The wonder of the Rado graph

Yibei Li

Imperial College, London

March 21, 2018

Outline

- Rado's construction
- Probabilistic construction
- Number theoretic construction
- Homogeneity and universality
- Automorphism group of the Rado Graph
- Topological dynamics
- Ramsey theory

A graph G consists of a vertex set V together with a set of edges $E \subseteq V \times V$. We will only consider simple graphs, i.e. undirected graphs containing no loops or multiple edges.

A graph G consists of a vertex set V together with a set of edges $E \subseteq V \times V$. We will only consider simple graphs, i.e. undirected graphs containing no loops or multiple edges.

A graph G consists of a vertex set V together with a set of edges $E \subseteq V \times V$. We will only consider simple graphs, i.e. undirected graphs containing no loops or multiple edges.

A graph G consists of a vertex set V together with a set of edges $E \subseteq V \times V$. We will only consider simple graphs, i.e. undirected graphs containing no loops or multiple edges.

In 1964, Richard Rado constructed a countable universal graph R, i.e. every finite or countable graph occurs as an induced subgraph.

```
0 1 2 3 4 5 6 7 ....
```

In 1964, Richard Rado constructed a countable universal graph R, i.e. every finite or countable graph occurs as an induced subgraph.

```
0 1 2 3 4 5 6 7 ....
```

In 1964, Richard Rado constructed a countable universal graph R, i.e. every finite or countable graph occurs as an induced subgraph.

In 1964, Richard Rado constructed a countable universal graph R, i.e. every finite or countable graph occurs as an induced subgraph.

In 1964, Richard Rado constructed a countable universal graph R, i.e. every finite or countable graph occurs as an induced subgraph.

The Rado Graph: Probabilistic Construction

Erdős and Rényi, around the same time, showed the following:

Theorem

There is a countable graph R with the following property: if a graph G on a fixed countable vertex set is chosen by selecting edges independently at random with probability $\frac{1}{2}$, then the probability that G is isomorphic to R is 1.

Lemma

- With probability 1, a countable random graph satisfy the following property:
 - (\star) given any finite subset U, V of the vertex set, there is a vertex x that is joined to every vertex in U and to no vertex in V.
- Any two countable graphs satisfy (*) are isomorphic.
- The Rado graph satisfy the above property .

Definition

A structure M is \aleph_0 -categorical if any countable structure satisfying the same first-order sentences as M is isomorphic to M.

Theorem

The Rado graph is ℵ₀-categorical

Lemma

- With probability 1, a countable random graph satisfy the following property:
 - (\star) given any finite subset U, V of the vertex set, there is a vertex x that is joined to every vertex in U and to no vertex in V.
- Any two countable graphs satisfy (*) are isomorphic.
- The Rado graph satisfy the above property .

Definition

A structure M is \aleph_0 -categorical if any countable structure satisfying the same first-order sentences as M is isomorphic to M.

Theorem

The Rado graph is ℵ₀-categorical

Lemma

- With probability 1, a countable random graph satisfy the following property:
 - (\star) given any finite subset U, V of the vertex set, there is a vertex x that is joined to every vertex in U and to no vertex in V.
- Any two countable graphs satisfy (*) are isomorphic.
- The Rado graph satisfy the above property .

Definition

A structure M is \aleph_0 -categorical if any countable structure satisfying the same first-order sentences as M is isomorphic to M.

Theorem

The Rado graph is ℵ₀-categorical

Definition

Let p be an odd prime not dividing a, then a is a quadratic residue mod p if the congruence equation $x^2 \equiv a \pmod{p}$ has a solution.

Law of Quadratic Reciprocity

For primes p, q, if $p \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$, then p is a quadratic residue mod q if and only if q is a quadratic residue mod p.

So we can construct a countable graph whose vertices are all the primes congruent to 1 mod 4 such that two vertices p, q are joined if p is a quadratic residue mod q.

Definition

Let p be an odd prime not dividing a, then a is a quadratic residue mod p if the congruence equation $x^2 \equiv a \pmod{p}$ has a solution.

