数据管理基础

第2章 关系数据库

(2.4 关系代数)

智能软件与工程学院

基本的关系操作

- □ 常用的关系操作
 - >集合操作:并、交、差、笛卡尔积
 - >专门的关系操作
 - •选择、投影
 - ·连接(包括 θ-连接, 自然连接, 外连接等)
 - •除
- □选择、投影、并、差、笛卡尔积是5种基本操作
- □关系操作的特点
 - >集合操作方式:操作的对象和结果都是集合

关系代数运算符

运身	华 符	含义
集合运算符	U	并
	1	差
		交
	×	笛卡尔积
专门的 关系 运算符	σ	选择
	π	投影
	×	连接
	•	除

关系代数

□关系代数是一种抽象的查询语言,它用对关系的运算来表达查询

- □关系代数
 - >运算对象是 关系
 - >运算结果亦为 关系

- □关系代数的运算符有两类:集合运算符 和 专门的关系运算符
 - >传统的集合运算是从关系的"水平"方向,即行的角度进行
 - >专门的关系运算不仅涉及行而且涉及列

使用的记号1

- 口设关系模式为 $R(A_1, A_2, ..., A_n)$
 - ▶它的一个关系设为R
 - $t \in R$ 表示t是R的一个元组
 - $> t[A_i]$ 则表示元组t中相应于属性 A_i 的一个分量(属性值)
 - 》若 $A = \{A_{i_1}, A_{i_2}, ..., A_{i_k}\}$,其中 $A_{i_1}, A_{i_2}, ..., A_{i_k}$ 是 $A_1, A_2, ..., A_n$ 中的一部分,则A称为'属性列'或'属性组'或'属性集'。
 - $> t[A] = (t[A_{i_1}], t[A_{i_2}], ..., t[A_{i_k}])$ 表示元组t在属性列A上诸分量的集合。
 - \overline{A} 则表示 $\{A_1, A_2, ..., A_n\}$ 中去掉 $\{A_{i_1}, A_{i_2}, ..., A_{i_k}\}$ 后剩余的属性组。

使用的记号 2

- □R为n目关系, S为m目关系。
 - $\succ t_r \in R$, $t_s \in S$, $t_r t_s$ 称为元组的连接。
 - $t_r t_s$ 是一个n+m列的元组,前n个分量来自于R中的一个元组,后m个分量来自于S中的一个元组。
 - \triangleright 为方便表示,以后用 (t_r,t_s) 来表示元组的连接。
- □给定一个关系R(X,Z), X和Z为属性组。
 - \triangleright 当 t[X] = x 时,x 在R中的象集(Images Set)为:

$$Z_x = \{ t[Z] \mid t \in R, t[X] = x \}$$

▶它表示R中属性组X上值为x的诸元组在Z上分量的集合

象集的例子

□ x_1 在R中的象集

$$Z_{x_1} = \{ Z_1, Z_2, Z_3 \}$$

□x2在R中的象集

$$Z_{x_2} = \{ Z_2, Z_3 \}$$

 $\Box x_3$ 在R中的象集

$$Z_{x_3} = \{ Z_1, Z_3 \}$$

R

x_1	Z_1
x_1	Z_2
x_1	Z_3
x_2	Z_2
x_2	Z_3
x_3	Z_1
x_3	Z_3

并1

□并(Union)

- ►R和S
 - 具有相同的目n (即两个关系都有n个属性)
 - •相应的属性取自同一个域

- ▶RUS 的运算结果
 - 仍为n目关系,由属于R或属于S的元组组成

$$R \cup S = \{ t \mid t \in R \lor t \in S \}$$

并 2

1	7	5	D
1	ľ	١	ĺ

Α	В	С
a_1	\boldsymbol{b}_1	c_1
a_1	$\boldsymbol{b_2}$	c_2
a_2	$\boldsymbol{b_2}$	c_1

