Lecture 3: Convex optimization problems

- optimization problem in standard form
- convex optimization problem
- standard form with generalized inequalities
- multicriterion optimization

Optimization problem: standard form

```
minimize f_0(x)
subject to f_i(x) \leq 0, \quad i = 1, \dots, m
h_i(x) = 0, \quad i = 1, \dots, p
```

where $f_i, h_i: \mathbf{R}^n \to \mathbf{R}$

- x is optimization variable
- f_0 is objective or cost function; $f_i(x) \leq 0$ are the inequality constraints; $h_i(x) = 0$ are the equality constraints
- x is feasible if it satisfies the constraints;
 the feasible set C is the set of all feasible points;
 problem is feasible if there are feasible points
- problem is unconstrained if m = p = 0
- optimal value is $f^* = \inf_{x \in C} f_0(x)$ (can be $-\infty$); convention: $f^* = +\infty$ if infeasible; optimal point: $x \in C$ s.t. $f(x) = f^*$; optimal set: $X_{\text{opt}} = \{x \in C \mid f(x) = f^*\}$

example:

minimize
$$x_1 + x_2$$

subject to $-x_1 \le 0$
 $-x_2 \le 0$
 $1 - x_1 x_2 \le 0$ (1)

- ullet feasible set C is half-hyperboloid
- ullet optimal value is $f^\star=2$
- \bullet only optimal point is $x^\star = (1,1)$

Implicit and explicit constraints

explicit constraints: $f_i(x) \leq 0$, $h_i(x) = 0$

implicit constraint: $x \in \operatorname{dom} f_i$, $x \in \operatorname{dom} h_i$

$$D = \operatorname{dom} f_0 \cap \cdots \cap \operatorname{dom} f_m \cap \operatorname{dom} h_1 \cap \cdots \cap \operatorname{dom} h_p$$

is called domain of the problem

example

minimize
$$-\log x_1 - \log x_2$$

subject to $x_1 + x_2 - 1 \le 0$

has an implicit constraint

$$x \in D = \{x \in \mathbf{R}^2 \mid x_1 > 0, x_2 > 0\}$$

Feasibility problem

suppose objective $f_0 = 0$, so

$$f^{\star} = \begin{cases} 0 & \text{if } C \neq \emptyset \\ +\infty & \text{if } C = \emptyset \end{cases}$$

thus, problem is really to

- either find $x \in C$
- ullet or determine that $C=\emptyset$

i.e., solve the inequality / equality system

$$f_i(x) \le 0, \quad i = 1, \dots, m$$

 $h_i(x) = 0, \quad i = 1, \dots, p$

or determine that it is inconsistent

Convex optimization problem

convex optimization problem in standard form:

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $a_i^T x - b_i = 0, \quad i=1,\ldots,p$

- ullet f_0 , f_1 , . . . , f_m convex
- affine equality constraints
- feasible set is convex

often written as

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \ i=1,\ldots,m$ $Ax=b$

where $A \in \mathbf{R}^{p \times n}$

example. problem (1)

• has convex objective and feasible set

ullet is **not** a standard form convex optimization problem since $f_3(x)=1-x_1x_2$ is not convex

can easily be cast as standard form convex optimization problem:

minimize
$$x_1+x_2$$
 subject to $-x_1 \leq 0, \quad -x_2 \leq 0$ $1-\sqrt{x_1x_2} \leq 0$

$$(1-\sqrt{x_1x_2} \text{ is convex on } \mathbf{R}^2_+)$$

many different ways, e.g.,

minimize
$$x_1 + x_2$$

subject to $-x_1 \le 0, -x_2 \le 0$
 $-\log x_1 - \log x_2 \le 0$

example. f_i all affine yields linear program

minimize
$$c_0^T x + d_0$$
 subject to $c_i^T x + d_i \leq 0, \ i = 1, \dots, m$ $Ax = b$

which is a convex optimization problem

example. minimum norm approximation with limits on variables

minimize
$$||Ax - b||$$

subject to $l_i \leq x_i \leq u_i, i = 1, ..., n$

is convex

example. maximum entropy with linear equality constraints

minimize
$$\sum_i x_i \log x_i$$

subject to $x_i \geq 0, \ i = 1, \dots, n$
 $\sum_i x_i = 1, \ Ax = b$

is convex (more on these later)

