UC San Diego

DSC 102 Systems for Scalable Analytics

Haojian Jin

Topic 3: Parallel and Scalable Data Processing

Part 2: Scalable Data Access

Ch. 9.4, 12.2, 14.1.1, 14.6, 22.1-22.3, 22.4.1, 22.8 of Cow Book Ch. 5, 6.1, 6.3, 6.4 of MLSys Book

Outline

- Basics of Parallelism
 - Task Parallelism; Dask
 - Single-Node Multi-Core; SIMD; Accelerators
- → ♦ Basics of Scalable Data Access
 - Paged Access; I/O Costs; Layouts/Access Patterns
 - Scaling Data Science Operations
 - Data Parallelism: Parallelism + Scalability
 - Data-Parallel Data Science Operations
 - Optimizations and Hybrid Parallelism

Recap: Memory Hierarchy

Memory Hierarchy in Action

Rough sequence of events when program is executed

Scale of Datasets in Practice

Scalable Data Access

Central Issue: Large data file does not fit entirely in DRAM

Basic Idea: Divide-and-conquer again! "Split" data file (virtually or physically) and <u>stage reads</u> of its pages from disk to DRAM; vice versa for writes

4 key regimes of scalability / staging reads:

- Single-node disk: Paged access from file on local disk
- Remote read: Paged access from disk(s) over a network
- Distributed memory: Data fits on a cluster's total DRAM
- Distributed disk: Use entire memory hierarchy of cluster

Outline

- Basics of Parallelism
 - Task Parallelism; Dask
 - Single-Node Multi-Core; SIMD; Accelerators
- Basics of Scalable Data Access
- Paged Access; I/O Costs; Layouts/Access Patterns
 - Scaling Data Science Operations
- Data Parallelism: Parallelism + Scalability
 - Data-Parallel Data Science Operations
 - Optimizations and Hybrid Parallelism

Paged Data Access to DRAM

Basic Idea: "Split" data file (virtually or physically) and <u>stage reads</u> of its pages from disk to DRAM (vice versa for writes)

Page Management in DRAM Cache

- Caching: Retaining pages read from disk in DRAM
- Eviction: Removing a page frame's content in DRAM
- Spilling: Writing out pages from DRAM to disk
 - If a page in DRAM is "dirty" (i.e., some bytes were written), eviction requires a spill; o/w, ignore that page
- The set of DRAM-resident pages typically changes over the lifetime of a process
- Cache Replacement Policy: The algorithm that chooses which page frame(s) to evict when a new page has to be cached but the OS cache in DRAM is full
 - Popular policies include Least Recently Used, Most Recently Used, etc. (more shortly)

Quantifying I/O: Disk and Network

- Page reads/writes to/from DRAM from/to disk incur latency
- Disk I/O Cost: Abstract counting of number of page I/Os; can map to bytes given page size
- Sometimes, programs read/write data over network
- Communication/Network I/O Cost: Abstract counting of number of pages/bytes sent/received over network
- I/O cost is abstract; mapping to latency is hardware-specific

Example: Suppose a data file is 40GB; page size is 4KB I/O cost to read file = 10 million page I/Os

Disk with I/O throughput: 800 MB/s ———— 40GB/800MBps = 50s

Scaling to (Local) Disk

Basic Idea: Split data file (virtually or physically) and <u>stage reads</u> of its pages from disk to DRAM (vice versa for writes)

Suppose OS Cache has only 4 frames; initially empty

Scaling to (Local) Disk

- In general, <u>scalable programs stage access</u> to pages of file on disk and efficiently use available DRAM
 - Recall that typically DRAM size << Disk size</p>
- Modern machines have 10s of GBs DRAM; so, read a "chunk"/"block" of file at a time (say, 1000s of pages)
 - On HDDs, such chunking leads to more sequential I/Os, raising throughput and lowering latency
 - Similarly, write a chunk of dirtied pages at a time

Data Layouts and Access Patterns

- Data Layout: Order in which data is laid out on storage; property of physical level of database
- Data Access Pattern: Order in which a program needs to access data for its computations; property of the program
- Together, the above two affect what data subset gets cached in higher level of memory hierarchy
- Key Principle: Optimizing data layout on disk based on data access pattern can help reduce I/O costs and latency
 - Applies to both HDDs and SSDs but especially critical for HDDs due to its random vs. sequential access latency gap

Row-store vs Column-store Layouts

A common dichotomy when serializing 2-D structured data (relations, matrices, DataFrames) to file on disk

Α	В	С	D	Say, a page can fit only 4 cell values					
1 a	1b	1c	1d						
2a	2b	2c	2d	Row-store:	1a,1b,1	2a,2b,2	3a,3b,3 c,3d		
3a	3b	3c	3d	Row-Store.	c,1d	c,2d	c,3d	• • • •	
4a	4b	4c	4d		10.20.2		1h 2h 2		
5a	5b	5c	5d	Col-store:	1a,2a,3 a,4a	5a,6a	1b,2b,3 b,4b		
6a	6b	6c	6d						

Based on data access pattern of program, I/O costs with row-vs col-store can be orders of magnitude apart!