S

Α	В	С
a_1	\boldsymbol{b}_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

$R \cup S$

Α	В	С
a_1	\boldsymbol{b}_1	c_1
a_1	$\boldsymbol{b_2}$	c_2
a_2	$\boldsymbol{b_2}$	c_1
a_1	\boldsymbol{b}_3	c_2

差1

□差 (Difference)

- ►R和S
 - •具有相同的目n
 - •相应的属性取自同一个域

- ►R S的运算结果
 - 仍为n目关系,由属于R而不属于S的所有元组组成

$$R - S = \{ t \mid t \in R \land t \notin S \}$$

1	D
1	\mathbf{L}

A	В	С
a_1	\boldsymbol{b}_1	c_1
a_1	\boldsymbol{b}_2	c_2
a_2	$\boldsymbol{b_2}$	c_1

S

Α	В	С
a_1	$\boldsymbol{b_2}$	c_2
a_1	\boldsymbol{b}_3	c_2
a_2	\boldsymbol{b}_2	c_1

\boldsymbol{R}	 C
11	

Α	В	С
a_1	\boldsymbol{b}_1	c_1

交1

□交 (Intersection)

- >R和S
 - •具有相同的目n
 - •相应的属性取自同一个域
- ▶R∩S的运算结果
 - 仍为n目关系,由既属于R又属于S的元组组成 $R \cap S = \{t \mid t \in R \land t \in S\}$
- \triangleright 交不是一个基本运算符,其功能可以用差运算来实现 $R \cap S = R (R S) = S (S R)$

交 2

1	D	
1	\mathbf{U}	

Α	В	С
a_1	\boldsymbol{b}_1	c_1
a_1	$\boldsymbol{b_2}$	c_2
a_2	$\boldsymbol{b_2}$	c_1

S

Α	В	C
a_1	\boldsymbol{b}_2	c_2
a_1	b_3	c_2
a_2	$\boldsymbol{b_2}$	c_1

$R \cap S$

Α	В	С
a_1	\boldsymbol{b}_2	c_2
a_2	$\boldsymbol{b_2}$	c_1

笛卡尔积1

- □严格地讲应该是广义的笛卡尔积(Extended Cartesian Product)
- $\square R: n$ 目关系, k_1 个元组
- $\square S: m$ 目关系, k_2 个元组
- □笛卡尔积R×S的结果是
 - \triangleright 列: (n+m) 列元组的集合
 - ●元组的前n列来自于关系R的一个元组
 - ●元组的后m列来自于关系S的一个元组
 - ightharpoonup行: $k_1 \times k_2$ 个元组
 - $R \times S = \{ \widehat{t_r} t_s \mid t_r \in R \land t_s \in S \}$

笛卡尔积 2

1	7	7	
		I	

Α	В	С
a_1	\boldsymbol{b}_1	c_1
a_1	$\boldsymbol{b_2}$	c_2
a_2	$\boldsymbol{b_2}$	c_1

S

Α	В	С
a_1	$\boldsymbol{b_2}$	c_2
a_1	\boldsymbol{b}_3	c_2
a_2	$\boldsymbol{b_2}$	c_1

$R \times S$

R.A	R.B	R.C	S.A	S.B	S.C
a_1	\boldsymbol{b}_1	c_1	a_1	\boldsymbol{b}_2	c_2
a_1	\boldsymbol{b}_1	c_1	a_1	b_3	c_2
a_1	\boldsymbol{b}_1	c_1	a_2	b_2	c_1
a_1	$\boldsymbol{b_2}$	c_2	a_1	$\boldsymbol{b_2}$	c_2
a_1	$\boldsymbol{b_2}$	c_2	a_1	b_3	c_2
a_1	$\boldsymbol{b_2}$	c_2	a_2	$\boldsymbol{b_2}$	c_1
a_2	$\boldsymbol{b_2}$	c_1	a_1	b_2	c_2
a_2	$\boldsymbol{b_2}$	c_1	a_1	b_3	c_2
a_2	$\boldsymbol{b_2}$	c_1	a_2	\boldsymbol{b}_2	c_1

