ŘADA B - PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU ROČNÍK XL/1991 ● ● ČÍSLO 6

V TOMTO SEŠITĚ
SONY se představuje 201
ČÍSLICOVÉ ZPRACOVÁNÍ
TELEVIZNÍHO SIGNÁLU
V TELEVIZORECH
Číslicové zpracování zvuku uvnitř
televizoru 203
Analogově číslicový převodník 204
Číslicový zvukový procesor 204
Soustava NICAM 205
Kódování NIC 206
Diferenční fázová modulace 206
Číslicové zpracování
obrazového signálu 208
Soustava DIGIT 2000 ITT 208
Číslicový procesor pro soustavu
SECAM 209
Obrazový procesor
pro PAL/NTSC 210
Vychylovací procesor 211
Procesor teletextu
Procesor DTI
Přídavné procesory 215
Dekodér pro soustavu D2-MAC 215 Číslicový dekodér signálu
D2-MAC
pamětmi v TVP s IDTV 218
Soustava ITT 219
Soustava Philips
Osmibitové převodníky A/D,
TDA8703
Procesor SDA9099 226
Procesor SDA9003 227
Zpracování teletextu
v televizoru
Zapojení dekodéru druhé
generace 229
Teletextový mikrokontrolér 231
Dekodér teletextu ECCT 232
Generátor znaků 237
SONY se představuje
(dokončení ze str. 203) 239
Inzerce
1

AMATÉRSKÉ RADIO ŘADA B

Vydavatel: Vydavatelství MAGNET-PRESS, s. p., 113 66 Praha 1, Vladislavova 26, tel. 26 06 51. Redakce: 113 66 Praha 1, Jungmannova 24, tel. 26 06 51. Šéfredaktor Luboš Kalousek, OK1FAC, linka 354, sekretariát linka 355.

Tiskne: Naše vojsko, tiskárna, závod 08, 160 05 Praha

6, Vlastina ul. č. 889/23.

Rozšiřuje Poštovní novinová služba a vydavatelství MAGNET-PRESS s. p. Objednávky přijmá každá administrace PNS, pošta, doručovatel, předplatitelská střediska a administrace vydavatelství MAGNET-PRESS s. p., 113 66 Praha 1, Vladislavova 26, tel. 26 06 51–9. Půlroční předplatné 29,40 Kčs. Objednávky do zahraničí vyřizuje ARTIA, a. s., Ve smečkách 30, 111 27 Praha 1.

Inzerci přijímá osobně i poštou vydavatelství MAGNET-PRESS, inzertní oddělení, Vladislavova 26, 113 66 Praha 1, tel. 26 06 51–9, linka 294.

Za původnost a správnost příspěvku odpovídá autor. Nevyžádané rukopisy nevracíme.

Návštěvy v redakci ve středu od 9 do 16 hodin.

ISSN 0139-7087, číslo indexu 46 044.

Toto číslo má vyjít podle plánu 22. 11. 1991. © Vydavatelství MAGNET-PRESS 1991

SONY SE PŘEDSTAVUJE

Naše krátké seznámení s další elektronickou světovou firmou je vlastně opět příběhem "chlapce, který se proslavil", přesněji řečeno příběhem dvou mužů, kteří měli živý sen před očima, který dokázali realizovat. Historie firmy Sony začíná po druhé světové válce v Japonsku, rozvráceném válkou, v zemi s nedostatkem jídla, materiálů, s rozpaky, jak dál . . .

Historie firmy je spojena se jmény dvou vzájemně velmi odlišných lidí, Masaru Ibuka a Akio Morita

Masaru Ibuka byl technický talent již od mládí. Jako hoch sestrojil doma elektrický zvonek a zavedl "místní" telegrafní spojení se sousedem - byl radioamatérem. Není proto divu, že vystudoval na univerzitě Waseda elektrotechnický obor. Po druhé světové válce přišel z rodné prefektury Nagano spolu se sedmi dalšími inženýry do Tokia, aby založili něco jako elektronickou laboratoř – nebo se o to alespoň pokusili. Ibuka měl již za sebou určité zkušenosti, neboť byl za války vedoucím inženýrem firmy Japan Precision Instrument, v podstatě své vlastní firmy na výrobu měřicích přístrojů, která dodávala armádě elektronkové voltmetry a další měřicí přístroje. V Japonsku bylo v té době běžné, že "elektrické" a "mechanické" továrny existovaly odděleně, Iburovou první zásluhou bylo, že spojil oba druhy výroby pod "jednu střechu". Dalším podstatným krokem, který předznamenal celý jeho život, bylo seznámení s Akio Moritou, 23letým námořním poručíkem, vzděláním fyzikem; seznámili se nad jednou z armádních objednávek - teplotním zaměřovacím systémem pro bombardování.

V Tokiu bylo první Ibukovou starostí sehnat práci pro jeho skupinu inženýrů – že to nebylo především z počátku jednoduché, vyplývá z výrobního programu začínající firmy: polévka z bobové pasty, miniaturní golf, posuvné pravítko. Již v té době se však projevil Ibukův cit pro trh, věděl např., že během války bylo v Japonsku (stejně jako u nás) odstraněno z rozhlasových přijímačů vše, co by mohlo umožnit poslech na krátkých vlnách. Protože navíc byl po válce velký hlad po informacích, začal Ibuka a jeho skupina opravovat rozhlasové přijímače

a vybavovat je svým vlastním krátkovlnným konvertorem. V té době doplnila firma počet svých výrobků i o gramofony. Tehdy, na podzim 1945, byl v Japonsku velký nedostatek potravin, všichni lbukovi zaměstnanci pracovali tehdy převážně jen za stravu. Práce však přibývalo – lbuka díky svým "válečným" konexím zajistil totiž i zakázky z ministerstva spojů a sedmé podlaží 9patrové budovy, kde sídlili, začalo být pro firmu těsné.

Ukazovala se také nutnost firmu nějakým způsobem profilovat, zúžit oblast podnikání. Ibuka se nechtěl stát subdodavatelem čehokoli a kohokoli, chtěl vyrábět to, co nevyrábí nikdo jiný a co by přitom byla věc denní potřeby. A samozřejmě by mělo jít o výrobek z oblasti elektrotechniky nebo elektroniky. A že se všechno napoprvé nemusí zdařit, dokazuje i první zcela původní výrobek firmy elektrický hrnec na vaření rýže, jichž se vyrobilo sto a neprodal ani jeden. Jak dnes s úsměvem říká sám Ibuka "nápad to byl velice dobrý, ale . . . " Výsledek totiž závisel na mnoha různých činitelích, především na druhu a jakosti rýže, na množství vody a tím i na její váze apod.

Zde na chvíli opustíme Ibuku a podíváme se na osudy druhého zakladatele firmy Sony, Akio Mority. Morita se narodil v roce 1921 v Nagoji jako syn výrobce a dodavatele saké, tradice firmy sahají až do 17. století. Od mládí ho otec seznamoval s filosofií obchodu a v praxi mu ukazoval všechny stránky obchodu, neboť se očekávalo, že se stane v 15. generaci šéfem rodinné firmy. Během doby však Moritu stále více zajímaly technické obory, takže nakonec při studiích ještě před vstupem na univerzitu experimentoval např. se snímáním zvuku z kovových strun klavíru a jeho magnetickým záznamem.

Jako vysokou školu si zvolil Morita Státní univerzitu v Ósace, mezi jeho profesory byl např. světově známý fyzik Tsunesaburo Asada – a Morita byl jedním z jeho nejlepších žáků. Po skončení univerzity v roce 1944 se Morita stal námořním "technickým" kadetem, posléze přiděleným ke středisku technického výzkumu pro armádu. Tam se také poprvé setkal a seznámil s Ibukou. Protože je "služební" úkoly svedly ke společné prá-

Vážení čtenáři.

při shromažďování objednávek na naši zimní přílohu Electus 91 jsme zaregistrovali množství stížností na to, že v některých místech není vůbec možné koupit ani AR, ani přílohy AR, prostě proto, že se vůbec nedostanou do prodeje.

Proto upozorňujeme na to, že AR obou řad si lze objednat nejen u PNS, ale i u "Administrace MAGNET-PRESS, Vladislavova 26, 113 66 Praha 1" a to i do zahraničí. Veškeré informace o předplatném dostanete na stejné adrese.

Dalším poznatkem z korespondence je, že ještě mnohem horší situace je v prodeji a dostupnosti našich příloh – ročenek. Proto se v současné době pokoušíme dojednat možnost objednávek i na přílohy, o výsledku budeme informovat v příštím čísle. Zatím se nám podařilo shromáždit dosud neprodané výtisky "jarní" přílohy AR 1991, udělat dotisk velmi žádané "letní" přílohy 1991 (Katalog) a shromáždit i neprodané výtisky loňských, příp. předloňských příloh AR. Kdo tyto přílohy nesehnal, může si je objednat:

 letošní "jarní" přílohu (název Počítačová elektronika) a "letní" přílohu (Malý katalog pro konstruktéry) si lze objednat na adrese Administrace MAGNET-

PRESS, Vladislavova 26, 113 66 Praha 1,

• loňské přílohy (příp. předloňské) – byly tři, jedna výpočetní (název Mikroelektronika) a dvě všeobecné (Praktická elektronika pro konstruktéry, Konstrukční elektronika) si lze objednat přímo v redakci (Redakce AR, Jungmannova 24, 113 66 Praha 1. Objednávky budou vyřizovány až do úplného vyčerpání zásob.

Redakce AR

Zakladatelé firmy Sony, vlevo Masaru Ibuka a vpravo Akio Morita

ci, stali se přes rozdíl věku (Ibuka byl o tucet let starší) dobrými přáteli. Koncem války se však jejich cesty rozešly – až teprve zmínky v jednom japonském listě o Iburovi a jeho krátkovlnných konvertorech přivedly Moritu k tomu, že Ibukovi napsal. Odpověď na sebe nenechala dlouho čekat, Ibuka si cenil nejen Moritova přátelství a nadšení pro věc, ale chtěl využít i jeho finančních možností k rozvoji své firmy. Kontakt byl tedy navázán, Morita, i když se stal na žádost svého bývalého profesora asistentem na univerzitě, pracoval částečně i pro Ibuku.

To se však změnilo, když Douglas Mac Arthur, americký "místodržící" v Japonsku, vyhlásil, že vysocí státní úředníci a další exponenti válečného režimu včetně důstojníků-vojáků nesmějí zastávat veřejné funkce. Morita byl donucen opustit učebny univerzity a tak se mohl cele věnovat práci u lbuky.

Jak se ukázalo velmi brzy, oba se skvěle doplňovali, dílčí slabost jednoho doplňovala přesně síla druhého ve stejné věci. Ibuka, nevzrušeně usilující o inovace, houževnatý ve výzkumu a vývoji, humanista v obchodní politice, byl trochu snílek; Morita, vystudovaný schopný fyzik, přísný realista, který se brzy vypracoval na brilantního finančníka, vynikajícího v marketingu, byl oduševnělý a přesvědčivý. Jak sám řekl, jeho posláním bylo realizovat Ibukovy sny. Vyjádřil to stručně jeden z inženýrů firmy – pamětníků: Když přišel Morita, tak všechno začalo.

Během několika málo měsíců, 7. května 1946, byla založena jejich společná firma pod názvem Tokyo Tsushin Kogyo Kabushiki Kaisha – Tokijská telekomunikační společnost. Společnost začínala s 20 zaměstnanci a s programovým prohlášením, jehož autorem byl Ibuka, které je pozoruhodné především předvídavým a do té doby řídkým ohledem na "lidský činitel" v průmyslu. Toto programové prohlášení provází firmu od jejího založení beze změny až do roku 1950, kdy bylo mírně pozměněno díky prudkému růstu firmy.

Mezi specifickými cíly společnosti uvádí programové prohlášení např.

 ustavení ideální továrny, svobodné, dynamické a příjemné pro zaměstnance, v níž především technický perzonál může realizovat své technologické dovednosti na nejvyšší úrovni,

- dosáhnout dynamické aktivity v technologii a výrobě, tolik potřebné při rekonstrukci poválečného Japonska a k vzrůstu národní kultury.
- dosáhnout rychlé aplikace dokonalých technologií, vyvinutých během války v různých odvětvích průmyslu tak, aby z nich měla užitek široká veřejnost,
- vnést do běžné komerční výroby co nejrychleji vynikající výsledky vývoje a výzkumu z univerzit a nejrůznějších ústavů, především ty, které jsou vhodné k aplikaci ve výrobcích, sloužících v denním životě obyvatelstvu.

Když Ibuko vymýšlel filosofii podnikání, jeho firma vyráběla již zmíněný vařič rýže, elektronkové voltmetry, krátkovlnné konvertory a nahodilé výrobky pro rychle se rozvíjející telekomunikační průmysl. Náklady na provoz a mzdy byly pokryty výrobou asi 10 kusů elektronkových voltmetrů za měsíc. Finanční aktiva firmy byla minimální, proto překvapují i zásady managementu, které byly součástí "programového prohlášení" firmy, např.

- musíme vyloučit každé neobratné a "umíněné" hledání zisku, všechny aktivity musí mít reálný podklad, nesmíme zvětšovat objem výroby za každou cenu,
- musíme se soustředit na výrobu vysoce účelných technických výrobků, které mají ve společnosti maximální využití. Navíc musíme překonat formální hranici mezi "elektrikou" a "mechanikou" a tvořit naše vlastní výrobky, na jejichž vzniku budou mít oba tyto obory techniky stejný podíl tak, aby nás ostatní výrobci nemohli dohonit,
- zaměstnanci podniku musí být pečlivě vybráni a musí jich být co nejméně. Maximální důraz se musí klást na jejich způsobilost, zručnost, výkonnost a osobní charakter a musí jim být umožněno, aby mohli uplatnit všechny své přednosti.

A tak se pomalu stávala firma známou. Množily se zakázky a to i od státních podniků (železnice, rozhlas, komunikace . . .). V prosinci 1946 firma vyrobila např. kolem 30 ks voltmetrů. V roce 1947 se proto podnik již začal rozrůstat, vzniklo několik nových pracovišť díky zvyšujícím se příjnům a dotaci od Moritova otce. Zajímavé je a potvrzuje to i správnost politiky firmy, že v této, jistě nelehké době, kdy ostatní elektronické firmy nebyly většinou příliš úspěšné, Tokyo Telecommunications vzkvétala. V roce 1948 měla již asi 70 zaměstnanců a množství subdodavatelů.

Ovšem Morita i Ibuka byli nespokojeni, protože firma neměla svůj unikátní, jedinečný, typický výrobek pro širokou veřejnost. Po důkladné úvaze se tedy rozhodli: Budou dělat drátový magnetofon, neboť, jak věděli, dr. Kenzo Nagai vyvinul vf předmagnetizační systém a na jedné z japonských univerzit byl vyvinut vynikající "magnetický" drát. Před praktickou realizací drátového magnetofonu však Ibuka při své návštěvě úřadu okupační armády USA viděl v provozu páskový magnetofon a tím okamžikem začala tradice výrobků spotřební elektroniky u budoucí firmy Sony.

Věc ovšem nebyla jednoduchá – elektrická a mechanická část magnetofonu, který chtěli vyrábět, nebyla problémem, jiné to ovšem bylo se záznamovým materiálem. Nějaké informace bylo možno sehnat z Německa, kde byl magnetický pásek vyvinut již před druhou světovou válkou, nebo v USA, kam se část technologie výroby dostala po

druhé světové válce. Morita i Ibuka brzy zijstili, že pásky v USA vyrábí Minnesota Mining and Manufacturing (a že magnetofony vyrábí Ampex). To všechno však bylo málo. Ibuka a jeho inženýři (jedním z nich byl i Nobutoshi Kiharu, který začínal v té době svoji kariéru) věděli, že magnetickým materiálem na pásku je feromagnetický prach nebo prášek – problémem však zůstával nosič tohoto materiálu, neboť plastické hmoty v té době v Japonsku prostě k dispozici nebyly. A tak začali zkoušet, nejprve celofán, potom papír. Po měsících usilovné práce zavrhli celofán a podařilo se jim vyvinout stroj na ukládání magnetické vrstvy na zvláštní druh papíru. Tak koncem roku 1949 vznikl první, čistě japonský magnetofon a čistě japonský záznamový materiál. A opět nastaly problémy, tentokrát jiného druhu jak prodat tyto drahé a rozměrné přístroje (jeden stál kolem 400 dolarů). První byl po čase prodán obchodu, v němž se vyrábělo a prodávalo speciální japonské jídlo "oden", druhý ministerstvu spravedlnosti. Za dalších šest měsíců se pak podařilo prodat asi kolem 60 magnetofonů a díky Moritovu přirozenému obchodnímu nadání přestaly být s odbytem magnetofonů problémy.

Z této doby ještě jednu zajímavou historku: V japonských školách se začalo koncem 40. a začátkem 50. let propagovat audiovizuální vyučování. Ibuka i Morita tady vycítili svoji příležitost - možnost odbytu velkého množství výrobků. Magnetofony, které vyráběli, byly však pro školní účely příliš rozměrné a drahé (označovali je jako typ G). A tak přišla Ibukova akce: Všechny špičkové inženýry své firmy odvezl mimo Tokio a na 10 dnů je v podstatě "uvěznil" v místním hotelu. Všichni dostali shodný úkol - vyřešit, jak snížit cenu magnetofonu zlevněním výroby a jak vyrobit magnetofony tak, aby se mohly prodávat v určitém cenovém rozmezí varianty základního typu. Tak vznikl v roce 1951 magnetofon typu H, neboť akce byla korunována úspěchem, oba problémy tým pracovníků vyřešil.

Příběh cílevědomé a usilovné práce má svůj happy-end. Když mnohem později prodávala firma Sony americké firmě IBM stroje na výrobu magnetických pásků pro počítače, cítili jistě oba šéfové firmy značné zadostiu-

Jedna z vůdčích osobností firmy Sony, Kazuo Iwama. V začátcích firmy řídil oddělení výroby a techniky. Vedl např. práce na vývoji tranzistorů

činění ze správnosti své dosavadní cesty za úspěchem.

Stejný příběh by bylo možno napsat i o dalším rozšiřování výroby – o polovodičových součástkách, tranzistorových přijímačích, televizorech apod. To by byla historie, která by vydala rozsahem na knihu. Proto stručný popis začátků firmy zakončíme příběhem o vzniku značky Sony.

Jak se rozšířily obchodní styky se Západem, cítili všichni, že dosavadní název firmy, Tokyo Tsushin Kogyo Kabushiki Kaisha, je příliš dlouhý a neobratný, nepraktický, mnoho zákazníků ze zahraničí nedokázalo jméno ani vyslovit, o zapamatování ani nemluvě. Jak vzpomíná Morita, byl např. návrh,
aby se firma jmenovala TTK, v Japonsku
však existovala i firma TKK, možnost záměny či omylu vyloučila tedy tento návrh. Pro
své výrobky firma doposud užívala názvy
Tape-corder pro magnetofon a SONI (ze
"sonic") pro pásky. S výrobou prvního tranzistorového přijímače se však ukázala nutnost vyřešit otázku názvu firmy definitivně.
Bylo rozhodnuto, že název firmy musí mít jen
několik písmen, základem názvu se mělo

stát slovo "son" (z latinského sonus – zvuk). Tak vznikla první varianta názvu firmy, SON-NY. Protože však Japonci toto slovo vyslovují jako SON-NY, přičemž SON připomíná japonské slovo "ztráta" (jako opak k zisku), byl jako definitivní schválen název SONY.

A tak se slovo Sony stalo pojmenováním i prvního tranzistorového přijímače, který firma vyráběla, a od ledna 1958 i názvem firmy.

Stručný přehled základních údajů o firmě Sony je na str. 239.

ČÍSLICOVÉ ZPRACOVÁNÍ TELEVIZNÍHO SIGNÁLU V TELEVIZORECH

Ing. Vladimír Vít

Otevřením zahraničního trhu přicházejí k nám nejnovější typy televizorů nejen od vyspělých západních výrobců (Philips, Grundig), ale i výrobky velkého severského koncernu Nokia (Finsko), nevyjímaje ani tradiční japonské firmy. Tak se pracovníci našeho servisu seznamují s novými směry televizní technologie, hlavně pak u špičkových televizorů (stojící obraz, redukce šumu, potlačení blikání, obraz v obraze, lupa atd.). Tyto nové vlastnosti (features) jsou podmíněny číslicovým zpracováním televizního signáliu

V hlavní části tohoto pojednání se budeme věnovat dvěma konstrukčním směrům číslicové přeměny analogového signálu (ITT a Philips), doplněného podrobným výkladem činnosti dekodéru teletextu. Uvedeme též soustavu NICAM s číslicovým zpracováním zvuku používanou ve Velké Británii a ve skandinávských zemích. Rovněž seznámíme čtenáře s novou konstrukcí barevných dekodérů na základě časové diskretizace (vzorkování) signálu a s využitím spínaných kondenzátorů jako paměťového prvku pro zpožďovací vedení v základním pásmu.

Rozvoj číslicové techniky zejména integrovaných obvodů VLSI a pamětí RAM s velkou kapacitou umožnil výrobcům televizorů spolehlivě, výrobně a materiálově výhodně řešit číslicové zpracování obrazového i zvukového signálu uvnitř televizoru. Ačkoliv divák nezaznamená při reprodukci obrazu a zvuku výrazné zlepšení jejich jakosti (kromě dlouhodobé stability parametrů, zlepšení spolehlivosti a odstranění blikání, případně i šumu), pro výrobce digitalizace velké části televizního přijímače zjednodušuje výrobu i zmenšuje výrobní a materiálové náklady. Digitalizovat ovšem celý televizor ještě nelze s ohledem na vysoké kmitočty ve všech pásmech kanálových voličů a též v mezifrekvenčních zesilovačích (OMF, ZMF). Proto se po obrazové i zvukové demodulaci za synchronním demodulátorem, respektive koincidenčním detektorem přeměňuje analogový signál na číslicový převodníky A/D a po ryze číslicovém zpracování bez laděných obvodů LC, potenciometrů a elektrolytických kondenzátorů se číslicový signál převádí zpět na analogový a přes konvenční obrazový procesor budí obrazovku, popř. přes koncový stupeň zvuku (obvykle integrovaný obvod) reproduktor(y) televizoru. Výrobní náklady spočívající v úspoře imenovaných součástek se ještě zmenší rychlým nastavováním a kontrolou činnosti televizorů pomocí speciálních mikropočítačů. To však předpokládá i značný převrat v servisu, neboť řadu funkcí (odladění, zpoždění, lineárnost, rozměry, korekci poduškovitosti) nastaví servisní technik nikoliv již šroubovákem, ale servisním mikropočítačem. Digitalizací získá televizor na spolehlivosti (odpadá rozlaďování cívek, přerušování potenciometrů) a na stabilitě, neboť odchylky od požadovaných charakteristických parametrů vzniklé stárnutím součástek a vlivem změn teploty opravuje samočinně řídicí mikropočítač v televizoru.

Číslicové zpracování signálu však může zkvalitnit reprodukci tehdy, využije-li se řádkových nebo půlsnímkových pamětí pro již jednou digitalizovaný signál. Pak je možné odstranit meziřádkové blikání a zlepšit svislou rozlišovací schopnost nebo (i současně) odstranit blikání velkých ploch. Tím se dostáváme ke zdokonalené televizi IDTV (Improved Definition Television). Je-li půlsnímek již jednou v paměti, lze pak reprodukovat stojící (zastavený) obraz, nebo při příjmu dvou kanálů současně umístit zmenšený obraz jednoho vysílání v libovolném místě obrazu hlavního programu (PIP = picture in picture). Jako při každé technické revoluční změně, je i v číslicové televizi několik soustav uplatňovaných firmami. Proto se věnujeme hlavním směrům vývoje – začněme číslicovým zpracováním zvuku.

Číslicové zpracování zvuku uvnitř televizoru

Příchod stereofonního zvuku do televizního vysílání způsobil, že někteří výrobci (JVC, Nokia) používají pro zpracování dvou nízkofrekvenčních zvukových signálů 2R, L+R (nebo dvou různojazyčných zvuků) číslicovou formu signálu. Číslicová forma se získává přeměnou analogového signálu na číslicový v převodníku ADC a na začátku zvukového číslicového procesoru APU, ve kterém se zvuk dále zpracovává (viz obr. 1).

Obr. 1. Zapojení číslicových integrovaných obvodů ve zvukové nf části

Obr. 2. Analogově digitální měnič zvukových signálů, ADC2310

Obvodů pro číslicový signál lze v takových televizorech výhledově využít buď pro zpracování dvou zvuků, vysílaných na přídavné nosné (NICAM), nebo i pro zvukové signály družicových soustav MAC. Oba zmíněné číslicové integrované obvody lze pro zpracování zvuku použít i v televizorech s číslicovým zpracováním obrazového signálu.

Analogově číslicový převodník zvukového signálu

Integrovaný obvod ADC2310 (viz obr. 2) má kromě analogové přepínací a maticující části dva převodníky typu sigma-delta, jimiž se na výstupech 2, 3 převede analogový signál s proměnnou amplitudou na hustotně modulovaný impulsový signál (PDM = Puls Density Modulation). Demodulace zachycuje přírůstky (kladné nebo záporné) amplitudy (modulace DELTA) a pomocí součtového členu (SIGMA) vyrábí různě husté impulsy stejné střídy (jednobitový přenos dat) podle okamžité amplitudy signálu. Impulsy vznikají pomocí dvou integračních zpětných vazeb (vnitřních a vnějších) s kondenzátory na špičkách 2, 3, 6, 7. Maximální amplitudě odpovídá maximální kmitočet (hustota) výstupních impulsů 4,4 MHz, který je v tom případě roven taktovacímu kmitočtu, získanému dělením čtyřmi (PAL) nebo třemi (NTSC) hlavního kmitočtu 17,7 MHz hodinových impulsů ΦM, přivedených na špičku 15 ze samostatného oscilátoru. Pro normu PAL je tento kmitočet podle konceptu firmy ITT (s ohledem na použití pro číslicové zpracování i obrazového signálu) roven čtyřnásobku kmitočtu barvonosného signálu, tj. $4,43 \times 4 = 17,7$ MHz. Z výstupů 10 a 11 se odebírají dva hustotně pulsně modulované zvukové signály PDM I a PDM II a ty se ve vstupní části procesoru APU2470 převedou sestupným (decimujícím) výběrovým filtrem na ryzí číslicový signál PCM se 16 kvantovacími úrovněmi. Hlavní vstupy 4, 5 pro složky stereofonního signálu L + R (popř. 2R) z demodulačních obvodů v televizoru nemají zajištěnu deemfázi, proto jsou kondenzátory pro deemfázi zapojeny až na výstupech z procesoru APU. Tyto dva analogové vstupy lze přes přepínač S2 a umlčovací obvod (mute 1, 2) přivádět dále přes přepínače S3, S₄, S₅ na analogové výstupy 22, 23, kde je zajištěna deemfáze vnitřními rezistory 750 Ω a vnějšími kondenzátory. Při stereofonním vysílání je signál přepínačem S2 připojen na matici, zajišťující pravý a levý signál. Osamostatněný pilotní signál se přivádí na špičku 8. Přepínačem S1 lze pro číslicové výstupy 10, 11 (tj. PDM I a PDM II) připojit externí zvukové signály z eurokonektoru (SCART), je však třeba s ohledem na zapojenou deemfázi na výstupu APU opatřit oba vstupy 21 a 24 vnějšími členy preemfáze, např. C₁R₁R₂. Stejně tak je možné propojit přepínačem S₃ zmíněné externí vstupy s analogovými výstupy 22, 23. Přepínače S4 a S5 zajišťují libovolné kombinace mezi analogovými vstupy a výstupy. Všechny uvedené přepínače včetně umlčení se přepínají podle 8bitového datového slova, následujícího za adresou pro rozhraní IM-BUS. Povely se přenášejí po sběrnici o třech vedeních z ústředního mikropočítače. Při určité adrese (9610) se logickými úrovněmi I jednotlivých datových bitů D0 až D5 přepínají přepínače z poloh uvedených na obr. 2 pro logickou úroveň 0. Šestý bit určuje úroveň H na špičce 16 (pro externí použití) a sedmý bit přepíná dělič hodinových impulsů. Rozhraní IM-BUS ovládá též čidlo úrovně signálu. Toto čidlo působí až při amplitudě signálu větší, než přísluší maximální hustotě impulsů na výstupech 10, 11. Při povelové adrese 101₁₀ aktivuje logická úroveň I datového bitu D5 (popř. D6) zmíněné čidlo (viz obr. 2). Při nulových logických úrovních těchto bitů se amplituda neomezuje. Na špičky 2, 3 (pouze u podobného obvodu ADC2311) lze přivést dva zvukové signály soustavy NICAM v analogové podobě (viz dále).

Číslicový zvukový procesor

Činnost číslicového zvukového procesoru APU2470 (viz obr. 3) je převážně založena na číslicových filtrech. Proto musí být jednobitový sled hustotně modulovaných impulsů nejprve převeden na číslicový pulsně kódovaný signál. Oba vstupy PDM I (17) a PDM II (16) jsou postupně omezovány v šířce pásma (decimovány), přičemž se naplňují podle modulace 16bitové registry a 16 paralelních výstupů z každého tohoto sestupně výběrového filtru odpovídá vzorkování signálem o kmitočtu 34,6 kHz a kvantování o 16 úrovních. Tím je ukončen převod analogového signálu na 16bitová slova číslicového signálu s taktovacím kmitočtem 34,6 kHz u obou zvukových signálů. Ze základů o stereofonním televizním zvuku víme, že v signálu 2R (PDM II) je obsažen pilotní signál o kmitočtu 54 kHz, nesoucí informaci o vysílacím módu. V sestupném výběrovém (omezujícím) filtru, viz obr. 4, se pilotní signál rovněž sestupně filtruje až na 48,5 Hz. takže ve stereofonním provozu má horní pásmo pilotního signálu kmitočet 48,5 + 117,5 = 166 Hz a v dvojjazyčném vysílání kmitočet 48,5 + 274,1 = 322,6 Hz. Za identifikačním filtrem vystupují 11bitová slova s taktujícím kmitočtem 1 kHz. Pro zpracování je třeba zvukové a identifikační signály uložit v paměti RAM 50 × 16. O to se stará sériově paralelní převodník a multiplexer (obr. 4), při čemž sériová data se mohou přepínat i na vstup z cizího zdroje číslicového zvukového signálu (zvuk NICAM, MAC) a to pomocí třívodičové sběrnice S-BUS

(Serial Audio) přes rozhraní S (viz obr. 3). Přenos po sběrnici S se uskutečňuje při úrovni H impulsu S-Ident a při 64 taktovacích impulsech S-Clock se přenesou 4 zvuky jako 4 šestnáctibitová data S. Příjem skupiny je ukončen krátkou úrovní L impulsu S-Ident. Data S Ize odebírat ke zpracování mimo obvod APU na výstupu 5.

