		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 93, 33 (2001)	11-May-2001

 $Q(\beta^{-})=-5.63\times10^{3} \ 3$; $S(n)=10270 \ 11$; $S(p)=7051 \ 6$; $Q(\alpha)=-541 \ 5$ 2012Wa38

Note: Current evaluation has used the following Q record.

 $Q(\beta^-)$: from $\beta \gamma$ coin (1998Ko66). Systematics value=5698 205 (1995Au04).

 $Q(\beta^{-})=-5666 \ 70; \ S(n)=10273 \ 11; \ S(p)=7059 \ 8; \ Q(\alpha)=-523 \ 9$ 1995Au04

¹³⁰Ba(n,n) E=0.0005-132 eV: 1985Ko23.

Isotope shift, hyperfine structure measurements: 1988Ya13, 1988Va11, 1987Va16, 1987Al25, 1985Si24, 1984We15, 1982Gr14,

1981Wa19, 1980Si14, 1977No04.

Additional information 1.

$^{130}\mathrm{Ba}$ Levels

Band assignments are from 1985Su03 and 2000St07.

Cross Reference (XREF) Flags

A 130 Cs $β^-$ decay (29.21 min) D 120 Sn(13 C,3nγ), 116 Cd(18 O,4nγ)
B 130 Ba IT decay (9.4 ms) E 130 Ba(α,α')
C 130 La ε decay (8.7 min) F Coulomb excitation

E(level)	\mathbf{J}^{π}	$T_{1/2}^{\dagger}$	XREF	Comments
0.0‡	0+	stable	ABCDEF	$T_{1/2}(^{130}\text{Ba }2\beta,\text{neutrinoless decay})$ limit measured: 1998Be68. $\Delta < r^2 > (^{130}\text{Ba} - ^{138}\text{Ba}) = 0.091 \text{ fm}^2$ 16 (1982Gr14), 0.086 fm ² 33 (1979Be25,1977No04).
357.38 [‡] 8	2+	41.8 ps <i>12</i>	BCDEF	μ =+0.70 6 (1989Ra17,1980Br01) B(E2)↑=1.163 11 g=0.35 3 (1980Br01) Q=-1.02 16; Q=-0.09 16 (1989Bu07) B(E2)↑: from Coulomb excitation. μ : transient-field integral PAC (1980Br01). Q: reorientation method1.02 16 (constructive), -0.09 16 (destructive) (1989Bu07) assuming that γ from second 2 ⁺ to first 2 ⁺ is predominantly E2. Others: -0.33 24 (1974Ne15), +0.37 18 (destructive) (1973ToXW), -1.10 34 (1967Si03). T _{1/2} : weighted average of 43.2 ps 5 (RDDS in (¹⁸ O,4n γ)) and 40.7 ps 4 (from B(E2)=1.163 11 in Coul. ex.). J π : Δ J=2, E2 γ to 0 ⁺ .
888.89 22			D	
901.85 [‡] <i>10</i>	4+	3.83 ps 6	BCD	J^{π} : $\Delta J=2$, E2 γ to 2^{+} .
908.02 ^b 8	2+		BCD	J^{π} : $\Delta J=2 \gamma$ to 0^+ .
1179.5 2	0+		C	J^{π} : $\gamma\gamma(\theta)$; γ to 2^{+} .
1361.06 ^b 9	3 ⁽⁺⁾		BCD	J^{π} : $\Delta J=1$, D+Q γ' s to 2^+ and 4^+ .
1477.53 <mark>b</mark> 9	(4^{+})		CD	J^{π} : $\Delta J=2 \gamma$ to 2^+ ; γ to 4^+ .
1544.4 3	2+		D	I7(0)/- 4- 4+1 0+
1557.55 10		0.00	C	J^{π} : $\gamma \gamma(\theta)$; γ' s to 4^+ and 0^+ .
1592.84 [‡] <i>16</i> 1844.65 <i>11</i>	6 ⁺ 4 ⁺	0.98 ps <i>6</i>	BCD C	J^{π} : $\Delta J=2$, E2 γ to 4^+ . J^{π} : $\gamma \gamma(\theta)$; γ to 2^+ .
1844.03 11 1882.97 10	2+		C	J^{π} : $\gamma\gamma(\theta)$; γ' s to 0^+ and 4^+ .
1918.6 2	3		C	J^{π} : $\gamma\gamma(\theta)$.
1948 5	(3-)		E	J^{π} : systematic trend of 3 ⁻ states in ¹³² Ba (at 2070), ¹³⁴ Ba(at 2251), ¹³⁶ Ba (at

130Ba Levels (continued)

E(level)	\mathbf{J}^{π}	$T_{1/2}^{\dagger}$	XREF	Comments
				2529) and ¹³⁸ Ba (at 2879).
2012.57 ^b 15	5+		В D	J^{π} : E3 γ from 8 ⁻ , γ to 4 ⁺ .
2053.7 3	$(3,4^+)$		С	J^{π} : $\gamma\gamma(\theta)$; γ' s to 2^{+} and 4^{+} .
2079.18 9	3 ⁽⁺⁾		C	J^{π} : $\gamma \gamma(\theta)$; log $ft=5.9$ from $3^{(+)}$.
2101.16 ^b 15	(6^+)		D	J^{π} : $\Delta J=2 \gamma$ to 4^{+} .
2168.39 <mark>&</mark> <i>17</i>	(5^{-})		CD	J^{π} : $\Delta J=1 \ \gamma \text{ to } 4^+$; $\gamma \text{ to } 6^+$.
2182.9 3			D	
2229.9 4	(2.4±)		D	J^{π} : γ to 6^{+} .
2248.17 <i>14</i> 2269.2 2	$(3,4^+)$		C C	J^{π} : $\gamma \gamma(\theta)$; γ' s to 2^+ and 4^+ . J^{π} : γ to 2^+ .
2279.5 2			C	J^{π} : γ to 2^+ :
2317.99 18	$(3,4^+)$		Č	J^{π} : $\gamma \gamma(\theta)$; γ' s to 2^+ and 4^+ .
2346.87 10	3(+)		С	J^{π} : $\gamma \gamma(\theta)$; log $ft=5.9$ from $3^{(+)}$.
2395.05 [‡] 18	8+	0.49 ps <i>14</i>	B D	J^{π} : $\Delta J=2$, E2 γ to 6^+ .
2407.8 <i>4</i>		•	C	J^{π} : γ to 4^{+} .
2433.8 <i>4</i>			C	J^{π} : γ to 4^{+} .
2475.12 <i>18</i>	8-	9.4 ms <i>4</i>	B D	%IT=100
				J^{π} : M2+E3 γ to 6 ⁺ , E1 γ to 8 ⁺ . T _{1/2} : weighted average of 9.54 ms <i>14</i> (1999DeZZ), 13.5 ms <i>10</i> (1969WaZX)
				and 8.8 ms 2 (1966Br14).
				Additional information 2.
2557.1 <i>3</i>			С	J^{π} : γ to 2^+ .
2568.17 ^{&} <i>17</i>	(7^{-})	4.16 ps <i>14</i>	D	J^{π} : $\Delta J=1$, E1 γ to 6 ⁺ ; $\Delta J=2$, E2 γ to (5 ⁻).
2602.1 <i>3</i>			C	J^{π} : γ to 2^+ .
2645.76 16	3(+)		C	J^{π} : $\gamma\gamma(\theta)$; log $ft=6.0$ from $3^{(+)}$.
2733.7 4	$(1,2^+)$		C	J^{π} : γ to 0^+ .
2784.0 2	$(3,4^+)$		C	J^{π} : $\gamma\gamma(\theta)$; γ to 2^{+} .
2799.79 ^b 22 2891.2 2	(8 ⁺) (1 to 4)		D C	J^{π} : $\Delta J = (2) \gamma$ to (6^+) . J^{π} : γ' s to 3^+ and 2^+ .
2928.1 <i>4</i>	(1 10 4)		D	3 . y 8 to 3 and 2 .
2928.86 ^a 23	(8-)		D	J^{π} : $\Delta J=1 \gamma$ to (7^{-}) .
2935.4 4			C	J^{π} : γ to 4^{+} .
3066.92 <i>21</i>	(9-)	5.27 ps <i>14</i>	D	J^{π} : $\Delta J=2$, E2 γ to (7 ⁻); $\Delta J=1$ γ to 8 ⁺ .
3259.85 [‡] 24	10+	0.55 ps 7	D	J^{π} : $\Delta J=2$, E2 γ to 8^+ .
3265.26? 24			C	J^{π} : γ to 4^{+} .
3289.9 4			D	
3422.85 [#] 24	(10^{+})		D	J^{π} : $\Delta J = (2) \gamma$ to 8^+ ; possible γ to 10^+ .
3434.94 ^a 24 3602.52 ^b 23	(10^{-})		D	J^{π} : $\Delta J = 2 \gamma$ to (8^-) ; $\Delta J = 1 \gamma$ to (9^-) .
3658.9 ^{&} 3	(10^+)	2.10	D	$J^{\pi}: \Delta J = (2) \gamma \text{ to } 8^{+}.$
3658.9° 3 3660.02 23	(11^{-}) $(2^{+},3,4^{+})$	2.10 ps 9	D C	J^{π} : $\Delta J=2$, E2 γ to (9^-) . J^{π} : γ' s to 2^+ and 4^+ .
3676.2 <i>4</i>	(2 ,5,4)		c	J^{π} : γ to $(3^+,4^+)$.
3704.7 <i>4</i>	$(2^+,3,4^+)$		Č	J^{π} : γ' s to 2^+ and 4^+ .
3712.0 4			C	J^{π} : γ to 4^+ .
3789.7 [@] 3	(10^+)		D	J^{π} : $\Delta J=(0) \gamma$ to 10^+ .
3798.7 <i>3</i>			C	J^{π} : γ to J^{π} .
3962.6 4			D	J^{π} : γ to 10^+ .
3989.6 [#] 3	$(12)^{+}$	2.15 ps 21	D	J^{π} : $\Delta J = 2$, E2 γ to 10^{+} .
4006.8 <i>4</i> 4077.9 ^{<i>a</i>} <i>3</i>	(12-)		C D	J^{π} : γ to (3,4). J^{π} : ΔJ =(2) γ to (10 ⁻); γ to (11 ⁻).
4077.9° 3 4222.3 [‡] 4	(12^{+})			J^{π} : $\Delta J = (2) \gamma$ to (10); γ to (11). J^{π} : $\Delta J = 2 \gamma$ to 10^{+} .
+444.3 4	(12)		D	$J \cdot \Delta J - Z \gamma \cdot U \cdot IU \cdot .$

