

Validação Psicométrica de Instrumentos em Saúde 3

Carina Silva ESTeSL-IPL, HT&RC e CEAUL

14, 15 e 16 de julho 2025

1- Fiabilidade Interna

2- Análise Fatorial Exploratória

3 - Análise Fatorial Confirmatória

1- Introdução

Secção A - Intensidade da dor

- 1. Qual foi a intensidade de dor mais forte que sentiu de ontem para hoje?
 - 0 2 4 6 8 10
- 2. Qual foi a intensidade de dor mais fraca que sentiu de ontem para hoje?
 - 0 2 4 6 8 10
- 3. Qual foi a sua intensidade média de dor de ontem para hoje?
 - 0 2 4 6 8 10
- 4. Neste momento (agora) qual é a sua intensidade de dor?
 - 0 2 4 6 8 10
- 5. Na última semana, qual foi a intensidade de dor mais frequente durante a manhã?
 - 0 2 4 6 8 10
- 6. Na última semana, qual foi a intensidade de dor mais frequente durante a tarde?
 - 0 2 4 6 8 10
- 7. Na última semana, qual foi a intensidade de dor mais frequente durante a noite?
 - 0 2 4 6 8 10

Secção B - Interferência/limitação causada pela dor

- (0 = Nenhuma; 10 = Muito forte)
- 8. De ontem para hoje, a interferência/limitação da dor na sua actividade geral foi:
 - 0 2 4 6 8 10
- 9. De ontem para hoje, a interferência/limitação da dor na sua disposição/humor foi:
 - 0 2 4 6 8 10
- 10. De ontem para hoje, a interferência/limitação da dor no seu andar a pé foi:
 - 0 2 4 6 8 10
- 11. De ontem para hoje, a interferência/limitação da dor no seu relacionamento com outras pessoas foi:
 - 0 2 4 6 8 10
- 12. De ontem para hoje, a interferência/limitação da dor no seu sono foi:
 - 0 2 4 6 8 10
- 13. De ontem para hoje, a interferência/limitação da dor no seu gostar da vida que tem foi:
 - 0 2 4 6 8 10

- 1. Identifique Construto, Domínios, Itens
- 2. Faça upload dos dados no Jamovi (IntensidadeInterferenciaDor.sav)

Instruções

- •Para cada afirmação assinala-se apenas um número de 0, 2, 4, 6, 8 ou 10.
- •Utilize a seguinte correspondência de valores:

Valor	Intensidade da dor / Grau de interferência
0	Nenhuma
2	Muito fraca
4	Ligeira
6	Moderada
8	Forte
10	Muito forte

O construto latente global, que integra ambos os domínios, é simplesmente "**Dor**" – entendida como *experiência subjetiva de dor e o seu impacto na vida diária*. Pode aparecer descrito como "**Impacto da Dor na Saúde**", mas conceptualmente trata-se do fenómeno latente "dor" (pain) que se manifesta:

- **1.Quanto dói** (Intensidade)
- 2.Como a dor afeta a pessoa (Interferência)

Validação Psicométrica

Fiabilidade (Reliability) – consistência dos resultados

Validade (Validity) - Se o instrumento mede o que se propõe a medir.

Tipos de Fiabilidade

Teste-reteste

Avalia a
 estabilidade
 temporal de
 um
 instrumento.

Consiste em aplicar o mesmo teste duas vezes ao mesmo grupo, com um intervalo de tempo, e verificar se os resultados se mantêm consistentes.

Split-half

• Avalia a consistência interna dividindo o teste em duas metades (ex.: itens pares vs. ímpares) e verificando se ambas produzem resultados semelhantes. Indica se as partes do teste avaliam de forma coerente o mesmo constructo.

Consistência Interna

 Mede o grau de coerência entre os itens de um teste. O coeficiente

> mais comum é o alfa de Cronbach.

Valores
 elevados
 indicam que
 os itens
 estão a
 medir o
 mesmo
 conceito.

