Introducción a la Computación (Matemática)

Primer Cuatrimestre de 2018

Algoritmos de Búsqueda

Tiempo de ejecución

El tiempo de ejecución de un programa se mide en función del tamaño de la entrada.

• Ejemplo: longitud de la lista de entrada.

Notación: T(n): tiempo de ejecución de un programa con una entrada de tamaño n.

- Unidad: cantidad de instrucciones.
- Ejemplo: $T(n) = c \cdot n^2$, donde c es una constante.

Consideramos el peor caso: T(n) es una cota superior del tiempo de ejecución para entradas arbitrarias de tamaño n.

Cálculo del tiempo de ejecución

Instrucciones minimales: acceso a una variable (asignación o consulta) y operaciones simples de tipos básicos. $T_{\bf S}(n)=1$

Secuencialización:
$$T_{S_1;S_2}(n) = T_{S_1}(n) + T_{S_2}(n)$$

Condicional:

$$T_{\text{if }(B) S_1 \text{ else } S_2}(n) = T_B(n) + \max(T_{S_1}(n), T_{S_2}(n))$$

Ciclo:
$$T_{\text{while }(B) S}(n) = T_B(n) + \sum_{i \in \text{Iteraciones}} (T_{S_i}(n) + T_B(n))$$

Orden del tiempo de ejecución

En general, decimos que $T(n) \in O(f(n))$ si existen constantes enteras positivas c y n_0 tales que para $n \ge n_0$, $T(n) < c \cdot f(n)$.

Ejemplo: $T(n) = 3n^3 + 2n^2$.

 $T(n) \in O(n^3)$, dado que si tomamos $n_0=1$ y c=5, vale que para $n\geq 1$, $T(n)\leq 5\cdot n^3$.

Ejemplo 1.1: $T(|A|) = 5 + \frac{25}{2} |A| + \frac{11}{2} |A|^2 \in O(|A|^2)$ (orden cuadrático)

Ejemplo 1.2: $T(|A|) = 6 + 18|A| \in O(|A|)$ (orden lineal)

Nota: Si T(n)=cte. entonces $T(n)\in O(1)$ (orden constante)

Propiedades de O:

• Regla de la suma:

Si
$$f_1 \in O(g)$$
 y $f_2 \in O(h) \Rightarrow f_1 + f_2 \in O(\max(g, h))$.

Propiedades de O:

Regla de la suma:

Si
$$f_1 \in O(g)$$
 y $f_2 \in O(h) \Rightarrow f_1 + f_2 \in O(\max(g, h))$.

- Ej: $f_1 \in O(n^2)$ y $f_2 \in O(n)$, luego $f_1 + f_2 \in O(n^2)$.
- Ej: $f_1 \in O(1)$ y $f_2 \in O(1)$, luego $f_1 + f_2 \in O(1)$.

ō

Propiedades de *O*:

Regla de la suma:

Si
$$f_1 \in O(g)$$
 y $f_2 \in O(h) \Rightarrow f_1 + f_2 \in O(\max(g, h))$.

- Ej: $f_1 \in O(n^2)$ y $f_2 \in O(n)$, luego $f_1 + f_2 \in O(n^2)$.
- Ej: $f_1 \in O(1)$ y $f_2 \in O(1)$, luego $f_1 + f_2 \in O(1)$.
- Regla del producto:

Si
$$f_1 \in O(g)$$
 y $f_2 \in O(h) \Rightarrow f_1 \cdot f_2 \in O(g \cdot h)$.

ō

Propiedades de *O*:

• Regla de la suma:

Si
$$f_1 \in O(g)$$
 y $f_2 \in O(h) \Rightarrow f_1 + f_2 \in O(\max(g, h))$.

- Ej: $f_1 \in O(n^2)$ y $f_2 \in O(n)$, luego $f_1 + f_2 \in O(n^2)$.
- Ej: $f_1 \in O(1)$ y $f_2 \in O(1)$, luego $f_1 + f_2 \in O(1)$.
- Regla del producto:

Si
$$f_1 \in O(g)$$
 y $f_2 \in O(h) \Rightarrow f_1 \cdot f_2 \in O(g \cdot h)$.

