## 계산력 연습





중 3 과정

#### 5-6-2.원의 내접하는 사각형의 성질, 사각형이 원에 내접하기 위한 조건





◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2016-10-25

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

#### 계산시 참고사항

#### 1. 원에 내접하는 사각형의 성질

- 1) 원에 내접하는 사각형의 한 쌍의 대각의 크기의 합은  $180\,^\circ$ 이다.  $\Rightarrow$   $\angle$  A +  $\angle$  C =  $\angle$  B +  $\angle$  D =  $180\,^\circ$
- 2) 원에 내접하는 사각형의 한 외각의 크기는 그 내대각의 크기와 같다.  $\Rightarrow$   $\angle$  DCE =  $\angle$  A



#### 2. 사각형이 원에 내접하기 위한 조건

- 1) 한 쌍의 대각의 크기의 합이  $180^\circ$  인 사각형은 원에 내접한다. 즉,  $\angle A + \angle C = \angle B + \angle D = 180^\circ$  이면  $\Box ABCD$ 는 원에 내접한다.
- 2) 한 외각의 크기가 그와 이웃한 내각의 대각의 크기와 같은 사각형은 원에 내접한다.
- 즉,  $\angle BAD = \angle DCE$ 이면  $\Box ABCD$ 는 원에 내접한다.



원에 내접하는 사각형의 성질

 $\square$  다음 그림에서  $\square$ ABCD가 원에 내접할 때,  $\angle x$ 의 크기를 구하여라.

1.



2.



3.



4.



5.



6.









9.



10.



11.



12.



13.



14.



15.



16.



17.



18.





### ightharpoonup 다음 그림에서 $\square ABCD$ 가 원에 내접할 때, $\angle x$ , $\angle y$ 의 크기를 각각 구하여라.

20.



21.



22.



23.



24.



25.



26.



27.



28.







31.



32.



33.



34.



35.



36.



37.



38.



39.



40.





☑ 다음 그림에서 두 원 ○, ○'의 교점을 P, Q라 할 때,  $\angle x$ 의 크기를 구하여라.

42.



43.



44.



45.



 $\square$  다음 그림에서 두 원 O, O'의 교점을 P, Q라 할 때,  $\angle x$ ,  $\angle y$ 의 크기를 각각 구하여라.

46.



47.



48.



 $\square$  다음 그림에서  $\square$ ABCD가 원에 내접할 때,  $\angle x$ 의 크기를 구하여라.

49.







52.



53.



☑ 다음 물음에 답하여라.

54. 다음 그림과 같이 원 O에 내접하는 오각형 ABCDE에서 ∠ x의 크기를 구하여라.



55. 원 O에 내접하는 오각형 ABCDE에서  $\angle BAE = 115$ °,  $\angle$  DOE =  $80\,^{\circ}$ 일 때,  $\angle$  BCD의 크기를 구하여라.



56. 다음 그림과 같이 원 O에 내접하는 육각형 ABCDEF에서  $\angle A + \angle C + \angle E$ 의 크기를 구하여라.



57. 다음 그림과 같이 원 O에 내접하는 오각형 ABCDE에서  $\angle$  DOE = 74  $^{\circ}$  일 때,  $\angle$  A +  $\angle$  C 의 값을 구하여라.



58. 오각형 ABCDE가 원 O에 내접하고  $\angle ABC = 110^{\circ}$ ,  $\angle COD = 70^{\circ}$ 일 때,  $\angle AED$ 의 크기를 구하여라.



59. 다음 그림에서 오각형 ABCDE가 원 O에 내접하고  $\angle CDE = 110 \,^\circ$ ,  $\angle BAE = 78 \,^\circ$ ,  $\angle BOC$ 의 크기를 구하여 라.



사각형이 원에 내접하기 위한 조건

☐ 다음 □ABCD 중 원에 내접하는 것은 ○표, 내접하지 않는 것은 ×표를 하여라.

60.



)

)

61.



62.



63. ( )



64. ( )



65. ( )



66. ( )



67. ( )





73.

(

)

)

)



69.



74.



70.



75.



 $\square$  다음 그림에서  $\square$ ABCD가 원에 내접하도록 하는  $\angle x$ 의 크기를 구하여라.

71.



76.



72.







79.







