LOGISTIC / CLASSIFICATION:

PAGE 96

```
In [1]: # The Classification is depends upon the 'Output Data'.
    # The 'Output Data' Comes like --> yes/no, ham/spam, 1/0, True/False.
    # These Particular Categories, Where We can Expect the 'Output Data' -
    # Means, Based on 'Output Data' We can 'Select' the 'Classification'(or)
    # We can opt. for 'Logistic/Classification'
In [3]: # NOTE :
```

1. Calling Libraries :

```
In [14]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

Out[15]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [16]: train.isnull()

Out[16]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	False	False	False	False	False	False	False	False	False	False	True	False
1	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	True	False
3	False	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	True	False
886	False	False	False	False	False	False	False	False	False	False	True	False
887	False	False	False	False	False	False	False	False	False	False	False	False
888	False	False	False	False	False	True	False	False	False	False	True	False
889	False	False	False	False	False	False	False	False	False	False	False	False
890	False	False	False	False	False	False	False	False	False	False	True	False

891 rows × 12 columns

```
In [17]: train.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
     Column
                  Non-Null Count Dtype
     PassengerId 891 non-null
                                  int64
    Survived
                  891 non-null
                                  int64
     Pclass
                  891 non-null
                                  int64
                  891 non-null
                                  object
     Name
                  891 non-null
                                 object
 4
     Sex
                  714 non-null
                                 float64
    Age
    SibSp
                  891 non-null
                                  int64
                  891 non-null
                                  int64
     Parch
    Ticket
                  891 non-null
                                  obiect
                  891 non-null
                                 float64
     Fare
 10 Cabin
                  204 non-null
                                  object
 11 Embarked
                  889 non-null
                                  object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

2. INDENTIFYING THE 'NULLS':

PAGE 101

```
In [18]: import seaborn as sns
sns.heatmap(train.isnull(), yticklabels = False, cbar = False, cmap = 'viridis')
```

Out[18]: <AxesSubplot:>


```
In [19]: # Here, sns.countplot between 'x' = Survived data.
sns.countplot(x = 'Survived', data = train)
```

Out[19]: <AxesSubplot:xlabel='Survived', ylabel='count'>


```
In [20]: sns.countplot(x = 'Survived', hue = 'Sex', data = train)
```

Out[20]: <AxesSubplot:xlabel='Survived', ylabel='count'>


```
In [21]: sns.countplot(x = 'Sex', data = train)
```

Out[21]: <AxesSubplot:xlabel='Sex', ylabel='count'>


```
In [22]: sns.countplot(x = 'Name', data = train)
```

Out[22]: <AxesSubplot:xlabel='Name', ylabel='count'>


```
In [23]: sns.countplot(x = 'Cabin', data = train)
```

Out[23]: <AxesSubplot:xlabel='Cabin', ylabel='count'>


```
In [24]: train.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)

memory usage: 83.7+ KB

```
In [30]: plt.figure(figsize = (10,7))
sns.boxplot(x = 'Pclass', y = 'Age', data = train)
```

Out[30]: <AxesSubplot:xlabel='Pclass', ylabel='Age'>

Now we need to build the LOGIC:

PAGE 106

```
In [31]: def impute_age(cols):
    Age = cols[0]
    Pclass = cols[1]
    if pd.isnull(Age):
        if Pclass == 1:
            return 37
        elif Pclass == 2:
            return 29
        else:
            return 25
    else:
        return Age
In [33]: train ['Age'] = train[['Age', 'Pclass']].apply(impute_age, axis = 1)
```

```
In [34]: import seaborn as sns
sns.heatmap(train.isnull(), yticklabels = False, cbar = False, cmap = 'viridis')
```

Out[34]: <AxesSubplot:>

In [35]: # Now, train.info(), Now it's fullfill

