Contents

1	Infi	nite-dimensional vector spaces
	1.1	Real functions as infinite-dimensional vectors
		1.1.1 Real functions are vectors
	1.2	Endomorphisms of infinite-dimensional vector spaces
		1.2.1 Endomorphisms on real functions
		1.2.2 Examples of linear operators on real functions
	1.3	Eigenvalues and eigenvectors of infinite-dimensional vectors
		1.3.1 Spectral theorem for infinite-dimensional vector spaces
	1.4	Forms on infinite-dimensional vector spaces
		1.4.1 Forms on real functions
		1.4.2 Functionals
		1.4.3 Hilbert space
	1.5	Calculus of variations
		1.5.1 Calculus of variations
	1.6	Sort
		1.6.1 Banach space

1 Infinite-dimensional vector spaces

1.1 Real functions as infinite-dimensional vectors

1.1.1 Real functions are vectors

The real function space is a vector space because it is linear in multiplication and addition.

$$g(x) = cf(x)$$
$$h(x) = f(x) + k(x)$$

1.2 Endomorphisms of infinite-dimensional vector spaces

1.2.1 Endomorphisms on real functions

We start with our vector f(x).

$$h(x) = f(x)g(x)$$

The equivalent of the identity matrix is where g(x) = 1.

These are similar to endomorphisms where all off diagonal elements are 0.

1.2.1.1 Differentiation

$$h(x) = \frac{\delta}{\delta x} f(x)$$

1.2.1.2 Integration

$$h(x) = \int_{-\infty}^{x} f(z)dz$$

1.2.2 Examples of linear operators on real functions

For a function v we can define operators Ov.

Here we consider some examples and their properties.

1.2.2.1 Real multiplication

$$Rv = rf(x)$$

This operator is hermitian. This is equivalent to a finite operator of the form rI.

1.2.2.2 Multiplication by underlying real number

$$Xv = xf(x)$$

This operator is hermitian. This is equivalent to a finite operator of the form $M_{ii}=i$ and $M_{ij}=0$.

1.2.2.3 Differentiation

$$Dv = \frac{\delta}{\delta x} f(x)$$

While this operator is not hermitian, the following is:

$$-iDv = \frac{\delta}{\delta x}[-if(x)]$$

1.3 Eigenvalues and eigenvectors of infinite-dimensional vectors

1.3.1 Spectral theorem for infinite-dimensional vector spaces

1.4 Forms on infinite-dimensional vector spaces

1.4.1 Forms on real functions

A form takes two vectors and produces a scalar.

1.4.1.1 Integration as a form

We can use integration to get a bilinear form.

$$\int f(x)g(x)dx$$

If we instead want a sesquilinear form we can instead use:

$$\int f(x)g(x)dx$$

1.4.2 Functionals

Functionals map functions to scalars. They are the 1-forms of infinite-dimensional vector spaces.

If we have a function f, we can write functional J[f].

1.4.2.1 More

We can define neighbourhoods around a function f. For example, taking y to be f with infintesimal changes. to each of the values.

The difference between the functional at both points is

$$\delta J = J[y] - J[f]$$

1.4.2.2 Extrema

If

$$\delta J = J[y] - J[f]$$

is the same sign for all y around f, then J has an extremum at f.

1.4.2.3 Functional derivatives

1.4.3 Hilbert space

A complete space with an inner product. That is, a Banach space where the norm is derived from an inner product.

1.5 Calculus of variations

1.5.1 Calculus of variations

Integrate over possible functions?

1.6 Sort

1.6.1 Banach space

A complete normed vector space