# 정답 및 해설 🥞

- 1) 85°
- $\Rightarrow \angle x = 180^{\circ} 95^{\circ} = 85^{\circ}$
- 2) 75°
- $\Rightarrow$   $\angle x = 180^{\circ} 105^{\circ} = 75^{\circ}$
- 3) 100°
- 4) 115°
- $\Rightarrow$   $\angle x = 180^{\circ} 65^{\circ} = 115^{\circ}$
- 5) 90°
- 6) 135°
- 7) 85°
- 8) 115°
- $\Rightarrow \angle x = \angle D = 115^{\circ}$
- 9) 90°
- $\Rightarrow \angle x = \angle A = 90^{\circ}$
- 10) 82°
- $\Rightarrow$   $\angle x = 180^{\circ} 98^{\circ} = 82^{\circ}$
- 11) 105°
- $\Rightarrow \angle x = \angle A = 105^{\circ}$
- 12) 50°
- $\Rightarrow \angle BAD = \angle BAC + \angle DAC = 70^{\circ} + \angle x = 120^{\circ}$  $\therefore \angle x = 120^{\circ} 70^{\circ} = 50^{\circ}$
- 13) 45°
- Arr Arr BAD = Arr BAC + Arr DAC = Arr Arr Arr Arr = 100° Arr Arr Arr = 100° -55° = 45°
- 14) 50°
- $\Rightarrow \angle ADC = \angle ADB + \angle CDB = 40^{\circ} + \angle x = 90^{\circ}$  $\therefore \angle x = 90^{\circ} 40^{\circ} = 50^{\circ}$
- 15) 75°
- $\Rightarrow \angle DCB = \angle DCA + \angle ACB = \angle x + 35^{\circ} = 110^{\circ}$  $\therefore \angle x = 110^{\circ} 35^{\circ} = 75^{\circ}$
- 16) 80°
- $\triangle$  ABC = 180° (25° + 55°) = 100°

$$\therefore \angle x = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

- 17) 70°
- $\Rightarrow \angle x = \angle DCE \angle CAD = 130^{\circ} 60^{\circ} = 70^{\circ}$
- 18) 95°
- $\Rightarrow \angle x = 180^{\circ} (50^{\circ} + 35^{\circ}) = 95^{\circ}$
- 19) 80°
- $\Rightarrow \angle x = \angle D = 80^{\circ}$
- 20)  $\angle x = 85^{\circ}, \angle y = 75^{\circ}$
- $\Rightarrow \angle x + 95^{\circ} = 180^{\circ} \qquad \therefore \angle x = 85^{\circ}$  $105 + \angle y = 180^{\circ} \qquad \therefore \angle y = 75^{\circ}$
- 21)  $\angle x = 110^{\circ}, \angle y = 100^{\circ}$
- $\Rightarrow 70^{\circ} + \angle x = 180^{\circ} \qquad \therefore \angle x = 110^{\circ}$  $\angle y = \angle BAD = 100^{\circ}$
- 22)  $\angle x = 55^{\circ}, \angle y = 95^{\circ}$
- $ightharpoonup \angle y = \angle ABE = 95 \degree$   $\triangle ACD에서$   $\angle x = 180 \degree (30 \degree + \angle y) = 180 \degree (30 \degree + 95 \degree) = 55 \degree$
- 23)  $\angle x = 100^{\circ}, \angle y = 100^{\circ}$
- $\Rightarrow \angle y = 55^{\circ} + 45^{\circ} = 100^{\circ}, \angle x = \angle y = 100^{\circ}$
- 24)  $\angle x = 40^{\circ}, \angle y = 50^{\circ}$
- Arr Arr
- 25)  $\angle x = 100^{\circ}, \angle y = 45^{\circ}$
- $\Rightarrow \angle y = \angle BAC = 45^{\circ}$   $\angle x = \angle ADC = 55^{\circ} + 45^{\circ} = 100^{\circ}$
- 26)  $\angle x = 85^{\circ}, \angle y = 85^{\circ}$
- $\Box$  ABCD에서  $(40\,^\circ + \angle y) + 55\,^\circ = 180\,^\circ \qquad \therefore \angle y = 85\,^\circ$   $\Box$  BCDE에서  $\angle x = \angle y = 85\,^\circ$
- 27)  $\angle x = 62^{\circ}, \angle y = 118^{\circ}$
- $\Rightarrow$   $\angle$ BDC =  $90\,^{\circ}$ 이므로  $\triangle$ BCD에서  $\angle x = 180\,^{\circ} (28\,^{\circ} + 90\,^{\circ}) = 62\,^{\circ}$   $\angle x + \angle y = 62\,^{\circ} + \angle y = 180\,^{\circ}$ 이므로  $\angle y = 118\,^{\circ}$
- 28)  $\angle x = 110^{\circ}, \angle y = 70^{\circ}$
- $ightharpoonup \Delta BCD에서 <math>\angle y = 180\,^{\circ} (65\,^{\circ} + 45\,^{\circ}) = 70\,^{\circ}$   $\angle x + \angle y = \angle x + 70\,^{\circ} = 180\,^{\circ}$ 이므로  $\angle x = 110\,^{\circ}$
- 29)  $\angle x = 120^{\circ}, \angle y = 45^{\circ}$
- Arr  $Arr x+60\degree=180\degree$ 이므로  $Arr x=120\degree$   $Arr AOC=2 imes60\degree=120\degree$ 이므로



