# אינפי 2מ'

מרצה אחראית: מיכל קליינשטרן

# תוכן העניינים

| 5 | . מבוא לפונקציות בשני משתנים | 2רק 1. |
|---|------------------------------|--------|
| 5 | דוגמאות                      | .1     |
| 7 | $\mathbb{R}^n$ -טופולוגיה ב  | .2     |
| 9 | הודרות רחיחיות               | 3      |

# מבוא לפונקציות בשני משתנים

# 1. דוגמאות

 $f:\mathbb{R}^2 o\mathbb{R}$  באופן כללי, נרצה לדבר על פונקציות  $f:\mathbb{R}^n o\mathbb{R}^m$ , אך נתמקד בפונקציות לדבר על פונקציות  $f:D o\mathbb{R}^-$ , ונתבונן ב- $D\subseteq\mathbb{R}^2$ 

# דוגמה 1.1 (דוגמאות לפונקציות בשני משתנים)

 $\mathbb{R}^2$  נסתכל למשל על הפונקציות הבאות: מוגדרות על הפונקציות





$$z=f\left( x,y
ight) =\left( x+y
ight) ^{2}$$
 .2 איור

# דוגמה 1.2 (פונקציה בשני משתנים שלא מוגדרת בכל התחום) עבור באני משתנים או $x+y\geq 0$ ההגדרה תחום את קל $f\left(x,y\right)=\sqrt{x+y}$



f איור 3. תחום ההגדרה של



f איור 4. הגרף של

#### 7

#### $\mathbb{R}^n$ -2. טופולוגיה ב-2

 $\mathbb{R}^n$  נתבונן במרחב

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \middle| \begin{array}{c} x_k \in \mathbb{R} \\ 1 \le k \le n \end{array} \right\}$$

#### .2.1 מרחק.

 $ec{x},ec{y}\in\mathbb{R}^n$  בין שני הווקטורים הבאים בין שני הוקלידי ב- $\mathbb{R}^n$  מרחק אוקלידי ב-

$$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \qquad \qquad \vec{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

:נגדיר את המרחק האוקלידי של  $\vec{x}, \vec{y}$  ב-

$$d_2(\vec{x}, \vec{y}) = \sqrt{(x_1 - y_1)^2 + \ldots + (x_n + y_n)^2}$$

 $d_{2}\left(x,y
ight)=\sqrt{\left(x-y
ight)^{2}}=\left|x-y
ight|$  נשים לב שב- $\mathbb{R}$  נשים לב שב- $\mathbb{R}$  נשים לב שניתן לצפות.

# טענה 1.1 (תכונות של מרחק)

- d(x,y) = d(y,x) :סימטריות (1)
- x=y שוויון אם"ם,  $d\left(x,y\right)\geq0$  (2)
- $d\left( x,z\right) \leq d\left( x,y\right) +d\left( y,z\right)$  :אי שוויון המשולש (3)

## .2.2 נורמה ("אורך של וקטור").

:עבור וקטור  $ec{x} \in \mathbb{R}^n$  מגדרים עבור (נורמה ב- $ec{x}$ ) עבור וקטור

$$\|\vec{x}\|_2 = \sqrt{x_1^2 + \ldots + x_n^2}$$

הערה 1.2 מתקיים:

$$d_2\left(x,y\right) = \left\|x - y\right\|$$

 $.\|x\|_2=\sqrt{x^2}=|x|$ נקבל  $x\in\mathbb{R}$ יחיד משתנה עבור 1.3 הערה 1.3

#### טענה 1.2 (תכונות של נורמות)

- $x=0\iff x\in\mathbb{R}^n$  שוויון מוגדר מתקיים מתקיים גו לכל 'x=0
  - $\|\alpha x\| = |\alpha| \|x\|$  מתקיים:  $\alpha \in \mathbb{R}^n$  ו- $\alpha \in \mathbb{R}^n$  מרקיים: (2)
    - $||x+y|| \le ||x|| + ||y||$  (3) אי שוויון המשולש:

 $ec{x},ec{y}\in\mathbb{R}^n$  מגדירים לכל (מכפלה מקלרית/פנימית) מעל (מכפלה מקלרית/פנימית) מגדירים מכפלה (מכפלה מקלרית/פנימית)

$$\vec{x} \cdot \vec{y} \equiv \langle \vec{x}, \vec{y} \rangle \equiv (\vec{x}, \vec{y}) \triangleq x_1 y_1 + x_2 y_2 + \ldots + x_n y_n$$

הערה 1.4 (הגדרת נורמה ע"י מכפלה פנימית) נשים לב שמתקיים:

$$\|\vec{x}\|^2 = \langle \vec{x}, \vec{x} \rangle = x_1^2 + \ldots + x_n^2$$

הגדרה 1.4 (יצוג גיאומטרי של מכפלה פנימית, זווית בין וקטורים)

ניתן לכתוב את המכפלה הפנימית בין  $\vec{x}, \vec{y} \in \mathbb{R}^n$  ניתן המכפלה המכפלה את ניתן ל

$$\langle \vec{x}, \vec{y} \rangle = ||x|| \cdot ||y|| \cdot \cos \alpha$$

 $ec{x},ec{y}$  כאשר הזווית בין וקטורים lpha

:מתקיים,  $ec{x},ec{y}\in\mathbb{R}^n$  לכל שוויון קושי שוורץ) (אי שוויון קושי שוורץ) משפט 1.1

$$|\langle \vec{x}, \vec{y} \rangle| \le ||x|| \cdot ||y||$$

## .2.3 דרכים נוספות למדידת מרחק.

- (ו) מרחק אוקלידי (ראינו)
  - (2) "מרחק מנהטן":

$$d(x,y) \triangleq |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|$$
$$||x||_1 = |x_1| + |x_2| + \dots + |x_n|$$