- Ej: $f_1 \in O(n^2)$ y $f_2 \in O(n)$, luego $f_1 \cdot f_2 \in O(n^3)$.
- Ej: $f_1 \in O(n)$ y $f_2 \in O(1)$, luego $f_1 \cdot f_2 \in O(n)$.

Encabezado: $\mathit{Buscar}: x \in \mathbb{Z} \times A \in \mathbb{Z}[\] \to \mathit{est\'a} \in \mathbb{B} \times \mathit{pos} \in \mathbb{Z}$

Precondición: $\{A = A_0 \land x = x_0\}$

Poscondición: $\{(est\acute{a}=true \land 0 \leq pos < |A_0| \land A_0[pos]=x_0) \lor$

 $(est\acute{a} = false \land (\forall i)(0 \le i < |A_0| \Rightarrow A_0[i] \ne x_0))\}$

```
Buscar: x \in \mathbb{Z} \times A \in \mathbb{Z}[] \rightarrow est\acute{a} \in \mathbb{B} \times pos \in \mathbb{Z}
Encabezado:
Precondición: \{A = A_0 \land x = x_0\}
Poscondición: \{(est\acute{a} = true \land 0 < pos < |A_0| \land A_0[pos] = x_0) \lor
                         (est\acute{a} = false \land (\forall i)(0 \le i < |A_0| \Rightarrow A_0[i] \ne x_0))
est\acute{a} \leftarrow false
pos \leftarrow -1
i \leftarrow 0
while (j < |A|) {
         if (A[j] = x) {
            est\acute{a} \leftarrow \mathsf{true}
            pos \leftarrow i
         i \leftarrow i + 1
```

```
Buscar: x \in \mathbb{Z} \times A \in \mathbb{Z}[] \rightarrow est\acute{a} \in \mathbb{B} \times pos \in \mathbb{Z}
Encabezado:
Precondición: \{A = A_0 \land x = x_0\}
Poscondición: \{(est\acute{a} = true \land 0 < pos < |A_0| \land A_0[pos] = x_0) \lor
                        (est\acute{a} = false \land (\forall i)(0 \le i < |A_0| \Rightarrow A_0[i] \ne x_0))
est\acute{a} \leftarrow false
                                             ¿Cuál es el orden de complejidad?
pos \leftarrow -1
i \leftarrow 0
while (j < |A|) {
         if (A[j] = x) {
            est\acute{a} \leftarrow \mathsf{true}
            pos \leftarrow i
         i \leftarrow i + 1
```

```
Encabezado: Buscar: x \in \mathbb{Z} \times A \in \mathbb{Z}[] \to est \acute{a} \in \mathbb{B} \times pos \in \mathbb{Z}
Precondición: \{A = A_0 \land x = x_0\}
Poscondición: \{(est\acute{a} = true \land 0 < pos < |A_0| \land A_0[pos] = x_0) \lor
                      (est\acute{a} = false \land (\forall i)(0 \le i \le |A_0| \Rightarrow A_0[i] \ne x_0))
est\acute{a} \leftarrow false \quad O(1)
                                         ¿Cuál es el orden de complejidad?
pos \leftarrow -1 O(1)
i \leftarrow 0 O(1)
while (j < |A|) \{ O(1) \}
        if (A[j] = x) \{ O(1) \}
           est\acute{a} \leftarrow true \quad O(1)
           pos \leftarrow i \quad O(1)
        i \leftarrow j + 1 O(1)
     while: O(|A|) iteraciones
```

```
Encabezado: Buscar: x \in \mathbb{Z} \times A \in \mathbb{Z}[] \to est \acute{a} \in \mathbb{B} \times pos \in \mathbb{Z}
Precondición: \{A = A_0 \land x = x_0\}
Poscondición: \{(est\acute{a} = true \land 0 < pos < |A_0| \land A_0[pos] = x_0) \lor
                      (est\acute{a} = false \land (\forall i)(0 \le i \le |A_0| \Rightarrow A_0[i] \ne x_0))
est\acute{a} \leftarrow false \quad O(1)
                                        ¿Cuál es el orden de complejidad?
pos \leftarrow -1 O(1)
i \leftarrow 0 O(1)
                                      T(|A|) \in O(|A|) Búsqueda lineal
while (j < |A|) \{ O(1) \}
        if (A[j] = x) \{ O(1) \}
           est\acute{a} \leftarrow true \quad O(1)
           pos \leftarrow i \quad O(1)
        i \leftarrow j + 1 O(1)
     while: O(|A|) iteraciones
```

```
Encabezado: Buscar: x \in \mathbb{Z} \times A \in \mathbb{Z}[] \to est \acute{a} \in \mathbb{B} \times pos \in \mathbb{Z}
Precondición: \{A = A_0 \land x = x_0\}