□AOCD에서

$$\angle y = 360^{\circ} - (120^{\circ} + 75^{\circ} + 120^{\circ}) = 45^{\circ}$$

- 30)  $\angle x = 95^{\circ}, \angle y = 85^{\circ}$
- $\angle x = 180^{\circ} (30^{\circ} + 55^{\circ}) = 95^{\circ}$  $\angle y = 180^{\circ} - 95^{\circ} = 85^{\circ}$
- 31)  $\angle x = 105^{\circ}, \angle y = 75^{\circ}$
- $\angle x = 180^{\circ} (35^{\circ} + 40^{\circ}) = 105^{\circ}$  $\angle y = 180^{\circ} - 105^{\circ} = 75^{\circ}$
- 32)  $\angle x = 65^{\circ}, \angle y = 115^{\circ}$
- $\angle x = 180^{\circ} (50^{\circ} + 65^{\circ}) = 65^{\circ}$  $\angle y = 180^{\circ} - 65^{\circ} = 115^{\circ}$
- 33)  $\angle x = 75^{\circ}, \angle y = 105^{\circ}$
- 34)  $\angle x = 85^{\circ}, \angle y = 95^{\circ}$
- $\triangle$  ACD에서  $\angle y = 180^{\circ} (40^{\circ} + 45^{\circ}) = 95^{\circ}$  $\angle x + \angle y = \angle x + 95^{\circ} = 180^{\circ}$ 이므로  $\angle x = 85^{\circ}$
- 35)  $\angle x = 156^{\circ}, \angle y = 78^{\circ}$
- $\Rightarrow$   $102^{\circ} + \angle y = 180^{\circ}$ 이므로  $\angle y = 78^{\circ}$   $\angle x = 2 \angle y = 2 \times 78^{\circ} = 156^{\circ}$
- 36)  $\angle x = 100^{\circ}, \angle y = 75^{\circ}$
- $\Rightarrow \angle x = 180^{\circ} 80^{\circ} = 100^{\circ}, \angle y = 180^{\circ} 105^{\circ} = 75^{\circ}$
- 37)  $\angle x = 115^{\circ}, \angle y = 65^{\circ}$
- $\Rightarrow \angle x = 180^{\circ} 65^{\circ} = 115^{\circ}, \angle y = 180^{\circ} 115^{\circ} = 65^{\circ}$
- 38)  $\angle x = 85^{\circ}, \angle y = 115^{\circ}$
- $\Rightarrow \angle x = 180^{\circ} 95^{\circ} = 85^{\circ}, \angle y = 180^{\circ} 65^{\circ} = 115^{\circ}$
- 39)  $\angle x = 105^{\circ}, \angle y = 70^{\circ}$
- $\Rightarrow \angle x = 180^{\circ} 75^{\circ} = 105^{\circ}, \angle y = 180^{\circ} 110^{\circ} = 70^{\circ}$
- 40)  $\angle x = 69^{\circ}$ ,  $\angle y = 111^{\circ}$
- ⇒  $\overline{AB}$ 가 원 이의 지름이므로  $\angle ADB = 90^{\circ}$   $\triangle ABD$ 에서  $\angle x = 180^{\circ} - (90^{\circ} + 21^{\circ}) = 69^{\circ}$   $\angle A + \angle C = 180^{\circ}$ 이므로  $69^{\circ} + \angle y = 180^{\circ}$   $\therefore \angle y = 111^{\circ}$
- 41)  $\angle x = 30^{\circ}$ ,  $\angle y = 50^{\circ}$
- $\Rightarrow$   $\angle x = \angle DBC = 30^{\circ}$  $\angle ABC = \angle ADE = 80^{\circ}$  이므로  $\angle y + 30^{\circ} = 80^{\circ}$   $\therefore \angle y = 50^{\circ}$
- 42) 85°
- ⇒ ∠PQD(내대각) = ∠CAP = 95°

