

Report No:CCISE180303401

# FCC REPORT

Applicant: Chengdu Ebyte Electronic Technology Co., Ltd.

Address of Applicant: Innovation Center D347,4# XI-XIN road, High-tech

district(west), Chengdu, Sichuan, China

**Equipment Under Test (EUT)** 

**Product Name:** Wireless transceiver module

Model No.: E30

Trade Mark: EBYTE

FCC ID: 2ALPH-E30

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Mar., 2018

**Date of Test:** 12 Mar., to 27 Mar., 2018

Date of report issued: 28 Mar., 2018

Test Result: PASS \*

#### Authorized Signature:



#### Bruce Zhang

#### Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.





### 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 28 Mar., 2018 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Tested by: Date: 28 Mar., 2018

Test Engineer

Reviewed by: 28 Mar., 2018

Project Engineer



# 3 Contents

|   |       |                                | Page |
|---|-------|--------------------------------|------|
| 1 | COV   | /ER PAGE                       | 1    |
| 2 | VER   | SION                           | 2    |
| 3 |       | ITENTS                         |      |
| 4 | TES   | T SUMMARY                      | 4    |
| 5 | GEN   | IERAL INFORMATION              | 5    |
|   | 5.1   | CLIENT INFORMATION             | -    |
|   | 5.1   | GENERAL DESCRIPTION OF E.U.T   |      |
|   | 5.3   | TEST ENVIRONMENT AND MODE      |      |
|   | 5.4   | DESCRIPTION OF SUPPORT UNITS   |      |
|   | 5.5   | MEASUREMENT UNCERTAINTY        |      |
|   | 5.6   | LABORATORY FACILITY            |      |
|   | 5.7   | LABORATORY LOCATION            |      |
|   | 5.8   | TEST INSTRUMENTS LIST          |      |
| 6 | TES   | T RESULTS AND MEASUREMENT DATA | 9    |
|   | 6.1   | ANTENNA REQUIREMENT:           | 9    |
|   | 6.2   | CONDUCTED OUTPUT POWER         | 10   |
|   | 6.3   | OCCUPY BANDWIDTH               | 15   |
|   | 6.4   | POWER SPECTRAL DENSITY         | 17   |
|   | 6.5   | BAND EDGE                      |      |
|   | 6.5.1 | Conducted Emission Method      | 19   |
|   | 6.5.2 | 2 Radiated Emission Method     | 21   |
|   | 6.6   | Spurious Emission              | 27   |
|   | 6.6.1 |                                |      |
|   | 6.6.2 | Radiated Emission Method       | 29   |
| 7 | TES   | T SETUP PHOTO                  | 36   |
| 8 | FUT   | CONSTRUCTIONAL DETAILS         | 37   |





# 4 Test Summary

| Test Item                                     | Section in CFR 47   | Result |
|-----------------------------------------------|---------------------|--------|
| Antenna requirement                           | 15.203 & 15.247 (c) | Pass   |
| AC Power Line Conducted Emission              | 15.207              | Pass   |
| Conducted Peak Output Power                   | 15.247 (b)(3)       | Pass   |
| 6dB Emission Bandwidth 99% Occupied Bandwidth | 15.247 (a)(2)       | Pass   |
| Power Spectral Density                        | 15.247 (e)          | Pass   |
| Band Edge                                     | 15.247(d)           | Pass   |
| Spurious Emission                             | 15.205 & 15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.

N/A: N/A: Not Applicable.



# 5 General Information

### **5.1 Client Information**

| Applicant:           | Chengdu Ebyte Electronic Technology Co., Ltd                                            |  |
|----------------------|-----------------------------------------------------------------------------------------|--|
| Address:             | Innovation Center D347,4# XI-XIN road, High-tech district(west),Chengdu, Sichuan, China |  |
| Manufacturer/Factor: | Chengdu Ebyte Electronic Technology Co., Ltd.                                           |  |
| Address:             | Innovation Center D347,4# XI-XIN road, High-tech district(west),Chengdu, Sichuan, China |  |

