Task 1:

Ø Read the file as DataFrame and create a deep copy of it

```
In [2]: # import all the necessary libraries
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline
    import seaborn as sns
    import warnings
    warnings.filterwarnings('ignore')
In [3]: # read file
toyota = pd.read_csv('ToyotaCorolla.csv')
```

Ø Find the basic information of the dataset.

```
In [4]: toyota.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1436 entries, 0 to 1435 Data columns (total 37 columns):

Data #	columns (total 37 Column	Columns): Non-Null Count	Dtype
0	Id	1436 non-null	int64
1	Model	1436 non-null	object
2	Price	1436 non-null	int64
3	Age_08_04	1436 non-null	int64
4	Mfg_Month	1436 non-null	int64
5	Mfg_Year	1436 non-null	int64
6	KM	1436 non-null	int64
7	Fuel_Type	1436 non-null	object
8	HP	1436 non-null	int64
9	Met_Color	1436 non-null	int64
10	Automatic	1436 non-null	int64
11	СС	1436 non-null	int64
12	Doors	1436 non-null	int64
13	Cylinders	1436 non-null	int64
14	Gears	1436 non-null	int64
15	Quarterly_Tax	1436 non-null	int64
16	Weight	1436 non-null	int64
17	Mfr_Guarantee	1436 non-null	int64
18	BOVAG_Guarantee	1436 non-null	int64
19	Guarantee_Period	1436 non-null	int64
20	ABS	1436 non-null	int64
21	Airbag_1	1436 non-null	int64
22	Airbag_2	1436 non-null	int64
23	Airco	1436 non-null	int64
24	Automatic_airco	1436 non-null	int64
25	Boardcomputer	1436 non-null	int64
26	CD_Player	1436 non-null	int64
27	Central_Lock	1436 non-null	int64
28	Powered_Windows	1436 non-null	int64
29	Power_Steering	1436 non-null	int64
30	Radio	1436 non-null	int64
31	Mistlamps	1436 non-null	int64
32	Sport_Model	1436 non-null	int64
33	Backseat_Divider	1436 non-null	int64
34	Metallic_Rim	1436 non-null	int64
35	Radio_cassette	1436 non-null	int64
36	Tow_Bar	1436 non-null	int64
dtype	es: int64(35), obje	ect(2)	
mamar	ov usaga. 415 2± Ki	2	

memory usage: 415.2+ KB

Ø Find the dimensions of the data frame.

```
In [5]: toyota.ndim
```

Out[5]: 2

Ø Determine the number of features available.

In [6]: toyota.shape

Out[6]: (1436, 37)

Total number of features = 37

Ø Perform 5 number summary (min, lower quartile, median, upper quartile, max.

In [7]: toyota.describe()

Out[7]:

	ld	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	
count	1436.000000	1436.000000	1436.000000	1436.000000	1436.000000	1436.000000	1436.000
mean	721.555014	10730.824513	55.947075	5.548747	1999.625348	68533.259749	101.502
std	416.476890	3626.964585	18.599988	3.354085	1.540722	37506.448872	14.981
min	1.000000	4350.000000	1.000000	1.000000	1998.000000	1.000000	69.000
25%	361.750000	8450.000000	44.000000	3.000000	1998.000000	43000.000000	90.000
50%	721.500000	9900.000000	61.000000	5.000000	1999.000000	63389.500000	110.000
75%	1081.250000	11950.000000	70.000000	8.000000	2001.000000	87020.750000	110.000
max	1442.000000	32500.000000	80.000000	12.000000	2004.000000	243000.000000	192.000

8 rows × 35 columns

Ø Access the top 10 rows from the dataset.

In [8]: toyota.head(10)

Out[8]:

	ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	НР	Met_Color	
0	1	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13500	23	10	2002	46986	Diesel	90	1	
1	2	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13750	23	10	2002	72937	Diesel	90	1	
2	3	? TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13950	24	9	2002	41711	Diesel	90	1	
3	4	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	14950	26	7	2002	48000	Diesel	90	0	
4	5	TOYOTA Corolla 2.0 D4D HATCHB SOL 2/3- Doors	13750	30	3	2002	38500	Diesel	90	0	
5	6	TOYOTA Corolla 2.0 D4D HATCHB SOL 2/3- Doors	12950	32	1	2002	61000	Diesel	90	0	
6	7	? TOYOTA Corolla 2.0 D4D 90 3DR TERRA 2/3- Doors	16900	27	6	2002	94612	Diesel	90	1	
7	8	TOYOTA Corolla 2.0 D4D 90 3DR TERRA 2/3- Doors	18600	30	3	2002	75889	Diesel	90	1	

	ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	HP	Met_Color	
8	9	? TOYOTA Corolla 1800 T SPORT VVT I 2/3- Doors	21500	27	6	2002	19700	Petrol	192	0	
9	10	? TOYOTA Corolla 1.9 D HATCHB TERRA 2/3- Doors	12950	23	10	2002	71138	Diesel	69	0	

10 rows × 37 columns

Ø Access last 2 rows from the dataset

In [9]: toyota.tail(2)

Out[9]:

	ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	НР	Met_Color
1434	1441	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	7250	70	11	1998	16916	Petrol	86	1
1435	1442	TOYOTA Corolla 1.6 LB LINEA TERRA 4/5- Doors	6950	76	5	1998	1	Petrol	110	0
2 rows	2 rows × 37 columns									
4										•

Task 2:

Ø Access a group of rows and columns by label(s).

['Price', 'Age', 'KM', 'FuelType']

In [10]: toyota.loc[:,['Price', 'Age_08_04', 'KM', 'Fuel_Type']]

Out[10]:

1436 rows × 4 columns

 \emptyset Find the missing or null values for each column.

In [11]: toyota.isnull()

Out[11]:

	ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	НР	Met_Color
0	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False
1431	False	False	False	False	False	False	False	False	False	False
1432	False	False	False	False	False	False	False	False	False	False
1433	False	False	False	False	False	False	False	False	False	False
1434	False	False	False	False	False	False	False	False	False	False
1435	False	False	False	False	False	False	False	False	False	False
1436 r	ows ×	37 colui	mns							>
,										

Ø Display total number of missing values for each column.

