Отборочная олимпиада. Решения

1. Для любого действительного $0 \leqslant x \leqslant 1$ и натурального n докажите неравенство:

$$(1+x)^n \le 1 + (2^n - 1)x.$$

Решение. Раскроем скобки в выражении $(1+x)^n$, не приводя подобные слагаемые. Мы получим 2^n слагаемых, одно из которых равно 1, а остальные имеют вид x^k , где $k \ge 1$. Но из ограничений на x следует, что $x^k \le x$, поэтому каждое из оставшихся 2^n-1 слагаемых не превосходит x, а общая сумма не превосходит $1+(2^n-1)x$.

2. Найдите наименьшее натуральное N, для которого верно следующее утверждение:

«Для каждого конечного набора точек на плоскости, из того, что любые N точек этого набора лежат не более чем на двух прямых, следует, что и все точки этого набора лежат не более чем на двух прямых.»

Omвет. N = 6.

Решение. Пример, в котором все точки нельзя накрыть двумя прямыми, но, при этом, любые не более, чем 5 точек можно накрыть двумя прямыми (проверяется непосредственно).

Пусть $N \geq 6$. Тогда накроем какие-то N точек набора двумя прямыми*. На одной из прямых окажется, по крайней мере, три точки, назовём их A,B,C. Если во всём наборе не более одной точки лежит не на прямой ABC, утверждение очевидно. Если же в наборе нашлись хотя бы две точки X,Y, не лежащие на прямой ABC, то для любой оставшейся точки Z набор из точек A,B,C,X,Y,Z должно быть можно накрыть двумя прямыми. Одна из прямых должна быть ABC (иначе, чтобы накрыть точки A,B,C, потребуется хотя бы три прямые), а другая XY (иначе, чтобы накрыть X,Y, потребуется хотя бы две прямые, кроме ABC). Следовательно, Z лежит или на ABC, или на XY, а, значит, все точки набора лежат или на ABC, или на XY.

* Во время олимпиады был дан комментарий, что, если в наборе меньше N точек, то утверждение о том, что любые N точек лежат не более, чем на двух прямых, следует считать неверным. Тогда предпосылка импликации ложна, то есть, утверждение целиком истинно. Если этот случай не разобран, баллы при проверке не снижались.

3. Натуральные числа x и y при делении на натуральное число n дают один и тот же остаток r. При этом, их произведение xy делится на n!. Докажите, что r=0.

Решение. Если n=1, утверждение очевидно. Иначе, пусть некоторое простое число p входит в разложение числа n на простые множители в степени k. Заметим, что в n! есть множители p,p^2,\ldots,p^k , т.е. p входит в разложение n!, по крайней мере, в степени $\frac{k(k+1)}{2}$, что не меньше, чем 2k-1 при натуральных k. Так как xy делится на n!, то xy делится на p^{2k-1} , откуда следует, что, по крайней мере, одно из чисел x и y делится на p^k . Но тогда и r делится на p^k . Если повторить рассуждение для всех простых делителей n, получим, что r делится на все простые делители n в тех же степенях, что и n. Но тогда либо $r \geq n$, что невозможно, либо r = 0.

4. Существует ли многочлен третьей степени, имеющий три попарно различных целых корня, у которого есть три равных по модулю коэффициента?

Ответ. Нет.

Решение. Предположим, противное. Сделаем наш многочлен приведенным, поделив, если нужно, на старший коэффициент. Тогда он примет вид $x^3 + ax^2 + bx + c$. Обозначим корни многочлена x_1, x_2, x_3 . По теореме Виета:

$$x_1 + x_2 + x_3 = -a,$$

 $x_1x_2 + x_2x_3 + x_1x_3 = b,$
 $x_1x_2x_3 = -c,$

Заметим, что |c| не 1, ведь иначе из третьего равенства следует, что все три корня равны ± 1 , то есть, не могут быть попарно различными. Возможны два случая:

• |a| = |b| = 1. Тогда

$$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_2x_3 + x_1x_3) = |a|^2 \pm 2|b| = 1 \pm 2.$$

Но отрицательному числу -1 сумма квадратов быть равной не может, а если сумма квадратов трех целых чисел равна 3, то все они равны ± 1 , то есть, найдутся два равных. Противоречие.

• |a| = |b| = |c|. Они не равны 0, ведь иначе многочлен был бы x^3 , а у него всего один корень. Тогда $\left|\frac{a}{c}\right| = \left|\frac{b}{c}\right| = 1$, то есть

$$\frac{1}{x_1^2} + \frac{1}{x_2^2} + \frac{1}{x_3^2} = \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right)^2 - 2\left(\frac{1}{x_1x_2} + \frac{1}{x_2x_3} + \frac{1}{x_1x_3}\right) =$$

$$= \left|\frac{b}{c}\right|^2 \pm 2\left|\frac{a}{c}\right| = 1 \pm 2.$$

Аналогично предыдущему случаю, отрицательной сумма квадратов быть не может, а если она равна 3, то все корни равны ± 1 — противоречие.

