ECE2150J RC3

Jierui Xu

UM-SJTU JI

October 30, 2024

Overview

Operational Amplifiers

Capacitors and Inductors

First-Order Circuit

Overview

Operational Amplifiers

Capacitors and Inductors

First-Order Circuit

Ideal Op-amp

Assumption:

- ▶ Infinite open-loop gain $(A = \infty)$
- ▶ Infinite input resistance $(R_i = \infty)$
- ightharpoonup Zero output resistance ($R_0 = 0$)
- ▶ (Does not mean that $v_0 = \infty$)

Figure: Op-amp's equivalent circuit

Figure: Symbol of ideal op-amp

Ideal Op-amp

Characteristics of ideal op-amp:

- ▶ Open circuit at two input terminals $(i_1 = i_2 = 0)$
- ▶ Same voltage at two input terminals $(v_1 = v_2)$
- ▶ (Does not mean that $i_o = 0!$)

Figure: Op-amp's equivalent circuit

Figure: Symbol of ideal op-amp

Inverting Amplifier

Non-inverting Amplifier

Summing Amplifier

Difference Amplifier

Check if
$$R_1=R_2,\ R_3=R_4$$

$$v_o=\left(\frac{R_2}{R_1}+1\right)\frac{R_4}{R_3+R_4}v_2-\frac{R_2}{R_1}v_1$$

Cascaded Op Amps

Gain of Cascaded Op Amp

Original input signal is increased by the gain of the individual stage, and the final gain is the **product of all gains at each stage**.

$$A = \frac{v_o}{v_1} = \frac{v_2}{v_1} \cdot \frac{v_3}{v_2} \cdot \frac{v_o}{v_3} = A_1 A_2 A_3$$

Basic Op-amp Circuits: Summary

For basic op-amp circuits:

Op-amp circuits	Input-output relationship
Inverting amplifier	$A=rac{v_0}{v_i}=-rac{R_f}{R_1}$
Non-inverting amplifier	$A=rac{v_i}{v_i}=1+rac{R_f}{R_1}$
Summing amplifier	$v_o = -(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_2}v_3)$
Difference amplifier	$v_o = \left[\left(\frac{R_2}{R_1} + 1 \right) \left(\frac{R_4/R_3}{1 + R_4/R_3} \right) \right] v_2 - \left[\frac{R_2}{R_1} \right] v_1$

For complicated op-amp circuits:

- ▶ Identify basic op-amp circuits within it
- Use the formula for cascaded op-amp circuit
- ightharpoonup Be proficient in listing nodal analysis equations to obtain v_o/v_i

Find v_o .

$$V_0 = -\frac{100}{25} \cdot 6 - \frac{100}{20} \cdot (-\frac{40}{20}) \cdot 4 - \frac{100}{10} \cdot 2 = -24 - 20 + 40 = -40$$

Determine the gain v_o/v_i of the circuit.

Overview

Operational Amplifiers

Capacitors and Inductors

First-Order Circuit

Capacitors

- Open Circuit Property When the voltage across a capacitor is not changing with time (DC steady state), the capacitor could be treated as an open circuit.
- Continuity property The voltage on a capacitor must be continuous.

3. Capacitors IV relationship

$$i = C \frac{dv}{dt}$$

property 2 can be intuitively shown be property 3. If the voltage across the capacitor is not continuous, say $\frac{dv}{dt} = \infty$, which will cause i to be infinity.

Capacitors

- An ideal capacitor will not dissipate energy. It takes
 power from the circuit when storing energy in its electric field
 and returns previously stored energy when delivering power to
 the circuit.
- 2. A real capacitor has a large leakage resistance

Capacitors in parallel & in series

capacitors in parallel

$$G(S) = \frac{1}{R}$$

$$C_{eq} = C_1 + C_2 + C_3 + ... + C_N$$

capacitors in series

$$\frac{C_{1} C_{2} C_{3}}{|| || || || || \cdots || ||}$$

$$\frac{1}{C_{eq}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}} + \frac{1}{C_{4}} + \dots + \frac{1}{C_{N}}$$

