# Chapter 07 네트워크 관리



- 네트워크의 주소를 설명할 수 있다.
- 리눅스의 네트워크 주소를 설정할 수있다.
- 리눅스의 네트워크 관련 명령어를 활용할 수 있다.







- ❖ 네트워크 기초
  - 네트워크 주소
- ❖ 네트워크 설정
  - 네트워크 주소 설정
  - 네트워크 관련 명령어





#### ★ TCP/IP 프로토콜

- 프로토콜이란 컴퓨터와 컴퓨터 사이에서 데이터를 어떻게 주고받을 것인지를 정의한 통신 규약
- 인터넷은 TCP/IP라는 프로토콜에 따라 데이터를 주고받음
- 생활 속에 사용하는 인터넷 망은 대부분 TCP/IP와 관련이 있음.
- TCP/IP 프로토콜은 [그림 11-2]와 같이 5계층으로 구성

표 11-1 TCP/IP 프로토콜 모델의 계층별 역할과 대표 프로토콜

| 계층      | 갸능                                         | 프로토콜                    | 전송 단위 |
|---------|--------------------------------------------|-------------------------|-------|
| 응용 계층   | 서비스 제공 응용 프로그램                             | DNS, FTP, SSH, HTTP, 텔넷 | 메시지   |
| 전송 계층   | 응용 프로그램으로 데이터 전달, 데이터 흐름<br>제어 및 전송 신뢰성 담당 | TCP, UDP                | 세그먼트  |
| 네트워크 계층 | 주소 관리 및 경로 탐색                              | IP, ICMP                | 패킷    |
| 링크 계층   | 네트워크 장치 드라이버                               | ARP                     | 프레임   |
| 물리 계층   | 케이블 등 전송 매체                                | 구리선, 광케이블, 무선           | 비트    |

응용 계층(application layer)

전송 계층(transport layer)

TCP

IΡ

네트워크 계층(network layer)

링크 계층(link layer)

물리 계층(physical layer)

그림 11-2 TCP/IP 프로토콜 모델



## 🚾 네트워크 주소



- 일반적으로 네트워크 인터페이스는 거의 대부분 이더넷(ethernet) 방식을 사용
- 이더넷 통신방식은 컴퓨터에 주소를 통해 서로를 구분함.
- 컴퓨터의 주소는 MAC 주소, IP 주소, 호스트명이 있음
- 윈도우 OS에서 네트워크 주소를 확인하는 방법
  - ✓ 윈도우 키 + R 누르고 'cmd'를 입력하면 명령 프롬프트가 실행됨
  - ✓ prompt〉ipconfig /all 명령 실행



| C:#Users\namo <mark>ripconfig /all</mark> |
|-------------------------------------------|
| Windows IP 구성                             |
| 호스트 이름 <mark>호스트주소</mark><br>주 DNS 접미사    |
| 이더넷 어댑터 로컬 영역 연결:                         |
| 연경별 DNS 접미사 : 설명                          |



## 🚾 네트워크 주소

#### MAC 주소

- MAC는 'media access control'의 약자
- MAC 주소는 하드웨어를 위한 주소이며 다른 말로 이더넷 주소, 하드웨어 주소, 물리 주소라고도 함.
- 전세계를 통틀어 유일한 주소이기 때문에 소프트웨어 업체들이 자사의 소프트웨어 라이선스를 관리할 때 MAC주소를 많이 활용함.
- MAC 주소는 네트워크 인터페이스 카드(다른 말로 랜 카드)에 저장된 주소라고 생각하면 됨
- MAC 주소는 쌍점(:)이나 붙임표(-)로 구분되는 여섯 개의 16진수로 구성되며, 총 48비트
- 앞의 세 자리는 제조사 번호, 뒤의 세 자리는 일련번호

00:50:56:3e:3c:fe
제조사 번호 일련번호
(IEEE에서 지정) (제조사에서 지정)
그림 11-3 MAC 주소의 예



## 🔤 네트워크 주소



- 우리가 보통 인터넷 주소라고 부르는 것이 IP(internet protocol) 주소
- IP 주소는 인터넷으로 연결된 네트워크에서 각 컴퓨터를 구분하기 위해 사용
- IP 주소는 1바이트의 크기를 가진 네 자리 숫자로 구성되므로 총 4바이트
  - ✓ 예를 들어 192.168.100.5와 같이 숫자 네 가지와 마침표(.)로 구성
- IP 주소는 네트워크를 구분하는 네트워크 주소 부분과, 해당 네트워크 안에서 특정 컴퓨터를 식별하는 호스트 주소로 구분





## 🚾 네트워크 주소



- 네트워크 주소는 기기가 속해있는 네트워크를 식별하는 데 사용하고, 호스트 주소는 해당 네트워크 내에서 그 기기를 식별하는 데 사용한다.
- IP 주소는 총 32비트(4바이트) 중 몇 비트를 네트워크 부분으로 사용하고 나머지 몇 비트를 호스트 부분으로 사용하는지에 따라 A 클래스, B 클래스, C 클래스로 구분
- A클래스의 구조
  - ✓ 앞의 첫 바이트가 네트워크 주소이고 나머지 3바이트가 네트워크 주소인 경우



- B 클래스의 구조
  - ✓ 처음 2바이트가 네트워크 주소이고 나머지 3바이트가 네트워크 주소인 경우





### 🚾 네트워크 주소



- C 클래스의 구조
  - ✓ 앞의 3바이트가 네트워크 부분, 뒤의 1바이트만 호스트 부분으로 사용
  - ✓ 첫 바이트의 첫 3비트는 '110'으로 정해져있음.
  - ✓ 호스트 부분으로 사용할 수 있는 숫자 1~254
  - ✓ 예: 192.168.100.5는 C 클래스이므로 네트워크 부분은 앞의 세 자리인 192.168.100이고, 뒤의 5는 호스트 부분





