Budapest University of Technology and Economics Department of Electron Devices

Technology of IT Devices

Lecture 12

Light Emitting Diodes

Contents

- Light emitting diodes
- LED semiconductor materials
- LASER diode
- Electrical characteristics
- Packaging
- Driving

Light Emitting Diode

- Light Emitting Diode, LED
 - It is a semiconductor pn junction diode, which emits light when activated
 - Activated by the forward current
 - Electrically it is a diode
 - The I-V characteristic is the same (V_F differs)

Applications

- Solid-state lighting
 - Displays, LED lamps, LED flood light
 - Communication
 - IR communication (remote control)
 - Fiberglass
- LASER
 - Distance/speed measurement
 - Optical data storage (CD, DVD)
 - LASER printers

History of LEDs

- 1907 H.J. Round, UK: the electroluminescence phenomenon was discovered
- 1927 Oleg Loszev: reported creation of the first LED
- 1955 Rubin Braunstein, RCA: reported on infrared emission from gallium arsenide (GaAs) and other semiconductor alloys
- 1962 Nick Holonyak: The first visible-spectrum (red) LED
- 1972 Herbert Paul Maruska, RCA: the first blue LED
- 1994 Shuji Nakamure, Nichia Corporation: The first high-brightness blue LED was demonstrated

Development

- The luminous flux (a measure of the total quantity of visible light emitted by a source) increased by 20x every 10 years
- Luminous flux: measured in Lumen [lm]
 - Weighted according to a model of the human eye's sensitivity to various wavelengths

Haitz's law

 Haitz's law is an observation and forecast about the steady improvement, over many years, of light-emitting diodes (LEDs)

The direct band gap

- Generation: happens when an electron gets to the conductance band from the valence band.
- Recombination: the opposite of generation when an electron falls back to the valence band
 - In the case of direct band gaps: an electron can directly emit a photon during recombination

LED semiconductor materials

- LEDs are made of compound semiconductors.
- The components are found in the main groups of 3 and 5. For example:
 - Al, Ga, In
 - N, P, As
- The components determine
 - The width of the bandgap
 - The type (n or p)
- The wave-length (color) of the light depends on the width of the band gap (Wg)
 - The elements used in the compound,
 - The ratio of the elements

$$\lambda = \frac{c}{v} = \frac{hc}{W_g}$$

where h: Planck-constant, v: frequency, c: speed of light, λ : wavelength

LED semiconductor materials

- Two material systems. The available colors:
 - InGaAIP system: (infrared) red yellow/green
 - InGaN/GaN system: (ultraviolet) blue blue/green

InGaN/GaN **InGaAIP** Green Green P = PureGreen T = TrueGreen (InGaN) 525nm G = Green 570nm V = VerdeGreen (InGaN) 505nm Yellow Y = Yellow 587nm White / CoD **Orange** W = White (GaN/InGaN) O = Orange 605nm Cx = Color on Demand (GaN/InGaN) Orange Red A = Amber 617nm Blue Red B = Blue (InGaN) 470nm B = Blue (GaN) 466nm S = Super-Red 630nm H = Hyper-Red (GaAlAs) 645nm

The discreet LED spectrums

White LEDs

White LEDs

RGB LED

 Uses individual LEDs that emit each of the three primary colors which are then mixed to form white light

UV LED + yellow phosphor

 Use a phosphor material to convert monochromatic light from a blue or UV

Phosphor materials

A phosphor, most generally, is a substance that exhibits the phenomenon of luminescence.

