Prepare data: transformations

Transforming data (Recipe C.3) may be **the most important** step of the multi-step Recipe

Recipe for Machine Learning

It is often the case that the "raw" features given to us don't suffice

- we may need to create "synthetic" features.
- This is called **feature engineering**.


```
In [45]: (xlabel, ylabel) = ("Size", "Price Premium")
v1, a1 = 1, .005
v2, a2 = v1, a1*2
curv = recipe_helper.Recipe_Helper(v = v2, a = a2)
X_curve, y_curve = curv.gen_data(num=50)
_= curv.gen_plot(X_curve,y_curve, xlabel, ylabel)
```


And compare the out of sample performance on this data set

- On a linear model (single, raw feature)
- On a model with a second feature (squared version of raw feature)

In [46]: model_results = curv.compare_regress(X_curve, y_curve, xlabel=xlabel, ylabel=yla
bel, visible=True, plot_train=False)

Feature engineering, or transformations

- takes an example: vector $\mathbf{x^{(i)}}$ with n features
- produces a new vector $\tilde{\mathbf{x}}^{(\mathbf{i})}$, with n' features

We ultimately fit the model with the transformed training examples.

We can apply multiple transformations, each

- Adding new synthetic features
- Further transforming synthetic features

- Missing data inputation
- Standardization
- Discretization
- Categorical variable encoding

The above diagram shows multiple transformations

ullet organized as a sequence (sometimes called a *pipeline*) of independent transformations T_1, T_2, \ldots, T_t

$$egin{aligned} ilde{\mathbf{x}}_{(1)} &= T_1(\mathbf{x}) \ ilde{\mathbf{x}}_{(2)} &= T_1(ilde{\mathbf{x}}_{(1)}) \ &drawnownews \ ilde{\mathbf{x}}_{(l+1)} &= T_1(ilde{\mathbf{x}}_{(l)}) \end{aligned}$$

We write the final transformed $\tilde{\mathbf{x}}$ as a function T that is the composition of each transformation function

$$ilde{\mathbf{x}} = T(\mathbf{x}) = T_t(\ T_{t-1}(\dots T_1(\mathbf{x})\dots)\)$$

The length of the final transformed vector $\tilde{\mathbf{x}}$ may differ from the n, the length of the input \mathbf{x} • may add features • may drop features

The predictions are now a function of $\tilde{\mathbf{x}}$ rather than \mathbf{x}

$$\hat{\mathbf{y}} = h_{\Theta}(ilde{\mathbf{x}})$$

Example transformation: Missing data imputation

The first transformation we encountered added a feature (\mathbf{x}^2 term) that improved prediction.

Some transformations alter existing features rather than adding new ones.

Transformations in detail will be the subject of a separate lecture but let's cover the basics.

Let's consider a second reason for transformation: filling in (imputing) missing data for a feature.

#	$\mathbf{x_1}$	$\mathbf{x_2}$
1	1.0	10
2	2.0	20
:	:	:
i	2.0	NaN
:	:	:
m		

In the above: feature ${f x}_2$ is missing a value in example i: ${f x}_2^{({f i})}={
m NaN}$

We will spend more time later discussing the various ways to deal with missing data imputation.

For now: let's adopt the common strategy of replacing it with the median of the defined values:

$$\operatorname{median}(\mathbf{x}_2) = \operatorname{median}(\{\mathbf{x}_2^{(\mathbf{i})} | 1 \leq i \leq m, \mathbf{x}_2^{(\mathbf{i})} \neq \operatorname{NaN}\})$$

This imputation is a kind of data transformation: replacing an undefined value.

Without this transformation: the algorithm that implements our model

- May fail
- May impute a less desirable value, since it lacks specific knowledge of our problem

"Fitting" transformations

The behavior of our models for prediction have parameters Θ .

It might not be obvious that transformations have parameters $\Theta_{\mathrm{transform}}$ as well

$$ilde{\mathbf{x}} = T_{\Theta_{ ext{transform}}}(\mathbf{x})$$

For example: when missing data imputation for a feature substitutes the mean/median feature value

ullet $\Theta_{transform}$ stores this value

We use the term "fitting" to describe the process of solving for $\Theta_{\mathrm{transform}}$

- Unlike Θ , one doesn't usually find a "optimal" value for $\Theta_{transform}$

Our prediction is thus

$$egin{array}{lll} \hat{\mathbf{y}} &=& h_{\Theta}(ilde{\mathbf{x}}) \ &=& h_{\Theta}(\,T_{\Theta_{ ext{transform}}}(\mathbf{x})\,) \end{array}$$

The process of Transformations is similar to fitting a model and predicting.

The parameters in $\Theta_{transform}$

- ullet are "fit" by examining all training data old X
- once fit, we can transform ("predict") *any* example (whether it be training/validation or test)

Applying transformations consistently

Since the prediction is now

$$\hat{\mathbf{y}} = h_{\Theta}(\tilde{\mathbf{x}}) \quad ext{where } \tilde{\mathbf{x}} = T_{ ext{transform}}(\mathbf{x})$$

each and every input ${\bf x}$ must be transformed

- Training examples
- Test examples

That is: the transformation is applied consistently across all examples, regardless of their source
If we didn't apply the same transformation to both training and test examples
We would violate the Fundamental Assumption of Machine Learning

However

- $\Theta_{transform}$ is fit **only** to training examples
- It is **not** recalculated on a set of test examples

Here's the picture

Feature engineering: fit, then transform

There are several reasons not to re-fit on test examples

- It would be a kind of "cheating" to see all test examples (required to fit)
- You should assume that you only encounter one test example at a time, not as a group

Using pipelines to avoid cheating in cross validation

Although we start off with the best intentions, it is easy to accidentally "cheat"

- When we combine transformations and cross-validation (to measure out of sample performance)
- Is surprisingly common!

k-fold cross-validation:

- ullet Divides the training examples into k "folds"
- A model is fit k times
- Each fit
 - Uses (k-1) folds for training
 - The remaining fold is considered "out of sample" for that fit
- ullet This gives us k Performance Metrics: a distribution of out of sample performance

Consider the difference between fitting $\Theta_{\mathrm{transform}}$

- Once, on all the training examples, before applying cross-validation
- ullet Separately for each of the k fits of Cross-Validation
 - ullet Using the (k-1) folds used fro training in this fit

For example, when $Fold_1$ is out of sample

$$ilde{\mathbf{X}} = T_{\Theta_{ ext{transform}}} \ (\left[ext{Fold}_1, ext{Fold}_2, \dots ext{Fold}_{k-1}, ext{Fold}_k
ight])$$

versus

$$ilde{\mathbf{X}} = T_{\Theta_{ ext{transform}}} \ (\left[ext{Fold}_1, ext{Fold}_2, \dots ext{Fold}_{k-1}
ight])$$

In the first case, we are cheating!

- Fold k is out of sample for this fit
- And should **not** influence $\Theta_{\text{transform}}$

The second case avoids this problem

- With seemingly a lot more work
- ullet Fitting $\Theta_{\mathrm{transform}}$ multiple times

Perhaps the increase in effort is one reason this subtle cheating is overlooked.

Fortunately, a good toolkit for ML (e.g., sklearn) can facilitate proper transformation fitting without extra effort.

Let's explore <u>Transformation pipelines in sklearn (Transformations Pipelines.ipynb)</u>

We will see this in action within the notebook for Classification.

```
In [2]: print("Done")
```

Done