Apprentissage automatique / Statistique

Sélection de modèle dans le cas gaussien

PHILIPPE BESSE

INSA de Toulouse Institut de Mathématiques

Objectifs

- Expliquer Y quantitative avec X^1, \ldots, X^p
- Modèle gaussien et linéaire général
- Dianostic : multicolinéarité (influence, tests, résidus)
- Choix de modèle par sélection de variables
- Choix de modèle par pénalisation (ridge, Lasso)

Choix de modèle par régularisation

Exemple

• Échantillon taille $n:(x_i^1,\ldots,x_i^p,y_i); i=1,\ldots,n$

$$Y_i = \beta_0 + \beta_1 X_i^1 + \beta_2 X_i^2 + \dots + \beta_p X_i^p + \varepsilon_i; i = 1, \dots, n$$

- Hypothèses
 - $E(\varepsilon_i) = 0, Var(\varepsilon) = \sigma^2 \mathbf{I}$
 - X^{j} déterministes ou bien ε indépendant des X^{j}
 - β_0, \ldots, β_p constants
 - Option $\boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$

Exemple

Expression matricielle

- $E(\varepsilon_i) = 0, Var(\varepsilon) = \sigma^2 \mathbf{I}$
- $\mathbf{X}(n \times (p+1))$ de terme général x_i^j avec $\mathbf{x}^0 = \mathbf{1}$
- Y de terme général y_i
- $\bullet \ \boldsymbol{\varepsilon} = [\varepsilon_1 \cdots \varepsilon_n]'$
- \bullet $\beta = [\beta_0 \beta_1 \cdots \beta_n]'$

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Estimateur des moindres carrés

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

- Equations normales : $X'Y X'X\beta = 0$
- et si X'X inversible
- Estimation de β : $\widehat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$
- Prédiction de $\mathbf{Y}: \widehat{\mathbf{Y}} = \mathbf{X}\mathbf{b} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{H}\mathbf{Y}$
- $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$: projection orthog. sur $\text{Vect}(\mathbf{X})$
- Résidus : $\mathbf{e} = \mathbf{Y} \widehat{\mathbf{Y}} = \mathbf{Y} \mathbf{X}\mathbf{b} = (\mathbf{I} \mathbf{H})\mathbf{Y}$

Covariances des estimateurs

$$E[(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})'] = \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}$$

$$E[(\widehat{\mathbf{Y}} - \mathbf{X}\boldsymbol{\beta})(\widehat{\mathbf{Y}} - \mathbf{X}\boldsymbol{\beta})'] = \sigma^{2}\mathbf{H}$$

$$E[\mathbf{e}\mathbf{e}'] = \sigma^{2}(\mathbf{I} - \mathbf{H})$$

Estimation de σ^2

$$s^2 = \frac{\left\|\mathbf{Y} - \mathbf{X}\widehat{\boldsymbol{\beta}}\right\|^2}{n - p - 1} = \frac{\mathbf{SSE}}{n - p - 1}$$

Projection \widehat{Y} de Y sur l'espace vectoriel $Vect\{1, X^1, \dots, X^p\}$

Sommes des carrés

$$SSE = \|\mathbf{Y} - \overline{\mathbf{Y}}\|^2 = \|\mathbf{e}\|^2$$

$$SST = \|\mathbf{y} - \overline{Y}\mathbf{1}\|^2 = \mathbf{Y}'\mathbf{Y} - n\overline{Y}^2$$

$$SSR = \|\widehat{\mathbf{Y}} - \overline{Y}\mathbf{1}\|^2 = \widehat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{Y} - n\overline{Y}^2$$

$$SST = SSR + SSE$$

$$R^2 = \frac{SSR}{SST} \quad Coefficient de détermination$$

Cosinus carré de l'angle entre \mathbf{Y} et $\hat{\mathbf{Y}}$

Inférence sur les coefficients

La statistique $\frac{\widehat{\beta}_j - \beta_j}{\widehat{\sigma}_j} \sim \text{Student à } (n - p - 1) \text{ ddl}$ $H_0: \beta_j = a \text{ et intervalle de confiance de niveau } 100(1 - \alpha)\%$:

$$\widehat{\beta}_j \pm t_{\alpha/2;(n-p-1)} \widehat{\sigma}_j$$

Attention les coefficients sont corrélés entre eux

Inférence sur le modèle

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_p = 0$$

$$\frac{\mathsf{SSR}/p}{\mathsf{SSE}/(n-p-1)} = \frac{\mathsf{MSR}}{\mathsf{MSE}}$$