```
In [36]: train.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 12 columns):
              Column
                           Non-Null Count Dtype
              PassengerId 891 non-null
                                            int64
              Survived
                           891 non-null
                                            int64
              Pclass
                           891 non-null
                                            int64
                           891 non-null
                                           object
              Name
                           891 non-null
                                           object
          4
              Sex
              Age
                           891 non-null
                                            float64
                           891 non-null
                                            int64
              SibSp
                           891 non-null
                                            int64
              Parch
              Ticket
                           891 non-null
                                           obiect
                           891 non-null
              Fare
                                           float64
          10 Cabin
                           204 non-null
                                           object
          11 Embarked
                            889 non-null
                                            object
         dtypes: float64(2), int64(5), object(5)
         memory usage: 83.7+ KB
```

Removing the Column(Cabin) from the Table:

```
In [38]: train.drop('Cabin', axis = 1, inplace = True)
```

```
In [39]: train.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 11 columns):
              Column
                           Non-Null Count Dtype
              PassengerId 891 non-null
                                           int64
             Survived
                           891 non-null
                                           int64
              Pclass
                           891 non-null
                                           int64
                           891 non-null
          3
              Name
                                           obiect
                           891 non-null
          4
              Sex
                                           obiect
              Age
                           891 non-null
                                           float64
                           891 non-null
              SibSp
                                           int64
                           891 non-null
                                           int64
              Parch
              Ticket
                           891 non-null
                                           obiect
              Fare
                           891 non-null
                                           float64
          10 Embarked
                           889 non-null
                                           obiect
         dtypes: float64(2), int64(5), object(4)
         memory usage: 76.7+ KB
In [42]: # Here, We have an issue in 'Embarked' Column 889 out of 891 --> means, it has only 889 records.
         # Only, '2' records why to messup with two records,
         # Now let's delete permanently particular '2' records or nulls by using 'inplace = True'.
         # Here, all the records became '889'.
         # Because, Embarked only '2' records, When we have to process, just 0.02%.
         # We just removed that particular 'Null'
         # Now all the data is perfect.
         train.dropna(inplace = True)
```

```
In [43]: train.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 889 entries, 0 to 890
Data columns (total 11 columns):

	CO_C		_ co_a	
#	Column	Non-	-Null Count	Dtype
0	PassengerId	889	non-null	int64
1	Survived	889	non-null	int64
2	Pclass	889	non-null	int64
3	Name	889	non-null	object
4	Sex	889	non-null	object
5	Age	889	non-null	float64
6	SibSp	889	non-null	int64
7	Parch	889	non-null	int64
8	Ticket	889	non-null	object
9	Fare	889	non-null	float64
10	Embarked	889	non-null	object
dtype	es: float64(2), i	nt64(5), obj	ect(4)

mamany usages 82 21 KB

memory usage: 83.3+ KB

In [45]: # Now, Whenever we come to particular "Gender":

train.head()

Out[45]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	S

```
In [46]: # Here, Whenever we come to 'Gender', we have two categories -> Male and Female
# Now, i want to change this particular Data to an a '0' and '1'
# Male as '0' and Female as '1'
# Whenever Male is '1' then Female will be '0'
# Now Creating an a '2' Variables as an a Male and Female, By applying 'Dummies Method()'
```

Dummies Method():

page 111

```
In [49]: #
pd.get_dummies(train['Sex'])
```

Out[49]:

	female	male
0	0	1
1	1	0
2	1	0
3	1	0
4	0	1
886	0	1
887	1	0
888	1	0
889	0	1
890	0	1

889 rows × 2 columns

DROP METHOD(): USING 'DUMMIES':

PAGE 111

Now let's declare '4' records:

In [55]: train.head(4)

Out[55]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	S

#

```
In [57]: # Here, Whenever we have '2' zeros'0' means 'C' will be '1'
embark = pd.get_dummies(train['Embarked'], drop_first = True)
embark.head()
```

Out[57]:

	Q	S
0	0	1
1	0	0
2	0	1
3	0	1
4	0	1

CONCATINATION:

PAGE 113

```
In [58]: # Now how many Columns we have in train Data lets see :
In [59]: train.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 889 entries, 0 to 890
         Data columns (total 11 columns):
              Column
                           Non-Null Count Dtype
              PassengerId 889 non-null
                                           int64
                           889 non-null
              Survived
                                           int64
              Pclass
                           889 non-null
                                           int64
                           889 non-null
                                           object
          3
              Name
                           889 non-null
                                           object
          4
              Sex
              Age
                           889 non-null
                                           float64
                           889 non-null
              SibSp
                                           int64
              Parch
                           889 non-null
                                           int64
                           889 non-null
              Ticket
                                           obiect
                           889 non-null
              Fare
                                           float64
          10 Embarked
                           889 non-null
                                           obiect
         dtypes: float64(2), int64(5), object(4)
         memory usage: 83.3+ KB
In [61]: train.drop(['Sex', 'Embarked', 'Name', 'Ticket', 'PassengerId'], axis = 1, inplace = True)
```

```
In [62]: train.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 889 entries, 0 to 890
         Data columns (total 6 columns):
              Column
                       Non-Null Count Dtype
              Survived 889 non-null
                                        int64
             Pclass
                        889 non-null
                                        int64
                       889 non-null
             Age
                                       float64
                       889 non-null
              SibSp
                                        int64
                       889 non-null
                                        int64
             Parch
              Fare
                        889 non-null
                                        float64
         dtypes: float64(2), int64(4)
         memory usage: 48.6 KB
         Now
```

```
In [73]: logmodel = LogisticRegression()
In [74]: logmodel.fit(X_train, y_train)
Out[74]: LogisticRegression()
In [76]: LogisticRegression()
Out[76]: LogisticRegression()
In [77]: # Here, we are 'predicting' on 'X_test' data predictions = logmodel.predict(X_test)
```

CONFUSION MATRIX:

PAGE 116

```
In [80]: # Now We are applying Confusion Matrix from Sklearn.matrics -> means, we need to call from 'Matrix':
In [82]: # These two things we need to get it :
    from sklearn.metrics import classification_report, confusion_matrix
```

```
In [84]: # Here, We print classification_report between y_test, predictions and same as to confusion :
    # Here, Accuracy of 72% and 74%.
    # if we have any issue, we can Caliculate it.
    # We Call this one as -> Manual Caliculation, Manual Testing.
    # Again, We Can 'Extend' also.
    # We need to do, Something like -> 'Granphical Representation' - 'Actual VS Prediction'
    # These 'Classification_report and Confusion_matrix' will give us - 'Manual Working Environment'
    # We Can 'test' - What accuracy we are getting.

print(classification_report(y_test, predictions))
print('\n')
print(confusion_matrix(y_test, predictions))
```

	precision	recall	f1-score	support
0	0.72	0.88	0.79	174
1	0.74	0.51	0.60	120
accuracy			0.73	294
macro avg	0.73	0.69	0.70	294
weighted avg	0.73	0.73	0.72	294

[[153 21] [59 61]]

Now Working on -- 'Advertising':

```
In [85]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
In [86]: ad_data = pd.read_csv("DataS/31.advertising.csv")
```

In [87]: ad_data

Out[87]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp	Clicked on Ad
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11	0
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02	0
2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42	0
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016-01-10 02:31:19	0
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18	0
995	72.97	30	71384.57	208.58	Fundamental modular algorithm	Duffystad	1	Lebanon	2016-02-11 21:49:00	1
996	51.30	45	67782.17	134.42	Grass-roots cohesive monitoring	New Darlene	1	Bosnia and Herzegovina	2016-04-22 02:07:01	1
997	51.63	51	42415.72	120.37	Expanded intangible solution	South Jessica	1	Mongolia	2016-02-01 17:24:57	1
998	55.55	19	41920.79	187.95	Proactive bandwidth- monitored policy	West Steven	0	Guatemala	2016-03-24 02:35:54	0
999	45.01	26	29875.80	178.35	Virtual 5thgeneration emulation	Ronniemouth	0	Brazil	2016-06-03 21:43:21	1

1000 rows × 10 columns

```
In [88]: ad data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1000 entries, 0 to 999
         Data columns (total 10 columns):
              Column
                                        Non-Null Count Dtype
              Daily Time Spent on Site 1000 non-null
                                                        float64
                                        1000 non-null
                                                        int64
          1
              Age
                                        1000 non-null
                                                       float64
              Area Income
              Daily Internet Usage
                                        1000 non-null
                                                       float64
                                        1000 non-null
              Ad Topic Line
                                                        obiect
              City
                                        1000 non-null
                                                        obiect
              Male
                                        1000 non-null
                                                        int64
              Country
                                        1000 non-null
                                                        object
              Timestamp
                                        1000 non-null
                                                        object
              Clicked on Ad
                                        1000 non-null
                                                        int64
         dtypes: float64(3), int64(3), object(4)
         memory usage: 78.2+ KB
In [89]: ad data.describe()
```