# 5.2 General Description of E.U.T.

| Product Name:          | Wireless transceiver module |
|------------------------|-----------------------------|
| Model No.:             | E30                         |
| Operation Frequency:   | 907 MHz∼922.5 MHz           |
| Channel numbers:       | 31                          |
| Modulation technology: | FSK                         |
| Antenna Type:          | External Antenna            |
| Antenna gain:          | 2.0dBi                      |
| Power supply:          | DC 5V                       |

| Operation Frequency each of channel for FSK |                                              |         |           |         |           |  |  |
|---------------------------------------------|----------------------------------------------|---------|-----------|---------|-----------|--|--|
| Channel                                     | Frequency                                    | Channel | Frequency | Channel | Frequency |  |  |
| 0                                           | 907.0MHz                                     | 13      | 913.5MHz  | 26      | 920.0MHz  |  |  |
| 1                                           | 907.5MHz                                     | 14      | 914.0MHz  | 27      | 920.5MHz  |  |  |
| 2                                           | 908.0MHz                                     | 15      | 914.5MHz  | 28      | 921.0MHz  |  |  |
| 3                                           | 908.5MHz                                     | 16      | 915.0MHz  | 29      | 921.5MHz  |  |  |
| 4                                           | 909.0MHz                                     | 17      | 915.5MHz  | 30      | 922.0MHz  |  |  |
| 5                                           | 909.5MHz                                     | 18      | 916.0MHz  | 31      | 922.5MHz  |  |  |
| 6                                           | 910.0MHz                                     | 19      | 916.5MHz  |         |           |  |  |
| 7                                           | 910.5MHz                                     | 20      | 917.0MHz  |         |           |  |  |
| 8                                           | 911.0MHz                                     | 21      | 917.5MHz  |         |           |  |  |
| 9                                           | 911.5MHz                                     | 22      | 918.0MHz  |         |           |  |  |
| 10                                          | 912.0MHz                                     | 23      | 918.5MHz  |         |           |  |  |
| 11                                          | 912.5MHz                                     | 24      | 919.0MHz  |         |           |  |  |
| 12                                          | 913.0MHz                                     | 25      | 919.5MHz  |         |           |  |  |
| Remark: Channel 0,                          | Remark: Channel 0, 16 & 49 selected for FSK. |         |           |         |           |  |  |



#### 5.3 Test environment and mode

| Operating Environment: |                                                         |
|------------------------|---------------------------------------------------------|
| Temperature:           | 24.0 °C                                                 |
| Humidity:              | 54 % RH                                                 |
| Atmospheric Pressure:  | 1010 mbar                                               |
| Test mode:             |                                                         |
| Operation mode         | Keep the EUT in continuous transmitting with modulation |

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

### 5.4 Description of Support Units

| Manufacturer | Description | Model         | S/N     | FCC ID/DoC |
|--------------|-------------|---------------|---------|------------|
| LENOVO       | Laptop      | SL510         | 2847A65 | DoC        |
| EBYTE        | Test suite  | E25 D1        | N/A     | N/A        |
| Sunshiny     | Adapter     | XS-1201000SCN | N/A     | N/A        |

### 5.5 Measurement Uncertainty

| Parameters                          | Expanded Uncertainty |
|-------------------------------------|----------------------|
| Conducted Emission (9kHz ~ 30MHz)   | 2.14 dB (k=2)        |
| Radiated Emission (9kHz ~ 30MHz)    | 4.24 dB (k=2)        |
| Radiated Emission (30MHz ~ 1000MHz) | 4.35 dB (k=2)        |
| Radiated Emission (1GHz ~ 18GHz)    | 4.44 dB (k=2)        |
| Radiated Emission (18GHz ~ 26.5GHz) | 4.56 dB (k=2)        |

# 5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <a href="https://portal.a2la.org/scopepdf/4346-01.pdf">https://portal.a2la.org/scopepdf/4346-01.pdf</a>

# 5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Shenzhen ZhongjianNanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Project No.: CCISE1803034