¹³⁰Ba Levels (continued)

E(level)	${ m J}^{\pi}$	$T_{1/2}^{\dagger}$	XREF	Comments
4256.1 [@] 3	(12^{+})	1.52 ps <i>14</i>	D	J^{π} : $\Delta J=(2) \gamma$ to 10^+ .
4354.0 ^{&} 4	(13^{-})		D	J^{π} : $\Delta J = (2) \gamma$ to (11^{-}) .
4404.1 <i>4</i>			D	J^{π} : γ to 10^{+} .
4783.3 [#] <i>4</i>	(14^{+})	0.41 ps 4	D	J^{π} : $\Delta J = (2) \gamma$ to $(12)^{+}$.
				$T_{1/2}$: effective half-life.
4879.3 ^a 4	(14^{-})		D	J^{π} : $\Delta J=(2) \gamma$ to (12^{-}) .
4885.3 [@] 4	(14^{+})	3.4 ps 6	D	J^{π} : $\Delta J=2$, E2 γ to (12 ⁺).
				$T_{1/2}$: effective half-life.
5155.4 & 4	(15^{-})		D	J^{π} : $\Delta J=(2) \gamma$ to (13^{-}) .
5679.5 [@] 4	(16^{+})		D	J^{π} : γ to (14 ⁺).
5730.1 [#] 4	(16^{+})		D	J^{π} : $\Delta J=(2) \gamma$ to (14^+) .
5766.6 ^a 4	(16^{-})		D	J^{π} : γ to (14 ⁻).
6037.2 ^{&} 5	(17^{-})		D	J^{π} : γ to (15 ⁻).
6757.4 [#] 5	(18^{+})		D	J^{π} : γ to (16 ⁺).
6972.8 <mark>&</mark> 6			D	J^{π} : γ to (17 ⁻).
8022.8 ^{&} 6			D	

 $^{^{\}dagger}$ From recoil-distance Doppler shift in ($^{18}\text{O,4n}\gamma$) (2000St07).

$\gamma(^{130}\text{Ba})$

 $\delta(Q/D)$ given in comments are from $\gamma\gamma(\theta)$ data.

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡	$\alpha^{\#}$	Comments
357.38	2+	357.4 <i>1</i>	100	0.0 0+	E2	0.0262	$\alpha(K)$ =0.02163; $\alpha(L)$ =0.00365; $\alpha(M)$ =0.00076; $\alpha(N+)$ =0.00020 B(E2)(W.u.)=57.9 <i>17</i>
888.89		531.5 2	100	357.38 2+			D(E2)(W.u.)=37.9 17
901.85	4+	544.5 1	100	357.38 2 ⁺	E2		B(E2)(W.u.)=78.9 13
908.02	2+	550.7 <i>1</i> 908.0 <i>1</i>	100 <i>6</i> 66 <i>3</i>	357.38 2 ⁺ 0.0 0 ⁺			$\delta(Q/D) = -0.296 \ 7 \text{ or } -40 \ 13.$
1179.5	0_{+}	271.4 <i>3</i> 822.0 <i>3</i>	00 0	908.02 2 ⁺ 357.38 2 ⁺			
1361.06	3(+)	453.2 <i>1</i> 459.4 <i>4</i>	49 2 9.3 2	908.02 2 ⁺ 901.85 4 ⁺	D+Q		$\delta(Q/D) = +0.31 \ 2 \text{ or } +13 \ 3.$ $\delta(Q/D) = -0.20 \ 7 \text{ or } -2.5 \ 5.$
1477.53	(4 ⁺)	1003.6 <i>1</i> 569.4 <i>1</i>	100 <i>3</i> 100 <i>11</i>	357.38 2 ⁺ 908.02 2 ⁺	D+Q		$\delta(Q/D) = -0.001 \ 9 \text{ or } -4.6 \ 2.$
	,	575.5 2 1120.2 <i>1</i>	71 <i>9</i> 66 <i>6</i>	901.85 4 ⁺ 357.38 2 ⁺			$\delta(Q/D) = -0.43 \ 8 \text{ or } +2.4 \ 5.$
1544.4		655.5 2	100	888.89			

[‡] Band(A): g.s. band. # Band(B): first S (super) band. @ Band(C): second S (super) band.

[&]amp; Band(D): $\pi = -, \alpha = 1$.

^a Band(E): $\pi=-$, $\alpha=0$.

