UNIDADE 4 APROXIMAÇÃO DE FUNÇÕES Ajuste de curvas pelo método dos Mínimos Quadrados

Ajuste de Curvas

Uma das formas de se trabalhar com uma função definida por uma tabela de valores é a interpolação polinomial.

Contudo, a interpolação não é aconselhável quando:

- É preciso obter um valor aproximado da função em algum ponto fora do intervalo de tabelamento, ou seja, quando se quer **extrapolar**.
- Os valores tabelados são resultados de algum experimento físico ou de alguma pesquisa, porque, nestes casos, estes valores poderão conter erros inerentes que, em geral, não são previsíveis.

Surge então a necessidade de se ajustar a estas funções tabeladas uma função que seja uma "boa aproximação" para os valores tabelados e que permita extrapolar com certa margem de segurança.

O problema do ajuste de curvas no caso em que temos uma tabela de pontos $(x_1, f(x_1))$, $(x_2, f(x_2))$, ..., $(x_m, f(x_m))$ com $x_1, x_2, ..., x_m$, pertencentes a um intervalo [a, b], consiste em:

- escolher **n** funções $g_1(x)$, $g_2(x)$, ..., $g_n(x)$, contínuas em [a, b],
- obter **n** constantes α_1 , α_2 , ..., α_n tais que a função $\phi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + ... + \alpha_n g_n(x)$ se aproxime ao máximo de f(x).

Genericamente, no caso linear, estaremos supondo que os dados serão aproximados por uma função do tipo:

$$f(x) \cong \varphi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + ... + \alpha_n g_n(x)$$

onde as funções $g_1(x)$, $g_2(x)$, ..., $g_n(x)$ são preestabelecidas.

Dizemos que este é um modelo matemático linear porque os coeficientes a determinar, α_1 , α_2 , ..., α_n , aparecem linearmente, embora as funções $g_1(x)$, $g_2(x)$, ..., $g_n(x)$ possam ser funções não lineares de x, como por exemplo,

- $g_1(x) = e^x$
- $g_2(x) = (x^2 + 2)$
- $g_3(x) = sen(x)$, etc.

A escolha das funções pode ser feita observando o gráfico dos pontos conhecidos ou baseando-se em fundamentos teóricos do experimento que nos forneceu a tabela.

Portanto, dada uma tabela de pontos $(x_1, f(x_1)), (x_2, f(x_2)), ..., (x_m, f(x_m))$, deve-se, em primeiro lugar, colocar estes pontos num gráfico cartesiano.

O gráfico resultante é chamado diagrama de dispersão. Através deste diagrama pode-se visualizar a curva que melhor se ajusta aos dados.

Exemplo 1:

Tabela 1 – Valores de tabela

i	1.	2.	3.	4.	5.	6.	7.	8.	9.
Xi	-1,0	-0,75	-0,5	-0,25	0	0,25	0,5	0,75	1,0
f(x _i)	2,1	1,3	1,1	0,2	0	0,5	0,6	1,5	2,2

Figura 1 - Diagrama de dispersão

Portanto, é natural escolher apenas uma função $g_1(x) = x^2$ e procurar então $\phi(x) = \alpha x^2$ (equação geral de uma parábola passando pela origem).

Exemplo 2:

Se considerarmos uma experiência onde foram medidos vários valores de corrente elétrica que passa por uma resistência submetida a várias tensões, colocando os valores correspondentes de corrente e tensão em um gráfico, poderemos ter gráfico apresentado na Fig. 2.

Figura 2 – Diagrama de dispersão

Neste caso, existe uma fundamentação teórica relacionando a corrente com a tensão V = Ri, isto é, V é uma função linear de i.

Assim,
$$g_1(x) = i e \varphi(i) = \alpha g_1(i)$$

O problema é determinar qual parábola com equação αx_2 se ajusta melhor ao primeiro gráfico e qual reta, passando pela origem, melhor se ajusta ao segundo gráfico.

No caso geral, escolhidas as funções $g_1(x)$, $g_2(x)$, ..., $g_n(x)$ temos de estabelecer o conceito de proximidade entre as funções $\phi(x)$ e f(x) para obter as constantes α_1 , α_2 , ..., α_n .

Uma maneira é impor que o desvio $(f(x_i) - \phi(x_i))$ seja mínimo, para i = 1, 2, ..., m. Veremos a seguir o método conhecido como Método dos Quadrados Mínimos.

