Colles - Semaine 2

Exercice 1

- 1. a) Rappeler la définition de « la suite (u_n) converge vers a ».
 - b) Supposons que (u_n) est une suite réelle convergente de limite $a \in \mathbb{R}_+^*$. Démontrer qu'il existe un entier $n_0 \in \mathbb{N}$ tel que : $\forall n \geq n_0, \ u_n \geq \frac{a}{2}$.
- 2. On considère la fonction $f: x \mapsto x(1-x)$, et la suite (u_n) définie par : $\begin{cases} u_0 \in]0,1[\\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$.
 - a) Étudier les variations de f.
 - b) i. Montrer que : $\forall n \in \mathbb{N}, \ 0 < u_n < \frac{1}{n+1}$. En déduire la limite de la suite (u_n) .
 - ii. Pour tout entier naturel n, on pose $v_n = nu_n$. Montrer que la suite (v_n) est croissante. En déduire qu'elle converge et que sa limite L vérifie $L \in [0, 1]$.
 - iii. Pour tout entier naturel n, on pose $w_n = n(v_{n+1} v_n)$. Montrer que la suite (w_n) est convergente et que sa limite vaut L(1-L).
- 3. On suppose que $L \neq 1$.

Montrer en utilisant le préliminaire qu'il existe un entier naturel n_0 tel que :

$$\forall n \geqslant n_0, \ v_{n+1} - v_n \geqslant \frac{L(1-L)}{2n}.$$

En déduire que $\lim_{n\to+\infty} v_n = +\infty$.

4. En déduire que $u_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$.

Exercice 2

On considère la fonction $f: x \mapsto 2x e^x$.

- 1. a) Montrer que f réalise une bijection de [0,1] sur un ensemble que l'on déterminera.
 - b) Donner les tableaux de variations de f et de f^{-1} .
- 2. a) Vérifier qu'il existe un et un seul réel α dans [0,1], tel que $\alpha e^{\alpha}=1$.
 - **b)** Montrer que $\alpha \neq 0$.
- 3. On définit la suite (u_n) par : $\begin{cases} u_0 = \alpha \\ \forall n \in \mathbb{N}, \ u_{n+1} = f^{-1}(u_n) \end{cases}$

Montrer que, pour tout entier naturel n, u_n existe et $u_n \in]0,1]$.

- **4.** a) Montrer que pour tout réel x de [0,1], $f(x) x \ge 0$.
 - b) En déduite déduire que la suite (u_n) est décroissante.
 - c) Montrer que la suite (u_n) est convergente et qu'elle a pour limite 0.

1

Exercice 3

1. Étudier les variations de la fonction f définie sur $[0, +\infty[$ par :

$$\forall x \in [0, +\infty[, f(x) = x + e^x].$$

- 2. Montrer que pour tout $n \in \mathbb{N}^*$, l'équation $x + e^x = n$ admet une unique solution dans \mathbb{R}_+ notée u_n . Préciser la valeur de u_1 .
- 3. a) Démontrer que la suite (u_n) est strictement croissante.
 - b) La suite (u_n) est-elle majorée? En déduire la limite de (u_n) .
- 4. a) Montrer que : $\forall n \in \mathbb{N}^*, \ n \ln(n) \leqslant e^{u_n} \leqslant n$.
 - **b)** en déduire que : $u_n \underset{n \to +\infty}{\sim} \ln(n)$.
- 5. Pour tout $n \in \mathbb{N}^*$, on note $v_n = u_n \ln(n)$.
 - a) démontrer que : $\forall n \in \mathbb{N}^*, \ \mathrm{e}^{v_n} = 1 \frac{u_n}{n}.$
 - \boldsymbol{b}) En déduire un équivalent simple de v_n .