Entre avaliadores

Avalia a
consistência das
avaliações feitas
por um mesmo
avaliador, ao
repetir a
avaliação em
momentos

Importante em contextos de observação ou codificação manual.

diferentes.

Consistência Interna – Alfa de Cronbach

 α (alfa) de Cronbach:

mede quanto os itens de uma escala estão correlacionados entre si (isto é, a sua consistência interna).

Assume que o instrumento é unidimensional

Variáveis medidas em escala pelo menos ordinal

Depende do número de itens

Assume que os itens têm as mesmas cargas fatoriais

$$lpha = rac{K}{K-1} \left(1 - rac{\sum_{i=1}^K \sigma_i^2}{\sigma_T^2}
ight)$$

Onde:

- α = coeficiente de alfa de Cronbach
- K = número de itens da escala
- σ_i^2 = variância do item i
- σ_T^2 = variância total do somatório de todos os itens (ou seja, da escala total)

Valores típicos:

- $\alpha \geq 0,9$: excelente
- $0.8 \le \alpha < 0.9$: bom
- $0.7 \le \alpha < 0.8$: aceitável
- $\alpha < 0.7$: pode indicar problemas (dependendo do contexto)

Consistência Interna – Alfa de Cronbach

- Propriedade da resposta proveniente de amostras específicas de respondentes
 - Não é a fiabilidade do item
- Nunca reflete a fiabilidade de cada item individualmente.
- É única para cada amostra
- Não representa a estimativa de fiabilidade do questionário em todas as circunstâncias.
- Varia de amostra para amostra

Por isso, deve ser estimada sempre que o questionário é aplicado.

Nota: Aplicar Kuder-Richardson (KR-20): variáveis dicotómicas

ω de MacDonald

O **ómega de MacDonald** é mais **realista e robusto**, pois considera que os itens contribuem de forma diferente para o construto latente.

Os itens podem ter cargas fatoriais diferentes.

$$\omega = rac{(\sum \lambda_i)^2}{(\sum \lambda_i)^2 + \sum heta_i}$$

Onde:

- λ_i : carga fatorial do item i
- $heta_i$: variância do erro do item i

Valores > 0,70 indicam boa consistência interna.

Correlação item-total

- •É a correlação de Pearson entre o item específico e a soma de todos os outros itens.
- •Se todos os itens estiverem a medir o mesmo domínio subjacente, o coeficiente de correlação será relativamente elevado.
- •Os coeficientes de correlação de Pearson devem ser superiores a 0,3 (indicando que o item em questão está a medir o mesmo construto).
- •Se tal não acontecer, considere remover o item da análise.
- •Se o coeficiente de correlação na "Correlação Item-Total" for negativo, deverá recodificar o item em sentido inverso.

 A correlação item-total corrigida consiste em calcular o coeficiente de correlação de Pearson entre cada item e o escore total do domínio, excluindo o próprio item, ou seja, com base nos demais itens que pertencem ao mesmo domínio

	Item-total correlation
0.40 a 1.00	Very Good
0.30 a 0.39	Good, can improve
0.20 a 0.29	Sufficient, but needs improvement
-1.00 a 0.19	Weak, reject or revise

Proceda a uma avaliação da Fiabilidade Interna da Escala da Dor

EFA vs CFA

EFA vs CFA

Critério	EFA (Análise Fatorial Exploratória)	CFA (Análise Fatorial Confirmatória)
Finalidade principal	Explorar a estrutura latente dos dados, sem hipóteses prévias	Confirmar uma estrutura fatorial teórica previamente definida
Hipóteses sobre fatores	Não existem hipóteses iniciais sobre o número ou natureza dos fatores	Existe um modelo teórico com número e relações esperadas entre fatores e itens
Descoberta vs teste	Técnica exploratória – identificar padrões ocultos	Técnica confirmatória – testar a adequação de um modelo específico
Ajustamento do modelo	Não avalia qualidade do ajustamento	Avalia indices de ajustamento (CFI, TLI, RMSEA, χ^2 , etc.)
Utilização típica	Primeiras fases de desenvolvimento de questionários/escalas	Estudos posteriores, validação, testes de consistência entre amostras

