Bài 1. Định lí côs
in và định lí sin trong tam giác. Giá trị lượng giác của một góc từ 0° đến
 180°

Bài 1 trang 75 SBT Toán 10 Tập 1: Cho $0^{\circ} < \alpha < 180^{\circ}$. Chọn câu trả lời đúng.

A. $\cos \alpha < 0$.

B. $\sin \alpha > 0$.

C. $\tan \alpha < 0$.

D. $\cot \alpha > 0$.

Lời giải:

Đáp án đúng là B

Với $0^{\circ} < \alpha < 180^{\circ}$, ta có:

 $-1 \le \cos \alpha \le 1$. Suy ra A sai.

 $0 \le \sin \alpha \le 1$. Suy ra B đúng.

Do đó C và D sai.

Bài 2 trang 75 SBT Toán 10 Tập 1: Cho $0^{\circ} < \alpha$, $\beta < 180^{\circ}$ và $\alpha + \beta = 180^{\circ}$. Chọn câu trả lời sai.

A.
$$\sin \alpha + \sin \beta = 0$$
.

B.
$$\cos\alpha + \cos\beta = 0$$
.

C.
$$\tan \alpha + \tan \beta = 0$$
.

D.
$$\cot \alpha + \cot \beta = 0$$
.

Lời giải:

Đáp án đúng là A

Ta có $\alpha + \beta = 180^{\circ}$ nên ta có:

$$\sin\alpha = \sin\beta \Rightarrow \sin\alpha + \sin\beta = \sin\alpha + \sin\alpha = 2\sin\alpha$$

Vì
$$0^{\circ} < \alpha$$
, $\beta < 180^{\circ}$ nên $\sin \alpha \neq 0$.

Do đó $\sin\alpha + \sin\beta \neq 0$. Suy ra A sai.

$$\cos \alpha = -\cos \beta \Rightarrow \cos \alpha + \cos \beta = 0$$
. Suy ra B đúng.

$$\tan \alpha = -\tan \beta \Rightarrow \tan \alpha + \tan \beta = 0$$
. Suy ra C đúng.

$$\cot \alpha = -\cot \beta \Rightarrow \cot \alpha + \cot \beta = 0$$
. Suy ra D đúng.

Bài 3 trang 75 SBT Toán 10 Tập 1: Tính giá trị biểu thức $T = \sin^2 25^\circ + \sin^2 75^\circ + \sin^2 115^\circ + \sin^2 165^\circ$.

Lời giải:

$$T = \sin^2 25^\circ + \sin^2 75^\circ + \sin^2 115^\circ + \sin^2 165^\circ$$

$$=\sin^2 25^\circ + \sin^2 75^\circ + \sin^2 75^\circ + \sin^2 25^\circ$$

$$= 2\sin^2 25^\circ + 2\sin^2 75^\circ$$

$$= 2\sin^2 25^\circ + 2\cos^2 25^\circ$$

$$=2(\sin^2 25^\circ + \cos^2 25^\circ)$$

$$= 2.1 = 2.$$

Bài 4 trang 75 SBT Toán 10 Tập 1: Cho tan $\alpha = -2$. Tính giá trị biểu thức P = -2.

$$\frac{\cos\alpha + 3\sin\alpha}{\sin\alpha + 3\cos\alpha}$$

Lời giải:

Ta có: $\tan \alpha = -2$ thỏa mãn $\cos \alpha \neq 0$

$$P = \frac{\cos\alpha + 3\sin\alpha}{\sin\alpha + 3\cos\alpha} = \frac{\frac{\cos\alpha}{\cos\alpha} + 3\frac{\sin\alpha}{\cos\alpha}}{\frac{\sin\alpha}{\cos\alpha} + 3\frac{\cos\alpha}{\cos\alpha}} = \frac{1 + 3\tan\alpha}{\tan\alpha + 3} = \frac{1 + 3.(-2)}{-2 + 3} = \frac{-5}{1} = -5.$$

Vậy với $\tan \alpha = -2$ thì P = -5.

Bài 5 trang 75 SBT Toán 10 Tập 1: Cho tam giác ABC có AB = 6, AC = 8,

 $A=100^{\circ}$. Tính độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười).

