

2017级

《物联网数据存储与管理》课程 实验报告

 姓
 名
 段佳俊

 学
 号
 U201714655

 班
 号
 物联网 1701 班

 日
 期
 2020.05.25

目 录

-,	实验目的	1
Ξ,	实验背景	1
三、	实验环境	1
四、	实验内容	1
	4.1 对象存储技术实践	2
	4.2 对象存储性能分析	2
五、	实验过程	2
六、	实验总结	8
参え	宇文献	8

一、实验目的

- 1. 熟悉对象存储技术,代表性系统及其特性;
- 2. 实践对象存储系统, 部署实验环境, 进行初步测试;
- 3. 基于对象存储系统,架设实际应用,示范主要功能。

二、实验背景

对象存储是用来描述解决和处理离散单元的方法的通用术语。对象在一个层结构中不会再有层级结构,是以扩展元数据为特征的。

对象存储,也叫做基于对象的存储,是用来描述解决和处理离散单元的方法的通用术语,这些离散单元被称作为对象。

就像文件一样,对象包含数据,但是和文件不同的是,对象在一个层结构中不会再有层级结构。每个对象都在一个被称作存储池的扁平地址空间的同一级别里,一个对象不会属于另一个对象的下一级。

文件和对象都有与它们所包含的数据相关的元数据,但是对象是以扩展元数据为特征的。每个对象都被分配一个唯一的标识符,允许一个服务器或者最终用户来检索对象,而不必知道数据的物理地址。这种方法对于在云计算环境中自动 化和简化数据存储有帮助。

三、实验环境

操作系统	Windows 10 64 位
处理器	Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz
内存	8GB
Java 版本	1.8.0_251
Server	Minio
Client	Minio Client
Test	COSBench

四、实验内容

本实验在 windows 环境下完成相应的环境配置,基础的实验环境安装完毕后部署对象存储的服务端、客户端和测试工具,然后启动 COSBench 测试程序,提交所给的测试文件,观察负载测试的结果,分析吞吐率、延迟等技术指标。

4.1 对象存储技术实践

- 1.在 windows 下配置 java 环境。
- 2.在官网上下载安装对象存储服务端 minio 和客户端 minio client
- 3. 安装后使用浏览器访问 http://127.0.0.1:9000, 如果可以访问说明安装成功, 否则重新安装
 - 4.下载测试程序 COSBench, 配置完成后提交负载测试样例, 观察运行结果。

4.2 对象存储性能分析

- 1.读写性能对比
- 2.分析块的大小对运行结果的影响

将负载样例中 8kb~1mb work 的 workers 数量改为一致,分析块的大小对存储性能的影响。

3.分析 workers 数量对运行结果的影响

将负载样例中块的大小改为一致,修改 workers 的数量,分析 workers 数量对存储性能的影响。

五、实验过程

1.下载配置 minio server 和 minio client

进入 minio 官网,下载 minio.exe 文件到在 G 盘新建的文件夹 minio,打开命令行,使用 cd 命令进入安装目录,键入:

G:\minio>minio.exe server G:\minio\minio_server

打开服务器,获取相应的 endpoint、accessKey 和 secretKey,如图所示。

其中 accessKey 和 secretKey 显示为初始值,均为 minioadmin,打开 minio.exe 所在文件夹,按照路径 minio_server\.minio.sys\config 找到文件 config.json,在文件中修改 accessKey 和 secretKey 的值为自定义的值,如图所示。

修改完成后,保存文件并退出,关闭先前的终端,接着重新打开输入上述指令,结果如图所示,可以发现终端中的 AccessKey 和 SecretKey 已经更新为用户自定义的值。

打开浏览器,在地址栏中键入:

进入 MinIO Browser 登陆界面,在界面输入终端中获取的 AccessKey 和 SecretKey 的值,如图所示:

点击登录按钮,进入主界面,如图所示:

3.在 github 上下载 COSBench 压缩包,解压,双击运行 start-all.bat,结果如图 所示。可以看到该批处理文件打开了 driver 和 controller 两个窗口,分别在端口 18089 和 19089 监听。

双击运行 web.bat, 自动打开浏览器, 弹出网页, 如图所示:

5 修改负载样例的 AccessKey、SerectKey 和 endpoint,点击 submit new workloads,选择需要提交的文件,点击 submit 进行提交,提交完成后会在 Active Workloads下显示相关信息,如图所示。

COSBENCH - CONTROLLER WEB CONSOLE			27 10:01:58 CST 2020 ersion: 0.4.2.20160615
Submission Results			
Success: your workload has been accepted!			
view workload info			
You may continue to submit new workloads via the following form.			
Workload Submission			
workload config: 选择文件 未选择任何文件	submit		
go back to index			
Active Workloads			
ID Name Submitted-At		State	Link
w5 sample 2020-5-27 10:01:58		processing	view details

6. 点击 view details 可以查看刚才提交的负载的详细处理结果,运行结果如图所示。

7.读写性能比较

在 final result 下的 General Report,中,可以看到 Op-count、Byte-count、Avg-ResTime、Avg-ProcTime、Throughput、Bandwidth 等信息,如图所示。

COSBEN	BENCH - CONTROLLER WEB CONSOLE					time: Wed May 27 10:08:24 CST 2020 version: 0.4.2.20160615		
Final Result								
General Report								
Ор-Туре	Op-Count	Byte-Count	Avg-ResTime	Avg-ProcTime	Throughput	Bandwidth	Succ-Ratio	
op1: init -write	0 ops	0 B	N/A	N/A	0 op/s	0 B/S	N/A	
op1: prepare - write	8 ops	64 KB	1238.5 ms	1238.5 ms	6.48 op/s	51.85 KB/S	100%	
op2: prepare - write	8 ops	128 KB	1087.38 ms	1087.12 ms	7.54 op/s	120.57 KB/S	100%	
op3: prepare - write	8 ops	256 KB	1262.75 ms	1262 ms	6.34 op/s	202.91 KB/S	100%	
op4: prepare - write	8 ops	512 KB	1238.25 ms	1237.12 ms	6.49 op/s	415.52 KB/S	100%	
op5: prepare - write	8 ops	1.02 MB	1198.5 ms	1194.12 ms	6.81 op/s	872.21 KB/S	100%	
op6: prepare - write	8 ops	2.05 MB	1186.88 ms	1177 ms	6.9 op/s	1.77 MB/S	100%	
op7: prepare - write	8 ops	4.1 MB	541.62 ms	529.75 ms	21.4 op/s	10.96 MB/S	100%	
op8: prepare - write	8 ops	8 MB	644.75 ms	469 ms	18.4 op/s	18.4 MB/S	100%	
op1: read	4.83 kops	38.61 MB	6.79 ms	6.68 ms	161.4 op/s	1.29 MB/S	95.96%	
op2: write	1.29 kops	10.35 MB	158.36 ms	158.33 ms	43.28 op/s	346.22 KB/S	100%	
op1: read	2.79 kops	44.62 MB	4.95 ms	4.84 ms	95.49 op/s	1.53 MB/S	95.09%	
op2: write	703 ops	11.25 MB	311.55 ms	311.53 ms	24.06 op/s	384.89 KB/S	100%	
op1: read	2.89 kops	92.42 MB	4.34 ms	4.1 ms	98.46 op/s	3.15 MB/S	87.62%	
op2: write	852 ops	27.26 MB	120.71 ms	120.67 ms	29.05 op/s	929.51 KB/S	100%	
op1: read	2.98 kops	190.85 MB	4.88 ms	4.4 ms	99.43 op/s	6.36 MB/S	84.72%	
op2: write	788 ops	50.43 MB	130.6 ms	130.29 ms	26.27 op/s	1.68 MB/S	100%	
op1: read	1.54 kops	197.63 MB	4.96 ms	4.42 ms	51.51 op/s	6.59 MB/S	100%	
op2: write	374 ops	47.87 MB	59.52 ms	58.52 ms	12.48 op/s	1.6 MB/S	100%	
op1: read	1.44 kops	369.92 MB	6.27 ms	4.99 ms	48.26 op/s	12.36 MB/S	100%	
op2: write	387 ops	99.07 MB	53.8 ms	51.45 ms	12.93 op/s	3.31 MB/S	100%	
op1: read	1.42 kops	729.6 MB	7.24 ms	4.79 ms	47.63 op/s	24.39 MB/S	100%	
op2: write	366 ops	187.39 MB	53.43 ms	48.25 ms	12.23 op/s	6.26 MB/S	100%	
op1: read	677 ops	677 MB	9.76 ms	4.51 ms	22.57 op/s	22.57 MB/S	100%	
op2: write	187 ops	187 MB	124.91 ms	113.58 ms	6.23 op/s	6.23 MB/S	100%	
op1: cleanup - delete	128 ops	0 B	6.19 ms	6.19 ms	160.8 op/s	0 B/S	100%	
op1: dispose - delete	0 ops	0 B	N/A	N/A	0 op/s	0 B/S	N/A	
op2: write op1: read op2: write op1: cleanup - delete op1: dispose -	366 ops 677 ops 187 ops 128 ops 0 ops	187.39 MB 677 MB 187 MB 0 B	53.43 ms 9.76 ms 124.91 ms 6.19 ms	48.25 ms 4.51 ms 113.58 ms 6.19 ms	12.23 op/s 22.57 op/s 6.23 op/s 160.8 op/s	6.26 MB/S 22.57 MB/S 6.23 MB/S 0 B/S	10 10 10	