^b Band(F): quasi γ -band.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	Comments
1557.55	2+	196.2	6.9 11	1361.06 3(+)		
		377.7 <i>3</i>		1179.5 0 ⁺		
		649.6 <i>1</i>	53 6	908.02 2+		$\delta(Q/D) = -0.01 \ 3 \text{ or } +3.2 \ 4.$
		655.6	7.2 11	901.85 4+		
		1200.1 <i>I</i>	100 8	357.38 2+		$\delta(Q/D) = -0.31 \ 2 \text{ or } -23 \ 9.$
1502.04	~ ±	1557.1 3	<8	$0.0 0^{+}$	П0	D/EO/MI > OA 6
1592.84	6 ⁺ 4 ⁺	691.1 2	100	901.85 4+	E2	B(E2)(W.u.)=94 6
1844.65	4	367.1 3	42 17	1477.53 (4 ⁺) 1361.06 3 ⁽⁺⁾		$\delta(Q/D) = -1.0 \ 8 \text{ or } +213 \ 167.$
		483.7 <i>3</i> 936.6 2	83 <i>17</i> 83 <i>17</i>	908.02 2+		
		942.8 <i>I</i>	100 8	908.02 2 901.85 4 ⁺		$\delta(Q/D) = +0.16 \ 13 \text{ or } +0.8 \ 2.$
		1487.3 2	78 5	357.38 2 ⁺		O(Q/D) = +0.10 + 3 + 0.00 + 2.
1882.97	2+	325.5 3	703	1557.55 2 ⁺		
		521.8 5	≈10	1361.06 3 ⁽⁺⁾		
		703.3 <i>3</i>	5.3 8	1179.5 0 ⁺		
		974.9 <i>1</i>	48 <i>3</i>	908.02 2+		$\delta(Q/D) = -0.25 \ 3 \text{ or } +45 \ 6.$
		981.0 <i>3</i>		901.85 4+		
		1525.7 <i>1</i>	100 8	357.38 2 ⁺		$\delta(Q/D) = +0.029 \ 12 \text{ or } +2.8 \ 2.$
1010 -		1882.5 3		$0.0 0^{+}$		
1918.6	3	1010.5 3		908.02 2+		S(O/D) 0.4.2 1.6.7
		1016.7 <i>3</i> 1561.2 <i>3</i>		901.85 4+		$\delta(Q/D) = -0.4 \text{ 2 or } -1.6 \text{ 7.}$ $\delta(Q/D) = +0.04 \text{ 8 or } -6 \text{ 3.}$
2012.57	5 ⁺	420.3 5	≈70	357.38 2 ⁺ 1592.84 6 ⁺		$O(Q/D) = \pm 0.04 \circ O(-0.5)$
2012.57	3	651.5 2	100 11	1361.06 3 ⁽⁺⁾		
		1110.4 2	94 11	901.85 4+		
2053.7	$(3,4^+)$	496.3 3		1557.55 2 ⁺		
	. , ,	576.2 <i>5</i>	≈70	1477.53 (4+)		
		692.8 7	91 <i>12</i>	1361.06 3 ⁽⁺⁾		
		1151.8 <i>3</i>	100 12	901.85 4+		
		1695.8 <i>3</i>	121 <i>19</i>	357.38 2 ⁺		
2079.18	$3^{(+)}$	196.1 <i>3</i>		1882.97 2+		
		234.5 3	3.0 9	1844.65 4+		0/0 T) 0.0 /
		521.8 5	≈11	1557.55 2 ⁺		$\delta(Q/D) = -0.8 \ 4.$
		601.5 4	94	1477.53 (4 ⁺) 1361.06 3 ⁽⁺⁾		
		718.2 <i>I</i> 1171.1 <i>I</i>	74 <i>4</i> 100 <i>4</i>	908.02 2+		$\delta(Q/D) = +0.008 \ 25 \text{ or } -4.8 \ 6.$
		1171.1 <i>1</i> 1177.4 <i>1</i>	59 2	901.85 4+		$\delta(Q/D) = +0.008 23 \text{ or } -4.8 \text{ o.}$ $\delta(Q/D) = -0.34 7 \text{ or } -1.8 3.$
		1777.4 <i>I</i> 1721.7 <i>I</i>	50 4	357.38 2 ⁺		$\delta(Q/D) = 0.347 \text{ or } -8.4 14.$
2101.16	(6^+)	623.8 2	100 5	1477.53 (4 ⁺)		
		1199.3 2	43 5	901.85 4+		
2168.39	(5^{-})	575.5 2	32 11	1592.84 6+		
2105 3		1266.6 2	100 6	901.85 4+		
2182.9		590.1 2	100	1592.84 6 ⁺		
2229.9	(2.4±)	685.5 2	100	1544.4 908.02 2 ⁺		
2248.17	$(3,4^+)$	1340.2 <i>3</i> 1346.3 <i>1</i>		908.02 2 901.85 4 ⁺		
		1890.5 <i>3</i>		357.38 2 ⁺		
2269.2		1361.1 3		908.02 2+		
		1911.6 <i>3</i>		357.38 2 ⁺		
2279.5		360.8 <i>3</i>		1918.6 3		
		1377.7 <i>3</i>		901.85 4+		
2317.99	$(3,4^+)$	264.1 3		$2053.7 (3,4^+)$		
		473.4 3	50 10	1844.65 4 ⁺		
		840.1 <i>3</i> 957.0 <i>3</i>	58 <i>10</i> 100 <i>20</i>	1477.53 (4 ⁺) 1361.06 3 ⁽⁺⁾		
		937.03	100 20	1301.00 3		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ	α [#]	Comments
2317.99	$(3,4^+)$	1410.7 4	100 20	908.02 2+				
		1415.9 [@]	22 10	901.85 4+				
2346.87	3(+)	267.7 1	21 7	2079.18 3(+)				
		427.9 <i>3</i>		1918.6 3				
		464.2 2	36 11	1882.97 2+				
		502.2 5	8.9 <i>18</i>	1844.65 4 ⁺				
		789.2 <i>3</i> 869.3 <i>1</i>	15 2 71 <i>4</i>	1557.55 2 ⁺ 1477.53 (4 ⁺)				$\delta(Q/D) = +0.47 \ 11 \text{ or } +3.8 \ 14.$
		986.4 10	11 4	1361.06 3 ⁽⁺⁾				$O(Q/D) = \pm 0.47 \ 11 \ 01 \ \pm 3.8 \ 14.$
		1438.8 <i>I</i>	100 7	908.02 2+				$\delta(Q/D) = +0.63 \ 7 \text{ or } +3.0 \ 5.$
		1445.0 2	39 4	901.85 4+				$\delta(Q/D) = +1.1 \ 17.$
2395.05	8+	802.3 2	100	1592.84 6 ⁺	E2			B(E2)(W.u.)=9.E+1.3
2407.8		930.3 <i>3</i>		1477.53 (4+)				
2433.8		589.2 <i>3</i>		1844.65 4 ⁺				
2475.12	8-	80.3 2	10 <i>I</i>	2395.05 8+	E1		0.419	$\alpha(K) = 0.357; \ \alpha(L) = 0.0495;$
								$\alpha(M)=0.01009; \alpha(N+)=0.00259$
		460.2.2	20. 2	2012 57 5+	E2		0.0262	$B(E1)(W.u.)=4.0\times10^{-12} 5$
		462.3 2	20 2	2012.57 5+	E3		0.0363	$\alpha(K)$ = 0.0283; $\alpha(L)$ =0.00630; $\alpha(M)$ =0.00135; $\alpha(N+)$ =0.00036
								B(E3)(W.u.)=0.0042 6
		882.3 2	100 7	1592.84 6 ⁺	M2+E3	1.1 6		B(M2)(W.u.)=8.E-8 5;
								B(E3)(W.u.)=0.00013 7
								δ : from $\alpha(K)$ exp in ¹³⁰ Ba IT decay.
2557.1	(7-)	1649.1 3	100	908.02 2+	Ε0			D/E2\/W \ 110.7
2568.17	(7-)	399.8 2	50 2	2168.39 (5 ⁻)	E2			B(E2)(W.u.)=110 7 B(E1)(W.u.)=2.0×10 ⁻⁵ 12
		467.1 2 975.3 2	5 <i>3</i> 100 <i>2</i>	2101.16 (6 ⁺) 1592.84 6 ⁺	[E1] E1			$B(E1)(W.u.)=2.0\times10^{-12}$ $B(E1)(W.u.)=4.41\times10^{-5}$ 21
2602.1		1694.1 3	100 2	908.02 2+	LI			B(E1)(w.u.)=4.41×10 21
2645.76	3(+)	298.7 3		2346.87 3 ⁽⁺⁾				
20.0170		327.9 <i>3</i>	≈70	2317.99 (3,4+)				
		376.2 <i>3</i>		2269.2				
		397.6 <i>6</i>	60 <i>30</i>	$2248.17 (3,4^{+})$				
		566.4 <i>3</i>		2079.18 3 ⁽⁺⁾				
		592.1 <i>4</i>	50 10	$2053.7 (3,4^+)$				
		726.9 3	100 30	1918.6 3 1844.65 4 ⁺				S(O/D) = 0.2.2 cm 2.4.12
		801.2 2 1088.0 <i>3</i>	100 30	1557.55 2 ⁺				$\delta(Q/D) = -0.2 \ 2 \text{ or } -2.4 \ 13.$
		1167.8 3		1477.53 (4 ⁺)				
		1744.0 <i>3</i>	60 10	901.85 4+				$\delta(Q/D) = +0.37 \ 7 \text{ or } +4.2 \ 11.$
		2287.9 <i>3</i>	70 10	357.38 2+				$\delta(Q/D) = +0.07 5 \text{ or } -6.9 23.$
2733.7	$(1,2^+)$	1554.2 <i>3</i>		1179.5 0+				
2784.0	$(3,4^+)$	437.2 3		2346.87 3 ⁽⁺⁾				
		1306.3 3		1477.53 (4+)				
		1882.0 3		901.85 4+				
2799.79	(8 ⁺)	2426.9 <i>3</i> 698.7 2	100	357.38 2 ⁺ 2101.16 (6 ⁺)				
2891.2	(1 to 4)	1333.7 3	100	1557.55 2 ⁺				
20,712	(1 10 1)	1530.2 3		1361.06 3 ⁽⁺⁾				
2928.1		745.2 2	100	2182.9				
2928.86	(8^{-})	360.7 2	100	2568.17 (7-)				
2935.4		1090.8 <i>3</i>		1844.65 4 ⁺				
3066.92	(9-)	498.8 2	100 11	2568.17 (7-)	E2			B(E2)(W.u.)=81 13
3259.85	10 ⁺	671.8 2	9.7 11	2395.05 8 ⁺ 2395.05 8 ⁺	E2			P(E2)(W ::)=54.7
3259.85 3265.26?	10	864.8 2 1017.0 <i>3</i>	100 100 <i>30</i>	2393.03 8° 2248.17 (3,4 ⁺)	E2			B(E2)(W.u.)=54 7
3203.201		1017.0 3	100 50	22 10.17 (3,7)				

$\gamma(^{130}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	Comments
3265.26?		1787.8 <i>3</i>	71 14	1477.53 (4+)		
3289.9		1107.0 2	100	2182.9		
3422.85	(10^+)	163.0 2	<5	3259.85 10 ⁺		
		1027.8 2	100 12	2395.05 8+		
3434.94	(10^{-})	368.0 2	53 7	3066.92 (9-)		
		506.1 2	100 5	2928.86 (8-)		
3602.52	(10^{+})	802.8 2	100 30	2799.79 (8 ⁺)		
		1207.4 2	73 7	2395.05 8+		
3658.9	(11^{-})	592.0 2	100	3066.92 (9-)	E2	B(E2)(W.u.)=95 4
3660.02	$(2^+,3,4^+)$	2182.5 5	25 8	$1477.53 (4^+)$		
		2752.1 <i>3</i>	100 8	$908.02 \ 2^{+}$		
		2757.9 <i>4</i>	50 8	901.85 4+		
3676.2		1622.6 <i>3</i>		$2053.7 (3,4^+)$		
3704.7	$(2^+,3,4^+)$	2796.7 <i>4</i>	100 13	$908.02 \ 2^{+}$		
		2802.8 12	19 6	901.85 4+		
3712.0		2810.1 <i>3</i>	100	901.85 4+		
3789.7	(10^{+})	529.8 2	100	$3259.85 10^+$		
3798.7		1529.5 <i>3</i>		2269.2		
		2437.8 <i>3</i>		1361.06 3 ⁽⁺⁾		
3962.6		539.7 2	100	$3422.85 (10^+)$		
3989.6	$(12)^{+}$	566.7 2	26 8	$3422.85 (10^+)$	[E2]	B(E2)(W.u.)=24 8
		729.7 2	100 5	3259.85 10 ⁺	E2	B(E2)(W.u.)=26 4
4006.8		1222.8 <i>3</i>		$2784.0 (3,4^+)$		
4077.9	(12^{-})	419.0 2	26 9	3658.9 (11 ⁻)		
		643.0 2	100 4	3434.94 (10 ⁻)		
4222.3	(12^{+})	962.4 2	100	3259.85 10 ⁺	Q	
4256.1	(12^{+})	466.4 2	45 20	$3789.7 (10^+)$	[E2]	$B(E2)(W.u.)=1.3\times10^2 7$
		996.2 2	100 5	3259.85 10 ⁺	[E2]	B(E2)(W.u.)=6.7 12
4354.0	(13^{-})	695.1 2	100	3658.9 (11 ⁻)	(Q)	
4404.1		981.2 2	100	3422.85 (10 ⁺)		
4783.3	(14^{+})	793.7 2	100	$3989.6 (12)^+$	[E2]	B(E2)(W.u.)=112 11
4879.3	(14^{-})	801.4 2	100	4077.9 (12 ⁻)		
4885.3	(14^{+})	629.2 2	100	$4256.1 (12^+)$	E2	B(E2)(W.u.)=43 8
5155.4	(15^{-})	801.4 2	100	4354.0 (13 ⁻)	(Q)	
5679.5	(16^{+})	794.2 2	100	4885.3 (14 ⁺)		
5730.1	(16^+)	946.8 2	100	4783.3 (14+)		
5766.6	(16 ⁻)	887.3 2	100	4879.3 (14 ⁻)		
6037.2	(17^{-})	881.8 2	100	5155.4 (15 ⁻)		
6757.4	(18^{+})	1027.3 2	100	5730.1 (16 ⁺)		
6972.8		936.0 2		6037.2 (17 ⁻)		
8022.8		1050.0 2		6972.8		

[†] For levels populated in 130 La ε decay, 130 Ba IT decay and in 120 Sn(13 C,3n γ), the values are generally taken from 130 La ε decay.

[‡] From ce and $\gamma(\theta)$ data in 120 Sn(13 C,3n γ), 116 Cd(18 O,4n γ), except for the 8⁻ isomer at 2475, for which the assignments are from ce data in 130 Ba IT decay.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

Level Scheme

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

130 Cs β^- decay (29.21 min) 1952Sm41,1981Ha09

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh NDS 93, 33 (2001) 11-May-2001

Parent: 130 Cs: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=29.21 \text{ min } 4$; $Q(\beta^-)=369 \ 11$; $\%\beta^- \text{ decay}=1.6 \ 2$

 130 Cs- $T_{1/2}$: $T_{1/2}$ =29.21 min 4 (1981Ha09).

 $^{130}\text{Cs-}\%\beta^-$ decay: $\%\beta^-$ =1.6 2 (1952Sm41). 1952Sm41: measured β^+/β^- ratio, E β , T_{1/2}.