Lời giải:

Xét tam giác ABC, có:

$$BC^2 = AB^2 + AC^2 - 2.AB.AC.\cos A$$
 (định lí cos)

$$\Leftrightarrow$$
 BC² = 6² + 8² - 2.6.8.cos100°

$$\Leftrightarrow$$
 BC² \approx 116,7

$$\Leftrightarrow$$
 BC \approx 10,8.

Áp dụng định lí sin trong tam giác ABC, ta có:

$$\frac{BC}{\sin A} = 2R$$

$$\Leftrightarrow \frac{10,8}{\sin 100} = 2R$$

$$\Leftrightarrow \frac{10.8}{2\sin 100^{\circ}} = R$$

$$\Leftrightarrow$$
 R \approx 5,5.

Vậy BC \approx 10,8 và R \approx 5,5.

Bài 6 trang 75 SBT Toán 10 Tập 1: Cho tam giác ABC có B = 60°, C = 105° và BC = 15. Tính độ dài cạnh AC và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng đơn vị).

Lời giải:

Xét tam giác ABC, có:

 $A + B + C = 180^{\circ}$ (định lí tổng ba góc)

$$\Rightarrow A = 180^{\circ} - (B + C) = 180^{\circ} - (60^{\circ} + 105^{\circ}) = 15^{\circ}$$

Áp dụng định lí sin trong tam giác ABC ta có:

$$\frac{BC}{\sin A} = \frac{AC}{\sin B} = 2R$$

$$\Leftrightarrow \frac{15}{\sin 15} = \frac{AC}{\sin 60^{\circ}} = 2R$$

$$\Rightarrow AC = \frac{15.\sin 60^{\circ}}{\sin 15} \approx 50$$

$$\Rightarrow R = \frac{15}{2 \sin 15} \approx 29.$$

Vậy AC \approx 50 và R \approx 29.

Bài 7 trang 75 SBT Toán 10 Tập 1: Cho tam giác ABC có AB = 5, AC = 7, BC = 9. Tính số đo góc A và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười).

Lời giải:

Xét tam giác ABC, ta có:

Áp dụng hệ quả của định lí cos, ta được:

$$\cos A = \frac{AB^2 + AC^2 - BC^2}{2.AB.AC} = \frac{5^2 + 7^2 - 9^2}{2.5.7} = -\frac{1}{10}$$

 \Rightarrow A \approx 95,7°.

Ta có p =
$$\frac{5+7+9}{2}$$
 = 10,5

Áp dụng công thức herong, diện tích tam giác ABC là:

$$S = \sqrt{p(p-a)(p-b)(p-c)} = \sqrt{10.5(10.5-9)(10.5-7)(10.5-5)} \approx 17.4.$$

Mặt khác, ta lại có: $S = \frac{abc}{4R}$

$$\Rightarrow R = \frac{abc}{4S} = \frac{9.7.5}{4.17,4} \approx 4.5.$$

Vậy A $\approx 95,7^{\circ}$ và R $\approx 4,5$.

Bài 8 trang 75 SBT Toán 10 Tập 1: Cho hình bình hành ABCD có AB = a, BC = b, AC = m, BD = n. Chứng minh: $m^2 + n^2 = 2(a^2 + b^2)$.

Lời giải:

Xét tam giác ABC, có:

$$AC^2 = AB^2 + BC^2 - 2.AB.BC.cosB$$
 (định lí cos)

$$\Leftrightarrow$$
 m² = a² + b² – 2.a.b.cosB (1)

Vì ABCD là hình bình hành nên AD = BC = b, $A + B = 180^{\circ}$

$$V_1 A + B = 180^\circ \Rightarrow \cos A = -\cos B \Rightarrow \cos A + \cos B = 0$$