- •Relação dos itens de uma escala com a variável latente
- •Múltiplas variáveis latentes podem ser a causa da variação num conjunto de itens
- •A análise fatorial é utilizada para avaliar se esse processo de seleção foi bem-sucedido
- •A teoria clássica da medição assume que os itens que compõem uma escala são unidimensionais

- •Determinar **quantas variáveis latentes** estão subjacentes a um conjunto de itens
- Condensar a informação
- •Definir o **significado dos fatores** (isto é, das variáveis latentes)
- •Identificar quais os itens que têm melhor ou pior desempenho

A nova administração do hospital pretende identificar quais as características que os seus colaboradores consideram importantes que os colegas de trabalho possuam.

Foi pedido aos colaboradores que escrevessem o maior número possível de características importantes que conseguissem identificar.

Análise Fatorial Exploratória – Extrair fatores

identificar.

Pressupostos subjacentes

- 1. Múltiplas variáveis medidas numa escala contínua
- 2. Relação linear entre variáveis (verificada com diagrama de dispersão)
- 3. Ausência de um número significativo de valores extremos (outliers)
 - 4. Amostra de grande dimensão (5 a 10 participantes por item)
 - 5. Esfericidade e adequação da amostra

Análise Fatorial Exploratória - Esfericidade e adequação da amostra

Teste de Esfericidade de Bartlet

H0: Assume que os itens não são correlacionados

Deve existir correlação entre itens

Rejeitar H0 (p < 0,05)

Kaiser-Meyer-Olkin

Proporção da variância entre os itens devido a variância comum

KMO> 0,8

Se não, deve aumentar-se a amostra

Análise Fatorial Exploratória - Conceitos

Carga Fatorial (factor loading)

O que é?

É o coeficiente que indica a **correlação entre um item** (ou variável observada) e um **fator latente** (constructo não observado).

Em termos simples, mostra quanto do item é explicado pelo fator.

Interpretação:

- Valores próximos de 1 → o item está fortemente associado ao fator.
- Valores entre 0,3 e 0,4 → são considerados o limite mínimo aceitável.
- Valores inferiores a 0,3 → sugerem que o item não contribui significativamente para o fator.

Como se calcula?

Num modelo de análise fatorial, as cargas fatoriais são estimadas a partir da **matriz de correlações** entre os itens, por meio de:

- Extração dos fatores
- Rotação dos fatores

As cargas resultam do produto da matriz de correlações pelas combinações lineares que melhor explicam a variância comum dos itens.

Análise Fatorial Exploratória - Conceitos

Comunalidade (variação comum, explicada pela variável latente) > 0.4 (0.3)

Unicidade (variação devida apenas ao modelo)

Se 0,78 => 78% da variação explicada pela variável latente

Análise Fatorial Exploratória - Conceitos

	DorQ10.1	DorQ10.2	DorQ10.3	DorQ10.4	DorQ10.5	DorQ10.6	DorQ10.7	ActGeral13.1	Disposição 13.2	Andar13.3	Relacioamento 13.4	Sono13.5	GostarVida13.6
DorQ10.1	_												
DorQ10.2	0.343	_											
DorQ10.3	0.507	0.701	_										
DorQ10.4	0.398	0.676	0.714	-									
DorQ10.5	0.541	0.486	0.658	0.607									
DorQ10.6	0.408	0.558	0.713	0.571	0.630	_							
DorQ10.7	0.295	0.636	0.518	0.435	0.341	0.438	_						
ActGeral13.1	0.519	0.375	0.435	0.362	0.484	0.347	0.290	_					
Disposição 13.2	0.480	0.335	0.356	0.281	0.354	0.283	0.451	0.630	_				
Andar13.3	0.378	0.252	0.320	0.243	0.260	0.275	0.157	0.514	0.350	_			
Relacioamento 13.4	0.265	0.300	0.291	0.222	0.202	0.227	0.391	0.418	0.670	0.343	_		
Sono13.5	0.372	0.463	0.464	0.281	0.338	0.334	0.688	0.403	0.532	0.248	0.406	-	
GostarVida13.6	0.419	0.416	0.406	0.352	0.369	0.330	0.478	0.609	0.742	0.409	0.612	0.539	_