(3) מרחק/נורמת אינסוף:

$$d_{\infty}(x,y) \triangleq \max \{|x_i - y_i| \mid 1 \le i \le n\}$$
 
$$||x||_{\infty} = \max \{|x_i| \ 1 \le i \le n\}$$

 $\mathbb{R}$ כאשר גם במקרים אלו מתקבלת התלכדות עבור המושגים המוכרים ב-

(שקילות הנורמות) ב- $x \in \mathbb{R}^n$ , מתקיים:

$$||x||_1 \le \sqrt{n} ||x||_2 < n ||x||_\infty \le n ||x||_1$$

מהמשפט נסיק שניתן להשתמש בכל הנורמות למדידת מרחב.

#### 3. הגדרות בסיסיות

## .3.1 סביבה.

הכדור סביב "סביבת "סביבת "סביבת עבור וקטור את "סביבת ( $\mathbb{R}^n$ ) עבור עבור וקטור את "סביבת ( $\mathbb{R}^n$ ) עבור וקטור את הכדור מביב  $x_0$  להיות:

$$B_{(x_0,\varepsilon)} = \{ x \in \mathbb{R}^n \mid d(x,x_0) < \varepsilon \}$$

# הערה 1.5 (סביבות במרחבים מוכרים)

- , $(x_0-arepsilon,x_0+arepsilon)$  עבור  $x_0$  של  $x_0$  של סביבה על סביבה , $x_0\in\mathbb{R}$  עבור  $x_0$  , הסתכלנו על סביבה . $|x-x_0|<arepsilon$ 
  - arepsilon arepsilon כלומר, כל הנקודות x שהמרחק שלהן מ-
- arepsilon>0- גם ב- $\mathbb{R}^2$ , נרצה לקחת את כל הנקודות x שמרחקן מ $x_0$  קטן מ- $d_2$ . אם נשתמש ב- $d_2$  נקבל עיגול.

 $(.d_0$ או ב- $d_1$  איזו צורה אומטרית מתקבלת אם משתמשים ב- $d_1$  או ב- $d_1$  או ב- $d_1$ .)

,  $D\subseteq\mathbb{R}^n$  נקודה פנימית בתחום  $x_0$  נקראת נקודה פנימית בתחום הגדרה 1.6 נקודה פנימית בתחום  $B_{(x_0,\delta)}\subseteq D$ -אם קיימת  $\delta>0$  כך ש

## 3.2. קבוצה פתוחה, קבוצה סגורה.

היא נקודה שה כל נקודה ב-U נאמר שהקבוצה ( $\mathbb{R}^n$  נאמר ב- $\mathbb{R}^n$ ) נאמר שהקבוצה (קבוצה פתוחה ב- $\mathbb{R}^n$ ) נאמר שהקבוצה פנימית.

ה. קבוצה פתוחה.  $\mathbb{R}$  קטע פתוח ב- $\mathbb{R}$  זוהי קבוצה פתוחה.

קבוצה סגורה ב- $\mathbb{R}^n$  קבוצה ( $\mathbb{R}^n$  סגורה ב-ה. (קבוצה סגורה לקבוצה מגורה לקבוצה מגורה לקבוצה מגורה לח. לאם  $A^{\mathsf{C}}=\mathbb{R}^n\setminus A$ 

A שפה של (נקודת אפה) היא  $x\in\mathbb{R}^n$  נאמר ש- $A\subseteq\mathbb{R}^n$  היא נקודת שפה הגדרה 1.9 נקודת אם לכל עיגול סביב A קיימת לפחות נקודה מתוך A שלא נמצאת ב-A

הגדרה 1.10 (השפה של קבוצה  $A\subseteq\mathbb{R}^n$  השפה של קבוצה (A השפה של קבוצה השפה שלה, ומסומנת ע"י  $\partial A$ .

. 
$$A=(0,1)$$
 .  $B=[0,1]$  נתבונן בקבוצות (תבונה לשפה של הבוצה לשפה של הבוצה) ווגמה 1.4.  $A=(0,1)$  מתקיים:  $\partial A=\partial B=\{0,1\}$ 

הצובת מוגדר להיות אוגדר של הפנים של קבוצה (A הפנים של הפנים מוגדר הפנים אוגדר הפנים של הפנים אוגדר הפנים אוגדר

A כל הנקודות הפנימיות של

.int (A) או  $A^\circ$ 

. נאמר של קבוצה אם היא חסומה אם היא מוכלת של (A נאמר של (חסימות של קבוצה אם היא מוכלת בכדור. אזרה 1.12 (חסימות של קבוצה א

משפט 1.3 (הלמה של היינה בורל) לכל כיסוי פתוח של קבוצה אורה חסומה, יש תת משפט 1.3 הלמה של היינה בורל) לכל כיסוי פתוח של קבוצה מופי.

## הערה 1.6 (הערות לגבי הלמה בניסוח זה)

- (1) באינפי 1מ' דיברנו על קטע סגור, ואילו כאן נדרשת קבוצה סגורה וחסומה.
  - (2) כאן כיסוי פתוח הוא אוסף של קבוצות פתוחות.