Report No: CCISE180303401



Report No: CCISE180303401

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com



# 5.8 Test Instruments list

| Radiated Emission: |                 |               |            |                         |                          |  |
|--------------------|-----------------|---------------|------------|-------------------------|--------------------------|--|
| Test Equipment     | Manufacturer    | Model No.     | Serial No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date (mm-dd-yy) |  |
| 3m SAC             | SAEMC           | 9m*6m*6m      | 966        | 07-22-2017              | 07-21-2020               |  |
| BiConiLog Antenna  | SCHWARZBECK     | VULB9163      | 497        | 02-25-2018              | 02-24-2019               |  |
| Horn Antenna       | SCHWARZBECK     | BBHA9120D     | 916        | 02-25-2018              | 02-24-2019               |  |
| EMI Test Software  | AUDIX           | E3            | 6.110919b  | N/A                     | N/A                      |  |
| Pre-amplifier      | HP              | 8447D         | 2944A09358 | 03-07-2018              | 03-06-2019               |  |
| Pre-amplifier      | CD              | PAP-1G18      | 11804      | 03-07-2018              | 03-06-2019               |  |
| Spectrum analyzer  | Rohde & Schwarz | FSP30         | 101454     | 03-07-2018              | 03-06-2019               |  |
| EMI Test Receiver  | Rohde & Schwarz | ESRP7         | 101070     | 03-07-2018              | 03-06-2019               |  |
| Simulated Station  | Anritsu         | MT8820C       | 6201026545 | 03-07-2018              | 03-06-2019               |  |
| Cable              | ZDECL           | Z108-NJ-NJ-81 | 1608458    | 03-07-2018              | 03-06-2019               |  |
| Cable              | MICRO-COAX      | MFR64639      | K10742-5   | 03-07-2018              | 03-06-2019               |  |
| Cable              | SUHNER          | SUCOFLEX100   | 58193/4PE  | 03-07-2018              | 03-06-2019               |  |

| Conducted Emission: |                 |            |             |                         |                             |
|---------------------|-----------------|------------|-------------|-------------------------|-----------------------------|
| Test Equipment      | Manufacturer    | Model No.  | Serial No.  | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| EMI Test Receiver   | Rohde & Schwarz | ESCI       | 101189      | 03-07-2018              | 03-06-2019                  |
| Pulse Limiter       | SCHWARZBECK     | OSRAM 2306 | 9731        | 03-07-2018              | 03-06-2019                  |
| LISN                | CHASE           | MN2050D    | 1447        | 02-25-2018              | 02-24-2019                  |
| LISN                | Rohde & Schwarz | ESH3-Z5    | 8438621/010 | 07-21-2017              | 07-20-2018                  |
| ISN                 | Schwarzbeck     | CAT3 8158  | CCIS0185    | 02-25-2018              | 02-24-2019                  |
| ISN                 | Schwarzbeck     | CAT5 8158  | CCIS0186    | 02-25-2018              | 02-24-2019                  |
| ISN                 | Schwarzbeck     | NTFM 8158  | CCIS0187    | 02-25-2018              | 02-24-2019                  |
| Cable               | HP              | 10503A     | N/A         | 03-07-2018              | 03-06-2019                  |
| EMI Test Software   | AUDIX           | E3         | 6.110919b   | N/A                     | N/A                         |

Project No.:CCISE1803034



### 6 Test results and Measurement Data

## 6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### **E.U.T Antenna:**

The antenna is an external antenna which cannot replace by end-user, the best case gain of the antenna is 2.0 dBi.







# 6.2 Conducted Emission

| Test Requirement:           | FCC Part 15 C Section 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 207             |                      |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|--|
| Test Method:                | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                      |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                      |  |
| Test Frequency Range:       | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                      |  |
| Class / Severity:           | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                      |  |
| Receiver setup:             | RBW=9kHz, VBW=30kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                      |  |
| Limit:                      | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | (dBuV)               |  |
|                             | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quasi-peak      | Average<br>56 to 46* |  |
|                             | 0.15-0.5<br>0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66 to 56*<br>56 | 46                   |  |
|                             | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60              | 50                   |  |
|                             | * Decreases with the logar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 00                   |  |
| Test procedure  Test setup: | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.</li> </ol> |                 |                      |  |
| . oc. oc.up.                | Reference Plane  LISN  40cm  80cm  Filter  AC power  Equipment  Test table/Insulation plane  Remark  E.U.T: Equipment Under Test  LISN: Line Impedence Stabilization Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                      |  |
| Test Instruments:           | Test table height=0.8m  Refer to section 5.8 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                      |  |
| Test mode:                  | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                      |  |
| Test results:               | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                      |  |



#### **Measurement Data:**



#### Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.





#### Notes

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.



