```
In [7]:
          import pandas as pd
           import numpy as np
           import matplotlib.pyplot as plt
           import seaborn as sns
          %matplotlib inline
          df=pd.read_csv('Algerian_forest_fires_cleaned_dataset.csv')
 In [8]:
 In [9]: | df.head()
 Out[9]:
              day month year Temperature RH Ws Rain FFMC DMC
                                                                         DC
                                                                             ISI BUI FWI Classes
           0
                1
                        6 2012
                                         29
                                             57
                                                  18
                                                       0.0
                                                             65.7
                                                                    3.4
                                                                         7.6
                                                                             1.3
                                                                                  3.4
                                                                                       0.5
                                                                                             not fire
            1
                2
                        6 2012
                                         29
                                             61
                                                  13
                                                       1.3
                                                             64.4
                                                                         7.6
                                                                             1.0
                                                                                  3.9
                                                                                       0.4
                                                                                             not fire
                                                                    4.1
            2
                3
                       6 2012
                                         26
                                             82
                                                  22
                                                      13.1
                                                             47.1
                                                                    2.5
                                                                         7.1
                                                                             0.3
                                                                                  2.7
                                                                                       0.1
                                                                                             not fire
                4
                       6 2012
                                             89
                                                  13
                                                       2.5
                                                             28.6
                                                                    1.3
                                                                             0.0
                                                                                  1.7
                                                                                       0.0
                                                                                             not fire
            3
                                         25
                                                                         6.9
                5
                        6 2012
                                         27
                                                  16
                                                       0.0
                                                             64.8
                                                                    3.0 14.2 1.2
                                                                                  3.9
                                                                                       0.5
                                                                                             not fire
                                             77
In [10]: |df.columns
Out[10]: Index(['day', 'month', 'year', 'Temperature', 'RH', 'Ws', 'Rain', 'FFMC',
                   'DMC', 'DC', 'ISI', 'BUI', 'FWI', 'Classes', 'Region'],
                  dtype='object')
In [11]:
          ##drop month, day and yyear
          df.drop(['day','month','year'],axis=1,inplace=True)
          df.head()
In [12]:
Out[12]:
                           RH Ws Rain FFMC DMC
              Temperature
                                                       DC
                                                           ISI BUI FWI Classes Region
           0
                           57
                                                                                       0
                       29
                                18
                                     0.0
                                           65.7
                                                  3.4
                                                       7.6 1.3
                                                                3.4
                                                                     0.5
                                                                           not fire
            1
                       29
                           61
                                13
                                     1.3
                                           64.4
                                                  4.1
                                                       7.6 1.0
                                                                3.9
                                                                     0.4
                                                                           not fire
                                                                                       0
            2
                       26
                           82
                                22
                                    13.1
                                           47.1
                                                  2.5
                                                       7.1 0.3
                                                                2.7
                                                                     0.1
                                                                           not fire
                                                                                       0
                       25
                           89
                                           28.6
                                                  1.3
                                                           0.0
                                                                     0.0
                                                                           not fire
                                                                                       0
            3
                                13
                                     2.5
                                                       6.9
                                                                1.7
                       27
                           77
                                16
                                     0.0
                                           64.8
                                                  3.0 14.2 1.2
                                                                3.9
                                                                     0.5
                                                                           not fire
                                                                                       0
```

```
In [13]: df['Classes'].value_counts()
Out[13]: fire
                             131
                             101
          not fire
          fire
                               4
                                2
          fire
                                2
          not fire
          not fire
                                1
          not fire
                               1
          not fire
                                1
          Name: Classes, dtype: int64
          ## Encoding
In [14]:
          df['Classes']=np.where(df['Classes'].str.contains("not fire"),0,1)
In [15]: | df.tail()
Out[15]:
                Temperature RH Ws Rain FFMC DMC
                                                       DC ISI BUI FWI Classes Region
           238
                        30
                            65
                                 14
                                      0.0
                                            85.4
                                                 16.0
                                                      44.5 4.5
                                                                16.9
                                                                      6.5
                                                                                       1
           239
                        28
                            87
                                 15
                                            41.1
                                                  6.5
                                                       8.0 0.1
                                                                 6.2
                                                                      0.0
                                                                               0
                                                                                       1
                                      4.4
           240
                        27
                            87
                                 29
                                      0.5
                                            45.9
                                                  3.5
                                                       7.9 0.4
                                                                 3.4
                                                                     0.2
                                                                               0
                                                                                       1
           241
                        24
                            54
                                            79.7
                                                  4.3 15.2 1.7
                                                                      0.7
                                                                                0
                                 18
                                      0.1
                                                                 5.1
                                                                                       1
           242
                        24
                            64
                                 15
                                      0.2
                                            67.3
                                                  3.8 16.5 1.2
                                                                     0.5
                                                                               0
                                                                                       1
                                                                 4.8
In [16]: df['Classes'].value counts()
Out[16]: 1
                137
                106
          Name: Classes, dtype: int64
          ## Independent And dependent features
In [17]:
          X=df.drop('FWI',axis=1)
          y=df['FWI']
In [18]: X.head()
Out[18]:
              Temperature RH Ws Rain FFMC DMC
                                                     DC ISI BUI Classes Region
           0
                                                                                0
                      29
                          57
                               18
                                    0.0
                                          65.7
                                                3.4
                                                     7.6 1.3
                                                              3.4
                                                                        0
           1
                      29
                          61
                               13
                                    1.3
                                          64.4
                                                4.1
                                                     7.6 1.0
                                                              3.9
                                                                        0
                                                                                0
                                                                                0
           2
                      26
                          82
                               22
                                   13.1
                                          47.1
                                                2.5
                                                     7.1 0.3
                                                              2.7
                                                                        0
           3
                      25
                          89
                               13
                                    2.5
                                          28.6
                                                1.3
                                                     6.9 0.0
                                                              1.7
                                                                        0
                                                                                0
```

