Machine Structures

Caches, Part I

Assignment Project Exam Help

https://powcoder.com
Add WeChat powcoder

Outline

- ° Memory Hierarchy
- ° Direct-Mangned Gache Exam Help
- ° Types of CachepMissesom
- °A (long) detailed exampleer

Memory Hierarchy (1/4)

° Processor

- executes programs
- runs on order of nanoseconds to picosecoigdsent Project Exam Help
- needs to accessocode and data for programs: where are these?

 Add WeChat powcoder

° Disk

- HUGE capacity (virtually limitless)
- VERY slow: runs on order of milliseconds
- so how do we account for this gap?

Memory Hierarchy (2/4)

° Memory (DRAM)

- smaller than disk (not limitless capacity)
- contains <u>subset</u> of data on disk: basically portions of programs that are purrently being run https://powcoder.com
- much faster than disk: memory accesses don't slow down processor quite as much
- Problem: memory is still too slow (hundreds of nanoseconds)
- Solution: add more layers (caches)

Memory Hierarchy (3/4)

Size of memory at each level As we move to deeper levels the latency goes up and price per bit goes down.

Memory Hierarchy (4/4)

- ° If level is closer to Processor, it must...
 - Be smaller
 - Be faster
 - Assignment Project Exam Help
 Contain a subset (most recently used data) of lower levels beneathertom
 - · Contain all the data in higher levels above it
- Lowest Level (usually disk) contains all available data
- ° Is there another level lower than disk?

Memory Hierarchy

° Purpose:

Faster access to large memory from processor

Memory Hierarchy Analogy: Library (1/2)

- You're writing a term paper (processor) at a table in Schulich
- °Schulich Library is equivalent to disk
 - · essentially limitless capacity
 - · very slowhto refrevedar book
- ° Table is memory

 Add WeChat powcoder
 - smaller capacity: means you must return book when table fills up
 - easier and faster to find a book there once you've already retrieved it

Memory Hierarchy Analogy: Library (2/2)

°Open books on table are cache

- smaller capacity: can have very few open books fit on table; again, when table fills up, you must close a book table.
- much, much faster to retrieve data https://powcoder.com
- °Illusion created whole library open on the tabletop
 - Keep as many recently used books open on table as possible since likely to use again
 - Also keep as many books on table as possible, since faster than going to library

Memory Hierarchy Basis

- ° Disk contains everything.
- °When Processor needs something, bring it into all lower levels of memory.

Assignment Project Exam Help

- °Cache contains copies of data in memory that are being used.
- Ontains copies of data on disk that are being used.
- Entire idea is based on Temporal Locality: if we use it now, we'll want to use it again soon

Cache Design

- ° How do we organize cache?
- Where does each memory address map to? (Remember that cache is subset of memory) so multiple memory addresses map to the same cache location.)
- Objective of the control of the c
- Our of the output of the ou

Direct-Mapped Cache (1/2)

- °In a direct-mapped cache, each memory address is associated with one possible block within the cache
 - Therefore, we only need to look in a single location in the cache for the data if it exists inthe pacheler.com
 - · Block is the unit of transfer between cache and memory

立刻移除水印

Direct-Mapped Cache (2/2)

Issues with Direct-Mapped

- 1 Since multiple memory addresses map to same cache index, how do we tell which one is in there?
- 2 What if Awee have Par block is izep > 1 byte?
- ° Solution: divide preferrory address into three fields WeChat powcoder

tttttttttttt	iiiiiiiii	0000
tag to check	index to	offset byte within
if have correct block	select block	within block

Direct-Mapped Cache Terminology

- ° All fields are read as unsigned integers.
- "Index: specifies the cache index (which "row" of the cache we should look in)
- Offset: once we've found correct block, specifies which/bytedwithin the block we want

 Add WeChat powcoder
- Tag: the remaining bits after offset and index are determined; these are used to distinguish between all the memory addresses that map to the same location

Direct-Mapped Cache Example (1/3)

- °Suppose we have a 16KB direct-mapped cache with 4 word blocks.
- Operation of the size of the tag, index and offset fields if we're using a 2-bit architecture.

https://powcoder.com

° Offset

Add WeChat powcoder

- need to specify correct byte within a block
- block contains 4 words = 16 bytes =
 2⁴ bytes
- need 4 bits to specify correct byte

Direct-Mapped Cache Example (2/3)

