RM A54B08a

NACA RM A54B08a

## RESEARCH MEMORANDUM

INVESTIGATION OF THE EFFECTS OF PROFILE SHAPE ON THE

AERODYNAMIC AND STRUCTURAL CHARACTERISTICS OF

THIN, TWO-DIMENSIONAL AIRFOILS

AT SUPERSONIC SPEEDS

By Elliott D. Katzen, Donald M. Kuehn, and William A. Hill, Jr.

Ames Aeronautical Laboratory Moffett Field, Calif.

TECHNICAL LIBRARY
AIRESEARCH MANUFACTURING CO.
9851-9951 SEPULVEDA BLVD.
LOS ANGELES 45, CALIF.
CALIFORNIA

CLASSIFIED DOCUMENT

This material contains information affecting the National Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

## NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

May 7, 1954





CONFIDENTIAL

## NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

## RESEARCH MEMORANDUM

INVESTIGATION OF THE EFFECTS OF PROFILE SHAPE ON THE AERODYNAMIC AND STRUCTURAL CHARACTERISTICS OF

THIN, TWO-DIMENSIONAL AIRFOILS

AT SUPERSONIC SPEEDS

By Elliott D. Katzen, Donald M. Kuehn, and William A. Hill, Jr.

#### SUMMARY

In order to determine the effects of thickness, trailing-edge bluntness, boattailing, and forward profile on the aerodynamic characteristics
of thin airfoils, and to provide a check on the available theoretical
methods, 31 airfoils were tested. The airfoils were 2, 4, and 6 percent
thick and were tested at Mach numbers of 1.45 and 1.98 at Reynolds numbers
of 1.0, 2.0, and 3.5 million in a clean condition and at a Reynolds number
of 3.5 million with transition fixed.

The aerodynamic advantage of very thin airfoils was shown by a rapid increase of maximum lift-drag ratio (e.g., from 5.8 to 14.4 at M = 1.45 and a Reynolds number of 1.0 million) as the airfoil thickness ratio was decreased from 6 to 2 percent. Increased trailing-edge bluntness of the 6-percent-thick airfoils caused a small decrease in maximum lift-drag ratio but a large increase in section modulus; for the 2-percent-thick airfoils, increased bluntness caused a large decrease in maximum liftdrag ratio with only a small increase in section modulus. This has special significance for propeller designers in that it indicates that propellers whose blade elements operate at supersonic speeds should have blunt trailing edges for the thick sections near the hub and relatively sharp trailing edges for the thin sections near the tip. The importance of maintaining a laminar boundary layer on very thin airfoils was shown by the decrease of maximum lift-drag ratio from 14.4 to 11.9 caused by fixing transition at the leading edge of a sharp-trailing-edge 2-percentthick airfoil at a Mach number of 1.45. The effects of the different forward profiles and changes in boattailing were generally such that a reduction in profile area reduced the minimum drag coefficient. The center of pressure of the airfoils moved forward with increased thickness

b



ratio and moved aft with increased trailing-edge bluntness. Available theoretical methods were adequate for calculating the lift and pitching moment of the airfoils under all conditions of the tests. The theoretical methods for calculating foredrag and correlation curves for estimating base pressure were adequate for predicting the total drag when the transition position was known.

#### INTRODUCTION

Although thin airfoils have inherent structural limitations, they are an aerodynamic necessity for wings, control surfaces, and propellers in order to attain practical lift-drag ratios for supersonic airplanes and missiles. The structural limitations of thin airfoils can be alleviated by making the trailing edges blunt and by increasing the area of the boattailed and forward parts of the profile. However, the aerodynamic penalties, if any, involved in these increases in profile area must be evaluated and balanced against the structural improvements they afford. The best means of assessing bluntness and other thickness effects, without having the results obscured by plan-form effects, is by the study of two-dimensional data.

Most of the experimental data available on blunt-trailing-edge airfoils (e.g., refs. 1 through 5) pertain to thickness ratios greater than 5 percent. Since gains in aerodynamic and propulsive efficiency are to be expected with further reductions in thickness ratio, data are required for smaller thickness ratios. For these very thin airfoils, the boundary-layer thickness is often the same order of magnitude as the airfoil thickness and large viscous effects are to be expected, particularly near the base of the model. Thus, experimental evaluation of the available inviscid theories, such as the linear, second-order, and shock-expansion theories, and of the analytical results of references 1, 2, 6, 7, 8, and 9 is required.

The purpose of the present investigation, therefore, is to provide experimental data on thin, blunt-trailing-edge airfoils for evaluating the effects of thickness, trailing-edge bluntness, boattailing, and forward profiles, and to furnish a check on the available theoretical results. To accomplish these aims, 31 airfoils were tested in the Ames 1- by 3-foot supersonic wind tunnel No. 1 at Mach numbers of 1.45 and 1.98 and at Reynolds numbers of 1.0 to 3.5 million.

#### SYMBOLS

NETDENTEAL.

A cross-sectional area of airfoil profile, sq in.

length of boattailed section, in.

airfoil chord, in.

section drag coefficient Cd

section base-drag coefficient cdbase

section minimum drag coefficient cdmin

section minimum foredrag coefficient cdminfore

wing drag coefficient  $C_{D}$ 

section lift coefficient C7.

 $cl_{\alpha}$ rate of change of lift coefficient with angle of attack at

zero angle of attack, per radian

section lift coefficient for maximum lift-drag ratio clopt.

wing lift coefficient CT.

section pitching-moment coefficient about midchord position Cm

wing pitching-moment coefficient about midchord position  $C_{\mathbf{m}}$ 

h trailing-edge thickness, in.

section moment of inertia about chord line, in.4 T

section modulus, in.3

section maximum lift-drag ratio

M Mach number

pb ratio of base pressure to free-stream static pressure

Reynolds number based on chord R

t maximum thickness of airfoil, in. △xc.p. distance of center of pressure forward of midchord position in chord lengths

α angle of attack, deg

 $\beta$   $\sqrt{M^2-1}$ 

γ ratio of specific heats (1.400 for air)

#### EXPERIMENTAL CONSIDERATIONS

### Apparatus

The tests were conducted in the Ames 1- by 3-foot supersonic wind tunnel No. 1 This single-return, continuous-operation, variable-pressure wind tunnel has a Mach number range of 1.2 to 2.5. The Mach number is changed by varying the wall contour by use of flexible plates which comprise the top and bottom walls of the tunnel.

The side-support balance used to measure the aerodynamic forces, and a typical two-dimensional model installation are shown in figure 1. Since this is the first report in which data obtained with this balance have appeared, a more complete description of the balance is given than would normally be the case. The two-dimensional installation includes a through-span model, two boundary-layer plates, and two complete balance units, one located on each side of the tunnel (only one balance unit is shown in figure 1). The model is supported at each end by the balance floating beam, which is, in turn, supported entirely by a set of six (the yawing-moment gage is not shown) interchangeable ring-type strain gages. These gages are attached to the main body of the balance through insulated supports. The complete unit of test model, floating beam, and ring gages comes in contact with the main body of the balance only through these insulated supports, thereby permitting electrical contact to detect fouling of the unit. The balance is rotated by an electric motor driving the worm gear mechanism on the main body of the balance. An airtight drum fits over the entire balance unit and is vented to free-stream static pressure. Calibration of the balance showed that interaction effects between components of the balance were negligible.

Tunnel-wall boundary-layer effects are eliminated by the use of two parallel boundary-layer plates 8 inches apart which are alined with the tunnel free stream and which remain fixed with respect to the main tunnel walls. The spacing between the tunnel wall and the boundary-layer plate is such that all side-wall tunnel boundary layer flows behind the plate. Circular plates in the boundary-layer plates rotate with the model so as to maintain a uniform, preset clearance around the model surface and model shanks. The surfaces of the circular plate and the boundary-layer

CONFIDENTIAL

plate remain flush to within 0.0015 inch. A fairing which completely envelopes the model shank, thereby relieving it of any air load, is an integral part of the rotating circular plate and is connected solidly to the balance housing. The model shank is pinned directly to the floating beam. Clearance around the model surface and model shank was maintained at all times so that the full air load on the wing would be transmitted to the ring gages. The clearance between the wing surface and the boundary-layer plate was preset at approximately 0.030 inch for all the two-dimensional wings (see fig. 2(a)). An auxiliary test arrangement, used only with a semispan wing, which eliminates the 0.030-inch gap by using a 0.007-inch-thick rubber seal is shown in figure 2(b). The semispan wing uses only one balance and boundary-layer plate; the other boundary-layer plate is replaced by a conventional 18-inch-diameter window.

#### Models

All the airfoil sections used in this investigation are shown in figure 3. Each of the 31 sections was derived from one of four basic shapes (having three different forward profiles); namely, (1) biconvex (i.e., two circular arcs), t/c = 0.04, (2) biconvex to the midchord point with the maximum thickness constant to the trailing edge, t/c = 0.04, (3) biconvex to the one-thid chord point with the maximum thickness constant to the trailing edge, t/c = 0.02, 0.04, and 0.06, and (4) NACA 16-004. Seven individual sections were obtained from each of the four blunt airfoils by altering the basic profile, as shown in figure 3(b). In each case, the amounts of bluntness were 100, 60, 30, and 0 percent of the airfoil maximum thickness. The boattail parameter used in the investigation was the ratio of the length of boattail section to the chord length. For the basic airfoils biconvex to c/3, the b/c ratios were 0.05 and 0.33; for the basic airfoil biconvex to c/2, the b/c ratios were 0.05 and 0.50. The biconvex airfoil was not altered. One alteration was made to the NACA 16-004 airfoil by increasing the trailing-edge bluntness to 30 percent with the boattail a straight line from the base tangent to the original profile. Each of these airfoils had a chord length of 6 inches and a span of 8 inches between boundary-layer plates.

Two other wings were used to evaluate quantities necessary for the complete analysis of the main airfoil data. They were (1) a 3/4-inch-chord wedge with a base height of 0.180 inch and a span of 8 inches between boundary-layer plates, (2) a 6-inch-chord, aspect ratio 2, double-wedge, 6-percent-thick wing with a gap that could be sealed (see fig. 2).

The airfoils with blunt trailing edges had a 0.020-inch-diameter base-pressure orifice located symmetrically in the base with the pressure lead brought out at the root of the wing. All leading edges, except for the NACA 16-004 airfoil, and all sharp trailing edges had radii of

CONFIDENTIAL



approximately 0.002 inch for practical reasons of construction and maintenance. The ordinates for the NACA 16-004 section are given in table I.

#### Test Procedure

The airfoils were tested at Mach numbers of 1.45 and 1.98 and at Reynolds numbers of 1.0, 2.0, and 3.5 million at each Mach number with the airfoil surface clean. At a Reynolds number of 3.5 million, the airfoils were also tested with a 1/4-inch-wide salt band starting 1/4 inch from the leading edge. At a Mach number of 1.45, the angle-of-attack range was limited to  $\pm 6^{\circ}$  due to the movement of the diffuser normal shock wave into the test section of the wind tunnel. However, at a Mach number of 1.98 an angle of attack of  $\pm 18^{\circ}$  was attained before this phenomenon occurred. Simultaneous measurements of total force and base pressure were made at each angle of attack. For all tests the humidity of the tunnel air was held to a value of less than 0.0003 pound of water vapor per pound of dry air which is sufficient to reduce condensation effects to a negligible amount.

Since a salt band was used to promote boundary-layer transition, it was necessary to evaluate the wave drag of the salt. For this purpose a 3/4-inch-chord wedge (see fig. 3) was tested at zero angle of attack at both Mach numbers with and without the salt band. An attempt was made to standardize the size of salt crystals used by sifting through two screens of different mesh size thus eliminating all the very large and the very small crystals. Several repeat runs were made to check the consistency with which the salt bands could be applied. The tests indicated that the salt-band results could be repeated within the values of uncertainty in drag coefficient stated later in the section "Accuracy of Data"; that is, the differences between runs with the salt band were no larger than differences between repeat runs without the salt band. For tests of the wedge with and without salt, the total force and the base pressure were measured and the results corrected to foredrag. The difference between the foredrag results with and without salt was taken as the correction for the wave drag of the salt.

The effect of the clearance around the airfoil at the wing root on the aerodynamic forces was evaluated by using identical wing shapes with the gap around one of the wings sealed with a 0.007-inch-thick rubber seal. The change in strain-gage calibration caused by that portion of the applied force required to stretch the elastic rubber seal was determined and found to be negligible by a static-force calibration with model and balance installed in the tunnel. The double-wedge, semispan wings used for this check were run at the same test conditions as were the two-dimensional airfoils. Results of the gap tests, described later, showed that the effect of the gap was insignificant.





### Reduction of Data

All force data were reduced to the usual coefficient form for drag, lift, and pitching moment. The reference length and area used for the coefficients were chord length and plan-form area, respectively. In addition to the total drag for all wings, the foredrag has also been presented in some instances. Base-pressure coefficients are given in the form of the ratio of base pressure to the tunnel free-stream static pressure.

### Corrections to Experimental Results

Corrections to the measured force coefficients were computed for the wave drag of the salt band, for irregularities of the free-stream pressure and stream angle, and for the change in angle of attack due to elastic deformation of model and balance.

The correction (described in detail in the section "Test Procedure") which was applied to the main airfoil data for the wave drag of the salt band is an average of several runs made with the 3/4-inch-chord wedge. The resulting values, expressed in drag coefficient form, are 0.0035 at a Mach number of 1.45 and 0.0022 at a Mach number of 1.98. This correction was determined at zero angle of attack only, but it was applied as a drag-force correction at all angles of attack. It is believed, however, that the error introduced by this method of correction is of no practical consequence.

Since the airfoil was rotated about its midchord point and therefore always remained in nearly the same region of the tunnel stream, a single correction for stream angle sufficed throughout the angle-of-attack range. This stream-angle correction, which was small, and, in general, different for the lift and moment curves, included the amount that the model angle of attack was in error at the initial installation and any asymmetries in construction. The correction was applied very simply by shifting the lift and moment curves so that they would pass through the origin of the axes. Corrections to the force and moment coefficients due to free-stream pressure gradients were negligible for the airfoils of such small thickness ratios as were used in this investigation. The combined elastic deformation of the model and balance for all wings was negligible for all test conditions.