```
In [12]: toyota.isnull().sum()
Out[12]: Id
                                0
          Model
                                0
          Price
                                0
          Age_08_04
                                0
          Mfg_Month
                                0
          Mfg_Year
                                0
                                0
          ΚM
          Fuel_Type
                                0
          HP
                                0
          Met_Color
                                0
          Automatic
                                0
          \mathsf{CC}
          Doors
                                0
          Cylinders
                                0
          Gears
                                0
          Quarterly_Tax
          Weight
                                0
                                0
          Mfr Guarantee
          BOVAG Guarantee
                                0
          Guarantee_Period
                                0
          ABS
                                0
          Airbag 1
                                0
          Airbag 2
                                0
          Airco
                                0
          Automatic_airco
                                0
          Boardcomputer
                                0
          CD_Player
                                0
          Central Lock
                                0
          Powered Windows
                                0
          Power_Steering
                                0
          Radio
                                0
          Mistlamps
                                0
          Sport Model
                                0
          Backseat Divider
          Metallic Rim
                                0
          Radio_cassette
                                0
          Tow Bar
                                0
          dtype: int64
```

Ø Replace missing values with mean for continuous variable and mode for categorical variables.

Also display the result for total missing values after replacing the missing values.

- -->toyota dataframe has 0 missing/NaN values so theres no need to fill missing values
- Ø Remove the following features from the dataset ['CC', 'Doors', 'Weight']

In [13]: toyota.drop(['cc','Doors','Weight'],axis=1)
toyota.drop(['cc',Doors','Weight'],axis=1,inplace=True)

Out[13]:

	ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	HP	Met_Col
0	1	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13500	23	10	2002	46986	Diesel	90	
1	2	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13750	23	10	2002	72937	Diesel	90	
2	3	? TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13950	24	9	2002	41711	Diesel	90	
3	4	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	14950	26	7	2002	48000	Diesel	90	
4	5	TOYOTA Corolla 2.0 D4D HATCHB SOL 2/3- Doors	13750	30	3	2002	38500	Diesel	90	
1431	1438	TOYOTA Corolla 1.3 16V HATCHB G6 2/3- Doors	7500	69	12	1998	20544	Petrol	86	
1432	1439	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	10845	72	9	1998	19000	Petrol	86	

	ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	HP	Met_Col
1433	1440	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	8500	71	10	1998	17016	Petrol	86	
1434	1441	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	7250	70	11	1998	16916	Petrol	86	
1435	1442	TOYOTA Corolla 1.6 LB LINEA TERRA 4/5- Doors	6950	76	5	1998	1	Petrol	110	
1436 r	ows ×	34 columr	าร							4
4)

Task 3:

Ø Visualize the data using scatter plot for two features (x='Age', y='Price'). Also interpret the result.

· Provide title, and labels for both axis.

```
In [14]: sns.scatterplot(x = toyota['Age_08_04'], y = toyota['Price'])
plt.title('Scatterplot: age vs price')
```

Out[14]: Text(0.5, 1.0, 'Scatterplot: age vs price')

As the age of car increases the price decreases

also whose age is greater than 40 are more and their price is less than 15000

· Apply some marker and set different colors for bar and marker.

```
In [15]: sns.scatterplot(x = toyota['Age_08_04'], y = toyota['Price'], marker = '*', color
plt.title('Scatterplot: age vs price')
```

Out[15]: Text(0.5, 1.0, 'Scatterplot: age vs price')

Ø Create a histogram for the feature 'KM'.

- · Also set the following properties:
- o No of bins=5
- o Edge color=White
- o X label= Kilometer
- o Y label= Frequency
- o Title= Histogram of Kilometer

```
In [16]: plt.hist(x=toyota['KM'],color='purple',bins=5,edgecolor='white')
    plt.title("Histogram of Kilometer")
    plt.xlabel("saf")
    plt.ylabel("yerw")
    plt.show()
```



```
In [17]: histogram = sns.displot(toyota['KM'],bins=5,edgecolor='white')
histogram.set_axis_labels('KM', 'Frequency')
```

Out[17]: <seaborn.axisgrid.FacetGrid at 0x24ddc474d00>

Ø Detect Outliers

- · Apply box and whisker plot to find the outliers in the dataset.
- · Also interpret the result.

```
In [18]: sns.boxplot(toyota['Price'])
```

Out[18]: <AxesSubplot:xlabel='Price'>

In price column there are outlier presents

```
In [20]: sns.boxplot(toyota['Mfg_Month'])
```

Out[20]: <AxesSubplot:xlabel='Mfg_Month'>

No outlier present in mfg_month

```
In [21]: sns.boxplot(toyota['Mfg_Year'])
```

Out[21]: <AxesSubplot:xlabel='Mfg_Year'>

In []: No outlier present