#### 🚾 네트워크 주소

#### IP 주소

- 넷마스크
- ✓ IP 주소에서 네트워크 부분을 알려주는 역할
- ✓ 넷마스크는 하나의 네트워크를 다시 작은 네트워크(서브넷)로 분리할 때도 사용하는데, 그래서 서브넷 마스크라고 부르기도 함
- ✓ 넷마스크 예



- ✓ IP 주소와 넷마스크를 10진수에서 2진수로 바꾼 다음, 두 값을 가지고 AND 연산을 수행
- ✓ AND연산을 하면 네트워크 부분만 남고 호스트 부분은 0이 됨
- ✓ 넷마스크는 IP 주소와 AND 연산을 수행하여 네트워크 부분만 남기는 역할



## 🚾 네트워크 주소

#### ◈ 호스트 이름과 도메인 이름

- 사람은 숫자보다는 이름으로 된 것을 더 잘 기억한다. 그래서 나온 것이 호스트 이름.
- 호스트 이름(host name)은 각각의 컴퓨터에 지정된 이름
- 도메인 이름(domain name) 또는 주소는 www.naver.com과 같은 형식으로 표기
  - ✓ Ex) 호스트 이름이 robot이고 도메인 이름이 kopo.ac.kr이라면 전체 이름(FQDN, Fully Qualified Domain Name)은 robot.kopo.ac.kr 이 됨
  - ✓ 같은 회사나 학교(도메인)에서 robot.kopo.ac.kr 이라는 호스트(컴퓨터)는 유일

#### DNS 서버

- ✓ Domain Name System server의 약자
- ✓ 도메인 이름에서 IP 주소를 추출하는 역할을 하는 서버
- ✓ www.example.com과 같은 주 컴퓨터의 도메인 이름을 192.168.1.0과 같은 IP 주소로 변환하고 라우팅 정보를 제공하는 분산형 데이터베이스 시스템



## 🔤 네트워크 주소

#### 🥎 게이트웨이

- 게이트웨이(gateway)는 '관문'이나 '출입구'라는 의미
- 컴퓨터 네트워크에서의 게이트웨이는 현재 사용자가 위치한 네트워크에서 다른 네트워크(인터넷 등)로 이동하기 위해 반드시 거쳐야 하는 거점
- 해당 컴퓨터가 속해 있는 내부 네트워크내에서는 IP 주소와 서브넷마스크만 있어도 주변 컴퓨터와 통신이 가능
- 인터넷 등의 이기종 네트워크로 나가기 위해서는 게이트웨이가 있어야 함.
- IP 주소, 서브넷 마스크와 함께 게이트웨이 주소까지 정확하게 설정해야 인터넷이 가능. 또한 게이트웨이는 네트워크의 추상적 개념이고 실제 게이트 웨이 역할은 라우터라는 장비가 수행함.





## 🔤 네트워크 주소 설정

- 고정 IP 와 유동 IP
  - 네크워크를 설정하려면 IP주소, 넷마스크, 게이트웨이 주소, DNS주소를 설정해야 함.
  - IP주소등 네트워크 주소를 정하는 방식은 크게 고정 IP 방식과 유동 IP방식으로 나뉨.
  - 고정 IP방식는 네트워크 주소를 사용자가 직접 설정하는 방식
  - 유동 IP방식은 DHCP서버(일반적으로 공유기) 장비가 자동으로 네트워크 주소를 할당하는 방식
    - ✓ 스마트폰으로 와이파이 AP (=공유기)에 접속하면 DHCP 서버인 AP가 스마트폰에 IP주소를 할당





#### 🚾 네트워크 주소 설정

- 윈도우 OS의 네트워크 주소 설정
  - 가정이나 학교등에서 사용하는 대부분의 윈도우 PC는 유동 IP방식을 되어 있음.
  - 유동IP를 설정을 확인하는 방법
    - ✓ 제어판에서 네트워크 연결을 열어 이더넷의 속성을 연다.
    - ✓ 이더넷 속성에서 인터넷 프로토콜 버전 4(TCP/IPv4)의 속성을 선택
    - ✓ 자동으로 IP 주소받기로 되어 있으면 유동 IP방식임.
  - 고정IP 방식이면 IP 주소, 서브넷 마스크, 기본 게이트웨이 주소, DNS서버 주소를 직접 입력해야 함.









## 🔤 네트워크 주소 설정

- ▶윈도우 OS의 네트워크 주소 설정
- 윈도우 PC가 유동 IP 방식 일 때 네트워크 주소를 확인하는 방법이 있음.
- 명령 프롬프트를 실행하고 ipconfig /all을 실행
- LAN으로 연결되어 있으면 이더넷 어댑터의 내용 확인
- 와이파이로 연결되어 있으면 무선 LAN 어댑터 내용 확인

```
Topip를 통한 NetBIOS. : 사용
이더넷 어댑터 이더넷:

연결별 DNS 접미사. : kornet
설명. : : Realtek PCle GbE Farry Controller
물리적 주소 : : 98-83-89-21-60-32
DHCP 사용 . : : 예
자동 구성 사용. : : 예
광크-로걸 IPv6 주소 : : fe80::a506:c6f7:6c36:96%20(기본설정)
N선넷 마스크 : : 255.255.255.0
임대 시작 날짜 : : 2020년 2월 23일 일요일 오후 12:22:23
임대 만료 날짜 : : 2020년 2월 23일 일요일 오후 12:22:23
임대 만료 날짜 : : 2020년 2월 23일 일요일 오후 12:22:17
기본 게이트웨이 : 121.168.84.1
DHCP 서버 : 121.137.7.26
DHCP 서버 : 121.137.7.26
DHCP 서버 : 168.126.63.1
Topip를 통한 NetBIOS. : 사용
```



