Biomass composition of R. marinus

The macromolecular composition of the biomass in *R. marinus* was obtained from *R. marinus* specific data found in literature [1]–[3], experimentally obtained in this study and when data on *R. marinus* was not available, experimental data for *E. coli* was used [4]. Amino acid [1], EPS [2], lipid [5], [6], carotenoid [3] and polyamine [7] compositions for *R. marinus* were available in literature. DNA and RNA compositions were calculated from the DSM 4252 genome.

Component		Fraction (% w/w)	Molar mass (g mol ⁻¹)	Coefficient (mmol gDW ⁻¹)	Source
Protein	PROT_RMAR_c	45,8%	128,0	3,5815	R. marinus [1]
Glycogen	glycogen_c	14,0%	162,1	0,8643	R. marinus [1]
Peptidoglycan	peptido_c	2,50%	991,0	0,0253	E. coli [4]
EPS	EPS_RMAR_c	0,36%	1121,8	0,0032	R. marinus [2]
LPS	lipidAds_c	3,40%	1323,7	0,0257	E. coli [4]
					R. marinus (This
DNA	DNA_RMAR	2,50%	304,2	0,0823	study)
RNA	RNA_RMAR	13,0%	322,7	0,4032	R. marinus [1]
Lipids	LIP_RMAR_c	16,2%	970,6	0,1671	R. marinus [1]
Carotenoids	CAROT_RMAR_c	0,04%	955,4	0,0004	R. marinus [3]
Polyamines	POLAM_RMAR_c	0,43%	178,6	0,0241	E. coli [4]
Soluble pool	SOL_c	0,67%		1	E. coli [4]
Inorganic ions	IONS_c	1,00%		1	E. coli [4]
	Total	100%		3,5815	

Biomass reaction:

 $0.0004\ CAROT_RMAR_c + 0.0822\ DNA_RMAR_c + 0.0032\ EPS_RMAR_c + IONS_c + 0.167\\ LIP_RMAR_c + 0.0241\ POLAM_RMAR_c + 3.5814\ PROT_RMAR_c + 0.4032\ RNA_RMAR_c + SOL_c + 20.0\ atp_c + 0.8643\ glycogen_c + 20.0\ h2o_c + 0.0257\ lipidAds_c + 0.0252\ peptido_c --> 20.0\ adp_c + 20.0\ h_c + 20.0\ pi_c$

Protein

Amino acid composition obtained mainly from R. marinus [1].

Amino acid	Fraction (mmol/g _{protein})	Molar ratio	Molar mass (g mol ⁻¹)
Ala	0,90	9,9%	89,1
Arg	0,51*	5,7%	174,2
Asx	0,71	7,8%	
Asp		3,9%	132,1
Asn		3,9%	132,1
Cys	0,16*	1,8%	121,2
Glx	1,09	12,1%	
Glu		6,0%	146,6
Gln		6,0%	146,6
Gly	0,82	9,1%	75,1

His	0,41*	4,5%	155,2
Ile	0,16	1,8%	131,1
Leu	0,80	8,8%	131,1
Lys	0,45	5,0%	146,2
Met	0,20	2,2%	149,2
Phe	0,31	3,4%	165,2
Pro	0,53	5,8%	115,1
Ser	0,47	5,2%	105,1
Thr	0,54	6,0%	119,1
Trp	0,10*	1,1%	204,2
Tyr	0,30	3,3%	181,2
Val	0,62	6,8%	117,2
Total	9,08	100%	128,0

^{*}Taken from E. coli [4]

Protein reaction:

 $0.0986 \ alatrna_c + 0.0565 \ argtrna_c + 0.0389 \ asntrna_c + 0.0389 \ asptrna_c + 0.306 \ atp_c + 0.0175 \ cystrna_c + 0.0603 \ glntrna_c + 0.0603 \ glntrna_c + 0.0908 \ glytrna_c + 2.0 \ gtp_c + 2.306 \ h2o_c + 0.0452 \ histrna_c + 0.0181 \ iletrna_c + 0.0876 \ leutrna_c + 0.0496 \ lystrna_c + 0.0217 \ mettrna_c + 0.034 \ phetrna_c + 0.0579 \ protrna_c + 0.0517 \ sertrna_c + 0.0599 \ thrtrna_c + 0.0109 \ trptrna_c + 0.0335 \ tyrtrna_c + 0.0682 \ valtrna_c --> PROT_RMAR_c + 0.306 \ adp_c + 2.0 \ gdp_c + 2.306 \ h_c + 2.306 \ pi_c + 0.0986 \ trnaala_c + 0.0565 \ trnaarg_c + 0.0389 \ trnaasn_c + 0.0389 \ trnaasp_c + 0.0175 \ trnacys_c + 0.1206 \ trnaglu_c + 0.0908 \ trnagly_c + 0.0452 \ trnahis_c + 0.0181 \ trnaile_c + 0.0876 \ trnaleu_c + 0.0496 \ trnalys_c + 0.0217 \ trnamet_c + 0.0335 \ trnatyr_c + 0.0582 \ trnaval_c$

DNA

The DNA fraction of the biomass was estimated in this study. A dsDNA stock solution was made by diluting 102,7g/ml (ABS @ 260nm using Nanodrop) λ -dsDNA solution x50, giving 2,1 g/ml.

Standard curve measurements of PicoGreen DNA assay using λ -dsDNA standard

Part Stock Solution	Conc. g/l		ABS		Mean	Mean- blank
0	0	120	106	136	121	0
0,001	0,002	958	1016	1166	1047	926
0,01	0,021	3808	3958	3454	3740	3619
0,1	0,205	32942	32990	31786	32573	32452
0,5	1,027	162135	167970	171127	167077	166957
1	2,054	346972	370334	332978	350095	349974

y = 170000x - 1500

 $r^2 = 0;999$

Lysed R. marinus cells measured

	ABS		Mean	Mean- blank
41341	42907	42439	42229	42108

DNA ratio calculated from DSM 4252 genome

Nucleotide	Molar ratio	Molar mass (g mol ⁻¹)
dAMP	17,8%	331,2
dCMP	32,2%	289,2
dGMP	32,2%	304,2
dTMP	17,8%	304,2
Total	100%	304,2

DNA reaction:

 $1.37 \ atp_c + 0.178 \ datp_c + 0.322 \ dctp_c + 0.322 \ dgtp_c + 0.178 \ dttp_c --> DNA_RMAR_c + 1.37 \ adp_c + 1.37 \ h_c + 1.37 \ pi_c + ppi_c$

RNA

Calculated from DSM 4252 genome, assuming equal transcription

Nucleotide	Molar ratio	Molar mass (g mol ⁻¹)
CMP	32,2%	305,2
GMP	33,0%	345,2
UMP	17,6%	306,2
AMP	17,2%	329,2
Total	100%	322,7

RNA reaction:

 $0.572 \; atp_c + 0.322 \; ctp_c + 0.33 \; gtp_c + 0.176 \; utp_c --> RNA_RMAR_c + 0.4 \; adp_c + 0.4 \; h_c + 0.4 \; pi_c + ppi_c$

Lipids

Fatty acid composition in R. marinus obtained from [6]

Fatty acid	Molar ratio
iC14	1,6%
nC14	0,2%
iC15	8,4%
aC15	19,1%
nC15	0,2%
iC16	13,0%
nC16	5,4%
iC17	26,4%
aC17	18,4%
nC17	0,7%
iC18	4,7%
nC18	0,9%

iC19	0,2%
aC19	0,4%

Phospholipid composition in *R. marinus* obtained from [5]

Lipid	Molar ratio
PE	50,0%
DPG	40,0%
PG	10,0%

Taken together:

Lipid	Molar ratio	Molar mass
pgi14	0,16%	666,9
pg140	0,02%	666,9
pgi15	0,84%	694,9
pga15	1,92%	694,9
pg150	0,02%	694,9
pgi16	1,31%	723,0
pg160	0,54%	723,0
pgi17	2,65%	751,0
pga17	1,85%	751,0
pg170	0,07%	751,0
pgi18	0,47%	779,1
pg180	0,09%	779,1
pgi19	0,02%	807,1
pga19	0,04%	807,1
pei14	0,80%	635,9
pe140	0,10%	635,9
pei15	4,22%	663,9
pea15	9,59%	663,9
pe150	0,10%	663,9
pei16	6,53%	692,0
pe160	2,71%	692,0

