

Sitronix

ST7565V

65 x 132 Dot Matrix LCD Controller/Driver

FEATURES

- Direct display of RAM data through the display data
- RAM capacity: $65 \times 132 = 8580$ bits
- Display duty selectable by select pin
 - 1/65 duty: 65 common x 132 segment
 - 1/49 duty: 49 common x 132 segment
 - 1/33 duty: 33 common x 132 segment 1/55 duty: 55 common x 132 segment
 - 1/53 duty: 53 common x 132 segment
- High-speed 8-bit MPU interface (The chip can be connected directly to the both the 80x86 series MPUs and the 68000 series MPUs)
 - /Serial interfaces are supported.
- Abundant command functions Display data Read/Write, display ON/OFF, Normal/ Reverse display mode, page address set, display start
 - line set, column address set, status read, display all points ON/OFF, LCD bias set, electronic volume, read/modify/write, segment driver direction selects, power saver, common output status select, V5 voltage regulation internal resistor ratio set.
- Low-power liquid crystal display power supply circuit equipped internally.
 - Booster circuit (with Boost ratios of 2X/3X/4X/5X/6X , where the step-up voltage reference power supply can be input externally).
 - High-accuracy voltage adjustment circuit (Thermal

- gradient -0.05%/℃) V 5 voltage regulator resistors equipped internally, V1 to V4 voltage divider resistors equipped internally, electronic volume function equipped internally, voltage follower.
- CR oscillator circuit equipped internally (external clock can also be input)
- Extremely low power consumption Operating power when the built-in power supply is used (an example) 60uA (VDD - VSS = VDD - VSS2 = 3.0 V, Quad voltage, $V_5 - V_{DD} = -11.0 \text{ V}$).
 - Conditions: When displays pattern OFF and the normal mode is selected.
- Power supply operate on the low 1.8 voltage Logic power supply
 - VDD VSS = 1.8V to 3.3V
 - Boost reference voltage: VDD VSS2 = 2.4V to 3.3V Booster maximum voltage limited
 - VOUT= -13.5V
 - Liquid crystal drive power supply:
 - $V_{DD} V_5 = 4.0V$ to 12.0 V
- Wide range of operating temperatures: -30 to 85℃
- CMOS process
- Shipping forms include bare chip and TCP.
- These chips not designed for resistance to light or resistance to radiation.

GENERAL DESCRIPTION

The ST7565V is a single-chip dot matrix LCD driver that can be connected directly to a microprocessor bus. 8-bit parallel or serial display data sent from the microprocessor is stored in the internal display data RAM and the chip generates a LCD drive signal independent of the microprocessor. Because the chips in the ST7565V contain 65x132 bits of display data RAM and there is a 1-to-1 correspondence between the LCD panel pixels and the internal RAM bits, these chips enable displays with a high degree of freedom. The ST7565V chips contain 65 common output circuits and 132 segment output circuits, so that a single chip can drive a 65x132 dot display (capable of displaying 8 columnsx4 rows

of a 16x16 dot kanji font).

Moreover, the capacity of the display can be extended through the use of master/slave structures between chips. The chips are able to minimize power consumption because no external operating clock is necessary for the display data RAM read/write operation. Furthermore, because each chip is equipped internally with a low-power LCD driver power supply, resistors for LCD driver power voltage adjustment and a display clock CR oscillator circuit, the ST7565V can be used to create the lowest power display system with the fewest components for high-performance portable devices.

PART NO.	VRS temperature gradient	VRS range
ST7565V	-0.05%/℃	-2.1V ±0.03V

ST7565V Pad Arrangement(COG)

Chip Size: 9,336 μ m x 1,000 μ m

Bump Pitch: $58 \mu \text{ m(Min.)}$

Bump Size: PAD No. 001 \sim 012 40 μ m x 90 μ m PAD No. 013 \sim 102 56 μ m x 60 μ m

 $\begin{array}{lll} \text{PAD No. } 013{\sim}102 & 56\,\mu\,\text{m x} \, 60\,\mu\,\text{m} \\ \text{PAD No. } 103{\sim}114 & 40\,\mu\,\text{m x} \, 90\,\mu\,\text{m} \\ \text{PAD No. } 115 & 90\,\mu\,\text{m x} \, 25.5\,\mu\,\text{m} \\ \text{PAD No. } 116{\sim}128 & 90\,\mu\,\text{m x} \, 40\,\mu\,\text{m} \\ \text{PAD No. } 129{\sim}276 & 40\,\mu\,\text{m x} \, 90\,\mu\,\text{m} \\ \text{PAD No. } 277{\sim}289 & 90\,\mu\,\text{m x} \, 40\,\mu\,\text{m} \\ \end{array}$

PAD No. 290 90μ m x 25.5 μ m

Bump Height: 18μ m Chip Thickness: 635μ m

- Add new booster ratio 5 times and 6 times
- Use select pin to define display duty as following table

SEL 3, 2, 1	DUTY	BIAS
0,0,0	1/65	1/9 or 1/7
0,0,1	1/49	1/8 or 1/6
0,1,0	1/33	1/6 or 1/5
0,1,1	1/55	1/8 or 1/6
1,0,0	1/53	1/8 or 1/6
1 , X , X		

Pad Center Coordinates (1/65 Duty)

PAD No.	PIN Name	Х	Y
1	COM[53]	4241	374
2	COM[54]	4183	374
3	COM[55]	4125	374
4	COM[56]	4067	374
5	COM[57]	4009	374
6	COM[58]	3951	374
7	COM[59]	3893	374
8	COM[60]	3835	374
9	COM[61]	3777	374
10	COM[62]	3719	374
11	COM[63]	3661	374
12	COMS1	3603	374
13	TEST6	3443	389
14	FR	3369	389
15	CL	3295	389
16	/DOF	3221	389
17	VSS	3147	389
18	/CS1	3073	389
19	CS2	2999	389
20	VDD	2925	389
21	/RES	2851	389
22	A0	2777	389
23	VSS	2703	389
24	/WR(R/W)	2629	389
25	/RD(E)	2555	389
26	VDD	2481	389
27	D0	2407	389
28	D1	2333	389
29	D2	2259	389
30	D3	2185	389
31	D3	2111	389
32	D5	2037	389
33	D6	1963	389
34	D0	1889	389
35	VDD	1815	389
36	VDD	1741	389
37	VDD	1667	389
38	VSS	1593	389
39	VSS	1519	389
40	VSS2	1445	389
41	VSS2 VSS2	1371	389
41	VOUT	1297	389
42	VOUT	1223	389
43	CAP5-	1149	
		1075	389 389
45	CAP5-		
46	CAP1+	1001	389
47	CAP1+	927	389

PAD No.	PIN Name	Х	Y
48	CAP3-	853	389
49	CAP3-	779	389
50	CAP1+	705	389
51	CAP1+	631	389
52	CAP1-	557	389
53	CAP1-	483	389
54	CAP2-	409	389
55	CAP2-	335	389
56	CAP2+	261	389
57	CAP2+	187	389
58	CAP4-	113	389
59	CAP4-	39	389
60	VSS	-35	389
61	VSS	-109	389
62	VRS	-183	389
63	VRS	-257	389
64	VDD	-331	389
65	VDD	-405	389
66	V1	-479	389
67	V1	-553	389
68	V2	-627	389
69	V2	-701	389
70	V3	-775	389
71	V3	-849	389
72	V4	-923	389
73	V4	-997	389
74	V5	-1071	389
75	V5	-1145	389
76	VR	-1219	389
77	VR	-1293	389
78	VDD	-1367	389
79	VDD	-1441	389
80	TEST0	-1515	389
81	TEST1	-1589	389
82	TEST2	-1663	389
83	TEST3	-1737	389
84	TEST4	-1811	389
85	TEST5	-1885	389
86	VDD	-1959	389
87	M/S	-2033	389
88	CLS	-2107	389
89	VSS	-2181	389
90	C86	-2255	389
91	P/S	-2329	389
92	VDD	-2403	389
93	/HPM	-2477	389
94	VSS	-2551	389

Units: $\mu\,\mathrm{m}$

PAD PIN Name X Y No. PIN Name X No. PIN Name	<u>311</u>	7 303 V					
96		PIN Name	×	Υ		PIN Name	Х
97		IRS	-2625	389	147	SEG[10]	-3223
98 VSS -2847 389 150 SEG[13] -3049 99 SEL2 -2921 389 151 SEG[14] -2991 100 VDD -2995 389 152 SEG[15] -2933 101 SEL3 -3069 389 152 SEG[16] -2875 102 VSS -3143 389 153 SEG[16] -2875 103 COM[31] -3606 374 155 SEG[18] -2759 104 COM[30] -3664 374 155 SEG[18] -2759 105 COM[29] -3722 374 156 SEG[19] -2701 105 COM[29] -3722 374 157 SEG[20] -2643 107 COM[27] -3838 374 158 SEG[21] -2585 107 COM[27] -3838 374 159 SEG[21] -2585 108 COM[26] -3896 374 160 SEG[21] -2527 108 COM[26] -3896 374 160 SEG[21] -2527 108 COM[27] -4128 374 161 SEG[24] -2411 110 COM[24] -4012 374 162 SEG[25] -2353 111 COM[23] -4070 374 162 SEG[27] -2237 113 COM[21] -4186 374 164 SEG[27] -2237 113 COM[21] -4186 374 165 SEG[28] -2179 114 COM[20] -4244 374 166 SEG[27] -2237 115 (NC) -4542 404 167 SEG[30] -2063 116 COM[19] -4542 351 168 SEG[31] -2005 117 COM[18] -4542 293 169 SEG[32] -1947 118 COM[17] -4542 235 170 SEG[33] -1889 119 COM[16] -4542 177 171 SEG[34] -1831 120 COM[17] -4542 351 168 SEG[37] -2563 121 COM[17] -4542 351 172 SEG[35] -1773 121 COM[18] -4542 177 171 SEG[34] -1831 122 COM[17] -4542 351 172 SEG[35] -1773 123 COM[17] -4542 351 175 SEG[36] -1715 124 COM[19] -4542 177 171 SEG[34] -1831 125 COM[17] -4542 374 177 171 SEG[34] -1831 126 COM[17] -4542 374 177 171 SEG[34] -1831 127 COM[18] -4542 -229 177 171 SEG[36] -1715 128 COM[17] -4542 -113 176 SEG[37] -1857 129 COM[1] -4542 -113 176 SEG[37] -1857 128 COM[1] -4542 -113 176 SEG[37] -1857 129 COM[1] -4542 -113 176 SEG[37] -1857 129 COM[1] -4542 -171 177 SEG[40] -1483 131 COM[4] -4151 -374 188 SEG[41] -1251 133 COM[1] -4542 -345 189 SEG[42] -1367 134 COM[1] -3977 -374 186 SEG[49] -961 135 COM[1] -3987 -374 189 SEG[6] -1753 131 COM[2] -4035 -374 189 SEG[6] -1753 131 COM[2] -4035 -374 189 SEG[6] -1753 133 SEG[6] -3653 -374 199 SEG[55] -613 140 SEG[3] -3629 -374 199 SEG[55] -613 141 SEG[4] -3571 -374 199 SEG[59] -381 141 SEG[4] -3571 -374 199 SEG[59] -381 143 SEG[6] -3553 -374 199 SEG[59] -381 144 SEG[7] -3397 -374 199 SEG[59] -3381 145 SEG[8] -3339 -374 199 SEG[59] -3381	96	VDD	-2699	389	148	SEG[11]	-3165
99	97	SEL1	-2773	389	149	SEG[12]	-3107
100	98	VSS	-2847	389	150	SEG[13]	-3049
101 SEL3 -3069 389 153 SEG 16 -2875 102 VSS -3143 389 154 SEG 17 -2817 -2817 104 COM 30 -3664 374 155 SEG 18 -2759 104 COM 30 -3664 374 156 SEG 19 -2701 105 COM 29 -3722 374 157 SEG 20 -2643 106 COM 28 -3780 374 158 SEG 21 -2565 107 COM 27 -3838 374 159 SEG 22 -2527 108 COM 26 -3896 374 160 SEG 23 -2469 109 COM 25 -3954 374 161 SEG 24 -2411 110 COM 24 -4012 374 162 SEG 25 -2353 111 COM 23 -4070 374 163 SEG 26 -2295 112 COM 22 -4128 374 164 SEG 25 -2235 113 COM 21 -4186 374 165 SEG 28 -2179 114 COM 20 -4244 374 166 SEG 29 -2121 115 (NC) -4542 404 167 SEG 31 -2005 117 COM 18 -4542 293 169 SEG 31 -2005 117 COM 18 -4542 235 168 SEG 31 -2005 118 COM 17 -4542 235 170 SEG 33 -1889 119 COM 16 -4542 117 171 SEG 34 -1831 120 COM 15 -4542 119 172 SEG 35 -1773 121 COM 14 -4542 61 173 SEG 36 -1715 125 COM 10 -4542 -	99	SEL2	-2921	389	151	SEG[14]	-2991
102	100	VDD	-2995	389	152	SEG[15]	-2933
103	101	SEL3	-3069	389	153	SEG[16]	-2875
104	102	VSS	-3143	389	154	SEG[17]	-2817
104	103	COM[31]	-3606	374	155	SEG[18]	-2759
105	104	COM[30]	-3664	374	156		-2701
106	105	COM[29]	-3722	374	157		-2643
107	106		-3780	374	158		-2585
108	107		-3838	374	159		-2527
109	108			374			+
110				374			+
111				374			+ +
112				374			+
113				374			+ +
114							1
115				374			+ +
116							†
117 COM[18] -4542 293 118 COM[17] -4542 235 119 COM[16] -4542 177 120 COM[15] -4542 119 121 COM[14] -4542 61 122 COM[13] -4542 3 122 COM[13] -4542 3 123 COM[12] -4542 -55 124 COM[11] -4542 -113 125 COM[10] -4542 -171 126 COM[9] -4542 -29 127 COM[8] -4542 -287 128 COM[7] -4542 -287 128 COM[7] -4542 -345 129 COM[6] -4267 -374 130 COM[6] -4267 -374 131 COM[6] -4267 -374 132 COM[3] -4093 -374 133 COM[2] -4035 <		, ,					+
118 COM[17] -4542 235 119 COM[16] -4542 177 120 COM[15] -4542 119 121 COM[14] -4542 61 122 COM[13] -4542 3 123 COM[12] -4542 -55 123 COM[11] -4542 -113 125 COM[11] -4542 -113 125 COM[10] -4542 -171 126 COM[9] -4542 -171 126 COM[9] -4542 -229 127 COM[8] -4542 -229 128 COM[7] -4542 -345 129 COM[6] -4267 -374 130 COM[6] -4267 -374 131 COM[4] -4151 -374 132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[1] -3977							+ + + + + + + + + + + + + + + + + + + +
119 COM[16] -4542 177 120 COM[15] -4542 119 121 COM[14] -4542 61 122 COM[13] -4542 3 123 COM[12] -4542 -55 123 COM[11] -4542 -113 125 COM[10] -4542 -113 125 COM[10] -4542 -171 125 COM[10] -4542 -171 126 COM[9] -4542 -229 127 COM[8] -4542 -229 127 COM[8] -4542 -287 128 COM[7] -4542 -345 129 COM[6] -4267 -374 130 COM[5] -4209 -374 131 COM[4] -4151 -374 132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[1] -3977							+ +
120 COM[15] -4542 119 121 COM[14] -4542 61 122 COM[13] -4542 3 123 COM[12] -4542 -55 124 COM[11] -4542 -113 125 COM[10] -4542 -171 126 COM[9] -4542 -229 127 COM[8] -4542 -229 127 COM[8] -4542 -229 128 COM[7] -4542 -345 129 COM[6] -4267 -374 130 COM[6] -4267 -374 131 COM[6] -4267 -374 131 COM[4] -4151 -374 132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[1] -3977 -374 135 COM[0] -3919 -374 136 COM[2] -4035							+ +
121 COM[14] -4542 61 122 COM[13] -4542 3 123 COM[12] -4542 -55 124 COM[11] -4542 -113 125 COM[10] -4542 -171 126 COM[9] -4542 -229 127 COM[8] -4542 -287 128 COM[7] -4542 -345 129 COM[6] -4267 -374 130 COM[6] -4267 -374 130 COM[6] -4267 -374 131 COM[6] -4209 -374 131 COM[6] -4209 -374 132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[1] -3977 -374 135 COM[0] -3919 -374 136 COM[0] -3919 -374 135 COM[0] -3919			-4542	119			+
122 COM[13] -4542 3 123 COM[12] -4542 -55 124 COM[11] -4542 -113 125 COM[10] -4542 -171 126 COM[9] -4542 -229 127 COM[8] -4542 -287 128 COM[7] -4542 -345 129 COM[6] -4267 -374 130 COM[5] -4209 -374 131 COM[4] -4151 -374 132 COM[3] -4093 -374 132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[3] -4093 -374 134 COM[0] -3919 -374 135 COM[0] -3919 -374 136 COMS2 -3861 -374 137 SEG[0] -3803 -374 138 SEG[1] -3745				61			+
123 COM[12] -4542 -55 124 COM[11] -4542 -113 125 COM[10] -4542 -171 126 COM[9] -4542 -229 127 COM[8] -4542 -229 128 COM[7] -4542 -345 128 COM[7] -4542 -345 129 COM[6] -4267 -374 130 COM[5] -4209 -374 131 COM[6] -4267 -374 131 COM[6] -4209 -374 131 COM[6] -4093 -374 132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[1] -3977 -374 135 COM[0] -3919 -374 136 COM[0] -3919 -374 135 COM[0] -3919 -374 136 COM[0] -3919				3			1
124 COM[11] -4542 -113 125 COM[10] -4542 -171 126 COM[9] -4542 -229 127 COM[8] -4542 -287 128 COM[7] -4542 -345 128 COM[7] -4542 -345 129 COM[6] -4267 -374 130 COM[5] -4209 -374 131 COM[6] -4209 -374 131 COM[4] -4151 -374 132 COM[3] -4093 -374 132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[1] -3977 -374 135 COM[0] -3919 -374 135 COM[0] -3919 -374 136 COMS2 -3861 -374 138 SEG[0] -3803 -374 138 SEG[1] -3745				-55			1
125 COM[10] -4542 -171 126 COM[9] -4542 -229 127 COM[8] -4542 -287 128 COM[7] -4542 -345 129 COM[6] -4267 -374 130 COM[5] -4209 -374 131 COM[4] -4151 -374 132 COM[3] -4093 -374 132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[1] -3977 -374 135 COM[0] -3919 -374 135 COM[0] -3919 -374 135 COM[0] -3919 -374 136 COMS2 -3861 -374 138 SEG[0] -3803 -374 138 SEG[1] -3745 188 139 SEG[2] -3687 -374 140 SEG[3] -3629			-4542	-113			+
126 COM[9] -4542 -229 127 COM[8] -4542 -287 128 COM[7] -4542 -345 129 COM[6] -4267 -374 130 COM[5] -4209 -374 131 COM[6] -4209 -374 131 COM[4] -4151 -374 132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[1] -3977 -374 135 COM[0] -3919 -374 136 COMS2 -3861 -374 137 SEG[0] -3803 -374 138 SEG[1] -3745 -374 139 SEG[2] -3687 -374 140 SEG[3] -3629 -374 140 SEG[4] -3571 -374 141 SEG[6] -3551 -374 142 SEG[5] -3513	125		-4542	-171			+
127 COM[8] -4542 -287 128 COM[7] -4542 -345 129 COM[6] -4267 -374 130 COM[5] -4209 -374 131 COM[4] -4151 -374 132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[1] -3977 -374 135 COM[0] -3919 -374 136 COMS2 -3861 -374 137 SEG[0] -3803 -374 138 SEG[1] -3745 188 SEG[50] 139 SEG[2] -3687 -374 140 SEG[3] -3629 -374 141 SEG[4] -3571 -374 141 SEG[5] -3513 -374 142 SEG[5] -3513 -374 143 SEG[6] -3455 -374 144 SEG[6]	126		-4542	-229	178		+ +
128 COM[7] -4542 -345 129 COM[6] -4267 -374 130 COM[5] -4209 -374 131 COM[4] -4151 -374 132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[1] -3977 -374 135 COM[0] -3919 -374 135 COM[0] -3919 -374 136 COMS2 -3861 -374 137 SEG[0] -3803 -374 138 SEG[1] -3745 -374 138 SEG[1] -3745 -374 139 SEG[2] -3687 -374 140 SEG[3] -3629 -374 141 SEG[4] -3571 -374 141 SEG[5] -3513 -374 142 SEG[5] -3513 -374 143 SEG[6] -3455			-4542	-287			+ +
129 COM[6] -4267 -374 130 COM[5] -4209 -374 131 COM[4] -4151 -374 132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[1] -3977 -374 135 COM[0] -3919 -374 135 COM[0] -3919 -374 136 COMS2 -3861 -374 137 SEG[0] -3803 -374 138 SEG[1] -3745 -374 139 SEG[2] -3687 -374 140 SEG[3] -3629 -374 141 SEG[4] -3571 -374 141 SEG[5] -3513 -374 142 SEG[5] -3513 -374 143 SEG[6] -3455 -374 144 SEG[7] -3397 -374 144 SEG[8] -3339				-345	-		
130 COM[5] -4209 -374 131 COM[4] -4151 -374 132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[1] -3977 -374 135 COM[0] -3919 -374 135 COM[0] -3919 -374 136 COMS2 -3861 -374 137 SEG[0] -3803 -374 138 SEG[1] -3745 -374 139 SEG[2] -3687 -374 140 SEG[3] -3629 -374 141 SEG[4] -3571 -374 141 SEG[4] -3571 -374 142 SEG[5] -3513 -374 143 SEG[6] -3455 -374 143 SEG[6] -3455 -374 144 SEG[7] -3397 -374 144 SEG[6] -3455			-4267	-374			
131 COM[4] -4151 -374 132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[1] -3977 -374 135 COM[0] -3919 -374 136 COMS2 -3861 -374 137 SEG[0] -3803 -374 138 SEG[1] -3745 -374 139 SEG[2] -3687 -374 140 SEG[3] -3629 -374 141 SEG[4] -3571 -374 142 SEG[5] -3513 -374 143 SEG[6] -3455 -374 144 SEG[7] -3397 -374 144 SEG[6] -3455 -374 144 SEG[6] -3455 -374 144 SEG[6] -3455 -374 144 SEG[6] -3455 -374 145 SEG[8] -3339				-374			1 1
132 COM[3] -4093 -374 133 COM[2] -4035 -374 134 COM[1] -3977 -374 135 COM[0] -3919 -374 136 COMS2 -3861 -374 137 SEG[0] -3803 -374 138 SEG[1] -3745 -374 139 SEG[2] -3687 -374 140 SEG[3] -3629 -374 141 SEG[4] -3571 -374 142 SEG[5] -3513 -374 143 SEG[6] -3455 -374 144 SEG[7] -3397 -374 144 SEG[6] -3455 -374 144 SEG[6] -3455 -374 144 SEG[6] -3455 -374 144 SEG[6] -3455 -374 145 SEG[8] -3339 -374 145 SEG[8] -3339	131	COM[4]	-4151	-374			-1135
133 COM[2] -4035 -374 134 COM[1] -3977 -374 135 COM[0] -3919 -374 136 COMS2 -3861 -374 137 SEG[0] -3803 -374 138 SEG[1] -3745 -374 139 SEG[2] -3687 -374 140 SEG[3] -3629 -374 141 SEG[4] -3571 -374 142 SEG[5] -3513 -374 143 SEG[6] -3455 -374 144 SEG[7] -3397 -374 144 SEG[7] -3397 -374 145 SEG[8] -3339 -374 145 SEG[8] -3339 -374 195 SEG[59] -381 196 SEG[59] -381 197 SEG[60] -323	132			-374			1 1
134 COM[1] -3977 -374 135 COM[0] -3919 -374 136 COMS2 -3861 -374 137 SEG[0] -3803 -374 138 SEG[1] -3745 -374 139 SEG[2] -3687 -374 140 SEG[3] -3629 -374 141 SEG[4] -3571 -374 142 SEG[5] -3513 -374 143 SEG[6] -3455 -374 144 SEG[7] -3397 -374 145 SEG[8] -3339 -374 195 SEG[59] -381 197 SEG[60] -323				-374			+
135 COM[0] -3919 -374 136 COMS2 -3861 -374 137 SEG[0] -3803 -374 138 SEG[1] -3745 -374 139 SEG[2] -3687 -374 140 SEG[3] -3629 -374 141 SEG[4] -3571 -374 141 SEG[5] -3513 -374 142 SEG[5] -3513 -374 143 SEG[6] -3455 -374 144 SEG[7] -3397 -374 144 SEG[8] -3339 -374 145 SEG[8] -3339 -374							-961
136 COMS2 -3861 -374 137 SEG[0] -3803 -374 138 SEG[1] -3745 -374 139 SEG[2] -3687 -374 140 SEG[3] -3629 -374 141 SEG[4] -3571 -374 141 SEG[4] -3571 -374 142 SEG[5] -3513 -374 143 SEG[6] -3455 -374 144 SEG[7] -3397 -374 145 SEG[8] -3339 -374 195 SEG[59] -381 197 SEG[60] -323							+
137 SEG[0] -3803 -374 189 SEG[52] -787 138 SEG[1] -3745 -374 190 SEG[53] -729 139 SEG[2] -3687 -374 191 SEG[54] -671 140 SEG[3] -3629 -374 192 SEG[55] -613 141 SEG[4] -3571 -374 193 SEG[56] -555 142 SEG[5] -3513 -374 194 SEG[57] -497 143 SEG[6] -3455 -374 195 SEG[58] -439 144 SEG[7] -3397 -374 196 SEG[59] -381 145 SEG[8] -3339 -374 197 SEG[60] -323							1
138 SEG[1] -3745 -374 190 SEG[53] -729 139 SEG[2] -3687 -374 191 SEG[54] -671 140 SEG[3] -3629 -374 192 SEG[55] -613 141 SEG[4] -3571 -374 193 SEG[56] -555 142 SEG[5] -3513 -374 194 SEG[57] -497 143 SEG[6] -3455 -374 195 SEG[58] -439 144 SEG[7] -3397 -374 196 SEG[59] -381 145 SEG[8] -3339 -374 197 SEG[60] -323							1
139 SEG[2] -3687 -374 140 SEG[3] -3629 -374 141 SEG[4] -3571 -374 142 SEG[5] -3513 -374 143 SEG[6] -3455 -374 144 SEG[7] -3397 -374 145 SEG[8] -3339 -374 196 SEG[59] -381 197 SEG[60] -323				-374			
140 SEG[3] -3629 -374 141 SEG[4] -3571 -374 142 SEG[5] -3513 -374 143 SEG[6] -3455 -374 144 SEG[7] -3397 -374 145 SEG[8] -3339 -374 196 SEG[59] -381 197 SEG[60] -323							+
141 SEG[4] -3571 -374 193 SEG[56] -555 142 SEG[5] -3513 -374 194 SEG[57] -497 143 SEG[6] -3455 -374 195 SEG[58] -439 144 SEG[7] -3397 -374 196 SEG[59] -381 145 SEG[8] -3339 -374 197 SEG[60] -323				-374			+
142 SEG[5] -3513 -374 143 SEG[6] -3455 -374 144 SEG[7] -3397 -374 145 SEG[8] -3339 -374 196 SEG[59] -381 197 SEG[60] -323							+
143 SEG[6] -3455 -374 144 SEG[7] -3397 -374 145 SEG[8] -3339 -374 196 SEG[59] -381 197 SEG[60] -323							+
144 SEG[7] -3397 -374 196 SEG[59] -381 145 SEG[8] -3339 -374 197 SEG[60] -323				-374			1
145 SEG[8] -3339 -374 197 SEG[60] -323							+
	145			-374			+ +
				-374			+