1981Ha09: measured $T_{1/2}$, K-capture/ β^+ ratio.

 $T_{1/2}(^{130}Cs)$: 1981Ha09. Others: 1968Fe06, 1967Wa11, 1966Gf01, 1952Sm41, 1950Fi16, 1954Mi16.

¹³⁰Ba Levels

 $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi}}{0^{+}}$

 β^- radiations

E(decay) E(level) $I\beta^{-\dagger}$ Log ft $(369 \ II)$ 0.0 $1.6 \ 2$ 5.36 6

Comments

av E β =131.6 *14* I β ⁻: from 1952Sm41. E(decay): 442 (1952Sm41).

[†] Absolute intensity per 100 decays.

¹³⁰Ba IT decay (9.4 ms) 1969WaZX,1966Br14,1999DeZZ

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 93, 33 (2001)	11-May-2001

Parent: 130 Ba: E=2476.2 7; J^{π}=8⁻; $T_{1/2}$ =9.4 ms 4; %IT decay=100.0 1969WaZX: 124 Sn(12 C,6n) E=90 MeV; 122 Sn(12 C,4n) E=62 MeV; measured isomer $T_{1/2}$ by pulsed beam and α (K)exp's. 1966Br14, 1969Ro23: 122 Sn(12 C,4n) E=65 MeV. Measured $T_{1/2}$ of isomer.

And conversion electrons, pulsed beam.
1999DeZZ: 133 Cs(d,5n) E=45 MeV. Measured isomer $T_{1/2}$ from time decay of four main γ rays with a pulsed deuteron beam.

130Ba Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	0+		
357.2 <i>3</i>	2+		
901.8 6	4+		
908.3 9	2+		
1360.8 7	3(+)		
1593.0 7	6+		
2013.2 7	5+		
2395.9 7	8+		
2476.2 7	8-	9.4 ms <i>4</i>	$T_{1/2}$: weighted average of 9.54 ms 14 (1999DeZZ), 13.5 ms 10 (1969WaZX) and 8.8 ms 2 (1966Br14).
			Additional information 1.

[†] From Adopted Levels.

$\gamma(^{130}\text{Ba})$

Iy normalization: $Ti(357\gamma+908\gamma)=100$.

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} †#	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^π	Mult.‡	δ	$\alpha^{\textcircled{@}}$	Comments
80.3 2	6.7 7	2476.2	8-	2395.9	8+	E1	_	0.419	$\alpha(K)$ = 0.357; $\alpha(L)$ = 0.0495; $\alpha(M)$ =0.01009; $\alpha(N+)$ =0.00259 Mult.: from $\alpha(\exp)$ =0.37 8 (1969WaZX, from intensity balance at 2395.9 level).
357.2 <i>3</i>	100	357.2	2+	0.0	0+	E2		0.0263	$\alpha(K)=0.02167$; $\alpha(L)=0.00365$; $\alpha(M)=0.00076$; $\alpha(N+)=0.00020$
420.3 5	3 1	2013.2	5+	1593.0	6+				., ,,,,
452.5 5	3 1	1360.8	3(+)	908.3	2+				
463.1 <i>4</i>	13 2	2476.2	8-	2013.2	5+	E3		0.0361	$\alpha(K)$ = 0.0281; $\alpha(L)$ =0.00626; $\alpha(M)$ =0.00134; $\alpha(N+)$ =0.00036
544.5 5	85 10	901.8	4+	357.2	2+	E2		0.00790	Mult.: from $\alpha(K)$ exp=0.028 β (1969WaZX). $\alpha(K)$ =0.00660; $\alpha(L)$ =0.00097 Mult.: from $\alpha(K)$ exp=0.0076 β (1969Ro23). Additional information 2.
551.1	≈2	908.3	2+	357.2	2+				
652.5 5	7 1	2013.2	5 ⁺	1360.8	3(+)				
691.1 5	76 10	1593.0	6+	901.8		E2			Mult.: from α (K)exp=0.0043 7 (1969Ro23). Additional information 3.
802.9 5	9 1	2395.9	8+	1593.0	6+				
883.0 <i>5</i>	66 8	2476.2	8-	1593.0	6+	M2+E3	1.1 6	0.0069 8	$\alpha(K)$ =0.0058 7; $\alpha(L)$ =0.00082 7 Additional information 4.

¹³⁰Ba IT decay (9.4 ms) 1969WaZX,1966Br14,1999DeZZ (continued)

$\gamma(^{130}\text{Ba})$ (continued)

${\rm E}_{\gamma}{}^{\dagger}$	I_{γ} †#	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
					δ: from $α$ (K)exp=0.0058 $β$ (weighted average of 0.0075 $β$ (1969Ro23) and 0.0052 $β$ (1969WaZX)).
908.3	≈1	908.3	2+	$0.0 0^{+}$	
1004.0 8	5 2	1360.8	3(+)	357.2 2 ⁺	
1111.0 <i>10</i>	2.5 10	2013.2	5 ⁺	901.8 4+	

 $^{^{\}dagger}$ From 1969WaZX. ‡ From $\alpha(K) exp's$ of 1969WaZX and 1969Ro23 normalized to $\alpha(K) (357.2) = 0.217$ (E2 theory). $^{\sharp}$ For absolute intensity per 100 decays, multiply by 0.965.

[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹³⁰Ba IT decay (9.4 ms) 1969WaZX,1966Br14,1999DeZZ

130 La ε decay (8.7 min) 1982Ur01,1995Ki06,1973MeZZ

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 93, 33 (2001)	11-May-2001

Parent: 130 La: E=0.0; $J^{\pi}=3^{(+)}$; $T_{1/2}=8.7 \text{ min } 1$; $Q(\varepsilon)=5666 \ 70$; $\%\varepsilon+\%\beta^+$ decay=100.0

 130 La-Q(ε): Q(ε)=5666 70 (βγ coin,1998Ko66); 5698 205 (syst,1995Au04).

¹³⁰La- $T_{1/2}$: $T_{1/2}$ =8.7 min *I* (1963Ya05).

1982Ur01: measured E γ , I γ , $\gamma\gamma$.

1995Ki06, 1994Si02: measured E γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ at 90° and 180°.

1973MeZZ (also 1971EaZU): measured E γ , I γ . (see 1978LeZA or 1974Hi08 for listing of E γ and I γ from 1973MeZZ).

Others:

1998Ko66: measured $Q(\varepsilon)$ from $\beta\gamma$ coin.

1997As05: measured $\gamma\gamma(\theta)$ for 822-357 cascade.

1974Dr04: measured E γ , I γ . 1968Ab02: measured E γ .

1965Ge03, 1963Ya05, 1961Sh17: measured γ , $T_{1/2}(^{130}Ba)$.

¹³⁰Ba Levels

E(level)	${\rm J}^{\pi^{\frac{1}{4}}}$	E(level)	$J^{\pi^{\ddagger}}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0.0	0^+	1844.57 10	4+	2317.87 15	$(3,4^+)$	2891.2 [#] 2	
357.34 7	2+	1882.90 <i>10</i>	2+	2346.81 <i>10</i>	3(+)	2935.4 [#] 4	
901.78 <i>10</i>	4+	1918.6 <mark>#</mark> 2	3	2407.8 [#] 4		3265.2?‡ 2	
907.98 8	2+	2053.6 2	$(3,4^+)$	2433.8 [#] 4		3660.0 2	$(2^+,3,4^+)$
1179.5 <mark>#</mark> 2	0_{+}	2079.13 9	3(+)	2557.1 [#] 3		3676.2 [#] 4	
1361.01 9	3(+)	2168.4 [#] 3	5-	2602.1 [#] 3		3704.7 [‡] 4	$(2^+,3,4^+)$
1477.50 <i>10</i>	(4^{+})	2248.09 12	$(3,4^+)$	2645.57 12	3 ⁽⁺⁾	3711.9 [‡] <i>4</i>	
1557.47 10	2+	2269.2 [#] 2		2733.7 [#] 4	$(1,2^+)$	3798.7 [#] <i>3</i>	
1592.9 <i>3</i>	6+	2279.5 [#] 2		2784.0 [#] 2	$(3,4^+)$	4006.8 [#] 4	

[†] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ †	$1\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
$(1.95 \times 10^3 7)$	3711.9	0.079	1.30	5.8	1.38	av E β =422 31; ε K=0.802 13; ε L=0.1104 19; ε M+=0.0308 6
$(1.96 \times 10^3 7)$	3704.7	0.090	1.45	5.8	1.54	av E β =426 31; ε K=0.800 13; ε L=0.1102 19; ε M+=0.0307 6
$(2.01\times10^3 7)$	3660.0	0.11	1.51	5.8	1.62	av E β =445 31; ε K=0.792 14; ε L=0.1090 21; ε M+=0.0304 6
$(2.40 \times 10^3 7)$	3265.2?	0.18	0.79	6.2	0.97	av E β =620 32; ε K=0.693 22; ε L=0.095 3; ε M+=0.0264 9
$(3.02 \times 10^3 7)$	2645.57	1.6	2.1	6.0	3.7	av E β =899 32; ε K=0.488 23; ε L=0.066 4; ε M+=0.0185 9
$(3.11 \times 10^3 7)$	2557.1	0.2	0.2	7.0	0.4	av E β =939 32; ε K=0.459 23; ε L=0.062 3; ε M+=0.0174 9
$(3.32 \times 10^3 7)$	2346.81	3.7	3.2	5.9	6.9	av E β =1035 32; ε K=0.396 21; ε L=0.054 3; ε M+=0.0150 8
$(3.35 \times 10^3 7)$	2317.87	0.31	0.26	7.0	0.57	av E β =1048 32; ε K=0.388 20; ε L=0.053 3; ε M+=0.0147 8
$(3.59 \times 10^3 7)$	2079.13	6.48	4.02	5.9	10.5	av E β =1158 33; ε K=0.326 18; ε L=0.0443 24; ε M+=0.0123 7
$(3.61 \times 10^3 7)$	2053.6	0.6	0.3	7.0	0.9	av E β =1170 33; ε K=0.320 17; ε L=0.0435 23; ε M+=0.0121 7
$(3.78 \times 10^3 7)$	1882.90	6.5	3.2	6.0	9.7	av E β =1248 33; ε K=0.283 15; ε L=0.0383 21; ε M+=0.0107 6
$(3.82 \times 10^3 7)$	1844.57	1.8	0.84	6.6	2.6	av E β =1266 33; ε K=0.275 15; ε L=0.0373 20; ε M+=0.0104 6
$(4.11 \times 10^3 7)$	1557.47	3.1	1.1	6.6	4.2	av E β =1399 33; ε K=0.223 12; ε L=0.0302 16; ε M+=0.0084 5
$(4.19 \times 10^3 7)$	1477.50	2.4	0.79	6.7	3.2	av E β =1437 33; ε K=0.211 11; ε L=0.0286 15; ε M+=0.0079 4
$(4.30 \times 10^3 \ 7)$	1361.01	5.4	1.6	6.4	7.0	av E β =1491 33; ε K=0.194 10; ε L=0.0263 14; ε M+=0.0073 4
				Co	ntinued on no	ext page (footnotes at end of table)

[‡] Level not given in 1995Ki06.

