CheatSheet di Analisi Matematica

Fabio Ferrario

2022

Insiemistica

Massimo e Maggioranti Un elemento m si dice massimo di un insieme se esso Appartiene all'insieme ed é il più grande elemento di questo insieme. É invece **Maggiorante** un elemento che é *Maggiore o uguale* di ogni elemento dell'insieme.

Studio di Funzione

Per lo studio di una funzione bisogna trovare:

Dominio della funzione, poni:

Denominatore
$$\neq 0$$

Logaritmo Argomento > 0
Radiceⁿ Argomento ≥ 0 (sse n pari)
 $[f(x)]^{g(x)}$ $f(x) > 0$

Limiti ai punti di frontiera del dominio Trovato il dominio, trova i limiti ai punti di frontiera, quindi porre i limiti ad ogni punto in cui il dominio si interrompe (sia da destra che da sinistra) e eventualmente a $\pm \infty$.

Asintoti Trovati tutti i limiti, se trovi:

- $\lim_{x \to \infty^{\pm}} f(x) = \pm \infty \implies \text{Asintoto } Verticale.$
- $\lim_{x \to \pm \infty} f(x) = l \implies \text{Asintoto } Orizzontale \text{ (di equazione } y = l)$

Bisogna anche controllare la presenza di Asintoti Obliqui:

- $m = \lim_{x \to \pm \infty} \frac{f(x)}{x} \implies \text{se } m \text{ esiste } e \text{ non } e \text{ nullo trovo } q$:
- $q = \lim_{x \to \pm \infty} [f(x) mx] \implies$ se q esiste allora y = mx + q è asintoto obliquo

Monotonia La monotonia di una funzione si calcola *ponendo* f'(x) > 0. Nei punti in cui la derivata è positiva, la funzione è **Crescente**, nei punti in cui è negativa la funzione è **Decrescente**

Punti di estremo I punti in cui la derivata cambia direzione sono punti di estremo (max/min). Se il punto di estremo è il più grande/piccolo di tutta la funzione, allora sono Assoluti.

Convessità/Concavità

- $-\operatorname{conc} A \operatorname{va} \cap \Longrightarrow f''(x)$ positiva
- $+ \operatorname{con} \mathcal{V} \operatorname{essa} \cup \implies f''(x) \operatorname{negativa}$

Retta Tangente al grafico in x_0 :

trova y = mx + q ponendo:

- $m = f'(x_0)$
- $\bullet \ q = f(x_0) f'(x_0) \cdot x_0$

Punti di Discontinuità

- 1. Prima specie (Salto): i limiti dx e sx di x_0 esistono finiti ma sono diversi.
- 2. Seconda spece (Essenziale): Almeno uno dei limiti è inifinito o non esiste.
- 3. Terza Spece (Eliminabile): il limite di x_0 esiste finito ma è diverso da $f(x_0)$ o non esiste.

Pari/Dispari (per le crocette)

- - Dispari $\implies f(-x) = -f(x)$
- + Pari $\implies f(-x) = f(x)$

Funzioni note $\sin(x)$ è Pari e Decrescente in $[0, \pi]$ e Crescente in $[\pi, 2\pi]$. $\cos(x)$ è Pari e Crescente in $[0, \pi]$ e Decrescente in $[\pi, 2\pi]$.

1 Serie

DEFINIZIONE

Condizione Necessaria non Sufficiente per la convergenza:

Il Limite della successione del termine generale a_n deve essere Inifinite-simo.

$$\sum_{n=1}^{+\infty} a_n \text{ converge } \Longrightarrow \lim_{n \to +\infty} a_n = 0$$

Serie Notevoli

Serie Telescopica

$$\sum_{n=1}^{+\infty} (a_n - a_{n+k})$$

oppure

$$\sum_{n=1}^{+\infty} (a_{n+k} - a_n)$$

Serie Geometrica

$$\sum_{n=0}^{+\infty} q^n \begin{cases} \text{Diverge} & q \ge 1\\ \text{Converge} & -1 < q < 1\\ \text{Irregolare} & q \le -1 \end{cases}$$

Serie Armonica Generalizzata

$$\sum \frac{1}{n^{\alpha}} \begin{cases} \text{Diverge} & \alpha \le 1\\ \text{Converge} & \alpha > 1 \end{cases}$$

Serie Armonica Logaritmica

$$\sum \frac{1}{n^{\alpha} \log^{\beta}(n)} \begin{cases} \text{Converge} & \alpha > 1 \land \forall \beta \\ \text{Converge} & \alpha = 1 \land \beta > 1 \\ \text{Diverge} & \alpha = 1 \land \beta \leq 1 \\ \text{Diverge} & \alpha < 1 \land \forall \beta \end{cases}$$

