Navigating Anchor Relevance Skillfully: Expertise Reduces Susceptibility to
 Anchoring Effects

Maren Mayer¹ & Tobias R. Rebholz²

- ¹ Leibniz-Institut für Wissensmedien (Knowledge Media Research Center)
- 5 Tübingen
- ² University of Tübingen

7 Author Note

8

- Maren Mayer, Leibniz-Institut für Wissensmedien (Knowledge Media Research Center), Tübingen, Germany. https://orcid.org/0000-0002-6830-7768
- Tobias R. Rebholz, Psychology Department, University of Tübingen, Germany.
- 12 bttps://orcid.org/0000-0001-5436-0253
- Data and R scripts for the analyses are available at the Open Science Framework (https://osf.io/jev4f/?view_only=9f08cfb7e2834a04969dd0897f89d24a). The present version of the manuscript (July 10, 2024) was uploaded to PsyArXiv and ResearchGate and has not yet been peer reviewed.
- We thank Lukas Röseler for his feedback on the interpretation of different theories of anchoring.
- The authors made the following contributions. Maren Mayer: Conceptualization,
 Investigation, Methodology, Formal Analysis, Visualization, Writing Original Draft
 Preparation, Writing Review & Editing, Funding acquisition; Tobias R. Rebholz:
 Conceptualization, Investigation, Methodology, Formal Analysis, Writing Review &
 Editing.
- Correspondence concerning this article should be addressed to Maren Mayer,
 Schleichstr. 6, 72076 Tübingen, Germany. E-mail: maren.mayer@iwm-tuebingen.de

26 Abstract

50 years ago Tversky and Kahneman (1974) described anchoring as the phenomenon 27 whereby an irrelevant numerical value influences a subsequent numerical judgment. 28 Although expertise strongly influences the accuracy of judgments, its role in anchoring is still unclear with findings of reduced, similar, and stronger anchoring in experts 30 compared to novices. Moreover, three prominent theories of anchoring, i.e., the 31 Insufficient Adjustment Model, the Selective Accessibility Model, and the Scale 32 Distortion Theory, make different predictions regarding the influence of expertise on 33 anchoring. To address this inconsistency and to test these theories of anchoring against 34 each other, we manipulate individuals' expertise prior to a perceptual estimation task. 35 Additionally, we manipulate anchor relevance and anchor extremity. In two 36 preregistered experiments, we find that experts do indeed show less anchoring compared 37 to novices, and that more extreme anchors lead to stronger anchoring effects. However, we do not find an effect of anchor relevance in either experiment. These results add to 39 the growing body of literature showing that expertise reduces anchoring effects. 40 Morevoer, although no anchoring theory is clearly supported in the experiments, the 41 results are mostly consistent with the Insufficient Adjustment Model assuming ranges of plausible values and the Scale Distortion Theory. Our findings highlight the importance 43 of expertise in judgments in general and anchoring in particular. Thus, theories of

anchoring should take expertise into account as a strong inhibitor of anchoring effects.

Keywords: expertise, relevance, anchoring, accuracy, heuristics

Word count: 6512

45

Navigating Anchor Relevance Skillfully: Expertise Reduces Susceptibility to **Anchoring Effects** 49

Anchoring was first described 50 years ago by Tversky and Kahneman (1974). It 50 describes the phenomenon that an unrelated numerical value influences a subsequent numerical judgment. Since then, anchoring has been extensively studied in various 52 contexts, e.g., in legal decision making or wisdom of crowds (Bystranowski et al., 2021; 53 Honda et al., 2024), and has been applied in different tasks concerning, e.g., real-estate 54 markets, legal sentences, or COVID infections (English & Soder, 2009; Frech et al., 55 2019; Honda et al., 2024). The anchoring effect has implications for various applied settings, such as negotiating prices and salaries, or estimating the number of future 57 customers and product sales, and is a highly robust phenomenon, as confirmed by 58 several meta-analyses and literature reviews (Bystranowski et al., 2021; Furnham & 59 Boo, 2011; Guthrie & Orr, 2006; Röseler & Schütz, 2022; Schley, 2023). 60 Although extensively researched, the role of expertise in anchoring is not yet 61 clear. There is considerable evidence showing that experts do exhibit anchoring to some degree (Mussweiler et al., 2000, Study 1; Englich & Soder, 2009; Smith et al., 2013; 63 Wilson et al., 1996). However, it is unclear whether experts show higher, similar or lower levels of anchoring compared to novices (English et al., 2006; English & Soder, 65 2009; Northcraft & Neale, 1987; Smith et al., 2013; Smith & Windschitl, 2015; Wilson et al., 1996). Moreover, most of these findings are based on measured knowledge or the 67 definition of expertise as professional experience. Thus, the results of these studies provide mostly only correlational evidence. Even meta-analyses and literature reviews 69 come to different conclusions about the effect of expertise on anchoring ranging from 71

weaker effects over similar effects to inconclusive effects for expertise on anchoring

(Bystranowski et al., 2021; Furnham & Boo, 2011; Guthrie & Orr, 2006; Röseler & 72

Schütz, 2022; Schley, 2023). Thus, further research is needed to clarify this effect, 73

ideally using a task that does not include knowledge as an indicator of expertise, but

instead implements an experimental manipulation of expertise.

Despite half a century of research on anchoring, there is still no unifying theory 76 of anchoring. Several different theories have been proposed, the most prominent being the Insufficient Adjustment Model (IAM, Tversky & Kahneman, 1974), which has been 78 extended to include a range of plausible values (IAM-PL, Epley & Gilovich, 2001), the Selective Accessibility Model (SAM, Mussweiler & Strack, 1999a, 1999b), and the Scale 80 Distortion Theory (SDT, Frederick & Mochon, 2012). These theories and models make similar predictions for anchoring under many circumstances (e.g., anchor extremity or 82 anchor relevance; Röseler & Schütz, 2022), but they make different predictions when it comes to the influences of expertise on anchoring. These predictions range from a 84 reduced anchoring effect for experts, over no difference in anchoring between experts and novices, to larger anchoring effects for experts compared to novices.

In the following, we will first describe the three most prominent theories of anchoring, namely IAM (incl. IAM-PL), SAM, and SDT. We then describe findings on expertise and anchoring and derive predictions for expertise-related anchoring from these theories. In two studies in which we manipulated participants' expertise as a skill rather than knowledge, we show that expertise does indeed reduce anchoring. Lastly, we discuss implications for research on anchoring and expertise in particular, and for theories of anchoring in general.

