Machine Learning to identify rats with higher risk of Alcohol use Disorder

Dr. Kshitij Jadhav,
Post doctoral fellow,
Lab on the Neurobiology of Addictive and Eating Disorders,
CHUV-Department of Psychiatry,
Universite de Lausanne,
Switzerland

Introduction

2] Progressive ratio paradigm

3] Compulsive alcohol taking in presence of shock

RAT ID	Lever pressing in absence	Progressive ratio	Compulsivity in presence of
	of ethanol		shock
1	5.67	27.33	10
2	15.33	54	41.67
3	9.33	40.33	7.67
4	11.67	37.67	3.67
5	4.33	28.67	8
6	5.67	21	5.33
7	3.33	28.33	6
8	9.67	68	44.33
9	14	49.33	81.67
10	14.33	46	13
11	13.33	55	15.67
12	15.67	56.67	9.33
13	5.33	35	3
14	15.33	56	28.67
15	8.33	28.33	11
16	4.67	39	1.67
17	9.33	28	9
18	2.33	23.67	3.33

Introduction

- But we also know....
- Not all individuals show similar vulnerability to develop addiction
- So, we have to cluster these rats based on their similarities

What I usually do?

RAT ID	Lever pressing in absence of ethanol	Progressive ratio	Compulsivity in presence of shock
1	5.67	27.33	10
2	15.33	54	41.67
3	9.33	40.33	7.67
4	11.67	37.67	3.67
5	4.33	28.67	8
6	5.67	21	5.33
7	3.33	28.33	6
8	9.67	68	44.33
9	14	49.33	81.67
10	14.33	46	13
11	13.33	55	15.67
12	15.67	56.67	9.33
13	5.33	35	3
14	15.33	56	28.67
15	8.33	28.33	11
16	4.67	39	1.67
17	9.33	28	9
18	2.33	23.67	3.33

Rats in top 33% are positive for that behaiour

Unsupervised Machine Learning

The Algorithms are trying to identify some segments or clusters in your data.

$$\frac{\pm \sqrt{b^{2}-4ac}}{2a} \quad \nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_{0}}$$

$$\phi(x) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \cdot e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

$$dx \qquad f(\omega) = \int_{-\infty}^{\infty} f(x) \cdot e^{-2\pi i x \omega}$$

$$E = mc^{2}$$

$$x) \qquad H = -\sum_{x} p(x) \cdot \log p(x)$$

$$F = \frac{Gm_{1}m_{2}}{r^{2}}$$

$$\rho \cdot \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla p + \nabla \cdot \mathbf{T} + \mathbf{f}$$

A comparison of the clustering algorithms in scikit-learn

Let's take a breather here

What do we know about ML till now?

• If we have a bunch of data, and we suspect that there are subgroups within the dataset, then without defining the subgroups, we can use Unsupervised ML algorithms to find those subgroups for us.

IMPORTANT: We only feed the raw data to the UNSUPERVISED ML ALGORITHM.

THE UNSUPERVISED ML ALGORITHM TELLS US THE POSSIBLE GROUPS

Or, far more important question is how do we know which is better?

The real question is, which UNSUPERVISED ML algorithm to chose?

Let's take a look at this scenario

Strength of a ML model is its consistent predictive ability

This is where we introduce another form of Machine Learning

Supervised Machine Learning

Regression

Classification

HOW DOES
SUPERVISED ML
WORK?

CLUSTERS GIVEN BY UNSUPERVISED ML OR MANUAL METHOD

FITTING

What is Fitting the data to Supervised ML algorithm?

Fitting means finding the best possible curve that explains the data

Grumpy old Statistician will say: ML is nothing but Glorified Curve Fitting

CLUSTERS GIVEN BY UNSUPERVISED ML OR MANUAL METHOD

FITTING

RAW data

Resilient rats

FITTING

Vulnerable

Logistic Regression

Logistic regression

Resilient

MANUAL method **Logistic Regression** Labels RAW data Resilient: 77 Set 1: 118 rats Vulnerable: 41 TRAINING SET **PREDICTION** Resilient: 25 Resilient: 21 COMPARE Set 2: 32 Vulnerable: 11 Vulnerable: 7 rats **TEST SET**

But how does Logistic regression predict?

