affine variety: $A - a + U = \{a + \vec{b} \mid \vec{b} \in U\}$ $a \in \mathbb{E}^{n} \quad (if the point is the origin, then it's a subspace)$ $U \leq V^{n} \quad \text{"a subspace that you can move around"}$

if $d=1 \Rightarrow a+U$ live \rightarrow one dimensional object that requires 2 distinct geometric dojects to describe $d=2 \Rightarrow a+U$ plane d=dim U

we want to describe T

J NER: AT = N. of > of = v1 + N. of -vector equation of l

Fix the suference system

$$X = (0, B)$$

$$[T]_{X} = {x \choose y}, \quad [A]_{X} = {x \choose y_A}$$

$$[G]_{X} = {x \choose y_B}$$

$$e: \begin{cases} \lambda = x_{n} + \lambda x_{n}^{2} \\ y^{2}y_{n} + \lambda y_{n}^{2} \end{cases}$$
, $\lambda \in \mathbb{R}$ - parametric equation

$$\frac{1}{\sqrt{3}}$$
 $\frac{1}{\sqrt{3}}$ $\frac{1$

Suplicit four:

if
$$A=0$$
, $B\neq0$ \Rightarrow $Y=-\frac{C}{B}$
 $B=0$, $A\neq0$ \Rightarrow $X=-\frac{C}{A}$
 $A>B\neq0$ \Rightarrow $Y=-\frac{A}{C}$ $X-\frac{C}{B}$
 $Y=WX+W$

2.5 Exercises

21. Determine parametric equations for the line $\ell \subseteq \mathbb{A}^2$ in the following cases:

a) ℓ contains the point A(1,2) and is parallel to the vector $\mathbf{a}(3,-1)$,

b) ℓ contains the origin and is parallel to **b**(4,5),

 \not ℓ contains the point M(1,7) and is parallel to Oy,

 ℓ contains the points M(2,4) and N(2,-5).

2/2. For the lines ℓ in the previous exercise

 \not determine a Cartesian equation for ℓ ,

 \not describe all direction vectors for ℓ .

2.3. With the assumptions in Example 1.20, give parametric equations and Cartesian equations for the lines *AB*, *AC*, *BC* both in the coordinate system K and in the coordinate system K'.

2.4. Find a Cartesian equation of the line ℓ in \mathbb{A}^2 containing the points $P = S \cap S'$ and $Q = T \cap T'$ where

$$S: x + 5y - 8 = 0$$
, $S': 3x + 6 = 0$, $T: 5x - \frac{1}{2}y = 1$, $T': x - y = 5$.

2.6. Deterimine an equation for the line in \mathbb{A}^2 parallel to **v** and passing through $S \cap T$ in each of the following cases:

1.
$$\mathbf{v} = (2, 4), S: 3x - 2y - 7 = 0, T: 2x + 3y = 0,$$

2.
$$\mathbf{v} = (-5\sqrt{2}, 7), S : x - y = 0, T : x + y = 1.$$

2.6. Let ABC be a triangle in the affine space \mathbb{A}^n . Consider the points C' and B' on the sides AB and AC respectively, such that

$$\overrightarrow{AC'} = \lambda \overrightarrow{BC'}$$
 and $\overrightarrow{AB'} = \mu \overrightarrow{CB'}$.

The lines BB' and CC' meet in the point M. For a fixed but arbitrary point $O \in \mathbb{A}^n$, show that

$$\overrightarrow{OM} = \frac{\overrightarrow{OA} - \lambda \overrightarrow{OB} - \mu \overrightarrow{OC}}{1 - \lambda - \mu}.$$

Deduce a formula for \overrightarrow{OG} where G is the centroid of the triangle.

2.7. In \mathbb{A}^n , consider the angle BOB' and the points $A \in [OB]$, $A' \in [OB']$. Show that

$$\overrightarrow{OM} = m \frac{1-n}{1-mn} \overrightarrow{OA} + n \frac{1-m}{1-mn} \overrightarrow{OA'}$$

$$\overrightarrow{ON} = m \frac{n-1}{n-m} \overrightarrow{OA} + n \frac{m-1}{m-n} \overrightarrow{OA'}$$

where $M = AB' \cap A'B$ and $N = AA' \cap BB'$ and where $\overrightarrow{OB} = m\overrightarrow{OA}$ and $\overrightarrow{OB'} = n\overrightarrow{OA'}$.