Theories of anchoring

With the highly active research on anchoring in the past decades also came the development of various theories that attempt to explain the phenomenon (Bahník et al., 2022; Mussweiler et al., 2004). In the following, we describe the three most prominent of these theories and models, namely IAM (incl. IAM-PL), SAM, and SDT.

99 The Insufficient Adjustment Model

The Insufficient Adjustment Model was proposed by Tversky and Kahneman (1974) to explain the original discovery of the phenomenon. The IAM assumes that individuals use the anchor as a starting point for their judgment and adjust away from the anchor to arrive at the numerical judgment that is being asked. However, the model

does not describe how long individuals adjust and when they stop adjusting to provide
a final judgment. A possible solution to this issue was proposed by Epley and Gilovich
(2001). Thy extended the IAM with a range of plausible judgments that each individual
holds for a given judgment task. Individuals are supposed to adjust until they reach this
range of plausible values. However, even this model extension is insufficient, as recent
research suggests that adjustment may not be unidirectional (Röseler et al., 2023).

110 The Selective Accessibility Model

The Selective Accessibility Model (Mussweiler & Strack, 1999a, 1999b) explains 111 anchoring as a phenomenon of information accessibility. The model posits that 112 anchor-consistent information becomes more accessible than anchor-inconsistent 113 information when an anchor is presented, Consequently, when individuals sample 114 information to provide a numerical judgment, they do so more in favor of the anchor. 115 This results in anchoring because the sampled information, and thus the judgment 116 provided, is biased toward anchor-consistent information. However, the SAM has 117 recently been challenged by findings that failed to replicate the impact of priming on anchoring (Harris et al., 2019). 119

120 The Scale Distortion Theory

The Scale Distortion Theory (Frederick & Mochon, 2012) proposes that
anchoring occurs because individuals rely on the scale provided by the anchor to make
their judgments. Thereby, the numerical value itself does not directly influence
judgments, but it leads to a shift in judgments that are considered for the task at hand.
This scale distortion is expected to be overridden when a new anchor is presented.
However, this critical assumption has recently been challenged by Bahník (2021), who
found that anchors caused anchoring effects across trials.

The theoretical accounts described above make many similar predictions and are not easy to disentangle (Röseler & Schütz, 2022). However, there are some variables for which these theories still make different predictions. These include, among others, the influence of expertise and anchor relevance.

2 Expertise, anchor relevance, and anchor extremity

For numerical judgments in general, expertise is highly influential for the
accuracy of the judgments provided (Mayer & Heck, 2023; e.g., Merkle et al., 2020).
Beyond mere knowledge tasks, individuals with high expertise can make highly accurate
predictions for events that have not yet occurred, thus providing judgments in
situations where no correct answer is (yet) known (Da & Huang, 2020; Himmelstein et
al., 2021). However, when it comes to the influence of expertise on the anchoring effect,
findings are highly contradictory.

It has been shown repeatedly that experts do exhibit anchoring to some degree 140 (e.g., Englich et al., 2006; Englich & Soder, 2009; Mussweiler et al., 2000, Study 1; 141 Smith et al., 2013). However, the extent of anchoring in the light of expertise is unclear. 142 A reduced anchoring effect with higher expertise (Smith et al., 2013; Smith & 143 Windschitl, 2015; Wilson et al., 1996), a somewhat stronger anchoring effect with higher expertise (Englich & Soder, 2009; Northcraft & Neale, 1987) and a similar degree 145 of anchoring across expertise levels have been found (English et al., 2006). Even meta-analyses and literature reviews come to different conclusions, indicating similar 147 effects (Bystranowski et al., 2021; Furnham & Boo, 2011), weaker effects (Guthrie & Orr, 2006; Schley, 2023), or are unable to draw a conclusion based on few studies 149 (Röseler & Schütz, 2022).

In addition, the studies that examine the effect of expertise on anchoring may be 151 influenced by other variables. Schley (2023) suspects publication bias in research on 152 anchoring effects. Older studies may also lack sufficient power due to small sample sizes 153 (e.g., Englich & Soder, 2009). Beyond procedural issues, Röseler and Schütz (2022) 154 suggests that moderators such as type of task or type of response scale additionally 155 influence the extent and even direction of the anchoring effect which in turn should also 156 be considered when investigating the relationship between expertise and anchoring. 157 Another limitation of previous studies is that most of these results focus on 158 (professional) experience as expertise or knowledge measured in these studies (e.g., 159

Englich et al., 2006; Englich & Soder, 2009; Northcraft & Neale, 1987). for These 160 studies, however, can only be interpreted correlationally since expertise was not 161 experimentally manipulated. To overcome this issue, Smith and colleagues introduced a 162 manipulation of knowledge before the anchoring task showing that participants who were provided knowledge about the correct answers to the presented tasks or closely 164 related information were less influenced by presented anchors (Smith et al., 2013 Study 4; Smith & Windschitl, 2015). Even though an important contribution in clarifying the 166 relationship between expertise and anchoring, other aspects of expertise, such as skills 167 or abilities, have not yet been examined in the context of anchoring. Moreover, 168 implementing a manipulation of expertise with knowledge poses the risk that 169 participants recollect this information when providing numerical estimates rather than 170 providing a genuine estimate.

Not only are empirical findings on the relationship between expertise and 172 anchoring insufficient and contradictory, but also theories of anchoring make very 173 different predictions in this area. The IAM as proposed by Tversky and Kahneman 174 (1974) does not differentiate between experts and novices in terms of susceptibility to 175 anchoring effects. This is because the IAM is based on the idea that individuals, 176 regardless of their level of expertise, make initial estimates based on the provided 177 anchor and then adjust away from that anchor to arrive at their final judgment. Merely 178 positing that this adjustment process is typically insufficient, the IAM does not specify 179 any moderating factors that might influence the extent of this adjustment. Therefore, 180 according to the IAM, the anchoring effect should be equally prevalent among experts 181 and novices. In contrast, the IAM-PL proposed by Epley and Gilovich (2001) suggests that experts may be less susceptible to anchoring because their range of plausible values 183 is likely to be narrower than that of novices. This is due to their deeper and more specific knowledge base, which allows them to more accurately determine the range of 185 plausible values and thus make more precise adjustments away from the anchor. 186