#### 🖾 네트워크 주소 설정

#### 리눅스의 네트워크 주소 설정

- 리눅스도 윈도우와 같이 네트워킹이 정상적으로 이루어지려면 IP 주소, 서브넷 마스크(subnet mask), 게이트웨이(gateway) 주소, DNS(Domain Name System) 서버 주소등을 설정해 주어야 함.
- 가상머신 Server, Server(B), Client의 주소를 확인한다.
  - Server, Server(B), Client를 모두 부팅
  - 터미널을 열고 ifconfig 를 통해 현재 할당된 네트워크 주소 확인 : ifconfig 명령이 설치가 안되어 있으면 apt install net-tools를 통해 설치, IP 주소는 inet 뒤에 있는 값으로 192.168.25.128이고 넷마스크는 255,255,255,0, ens33은 장치이름

```
root@server:~# ifconfig
Command 'ifconfig' not found, but can be installed with:
apt install net-tools
root@server:~# apt install net-tools
패키지 목록을 읽는 중입니다... 완료
의존성 트리를 만드는 중입니다
상태 정보를 읽는 중입니다... 완료
다음 새 패키지를 설치할 것입니다:
   업그레이드, 1개 새로 설치, 0개 제거 및 0개 업그레이드 안 함.
```

```
root@server:~# ifconfig
ens33: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 192.168.25.128 netmask 255.255.255.0 broadcast 192.168.25.255
       inet6 fe80::5ec2:141c:9d61:b478 prefixlen 64 scopeid 0x20<link>
       ether 00:0c:29:b2:5d:6b txqueuelen 1000 (Ethernet)
       RX packets 428 bytes 431595 (431.5 KB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 245 bytes 30997 (30.9 KB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```



## 🔤 네트워크 주소 설정

#### \triangleright 리눅스의 네트워크 주소 설정

③ Server(B)의 IP주소는 192.168.25.130이고 넷마스크는 255.255.255.0, ens33은 장치 이름

④ Client의 IP 주소는 192.168.25.131 이고 넷마크스는 255.255.255.0, ens33은 장치 이름



## 🔤 네트워크 주소 설정

#### 🌑 리눅스의 네트워크 주소 설정

⑤ Server의 게이트 웨이 주소를 확인하려면 ip route 명령으로 확인. 192.168.25.2가 게이트 웨이 주소

```
root@server:~# ip route

<u>default via 192.168.25.2</u> dev ens33 proto dhcp metric 100

169.254.0.0/16 dev ens33 scope link metric 1000

192.168.25.0/24 dev ens33 proto kernel scope link src 192.168.25.128 metric 100
```

⑥ Server 의 현재 DNS서버의 정보는 systemd-resolve -status ens33 명령으로 확인

```
root@server:~# systemd-resolve --status ens33

Link 2 (ens33)

Current Scopes: DNS

LLMNR setting: yes

MulticastDNS setting: no

DNSSEC setting: no

DNSSEC supported: no

DNS Servers: 192.168.25.2

DNS Domain: localdomain
```



# 🔤 네트워크 주소 설정

#### 🌑 리눅스 가상 머신의 네트워크 주소

- IP 주소
  - ✓ 네트워크상에 연결된 컴퓨터를 유일하게 구분하는 번호 체계
  - ✓ ○○○.○○○.○○○ 형식의 4바이트로 이루어짐
  - ▼ 각 ○○○에는 0~255가 올 수 있음
  - ✓ Server의 IP 주소는 192.168.25.128, 모든 컴퓨터에서 자기 자신을 의미하는 IP 주소는 127.0.0.1

#### • 서브넷 마스크

- ✓ Server의 IP 주소는 192.168.25.128, Server(B)의 IP 주소는 192.168.25.130, Client 의 주소는 192.168.25.131fh 앞의 세자리가 모두 192.168.25 로 같고 한자리만 다름
- ✓ 즉, 3개의 컴퓨터는 같은 네트워크에 있고 서브넷 마스크가 255.255.255.0인 C 클래스를 사용함을 알 수 있음.



# 🔤 네트워크 주소 설정

#### 🌑 리눅스 가상 머신의 네트워크 주소

- 브로드 캐스트 주소
  - ✓ 내부 네트워크의 모든 컴퓨터가 수신하는 주소
  - ✓ 현재 주소의 끝자리가 255인 바꾼 주소(C 클래스의 경우)
  - ✓ Ex) 현재 3개의 가상머신의 브로드캐스트(broadcast) 주소는 192.168.25.255
- 게이트 웨이
  - ✓ 내부 네트워크를 외부와 연결하기 위한 컴퓨터 또는 장비
  - ✓ 인터넷을 사용하기 위해 외부 네트워크에 접속하려면 게이트 웨이의 IP 주소를 알아야 함
  - ✓ 게이트웨이 주소는 VMware에서 제공하며 192.168.○○○.2로 고정되어 있음
  - ✓ Ex) 현재 3개의 가상머신의 브로드캐스트(broadcast) 주소는 192.168.25.2



# 🔤 네트워크 주소 설정

#### 🥏 리눅스 가상 머신의 네트워크 주소

- 넷 마스크와 클래스
  - ✓ 넷마스크로 네트워크의 규모가 결정됨
  - ✓ 실습에서는 사설 네트워크에서 C 클래스를 사용하기 때문에 넷마스크가 255.255.255.0
  - ✓ 실제로는 256개의 IP 주소(192.168.25.0~192.168.25.255) 사용 가능
  - ✓ 이중에서 네트워크 주소인 192.168.25.0, 브로드캐스트 주소인 192.168.25.255, 게이트웨이로 사용할 IP 주소(실습에서는 192.168.25.2)를 제외하면 253대의 컴퓨터를 네트워크 내부에서 연결 가능

#### DNS 서버 주소

- ✓ 인터넷을 사용할 때 www.daum.net과 같은 URL을 해당 컴퓨터의 IP 주소로 변환해주는 서버 컴퓨터
- ✓ 설정 파일은 /etc/resolv.conf이며 내용 중 'nameserver DNS서버IP' 형식으로 설정되어 있음



# 🔤 네트워크 관련 명령어

- 🌑 리눅스 네트워크 설정과 명령어
  - 리눅스에서의 네트워크 장치 이름
    - ✓ 리눅스에 랜 카드가 장착되면 Ubuntu 18.04 LTS는 자동으로 이 장치의 이름을 ens32 또는 ens33으로 인식
    - ✓ 랜 카드의 이름은 네트워크 정보를 파악하거나 네트워크를 정지 또는 가동할 때 이용

