

AP8022 演示系统

AP8022 采用先进的高低压兼容工艺,将 PWM 控制电路和耐压高达 700V 以上的 MOSFET 完美的集成在同一颗芯片上。

主要特征:

- ◆ 电流控制模式;
- ◆ 内置高压 MOSFET (>700v);
- ◆ VDD 输入范围为 9~38v:
- ◆ 内置频率为 62KHz 振荡器
- ◆ 集成了过压、欠压、过流、短路、过温等完整的保护方案;
- ◆ 空载时芯片静态功耗小于 100mW;
- ◆ 自动重启动;

比较优势:

- ◆ 内置高压 MOSFET 能有效的节约购买分离器件的成本,同时 PCB 版图的面积也将缩小。由于 PWM 控制电路和功率管在同一个芯片上,开关回路的面积能最大程度的减小,相对采用 PWM 控制芯片和功率管分离的方案来说,EMC 性能会有很大的优势:
- ◆ 无需采用高压启动电阻,可以有效的降低待机功耗,同时还可节省外围元件(高 压电阻),提高了安全性能(高压电阻的短路或不符合规范将可能烧坏控制芯片);
- ◆ 内置振荡器减少了外围器件(调节振荡器频率所用的电容或电阻)的数量和 PCB 版图的面积;
- ◆ VDD 输入范围达到 30v,在辅助线圈输出变化很大时,仍能保证电路正常工组, 无需使用特殊的钳位措施来限定 VDD 的变化。

AP8022 DEMO 系统为反激式开关电源,单路输出额定电压为 **12V**,最大允许输出电流 **1.5A**。

1. DEMO 板 pcb 布局

A. 正面:

B. 背面:

2. DEMO 板电路

Chipown

3. DEMO 板测试数据

一. 电源调整率:

输出		直流输出电压 Vout(V)							输出纹波 Vpp(mv)				
输入	1.4	1.2	0.84	0.5	0. 1	空	1.5	1.2	0.84	0.5	0.1	空	
רוווד	A	A	A	A	A	载	A	A	A	A	A	载	
90V	/	/	12.00	12.00	12. 00	12.01	/	/	40	35	25	25	
110V	/	/	12.00	12.00	12. 00	12.01	/	/	40	30	25	25	
130V	/	/	12.00	12.00	12. 00	12.01	/	/	40	30	25	20	
180V	11. 98	11. 99	12.00	12.00	12. 00	12.01	50	40	35	30	25	20	
220V	11. 98	11. 99	12.00	12.00	12.00	12.01	50	40	35	30	25	20	
260V	11. 98	11. 99	12.00	12.00	12. 00	12.01	50	40	35	30	25	20	
ŧ	电压调整率 <1%					负载调整率 <1%							

二. 电源效率测试:

AC	² 输入	DC 3	DC 输出		AC	输入	DC ‡	渝出	效率
电压	电流	电压	电流	效率 (%)	电压	电流	电压	电流	(%)
(V)	(mA)	(V)	(A)	(/*/	(V)	(mA)	(V)	(A)	(/*/
220	87. 1	11. 98	1.4A	87. 53	/	/	/	/	/
220	75. 2	11. 99	1.2A	86. 97	/	/	/	/	/
220	52. 7	12.00	0.84A	86. 94	110	107. 0	12. 00	0.84	85. 64
220	31. 5	12.00	0. 5A	86. 58	110	62. 5	12.00	0. 5	87. 27
220	21. 25	12.00	0. 3A	77. 01	110	37. 35	12.00	0.3	87. 62
220	10. 20	12.00	0. 1A	53. 48	110	15. 25	12.00	0. 1	71. 54
220	4.88	12. 01	空载	/	110	4. 80	12. 01	空载	/
220	95	/	短路	/	110	150	/	短路	/

AC	C输入	DC ‡	输出	效率	AC	输入	DC ^t	輸出	效率
电压	电流	电压	电流	(%)	电压	电流	电压	电流	(%)
(V)	(mA)	(V)	(A)	(,,,	(V)	(mA)	(V)	(A)	(, -)
90	138. 1	12.00	0.84	81. 10	180	63. 4	12.00	0.84	88. 33
110	107. 0	12.00	0.84	85. 64	220	52. 7	12.00	0.84	86. 94
130	88. 8	12.00	0.84	87. 32	260	46. 1	12.00	0.84	84. 10

