Mole Concept. Find the % H20 in gypsum salt-
$$Ca So_4 \cdot \frac{2H_2D}{2H_2D}$$
 $40+32+64+2\times18=$
 $136+36=172$

172

Ex. ej epsum sout (MgSO4.72H2O) has lotte li 60% mass find no of mydrated water.

mass find no of hydrated water.

$$60/ = \frac{18.\times \times 100}{120 + 18\times \times 100} \Rightarrow 30\times = 120 + 18\times \times 100$$

$$12\times = 120$$

$$\times = 10$$

ILLUSTRATIONS

Question: Calculate number of atoms present in 1 drop of water having volume 3.6 ml. density I Hml

Solution:

Density =
$$\frac{\text{mass}}{\text{volume}}$$

Mass = volume × density = 3.6 g

$$n_{H_2O} = \frac{3.6}{18} = 0.2$$

$$n_{atom} = 0.2 \times 3 = 0.6$$

No. of atoms =
$$0.6 \times 6 \times 10^{23} = 3.6 \times 10^{23}$$

No of a tom = molecuf Hee x NA x a tomicity

$$= 0.2 \times NA \times 3$$
$$= 0.6 NA Ane$$

MOLE

Percentage Composition:

1 mole CH₄

Mass % of C =
$$\frac{12}{16} \times 100 = \frac{1 \times 12}{16} \times 100$$

Mass % of H =
$$\frac{4}{16} \times 100 = \frac{4 \times 1}{16} \times 100$$

Mass % of element in compound

$$= \left(\frac{\text{Atomicity} \times \text{Atomic weight}}{\text{Molecular wt.}} \times 100\right)$$

MOLE

Mole Concept

If minimum molecular mass is asked, then assuming at least 1 atom per molecule of the element.

ILLUSTRATIONS

56x2 + 96x3 =0

112+ 288 = 400

Question: Determine the mass % of each element in $Fe_2(SO_4)_3$.

$$\frac{1}{100}$$
 Fe = $\frac{56 \times 2}{400} \times 100$
 $\frac{1}{100}$ Fe = $28 \frac{1}{100}$
 $\frac{8}{100} \times 100$ = $24 \frac{1}{100}$
 $\frac{1}{100} \times 100$ = $24 \frac{1}{100}$
 $\frac{1}{100} \times 100$ = $24 \frac{1}{100}$
= $48 \frac{1}{100}$

ILLUSTRATIONS

Question: Determine the mass % of each element in $Fe_2(SO_4)_3$.

Solution:

Mass % of Fe =
$$\frac{2 \times 56}{400} \times 100 = 28\%$$

Mass % of S =
$$\frac{3 \times 32}{400} \times 100 = 24\%$$

Mass % of O =
$$\frac{12 \times 16}{400} \times 100 = 48\%$$

ILLUSTRATIONS

Question: A metal M forms a metal carbonate M₂CO₃, if the carbonate contains 48% oxygen by mass, then determine the atomic wt. of metal.

$$960 = \frac{16 \times 3}{2 \text{ M} + 60} \times 100 = 48$$

$$2 \text{ M} + 60 = 100$$

$$2 \text{ M} = 40$$

$$M = 20 \text{ g/mol}$$

ILLUSTRATIONS

$$48 = \frac{3 \times 16}{\text{Mw}} \times 100$$

$$Mw = 100$$

 $2M + 12 + 48 = 100$
 $M = 20$

ILLUSTRATIONS

Question: Calculate the minimum molecular wt. of a compound that contains 28% N by mass.

Minimum moleculous mass = 50 g mol

ILLUSTRATIONS

Question: Calculate the minimum molecular wt. of a compound that contains 28% N by mass.

Solution: % weight of element = $\frac{1 \times \text{Atomic weight}}{\text{Minimum molecular weight}} \times 100$

$$28 = \frac{14 \times 100}{\text{Minimum Mw}}$$

Minimum Mw = 50

ILLUSTRATIONS

Question: In blood sample, Haemoglobin contains 0.56% by mass of iron. Then calculate minimum molecular mass of Haemoglobin. If atomic mass of Fe is 56 a.m.u.

•/ Fe = Atomic mass x Atomicity

of Fe = Molecular mass

Molecular mass

$$\frac{|000}{86} \times | \times |000$$

$$X = |00000 | 9 my | or |9/mol$$

ILLUSTRATIONS

Question: In blood sample, Haemoglobin contains 0.56% by mass of iron. Then calculate minimum molecular mass of Haemoglobin. If atomic mass of Fe is 56 a.m.u.