Poscondición: \{(est\acute{a} = true \land 0 < pos < |A_0| \land A_0[pos] = x_0) \lor
                     (est\acute{a} = false \land (\forall i)(0 \le i \le |A_0| \Rightarrow A_0[i] \ne x_0))
est\acute{a} \leftarrow false \quad O(1)
                                       ¿Cuál es el orden de complejidad?
pos \leftarrow -1 O(1)
i \leftarrow 0 O(1)
                                      T(|A|) \in O(|A|) Búsqueda lineal
while (j < |A|) \{ O(1) \}
                                               ; Y si agregamos "\land \neg est\'a"
        if (A[j] = x) \{ O(1) \}
                                                        a la guarda del while?
           est\acute{a} \leftarrow true O(1)
           pos \leftarrow i \quad O(1)
        i \leftarrow j + 1 O(1)
     while: O(|A|) iteraciones
```

```
Encabezado: Buscar: x \in \mathbb{Z} \times A \in \mathbb{Z}[] \to est \acute{a} \in \mathbb{B} \times pos \in \mathbb{Z}
Precondición: \{A = A_0 \land x = x_0\}
Poscondición: \{(est\acute{a} = true \land 0 < pos < |A_0| \land A_0[pos] = x_0) \lor
                     (est\acute{a} = false \land (\forall i)(0 \le i \le |A_0| \Rightarrow A_0[i] \ne x_0))
est\acute{a} \leftarrow false \quad O(1)
                                       ¿Cuál es el orden de complejidad?
pos \leftarrow -1 O(1)
i \leftarrow 0 O(1)
                                     T(|A|) \in O(|A|) Búsqueda lineal
while (i < |A|) \{ O(1) \}
                                               ; Y si agregamos "\land \neg est\acute{a}"
        if (A[j] = x) \{ O(1) \}
                                                        a la guarda del while?
           est\acute{a} \leftarrow true \quad O(1)
           pos \leftarrow i \quad O(1)
                                                  En este algoritmo, cortar antes
                                              la ejecución puede ahorrar tiempo,
                                                                 pero no cambia el
        i \leftarrow i + 1 O(1)
                                                         orden en el peor caso.
     while: O(|A|) iteraciones
```

```
Encabezado: Buscar: x \in \mathbb{Z} \times A \in \mathbb{Z}[] \to est \acute{a} \in \mathbb{B} \times pos \in \mathbb{Z}
Precondición: \{A = A_0 \land x = x_0\}
Poscondición: \{(est\acute{a} = true \land 0 < pos < |A_0| \land A_0[pos] = x_0) \lor
                     (est\acute{a} = false \land (\forall i)(0 \le i \le |A_0| \Rightarrow A_0[i] \ne x_0))
est\acute{a} \leftarrow false \quad O(1)
                                       ¿Cuál es el orden de complejidad?
pos \leftarrow -1 O(1)
i \leftarrow 0 O(1)
                                     T(|A|) \in O(|A|) Búsqueda lineal
while (i < |A|) \{ O(1) \}
                                               ; Y si agregamos "\land \neg est\acute{a}"
        if (A[j] = x) \{ O(1) \}
                                                        a la guarda del while?
           est\acute{a} \leftarrow true \quad O(1)
          pos \leftarrow i \quad O(1)
                                                  En este algoritmo, cortar antes
                                              la ejecución puede ahorrar tiempo,
                                                                 pero no cambia el
        i \leftarrow j + 1 O(1)
                                                         orden en el peor caso.
     while: O(|A|) iteraciones
```

¿Cuán eficientes son estos algoritmos si A está ordenado?

