GEOMETRIA DIFERENCIAL

Seminari 7
Superficies tubulars

Exercici 8.1. Siguin U un obert de \mathbb{R}^2 , que suposarem fitat, i $\varphi \colon U \to \mathbb{R}^2$ una parametrització local d'una superfície regular. Es defineix *l'àrea* (si existeix) de $S = \varphi(U)$ com la integral

$$A(S) = \int_{U} \|\varphi_{u} \times \varphi_{v}\| du dv.$$

Proveu que l'àrea no depèn de la parametrització; és a dir que si $F:V\to U$ és un difeomorfisme entre oberts del pla llavors φ i $\varphi\circ F$ dónen lloc a la mateixa àrea.

Solució: Posem $\psi = \varphi \circ F$ i F(u', v') = (u, v). Llavors

$$\psi_{u'} = \varphi_u \frac{\partial u}{\partial u'} + \varphi_v \frac{\partial v}{\partial u'}, \qquad \psi_{v'} = \varphi_u \frac{\partial u}{\partial v'} + \varphi_v \frac{\partial v}{\partial v'}$$

i

$$(\psi_{u'} \times \psi_{v'})(u', v') = (\varphi_u \times \varphi_v)(u', v') \cdot JF(u', v').$$

La formula del canvi de variables diu

$$\int_{U} g(u,v)dudv = \int_{V} g(u',v') \left| \frac{\partial(u,v)}{\partial(u',v')} \right| du'dv'.$$

Aplicada a $g(u,v) = \|\varphi_u \times \varphi_v\|(u,v)$ dóna

$$A(S) = \int_{V} \|\varphi_{u} \times \varphi_{v}\|(u', v')|JF|(u', v')du'dv' = \int_{V} \|\psi_{u'} \times \psi_{v'}\|(u', v')du'dv'$$

que és el que voliem provar.

a) Partint del vectors normal $\vec{n}(u)$ i binormal $\vec{b}(u)$ de la corba α , trobeu una aplicació diferenciable $\varphi: I \times \mathbb{R} \to \mathbb{R}^3$ que tingui S per imatge.

Solució: Considerem $\varphi(u,v) = \alpha(u) + r(u)(\cos v \ \vec{n}(u) + \sin v \ \vec{b}(u)).$

Radi constant

Radi variable

b) Proveu que si $0 < r(u) < 1/\kappa(u)$, on $\kappa(u)$ és la curvatura de α , aleshores $\varphi_u \times \varphi_v \neq 0$. Suposarem a partir d'ara que $\varphi|_U$ és injectiva per tot obert U de la forma $I \times (v_0 - \pi, v_0 + \pi)$. Deduïu que S és superfície regular.

Solució: Fent servir les formules de Frenet $(\vec{t'} = \kappa \vec{n}, \vec{n'} = -\kappa \vec{n} - \tau \vec{b} \ i \ \vec{b'} = \tau \vec{n}.)$ és fàcil provar que

$$\varphi_u = (1 - r\kappa \cos v)\vec{t} + (r'\cos v + r\tau \sin v)\vec{n} + (r'\sin v - r\tau \cos v)\vec{b}$$

i

$$\varphi_v = -r\sin v\vec{n} + r\cos v\vec{b}.$$

Llavors

$$\|\varphi_u \times \varphi_v\|^2 = r^2(1 - r\kappa \cos v)^2 + r^2(r')^2.$$

Quan $r\kappa < 1$ això sempre serà no nul.

Donats $u_0 \in I$ i $v_0 \in S^1 \equiv \mathbb{R}/2\pi\mathbb{Z}$, considerem la restrició de φ a $[u_0 - \varepsilon, u_0 + \varepsilon] \times S^1 \to \mathbb{R}^3$. És contínua i bijectiva d'un compacte en un Hausdorff i per tant és oberta. Deduïm que la restricció a $(u_0 - \varepsilon, u_0 + \varepsilon) \times (v_0 - \pi, v_0 + \pi)$ té imatge en un obert i és homeomorfisme amb aquest. Per tant és parametrització local i S és superfície.

c) Trobeu la primera forma fonamental associada a la parametrització $\varphi|_U$.

