Artificial Intelligence

CS4365 --- Fall 2022

Bayes' Net: Exact Inference

Instructor: Yunhui Guo

Bayes Nets Representation Summary

Bayes nets compactly encode joint distributions

 Guaranteed independencies of distributions can be deduced from BN graph structure

D-separation gives precise conditional independence guarantees from graph alone

 A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Example: Alarm Network

Α	J	P(J A)
+a	+j	0.9
+a	ij	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

Е	P(E)
+e	0.002
-е	0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Example: Alarm Network

В	P(B)
+b	0.001
-b	0.999

Е	P(E)
+e	0.002
-е	0.998

Α	J	P(J A)
+a	+j	0.9
+a	ij	0.1
-a	+j	0.05
-a	-j	0.95

	Α	M	P(M A)
	+a	+m	0.7
\	+a	-m	0.3
)	-a	+m	0.01
	-a	-m	0.99

$$P(+b, -e, +a, -j, +m) = P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) =$$

В	E	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Example: Alarm Network

В	P(B)
+b	0.001
-b	0.999

Е	P(E)
+e	0.002
-е	0.998

Α	J	P(J A)
+a	+j	0.9
+a	ij	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

P(+b, -e, +a, -j, +m) =
P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) =
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Inference

Given a Bayesian network, what questions might we want to ask?

- Conditional probability query: $P(X = x \mid e)$
 - Given instantiations for some of the variables (we'll use e here to stand for the values of all the instantiated variables; it doesn't have to be just one), what is the probability that node X has a particular value x?
- Maximum a posteriori probability: $argmax_q P(Q = q | E_1 = e_1 ...)$
- General question: What's the whole probability distribution over variable X given evidence e, P(X | e)?

Inference

Probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

Inference

 Inference: calculating some useful quantity from a joint probability distribution

- Exact inference:
 - Inference by enumeration
 - variable elimination

- Approximate inference:
 - Sampling

Inference by Enumeration

- General case:
 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$
 - Query* variable: Q
 - Hidden variables: $H_1 \dots H_r$
- We want:

$$P(Q|e_1 \dots e_k)$$

Using the Joint Distribution

 To answer any query involving a conjunction of variables, sum over the variables not involved in the query

Marginalization:

$$P(y) = \Sigma_{ABC} P(a,b,c,y),$$

•
$$P(y|x) = P(x,y) / P(x)$$

= $\Sigma_{ABC} P(a,b,c,x,y) / \Sigma_{ABCY} P(a,b,c,x,y)$

Inference by Enumeration

- Step 1:
 - Select the entries consistent with the evidence

- Step 2:
 - Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

- Step 3:
 - Normalize

$$Z = \sum_{q} P(Q, e_1 \cdots e_k) \qquad P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

• P(d) =
$$\Sigma_{ABC}$$
 P(a,b,c,d)
= Σ_{ABC} P(d|c)P(c|b)P(b|a)P(a)

Only need local conditional distributions

=
$$\sum_{A} \sum_{B} \sum_{C} P(d|c)P(c|b)P(b|a)P(a)$$

=
$$\Sigma_{C} P(d|c)\Sigma_{B}P(c|b)\Sigma_{A}P(b|a)P(a)$$

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Inference by enumeration:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)$$

$$P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$

Evaluation tree

• $P(B|j, m) = \alpha P(B) \Sigma_e P(e) \Sigma_a P(a|B, e)P(j|a)P(m|a)$

• P(d) =
$$\sum_{A}\sum_{B}\sum_{C}$$
 P(d|c)P(c|b)P(b|a)P(a)
= \sum_{C} P(d|c) \sum_{B} P(c|b) \sum_{A} P(b|a)P(a)
P(b₁|a₁)P(a₁) P(b₁|a₂)P(a₂)
P(b₂|a₁)P(a₁) P(b₂|a₂)P(a₂)

•
$$P(d) = \sum_{A} \sum_{B} \sum_{C} P(d|c) P(c|b) P(b|a) P(a)$$

 $= \sum_{C} P(d|c) \sum_{B} P(c|b) \sum_{A} P(b|a) P(a)$
 $\sum_{A} P(b_{1}|a) P(a)$
 $\sum_{A} P(b_{2}|a) P(a)$