Zpracování číslicových zvukových signálů se kromě sčítání a odčítání v maticových dekódovacích obvodech (stereo) zakládá na úpravě signálů číslicovými filtry. Jde o násobení při řízení amplitudy (hlasitosti) nebo o kmitočtové úpravy při ostatních řízeních zvukových signálů. Jak je patrné ze schématu jednoduchého číslicového filtru (viz obr. 5), vyžaduje změna kmitočtové amplitudové eharakteristiky několik násobiček, zpožďovacích členů a sčítačky. Zařazováním různých koeficientů násobení se mění tvar přenosové charakteristiky. Velikosti koeficientů a jejich zařazování či vypínání se řídí ovládací sběrnicí IM-BUS. V popisovaném obvodu APU je celkem 35 koeficientů (ko až k34), které mají své adresy a jsou ukládány v koeficientové paměti C RAM (32 imes 8). Činnost obvodu APU vyžaduje určité naprogramované velikosti koeficientů, např. pro fyziologické řízení hlasitosti (relativní zesilování hloubek a výšek při malé hlasitosti). Je zde i koeficientová paměť C ROM (28 × 8), která je podobně jako celý integrovaný obvod maskově programovatelná (programová paměť 256 × 14). Obvod má svou řídicí aritmeticko-logickou jednotku (ALU), 15 násobiček, 20 sčítaček/odečítaček a 20 akumulátorů (záchytných registrů).

Z funkčního hlediska ovládá celá číslicová logika zvukové signály způsobem podle obr. 3. Číslicové signály vzniklé ze vstupů PDM

Obr. 3. Vnitřní skupinové schéma číslicového zvukového procesoru APU2470

La PDM II se zbavují stejnosměrné složky. aby se odstranila její rozdílnost u obou signálů. Protože je na analogových výstupech zapojen vždy obvod deemfáze, lze do cesty zvukovým signálům zařazovat obvod preemfáze (vypínatelný podle programu ROM), pokud nemá vstupní signál svou preemfázi. V další části obvodu se volí vstup (z obvodu ADC nebo ze sběrnice S-BUS) a signál se rozděluje (vše podle ovládání sběrnicí IM--BUS) do reproduktorového a do sluchátkového kanálu. V obou kanálech je třeba přicházející signály maticovat na signály L a R a řídit vlastnosti zvukových signálů. Maticování řídí pilotní signál, který po usměrnění, vyhlazení a porovnání v komparátoru přepíná maticový obvod.

V reproduktorovém kanálu lze u signálu (kromě již uvedeného fyziologického řízení, daného stálými koeficienty z paměti C-ROM) řídit basy, výšky, stereofonní bázi, umělé stereo a stereofonní váhu (balanci), při níž se řídí různě "hlasitost 1" v obou reproduktorových kanálech. Pro velmi slabé signály je možné zařadit přídavné zvětšení hlasitosti obvodem "hlasitost 3". Aby se zlepšil poměr signálu k šumu, řídí se hlasitost dvoiím způsobem. Maximální hlasitost se zmenšuje nejdříve analogovým řízením ("hlasitost 2") za výstupními převodníky D/A (číslicově/ analogovými), a při maximálním zeslabení (2) nastupuje řízení (1) v číslicové části. Řízení "hlasitosti 2" (ovládané číslicově) je svázáno s řízením výšek (při něm se zeslabují hloubky), aby se vyrovnalo vzniklé zmenšení hlasitosti.

Ve sluchátkovém kanálu se řídí pouze stereofonní váha pomocí různé "hlasitosti

4". Integrovaný obvod APU mění číslicové signály na analogové tím, že se na čtyřech převodnících D/A impulsy modulují šiřkově a na vnějších kondenzátorech se integrují analogové hodnoty (současně s působením deemfáze). Analogové výstupy jsou úměrné zvoleným vstupním referenčním proudům l_{ref1}, popř. l_{ref2}. Na špičku 13 se přivádějí hodinové impulsy ΦM.

Soustava digitálního přenosu zvuku NICAM

(Near Instantaneous Companding Audio Multiplex)

Země Spojeného království Velké Británie (UK) přenášejí v normě l digitálně dva zvukové doprovody (dva monofonní nebo jeden stereofonní) na nosném kmitočtu, vzdáleném od nosné obrazu +6,552 MHz (viz obr. 6). Jde o dva zvukové kanály přidané k hlav-

Obr. 6. Poloha nosných kmitočtů obrazu a zvuku v televizním kanálu soustavy NICAM v normě l

Obr. 4. Sestupné výběrové číslicové filtry pro převod hustotní modulace PDM na pulsní kódovou modulaci PCM

Obr. 5. Jednoduchý číslicový filtr prvního řádu a jeho útlumová charakteristika, daná koeficienty a, b, c

Obr. 7. Struktura 728bitového rámce, obsahující signál stereofonního zvuku s kanály A, B nebo monofonní signál n; FAW – frame alignment word, C – control bit, AD – additional bit, P – parity bit

nímu zvukovému signálu s kmitočtově modulovanou nosnou vlnou f₀ + 6,0 MHz. Některé skandinávské země vysílají v normě B NICAM nebo G NICAM se dvěma digitálními zvuky na nosném kmitočtu f₀ + 5,85 MHz kromě normální mezifrekvence 5,5 MHz. Číslicově kódovaný zvuk se přenáší po blocích (paketech) podobně jako u televizních soustav MAC (viz literaturu 1), takže dekodéry MAC mohou tento zvukový signál zpracovat. Nosná vlna je modulována fázově diferenciální čtyřstavovou metodou DPSK (viz dále). Zvuk s rozsahem 40 Hz až 15 kHz se vzorkuje vzorkovacím signálem s kmitočtem 32 kHz s kvantováním po 14 bitech. Metodou kompandování zvanou NIC (= Near Instantaneous Companding = téměř okamžité kompandování) se 14bitové kvantování převádí na 10bitové a přidává se jeden paritní bit o sudé paritě vzhledem k bitu s největší váhou, X9 (viz obr. 7). Sled 64 slov (D1 až D64) po 11 bitech tvoří jeden blok (704 bitů). Před bloky se vysílají seřazovací a řídicí bity, které spolu s blokem naplňují jeden rámec o 728 bitech s dobou trvání 1 ms. Rámce se vysílají spojitě, za sebou bez mezer.

Na začátku každého rámce je 8bitové slovo FAW (viz obr. 7), zajišťující seřaďování rámců (synchronizaci). Z pěti následujících řídicích bitů udávají bity C1 C2 C3 informace o složení bloku, tj. o druhu zvuku a datech. Přenosové možnosti jsou tyto:

C1 C2 C3 obsah bloku $64 \times 11 = 704$ bitů;

- 0 0 0 signál stereofonního zvuku. V jednom bloku o 64 slovech D1 až D64 se střídá 11bitové slovo X0 až X9 + P, náležející levému kanálu A1 až A32, se slovem pro pravý kanál B1 až B32 (viz obr. 7);
- 0 1 0 signál dvou monofonních zvuků, které se střídají po každém bloku. V jednom bloku se přenese 32 vzorků první skupiny n₁ až n₃₂ a po nich následující skupina téhož zvuku o 32 vzorcích, tj. (n+1)₁ až (n+1)₃₂. V dalším bloku se stejným způsobem přenáší druhý zvukový signál;

Obr. 8. Charakteristika okamžitého kompandování (instanteous companding) 14 bitů na 10 bitů

- 1 0 0 jeden monofonní signál a jeden datový kanál střídavě po blocích;
- 1 1 0 datový kanál s 704 kbity/s. První řídicí bit C0 představuje návěst rámce.

Třetí skupinou od začátku rámce jsou jedenáctibitová přídavná data AD0 až AD10, tvořící rezervu pro řízení přenosu.

Téměř okamžité kompandované kódování (NIC)

Zmíníme se krátce o téměř okamžitém způsobu kompandovaného kódování. Tento nelineární způsob kvantování jednotlivých vzorků zvukového signálu vychází ze skutečnosti, že při silných signálech je kvantizační šum (zkreslení signálu následkem konečného počtu kvantovacích úrovní) maskován silným signálem. Jemné dělení úrovní je třeba uplatňovat pouze u slabých signálů, u kterých kvantizační šum ruší.

Aby se výhodně zmenšila přenosová rychlost číslicového zvukového signálu, zavádí se okamžité kompandování, jehož počet dělicích úrovní závisí na amplitudě U signálu (viz obr. 8). Pro signál od +0,5 až ±1 je kvantování hrubé. Představuje čáru o strmosti 64 + 64 úrovní pro signál od 0 do 1. Včetně záporných hodnot je to 2 × 128 = 256 úrovní čili 8 bitů. Se zmenšováním amplitudy se strmost kvantování zvětšuje na

9 bitů a až při signálech o amplitudě $\frac{1}{64}z$

maximální velikosti je kvantování 14bitové. Spočítáme-li počet úrovní mezi vrcholy signálu ± 1 , dostaneme $2 \times 512 = 1024$ úrovní, což je 10 bitů. Podle 13dílné zakřivené čáry lze maximální jemné kvantování se 14 bity zmenšit na celkové průměrné kompandované kvantování s 10 bity. V praxi se metoda okamžitého kompandovaného kódování nepoužívá podle velikosti každého vzorku. avšak podle určité hodnoty odvozené z největší číselné velikosti u 32 po sobě jdoucích vzorků. Podle této velikosti dané činitelem stupnice (scale factor) odvozeným z paritních bitů je amplitudový rozsah rozdělen na 5 úseků, v nichž probíhá zmíněné nelineární kvantování v rozdělených rozsazích.

Diferenční fázová modulace (DPSK)

Číslicový zvukový signál přichází v sériové formě na modulační stupně, znázorněné zjednodušeně na obr. 9. Nejprve se v sérioparalelním měniči převede sériový signál S na dva signály A a B, které spolu v současném intervalu přenášejí bitové páry. Tak např. signál 01001011 se přenáší dvěma vedeními po dvojicích 01, 00, 10, 1 I, jejichž délka impulsů 2T je dvojnásobná než u sériového vstupního signálu. Diferenciální kodér zpracovává signály tak, že působí na dvě kvadraturní složky (posunuté mezi sebou o 90°) oscilátoru 6,552 MHz. Signály vytvářejí za součtovým obvodem diferenční změnu fáze závislou na bitovém páru A B podle vztahu na obr. 9. Na obrázku je uveden příklad změn fáze výstupního signálu při čtyřstavové diferenční fázové modulaci (PSK = Phase Shift Keying = klíčování posuvu fáze). Při prvním dvojbitu (A = 0, B = I) se fáze změní z počátku o -90°, tj. do bodu 1, kde setrvá při druhém dvojbitu (A = 0, B = 0), neboť změna fáze je nulová. Do bodu 3 přejde klíčování fáze posuvem -270° (A = I, B = 0) a bod 4 je dán posuvem -180° (A = I, B = I).

Oscilátor je řízen fázovým závěsem PLL od taktu 728 kHz, a jmenovitý kmitočet oscilátoru je devítinásobkem bitové rychlosti 728 kbitů/s.

Příjem a modulace číslicového zvukového signálu soustavy NICAM

Pro demodulaci signálu obsaženého v signálu zvukové mezifrekvence ZMF je třeba tento signál osamostatnit pásmovou propustí 6,552 MHz s odlaďovačem hlavní zvukové mezifrekvence 6,0 MHz a zpracovat ho ve třech integrovaných obvodech (viz obr. 10). První integrovaný obvod TA8662N (obr. 11) plní úlohu demodulátoru DPSK. Signál fázově modulovaný jednotlivými dvojbity je za vstupním obvodem pro AGC detekován na data kanálu A a data kanálu B pomocí nosné o kmitočtu 6,552 MHz (5,85 MHz), posunuté pro detektor kanálu A o 90° (to odpovídá kvadraturní modulaci PSK na kódovací straně). Za vnější dolní propustí připojenou na špičky 10, popř. 11 se pomocí obou signálů synchronizuje automatickým fázovým říze-

207

Obr. 10. Skupinové zapojení integrovaných obvodů pro demodulaci zvukového signálu soustavy NICAM (UK – Velká Británie, SK – Skandinávie)

ním (APC) oscilátor nosné, a to regulačním napětím přes korekční člen, zapojený na špičku 9. V obvodech pro odřezávání dat se samočinným řízením úrovně odřezu se získají data od bitů A a bitů B (tvoří dvojbit), která se z paralelního tvaru převedou na sériový sled v paralelně sériovém převodníku. Data vystupují ze špičky 29 do dekodéru NICAM, tvořeném integrovaným obvodem CF70123 (obr. 10).

V demodulátoru se též získávají taktovací impulsy a to z datových impulsů. Hodinový oscilátor 5,824 MHz, řízený napětím z detektoru APC, poskytuje na výstupu 26 hodinové impulsy tohoto kmitočtu a na špičce 2 (přes dělič 8:1) hodinové impulsy odpovídající 728 kilobitům/s pro přenos jednoho rámce dat.

Druhý integrovaný obvod CF70123 přetváří rámec dat na jednotlivé zvukové signály podle úrovní na špičkách 36, 37, 38, které se zde utvoří při výběru pracovního módu (mono, stereo, dva zvuky) podle povelu z řídicího mikroprocesoru přes sběrnici IM-BÙS. Současně se pomocí vnitřní paměti RAM expanduje 11bitový signál na 14bitový podle pravidla použitého kompandéru (NIC = near instantaneous companding). Pro ten účel potřebuje integrovaný obvod vlastní taktovací signál 16,384 MHz, vyráběný krystalovým oscilátorem. Data transformovaného sériového signálu se přenášejí do následujícího číslicově analogového převodníku AMU2481 s výstupy nízkofrekvenčních signálů na špičkách 20, popř. 22. Použijí-li se pro další zpracování obou nízkofrekvenčních signálů číslicové obvody pro zpracování zvuku (viz výše ADC2310, APU2470), je třeba do nich přivést jako hlavní hodinový signál ΦM signál o kmitočtu 16,384 MHz z výstupu 40 obvodu CF7123 a odpojit zdroj hodinových impulsů 17,7 MHz. Do číslicového zvukového procesoru APU lze též přivádět sériová zvuková data po třívodičové sběrnici S-BUS ze špičky 6 obvodu AMU2481 spolu s impulsy ident (15) a clock (8) (viz obr. 10).

Číslicové zpracování obrazového signálu

Pro analogově číslicové a číslicově analogové přetváření obrazového signálu při zpracování uvnitř obvodů televizního přijímače je několik koncepcí: Kromě soustavy firmy ITT (DIGIT 2000) a zpracování firmy Philips existuje ještě japonský poněkud odlišný způsob (bez multiplexování signálů barev). Podstatné činnosti obvodů si objasníme popisem prvních dvou soustav.

Rozdíly mezi soustavami ITT a Philips

Základem řešení číslicového zpracování jsou u obou soustav převodníky A/D i D/A, dále sčítačky, násobičky a hlavně jejich seskupení v číslicových filtrech. Na náznak řešení jsme poukázali při popisu zvukového obvodu APU2470 a při obrazových obvodech nebudeme již zabíhat do podrobností. Samostatným dílem jsou paměti DRAM pro zachycení půlsnímku, poskytující možnosti stojícího obrazu a obrazu v obraze.

Základním rozdílem, kterým se obě soustavy od sebe liší, je kmitočet vzorkovacího signálu, kterým se analogový signál převádí na číslicový, tj. vzorkuje se, kvantuje a kóduje. Firma ITT používá pro soustavu DIGIT 2000 čtyřnásobek barvonosného kmitočtu, tj. pro soustavu PAL $4\times4,43=17,7$ MHz, pro NTSC $4\times3,58=14$ MHz a SECAM $4\times4,286=17,14$ MHz.

Z teorie víme, že pro bezchybný přenos analogového signálu s maximálním kmitočtem $f_{\rm max}=6$ MHz má být vzorkovací kmitočet minimálně $f_{\rm vz}=2f_{\rm max}$, tj. 12 MHz. Pro rezervu je v doporučení CCIR 601 uveden kmitočet $f_{\rm vz}=13,5$ MHz pro vzorkování jasového signálu. Pro snadné dekódování má být u soustavy ITT kmitočet vzorkovacího signálu celistvým násobkem barvonosného kmitočtu. Trojnásobek by byl menší než doporučených 13,5 MHz, proto se používá čtyřnásobek. Výhoda jednoduchých dekódovacích obvodů ITT je vykoupena dosti

vysokým kmitočtem vzorkovacího signálu, obtížnějším ukládáním číslicového signálu do půlsnímkové paměti a složitými rozkladovými obvody. Tyto nevýhody odpadají u systému firmy Philips-Siemens, u něhož je kmitočet vzorkovacího signálu dán jako celistvý násobek řádkového kmitočtu, ovšem dekódovací obvody jsou pak složitější než tytéž stupně u ITT, zajišťují však i dekódování signálů ze soustav MAC a snadnější zpracování externích, tzv. nestandardních signálů. Další rozdíly se týkají odběru synchronizačních signálů, řízení analogových veličin aj.

Soustava DIGIT 2000 firmy ITT

Zjednodušené skupinové zapojení soustavy DIGIT 2000 s hlavními číslicovými integrovanými obvody je na obr. 12. Analo-

Obr. 12. Skupinové schéma televizoru Salora řady M na principu DIGIT 2000

gový obrazový signál přichází do analogově číslicového převodníku v části integrovaného obvodu VCU2133 (viz obr. 13), zvaného kodek (odvozeno z funkce obvodu kodérdekodér).

Po kondenzátorové vazbě se před vstupem 35 televizní signál a před vstupem 37 obrazový signál, přivedený z konektoru SCART, klíčují řádkovými impulsy z procesoru DPU2543 (špičky 4 a 21, viz pozdější obr. 16) na zadní horizontální prodlevě a obnovuje se tak vhodná stejnosměrná složka. Vnitřní zesilovače se v době synchronizačního impulsu barvy otevírají k maximálnímu zesílení nezpožděným řádkovým impulsem, přivedeným na špičku 36. Vnitřním přepínačem ovládaným přes sběrnici IM-BUS a obvody v procesoru VPU2203 (viz pozdější obr. 18) se volí žádaný vstupní televizní signál.

Signál se pak vzorkuje vzorkovacím kmitočtem rovným čtyřnásobku barvonosného kmitočtu (viz výše) a kvantuje se podle 128 úrovní do sedmisegmentového paralelního výstupu. Protože se však doporučuje při číslicovém zpracování signálu ve studiu kvantovat podle 256 úrovní, ti. do osmibitového číslicového signálu, používá se při úsporném 7bitovém analogově číslicovém převodníku jeho tzv. blikající nebo i 7,5bitová verze (viz obr. 14). Sedmibitové zpracování vyžaduje v převodníku 27 = 128 komparátorů. Osmibitové uspořádání by vyžadovalo dvojnásobný počet komparátorů. Umělého rozšíření na zdánlivě 8bitové rozlišení se dosáhne proměnným zapojováním referenčního napětí pro nejnižší, nejméně významný bit. Toto napětí se rovná buď polovi-

referenční

ně nebo celému intervalu v děliči referenčního napětí. Napětí U/2n při n = 7 se připojuje ob řádek, tj. v rytmu polovičního řádkového kmitočtu. Integrační funkcí lidského zraku lze pak nabýt dojmu, jakoby byl analogový televizní signál vzorkován pomocí 256 úrovní. Při opačném převodu, D/A, je však třeba přidat synchronně k analogovému signálu střídavě ob řádek hodnotu odpovídající polovině referenčního napětí. Sedmibitový číslicový signál se převádí před výstupem z integrovaného obvodu VCU2133 do Grayova kódu. Při tomto kódu se při změně o jednu kvantovací úroveň, tj. o 1 bit, mění pouze bit na jednom váhovém místě, na rozdíl od toho, jak by tomu bylo při normálním dvojkovém kódu např. z 0l na l0 (tj. z 1 na 2). V Grayově kódu je tato změna z hodnoty 1 na 2 interpretována jako 01 na 1 l. Důvodem zavedení Grayova kódu je neurčitost přesně současného reagování jednotlivých komparátorů v analogově číslicovém převodníku. Před výstupem na špičkách 2 až 8 prochází číslicový signál invertorem poruch. Za výstupem první části kodeku VCU2133 (viz obr. 12) se sedmibitová sběrnice rozděluje do tří větví: do procesoru TPU2732, zpracovávajícího teletext, do procesoru SPU2220 pro dekódování signálu SECAM a do procesoru DPU2543, zajišťujícího synchronizaci a buzení rozkladových koncových stupňů.

Číslicový procesor pro soustavu SECAM

Úplný televizní obrazový signál přichází do procesoru SPU2220 špičkami 4 až 10 (viz obr. 15) a zde se rozděluje, část prochází přes konvertor kódu (z Grayova do binární-

Obr. 14. Princip blikavého

ho) do dekodéru rozdílových signálů barev. Druhá část vychází po zpoždění 3,7 µs ven z procesoru špičkami 14 až 20 a přivádí se jako úplný televizní obrazový signál do procesoru VPU2203, ve kterém se osamostatňuje a zpracovává jednak jasový signál (využitý i při soustavě SECAM), jednak chrominanční signál soustavy PAL. Zpožďovací obvod 3,7 µs v procesoru SPU2220 vyrovnává zpoždění jasového a chrominančního signálu soustavy SECAM. Při soustavě PAL zpožďuje oba signály, tj. jasový i chrominanční.

Nejprve vysvětlíme zapojení pro zpracování signálu v soustavě SECAM (viz obr. 15). Číslicový filtr s vlastnostmi obvodu "zvon" oddělí z úplného televizního signálu chrominanční signál SECAM. V následujícím obvodu pro kompenzaci zesílení zesilovače obrazové mezifrekvence se vyrovná zmenšující se amplituda analogového signálu směrem k barvonosným signálům. Kmitočtový demodulátor demoduluje oba rozdílové signály s korekcí v obvodu nf deemfáze. Demodulovaný signál odbočuje do obvodů identifikace, vypínače barvy a obvodu pro určení soustavy. Na výstupech těchto obvodů vznikají řídicí signály, zavedené pro synchronizaci křížového přepínače, pro aktivaci vypínače barvy (uzavření výstupu chrominančního signálu na špičkách 23 až 26) a pro povel pro ústřední řídicí jednotku CCU2030 (viz obr. 12) a to po třídrátové sběrnici IM--BUS. Ústřední řídicí jednotka vyšle podle přijatých dat o určení soustavy dílčí signály k jednotlivým obvodům, vyžadujícím přepnutí režimu pro přijímanou televizní soustavu (např. hodinové impulsy ΦM v generátoru MCU2632). Příslušné povely z ústřední řídicí jednotky, ať již volené divákem (řízení sytosti) nebo odvozené z přijímaného signálu, jsou rozvedeny k jednotlivým funkčním dílům a také uvnitř procesoru SPU2220. Z ústřední řídicí jednotky lze měnit i velikost deemfáze za kmitočtovým demodulátorem či vypínat kompenzaci průběhu křivky OMF (při provozu z konektoru SCART).

Poněvadž se za demodulátorem vyskytují ob řádek postupně dva různé rozdílové signály, mají při stálém středním kmitočtu demodulátoru 4,43 MHz různou stejnosměrnou složku pro signály (R-Y) a (B-Y). Tento rozdíl se vyrovnává na stejnou úroveň "černé" u obou signálů v dalším korekčním obvodu. Křížový přepínač a zpožďovací ve-

obrazový signál

Obr. 15. Skupinové schéma procesoru SECAM, SPU2220

dení poskytují současne dva sedmibitové paralelní rozdílové signály. Pro řízení sytosti jedním společným zařízením je třeba oba paralelní rozdílové signály multiplexovat. Děje se tak pomocí dvojí fáze hodinových impulsů 4,43 MHz. Řízení sytosti obstarává násobička s šesti paralelními bity, tj. v 64 krocích. Řízení sytosti se uskutečňuje po sběrnici IM-BUS podle výpočtu v ústřední řídicí jednotce, neboť řízení pro oba rozdílové signály je rozdílné (0,7krát menší pro (B-Y) než pro (R-Y)). Protože je šířka pásma rozdílových signálů přibližně čtyřikrát menší než šířka pásma jasového signálu, může být kmitočet jejich vzorkovacího signálu též čtvrtinový. Při zachování kmitočtu hodinových impulsů stejných jako u jasového kanálu lze oba rozdílové signály přenést za sebou a nadvakrát, tj. nejprve bity 0 až 3 a pak 4 až 7, tedy čtyři skupiny po čtyřech vedeních, majících výstupy na špičkách 23 až 26. Výstupy lze vypínat povelem na špičce 22, pak jsou výstupy trvale na logické úrovni 0. Výstupy mají velkou impedanci tehdy, zpracovává-li se v televizoru signál PAL, s jehož chrominančními výstupy mají výstupy rozdílových signálů společnou paralelní čtyřbitovou sběrnici.

V procesoru SPU2220 je též integrováno zpožďovací vedení pro klíčovací impuls burstu (SC), vyráběný v DPU2543 a přicházející po doplňkovém zpoždění ze špičky 13 do procesoru VPU2203.

Obrazový procesor pro jasový signál a pro chrominanční signál PAL/NTSC

Ve videoprocesoru VPU2203 (viz obr. 16) se úplný televizní signál, přicházející na špičky 5 až 11 jako 7 bitů v Grayově kódu, přeměňuje v konvertoru Grayova kódu na binární kód. Na jeho výstupu se rozděluje do cesty jasového signálu, počínající odlaďovačem chrominančního signálu, a do cesty začínající chrominanční pásmovou propustí, která jako číslicový filtr potlačuje jasový signál a propouští dále pouze chrominanční signál soustavy PAL. V jasovém signálu zbaveném chrominančního signálu lze zaostřit obrysy zdůrazněním všech vyšších obrazových kmitočtů povelem, přicházejí-

Obr. 17. Skupinové schéma MCU2632, generátoru vzorkovacích a hodinových impulsů

cím po sběrnici IM-BUS z ústřední řídicí jednotky. Stejným způsobem lze nastavovat v dalším stupni zpoždění jasového signálu a řídit kontrast s omezením do osmibitového signálu, vystupujícího na špičkách 32 až 39 a vracejícího se do druhé části kodeku VCU2133.

Sledujme cestu chrominančního signálu PAL na obr. 16. Za chrominanční pásmovou propustí následuje obvod pro samočinné řízení zesílení ACC, vypínač barvy a demodulátor PAL se zpožďovacím vedením. Na výstupu demodulátoru jsou rozdílové signály (R-Y) a (B-Y). Na špičku 1 přichází klíčovací impuls SC, použitý pro řízení ACC podle "úrovně", tj. číslicové hodnoty burstu a též pro oddělení burstu použitého v následujícím obvodu fázové synchronizace barev. Veškeré samočinné řízení se uskutečňuje tak, že se číselné hodnoty porovnávaných veličin přenesou přes sběrnici IM-BUS do ústřední řídicí jednotky CCU2030, kde se porovnávají s danými nebo žádanými hodnotami. Pak řídicí jednotka vyšle nastavovací povel do příslušného obvodu. Vypínač barvy se aktivuje tehdy, když se kmitočty burstu a hodinových impulsů pro demodulátor PAL od sebe značně liší.

Generátor hodinových impulsů pro dekodér PAL je v integrovaném obvodu MCU2632 (viz obr. 17) a jeho kmitočet se řídí smyčkou PLL. Porovnáním burstu a hlavních hodinových impulsů vzniká na špičce 26 procesoru VPU2203 korekční signáľ v podobě dat, přenášených na špičku 6 obvodu MCU2632 a vyhodnocených v něm pomocí hodinových impulsů, odebíraných ze špičky 25 obvodu VPU2203.

Sytost se řídí společnou šestibitovou násobičkou (případně i barevný tón v soustavě NTSC) po multiplexování obou rozdílových signálů (R-Y) a (B-Y) stejným způsobem, jak bylo popsáno u procesoru pro soustavu SECAM

Než dokončíme výklad některých řídicích obvodů v procesoru VPU2203, vrátíme se spolu s osmibitovým (po řízení kontrastu) jasovým signálem a multiplexovanými rozdílovými barvovými signály (R-Y) a (B-Y) do druhé části kodeku. Špičkami 10 až 17 přichází jasový signál Y do převodníku D/A a vzniklý analogový signál dává v matici spolu s rozdílovými signály (R-Y) a (B-Y) signály R, G, B, budící koncové zesilovače s výstupy na špičkách 26, 27 a 28.

Číslicové multiplexované signály barev přicházejí čtyřmi špičkami 18 až 21 do demultiplexeru rozdílových signálů, kde se přetvářejí do dvou paralelních 8bitových rozdílových signálů, napájecích převodníky D/A. Čtyřbitové sběrnice pro multiplexované barvové signály se využívá pro přenos řídicích dat, a to na špičce 18 během půlsnímkového zatemňovacího impulsu. Jde o samočinné udržování úrovní závěrných napětí obrazovky a zesílení koncových zesilovačů obrazového signálu (viz literaturu [2]). Napětí úměrné "tmavým" proudům, testované postupně za sebou pro 3 trysky ve 3 půlsnímcích, se přivádí na špičku 15 (viz obr. 16).