Fisher avec p et (n - p - 1) ddl Tableau d'analyse de la variance

Source de variation	Som des carre	Variand	re F
---------------------------	---------------------	---------	------

Régression	p	SSR	$MSH = \frac{SSH}{p}$	MSR/MSE	
Erreur	n - p - 1	SSE	$MSE = \frac{{}^{P}SSE}{(n-p-1)}$		
Total	n-1	SST	(N P 1)		

Inférence sur un modèle réduit

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_q = 0, q < p$$

SSR_q, SSE_q, R_q^2 du modèle réduit à $(p-q)$ variables

$$rac{(\mathsf{SSR} - \mathsf{SSR}_q)/q}{\mathsf{SSE}/(n-p-1)} = rac{(R^2 - R_q^2)/q}{(1-R^2)/(n-p-1)}$$

Fisher à q et (n-p-1) ddl

Inférence sur la Prévision

Pour \mathbf{x}_0 :

$$\widehat{y}_0 = b_0 + b_1 x_0^1 + \dots + b_p x_0^p.$$

Intervalles de confiance des prévisions de Y et E(Y)

$$\widehat{y}_0 \quad \pm \quad t_{\alpha/2;(n-p-1)} s (1 + \mathbf{v}_0' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{v}_0)^{1/2}$$

$$\widehat{y}_0 \quad \pm \quad t_{\alpha/2;(n-p-1)} s (\mathbf{v}_0' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{v}_0)^{1/2}$$

avec
$$\mathbf{v}_0 = (1|\mathbf{x}_0')' \in \mathbb{R}^{p+1}$$

Diagnostics des Résidus

- Homoscédasticité, linéarité, normalité
- Effet levier : H_ii et résidu studentisé grand par
- Distance de Cook :

$$D_i = \frac{1}{s^2(p+1)}(\widehat{\mathbf{y}} - \widehat{\mathbf{y}}_{(i)})'(\widehat{\mathbf{y}} - \widehat{\mathbf{y}}_{(i)})$$

Ozone : Résidus des modèles linéaire et quadratique.

Diagnostics de colinéarité

- conditionnement de X'X
- Facteurs d'inflation de la variance (VIF) : $V_j = \frac{1}{1-R_i^2}$
- Conditionnement : $\kappa = \lambda_1/\lambda_p$

Retour sur capital

40 entreprises du Royaume Uni décrites par

RETCAP	Return on capital employed
WCFTDT	Ratio of working capital flow to total debt
LOGSALE	Log to base 10 of total sales
LOGASST	Log to base 10 of total assets
CURRAT	Current ratio
QUIKRAT	Quick ratio
NFATAST	Ratio of net fixed assets to total assets
FATTOT	Gross sixed assets to total assets
PAYOUT	Payout ratio
WCFTCL	Ratio of working capital flow to total current liabilities
GEARRAT	Gearing ratio (debt-equity ratio)
CAPINT	Capital intensity (ratio of total sales to total assets)
INVTAST	Ratio of total inventories to total assets

Coefficient de variation 100 × (9)/(10)

Coefficient de détermination ajusté R'2

Coefficient de détermination R²

Modèle complet Analysis of Variance Sum of Mean Source DF Squares Square F Value Prob>F (1) Model 12 0.55868 (2) 0.04656 (5) 8.408 (7) 0.0001 (8) 2.7 0.14951 (3) 0.00554 (6) Error C Total 39 0.70820 (4) Root MSE 0.07441 (9) R-square 0.7889 (12) Dep Mean 0.14275 (10) Adj R-sq 0.6951 (13) 52.12940 (11) C.V. $P(f_{p;n-p-1} > F)$; H_0 rejetée au niveau α si $P < \alpha$ d.d.l. de la loi de Fisher du test global (8) SSR s =racine de MSE (2)(9) SSE ou déviance (3) (10)moyenne empirique de la variable à expliquée

