

Lecture 03:

Computation of LU Factorization

CS 111: Intro to Computational Science Spring 2023

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

Administrative

- Current homework assignment due tonight (by 11:59 pm)
 - Any issues?

New homework will be uploaded on Canvas later today

- Don't forget: Quiz 1 on Wednesday!
 - Please be here a little early so we can start on time at 9:30 am

Use of Python

- We will be using the numpy module extensively
 - Numerical computing with arrays and matrices
 - https://docs.scipy.org/doc/numpy/reference/
 - http://www.numpy.org/
- Also, read more about scipy and matplotlib:
 - scipy: More advanced numerical computing, including sparse matrices
 - https://docs.scipy.org/doc/scipy/reference/
 - matplotlib: Plotting and visualization
 - https://matplotlib.org/contents.html

These are the standard imports for CS 111.

import **os** import time import math import **numpy** as np import numpy.linalg as npla import scipy from scipy import **sparse** from scipy import linalg import scipy.sparse.linalg as spla import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import axes3d %matplotlib tk

The ones highlighted in red are the core ones you need for every exercise in this class!

Let's Do this In Python!

We turn to a demonstration using Jupyter Notebook

You will get the entire transcript posted on our class' Main Website

Upper and Lower Triangle Matrices

$$L = \begin{bmatrix} l_{11} & 0 & 0 & \dots & 0 \\ l_{21} & l_{22} & 0 & & \dots \\ l_{31} & l_{32} & l_{33} & & \dots \\ \vdots & & & \ddots & \vdots \\ \vdots & & & \ddots & \vdots \\ l_{n1} & \dots & \dots & l_{nn} \end{bmatrix}$$

A matrix U is an upper triangular matrix if its nonzero elements are found <u>only</u> in the upper triangle of the matrix, including the main diagonal; that is:
 u_{ii} = 0 if i > j

It is often useful to factor a matrix A as a multiplication of a lower- with an upper-triangle matrix.

Sometimes, we **have to** move A's rows around before we are able to do a proper factorization, this is the same as first multiplying by the appropriate permutation matrix.

A matrix L is an lower triangular matrix if its nonzero elements are found <u>only</u> in the lower triangle of the matrix, including the main diagonal; that is:
 I_{ii} = 0 if i < j

 Special case: when the diagonal is all 1s, we call that a unit lower triangle matrix

Matrix Factorization using Gaussian Elimination

• Recall the
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 example where $\mathbf{A} = \begin{bmatrix} \mathbf{2} & -\mathbf{1} \\ -\mathbf{1} & \mathbf{2} \end{bmatrix}$ and all

- Note what happens when we try to do Gaussian elimination on A:
 - In order to make element $\frac{a_{10}}{a_{10}}$ become zero, then I need to make: $\frac{r_1}{r_1} = \frac{r_1}{r_1} + \frac{1}{2}\frac{r_0}{r_0}$
 - So, using the general rule: $r_1 = r_1 C.r_0$ it means: C = -0.5
- Note that I can write A as a factor of 2 other matrices:

and the bottom part of it has the coefficient C (-0.5)

Note: This matrix has 1 in the diagonals and the bottom part of it has
$$\begin{bmatrix}
2 & -1 \\
-1 & 2
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
-0.5 & 1
\end{bmatrix}
\begin{bmatrix}
2 & -1 \\
0 & 1.5
\end{bmatrix}$$

<u>Important Rule: I can ONLY do this if **A** is invertible!</u> (already proven...)

Matrix Factorization using Gaussian Elimination

• Note that I can write A as a factor of 2 other matrices:

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -0.5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 0 & 1.5 \end{bmatrix}$$

Note: This matrix is a unit lower-triangle-type (L)

The numbers in the lower-part are the linear coefficients

Note: This matrix is an uppertriangle type (U) **The diagonals are the pivots**

Matrix Factorization: A = LU

- Since it's a logical, algorithmic way to do this factorization, that means that there is a <u>computational way</u> of doing this...
- Step 1: Use Gaussian Elimination to transform A into a U
 via row reduction process
- **Step 2**: The **L** matrix is populated by various **coefficients** from the transformation process
- Seems simple enough...
- BUT, it isn't always... lots of "what-ifs"...

Matrix Factorization: A = LU

- Example 1: Using pivoting (classical, manual)
- Example 2: Without pivoting (for easy computations)
- Example 3: When no-pivoting doesn't work... (better computations)

Demonstrations

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$

Matrix A has to be a SQUARE matrix and invertible for this to work A[0,0] is called the pivot of row $O(r_0)$

Algorithm --- GOAL: transform A into an upper-triangle matrix using Gaussian Elimination:

- 1.Start with r₁ vs r₀
- 2. Find the multiplier needed for row reduction of r_1 by r_0
 - a) $\mathbf{m} = A[1,0]/A[0,0] = 1/1 = 1$
 - 3. Put multiplier in the space where 0 will be: A[1,0]
 - 4. Change the rest of the row based on m
 - a) $r_1 = r_1 \mathbf{m} r_0 = r_1 r_0$
 - b) So r_1 changes from [1, 1, 1] to [0, -1, -2]

Algorithm:

5. Shift over to r_2 vs r_0 & repeat steps 2, 3, 4...

- a) $\mathbf{m} = A[2,0]/A[0,0] = -1/1 = -1$
- b) $r_2 = r_2 mr_0 = r_2 + r_0$
- c) So r₂ changes from [-1, 1, 2] to [0, 3, 5]

Algorithm:

6. We're done with comparisons with r_0 , let's move on to r_1 ...

Do r_2 vs r_1

a)
$$\mathbf{m} = A[2,1]/A[1,1] = 3/-1 = -3$$

b)
$$r_2 = r_2 - mr_1 = r_2 + 3r_1$$

c) So r_2 changes from [0, 3, 5] to [0, 0, -1]

Algorithm:

7. You now have an upper triangle matrix (**U**). You can construct matrix L from the multipliers (& make L's diagonals all 1s):

$$A = L.U = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & 0 & -1 \end{bmatrix}$$
Check it?
Original A

Check it?

Original A

Let's Go to Python!

And try to develop this into a function!

```
Algorithm: Given a matrix A of size nxn
For p in [0, n):
   pivot = A[p,p]
   if pivot == 0 then quit
   For row in (p+1, n]:
       m = A[row, p] / pivot
       A[row, p] = m
       # The rest of the column values in
       # that row of A get modified by m
       A[row, p+1 thru end] -= m * A[p, p+1 thu end]
   Separate L and U in the resulting A
   Return L and U
```

Your TO DOs!

- Turn in current homework on Gradescope
- Start with new homework (due next week Monday)

