

Evolução dos Hardwares de Entrada e Saída para cenários XR

João Estevão Schlemm Costa

Realidade Aumentada e Virtual Professor Marcelo da Silva Hounsell 03/05/2025

Objetivo

Apresentar histórico recente e a evolução das tecnologias de hardware de Entrada (INPUT-5), Saída (OUTPUT-4) para XR através do detalhamento e caracterização dos dispositivos.

INPUT-5 Mãos

Lista Atual

- a. Data Glove + PowerGlove
- b. Luva Eletro-tátil
- c. Cyber Grasp
- d. SenseGlove Nova
- e. Emerge Wave-1
- f. Ultraleap Stratos
- g. Tap Strap
- h. Myo Armband
- i. Leap Motion

Extras

- 1. Manus Prime II [VR Glove]
- 2. CaptoGlove
- 3. Plexus VR Glove
- 4. Hi5 VR Glove [Noitom]
- 5. StretchSense MoCap Pro
- 6. VRfree Glove [Sensoryx]

Luvas de Dados (Data Glove) & PowerGlove (Nintendo)

Parâmetro	Descrição
O que captura	Posição, movimento dos dedos, inclinação (limitada), pressão em modelos avançados
DOF	5-22 graus (varia conforme modelo; PowerGlove: 2-3 DOF por dedo, limitada)
Princípio	Flex sensors (resistivos), acelerômetros, sensores ópticos (em versões mais modernas)
Fonte dos Dados	Mão e dedos
Modo	Entrada (PowerGlove: entrada); algumas Data Gloves: háptico opcional
Controle	Natural (gestos/posturas), biomecânico (posição dos dedos)
Referencial	Absoluto (alguns modelos), relativo (PowerGlove, por posição inicial)
Latência	Média-alta (PowerGlove: ~100 ms, Data Glove: depende do modelo)
Volume de trabalho	Luva de tecido flexível, leve (<200g), alcance mãos
Lançamento/Status	PowerGlove: 1989, descontinuado; Data Glove: desde 1980, ainda há modelos atuais
Venda/Custo	PowerGlove: não, Data Glove: difícil/no Brasil, US\$1.000–US\$10.000
Limitações	Baixa precisão, lag, desconforto, calibragem complexa, pouca compatibilidade

Referência científica: Sturman & Zeltzer, 1994, "A Survey of Glove-based Input" (DOI). O artigo revisa luvas baseadas em sensores para entrada em sistemas computacionais.

Luva Eletro-tátil

Parâmetro	Descrição
O que captura	Movimento dos dedos, pressão, posição (em alguns casos), além de gerar estímulo tátil
DOF	5-10 DOF (varia conforme modelo/projeto)
Princípio	Estimulação elétrica da pele (tátil), sensores resistivos, IMUs
Fonte dos Dados	Mão e dedos
Modo	Entrada e háptico
Controle	Natural (gestos/postura), biomecânico (posição/pressão)
Referencial	Geralmente relativo
Latência	Baixa-média (<50 ms em projetos recentes)
Volume de trabalho	Luva leve (<150g), limitada à mão
Lançamento/Status	Em pesquisa; protótipos, poucos comerciais
Venda/Custo	Não disponível comercialmente no Brasil
Limitações	Conforto, calibragem, segurança elétrica, baixa resolução tátil

Referência: Konyo et al., 2018, "Wearable haptic interfaces for cutaneous sensation using flexible electronics and electrical stimulation" (<u>IEEE Xplore</u>).

Cyber Grasp

Parâmetro	Descrição
O que captura	Movimento dos dedos, força aplicada, posição
DOF	5-10 (força individual por dedo)
Princípio	Exoesqueleto mecânico com atuadores, sensores de posição
Fonte dos Dados	Mão e dedos
Modo	Entrada e háptico (feedback de força)
Controle	Natural (gestos), biomecânico (força/posição)
Referencial	Absoluto
Latência	~20-30 ms (segundo documentação)
Volume de trabalho	Exoesqueleto rígido, ~500g, limitado à mão
Lançamento/Status	Desde 2000, ativo em pesquisa
Venda/Custo	Não disponível no Brasil, US\$10.000+
Limitações	Custo elevado, desconforto, tamanho, precisa de base fixa

Referência: Bouzit et al., 2002, "CyberGrasp™: A force feedback glove based on exoskeleton" (DOI). O artigo detalha a arquitetura do dispositivo e aplicações em simulação e teleoperação.

SenseGlove Nova

Parâmetro	Descrição
O que captura	Movimento dos dedos, posição, força, pressão
DOF	Até 20 (4 por dedo, palma, força)
Princípio	Sensores flexíveis, atuadores de resistência/força, IMUs
Fonte dos Dados	Mão e dedos
Modo	Entrada e háptico
Controle	Natural, biomecânico
Referencial	Absoluto
Latência	~20-30 ms
Volume de trabalho	Leve (~300g), adaptável à maioria das mãos
Lançamento/Status	2021, ativo
Venda/Custo	Não oficialmente no Brasil, US\$5.000-6.000
Limitações	Custo, curva de aprendizado, ainda não portátil totalmente

Referência: van der Meijden et al., 2020, "Evaluating a force feedback glove for virtual reality applications" (<u>IEEE Xplore</u>).