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1
- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)
- Number of capitals = dimensionality of the table

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

- Single conditional: P(Y|x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

- Family of conditionals: P(X|Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

Т	W	Р	
hot	sun	8.0	$D(W L_A)$
hot	rain	0.2	ig P(W hot)
cold	sun	0.4	
cold	rain	0.6	$\mid \vdash P(W cold)$

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ...

rain

cold

• In general, when we write P(Y₁ ... Y_N | X₁ ... X_M)

It is a "factor," a multi-dimensional array

• Its values are $P(y_1 ... y_N \mid x_1 ... x_M)$

 Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

Random Variables

- R: Raining
- T: Traffic
- L: Late for class!

\boldsymbol{T}	1	D
\boldsymbol{P}		$\kappa_{\it J}$

+r	0.1
-r	0.9

P(T|R)

+r	+t	8.0
+r	- t	0.2
-r	+t	0.1
-r	-t	0.9

+t	+1	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(R) = P(T|R) = P(L|T)

+t	8.0
-t	0.2
+t	0.1
-t	0.9
	-t

+t	+1	0.3
+t	-	0.7
-t	+1	0.1
-t	-	0.9

- Any known values are selected
 - E.g. if we know L = +I, the initial factors are

$$P(+\ell|T)$$

+t	+1	0.3
-t	+	0.1

• Procedure: Join all factors, then eliminate all hidden variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved
- Example: Join on R

• Computation for each entry: pointwise products $\forall r, t : P(r,t) = P(r) \cdot P(t|r)$

Example: Multiple Joins

+r	0.1
-r	0.9

P(T|R)

Join R

+r	+t	80.0
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

Join T

R, T, L

+r	+t	8.0
+r	-t	0.2
۲	+t	0.1
-r	-t	0.9

D	T	$ T\rangle$
I	(L)	$ 1 _{j}$

+t	+1	0.3
+t	-	0.7
-t	+	0.1
-t	1	0.9

P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

R, T P(R, T, L)

+r	+t	+	0.024
+r	+t	-	0.056
+r	-t	+	0.002
+r	-t	-1	0.018
-r	+t	+1	0.027
-r	+t	-	0.063
-r	-t	+	0.081
-r	-t	-	0.729

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation

• Example:

D	1	D	$\boldsymbol{\tau}$	7
I		n,	1)

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

sum R

P(T)

+t	0.17
-t	0.83

Multiple Elimination

Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Inference by Enumeration?

 $P(Antilock|observed\ variables) = ?$

•
$$P(d) = \sum_{A} \sum_{B} \sum_{C} P(d|c) P(c|b) P(b|a) P(a)$$

 $= \sum_{C} P(d|c) \sum_{B} P(c|b) \sum_{A} P(b|a) P(a)$
 $\sum_{A} P(b_{1}|a) P(a)$
 $\sum_{A} P(b_{2}|a) P(a)$

•
$$P(d) = \sum_{A} \sum_{B} \sum_{C} P(d|c)P(c|b)P(b|a)P(a)$$

 $= \sum_{C} P(d|c)\sum_{B}P(c|b)\sum_{A}P(b|a)P(a)$
 $f(b)$

•
$$P(d) = \sum_{A} \sum_{B} \sum_{C} P(d|c)P(c|b)P(b|a)P(a)$$

 $= \sum_{C} P(d|c)\sum_{B}P(c|b)f(b)$
 $f(c)$

• P(d) =
$$\sum_{A} \sum_{B} \sum_{C} P(d|c)P(c|b)P(b|a)P(a)$$

= $\sum_{C} P(d|c)f(c)$

Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

Summary

 Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)

Traffic Domain

$$= \sum_t \sum_r P(L|t) P(r) P(t|r)$$
 Join on r

Eliminate r

Eliminate t

Variable Elimination

$$= \sum_t P(L|t) \sum_r P(r)P(t|r)$$
 Join on r Eliminate r

Eliminate t