Booklet of Figures for STAD29/STA 1007 Midterm Exam

List of Figures in this document by page:

List of Figures

1	Packages	2
2	ICU data (some)	3
3	ICU model 1	4
4	ICU model 2	5
5	ICU data summary	6
6	ICU predictions (probability of dying)	6
7	Income data	7
8	Income data: fitted model	8
9	Income data: predictions	8
10	Disease data (some)	9
11	Disease data: tidied dates	0
12	Ready	0
13	Survival analysis and output	1
14	Pain relief times data	2
15	Pain relief analyses of variance	3
16	Pain relief further analysis 1	4
17	Pain relief further analysis 2	5
18	Programming data (in data frame prog)	6
19	Programming study ANCOVA 1	7
20	Programming study ANCOVA 2	7
21	Programming study: further analysis	8
22	Disease data survival curve plot	9
23	Pain relief interaction plot	0
24	Programming study graph	1

```
library(MASS)
library(lubridate)
library(tidyverse)
library(broom)
library(survival)
library(survminer)
```

Figure 1: Packages

```
## # A tibble: 200 x 7
##
          id sta
                      age can
                                  cpr
                                         inf
                                               race
##
       <int> <fct> <int> <fct> <fct> <fct> <fct> <fct>
##
    1
           4 Died
                       87 No
                                         Yes
                                               White
                                  No
    2
##
           8 Lived
                       27 No
                                  No
                                        Yes
                                               White
    3
##
          12 Lived
                       59 No
                                  No
                                         No
                                               White
          14 Lived
##
    4
                       77 No
                                  No
                                        No
                                               White
    5
##
          27 Died
                       76 No
                                  No
                                         Yes
                                               White
##
    6
          28 Lived
                       54 No
                                  No
                                        Yes
                                               White
    7
##
          32 Lived
                       87 No
                                  No
                                         Yes
                                               White
    8
##
          38 Lived
                       69 No
                                         Yes
                                               White
                                  No
    9
##
          40 Lived
                       63 No
                                  No
                                         No
                                               White
##
  10
          41 Lived
                       30 No
                                               White
                                  No
                                         No
##
  11
          42 Lived
                       35 No
                                  No
                                        No
                                               Black
## 12
          47 Died
                       78 No
                                  No
                                         Yes
                                               White
##
   13
          50 Lived
                       70 Yes
                                  No
                                        No
                                               White
## 14
                                               White
          51 Lived
                       55 No
                                  No
                                         Yes
## 15
          52 Died
                       63 No
                                               White
                                  No
                                        Yes
## 16
          53 Lived
                       48 Yes
                                  No
                                         No
                                               Black
## 17
          58 Lived
                       66 No
                                  No
                                        No
                                               White
## 18
          61 Lived
                       61 No
                                               White
                                  No
                                         No
## 19
                                        No
          73 Lived
                       66 No
                                               White
                                  No
## 20
          75 Lived
                       52 No
                                  No
                                         Yes
                                               White
## 21
          82 Lived
                       55 No
                                  No
                                        Yes
                                               White
##
  22
          84 Lived
                       59 No
                                  No
                                         Yes
                                               White
##
  23
                       63 No
          92 Lived
                                  No
                                         No
                                               White
   24
##
          96 Lived
                       72 No
                                  No
                                         No
                                               White
##
   25
          98 Lived
                       60 No
                                  Yes
                                         Yes
                                               White
   26
                                  No
##
         100 Lived
                       78 No
                                         No
                                               White
##
  27
         102 Lived
                       16 No
                                  No
                                         No
                                               White
## 28
         111 Lived
                       62 No
                                  No
                                         No
                                               White
## 29
         112 Lived
                       61 No
                                  No
                                         Yes
                                               White
## 30
         127 Died
                       19 No
                                  No
                                         No
                                               White
## # ... with 170 more rows
```

Figure 2: ICU data (some)

```
icu.1=glm(sta~age+can+cpr+inf+race, family=binomial, data=icu)
summary(icu.1)
##
## Call:
## glm(formula = sta ~ age + can + cpr + inf + race, family = binomial,
     data = icu)
## Deviance Residuals:
## Min 1Q Median 3Q
## -1.3703 -0.6823 -0.5421 -0.3082
                                   2.5124
##
## Coefficients:
##
             Estimate Std. Error z value Pr(>|z|)
## age 0.02712 0.01159 2.340 0.01926
## canYes 0.24451 0.61681 0.396 0.69180
            1.64650 0.62341 2.641 0.00826 **
## cprYes
## infYes
             0.68067 0.38042 1.789 0.07357 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
     Null deviance: 200.16 on 199 degrees of freedom
##
## Residual deviance: 179.30 on 193 degrees of freedom
## AIC: 193.3
##
## Number of Fisher Scoring iterations: 5
drop1(icu.1, test="Chisq")
## Single term deletions
## Model:
## sta \sim age + can + cpr + inf + race
##
        Df Deviance AIC
                           LRT Pr(>Chi)
## <none> 179.30 193.30
## age
             185.63 197.63 6.3305 0.011868 *
         1
         1 179.45 191.45 0.1521 0.696555
## can
         1 186.14 198.14 6.8360 0.008934 **
## cpr
## inf
         1 182.53 194.53 3.2263 0.072463 .
## race
         2 180.41 190.41 1.1069 0.574959
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Figure 3: ICU model 1

