Neural Networks on Graphs

[1] T. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks. ICLR (2017), citations: 4674.

[2] Z. Wu, et al. A comprehensive survey on graph neural networks.

IEEE Transactions on NNLS (2020), citations: 530.

Presenter: Guihong Wan, Sep/2020

Outline

- Introduction
 - Graph
 - Learning Tasks on Graphs
 - Graph Networks
- Part1: Spectral graph convolution
 - GCN
 - Theory behind GCN
 - More reading
- Part2: Spatial graph convolution (my next presentation)
 - GAT ?

Introduction

Graph

N = 4, M = 4

• G(V, E)

V: vertex set with N = |V|;

E: edge set with M = |E|.

- Neighborhood of v: N(v)
- Data matrix: X with size N x F
- Adjacency matrix: A with size N x N
- Degree matrix: D diagonal

Input of Graph Networks: A, X

Graph (cont.)

- Adjacency matrix: A with size N x N
- Degree matrix: D diagonal
- Laplacian matrix: L = D A

$$D = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Graph (cont.)

- Laplacian matrix: L = D A
- Normalized Laplacian matrix: $L_1 = D^{-1} L$
- Symmetric Normalized Laplacian matrix:

$$L_2 = D^{-\frac{1}{2}} LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$$

$$A = \begin{bmatrix} a_4 & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Learning Tasks

For example:

- Node level
 - Node classification
 - Node representation
- Graph level
 - Graph classification
 - Graph representation

Learning Tasks (cont.)

For example:

- Node level
 - Node classification
 - Node representation
- Graph level
 - Graph classification
 - Graph representation

Task: node embedding/classification $f(A_{N\times N}, X_{N\times F}) \to \widetilde{X}_{N\times R}$ or $\widetilde{Y}_{N\times C}$

Main idea: learn a node v's representation

by aggregating its own feature x_v and its neighbors' feature x_u , for all $u \in N(v)$.

Graph networks (cont.)

Task: graph classification

Pooling: coarsen the graph

Readout: to summarize to get the graph representation

Graph networks (cont.)

Graph Autoencoder: unsupervised learning

$$f(A_{N\times N}, X_{N\times F}) \to Z_{N\times R}$$

Spectral graph convolution

- Problem
- How to do
- Why (theory behind)

[1] T. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks. ICLR (2017), citations: 4674.

Graph Convolution Network (GCN)

- Task: Node classification
 - Input: (A, X, partial Y)
 - Output: label of each node
- Semi-supervised learning
- A first-order approximation of spectral graph convolution

The
$$m{l^{th}}$$
 GCN Layer: $m{H^{l+1}} = m{\sigma}(\widetilde{m{D}}^{-\frac{1}{2}}\widetilde{m{A}}\widetilde{m{D}}^{-\frac{1}{2}}m{H}^{l}W^{l})$

 $H^0 = X$, otherwise the output of previous layer.

$$\widetilde{A} = A + I_N, \qquad \widetilde{D} = \sum_{j} \widetilde{A}_{ij}$$

W: what to learn.

The
$$l^{th}$$
 GCN Layer: $H^{l+1} = \sigma^{\left(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}H^{l}W^{l}\right)}$, $\widetilde{A} = A + I_{N}$

Understand intuitively:

if there is no normalization, then $H^{l+1} = \sigma(\widetilde{A}H^lW^l)$

if
$$l = 0$$
, then $H^1 = \sigma(\widetilde{A}XW^0)$

if there is no modification of adjacency matrix, then

$$H^1 = \sigma(AXW^0)$$

Understand intuitively:

$$H^1 = \sigma(AXW^0)$$

Main idea: learn a node v's representation

by aggregating its own feature x_{11} and its neighbors' feature x_{11} , for all $u \in N(v)$.

Normalization: the multiplication will completely change the scale of the features.

Implementation:

hidden = tf.sparse_tensor_dense_matmul(self.adj_norm, self.attrs @ w) + b

Theory behind GCN

$$H^{l+1} = \sigma \left(\widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} H^l W^l \right)$$

- GCN is a spectral-based graph convolution network.
- "spectral": eigen-decomposition of the graph symmetric normalized Laplacian *L*.
- A first-order approximation of spectral graph convolution.

Where is the "spectral" part?

Graph Convolution

- Order neighbors VS unordered neighbors
- A fixed size VS variable size

What to learn: the filter W.

