UCLA College | Social Sciences Economics

Paul Schumacher, MSc Quantitative Economics

Announcements

Attendance

Final August 4, 4-6 (format same as midterm)

HW2 August 2, 11pm

Midterms & HW1 is graded → waiting for the upload/ publication on Canvas

Student Fellow Panel 6:30-7:30

- Q&A with PLFs
- https://ucla.zoom.us/j/96582171841?pwd=OG1DUmpPUlMzSUF6eWlyNlcwOFBUUT09

HW2: due Wednesday August 2, 11pm

Data Collection:

1. Construct a portfolio with any 10 stocks of your choice (use daily adjusted closing prices)

Python Task

- 2. Compute the max Sharpe ratio and optimal weights.
- 3. You will also need to plot the respective efficient frontier.
- As part of your stock selection, you will need to look at the pairwise correlations to gain insights about your selection,
- 5. and look at their individual past performance.

Explanation:

6. As part of your presentation, you will need to !!!!!TELL THE STORY!!!!! of how you decided on the stocks that you included,

Class Recap: Pandas

"Better version" of excel:
 Larger Data Sets, More Applications

 Most popular library for data manipulation/ analysis

Day 4: Classes, File Operations, Modules & Methods

B. J. Oakumachar, M.Ca Quantitativa Economica

Pandas: Loading data into Pandas

pip install pandas

```
import pandas as pd

df = pd.read_csv('pokemon_data.csv')
print(df.head(5))

df_xlsx = pd.read_excel('pokemon_data.xlsx')
print(df_xlsx.head(3))

df = pd.read_csv('pokemon_data.txt', delimiter='\t')
print(df.head(5))
```

Data set:

											-
	#			Name	Type 1	Type 2	HP	Attack	Defense	Sp. Atk	
0	1			Bulbasaur	Grass	Poison	45	49	49	65	
1	2			Ivysaur	Grass	Poison	60	62	63	80	
2	3			Venusaur	Grass	Poison	80	82	83	100	
3	3	Venus	aurMega	Venusaur	Grass	Poison	80	100	123	122	
4	4		C	harmander	Fire	NaN	39	52	43	60	
	Sp.	Def	Speed	Generation	n Lege	endary					
0		65	45		1	False					
1		80	60		1	False					
2		100	80		1	False					
3		120	80		1	False					
4		50	65		1	False					

Pandas: Reading Data in Pandas

```
## Read Each Row
print(df.iloc[3:8])
                                        Type 2 HP
                                                   Attack Defense
                                                                     Sp. Atk
                           Name Type 1
  3
         VenusaurMega Venusaur Grass
                                       Poison
                                                       100
                                                                         122
                     Charmander
5
                     Charmeleon
                                 Fire
                                           NaN 58
6
                     Charizard
                                  Fire Flying
                                                                         109
      CharizardMega Charizard X
                                 Fire Dragon 78
                                                                111
                                                                         130
           Speed Generation Legendary
   Sp. Def
       120
                                   False
                                   False
5
                                   False
              100
                                   False
              100
                                   False
```

```
## Read each Column
print(df[['Name', 'Type 1', 'Attack']])
                               Type 1 Attack
                       Name
                  Bulbasaur
                               Grass
                                            49
                    Ivysaur
                               Grass
2
                   Venusaur
                                Grass
3
                                          100
     VenusaurMega Venusaur
                                Grass
                 Charmander
                                 Fire
                                           52
                                           . . .
795
                    Diancie
                                 Rock
                                          100
       DiancieMega Diancie
796
                                 Rock
                                          160
797
       HoopaHoopa Confined
                             Psvchic
                                          110
798
        HoopaHoopa Unbound
                             Psychic
                                          160
799
                  Volcanion
                                 Fire
                                          110
[800 rows x 3 columns]
```

Pandas: Reading Data in Pandas

#finding data that is not based on index/ instead --> based on type/charateristic

```
## Read a specific location (Rows, Column)
print(df.iloc[2,1])
```

Venusaur

Pandas: Sorting/Describing Data

	#list elements by name in ascending alphabetical order af.sort_values('Name', ascending = False)														
	#	Name	Type 1	Type 2	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary			
794	718	Zygarde50% Forme	Dragon	Ground	108	100	121	81	95	95	6	True			
695	634	Zweilous	Dark	Dragon	72	85	70	65	70	58	5	False			
46	41	Zubat	Poison	Flying	40	45	35	30	40	55	1	False			
631	570	Zorua	Dark	NaN	40	65	40	80	40	65	5	False			
632	571	Zoroark	Dark	NaN	60	105	60	120	60	105	5	False			

