

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

202 KU 05.05
BB + CA Abs 1 of 2

PUBLICATION NUMBER : 09000884
PUBLICATION DATE : 07-01-97

APPLICATION DATE : 16-06-95
APPLICATION NUMBER : 07150431

APPLICANT : BABCOCK HITACHI KK;

INVENTOR : KATO YASUYOSHI;

INT.CL. : B01D 53/94 B01J 29/24 B01J 29/46

TITLE : METHOD AND DEVICE FOR
REMOVING NITROUS OXIDE OR THE
LIKE IN EXHAUST GAS AND
CATALYST

ABSTRACT : PURPOSE: To remove N_2O in exhaust gas by a method wherein N_2O in exhaust gas is removed at a lower temperature using a reducing agent and the quantity of flowing-out of CO and ammonia is small.

CONSTITUTION: (1) A catalyst, in which iron is carried by mordenite and/or pentacyl type zeolite, is set in exhaust gas containing N_2O and an alcohol and/or hydrocarbon is injected to cause it to react with N_2O on the catalyst to reduce the N_2O to N_2 . (2) In a method, in which N_2O in exhaust gas is reduced and removed using an alcohol and/or hydrocarbon in a contact manner, a catalyst comprising a first component composed of mordenite, pentacyl-type zeolite carrying Fe and/or β -type zeolite, and a second component composed of noble metal salts of Pt or Pd, or compositions of noble metals which are carried beforehand by a porous body such as zeolite, alumina, silica, etc., is used to decomposed CO and N_2O ion exhaust gas and residual ammonia also is decomposed.

COPYRIGHT: (C)1997,JPO

202 KU 05.us
went CA (3 parts)
Abs 2 of 2

XP-002242664

AN - 1997-113390 [11]
AP - JP19950150431 19950616

CPY - HITG

DC - E36 J01

DR - 1784-U

FS - CPI

IC - B01D53/94 ; B01J29/24 ; B01J29/46

MC - E10-E04L E10-J02D E11-Q02 E31-H01 E31-P02B J01-E02D J04-E04 N06-B01

M3 - [01] A100 A111 A119 A220 A313 A426 A940 B114 B701 B712 B720 B831 C108
C802 C803 C804 C805 C807 M411 M730 M782 M903 M904 N163 Q421 Q431 Q436

Q439 Q508 R032 R036; 9711-B3101-C 9711-B3101-M 9711-B3101-R

- [02] A313 A426 A940 B114 B701 B712 B720 B831 C108 C802 C803 C804 C805
C807 M411 M730 M782 M903 M904 N163 Q421 Q431 Q436 Q439 Q508 R032 R036;
9711-B3102-C 9711-B3102-M 9711-B3102-R

- [03] C107 C108 C307 C520 C730 C800 C801 C802 C803 C804 C807 M411 M750
M903 M904 M910 N163 N412 N441 Q431 Q436 Q439 R013; R01784-X; 1784-U

- [04] M210 M211 M212 M213 M214 M215 M216 M220 M221 M222 M223 M224 M225
M226 M231 M232 M233 M320 M416 M610 M620 M782 M903 M904 N163 Q431 Q436
Q439 Q508 Q509 R013; R90120-M R90120-R

- [05] H4 H401 H481 H8 M210 M211 M212 M213 M214 M215 M216 M220 M221 M222
M223 M224 M225 M226 M231 M232 M233 M272 M281 M320 M416 M620 M782 M903
M904 N163 Q431 Q436 Q439 Q508 Q509 R013; R90128-M R90128-R

PA - (HITG) BABCOCK-HITACHI KK

PN - JP9000884 A 19970107 DW199711 B01D53/94 008pp

PR - JP19950150431 19950616

XA - C1997-036153

XIC - B01D-053/94 ; B01J-029/24 ; B01J-029/46

AB - J09000884 Catalyst comprising support consisting of at least mordenite or pentasil type zeolite supporting Fe is arranged in a flow path of exhaust gas contg. N₂O, and reducing agent consisting of at least alcohol or hydrocarbon is introduced to react with N₂O on the catalyst and to reduce N₂O to N₂.

- Also claimed is an exhaust gas to be treated contg. N₂O and NO.

- ADVANTAGE - N₂O, which breaks the ozone layer, is effectively removed at 350-450 deg. C.

- (Dwg.0/4)

CN - 9711-B3101-C 9711-B3101-M 9711-B3101-R 9711-B3102-C 9711-B3102-M
9711-B3102-R R01784-X R90120-M R90120-R R90128-M R90128-R

DRL - 1784-U

IW - CATALYST REMOVE NITROGEN OXIDE EXHAUST GAS COMPRIZE IRON SUPPORT
MORDENITE PENTASIL ZEOLITE FLOW PATH EXHAUST GAS

IKW - CATALYST REMOVE NITROGEN OXIDE EXHAUST GAS COMPRIZE IRON SUPPORT
MORDENITE PENTASIL ZEOLITE FLOW PATH EXHAUST GAS

NC - 001

OPD - 1995-06-16

ORD - 1997-01-07

PAW - (HITG) BABCOCK-HITACHI KK

TI - Catalyst for removal of nitrogen oxide(s) in exhaust gas - comprising iron supported on mordenite or pentasil zeolite in flow path of exhaust gas

(19) Japanisches Patentamt(JP)

(12) Bericht über veröffentlichte Patente

(11) Nummer für Patentveröffentlichung: Tokkai Hei9-884

(43) Tag der Veröffentlichung: 7.1.1997

(21) Antragsnummer: Tokugan Hei 7-150431

(22) Tag der Antragsstellung: 16.6.95

(71) Antragsteller: 000005441 Babcock-Hitachi Co., 2-6-2, Otemachi, Chiyoda-Ku, Tokyo

(72) Erfinder: Naomi Imada, Research-Institute of Babcock-Hitachi, 3-36, Takaramachi, Kure-shi, Hiroshima-Ken

(72) Erfinder Y. Kato, Research-Institute of Babcock-Hitachi, s.o.