Row-store vs Column-store Layouts

Α	В	С	D	Say, a page can fit only 4 cell values					
1 a	1b	1c	1d						
2a	2b	2c	2d	Down stores	1a,1b,1	2a,2b,2	3a,3b,3		
3a	3b	3c	3d	Row-store:	1a,1b,1 c,1d	2a,2b,2 c,2d	3a,3b,3 c,3d	• • • •	
4a	4b	4c	4d		10.20.2		1h 2h 2		
5a	5b	5c	5d	Col-store:	1a,2a,3 a,4a	5a,6a	1b,2b,3 b,4b		
6a	6b	6c	6d				,		

Q: What is the I/O cost with each to compute, say, a sum over B?

- With row-store: need to fetch all pages; I/O cost: 6 pages
- With col-store: need to fetch only B's pages; I/O cost: 2 pages
- This difference generalizes to higher dim. for tensors

Hybrid/Tiled/"Blocked" Layouts

Sometimes, it is beneficial to do a hybrid, especially for analytical RDBMSs and matrix/tensor processing systems

Α	В	С	D
1 a	1b	1c	1d
2 a	2b	2c	2d
3a	3b	3c	3d
4a	4b	4c	4d
5a	5b	5c	5d
6a	6b	6c	6d

Say, a page can fit only 4 cell values

Hybrid stores with 2x2 tiled layout:

Key Principle: Which data layout will yield lower I/O costs (row vs. col vs tiled) depends on data access pattern of the program!

Example: Dask's DataFrame

Basic Idea: Split data file (virtually or physically) and <u>stage reads</u> of its pages from disk to DRAM (vice versa for writes)

- Dask DF scales to disk-resident data via a row-store
- "Virtual" split: each split is a Pandas DF under the hood
- Dask API is a "wrapper" around Pandas API to scale ops to splits and put all results together
- If file is too large for DRAM, need manual repartition() to get physically smaller splits (< ~1GB)</p>

Example: Modin's DataFrame

Basic Idea: Split data file (virtually or physically) and <u>stage reads</u> of its pages from disk to DRAM (vice versa for writes)

- Modin's DF aims to scale to diskresident data via a tiled store
- Enables seamless scaling along both dimensions
- Easier use of multi-core parallelism
- Many in-memory RDBMSs had this, e.g., SAP HANA, Oracle TimesTen
- Scalapack had this for matrices

18

Scaling with Remote Reads

Basic Idea: Split data file (virtually or physically) and <u>stage reads</u> of its pages from disk to DRAM (vice versa for writes)

- Similar to scaling to local disk but not "local":
 - Stage page reads from remote disk/disks over the network (e.g., from S3)
- More restrictive than scaling with local disk, since spilling is not possible or requires costly network I/Os
 - OK for a one-shot filescan access pattern
 - Use DRAM to cache; repl. policies
 - Can also use smaller local disk as cache; you did this in PA1

Peer Instruction Activity

(Switch slides)

Outline

- Basics of Parallelism
 - Task Parallelism; Dask
 - Single-Node Multi-Core; SIMD; Accelerators
- Basics of Scalable Data Access
 - Paged Access; I/O Costs; Layouts/Access Patterns
- Scaling Data Science Operations
- Data Parallelism: Parallelism + Scalability
 - Data-Parallel Data Science Operations
 - Optimizations and Hybrid Parallelism

Scaling Data Science Operations

- Scalable data access for key representative examples of programs/operations that are ubiquitous in data science:
- → DB systems:
 - Select
 - Non-deduplicating project
 - Simple SQL aggregates
 - GROUP BY aggregates
 - ML systems:
 - Matrix sum/norms
 - (Stochastic) Gradient Descent

Scaling to Disk: Non-dedup. Project

Α	В	С	D	R SEL	ECT C F	ROM R	
1 a	1b	1c	1d				
2a	2b	2c	2d	Dow store:	1a,1b,1	2a,2b,2	3a,3b,3
3a	3b	3c	3d	Row-store:	1a,1b,1 c,1d	2a,2b,2 c,2d	3a,3b,3 c,3d
4a	4b	4c	4d				
5a	5b	5c	5d		4a,4b,4 c,4d	5a,5b,5 c,5d	6a,6b,6 c,6d
6a	6b	6c	6d		, T u	- 0,0a	

- Straightforward filescan data access pattern
 - Read one page at a time into DRAM; may need cache repl.
 - Drop unneeded columns from tuples on the fly
- I/O cost: 6 (read) + output # pages (write)

Scaling to Disk: Non-dedup. Project

- Since we only need col C, no need to read other pages
- I/O cost: 2 (read) + output # pages (write)
- Big advantage for col-stores over row-stores for SQL analytics queries (projects, aggregates, etc.), aka "OLAP"
 - Rationale for col-store RDBMS (e.g., Vertica) and Parquet