The SAM proposed by Mussweiler et al. (2000) posits a different relationship
between expertise and anchoring. In the case of experts, their extensive knowledge base

means that they have more information that could potentially be consistent with the 189 anchor. Therefore, according to the SAM, experts should be able to activate a greater 190 amount of anchor-consistent information and thus actually show even stronger 191 anchoring than novices. Crucially, this reasoning could lead to counterintuitive expectations for tasks where correct answers can be known. If individuals have very 193 high expertise, they might know the correct answer to the task, or at least provide a very accurate judgment. According to SAM, these individuals should also be the most 195 susceptible to the anchors presented. However, showing a strong anchoring effect (even 196 stronger than novices) when knowing the correct answer to the task is very unlikely. A 197 similar reasoning could be applied to tasks for which no correct answer exists or is 198 known. A real estate agent is less likely to be anchored by an initial offer than a person 199 who is not typically involved in the real estate market. This notion is also supported by research on the wisdom of crowds, which shows highly accurate judgments for both 201 types of tasks, those for which correct answers can be known (Merkle et al., 2020) as 202 well as those for which correct answers cannot yet be known as in prediction tasks (Da 203 & Huang, 2020; Himmelstein et al., 2021). 204

Finally, the SDT proposed by Frederick and Mochon (2012) suggests that
experts are likely to show smaller anchoring effects compared to novices. This is because
experts, due to their familiarity and understanding of the subject matter, are expected
to have a more accurate perception of the scale on which they are providing their
judgments. Therefore, when experts are presented with an anchor, their scales should
be less distorted by the anchor, resulting in a smaller anchoring effect than for novices.

Based on these three theoretical accounts, and given our critique of the counterintuitive implications of the SAM, we hypothesize:

211

212

213

214

Hypothesis 1: Individuals with higher expertise are less influenced by a presented anchor compared to individuals with lower expertise.

When it comes to the relevance of a presented anchor for the task at hand, the theories of anchoring are more consistent in their predictions. As IAM only suggests

adjustment away from the presented anchor, there should be no difference between relevant and irrelevant anchors. However, the other three models described above, as well as a substantial body of literature (Röseler & Schütz, 2022; Schley, 2023), suggest that relevant anchors should yield larger anchoring effects—be it due to serving as a plausible value, making it easier to activate consistent information, or providing a more reasonable scale. Given the mitigating role of expertise in anchoring, investigating the effect of anchor relevance also allows us to shed light on scenarios in which susceptibility to anchoring differs. Thus, we expect a main effect of anchor relevance on anchoring:

225 Hypothesis 2: Relevant anchors lead to larger anchoring effects than irrelevant anchors.

We also include anchors of different extremity in our studies. All of the theories
described above, as well as a large body of literature (Röseler & Schütz, 2022), suggest
stronger anchoring for more extreme anchors. However, this relationship may be
non-linear (Thorsteinson, 2011) as anchor values outside a plausible range may be
discarded (Wegener et al., 2001), leading to a somewhat inconclusive overall
relationship (Schley, 2023). As we do not implement severely extreme anchors for which
discarding is likely, we expect a main effect of anchor extremeness on anchoring:

Hypothesis 3: More extreme anchors lead to larger anchoring effects than less extreme anchors.

236 The present studies

In two studies, we examine the influence of expertise, anchor relevance and anchor extremity on anchoring using a paradigm by Mayer et al. (2023) that allows to manipulate individuals' expertise before eliciting numerical judgments. Whereas trials in Experiment 1 more closely follow the procedure of sequential collaboration (Mayer et al., 2023; Mayer & Heck, 2024) providing anchor and estiamtion task simultaneously, trials in Experiment 2 follow a typical anchoring paradigm.

Experiment 1

To test our hypotheses, we use a paradigm that allows manipulating expertise.

To this end, we apply a random-dots estimation task using material and follow

procedures from Mayer et al. (2023). All hypotheses, conditions, and the data analysis

were preregistered at https://aspredicted.org/GZQ_48M.

248 Methods

243

Participants

We collected data from 352 participants via a German panel provider. We 250 excluded 40 participants according to our preregistered exclusion criteria, as 20 of them 251 provided more than 20% extreme answers deviating more than 150% from correct 252 answer, and another 20 of the remaining participants provided the same answer for 253 more than 20% of items. The final sample consists of 312 participants of which 43.91% 254 were female and 56.09% were male, with a mean age of 48.62 (SD = 15.92). Our 255 participants had a diverse educational background with 31.09% having a college degree, 256 19.23% holding a high school diploma, 30.45% having vocational education, and 19.23% 257 having a lower educational attainment. 258

259 Material

266

We used the same material as Mayer et al. (2023) presenting 35 images with 600×600 pixels depicting 100 to 599 dots for a random-dot estimation task (Honda et al., 2022). Of these 35 images, 5 images were used for practice trials, 5 images were used for a manipulation check, and the remaining 25 images were presented for the anchoring task. An additional 10 images served as motivational items in the anchoring task depicting only between 10 and 60 dots.

Design and Procedure

The experimental design was a 2 (expertise condition: novice vs. expert) \times 2 (relevance condition: irrelevant vs. relevant) \times 2 (anchor extremity condition: low

vs. high) mixed design. Both, expertise and relevance condition were manipulated between participants whereas the anchor was manipulated within participants.

The study took on average 18.34 minutes (SD = 7.38) to complete. All 271 participants were randomly assigned to either the expertise condition or the control condition and to either being presented with relevant or irrelevant anchors in the 273 anchoring task. In the expertise condition, participants learned the technique of raster 274 scanning to provide more accurate estimates of the number of presented dots. They 275 were instructed to mentally lay a 3×3 raster over the presented image, select a 276 resulting raster element containing a representative number of dots, count these dots, 277 and multiply the result by nine. In the novice condition, participants read an essay 278 about the importance of accurate estimates. After the expertise manipulation, 279 participants performed a set of practice trials by providing five independent individual 280 estimates. For the expertise condition, a raster was depicted over the presented image, 281 whereas novices did not receive a raster. Next, participants completed a set of 282 manipulation check trials in which they provided another five independent individual 283 estimates that were used to check if experts indeed provided more accurate dot 284 estimates than novices. For this task, no raster was presented in either condition. 285

Before the anchoring task started, participants were introduced to the relevance 286 manipulation. They were told that before providing their estimates for the following items, they would be presented to either the estimate of a previous participant (relevant 288 anchor, e.g., "A previous participant estimated for the following task: 38 dots.") or to a random fact which included the same number (irrelevant anchor, e.g., "A cat has 38 290 chromosomes."). The anchor was presented for at least 2 seconds before participants 291 could continue to the estimation task. Anchors were selected such that they deviated 292 either -70%, -35%, 35%, or 70% from the correct answer. Next, participants were 293 presented with the image depicting the dots and were asked to provide an estimate for 294 which they had one minute at maximum before they were automatically directed to the 295 next anchor and subsequent task. After completing all 35 (task and motivational) trials

participants provided demographic information, were thanked, and debriefed that the presented judgments were preselected and manipulated for the experiment.