(11)

(12)

(13)

MSE=SSE/DF est l'estimation de σ^2

Statistique F de Fisher du test global

SST=SSE+SSR

SSR/DF

(4)

(5)

(6)

(7)

Paramètres du modèle

Parameter	: Es	timates					
		Parameter	Standard	T for HO:			Variance
Variable	DF	Estimate	Error	Parameter=0	Prob> T	Tolerance	Inflation
		(1)	(2)	(3)	(4)	(5)	(6)
INTERCEP	1	0.188072	0.13391661	1.404	0.1716		0.0000000
WCFTCL	1	0.215130	0.19788455	1.087	0.2866	0.03734409	26.777998
WCFTDT	1	0.305557	0.29736579	1.028	0.3133	0.02187972	45.704415
GEARRAT	1	-0.040436	0.07677092	-0.527	0.6027	0.45778579	2.184428
LOGSALE	1	0.118440	0.03611612	3.279	0.0029	0.10629382	9.407885
LOGASST	1	-0.076960	0.04517414	-1.704	0.0999	0.21200778	4.716808

- (1) estimations des paramètres (β_i)
- (2)
- (3)
- écarts-types de ces estimations (s_j) statistique T du test de Student de $H_0: \beta_j = 0$ $P(t_{n-p-1} > T); H_0$ est rejetée au niveau α si $P < \alpha$ (4)
- (5) $1 - R_{(i)}^2$
- $VIF=1/(1-R_{(i)}^2)$ (6)

AnCoVa élémentaire

- Y expliquée par
- T à J niveaux et
- X quantitative (covariable)
- Pour chaque niveau j de T, on observe
- n_j valeurs $X_{1j}, \ldots, X_{n_i j}$ de X et
- n_j valeurs $Y_{1j}, \ldots, Y_{n_j j}$ de **Y**;
- $n = \sum_{i=1}^{J} n_i$ taille de l'échantillon
- E[Y|T] est fonction affine des variables explcatives
- $Y_{ij} = \beta_{0j} + \beta_{1j}X_{ij} + \varepsilon_{ij}$; $j = 1, \ldots, J$; $i = 1, \cdots, n_j$
- ε_{ij} supposés i.i.d éventuellement $\mathcal{N}(0, \sigma^2)$

Choix de modèle par régularisation

Notations de l'AnCoVa

- *Y* observations $[Y_{ij}|i=1,n_j;j=1,J]'$
- **x** vecteur $[X_{ij}|i=1, n_i; j=1, J]'$
- $\varepsilon = [\varepsilon_{ii}|i=1,n_i;j=1,J]'$ vecteur des erreurs
- 1; variables indicatrices des niveaux
- x.1_i valeurs pour le niveau j, 0 ailleurs
- **X** matrice $n \times 2J$ [$\mathbf{1}_i | \mathbf{x} \cdot \mathbf{1}_i$] ; $j = 1, \dots, J$

Modèle et paramètres

- $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$
- **X** est la matrice $n \times 2J$: $[\mathbf{1}_{i}|\mathbf{X}.\mathbf{1}_{i}]$; $j = 1, \dots, J$
- Reparamétrisation :
- $\mathbf{X} = [\mathbf{1}|\mathbf{X}|\mathbf{1}_1|\cdots|\mathbf{1}_{J-1}|\mathbf{x}.\mathbf{1}_1|\cdots|\mathbf{x}.\mathbf{1}_{J-1}]$

$$Y_{ij} = \beta_{0J} + (\beta_{0j} - \beta_{0J}) + \beta_{1J}X_{ij} + (\beta_{1j} - \beta_{1J})X_{ij} + \varepsilon_{ij};$$