Emerge Wave-1

Parâmetro	Descrição
O que captura	Não captura dados; gera sensação tátil no ar via ultrassom
DOF	N/A (feedback em múltiplos pontos simultâneos)
Princípio	Ultrassom focalizado
Fonte dos Dados	Mãos (feedback no espaço)
Modo	Só háptico (feedback), não entrada
Controle	N/A
Referencial	Absoluto
Latência	Muito baixa (<10 ms)
Volume de trabalho	Pequeno, ~30x30x30cm, peso ~700g
Lançamento/Status	2022, ativo
Venda/Custo	Não disponível no Brasil, ~US\$500
Limitações	Alcance limitado, sem captura de movimento, sensação limitada

Referência: Carter et al., 2013, "UltraHaptics: Multi-point mid-air haptic feedback for touch surfaces". Conceitos semelhantes de feedback tátil sem contato. (DOI).

Ultraleap Stratos

Parâmetro	Descrição
O que captura	Não captura, apenas gera sensação tátil aérea
DOF	N/A (múltiplos pontos de feedback)
Princípio	Ultrassom focalizado
Fonte dos Dados	Mãos
Modo	Só háptico
Controle	N/A
Referencial	Absoluto
Latência	Muito baixa
Volume de trabalho	~30x30x15cm, peso ~1kg
Lançamento/Status	2020, ativo
Venda/Custo	Não disponível no Brasil, ~US\$1.000-2.000
Limitações	Alcance, intensidade tátil limitada, exige controle externo (ex: Leap Motion)

Referência: Lopes et al., 2017, "Providing haptics to walls & heavy objects in virtual reality by means of electrical muscle stimulation" (relaciona-se à simulação tátil sem contato).

Tap Strap

Parâmetro	Descrição	14 (1)
O que captura	Movimento, toque, gestos	
DOF	5 (um por dedo)	
Princípio	IMUs (acelerômetros/giroscópios) em cada dedo	
Fonte dos Dados	Mão e dedos	
Modo	Entrada	
Controle	Natural (gestos, toques)	
Referencial	Relativo	
Latência	Baixa (~20 ms)	
Volume de trabalho	Leve (~100g), ambidestro	
Lançamento/Status	2018, ativo	
Venda/Custo	Não oficial no Brasil, ~US\$200-250	
Limitações	Curva de aprendizado, precisão limitada, poucos a	aplicativos compatíveis

Referência: Tapia et al., 2015, "Wearable computing: A review of current status and future challenges" (DOI).

Myo Armband

Parâmetro	Descrição
O que captura	Sinais mio elétricos (EMG), movimento, orientação, gestos
DOF	8 canais EMG + 9 DOF (IMU)
Princípio	Eletrodos superficiais, acelerômetro, giroscópio, magnetômetro
Fonte dos Dados	Antebraço (gestos da mão)
Modo	Entrada
Controle	Natural (gestos), biomecânico (músculo, movimento)
Referencial	Relativo
Latência	Baixa (~15-30 ms)
Volume de trabalho	Leve (~100g), ajustável ao antebraço
Lançamento/Status	2014, descontinuado (2018)
Venda/Custo	Não disponível, US\$200 no lançamento
Limitações	Compatibilidade de software, precisão de gestos, descontinuado

Referência: Wilson et al., 2018, "Myo armband for muscle activity assessment: A review" (DOI).

Leap Motion

Parâmetro	Descrição
O que captura	Posição, movimento, gestos das mãos/dedos no ar
DOF	~20+ (todos dedos e mão simultaneamente)
Princípio	Câmeras estereoscópicas IR + processamento por IA
Fonte dos Dados	Mãos (sem contato)
Modo	Entrada
Controle	Natural (gestos, posturas)
Referencial	Absoluto
Latência	Baixa (~15-20 ms)
Volume de trabalho	Pequeno (~80g), área de captura ~60x60x60cm
Lançamento/Status	2013, ativo
Venda/Custo	Sim, importação (~US\$100-150)
Limitações	Sensível à luz, não detecta toque/força, alcance limitado

Referência: Weichert et al., 2013, "Analysis of the accuracy and robustness of the Leap Motion controller" (DOI).

Manus Prime II (Manus VR Glove)

Parâmetro	Descrição
O que captura	Movimento dos dedos, posição, orientação, aceleração, gestos
DOF	Até 22 (cada articulação dos dedos + mão)
Princípio	IMUs (acelerômetro, giroscópio, magnetômetro) em cada dedo, sensores flexíveis
Fonte dos Dados	Mãos e dedos
Modo	Entrada
Controle	Natural (gestos, posturas), Biomecânico (posição, velocidade, aceleração)
Referencial	Absoluto (via tracking externo) ou relativo
Latência	Baixa (~5-15 ms)
Volume de trabalho	Leve (~70g cada luva), alcance limitado à mão
Lançamento/Status	2020, ativo
Venda/Custo	Não oficialmente, importação (~US\$3.000+)
Limitações	Custo elevado, necessidade de calibração, não inclui feedback háptico
	Referência científica: Caeiro Rodriguez, Manuel & González, Iván & Mikic Fonte, Fernando &