Při měření zesílení koncových zesilovačů se paralelně k rezistoru, na kterém se při půlsnímkovém zatemnění snímá "tmavý" proud pro udržování závěrných napětí obrazovky, přidá další rezistor (uzemněním špičky 16) a při průměrně bílém řádku se měří postupně napětí, odpovídající zesílení každého obrazového zesilovače. Toto napětí se přivádí též na špičku 15. Analogové údaje, do kterých lze počítat i řídicí veličinou na špičce 17 (AFC, nebo napětí na fotorezistoru pro samočinné řízení kontrastu), se multiplexují a přemeňují se v převodnících A/D na číslicový signál. Činnost multiplexeru vyžaduje půlsnímkově zatemňovací signál V na špičce 13 a pro převodník je třeba referenční napětí na špičce 19. Přes rozhraní IM-BUS se snímané signály pro řízení přivádějí do ústřední řídicí jednotky CCU2030, zde se porovnávají s nastavenými hodnotami a po-

Obr. 16. Skupinové schéma obrazového procesoru (PAL), VPU2203

Obr. 18. Vychylovací procesor DPU2543 (WB - white and black, černobílý příjem)

dle nich se předávají povely zpět přes sběrnici IM-BUS do číslicového zpracování barvových signálů, a to tak, že se na jednom ze čtyř výstupů z multiplexeru dat (viz C1 na špičce 30 na obr. 16) přenáší v půlsnímkovém zpětném běhu sériově 72 bitů do druhé části kodeku VCU2133 (špičkou 18, obr. 13). Zde se v obvodech pro řízení jasu, udržování závěrných napětí obrazovky a pro vyvážení bílé barvy povely osamostatňují a potom přímo řídí zesílení koncových zesilovačů, tj. vyvážení bílé a přes převodníky D/A ovládají předpětí zesilovačů v maticovém obvodě. Tím se řídí jas obrazu a udržují se závěrná napětí obrazovky. Obvody kodeku nejsou tedy řízeny přímo sběrnicí IM-BUS.

Samostatným obvodem v kodeku je omezem proudu obrazovky, které podle informace z usměrňovače vysokého napětí, přivedené na špičku 34, určí referenční předpětí v převodnících D/A u jasového i chrominančního signálu a tak omezuje jas. Řídicí data na špičce 18 se v půlsnímkovém zpětném běhu taktují synchronizačním signálem na špičce 21, a to pomocí 72 hodinových impulsů.

Vychylovací procesor

vvchvlovacího procesoru Úkolem DPU2543 (viz obr. 18) je dodávat na špičce 31 synchronizované budicí napětí obdélníkovitého průběhu pro horizontální koncový stupeň a na špičkách 26 a 27 šířkově modulované půlsnímkové impulsy, které se integrují na kondenzátoru ve výsledné budicí vertikální napětí pilovitého průběhu včetně korekce tvaru "S" a svislého středění. Podobně jsou přes šířkový modulátor dodávány na špičce 28 impulsy proměnné šířky, dávající na vnějším členu RC parabolický průběh pro korekci poduškovitosti a řízení šířky obrazu. Oba šířkově modulované a půlsnímkově synchronizované sledy impulsů vypočítává rychlý procesor podle základních, při výrobě nastavených údajů z ústřední řídicí jednotky CCU2030 pomocí sběrnice IM-BUS

Synchronizační impulsy se oddělují z úplného televizního signálu, přicházejícího z první části kodeku VCU2133 se vstupem na špičkách 9 až 15. V oddělovači synchronizačních impulsů se též vyrábějí klíčovací impulsy pro vstup úplného obrazového signálu do kodeku. Tyto impulsy vystupují na špičkách 21 a 4. Obvod horizontální fázové synchronizace pracuje se dvěma fázovými detektory i a il podobně jako u analogových zapojení. Jeho činnost se však mění podle toho, zda se zpracovává tzv. nestandardní signál, tj. např. černobílý signál nebo signál z videomagnetofonu, kamery, či z paměti teletextu (čili signály bez stálé vazby kmitočtu barvonosného signálu na řádkový kmitočet), či zda se zpracovává signál přilatý z vysílače standardní barevné soustavy (se stálou vazbou mezi oběma zmíněnými kmitočty). V prvním případě se kmitočet hodinových impulsů ΦM dělí programovatelným děličem tak, aby se mohly fázově a kmitočtově porovnávat s oddělenými řádkovými synchronizačními impulsy. Výsledný regulační signál řídí potom dělič tak, aby vyráběl řádkové budicí impulsy pro výstup 31. Obdobně jako u analogových zapojení má tato nepřímá synchronizace dvě časové konstanty v korekčním členu, které se samočinně přepínají podle synchronního či nesynchronního chodu.

Při příjmu barevného vysílání standardní soustavy je kmitočet hodinových impulsů v pevném vztahu s barvonosným kmitočtem. proto se kmitočet hodinového signálu ΦM dělí konstantním poměrem na řádkový kmitočet (na vysílači je stálý celistvý poměr mezi barvonosným a řádkovým kmitočtem). Při tom se smyčka PLL fázového detektoru I rozpojuje a tak není řádkové vychylování ovlivněno poruchami v signálu. Fázový detektor II se vzorkem řádkového zpětného běhu přivedeného z koncového stupně na špičku 23 eliminuje změny fáze na výstupu signálu řádkového vychylování a zůstává v obou uvedených činnostech řádkové synchronizace zapojen. Přepínání synchronizace v detektoru I se řídí obvodem pro výběr soustavy, a to tak, že detektor l je funkční jen při odchylkách poměru mezi barvonosným a řádkovým kmitočtem větším než 10⁻⁷. Při menších odchylkách, tj. při stálém barvonosném kmitočtu (PAL, NTSC) je detektor I vyřazen.

Číslicový vychylovací obvod spolupracuje též s obvodem teletextu TPU2732. Poněvadž se fáze zobrazení v obvodu teletextu může lišit od fáze vychylovacího řádkového průběhu v obvodu DPU2540 (synchronizace pracuje bez upnutí na barvonosný kmitočet), vyrábí filtrační obvod fázového detektoru I číslicová data v rytmu hodinových impulsů, udávající velikost fázové odchylky v zobrazovacích obvodech teletextu od fáze hodinových impulsů. Tento signál, zvaný DSD (Deflection Skew Data = data pro vyrovnání fáze čili posuv vychylování), je vyveden na špičku 7 a odtud se odebírá pro teletextový procesor, aby se v něm podle číslicových dat vyrovnala fáze teletextu s fází vychvlování.

V synchronizačních obvodech se též vyrábí několik druhů klíčovacích a zatemňovacích impulsů, použitých v sousedních procesorech. Jsou to: součet impulsu pro vyklíčování burstu B a horizontálního nezpožděného zatemňovacího impulsu na špičce 19, horizontální zpožděný zatemňovací impuls sečtený s vertikálním impulsem V na špičce 22 a horizontální nezpožděný zatemňovací impuls na špičce 24. Tato část procesoru obsahuje i ochranu působící jako zatemnění celého řádku při selhání vertikálního vychylování

Zvláštní ochrana může působit na výstupu pro budicí impulsy horizontálního koncového stupně. Je aktivní při přepínání televizních norem PAL/NTSC ve spoiistosti s činností přídavného oscilátoru, který může působit též jako startovací oscilátor v době nulování (reset = log. 0) po zapnutí televizoru, než se aktivuje řídicí jednotka s daty v pomocné paměti E²PROM. Tento oscilátor má zvláštní napájení +5 V na špičce 35 a je řízen pouze impulsy 4 MHz, přivedenými na špičku 34 z řídicí jednotky CCU2030. Druh provozu záleží na ošetření špiček 33, 34, 35, 36, jak je uvedeno v tab. 1. Z ní vidíme, že při neošetřené špičce 33 a při špičce 36 připojené na napětí +5 V špičky 35 je koncový stupeň chráněn při změnách normy (PAL/

Tab. 1. Provozní módy startovacího oscilátoru a ochrany koncového stupně v obvodu DPU2543

	Špičky	33	34	35	36
Horizontální konce chráněn při přepír		neošetřena	4 MHz	+5 V	uzemněna
Horizontální konce něn, startovací os		neošetřena	4 MHz	+5 V	spojena se špič- kou <i>35</i>
Startovací osciláto nucené volbě NTS	or pracuje při SC po nulování	+5 V	4 MHz	+5 V	spojena se špič- kou <i>35</i>
Startovací osciláto nucené volbě PAL vání	or pracuje při _ (SECAM) po nulo-	. 0 V	4 MHz	+5 V	spojena se špič- kou <i>35</i>
Bez ochrany a bez starto-	jen s 17,7 MHz PAL (SECAM)	0 V	uzem- něna	+5 V	uzemněna
vacího oscilá- toru	jen s 14,3 MHz NTSC	+5 V	uzem- něna	+5 V	uzemněna

NTSC) a současně pracuje startovací oscilátor při podmínce reset = log. 0, tj. budí řádkový rozklad nezávisle na zdroji hodinových impulsů ΦΜ. Jakmile se stabilizuje napájecí síťová část, změní se na špičce 5 (reset) logická úroveň na I a činnost startovacího oscilátoru skončí. Z tab. 1 jsou patrny další módy činností, např. trvalá (nucená) soustava PAL (SECAM) nebo NTSC podle ošetření špičky 33, a to s činností startovacího oscilátoru. Není-li zapojena ochrana ani startovací oscilátor, je výstup budicího signálu 31 odpojen tak dlouho, dokud stav reset nepřejde na logickou úroveň I.

Generátor hodinových impulsů

V generátoru impulsů MCU2632 isou tři napětím řízené oscilátory VC01, VC02, VC03 (viz obr. 17). Tvoří zpětnovazební smyčku fázové synchronizace s fázovým detektorem v procesoru VPU2203. Regulační napětí odvozené v číslicovém tvaru z fázového rozdílu mezi kmitočtem burstu a taktovacího signálu ΦM se přivádí do generátoru hodinových impulsů špičkou 6 jako data vybavovaná hodinovými impulsy, přiváděnými rovněž z procesoru VPU2203 na špičku 5 s kmitočtem rovným čtvrtině kmitočtu hlavního taktovacího signálu ΦM. Dvanáctibitový posuvný registr ovládaný řídicím obvodem převádí sériová data na paralelní, a ta se zapisují do paralelního registru. První tři bity dat jsou určeny pro volbu oscilátoru (PAL, NTSC, SECAM), dalších 9 bitů se přeměňuje v převodníku D/A na ladicí napětí pro určený oscilátor. Před výstupy generátoru hodinových impulsů je filtr, který propouští jen sinusový průběh základní harmonické a dále pak oddělovací stupeň před výstupem hlavního taktu ΦM na špičce 3. Generátor vyrábí i signál dvojnásobného kmitočtu (osminásobek barvonosného kmitočtu) s možností odběru na špičce 2 za zdvojovačem kmitočtu a oddělovacím stupněm. V popisovaném zapojení dekodéru není signál použit.

Procesor teletextu TPU2732

Procesor teletextu TPU (viz obr. 19) zpracovává sedmibitová data V0 až V6 v Grayově kódu, přicházející z první části kodeku VCU2133. Podrobnosti o zpracování teletextových dat a způsob zobrazení jsou uvedeny v literatuře např. [3], [4]. V koncepci firmy ITT jsou některé odlišnosti. Obvod zachycení dat nezpracovává nezobrazované řádky, může však pomocí vnější dynamické paměti DRAM 64k × 1 zachytit 8 teletextových stránek (bez možnosti rychlé volby FLOF). Integrovaný obvod je přizpůsoben soustavám PAL (SECAM) i NTSC, pokud jde o rozdílnosti ve vertikálním okénku (DEW) a rozložení teletextového obrazce na rastru. Styk s hlavní řídicí jednotkou CCU2030 je prostřednictvím sběrnice IM-BUS. Před zachycením dat, příslušných 8 stránkám po sobě jdoucích v jednom vysílacím cyklu (při volbě nové stránky zůstává v paměti stránka předešlá), a to pomocí komparátoru volených a vysílaných dat, procházejí vstupní data obvodem pro odstranění rušivých odrazových signálů s účinností do 0,8 μs.

Protože vnější dynamická paměť pracuje pomaleji než přicházejí teletextová data, je uvnitř procesoru záchytná paměť RAM, vyrovnávající tyto rozdíly. Vnější paměť je řízena výstupním řídicím obvodem, který určuje pomocí osmi výstupů A0 až A7 jednu z osmi oblastí vnější paměti a v každé oblasti má přístup pro čtení a zápis (stavem špičky 28 R/W) na místech určených signály RAS (Row Address Select = adresy řádků) a CAS

(Column Address Select = adresy sloupců). Toto mapování odpovídá souřadnicím znaků, tj. řádkům 0 až 25 a sloupcům 0 až 39.

Pro každé takto určené místo se data zapisují nebo čtou sériovým sledem po obousměrném vedení připojeném na špičku 27. Protože je paměť dynamická, obnovují se data (refresh) v době mimo záchyt a zobrazení 128 cykly s trváním 2 ms. Veškeré časování v procesoru TPU obstarávají hodinové impulsy ΦM a 3 druhy signálů, přivedených z rozkladového procesoru DPU. Je to nezpožděný horizontální impuls zpětného běhu (vstup na špičce 11) a složený horizontální (zpožděný) a vertikální impuls (12). Protože by vybavování teletextových dat mohlo fázově kolísat vzhledem k rozkladovým impulsům v obvodu DPU, zavádí se zpět do teletextového procesoru záporná vazba (signál skew data) ze špičky 7 DPU na špičku 31 TPU za účelem minimalizace této odchylky.

Nepřichází-li do procesoru úplný televizní signál a procesor zobrazuje teletextovou stránku z paměti, synchronizuje se vychylování televizoru hodinovými impulsy ΦM stejně jako zobrazovací postupy v procesoru, takže je obraz stabilní.

Obvod pro řízení zobrazení a generátor znaků dostává z obvodu pro řízení pamětiosmibitová data, jimiž je možné generovat 96 znaků v 7 různých národních abecedách, lišících se na 13 pozicích. Výběr těchto jazyků se uskutečňuje automaticky pomocí řídicích bitů C12, C13, C14 v záhlaví každé stránky. Procesor TPU2732 obsahuje tyto jazyky: angličtinu UK, němčinu, švédštinu, italštinu, francouzštinu, španělštinu, americkou angličtinu. Poslední osmá kombinace tří řídicích bitů je volná.

Z generátoru znaků vycházejí na špičkách 6 až 9 signály RGB a klíčovací (přepínací) signál (9), označovaný též jako "fast blanking" (rychlé zatemnění). Jsou zavedeny do příslušných vstupů kodeku VCU. Přes obvod řízení zobrazení lze na výstup RGB přivádět i jiné externí signály RGB (na vstupy ♠ až 34) při podmínce log. 0 na špičce 10. Tato špička může být zapojena též jako výstup pro indikaci, zda je zapojen vnější či vnitřní signál RGB.

Některé finské analogové televizory, např. Salora řady K-80, používají pro modul teletextu číslicové procesory, tj. kromě paměti DRAM ještě kodek VCU2100, procesor TPU2733 a vychylovací procesor DPU2540 jen pro výrobu impulsů potřebných pro teletext. Propojení jednotlivých obvodů je na obr. 20.

Procesor pro zlepšení barevných přechodů

Procesor DTI2222 (Digital Transient Improvement) je číslicovou obdobou analogového integrovaného obvodu TDA4565 (viz literaturu [5]). Všechny základní postupy v úpravě jasového (dodatečné zpoždění) i obou rozdílových signálů barev (detekce strmosti čel a týlů s případným zadržením okamžité hodnoty) zůstávají stejné jako u analogového zapojení. V přehledu jsou číslicové funkce znázorněny na obr. 21. Čtyřbitový vstupní chrominanční signál (s rozdělením každého signálu barev na dvě části) je třeba nejprve demultiplexovat na dva následné 8bitové signály barev (R-Y) a (B-Y) a z osmibitového vedení pro výstup odbočit před řízením sytosti (u NTSC i tónu) do dalšího demultiplexeru, který dodává dva současné signály barev (R-Y) a (B-Y). V každé cestě je před detektorem strmosti čela a týlu zařazen interpolační filtr, který zajišťuje přítomnost číslicového signálu v každém hodinovém impulsu na vstupu před detektorem. Oba detektory vyrobí při určité strmosti signálů barev podle srovnání s hodnotami v řídicí jednotce CCU2030 (v její vnější paměti E²PROM) zadržovací impuls odebíraný ze špičky 21. Tato špička je spojena s nulovacím vstupem 23 kodeku VCU2100, který normálně nuluje kodek při zapnutí televizoru tím, že se napětí zvětšuje z nuly na +5 V. Přivede-li se však zadržovací impuls ze špičky 21 obvodu DTI (větší o 1 V než je 5 V), činnost výstupního převodníku D/A v kodeku se zastaví a výstupní signál setrvá na okamžité hodnotě, kterou měl těsně před výskytem zadržovacího impulsu. Při ukončení tohoto impulsu po uplynutí podmínky pro určitou strmost jednoho ze signálů barev se zastavení činnosti převodníku D/A v kodeku ruší a signál rázem nabývá hodnoty příslušné signálu v okamžiku skončení čela nebo týlu. Tím se strmost impulsů signálů barev učiní srovnatelnou se strmostí impulsů v jasovém signálu. Výhodou číslicového zpracování je možnost řídit podmínky pro za-

Obr. 21. Procesor pro zpoždění jasového signálu a pro zvýraznění barevných přechodů, DTI2222

Obr. 23. Vnitřní skupinové schéma ústřední řídicí jednotky CCU2030

držovací impuls pomocí sběrnice IM-BUS a tak lze velmi operativně v servisním módu televizor nastavovat. Před výstupem z procesoru DTI je třeba opět signály barev multiplexovat do podoby, ve které je přijímá kodek.

Ústřední řídicí jednotka CCU2030

Jak je z celkového zapojení televizoru soustavy DIGIT 2000 (viz obr. 12) patrné, ovládá ústřední řídicí jednotka CCU2030 všechny funkce televizoru měnitelné podle přání diváka (volba kanálů na různých programových místech, řízení jasu, hlasitosti atd. tj. analogových veličin), nebo řízené podle nastavení ve výrobě (řízení obrazových, zvukových a vychylovacích obvodů). Děje se tak pomocí několika periferních obvodů (viz obr. 22), z nichž nejdůležitější je vněiší. energeticky nezávislá paměť E²PROM v podobě integrovaného obvodu MDA2061. K ústřední jednotce je dále připojen obvod MEA2901 pro volbu kanálů pomocí kmitočtové syntézy. Porty P2 a P3 zajišťují

funkci tlačítkového pole na televizoru a napájení zobrazovací jednotky o 2 nebo 4 sedmisegmentových jednotkách. Osmé vedení ovládá znak tečky za zobrazeným znakem. Kromě toho má jednotka vstup 12 pro signál z infračerveného ovládání (přes předzesilovač TBA2800) a vstup 13 pro vzorkový signál oscilátoru kanálového voliče s kmitočtem děleným předděličem v poměru 54: 1 pro účel kmitočtové syntézy (viz literaturu 6). Vstup/výstup 5 ústřední jednotky má za úkol reagovat na stav pohotovosti (stby) a ovládat podle něho síťovou část tak, že jsou vypnuty všechny výkonné obvody televizoru až na příjem dálkového ovládání a napájení příslušné části ústřední řídicí jednotky na špičce 27. Činnost obvodu CCU2030 taktuje krystalový oscilátor 4 MHz, připojený na špičku 1, špičky 6 a 2 jsou testovací. Vnitřní zapojení ústřední řídicí jednotky je na obr. 23. Hlavní její částí je mikropočítač typu 8049 s vnitřní pamětí ROM (paměť stálých funkcí) o kapacitě 6,5 Kbytů a s pamětí RAM (paměť zpracovávaných volených údajů) o kapacitě 120 bytů. Počítač je modifikací základní mikroprocesorové řady 8048. Špičky 29, 30 portu P1 jsou využity pro spolupráci s obvodem kmi-

Obr. 22. Zapojení ústřední řídicí jednotky CCU2030 s periferními obvody v televizoru DIGIT 2000

točtové syntézy (rozhraní kanálového voliče MEA2901). Čtyři výstupy, 36 až 39, portu P2 představují ovládací signál scanner pro tlačítkové pole, které na osmi vstupech portu P3 (14 až 19, 21, 22) zavádí do ústřední řídicí jednotky zvolenou funkci ze 32 (=4×8) možností. Další čtyři výstupy, 23 až 26, portu P2 zajišťují multiplexování (= postupné aktivování) čtyř (7+1 segmentových) zobrazovacích jednotek s informací přenášenou z osmi výstupů portu P3.

Na začátku činnosti po zapnutí televizoru je ústřední řídicí jednotka stejně jako vnější paměť MDA2061 nulována logickou úrovní 0 na špičce 4 popř. 12 (viz obr. 22) signálu reset. Ten je odvozen z napětí při nabíjení kondenzátoru z napájecího napětí +5 V.

Komunikace po sběrnici IM-BUS a paměť MDA2061

Styk ústřední řídicí jednotky se všemi obrazovými, zvukovými a vychylovacími procesory a s vnější pamětí MDA2061 obstarává třívodičová sběrnice IM-BUS (název od firmy Intermetal). Po jednom vedení se přenášejí jednosměrné hodinové impulsy (clock), po druhém, rovněž jednosměrném, rozlišovací signál ident a po třetím vedení procházejí v obou směrech datové bity. Vzájemná časová souvislost impulsů vysílaných při adresování místa v paměti E²PROM při čtení nebo zápisu je na obr. 24. Podmínka pro vysílání povelu od mikroprocesoru k paměti je úroveň 0 na vedení clock a ident. Při úrovni 0 na vedení ident se adresou. 10000000 = 128 (bit LSB se přenáší jako první) přenese po vedení dat oznámení pro paměť, aby se připravila na příjem adresy žádaného místa v paměti, z něhož se má číst nebo do něho zapisovat určitá 8bitová informace. Stykový obvod v paměti MDA2061 zařídí, aby se další datové bity (tj. adresa paměťového místa), přenášená po vedení dat při úrovni I na vedení ident, zapsaly do registru adres a po dekódování označily žádanou adresu paměti. Sem se zapíšou nebo odtud se budou číst data o naladění

Obr. 24. Časové závislosti impulsových signálů na třívodičové sběrnici IM-BUS

televizoru (parametry obvodu určené a zapsané při výrobě, nebo stavy pro volbu kanálů a analogových veličin zvolené divákem). Po přijetí adresy paměti potvrdí vedení ident krátkodobým impulsem o úrovni 0 první část povelu. Při čtení z paměti na předznamenané adrese se vyšle při úrovni 0 na vedení ident informační povel l000 000l = 129 a obvody uvnitř integrovaného obvodu MDA2061 zařídí, že se z dříve určené adresy bude číst žádaná informace s osmi bity. Tato informace se přenáší do ústřední řídicí jednotky při úrovni I na vedení ident. Dokončení přenosu je potvrzeno impulsem o úrovni 0 na vedení ident.

Zapisovat se může v paměti MDA2061 do 128 míst, což určuje její kapacitu 128 × 8 = 1024 bitů. Proces zapisování se skládá ze dvou částí. Nejprve se uvedou všechna paměťová místa (datové bity v předem určené adrese (stanovené způsobem jako u čtení) na úroveň l a v druhém kroku se přeprogramují na stav, který má být v paměti uložen. Přepisuje se uvnitř paměti zvláštními pomalými hodinovými impulsy 1 kHz, odebíranými na špičce 3 z děliče (4096 : 1) uvnitř ústřední řídicí jednotky.

Postup přepisu je tento: Po určení adresy paměťového místa se při úrovni 0 na vedení Ident vyšle povel 10000011=131 znamenající, že se bude zapisovat. Za tímto stavem se vyšle povel IIIIIII = 255 při úrovni l na vedení ident, zakončený krátkodobým impulsem s úrovní 0 na tomto vedení. Toto slovo 255 se zachycuje ve vstupním registru dat a během 16 cyklů hodinových impulsů 1 kHz se na dříve označeném místě paměti přemění stav všech paměťových buněk na úroveň l. Pak následuje běžný vnější přenos hodinovými impulsy clock. Znovu se vysílají dvě slova určující místo v paměti a potom další dvě slova (131 a skutečná data určená k zápisu) zachycená v registru dat. Zápis je ukončen vnitřním přeprogramováním paměťového místa pomalými hodinovými impulsy 1 kHz.

Přídavné procesory soustavy DIGIT 2000

Skupina hlavních procesorů soustavy ITT pro digitalizaci televizního signálu může být doplněna (kromě paměťového procesoru popisovaného v samostatném článku) některými přídavnými integrovanými obvody. Týká se to hlavně soustavy NTSC, pro níž je vyvinut zvláštní dekódující procesor s číslicovými hřebenovými filtry, oddělujícími navzájem dokonale jasový a chrominanční signál. U této soustavy s pouhými 525 řádky může být viditelnost řádků zmenšena jejich zdvojnásobením při zdvojeném kmitočtu řádkového vychylování. Půlsnímkový kmitočet.60 Hz zůstává. Pak je ovšem třeba uložit signál televizního řádku v řádkové paměti a její obsah zaznamenaný v reálném čase přečíst dvakrát dvojnásobnou rychlostí, takže se zobrazí vedle sebe 2 řádky se stejným

obsahem (až na výjimku uvedenou dále). Zapojení několika procesorů je na obr. 25. Je třeba dvou řádkových pamětí (PSP – Progressive Scan Processor). Prokládání dvou půlsnímků zůstává, takže nejde o ryzí progresívní řádkování.

Obě řádkové paměti se střídají v zápise a čtení podle povelu W/R, přičemž jeden procesor plní úlohu velitele a druhý je mu podřízen. Volba se řídí úrovní napětí na špičce 40. Úplný televizní signál se přeměňuje na číslicový v první části kodeku. Číslicový signál zpracovává procesor NTSC, který jako typ CVPV2234 (Comb Filter Processor Unit) má kromě číslicových hřebenových filtrů ještě vertikální filtr, vybírající z číslicového signálu jemné detaily (např. úzké vodorovné proužky) a zaostřuje jejich přechody (tj. vertikální rozlišení) pomocí překmitů (peaking), podobně jako je tomu u zostřovače v jasovém kanálu pro vodorovné rozlišení. Tyto číslicové korigované podrobnosti lze podle řízení z ústřední řídicí jednotky přidávat do jasového signálu buď přímo v tomto procesoru (není-li použito zdvojování řádků), nebo je na dvou vedeních pomocí čtyř sériových bitů přenést do zdvojovacího procesoru. Zde se pak v jednom řádku přičítají k jasovému signálu a v sousedním druhém, tj. opakovaném řádku se odečítají. Tím se částečně zeslabuje meziřádkové blikání a oko dva sousední řádky integruje. Signál vertikálních podrobností se odebírá ze hřebenového filtru pro chrominanční signál. Je zřejmé, že vychylovací procesor (typ DPU2534) dodává na výstupu 31 řádkový budicí signál o kmitočtu 31 500 Hz. Signál čtený střídavě z řádkových pamětí nemá zaručenu pevnou vazbu barvonosného kmitočtu s řádkovým kmitočtem, patří podobně jako signál z teletextové paměti k signálům nestandardním a je jej třeba na další cestě zpět do druhé části kodeku (pro převod D/A) různě zpožďovat za účelem fázového vyrovnání s řádkovým rozkladem (protože pro nestandardní signály není u soustavy ITT pevná vazba mezi barvonosným a řádkovým kmitočtem). To obstarává procesor PSP pomocí impulsů "skew", odebíraných z vychylovacího procesoru na špičce 7.

Soustavu pro zdvojení řádků normy M (viz obr. 25) lze doplnit zvláštním procesorem RGB2932, určeným pro přenos signálů z počítače (PC) nebo z teletextu (TXT). Obvod má velmi dobré časové rozlišení, ale amplitudově je rozlišení omezeno na dvě úrovně u počítače a tři u teletextu. Číslicová data získaná uvnitř procesoru odřezem na těchto úrovních a pomocí komparátorů se pak přenášejí v šesti paralelních bitech spolu se čtyřmi bity signálu ostrých přechodů do paměťových procesorů PS, odkud se vracejí jako signály s dvojnásobným kmitočtem zpět do procesoru RGB a přeměňují se převodníky D/A. Z výstupů se přivádějí do druhé části kodeku a napájejí zde vstupy pro vnější analogové signály. Tento zdvojující procesor RGB lze použít i pro běžný provoz s jmenovitým počtem řádků.

Číslicové výstupy RGB jsou třístavové, aby bylo možné zapojení přepojit na obrazový televizní signál uvedením výstupů obvodu RGB2932 na velikou impedanci.

Dekodér pro soustavu D2-MAC v televizorech DIGIT 2000 firmy ITT

K integrovaným obvodům dosud probíraným v zapojení DIGIT 2000 patří i dekodér signálu vysílaného družicemi RDS (tzv. rozhlasové družicové služby) v pásmu 12 GHz a to s soustavách MAC/packet ve verzi C, D nebo D2 (viz literaturu [1]).

Zapojení takového dekodéru na obr. 26 může být samostatně přiřazeno k družicovému přijímači (tzv. vnitřní jednotce) nebo je obsaženo v televizoru s číslicovým zpracováním signálu pro multistandardní dekodéry a vyžaduje pak družicový přijímač bez dekodéru signálu MAC nebo alespoň jeho vestavěný modul.