[#] From 1995Ki06 only.

130 La ε decay (8.7 min) 1982Ur01,1995Ki06,1973MeZZ (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}arepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
$(4.49 \times 10^{3} $ [‡] 7)	1179.5	0.3	0.08	7.8	0.4	av E β =1576 33; ε K=0.171 9; ε L=0.0232 12; ε M+=0.0064 4
$(4.76 \times 10^3 \ 7)$	907.98	18 2	3.7 4	6.17 6	22 2	av E β =1703 33; ε K=0.143 7; ε L=0.0193 10; ε M+=0.0054 3 E(β ⁺)=3740 90 in coin with 909 γ (1998Ko66).
$(4.76 \times 10^3 7)$	901.78	4.4	0.88	6.8	5.3	av E β =1706 33; ε K=0.142 7; ε L=0.0192 10; ε M+=0.0053 3
$(5.31 \times 10^3 \ 7)$	357.34	16	2.1	6.5	18	av E β =1963 34; ε K=0.101 5; ε L=0.0136 6; ε M+=0.00378 17 E(β ⁺)=4260 120 in coin with 357 γ (1998Ko66).

γ (130Ba)

Iy normalization: from Σ (I(γ +ce) of γ 's to g.s.)=100. $R=I\gamma(90^\circ)/I\gamma(180^\circ)$ (1995Ki06,1994Si02).

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{e}	Comments
196.1 [@] 3		2079.13	3(+)	1882.90	2+			
196.2 [#] 8	0.25 ^c 4	1557.47	2+	1361.01	3(+)			
234.5 <mark>&</mark> 3	0.14 ^c 4	2079.13	3(+)	1844.57				
264.1 [@] 3		2317.87	$(3,4^+)$		$(3,4^+)$			
267.7 1	0.6 2	2346.81	3(+)	2079.13	3(+)			
271.4 [@] 3		1179.5	0^{+}	907.98	2+			$(271\gamma)(908\gamma)(\theta)$: R=0.54 5.
298.7 [@] 3		2645.57	3(+)	2346.81	3 ⁽⁺⁾			
325.5 [@] 3		1882.90	2+	1557.47	2+			
327.9 <i>3</i>	≈0.7 ^b	2645.57	3(+)	2317.87	$(3,4^+)$			I_{γ} : from 1982Ur01. I_{γ} =2.43 <i>16</i> (1973MeZZ).
357.4 1	100 3	357.34	2+	0.0	0+	E2	0.0262	$\alpha(K)$ =0.02163; $\alpha(L)$ =0.00365; $\alpha(M)$ =0.00076; $\alpha(N+)$ =0.00020
360.8 [@] 3		2279.5		1918.6	3			
367.1 3	0.5 2	1844.57	4+	1477.50	(4 ⁺)			$(367\gamma)(1120\gamma)(\theta)$: R=1.02 10. $(367\gamma)(569\gamma)(\theta)$: R=1.07 7. $\delta(Q/D) = -1.0 \ 8 \ \text{or} + 213 \ 167 \ (1995 \text{Ki} 06)$.
376.2 [@] 3		2645.57	3(+)	2269.2				
377.7 [@] 3		1557.47	2+	1179.5	0+			$(378\gamma)(822\gamma)(\theta)$: R=1.05 4. $(378\gamma)(271\gamma)(\theta)$: R=1.00 8.
397.6 6	0.6 3	2645.57	3(+)	2248.09	$(3,4^+)$			
427.9 [@] 3		2346.81	3(+)	1918.6	3			
437.2 [@] 3		2784.0	$(3,4^+)$	2346.81	3(+)			
453.2 <i>1</i>	4.7 2	1361.01	3(+)	907.98	2+			$(453\gamma)(908\gamma)(\theta)$: R=1.68 4.
450 4 4	0.0.2	1261.01	3(+)	001.70	4+			$\delta(Q/D) = +0.31 \text{ 2 or } +13 \text{ 3 } (1995\text{Ki}06).$
459.4 <i>4</i>	0.9 2	1361.01	3(1)	901.78	4'			$(459\gamma)(544\gamma)(\theta)$: R=1.19 3. $\delta(O/D) = -0.20$ 7 or -2.5 5 (1995Ki06).
464.2 2 *472.9 ^a 2	1.0 <i>3</i> 0.6 <i>4</i>	2346.81	3(+)	1882.90	2+			O(Q/D) = -0.20 / O(-2.33)(1993Ki00).
473.4 [@] 3		2317.87	$(3,4^+)$	1844.57	4+			$(473\gamma)(1487\gamma)(\theta)$: R=0.85 3.
483.7 <i>3</i>	1.0 2	1844.57	4+	1361.01	3 ⁽⁺⁾			• ***
496.3 [@] 3		2053.6	$(3,4^+)$	1557.47	2+			$(496\gamma)(378\gamma)(\theta)$: R=0.69 14.

[†] Absolute intensity per 100 decays. ‡ Existence of this branch is questionable.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E_i (level)	\mathtt{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Comments
502.2 5	0.25 5	2346.81	3 ⁽⁺⁾	1844.57	4+	
521.8 ^f 5	$\approx 0.8 fb$	1882.90	2+	1361.01	3(+)	
521.8 ^f 5	$\approx 0.5 fb$	2079.13	3(+)	1557.47		$(522\gamma)(378\gamma)(\theta)$: R=0.63 6.
						$\delta(Q/D) = -0.8 \ 4 \ (1995 \text{Ki} 06).$
544.5 <i>1</i>	20 2	901.78	4+	357.34		$(544\gamma)(357\gamma)(\theta)$: R=0.876 7.
550.7 <i>1</i>	32 2	907.98	2+	357.34	2+	$(551\gamma)(357\gamma)(\theta)$: R=0.949 7.
			.(1)		.(1)	$\delta(Q/D) = -0.296 \ 7 \text{ or } -40 \ 13 \ (1995 \text{Ki} 06).$
566.4 ^{&} 3	0.43 ^c 3	2645.57	3(+)	2079.13		(5(0,)(000,)(d), D. 0.005.21
569.4 1	3.5 4	1477.50	(4 ⁺)	907.98		$(569\gamma)(908\gamma)(\theta)$: R=0.905 21.
575.6 [@] 3	fb	2168.4	5-	1592.9		
575.7 ^f 5	2.5^{fb} 3	1477.50	(4^{+})	901.78	4+	$(576\gamma)(544\gamma)(\theta)$: R=0.977 17.
sac of s	$a \circ f h$	2052 ((2.4+)	1.455.50	(44)	$\delta(Q/D) = -0.43 \text{ 8 or } +2.4 \text{ 5 } (1995\text{Ki}06).$
576.2 ^f 5	$\approx 0.3 fb$	2053.6	$(3,4^+)$	1477.50	(4 ⁺)	$(576\gamma)(1120\gamma)(\theta)$: R=0.83 4.
589.2 [@] 3		2422.0		1044 57	4+	$(576\gamma)(569\gamma)(\theta)$: R=0.86 3.
589.2 - 3 592.1 <i>4</i>	0.5 1	2433.8 2645.57	3(+)	1844.57 2053.6	$(3,4^+)$	
601.5 <i>4</i>	0.3 1	2079.13	3(+)	1477.50		
649.6 <i>1</i>	1.9 2	1557.47	2+	907.98		$(650\gamma)(908\gamma)(\theta)$: R=0.707 23.
						$\delta(Q/D) = -0.01 \text{ 3 or } +3.2 \text{ 4 } (1995 \text{Ki} 06).$
655.6	0.26 ^c 4	1557.47	2+	901.78	4+	$(656\gamma)(544\gamma)(\theta)$: R=0.81 5.
691.1 [@] 3		1592.9	6+	901.78	4+	
692.8 7	0.39 5	2053.6	$(3,4^+)$	1361.01	3 ⁽⁺⁾	
703.3 ^{&} 3	0.42 ^c 6	1882.90	2+	1179.5	0+	$(703\gamma)(822\gamma)(\theta)$: R=1.01 7. $(703\gamma)(271\gamma)(\theta)$: R=1.17 20.
718.2 <i>I</i>	3.4 2	2079.13	3(+)	1361.01	3(+)	(/00/)(2/1/)(0)/ 10 111/ 20/
726.9 [@] 3		2645.57	3(+)	1918.6		
789.2 ^{&} 3	0.43 ^c 6	2346.81	3(+)	1557.47		
801.2 2	1.0 3	2645.57	3(+)	1844.57		$(801\gamma)(1486\gamma)(\theta)$: R=1.1 <i>I</i> .
						$(801\gamma)(936\gamma)(\theta)$: R=1.2 <i>1</i> .
						$\delta(Q/D) = -0.2 2 \text{ or } -2.4 13 \text{ (1995Ki06)}.$
^x 818 [#]	0.23 ^c 4					
822.0 ^{&} 3	0.96 ^c 9	1179.5	0+	357.34	2+	$(822\gamma)(357\gamma)(\theta)$: R=0.507 10. $(822\gamma)(357\gamma)(\theta)$: A ₂ =+0.32 4, A ₄ =+1.03 8 (1997As05).
840.1 <i>3</i>	0.29 5	2317.87	$(3,4^+)$	1477.50	(4^{+})	I_{γ} : from 1973MeZZ. $I_{\gamma} \approx 1.3$ (1982Ur01).
						$(840\gamma)(559\gamma)(\theta)$: R=1.08 12.
^x 866.5 ^a 4	0.5 1		.(1)			
869.3 <i>1</i>	2.0 1	2346.81	3 ⁽⁺⁾	1477.50	(4^{+})	$(869\gamma)(1120\gamma)(\theta)$: R=0.89 4.
						$(869\gamma)(569\gamma)(\theta)$: R=0.89 3. $\delta(Q/D)$ =+0.47 11 or +3.8 14 (1995Ki06).
908.0 <i>1</i>	21 2	907.98	2+	0.0	0^{+}	$0(Q/D) = \pm 0.47 \ 11 \ 01 \ \pm 3.8 \ 14 \ (1393 \text{Ki00}).$
930.3 [@] 3	21 2	2407.8	-	1477.50		
936.6 2	1.0 2	1844.57	4+	907.98		$(937\gamma)(908\gamma)(\theta)$: R=0.87 5.
942.8 <i>1</i>	1.2 <i>I</i>	1844.57	4+	901.78		$(943\gamma)(544\gamma)(\theta)$: R=0.711 18.
						$\delta(Q/D) = +0.16 \ 13 \text{ or } +0.8 \ 2 \ (1995 \text{Ki} 06).$
957.0 <i>3</i>	0.5 1	2317.87	$(3,4^+)$	1361.01		
974.9 <i>1</i>	3.8 2	1882.90	2+	907.98	2+	$(975\gamma)(908\gamma)(\theta)$: R=0.91 3. $\delta(Q/D) = -0.25 \ 3 \ \text{or} +45 \ 6 \ (1995\text{Ki}06)$.
981.0 [@] <i>3</i>		1882.90	2+	901.78		$(981\gamma)(544\gamma)(\theta)$: R=0.86 20.
986.4 <i>10</i>	0.3 1	2346.81	3(+)	1361.01	3 ⁽⁺⁾	
1003.6 <i>I</i>	9.7 3	1361.01	3(+)	357.34	2+	$(1004\gamma)(357\gamma)(\theta)$: R=1.114 12. $\delta(Q/D) = -0.0009 \ 86 \ \text{or} \ -4.6 \ 2 \ (1995\text{Ki}06)$.
						() / (

