Quest	ion 1			States		
a)	Actions	A	8	C	D	Ton Land
	1.	-50	80	20	100	0
	2	30	40	70	20	50
	3	10	30	-30	10	40
	4	10	-50	-70	-20	200

Payoff table of Q1

We will define this non-stochastic (Deterministic) purjet us Rid (S(x)) As stated into the instructions, this method involves two dixed weights, Timex = 0.4 Imin = 0.6. We will now compute the payoff for each action:

$$Rd(8(1)) = 100.0.4 + 50.0.6 = 10$$

This deterministic viteria is rather planned. In fact this method does not take into account the probability of a certain state to occur since the weights movided depend on the action and have nothing to do with the underlying mion distribution. Moreover all the actions that lead to intermediate payoffs are excluded from the decision making process. For this reason a prior with uniform weights on all states or one that gives importance to a single one will drastically change the actual

inestion of continues.

States

Action	I	T
1	10	4
2	7	a

Now the weights of the determination cleansion rules are Trans=0.8, Trans=0.2Rd(S(1)) = 10.0.8 + 4.0.2 = 8.8Rd(S(2)) = 7.0.2 + 9.0.8 = 8.6

For the ER viterion instead we need to know the mobalility of observing each state (PI & PI). In general the ER viterion would be:

ER(S(1)) = 10p +4(1-p) = 2(2+3p) and FR(S(2)) = 7p+9(1-p) = 9-2p Assuming the two states are liquilly litely we will have: ER(S(1)) = 5 + 2 = 7 and ER(S(2)) = 3.5 + 4.5 = 8

Here we have a change in the decision-making mous according to the unknown probability p. We therefore define a function ERIP = ERIS(1) - ER(S(2))

As we can see from the figure, decision provided by the ER criterion would be in favour of action 1 only if $P(\theta=T)>0.625$ (where 0.625 was found) -3.

Decision Theory - Assignment 2 Statione Toffe) Question 1 - continues c) We know that UR) = log (R+71) and that p(0) = [0.1; 0.2; 0.25; 0.1; 0.35]. We want to find the optimal action according to the EU interiors: $EU[\delta(1)] = [-50,80,200,100,0] \cdot P(0)^T = 4.7494 => log(4.7494+71) = 4.3274$ $EU[5(2)] = [30,40,70,20,50] \cdot p(0)^T = 4.6705 = log(4.6705+71) = -1.3264$ $EU[\delta(3)] = [10,30,-30,10,40] - p(\theta)^{T} = 4.2684 => lay(4.2684+71) = 4.3211$ EU[\$(4)] = [-10,-50,-70,-20,200].p(0)=2.7893 => (ay (2.7893-71)=4.3012 We therefore decide to take action 1 since EU[S(2)] > EU[S(1)]; Vi = 1,2,3,4 Question 2 mollen we can reformulate it wring only the red chips: To smply the $A_1 = [1,0]$ $A_2 = [0,1]$ $P(\theta) = [0.4,0.6]$ D = {70%, 30%, } $C(a_{\theta}, \theta) = -3$ $L(S(x), \theta) = m_{\partial x} \{R(S(x), \theta)\} - R(S(x), \theta)$ $C(\alpha_0, \theta) = 5$ - Payoff talk: Los table: Action 70%. +3 +5

ER(A.) = 5.0.4-3.0.6 = 0.2 ER(A2) = -3.0.4 +5.0.6 - 1.8

EL (Az) = 8. 0.4 + 0.0.6 = 3.2 - We are willing to pay up to 3.2 \$

Decision Theory - Assignment 2

Stefano Toffol

Question 2 - continues

Each sample costs us 0.25 \$.

6) What is the ENGS of a sample n=10 using simple-stage sampling plan of 10?

