

BUNDESREPUBLIK DEUTSCHLAND

AUSGEGEBEN AM
19. MÄRZ 1959

DEUTSCHES PATENTAMT

PATENTSCHRIFT

Nr. 971 711

KLASSE 47a GRUPPE 5

INTERNAT. KLASSE F 06b —————

P 7854 XII/47a

Ross Jay Miller, Pitman, N.J. (V. St. A.)
ist als Erfinder genannt worden

E. I. du Pont de Nemours and Company, Wilmington, Del. (V. St. A.)

Sprengniet

Patentiert im Gebiet der Bundesrepublik Deutschland vom 19. Juni 1952 an

Patentanmeldung bekanntgemacht am 25. Februar 1954

Patenterteilung bekanntgemacht am 5. März 1959

Die Priorität der Anmeldung in den V. St. v. Amerika vom 20. Juni 1951 ist in Anspruch genommen

Die Erfindung betrifft einen Sprengniet mit in der durch einen Stopfen abgeschlossenen Schaftbohrung untergebrachter Sprengladung, wobei der Stopfen gegen Herausschleudern gesichert ist.

- 5 Man hat bei der Sprengnietung insbesondere zum Verbinden dünner Bleche oder kleiner Werkstücke kleinere Niete benutzt, z.B. solche, deren Schaftdurchmesser nicht größer als etwa 6,3 mm war. Dabei war das durch die Explosion des 10 Sprengstoffes entstehende Geräusch noch erträglich. Bei Nieten größerer Abmessungen war das Sprengnietverfahren jedoch nicht anwendbar, weil das Explosionsgeräusch die Grenzen des Erträglichen überstieg. Wenn man, um das Explosions- 15 geräusch abzuschwächen, versucht, das Entweichen der Explosionsgase aus der Schaftbohrung durch

Einschrauben eines Bolzens in das offene Ende des Nietschaftes oder durch Überschrauben einer Kappe zu vermeiden, zeigt sich, daß dieser Schraubenbolzen oder die Kappe durch den Explosionsdruck wie ein Geschoß herausgeschleudert wird.

Durch die Erfindung werden Sprengniete geschaffen, die nahezu geräuschlos verarbeitet werden können. Auch soll vermieden werden, daß bei der Vernietung Bolzen oder Kappen als Geschosse herausgeschleudert werden. Die Niete sollen ferner eine verhältnismäßig große Sprengstoffladung aufnehmen können und beim Aufbauchen des Schaftes keine unerwünschten Verformungen erleiden.

Es sind Sprengniete als mit Sprengstoff gefüllte Hohlniete bekannt, bei denen die Spreng-

ladung in der Schaftbohrung untergebracht und das Schaftende eingezogen ist. Auch hat man die Sprengladung mit einer dünnen Schutzschicht aus Kitt od. dgl. abgeschlossen, um sie vor Verschmutzungen oder Herausfallen zu schützen. Bei der Explosion wird die dünne Schutzschicht, die der Sprengwirkung keinen Widerstand entgegensetzt, herausgeschleudert. Man durfte diesen Verschluß nicht aus Metall herstellen, weil durch einen herausgeschleuderten Metallstopfen die Arbeiter verletzt werden könnten.

Es ist bekannt, die Schaftbohrung, in welcher die Sprengladung untergebracht ist, durch einen Stopfen abzuschließen. Hierzu verwendete man eine Schraube oder einen zylindrischen Stift. Um ein Herausschleudern des Stopfens durch die Sprenggase zu verhüten, hat man die Schraube durch Stauchung ihres inneren Endes gegen Herausfallen gesichert oder auf das Schaftende eine Kappe aufgeschraubt. In diesen Fällen bewirkte der Verschluß einen gedrosselten Austritt der Sprenggase.

Es ist auch bekannt, das Herausfallen der Sprengladung nicht durch einen Stopfen, sondern durch Einziehung des Schaftendes zu verhindern.

Demgegenüber betrifft die Erfindung einen Sprengniet mit einer mittels eines Stopfens verschließbaren und die Sprengladung aufnehmenden Schaftbohrung, wobei der Stopfen gegen ein Herausschleudern gesichert ist, der sich dadurch auszeichnet, daß der Stopfen durch eine Einziehung des Schaftendes formschlüssig gehalten wird.

Diese Ausführungsform hat gegenüber den kraftschlüssigen Verbindungen, z. B. mittels eines durch Reibung gehaltenen Stiftes, einer Kappe oder einer Schraube, den Vorteil, daß die Einziehung des Schaftendes mit einfachen Mitteln und bei der Massenfertigung durchgeführt werden kann und eine besonders einfache und zweckmäßige Maßnahme darstellt, das Herausschleudern des Stopfens bei der Sprengung zu vermeiden.