### Accuracy of Data

The accuracy of the final parameters used in the data analysis has been estimated by considering the known accuracy of the individual quantities used in determining these final values. The total uncertainty is given by the square root of the sum of the squares of the individual uncertainties. These uncertainties are given as ± increments in the following table:

| М    | cl                                               | R×10 <sup>6</sup>                             | ΔM    | Δcz                                                                   | △cd                                                                           | $\triangle c_{\mathtt{m}}$                                          | Δα    |
|------|--------------------------------------------------|-----------------------------------------------|-------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|-------|
| 1.45 | 0<br>0<br>2.45<br>2.45<br>0<br>0<br>2.80<br>2.80 | 1.0<br>3.5<br>1.0<br>3.5<br>1.0<br>3.5<br>1.0 | ±0.01 | ±0.005<br>±.002<br>±.005<br>±.002<br>±.005<br>±.002<br>±.012<br>±.005 | ±0.0010<br>±.0004<br>±.0013<br>±.0008<br>±.0010<br>±.0004<br>±.0051<br>±.0020 | ±0.0016<br>±.0005<br>±.0030<br>±.0030<br>±.0016<br>±.0005<br>±.0030 | ±0.10 |

Repeatability of data was checked by making several runs with a given model and was found to be consistent with the above values. In addition to the above quantities, another source of uncertainty is introduced by the gap around the airfoil at the root of the wing. The effect of the gap on the aerodynamic characteristics was estimated from the semispan data shown in figure 4. Since the difference between the runs with and without gap was no more than that for a given model with a gap run twice, the effect of gap was negligible.

#### THEORETICAL CONSIDERATIONS

## Lift and Pitching Moment

Two theoretical methods of calculating the lift and pitching moment were used in the present report. Second-order theory was used for calculating the slopes at  $\alpha=0$ , and shock-expansion theory was used at the higher angles of attack where nonlinearities are to be expected and greater accuracy than that of second-order theory is required. The second-order formulas used for the slopes at  $\alpha=0$  (ref. 1) were:

$$\frac{\mathrm{d}c_{l}}{\mathrm{d}\alpha} = 2C_{1}\left(1 + \frac{C_{2}}{C_{1}}\frac{\mathrm{h}}{\mathrm{c}}\right) \tag{1}$$

CONFIDENTIAL

where

$$C_1 = \frac{2}{\sqrt{M^2 - 1}}$$
 (2)

$$C_2 = \frac{(\gamma + 1)M^4 - 4(M^2 - 1)}{2(M^2 - 1)^2}$$
 (3)

and

$$\frac{\mathrm{dc_m}}{\mathrm{dc_l}} = \frac{\mathrm{C_2}\left(\mathrm{A} - \frac{\mathrm{hc}}{2}\right)}{\mathrm{C_1c^2}\left(\mathrm{1} + \frac{\mathrm{C_2}}{\mathrm{C_1}} \frac{\mathrm{h}}{\mathrm{c}}\right)} \tag{4}$$

Formulas 1 and 4 neglect the base pressure but it was shown in reference 1 that the error involved in excluding the base pressure was negligible for lift and pitching moment.

#### Drag

The drag of the airfoils was predicted by adding calculated values of the pressure foredrag, skin-friction drag, and the base drag. The pressure foredrag was calculated by shock-expansion theory for all the airfoils. For the two round-leading-edge sections (NACA 16-004 airfoils with h/t = 0 and h/t = 0.3), the calculations were made by approximating the leading edge with the largest wedge angle for which the leading-edge shock wave remained attached. Laminar skin-friction coefficients were estimated from the Blasius flat-plate incompressible theory since differences are negligible at the test Mach numbers between this theory and the more accurate theories which account for compressibility. Turbulent skinfriction coefficients were estimated from Cope's theory (ref. 10) since various experimental results summarized by Chapman and Kester in reference 11 have shown this theory to be as accurate as any of the available theories at the Mach numbers of the test. No estimate was made of the skinfriction coefficients for the Reynolds numbers for which natural transition and part laminar, part turbulent boundary layers were indicated on the airfoils because the location of transition was not known. The base drag



was estimated from the correlation plots of reference 12. Both the base drag and the skin-friction drag were assumed constant with angle of attack.

Lift-Drag Ratio and Optimum Lift Coefficient

The maximum lift-drag ratio was calculated from the following second-order equation of reference 1 which is applicable for small values of h/c:

$$\left(\frac{1}{d}\right)_{\text{max}} = \left(\frac{c_1}{2c_{\text{dmin}}}\right)^{1/2} \left(1 + \frac{1}{4} \frac{c_2h}{c_1c}\right)$$
 (5)

The optimum lift coefficient was calculated from

$$c_{lopt} = (2C_1 \ c_{d_{min}})^{1/2} \left(1 + \frac{1}{4} \frac{C_2 h}{C_1 c}\right)$$
 (6)

which was derived from the formulas of reference 1.

### RESULTS AND DISCUSSION

Results of tests of the 31 airfoils are presented in table II in the form of lift, drag, and pitching-moment coefficients and base-pressure ratios as a function of angle of attack. The coefficients are averages of the values measured for both positive and negative angles since the airfoils were symmetrical about the chord plane and the differences for the positive and negative angles were small and consistent with the uncertainties in the data listed previously. Since the data are tabulated, the only basic plots shown (figs. 5 through 8) are typical lift, pitching-moment, drag, and lift-drag-ratio curves. The trends of the data with the parameters of the test (t/c, h/t, b/c, forward profile, M and R) and theoretical and experimental correlation plots are shown in figures 9 through 16. The experimental results of the test, with theoretical predictions for comparison, are summarized in table III as lift-curve and moment-curve slopes at  $\alpha = 0$ , minimum drag coefficient, maximum lift-drag





ratio, and lift coefficient for maximum lift-drag ratio. The results are discussed in the following paragraphs.

#### Lift

Typical lift curves are shown in figure 5. The figure shows that the lift at any given angle increased with trailing-edge thickness and was relatively unaffected by airfoil thickness ratio as predicted by theory. The predicted departure from linearity with angle of attack was slightly less than that measured.

Examination of table III shows that the normalized lift-curve slopes,  $\beta c_{l_{\alpha}}$ , are principally a function of h/c and that there was no consistent variation of  $\beta c_{l_{\alpha}}$  with t/c, b/c, forward profile, R and M. The normalized lift-curve slopes are plotted against h/c in figure 9 for all the models. The mean of the data closely followed the predicted increase in  $\beta c_{l_{\alpha}}$  with h/c. The spread in the data due to variations in t/c and the other parameters mentioned above did not produce deviations from the predicted curve by more than  $\pm 5$  percent, with but few exceptions.

## Pitching Moment and Center of Pressure

Typical pitching-moment coefficients are shown as a function of lift coefficient in figure 6. The data are for sharp-trailing-edge airfoils 2 and 6 percent thick in figure 6(a) and are for 6-percent-thick airfoils with both sharp and fully blunt trailing edges in figure 6(b). The figure shows that at a given lift coefficient and trailing-edge thickness ratio, the effect of increased airfoil thickness ratio was to increase the pitching-moment coefficient. However, for given thickness ratio, the pitching-moment coefficient decreased with increased trailing-edge thickness. Although the predicted pitching-moment curve was slightly more nonlinear with lift for the 6-percent than the 2-percent-thick airfoils and the reverse occurred experimentally, the agreement between theory and experiment was good.

The foregoing trends of lift and pitching-moment coefficient are reflected in the forward movement of the center of pressure (fig. 10) with increased airfoil thickness ratio and in rearward movement with increased trailing-edge bluntness. For the sharp-trailing-edge airfoils shown, the center of pressure moved from 2 to 8 percent of the chord forward of the midchord position at M=1.45 with an increase in airfoil thickness ratio from 2 to 6 percent. Illustrating the opposite trend with increased trailing-edge bluntness, the center of pressure shifted from 8 to 4 percent of the chord forward of the midchord position for the



6-percent-thick airfoil at M=1.45 with an increase from zero to full bluntness. The center of pressure was generally 1 to 2 percent of the chord further forward at M=1.45 than at M=1.98. This was a trend not predicted by theory. The effect of b/c and of forward profile, with t/c and h/t fixed, was generally to shift the center of pressure forward with increased profile area. The variation of the center of pressure with Reynolds number can be seen from table III to be less than  $\pm 0.5$  percent of the chord in most cases.

It can be seen from figure 11 that the predicted and experimental center-of-pressure positions usually agreed within 1 or 2 percent of the chord, with better agreement at M = 1.98 than at M = 1.45.

An example of how two-dimensional section data can be combined with linear-theory tip effects to predict the pitching moment of a finite aspect ratio wing is shown in figure 4. It can be seen that superimposing thickness effects, as given by second-order theory, on linear-theory tip effects improves the prediction of the pitching moment over that which would be calculated with thickness effects neglected.

### Minimum Drag Coefficient

The variation of minimum drag coefficient with airfoil thickness ratio and trailing-edge thickness ratio is shown in figure 12. Data included pertain to various forward-facing profiles and boattail conditions, with transition fixed at R=3.5x106 and with the airfoils in a clean condition at R=1.0x106. The data manifest a rapid increase in with increased t/c or h/t and a decrease in cdmin with increased Mach number. The percentage increase in  $cd_{min}$  with increased h/t was larger for the 2-percent than the 6-percent-thick airfoil, as would be inferred from the theoretical optimum-airfoil results of reference 5. At M = 1.45,  $c_{dmin}$ increased approximately 40 percent (or 0.012) for 6-percent-thick airfoils and 100 percent (or 0.006) for 2-percent-thick airfoils, with an increase in h/t from 0 to 1.0. The effects of changes in the basic airfoil and in b/c were such that, generally speaking, reduction in profile area, regardless of position on the airfoil, reduced cdmin.

The effect of fixing transition at the leading edge of the airfoils is also illustrated in figure 12. The increase in  $c_{d_{\min}}$  shown was usually due to an increase in base drag, as well as to an increase in skin friction. It can be seen from table III that the effect of increased Reynolds number on the airfoils in a clean condition was to increase  $c_{d_{\min}}$ . This indicates that the transition region was moving forward on the airfoil surface with increased Reynolds number because  $c_{d_{\min}}$  would



be expected to decrease with increased Reynolds number if the boundary layer had remained completely laminar.

The theoretical and experimental  $c_{d_{\min}}$  were generally in good agreement, as can be seen in the correlation plots of figure 13. The airfoils for which the predicted drag coefficients were slightly higher than the experimental coefficients usually had sharp trailing edges (table III). This is probably a result of the shock wave near the trailing edge interacting with the boundary layer and causing increased pressures and reduced drag on the rear portion of the airfoils, as first pointed out in reference 13. For the blunt-trailing-edge airfoils, the trailing-edge shock wave occurs further downstream, and the pressures on the rear portion of the airfoil apparently are not increased. The data of figure 13 are presented as total-drag, foredrag, and base-drag coefficients for R=3.5x106 with transition fixed and R=1.0x106 with the airfoils in a clean condition. With transition fixed at R=3.5×106, skin-friction and base-pressure coefficients corresponding to a turbulent boundary layer were used in computing the theoretical cdmin. With the airfoils in a clean condition at R=1.0x106, skin-friction and base-pressure coefficients corresponding to a laminar boundary layer were used in computing the theoretical That the boundary layer was laminar over most of the airfoil is indicated by the good agreement between theory and experiment for the foredrag. The increase in base drag over the predicted values suggests that transition is occurring near the base, thereby decreasing the experimental basepressure ratio and increasing the base drag. Theoretical calculated for R=2.0x106 and R=3.5x106 with the airfoils in a clean condition because the location of transition on the airfoils was not known.

Reference 10 shows that base pressures at a given Mach number can be correlated on the basis of the ratio of the boundary-layer thickness at the base to the base height. Since the boundary-layer thickness at the base of the airfoils with transition fixed near the leading edge was undoubtedly different than for natural transition which did not occur near the leading edge, the base pressure with transition fixed would not be expected to coincide with the base pressure with natural transition. That they did not coincide can be seen from table II. At  $R=3.5\times10^6$  the base-pressure ratios for natural transition (airfoils clean) were higher than those for transition fixed. However, the differences were not large and the differences were smaller at M=1.98 than at M=1.45. In general, figure 13 shows that errors in the base drag of thin airfoils do not seriously affect the prediction of the total drag.

### Drag Due to Lift and Lift-Drag Ratio

Typical variations of drag coefficient and lift-drag ratio with lift coefficient are shown in figures 7 and 8. The drag curves were parabolic and the agreement between theory and experiment was good. The drag coefficient increased with increased trailing-edge bluntness at a given lift coefficient; the increase occurred at a decreasing rate with increased lift coefficient. The lift-drag-ratio curves were more sharply peaked for the 2-percent than for the 6-percent-thick airfoils and for the sharpthan for the fully blunt-trailing-edge airfoils. Furthermore, the lift coefficient for  $(l/d)_{\rm max}$  decreased with decreased t/c and h/t. These trends naturally result from the behavior of  $c_{\rm dmin}$  and are in good agreement with theory.

### Maximum Lift-Drag Ratio

The variation of maximum lift-drag ratio with airfoil thickness ratio and trailing-edge thickness ratio is shown in figure 14. The aerodynamic advantage of very thin airfoils is illustrated by the rapid increase of (1/d) max with decreased t/c for the sharp-trailing-edge airfoil in a clean condition at  $R=1.0\times10^6$  and M=1.45; the  $(l/d)_{max}$ increased from 5.8 to 14.4 with a decrease in t/c from 6 to 2 percent. The increase of  $(l/d)_{max}$  with decreased t/c was larger for the sharpthan the blunt-trailing-edge airfoils, and the effect of increased h/t was to decrease  $(l/d)_{max}$ . The decrease was small for the 6-percent-thick airfoils and became larger with decreased t/c. The effect of the different forward profiles and changes in b/c were generally consistent with the cdmin results in that reduction in profile area increased (1/d) max. Increasing the Mach number from 1.45 to 1.98 caused a larger decrease in (1/d) max for the 2-percent than for the 6-percent-thick airfoils. It is also evident from figure 14 that large gains in  $(l/d)_{max}$ can be achieved by maintaining a laminar boundary layer on very thin airfoils. For the 2-percent-thick sharp-trailing-edge airfoil at M = 1.45,  $(1/d)_{\text{max}}$  was 14.4 for the airfoils in a clean condition at R=1.0×10<sup>6</sup> and 11.9 with transition fixed at R=3.5×106.