(74) juristischer Vertreter: Anwalt H. Matsunaga

(54) Bezeichnung der Erfindung: Entfernungsmethoden, Geräte und Katalysator für Stickstoffoxydul im Abgas

(57) Zusammenfassung

[Ziel] Entfernung von N₂O aus dem Abgas mit einem Reduktionsmittel bei niedrigen Temperaturen und Entfernung von N₂O aus dem Abgas mit niedrigem CO oder Ammoniak-Ausfluß.

[Zusammensetzung] (1) Im Abgas, das N₂O enthält, wird ein Katalysator installiert, der auf Mouldenit (?) und/oder Zeolith vom Typ Pentacyl Eisen beladen hat; es werden Alkohol und/oder Kohlenwasserstoffe zugegeben und durch eine Reaktion mit dem N₂O auf dem o.g. Katalysator in N₂ umgewandelt.

(2) Bei der katalytischen Reduktionsreaktion von N₂O und N₂ durch Alkohol und/oder Kohlenwasserstoffe, bilden beim Katalysator Mouldenit, Zeolith vom Typ Pentacyl und/oder β-Typ-Zeolith mit Eisenbeladung die erste Komponente, die zweite Komponente besteht entweder aus Edelmetallsalzen von Pt oder Pd, oder auch aus porösen Körper wie Zeolith, Aluminat und Silikat, in die o.g. Edelmetallverbindungen vorher eingelagert wurden. Mit diesem Katalysator konnten der CO und N₂O im Abgas und ebenfalls der Restammoniak gespalten werden.

Abb. auf der 1. Seite: s. Abb. 4 auf der Seite 8.

[Der Umfang des Patentantrages]

[Forderungspunkt 1] Hierbei handelt es sich um ein Verfahren zur Entfernung vom Stickstoffoxidul aus dem Abgas. Hier wird im Abgaskanal des Stickstoffmonoxid-enthaltenden Abgases ein Katalysator installiert, der auf Trägern wie Mouldenit (?) und/oder Zeolith vom Typ Pentacyl Eisen beladen hat, durch Zubabe von Alkohol und/oder Kohlenwasserstoffe

wird eine Reaktion zwischen den o.g. Reduktionsmittel und Stickstoffoxydul eingeleitet und der Stickstoffoxydul wird zu Stickstoff reduziert.

[Forderungspunkt 2] Hierbei handelt es sich um ein Verfahren zur Entfernung vom Stickstoffoxydul und Stickstoffmonoxid aus dem Abgas. Hier werden im Abgas mit Stickstoffoxydul und Stickstoffmonoxid ein Katalysator installiert, der auf den Trägern wie Mouldenit (?) und/oder Zeolith vom Typ Pentacyl Eisen beladen hat, durch Zugabe von Reduktionsmittel wie Alkohol und/oder Kohlenwasserstoffe und Ammoniak der Stickstoffoxydul und Stickstoffmonoxid zu Stickstoff reduziert.

[Forderungspunkt 3] Hierbei handelt es sich um ein Verfahren zur Entfernung von Stickstoffoxydul und Stickstoffmonoxid aus dem im Forderungspunkt 2 aufgeführten Abgas. Hierbei wird die Zugabemenge des Ammoniaks proportional der gemessenen Stickstoffoxydulmenge im Abgas gewählt, die Zugabemenge des Reduktionsmittels Alkohol und/oder Kohlenwasserstoff ebenfalls proportional der gemessenen Stickstoffoxydulmenge gewählt und so abgestimmt.

[Forderungspunkt 4] Ein Katalysator, der sowohl auf dem Träger Mouldenit (?) und/oder Zeolith vom Typ Pentacyl Eisen geladen hat und Spaltungseigenschaften von Stickstoffoxydul und Stickstoffmonoxid besitzt.

[Forderungspunkt 5]

Ein Verfahren zur Entfernung vom Stickstoffoxydul im Abgas. Hierzu wurde ein Katalysator im Abgaskanal mit Stickstoffoxydul und Stickstoffmonoxid installiert, der als erste Komponente Zeolith mit Eisenauflage, als 2. Komponente Edelmetallsalze von Platin oder Palladium oder Edelmetallverbindungen mit den o.g. Edelmetallen, die vorher in poröse Körper wie Zeolith, Aluminat, Silikat eingelagert wurden, enthält. Durch Zugabe vom Reduktionsmittel Alkohol und/oder Kohlenwasserstoffen und Ammoniak wurde auf dem o.g. Katalysator der Kohlenmonoxid und Stickstoffoxydul gespalten und entfernt.

[Forderungspunkt 6] Ein Verfahren zur Entfernung vom Stickstoffoxydul und Stickstoffmonoxid im Abgas. Hierzu wurde ein Katalysator im Abgaskanal mit Stickstoffoxydul und Stickstoffmonoxid installiert, der als ersten Bestandteil Zeolith mit Eisenauflage, als 2. Bestandteil Edelmetallsalze von Platin oder Palladium oder die Edelmetallverbindungen mit den o.g. Edelmetallen, die in poröse Körper Zeolith, Aluminat, Silikat bereits eingelagert wurden, enthält. Durch Zugabe vom Reduktionsmittel Alkohol und/oder Kohlenwasserstoffen und Ammoniak wurden auf dem o.g. Katalysator der Kohlenmonoxid, Stickstoffoxydul, Stickstoffmonoxid und der überschüssige Ammoniak gespalten und entfernt.