The procedure applied in anchoring trials for relevant anchors more closely resembled sequential collaboration in which the task and the judgment of a previous participants are presented simultaneously (Mayer et al., 2023; Mayer & Heck, 2024). Moreover, no comparative question was added, which is typical for many anchoring designs, thereby using a paradigm often referred to as basic anchoring (Schley, 2023).

As we presented images to our participants, the study was only accessible via
PC, and participation was only possible for those accepting the terms and conditions of
the study. The study was stopped already during participation for participants who,
despite the instruction and repeated warnings, changed the browser window to other
browser windows or programs more than five times.

OP Results

We collected data of 9360 trials in the manipulation check and anchoring task trials. Except for trials that were timed out after 60 seconds, 9325 trials were used for the analysis. We computed the relative error as judgment/correct * 100 - 100 resulting in the percentage deviation from the correct answer. Thus, this variable is on the same scale as the manipulation of anchor extremity. Moreover, as preregistered, we computed the absolute relative error from the correct answers, which reflects the relative accuracy of the provided estimates.

First, we performed a manipulation check to ensure that our expertise
manipulation was successful and experts provide more accurate dot estimates than
novices. A linear mixed model with absolute relative error as dependent variable and
expertise condition as independent variable was estimated including participant- and
item-wise random intercepts. For this purpose, expertise condition was sum-coded with
0.5 for experts and -0.5 for novices. In line with the imposed manipulation, the model
revealed a significant negative effect of expertise condition ($\hat{\beta} = -22.02$, 95% CI [-29.04, -15.00], t(311.09) = -6.15, p < .001). Thus, the manipulation was successful

and participants in the expert condition were indeed able to provide more accurate estimates in the 5 manipulation check trails than participants in the novice condition.

Figure 1

Effects of expertise, anchor relevance, and anchor extremity on absolute relative errors of estimates for Experiment 1.

Note. Points display empirical means with error bars showing the corresponding 95% between-subjects confidence intervals.

As preregistered, we computed a linear mixed model with absolute relative error in the anchoring task trials as dependent variable and expertise condition (coded as -0.5 for novices and 0.5 for experts), relevance condition (coded as -0.5 for irrelevant and 0.5 for relevant anchors), and anchor extremity (coded as -0.5 for low anchors deviating +/- 35% from the correct answer and 0.5 for high anchors deviating +/- 70% from the correct answer) as sum-coded independent variables. The model accounts for the nested data structure by including random intercepts for items and participants and a random

slope of participants for the anchor extremity condition (Bates et al., 2015). In line 334 with Hypothesis 1, the model showed a significant negative effect of expertise 335 $(\hat{\beta} = -7.72, 95\% \text{ CI } [-11.16, -4.28], t(310.44) = -4.40, p < .001), indicating more$ 336 accurate estimates provided by experts compared to novices. Moreover, a significant positive effect of anchor extremity emerged ($\hat{\beta} = 4.88, 95\%$ CI [2.80, 6.97], 338 t(23.79) = 4.60, p < .001), indicating more error and thus less accurate estimates for more inaccurate anchors, as expected in Hypothesis 3. However, in contrast to 340 Hypothesis 2, we did not find an effect of anchor relevance on the absolute relative error $(\hat{\beta}=-2.39,\,95\%$ CI $[-5.79,1.02],\,t(310.45)=-1.37,\,p=.171).$ Empirical means and 342 corresponding 95% confidence intervals are presented in Figure 1.

Moreover, we computed an exploratory linear mixed model to explore the effect 344 of an interaction of expertise and anchor relevance in addition to the three main effects. The main effects remained similar with a significant negative effect of expertise 346 $(\hat{\beta} = -8.83, 95\% \text{ CI } [-12.35, -5.30], t(307.99) = -4.91, p < .001), a significant positive$ 347 effect of anchor extremity ($\hat{\beta} = 4.88, 95\%$ CI [2.82, 6.95], t(23.00) = 4.63, p < .001), and 348 no significant effect of anchor relevance ($\hat{\beta} = -1.79, 95\%$ CI [-5.32, 1.73], 349 t(307.99) = -1.00, p = .319). In addition, the model also revealed a significant negative 350 interaction between expertise and anchor relevance ($\hat{\beta} = -7.23, 95\%$ CI [-14.28, -0.18], 351 t(307.99) = -2.01, p = .045), indicating less error and thus more accurate estimates for 352 experts encountering relevant compared to irrelevant anchors and the opposite pattern 353 for novices. 354

As our results showed an interaction between expertise and anchor relevance but not the expected main effect, we further explored the role of anchor relevance.

Presumably, absolute relative error was not an appropriate dependent variable because taking absolute relative error masked when judgments were provided around the correct answer. An effect of anchor relevance may be better observed for a variable more closely matching the manipulation of the presented anchor. Thus, we conducted an exploratory analysis using relative error as a dependent variable to match the scale of the presented anchors.

Figure 2

Effects of expertise, anchor relevance, and anchor extremity on relative errors of estimates for Experiment 1.

Note. Points display empirical means with error bars showing the corresponding 95% between-subjects confidence intervals.

Figure 2 displays the relative errors for expertise, anchor relevance, and all four 363 anchors presented in the study. As the presented anchors as well as the dependent 364 variable are now on the same scale (namely, relative error), the effect of anchors on the 365 provided estimates became clearer. Descriptively, the results indicated stronger 366 anchoring effects (i.e., larger errors in the direction of the presented anchors) both for novices compared to experts and for relevant compared to irrelevant anchors. To test 368 these visual impressions, we computed a linear mixed model with relative error as dependent variable and expertise, anchor relevance and anchor as independent 370 variables. Expertise and anchor relevance were again sum-coded, whereas the different 371 deviations of the anchor from the correct answer were implemented as a continuous, 372

numeric predictor. Again, we added random intercepts of participants and items and a 373 random slope of participants for the anchor extremity condition. As anchors were 374 implemented with positive and negative deviation to the correct judgment to both 375 increase as well as decrease participants' estimates, we did not expect to find main effects of expertise or relevance in this model. Instead, we examined the interactions of 377 both expertise and anchor relevance with anchor extremity condition. Thus, if experts 378 were less influenced by anchors than novices, the linear slope of anchor should be less 379 steep for experts than for novices, indicating an interaction of expertise and anchor 380 extremity. The same reasoning holds for anchor relevance with steeper slopes for 381 relevant than for irrelevant anchors. 382

