Experimentelle Methoden

Vorlesung von Prof. Dr. apl. Horst Fischer im Sommersemester 2019

Markus Österle Damian Lanzenstiel

29. April 2019

Inhaltsverzeichnis

0	Einführung	
	0.1Wichtige Infos0.2Programm der Vorlesung	
	Wechselwirkung geladener Teilchen mit Materie	
	1.1 Klassische Betrachtung der Rutherfordstreuung	

Kapitel 0

Einführung

0.1 Wichtige Infos

Vorlesung Montag 14:15 - 15:45

Übungen ILIAS

Kontakt Horst Fischer Physikhochhaus Zi. 609 ★hier fehlt was★ (email usw. Folie 1)

0.2 Programm der Vorlesung

- \bullet Grundlagen moderner Nachweissysteme
- Grundlagen der Statistik und Unsicherheitsbetrachtungen
- Grundlagen der Analogelektronik

Kapitel 1

Wechselwirkung geladener Teilchen mit Materie

Nachweis durch Wirkung des Teilchens auf die Materie

- Ionisation, Szintillation
- Čevenkov-, Übergangsstrahlung
- Rückstoß
- \Rightarrow Teilcheneigenschaften verändert
 - Energieverlust
 - Richtungsänderung
 - Identitätsverlust

1.1 Klassische Betrachtung der Rutherfordstreuung

• stimmt mit QM in niederster Ordnung überein

solange: "schwere Teilchen" $v \gg v_{e \text{ in Hülle}}$ $\Delta E \gg \text{Bindungsenergie von } e^-$

hier fehlt eine Grafik

Typisches Beispiel:

$$\mu^+ + \text{Atom} \rightarrow \mu^+ + (\text{Atom} + e^-)$$

Coulomb-Kraft

$$\begin{split} F_{\parallel}(x) &= F_{\parallel}(-x) \\ F_{\perp} &= \frac{1}{4\pi\varepsilon_0} \frac{z \cdot e \cdot Z \cdot e}{r^2} \frac{b}{|\boldsymbol{r}|} \end{split}$$

Impulsübertrag

$$\Delta \rho_T = \int_{-\infty}^{\infty} F_{\perp} \mathrm{d}f = \frac{e^2}{4\pi\varepsilon_0} \cdot \frac{2Z \cdot z}{\beta cb}$$

 $\beta = \frac{v}{c}$ Mehr zum Thema und die genaue Rechnung findet man im Lehrbuch von Jackson.

Energieübertrag

[Folie: Energieverlust: klassisch nach Bohr]

$$\Delta E = \frac{\Delta \rho_T^2}{2M} = \frac{e^4}{(4\pi\varepsilon_0)^2} \cdot \frac{Z^2 z^2}{M\beta^2 c^2 b^2} \propto \frac{1}{b^2}$$

bei Kohärenter Streuung

$$\frac{\Delta E \text{ Elektronenhülle}}{\Delta E \text{ Kern}} = \frac{2m_p}{m_e} \approx 4000$$

Hülle: $M = Z \cdot m_e$

Kern: $M = A \cdot m_p = 2Z \cdot m_p$

 \Rightarrow Die Streuung am Kern ist vernachlässigbar

Der gesamte (mittlere) Energieverlust ist dann:

$$\langle dE \rangle = \int \Delta E \cdot \underbrace{2\pi b \ db}_{\text{Volumenelement}} \cdot Z \cdot \underbrace{\frac{\rho \cdot N_A}{A}}_{=n_e} dx$$

Bethe-Bloch Beziehung

$$\begin{split} \left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle &= D \cdot \underbrace{\frac{Z \cdot \rho}{A}}_{\mathrm{Medium}} \cdot \underbrace{\left(\frac{z}{\beta}\right)^2}_{\mathrm{Projektil}} \cdot \underbrace{\ln\left(\frac{b_{\mathrm{max}}}{b_{\mathrm{min}}}\right)}_{\frac{1}{2}\ln\left(\frac{2m_ec^2\gamma^2\beta^2}{I}T_{\mathrm{max}}\right)} \\ &= D \cdot \underbrace{\frac{Z \cdot \rho}{A}}_{\mathrm{Medium}} \cdot \underbrace{\left(\frac{z}{\beta}\right)^2}_{\mathrm{Projektil}} \cdot \frac{1}{2}\ln\left(\frac{2m_ec^2\gamma^2\beta^2}{I}T_{\mathrm{max}}\right) \end{split}$$

mit $I=\hbar\omega$: Ionisationspotential des Streuzentrums und $T_{\rm max}$: der Energie des e^- tragen kann

[Folie: Energieverlust]

[Folie: Mittlerer Energieverlust nach Bethe Bloch]

[Folie: Relativistischer Anstieg]

[Folie: Materialabhängigkeit des mittleren Energieverlusts]

[Folie: Minimaler Energieverlust]

[Folia: Abhängigkeit vom Ionisationspotential]

[Folie: Reichweite von Teilchen in Materie]

[Folie: Bragg-Kurve] (Einstrahl-Tiefe in einen Menschen)

[Folie: Anwendung Teilchenidentifizierung]

[Folie: Energieverlust von Teilchen durch Ionisation]