基础关系1

□学生-课程数据库:

学生关系Student、课程关系Course、选修关系SC

学生关系 Student

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

基础关系 2

课程关系 Course

课程号 Cno	课程名 Cname	先行课 Cpno	学分 Ccredit
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2
7	PASCAL语言	6	4

基础关系3

选修关系 SC

学号	课程号	成绩
Sno	Cno	Grade
201215121	1	92
201215121	2	85
201215121	3	88
201215122	2	90
201215122	3	80

- □选择(Selection)又称为限制(Restriction)
- □选择运算符的含义
 - 产在关系R中选择满足给定条件的诸元组

$$\sigma_F(R) = \{ t \mid t \in R \land F(t) = '\mathring{A}' \}$$

- $\triangleright F$: 选择条件,是一个逻辑表达式,取值为"真"或"假"
 - •基本形式为: $X_1 \theta Y_1$
 - $-\theta$ 表示比较运算符,它可以是>,≥,<,≤,=,<>(也可以用 ≠ 来表示不等比较 <>)
 - ●在基本的选择条件上可以进一步进行逻辑运算(与,或,非)

□选择运算是从关系R中选取使逻辑表达式F为真的元组,是从行的 角度进行的运算

例:查询信息系(IS系)全体学生。

 $\sigma_{Sdept = 'IS'}(Student)$

结果:

Sno	Sname	Ssex	Sage	Sdept
201215125	张立	男	19	IS

例:查询年龄小于20岁的学生。

 $\sigma_{Sage < 20}$ (Student)

结果:

Sno	Sname	Ssex	Sage	Sdept
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

投影 1

□投影 (Projection)

>从R中选择出若干属性列组成新的关系(A是R中的属性列)

$$\pi_A(R) = \{ t[A] \mid t \in R \}$$

>投影操作主要是从列的角度进行运算

▶投影之后不仅过滤了原关系中的某些列,而且还可能消除某些元组 (避免重复行),最后得到计算的结果关系

投影 2

□例: 查询学生的姓名和所在系。

即求Student关系上学生姓名和所在系两个属性上的投影 $\pi_{Sname, Sdept}$ (Student)

结果:

Sname	Sdept
李勇	CS
刘晨	CS
王敏	MA
张立	IS

投影 3

例: 查询学生关系Student中都有哪些系。

 $\pi_{Sdept}(Student)$

结果:

Sdept
CS
IS
MA

- □连接 (Join) 也称为 θ 连接
- □连接运算的含义

从两个关系的笛卡尔积中选取属性间满足一定条件的元组

$$R \bowtie_{A \theta B} S = \{ \widehat{t_r t_s} \mid t_r \in R \land t_s \in S \land (t_r[A] \theta t_s[B]) \}$$

- ●A和B:分别为R和S上度数相等且可比的属性组
- θ: 比较运算符

ightharpoonup连接运算从R和S的广义笛卡尔积 $R \times S$ 中选取R关系在A属性组上的值与S关系在B属性组上的值满足比较关系 θ 的元组。

□等值连接 (equijoin)

- ▶ θ为"="的连接运算称为等值连接
- ▶从关系R与S的广义笛卡尔积中选取A、B属性值相等的那些元组,即等值连接为:

$$R \bowtie_{A=B} S = \{ \widehat{t_r} \widehat{t_s} \mid t_r \in R \land t_s \in S \land t_r[A] = t_s[B] \}$$

- □自然连接(Natural join)
 - > 一种特殊的等值连接
 - •两个关系中进行比较的分量必须是相同的属性组
 - 在结果中把重复的属性列去掉
 - ▶自然连接的含义
 - •R和S含有相同的属性组B

$$R \bowtie S = \{\widehat{t_r}\widehat{t_s}[U-B] \mid t_r \in R \land t_s \in S \land t_r[B] = t_s[B]\}$$