In order that the various airfoils may be compared on the basis of both an aerodynamic and a structural criterion, a plot of the variation of  $(l/d)_{\rm max}$  with section modulus is shown in figure 15. The figure shows that large amounts of bluntness of the 2-percent-thick airfoils resulted in large decreases in  $(l/d)_{\rm max}$  but only small increases in section modulus. In contrast, large increases in trailing-edge bluntness of the 6-percent-thick airfoils caused small decreases in  $(l/d)_{\rm max}$  and large increases in section modulus. These trends would be essentially

CONFIDENTIAL.



the same if structural parameters other than section modulus, for instance, torsional rigidity or bending stiffness, had been chosen for comparison. The results have special significance for propeller designers in that they indicate that propellers whose blade elements operate at supersonic speeds should have blunt trailing edges for the thick sections near the hub and relatively sharp trailing edges for the thin sections near the tip. It should be pointed out that airfoils designed to have the minimum wave drag for a given structural criterion (refs. 6 and 8) and for the Mach number and Reynolds number conditions of these tests have smaller leading-edge angles than the airfoils tested. For the 6-percent-thick airfoils especially, it is believed that if airfoils with the same structural characteristics but with smaller leading-edge angles had been tested, higher maximum lift-drag ratios would have been obtained.

The good agreement between theory and experiment for  $c_{l_{\alpha}}$  and  $c_{d_{min}}$  is mirrored in the good agreement for  $(l/d)_{max}$  shown in figure 16.

#### CONCLUSIONS

An investigation to provide experimental aerodynamic data at Mach numbers of 1.45 and 1.98 on thin, two-dimensional, blunt-trailing-edge airfoils afforded the following conclusions:

- 1. The aerodynamic advantage of very thin airfoils was shown by a rapid increase of maximum lift-drag ratio with decreased airfoil thickness ratio.
- 2. Increased trailing-edge bluntness of the 6-percent-thick airfoils caused a small decrease in maximum lift-drag ratio and a large increase in section modulus; for the 2-percent-thick airfoils, increased bluntness caused a large decrease in maximum lift-drag ratio and a small increase in section modulus.
- 3. The importance of maintaining a laminar boundary layer on very thin airfoils was shown by the decrease of maximum lift-drag ratio from 14.4 to 11.9 caused by fixing transition at the leading edge of a sharp-trailing-edge 2-percent-thick airfoil at a Mach number of 1.45.
- 4. The effects of different forward profiles and changes in boattailing were such that, generally, any reduction in profile area reduced the minimum drag coefficient.
- 5. The center of pressure of the airfoils moved forward with increased thickness ratio and aft with increased trailing-edge bluntness.



6. Available theoretical methods were adequate for calculating the lift and pitching moment of the airfoils under all conditions of the test. The theoretical methods for calculating foredrag and correlation curves for estimating base pressure were adequate for predicting the total drag when the position of transition was known.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Feb. 8, 1954

#### REFERENCES

- 1. Chapman, Dean R.: Reduction of Profile Drag at Supersonic Velocities by the Use of Airfoil Sections Having a Blunt Trailing Edge. NACA RM A9H11, 1949.
- 2. Chapman, Dean R., and Kester, Robert H.: Effect of Trailing-Edge Thickness on Lift at Supersonic Velocities. NACA RM A52D17, 1952.
- 3. Jaeger, B. F., Luther, M. L., and Schroedter, G. M.: The Aerodynamic Characteristics at Supersonic Speeds of Blunt-Trailing-Edge Airfoils for the NOTS Small-Caliber Air-to-Air Folding-Fin Rocket. NAVORD Rep. 1287, 1951.
- 4. Amick, J. L., Clark, E. T., Culbertson, P. E., McLeish, W. M., and Liepmann, H. P.: Wind Tunnel Tests of Seventeen Airfoils at Supersonic Speeds. Univ. of Michigan Engineering Research Institute, Project M927, 1953.
- 5. Syvertson, Clarence A., and Gloria, Hermilio R.: An Experimental Investigation of the Zero-Lift-Drag Characteristics of Symmetrical Blunt-Trailing-Edge Airfoils at Mach Numbers from 2.7 to 5.0. NACA RM A53B02, 1953.
- 6. Chapman, Dean R.: Airfoil Profiles for Minimum Pressure Drag at Supersonic Velocities General Analysis with Application to Linearized Supersonic Flow. NACA Rep. 1063, 1952. (Formerly NACA TN 2264)
- 7. Klunker, E. B., and Harder, Keith C.: Comparison of Supersonic Minimum-Drag Airfoils Determined by Linear and Nonlinear Theory. NACA TN 2623, 1952.

V

- 8. Chapman, Dean R.: Airfoil Profiles for Minimum Pressure Drag at Supersonic Velocities Application of Shock-Expansion Theory, Including Consideration of Hypersonic Range. NACA TN 2787, 1952.
- 9. Luther, M. L., Jaeger, B. F., and Schroedter, G. M.: The Lift and Center of Pressure at Supersonic Speeds of Blunt-Trailing-Edge Airfoils With and Without Sweepback. NAVORD Rep. 1288, 1951.
- 10. Cope, W. F.: The Turbulent Boundary Layer in Compressible Flow. National Physical Lab., Engr. Dept., British ARC 7634.
- 11. Chapman, Dean R., and Kester, Robert H.: Measurements of Turbulent Skin Friction on Cylinders in Axial Flow at Subsonic and Supersonic Velocities. Jour. Aero. Sci., vol. 20, no. 7, July 1953, pp. 441-448.
- 12. Chapman, Dean R., Wimbrow, William R., and Kester, Robert H.:
  Experimental Investigation of Base Pressure on Blunt-Trailing-Edge
  Wings at Supersonic Velocities. NACA Rep. 1109, 1952. (Formerly
  NACA TN 2611)
- 13. Ferri, Antonio: Experimental Results With Airfoils Tested in the High-Speed Tunnel at Guidonia. From: Atti di Guidonia, No. 17, Sept. 20, 1939. NACA TM 946, 1940



TABLE I.- AIRFOIL ORDINATES

[Stations and ordinates given in percent of airfoil chord]

| Üpp∈                                                                                                           | er and lower s                                                                                                              | urface                                                                                                                |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Station                                                                                                        | NACA 16-004<br>h/t=0                                                                                                        | NACA 16-004<br>h/t=0.3                                                                                                |
|                                                                                                                | Ordinate                                                                                                                    | Ordinate                                                                                                              |
| 0<br>1.25<br>2.5<br>5.0<br>7.5<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0 | 0<br>.43<br>.60<br>.83<br>1.00<br>1.17<br>1.37<br>1.57<br>1.80<br>1.97<br>2.00<br>1.93<br>1.75<br>1.40<br>.83<br>.47<br>.03 | 0<br>.43<br>.60<br>.83<br>1.00<br>1.17<br>1.37<br>1.57<br>1.80<br>1.97<br>2.00<br>1.93<br>1.75<br>1.40<br>1.00<br>.80 |
| L.E. radiu                                                                                                     | ıs: 0.078                                                                                                                   |                                                                                                                       |





## TABLE II.- LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED

(a) Basic airfoil: Biconvex to c/3, t/c = 0.02(1) h/t = 1.0, b/c = 0

| М    | α,                                                                                         | Sand Land                                                         | R=3.5%                                                                                                     |                                                                                                          |                                                                           |                                                                    | R=3.5%<br>Airfoil                                                |                                                                                                                            |                                                                           |                                                                         | R=2.0                                                                                           |                                                                                                                                     |                                                                 |                                                                    | R=1.03                                                                                            |                                                                                                                   |                                                                                         |
|------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|      | deg                                                                                        | cı                                                                | cm                                                                                                         | c <sub>d</sub>                                                                                           | P <sub>b</sub> /P                                                         | cı                                                                 | c <sub>m</sub>                                                   | ed                                                                                                                         | p <sub>b</sub> /p                                                         | cı                                                                      | cm                                                                                              | cd                                                                                                                                  | p <sub>b</sub> /p                                               | cı                                                                 | cm                                                                                                | cd                                                                                                                | Pb/P                                                                                    |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                         | 0<br>.030<br>.063<br>.100<br>.135<br>.207<br>.284<br>.362<br>.444 | 0<br>.0007<br>.0008<br>.0008<br>.0010<br>.0020<br>.0038<br>.0065<br>.0093                                  | 0.0139<br>.0139<br>.0146<br>.0162<br>.0183<br>.0246<br>.0338<br>.0460                                    | 0.45<br>.46<br>.46<br>.46<br>.46<br>.46<br>.43<br>.43                     | 0<br>.031<br>.064<br>.099<br>.135<br>.206<br>.280<br>.357<br>.438  | 0<br>.0003<br>.0003<br>.0004<br>.0004<br>.0011<br>.0024<br>.0040 | 0.0120<br>.0123<br>.0131<br>.0165<br>.0168<br>.0228<br>.0317<br>.0434                                                      | 0.50<br>.50<br>.51<br>.51<br>.51<br>.51<br>.52<br>.52                     | 0<br>.032<br>.065<br>.100<br>.136<br>.207<br>.283<br>.358<br>.438       | 0<br>.0004<br>.0005<br>.0005<br>.0006<br>.0017<br>.0032<br>.0057                                | 0.0113<br>.0117<br>.0124<br>.0149<br>.0159<br>.0223<br>.0311<br>.0428                                                               | 0.51<br>.51<br>.52<br>.52<br>.52<br>.52<br>.53<br>.54<br>.58    | 0<br>.034<br>.067<br>.104<br>.142<br>.215<br>.294<br>.373          | 0<br>.0005<br>.0003<br>.0003<br>.0001<br>.0008<br>.0023<br>.0037                                  | 0.0102<br>.0109<br>.0116<br>.0142<br>.0162<br>.0217<br>.0324<br>.0429                                             | 0.55<br>.53<br>.52<br>.52<br>.52<br>.53<br>.55<br>.57                                   |
| 1.98 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>5.0<br>6.0<br>8.0<br>10.0<br>14.0<br>14.0<br>16.0<br>18.0 | 0 .018 .038 .059 .081 .124 .167 .211 .254 .342 .619 .739          | 0 .0001<br>.0001<br>.0002<br>.0002<br>.0003<br>.0007<br>.0009<br>.0014<br>.0028<br>.0042<br>.0065<br>.0086 | .0104<br>.0108<br>.0108<br>.0116<br>.0128<br>.0285<br>.0369<br>.0586<br>.0846<br>.1213<br>.1650<br>.2242 | .38<br>.37<br>.38<br>.38<br>.39<br>.39<br>.39<br>.40<br>.43<br>.47<br>.52 | 0 .017 .038 .058 .079 .121 .164 .206 .250 .336 .423 .512 .608 .716 | 0001                                                             | .0082<br>.0084<br>.0085<br>.0092<br>.0105<br>.0141<br>.0194<br>.0259<br>.0344<br>.0589<br>.0424<br>.0830<br>.1603<br>.2147 | .36<br>.36<br>.36<br>.36<br>.37<br>.37<br>.37<br>.37<br>.40<br>.41<br>.42 | 0 .018 .039 .060 .081 .124 .168 .210 .253 .340 .426 .514 .615 .726 .850 | .0003<br>.0003<br>.0004<br>.0004<br>.0005<br>.0005<br>.0011<br>.0020<br>.0028<br>.0045<br>.0067 | .0071<br>.0072<br>.0077<br>.0083<br>.0099<br>.0135<br>.0189<br>.0254<br>.0339<br>.0554<br>.0630<br>.1171<br>.1615<br>.2170<br>.2863 | 47654554456478996434<br>44544544544484444<br>445444444444444444 | 0 .020 .040 .060 .084 .128 .171 .215 .260 .344 .433 .531 .635 .745 | 0 .0003<br>.0003<br>.0005<br>.0005<br>.0011<br>.0011<br>.0016<br>.0021<br>.0037<br>.0056<br>.0075 | .0064<br>.0065<br>.0069<br>.0079<br>.0093<br>.0127<br>.0124<br>.0247<br>.0337<br>.0544<br>.0826<br>.1199<br>.1655 | •59<br>•57<br>•56<br>•56<br>•55<br>•56<br>•57<br>•60<br>•62<br>•61<br>•57<br>•52<br>•47 |