- **2.1.** Determine parametric equations for the line $\ell \subseteq \mathbb{A}^2$ in the following cases:
 - a) ℓ contains the point A(1,2) and is parallel to the vector $\mathbf{a}(3,-1)$,
 - b) ℓ contains the origin and is parallel to **b**(4,5),
 - c) ℓ contains the point M(1,7) and is parallel to Oy,
 - d) ℓ contains the points M(2,4) and N(2,-5).
- **2.2.** For the lines ℓ in the previous exercise
 - a) determine a Cartesian equation for ℓ ,
 - b) describe all direction vectors for ℓ .

$$\begin{cases} 2 & 1 + 3 \\ 4 & 3 \\ 4 & 3 \end{cases} \Rightarrow \lambda = \frac{x-1}{5} \\ \lambda = \frac{y-2}{(-1)} = -y+2$$

$$\Rightarrow \quad \mathcal{L}: \ 2-y = \frac{x-1}{3} \ \ (\Rightarrow) \ \ y = \frac{1-x}{3} + 2 \ \ (\Rightarrow) \ \ \frac{x-1}{3} + y - 2 = 0$$

$$\begin{cases} \chi = 4 \cdot \lambda \\ \gamma = 5 \cdot \lambda \end{cases} \Rightarrow \lambda = \frac{\chi}{4}$$

$$\lambda = \frac{\chi}{4}$$

$$\ell: \frac{x}{h} = \frac{4}{5} = \frac{5}{5} = \frac$$

$$\ell: \begin{cases} x = 1 \\ y = 4 + \lambda \end{cases} \Rightarrow \text{this doesn't told us anything}$$

* as long as you don't talk doont dot product and porpendicularity, everything valid hore too

2.5. Deterimine an equation for the line in \mathbb{A}^2 parallel to **v** and passing through $S \cap T$ in each of the following cases:

1.
$$\vec{\mathbf{v}} = (2,4)$$
, $S: 3x - 2y - 7 = 0$, $T: 2x + 3y = 0$,

Line
$$\star$$
 2. $\vec{\mathbf{v}} = (-5\sqrt{2}, 7), S: x - y = 0, T: x + y = 1.$

$$\vec{V}_{T} = \vec{V}_{A} + \vec{A}_{T}$$

* a love in 2D is more symmiles to a plane in 3D because they are d-1 85 the dimention of the space

the implicit form (after opening up 1)
$$Ax + By + Cz + D = 0$$

2.10. Determine Cartesian equations for the plane π in the following cases:

a)
$$\pi: x = 2 + 3u - 4v$$
, $y = 4 - v$, $z = 2 + 3u$;

b)
$$\pi : x = u + v$$
, $y = u - v$, $z = 5 + 6u - 4v$.

$$= -32 + 16 - 12y + 48 + 3x - 6 =$$

b)
$$\begin{vmatrix} x & y & \frac{2}{3} - 5 \\ 1 & 1 & 6 \\ 1 & -4 & -4 \end{vmatrix} = 0$$

- 2.8. Show that the midpoints of the diagonals of a complete quadrilateral are collinear.
- 28. Determine parametric equations for the plane π in the following cases:
 - π contains the point M(1,0,2) and is parallel to the vectors $\mathbf{a}_1(3,-1,1)$ and $\mathbf{a}_2(0,3,1)$,
 - π contains the points A(-2,1,1), B(0,2,3) and C(1,0,-1),
 - α contains the point A(1,2,1) and is parallel to **i** and **j**,
 - π contains the point M(1,7,1) and is parallel coordinate plane Oyz,
 - \not π contains the points $M_1(5,3,4)$ and $M_2(1,0,1)$, and is parallel to the vector $\mathbf{a}(1,3,-3)$,
 - \not π contains the point A(1,5,7) and the coordinate axis Ox.
- **2.10.** Determine Cartesian equations for the plane π in the following cases:

$$\pi: x = 2 + 3u - 4v, y = 4 - v, z = 2 + 3u;$$

$$\pi: x = u + v, y = u - v, z = 5 + 6u - 4v.$$

2.11. Determine parametric equations for the plane π in the following cases:

$$3x - 6y + z = 0;$$

$$2x - y - z - 3 = 0.$$

- **2.12.** With the assumptions in Example 1.21, give parametric equations and Cartesian equations for the line AB and the plane ACD both in the coordinate system K and in the coordinate system K'.
- **2.13.** Show that the points A(1,0,-1), B(0,2,3), C(-2,1,1) and D(4,2,3) are coplanar.
- 2.14. Determine the relative positions of the planes in the following cases

a)
$$\pi_1$$
: $x + 2y + 3z - 1 = 0$, π_2 : $x + 2y - 3z - 1 = 0$.

b)
$$\pi_1: x+2y+3z-1=0$$
, $\pi_2: 2x+y+3z-2=0$, $\pi_3: x+2y+3z+2=0$.

