

Логарифмы и их свойства

В этом уроке

- Понятие логарифма. Основные свойства логарифмической функции
- График и основные свойства логарифмической функции
- Решение логарифмический уравнений

Определение логарифма

Логарифм b по основанию a:

$$\log_a b = c \Leftrightarrow a^c = b,$$

где
$$a > 0$$
, $a \neq 1$, $b > 0$.

Определение логарифма

Логарифм b по основанию a:

$$\log_a b = c \Leftrightarrow a^c = b,$$

где
$$a > 0$$
, $a \neq 1$, $b > 0$.

Основное логарифмическое тождество:

$$a^{\log_a b} = b$$

Пример 1

Найти x: $\log_8 x = 2$.

Решение:

По определению логарифма: $8^2 = x \Rightarrow x = 64$.

Ответ: 64.

Основные свойства логарифма

- $\log_a(1) = 0$
- $\log_a(a) = 1$

Формула перехода к новому основанию

Формула перехода к новому основанию:

$$\log_a x = \frac{\log_b x}{\log_b a}$$

для x, a, b > 0, $a, b \neq 1$.

Определения

Логарифмы основанием которых является число 10, называются десятичными логарифмами. Их обозначают $\lg b$.

Логарифмы, основанием которых является число e, называются натуральными логарифмами. Обозначаются $\ln b$.

Пример 2

Логарифмическая функция

$$f(x) = \log_a x$$

Основные свойства:

- **1** $D(f) = (0; +\infty); E(f) = (\infty; +\infty).$
- 2 f(x) возрастает при a>1; f(x) убывает при 0< a<1.
- ullet График логарифмической функции всегда проходит через точку (1;0).
- Функция не является четной или нечетной.
- Функция не имеет точек максимума и минимума.

Логарифмическая функция

Пример 3

Построим функцию $y = \log_2 x$.

x	1/4	1/2	1	2	4	8
y	-2	-1	0	1	2	3

Решение логарифмических уравнений

$$\log_a x = b$$
, где $a, x > 0$, $a \neq 1$

Решение логарифмических уравнений

$$\log_a x = b$$
, где $a, x > 0, \ a \neq 1$

Пример 4

Решить уравнение $\log_2 x = 3$.

Решение:

- \bullet ОДЗ: x > 0
- $\log_2 x = 3 \Rightarrow x = 2^3 = 8$

Ответ: 8.

Логарифмирование

Логарифмирование — переход от уравнения f(x) = g(x) к уравнению

$$\log_a f(x) = \log_a g(x)$$

Логарифмирование

Логарифмирование — переход от уравнения f(x) = g(x) к уравнению

$$\log_a f(x) = \log_a g(x)$$

Пример 5

Решить уравнение $2^x = 3$.

Решение:

- $2 x \cdot \log_2 2 = \log_2 3$
- **3** $x = \log_2 3$

Ответ: $\log_2 3$.

Пример б

Решить уравнение $2\log_4^2 x - 5\log_4 x = -2$.

Решение:

- \bullet Обозначим $\log_4 x = t$.
- $2t^2 5t + 2 = 0 \Rightarrow t_1 = 1/2; t_2 = 2$
- **3** Вернемся к замене: $x = 4^t$.
- $x_1 = 4^{1/2} = 2; \ x_2 = 4^2 = 16$
- **6** Оба корня принадлежат ОДЗ: x > 0.

Ответ: 2, 16.