```
      ifconfig ens32 또는 ens33 -- 네트워크 설정 정보 출력

      ifdown --all
      -- 네트워크 장치 정지

      ifup --all
      -- 네트워크 장치 가동
```

- ifconfig 장치명
  - ✓ 해당 장치의 IP주소와 관련 정보를 출력하는 명령어

```
root@server:~# ifconfig ens33
ens33: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.25.128 netmask 255.255.255.0 broadcast 192.168.25.255
inet6 fe80::5ec2:141c:9d61:b478 prefixlen 64 scopeid 0x20<link>
ether 00:0c:29:b2:5d:6b txqueuelen 1000 (Ethernet)
RX packets 239864 bytes 354452359 (354.4 MB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 14881 bytes 1046066 (1.0 MB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```



## 🔤 네트워크 관련 명령어

#### 🃚 리눅스 네트워크 설정과 명령어

- 네트워크 관리자는 네트워크의 제어와 설정을 관리하는 데몬
- 네트워크 관리자를 사용하여 IP 주소 설정, 고정 라우트 설정, DNS 설정 등을 수행할 수 있음
- 사용자는 네트워크 관리자와 기존의 스크립트 파일 방식 모두 사용 가능
- 스크립트 방식으로 네트워크를 동작시킬 때

sudo systemctl start NetworkManager.service

#### 표 11-2 네트워크 관리 도구

| 도구                   | 기능                                                                  |
|----------------------|---------------------------------------------------------------------|
| 네트워크 관리자             | 기본 네트워킹 데몬이다.                                                       |
| nmcli 명령             | 네트워크 관리자를 사용하는 명령 기반 도구이다.                                          |
| [설정]-[네트워크]          | 그놈에서 제공하는 GUI 기반 도구이다.                                              |
| nm-connection-editor | 네트워크 관리자를 사용하는 GUI 기반 도구로, [제어판]—[네트워크]에서 설정할 수 없는 부분도<br>설정할 수 있다. |
| ip 명령                | 네트워크를 설정하는 명령을 제공한다.                                                |



#### 🖼 네트워크 관련 명령어

- 리눅스 네트워크 설정과 명령어
- 네트워크 관리자 설치하기

root@server:~# apt install network-manager

- 네트워크 관리자 실행하기
  - ✓ systemctl status 명령

```
root@server:~# systemctl status NetworkManager
NetworkManager.service - Network Manager
   <u> Loaded: loaded (/lib/systemd/system/NetworkManager.service; enabled; vendor p</u>
  Active: active (running) since Mon 2020-02-24 16:39:56 KST; 1min 42s ago
    Docs: man:NetworkManager(8)
Main PID: 720 (NetworkManager)
   Tasks: 4 (limit: 1081)
   CGroup: /system.slice/NetworkManager.service
           —720 /usr/sbin/NetworkManager --no-daemon
           └─<u>862 /sbin/dhclie</u>nt -d -q -sf /usr/lib/NetworkManager/nm-dhcp-helper
2월 24 16:39:59 server NetworkManager[720]: <info> [1582529999.2622] device (e
2월 24 16:39:59 server NetworkManager[720]: <info> [1582529999.2650] device (e
2월 24 16:39:59 server NetworkManager[720]: <info> [1582529999.2660] device (e
2월 24 16:39:59 server NetworkManager[720]: <info> [1582529999.2675] manager:
2월 24 16:39:59 server NetworkManager[720]: <info> [1582529999.2693] manager:
    24 16:39:59 server NetworkManager[720]: <info> [1582529999.2703] policy: s
    24 16:39:59 server NetworkManager[720]: <info> [1582529999.2716] device (e
    24 16:39:59 server NetworkManager[720]: <info> [1582529999.2785] manager:
2월 24 16:39:59 server dhclient[862]: bound to 192.168.254.137 -- renewal in 82
    24 16:40:03 server NetworkManager[720]: <info> [1582530003.7456] manager:
lines 1-20/20 (END)
```



# 🔤 네트워크 관련 명령어

#### 🌑 리눅스 네트워크 설정과 명령어

• 네트워크 관리자의 상태가 inactive라면 다음 명령으로 동작

sudo systemctl start NetworkManager.service

Enable명령

sudo systemctl enable NetworkManager.service

- 네트워크 관리자와 작업하기
  - ✓ 네트워크 관리자는 네트워크 설정 정보를 연결 프로파일(connection profile)에 저장
  - ✓ 사용자는 네트워크 관리자를 직접 제어하지 않고 명령 기반 도구나 GUI 기반 도구를 사용
  - ✓ nmcli는 네트워크 관리자를 사용하는 명령 기반 도구
  - ✓ 그놈의 [설정]-[네트워크]나 nm-connectioneditor는 GUI 기반 도구