Figure 6.8 An orderly arrangement of pillars viewed from a perspective that reveals that orderliness

Rotação

A rotação dos pesos fatoriais (ou rotação das cargas fatoriais) serve para melhorar a interpretação dos fatores extraídos na análise fatorial exploratória (EFA), sem alterar a estrutura matemática subjacente.

		~
Sam	rata	C20
Sem	TOta	Cau

Item	Fator 1	Fator 2
Q1	0,52	0,47
Q2	0,48	0,50

Com rotação:

Item	Fator 1	Fator 2
Q1	0,75	0,10
Q2	0,12	0,77

Após rotação, torna-se mais evidente que o item Q1 se associa ao Fator 1 e o item Q2 ao Fator 2.

Nenhum

Não é utilizado qualquer método de rotação fatorial.

Varimax

Método de rotação ortogonal que minimiza o número de variáveis com cargas elevadas em cada fator. Este método simplifica a interpretação dos fatores.

Direct Oblimin

Método de rotação oblíqua (não ortogonal). Assume correlação entre fatores.

Quartimax

Método de rotação que minimiza o número de fatores necessários para explicar cada variável. Este método simplifica a interpretação das variáveis observadas.

Equamax

Método de rotação que combina os métodos Varimax (que simplifica os fatores) e Quartimax (que simplifica as variáveis). Minimiza simultaneamente o número de variáveis com cargas elevadas num fator e o número de fatores necessários para explicar uma variável.

Promax

Rotação oblíqua, que permite que os fatores estejam correlacionados. Pode ser calculada mais rapidamente do que a rotação Direct Oblimin, sendo por isso útil para conjuntos de dados grandes.

Conceitos – Como escolher a rotação

Correlações inter-fatores

	1	2	3
1	_	0.489	0.303
2		_	0.282
3			_

Após Rotação analisar os fatores

Cargas Cruzadas!

Item	Fator 1	Fator 2	Fator 3
Q5	0,62	0,45	0,18

Neste caso, o item Q5 carrega em dois fatores com valores considerados relevantes. É, portanto, um item com carga cruzada.

Cargas que desaparecem!

Valor Próprio (Eigenvalue ou Autovalor)

O que é?

Representa a quantidade total de variância explicada por cada fator.

- Um valor próprio é associado a cada fator extraído.
- Quanto maior o valor próprio, mais importante é o fator na explicação da variância total do conjunto de itens.

Regra de Kaiser:

 Apenas se retêm fatores com valores próprios superiores a 1 (pois explicam mais variância que um item isolado).

Como se calcula?

Na Análise de Componentes Principais (ACP), o valor próprio de um fator é a soma dos quadrados das cargas fatoriais dos itens nesse fator:

$$\operatorname{Valor} \operatorname{pr\'oprio}_j = \sum_{i=1}^k (\operatorname{Carga} \operatorname{Fatorial}_{ij})^2$$

Onde:

- j é o fator
- i é o item
- k é o número de itens

Exemplo resumido (hipotético):

Item	Fator 1 (carga fatorial)
Q1	0,80
Q2	0,75
Q3	0,70

Valor próprio do Fator
$$1=0.80^2+0.75^2+0.70^2=0.64+0.5625+0.49=1.6925$$

Ou seja, o Fator 1 explica aproximadamente 1,69 unidades de variância dos dados padronizados.