Out[89]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Male	Clicked on Ad
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000
mean	65.000200	36.009000	55000.000080	180.000100	0.481000	0.50000
std	15.853615	8.785562	13414.634022	43.902339	0.499889	0.50025
min	32.600000	19.000000	13996.500000	104.780000	0.000000	0.00000
25%	51.360000	29.000000	47031.802500	138.830000	0.000000	0.00000
50%	68.215000	35.000000	57012.300000	183.130000	0.000000	0.50000
75%	78.547500	42.000000	65470.635000	218.792500	1.000000	1.00000
max	91.430000	61.000000	79484.800000	269.960000	1.000000	1.00000

Graphical Representation:

page 119

```
In [90]: ad_data['Age'].plot.hist(bins = 100)
```

Out[90]: <AxesSubplot:ylabel='Frequency'>

Graphical Representation: Area Income, Age:

```
In [91]: sns.jointplot(x = 'Age', y = 'Area Income', data = ad_data)
```

Out[91]: <seaborn.axisgrid.JointGrid at 0x21dbae8ac70>

Graphical Representation : Age, Daily Time Spent on Site :

```
In [100]: sns.jointplot(x = 'Age', y = 'Daily Time Spent on Site', data = ad_data, kind = 'kde')
```

Out[100]: <seaborn.axisgrid.JointGrid at 0x21dbc4df0d0>


```
In [103]: sns.pairplot(ad_data, hue = 'Clicked on Ad')
Out[103]: <seaborn.axisgrid.PairGrid at 0x21dbe359f70>
```


PJP PYTHON 11 ML LOGISTIC REGRESSION BOOK 4 PAGE 96 TO 125 - Jupyter Notebook

Now Copying Data from ad_data.columns-output to 'X':

```
In [130]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
```

In [128]: X.head()

Out[128]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02
2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time- frame	West Terrifurt	1	Italy	2016-01-10 02:31:19
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18

In [117]: X.head(2)

Out[117]:

•		Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp
-	0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11
	1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02

In [131]: | from sklearn.linear_model import LogisticRegression

In [132]: # logmodel.fit between X_train, y_train

logmodel = LogisticRegression()
logmodel.fit(X_train, y_train)

Out[132]: LogisticRegression()

```
In [133]: # Logmodel.fit between X train, y train
          # Due to ValueError: could not convert string to float: 'Configurable impactful capacity'
          # Here, We removed the data from 114th Sum - "City, Country, Ad Topic line, Time Stamp"
          # Now it's Working :
          logmodel = LogisticRegression()
          logmodel.fit(X train, y train)
Out[133]: LogisticRegression()
```

In [136]: X.head()

Out[136]:

 Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Male
 68.95	35	61833.90	256.09	0
80.23	31	68441.85	193.77	1
2 69.47	26	59785.94	236.50	0
3 74.15	29	54806.18	245.89	1
4 68.37	35	73889.99	225.58	0

Now let's do 'PREDICTION':

PAGE 124

```
In [137]: predictions = logmodel.predict(X test)
In [138]: # Once we do prediction, What We need to do means,
In [139]: from sklearn.metrics import classification report, confusion matrix
```

```
In [140]: # This is the particular thing, We are getting an a Classification_report and Confusion_matrix :
          print(classification_report(y_test, predictions))
          print('\n')
          print(confusion matrix(y test, predictions))
                        precision
                                     recall f1-score
                                                        support
                             0.86
                                       0.96
                                                 0.91
                                                            162
                     0
                             0.96
                                       0.85
                                                 0.90
                     1
                                                            168
              accuracy
                                                 0.91
                                                            330
                                                 0.91
                                                            330
             macro avg
                             0.91
                                       0.91
          weighted avg
                             0.91
                                       0.91
                                                 0.91
                                                            330
          [[156 6]
           [ 25 143]]
 In [ ]:
```