## (2) h/t = 0.6, b/c = 0.05

| М    | α,                                                                                         | Tr                                                                      | R=3.5×                                                                                                              |                                                                                                                            |                                                |                                                                         | R≈3.5                                                                                                      |                                                                                                                            |                                                                                  | I                                                                  | R=2.0>                                                                                            |                                                                                                                                     |                                                | 1                                                                       | R=1.0                                                                           |                                                                                                                            |                                                                    |
|------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|      | deg                                                                                        | cz                                                                      | cm                                                                                                                  | e <sub>d</sub>                                                                                                             | Pb/P                                           | cı                                                                      | cm                                                                                                         | cd                                                                                                                         | p <sub>b</sub> /p                                                                | cl                                                                 | cm                                                                                                | cd                                                                                                                                  | P <sub>b</sub> /P                              | cı                                                                      | cm                                                                              | cd                                                                                                                         | P <sub>b</sub> /P                                                  |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                         | 0<br>.028<br>.064<br>.097<br>.132<br>.202<br>.277<br>.352<br>.430       | 0<br>.0009<br>.0009<br>.0014<br>.0015<br>.0027<br>.0047<br>.0075                                                    | 0.0117<br>.0117<br>.0124<br>.0140<br>.0159<br>.0221<br>.0309<br>.0427<br>.0570                                             | 0.38<br>.38<br>.37<br>.37<br>.38<br>.39<br>.39 | 0<br>.032<br>.064<br>.097<br>.131<br>.201<br>.273<br>.349<br>.425       | 0<br>.0009<br>.0010<br>.0012<br>.0014<br>.0023<br>.0037<br>.0056<br>.0082                                  | 0.0096<br>.0098<br>.0105<br>.0127<br>.0141<br>.0200<br>.0288<br>.0403<br>.0548                                             | 0.55<br>.55<br>.55<br>.53<br>.53<br>.53<br>.53                                   | 0<br>.032<br>.065<br>.099<br>.132<br>.205<br>.278<br>.354<br>.433  | 0<br>.0008<br>.0009<br>.0010<br>.0018<br>.0033<br>.0047<br>.0080                                  | 0.0098<br>.0104<br>.0109<br>.0125<br>.0144<br>.0207<br>.0305<br>.0403                                                               | 0.47<br>.44<br>.44<br>.44<br>.46<br>.54<br>.60 | 0<br>.033<br>.068<br>.103<br>.142<br>.214<br>.290<br>.366               | 0<br>.0003<br>.0003<br>.0010<br>.0010<br>.0016<br>.0033<br>.0052                | 0.0099<br>.0104<br>.0108<br>.0124<br>.0143<br>.0199<br>.0293<br>.0405                                                      | 0.47<br>.45<br>.46<br>.46<br>.49<br>.62<br>.67                     |
| 1.98 | 0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>12.0<br>14.0<br>16.0<br>18.0 | 0 .019 .039 .059 .081 .123 .165 .207 .250 .336 .423 .512 .605 .717 .832 | 0 .0005<br>.0006<br>.0008<br>.0008<br>.0010<br>.0016<br>.0020<br>.0029<br>.0045<br>.0064<br>.0085<br>.0102<br>.0158 | .0082<br>.0083<br>.0086<br>.0094<br>.0103<br>.0142<br>.0194<br>.0256<br>.0341<br>.0549<br>.0820<br>.1162<br>.1239<br>.2139 | 42 44 44 44 44 44 44 44 44 44 44 44 44 4       | 0 .019 .039 .058 .080 .122 .164 .206 .248 .335 .420 .508 .602 .711 .832 | 0 .0004<br>.0004<br>.0006<br>.0005<br>.0010<br>.0020<br>.0024<br>.0042<br>.0059<br>.0080<br>.0099<br>.0129 | .0064<br>.0066<br>.0067<br>.0075<br>.0087<br>.0124<br>.0177<br>.0242<br>.0324<br>.0532<br>.0804<br>.1143<br>.1567<br>.2107 | .41<br>.41<br>.41<br>.41<br>.42<br>.44<br>.44<br>.44<br>.44<br>.42<br>.44<br>.42 | 0 .019 .040 .060 .081 .123 .166 .207 .251 .336 .419 .508 .717 .838 | 0 .0004<br>.0004<br>.0008<br>.0008<br>.0011<br>.0017<br>.0025<br>.0043<br>.0060<br>.0077<br>.0097 | .0057<br>.0057<br>.0060<br>.0068<br>.0081<br>.0116<br>.0169<br>.0235<br>.0320<br>.0530<br>.0797<br>.1138<br>.1572<br>.2122<br>.2804 | 63 63 63 63 64 66 55 54 4 46                   | 0 .020 .040 .061 .083 .126 .172 .212 .256 .341 .431 .527 .633 .741 .871 | 0 .0008 .0011 .0008 .0011 .0025 .0027 .0033 .0055 .0070 .0088 .0109 .0139 .0189 | .0050<br>.0050<br>.0055<br>.0059<br>.0072<br>.0164<br>.0228<br>.0313<br>.0519<br>.0802<br>.1163<br>.1666<br>.2177<br>.2890 | .67<br>.68<br>.67<br>.67<br>.67<br>.66<br>.65<br>.65<br>.43<br>.40 |





## TABLE II.- LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Continued (a) Basic airfoil: Biconvex to c/3, t/c = 0.02 - Continued (3) h/t = 0.3, b/c = 0.05

| М    | α,                                                                                 | Tr                                                                      | R=3.5x                                                                                |                                                                                                                                     |                                                                    | F                                                                       | R=3.5×                                                                                                                  |                                                                                                                                     |                                                                                         | A                                                                  | R=2.0%                                                                                                     |                                                                                                                   |                                                                      | P                                                                                                 | R=1.0>                                                                                |                                                                                                                            |                                                                           |
|------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| M    | deg                                                                                | cı                                                                      | cm                                                                                    | cd                                                                                                                                  | P <sub>b</sub> /P                                                  | cı                                                                      | cm                                                                                                                      | cd                                                                                                                                  | Pb/P                                                                                    | cı                                                                 | cm                                                                                                         | cd                                                                                                                | P <sub>b</sub> /P                                                    | cl                                                                                                | cm                                                                                    | cd                                                                                                                         | P <sub>b</sub> /P                                                         |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                 | 0<br>.031<br>.065<br>.098<br>.133<br>.201<br>.274<br>.349<br>.426       | 0<br>.0010<br>.0014<br>.0022<br>.0027<br>.0045<br>.0070<br>.0103<br>.0138             | 0.0095<br>.0096<br>.0102<br>.0117<br>.0137<br>.0197<br>.0285<br>.0390<br>.0544                                                      | .59<br>.59<br>.60<br>.60<br>.59<br>.62                             | 0 .031<br>.064<br>.098<br>.131<br>.201<br>.272<br>.347<br>.424          | 0 .0010 .0013 .0018 .0022 .0035 .0058 .0080 .0113                                                                       | 0.0075<br>.0078<br>.0084<br>.0098<br>.0118<br>.0177<br>.0261<br>.0378<br>.0523                                                      | 0.56<br>.56<br>.57<br>.57<br>.59<br>.60<br>.61                                          | 0<br>.031<br>.065<br>.100<br>.134<br>.204<br>.277<br>.352<br>.428  | 0<br>.0009<br>.0013<br>.0020<br>.0024<br>.0036<br>.0056<br>.0082                                           | 0.0070<br>.0074<br>.0081<br>.0096<br>.0115<br>.0176<br>.0260<br>.0377                                             | 0.52<br>.51<br>.52<br>.53<br>.53<br>.55<br>.66<br>.67                | 0<br>.036<br>.068<br>.105<br>.141<br>.214<br>.289<br>.369                                         | 0<br>.0008<br>.0016<br>.0021<br>.0029<br>.0042<br>.0066<br>.0092                      | 0.0077<br>.0084<br>.0090<br>.0102<br>.0110<br>.0177<br>.0264<br>.0387                                                      | 0.49<br>.48<br>.48<br>.51<br>.72<br>.78<br>.78                            |
| 1.98 | 0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>14.0<br>16.0<br>18.0 | 0 .019 .039 .060 .081 .123 .165 .213 .249 .334 .419 .507 .598 .701 .813 | 0 .0030 .0006 .0009 .0010 .0017 .0024 .0033 .0041 .0063 .0083 .0108 .0137 .0190 .0255 | .0077<br>.0078<br>.0080<br>.0089<br>.0100<br>.0135<br>.0186<br>.0257<br>.0333<br>.0538<br>.0807<br>.1147<br>.1560<br>.2092<br>.2723 | .48<br>.49<br>.49<br>.49<br>.49<br>.49<br>.49<br>.50<br>.53<br>.57 | 0 .020 .040 .061 .082 .124 .167 .209 .253 .338 .422 .510 .592 .705 .824 | 0.<br>.0001<br>.0003<br>.0008<br>.0009<br>.0012<br>.0017<br>.0022<br>.0045<br>.0060<br>.0080<br>.0095<br>.0121<br>.0178 | .0053<br>.0057<br>.0057<br>.0064<br>.0075<br>.0110<br>.0160<br>.0224<br>.0307<br>.0513<br>.0780<br>.1120<br>.1513<br>.2063<br>.2729 | •47<br>•46<br>•47<br>•48<br>•51<br>•52<br>•54<br>•51<br>•45<br>•45<br>•45<br>•45<br>•45 | 0 .019 .040 .061 .082 .126 .168 .211 .255 .340 .423 .511 .720 .844 | 0 .0004<br>.0004<br>.0009<br>.0009<br>.0015<br>.0023<br>.0029<br>.0037<br>.0056<br>.0065<br>.0085<br>.0125 | .0041<br>.0043<br>.0047<br>.0054<br>.0068<br>.0105<br>.0124<br>.0308<br>.0521<br>.0777<br>.1122<br>.1558<br>.2102 | 78<br>78<br>77<br>76<br>77<br>76<br>73<br>70<br>66<br>55<br>47<br>43 | 0<br>.021<br>.041<br>.064<br>.127<br>.171<br>.214<br>.257<br>.341<br>.430<br>.529<br>.633<br>.742 | 0 .0008 .0008 .0016 .0016 .0021 .0034 .0038 .0040 .0069 .0088 .0105 .0132 .0163 .0229 | .0040<br>.0042<br>.0045<br>.0062<br>.0068<br>.0105<br>.0159<br>.0225<br>.0307<br>.0517<br>.0762<br>.1136<br>.1626<br>.2178 | .84<br>.84<br>.84<br>.83<br>.81<br>.80<br>.74<br>.69<br>.62<br>.59<br>.48 |

## (4) h/t = 0, b/c = 0.05

| α,                           | Tr                                                                                                                                                                                                                                                 |                                  |                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R=3.5>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | clean                                                  |                                                       |                                                        |                                                        |                                                       |                                                       |                                                       |                                                       |                                                        |                                                        |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| aeg                          | cı                                                                                                                                                                                                                                                 | cm                               | cd                                                       | Pb/p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cđ                                                     | pb/p                                                  | cı                                                     | cm                                                     | cq                                                    | Pb/p                                                  | cı                                                    | cm                                                    | cq                                                     | Pb/I                                                   |
| 0 .5                         | .031                                                                                                                                                                                                                                               | .0011                            | .0078                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .030<br>.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0074                                                  | ==                                                    | .029                                                   | .0018                                                  | .0060                                                 |                                                       | .070                                                  | .0023                                                 | 0.0052<br>.0057<br>.0065                               |                                                        |
| 2.0<br>3.0<br>4.0<br>5.0     | .132<br>.201<br>.273<br>.347                                                                                                                                                                                                                       | .0033<br>.0052<br>.0080<br>.0114 | .0121                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .130<br>.198<br>.269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0020<br>.0027<br>.0043<br>.0063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0113<br>.0171<br>.0255                                |                                                       | .130<br>.199<br>.270                                   | .0028                                                  | .0102<br>.0162<br>.0247                               |                                                       | .134<br>.204<br>.279                                  | .0029<br>.0038<br>.0048<br>.0071                      | .0099<br>.0156<br>.0244<br>.0360                       |                                                        |
| 0                            | .018                                                                                                                                                                                                                                               | 0.0007                           | .0064                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0047                                                  |                                                       | .016                                                   |                                                        | .0040                                                 |                                                       | .013                                                  |                                                       | .0041                                                  |                                                        |
| 1.5<br>2.0<br>3.0            | .060<br>.079<br>.122                                                                                                                                                                                                                               | .0011<br>.0015<br>.0021          | .0078<br>.0089<br>.0123                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .058<br>.078<br>.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0010<br>.0014<br>.0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0059<br>.0070<br>.0104                                |                                                       | .057<br>.078<br>.118                                   | .0013<br>.0020<br>.0024                                | .0053<br>.0064<br>.0096                               | ==                                                    | .058<br>.078<br>.120                                  | .0016<br>.0026<br>.0034                               | .0051<br>.0059<br>.0090                                |                                                        |
| 5.0                          | .205                                                                                                                                                                                                                                               | .0038                            | .0236                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .203<br>.244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .0034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0226                                                  | ==                                                    | .203                                                   | .0039                                                  | .0211                                                 |                                                       | .204                                                  | .0042<br>.0049<br>.0061                               | .0148<br>.0205<br>.0287                                | -:                                                     |
| 10.0<br>12.0<br>14.0<br>16.0 | .415<br>.501<br>.593                                                                                                                                                                                                                               | .0094<br>.0121<br>.0150          | .0784<br>.1117<br>.1529                                  | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .412<br>.499<br>.589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0081<br>.0102<br>.0125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0768<br>.1100<br>.1508                                |                                                       | .415<br>.504<br>.601                                   | .0084<br>.0100<br>.0123                                | .0764<br>.1105<br>.1530                               | ==                                                    | .419<br>.515<br>.618                                  | .0104<br>.0119<br>.0143                               | .0762<br>.1115<br>.1 <b>5</b> 58                       | E                                                      |
|                              | 0<br>.5<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>0<br>.5<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>6.0<br>1.5<br>6.0<br>1.5<br>6.0<br>1.5<br>6.0<br>1.5<br>6.0<br>1.5<br>6.0<br>1.5<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0 | deg                              | a, deg c transition c to c | deg         c1         cm         c4           0         0         0.0075         .001         .0078           1.0         .067         .0018         .0087         .002         .0099           1.5         .097         .0022         .0099         2.001         .0052         .0179           2.0         .132         .0033         .0121         .0380         .0266         .026         .0052         .0179         .0052         .0179         .0052         .0179         .0052         .0179         .0052         .0114         .0381         .0007         .0066         .0011         .0038         .0070         .0066         .0011         .0078         .0070         .0066         .0011         .0078         .0070         .0066         .0011         .0078         .0070         .0050         .0070         .0060         .0011         .0078         .0070         .0060         .0011         .0078         .0070         .0050         .0073         .0050         .0073         .0050         .0073         .0050         .0031         .0050         .0031         .0050         .0031         .0050         .0031         .0050         .0050         .0050         .0050         .0050 <td< td=""><td>a, deg composition fixed comp</td><td>α<sub>c</sub> deg         Transition fixed         A           0         c<sub>1</sub>         c<sub>m</sub>         c<sub>d</sub>         p<sub>b</sub>/p         c<sub>1</sub>           0         0         0.0075         —         0           1.5         .031         .0011         .0078         —         .030           1.5         .097         .0022         .0099         —         .097           2.0         .132         .0033         .0121         —         .130           3.0         .201         .0052         .0179         —         .198           4.0         .273         .0080         .0266         —         .269           5.0         .347         .0114         .0381         —         .418           6.0         .424         .0154         .0522         —         .418           0         .0         .0064         —         0         .0064         —         0           1.0         .041         .0009         .0070         —         .041         .009         .0070         —         .041           1.5         .060         .0011         .0078         —         .058         .058         —         .058      <t< td=""><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td></t<></td></td<> | a, deg composition fixed comp | α <sub>c</sub> deg         Transition fixed         A           0         c <sub>1</sub> c <sub>m</sub> c <sub>d</sub> p <sub>b</sub> /p         c <sub>1</sub> 0         0         0.0075         —         0           1.5         .031         .0011         .0078         —         .030           1.5         .097         .0022         .0099         —         .097           2.0         .132         .0033         .0121         —         .130           3.0         .201         .0052         .0179         —         .198           4.0         .273         .0080         .0266         —         .269           5.0         .347         .0114         .0381         —         .418           6.0         .424         .0154         .0522         —         .418           0         .0         .0064         —         0         .0064         —         0           1.0         .041         .0009         .0070         —         .041         .009         .0070         —         .041           1.5         .060         .0011         .0078         —         .058         .058         —         .058 <t< td=""><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td></t<> | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