Método dos Quadrados Mínimos

O Método dos Quadrados Mínimos é provavelmente a técnica de aproximação mais usada na análise numérica e em problemas práticos.

Isto se deve tanto à sua simplicidade quanto ao fato de que em geral, buscamos aproximações para dados que são medidas obtidas experimentalmente com um certo grau de incerteza.

Veremos que o método dos quadrados mínimos contempla a possível existência de erros nos dados a serem aproximados.

O critério de aproximação consiste em minimizar os resíduos.

Chamaremos de f(x) a função que será convenientemente aproximada por outra função $\phi(x)$.

No caso dos quadrados mínimos lineares, partimos da hipótese de que temos algumas informações sobre o comportamento de $\phi(x)$.

Poderíamos saber, por exemplo, que $\varphi(x)$ é uma reta, ou seja:

$$\varphi(x) = \alpha_1 + \alpha_2 x$$

A questão é encontrar qual é esta reta, ou seja, quais são os valores de α_1 e α_2 que ajustam os pontos conhecidos.

Num outro exemplo, vamos procurar valores para α_1 , α_2 e α_3 que tornam a função:

$$\varphi(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2$$

uma boa aproximação dos dados.

Sejam dados os pontos $(x_1, f(x_1)), (x_2, f(x_2)), ..., (x_m, f(x_m))$ e as n funções $g_1(x), g_2(x), ..., g_n(x)$ escolhidas de alguma forma.

Considerando que o número de pontos \mathbf{m} , tabelados, é sempre maior ou igual a \mathbf{n} o número de funções escolhidas ou o número de coeficientes $\mathbf{\alpha}_i$ a se determinar.

Nosso objetivo é encontrar os coeficientes $\alpha_1, \alpha_2, ..., \alpha_n$ tais que a função

$$\varphi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + ... + \alpha_n g_n(x)$$

se aproxime ao máximo de f(x).

Seja $d_k = f(x_k) - \phi(x_k)$ o desvio em x_k . O conceito de **proximidade** é que d_k seja mínimo para todo k = 1, 2, ..., m.

O método dos quadrados mínimos consiste em escolher os \mathbf{a}_{i} 's de tal forma que a soma dos quadrados dos desvios seja mínima.

Ajuste Linear Simples

Dada uma tabela com m valores $(x_i, f(x_i))$, i = 1, 2, ..., m, queremos encontrar a reta que melhor ajusta esta tabela, no sentido dos quadrados mínimos.

Como o ajuste será feito por uma reta, tomaremos $g_1(x) = 1 e g_2(x) = x$, isto é:

$$f(x) \cong \varphi(x) = \alpha_1 + \alpha_2 x$$

O resíduo para cada par (α_1, α_2) e para cada x será $r(\alpha_1, \alpha_2; x) = f(x) - \alpha_1 - \alpha_2 x$. Assim, pelo método dos quadrados mínimos devemos procurar α_1 e α_2 que minimizam a função:

$$< r, r > (\alpha_1, \alpha_2) = < f(x) - \alpha_1 - \alpha_2 x, f(x) - \alpha_1 - \alpha_2 x > = \sum_{i=1}^{m} (f(x_i) - \alpha_1 - \alpha_2 x_i)^2$$

Do Cálculo Diferencial sabe-se que a condição necessária do ponto crítico é que as derivadas nele se anulem, esto é:

$$\frac{\partial}{\partial \alpha_1} \langle r, r \rangle = \frac{\partial}{\partial \alpha_2} \langle r, r \rangle = 0$$

ou ainda, procedidas as respectivas derivações na expressão <r, r> temos:

$$-2\sum_{i=1}^{m} (f(x_i) - \alpha_1 - \alpha_2 x_i) x_i = 0 -2\sum_{i=1}^{m} (f(x_i) - \alpha_1 - \alpha_2 x_i) = 0$$