Υ -374

PAD No.	PIN Name	Х	Y
199	SEG[62]	-207	-374
200	SEG[63]	-149	-374
201	SEG[64]	-91	-374
202	SEG[65]	-33	-374
203	SEG[66]	25	-374
204	SEG[67]	83	-374
205	SEG[68]	141	-374
206	SEG[69]	199	-374
207	SEG[70]	257	-374
208	SEG[71]	315	-374
209	SEG[72]	373	-374
210	SEG[73]	431	-374
211	SEG[74]	489	-374
212	SEG[75]	547	-374
213	SEG[76]	605	-374
214	SEG[77]	663	-374
215	SEG[78]	721	-374
216	SEG[79]	779	-374
217	SEG[80]	837	-374
218	SEG[81]	895	-374
219	SEG[82]	953	-374
220	SEG[83]	1011	-374
221	SEG[84]	1069	-374
222	SEG[85]	1127	-374
223	SEG[86]	1185	-374
224	SEG[87]	1243	-374
225	SEG[88]	1301	-374
226	SEG[89]	1359	-374
227	SEG[90]	1417	-374
228	SEG[91]	1475	-374
229	SEG[92]	1533	-374
230	SEG[93]	1591	-374
231	SEG[94]	1649	-374
232	SEG[95]	1707	-374
233	SEG[96]	1765	-374
234	SEG[97]	1823	-374
235	SEG[98]	1881	-374
236	SEG[99]	1939	-374
237	SEG[100]	1997	-374
238	SEG[101]	2055	-374
239	SEG[102]	2113	-374
240	SEG[103]	2171	-374
241	SEG[104]	2229	-374
242	SEG[105]	2287	-374
243	SEG[106]	2345	-374
244	SEG[107]	2403	-374
245	SEG[108]	2461	-374

PAD No.	PIN Name	Х	Υ
246	SEG[109]	2519	-374
247	SEG[110]	2577	-374
248	SEG[111]	2635	-374
249	SEG[112]	2693	-374
250	SEG[113]	2751	-374
251	SEG[114]	2809	-374
252	SEG[115]	2867	-374
253	SEG[116]	2925	-374
254	SEG[117]	2983	-374
255	SEG[118]	3041	-374
256	SEG[119]	3099	-374
257	SEG[120]	3157	-374
258	SEG[121]	3215	-374
259	SEG[122]	3273	-374
260	SEG[123]	3331	-374
261	SEG[124]	3389	-374
262	SEG[125]	3447	-374
263	SEG[126]	3505	-374
264	SEG[127]	3563	-374
265	SEG[128]	3621	-374
266	SEG[129]	3679	-374
267	SEG[130]	3737	-374
268	SEG[131]	3795	-374
269	COM[32]	3853	-374
270	COM[33]	3911	-374
271	COM[34]	3969	-374
272	COM[35]	4027	-374
273	COM[36]	4085	-374
274	COM[37]	4143	-374
275	COM[38]	4201	-374
276	COM[39]	4259	-374
277	COM[40]	4542	-345
278	COM[41]	4542	-287
279	COM[42]	4542	-229
280	COM[43]	4542	-171
281	COM[44]	4542	-113
282	COM[45]	4542	-55
283	COM[46]	4542	3
284	COM[47]	4542	61
285	COM[48]	4542	119
286	COM[49]	4542	177
287	COM[50]	4542	235
288	COM[51]	4542	293
289	COM[52]	4542	351
290	(NC)	4542	404

Pad Center Coordinates (1/49 Duty)

PAD No.	PIN Name	Х	Y
1	COM[37]	4241	374
2	COM[38]	4183	374
3	COM[39]	4125	374
4	COM[40]	4067	374
5	COM[41]	4009	374
6	COM[42]	3951	374
7	COM[43]	3893	374
8	COM[44]	3835	374
9	COM[45]	3777	374
10	COM[46]	3719	374
11	COM[47]	3661	374
12	COMS1	3603	374
13	TEST6	3443	389
14	FR	3369	389
15	CL	3295	389
16	/DOF	3221	389
17	VSS	3147	389
18	/CS1	3073	389
19	CS2	2999	389
20	VDD	2925	389
21	/RES	2851	389
22	A0	2777	389
23	VSS	2703	389
24	/WR(R/W)	2629	389
25	/RD(E)	2555	389
26	VDD	2481	389
27	D0	2407	389
28	D1	2333	389
29	D2	2259	389
30	D3	2185	389
31	D4	2111	389
32	D5	2037	389
33	D6	1963	389
34	D7	1889	389
35	VDD	1815	389
36	VDD	1741	389
37	VDD	1667	389
38	VSS	1593	389
39	VSS	1519	389
40	VSS2	1445	389
41	VSS2	1371	389
42	VOUT	1297	389
43	VOUT	1223	389
44	CAP5-	1149	389
45	CAP5-	1075	389
46	CAP1+	1001	389
47	CAP1+	927	389

PAD			
No.	PIN Name	Х	Y
48	CAP3-	853	389
49	CAP3-	779	389
50	CAP1+	705	389
51	CAP1+	631	389
52	CAP1-	557	389
53	CAP1-	483	389
54	CAP2-	409	389
55	CAP2-	335	389
56	CAP2+	261	389
57	CAP2+	187	389
58	CAP4-	113	389
59	CAP4-	39	389
60	VSS	-35	389
61	VSS	-109	389
62	VRS	-183	389
63	VRS	-257	389
64	VDD	-331	389
65	VDD	-405	389
66	V1	-479	389
67	V1	-553	389
68	V2	-627	389
69	V2	-701	389
70	V3	-775	389
71	V3	-849	389
72	V4	-923	389
73	V4	-997	389
74	V5	-1071	389
75	V5	-1145	389
76	VR	-1219	389
77	VR	-1293	389
78	VDD	-1367	389
79	VDD	-1441	389
80	TEST0	-1515	389
81	TEST1	-1589	389
82	TEST2	-1663	389
83	TEST3	-1737	389
84	TEST4	-1811	389
85	TEST5	-1885	389
86	VDD	-1959	389
87	M/S	-2033	389
88	CLS	-2107	389
89	VSS	-2181	389
90	C86	-2255	389
91	P/S	-2329	389
92	VDD	-2403	389
93	/HPM	-2477	389
94	VSS	-2551	389

Units: $\mu\,\mathrm{m}$

	/ JUJ V						1
PAD No.	PIN Name	Х	Υ	PAD No.	PIN Name	Х	,
95	IRS	-2625	389	147	SEG[10]	-3223	-3
96	VDD	-2699	389	148	SEG[11]	-3165	-3
97	SEL1	-2773	389	149	SEG[12]	-3107	-3
98	VSS	-2847	389	150	SEG[13]	-3049	-3
99	SEL2	-2921	389	151	SEG[14]	-2991	-3
100	VDD	-2995	389	152	SEG[15]	-2933	-3
101	SEL3	-3069	389	153	SEG[16]	-2875	-3
102	VSS	-3143	389	154	SEG[17]	-2817	-3
103	Reserve	-3606	374	155	SEG[18]	-2759	-3
104	Reserve	-3664	374	156	SEG[19]	-2701	-3
105	Reserve	-3722	374	157	SEG[20]	-2643	-3
106	Reserve	-3780	374	158	SEG[21]	-2585	-3
107	Reserve	-3838	374	159	SEG[22]	-2527	-3
108	Reserve	-3896	374	160	SEG[23]	-2469	-3
109	Reserve	-3954	374	161	SEG[23]	-2409	-3
		1			<u> </u>		
110	Reserve	-4012 4070	374	162	SEG[25]	-2353	-3
111	COM[23]	-4070	374	163	SEG[26]	-2295 -2237	-3
112	COM[22]	-4128	374	164	SEG[27]		-3
113	COM[21]	-4186	374	165	SEG[28]	-2179	-3
114	COM[20]	-4244	374	166	SEG[29]	-2121	-3
115	(NC)	-4542	404	167	SEG[30]	-2063	-3
16	COM[19]	-4542	351	168	SEG[31]	-2005	-3
117	COM[18]	-4542	293	169	SEG[32]	-1947	-3
118	COM[17]	-4542	235	170	SEG[33]	-1889	-3
119	COM[16]	-4542	177	171	SEG[34]	-1831	-3
20	COM[15]	-4542	119	172	SEG[35]	-1773	-3
121	COM[14]	-4542	61	173	SEG[36]	-1715	-3
122	COM[13]	-4542	3	174	SEG[37]	-1657	-3
123	COM[12]	-4542	-55	175	SEG[38]	-1599	-3
124	COM[11]	-4542	-113	176	SEG[39]	-1541	-3
125	COM[10]	-4542	-171	177	SEG[40]	-1483	-3
126	COM[9]	-4542	-229	178	SEG[41]	-1425	-3
127	COM[8]	-4542	-287	179	SEG[42]	-1367	-3
128	COM[7]	-4542	-345	180	SEG[43]	-1309	-3
129	COM[6]	-4267	-374	181	SEG[44]	-1251	-3
130	COM[5]	-4209	-374	182	SEG[45]	-1193	-3
131	COM[4]	-4151	-374	183	SEG[46]	-1135	-3
132	COM[3]	-4093	-374	184	SEG[47]	-1077	-3
133	COM[2]	-4035	-374	185	SEG[48]	-1019	-3
134	COM[1]	-3977	-374	186	SEG[49]	-961	-3
135	COM[0]	-3919	-374	187	SEG[50]	-903	-3
136	COMS2	-3861	-374	188	SEG[51]	-845	-3
137	SEG[0]	-3803	-374	189	SEG[52]	-787	-3
138	SEG[1]	-3745	-374	190	SEG[53]	-729	-3
39	SEG[2]	-3687	-374	191	SEG[54]	-671	-3
40	SEG[3]	-3629	-374	192	SEG[55]	-613	-3
141	SEG[4]	-3571	-374	193	SEG[56]	-555	-3
				193		1	-3
142	SEG[5]	-3513	-374		SEG[57]	-497 430	
143	SEG[6]	-3455	-374	195	SEG[58]	-439 391	-3
144	SEG[7]	-3397	-374	196	SEG[59]	-381	-3
145	SEG[8]	-3339	-374	197	SEG[60]	-323	-3
146	SEG[9]	-3281	-374	198	SEG[61]	-265	-3