[Forderungspunkt 7] Ein Katalysator, der Zeolith mit Eisenauflage als ersten Bestandteil, als 2. Bestandteil Edelmetallsalze von Platin oder Palladium oder Edelmetallkomposition mit den o.g. Edelmetallen, die in poröse Körper von Zeolith, Aluminat, Silikat bereits eingelagert wurden, enthält und Spaltungsaktivität auf Kohlenmonoxid, Ammoniak, Stickstoffoxydul und Stickstoffmonoxid aufweist.

[Forderungspunkt 8] Eine Anlage zur Entfernung von Stickoxiden im Abgas, die es ermöglicht, durch Verwendung vom Reduktionsmittel Alkohol und/oder Kohlenwasserstoffen und zusätzlich dazu Ammoniak als Reduktionsmittel, das Abgas durch die Katalysatorphase mit den Katalysatoren aus den 4. bzw. 7. Forderungspunkten zu schicken.

[Genaue Beschreibung der Erfindung]

[0001]

[Die wirtschaftlichen Anwendungsgebiete] Diese Erfindung behandelt die Entfernungsmethoden von z.B. Stickstoffoxydul aus den Abgasen, insbesondere die Entfernungsmethoden von Stickstoffoxydul und Stickstoffmonoxid aus dem Abgas bei tieferen Temperaturen, die Anlage und die dafür nötigen Katalysatoren.

[0002]

[herkömmliche Techniken] In letzter Zeit mehren sich Anzeichen der Umweltzerstörung in globalem Umfang wie z.B. die Zunahme des Kohlendioxids (CO_2) in der Atmosphäre mit dem begleitenden Treibhausklima, die Zerstörung der Wälder durch den sauren Regen, der durch Stickoxiden (NO_x) und Schwefeloxiden (SO_2) hervorgerufen wird. Die Gegenmaßnahmen zu ergreifen, ist unsere dringendste Aufgabe. Eine der Ursachen für die globale Zerstörung ist die Zerstörung der Ozonschicht, als Ursachen werden neben Furon und Methan auch Stickstoffoxydul (N_2O) genannt. In letzten Jahren wird in verschiedenen Verbrennungsanlagen häufiger bei tieferen Temperaturen verbrannt, um die Emission von NO_x als Verursacher des sauren Regens auf einen niedrigen Niveau zu reduzieren. Es ist bekannt, daß hierdurch die Emission von N_2O ansteigt. Genau wie der Stickstoffoxydul ist Stickoxid eine der umweltzerstörenden Substanzen, wodurch auch Maßnahmen zur NO_x -Reduktion diskutiert werden.

[0003] Als eine Methode zur Entfernung von N_2O ist allgemein die Verbrennung bei hohen Temperaturen mit Katalysator bekannt. Als Katalysatoren werden Oxide von verschiedenen Substanzen wie z.B. Blei untersucht.

[0004] Unabhängig davon haben wir einen Katalysator und einen Prozeß erfunden, dessen Patentschutz beantragt wird (Patentveröffentlichung Hei 4-17084, Antrag Hei 5-213088). Bei dem Katalysator Mouldenit (?), Clinoptylit (?), Hoiacyte, Zeolith y, Zeolith vom Typ Pentacyl oder Zeolith vom β -Typ wurde Fe oder Wasserstoff ersetzt, durch Ammoniak wurde N₂O reduziert. Dieser Entfernungsprozeß wird in Abb. 2 dargestellt. Im Abgaskanal von der Verbrennungsanlage 1 mit N₂O und NO wird ein Reaktor 5 mit Katalysator zur Entfernung von N₂O und NO installiert. In das Abgas wird Ammoniak 6 zugegeben und im Temperaturbereich über 450°C N₂O und NO mit Ammoniak 6 reduziert.

[0005]

[Aufgaben, die durch diese Erfindung gelöst werden sollen] Bei der Entfernung von N₂O und NO ist die reduktive Methode mit Ammoniak mit Fe-beladenen Zeolith mit einem Alterungsproblem des Katalysators verbunden, weil die Methode eine Temperatur um mindestens 500°C erfordert.

[0006] Deshalb war unser Ziel, eine Methode, Anlage und Katalysator für die N₂O und NO-Entfernung aus dem Abgas bei tieferen Temperaturen zu entwickeln.

[0007] Außerdem war unser Ziel, eine N₂O- und NO-Entfernungsverfahren, Anlage und Katalysator anzubieten, die es ermöglichen, bei der Entfernung von N₂O und NO mit einem Reduktionsmittel die Emission von CO und Ammoniak möglichst niedrig zu halten.

[0008]

[Verfahren zur Lösung der Aufgabenstellung] Die o.g. Ziele können durch folgende Maßnahmen erreicht werden:

Im Abgaskanal, der N₂O enthält, soll ein Katalysator installiert werden, der auf dem Träger Mouldenit und/oder Zeolith vom Typ Pentacyl Eisen trägt (erster Katalysator). Durch Zugabe vom Reduktionsmittel Alkohol und/oder Kohlenwasserstoffe wird der N₂O auf diesem Katalysator zu N₂ reduziert. Oder im Abgaskanal, der N₂O und NO enthält, soll ein Katalysator installiert werden, der auf dem Träger Mouldenit und/oder Zeolith vom Typ Pentacyl Eisen trägt (erster Katalysator). Durch Zugabe vom Reduktionsmittel Alkohol und/oder Kohlenwasserstoffe und Ammoniak werden der N₂O und NO auf diesem Katalysator zu N₂ reduziert.