4	7	23	41	44	59	97	134	165	187	210	212	249	280	314
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Buscamos el número 97...

Buscamos el número 97...

4	7	23	41	44	59	97	134	165	187	210	212	249	280	314
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Buscamos el número 97...

Buscamos el número 97...

Buscamos el número 97...

Buscamos el número 97...

Búsqueda binaria

¿Cuál es el comportamiento detrás de este algoritmo?

Si la lista está ordenada, entonces en cada paso puedo partir la lista en:

- a) la mitad que puede contener el elemento; y
- b) la mitad que no puede contenerlo.

Indefectiblemente, se llega a un punto en que la lista ya no puede ser dividida (tiene un solo elemento) y, o bien el elemento es el buscado o no.

Encabezado: $Buscar: x \in \mathbb{Z} \times A \in \mathbb{Z}[] \rightarrow est\acute{a} \in \mathbb{B} \times pos \in \mathbb{Z}$

Precondición: $\{A = A_0 \land x = x_0 \land A_0 \}$

$$(\forall i)(0 \le i < |A| - 1 \Rightarrow A[i] \le A[i+1])\}$$

Poscondición: $\{(est\acute{a} = true \land 0 \leq pos < |A_0| \land A_0[pos] = x_0) \lor (est\acute{a} = false \land (\forall i)(0 \leq i < |A_0| \Rightarrow A_0[i] \neq x_0))\}$

```
Encabezado: Buscar: x \in \mathbb{Z} \times A \in \mathbb{Z}[] \to est \acute{a} \in \mathbb{B} \times pos \in \mathbb{Z}
Precondición: \{A = A_0 \land x = x_0 \land A_0 \}
                        (\forall i)(0 \le i \le |A| - 1 \Rightarrow A[i] \le A[i+1])
Poscondición: \{(est\acute{a} = true \land 0 \le pos < |A_0| \land A_0[pos] = x_0) \lor \}
                       (est\acute{a} = false \land (\forall i)(0 \le i \le |A_0| \Rightarrow A_0[i] \ne x_0))
(est\acute{a}, pos) \leftarrow (false, -1)
(izq, der) \leftarrow (0, |A| - 1)
while (izq < der) {
        med \leftarrow (izq + der) \text{ div } 2
        if (A[med] < x) {
           izq \leftarrow med + 1
        } else {
```

 $der \leftarrow med$

```
Encabezado: Buscar: x \in \mathbb{Z} \times A \in \mathbb{Z}[] \to est \acute{a} \in \mathbb{B} \times pos \in \mathbb{Z}
Precondición: \{A = A_0 \land x = x_0 \land A_0 \}
                       (\forall i)(0 \le i \le |A| - 1 \Rightarrow A[i] \le A[i+1])
Poscondición: \{(est\acute{a} = true \land 0 \le pos < |A_0| \land A_0[pos] = x_0) \lor \}
                      (est\acute{a} = false \land (\forall i)(0 \le i \le |A_0| \Rightarrow A_0[i] \ne x_0))
(est\acute{a}, pos) \leftarrow (false, -1)
(izq, der) \leftarrow (0, |A| - 1)
while (izq < der) {
        med \leftarrow (izq + der) \text{ div } 2
        if (A[med] < x) {
           izq \leftarrow med + 1
        } else {
           der \leftarrow med
                                          ¿Cuál es el orden de complejidad?
if (x = A[izq]) {
   (est\acute{a}, pos) \leftarrow (true, iza)
```

```
Encabezado: Buscar: x \in \mathbb{Z} \times A \in \mathbb{Z}[] \to est \acute{a} \in \mathbb{B} \times pos \in \mathbb{Z}
Precondición: \{A = A_0 \land x = x_0 \land A_0 \}
                       (\forall i)(0 \le i \le |A| - 1 \Rightarrow A[i] \le A[i+1])
Poscondición: \{(est\acute{a} = true \land 0 \le pos < |A_0| \land A_0[pos] = x_0) \lor \}
                      (est\acute{a} = false \land (\forall i)(0 \le i \le |A_0| \Rightarrow A_0[i] \ne x_0))
(est\acute{a}, pos) \leftarrow (false, -1)
(izq, der) \leftarrow (0, |A| - 1)
while (izq < der) {
        med \leftarrow (izq + der) \text{ div } 2
        if (A[med] < x) {
           izq \leftarrow med + 1
        } else {
           der \leftarrow med
                                         ¿Cuál es el orden de complejidad?
                                                            T(|A|) \in O(\log |A|)
                                                                 orden logarítmico
if (x = A[izq]) {
   (est\acute{a}, pos) \leftarrow (true, iza)
```