# **6.3 Conducted Output Power**

| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                                    |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB 558074                                       |  |  |  |  |
| Limit:            | 30dBm                                                                 |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |
| Test Instruments: | Refer to section 5.8 for details                                      |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |  |
| Test results:     | Passed                                                                |  |  |  |  |

#### **Measurement Data:**

| Test CH | Maximum Conducted Output Power (dBm) | Limit(dBm) | Result |  |  |
|---------|--------------------------------------|------------|--------|--|--|
| Lowest  | 20.85                                |            |        |  |  |
| Middle  | 20.25                                | 30.00      | Pass   |  |  |
| Highest | 20.22                                |            |        |  |  |





#### Test plot as follows:





# 6.4 Occupy Bandwidth

| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                                    |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB 558074                                       |  |  |  |
| Limit:            | >500kHz                                                               |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |
| Test Instruments: | Refer to section 5.8 for details                                      |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |
| Test results:     | Passed                                                                |  |  |  |

#### **Measurement Data:**

| Test CH | 6dB Emission Bandwidth (MHz) | Limit(kHz) | Result |
|---------|------------------------------|------------|--------|
| Lowest  | 0.796                        |            |        |
| Middle  | 0.804                        | >500       | Pass   |
| Highest | 0.792                        |            |        |
| Test CH | 99% Occupy Bandwidth (MHz)   | Limit(kHz) | Result |
| Lowest  | 0.824                        |            |        |
| Middle  | 0.820                        | N/A        | N/A    |
| Highest | 0.820                        |            |        |





#### Test plot as follows:





# 6.5 Power Spectral Density

| Test Requirement: | FCC Part15 C Section 15.247 (e)                                       |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04              |
| Limit:            | 8dBm                                                                  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.8 for details                                      |
| Test mode:        | Refer to section 5.3 for details                                      |
| Test results:     | Passed                                                                |

#### **Measurement Data:**

| Test CH | Power Spectral Density (dBm) | Limit(dBm) | Result |
|---------|------------------------------|------------|--------|
| Lowest  | -19.40                       |            |        |
| Middle  | Middle -19.82                |            | Pass   |
| Highest | -19.02                       |            |        |





#### Test plots as follow:





# 6.6 Band Edge

### 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB 558074                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       |                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                   | Spectrum Analyzer                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                   | Non-Conducted Table                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                   | Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Test Instruments: | Refer to section 5.8 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |





#### Test plots as follow:





### 6.6.2 Radiated Emission Method

| Test Requirement:     | FCC Part15 C Se                                                                                                                                                                                                                                                                   | ction 15.209 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd 15.205                                                                                                                                                                                   |                                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Method:          | ANSI C63.10: 2013and KDB 558074                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |                                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Test Frequency Range: | 960MHz to 1.240                                                                                                                                                                                                                                                                   | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                             |                                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Test site:            | Measurement Dis                                                                                                                                                                                                                                                                   | tance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                             |                                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                         | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RBW                                                                                                                                                                                         | VBW                                                                                                             |                                                                                                               | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Receiver Setup.       | 960MHz-1GHz                                                                                                                                                                                                                                                                       | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120kHz                                                                                                                                                                                      | 300kHz                                                                                                          |                                                                                                               | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                       |                                                                                                                                                                                                                                                                                   | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                        | 3MHz                                                                                                            |                                                                                                               | Peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                        | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1MHz                                                                                                                                                                                        | 3MHz                                                                                                            |                                                                                                               | Average Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Limit:                | Frequency                                                                                                                                                                                                                                                                         | Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | it (dBuV/m @                                                                                                                                                                                | 3m)                                                                                                             |                                                                                                               | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                       | 960MHz-1GH                                                                                                                                                                                                                                                                        | ·lz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54.00                                                                                                                                                                                       |                                                                                                                 | G                                                                                                             | uasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                       | Above 1GH:                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54.00                                                                                                                                                                                       |                                                                                                                 |                                                                                                               | Average Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                       |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.00                                                                                                                                                                                       |                                                                                                                 |                                                                                                               | Peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Test Procedure:       | /1.5m(above was rotated 3 radiation.  2. The EUT was antenna, whi tower.  3. The antenna ground to de horizontal an measuremer  4. For each sus and thenthe sthe rotatable maximum res  5. The test-rece SpecifiedBar  6. If the emission limitspecified EUT wouldbe margin would | 1GHz) above 360 degrees to 3 meters chwas mounted height is varied termine the made vertical polant. Spected emission antenna was towas turned from a compart of the spected of the level o | the groundate odetermine the away from the away from the don the top of the don the top of the don't have a set to Peal aximum Hold EUT in peak recould be stopperwise the errore by one us | a 3 mee positi e interior a va eter to of the e anter vas arr to 360 k Dete Mode. mode v oed an missior ing pea | eter chion of ference riable- four rifield sonna are degreed to the pass 10 degreed that the pass that ak, qu | te-receiving theight antenna meters above the strength. Both re set to make the did to its worst case ter to 4 meters and tes to find the meters and the meters and the set of the set to the set of t |  |
| Test setup:           | Below 1GHz  EUT Tur Tab                                                                                                                                                                                                                                                           | 3m <4m 0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                             |                                                                                                                 | A                                                                                                             | ntenna Tower<br>Search<br>Antenna<br>est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |











#### **Below 1GHz:**



#### Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.







#### Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.





#### **Above 1GHz:**



- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.







#### Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.7 Spurious Emission

### 6.7.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB 558074                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       |                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                   | Spectrum Analyzer                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                   | E.U.T                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                   | Non-Conducted Table                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                   | Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test Instruments: | Refer to section 5.8 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |





#### Test plot as follows:





### 6.7.2 Radiated Emission Method

| Test Requirement:     | FCC Part15 C S           | Section 15.20 | 9 and 15.205  |        |                  |  |  |  |
|-----------------------|--------------------------|---------------|---------------|--------|------------------|--|--|--|
| Test Method:          | ANSI C63.10:2013         |               |               |        |                  |  |  |  |
| Test Frequency Range: | 9KHz to 25GHz            |               |               |        |                  |  |  |  |
| Test site:            | Measurement Distance: 3m |               |               |        |                  |  |  |  |
| Receiver setup:       | Frequency                | Detector      | RBW           | VBW    | Remark           |  |  |  |
| ·                     | 30MHz-1GHz               | Quasi-peak    | 120KHz        | 300KHz | Quasi-peak Value |  |  |  |
|                       | Above 1GHz               | Peak          | 1MHz          | 3MHz   | Peak Value       |  |  |  |
|                       | Above 1GHz               | RMS           | 1MHz          | 3MHz   | Average Value    |  |  |  |
| Limit:                | Frequency                |               | Limit (dBuV/m | @3m)   | Remark           |  |  |  |
|                       | 30MHz-88MHz              |               | 40.0          |        | Quasi-peak Value |  |  |  |
|                       | 88MHz-216MHz             |               | 43.5          |        | Quasi-peak Value |  |  |  |
|                       | 216MHz-960MH             | lz            | 46.0          |        | Quasi-peak Value |  |  |  |
|                       | 960MHz-1GHz              |               | 54.0          |        | Quasi-peak Value |  |  |  |
|                       | Above 1GHz               |               |               |        | Average Value    |  |  |  |
|                       |                          |               |               |        |                  |  |  |  |
| Test Procedure:       |                          |               |               |        |                  |  |  |  |











Measurement Data (worst case): (Channel Low mid high all have been tested, worst case of below 1GHz is only reported): Below 1GHz:



- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





#### **Above 1GHz:**

| Test channel: Lowest channel |                         |                             |                       |                          |                   |                        |                       |              |
|------------------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value                   |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz)           | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 1814.00                      | 50.26                   | 25.05                       | 4.13                  | 41.25                    | 38.19             | 74.00                  | -35.81                | Vertical     |
| 2721.00                      | 51.26                   | 26.35                       | 5.07                  | 41.74                    | 40.94             | 74.00                  | -33.06                | Vertical     |
| 3628.00                      | 45.26                   | 27.72                       | 5.92                  | 41.58                    | 37.32             | 74.00                  | -36.68                | Vertical     |
| 4535.00                      | 48.41                   | 29.47                       | 6.84                  | 42.08                    | 42.64             | 74.00                  | -31.36                | Vertical     |
| 5442.00                      | 51.69                   | 30.54                       | 7.16                  | 41.85                    | 47.54             | 74.00                  | -26.46                | Vertical     |
| 1814.00                      | 52.12                   | 25.10                       | 4.12                  | 41.21                    | 40.13             | 74.00                  | -33.87                | Horizontal   |
| 2721.00                      | 51.39                   | 26.35                       | 5.07                  | 41.74                    | 41.07             | 74.00                  | -32.93                | Horizontal   |
| 3628.00                      | 48.29                   | 27.72                       | 5.92                  | 41.58                    | 40.35             | 74.00                  | -33.65                | Horizontal   |
| 4535.00                      | 50.19                   | 29.47                       | 6.84                  | 42.08                    | 36.48             | 74.00                  | -37.52                | Horizontal   |
| 5442.00                      | 55.36                   | 30.54                       | 7.18                  | 41.85                    | 51.23             | 74.00                  | -22.77                | Horizontal   |
|                              |                         |                             | ,                     | Average valu             | ıe                |                        |                       |              |
| Frequency<br>(MHz)           | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 1814.00                      | 48.25                   | 25.05                       | 4.13                  | 41.25                    | 36.18             | 54.00                  | -17.82                | Vertical     |
| 2721.00                      | 48.95                   | 26.35                       | 5.07                  | 41.74                    | 38.63             | 54.00                  | -15.37                | Vertical     |
| 3628.00                      | 41.25                   | 27.72                       | 5.92                  | 41.58                    | 33.31             | 54.00                  | -20.69                | Vertical     |
| 4535.00                      | 46.32                   | 29.47                       | 6.84                  | 42.08                    | 40.55             | 54.00                  | -13.45                | Vertical     |
| 5442.00                      | 50.16                   | 30.54                       | 7.16                  | 41.85                    | 46.01             | 54.00                  | -7.99                 | Vertical     |
| 1814.00                      | 41.15                   | 25.10                       | 4.12                  | 41.21                    | 28.23             | 54.00                  | -25.77                | Horizontal   |
| 2721.00                      | 42.26                   | 26.35                       | 5.07                  | 41.74                    | 31.94             | 54.00                  | -22.06                | Horizontal   |
| 3628.00                      | 42.55                   | 27.72                       | 5.92                  | 41.58                    | 34.61             | 54.00                  | -19.39                | Horizontal   |
| 4535.00                      | 42.74                   | 29.47                       | 6.84                  | 42.08                    | 36.97             | 54.00                  | -17.03                | Horizontal   |
| 5442.00                      | 41.98                   | 30.54                       | 7.18                  | 41.85                    | 37.85             | 54.00                  | -16.15                | Horizontal   |

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

<sup>2.</sup> The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test channel: Middle channel |                         |                             |                       |                          |                   |                        |                       |              |
|------------------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value                   |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz)           | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 1830.00                      | 51.26                   | 25.05                       | 4.13                  | 41.25                    | 39.19             | 74.00                  | -34.81                | Vertical     |
| 2745.00                      | 52.25                   | 26.35                       | 5.07                  | 41.74                    | 41.93             | 74.00                  | -32.07                | Vertical     |
| 3660.00                      | 45.75                   | 27.72                       | 5.92                  | 41.58                    | 37.81             | 74.00                  | -36.19                | Vertical     |
| 4575.00                      | 47.16                   | 29.47                       | 6.84                  | 42.08                    | 41.39             | 74.00                  | -32.61                | Vertical     |
| 5490.00                      | 52.26                   | 30.54                       | 7.16                  | 41.85                    | 48.11             | 74.00                  | -25.89                | Vertical     |
| 1830.00                      | 51.25                   | 25.10                       | 4.12                  | 41.21                    | 39.26             | 74.00                  | -34.74                | Horizontal   |
| 2745.00                      | 52.45                   | 26.35                       | 5.07                  | 41.74                    | 42.13             | 74.00                  | -31.87                | Horizontal   |
| 3660.00                      | 49.62                   | 27.72                       | 5.92                  | 41.58                    | 41.68             | 74.00                  | -32.32                | Horizontal   |
| 4575.00                      | 49.75                   | 29.47                       | 6.84                  | 42.08                    | 36.48             | 74.00                  | -37.52                | Horizontal   |
| 5490.00                      | 54.12                   | 30.54                       | 7.18                  | 41.85                    | 49.99             | 74.00                  | -24.01                | Horizontal   |
|                              |                         |                             |                       | Average valu             | ie                |                        |                       |              |
| Frequency<br>(MHz)           | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 1830.00                      | 48.32                   | 25.05                       | 4.13                  | 41.25                    | 36.25             | 54.00                  | -17.75                | Vertical     |
| 2745.00                      | 47.18                   | 26.35                       | 5.07                  | 41.74                    | 36.86             | 54.00                  | -17.14                | Vertical     |
| 3660.00                      | 42.15                   | 27.72                       | 5.92                  | 41.58                    | 34.21             | 54.00                  | -19.79                | Vertical     |
| 4575.00                      | 46.65                   | 29.47                       | 6.84                  | 42.08                    | 40.88             | 54.00                  | -13.12                | Vertical     |
| 5490.00                      | 51.48                   | 30.54                       | 7.16                  | 41.85                    | 47.33             | 54.00                  | -6.67                 | Vertical     |
| 1830.00                      | 41.17                   | 25.10                       | 4.12                  | 41.21                    | 28.23             | 54.00                  | -25.77                | Horizontal   |
| 2745.00                      | 42.25                   | 26.35                       | 5.07                  | 41.74                    | 31.93             | 54.00                  | -22.07                | Horizontal   |
| 3660.00                      | 42.52                   | 27.72                       | 5.92                  | 41.58                    | 34.58             | 54.00                  | -19.42                | Horizontal   |
| 4575.00                      | 42.16                   | 29.47                       | 6.84                  | 42.08                    | 36.39             | 54.00                  | -17.61                | Horizontal   |
| 5490.00                      | 41.47                   | 30.54                       | 7.18                  | 41.85                    | 37.34             | 54.00                  | -16.66                | Horizontal   |

