ALGEBRA AND FUNCTIONS

- Simplifying rational expressions
 - Use factorisation and find common denominators
- Domain and range of functions
- Inverse function:

$$\circ \qquad f^{-1}(x) \ [\ ff^{-1}(x) = f^{-1}f(x) = x]$$

- Domain of $f = range of f^{-1}$
 - Range of $f = domain of f^{-1}$
- Composite functions e.g. fg(x)
- Modulus function

TRIGONOMETRY

Trig identities (expanded)

$$\sec x = \frac{1}{\cos x} \qquad \csc x = \frac{1}{\sin x}$$

$$\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$$

$$\sin^2 x + \cos^2 x = 1;$$
 $1 + \tan^2 x = \sec^2 x;$

$$1 + \cot^2 x = \csc^2 x$$

Trig identities: Double angle formulas

- $\sin 2x = 2 \sin x \cos x$
- $\cos 2x = \cos^2 x \sin^2 x$ \circ 2cos²x - 1
 - $1 2\sin^2 x$
- tan2x = 2tanx $1 - tan^2x$

Graphs of inverse trig functions

$$-\pi/2 \leq \arcsin x \leq \pi/2$$

$$0 \le \arccos x \le \pi$$

$$0 \le \arccos x \le \pi$$
 $-\pi/2 < \arctan x < \pi/2$

Expressing $a\cos\theta + b\sin\theta$ in the form $r\cos(\theta \pm \alpha)$ or $r\sin(\theta \pm \alpha)$ and applications (e.g. solving equations, maxima, minima)

Transformations (expanded)

Transformation	Solution
y = f(x) + a For $a > 0$	Translate y=f(x) through $\overline{\begin{pmatrix} 0 \\ a \end{pmatrix}}$
y = f(x + a) For $a > 0$	Translate $y = f(x)$ through $\begin{pmatrix} -a \\ 0 \end{pmatrix}$
y = af(x) For a > 0	Stretch $y = f(x)$ parallel to y-axis with scale factor a
y = f(ax) For a > 0	Stretch y = f(x) parallel to x-axis with scale factor $\frac{1}{a}$
y = f(x)	For $y \ge 0$, sketch $y = f(x)$
	For $y < 0$, reflect $y = f(x)$ in the x-axis
y = f(x)	For $x \ge 0$, sketch $y = f(x)$
	For $x < 0$, reflect $[y = f(x) \text{ for } x > 0]$ in the y-axis
y = -f(x)	Reflect $y = f(x)$ in the x-axis (line $y = 0$)
y = f(-x)	Reflect $y = f(x)$ in the y-axis (line $x = 0$)

DIFFERENTIATION

$$\frac{d(e^x)}{dx} = e^x$$

$$\frac{d(e^{kx})}{dx} = ke^{kx} \qquad \frac{d(\ln x)}{dx} = \frac{1}{x}$$

$$\frac{d(\ln x)}{dx} = \frac{1}{x}$$

$$\frac{\mathrm{d}(\ln kx)}{\mathrm{d}x} = \frac{1}{x}$$

$$\frac{\mathrm{d}(\sin kx)}{\mathrm{d}x} = k \cos kx$$

$$\frac{\mathrm{d}(\cos kx)}{\mathrm{d}x} = -k\sin kx$$

$$\frac{\mathrm{d}(\tan kx)}{\mathrm{d}x} = k \sec^2 kx$$

Differentiation rules

Chain rule
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)}$$

$$\frac{\mathrm{d}(uv)}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$$

Quotient rule
$$\frac{d(\frac{u}{d})}{dx}$$

Product rule
$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$
 Quotient rule $\frac{d(\frac{u}{v})}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

NUMERICAL METHODS

- For a continuous function, a change in sign of f(x) in the interval $(a, b) \Rightarrow a$ • root of f(x) = 0 in the interval (a, b)
- Accuracy of roots by choosing an interval (e.g. 1.47 to 2 d.pl. test f(1.465) and f(1.475) for change of sign)
- **Iterative methods:** rearranging equations in the form xn+1 = f(xn) and using repeated iterations