University of Mannheim School of Social Sciences Mathematics for Political Scientists, Fall 2022 Carlos Gueiros

Solutions Set Theory I

- 1. Let $A = \{1, 2, 3, 4, 5\}$, $B = \{2, 4, 6, 8\}$ and $C = \{6, 8\}$. Find following:
 - (a) $A \cup B = \{1, 2, 3, 4, 5, 6, 8\}$
 - (b) $A \cap B = \{2, 4\}$
 - (c) $A \cap B^C = \{1, 3, 5\}$
 - (d) $B A = \{6, 8\}$
 - (e) $C B = \emptyset$
 - (f) $A \cap C = \emptyset$
- 2. Let $A = \{a, b, c, d\}$, $B = \{1, 2, 3, 4\}$ and $C = \{a, b, 1, 2\}$. Show that:
 - (a) Distributivity: $(A \cap C) \cup (B \cap C) = (A \cup B) \cap C$

$${a,b} \cup {1,2} = {a,b,c,d,1,2,3,4} \cap {a,b,1,2}$$

 ${a,b,1,2} = {a,b,1,2}$

(b) Associativity: $(A \cap B) \cap C = A \cap (B \cap C)$

(c) De Morgan Laws: $C - (A \cup B) = (C - A) \cap (C - B)$

$$\{a, b, 1, 2\} - \{a, b, c, d, 1, 2, 3, 4\} = \{1, 2\} \cap \{a, b\}$$

$$\emptyset = \emptyset$$

- 3. Determine which of the following formulas are true. If any formula is false, find a counterexample to demonstrate this using a Venn diagram.
 - (a) $A \setminus B = B \setminus A$ false

(b) $A \subseteq B \iff A \cap B = A$ true

(c) $A \cup B = A \cup C \Longrightarrow B = C$ false

(d) $A \subseteq B \iff A \cup B = B$ true

(e) $A \cap B = A \cap C \Longrightarrow B = C$ false

(f) $A \setminus (B \setminus C) = (A \setminus B) \setminus C$ false

4. Explain in words why it is true that for any sets A, B, C:

(a) $(A \cup B) \cup C = A \cup (B \cup C)$ This is true since the union of two sets contains all elements

This is true since the union of two sets contains all elements included in either set.

(b) $(A \cap B) \cap C = A \cap (B \cap C)$

This is true since an intersection only includes those elements that are included in both sets.

(c) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Let us think of B and C as a joint set. If we intersect this set with A, we receive $A \cap (B \cup C)$. If we now partition the joint set into two distinct sets and intersect these with A, we have partitioned $A \cap (B \cup C)$ into its two constituent elements $(A \cap B) \cup (A \cap C)$.

(d) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Since A is included in either bracket on the right-hand side of the equation, it is also included in their intersection. Thus, "factor it out" and form a union of it with the intersection of B and C.

- 5. Find the interior point(s) and the boundary points(s) of the set $\{x: 1 \le x \le 5\}$.
 - (a) Interior points: $\{x : 1 < x < 5\}$
 - (b) Boundary points: $\{x : x = 1 \lor x = 5\}$
- 6. Why does every set in $\mathbb R$ that is nonempty, closed, and bounded have a greatest member?

Denoting such a set by S, sup S is a boundary point. Since S is closed, sup $S \in S$ and so S has a greatest member.

- 7. Which of the following sets in \mathbb{R} and \mathbb{R}^2 are open, closed, or neither?
 - (a) $A = \{x \in \mathbb{R}^1 : x = 2 \text{ or } 3 < x < 4\}$ Neither since it contains one but not all of its boundary points.
 - (b) In each of the following three cases, the boundary points are the points on the parabola $y = x^2$ with $-1 \le x \le 1$, and the points on the line y = 1 with $-1 \le x \le 1$.

$$B=\{(x,y)\in\mathbb{R}^2: x^2\leq y\leq 1\}$$

Closed since it contains all its boundary points.

(c) $C = \{(x, y) \in \mathbb{R}^2 : x^2 < y < 1\}$

Open since it contains none of its boundary points.

(d) $D = \{(x, y) \in \mathbb{R}^2 : x^2 \le y < 1\}$

Neither since it contains some but not all its boundary points.

- (e) Universal set: both open and closed: "clopen".
- 8. Sketch the following functions:

(a)
$$f(x) = 2$$

(b)
$$f(x) = 3x - 1$$

(c) $f(x) = x^2 + 2x + 1$

(e) f(x) = |2x - 2|

 $(f) f(x) = e^{2x}$

- 9. Which of the following functions is injective, bijective, or surjective?
 - (a) a(x) = 2x + 1

a(x) is both injective (every element of the domain is linked to at most one element in the co-domain) and surjective (since for every element in the codomain there is at least one element in the domain) and, thus, bijective.

(b) $b(x) = x^2$

b(x) is not injective since b(x) = b(-x). It is also not surjective since there are no negative values for b(x). However, if we would specify the range of $b(x) \in \mathbb{R}^+$, then it would be surjective.

- (c) $c(x) = \ln x$ for $(0, \infty) \mapsto \mathbb{R}$ c(x) is bijective.
- (d) $d(x) = e^x$ for $\mathbb{R} \to \mathbb{R}$

d(x) is injective, but not surjective as there are no negative values for d(x).