Búsqueda binaria

Para ver que el orden es logarítmico, basta observar que la función variante fv = der - izq decrece aproximadamente a la mitad en cada iteración:

Sea fv = der - izq al comienzo de una iteración. Al final de la misma, pueden ocurrir dos cosas:

•
$$fv' = der - \lfloor \frac{izq + der}{2} \rfloor - 1 \approx \lfloor \frac{fv}{2} \rfloor$$

•
$$fv' = \lfloor \frac{izq + der}{2} \rfloor - izq \approx \lfloor \frac{fv}{2} \rfloor$$

En ambos casos, fv termina valiendo aproximadamente la mitad que al principio de la iteración.

Como el ciclo termina cuando $fv \leq 0$, el cuerpo del ciclo se ejecuta $O(\log_2 |A|)$ veces. \square

1(

Búsqueda binaria

Para ver que el orden es logarítmico, basta observar que la función variante fv = der - izq decrece aproximadamente a la mitad en cada iteración:

Sea fv = der - izq al comienzo de una iteración. Al final de la misma, pueden ocurrir dos cosas:

•
$$fv' = der - \lfloor \frac{izq + der}{2} \rfloor - 1 \approx \lfloor \frac{fv}{2} \rfloor$$

•
$$fv' = \lfloor \frac{izq + der}{2} \rfloor - izq \approx \lfloor \frac{fv}{2} \rfloor$$

En ambos casos, fv termina valiendo aproximadamente la mitad que al principio de la iteración.

Como el ciclo termina cuando $fv \leq 0$, el cuerpo del ciclo se ejecuta $O(\log_2 |A|)$ veces. \square

Obs.: La base del \log es irrelevante para el orden de T.

¿Cuán importante es la diferencia entre $O(\log n)$ y O(n)?

¿Cuán importante es la diferencia entre $O(\log n)$ y O(n)?

Depende de nuestro contexto...

 ¿Cuál es el tamaño del listado en el cual haremos la búsqueda? (FCEyN vs. ANSES)

¿Cuán importante es la diferencia entre $O(\log n)$ y O(n)?

Depende de nuestro contexto...

- ¿Cuál es el tamaño del listado en el cual haremos la búsqueda? (FCEyN vs. ANSES)
- ¿Cuánto cuesta cada consulta individual? (Lectura en memoria vs. consulta por Internet)

¿Cuán importante es la diferencia entre $O(\log n)$ y O(n)?

Depende de nuestro contexto...

- ¿Cuál es el tamaño del listado en el cual haremos la búsqueda? (FCEyN vs. ANSES)
- ¿Cuánto cuesta cada consulta individual? (Lectura en memoria vs. consulta por Internet)
- ¿Cuántas veces vamos a necesitar hacer esta búsqueda?
 (una vez por mes vs. millones de veces por día)

¿Cuál programa usamos?

Objetivos contrapuestos

Para resolver un problema, queremos un programa...

- que sea fácil de programar (que escribirlo nos demande poco tiempo, que sea simple y fácil de entender);
- que consuma pocos recursos: tiempo y espacio (memoria, disco rígido).

En general priorizamos un objetivo sobre el otro:

- para programas que correrán pocas veces, priorizamos el objetivo 1;
- para programas que correrán muchas veces, priorizamos el objetivo 2.

Repaso de la clase de hoy

• Búsqueda lineal y binaria.

Próximos temas

• Algoritmos de ordenamiento.