```
icu.2 <- step(icu.1)
```

```
summary(icu.2)
##
## Call:
## glm(formula = sta ~ age + cpr + inf, family = binomial, data = icu)
##
## Deviance Residuals:
##
      Min 1Q Median
                              3Q
                                      Max
## -1.3633 -0.6810 -0.5524 -0.3091
                                   2.4868
##
## Coefficients:
##
           Estimate Std. Error z value Pr(>|z|)
2.458 0.01397 *
## age
           0.02792
                     0.01136
## cprYes
             1.63066
                       0.61553
                               2.649 0.00807 **
## infYes
            0.69708
                       0.37750
                               1.847 0.06481 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 200.16 on 199 degrees of freedom
## Residual deviance: 180.51 on 196 degrees of freedom
## AIC: 188.51
##
## Number of Fisher Scoring iterations: 5
```

Figure 4: ICU model 2

```
##
     id
                      sta
                                                                    inf
                                    age
                                                can
   Min. : 4.0
##
                  Lived:160
                               Min. :16.00
                                               No :180
                                                         No :187
                                                                   No :116
                   Died : 40
                               1st Qu.:46.75
                                               Yes: 20
                                                                   Yes: 84
##
   1st Qu.:210.2
                                                         Yes: 13
##
   Median :412.5
                               Median :63.00
##
                               Mean :57.55
   Mean :444.8
##
   3rd Qu.:671.8
                               3rd Qu.:72.00
##
   Max. :929.0
                               Max. :92.00
##
      race
##
   White:175
   Black: 15
##
   Other: 10
##
##
##
##
```

Figure 5: ICU data summary

```
## age cpr inf p
## 1 46.75 No No 0.09357968
## 2 46.75 No Yes 0.17170188
## 3 46.75 Yes No 0.34524029
## 4 46.75 Yes Yes 0.51425833
## 5 72.00 No No 0.17283618
## 6 72.00 No Yes 0.29554942
## 7 72.00 Yes No 0.51624519
## 8 72.00 Yes Yes 0.68180517
```

Figure 6: ICU predictions (probability of dying)

```
incomes
## # A tibble: 14 x 3
##
     year income counts
   <fct> <ord>
##
                  <dbl>
## 1 1960 0-3
                     65
  2 1960 3-5
                     82
  3 1960 5-7
##
                    113
   4 1960
                    235
##
           7-10
## 5 1960 10-12
                    156
## 6 1960
          12-15
                    127
## 7 1960
                    222
           15+
## 8 1970 0-3
                     43
## 9 1970 3-5
                     60
## 10 1970
          5-7
                     77
## 11 1970 7-10
                    132
## 12 1970 10-12
                    105
## 13 1970 12-15
                    163
## 14 1970 15+
                    421
```

Figure 7: Income data

```
tidy(income.1)
## # A tibble: 7 x 5
   term
         estimate std.error statistic coefficient_type
##
    <chr>
                 <dbl>
                          <dbl>
                                    <dbl> <chr>
                 0.795
                           0.0811
                                     9.81 coefficient
## 1 year1970
## 2 0-3|3-5
                -2.54
                          0.104
                                   -24.5
                                           zeta
## 3 3-5|5-7
                -1.62
                          0.0749
                                  -21.6
                                           zeta
## 4 5-7|7-10
                -0.928
                          0.0635
                                   -14.6
                                           zeta
## 5 7-10|10-12
                -0.0295
                          0.0586
                                    -0.503 zeta
## 6 10-12|12-15
                0.523
                           0.0602
                                    8.69 zeta
## 7 12-15 | 15+
                 1.17
                           0.0650
                                  17.9
                                           zeta
drop1(income.1, test="Chisq")
## Single term deletions
##
## Model:
## income ~ year
   Df AIC
                     LRT Pr(>Chi)
## <none>
           7081.2
         1 7176.9 97.762 < 2.2e-16 ***
## year
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 8: Income data: fitted model

```
## # A tibble: 2 x 8
## year `0-3` `3-5` `5-7` `7-10` `10-12` `12-15` `15+`
## <chr> <dbl> = 0.135 0.238
## 2 1970 0.0344 0.0479 0.0691 0.153 0.128 0.159 0.408
```