- $\square$ PQDB가 원에 내접하고 있으므로  $\angle x = 180\degree 95\degree = 85\degree$  따라서  $\angle$ PBD =  $85\degree$  가 된다.
- 43) 100°
- 44) 140°
- 45) 160°
- 46)  $\angle x = 85^{\circ}$ ,  $\angle y = 170^{\circ}$
- $\Box$  PQCD는 원 O'에 내접하므로  $\angle$  PQB =  $\angle$  PDC = 95 ° 또  $\Box$  ABQP는 원 O에 내접하므로  $\angle x = 180 \degree - 95 \degree = 85 \degree$ ,  $\angle y = 2 \angle x = 170 \degree$
- 47)  $\angle x = 70^{\circ}$ ,  $\angle y = 87^{\circ}$
- 48)  $\angle x = 95^{\circ}, \ \angle y = 100^{\circ}$
- ightharpoonup ig
- 49) 51°
- $ightharpoonup \Box ABCD는 원에 내접하므로 <math>\angle BCQ = \angle DAB = \angle x$   $\triangle ABP$ 의 한 외각의 크기는  $\angle CBQ = \angle x + 28$   $^{\circ}$  따라서  $\triangle BCQ$ 에서  $\angle x + 28$   $^{\circ} + \angle x + 50$   $^{\circ} = 180$   $^{\circ}$  이므로  $2 \angle x = 102$   $\therefore \angle x = 51$   $^{\circ}$
- 50) 60°
- $ightharpoonup \Delta ext{PCD의 두 내각의 합이 한 외각의 크기와 같으므로}$   $\angle ext{BCQ} = \angle x + 25\,^\circ$  이때  $\angle ext{BCQ} = \angle ext{BAD} = \angle x + 25\,^\circ$  이제  $\triangle ext{ADQ에서 } 35\,^\circ + (\angle x + 25\,^\circ) + \angle x = 180\,^\circ$   $2 \angle x = 120\,^\circ$   $\therefore$   $\angle x = 60\,^\circ$
- 51) 35°
- Arr Arr
- 52) 59°
- ⇒  $\triangle$ PCD에서 한 외각인  $\angle$ PCQ =  $\angle x + 27$ °  $\triangle$ BCQ에서 한 외각인  $\angle$ ABC =  $\angle x + 27$ ° + 35° =  $\angle x + 62$ °  $\Box$ ABCD는 원에 내접하는 사각형이므로  $\angle$ ABC +  $\angle$ ADC = 180°  $2 \angle x + 62$ ° = 180°,  $2 \angle x = 118$ °  $\therefore$   $\angle x = 59$ °
- 53) 85°
- $\Rightarrow$   $\triangle PBD$  에서  $\angle D = 180^{\circ} 65^{\circ} 30^{\circ} = 85^{\circ}$

□ABCD가 원에 내접하므로

$$\angle BAC = 180^{\circ} - 85^{\circ} = 95^{\circ}$$

$$\therefore \ \angle x = 180^{\circ} - 95^{\circ} = 85^{\circ}$$

54) 80°

ightharpoonup ig

$$\therefore$$
  $\angle$  AEC = 180  $^{\circ}$  - 120  $^{\circ}$  = 60  $^{\circ}$ 

