Laboratório 03

Erick Macedo Pinto – 1112114 Livia Aloise – 1510952

Exercício 2.1:

• Entradas e saídas.

Entradas:

- BTN_UP
- BTN_DOWN
- SENSOR_UP
- SENSOR_DOWN

Saídas:

- MOTOR_UP
- MOTOR_DOWN
- LED_UP
- LED_DOWN
- Estados.
 - STOPPED
 - MOVING_UP
 - MOVING_DOWN

• Função de transição:

Condição	STOPPED	MOVING_UP	MOVING_DOWN
BTN_DOWN = '1'	STOPPED	-	-
and			
SENSOR_DOWN =			
'1'			
BTN_UP = '1' and	STOPPED	-	-
SENSOR_UP = '1'			
BTN_DOWN = '1'	MOVING_DOWN	-	-
and SENSOR_UP =			
'1'			
BTN_UP = '1' and	MOVING_UP	-	-
SENSOR_DOWN =			
'1'			
(BTN_UP = '1' or	STOPPED	MOVING_UP	-
BTN_DOWN = '1')			
and SENSOR_UP =			
'0'			
(BTN_UP = '1' or	-	-	MOVING_DOWN
BTN_DOWN = '1')			
and			
SENSOR_DOWN =			
'0'			
SENSOR_UP = '1'	-	STOPPED	-
SENSOR_DOWN =	-	-	STOPPED
'1'			

Função de saída:

Saída	STOPPED	MOVING_UP	MOVING_DOWN
MOTOR_UP	0	1	0
MOTOR_DOWN	0	0	1
LED_UP	0	BTN_UP = '1' or	0
		state = MOVING_UP	
LED_DOWN	0	0	BTN_DOWN = '1' or
			state =
			MOVING_DOWN

Exercício 2.4:

O gráfico mostra o comportamento das entradas (BTN_UP, BTN_DOWN, SENSOR_UP e SENSOR_DOWN) e das saídas (MOTOR_UP, MOTOR_DOWN, LED_UP, LED_DOWN).

Ele foi dividido a cada 50 ns (divisões na vertical em azul) pois nesse intervalo uma ação é feita no circuito.

Entre 0 ns e 50 ns, todas as entradas e saídas e estavam zeradas e o elevador ainda não estão em operação.

Entre 50 ns e 100 ns, as entradas foram BTN_DOWN = '1' e SENSOR_DOWN = '1'. Ou seja, o circuito estava indicando que o elevador estava no primeiro andar e o botão para descer foi pressionado (como resultado, a saída do LED indicando que o elevador foi chamado para descer ficou acessa, LED_DOWN = '1', durante o tempo que o botão BTN_DOWN = '1'). Mas, como o elevador já estava no primeiro andar, o motor não acionado, MOTOR_DOWN = '0', e, portanto, o elevador não se mexeu.

Entre 100 ns e 150 ns, as entradas foram BTN_UP = '1' e SENSOR_DOWN = '1'. Ou seja, o circuito estava indicando para o elevador subir. Como esse movimento era possível, o motor foi ligado e o elevador começou a subir (MOTOR_UP = '1' e LED_UP = '1').

Entre 150 ns e 200 ns, as entradas foram BTN_UP = '0' e SENSOR_DOWN = '0'. Ou seja, o elevador já estava em uma fase de transição entre andares, pois ambos SENSOR_UP e SENSOR_DOWN = '0', o botão para subir, BTN_UP, foi solto e mesmo, assim, o elevador continuou a subir (MOTOR_UP = '1') e LED indicando a subida, LED_UP = '1', continuou aceso.

Entre 200 ns e 250 ns, a entrada foi SENSOR_UP = '1', indicando que o elevador estava já no segundo andar. Como resultado, as saídas foram MOTOR_UP = '0', ou seja, motor desligado e LED_UP = '0', LED indicando a subida do elevador desligado.

Entre 250 ns e 300 ns, as entradas foram BTN_UP = '1' e SENSOR_UP = '1'. Ou seja, o elevador estava no segundo andar e o pedido foi para que ele subisse, movimento impossível. E o comportamento foi o mesmo visto no cenário descrito entre 50 ns e 100 ns. Ou seja, o motor não ligou e o LED indicando a subida só permaneceu ligado durante o tempo que o BTN_UP ficou acionado.

Entre 300 ns e 350 ns, as entradas foram BTN_DOWN = '1' e SENSOR_UP = '1'. Ou seja, o movimento solicitado para o elevador era para ele descer e esse era um movimento possível neste instante. As saídas foram MOTOR_DOWN = '1' e LED_DOWN = '1'. Ou seja, elevador descendo e LED indicando a descida do elevador ligado.

Entre 350 ns e 400 ns, as entradas foram BTN_DOWN = '0' e SENSOR_UP = '0'. Ou seja, com o elevador ainda em movimento de descida, o botão para descer foi solto.

Mas o movimento não foi interrompido pois as saíram continuaram sendo MOTOR_DOWN = '1' e LED_DOWN = '1'.

Entre 400 ns e 450 ns, a entrada foi SENSOR_DOWN = '1', indicando que o elevador estava finalmente no primeiro andar. Como resultado, as saídas MOTOR_DOWN e LED_DOWN passaram 0 e o elevador permaneceu parado no primeiro andar.

Entre 450 ns e 500 ns, a entrada foi BTN_UP = '1', indicando que o elevador deveria subir novamente. E as saídas mostram o elevador entrando novamente em operação, MOTOR UP = '1' e LED UP = '1'.

Entre 500 ns e 550 ns, a entrada foi SENSOR_DOWN = '0', indicando que o elevador já estava em uma fase de transição entre o primeiro e segundo e continuando a subir.

Entre 550 ns e 600 ns, as entradas foram BTN_UP = '0' e BTN_DOWN = '1'. Ou seja, ainda subindo e na fase de transição, o botão para descer foi apertado. Mas, como desejado, o elevador continuou seu movimento de subida como pode ser visto nas saídas MOTOR_UP = '1' e LED_UP = '1'.

Entre 600 ns e 650 ns, a entrada foi SENSOR_UP = '1' para indicar que o elevador tinha chegado ao segundo andar. Como o botão para descer, BTN_DOWN, ainda estava apertado, o elevador mudou de direção MOTOR_UP = '0' e MOTOR_DOWN = '1' como saídas.

Entre 650 ns e 750 ns, a entrada foi BTN_DOWN = '0' e SENSOR_UP = '0' pois o elevador estava em fase de transição descendo.

E, finalmente, a partir de 750 ns, a entrada foi SENSOR_DOWN = '1' para indicar que o elevador está no primeiro andar e todas as outras entradas e saídas estão desligadas. Ou seja, o elevador está em um estado parado esperando algum botão, BTN_DOWN ou BTN_UP ser apertado. Mas, como ele está no primeiro andar, só vai se mexer se o BTN_UP for apertado. Com isso, ele voltou ao estado original no início da simulação.