Após o desenvolvimento, estas duas equações formam um sistema linear com as incógnitas α_1 e α_2 , que podem ser reescrito na forma:

$$\sum_{i=1}^{m} f(x_i) - \sum_{i=1}^{m} \alpha_1 - \sum_{i=1}^{m} \alpha_2 x_i = 0$$

$$\sum_{i=1}^{m} x_{i} f(x_{i}) - \sum_{i=1}^{m} \alpha_{1} x_{i} - \sum_{i=1}^{m} \alpha_{2} x_{i}^{2} = 0$$

ou

$$m\alpha_1 + \alpha_2 \sum_{i=1}^m x_i = \sum_{i=1}^m f(x_i)$$

$$\alpha_1 \sum_{i=1}^m x_i + \alpha_2 \sum_{i=1}^m x_i^2 = \sum_{i=1}^m x_i f(x_i)$$

A solução deste sistema pode ser obtida pelo método da Eliminação de Gauss. Através das substituições retroativas obtém-se:

$$\alpha_2 = \frac{m \sum_{i=1}^{m} x_i f(x_i) - \sum_{i=1}^{m} x_i \sum_{i=1}^{m} f(x_i)}{m \sum_{i=1}^{m} x_i^2 - \left(\sum_{i=1}^{m} x_i\right)^2}$$

$$\alpha_1 = \frac{\sum_{i=1}^m f(x_i) - \left(\sum_{i=1}^m x_i\right) \alpha_2}{m}$$

Assim, a solução do sistema de equações lineares é α_1 e α_2 dados pelas equações acima, e com estes valores os resíduos apresentam o seu menor valor.

Como este método consiste em achar o mínimo de uma função quadrática, ele é conhecido como método dos mínimos quadrados.

Exemplo 3: Ajustar os dados da tabela abaixo a uma reta de modo que o resíduo seja o menor possível.

i	1.	2.	3.	4.	5.
Xi	1,3	3,4	5,1	6,8	8,0
f(x _i)	2,0	5,2	3,8	6,1	5,8

Solução

Usando os valores da tabela temos:

a) Cálculo dos somatórios:

m = 5

$$\sum_{i=1}^{5} x_i = (1.3) + (3.4) + (5.1) + (6.8) + (8.0) = 24.6$$

$$\sum_{i=1}^{5} x_i^2 = (1.3)^2 + (3.4)^2 + (5.1)^2 + (6.8)^2 + (8.0)^2 = 149.5$$

$$\sum_{i=1}^{5} f(x_i) = (2.0) + (5.2) + (3.8) + (6.1) + (5.8) = 22.9$$

$$\sum_{i=1}^{5} x_i f(x_i) = (1.3)(2.0) + (3.4)(5.2) + (5.1)(3.8) + (6.8)(6.1) + (8.0)(5.8) = 127.54$$

b) Resolução do sistema:

Assim, os valores de α_1 e α_2 da melhor reta (no sentido dos quadrados mínimos) são obtidos pelo sistema:

$$\begin{cases}
5\alpha_1 + 24.6\alpha_2 = 22.9 \\
24.6\alpha_1 + 149.5\alpha_2 = 127.54
\end{cases}$$

Resolvendo o sistema, obtêm-se $\alpha_1 = 2,0098$ e $\alpha_2 = 0,5224$

Usando as fórmulas de α_1 e α_2 temos:

$$\alpha_2 = \frac{m\sum_{i=1}^{m} x_i f(x_i) - \sum_{i=1}^{m} x_i \sum_{i=1}^{m} f(x_i)}{m\sum_{i=1}^{m} x_i^2 - \left(\sum_{i=1}^{m} x_i\right)^2} = \frac{(5)(127.54) - (24.6)(22.9)}{(5)(149.5) - (24.6)^2} = \frac{637.7 - 563.34}{747.5 - 605.16} = \frac{74.36}{142.34} = 0.5224$$

$$\alpha_1 = \frac{\sum_{i=1}^m f(x_i) - \left(\sum_{i=1}^m x_i\right) \alpha_2}{m} = \frac{22.9 - (24.6)(0.5224)}{5} = \frac{22.9 - 12.851}{5} = 2,0098$$

Então, a melhor reta que passa pelos pontos, usando a equação, é:

$$\varphi(x) = 2,0098 + 0,5224x$$

c) Cálculo do quadrado dos resíduos:

Os valores de $\varphi(x_i)$ e os respectivos resíduos $(r(x_i) = f(x_i) - \varphi(x_i))$ estão na tabela abaixo:

i	1	2	3	4	5
X _i	1,3000	3,4000	5,1000	6,8000	8,0000
f(x _i)	2,0000	5,2000	3,8000	6,1000	5,8000
φ(x _i)	2,6889	3,7859	4,6740	5,5621	6,1890
r(x _i)	-0,6889	1,4141	-0,8740	0,5379	-0,3890
r²(x _i)	0,4745	1,9996	0,7639	0,2893	0,1513