Solució: Fent servir les expressions de φ_u i φ_v tenim

$$E = \varphi_u \cdot \varphi_u = (1 - r\kappa \cos v)^2 + r'^2 + r^2\tau^2, \quad G = r^2, \quad F = \varphi_v \cdot \varphi_v = -r^2\tau.$$

(L'element d'àrea serà $\sqrt{EG-F^2}du\ dv = r\sqrt{r'^2+(1-r\kappa\cos v)^2}du\ dv.$)

d) Demostreu que l'àrea de S no depèn de la torsió de α . En el cas $r(u) = r_0$, vegeu que tampoc depèn de la curvatura.

$$\|\varphi_u \times \varphi_v\|^2 = r^2 (1 - r\kappa \cos v)^2 + r^2 (r')^2.$$

Solució: Que no depén de la torsió es veu a partir de l'expressió de $\|\varphi_u \times \varphi_v\|$ trobada en un apartat anterior. Quan r és constant tenim que $\|\varphi_u \times \varphi_v\| = r(1 - r_0\kappa \cos v)$. Llavors

$$A(S) = r_0 \int_0^L \int_0^{2\pi} (1 - r_0 \kappa(u) \cos v) dv \ du = 2\pi r_0 L.$$

i l'àrea no depén de la curvatura.

e) Calculeu la curvatura de Gauss en el cas r(u) constant.

Solució: El vector normal unitari a la superfície associat a la parametrització és $\vec{N} = -\cos v\vec{n} - \sin v\vec{b}$. Com que $N_u \times N_v = K \varphi_u \times \varphi_v$, amb un càlcul senzill veiem que

$$K = -\frac{\kappa \cos v}{r(1 - r\kappa \cos v)}.$$

$$d\nu_p(\vec{w}_1) \wedge d\nu_p(\vec{w}_2) = \det d\nu_p \cdot \vec{w}_1 \wedge \vec{w}_2 = K(p) \cdot \vec{w}_1 \wedge \vec{w}_2. \tag{4.33}$$

Vist a teoria

f) Trobeu les línies de curvatura si r(u) és constant i la corba α és plana.

Solució: Volem trobar direccions pròpies de $-dN: T_{(u,v)}S \mapsto T_{N(u,v)}S^2$. Trobem l'expressió en la base $\{\varphi_u, \varphi_v\}$. Un càlcul senzill mostra que quan $r = r_0$ i $\tau = 0$ llavors $-N_u = \frac{\kappa \cos v}{1 - \kappa r \cos v} \varphi_u$ i $-N_v = -\varphi_v/r$. La matriu de -dN és

$$\begin{pmatrix}
\frac{\kappa \cos v}{1 - \kappa r \cos v} & 0\\
0 & -\frac{1}{r}
\end{pmatrix}$$

i les direccions coordenades són direccions pròpies. Per tant, les corbes u=ct. i v=ct. són linies de curvatura en aquest cas.

g) Particularitzeu els resultats anteriors al cas del tor.

Solució: En el tor, la corba és una circumferència. Les línies de curvatura són els meridians i els paral·lels. Observem que per $v = \pi/2, 3\pi/2$ la curvatura principal dels paral·les és zero. És la línia de contacte quan posem el 'flotador' al terra.

Considerem S una superfície tubular de radi constant r al voltant de γ sense autointerseccions (acceptem que això és possible prenent r prou petit) i sigui R la regió on la curvatura de Gauss és positiva.

a) Proveu que $\int_R K = 2 \int_{\gamma} \kappa$.