Lipid	Molar ratio	Molar mass
pei17	13,25%	720,0
pea17	9,24%	720,0
pe170	0,35%	720,0
pei18	2,36%	748,1
pe180	0,45%	748,1
pei19	0,10%	776,1
pea19	0,20%	776,1
dpgi14	0,64%	1241,7
dpg140	0,08%	1241,7
dpgi15	3,37%	1297,8
dpga15	7,67%	1297,8
dpg150	0,08%	1297,8
dpgi16	5,22%	1353,9
dpg160	2,17%	1353,9
dpgi17	10,60%	1410,0
dpga17	7,39%	1410,0
dpg170	0,28%	1410,0
dpgi18	1,89%	1466,1
dpg180	0,36%	1466,1
dpgi19	0,08%	1522,2
dpga19	0,16%	1522,2
Total	100%	970,6

Lipid reaction:

 $0.0008\ dpg140_c + 0.0008\ dpg150_c + 0.0217\ dpg160_c + 0.0028\ dpg170_c + 0.0036\ dpg180_c + 0.0767\ dpga15_c + 0.0739\ dpga17_c + 0.0016\ dpga19_c + 0.0064\ dpgi14_c + 0.0337\ dpgi15_c + 0.0522\ dpgi16_c + 0.106\ dpgi17_c + 0.0189\ dpgi18_c + 0.0008\ dpgi19_c + 0.001\ pe140_c + 0.001\ pe150_c + 0.0271\ pe160_c + 0.0035\ pe170_c + 0.0045\ pe180_c + 0.0959\ pea15_c + 0.0924\ pea17_c + 0.002\ pea19_c + 0.008\ pei14_c + 0.0422\ pei15_c + 0.0653\ pei16_c + 0.1325\ pei17_c + 0.0236\ pei18_c + 0.001\ pei19_c + 0.0002\ pg140_c + 0.0002\ pg150_c + 0.0054\ pg160_c + 0.0007\ pg170_c + 0.0009\ pg180_c + 0.0192\ pga15_c + 0.0185\ pga17_c + 0.0004\ pga19_c + 0.0016\ pgi14_c + 0.0084\ pgi15_c + 0.0131\ pgi16_c + 0.0265\ pgi17_c + 0.0047\ pgi18_c + 0.0002\ pgi19_c -->\ LIP_RMAR_c$

Carotenoids

Carotenoid composition in R. marinus obtained from [3]

Carotenoid		Molar ratio	Molar mass (g mol ⁻¹)
hglpyrcarote	Non-acetylated	3,30%	745,0
ddcahglpyrcarote	Iso-C12:0	5,08%	927,3
myrshglpyrcarote	n-C12:0	0,56%	955,4
palmhglpyrcarote	Iso-C13:0	7,34%	983,4
odechglpyrcarote	Anteiso-C13:0	9,03%	1011,5
pdechglpyrcarote	Iso-C14:0	4,51%	969,4
10mudechglpyrcarote	n-C14:0	2,26%	927,3
12mtdechglpyrcarote	Iso-C15:0	5,64%	955,4
14mpdechglpyrcarote	Anteiso-C15:0	10,72%	983,4
11mddechglpyrcarote	n-C15:0	0,56%	941,3
13mmyrshglpyrcarote	Iso-C16:0	3,95%	969,4
15mpalmhglpyrcarote	n-C16:0	3,39%	997,5
10mddechglpyrcarote	Iso-C17:0	0,56%	941,3
12mmyrshglpyrcarote	Anteiso-C17:0	1,69%	969,4
glpyrcarote	Non-acetylated	2,50%	729,0
ddcaglpyrcarote	Iso-C12:0	3,50%	911,3
myrsglpyrcarote	n-C12:0	0,39%	939,4
palmglpyrcarote	Iso-C13:0	6,22%	967,4
odecglpyrcarote	Anteiso-C13:0	7,00%	995,5
pdecglpyrcarote	Iso-C14:0	2,33%	953,4
10mudecglpyrcarote	n-C14:0	1,56%	911,3
12mtdecglpyrcarote	Iso-C15:0	3,89%	939,4
14mpdecglpyrcarote	Anteiso-C15:0	7,39%	967,4
11mddecglpyrcarote	n-C15:0	0,39%	925,3
13mmyrsglpyrcarote	Iso-C16:0	1,95%	953,4
15mpalmglpyrcarote	n-C16:0	2,33%	981,5
10mddecglpyrcarote	Iso-C17:0	0,39%	925,3
12mmyrsglpyrcarote	Anteiso-C17:0	1,17%	953,4
14mpalmglpyrcarote	n-C18:0	0,39%	981,5
Total		100%	955,4

