B2 ①, ②, ③, 4, ⑤の5枚のカードが入った袋がある。この袋から1枚ずつカードを取り出し、1回取り出すごとに次のルールにしたがって、左から順にカードを机に置く。 【ルール】カードを3回取り出し

・1回目は取り出したカードを机に置く。

・2回目と3回目は取り出したカードに書かれた数が、最後に置いたカードに書かれた数と連続するならば机に置き、連続しないならば袋に戻す。

例えば、5、1、4の順にカードを取り出したとき、左から順に5 4とカードが机に置かれている。

- (1) 机に置いたカードが左から順に3 2 1である確率を求めよ。 60
- (2) 机に置いたカードが1だけである確率を求めよ。また、机に置いたカードが左から順に21の2枚だけである確率を求めよ。
- (3) 最後に机に置いたカードが1である確率を求めよ。また、このとき、机に置いたカードが1だけである条件付き確率を求めよ。 49 (配点 20)

B3 AB = 7, BC = 8 の鋭角三角形 ABC の外接円 O_1 の半径は $\frac{7\sqrt{3}}{3}$ である。また、2 点 B, C を通る円 O_2 があり、円 O_2 の中心が円 O_1 の点 A を含まない弧 BC 上にある。

- (1) $\sin \angle BAC$ の値を求めよ。 $\widehat{SIN} \angle BAC = \frac{46}{0}$
- (2) 辺ACの長さを求めよ。また、円 O_2 の半径を求めよ。 AC=5、5
- (3) 円 O_2 の周上に点 D を、 $\angle BDC$ が鋭角で $BD:CD = \sqrt{3}:\sqrt{7}$ であるようにとる。線 分 BD の長さを求めよ。さらに、直線 BC と直線 AD の交点を E とするとき、 $\frac{DE}{AE}$ の値を求めよ。 $BD = 4\sqrt{3}$ の $\frac{DE}{AE} = \frac{\Delta}{AE}$ (配点 20)

【選択問題】 数学B受験者は,次のB4 \sim B8 のうちから2題を選んで解答せよ。

B4 整式 $P(x) = (x-b)(x^2-ax+b+3)+(b-a)(b+3)$ がある。ただし、a、b は実数の定数である。

- (1) P(a) の値を求めよ。 [] P(a) = 0
- (2) P(x) を因数分解せよ。 $P(x) = (x-\alpha)(x^2-bx+b+3)$
- (3) 3次方程式 P(x)=0 の 3つの解の和が -3 であるとき,b を a を用いて表せ。また,このとき,3次方程式 P(x)=0 が異なる解をちょうど 2 個もつような a の値を求めよ。

$$b = -0.3$$
 , $Q = -9.0$ (配点 20)

20/6\$ (20)

(2) 円 K の中心の座標と半径を求めよ。また、点 B における円 K の接線 ℓ の方程式を求めよ。 O(1) 、 O

(3) 点 $C(\sqrt{2}, 5-\sqrt{2})$ とし、(2)の接線 ℓ と y 軸の交点を D とする。円 K 上を点 P が動く とき、 \triangle CDP の面積の最小値とそのときの点 P の座標を求めよ。 (配点 20)

(1) $\cos 2\theta \, \epsilon \sin \theta \, \epsilon \Pi$ いて表せ。 $\cos 2\theta = \left(-2 \sin \theta \right)$

(2) a=0 のとき、 $0 \le \theta < 2\pi$ の範囲で、①を満たす θ の値を求めよ。

(3) $0 \le \theta < 2\pi$ の範囲で、①を満たす θ がちょうど2個あるようなaの値の範囲を求めよ。

(配点 20) (配点 20) (配点 20)

B7 等差数列 $\{a_n\}$ があり、 $a_3=1$ 、 $a_4+a_5=14$ である。また、自然数 n に対して、n を 3 で割った余りを b_n とする。

(1) 数列{an}の初項と公差を求めよ。 不卫项 一て、公差 4.

(2) $\sum_{k=1}^{n} a_k \in n$ を用いて表せ。また、 $\sum_{k=1}^{2016} b_k$ の値を求めよ。 $\sum_{N=1}^{2} Q_N$ つの

(3) $S_n = \sum_{k=1}^n (a_{3k-2}b_{3k-2} + a_{3k-1}b_{3k-1} + a_{3k}b_{3k})$ $(n=1, 2, 3, \cdots)$ とする。 S_1 を求めよ。また、 S_n を n を用いて表せ。 $S_1 = -(3, 3)$ を $S_2 = (3, 3)$ を $S_3 = (3, 3)$ を $S_4 = ($

formula 8 1辺の長さが1のひし形 OACB があり、 $\angle AOB = 60^\circ$ である。 辺 AC,BC の中点をそれぞれ M,N とし, $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ とする。

- (1) \overrightarrow{OM} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また、内積 $\overrightarrow{a} \cdot \overrightarrow{b}$ の値を求めよ。
- (2) 辺 OB を 2:1 に内分する点を P とし、線分 MP を t:(1-t) に内分する点を Q とする。このとき、 \overrightarrow{OQ} を t、 \overrightarrow{a} 、 \overrightarrow{b} を用いて表せ。また、点Q が直線 ON 上にあるとき、 \overrightarrow{OQ} を \overrightarrow{a} 、 \overrightarrow{b} を用いて表せ。