$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\ddagger d}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	J^π_f	Comments
1010.5 [@] 3		1918.6	3	907.98	2+	
1016.7 [@] 3		1918.6	3	901.78		$(1017\gamma)(544\gamma)(\theta)$: R=1.28 8. $\delta(Q/D) = -0.4$ 2 or -1.6 7 (1995Ki06).
1017.0 <mark>a</mark> 3	0.7 2	3265.2?		2248.09	$(3,4^+)$	((()))
1088.0 [@] 3		2645.57	3(+)	1557.47	2+	
1090.8 [@] 3		2935.4		1844.57	4+	
1120.2 <i>1</i>	2.3 2	1477.50	(4^{+})	357.34	2+	$(1120\gamma)(357\gamma)(\theta)$: R=0.923 18.
1151.8 & <i>3</i>	0.43 ^c 5	2053.6	$(3,4^+)$	901.78	4+	$(1152\gamma)(544\gamma)(\theta)$: R=1.07 6.
1167.8 [@] 3		2645.57	3 ⁽⁺⁾	1477.50		
1171.1 <i>I</i>	4.6 2	2079.13	3 ⁽⁺⁾	907.98	2+	$(1171\gamma)(908\gamma)(\theta)$: R=1.13 4. $\delta(Q/D)$ =+0.008 25 or -4.8 6 (1995Ki06).
1177.4 <i>I</i>	2.7 1	2079.13	3(+)	901.78	4+	$(1177\gamma)(544\gamma)(\theta)$: R=1.25 3. $\delta(Q/D) = -0.34$ 7 or -1.8 3 (1995Ki06).
1200.1 <i>I</i>	3.6 <i>3</i>	1557.47	2+	357.34	2+	$(1200\gamma)(357\gamma)(\theta)$: R=0.965 15. $\delta(Q/D) = -0.31 \text{ 2 or } -23 \text{ 9 } (1995\text{Ki}06)$.
1222.8 [@] 3		4006.8		2784.0	$(3,4^+)$	
1266.6 [@] 3		2168.4	5-	901.78	4+	
1306.3 [@] 3		2784.0	$(3,4^+)$	1477.50	(4^{+})	
1333.7 [@] 3		2891.2		1557.47	2+	
1340.2 [@] 3		2248.09	$(3,4^+)$	907.98	2+	
1346.3 <i>1</i>	1.1 <i>I</i>	2248.09	$(3,4^+)$	901.78	4+	$(1346\gamma)(544\gamma)(\theta)$: R=0.85 3.
1361.1 [@] 3		2269.2		907.98	2+	
1377.7 [@] 3		2279.5		901.78		$(1378\gamma)(544\gamma)(\theta)$: R=0.84 5.
1410.7 4	0.5 1	2317.87	$(3,4^+)$	907.98		$(1411\gamma)(908\gamma)(\theta)$: R=0.71 9.
1415.9 [#] g	0.11 ^c 5	2317.87	$(3,4^{+})$	901.78		
1438.8 <i>I</i>	2.8 2	2346.81	3(+)	907.98	2+	$(1438\gamma)(908\gamma)(\theta)$: R=2.37 13. $\delta(Q/D)=+0.63 7 \text{ or } +3.0 5 \text{ (1995Ki06)}.$
1445.0 2	1.1 <i>I</i>	2346.81	3(+)	901.78	4+	$(1445\gamma)(544\gamma)(\theta)$: R=0.60 11. $\delta(Q/D)$ =+1.1 17 (1995Ki06).
1487.3 2	0.93 5	1844.57	4 ⁺	357.34		$(1487\gamma)(357\gamma)(\theta)$: R=0.85 3.
1525.7 1	8.0 6	1882.90	2+	357.34	2+	$(1526\gamma)(357\gamma)(\theta)$: R=0.680 8. $\delta(Q/D)$ =+0.029 12 or +2.8 2 (1995Ki06).
1529.5 [@] 3		3798.7		2269.2		
1530.2 [@] 3		2891.2		1361.01		
1554.2 [@] 3		2733.7	$(1,2^+)$	1179.5	0_{+}	
1557.1 [@] 3	< 0.3	1557.47	2+	0.0	0^{+}	I_{γ} : estimated by 1982Ur01.
1561.2 [@] 3		1918.6	3	357.34	2+	$(1561\gamma)(357\gamma)(\theta)$: R=1.18 <i>12</i> . $\delta(Q/D) = +0.04 \ 8 \text{ or } -6 \ 3 \ (1995\text{Ki}06)$.
1622.6 [@] 3		3676.2		2053.6	$(3,4^+)$	
1649.1 <mark>&</mark> <i>3</i>	0.53 ^c 12	2557.1		907.98	2+	
^x 1654 [#]	0.37 ^c 9					
1694.1 [@] 3		2602.1		907.98		
1695.8 <i>3</i>	0.52 8	2053.6	$(3,4^+)$	357.34		Placement from 1995Ki06.
1721.7 <i>I</i>	2.3 2	2079.13	3 ⁽⁺⁾	357.34	2+	$(1722\gamma)(357\gamma)(\theta)$: R=1.27 3. $\delta(Q/D)$ =+0.10 2 or -8.4 14 (1995Ki06).
^x 1736.0 ^a 4	0.4 1	2645 ==	2(+)	001 ==	4.4	(1514)(514)(0) P. 0.02 4
1744.0 <i>3</i>	0.6 1	2645.57	3 ⁽⁺⁾	901.78	4'	$(1744\gamma)(544\gamma)(\theta)$: R=0.82 4. $\delta(Q/D)$ =+0.37 7 or +4.2 11 (1995Ki06).
1787.8 ^a 3	0.5 1	3265.2?		1477.50	(4+)	$v(Q/D) - \pm 0.57 / 01 \pm 4.2 11 (1993 Kiloo).$

130 La ε decay (8.7 min) 1982Ur01,1995Ki06,1973MeZZ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E_i (level)	\mathtt{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Comments
1882.0 [@] 3		2784.0	$(3,4^+)$	901.78	4+	$(1882\gamma)(544\gamma)(\theta)$: R=1.0 <i>1</i> .
1882.5 [@] 3		1882.90	2+	0.0	0^{+}	
1890.5 [@] 3		2248.09	$(3,4^+)$	357.34	2+	$(1890\gamma)(357\gamma)(\theta)$: R=1.1 4.
1911.6 [@] <i>3</i>		2269.2		357.34	2+	$(1912\gamma)(357\gamma)(\theta)$: R=1.02 14.
^x 1953.9 ^a 3	0.6 1					
^x 2035.7 ^a 3	0.5 1					
2182.5 5	0.3 1	3660.0	$(2^+,3,4^+)$	1477.50	(4^{+})	
2287.9 3	0.7 1	2645.57	3 ⁽⁺⁾	357.34	2+	$(2288\gamma)(357\gamma)(\theta)$: R=1.22 8. $\delta(Q/D) = +0.07 5$ or $-6.9 23 (1995 \text{Ki} 06)$.
2426.9 [@] 3		2784.0	$(3,4^+)$	357.34	2+	
2437.8 [@] 3		3798.7		1361.01	3(+)	
2752.1 ^a 3	1.2 <i>1</i>	3660.0	$(2^+,3,4^+)$	907.98	2+	
2757.9 ^a 4	0.5 1	3660.0	$(2^+,3,4^+)$	901.78	4+	
2796.7 ^a 4	1.6 2	3704.7	$(2^+,3,4^+)$	907.98	2+	
2802.8 ^a 12	0.3 1	3704.7	$(2^+,3,4^+)$	901.78	4+	
2810.1 ^a 3	1.7 3	3711.9		901.78	4+	

[†] From 1982Ur01, unless otherwise stated.

[‡] Average of 1982Ur01 and 1973MeZZ, except as noted.