As expected, we did not find a main significant effect of expertise on relative 383 error $(\hat{\beta} = 1.53, 95\% \text{ CI } [-4.80, 7.86], t(309.75) = 0.47, p = .637)$, indicating that both 384 experts and novices showed the same overall level of error in their estimates, which was 385 close to zero as indicated by the intercept of the model ($\hat{\beta} = -0.10, 95\%$ CI 386 [-4.57, 4.37], t(82.79) = -0.04, p = .966), and are not differently biased in any way. 387 Nonetheless, the model showed a significant positive effect of anchor relevance on 388 relative error ($\hat{\beta}=10.27,\,95\%$ CI [3.99, 16.54], $t(309.75)=3.21,\,p=.001$). In line with 389 Hypothesis 3, the model revealed a significant positive effect of the presented anchor 390 $(\hat{\beta} = 0.15, 95\% \text{ CI } [0.09, 0.21], t(23.08) = 5.13, p < .001), indicating that relative errors$ 391 are smaller for less extreme anchors, both for anchors negatively deviating from the 392 correct answer and for anchors positively deviating from the correct answer.

Moreover, in line with Hypothesis 1, a significant negative interaction between expertise and the presented anchor emerged ($\hat{\beta} = -0.11$, 95% CI [-0.14, -0.09], t(7441.31) = -8.20, p < .001), showing that the slope for the linear effect of the presented anchor was less steep for experts compared to novices. Similarly, we found a significant positive interaction between anchor relevance and the presented anchor ($\hat{\beta} = 0.11$, 95% CI [0.09, 0.14], t(7441.26) = 8.36, p < .001), indicating that the presented anchors had a stronger effect on subsequent estimates if they were relevant

rather than irrelevant. These interaction patterns are also separately displayed for each interaction in Figure A1.

403 Discussion

Overall, these results shed further light into the relationship between expertise,
anchor relevance and the anchoring effect. We found that experts who were trained to
provide more accurate estimates in this experiment are less prone to anchoring than
novices. Moreover, an additional exploratory analysis revealed both a mitigating effect
of expertise as well as an aggravating effect of anchor relevance on the anchoring effect.

However, the design we used here was not a typical anchoring design, as no comparative question was implemented (so-called basic anchoring, Schley, 2023). Meta-analyses show that basic anchoring overall shows smaller anchoring effects (Röseler & Schütz, 2022; Schley, 2023). Thus, the effects reported in this first experiment may only hold for basic anchoring or a design more closely resembling sequential collaboration (Mayer & Heck, 2024).

Experiment 2

In this experiment, we examine the effects of expertise, anchor relevance and anchor extremity in an anchoring design incorporating a comparative question.

Entering a comparative question most likely increases the effect of anchoring (Röseler & Schütz, 2022). In order to make both experiments as comparable as possible, the same material was used and the procedure was only modified to insert the comparative question. Hypotheses, conditions, and data analysis were preregistered at https://aspredicted.org/ZLS_V9X.

423 Methods

415

4 Participants

We collected data from 275 participants. In line with our preregistration, we excluded 20 participants, as 12 of them provided more than 20% extreme answers deviating more than 150% from correct answer, and another 8 of the remaining

participants provided the same answer for more than 20% of items, resulting in a final sample of 255. 40.39% of participants were female and 59.61% male, with a mean age of 48.43 (SD = 15.10). 3.53% of participants had a college degree, 40% a high school diploma, 14.12% vocational education, and 42.36% a lower educational attainment.

432 Material, Design and Procedure

We used the same material and design as in Experiment 1. The overall 433 procedure remained the same with an expertise manipulation, 5 practice trials, 5 434 manipulation check trials, and 25 anchoring task trials before providing demographic 435 information and being debriefed. However, we modified the anchoring task so that it 436 now included a comparative question to more closely resemble the typical procedure in 437 anchoring research. Again, participants were first introduced to the anchor for at least 2 438 seconds before they could continue to the comparative question. They were presented 439 with the image for which they should provide an estimate of the number of dots and the comparative question whether this image had more or less dots than the value presented 441 in the anchoring statement. As participants may not remember the exact value presented as an anchor, the value was again presented along with the comparative 443 question resembling a classical anchoring paradigm. The time limit to answer the comparative question was 15 seconds in order to prevent participants from already 445 making an estimate, e.g., applying the raster scanning technique in the expert condition. After answering the comparative question, participants continued with the 447 estimation task for which they had 60 seconds to complete before the next trial started, like in the previous experiment. The second experiment took on average 20.74 minutes 449 (SD = 7.29) to complete. 450

451 Results

We collected data of 7650 trials in the manipulation check and anchoring task trials. In this study, all trials remained for the analysis as there were no trials to be excluded due to being timed out after 60 seconds. As we conducted the same analyses as for Experiment 1, we again computed relative error and absolute relative error as dependent variables.

Before analyzing the data for our hypotheses, we conducted a manipulation check to ensure that expertise was manipulated as expected, so that participants who were introduced to the raster scanning technique indeed provided more accurate judgments. A linear mixed model revealed a significant negative effect of expertise on absolute relative error ($\hat{\beta} = -23.80$, 95% CI [-31.23, -16.38], t(253.01) = -6.29, p < .001), indicating that experts indeed provided more accurate judgments in the manipulation check trials than novices. Thus, the manipulation of expertise was successful.

Figure 3

Effects of expertise, anchor relevance, and anchor extremity on absolute relative errors of estimates for Experiment 2.

Note. Points display empirical means with error bars showing the corresponding 95% between-subjects confidence intervals.

```
Figure 3 displays the results of Experiment 2 for absolute relative errors. Again,
464
    experts showed less anchoring, as indicated by more accurate judgments than those
    provided by novices. Moreover, extreme anchors seem to lead to more inaccurate
466
    judgments, whereas anchor relevance does not seem to influence judgment accuracy.
    These visual impressions were confirmed by a linear mixed model with expertise, anchor
468
    relevance and anchor extremity (all sum-coded) as independent variables and absolute
    relative error as dependent variable. In line with Hypothesis 1, we found a significant
470
   negative effect of expertise (\hat{\beta} = -5.30, 95\% CI [-9.14, -1.47], t(254.30) = -2.71,
471
    p = .007), indicating that experts showed less absolute relative error than novices.
472
    However, there was no evidence for Hypothesis 2, as the effect of anchor relevance on
473
   absolute relative error was not significant (\hat{\beta} = -2.69, 95\% CI [-6.52, 1.15],
474
    t(254.32) = -1.37, p = .171). The model provided evidence for Hypothesis 3 by
475
   revealing a significant positive effect of anchor extremity (\hat{\beta} = 7.37, 95\% CI [4.53, 10.20],
476
    t(24.00) = 5.09, p < .001), indicating stronger anchoring effects for more extreme
477
    anchors.
478
```

