Anti-Arrhythmic Drugs

PHC 721

Winter 2022

Agnieszka Z. Balkowiec

Arrhythmia: Abnormal Heart Rhythm

resulting from a perturbation of the normal sequence of impulse initiation or propagation

Cellular Mechanisms (an overview):

- 1) Bradyarrhythmias (slow heart rhythms; Tx: withdrawal of the offending drug/permanent cardiac pacing)
- Failure of impulse initiation in the SA node ⇒ Sinus Bradycardia
- Failure in the propagation of action potentials from Atria to Ventricles \Rightarrow dropped beats (heart blocks)
- 2) Tachyarrhythmias (rapid heart rhythms; Tx: anti-arrhythmic drugs, cardioversion, etc.)
- Sympathetic stimulation (β-adrenergic activation)/Hypokalemia ⇒↑ Automaticity
- Digitalis intoxication /Genetic mutation (Ryanodine Rec.) \Rightarrow intracellular Ca^{2+} overload \Rightarrow extra beats
- Myocardial ischemia/infarction ⇒ Re-entry

Examples of drug-induced arrhythmias:

- Sinus Tachycardia (e.g., beta-blocker withdrawal after chronic therapy)
- Atrial Tachycardia with AV conduction block (e.g., Digoxin overdose)

Pharmacological approaches to suppress arrhythmias:

- 1) Blocking flow through specific ion channels (\downarrow cell excitability, \uparrow action potential duration $\Rightarrow \uparrow$ effective refractory period, etc)
- 2) Altering autonomic function

Examples of Bradyarrhythmias

Supraventricular Arrhythmias: AV conduction pathway deficits (heart blocks)

- 1st degree lengthened P-R interval
- 2nd degree skipped "beats"
- 3rd degree (complete heart block) atria and ventricles are no longer synchronized: atria follow the SA nodal rhythm, whereas ventricles follow the AV nodal rhythm

Re-entry: the underlying mechanism of Clinically Important Tachyarrhythmias

Re-entry results from slow conduction in the heart, when impulses propagate between two points through at least two pathways with different effective refractory periods (ERP). The underlying conditions:

- 1) Presence of an accessory anatomical pathway made of conductive tissue Wolff-Parkinson-White syndrome (WPW), or
- 2) Tissue with electrophysiological characteristics altered by disease (e.g., ischemia, hyperkalemia)

Anti-Arrhythmic drugs suppress the Initiating Mechanism or alter the Re-Entrant Circuit.

In some cases, drugs suppress the trigger, but also <u>promote</u> re-entry.

Decreased Conduction Velocity

Shorter ERP (i.e., faster recovery)

The excitation wave 're-enters' the pathway

Examples of Tachyarrhythmias

<u>Atrial arrhythmias:</u> Excitation spreading from an independently discharging (ectopic) focus in the atria

- Atrial extrasystole

- Atrial fibrillation

<u>Ventricular Arrhythmias:</u> Premature beats that originate in an independently discharging (ectopic) ventricular focus

- Ventricular fibrillation

Atrial fibrillation

Pharmacotherapy of Arrhythmias

Four Classes of Antiarrhythmic Drugs:

Class I: Sodium Channel Block

Class II: Beta-adrenergic Block

Class III: Action Potential Prolongation

Class IV: Calcium Channel Block

Class I: Na⁺ Channel Blockers: Lidocaine, Quinidine,

Class II: β-adrenergic Blockers:

Propranolol, **Bisoprolol**

Labetalol

Sotalol (also K⁺ channel blocker)

Class III: Drugs that Prolong Action Potential

(mostly K+Channel Blockers):

Amiodarone

Class IV: Ca²⁺ Channel Blockers:

Verapamil

Class I: Na⁺ Channel Blockers

Mechanisms of Action:

- Blockade of cardiac Nat channels:
- $\Rightarrow \downarrow$ excitability threshold $\Rightarrow \downarrow$ automaticity;
- Blockade of cardiac K+ channels:
- $\Rightarrow \uparrow$ Action Potential Duration (e.g., Quinidine, but not Lidocaine)

Dental Implications:

- Quinidine is a potent inhibitor of CYP2D6 (e.g., \downarrow Codeine-to-Morphine metabolism) \Rightarrow \downarrow Opioid Analgesia
- Reversal of local Lidocaine anesthesia (by vasodilating agents, such as Phentolamine) can result in a dangerous **cardiac depression** (\downarrow contractility), particularly in patients with a liver or kidney disease that may significantly increase the elimination half-life of Lidocaine.

BISOPROLOL

5 mg

Sympatholytic Agents: β-Adrenergic Receptor Antagonists

Duplicate

Mechanism of Action:

Blockade of β -adrenergic receptor signaling. The blood pressure-lowering effect of beta-blockers is not completely understood:

↓ Renin secretion,

↓ Cardiac Output (↓ HR/Contractility)

Indications:

- Hypertension, Exertional Angina, Congestive heart failure (
 <u>↓ mortality</u>)
- Arrhythmias (e.g., prevention of arrhythmias triggered by emotional stress)

Side effects / Contraindications:

- Life-threatening bronchoconstriction / Asthma
- Altered sensitivity to Insulin (\(\text{risk of hypoglycemia} \) / Diabetes
- Abrupt discontinuation may cause Sudden Death and exacerbate Angina

Dental Implications:

- NSAIDs can blunt antihypertensive effects of β-blockers
- Epinephrine (in local anesthetics) can severely rise blood pressure (⇒ reflex bradycardia) in patients on non-selective β-antagonists: Epi causes severe systemic vasoconstriction (via a-adrenoceptors), when applied intravascularly in the absence of functional β2 receptors (blocked by non-selective β-blockers) whose normal action is vasodilatory.

Class III: Drugs that Prolong Action Potential (primarily K⁺ Channel Blockers)

Mechanism of Action:

Blockade of cardiac K+ channels:

 \uparrow Action Potential Duration \Rightarrow \uparrow refractoriness \Rightarrow \downarrow abnormal automaticity

Side effects:

Inhibition of cytochrome P450 (CYP) drug-metabolizing enzymes by Amiodarone and its metabolites.

Dental Implications:

Long-term treatment with Amiodarone may lead to blue-grey discoloration of sun-exposed areas of the skin (most commonly on the face and neck) and oral hyperpigmentation.

Class IV: Ca²⁺ Channel Antagonists

Mechanism of Action:

Blockade of L-type Ca^{2+} channels: \downarrow firing rate in the SA node and slow AV conduction

Indications:

- Arrhythmias

Side effects:

- - \uparrow plasma concentration of Digoxin and other drugs by Verapamil (inhibition of P-glycoprotein transporter activity $\Rightarrow \downarrow$ renal tubular elimination)
- Inhibition of CYP3A4 drug-metabolizing enzyme.

Dental Implications:Gingival Hyperplasia

