main

August 29, 2024

David Torres Treviño A00824753

Luis Kevin Cepeda Zapata A00824840

[1]: from functions import *

0.0.1 G. Explain which method you select to solve each of the problems and explain why.

All of the three problems were solved using the Hill Climber, Gradient descent with wolfe conditions and Newton Method. In general, the fastest method was the Newton Method and achieved more exact solutions, when there was no local minima. If the problem had local minima all of the methods got stuck in there (you could modify the ball radius of hill climber to get around this by seeing the graph and choosing a more optimal value, but this wouldn't be possible for black boxes problem).

0.0.2 H. Can evolutionary algorithms help to solve any of the previous problems? Why?

Evolutionary algorithms, such as Differential Evolution (DE), can help solve many of the previous optimization problems.

- 1. Global Search Capability: Differential Evolution is designed to explore the entire solution space, making it effective for finding global minima in functions that have multiple local minima.
- 2. No Need for Gradient Information: DE does not rely on gradient information, which is particularly useful when dealing with functions that are non-differentiable, noisy, or complex.

1 1. Classical optimization methods

1.0.1 F_A

Algorithm	Point Found	Evaluation	Iterations	Real Minimum	Two Norm Error
Hill	[-0.0041513,	1.3000616	600	1.30	0.0109156
Climber	-0.0100955]				
Gradient	[0.0002476,	1.3000001	48	1.30	0.0004481
Descent	0.0003736]				
Newton	[0.0000000,	1.3000000	1	1.30	8.6140 e - 08
Method	[0.0000000]				

Hill Climber

 $i = 600, x1 = -0.0041513, x2 = -0.0100955, fx_best = 1.3000616$

True minimum found by differential evolution at x1 = -0.00, x2 = -0.00, with value = 1.30 Model minimum at x1 = -0.00, x2 = -0.01, with value = 1.30 L2 norm error for parameters: 0.010915652409520997

Gradient Descent with Wolfe Conditions

[3]: x_best, fx_best, x_history, fx_history, i = grad_descent(f_A, tol=0.0005,_
max_iter=100, n_intervals=8, x_init=x_init, constraints = constraints)
print()

plot_function_with_paths(f_A, constraints, x_history, fx_history)

i = 48, x1 = 0.0002476, x2 = 0.0003736, $fx_best = 1.30000010$

True minimum found by differential evolution at x1 = 0.00, x2 = 0.00, with value = 1.30

Model minimum at x1 = 0.00, x2 = 0.00, with value = 1.30 L2 norm error for parameters: 0.0004481906623516091

Newton Method

 $i = 1, x1 = 0.0000000, x2 = 0.0000000, fx_best = 1.3000000$

True minimum found by differential evolution at x1 = 0.00, x2 = 0.00, with value = 1.30

Model minimum at x1 = 0.00, x2 = 0.00, with value = 1.30 L2 norm error for parameters: 8.614083252913067e-08

1.0.2 F_B

Algorithm	Point Found	Evaluation	Iterations	Real Minimum	Two Norm Error
Hill	[-0.1235228,	-1.0269200	300	-1.03	0.0339810
Climber	0.7081489]				
Gradient	[0.0898398,	-1.03162855	8	-1.03	1.9900e-05
Descent	-0.7126366]				
Newton	[-0.4096386,	0.3550784	50	-1.03	0.5326174
Method	-0.8975904]				

Hill Climber

[11]: x_init=np.array([0.5,1]) constraints = [[-3, 3],[-2, 2]]

 $i = 300, x1 = -0.1235228, x2 = 0.7081489, fx_best = -1.0269200$

True minimum found by differential evolution at x1 = -0.09, x2 = 0.71, with value = -1.03 Model minimum at x1 = -0.12, x2 = 0.71, with value = -1.03 L2 norm error for parameters: 0.03398104693751721

Gradient Descent with Wolfe Conditions

i = 8, x1 = 0.0898398, x2 = -0.7126366, $fx_best = -1.03162855$

True minimum found by differential evolution at x1 = 0.09, x2 = -0.71, with value = -1.03 Model minimum at x1 = 0.09, x2 = -0.71, with value = -1.03 L2 norm error for parameters: 1.990040820361988e-05

Newton Method

i = 50, x1 = -0.4096386, x2 = -0.8975904, $fx_best = 0.3550784$

True minimum found by differential evolution at x1 = -0.09, x2 = 0.71, with value = -1.03 Model minimum at x1 = -0.41, x2 = -0.90, with value = 0.36 L2 norm error for parameters: 1.6416955475897947

1.0.3 F_C

Algorithm	Point Found	Evaluation	Iterations	Real Minimum	Two Norm Error
Hill Climber	[-1.9861292, 2.0028127]	7.9954832	500	0	2.8206325
Gradient	[-2, 2]	8	500	0	2.8284271
Descent Newton	[-2, 2]	8	150	0	2.8284271
Method					

Hill Climber

[8]: x_init=np.array([-2,2])
x_best, fx_best, x_history, fx_history = hill_climber(f_C, delta=0.2,
n_iter=500, x_init=x_init, constraints = constraints)

print() plot_function_with_paths(f_C, constraints, x_history, fx_history)

 $i = 500, x1 = -1.9827902, x2 = 1.9968675, fx_best = 7.9792798$

True minimum found by differential evolution at x1 = 0.00, x2 = -0.00, with value = 0.00 Model minimum at x1 = -1.98, x2 = 2.00, with value = 7.98

L2 norm error for parameters: 2.814060535192687

Gradient Descent with Wolfe Conditions

[9]: x_init=np.array([-2,2])
x_best, fx_best, x_history, fx_history, i = grad_descent(f_C, tol=0.0005,
max_iter=500, x_init=x_init, constraints = constraints)
print()
plot_function_with_paths(f_C, constraints, x_history, fx_history)

i = 500, x1 = -2.0000000, x2 = 2.0000000, $fx_best = 8.0000000$

True minimum found by differential evolution at x1 = 0.00, x2 = -0.00, with value = 0.00 Model minimum at x1 = -2.00, x2 = 2.00, with value = 8.00 L2 norm error for parameters: 2.8284271269094416

Newton Method

 $i = 150, x1 = -2.0000000, x2 = 2.0000000, fx_best = 8.0000000$

True minimum found by differential evolution at x1 = 0.00, x2 = 0.00, with value = 0.00

Model minimum at x1 = -2.00, x2 = 2.00, with value = 8.00 L2 norm error for parameters: 2.8284271235955014

[24]: !choco install pandoc

/bin/bash: line 1: choco: command not found

[]: