Databases

An Introduction

8 February 2024

克明峻德, 格物致知

Course Overview

Focus Areas:

- In-Depth SQL Queries
- Principles of Database Design
- ETL Techniques

Tools:

MySQL, Google Colaboratory, DBDiagram, ERDPlus

Learning Outcomes:

- Mastery in SQL Query Processing and Effective Data Management
- Skills in Scalable Database Design and Optimisation

What is Database?

- Definition: A Database is a structured collection of data, stored electronically for efficient access and management.
- Role: Essential in a wide range of applications, from web services to complex data analytics.
- Data Types: Diverse, including text, numbers, multimedia.

Database Management Systems (DBMS)

Key Functions and Role:

- Definition: DBMS is software that facilitates efficient data management in databases.
- Primary Functions:
 - Data Organization and Security: Organizing data for efficient access and safeguarding against unauthorized access.
 - Maintenance and Accessibility: Ensuring data integrity through backup and recovery, and supporting multi-user access.
 - Query Processing: Executing data retrieval and manipulation.

DBMS Examples:

Importance in Data Management:

DBMSs are essential for secure, efficient, and reliable data handling in diverse applications.

The Data Model Concept

Overview:

Data models are blueprints for structuring and managing data in a database.

Key Elements:

- Schema: Outlines the structure of the entire database, including table designs and relationships.
 - Example: Schema for a library database with tables for 'Books', 'Members', and 'Borrow'.
 - Linking Tables: 'Borrow' connects 'Books' and 'Members', mapping book borrowings to members via BookID and MemberID.
- Instance: Actual data stored in the database at any given time.
- Query Language (SQL): Used for data retrieval and manipulation.
 - SQL Example:

```
SELECT B.Title, M.Name
FROM Books B
INNER JOIN Borrow Br ON B.BookID = Br.BookID
INNER JOIN Members M ON Br.MemberID = M.MemberID
WHERE B.Genre = 'Technology';
```


Relational Data Model

Understanding the Relational Data Model:

The relational data model is a framework for organizing data in tables (rows and columns).

Key Characteristics:

- Set Semantics: Ensures uniqueness and no duplication in rows.
- Typed and Static Attributes: Each column has a defined data type for consistency and integrity.
- Flat Table Structure: Non-hierarchical, straightforward data organization.

Schema Example with Data:

- Books Table Schema:
 - Columns: BookID (INT), Title (VARCHAR), Author (VARCHAR), Genre (VARCHAR), PublishedYear (INT).
- Example Data:

BookID Title	/	Author	Genre	PublishedYear	
102 The Histo	ory of Databases [es in Coding	A. Coder D. Base P. Programmer	Technology Education Fiction	2015 2018 2020	

Table Structure:

- Tables (Relations): Represent collections of related data entries.
- Columns (Attributes): Define the data's properties, like name, type, and category.
- Rows (Tuples): Each row indicates a single record or data entry.

- Schema: BookID (INT), Title (VARCHAR), Author (VARCHAR), Genre (VARCHAR), PublishedYear (INT).
- Data Representation:

BookID	Title	Author	Genre	PublishedYear
101 102 103 	Journey Through SQL The History of Databases Adventures in Coding 	A. Coder D. Base P. Programmer	Technology Education Fiction	2015

Table Structure:

- Tables (Relations): Represent collections of related data entries.
- Columns (Attributes): Define the data's properties, like name, type, and category.
- Rows (Tuples): Each row indicates a single record or data entry.

- Schema: BookID (INT), Title (VARCHAR), Author (VARCHAR), Genre (VARCHAR), PublishedYear (INT).
- Data Representation:

BookID	Title	Author 	Genre 	PublishedYear
102			 Technology Education Fiction	2015

Table Structure:

- Tables (Relations): Represent collections of related data entries.
- Columns (Attributes): Define the data's properties, like name, type, and category.
- Rows (Tuples): Each row indicates a single record or data entry.

- Schema: BookID (INT), Title (VARCHAR), Author (VARCHAR), Genre (VARCHAR), PublishedYear (INT).
- Data Representation:

BookID	Title	Author	Genre	PublishedYear
	,	A. Coder D. Base P. Programmer	 Technology Education Fiction	2015 2018 2020
· · · ·	l	l	l	l

Table Structure:

- Tables (Relations): Represent collections of related data entries.
- Columns (Attributes): Define the data's properties, like name, type, and category.
- Rows (Tuples): Each row indicates a single record or data entry.

- Schema: BookID (INT), Title (VARCHAR), Author (VARCHAR), Genre (VARCHAR), PublishedYear (INT).
- Data Representation:

BookID	Title	Author	Genre	PublishedYear
101 102 103	Journey Through SQL The History of Databases Adventures in Coding	A. Coder <mark>D. Base</mark> P. Programmer	Technology Education Fiction	2015 2018 2020
l	l	l	l	1

Order Does Not Matter in Sets

Understanding Set Semantics in Relational Databases

- **Key Concept:** In the relational model, the order of rows in a table (set) is not significant. What matters is the data each row contains.
- Original Books Table:

BookID Title	Author	Genre	PublishedYear
			-
101 Journey Through SQL	A. Coder	Technology Education Fiction	2015
102 The History of Databas	ses D. Base		2018
103 Adventures in Coding	P. Programmer		2020

Reordered Books Table:

BookID	Title	Author	Genre	PublishedYear
103 101 102 	Adventures in Coding Journey Through SQL The History of Databases 	 P. Programmer A. Coder D. Base 	 Fiction Technology Education 	2020 2015 2018

Note: Even though the order of rows is different, the dataset remains unchanged in terms of content and meaning.