## ☑ 네트워크 관련 명령어

#### 🌑 리눅스 네트워크 설정과 명령어

- GUI로 네트워크 설정하기
  - ✓ 우분투에서는 네트워크 설정을 위한 두 가지 GUI 도구를 제공
  - ✓ 그놈에 포함된 [설정]-[네트워크]
  - ✓ 네트워크 관리자와 함께 설치되는 nm-connection-editor
- 그놈의 [설정] -[네트워크]로 설정하기
  - ✓ 설정 화면에서 네트워크를 선택하면 네트워크 설정 창 실행



그림 11-7 그놈의 네트워크 설정 창



## ☑ 네트워크 관련 명령어

- 리눅스 네트워크 설정과 명령어
  - 그놈의 [설정] -[네트워크]로 설정하기
    - ✓ IPv4 설정에서 IP 주소와 넷마스크, 게이트웨이, 네임서버(DNS), 라우팅을 설정



그림 11-8 유선 설정 창



## 🔤 네트워크 관련 명령어

#### 🌑 리눅스 네트워크 설정과 명령어

- nm-connection-editor
  - ✓ nm은 Network Manager의 약자
  - ✓ 네트워크와 관련된 작업은 대부분 이 명령어를 바탕으로 실행 가능
  - ✓ nm-connection-editor 명령으로 설정하는 사항은 아래와 같음
    - > 자동 IP 주소 또는 고정 IP 주소 사용 결정
    - ▶ IP 주소, 서브넷 마스크, 게이트웨이 정보 입력
    - ▶ DNS 정보 입력
    - ▶ 네트워크 카드 드라이버 설정
    - ▶ 네트워크 장치(ens32 또는 ens33) 설정



#### ☑ 네트워크 관련 명령어

#### 리눅스 네트워크 설정과 명령어

- nm-connection-editor 로 설정하기
  - √ (a) 터미널에서 nm-connection-editor를 실행
  - ✓ (b) '유선 연결 1'을 선택하고 하단의 설정 버튼을 클릭: 세부 설정 가능

|         | 네트워크 연결 | 000      |
|---------|---------|----------|
| 이름      |         | 마지막 사용 📤 |
| ▼ 이더넷   |         |          |
| 유선 연결 1 |         | 2분 전     |
|         |         |          |
|         |         |          |
|         |         |          |
|         |         |          |
|         |         |          |
|         |         |          |
| + - 🌣   |         |          |

| 결 이름(N): 유선 연결 1  |               |                                                |                                               |      |       |    |
|-------------------|---------------|------------------------------------------------|-----------------------------------------------|------|-------|----|
| 일반 이더넷 802.1X 보인  | DCB Proxy     | IPv4설정 IPv6설                                   | 정                                             |      |       |    |
| 장치(D):            | 00:0C:29:74:E | 98:B8                                          |                                               |      |       | -  |
| 복제한 MAC 주소(L):    |               |                                                |                                               |      |       | •  |
| MTU(M):           | 자동            |                                                |                                               | -    | + ] H | 이트 |
| LAN으로깨우기          |               | <ul><li>□ Phy(P)</li><li>□ 브로드캐스트(B)</li></ul> | <ul><li>□ 유니캐스트(U)</li><li>□ Arp(A)</li></ul> | 트(T) |       |    |
| LAN으로 깨우기 암호(W)   |               |                                                |                                               |      |       |    |
| Link negotiation: | 무시            |                                                |                                               |      |       | -  |
| 속도(S):            | 100 Mb/s      |                                                |                                               |      |       | *  |
| Duplex:           | Full          |                                                |                                               |      |       | -  |

(b) 유선 연결 1 편집 창



## 🔤 네트워크 관련 명령어

#### 🥏 리눅스 네트워크 설정과 명령어

- nmcli 명령으로 네트워크 설정하기
  - ✓ 네트워크를 설정하는 명령은 네트워크 관리자와 함께 설치되는 nmcli 명령이며, 이와 별도로 리눅스가 제공하는 ip 명령을 사용 가능
  - ✓ Nmcli 명령으로 유선 네트워크뿐만 아니라 와이파이 등 무선 네트워크, 보안 등 네트워크와 관련된 거의 모든 설정을 관리
  - ✓ nmcli는 명령 행에서 사용하는 명령은 물론이고 대화식 인터페이스도 제공

#### nmcli

- 기능 명령 기반으로 네트워크 관리자를 설정한다.
- 형식 nmcli [옵션] {명령} [서브 명령]
- 옵션 -t: 실행 결과를 간단하게 출력한다.
  - -D: 사용자가 읽기 좋게 출력한다.
  - -v: nmcli의 버전을 출력한다.
  - h: 도움말을 출력한다.
- 명령 {서브 명령} general {status | hostname}: 네트워크 관리자의 전체적인 상태를 출력하고, 호스트명을 읽거나 변경할 수 있다.
  - networking {on | off | connectivity}: 네트워크를 시작·종료하고 연결 상태를 출력한다.
  - connection {show | up | down | modify | add | delete | reload | load}: 네트워크를 설정한다.
  - device {status | show}: 네트워크 장치의 상태를 출력한다.
- ·사용 예 nmcli general

  nmcli networking on

  nmcli con add type ethernet con-name test-net ifname ens33 ip4

192,168,1,10/24 gw4 192,168,1,254



# 🔤 네트워크 관련 명령어

- 🍉 리눅스 네트워크 설정과 명령어
  - 네트워크의 전체 상태 살펴보기: general(gen) 명령
    - ✓ 네트워크의 전체적인 상태는 nmcli의 general 명령으로 확인
    - ✓ nmcli를 사용할 때 명령을 줄여서 사용 가능

```
root@server:~# nmcli general status
STATE
       CONNECTIVITY WIFI-HW
                            WIFI
                                 WWAN-HW
                                          WWAN
                                          사용
연결됨
      전 체
                    사용
                            사용 사용
root@server:~# nmcli gen
STATE
       CONNECTIVITY WIFI-HW
                            WIFI
                                 WWAN-HW
                                          WWAN
                                          사용
      전체
                    사용
                            사용
                                 사용
```



