Test 1

The following questions are taken from the exam in the year 2009.

(i) Consider two events A and B of an outcome space. Determine the maximum and minimum possible values for $P(A \cap B)$, and the conditions under which each of these values is achieved, when P(A) = 0.5 and P(B) = 0.6.

Remark:

For any event E, we have $0 \le P(E) \le 1$. This implies that 0 is the trivial lower bound of P(E) and 1 is the trivial upper bound of P(E). But can we tighten these bounds? In other words, can we determine real numbers b_1 and b_2 such that $b_1 > 0$, $b_2 < 1$, and $b_1 \le P(E) \le b_2$? Can we also give some sufficient conditions under which the lower bound b_1 is achieved, i.e. $P(E) = b_1$? Similarly, can we give some sufficient conditions under which the upper bound b_2 is achieved, i.e. $P(E) = b_2$?

An alternative formulation of (i):

Consider two events A and B of an outcome space. Suppose that P(A) = 0.5 and P(B) = 0.6.

(a) Determine a real number $b_1 > 0$ such that $P(A \cap B) \geq b_1$ and give one sufficient condition under which $P(A \cap B) = b_1$.

Show your steps of how you got your answer.

(b) Determine a real number $b_2 < 1$ such that $P(A \cap B) \leq b_2$ and give one sufficient condition under which $P(A \cap B) = b_2$.

Show your steps of how you got your answer.

(ii) Show from first principles that for two events A and B,

 $P(\text{Exactly one of the events } A \text{ or } B \text{ occurs}) = P(A) + P(B) - 2P(A \cap B)$

The Axioms of Probability:

For a given experiment, let S denote the sample space. Let P be a set function that associates a real value P(E) with each event $E \subseteq S$. If P satisfies the following properties then it is called a probability set function and P(E) is called the probability of E:

Axiom 1 $P(E) \ge 0$ for every event E;

Axiom 2 P(S) = 1;

Axiom 3 $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$ where E_1, E_2, \ldots are pairwise mutually exclusive events.

An alternative formulation of (ii):

Let A and B be two events. Let E be the event of exactly one of the events A or B occurring, i.e. E is the event of either A occurring or B occurring, but not both. Use the Axioms of Probability to show that $P(E) = P(A) + P(B) - 2P(A \cap B)$.

- (iii) We consider 12 teams of two people (couples) at a particular time, including two particular teams designated as *team A* and *team B*. Suppose that at a later time six people (out of this group of 24) have been promoted, and it may be assumed that these promotions have occurred randomly among the 24 people.
 - (a) Find the probability that both people in *team A* have been promoted at the later time.
 - (b) Find also the probability that the four people in $teams\ A$ and B have been promoted at the later time.

An alternative formulation of (iii):

Let X be a set consisting of 24 people, say $X = \{x_1, x_2, x_3, \dots, x_{24}\}$. Let $A = \{x_1, x_2\}$ and $B = \{x_3, x_4\}$. Suppose that 6 people from X have been promoted, and these promotions have occurred randomly among all members of X.

(a) Let E_1 be the event that all members of A have been promoted, i.e. E_1 is the event that x_1 and x_2 have been promoted. Find $P(E_1)$.

Show your steps of how you got your answer.

(b) Let E_2 be the event that all members of A and B have been promoted, i.e. E_2 is the event that x_1, x_2, x_3 , and x_4 have been promoted. Find $P(E_2)$. Show your steps of how you got your answer.

A combinatorial question similar to (iii):

Suppose $X = \{x_1, x_2, x_3, \dots, x_{24}\}$ is a set of 24 distinct poker cards. For any integer n in the range $1 \le n \le 24$, an n-card hand is defined as the event of drawing n cards at random from a deck of these 24 cards, without replacement.

- (a) Let $A = \{x_1, x_2\}$. Let E_1 be the event of getting a 6-card hand that contains x_1 and x_2 . That is, E_1 is the event of drawing without replacement 4 cards at random from X, while avoiding the cards x_1 and x_2 . Find $P(E_1)$.
- (b) Let A = {x₁, x₂} and B = {x₃, x₄}. Let E₂ be the event of getting a 6-card hand that contains x₁, x₂, x₃, and x₄. That is, E₂ is the event of drawing without replacement 2 cards at random from X, while avoiding the cards x₁, x₂, x₃, and x₄. Find P(E₂).