2.15. Show that the planes

$$\pi_1: 3x + y + z - 1 = 0$$
, $\pi_2: 2x + y + 3z + 2 = 0$, $\pi_3: -x + 2y + z + 4 = 0$

have a point in common.

2.16. Show that the pairwise intersection of the planes

$$\pi_1: 3x + y + z - 5 = 0$$
, $\pi_2: 2x + y + 3z + 2 = 0$, $\pi_3: 5x + 2y + 4z + 1 = 0$

are parallel lines.

2.17. Determine parametric equations for the line ℓ in the following cases:

2.11. Determine parametric equations for the plane π in the following cases:

a)
$$3x - 6y + z = 0$$
;
b) $2x - y - z - 3 = 0$.

- a) ℓ contains the point $M_0(2,0,3)$ and is parallel to the vector $\mathbf{a}(3,-2,-2)$,
- b) ℓ contains the point A(1,2,3) and is parallel to the Oz-axis,
- c) ℓ contains the points $M_1(1,2,3)$ and $M_2(4,4,4)$.
- **2.18.** Give Cartesian equations for the lines ℓ in the previous exercise.
- **2.19.** Determine parametric equations for the line contained in the planes x + y + 2z 3 = 0 and x y + z 1 = 0.
- **2.20.** Consider the lines $\ell_1 : x = 1 + t$, y = 1 + 2t, z = 3 + t, $t \in \mathbb{R}$ and $\ell_2 : x = 3 + s$, y = 2s, z = -2 + s, $s \in \mathbb{R}$. Show that ℓ_1 and ℓ_2 are parallel and find the equation of the plane determined by the two lines.
- **2.21.** Determine parametric equations of the line passing through P(5,0,-2) and parallel to the planes $\pi_1: x-4y+2z=0$ and $\pi_2: 2x+3y-z+1=0$.
- **2.22.** Determine an equation of the plane containing P(2,0,3) and the line $\ell: x = -1 + t, y = t, z = -4 + 2t, t \in \mathbb{R}$.
- **2.23.** For the points A(2,1,-1) and B(-3,0,2), determine an equation of the bundle of planes passing through A and B.
- **2.24.** Determine the relative positions of the lines x = -3t, y = 2 + 3t, z = 1, $t \in \mathbb{R}$ and x = 1 + 5s, y = 1 + 13s, z = 1 + 10s, $s \in \mathbb{R}$.
- **2.25.** Determine the parameter m for which the line x = -1 + 3t, y = 2 + mt, z = -3 2t doesn't intersect the plane x + 3y + 3z 2 = 0.
- **2.26.** Determine the values a and d for which the line $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-3}{-2}$ is contained in the plane ax + y 2z + d = 0.
- **2.27.** In each of the following, find a Cartesian equation of the plane in \mathbb{A}^3 passing through Q and parallel to the lines ℓ and ℓ' :
 - a) Q(1,-1,-2), $\ell: x-y=1$, x+z=5, $\ell': x=1$, z=2
 - b) Q(0,1,3), $\ell: x+y=-5$, x-y+2z=0, $\ell: 2x-2y=1$, x-y+2z=1
- **2.28.** In each of the following, find the relative positions of the line ℓ and the plane π in \mathbb{A}^3 , and, if they are incident, determine the point of intersection.
 - a) $\ell: x = 1 + t, y = 2 2t, z = 1 4t, \pi: 2x y + z 1 = 0$
 - b) ℓ : x = 2 t, y = 1 + 2t, z = -1 + 3t, π : 2x + 2y z + 1 = 0
- **2.29.** In each of the following, find a Cartesian equation for the plane in \mathbb{A}^3 containing the point Q and the line ℓ .
 - a) $Q = (3,3,1), \ell : x = 2 + 3t, y = 5 + t, z = 1 + 7t$

b)
$$Q = (2, 1, 0), \ell : x - y + 1 = 0, 3x + 5z - 7 = 0$$

2.30. In each of the following, find Cartesian equations for the line ℓ in \mathbb{A}^3 passing through Q, contained in the plane π and intersecting the line ℓ'

a)
$$Q = (1, 1, 0), \pi : 2x - y + z - 1 = 0, \ell' : x = 2 - t, y = 2 + t, z = t$$

b)
$$Q = (-1, -1, -1), \pi : x + y + z + 3 = 0, \ell' : x - 2z + 4 = 0, 2y - z = 0$$