Referência científica: Caeiro Rodriguez, Manuel & González, Iván & Mikic Fonte, Fernando & Llamas Nistal, Martín. (2021). A Systematic Review of Commercial Smart Gloves: Current 13 Status and Applications. Sensors. 21. 2667. 10.3390/s21082667. (DOI)

CaptoGlove

Parâmetro	Descrição
O que captura	Movimento dos dedos, pressão, posição, orientação, gestos
DOF	10 (2 por dedo)
Princípio	Sensores flexíveis, IMUs
Fonte dos Dados	Mãos e dedos
Modo	Entrada
Controle	Natural (gestos)
Referencial	Relativo
Latência	Baixa (~10 ms)
Volume de trabalho	Leve (~85g), área limitada à mão
Lançamento/Status	2017, ativo
Venda/Custo	Não oficialmente, importação (~US\$500-600)
Limitações	Precisão limitada para movimentos finos, sem feedback de força
#UDESC	Referência científica: Caeiro Rodriguez, Manuel & González, Iván & Mikic Fonte, Fernando & Llamas Nistal, Martín. (2021). A Systematic Review of Commercial Smart Gloves: Current 14 Status and Applications. Sensors. 21. 2667. 10.3390/s21082667. (DOI)

Plexus VR Glove

Parâmetro	Descrição
O que captura	Movimento dos dedos, posição, orientação
DOF	12-15 (3 por dedo, palma)
Princípio	Sensores flexíveis, IMUs
Fonte dos Dados	Mãos e dedos
Modo	Entrada
Controle	Natural (gestos, posturas)
Referencial	Absoluto/relativo
Latência	Baixa (~10 ms)
Volume de trabalho	Leve (~70g), área limitada à mão
Lançamento/Status	2021, ativo
Venda/Custo	Não oficialmente, importação (~US\$1.000+)
Limitações	Disponibilidade limitada, sem feedback háptico
#UDESC	Referência científica: Wilkinson, Michael & Brantley, Sean & Feng, Jing. (2021). A Mini Review of Presence and Immersion in Virtual Reality. Proceedings of the Human Factors and

Ergonomics Society Annual Meeting. 65. 1099-1103. 10.1177/1071181321651148. (DOI)

Hi5 VR Glove (Noitom)

Parâmetro	Descrição
O que captura	Movimento dos dedos, posição, orientação
DOF	10-15
Princípio	IMUs, sensores flexíveis, integração com sistemas de tracking externos
Fonte dos Dados	Mãos e dedos
Modo	Entrada
Controle	Natural (gestos)
Referencial	Absoluto (quando integrado com rastreamento externo)
Latência	Baixa (~15 ms)
Volume de trabalho	Leve (~75g), área limitada à mão
Lançamento/Status	2018, ativo
Venda/Custo	Não oficialmente, importação (~US\$1.000-1.500)
Limitações	Dependente de tracking externo para alta precisão, sem feedback tátil
#UDESC	Referência científica: Caeiro Rodriguez, Manuel & González, Iván & Mikic Fonte, Fernando & Llamas Nistal, Martín. (2021). A Systematic Review of Commercial Smart Gloves: Current 16 Status and Applications. Sensors. 21. 2667. 10.3390/s21082667. (DOI)

StretchSense MoCap Pro

Parâmetro	Descrição
O que captura	Movimento dos dedos, flexão, extensão
DOF	16+ (cada articulação dos dedos)
Princípio	Sensores capacitivos de alongamento
Fonte dos Dados	Mãos e dedos
Modo	Entrada
Controle	Biomecânico (posição, flexão)
Referencial	Absoluto
Latência	Muito baixa (<5 ms)
Volume de trabalho	Muito leve (~45g), área limitada à mão
Lançamento/Status	Ativo (2022)
Venda/Custo	Não oficialmente, importação (~US\$3.000+)
Limitações	Custo elevado, sem feedback de força, foco em captura de movimento para animação
#UDESC	Referência científica : Caeiro Rodriguez, Manuel & González, Iván & Mikic Fonte, Fernando & Llamas Nistal, Martín. (2021). A Systematic Review of Commercial Smart Gloves: Current 17

Status and Applications. Sensors. 21. 2667. 10.3390/s21082667. (DOI)

VRfree Glove (Sensoryx)

Parâmetro	Descrição
O que captura	Movimento dos dedos, posição 3D das mãos, gestos
DOF	21 (articulações dos dedos e mão)
Princípio	IMUs, sensores ópticos e magnéticos
Fonte dos Dados	Mãos e dedos
Modo	Entrada
Controle	Natural (gestos, posturas)
Referencial	Absoluto
Latência	Baixa (~20 ms)
Volume de trabalho	Leve (~80g), área limitada à mão
Lançamento/Status	Ativo (2021)
Venda/Custo	Não oficialmente, importação (~US\$2.000+)
Limitações	Preço, calibração necessária, precisão depende do ambiente
UDFSC	Referência científica: Minh, Vu & Moezzi, Reza & Katushin, Nikita. (2019). Haptic Smart Glove for Augmented and Virtual Reality. Sensor Letters. 17. 1-7. 10.1166/sl.2019.4070.