Soustava D2-MAC pracuje s kmitočtovou modulací nosné vlny, takže po zpracování v družicovém kanálovém voliči a po kmitočtové demodulaci je na vstupu do vlastního

Obr. 25. Zapojení pro zdvojení počtu řádků v soustavě NTSC při zpracování televizního signálu i signálů RGB

dekodéru časově multiplexovaný signál soustavy D2-MAC v základním pásmu. Po upnutí na klíčovací úroveň signálu na stálé napětí (např. 5,5 V) a po hrubém vyrovnání amplitudy signálu obvodem pro samočinné řízení zesílení (AGC) se signál základního pásma převádí vzorkováním hodinovými impulsy 20,25 MHz, dodávanými ze známého generátoru MUC2632, na signál číslicový, a to v první části kodeku VCU2133 (viz obr. 26). Dekodér DMA2270 rozdělí sedmibitové vzorky na signály Y a UV a zbaví je komprese (viz [1]). Číslicové signály se vrátí do druhé části kodeku pro převod D/A na výstupní signály RGB. Kromě zpracování televizních obrazových signálů odvozuje dekodér ze začátků datového signálu řádkovou a z řádku 625 půlsnímkovou synchronizaci, takže dodává do vychylovacího procesoru DPU2533 na špičku 6 synchronizační směs pro synchronizaci obou rozkladů. Kromě této směsi vyrábí synchronizační část dekodéru i jiné impulsy pro vnitřní časování a udržuje chod generátoru 20,25 MHz v integrovaném obvodu MCU2632 v synchronním stavu se vzorkovacím kmitočtem soustavy MAC.

Třetí hlavní úlohou dekodéru je osamostatnit z číslicového signálu zvuk a jeho řídicí data, dále pak zvuková data roztřídit podle adres paketů a zanést je do vnější paměti DRAM. Z ní se 16bitové vzorky jednotlivých čtyř zvukových kanálů multiplexují do sériového přenosu. Ten se uskutečňuje po sběrnici S, po které přecházejí čtyři zvukové kanály do procesoru AMU2480 pro míchání zvuků. V něm je možné vybírat určitý zvolený zvuk v různých kombinacích (např. stereo, mono, komentátorský zvuk v jiném jazyku, který lze i smísit s původním hlavním monofonním zvukem). Vybrané zvuky přecházejí v podobě sériových dat do zvukového procesoru APU2470, v němž se po možném nastavení všech zvukových veličin převádějí z číslicové formy do analogové, jak popisujeme u obvodu APU2470. V dalším výkladu se seznámíme podrobněji s dekodérem DMA2270 a s obvodem AMU2480 pro míchání zvuků.

Číslicový dekodér signálu D2-MAC DMA2270

Je to velmi složitý procesor, obsahující při ploše čipu 5,5 × 5,5 mm 68 vývodů. Pro dobré porozumění činnosti tohoto obvodu je třeba podrobně si zopakovat způsob zpracování všech signálů soustavy D2-MAC, zvláště však paketovou formu zvukového číslicového přenosu (viz literatura [1]).

Do integrovaného obvodu DMA2270 (viz obr. 27) přichází signál základního pásma, vzorkovaný v převodníku A/D kodeku VCU2133 signálem o kmitočtu 20,25 MHz, dodávaným generátorem impulsů (v obvodu MCU2632), řízeným fázovým závěsem se začátky synchronizačních impulsů. Po přeměně z Grayova kódu do binárního se signál rozděluje do části obrazové a do části synchronizační a zvukové. Tyto jednotlivé části se časově řídí impulsy o příslušných kmitočtech (uvedených na obr. 27) a jednotlivé druhy impulsů se vytvářejí ze základních impulsů L (řádkových) a F (půlsnímkových).

Impulsová část

V impulsové části se ze špičky 48 odebírá impuls pro vnější analogové upínání (kromě vnitřního číslicového). Na špičce 49 jsou tři stavy, ovládající vnější řízení AGC. Úroveň I označuje příliš malou úroveň vstupního signálu, úroveň 0 představuje příliš velký signál a stav velké impedance neovlivňuje řízení AGC. Fázový komparátor porovnává čela synchronizační skupiny impulsů na každém řádku s kmitočtem hodinových impulsů ΦM a pomocí dat (špička 25) a jejich taktu (20) řídí fázový závěs v obvodu MCU2632. Ze špičky 50 dodává synchronizační část do kodeku řádkový zatemňovací impuls (impuls klíčující burst B se v kodeku při soustavě D2-MAC neuplatňuje), stejně tak i kombinovaný vertikální zatemňující impuls ze špičky 51. Řádkové klíčovací impulsy na špičce 52 se uplatňují při připojení dekodéru teletextu na data D2, přicházející ze špičky 59, k čemuž je zapotřebí otevírací impuls pro okénko teletextu ze špičky 57. Úplná synchronizační směs ze špičky 53 synchronizuje přes vychylovací procesor DPU2533 (špičku 6) oba vychylovací obvody.

Pro vnější zařízení, zpracovávající datový signál soustavy D2-MAC (teletext, různá řízení a zprávy z datových paketů, nebo i zvuk), se odebírají data převedená ze tří úrovní duobinárního kódování do běžného binárního tvaru na špičce 59 (pokračují uvnitř jako zvukový/datový signál). Vyžadují takt D2 ze špičky 60 a synchronizaci ze špičky 58. Tento odběr se řídí z mikropočítače pomocí sběrnice IM-BUS, stejně jako řada dalších povelů pro zpracování obrazu a zvuku.

Obrazová část

Časově vymezený jasový signál se v příslušném intervalu ukládá do paměti pro jeden řádek, a to vzorkovacím signálem o kmitočtu 20.25 MHz. Roztáhne se na celý řádek v poměru 3/2 tím, že se čte z paměti vzorkovacím signálem o kmitočtu 20,25. 2/3 = 13,5 MHz. Aby však byl pro převodník D/A vzorkovací kmitočet stejný jako pro převodník A/D v kodeku, interpoluje se v dalším filtru ze dvou vzorků další třetí vzorek, takže se kmitočet vzorkovacího signálu zvětší ze 13,5 MHz na 20,25 MHz. Po řízení kontrastu násobičkou se z osmi výstupních špiček vrací jasový signál do kodeku a jeho zpracování i zpracování signálů barev UV je zcela kompatibilní s postupem u soustav PAL/ SECAM.

Signály barev UV přicházejí do "své" paměti, zaznamenávající 3 řádky postupně za sebou. Čtou se z paměti třikráte nižším kmitočtem 6,75 MHz, než byl kmitočet zápisu a signály se roztáhnou na celý řádek. Aby se získaly současně signály U a V, vytváří se při signálu V_n současný (neexistující) signál Un interpolací z řádku Un-1 a Un+1. Podobně ie tomu při současném signálu Un, při kterém se interpoluje signál V_{n-1} a V_{n+1}. Z téhož důvodu (jednotné vzorkovací kmitočty 20,25 MHz v převodníku D/A) jako u jasového signálu se interpolačním filtrem v obou současně probíhajících signálech U, V přeměňuje vzorkovací kmitočet 6,75 MHz násobením 3/2 na 10,125 MHz s přenosem po čtyřech vedeních u každého signálu. Následující násobička mění nezávisle sytost signálů U a V (pomocí sběrnice IM-BUS) a lze tedy nastavit správný poměr signálů U a V (V/U = 0,71), jak vyžaduje matice

v druhé částí kodeku. Aby byl výstup chrominančního signálu z dekodéru D2-MAC slučitelný se vstupem kodeku VCU2133, multiplexují se současně signály U a V do postupných signálů na čtyřech vedeních (špičky 21 až 24). Tím se vzorkovací kmitočet zmenší dvakrát, tj. na 5,0625 MHz. Integrovaný obvod má pro chrominanční signál 8 výstupů, takže je možný též přenos po 8 vedeních se vzrokováním 10,125 MHz (zde nepoužito). Pomocí sběrnice IM-BUS lze měnit kmitočtové charakteristiky (průběh útlumu) interpolačních filtrů a tak měnit šířku přenášeného pásma.

Zvuková část

Zvuková část procesoru DMA2270 nevyužívá plně celé filozofie číslicového zpracování zvuku. Dekodér zvuku se řídí jen informacemi odvozenými ze záhlaví (adresy) paketu, kde jsou specifikovány druhy služeb. Nereaguje sám na bity přenášené v instrukčních paketech BI (viz literaturu [1]). Tyto signály stejně jako informační data o službách v 625. řádku může zpracovat jen jiné vnější zařízení, připojené na zvláštní, již zmíněný výstup signálu "zvuk/data". Skládá se ze tří vedení: data D2 (59), takt D2 (60), synchronizace D2 (58).

Sledujme vnitřní zapojení zvukové části po výstupu z duobinárního dekodéru, takže postupující signál "zvuk/data" je ryze binární, přenášený po rámcích o 99 bitech. Pomocí postupů, které jsou inverzní vzhledem k vysílací straně, se signál zbaví scramblovacího signálu v podobě pseudonáhodných dvojkových čísel (zavedeného na vysílací straně z důvodu rozptylu spektra). Současně se proložené bity v paketech se 751 bitem seřadí do původního sledu, takže se rámcový formát 99 bitů převede na paketové formáty se 751 neproloženým bitem. Pakety se seřazují podle svého záhlaví (adresy) s 23

Tab. 2. Význam adresovaných bitů v záhlaví paketu

Bit	Funkce
b10, b9, b8 b7	podskupina následujících 128 adres "0" = mono, "I" = stereo
b6	"0" = střední jakost (vzorkovací kmitočet 16 kHz, f _{max} = 7 kHz) "I" = velká jakost (vzorkovací kmitočet 32 kHz, f _{max} = 15 kHz)
b5	"0" = ochrana první úrovně (kontrola paritou) "I" = ochrana druhé úrovně (Hammingovým kódem)
b4	"0" = kompandované kódování (10 bitů pro vzorek) "1" = lineární kódování (14 bitů pro vzorek)
b3, b2, b1	adresa zvukového kanálu ("000" hlavní zvuk)

bity, takže se k sobě řadí pakety se stejnou adresou a s inkrementujícím indexem kontinuity (2 bity, po prvních 10 bitech v záhlaví). To se děje v obvodě pro porovnání adres paketů a indexu kontinuity. Dříve však prochází signál ochranou Golayovým kódem, která pomocí 11 ochranných bitů v záhlaví umí opravit až 3 vadné bity z celkového počtu 23 bitů v záhlaví. Zde se také vybírají osmibitové informace PT (následující za záhlavím), které rozlišují, zda následují zvukové či datové (instruktážní) pakety.

Než budeme sledovat další cestu seřazených paketů maximálně ve čtyřech hlavních zvukových kanálech, uveď me ještě, že paket adresovaný 000_{Hex} je paket instruktážní, jehož obsah (maximálně 720 bitů) může být zachycen v registru a zpracován mikropočítačem pomocí sběrnice IM-BUS.

Jak z teorie přenosu zvuku u soustavy D2-MAC známe (viz literaturu [1]), závisí počet přenášených zvukových kanálů na způsobu kvantování, ochrany a akustickém kmitočtovém rozsahu přenášených zvukových signálů. Tyto signálové parametry popisují jednak jednotlivé bity z celkového počtu 10 bitů

v záhlaví, jednak jsou obsaženy a náležitě chráněny Hammingovým kódem v instruktážních paketech BI (zde nepoužity). Podle těchto bitů s významem uvedeným v tab. 2 mohou být zvuky stejných parametrů seřazeny do jednotlivých kanálů. Mezi parametry pro jeden kanál jsou možné libovolné kombinace vysílání, kromě provozu "stereo se zmenšenou šířkou pásma" (vzorkování 16 kHz). Teoreticky by bylo možné přenést počty od osmi kmitočtově omezených (komentátorských) kanálů, tzv. střední jakosti, až po 2 kmitočtově kvalitní kanály se zvětšenou ochranou a lineárním kvantováním (=stereo). Podle způsobu ochrany zvukových bitů (paritně nebo Hammingovým kódem) se opravitelné chyby v dalším obvodu opravují a pakety se přeměňují při časovém roztažení pomocí vzorkovacího kmitočtu 32 kHz na 14bitové vzorky, které lze ukládat ve vnější dynamické paměti DRAM 64 K,

a to přes obvod řízení paměti. Při tom bity, které není možné opravit, se vynechávají nebo se interpolují ze sousedních bitů.

Vnější paměť se řídí povelem čtení/zápis (R/W) ze špičky 7 a adresami A0 až A8, přiváděnými pro řádky (RAS) nebo sloupce (CAS) podle stavů na špičkách 8, popř. 68 (tj. 256. 256 = 64 K).

Z paměti se data čtou pro připojený mísící procesor AMU2480 přes multiplexer zvukových kanálů, který nejdříve převádí 14bitové vzorky na 16bitové. Přes 64bitový posuvný registr se po vedení "data S" (66) přenášejí čtyři šestnáctibitová slova (každé představuje vzorek jednoho zvukového kanálu), taktované taktem S ze špičky 67 za pomoci signálu ident S ze špičky 64 (viz časový diagram v pravém dolním rohu obr. 27). Obvod pro míchání zvuků (viz dále) vyžaduje taktovací sinusový signál vyráběný v procesoru DMA2270, jehož kmitočet 21,6 MHz ie celistvým násobkem zvukového vzorkovacího kmitočtu (675 × 32 kHz). Z těchto akustických taktovacích impulsů se dělením pěti odvozuje již zmíněný taktovací signál S pro sběrnici S.

Obvod pro mísení zvuku, AMU2480

Zařazení tohoto obvodu do zapojení dekodéru D2-MAC v soustavě ITT je patrné z obr. 28. Po sběrnici S vstupují sériová data čtyř zvuků do sériově paralelního převodníku S/ P (viz obr. 28), takže z něj vystupují na čtyřech vedeních čtyři druhy zvuku. Pouze ve dvou z nich, nesoucích případně zvukové signály střední jakosti (vzorkovací kmitočet 16 kHz pro maximální kmitočet 7 kHz) se tyto signály převzorkovávají při dvojnásobném vzorkovacím kmitočtu 32 kHz. Převzorkování začíná v procesoru DMA2270, v němž se z paměti vybírá vzorek dvakráte taktovaný s tím, že se opakovaný vzorek učiní rovným nule. Interpolace se pak dokončí v číslicové dolní propusti (7 kHz/-3 dB) v mísícím procesoru AMU2480. Převzorkování lze vypínat volbou koeficientů K20 až K23. Jednotný vzorkovací kmitočet 32 kHz taktovaný signálem 21,6 MHz z procesoru AM2480 se zavádí z důvodu jednotného signálového formátu pro velmi i středně jakostní kanály.

Ze všech čtyř vstupních kanálů lze vstupovat do čtyř výstupů v libovolných kombinaObr. 29. a) Běžné prokládané řádkování se střídáním půlsnímků A1 A2 B1 a) . B2, b) rozklad s dvojnásobnou rychlostí s opakováním půlsnímku v téže poloze A1 A1 A2 A2 B1 B1 B2 B2, c) rozklad dvoinásobnou rvchlostí s opakováním téhož půlsnímku v poloze druhého půlsnímku A1 A2 B1 B1' B2' B2, d) vytvoření progresívního řádkování sloučením současného a zapamatovaného předchozího řádku (statické obrazy)

cích pomocí sčítacích členů A1 až A4, a to podle nezávisle volených násobicích koeficientů K4 až K19. Je tak možné převádět na výstup jednotlivé i libovolně smíšené (podle velikosti koeficientů) signály. Pomocí nulového koeficientu K0 lze vypínat oba kvalitní kanály 1, 2, podobně jako nulový koeficient K1 umlčuje oba kanály střední jakosti (3, 4). Proměnné koeficienty se ukládají do paměti RAM přes sběrnici IM-BUS a určují pak spolu se stálými koeficienty v paměti ROM smíšení signálu v uvolněných výstupních kanálech. Převod sériového přenosu na paralelní na vstupu a opačný na výstupu vyžaduje vnitřní paměť RAM o kapacitě 50 × 16 bitů. Z výstupu 6 se přivádějí sériově přenášené kanály do procesoru APU2470, popisovaného při číslicovém zpracování zvuku v televizoru soustavy ITT. Zde se mohou uplatnit dva zvukové kanály v cestě pro reproduktory a nezávislé dva v cestě pro sluchátka. V tomto procesoru se po řídicím zpracování přes sběrnici IM-BUS převádí číslicový signál na analogový nf zvuk.

Soustavy s půlsnímkovými pamětmi v televizorech IDTV

Než se budeme věnovat podrobně soustavám ITT a Philips pro číslicové zpracování televizního signálu uvnitř televizoru s použitím půlsnímkové paměti, zmíníme se o důvodech a výhodách zavedení těchto paměťových obvodů.

Účel a vyůžití půlsnímkových pamětí

. Použití půlsnímkových pamětí pro záznam číslicového televizního signálu umožňuje odstranit některé vady obrazové reprodukce a zavádí do obsluhy televizoru nové charakteristické funkce. Hlavními vadami klasicky řádkovaného rastru je blikání velkých bílých ploch a blikání a mihotání vodorovných rozhraní (včetně "plavání" řádku) vlivem prokládaného řádkování. Blikání velkých ploch s velkým jasem lze odstranit uložením vzorkovaného televizního signálu v číslicové formě do půlsnímkové paměti a pak jejím přečtením dvakrát za sebou (viz obr. 29). Protože má zůstat počet řádků a prokládání 2:1 stejné jako u dosud běžné reprodukce obrazu, je při vertikálním dvoinásobném kmitočtu 100 Hz potřeba zdvojnásobit i řádkový kmitočet na 31 250 Hz. Z paměti lze odebírat zrychlený (tj. časově stlačený) signál různým způsobem, je však třeba u komerčních televizorů brát v úvahu výrobní náklady. Opakováním téhož půlsnímku na stejné poloze v rastru (obr. 29b) se odstraní blikání velkých ploch, ale nezmenší se vady prokládaného řádkování, tj. blikání 25 Hz na vodorovných ostrých rozhraních. Zvýšení kmitočtu tohoto rušení na dvojnásobek by se dosáhlo opakováním prvého (lichého) půlsnímku v poloze, která druhému (sudému) půlsnímku a naopak (viz obr. 29c). Tento způsob reprodukce se hodí jen pro stojící obrazy (např. teletext), neboť se při něm zakřivují při pohvbu v obraze svislé rovné čáry. V soustavě číslicového zpracování podle ITT lze oba způsoby provozu přepínat. Destrukční vady při pohybu lze odstranit úpravami v číslicovém signálu, tj. vertikální interpolací a zdůrazněním ostrých přechodů ve vertikálním směru (peaking). Meziřádkové blikání a mihotání by bylo možné zcela odstranit převodem prokládaného řádkování na progresívní (625 řádků za sebou v rytmu 50 Hz při řádkovém kmitočtu 31 250 Hz). Takového bezchybného zlepšení pro stojící obraz lze dosáhnout proložením předchozího zapamatovaného půlsnímku se současným půlsnímkem. Oba však musí být v paměti a čtou se z ní dvojnásobnou rychlostí, než se do ní ukládají. I toto zobrazování vyžaduje pro pohyb bez rozmazání buď úpravy číslicové-

Obr. 30. Nové charakteristické funkce (features) televizoru v zapojeních s půlsnímkovou pamětí; a) mnohonásobný obraz, b) obraz v obraze, PIP, picture in picture, c) lupa (zoom)

Obr. 31. Základní zapojení reprodukce současného obrazu v obraze (PIP) se dvěma zaměnitelnými zdroji televizního signálu. Obrazový procesor PIP2250 obsahuje v novějším provedení i část obrázku (schématu), ohraničenou čárkovaně

ho signálu interpolacemi z okolních řádků téhož i předešlého půlsnímku, nebo použitím detektoru pohybu (viz dále).

Číslicovým přepracováním televizního signálu pomocí půlsnímkové paměti lze zmenšovat vliv šumu a jiných rušení (crosscolor) v televizním signálu. Převratné nové funkce se nabízejí při paměťovém zpracování signálu. Je to stojící obraz, mnohonásobný obraz, obraz v obraze a obrazová lupa (viz obr. 30). Při mnohonásobném obrazu je stínítko obrazovky rozděleno na 9 částí při třetinovém dělení šířky a výšky obrazu. Z číslicového signálu pro určitý televizní kanál nebo pro fázově rozdělený děj se z každého řádku vybírá jen každý třetí vzorek a z počtu řádků na jeden půlsnímek jen každý třetí řádek. Tím se počet bitů ukládaných do půlsnímkové paměti zmenší na devítinu, takže lze pro celou plochu obrazovky ukládat 9 dílčích obrazů. Jsou to nepohyblivé momentky rozfázovaného pohybu, přičemž jeden libovolný obrázek může být plynulý v reálném čase. V devíti obrázcích též lze zachytit devět televizních kanálů, a to postupným samočinným přepínáním volby kanálů. Tyto ukázky z devíti programů se samočinně aktualizují. Při módu obraz v obraze (PIP - Picture in Picture) se v jednom malém obdélníku (jednom z devíti), obvykle v horním rohu stínítka, zobrazuje buď pohyblivý obrázek při stojícím velkém hlavním obrazu, nebo naopak. Oba pohyblivé obrazy (malý i hlavní) lze získat jen pomocí dvou současných zdrojů plynulého signálu. Je k tomu zapotřebí zvláštní přepínací procesor PIP2250 (viz obr. 31) a paměť DRAM s devítinovou kapacitou, než by měla hlavní paměť pro úplné paměťové zpracování (s rozkladem 100 Hz). Procesor PIP2250 má v novější verzi 6 bloků, a to: převodník A/D, jednotku VPU s dekodérem, časovací obvody pro horizontální a vertikální vklíčování, vstupní a výstupní obvody a paměťové rozhraní. Další funkční vlastností (feature) je lupa (obr. 30c), při níž se opakováním každého vzorku v řádku a každého řádku dosáhne čtyřnásobného zvětšení jistého výřezu volitelného kurzorem na dálkovém ovládání, a to v deseti úsecích ve směru vodorovném a sedmi ve směru svislém.

Soustava ITT pro neblikavý obraz

Soustavu ITT Digit 2000 s jednoduchými barevnými dekodéry PAL/NTSC (v podobě násobičky v reálné ose 1,0 – 1,0), avšak s problémy nestandardních signálů v řádkové synchronizaci neupnuté k barvonosnému kmitočtu a s nutnou korekcí "skew" lze doplnit půlsnímkovou pamětí (v podobě šesti jednoduchých dvouportových pamětí DRAM 64k × 4). Paměť sama vyžaduje vstupní a výstupní rozhraní, které je v soustavě ITT

realizováno integrovaným obvodem VMC2260 (Video Memory Controller).

Pro uložení jednoho půlsnímku do paměti by bylo zapotřebí takové bitové kapacity, která odpovídá počtu vzorků při vzorkování 17,7 MHz. Na jeden řádek připadá v soustavě PAL 177 720:15,625 = 1135 vzorků s 8 bity pro jasový signál a pro oba rozdílové signály vzorkované se čtvrtinovým vzorkovacím kmitočtem 2× 1135/4 = 567 osmibitových vzorků. To činí celkem (1135 + 567). . 8 = 13 616 bitů pro jeden řádek a pro půlsnímek 13 616 . 312,5 = 4,255 Mbitů. Je snahou vystačit s menší kapacitou paměti, a to např. pomocí 6 pamětí DRAM 64k × 4, což představuje úhrnnou kapacitu 1,5 Mbitů. Toho se dosáhne zmenšením počtu vzorků jen na počet vzorků v aktivní části řádku, a to 918 pro jasový signál a 459 pro chrominanční signál. Zaznamenává se pouze 288 aktivních řádků (312,5 - 25). To by požadovalo kapacitu 3,2 MHz. Dalším rozhodujícím opatřením je redukce bitů v procesoru pro řízení paměti VMC2260, viz obr. 32

Počet bitů pro jeden půlsnímek lze zmenšit snížením kmitočtu vzorkování až na mez Nyquistovy podmínky $2 \times 6 = 12$ MHz. Proto se vzorkovací kmitočet 17,7 MHz redukuje poměrem 2/3 pomocí interpolačních dolních propustí (obr. 33). Tyto propusti mají na výstupu rozdíl ve zpoždění rovném polovici opakovací periody. Přepínáním výstupu

Obr. 32. Skupinové schéma procesoru VMC2260 pro řízení vnějších pamětí DRAM

Obr. 33. Přeměna vzorkovacího kmitočtu v procesoru VMC2260 interpolačními číslicovými filtry; a) snížení kmitočtu, b) zvýšení kmitočtu

tak, aby se přenesl až každý třetí impuls v časovém pořadí z hlediska obou výstupů, se kmitočet výstupního signálu jeví jako 2/3 kmitočtu vstupního signálu. Podobným způsobem se dvojnásobné čtení z paměti rychlosti 2 × 11,8 = 23,6 MHz převádí interpolací 3:2 na výstupní vzorkovací kmitočet 35,4 MHz. Použijí se při tom tři na vstupu paralelně zapojené dolní propusti s různými zpožděními τ_1 , τ_2 , τ_3 , čímž se kmitočet fiktivně ztrojnásobuje a dělí se na polovinu tím, že přepínač P na výstupu odebírá jen každý druhý impuls v časovém pořadí. Před vstupní redukcí se chrominanční signál demultiplexuje na 8bitový tok impulsů. Zpoždění jasového signálu se zde u nestandardních signálů (bez stálé vazby barvonosného kmitočtu na kmitočet řádkový) řídí podle opravného fázovacího signálu "skew", dodávaného vychylovacím procesorem. Je to zapotřebí vždy tam, kde se vzorkování s kmitočtem, upnutým na barvonosný kmitočet, převádí na ortogonální adresování paměti, které je podle podoby s rastrem obrazu vázáno na řádkový kmitočet.

nálem "skew" zavedena pro výstupní (tj. zpětnou) transformaci vzorkovacího kmito-

Další významné redukce počtu bitů z osmi

kost rozlišení osmibitového signálu, se dosáhne diferenciální pulsně kódovanou modulací DPCM (viz obr. 34). Osmibitový signál vytvořený jako rozdíl vstupního signálu a korigovaného signálu kvantovaného ve 22 úrovních se jako predikační odchylka kóduje do pěti neúplných bitů (tj. 0 až 21 odpovídá 4,5 bitu). Korekce (tzv. predikce) se uskutečňuje sečtením 2 vzorků a to z předešlého televizního řádku a současného, o jeden takt zpožděného vzorku podle zapojení na obr. 34a. Výstupní 4,5bitový signál se v případě volby funkce "obraz v obraze" redukuje (decimuje) vynecháváním 2 vzorků v řádku a 2 řádků mezi přenášenými řádky.

Inverzním postupem na výstupu (ovšem s dvojnásobnou rychlostí vzorkování) je dekódování 4,5 bitových slov. Dekodér poskytuje na svém výstupu 8bitovou predikční odchylku, k níž se v součtovém členu přidá hodnota predikce (steiná úprava iako na straně kodéru). Součet vytváří původní osmibitový signál na výstupu (viz obr. 34b). Pro styk procesoru s pamětí je určeno vstupní rozhraní, které přeměňuje, tj. seřazuje tok predikčních odchylek jasového a chrominančního signálu o 4.5 bitech do společného sériového 4,5bitového toku (viz obr. 35) pomocí multiplexeru a tento signál pak přeměňuje na 9bitový podle algoritmu zobrazeného na obr. 35. Slučují se tak dvě za sebou

(4,5 bitu) rådek predikční filtr výstup ы

Obr. 34. Zapojení kodéru (a) a dekodéru (b) pro redukci dat diferenční pulsní kódovou modulací (DPCM)

Obr. 35. Seřazování dat do bloků v paměťovém rozhraní procesoru VMC2260

s předchozím násobeným koeficientem k = 22 (4,5 bitu odpovídá desítkové hodnotě 0 až 21). Výsledný devítibitový signál se pak multiplexuje na 24bitový, u něhož 20 slov tvoří jeden blok. Pro přenesení redukovaného počtu (2:3) vzorků 612 pro signál Y a 306 pro signál CH na jednom řádku ve vviádření predičních odchylek pomocí 4,5 bitů je zapotřebí přenést do paměti 9 taktových bloků a to během jednoho řádku vysílaného v reálném čase střídavě s dvojím, tj. opakovaným čtením. Skupina pamětí DRAM musí být tak rychlá, aby byla schopna zapsat a dvakrát přečíst za 64 μ s, tj. $3 \times 9 = 27$ bloků (viz diagram na obr. 32). Adresování pamětí řídí zvláštní obvod s řádkovými a vzorkovými čítači, v němž se též volí časový sled případných dílčích obrázků podle volby funkce "feature", probíhající pomocí sběrnice IM-BUS. Stojící obraz se realizuje zastavením zápisu do pamětí.

Dynamické paměti se občerstvují po každých 4 ms, kdy je každý řádek paměti zpřístupněn po 24 televizních řádcích, aby přijal další příslušné adresy sloupců.

Při čtení z paměti se 24bitový signál přeměňuje inverzním postupem (vzhledem k obr. 35) zpět na dva paralelní 4,5bitové signály predikčních odchylek signálů Y a CH, jež se dekódují a interpolují již dříve popsaným způsobem do ryzího číslicového 8bitového jasového a odděleného 4bitového chrominančního signálu s multiplexovanými složkami (R-Y) a (B-Y). Tyto složky číslicového signálu přicházejí do druhé části kodeku VCP ke zpracování v převodnících D/A.