[0009] In dieser Erfindung ist es wünschenswert, die Zugabe von Ammoniak in das Abgas mengenmäßig proportional zur gemessenen NO-Konzentration im Abgas abzustimmen. Ferner soll die Zugabe von Reduktionsmittel Alkohol und/oder Kohlenwasserstoffe proportional zur gemessenen N₂O-Konzentration im Abgas abgestimmt werden.

[0010] Somit besitzt der erste Katalysator dieser Erfindung eine N₂O- und NO-spaltende Aktivität.

[0011] Unter einem Alkohol verstehen wir in diesem Zusammenhang solche mit relativ geringer C-Zahl wie Methanol, Ethanol, Propanol; unter Kohlenwasserstoffen verstehen wir solche mit geringer C-Zahl wie Methan, Ethan, Methylen, Propan und Propylen.

[0012] Das hier verwendete Verfahren mit dem ersten Fe-tragenden Zeolith-Katalysator mit dem Reduktionsmittel Alkohol und/oder Kohlenwasserstoffe, ist ein besseres Verfahren als das konventionelle, das als Reduktionsmittel Ammoniak verwendet, da es bei einer tieferen Temperatur N₂O und NO entfernen kann. Es kann bei diesem Verfahren jedoch, je nach Bedingung, durch Spaltung von Alkohol und Kohlenwasserstoffen CO entstehen und durch das Abgasrohr nach außen emittiert werden. Besonders bei Alkohol ist durch direkte Injektion der Lösung in das Abgasrohr die Anpassungsfähigkeit des Alkohol-liefernden Systems an den Belastungswechsel schlecht, und kann deshalb der Konzentrationsschwankung von N₂O und NO nicht variabel folgen und diese kontrollieren. Bei Verwendung von einem Katalysator mit nur einer bekannten N₂O-Entfernungsleistung muß man, um die N₂O-Entfernungsrate konstant höher zu halten, Reduktionsmittel im Überschuß zugeben. Das führt zu einem erhöhten CO-Ausfluß. Ferner führt bei der gleichzeitigen NO-Entfernung durch die Verwendung von NH₃ zum Ausfluß von NH₃.

[0013] Diese Erfindung zur Denitrifikation durch Verwendung von o.g. Reduktionsmittel Alkohol und/oder Kohlenwasserstoffe beinhaltet folgende Verbesserungsmechanismen:

[0014] Bei dem Verfahren zur Entfernung durch katalytische Reduktion von N₂O im Abgas durch Alkohol und/oder Kohlenwasserstoffe, kann ein Katalysator verwendet werden, der sowohl CO als auch N₂O spalten kann.

Bei dem Verfahren zur Entfernung durch katalytische Reduktion von N₂O, NO und CO im Abgas durch NH₃, Alkohol und/oder Kohlenwasserstoffe, kann ein Katalysator verwendet werden, der sowohl CO, NH₃, N₂O als auch NO spalten kann.

[0015] Der Katalysator dieser Erfindung, der wie o.g. CO, NH₃, N₂O und NO spalten kann (der 2. Katalysator), enthält als ersten Bestandteil Zeolith mit Eisen (Fe)-Auflage, als 2. Bestandteil aus Edelmetallsalzen aus Platin oder Palladium oder Edelmetallkompositionen, die vorher auf porösen Körpern wie Zeolith, Aluminat oder Silikat eingelagert wurden.

[0016] Als Träger für die erste Komponente eignen sich Zeolithe wie Mouldenit, Zeolith vom Typ Pentacyl hinsichtlich ihrer guten Auswirkung auf Denitrifikations- und N₂O-Entfernungsrate.

[0017] Außerdem ist die Anlage zur Entfernung von N₂O und/oder NO mit Alkohol und/oder Kohlenwasserstoffen und Ammoniak unter Verwendung von o.g. mit dem 1. oder 2. Katalysator gefüllten Katalysatorphase ein Punkt im Umfang unserer Erfindung.

[0018]

[Wirkung] Wir konnten zeigen, daß auf den Katalysatoren Mouldenit und/oder Zeolith vom Typ (1. Katalysator) Pentacyl mit Fe-Anlagerung die Reduktionsreaktion durch Alkohol und/oder Kohlenwasserstoffe bei niedrigeren Temperaturen abläuft als bei der herkömmlichen Methode mit Ammoniak. Ferner läuft diese Reaktion nur auf dem Zeolith mit Fe-Anlagerung ab; auf Zeolith mit anderer Auflage als Fe oder mit anderen Trägern außer Zeolith mit Fe-Auflage lief diese Reaktion kaum ab.

[0019] In der Abb. 3 zeigen wir die molare Spezifität zwischen N₂O und Methanol, Propan und die molare Spezifität zwischen NO und Methanol. Hieraus erkennt man, daß N₂O und Alkohol, und auch N₂O und Kohlenwasserstoffe jeweils im Molverhältnis 1:1 reagieren. Das heißt, die Zugabemenge des Alkohols bzw. des Kohlenwasserstoffs zur Erreichung von ausreichender N₂O-Entfernung ist fast isomolar. Zugabe im Überschuß führt zum Ausfluß aus dem Katalysatorphase und ist nicht wünschenswert.