Xét tam giác ABD, có:

$$BD^2 = AB^2 + AD^2 - 2.AB.AD.\cos A$$
 (định lí cos)

$$\Leftrightarrow n^2 = a^2 + b^2 - 2.a.b.\cos A (2)$$

Cộng vế với vế của (1) và (2), ta được:

$$m^2 + n^2 = a^2 + b^2 - 2.a.b.cosB + a^2 + b^2 - 2.a.b.cosB$$

$$\Leftrightarrow$$
 m² + n² = 2(a² + b²) - 2.a.b.(cosB + cosA)

$$\Leftrightarrow m^2 + n^2 = 2(a^2 + b^2) - 2.a.b.0$$

$$\Leftrightarrow m^2 + n^2 = 2(a^2 + b^2).$$

Bài 9 trang 75 SBT Toán 10 Tập 1: Từ một tấm tôn hình tròn có bán kính R = 1m, bạn Trí muốn cắt ra một hình tam giác ABC có các góc A = 45°, góc B = 75°. Hỏi bạn Trí phải cắt miếng tôn theo hai dây cung AB, BC có độ dài lần lượt bằng bao nhiều mét (làm tròn kết quả đến hàng phần trăm)?

Lời giải:

Xét tam giác ABC, có:

 $A + B + C = 180^{\circ}$ (định lí tổng ba góc)

$$\Rightarrow C = 180^{\circ} - (A + B) = 180^{\circ} - (45^{\circ} + 75^{\circ}) = 60^{\circ}$$

Áp dụng định lí sin trong tam giác ABC ta có:

$$\frac{BC}{\sin A} = \frac{AB}{\sin C} = 2R$$

$$\Leftrightarrow \frac{BC}{\sin 45^{\circ}} = \frac{AB}{\sin 60^{\circ}} = 2$$

$$\Rightarrow$$
 BC = $2.\sin 45^{\circ} \approx 1.41$

$$\Rightarrow$$
 AB = $2.\sin 60^{\circ} \approx 1,73$

Vậy bạn Trí phải cắt miếng tôn theo hai dây cung AB,BC có độ dài lần lượt là 1,41m và 1,73m.

Bài 10 trang 75 SBT Toán 10 Tập 1: Một cây cao bị nghiêng so với mặt đất một góc 78°. Từ vị trí C cách gốc cây 20m, người ta tiến hành đo đạc và thu được kết quả ACB = 50° với B là vị trí ngọn cây (Hình 10). Tính khoảng cách từ gốc cây (điểm A) đến ngọn cây (điểm B) (làm tròn kết quả đến hàng phần mười theo đơn vị mét).

Lời giải:

Xét tam giác ABC, có:

$$A+B+C=180^{\circ}$$
 (định lí tổng ba góc)

$$\Rightarrow B = 180^{\circ} - (A + C) = 180^{\circ} - (78^{\circ} + 50^{\circ}) = 52^{\circ}$$

Áp dụng định lí sin trong tam giác ABC ta có:

$$\frac{AC}{\sin B} = \frac{AB}{\sin C}$$

$$\Leftrightarrow \frac{20}{\sin 52^{\circ}} = \frac{AB}{\sin 50^{\circ}}$$

$$\Leftrightarrow AB = \frac{20.\sin 50^{\circ}}{\sin 52^{\circ}} \approx 19,4.$$

Vậy khoảng cách từ gốc cây (điểm A) đến ngọn cây (điểm B) là 19,4 m.

Bài 11 trang 75 SBT Toán 10 Tập 1: Tàu A cách cảng C một khoảng 3km và lệch hướng bắc 1 góc 47,45°. Tàu B cách cảng C một khoảng 5km và lệch hướng bắc một góc 112,90° (Hình 11). Khoảng cách giữa hai tàu là bao nhiều ki – lô – mét (làm tròn kết quả đến hàng phần trăm).

Lời giải:

Theo đầu bài, ta có: NCA = $47,45^{\circ}$ và NCB = $112,9^{\circ}$

$$\Rightarrow$$
 ACB = NCB - NCA = 112,90° - 47,45° = 65,45°

Xét tam giác ABC, có:

$$AB^2 = AC^2 + BC^2 - 2.AC.BC.\cos ACB$$

$$\Leftrightarrow$$
 AB² = 3² + 5² - 2.3.5.cos65,45°

$$\Leftrightarrow$$
 AB² \approx 21,54

$$\Leftrightarrow AB \approx 4{,}64$$

Vậy khoảng cách giữa hai tàu là 4,64 km.