Soustava Philips s půlsnímkovými pamětmi Siemens

Tato vylepšená a doplněná soustava poskytuje kromě neblikavých velkých ploch a všech nových funkcí ještě možnost zmenšit vliv šumu a přeslechy crosscolor. Neodstraňuje meziřádkové blikání, leda že by se při volitelném módu progresívního řádkování ztotožnily liché a sudé půlsnímky. Soustava Philips upouští od výhody jednoduchých nekvadraturních dekodérů barev při vzorkovacích kmitočtech svázaných s barvonosným kmitočtem. Používá kvadraturní modulátory s fází 0° a 90° a vzorkovací kmitočet pevně váže s řádkovým kmitočtem. Tím se usnadní zpracování nestandardních signálů, při němž barvonosný kmitočet není upnut na řádkový kmitočet, neboť odpadá též fázová korekce skew při záznamech a čtení z pamětí s ortogonální strukturou.

Přehledné zapojení číslicového zpracování signálu v televizoru Grundig MXX-100 IDTV, používající soustavu Philips, je na obr. 36. Aby se analogový televizní signál z různých zdrojů (televizoru, videomagnetofonu, RGB) převáděl v převodnících A/D ve stejných amplitudových rozsazích, je na vstupu

Obr. 36. Zapojení integrovaných obvodů na modulu FEATURE BOX

modulu, zvaného "feature box", zařazen integrovaný obvod TDA9045. Jeho úkolem je přepínat vstupy *2, 3, 4* elektronickým přepínačem P, řízeným dvoubitovým vedením SS2, SS3 z integrovaného obvodu SAA9051 (barevného dekodéru PAL/NTSC), kde je rozhraní sběrnice l²C (o této sběrnici pojednává literatura [7]). Přepnutí na příslušný vstup určují úrovně na špičkách *1, 15.*

Moderní televizor má několik externích vstupů, představovaných např. dvěma konektory SCART, CYNCH, S-VHS. Jejich připojení se řídí elektronickými přepínači včetně přepínání P_e v zesilovači OMF, přepínaném napětím AV. Je-li zdrojem signálu videomagnetofon soustavy S-VHF, přichází signál jasový odděleně od chrominančního. Jasový signál přichází přes přepínač P2 na vstup 4 TDA9045 a chrominanční jde přes přepínač P3 přímo do zvláštního druhého převodníku A/D. Podobně je tomu při připnutí televizoru na vnější signály RGB. Musí však přicházet ještě jasový signál Y, v němž je obsažena synchronizace obrazu. Signály RGB se kódují v kodéru MC1377 na jasový signál Y a chrominanční signál CH v soustavě PAL a ty se zpracovávají podobně jako signály soustavy S-VHS (přepnutím přepínačů P2 a P3). Současně se povelem Udata aktivuje oscilátor 4,43 MHz barvonosného kmitočtu, a to uzemněním krystalu X přes tranzistor T₁. Kodér je při tom zásoben synchronizační směsí, získanou oddělovačem synchronizačních impulsů z jasového signálu.

Na modulu "feature box" jsou dílčí integrované obvody jako převodníky A/D, dekodéry tří hlavních soustav, půlsnímkové paměti se vstupním rozhraním (současně působícím jako obrazový procesor ke zmenšení šumu), výstupní rozhraní s převodníkem D/A, dále pak obvod pro řízení paměti, generátor hodinových impulsů a vychylovací procesor dodávající budicí impulsy 100 Hz a 31 250 Hz pro oba vychylovací koncové stupně. Z modulu "feature box" vycházejí analogové obrazové signály Y, (R–Y), (B–Y),

mající dvojnásobný kmitočet vzhledem k přijímaným obrazovým signálům, neboť opakují za sebou (viz obr. 29b) obsah téhož půlsnímku na témže řádku. Proto musí být obrazový procesor TDA9080 schopen přenášet signál o dvojnásobném kmitočtovém

rozsahu (nejméně 10 MHz), než jeho špič-

kový ekvivalent TDA3505.

Teletext se zpracovává analogově, odděleně mimo popisovaný modul, a to přivedením úplného televizního signálu (nebo jen Y) do dekodéru teletextu. Jeho výstupní časovací obvody jsou ovládány dvěma impulsovými signály, HS s normálním a CSY se zdvojeným řádkovým kmitočtem. Přes procesor teletextu (SDA9231) se nesynchronizují rozklady televizoru tak, jak je tomu u typu SA45231 v televizoru s analogovým signálem. Rovněž zvukový signál se zpracovává v analogové verzi na rozdíl od soustavy ITT. Postupně popíšeme jednotlivé integrované obvody modulu "feature box".

Analogový procesor TDA9045

Kromě zmíněného přepínání vstupů má tento integrovaný obvod (obr. 37) samočinným řízením zesílení (AGC) vyrovnávat rozdílné amplitudové úrovně vstupů, které pak následující klíčovací obvod upíná na jednotnou úroveň černé. Jen tak se využije optimálně rozsahu pro komparátory v navazujících převodnících A/D. Zvolený signál je zesílen o 4 dB a přiveden na vnější odporový dělič R₁R₂, jímž je možné upravovat vstupní amplitudu do obvodu AGC. Tento obvod udržuje stálé výstupní napětí v rozmezí nejméně 6 dB. Pomocí impulsu HSY, totožného fázově s horizontálním impulsem, se v detektoru amplitudy posuzuje nezávisle na obrazovém obsahu úroveň synchronizačních impulsů a řídicí hodnota se ukládá do kondenzátoru C3 na špičce 7. Kromě toho působí na regulaci i opačná maximální úroveň signálu, tj. špičková bílá, jejíž překročení by působilo nepříznivě na amplitudu synchronizačních impulsů. Proto je druhý detektor amplitudy nastaven tak, aby vzniklým

Obr. 37. Výběr vstupů, upínání a samočinné řízení zesílení (AGC) v integrovaném obvodu TDA9045

regulačním napětím na kondenzátoru C_2 tento nahodilý stav omezoval. Upínací obvod působí na zadní prodlevě signálu, t_k vhodnou fázovou polohou impulsu HC za podmínky (dané hradlem "and"), že se nevyskytuje impuls HSY (tedy mimo synchronizační impuls). Aby se v době náběhu televizoru obraz rychle zasynchronizoval, zmenší se klíčovací úroveň černé tím, že tranzistor T_1 (viz obr. 35) spojí špičku 13 se zemí a zruší napětí na kondenzátoru C_4 . Teprve při synchronním obrazu se tento zkrat zruší úrovní signálu "koincidence" (AFC) ze špičky 68 SAA9051, přeneseného přes tranzistor T_2 .

Osmibitové analogově číslicové převodníky TDA8703

Vzorkovací kmitočet je v těchto převodnících svázán s řádkovým kmitočtem přes regulační smyčku, o které se zmíníme při popisu dekódovacího procesoru SAA9051. Podle doporučení CCIR 601 je vzorkovací kmitočet 13,5 MHz dostatečným splněním Nyquistovy vzorkovací podmínky. Poznamenáváme jen, že u předchozího typu DIGI II byl vzorkovací kmitočet v souladu se vzorkováním 20,25 MHz pro soustavy MAC. Aby však pomalejší následné obvody mohly signál zpracovávat, redukuje se u tohoto staršího zapojení kmitočet vzorkovacího signálu 20,25 MHz integrovaným obvodem na 13,5 MHz (tj. 2:3), čímž se zlepšují i šumové poměry.

Převodník TDA8703 (viz obr. 38) je ryzí osmibitový, s 256 komparátory, které kvantují přivedený (na špičku 8) úplný televizní signál podle odporového děliče referenčního napětí s horní úrovní $U_{\rm H}$ a dolní úrovní $U_{\rm D}$ tak, aby paměť ROM vytvořila paralelní 8bitově kódovaný číslicový signál. Signálů pro přeplnění a nevybuzení se v zapojení nevyužívá. Změnou úrovně na špičce 21 lze změnit výstupní bity na komplementární. Výstupy se uvolňují logickou úrovní O (ČE) na špičce 22, přicházející pro "chrominanční"

převodník IO_3 (viz obr. 36) ze špičky 65 SAA9051 prostřednictvím rozhraní I^2C , a to jen při zpracování signálů S-VHS a RGB. Hlavní převodník IO_2 je trvale funkční (špička 22 je uzemněna). Převodníky musí mít dokonale stabilizované napětí pro referenční dělič a komparátory. Oba mají zvláštní zdroj napájecího napětí, rozdělený na část analogovou a číslicovou.

Ze 128 využívaných úrovní sedmibitového kvantování je dolních 32 určeno pro synchronizační impulsy a této hranici je přiřazeno referenční napětí 2,11 V jako "referenční černá" mezi synchronizační úrovní 1,65 V a 3,45 V pro maximální amplitudu obrazového signálu. V aplikaci komerčního televizoru Grundig se využívá jen 7 bitů (bez výstupu 2), tj. S1 až S7 se 128 úrovněmi. Při zapnutí televizoru je zkratování kondenzátoru C4 (na obr. 37) omezeno nárůstem signálu na 64. úroveň, tj. při S7 = log. l, která otevírá tranzistor T₁ při nezasynchronizovaném obrazu s logickou úrovní 0 pro AFCC na špičce 68 obvodu SAA9051. Při větších obrazových amplitudách než je 80. kvantovací úroveň není třeba kondenzátor C4 zkratovat, zkratování se vypíná vodivými diodami D₁ nebo D₂ na bitu S6, popř. S5 s logickou úrovní I. Diody otevírají tranzistor T2, čím se ruší působnost tranzistoru T₁.

Procesor SAA9051 jako oddělovač synchronizačních impulsů a barevný dekodér

Číslicový úplný televizní signál přichází do procesoru sedmi přívody (viz obr. 39). O jeho propojení při příjmu soustav PAL (NTSC), SECAM nebo signálu S-VHS z videomagnetofonu rozhoduje poloha přepínačů S₁ a S₂ řízená z rozhraní I²C (viz polohy vyznačené na obr. 39). Při soustavě SECAM prochází úplný televizní signál procesorem beze změny a vystupuje sedmi vývody 7 až 13. Při provozu S-VHS vstupuje těmito špičkami 7bitový chrominanční signál, zatímco jasový signál přichází hlavním vstupem. Protože

veškeré zpracování uvnitř procesoru je číslicové, lze odlaďovače, zpožďovací vedení, pásmové propusti, děliče kmitočtu a obvody pro zostření obrysů (peaking) ladit změnou koeficientů k v násobičkách. Toto řízení zprostředkovává sběrnice l²C a z jejího rozhraní vychází 15 možných povelů. Obvody se nastavují uvedením televizoru do servisního módu (např. stisknutím 2 obslužných tlačítek, individuálně podle servisního návodu) a nastavováním pomocí jiného tlačítka při sledování údaje na zobrazovací jednotce.

Zpracování jasového signálu

Po odladění barvonosné frekvence prochází filtrovaný jasový signál obvodem pro zostřování přechodů a po zpoždění vychází špičkami 45 až 50, 53 do vstupního paměťového procesoru. Za odlaďovačem barvonosného signálu odbočuje jasový signál do synchronizační části procesoru.

Oddělování synchronizační směsi a smyčka řádkové synchronizace, svázané se vzorkovacím kmitočtem

Jasový signál přichází do oddělovače synchronizační směsi, kde se oddělují, při slově představujícím nižší úroveň než 32, řádkové synchronizační impulsy. V jednom výstupu se vnitřně integrují do vertikálního synchronizačního impulsu VS, vystupujícího na špičce 30 a z druhého výstupu oddělovače přicházejí do fázového detektoru φ₁. Zde se porovnávají s impulsy vyráběnými v generátoru vzorkovacích impulsů, SAA9057, a vstupujícími jako primární vzorkovací signál o kmitočtu 13,5 MHz špičkou 4 do děliče 64:1 (pro soustavu PAL), napájecího pak fázový detektor φ₁. Dělič je programovatelný, takže jej lze po sběrnici I²C upravit pro soustavu NTSC. Podle fázových odchylek obou porovnávaných signálů se na výstupu fázového detektoru vytvoří určitý chybový signál vyjádřený číslicově s určitým počtem bitů. Kmitočtově se tento chybový signál filtruje v obvyklém filtru smyčky PLL. Hodnota regulačního slova se ustálí tak, aby ve zpětnovazební smyčce byla rovnováha mezi fázovou odchylkou a regulačním signálem. Předem uveďme, že je to poloviční poměr odchylky vzorkovacího kmitočtu $\Delta N. f_n$ a kmitočtu pomocného krystalového oscilátoru f_x .

Než uzavřeme zmíněnou regulační smyčku, v níž odchylka od vzorkovacího kmitočtu "vyrábí" číslicové slovo řídicí oscilátor, který umí podle tohoto číslicového údaje měnit svůj kmitočet $f_x = 24,576 \text{ MHz na výstupní}$ signál o jiném kmitočtu, vysvětlíme způsob transformace kmitočtu oscilátorem, označovaným jako DTO (Discret Time Oscilátor). Kmitočet fx budicího oscilátoru lze měnit na výstupní signál s kmitočtem fo tím, že do součtového členu (viz obr. 40) přivedeme řídicí (např. konstantní několikabitový) signál p společně s výstupem z klopného obvodu typu D, zpracovávajícího výstupní nbitový signál pod vlivem hodinových impulsů s kmitočtem f_x. S časovou roztečí 1/f_x se číslicovým hodnotám na výstupu předává vstupní slovo p tak dlouho, až po jejich určitém počtu obsah výstupního slova přeplní úroveň q a výstup začne přibývat znovu od nuly (viz průběh na obr. 40). Výstupní číslicový signál pilovitého průběhu má opakovací kmitočet f_0 , při čemž platí, že poměr $f_0: f_x = p: q$. V případě, že úroveň přeplnění je q = 1, lze výstupní kmitočet fo získat jako násobek taktovacího kmitočtu fx hodnotou p.

Obr. 38. Vnitřní zapojení osmibitového převodníku A/D typu TDA7803. Tranzistor T_2 a diody D_1 a D_2 vymezují sepnutí tranzistoru T_1 (obr. 37) jen při úrovních 64 až 80 (ze 128)

Obr. 39. Vnitřní skupinové zapojení dekodéru barev SAA9051 pro soustavy PAL/NTSC s vyznačením dvou fázových závěsů pro řádkovou (PLL₁) a barevnou (PLL₂) synchronizaci. LFCO = Line Frequency Oscillator Control, řízení řádkové synchronizace, POR = Power reset, nulování při zapnutí na síť

Uplatnění oscilátoru DTO zařazeného do synchronizační smyčky je naznačeno v dolní části obrázku 40. Fázový detektor poskytuje na výstupu určitou řídicí odchylku $\pm \Delta p$, která sloučena se stanovenou nominální (jmenovitou) hodnotou p_{nom} (platnou pro nominální kmitočet f_{o}) dává řídicí veličinu $p=p_{\text{nom}}\pm \Delta p$. Ta pak násobením kmitočtu f_{x} taktovacího signálu udržuje fázovou rovnováhu mezi f_{s} a f_{o} .

Ve skutečném zapojení, kde je kmitočet výstupního signálu z oscilátoru DTO1 $f_{\rm o}=6,75~{\rm MHz}=Nf_{\rm h}/2$, je třeba, aby řídicí veličina p byla rovna $Nf_{\rm h}/2f_{\rm x}$. Mezi výstup z fázového detektoru $\Delta Nf_{\rm h}/2f_{\rm x}$ je zařazen součtový člen pro vytvoření skutečné řídicí veličiny p (součtem odchylky s nominální hodnotou) a dále pak převodní registr. Jeho úkolem je pomocí zápisu s taktovacím kmitočtem $f_{\rm h}$ převést na výstup (tj. na vstup oscilátoru DTO1) řídicí signál čtený z registru taktovacím kmitočtem oscilátoru $f_{\rm x}$. Číslicový výstupní signál o kmitočtu 6,75 MHz se tvaruje do trojúhelníkového průběhu výběrem z paměti ROM a pak se převádí na

analogovou formu. Smyčka se uzavírá přes integrovaný obvod SAA9057, který přes oscilátor řízený obvodem PLL pomocí vstupního signálu LFCO (Line Frequency Control) o kmitočtu 6,75 MHz dodává vzorkovací signál 13,5 MHz na špičku 4 procesoru SAA9051 a přes zmíněný dělič N do fázového detektoru ϕ_1 . Obvod pro výrobu horizontálních impulsů H dodává na výstupy 26 a 29 impulsy HC, popř. HSY, uplatněné popsaným způsobem v obvodu TDA9045. Kromě toho se na špičce 31 odebírá horizontální synchronizační impuls HS, použitý pro vybavení teletextového zobrazení.

Obvody barevného dekodéru v procesoru SAA9051

Chrominanční signál vybraný pásmovou propustí a prošlý obvyklým obvodem pro samočinné řízení amplitudy ACC se demoduluje kvadraturně dvěma synchronními detektory, vyžadujícími barvonosné ve tvaru cos ωt a sin ωt. Teprve za demodulací po filtraci dolními propustmi procházejí při výběru soustavy NTSC oba signály barev hřebenovými filtry do vypínače barvy a do multiplexeru. Při soustavě PAL je zapojeno zpožďovací vedení a matice PAL s přepínačem pro rekonstrukci signálu U a V. V multiplexeru se signály U a V převzorkovávají ze 7bitových slov na 4bitové s tím, že vzorkovací signál čtvrtinového kmitočtu 3,375 MHz (viz tab. 3) vzorkuje při současných čtyřech jasových vzorcích se sedmi bity (na 7 vedeních D5 až D11) postupně na 4 vedeních D0 a D3 signály barev U a V, a to vždy po jednom vzorku lichých a sudých bitů obou signálů. V jednom lichém bitu sledu signálu U se přenáší identifikační bit CS pro soustavu SECAM (viz tab. 3).

Tab. 3. Multiplexový přenos 7 bitů signálů barev U, V čtyřmi vedeními

Vedení		Bity si	Y, U, V			
D3 D2 D1 D0	V6 V5 U6 U5	V4 V3 U4 U4	V2 V1 U2 U1	V0 - U0 CS = identifikace SECAM		
D11 D10 D9 D8 D7 D6 D5	Y6 Y5 Y4 Y3 Y2 Y1 Y0	Y6 Y5 Y4 Y3 Y2 Y1 Y0	Y6 Y5 Y4 Y3 Y2 Y1 Y0	Y6 Y5 Y4 Y3 Y2 Y1 Y0		
13,5 MHz						

Proti soustavě ITT se kontrast, jas a barevná sytost neřídí v číslicových procesorech, avšak až v analogové formě v obrazovém procesoru TDA9080, před nímž předchází analogové zlepšení barevných přechodů obvodem TDA4565 (u soustavy ITT číslicově).

Signál barvonosné o kmitočtu f_b se obnovuje a synchronizuje pomocí transformačního oscilátoru DT02 (viz obr. 36). Jako fázový detektor v synchronizační smyčce ϕ_2 působí kvadraturní demodulátor signálu V spolu s obvodem pro klíčování burstu, otevíraném impulsem f_n . Na výstupu tohoto obvodu se

Obr. 40. Základní činnost oscilátoru s transformací kmitočtu, DTO

objevuje ustálená rovnovážná odchylka jako veličina $\Delta f_{\rm b}/2f_{\rm x}$, upravená pokud jde o kmitočtovou závislost filtrem smyčky φ2. Po sečtení s nominální hodnotou $f_{\rm bn}/2f_{\rm x}$ definující barvonosný kmitočet (měnitelný podle soustavy sběrnicí I^2C) se hodnota $A = f_b/2f_x$ $= f_{\rm bn}/2f_{\rm x} \pm \Delta f_{\rm b}/2f_{\rm x}$ dělí signálem $B = Nf_{\rm h}/2f_{\rm x}$ přiváděným z obvodu prvního fázového závěsu φ_1 a podíl $A/B = f_b/Nf_h$ se zachycuje v registru taktovaném řádkovým kmitočtem f_h. Z něho se přivádí jako regulační veličina k oscilátoru DT02, takže tento oscilátor, taktovaný vzorkovacím kmitočtem Nfn, dává na svém výstupu barvonosný kmitočet fb jakožto součin obou vstupních signálů. V synchronním detektoru signálu V, napájeném fází sin ωt signálu f_b přes paměť ROM, se smyčka φ₂ uzavírá.

Takovým zapojením se jedním krystalovým oscilátorem X řídí kmitočty vzorkovacího i barvonosného signálu ve dvou smyčkách fázového závěsu.

Procesor SAA9056 pro signál SECAM

Sedmibitový úplný televizní signál vstupuje za procesorem SAA9051 v obvodu SAA9056 (viz obr. 41) do pásmové propusti a pak se demoduluje v následné signály barev D_B a D_R. V dalším obvodu se vyrovnává nestejná stejnosměrná složka obou signálů a lze nastavit i jejich zesílení, jen však servisní, neboť sytost u soustavy Philips řídí až divák analogově v obrazovém procesoru. Po obvodu dolní propusti jakožto deemfáze se i následné signály převzorkovávají pomo-

čtvrtinového vzorkovacího kmitočtu 3,375 MHz. Oba následné signály se pak pomocí zpožďovacího vedení a křížového přepínače, řízeného z obvodu identifikace, dostávají jako paralelní signály do výstupního obvodu, uvolněného signálem FOE na špičce 11. V něm se signály D_R a D_B multiplexují na čtyři výstupní špičky 12 až 15 (podobně jako u signálu PAL). Na špičku 2 se přivádí řádkový zatemňovací impuls BLN, vyráběný v procesoru SAA9051 (na špičce 42). Je určen pro činnost křížového přepínače. Chrominanční výstup z procesoru SE-CAM se sdružuje s chrominančním výstupem PAL ve společné 4bitové vedení. Jasový signál pro soustavu SECAM zpracovává procesor SAA9051.

Obrazový procesor SDA9090 pro nové funkce (PIP) a vstupní rozhraní paměti

Procesor pracuje především jako vstupní rozhraní paměti, které zpomalením toku datových bitů umožní zápis do pomalejších běžných pamětí DRAM (s dobou přístupu 70 ns). Dosahuje se toho rozdělením 11 vstupních vedení do 36 paralelních výstupních vedení, na něž je připojeno 9 čtyřbitových pamětí 64k × 4 (viz obr. 42). Způsob rozšíření a zmenšení rychlosti přenosu ve sběrnici dat bude vysvětlen dále. Na obr. 43 jsou vyznačeny další nové funkce tohoto obrazového procesoru. Jasový 7bitový a chrominanční 4bitový multiplexovaný signál se demultiplexují do 16 vedení a v části pro vložený obraz nebo mnohonásobný

obraz (tyto nové funkce byly popsány u soustavy ITT) se vzorky redukují výběrem každého třetího vzorku a každého třetího řádku. Znovu se vzorkují v rytmu kmitočtu 13,5 MHz a filtrují se proti rušení aliasing (vzniklému vzorkováním). Místo třetinových obrázků lze zařadit menší obrázky, orámované mezerami v obou směrech. Přepínač S₁ klíčuje podle volby přes sběrnici I²C pomocí časovacích impulsů přenos hlavního obrazu a zmenšeného obrazu na výstup. Časovací a řídicí obvody dostávají kromě vzorkovacích hodinových impulsů 13,5 MHz řádkový zatemňovací signál BLN a vertikální VS1, což jsou synchronizační impulsy VS z procesoru SAA9051, upravené v řídicím synchronizačním procesoru paměti SDA9099. Odtud také přichází časovací signál DREQ, výráběný pomocným krystalovým oscilátorem, synchronizujícím stojící obraz, a to i v případě, že je přerušen přívod televizního signálu.

Podstatnou novinkou, využívající číslicového zpracování signálu a půlsnímkovou paměť, je obvod pro redukci šumu, zařazovaný do funkce detektoru šumu a detektoru pohybu. Pro redukci šumu je třeba do procesoru přivést signál z výstupního rozhraní paměti, ovšem s původním vzorkovacím (primárním) kmitočtem 13,5 MHz, a to vstupy DS0 až DS11 (viz obr. 43). Poněvadž přichází chrominanční signál multiplexován, demultiplexuje se a převádí spolu s jasovým signálem do 16bitové sběrnice. Způsob, jak omezit šum, využívá skutečnosti, že stálý nebo mírně pohyblivý obraz vykazuje časovou korelaci (vztažnost) mezi půlsnímky, neboť stejné vzorky se pravidelně opakují. Naopak šum má charakter nepravidelný, nekorelovaný s časem.

Proto lze číslicovým rekurzívním filtrem (s nekonečnou odezvou) při porovnání příslušných vzorků současného a předešlého půlsnímku působení šumu zeslabit s určitým omezením, které dále uvedeme. Rekurzívní filtry se liší od filtrů FIR (s konečnou odezvou) tím, že jejich výstupní signály se tvoří úpravou vstupních a zpět zavedených výstupních signálů (viz obr. 44). Přenosové funkce H(z) číslicového filtru je závislá na koeficientu "k" násobičky, zařazené mezi rozdílový a součtový člen. Při koeficientu k = 1 se vliv výstupu (signálu zpožděného o jeden půlsnímek) sčítá a odečítá stejným dílem, takže se vstupní signál nemění a šum se neredukuje. Jeho potlačování se se zmenšováním činitele "k" zvětšuje (při k = 1/8 je zeslabení 12 dB). Rekurzívní filtry jsou zvlášť řízeny u jasového signálu koeficientem ky a oba signály barev pak společným koeficientem k_{UV}. O tom, jak velký koeficient (k₀, k₁ nebo k₂) se do násobičky rekurzívního filtru zapojí, rozhodují dva činitelé: míra pohybu v obraze a intenzita šumu. Uvedené zeslabení šumu platí pro stálý nepohyblivý obraz. Je-li v obraze pohyb, pak vzorky stejného místa nejsou časově stejné a činnost rekurzívního filtru by rozmazávala obraz. Proto se do obvodu redukce šumu zapojuje detektor pohybu, vypínající působení rekurzívního filtru při rozdílech v datech vzorků dvou po sobě následujících půlsnímků. Filtr se vypíná (tj. k = 1) i v případě, že je obraz bez šumu, aby se tak vyloučil i nepříznivý vliv pomalejších pohybů.

Zapojení detektoru pohybu a šumu je na obr. 45. Obě části zapojení pracují jen s jasovým signálem Y. V detektoru šumu se horní propustí osamostatňují vf složky obsahující největší podíl šumu a po vytvoření absolutní

Amatérské! AD 19 B/6

Obr. 41. Skupinové zapojení procesoru signálu SECAM, SAA9056

DAO DBO DCO

DA11 DB11 DC11

Obr. 43. Obrazový procesor pro redukci šumu, zvláštní funkce a pro

vstupní rozhraní paměti

ROM podle velikosti šumu tři různé koeficienty k₀, k₁, k₂, kde poslední je roven 1. Současně vystupují z paměti ROM dva prahové signály T1 a T2, uplatněné v komparátorech detektoru pohybu. Na vstupu tohoto detektoru se porovnávají příslušné vzorky přímého a zpožděného signálu Y (o 1 půlsnímek). Po filtraci dolní propustí, po vytvoření absolutní hodnoty z kladných a záporných odchylek a po omezení délky slova se hodnota úměrná velikosti pohybu přivádí na komparátory K1, K2, kde se porovnává se dvěma prahovými úrovněmi T1, T2, dodávanými detektorem šumu. Podle velikosti pohybu a intenzity šumu se v řídicím dekodéru pro rekurzívní filtry signálů Y a UV zapojují v působnosti na filtry různé násobicí konstanty k₀, k₁, k₂. Při zašumněném obraze se v jeho nepohyblivých částech volí malý koeficient ko, naproti tomu činnost rekurzívních filtrů se vyřazuje ($k_2 = 1$) v místech s rychlými pohyby (zde oko nevnímá působení šumu) a též při obrazu bez šumu. Při pomalých pohybech působí střední koeficient k₁. Redukce šumu působí příznivě i na zeslabení "přeslechů" jasového signálu do chrominančního signálu (cross color), nesmí však být výstupní signál z detektoru pohybu odvozován z chrominančního signálu (přeslechy by detektor považoval za pohyb a mohl by vypinat filtr).

Po úpravách v popsaném zeslabování účinků šumu se chrominanční signály znovu multiplexují do 8 + 4 = 12 vedení a v rozhraní paměti (viz obr. 46a) se seřazují do 3 × 12 = 36 vedení, jimiž se přenášejí data do pamětí menší rychlostí.

Rozhraní obsahuje 12 měničů (0 až 11). Využívá se jich však jen 11 (7 pro jasový a 4 pro chrominanční signály). Činnost měniče signálu D0 se třemi signály DA0, DB0, DC0 je znázorněna na obr. 46b. V záchytném registru se sériový signál 24 bitů převede na 24 výstupů záchytného registru. Při tom se každý třetí výstup (tj. např. 1, 4, 7 . . . 22, celkem 8 vedení) přivádí do jednoho multiplexeru, a to postupně do A (1 až 22), B (2 až 23), C (3 až 24), kde se 8 vstupů multiplexuje do jednotlivých výstupů, tj. DA0, DB0, DC0. Tak se 24 "rychlých" bitů rozloží

BLN

z SDA9051

13.5 MHz ...

27 MHz

z SAA9057

na trojici osmi "pomalých" bitů. Od 12 vstupů D0 až D11 (12 vedení) se tak získá 36 vedení (v praxi zcela nevvužitých), napájelících daty 9 čtyřbitových pamětí adresovaných 256 řádky (RAS) a 256 s sloupci (CAS). Tímto způsobem se původní vzorkovací kmitočet 13,5 MHz zmenší třikrát, takže se data zapisují do paměti kmitočtem 4,5 MHz.

