FORM BREAKDOWN AND PLAN

Data Point Classification Based on Formulas:

- 1. CRITICAL VALUES (Required for basic calculations):
 - Power consumption (P)
 - Time duration (t)
 - Surface area (A)
 - Temperature differences (ΔT)
 - Volume of space (V)
 - Current energy consumption (Ebefore)
- 2. DERIVED VALUES (Can be calculated/estimated):
 - Heat transfer coefficient (U)
 - Air density (ρ)
 - Specific heat capacity (Cp)
 - HVAC efficiency (η)
 - Performance ratio (PR)
 - Emission factor (EF)
- 3. OBSERVABLE VALUES (Can be gathered through inspection):
 - Number and type of lighting fixtures
 - Solar panel array area potential
 - Basic temperature readings
 - Visible surface areas
- 4. DOCUMENTED VALUES (From bills/documentation):
 - Current energy consumption
 - Cost of upgrades
 - Annual savings
 - 1. Initial User Classification Questions We should start with a brief pre-questionnaire to determine:
 - Property Access Level (owner, renter, property manager)
 - Technical Knowledge Level (basic, intermediate, expert)
 - Physical Access Capabilities (full access, limited access)
 - Data Access Level (has bills/documentation, limited documentation)

2. Section Classification Strategy:

TIER 1 - Universal Access

- Basic property information
- Observable features
- Bill information they have access to
- Usage patterns they can describe

TIER 2 - Limited Technical

- Basic measurements
- Simple observations about systems
- General condition assessments
- Basic energy usage patterns

TIER 3 - Advanced Technical

- Detailed measurements
- Technical specifications
- Professional-level assessments
- Complex calculations

1. SECTION 1: Property Information

[SCREENING QUESTION]

[BASIC - Required]

- 1.1 Property TypeSingle-family detached
- □ Townhouse/Rowhome
- □ Duplex/Condo
- □ Mobile home

[Used for: Basic calculations and defaults]

- 1.2 Construction Period
- □ Before 1980
- □ 1980-2000
- □ After 2000

[Used for: Default values and construction standards]

1.3 Size Category

	 □ Small (under 1,500 sq ft) □ Medium (1,500-2,500 sq ft) □ Large (over 2,500 sq ft) [Used for: Volume and area estimates]
	[ADVANCED]
1	 What type of homeowner are you? Homeowner Renter Property Manager Other:
2	Property Type: Single-family detached Townhouse/Rowhome Duplex Condominium Mobile home Other: Used for: Default U-values, standard volume calculations
3	Construction Period: When was your home built? (Best estimate) Before 1940 1940-1959 1960-1979 1980-1999 2000-2019 2020 or newer [Used for: Default U-values, construction material assumptions]
4	Number of Stories: One Two Three Split-level [Used for: Volume (V) calculations] Ceiling Height (if known): 8 feet (standard) 9 feet
	□ 10 feet or higher

	□ Not sure
	[Used for: Volume (V) calculations]
5.	Living Space: Approximate Square Footage: Under 1,000 sq ft 1,000-1,499 sq ft 1,500-1,999 sq ft 2,000-2,499 sq ft 2,500-2,999 sq ft 3,000+ sq ft [Used for: Area (A) calculations, Volume (V) calculations]
	[ADVANCED - Optional]
6.	Detailed Measurements (if available): Length of home: feet Width of home: feet [Used for: Precise A and V calculations]
7.	Foundation Configuration: □ Full Basement □ Partial Basement □ Crawl Space □ Slab on Grade [Used for: Heat transfer calculations, volume adjustments]
8.	Attic Configuration: □ Full attic □ Partial attic □ Cathedral ceiling □ Flat roof [Used for: Heat transfer calculations, volume adjustments]

BACKEND INFORMATION:

Derived Values:

- 1. Default U-values based on:
 - Construction period
 - Building type
 - Region Formula: Standard U-value × Age Factor × Regional Factor

2. Standard volume ratios for different home types:

- Single-family: Length: Width ratio = 1.5:1

- Townhouse: Length: Width ratio = 2.5:1

- Duplex: Length: Width ratio = 1.2:1

Reference Tables Needed:

- 1. Standard U-values by construction period and building type
- 2. Regional building code requirements by year
- 3. Standard ceiling heights by construction period
- 4. Typical floor area ratios by home type

Calculations:

1. Volume (V):

V = Floor Area × Height × Stories

- Include basement if heated
- Adjust for cathedral ceilings: V + (Peak Height Standard Height) × Floor Area/2
- 2. Surface Area (A):

$$A = (2 \times L \times W) + (2 \times L \times H) + (2 \times W \times H)$$

Where:

- L = Length W = Width H = Height
- Reduce by shared wall area for attached homes
- 3. Heat Transfer Coefficient (U):

U = Base U-value × Age Factor × Regional Factor

Where:

- Base U-value from reference table
- Age Factor from construction period
- Regional Factor based on location

2. SECTION 2: Current Home Conditions

[Purpose: Establish ΔT (temperature difference) patterns and refine U-values through observable conditions]

[BASIC - Required] 2.1 Temperature Consistency □ Very consistent throughout home □ Some noticeable variations □ Large variations between areas [Used for: Comfort assessment and system efficiency] 2.2 Window Assessment □ Few windows (less than 10) □ Average number (10-20) □ Many windows (more than 20) [Used for: Heat loss estimates] 2.3 Comfort Issues (select all) □ Cold/hot spots □ Drafty areas □ Humidity issues □ No major issues [Used for: Problem identification] [ADVANCED] 2.1 Temperature Consistency Do you notice temperature differences between: Floors: □ No difference □ 1-3 degrees □ 4-7 degrees □ More than 7 degrees □ Not sure [Used for: ΔT calculations, heat stratification analysis] Rooms on same floor: □ No difference

[ADVANCED - Optional]

□ More than 7 degrees

□ 1-3 degrees□ 4-7 degrees

□ Not sure

2.2 Window Assessment Approximate number of windows:

[Used for: ΔT calculations, heat distribution analysis]

