Experiments

Introduction

vGraph: A Generative Model for Joint Community Detection and Node Representation Learning

Fan-Yun Sun^{1,2} Meng Qu² Jordan Hoffmann^{2,3} Chin-Wei Huang^{2,4} Jian Tang^{2,5,6}

¹National Taiwan University
²Mila-Quebec Institute for Learning Algorithms, Canada
³Harvard University, USA
⁴Element Al, Canada
⁵HEC Montreal, Canada
⁶CIFAR Al Research Chair

Jul 13, 2020

Introduction

Graphs are a general and flexible data structure to encode complex relationships among objects. Examples of real-world graphs include social networks, airline networks, protein-protein interaction networks, and traffic networks. This paper focuses on two fundamental tasks of graph analysis: **community detection** and **node representation learning**, which capture the global and local structures of graphs, respectively.

Motivation

Introduction

0000

(Non)Overlapping Community Detection

Node Representation Learning

- MF
- LINE
- DeepWalk
- Node2vec

Motivation

(Overlapping) Community Detection

Community Preserving Network Embedding

Clustering (i.e. K-Means) Using Node Embeddings as feature

Node Representation Learning

- MF
- LINE
- DeepWalk
- Node2vec

vGraph - probabilistic generative model

- Generative model with Variational Inference to solve community detection and node representation learning jointly.
- ightharpoonup Scalable: O(d*|E|*K).

Introduction

000

- d: embedding dimension
- |E|: number of edges in the graph
- K: number of communities

Problem Definition

Given a graph G(V,E) where V and E represent the set of vertices and edges respectively, we aim to jointly learn a node embedding $\phi_i \in \mathbb{R}^d$ and community affiliation $\mathcal{F}(\nu_i) \subseteq \{1,...,K\}$ for each vertex ν_i .

Model

vGraph assumes that the edges (w,c) is generated from the following stocastic process: for node w, we first draw a community assignment $z \sim p(z|w)$ representing the social context of w during the generation process. Then, the linked neighbor c is generated based on the assignment z through $c \sim p(c|z)$. Formally, this process can be fomulated as:

$$p(c|w) = \sum_{z} p(c|z)p(z|w)$$

Model

Introduction

$$p(c|w) = \sum_{z} p(c|z)p(z|w)$$

vGraph parameterizes the distributions p(z|w) and p(c|z) by introducing three sets of embeddings: ϕ_i , ϕ_i , and ψ_i . The prior distribution $p_{\phi,\psi}(z|w)$ and the node distribution conditioned on a community $p_{\text{th }\omega}(c|z)$ are parameterized by two softmax models:

$$p_{\phi,\psi}(z=j|w) = \frac{\exp(\phi_w^T \psi_j)}{\sum_{i=1}^K \exp(\phi_w^T \psi_i)}$$
$$p_{\psi,\phi}(c|z=j) = \frac{\exp(\psi_j^T \varphi_c)}{\sum_{c \in N} \exp(\psi_j^T \varphi_{c'})}$$

Variational Inference

The goal is to maximize the log-likelihood of the observed edges

$$\sum_{(c,w)\in E} \log p_{\phi,\phi,\psi}(c|w)$$

Directly optimizing this objective is intractable for large graphs, we instead optimize the following evidence lower bound

$$\mathcal{L} = E_{z \sim q(z|c,w)}(\log p_{\psi,\phi}(c|z)) - KL(q(z|c,w)||p_{\phi,\psi}(z|w))$$

where q(z|c,w) is a variational distribution that approximates the true posterior distribution p(z|c,w), and $KL(\cdot||\cdot)$ represents the Kullback-Leibler divergence between two distributions.

Variational Inference

vGraph

0000

$$\mathcal{L} = E_{z \sim q(z|c,w)}(\log p_{\psi,\varphi}(c|z)) - KL(q(z|c,w)||p_{\phi,\psi}(z|w))$$
$$p_{\phi,\psi}(z=j|w) = \frac{\exp(\phi_w^T \psi_j)}{\sum_{i=1}^K \exp(\phi_w^T \psi_i)}$$
$$p_{\psi,\varphi}(c|z=j) = \frac{\exp(\psi_j^T \varphi_c)}{\sum_{c \in N} \exp(\psi_j^T \varphi_{c'})}$$

Specifically, we parameterize the variational distribution using a neural network as follows (\odot denotes element-wise multiplication):

$$q_{\phi,\psi}(z=j|c,w) = \frac{\exp((\phi_w \odot \phi_c)^T \psi_j)}{\sum_{i=1}^K \exp((\phi_w \odot \phi_c)^T \psi_i)}$$

It refactors the sampling operation into a deterministic function.

$$z = \underset{i}{argmax} \{G_i + log(\pi_i)\}$$

where $G_i \sim Gumbel(0,1)$. To pass gradients back, Straight-through estimator is used, which is basically using softmax to approximate the argmax operation during back propagation.

Community-smoothness Regularization

Introduction

vGraph add the following regularization term to ensure that connected nodes tend to be in the same community:

$$\mathcal{L}_{reg} = \lambda \sum_{(w,c) \in E} \alpha_{w,c} \cdot d(p(z|c), p(z|w))$$

where λ is a tunable hyperparameter, $d(\cdot, \cdot)$ is the distance measure (squared difference in the experiment). α_{wc} is given by:

$$\alpha_{w,c} = \frac{|N(w) \cap N(c)|}{|N(w) \cup N(c)|}$$

where N(w) is the set of neighbors of w. The intuition behind this is that $\alpha_{w,c}$ serves as a similarity measure and the Jaccard's coefficient is used for this metric.