[0020] Ferner geht aus der Abb. 3 hervor, daß NO kaum mit Alkohol reagiert (Die Entfernungsrate von N₂O auf der y-Achse soll als NO-Entfernungsrate gelesen werden). Das heißt, die Reaktion läuft mit 1 Mol NO und 1 Mol NH₃ ab; die Reaktion zwischen N₂O und Alkohol oder Kohlenwasserstoff auch isomolar. Daraus folgt, wenn NO und N₂O gleichzeitig vorhanden sind, verwenden sie NH₃ und Alkohol oder Kohlenwasserstoffe gleichzeitig, wenn man NH₃ im gleichen molaren Verhältnis zugibt wie NO, Alkohol und Kohlenwasserstoff im gleichen molaren Verhältnis wie N₂O, erhält man gutes Verhältnis hinsichtlich der Ammoniak- und N₂O-Entfernungsrate.

[0021] Wenn man in Abb. 2 in Katalysatorphase 2 den Katalysator 2 unserer Erfindung auffüllt, wird das Abgas aus der Verbrennungsanlage 1 in die 2. Katalysatorphase hineingeführt. Hier erfolgt die Reduktionsreaktion von N₂O zu Stickstoff (N₂) durch die Wirkung der 1. Komponente des 2. Katalysators Fe/Zeolith in der Katalysatorphase 2 mit dem Reduktionsmittel 6 Alkohol und/oder Kohlenwasserstoff im Reaktor 5. Hierbei wird ein Teil des Alkohols und/oder Kohlenwasserstoffs gespalten, wodurch CO entsteht. Wenn wir den 2. Katalysator unserer Erfindung verwenden, wird der entstandene CO durch die Wirkung des Edelmetalls aus dem 2. Katalysator oxidiert in den unschädlichen CO₂; somit wird der Ausfluß des CO aus der Katalysatorphase 2 vermieden. Das gereinigte Abgas wird durch den Wärmeaustauscher 3 abgekühlt und durch den Schornstein 4 abgelassen. Durch Zugabe von überschüs-

sigem Reduktionsmittel, um eine Ungleichmäßigkeit in der Zugabe von Alkohol und/oder Kohlenwasserstoff oder die Schwankung des N₂O zu vermeiden, besteht keine Gefahr eines erhöhten CO-Ausflusses.

[0022] Bei gleichzeitiger reduktiver Entfernung vom NO aus dem Abgas unter Verwendung vom Ammoniak als NO-Reduktionsmittel, was bisher nicht möglich war, kann durch die Wirkung vom Edelmetall aus dem 2. Katalysator aus der Katalysatorphase 2 unserer Erfindung der Ammoniak in N₂ und Wasser oxidativ gespalten werden und der Ausfluß des Ammoniak vermieden werden.

[0023] im folgenden werden wir diese Erfindung anhand der Praxisbeispiele detailliert erläutern.

Praxisbeispiel 1

Der Katalysator 1 aus der Erfindung wurde wie folgt hergestellt:

50g Mouldenit(TSZ-65OXOA von Fa. Toso, SiO₂/Al₂O₃-Verhältnis= 23) wurde in 100ml wässriger Lösung mit 18kg Eisennitrat (Fe₂(NO₃)_x9H₂O) gegeben, bei 150°C unter Rühren im Sandbad eindampft. Der so erhaltene Pulver wurde mit einer Ölpresse bei 3t/cm² zu einem Pellet gepreßt und anschließend wieder zerstört und ein Katalysator mit 10~20 mesh erhalten.

[0024] In eine Reaktionsröhre wurde der wie o.g. hergestellte Katalysator abgefüllt und ein N₂O-enthaltendes Trägergas durchgeschickt und vor der Reaktionsröhre eine wässrige Lösung (7,1 g auf 1 Liter Wasser) von CH₃OH hineingegeben, und unter der Bedingung der Tab. 1 die N₂O-Entfernung durchgeführt.

[0025]

[Tab.1]

Punkte	Bedingung
Gasmenge	180Liter/Minute
Temperatur	450°C
Raumgeschwindigkeit	100.000 h ⁻¹

[0026] Vergleichsbeispiel 1

Ein Versuch zur N₂O-Entfernung wurde durchgeführt, bei dem alle Punkte außer der Verwendung von NH₃ anstatt CH₃OH und einem molaren Verhältnis von NH₃/N₂O 1,2 mit dem Praxisbeispiel 1 übereinstimmten.

[0027] In der Abb. 1 sind alle Ergebnisse vom Praxisbeispiel 1 und Vergleichsbeispiel aufgeführt. Wie man sieht, hat die Methode dieser Erfindung auch bei gleicher Temperatur höhere N₂O-Entfernungsrate als die herkömmliche Methode und ermöglicht eine N₂O-Entfernung auch bei tieferen Temperaturen.

[0028] Praxisbeispiele 2~8

Mit dem Katalysator aus dem Praxisbeispiel 1 wurden die Reduktionsmittel CH₃OH, C₂H₅OH, C₃H₉OH, CH₄, C₂H₈, C₂H₆, C₃H₈ variiert, sonst genauso wie das Praxisbeispiel 1 die N₂O-Entfernungsrate bestimmt.

[0029]**[Tab. 2]**

	Reduktionsmittel	N ₂ O-Entfernungsrate (%)
Praxisbeispiel 1~8		
Vergleichsbeispiel 1		

[0030] In der Tab. 2 wurden die N₂O-Entfernungsarten der Praxisbeispiele 1~8 und des Vergleichsbeispiels 1 mit dem jeweiligen Reduktionsmittel aufgeführt. Wenn man als Reduktionsmittel Alkohol und Kohlenwasserstoffe verwendet, erhält man höhere N₂O-Entfernungsrate als bei der herkömmlichen NH₃-Methode.