I Criteri di Convergenza

Se a_n è def<u>nte</u> ≥ 0 uso:

Criterio del Rapporto

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l \begin{cases} \text{Converge} & l < 1 \\ \text{Diverge} & l > 1 \\ \text{Criterio inconclusivo} & l = 1 \end{cases}$$

Criterio della Radice

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = l \begin{cases} \text{Converge} & l < 1 \\ \text{Diverge} & l > 1 \\ \text{Criterio inconclusivo} & l = 1 \end{cases}$$

Criterio del Confronto $a_n \leq b_n$ definitivamente \Longrightarrow

- se b_n Converge $\implies a_n$ Converge
- se a_n Diverge $+\infty \implies b_n$ Diverge $+\infty$ Se a_n è a segno **Alterno**:

Criterio della Assoluta Convergenza .

 $\sum a_n$ converge assolutamente se converge $\sum |a_n|$. Se una serie converge assolutamente, allora converge.

Serie Telescopica risoluzione In questo caso è necessario applicare la definzione di serie, cioè la successione delle somme parziali. Devo quindi manualmente sostituire n=1, n=2, n=3, ... fino a quando non riconosco il pattern della serie.

Ricordati di non semplificare Numeratore e Denominatore!, mantenendo i numeri sostituiti sarà più facile scrivere il carattere della serie.

Limiti

Equivalenza asintotica tra funzioni Se il limite $(\to x_0)$ di $\frac{f(x)}{g(x)} = 1$ allora $f \in g$ sono asintoticamente equivalenti

o-piccolo Se il limite (→ x_0) del rapporto di f(x) su g(x) è uguale a 0 allora $\overline{f(x)}$ è o-piccolo di g(x). Nota, che per x_0 si intende un valore arbitrario che può essere anche 0 o $\pm \infty$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0 \implies f(x) = og(x) \text{ per } x \to x_0$$

Logaritmo naturale	$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$
Logaritmo con base a	$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln(a)}$
f Esponenziale	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
f Esponenziale base a	$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a)$
Costante e Frazione	$\lim_{x \to 0} \frac{ax - 1}{x} = \ln(a)$
Seno	$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$
Coseno	$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$
$\ln(x)$	$\lim_{x \to 0} ln(x) = -\infty$

Limiti Notevoli

Equivalenze Asintotiche

$\mathrm{con}\;x\to0$		
$\sin x$	~	x
$1-\cos x$	~	$\frac{1}{2}x^2$
$\tan x$	~	x
$\ln(1+x)$	~	x
$(1+x)^{\alpha}-1$	~	αx

Ordine degli infiniti ∞ In generale:

$$\log_a x \ll x^b \ll x^c \ll d^x \ll g^x \ll x^x$$

- $\begin{array}{l} \underline{N.B.} \\ \bullet \ \sqrt{x} \gg \ln(x) \\ \bullet \ x \ln(x) \gg \sqrt{x} \end{array}$

Forme di indecisione

Forme di li	ndecisione .	
$\left[\begin{smallmatrix} 0\\ \overline{0} \end{smallmatrix}\right] \left[\begin{smallmatrix} \infty\\ \infty \end{smallmatrix}\right] \left[1^\infty\right] \left[\infty - \infty\right] \left[\infty \cdot 0\right] \left[0^0\right] \left[\infty^0\right]$		
Tutte le forme possono essere risolte usando Limiti Notevoli e Trucchi algebrici per ricondursi ad essi. In particolare però, questi si risolvono usando anche:		
$\left[\frac{0}{0}\right]$	Conf. infinitesmi — Scomp/Racc/Semp — De l'Hopital	
$\left[\frac{\infty}{\infty}\right]$	Conf. infinti — Scomp/Racc/Semp — De l'Hopital	
$[1^{\infty}]$	Identità Logaritmo-Esponenziale	
$[\infty - \infty]$	Riconduzione a $\frac{0}{0}$ o $\frac{\infty}{\infty}$	
$[\infty \cdot 0]$	Razionalizzazione inversa — Prodotti notevoli al contrario	
$[0^0] / [\infty^0]$	Conf. infiniti/infinitesimi—Identità Logaritmo-Esponenziale	

Teoremi Limiti utili per esercizi

Teorema del Confronto Se ho $x \to +\infty$ e ho sin o cos potrei dover usare il teorema del confronto dato che sin e cos (NB solo per $x \to +\infty$) sono delle costanti che oscillano tra -1 e 1.

Calcolo Differenziale

Nome	Funzione	Derivata
Seno	$\sin x$	$\cos x$
Coseno	$\cos x$	$-\sin x$
Arcotangente	arctan	$\frac{1}{1+x^2}$
Logaritmo	$\ln(x)$	$\frac{1}{x}$
Radice		
Esponenziale	e^x	e^x
Esponenziale (negativo)	e^{-x}	$-e^{-x}$
$1 \text{ su } x^2$	$\frac{1}{x^2}$	$-\frac{2}{x^3}$
x alla α	x^{α}	$\alpha x^{\alpha-1}$

Derivate "note"

Derivate Composte .