其中: U是两个关系所有属性的并集(包括相同的属性组B)

□一般的连接操作是从行的角度进行运算。

自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

□例: 关系R和关系S如下所示

R		
Α	В	С
a_1	\boldsymbol{b}_1	5
a_1	$\boldsymbol{b_2}$	6
a_2	\boldsymbol{b}_3	8
a_2	b_4	12

S		
В	E	
\boldsymbol{b}_1	3	
$\boldsymbol{b_2}$	7	
b_3	10	
b ₃	2	
b_5	2	

连接 6

一般连接 R \bowtie S 的结果如下: C < E

Α	R.B	С	S.B	E
a_1	\boldsymbol{b}_1	5	\boldsymbol{b}_2	7
a_1	\boldsymbol{b}_1	5	\boldsymbol{b}_3	10
a_1	$\boldsymbol{b_2}$	6	\boldsymbol{b}_2	7
a_1	\boldsymbol{b}_2	6	\boldsymbol{b}_3	10
a_2	b_3	8	\boldsymbol{b}_3	10

连接 7

等值连接 $R_{R.B=S.B}$ S 的结果如下:

A	R.B	С	S.B	E
a_1	b ₁	5	b ₁	3
a_1	\boldsymbol{b}_2	6	$\boldsymbol{b_2}$	7
a_2	\boldsymbol{b}_3	8	\boldsymbol{b}_3	10
a_2	b_3	8	b_3	2

连接 8

自然连接 $R \bowtie S$ 的结果如下:

Α	В	C	E
a_1	\boldsymbol{b}_1	5	3
\boldsymbol{a}_1	\boldsymbol{b}_2	6	7
a_2	\boldsymbol{b}_3	8	10
a_2	\boldsymbol{b}_3	8	2

外连接1

□悬浮元组 (Dangling tuple)

▶两个关系R和S在做自然连接时,关系R中某些元组有可能在S中不存在公共属性上值相等的元组,从而造成R中这些元组在操作时被舍弃了。这些被舍弃的元组称为悬浮元组。

□外连接(Outer Join)

- ▶如果把悬浮元组也保存在结果关系中,而在其他属性上填空值 (Null),就叫做外连接
- ▶左外连接(LEFT OUTER JOIN 或 LEFT JOIN)
 - ●只保留左边关系R中的悬浮元组
- ▶右外连接(RIGHT OUTER JOIN 或 RIGHT JOIN)
 - ●只保留右边关系S中的悬浮元组

外连接 2

下图是关系R和关系S的外连接的结果: R outer join S

Α	В	C	E
a_1	\boldsymbol{b}_1	5	3
a_1	$\boldsymbol{b_2}$	6	7
a_2	\boldsymbol{b}_3	8	10
a_2	\boldsymbol{b}_3	8	2
a_2	b_4	12	NULL
NULL	b_5	NULL	2

外连接 3

图(b)是关系R和关系S的左外连接,图(c)是右外连接

Α	В	С	Е
a_1	b ₁	5	3
a_1	$\boldsymbol{b_2}$	6	7
a_2	\boldsymbol{b}_3	8	10
a_2	\boldsymbol{b}_3	8	2
a_2	b_4	12	NULL

图(b) R left join S

Α	В	С	E
a_1	\boldsymbol{b}_1	5	3
\boldsymbol{a}_1	\boldsymbol{b}_2	6	7
a_2	\boldsymbol{b}_3	8	10
a_2	\boldsymbol{b}_3	8	2
NULL	b_5	NULL	2

图(c) R right join S

口除运算 (Division)

- ▶给定关系 R(X, Y) 和 S(Y, Z), 其中 X, Y, Z 为属性组。
- ▶R中的Y与S中的Y可以有不同的属性名,但必须出自相同的域集。
- \triangleright R与S的除运算得到一个新的关系P(X), P是R中满足下列条件的元组在X 属性列上的投影:

元组在X上分量值x的象集 Y_x 包含S在Y上投影的集合,记作:

$$R \div S = \{ t_{r}[X] \mid t_{r} \in R \land \pi_{Y}(S) \subseteq Y_{x} \}$$

其中: Y_x 是x在R中的象集, $x = t_r[X]$

□除操作是同时从行和列角度进行运算

例:设关系R、S分别为下图的(a)和(b), $R \div S$ 的结果为图(c)

R

Α	В	C
a_1	\boldsymbol{b}_1	c_2
a_2	b_3	<i>c</i> ₇
a_3	b_4	c_6
a_1	$\boldsymbol{b_2}$	c_3
a_4	\boldsymbol{b}_6	c_6
a_2	$\boldsymbol{b_2}$	c_3
a_1	$\boldsymbol{b_2}$	c_1

	•
•	

В	C	D
\boldsymbol{b}_1	c_2	d_1
$\boldsymbol{b_2}$	c_1	d_1
$\boldsymbol{b_2}$	c_3	d_2

A

 a_1

- 口在关系R中,A可以取四个值 $\{a_1, a_2, a_3, a_4\}$
 - a_1 的象集为 $\{(b_1, c_2), (b_2, c_3), (b_2, c_1)\}$
 - a_2 的象集为 $\{(b_3, c_7), (b_2, c_3)\}$
 - a_3 的象集为 $\{(b_4, c_6)\}$
 - a_4 的象集为 $\{(b_6, c_6)\}$
- □S在(B, C)上的投影为: { $(b_1, c_2), (b_2, c_1), (b_2, c_3)$ }

□只有 a_1 的象集包含了S在(B, C)属性组上的投影 所以 $R \div S = \{a_1\}$

R		
Α	В	С
a_1	b_1	c_2
a_2	b_3	c_7
a_3	b_4	c_6
a_1	$\boldsymbol{b_2}$	c_3
a_4	b_6	c_6
a_2	$\boldsymbol{b_2}$	c_3
a_1	$\boldsymbol{b_2}$	c_1

3		
В	С	D
$\boldsymbol{b_1}$	c_2	d_1
b_2	c_1	d_1
b_2	c_3	d_2

□以学生-课程数据库为例:

选修关系 SC

学号	课程号	成绩
Sno	Cno	Grade
201215121	1	92
201215121	2	85
201215121	3	88
201215122	2	90
201215122	3	80

[例2.10] 查询至少选修1号课程和3号课程的学生号码

▶ 首先建立一个临时关系K:

Cno
1
3

 \triangleright 然后求: $\pi_{Sno,Cno}(SC)$ ÷ K

(计算过程见下一页)

□先执行查询 π_{Sno. Cno}(SC), 结果如右表所示. 其中:

- **▶201215121** 象集为 {1, 2, 3}
- ▶201215122 象集为 {2, 3}

$$\succ K = \{ 1, 3 \}$$

□于是:

 $\pi_{Sno, Cno}(SC) \div K = \{201215121\}$

Sno	Cno
201215121	1
201215121	2
201215121	3
201215122	2
201215122	3

[例2.11] 查询选修了2号课程的学生的学号。

$$\pi_{Sno}(\sigma_{Cno='2'}(SC)) = \{201215121, 201215122\}$$

选修关系 SC

学号	课程号	成绩
Sno	Cno	Grade
201215121	1	92
201215121	2	85
201215121	3	88
201215122	2	90
201215122	3	80

[例2.12] 查询至少选修了一门其直接先行课为5号课程的学生姓名

 $\pi_{Sname}(\sigma_{Cpno='5'}(Course \bowtie SC \bowtie Student))$

或

 $\pi_{Sname}(\pi_{Sno}(\sigma_{Cpno} = '5'(Course) \bowtie SC) \bowtie \pi_{Sno,Sname}(Student))$

学生关系 Student

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

课程关系 Course

课程号	课程名	先行课	学分
Cno	Cname	Cpno	Ccredit
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2
7	PASCAL语言	6	4