Procesor SDA9099 pro synchronizaci a řízení paměti

Procesor zpracovává ze vstupních hodinových impulsů 13,5 MHz a z vertikálního synchronizačního signálu VS na špičce 28 (viz obr. 47), jakož i ze řádkového zatemňovacího impulsu řídicí impulsy pro vnitřní řadič paměti. Dále vyrábí výstupní řídicí impulsy pro procesor výstupního rozhraní (včetně převodníků D/A) SDA9093 a řídicí impulsy o dvojnásobném kmitočtu HS2 a VS2 pro vychylovací procesor. Výstupní rozhraní odebírá též horizontální BLN1 a vertikální CS1 impulsy pro řízení výstupu datových signálů o původním vstupním kmitočtu, vedoucích zpět do procesoru SDA9090 (do obvodu pro redukci šumu). Procesor obsahuje též vlastní krystalový oscilátor X s kmitočtem 6,75 MHz, který řídí synchronizaci televizoru při stojícím obrazu (zápis dat do paměti je přerušen), pro což potřebuje procesor SDA9090 signál DREQ. Snímání teletextu se zdvojenými rozkladovými kmitočty v dekodéru teletextu řídí impulsy CSY.

Pomocí sběrnice I2C se dají nastavovat správné fáze a trvání řídicích impulsů a může se volit prokládané řádkování 100 Hz nebo řádkování progresívní. Je to však řádkování bez interpolace a řádky lichého a sudého půlsnímku při něm splývají (typ 312+312 nebo 312+313). Řadič paměti

Obr. 46. Část procesoru SDA9090; a) vstupní rozhraní paměti, b) činnost měniče počtu vedení

Obr. 47. Procesor SDA9099 pro synchronizaci a řízení pamětí

SDA

SCL

z SDA9051

SDA9099

generátor hodi-

╢

工 6,75 MHz <u>工</u>

26 - VS1

-CSY 41 -BLN1

_ZM (lupa)

<u>37 i</u>

Obr. 48. Mechanismus současného čtení a zápisu do paměti; fázor pro zápis = W, pro čtení = R

ovládá zápis a čtení z paměti, které probíhá současně tím, že se čtení uskutečňuje dvojnásobnou rychlostí než jakou probíhá zápis. Osm bitů adresy volí 256 řádků paměti při signálu RAS a 256 sloupců při signálu CAS. Pomocné signály SC, DT a WE uvolňují vstupy dat v pamětech, popř. řídí stav zápisu.

Vysvětlení současného zápisu a čtení z půlsnímkové paměti podává obr. 48. Uvažujme, že má obraz tedy i paměť jen 8 řádků a zápisové adresování si znázorněme rotujícím fázorem W a čtecí adresování fázorem R. rotujícím dvojnásobnou rychlostí než fázor W. V půlsnímkové paměti je zapsán půlsnímek A a v době, kdy zapisovací fázor začíná ukládat data v prvním řádku půlsním- ku B, čtecí fázor R přečte ještě první řádek a pak další až do osmého řádku půlsnímku A. neboť postupuje dvojnásobnou rychlostí než fázor W zapisující do řádků 1 až 8 nový půlsnímek B. Když dospěl zápis na 5. řádek, fázor R už přečetl celý půlsnímek A (a učinil tak již podruhé, jak poznáme u půlsnímku B). Při tom, jak fázor W postupuje zápisem řádku pátého až osmého, čtecí fázor přečte celý půlsnímek, tj. 1. až 8. řádek poprvé a při začátku zápisu první poloviny půlsnímku C stačí fázor R přečíst půlsnímek B podruhé, neboť předbíhá fázor W a přečetl v paměti dříve to, co fázor W právě pomaleji nuluje a opatřuje novými daty.

Na obr. 49 je přehledně znázorněna potřeba paměťové kapacity pro jeden půlsnímek

Potřeba kapacity pamětí 696 vzorků x 7 bitů x 281 řádek = 1 389 032 bitů pro Y 174 vzorků x 7 bitů x 281 řádek = 342 258 bitů pro B-Y 174 vzorků x 7 bitů x 281 řádek = 342 258 bitů pro R-Y

Celkem=2053548 bitů Kapacila 9DRAM=9×65536×4=2359296 bitů

Obr. 49. Omezení počtu vzorků v obraze a potřebná kapacita paměti při vzorkovacím kmitočtu 13,5 MHz

Obr. 50. Procesor SDA9093 s výstupním paměťovým rozhraním a převodníky D/A

v případě 7bitového kvantování a využití jen počtu vzorků pro činný řádkový běh, zmenšený na obou stranách o 12 vzorků. Rovněž počet vzorkovaných řádků je omezen na 281. Požadavek 2 053 548 bitů je zabezpečen kapacitou devíti pamětí 64k × 4, tj. 2 359 296 bitů, což by krylo i potřebnou kapacitu při osmibitovém kvantování (2 346 012 bitů).

Procesor SDA9093 pro výstupní rozhraní paměti s převodníky D/A

Do procesoru vstupuje číslicový signál z pamětí po 36 vedeních při vzorkování dvojnásobnou rychlostí, 2 × 4.5 MHz = 9 MHz, viz obr. 50. Vstupní obvod je otevírán signálem CS na špičce 54. Vzorkovací kmitočet proudu dat procházejících 12 vedeními se přeměňuje za pomoci vymezovacího signálu BLN1, popř. BLN2 ve dvou obvodech. V hlavním měniči vzorkování je to přeměna na 27 MHz a v měniči pro signál, jdoucí zpět do vstupního rozhraní pro redukci šumu, je to 13,5 MHz. Oba signály se vybírají pomocí multiplexeru na jeho 11bitový výstup (složený ze 7 jasových a 4 chrominančních bitů) s kmitočtem 27 MHz a na zpětné 12vodičové vedení, dodávající na špičkách 5 až 16 půlsnímkově zpožděný signál s původním vzorkovacím kmitočtem 13,5 MHz. Tímto výstupem lze do popisovaného procesoru přivádět přímý signál z dekodéru, nepoužívá-li se půlsnímková paměť. V měniči pro 27 MHz lze pomocí vnějších signálů ZOOM (ZM) a NW opakovat jeden vzorek dvakrát za sebou v určité části rastru obrazu, takže se reprodukuje ve zvoleném výseku (voleném pomocí dálkového ovládání a sběrnice I2C) tato část čtyřnásobně plošně zvětšena na celou plochu stínítka obrazovky. Signál se vzorkovacím kmitočtem 27 MHz se po datové sběrnici (7 vedení pro jasový signál Y a 4 vedení pro známým způsobem multiplexovaný signál U₁U₂V₁V₂) zavádí do obrazového procesoru s převodníky D/A, jehož funkce jsou podrobněji znázorněny na obr. 51.

Ve vstupním dekodéru pro signály UV se rozděluje cesta sedmibitového jasového signálu a sedmibitová cesta dvou následných signálů, kde převzorkování ze 4 vedení do 7 vedení znamená změnu vzorkovacího kmitočtu pro signály UV na 13,5 MHz. V dalším obvodě se tento kmitočet zdvojuje, přičemž se následným interpolačním filtrem signál filtruje potlačováním obrazových kmitočtů barev rovných polovině původního vzorkovacího kmitočtu pro signály U, V, tj. 3,375 MHz:2 = 1,6875 MHz (aliasing). Potom se oba následné signály U, V rozdělí demultiplexerem (DEMUX2) v současné signály U, V se 7 bity, čímž se vzorkovací kmitočet pro každý z nich přemění na 13,5 MHz. V rozdělené cestě každého sig-

Obr. 51. Obrazová část procesoru SDA9093 s převodníky D/A

Obr. 52. Vychylovací procesor SDA9064

nálu se zdvojuje vzorkování na 27 MHz (aby bylo shodné jako u jasového signálu) s opakovanou filtrací proti rušení "aliasing". Po klíčování na nulovou hodnotu po dobu řádkového zatemňovacího impulsu se číslicové signály převádějí na analogové – (R–Y)/100, kde označení 100 znamená dvojnásobnou rozkladovou rychlost a dvojnásobný kmitočtový rozsah.

Sedmibitový jasový signál se přeměňuje interpolací na osmibitový ve filtru REF (Resolution Enhancement Filtr), aby se číslicovým filtrem (za pomoci zpožďování o 1 takt) zlepšila rozlišovací schopnost a potlačilo se rušení kvantizačním šumem při pouhém 7bitovém kvantování signálů. Kromě klíčování na nulovou úroveň se jasový signál před převodníkem D/A zpožďuje (nastavitelně přes l²C) v počtu 0 až 23 taktů kmitočtu 27 MHz, tj. maximálně 851 ns. Vyrovnává se tak zpoždění signálů U, V v procesoru CTI. Jasové zpoždění v analogovém obvodu TDA4565 není pak zapojeno.

Generátor hodinových impulsů SAA9057

Úkolem tohoto generátoru (viz obr. 39) je dodávat procesorům na modulu "FEATURE BOX" vzorkovací impulsy o kmitočtech 13,5 MHz a 27 MHz. Vnitřní oscilátor řízený napětím (VCO) kmitá na kmitočtu 27 MHz, neboť je na něm udržován fázovým závěsem pomocí děliče 4:1 a přiváděným řídicím signálem o kmitočtu 6,75 MHz (LFCO) z transformačního oscilátoru DT01 (z integrovaného obvodu SAA9051). Přímý výstup a použitě kmitočtové děliče dodávají zmíněné vzorkovací kmitočty. Výstupu 20,25 MHz se nevyužívá. Výstupy 7 a 14 se vedou přes zesilovače ve zvláštním integrovaném obvodu a vracejí se zpět do obvodu SAA9057 před výstupní oddělovače do obvodu minimalizujícího fázový posuv (skew). Uvnitř tohoto generátoru hodinových impulsů je i obvod pro nulování (POR = power reset) při zapnutí televizoru, kdy se objeví na špičce 2 otevírající napětí CE = 12 V. Kapacitou kondenzátoru na špičce 3 se řídí doba setrvání nízké nulovací úrovně na výstupu 12. Zmenší-li se napájecí napětí televizoru pod určitou mez, výstup 12 na to reaguje přechodem na nízkou úroveň.

Vychylovací procesor SDA9064

Vychylovací procesor přijímá z procesoru pro řízení a synchronizaci paměti, SDA9099, horizontální HS2 (na špičce 7) a vertikální VS2 (na špičce 9) synchronizační impuls. Vnitřní generátor vyrábí budicí impulsy pro koncové vychylovací stupně. Horizontální budicí impuls, vystupující ze špičky 4, přechází přes obvod ochrany, který při příliš velkém vysokém napětí, příliš velkém proudu obrazovky a při selhání vertikálního koncového stupně zavádí na výstupu 4 trvale vysokou úroveň, takže řádkový koncový stupeň nepracuje. Při tom se upravuje tvar impulsu "sandcastle" tak, aby zaveden ze špičky 5 do obrazového procesoru, zatemňoval trvale signály RGB. Totéž, ale bez vyloučení činnosti řádkového stupně se děje při malém napájecím napětí. V obvodu ochrany jsou určeny dvě úrovně napětí, mezi něž v normálním provozu zasahuje vrchol přiváděného impulsu řádkového zpětného běhu (ochrana SS na špičce 2). Při působení obou uvedených ochran přestupuje impuls horní nebo nedosahuje dolní úrovně. Horizontální rozklad se vypíná (úroveň H na špičce 4) též při nadměrném proudu obrazovky, indikovaném od dolní části násobiče vn tak, že spínač T2 připojí při určité úrovni proudu na špičku 2 obvodu ochrany kladné napětí. Totéž se stane při přerušení funkce vertiálního rozkladu, kdy dioda D3 neusměrňuje žádné napětí a tím přepínač T₁ přepne.

Generátor řídicích impulsů dodává horizontální budicí impuls na špičku 4 přes fázovací obvod, řízený impulsem řádkového zpětného běhu HR (na špičce 6). Přes rozhraní l²C a ústřední řídicí jednotku lze nastavovat fázi mezi vstupním impulsem HS2 (7) a výstupem 4, a tak středit obraz ve vodorovném směru. Budicí impuls přechází přes startovací oscilátor, který v době nulování budí řádkový koncový stupeň impulsy o kmitočtu 3,6 MHz, generované krystalovým oscilátorem. Obvod korekce poduškovitosti pracuje stejně jako ostatní podle řízení

z ústřední jednotky s pamětmi ROM (než naběhne řízení I²C) a RAM.

Korekční obvod vyrábí z číslicových dat signál OW, pulsně hustotně modulovaný (PDM) na vnějším integračním kondenzátoru C₁. Z něho se pak získává v integrovaném obvodu TDA8172 analogový signál parabolického průběhu, řídicí korekci i šířku obrazu pomocí diodového modulátoru.

Generátor řídicích impulsů zpracovává vstupní signál VS2 na budicí signál pilovitého průběhu pro vertikální koncový stupeň bez kondenzátorové vazby, aby se řízením stejnosměrné složky mohlo řídit vertikální středění obrazu. Signál pilovitého průběhu vzniká rovněž integrací na kondenzátoru C2 hustotně modulovaného signálu PDM. Tvar buzení se odvozuje od dat v pamětech ústřední jednotky, která se porovnávají se vzorkem VG zpětné vazby z rezistoru zařazeného do série s vychylovacími cívkami. Tento signál se převádí vnitřním převodníkem A/D na číslicový ke zmíněnému porovnání. Lineárnost, amplitudu i stejnosměrnou složku lze řídit daty, která jsou zapsána při výrobě ve zvláštní paměti E²PROM mimo vychylovací procesor. Při poruše této paměti (smazání vlivem přeskoku v obvodu vysokého napětí) lze do ní přepsat nastavovací data pro geometrii obrazu z tzv. nouzové paměti v hlavní ovládací jednotce televizoru.

Vychylovací procesor opravuje pomocí řídicí jednotky i změny obou rozměrů obrazu (zvětšování) vlivem zvětšujícího se proudu obrazovky. Pro ten účel se přivádí na špičku 13 informace z rezistoru v děliči, zařazeném do druhé mřížky obrazovky. Je třeba rovněž zajistit převod analogového signálu na číslicový.

Tím jsme zakončili zdánlivě podrobný popis číslicových procesorů v televizorech IDTV. I když jsou postupy zpracování v jednotlivých procesorech ještě složitější, lze si učinít i tak představu o technické propracovanosti řešení obvodů, a tím o přínosu číslicové techniky do ovládání nesčetných parametrů, tj. ladění, nastavování, regulaci a ochranná jištění. Televizor se tak stává "specializovaným" počítačem.

Zpracování teletextu v televizoru

K pojednání o číslicovém zpracování televizního signálu patří též doplňkové funkce televizoru, tj. zpracování číslicových dat přenášených v zatemňovacím vertikálním intervalu ve vybraných řádcích. Přenos teletextových abecedně-číslicových dat je popsán v literature 4. V televizoru IDTV se teletextová data zpracovávají z úplného televizního signálu FBAS odděleně (paralelně) od analogově-číslicového zpracování na modulu "feature box", viz obr. 36. Podrobné zapojení teletextovaného modulu s integrovanými obvody SDA9231 a SDA9243 pro dekodér druhé generace a pro úroveň 1 je na obr. 53. Poněvadž se u nás vysílá teletext v rozšířené úrovni 1 (tzv. 1,5), vysvětlíme celý proces osamostatnění teletextových dat na verzi s českou a slovenskou abecedou u klasického televizoru s rozklady 15 625 Hz a 50 Hz, integrovanými obvody SAA5231 SDA9231 SAA5243P/H. Obvody a SDA9243 uvedené pro televizor IDTV se liší jen ve vybavování výstupních signálů z generátoru znaků impulsovými signály HS a CSY, dále pak skladbou národních abeced bez rozšířeného počtu znaků, a s možností využití paměti 32K × 8 (tj. až 32 stránek).

Zapojení dekodéru druhé generace

Druhá generace teletextových dekodérů umožňuje zobrazit rozšířený počet abecedních znaků a rychle volit stránky vytypované na stavové řádce. Děje se tak pomocí nezobrazovaných řádek (26., 27. a 30. paketu), což je typické pro přenos tzv. úrovně 1,5.

Zobrazovací postup vyžaduje pro zmíněný rozšířený počet znaků počítačové zpracování údajů přenášených nezobrazovaným paketem 26. Základní zapojení dekodéru 2. generace s možností rychlé volby 4 stran s přenosem české a slovenské abecedy (192 znaků) je na obr. 54. Úplný barevný televizní signál přichází do "videoprocesoru VP2", poskytujícího na svých výstupech signál teletextových dat (včetně zbytků "vyříznuté" obrazové modulace) a pravidelné hodinové impulsy pro teletextová data. Kromě toho dodává tento obvod další signály potřebné pro zobrazení znaků, o nichž pojednáme v podrobném popisu. Teletextová data zpracovává podle řídicích znaků obsažených v teletextovém signálu i podle povelů vysílaných z dálkového ovládání přes hlavní

mikropočítač vlastní dekodér teletextu (označovaný jako CCT, Computer Controlled Teletext = teletext řízený počítačem) nebo pro zpracování úrovně 1,5 nazvaný ECCT (Enhanced CCT = rozšířený teletext řízený počítačem). Teletextové informace přicházejí do dekodéru nespojitě, v půlsnímkových periodách. Vybrané stránky (obsahová a tři další vytypované paketem 27) se ukládají samočinně v paměti RAM o kapacitě 8 kilobitů, 8k × 8), jak to vyžaduje přenos rozšířeného počtu znaků 26. paketem. Kromě toho lze místo jedné této stránky zvolit pro záznam do paměti číslo stránky pomocí dálkového ovládání. Z paměti se při zobrazování odebírají plynule znaková a grafická data a podle svého obsahu a časového řízení vybírají z generátoru znaků (z paměti ROM) příslušné signály, vytvářející výstupy RGB pro buzení obrazového procesoru.

Z teorie přepisování původních znaků (převážně pro velkou abecedu), vysílaných bez diakritických znamének, na znaky s diakritickými znaménky podle polohy, tj. souřadnic na rastru obrazovky, víme, že to vše zařídí počítač podle určitého předem "namaskovaného" programu v jeho paměti ROM. Počítač odebírá příslušná teletextová data z vnější hlavní paměti RAM, zpracuje je a znovu uloží na správné adresy do paměti RAM (viz postup signálu pro pakety 0 až 23 a 26 v dolní části obr. 54). Další postup zpracování znakovým generátorem je pro všechna data stejný. Může však být změněn počítačem podle vloženého programu v paměti ROM (prokládané nebo neprokládané řádkování). Zmíněný počítač označujeme jako pomocný (mikrokontrolér) a je umístěn jako jeden integrovaný obvod na modulu teletextu. S dekodérem teletextu ECCT a jeho vnější paměti RAM komunikuje uvedeným způsobem po sběrnici I2C.

Obr. 55. Časová souvislost impulsů na dvouvodičové sběrnici MI-bus

Tento pomocný počítač by mohl být nahrazen hlavním řídicím mikropočítačem televizoru, přizpůsobeným obvodově i programově přenosu po sběrnici I²C s dekodérem ECCT. Aby bylo možné zapojovat dodatečně dekodér teletextu i do televizoru s řídicím mikropočítačem neschopným přímého řízení úrovně 1,5, osazuje se modul teletextu pomocným mikropočítačem řízeným obslužnými povely z dálkového ovládání přes hlavní mikropočítač jednoduchou sběrnicí MI--BUS (viz dále). Potom přistupuje k přepisovací funkci pomocného počítače ještě přeměna přenosu dat ze sběrnice MI-BUS na I²C. Data sběrnice MI-BUS je třeba zadržet před vstupem do pomocného počítače v posuvném registru a pak je po určité čekací době, započaté hodinovým signálem DLIM, jako přerušení přenést vlastními hodinovými impulsy DLIM do pomocného počítače. Mezi oběma počítači může být i jiná spojovací sběrnice (např. SDA, ICL u dekodéru firmy Grundig). Programovým vybavením pomocného mikropočítače lze přizpůsobit ovládací část funkci dekodéru snadněji, než by tomu bylo obvodovým zapojením.

Sběrnice MI-BUS

Firma Mullard zavedla pro přenos instrukcí (Mullard-Instruction) od přijímače dálkového ovládání nebo z mikropočítače do teletextového dekodéru sběrnici se dvěma jednosměrnými vedeními (viz obr. 55). Impulsy DLIM (= Data Limiter) představují hodinové impulsy s opakovacím kmitočtem dvojnásobným, než jakým se přenášejí data pro řízení teletextu. Tím se dosáhne méně poruchového a bezpečnějšího přenosu dat. Impulsy DLIM v počtu 14 se vysílají jen po dobu přenosu dat. Počáteční podmínka přenosu

je určena začátkem série hodinových impulsů DLIM a přenos končí přechodem do jejich trvalé úrovně L. Data se přenášejí čelem každého sudého hodinového impulsu. Trvání jednoho povelu a doba jeho opakování je na obr. 55.

Funkce videoprocesoru VP2 SAA5231

Přehled funkcí tohoto procesoru s uvedením průběhu vstupních a výstupních signálů je na obr. 56 a podrobné vnitřní skupinové schéma je na obr. 57. Úplný obrazový televizní signál nemá být zkreslen jak v amplitudové, tak fázové kmitočtové charakteristice (viz anténní rozvody nevyhovující těmto požadavkům). Mírou zkreslení je výška teletextového oka (viz literaturu [8]). Z tohoto důvo-

du se průběh signálů vyšších kmitočtů koriguje amplitudově a fázově před vstupem 27 do procesoru, a to kmitočtově závislou zpětnou vazbou $C_1L_1R_1R_2$ mezi dvěma tranzistory T₁ a T₂ (viz obr. 56). V procesoru se signál rozděluje do oddělovače synchronizačních impulsů s udržováním úrovně černé dané napětím na kondenzátoru C₈ (26) a do obvodu pro "výsek" dat. Oddělená synchronizační směs VCS (video composite sync) vystupuje špičkou 25 do dekodéru ECCT a řádkové synchronizační impulsy v této směsi obsažené budí uvnitř procesoru generátor impulsů. Amplituda a časový posuv čel vyráběných impulsů závisí od kapacity a odporu součástek, připojených na špičky 24, popř. 23 (viz obr. 57).

Tyto řádkové impulsy synchronizují přes fázový detektor oscilátor 6 MHz řízený napětím. Oscilátor poskytuje na výstupu 17 signál zvaný F6 a svým kmitočtem 6 MHz zajišťuje zobrazování elementárních částic každého znakového pole na obrazovce. Konstantní kmitočet a fázi signálu F6 udržuje nepřímá fázová synchronizace. Jako vzorek vyrobeného signálu (a zpracovaného v dekodéru ECCT) přichází z dekodéru zpět na špičku

Obr. 56. Zjednodušené skupinové schéma integrovaného obvodu SAA5231

22 signál SAND. Jeho kladná část PL se porovnává ve fázovém detektoru s řádkovými upravenými impulsy. Vyrobené chybové regulační napětí řídí kmitočet oscilátoru. Fázový detektor má dva korekční obvody s určitými časovými konstantami (špičky 19 a 21). Jsou-li připojeny oba obvody, je časová konstanta velká – to odpovídá zasynchronizovanému stavu. Při nesynchronním chodu nebo při trvale nízké logické úrovni na špičce 10 (povel VCR, tj. provoz z videomagnetofonu, pokud je záznam TXT možný), je časová konstanta při korekčním obvodu malá, takže chytací rozsah je velký a časová odezva na fázové kolísání malá.

Úplný televizní signál přijatý na vstupu 27 prochází též přepínačem A, který v poloze převádí vstupní signál přes oddělovací stupeň na špičku 1 s tím, že v tomto "nárazníkovém" obvodu (buffer) lze volit polaritu výstupního signálu podle připojení vnějšího rezistoru R₄. Při připojení tohoto rezistoru na kladné napětí mají synchronizační impulsy ve vystupujícím signálu polaritu zápornou. při spojení R₄ se zemí je jejich polarita obrácená. Tak lze podle potřeby rozkladových obvodů v televizoru zajistit synchronizaci televizním signálem. Jestliže se dekodér ECCT uvedl v činnost působením signálu F6 (14) a VCS (25) a je dán povel k zobrazení teletextové informace, pak sám dekodér vyrábí svou vlastní synchronizační směs TCS (teletext composite sync) a ta se přivádí špičkou 28 do videoprocesoru VIP 2. Na její výskyt (střídavé úrovně L) reaguje čidlo A a přepne přepínač A do polohy 2. Tím se do synchronizačních obvodů televizoru zavádí přes špičku 1 vlastní teletextová synchronizační směs a obvody televizoru jsou dokonale synchronizovány bez možnosti výskytu poruch v televizním signálu.

Ve zvláštních případech (např. při monitorovém provozu neb při buzení televizoru cizími signály RGB) jsou rozkladové obvody televizoru synchronizovány jiným externím signálem ze svorky 2 přepínače D a výstup 1 z procesoru VIP 2 není zatížen vnějším rezistorem. Tuto "ztrátu zátěže" zaznamená čidlo B a přepne přepínač B do polohy 2 a fázový detektor pro oscilátor zobrazovacího kmitočtu 6 MHz dostává ze špičky 28 synchronizační směr SCS (scanning com-

posite sync) z příslušných cizích synchronizačních zdrojů (tatáž směs SCS jde pak i do vstupu 12 dekodéru ECCT, z něhož při běžném televizním teletextovém provozu vychází již zmíněný vlastní synchronizační signál TCS).

Teletextová data přicházejí do procesoru VIP2 v úrovních přibližně 0 a 66 % obrazové modulace. Jejich výběr se uskuteční při minimálním působení šumu tehdy, má-li úroveň odřezu, tj. rozhodovací hladina pro log. I nebo log. 0 poloviční amplitudu datových impulsů (viz úroveň výběru na obr. 56). Samozřejmě, že se rozhodovací úrovní na poloviční amplitudě překopíruje do datového výstupního signálu (na špičce 15) i nepravidelná obrazová modulace, která je přítomna mezi oběma sousedními půlsnímky. O výběru dat, týkajících se jen příslušných teletextových řádků, rozhodne obvod dekodéru ECCT. Má možnost přijímat i úplný teletext (full field), tj. na všech řádcích.,

Sledujeme však podrobněji cestu teletextových dat v procesoru VIP2. Před výřezem dat prochází úplný televizní signál obvodem pro volbu zesílení. Podle uzemnění nebo připojení špičky 2 na napětí 12 V lze zpracovávat vstupní signál s úrovní mezi vrcholy 1 V (tj. špička 2 uzemněna), nebo s úrovní 2,5 V napětí +12 V na špičce 2. Neošetřená špička 2 představuje zesílení pro větší vstupní mezivrcholovou úroveň. I uvnitř procesoru se ještě signál kmitočtově koriguje kondenzátorem C9, zapojeným na špičce 3. Kondenzátor C₁₀ na špičce 4 zapamatovává konstantní amplitudu signálu. Výběr dat na jejich poloviční úrovni je zajištěn tím, že na kondenzátoru C₁₁ (špička 5) se zapamatuje úroveň 0 (černá) a na kondenzátoru C₁₂ (špička 6) maximální hodnota datových impulsů. Kondenzátor C₁₃ na špičce 8 má účel časovací, tj. posouvá čela datových impulsů.

Aby se odstranil vliv synchronizačního impulsu barvy ve zpracovávaném televizním signálu, přerušuje se jeho sled v tomto období klíčovacím impulsem CBB (colour burst blanking), jenž je součástí složeného impulsu SAND, vyráběného a přivedeného z dekodéru ECCT na špičku 22 procesorem VIP2 (viz obr. 56). Cestu teletextových dat Ize přerušit přepínačem C, umožňujícím čidlem C při přítomnosti externího datového

signálu na špičce 7 přepnutí přepínače na vstup externích dat. Ovládá-li špičku 7 odražený signál, vyloučí se jeho vliv na teletextová data.

Dalším hlavním úkolem procesoru VIP2 je výroba trvalého, tj. nepřetržitého sledu hodinových impulsů pro teletextová data (TTC = teletext clock).

Jejich vznik zajišťuje oscilátor, kmitající s vnějším krystalem na dvojnásobném kmitočtu, tj. 13,875 MHz. Vnitřní dělič 2:1 přivádí kmity oscilátoru přes obvod posouvající fázi jednak na výstup 14 (přes oddělovací zesilovač, nezakreslený na obr. 57), jednak do záchytného registru (latch), přes nějž v rytmu vyráběného kmitočtu hodinových impulsů přecházejí na výstup 15 (přes nezakreslený oddělovací zesilovač) teletextová data (TTD). Jejich výstup ze záchytného registru se porovnává se vstupem dat do tohoto registru, a to ve fázovém detektoru, který pomocí této záporné zpětné vazby ovládá obvod pro posuv fáze vyráběných hodinových impulsů. Tak je zajištěna správná fáze mezi datovými a hodinovými impulsy, při níž čela hodinových impulsů připadnou doprostřed jednoho datového bitu. Rezonanční obvod L1C15, připojený na špičku 12, zabraňuje šíření střídavého signálu do napájecího napětí +12 V.

Teletextový mikrokontrolér

Úkolem pomocného mikropočítače PCF84081 (viz obr. 58) je převést teletextové povely přicházející přes sběrnici MI-BUS z hlavního řídicího mikropočítače (z dálkového ovládání) na data, předávaná přizpůsobenou rychlostí a se zpožděním na sběrnici I²C řídící funkce dekodéru ECCT. Tento počítač zpracovává zadané povely podle maskou vloženého programu do paměti ROM (8k bytů). Obslužný program označený pro teletext typu FLOP (Full Level One Feature) jako P/047 předpisuje, jakým způsobem se mají teletextové informace zpracovat a určuje postup zpracování (např. prokládané - neprokládané řádkování, zobrazení

stavové řádky, zpracování paketu X/26 a jiné). Svou činnost odvozuje a přizpůsobuje též podle řídicích dat přenášených teletextovým signálem. Tato data vložená do vnější paměti RAM mikrokontrolér čte, stejně jako znaková data, a zpracovaná podle programu je zpět ukládá do vnější paměti (viz obr. 54). Proměnná data, ať již povelová ze sběrnice MI-BUS, nebo řídicí a znaková ukládá počítač během svého zpracování ve vnitřní paměti RAM s 256 byty. Hlavní části 8bitového počítače, spojené vnitřní sběrnicí, jsou jako obvykle ústřední řídicí jednotka CPU, čítač/ časovač, obvod reset (s úrovní H na špičce 7, než se nabije kondenzátor C₁), generátor hodinových impulsů a tři porty P0, P1 a P2 s osmi, popř. čtyřmi vstupy/výstupy.