TABLE II.- LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Continued (a) Basic airfoil: Biconvex to c/3, t/c = 0.02 - Continued (5) h/t = 0.6, b/c = 0.33

| М    | α,   | Tr   | R=3.5 | ×10 <sup>6</sup><br>on fixed |      |      |       | 5×10 <sup>6</sup> | n                 |      | R=2.0<br>Airfoi | 0×10 <sup>6</sup><br>l clean |            | 1    | R=1.0 |        |      |
|------|------|------|-------|------------------------------|------|------|-------|-------------------|-------------------|------|-----------------|------------------------------|------------|------|-------|--------|------|
|      | deg  | cı   | cm    | cd                           | Pb/P | cı   | cm    | cd                | p <sub>b</sub> /p | cı   | cm              | cd                           | Pb/p       | cı   | cm    | cd     | pb/p |
| 1.45 | 0    | 0    | 0     | 0.0109                       | 0.38 | 0    | 0     | 0,0090            | 0.50              | 0.   | 0               | 0.0084                       | 0.54       | 0    | 0     | 0.0082 | 0.52 |
|      | .5   | .032 | .0007 | .0112                        | .39  | .033 | .0007 | .0093             | .51               | .032 | .0004           | .0087                        | .53        | .033 | .0008 | .0083  | .52  |
|      | 1.0  | .067 | .0010 | .0118                        | -39  | .066 | .0009 | .0100             | .51               | .066 | .0009           | .0092                        | .53        | .067 | .0011 | .0091  | .52  |
|      | 1.5  | .101 | .0015 | .0138                        | -39  | .099 | .0012 | .0114             | .50               | .100 | .0011           | .0116                        | .53        | .104 | .0016 | .0103  | :52  |
|      | 2.0  | .135 | .0020 | .0155                        | -39  | .133 | .0016 | .0136             | -50               | .134 | .0014           | .0128                        | -54        | .141 | .0017 | .0125  | 53   |
|      | 3.0  | .207 | .0033 | .0218                        | .40  | .202 | .0027 | .0197             | .50               | .205 | .0024           | .0189                        | .54        | .215 | .0026 | .0189  | .54  |
|      | 5.0  | .358 | .0084 | .0307                        | .40  | .275 | .0043 | .0283             | .50               | .279 | .0038           | .0278                        | -55        | .291 | .0045 | .0276  | .59  |
|      | 6.0  | .438 | .0116 | .0575                        | .42  | .428 | .0003 | .0545             | .51               | .356 | .0089           | .0397                        | .57<br>.58 | .370 | .0066 | •0394  | .66  |
|      |      |      |       |                              |      |      |       |                   |                   |      |                 |                              | • ,0       |      |       |        |      |
| 1.98 |      | 0    | 0     | .0081                        |      | b    | 0     | .0063             |                   | 0    | 0               | .0056                        |            | 0    | 0     | .0052  | -53  |
|      | .5   | .020 | .0004 | .0084                        | .42  | .020 | .0003 | .0065             | .36               |      | 0               | .0061                        | .48        | .019 | .0005 | .0056  | .53  |
|      | 1.0  | .042 | .0005 | .0086                        | .42  | .040 | .0003 | .0068             | .36               | .042 | .0003           | .0065                        | .47        | .042 | .0003 | .0060  | .54  |
|      | 2.0  | .061 | .0007 | .0095                        | .41  | .061 | .0005 | .0070             | .36               | .062 | .0008           | .0084                        | .48        | .065 | .0011 |        | -55  |
|      | 3.0  | .124 | .0012 | .0143                        | .41  | .124 | .0006 | .0088             | •36<br>•37        | .084 | .0008           | .0086                        | .50        | .084 | .0008 | .0080  | .57  |
|      | 4.0  | .167 | .0018 | .0193                        | .41  | .166 | .0015 | .0176             | •37               | .169 | .0017           | .0170                        | .58        | .129 | .0022 | .0115  | .60  |
| 198  | 5.0  | .209 | .0022 | .0259                        | .41  | .208 | .0020 | .0243             | .38               | .210 | .0018           | .0237                        | .56        | .215 | .0024 | .0236  | .61  |
|      | 6.0  | .253 | .0031 | .0343                        | .42  | .251 | .0026 | .0326             | .39               | .255 | .0025           | .0323                        | .60        | .258 | .0030 | .0319  | .63  |
|      | 8.0  | -337 | .0048 | .0552                        | .42  | -337 | .0041 | .0536             | •39               | -339 | .0041           | .0636                        | .58        | .344 | .0051 | .0530  | .62  |
|      | 10.0 | .423 | .0066 | .0823                        | .43  | .422 | .0056 | .0808             | .39               | .424 | .0055           | .0806                        | .56        | .431 | .0068 | .0811  | .55  |
|      | 12.0 | .512 | .0087 | .1167                        | .45  | .510 | .0074 | .1150             | .40               | -513 | .0074           | .1153                        | .47        | .529 | .0084 | .1179  | .51  |
|      | 14.0 | .605 | .0113 | .1590                        | .47  | .602 | .0095 | .1570             | .39               | .611 | .0094           | .1591                        | .46        | .634 | .0111 | .1639  |      |
|      | 16.0 | .711 | .0160 | .2128                        | .50  | .708 | .0128 | .2104             | .39               | .722 | .0126           | .2221                        | .41        | .742 | .0141 | .2268  | .44  |
|      | 10.0 | .024 | .0219 | .2770                        | .56  | .824 | .0195 | .2767             | .41               | .841 | .0184           | .2814                        | .57        | .866 | .0198 | .2879  | .41  |

(6) h/t = 0.3, b/c = 0.33

| М    | α,                                                                           |                                                                                                                | R=3.<br>Transit                                                                                                     | 5×10 <sup>6</sup><br>ion fix                                                                                                        | ed                                                                        |                                                                         | R=3.5×                                                                                                              |                                                                                                                            |                                                                                  |                                                                                                                | R=2.0×1                                                                                                             |                                                                                                                                     |                                                                           | A                                                                                                         | R=1.0×                                                                                                                       |                                                                                                                                     |                                                                                         |
|------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Pi   | deg                                                                          | cı                                                                                                             | c <sub>m</sub>                                                                                                      | cd                                                                                                                                  | P <sub>b</sub> /p                                                         | cı                                                                      | cm                                                                                                                  | cd                                                                                                                         | p <sub>b</sub> /p                                                                | cı                                                                                                             | cm                                                                                                                  | cd                                                                                                                                  | p <sub>b</sub> /p                                                         | cı                                                                                                        | cm                                                                                                                           | cd                                                                                                                                  | Pb/p                                                                                    |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                           | 0<br>.032<br>.065<br>.098<br>.132<br>.201<br>.273<br>.347<br>.425                                              | 0<br>.0010<br>.0015<br>.0020<br>.0026<br>.0043<br>.0067<br>.0098                                                    | 0.0084<br>.0086<br>.0091<br>.0106<br>.0126<br>.0185<br>.0272<br>.0388<br>.0532                                                      | 0.58<br>.57<br>.57<br>.58<br>.58<br>.58<br>.60<br>.61                     | 0<br>.032<br>.064<br>.097<br>.131<br>.199<br>.271<br>.342<br>.421       | 0 .0008 .0012 .0017 .0022 .0036 .0058 .0080 .0114                                                                   | 0.0082<br>.0085<br>.0092<br>.0105<br>.0126<br>.0185<br>.0271<br>.0385                                                      | 0.56<br>.56<br>.57<br>.57<br>.57<br>.59<br>.60<br>.61                            | 0<br>.031<br>.064<br>.097<br>.131<br>.199<br>.272<br>.346<br>.423                                              | 0<br>.0008<br>.0010<br>.0016<br>.0020<br>.0032<br>.0049<br>.0072<br>.0102                                           | 0.0071<br>.0074<br>.0081<br>.0094<br>.0113<br>.0174<br>.0259<br>.0373                                                               | 0.54<br>.54<br>.55<br>.55<br>.57<br>.61<br>.65                            | 0<br>.033<br>.067<br>.101<br>.137<br>.207<br>.281<br>.359                                                 | 0<br>.0005<br>.0013<br>.0018<br>.0019<br>.0030<br>.0052<br>.0078                                                             | 0.0064<br>.0070<br>.0077<br>.0092<br>.0110<br>.0167<br>.0253<br>.0367                                                               | 0.46<br>.45<br>.45<br>.45<br>.46<br>.61<br>.77                                          |
|      | 0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>114.0<br>114.0 | 0 .021<br>.040<br>.060<br>.080<br>.120<br>.162<br>.205<br>.246<br>.328<br>.416<br>.501<br>.589<br>.693<br>.805 | 0 .0005<br>.0007<br>.0011<br>.0011<br>.0018<br>.0024<br>.0032<br>.0040<br>.0060<br>.0081<br>.0105<br>.0134<br>.0181 | .0070<br>.0072<br>.0074<br>.0083<br>.0093<br>.0129<br>.0178<br>.0243<br>.0324<br>.0523<br>.0794<br>.1126<br>.1531<br>.2053<br>.2681 | .47<br>.47<br>.47<br>.47<br>.47<br>.47<br>.47<br>.48<br>.49<br>.55<br>.61 | 0 .019 .039 .059 .080 .121 .162 .204 .246 .330 .413 .500 .592 .678 .806 | 0 .0004<br>.0004<br>.0007<br>.0007<br>.0012<br>.0020<br>.0026<br>.0033<br>.0051<br>.0069<br>.0091<br>.0114<br>.0149 | .0053<br>.0055<br>.0059<br>.0067<br>.0079<br>.0115<br>.0166<br>.0231<br>.0313<br>.0517<br>.0783<br>.1117<br>.1531<br>.2001 | .47<br>.47<br>.46<br>.46<br>.46<br>.46<br>.47<br>.47<br>.46<br>.45<br>.45<br>.45 | 0 .019<br>.040<br>.060<br>.080<br>.121<br>.163<br>.203<br>.246<br>.330<br>.412<br>.499<br>.596<br>.704<br>.823 | 0 .0004<br>.0007<br>.0009<br>.0010<br>.0016<br>.0024<br>.0030<br>.0057<br>.0057<br>.0074<br>.0093<br>.0117<br>.0150 | .0050<br>.0052<br>.0055<br>.0069<br>.0074<br>.0107<br>.0158<br>.0223<br>.0304<br>.0510<br>.0774<br>.1109<br>.1535<br>.2074<br>.2736 | .56<br>.57<br>.59<br>.61<br>.68<br>.70<br>.69<br>.64<br>.58<br>.51<br>.43 | 0<br>.020<br>.040<br>.061<br>.082<br>.125<br>.166<br>.208<br>.252<br>.336<br>.423<br>.519<br>.622<br>.731 | 0 .0005<br>.0005<br>.0005<br>.0013<br>.0013<br>.0021<br>.0032<br>.0045<br>.0045<br>.0066<br>.0088<br>.0105<br>.0137<br>.0171 | .0050<br>.0049<br>.0056<br>.0062<br>.0073<br>.0107<br>.0155<br>.0220<br>.0300<br>.0507<br>.0784<br>.1141<br>.1589<br>.2139<br>.2813 | .45<br>.44<br>.43<br>.46<br>.52<br>.73<br>.74<br>.67<br>.59<br>.55<br>.48<br>.45<br>.43 |

NACA

NACA



# TABLE II.- LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Continued (a) Basic airfoil: Biconvex to c/3, t/c = 0.02 - Concluded (7) h/t = 0, b/c = 0.33

| М    | α,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tre                                                                                                                            | R=3.5×                                                                                                                                           |                                                                                                                                                        |                   | A                                                                              | R=3.5>                                                                                                                                           | clean                                                                                                                                                  |                    | I                                            | R=2.0x                                                                                                                                           |                                                                                                                                      |      | I                                                                              | R=1.0×                                                                                |                                                                           |                   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------|
| -    | deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cı                                                                                                                             | cm                                                                                                                                               | cd                                                                                                                                                     | p <sub>b</sub> /p | cı                                                                             | c <sub>m</sub>                                                                                                                                   | c <sub>d</sub>                                                                                                                                         | P <sub>b</sub> / p | cı                                           | cm                                                                                                                                               | cd                                                                                                                                   | Pb/p | cı                                                                             | c <sub>m</sub>                                                                        | c <sub>d</sub>                                                            | p <sub>b</sub> /p |
| 1.45 | 0 .50.50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50.00 .50. | 0<br>.030<br>.063<br>.097<br>.130<br>.200<br>.271<br>.345<br>.420<br>0<br>.019<br>.041<br>.082<br>.124<br>.126<br>.208<br>.250 | 0 .0010<br>.0019<br>.0022<br>.0032<br>.0048<br>.0072<br>.0104<br>.0145<br>0 .0005<br>.0009<br>.0009<br>.0009<br>.0014<br>.0019<br>.0026<br>.0034 | 0.0068<br>.0070<br>.0076<br>.0092<br>.0112<br>.0256<br>.0369<br>.0511<br>.0062<br>.0063<br>.0068<br>.0076<br>.0088<br>.0122<br>.0173<br>.0238<br>.0238 |                   | 0 .031 .063 .097 .130 .199 .270 .342 .419 0 .019 .060 .080 .121 .163 .204 .245 | 0 .0009<br>.0016<br>.0021<br>.0028<br>.0039<br>.0064<br>.0089<br>.0127<br>0 .0004<br>.0007<br>.0008<br>.0012<br>.0016<br>.0023<br>.0030<br>.0040 | 0.0061<br>.0062<br>.0070<br>.0085<br>.0166<br>.0165<br>.0251<br>.0363<br>.0505<br>.0046<br>.0048<br>.0052<br>.0060<br>.0071<br>.0106<br>.0157<br>.0221 |                    | 0                                            | 0 .0010<br>.0016<br>.0019<br>.0026<br>.0040<br>.0058<br>.0082<br>.0116<br>0 .0007<br>.0010<br>.0012<br>.0018<br>.0021<br>.0026<br>.0035<br>.0044 | 0.0055<br>.0059<br>.0062<br>.0077<br>.0197<br>.0243<br>.0357<br>.0501<br>.0042<br>.0045<br>.0048<br>.0057<br>.0069<br>.0104<br>.0156 |      | 0 .028 .066 .100 .135 .207 .282 .360 0 .017 .038 .061 .084 .121 .165 .210 .250 | 0 .0008 .0016 .0021 .0029 .0045 .0068 .0094 .0011 .0011 .0016 .0024 .0032 .0038 .0053 | 0.0042<br>.0046<br>.0053<br>.0069<br>.0093<br>.0152<br>.0244<br>.0359<br> |                   |
|      | 8.0<br>10.0<br>12.0<br>14.0<br>16.0<br>18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •336<br>•420<br>•504<br>•596<br>•702<br>•815                                                                                   | .0066<br>.0090<br>.0104<br>.0126<br>.0164<br>.0239                                                                                               | .0526<br>.0792<br>.1124<br>.1538<br>.2069<br>.2715                                                                                                     |                   | .328<br>.411<br>.498<br>.588<br>.691<br>.806                                   | .0053<br>.0071<br>.0089<br>.0105<br>.0140                                                                                                        | .0505<br>.0766<br>.1101<br>.1508<br>.2026<br>.2669                                                                                                     | <br><br><br>       | .334<br>.416<br>.503<br>.601<br>.707<br>.826 | .0060<br>.0080<br>.0096<br>.0120<br>.0156                                                                                                        | .0508<br>.0772<br>.1110<br>.1535<br>.2067<br>.2726                                                                                   |      | .341<br>.424<br>.522<br>.625<br>.739<br>.859                                   | .0072<br>.0094<br>.0109<br>.0138<br>.0170<br>.0241                                    | .0511<br>.0778<br>.1137<br>.1590<br>.1765<br>.2817                        |                   |