(DOI)

Manus Quantum Metagloves

Parâmetro	Descrição
O que captura	Movimento individual dos dedos (todas as articulações), orientação e posição da mão, gestos
DOF	24+ (cada articulação dos dedos, incluindo abdução/adução, e movimentação da palma)
Princípio	Sensores magnéticos Quantum Track™ exclusivos, IMUs, sensores flexíveis
Fonte dos Dados	Mãos e dedos
Modo	Entrada
Controle	Natural (gestos, posturas), Biomecânico (posição, velocidade, aceleração), feedback tátil
Referencial	Absoluto (com Quantum Trackers externos) ou relativo
Latência	Muito baixa (<5 ms)
Volume de trabalho	Leve (~70g cada luva), liberdade total de movimento das mãos
Lançamento/Status	2022, ativo
Venda/Custo	Não oficialmente (importação possível, preço elevado, acima de US\$10.000/par)
Limitações	Alto custo, necessidade Quantum Trackers externos para tracking absoluto, foco profissional

Referência científica: Mannam, Pragna & Shaw, Kenneth & Bauer, Dominik & Oh, Jean & Pathak, Deepak & Pollard, Nancy. (2023). A Framework for Designing Anthropomorphic Soft Hands through Interaction. 10.48550/arXiv.2306.04784. (DOI)

Manus Quantum Metagloves

Parâmetro	Descrição
O que captura	Movimento individual dos dedos (todas as articulações), orientação e posição da mão, gestos
DOF	24+ (cada articulação dos dedos, incluindo abdução/adução, e movimentação da palma)
Princípio	Sensores magnéticos Quantum Track™ exclusivos, IMUs, sensores flexíveis
Fonte dos Dados	Mãos e dedos
Modo	Entrada
Controle	Natural (gestos, posturas), Biomecânico (posição, velocidade, aceleração), feedback tátil
Referencial	Absoluto (com Quantum Trackers externos) ou relativo
Latência	Muito baixa (<5 ms)
Volume de trabalho	Leve (~70g cada luva), liberdade total de movimento das mãos
Lançamento/Status	2022, ativo
Venda/Custo	Não oficialmente (importação possível, preço elevado, acima de US\$10.000/par)
Limitações	Alto custo, necessidade Quantum Trackers externos para tracking absoluto, foco profissional

Referência científica: Mannam, Pragna & Shaw, Kenneth & Bauer, Dominik & Oh, Jean & Pathak, Deepak & Pollard, Nancy. (2023). A Framework for Designing Anthropomorphic Soft Hands through Interaction. 10.48550/arXiv.2306.04784. (DOI)

Evolução Dispositivos Entrada

Linha Evolutiva Geral

Dispositivos Ópticos Simples (Leap Motion, Kinect)

- Leap Motion e sensores ópticos (como o Kinect) inauguraram a captação de gestos manuais no ar, sem contato físico.
- Limitações: dificuldade com oclusão de dedos, precisão limitada em ambientes com muita luz.

Luvas Sensorizadas de Primeira Geração (Data Glove, CyberGlove)

- Incorporam sensores flexíveis e, depois, IMUs.
- CaptoGlove e Hi5 VR Glove ampliam o uso com sensores flexíveis e integração a sistemas de VR.

Luvas Avançadas IMUs e Sensores Múltiplos (Manus Prime II, Plexus, StretchSense, VRfree)

- Evolução: Maior precisão, captura dos movimentos individuais dos dedos e da mão, menor latência.
- Exemplo: Manus Prime II representa um salto em precisão, leveza e integração com plataformas VR/AR industriais e de entretenimento.
- StretchSense foca em sensores capacitivos, melhorando a fidelidade da captura para animação e biomecânica.

Integração com Feedback Háptico/Force Feedback

- Alguns modelos recentes (ex: Manus Quantum, não listado) começam a incorporar feedback tátil e de força, promovendo experiências mais realistas.

Evolução Dispositivos Entrada

Resumo da Relação Evolutiva

- Leap Motion (óptico, sem contato) → CaptoGlove/Hi5 (sensores flexíveis/IMU) → Manus Prime II, Plexus, VRfree, StretchSense (luvas multissensoriais de alta precisão, integração profissional e científica).
- O avanço vai do rastreamento grosseiro de gestos para a captura detalhada da biomecânica da mão, com menor latência e maior fidelidade.
- A tendência atual é a miniaturização, maior liberdade de movimento, integração sem fio e, cada vez mais, o feedback tátil/força.

Evolução Dispositivos Entrada

Linha do tempo

1980: Primeiras Data Gloves (ex: VPL Data Glove) – Sensores de flexão, interface rudimentar.

1990: CyberGlove – Mais sensores, primeira aplicação comercial em animação e pesquisa.

2010: Leap Motion – Rastreamento óptico sem contato, popularização em VR/AR.

2015: CaptoGlove – Sensores flexíveis, integração com jogos e VR.

2017: Hi5 VR Glove – IMUs + sensores flexíveis, aplicações em VR.

2018: Manus Prime – Integração profissional, tracking mais preciso.

2020: Plexus VR Glove / StretchSense – Alta precisão, sensores capacitivos, foco em animação.