Integrovaný obvod DD5 obsahuje 4 posuvní registry, každý se čtyřmi, popř. pěti stupni (viz obr. 58) zapojenými sériově tak, že doba zpoždění sedmi bitových dat (mezi výsledným výstupem 9 a vstupem 1) je dostatečně dlouhá, aby mohl po své určité čekací době převzít data svými hodinovými impulsy v době mezi mezerami povelů na sběrnici MI-BUS (tj. 4 ms - 1,69 ms, viz obr. 55). Začátek skupiny 14 hodinových impulsů DLIM (invertor není na obr. 58 nakreslen), přivedených na vstup přerušení INT (špička 12), "probudí" počítač a během jeho čekací doby (asi 2 ms) taktují impulsy DLIM přivedené na špičku 3 obvodu DD₅ přes invertor DD₄ a logický člen NOR (část obvodu DD₃) zápis dat o 7 bitech do posuvného registru. Data přicházejí na vstup 1 posuvného registru přes člen NOR a po inverzi přes člen NAND. Jakmile skončí čekací doba mikropočítače, vyšle sám hodinové impulsy typu DLIM z výstupu 9 portu P0, takže taktují nyní přes vstup 2 a výstup 3 členu NOR společný vstup 3 pro hodinové impulsy jednotlivých posuvných registrů v obvodu DD₅. Počet taktovacích impulsů zaručuje úplné přečtení dat na výstupu 9 a jejich vstup přes špičku 10 portu P0 do paměti RAM pomocného mikro-

počítače. Výstupy 8 a 11 portu P0 zabraňují s logickou úrovní 0 přenosu dat ze sběrnice MI-BUS přes člen NOR a NAND během čtení z posuvných registrů.

Ošetřením vstupů/výstupů portů P1 a P2 (např. uzemněním) lze v některých částech měnit obslužný program počítače (např. zobrazení stavové řádky, kurzoru, zpracovává nezobrazovaných paketů, změnu indexové stránky nebo i změnu významu telegramů vysílaných po sběrnici MI-BUS).

Dekodér teletextu ECCT

Přehledné spojení dekodéru teletextu s videoprocesorem VIP2, vnější statickou pamětí RAM a mikrokontrolérem je na obr. 59.

Modul s plošnými spoji uvádí literatura [10]. Abychom porozuměli významu jednotlivých špiček, seznámíme se nejprve s hrubým rozdělením integrovaného dekodéru ECCT (Enhanced Computer Controlled Teletext), znázorněného na obr. 60. Jeho jednotlivé části, tj. časovací jednotka (TIC), záchytná jednotka (TAC) a generátor znaků (TROM) odpovídají jednotlivým integrovaným obvodům první generace dekodéru s názvy uvedenými v závorkách, přičemž TIC = Timing Chain, TAC = Teletext data Acquisition and Control, TROM = Teletext Read Only Memory. Tyto tři hlavní části jsou doplněny dvěma rozhraními, a to rozhraním (stykovým obvodem) pro sběrnici I2C a pro vnější paměť RAM.

Rozhraní sběrnice I²C

Výsledky naprogramované činnosti pomocného mikrokontroléru je třeba předávat jednotlivým částem dekodéru ECCT, nebo přes něj komunikovat přímým čtením a zápisem s vnější pamětí RAM. Pro tyto účely má rozhraní 11 registrů (viz obr. 58, 60), jejichž přehledná funkce je uvedena v tab. 4.

Při přenosu po sběrnici I²C vysílá mikropočítač po startovací podmínce v taktu impulsů SCL sériová data, jimiž se plní jednotlivé registry, označené subadresou v druhém bytu. V prvním bytu se přenáší v 7 bitech adresa podřízeného integrovaného obvodu, tj. 0010001 a osmý bit rozhoduje o čtení nebo zápisu, tj. o směru přenosu. V třetím, případně dalších bytech se vysílají povelová a řídicí data. Jedenáct registrů můžeme rozdělit do tří skupin. V každé skupině se přenos po náplnění počátečního registru přesouvá samočinně do dalšího registru. Říkáme, že inkrementuje. Znamená to, že se při jedné skupině přenosu po startovací podmínce, po adrese podřízeného a subadrese registru v podřízeném naplňují dalšími byty, tj. třetím, čtvrtým atd. postupně další registry, aniž by byly zvlášť adresovány. Přenos po naplnění třetího, popř. sedmého registru se neinkrementuje a je třeba vyslat další skupinu povelů se startovací podmínkou. Inkrementování je vyznačeno v tab. 4 šipkou na konci řádku. Registr 3 má 7 svých vlastních řádků (subregistrů), které také inkrementují, a to cyklicky, počínajíc od řádku (např. 3, tj. 3, 4, 5, 6, 0, 1, 2), určeného daty v druhém registru. Bitové výstupy (podle počtu použitých bitů) se rozvádějí uvnitř dekodéru k jednotlivým jeho

částem podle druhu svého působěňí.

Při zapnutí televizoru mají všechny bity ve všech registrech (kromě R5 a R6) logickou nulu. U zmíněných výjimek mají bity Do a D1 při zapnutí logicku hodnotu I. Do registrů R1 až R10 se data pouze zapisují, takže po potvrzovacím bitu (tj. devátém od podřízeného) ukončí mikropočítač přenos podmínkou STOP. Při adresování 11. registru je možný přístup do paměti označené registry R₈R₉R₁₀ (blok, řádek, sloupec). Přitom lze zapisovat nová data nebo číst z pamětí, ale až po nové startovací podmínce a po určení podřízeného obvodu prvním bytem s osmým bitem log. I pro čtení.

Módový registr R1

Registr 1 lze nazvat operační, neboť svým obsahem rozhoduje o způsobu činnosti

Registr	Sub- registr	Sub- adresa									Funkce registrů	Inkrementace
		registru	D7	D6	D5	D4	D3	D2	D1	D0	10gidii u	
		0000	TA = 0	7 + P/	ACQ	GHOST	DEW/ FULL	TCS	T1	T0		
R1		0001		/8 bitů	ON/OFF	ROW ENABLE	FIELD	ON	1/0	1/0	řízení módu	
R2		0000		volba	ACQ	ACQ	TD ^	start	start	start	adresa žádané	
		0010	-	banky A2	ECCT A1	ECCT A0	TB = 0	v R3CX SC2	v R3CX SC1	v R3CX SCO	stránky	\
<i>3</i>		0000				DO					data žádané	
R3	СО	0011	-	-	-	CARE 1/0	HOLD	MAG2	MAG1	MAG0	stránky (magazín)	
Do	<u></u>	0000				DO	DZO	DTO	DT4	DTA	data žádané	1 1
R3	C1	0011	-	_	-	CARE I/0	PT3	PT2	PT1	PT0	stránky (desítky)	\
D0	C2	0000		_		DO CARE	PU3	PU2	PU1	PU0	data žádané stránky	
R3	02	0011	-	_	-	I/0	FUS	FU2	FUI	FUU	(jednotky)	
	СЗ	0000		_	_	DO CARE			HT1	нто	data žádané stránky	
R3 _,		0011	-	_	_	I/O	_	-	1111	1110	(desítky hodin)	
R3	C4	0000	_	_	_	DO CARE	HU3	HU2	HU1	HU0	data žádané stránky	
INO		0011		_	_	I/O	1103	1102	1101	1100	(jednotky hodin)	1 1
R3	C5	0000	_	_	_	DO CARE	_	MT2 MT1	MT1	мто	data žádané stránky	
		0011				I/O		WILL	141 1	WITO	(desitky minut)	
R3	C6	0000	_	_	_	DO CARE	MU3	MU2	MU1	MU0	data žádané stránky	1
110		0011				I/O	MOO	HOZ	14101	MOU	(jednotky minut)	
R4	0000	0000	_	_	_		-	A2	A1	A0	zobrazení, volba oblasti	
		0100						- 14			paměti	
R5		0000	pozadí BK GND	pozadí BK GND	kontrast COR	kontrast COR	text OUT	text IN	TV obraz PON	TV obraz PON	způsob zobrazení pro	1
		0101	OUT	IN	OUT	IN	-55.	.,,	OUT	IN	běžné stránky	
R6		0000	pozadí BK GND	pozadí BK GND	kontrast COR	kontrast COR	text OUT	text IN	TV obraz PON	TV obraz PON	způsob zobrazení pro	1 1
		0110	OUT	IN	OUT	IN			OUT	IN	blesk, titulky	
R7		0000	ROW	CURSOR ON	CONCEAL /REVEAL	TOP/ BOTTOM	běžná/ /dvoiná	BOX ON 24	BOX ON 1 až 23	BOX ON 0	zobrazovací :mód	1 1
		OIII	BTM/ /TOP				výška				-	
		0000					CLEAR	A2	A1	A0	přímé adresování	
₽8		1000	-	-	_	-	MEMORY			AU	stránkové paměti	
R9		0000 1001	-	-	-	R4	R3	R2	R1	R0	přímé adresování řádků v paměti	1
R10		0000	-	-	. C5	C4	C3	C2	C1	C0	přímé adresování * sloupců v paměti	1
R11		0000	D7 (R/W)	D6 (R/W)	D5 (R/W)	D4 (R/W)	D3 (R/W)	D2 (R/W)	D1 (R/W)	D0 (R/W)	přímý přístup k datům (zápis/čtení)	1)

(módu) dekodéru ECCT. V dalším uvádíme významy jeho bitů D0 až D7, označených v tab. 4 zkratkami.

První dva bity D0 až D1 označují způsob řádkování obsažený № signálu teletextové synchronizační směsi TCS, kterou vyrábí sám dekodér a synchronizuje s ní rozklady televizoru (viz bit D2). Děje se tak jen při zobrazení ryzího teletextu (nikoli při módu BOX, tj. vkládaní, a při bleskovém zpravodajství a televizních pořadech s titulky pomocí teletextu). Synchronizace může být s prokládaným řádkováním T0 = T1 = 0 nebo s neprokládaným řádkováním 312/312 při T0 = 0, T1 = I či 312/313 za podmínky T0 = I, T1 = 0. Při cizím zdroji synchronizace SCS je stav T0 = T1 = I.

Bit D2 stanoví svou hodnotou I, že se vyrábí synchronizační směs TCS, při logické hodnotě 0 je tento signál vypnut a rozklady televizoru se synchronizují televizním signálem. Bit D3 je označen jako DEW/FULL. Znamená to, že při logické hodnotě 0 je zapnuto okénko mezi 6. a 22. řádkem (Date Entry Window). Při log. I lze přijímat teletext ze všech řádků (Full Field). Tuto informaci může mikropočítač získat z paketu X/30 (přes vnější paměť).

Bit D4 umožňuje pouze při úrovni I zpracovat nezobrazované pakety (GHOST ROW) a rozhoduje o obsazování vnější paměti těmito pakety. Jde o dvě oblasti stránek ("chapters") po 1k bytu pro jednu stránku, tj. jednu oblast.

Bit D5, označovaný ACQ ON/OFF, zapíná nízkou úrovní záchytný obvod dekodéru, při vysoké úrovní jej vypíná (při zobrazování programů počítačů).

Bit D6 s označením "7 + P/8 bitů" zaručuje nízkou úrovní přenos 7 bitů v každém slově teletextu s jedním paritním bitem. Při vysoké úrovni tohoto bitu se přenáší všech 8 bitů jako informace.

Bit D7 je testovací a je aktivní při logické úrovni 0.

Adresový registr R2 pro zachycení stránky

Údaje ukládané počítačem do registru R2 se týkají přípravy na volbu a zápis stránky. Při každé volbě nové stránky se naplňuje registr bity s tímto významem:

Bity D0, D1, D2, označené jako SC0 SC1 SC2, udávají subregistr C0 až C6 (viz tab.4) registru R3, od kterého se začnou ukládat údaje o volené stránce, tj. zda se budou z paměti RAM počítače (naplněné volbou sedmi údajů pro volenou stránku) ukládat nejdříve jednotky stránky, desítky stránky, číslo magazinu, či subkód podle všech kombinací prvního (startovacího) výběru.

Bit D3 je testovací TB = log. 0. Bity D4 a D5 s označením A0, A1 udávají kombinací svých úrovní jednu ze čtyř záchytných pamětí pro volbu stránky v dekodéru ECCT. Tyto bity adresují též výstupy pro čtyři oblasti (adresy A10, A11) ve vnější paměti.

Bit D6 (A2) určuje výběr "banky", tj. určité části vnější paměti, určené pro záznam zachycených dat. Předem uvádíme, že uvažovaný dekodér SAA5243 může pracovat se dvěma bankami po 4 oblastech (kapitolách). Do každé oblasti lze zapsat jednu teletextovou stránku bez uvažování nezobrazovaných paketů. Při jejich příjmu je třeba počítat s jednou oblastí (kapitolou) v každé ze dvou

bank. Pak lze zapamatovat 4 stránky, přičemž jedna banka zapisuje běžně teletextové řádky (stránky), druhá pak nezobrazované pakety.

Datový registr R3 pro zachycení stránky

Tento registr obsahuje úplný údaj o žádané stránce (která se má zapsat, ti. musí svými sedmi subregistry zachytit (v pořadí začatém podle obsahu registru R2) číslicové hodnoty: pro číslo magazinu (tři bity D0, D1, D2) v subregistru C0, pro desítky stránek (čtyři bity D0, D1, D2, D3) v subregistru C1, atd. podle tab. 4. Bit D4 v subregistrech (označovaný jako "DO CARE") znamená, že údaje v tomto subregistru obsažené v bitech D0 až D3 platí jen při logické hodnotě l bitu D4. Má-li tento bit úroveň log. 0, tj. D4 = 0, celý obsah subregistru je neplatný. Registr R3 se začne plnit od čísla magazínu, ti. od prvního svého subregistru v případě, že je v registru R2 stav D0 = D1 = D2 = 0. Kdvbv se plnění registru mělo začít údajem pro subkód (tj. pro rotující stránky, budík), musel by být stav registru R2 D0 = I, D1 = I. D2

Je-li některý subregistr (např. C1) vyřazen tím, že jemu příslušný bit D4 = 0 (DO CARE), nebude volba čísla reagovat na desítky a při volbě stránky 536 se mohou zobrazovat všechny stránky 506, 516, 526, 536 atd. až 596.

Do registru R3 se zaznamenává též povel HOLD (zastavení rotujících stránek), a to pro D3 = 0 v subregistru C0.

Registr R4 pro výběr zobrazované stránky z paměti

Účelem registru R4 je vybrat podle prvních tří bitů, označených A0, A1, A2, stránku k zobrazení, a to z osmi oblastí vnější paměti. Bity odpovídají adresám paměti A10, A11, A12.

Budicí registry R5 a R6 pro reprodukci teletextových stránek

Obsah těchto registrů určují vnější povely (např. smíšený provoz) i program pomocného počítače (zmenšení kontrastu). Podle osmi bitů (viz tab. 4) lze nastavit ve vnitřní části, tj. v poli určeném pro smíšený provoz čili boxing (označení bitů IN) i ve vnější části tj. mimo smíšený provoz (OUT) zobrazení televizního programu (PON = Picture ON) nebo teletextových znaků. Zobrazení je aktivní při bitech s logickou hodnotou I. Tak např. pro televizní obraz je obsah registru: 000000II, pro teletext 0000II00, pro smíšený provoz 0000IIII. Bity D4 a D5 rozhodují. zda se kontrast zmenší (COR = Contrast Reduction) při logické hodnotě I nebo nezmenší při logické hodnotě 0 ve zmíněných prostorech. Totéž se týká vyobrazení pozadí (základní plochy), na které se zobrazují písmena případně grafické znaky. Je-li D6 = I, pozadí se při teletextovém i smíšeném provozu zobrazuje, při D6 = 0 jsou zobrazeny jen znaky a grafické obrazce bez pozadí. Bity pro určení pozadí jsou nadřazeny (mají prioritu) bitům pro televizní obraz. Údaj 00IIIIII představuje smíšený provoz bez pozadí teletextu se zmenšeným kontrastem po celé ploše stínítka, 01001111 pak smíšený provoz s pozadím ve vymezeném obdélníku (které udává teletextový signál) bez zmenšení kontrastu.

Obsahy registru R5 se týkají běžného obrazu a neinterpretují se při bleskových zprávách a podtitulcích televizního obrazu,

kdy řídicí bity v hlavičce jsou C5 = I, popř. C6 = I (viz literaturu [4]). Obsahy registru R6 se právě uplatňují při těchto aktivních řídicích bitech.

Registr R7 pro mód zobrazení

Rovněž tento registr je naplňován z vnějších povelů (např. dvojnásobná výška) i z vnitřního programu (např. prolínání jen určitých řádek s televizním obrazem).

První tři bity D0 až D2 určují svou logickou úrovní I, které řádky teletextové stránky se mohou smísit s televizním obrazem (význam je patrný z tab. 4). Bit D3 představuje při logické úrovni 0 běžnou a při logické úrovni I dvojitou výšku obrazu, přičemž bit D4 rozhoduje o horní části obrazu D4 = log. 0 a o dolní části při D4 = log. I. Bit 7 určuje logickou úrovní 0 skryté zobrazení a logickou úrovní I odkryté zobrazení (výsledek kvízu, hádanky), což lze ovládat podobně jako dvojitou výšku vnějším povelem z dálkového ovládání.

Bit D6 zavádí na stínítko bílý čtverec o velikosti znakového obdélníku, jímž lze při dálkovém ovládání vybaveném pro tento účel pohybovat a umisťovat do něj různá písmena a číslice. Tak lze označovat předvolby se zvolenými kanály několikamístnými znaky. Postup označovaný jako identifikace vysílačů je uváděn v návodech na obsluhu dálkového ovládání (např. Grundig). Osmý bit D7 určuje polohu stavové řádky X/24, buď na horním okraji teletextového obdélníku (D7 = I), nebo na dolním okraji (D7 = 0).

Registry R8, R9, R10, R11 pro přímý (aktivní) vstup do vnější paměti

Všechny čtyři registry jsou ovládány programem mikropočítače (např. při zpracování paketu X/26).

Registr R8 určuje stránkovou oblast v paměti podle bitů A0, A1, A2 z osmi možných (odpovídá to adresám paměti A10, A11, A12). Bit D3 označovaný "CLEAR" (mazání) není zachycen v registru a působí průběžně svou logickou hodnotou l na vymazání všech řádek stránky na daném místě v paměti.

Pět bitů R0 až R4 registru R9 určuje přístup k určité řádce stránky a šest bitů C0 až C6 registru R10 zvolí sloupec ve vybrané řádce.

V osmi bitech D0 až D7 registru R11 se interpretují data, určená pro zápis nebo čtení z paměti. O čtení nebo zápisu rozhoduje 7. bit (R/W) v prvním bytu po startu povelu. Při každém tomto čtecím nebo zapisovacím bitu inkrementuje sloupec v registru R10 a po přijetí všech sloupců přejde zpět na C0. Při novém povelu R/W se inkrementuje číslo řádky v registru R9. Tak lze na jeden povel přečíst nebo zapsat celou jednu stránku. Registr 11 neinkrementuje sám žádný další registr, jak je tomu u předchozích registrů (viz tab. 4).

Obvod pro zachycení teletextových dat

Úkolem této části dekodéru ECCT je zachytit (acquisition) z toku sériových teletextových dat TTD zvolené čtyři stránky, tj. obsahovou, např. 100 a další tři, určené u soustavy FLOF paketem 27 (viz literaturu [4]) nebo stránku zvolenou uživatelem a tři další stránky podle číselného pořadí. Proto má záchytný obvod rovnocenné skupiny s pomocnými paměťmi RAM, plněnými z registru R3 v rozhraní I²C (viz předešlý článek).

Kromě toho mapuje tato část dekodéru ECCT teletextovou stránku v souřadnicích řádek (0 až 31) a sloupců (0 až 39), aby bylo možné určit polohu znaku ve stránce (s ohledem např. na přepisování písmen paketem X/26). Za tím účelem vyrábí záchytný obvod pomocí čítače bytů adresy pro sloupce a pro řádky, doplněné výstupem pro volbu stránkové oblasti (chapter) ve vnější paměti a výstupem pro uvolnění zápisu. Vstupy do paměti procházejí příslušným rozhraním, v němž je sloupcová a řádkovámapa přetvořena do adres vnější paměti RAM.

Zjednodušené skupinové schéma záchytné části dekodéru ECCT je na obr. 61. Jsou vynechány všechny oddělovací a vstupní upínací obvody, stejně jako zpožďovací registry a vedlejší obvody, které pro vysvětlení činnosti nejsou podstatné. Rovněž výklad činnosti je zjednodušen, aby byl přehledný.

Podrobnosti isou v literatuře 9. Sériová teletextová data TTD a jejich hodinové impulsy TTC přicházejí špičkami 6, popř. 7 do sérioparalelního převodníku, který pomocí bitového čítače vyrábí paralelně vystupující osmibitové byty, přesynchronizované na vnitřní časovací kmitočet 1 MHz. Řídicí znakové byty se začínají přenášet po splnění podmínky rámcového kódu (viz literaturu 4) v časovém okénku 3 μs, vzdálenému 12 us od začátku řádkového synchronizačního impulsu. V sérioparalelním převodníku lze přenos dat přerušit signálem (enable) z časovacího obvodu, je-li signál rušen poruchami. Po kontrole Hammingova kódu (u adres) a parity (u dat) přecházejí teletextová data paralelní sběrnicí přes zpožďovací obvod do paměťového rozhraní (viz dále). Zpoždění je nutné, neboť zápis je uvolněn až tehdy, jsou-li správně přijata data stránky v záhlaví, viz bit FOUND v 8. sloupci řádky X/25 (tab. 5). O správnosti kontroly Hammin-

Tab. 5. Adresová a řídicí data ze záhlaví, uložená v 10 bytech řádku X/25 (s adresou paměťové řádky 21). Bit HAM, ER s hodnotou log. I znamená neopravitelnou chybu

gova kódu informuje u starších typů CCT v určitém čase logická úroveň I na špičce 8. U dekodéru SAA5243P/H je na tuto špičku vyveden signál ODD/EVEN s kmitočtem 25 Hz, informující o přenosu lichých a sudých půlsnímků.

Ze sérioparalelního převodníku se odvozuje též signál budící po přenosu každého bytu (po 1 µs) čítač bytů, nastavený vždy na začátku televizního řádku. Různé počty bytů třídí jejich dekodér, z něhož se rozvádějí signály (vhodně časově zpožděné) pro různá použití (viz obr. 61). Předně je to taktovací signál pro čítač sloupců, umožňující určit vodorovnou souřadnici znaků na teletextové stránce. Svislou souřadnici této mapy pro vnější paměť určuje pořadí teletextových řádků. Souřadnice se určí zachycením teletextových dat v okamžiku, kdv se vysílá číslo řádku. To umožní určitý počet časově definovaných impulsů zavedených z čítače a dekodéru bytů do obvodu pro zachycení adres řádků a určovacího kódu. Z těchto údajů pak generátor adres řádků vyrobí signál pro rozhraní vněiší paměti. V provozu bez nezobrazovacích paketů se adresuje 26 řádků, tj. X/0 (záhlaví) až X/25. Tento poslední 26. řádek se používá pro zachycení 10 bytů s adresovými a řídicími údaji (viz tab. 5) příslušejícími záhlaví stránky. Nezobrazuje se, ale uložena v paměti zajišťuje řízení provozu dekodérù. Při provozu s nezobrazovacími pakety se jejich řádky (u X/26 jich je 15, u X/27 pak 4) označují adresovou souřadnici, uvedenou v tab. 6. Obsah nezobrazovaných řádků se zapisuje do druhé banky vnější paměti, tj. do stránkových oblastí 4, 5, 6, 7.

Další ze signálů čítače a dekodéru bytů spouští ve vhodném čase (po odpočítání a vyrovnávacím zpoždění) obvod pro řízení zápisu, který je připojen do rozhraní vnější paměti. Tento obvod však musí být uzavřen při čtení z vnější paměti, což zařídí aktivovaný registr R4 v rozhraní I²C.

V období adres (magazínu a stran) pro záhlaví aktivuje další signál (bez zpoždění) z čítače a dekodéru bytů čtyři vnitřní paměti RAM, dodávající data pro žádanou stránku z registrů R2 a R3 v rozhraní I²C.

Čtyři komparátory porovnávají údaj žádané stránky s přicházejícími teletextovými bity a rovnocenným způsobem může každý komparátor aktivovat logické úrovně l na výstupu v období shody údajů o stránce. Tím se přes obvod řízení zápisu vyšle WE (uvolnění zápisu) přes rozhraní do paměti. Zápis od všech čtyř komaprátorů je vázán šíří okénka, tj. stavem obvodu pro řízení vymazání (CLEAR) podle povelu DEW/FULL FIELD (částečný nebo celořádkový teletext) z registru R1 rozhraní l²C: Totéž platí o povelu ACQ ON/OFF ze stejného registru R1 (vypnutí záchytného obvodu). Každá ze čtyř částí vnitřních pamětí RAM má dva klopné obvody. Jeden se nastavuje (v logické úrovni I) při vyhledávání stránky (PBLF = Page being locked for) a nuluje se při nalezení správného záhlaví. Opačné stavy má klopný

MAG PU	=	magazín (soubor) jednotka stránky	číslo stránky
PT	=	desítky stránky	Suainy
MU	=	jednotky minut	
MT	=	desitky minut	subkód
HU	=	jednotky hodin	stránky
HT	=	desítky hodin J	•
PBLF	=	stránka se vyhledává	
HAM.ER	=	chyba (Hammingův kód) v přís	lušném bitu
FOUND	=	stránka nalezena	

Tab. 6. Mapa adres pro uložení nezobrazovaných paketů

	•				•	·									
Adresa řádky uložených dat	Určovací kód								kód				Číslo paketu (řádky)	Funkce	
0 1 2 3 4 5 6 7 8 9 10 11 12 13	0 0 0 0 0 0 0 0 1 1	0 0 0 0 0 1 1 1 0 0 0 0	0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1	26	zvětšení počtu zobrazovacích znaků	data stránek nezobrazených řádek se ukládají do stránkových oblastí 4, 5, 6, 7 vnější paměti								
15	0	0	1	0	28	skupina znaků týkajících se stránky	oraz nějš								
16 17 18 19	0 0 0	0 0 0	0 0 1	0 1 0 1	27	sdružené stránky	ránek nezol 4, 5, 6, 7 vi								
20	-	_	_	_	24	další řádka v zobrazení stránky	a st astí								
21	 -	_	_	_	25	další řádka pro uložení v paměti	<u>8</u> <u>8</u>								
22	0	0	0	0	28	skupina znaků, týkajících se magazínu	St.								
23	X	Х	Х	Х	30	paket dat pro servis vysílače	ádají pouze 4. oblasti								
24					nepoužita		ukládají se pouze do 4. obl								
25					nepoužita	1	⊃ 00 T								

obvod CPHR (= correct page header received), umožňující úrovní log. I nalezení zvolené stránky.

Při povelu uživatele pro zadržení stránky (HOLD) se dostane přes registr R3 C0 do všech vnitřních pamětí RAM signál uvádějící výstupy komparátoru na trvalou logickou úroveň 0, a tím se zamezí zápis.

Čtyři výstupy z komparátorů určují obsazení čtyř stránkových oblastí (chapter) vnější paměti pomocí sběrnice se dvěma bity, odpovídající adresám A10, A11 pro paměť. Při současném aktivování komparátorů má prioritu paměť RAM 0 před RAM 1 a je jí přisouzena nejnižší adresa, tj. A10 = 0, A11 = 0. Při mazání stránky se signálem z obvodu pro řízení mazání vnucuje teletextovým datům znak 00100000, tj. "mezera v textu", ovšem v období mimo okénko DEW. Při tom se uvolňuje zápis a v uvedené době se časováním vyráběným z mazacího obvodu taktují čítače sloupců a řádek tak, aby se na celou stránku napsaly "mezery".

Časovací obvod

Časovací obvod zásobuje celý dekodér ECCT příslušnými hodinovými impulsy pro zachycování dat i pro zobrazení znaků, vyrábí vlastní synchronizační směs a vnější přijímanou směs zpracovává. Uplatňuje se i při některých jiných řídicích funkcích (blikání).

Vnitřní skupinové schéma časovacího obvodu je na obr. 62.

Hodinový signál F6, určený pro zobrazování znaků, je synchronizován řádkovými synchronizačními impulsy televizního signálu v procesoru VIP2 a přichází na špičku 9 dekodéru ECCT. Po zesílení se zpětnou vazbou se získají pravoúhlé impulsy se střídou 50 % a rozvádějí se pro zobrazovací obvody, kde je třeba takt 6 MHz. Další potřebné hodinové impulsy s kmitočtem 1 MHz se získají děličem 6:1. Za ním následuje dělič 64:1 s třídicím dekodérem, který rozděluje impulsy se základním řádkovým kmitočtem tak, že je různě upravuje do tvaru a fáze, např. vymezuje rámcové okénko.

