EECE 2160 – Embedded Design, Enabling Robotics

Homework #2

Assigned: Monday, Sept. 23, 2024. Due: Monday, Sept. 30 at 11:59pm on Canvas 5 Problems, 100 points Total

Problem 1. (20 points)

Redraw this circuit using only 2-input NAND gates. Draw neatly!! See Lecture 3 slides 41 to 45.

Problem 2. (20 points total, 5 points each)

Consider the following Truth Table:

	Output		
A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- a. (5 points) Write the Boolean equation for this truth table in Sum of Products form.
- b. (10 points) Minimize the Boolean equation using the axiom and theorems of Boolean Algebra. State the theorems and axioms used.
- c. (5 points) Draw the digital circuit from the simplified equation.

Problem 3. (20 points total)

Write the Boolean equations (note plural) for the circuit shown below. No need to simplify. Hint: Think Sum of Products.

Problem 4. (30 points)

Consider this truth table:

Inputs			Output
X	Y	Z	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

- a. (5 points) Write the Boolean equation from the truth table using the sum of products method.
- b. (10 points) Simplify the equation using the Theorems and Axioms of Boolean algebra. State the theorems and axioms used.
- c. (10 points) Write the Boolean equation from the truth table using a Karnaugh map.
- d. (5 points) Do the equations from parts b and c agree? If not, then can you transform one of the equations into the other?

Problem 5. (10 points total, 5 points each)

a. Write the Boolean equation for the circuit shown below. No need to simplify.

b. Rename the inputs and outputs as follows:

A = D0

C = D1

B = Select

Y = Out

What is the name of this circuit? It is a widely used combinational circuit (see Lecture 6).