We again computed an exploratory model including an interaction of expertise 479 and anchor relevance in addition to the main effects already tested. Effects remained 480 essentially the same with a significant negative effect of expertise ($\hat{\beta} = -5.24, 95\%$ CI 481 [-9.08, -1.41], t(253.44) = -2.68, p = .008), no main effect of anchor relevance 482 $(\hat{\beta}=-2.83,\,95\%$ CI $[-6.67,1.01],\,t(253.44)=-1.45,\,p=.149),$ and a significant 483 positive effect of anchor extremity ($\hat{\beta} = 7.37, 95\%$ CI [4.53, 10.20], t(24.00) = 5.09, 484 p < .001). In contrast to Experiment 1, no interaction effect of expertise and anchor 485 relevance on absolute relative judgments emerged ($\hat{\beta}=4.64,\,95\%$ CI [-3.04, 12.31], t(253.44) = 1.18, p = .237. 487

Again, we also performed an exploratory analysis to further explore the relationship of expertise, anchor relevance, and presented anchor on the relative error of provided judgments to shed further light into the anchoring effect. The linear mixed model showed no main effect of expertise ($\hat{\beta} = -2.29$, 95% CI [-9.48, 4.90], t(254.32) = -0.62, p = .533) or anchor relevance ($\hat{\beta} = 1.72$, 95% CI [-5.46, 8.89],

Figure 4

Effects of expertise, anchor relevance, and anchor extremity on relative errors of estimates for Experiment 2.

Note. Points display empirical means with error bars showing the corresponding 95% between-subjects confidence intervals.

t(254.33) = 0.47, p = .640, indicating no general tendency in over- or underestimation depending on these conditions. As expected in Hypothesis 3, we found a significant 494 positive linear effect of the presented anchor ($\hat{\beta} = 0.25, 95\%$ CI [0.18, 0.32], 495 t(23.01) = 7.42, p < .001), showing that more extreme anchors lead to larger relative 496 errors in participants' judgments. Moreover, in line with Hypothesis 1, the model revealed a significant negative interaction between expertise and the presented anchor 498 $(\hat{\beta} = -0.11, 95\% \text{ CI } [-0.14, -0.07], t(6083.66) = -6.35, p < .001), indicating that$ experts show a less pronounced reaction to anchors than novices. Lastly, a significant 500 positive interaction of anchor relevance and the presented anchor emerged ($\hat{\beta} = 0.05$, 95% CI [0.02, 0.08], t(6083.66) = 3.13, p = .002), indicating that relevant anchors 502

produced stronger anchoring effects than irrelevant anchors. Both interaction effects are also separately displayed in Figure 4.

Overall, the presented anchors lead to corresponding relative errors in subsequent judgments. Thereby, judgments of experts again showed less relative errors than those of novices, and relevant anchors showed more relative errors than irrelevant anchors. Moreover, experts again seemed to somewhat discard the extreme anchor of -70% whereas novices did not.

Discussion

505

507

Even after implementing a comparative question into the experimental procedure, results were similar to Experiment 1 both for the confirmatory and exploratory analyses. Nonetheless, the anchoring effects appear to be much stronger in this experiment, as expected based on corresponding evidence from meta-analyses (Röseler & Schütz, 2022; Schley, 2023). Whereas experts in Experiment 1 were almost unaffected by irrelevant anchors, this was not the case in Experiment 2. Thus, the comparative question seems to have a strong impact on the perceived importance of the presented anchors.

General Discussion

In this research, we tackled inconclusive results about the role of expertise in 520 anchoring. To shed light on this relationship, we introduced a manipulation of expertise as a skill. In two experiments, we applied a random-dots estimation task for which half 522 of the participants were trained in raster scanning to help them with providing more 523 accurate judgments. The results of these experiments demonstrate that experts provide 524 more accurate judgments and are less influenced by anchors than novices. Moreover, 525 extreme anchors lead to larger anchoring effects than less extreme anchors. An 526 exploratory analysis also revealed that relevant anchors lead to larger anchoring effects 527 than irrelevant anchors. These results add to the literature on expertise and anchoring, 528 providing further evidence for a mitigating effect of expertise as well as an aggravating 529 effect of relevance on anchoring. 530

Our results are in line with previous findings (Smith et al., 2013; Smith & 531 Windschitl, 2015; Wilson et al., 1996) as well as meta-analytic findings (Guthrie & Orr, 532 2006; Schley, 2023) that provide evidence for a mitigating effect of expertise on 533 anchoring. However, there are also considerable differences between the experiments reported here and studies showing similar strong anchoring in both experts and novices 535 (Englich et al., 2006; Englich & Soder, 2009). In our studies, estimation tasks had correct answers that participants could potentially provide. In contrast, in tasks like 537 sentencing decisions (English & Soder, 2009) or real estate values (Northcraft & Neale, 1987), there are no correct answers, so that experts can merely provide judgments 539 within a more reasonable range than novices. Thus, the extent to which correct answers to the task at hand are available in general or potentially available to participants 541 during the task may play a role for the effect of expertise on anchoring.

Moreover, anchoring seems to be overall stronger, even in experts and for 543 irrelevant anchors, when comparative questions are included (Experiment 2). This may 544 be due to experts not being able to apply their expertise (i.e., raster scanning) before 545 answering the comparative question due to time constraints. The presented anchor 546 value may thereby gain more importance than it may have gained if there was no 547 comparative question. Thus, there may be a mechanism at play that could even result 548 in similar strong anchoring in both experts and novices under conditions hindering 549 experts to apply their expertise to the task such as time pressure. 550

Although we do not find effects of anchor relevance in the confirmatory analysis,
the exploratory analysis shows effects of anchor relevance in line with our hypothesis.
This result is also in line with many previous experiments that found larger anchoring
effects for relevant anchors (see meta-analysis by Schley, 2023). Presumably, the
dependent variable of absolute relative error was not suitable to analyze this hypothesis.
As absolute relative errors are computed at the level of an individual, it masks potential
over- and underestimation especially for less extreme anchors, thereby erasing the
effects of anchor relevance. Thus, absolute relative errors as a measure of overall

estimation accuracy fall short in revealing differences in the strength of anchoring for anchor relevance.