Tak vzniká impuls široký 3 µs ve vzdálenosti 12 µs od přední hrany synchronizačního impulsu, tzv. okénko pro rámcový kód (přivádí se do části zachytávání dat). Ve zvláštním generátoru se ze složek CBB a PL vytváří impuls SAND se třemi úrovněmi, přiváděný přes výstup 11 do procesoru VIP2 za účelem fázové synchronizace signálu F6 a zatemnění burstu. Podíl synchronizační části PL v signálu SAND se vypíná při signálu znehodnoceném poruchami. O tom rozhoduje číslicový detektor poruch, zpracovávající úplnou synchronizační směs VCS vstupuiící špičkou 10. Detektor počítá počet impulsů (tj. úrovní H) v jednom řádku (mohou být nejvýše 2, tj. vyrovnávací nebo půlsnímkové). Jsou-li tři, rozhoduje o špatném signálu až více než 14 špatných řádků v jednom půlsnímku, byl-li signál před tím bez poruch. Po špatném signálu je vyhodnocen dobrý signál jen tehdy, je-li počet špatných řádků v půlsnímku menší než 3. Tak se vypíná PL výstupní logickou úrovní 0 z detektoru a pak hradlo AND H1 nepropustí signál PL do generátoru SAND. Vypínání se ruší pomocí hradel H₂ a H₃ při stavu synchronizace T0 = T1 = I (viz registr R1 v rozhraní I^2C), ti. při cizím zdroji synchronizačního signálu. Při vypnutém impulsu PL běží oscilátor F6 v procesoru VIP2 volně a současně je znemožněno uvolnění záchytu dat, neboť hradlo AND H₆ nepropouští signál DEW (okénko mezi 6. a 22. řádkem). Dalším výstupem děliče 64:1 je signál pro řádkové časování adres sloup-CŮ

Amatérske? AD 10 B/6

Obr. 62. Skupinové schéma časovací části dekodéru ECCT, SAA5243P/H

Důležitými obvody časovací části jsou dva čítače řádků, a to čítač pro zachytávání dat a čítač pro zobrazení. Čítač pro zachytávání dat čítá po povelu reset (viz dále) jednotlivé řádky tak, že pracuje jako dělič 312:1 v jednom půlsnímku, na jehož konci působí na klopný obvod. Výstup tohoto obvodu přepne s opakováním 25 Hz čítání v čítači tak, že v druhém půlsnímku dělí v poměru 313:1. To se opakuje v rytmu 25 Hz, takže se dělí 625 na výstupní kmitočet 25 Hz. Nulování čítače (reset čili fázování) vzhledem k řádkům zajišťuje obvod pro klíčování půlsnímkových synchronizačních impulsů. Tyto půlsnímkové impulsy se získávají v číslicovém integrátoru, který zpracovává vstupní signál VCS. Číslicový integrátor vzorkuje vstupní signál v rozmezí každé µs a jako čítač čítá vpřed úrovně H a vzad úrovně L (nejdále na nulu). Načítá-li 37 impulsů, svědčí to o přítomnosti půlsnímkových impulsů a vzniklý výstupní impuls se přenese přes hradlo H4 (nebrání-li tomu detektor jakosti signálu) do obvodu pro klíčování impulsů. Tento obvod je uzamčen pokaždé, když skončí nulování čítače řádků pro zachytávání dat a uvolňuje se opět (aby se zabránilo vlivu poruch v signálu) až po příchodu 310. řádkového impulsu z čítače. Půlsnímkové impulsy mají kmitočet 50 Hz a čítač je třeba nulovat v rytmu 25 Hz. To obstarává hradlo NAND Hz, které za pomoci impulsů, majícího úroveň H jen v druhé polovině řádku, propustí pro povel reset jen každý druhý půlsnímkový synchronizační impuls.

Impulsy s kmitočtem 25 Hz se používají k výrobě synchronizačí směsi TCS, vystupující ven z dekodéru ECCT špičkou 12 (pro synchronizaci rozkladů televizoru). Kromě toho zprostředkovávají přes dělič 32:1 blikání znaků a se střídou 50 % na výstupu 8, označeném jako ODD/EVEN, tj. lichý - sudý, mohou být použity k různým účelům. Je-li tento signál o vhodné velikosti zaveden do koncového stupně vertikálního vychylování, posouvá jeden půlsnímek vůči druhému právě o řádkovou rozteč, takže se řádkování jeví jako neprokládané. To odstraňuje meziřádkové mihotání zvlášť rušivé u vodorovných rozhraní grafů a písmen.

Druhým hlavním čítačem řádků je čítač pro zobrazení. Čítá řádkové impulsy přicházející z děliče 64:1 a nuluje se (reset) impulsem s kmitočtem 50 Hz, dodávaným z generátoru synchronizační směsi TCS přes obvod řízení II. Generátor synchronizační směsi je inicializován 310. řádkem z čítače řádků pro zachytávání dat, takže čítač řádků pro zobrazení čítá střídavě půlsnímky po 312 a 313 řádcích. Vnitřně se používá výstup z tohoto čítače pro časování generátoru znaků. O uvolnění výstupu 12 pro signál TCS rozhoduje povel TCS ON v registru R1.

Podmínkou, aby generátor směsi TCS vyráběl prokládané řádkování, je stav bitů T0 = T1 = 0 v registru R1. Při neprokládaném řádkování (podle bitů T0 a T1) je v obvodu řízení I generátor TCS odpojen od čítače pro zachytávání dat a inicializuje se přes čítač zobrazení. Ten pak čítá v režimu 312/312 nebo 312/313 s tím, že přidá v druhém půlsnímku jeden řádek (T0 = I, T1 = 0). Při zobrazení bleskové zprávy nebo při titulkování obrazu pomocí teletextu je zabráněno v řízení l neprokládanému řádkování (z důvodu prolínání s televizním obrazem). Neníli výstup TCS aktivní, může být špička 12 použita jako vstup pro cizí synchronizační směs SCS. Z ní se pak integrací získá v integrátoru SCS půlsnímkový impuls, který nuluje čítač řádků pro zobrazení při podmínce v řízení II T0 = T1 = I. Signál F6 dodává však nadále procesor VIP2 zpracováním řádkového obsahu signálu SCS přivedeného na špičku 28 odpojení oddělovače na špičce 1 VIP2.

Generátor znaků

Všech 196 reprodukovatelných znaků dekodéru ECCT (SAA5243P/H) je obsaženo v paměti ROM s maticí o 196 sloupcích s 10 řádky. Z každého sloupce vychází 12 výstupů odpovídajících obrazovým elementárním bodům v jednom řádku (lince, tj. stopě paprsku na stínítku). Z vnější paměti přicházejí přes rozhraní data zpracovávaná ve třech dekodérech a jednom zachytávacím obvodu (viz obr. 63). V dekodéru abecedně číslicových znaků se získají adresy pro sloupce vnitřní paměti ROM (pro určitou číslici a kaž-

dé písmeno, malé, velké, s háčkem či čárkou nebo jiným znaménkem). Z paměti se čte soubor 12 bodů příslušejících jednomu televiznímu řádku, takže se v jedné teletextové řádce zobrazují nejdříve první řádky (linky) všech znaků postupně z leva do prava a pak opět postupně 12bitové informace všech znaků v druhé lince teletextové řádky.

Kromě písmen a číslic se v teletextové řádce zobrazují grafické plošky různého tvaru (viz literatura 4). Ty se nečtou z paměti ROM, ale přímo se dekódují ze vstupních datových bitů. V módu sevřené grafiky je třeba určitý znak pozdržet o jeden znakový obdélník, proto jsou data z dekodéru grafiky zachycena v záchytném registru. Grafická a abecedně číslicová data se multiplexuií podle řídicích povelů, přicházejících z třetího dekodéru, kterým je dekodér řídicích znaků. Data znaků jsou paralelní, dvanáctibitová (jedna linka znaků má rastr v podobě 12 bodů). Na sériová data s kmitočtem 12 MHz se výstup z multiplexeru přeměňuje ve dvou šestibitových posuvných registrech, taktovaných se vzájemně posunutou fází hodinových impulsů 6 MHz. Tím se 12 paralelních bitů rozdělí ve dvě větve sériových dat, příslušných lichých bodům v jedné větvi a sudým bodům v druhé větví. Oba signály se multiplexují ve výstupním obvodu. Hodinový signál 6 MHz taktuje obvod čelem a týlem svých impulsů. Ve výstupním logickém obvodu se převádějí přivedené signály na výstupy R, G, B dodávající barvu znaků i pozadí podle povelů získaných z dekodéru řídicích znaků zpracovaných v obvodech pro řízení zobrazení. Do tohoto obvodu se přivádějí různé řídicí informace z registrů rozhraní I²C (např. uvolnění skrytého znaku, titulkování, blesková zpráva, vkládání různých řádek atd., viz obr. 63). Tyto módy přenosu vyžadují různý tvar zatemňovacího (z hlediska obrazového procesoru "přepínacího" signálu BLAN = blanking) vyvedeného na špičce 17. Podle informace zadržené v registru R7 rozhraní I2C lze z výstupu COR (contrast reduction) zmenšovat kontrast ve zvolených částech obrazu (při vkládání). Kurzor se na určité teletextově řádce v určítém jejím místě (tj. sloupci) zobrazuje bez ohledu na volenou stránku ve stránkové paměti jako inverze mezi pozadím a barvou znaku. Červený znak na modrém pozadí se mění na modrý znak v červeném poli. Tatáž inverze se týká módu blikání.

Řídicí povely z teletextového střediska (příznaky) jsou pro celou stránku vysílány řídicími bity (C4 až C14), přenášenými pouze v záhlaví stránky (jejich význam je uveden v literatuře [4]). Příznaky přicházející rovněž z vnější paměti, kde se ukládají při teletextu se zapamatováním několika stránek, se pro plnění své zobrazovací funkce zachytávají v obvodu zádrže příznaku stránky. Jejich působení platí pro celou stránku, a proto je tento obvod časován půlsnímkovým dekódovacím povelem z časovacího obvodu (X na obr. 62).

(slrana se vyhledává)

Obvody pro řízení zobrazení (viz obr. 63) pracují podle povelů odebíraných z dekodéru řídicích znaků, dále podle příznaků a podle stavu registrů R5 a R6 (v rozhraní I²C).

Příznaky C12, C13, C14 se vedou do dekodéru adres abecedně číslicových znaků, kde ovlivňují výběr 13 písmen (většinou malé abecedy s diakritickými znaménky) pro maximálně osm národních abeced. Volba iazyka platí pro celou stránku. Při tomto zobrazovacím módu se uložená sedmibitová informace (přenesená televizním signálem) odebírá z vnější paměti při nejvyšším - MSB - osmém bitu majícím logickou úroveň 0. Určí-li se povelem z pomocného mikropočítače (mikrokontroléru) tento osmý bit jako logická úroveň l, lze tak adresovat v paměti ROM dekodéru ECCT další znaky. Jsou to znaky přístupné pouze přes paket 26, uložený ve zvláštní stránkové paměti a dávající mikropočítači pokyn, kde a jaký znak má být přepsán. Při módu s osmým bitem s logickou úrovní l je působnost příznaků C12, C13, C14 vyřazena. Při této činnosti zajišťují přímý přístup mikropočítače do vnější paměti tzv. aktivní registry R8, R9, R10, R11

Pro připojení tiskárny je z výstupního obvodu vyveden na špičku 18 jasový signál Y bez pozadí a bez možnosti blikání. Při zobrazování znaků a grafiky musí být ve zvolené stránkové paměti adresovány sloupce (vodorovné souřadnice 0 až 39) a řádky (svislá souřadnice 0 až 25). Sloupce se adresují přímo z časovacího obvodu a řádky jsou určeny čítačem teletextových řádek v části generátoru znaků (viz obr. 63), a to podle informace z čítače řádků (linek) pro jednu teletextovou řádku. Tento obvod se taktuje impulsy 64 µs z časovacího obvodu. Při běžném zobrazení počítá televizní řádky. Jednotlivé impulsy přicházejí přes řízení dvojnásobné výšky (zatím je neuvažujeme) do dekodéru dodávajícího do paměti ROM impulsy pro posuv řádkování, tj. přečtení 12bitových skupin u každého znaku postupně v deseti řádcích (linkách). Po 10 linkách, tj. v jednom půlsnímku u prokládaného řádkování, se čítání opakuje v další teletextové řádce pro pořadí nových znaků a při tom se vyšle impuls do čítače teletextových řádek, jehož výstup se vede přes záchytný registr do rozhraní paměti, a tak adresuje řádky paměti pro zobrazování. Tento druhý čítač čítá od 0 do 24 (dělí 25). a tak projde všech 25 řádek určených k zobrazení, čímž ukončí jednu teletextovou stránku a předá tuto informaci též do obvodů pro řízení zobrazení. Teletextové řádky se čítají podle různého postupu daného vstupními povely, kde má být zobrazena stavová řádka, nebo při dvojnásobné výšce je třeba čítat jen od 0 do 11 nebo od 12 do 23 podle toho, zobrazí-li se dolní nebo horní zvětšená část obrazu. Pak je třeba údaje pro adresování řád v paměti pozdržet v záchytném registru vždy po dobu dvou televizních řádků.

Povel o dvojnásobné výšce zobrazení stránky přichází též během vysílání teletextu do dekodéru řídicích znaků. Informaci o tom dostane kromě obvodu pro řízení dvojnásobné výšky i čítač linek v jedné teletextové řádce, která pak čítá linky (televizní řádky) po dvaceti a předá dekodéru pro adresy linek v paměti ROM takový povel, aby se jedna

Obr. 64. Rozhraní vnější paměti v dekodéru ECCT (SAA5243P/H)

linka v této paměti zobrazovala po dva televizní řádky. Při prokládaném i neprokládaném řádkování dostávají oba půlsnímky (ať již vzájemně nesplývají nebo se kryjí) stejnou informaci o přenášených 12bitových skupinkách dat.

Rozhraní vnější paměti

Hlavní části paměťového rozhraní (viz obr. 64) jsou čtyři datové, popř. adresové multiplexery a časovací generátor. Jeden datový multiplexer přivádí data buď ze záchytného obvodu nebo z rozhraní I2C přes třístavový výstupní oddělovač k datovým špičkám D0 až D7. Z těchto bodů mohou přicházet vstupní data z vnější paměti přes aktivovaný vstup (trojstavový výstup je ve stavu veliké impedance) ke generátoru znaků, popř. k rozhraní l²C (při přímé komunikaci s mikropočítačem). Přiváděnými hodinovými impulsy 6 MHz taktuje časovací generátor kromě čtyř multiplexerů i výstupy pro čtení (OE = output enable) a pro zápis (WE write enable). Zápis se uvolňuje při zápisu dat ze záchytného obvodu nebo z rozhraní I²C při činnosti mikropočítače, např. při přepisování znaků, při zápisu bitů PBLF, FOUND (viz tab. 5) v období, v němž se stránka vyhledává (rotující záhlaví) a když se po zachycení v mikropočítači zpracovává.

Při příjmu a zobrazení teletextu je třeba, aby zápis i čtení z paměti byly současné. Toho se dosahuje časovým proložením, tj. střídáním čtení a zápisu s periodou 1 μs (0,5 μs pro čtení a 0,5 μs pro zápis), viz obr. 65. Jednomu televiznímu řádku přísluší pak 128 paměťových cyklů (64 pro zápis a 64 pro čtení). Z nich se využije 40 pro čtení dat z paměti pro zobrazení a 2 cykly pro čtení pro rozhraní I²C. Zbylé čtecí cykly se nevyužijí. Pro zápis je rozděleno 63 cyklů na 60 pro rozhraní I²C, 1 pro záchytný obvod, 1 pro změnu barvy v rotujícím záhlaví a 1 probit PBLF, viz literatura [9]. Výstupní špičky pro

13bitové adresy (A0 až A12) jsou určeny pro sloupce, řádky (tj. souřadnice na jedné teletextové stránce) A0 až A9 a pro stránkovou oblast (chapter) v paměti, tj. A10 až A12. Adresy sloupců jsou přístupny přes multiplexer 2 ze záchytného obvodu, z rozhraní l2C a z časovacího obvodu, podobně tak adresy řádek přes multiplexer 3 s tím rozdílem, že při zobrazování se řádky určují z generátoru znaků, podobně pak stránkové oblasti jsou při zobrazení určovány bity z registru R4. Adresy jedné stránky (tj. sloupců a řádek) je však v důsledku architektury vnější paměti třeba přemapovat do výstupů při A0 až A9 na formát 5×5 adres (A0 až A4) × (A5 až A9), podrobně viz 9

Je dobře si uvědomit, že se adresování

Obr. 65. Zápisové a čtecí cykly pro vnější paměť

Obr. 66. Vnitřní skupinové schéma paměti SRAM HM6264

uskutečňuje nezávisle na sobě ve třech stavech, tj. záchytu dat, zobrazení znaků a v přímém styku s počítačem přes rozhraní l2C.

Zdůrazňujeme, že při adresování v původním netransformovaném rastru 64×32 se adresy řádek 0 až 23 týkají vysílané zprávy. řádka 24 a částečně záhlaví 0 je zásobeno údajem o stavu zobrazování a je vytvořeno z údajů nezobrazovaných paketů od mikropočítače. Šestadvacátá řádka, tj. s pořadím 25 je určena pouze pro registraci dat, nevysílá se ani nezobrazuje a zaznamenává se jako 21. paměťová nezobrazovaná řádka, viz tab. 6. V ní jsou uloženy též bity PBLF a FOUND (viz tab. 5). Bit PBLF oznamuje svou logickou úrovní I klopnému obvodu ve vnitřní paměti RAM v záchytné části dekodéru, že se stránka právě vyhledává. Uložený bit FOUND má během vyhledávání i zobrazování logickou úroveň I, pouze v období, v němž byla stránka nalezena, v němž ji mikropočítač však právě zpracovává (např. přepisuje znak), má tento bit logickou hodnotu 0. Teprve až má bit FOUND opět logickou úroveň I, maže se stará stránka. Zvláštní přídavnou částí rozhraní paměti jsou dva komparátory řádek a sloupců pro vytvoření kurzoru podle povelu z mikropočítače. Souhlasí-li souřadnice místa na zobrazované teletextové stránce se souřadnicemi udanými od rozhraní I2C, aktivuje se v generátoru znaků převrácený znak co do jeho barvy a pozadí.

Vnější paměť S RAM

Architektura statické paměti RAM HM6264 je naznačena na obr. 66. Adresy řádků a sloupců teletextových stránek, transformované v rozhraní paměti v dekodéru ECCT na mapu 5 × 5 adres, jsou rozděleny do adres řádků paměti A5 až A12 a do adres sloupců paměti A0 až A4. Přes záchytné registry a dekodéry adres řádků a sloupců paměti lze osmi adresovými bity určit 256 řádků v paměťové matici a pěti bity 32 sloupců. Do každého takto určeného místa Ize zapsat 8 bitů dat D0 až D7. Zápis se řídí přes řídicí vstupní obvod impulsem WE zpřístupněným přes hradlo H₂ výběrem čipu se stavy CE1 (log. 0) a CE2 (log. I). Aktivní impuls pro zápis blokuje možnost čtení, neboť uvolňující impuls s OE by nepřešel přes hradlo H₃.

Teletextový dekodér v televizoru s rozkladem 100 Hz

Vtaťme se k obr. 53, znázorňujícímu zapojení celého teletextového modulu s hlavníobvody SDA9231 integrovanými a SDA9243. Funkce tohoto modulu pro úroveň 1 teletextu (tj. bez rozšíření počtu znaků) je obdobná jako u výše popsaného zapojení až na některé rozdíly. Kmitočet časovacích obvodů pro zobrazení je dvojnásobný, zajišťovaný synchronizační směsí CSY31250/ 100 Hz. Kmitočet časovacích impulsů TTC pro zachytávání dat je normální. Jejich výroba a výběr teletextových dat v obvodu SDA9231 je stejná jako v klasickém zapojení s obvodem VIP2 SAA5231.

Poněvadž se synchronizace televizoru zpracovává v číslicových obvodech, je výstup 25 obvodu SDA9231 pro synchronizaci rozkladů nevyužit a neuplatňuje se ani vlastní synchronizační směs TCS dekodéru ECCT, která je na výstupu 12 integrovaného obvodu SDA9243. Nezatížený výstup *25* znamená, že vnitřní přepínač B (na obr. 53 nezakreslen) přivádí ze vstupu 28 do generátoru impulsů pro fázový detektor směs CSY (dvojnásobného kmitočtu), vyráběnou v obvodu SDA9099 (viz obr. 47), a to i v případě nepřítomnosti televizního signálu pomocí krystalu X 6,75 MHz. Oscilátor VCO pro výrobu zobrazovacích hodinových impulsů F12 pracuje s kmitočtem 12 MHz.

V integrovaném obvodu SDA9243 pro dekodér ECCT jsou všechny zobrazovací funkce řízeny hodinovými impulsy odvozenými ze signálu F12. Tyto impulsy jsou časově upnuty na rozkladové kmitočty televizoru, dané shodou se směsí CSY. Časování záchytných obvodů obstarává signál HS s běžným řádkovým kmitočtem, vyráběný v obvodu SAA9051 (viz obr. 39) a přicházející na špičku 8 SDA9243 (signál ODD/EVEN není vyveden).

Styk hlavního mikropočítače s obvodem ECCT přes rozhraní I²C obstarávají zvláštní výstupy z mikropočítače, a to SCL100 a SDA₁₀₀. Pomocí nich a povelu STROBE z mikropočítače (zavedených na špičky 15, 16, 17 integrovaného obvodu CF32304 pro mapování paměti) lze rozšířit statickou paměť na 32 kbytů po 8bitech, tj. rozšířit počet bank a oblastí pomocí přídavných adres (Dokončení příště) A13, A14.

Literatura

- [1] Nedvěd, J.: Televizní soustavy. AR řada B. č. 6/1989.
- Vít, V.: Dvounormový dekodér v barevných televizorech. Referát ve Slaboproudém obzoru č. 6/1985.
- [3] Mydlík, M.: Popis obvodov dekodéra teletextu vo FTVP Color 428. Technické informácie č. 61, TESLA Orava š. p., IX/1989.
- [4] Vít, V.: Televizní informační služba - československý teletext. Referát ve Slaboproudém obzoru č. 10/1988.
- [5] Vít, V.: Zvětšení ostrosti svislých barevných přechodů v televizoru. Ročen-Sdělovací techniky 1988, s. 242-253.
- [6] Vít, V.: Mikroprocesor v televizních přijímačích. Ročenka Sdělovací tech-
- niky 1986, s. 183–195. Vít, V.: Nové směry v řídicích obvo-dech barevných televizorů. Ročenka Sdělovací techniky 1989, s. 256-275.
- Mack, Z.: Základy teletextového pře-nosu. Tisková, ediční a propagační služba MH, Praha 1988.
- [9] Kinghorn, J. R.: Computer controlled teletext. Manual Philips 1984. Teska, V.: Nová generace obvodů pro
- BTV. AR řada B, č. 5/1990.
- [11] Gustafsson, Y.: Principles of digitalized television Hi-Tech. SALO 1988. Nicam terrestrial digital stereo sound system Hi-Tech. SALO 1988.

 [12] Digit 2000 VLST Digital TV System.
- ITT říjen 1986.
- Schaltungsbeschreibung des Digi III Chassis für die Gerätetypen M95-100 IDTV. Grundig Centralschulung.
- Juhnke, K.; Bruns, E.: Multistandard-Farbdecoder TDA4650 und die Schaltung TDA4660 mit zwei Bassisband--Verzögerungsleitungen. Valvo Technische Informationen č. 890717.

SONY SE PŘEDSTAVUJE

- 1958 leden. Firma přijímá jako svoji obchodní značku Sony.
- únor. Vznik Sony Corporation of 1960 -America.
- červen. Otevřeno výzkumné stře-1961 disko Sony v Jokohamě. Spoluúčast amerického kapitálu.
- 1962 duben. Představen nejmenší televizní přijímač na světě (úhlopříčka 5 palců, tj. asi 13 cm).
- 1963 březen. Představen jako první na světě celotranzistorový přenosný videorekordér pro průmyslové využití.
- 1964 září. Představen barevný Sony chromatron TV.
 - listopad. Představen jako první na světě celotranzistorový videorekordér pro domácí použití.
- 1965 srpen. Videorekordér pro domácí použití uveden na trh.
- duben. Otevřena nová budova 1966 -Sony v Ginze.
 - listopad. Představen jako první na světě rozhlasový přijímač s integrovanými obvody.
- únor. Založen joint-venture Sony s americkou firmou CBS.
 - duben. Vyvinuta barevná televizní obrazovka Trinitron.

VELKOOBCHOD SE SOUČÁSTKAMI PRO ELEKTRONIKU

Vám nabízí široký sortiment součástek a konstrukčních prvků předních světových výrobců.

Přijďte, pište, objednávejte, telefonujte S.O.S. Electronic spol. s r.o., Loosova 1c, 638 00 Brno, 2 05 - 52 40 08 fax 05 - 52 40 09

Prvč se zastaralými konstrukcemi

- 1969 květen. Compact Cassette-Corder firmy Sony na palubě Apolla 10 na Měsíci.
 - říjen. Oznámen barevný kazetový videosystém Sony.
- 1971 leden. Vyvinut Trinicon, prototyp barevné televizní kamery s jednou snímací elektronkou.
 - prosinec. V San Diegu v Kalifornii vzniká továrna Sony na barevné TVP.
- 1972 leden. Vyvinut nový barevný projekční videosystém, umožňující promítat TV nebo video na velkém displeji (větším než 1,5 m).
 - březen. Představen kazetový videosystém U-matic.
 - červen. Ustanovena importní společnost Sony Trading Corporation s celosvětovou působností.
- 1975 květen. Uveden na trh Betamax
 - říjen. Založena pobočka Sony v Saudské Arábii.
- 1977 leden. Uveden na trh jednopalcový videomagnetofon pro profesionální účely, BVH-1000.
- 1978 březen. Vyvinuta lehká polovodičová kamera s CCD (Charge-Coupled Device).
- 1979 červen. Uveden na trh nový druh stereofonního kazetového magnetofonu, "Walkman".
- 1980 červen. Vyvinut prototyp přehrávače a desky pro systém Compact Disc Audio společně s firmou Philips.

- 1981 duben. Vyvinut nový videosystém pod názvem Sony High Definition Video System, který může poskytovat 5 až 6× více informací než klasická televize.
 - listopad. Oznámen nejmenší na světě číslicový procesor (zvukový), PCM-F1.

Z dalších významných událostí vybíráme:

1982 - listopad. Uveden na trh jako první na světě přehrávač kompaktních desek, CDP-101. Vyvinut "laserový" disk, nazvaný

Deaw Disk, který umožňuje záznam jak číslicových, tak analogových signálů.

- květen. Vyvinuta Betamovie (BMC 1983 -100), kompaktní videokamera.
- září. Vyvinut přenosný barevný vi-1984 deoprojektor (používající novou malou obrazovou elektronku) kompaktních desek, později nazvaný Discman (D-50).
- leden. Uvedeno na trh video 8 mm. Video 8 CCD-V8.

l v dalších letech byla firma v čele pokroku ve své výrobní oblasti. Kromě jiného to dokazují i čísla obratu firmy a počtu zaměstnanců (z 28 v roce 1946 na téměř 50 000 v roce 1985). Bezezbytku se splnil sen obou zakladatelů firmy, Masaru Ibuka a Akio Mority Sony byla a je na špičce nejen komerční, ale i profesionální elektroniky.

Inzerci přijímá osobně a poštou Vydavatelství Magnet-Press inzertní oddělení (inzerce ARB), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-9 linka 294. Uzávěrka tohoto čísla byla 2. 10. 1991, do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejní cenu, jinak inzerát neuveřejníme. Text pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ

IO TTL, ECL rôzné aktivne i pasivne elektronické prvky a materiál až so 60% zľavou. Zoznam za známku (0,50 + 590). ELKO, Vojenská 2, 040 01 Košice.

SL1452 (680), SL1451 (740), SL1454 (690), TDA5660P (220), PAV fil. 480 MHz OFWY6901 (380), SAT. kon. SCE-975 Maspro – Jap. F = 1,3 dB max. (3500). F. Krunt, Řepová 554, 196 00 Praha 9, tel. 68 70 870.

Nové nepoužité I. akosť Scart-samec (36), Scartsamica (29), pár (63), SU160 (49), BU208A (59). Všetko dovoz SRN. Aj. väčšie množstvo. J. Foltán, J. Žižku 27/ 46, 965 01 Žiar n. Hronom.

L.K.

Po více než desetileté přestávce se připravuje zcela nové zpracování knihy ing. Víta a kol. "Televizní technika". Autor rozdělil knihu do čtyř dílů. První díl zpracovává televizní přenosové soustavy z moderního hlediska klasických i družicových mohořádkových soustav s velkou rozlišovací schopností (MUSE, HD MAC, ACTV atd.) včetně aplikace číslicových filtrů. Obsáhlá část je věnována číslicovému přenosu v zatemňovacím intervalu (včetně teletextu) a přenosu signálů družicemi.

Druhý a třetí díl se věnuje anténám, kabelovým rozvodům a moderním technologiím televizních přijímačů (včetně neblikavých typů 100 Hz s pa-

Poslední díl doplňuje komplex televizní techniky popisem studiových

a vysílacích zařízení.

Veškerá moderní látka navazuje na vydání z r. 1979 a je podána vynikajícím pedagogickým způsobem vlastním hlavnímu autorovi, který sám napsal první tři díly. Populární výklad bez přílišné matematické teorie však neubírá knize na fyzikální přesnosti a úplnosti. Mimořádnou vysokou hodnotu díla zdůrazňují původní instruktážní barevné obrázky a diagramy. Recenzent: Ing. Jiří Nedvěd, VUST Praha.

Ve snaze zjistit pro nakladatelství potřebný náklad podnikáme průzkum zájmu o tuto knihu. Každý díl obsahuje přibližně 300 stran textu s 250 černobílými i barevnými obrázky včetně fotografii. Díly by vycházely postup-ně v letech 1992 až 93. Cena v rozmezí 90 až 110 Kčs za jeden díl bude upřesněna podle počtu zájemců.

Vystřížený kupón vyplněný Vaším jménem a adresou Vás opravňuje k přednostní nabídce jednotlivých dílů ihned po vydání. Kupón zašlete na adresu naší redakce.

Zajímám se o koupi knihy: Ir IV. díl* v počtu	

Jméno Plná adresa Podpis

*Při zájmu jen o některý díl ostatní čísla přeškrtněte!