Solution: % weight of element = $\frac{1 \times \text{Atomic weight}}{\text{Minimum molecular weight}} \times 100$

$$0.56 = \frac{1 \times 56}{\text{Minimum Mw}} \times 100$$

Minimum $Mw = 10^4$

ILLUSTRATIONS

Question: How many number of iron atoms will be present in Haemoglobin if its molecular mass is 80000 in which 0.28% iron atoms are present. Atomic mass of iron is 56.

% Fe = Atomic mass of
$$R \times atomic ty \times 1000$$

1901ecular mass
$$26 \times 2 \times 100 \text{ yb}$$

$$26 \times 2 \times 100 \text{ yb}$$

$$2 \times 2 + 4$$

ILLUSTRATIONS

Question: How many number of iron atoms will be present in Haemoglobin if its molecular mass is 80000 in which 0.28% iron atoms are present. Atomic mass of iron is 56.

Solution: % weight of element =
$$\frac{\text{Atomicity} \times \text{Atomic weight}}{\text{Molecular weight}} \times 100$$

$$0.28 = \frac{x \times 56}{80000} \times 100$$
$$x = \frac{28 \times 8}{56}$$
$$x = 4$$

ILLUSTRATIONS

Question: Calculate the molecular weight of a compound that contains 3.5% S by mass and each molecule contains 4 atoms of S in it.

$$3.5 = \frac{32 \times 4}{\text{Moleular mass}} \times 100$$

Molecular mass =
$$\frac{12800}{3.5}$$
 = 3657.14

ILLUSTRATIONS

Question: Calculate the molecular weight of a compound that contains 3.5% S by mass and each molecule of contains 4 atoms of S in it.

Solution: % weight of element = $\frac{\text{Atomicity} \times \text{Atomic weight}}{\text{Molecular weight}} \times 100$

$$3.5 = \frac{4 \times 32}{\text{Mw}} \times 100$$

$$\text{Mw} = \frac{4 \times 32}{3.5} \times 100$$

$$\text{Mw} \mid 3650$$

ILLUSTRATIONS

% of
$$c = Atomic mass x Atomicity x 100 molecular mass

$$50.4 = \frac{12 \times x}{500} \times 100$$

$$\times = 21 \text{ atoms of } c$$$$

ILLUSTRATIONS

Question: The molecules wt. of compound is 500 a.m.u., if the compound contains 50.4% by mass, then determine the no. of carbon atoms in each molecule of compound.

Solution: % weight of element =
$$\frac{\text{Atomicity} \times \text{Atomic weight}}{\text{Molecular weight}} \times 100$$

$$50.4 = \frac{x \times 12}{500} \times 100$$
$$x = \frac{50.4 \times 5}{12}$$
$$= 4.2 \times 5$$
$$= 21$$

Mole Concept Ev. Find the change in 90 of N 19 from NH3 all hydrogen are replaced deuterium ND3

$$\frac{14}{17}$$
 N in NH3 = $\frac{14}{17}$ ×100 = 82.354.

$$f.N1 in ND_3 = \frac{14}{29} \times 100 = 70 \%$$

MOLE

Chemical Formula of a Compound

Molecular Formula:

Shows actual number of all the atoms present in a molecule.

Shows the simplest ratio of all the atoms in a molecule.

MOLE

Molecular Formula

$$C_6H_{12}O_6$$

$$C_2H_6$$

$$NH_3$$

$$N_2O_4$$

Empirical Formula

$$NO_2$$

Example:

MF

$$C_6H_6 \div 6$$

$$Mw = 78$$

EF

n	C	e	p	

Mole Co

	MIE	Moleulac	告片	Empiricul tommes
Benzene	C6H6	78	СН	la
Ethyne	ር ₂ ዘ ₂	26	CH	13
glucose	C6 H1206	180	CH20	3 6
Acetica	ud CH3cool C2H40	1 60	CH20	26
compound h	aving same on of each elem	impinial nement.	formula Ca	ntain Same

Mole Concept

MF = n [EF]

Acc. to mass conservation

mole culor mass = n Empirical toomula mass

n = molecular mass
Empinical formula mass

Ex. H compound has empirical formula CH2 and it reloculars mas -is 56 what will be molecular formula of compound.

