EXERCISE 1

$$L=0.4~m$$
 $\Delta t=25~m$ $k=0.78~W/m$ $A=15~m^2$ $\dot{Q}=kA~\Delta T/L=0.78~*15*25/0.4=731,25~W$ Rwall = L/kA= 0.4/(0.78 *15)=0.03419 °C/W

SUMMARY of 1^{st} LECTURE (2 october)

Steady State heat conduction in Plane wall

Q = energy[J]

 $\dot{Q} = dQ/dt$ energy/time [J/s] = [W] it is power, an amount of energy per time

$$\dot{Q}$$
in - \dot{Q} out = $\frac{dEwall}{dt}$ (\longrightarrow energy balance)

 \dot{Q} in= rate of heat tranfer into the wall

 \dot{Q} out= rate of heat tranfer out of the wall

 $\frac{dEwall}{dt} = \text{ rate of change of the energy of the wall}$

 $\frac{dEwall}{dt}$ =0 for steady operation

Fourier's law of heat conduction:

$$\dot{Q}$$
 cond, wall = -kA $\frac{dT}{dx}$ [W]

$$\frac{d(something)}{dt} = \frac{how something changes}{by time}$$

(over time, informal way to explain this writing mode)

$$\frac{\Delta T}{dx} = \frac{dT}{dx} \frac{how T changes}{by space}$$

(over space)

$$\int_{x=0}^{L} Q \cdot cond, wall dx = -\int_{T=T_1}^{T_2} kA dT$$

K =is a constant that depend on the material, it tell us how much conductive a material is.

$$\dot{Q}$$
 cond, wall = kA $\frac{T_1 - T_2}{L}$ [W] $\xrightarrow{Temperature}$ Thickness of the wall

The rate of heat conduction through a plane wall is proportional to the average thermal conductivity, the wall area, and the temperature difference.

Thermal Resistance Concept

$$\dot{Q}$$
 cond, wall = kA $\frac{\Delta T}{L}$ [W]

Heat transfer through a wall is proportional to his area. It is proportional to the difference of temperature and the conductivity.

It is inversely proportional to the tickness: the thicker the wall, the less heat goes through it.

Conductivity = willigness of material to transfer heat

The unit of conductivity is [W/mK] (K = kelvin degrees)

$$K = C+273,15$$