

Garbage Collection with FOSS4G

Vicky Vergara / Daniel Kastl

Georepublic

This Old Earth

"This old earth
Needs our help
To stay fresh and clean and green
With a pick it up; pitch it in; and throw it in the can—
This old earth needs a helping hand!"

Celia Virginia Vergara Castillo

- Economist, Computer Scientist
- Work in Georepublic
- pgRouting developer
- Living in Mexico
- Known as Vicky

Please, enjoy FOSS4G Bonn!!!

The Problem

Sustainable City

Waste output

Garbage Collection

Using FOSS4G tools

Montevideo City

Backend Developers

Vicky Vergara
Steve Woodbridge

pgRouting developers

Sustainable City

Consideration of environmental impact

Minimization of

- Required inputs of energy
- Waste output
- Pollution

Waste Output

- Household waste
- Industry waste
- Dry waste
- Wet waste (organic)
- Recyclable waste

Garbage Collection

VRP

Vehicle

Routing

Problem

VRP simple Truck's trip

NP Problem:

VRP: variants

CVRP

C = capacity

The vehicles have limited carrying capacity.

VRPMT

M = Multiple T = trips

The vehicles can do more than one route.

VRPTW

T = time W = windows

The locations have time windows within which visits must be made.

Garbage Collection Truck Trip

Truck with different capacity

Truck Drivers With Different Schedules

VRP variants on Garbage collection

Is a CVRP?

YES!!!

The vehicles have limited carrying capacity.

Is a VRPMT?

YES!!!

The vehicles can do more than one route.

VRPTW

YES!!!

The locations have time windows within visits must be made.

CVRPTWMT

Garbage Collection:

Is a Capacitated
Vehicle Routing
Problem with Time
Windows and
Multiple Trips

More Restrictions

I am in a street market

Can not make U turns

I am on the right side of the street

I pick up from the left side.

More Restrictions

Municipalities

A truck that picks from one municipality, can not pick from another. Exception: trucks that pick up hospitals biomedical waste.

Waste - Truck relationship

For some types of waste there are special types of trucks

Container - Truck relationship

For some types of containers there are special types of trucks

More Restrictions

Access Restriction

A truck can not access areas within a certain times.

Speed Limit

The average speed limit can change depending on the time of the day.

Turns restrictions

A truck can not make a U turn.

Restrictions classification

- Global restrictions:
 - Containers within Municipalities
 - Trucks for Municipalities
 - Containers across Municipalities
 - Medical waste
- Detailed restrictions:
 - Capacity
 - Right/reft side pickup
 - Speed

Approach

FRONTEND

- OSM: Map
- Be able to:
 - Select Containers
 - Select Trucks
 - Select Depot and Dump sites
- Query the Database
- Display results:
 - Route on a map
 - Projected timings
- Global Restrictions handling

Note: The front end is not the focus of this presentation

BACKEND

OSRM

- Version 0.3.3
- Instead of calling using web api:
 - o a C++ interface class
 - Increased performance
- Difficult to maintain a travel time matrix.
 - Strange loops
 - Strange routes

Almost ... Tabu Search

- Shake operation is done by having
 - o 7 different initial solutions.
- Optimize
 - Trip ordering
 - Minimize cost

```
case 1:
    insertBestPairInCleanTrip(trip);
    insertBigSubPathAtBegin(trip);
    break;
```

The Cost Function

- Integrate theory with reality
 - Deep mathematical analysis
 - Reflect the analysis within the code

```
//estimated:
  // forcedWaitTime > 0: truck finishes duties before the shift ends
  // forcedWaitTime < 0: truck finishes duties after the shift ends
  // For this problem: serviceE == 0
  // From the point of view of the truck the endingSite closes at end of
shift
  // therefore the expected value is positive otherwise a time violation
exists
  // at the ending site
  forcedWaitTime = endTime - (arrivalEclosesLast(C) + serviceE());</pre>
```

Code snippet taken from:

A preview

Containers

insertBestPairInCleanTrip

Link to animation::

The complete Route

insertBigSubPathAtBegin

What's next

Code

- Many ideas were coded and discarded.
 - There is a lot of unused code.
- Upgrade to be used with OSRM 5.3
 - Under development
- Migrate the code to C++14
 - Originaly coded with C++98
 - Currently OSRM use C++14
- Develop a open Frontend

Side effects

Incorporated some ideas into pgRouting

- With Points family of functions
 - Pass in front and visit concepts
 - Left /right driving sides
 - http://docs.pgrouting.org/2.2/en/src/withPoints/doc/ withPoints.html#withpoints

Lessons learned

- OSM data
 - Evaluation with OSRM
 - Own storage
 - Postgres (one place have it all)
 - Storage for front end
 - Storage of the problems data
 - Evaluation can be done with other tools like pgRouting

Theory

- NP problems.
- Exponential growth on time execution
- High level abstraction
 - Not many restrictions
- Euclidean approximations
 - Not good for real problems.

Reality

- They are NP problems
- User wants small execution times
- User has many restrictions
 - Restrictions might change between users
- Implied restrictions on a city graph.