2022: Manus Quantum Metagloves – Rastreamento submilimétrico, feedback háptico, referência em mocap e VR profissional.

Dispositivos Saída OUTPUT-4 Optical See Through

Lista Atual

- a. [Google] Glass
- b. [Qualcomm] Wireless AR Smart Viewer
- c. [Meta] 2 AR Headset
- d. [Apple] Vision Pro
- e. [VIVO] AR Glasses
- f. [Nreal] Xreal Light
- g. [Lenovo] ThinkReality A6, X3
- h. [Vuzix] Blade Smartglasses
- i. [Xiaomi] Smart Glasses
- j. [Oculus] RIFT, GO, Quest2, 3, PRO
- k. [Lumus] Maximus OE Spec (AR Glasses)
- I. [Canon] MREAL AR
- m.[North] Focals AR
- n. [Microsoft] Hololens 1 e 2

Extras

- 1. [Epson] Moverio
- 2. [Magic Leap] One
- 3. [Osterhout Design Group] ODG R-9
- 4. [Realwear] HMT-1
- 5. [Everysight] Raptor
- 6. [BMW] Connected Ride Smartglasses

Glass [Google]

Parâmetro	Descrição
Imagem	Emitida (Display projetado sobre lente)
Projeção	Forward Projection
Visada Direta	OpticalSeeThrough
Uso	Individual
Flickering	Baixo a inexistente
Blur/Ghosting	Baixo/Algumas versões iniciais apresentavam ghosting em ambientes claros
Lagging	Baixo (~40 ms)
FoV-h/v	~14° diagonal
Brilho/Contraste	Médio
Tecnologia	Prism Display (LED microdisplay)
Venda no Brasil	Não oficialmente; sem assistência
Frame Rate	~60 Hz
	Referência científica: Victoire, Amalraj & Vasuki, M. & A.karunamurthy, Dr & Mazin, Muhammad. (2023). "Google Glass and Virtual Reality a Comprehensive Review of Applications Challenges and Future

"Google Glass and Virtual Reality a Comprehensive Review of Applications Challenges and Future Directions" ARTI CLE I N FO ABS TRACT. Quing International Journal of Innovative Research in Science and Engineering. 2. 24-36. 10.54368/qijirse.2.2.0004. . (DOI)

Wireless AR Smart Viewer [Qualcomm]

Parâmetro	Descrição
Imagem	Emitida
Projeção	Forward Projection
Visada Direta	OpticalSeeThrough
Uso	Individual
Flickering	Muito baixo
Blur/Ghosting	Mínimo
Lagging	Muito baixo (latência reduzida por conexão Wi-Fi 6E)
FoV-h/v	~40° diagonal
Brilho/Contraste	Alto (micro-OLED)
Tecnologia	Micro-OLED
Venda no Brasil	Não oficialmente
Frame Rate	~90 Hz Referência científica: Wagner, Daniel & Barakonvi, István & Siklossy, Istvan & Wright, Jay & Ashok, Roy &

Referência científica: Wagner, Daniel & Barakonyi, István & Siklossy, Istvan & Wright, Jay & Ashok, Roy & Diaz, Serafin & Macintyre, Blair & Schmalstieg, Dieter. (2011). Building your vision with Qualcomm's Mobile Augmented Reality (AR) Platform: AR on mobile devices.. 1. 10.1109/ISMAR.2011.6092355. (DOI)

Meta 2 AR Headset

Parâmetro	Descrição	
Imagem	Emitida	
Projeção	Forward Projection	11.0 O. O. M
Visada Direta	OpticalSeeThrough	
Uso	Individual	
Flickering	Baixo	
Blur/Ghosting	Baixo a moderado (dependendo da calibração)	
Lagging	Baixo a moderado (~40-60 ms)	
FoV-h/v	~90° diagonal	
Brilho/Contraste	Médio	
Tecnologia	LCD	
Venda no Brasil	Não	
Frame Rate	~60 Hz	

Vision Pro [Apple]

Parâmetro	Descrição
Imagem	Emitida
Projeção	Forward Projection
Visada Direta	Video SeeThrough
Uso	Individual
Flickering	Inexistente
Blur/Ghosting	Muito baixo
Lagging	Muito baixo (~12 ms)
FoV-h/v	~100° estimado
Brilho/Contraste	Muito alto (micro-OLED)
Tecnologia	Micro-OLED
Venda no Brasil	Não oficialmente (importação possível, sem assistência)
Frame Rate	90/96/100 Hz

Referência científica: Waisberg, Ethan & Ong, Joshua & Masalkhi, Mouayad & Zaman, Nasif & Sarker, Prithul & Tavakkoli, Alireza. (2023). Apple Vision Pro and why extended reality will revolutionize the future of medicine. Irish Journal of Medical Science (1971 -). 193. 10.1007/s11845-023-03437-z. (DOI)

AR Glasses [VIVO]

Parâmetro	Descrição
Imagem	Emitida
Projeção	Forward Projection
Visada Direta	OpticalSeeThrough
Uso	Individual
Flickering	Baixo
Blur/Ghosting	Baixo
Lagging	Baixo
FoV-h/v	~43° diagonal
Brilho/Contraste	Médio
Tecnologia	Micro-LED
Venda no Brasil	Não
Frame Rate	~60 Hz

