{BM}} = \sqrt{7^2 - 6^2} = \sqrt{13} \text{ (cm)}$$

 $\therefore x = 2\overline{\text{BM}} = 2\sqrt{13}$

62) $8\sqrt{5}$

$$\Rightarrow \overline{BM} = \sqrt{12^2 - 8^2} = 4\sqrt{5}$$
 $\therefore x = 2\overline{BM} = 8\sqrt{5}$

63) $\frac{15}{2}$

$$ightharpoonup \overline{\mathrm{OM}} = (x-3)\,\mathrm{cm}$$
 이므로 $\triangle\mathrm{AOM}$ 에서
$$(x-3)^2 + 6^2 = x^2 \qquad \therefore x = \frac{15}{2}$$

64) 6

$$\Rightarrow x^2 = (4\sqrt{2})^2 + (x-4)^2$$
이므로 $x = 6$

65) $\frac{13}{2}$

- $ightharpoonup \overline{MB} = rac{1}{2}\overline{AB} = 6$ 이고, 반지름의 길이를 r라 하면 $\overline{OB} = r$, $\overline{OM} = r 4$ 이므로 직각삼각형 OMB에서 $(r-4)^2 + 6^2 = r^2$, 8r = 52 $\therefore r = rac{13}{2}$
- 66) $\frac{25}{2}$
- $\overrightarrow{\text{MB}} = \overrightarrow{\text{MA}} = 10$ 이고, 반지름의 길이를 r라 하면 $\overrightarrow{\text{OB}} = r$, $\overrightarrow{\text{OM}} = r 5$ 이므로 직각삼각형 OMB에서 $(r-5)^2 + 10^2 = r^2$, 10r = 125 $\therefore r = \frac{25}{2}$
- 67) $\frac{39}{4}$
- $\overrightarrow{\text{MB}} = \overrightarrow{\text{MA}} = 9$ 이고, 반지름의 길이를 r라 하면 $\overrightarrow{\text{OB}} = r$, $\overrightarrow{\text{OM}} = r 6$ 이므로 직각삼각형 OMB에서 $(r-6)^2 + 9^2 = r^2$, 12r = 117 $\therefore r = \frac{39}{4}$

68) 6

 $ightharpoonup 원의 중심 <math>
ightharpoonup \Theta$ 에서 보조선 ightharpoonup A를 긋고, 반지름의 길이를 r라 하면 $\overline{OA}=r$, $\overline{OM}=r-3$ 이므로 직각삼각형 OMA에서

- $(3\sqrt{3})^2 + (r-3)^2 = r^2$, 6r = 36 $\therefore r = 6$
- 69) $\frac{15}{2}$ cm
- ightharpoonup 원의 중심 O에서 보조선 OB를 긋고, 원 O의 반지름의 길이를 r
 m cm라 하면 $m \overline{OB} = r
 m (cm)$, $m \overline{OM} = r
 m 3 (cm)$ 이므로 직각삼각형 OMB에서

 $(r-3)^2+6^2=r^2$, 6r=45 $\therefore r=\frac{15}{2}$

70) 5

ightharpoonup 원의 중심 O에서 보조선 OB를 긋고, 반지름의 길이를 <math>r라 하면 $\overline{OB}=r$, $\overline{OM}=r-2$ 이므로 직각삼각형 OMB에 서

 $4^2 + (r-2)^2 = r^2$, 4r = 20 $\therefore r = 5$

71) 10

다 원의 중심 O에서 보조선 OB를 \Box 고, 반지름의 길이를 r라 하면 $\overline{OB}=r$, $\overline{OM}=r$ -2, $\overline{BM}=6$ 이므로 직각삼각 형 OMB에서

 $6^2 + (r-2)^2 = r^2$, 4r = 40 $\therefore r = 10$

72) 10

- ightharpoonup
 ig
- 73) $2\sqrt{13}$

 $\overline{\mathrm{AM}} = 6\mathrm{cm}$ 이므로 $\Delta\mathrm{OAM}$ 에서 $r = \sqrt{6^2 + 4^2} = 2\sqrt{13}$

74) $\frac{5}{2}$

 $\overline{\mathrm{OM}} = (r-1) \, \mathrm{cm} \, \mathrm{이므로} \, \Delta \mathrm{OBM} \mathrm{에서}$

$$(r-1)^2 + 2^2 = r^2$$
 $\therefore r = \frac{5}{2}$

75) 5 cm

ightharpoonup
ig

76) 10 cm

원의 중심을 O, 반지름의 길이를 rcm라 하면 $\overline{OM} = (r-2)$ cm 이므로 $\triangle OBM$ 에서 $(r-2)^2 + 6^2 = r^2$ $\therefore r = 10$

77) 15cm

원의 중심을 점 O, 반지름의 길이를 rcm 라 하면 $\overline{OM} = (r-3)$ cm, ΔOBM 에서 $(r-3)^2 + 9^2 = r^2$ $\therefore r = 15$ 따라서 반지름의 길이는 15 cm 이다.

78) 13*cm*

원의 중심을 점 O, 반지름의 길이를 rcm 라 하면 $\overline{OM} = (r-8)$ cm, ΔOBM 에서 $(r-8)^2 + 12^2 = r^2$ $\therefore r = 13$ 따라서 반지름의 길이는 13 cm 이다.

- 79) 12.5 cm
- 80) 🔾
- 81) ×
- \Rightarrow $\overline{OM} = \overline{BM}$ 인지 알 수 없다.