A material can emit light induced by excitation (photon or electron)

- It absorbs shorter wavelength light and emits longer wavelength light.
- Efficiency is lower than 100%

Applications

- Fluorescent lamps
- Metal-halide lamps
- Neon lamps and signs
- Cathode ray tubes
- White LEDs

LASER diodes

- LASER
 - Light Amplification by Stimulated Emission of Radiation

- It is an electrically pumped semiconductor laser in which the active laser medium is formed by a p-n junction of a semiconductor diode similar to that found in a light-emitting diode.
- An incident photon induces the stimulated emission when an electron falls back to the valence band
 - The energy is transported to a photon
- Principles
 - High electron density required
 - High photon density
 - Using an optical resonator

LASER diode vs LED

LASER diode	LED
Induced emission	Spontaneous emission
Narrow spectrum (<10nm)	Wide spectrum (40-200nm)
Coherent	Non-coherent

Electrical properties

- Acts like a (normal) diode
 - But higher forward voltage drop: (2.5—4 V) depending on the color
 - Forward current:
 - Traditional, small power LEDs: ~10 mA,
 - Power LEDs: 300–800–1500 mA.

Luminous efficacy of LEDs

 $\Phi_e \approx \int_{380nm}^{780nm} S(\lambda) d\lambda$

An increase in temperature causes a decrease in luminous efficacy.

Luminous efficacy is a measure of how well a light source produces visible light.

Packaging

Low power LEDs

Medium power LED w/ lens

Radial LED

Chip 250 x 250 μm

ESD Protection

High Power LEDs (light sources)

- MCPCB metal core printed circuit board
 - The metal core of the thermal PCB can be aluminum (aluminum core PCB), copper (copper core PCB or a heavy copper PCB) or a mixture of special alloys. The most common is an aluminum core PCB.
 - It is a good thermal conductor

LED driving

- Definitions
 - WPE (Wall Plug Efficiency)
 - The ratio between the emitted optical power of the LED and the incoming power from the wall outlet
 - $WPE = \frac{P_{OPT}}{P_{EI}}$
- The I-V characteristic has an exponential I-V characteristic, so the current has to be regulated
 - Voltage generator + a series resistor
 - The power loss is high due to the dissipated power on the resistor
 - The input voltage variation causes current variation, thus the optical power intensity will change
 - Current generator
 - Using a DC/DC converter in current generator mode

LED driving - example

The task is to operate a green LED at an operating point of 20 mA. The supply voltage is 3.3 V and the current-voltage characteristic of the LED is given as a curve.

- The operating point can be found in the figure: $I_F = 20 \text{ mA}$ is reached at $V_F = 2 V$
- The resistance needed can be calculated as follows:

•
$$R = \frac{V_{CC} - V_F}{I_F} = \frac{3.3 - 2}{20} = 65\Omega$$

The efficiency of the LED is 35% @ 20mA. What is the efficiency of the whole system?

The electric power of the LED

$$P_{EL} = VI = 2V \cdot 20mA = 40mW.$$

The emitted optical power is:

$$P_{OPT} = \eta P_{EL} = 14mW$$

The power of the whole circuit:

$$P = V_{CC}I = 60mW$$

The WPE is: 14/60= 23%

- The current limiting resistor decreases the efficiency
 - In high-power LED applications LED driver circuits are used.
 - They have higher efficiency
 - And they don't generate heat

ST LED2000

- Input voltage range: 3-18V, output current is 3A max.
- Switching frequency is 850kHz (it is a DC/DC converter)
- PWM dimmable (to vary the brightness of the LEDs)
- Package size: 4mm×4mm
- 3 capacitors and a coil required

Communication

- Wireless IR communication:
 - Simple structure, harmless frequency,
 - Line of sight is required for the operation.

- Lasers are used instead of LEDs
- The receiver is more than just a simple diode to increase speed
- Bandwidth of several Tbps, length of several thousand km
- Fiber-Channel infrastructure
- Safe of electric noise and disturbances
- Opto coupling

Opto coupling

- Used to insert galvanic isolation into datapaths.
 - This means that charge carriers are blocked from flowing between two parts of a circuit but the signals get through due to the fact that they are transmitted optically. It helps to prevent circuits from large current peaks.
- Enables large transmission speeds (15 Mbps).
- Input: GaAs LED
- Output: Si photodiode and an output interface (e.g. CMOS logic).

Budapest University of Technology and Economics Department of Electron Devices

Visiting the LED test lab