PAD No.	PIN Name	X	Υ
199	SEG[62]	-207	-374
200	SEG[63]	-149	-374
201	SEG[64]	-91	-374
202	SEG[65]	-33	-374
203	SEG[66]	25	-374
204	SEG[67]	83	-374
205	SEG[68]	141	-374
206	SEG[69]	199	-374
207	SEG[70]	257	-374
208	SEG[71]	315	-374
209	SEG[72]	373	-374
210	SEG[73]	431	-374
211	SEG[74]	489	-374
212	SEG[75]	547	-374
213	SEG[76]	605	-374
214	SEG[77]	663	-374
215	SEG[78]	721	-374
216	SEG[79]	779	-374
217	SEG[80]	837	-374
218	SEG[81]	895	-374
219	SEG[82]	953	-374
220	SEG[83]	1011	-374
221	SEG[84]	1069	-374
222	SEG[85]	1127	-374
223	SEG[86]	1185	-374
224	SEG[87]	1243	-374
225	SEG[88]	1301	-374
226	SEG[89]	1359	-374
227	SEG[90]	1417	-374
228	SEG[91]	1475	-374
229	SEG[92]	1533	-374
230	SEG[93]	1591	-374
231	SEG[94]	1649	-374
232	SEG[95]	1707	-374
233	SEG[96]	1765	-374
234	SEG[97]	1823	-374
235	SEG[98]	1881	-374
236	SEG[99]	1939	-374
237	SEG[100]	1997	-374
238	SEG[101]	2055	-374
239	SEG[102]	2113	-374
240	SEG[103]	2171	-374
241	SEG[104]	2229	-374
242	SEG[105]	2287	-374
243	SEG[106]	2345	-374
244	SEG[107]	2403	-374
245	SEG[108]	2461	-374

PAD No.	PIN Name	X	Y
246	SEG[109]	2519	-374
247	SEG[110]	2577	-374
248	SEG[111]	2635	-374
249	SEG[112]	2693	-374
250	SEG[113]	2751	-374
251	SEG[114]	2809	-374
252	SEG[115]	2867	-374
253	SEG[116]	2925	-374
254	SEG[117]	2983	-374
255	SEG[118]	3041	-374
256	SEG[119]	3099	-374
257	SEG[120]	3157	-374
258	SEG[121]	3215	-374
259	SEG[122]	3273	-374
260	SEG[123]	3331	-374
261	SEG[124]	3389	-374
262	SEG[125]	3447	-374
263	SEG[126]	3505	-374
264	SEG[127]	3563	-374
265	SEG[128]	3621	-374
266	SEG[129]	3679	-374
267	SEG[130]	3737	-374
268	SEG[131]	3795	-374
269	Reserve	3853	-374
270	Reserve	3911	-374
271	Reserve	3969	-374
272	Reserve	4027	-374
273	Reserve	4085	-374
274	Reserve	4143	-374
275	Reserve	4201	-374
276	Reserve	4259	-374
277	COM[24]	4542	-345
278	COM[25]	4542	-287
279	COM[26]	4542	-229
280	COM[27]	4542	-171
281	COM[28]	4542	-113
282	COM[29]	4542	-55
283	COM[30]	4542	3
284	COM[31]	4542	61
285	COM[32]	4542	119
286	COM[33]	4542	177
287	COM[34]	4542	235
288	COM[35]	4542	293
289	COM[36]	4542	351
290	(NC)	4542	404

Pad Center Coordinates (1/33 Duty)

PAD No.	PIN Name	Х	Υ
1	COM[21]	4241	374
2	COM[22]	4183	374
3	COM[23]	4125	374
4	COM[24]	4067	374
5	COM[25]	4009	374
6	COM[26]	3951	374
7	COM[27]	3893	374
8	COM[28]	3835	374
9	COM[29]	3777	374
10	COM[30]	3719	374
11	COM[31]	3661	374
12	COMS1	3603	374
13	TEST6	3443	389
14	FR	3369	389
15	CL	3295	389
16	/DOF	3293	389
17	VSS	3147	389
18	/CS1	3073	389
19	CS2	2999	389
20	VDD	2925	
21	/RES	2851	389 389
22	A0	2777	
23	VSS		389
24		2703	389
25	/WR(R/W)	2629	389
	/RD(E) VDD	2555	389
26		2481	389
27	D0	2407	389
28	D1	2333	389
29	D2	2259	389
30	D3	2185	389
31	D4	2111	389
32	D5	2037	389
33	D6	1963	389
34	D7	1889	389
35	VDD	1815	389
36	VDD	1741	389
37	VDD	1667	389
38	VSS	1593	389
39	VSS	1519	389
40	VSS2	1445	389
41	VSS2	1371	389
42	VOUT	1297	389
43	VOUT	1223	389
44	CAP5-	1149	389
45	CAP5-	1075	389
46	CAP1+	1001	389
47	CAP1+	927	389

48 CAP3- 853 389 49 CAP3- 779 389 50 CAP1+ 705 389 51 CAP1+ 631 389 52 CAP1- 557 389 53 CAP1- 483 389 54 CAP2- 409 389 55 CAP2- 409 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553	PAD No.	PIN Name	Х	Υ
49 CAP3- 779 389 50 CAP1+ 705 389 51 CAP1+ 631 389 52 CAP1- 557 389 53 CAP1- 483 389 54 CAP2- 409 389 55 CAP2- 335 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 60 VSS -35 389 61 VSS -109 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 70 V3 -775 <		CAP3-	853	389
50 CAP1+ 705 389 51 CAP1+ 631 389 52 CAP1- 557 389 53 CAP1- 483 389 54 CAP2- 409 389 55 CAP2- 335 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 60 VSS -35 389 60 VSS -35 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 70 V3 -775				
51 CAP1+ 631 389 52 CAP1- 557 389 53 CAP1- 483 389 54 CAP2- 409 389 55 CAP2- 335 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 61 VSS -109 389 62 VRS -183 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 67 V1 -553 389 67 V1 -553 <t< td=""><td></td><td></td><td></td><td></td></t<>				
52 CAP1- 557 389 53 CAP1- 483 389 54 CAP2- 409 389 55 CAP2- 335 389 56 CAP2+ 187 389 57 CAP2+ 187 389 58 CAP4- 39 389 60 VSS -35 389 60 VSS -35 389 61 VSS -109 389 61 VSS -109 389 62 VRS -183 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 70 V3 -775 389				
53 CAP1- 483 389 54 CAP2- 409 389 55 CAP2- 335 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 61 VSS -109 389 62 VRS -183 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 70 V3 -775 38				
54 CAP2- 409 389 55 CAP2- 335 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 59 CAP4- 39 389 60 VSS -35 389 60 VSS -109 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 <td></td> <td></td> <td></td> <td></td>				
55 CAP2- 335 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 74 V5 -1071 389 <td></td> <td></td> <td></td> <td></td>				
56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 39 389 59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 61 VSS -183 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 74 V5 -1071 389 75 V5 -1145 389				
57 CAP2+ 187 389 58 CAP4- 313 389 60 VSS -35 389 60 VSS -35 389 61 VSS -109 389 61 VSS -183 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389	-			
58 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 78 VDD -1441 389 79 VDD -1441 389 81 TEST0 -1515 389 <td>57</td> <td></td> <td></td> <td></td>	57			
59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1441 389				
60 VSS -35 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST3 -1737 389 </td <td></td> <td>CAP4-</td> <td></td> <td></td>		CAP4-		
61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 78 VDD -1441 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST3 -1737 389				
62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST2 -1663 389 83 TEST3 -1737				
63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 84 TEST5 -1885 <				
64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 79 VDD -1441 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811				
65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST5 -1885	64			
66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 86 VDD -1959				
67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1441 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST0 -1515 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033		V1		
68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 87 M/S -2033 389 88 CLS -2107				
69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 <td></td> <td></td> <td></td> <td></td>				
70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181<		V2		
71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -225				
72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2	71			
74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM <			-923	
74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM <	73	V4		
75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	74	V5	-1071	
76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	75	V5	-1145	
77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	76	VR	-1219	389
78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389		VR		
80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	78	VDD	-1367	
81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	79	VDD	-1441	389
82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	80	TEST0	-1515	389
83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	81	TEST1	-1589	389
83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	82	TEST2	-1663	389
85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	83			
86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	84	TEST4	-1811	389
87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	85	TEST5	-1885	389
88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	86	VDD	-1959	389
89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	87	M/S	-2033	389
90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	88	CLS	-2107	389
91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	89	VSS	-2181	389
92 VDD -2403 389 93 /HPM -2477 389	90	C86	-2255	389
93 /HPM -2477 389	91	P/S	-2329	389
	92	VDD	-2403	389
94 VSS -2551 389	93	/HPM	-2477	389
	94	VSS	-2551	389

Units: $\mu\,\mathrm{m}$

	7 000 V		
PAD No.	PIN Name	Х	Υ
95	IRS	-2625	389
96	VDD	-2699	389
97	SEL1	-2773	389
98	VSS	-2847	389
99	SEL2	-2921	389
100	VDD	-2995	389
101	SEL3	-3069	389
102	VSS	-3143	389
102	_	-3606	374
	Reserve		
104	Reserve	-3664	374
105	Reserve	-3722	374
106	Reserve	-3780	374
107	Reserve	-3838	374
108	Reserve	-3896	374
109	Reserve	-3954	374
110	Reserve	-4012	374
111	Reserve	-4070	374
112	Reserve	-4128	374
113	Reserve	-4186	374
114	Reserve	-4244	374
115	(NC)	-4542	404
116	Reserve	-4542	351
117	Reserve	-4542	293
118	Reserve	-4542	235
119	Reserve	-4542	177
120	COM[15]	-4542	119
121	COM[14]	-4542	61
122	COM[13]	-4542	3
123	COM[13]	-4542	-55
124	COM[12]	-4542	-113
125		-4542 -4542	-171
	COM[10]	1	
126	COM[9]	-4542	-229
127	COM[8]	-4542	-287
128	COM[7]	-4542	-345
129	COM[6]	-4267	-374
130	COM[5]	-4209	-374
131	COM[4]	-4151	-374
132	COM[3]	-4093	-374
133	COM[2]	-4035	-374
134	COM[1]	-3977	-374
135	COM[0]	-3919	-374
136	COMS2	-3861	-374
137	SEG[0]	-3803	-374
138	SEG[1]	-3745	-374
139	SEG[2]	-3687	-374
140	SEG[3]	-3629	-374
141	SEG[4]	-3571	-374
142	SEG[5]	-3513	-374
143	SEG[6]	-3455	-374
144	SEG[7]	-3397	-374
145	SEG[8]	-3339	-374
146	SEG[9]	-3281	-374

PAD No.	PIN Name	Х	Υ
199	SEG[62]	-207	-374
200	SEG[63]	-149	-374
201	SEG[64]	-91	-374
202	SEG[65]	-33	-374
203	SEG[66]	25	-374
204	SEG[67]	83	-374
205	SEG[68]	141	-374
206	SEG[69]	199	-374
207	SEG[70]	257	-374
208	SEG[71]	315	-374
209	SEG[72]	373	-374
210	SEG[73]	431	-374
211	SEG[74]	489	-374
212	SEG[75]	547	-374
213	SEG[76]	605	-374
214	SEG[77]	663	-374
215	SEG[78]	721	-374
216	SEG[79]	779	-374
217	SEG[80]	837	-374
218	SEG[81]	895	-374
219	SEG[82]	953	-374
220	SEG[83]	1011	-374
221	SEG[84]	1069	-374
222	SEG[85]	1127	-374
223	SEG[86]	1185	-374
224	SEG[87]	1243	-374
225	SEG[88]	1301	-374
226	SEG[89]	1359	-374
227	SEG[90]	1417	-374
228	SEG[91]	1475	-374
229	SEG[92]	1533	-374
230	SEG[93]	1591	-374
231	SEG[94]	1649	-374
232	SEG[95]	1707	-374
233	SEG[96]	1765	-374
234	SEG[97]	1823	-374
235	SEG[98]	1881	-374
236	SEG[99]	1939	-374
237	SEG[100]	1997	-374
238	SEG[101]	2055	-374
239	SEG[102]	2113	-374
240	SEG[103]	2171	-374
241	SEG[104]	2229	-374
242	SEG[105]	2287	-374
243	SEG[106]	2345	-374
244	SEG[107]	2403	-374
245	SEG[108]	2461	-374

PAD No.	PIN Name	Х	Υ
246	SEG[109]	2519	-374
247	SEG[110]	2577	-374
248	SEG[111]	2635	-374
249	SEG[112]	2693	-374
250	SEG[113]	2751	-374
251	SEG[114]	2809	-374
252	SEG[115]	2867	-374
253	SEG[116]	2925	-374
254	SEG[117]	2983	-374
255	SEG[118]	3041	-374
256	SEG[119]	3099	-374
257	SEG[120]	3157	-374
258	SEG[121]	3215	-374
259	SEG[122]	3273	-374
260	SEG[123]	3331	-374
261	SEG[124]	3389	-374
262	SEG[125]	3447	-374
263	SEG[126]	3505	-374
264	SEG[127]	3563	-374
265	SEG[128]	3621	-374
266	SEG[129]	3679	-374
267	SEG[130]	3737	-374
268	SEG[131]	3795	-374
269	Reserve	3853	-374
270	Reserve	3911	-374
271	Reserve	3969	-374
272	Reserve	4027	-374
273	Reserve	4085	-374
274	Reserve	4143	-374
275	Reserve	4201	-374
276	Reserve	4259	-374
277	Reserve	4542	-345
278	Reserve	4542	-287
279	Reserve	4542	-229
280	Reserve	4542	-171
281	Reserve	4542	-113
282	Reserve	4542	-55
283	Reserve	4542	3
284	Reserve	4542	61
285	COM[16]	4542	119
286	COM[17]	4542	177
287	COM[18]	4542	235
288	COM[19]	4542	293
289	COM[20]	4542	351
290	(NC)	4542	404

Pad Center Coordinates (1/55 Duty)

PAD No.	PIN Name	Х	Υ
1	COM[43]	4241	374
2	COM[44]	4183	374
3	COM[45]	4125	374
4	COM[46]	4067	374
5	COM[47]	4009	374
6	COM[48]	3951	374
7	COM[49]	3893	374
8	COM[50]	3835	374
9	COM[51]	3777	374
10	COM[52]	3719	374
11	COM[53]	3661	374
12	COMS1	3603	374
13	TEST6	3443	389
14	FR	3369	389
15	CL	3295	389
16	/DOF	3221	389
17	VSS	3147	389
18	/CS1	3073	389
19	CS2	2999	389
20	VDD	2925	389
21	/RES	2851	389
22	A0	2777	389
23	VSS	2703	389
24	/WR(R/W)	2629	389
25	/RD(E)	2555	389
26	VDD	2481	389
27	D0	2407	389
28	D1	2333	389
29	D2	2259	389
30	D3	2185	389
31	D4	2111	389
32	D5	2037	389
33	D6	1963	389
34	D7	1889	389
35	VDD	1815	389
36	VDD	1741	389
37	VDD	1667	389
38	VSS	1593	389
39	VSS	1519	389
40	VSS2	1445	389
41	VSS2	1371	389
42	VOUT	1297	389
43	VOUT	1223	389
44	CAP5-	1149	389
45	CAP5-	1075	389
46	CAP1+	1001	389
47	CAP1+	927	389

PAD			
No.	PIN Name	Х	Y
48	CAP3-	853	389
49	CAP3-	779	389
50	CAP1+	705	389
51	CAP1+	631	389
52	CAP1-	557	389
53	CAP1-	483	389
54	CAP2-	409	389
55	CAP2-	335	389
56	CAP2+	261	389
57	CAP2+	187	389
58	CAP4-	113	389
59	CAP4-	39	389
60	VSS	-35	389
61	VSS	-109	389
62	VRS	-183	389
63	VRS	-257	389
64	VDD	-331	389
65	VDD	-405	389
66	V1	-479	389
67	V1	-553	389
68	V2	-627	389
69	V2	-701	389
70	V3	-775	389
71	V3	-849	389
72	V4	-923	389
73	V4	-997	389
74	V5	-1071	389
75	V5	-1145	389
76	VR	-1219	389
77	VR	-1293	389
78	VDD	-1367	389
79	VDD	-1441	389
80	TEST0	-1515	389
81	TEST1	-1589	389
82	TEST2	-1663	389
83	TEST3	-1737	389
84	TEST4	-1811	389
85	TEST5	-1885	389
86	VDD	-1959	389
87	M/S	-2033	389
88	CLS	-2107	389
89	VSS	-2181	389
90	C86	-2255	389
91	P/S	-2329	389
92	VDD	-2403	389
93	/HPM	-2477	389
94	VSS	-2551	389

