

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

иональный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ "Информатика и системы управления"

КАФЕДРА "Программное обеспечение ЭВМ и информационные технологии"

ОТЧЁТ *К ЛАБОРАТОРНОЙ РАБОТЕ №1 НА ТЕМУ:*<u>"Разработка ПО"</u>

Студент	<u>ИУ7-68Б(В)</u> (Группа)	(Подпись, дата)	Д.П. Косаревский (И.О.Фамилия)
Преподава	тель	(Подпись, дата)	В.И. Солодовников (И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

	\mathbf{y}°	ТВЕРЖДАЮ
	Заве	дующий кафедрой ИУ7
		(Индекс) И. В. Вугламар
		<u>И.В.Рудаков</u> (И.О.Фамилия)
	« _	»2021 г.
ЗАД на выполнение л	А Н И Е абораторной раб	оты
по дисциплине "Основы программной инжег	нерии"	
Студент группы ИУ7-68Б(В)		
Косаревский Дмитр	рий Петрович	
· · · · · · · · · · · · · · · · · · ·	я, имя, отчество)	
Тема лабораторной работы "Разработка ПО"	• -	
Задание:		
Написать программу для приближенного вы	числения определенног	о интеграла
методами трапеций с заданным шагом, трапе	еций с заданной точнос	гью, а также точки
пересечения выбранной пользователем функ	щии с осью абсцисс на	ваданном интервале
методом дихотомии. Выбранную для провер	ки функцию передаваті	ь как отдельный параметр
подпрограмм вычисления значений функции	и, интеграла, корня.	
Для проверки использовать следующие фун	кции:	
$1) \sin(x);$		
$\frac{1}{2}\cos^2(x) \cdot \ln^2(x+5)$.		
Дата выдачи задания « » 2021	Γ.	
Преподаватель		В.И. Солодовников
	(Подпись, дата)	(И.О.Фамилия)
Студент	, , , , , , , , , , , , , , , , , , , ,	Д.П. Косаревский
v···	(Подпись, дата)	(И.О.Фамилия)

Код основных функций программы

Основные функции программы:

Функция для приближенного вычисления определенного интеграла методами трапеций с заданным шагом:

Функция для приближенного вычисления определенного интеграла методами трапеций с заданной точностью:

```
def precision_trapezoidal_rule(func, low_lim: float, up_lim: float, max_err: float = .1, intervals: int = 1) -> float:
    """

    Правило трапеций с заданной точностью
    :param func: математическая функция
    :param low_lim: нижний предел интегрирования
    :param up_lim: верхний предел интегрирования
    :param max_err: заданная точность
    :param intervals: число отрезков, на которые разбивается
    :return: результат вычислений
    """

dx = (up_lim - low_lim) / intervals
    total = 0

# выполняем интеграцию

x = low_lim

for interval in range(intervals):
    # добавляем область трапеции для этого среза
    total += slice_area(func, x, x + dx, max_err)

# переходим к следующему срезу
    x += dx

return round(total, 5)
```

Вспомогательная функция для приближенного вычисления определенного интеграла методами трапеций с заданной точностью, вызываемая внутри функции precision_trapezoidal_rule:

```
def slice_area(function, x1, x2, max_error):
   # вычисляем функцию в конечных и средних точках
   y1 = function(x1)
   y2 = function(x2)
   ym = function(xm)
   # рассчитываем площади срезов и самого большого участка
   large = (x2 - x1) * (y1 + y2) / 2
   first = (xm - x1) * (y1 + ym) / 2
   second = (x2 - xm) * (y2 + ym) / 2
   both = first + second
   # рассчитываем ошибку
   error = (both - large) / large
   if abs(error) < max_error:</pre>
       return both
   # если ошибка больше допустимого значения - делим ее на две части (два среза)
   return slice_area(function, x1, xm, max_error) + slice_area(function, xm, x2, max_error)
```

Функция для вычисления точки пересечения выбранной пользователем функции с осью абсцисс на заданном интервале методом дихотомии:

```
def dichotomy(f, a, b, tol):
    niter = 0
    inc = []
    y = (a + b) / 2

if f(a) * f(b) < 0:
    while abs(b - a) > tol:
        x = (a + b) / 2
    inc.append(abs(x - y))
        y = x
        niter += 1
    if f(a) * f(x) <= 0:
        b = x
    else:
        a = x
    zero = (a + b) / 2
    # res = f(zero)
    # err = abs(a - b)
    st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)
    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)
    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)
    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)
    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)
    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)

    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)

    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)

    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)

    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)

    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)

    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)

    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)

    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)

    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)

    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)

    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)

    # st.write(f**Oynkuµn ff.__doc__} nepecekaet ocb a6cuµcc в точке [{round(zero, 2)}, 0]**)
```