□ Small (1-6) □ Medium (7-12) □ Large (13-18) □ Very Large (19+) [Used for: Surface area (A) adjustments]
Observable window issues (select all): Condensation between panes Visible drafts (curtain movement) Ice or frost in winter Excessive heat gain in summer No issues [Used for: U-value adjustments]
2.3 Insulation Indicators Observable signs (select all): Snow melts quickly from roof Icicles form on roof edges Walls cold to touch in winter Rooms heat up quickly in summer None of these issues [Used for: U-value adjustments]
2.4 If known, window types: Single pane Double pane Triple pane Low-E coating Not sure [Used for: Precise U-value calculations]
2.5 If accessible, insulation type: □ Fiberglass batts □ Blown-in cellulose □ Spray foam □ No visible insulation □ Not sure [Used for: Precise U-value calculations]

BACKEND INFORMATION:

Derived Values:

1. Window U-value adjustments:

- Based on observed issues
- Window type (if known)
- Installation period Formula: Standard Window U-value × Condition Factor

2. Wall U-value adjustments:

- Based on observed temperature issues
- Insulation type (if known)
- Observable signs Formula: Base Wall U-value × Condition Factor

Reference Tables Needed:

- 1. Standard U-values for window types:
 - Single pane: 5.8 W/m²K
 - Double pane: 2.8 W/m²K
 - Triple pane: 1.8 W/m²K
 - With Low-E: Multiply by 0.8

2. Condition Factors:

- No issues: 1.0
- Minor issues: 1.2
- Major issues: 1.5
- Severe issues: 2.0

3. Temperature Difference Multipliers:

- Based on observed temperature variations
- Adjusts heat transfer calculations

Calculations:

1. Adjusted Heat Transfer (Q):

$$Q = (U \times A \times \Delta T) \times Condition Factor$$

Where:

- U = Base U-value from Section 1
- A = Surface area from Section 1
- ΔT = Observed temperature differences
- Condition Factor from observed issues

2. Temperature Difference (ΔT):

 ΔT = Base Temperature Difference × Stratification Factor

Where:

- Base Temperature = Thermostat setting Outside temperature
- Stratification Factor based on observed floor-to-floor differences
- 3. Total Window Heat Loss:

Qwindows = (Uwindow × Awindow × ΔT) × Number of Windows × Window Condition Factor

SECTION 3: HVAC Systems

[Purpose: Establish η (system efficiency), refine ΔT calculations, and determine system characteristics for HVAC energy consumption]

[BASIC - Required]

□ Radiators or baseboards

3.1 Heating/Cooling Type □ Central system (heats/cools whole house) □ Individual units (window/portable units) □ Mixed system [Used for: System efficiency baseline]	
3.2 System Performance Works well (no issues) Some problems (occasional issues) Needs attention (frequent issues) Used for: Improvement priorities]	
3.3 Temperature Control Manual thermostat Programmable thermostat Smart/WiFi thermostat Used for: Control capabilities]	
ADVANCED]	
3.1 Heating System Type:	
Primary heating method: ☐ Forced air (vents in floors/walls)	

 □ Heat pump □ Portable heaters □ Not sure [Used for: System efficiency (η) baseline]
3.2 Cooling System Type:
Primary cooling method: □ Central air conditioning □ Window units □ Portable units □ None □ Not sure [Used for: System efficiency (η) baseline]
3.3 System Performance Indicators Heating issues (select all): □ Takes long time to heat up □ Frequent on/off cycling □ Some rooms never reach desired temperature □ System runs constantly □ No issues [Used for: η adjustments]
Cooling issues (select all): □ Takes long time to cool □ Frequent on/off cycling □ Some rooms never reach desired temperature □ System runs constantly □ No issues [Used for: η adjustments]
3.4 Temperature Settings Winter thermostat setting: □ Below 65°F □ 65-68°F □ 69-72°F □ Above 72°F [Used for: ΔT calculations]
Summer thermostat setting: □ Above 78°F □ 75-78°F □ 72-74°F □ Below 72°F [Used for: ΔT calculations]

[ADVANCED - Optional]

3.5 System Details	(if known):
System age:	years
Last maintenance:	months ago
SEER rating (if kno	wn):
AFUE rating (if kno	wn):
[Used for: Precise I	γ calculations]

BACKEND INFORMATION:

Derived Values:

- 1. System Efficiency (η): Base efficiency adjusted by:
 - System type
 - Observed issues
 - Age (if known)
 - Maintenance status Formula: Base Efficiency × Age Factor × Maintenance Factor × Performance Factor
- 2. Air Distribution Efficiency: Based on:
 - System type
 - Reported temperature consistency
 - Home layout (from Section 1)

Reference Tables Needed:

1. Base Efficiency Values: Heating Systems:

Forced air: 0.85Radiators: 0.80Heat pump: 0.95Portable: 0.99

Cooling Systems:

Central air: 0.85Window units: 0.75Portable: 0.70

2. Performance Adjustment Factors:

No issues: 1.0Minor issues: 0.9Major issues: 0.7Severe issues: 0.5

Calculations:

1. HVAC Energy Consumption (EHVAC): EHVAC = $(V \times \rho \times Cp \times \Delta T)/\eta$

Where:

- V = Volume from Section 1
- ρ = 1.225 kg/m³ (standard air density)
- Cp = 1.005 kJ/kg·K (specific heat capacity of air)
- ΔT = Temperature difference from settings
- η = Calculated system efficiency
- 2. Seasonal Energy Efficiency:

Winter: EHVAC-winter = EHVAC × HDDs × Usage Factor Summer: EHVAC-summer = EHVAC × CDDs × Usage Factor

Where:

- HDDs = Heating Degree Days
- CDDs = Cooling Degree Days
- Usage Factor based on thermostat settings
- 3. System Performance Score:

SPS = $\eta \times Distribution Efficiency \times Usage Pattern Factor$

SECTION 4: Water Heating System

[Purpose: Calculate water heater energy consumption and heat loss, establish usage patterns for time (t)]

[BASIC - Required]

- 4.1 Water Heater Type
- □ Standard tank
- □ Tankless

□ Don't know [Used for: Efficiency baseline]
4.2 Hot Water Usage □ Low (1-2 people) □ Medium (3-4 people) □ High (5+ people) [Used for: Consumption estimates]
4.3 System Performance □ Works well □ Some issues □ Frequent problems [Used for: Improvement needs]
[ADVANCED]
4.1 Water Heater Type: □ Standard tank □ Tankless (on-demand) □ Heat pump water heater □ Part of boiler system □ Not sure [Used for: Power (P) baseline, efficiency factors]
4.2 Hot Water Usage Patterns Daily shower usage: □ 1-2 showers □ 3-4 showers □ 5+ showers □ Not sure [Used for: Time (t) calculations]
Weekly laundry loads: □ 1-3 loads □ 4-7 loads □ 8+ loads □ Not sure [Used for: Time (t) calculations]
Dishwasher usage: □ Daily □ Every other day □ Weekly □ Never/No dishwasher