Voing an B script, I computed the following table:

Y	P(07070 y)	P(03070)	E'R (070%)	E'R (0 30%)	a"	r a	VSI	P(y)
0	2.3620.106	1.6945.10-2	-0.0508	0.0347	A2	A2	0	0,0170
1	5.5112.10-5	7.2636.10-2	-0.2176	0.3630	A2	A2	0	0.0727
2	5.7868.10-4	1.4008.10	-0.4173	0.6987	A2	A2	0	0.1407
3	3.6007.103	1.6010.16	-0.4623	0.7857	A2	A2	Ó	0.1637
4	1.4703.102	1.2007.101	-0.2867	0.5563	A2	A2	0	0,1348
5	4.1168.162	6.1752.102	0.0206	0.1853	AZ	A2	0	0,1029
6	3.0048 · 10-2	2.2054·10 ²	0.3341	-0.1239	A1.	A2	0.4640	0,1021
7	1.0673.16	5.4010.103	0.5175	-0.2932	A1	A2	0,8106	0.1121
8	9.3390 102	8.6802-154	0,4643	-0.2758	A1	· A2	0.7402	0.0943
9	4.8424.102	8.2669,105	0.2419	-0.1449	A4	A2	0.3867	0.0485
10	1,1235.102	3.5429.106	0,0565	-0.0335	A1	A2	0.0904	0.0113

EVSI = 2 WSI . P(y) = 0.2278176

=NGS = EVSI - n. (S(n) = 0.2278176 - 10.0.25 = -2.272182

Н	Prefolitto
Ho	0.4
Hi	0.6

		Probabilities		
	The second	Hc	H	
E	E	6. 70	0.30	
	E ₂	0.30	0.70	

Α	
a, s	You let on 70/30
$-a_2$	Yealth on 30170

H:	1	to	+1.		
A:	a,	az	a	az	
L	.0,	8	8	D	

Where: I Ho: The chotalation of the chips is 70% red / 30% blue Hi: The chotalation of the chips is 15% red / 70% blue

And we are asked to guess (i.e. let) what is the real distribution

Assignment 2 - Decision Theory Question 3	Stelono Total
Payoff Action Working Defective \tilde{p} Nonotion of defective (and table: $A = 15$ $= 15$ $= p(\tilde{p}) = \tilde{p}(1-\tilde{p})^{47}$ Beta(2,48)	tridiges for B
a) Having 11500 contridors to buy, the expected paraffs are:	
$ER(S(B)) = 15.500 = -7500$ $ER(S(B)) = 10. \left(1 - E[P]\right) \cdot (-14) + E[P] \cdot (-24) = 500. \left(1 - \frac{2}{2+48}\right).$ $= 500. \left(41.(-14) + \frac{2}{50}.(-24)\right) = -500. \left(672 + 41\right) = -500. \frac{120}{50} = \frac{120}{50}.$	(-14) + 2 , (-24)
ER[S(B)] > ER[S(A)] therefore our prior decision is to buy pro	n B
b) The amount of money we are willing to pay to know the productive contradges is given by the expected loss of the opt	portion of irral action:
Loss Action Working Defective table: A $\frac{1}{8}$ 0 $\frac{1}{9}$ = $(0, \frac{1}{1-E[p]}) + \frac{9}{24}$.	E[p]]).500 0.36.500-180
C) Posterion: $p(\theta) \cdot p(y \theta) = \underbrace{\theta \cdot (1-\theta)^{47}}_{\text{Beta}(2,48)} \underbrace{\theta^{Y}(1-\theta)^{N-Y}}_{\text{Sta}(2,48)}, \underbrace{\theta^{Y}(1-\theta)^{N-Y}}_{\text{Beta}(2,43)}, \underbrace{\theta^{Y}(1-\theta)^{N-Y}}_$	$\left(\begin{array}{c} n \\ \gamma \end{array} \right)$
$p(y) = \int p(y \theta)p(\theta)d\theta = \int \frac{\theta^{\gamma+1}(1-\theta)^{\gamma+2}-y}{8eta(2,48)} \cdot (y)d\theta = (y)\left[Beta(2,48)\right].$	$\int \Theta^{y+1} (1-\theta)^{n+1} e^{-y}$
= (n) Betaly+2, n+48-y), \[\beta \frac{\gamma+1}{1-\theta}, \text{A\theta} = \left(n) \\ \text{Betaly+2, n+48-y} \\ \\ \end{array} \] Betaly+2, n+48-y) \[\text{Betaly+2, n+48-y} \]	<u>n+48-y</u>)

