Transformation of functions

By subtracting, adding, or multiplying by positive or negative numbers, we can transform graphs.

Example 1

Draw $f(x)=x^2$ and $g(x)=(x+1)^2$ on the same axes.

f(x)

×	-2	-1	0	1	2
У	4	1	0	1	4

g(x)

x	-2	-1	0	1	2
у	1	0	1	4	9

https://www.desmos.com/calculator/5twzfxm4w4

Red is f(x), blue is g(x)

We can see that g(x) is a horizontal translation of f(x) of -1.

Example 2

Draw $f(x)=x^2$ and $g(x)=x^2+1$ on the same axes.

f(x)

x	-2	-1	Θ	1	2
у	4	1	0	1	4

g(x)

x	-2	-1	0	1	2
У	5	2	1	2	5

<u> https://www.desmos.com/calculator/vxea0iwojp</u>

Red is f(x), blue is g(x)

We can see that g(x) is a vertical translation of +1 of f(x).

Example 3

Draw the graph of $f(x)=x^2$ and $g(x)=2x^2$ on the same axes.

f(x)

x	-2	-1	0	1	2
У	4	1	0	1	4

Transformation of functions 2

g(x)

X	-2	-1	0	1	2
у	8	2	0	2	8

https://www.desmos.com/calculator/5jwq19tnok

Red is f(x) and blue is g(x).

We can see that g(x) is a horizontal stretch of $\frac{1}{2}$ of f(x). The graph has been stretched(in this case half) horizontally.

Transformation of functions 3

Pro tip

For any function $f(x)=(ax+b)^2+c$, a determines the stretch which is $\frac{1}{a}$, b is the horizontal translation, and c is the vertical translation.

Transformation of functions 4