#### 🖼 네트워크 관련 명령어

#### 리눅스 네트워크 설정과 명령어

- 네트워크 활성화·비활성화하기: networking(net) 명령
  - ✓ networking 명령은 네트워크를 활성화(on)하거나 비활성화(off)함
  - ✓ connectivity 서브 명령으로 네트워크의 연결 상태를 알려줌
  - ✓ connectivity가 출력하는 네트워크 상태
    - > none(없음): 호스트가 아직 네트워크에 연결되어 있지 않다.
    - ▶ limited(제한적): 호스트가 네트워크에 연결되어 있지만 인터넷과 연결되지는 않았다.
    - ▶ full(전체): 호스트가 네트워크에 연결되어 있고 인터넷도 사용할 수 있다.
    - unknown(알 수 없음): 네트워크 연결 상태를 알 수 없다.
  - ✓ nmcli net off: 네트워크 비활성화 / nmcli net on: 네트워크 활성화

```
root@server:~# nmcli net off
root@server:~# nmcli net con
root@server:~# nmcli net on
root@server:~# nmcli net con
```



# 🔤 네트워크 관련 명령어

#### 🌑 리눅스 네트워크 설정과 명령어

• 네트워크 설정하기: connetion(con) 명령

표 11-3 connection의 서브 명령

| 서브 명령  | 기능                                                                       |
|--------|--------------------------------------------------------------------------|
| show   | 메모리와 디스크에 저장된 네트워크 연결 프로파일을 출력한다. 서브 명령을 지정하지 않을 경우 기본적으로<br>show를 실행한다. |
| up     | 네트워크 연결을 시작한다.                                                           |
| down   | 네트워크 연결을 중지한다.                                                           |
| modify | 연결 프로파일에서 속성을 추가·수정·삭제한다.                                                |
| add    | 새로운 연결을 생성한다.                                                            |
| delete | 연결의 설정을 삭제한다.                                                            |
| reload | 연결과 관련된 파일을 디스크에서 다시 읽어온다.                                               |
| load   | 디스크에서 하나 이상의 연결 파일을 읽어온다.                                                |
|        |                                                                          |



## 🔤 네트워크 관련 명령어

- 🃚 리눅스 네트워크 설정과 명령어
  - 네트워크 연결 프로파일 출력하기: show
    - ✓ nmcli connection show 명령은 연결 프로파일의 이름과 UUID, 네트워크 유형, 연결된 장치명을 출력

```
root@server:~# nmcli con show
NAME UUID TYPE DEVICE
유선 연결 1 3ef1779a-8d91-397b-95f3-4839651f42e9 ethernet ens32
```



# 🔤 네트워크 관련 명령어

#### 🃚 리눅스 네트워크 설정과 명령어

- ip 명령으로 네트워크 설정하기
  - ✓ 네트워크 설정은 ip 명령으로도 가능하지만, 시스템을 재시작하면 사라짐
  - ✓ 설정한 내용이 시스템을 다시 시작한 후에도 적용되게 하려면 설정 파일에 저장해야 함

#### ip

- 기능 IP 주소, 게이트웨이, 네트워크 장치의 상태 등을 출력하고 관리한다.
- **형식** ip [옵션] 객체 [서브 명령]
- <mark>옵션</mark> -V: 버전을 출력한다.
  - -s: 자세한 정보를 출력한다.
- 객체 [서브 명령] address [add|del|show|help]: 장치의 IP 주소를 관리한다(ip-address).

route [add|del|help]: 라우팅 테이블을 관리한다(ip-route).

link [set]: 네트워크 인터페이스를 활성화·비활성화한다.

· 사용 예 ip addr show

ip addr add 192,168,1,20/24 dev ens33

ip route show

ip route add 192.168.2.0/24 via 192.168.1.1 dev ens33



## 🔤 네트워크 관련 명령어

#### ⊳ 리눅스 네트워크 설정과 명령어

- 네트워크 장치의 주소 관리하기: address(addr) 명령
  - ✓ address 명령은 IP 주소의 정보를 출력하거나 설정하고 삭제
- 네트워크 장치의 정보 보기: show
  - ✓ show 명령은 네트워크 장치의 정보를 출력
  - ✓ show 명령 다음에 장치명을 지정하지 않으면 전체 장치에 대한 상세 정보가 출력
  - ✓ 예) 전체 장치의 정보를 출력한 것

```
root@server:~# ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00 brd 00:00:00:00:00:00
   inet 127.0.0.1/8 scope host lo
     valid_lft forever preferred_lft forever
   inet6 ::1/128 scope host
     valid_lft forever preferred_lft forever

2: ens32: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default q len 1000
     link/ether 00:0c:29:8b:32:6a brd ff:ff:ff:ff
   inet 192.168.254.137/24 brd 192.168.254.255 scope global dynamic noprefixroute ens32
     valid_lft 1511sec preferred_lft 1511sec
   inet6 fe80::c8c6:fb2e:16d8:552e/64 scope link noprefixroute
   valid lft forever preferred lft forever
```