Figure 9: Income data: predictions

## ##	# A tibb	le: 100 x 8	onmolled m	annallad d	anmallad **	lost follow m	lost follow d	lost follow w
##		status <chr></chr>	<pre><chr></chr></pre>	<dbl></dbl>		<pre>last_follow.m <chr></chr></pre>	<dbl></dbl>	<pre>dbl></pre>
##	1 C	recurrence	Apr	30	2018		2	
##	2 B	recurrence	Nov	18	2018		20	2019
##	3 D	recurrence	Oct	27	2018	-	3	
##	4 C	no recurrence		14	2019		29	2020
##	5 B	recurrence	May	9	2018		5	2019
##	6 B	recurrence	Aug	3	2019		24	
##	7 A	recurrence	Mar	22	2019		19	2019
##	8 C	recurrence	Jul	17	2019	0	27	2019
##	9 D	recurrence	Feb	1	2019	-	3	2019
##	10 C	recurrence	Aug	23	2018		22	
##	11 B	recurrence	May	21	2018	Mar	17	2019
##	12 B	recurrence	Jan	12	2019	Apr	15	2019
##	13 D	recurrence	Sep	25	2019	Jan	8	2020
##	14 D	recurrence	Oct	29	2018	Aug	2	2019
##	15 D	recurrence	Sep	13	2018	Feb	12	2019
##	16 B	recurrence	Jun	1	2019	Aug	10	2019
##	17 A	recurrence	Jul	24	2018	May	5	2019
##	18 B	recurrence	Jan	25	2019	Jun	28	2019
##	19 D	recurrence	Aug	2	2018	May	29	2019
##	20 A	recurrence	Sep	6	2018	Feb	17	2019
##	21 D	recurrence	Nov	10	2018	Aug	28	2019
##	22 B	recurrence	Dec	10	2018	Sep	20	2019
##	23 C	recurrence	Feb	5	2019	Feb	9	2019
##	24 B	recurrence	Sep	2	2019	Jan	27	2020
##	25 B	recurrence	Mar	11	2019	Jan	5	2020
##	26 C	recurrence	Apr	26	2019	Feb	20	2020
##	27 B	recurrence	Aug	27	2019	Feb	2	2020
##	28 D	no recurrence	May	28	2019	Feb	29	2020
##	29 B	recurrence	Sep	4	2019	Feb	3	2020
##	30 C	recurrence	Mar	31	2019	Jan	21	2020
##	31 D	recurrence	Mar	26	2019	Sep	5	2019
##	32 C	recurrence	Mar	27	2019	Jan	12	2020
##	33 D	recurrence	Apr	18	2019	Feb	12	2020
##	34 A	recurrence	Nov	22	2018	Mar	11	2019
##	35 B	recurrence	Dec	26	2018	Oct	14	2019
	36 B	recurrence	Sep	17	2018		3	
	37 B	no recurrence	Sep	23	2019		29	2020
##	38 D	recurrence	Aug	13	2018	Jan	14	2019
	39 A	no recurrence	May	5	2019		29	2020
	40 C	recurrence	Nov	20	2018	Sep	9	2019
##	# wi	th 60 more row	S					

Figure 10: Disease data (some)

```
disease1
## # A tibble: 100 x 4
##
     trt
           status
                      enrolled
                                  last_follow
     <chr> <chr>
                                  <date>
##
                       <date>
  1 C recurrence 2018-04-30 2019-02-02
##
##
   2 B
         recurrence 2018-11-18 2019-04-20
          recurrence 2018-10-27 2019-02-03
##
   3 D
## 4 C
         no recurrence 2019-05-14 2020-02-29
##
  5 B
         recurrence 2018-05-09 2019-03-05
## 6 B
          recurrence 2019-08-03 2020-01-24
## 7 A
          recurrence 2019-03-22 2019-08-19
## 8 C
          recurrence 2019-07-17 2019-09-27
                       2019-02-01 2019-05-03
## 9 D
          recurrence
## 10 C
                        2018-08-23 2019-01-22
          recurrence
## # ... with 90 more rows
```