1,6925/3=0,5641 56,41% da variância total

Quantos fatores a reter

Valores próprios maiores do que 1

Variância acumulada mínima 50%

Sumário

Fator	Valor próprio	% de Variância total	% acumulada
1	5.853	45.026	45.026
2	1.419	10.913	55.939
3	0.837	6.436	62.375

Scree plot

Scree Plot

Conceitos – Análise Paralela (retenção de fatores)

O que é a análise paralela?

A análise paralela compara os valores próprios (eigenvalues) obtidos dos dados reais com os valores próprios obtidos de dados aleatórios simulados com as mesmas dimensões (número de variáveis e casos).

Ideia-chave: só se retêm os fatores que explicam mais variância do que o esperado ao acaso.

Resumo

KMO > 0,8 Rejeitar H0 Teste de Bartlet (p < 0,05) Variância Total explicada > 60% Comunalidade > 0,4 (singularidade < 0,6) Carga fatorial após rotação > 0,45 Alfa de Cronbach > 0,7

Tipos principais de rotação:

Tipo de rotação	Permite correlação entre fatores?	Exemplos	Quando utilizar
Ortogonal	Não	Varimax, Quartimax	Quando se assume que os fatores são independentes
Oblíqua	Sim	Oblimin, Promax	Quando se admite que os fatores podem estar correlacionados (mais realista nas ciências sociais e saúde)

Recomendações práticas

Situação	Opções sugeridas
Dados ordinais (ex. tipo Likert)	Resíduos mínimos + Oblimin + Análise Paralela
Dados contínuos com normalidade	Máxima Verosimilhança + Varimax (se fatores forem independentes)
Exploração inicial de questionário	Ativar todos os outputs e pressupostos
Interpretação de cargas	Cortar abaixo de 0,30 ou 0,40 para clareza

Proceda a uma EFA da Escala da Dor

Como Redigir os Resultados da Análise Fatorial Exploratória (AFE)

- **1.Mencione os fundamentos teóricos** da área que está a estudar, especialmente no que se refere aos construtos que pretende identificar através da AFE.
- **2.Descreva a amostra** (por exemplo, informações demográficas, tamanho da amostra, método de amostragem).
- **3.Descreva o tipo de dados utilizados** (por exemplo, nominais, contínuos) e apresente as **estatísticas descritivas**.
- **4.Descreva como testou os pressupostos da AFE**. Devem ser incluídos detalhes sobre os testes de esfericidade e as medidas de adequação da amostragem.

Como Redigir os Resultados da Análise Fatorial Exploratória (AFE)

- **5.Explique qual foi o método de extração fatorial** utilizado (por exemplo, máxima verosimilhança, resíduos mínimos, etc.).
- **6.Explique os critérios e o processo usados para decidir quantos fatores foram extraídos** na solução final e quais itens foram retidos. Apresente claramente a fundamentação para as decisões principais tomadas ao longo da AFE.
- **7. Explique quais métodos de rotação foram utilizados**, a razão da sua escolha e os resultados obtidos.
- 8.As cargas fatoriais finais devem ser apresentadas nos resultados, sob a forma de uma tabela.

ACP

Análise de Componentes Principais (PCA)

- •É essencialmente uma **técnica de redução de dados**, usada para agregar um conjunto de indicadores correlacionados num índice sintético.
- •O componente principal é uma combinação linear dos indicadores que melhor reproduz a variância observada.
- •Como resultado, a estrutura de ponderação é diretamente derivada dos dados, com base na matriz de covariância.
- •É uma generalização da Análise Fatorial, mas não assume a existência de uma variável latente.
- •É considerada uma solução mais apropriada para redução de dados em parte porque utiliza a variância total em vez de apenas a variância comum ou partilhada entre os indicadores.
- •Em certas circunstâncias, pode produzir os mesmos resultados que a Análise Fatorial (cf. Krishnakumar e Nagar 2007).