## ☑ 네트워크 관련 명령어

- ⋗ 리눅스 네트워크 설정과 명령어
  - 네트워크 장치의 정보 보기: show

```
root@server:~# ip addr show ens32
2: ens32: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default q
len 1000
link/ether 00:0c:29:8b:32:6a brd ff:ff:ff:ff:ff
inet 192.168.254.137/24 brd 192.168.254.255 scope global dynamic noprefixroute ens32
valid_lft 1441sec preferred_lft 1441sec
inet6 fe80::c8c6:fb2e:16d8:552e/64 scope link noprefixroute
valid_lft forever preferred_lft forever
```



# 🔤 네트워크 관련 명령어

- 리눅스 네트워크 설정과 명령어
  - 기존 명령으로 네트워크 설정하기: ifconfig

#### ifconfig

- 기능 네트워크 인터페이스의 IP 주소를 설정한다.
- 형식 ifconfig [인터페이스명] [옵션] [값]
- 옵션 -a: 시스템의 전체 인터페이스에 대한 정보를 출력한다. up/down: 인터페이스를 활성화·비활성화한다. netmask 주소: 넷마스크 주소를 설정한다.
  - broadcast 주소: 브로드캐스트 주소를 설정한다.
- ·사용 예 ifconfig ens33

ifconfig ens33 192.168.1.2 netmask 255.255.255.0 broadcast 192.168.1.255

• 우분투는 ifconfig 명령이 기본으로 설치되지 않으므로 net-tools 패키지를 설치

```
root@server:~# apt install net-tools
패키지 목록을 읽는 중입니다... 완료
의존성 트리를 만드는 중입니다
상태 정보를 읽는 중입니다... 완료
```



# ☑ 네트워크 관련 명령어

# 리눅스 네트워크 설정과 명령어

- 네트워크 인터페이스 수동으로 설정하기
  - ✓ ifconfig 인터페이스명 IP주소 netmask 넷마스크 주소 broadcast 브로드캐스트 주소

```
root@server:~# ifconfig ens32 192.168.254.140 netmask 255.255.255.0 broadcast 192.168.254.255 root@server:~# ifconfig ens32 ens32: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet 192.168.254.140 netmask 255.255.255.0 broadcast 192.168.254.255 inet6 fe80::c8c6:fb2e:16d8:552e prefixlen 64 scopeid 0x20<link> ether 00:0c:29:8b:32:6a txqueuelen 1000 (Ethernet) RX packets 1902 bytes 1905741 (1.9 MB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 1013 bytes 109598 (109.5 KB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```



# 🔤 네트워크 관련 명령어

- 빨 리눅스 네트워크 설정과 명령어
  - 네트워크 인터페이스 설정을 파일에 저장하기
    - ✓ 부팅할 때 네트워크가 설정되게 하려면 /etc/network/interfaces 파일에 설정 root@server:~# cat /etc/network/interfaces

```
root@server:~# cat /etc/network/interfaces
# interfaces(5) file used by ifup(8) and ifdown(8)
auto lo
iface lo inet loopback
```

✓ 우분투 서버의 경우 고정 IP를 사용하려면 /etc/network/interfaces 파일을 수정

```
# interfaces(5) file used by ifup(8) and ifdown(8)
auto lo
iface lo inet loopback

iface eth0 inet static
address 192.168.254.140
netmask 255.255.255.0
network 192.168.254.0
broadcast 192.168.254.255
gateway 192.168.254.1
dns-nameservers 168.126.63.1 168.126.63.2
```



### 📼 네트워크 관련 명령어

- 리눅스 네트워크 설정과 명령어
- DNS 설정하기
  - ✓ 호스트명을 IP 주소로 바꾸는 역할을 수행
  - ✓ 만약 DNS가 설정되어 있지 않으면 이름으로 서버에 접속할 수 없으며 직접 IP 주소를 사용하여 접속 가능
- DNS 관리 서비스와 DNS 서버 지정 파일
  - ✓ DNS 서버의 주소를 /etc/resolv.conf 파일에 저장

```
root@server:~# cat /etc/resolv.conf
# This file is managed by man:systemd-resolved(8). Do not edit.
# This is a dynamic resolv.conf file for connecting local clients to the
# internal DNS stub resolver of systemd-resolved. This file lists all
 configured search domains.
# Run "systemd-resolve --status" to see details about the uplink DNS servers
 currently in use.
 Third party programs must not access this file directly, but only through the
 symlink at /etc/resolv.conf. To manage man:resolv.conf(5) in a different way.
# replace this symlink by a static file or a different symlink.
# See man:systemd-resolved.service(8) for details about the supported modes of
# operation for /etc/resolv.conf.
nameserver 127.0.0.53
options edns0
search localdomain
```



# 🔤 네트워크 관련 명령어

### 🌑 리눅스 네트워크 설정과 명령어

- 호스트 이름 확인하기
  - ✓ 해당 기관의 도메인 이름에 서버에서 제공하는 대표적인 서비스의 이름을 붙이는 것이 편리
  - ✓ 붙인 이름은 호스트 이름 설정 파일에 저장하고 DNS에 등록해야 서비스 제공 가능
- uname -n 명령

#### uname

- 기능 시스템 정보를 출력한다.
- 형식 uname [옵션]
- **옵션** -m: 하드웨어 종류를 출력한다.
  - -n: 호스트 이름을 출력한다.
  - -r: 운영체제의 릴리스 정보를 출력한다.
  - -s: 운영체제 이름을 출력한다.
  - -v: 운영체제 버전을 출력한다.
  - -a: 위의 모든 정보를 출력한다.
- · 사용 예 uname -n uname -a



### 📼 네트워크 관련 명령어

- 리눅스 네트워크 설정과 명령어
  - uname -n 명령
    - ✓ 리눅스를 설치할 때 설정한 호스트 이름인 server 출력
    - ✓ uname -a 명령을 실행하면 호스트 이름을 포함하여 시스템 관련 정보가 출력

```
root@server:~# uname -n
server
root@server:~# uname -a
Linux server 4.18.0-15-generic #16~18.04.1-Ubuntu SMP Thu Feb 7 14:06:04 UTC 2019 x86_64 x86_64 x
86 64 GNU/Linux
```



# 🔤 네트워크 관련 명령어

### 🃚 리눅스 네트워크 설정과 명령어

• 통신 확인하기: ping

```
      • 기능
      네트워크 장비에 신호(ECHO_REQUEST)를 보낸다.