可以看到,在采用 mimio 作为服务端时,发现写的时候成功率全为 100%,而读的时候有时不为 100%。不为 100%的情况存在于 size 较小的情况下,随着 size 的增大读写成功率均为 100%。读操作的 op 数和字节数比写操作更多,但平均处理时间却比写操作平均处理时间要短的多,吞吐量和带宽也是写操作的数倍,说明读性能远远优于写性能。

8.实验中遇到的问题

在 Cosbench 网页端提交工作负载文件,运行负载后,没有产生预期数据,经过网上搜集资料,发现是没有修改负载文件中的用户名、密码和 endpoint 经过修改后,负载文件可以正确运行。

在进行 minio 实验时打开 start-all.bat 文件时报错,COSBench_driver 控制台在运行时出现异常,通过检查命令行输出的信息,发现是该端口被其他的程序占用,使得程序运行出错,接着使用任务管理器,关闭占用的程序,重启 start-all.bat 文件后,顺利运行。

六、实验总结

通过这次实验,学习了如何搭建 minio 服务器,并学会了如何通过网页客户端进行文件上传和下载,并通过 COSBench 来测试其读写效率。学习了一些 GitHub 的知识,为之后的工作和学习打下了一些基础。

在使用 COSBench 对所给负载样例进行测试时,最开始没有修改 AccessKey、SerectKey 和 endpoint,导致运行时出现 terminated,最终运行结果一直 fail,在查阅相关资料后对文件进行了修改,之后就比较顺利地完成了后面的内容。除此以外,还通过 COSBench 分析比较了不同块的大小和 workers 数对性能的影响。

通过这次实验我稍微了解了对象存储的相关知识,让我对客户端,服务端之间的交互有了更直接的体会,对象存储系统只需要联网即可将数据上传至云端,有效解决了物联网设备本地存储空间较小的问题,是一个应对物联网海量数据存储挑战的良好的解决方案。它极大地扩大了存储系统的规模和功能,从根本上改变了存储蓝图,处理和解决了不间断可扩展性、弹性下降、限制数据持久性、无限技术更新和成本失控等棘手的存储问题。在工业界有着广泛的应用和出色的表现。

参考文献

- [1] ARNOLD J. OpenStack Swift[M]. O' Reilly Media, 2014.
- [2] ZHENG Q, CHEN H, WANG Y 等. COSBench: A Benchmark Tool for Cloud Object Storage Services [C]//2012 IEEE Fifth International Conference on Cloud Computing. 2012: 998-999.
- [3] WEIL S A, BRANDT S A, MILLER E L 等. Ceph: A Scalable, High-performan ce Distributed File System[C]//Proceedings of the 7th Symposium on Operating Systems Design and Implementation. Berkeley, CA, USA: USENIX Association, 2006: 307-320.