Energy stored in Capacitors

The instantaneous power delivered to the capacitor is

$$p = vi = v(C\frac{dv}{dt})$$

Therefore, the total energy stored in the capacitor is

$$w = \frac{1}{2}CV^{2}$$

$$W = \int_{-\infty}^{t} p dt = \int_{-\infty}^{t} V(c\frac{dy}{4t}) dt = C\int_{V_{l-\infty}}^{V} v dv$$

$$= \frac{1}{2}CV^{2}\Big|_{V_{l-\infty}}^{V} = \frac{1}{2}CV^{2}$$

Inductors

- Short Circuit Property When the current through an inductor is not changing with time (DC steady state), the inductor could be treated as a short circuit in the circuit.
- 2. **Continuity property** The current through a capacitor must be continuous.
- 3. Inductor IV relationship

$$v = L \frac{di}{dt}$$

Inductors

- An ideal inductor will not dissipate energy. It takes power from the circuit when storing energy in its magnetic field and returns previously stored energy when delivering power to the circuit.
- 2. A real inductor has a significant winding resistance and a small winding capacitance

Inductors in parallel & in series

▶ inductors in parallel

inductors in series

$$L_{eq} = L_1 + L_2 + L_3 + L_4 + \dots + L_N$$

Energy stored in Inductors

The instantaneous power delivered to the inductor is

$$p = vi = (L\frac{di}{dt})i$$

Therefore, the total energy stored in the inductor is

$$w = \frac{1}{2}Li^2$$

Summary of Capacitors and Inductors

	Capacitor	Inductor
Electric/magnetic	q	Ψ
	q=Cv	ψ=Li
i-v (or v-i) relation	$i=C \times dv/dt$	$v=L\times di/dt$
energy	1/2Cv ²	1/2Li ²

Obtain the equivalent capacitance of the network below.

The output v_o of the op amp circuit in Fig.(a) is shown in Fig.(b). Let $R_i = R_f = 1 \, \text{M}\Omega$ and $C = 1 \, \mu\text{F}$. Determine the input voltage waveform and sketch it.

$$\frac{O-V_{i}}{R_{i}} + \frac{O\cdot V_{0}}{R_{f}} + \frac{1}{C_{f}} \frac{1}{A_{f}} (0-V_{0}) = 0$$

$$\Rightarrow V_{i} = -(V_{0} + \frac{1}{A_{f}})$$

Overview

Operational Amplifiers

Capacitors and Inductors

First-Order Circuit

Source-Free Circuits (I) Response

Source-free RC

Voltage: $v = v_0 e^{-t/RC}$

Time constant: $\tau = RC$

Current: $i_R = \frac{v}{R} = \frac{v_0}{R} e^{-t/\tau}$ Power: $p = vi_R = \frac{v_0}{R} e^{-2t/\tau}$ Energy: $w_R = \int_0^t p dt = \frac{1}{2} C v_0^2$

Source-free RL

Current: $i = i_0 e^{-t/(L/R)}$

Time constant: $\tau = L/R$

Voltage: $v_R = iR = \frac{i_0}{R}e^{-t/\tau}$ Power: $p = v_R i = i_0^2 R e^{-2t/\tau}$

Energy: $w_R = \int_0^t p dt = \frac{1}{2} L i_0^2$

Source-Free Circuits (II) Time Constant

	Source-free RC	Source-free RL
Time constant	au=RC	au = L/R
Relation to initial decay rate	$rac{d}{dt}(rac{v}{v_0})=-1/ au$	$rac{d}{dt}(rac{i}{i_0}) = -1/ au$

- ▶ Time required for the response to decay to a factor of 1/e or 36.8% of its initial value
- Indicates the initial decaying rate
- ightharpoonup Assume complete decay after 5τ

Source-Free Circuits (III) General Steps

- Find the initial value v_0 , i_0 .
- ► Find the time constant, i.e., find R_{eq}. (R_{eq} is the Thevenin or Norton equivalent resistance at the capacitor and inductor terminals.)
- Use the equation in the previous slide to get results.
- ➤ You can always use Mesh/Nodal analysis to calculate if you are not familiar with the steps above.
- Of course, you need to remember that $i=C\frac{dv}{dt}$ for capacitors and $v=L\frac{di}{dt}$ for inductors!)