Local and global optimality

 $x \in C$ is locally optimal if it satisfies

$$y \in C, \|y - x\| \le R \implies f_0(y) \ge f_0(x)$$

for some R > 0

c.f. (globally) optimal, which means $x \in C$,

$$y \in C \implies f_0(y) \ge f_0(x)$$

for cvx opt problems, any local solution is also global

proof:

- suppose x is locally optimal, but $y \in C$, $f_0(y) < f_0(x)$
- ullet take small step from x towards y, i.e., $z=\lambda y+(1-\lambda)x$ with $\lambda>0$ small
- ullet z is near x, with $f_0(z) < f_0(x)$; contradicts local optimality

An optimality criterion

suppose f_0 is differentiable in convex problem then $x \in C$ is optimal iff

$$y \in C \implies \nabla f_0(x)^T (y - x) \ge 0$$

- ullet $-\nabla f_0(x)$ defines supporting hyperplane for C at x
- ullet if you move from x towards any feasible y, f_0 does not decrease
- hence $x \in C$, $\nabla f_0(x) = 0$ implies x optimal
- ullet for unconstr. problems, x is optimal iff $abla f_0(x)=0$

Quasiconvex optimization problem

quasiconvex optimization problem in standard form:

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $Ax=b$

- f_0 is quasiconvex
- ullet f_1 , . . . , f_m are convex
- affine equality constraints
- feasible set, all sublevel sets are convex

example. linear-fractional programming

minimize
$$(a^Tx + b)/(c^Tx + d)$$

subject to $Ax = b$, $Fx \leq g$, $c^Tx + d > 0$

Solving quasiconvex problems via bisection

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $Ax = b$

 f_i convex, f_0 quasiconvex

idea: express sublevel set $f_0(x) \leq t$ as sublevel set of *convex* function:

$$f_0(x) \le t \Leftrightarrow \phi_t(x) \le 0$$

where $\phi_t: \mathbf{R}^n \to \mathbf{R}$ is convex in x for each t

now solve quasiconvex problem by bisection on t, solving convex feasibility problem

$$\phi_t(x) \le 0, \quad f_i(x) \le 0, \quad i = 1, \dots, m, \quad Ax = b$$

(with variable x) at each iteration

bisection method for quasiconvex problem:

```
\begin{aligned} &\textbf{given } l < p^*; \text{ feasible } x; \, \epsilon > 0 \\ &u := f_0(x) \\ &\textbf{repeat} \\ &t := (u+l)/2 \\ &\text{solve convex feasibility problem} \\ &\phi_t(x) \leq 0, \, f_i(x) \leq 0, \, Ax = b \\ &\text{if feasible,} \\ &u := t \\ &x := \text{any solution of feas. problem} \\ &\text{else } l := t \\ &\textbf{until } u - l \leq \epsilon \end{aligned}
```

- reduces quasiconvex problem to sequence of convex feasibility problems
- ullet finds ϵ -suboptimal solution in $\log_2(1/\epsilon)$ iterations

Epigraph form

write standard form problem as

minimize
$$t$$
 subject to $f_0(x)-t\leq 0,$ $f_i(x)\leq 0,\ i=1,\ldots,m$ $h_i(x)=0,\ i=1,\ldots,p$

- ullet variables are (x,t)
- ullet m+1 inequality constraints
- objective is linear: $t = e_{n+1}^T(x, t)$
- if original problem is cvx, so is epigraph form

linear objective is 'universal' for convex optimization

Standard form with generalized inequalities

convex optimization problem in standard form with generalized inequalities:

minimize
$$f_0(x)$$
 subject to $f_i(x) \preceq_{K_i} 0, \ i=1,\ldots,L$ $Ax=b$

where:

• $f_0: \mathbf{R}^n \to \mathbf{R}$ convex

 $\bullet \preceq_{K_i}$ are generalized inequalities on \mathbf{R}^{m_i}

• $f_i: \mathbf{R}^n \to \mathbf{R}^{m_i}$ are K_i -convex

example. semidefinite programming

minimize
$$c^T x$$

subject to $A_0 + x_1 A_1 + \cdots + x_n A_n \leq 0$

where
$$A_i = A_i^T \in \mathbf{R}^{p \times p}$$

How f_i , h_i are described

analytical form

functions can have analytical form, e.g.,

$$f(x) = x^T P x + 2q^T x + r$$

f is specified by giving the problem data, coefficients, or parameters, e.g.

$$P = P^T \in \mathbf{R}^{n \times n}, \quad q \in \mathbf{R}^n, \quad r \in \mathbf{R}$$

oracle form

functions can be given by *oracle* or *subroutine* that, given x, computes f(x) (and maybe $\nabla f(x)$, $\nabla^2 f(x)$, . . .)

