Chapitre 3 : somme et produits

Exercice 3. (**)

1. Soit $(a,b) \in \mathbb{R}^2$ avec $b \neq 0$. Calculer

$$C = \sum_{k=0}^{n} \cosh(a+kb) \text{ et } S = \sum_{k=0}^{n} \sinh(a+kb)$$

Coefficients binomiaux, binôme de Newton

Exercice 3. (**) Calculer
$$\sum_{k=0}^{n} k^2 \binom{n}{k}$$

Exercice 3. (**) Déterminer l'abscisse du premier maximum local sur \mathbb{R}_+^* de $f_n: x \longmapsto \sum_{k=1}^n \frac{\sin(kx)}{k}$

Changement d'indice, interversion de sommes

Exercice 3. (*) Soit
$$n \in \mathbb{N}^*$$
 Calculer $\sum_{k=0}^n \sin^3(kx)$

Exercice 3. (**) Calculer de deux manières différentes la somme

$$\sum_{i=1}^{n} \sum_{j=1}^{i} 2^{i}$$

En déduire la valeur de $\sum_{i=1}^{n} i2^{i}$

Exercice 3. (**) Calculer

$$\sum_{1 \le i, j \le n} \max(i, j)$$

Exercice 3. (***) Soit $x \in \mathbb{R}$ tel que $x \neq 0[2\pi]$ et $n \in \mathbb{N}^*$

- 1. Calculer et simplifier $D_n(x) = \sum_{k=-n}^n e^{ikx}$
- 2. Calculer et simplifier $F_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} D_k(x)$

Exercice 3. (**)

1. Calculer

$$\sum_{k=0}^{n} \sum_{l=0}^{n} 2^{2k-l}$$

Exercice 3. (****) Soit $n \in \mathbb{N}^*$, $\omega = e^{\frac{2i\pi}{n}}$, on pose $Z = \sum_{k=0}^n \omega^{k^2}$. Calculer $|Z|^2$