选修关系 SC

学号	课程号	成绩
Sno	Cno	Grade
201215121	1	92
201215121	2	85
201215121	3	88
201215122	2	90
201215122	3	80

[例2.13] 查询选修了全部课程的学生号码和姓名。

 $(\pi_{Sno,Cno}(SC) \div \pi_{Cno}(Course)) \bowtie \pi_{Sno,Sname}(Student)$

学生关系 Student

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

课程关系 Course

课程号	课程名	先行课	学分
Cno	Cname	Cpno	Ccredit
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2
7	PASCAL语言	6	4

选修关系 SC

学号	课程号	成绩
Sno	Cno	Grade
201215121	1	92
201215121	2	85
201215121	3	88
201215122	2	90
201215122	3	80

复习思考题 1

- 1. 在关系代数中:
 - ①关系是如何表示的?关系上的数据操纵是如何表示的?
 - ②在关系模型上进行数据操纵, 其结果是什么?
- 2. 关于两个关系之间的并、交、差运算
 - ① 什么样的两个关系,可以在它们之间执行并、交或差运算?
 - ②如果在两个关系之间执行并、交或差运算,那么结果关系的关系模式和结果元组集合分别是什么?
 - ③ 为什么说'交'运算不是关系代数中的基本运算?
 - 4 在什么情况下需要使用'差'运算?在使用'差'运算时需要注意什么?
 - ⑤ 请比较'差'运算和'≠'(不等)比较运算之间的区别。
- 3. 关于两个关系之间的'笛卡尔积'(product)运算
 - ①什么样的两个关系,可以在它们之间执行笛卡尔积运算?
 - ②在两个关系之间执行笛卡尔积运算,结果关系的关系模式和结果元组集合分别是什么?
 - ③ 笛卡尔积运算在关系数据库访问中有什么实际作用?

复习思考题 2

4. 设有一个公司产品零售数据库, 其关系模式如下(带下划线的属性是码):

关系名	属性集	关系模式
顾客	顾客编号, 姓名, 居住城市, 折扣	customers (cid, cname, city, discnt)
供应商	供应商编号, 名称, 所在城市, 佣金比例	agents (aid, aname, city, percent)
商品	商品编号, 名称, 库存城市, 库存数量, 单价	products (pid, pname, city, stqty, price)
订单	<u>订单编号</u> , 订购日期, 顾客编号, 供应商编号, 商品编号, 订购数量, 销售金额	orders(ordno, orddate, cid, aid, pid, qty, dols)

在下述六组关系代数查询表达式中,请分析他们各自查询的目标对象、查询语义和结果集的相互关系。

第1组	$Q_1: \sigma_{pid='p01'}(orders)$	$Q_2: \sigma_{pid\neq 'p01'}(orders)$
第2组	Q ₃ : $\pi_{cid}(\sigma_{pid='p01'}(orders))$	Q ₄ : $\pi_{cid}(\sigma_{pid\neq 'p01'}(orders))$
第3组	Q ₅ : $\pi_{cid}(orders) - \pi_{cid}(\sigma_{pid='p01'}(orders))$	Q ₆ : $\pi_{cid}(orders) - \pi_{cid}(\sigma_{pid\neq 'p01'}(orders))$
第4组	Q ₇ : π_{cid} (customers) - π_{cid} ($\sigma_{pid='p01'}$ (orders))	Q ₈ : π_{cid} (customers) – π_{cid} ($\sigma_{pid\neq 'p01'}$ (orders))
第5组	Q ₉ : orders – $\sigma_{pid='p01'}$ (orders)	$Q_{10}: orders - \sigma_{pid \neq 'p01'}(orders)$
第6组	$Q_{11}: \pi_{cid}(orders - \sigma_{pid='p01'}(orders))$	$Q_{12}: \pi_{cid}(orders - \sigma_{pid\neq 'p01'}(orders))$