- ullet oracle model can be useful even if f has analytic form, e.g., linear but sparse
- how f given affects choice of algorithm, storage required to specify problem, etc.

Some hard problems

'slight' modification of convex problem can be very hard

ullet convex maximization, concave minimization, e.g.

$$\begin{array}{ll} \text{maximize} & \|x\| \\ \text{subject to} & Ax \leq b \end{array}$$

• nonlinear equality constraints, e.g.

minimize
$$c^T x$$
 subject to $x^T P_i x + q_i^T x + r_i = 0, \ i = 1, \dots, K$

• minimizing over non-convex sets, e.g., Boolean variables

find
$$x$$
 such that $Ax \leq b$, $x_i \in \{0, 1\}$

Restriction and relaxation

original problem, with optimal value f^* :

minimize
$$f(x)$$
 subject to $x \in C$

new problem, with optimal value \tilde{f}^{\star} :

minimize
$$f(x)$$
 subject to $x \in \tilde{C}$

new problem is

- relaxation (of original) if $\tilde{C} \supseteq C$ (in which case $\tilde{f}^* \leq f^*$)
- ullet restriction if $\tilde{C}\subseteq C$ (in which case $\tilde{f}^{\star}\geq f^{\star}$)

Example. f is convex, C is nonconvex; $\tilde{C} = \mathbf{Co}C$

relaxation is convex problem that gives lower bound for original, nonconvex problem

Multicriterion optimization

vector objective

$$F(x) = (F_1(x), \dots, F_N(x))$$

 $F_1, \ldots, F_N: \mathbf{R}^n \to \mathbf{R}$, (can include equality, inequality constraints)

 F_i called *objective functions*: roughly speaking, want all F_i small

family of specifications indexed by $t \in \mathbf{R}^N$:

$$F(x) \leq t$$

i.e., $F_i(x) \leq t_i$, i = 1, ..., N.

achievable specification: t s.t. $F(x) \leq t$ feasible

Achievable specifications

set of achievable objectives:

$$\mathcal{A} = \{ t \in \mathbf{R}^N \mid \exists x \text{ s.t. } F(x) \leq t \}$$

if F_i are convex then ${\mathcal A}$ is convex

boundary of ${\mathcal A}$ is called (optimal) tradeoff surface

Pareto optimality

x dominates (is better than) \tilde{x} if $F(x) \neq F(\tilde{x})$

$$F(x) \leq F(\tilde{x})$$

i.e., x is no worse than \tilde{x} in any objective, and better in at least one

 x_0 is Pareto optimal if no x dominates it

roughly, x_0 Pareto optimal means $F(x_0)$ is on tradeoff surface $(F(x_0) \in \partial \mathcal{A})$

Pareto problem: find Pareto-optimal x real (but more vague) engineering problem: search/explore/characterize tradeoff surface, e.g.:

- 'can reduce F_5 below 0.1, but only at huge cost in F_4 and F_2 '
- ullet 'can pretty much minimize F_3 independently of other objectives'
- ullet ' F_1 and F_2 tradeoff strongly for $F_1 \leq 1$, $F_2 \leq 2$ '

Scalarization

multicriterion problem with F_1, \ldots, F_N

minimize weighted sum of objectives: choose weights $w_i>0$, and solve

minimize
$$\sum_{i} w_{i}F_{i}(x)$$

which is the same as

minimize
$$w^T t$$
 subject to $F(x) \leq t \quad (i.e., t \in \mathcal{A})$

- solution x_0 is Pareto optimal
- for many cvx problems, all Pareto optimal points can be found this way, as weights vary

interpretation

- ullet hyperplane $w^T t = w^T F(x_0)$ supports ${\mathcal A}$ at $F(x_0)$
- specifications in halfspace

$$\{t \mid w^T t < w^T F(x_0)\}$$

are unachievable

