Nadine_1

Datensatz MB

R	Radius der Kreisbahn	40 m
V	Geschwindigkeit	20 m/s
ω	Winkelgeschwindigkeit	$rac{V}{R}=rac{20}{40}=0.5\mathrm{rad/s}$
ω_{inner}	Frequenz der inneren Bewegung	$\frac{2\pi}{5}$ rad/s

Schwerpunktbewegung (Kreisbahn)	$x_{ m sp}(t)=R\cos(\omega t)$
	$y_{ m sp}(t) = R \sin(\omega t)$
Bewegungsrichtung ϕ	$\phi(t)=\omega t$
Seitliche und vorwärtige Schwankungen	$x_{ m LR}(t) = 0.2 \sin(\omega_{ m inner} t)$
	$y_{ m vz}(t) = 0.5 \sin(\omega_{ m inner} t)$
Transformation in das globale Koordinatensystem	$x(t) = x_{ m sp} + x_{ m LR} \cos(\phi) - y_{ m vz} \sin(\phi)$
	$y(t) = y_{ m sp} + x_{ m LR} \sin(\phi) + y_{ m vz} \cos(\phi)$

Datensatz Lof (Mehr Perioden)

R	Radius der Kreisbahn		40 m
V	Geschwindigkeit		20 m/s
ω	Winkelgeschwindigkeit		$rac{V}{R}=rac{20}{40}=0.5$ rad/s
A_{xLR}	Amplitude der seitlichen Bewegung		0.8
A_{yVZ}	Amplitude der Vorwärtsschwankung		1.0
ω_{inner}	Frequenz der inneren Bewegung		$\omega imes 24 = 12$ rad/s
Schwerpunktbewegung (Kreisbahn)		$x_{ m sp}(t) = R\cos(\omega t)$	
		$y_{ m sp}(t)=R\sin(a$	$\omega t)$
Bewegungsrichtung ϕ		$\phi(t)=\omega t$	
Seitliche und vorwärtige Schwankungen		$x_{ m LR}(t) = A_{xLR} \sin(\omega_{ m inner} t)$	
		$y_{ m vz}(t) = A_{yVZ}{ m s}$	$\sin(\omega_{ ext{inner}}t)$
Transformation in das globale Koordinatensystem		$x(t) = x_{ m sp} + x_{ m LR} \cos(\phi) - y_{ m vz} \sin(\phi)$	
			$_{ m R}\sin(\phi)+y_{ m vz}\cos(\phi)$

Gefilterte Beschleunigung (Savitzky-Golay-Filter 11/3)

Beschleunigung glätten mit Phi Tangent

2 fache Ableitung von x_LR und y_vz

$$\ddot{x}_{LR}(t) = -A_{xLR}\omega_{ ext{inner}}^2\sin(\omega_{ ext{inner}}t)$$

$$\ddot{y}_{vz}(t) = -A_{yVZ}\omega_{ ext{inner}}^2\sin(\omega_{ ext{inner}}t)$$