Decision Theory - Assignment 2 Stefano Toffd Question 3 - continues ER(A) = -15.500 = -7500 $\pm 8(3) = n \left\{ \left(1 + E[\beta | x] \right) \left(-4 \right) + E[\beta | x] \left(-24 \right) \right\} = 500 \cdot \left\{ \left(1 - \frac{y+2}{40} \right) \left(-4 \right) - \frac{y+2}{40} \left(+24 \right) \right\}$ $-500. \left\{ 53-7 \left(-14\right) + \frac{12}{60} \left(-24\right) \right\} = 500 \left\{ -360 + 104 \right\}$ => ER(A) = ER(B) -7500 = 500 · { _ 860 + 104 } -900 = -860-10y -40 = - 10 y y = 4 $\Rightarrow a'' = \begin{cases} A & fon \forall 34 \\ B & fon \forall 34 \end{cases}$ $\Rightarrow EVSI = E''R(a'') - E''R(a')$ E'R(A") = Z ER(B) · Beta(i+2, n+48-i) + Z ER(A) · Beta(j+2, n+48-j) · E'R(a') = Z' ER; (3). Beta(i+2, n+48-i) = Z ER; (B). Beta(i+2, n+48-i) + Z' ER, (B) Beta(j+2, n+48-i) => EVSI = 2 | ERIA) · Betalj+2, N+43-j) - ER(B) · Betalj+2, N+48-j) = 2 [(ER(A) - ER(B)) · Beta(j+2, n+48-j)] a) y=1 _> Oly x Beta (3,57) $= 500 \left(\frac{860 + 10}{10} \right) = 500 \left(\frac{870}{10} \right) = -500 \left(\frac{870}{10} \right) = -7250$

ER(B)y=1) > ER(A)y=1) -> The supplier should deal with from B.

Decision Theory - Assignment 2 Stefano Toffol Ruestian 4 budget = 120,000 SEK X/m ~ N(M, 12,000) & M~ N(115,000, 9,000) X=E[X-6,..., X-1] = 121'000 with no trend a) We know that the manyinal distribution of a Gaussian variable conditioned to another Gaussian is Gaussian itself, with the same mean of M and the variance form of the two variances. $X \sim N(\mu, \sigma^2)$ where $\int \mu = E[H] = 115000$ $\int \sigma = \sqrt{\sigma} + \sigma_{xlm}^2 = \sqrt{12000^2 + 9000^2} = 15000$ Dan system of hypothesis will then be: SHo: Mx budget

ZH1: M> budget We can then compute the prior odds ratio: P(x & hudget 140) = 0.3694 = 0.5859
P(x & hudget 140) = 0.3694 = 0.5859 Since the odds are smaller than one we are in partour of Hz. b) The bayes factor is given by: B = Odds (HolData, I) We know that with a normal distribution under a normal prior we get a normal posterior in the Rom: P(BIX, ..., X,) & N(BIM, th) where: $\frac{1}{T} = \sqrt{\frac{9}{6^2} + \frac{1}{6^2}} = \sqrt{\frac{6}{(500)^2} + \frac{1}{(9000)^2}} = 0.0001975 \implies T = 5062,896$ $y_{1} = \frac{\eta/\sigma^{2}}{\eta/\sigma^{2} + 1/\sigma^{2}} \cdot X + \frac{1/\sigma^{2}}{\eta/\sigma^{2} + 1/\sigma^{2}}, y_{10} = 0.6835 \cdot 121000 + 0.3165 \cdot 115000 - 119101.3$

Decision Theory - Assignmen	1 2		Stefano Toffol
Question 4 - continues			
Odds (HolData, I) = P(Ho	o Data I)	= 0.4296 = 0.75 0.5764	530
=> B = Odds (Hol Data, I) = Odds (HolI)	0.7530 =	1.2852	
c) The loss table is:	Action	State of the w	

c) The loss table is:	talls is Action		State of the world		
		Ho is true	this the		
	Accept Ho	0	6 000		
	Reject 110	4 000	0		

The	expected	posteria	loner are:	Action	Expected posterior loss
				Acapt Ho	6000-0.5704 = 3422.4
				Reject Ho	4000.0.0296 = 1718.4

= The action that minimines the posterior loss is rejecting to, meaning that we will consider the real means of the process to be smaller than 20,000.