MANUAL method **Logistic Regression** Labels RAW data Resilient: 77 Set 1: 118 rats Vulnerable: 41 TRAINING SET **PREDICTION** Resilient: 25 Resilient: 21 COMPARE Set 2: 32 Vulnerable: 11 Vulnerable: 7 rats **TEST SET**

CONFUSION
MATRIX: MANUAL
METHOD followed
by LOGISTIC
REGRESSION

	Resilient (Logistic Regression- Test dataset)	Vulnerable (Logistic Regression- Test dataset)	Total
Resilient (Manual method: test data)	21 (True Resilient)	0 (False Vulnerable)	21
Vulnerable (Manual method: test data)	4 (False Resilient)	7 (True Vulnerable)	11
Total	25	7	32

Prediction Accuracy: 87.5%

Remember what we had set out to do

• Finding a better way to find Resilient and Vulnerable rats.

We tested MANUAL Method.

• Its good, but not perfect.

 So, we need to find a different clustering model Gaussian Mixture Method

Examples of Unsupervised Clustering ML algorithms

CronJ

Alternate Access

Why the GMM?

CONFUSION
MATRIX: GMM
followed by
LOGISTIC
REGRESSION

	Resilient (Logistic Regression- Test dataset)	Vulnerable (Logistic Regression- Test dataset)	Total
Resilient	22 (True	3 (False	25
(GMM)	Resilient)	Vulnerable)	
Vulnerable	0 (False	7 (True	7
(GMM)	Resilient)	Vulnerable)	
Total	22	10	32

Prediction Accuracy: 90.62 %

Better than MANUAL method but not perfect

Examples of Unsupervised Clustering ML algorithms

K-mean clustering **Logistic Regression** Labels RAW data Resilient: 73 Set 1: 118 rats Vulnerable: 45 TRAINING SET **PREDICTION** Resilient: 25 Resilient: 25 COMPARE Set 2: 32 Vulnerable: 7 Vulnerable: 7 rats **TEST SET**

K-mean **Logistic Regression** Clustering Labels RAW data Resilient: 73 Set 1: 118 rats Vulnerable: 45 TRAINING SET **PREDICTION** Resilient: 25 Resilient: 25 COMPARE Set 2: 32 Vulnerable: 7 Vulnerable: 7 rats **TEST SET**

CONFUSION
MATRIX: K-mean
clustering followed
by LOGISTIC
REGRESSION

	Resilient (Logistic Regression- Test dataset)	Vulnerable (Logistic Regression- Test dataset)	Total
Resilient (K- mean clustering)	25 (True Resilient)	0 (False Vulnerable)	25
Vulnerable (K-mean Clustering)	0 (False Resilient)	7 (True Vulnerable)	7
Total	25	0	32

Prediction Accuracy: 100 %

What does this tell us?

• K-mean Clustering is definitely superior for grouping the rats to determine their addiction vulnerabilities.

• However, MANUAL method isn't off target by a huge margin.

Quick Pointers

Random Forest

Summary of using other Supervised ML models

Predictive accuracy	Logistic Regression	Support Vector Machines	K-Nearest Neighbour
Manual Method	87.5%	84.37%	87.5%
GMM	90.62%	93.75%	93.75%
K-mean Clustering	100%	100%	100%

K mean clustering wins!!!

Finally, Deep Learning

• It's the latest gizmo in Machine Learning world.

• It tries to replicate something like our brain.

• But it is resource intensive so, I haven't used it here

Resources used for this analysis

- Google Colab environment
- Python 3.8.1
- Python Libraries
 - SKLEARN
 - MATPLOTLIB
 - PANDAS
 - NUMPY

Thank you,
Dr. Benjamin Boutrel
and lab.

Thank you, Google.

Thank you everyone for Listening