- 82) ×
- \Rightarrow 중심각의 크기가 같으므로 $\widehat{AB} = \widehat{CD}$ 이다.
- 83) 🔾
- 84) ×
- $\Rightarrow \overline{CD} = 2\overline{AM}$
- 85) 🔾
- 86) 8
- 87) 3
- 88) 10
- \Rightarrow 원의 중심으로부터 같은 거리에 있는 두 현의 길이는 같으므로 $x = \overline{\text{CD}} = 10$
- 89) 10
- 한 원에서 원의 중심으로부터 같은 거리에 있는 두 현의 길이는 서로 같다.
- 90) 3
- 91) 2
- $\overrightarrow{\text{CD}}=2\times 3=6$ 이므로 $\overrightarrow{\text{AB}}=\overrightarrow{\text{CD}}$ 따라서 길이가 같은 두 현은 원의 중심으로부터 같은 거리에 있으므로 x=2
- 92) 7
- ☆ 한 원에서 길이가 같은 두 현은 원의 중심으로부터 같은 거리에 있다.
- 93) 16
- 94) 3
- 95) 20
- $\Rightarrow x = 10 \times 2 = 20$
- 96) $8\sqrt{2}$

$$\overline{CN} = \sqrt{9^2 - 7^2} = 4\sqrt{2} \text{ (cm)}$$

$$\overline{AB} = \overline{CD} = 2\overline{CN} = 8\sqrt{2} \text{ (cm)}$$

- 97) 5
- 98) 12

 $\Rightarrow x = 6 \times 2 = 12$

99) 8

□ 직각삼각형 ONC에서 $\overline{\text{CN}} = \sqrt{5^2 - 3^2} = 4$ $\therefore \overline{\text{CD}} = 2\overline{\text{CN}} = 8$ 이때 $\overline{\text{ON}} = \overline{\text{OM}} = 3$ 이므로 $\overline{\text{AB}} = \overline{\text{CD}}$ $\therefore x = 8$

100) 16

ightharpoonup 직각삼각형 ONC에서 $m \overline{CN} = \sqrt{10^2-6^2}=8$ $m ... \
m \overline{CD} = 2 \
m \overline{CN} = 16$ 이때 $m \overline{OM} = \overline{ON}$ 이므로 $m \overline{AB} = \overline{CD}$ $m ... \ \it x = 16$

101) 8

 $ightharpoonup \Delta AMO에서 <math>\overline{AM} = \sqrt{5^2 - 3^2} = 4 \, (cm)$ 원의 중심에서 현에 내린 수선은 그 현을 이등분하므로 $\overline{AB} = 2\overline{AM} = 8 \, (cm)$ 원의 중심으로부터 같은 거리에 있는 두 현의 길이는 서로 같으므로 x=8

102) $4\sqrt{2}$

 $\Rightarrow \overline{BM} = \sqrt{3^2 - 1^2} = 2\sqrt{2} \text{ (cm)}$ $\overline{AB} = 2\overline{BM} = 4\sqrt{2} \text{ (cm)} \qquad \therefore x = 4\sqrt{2}$

103) $4\sqrt{7}$

 $\Rightarrow \overline{\mathrm{DN}} = \sqrt{8^2 - 6^2} = 2\sqrt{7} \, (\mathrm{cm})$ $\overline{\mathrm{CD}} = 2\overline{\mathrm{DN}} = 4\sqrt{7} \, (\mathrm{cm}) \qquad \therefore x = 4\sqrt{7}$

104) 70°

105) 55°

 $\Rightarrow \angle x = \frac{1}{2} \times (180^{\circ} - 70^{\circ}) = 55^{\circ}$

106) 65°

 $\Rightarrow \angle x = \frac{1}{2} \times (180^{\circ} - 50^{\circ}) = 65^{\circ}$

107) 70°

 $ightharpoonup \overline{OM} = \overline{ON}$ 이면 $\overline{AB} = \overline{AC}$ 이므로 $\triangle ABC$ 는 이등변삼각형 이다.

 $\therefore \ \angle x = \frac{1}{2} \times (180^{\circ} - 40^{\circ}) = 70^{\circ}$

108) 50°

ightharpoonup \angle C = 180 $^{\circ}$ -100 $^{\circ}$ = 80 $^{\circ}$ 이므로 \angle $x = \frac{1}{2} imes (180 \,^{\circ} - 80 \,^{\circ}) = 50 \,^{\circ}$

109) 80°

 $\Rightarrow \overline{OM} = \overline{ON}$ 이므로 $\overline{AB} = \overline{AC}$

따라서 $\triangle ABC$ 는 이등변삼각형이다. 이등변삼각형의 두 밑각의 크기는 서로 같으므로 $\angle ACB = 50^\circ$ 삼각형의 세 각의 크기의 합은 180° 이므로

110) 30°

○ OM = ON 이므로 AB = AC
 즉 △ABC는 이등변 삼각형이다.
 ∴ ∠x = 180°-2×75°=30°

 $\angle x = 180^{\circ} - 2 \times 50^{\circ} = 80^{\circ}$

111) 70°

⇒ OM = ON 이므로 AB = AC

즉 △ABC는 이등변 삼각형이다.

 $\therefore \angle x = \frac{1}{2} \times (180^{\circ} - 40^{\circ}) = 70^{\circ}$

112) 65°

 $\therefore x = \frac{1}{2} \times (180^{\circ} - 50^{\circ}) = 65^{\circ}$

113) 50°

□OHCN에서
 ∠HCN=360°-(115°+90°+90°)=65°
원의 중심 O에서 현까지 이르는 거리가 같으면
 ĀB=ĀC가 되어서 △ABC는 이등변삼각형이므로
 ∠HCN=∠ABC=65°이다.

 \therefore $\angle x = 180^{\circ} - (65^{\circ} + 65^{\circ}) = 180^{\circ} - 130^{\circ} = 50^{\circ}$