° Index

- need to specify correct row in cache
- cache contains 16 KB = 2^4 2^{10} = 2^{14} bytes block contains 24 bytes (4) Words)
- # rows/cathe: #pov# blocks/cache (since there's one block/row)

 Add WeCleytes/cache

 bytes/row

 = 2¹⁴ bytes/cache

 2⁴ bytes/row

 = 2¹⁰ rows/cache
- need 10 bits to specify this many rows

Direct-Mapped Cache Example (3/3)

° Tag

- used remaining bits as tag
- tag length = mem addr length Assignment Exertect Exam Help

https://poycoder.com Add Wellst powcoder

 so tag is leftmost <u>18 bits</u> of memory address

Accessing data in a direct mapped cache

°Example: 16KB, direct-mapped, 4 word blocks

Memory Address (hex) Value of Word

°Read 4 addresses

00000014 • 0x0000014, Assignment Project Police 00000016

0000010

0x000001Chttps://powcod

0x00000034, Add WeCha

^o Memory values on right:

only cache/memory level of hierarchy

00000030	e
00000034	f
0000038	q
00000038 0000003C	h
•••	•••

00008010	
00008014	
00008018	k
0000801C	

Accessing data in a direct mapped cache

- °4 Addresses:
 - 0x0000014, 0x0000001C, 0x00000034, 0x00008014
- °4 Addresses divided (for convenience) into Tag, Index, Byte Offset fields

https://powcoder.com

0000000000000000 000000001 1100

0000000000000000 000000011 0100

00000000000000010 0000000001 0100

Tag Index Offset

Accessing data in a direct mapped cache

- °So lets go through accessing some data in this cache
 - 16KB, direct-mapped, 4 word blocks
- ° Will see 3 types of events: Assignment Project Exam Help
- °cache miss: nothing in cache in appropriate block, so fetch from memory
- °cache hit: cache block is valid and contains proper address, so read desired word
- °cache miss, block replacement: wrong data is in cache at appropriate block, so discard it and fetch desired data from memory

立刻移除水印

16 KB Direct Mapped Cache, 16B blocks

 Valid bit: determines whether anything is stored in that row (when computer initially turned on, all entries are invalid)

<u>Va</u>			0x4-7	Examp	le Block
Index	Tag				0xc-i
0		Assignme	nt Project Ex	am Help	
1)		Molon	nent	
2		https:/	/powcoder.c	om	
1 2 3 4 5 6			万兴PDF专家		
4	O	Add	VeChat pow	coder	
5					
6	O				
7	O				
•••			•••		
1022					
1023					

Read 0x00000014 = 0...00 0..001 0100

° 00000000000000000 000000001 0100

Tag field Index field Offset

Valid

•						
Index	x Ta	ag	0x0-3	0x4-7	0x8-b	0xc-f
0	0					
1	0		Assignme	nt Project Ex	am Help	
2	0			Ifalon	ent 1	
3	0		https:/	/powcoder.c	om	
4	0			EWPDF 专家		
5	0		Add V	VeChat pow	coder	
6	0			-		
7						

•••

1000		
1 (1)グスの		4
1022 ₀ 1023 ₀		4
4 4 4 4		
		4
TUZJU		4
- - - - - - - - - -		4

So we read block 1 (000000001)

° 000000000000000000 000000001 0100

Tag field Index field Offset

Valid

Index_	Tag	0x0-3	0x4-7	0x8-b	0xc-f
0 0					
1 0		Assignme	nt Project Ex	am Help	
2 0		0		ant	
3 0		https:	/powcoder.c	om	
4 0			TWDDF专家		
5 0		Add V	VeChat power	coder	
6 0					
7 0					

•••

1022 ₀		
10230		

立刻移除水印

立刻移除水印

No valid data

° 0000000000000000 000000001 0100 Tag field Index field Offset Valid 0x0-3 0x4-7 0x8-b0xc-f**Tag** Index Assignment Project Exam Help **1**23456 https://powcoder.com Add WeChat powcoder

	_	_	_
1022 ₀			
10230			

So load that data into cache, setting tag, valid

0000000000000000 000000001 0100 Tag field Index field Offset Valid 0x4-7 0x8-b0xc-f0x0-3Tag Index 123456 Assignment Project Exam Help https://powcoder.com Add WeChat powcoder 10220 10230