Scaling to Disk: Simple Aggregates

Α	В	С	D	R SELE	ECT MAX	X(A) FRC)MR
1a	1b	1c	1d				
2a	2b	2c	2d	Down stores	1a,1b,1	2a,2b,2	3a,3b,3
3a	3b	3c	3d	Row-store:	1a,1b,1 c,1d	c,2d	3a,3b,3 c,3d
4a	4b	4c	4d				
5a	5b	5c	5d		4a,4b,4 c,4d	5a,5b,5 c,5d	6a,6b,6 c,6d
6a	6b	6c	6d		0, 4 0	U,30	C,0 C

- Again, straightforward filescan data access pattern
 - Similar I/O behavior as non-deduplicating project
- I/O cost: 6 (read) + output # pages (write)

Scaling to Disk: Simple Aggregates

- Similar to the non-dedup. project, we only need col A; no need to read other pages!
- I/O cost: 2 (read) + output # pages (write)

Scaling to Disk: Group By Aggregate

Α	В	С	D	F
a1	1b	1c	4	
a2	2b	2c	3	
a1	3b	3c	5	
a3	4b	4c	1	
a2	5b	5c	10	
a1	6b	6c	8	

Hash table (output)

Α	Running Info.
a1	17
a2	13
a3	1

SELECT A, SUM(D) FROM R GROUP BY A

- Now it is not straightforward due to the GROUP BY!
- Need to "collect" all tuples in a group and apply agg. func. to each
- Typically done with a hash table maintained in DRAM
 - Has 1 record per group and maintains "running information" for that group's agg. func.
 - Built on the fly during filescan of R; holds the output in the end

Scaling to Disk: Group By Aggregate

A	В	С	D	R
a1	1b	1c	4	
a2	2b	2c	3	
a1	3b	3c	5	
a3	4b	4c	1	
a2	5b	5c	10	
a1	6b	6c	8	

SELECT A, SUM(D) FROM R GROUP BY A

Row-store:

Hash table in DRAM

Α	Running Info.				
a1	4 -> 9 -> 17				
a2	3 -> 13				
а3	1				

- Note that the sum for each group is constructed incrementally
- I/O cost: 6 (read) + output # pages (write); just one filescan again!

Q: But what if hash table > DRAM size?!

Scaling to Disk: Group By Aggregate

SELECT A, SUM(D) FROM R GROUP BY A

Q: But what if hash table > DRAM size?

Program will likely just crash! OS may keep swapping pages of hash table to/from disk; aka "thrashing"

Q: How to scale to large number of groups?

- Divide and conquer! Split up R based on values of A
- HT for each split may fit in DRAM alone
- Reduce running info. size if possible

Ad: Take CSE 132C for more on how GROUP BY is scaled

Scaling to Disk: Relational Select

Α	В	С	D	R
1 a	1b	1c	1d	
2a	2b	2c	2d	D ₀
3a	3b	3c	3d	Ro
4a	4b	4c	4d	
5a	5b	5c	5d	
6a	6b	6c	6d	

R
$$\sigma_{B="3b"}(R)$$

SELECT C FROM R WHERE B="3b"

Row-store:

1a,1b,1 c,1d 2a,2b,2 c,2d 3a,3b,3 c,3d

4a,4b,4 c,4d 5a,5b,5 c,5d

6a,6b,6 c,6d

- Straightforward filescan data access pattern
 - Read pages/chunks from disk to DRAM one by one
 - CPU applies predicate to tuples in pages in DRAM
 - Copy satisfying tuples to temporary output pages
 - Use LRU for cache replacement, if needed
- I/O cost: 6 (read) + output # pages (write)

Scaling Data Science Operations

- Scalable data access for key representative examples of programs/operations that are ubiquitous in data science:
 - DB systems:
 - Select
 - Non-deduplicating project
 - Simple SQL aggregates
 - GROUP BY aggregates

Peer Instruction Activity

(Switch slides)

Review Questions

- 1. What are the 4 main regimes of scalable data access?
- 2. Briefly explain 1 pro and 1 con of scaling with local disk vs. scaling with remote reads.
- 3. You are given a DataFrame serialized as a 100 GB Parquet columnar file. It has 20 columns, all of the same fixed-length data type. You compute a sum over 4 columns. What is the I/O cost (in GB)?
- 4. Which is the most flexible data layout format for 2-D structured data?
- 5. You lay out a 1 TB matrix in tile format with a shape 2000x500. What is the I/O cost (in GB) of computing its full matrix sum?

Outline

- Basics of Parallelism
 - Task Parallelism; Dask
 - Single-Node Multi-Core; SIMD; Accelerators
- Basics of Scalable Data Access
 - Paged Access; I/O Costs; Layouts/Access Patterns
 - Scaling Data Science Operations
- Data Parallelism: Parallelism + Scalability
 - Data-Parallel Data Science Operations
 - Optimizations and Hybrid Parallelism