Система взаимодействия игрока с компаньоном с применением нейронных сетей для решения NLP задач

 Зав. кафедрой
 С.Д. Махортов д.ф.- м.н., доцент

 Обучающийся
 П.Н Парамонов, 2 курс (маг), д/о

 Руководитель
 В.С. Тарасов, ст. преподаватель

Введение

- Игры стремительно совершенствовались
- Техническое развитие игр опережает развитие геймдизайна
- Недостаточно технической составляющей для высоких оценок
- Развитие геймдизайна по многим направлениям

Введение

Проблема:

- Недостаточное вовлечение игрока во взаимодействие с NPC
 - Отсутствие интереса к NPC
 - Безнадобность NPC
 - Контакт только если это необходимо
- Ограниченный и минимальный набор функций NPC
 - Список диалоговых фраз заранее известен
 - Если расширять возможности, список будет также увеличиваться, что приведет к неудобству

Цель работы

Целью данной работы является разработка улучшения игровой механики, которая заключается:

- Динамическом взаимодействии между игроком и компаньоном
- Составлении любой фразы игрока к компаньону
- Классификации игровой функции компаньона и тональности на основе фразы

А также в проведении исследования решения NLP задачи в области машинного обучения

Задачи

- Произвести сбор данных для формирования обучающей выборки классификации игрового события и классификации тональности
- Определить оптимальные гиперпараметры для каждой нейронной сети
- Определить лучшую модель для семантического анализа текста

Игровые функции NPC

- Интерактивные способности:
 - Рассказать о мире
 - Напомнить суть текущего задания
 - Дать совет по тактике боя
 - Дать совет по прохождению текущего задания
- Боевые способности:
 - Тренировочный бой(меч, булава, топор, рукопашный бой)
 - Вылечить игрока
 - Перейти в ближний/дальний бой
- Различные способности:
 - Обменяться ресурсами
 - Взломать замок
 - Исследовать территорию

Средства реализации

- Python 3.10.9
- Tensorflow 2.10.0
- Keras 2.10.0
- KerasTuner 1.3.5
- Google Colaboratory
- DataSpell

CPU: AMD Ryzen 5 3500U 2.1GHz

RAM: 5.71 GB

Обучающие данные тональности

- Источник Kaggle
- Содержит набор сообщений сопоставленный с соответствующими классами
- Количество данных:
 - 160000 для обучения
 - 64000 для тестов

comment_text >	toxic :	severe_toxic ÷	obscene ÷	threat ÷	insult ÷	identit
I agree with the above. I look for some references	0	Θ	0	0	0	
bigjkim∮∅why do you like Jews so much ? why are you…	0	0	0	0	0	
" ${\mathscr O} {\mathscr O} {REPLY} \colon$ There is no such thing as Texas Commerce	0	0	0	0	0	
Nietzsche's Last Man ∉⊎Was Nietzsche's concept of t…	0	0	0	0	0	
Ha! Riiiiightbecause you and the other two moro	1	0	0	0	0	
"*I have decided to take the next step and have you	0	0	0	0	0	

Обучающие данные определения действия

- Источник ChatGPT
- Набор сообщений с соответствием с номером класса действия
- Количество данных:
 - 7000 для обучения
 - 1400 для тренировки

Множество гиперпараметров

- Количество слоев в скрытом слое
- Количество нейронов на каждом слое
- Размерность вектора в слое Embedding
- Функция активации на каждом слое
- Метод оптимизации
- Коэффициенты регуляризации
- Количество ядер свертки
- Длинна окна свертки

Реализация тональности

Тип сети	Время подбора (GPU)	Время обучения (CPU)	Inference	AUC	Accuracy
CNN	23 минуты	39 секунд	3ms/step	0,96269	0,9975
GRU	2 часа 18 минут	13 минут	25ms/step	0,95986	0,9961
LSTM	2 часа 1 минута	12 минут	19ms/step	0,95914	0,9852
RNN	1 час 18 минут	23 минуты	14ms/step	0,95076	0,9976
FNN	54 минуты	43 минуты	81ms/step	0,95034	0,3222

Архитектура сети

- Слой 1: Embedding(output_dim=36, regularizer=1e-4)
- Слой 2: Conv1D (filters=32, kernel_size=5, FA=elu, regularizer=1e-4)
- Слой 3: MaxPooling1D(pool_size=2)
- Слой 4: Flatten()
- Слой 5: Dense(units=108, FA=elu, regularizer=1e-4)
- Слой 6: Dense(units =6, FA=sigmoid)
- Optimizer=rmsprop
- Loss=binary crossentropy

Процесс обучения сети

```
Epoch 1/5
0.0890 - val_auc: 0.9589 - val_accuracy: 0.9940
Epoch 2/5
- val_auc: 0.9683 - val_accuracy: 0.9909
Epoch 3/5
- val_auc: 0.9667 - val_accuracy: 0.9431
Epoch 4/5
- val_auc: 0.9627 - val_accuracy: 0.9026
Epoch 5/5
- val_auc: 0.9663 - val_accuracy: 0.9941
model.evaluate(x_test, y_test)
[0.08404318988323212, 0.9626981019973755, 0.9975460171699524]
```

Реализация выбора действия

Тип сети	Время подбора (GPU)	Время обучения (CPU)	Inference	Accuracy	
CNN	6 минут	20 секунд	8ms/step	0,9821	
FNN	9 минут	11 секунд	38ms/step	0,9764	
LSTM	53 минуты	15 секунд	8ms/step	0,9086	
RNN	41 минута	8 секунд	8ms/step	0,8879	
GRU	54 минуты	35 секунд	39ms/step	0,8550	

Архитектура сети

- Слой 1: Embedding(output_dim=116, regularizer=1e-4)
- Слой 2: Conv1D (filters=172, kernel_size=3, FA=selu, regularizer=1e-4)
- Слой 3: MaxPooling1D(pool_size=2)
- Слой 4: Flatten()
- Слой 5: Dense(units=140, FA=selu, regularizer=1e-4)
- Слой 6: Dense(units =15, FA=softmax)
- Optimizer=rmsprop
- Loss=categorial_crossentropy

Процесс обучения сети

```
Epoch 1/5
val_accuracy: 0.7597
Epoch 2/5
val_accuracy: 0.8391
Epoch 3/5
val_accuracy: 0.9639
Epoch 4/5
val_accuracy: 0.9802
Epoch 5/5
val_accuracy: 0.9837
model_action.evaluate(x_test; y_test)
[0.1454996019601822, 0.9821428656578064]
```

Вывод

- Разработана механика взаимодействия с компаньоном, благодаря которой:
 - Игрок может ввести необходимую ему фразу в диалоговое окно с NPC
 - После чего классифицируется данная фраза по функциям NPC и по тональности
 - На основе этого NPC выполнить требуемую функцию
- Разработаны наиболее подходящие модели нейронной сети:
 - Для классификации тональности фраз наиболее подходящей является CNN, с временем обучения в 39 секунд, Inference = 3ms/step, AUC = 0,96269 и Accuracy = 0,9975
 - Для классификации функций NPC наиболее подходящей является CNN, с временем обучения в 20 секунд, Inference = 8ms/step и Accuracy = 0,9821

Система взаимодействия игрока с компаньоном с применением нейронных сетей для решения NLP задач

 Зав. кафедрой
 С.Д. Махортов д.ф.- м.н., доцент

 Обучающийся
 П.Н Парамонов, 2 курс (маг), д/о

 Руководитель
 В.С. Тарасов, ст. преподаватель