[#] From 1973MeZZ only.

[@] From 1995Ki06 only. Intensity is not given. Uncertainty of 0.3 keV assigned by the evaluator, based on comparison of other $E\gamma$'s with those from 1982Ur01.

[&]amp; From 1995Ki06. A similar E γ is reported by 1973MeZZ, but not by 1982Ur01.

^a From 1982Ur01, γ not reported by 1995Ki06.

^b From $\gamma\gamma$ coin (1982Ur01).

^c From 1973MeZZ.

^d For absolute intensity per 100 decays, multiply by 0.81 3.

^e Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

f Multiply placed with intensity suitably divided.

^g Placement of transition in the level scheme is uncertain.

 $^{^{}x}$ γ ray not placed in level scheme.

¹³⁰La ε decay (8.7 min) 1982Ur01,1995Ki06,1973MeZZ

130 La ε decay (8.7 min) 1982 Ur
01,1995 Ki
06,1973 MeZZ

Decay Scheme (continued)

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\nu} > 10\% \times I_{\gamma}^{max}$

Legend

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays @ Multiply placed: intensity suitably divided

 $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$ $\bullet \text{ Coincidence}$

	3(+)	0.0	8.7 min 1
$%\varepsilon + %\beta^{+}=100$	Q ⁺ =5666	70	
/	$^{130}_{57}$ La ₇	13	

 $^{130}_{56} Ba_{74} \\$

Decay Scheme (continued)

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$

Legend

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays @ Multiply placed: intensity suitably divided

γ Decay (Uncertain) Coincidence	$\%\varepsilon + \%\beta^{+}=100$	Q ⁺ =5666 2 130 57 La ₇₃	0.0 8.	.7 min <i>1</i>
	2053.6	$\frac{\mathrm{I}\beta^+}{0.6}$	<u>Ιε</u> 0.3	Log <i>ft</i> 7.0
3 2+ 4+	1918.6 1882.90 1844.57	6.5 1.8	3.2 0.84	6.0 6.6
$\frac{6^{+}}{2^{+}}$ (4^{+})	1592.9 1557.47 1477.50	3.1 2.4	1.1 0.79	6.6 6.7
3(+)	1361.01	5.4	1.6	6.4
0+	1179.5	0.3	0.08	7.8
2+ 4+	907.98	18 4.4	3.7 0.88	6.17 6.8
2+	357.34	16	2.1	6.5
		-		
0+	0.0			
$^{130}_{56}\mathrm{Ba}_{74}$				

Decay Scheme (continued)

Legend $\begin{array}{cccc} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays @ Multiply placed: intensity suitably divided

120 Sn(13 C,3n γ), 116 Cd(18 O,4n γ) 1985Su03,2000St07

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 93, 33 (2001)	11-May-2001

1985Su03 (also 1983Su09): 120 Sn(13 C,3n γ) E=45-58 MeV. Measured E γ , I γ , $\gamma\gamma$, excitation functions, $\gamma(\theta)$, ce. 2000St07: ¹¹⁶Cd(¹⁸O,4ny) E=76 MeV. Measured lifetimes by recoil-distance Doppler shift method.

1985E108, 1984E108: 122 Sn(12 C,4n γ) E=80 MeV. Measured γ multiplicity, $\gamma\gamma$ energy correlation matrices.

Additional information 1. 1969Ro23, 1966Br14: 122 Sn(12 C,4n γ) E=65 MeV. Measured E γ , I γ , ce. 1965Mi02: 133 Cs(p,4n γ) E=27-55 MeV. Measured E γ , I γ .

¹³⁰Ba Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	E(level)	J^{π} †	T _{1/2} ‡	E(level)	$J^{\pi\dagger}$	T _{1/2} ‡
0.0	0^{+}		2567.7 ^c 3	7-	4.16 ps <i>14</i>	4255.7 ^b 4	(12^{+})	1.52 ps <i>14</i>
357.1 <mark>&</mark> 2	2+	43.2 ps 5	2799.3 ^e 3	(8^{+})		4353.6 ^c 4	(13^{-})	
888.6 <i>3</i>			2927.7 4			4403.7 <i>4</i>		
901.4 <mark>&</mark> 2	4+	3.83 ps 6	2928.4 ^d 3	(8^{-})		4782.9 ^a 4	(14^{+})	0.41 [@] ps 4
907.4 <mark>e</mark> 2	$2^{(+)}$		3066.5 ^c 3	9-	5.27 ps <i>14</i>	4878.9 ^d 4	(14^{-})	
1360.4 <mark>e</mark> 2	3(+)		3259.5 ^{&} 3	10+	0.55 ps 7	4884.9 ^b 4	(14^{+})	3.4 [@] ps 6
1476.9 <mark>°</mark> 2	(4^{+})		3289.5 <i>4</i>		-	5155.0 ^c 5	(15^{-})	_
1544.1 <i>4</i>			3422.5 <i>3</i>	10 ⁺		5679.1 ^b 5	(16^{+})	
1592.4 <mark>&</mark> <i>3</i>	6+	0.98 ps 6	3434.5 ^d 3	(10^{-})		5729.7 ^a 5	(16^{+})	
2011.9 ^e 3	5 ⁺		3602.1 ^e 3	(10^{+})		5766.2 ^d 5	(16^{-})	
2100.7 ^e 2	(6^+)		3658.5 ^c 4	11-	2.10 ps 9	6036.8 ^c 5	(17^{-})	
2167.9 ^c 3	5-		3789.3 <i>4</i>	(10^{+})		6757.0 ^a 5	(18^{+})	
2182.5 <i>3</i>			3962.2 <i>4</i>			6972.8 ^c 6		
2229.6 4			3989.2 ^a 4	12 ⁺	2.15 ps 21	8022.8 ^c 6		
2394.7 <mark>&</mark> <i>3</i>	8+	0.49 ps <i>14</i>	4077.5 ^d 4	(12^{-})				
2474.5 <i>3</i>	8-	9.4 [#] ms <i>4</i>	4221.9 <mark>&</mark> 4	(12^{+})				

[†] From 1985Su03, based on the $\gamma(\theta)$, excitation functions, and $\alpha(K)$ exp from ce data.

 $\gamma(^{130}\text{Ba})$

 A_2 , A_4 and $\alpha(K)$ exp's are from 1985Su03.

[‡] From RDDS (2000St07).

[#] From Adopted Levels.

[@] Effective half-life.

[&]amp; Band(A): Ground-state band.

^a Band(B): First S (super) band.

^b Band(C): Second (S) band.

^c Band(D): 5⁻ band; π =-, α =1.

^d Band(E): 5⁻ band; $\pi = -, \alpha = 0$.

^e Band(F): Quasi- γ band.

${}^{120}Sn(^{13}C,3n\gamma), {}^{116}Cd(^{18}O,4n\gamma) \qquad {\bf 1985Su03,2000St07} \ (continued)$