As already frequently replicated (Röseler & Schütz, 2022), we found an effect of 561 anchor extremity according to which more extreme anchors led to larger anchoring effects. However, we could also observe, although only descriptively, that extreme 563 negative anchors, which are likely perceived as more extreme than extreme positive anchors due to the response scale being bounded by zero from below, were seemingly 565 discarded mostly by experts and had no more effect on them than a less extreme negative anchor. This is in line with previous findings showing that extreme anchors are 567 discarded at some point (Wegener et al., 2001). This specifically pronounced discarding of extreme negative anchors, however, may be due to the operationalization of 569 deviations as relative distance to the correct answer. Instead, an alternative 570 manipulation of extremity on a logarithmic scale may take better into account that a 571 deviation of -70% from a particular value is perceived as a larger deviation than +70%. Future research should thus operationalize such deviations on a logarithmic scale to 573 presumably produce more balanced deviations for examining the discarding of anchors 574 more accurately. 575

Our research has also implications for anchoring in real-world settings like negotiations or predictions. For example, if one aims at influencing a recruiter in a job interview to one's own advantage, setting a relevant and more extreme anchor, such as the upper salary boundary of a competitor, may be beneficial. Conversely, if an organization is employing a recruiter, a candidate with profound knowledge and experience who can accurately estimate a realistic salary based on the abilities and skills of the interviewee is best suited for the position. Thus, considering both individual' expertise and anchor characteristics is important to arrive at accurate estimates in real-world settings.

576

577

578

579

580

581

582

583

584

As outlined above, in over five decades of research in this field, several theories of anchoring have been proposed (Bahník et al., 2022). However, there is no unifying theory yet that is able to describe most findings related to anchoring accurately.

Currently, the most prominent candidates for anchoring theories are IAM(Epley & 588 Gilovich, 2001; -PL; Tversky & Kahneman, 1974), SAM (Mussweiler & Strack, 1999a, 589 1999b), and SDT (Frederick & Mochon, 2012). These theories make different 590 predictions for the role of expertise and anchor relevance in anchoring, which implies 591 that our results are also suitable to test these theories against each other. As we find 592 both a reduction of anchoring effects for experts and irrelevant anchors, our results are 593 mostly in line with IAM-PL and SDT. Nonetheless, both of these theories are currently 594 challenged by other incompatible results (Bahník, 2021; Röseler et al., 2023). Thus, future research should tackle the inconsistencies in both theories and findings to develop 596 a unifying theory of anchoring. 597

Besides their promising results, the experiments outlined above have some 598 limitations. First, although the design applied allows to manipulate expertise, we only 599 examined the effect in one paradigm. Thus, the generalizability to other tasks and 600 materials is not guaranteed. Second, the effects of anchor relevance on anchoring are 601 only found in the exploratory analyses, as our preregistered dependent variable was 602 presumably not suitable for the analysis. Thus, these results cannot be considered 603 confirmatory, despite being in line with previous findings on anchor relevance. Last, we 604 operationalized anchor relevance as a random fact containing a number (no relevance) 605 compared to the judgment of a previous participant (high relevance). However, the 606 judgment of a previous participant may not (only) serve as an anchor for a subsequent 607 estimate. Similar to advice taking (Bonaccio & Dalal, 2006) or sequential collaboration 608 (Mayer & Heck, 2024), it may (also) be perceived as useful information that helps to 609 answer the question at hand. Thus, presenting a value that can help with solving the task at hand such as the estimate of a previous participant may have an additional 611 informational impact on individuals' estimates above and beyond anchoring.

613 Conclusion

This work adds to an ongoing debate in the anchoring literature about the mitigating role of expertise and the aggravating influence of anchor relevance on

anchoring. In two experiments, we show that expertise that constitutes a manipulated skill mitigates anchoring effects. However, the aggravating effect of relevant anchors on anchoring could only be confirmed in exploratory analyses. These results not only shed light into the effect of expertise and relevance on anchoring, but also allow to test divergent predictions of competing anchoring theories.

References

- Bahník, Š. (2021). Anchoring without scale distortion. Judgment and Decision Making,
- 623 16(1), 131–141. https://doi.org/10.1017/S1930297500008330
- Bahník, Š., Mussweiler, T., & Strack, F. (2022). Anchoring effect. In R. F. Pohl (Ed.),
- 625 Cognitive illusions (3rd ed.). Routledge.
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects
- models using lme4. Journal of Statistical Software, 67(1), 1–48.
- https://doi.org/10.18637/jss.v067.i01
- Bonaccio, S., & Dalal, R. S. (2006). Advice taking and decision-making: An integrative
- literature review, and implications for the organizational sciences. Organizational
- Behavior and Human Decision Processes, 101(2), 127–151.
- https://doi.org/10.1016/j.obhdp.2006.07.001
- Bystranowski, P., Janik, B., Próchnicki, M., & Skórska, P. (2021). Anchoring effect in
- legal decision-making: A meta-analysis: Law and human behavior. Law and Human
- Behavior, 45(1), 1–23. https://doi.org/10.1037/lhb0000438
- Da, Z., & Huang, X. (2020). Harnessing the wisdom of crowds. Management Science,
- 66(5), 1847–1867. https://doi.org/10.1287/mnsc.2019.3294
- Englich, B., Mussweiler, T., & Strack, F. (2006). Playing dice with criminal sentences:
- The influence of irrelevant anchors on experts' judicial decision making. Personality
- and Social Psychology Bulletin, 32(2), 188–200.
- https://doi.org/10.1177/0146167205282152
- Englich, B., & Soder, K. (2009). Moody experts how mood and expertise influence
- judgmental anchoring. Judgment and Decision Making, 4(1), 41–50.
- https://doi.org/10.1017/S1930297500000693
- Epley, N., & Gilovich, T. (2001). Putting adjustment back in the anchoring and
- adjustment heuristic: Differential processing of self-generated and
- experimenter-provided anchors. Psychological Science, 12(5), 391–396.
- https://doi.org/10.1111/1467-9280.00372

