Math	34A	Win	ter	2020
Old N	(Iidte	rm 3	#2	2

PRINT NAME	Excellence Bonus	1
SIGN HERE	Score	34

34

Put answers in the boxes provided. Show high quality work for all answers. Points may be awarded for this.

TA: Garo	\square Sam	Trevor	Section Time: 8am	6pn
			5pm	7pn

1. [/6] Use the graph given to find

(a)
$$\log(\sqrt{480}) =$$

(b) Solve
$$10^x = 1/59$$
 Then $x =$

(c) The slope the graph at x = 0.55 is

2.	ſ	/6]	Find	the	following	derivatives.	Simplify	vour	answers.
4.		/ U	rina	one	Tonowing	derivatives.	Simping	your	answers.

(a)
$$\frac{d}{dx}\left(7x^3 + 3x - 4\right) =$$

(b)
$$\frac{d^2}{dx^2} \left(9x^2 + 5e^{3x}\right) =$$

(c) If
$$k$$
 is a constant, then $\frac{d}{dx}(x^{k-1}+k^2)=$

3. [/4] The temperature in °C of my cup of coffee t minutes after I made it is f(t). Suppose f(5) = 88 and f'(5) = -2. Use the tangent line approximation to estimate...

(a) The temperature of my coffee 7 minutes after I made it

(b) When was the temperature 70° C? Write the number of minutes after I made it.

4. [/8] This question is about the function

$$f(x) = -3x^2 + 12x + 3$$

(a) What is the slope of the graph y = f(x) at x = 1?

(b) What is the equation of the tangent line to the graph at x = 1? (Please give answer in the form y = mx + b.)

$$y =$$

(c) What is the y-coordinate of the point on the graph where the slope is zero?

$$y =$$

(d) For what value of x does the graph have slope 11?

$$c =$$

5. [/10] The height of a rocket above the ground in meters after t seconds	is $h(t) = 500 - 3t^2 + 60t$.
(a)	What was the velocity of the rocket after t seconds?	
	velocit	y = m/s
(b)	What was the acceleration of the rocket after t seconds? acceleration	$= \boxed{ \qquad \qquad m/s^2}$
(c)	After how many seconds was the velocity 18 m/s? $\label{eq:after}$ After	seconds
(d)	What was the maximum height of the rocket above the ground? $\label{eq:height} \text{height} =$	meters
(e)	How many meters did the rocket travel between $t=0$ and $t=2$ secon	ds?