$$j = 1, \dots, J - 1; i = 1, \dots, n_j.$$

Tests

Comparer le modèle complet :

$$\mathbf{Y} = \beta_{0J} \mathbf{1} + (\beta_{01} - \beta_{0J}) \mathbf{1}_1 + \dots + (\beta_{0J-1} - \beta_{0J}) \mathbf{1}_{J-1} + \beta_{1J} \mathbf{x} + (\beta_{11} - \beta_{1J}) \mathbf{x} \cdot \mathbf{1}_1 + \dots + (\beta_{1J-1} - \beta_{1J}) \mathbf{x} \cdot \mathbf{1}_{J-1} + \varepsilon$$

A chacun des modèles réduits :

(i)
$$\mathbf{Y} = \beta_{0J}\mathbf{1} + (\beta_{01} - \beta_{0J})\mathbf{1}_1 + \dots + (\beta_{0J-1} - \beta_{0J})\mathbf{1}_{J-1} + \beta_{1J}\mathbf{x} + \varepsilon$$

(ii)
$$\mathbf{Y} = \beta_{0J}\mathbf{1} + (\beta_{01} - \beta_{0J})\mathbf{1}_1 + \dots + (\beta_{0J-1} - \beta_{0J})\mathbf{1}_{J-1} + \varepsilon$$

(iii)
$$\mathbf{Y} = \beta_{0J}\mathbf{1} + \beta_{1J}\mathbf{x} + (\beta_{1j} - \beta_{1J})\mathbf{x}.\mathbf{1}_1 + \dots + (\beta_{1J-1} - \beta_{1J})\mathbf{x}.\mathbf{1}_{J-1} + \dots$$

(iv)
$$\mathbf{Y} = \beta_{0J} \mathbf{1} + \boldsymbol{\varepsilon}$$

Hypothèses testées

- H_0^i : pas d'interaction entre variables **X** et **T**, $\beta_{11} = \cdots = \beta_{1J}$, les droites partagent la même pente β_{1J} .
- H_0^{ii} : $\beta_{11} = \cdots = \beta_{1J}$ =0 (pas d'effet de \mathbf{x})
- H_0^{iii} : $\beta_{01} = \cdots = \beta_{0J}$, les droites partagent la même constante à l'origine β_{0J} .
- H_0^{iv} les variables **X** et **T** n'ont aucun effet sur **Y**.

Données marketing

Observations des

Consommation de lait après deux mois de

6 familles de taille 1 à 6 dans

4 villes ou campagnes de pub de

5 régions

Modéliser la consommation en fonction de la taille de la famille conditionnellement au type de campagne publicitaire

Source	DF	Type III SS	Mean Square	F Value	Pr > F
PUB	3	227.1807	75.7269	0.57	0.6377 (1)
TAILLE	1	40926.0157	40926.0157	306.57	0.0001 (2)
TAILLE*PUB	3	309.8451	103.2817	0.77	0.5111 (3)

Tests

Attention aux interactions

Région	Source	DF	Type III SS	Mean Square	F Value	Pr > F
	PUB	3	72.02974	24.00991	4.62	0.0164
1	TAILLE	1	7178.32142	7178.32142	1380.25	0.0001
	TAILLE*PUB	3	217.37048	72.45683	13.93	0.0001
	PUB	3	231.73422	77.24474	30.36	0.0001
2	TAILLE	1	8655.25201	8655.25201	3402.34	0.0001
	TAILLE*PUB	3	50.15069	16.71690	6.57	0.0042
	PUB	3	79.54688	26.51563	6.01	0.0061
3	TAILLE	1	6993.30160	6993.30160	1585.35	0.0001
	TAILLE*PUB	3	173.19305	57.73102	13.09	0.0001
	PUB	3	415.66664	138.55555	15.23	0.0001
4	TAILLE	1	9743.37830	9743.37830	1071.32	0.0001
	TAILLE*PUB	3	361.39556	120.46519	13.25	0.0001
	PUB	3	15.35494	5.11831	0.79	0.5168
5	TAILLE	1	8513.28516	8513.28516	1314.71	0.0001
	TAILLE*PUB	3	52.75119	17.58373	2.72	0.0793