5. Вневписанные окружности треугольника ABC касаются его сторон BC, CA и AB в точках A_1, B_1 и C_1 соответственно. Точка A лежит на окружности, описанной около треугольника $A_1B_1C_1$. Докажите, что вторая точка пересечения этой окружности со стороной BC – основание высоты треугольника ABC, опущенной из вершины A.

Решение 1. Счетное. Обозначим вторую точку пересечения окружности со стороной BC за X, и назовём буквами равные отрезки: $BC_1=CB_1=a, AC_1=CA_1=b, AB_1=BA_1=c$ (каждый из отрезков равен разности полупериметра треугольника и прилежащей стороны). Также обозначим BX=x.

Запишем равенства степеней точек B и C относительно окружности:

$$B: cx = a(a+b), C: b(b+c-x) = a(a+c).$$

Заметим, что $AX \perp BC \Leftrightarrow (a+b)^2 - x^2 = (a+c)^2 - (b+c-x)^2$. После раскрытия скобок в этом равенстве и сокращения квадратов получим $2ab+b^2=2ac-b^2-2bc+2bx+2cx$, что преобразуется в b(b+c-x)-cx=ac-ab. Осталось подставить полученные выше выражения и убедиться в том, что равенство верное.

Решение 2. Геометрическое.

 \mathcal{L} Лемма. Перпендикуляры к сторонам BC, CA, AB, восстановленные в точках A_1 , B_1 , C_1 соответственно, пересекаются в одной точке.

Одно из возможных доказательств: отметим точки O, I – центры описанной и вписанной окружностей треугольника ABC, а также M_A и A_2 – середину BC и точку касания вписанной окружности со стороной BC, всё соответственно (см. рисунок).

Как известно, $BA_2=A_1C=p-AC$, где p – полупериметр треугольника ABC. Тогда и $A_2M_A=M_AA_1$. По теореме Фалеса, прямые A_2I,M_AO и перпендикуляр к BC в точке A_1 высекут на прямой OI равные отрезки, т.е. этот перпендикуляр пройдет через точку I', симметричную I относительно O. Повторив это рассуждение для остальных двух сторон, докажем, что все три перпендикуляра пройдут через I'.

Перейдём к решению задачи. Из леммы следует, что $\angle I'B_1A = \angle I'C_1A = 90^\circ$, следовательно, AI' — диаметр окружности из условия. Если I' не совпадает с A_1 , то $\angle I'A_1A = 90^\circ$, как угол, опирающийся на диаметр. Но $I'A_1$ также перпендикулярна BC, следовательно, точка A должна лежать на прямой BC — противоречие. Получается, что точка I' совпадает с A_1 , т.е. AA_1 — диаметр окружности из условия, а тогда на ней лежит и основание высоты из точки A на BC.

6. Рассмотрим граф, в котором 256 вершин — это всевозможные строки из нулей и единиц длины 8, а ребро проводится между двумя строками, если они отличаются ровно в одной позиции. В этом графе выбрали 128 ребер, не имеющих общих концов, и покрасили в красный. Остальные ребра покрасили в синий. Докажите, что в графе найдется цикл длины не более, чем 14, в котором красные и синие рёбра чередуются.

Решение. Выберем какую-нибудь вершину A в нашем графе, а остальные вершины будем называть A_{i_1,i_2,\dots,i_k} , если соответствующая ей последовательность отличается от A в позициях i_1,i_2,\dots,i_k , а в остальных совпадает. Если пройти из вершины A по красному ребру, мы попадём в вершину, которая отличается от A ровно в одной позиции, без ограничения общности, в A_1 . Из A_1 есть синее ребро в $A_{1,2}$. Из вершины $A_{1,2}$ красное ребро ведет или в вершину, отличающуюся от A ровно в одной позиции (A_2) , или в вершину, отличающуюся от A ровно в трёх позициях. В первом случае мы сразу можем вернуться в A и замкнуть цикл, а во втором, без ограничения общности, мы попадем в $A_{1,2,3}$. Перейдём по синему ребру в $A_{1,3}$. По красному ребру мы попадем или в A_3 , откуда можем вернуться в A, или, без ограничения общности, в $A_{1,3,4}$. Далее

действуем аналогично, переходя по синему ребру в вершину $A_{1,i}$, а из неё по красному ребру либо в вершину A_i , либо в $A_{1,i,j}$, при этом, если j > i, то, без ограничения общности, считаем, что j = i + 1 (см. рисунок).

Заметим, что, по крайней мере, после вершины $A_{1,8}$ (а, возможно, и раньше) при переходе по красному ребру, случится одно из двух событий:

- Мы придем в вершину, которая отличается от A ровно в одной позиции, тогда сразу замкнём цикл;
- Мы придем в вершину, которая не добавит новой позиции (т.е. в вершину $A_{1,k,l}$, где l < k). Но тогда мы из этой вершины можем пойти по синему ребру в вершину $A_{1,l}$, в которой уже были, и также получить цикл.

Если случилось второе событие, то длина цикла уже не более 14 (поскольку A и A_1 в нём не участвуют). А если случилось первое событие, и длина цикла оказалась больше 14, то она равна 16, и это означает, что последнее красное ребро привело нас из вершины $A_{1,8}$ в вершину A_8 . Но тогда есть цикл короче: $A-A_1-A_{1,8}-A_8$.