Units: $\mu\,\mathrm{m}$

	7 000 V		
PAD No.	PIN Name	Х	Υ
95	IRS	-2625	389
96	VDD	-2699	389
97	SEL1	-2773	389
98	VSS	-2847	389
99	SEL2	-2921	389
100	VDD	-2995	389
101	SEL3	-3069	389
102	VSS	-3143	389
103	Reserve	-3606	374
103	Reserve	-3664	374
105	Reserve	-3722	374
106	Reserve	-3780	374
107	Reserve	-3838	374
108	COM[26]	-3896	374
109	COM[25]	-3954	374
110	COM[24]	-4012	374
111	COM[23]	-4070	374
112	COM[22]	-4128	374
113	COM[21]	-4186	374
114	COM[20]	-4244	374
115	(NC)	-4542	404
116	COM[19]	-4542	351
117	COM[18]	-4542	293
118	COM[17]	-4542	235
119	COM[16]	-4542	177
120	COM[15]	-4542	119
121	COM[14]	-4542	61
122	COM[13]	-4542	3
123	COM[12]	-4542	-55
124	COM[12]	-4542	-113
125	COM[11]	-4542	-171
126	COM[10]	-4542 -4542	-229
		+	
127	COM[8]	-4542	-287
128	COM[7]	-4542	-345
129	COM[6]	-4267	-374
130	COM[5]	-4209	-374
131	COM[4]	-4151	-374
132	COM[3]	-4093	-374
133	COM[2]	-4035	-374
134	COM[1]	-3977	-374
135	COM[0]	-3919	-374
136	COMS2	-3861	-374
137	SEG[0]	-3803	-374
138	SEG[1]	-3745	-374
139	SEG[2]	-3687	-374
140	SEG[3]	-3629	-374
141	SEG[4]	-3571	-374
142	SEG[5]	-3513	-374
143	SEG[6]	-3455	-374
144	SEG[7]	-3397	-374
145	SEG[8]	-3339	-374
146	SEG[9]	-3281	-374
140	บะดูโลโ	-0201	-314

PAD No.	PIN Name	X	Υ
199	SEG[62]	-207	-374
200	SEG[63]	-149	-374
201	SEG[64]	-91	-374
202	SEG[65]	-33	-374
203	SEG[66]	25	-374
204	SEG[67]	83	-374
205	SEG[68]	141	-374
206	SEG[69]	199	-374
207	SEG[70]	257	-374
208	SEG[71]	315	-374
209	SEG[72]	373	-374
210	SEG[73]	431	-374
211	SEG[74]	489	-374
212	SEG[75]	547	-374
213	SEG[76]	605	-374
214	SEG[77]	663	-374
215	SEG[78]	721	-374
216	SEG[79]	779	-374
217	SEG[80]	837	-374
218	SEG[81]	895	-374
219	SEG[82]	953	-374
220	SEG[83]	1011	-374
221	SEG[84]	1069	-374
222	SEG[85]	1127	-374
223	SEG[86]	1185	-374
224	SEG[87]	1243	-374
225	SEG[88]	1301	-374
226	SEG[89]	1359	-374
227	SEG[90]	1417	-374
228	SEG[91]	1475	-374
229	SEG[92]	1533	-374
230	SEG[93]	1591	-374
231	SEG[94]	1649	-374
232	SEG[95]	1707	-374
233	SEG[96]	1765	-374
234	SEG[97]	1823	-374
235	SEG[98]	1881	-374
236	SEG[99]	1939	-374
237	SEG[100]	1997	-374
238	SEG[101]	2055	-374
239	SEG[102]	2113	-374
240	SEG[103]	2171	-374
241	SEG[104]	2229	-374
242	SEG[105]	2287	-374
243	SEG[106]	2345	-374
244	SEG[107]	2403	-374
245	SEG[108]	2461	-374

PAD No.	PIN Name	X	Y
246	SEG[109]	2519	-374
247	SEG[110]	2577	-374
248	SEG[111]	2635	-374
249	SEG[112]	2693	-374
250	SEG[113]	2751	-374
251	SEG[114]	2809	-374
252	SEG[115]	2867	-374
253	SEG[116]	2925	-374
254	SEG[117]	2983	-374
255	SEG[118]	3041	-374
256	SEG[119]	3099	-374
257	SEG[120]	3157	-374
258	SEG[121]	3215	-374
259	SEG[122]	3273	-374
260	SEG[123]	3331	-374
261	SEG[124]	3389	-374
262	SEG[125]	3447	-374
263	SEG[126]	3505	-374
264	SEG[127]	3563	-374
265	SEG[128]	3621	-374
266	SEG[129]	3679	-374
267	SEG[130]	3737	-374
268	SEG[131]	3795	-374
269	Reserve	3853	-374
270	Reserve	3911	-374
271	Reserve	3969	-374
272	Reserve	4027	-374
273	Reserve	4085	-374
274	COM[27]	4143	-374
275	COM[28]	4201	-374
276	COM[29]	4259	-374
277	COM[30]	4542	-345
278	COM[31]	4542	-287
279	COM[32]	4542	-229
280	COM[33]	4542	-171
281	COM[34]	4542	-113
282	COM[35]	4542	-55
283	COM[36]	4542	3
284	COM[37]	4542	61
285	COM[38]	4542	119
286	COM[39]	4542	177
287	COM[40]	4542	235
288	COM[41]	4542	293
289	COM[42]	4542	351
290	(NC)	4542	404

Pad Center Coordinates (1/53 Duty)

PAD No.	PIN Name	X	Υ
1	COM[41]	4241	374
2	COM[42]	4183	374
3	COM[43]	4125	374
4	COM[44]	4067	374
5	COM[45]	4009	374
6	COM[46]	3951	374
7	COM[47]	3893	374
8	COM[48]	3835	374
9	COM[49]	3777	374
10	COM[50]	3719	374
11	COM[51]	3661	374
12	COMS1	3603	374
13	TEST6	3443	389
14	FR	3369	389
15	CL	3295	389
16	/DOF	3221	389
17	VSS	3147	389
18	/CS1	3073	389
19	CS2	2999	389
20	VDD	2925	389
21	/RES	2851	389
22	A0	2777	389
23	VSS	2703	389
24	/WR(R/W)	2629	389
25	/RD(E)	2555	389
26	VDD	2481	389
27	D0	2407	389
28	D1	2333	389
29	D2	2259	389
30	D3	2185	389
31	D4	2111	389
32	D5	2037	389
33	D6	1963	389
34	D7	1889	389
35	VDD	1815	389
36	VDD	1741	389
37	VDD	1667	389
38	VSS	1593	389
39	VSS	1519	389
40	VSS2	1445	389
41	VSS2	1371	389
42	VOUT	1297	389
43	VOUT	1223	389
44	CAP5-	1149	389
45	CAP5-	1075	389
46	CAP1+	1001	389
47	CAP1+	927	389

No. PIN Name X Y 48 CAP3- 853 389 49 CAP3- 779 389 50 CAP1+ 705 389 51 CAP1+ 631 389 52 CAP1- 557 389 53 CAP1- 483 389 54 CAP2- 409 389 55 CAP2- 335 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 60 VSS -35 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553	PAD	DIN Nome	V	V
49 CAP3- 779 389 50 CAP1+ 705 389 51 CAP1+ 631 389 52 CAP1- 557 389 53 CAP1- 483 389 54 CAP2- 409 389 55 CAP2- 335 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 67 V1 -553 389 68 V2 -627	No.	PIN Name	Х	Y
50 CAP1+ 705 389 51 CAP1+ 631 389 52 CAP1- 557 389 53 CAP1- 483 389 54 CAP2- 409 389 55 CAP2- 335 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 70 V3 -775 <td< td=""><td>48</td><td>CAP3-</td><td>853</td><td>389</td></td<>	48	CAP3-	853	389
51 CAP1+ 631 389 52 CAP1- 557 389 53 CAP1- 483 389 54 CAP2- 409 389 55 CAP2- 335 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 70 V3 -775	49			389
52 CAP1- 557 389 53 CAP1- 483 389 54 CAP2- 409 389 55 CAP2- 335 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 70 V3 -775 389 71 V3 -849 38			705	389
53 CAP1- 483 389 54 CAP2- 409 389 55 CAP2- 335 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 </td <td>-</td> <td></td> <td>631</td> <td>389</td>	-		631	389
54 CAP2- 409 389 55 CAP2- 335 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 59 CAP4- 39 389 60 VSS -35 389 60 VSS -109 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 <td>\vdash</td> <td></td> <td>557</td> <td>389</td>	\vdash		557	389
55 CAP2+ 261 389 56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 74 V5 -1071 389 <td>53</td> <td>CAP1-</td> <td></td> <td>389</td>	53	CAP1-		389
56 CAP2+ 261 389 57 CAP2+ 187 389 58 CAP4- 113 389 59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389	54	CAP2-	409	389
57 CAP2+ 187 389 58 CAP4- 113 389 59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 78 VDD -1367 389	55	CAP2-	335	389
58 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 79 VDD -1441 389 79 VDD -1441 389 81 TEST0 -1515 389 <td>56</td> <td></td> <td>261</td> <td>389</td>	56		261	389
59 CAP4- 39 389 60 VSS -35 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1293 389 79 VDD -1441 389 80 TEST0 -1515 389	57	CAP2+	187	389
60 VSS -35 389 61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 <td>58</td> <td>CAP4-</td> <td>113</td> <td>389</td>	58	CAP4-	113	389
61 VSS -109 389 62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST3 -1737 389<	59	CAP4-	39	389
62 VRS -183 389 63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST2 -1663 389 82 TEST3 -1737	60	VSS	-35	389
63 VRS -257 389 64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 <	61	VSS	-109	389
64 VDD -331 389 65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1441 389 80 TESTO -1515 389 81 TESTO -1515 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811	62	VRS	-183	389
65 VDD -405 389 66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1441 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST5 -1885 <t< td=""><td>63</td><td>VRS</td><td>-257</td><td>389</td></t<>	63	VRS	-257	389
66 V1 -479 389 67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST0 -1515 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST5 -1885 389 85 TEST5 -1885	64	VDD	-331	389
67 V1 -553 389 68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST0 -1515 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033	65	VDD	-405	389
68 V2 -627 389 69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST0 -1515 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 87 M/S -2033 389 88 CLS -2107	66	V1	-479	389
69 V2 -701 389 70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 <td>67</td> <td>V1</td> <td>-553</td> <td>389</td>	67	V1	-553	389
70 V3 -775 389 71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181<	68	V2	-627	389
71 V3 -849 389 72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -225	69	V2	-701	389
72 V4 -923 389 73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2	70	V3	-775	389
73 V4 -997 389 74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD	71	V3	-849	389
74 V5 -1071 389 75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM <	72	V4	-923	389
75 V5 -1145 389 76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	73	V4	-997	389
76 VR -1219 389 77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	74	V5	-1071	389
77 VR -1293 389 78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	75	V5	-1145	389
78 VDD -1367 389 79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	76	VR	-1219	389
79 VDD -1441 389 80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	77	VR	-1293	389
80 TEST0 -1515 389 81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	78	VDD	-1367	389
81 TEST1 -1589 389 82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	79	VDD	-1441	389
82 TEST2 -1663 389 83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	80	TEST0	-1515	389
83 TEST3 -1737 389 84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	81	TEST1	-1589	389
84 TEST4 -1811 389 85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	82	TEST2	-1663	389
85 TEST5 -1885 389 86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	83	TEST3	-1737	389
86 VDD -1959 389 87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	84	TEST4	-1811	389
87 M/S -2033 389 88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	85	TEST5	-1885	389
88 CLS -2107 389 89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	86	VDD	-1959	389
89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	87	M/S	-2033	389
89 VSS -2181 389 90 C86 -2255 389 91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	88	CLS	-2107	389
91 P/S -2329 389 92 VDD -2403 389 93 /HPM -2477 389	89	VSS	-2181	389
92 VDD -2403 389 93 /HPM -2477 389	90	C86	-2255	389
93 /HPM -2477 389	91	P/S	-2329	389
	92	VDD	-2403	389
94 VSS -2551 389	93	/HPM	-2477	389
	94	VSS	-2551	389

Units: μ m

	7 000 V						
PAD No.	PIN Name	Х	Υ	PAD No.	PIN Name	Х	Y
95	IRS	-2625	389	147	SEG[10]	-3223	-37
96	VDD	-2699	389	148	SEG[11]	-3165	-37
97	SEL1	-2773	389	149	SEG[12]	-3107	-37
98	VSS	-2847	389	150	SEG[13]	-3049	-37
99	SEL2	-2921	389	151	SEG[14]	-2991	-37
100	VDD	-2995	389	152	SEG[15]	-2933	-37
101	SEL3	-3069	389	153	SEG[16]	-2875	-37
102	VSS	-3143	389	154	SEG[17]	-2817	-37
103	Reserve	-3606	374	155	SEG[18]	-2759	-37
104	Reserve	-3664	374	156	SEG[19]	-2701	-37
105	Reserve	-3722	374	157	SEG[20]	-2643	-37
106	Reserve	-3780	374	158	SEG[21]	-2585	-37
107	Reserve	-3838	374	159	SEG[22]	-2527	-37
108	Reserve	-3896	374	160	SEG[23]	-2469	-37
109	COM[25]	-3954	374	161	SEG[24]	-2411	-37
110	COM[24]	-4012	374	162	SEG[25]	-2353	-37
111	COM[23]	-4070	374	163	SEG[26]	-2295	-37
112	COM[22]	-4128	374	164	SEG[27]	-2237	-37
113	COM[22]	-4186	374	165	SEG[28]	-2179	-37
114	COM[21]	-4244	374	166	SEG[29]	-2173	-37
115		-4542	404	167			-37
116	(NC)	-4542 -4542	351	167	SEG[30]	-2063 -2005	-37
	COM[19]				SEG[31]	1	
117	COM[18]	-4542	293	169	SEG[32]	-1947	-37
118 119	COM[17]	-4542 -4542	235 177	170 171	SEG[33]	-1889	-37
	COM[16]				SEG[34]	-1831	
120	COM[15]	-4542	119	172	SEG[35]	-1773	-37
121	COM[14]	-4542	61	173	SEG[36]	-1715	-37
122	COM[13]	-4542	3	174	SEG[37]	-1657	-37
123	COM[12]	-4542	-55	175	SEG[38]	-1599	-37
124	COM[11]	-4542	-113 -171	176	SEG[39]	-1541	-37
125	COM[10]	-4542		177	SEG[40]	-1483	-37
126	COM[9]	-4542	-229	178	SEG[41]	-1425	-37
127	COM[8]	-4542	-287	179	SEG[42]	-1367	-37
128	COM[7]	-4542	-345	180	SEG[43]	-1309	-37
129	COM[6]	-4267	-374	181	SEG[44]	-1251	-37
130	COM[5]	-4209	-374	182	SEG[45]	-1193	-37
131	COM[4]	-4151	-374	183	SEG[46]	-1135	-37
132	COM[3]	-4093	-374	184	SEG[47]	-1077	-37
133	COM[2]	-4035	-374	185	SEG[48]	-1019	-37
134	COM[1]	-3977	-374	186	SEG[49]	-961	-37
135	COM[0]	-3919	-374	187	SEG[50]	-903	-37
136	COMS2	-3861	-374	188	SEG[51]	-845	-37
137	SEG[0]	-3803	-374	189	SEG[52]	-787	-37
138	SEG[1]	-3745	-374	190	SEG[53]	-729	-37
139	SEG[2]	-3687	-374	191	SEG[54]	-671	-37
140	SEG[3]	-3629	-374	192	SEG[55]	-613	-37
141	SEG[4]	-3571	-374	193	SEG[56]	-555	-37
142	SEG[5]	-3513	-374	194	SEG[57]	-497	-37
143	SEG[6]	-3455	-374	195	SEG[58]	-439	-37
144	SEG[7]	-3397	-374	196	SEG[59]	-381	-37
145	SEG[8]	-3339	-374	197	SEG[60]	-323	-37
146	SEG[9]	-3281	-374	198	SEG[61]	-265	-37

PAD No.	PIN Name	Х	Υ
199	SEG[62]	-207	-374
200	SEG[63]	-149	-374
201	SEG[64]	-91	-374
202	SEG[65]	-33	-374
203	SEG[66]	25	-374
204	SEG[67]	83	-374
205	SEG[68]	141	-374
206	SEG[69]	199	-374
207	SEG[70]	257	-374
208	SEG[71]	315	-374
209	SEG[72]	373	-374
210	SEG[73]	431	-374
211	SEG[74]	489	-374
212	SEG[75]	547	-374
213	SEG[76]	605	-374
214	SEG[77]	663	-374
215	SEG[78]	721	-374
216	SEG[79]	779	-374
217	SEG[80]	837	-374
218	SEG[81]	895	-374
219	SEG[82]	953	-374
220	SEG[83]	1011	-374
221	SEG[84]	1069	-374
222	SEG[85]	1127	-374
223	SEG[86]	1185	-374
224	SEG[87]	1243	-374
225	SEG[88]	1301	-374
226	SEG[89]	1359	-374
227	SEG[90]	1417	-374
228	SEG[91]	1475	-374
229	SEG[92]	1533	-374
230	SEG[93]	1591	-374
231	SEG[94]	1649	-374
232	SEG[95]	1707	-374
233	SEG[96]	1765	-374
234	SEG[97]	1823	-374
235	SEG[98]	1881	-374
236	SEG[99]	1939	-374
237	SEG[100]	1997	-374
238	SEG[101]	2055	-374
239	SEG[102]	2113	-374
240	SEG[103]	2171	-374
241	SEG[104]	2229	-374
242	SEG[105]	2287	-374
243	SEG[106]	2345	-374
244	SEG[107]	2403	-374
245	SEG[108]	2461	-374

PAD No.	PIN Name	X	Y
246	SEG[109]	2519	-374
247	SEG[110]	2577	-374
248	SEG[111]	2635	-374
249	SEG[112]	2693	-374
250	SEG[113]	2751	-374
251	SEG[114]	2809	-374
252	SEG[115]	2867	-374
253	SEG[116]	2925	-374
254	SEG[117]	2983	-374
255	SEG[118]	3041	-374
256	SEG[119]	3099	-374
257	SEG[120]	3157	-374
258	SEG[121]	3215	-374
259	SEG[122]	3273	-374
260	SEG[123]	3331	-374
261	SEG[124]	3389	-374
262	SEG[125]	3447	-374
263	SEG[126]	3505	-374
264	SEG[127]	3563	-374
265	SEG[128]	3621	-374
266	SEG[129]	3679	-374
267	SEG[130]	3737	-374
268	SEG[131]	3795	-374
269	Reserve	3853	-374
270	Reserve	3911	-374
271	Reserve	3969	-374
272	Reserve	4027	-374
273	Reserve	4085	-374
274	Reserve	4143	-374
275	COM[26]	4201	-374
276	COM[27]	4259	-374
277	COM[28]	4542	-345
278	COM[29]	4542	-287
279	COM[30]	4542	-229
280	COM[31]	4542	-171
281	COM[32]	4542	-113
282	COM[33]	4542	-55
283	COM[34]	4542	3
284	COM[35]	4542	61
285	COM[36]	4542	119
286	COM[37]	4542	177
287	COM[38]	4542	235
288	COM[39]	4542	293
289	COM[40]	4542	351
290	(NC)	4542	404

