CS 7800: Advanced Algorithms

Class 1: Intoduction + Stable Matching

Jonathan Ullman September 5, 2025

Me

Jonathan Ullman

- Feel free to call me Jon
- Research: Foundations of Trustworthy Al and Statistics
- Office: 177 Huntington 616
- Office Hours:
 - Tricky because I'm in 177
 - Will poll for a good time
 - Always available by appt

The TA Team

John Abascal

- Will help us part-time
- He has an adorable sausage dog
- Office: 177 Huntington 6th Floor

Algorithms

What is an algorithm?

An explicit, precise, unambiguous, mechanicallyexecutable sequence of elementary instructions for solving a computational problem. -Jeff Erickson

Algorithms

What is algorithms (the subfield of CS)?

The rigorous mathematical study of computational problems and the algorithms for solving them.

Algorithms

What is CS 7800: Advanced Algorithms?

- (1) An overview of the most fundamental algorithms and techniques that we believe every PhD computer scientist should know.
- (2) A mental workout to help you develop analytic and mathematical reasoning and communication skills for computer science research.

Course Structure

Course Structure

Evaluation:

- 3x exams = 75%
 - Not cumulative but the material builds on itself
- 6x assignments = 25%
 - Drop the lowest score

Grading:

- Standard scale (e.g. A/A- is 90%+)
- Generously curved as needed
- Typical distribution:
 - 50% get A/A-, 50% get B+/B
 - I'm more generous with small classes

Course Website

http://jonathan-ullman.github.io/cs7800-f25

Home Course Info Schedule

CS 7800: Advanced Algorithms Fall 2025

Course Schedule

This schedule will be updated continuously throughout the term.

Date	Торіс	Reading	Notes
Fri 09/05/25	Class 1: IntroductionCourse OverviewStable Matching	_	HW0 Out: [pdf] [tex]
	[slides after]		
Tue 09/09/25	Class 2: Greedy Algorithms • Interval Scheduling • Minimizing Lateness	KT 4.1-4.2	_
	[slides before] [slides after]		

Recommended Resources

- Algorithm Design by Kleinberg and Tardos
 - We'll follow this closely in the 1st half
 - Can easily find copies

- Algorithms by Jeff Erickson
 - Useful for review, alternate perspective, and some advanced topics
 - Will use this more in the 2nd half
 - Free on the web

Algorithms

Jeff Erickson

Assignments

- 6 HW Assignments (probably)
 - Approximately every two weeks
 - Late days: total of 5, max of 2 per assignment
 - Further extensions granted for special circumstances
- All questions are algorithms and related mathematics, no programming
- Review HW0 out now, due Friday 9/12 at 11:59pm!
 - No late days—I want to quickly test your background

Assignment Philosophy/Policies

- This course has two related-yet-different goals
 - #1: give a working knowledge of algorithms (everyone has to)
 - #2: exercise and stretch your brain (you get out what you put in)
- Exams are for #1 and are most of the evaluation
- Homework is to prepare you for exams and for #2
 - A few assigned/graded problems so you get feedback
 - More optional/ungraded problems so you can get exercise
- Al/Honestly Policy: You're adults and scholars, act like it
 - You can easily ace the assignments using AI, I can't reliably stop you
 - Using AI won't prepare you for exams, which are most of your grade
 - Using AI won't make you a better scholar
 - Using Al wastes my time giving feedback

Assignment Logistics

- Homework must be typeset in LaTeX!
 - You'll have to learn it sometime!
 - Many good resources available
 - Many good editors available (Overleaf, TexStudio)
 - I will provide source to get you started

The Not So Short Introduction to LATEX 2ε

Or LATEX 2E in 157 minutes

Assignment Logistics

- I use Gradescope for homework
 - Entry code: D3ERDX

Discussion Forum

I've used Piazza in the past but I'm open minded!

Introductions!

Stable Matching

National Residency Matching Program

- National system for matching US medical school graduates to medical residencies
 - Roughly 40,000 doctors per year
 - Assignment is almost entirely algorithmic

David Gale (1921-2008) PROFESSOR, UC BERKELEY

Lloyd Shapley
PROFESSOR EMERITUS, UCLA

Alvin Roth
PROFESSOR, STANFORD

(Centralized) Labor Markets

Matchings

	1st	2nd	3rd	4th	5th
MGH	Bob	Alice	Dorit	Ernie	Clara
BW	Dorit	Bob	Alice	Clara	Ernie
BID	Bob	Ernie	Clara	Dorit	Alice
МТА	Alice	Dorit	Clara	Bob	Ernie
СН	Bob	Dorit	Alice	Ernie	Clara

	1st	2nd	3rd	4th	5th
Alice	СН	MGH	BW	MTA	BID
Bob	BID	BW	MTA	MGH	СН
Clara	BW	BID	MTA	СН	MGH
Dorit	MGH	СН	MTA	BID	BW
Ernie	MTA	BW	СН	BID	MGH

Matchings

Stable Matchings

Ask the Audience

• Either find a stable matching or convince yourself that there is no stable matching

	1st	2nd	3rd
MGH	Alice	Bob	Clara
BW	Bob	Clara	Alice
BID	Alice	Clara	Bob

	1st	2nd	3rd
Alice	BW	BID	MGH
Bob	BW	MGH	BID
Clara	MGH	BID	BW

Gale-Shapley Algorithm

Gale-Shapley Demo

	1st	2nd	3rd	4th	5th
MGH	Bob	Alice	Dorit	Ernie	Clara
BW	Dorit	Bob	Alice	Clara	Ernie
BID	Bob	Ernie	Clara	Dorit	Alice
MTA	Alice	Dorit	Clara	Bob	Ernie
СН	Bob	Dorit	Alice	Ernie	Clara

	1st	2nd	3rd	4th	5th
Alice	СН	MGH	BW	MTA	BID
Bob	BID	BW	MTA	MGH	СН
Clara	BW	BID	MTA	СН	MGH
Dorit	MGH	СН	MTA	BID	BW
Ernie	MTA	BW	СН	BID	MGH

Observations

Gale-Shapley Algorithm: Analysis

Gale-Shapley Algorithm: Analysis

Gale-Shapley Algorithm: Analysis

Real World Impact

TABLE I
STABLE AND UNSTABLE (CENTRALIZED) MECHANISMS

Market	Stable	Still in use (halted unraveling)
American medical markets		
NRMP	yes	yes (new design in '98)
Medical Specialties	yes	yes (about 30 markets)
British Regional Medical Markets		
Edinburgh ('69)	yes	yes
Cardiff	yes	yes
Birmingham	no	no
Edinburgh ('67)	no	no
Newcastle	no	no
Sheffield	no	no
Cambridge	no	yes
London Hospital	no	yes
Other healthcare markets		
Dental Residencies	yes	yes
Osteopaths (<'94)	no	no
Osteopaths (≥'94)	yes	yes
Pharmacists	yes	yes
Other markets and matching process	ses	
Canadian Lawyers	yes	yes (except in British Columbia since 1996)
Sororities	yes (at equilibrium)	yes

Table 1. Reproduced from Roth (2002, Table 1).

Real World Challenges

- Doctors ↔ Hospitals
 - Have to deal with two-body problems
 - Have to make sure doctors do not game the system
- Kidneys ↔ Patients
 - Not all matches are feasible (blood types, immunity)
 - Certain pairs must be matched
- Students ↔ Public Schools
 - Siblings, walking zones, diversity
- Rabbis ↔ Synagogues
 - No idea why, just a fun example