27 77

16

0.0

64.8

3.0 14.2 1.2

3.9

0

0

```
In [19]: y
Out[19]: 0
                 0.5
                 0.4
         1
         2
                 0.1
         3
                 0.0
         4
                0.5
                . . .
         238
                6.5
         239
                0.0
         240
                0.2
         241
                0.7
         242
                0.5
         Name: FWI, Length: 243, dtype: float64
In [20]: #Train Test Split
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.25, random_state
In [21]: X_train.shape,X_test.shape
Out[21]: ((182, 11), (61, 11))
In [22]: ## Feature Selection based on correlation
         X_train.corr()
```

Out[22]:

	Temperature	RH	Ws	Rain	FFMC	DMC	DC	
Temperature	1.000000	-0.656095	-0.305977	-0.317512	0.694768	0.498173	0.390684	0.62
RH	-0.656095	1.000000	0.225736	0.241656	-0.653023	-0.414601	-0.236078	-0.71
Ws	-0.305977	0.225736	1.000000	0.251932	-0.190076	0.000379	0.096576	-0.02
Rain	-0.317512	0.241656	0.251932	1.000000	-0.545491	-0.289754	-0.302341	-0.34
FFMC	0.694768	-0.653023	-0.190076	-0.545491	1.000000	0.620807	0.524101	0.75
DMC	0.498173	-0.414601	0.000379	-0.289754	0.620807	1.000000	0.868647	0.68
DC	0.390684	-0.236078	0.096576	-0.302341	0.524101	0.868647	1.000000	0.51
ISI	0.629848	-0.717804	-0.023558	-0.345707	0.750799	0.685656	0.513701	1.00
BUI	0.473609	-0.362317	0.035633	-0.300964	0.607210	0.983175	0.942414	0.64
Classes	0.542141	-0.456876	-0.082570	-0.369357	0.781259	0.617273	0.543581	0.74
Region	0.254549	-0.394665	-0.199969	-0.059022	0.249514	0.212582	-0.060838	0.29
4								

Feature Selection

In [23]: ## Check for multicollinearity
 plt.figure(figsize=(12,10))
 corr=X_train.corr()
 sns.heatmap(corr,annot=True)

Out[23]: <Axes: >


```
In [24]: X_train.corr()
```

Out[24]:

	Temperature	RH	Ws	Rain	FFMC	DMC	DC	
Temperature	1.000000	-0.656095	-0.305977	-0.317512	0.694768	0.498173	0.390684	0.62
RH	-0.656095	1.000000	0.225736	0.241656	-0.653023	-0.414601	-0.236078	-0.71
Ws	-0.305977	0.225736	1.000000	0.251932	-0.190076	0.000379	0.096576	-0.02
Rain	-0.317512	0.241656	0.251932	1.000000	-0.545491	-0.289754	-0.302341	-0.34
FFMC	0.694768	-0.653023	-0.190076	-0.545491	1.000000	0.620807	0.524101	0.75
DMC	0.498173	-0.414601	0.000379	-0.289754	0.620807	1.000000	0.868647	0.68
DC	0.390684	-0.236078	0.096576	-0.302341	0.524101	0.868647	1.000000	0.51
ISI	0.629848	-0.717804	-0.023558	-0.345707	0.750799	0.685656	0.513701	1.00
BUI	0.473609	-0.362317	0.035633	-0.300964	0.607210	0.983175	0.942414	0.64
Classes	0.542141	-0.456876	-0.082570	-0.369357	0.781259	0.617273	0.543581	0.74
Region	0.254549	-0.394665	-0.199969	-0.059022	0.249514	0.212582	-0.060838	0.29

```
In [26]: ## threshold--Domain expertise
corr_features=correlation(X_train,0.85)
```

```
In [27]: corr_features
```