In der Zeichnung ist die Erfindung beispielweise veranschaulicht.

Fig. 1 zeigt einen Sprengniet nach der Erfindung vor dem Vernieten zweier Metallbleche im axialen Schnitt; in

Fig. 2 ist der Niet nach Fig. 1 nach der Explosion dargestellt;

Fig. 3 bis 6 zeigen geeignete Verschlußstopfen mit rauher oder unebener Oberfläche verschiedener Form für die Schaftbohrung nach Fig. 1.

Wie aus der Zeichnung hervorgeht, wird der Hohlschaft 2 des Nieten in das Nietloch, das durch die beiden zu verbindenden Metallbleche 5, 6 verläuft, so eingeführt, daß der Nietkopf 1 fest auf der Oberfläche der Blechplatte 5 ruht. In der Bohrung 3 des Niethohlschaftes 2 ist eine Sprengstoffladung 4 untergebracht. Sie wird durch einen kleinen zylindrischen Verschlußstopfen 7 mit rauher oder gezackter Oberfläche verschlossen, der mit seiner inneren Grundfläche auf der Sprengladung 4 aufliegt und dessen gezackte zylindrische Mantelfläche an der inneren Wandung der Nietkopfbohrung 3 anliegt. Im Bereich des nach außen weisenden Teils des gezackten Verschlußzapfens 7 ist der Hohlschaft 2 zu einer Verengung 8 eingezogen, wodurch der Zapfen 7 in seiner Lage gehalten und die an dem nach außen weisenden Ende liegenden Zacken des Stopfens 7 umschlossen werden, wobei aber das Ende des Hohlschaftes 2 nicht vollständig abgeschlossen wird.

Wie aus Fig. 2 zu ersehen ist, sind die Wandungen des Hohlschaftes 2 nach der Explosion der Sprengstoffladung aufgebaut, so daß die Blechplatten 5 und 6 in bekannter Weise durch die Aufbauchung vernietet sind.

Die Verschlußstopfen können, wie in Fig. 3, 4, 5 und 6 dargestellt ist, verschiedene Ausbildungen aufweisen. Fig. 3 zeigt in Ansicht einen zylindrischen Verschlußstopfen mit Außengewinde. In Fig. 4 ist ein zylindrischer Verschlußstopfen dargestellt, der zahlreiche in die zylindrische Mantelfläche geschnittene Nuten, Kerbungen oder Einschnitte aufweist. Der Stopfen nach Fig. 5, der besonders für kleine Niete geeignet ist, weist auf seiner zylindrischen Oberfläche eine narbenartige Prägung auf. Fig. 6 zeigt eine andere Form eines Verschlußstopfens mit rauher Oberfläche mit Ringnuten, die axiale Ringe mit scharfen Kanten bilden.

Bei der Entzündung der Niete nach der Erfindung durch Hitze entsteht nicht wie bei den bekannten Sprengnieten ein lauter Knall, sondern nur ein kurzes metallisches Klicken.

Die geräuschlose Arbeitsweise der Niete nach der Erfindung ist darauf zurückzuführen, daß die Explosionsgase nicht plötzlich austreten können. Ihr Austritt wird gemäß der Erfindung durch die Verschlußstopfen abgebremst, die in der Innwandung der Hohlschaftbohrung fest gegen den Explosionsdruck gehalten werden und diese Wandungen teilweise einkerbhen, so daß die Gase nur langsam und auf einem verhältnismäßig langen Weg außen um den Stopfen herum entweichen können.

Die Verschlußstopfen können verschiedene Formen aufweisen, jedoch haben im wesentlichen zylindrische Stopfen sich als zweckmäßig erwiesen, weil sie in die zylindrische Bohrung leicht eingebracht und durch die Einschnürung 8 auch besser befestigt werden können als Stopfen mit sphärischem Umriß oder beispielsweise eckigem Querschnitt. Jedoch können auch die letzteren Formen als Verschlußstopfen verwendet werden, wenn der Abschluß entsprechend gestaltet wird.

