SAMPLE PROBLEM D

Period and Speed of an Orbiting Object

PROBLEM

The color-enhanced image of Venus shown here was compiled from data taken by *Magellan*, the first planetary spacecraft to be launched from a space shuttle. During the spacecraft's fifth orbit around Venus, *Magellan* traveled at a mean altitude of 361 km. If the orbit had been circular, what would *Magellan*'s period and speed have been?

SOLUTION

1. DEFINE Given:
$$r_1 = 361 \text{ km} = 3.61 \times 10^5 \text{ m}$$

Unknown:
$$T = ?$$
 $v_t = ?$

2. PLAN **Choose an equation or situation:** Use the equations for the period and speed of an object in a circular orbit.

$$T = 2\pi \sqrt{\frac{r^3}{Gm}} \qquad v_t = \sqrt{G\frac{m}{r}}$$

Use **Table 1** to find the values for the radius (r_2) and mass (m) of Venus.

$$r_2 = 6.05 \times 10^6 \text{ m}$$
 $m = 4.87 \times 10^{24} \text{ kg}$

Find r by adding the distance between the spacecraft and Venus's surface (r_1) to Venus's radius (r_2) .

$$r = r_1 + r_2 = (3.61 \times 10^5 \text{ m}) + (6.05 \times 10^6 \text{ m}) = 6.41 \times 10^6 \text{ m}$$

3. CALCULATE Substitute the values into the equations and solve:

$$T = 2\pi \sqrt{\frac{(6.41 \times 10^6 \text{ m})^3}{\left(6.673 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}\right) (4.87 \times 10^{24} \text{ kg})}} = \boxed{5.66 \times 10^3 \text{ s}}$$

$$\nu_t = \sqrt{\left(6.673 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}\right) \left(\frac{4.87 \times 10^{24} \text{ kg}}{6.41 \times 10^6 \text{ m}}\right)} = \boxed{7.12 \times 10^3 \text{ m/s}}$$

4. EVALUATE Magellan takes $(5.66 \times 10^3 \text{ s})(1 \text{ min/}60 \text{ s}) \approx 94 \text{ min to complete one orbit.}$

PRACTICE D

Period and Speed of an Orbiting Object

- **1.** Find the orbital speed and period that the *Magellan* satellite from Sample Problem D would have at the same mean altitude above Earth, Jupiter, and Earth's moon.
- **2.** At what distance above Earth would a satellite have a period of 125 min?