## (b) Basic airfoil: Biconvex to c/3, t/c = 0.04 (1) h/t = 1.0, b/c = 0

| М    | α,                                                                                               | Tr                                                        | R=3.5                                                                              | ×10 <sup>6</sup><br>on fixed                                                                              |                                                                           | 1                                                         | R=3.5×                                                                                   |                                                                                                 |                                                | I                                                         | R=2.0X                                                                    |                                                                                                          |                                                       | · ·                                                                                    | R=1.0>                                                                    |                                                                                                          |                                         |
|------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|
|      | deg                                                                                              | cı                                                        | cm                                                                                 | c <sub>d</sub>                                                                                            | Pb/P                                                                      | cı                                                        | cm                                                                                       | c <sub>d</sub>                                                                                  | P <sub>b</sub> /P                              | cl                                                        | cm                                                                        | cd                                                                                                       | рь/р                                                  | cı                                                                                     | cm                                                                        | cd                                                                                                       | P <sub>b</sub> /P                       |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                               | 0<br>.035<br>.068<br>.104<br>.140<br>.212<br>.289<br>.366 | 0<br>.0013<br>.0021<br>.0029<br>.0034<br>.0054<br>.0077                            | 0.0258<br>.0260<br>.0274<br>.0293<br>.0316<br>.0381<br>.0472                                              | 0.51<br>.51<br>.51<br>.51<br>.51<br>.50<br>.51                            | 0<br>.034<br>.068<br>.100<br>.136<br>.206<br>.283<br>.362 | 0<br>.0013<br>.0018<br>.0022<br>.0025<br>.0038<br>.0062<br>.0094                         | 0.0235<br>.0238<br>.0247<br>.0264<br>.0286<br>.0350<br>.0440<br>.0560                           | 0.51<br>.51<br>.51<br>.51<br>.51<br>.52<br>.52 | 0<br>.034<br>.069<br>.105<br>.140<br>.211<br>.289<br>.367 | 0<br>.0013<br>.0018<br>.0025<br>.0028<br>.0045<br>.0072<br>.0102          | 0.0230<br>.0236<br>.0244<br>.0263<br>.0286<br>.0350<br>.0443                                             | 0.50<br>.50<br>.50<br>.50<br>.50<br>.50<br>.51<br>.53 | 0<br>.038<br>.074<br>.111<br>.150<br>.228<br>.305                                      | 0<br>.0010<br>.0021<br>.0028<br>.0031<br>.0054<br>.0088                   | 0.0222<br>.0229<br>.0237<br>.0261<br>.0280<br>.0356<br>.0443                                             | 0.53<br>.53<br>.52<br>.52<br>.52<br>.58 |
| 1.98 | 0<br>.5<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>10.0<br>12.0<br>14.0<br>16.0<br>18.0 | 0 .018 .039 .061 .082 .126 .170 .216 .437 .529            | 0<br>.0006<br>.0008<br>.0010<br>.0015<br>.0022<br>.0028<br>.0035<br>.0056<br>.0078 | 0.0179<br>.0183<br>.0187<br>.0197<br>.0210<br>.0247<br>.0301<br>.0370<br>.0455<br>.0668<br>.0954<br>.1311 | .37<br>.36<br>.37<br>.37<br>.37<br>.38<br>.38<br>.39<br>.40<br>.42<br>.44 | 0 .018 .039 .060 .080 .123 .166 .210 .253 .340 .430       | 0 .0005<br>.0007<br>.0008<br>.0009<br>.0013<br>.0023<br>.0026<br>.0035<br>.0051<br>.0069 | .0147<br>.0150<br>.0155<br>.0165<br>.0177<br>.0215<br>.0266<br>.0334<br>.0419<br>.0631<br>.0917 |                                                | 0 .019 .039 .061 .080 .123 .167 .213 .255 .345 .528 .633  | 0 .0007 .0010 .0012 .0012 .0017 .0025 .0028 .0040 .0058 .0076 .0096 .0133 | .0144<br>.0147<br>.0152<br>.0164<br>.0177<br>.0214<br>.0264<br>.0418<br>.0638<br>.0924<br>.1290<br>.1758 |                                                       | 0 .015<br>.035<br>.058<br>.080<br>.124<br>.168<br>.219<br>.260<br>.351<br>.450<br>.552 | 0 .0003 .0005 .0016 .0016 .0021 .0024 .0032 .0040 .0062 .0083 .0108 .0156 | .0140<br>.0145<br>.0147<br>.0162<br>.0172<br>.0211<br>.0266<br>.0337<br>.0423<br>.0641<br>.0946<br>.1336 |                                         |





# TABLE II.- LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Continued (b) Basic airfoil: Biconvex to c/3, t/c = 0.04 - Continued (2) h/t = 0.6, b/c = 0.05

| M | α,                                                                                  |                                                                                                                                                | R=3.5×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 <sup>6</sup><br>on fixed                                               |                                                                                  | A                                                                                                                                              | R=3.5>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |                                 | 1                                                                                                                                                      | R=2.0>                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                     | I                                                    | R=1.0>                                                                                                        |                                                                                                                                                                                            |                                                       |
|---|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|   | deg                                                                                 | cı                                                                                                                                             | cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cd                                                                        | P <sub>b</sub> /P                                                                | cz                                                                                                                                             | c <sub>m</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cd                                                                        | Pb/P                            | cı                                                                                                                                                     | c <sub>m</sub>                                                                                                              | cd                                                                                                                                                                                                           | p <sub>b</sub> /p                                                                                                                   | cz                                                   | cm                                                                                                            | ed                                                                                                                                                                                         | P <sub>b</sub> /P                                     |
|   | .5<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>10.0<br>12.0<br>14.0<br>16.0 | 0 .034<br>.067<br>.102<br>.137<br>.212<br>.288<br>.364<br>.018<br>.038<br>.059<br>.080<br>.122<br>.165<br>.209<br>.253<br>.341<br>.430<br>.518 | 0 .0018 .0032 .0042 .0051 .0077 .01077 .01077 .01078 .0009 .0013 .0019 .0028 .0040 .0063 .0088 .0094 .0128 .0128 .0129 .0128 .0128 .0040 .0063 .0088 .0094 .0128 .0040 .0063 .0088 .0094 .0128 .0040 .0128 .0040 .0128 .0050 .0063 .0088 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0128 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 .0094 . | 0.0233<br>.0237<br>.0249<br>.0268<br>.0289<br>.0354<br>.0440<br>.0554<br> | 0.51<br>.51.5.52<br>.53<br>.557<br>.40<br>.40<br>.40<br>.41.1.42<br>.435<br>.459 | 0 .034<br>.067<br>.103<br>.136<br>.209<br>.285<br>.363<br>.020<br>.040<br>.061<br>.082<br>.125<br>.167<br>.212<br>.254<br>.343<br>.430<br>.521 | 0 .0018 .0026 .0035 .0041 .0064 .0094 .0135 0 .0010 .0012 .0015 .0018 .0026 .0038 .0050 .0057 .0081 .0108 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .013 | 0.0210<br>.0215<br>.0224<br>.0243<br>.0263<br>.0326<br>.0417<br>.0538<br> | .56<br>.55<br>.55<br>.56<br>.57 | 0 .034<br>.066<br>.101<br>.136<br>.208<br>.358<br>.018<br>.039<br>.061<br>.082<br>.124<br>.163<br>.256<br>.341<br>.427<br>.525<br>.624<br>.735<br>.858 | 0 .0016 .0028 .0035 .0047 .0068 .0103 .0145 0 .0010 .0014 .0020 .0021 .0029 .0042 .0051 .0064 .0128 .0138 .0193 .0259 .0330 | 0.0192<br>.0200<br>.0212<br>.0232<br>.0254<br>.0319<br>.0410<br>.0526<br>.0123<br>.0126<br>.0130<br>.0141<br>.0154<br>.0193<br>.0246<br>.0152<br>.0397<br>.0607<br>.0884<br>.1252<br>.1703<br>.2276<br>.2276 | 0.63<br>.62<br>.659<br>.599<br>.595<br>.555<br>.555<br>.549<br>.499<br>.475<br>.445<br>.445<br>.445<br>.445<br>.445<br>.445<br>.445 | .033<br>.066<br>.105<br>.142<br>.218<br>.298<br>.375 | 0 .0019 .0026 .0047 .0053 .0079 .0126 .0176 -0037 .0027 .0037 .0056 .0065 .0075 .0110 .0138 .0174 .0225 .0291 | 0.0184<br>.0191<br>.0201<br>.0232<br>.0251<br>.0325<br>.0419<br>.0518<br>.0114<br>.0119<br>.0145<br>.0145<br>.0183<br>.0236<br>.0306<br>.0390<br>.0604<br>.0900<br>.1273<br>.1763<br>.2352 | 0.72<br>.71<br>.70<br>.68<br>.67<br>.65<br>.63<br>.70 |

## (3) h/t = 0.3, b/c = 0.05

| M    | α,                                                                                 | Tı                                                                      | R=3.5×                                                                          | 10 <sup>6</sup><br>on fixed                                                                                                |                                                                                                                              | I                                                                       | R=3.5>                                                                                |                                                                                                                                     |                                                          |                                                                                                                | R≈2.0<br>Airfoil                                                                      |                                                                                                                   |                                                       | 1                                                                       | R=1.0>                                                                                |                                                                                                                   |                                                                                  |
|------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|      | deg                                                                                | cl                                                                      | cm                                                                              | cd                                                                                                                         | p <sub>b</sub> /p                                                                                                            | cl                                                                      | cm                                                                                    | c <sub>d</sub>                                                                                                                      | p <sub>b</sub> /p                                        | cı                                                                                                             | c <sub>m</sub>                                                                        | cd                                                                                                                | p <sub>b</sub> /p                                     | cı                                                                      | cm                                                                                    | cd                                                                                                                | p <sub>b</sub> /p                                                                |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                 | 0<br>.035<br>.070<br>.104<br>.142<br>.212<br>.287<br>.359<br>.435       | 0<br>.0025<br>.0038<br>.0050<br>.0066<br>.0094<br>.0131<br>.0164<br>.0198       | 0.0204<br>.0209<br>.0221<br>.0237<br>.0259<br>.0321<br>.0406<br>.0516                                                      | 0.39<br>.40<br>.40<br>.40<br>.41<br>.42<br>.56<br>.61                                                                        | 0<br>.034<br>.066<br>.100<br>.137<br>.207<br>.282<br>.359<br>.436       | 0 .0019 .0030 .0040 .0050 .0073 .0107 .0155 .0210                                     | 0.0178<br>.0182<br>.0192<br>.0208<br>.0229<br>.0289<br>.0378<br>.0497<br>.0690                                                      | 0.51<br>.50<br>.50<br>.50<br>.52<br>.55<br>.55<br>.57    | 0<br>.032<br>.066<br>.102<br>.136<br>.207<br>.282<br>.361<br>.436                                              | 0<br>.0019<br>.0033<br>.0043<br>.0052<br>.0078<br>.0117<br>.0165                      | 0.0161<br>.0167<br>.0176<br>.0195<br>.0216<br>.0282<br>.0374<br>.0494                                             | 0.62<br>.62<br>.62<br>.62<br>.62<br>.62<br>.62<br>.62 | 0<br>.034<br>.070<br>.107<br>.144<br>.218<br>.300<br>.382               | 0<br>.0021<br>.0037<br>.0056<br>.0068<br>.0096<br>.0145<br>.0199                      | 0.0147<br>.0155<br>.0165<br>.0189<br>.0206<br>.0278<br>.0376<br>.0502                                             | 0.79<br>.79<br>.79<br>.78<br>.76<br>.74<br>.72                                   |
| 1.98 | 0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>14.0<br>16.0<br>18.0 | 0 .019 .041 .061 .082 .124 .168 .214 .255 .342 .432 .521 .619 .725 .832 | 0 .0009 .0015 .0020 .0025 .0034 .0048 .0061 .0074 .0106 .0143 .0239 .0306 .0363 | .0137<br>.0139<br>.0144<br>.0153<br>.0166<br>.0203<br>.0255<br>.0323<br>.0403<br>.0613<br>.0891<br>.1237<br>.1679<br>.2212 | 44 4 5 5 5 5 5 5 5 6 1 4 4 5 5 5 5 5 6 1 4 5 5 5 5 6 1 4 5 5 5 5 6 1 4 5 5 6 5 6 1 4 5 6 1 5 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 | 0 .024 .043 .065 .085 .126 .167 .210 .254 .341 .426 .515 .612 .720 .830 | 0 .0008 .0013 .0018 .0021 .0030 .0042 .0054 .0067 .0096 .0127 .0162 .0203 .0267 .0360 | .0112<br>.0115<br>.0119<br>.0128<br>.0140<br>.0176<br>.0227<br>.0293<br>.0378<br>.0585<br>.0855<br>.1202<br>.1634<br>.2182<br>.2824 | 42 42 43 43 44 45 44 74 74 74 74 74 74 74 74 74 74 74 74 | 0 .020<br>.039<br>.060<br>.082<br>.122<br>.165<br>.208<br>.250<br>.334<br>.422<br>.511<br>.613<br>.728<br>.843 | 0 .0012 .0018 .0022 .0026 .0036 .0053 .0062 .0077 .0108 .0136 .0171 .0217 .0287 .0370 | .0102<br>.0103<br>.0106<br>.0125<br>.0129<br>.0167<br>.0218<br>.0364<br>.0569<br>.0843<br>.1189<br>.1636<br>.2204 | 62 62 61 58 56 55 55 55 53 48 43 49 49                | 0 .013 .033 .053 .074 .116 .160 .209 .249 .337 .433 .531 .638 .751 .868 | 0 .0011 .0022 .0032 .0032 .0043 .0062 .0074 .0086 .0127 .0162 .0194 .0248 .0321 .0383 | .0089<br>.0089<br>.0090<br>.0107<br>.0112<br>.0149<br>.0205<br>.0351<br>.0559<br>.0851<br>.1224<br>.1697<br>.2279 | .75<br>.76<br>.76<br>.75<br>.74<br>.72<br>.68<br>.70<br>.55<br>.55<br>.53<br>.48 |





