بخش اول آزمایش: بررسی Hotspotها

بررسی Deadlockها:

بررسى Static Threading:

بررسی Dynamic Threading:

بخش دوم آزمایش:

بررسي حالت ١:

برای ۲۰۴۸:

برای ۴۰۹۶:

برای ۸۱۹۲:

برای ۱۶۰۰۰:

برای حالت ۲:

برای ۶۴:

برای ۲۰۴۸:

برای ۴۰۹۶:

برای ۸۱۹۲:

برای ۱۶۰۰۰:

هرچهقدر محاسبات ستونی تر و دیتای بزرگ تری داشته باشیم affinity ما از کش L1 به L2 به L3 به رم می رود، چون احتمال miss شدن و موجود نبودن دیتا در حافظه های کوچک تر بیش تر می شود.

در صورت کمتر بودن دیتای کش لاین نیز در سایز دیتاهای بزرگتر زمان اجرا و شاخصهای سطری و ستونی نزدیک هم میشوند، اما در دیتای با حجم پایین تر این امر کمتر مشهود است.