Question Number	Answer		Mark
16(a)	$f_{ m max}$ read from graph	(1)	
	Use of $c = f\lambda$	(1)	
	Use of $\lambda_{max}T = 2.898 \times 10^{-3} \text{ m K}$	(1)	
	T = 3100 (K)	(1)	4
	Example of calculation		
	$f_{\text{max}} = 3.2 \times 10^{14} \text{ Hz}$		
	$\lambda_{\text{max}} = \frac{3.0 \times 10^8 \text{ m s}^{-1}}{3.2 \times 10^{14} \text{ Hz}} = 9.38 \times 10^{-7} \text{ m}$		
	$T = \frac{2.898 \times 10^{-3} \text{ m K}}{9.38 \times 10^{-7} \text{ m}} = 3090 \text{ K}$		
16(b)	Use of $A = 4\pi r^2$	(1)	
	Use of $L = \sigma A T^4$	(1)	
	$L = 4.52 \times 10^{24} \text{ W [ecf from (a)]}$ Or $T = 5300 \text{ K [ecf from (a)]}$	(1)	
	Conclusion made from comparison of calculated L with 10% of luminosity of the Sun $[3.83 \times 10^{25} \text{ W}]$ Or conclusion made from comparison of T for a star with 10% of luminosity of the Sun with T calculated in (a)	(1)	4
	Example of calculation		
	$L = 4\pi (2.62 \times 10^8 \text{ m})^2 \times 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} (3100 \text{ K})^4$		
	$L = 4.52 \times 10^{24} W$ $\frac{L}{L_{Sun}} \times 100\% = \frac{4.52 \times 10^{24} W}{3.83 \times 10^{26} W} \times 100\% = 1.18\%$		
	Luminosity of Gliese-876 is less than 10% of Sun's luminosity. so claim is correct.		
	Temperature of Gliese-876 is less than surface temperature of a star with 10% of the Sun's luminosity, so claim is correct.		
	Total for question 16		8