Used for: Time (t) calculations]
4.3 Temperature Settings (if known): □ Low (120°F or less) □ Medium (121-130°F) □ High (131-140°F) □ Very High (above 140°F) □ Not sure [Used for: ΔT calculations]
[ADVANCED - Optional]
4.4 System Details (if known): Tank size: gallons System age: years Energy Factor (EF): First Hour Rating: gallons (Used for: Precise power calculations)
4.5 Tank Location: Conditioned space (living area) Unconditioned space (garage/basement) Outside Used for: Heat loss calculations]
BACKEND INFORMATION:

Derived Values:

- 1. Daily Hot Water Demand: Based on:
 - Number of showers
 - Laundry frequency
 - Dishwasher usage Formula: Base Usage × Activity Factors
- 2. System Power Rating: Based on:
 - System type
 - Tank size (if known)
 - Usage patterns

Reference Tables Needed:

1. Standard Power Ratings:

- Tank (40 gal): 4500W

- Tank (50 gal): 5500W

- Tankless: 18000W

- Heat Pump: 2500W

2. Usage Multipliers: Shower:

- 1-2 per day: 1.0

- 3-4 per day: 1.5

- 5+ per day: 2.0

Laundry:

- 1-3 loads: 1.0

- 4-7 loads: 1.3

- 8+ loads: 1.6

Calculations:

1. Daily Energy Consumption:

$$E = P \times t$$

Where:

- P = Rated power × Efficiency factor
- t = Daily runtime based on usage patterns
- 2. Heat Loss (for storage tanks):

$$Q = U \times A \times \Delta T$$

Where:

- U = Tank insulation value
- A = Tank surface area
- ΔT = Tank temp Ambient temp
- 3. Total Water Heating Energy:

Where:

- Usage Factor from activity patterns
- Standby Loss from heat loss calculation
- 4. Annual Energy Cost:

Cost = Etotal × 365 × Energy Rate

SECTION 5: Heat Transfer Analysis

[Purpose: Detailed analysis of heat transfer through building envelope, refining U, A, and ΔT values]

[BASIC - Required]

5.1 Temperature Balance

 □ Home heats/cools evenly □ Some areas heat/cool differently □ Very uneven heating/cooling [Used for: Distribution assessment]
5.2 Problem Areas (select all) Windows feel drafty Walls feel cold/hot Floors feel cold Rooms heat/cool slowly No major issues [Used for: Heat loss identification]
5.3 Sun Exposure Strong sun exposure Moderate sun exposure Limited sun exposure [Used for: Solar heat gain]
5.4 Weather Impact ☐ Home stays comfortable in extreme weather ☐ Somewhat affected by weather ☐ Significantly affected by weather [Used for: Envelope performance]
LADVANOEDI

[ADVANCED]

5.1 Room Temperature Variations

During heating season: Warmest room typically:°F Coldest room typically:°F □ Not sure [Used for: ΔT calculations, heat distribution analysis]
5.2 Surface Temperature Indicators Cold surfaces in winter (select all): □ Exterior walls □ Windows □ Floors □ Ceilings □ None noticed [Used for: U-value adjustments]
5.3 Sun Exposure Which sides get direct sunlight:
Morning: □ Front □ Back □ Left □ Right □ Not sure
Afternoon: □ Front □ Back □ Left □ Right □ Not sure [Used for: Solar heat gain calculations]
5.4 Wind Exposure Which walls experience strongest winds: □ Front □ Back □ Left □ Right □ Not sure [Used for: Heat transfer coefficient adjustments]

[ADVANCED - Optional]

5.5 Wall Construction (if known):
□ Brick
□ Wood frame with siding
□ Stone
□ Stucco
□ Other:
[Used for: Precise U-value calculations]
5.6 Detailed Measurements:
Wall heights: feet
Wall lengths: feet
Window areas: sq ft
Door areas: sq ft
[Used for: Precise area calculations]

BACKEND INFORMATION:

Derived Values:

- 1. Effective U-values: Based on:
 - Construction type
 - Observed temperature patterns
 - Wind exposure Formula: Base U-value × Exposure Factor × Condition Factor
- 2. Solar Heat Gain: Based on:
 - Orientation
 - Window area
 - Sun exposure patterns Formula: Solar Factor × Window Area × Exposure Time

Reference Tables Needed:

1. U-values by Construction:

- Brick: 0.7-2.0 W/m²K

- Wood frame: 0.3-0.5 W/m²K

- Stone: 1.5-2.5 W/m²K

- Stucco: 0.4-0.7 W/m²K
- 2. Solar Heat Gain Coefficients:
 - By orientation
 - By time of day
 - By season
- 3. Wind Exposure Factors:

Sheltered: 0.8Normal: 1.0Exposed: 1.2

Calculations:

1. Total Heat Transfer:

Qtotal = $\Sigma(U \times A \times \Delta T)$ for each surface type

Where:

- U = Effective U-value by surface
- A = Surface area
- ΔT = Temperature difference
- 2. Solar Heat Gain:

Qsolar = SHGC × A × Solar Radiation

Where:

- SHGC = Solar Heat Gain Coefficient
- A = Window area
- Solar Radiation from local weather data
- 3. Net Heat Transfer:

Qnet = Qtotal - Qsolar + Qinfiltration

Where:

- Qinfiltration based on air leakage assessment
- 4. Surface-Specific Heat Loss:

For each surface:

Qsurface = $U \times A \times \Delta T \times Exposure Factor$

SECTION 6: Lighting Assessment

[Purpose: Calculate lighting efficiency and energy consumption, establish usage patterns]

[BASIC - Required]
6.1 Light Bulb Types I Mostly LED/Efficient bulbs I Mix of bulb types I Mostly older bulb types [Used for: Efficiency baseline]
6.2 Natural Light Good natural light Moderate natural light Limited natural light [Used for: Lighting needs]
6.3 Lighting Controls □ Basic switches only □ Some advanced controls □ Smart/automated lighting [Used for: Usage patterns]
[ADVANCED]
6.1 Primary Light Bulb Types
Estimate percentage of each: LED:% CFL:% Incandescent:%
[Used for: Power (P) calculations, efficiency baseline]