Emploical formula mass = 12+2=14

$$n = \frac{56}{14} = 4$$
 $MF = n [EF]$
 $MF = 4[CH_b] = C4H_8$

19 Minimum molecular mass greater than 50

Mole Concept

Anz = C4Hg

by mole find

1) Emprical formula

Less than 1001

mole | SR

33.33 1

66.67

Element 1

Empirical formul CH2

24 42 56 % 7

MF = n(CH2)

M mass = n C14)

nes

Ex. et a hydrocarbon centain 33.33.1. Carbon

Mole Concept

Ex. A metallic oxide contains 40% oxygen if atomic mass of metal is 24 finid empirical

formula.

		mole	
		mole	
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		
1.1.1.1.1.1.1.1.2.1.1.1.1.1.1.1.1.1.1	1, 1, 1, 4, 1, 1, 1, 1, 1, 1	1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
		60 = 2.5	
			
34 + 34 34 34 34 34 34 34 34 34 34 34		- - 4	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
1			
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
	40		
0			
			1 + 1 + 1 + 1 + 1 + 2 + 1 + 1 + 1 + 1 +
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1.1. 1.1. 1.2. 1.1. 1.1. 1.1. 1.1. 1.1.	
** ******************	1, 1, 1, 1, 1, 1, 1, 1, 1, 1		

My Mo

Mole Concept

1st oxide

emploited formula MO2. if 4. of 0 xygen has emploited formula MO2. if 4. of 0 xygen increases to 50% find new emploited formula.

"."			
	100.00		0.00
	mak	mole	38333
the second second second			
		60/M	
	60	DO/AA	

0+1 0+0+0+0+0+0+0+0+0+0+0+0+0+			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
*. * <mark>.</mark> *. *. *. *. *. *. *. *. *. *. *. *. *.			
	1717171717171717171		
	. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
	. 1. 1. 2. 1. 1. 1. 1. 1.	4-0	
*, ! *, *, *, *, * . • . •			. 1. 1. 1. 1. 1 . 1 . 1. 1. 1. 1. 1. 1.
			<u> </u>
	• 1 1 1 1 1 1 1 1 1 1 1 1		
	# 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		

E	mak	mole	SR
	50	50/48	
0	50	50/16	

											. 1																	٠.٠		4										u		
		÷	•	-			_																										٠									
. '	_	_	_						-											٠.	٠.	_	_		-	-	-				-						_			•	٠. ٠	
										. 1	· .																															
. '	٠.	٠. ٠	٠		٠.	٠.	٠.	٠.	٠. ١	٠.,٠	•. •	٠.	٠.	٠.	٠.	٠.	٠. ٠	٠.	٠.	٠.	٠.	٠. ٠	٠	 ٠.	٠.	٠.	٠. ٠		٠.	٠.	٠. ٠		٠.	٠.	٠.	٠.	٠. ٠	٠. '			٠. ٠	
. '	٠.	٠. ٠	٠		٠.	٠.	٠.	٠.	٠. ١	٠. ٠	٠. ٠	٠.	٠.	٠.	٠.	٠.	٠. ٠	٠.	٠.	٠.	٠.	٠. ٠	٠	 ٠.	٠.	٠.	٠. ٠		٠.	٠.	٠. ٠		٠.	٠.	٠.	٠.	٠. ٠	٠. '			٠. ٠	
٠.			٠.	٠.					٠.	٠.	-											٠.	٠.				٠.				٠.	٠.						٠.				
. '	٠.	٠. ٠			٠.	٠.	٠.	٠.	٠.٠	- 4	ж.	٠.	٠.	٠.	٠.	٠.		٠.	٠.	٠.	٠.	٠.٠	٠. ٠	 ٠.	٠.	٠.	٠.٠				٠.٠		٠.	٠.	٠.	٠.						
						٠.				-		п							٠.					٠,										٠.								
											Ģ.	ч																														
													_																													
													,																- 1		48						-					
																													r	v	٠.					٠.	-		-			
										- 17	•												•							•	•		•			- 7	44	-				
											. •												٠.									•	-						- 3	•		
										•																				٠.												
																							٠.																	4		
							•		-	•				-				٠.					•																			
																			-																							
											_											-																				
						•	•	•					٠.	•	•	•			•	•	•		-		•	•				•	٠	-								,		
٠.											_	7	, ,									-	_								•	_										
		•	٠.				•	•			. ģ.	_		•	•					•	•		~		•	•				•					•	•				•		
									٠.	٠.	٠.	٠.,																														
. '	٠. '	٠. '	٠	٠. ٠	٠.	٠.	٠.	٠.	٠,	_	_		٠.	٠.	٠.	٠	٠	٠.	٠.	٠.	٠.	٠. ٠	٠	 ٠.	٠.	٠.	٠. ٠	٠	٠.	٠.	٠. ٠	٠. '	٠.	٠.	٠.	٠.	٠	٠. '	٠.	٠.	٠. ٠	
												_																														
. '	٠.	٠. ٠	٠		٠.	٠.	٠.	٠.	٠. ١	٠. ٠	т.	٠.	٠.	٠.	٠.	٠.	٠. ٠	٠.	٠.	٠.	٠.	٠. ٠	٠	 ٠.	٠.	٠.	٠. ٠		٠.	٠.	٠. ٠		٠.	٠.	٠.	٠.	٠. ٠	٠. '			٠. ٠	
			٠.	٠.					٠.	٠.		Z										٠.	٠.				٠.				٠.	٠.						٠.				
. '	٠. '	٠. '			٠.	٠.	٠.	٠.	٠. '	٠. '	٠,		٠.	٠.	٠.	٠.	٠,٠	٠.	٠.	٠.	٠.	٠. ١	٠. ٠	 ٠.	٠.	٠.	٠. ١		٠.	٠.	٠. ١		٠.	٠.	٠.	٠.	٠,٠		٠.	٠.	٠,٠	10.7
											_	•																														

