Supervised Learning

Learning from Examples

Asmaa Elbadrawy PhD, Lecturer IFT Program, ASU

In Supervised Learning, an agent reads in data in the form (input, output) pairs. It learns a model (function) that maps input to output.

Formulating the Learning Problem

• **Given:** a dataset that contains data points, described by some attributes x1, x2, ... xn.

- Each data point has:
 - Some attributes, referred to as X
 - A class label , referred to as y

Formulating the Learning Problem

Required: Find a function that can predict the class label y of any data point given its attribute values X.

$$y = f(X)$$

That is, estimate y as a function of x.

We know y & X. We want to find f()

Formulating the Learning Problem

$$y = f(X)$$

There are many options for *f()*. *f()* can be linear or non-linear.

Fig 19.1, Russell & Norvig's Textbook

Example Applications

Object Classification in Images

 Given a dataset of images, classify the objects in the images within a set of *predefined* classes.

Classification

CAT

Object Detection

CAT, DOG, DUCK

Image source: https://towardsdatascience.com/going-deep-into-object-detection-bed442d92b34

Image source: https://medium.com/@bluebirb/object-detection-current-popular-techniques-900d36ae9b08

Object Classification in Images

Features used for cat/dog classification?

- Ear shape, face size w.r.t. body size, distance between nose Dog

and eyes, etc.

Image source: https://medium.com/@bluebirb/object-detection-currentpopular-techniques-900d36ae9h08

Tumor Cell Classification

• Given a dataset of images, each containing one or more cells, classify whether they are malignant or benign.

Image source: https://link.springer.com/article/10.1007/s11548-019-01919-z
Asmaa Elbadrawy – ASU – 2021

Galaxy Classification

Intermediate

Late

Data Size:

- 72 million stars, 20 million galaxies
- Object Catalog: 9 GB
- Image Database: 150 GB

Class:

Stages of Formation

Attributes:

- Image features,
- Characteristics of light waves received, etc.

Courtesy: http://aps.umn.edu

Predicting Stock prices given market conditions.

The Restaurant Waiting Problem

- Should we wait for a table at a restaurant?
- y → Boolean variable deciding whether wait = True/False
- X → 10 different attributes

- **1.** *Alternate*: whether there is a suitable alternative restaurant nearby.
- 2. Bar: whether the restaurant has a comfortable bar area to wait in.
- **3.** *Fri/Sat*: true on Fridays and Saturdays.
- **4.** *Hungry*: whether we are hungry right now.
- 5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
- 6. Price: the restaurant's price range (\$, \$\$, \$\$\$).
- 7. Raining: whether it is raining outside.
- 8. Reservation: whether we made a reservation.
- 9. *Type:* the kind of restaurant (French, Italian, Thai, or burger).
- **10.** *WaitEstimate:* host's wait estimate: 0–10, 10–30, 30–60, or >60 minutes.

se

The Restaurant Waiting Problem

There are thousands of possible values for the 10

attributes.

Example	Input Attributes										Output
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = No$
x ₃	No	Yes	No	No	Some	\$	No	No	Burger	0 - 10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Yes$
X 5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0 - 10	$y_6 = Yes$
x 7	No	Yes	No	No	None	\$	Yes	No	Burger	0 - 10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0 - 10	$y_8 = Yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
${\bf x}_{10}$	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = No$
x_{11}	No	No	No	No	None	\$	No	No	Thai	0 - 10	$y_{11} = No$
x ₁₂	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Yes$

Fig 19.2, Russell & Norvig's Textbook