Day (9am-5pm): Most lights Some lights Few lights No lights
Evening (5pm-10pm): Most lights Some lights Few lights No lights
Night (10pm-5am): Most lights Some lights Few lights No lights Used for: Time (t) calculations
6.3 Natural Light Availability
Rooms with good natural light: Living Room Kitchen Bedrooms Bathroom Office None [Used for: Usage pattern adjustments]
[ADVANCED - Optional]
6.4 Fixture Details (if known):
Total number of: Fixed ceiling fixtures: Wall fixtures: Lamps/portable lights: [Used for: Precise power calculations]
6.5 Control Types: □ Standard switches □ Dimmer switches

- □ Motion sensors
- □ Smart controls/timers
- □ None of above

[Used for: Usage pattern adjustments]

BACKEND INFORMATION:

Derived Values:

- 1. Average Luminous Efficiency: Based on:
 - Bulb type distribution
 - Fixture types Formula: Weighted average of bulb efficiencies
- 2. Daily Usage Hours: Based on:
 - Reported patterns
 - Natural light availability
 - Control types

Reference Tables Needed:

- 1. Bulb Efficiency Values:
 - LED: 80-100 lm/W
 - CFL: 60-70 lm/W
 - Incandescent: 10-17 lm/W
- 2. Standard Wattage by Bulb Type: LED:
 - 60W equivalent: 9W75W equivalent: 11W
 - 100W equivalent: 15W

CFL:

- 60W equivalent: 14W
- 75W equivalent: 19W100W equivalent: 23W
- 3. Usage Pattern Multipliers:

Most lights: 1.0Some lights: 0.6Few lights: 0.3No lights: 0

Calculations:

1. Daily Energy Consumption:

$$E = \Sigma(P \times t)$$

Where:

- P = Bulb wattage × number of fixtures
- t = Usage hours per period For each usage period
- 2. Lighting Efficiency:

```
Elighting = \Sigma(Luminous flux)/\Sigma(Wattage)
```

Where:

- Luminous flux from bulb specifications
- Wattage from actual power consumption
- 3. Annual Energy Usage:

```
Eannual = (Weekday total × 260) + (Weekend total × 105)
```

Where:

- Weekend usage typically 15% higher
- 4. Potential Savings:

```
Savings = Current Usage - LED Equivalent Usage
```

Where:

- LED Equivalent = Current lumens ÷ LED efficiency

SECTION 7: Appliance Inventory

[Purpose: Calculate total appliance energy consumption and establish usage patterns]

[BASIC - Required]

7.1 Major Appliances Age

□ Mostly newer (under 5 years)

□ Mix of ages□ Mostly older (over 10 years)[Used for: Efficiency estimates]
 7.2 Key Energy Users (select all) Extra refrigerator/freezer Pool/spa equipment Large entertainment systems Home office equipment [Used for: Usage assessment]
7.3 Usage Patterns □ Heavy daily use □ Moderate use □ Light/occasional use [Used for: Consumption estimates]
[ADVANCED]
7.1 Major Appliances Present
Select all that apply: Refrigerator Washing Machine Dryer Dishwasher Range/Oven Microwave [Used for: Base power load calculations]
 7.2 Usage Patterns Laundry: Daily 2-3 times per week Weekly Less than weekly [Used for: Time (t) calculations]
Dishwasher: Daily 2-3 times per week Weekly Less than weekly Never [Used for: Time (t) calculations]

Cooking: □ Multiple times daily □ Once daily □ Few times per week □ Rarely [Used for: Time (t) calculations]
7.3 Additional Appliances
Select all that apply: Second Refrigerator Freezer (separate unit) Dehumidifier Space Heater Window AC Pool Pump Hot Tub [Used for: Additional power load calculations]
[ADVANCED - Optional]
7.4 Appliance Details (if known):
For each major appliance:
Age: years
Age: years Energy Star rated? □ Yes □ No □ Not sure
Energy Star rated? □ Yes □ No
Energy Star rated? Yes No Not sure Size/Capacity: (cu.ft/loads)

1. Base Power Consumption: Based on:

- Appliance type
- Age (if known)
- Energy Star status
- Usage patterns Formula: Standard Power × Age Factor × Efficiency Factor
- 2. Operating Time: Based on:
 - Reported usage patterns
 - Household size (from earlier sections)
 - Typical cycle durations

Reference Tables Needed:

- 1. Standard Power Ratings: Refrigerator:
 - Standard: 150-200WEnergy Star: 100-150W

Washer:

Standard: 500WEnergy Star: 400W

Dryer:

Electric: 3000WGas: 200W + gas

Dishwasher:

Standard: 1800WEnergy Star: 1300W

2. Usage Duration Standards:

Dishwasher cycle: 45-60 mins
Washer cycle: 30-60 mins
Dryer cycle: 45-60 mins
Cooking: 20-40 mins/meal

3. Age Adjustment Factors:

0-2 years: 1.03-5 years: 1.16-10 years: 1.210+ years: 1.3

Calculations:

1. Daily Energy Consumption:

For each appliance:

 $E = P \times t \times U$ sage Factor

Where:

- P = Rated power × Age factor
- t = Operating time
- Usage Factor based on frequency
- 2. Standby Power:

Estandby = Base standby × 24 hours

Where:

- Base standby from reference tables
- 3. Monthly Consumption:

Emonthly = Σ (Daily consumption × Days of use) + (Standby × Days in month)

1. Annual Operating Cost:

Cost = Eannual × Energy Rate

Where:

- Eannual = Monthly consumption × 12
- Energy Rate from utility data

SECTION 8: Baseline Energy Consumption

[Purpose: Establish baseline energy usage and patterns for comparison and savings calculations]

[BASIC - Required]

8.1 Typical Energy Bills

□ Low (\$100 or less/month)□ Medium (\$101-250/month)□ High (over \$250/month)[Used for: Cost baseline]
8.2 Seasonal Patterns □ Highest in summer □ Highest in winter □ Fairly consistent [Used for: Usage patterns]
8.3 Energy Types Used □ Electricity only □ Electricity + Gas □ Multiple fuel types [Used for: Energy source analysis]
[ADVANCED]
8.1 Energy Bill Access
Do you have access to your energy bills? Yes, full year of bills Yes, partial year No access to bills [Used for: Baseline consumption data]
8.2 Monthly Electricity Usage
If bills available, enter monthly kWh: Winter (Dec-Feb): kWh/month Spring (Mar-May): kWh/month Summer (Jun-Aug): kWh/month Fall (Sep-Nov): kWh/month Not sure [Used for: Seasonal consumption patterns]
8.3 Additional Energy Sources
Select all used: Natural Gas Propane Heating Oil