Solució: Per que sigui regular agafem $0 < r < 1/\kappa$, per la injectivitat agafem per cada $t \in S^1$ un ϵ_t de manera que $B_{\epsilon_t}(\gamma(t)) \cap \gamma$ sigui un 'segment'. Triem com r el més petit del ϵ_t . Per la integral cal observar que la curvatura de Gauss serà positiva quan $v \in (\pi/2, 3\pi/2)$ llavors

$$\int_{R} K = -\int_{S^{1}} \int_{\pi/2}^{3\pi/2} \frac{\kappa \cos v}{r(1 - \kappa r \cos v)} r(1 - \kappa r \cos v) dv dt = -\int_{S^{1}} \kappa \left(\int_{\pi/2}^{3\pi/2} \cos v dv \right) dt = 2 \int_{\gamma} \kappa.$$

Considerem S una superfície tubular de radi constant r al voltant de γ sense autointerseccions (acceptem que això és possible prenent r prou petit) i sigui R la regió on la curvatura de Gauss és positiva.

b) Proveu que per cada $u \in S^2$ existeix un punt de S amb curvatura de Gauss positiva i u com a normal.

Solució: Considerem els plans de l'espai amb direcció normal u, per ser la superfície tancada trobarem com a mínim dos d'ells que són tangents i que deixen la superfície a un costat del pla, aquí la curvatura de Gauss és positiva. En un dels dos el normal de la superfície coincideix amb el normal del pla.

Considerem S una superfície tubular de radi constant r al voltant de γ sense autointerseccions (acceptem que això és possible prenent r prou petit) i sigui R la regió on la curvatura de Gauss és positiva.

c) Deduïu que l'aplicació de Gauss cobreix com a mínim un cop l'esfera S^2 .

Solució: És conseqüència directa de l'apartat anterior: cada direcció de S^2 prové com a mínim d'un normal de la superfície.

Considerem S una superfície tubular de radi constant r al voltant de γ sense autointerseccions (acceptem que això és possible prenent r prou petit) i sigui R la regió on la curvatura de Gauss és positiva.

d) Proveu la primera part del teorema.

Solució: Hem dit que els normals on la curvatura de Gauss és positiva cobreixen com a mínim un cop l'esfera. Aleshores $\int_R K \ge 4\pi$ per tant $\int_\gamma \kappa \ge 2\pi$.

Considerem S una superfície tubular de radi constant r al voltant de γ sense autointerseccions (acceptem que això és possible prenent r prou petit) i sigui R la regió on la curvatura de Gauss és positiva.

e) La segona part del teorema la podeu llegir a 'Geometría diferencial de curvas y superficies' de M. P. do Carmo. (p. 399).

Assume that α is a plane convex curve. Then all Γ_s^+ have the same end points p, q, and, by convexity, $\Gamma_{s_1} \cap \Gamma_{s_2} = \{p\} \cup \{q\}$ for $s_1 \neq s_2, s_1, s_2 \in [0, l)$. By the first part of the theorem, it follows that $\iint_R K d\sigma = 4\pi$; hence, the total curvature of α is equal to 2π .

Assume now that the total curvature of α is equal to 2π . By the first part

of the theorem, $\iint_R K d\sigma = 4\pi$. We claim that all Γ_s^+ have the same end points p and q. Otherwise, there are two distinct great circles Γ_{s_1} , Γ_{s_2} , s_1 arbitrarily close to s_2 , that intersect in two antipodal points which are not in $N(R \cap Q)$, where Q is the set of points in T with nonpositive curvature. It follows that there are two points of positive curvature which are mapped by N into a single point of S^2 . Since N is a local diffeomorphism at such points and each point of S^2 is the image of at least one point of R, we conclude that $\iint_R K\sigma > 4\pi$, a contradiction.

By observing that the points of zero Gaussian curvature in T are the intersections of the binormal of α with T, we see that the binormal vector of α is parallel to the line pq. Thus, α is contained in a plane normal to this line.

We finally prove that α is convex. We may assume that α is so oriented that its rotation number is positive. Since the total curvature of α is 2π , we have

$$2\pi = \int_0^1 |k| ds \ge \int_0^1 k ds.$$

On the other hand,

$$\int_{\mathcal{I}} k \, ds \geq 2\pi,$$

where $J = \{s \in [0, l]; k(s) \ge 0\}$. This holds for any plane closed curve and follows from an argument entirely similar to the one used for $R \subset T$ in the beginning of this proof. Thus,

$$\int_0^l k\,ds = \int_0^l |k|\,ds = 2\pi.$$

Therefore, $k \ge 0$, and α is a plane convex curve.

Q.E.D.

7

3