PT1 Right

```
%pt 1 right
clear all;
figure;
%get the json
cd('C:\Users\sydne\Documents\github\perceive\patientData')
% JAT PC
%cd('C:\Users\Admin\Documents\Github\perceive\patientData')
jsonFiles = 'Report Json Session Report patient1 right final (1).json';
is = jsondecode(fileread(jsonFiles));
%set back to the correct directory
%Sydnei PC
cd('C:\Users\sydne\Documents\github\perceive\postAnalysis')
% JAT PC
%cd('C:\Users\Admin\Documents\github\perceive\postAnalysis')
%% create a struct of the relevant data from brainsense
leng = numel(js.BrainSenseLfp);
data = struct;
for i=1:leng
    x = num2str(i);
    field = append("treatment", x);
    data.(field).channel = js.BrainSenseLfp(i).Channel;
    data.(field).time = datetime(replace({js.BrainSenseLfp(i).FirstPacketDateTime}, {'T',
    data.(field).pw = js.BrainSenseLfp(i).TherapySnapshot.Right.PulseWidthInMicroSecond;
    data.(field).ma = js.BrainSenseLfp(i).TherapySnapshot.Right.LowerLimitInMilliAmps;
    data.(field).timeDomain = js.BrainSenseTimeDomain(i).TimeDomainData;
end
%get legend info
%some parts must be hard coded bc
for i = 1:leng
    x = num2str(i);
    field = append("treatment", x);
    pw = num2str(data.(field).pw);
    ma = num2str(data.(field).ma);
    pt = "pt 1 right ";
    legendVal{i} = ((append(pt, pw, "us ", ma, "ma")));
end
%MANUALLY SET THESE BASED UPON THE PATIENT SUMMARY
legendVal{5} = append(pt, "off");
legendVal{2} = append(pt, "entry");
for i = 1:leng
    field = append("treatment", num2str(i));
    plot(data.(field).timeDomain)
    title(legendVal{i})
```


PT1 Left

```
%pt1 left
clear all;
figure;
%get the json
cd('C:\Users\sydne\Documents\github\perceive\patientData')
jsonFiles = 'Report Json Session Report patient1 left final (1).json';
js = jsondecode(fileread(jsonFiles));
%set back to the correct directory
cd('C:\Users\sydne\Documents\github\perceive\postAnalysis')
%% create a struct of the relevant data from brainsense
leng = numel(js.BrainSenseLfp);
data = struct;
for i=1:leng
    x = num2str(i);
    field = append("treatment", x);
    data.(field).channel = js.BrainSenseLfp(i).Channel;
    data.(field).time = datetime(replace({js.BrainSenseLfp(i).FirstPacketDateTime}, {'T',
    data.(field).pw = js.BrainSenseLfp(i).TherapySnapshot.Left.PulseWidthInMicroSecond;
    data.(field).ma = js.BrainSenseLfp(i).TherapySnapshot.Left.LowerLimitInMilliAmps;
    data.(field).timeDomain = js.BrainSenseTimeDomain(i).TimeDomainData;
end
%get legend info
%some parts must be hard coded bc
for i = 1:leng
```

```
x = num2str(i);
    field = append("treatment", x);
    pw = num2str(data.(field).pw);
    ma = num2str(data.(field).ma);
    pt = "pt 1 left ";
    legendVal{i} = ((append(pt, pw, "us ", ma, "ma")));
end
%create plot of index vs voltage LFP data
for i = 1:leng
    figure
    field = append("treatment", num2str(i));
    plot(data.(field).timeDomain)
    title(legendVal{i})
    figname = append(legendVal{i}, ".fig");
    savefig(figname)
end
```


PT2 Left

```
clear all;
%pt 2 has all the data contained in a single JSON due to having a single
%this struct gets field 1-4 which contain data for the left
%and fields 5-8 contains data for the right
%if errors arise, double check the indexing because it has to be manual
%in most cases
%get the json
 cd('C:\Users\sydne\Documents\github\perceive\patientData')
%cd('C:\Users\Admin\Documents\Github\perceive\patientData\Patient2 0604')
jsonFiles = 'Report Json Session Report 20210604T120025.json';
js = jsondecode(fileread(jsonFiles));
%set back to the correct directory
 cd('C:\Users\sydne\Documents\github\perceive\postAnalysis')
%cd('C:\Users\Admin\Documents\Github\perceive\postAnalysis')
leng = numel(js.BrainSenseLfp);
data = struct;
for i=1:4
    x = num2str(i);
    field = append("treatment", x);
    data.(field).channel = js.BrainSenseLfp(i).Channel;
    data.(field).time = datetime(replace({js.BrainSenseLfp(i).FirstPacketDateTime}, {'T',
    data.(field).pw = js.BrainSenseLfp(i).TherapySnapshot.Left.PulseWidthInMicroSecond;
    data.(field).ma = js.BrainSenseLfp(i).TherapySnapshot.Left.LowerLimitInMilliAmps;
    data.(field).timeDomain = js.BrainSenseTimeDomain(i).TimeDomainData;
end
%get legend info
%some parts must be hard coded bc
for i = 1:4
    x = num2str(i);
    field = append("treatment", x);
    pw = num2str(data.(field).pw);
    ma = num2str(data.(field).ma);
    pt = "pt 2 left ";
    legendVal{i} = ((append(pt, pw, "us ", ma, "ma")));
end
%hard code based on clinic notes
legendVal{2} = append(pt, "off");
%create plot of index vs voltage LFP data
for i = 1:4
    figure
    field = append("treatment", num2str(i));
    plot(data.(field).timeDomain)
    title(legendVal{i})
    figname = append(legendVal{i}, ".fig");
    savefig(figname)
end
```


PT2 Right

```
clear all;
%get the json
cd('C:\Users\sydne\Documents\github\perceive\patientData')
jsonFiles = 'Report Json Session Report 20210604T120025.json';
js = jsondecode(fileread(jsonFiles));
%set back to the correct directory
cd('C:\Users\sydne\Documents\github\perceive\postAnalysis')
%snapshot
figure;
leng = numel(js.BrainSenseLfp);
data = struct;
for i=5:8
    x = num2str(i);
    field = append("treatment", x);
    data.(field).channel = js.BrainSenseLfp(i).Channel;
    data.(field).time = datetime(replace({js.BrainSenseLfp(i).FirstPacketDateTime}, {'T',
    data.(field).pw = js.BrainSenseLfp(i).TherapySnapshot.Right.PulseWidthInMicroSecond;
    data.(field).ma = js.BrainSenseLfp(i).TherapySnapshot.Right.LowerLimitInMilliAmps;
    data.(field).timeDomain = js.BrainSenseTimeDomain(i).TimeDomainData;
end
%get legend info
%some parts must be hard coded bc
for i=5:8
    x = num2str(i);
    field = append("treatment", x);
    pw = num2str(data.(field).pw);
    ma = num2str(data.(field).ma);
    pt = "pt 2 right ";
    legendVal{i} = ((append(pt, pw, "us ", ma, "ma")));
end
%need to investigate discrepency between json and pdf summary
legendVal{7} = append(pt, "off");
%create plot of index vs voltage LFP data
for i = 5:8
    figure
    field = append("treatment", num2str(i));
    plot(data.(field).timeDomain)
    title(legendVal{i})
    figname = append(legendVal{i}, ".fig");
    savefig(figname)
end
```


PT3 Right

```
clear all;
figure;
%get the json
cd('C:\Users\sydne\Documents\github\perceive\patientData\Patient3 0630')
jsonFiles = 'Report_Json_Session_Report_patient3_right_final.json';
js = jsondecode(fileread(jsonFiles));
%set back to the correct directory
cd('C:\Users\sydne\Documents\github\perceive\postAnalysis')
%% create a struct of the relevant data from brainsense
leng = numel(js.BrainSenseLfp);
data = struct;
for i=1:leng
    x = num2str(i);
    field = append("treatment", x);
    data.(field).channel = js.BrainSenseLfp(i).Channel;
    data.(field).time = datetime(replace({js.BrainSenseLfp(i).FirstPacketDateTime}, {'T',
    data.(field).pw = js.BrainSenseLfp(i).TherapySnapshot.Right.PulseWidthInMicroSecond;
    data.(field).ma = js.BrainSenseLfp(i).TherapySnapshot.Right.LowerLimitInMilliAmps;
    data.(field).timeDomain = js.BrainSenseTimeDomain(i).TimeDomainData;
end
%get legend info
%some parts must be hard coded bc
for i = 1:leng
    x = num2str(i);
    field = append("treatment", x);
    pw = num2str(data.(field).pw);
    ma = num2str(data.(field).ma);
    pt = "pt 3 right ";
    legendVal{i} = ((append(pt, pw, "us ", ma, "ma")));
end
legendVal{3} = append(pt, "off");
legendVal{5} = append(pt, "entry");
%create plot of index vs voltage LFP data
for i = 1:leng
    figure
    field = append("treatment", num2str(i));
    plot(data.(field).timeDomain)
    title(legendVal{i})
    figname = append(legendVal{i}, ".fig");
    savefig(figname)
end
```


PT3 Left

```
clear all;
figure;
%get the json
cd('C:\Users\sydne\Documents\github\perceive\patientData')
jsonFiles = 'Report_Json_Session_Report_Patient3_left_final.json';
js = jsondecode(fileread(jsonFiles));
%set back to the correct directory
cd('C:\Users\sydne\Documents\github\perceive\postAnalysis')
%% create a struct of the relevant data from brainsense
leng = numel(js.BrainSenseLfp);
data = struct;
for i=1:leng
    x = num2str(i);
    field = append("treatment", x);
    data.(field).channel = js.BrainSenseLfp(i).Channel;
    data.(field).time = datetime(replace({js.BrainSenseLfp(i).FirstPacketDateTime}, {'T',
    data.(field).pw = js.BrainSenseLfp(i).TherapySnapshot.Left.PulseWidthInMicroSecond;
    data.(field).ma = js.BrainSenseLfp(i).TherapySnapshot.Left.LowerLimitInMilliAmps;
    data.(field).timeDomain = js.BrainSenseTimeDomain(i).TimeDomainData;
end
%get legend info
%some parts must be hard coded bc
for i = 1:leng
    x = num2str(i);
```

```
field = append("treatment", x);
    pw = num2str(data.(field).pw);
    ma = num2str(data.(field).ma);
    pt = "pt 3 left ";
    legendVal{i} = ((append(pt, pw, "us ", ma, "ma")));
end
legendVal{4} = append(pt, "entry");
legendVal{5} = append(pt, "off");
%create plot of index vs voltage LFP data
for i = 1:leng
   figure
   field = append("treatment", num2str(i));
    plot(data.(field).timeDomain)
    title(legendVal{i})
   figname = append(legendVal{i}, ".fig");
    savefig(figname)
end
```


Code to Create Plot of all Data

Run the section of interest above using "run section" to generate relevant data

Run this section to plot all of the raw LFP data on the same plot

```
% figure
% for i = 1:leng
%    field = append("treatment", num2str(i));
%    [outDAT] = proc1(data.(field).timeDomain);
%    %collect time domain data from given field in Data strcut I made
%
%    hold on
%    plot(outDAT.freq,outDAT.pwr)
% end
% legend()
```

Code to Plot Raw Data

Run the section of interest above using "run section" to generate relevant data

Run this section using "run section" to create index vs voltage for given time domain data

```
% figure
% for i = 1:leng
%     field = append("treatment", num2str(i));
%     plot(data.(field).timeDomain)
%     figure
% end
```

```
function [outDAT] = proc1(dataIN)
%purpose of this fucntion is really to proces the data in a
%general and nonspecific way

hp = highpass(dataIN,0.8,250);
lp = lowpass(hp,59,250);
%dont recall how these numbers were created
[x,y] = pspectrum(lp,250,'FrequencyLimits',[1 59]);

xl = 10*log10(x);
%plots bode-ish of power from pspectrum
x2 = smoothdata(x1,'gaussian',150);
%smooth the bode

outDAT.freq = y;
outDAT.pwr = x2;
end
```