Efficiency vs. Pout:

Vin: 220Vac, Vout: 12V/0.1A~12V/1.4A

Efficiency vs. Vin:

Vin: 90Vac~260Vac, Vout: 12V/0.84A

三. 电源的温升测试

			温升	· (°C)				
负载 输入	空载	0. 1A	0. 3A	0. 5A	0.84A	1A	1. 2A	1. 4A
110Vac	10	15	22	35	40	/	/	/
220Vac	10	15	20	30	35	40	45	50

环境温度为20℃,工作半小时后测得数据。

四. 电源工作电压波形:

以下皆为 AC220V 市电输入,输出 12V,带 1A 负载

(1) 初级电压波形

(2) 次级电压波形

(3) 输出电压纹波波形

AP8022 Demo

Chipown

4. DEMO 板 EMI 测试波形

在 DEMO 板上分别使用 AP8022 和 VIPER22A 进行传导 EMI 测试,可以看出两者均能通过 EN55022B 标准,此外在 2,3 点都的裕量还有进一步改进的余地,如果系统采用电感量较高的 EMI 滤波器 LB1 即可显著增加 EMI 裕量,本DEMO 系统是采用最普通的国产 EMI 滤波器(实际电感量偏小)。

AP8022:

AP8022 Demo

Chipown

VIPER22A:

元件清单

序号	部品名	规格	供应商	品牌
1	变压器 TR1	El28,参见附一		
2	芯片 U1	AP8022		
3	芯片 U3	TL431		
3	光耦 U2	PC817B		
4	整流桥 BG	2KBP10		
5	二极管 D1	UF4007		
6	二极管 D2	1N4007		

AP8022 Demo

Chipown

7	肖特基二极管 D3	HER5003	
8	EMI 滤波器 LB1	13mH X 2	
9	电感 L1	10uH	
10	X2 电容 CX1	0.047uF/250V	
11	Y1 电容 CY1	2.2nF/250V	
12	电容 C1	1KV/4.7nF	
13	电容 C2	63V/10nF	
14	电容 C3	63V/100nF	
15	电容 C4	1KV/2.2nF	
16	电容 C5	63V/22nF	
17	电解电容 CD1	10uF/400V	
18	电解电容 CD2	22uF/400V	
19	电解电容 CD3	22uF/50V	
20	电解电容 CD4	1000uF/25V	
21	电解电容 CD5	470uF/16V	
22	电阻 R1	180KΩ, 2W	
23	电阻 R2	9.1KΩ, 1/4W	
24	电阻 R3	4.7Ω, 1/4W	
25	电阻 R4	短路线	
26	电阻 R5	1.5K, 1/4W	
27	电阻 R6	10Ω, 1/4W	
28	电阻 R7	470Ω, 1/4W	
29	电阻 R8	220Ω, 1/4W	
30	电阻 R9	1KΩ, 1/4W	
31	电阻 R10	4.7KΩ, 1/4W	
32	电阻 R12	18KΩ, 1/4W	
33	压敏电阻 RV	10D471K	
34	热敏电阻 RT	SCL103	
35	保险丝 FU	2A, 250VAC	

附一

Chipown

绕组 1: 0.35mm 56 匝 电感量为 1.7mH

 绕组 2:
 0.25mm
 7 匝

 绕组 3:
 0.35mm 双线
 7 匝

绕法示意图:

1/2绕组1,28匝密绕两层,端空2mm
绕组2,7匝均绕一层,端空2mm
绝缘,屏蔽,挂4脚
绕组3,7匝密绕一层,端空2mm
绝缘,屏蔽,挂4脚
1/2绕组1,28匝密绕两层,端空2mm
磁芯

注:最好能调节反馈绕组的圈数,使芯片正常工作时的工作电压在 10~16V 之间,这样短路保护时效果比较理想。