BLOCK DIAGRAM

ST7565V PIN DESCRIPTIONS

Power Supply Pins

Pin Name	1/0	Function							
VDD	Power Supply	Shared with the MPU power supply terminal Vcc.							
VSS	Power Supply	This is a 0V terminal connected to the system GND.	10						
VSS2	Power Supply	This is the reference power supply for the step-up voltage circuit for the liquid crystal drive.	2						
VRS	Power Supply	This is the internal-output VREG power supply for the LCD power supply voltage regulator.	2						
V1, V2, V3, V4, V5	Power Supply	This is a multi-level power supply for the liquid crystal drive. The voltage Supply applied is determined by the liquid crystal cell, and is changed through the use of a resistive voltage divided or through changing the impedance using an op. amp. Voltage levels are determined based on VDD, and must maintain the relative magnitudes shown below. $ VDD (= V0) \geq V1 \geq V2 \geq V3 \geq V4 \geq V5 $ When the power supply turns ON, the internal power supply circuits produce the V1 to V4 voltages shown below. The voltage settings are selected using the LCD bias set command.	10						

LCD Power Supply Pins

Pin Name	I/O	Function	No. of Pins
CAP1+	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.	4
CAP1-	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1+ terminal.	2
CAP2+	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.	2
CAP2-	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2+ terminal.	2
CAP3-	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1+ terminal.	2
CAP4-	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2+ terminal.	2
CAP5-	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1+ terminal.	2
VOUT	0	DC/DC voltage converter. Connect a capacitor between this terminal and VSS.	2
VR	I	Output voltage regulator terminal. Provides the voltage between VDD and V5 through a resistive voltage divider. IRS = "L": the V5 voltage regulator internal resistors are not used. IRS = "H": the V5 voltage regulator internal resistors are used.	2

System Bus Connection Pins

Pin Name	I/O		Function							
D5 to D0 D6 (SCL) D7 (SI)	I/O	standard M When the D7 : serial D0 to D5 a	This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus. When the serial interface is selected (P/S = "L"): D7: serial data input (SI); D6: the serial clock input (SCL). D0 to D5 are set to high impedance. When the chip select is not active, D0 to D7 are set to high impedance.							
A0	I	and it dete A0 = "H": I	nnect to the least s ermines whether the ndicates that D0 to ndicates that D0 to	e data bits ar D7 are displ	e data or a col ay data.		IS,	1		
/RES	I		S is set to "L," the operation is perfore			el.		1		
/CS1 CS2	ı		chip select signal. t becomes active, a					2		
/RD (E)	I	(E) This pi ST7565V : • When co	When connected to an 8080 MPU, this is active LOW. E) This pin is connected to the /RD signal of the 8080 MPU, and the T7565V series data bus is in an output status when this signal is "L". When connected to a 6800 Series MPU, this is active HIGH. his is the 6800 Series MPU enable clock input terminal.							
/WR (R/W)	I	(R/W) This the data b • When co This is the When R/W	nnected to an 808 sterminal connects us are latched at the nnected to a 6800 read/write control $V = "H"$: Read. $V = "L"$: Write.	to the 8080 ne rising edge Series MPU:	MPU /W <u>R</u> sign e of the /WR si		on	1		
C86	I	C86 = "H":	MPU interface swi 6800 Series MPU 8080 MPU interface	interface.				1		
P/S	I	P/S = "H": P/S = "L":								
_		"L"								
		/RD (E) ar	hen P/S = "L", D0 to D5 fixed "H". D (E) and /WR (R/W) are fixed to either "H" or "L". ith serial data input, It is impossible read data from RAM.							

Pin Name	I/O			Fund	ction			No. of	Pins
CLS	I	circuit. CLS = "H" : used CLS = "L" : use	rerminal to select whether or enable or disable the display clock internal oscillator ircuit. CLS = "H": used Internal oscillator circuit. CLS = "L": used external clock input .(internal oscillator is disable) When CLS = "L", input the display clock through the CL terminal.						
M/S	I	operation input the Synchronizing th M/S = "H" Master M/S = "L" Slave op	outputs the timing e timing signals re ne liquid crystal di operation	g signals that quired for th	at are requi ne liquid cry	red for the	LCD display, while slave	1	
		"H" "L" Disa	bled Enabled bled Enabled bled Disabled bled Disabled	Output Input Input Input	Output Output Input Input	Output Output Input Input			
CL	I/O		nis is the display clock input terminal ne following is true depending on the M/S and CLS status. M/S CLS CL "H" "H" Output "L" Input "Input "Input						
FR	0	This is the liquid	crystal alternati	ing current	signal ter	minal.		1	
/DOF	0	This is the LCD	blanking control	terminal.				1	
IRS	I	This terminal se IRS = "H": Use t IRS = "L": Do no regulated by an	he internal resis It use the interna	tors al resistors	. The V5 v	oltage lev	el is	1	
/HPM	I	This is the powe /HPM = "H": Nor /HPM = "L": High	mal mode	al for the p	ower supp	oly circuit fo	or liquid crystal drive.	1	
SEL3		These pins are SEL 3 , 2 , 1 0 , 0 , 0 0 0 , 0 , 1	DUTY selection DUTY 1/65 1/49	1/9 or	r 1/7				
SEL2 SEL1	I	0,1,0 0,1,1 1,0,0 1, X,X	1/33 1/55 1/53	1/6 or 1/8 or 1/	1/5 1/6 1/6			3	
TEST0 ~ 6	I	These are terming They are set to a		ıg.				6	

LCD Driver Pins

Pin Name	I/O		Function						
		These are the LCD segment drive outputs. Through a combination of the contents of the display RAM and with the FR signal, a single level is selected from VDD, V2, V3, and V5.							
		RAM DATA	FR	Output	Voltage				
SEG0		KAWIDATA	FK	Normal Display	Reverse Display				
to	0	Н	Н	Vdd	V2		13	2	
SEG131		Н	L	V5	V3				
		L	Н	V2	VDD				
		L	L	V3	V5				
		Sleep Mode VDD							
				n of the contents of f from VDD, V1, V4, a	the scan data and w	ith the FR signal, a			
		Scan Data	FR	Output Voltage					
COM0		Н	Н	V5					
to	0	Н	L	VDD			67	•	
COMn		L	Н	V1					
		L	L	V4					
		Sleep Mode		VDD					
COMS	0	signal.	These are the COM output terminals for the indicator. Both terminals output the same						

I/O PIN ITO Resister Limitation

70 1 II TI O ROSISTOI EIIIII GUID	
PIN Name	ITO Resister
FR, /DOF, C86, P/S, M/S, /HPM,SEL1SEL3, CLS, IRS	No Limitation
TESTO6	Floating
V_{DD} , V_{SS} , V_{SS2} , V_{OUT} , VR , VRS	<100Ω
V1, V2, V3, V4, V5, CAP1+, CAP1-, CAP2+, CAP2-, CAP3-, CAP4-, CAP5-	<300Ω
/CS1, CS2, CL, E, R/W, A0, D0D7,	<1ΚΩ
/RES	<10ΚΩ

DESCRIPTION OF FUNCTIONS

The MPU Interface

Selecting the Interface Type

With the ST7565V chips, data transfers are done through an 8-bit parallel data bus (D7 to D0) or through a serial data input (SI). Through selecting the P/S terminal polarity to the

"H" or "L" it is possible to select either parallel data input or serial data input as shown in Table 1.

Table 1

P/S	/CS1	CS2	Α0	/RD	/WR	C86	D7	D6	D5~D0
H: Parallel Input	/CS1	CS2	A0	/RD	/WR	C86	D7	D6	D5~D0
L: Serial Input	/CS1	CS2	A0	_	_	_	SI	SCL	(HZ)

[&]quot;-" indicates fixed to either "H" or to "L"

The Parallel Interface

When the parallel interface has been selected (P/S ="H"), then it is possible to connect directly to either an

8080-system MPU or a 6800 Series MPU (shown in Table 2) by selecting the C86 terminal to either "H" or to "L".

Table 2

C86 (P/S=H)	/CS1	CS2	Α0	E(/RD)	R/W(/WR)	D7~D0
H: 6800 Series	/CS1	CS2	A0	Е	R/W	D7~D0
L: 8080 Series	/CS1	CS2	A0	/RD	/WR	D7~D0

Moreover, data bus signals are recognized by a combination of A0, /RD (E), /WR (R/W) signals, as shown in Table 3.

Table 3

Shared	6800 Series	8080	Series	Function
A0	R/W /RD /WR		Function	
1	1	0	1	Reads the display data
1	0	1	0	Writes the display data
0	1	0	1	Status read
0	0	1	0	Write control data (command)

The Serial Interface

When the serial interface has been selected (P/S = "L") then when the chip is in active state (/CS1 = "L" and CS2 = "H") the serial data input (SI) and the serial clock input (SCL) can be received. The serial data is read from the serial data input pin in the rising edge of the serial clocks D7, D6 through D0, in this order. This data is converted to 8 bits parallel data in the rising edge of the eighth serial clock for the processing.

The A0 input is used to determine whether or the serial data input is display data or command data; when A0 = "H", the data is display data, and when A0 = "L" then the data is command data. The A0 input is read and used for detection every 8th rising edge of the serial clock after the chip becomes active. Figure 1 is a serial interface signal chart.

Figure 1

- * When the chip is not active, the shift registers and the counter are reset to their initial states.
- * Reading is not possible while in serial interface mode.
- * Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend that operation be rechecked on the actual equipment.

The Chip Select

The ST7565V have two chip select terminals: /CS1 and CS2. The MPU interface or the serial interface is enabled only when /CS1 = "L" and CS2 = "H".

When the chip select is inactive, D0 to D7 enter a high impedance state, and the A0, /RD, and /WR inputs are inactive. When the serial interface is selected, the shift register and the counter are reset.

The Accessing the Display Data RAM and the Internal Registers

Data transfer at a higher speed is ensured since the MPU is required to satisfy the cycle time (tcyc) requirement alone in accessing the ST7565V. Wait time may not be considered. And, in the ST7565V, each time data is sent from the MPU, a type of pipeline process between LSIs is performed through the bus holder attached to the internal data bus. Internal data bus.

For example, when the MPU writes data to the display data RAM, once the data is stored in the bus holder, then it is written to the display data RAM before the next data write cycle. Moreover, when the MPU reads the display data RAM,

the first data read cycle (dummy) stores the read data in the bus holder, and then the data is read from the bus holder to the system bus at the next data read cycle.

There is a certain restriction in the read sequence of the display data RAM. Please be advised that data of the specified address is not generated by the read instruction issued immediately after the address setup. This data is generated in data read of the second time. Thus, a dummy read is required whenever the address setup or write cycle operation is conducted.

This relationship is shown in Figure 2.

The Busy Flag

When the busy flag is "1" it indicates that the ST7565V is running internal processes, and at this time no command aside from a status read will be received. The busy flag is outputted to D7 pin with the read instruction. If the cycle time

(tcyc) is maintained, it is not necessary to check for this flag before each command. This makes vast improvements in MPU processing capabilities possible.

Display Data RAM

The display data RAM stores the dot data for the LCD. It has a 65 (8 page x 8 bit +1) x 132 bit structure.

As is shown in Figure 3, the D7 to D0 display data from the MPU corresponds to the LCD display common direction; there are few constraints at the time of display data transfer when multiple ST7565V are used, thus and display structures can be created easily and with a high degree of

Display data RAM

freedom.

Moreover, reading from and writing to the display RAM from the MPU side is performed through the I/O buffer, which is an independent operation from signal reading for the liquid crystal driver. Consequently, even if the display data RAM is accessed asynchronously during liquid crystal display, it will not cause adverse effects on the display (such as flickering).

Liquid crystal display

Figure 3

The Page Address Circuit

Page address of the display data RAM is specified through the Page Address Set Command. The page address must be specified again when changing pages to perform access. Page address 8 (D3, D2, D1, D0 = 1, 0, 0, 0) is a special RAM for icons, and only display data D0 is used. (see Figure 4)

The Column Addresses

The display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read/write command. This allows the MPU display data to be accessed continuously. Moreover, the incrementing of column addresses stops with 83H. Because the column address is independent of the page address, when moving, for example, from page 0 column 83H to page 1 column 00H,

it is necessary to respective both the page address and the column address.

Furthermore, as is shown in Table 4, the ADC command (segment driver direction select command) can be used to reverse the relationship between the display data RAM column address and the segment output. Because of this, the constraints on the IC layout when the LCD module is assembled can be minimized. As is shown in Figure 4,

Table 4

SEG Output ADC	SEG0		SEG 131
(D0) "0"	0 (H)	ightarrow Column Address $ ightarrow$	83 (H)
(D0) "1"	83 (H)	\leftarrow Column Address \leftarrow	0 (H)

The Line Address Circuit

The line address circuit, as shown in Table 4, specifies the line address relating to the COM output when the contents of the display data RAM are displayed. Using the display start line address set command, what is normally the top line of the display can be specified (this is the COM0 output when the common output mode is normal, and the COM63 output

for ST7565V, the detail is shown page.11 The display area is a 65 line area for the ST7565V.

If the line addresses are changed dynamically using the display start line address set command, screen scrolling, page swapping, etc. can be performed.

The Display Data Latch Circuit

The display data latch circuit is a latch that temporarily stores the display data that is output to the liquid crystal driver circuit from the display data RAM.

Because the display normal/reverse status, display ON/OFF

status, and display all points ON/OFF commands control only the data within the latch, they do not change the data within the display data RAM itself.

The Oscillator Circuit

This is a CR-type oscillator that produces the display clock. The oscillator circuit is only enabled when M/S= "H" and CLS= "H".

When CLS = "L" the oscillation stops, and the external clock is input through the CL terminal.

Display Timing Generator Circuit

The display timing generator circuit generates the timing signal to the line address circuit and the display data latch circuit using the display clock. The display data is latched into the display data latch circuit synchronized with the display clock, and is output to the data driver output terminal. Reading to the display data liquid crystal driver circuits is completely independent of accesses to the display data RAM by the MPU. Consequently, even if the display data

RAM is accessed asynchronously during liquid crystal display, there is absolutely no adverse effect (such as flickering) on the display.

Moreover, the display timing generator circuit generates the common timing and the liquid crystal alternating current signal (FR) from the display clock. It generates a drive wave form using a 2 frame alternating current drive method, as is shown in Figure 5, for the liquid crystal drive circuit.

Two-frame alternating current drive waveform

Figure 5

The Common Output Status Select Circuit

In the ST7565V chips, the COM output scan direction can be selected by the common output status select command.

(See Table 6.) Consequently, the constraints in IC layout at the time of LCD module assembly can be minimized.

Table 6

Status		C	OM Scan Directio	n				
Status	1/65 DUTY	1/49 DUTY	1/33 DUTY	1/55 DUTY	1/53 DUTY			
Normal Reverse			COM0 → COM31 COM31 → COM0		COM0 → COM51 COM51 → COM0			

Duty	Com	Common output pins							
Duty	dir	com[0:15]	com[16:23]	com[24:26]	com[27:36]	com[37:39]	com[40:47]	com[48:63]	coms
1/65	0				com[0:63]	n[0:63]			
1/03	1				com[63:0]				
1/49	0	com[[0:23]		reserve	com		m[24:47]	
1/43	1	com[47:24]			reserve co			23:0]	coms
1/33	0	com[0:15]			reserve	reserve			coms
1/33	1	com[31:16]			reserve com[1				coms
1/55	0		com[0:26]		reserve	com[27:53]			coms
1/33	1	com[53:27]			reserve	com[26:0]			coms
1/53	0		com[0:25]			com[26:51]			coms
1/33	1	com[51:26]			reserve	com[25:0]			coms

The LCD Driver Circuits

These are a 187-channel that generates four voltage levels for driving the LCD . The combination of the display data, the COM scan signal, and the FR signal produces the liquid

crystal drive voltage output.

Figure 6 shows examples of the SEG and COM output wave form.

Figure 6

The Power Supply Circuits

The power supply circuits are low-power consumption power supply circuits that generate the voltage levels required for the LCD drivers. They are Booster circuits, voltage regulator circuits, and voltage follower circuits. They are only enabled in master operation. The power supply circuits can turn the Booster circuits, the voltage regulator circuits, and the

voltage follower circuits ON or OFF independently through the use of the Power Control Set command. Consequently, it is possible to make an external power supply and the internal power supply function somewhat in parallel. Table 7 shows the Power Control Set Command 3-bit data control function, and Table 8 shows reference combinations.

Table 7

bit	bit function			
D2 D1 D0	Booster circuit control bit Voltage regulator circuit control bit (V/R circuit) Voltage follower circuit control bit (V/F circuit)	ON OFF ON OFF ON OFF		

The Control Details of Each Bit of the Power Control Set Command

Table 8

Use Settings		D1	D0	Voltage booster	Voltage regulator	Voltage follower	External voltage input	Step-up voltage
Only the internal power supply is used	1	1	1	ON	ON	ON	Vss2	Used
Only the voltage regulator circuit and the voltage follower circuit are used	0	1	1	OFF	ON	ON	Vout, Vss2	Open
Only the V/F circuit is used	0	0	1	OFF	OFF	ON	V5, Vss2	Open
Only the external power supply is used	0	0	0	OFF	OFF	OFF	V1 to V5	Open

Reference Combinations

The Step-up Voltage Circuits

Using the step-up voltage circuits equipped within the ST7565V chips it is possible to product a 2X,3X,4X,5X or 6X step-up of the VDD – Vss2 voltage levels.

6X step-up: Connect capacitor C1 between CAP1+ and

CAP1-, between CAP2+ and CAP2-, between CAP1+ and CAP3-, between CAP2+ and CAP4-,between CAP1+ and CAP5-, and between Vss2 and vouT, to produce a voltage level in the negative direction at the vouT terminal that is 6 times the voltage level between VDD and Vss2.

5X step-up: Connect capacitor C1 between CAP1+ and

CAP1-, between CAP2+ and CAP2-, between CAP1+ and CAP3-, between CAP2+ and CAP4-, and between Vss2 and vouT, to produce a voltage level in the negative direction at the VouT terminal that is 5 times the voltage level between VDD and Vss2.

