Kartkówka 3

gr.1, 12 stycznia 2009

- 1. Niech $S_n = \sum_{k=1}^n \frac{1}{k} X_k$, gdzie X_1, X_2, \ldots są niezależnymi zmiennymi o rozkładzie jednostajnym na [-2, 2].
 - kładzie jednostajnym na [-2, 2]. a) Znajdź ciąg (a_n) taki, że $S_n^2 - a_n$ jest martyngałem względem filtracji generowanej przez ciąg (X_n) .
 - b) Czy ten martyngał jest zbieżny prawie na pewno?
- 2. Niech X_n będzie symetrycznym błądzeniem po prostej. Wykaż, że $X_n \mod 4$ jest łańcuchem Markowa i znajdź macierz przejścia dla tego łańcucha.

Kartkówka 3

gr.2, 12 stycznia 2009

- 1. Niech X_n będzie symetrycznym błądzeniem po prostej. Wykaż, że $X_n \mod 3$ jest łańcuchem Markowa i znajdź macierz przejścia dla tego łańcucha.
- 2. Niech $S_n = \sum_{k=1}^n k^{-3/2} X_k$, gdzie X_1, X_2, \ldots są niezależnymi zmiennymi o rozkładzie jednostajnym na [-1, 1].
 - a) Znajdź ciąg (a_n) taki, że $S_n^2 a_n$ jest martyngałem względem filtracji generowanej przez ciąg (X_n) .
 - b) Czy ten martyngał jest zbieżny prawie na pewno?

Kartkówka 3

gr.3, 12 stycznia 2009

- 1. Niech $S_n = X_1 + \ldots + X_n$, gdzie X_i są niezależnymi zmiennymi o rozkładzie wykładniczym z parametrem 1.
 - a) Znajdź takie $\lambda > 0$, że $\lambda^n e^{S_n/2}$ jest martyngałem względem filtracji generowanej przez ciąg (X_n) .
 - b) Czy ten martyngał jest zbieżny prawie na pewno? A w L^1 ?
- 2. (X_n) jest jednorodnym łańcuchem Markowa o wartościach całkowitych. Które z następujących ciągów muszą być łańcuchami Markowa (X_n^2) , (X_{n+2}) , (X_n^3) , (X_{2n}) ?

Kartkówka 3

gr.4, 12 stycznia 2009

- 1. (X_n) jest jednorodnym łańcuchem Markowa o wartościach całkowitych. Które z następujących ciągów muszą być łańcuchami Markowa (X_n^3) , (X_{2n}) , (X_n^4) , (X_{n+4}) ?
- 2. Niech $S_n = X_1 + \ldots + X_n$, gdzie X_i są niezależnymi zmiennymi o rozkładzie wykładniczym z parametrem 1.
 - a) Znajdź takie $\lambda > 0$, że $\lambda^n e^{S_n/3}$ jest martyngałem względem filtracji generowanej przez ciąg (X_n) .
 - b) Czy ten martyngał jest zbieżny prawie na pewno? A w L^1 ?