Law of Quadratic Reciprocity

For primes p, q, if $p \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$, then p is a quadratic residue mod q if and only if q is a quadratic residue mod p.

So we can construct a countable graph whose vertices are all the primes congruent to 1 mod 4 such that two vertices p, q are joined if p is a quadratic residue mod q.

Definition

Let p be an odd prime not dividing a, then a is a quadratic residue mod p if the congruence equation $x^2 \equiv a \pmod{p}$ has a solution.

Law of Quadratic Reciprocity

For primes p, q, if $p \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$, then p is a quadratic residue mod q if and only if q is a quadratic residue mod p.

So we can construct a countable graph whose vertices are all the primes congruent to 1 mod 4 such that two vertices p, q are joined if p is a quadratic residue mod q.

This graph satisfies (*), hence is isomorphic to the Rado graph

Proof.

Let $U = \{u_i\}$ and $V = \{v_j\}$ be finite sets of primes congruent to 1 mod 4. For each $u_i \in U$, let a_i be a quadratic residue mod u_i and for each v_j , let b_j be a quadratic non-residue mod v_j .

By the Chinese Reminder Theorem, the following system of simultaneous congruence have a solution mod $4 \prod_{u_i \in U} u_i \prod_{v_j \in V} v_j$:

```
x \equiv a_i \pmod{u_i} for all u_i \in U

x \equiv b_j \pmod{v_j} for all v_j \in V

x \equiv 1 \pmod{4}
```

By Dirichlet's Theorem, this congruence class contains a prime.

Symmetries

For a finite graph, the more symmetric a graph is, the smaller the probability of its occurrence is:

Graph	\triangle	\wedge		
Symmetries	6	2	2	6
Probability	$\frac{1}{8}$	3 8	3 8	$\frac{1}{8}$

But the Rado graph is highly symmetric:

Theorem

The Rado graph is homogeneous, i.e. every partial isomorphism can be extended to an automorphism.

Symmetries

For a finite graph, the more symmetric a graph is, the smaller the probability of its occurrence is:

Graph	\triangle	\wedge		
Symmetries	6	2	2	6
Probability	$\frac{1}{8}$	3 8	3 8	$\frac{1}{8}$

But the Rado graph is highly symmetric:

Theorem

The Rado graph is homogeneous, i.e. every partial isomorphism can be extended to an automorphism.

Universality

Theorem

The Rado graph is universal, i.e. every finite graph can be embedded in R

Theorem (Fraïssé's Theorem)

There is a one-to-one correspondence between amalgamation classes and countable homogeneous structures.

Universality

Theorem

The Rado graph is universal, i.e. every finite graph can be embedded in R

Theorem (Fraïssé's Theorem)

There is a one-to-one correspondence between amalgamation classes and countable homogeneous structures.

- Aut(R) is simple
- Aut(R) has cardinality 2^{ℵ₀}
- Aut(R) has finitely many orbits on R^n for every n.

Theorem

- Aut(R) is simple
- Aut(R) has cardinality 2^{ℵ₀}
- Aut(R) has finitely many orbits on R^n for every n.

Theorem

- Aut(R) is simple
- Aut(R) has cardinality 2^{ℵ₀}
- Aut(R) has finitely many orbits on Rⁿ for every n.

Theorem

- Aut(R) is simple
- Aut(R) has cardinality 2^{ℵ₀}
- Aut(R) has finitely many orbits on Rⁿ for every n.

Theorem

Let $X = \mathbb{N}$, there is a natural topology on $G \leq Sym(X)$ with basic open sets $S(\bar{a}, \bar{b}) = \{g \in G | g\bar{a} = \bar{b}\}$ where $\bar{a}, \bar{b} \in X^n$ for some n.

- Each basic open set is closed, so *G* is totally disconnected.
- There are countably many basic open sets, i.e. G is second countable.
- *G* is separable, i.e. it contains a countable dense subset.