E_{γ}^{\dagger}	${\rm I}_{\gamma}^{ \ddagger}$	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	α^a	Comments
163.0 2	< 0.2	3422.5	10 ⁺	3259.5 10 ⁺			
357.1 2	100	357.1	2+	0.0 0+	E2	0.0263	$\alpha(K)$ =0.02169; $\alpha(L)$ =0.00366; $\alpha(M)$ =0.00076; $\alpha(N+)$ =0.00020
							$A_2 = +0.265 \ 6, A_4 = -0.052 \ 9.$
360.7 2	5.3 <i>3</i>	2928.4	(8^{-})	2567.7 7-	D+Q		$A_2 = -0.22 \ 2, A_4 = +0.04 \ 3.$
368.0 2	2.4 3	3434.5	(10^{-})	3066.5 9			$A_2 = -0.40 5$, $A_4 = +0.03 1$.
399.8 2	8.2 3	2567.7	7-	2167.9 5			$A_2 = +0.28 \ 2, A_4 = -0.12 \ 4.$
419.0 2	1.4 [@] 5	4077.5	(12^{-})	3658.5 11-			
452.9 2	1.7 2	1360.4	3(+)	907.4 2 ⁽⁺⁾	D+Q		$A_2=0.00 6$, $A_4=+0.20 10$.
462.3 2	2.1 2	2474.5	8-	2011.9 5+			
466.4 2	0.9 [@] 4	4255.7	(12^{+})	3789.3 (10 ⁺)			
467.1 2	0.8 [@] 4	2567.7	7-	$2100.7 (6^+)$			
498.8 2	18.7 2	3066.5	9-	2567.7 7-	E2		$\alpha(K) \exp = 0.0073 \ 9$
							$A_2 = +0.34 I$, $A_4 = -0.08 2$.
506.1 2	4.5 2	3434.5	(10^{-})	2928.4 (8-)			$A_2 = +0.32 \ 4, A_4 = -0.09 \ 7.$
529.8 2	1.2 2	3789.3	(10^{+})	3259.5 10 ⁺			$A_2 = +0.36 \ 8, A_4 = +0.11 \ 12.$
531.5 2	2.6 2	888.6		357.1 2 ⁺			
539.7 2	1.0 2	3962.2	4 ⁺	3422.5 10 ⁺	EO		A +0.250 6 A 0.052 0
544.3 2	77.8 4	901.4	2 ⁽⁺⁾	357.1 2 ⁺	E2		$A_2 = +0.259 6, A_4 = -0.053 9.$
550.3 2	3.0 2 1.7 [@] 5	907.4		357.1 2 ⁺			$A_2 = +0.13 \ 2, \ A_4 = -0.08 \ 4.$
566.7 2		3989.2	12+	3422.5 10 ⁺			1 0 0 1 2 1 0 0 2 5
569.5 2	3.4 2	1476.9	(4 ⁺)	907.4 2 ⁽⁺⁾			$A_2 = +0.24 \ 3, A_4 = -0.02 \ 5.$
575.5 2	3.2 [@] 5	1476.9	(4^{+})	901.4 4+			
575.5 2	1.2 [@] 4	2167.9	5-	1592.4 6 ⁺			
590.1 2	2.7 2	2182.5		1592.4 6+	F-0		(H) 0.0054.7
592.0 2	14.3 <i>3</i>	3658.5	11-	3066.5 9-	E2		$\alpha(K) \exp = 0.0054 \ 7$
623.8 2	4.0 2	2100.7	(6 ⁺)	1476.9 (4 ⁺)			A ₂ =+0.35 2, A ₄ =-0.08 3. A ₂ =+0.21 3, A ₄ =-0.07 5.
629.2 2	4.0 2	4884.9	(14^{+})	4255.7 (12 ⁺)			$A_2 = +0.21 \ 3$, $A_4 = -0.07 \ 3$. $A_2 = +0.30 \ 4$, $A_4 = -0.10 \ 7$.
643.0 2	5.5 2	4077.5	(12^{-})	3434.5 (10 ⁻)			$A_2 = +0.32 5, A_4 = -0.05 7.$
651.5 2	1.9 2	2011.9	5+	1360.4 3 ⁽⁺⁾			$A_2 = +0.10 \ 4$, $A_4 = -0.02 \ 7$.
655.5 2	2.7 [@] 4	1544.1		888.6			
671.8 2	1.7 2	3066.5	9-	2394.7 8 ⁺			$A_2 = -0.27 5, A_4 = -0.08 9.$
685.5 2	1.7 2	2229.6		1544.1			
691.1 2	61.1 4	1592.4	6+	901.4 4+	E2		$\alpha(K) \exp = 0.0029 \ 5$
							$A_2 = +0.265 \ 7, A_4 = -0.06 \ 1.$
695.1 2	12.4 2	4353.6	(13^{-})	3658.5 11	(E2)		$A_2 = +0.27 \ I, A_4 = -0.02 \ 2.$
698.7 2	5.0 3	2799.3	(8+)	$2100.7 (6^{+})$			$A_2 = +0.25 \ 2, A_4 = +0.01 \ 3.$
729.7 2	6.6 3	3989.2	12+	3259.5 10 ⁺	E2		$\alpha(K)\exp=0.0038\ 6$
745.2 2	1.4 2	2927.7		2182.5			$A_2 = +0.23 \ 2, \ A_4 = -0.03 \ 3.$
793.7 2	4.2 [@] 5	4782.9	(14^{+})	3989.2 12+			$A_2 = +0.25 \ 4, A_4 = -0.03 \ 7.$
794.2 2	2.3 [@] 5	5679.1	(16^+)	4884.9 (14 ⁺)			
801.4 2	3.5 [@] 8	4878.9	(14^{-})	4077.5 (12-)			$A_2 = +0.36 \ 2$, $A_4 = -0.03 \ 3$.
801.4 2	5.4 [@] 8	5155.0	(15^{-})	4353.6 (13 ⁻)	(E2)		$A_2 = +0.36 \ 2, A_4 = -0.03 \ 3.$
802.3 2	28.9 [@] 5	2394.7	8+	1592.4 6+	E2		$\alpha(K) \exp = 0.0021 \ 4$
					L/2		$A_2 = +0.292 \ 8, \ A_4 = -0.06 \ I.$
802.8 2	3.0 [@] 9	3602.1	(10^{+})	2799.3 (8 ⁺)	F-0		(17) 0.0001 4
864.8 2	19.6 <i>3</i>	3259.5	10 ⁺	2394.7 8+	E2		α(K)exp=0.0021 4 A ₂ =+0.33 <i>I</i> , A ₄ =-0.08 2.
001 0 2	1.0 [@] 3	6026.9	(17=)	5155 0 (15-)			$R_2 - \pm 0.33 I$, $R_4 - \pm 0.00 2$.
881.8 2		6036.8	(17 ⁻)	5155.0 (15 ⁻)			
882.3 2	10.5 [@] 7	2474.5	8-	1592.4 6+			

120 Sn(13 C,3n γ), 116 Cd(18 O,4n γ) 1985Su03,2000St07 (continued)

E_{γ}^{\dagger}	${ m I}_{\gamma}^{\ddagger}$	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	Comments
887.3 2	1.2 2	5766.2	(16^{-})	4878.9 (14-)		
907.4 2	2.1 2	907.4	$2^{(+)}$	$0.0 0^{+}$		$A_2 = +0.25 \ 9, \ A_4 = +0.02 \ 4.$
936.0 <mark>&</mark> 2		6972.8		6036.8 (17 ⁻)		
946.8 2	1.6 2	5729.7	(16^{+})	4782.9 (14 ⁺)		$A_2 = +0.24 \ 8, \ A_4 = -0.02 \ 14.$
962.4 2	5.2 2	4221.9	(12^{+})	3259.5 10 ⁺	(E2)	$A_2 = +0.22 5$, $A_4 = -0.11 9$.
975.3 2	16.5 <i>3</i>	2567.7	7-	$1592.4 6^{+}$	E1	$\alpha(K)$ exp=0.0007 I
						$A_2 = -0.24 I$, $A_4 = -0.01 2$.
981.2 2	1.4 2	4403.7		3422.5 10 ⁺		
996.2 2	4.0 2	4255.7	(12^{+})	$3259.5 10^{+}$		$A_2 = +0.31 \ 10, A_4 = -0.06 \ 16.$
1003.2 2	1.4 2	1360.4	3 ⁽⁺⁾	357.1 2 ⁺	D+Q	$A_2 = +0.08 6, A_4 = +0.09 9.$
1027.3 2	0.7 [@] 3	6757.0	(18^{+})	5729.7 (16 ⁺)		
1027.8 2	4.3 [@] 5	3422.5	10+	2394.7 8+		$A_2 = +0.36 \ 3, \ A_4 = -0.04 \ 5.$
1050.0 ^{&} 2		8022.8		6972.8		
1107.0 2	1.0 2	3289.5		2182.5		
1110.4 2	1.8 2	2011.9	5 ⁺	901.4 4+		A ₂ =+0.16 <i>12</i> , A ₄ =0.15 <i>19</i> .
1119.8 2	3.9 <i>3</i>	1476.9	(4^{+})	357.1 2+		$A_2 = +0.24 4$, $A_4 = -0.07 9$.
1199.3 2	1.7 2	2100.7	(6^{+})	901.4 4+		$A_2 = +0.335$, $A_4 = -0.079$.
1207.4 2	2.2 2	3602.1	(10^{+})	2394.7 8+		$A_2 = +0.33 6$, $A_4 = -0.006 9$.
1266.6 2	3.7 2	2167.9	5-	901.4 4+	D(+Q)	$A_2 = -0.21 \ 4, \ A_4 = -0.05 \ 6.$

[†] From (13 C,3n γ) (1985Su03); Δ (E γ)=0.2 keV assigned (evaluator). † From (13 C,3n γ) (1985Su03) at 52 MeV.

[#] From $\gamma(\theta)$ and $\alpha(K)$ exp.

[©] From γγ coin; component of a doublet.
& From 2000St07.

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{130}_{56}{\rm Ba}_{74}$

120 Sn(13 C,3n γ), 116 Cd(18 O,4n γ) 1985Su03,2000St07

¹³⁰Ba(α , α') **1985Bu13**

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh NDS 93, 33 (2001) 11-May-2001

1985Bu13: E=20 MeV.

¹³⁰Ba Levels

Comments

0.0 0^+ 355 5 903 5 1948 5 (3⁻) J^{π} : from trend of 3⁻ states observed in ¹³²Ba (at 2070), ¹³⁴Ba(at 2251), ¹³⁶Ba (at 2529) and ¹³⁸Ba (at 2879) (1985Bu13).

1

Coulomb excitation

Type Author Citation Literature Cutoff Date

Full Evaluation Balraj Singh NDS 93, 33 (2001) 11-May-2001

1989Bu07: (α, α') E=10.8-11.8 MeV; $(^{12}C, ^{12}C')$ E=32-38 MeV; $(^{16}O, ^{16}O')$ E=43-49 MeV. Measured B(E2) and Q for first 2+ state

1980Br01: (32 S, 32 S' γ) E=72-80 MeV. Measured μ by $\gamma(\theta,H)$.

1974Ne15: (^{16}O , $^{16}O\gamma$) E=40-60 MeV. Measured $\gamma(\theta)$. (d,d') E=12 MeV. Measured cross section. Deduced Q.

1973ToXW: (32 S, 32 S' γ) E=70 MeV; (40 Ca, 40 Ca') E=85 MeV. Measured γ , deduced Q.

1970Ku19: (16 O, 16 O γ). Measured $\gamma(\theta,H,t)$. Deduced hyperfine fields.

1967Si03: (^{16}O , $^{16}O\gamma$) E=20.7, 25.1 MeV; (^{32}S , $^{32}S'$) E=41.7, 49.4 MeV. Measured Q.

1958Fa01: (α , α') E≤5.6 MeV.

¹³⁰Ba Levels

E(level) J^{π} $T_{1/2}$ Comments

0.0 0^{+} 357.3 2^{+} 40.7 ps 4 $B(E2)\uparrow=1.163$ 11 g=0.35 3 (1980Br01) $B(E2)\uparrow:$ average of 1.167 11 (constructive) and 1.159 12 (destructive) (1989Bu07). Others: 1.21 38 (destructive) (1973ToXW); 1.36 14 (1967Si03); 0.75 18 (1958Fa01). Q: reorientation method. -1.02 16 (constructive), -0.09 16 (destructive) (1989Bu07) assuming that γ from second 2^{+} to first 2^{+} is predominantly E2. Others: -0.33 24 (1974Ne15), +0.37 18 (destructive) (1973ToXW), -1.10 34 (1967Si03). $T_{1/2}$: from B(E2).

γ (130Ba)

 $\frac{\text{E}_{\gamma}}{357.3}$ $\frac{\text{E}_{i}(\text{level})}{2^{+}}$ $\frac{\text{J}_{i}^{\pi}}{2^{+}}$ $\frac{\text{E}_{f}}{0.0}$ $\frac{\text{J}_{f}^{\pi}}{0^{+}}$ $\frac{\text{Mult.}}{\text{E2}}$ $\frac{\alpha^{\dagger}}{0.0263}$ $\frac{\alpha(\text{K})=0.02165; \alpha(\text{L})=0.00365; \alpha(\text{M})=0.00076; \alpha(\text{N}+..)=0.00020}{\alpha(\text{N})=0.00076; \alpha(\text{N}+..)=0.00020}$

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Coulomb excitation

Level Scheme