Figure 11: Disease data: tidied dates

```
disease
## # A tibble: 100 x 3
##
     trt
           status
                        days
     <chr> <chr>
##
                         <dbl>
##
   1 C
           recurrence
                         278
##
   2 B
                          153
           recurrence
##
  3 D
                          99
          recurrence
##
  4 C
           no recurrence 291
##
   5 B
                          300
           recurrence
## 6 B
                          174
         recurrence
## 7 A
                          150
           recurrence
## 8 C
                           72
           recurrence
## 9 D
                           91
           recurrence
## 10 C
                          152
           recurrence
## # ... with 90 more rows
```

Figure 12: Disease data ready for survival analysis

```
disease.1 <- coxph(y~trt, data=disease)</pre>
summary(disease.1)
## Call:
## coxph(formula = y ~ trt, data = disease)
##
##
   n= 100, number of events= 93
##
##
          coef exp(coef) se(coef)
                                      z Pr(>|z|)
## trtB 0.7318 2.0789
                          0.2958 2.474
                                         0.0133 *
## trtC 0.5084
               1.6626
                          0.3179 1.599
                                         0.1098
## trtD -0.1544
                 0.8570 0.3071 -0.503
                                         0.6152
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
       exp(coef) exp(-coef) lower .95 upper .95
##
## trtB
         2.079
                   0.4810
                             1.1643
                                        3.712
           1.663
                              0.8917
## trtC
                    0.6015
                                        3.100
## trtD
           0.857
                    1.1669
                              0.4694
                                        1.564
##
## Concordance= 0.63 (se = 0.031)
## Likelihood ratio test= 12.06 on 3 df, p=0.007
              = 12.16 on 3 df,
## Wald test
                                        p=0.007
## Score (logrank) test = 12.68 on 3 df,
                                        p=0.005
drop1(disease.1, test="Chisq")
## Single term deletions
##
## Model:
## y ~ trt
     Df
              AIC
                     LRT Pr(>Chi)
           675.61
## <none>
## trt
          3 681.67 12.059 0.007183 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 13: Survival analysis and output

```
joint %>% print(n=30)
## # A tibble: 30 x 3
##
      treatment sex
                         time
##
      <chr>>
                 <chr>
                        <dbl>
##
                 male
                            12
    1 A
##
    2 A
                 female
                            21
##
   3 A
                 male
                            15
##
    4 A
                 female
                            19
##
   5 A
                 male
                            16
##
   6 A
                 female
                            18
    7 A
##
                 male
                            17
##
    8 A
                 female
                            24
##
   9 A
                 male
                            14
## 10 A
                            25
                 female
## 11 B
                 {\tt male}
                            14
## 12 B
                 female
                            21
## 13 B
                 male
                            17
## 14 B
                            20
                 female
## 15 B
                            19
                 male
## 16 B
                 female
                            23
## 17 B
                 male
                            20
## 18 B
                 female
                            27
## 19 B
                 male
                            17
## 20 B
                 female
                            25
## 21 C
                 male
                            25
## 22 C
                 female
                            37
## 23 C
                 male
                            27
## 24 C
                 female
                            34
## 25 C
                 male
                            29
## 26 C
                 female
                            36
## 27 C
                 male
                            24
## 28 C
                            26
                 female
## 29 C
                 male
                            22
## 30 C
                            29
                 female
```

Figure 14: Pain relief times data

```
joint.1 <- aov(time~treatment*sex, data=joint)</pre>
summary(joint.1)
               Df Sum Sq Mean Sq F value Pr(>F)
## treatment
               2 651.5 325.7 34.84 8.0e-08 ***
## sex
               1 313.6
                         313.6 33.54 5.7e-06 ***
## treatment:sex 2 1.9
                           0.9
                                 0.10 0.905
## Residuals 24 224.4
                            9.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
joint.2 <- update(joint.1, .~.-treatment:sex)</pre>
summary(joint.2)
             Df Sum Sq Mean Sq F value
                                      Pr(>F)
## treatment
            2 651.5 325.7 37.43 2.22e-08 ***
             1 313.6 313.6 36.04 2.44e-06 ***
## sex
            26 226.3
## Residuals
                         8.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 15: Pain relief analyses of variance

```
joint %>% filter(sex=="female") -> females
females.1 <- aov(time~treatment, data=females)</pre>
summary(females.1)
##
               Df Sum Sq Mean Sq F value
                                           Pr(>F)
                                  13.12 0.000955 ***
               2 348.1 174.07
## treatment
## Residuals
               12 159.2
                           13.27
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(females.1)
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = time ~ treatment, data = females)
##
## $treatment
      diff
                  lwr
                            upr
                                    p adj
## B-A 1.8 -4.345745 7.945745 0.7210392
## C-A 11.0 4.854255 17.145745 0.0012146
## C-B 9.2 3.054255 15.345745 0.0046858
joint %>% filter(sex=="male") -> males
males.1 <- aov(time~treatment, data=males)</pre>
summary(males.1)
##
               Df Sum Sq Mean Sq F value
                                           Pr(>F)
## treatment
               2 305.2 152.60
                                   28.09 2.97e-05 ***
## Residuals
               12
                  65.2
                            5.43
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(males.1)
     Tukey multiple comparisons of means
##
##
       95% family-wise confidence level
##
## Fit: aov(formula = time ~ treatment, data = males)
##
## $treatment
##
       diff
                  lwr
                            upr
                                    p adj
## B-A 2.6 -1.333026 6.533026 0.2229758
## C-A 10.6 6.666974 14.533026 0.0000304
## C-B 8.0 4.066974 11.933026 0.0004165
```