Außer den in Fig. 3 bis 6 dargestellten Stopfformen können auch Stopfen mit anderem Umriß, z. B. mit unregelmäßiger Oberfläche, verwendet werden. Die Oberflächen können gerieft, gewellt, gerippt, gefaltet, gefurcht, gekerbt, gezähnt, bucklig, genutet, körnig oder ähnlich ausgebildet sein. Bei den mit Einschnitten versehenen Stopfen ähnlich Fig. 4 können verschiedene Einschnitte oder Nuten in gleichmäßigen oder ungleichförmigen Abständen und Lagen vorgesehen sein. Stopfen mit glatten Oberflächen sind nicht so zweckmäßig, insbesondere bei Nieten größerer Abmessungen, weil

- die Explosionsgase sie trotz der Einschnürung leicht aus dem Nietschaft herausblasen können, denn die Gase bahnen sich um die glatte Außenwandung des Stopfens einen Weg, dehnen dabei das Ende des Nietschaftes aus und schleudern den Stopfen schließlich heraus. Aber selbst wenn die Stopfen mit glatter Oberfläche nicht aus dem Nietschaft geschleudert werden, entweichen die Gase mit so großer Geschwindigkeit, daß ein unangenehmes Geräusch entsteht. Ist die Oberfläche der Stopfen aber rauh, so werden die Stopfen an einem Teil von der unteren Nietschaftwandung fest eingeklemmt. Dabei können die Gase keinen direkten Weg um den Stopfen finden und herausblasen.
- Infolgedessen wird ein zu lautes Explosionsgeräusch, ein Aufweiten der Einschnürung des Schaftes und ein Herausschleudern des Stopfens vermieden. Durch die Eindämmung des Gasdruckes nach der Explosion wird der Stopfen noch mehr in der Nietschaftwandung eingebettet und der Gasdurchtritt noch weiter beschränkt. Ein vollständiger Abschluß des Nietschaftes ist aber nicht nötig und auch nicht erwünscht, weil sonst infolge des übermäßigen Gasdruckes leicht ein Reißen oder Platzen des Nietschaftes auftritt.
- Die Einschnürung des Nietschaftendes um den Stopfen kann in jeder gewünschten Weise erzeugt werden, z. B. durch Stauchen, Sicken od. dgl. Dichtet man Hohlniete ohne Stopfen an ihrem Ende durch Stauchen oder Sicken ab, so wird dieser Verschluß durch die Gase ohne weiteres aufgebaucht, und die Explosionsgase entweichen unter starkem Geräusch.
- Die Herstellung der neuen Sprengnietverschlüsse ist einfach und wirtschaftlich. Die Bohrung des Hohlschaftes braucht kein Gewinde aufzuweisen, und es ist nicht nötig, daß die rauhe Oberfläche der Stopfen mit besonderer Sorgfalt hergestellt wird. Der Stopfen mit rauher Oberfläche wird nach Einführung der Sprengstofffüllung lediglich in die Bohrung des Nietschaftes eingebracht und das Ende des Schaftes hinter dem Stopfen, wie bei 8 dargestellt ist, durch Stauchen, Sicken od. dgl. zusammengedrückt.

Die neuen Sprengniete arbeiten praktisch geräuschlos. Die Explosionsgase entweichen so langsam, daß sie nicht herauspuffen. Sie verursachen keine unerwünschten Verformungen, und es werden keine Metallteile herausgeschleudert, die Schaden anrichten können. Bei der Herstellung von Kühl anlagen wird das Isoliermaterial beim Vernieten mit den Gehäuseblechen nicht durch die Explosionsgase oder Metallteile der Niete zerstört. Man kann die geräuschlosen Niete auch bei Holzbauweisen verwenden, bei denen das Holz durch die gewöhnlichen Sprengniete infolge der Explosion gespalten werden würde.

Die bekannten Sprengniete größerer Abmessungen erzeugen nicht nur ein unerträgliches Geräusch. Infolge der Düsenwirkung beim Entladen der Sprenggase aus dem offenen Schaft tritt auch ein Rückstoß auf, durch den die Niete in der Bohrung verlagert werden können. Diese Nachteile treten bei den Nieten nach der Erfindung nicht auf.

Die Sprengniete nach der Erfindung können nicht nur mit größerem Durchmesser, sondern auch mit größerer Schaftlänge und mit größerer Sprengladung verwendet werden, was bei den bekannten Nieten zu einem unerträglichen Geräusch führen würde. Die Geräuschverminderung wirkt sich vor allem bei der Montage, wenn eine sehr große Anzahl von Nieten in einem Arbeitsraum zur gleichen Zeit gezündet werden muß, vorteilhaft aus.

Sprengniet mit einer mittels eines Stopfens verschließbaren und die Sprengladung aufnehmenden Schaftbohrung, wobei der Stopfen gegen ein Herausschleudern während der Sprengung gesichert ist, dadurch gekennzeichnet, daß der Stopfen (7) durch eine Einziehung (8) des Schaftendes (2) formschlüssig gehalten wird.

In Betracht gezogene Druckschriften:
Deutsche Patentschriften Nr. 648 842, 369 395,
655 669.

Hierzu 1 Blatt Zeichnungen

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