Introduction

Critères de sélection de variables Algorithmes de sélection de variables Exemples

Objectif de parcimonie en prévision

- Modèle
 - Explicatif (tests)
 - Prédictif
 - Le R² n'est pas un bon critère
 - Biaiser le modèle pour réduire la variance
 - Réduire le nombre de variables
 - Contraindre les paramètres

Introduction

Critères de sélection de variables Algorithmes de sélection de variables Exemples

Critères de prévision

- Tous les critères sont équivalents avec q fixé
- Problème : optimisé le choix de q
- C_p de Mallow $MSE(\widehat{y}_i) = Var(\widehat{y}_i) + [Biais(\widehat{y}_i)]^2$ On suppose le modèle complet sans biais

$$C_j = (n - j - 1) \frac{\mathsf{MSE}_j}{\mathsf{MSE}} - [n - 2(j + 1)]$$

•
$$C_p = \widehat{R_n}(\widehat{f}(\mathbf{d}^n), \mathbf{d}^n) + 2\frac{d}{n}\widehat{\sigma}^2$$

• AIC =
$$-2\mathcal{L} + 2\frac{d}{n}$$

• BIC =
$$-2\mathcal{L} + \log(n) \frac{d}{n}$$

• PRESS =
$$\sum_{i=1}^{n} (y_i - \widehat{y}_{(i)})^2$$
 (leave one out cross validation)

Régression polynomiale : minimisation du C_p de Mallows.

Algorithmes de sélection

Rechercher dans le graphe des 2^p modèles possibles

- Sélection ascendante (forward)
- Élimination descendante (backward)
- Mixte (pas à pas ou step wise)
- Globale (Furnival & Wilson, 1974), (leaps de R)
- Analyse de covariance :
 - AIC mais pas le C_p
 - Interactions et effets principaux

Stepwise et AIC avec R

```
Step: AIC=-60.79
lpsa ~ lcavol + lweight + age + lbph + svi + pgg45
         Df Sum of Sg RSS
                             ATC
            0.6590
                     45.526 -61.374
- pgg45
                    44.867 -60.788
<none>
+ lcp 1 0.6623 44.204 -60.231
- age 1 1.2649 46.132 -60.092
- lbph 1 1.6465 46.513 -59.293
+ gleason
        3 1.2918 43.575 -57.622
- lweight 1 3.5646 48.431 -55.373
- svi
     1 4.2503 49.117 -54.009
- lcavol 1 25,4190
                  70.286 -19.248
          Step: AIC=-61.37
lpsa ~ lcavol + lweight + age + lbph + svi
```

Choix de modèle par régularisation

Introduction Critères de sélection de variables Algorithmes de sélection de variables Exemples

Retour sur capital avec SAS

```
Regression Models for Dependent Variable: RETCAP
N = 40
R-square Adjusted C(p)
                                Variables in Model
                         BTC
         R-square
1 0.1055 0.0819 78.3930 -163.3 WCFTCL
2 0.3406 0.3050 50.3232 -173.7 WCFTDT QUIKRAT
3 0.6154 0.5833 17.1815 -191.1 WCFTCL NFATAST CURRAT
4 0.7207 0.6888 5.7146 -199.20 WCFTDT LOGSALE NFATAST CURRAT
5 0.7317 0.6923 6.3047 -198.05 WCFTDT LOGSALE NFATAST QUIKRAT CURRAT
6 0.7483 0.7025 6.1878 -197.25 WCFTDT LOGSALE NFATAST INVTAST OUIKRAT CURRAT
7 0.7600 0.7075 6.6916 -195.77 WCFTDT LOGSALE LOGASST NFATAST FATTOT OUIKRAT CURRAT
8 0.7692 0.7097 7.5072 -193.87 WCFTDT LOGSALE LOGASST NFATAST FATTOT INVTAST QUIKRAT CURRAT
9 0.7760 0.7088 8.6415 -191.59 WCFTCL WCFTDT
                                             LOGSALE LOGASST NFATAST FATTOT INVTAST QUIKRAT
                               CHERRAT
10 0.7830 0.7082 9.7448 -189.2 WCFTCL WCFTDT LOGSALE LOGASST NEATAST FATTOT INVIAST PAYOUT
                               QUIKRAT CURRAT
11 0.7867 0.7029 11.277 -186.4 WCFTCL WCFTDT LOGSALE LOGASST NFATAST CAPINT FATTOT INVIAST
                               PAYOUT OUIKRAT CURRAT
12 0.7888 0.695 13.000 -183.5 WCFTCL WCFTDT GEARRAT LOGSALE LOGASST NEATAST CAPINT FATTOT
                               INVTAST PAYOUT OUIKRAT CURRAT
```