立刻移除水印

Read from cache at offset, return word

° 000000000000000000 000000001 0100

Tag field Index field Offset

Valid

Tag 0x0-3 0x4-7 0x8-b 0xc-1

Index_	<u> Tag</u>	0x0-3	<u> </u>	Q-0X0	OXC-I
0 0					
1 1	0	Assonme	nt Pro p ect Ex	m H © n	d
2 0		0		ant	
3 0		https:/	//powcoder.c	om	
4 0			TIVDDF专家		
5 0		Add V	VeChat power	coder	
6 0			1		
7 🕠					

•••

10220		
10230		

立刻移除水印

Read 0x000001C = 0...00 0..001 1100

Valid

Index	Tag	g	0x0-3	0x4-7	0x8-b	0xc-f
0	0					
1	1 0		As g gnmer	nt Project Ex	am H © p	d
2	0		8		ant	
3	0		https:	/powcoder.c	om	
4	0			TWDDF专家		
5 [0		Add V	VeChat power	coder	
6	0			*		
7	0					

•••

10220		
10230		

Data valid, tag OK, so read offset return word d

Read 0x00000034 = 0...00 0..011 0100

0000000000000000 000000011 0100 Tag field Index field Offset **Valid** 0x4-7 0x8-b0xc-f 0x0-3Tag Index 123456 Assignment Project Exam Help d https://powcoder.com Add WeChat powcoder 10220

10230

立刻移除水E

So read block 3

No valid data

Load that cache block, return word

Read 0x00008014 = 0...10 0..001 0100

0000000000000010 000000001 0100 Index field Offset Tag field **Valid** 0x4-7 0x8-b0xc-f 0x0-3Tag Index 1234567 Assignment Project Exam Help d h ehttps://powcoder.dom Add WeChat powcoder 10220

10230

So read Cache Block 1, Data is Valid

 $^{\circ}$ 00000000000000010 000000001 0100 Offset $^{\circ}$ Ualid Tag field Index field Offset

Index	Tag	$\mathbf{c} = 0 \times 0 - 3$	0x4-7	0x8-b	0xc-f
0					
1 1	0	Assignme	nt Project Ex	am H © n	d
2		8		ant	
3 [1	0	ehttps:	/powcoder.c	om g	h
4)		TWDDF专家		
5)	Add V	WeChat power	coder	
6	O				
7					

•••

10220		
10230		

立刻移除水印

Cache Block 1 Tag does not match (0 != 2)

Miss, so replace block 1 with new data & tag

00000000000000010 0000000001 0100 Tag field Index field Offset Valid 0x4-7 0x8-b0xc-f 0x0-3Tag Index 1234567 Assignment Project Exam Help ehttps://powcoder.dom h Add WeChat powcoder 10220 10230

And return word

Valid Tag field Index field Offset

Index_	Tag	0x0-3	0x4-7	0x8-b	0xc-f
0 0					
1 1	2	Assignme	nt Project Ex	am Help	
2 0		8	Mark Control	ent '	
3 [1	0	ehttps:	//powcoder.c	om g	h
4 0			EWDDF 专家		
5 0		Add V	WeChat power	coder	
6 0			•		
7 0					

•••

1022	0		
1023	0		

立刻移除水印

Do an example yourself. What happens?

° Chose from: Cache:Hit, Miss, Miss w. replace Values returned: a ,b, c, d, e, ..., k, l

| Nation | N

••

Answers

°0x00000030 a hit

Index = 3, Tag matches, Offset = 0, value = e

Memory **Address Value of Word**

00000010 °0x000001ca miss 00000014 Assignment Projector 0000014

Index = 1, Tag mismatch, so

replace from memory

Offset = 0xc, value

°Therefore, returned values are:

- $\cdot 0x00000030 = e$
- $\cdot 0x000001c = d$

9000	9030	е
0000	0034	f
0000	0038	g
0000 0000 0000	003c	h
	•	

00008014	į
00008010 00008014 00008018 0000801c	k
0000801c	

"And in Conclusion..."

- °We would like to have the capacity of disk at the speed of the processor: unfortunately this is not feasible.
- So we create a memory hierarchy:
 Assignment Project Exam Help
 • each successively higher level contains
 - "most used so data v from mext lower level
 - · exploits temporal locality and spatial **locality**
 - do the common case fast, worry less about the exceptions (design principle of MIPS)
- Locality of reference is a Big Idea