2.31. In each of the following, find Cartesian equations for the line ℓ in \mathbb{A}^3 passing through Q and coplanar to the lines ℓ' and ℓ'' . Furthermore, establish whether ℓ meets or is parallel to ℓ' and ℓ''

a)
$$Q = (1,1,2), \ell' : 3x - 5y + z = -1, 2x - 3z = -9, \ell'' : x + 5y = 3, 2x + 2y - 7z = -7$$

b)
$$Q = (2, 0, -2), \ell' : -x + 3y = 2, x + y + z = -1, \ell'' : x = 2 - t, y = 3 + 5t, z = -t$$

2.32. In each of the following, find the value of the real parameter k for which the lines ℓ and ℓ' are coplanar. Find a Cartesian equation for the plane that contains them, and find the point of intersection whenever they meet

a)
$$\ell: x = k + t, y = 1 + 2t, z = -1 + kt, \ell': x = 2 - 2t, y = 3 + 3t, z = 1 - t$$

b)
$$\ell : x = 3 - t, y = 1 + 2t, z = k + t, \ell' : x = 1 + t, y = 1 + 2t, z = 1 + 3t$$

2.33. Find a Cartesian equation for the plane π in \mathbb{A}^3 which contains the line of intersection of the two planes

$$x + y = 3$$
 and $2y + 3z = 4$

and is parallel to the vector $\mathbf{v} = (3, -1, 2)$.

2.34. In the affine space \mathbb{A}^4 consider

the plane
$$\alpha = \langle \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \rangle + \begin{bmatrix} 2 \\ 4 \\ 1 \\ 2 \end{bmatrix}$$
 and the line $\beta = \langle \begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix} \rangle + \begin{bmatrix} 2 \\ 3 \\ -1 \\ 1 \end{bmatrix}$.

Determine $\alpha \cap \beta$.

2.35. In \mathbb{A}^4 consider the affine subspaces

$$\alpha = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \end{bmatrix} \quad \beta = \langle \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \rangle + \begin{bmatrix} 1 \\ 3 \\ 0 \\ 0 \end{bmatrix} \quad \gamma = \langle \begin{bmatrix} 2 \\ 1 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 2 \\ -2 \end{bmatrix} \rangle + \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad \delta = \langle \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \rangle.$$

Which of the following is true?

a) $\alpha \in \beta$

d) $\beta \parallel \gamma$

g) $\beta \subseteq \gamma$

b) $\alpha \in \gamma$

e) $\beta \parallel \delta$

h) $\gamma \subseteq \delta$

c) $\alpha \in \delta$

f) $\gamma \parallel \delta$

i) $\beta \subseteq \delta$

2.36. Consider the following affine subspaces of \mathbb{A}^4

$$Y: \left\{ \begin{array}{rcl} x_1 + x_3 - 2 & = & 0 \\ 2x_1 - x_2 + x_3 + 3x_4 - 1 & = & 0 \end{array} \right.$$

$$Z: \begin{cases} x_1 + x_2 + 2x_3 - 3x_4 &= 1\\ x_2 + x_3 - 3x_4 &= -1\\ x_1 - x_2 + 3x_4 &= 3 \end{cases}$$

- a) Determine the dimensions of Y and Z.
- b) Find parametric equations for each of the two affine subspaces.
- c) Is $Y \parallel Z$?
- **2.37.** In Section 2.2.2 we deduce a linear equation for a plane in \mathbb{A}^3 via a determinant. What is the analogue of this description for lines? I.e. deduce Cartesian equations for lines starting from linear dependence of vectors (both in \mathbb{A}^2 and \mathbb{A}^3).
- **2.38.** Consider the affine space \mathbb{A}^3 . Show that if a line ℓ doesn't intersect a plane π then $\ell \parallel \pi$ in the sense of the Definition 2.14. Moreover, give an example in \mathbb{A}^4 of a line and a plane which do not intersect and which are not parallel.
- **2.39.** Consider the affine space \mathbb{A}^4 . Describe the relative positions of two planes.
- **2.40.** In \mathbb{A}^3 discuss the relative positions of a plane and a line in terms of their Cartesian equations.
- **2.41.** In \mathbb{A}^3 discuss the relative positions two lines in terms of their Cartesian equations.