

Analyzing Human Impacts on Tidal River Basins

Kaitlyn Engel¹, Andrew Fagerheim¹, Lydia Futrell¹, Lawson Goodloe¹, Emma Nunez¹, Emily Stickney²

¹Earth & Environmental Engineering, Columbia University; ²Engineer Research & Development Center, U.S. Army Corps of Engineers

Columbia River **Columbia River Area** Legend HUC4 Extent - Columbia Siletz Reservation Figure 9: Columbia River HUC46 watershed extent. Figure 10: Timeseries of ni-Figure 11: Timeseries of trate + nitrite. phosphorus. 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} Frequency (1/s) Figure 12: Columbia River spectra of gage height for stations below Bonneville Dam, OR (left) and Portland, OR (right). Several frequencies are noted as vertical lines for reference.

Trinity River **Trinity River Area** Figure 5: Trinity River HUC6 watershed extent. Figure 6: Timeseries of ni-Figure 7: Timeseries of soditrate + nitrite. 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} Frequency (1/s) Figure 8: Trinity River spectra of gage height for stations in Goodrich, TX (left) and Moss Bluff, TX (right). Several frequencies are noted as vertical lines for reference.