Математические функции, используемые для проверки:

```
def equation_1(x):
    """sin(x)"""
    return np.sin(x)

def equation_2(x):
    """cos^2(x) * ln^2(x+5)"""
    return np.cos(x) ** 2 * np.log(x + 5) ** 2
```

Функция для отрисовки графиков:

```
def plot(func, a, b, zero):
    """ отрисовка графика """
    x = np.arange(a, b, 0.001)
    y = [func(i) for i in x]
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.plot(x, y)
    if zero:
        ax.scatter(zero, 0)
    ax.axhline(0, color='black')
    ax.set_title(f"Функция {func.__doc__}")
    ax.set_xlabel("$x$")
    ax.set_ylabel("$f(x)$")
    ax.grid(True)

st.write(fig)
```

Результаты тестирования

В результате запуска и тестирования программы были получены следующие результаты:

Выберите необходимое вычисление											
1. Приближенное вычисление определенного интеграла методом трапеций с											
заданным шагом											
2. Приближенное вычисление определенного интеграла методом трапеций с заданной точностью											
З. Вычисление точки пересечения функции с осью абсцисс на заданном интервале											
методом дихотомии											
Приближенное вычисление определенного интеграла методом трапеций с заданным											
шагом											
Введите нижний предел	1:	ı	Введите верхний пре	дел:		Введите шаг:					
0.00	- +		1.57	_	+	0.10	_	+			
0.00			1.07			0.10					
Результат для sin(x)) = 7.85										
Результат для cos^:	2(x) * ln^2	2(x+5	5) = 20.3338	Результат для cos^2(x) * ln^2(x+5) = 20.3338							
, ,,	-(-)	`	-,								
2. Приближенн	ное вычис			о интег	рала м	иетодом трапеций	ic				
2. Приближенн заданной точн	ное вычис	слен	ие определенног								
2. Приближенн заданной точн	ное вычис остью точки пе	слен	ие определенног			иетодом трапеций с на заданном ин					
2. Приближенн заданной точн 3. Вычисление	ное вычис остью точки пе	слен	ие определенног								
2. Приближенн заданной точн 3. Вычисление	ное вычис остью точки пе	слен	ие определенног								
2. Приближення заданной точно 3. Вычисление методом дихот	ное вычис остью эточки пе гомии	ресе	ие определенног	с осью а	абсцис	с на заданном ин	гервале				
2. Приближенн заданной точн 3. Вычисление	ное вычис остью эточки пе гомии	ресе	ие определенног	с осью а	абсцис	с на заданном ин	гервале				
2. Приближенн заданной точн 3. Вычисление методом дихот Приближенное выч	ное вычис остью эточки пе гомии	ресе	ие определенног ечения функции с еделенного инте	с осью а	абсцис	с на заданном ин [.] м трапеций с зада	гервале				
2. Приближенн заданной точн 3. Вычисление методом дихот Приближенное выч точностью Введите нижний преде	ное вычис остью эточки пе гомии	ресе	ие определенного чения функции общения функции общения функции общения верхний пре	с осью а	абсцис	с на заданном ин м трапеций с зада Введите точность:	гервале				
2. Приближенн заданной точн 3. Вычисление методом дихот Приближенное выч	ное вычис остью эточки пе гомии	ресе	ие определенног ечения функции с еделенного инте	с осью а	абсцис	с на заданном ин [.] м трапеций с зада	гервале	+			
2. Приближенн заданной точн 3. Вычисление методом дихот Приближенное выч точностью Введите нижний преде	ное вычис гостью гомии числение	ресе опр	ие определенного чения функции общения функции общения функции общения верхний пре	с осью а	абсцис	с на заданном ин м трапеций с зада Введите точность:	гервале	+			
2. Приближенн заданной точн 3. Вычисление методом дихот Приближенное выч точностью Введите нижний преде.	ное вычис постью точки пе гомии числение л: - +	опро •	ие определенного чения функции об еделенного инте верхний пре	с осью а	абсцис	с на заданном ин м трапеций с зада Введите точность:	гервале	+			

Результат

В результате работы была достигнута поставленная цель:

- 1. Создана программа в соответствии с описанным заданием
- 2. Реализованы 3 варианта вычислений
- 3. Реализована возможность параметризации вычислений пользователем
- 4. Реализовано отображение графиков и их изменений в зависимости от заданных параметров

Код программы находится в открытом репозитории по ссылке:

https://github.com/dKosarevsky/SEF_lab_001/blob/main/integral_trapezoidal.py

Работающую программу можно увидеть и протестировать по ссылке: https://share.streamlit.io/dkosarevsky/sef_lab_001/main/integral_trapezoidal.py

Программа написана на языке программирования Python 3.8.8 с использованием следующих библиотек:

- streamlit
- numpy
- matplotlib