Définition de la régression ridge

$$\widetilde{oldsymbol{eta}} = egin{pmatrix} eta_0 \\ eta_1 \\ . \\ . \\ eta_p \end{pmatrix}, \quad oldsymbol{eta} = egin{pmatrix} eta_1 \\ eta_2 \\ . \\ . \\ eta_p \end{pmatrix}$$

- $X^0 = (1, 1, ..., 1)'$, et X la matrice \widetilde{X} privée de X^0
- Y et bmX sont centrés
- $Y = X\widetilde{\beta} + \epsilon$
- $\widehat{m{\beta}}_{\mbox{Ridge}} = \operatorname{argmin}_{m{\beta} \in \mathbb{R}^{p+1}} \sum_{i=1}^n (Y_i \sum_{j=0}^p X_i^{(j)} eta_j)^2 + \lambda \sum_{j=1}^p eta_j^2$
- λ paramètre positif à optimiser

$$\widehat{\boldsymbol{\beta}}_{\mathsf{Ridge}} = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{I}_p)^{-1}\mathbf{X}'\mathbf{Y}$$

Propriétés de la régression ridge

- **1** $\mathbf{X}'\mathbf{X} + \lambda \mathbf{I}_p$ est inversible, mieux conditionnée
- Dépend des unités : réduire X
- Forme équivalente :

$$\widehat{oldsymbol{eta}}_{\mathsf{Ridge}} = \mathop{\mathsf{arg}}\min_{eta} \left\{ \|\mathbf{Y} - \mathbf{X}oldsymbol{eta}\|^2 \; ; \; \|oldsymbol{eta}\|^2 < c
ight\}$$

- Ohemin de régularisation
- **6** Optimisation de λ par V-fold validation croisée

Régression polynomiale : pénalisation ridge

Régression polynomiale : chemin de régularisation de la régression ridge

Régression LASSO ou sparse (1996)

- Ridge toujours calculable mais problème d'interprétation
- Objectif: associer pénalisation et sélection

$$\widehat{\boldsymbol{\beta}}_{\text{Lasso}} = \\ \operatorname{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \sum_{i=1}^n (Y_i - \sum_{j=0}^p X_i^{(j)} \beta_j)^2 + \lambda \sum_{j=1}^p |\beta_j| \right\}$$

•
$$\widehat{\boldsymbol{\beta}}_{\mathsf{Lasso}} = \operatorname{argmin}_{\boldsymbol{\beta}, \|\boldsymbol{\beta}\|_1 \le t} (\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2)$$

- λ est le paramètre de pénalisation
 - $\lambda = 0$: estimateur des moindres carrés.
 - λ tend vers l'infini, $\hat{\beta}_i = 0, j = 1, \dots, p$.