Neste exemplo, a soma dos quadrados dos resíduos é:

$$\sum_{i=1}^{5} r^2(x_i) = 3.6787$$

Exercício 1: Considere o ajuste da tabela abaixo por uma reta. Calcular a soma dos quadrados dos resíduos.

i	1.	2.	3.	4.	5.	
Xi	0	0,25	0,5	0,75	1,00	
f(x _i)	1,0000	1,2840	1,6487	2,1170	2,7183	

Resposta:

Equação: $\phi(x) = 0.89968 + 1.70784x$

Soma dos quadrados dos resíduos: 0,039198364

Ajuste Polinomial

O ajuste linear simples é um caso especial do ajuste polinomial. A equação geral do ajuste polinomial é dada por:

$$\varphi(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2 + ... + \alpha_{n+1} x^n$$

e as equações normais ficam:

$$\begin{bmatrix} m & \sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m} x_{i}^{2} & \cdots & \sum_{i=1}^{m} x_{i}^{n} \\ \sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m} x_{i}^{2} & \sum_{i=1}^{m} x_{i}^{3} & \cdots & \sum_{i=1}^{m} x_{i}^{n+1} \\ \sum_{i=1}^{m} x_{i}^{2} & \sum_{i=1}^{m} x_{i}^{3} & \sum_{i=1}^{m} x_{i}^{4} & \cdots & \sum_{i=1}^{m} x_{i}^{n+2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{i=1}^{m} x_{i}^{n} & \sum_{i=1}^{m} x_{i}^{n+1} & \sum_{i=1}^{m} x_{i}^{n+2} & \cdots & \sum_{i=1}^{m} x_{i}^{2n} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ \vdots \\ \alpha_{n} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} f(x_{i}) \\ \sum_{i=1}^{m} x_{i} f(x_{i}) \\ \vdots \\ \sum_{i=1}^{m} x_{i}^{2} f(x_{i}) \\ \vdots \\ \sum_{i=1}^{m} x_{i}^{n} f(x_{i}) \end{bmatrix}$$

Exemplo 4: Ajustar os pontos da tabela abaixo à equação $\varphi(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2$ Calcular a soma dos quadrados dos resíduos.

i	1.	2.	3.	4.	5.	6.
Xi	-2	-1,5	0	1	2,2	3,1
f(x _i)	-30,5	-20,2	-3,3	8,9	16,8	21,4

Solução

O vetor α é a solução do sistema acima, que, neste caso, torna-se:

$$\begin{bmatrix} m & \sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m} x_{i}^{2} \\ \sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m} x_{i}^{2} & \sum_{i=1}^{m} x_{i}^{3} \\ \sum_{i=1}^{m} x_{i}^{2} & \sum_{i=1}^{m} x_{i}^{3} & \sum_{i=1}^{m} x_{i}^{4} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} f(x_{i}) \\ \sum_{i=1}^{m} x_{i} f(x_{i}) \\ \sum_{i=1}^{m} x_{i}^{2} f(x_{i}) \end{bmatrix}$$

a) Cálculo dos somatórios:

$$m = 6$$

$$\sum_{i=1}^{6} x_i = (-2) + (-1.5) + (0) + (1) + (2.2) + (3.1) = 2.8$$

$$\sum_{i=1}^{6} x_i^2 = (-2)^2 + (-1.5)^2 + (0)^2 + (1)^2 + (2.2)^2 + (3.1)^2 = 21.7$$

$$\sum_{i=1}^{6} x_i^3 = (-2)^3 + (-1.5)^3 + (0)^3 + (1)^3 + (2.2)^3 + (3.1)^3 = 30.064$$

$$\sum_{i=1}^{6} x_i^4 = (-2)^4 + (-1.5)^4 + (0)^4 + (1)^4 + (2.2)^4 + (3.1)^4 = 137.8402$$

$$\sum_{i=1}^{6} f(x_i) = (-30.5) + (-20.2) + (-3.3) + (8.9) + (16.8) + (21.4) = -6.9$$

$$\sum_{i=1}^{6} x_i f(x_i) = (-2)(-30.5) + (-1.5)(-20.2) + (0)(-3.3) + (1)(8.9) + (2.2)(16.8) + (3.1)(21.4) = \textbf{203.5}$$

$$\sum_{i=1}^{6} x_i^2 f(x_i) = (-2)^2 (-30.5) + (-1.5)^2 (-20.2) + (0)^2 (-3.3) + (1)^2 (8.9) + (2.2)^2 (16.8) + (3.1)^2 (21.4) = \mathbf{128.416}$$

b) Resolução do sistema:

O sistema é:

$$\begin{bmatrix} 6 & 2.8 & 21.7 \\ 2.8 & 21.7 & 30.064 \\ 21.7 & 30.064 & 137.8402 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} -6.9 \\ 203.5 \\ 128.416 \end{bmatrix}$$

A solução deste sistema é:

$$\alpha_1 = -2.018$$

$$\alpha_2 = 11.33$$

$$\alpha_3 = -1.222$$

c) Cálculo do quadrado dos resíduos:

i	1	2	3	4	5	6
\mathbf{x}_{i}	-2,0000	-1,5000	0,0000	1,0000	2,2000	3,1000
f(x _i)	-30,5000	-20,2000	-3,3000	8,9000	16,8000	21,4000
$\varphi(x_i)$	-29,5697	-21,7650	-2,0177	8,0917	16,9962	21,3645
r(x _i)	-0,9303	1,5650	-1,2823	0,8083	-0,1962	0,0355
r²(x _i)	0,8655	2,4492	1,6444	0,6534	0,0385	0,0013

Resposta:

Equação:

 $\varphi(x) = -2,0177 + 11,3315 x + -1,2222 x^2$

Soma dos quadrados dos resíduos: 5,65227

Exercício 2: Considerando a função tabelada abaixo

i	1	2	3	4	5	6	7	8	9	10	11
X _i	-1	-0,75	-0,6	-0,5	-0,3	0	0,2	0,4	0,5	0,7	1
f(x _i)	2,05	1,153	0,45	0,4	0,5	0	0,2	0.6	0,512	1,2	2,05

- construir o diagrama de dispersão
- construir uma parábola passando pela origem, ou seja, $f(x) = \phi(x) = \alpha_3 x^2$ (neste caso temos apenas uma função $g(x) = x^2 e \alpha_1 = 0 e \alpha_2 = 0$). Ou seja, considerar sistema:

$$\begin{bmatrix} m & \sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m} x_{i}^{2} \\ \sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m} x_{i}^{2} & \sum_{i=1}^{m} x_{i}^{3} \\ \sum_{i=1}^{m} x_{i}^{2} & \sum_{i=1}^{m} x_{i}^{3} & \sum_{i=1}^{m} x_{i}^{4} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \alpha_{3} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} f(x_{i}) \\ \sum_{i=1}^{m} x_{i} f(x_{i}) \\ \sum_{i=1}^{m} x_{i}^{2} G_{3} = \sum_{i=1}^{m} f(x_{i}) \\ \sum_{i=1}^{m} x_{i}^{3} G_{3} = \sum_{i=1}^{m} x_{i} f(x_{i}) \\ \sum_{i=1}^{m} x_{i}^{2} f(x_{i}) \end{bmatrix}$$

$$\sum_{i=1}^{m} x_{i}^{3} G_{3} = \sum_{i=1}^{m} x_{i} f(x_{i})$$

$$\sum_{i=1}^{m} x_{i}^{2} G_{3} = \sum_{i=1}^{m} x_{i} f(x_{i})$$

Resposta:

Equação: $\varphi(x) = 2$

 $\varphi(x) = 2,0642 \qquad x^2$

Soma dos quadrados dos resíduos: 0,32069

Exercício 3: Ajustar os pontos da tabela abaixo à equação $\phi(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2$ Calcular a soma dos quadrados dos resíduos.

Ī	1	2	3	4	5	6	7
X _i	-0,75	-0,5	-0,25	0	0,25	0,5	0,75
f(x _i)	1,3	1,1	0,2	0	0,5	0,6	1,5

Resposta:

Equação:

 $\phi(x) = 0.1762 + -0.0143 x + 2.2667 x^2$

Soma dos quadrados dos resíduos: 0,25095