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

<sup>2.</sup> The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test channel: Highest channel |                         |                             |                       |                          |                   |                        |                       |              |
|-------------------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value                    |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz)            | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 1845.00                       | 50.10                   | 24.95                       | 4.17                  | 41.31                    | 40.33             | 74.00                  | -33.67                | Vertical     |
| 2767.50                       | 50.25                   | 26.50                       | 5.10                  | 41.70                    | 43.03             | 74.00                  | -30.97                | Vertical     |
| 3690.00                       | 45.68                   | 27.84                       | 5.98                  | 41.66                    | 40.82             | 74.00                  | -33.18                | Vertical     |
| 4612.50                       | 48.48                   | 29.90                       | 6.89                  | 42.12                    | 46.73             | 74.00                  | -27.27                | Vertical     |
| 5535.00                       | 51.55                   | 30.50                       | 7.24                  | 41.81                    | 51.41             | 74.00                  | -22.59                | Vertical     |
| 1845.00                       | 52.86                   | 24.95                       | 4.17                  | 41.31                    | 43.09             | 74.00                  | -30.91                | Horizontal   |
| 2767.50                       | 52.00                   | 26.50                       | 5.10                  | 41.70                    | 44.78             | 74.00                  | -29.22                | Horizontal   |
| 3690.00                       | 49.75                   | 27.84                       | 5.98                  | 41.66                    | 44.89             | 74.00                  | -29.11                | Horizontal   |
| 4612.50                       | 49.97                   | 29.90                       | 6.89                  | 42.12                    | 48.22             | 74.00                  | -25.78                | Horizontal   |
| 5535.00                       | 55.80                   | 30.50                       | 7.24                  | 41.81                    | 55.66             | 74.00                  | -18.34                | Horizontal   |
| Average value                 |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz)            | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 1845.00                       | 47.21                   | 24.95                       | 4.17                  | 41.31                    | 37.44             | 54.00                  | -16.56                | Vertical     |
| 2767.50                       | 47.54                   | 26.50                       | 5.10                  | 41.70                    | 40.32             | 54.00                  | -13.68                | Vertical     |
| 3690.00                       | 40.26                   | 27.84                       | 5.98                  | 41.66                    | 35.40             | 54.00                  | -18.60                | Vertical     |
| 4612.50                       | 45.58                   | 29.90                       | 6.89                  | 42.12                    | 43.83             | 54.00                  | -10.17                | Vertical     |
| 5535.00                       | 49.43                   | 30.50                       | 7.24                  | 41.81                    | 49.29             | 54.00                  | -4.71                 | Vertical     |
| 1845.00                       | 40.22                   | 25.10                       | 4.12                  | 41.21                    | 28.23             | 54.00                  | -25.77                | Horizontal   |
| 2767.50                       | 43.37                   | 26.35                       | 5.07                  | 41.74                    | 33.05             | 54.00                  | -20.95                | Horizontal   |
| 3690.00                       | 41.29                   | 27.72                       | 5.92                  | 41.58                    | 33.35             | 54.00                  | -20.65                | Horizontal   |
| 4612.50                       | 42.25                   | 29.47                       | 6.84                  | 42.08                    | 36.48             | 54.00                  | -17.52                | Horizontal   |
| 5535.00                       | 41.85                   | 30.54                       | 7.18                  | 41.85                    | 37.72             | 54.00                  | -16.28                | Horizontal   |

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

<sup>2.</sup> The emission levels of other frequencies are very lower than the limit and not show in test report.