

PLAN

- 1/ Présentation de la problématique
- 2/ Présentation du jeu de données
- 3/ Exploration du jeu de données
- 4/ Exploration et analyse du jeu de données
- 5/ Modélisation, recherche du meilleur estimateur
- 6/ Conclusion
- 7/ Suite du projet

Présentation de la problématique

Ville de **Seattle** : ville neutre en émissions carbone en 2050

Objectifs:

S'intéresser à la consommation et aux émissions des **bâtiments non destinés à** l'habitation

Evaluer l'intérêt de l'ENERGYSTARScore pour les prédictions

Fichier CSV sur les caractéristiques et les consommations des bâtiments de 2016 (3376 lignes et 46 colonnes)

<u>Lignes:</u>

Bâtiments

Colonnes:

Colonnes textuelles (type de bâtiments, usage du bâtiment, quartier, nom, adresse, code postal)

Colonnes numériques (année de construction, indicateurs de surface, ENERGYSTARScore, relevés de consommation annuels)

Nettoyage

Supprimer les bâtiments liés à l'habitation (recherche sur plusieurs variables)

Supprimer les lignes sans donnée sur les variables numériques

Supprimer les colonnes avec valeurs manquantes (>45%) : informations sur 2ème et 3ème usage du bâtiment

Réattribuer des informations sur certains bâtiments (bonne catégorie)

Supprimer les lignes sans ENERGYSTARScore

Garder valeurs < P99 sur variables cibles (supprimer les outliers)

Exploration visuelle

<u>Feature engineering</u>

Créer une macro catégorie de bâtiments à partir de 'PrimaryPropertyType' (21 catégories à 10 catégories)

Créer une variable de volume du bâtiment : surface du parking + (nombre d'étages * la surface du batîment)

Créer une variable de ratio de la surface du parking par rapport à la surface totale

Jeu de données final de 1066 lignes et 44 colonnes

Sélection de variables

```
['BuildingType', 'PrimaryPropertyType', 'Neighborhood', 'YearBuilt', 'NumberofFloors', 'PropertyGFATotal', 'PropertyGFAParking', 'PropertyGFABuilding(s)', 'LargestPropertyUseType', 'LargestPropertyUseTypeGFA', 'ENERGYSTARScore', 'MacroPrimaryType', 'BuildingVolume', 'RatioGFAParking']
```

Séparation du jeu de données

X : variables sélectionnées y : variable cible à prédire

• <u>Séparation en jeu d'entraînement et de test</u>

80/20

Stratifier sur la variable cible avec KBinsDiscretizer

Création d'un column transformer

Identification variables catégorielles et numériques

OneHotEncocder : variables catégorielles StandardScaler : variables numériques

• Création des estimateurs

Liste d'estimateurs avec liste de leurs hyper paramètres Dummy Regressor, Linear Regression, Rigde, Lasso, Random Forest et XGBRegressor

Création d'une boucle

Recherche des meilleurs hyper paramètres (GridSearchCV) Entrainement du meilleur estimateur Scores : R² (train et test), MAE et RMSE

Interprétation des scores

Choix de l'estimateur avec les meilleures performances R² et RMSE (estimateur avec meilleure stabilité)

'TotalGHGEmissions'

	train_r2	test_r2	MAE	RMSE
name				
Dummy Regressor	0.00	-0.00	24957.14	157.98
Linear Regression	0.57	0.33	16733.10	129.36
Lasso	0.54	0.42	14543.17	120.60
Random Forest	0.94	0.42	14450.80	120.21
Ridge	0.55	0.44	14008.92	118.36
XGBoost	0.91	0.48	12941.24	113.76

Meilleur estimateur

XGBRegressor Hyper paramètres : Nb d'estimateurs = 200 Learning rate = 0.1 Max depth = 3 Régression alpha = 1.2

Scores : R² train = 0.95 R² test = 0.48

Suppression des variables à 0 ou négatives :

R² train = 0.92 R² test = 0.33 (perte de 15%)!

• Sans ENERGYSTARScore

Scores : R² train = 0.92 R² test = 0.37 (11% de perte) !

'SiteEnergyUse(kBtu)'

	train_r2	test_r2	MAE	RMSE
name				
Dummy Regressor	0.00	-0.00	6.993295e+13	8362592.09
Linear Regression	0.84	0.84	1.117131e+13	3342351.52
Lasso	0.84	0.84	1.105409e+13	3324768.61
Ridge	0.84	0.84	1.097932e+13	3313506.36
XGBoost	0.98	0.89	7.405097e+12	2721230.76
Random Forest	0.98	0.89	7.367804e+12	2714369.84

Meilleur estimateur

RandomForestRegressor Hyper paramètres : Nb d'estimateurs = 200 Max depth = 22

Scores : R² train = 0.98 R² test = 0.89

Suppression des variables à 0 ou négatives :

R² train = 0.98 R² test = 0.90

Gain de précision!

<u>'TotalGHGEmissions'</u>

Variables importantes :

PropertyGFABuilding(s), PrimaryPropertyType (Hotel, Senior Care Community et Super Market/Grocery store), LargestPropertyUseType (Office), MacroPrimaryType (Office), LargestPropertyUseTypeGFA et ENERGYSTARScore

ENERGYSTARSCore est une information importante : si on ne la prend pas en compte, **perte de 11%** de précision

<u>'SiteEnergyUse(kBtu)'</u>

Variables importantes :

PropertyGFATotal, PropertyGFABuilding(s), LargestPropertyUseTypeGFA, ENERGYSTARScore et Building Volume

Après suppression des variables "sans importance", **gain de 1%** de précision Variables importantes :

PropertyGFATotal, PropertyGFABuilding(s), LargestPropertyUseTypeGFA, ENERGYSTARScore

Suite du projet

- Feature engineering : créer de nouvelles variables
- Sélection des variables : affiner/faire un autre choix de variables
- Encoder, Scaler: utiliser d'autres encoder et/ou scaler
- **Hyper paramètres** : affiner davantage les hyper paramètres