Recuperatorio tercer parcial

- 1. La probabilidad de que Andrés vaya al trabajo en colectivo es 0.4, y que lo haga en auto es 0.6. El tiempo en minutos que demora cuando va en auto es una variable aleatoria con distribucion uniforme en [20, 30], mientras que el tiempo que demora cuando va en colectivo es una variable aleatoria uniforme en [20, 40]. Sabiendo que Andres demoro 25 minutos en llegar a su trabajo, calcular la probabilidad de que haya ido en auto.
- 2. Se emiten mensajes de 7 bits por un canal de comunicación binario. Cada bit emitido es 1 con probabilidad 0.8. El receptor indica que hay un 1 cuando efectivamente el 1 ha sido emitido con probabilidad 0.95 e indica que hay un 0 cuando efectivamente se ha emitido un 0 con probabilidad 0.6. El mensaje enviado se considera correcto si se reciben a lo sumo 2 bits incorrectos. Calcular la probabilidad de recibir un mensaje correcto.

Recuperatorio cuarto parcial

- 1. Un transmisor emite mensajes de acuerdo a un proceso de Poisson de intensidad 3 por minuto. La cantidad de palabras que tiene un mensaje es independiente y pueden ser 1,2 o 3 palabras con probabilidad 1/3, 1/2 o 1/6, respectivamente. Sabiendo que el el primer minuto arribaron 4 mensajes. Calcular la probabilidad que haya 3 mensajes con 2 palabras y 1 con 3 palabras.
- 2. En una refineria, la producción (en litros) de nafta durante un mes sigue una distribución normal de media 3700 y desvío estándar 100. El consumo (en litros) de nafta por mes de cada vehículo de un pueblo es una variable aleatoria de media 35 y desvío 4. Si en el pueblo hay 100 vehículos, calcular aproximadamente la probabilidad de que la refinería pueda satisfacer la demanda de nafta del pueblo durante un mes.

	Sarticego Jorda curso Anas. Ejercicio I tencer Percial	Xeey you sod
	X= "medio de brospe V(x=x)= (0, 4 296	x=c : XE & A, c.}
	T ~ (20,30) X=A (20,40)	T="liago a hosta lla altrabajo" (minutos
	tendo dos poscar	cono Tes continua
	utilizo buyes P(x=A T=25)	boyes
pratuo tenda:	(25) <u>1</u>	E (((x = x i))) (x = x i))))))))))))))))))
	17 x = A 10	

Scaticago Jorda Ejercicio 2 se enita + hits. tercer parcial. R="vuer bit rechido" E-Valor bit evitido" |P(E=1)=0,8 $\longrightarrow |P(E=0)=1-98=9$ |P(E=1)=0,8 $\longrightarrow |P(E=0)=1-98=9$ 1P(R=0/E=0)=96 - 1P(R=1/E=0)=10,4 IP (Sereciber of some zbits incorrectes!) (E=1 | Ly=0) U (E=0, Ly=1) C= "cont de bits incorrectos" defino Cubin (2) Pinc) (bit incorrecto " = (= 1 (E=1, R=0) (E=0, R=1)) evertos m.e = (P(E=0, R=1) = P(R=0|E=1) 1P(E=1) + 1M(R=1|E=0) 1P(E=0) (early = (005). (0,8) + (0,4/(0,2) = 9/2 Pinc = 0,12 on museje correcto tago que buscar # "mercije correcto > C 42 Munoisage correcto" = IP(CZ) = [P(C=0)+IP(C=1) +IP(C=2)

Index of comments

- 6.1 Donde vas a usar esta aproximación??
- 6.2 No. Zc no es una variable aleatoria normal. A lo sumo, su distribución se parece a la de una variable aleatoria normal.
- 7.1 Acá usas TCL!