Lemma

Let $X = \mathbb{N}$, there is a natural topology on $G \leq Sym(X)$ with basic open sets $S(\bar{a}, \bar{b}) = \{g \in G | g\bar{a} = \bar{b}\}$ where $\bar{a}, \bar{b} \in X^n$ for some n.

- Each basic open set is closed, so *G* is totally disconnected.
- There are countably many basic open sets, i.e. G is second countable.
- *G* is separable, i.e. it contains a countable dense subset.

Lemma

Let $X = \mathbb{N}$, there is a natural topology on $G \leq Sym(X)$ with basic open sets $S(\bar{a}, \bar{b}) = \{g \in G | g\bar{a} = \bar{b}\}$ where $\bar{a}, \bar{b} \in X^n$ for some n.

- Each basic open set is closed, so *G* is totally disconnected.
- There are countably many basic open sets, i.e. G is second countable.
- *G* is separable, i.e. it contains a countable dense subset.

Lemma

Let $X = \mathbb{N}$, there is a natural topology on $G \leq Sym(X)$ with basic open sets $S(\bar{a}, \bar{b}) = \{g \in G | g\bar{a} = \bar{b}\}$ where $\bar{a}, \bar{b} \in X^n$ for some n.

- Each basic open set is closed, so *G* is totally disconnected.
- There are countably many basic open sets, i.e. G is second countable.
- *G* is separable, i.e. it contains a countable dense subset.

Lemma

- *G* is metrizable. Let $d(g_1, g_2) = \frac{1}{n}$ where *n* is the smallest integer such that $g_1 n \neq g_2 n$.
- *G* is completely metrizable. Let $d'(g_1, g_2) = d(g_1, g_2) + d(g_1^{-1}, g_2^{-1})$
- G is a Polish group, i.e. a topological group which is separable and completely metrizable.

- *G* is metrizable. Let $d(g_1, g_2) = \frac{1}{n}$ where *n* is the smallest integer such that $g_1 n \neq g_2 n$.
- *G* is completely metrizable. Let $d'(g_1, g_2) = d(g_1, g_2) + d(g_1^{-1}, g_2^{-1})$
- G is a Polish group, i.e. a topological group which is separable and completely metrizable.

- *G* is metrizable. Let $d(g_1, g_2) = \frac{1}{n}$ where *n* is the smallest integer such that $g_1 n \neq g_2 n$.
- *G* is completely metrizable. Let $d'(g_1, g_2) = d(g_1, g_2) + d(g_1^{-1}, g_2^{-1})$
- *G* is a Polish group, i.e. a topological group which is separable and completely metrizable.

Topological Dynamics

• *G* is extremely amendable

Definition

Let G be a topological group.

- A G-flow is a continuous action of G on a topological space X, usually assumed to be a compact Hausdorff space.
- A subflow is a invariant set under the action.
- A flow is minimal if it has no proper subflows.
- By Zorn's Lemma, every G-flow admits a minimal flow.
- There is also a universal minimal flow, i.e. a minimal flow that can be mapped to any minimal G-flow.
- G is extremely amenable if its universal minimal flow consists of a single point.

Ramsey Class

Theorem (KPT Correspondence)

Let X be a countable set, and G a closed subgroup of Sym(X). Then G is extremely amenable if and only if it is the automorphism group of a homogeneous structure whose age is a Ramsey class of ordered structure.

Definition

A class C of finite structures is a Ramsey class if, given any $n \in \mathbb{N}$ and a pair A, B of structures in C, there exists a structure $C \in C$ such that, if we colour the A-substructures of C with n colours, then there is a B-substructure of C, all of whose A-substructures have the same colour.

Reference

- Cameron, Peter J. "The random graph." The Mathematics of Paul Erdös II. Springer, Berlin, Heidelberg, 1997. 333-351.
- Kechris, Alexander S., Vladimir G. Pestov, and Stevo Todorcevic.
 "Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups." Geometric and Functional Analysis 15.1 (2005): 106-189.