20. regularni jazyky

V téhle otázce je důležité umět převod RV na KA, kreslit KA, deterministický a nedeterministický KA...

Regulární výraz

Definice: Necht' Σ je abeceda. *Regulární výrazy* nad abecedou Σ a *jazyky*, které *značí*, jsou definovány následovně:

- Ø je RV značící prázdnou množinu (prázdný jazyk)
- ε je RV značící jazyk {ε}
- a, kde $a \in \Sigma$, je RV značící jazyk $\{a\}$
- Nechť r a s jsou regulární výrazy značící po řadě jazyky L_r a L_s, potom:
 - (r.s) je RV značící jazyk $L = L_r L_s$
 - (r+s) je RV značící jazyk $L=L_r \cup L_s$
 - (r^*) je RV značící jazyk $L = L_r^*$

Zjednodušení RV

1) Redukce závorek zavedením priorit operátorů:

- 2) RV r.s může být zapsán jako rs
- 3) RV rr^* nebo r^*r může být zapsán jako r^+

Regulární jazyk

Myšlenka: Každý RV značí regulární jazyk

Definice: Nechť L je jazyk. L je regulární jazyk (RJ), pokud existuje regulární výraz r, který tento jazyk značí.

Konvence: L(r) označuje jazyk, který značí RV r.

Příklady:

 L_1, L_2, L_3, L_4 jsou regulární jazyky nad Σ

Konečné automaty

Definice: Konečný automat (KA) je pětice:

$$M = (Q, \Sigma, R, s, F)$$
, kde

- Q je konečná množina stavů
- Σ je vstupní abeceda
- R je konečná množina pravidel tvaru: $pa \rightarrow q$, $kde p, q \in Q, a \in \Sigma \cup \{\epsilon\}$
- $s \in Q$ je počáteční stav
- $F \subseteq Q$ je množina koncových stavů

Matematická poznámka k pravidlům:

- Čistě matematicky, R je relace z $Q \times (\Sigma \cup \{\epsilon\})$ do Q
- Místo relačního zápisu $(pa, q) \in R$, zapisujeme: $pa \rightarrow q \in R$
- $pa \rightarrow q$ znamená, že při přečtení a M udělá přechod z p do q
- pokud $a = \varepsilon$, není ze vstupní pásky přečten symbol

Konfigurace

Konfigurace konečného automatu $A = (Q, \Sigma, \delta, q_0, F)$ je každá uspořádaná dvojice $(q, w) \in Q \times \Sigma^*$, přičemž q je aktuální stav automatu a w je dosud nepřečtená část vstupního řetězce. př.: (s2, babb)

Počáteční konfigurace - stav konfigurace je počátečním stavem Koncová konfigurace - stav konfigurace je koncovým stavem a na vstupu již nic není (w = ε)

Přechod

Myšlenka: Jeden výpočetní krok KA

Definice: Nechť pax a qx jsou dvě konfigurace KA M, kde p, $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$ a $x \in \Sigma^*$. Nechť $r = pa \rightarrow q \in R$ je pravidlo. Potom M může provést $p\check{r}echod$ z pax do qx za použití r, zapsáno $pax \mid -qx$ [r] nebo zjednodušeně $pax \mid -qx$

Pozn.: pokud $\alpha = \varepsilon$, není ze vstupní pásky přečten symbol

Konfigurace: p = xPravidlo: $pa \rightarrow q$ Nová konfigurace: q = x

Definice: Necht' χ_0 , χ_1 , ..., χ_n je sekvence přechodů konfigurací pro $n \ge 1$ a $\chi_{i-1} \models \chi_i [r_i]$, $r_i \in R$ pro všechna i = 1, ..., n, což znamená: $\chi_0 \models \chi_1 [r_1] \models \chi_2 [r_2] ... \models \chi_n [r_n]$ Pak M provede n-přechodů z χ_0 do χ_n ; zapisujeme: $\chi_0 \models {}^n \chi_n [r_1 ... r_n]$ nebo zjednodušeně $\chi_0 \models {}^n \chi_n$

pabc |-qbc| [1: $pa \rightarrow q$] a qbc |-rc| [2: $qb \rightarrow r$]. Potom: pabc $|-^2rc|$ [1 2], pabc $|-^+rc|$ [1 2], pabc $|-^*rc|$ [1 2]

Přijímaný jazyk

Myšlenka: *M* přijímá řetězec *w*, pokud je celý přečten pomocí sekvencí přechodů a skončí v nějakém koncovém stavu

Definice: Nechť $M = (Q, \Sigma, R, s, F)$ je KA. *Jazyk přijímaný* konečným automatem M, L(M), je definován: $L(M) = \{w: w \in \Sigma^*, sw \mid -^* f, f \in F\}$

Převod z RV na KA - ifj03-cz.pdf, strana 21

https://www.fit.vutbr.cz/study/courses/IFJ/private/prednesy/lfj03-cz.pdf

Převod na deterministický KA:

https://www.fit.vutbr.cz/study/courses/IFJ/private/prednesy/lfj04-cz.pdf

Něco o DKA:

http://www.cs.vsb.cz/kot/soubory_animaci/a-definice_dfa.pdf