Topic 3 Polls

POLL 10

EMPLOYEE is a relation schema storing the Name, Office_Number, and Age of the employees in a company. Two employees may have the same Name or the same Office_Number or the same Age, but may not have the same Name and the same Office_Hours. Which of the following is correct?

- a) Name is a candidate key of EMPLOYEE
- b) Office_Number is a candidate key of EMPLOYEE
- c) (Name, Office Number) is a candidate key of EMPLOYEE
- d) (Name, Office_Number, Age) is a candidate key of EMPLOYEE

Lecture 1

Topic 3: Relational Data Model

Example of a Relation

		attributes		
		(or columns)		
ID	пате	dept_name	salary]
10101	Srinivasan	Comp. Sci.	65000]
12121	Wu	Finance	90000	tuples .
15151	Mozart	Music	40000	(or rows)
22222	Einstein	Physics	95000	ľ
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	
				-

This table illustrates the relational data model, where each row is a tuple of its columns, (ID, name, dept_name, salary). A limitation of the relational model is that it doesn't readily depict relationships between tables, making it less expressive than an ER diagram.

@Silberschatz, Korth and Sudarshan

Attribute Types

Database System Concepts

- **Domain**: The set of permitted values for each attribute, also present in the ER model.
- Atomic: An atomic attribute cannot be divided further; most attributes must be atomic.
- **Null**: Null is a special value and is always part of every domain, which can complicate operations like joining and selecting.

Relation Schema and Instances

A relation is defined as: R(A_1, A_2, ..., A_n), where A_1, A_2, ..., A_n are attributes of an entity set.

Example: student(ID, name, major, GPA), where student is R and its attributes are ID, name, major, and GPA.

Relation instance: A snapshot in time or an instance of a relation.

• **Example**: For the student relation, instances may include student(0, Parker, Comp Sci, 5.0) and student(1, Jorge, Graphic Design, 7.0).

Properties

• Tuples are formally unordered. When a tuple is inserted, the DBMS determines its order.

	<u>ID</u>	name	dept_name	salary	
>	22222	Einstein	Physics	95000	۱ <
	12121	Wu	Finance	90000	۱,
	32343	El Said	History	60000	١,
	45565	Katz	Comp. Sci.	75000	
	98345	Kim	Elec. Eng.	80000	
	76766	Crick	Biology	72000	
	10101	Srinivasan	Comp. Sci.	65000	
	58583	Califieri	History	62000	
	83821	Brandt	Comp. Sci.	92000	
	15151	Mozart	Music	40000	
	33456	Gold	Physics	87000	
	76543	Singh	Finance	80000	

This example shows that there is no clear ordering of the rows (tuples) in the table.

Keys

This section was reviewed from Topic 2.

Converting ER Diagrams to Relation Schemas

To convert an ER diagram to a relational model, we create a set of relation schemas, which can be implemented as tables in a DBMS.

Converting Entity Sets with Simple Attributes

- A strong entity set becomes a schema with identical attributes.
- A weak entity set includes its attributes plus the primary key of the strong identifying entity set.

 Example: What are the relation schemas for the strong entity course and weak entity set section?

Answers:

- 1. For course : course(<u>course_id</u>, title, credits)
- 2. For section: As a weak entity set, its schema is section(<u>course_id</u>, <u>sec_id</u>, <u>semester</u>, <u>year</u>), with no dotted line and underlined discriminators.

Composite and Multivalued Attributes

Multivalued attributes require multiple relation schemas, unlike simple attributes, which convert directly.

Example

```
instructor
ID
name
  first_name
   middle_initial
  last_name
address
   street ·
      street_number
      street name
     apt_number
   city
   state
   zip
{ phone_number }
date_of_birth
age()
```

Relation schema without considering multivalued attributes

```
Ignoring multivalued attributes, extended instructor schema is

instructor(ID,
first_name, middle_initial, last_name,
street_number, street_name,
apt_number, city, state, zip_code,
date_of_birth, age)
```

- The name attribute is omitted, and only attributes of the composite attribute are stored. The same applies to street.
- In the relational model, we lose the connection between sub-attributes and their composite attributes, which is clear in the ER model.
- To resolve ambiguity with similarly named sub-attributes, prefixes are added: instructor(<u>ID</u>, name_first_name, name_middle_name, name_last_name, ...).

Relation schema considering multivalued attributes

A second schema/tuple is created for multivalued attributes. The ID associates phone numbers with instructors, and both are keys since one instructor can have multiple phone numbers.

Answer: phone_number(<u>ID</u>, <u>phone_number</u>)

Converting Relationship Sets

Many to Many

• Convert one entity set at a time, followed by the relationship.

Answer: instructor(<u>ID</u>, name, salary), student(<u>ID</u>, name, total_cred), advisor(<u>instructor_ID</u>, <u>student_ID</u>).

• Both keys are necessary due to the many-to-many relationship, which requires unique identification through two primary keys.

An instructor can advise multiple students, and a student can have multiple advisors, but the same instructor cannot advise the same student more than once.

Instructor			
ID		student_id	
	10	1001	
	10	2020	
	10	2299	
	10	2299	
	20	2299	

This is depicted in this table.

Red means it is not permitted with the relational model, green means it would be okay.

One to One

Example 1: Normal 1-to-1

Employee has an ID and name.

Department has a dept_name and location (loc).

Employees have a one to one relatonship with department, manage.

Answer:

employee(<u>ID</u>, name)
department(<u>dept_name</u>, loc)

- 1. Create a new relation schema containing both primary keys of employee and department.
- 2. Choose only one of these keys to use as the primary key for the schema.

manage(ID, dept_name)
manage(ID, dept_name)

Both solutions accomplish the task, however the best solution is the one with the shorter key. So, manage(<u>ID</u>, dept_name) is the best solution.

Example 2: Total Participation (One Entity Set)

From topic 2, total participation means that at *every* department must be managed by *at least one* employee. This is indicated by the double line.

- 1. If only one of the entity sets have total participation,
- 2. Create 2 relation schemas, one for each entity set

3. Then include the relation in the entity set with the total relation.

Answer:

employee(<u>ID</u>, name)
department(<u>dept_name</u>, loc, employee_ID)

Example 3: Total Participation (Both Entity Sets)

- 1. If both the entity sets have total participation,
- 2. Create 1 relation schema, for either of the entity sets
- 3. Then include the relation in the entity set with the total relation.

Solution:

employee_department(<u>ID</u>, name, dept_name, loc) employee_department(<u>ID</u>, name, <u>dept_name</u>, loc)

The better of the two solutions is employee_department(<u>ID</u>, name, dept_name, loc), because <u>ID</u> is shorter than <u>dept_name</u>.

One-to-Many and Many-to-One

Example 1

ly-side entity set

Separate a scrienta for the relationship set, the key is the street of the separate of the set of the separate of the sepa

- 1. Create a relation schema for the relationship
- 2. Put the key of the many-side entity set into that relation schema

Solution:

employee(<u>ID</u>, name)
department(<u>department_name</u>, loc)

works_for(<u>ID</u>, department_name)

Example 2

Don't create an extra relation schema.

- 1. Create the relation schema for both entity sets
- 2. Store the relationship in the many-side entity set.

employee(<u>ID</u>, name, dept_name)
department(<u>department_name</u>, loc)

Converting Relationship-Sets that have Attributes