Figure 16: Pain relief further analysis 1

```
TukeyHSD(joint.2)
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = time ~ treatment + sex, data = joint)
##
## $treatment
       diff
                 lwr
                           upr
                                  p adj
## B-A 2.2 -1.078283 5.478283 0.2365089
## C-A 10.8 7.521717 14.078283 0.0000000
## C-B 8.6 5.321717 11.878283 0.0000019
##
## $sex
##
                   diff
                              lwr
                                             p adj
                                        upr
## male-female -6.466667 -8.680866 -4.252467 2.4e-06
```

Figure 17: Pain relief further analysis $2\,$

##	# /	A tibble	: 36 x 4	<u> </u>	
##				familiar	program
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	a1	a	14	29
##	2	a2	a	10	24
##	3	a3	a	7	14
##	4	a4	a	18	27
##		a5	a	14	27
##		a6	a	16	28
##		a7	a	13	27
##		a8	a	15	32
##		a9	a	5	13
##		a10	a	18	35
##		a11	a	16	32
##		a12	a	10	17
##		b1	b	6	15
##		b2	b	16	28
##		b3	b	9	13
##		b4	b	19	36
##		b5	b	13	29
##		b6	b	14	27
##		b7	b	15	31
##		b8	b	18	33
##	21		b	17	32
		b10	b	8	15
		b10	b	15	30
		b12	b	16	26
	25		С	15	32
##	26		С	9	27
##		c3	С	7	15
##		c4	С	12	23
##		c5	С	12	26
##	30		С	9	17
##	31		С	12	25
##		c8		3	14
##	33		C C	13	29
##		c10		10	29
##		c10	С	10	30
			С		
##	30	c12	С	8	25

Figure 18: Programming data (in data frame prog)

```
prog.1 <- lm(program~familiar*method, data=prog)</pre>
anova(prog.1)
## Analysis of Variance Table
##
## Response: program
               Df Sum Sq Mean Sq F value
## familiar
                1 1237.72 1237.72 120.5920 4.949e-12 ***
## method
                2 74.50 37.25
                                    3.6292
                                            0.03877 *
## familiar:method 2
                    6.18 3.09
                                  0.3010
                                           0.74229
## Residuals 30 307.91 10.26
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 19: Programming study ANCOVA 1

Figure 20: Programming study ANCOVA 2

```
prog %>% group_by(method) %>%
 summarize(n=n(), mean_program=mean(program), sd_program=sd(program),
          mean_familiar=mean(familiar), sd_familiar=sd(familiar))
## # A tibble: 3 x 6
   method n mean_program sd_program mean_familiar sd_familiar
                                       <dbl>
##
   <chr> <int> <dbl>
                                                      <dbl>
                               <dbl>
## 1 a
       12
                                             13
                      25.4
                                 7.15
                                                         4.18
## 2 b
            12
                      26.2
                                 7.69
                                             13.8
                                                        4.11
## 3 c
            12
                      23.8
                                 5.83
                                             10.1
                                                         3.18
prog.3 <- lm(program~method, data=prog)</pre>
anova(prog.3)
## Analysis of Variance Table
##
## Response: program
##
           Df Sum Sq Mean Sq F value Pr(>F)
           2 38.89 19.444 0.4042 0.6708
## method
## Residuals 33 1587.42 48.104
```

Figure 21: Programming study: further analysis

```
trts <- c("D", "C", "B", "A")
new <- tibble(trt=trts)
new

## # A tibble: 4 x 1
## trt
## <chr>
## 1 D
## 2 C
## 3 B
## 4 A

s <- do.call(survfit, list(formula=disease.1, newdata=new, data=disease))
ggsurvplot(s, conf.int=F)</pre>
```


Figure 22: Disease data survival curve plot

Figure 23: Pain relief interaction plot

Figure 24: Programming study graph