Composizione	f(g(x))	$f'(g(x)) \cdot g'(x)$
Prodotto	$f(x) \cdot g(x)$	$f'(x) \cdot g(x) + g'(x) \cdot f(x)$
Divisione	$\frac{f(x)}{g(x)}$	$\frac{f'(x)\cdot g(x) - g'(x)\cdot f(x)}{[g(x)]^2}$

Derivata dell'inversa di una funzione Dati:

 $y_o ext{ e } f(x)$, avendo $g(x) = f^{-1}(x)$ allora: Per calcolare $g'(y_0)$ 1. trovo x_0 ponendo $y_0 = f(x)$ 2. trovo $g'(y_0) = \frac{1}{f'(x_0)}$

Formula di Taylor di grado k e centrato in x_0 :

$$P_k(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{k!}f^{(k)}(x_0)(x - x_0)^k$$

Formula di Mclaurin di grado k:

$$P_k(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + \dots + \frac{1}{k!}f^{(k)}(0)x^k$$

Mclaurin = Taylor con $x_0 = 0$

Rapporto incrementale

$$\frac{\Delta y}{\Delta x} \frac{f(x_0 + h) - f(x_0)}{h}$$

Calcolo Integrale

Condizione di integrabilità Per l'integrabilità di una funzione su un intervallo la condizione che essa sia continua è sufficiente ma non necessaria

Primitive elementari
Funzioni il cui integrale è immediatamente calcolabile.

Funzione	Primitiva
k	kx
$x^a, a \neq -1$	$\frac{x^{a+1}}{a+1}$
$\frac{1}{x}$	$\log x $
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
a^x	$\frac{a^x}{\log a}$
e^{-x}	$-e^{-x}$
$\frac{1}{x^2+1}$	$\arctan(c)$

Proprietà degli integrali

- Somma di integrali: $\int f(x) + g(x)dx = \int f(x)dx + \int g(x)dx$
- Costante moltiplicativa $\int k \cdot f(x) = k \int f(x)$

I metodi di risoluzione

Integrazione per Parti

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

Integrazione per Sostituzione

 $Metodo\ Generale\ e\ Semplificato\$ per itnegrali generali f(x):

Trovo una funzione g(x) Derivabile e Invertibile da sostituire ad x.

- 1. decido che y = g(x)
- 2. Inverto g(x) per isolare la x, ottenendo $x = g^{-1}(y)$
- 3. Derivo entrambi i membri e aggiungo dx e dy: $\to dx = (g^{-1})'(y)dy$
- 4. all'interno di f(x) sosdtituisco $g(x) \to y$ e $dx \to (g^{-1})'(y)dy$
- 5. Risolvo l'integrale
- 6. Sostiuisco $y \to g(x)$

Metodo dalla definizione : Abbiamo un integrale nella forma

$$\int f(g(x))g'(x)dx$$

- 1. $y = g(x) \rightarrow dy = g'(y)dx$
- 2. Sostituiamo per ottenere $\int f(y)dy$
- 3. Calcolo l'integrale nella nuova variabile
- 4. Sostituisco $y \to g(x)$

Formula Media Integrale Considerata f limitata e integrabile su un intervallo [a, b]

$$M(f,[a,b]) = \frac{1}{b-a} \int_a^b f(x) dx$$

Dimostrazioni per induzione

Le due casistiche principali sono:

- Dimostrazioni con la sommatoria \sum
- Dimostrazioni con disequazioni

Ricorda Devi sempre dimostrare che la formula è vera per n + 1, quindi devi ricondurti a ciò che hai a destra dell'equazione.

Dimostrazioni con la sommatoria

In questo caso devo ricordarmi di ricondurmi al caso base estrando dalla sommatoria (n+1) per ricondurmi alla sommatoria \sum^n e poi sostituendo l'ipotesi induttiva (la sommatoria che supponiamo vera). Così facendo posso ottenere ciò che ho a sinistra della formula \sum^{n+1} .

Dimostrazioni con le disequazioni

In questo caso devo ricordarmi che oltre a dover sostituire l'ipotesi induttiva nella disequazione possono aggiungere numeri che mi possono servire a patto che abbia la certezza che questi numeri non vadano in contraddizione con il segno della disequazione, quindi se ho a>b, aggiungendo numeri non deve succedere che b diventi maggiore di a.

Ricorda Nell'ipotesi avrai una condizione (per esempio per n > 1), ricordati che puoi e spesso devi usarla per poter aggiungere numeri utili alla dimostrazione.