•
$$\beta_j = \operatorname{signe}(\widehat{\beta}_j)(|\widehat{\beta}_j| - \lambda)\mathbf{1}_{|\widehat{\beta}_i| \geq \lambda}$$

Utilisation de la régression Lasso

- Utilisable si p > n
- Procédures de programmation linéaire ou algorithme LARS
- Nombre de variables influentes q < n
- Pas ou peu corrélées avec les autres

Régression elastic net

$$\sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i^{(1)} - \beta_2 X_i^{(2)} - \dots - \beta_p X_i^{(p)})^2 + \lambda \left(\alpha \sum_{j=1}^{p} |\beta_j| + (1 - \alpha) \sum_{j=1}^{p} \beta_j^2 \right)$$

- Pour $\alpha = 1$, régression Lasso
- Pour $\alpha = 0$, régression ridge

Concentration d'ozone

- O3-o Concentration d'ozone effectivement observée ou variable à prédire,
- 03-pr prévision "mocage" qui sert de variable explicative ;
- Tempe Température prévue pour le lendemain,
- vmodule Force du vent prévue pour le lendemain,
 - lno Logarithme de la concentration observée en monoxyde d'azote,
 - lno2 Logarithme de la concentration observée en dioxyde d'azote,
 - rmh20 Racine de la concentration en vapeur d'eau,
 - Jour Variable à deux modalités pour distinguer les jours "ouvrables" (0) des jours "fériés-WE" (1).
 - Station Une variable qualitative indique la station concernée :
 Aix-en-Provence, Rambouillet, Munchhausen, Cadarache, et Plan de Cuques.

Ozone : Estimation et résidus de MOCAGE.

Modèle linéaire

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.99738
                       7.87028 -0.635 0.52559
       0.62039 0.05255 11.805 < 2e-16 ***
03 pr
vmodule -1.73179 0.35411 -4.891 1.17e-06 ***
1no2
        -48.17248 6.19632 -7.774 1.83e-14 ***
lno.
          50.95171 5.98541 8.513 < 2e-16 ***
s_rmh2o 135.88280
                      50.69567 2.680 0.00747 **
jour1 -0.34561 1.85389 -0.186 0.85215
stationAls 9.06874 3.37517 2.687 0.00733 **
stationCad 14.31603 3.07893 4.650 3.76e-06 ***
stationPla 21.54765 3.74155 5.759 1.12e-08 ***
stationRam 6.86130 3.05338 2.247 0.02484 *
       4.65120
                       0.23170 20.074 < 2e-16 ***
TEMPE
```

Residual standard error: 27.29 on 1028 degrees of freedom Multiple R-Squared: 0.5616, Adjusted R-squared: 0.5569 F-statistic: 119.7 on 11 and 1028 DF, p-value: < 2.2e-16

Modèle quadratique

	Df	Deviance	Resid. Df	Resid. Dev	F	Pr(>F)	
NULL			1039	1745605			
03_pr	1	611680	1038	1133925	969.9171	< 2.2e-16	***
station	4	39250	1034	1094674	15.5594	2.339e-12	***
vmodule	1	1151	1033	1093523	1.8252	0.1769957	
lno2	1	945	1032	1092578	1.4992	0.2210886	
s_rmh2o	1	24248	1031	1068330	38.4485	8.200e-10	***
TEMPE	1	248891	1030	819439	394.6568	< 2.2e-16	***
03_pr:station	4	16911	1026	802528	6.7038	2.520e-05	***
03_pr:vmodule	1	8554	1025	793974	13.5642	0.0002428	***
O3_pr:TEMPE	1	41129	1024	752845	65.2160	1.912e-15	***
station:vmodule	4	7693	1020	745152	3.0497	0.0163595	*
station:lno2	4	12780	1016	732372	5.0660	0.0004811	***
station:s_rmh2o	4	19865	1012	712508	7.8746	2.997e-06	***
station:TEMPE	4	27612	1008	684896	10.9458	1.086e-08	***
vmodule:1no2	1	1615	1007	683280	2.5616	0.1098033	
vmodule:s_rmh2o	1	2407	1006	680873	3.8163	0.0510351	
lno2:TEMPE	1	4717	1005	676156	7.4794	0.0063507	**
s_rmh2o:TEMPE	1	42982	1004	633175	68.1543	4.725e-16	***

Ozone : Résidus des modèles linéaire et quadratique

Ozone : optimisation de régularisation lasso par validation croisée.

Cookies : Régression ridge de données NIR.

Cookies : Régression Lasso de données NIR.