한 원에서 한 호에 대한 원주각의 크기는 그 호에 대한 중심각의 크기의  $\frac{1}{2}$ 이므로

$$\angle CED = \frac{1}{2} \angle COD = \frac{1}{2} \times 40^{\circ} = 20^{\circ}$$

$$\angle x = \angle AEC + \angle CED = 60^{\circ} + 20^{\circ} = 80^{\circ}$$

55) 105°

 $\Rightarrow$  원주각은 중심각의  $\frac{1}{2}$ 이므로

$$\angle ECD = \frac{1}{2} \angle EOD = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$$

□ABCE가 내접사각형이 되어서

$$\angle$$
 BCE = 180  $^{\circ}$  -115  $^{\circ}$  = 65  $^{\circ}$ 

$$\therefore$$
  $\angle BCD = 65^{\circ} + 40^{\circ} = 105^{\circ}$ 

56) 360°



AD를 그으면 □ABCD와 □ADEF가 원 ○에 내접하므로

$$\angle$$
 C +  $\angle$  B AD = 180°,  $\angle$  E +  $\angle$  DAF = 180°  
 $\angle$  A +  $\angle$  C +  $\angle$  E =  $\angle$  C +  $\angle$  B AD +  $\angle$  E +  $\angle$  DAF  
= 180° + 180° = 360°

57) 217°

 $\Rightarrow$  원주각은 중심각의  $\frac{1}{2}$ 이 되어서

$$\angle ECD = \frac{1}{2} \angle EOD = \frac{1}{2} \times 74^{\circ} = 37^{\circ}$$

□ABCE가 원의 내접사각형이 되어서

$$\angle BCE + \angle A = 180^{\circ}$$

 $\therefore \angle A + \angle C = \angle A + \angle BCE + \angle ECD$  $= 180^{\circ} + 37^{\circ} = 217^{\circ}$ 

58) 105°

⇒ 사각형 BCEA는 원 ○에 내접하므로

$$\angle$$
 AEC = 180  $^{\circ}$  -110  $^{\circ}$  = 70  $^{\circ}$ 

$$\angle CED = \frac{1}{2} \angle COD = 35^{\circ}$$

 $\therefore$   $\angle$  AED = 70  $^{\circ}$  +35  $^{\circ}$  = 105  $^{\circ}$ 

59) 16°

 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □

60) ×

61) 🔾

 △A + ∠C = 120° +60° = 180° 이므로 □ABCD는 원에 내접한다.

62) ×

△ACD에서 ∠D=180°-(50°+20°)=110°이므로
 ∠B+∠D=80°+110°=190°
 따라서 □ABCD는 원에 내접하지 않는다.

63) 🔾

□ ∠A+∠C=90°+90°=180°이므로□ ABCD는 원의 내접한다.

64) (

⇒ ∠ADC = ∠ABE이므로 □ABCD는 원의 내접한다.

65) ×

□ ∠B+∠D=105°+85°=190°이므로□ ABCD는 원의 내접하지 않는다.

66) 🔾

 △ABC = 180° - (55° + 45°) = 80°일 때
 사각형 ABCD의 두 대각의 합은 ∠B+∠D=180°이므로 원에 내접한다.

67) ×

68) C

⇒ ∠BAD = ∠DCE이므로 □ABCD는 원에 내접한다.

69) C

 △BAD = 180° -60° = 120° 이므로
 △BAD = ∠DCE
 따라서 □ABCD는 원에 내접한다.

70) ×

 △ADC = 180°-70°=110°이므로
 △ABE ≠ △ADC
 따라서 □ABCD는 원에 내접하지 않는다.

- 71) 78°
- 72) 70°
- 73) 55°
- 74) 85°
- 75) 75°
- ⇒ ∠BAD+∠DCB=180°이므로 사각형이 원에 내접한다.  $\therefore \angle x = \angle CDE = 75^{\circ}$
- 76) 130°
- ⇒ ∠BAD = ∠DCE이므로 사각형이 원에 내접한다.
  - $\therefore \angle x = 180 \degree 50 \degree = 130 \degree$
- 77) 60°
- $\therefore \angle x = \angle DAE = 60^{\circ}$
- 78) 95°
- 79) 70°
- ⇒ ∠ABE = ∠CDA이므로 사각형이 원에 내접한다.  $\therefore \angle x = 180^{\circ} - 110^{\circ} = 70^{\circ}$
- 80) 115°