[0031] Praxisbeispiel 9

Der Katalysator wurde abgestimmt, in dem Mouldenit aus der Zusammensetzung des Praxisbeispiels 1 durch Zeolith vom Typ Pentacyl (Fa. PY, ZSM-5, SiO₂/Al₂O₃-Verhältnis=30) ersetzt wurde, alle anderen Punkte wurden belassen. Mit diesem Katalysator und sonst unter gleichen Bedingungen wie das Praxisbeispiel 1 wurde der N₂O-Entfernungsversuch im reproduzierten Gas durchgeführt.

[0032] Vergleichsbeispiele 2,3

Das Eisennitrat aus dem Praxisbeispiel 1 wurde durch 9.53g Kupferacetat (Cu(NO₃)₂·2H₂O und 12,5g Kobaltnitrat (Co(NO₃)₂·6H₂O) ersetzt und sonst wie im Katalysator-

Abstimmungsbeispiel 1 abgestimmt. Mit diesem Katalysator und sonst unter gleichen Bedingungen wie das Praxisbeispiel 1 wurde der N₂O-Entfernungsversuch durchgeführt.

[0033] Vergleichsbeispiel 4

Der Mouldenit aus dem Praxisbeispiel 1 wurde durch 167g Metatitansäure-Schlamm ersetzt (TiO₂-Gehalt 30 wt%, SO₄-Gehalt 8 wt%), und sonst unter gleichen Bedingungen der Katalysator abgestimmt. Mit diesem Katalysator und sonst unter gleichen Bedingungen wie das Praxisbeispiel 1 wurde der N₂O-Entfernungsversuch durchgeführt. Die Tab. 3 zeigt die Ergebnisse des Praxisbeispiels 9 und der Vergleichsbeispiele 2-4.

[0034]

[Tab. 3]

	Katalysator	Menge an aktiven Substanzen	N ₂ O-Entfernungsrate (%)
Praxisbeispiel 9	Fe/ZSM-5		
Vergleichsbeispiele 2	Cu/Mouldenit		
" 3	Co/Mouldenit		
" 4	Fe/TiO ₂		

[0035] Die Ergebnissen der Tab. 3 besagen, daß man auch höhere N₂O-Entfernungsrate als NH₃erhält, wenn man auch den Zeolith durch einen Zeolith vom Typ Pentacyl ersetzt. Andererseits haben die Zeolith-Katalysatoren mit einer anderen aktiven Substanz als Fe oder der Titanoxid mit Fe-Anlagerung niedrigere N₂O-Entfernungsrate. Es spricht für eine optimale Kombination in unserer Erfindung.

[0036] Praxisbeispiel 10

In eine Reaktionsröhre wurde der im Praxisbeispiel 1 abgestimmte Katalysator gefüllt. Ein reproduziertes Gas, das NO und N₂O enthält, wurde durch diese Röhre durchgeschickt. Vor der Röhre wurde eine wässrige Lösung aus NH₃ (Konzentration 2%-Rest N₂) und CH₃OH (7,1g in 1 Liter Wasser gelöst) zugegeben und unter den Bedingungen der Tab. 4 der NO und N₂O-Entfernungstest durchgeführt.

[0037]

[Tab. 4]

Objekt	Bedingung
Gasmenge	180Liter/Minute
Temperatur	450°C
Raumge- schwindigkeit	100.000 h ⁻¹

[0038] Die Konzentration von CH₃OH wurde 1,2 mal so hoch wie die von N₂O gewählt, um die Katalysatoreigenschaft unter stabilen Bedingungen durch überschüssige Zugabe beurteilen zu können. Aus den selben Gründen wurde auch die Konzentration von NH₃ 1,2 mal so hoch gewählt. Als Ergebnis wurde eine NO-Entfernungsrate von 80,0 % und eine N₂O-Entfernungsrate von 65,5 % erreicht.

[0039] Praxisbeispiel 11

In diesem Praxisbeispiel wurde genau wie beim Beispiel 10 in eine Reaktionsröhre der abgestimmte Katalysator gefüllt und mit einem NO- und N₂O-enthaltenden reproduzierten Gas und mit Zugabe von NH₃- und CH₃OH-enthaltender wässrigen Lösung ein Versuch durchgeführt. Hierbei wurde die Zugabe von NH₃, Alkohol und/oder Kohlenwasserstoffe so geregelt, daß die NH₃-Menge proportional der NO-Konzentration, die Alkohol- und/oder Kohlenwasserstoffmenge proportional der N₂O-Konzentration jeweils individuell angepaßt wurde. Konkret wurde wie in der folgenden Tab. 5 die Zugabemenge von NH₃, Alkohol und Kohlenwasserstoffe variiert.

[0040]

[Tab. 5]

Objekte	Bedingung 1	Bedingung 2	Bedingung 3
Gasmenge	180Liter/Minute		
Temperatur	450°C		
Raumgeschwindigkeit	100.000 h ⁻¹		

[0041] Im Vergleich zu Bed. 1 ist die Bed. 2 für den Fall, daß die N₂O Konzentration zunimmt und die NO-Konzentration abnimmt, dementsprechend wird CH₃OH in doppelter Menge, NH₃ in reduzierter Menge zugegeben. Die Bedingung 3 ist für den umgekehrten Fall, daß die N₂O-Konzentration abnimmt und die NO-Konzentration zunimmt. Dementsprechend wird eine reduzierte Menge an CH₃OH und erhöhte Menge an NH₃ zugegeben. Bei einer Veränderung der N₂O- und NO-Entfernungsrate in diesem Umfang hat sie keinen Einfluß auf die Konzentration von N₂O und NO.