	, 46	
50 48	_ le	x,50
50	16 48 MO3	3 x50 3

Mole Concept

Ex. Two element x and y form compound if equal mass of x and y are present and their atomic masses are 20,30 respectively find empirical tormula.

			<u> </u>
Ę	mak	mole	SR
X	609	60/253	3
	O .		
Y	69	60/30=2	2

X3 Y2

Mole Concept E_X . Compound of element X and Y has log of x and gogm of Y what will be empirical formulo is Atomic mass of X = 20 and Y = 40

				$\mathcal{L}_{\mathbf{r}} = \mathcal{L}_{\mathbf{r}}$
5	may mole	SR		
				1.3 ~
	10 10 20 3		- 2	t & ~ n
			*2	1.2 72
	JO 90 - 3.25	4.5	20	سيب
	40 -4.03			

1219

Mole Concept

Hw Questron +

- 1) 9f a compound contains 48 1. Carbon and oxygen cach remaining is hydrogen Find
 - D Empirical formula.
 - (ii) y compound is distintegrated into ille element 224

 L of hydrogen is produced find molecular formula.

Mole Concept

9.81 g zinc. 1.8 x10²³ atom of chromium and 0.06 gram atom of oxygen find empirical formula.

Mole Concept 3 A gasseous compound is composed of 85.7% Carbon and rest is hydrogen. if the density of gas at 1 atm. 300K is 2.28 3/1.

find molecular formula.

Mole Concept

formule is CH find molecular formula.

Mole Concept . A gasseous hydrocarbon when burnt give of compound

MOLE

$$n = \frac{78}{13} = \frac{MFW}{EFW} = 6$$

$$MF = (EF)_n$$

$$n = \frac{MFW}{EFW}$$

Determination of Empirical Formula:

Determine the simplest ratio of moles or atoms of the constituting elements.

MOLE

Example:

A compound contains 20% C, 6.67% H, 26.67% O and rest is N by mass. Find its empirical formula and molecular formula if its molecular mass is 60.

Solution:

Element	Mass	Moles
С	20	20 / 12 = 1.66
Ο	26.67	2.67 / 16 = 1.66
N	46.66	46.66 / 14 = 3.33
Н	6.67	6.67 / 1 = 6.67

MOLE

Simplest Molar Ratio:

So Empirical Formula =
$$CON_2H_4$$

Now, $EF_w = 60$ $n = \frac{MFw}{EFw} = 1$
 $MF_w = 60$
 $MF = (CON_2H_4)_1$

MOLE

Example:

Determine Empirical Formula for compound with following percentage compositions.

15.8% carbon and 84.2% Sulphur

Solution:

C :

Mass 15.8 : 84.2

Mole 15.8/12 : 84.2/32

526 10.52 EF = CS_2

MOLE

Example:

Determine Empirical Formula for compound with following percentage compositions.

40.0% Carbon, 6.7% H and 53.3 % O

Solution:

	C	Н	0
Mass	40	6.7	53.3
Mol	40/12	6.7/1	53.3/16
	3.33	6.7	3.33
	1	2	1

 $EF = CH_2O$

ILLUSTRATIONS

Question: Determine the empirical formula of a compound that contains H, C, O and N in the ratio of 1:3:4:7 by mass respectively.