4X step-up: Connect capacitor C1 between CAP1+ and CAP1-, between CAP2+ and CAP2-, between

CAP1+ and CAP3-, and between Vss2 and VouT, to produce a voltage level in the negative direction at the VouT terminal that is 4 times the voltage level between VDD and Vss2.

3X step-up: Connect capacitor C1 between CAP1+ and CAP1-, between CAP2+ and CAP2- and between Vss2 and Vout, and short between CAP3- and vout to produce voltages level in the negative direction at the vout

terminal that is 3 times the voltage difference between VDD and Vss2.

2X step-up: Connect capacitor C1 between CAP1+ and CAP1-, and between Vss2 and Vout, leave CAP2+ open, and short between CAP2-, CAP3- and Vout to produce a voltage in the negative direction at the Vout terminal that Is twice the voltage between VDD and Vss2.

The step-up voltage relationships are shown in Figure 7

^{*} The "step-up system terminals" refer CAP1+, CAP1-, CAP2+, CAP2-, and CAP3-.

^{*} While other combinations, not shown above, are also possible, these combinations are not recommended because they have no practical use.

^{*} The Vss2 voltage range must be set so that the VouT voltage does not exceed the absolute maximum rated value.

^{*} For compatibility with ST7565P, V_{OUT} can connect a capacitor to V_{SS2} or V_{DD}. If don't have to consider the compatibility issue, "Connect V_{OUT} to V_{SS2}".

The Voltage Regulator Circuit

The step-up voltage generated at VOUT outputs the LCD driver voltage v5 through the voltage regulator circuit. Because the ST7565V chips have an internal high-accuracy fixed voltage power supply with a 64-level electronic volume

function and internal resistors for the V5 voltage regulator, systems can be constructed without having to include high-accuracy voltage regulator circuit components. (VREG thermal gradients approximate -0.05%/°C)

(A) When the V5 Voltage Regulator Internal Resistors Are Used

Through the use of the V5 voltage regulator internal resistors and the electronic volume function the liquid crystal power supply voltage V5 can be controlled by commands alone (without adding any external resistors), making it possible to

adjust the liquid crystal display brightness. The V5 voltage can be calculated using equation A-1 over the range where $|V_5| < |V_{OUT}|$.

$$V_{5} = \left(1 + \frac{Rb}{Ra}\right) \bullet V_{EV}$$

$$= \left(1 + \frac{Rb}{Ra}\right) \bullet \left(1 - \frac{\alpha}{162}\right) \bullet V_{REG}$$

$$\left[\because V_{EV} = \left(1 - \frac{\alpha}{162}\right) \bullet V_{REG}\right]$$

Figure 8

VREG is the IC-internal fixed voltage supply, and its voltage at Ta = 25℃ is as shown in Table 9.

Table 9

Part no.	Equipment Type	Thermal Gradient	VREG
ST7565V	Internal Power Supply	-0.05 %/℃	-2.1V

 α is set to 1 level of 64 possible levels by the electronic volume function depending on the data set in the 6-bit electronic volume registers. Table 10 shows the value for α depending on the electronic volume register settings.

Rb/Ra is the V5 voltage regulator internal resistor ratio, and can be set to 8 different levels through the V5 voltage regulator internal resistor ratio set command. The (1 + Rb/Ra) ratio assumes the values shown in Table 11 depending on the 3-bit data settings in the V5 voltage regulator internal resistor ratio register.

Table 10

D5	D4	D3	D2	D1	D0	α
0	0	0	0	0	0	63 62
0	0	0	0	0	1	62
0	0	0	0	1	0	61
						:
			•			:
1	1	1	1	0	1	2
1	1	1	1	1	0	1
1	1	1	1	1	1	0

V5 voltage regulator internal resistance ratio register value and (1 + Rb/Ra) ratio (Reference value)

Table 11

Re	egist	er	ST7565V						
D2	D2 D1 D0		(1) −0.05 %/℃						
0	0 0 0		3.0						
0	0 0 1		3.5						
0	1	0	4.0						
0	1	1	4.5						
1	0	0	5.0						
1	0	1	5.5						
1	1	0	6.0						
1	1	1	6.5						

Figures 9, 10 show V5 voltage measured by values of the internal resistance ratio resistor for V5 voltage adjustment and electric volume resister for each temperature grade model.

Figure 9 : (1) For ST7565V the Thermal Gradient = -0.05%/ $\ensuremath{^{\circ}}$

The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic volume register.

Setup example: When selecting Ta = 25°C and V 5 = -7V for an ST7565V on which Temperature gradient = -0.05%/°C. Using Figure 9 and the equation A-1, the following setup is enabled.

At this time, the variable range and the notch width of the V5 voltage is, as shown Table 13, as dependent on the electronic volume.

Table 12							
Contonto			Reg	iste	r		
Contents		D4	D3	D2	D1	D0	
For V ₅ voltage regulator		_	_	- 0	1	0	
Electronic Volume	1	Λ	Λ	1	Λ	1	

Table 13

V 5	Min	Тур	Мах	Units
Variable Range Notch width	-8.4 (63 levels)	-7.0 (central value) 51	-5.1 (0 level)	[V] [mV]

(B) When an External Resistance is Used (The V5 Voltage Regulator Internal Resistors Are Not Used) (1)

The liquid crystal power supply voltage V5 can also be set without using the V5 voltage regulator internal resistors (IRS terminal = "L") by adding resistors Ra' and Rb' between VDD and VR, and between VR and V5, respectively. When this is done, the use of the electronic volume function makes it possible to adjust the brightness of the liquid crystal display

by controlling the liquid crystal power supply voltage V_5 through commands.

In the range where $|V_5| < |V_{OUT}|$, the V5 voltage can be calculated using equation B-1 based on the external resistances Ra' and Rb'.

$$V_{5} = \left(1 + \frac{Rb'}{Ra'}\right) \bullet \quad V_{EV}$$

$$= \left(1 + \frac{Rb'}{Ra'}\right) \bullet \left(1 - \frac{\alpha}{162}\right) \bullet \quad V_{REG}$$

$$\left[\because V_{EV} = \left(1 - \frac{\alpha}{162}\right) \bullet \quad V_{REG}\right]$$

 $\frac{Rb'}{Ra'} = 3.12$

 $Ra' = 340k\Omega$

 $Rb' = 1060k\Omega$

Setup example: When selecting Ta = 25°C and V 5 = -7 V for ST7565V the temperature gradient = -0.05%/°C. When the central value of the electron volume register is (D5, D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0, 0), then α = 31 and VREG = -2.1V so, according to equation B-1,

$$V_5 = \left(1 + \frac{Rb'}{Ra'}\right) \bullet \left(1 - \frac{\alpha}{162}\right) \bullet V_{REG}$$
$$-7V = \left(1 + \frac{Rb'}{Ra'}\right) \bullet \left(1 - \frac{31}{162}\right) \bullet (-2.1)$$

Moreover, when the value of the current running through Ra' and Rb' is set to 5 uA,

$$Ra' + Rb' = 1.4M\Omega$$

(Equation B-3)

Consequently, by equations B-2 and B-3,

At this time, the V₅ voltage variable range and notch width, based on the electron volume function, is as given in Table 14.

Table 14

V5 Min Variable Range -8.6 (63 levels) Notch width		Тур	Max	Units			
		-7.0 (central value) 52	-5.3 (0 level)	[V] [mV]			

(C) When External Resistors are Used (The V5 Voltage Regulator Internal Resistors Are Not Used) (2)

When the external resistor described above are used, adding a variable resistor as well makes it possible to perform fine adjustments on Ra' and Rb', to set the liquid crystal drive voltage V5. In this case, the use of the electronic volume function makes it possible to control the liquid crystal power supply voltage V5 by commands to adjust the liquid

crystal display brightness.

In the range where \mid V5 \mid < \mid VOUT \mid the V5 voltage can be calculated by equation C-1 below based on the R1 and R2 (variable resistor) and R3 settings, where R2 can be subjected to fine adjustments (\triangle R2).

$$V_{5} = \left(1 + \frac{R3 + R2 - \Delta R2}{R1 + \Delta R2}\right) \bullet V_{EV}$$

$$= \left(1 + \frac{R3 + R2 - \Delta R2}{R1 + \Delta R2}\right) \bullet \left(1 - \frac{\alpha}{162}\right) \bullet V_{REG}$$

$$\int \therefore V_{EV} = \left(1 - \frac{\alpha}{162}\right) \bullet V_{REG}$$

Figure 12

Setup example: When selecting Ta = 25°C and V 5 = -5 to -9 V (using R2) for an ST7565V the temperature gradient = -0.05%/°C.

When the central value for the electronic volume register is set at (D5, D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0, 0), then α = 31 and VREG = -2.1 V so, according to equation C-1, when Δ R2 = 0 Ω , in order to make V5 = -9 V,

$$-9V = \left(1 + \frac{R3 + R2}{R1}\right) \bullet \left(1 - \frac{31}{162}\right) \bullet (-2.1)$$

When $\triangle R_2 = R_2$, in order to make V = -5 V

$$-5V = \left(1 + \frac{R3}{R1 + R2}\right) \bullet \left(1 - \frac{31}{162}\right) \bullet (-2.1)$$

When the current flowing VDD and V5 is set to 5 uA,

 $R_1 + R_2 + R_3 = 1.4 M\Omega$ (Equation C-4) With this, according to equation C-2, C-3 and C-4,

$$R1 = 264k\Omega$$

$$R2 = 211k\Omega$$

$$R3 = 925k\Omega$$

The V5 voltage variable range and notch width based on the electron volume function is as shown in Table 15.

Тэ	h	1	4	E

		Table 15		
V 5	Min	Тур	Max	Units
Variable Range	-8.7 (63 levels)	-7.0 (central value)	-5.3 (0 level)	[V]
Notch width		53		[mV]

ST7565V

- * When the V5 voltage regulator internal resistors or the electronic volume function is used, it is necessary to at least set the voltage regulator circuit and the voltage follower circuit to an operating mode using the power control set commands. Moreover, it is necessary to provide a voltage from Vout when the Booster circuit is OFF.
- * The VR terminal is enabled only when the V5 voltage regulator internal resistors are not used (i.e. the IRS terminal = "L"). When the V5 voltage regulator internal resistors are used (i.e. when the IRS terminal = "H"), then the VR terminal is left open.
- * Because the input impedance of the VR terminal is high, it is necessary to take into consideration short leads, shield cables, etc. to handle noise.

The LCD Voltage Generator Circuit

The V5 voltage is produced by a resistive voltage divider within the IC, and can be produced at the V1, V2, V3, and V4 voltage levels required for liquid crystal driving. Moreover,

when the voltage follower changes the impedance, it provides V₁, V₂, V₃ and V₄ to the liquid crystal drive circuit.

High Power Mode

The power supply circuit equipped in the ST7565V chips has very low power consumption (normal mode: HPM = "H"). However, for LCD panels with large loads (size), this low-power power supply may cause display quality to degrade. When this occurs, set the HPM terminal to "L" (high power mode) can improve the display quality.

SITRONIX recommends that the display be checked on actual equipment to determine whether or not to use this mode. Moreover, if the improvement to the display is inadequate even after high power mode has been set, then it is necessary to add a liquid crystal drive power supply externally.

The Internal Power Supply Shutdown Command Sequence

The sequence shown in Figure 13 is recommended for shutting down the internal power supply, first placing the

power supply in power saver mode and then turning the power supply OFF.

Figure 13

The temperature grade of the Internal Power Supply for ST7565V (-0.05%/°C):

Reference Circuit Examples

- 1. When used all of the step-up circuit, voltage regulating circuit and V/F circuit
- (1) When the voltage regulator internal resistor

(Example where Vss2 = Vss, with 4x step-up)

- (2) When the voltage regulator internal resistor is not used.
- (Example where Vss2 = Vss, with 4x step-up)

- 2. When the voltage regulator circuit and V/F circuit alone are used
- When the V5 voltage regulator internal resistor is not used.
- (2) When the V5 voltage regulator internal resistor is used.

ST7565V

(3) When the V/F circuit alone is used

Item	Set value	units
C1 C2	1.0 to 4.7 0.1 to 4.7	u u

C1 and C2 are determined by the size of the LCD being driven

- * 1. Because the VR terminal input impedance is high, use short leads and shielded lines.
- * 2. C1 and C2 are determined by the size of the LCD being driven. Select a value that will stabilize the liquid crystal drive voltage.

Example of the Process by which to Determine the Settings:

- Turn the voltage regulator circuit and voltage follower circuit ON and supply a voltage to VOUT from the outside.
- Determine C2 by displaying an LCD pattern with a heavy load (such as horizontal stripes) and selecting a C2 that stabilizes the liquid crystal drive voltages (V1 to V5). Note that all C2 capacitors must have the same capacitance value.
- Next turn all the power supplies ON and determine C1.

The Reset Circuit

When the /RES input comes to the "L" level, these LSIs return to the default state. Their default states are as follows:

- 1. Display OFF
- 2. Normal display
- 3. ADC select: Normal (ADC command D0 = "L")
- 4. Power control register: (D2, D1, D0) = (0, 0, 0)
- 5. Serial interface internal register data clear
- 6. LCD power supply bias rate:

1/65 DUTY = 1/9 bias

1/49, 1/55, 1/53 DUTY = 1/8 bias

1/33 DUTY = 1/6 bias

- All-indicator lamps on OFF (All-indicator lamps ON/OFF command D0 = "L")
- 8. Power saving clear
- 9. V5 voltage regulator internal resistors Ra and Rb separation
- Output conditions of SEG and COM terminals SEG=VDD, COM=VDD
- 11. Read modify write OFF
- 12. Display start line set to first line
- 13. Column address set to Address 0
- 14. Page address set to Page 0
- 15. Common output status normal
- 16. V5 voltage regulator internal resistor ratio set mode clear
- 17. Electronic volume register set mode clear Electronic volume register :

(D5, D4, D3, D2, D1, D0) = (1, 0. 0, 0, 0, 0)

18. Test mode clear

On the other hand, when the reset command is used, the above default settings from 11 to 18 are only executed. When the power is turned on, the IC internal state becomes unstable, and it is necessary to initialize it using the /RES terminal. After the initialization, each input terminal should be controlled normally.

Moreover, when the control signal from the MPU is in the high impedance, an over current may flow to the IC. After applying a current, it is necessary to take proper measures to prevent the input terminal from getting into the high impedance state.

If the internal liquid crystal power supply circuit is not used on ST7565V,it is necessary that /RES is "H" when the external liquid crystal power supply is turned on. This IC has the function to discharge V5 when /RES is "L," and the external power supply short-circuits to VDD when /RES is "L." This means that an internal resistor is connected between VDD and V5.

While /RES is "L," the oscillator works but the display timing generator stops, and the CL, FR and /DOF terminals are fixed to "H." The terminals D0 to D7 are not affected. The VDD level is output from the SEG and COM output terminals after a successful hardware reset.

COMMANDS

The ST7565V identify the data bus signals by a combination of A0, /RD (E), /WR(R/W) signals. Command interpretation and execution does not depend on the external clock, but rather is performed through internal timing only, and thus the processing is fast enough that normally a busy check is not required.

In the 8080 MPU interface, commands are launched by inputting a low pulse to the RD terminal for reading, and inputting a low pulse to the /WR terminal for writing. In the 6800 Series MPU interface, the interface is placed in a read mode when an "H" signal is input to the R/W terminal and placed in a write mode when a "L" signal is input to the R/W terminal and then the command is launched by inputting a high pulse to the E terminal. Consequently, the 6800 Series MPU interface is different than the 80x86 Series MPU interface in that in the explanation of commands and the display commands the status read and display data read /RD (E) becomes "1(H)". In the explanations below the commands are explained using the 8080 Series MPU interface as the example.

When the serial interface is selected, the data is input in sequence starting with D7.

<Explanation of Commands>

Display ON/OFF

This command turns the display ON and OFF.

	E	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	1	1	1	1 0	Display ON Display OFF

When the display OFF command is executed when in the display all points ON mode, power saver mode is entered. See the section on the power saver for details.

Display Start Line Set

This command is used to specify the display start line address of the display data RAM shown in Figure 4. For further details see the explanation of this function in "The Line Address Circuit".

	E	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Line address
0	1	0	0	1	0	0	0	0	0	0	0
					0	0	0	0	1	0	2
					1	1	. ↓ 1	1	1	0	↓ 62
					1	1	1	1	1	1	63

Page Address Set

This command specifies the page address corresponding to the low address when the MPU accesses the display data RAM (see Figure 4). Specifying the page address and column address enables to access a desired bit of the display data RAM. Changing the page address does not accompany a change in the status display.

	E	R/W									
Α0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Page address
0	1	0	1	0	1	1	0	0	0	0	0
							0	0	0	1	1
							0	0	1	0	2
							1				\downarrow
							0	1	1	1	7
							1	0	0	0	8

Column Address Set

This command specifies the column address of the display data RAM shown in Figure 4. The column address is split into two sections (the higher 4 bits and the lower 4 bits) when it is set (fundamentally, set continuously). Each time the display data RAM is accessed, the column address automatically increments (+1), making it possible for the MPU to continuously read from/write to the display data. The column address increment is topped at 83H. This does not change the page address continuously. See the function explanation in "The Column Address Circuit," for details.

		Е	R/W																	
	Α0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	A7	A6	A5	A 4	А3	A2	A 1	Α0	Column address
High bits \rightarrow	0	1	0	0	0	0	1	A7	A6	A5	A4	0	0	0	0	0	0	0	0	0
Low bits \rightarrow					_	_			A2				0	0	0	0	0	0	1	1
												0	0	0	0	0	0	1	0	2
																\downarrow				\downarrow
												1	0	0	0	0	0	1	0	130
												1	0	0	0	0	0	1	1	131

Status Read

	E	R/W								
40	/RD	/WR	57	DC	DE	Б4	D 2	ъ.	Б4	ъ.
A0	/KD	/ V V FS	D7	D6	D5	D4	υs	D2	וט	טט

BUSY	BUSY = 1: it indicates that either processing is occurring internally or a reset condition is in process. BUSY = 0: A new command can be accepted. if the cycle time can be satisfied, there is no need to check for BUSY conditions.
ADC	This shows the relationship between the column address and the segment driver. 0: Reverse (column address 131-n ↔ SEG n) 1: Normal (column address n ↔ SEG n) (The ADC command switches the polarity.)
ON/OFF	ON/OFF: indicates the display ON/OFF state. 0: Display ON 1: Display OFF (This display ON/OFF command switches the polarity.)
RESET	This indicates that the chip is in the process of initialization either because of a /RES signal or because of a reset command. 0: Operating state 1: Reset in progress

Display Data Write

This command writes 8-bit data to the specified display data RAM address. Since the column address is automatically incremented by "1" after the write, the MPU can write the display data.