Carotenoid reaction:

```
0.004\ 10 m d d e c glpyr carote\_c + 0.006\ 10 m d d e c h glpyr carote\_c + 0.016\ 10 m u d e c glpyr carote\_c + 0.023\ 10 m u d e c h glpyr carote\_c + 0.004\ 11 m d d e c glpyr carote\_c + 0.006\ 11 m d d e c h glpyr carote\_c + 0.012\ 12 m m y r s glpyr carote\_c + 0.017\ 12 m m y r s h glpyr carote\_c + 0.039\ 12 m t d e c glpyr carote\_c + 0.056\ 12 m t d e c h glpyr carote\_c + 0.019\ 13 m m y r s glpyr carote\_c + 0.04\ 13 m m y r s h glpyr carote\_c + 0.004\ 14 m p a l m glpyr carote\_c + 0.074\ 14 m p d e c glpyr carote\_c + 0.107\ 14 m p d e c h glpyr carote\_c + 0.023\ 15 m p a l m glpyr carote\_c + 0.034\ 15 m p a l m h glpyr carote\_c + 0.035\ d d c a glpyr carote\_c + 0.051\ d d c a h glpyr carote\_c + 0.025\ glpyr carote\_c + 0.033\ h glpyr carote\_c + 0.004\ m y r s glpyr carote\_c + 0.062\ p a l m glpyr carote\_c + 0.06
```

+ 0.073 palmhglpyrcarote_c + 0.023 pdecglpyrcarote_c + 0.045 pdechglpyrcarote_c --> CAROT_RMAR_c

Polyamine

Polyamine composition in *R. marinus* obtained from [7]

Polyamines	Fraction (mmol gDW ⁻¹)	Molar ratio	Molar mass (g mol ⁻¹)
Putrescine	0,000245	1,02%	90,2
Cadaverine	0,000245	1,02%	104,2
Spermidine	0,012840	53,30%	148,3
Spermine	0,007337	30,46%	206,4
Thermopentamine	0,000978	4,06%	261,5
N4-Aminopropylspermidine	0,000611	2,54%	206,4
N4-bis(aminopropyl)spermidine	0,001834	7,61%	247,5
Total	0,024091	100%	178,6

Exopolysaccharides

Exopolysaccharide composition in R. marinus obtained from [2]

EPS unit	Molar ratio	Molar mass (minus udp/dtdp) (g mol ⁻¹)
UDP-glucose	0,5	160,125
dTDP-glucose	0,5	163,149
UDP-arabinose	2,45	130,099
UDP-xylose	4,93	130,099
Total		1121,768

EPS reaction:

 $0.5 \ dtdpglu_c + h2o_c + 2.45 \ udparab_c + 0.5 \ udpg_c + 4.93 \ udpxyl_c --> EPS_RMAR_c + 0.5 \ dtdp_c + 7.88 \ udp_c$

Vitamins, cofactors and inorganic ions

Soluble pool and inorganic ions adapted from E. coli [4]

Soluble pool reaction:

 $0.00022\ 10 fthf_c + 0.00022\ 5mthf_c + 0.00028\ accoa_c + 0.00022\ adocbl_c + 0.00022\ btn_c + 0.00022\ chor_c + 0.00017\ coa_c + 0.00022\ fad_c + 0.00022\ gthrd_c + 0.00022\ hemeA_c + 0.00022\ hemeO_c + 3e-05\ malcoa_c + 0.00022\ mlthf_c + 0.00179\ nad_c + 4e-05\ nadh_c + 0.00011\ nadp_c + 0.00034\ nadph_c + 0.00022\ pheme_c + 0.00022\ pydx5p_c + 0.00022\ ribflv_c + 0.00022\ sheme_c + 0.0001\ succoa_c + 0.00022\ thf_c + 6e-05\ udcpdp_c --> SOL_c$

Inorganic ions reaction:

 $0.0045\ ca2_c + 0.003\ cobalt2_c + 0.003\ cu2_c + 0.0068\ fe2_c + 0.0068\ fe3_c + 0.1704\ k_c + 0.0076\ mg2_c + 0.003\ mn2_c + 0.003\ mobd_c + 0.0038\ na1_c + 0.0114\ nh4_c + 0.0038\ pi_c + 0.0038\ so4_c + 0.003\ zn2_c --> IONS_c$

GAM and NGAM

No data for energy requirements in *R. marinus* is available. NGAM (non-growth associated maintenance) was set to 1 mmol/gDW/h but GAM (growth associated maintenance) was estimated by constraining the model with experimental uptake- and secretion rates of glucose, pyruvate, lactate and acetate, and growth rate of *R. marinus*. The GAM was estimated to be 20 mmol/gDW/h. This is relatively low compared to many other models, which can be explained by the energy accounted for in biosynthetic reactions for the macromolecules. The dataset used for this estimation (supplementary file 1) was not used again for validation.

Sensitivity analysis

The sensitivity of predicted growth rate to variation in biomass and energy components was investigated. The coefficient of each component was varied by 50% at different glucose uptake rates while the growth rate was predicted. Predicted growth rate was most sensitive to changes in the protein component, followed by the lipid component.

- [1] L. T. Cordova, R. M. Cipolla, A. Swarup, C. P. Long, and M. R. Antoniewicz, "13C metabolic flux analysis of three divergent extremely thermophilic bacteria: Geobacillus sp. LC300, Thermus thermophilus HB8, and Rhodothermus marinus DSM 4252," *Metab. Eng.*, vol. 44, no. October, pp. 182–190, 2017.
- [2] R. R. R. Sardari *et al.*, "Evaluation of the production of exopolysaccharides by two strains of the thermophilic bacterium Rhodothermus marinus," *Carbohydr. Polym.*, vol. 156, pp. 1–8, 2017.
- [3] B. F. Lutnaes, Å. Strand, S. K. Pétursdóttir, and S. Liaaen-Jensen, "Carotenoids of thermophilic bacteria Rhodothermus marinus from submarine Icelandic hot springs," *Biochem. Syst. Ecol.*, vol. 32, no. 5, pp. 455–468, 2004.
- [4] A. M. Feist *et al.*, "A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information.," *Mol. Syst. Biol.*, vol. 3, p. 121, 2007.
- [5] O. C. Nunes, M. M. Donato, C. M. Manaia, and M. S. Da Costa, "The Polar Lipid and Fatty Acid Composition of Rhodothermus Strains," *Syst. Appl. Microbiol.*, vol. 15, no. 1, pp. 59–62, 1992.
- [6] L. Moreira, M. F. Nobre, I. Sa-correia, and M. S. Da Costa, "Genomic Typing and Fatty Acid Composition of Rhodothermus marinus," *Syst. Appl. Microbiol.*, vol. 19, no. 1, pp. 83–90, 1996.
- [7] K. Hamana, H. Hamana, M. Niitsu, K. Samejima, and S. Matsuzaki, "Distribution of unusual long and branched polyamines in thermophilic eubacteria belonging to "Rhodothermus," Thermus and Thermonema," *J. Gen. Appl. Microbiol.*, vol. 38, no. 6, pp. 575–584, 1992.