[0042] Praxisbeispiel 12

Für die Herstellung des zweiten Katalysators unserer Erfindung wurde wie folgt verfahren: 50 kg Mouldenit (Fa. Toso, SiO₂/Al₂O₃-Verhältnis: 23) wurden in eine wässrige Lösung von Eisennitrat (Fe₂(NO₃)₃·9H₂O) (18 kg in 100 kg Wasser =Druckfehler? Vgl. Kap.[0023]) gelöst und bei 150°C unter Rühren eingedampft. Dieser wurde in der Luft bei 500°C gebrannt und ein Mouldenit mit 3wt% Fe-Auflage abgestimmt. Dies ist die 1. Komponente des Katalysators zur N₂O-Entfernung.

[0043] Ferner wurden 500g sehr feinen Pulvers von Silikat (Fa. Tomita Seiyaku, Maikon F) in eine wässrige Lösung von Platinchlorid (H₂[PtCl₆]·xH₂O) (0,665g in 1 Liter Wasser) gelöst und im Sandbad eingedampft. Dieser wurde 2 Std. bei 500°C in der Luft gebrannt und so als 2. Komponente SiO₂ mit 3wt% Fe-Auflage erhalten.

[0044] unabhängig hiervon wurde ein Gewebe als stabiler Träger für den Katalysator hergestellt. Dieses Gewebe besteht aus 1400 spiraligen E-Glasfasern mit einem Durchmesser von 9µm; mit einer Gewebedichte von 10 Fäden/inch und wurde anschließend in einen Schlamm aus 40% Titania, 20% Silikasol und 1% Polyvinylalkohol getaucht und bei 150°C getrocknet.

[0045] Zu 20 kg der ersten Komponente und 816 kg der zweiten Komponente wurden 430 ml 60%ige Salpetersäure, 8,95kg Aktivaluminat, 31kg Wasser, 8,95kg anorganische Faser vom Typ Silikaaluminat gegeben, in einem Kneter durchgeknetet und so eine Katalysatorpaste erhalten. Zwischen 2 Katalysatorträger aus [0044] wurde die Katalysatorpaste bestrichen und durch Druckwalzen in die Faserzwischenräume und auch auf die Oberfläche verteilt und so ein ca. $1.5m \pm 50m$ (Druckfehler?) dicken Plattenkatalysator erhalten. Dieser wurde 2 Stunden bei 180°C getrocknet und 2 Stunden in der Atmosphäre bei 500°C gebrannt. Das Verhältnis der 1. Und der 2. Komponenten in diesem Katalysator ist 4:96, das Pt-Gehalt beträgt 20 ppm ohne den Katalysatorträger und anorganische Faser.

[0046] Vergleichsbeispiel 5

Ein Katalysator wurde genau wie im Praxisbeispiel 12, nur ohne die 2. Komponente abgestimmt.

[0047] Versuchsbeispiel 1

3 20mm(B) x100mm(L) große Platten der Katalysatoren aus dem o.g. Praxisbeispiel 12 und dem Vergleichsbeispiel 5 wurden zugeschnitten und je mit einem Abstand von 3mm in das Reaktionsgefäß abgefüllt und auf die Oberseite ein keramischer Raschig-Ring angebracht. Von der Oberseite des Reaktionsgefäßes wurde ein reproduziertes Gas mit N₂O hineingeschickt, ferner wurde Methanol (CH₃OH) (wässrige Lösung, 7,1g in 1 Liter Wasser) als Reduktionsmittel hineingegeben und auf dem Raschig-Ring verdampft, dann die N₂O-Entfernungsrate und die CO-Ausflußmenge unter der veränderten Methanolmenge nach den Bedingungen der Tab. 6 bestimmt. Das Ergebnis wurde in der Abb. 4 dargestellt.

[0048]

[Tab. 6]

Objekte	Bedingung
Gasmenge	180Liter/Minute
Temperatur	450°C
Raumgeschwindigkeit	100.000 h^{-1}

[0049] Die Abb. 4 zeigt, daß bei hohem Methanol/N₂O-Verhältnis die N₂O-Entfernungsrate genauso hoch ist wie im Vergleichsbeispiel 5, wenn man den Katalysator aus dem Praxisbeispiel 12 verwendet. Außerdem ist der CO-Ausfluß am Ausgang mit 10ppm niedrig. Andererseits steigt der CO-Ausfluß am Ausgang bei Verwendung des Katalysators aus dem Vergleichsbeispiel 5 bei ansteigendem molaren Verhältnis zwischen Reduktionsmittel/N₂O. Dieses Ergebnis zeigt, daß das Problem des CO-Ausflusses bei den herkömmlichen Methoden,

auch bei Zugabe vom überschüssigen Reduktionsmittel durch die Methode der Erfindung verhindert werden kann.

[0050] Praxisbeispiel 13

Das Platinchlorid aus dem Praxisbeispiel 12 wurde durch Palladiumnitrat ($\text{Pd}(\text{NO}_3)_3$) ersetzt und wurde auf 0,05wt (% Druckfehler?) abgestimmt. Es wurde mit diesem als 2. Komponente ein Plattenkatalysator wie im Praxisbeispiel 12 hergestellt.

[0051] Praxisbeispiele 14, 15

Ein Plattenkatalysator wurde hergestellt; hierbei wurde in der 2. Komponente der Silikatpulver (Fa. Tomita Seiyaku, Maikon F) aus dem Praxisbeispiel 12 durch jeweils Mouldenitpulver und γ -Aluminatpulver (Fa. Sumitomo Chemicals) ersetzt, sonst unter gleichen Bedingungen, und unter Verwendung der 1. Komponente aus dem Praxisbeispiel 12.