XREAL Light [Nreal]

Parâmetro	Descrição
Imagem	Emitida
Projeção	Forward Projection
Visada Direta	OpticalSeeThrough
Uso	Individual
Flickering	Baixo
Blur/Ghosting	Baixo
Lagging	Baixo (~20 ms)
FoV-h/v	~52° diagonal
Brilho/Contraste	Bom
Tecnologia	Micro-OLED
Venda no Brasil	Não oficialmente
Frame Rate	~60 Hz

ThinkReality A6, X3 [Lenovo]

Parâmetro	Descrição
Imagem	Emitida
Projeção	Forward Projection
Visada Direta	OpticalSeeThrough
Uso	Individual
Flickering	Baixo
Blur/Ghosting	Baixo
Lagging	Baixo (~20 ms)
FoV-h/v	~40° diagonal
Brilho/Contraste	Médio
Tecnologia	OLED
Venda no Brasil	Não oficialmente
Frame Rate	~60 Hz

Blade Smartglasses [Vuzix]

Parâmetro	Descrição
Imagem	Emitida
Projeção	Forward Projection
Visada Direta	OpticalSeeThrough
Uso	Individual
Flickering	Baixo
Blur/Ghosting	Baixo
Lagging	Baixo
FoV-h/v	~20° diagonal
Brilho/Contraste	Médio
Tecnologia	Waveguide (LED)
Venda no Brasil	Não oficialmente
Frame Rate	~60 Hz

Smart Glasses [Xiaomi]

Parâmetro	Descrição	
Imagem	Emitida	
Projeção	Forward Projection	
Visada Direta	OpticalSeeThrough	
Uso	Individual	
Flickering	Baixo	
Blur/Ghosting	Baixo	
Lagging	Baixo	
FoV-h/v	Pequeno (~10-15° estimado)	
Brilho/Contraste	Médio	
Tecnologia	MicroLED (monocromático)	
Venda no Brasil	Não	
Frame Rate	~60 Hz	

Rift, Go, Quest 2, Quest 3, Quest Pro [Oculus]

Parâmetro	Descrição
Imagem	Emitida
Projeção	Forward Projection
Visada Direta	Video SeeThrough (nos modelos Quest com passthrough)
Uso	Individual
Flickering	Baixo
Blur/Ghosting	Baixo a moderado (ghosting pode ocorrer em movimento rápido)
Lagging	Muito baixo (~20 ms)
FoV-h/v	Rift: 110°, Quest 2/3: 97-110°
Brilho/Contraste	Alto (LCD/OLED)
Tecnologia	Rift: OLED, Quest: LCD/OLED
Venda no Brasil	Não oficialmente; importação comum
Frame Rate	Rift: 90 Hz, Quest 2: 72/90/120 Hz

Referência científica: Emma Raymer, Áine MacDermott, Alex Akinbi, (2023). Virtual reality forensics: Forensic analysis of Meta Quest 2. Forensic Science International: Digital Investigation, Volume 47, 301658, 34 ISSN 2666-2817. (DOI)

Maximus OE Spec [Lumus]

Parâmetro	Descrição
Imagem	Emitida
Projeção	Forward Projection
Visada Direta	OpticalSeeThrough
Uso	Individual
Flickering	Baixo
Blur/Ghosting	Baixo
Lagging	Baixo
FoV-h/v	50° diagonal
Brilho/Contraste	Alto
Tecnologia	Waveguide (LED/OLED)
Venda no Brasil	Não
Frame Rate	~60 Hz

MREAL AR [Canon]

Parâmetro	Descrição
Imagem	Emitida
Projeção	Forward Projection
Visada Direta	OpticalSeeThrough
Uso	Individual
Flickering	Baixo
Blur/Ghosting	Baixo
Lagging	Baixo (~20 ms)
FoV-h/v	~60° diagonal
Brilho/Contraste	Médio
Tecnologia	LCD/OLED
Venda no Brasil	Não
Frame Rate	~60 Hz

Referência científica: Akihiro Kiuchi, Anran Qi, Eve Mingxiao Li, DáVid MaruscsáK, Christian Sandor, and Takeo Igarashi. 2023. PerfectFit: Custom-Fit Garment Design in Augmented Reality. In SIGGRAPH Asia 2023 36 XR (SA '23). Association for Computing Machinery, New York, NY, USA, Article 23, 1–2. (DQI)

Dispositivos Saida

Focals AR [North]

Parâmetro	Descrição
Imagem	Emitida
Projeção	Forward Projection
Visada Direta	OpticalSeeThrough
Uso	Individual
Flickering	Baixo
Blur/Ghosting	Baixo
Lagging	Baixo
FoV-h/v	Pequeno (~15° diagonal)
Brilho/Contraste	Médio
Tecnologia	Retinal projection (MicroLED)
Venda no Brasil	Não, produto descontinuado
Frame Rate	~60 Hz

Dispositivos Saida

Hololens 1 e 2 [Microsoft]

