Задачи к лекции 7

Задача 1. (1) Докажите, что ограничения карт на край гладкого многообразия превращает край в гладкое многообразие. (2) Покажите, что полноторий, ограниченный тором, полученным при вращении вокруг оси z окружности радиуса r в плоскости xz с центром в точке (R,0,0), 0 < r < R, является многообразием c краем.

Задача 2. (1) Пусть N=(0,0,1) — северный полюс стандартной двумерной сферы S^2 . Для произвольной точки $P\in S^2$ определим величину $\theta(P)$, положив ее равной углу между радиус-векторами точек N и P. Пусть $f\colon S^2\to \mathbb{R}$ и $g\colon S^2\to \mathbb{R}$ — функции, такие что $f(P)=\cos\theta(P)$ и $g(P)=\sin\theta(P)$. Покажите, что функция f — гладкая, а функция g — нет.

(2) Докажите, что отображение $f:S^2\to \mathbb{R} P^2$, сопоставляющее точке P на сфере S^2 прямую, проходящую через начало координат и точку P, является гладким отображением гладких многообразий.

Задача 3. (1) Приведите пример гладкого гомеоморфизма гладких многообразий, не являющегося диффеоморфизмом. (2) Докажите, что при $n \neq m$ многообразия \mathbb{R}^n и \mathbb{R}^m не диффеоморфны. (3) Докажите, что многообразия разных размерностей не диффеоморфны. (4) Группа $\mathrm{U}(n)$ состоит из всех комплексных матриц A размера $n \times n$, таких что $A \cdot A^* = E$, где $A^* = \bar{A}^T$ (черта означает сопряжение, а B^T — транспонирование матрицы B), E — единичная матрица. Группа $\mathrm{SU}(n)$ является подгруппой в $\mathrm{U}(n)$, состоящей из всех матриц с определителем 1. Докажите, что $\mathrm{U}(n)$ и $\mathrm{SU}(n)$ являются гладкими многообразиями, причем $\mathrm{SU}(2)$ диффеоморфно S^3 .

Задача 4. (1) Вычислите образ горизонтального (параллельного плоскости ху) единичного вектора, касательного к двумерной сфере, при действии дифференциала стереографической проекции из северного полюса.

(2) Докажите, что $\xi = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathbb{R}^9$ является касательным

вектором к подмногообразию $SO(3) \subset \mathbb{R}^9$ в точке E, где E — единичная матрица, и вычислите образ этого касательного вектора при действии дифференциала отображения $f \colon SO(3) \to S^2$, ставящего в соответствие каждой матрице ее первый столбец.

Задача 5. Докажите, что дифференциалы dx^i координатных функций x^i , вычисленные в точке P гладкого многообразия M, образуют базис векторного пространства T_P^*M , двойственного к T_PM . Пространство T_P^*M называется кокасательным. Проверьте, что базисы dx^1,\ldots,dx^n и $\partial/\partial x^1,\ldots,\partial/\partial x^n$ двойственны, т.е. $dx^i\left(\partial/\partial x^i\right)=\delta^i_j$.

Задача 6. (1) Докажите, что край ориентируемого многообразия ориентируем; (2) приведите пример многообразия, край которого неориентируем. Докажите, что (3) декартово произведение ориентируемых многообразий ориентируемо; (4) многообразие размерности n, содержащее неориентируемое подмногообразие размерности n, неориентируемо; (5) регулярная поверхность в \mathbb{R}^n , заданная системой неявных функций, — ориентируемое многообразие.

Выведите из полученных выше результатов, что (6) сфера S^n , тор $T^n=S^1\times\cdots\times S^1$, группы $\mathrm{GL}(n),\ \mathrm{O}(n),\ \mathrm{SO}(n),\ \mathrm{SL}(n)$ ориентируемы, а бутылка Клейна K^2 и проективная плоскость $\mathbb{R}\operatorname{P}^2$ — нет.

(7) Докажите, что проективное пространство $\mathbb{R} P^n$ ориентируемо тогда и только тогда, когда n — нечетно.

Задача 7. Докажите, что (1) проективная плоскость гомеоморфна сфере с одним листом Мебиуса; (2) бутылка Клейна гомеоморфна сфере с двумя листами Мебиуса. Чему гомеоморфна поверхность, (3) склеенная из восьмиугольника по слову $abcdb^{-1}a^{-1}cd$.