df.des	scribe()							
	#	НР	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation
count	800.000000	800.000000	800.000000	800.000000	800.000000	800.000000	800.000000	800.00000
mean	362.813750	69.258750	79.001250	73.842500	72.820000	71.902500	68.277500	3.32375
std	208.343798	25.534669	32.457366	31.183501	32.722294	27.828916	29.060474	1.66129
min	1.000000	1.000000	5.000000	5.000000	10.000000	20.000000	5.000000	1.00000
25%	184.750000	50.000000	55.000000	50.000000	49.750000	50.000000	45.000000	2.00000
50%	364.500000	65.000000	75.000000	70.000000	65.000000	70.000000	65.000000	3.00000
75%	539.250000	80.000000	100.000000	90.000000	95.000000	90.000000	90.000000	5.00000
max	721.000000	255.000000	190.000000	230.000000	194.000000	230.000000	180.000000	6.00000

df.s	sort_v	values(['Type 1', '	HP'], a	ascendi	ing=	[1,0])	#first	one as	scendin	g, sec	cond one o	descending
	#	Name	Type 1	Type 2	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
0	1	Bulbasaur	Grass	Poison	45	49	49	65	65	45	1	False
1	2	Ivysaur	Grass	Poison	60	62	63	80	80	60	1	False
2	3	Venusaur	Grass	Poison	80	82	83	100	100	80	1	False
3	3	VenusaurMega Venusaur	Grass	Poison	80	100	123	122	120	80	1	False
4	4	Charmander	Fire	NaN	39	52	43	60	50	65	1	False

Pandas: Making changes to the data

```
#Create the column "Total"
df['Total'] = df['HP'] + df['Attack'] + df['Defense'] + df['Sp. Atk'] + df['Sp. Def'] + df['Speed']
#Delete the column "Total"
df = df.drop(columns=['Total'])
#Create the column "Total" with iloc
df['Total'] = df.iloc[:, 4:10].sum(axis=1)# sum up specific values in columns
#Change the positon of colomn "Total"
cols = list(df.columns)
df = df[cols[0:4] + [cols[-1]] + cols[4:12]]
df.head(5)
                  Name Type 1 Type 2 Total HP Attack Defense Sp. Atk Sp. Def Speed Generation Legendary
0 1
                                                                             45
                                                                                              False
                Bulbasaur
                         Grass Poison
1 2
                              Poison
                                                               80
                                                                             60
                                                                                              False
2 3
                                                               100
                                                                             80
                                                                                       1
                         Grass Poison
                                                                     100
                                                                                              False
     VenusaurMega Venusaur
                                                                             80
                                                        123
                                                                     120
                                                                                              False
4 4
              Charmander
                                                                                              False
```


Pandas: Saving our Data (Exporting into Desired Format)

```
df.to_csv('modified.csv', index=False)
df.to_excel('modified.xlsx', index=False)
df.to_csv('modified.txt', index=False, sep='\t')
```


The new file will be saved in Jupyter

Pandas: Filtering Data

1		df =	Pokemon df.loc[_		ype 2'] == ':	Poison')]	
		#	Name	Type 1	Type 2	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
Ī													
	78	72	Tentacool	Water	Poison	40	40	35	50	100	70	1	False
	78 79		Tentacruel		Poison Poison		40 70	35 65	50 80	100 120	70 100	1	False False

Pandas: Conditional Changes

```
#if the pokemon has more then 500 in total, the value for "Generation" is changed
#to "Test 1" and the value for "Legendary is changed to "Hello"
df.loc[df['Total'] > 500, ['Generation', 'Legendary']] = ['Test 1', 'hello']
df
```

#df = pd.read csv('modified.csv')

	#	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
0	1	Bulbasaur	Grass	Poison	318	45	49	49	65	65	45	1	False
1	2	Ivysaur	Grass	Poison	405	60	62	63	80	80	60	1	False
2	3	Venusaur	Grass	Poison	525	80	82	83	100	100	80	Test 1	hello
3	3	VenusaurMega Venusaur	Grass	Poison	625	80	100	123	122	120	80	Test 1	hello
4	4	Charmander	Fire	NaN	309	39	52	43	60	50	65	1	False

Think about how many lines of code we save here!

No "if statement"!

Pandas: Aggregate Statistics (Groupby)

```
df = pd.read_csv('modified.csv')

#add the column "count" and give every element the value "1"

df['count'] = 1

#group by "type 1" and count the total number of elements

df.groupby(['Type 1']).count()['count']

#group by "type 1" and "type 2" and count the respective total number of elements

df.groupby(['Type 1', 'Type 2']).count()['count']
```

```
Type 1 Type 2

Bug Electric 2

Fighting 2

Fire 2

Flying 14

Ghost 1

Water Ice 3

Poison 3

Poison 5

Rock 4

Steel 1

Name: count, Length: 136, dtype: int64
```

```
Type 1
     Bua
                   69
     Dark
                  31
    Dragon
                  32
    Electric
                  44
   Fairy
                  17
   Fighting
                 27
   Fire
   Flying
   Ghost
                 32
   Grass
                70
  Ground
                32
  Ice
                24
 Normal
                98
 Poison
               28
 Psychic
               57
 Rock
 Steel
               27
Water
Name: count, dtype: int64
```

Class exercise: Pandas

- Data Set: "pokemon_data.csv"
- Recreate the EDA for yourself + Play around with the code
- Breakout rooms
- Time: 20 min

Any Questions?