Parâmetro	Descrição				
Imagem	Emitida				
Projeção	Forward Projection				
Visada Direta	OpticalSeeThrough				
Uso	Individual				
Flickering	Baixo				
Blur/Ghosting	Leve (mais perceptível na versão 1, muito reduzido na 2)				
Lagging	Baixo (~10-20 ms)				
FoV-h/v	Hololens 1: 34° diagonal; Hololens 2: 52° diagonal				
Brilho/Contraste	Alto				
Tecnologia	Waveguide (Laser/LED)				
Venda no Brasil	Não oficialmente (importação possível)				
Frame Rate	~60 Hz				

Referência científica: Balakrishnan, P., Guo, HJ. (2024). HoloLens 2 Technical Evaluation as Mixed Reality Guide. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. HCII 2024. Lecture Notes 38 in Computer Science, vol 14706. Springer, Cham. (DOI)

Epson Moverio

Parâmetro	Descrição
Imagem	Emitida
Projeção	Forward Projection
Visada Direta	OpticalSeeThrough
Uso	Individual
Flickering	Baixo
Blur/Ghosting	Baixo
Lagging	Baixo (~20 ms)
FoV-h/v	~23° diagonal
Brilho/Contraste	Médio
Tecnologia	Si-OLED (Silicon OLED)
Venda no Brasil	Sim, via revendedores; assistência limitada
Frame Rate	~60 Hz

Magic Leap One

Parâmetro	Descrição	
Imagem	Emitida	
Projeção	Forward Projection	
Visada Direta	OpticalSeeThrough	
Uso	Individual	
Flickering	Muito baixo	
Blur/Ghosting	Baixo (melhor que maioria dos concorrentes)	
Lagging	Muito baixo (~10-15 ms)	
FoV-h/v	~50° diagonal	
Brilho/Contraste	Alto	
Tecnologia	Waveguide (LED)	
Venda no Brasil	Não oficialmente, apenas importação	
Frame Rate	~60 Hz	

Referência científica: Zari, Giulia & Condino, Sara & Cutolo, Fabrizio & Ferrari, Vincenzo. (2023). Magic Leap 1 versus Microsoft HoloLens 2 for the Visualization of 3D Content Obtained from Radiological Images. Sensors. 23. 3040. 10.3390/s23063040. (DOI)

ODG R-9 (Osterhout Design Group)

Parâmetro	Descrição
Imagem	Emitida
Projeção	Forward Projection
Visada Direta	OpticalSeeThrough
Uso	Individual
Flickering	Baixo
Blur/Ghosting	Baixo
Lagging	Baixo (~20 ms)
FoV-h/v	~50° diagonal
Brilho/Contraste	Alto
Tecnologia	OLED
Venda no Brasil	Não (produto descontinuado)
Frame Rate	~60 Hz

HMT-1 [Realwear]

Parâmetro	Descrição				
Imagem	Emitida (microdisplay emite luz diretamente para o usuário)				
Projeção	Não se aplica (microdisplay próximo ao olho, não há projeção em tela ou ambiente)				
Visada Direta	Optical SeeThrough (usuário enxerga o ambiente com display óptico posicionado ao lado do campo de visão)				
Uso	Individual				
Flickering	Baixo/ausente (tecnologia de microdisplay, sem relatos relevantes de flicker)				
Blur/Ghosting	Baixo (qualidade da imagem adequada para leitura de instruções, mas não para gráficos complexos)				
Lagging	Muito baixo (resposta em tempo real a comandos de voz e exibição de imagem/vídeo)				
FoV-h/v	FoV horizontal: ~20°; FoV vertical: ~10° (campo de visão restrito, suficiente para informações textuais)				
Brilho/Contraste	Ajustável; brilho máximo ~500 nits, contraste suficiente para uso externo e interno				
Tecnologia	LCD (microdisplay transmissivo, tecnologia LCOS)				
Venda no Brasil	Sim; disponível via importadores oficiais e revendas industriais; possui assistência técnica autorizada				
Frame Rate	60 Hz (frame rate do microdisplay)				

Referência científica: Lackner, Katharina & Mezhuyev, Vitaliy. (2025). Head-Mounted Tablets on the Shop Floor — An Augmented Reality Acceptance Model: A Pilot Study. International Journal of Innovation and Technology Management. 22. 10.1142/S0219877024500640. (DOI)

Raptor [Everysight]

Parâmetro	Descrição
Imagem	Emitida
Projeção	Forward Projection
Visada Direta	OpticalSeeThrough
Uso	Individual
Flickering	Baixo
Blur/Ghosting	Baixo
Lagging	Baixo
FoV-h/v	~20° diagonal
Brilho/Contraste	Médio
Tecnologia	OLED
Venda no Brasil	Não
Frame Rate	~60 Hz

ConnectedRide Smartglasses (BMW)

Parâmetro	Descrição				
Imagem	Emitida				
Projeção	Forward Projection				
Visada Direta	OpticalSeeThrough				
Uso	Individual				
Flickering	Baixo				
Blur/Ghosting	Baixo				
Lagging	Baixo (~20 ms, depende de pareamento Bluetooth/smartphone)				
FoV-h/v	~15° diagonal (aproximado, informação exata não divulgada)				
Brilho/Contraste	Médio-alto (ajustável manualmente para visibilidade sob luz solar)				
Tecnologia	OLED (combinado com projetor de microdisplay)				
Venda no Brasil	Não oficialmente (importação possível, sem assistência técnica local)				
Frame Rate	~60 Hz				

Linha Evolutiva Geral

Primeiros Head-Mounted Displays (HMDs) e Óculos AR Simples

• Sony SmartEyeglass, ODG R-9 e Epson Moverio BT-300 marcam a transição dos displays LCD/OLED convencionais para projetores ópticos compactos, mas com FoV restrito e brilho limitado.