1 _{×1}	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Spectral Graph Convolution

Given $L = U\Lambda U^{T}$, and a signal vector x with size N (a scaler for a node)

- The graph Fourier transform: $\hat{x} = U^T x$
- The inverse graph Fourier transform: $x = U\hat{x}$

Given the filter y

The convolution between x and y is:

$$x * y = U(U^{T}x \odot U^{T}y) = U(\hat{x} \odot \hat{y})$$

• denotes the element-wise product.

Spectral Graph Convolution

The convolution between x and y is:

$$\begin{aligned} & x * y \\ &= \mathsf{U}(\hat{x} \odot \hat{y}) \\ &= \mathsf{U}\begin{bmatrix} \hat{x}_1 \hat{y}_1 \\ \vdots \\ \hat{x}_N \hat{y}_N \end{bmatrix} = \mathsf{U}\begin{bmatrix} \hat{y}_1 \\ \ddots \\ \vdots \\ \hat{y}_N \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \vdots \\ \hat{x}_N \end{bmatrix} = U \mathsf{diag}(\hat{y}) \hat{x} \end{aligned}$$

Hence:

$$x * y = U \operatorname{diag}(\hat{y}) \hat{x}$$

• No matter what form the filter y is, its representation in the spectral/frequency domain will be a function of frequency $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_N)$: $\hat{y}(\Lambda)$.

Spectral Graph Convolution

- $x * y = U \operatorname{diag}(\hat{y}) \hat{x}$
- $\hat{y}(\Lambda)$: a function of frequency $\Lambda = \text{diag}(\lambda_1, ..., \lambda_N)$.

If denote $g_{\theta}(\Lambda) = diag(\hat{y}(\Lambda))$, then

$$x * y = U g_{\theta}(\Lambda) U^{T} x$$

The spectral-based graph convolution networks follow this definition. The key difference lies in the choice of the filter g_{θ} .

g_{θ} for GCN

• The $g_{\theta}(\Lambda)$ can be approximated by a truncated expansion in terms of Chebyshev Polynomials T_K up to K^{th} order:

$$g_{\theta}(\Lambda) \approx \sum_{k=0}^{\infty} \theta_k T_k(\tilde{\Lambda})$$

 $g_{\theta}(\Lambda) \approx \sum_{k=0}^{\infty} \theta_k T_k(\tilde{\Lambda})$ where $\tilde{\Lambda} = \frac{1}{\lambda_{max}} \Lambda - I_N$, θ_k is the Chebyshev Coefficient.

$$x * y = U g_{\theta}(\Lambda) U^{T} x \approx \sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{L}) x$$

g_{θ} for GCN (cont.)

The Chebysheve Polynomials are recursively defined as:

$$T_k(z) = 2zT_{k-1}(z) - T_{k-2}(z)$$
, with $T_0(z) = 1$ and $T_1(z) = z$.

- We could derive: $T_0(\tilde{\Lambda}) = I_N$, $T_1(\tilde{\Lambda}) = \tilde{\Lambda} = \frac{1}{\lambda_{max}}\Lambda I_N$
- GCN uses the first-order approximation: $K = 1, \lambda_{max} = 2$:

$$x * y \approx [\theta_0 T_0(\tilde{L}) + \theta_1 T_1(\tilde{L})]x$$

$$= (\theta_0 - \theta_1 D^{-\frac{1}{2}} A D^{-\frac{1}{2}})x$$

$$= \theta(I_N + D^{-\frac{1}{2}} A D^{-\frac{1}{2}})x \text{ if } \theta = \theta_0 = -\theta_1.$$

 θ is a vector with size N \leftarrow need to be learned

g_{θ} for GCN (cont.)

$$H^{l+1} = \sigma \left(\widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} H^l W^l \right)$$

$$x * y \approx \theta \left(I_N + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \right) x$$

In above formula, x is a vector with size N (a scaler for a node.) However, X is with size N x F (a vector for a node) Hence, in matrix form:

$$X * Y \approx \left(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}\right)XW$$

W is a matrix with size N x F' \leftarrow need to be learned

More reading

- [1] M. Defferrard, et al, "Convolutional neural networks on graphs with fast localized spectral filtering," NIPS (2016), citations: 2234.
- [2] J. Bruna, et al, "Spectral networks and locally connected networks on graphs," ICLR (2014), citations: 1538.
- [3] R. Li, et al, "Adaptive graph convolutional neural networks," *AAAI* (2018), citations: 152.

Thank you!