NETWORK LAB

LAB ASSIGNMENT for Week #3

IP

I. Simple IP Trace

Note: Answer the following questions using the *ip-ethereal-trace-1* packet trace to answer the questions below

- 1. Select the first ICMP Echo Request message sent by your computer, and expand the Internet Protocol part of the packet in the packet details window. What is the IP address of your computer?
- 2. Within the IP packet header, what is the value in the upper layer protocol field?
- 3. How many bytes are in the IP header? How many bytes are in the payload *of the IP datagram*? Explain how you determined the number of payload bytes.
- 4. Has this IP datagram been fragmented? Explain how you determined whether or not the datagram has been fragmented.

Next, sort the traced packets according to IP source address by clicking on the *Source* column header; a small downward pointing arrow should appear next to the word *Source*. If the arrow points up, click on the *Source* column header again. Select the first ICMP Echo Request message sent by your computer, and expand the Internet Protocol portion in the "details of selected packet header" window. In the "listing of captured packets" window, you should see all of the subsequent ICMP messages (perhaps with additional interspersed packets sent by other protocols running on your computer) below this first ICMP. Use the down arrow to move through the ICMP messages sent by your computer.

- 5. Which fields in the IP datagram *always* change from one datagram to the next within this series of ICMP messages sent by your computer?
- 6. Which fields stay constant? Which of the fields *must* stay constant? Which fields must change? Why?
- 7. Describe the pattern you see in the values in the Identification field of the IP datagram

Next (with the packets still sorted by source address) find the series of ICMP TTL-exceeded replies sent to your computer by the nearest (first hop) router.

8. What is the value in the Identification field and the TTL field?

II. Fragmentation

Sort the packet listing according to time again by clicking on the *Time* column.

- 9. Find the first ICMP Echo Request message that was sent by your computer. Has that message been fragmented across more than one IP datagram?
- 10. Print out the first fragment of the fragmented IP datagram. What information in the IP header indicates that the datagram been fragmented? What information in the IP header indicates whether this is the first fragment versus a latter fragment? How long is this IP datagram?
- 11. Print out the second fragment of the fragmented IP datagram. What information in the IP header indicates that this is not the first datagram fragment? Are the more fragments? How can you tell?
- 12. What fields change in the IP header between the first and second fragment?

ARP

I. Capturing and analyzing Ethernet frames

Note: Answer the following questions using the *ethernet-ethereal-trace-1* packet trace to answer the questions below

- 1. What is the 48-bit Ethernet address of your computer?
- 2. What is the 48-bit destination address in the Ethernet frame? Is this the Ethernet address of gaia.cs.umass.edu? (Hint: the answer is *no*). What device has this as its Ethernet address? [Note: this is an important question, and one that students sometimes get wrong. Re-read pages 468-469 in the text and make sure you understand the answer here.]
- 3. Give the hexadecimal value for the two-byte Frame type field. What upper layer protocol does this correspond to?
- 4. How many bytes from the very start of the Ethernet frame does the ASCII "G" in "GET" appear in the Ethernet frame?

Next, answer the following questions, based on the contents of the Ethernet frame containing the first byte of the HTTP response message.

- 5. What is the value of the Ethernet source address? Is this the address of your computer, or of gaia.cs.umass.edu (Hint: the answer is *no*). What device has this as its Ethernet address?
- 6. What is the destination address in the Ethernet frame? Is this the Ethernet address of your computer?
- 7. Give the hexadecimal value for the two-byte Frame type field. What upper layer protocol does this correspond to?
- 8. How many bytes from the very start of the Ethernet frame does the ASCII "O" in "OK" (i.e., the HTTP response code) appear in the Ethernet frame?

II. The Address Resolution Protocol

The Windows *arp* command with no arguments will display the contents of the ARP cache on your computer. Run the *arp* command.

- 9. Write down the contents of your computer's ARP cache. What is the meaning of each column value?
- 10. What are the hexadecimal values for the source and destination addresses in the Ethernet frame containing the ARP request message?
- 11. Give the hexadecimal value for the two-byte Ethernet Frame type field. What upper layer protocol does this correspond to?
- 12. Download the ARP specification from

<u>ftp://ftp.rfc-editor.org/in-notes/std/std37.txt</u>. A readable, detailed discussion of ARP is also at <u>http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html</u>.

- a. How many bytes from the very beginning of the Ethernet frame does the ARP *opcode* field begin?
- b. What is the value of the *opcode* field within the ARP-payload part of the Ethernet frame in which an ARP request is made?
- c. Does the ARP message contain the IP address of the sender?
- d. Where in the ARP request does the "question" appear the Ethernet address of the machine whose corresponding IP address is being queried?
- 13. Now find the ARP reply that was sent in response to the ARP request.
 - a. How many bytes from the very beginning of the Ethernet frame does the ARP opcode field begin?
 - b. What is the value of the *opcode* field within the ARP-payload part of the Ethernet frame in which an ARP response is made?
 - c. Where in the ARP message does the "answer" to the earlier ARP request appear the IP address of the machine having the Ethernet address whose corresponding IP address is being queried?

- 14. What are the hexadecimal values for the source and destination addresses in the Ethernet frame containing the ARP reply message?
- 15. The first and second ARP packets in this trace correspond to an ARP request sent by the computer running Wireshark, and the ARP reply sent to the computer running Wireshark by the computer with the ARP-requested Ethernet address. But there is yet another computer on this network, as indicated by packet 6 another ARP request. Why is there no ARP reply (sent in response to the ARP request in packet 6) in the packet trace?