      • 형식
      ping [옵션] 목적지 주소

      • 옵션
      -a: 통신이 되면 소리를 낸다.

      -q: 테스트 결과를 지속적으로 보여주지 않고 종합 결과만 출력한다.

      -c 개수: 보낼 패킷 수를 지정한다.

      • 사용 예 ping 192.168.0.1

      ping -a www.naver.com
```

✓ 옵션 없이 사용하는 경우: 패킷은 기본적으로 56바이트의 크기 + 8바이트 헤더 정보

```
root@server:~# ping 192.168.254.2

PING 192.168.254.2 (192.168.254.2) 56(84) bytes of data.
64 bytes from 192.168.254.2: icmp_seq=1 ttl=128 time=0.171 ms
64 bytes from 192.168.254.2: icmp_seq=2 ttl=128 time=0.401 ms
64 bytes from 192.168.254.2: icmp_seq=3 ttl=128 time=0.419 ms
64 bytes from 192.168.254.2: icmp_seq=4 ttl=128 time=0.187 ms
```



### 🖼 네트워크 관련 명령어

- 리눅스 네트워크 설정과 명령어
  - 통신 확인하기 : ping
    - ✓ ping은 보낼 패킷 수를 -c 옵션으로 지정하지 않으면 계속 패킷을 보내므로 Ctrl+c로 ping 종료
    - ✓ ping이 종료되면 다음과 같이 통계 정보가 출력

```
64 bytes from 192.168.254.2: icmp seq=7 ttl=128 time=0.346 ms
^C
--- 192.168.254.2 ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 6129ms
rtt min/avg/max/mdev = 0.171/0.361/0.560/0.131 ms
```

- ✓ 통계 정보로는 보낸 전체 패킷 수, 보낸 패킷 중에서 받은 패킷 수, 보내고 받은 패킷 중 유실된 패킷의 비율, 통신 속도의 최솟값, 평균값, 최댓값이 출력
- ✓ 결과를 보면 일곱 개 패킷을 보내 모두 수신했으며, 유실된 것은 없고 평균 0.361밀리초가 걸렸음
- ✓ 통신 시간이 낮을수록 네트워크의 상태가 양호하다는 것을 의미



# 🔤 네트워크 관련 명령어

- 빨 리눅스 네트워크 설정과 명령어
  - 통신 확인하기 : ping
    - ✓ -c 옵션을 사용하면 보낼 패킷 수를 지정

```
root@server:~# ping 192.168.254.2 -c 3
PING 192.168.254.2 (192.168.254.2) 56(84) bytes of data.
64 bytes from 192.168.254.2: icmp_seq=1 ttl=128 time=0.163 ms
64 bytes from 192.168.254.2: icmp_seq=2 ttl=128 time=0.484 ms
64 bytes from 192.168.254.2: icmp_seq=3 ttl=128 time=0.393 ms
--- 192.168.254.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2039ms
rtt min/avg/max/mdev = 0.163/0.346/0.484/0.136 ms
```



# 🔤 네트워크 관련 명령어

### 리눅스 네트워크 설정과 명령어

• 네트워크 상태 정보 출력하기: netstat

#### netstat

- 기능 네트워크의 상태 정보를 출력한다.
- · 형식 netstat [옵션]
- 옵션 -a: 모든 소켓 정보를 출력한다.
  - -r: 라우팅 정보를 출력한다.
  - -n: 호스트명 대신에 IP 주소를 출력한다.
  - -i: 모든 네트워크 인터페이스 정보를 출력한다.
  - -s: 프로토콜별로 네트워크 통계 정보를 출력한다.
  - -p: 해당 소켓과 관련된 프로세스의 이름과 PID를 출력한다.
- · 사용 예 netstat -rn netstat -s



### 🖼 네트워크 관련 명령어

- 리눅스 네트워크 설정과 명령어
- 현재 열려 있는 포트 확인하기
  - ✓ 현재 통신이 진행 중인 서비스는 해당 서비스 포트가 LISTEN 상태

```
root@server:~# netstat -an | grep LISTEN
tcp
                  0 127.0.0.53:53
                                            0.0.0.0:*
                                                                     LISTEN
tcp
                  0 127.0.0.1:631
                                            0.0.0.0:*
                                                                     LISTEN
tсрб
                  0 ::1:631
                                                                     LISTEN
unix
     2
             [ ACC ]
                         STREAM
                                    LISTENING
                                                   36496
                                                            @/tmp/.ICE-unix/1036
unix
             [ ACC ]
                         STREAM
                                     LISTENING
                                                   20085
                                                            /run/systemd/private
unix
                                    LISTENING
             [ ACC ]
                        SEQPACKET
                                                   20093
                                                            /run/udev/control
unix
             [ ACC ]
                         STREAM
                                     LISTENING
                                                   34519
                                                            /run/user/0/systemd/private
unix 2
             [ ACC ]
                         STREAM
                                    LISTENING
                                                   20090
                                                            /run/systemd/fsck.progress
unix 2
               ACC ]
                                     LISTENING
                         STREAM
                                                   34523
                                                            /run/user/0/gnupg/S.gpg-agent.extra
```

# Q & A

# Thank You