Third generation solar cells

Erik Stensrud Marstein

A «normal» solar cell

A «normal» solar cell

The trouble with «normal» solar cells

Thermalization

- Thermalization within solar cell materials normally occurs on an extremely rapid time scale
- Thermalization in Si:
 - 1: Initial concentration of charge carriers
 - 2: Initial exitation of charge carriers after exposure to laser pulse
 - 3-4: Carrier-carrier collisions lead to an energetic redistribution around carrier temperature
 - 5-6: Carrier-phonon interactions cool down carriers
 - 7-8: Recombination across band gap

M.A. Green, UNSW

Consequences

Consequences

- Large current densities can be obtained by selecting a material with a low band gap energy
- However, due to thermalization, the band gap puts an efficient upper limit to the extractable voltage.
 - If we should be even so lucky!
 - Si bandgap: 1.12 eV
 - Good open circuit voltage: 700 mV

Theoretical efficiency limits

The Shockley-Queisser limit

- Si p-n homojunction solar cell: ~29 % efficiency
- Assumptions
 - All photons incident on cell captured
 - Complete absorption of all photons with $\mathrm{E}>\mathrm{E_g}$
 - Complete thermalization occurs
 - Lossless transport and collection of charge carriers
 - Ideal materials: auger and/or radiative recombination dominating recombination mechanism

The Shockley-Queisser limit

Upper limit for homo-junction efficiency: 33%

Where do the remaining 67% go?

Thermalization $(E > E_g)$	47%
Transmission ($E < E_g$)	18.5%
Recombination	1.5%
Remaining efficiency	33%
Total	100%

M.C. Beard et al., Nano Letters 7 (2007) p 2506

Shockley-Queisser

Fundamental loss mechanisms

- 1. Insufficient photon energies
 - $E < E_g$
- 2. Thermalization of energetic carriers
 - If $E > E_g$, $E \to E_g$
- 3. Energy loss across p-n junction
- 4. Energy loss at contacts
- 5. Recombination

M.A. Green, UNSW

Quantum efficiency

«3rd generation photovoltaics»

- Useful definition: "Solar cell concepts that allow for a better utilization of the solar energy than homojunction solar cells"
 - Overcoming the Shockley-Queisser limit
- Three main approaches:
 - 1. "The solar cell is fine, change the Sunlight instead!"
 - "One cell for every wavelength!"
 - 3. "Thermalization is your friend!"

1: Photon energy conversion

2: Multiple band gap solar cells

3: Avoiding thermalization

Theoretical efficiency limits

- Many novel cell concepts allowing for a vastly improved utilization of the photonic energies in the solar spectrum have been proposed
- Theoretical upper efficiencies for these cell concepts have been calculated

Cell concept	Efficiency (under direct/global irradiation)	Possible realization
Landsberg	93.3%/73.3%	Circulators
Multicolour	86.8%/68.2%	Hot carrier, infinite cell tandem, photon energy conversion, thermo-PV
Black-body	85.4%/53.6%	
3-level	63.8%/49.3%	3 cell tandem, impurity band
2-level	55.7%/42.9%	2 cell tandem
Homojunction	40.8%/31.0%	Homojunction
Real cell records	~46%	4 cell tandem

M.A. Green: "Third generation photovoltaics", Springer 2003

Photon energy conversion

 Photon energy down-conversion: one energetic photon creates more than one sufficiently energetic photon.

 Photon energy up-conversion: two or more low energetic photons create one sufficiently energetic photon.

Cool property of nanocrystals: Multiple exciton generation (MEG)

Photon energy down-conversion on Si

Down-converter layer

- The "pixie dust" approach: simply add photon energy downconversion materials in front of the solar cell
 - Anti-reflection coating
 - Transparent conductive layer
 - Laminates
 - Cover glass
 - Separate layer (plan B)
- Theoretical efficiency on Si: 38.6%

B.S. Richards et al., Sol. En. Mat. and Sol. Cells 90 (2006) p. 1189

Photon energy conversion materials

- Commonly suggested materials
 - Nanocrystals
 - Rare earth-based phosphors
- Several reports of modest efficiency increases in the scientific literature using both material types
 - ~ 1% absolute
- Positive features
 - Simple implementation possible (?)
 - Can be a linear process (I_{em} ~ I_{abs})
- Drawbacks
 - Possibly disturbing
 - Emission in all directions

TEM image and SAD pattern of nanocrystalline Ge in SiO₂

Marstein IFE/UiO

Photon energy up conversion on Si

- Photon energy up-conversion on the rear of the solar cell
 - Surface passivating dielectric
 - Rear side dielectric mirror
 - Separate layer (plan B)
- Theoretical efficiency on Si: 40.2%

Up- and down conversion (UC/DC)

Alternative: Thermophotovoltaics

Principle of operation:

- 1. Sunlight heats a layer above cell
- 2. This layer radiates at a temperature more suited to the band gap of the solar cell beyond

Features

- Fewer high energy photons are generated
- Low energy photons are reflected from the solar cell and "recycled"

MIT (2011)

Multiple band gap solar cells

- Multiple band gap solar cells can be realized in a number of ways
 - Tandem solar cells
 - Physical splitting of the solar spectrum onto different solar cells
 - Works in practice!
 - World's most effective solar cell
 - Intermediate band gap solar cells

Multiple band gap solar cells in practice

Multiple band gap solar cells in practice

Tandem solar cells

Considerations

- Matching of current throughput is essential, since all cells in the tandem stack are series connected
- Very vulnerable to variations in spectral density, which will distort the current matching
 - Less of a problem in space
- Often difficult to grow the desired materials on top of each others due to mismatched lattice constants.
- Many realizations:
 - GaAs technology, a-Si:H technology, possible dye sensitized solar cells

Tandem

FhG ISE (2014)

Silicon-perovskite tandem

MIT/Stanford. (2015)

Intermediate band gap solar cells

- Several electronic band gaps can be realized in one material, at least in theory
- Possible realizations
 - Impurity bands
 - Superlattice of quantum structures
- Considerations
 - Can such materials be synthesized on an industrial scale?
 - Can strong recombination through intermediate band(s) be avoided?

How to avoid (or gain from) thermalization?

- Collect energetic ("hot") charge carriers before significant thermalization occurs
 - Hot carrier solar cells
- Use materials wherein hot carriers collide and subsequently ionize atoms, increasing the number of charge carriers
 - Impact ionization solar cells

Hot carrier solar cells

- Use selective contacts to collect only carriers well above the energy band edge
 - Higher voltages obtainable
 - Possible realization of contacts: quantum structures with narrow allowable energies
- Additional benefit: this allows for the use of materials with a smaller band gap, resulting in reduced losses from low energy photons
- Considerations
 - Can this be done in industrial cells?

Impact ionization

- Impact ionization of little use in Si solar cells
 - Treshold energy: $3.5 E_{q}$

 $(3.9 \text{ eV} \sim 315 \text{ nm})$

Quantum yield (QY): 1.4 at 4.5 E_g (5.0 eV ~ 250 nm)

Conclusion

- There is much to gain from substantial increases in solar cell efficiency
- Solar cell efficiencies well in excess of the Shockley-Queisser limit are obtainable, at least in theory, using various 3rd generation solar cell concepts
- Currently, the only really functioning 3rd generation solar cells are tandem solar cells
- However, the physics of these concepts is beautiful...