ILLUSTRATIONS

Question: Determine the empirical formula of a compound that contains H, C, O and N in the ratio of 1:3:4:7 by mass respectively.

Solution:

	Н	C	O	N
Mass	1	2	Α .	7
ratio				
Mole	1	3	4	7
ratio	1	12	16	14
Mole	4		1	2
ratio	⊤	•		

Empirical Formula $\Rightarrow H_4CON_2$

ILLUSTRATIONS

Question: Determine the empirical formula of a compound that contains 60% C, 32% O and rest H by mass.

ILLUSTRATIONS

Question: Determine the empirical formula of a compound that contains 60% C, 32% O and rest H by mass.

Solution: C

Mass ratio 60 : 32 : 8

Mole $\frac{60}{12}$: $\frac{32}{16}$: $\frac{8}{1}$

Mole 5 : 2 : 8 ratio

Empirical Formula \Rightarrow C₅O₂H₈

ILLUSTRATIONS

Question : Determine the empirical formula of a compound that contains 1.5×10^{21} atoms of P and 37.5×10^{20} atoms of O.

ILLUSTRATIONS

Question: Determine the empirical formula of a compound that contains 1.5×10^{21} atoms of P and 37.5×10^{20} atoms of O.

Solution:

Empirical Formula $\Rightarrow P_2O_5$

ILLUSTRATIONS

Question: An organic compound contains C, H and N. If the % of C is 6 times of the % of H and the sum of % of C and H is found to be 1.5 times of the % of N, then determine the empirical formula of the compound.

ILLUSTRATIONS

Question: An organic compound contains C, H and N. If the % of C is 6 times of the % of H and the sum of % of C and H is found to be 1.5 times of the % of N, then determine the empirical formula of the compound.

Solution : Let mass % of H = x, Mass % of C = 6x

$$7x = 1.5$$
 (mass % o N), Mass % of N = $\frac{7x}{1.5}$

$$C ext{ } H ext{ } N$$
 $Mole ext{ } \frac{6x}{12} ext{ } \vdots ext{ } \frac{x}{1} ext{ } \vdots ext{ } \frac{7x}{1.5 \times 14}$
 $Mole ext{ } Mole ext{ } 3 ext{ } \vdots ext{ } 6 ext{ } \vdots ext{ } 2$

Empirical Formula $\Rightarrow C_3H_6N_2$

ILLUSTRATIONS

Question: Determine the empirical formula of a compound that contains 38.8% C, 16% H and rest is N by mass.

ILLUSTRATIONS

Question: Determine the empirical formula of a compound that contains 38.8% C, 16% H and rest is N by mass.

Solution:

	C	H	N
Mole	38.8	16	45.2
ratio	12	$\overline{1}$	14
	3.2	: 16 :	3.2
	1	: 5 :	1

Empirical Formula ⇒ CH₅N

ILLUSTRATIONS

Question: The empirical formula and molecular mass of a compound are CH₂O and 180 a.m.u. respectively. What will be the molecular formula of the compound?

- (1) $C_9H_{18}O_9$
- $(3) C_6 H_{12} O_6$

- (2) CH₂O
- (4) $C_2H_4O_2$

ILLUSTRATIONS

Question: The empirical formula and molecular mass of a compound are CH₂O and 180 a.m.u. respectively. What will be the molecular formula of the compound?

$$(1) C_9 H_{18} O_9$$

(2) CH₂O

(3)
$$C_6H_{12}O_6$$

 $(4) C_2H_4O_2$

Solution: Empirical formula weight = 30

Molecular formula weight = 180

$$n = 6$$

Molecular formula = (Empirical formula),

$$= (CH_2O)_6$$

$$= C_6 H_{12} O_6$$

SOME IMPORTANT DEFINITIONS

Mole Concept

(Basics of Atomic structure)

- from Nucleus.
- energy of e- increases
- velocity decreases.
- -> Size of shell increse

each Contains Some
Subshell
orbitals.

Sub orbit

Space
where
election
resides

SOME IMPORTANT DEFINITIONS

Mole Concept

+A11 shells are circular, K, L, M, N, 0 ---1 2 3 4 5 ----

· Subshells

SOME IMPORTANT DEFINITIONS

orbital / electron cloud orientation +

SOME IMPORTANT DEFINITIONS

SOME IMPORTANT DEFINITIONS

Mole Concept