# TABLE II.- LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Continued (b) Basic airfoil: Biconvex to c/3, t/c = 0.04 - Continued (4) h/t = 0, b/c = 0.05

| М    | α,                                                                                | Tı                                                                                                                | R±3.5                                                                                 | x10 <sup>6</sup><br>on fixed                                                                                               |      | P                                                                  | R=3.5×                                                                                                                        |                                                                                                                            |                   | 1                                                                                                 | R=2.0><br>Airfoil                                                                     |                                                                       |                   |                                                                                                                   | R=1.0><br>Airfoil                                                                                                               |                                                                                                                                     |      |
|------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
|      | deg                                                                               | cı                                                                                                                | cm                                                                                    | cd                                                                                                                         | Pb/P | cı                                                                 | cm                                                                                                                            | cd                                                                                                                         | P <sub>b</sub> /P | cl                                                                                                | cm                                                                                    | c <sub>d</sub>                                                        | P <sub>b</sub> /P | cl                                                                                                                | cm                                                                                                                              | cd                                                                                                                                  | Pb/P |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                | 0<br>.032<br>.064<br>.098<br>.132<br>.201<br>.273<br>.345<br>.418                                                 | 0<br>.0026<br>.0047<br>.0065<br>.0081<br>.0116<br>.0161<br>.0201                      | 0.0168<br>.0171<br>.0182<br>.0199<br>.0219<br>.0279<br>.0360<br>.0466                                                      |      | 0<br>.032<br>.063<br>.096<br>.130<br>.199<br>.270<br>.345<br>.420  | 0<br>.0025<br>.0040<br>.0054<br>.0066<br>.0097<br>.0138<br>.0189                                                              | 0.0156<br>.0160<br>.0170<br>.0186<br>.0205<br>.0264<br>.0345<br>.0459                                                      |                   | 0<br>.031<br>.064<br>.097<br>.131<br>.201<br>.273<br>.350<br>.425                                 | 0<br>.0020<br>.0042<br>.0057<br>.0070<br>.0104<br>.0150<br>.0203<br>.0260             | 0.0146<br>.0152<br>.0160<br>.0177<br>.0196<br>.0255<br>.0341<br>.0457 |                   | 0<br>.033<br>.067<br>.102<br>.136<br>.209<br>.284<br>.361                                                         | 0<br>.0028<br>.0048<br>.0069<br>.0087<br>.0130<br>.0183<br>.0237                                                                | 0.0137<br>.0141<br>.0148<br>.0169<br>.0186<br>.0253<br>.0340<br>.0461                                                               |      |
| 1.98 | 0<br>.5<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>10.0<br>14.0<br>16.0<br>18.0 | 0<br>.019<br>.039<br>.059<br>.080<br>.121<br>.163<br>.204<br>.247<br>.331<br>.415<br>.504<br>.598<br>.701<br>.805 | 0 .0014 .0023 .0029 .0034 .0049 .0066 .0083 .0100 .0139 .0132 .0228 .0287 .0359 .0428 | .0121<br>.0123<br>.0127<br>.0136<br>.0148<br>.0182<br>.0231<br>.0293<br>.0373<br>.0573<br>.0836<br>.1167<br>.1591<br>.2110 |      | 0 .020 .040 .060 .080 .121 .162 .204 .246 .328 .413 .502 .597 .810 | 0 .0014<br>.0022<br>.0028<br>.0033<br>.0046<br>.0062<br>.0078<br>.0093<br>.0130<br>.0167<br>.0208<br>.0255<br>.03266<br>.0423 | .0100<br>.0103<br>.0107<br>.0117<br>.0128<br>.0163<br>.0211<br>.0272<br>.0352<br>.0550<br>.0813<br>.1149<br>.1567<br>.2081 |                   | 0<br>.019<br>.040<br>.060<br>.079<br>.121<br>.163<br>.204<br>.247<br>.329<br>.415<br>.504<br>.604 | 0 .0014 .0021 .0031 .0037 .0055 .0073 .0088 .0105 .0144 .0183 .0220 .0273 .0347 .0439 | .0093<br>.0095<br>.0098<br>.0108<br>                                  |                   | 0<br>.017<br>.039<br>.060<br>.081<br>.121<br>.163<br>.205<br>.251<br>.332<br>.424<br>.521<br>.626<br>.737<br>.849 | 0<br>.0016<br>.0024<br>.0037<br>.0042<br>.0066<br>.0090<br>.0107<br>.0127<br>.0166<br>.0209<br>.0248<br>.0312<br>.0386<br>.0463 | .0088<br>.0089<br>.0093<br>.0106<br>.0114<br>.0146<br>.0196<br>.0261<br>.0345<br>.0541<br>.0821<br>.1181<br>.1640<br>.2207<br>.2850 |      |

## (5) h/t = 0.6, b/c = 0.33

| М    | α,                                                                                        |                                                                                                           | R=3.5                                                                                 | ×10 <sup>6</sup><br>on fixed                                                                                               |                                                                      | 1                                                                                                                   | R=3.5>                                                                                      |                                                                                                                            |                                                                                         | I                                                                       | R=2.0%                                                                                |                                                                                                                   |                                                                                                                            | 1                                                                  | R=1.0%                                                              |                                                                                                                            |                                                                                  |
|------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|      | deg                                                                                       | cl                                                                                                        | cm                                                                                    | cd                                                                                                                         | Pb/P                                                                 | cı                                                                                                                  | cm                                                                                          | cd                                                                                                                         | P <sub>b</sub> /P                                                                       | cı                                                                      | cm                                                                                    | cd                                                                                                                | P <sub>b</sub> /P                                                                                                          | cı                                                                 | cm                                                                  | c <sub>d</sub>                                                                                                             | Pb/P                                                                             |
| 1.45 | 0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0                                                      | 0<br>•035<br>•069<br>•105<br>•140<br>•214<br>•293<br>•366<br>•445                                         | 0<br>.0019<br>.0028<br>.0040<br>.0048<br>.0073<br>.0103<br>.0130                      | 0.0213<br>.0222<br>.0233<br>.0251<br>.0274<br>.0341<br>.0432<br>.0545<br>.0688                                             | 0.46<br>.45<br>.45<br>.45<br>.44<br>.41<br>.37<br>.36<br>.42         | 0<br>.032<br>.065<br>.101<br>.136<br>.208<br>.283<br>.360<br>.438                                                   | 0<br>.0019<br>.0024<br>.0032<br>.0037<br>.0056<br>.0086<br>.0124                            | 0.0181<br>.0190<br>.0198<br>.0215<br>.0237<br>.0301<br>.0391<br>.0510                                                      | 0.51<br>.50<br>.50<br>.50<br>.50<br>.51<br>.51                                          | 0<br>.032<br>.066<br>.102<br>.137<br>.210<br>.285<br>.364               | 0<br>.0018<br>.0025<br>.0033<br>.0040<br>.0059<br>.0091<br>.0132                      | 0.0175<br>.0180<br>.0188<br>.0206<br>.0228<br>.0294<br>.0386<br>.0505                                             | 0.54<br>.54<br>.54<br>.54<br>.54<br>.55<br>.55                                                                             | 0<br>.037<br>.073<br>.107<br>.147<br>.222<br>.301<br>.384          | 0<br>.0021<br>.0029<br>.0036<br>.0044<br>.0073<br>.0112<br>.0154    | 0.0159<br>.0173<br>.0178<br>.0203<br>.0225<br>.0293<br>.0389<br>.0506                                                      | 0.63<br>.59<br>.58<br>.56<br>.55<br>.55<br>.57                                   |
| 1.98 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>14.0<br>16.0<br>18.0 | 0<br>.019<br>.040<br>.061<br>.082<br>.125<br>.169<br>.215<br>.259<br>.346<br>.438<br>.527<br>.629<br>.737 | 0 .0009 .0013 .0016 .0024 .0033 .0043 .0053 .0080 .0106 .0140 .0186 .0243 .0243 .0243 | .0147<br>.0149<br>.0152<br>.0162<br>.0174<br>.0212<br>.0265<br>.0334<br>.0418<br>.0630<br>.0915<br>.1265<br>.1719<br>.2264 | 39<br>38<br>38<br>38<br>39<br>39<br>39<br>44<br>43<br>49<br>44<br>54 | 0<br>.019<br>.039<br>.060<br>.082<br>.124<br>.167<br>.214<br>.2214<br>.2214<br>.234<br>.434<br>.524<br>.621<br>.730 | 0 .0008 .0011 .0014 .0016 .0023 .0030 .0040 .0048 .0071 .0096 .0126 .0120 .0220 .0220 .0220 | .0124<br>.0127<br>.0129<br>.0138<br>.0150<br>.0188<br>.0240<br>.0308<br>.0391<br>.0603<br>.0882<br>.1233<br>.1671<br>.2229 | •37<br>•36<br>•36<br>•37<br>•37<br>•38<br>•38<br>•39<br>•40<br>•42<br>•45<br>•43<br>•40 | 0 .020 .041 .062 .080 .123 .166 .213 .255 .341 .432 .524 .629 .742 .859 | 0 .0009 .0012 .0018 .0020 .0025 .0035 .0043 .0052 .0074 .0099 .0128 .0173 .0237 .0310 | .0112<br>.0115<br>.0118<br>.0129<br>.0178<br>.0229<br>.0298<br>.0383<br>.0595<br>.0878<br>.1235<br>.1699<br>.2274 | 46<br>44<br>47<br>47<br>46<br>47<br>48<br>48<br>44<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49 | 0 .019 .041 .062 .085 .127 .173 .219 .262 .350 .444 .539 .653 .767 | 0 .0008 .0013 .0019 .0021 .0026 .0049 .0056 .0085 .0113 .0201 .0270 | .0102<br>.0106<br>.0109<br>.0125<br>.0138<br>.0178<br>.0227<br>.0295<br>.0383<br>.0600<br>.0890<br>.1264<br>.1758<br>.2348 | .61<br>.60<br>.58<br>.57<br>.57<br>.56<br>.57<br>.58<br>.59<br>.57<br>.53<br>.50 |

TABLE II.- LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Continued

(b) Basic airfoil: Biconvex to c/3, t/c = 0.04 - Concluded

(6) h/t = 0.3, b/c = 0.33

| М    | α,                                                                                                      |                                                                         | R=3.5×                                                                          | 10 <sup>6</sup><br>on fixed                                                                                                         |                                                |                                                                         | R=3.5<br>Airfoi                                                                                                     | 5×10 <sup>6</sup><br>l clean                                                                                               |                                                             |    | R=2.0%<br>Airfoil                                                                                                            |                                                                                                                                     |                                                                                                                                                                                     |                                                                         | R=1.0<br>Airfoil                                                                      |                                                                                                                            |                                                                                         |
|------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|      | deg                                                                                                     | cı                                                                      | cm                                                                              | cd                                                                                                                                  | Pb/P                                           | cı                                                                      | cm                                                                                                                  | cd                                                                                                                         | P <sub>b</sub> /P                                           | cı | cm                                                                                                                           | cd                                                                                                                                  | Pb/P                                                                                                                                                                                | cı                                                                      | cm                                                                                    | cd                                                                                                                         | Pb/P                                                                                    |
| 1.45 | 0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                                             | 0<br>.032<br>.066<br>.099<br>.133<br>.206<br>.277<br>.351<br>.426       | 0<br>.0027<br>.0035<br>.0045<br>.0057<br>.0086<br>.0122<br>.0155<br>.0193       | 0.0180<br>-0193<br>.0213<br>.0234<br>.0297<br>.0379<br>.0488<br>.0630                                                               | 0.43<br>.43<br>.43<br>.44<br>.44<br>.45<br>.47 | 0<br>.031<br>.064<br>.098<br>.133<br>.203<br>.279<br>.351<br>.427       | 0<br>.0020<br>.0030<br>.0038<br>.0048<br>.0071<br>.0106<br>.0152<br>.0204                                           | 0.0165<br>.0170<br>.0179<br>.0196<br>.0217<br>.0278<br>.0367<br>.0481                                                      | 0.50<br>.48<br>.48<br>.49<br>.48<br>.48<br>.52<br>.54       |    | 0<br>.0019<br>.0030<br>.0043<br>.0048<br>.0075<br>.0112<br>.0157<br>.0212                                                    | 0.0157<br>.0163<br>.0172<br>.0190<br>.0211<br>.0275<br>.0364<br>.0481                                                               |                                                                                                                                                                                     | 0<br>.036<br>.072<br>.107<br>.143<br>.220<br>.295<br>.373               | 0<br>.0021<br>.0034<br>.0048<br>.0053<br>.0087<br>.0129<br>.0174                      | 0.0160<br>.0161<br>.0171<br>.0193<br>.0210<br>.0276<br>.0365<br>.0487                                                      | 0.54<br>.54<br>.54<br>.56<br>.61<br>.66                                                 |
| 1.98 | 0<br>.5<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>14.0<br>14.0<br>16.0<br>18.0 | 0 .019 .039 .059 .080 .121 .164 .206 .249 .334 .421 .508 .605 .710 .815 | 0 .0013 .0017 .0021 .0025 .0047 .0058 .0071 .0101 .0134 .0171 .0220 .0285 .0349 | .0126<br>.0127<br>.0132<br>.0140<br>.0153<br>.0189<br>.0239<br>.0279<br>.0384<br>.0590<br>.0859<br>.1196<br>.1625<br>.2153<br>.2769 | 29 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4       | 0 .017 .036 .059 .078 .118 .159 .201 .243 .326 .409 .495 .591 .694 .821 | 0 .0010<br>.0015<br>.0020<br>.0022<br>.0032<br>.0042<br>.0051<br>.0064<br>.0091<br>.0122<br>.0157<br>.0198<br>.0235 | .0107<br>.0109<br>.0114<br>.0121<br>.0134<br>.0168<br>.0217<br>.0278<br>.0357<br>.0560<br>.0825<br>.1153<br>.1570<br>.2110 | 38 38 38 38 4 4 4 5 5 5 4 4 4 4 7 5 5 4 4 4 4 7 5 5 4 4 4 4 |    | 0 .0015<br>.0017<br>.0020<br>.0024<br>.0034<br>.0047<br>.0054<br>.0066<br>.0093<br>.0130<br>.0162<br>.0211<br>.0279<br>.0363 | .0103<br>.0105<br>.0113<br>.0120<br>.0135<br>.0167<br>.0218<br>.0277<br>.0360<br>.0551<br>.0830<br>.1164<br>.1527<br>.2022<br>.2695 | . 46<br>. 46<br>. 46<br>. 47<br>. 49<br>. 53<br>. 55<br>. 53<br>. 44<br>. 40<br>. 40<br>. 40<br>. 40<br>. 40<br>. 40<br>. 50<br>. 50<br>. 50<br>. 50<br>. 50<br>. 50<br>. 50<br>. 5 | 0 .020 .042 .061 .081 .123 .167 .206 .250 .336 .424 .517 .622 .732 .841 | 0 .0012 .0015 .0022 .0029 .0039 .0051 .0066 .0081 .0115 .0154 .0189 .0247 .0309 .0370 | .0099<br>.0102<br>.0109<br>.0119<br>.0131<br>.0166<br>.0278<br>.0362<br>.0567<br>.0842<br>.1197<br>.1663<br>.2225<br>.2837 | •73<br>•74<br>•73<br>•73<br>•79<br>•68<br>•67<br>•64<br>•59<br>•55<br>•50<br>•44<br>•42 |