Óculos com Waveguides e Micro-Displays Avançados

• Google Glass, Vuzix Blade, North Focals, Optinvent ORA-2 trazem miniaturização, melhor integração com smartphones e interfaces mais naturais, mas ainda voltados para notificações e uso leve.

Headsets de Alta Imersão com Tracking Avançado

- Hololens 1/2, Magic Leap One, Meta 2, Lenovo ThinkReality marcam um salto em:
 - o Campo de visão (FoV)
 - Precisão do tracking espacial e de gestos
 - o Capacidade de sobreposição de objetos 3D em múltiplos planos
 - Uso industrial, médico e educacional

Convergência com Realidade Virtual e Realidade Mista

• Apple Vision Pro, Meta Quest Pro/Quest 3 e Oculus começam a fundir RA e RV em um único dispositivo, com passthrough de alta fidelidade e displays de alta resolução (micro-OLED, microLED), além de processamento embarcado.

Especialização e Verticalização

• BMW ConnectedRide Smartglasses e Everysight Raptor mostram a tendência de dispositivos AR especializados para nichos (ex: navegação para motociclistas, esporte, manutenção industrial).

Resumo da Relação Evolutiva

- Epson Moverio / Sony SmartEyeglass / ODG R-9 (primeiros OST, FoV pequeno, baixo brilho) →
- Google Glass / Vuzix Blade / North Focals (miniaturização, integração mobile, notificações) →
- RealWear HMT-1 (robustez industrial, operação hands-free por voz, visor monocular para uso em campo, foco em produtividade e segurança) →
- Hololens 1/2 / Magic Leap One / Meta 2 / ThinkReality (tracking avançado, FoV maior, aplicações industriais) →
- Apple Vision Pro / Meta Quest Pro/3 (realidade mista, passthrough colorido, alta resolução, convergência RA/RV) →
- **Dispositivos Verticais** (BMW ConnectedRide, Everysight Raptor) para usos específicos.

Linha do tempo

2011: Epson Moverio BT-100 – Primeiros óculos AR comerciais, FoV limitado.

2013: Google Glass – Miniaturização, integração com mobile, foco em notificações.

2016: Microsoft HoloLens – Tracking espacial avançado, aplicações industriais e educacionais.

2017: Meta 2 – FoV ampliado, sobreposição avançada de objetos 3D.

RealWear HMT-1 – Robustez industrial, operação hands-free por voz, visor monocular, foco em manutenção e produtividade em campo.

2018: Magic Leap One – Waveguide, tracking manual avançado, foco em realidade mista.

2019:Lenovo ThinkReality – Integração corporativa, soluções industriais.

2023: Apple Vision Pro – Realidade mista, passthrough colorido, altíssima resolução e convergência RA/RV.

2024: Dispositivos Verticais (ex: BMW ConnectedRide) – Aplicações específicas (navegação).

2011 Epson Moverio	2016 Microsoft HoloLens		2018 Magic Leap One		2023 Apple Vision Pro	
God	013 ogle ass	2017 Meta 2 e RealWear		2019 Lenovo ThinkReality		2024 BMW Connected Ride

Considerações Finais

A trajetória dos dispositivos de entrada e saída em Realidade Aumentada e Virtual é marcada por saltos tecnológicos significativos, ampliando a interação e imersão dos usuários. O **Microsoft Kinect** popularizou a captura de movimentos sem contato, abrindo novas formas de interação natural.

O **Apple Vision Pro** representa um marco na convergência entre realidade aumentada e virtual, oferecendo passthrough colorido de alta resolução e amplo campo de visão. Esse dispositivo eleva as experiências imersivas para usos profissionais e criativos com um realismo sem precedentes.

Esses avanços mostram como sensores mais precisos permitem interfaces naturais, enquanto saídas ópticas de alta qualidade ampliam o potencial das aplicações. A inovação contínua reafirma o papel central na construção do futuro das realidades mistas e imersivas.

Entendendo a Realidade Lista abreviaturas e siglas

DOF Degrees Of Freedom

FOV Field Of View

GPS Global Positioning System

HMD Head-Mounted Display

HMPD Head-Mounted Projective Display

HOE Holographic Optical Element

IPD Interpupillary Distance

OST Optical See-Through

PPD Pixels Per Degree

RGB-D Red Green Blue Depth

SIFT Scale Invariant Feature Transform

SURF Speeded Up Robust Feature

TOF Time Of Flight

VRD Virtual Retinal Display

VST Video See-Through

Obrigado

UDESC – Universidade do Estado de Santa Catarina

joao.esc@edu.udesc.br

www.udesc.br

Rua Paulo Malschitzki, 200 Joinville - SC CEP 89219-710