	Е	R/W	
Α0	/RD	/WR	D7 D6 D5 D4 D3 D2 D1 D0
1	1	0	Write data

Display Data Read

This command reads 8-bit data from the specified display data RAM address. Since the column address is automatically incremented by "1" after the read, the CPU can continuously read multiple-word data. One dummy read is required immediately after the column address has been set. See the function explanation in "Display Data RAM" for the explanation of accessing the internal registers. When the serial interface is used, reading of the display data becomes unavailable.

	Е	R/W	
Α0	/RD	/WR	D7 D6 D5 D4 D3 D2 D1 D0
1	0	1	Read data

ADC Select (Segment Driver Direction Select)

This command can reverse the correspondence between the display RAM data column address and the segment driver output. Thus, sequence of the segment driver output pins may be reversed by the command. See the column address circuit (page 1–20) for the detail. Increment of the column address (by "1") accompanying the reading or writing the display data is done according to the column address indicated in Figure 4.

	E	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	0	0	0	Normal Reverse

Display Normal/Reverse

This command can reverse the lit and unlit display without overwriting the contents of the display data RAM. When this is done the display data RAM contents are maintained.

	E	R/W									
Α0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	1	0	RAM Data "H" LCD ON voltage (normal) RAM Data "L" LCD ON voltage (reverse)

Display All Points ON/OFF

This command makes it possible to force all display points ON regardless of the content of the display data RAM. The contents of the display data RAM are maintained when this is done. This command takes priority over the display normal/reverse command.

	Е	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	0	0	Normal display mode
										1	Display all points ON

When the display is in an OFF mode, executing the display all points ON command will place the display in power save mode. For details, see the Sleep Mode Set section.

LCD Bias Set

This command selects the voltage bias ratio required for the liquid crystal display.

	Е	R/W										S	elect Statu	s	
Α0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	1/65duty	1/49duty	1/33duty	1/55duty	1/53duty
0	1	0	1	0	1	0	0	0	1	0	1/9 bias	1/8 bias	1/6 bias	1/8 bias	1/8 bias
	'	U								1	1/7 bias	1/6 bias	1/5 bias	1/6 bias	1/6 bias

Read/Modify/Write

This command is used paired with the "END" command. Once this command has been input, the display data read command does not change the column address, but only the display data write command increments (+1) the column address. This mode is maintained until the END command is input. When the END command is input, the column address returns to the address it was at when the read/modify/write command was entered. This function makes it possible to reduce the load on the MPU when there are repeating data changes in a specified display region, such as when there is a blanking cursor.

	Е	R/W								
Α0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	0	0

^{*} Even in read/modify/write mode, other commands aside from display data read/write commands can also be used.

Figure 24 Command Sequence For read modify write

Figure 25

End

This command releases the read/modify/write mode, and returns the column address to the address it was at when the mode was entered.

	Е	R/W								
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0

Reset

This command initializes the display start line, the column address, the page address, the common output mode, the V5 voltage regulator internal resistor ratio, the electronic volume, and the read/modify/write mode and test mode are released. There is no impact on the display data RAM. See the function explanation in "Reset" for details. The reset operation is performed after the reset command is entered.

	E	R/W								
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	0

The initialization when the power supply is applied must be done through applying a reset signal to the /RES terminal. The reset command must not be used instead.

Common Output Mode Select

This command can select the scan direction of the COM output terminal. For details, see the function explanation in "Common Output Mode Select Circuit."

		R/W	R/W D7 D6 D5 D4 D3 D2 D1 D0									Sele	cted Mode		
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	1/65duty	1/49duty	1/33duty	1/55duty	1/53duty
0	1	0	1	1	0	0	0 1	*	*	*	 	COM0→COM47 COM47→COM0			

^{*} Disabled bit

Power Controller Set

This command sets the power supply circuit functions. See the function explanation in "The Power Supply Circuit," for details

	Е	R/W									
Α0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Selected Mode
			0	0	1	0	1	0 1			Booster circuit: OFF Booster circuit: ON
0	1	0							0 1		Voltage regulator circuit: OFF Voltage regulator circuit: ON
											Voltage follower circuit: OFF Voltage follower circuit: ON

V5 Voltage Regulator Internal Resistor Ratio Set

This command sets the V5 voltage regulator internal resistor ratio. For details, see the function explanation is "The Voltage Regulator circuit " and table 11 .

	Е	R/W									
Α0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Rb/Ra Ratio
			0	0	1	0	0	0	0	0	Small
								0	0	1	
0	4	0						0	1	0	
U	1	0							\downarrow		\downarrow
								1	1	1	
								1	1	1	Large

The Electronic Volume (Double Byte Command)

This command makes it possible to adjust the brightness of the liquid crystal display by controlling the LCD drive voltage V5 through the output from the voltage regulator circuits of the internal liquid crystal power supply. This command is a two byte command used as a pair with the electronic volume mode set command and the electronic volume register set command, and both commands must be issued one after the other.

The Electronic Volume Mode Set

When this command is input, the electronic volume register set command becomes enabled. Once the electronic volume mode has been set, no other command except for the electronic volume register command can be used. Once the electronic volume register set command has been used to set data into the register, then the electronic volume mode is released.

	Е	R/W								
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	0	0	0	0	0	1

Electronic Volume Register Set

By using this command to set six bits of data to the electronic volume register, the liquid crystal drive voltage V5 assumes one of the 64 voltage levels.

When this command is input, the electronic volume mode is released after the electronic volume register has been set.

	Е	R/W									
Α0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	V5
			*	*	0	0	0	0	0	1	Small
			*	*	0	0	0	0	1	0	
0	4	0	*	*	0	0	0	0	1	1	
U	1	U									\downarrow
			*	*	1	1	1	1	1	0	
			*	*	1	1	1	1	1	1	Large

^{*} Inactive bit (set "0")

When the electronic volume function is not used, set this to (1, 0, 0, 0, 0, 0)

The Electronic Volume Register Set Sequence

Sleep Mode (Double Byte Command)

This command is two byte command use as a pair with preceding command and following command, and both commands must issued one after the other.

This stops all operations in the LCD display system, and as long as there are no accesses from the MPU, the consumption current is reduced to a value near the static current. The internal modes during sleep mode are as follows:

- 1. The oscillator circuit and the LCD power supply circuit are halted.
- 2. All liquid crystal drive circuits are halted, and the segment in common drive outputs output a VDD level.

	A0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Status
Dragodina Commond				1	0	1	0	1	1	0	0	Sleep Mode
Preceding Command	0	1	0								1	Normal Mode
Following Command				*	*	*	*	*	*	0	0	

^{*}Disable bit (Set "0")

In the sleep mode, the MPU is still able to access the display data RAM. Refer to figure 28 for sleep mode sequence.

The Booster Ratio (Double Byte Command)

This command makes it possible to select step-up ratio. It is used when the power control set have turn on the internal booster circuit. This command is a two byte command used as a pair with the booster ratio select mode set command and the booster ratio register set command, and both commands must be issued one after the other.

Booster Ratio Select Mode Set

When this command is input, the Booster ratio register set command becomes enabled. Once the booster ratio select mode has been set, no other command except for the booster ratio register command can be used. Once the booster ratio register set command has been used to set data into the register, then the booster ratio select mode is released.

	E	R/W								
Α0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0

Booset Ratio Register Set

By using this command to set two bits of data to the booster ratio register, it can be select what kind of the booster ratio can be used.

When this command is input, the booster ratio select mode is released after the booster ratio register has been set.

Α0	E /RD	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Booster ratio select
			*	*	*	*	*	*	0	0	2x,3x,4x 5x
0	1	0	*	*	*	*	*	*	0	1	5x
			*	*	*	*	*	*	1	1	6x

^{*} Inactive bit (set "0")

When the booster ratio select function is not used, set this to (0, 0) 2x,3x,4x step-up mode

The booster ratio Register Set Sequence

NOP

Non-OPeration Command

	E	R/W								
Α0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0

Test

This is a command for IC chip testing. Please do not use it. If the test command is used by accident, it can be cleared by applying a "L" signal to the /RES input by the reset command or by using an NOP.

	E	R/W								
	/DD	AMD								
A0	/RD	/VVR	D7	D6	D5	D4	D3	D2	D1	D0

^{*} Inactive bit

Note: The ST7565V maintain their operating modes until something happens to change them. Consequently, excessive external noise, etc., can change the internal modes of the ST7565V. Thus in the packaging and system design it is necessary to suppress the noise or take measure to prevent the noise from influencing the chip. Moreover, it is recommended that the operating modes be refreshed periodically to prevent the effects of unanticipated noise.

		Ta	ble 16	: Tab	le of	ST	756	5V	Con	ım	an	ds	(Note) *: disabled data
Command						nd C							Function
	A0	/RD	/WR						3 D2				
(1) Display ON/OFF	0	1	0	1	0	1	0	1	1		1	0 1	LCD display ON/OFF 0: OFF, 1: ON
(2) Display start line set	0	1	0	0	1	Di	ispla	ay s	start	ado	dre	ss	Sets the display RAM display start line address
(3) Page address set	0	1	0	1	0	1	1	Р	age	ad	dre	ess	Sets the display RAM page address
(4) Column address set upper bit	0	1	0	0	0	0	1		ost s				Sets the most significant 4 bits of the display RAM column address.
Column address set lower bit	0	1	0	0	0	0	0	Le		sig	nifi	cant	Sets the least significant 4 bits of the display RAM column address.
(5) Status read	0	0	1		St	atus		() ()	0	0	Reads the status data
(6) Display data write	1	1	0			١	Writ	e d	ata				Writes to the display RAM
(7) Display data read	1	0	1			F	Rea	d d	ata				Reads from the display RAM
(8) ADC select	0	1	0	1	0	1	0	C) ()	0	0 1	Sets the display RAM address SEG output correspondence 0: normal, 1: reverse
(9) Display normal/ reverse	0	1	0	1	0	1	0	C) 1		1	0 1	Sets the LCD display normal/ reverse 0: normal, 1: reverse
(10) Display all points ON/OFF	0	1	0	1	0	1	0	С) 1		0	0	Display all points 0: normal display 1: all points ON
(11) LCD bias set	0	1	0	1	0	1	0	С) ()	1	0	Sets the LCD drive voltage bias ratio 0: 1/9 bias, 1: 1/7 bias (ST7565V)
(12) Read/modify/write	0	1	0	1	1	1	0	C) ()	0	0	Column address increment At write: +1 At read: 0
(13) End	0	1	0	1	1	1	0	1	1 '	1	1	0	Clear read/modify/write
(14) Reset	0	1	0	1	1	1	0	C) ()	1	0	Internal reset
(15) Common output mode select	0	1	0	1	1	0	0	1		,	*	*	Select COM output scan direction 0: normal direction 1: reverse direction
(16) Power control set	0	1	0	0	0	1	0	1		pe noc		ing	Select internal power supply operating mode
(17) V5 voltage regulator internal resistor ratio set	0	1	0	0	0	1	0	C) R		isto	or	Select internal resistor ratio(Rb/Ra) mode
(18) Electronic volume mode set Electronic volume register set	0	1	0	1 0	0	0 Ele	_	Onic) (volu		0 e va	1 alue	Set the V5 output voltage electronic volume register
(19) Sleep Mode Set	0	1	0	1	0	1	0	1	* *		0	0 1 0	0: Display Mode 1: Normal Mode
(20) Booster ratio set	0	1	0	1 0	1 0	1 0	1 0	1		S	0 tep	0 o-up lue	select booster ratio 00: 2x,3x,4x 01: 5x 11: 6x
(21) NOP	0	1	0	1	1	1	0	C) ()	1	1	Command for non-operation
(22) Test	0	1	0	1	1	1	1	,	* :	k	*	*	Command for IC test. Do not use this command

COMMAND DESCRIPTION

Instruction Setup: Reference

(1) Initialization

Note: With this IC, when the power is applied, LCD driving non-selective potentials V2 and V3 (SEG pin) and V1 and V4 (COM pin) are output through the LCD driving output pins SEG and COM. When electric charge is remaining in the smoothing capacitor connecting between the LCD driving voltage output pins (V1 ~ V5) and the VDD pin, the picture on the display may become totally dark instantaneously when the power is turned on. To avoid occurrence of such a failure, we recommend the following flow when turning on the power.

1. When the built-in power is being used immediately after turning on the power:

^{*} The target time of 5ms will result to vary depending on the panel characteristics and the capacitance of the smoothing capacitor. Therefore, we suggest you to conduct an operation check using the actual equipment.

Notes: Refer to respective sections or paragraphs listed below.

- *1: Description of functions; Resetting circuit
- *2: Command description; LCD bias setting
- *3: Command description; ADC selection
- *4: Command description; Common output state selection
- *5: Description of functions; Power circuit & Command description; Setting the built-in resistance radio for regulation of the V5 voltage
- *6: Description of functions; Power circuit & Command description; Electronic volume control
- *7: Description of functions; Power circuit & Command description; Power control setting

2. When the built-in power is not being used immediately after turning on the power:

^{*} The target time of 5ms will result to vary depending on the panel characteristics and the capacitance of the smoothing capacitor. Therefore, we suggest you to conduct an operation check using the actual equipment.

Notes: Refer to respective sections or paragraphs listed below.

- *1: Description of functions; Resetting circuit
- *2: Command description; LCD bias setting
- *3: Command description; ADC selection
- *4: Command description; Common output state selection
- *5: Description of functions; Power circuit & Command description; Setting the built-in resistance radio for regulation of the V5 voltage
- *6: Description of functions; Power circuit & Command description; Electronic volume control
- *7: Description of functions; Power circuit & Command description; Power control setting
- *8: Command description; Sleep mode (multiple commands)

(2) Data Display

Notes: Reference items

- *9: Command Description; Display start line set
- *10: Command Description; Page address set
- *11: Command Description; Column address set
- *12: Command Description; Display data write
- *13: Command Description; Display ON/OFF

Avoid displaying all the data at the data display start (when the display is ON) in white.

(3) Power OFF *14

Notes: Reference items

- *14: The logic circuit of this IC's power supply VDD Vss controls the driver of the LCD power supply VDD V5. So, if the power supply VDD Vss is cut off when the LCD power supply VDD V5 has still any residual voltage, the driver (COM. SEG) may output any uncontrolled voltage. When turning off the power, observe the following basic procedures:
 - After turning off the internal power supply, make sure that the potential V5 ~ V1 has become below the threshold voltage of the LCD panel, and then turn off this IC's power supply (VDD - Vss).
 Description of Function, 6.7
 Power Circuit
- *15: After inputting the power save command, be sure to reset the function using the /RES terminal until the power supply VDD VSs is turned off. 7. Command Description (19) Sleep Mode Set
- *16: After inputting the power save command, do not reset the function using the /RES terminal until the power supply VDD Vss is turned off. 7. Command Description (19) Sleep Mode Set

Refresh

It is recommended to turn on the refresh sequence regularly at a specified interval.

Precautions on Turning off the power

- <Turning the power (VDD Vss) off>
- 1) Power Save (The LCD powers (VDD V5) are off.) → Reset input → Power (VDD Vss) OFF
- Observe $t_L > t_H$.
- When $t_L < t_H$, an irregular display may occur.

Set t_L on the MPU according to the software. t_H is determined according to the external capacity C2 (smoothing capacity of $V_1 \sim V_2$) and the driver's discharging capacity.

<Turning the power (VDD - VSS) off : When command control is not possible.> 2) Reset (The LCD powers (VDD - VSS) are off.) \rightarrow Power (VDD - VSS) OFF

• Observe $t_L > t_H$.

• When tL < tH, an irregular display may occur.

For tL, make the power (VDD - Vss) falling characteristics longer or consider any other method.

th is determined according to the external capacity C2 (smoothing capacity of V1 to V5) and the driver's discharging capacity.

<Reference Data>

V5 voltage falling (discharge) time (t_H) after the process of operation \rightarrow power save \rightarrow reset. V5 voltage falling (discharge) time (t_H) after the process of operation \rightarrow reset.

Figure 31

ABSOLUTE MAXIMUM RATINGS

Unless otherwise noted, VDD = 0V

Table 17

		I UDIO II		
Pa	arameter	Symbol	Conditions	Unit
Power Supply Voltage		Vss	-3.6 ~ +0.3	V
Power supply voltage (VDD standard)	Vss2	−3.6 ~ +0.3	V
Power supply voltage (\	/DD standard)	V5, VOUT	−13.5 ~ +0.3	V
Power supply voltage (\	/DD standard)	V1, V2, V3, V4	V ₅ to +0.3	V
Input voltage		VIN	-0.3 to VDD + 0.3	V
Output voltage		Vo	-0.3 to VDD + 0.3	V
Operating temperature		Topr	-30 to +85	C
Storage temperature	TCP Bare chip	Tstr	-55 to +100 -65 to +150	\mathcal{L}

Figure 30

Notes and Cautions

- 1. The Vss2, V1 to V5 and Vout are relative to the VDD = 0V reference.
- 2. Insure that the voltage levels of V1, V2, V3, and V4 are always such that $VDD \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$.
- 3. Permanent damage to the LSI may result if the LSI is used outside of the absolute maximum ratings. Moreover, it is recommended that in normal operation the chip be used at the electrical characteristic conditions, and use of the LSI outside of these conditions may not only result in malfunctions of the LSI, but may have a negative impact on the LSI reliability as well.