Singularity Functions

Unit ramp	Unit step	Unit impulse
$r(t) = egin{cases} 0, t \leq 0 \ t, t > 0 \end{cases}$	$\mathtt{u(t)} = egin{cases} 0, t \leq 0 \ 1, t > 0 \end{cases}$	$\delta(t) = egin{cases} 0, t eq 0 \ ext{Undef.}, t = 0 \end{cases}$
$r(t-t_0)$ 1 $0 \ t_0 \qquad t_0+1 \ t$	$ \begin{array}{c c} u(t-t_0) & \\ \hline 1 & \\ \hline 0 & t_0 & t \end{array} $	$\delta(t) \bigwedge_{t}^{\infty} (\infty)$

Give a nice way to represent "Switch on/off" of the sources/part of circuits.

$$\delta(t) \xrightarrow{\int} u(t) \xrightarrow{\int} r(t)$$

Please plot the function diagram of the following singular function

$$f(t) = r(t+1) + u(t-2) - r(t-3)$$

and calculate

Circuits with Step Input (I) Response

Step-input RC

Initial condition: $v(0^+) = v(0^-) = V_0$

Equation:
(KVL)
$$\left(C\frac{dv}{dt}R + v = V_s\right)$$

Response: $v(t) = V_s + (V_0 - V_s)e^{-t/\tau}$

Step-input RL

Initial condition:

$$i(0^+) = i(0^-) = I_0$$

Equation: (KCL) $iR + L\frac{di}{dt} = V_s$

Response: $i(t) = \frac{V_s}{R} + (I_0 - \frac{V_s}{R})e^{-t/\tau}$

Circuits with Step Input (II) General Steps

- General form: $x(t) = x(\infty) + (x(0) x(\infty))e^{-t/\tau}$.
- Step response = natural response + forced response, where natural response is $x(0)e^{-t/\tau}$, forced response is $x(\infty)(1-e^{-t/\tau})$.
- Step response = transient state response + steady state response, where transient response is $(x(0) x(\infty))e^{-t/\tau}$, steady state response is $x(\infty)$.
- Steps to find step response:
 - Find x(0).
 - ightharpoonup Find $x(\infty)$.
 - ightharpoonup Find au.
- ➤ Still, you can find step response using mesh/nodal analysis. By solving the differential equation, you will find that natural response is the homogeneous solution of the equation, while the forced response is the particular solution.

General Formula for First-Order Circuits

General formula for RC:

$$v(t) = v(\infty) + \left[v(0^+) - v(\infty)\right] e^{-t/\tau}$$

General formula for RL:

$$i(t) = i(\infty) + \left[i(0^+) - i(\infty)\right] e^{-t/\tau}$$

For the op amp circuit below, find $v_o(t)$ for t > 0.

① For t<0,
$$V_0(0) = 0$$
②. For t>0, $V_0(\infty) = -\frac{2000}{10}.4 = -48$

(3).
$$R_{Th} = 20 + 100 = 120 \text{kg}$$
 $T = R_{th}C = (120 \times 10^3) \cdot (25 \times 10^{-3}) = \frac{3}{2000}$

$$= \begin{cases} V_0(t) = V_0(\infty) + [V_0(0) - V_0(\infty)] \cdot e^{-t/\tau} \\ V_0(t) = -4\delta(1 - e^{-t/3000}) V \end{cases}$$

References

- 1. 2024 Fall VE215 slides, Sung-Liang Chen
- 2. Fundamentals of Electric Circuits, 5th e, Sadiku, Matthew
- 3. 2023 Summer RC3, Erdao Liang, Chongye Yang
- 4. 2024 Summer RC3, Runting Zhang

Thank you!