

1. ročník tímovej súťaže DuoGeo – kategória ZŠ

9. 2. 2025

Úloha 1. Do štvorca *ABCD* boli nakreslené rovnostranné trojuholníky *ABX* a *CDY*. Určte súčet vyznačených uhlov.

(Mária Dományová)

Riešenie. V prvom rade si uvedomíme, že vďaka symetrii sú všetky štyri vyznačené uhly rovnaké. Zameriame sa na nájdenie veľkosti $|\angle YDX|$.

Všimnime si, že vieme vypočítať $|\angle XAD|$ ako $|\angle BAD| - |\angle BAX|$, čo je $90^{\circ} - 60^{\circ} = 30^{\circ}$. Podobne vieme odvodiť $|\angle ADY| = 30^{\circ}$.

Ďalej platí |DA| = |AB| = |AX|, takže trojuholník AXD je rovnoramenný. Keďže $|\angle XAD| = 30^\circ$, tak z toho ľahko dopočítame $|\angle ADX| = \frac{1}{2}(180^\circ - 30^\circ) = 75^\circ$. Máme však $|\angle ADY| = 30^\circ$, z čoho hneď dostávame, že hľadaný uhol $\angle YDX$ má veľkosť $|\angle ADX| - |\angle ADY| = 75^\circ - 30^\circ = 45^\circ$.

Zadanie sa na nás pýta na súčet štyroch uhlov veľkosti 45° , odpoveď je teda $4 \cdot 45^{\circ} = 180^{\circ}$.

Úloha 2. Je daný trojuholník ABC. Stredy jeho strán BC a AC označme postupne ako F a G. Na strane AB sú dané body D a E tak, že D leží medzi A a E. Úsečky CD a CE pretínajú úsečku FG postupne v bodoch H a I. Štvoruholník DEIH má obsah 90 cm² a dĺžky úsečiek HI a AB sú postupne 4 cm a 21 cm. Vypočítajte obsah trojuholníka ABC. (Karel Pazourek)

Riešenie. Všimnime si trojuholník *CDE*. Úsečka *HI* je jeho stredná priečka. Obsah trojuholníka *CHI* je teda štvrtina obsahu trojuholníka *CDE*. Preto platí, že obsah štvoruholníka *DEIH* je rovný trojnásobho obsahu *CHI*, takže obsah *CHI* je rovný 90/30 = 30. Keďže |HI| = 4, je výška na stranu *HI* v tomto trojuholníku rovná $2 \cdot 30/4 = 15$. Výška v trojuholníku *CDE* je jej dvojnásobkom, takže je rovná 30. Obsah trojuholníka *ABC* potom musí byť $21 \cdot 30/2 = 315$.

Úloha 3. Sú dané body *T*, *K*, *A*, *D*, *L*, *E*, *C* ako na obrázku. Predpokladajme, že súčet červených uhlov je 73°, modrý uhol je 42°, a súčet zelených uhlov je 84°. Určte uhol, ktorý zvierajú priamky *TK* a *EC*. (Svetlana Bednářová)

Riešenie. Aby sme mohli určiť uhol, ktorý zvierajú priamky TK a EC, predĺžime si úsečky TK a EC na priamky a ich priesečník označíme P. Potom vlastne hľadáme $|\angle TPC|$.

Tento krok by nás mohol motivovať k tomu, aby sme skúsili predĺžiť na priamky aj iné úsečky – všimneme si, že ak predĺžime AK a LE a priesečník týchto priamok označíme Q, bude novovzniknutý útvar KQEP štvoruholník a potrebujeme určiť veľkosť jeho vnútorneho uhla pri vrchole P. Pretože sú uhly $\angle PKT$ a $\angle PEC$ oba priame, je ich súčet rovný 360° , čo je tiež súčet vnútorných uhlov štvoruholníka KQEP. Porovnaním týchto dvoch vyjadrení dostaneme

$$|\angle TPC| + |\angle KQE| = |\angle TKQ| + |\angle QEC| = 73^{\circ}.$$

Teraz vyjadríme uhol $\angle KQE$. Podobne ako v predchádzajúcom prípade využijeme, že súčet veľkostí vnútorných uhlov v štvoruholníku AQLD je 360°, rovnako ako súčet priamych uhlov $\angle KAQ$ a $\angle QLE$. Preto

$$84^{\circ} = |\angle KAD| + |\angle DLE| = |\angle AQL| + |\angle ADL| = |\angle KQE| + 42^{\circ}$$
,

odkiaľ $|\angle KQE| = 42^{\circ}$. Dosadením do prvej uvedenej rovnosti už ľahko získame

$$|\angle TPC| = 73^{\circ} - |\angle KQE| = 73^{\circ} - 42^{\circ} = 31^{\circ}.$$

Úloha 4. Máme obdĺžnikový papier so stranami dĺžok 22 cm a 26 cm. Rozhodnite a zdôvodnite, či je možné z neho vyrezať 5 kruhov s priemermi 10 cm. (*Josef Tkadlec*)

Riešenie. Odpoveď je, že to ide spraviť. Pomôžeme si trojuholníkom so stranami 6, 8, 10, ktorý je z Pytagorovej vety kvôli $6^2+8^2=10^2$ pravouhlý. Strana dĺžky 26 je potom rozdelená ako $5+2\cdot 8+5$, zatiaľ čo strana dĺžky 22 ako $5+2\cdot 6+5$. Konštrukcia je viditeľná z obrázka. Aby bolo rezanie možné, potrebujeme, aby sa kruhy neprekrývali. To je ale zabezpečné tým, že súčet polomerov žiadnych dvoch kruhov neprevyšuje vzdialenosť ich stredov.

Úloha 5. Je daný štvoruholník ABCD s priesečníkom uhlopriečok T. Predpoladajme, že veľkosti uhlov BAC a DBA sú postupne 30° a 45° . Na úsečke BT leží bod Z taký, že $CZ \perp BT$. Predpokladajme, že priamka CZ pretne úsečku AB v bode M. Nech R je priesečník úsečiek AT a MD. Predpokladajme, že |AM| = |AR| a |MR| + |TD| = 14 cm. Určte veľkosť úsečky |BZ|. (Patrik Bak, Mária Dományová)

Riešenie. V trojuholníku ATB poznáme uhly pri vrcholoch A a B, a síce 30° a 45° , uhol pri vrchole T teda bude mať veľkosť $180^{\circ} - 30^{\circ} - 45^{\circ} = 105^{\circ}$, takže $|\angle DTR| = 180^{\circ} - 105^{\circ} = 75^{\circ}$.

Ďalej si všimnime, že v rovnoramennom trojuholníku AMR poznáme uhol oproti jeho základni, a síce 30°. Zvyšné uhly teda budú mať veľkosť $180^{\circ} - \frac{1}{2} \cdot 30^{\circ} = 75^{\circ}$, takže tiež $|\angle DRT| = |\angle ARM| = 75^{\circ}$.

Spojením dvoch predošlých odstavcov máme, že trojuholník DTR je rovnoramenný so základňou TR, takže |DT| = |DR|. Predpoklad |MR| + |TD| = 14 teda znamená, že |MR| + |DR| = 14, takže |MD| = 14.

Pozrime sa na trojuholník MDZ. Je pravouhlý, pričom uhol pri vrchole D má veľkosť 30° . O takomto trojuholníku je všeobecne známe, že jeho prepona je dvojnásobkom odvesny oproti vrcholu s uhlom 30° , takže |MZ|=14/2=7 (nahliadnuť to môžeme tak, že si uvedomíme, že ide o polovičku rovnostranného trojuholníka – viď obrázok, bod M' je taký bod, že Z je stred MM'; potom $|\angle MDM'|=2\cdot 30^\circ=60^\circ=|\angle M'MD|$, takže trojuholník DMM' je

Posledným krokom je uvedomiť si, že trojuholník MZB je tiež rovnoramenný: uhol pri vrchole Z je totiž 90° a uhol pri B je 45°, takže uhol pri M je tiež 45°. Tým pádom |BZ| = |MZ| = 7, takže úloha je vyriešená.

naozaj rovnostranný, a teda |MD| = |MM'| = 2|MZ|).

Úloha 6. Nech P, Q sú postupne stredy strán BC, CD obdĺžnika ABCD. Bod S je priesečník jeho uhlopriečok. Označme K priesečník priamok BQ a SP. Rovnobežka s AC prechádzajúca bodom K pretína priamku BD v bode L a priamka PL pretína uhlopriečku AC v bode M. Určte pomer |SM|: |SL|. (Jaroslav Švrček)

Riešenie. Všimnime si trojuholník *BCD*. Bod *K* je priesečníkom ťažnice *BQ* na stranu *CD* a jeho strednej priečky *SP* rovnobežnej s *CD*, tým pádom je *K* stredom *SP* (môžeme to vidieť napr. z toho, že *SK* je stredná priečka v *BDQ*, *KP* je stredná priečka v *BQC*, teda z rovností |DQ| = 2|SK|, |CQ| = 2|KP| a |DQ| = |CQ| máme |SK| = |KP|).

Teraz dokážeme, že |LS| = |LK|, k tomu si pomôžeme uhlami: Z rovnobežnosti $AB \parallel SK$ máme $|\angle LSK| = |\angle SBA|$. Z rovnoramennosti SBA je tento uhol rovný aj $|\angle BAS|$, čo je znova z rovnobežnosti $AB \parallel SK$ rovné $|\angle KSC|$. Nakoniec, vďaka rovnobežnosti $AC \parallel LK$ máme $|\angle KSC| = |\angle SKL|$, takže dokopy $|\angle LSK| = |\angle SKL|$, čo sme chceli dokázať.

Teraz si všimnime trojuholník PMS. Bod K je stredom SP. Týmto bodom vedieme rovnobežku sMS a pretneme sMP vL, úsečka KL je teda stredná priečka trojuholníka PMS. Spojením s|LS| = |LK| z predošlého odstavca teraz už ľahko dostávame |SM| = 2|LK| = 2|SL|, takže |SM| : |SL| = 2 : 1.