[0052] Praxisbeispiel 16

Ein Plattenkatalysator wurde hergestellt; hierbei wurde in der 1. Komponente der Mouldenit aus dem Praxisbeispiel 12 (Fa. Toso, $\text{SiO}_2/\text{Al}_2\text{O}_3$ -Verhältnis=23) durch ZSM-5 (Fa. PQ, Verhältnis Zeolith vom Pentacyltyp: $\text{Al}_2\text{O}_3=30$) ersetzt, sonst unter den gleichen Bedingungen wie im Praxisbeispiel 12, und unter Verwendung der 2. Komponente aus dem Praxisbeispiel 12.

[0053] Versuchsbeispiel 2

Die N_2O -Entfernungsrate und die CO-Ausflußmenge wurden jeweils bestimmt, hierbei wurden Katalysatoren aus den Praxisbeispielen 12~16 verwendet, das molare Verhältnis zwischen Reduktionsmittel und N_2O betrug wie im Versuchsbeispiel 1 1,2 und 1,5. Die Tab. 7 zeigt die Ergebnisse.

[0054]

[Tab. 7]

	Reduktionsmittel/NO (mol/mol)			
	1,2	1,5		
Katalysatoreigen-schaft	N ₂ O-Entfernungs-rate	CO-Efflux (ppm)	N ₂ O-Entfernungs-rate	CO-Efflux (ppm)
Praxisbeispiel 12	62	10	65	12
13	60	11	65	15
14	63	6	65	10
15	60	12	62	14
16	61	10	63	13
Vergleichsbeisp. 5	66	42	69	110

[0055] Diese Ergebnisse zeigen, daß durch die Methoden dieser Erfindung der CO-Ausfluß am Ausgang, der durch die Spaltung des Reduktionsmittel hervorgerufen wird, verhindert werden kann.

[0056] Versuchsbeispiele 3 und 4

Die N₂O-Entfernungsrate und der CO-Ausfluß wurden jeweils bestimmt. Hierbei wurde der Katalysator aus dem Praxisbeispiel 12 verwendet, das Reduktionsmittel Methanol wurde durch Ethanol und Methan ersetzt; das molare Verhältnis zwischen Reduktionsmittel und N₂O betrug wie im ersten Versuchsbeispiel 1,5. Auch durch den Ersatz des Reduktionsmittels durch Ethanol und Methan war die N₂O-Entfernungsrate mit jeweils 65 und 65% unverändert hoch, der Effekt der CO-Ausflußmenge aus dem Ausgang war trotz unterschiedlicher Reduktionsmittel mit 10 bzw. 12 ppm unverändert.

[0057] Versuchsbeispiel 5

Ein Versuch zur N₂O- und NO-Entfernung wurde durchgeführt und dabei die N₂O-Entfernungsrate, Denitrifikationsrate, CO- und Ammoniak-Ausfluß am Ausgang bestimmt. Hierbei wurde in der Gaszusammensetzung aus der Tab. 1 der NO auf 200 ppm eingestellt, Methanol als Reduktionsmittel für N₂O im molaren Verhältnis von 1,5 mol/mol zu N₂O, und getrennt hierzu NH₃ als Reduktionsmittel für NO im molaren Verhältnis von 1,2 zu NO vor dem Reaktionsgefäß zugegeben. Es wurde der Katalysator aus dem Praxisbeispiel 12 verwendet; die Bedingungen vom Versuchsbeispiel 1 beibehalten. Als Ergebnis konnten 73%

N_2O entfernt werden, die Denitrifikationsrate betrug 96%, der CO-Ausfluß am Ausgang betrug 11ppm, der NH_3 -Ausfluß war mit einigen ppm unterhalb der Nachweisgrenze.

[0058] Die Versuchsergebnisse zeigen, daß durch die Methode der Erfindung, auch bei Benutzung vom NH_3 als Reduktionsmittel, der Ausfluß vom nicht reagierten NH_3 verhindert werden kann.

[0059]

[Die Wirkung der Erfindung] Diese Erfindung ermöglicht eine effektive Entfernung vom Verursacher der Ozonschicht-Zersörung N_2O bei Temperaturen um 350~450°C. Ferner verhindert diese Erfindung den Ausfluß der Problemstoffe CO und Ammoniak bei überschüssiger Zugabe dieser Reduktionsmittel.

[Erläuterung der Abbildungen]

[Abb. 1] Diese zeigt den Vergleich zwischen dem Praxisbeispiel 1 (links) und dem Vergleichsbeispiel 1 (rechts) dieser Erfindung. Y-Achse: N_2O -Entfernungsrate.

[Abb. 2] Dies ist ein Fließschema des Detrifizierungsprozesses.

Erläuterung der Zahlen: 1: Verbrennungsanlage, 2: Katalysator für N_2O -Entfernung, 3: Wärmeaustauscher, 4: Schornstein, 5: Reaktionsgefäß, 6: Reduktionsmittel

[Abb. 3] molare relative Spezifität des N_2O durch Methanol, Propan und molare relative Spezifität des NO durch Methanol. A: molare spezifische Spezifität von $\text{N}_2\text{O}:\text{CH}_3\text{OH}$, B: von $\text{N}_2\text{O}:\text{C}_3\text{H}_8$, C: von $\text{NO}:\text{CH}_3\text{OH}$, x-Achse: molares Verhältnis, y-Achse: N_2O -Entfernungsrate. Versuchstemperatur 450°C.

[Abb. 4] Vergleich zwischen dem Praxisbeispiel 12 und Vergleichsbeispiel 5 der Erfindung. x-Achse: molares Verhältnis zwischen Reduktionsmittel/ N_2O , y-Achse: CO-Ausflußmenge (ppm) und N_2O -Entfernungsrate (%), °: Praxisbeispiel 12, •: Vergleichsbeispiel 5