

Examen de muestra/práctica 5 Mayo 2017, preguntas

Física Bàsica (Universitat Autònoma de Barcelona)

Prova de medis materials (exemple 1)

Cognoms:	Grups
Nom:	NIA:

- 1. Considereu dos cilindres concèntrics de radis R i R+a (a>0) de longitud L, amb $L\gg R+a$. El cilindre interior te una càrrega total 3kL (distribuïda uniformement), amb k constant, i el cilindre exterior una càrrega superficial 5kL. La regió entre els dos cilindres s'omple amb un material dielèctric de permitivitat constant ϵ . Calculeu la diferència de potencial que hi ha entre els dos cilindres.
- 2. Un cilindre de longitud infinita i de radi R transporta una densitat volúmica de corrent en la direcció de l'eix del cilindre de valor J=C+Kr, on r és la distància a l'eix del cilindre i C, K són constants. El cilindre és de ferro (considereu-lo un material lineal, isòtrop i homogeni) amb permeabilitat magnètica μ Calculeu la inducció magnètica \vec{B} dins el ferro (r < R).
- 3. Expliqueu com es defineix la imantació (\vec{M}) , la intensitat magnètica (\vec{H}) i la permeabilitat d'un medi magnètic.
 - Escriviu a que és igual la circulació en un circuit tancat de la intensitat magnètica (\vec{H}) .
- 4. Expliqueu per a què serveixen les densitats de càrrega de polarització (o càrrega lligada). Un cilindre de radi R, té el seu eix al llarg de l'eix x i va de x=b fins x=b+L. El cilindre està polaritzat de manera que $\vec{P}=(\alpha+\beta x^2)\,\vec{e}_x$ (α i β són constants). Trobeu les densitats de càrrega de polarització (o càrrega lligada).

Prova de medis materials (exemple 2)

Cognoms: Grup: Nom: NIA:

- 1. Considereu dos cilindres concèntrics de radis R i R+3a (a>0) de longitud L, amb $L\gg R+3a$. El cilindre interior te una càrrega total kL (distribuïda uniformement), amb k constant, i el cilindre exterior una càrrega superficial 5kL. La regió entre els dos cilindres s'omple amb un material dielèctric de permitivitat constant ϵ . Calculeu la diferència de potencial que hi ha entre els dos cilindres.
- 2. Un cilindre de longitud infinita i de radi R transporta una densitat volúmica de corrent en la direcció de l'eix del cilindre. El valor és $J=C+Kr^2$, on r és la distància a l'eix del cilindre i C, K són constants. El cilindre és de ferro (considereu-lo un material lineal, isòtrop i homogeni) amb permeabilitat magnètica μ . Calculeu la inducció magnètica \vec{B} dins el ferro (r < R).
- 3. Expliqueu com es defineix la imantació (\vec{M}) , la intensitat magnètica (\vec{H}) i la permeabilitat d'un medi magnètic. Escriviu a que és igual la circulació en un circuit tancat de la intensitat magnètica (\vec{H}) .
- 4. Expliqueu per a què serveixen les densitats de càrrega de polarització (o càrrega lligada). Un cilindre de radi R, té el seu eix al llarg de l'eix x i va de x=a fins x=a+L. El cilindre està polaritzat de manera que

$$\vec{P} = (\alpha + \frac{\beta}{x})\,\vec{e}_x,$$

a on α i β són constants. Trobeu les densitats de càrrega de polarització (o càrrega lligada).