□ Wood □ None [Used for: Total energy calculations]
8.4 Peak Usage Periods
Highest energy usage typically occurs: Morning (5am-9am) Midday (9am-3pm) Evening (3pm-8pm) Night (8pm-5am) Not sure [Used for: Usage pattern analysis]
[ADVANCED - Optional]
8.5 Detailed Usage Data
If smart meter/monitoring system: Peak demand: kW Average daily usage: kWh Power factor: (if known) [Used for: Precise consumption calculations]
BACKEND INFORMATION:
Derived Values:
 Baseline Energy Profile: Based on: Reported consumption Home characteristics Occupancy patterns Formula: Base Load + Variable Load × Usage Factors
2. Seasonal Adjustment Factors: Based on: - Climate zone

- Reported seasonal usage

- HVAC system type

Reference Tables Needed:

- 1. Regional Average Consumption:
 - By home type and size:
 - Small (< 1500 sq ft): X kWh/month
 - Medium (1500-2500 sq ft): Y kWh/month
 - Large (> 2500 sq ft): Z kWh/month
- 2. Seasonal Multipliers:
 - Winter: 1.2-1.8Spring: 0.8-1.0Summer: 1.3-1.6
 - Fall: 0.8-1.0
- 3. Energy Source Conversion Factors:
 - Natural Gas: 29.3 kWh/therm
 - Propane: 7.1 kWh/gallon
 - Heating Oil: 43.5 kWh/gallon
 - Wood: 3,000 kWh/cord

Calculations:

1. Total Annual Energy Consumption:

Etotal = Σ (Monthly Electric × 12) + Σ (Other Sources × Conversion Factors)

Where:

- Monthly Electric = Reported or estimated kWh
- Other Sources converted to kWh equivalent
- 2. Baseline Load:

Ebaseline = Minimum monthly usage × 12

Where:

- Minimum typically spring/fall months
- 3. Variable Load:

Evariable = Etotal - Ebaseline

Categorized by:

- HVAC
- Water Heating
- Other seasonal loads

4. Energy Use Intensity (EUI):
EUI = Etotal ÷ Conditioned Floor Area

Where:

- EUI in kWh/sq ft/year
- Used for benchmarking
- 5. Cost Analysis:

Annual Cost = Σ (Monthly Usage × Rate)

Where:

- Rate includes tiered pricing if applicable
- Separate calculations for each energy source

SECTION 9: Energy Consumption Analysis

[Purpose: Analyze consumption patterns and identify efficiency opportunities]

[BASIC - Required]

- 9.1 Peak Usage Time
- □ Morning peak
- □ Evening peak
- □ Consistent all day

[Used for: Usage patterns]

- 9.2 Biggest Energy Users
- □ Heating/Cooling
- □ Water Heating
- □ Appliances/Other

[Used for: Consumption focus]

- 9.3 Recent Changes
- □ Usage increasing
- □ Usage decreasing
- □ Staying about the same

[Used for: Trend analysis]

[ADVANCED]

9.1 Occupancy Patterns

Weekday home occupancy: □ All day (20-24 hours) □ Most of day (13-19 hours) □ Half day (7-12 hours) □ Limited (<6 hours) [Used for: Occupancy Factor calculations]
9.2 Peak Usage Activities
Select typical high-energy activities:
Morning (5am-9am): Shower/Bath Cooking Laundry Space Heating/Cooling None
Evening (5pm-10pm): □ Cooking □ Laundry □ Entertainment □ Space Heating/Cooling □ None [Used for: Peak load calculations]
9.3 Seasonal Variations
Energy usage increases notably during: □ Very cold days □ Very hot days □ Rainy/cloudy days □ No notable change □ Not sure [Used for: Weather normalization]
[ADVANCED - Optional]
9.4 Load Distribution
If known, percentage of total energy used by: HVAC:% Water Heating:% Appliances:%

Lighting:% Other: %
[Used for: Detailed consumption analysis]
[Occurrent Detailed consumption analysis]
9.5 Smart Meter Data
If available:
Average daily minimum: kW
Average daily maximum: kW
Time of peak usage:
[Used for: Load profile analysis]

BACKEND INFORMATION:

Derived Values:

1. Occupancy Factor:

Based on:

- Reported occupancy hours
- Activity patterns
- Number of occupants

Formula: Base Factor × Activity Multiplier × Occupancy Hours

2. Load Factor:

Based on:

- Peak to average ratio
- Usage distribution
- Seasonal patterns

Reference Tables Needed:

1. Activity Power Requirements:

Morning Activities:

- Shower: 4.5 kWh/hour - Cooking: 2.3 kWh/hour - Laundry: 3.8 kWh/hour

Evening Activities:

- Cooking: 2.3 kWh/hour

- Entertainment: 0.5 kWh/hour

- Laundry: 3.8 kWh/hour
- 2. Occupancy Multipliers:
 - All day: 1.0
 - Most of day: 0.8
 - Half day: 0.5
 - Limited: 0.3
- 3. Seasonal Adjustment Factors:

By climate zone and season:

- Heating season
- Cooling season
- Shoulder season

Calculations:

1. Energy Efficiency Score (EES):

EES = Total Consumption/(Intervention Savings × Occupancy Factor)

Where:

- Total Consumption from Section 8
- Intervention Savings = Potential savings identified
- Occupancy Factor from occupancy patterns
- 2. Peak Load Analysis:

Peak Load Ratio = Peak Demand/Average Demand

Where:

- Peak Demand = Highest recorded kW
- Average Demand = Total kWh/hours in period
- 3. Weather Normalized Usage:

Enorm = Eactual × (HDDnorm/HDDactual + CDDnorm/CDDactual)

Where:

- HDD = Heating Degree Days
- CDD = Cooling Degree Days
- 4. Usage Pattern Score:

UPS = (Off-Peak Usage/Total Usage) × Efficiency Factor

Where:

- Off-Peak Usage = Non-peak hour consumption
- Efficiency Factor based on load distribution

5. Potential Savings Analysis:

For each end use:

Potential Savings = Current Usage × (1 - Efficiency Factor)

Where:

- Efficiency Factor from reference standards

SECTION 10: Energy Provider Information

[Purpose: Establish utility rates, emission factors, and available programs for savings calculations]

[BASIC - Required]

10.1 Utility Type □ Single provider (electric only) □ Dual fuel (electric + gas) □ Multiple providers [Used for: Rate analysis]
10.2 Rate Structure □ Standard flat rate □ Time-of-use rate □ Don't know [Used for: Cost calculations]
10.3 Utility Programs □ Currently participating □ Interested in programs □ Not participating [Used for: Program opportunities]

[ADVANCED]

10.1 Primary Utility Provider

Select your electric utility:
[Dropdown of local providers]

□ Not listed/Not sure
[Used for: Rate structure and EF calculations]

10.2 Rate Structure

Derived Values:

1. Effective Rate:

Based on:

- Provider base rates
- Usage patterns
- Program participation

Formula: Base Rate × Time Factor × Program Adjustments

2. Emission Factor:

Based on:

- Utility generation mix
- Regional grid factors
- Green power participation

Reference Tables Needed:

1. Utility Rate Structures:

By provider:

- Base rates
- Time-of-use periods
- Tier thresholds
- Demand charges
- 2. Emission Factors:

By generation source:

- Coal: 0.94 kg CO2/kWh
- Natural Gas: 0.44 kg CO2/kWhNuclear: 0.012 kg CO2/kWhRenewable: 0 kg CO2/kWh
- 3. Program Savings Factors:

- Demand response: 5-15%

- Time-of-use: 10-20%

- Green power: Varies by program

Calculations:

1. Monthly Cost Analysis:

```
Cost = (Base Usage × Base Rate) +
(Peak Usage × Peak Rate) +
(Demand × Demand Rate)
```

Where:

- Usage from Section 8
- Rates from utility data
- 2. Carbon Emissions:

Creduced = $S \times EF$

Where:

- S = Energy savings (kWh)
- EF = Weighted emission factor
- 3. Program Savings:

Annual Savings = Base Cost × Program Factor

Where:

- Program Factor from enrollment type
- 4. Total Energy Cost:

For all energy sources:

Total Cost = Σ (Usage × Rate × Conversion Factor)

Where:

- Conversion Factor for non-electric sources
- 5. Cost Projection:

```
Future Cost = Current Cost ×
(1 + Rate Escalation) ^ Years
```

Where:

- Rate Escalation from utility forecasts

SECTION 11: Renewable Energy Potential

[Purpose: Calculate solar potential and evaluate renewable energy opportunities]

[BASIC - Required]

11.1 Solar Access □ Good sun exposure □ Partial sun exposure □ Limited sun exposure [Used for: Solar potential]
11.2 Installation Interest □ Actively interested □ Maybe in future □ Not interested [Used for: Planning purposes]
11.3 Property Suitability □ No major barriers □ Some possible issues □ Significant barriers [Used for: Feasibility assessment]
[ADVANCED]
11.1 Roof Characteristics
Roof condition: New (0-5 years) Good (6-10 years) Fair (11-15 years) Poor (15+ years) Not sure [Used for: Installation feasibility]
11.2 Solar Access Shade on roof
during day: No shade Partial morning shade Partial afternoon shade Heavy shade Not sure [Used for: Solar radiation calculations]
11.3 Tree Coverage
Trees shading roof:

□ None	
□ 1-2 trees	
□ 3-5 trees	
 □ Heavy tree coverage □ Not sure 	
[Used for: Shading factor calculations]	
[Osca for. Orlading factor calculations]	
11.4 Current/Planned Systems	
Select all that apply:	
□ Solar PV installed	
□ Solar thermal installed	
□ Planning installation	
□ No current plans	
[Used for: System integration analysis]	
[ADVANCED - Optional]	
11.5 Roof Details (if known):	
Total roof area: sq ft	
South-facing area: sq ft	
Roof pitch: degrees	
Roof material:	
[Used for: Precise solar calculations]	
11.6 Existing System Details:	
If solar installed:	
System size: kW	
Annual production: kWh	
Installation year:	
[Used for: System performance analysis]	
BACKEND INFORMATION:	
Derived Values:	
Available Roof Area: Based on:	
- Home size	

- Obstructions Formula: Total Area × Usable Factor × Orientation Factor

- Roof type

- 2. Solar Access Factor: Based on:
 - Reported shading
 - Tree coverage
 - Orientation Formula: Base Solar × Shade Factor × Seasonal Adjustment

Reference Tables Needed:

- 1. Solar Radiation Data: By location:
 - Annual average (kWh/m²/day)
 - Seasonal variations
 - Peak sun hours
- 2. System Performance Ratios:
 - Optimal orientation: 0.85
 - East/West facing: 0.80
 - Partial shade: 0.75
- Heavy shade: 0.60
- 3. Installation Cost Factors: By system size:
 - Small (< 6kW): \$3.00/W
 - Medium (6-10kW): \$2.80/W
 - Large (> 10kW): \$2.60/W

Calculations:

1. Solar Energy Potential:

Esolar = $A \times r \times H \times PR$ Where:

- A = Available roof area (m²)
- r = Panel efficiency (typically 0.15-0.22)
- H = Annual solar radiation (kWh/m²)
- PR = Performance ratio (0.7-0.9)
- 2. Annual Production Estimate:

Production = Esolar × System Size × Efficiency Where:

- System Size in kW
- Efficiency includes inverter and system losses

3. Financial Analysis:

Payback Period = Total Cost/(Annual Production × Rate) Where:

- Rate = Current electricity rate
- Total Cost includes installation and equipment
- 4. Carbon Reduction:

CO2 Reduction = Annual Production × Grid EF Where:

- Grid EF = Local grid emission factor
- 5. Roof Capacity:

Maximum System Size = Available Area/Panel Area Where:

- Panel Area ≈ 17.5 sq ft per kW
- Adjusted for spacing and setbacks

SECTION 12: Usage Patterns and Normalization

[Purpose: Establish normalized usage patterns and weather impacts for accurate comparisons]

[BASIC - Required]

12.1 Home Occupancy
□ Home most of the day
□ Home evenings/nights only
□ Varies significantly
[Used for: Usage pattern baseline]
12.2 Temperature Preference
□ Prefer cooler temperatures
□ Average comfort range
□ Prefer warmer temperatures
[Used for: Comfort settings]
12.3 Seasonal Adjustments
□ Same settings year-round
□ Adjust for seasons
□ Use programmable thermostat
[Used for: Energy usage patterns]