- ⁶⁴⁹ Frech, M.-L., Loschelder, D. D., & Friese, M. (2019). How and why different forms of
- expertise moderate anchor precision in price decisions: A pre-registered field
- experiment. Experimental Psychology, 66(2), 165–175.
- https://doi.org/10.1027/1618-3169/a000441
- ⁶⁵³ Frederick, S. W., & Mochon, D. (2012). A scale distortion theory of anchoring. *Journal*
- of Experimental Psychology: General, 141, 124–133.
- https://doi.org/10.1037/a0024006
- ⁶⁵⁶ Furnham, A., & Boo, H. C. (2011). A literature review of the anchoring effect. The
- Journal of Socio-Economics, 40(1), 35–42.
- https://doi.org/10.1016/j.socec.2010.10.008
- 659 Guthrie, C., & Orr, D. (2006). Anchoring, information, expertise, and negotiation: New
- insights from meta-analysis. Journal of Dispute Resolution.
- https://ssrn.com/abstract=900152
- 662 Harris, A. J. L., Blower, F. B. N., Rodgers, S. A., Lagator, S., Page, E., Burton, A.,
- Urlichich, D., & Speekenbrink, M. (2019). Failures to replicate a key result of the
- selective accessibility theory of anchoring: Journal of experimental psychology:
- general. Journal of Experimental Psychology: General, 148(9), e30–e50.
- https://doi.org/10.1037/xge0000644
- 667 Himmelstein, M., Atanasov, P., & Budescu, D. V. (2021). Forecasting forecaster
- accuracy: Contributions of past performance and individual differences. Judgment
- and Decision Making, 16(2), 323–362. https://doi.org/10.1017/S1930297500008597
- 670 Honda, H., Kagawa, R., & Shirasuna, M. (2022). On the round number bias and
- wisdom of crowds in different response formats for numerical estimation. Scientific
- 8672 Reports, 12(1), 8167. https://doi.org/10.1038/s41598-022-11900-7
- 673 Honda, H., Kagawa, R., & Shirasuna, M. (2024). The nature of anchor-biased estimates
- and its application to the wisdom of crowds. Cognition, 246, 105758.
- 675 https://doi.org/10.1016/j.cognition.2024.105758

- Mayer, M., Broß, M., & Heck, D. W. (2023). Expertise determines frequency and
- accuracy of contributions in sequential collaboration. Judgment and Decision
- 678 Making, 18, e2. https://doi.org/10.1017/jdm.2023.3
- Mayer, M., & Heck, D. W. (2023). Cultural consensus theory for two-dimensional
- location judgments. Journal of Mathematical Psychology, 113, 102742.
- 681 https://doi.org/10.1016/j.jmp.2022.102742
- Mayer, M., & Heck, D. W. (2024). Sequential collaboration: The accuracy of
- dependent, incremental judgments. Decision, 11(1), 212–237.
- https://doi.org/10.1037/dec0000193
- Merkle, E. C., Saw, G., & Davis-Stober, C. (2020). Beating the average forecast:
- Regularization based on forecaster attributes. Journal of Mathematical Psychology,
- 98, 102419. https://doi.org/https://doi.org/10.1016/j.jmp.2020.102419
- Mussweiler, T., Englich, B., & Strack, F. (2004). Anchoring effect. In R. F. Pohl (Ed.),
- 689 Cognitive illusions (1st ed., pp. 183–199). Psychology Press.
- 690 Mussweiler, T., & Strack, F. (1999a). Comparing is believing: A selective accessibility
- model of judgmental anchoring. European Review of Social Psychology, 10(1),
- 692 135–167. https://doi.org/10.1080/14792779943000044
- 693 Mussweiler, T., & Strack, F. (1999b). Hypothesis-consistent testing and semantic
- priming in the anchoring paradigm: A selective accessibility model. Journal of
- Experimental Social Psychology, 35(2), 136–164.
- https://doi.org/10.1006/jesp.1998.1364
- Mussweiler, T., Strack, F., & Pfeiffer, T. (2000). Overcoming the inevitable anchoring
- effect: Considering the opposite compensates for selective accessibility. Personality
- and Social Psychology Bulletin, 26(9), 1142-1150.
- 700 https://doi.org/10.1177/01461672002611010
- Northcraft, G. B., & Neale, M. A. (1987). Experts, amateurs, and real estate: An
- anchoring-and-adjustment perspective on property pricing decisions. Organizational
- Behavior and Human Decision Processes, 39(1), 84–97.
- https://doi.org/10.1016/0749-5978(87)90046-X

- Röseler, L., Incerti, L., Rebholz, T. R., Seida, C., & Papenmeier, F. (2023). Falsifying
- the insufficient adjustment model: No evidence for unidirectional adjustment from
- anchors. PsyArXiv. https://doi.org/10.31234/osf.io/jztk2
- Röseler, L., & Schütz, A. (2022). Hanging the anchor off a new ship: A meta-analysis
- of anchoring effects. PsyArXiv. https://doi.org/10.31234/osf.io/wf2tn
- Schley, D. (2023). 50 years of anchoring: A meta-analysis and meta-study of anchoring
- effects (No. 4605057). https://doi.org/10.2139/ssrn.4605057
- Smith, A. R., & Windschitl, P. D. (2015). Resisting anchoring effects: The roles of
- metric and mapping knowledge. Memory & Cognition, 43(7), 1071–1084.
- https://doi.org/10.3758/s13421-015-0524-4
- Smith, A. R., Windschitl, P. D., & Bruchmann, K. (2013). Knowledge matters:
- Anchoring effects are moderated by knowledge level. European Journal of Social
- Psychology, 43(1), 97–108. https://doi.org/10.1002/ejsp.1921
- Thorsteinson, T. J. (2011). Initiating salary discussions with an extreme request:
- Anchoring effects on initial salary Offers 1. Journal of Applied Social Psychology,
- 720 41(7), 1774–1792. https://doi.org/10.1111/j.1559-1816.2011.00779.x
- Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and
- biases. Science, 185(4157), 1124–1131.
- https://doi.org/10.1126/science.185.4157.1124
- Wegener, D. T., Petty, R. E., Detweiler-Bedell, B. T., & Jarvis, W. B. G. (2001).
- Implications of attitude change theories for numerical anchoring: Anchor plausibility
- and the limits of anchor effectiveness. Journal of Experimental Social Psychology,
- 37(1), 62-69. https://doi.org/10.1006/jesp.2000.1431
- 728 Wilson, T. D., Houston, C. E., Etling, K. M., & Brekke, N. (1996). A new look at
- anchoring effects: Basic anchoring and its antecedents. Journal of Experimental
- 730 Psychology: General, 125(4), 387–402. https://doi.org/10.1037/0096-3445.125.4.387

Appendix

Separating effects of expertise and anchor relevance on relative errors

Figure A1

Separated effects of expertise and anchor relevance on relative errors of estimates for Experiment 1.

Note. Lines display slopes based on the linear mixed model with expertise, relevance, and presented anchors as independent variables and relative error as dependent variable.

Figure A2

Separated effects of expertise and anchor relevance on relative errors of estimates for Experiment 2.

Note. Lines display slopes based on the linear mixed model with expertise, relevance, and presented anchors as independent variables and relative error as dependent variable.