Out[27]: {'BUI', 'DC'}

```
In [28]: ## drop features when correlation is more than 0.85
X_train.drop(corr_features,axis=1,inplace=True)
X_test.drop(corr_features,axis=1,inplace=True)
X_train.shape,X_test.shape
```

```
Out[28]: ((182, 9), (61, 9))
```

Feature Scaling Or Standardization

```
from sklearn.preprocessing import StandardScaler
In [29]:
         scaler=StandardScaler()
         X_train_scaled=scaler.fit_transform(X_train)
         X_test_scaled=scaler.transform(X_test)
In [30]: X_train_scaled
Out[30]: array([[-0.84284248, 0.78307967, 1.29972026, ..., -0.62963326,
                 -1.10431526, -0.98907071],
                [-0.30175842, 0.64950844, -0.59874754, ..., -0.93058524,
                 -1.10431526, 1.01105006],
                [2.13311985, -2.08870172, -0.21905398, ..., 2.7271388]
                  0.90553851, 1.01105006],
                [-1.9250106, 0.9166509, 0.54033314, ..., -1.06948615,
                 -1.10431526, -0.98907071],
                [0.50986767, -0.21870454, 0.16063958, ..., 0.5973248]
                  0.90553851, 1.01105006],
                [-0.57230045, 0.98343651, 2.05910739, ..., -0.86113478,
                 -1.10431526, -0.98907071]])
```

Box Plots To understand Effect Of Standard Scaler

```
In [31]: plt.subplots(figsize=(15, 5))
    plt.subplot(1, 2, 1)
    sns.boxplot(data=X_train)
    plt.title('X_train Before Scaling')
    plt.subplot(1, 2, 2)
    sns.boxplot(data=X_train_scaled)
    plt.title('X_train After Scaling')
```

C:\Users\Hp\AppData\Local\Temp\ipykernel_21484\160744393.py:2: MatplotlibDep recationWarning: Auto-removal of overlapping axes is deprecated since 3.6 and will be removed two minor releases later; explicitly call ax.remove() as needed.

plt.subplot(1, 2, 1)

Out[31]: Text(0.5, 1.0, 'X_train After Scaling')

Linear Regression Model

```
In [32]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_absolute_error
    from sklearn.metrics import r2_score
    linreg=LinearRegression()
    linreg.fit(X_train_scaled,y_train)
    y_pred=linreg.predict(X_test_scaled)
    mae=mean_absolute_error(y_test,y_pred)
    score=r2_score(y_test,y_pred)
    print("Mean absolute error", mae)
    print("R2 Score", score)
```

Mean absolute error 0.5468236465249977 R2 Score 0.9847657384266952

Lasso Regression

```
In [33]: from sklearn.linear_model import Lasso
    from sklearn.metrics import mean_absolute_error
    from sklearn.metrics import r2_score
    lasso=Lasso()
    lasso.fit(X_train_scaled,y_train)
    y_pred=lasso.predict(X_test_scaled)
    mae=mean_absolute_error(y_test,y_pred)
    score=r2_score(y_test,y_pred)
    print("Mean absolute error", mae)
    print("R2 Score", score)
```

Mean absolute error 1.1331759949144087 R2 Score 0.9492020263112388

Ridge Regression model

```
In [34]: from sklearn.linear_model import Ridge
    from sklearn.metrics import mean_absolute_error
    from sklearn.metrics import r2_score
    ridge=Ridge()
    ridge.fit(X_train_scaled,y_train)
    y_pred=ridge.predict(X_test_scaled)
    mae=mean_absolute_error(y_test,y_pred)
    score=r2_score(y_test,y_pred)
    print("Mean absolute error", mae)
    print("R2 Score", score)
```

Mean absolute error 0.5642305340105683 R2 Score 0.9842993364555513

Elasticnet Regression

```
In [35]: from sklearn.linear_model import ElasticNet
    from sklearn.metrics import mean_absolute_error
    from sklearn.metrics import r2_score
    elastic=ElasticNet()
    elastic.fit(X_train_scaled,y_train)
    y_pred=elastic.predict(X_test_scaled)
    mae=mean_absolute_error(y_test,y_pred)
    score=r2_score(y_test,y_pred)
    print("Mean absolute error", mae)
    print("R2 Score", score)
```

Mean absolute error 1.8822353634896 R2 Score 0.8753460589519703

In [36]:	<pre>import pickle pickle.dump(scaler,open('scaler.pkl','wb')) pickle.dump(ridge,open('ridge.pkl','wb'))</pre>
In []:	
In []:	