Set Semantics in the Relational Model

Key Points

- Set Semantics Principle: Ensures each row in a relational table is unique, crucial for data integrity.
- Violation Example: Demonstrating duplication in the 'Books' table.
 - Books Table Data (with Violation):

BookID	Title	Author	Genre	PublishedYear
103	Mysteries of the Universe	D. Base	 Fiction Science Education Education	2020 2019 2018 2018

Note: Duplicate entry for "The History of Databases" illustrates violation.

Types and Static Attributes in the Relational Model

Understanding Data Types and Constraints:

- Significance: Ensures data integrity and query accuracy in relational databases.
- Issue: Incorrect data types lead to inconsistencies and operational challenges.

Example of Data Type Violation:

• The 'PublishedYear' for "Future of Data" is incorrectly entered as a string, demonstrating the violation of the attribute type constraint.

BookID	Title	Author	Genre	PublishedYear
101 102 103 104	 Journey Through SQL The History of Databases Adventures in Coding Future of Data	A. Coder D. Base P. Programmer I. Analyst	 Technology Education Fiction Non-Fiction	2015 2018 2020 'Twenty Twenty-One'

Flat Table Structure in the Relational Model

Explanation of the Principle:

- In relational databases, each table should represent a single entity, avoiding nested or hierarchical structures.
- Flat tables enhance data management simplicity and query performance.

Violation Example:

- Incorrect 'Books' Table Structure:
 - Demonstrates violation with 'Editions' column containing nested data.

'Editions' column inappropriately combines multiple pieces of data.

Best Practices:

Employ normalization to maintain data integrity and ease of access.

Structured Query Language (SQL)

SQL Introduction:

- SQL is the primary language for relational database management and manipulation.
- Focuses on specifying 'what' data is needed, rather than 'how' to retrieve it.

SELECT Queries:

- Overview: Fundamental tool for data retrieval in SQL.
- Function: Enables precise extraction of data from database tables.

Example and Explanation

SQL Query:

```
SELECT *
FROM Books;
```

- Purpose: Fetching all data from the 'Books' table to illustrate the simplicity and effectiveness of SQL queries.
- Output Table:

BookID	Title 	Author 	Genre 	PublishedYear
101 102 103	 Journey Through SQL The History of Databases Adventures in Coding	 A. Coder D. Base P. Programmer	 Technology Education Fiction	2015 2018 2020
l	l	l	l	l

More on SQL SELECT Queries

Data Projection with SQL's SELECT Clause:

 The SELECT clause in SQL specifies the columns to be retrieved, enabling focused and efficient data extraction from tables.

Source Table: Books:

BookID	Title 	Author	Genre 	PublishedYear
101 102 103	 Journey Through SQL The History of Databases Adventures in Coding	A. Coder D. Base P. Programmer	 Technology Education Fiction	2015
1	l	l	l	l

SQL Query:

```
SELECT Author, Title FROM Books;
```

Output Table:

Data Representation

Different data models can represent the same data set, each suited specific types of analysis and queries.

Case Study: Public Transportation Network

Graph Representation:

Relational Model:

Tables: Stations, Routes and StationRoutes.

Stations

Routes

StationRoutes

StationID	RouteID	
1 2	A A	
2 3	B B	

Choosing the Right Data Model

Key Models:

- Relational Model: Ideal for structured data, requiring strong integrity.
- Document-Oriented (NoSQL): Flexible schemas, suited for unstructured data.
- Graph-Based: Effective for complex relationships and network analysis.
- Key-Value: Fast access, useful for caching and real-time operations.

Selection Factors:

- Data Type and Structure: Nature and complexity of the data.
- Performance and Scalability: Efficiency in processing and growth handling.
- Application Use Case: Specific requirements based on the industry or task.

DBMS Technology Evolution

1st

Generation (1960's)

Field Oriented

- Supported sequential and random searching of files.
- Required users to write detailed computer programs for data access.
- Lacked standardization and interoperability.

Tarapong Sreenuch PhD Databases: An Introduction 8 February 2024 24

Tarapong Sreenuch PhD Databases: An Introduction 8 February 2024 26

Recap and Key Takeaways

- The relational model offers a structured, efficient way to store, retrieve, and manipulate data. Its tabular format, governed by set theory and predicate logic, not only simplifies data handling but also enhances data integrity and consistency.
- DBMS technologies provides a foundation for management of long-term memory of organisations. DBMS
 enables daily operational tasks and supports short- and long-term decision makings in business.

Example SQL Recap:

```
SELECT Title, Author FROM Books;
```

Output emphasizes SQL's role in fetching relevant data.

Preparing for SQL Basics:

- Next Lecture Preview:
 - Dive deeper into basic SQL queries and functions.
 - Understand Primary Key and Foreign Key.

How might relational databases and SQL evolve with emerging technologies like AI?