Experiment Setup

- ▶ 20 standard graph datasets.
- ▶ 3 tasks: overlaping community detection, non-overlaping community detection, and vertex classification.

Overlapping community detection

Table 2: Evaluation (in terms of F1-Score and Jaccard Similarity) on networks with overlapping ground-truth communities. NA means the task is not completed in 24 hours. In order to evaluate the effectiveness of smoothness regularization, we show the result of our model with (vGraph+) and without the regularization.

	F1-score								Jaccard						
Dataset	Bigclam	CESNA	Circles	SVI	vGraph	vGraph+	Bigclam	CESNA	Circles	SVI	vGraph	vGraph+			
facebook0	0.2948	0.2806	0.2860	0.2810	0.2440	0.2606	0.1846	0.1725	0.1862	0.1760	0.1458	0.1594			
facebook107	0.3928	0.3733	0.2467	0.2689	0.2817	0.3178	0.2752	0.2695	0.1547	0.1719	0.1827	0.2170			
facebook1684	0.5041	0.5121	0.2894	0.3591	0.4232	0.4379	0.3801	0.3871	0.1871	0.2467	0.2917	0.3272			
facebook1912	0.3493	0.3474	0.2617	0.2804	0.2579	0.3750	0.2412	0.2394	0.1672	0.2010	0.1855	0.2796			
facebook3437	0.1986	0.2009	0.1009	0.1544	0.2087	0.2267	0.1148	0.1165	0.0545	0.0902	0.1201	0.1328			
facebook348	0.4964	0.5375	0.5175	0.4607	0.5539	0.5314	0.3586	0.4001	0.3927	0.3360	0.4099	0.4050			
facebook3980	0.3274	0.3574	0.3203	NA	0.4450	0.4150	0.2426	0.2645	0.2097	NA	0.3376	0.2933			
facebook414	0.5886	0.6007	0.4843	0.3893	0.6471	0.6693	0.4713	0.4732	0.3418	0.2931	0.5184	0.5587			
facebook686	0.3825	0.3900	0.5036	0.4639	0.4775	0.5379	0.2504	0.2534	0.3615	0.3394	0.3272	0.3856			
facebook698	0.5423	0.5865	0.3515	0.4031	0.5396	0.5950	0.4192	0.4588	0.2255	0.3002	0.4356	0.4771			
Youtube	0.4370	0.3840	0.3600	0.4140	0.5070	0.5220	0.2929	0.2416	0.2207	0.2867	0.3434	0.3480			
Amazon	0.4640	0.4680	0.5330	0.4730	0.5330	0.5320	0.3505	0.3502	0.3671	0.3643	0.3689	0.3693			
Dblp	0.2360	0.3590	NA	NA	0.3930	0.3990	0.1384	0.2226	NA	NA	0.2501	0.2505			
Coauthor-CS	0.3830	0.4200	NA	0.4070	0.4980	0.5020	0.2409	0.2682	NA	0.2972	0.3517	0.3432			

Non-overlapping community detection

Table 3: Evaluation (in terms of NMI and Modularity) on networks with non-overlapping ground-truth communities.

NMI								Modularity						
Dataset	MF	deepwalk	LINE	node2vec	ComE	vGraph	MF	deepwalk	LINE	node2vec	ComE	vGraph		
cornell	0.0632	0.0789	0.0697	0.0712	0.0732	0.0803	0.4220	0.4055	0.2372	0.4573	0.5748	0.5792		
texas	0.0562	0.0684	0.1289	0.0655	0.0772	0.0809	0.2835	0.3443	0.1921	0.3926	0.4856	0.4636		
washington	0.0599	0.0752	0.0910	0.0538	0.0504	0.0649	0.3679	0.1841	0.1655	0.4311	0.4862	0.5169		
wisconsin	0.0530	0.0759	0.0680	0.0749	0.0689	0.0852	0.3892	0.3384	0.1651	0.5338	0.5500	0.5706		
cora	0.2673	0.3387	0.2202	0.3157	0.3660	0.3445	0.6711	0.6398	0.4832	0.5392	0.7010	0.7358		
citeseer	0.0552	0.1190	0.0340	0.1592	0.2499	0.1030	0.6963	0.6819	0.4014	0.4657	0.7324	0.7711		

Vertex classification

Table 4: Results of node classification on 6 datasets.

Macro-F1								Micro-F1						
Datasets	MF	DeepWalk	LINE	Node2Vec	ComE	vGraph	MF	DeepWalk	LINE	Node2Vec	ComE	vGraph		
Cornell	13.05	22.69	21.78	20.70	19.86	29.76	15.25	33.05	23.73	24.58	25.42	37.29		
Texas	8.74	21.32	16.33	14.95	15.46	26.00	14.03	40.35	27.19	25.44	33.33	47.37		
Washington	15.88	18.45	13.99	21.23	15.80	30.36	15.94	34.06	25.36	28.99	33.33	34.78		
Wisconsin	14.77	23.44	19.06	18.47	14.63	29.91	18.75	38.75	28.12	25.00	32.50	35.00		
Cora	11.29	13.21	11.86	10.52	12.88	16.23	12.79	22.32	14.59	27.74	28.04	24.35		
Citeseer	14.59	16.17	15.99	16.68	12.88	17.88	15.79	19.01	16.80	20.82	19.42	20.42		

Visualization

Figure 2: In panel (a) we visualize the result on the facebook107 dataset using vGraph. In panel (b) we visualize the result on Dblp-full dataset using vGraph. The coordinates of the nodes are determined by t-SNE of the node embeddings.

Conclusion

This paper presented a probabilistic method for jointly solving community detection and node representation learning. Experiments show that it performs well for both tasks.

Thank you!