DC CHARACTERISTICS

Unless otherwise specified, Vss = -3.0V, VDD = 0V, Ta = -30 to 85% **Table 18**

	lt a ma	Cumahal	Ca	ondition	Rating			Units	Applicable
<u>'</u>	ltem	Symbol	CC	maition	Min.	Тур.	Max.	Units	Pin
Operating	g Voltage (1)	Vss			-3.3	1	-1.8	V	Vss*1
Operating	g Voltage (2)	Vss2	Vss2 (Relative to VDI		-3.3	_	-2.4	V	VSS2
					-12.0	_	-4.0		V5 *2
Operating	g Voltage (3)	Vss2	(Relative to) VDD)	0.4 x V5	_	Vdd	V	V1, V2
					V5	_	0.6 x V5		V3, V4
High-level	Input Voltage	VIHC			0.8 x VDD	_	VDD	V	*3
Low-level	Input Voltage	VILC			Vss	ı	0.2 x VDD	>	*3
High-level (Output Voltage	Vонс	Іон = -0.5	mA	0.8 x VDD	_	VDD	V	*4
Low-level (Output Voltage	Volc	IOL = 0.5 m	Α	Vss	1	0.2 x VDD	>	*4
Input lea	kage current	lu	VIN = VDD	or Vss	-1.0	1	1.0	μ A	*5
Output lea	akage current	llo	VIN = VDD	or Vss	-3.0	-	3.0	μ A	*6
Liquid Cry	stal Driver ON	Ron	Ta = 25℃ (Relative	V5 = -13.0 V	_	2.0	3.5	ΚΩ	SEGn
Res	sistance	IXON	To VDD)	V5 = -8.0 V	_	3.2	5.4	11.22	COMn *7
Static Consu	umption Current	Issq	V5 = -13.	0V (Relative to	_	0.01	2	μ A	Vss, Vss2
Output Lea	akage Current	I5Q	VDD)	·		0.01	10	μ A	V5
Input Termir	nal Capacitance	Cin	Ta = 25℃ ,	f = 1 MHz	_	5.0	8.0	pF	
	Internal Oscillator	fosc	1/65 duty	Ta = 25℃	17	20	24	kHz	*8
Oscillator	External Input	fCL	1/33 duty	1d = 20U	17	20	24	kHz	CL
Frequency	Internal Oscillator	fosc	1/49 duty 1/53 duty	Ta = 25℃	25	30	35	kHz	*8
	External Input	fCL	1/55 duty	1a = 20 G	25	30	35	kHz	CL

Table 19

	Item	Symbol	Condition		Rating		Units	Applicable
	item	Syllibol	Condition	Min.	Тур.	Max.	Ullits	Pin
	Input voltage	Vss2	(Relative To VDD)	-3.3	_	-2.4	V	Vss2
ver	Supply Step-up output voltage Circuit	Vout	(Relative To VDD)	-13.5	_	_	V	Vouт
al Power	Voltage regulator Circuit Operating Voltage	Vout	(Relative To VDD)	-13.5	-	-6.0	V	Vout
Internal	Voltage Follower Circuit Operating Voltage	V5	(Relative To VDD)	-12.0		-4.0	V	V5 * 9
_	Base Voltage	VRS	Ta = 25℃, (Relative To VDD) -0.05%/℃	-2.07	-2.10	-2.13	V	*10

• Dynamic Consumption Current : During Display, with the Internal Power Supply OFF Current consumed by total ICs when an external power supply is used .

Table 20

Test pattern	Symbol	Condition	Rating		Rating		Unit		Notes
rest pattern	Зушьог	Condition	Min.	Тур.	Max.	Ullits	Notes		
Display Pattern OFF	IDD	VDD = 3.0 V, V5 – VDD = –11.0 V		16	27	μ A	*11		
Display Pattern Checker	IDD	VDD = 3.0 V, V5 – VDD = –11.0 V	_	19	32	μ A	*11		

• Dynamic Consumption Current : During Display, with the Internal Power Supply ON Table 21

Test pattern	Symbol	Condit	ion		Rating		Units	Notes
rest pattern	Syllibol	Condit	ion	Min.	Тур.	Max.	Units	Notes
Display	1	VDD = 3.0 V,	Normal Mode	_	60	100		*40
Pattern OFF	IDD	Quad step-up voltage. V5 – VDD = –11.0 V	High-Power Mode	_	98	163	μ A	*12
Display Pattern	IDD	VDD = 3.0 V, Quad step-up voltage.	Normal Mode	_	70	117	., Δ	*12
Checker	טטו	V5 – VDD = –11.0 V	High-Power Mode	_	105	175	μ A	12

• Consumption Current at Time of Power Saver Mode : VSS = -3.0 V Table 22

Itom	Symbol	Condition		Rating	Units	Notes	
Item	Syllibol	Condition	Min.	Тур.	Max.	Ullits	Notes
Sleep mode	IDD	Ta = 25℃	_	0.1	4	μ A	

• The Relationship Between Oscillator Frequency fosc, Display Clock Frequency fcL and the Liquid Crystal Frame Rate Frequency fFR

Table 23

	Item	fcL	fFR
1/65 DUTY	Used internal oscillator circuit	fosc / 4	fOSC / (4*65)
1/03 DOT1	Used externa l display clock	External input (fcL)	fCL / 260
1/49 DUTY	Used internal oscillator circuit	fosc / 4	fOSC / (4*49)
1/49 DOTT	Used external display clock	External input (fcL)	fCL / 196
1/33 DUTY	Used internal oscillator circuit	fOSC / 8	fOSC / (8*33)
1/33 DUTT	Used external display clock	External input (fcL)	fCL / 264
1/55 DUTY	Used internal oscillator circuit	fosc / 4	fOSC / (4*55)
ווטם פפוו	Used external display clock	External input (fcL)	fCL / 220
1/53 DUTY	Used internal oscillator circuit	fOSC / 4	fOSC / (4*53)
1/00 0011	Used external display clock	External input (fcL)	fCL / 212

(fFR is the liquid crystal alternating current period, and not the FR signal period.)

References for items market with *

- *1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed.
- *2 The operating voltage range for the VDD system and the V5 system is. This applies when the external power supply is being used.
- *3 The A0, D0 to D5, D6 (SCL), D7 (SI), /RD (E), /WR (R/W), /CS1, CS2, CLS, CL, FR, M/S, C86, P/S, /DOF, /RES, IRS, and /HPM terminals.
- *4 The D0 to D7, FR, /DOF, and CL terminals.
- *5 The A0, /RD (E), /WR (R/W), /CS1, CS2, CLS, M/S, C86, P/S, /RES, IRS, and /HPM terminals.
- *6 Applies when the D0 to D5, D6 (SCL), D7 (SI), CL, FR, and /DOF terminals are in a high impedance state.
- *7 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage (3) range. Ron = 0.1 V /∆I (Where ∆I is the current that flows when 0.1 V is applied while the power supply is ON.)
- *8 See Table 23 for the relationship between the oscillator frequency and the frame rate frequency.
- *9 The V5 voltage regulator circuit regulates within the operating voltage range of the voltage follower.
- *10 This is the internal voltage reference supply for the V5 voltage regulator circuit. In the ST7565V, the temperature range approximately -0.05%/C.
- *11, 12 It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on. The ST7565V is 1/9 biased. Does not include the current due to the LCD panel capacity and wiring capacity. Applicable only when there is no access from the MPU.
- *12 It is the value on a ST7565V having the VREG temperature gradient is −0.05%/℃ when the V 5 voltage regulator internal resistor is used.

TIMING CHARACTERISTICS

System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)

Table 24

(VDD = 3.3V, Ta = -30 to 85%)

Item	Cianal	Cumbal	Condition	Rat		Units
item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tah8		0	_	
Address setup time	A0	taw8		0		
System cycle time		tcyc8		240	_	
Enable L pulse width (WRITE)	WR	tcclw		100		
Enable H pulse width (WRITE)	VVIX	tccнw		100	_	
Enable L pulse width (READ)	RD	tcclr		140	_	ns
Enable H pulse width (READ)	, KD	tcchr		100		
WRITE Data setup time		tDS8		40	_	
WRITE Address hold time	D0 to D7	tDH8		20	_	
READ access time] 50 10 57	tacc8	CL = 100 pF		70	
READ Output disable time		toн8	CL = 100 pF	5	135	

Table 25

 $(VDD = 2.7V, Ta = -30 \text{ to } 85 \text{ }^{\circ}\text{C})$

Item	Signal	Symbol	Condition	Rati	ing	Units
item	Signal	Symbol	Condition	Min.	Max.	Ullits
Address hold time		tah8		0	_	
Address setup time	A0	taw8		0	_	
System cycle time		tcyc8		400	_	
Enable L pulse width (WRITE)	WR	tcclw		220	_	
Enable H pulse width (WRITE)	VVIX	tccнw		180	_	
Enable L pulse width (READ)	RD	tcclr		220	_	ns
Enable H pulse width (READ)	ND	tcchr		180	_	
WRITE Data setup time		tDS8		40	_	
WRITE Address hold time	D0 to D7	tDH8		20	_	
READ access time	לם טו טם	tacc8	CL = 100 pF	_	140	
READ Output disable time		toн8	CL = 100 pF	10	160	

Table 26

(VDD = 1.8V, Ta = -30 to 85%)

Ham.	0:1	0	,	VDD = 1.6V, Rati		
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tah8		0	_	
Address setup time	A0	taw8		0	_	
System cycle time		tcyc8		640	_	
Enable L pulse width (WRITE)	WR	tcclw		360	_	
Enable H pulse width (WRITE)	- WK	tccнw		280	_	
Enable L pulse width (READ)	- RD	tcclr		360	_	ns
Enable H pulse width (READ)	ן אט	tcchr		280		
WRITE Data setup time		tDS8		80	_	
WRITE Address hold time	D0 to D7	tDH8		30	_	
READ access time	יע טו טע ך	tacc8	CL = 100 pF	_	240	
READ Output disable time		tон8	CL = 100 pF	10	520	

^{*1} The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, $(tr + tf) \le (tCYC8 - tCCLW - tCCHW)$ for $(tr + tf) \le (tCYC8 - tCCLR - tCCHR)$ are specified.

 $^{^{\}ast}2$ All timing is specified using 20% and 80% of VDD as the reference.

^{*3} tccLw and tccLR are specified as the overlap between /CS1 being "L" (CS2 = "H") and /WR and /RD being at the "L" level.

READ Output disable time

System Bus Read/Write Characteristics 2 (For the 6800 Series MPU)

Figure 38

Table 27

(VDD = 3.3V, Ta = -30 to 85℃)

5

225

Rating Units Item Signal Symbol Condition Min. Max. Address hold time tah6 Α0 0 Address setup time taw6 275 System cycle time tcyc6 Enable L pulse width (WRITE) 140 tewlw WR Enable H pulse width (WRITE) 140 tewnw Enable L pulse width (READ) 130 ns **t**EWLR RD Enable H pulse width (READ) **t**EWHR 130 WRITE Data setup time tDS6 40 WRITE Address hold time 25 tDH6 D0 to D7 READ access time tACC6 CL = 100 pF70

toн6

CL = 100 pF

Table 28

 $(VDD = 2.7V, Ta = -30 \text{ to } 85 \text{ }^{\circ}\text{C})$

Item	Signal	Symbol	Condition	Rat	ing	Units
item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tah6		0	_	
Address setup time	A0	taw6		0	_	
System cycle time		tcyc6		400	_	
Enable L pulse width (WRITE)	WR	tewlw		220		
Enable H pulse width (WRITE)	VVIX	tewnw		180	_	
Enable L pulse width (READ)	RD	tewlr		220	_	ns
Enable H pulse width (READ)	ND	tewhr		180		
WRITE Data setup time		tDS6		40		
WRITE Address hold time	D0 to D7	tDH6		25	_	
READ access time		tacc6	CL = 100 pF	_	140	
READ Output disable time		toн6	CL = 100 pF	10	250	

Table 29

(VDD = 1.8V, Ta = -30 to 85%)

	1		,	Rat		
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tah6		0	_	
Address setup time	A0	taw6		0	_	
System cycle time		tcyc6		640	_	
Enable L pulse width (WRITE)	WR	tewlw		360	_	
Enable H pulse width (WRITE)	- VVK	tewnw		280	_	
Enable L pulse width (READ)	DD.	tewlr		360	_	ns
Enable H pulse width (READ)	- RD	tewhr		280	_	
WRITE Data setup time		tDS6		80	_	
WRITE Address hold time	D0 to D7	tDH6		30	_	
READ access time	J DU 10 D7	tacc6	CL = 100 pF	_	240	
READ Output disable time	1	toн6	CL = 100 pF	10	430	

^{*1} The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, $(tr + tf) \le (tCYC6 - tEWLW - tEWHW)$ for $(tr + tf) \le (tCYC6 - tEWLR - tEWHR)$ are specified.

^{*2} All timing is specified using 20% and 80% of VDD as the reference.

^{*3} tewlw and tewlr are specified as the overlap between $\overline{\text{CS1}}$ being "L" (CS2 = "H") and E.

The Serial Interface

Figure 39

Table 30

 $(VDD = 3.3V, Ta = -30 \text{ to } 85^{\circ}C)$

Itam	Cianal	Symbol	,	Rat		Units
Item	Signal	Symbol	Condition	Min.	Max.	
Serial Clock Period		Tscyc		100	_	
SCL "H" pulse width	SCL	Tshw		50	_	
SCL "L" pulse width		Tslw		50	_	
Address setup time	A0	Tsas		20	_	
Address hold time	AU	Tsah		20	_	ns
Data setup time	SI	T _{sds}		20	_	
Data hold time	31	TsdH		20	_	
CS-SCL time	cs	Tcss		20	_	
CS-SCL time		Tcsh		40	_	

Table 31

(VDD = 2.7V, Ta = -30 to 85℃)

Item	Cianal	Symbol	Condition	Rati	ing	Units
item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		Tscyc		120		
SCL "H" pulse width	SCL	Tshw		60	_	
SCL "L" pulse width		Tslw		60	_	
Address setup time	4.0	Tsas		30	_	
Address hold time	A0	Тѕан		25	_	ns
Data setup time	SI	Tsds		30	_	
Data hold time	51	TsdH		25	_	1
CS-SCL time	00	Tcss		30	_	
CS-SCL time	CS	Тсѕн		60	_	

Table 32

(VDD = 1.8V, Ta = -30 to 85 ℃)

Item	Signal	Symbol	Condition	Rati	ing	Units
item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		Tscyc		200		
SCL "H" pulse width	SCL	Tshw		80	_	
SCL "L" pulse width		Tslw		80	_	
Address setup time	A0	Tsas		60	_	
Address hold time	A0	Тѕан		30	_	ns
Data setup time	SI	Tsds		60	_	
Data hold time	- 31	TsdH		30	_	
CS-SCL time	CS	Tcss		40	_	
CS-SCL time		Тсѕн		100	_	1

 $^{^{\}star}1$ The input signal rise and fall time (fr, ff) are specified at 15 ns or less. $^{\star}2$ All timing is specified using 20% and 80% of VDD as the standard.

Reset Timing

Figure 41

Table 36

(VDD = 3.3V, Ta = -30 to 85℃)

ltem	Signal Symbol		Condition	,	Units		
item	Signal	Syllibol	Condition	Min.	Тур.	Max.	UiillS
Reset time		t R		_	_	1.5	us
Reset "L" pulse width	/RES	trw		1.5			us

Table 37

(VDD = 2.7V, Ta = -30 to 85℃)

Itom	Signal Symbol		Condition	Rating			Units
Item	Signai	Syllibol	Condition	Min.	Тур.	Max.	UiillS
Reset time		t R		_	_	2.0	us
Reset "L" pulse width	/RES	trw		2.0	_	_	us

Table 38

 $(VDD = 1.8V, Ta = -30 \text{ to } 85^{\circ}C)$

Itam	Cianal	Signal Symbol Condition	(Unito			
Item	Signal	Symbol	Condition	Min.	Тур.	Max.	Units
Reset time		tr		_	_	3.0	us
Reset "L" pulse width	/RES	trw		3.0	_	_	us

 $^{^{\}star}1$ All timing is specified with 20% and 80% of VDD as the standard.

THE MPU INTERFACE (REFERENCE EXAMPLES)

The ST7565V Series can be connected to either 80X86 Series MPUs or to 68000 Series MPUs. Moreover, using the serial interface it is possible to operate the ST7565V series chips with fewer signal lines.

The display area can be enlarged by using multiple ST7565V Series chips. When this is done, the chip select signal can be used to select the individual ICs to access.

(1) 8080 Series MPUs

Figure 42-1

(2) 6800 Series MPUs

Figure 42-2

(3) Using the Serial Interface

Figure 42-3

CONNECTIONS BETWEEN LCD DRIVERS (REFERENCE EXAMPLE)

The liquid crystal display area can be enlarged with ease through the use of multiple ST7565V Series chips. Use a same equipment type.

(1) ST7565V (master) ↔ ST7565V (slave)

Figure 43-1

(2) Single-chip Structure

Figure 43-2

(3) Double-chip Structure

Figure 43-3

ST7565V Revisions

Version 0.1	- Preliminary.
Version 0.2	- update Pad Center Coordinates page 2,3,4,5
Version 0.2a	- update ABSOLUTE MAXIMUM RATINGS and DC CHARACTERISTICS
Version 0.2b	- update DC CHARACTERISTICS , Pad Arrangement
Version 0.2c	- update AC CHARACTERISTICS (serial)
Version 0.2d	- update PIN DESCRIPTIONS M/S
Version 0.2e	- update ABSOLUTE MAXIMUM RATINGS and DC CHARACTERISTICS
Version 0.2f	- update Master and Slave reference example.
Version 0.3	- update Pad Center Coordinates (1/65 , 1/49 , 1/33 , 1/55 , 1/53 Duty) page 317
Version 0.3a	- update Pad Diagram page2 and v5 regulator voltage diagram(figure 9) page35
Version 0.3b	- Logic power supply VDD – VSS = 1.8V to 3.3 V (+10% Range) , VOUT= -13V (+10% Range)
Version 0.3c	- Modify page-38 The temperature grade of the Internal Power Supply for ST7565V (-0.05%/ $^{\circ}$ C) Figure 14
Version 0.4	- Delete recommended to connect an external resistor to stabilize potentials of V1, V2, V3 and V4
Version 1.0	- Transition to ST7565V
Version 1.1	- Modify Tdh (data hold time) and page53,54 initial flow
Version 1.2	- Modify Voltage range and Temperature range.
Version 1.3	 Add ITO resistance limitation Modify the description of DC characteristics. Modify function description. Redraw figures. Redraw the PAD DIAGRAM. Highlight the HPM (High Power Mode) description. Put emphasis on the power OFF procedure (Page 56-57).
Version 1.4	- Fix Ver. 1.3: Booster Circuit mistake (Booster X6, Page 32).
Version 1.5	 Remove static indicator function. Modify timing characteristics Modify mistake of Status Read.
	- Modify the mistake of The Reset Circuit.
V C131011 1.30	wideling the mistake of the Keset Official.