[ADVANCED]

Typical weekday occupancy: Morning (5am-9am): □ Full occupancy □ Partial occupancy □ Minimal occupancy Daytime (9am-5pm): □ Full occupancy □ Partial occupancy □ Minimal occupancy Evening (5pm-10pm): □ Full occupancy □ Partial occupancy □ Minimal occupancy [Used for: Usage pattern calculations] 12.2 Weather Sensitivity Energy usage increases with: □ Hot weather □ Cold weather □ Both hot and cold □ No notable change □ Not sure [Used for: Weather normalization] 12.3 Seasonal Behaviors Select all that apply: □ Change thermostat seasonally □ Use windows for cooling □ Use ceiling fans □ Use space heaters □ Use window AC units [Used for: Behavior adjustment factors]

12.1 Occupancy Schedule

[ADVANCED - Optional]

12.4 Detailed Occupancy

IT KNOWN:
Number of occupants:
Hours occupied per day:
Days occupied per week:
Weeks vacant per year:
[Used for: Precise usage calculations]
12.5 Temperature Preferences
Winter thermostat:
Daytime: °F
Nighttime: °F
Summer thermostat:
Daytime: °F
Nighttime: °F
[Used for: Temperature-based normalization]

Derived Values:

1. Occupancy Factor:

Based on:

- Reported schedules
- Number of occupants
- Vacancy periods

Formula: Base Occupancy × Schedule Factor × Seasonal Adjustment

2. Weather Sensitivity Factor:

Based on:

- Reported sensitivity
- HVAC system type
- Building envelope (from Section 5)

Reference Tables Needed:

- 1. Occupancy Multipliers:
 - Full occupancy: 1.0
 - Partial occupancy: 0.6
 - Minimal occupancy: 0.2
- 2. Weather Normalization Factors:

By climate zone:

- Heating degree days (HDD)
- Cooling degree days (CDD)
- Normal year data
- Current year data
- 3. Behavior Adjustment Factors:
 - Natural ventilation: -5% to -15%
 - Ceiling fans: -3% to -8%
 - Space heaters: +10% to +20%
 - Window AC: +15% to +25%

Calculations:

1. Normalized Annual Consumption:

Enorm = Eactual × [(HDDnorm/HDDactual) + (CDDnorm/CDDactual)]

Where:

- HDD = Heating Degree Days
- CDD = Cooling Degree Days
- norm = Normal year
- actual = Current year
- 2. Occupancy-Adjusted Usage:

Where:

- OF = Occupancy Factor
- BF = Behavior Factor
- 3. Daily Load Profile:

For each time period:

Load = Base Load + Variable Load × OF

Where:

- Base Load from minimum usage
- Variable Load from occupancy patterns
- 4. Weather Impact Score:

WIS = (Peak Weather Usage)/(Average Usage)

Where:

- Peak Weather = Highest seasonal usage
- Average = Annual average daily usage

5. Behavior Impact:

BI = Σ (Behavior Factor × Usage Hours)

Where:

- Behavior Factor from reference table
- Usage Hours from schedule

SECTION 13: Energy Improvement Planning

[Purpose: Identify and prioritize energy improvements based on cost-effectiveness and impact]

[BASIC - Required]

13.1 Primary Goal (choose one) □ Reduce energy bills □ Improve comfort □ Fix specific issues □ Environmental impact [Used for: Priority setting]
13.2 Budget Category Low (under \$2,000) Medium (\$2,000-\$10,000) High (over \$10,000) Not determined yet [Used for: Improvement options]
13.3 Timeline □ Want to start soon (within 6 months) □ Planning for future (6+ months) □ No specific timeline [Used for: Project planning]
[ADVANCED]
13.1 Improvement Priorities
Rank your priorities (1-5): Lower energy bills Improve comfort Reduce carbon footprint Address specific issues

Increase home value [Used for: Strategy prioritization]
13.2 Budget Range
Available for improvements: Under \$1,000 \$1,000-\$5,000 \$5,001-\$10,000 Over \$10,000 Not sure yet [Used for: Investment planning]
13.3 Timeline Preferences
Planned implementation: Immediate (0-3 months) Short-term (3-12 months) Long-term (1-3 years) As needed/No timeline [Used for: Project scheduling]
13.4 Implementation Constraints
Select all that apply: Limited budget Need financing Seasonal restrictions Occupancy disruption concerns HOA/Building restrictions None [Used for: Feasibility analysis]
[ADVANCED - Optional]
13.5 Specific Improvements Interest Rate interest (1-5) in: HVAC upgrade Insulation Window replacement Solar installation Smart thermostats LED lighting Appliance upgrades
Appliance upgrades

[Used for: Detailed planning]

13.6 Financial Preferences

Desired payback period:

 $\hfill \Box$ Under 2 years

□ 2-5 years

□ 5-10 years

□ Over 10 years

□ No specific requirement

[Used for: ROI calculations]

BACKEND INFORMATION:

Derived Values:

1. Improvement Priority Score:

Based on:

- Ranked priorities
- Budget availability
- Timeline preferences

Formula: Priority Weight × Budget Factor × Timeline Factor

2. Project Feasibility Score:

Based on:

- Constraints
- Technical requirements
- Implementation complexity

Reference Tables Needed:

1. Improvement Costs:

HVAC:

Basic tune-up: \$200-500New system: \$5,000-12,000

Insulation:

- Attic: \$1,500-3,000 - Walls: \$3,000-8,000

Windows:

- Per window: \$500-1,000

- Whole house: \$8,000-15,000

2. Energy Savings Estimates:

- HVAC upgrade: 20-40%

Insulation: 15-30%Windows: 10-20%LED lighting: 5-10%

- Smart thermostats: 10-15%

3. Implementation Complexity:

Low: 1-2 daysMedium: 3-5 daysHigh: 1+ weeks

Calculations:

1. Payback Period:

P = C/Sannual

Where:

- C = Project cost
- Sannual = Annual savings
 For each improvement option

2. Return on Investment:

ROI = (Lifetime Savings - Cost)/Cost × 100 Where:

- Lifetime Savings = Annual Savings × Expected Life
- Cost includes installation

3. Project Priority Score:

PPS = (Savings/Cost) × Priority Weight × Feasibility Where:

- Priority Weight from user rankings
- Feasibility from constraint analysis

4. Implementation Schedule:

For each project:

Start Date = Current + Lead Time + Dependencies Where:

- Lead Time from complexity table
- Dependencies from project sequencing

5. Budget Allocation:

For prioritized projects:

Available per Project = Total Budget × Priority Score Where:

- Priority Score normalized to total 100%

SECTION 14: Carbon Impact Goals

[Purpose: Establish carbon reduction targets and track emissions impact]

14.1 Environmental Priority ☐ High priority - willing to invest ☐ Medium priority - balance with cost ☐ Low priority - focus on savings [Used for: Goal setting]
14.2 Reduction Target □ Moderate (up to 25%) □ Significant (26-50%) □ Maximum possible [Used for: Planning scope]
[ADVANCED]
14.1 Carbon Reduction Interest
Primary motivation: □ Environmental concern □ Regulatory compliance □ Cost savings □ Property value □ Not sure [Used for: Goal setting approach]
14.2 Current Awareness
Knowledge of carbon footprint: □ Track regularly □ General idea □ Limited understanding

14.3 Reduction Timeline

 □ 1 year □ 2-3 years □ 4-5 years □ 5+ years □ No specific timeline [Used for: Target setting]
14.4 Target Range
Desired reduction: □ 0-25% □ 26-50% □ 51-75% □ 76-100% □ Not sure [Used for: Goal calculations]
[ADVANCED - Optional]
14.5 Specific Targets
14.5 Opecine rargets
If known: Current emissions: kg CO2/year Target emissions: kg CO2/year Target date: [Used for: Precise reduction planning]
If known: Current emissions: kg CO2/year Target emissions: kg CO2/year Target date:

Derived Values:

1. Base Carbon Footprint:

Based on:

- Energy consumption
- Fuel mix
- Utility emission factors

Formula: Energy Use × EF × Fuel Mix Factor

2. Reduction Potential:

Based on:

- Planned improvements
- Timeline
- Technical feasibility

Reference Tables Needed:

1. Emission Factors (EF):

By energy source:

- Electricity: [Regional grid factor]

Natural gas: 0.18 kg CO2/kWhPropane: 0.21 kg CO2/kWh

- Heating oil: 0.25 kg CO2/kWh

2. Reduction Potential by Improvement:

- HVAC upgrade: 20-40%

- Insulation: 15-30% - Solar PV: 40-100%

- LED lighting: 5-10%

- Smart controls: 10-15%

- 3. Carbon Offset Options:
 - REC cost per ton CO2
 - Offset program rates
 - Tree planting impact factors

Calculations:

1. Current Carbon Emissions:

 $CE = \Sigma(Energy Source \times EF)$

Where:

- Energy Source in kWh
- EF = Source-specific emission factor
- 2. Carbon Reduction Target:

CRT = Current Emissions × Target Percentage

Where:

- Target Percentage from user selection
- 3. Annual Reduction Need:

ARN = (Current - Target)/Years

Where:

- Years = Timeline selection
- 4. Project Impact Assessment:

For each improvement:

Carbon Reduction = Energy Savings × EF

Where:

- Energy Savings from Section 13
- EF from utility data
- 5. Gap Analysis:

Remaining Gap = Target - Planned Reductions

Where:

- Planned Reductions = Sum of project impacts
- 6. Offset Requirements:

If gap exists:

Offset Needed = Remaining Gap × Safety Factor

Where:

- Safety Factor = 1.1 for uncertainty
- 7. Progress Tracking:

Reduction Progress = (Initial - Current)/Initial × 100

Where:

- Initial = Baseline emissions
- Current = Latest measurement

SECTION 15: Energy Monitoring and Verification

[Purpose: Establish monitoring protocols and verify energy savings]

[BASIC - Required]
15.1 Preferred Tracking Method
□ Simple bill comparison
□ Basic energy monitoring
□ Professional verification
[Used for: Monitoring approach]

- □ Lower bills
- □ Better comfort
- □ Fewer issues
- □ Environmental impact

[Used for: Performance metrics]

[ADVANCED]

15.1 Current Monitoring

How do you track energy use:

I Monthly bills only
I Smart meter readings
I Energy monitoring system
I Don't currently track

[Used for: Monitoring protocol selection]

15.2 Preferred Tracking Method

Interest in monitoring:

□ Simple monthly comparison

□ Detailed daily tracking

□ Real-time monitoring

□ Annual review only

□ Not sure

[Used for: System recommendations]

15.3 Verification Preferences

Derived Values:

1. Monitoring Protocol:

Based on:

- Current capabilities
- Preferred method
- System complexity

Formula: Base Protocol × Complexity Factor

2. Verification Requirements:

Based on:

- Improvement types
- Investment level
- Reporting needs

Reference Tables Needed:

- 1. Monitoring System Types:
 - Basic (bills): Monthly data
 - Smart meter: Hourly data
 - Real-time: Minute-by-minute
 - Sub-metering: Circuit-level

2. Success Metric Baselines:

- Energy use: kWh/month
- Cost: \$/month
- Carbon: kg CO2/month
- Temperature: °F variance

3. Verification Methods:

By improvement type:

- HVAC: Runtime + temperature
- Insulation: Temperature differential
- Solar: Production monitoring
- Lighting: Usage patterns

Calculations:

1. Energy Savings Verification:

S = Ebefore - Eafter

Where:

- Ebefore = Baseline consumption
- Eafter = Post-improvement consumption

Normalized for weather and occupancy

2. Cost Savings Verification:

$$CS = S \times Rate$$

Where:

- S = Verified energy savings
- Rate = Current utility rate
- 3. Performance Index:

PI = Actual Savings/Predicted Savings × 100

Where:

- Actual from monitoring
- Predicted from Section 13
- 4. Comfort Improvement:

$$CI = (T1 - T2)/T1 \times 100$$

Where:

- T1 = Initial temperature variance
- T2 = Current temperature variance
- 5. ROI Verification:

Actual ROI = (Verified Savings × Years)/Cost × 100

Where:

- Verified Savings = Annual confirmed savings
- Years = Time since implementation
- 6. Monitoring Score:

MS = (Data Points × Frequency × Accuracy)/100

Where:

- Data Points = Number of parameters
- Frequency = Updates per day
- Accuracy = Calibration factor
- 7. Reporting Metrics:

Monthly Report:

- Energy use vs. baseline
- Cost savings to date
- Carbon reduction
- Comfort metrics
- ROI status