## (7) h/t = 0, b/c = 0.33

| М    | α,                                                                                  | Tı                                                            | R=3.5                                                                                 | ×10 <sup>6</sup><br>on fixed                                                                                               |                   | A                                                                       | R=3.                                                                                  |                                                                                        |                   |                                                                  | R=2.0×<br>Airfoil                                                                                         |                                                                                        |      |                                                                  | R=1.0x<br>Airfoil                                                             |                                                              |      |
|------|-------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------|------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|------|
|      | deg                                                                                 | cı                                                            | c <sub>m</sub>                                                                        | c <sub>d</sub>                                                                                                             | p <sub>b</sub> /p | cı                                                                      | c <sub>m</sub>                                                                        | c <sub>d</sub>                                                                         | p <sub>b</sub> /p | cı                                                               | cm                                                                                                        | cđ                                                                                     | Pb/P | cı                                                               | cm                                                                            | cd                                                           | Pb/P |
| 1.45 | 0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                         | 0<br>.032<br>.065<br>.097<br>.130<br>.198<br>.269<br>.340     | 0<br>.0024<br>.0043<br>.0064<br>.0079<br>.0114<br>.0155<br>.0195                      | 0.0157<br>.0160<br>.0168<br>.0185<br>.0206<br>.0266<br>.0348<br>.0452                                                      |                   | 0<br>.034<br>.065<br>.098<br>.132<br>.201<br>.273<br>.349<br>.424       | 0<br>.0023<br>.0039<br>.0054<br>.0067<br>.0094<br>.0133<br>.0184                      | 0.0149<br>.0151<br>.0161<br>.0177<br>.0198<br>.0255<br>.0340<br>.0455<br>.0594         |                   | 0<br>.032<br>.065<br>.099<br>.135<br>.204<br>.278<br>.353        | 0<br>.0022<br>.0038<br>.0053<br>.0065<br>.0097<br>.0142<br>.0192                                          | 0.0139<br>.0143<br>.0154<br><br>.0190<br>.0249<br>.0352<br>.0455<br>.0597              |      | 0<br>.032<br>.064<br>.101<br>.136<br>.210<br>.285<br>.363        | 0<br>.0034<br>.0057<br>.0063<br>.0078<br>.0123<br>.0178<br>.0238              | 0.0131<br>.0133<br>.0145<br>.0183<br>.0247<br>.0368<br>.0456 |      |
| 1.98 | 0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>114.0<br>16.0<br>18.0 | 0 .020 .040 .061 .123 .165 .207 .249 .334 .422 .511 .608 .805 | 0 .0012 .0021 .0030 .0034 .0047 .0064 .0080 .0097 .0135 .0177 .0223 .0281 .0351 .0419 | .0118<br>.0120<br>.0124<br>.0134<br>.0145<br>.0182<br>.0230<br>.0292<br>.0576<br>.0843<br>.1184<br>.1608<br>.2122<br>.2702 |                   | 0 .019 .038 .058 .079 .118 .160 .203 .244 .327 .413 .499 .593 .693 .805 | 0 .0013 .0019 .0026 .0031 .0043 .0059 .0072 .0088 .0122 .0160 .0198 .0241 .0311 .0411 | .0097<br>.0098<br>.0105<br>.0126<br>.0159<br>.0208<br>.0270<br>.0349<br>.1143<br>.1554 |                   | 0 .019 .039 .060 .080 .121205 .247 .330 .415 .503 .601 .712 .820 | 0<br>.0014<br>.0022<br>.0029<br>.0034<br>.0049<br>-<br>.0080<br>.0136<br>.0171<br>.0261<br>.0339<br>.0432 | .0090<br>.0091<br>.0095<br>.0118<br>.0152<br>.0264<br>.0342<br>.0807<br>.1146<br>.1576 |      | 0 .319 .036 .057 .076 .120203 .249 .329 .416 .514 .618 .725 .832 | 0 .0019 .0029 .0045 .0050 .00660098 .0119 .0159 .0199 .0244 .0302 .0382 .0454 | .0086<br>                                                    |      |

NACA



# TABLE II.- LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Continued (c) Basic airfoil: Biconvex to c/3, t/c = 0.06 (1) h/t = 1.0, b/c = 0

| М    | α,                                                                                  | Tr                                                                 | R=3.5%                                                                                | kl0 <sup>6</sup><br>on fixed                                                                                               |                                                                                         | A                                                                                                         | R=3.5×<br>irfoil                                                  |                                                                                                              |                                                                           | А                                                                       | R=2.0×<br>irfoil                                                                                                    |                                                                                                                            |                                                                                  | I                                                                                                 | R=1.0×                                                                                               |                                                                                                                   |                                                                                         |
|------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|      | deg                                                                                 | cı                                                                 | cm                                                                                    | cd                                                                                                                         | p <sub>b</sub> /p                                                                       | cı                                                                                                        | cm                                                                | cd                                                                                                           | Pb/P                                                                      | cı                                                                      | cm                                                                                                                  | cd                                                                                                                         | Pb/P                                                                             | cı                                                                                                | cm                                                                                                   | cd                                                                                                                | Pb/P                                                                                    |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                  | 0<br>.035<br>.070<br>.105<br>.139<br>.214<br>.289                  | 0 .0015 .0032 .0051 .0060 .0082 .0108 .0137                                           | 0.0451<br>.0456<br>.0466<br>.0484<br>.0502<br>.0566<br>.0651                                                               | 0.56<br>.55<br>.54<br>.53<br>.53<br>.53<br>.54                                          | 0<br>.036<br>.072<br>.108<br>.142<br>.219<br>.293<br>.370                                                 | 0<br>.0021<br>.0040<br>.0061<br>.0076<br>.0106<br>.0137<br>.0167  | 0.0414<br>.0423<br>.0436<br>.0458<br>.0477<br>.0551<br>.0643<br>.0763                                        | 0.53<br>.52<br>.51<br>.50<br>.50<br>.50<br>.51                            | 0<br>.036<br>.071<br>.107<br>.143<br>.218<br>.296<br>.371               | 0<br>.0022<br>.0042<br>.0062<br>.0077<br>.0106<br>.0140                                                             | 0.0415<br>.0427<br>.0441<br>.0461<br>.0479<br>.0552<br>.0646<br>.0738                                                      | 0.52<br>.51<br>.50<br>.49<br>.49<br>.50                                          | 0<br>.038<br>.075<br>.110<br>.149<br>.226<br>.308                                                 | 0<br>.0027<br>.0046<br>.0064<br>.0080<br>.0113<br>.0148                                              | 0.0417<br>.0432<br>.0445<br>.0461<br>.0481<br>.0569<br>.0624                                                      | 0.54<br>.53<br>.51<br>.52<br>.52<br>.53<br>.56                                          |
| 1.98 | 0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>10.0<br>12.0<br>14.0<br>16.0<br>18.0 | 0 .021 .042 .064 .085 .129 .176 .220 .266 .359 .451 .547 .644 .855 | 0 .0009 .0017 .0023 .0029 .0039 .0053 .0065 .0079 .0113 .0156 .0201 .0227 .0263 .0301 | .0286<br>.0293<br>.0301<br>.0313<br>.0324<br>.0365<br>.0420<br>.0491<br>.0581<br>.0809<br>.1109<br>.1486<br>.1928<br>.2484 | .43<br>.41<br>.40<br>.40<br>.40<br>.41<br>.41<br>.42<br>.43<br>.45<br>.47<br>.49<br>.51 | 0<br>.020<br>.040<br>.062<br>.084<br>.128<br>.173<br>.217<br>.262<br>.354<br>.446<br>.541<br>.642<br>.749 | 0 .0010 .0017 .00230047 .0059 .0071 .0100 .0134 .0175 .0229 .0313 | .0255<br>.0256<br>.0267<br>.0278<br><br>.0384<br>.0454<br>.0542<br>.0769<br>.1067<br>.1443<br>.1915<br>.2489 | .40<br>.40<br>.39<br>.38<br>.39<br>.40<br>.40<br>.41<br>.43<br>.45<br>.43 | 0 .020 .041 .065 .086 .131 .177 .222 .268 .359 .451 .547 .653 .762 .876 | 0 .0009<br>.0017<br>.0025<br>.0028<br>.0040<br>.0052<br>.0063<br>.0076<br>.0106<br>.0140<br>.0185<br>.0244<br>.0294 | .0255<br>.0258<br>.0264<br>.0278<br>.0290<br>.0333<br>.0387<br>.0455<br>.0546<br>.0774<br>.1076<br>.1460<br>.1949<br>.2541 | .40<br>.40<br>.49<br>.39<br>.39<br>.39<br>.40<br>.41<br>.42<br>.43<br>.44<br>.42 | 0<br>.021<br>.042<br>.067<br>.089<br>.136<br>.182<br>.227<br>.277<br>.368<br>.463<br>.569<br>.678 | 0<br>.0011<br>.0016<br>.0027<br>.0030<br>.0044<br>.0058<br>.0069<br>.0118<br>.0156<br>.0209<br>.0269 | .0241<br>.0242<br>.0245<br>.0259<br>.0271<br>.0316<br>.0371<br>.0446<br>.0540<br>.0772<br>.1085<br>.1505<br>.2015 | .48<br>.48<br>.47<br>.46<br>.45<br>.45<br>.45<br>.45<br>.45<br>.45<br>.45<br>.45<br>.45 |

## (2) h/t = 0.6, b/c = 0.05

| М    | α,                                                                                        | Tr                                                                      | R=3.5                                                                                                      | ×10 <sup>6</sup> on fixed                                             |                                                                                         | A                                                                                                         | R=3.5>                                                                                                              |                                                                       |                                                                              | А                                                                                                         | R=2.0                                                                     |                                                                       |                                                                                  | 1                                                 | R=1.0>                                                  |                                                                                                          |                                                             |
|------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|      | deg                                                                                       | cı                                                                      | cm                                                                                                         | cd                                                                    | pb/p                                                                                    | cl                                                                                                        | cm                                                                                                                  | cd                                                                    | p <sub>b</sub> /p                                                            | cı                                                                                                        | cm                                                                        | cd                                                                    | Pb/P                                                                             | cı                                                | cm                                                      | cd                                                                                                       | Pb/P                                                        |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                        | 0<br>.032<br>.067<br>.101<br>.136<br>.206<br>.280<br>.354               | 0<br>.0025<br>.0048<br>.0072<br>.0089<br>.0119<br>.0154                                                    | 0.0419<br>.0423<br>.0433<br>.0449<br>.0470<br>.0530<br>.0613<br>.0725 | 0.57<br>.56<br>.56<br>.55<br>.55<br>.55<br>.55                                          | 0<br>.035<br>.069<br>.102<br>.137<br>.209<br>.282<br>.355                                                 | 0<br>.0026<br>.0053<br>.0078<br>.0097<br>.0132<br>.0172<br>.0212                                                    | 0.0397<br>.0401<br>.0415<br>.0433<br>.0457<br>.0523<br>.0611<br>.0727 | 0.57                                                                         | 0<br>.033<br>.065<br>.097<br>.130<br>.198<br>.268<br>.336                                                 | 0<br>.0027<br>.0053<br>.0075<br>.0093<br>.0128<br>.0168<br>.0205          | 0.0363<br>.0370<br>.0382<br>.0400<br>.0421<br>.0486<br>.0569<br>.0674 | 0.57<br><br>- 55<br><br>.53                                                      | 0<br>.037<br>.073<br>.112<br>.150<br>.227<br>.305 | 0<br>.0030<br>.0059<br>.0086<br>.0106<br>.0150<br>.0195 | 0.0381<br>.0390<br>.0395<br>.0423<br>.0444<br>.0514<br>.0597                                             | 0.61                                                        |
| 1.98 | 0<br>.5<br>1.0<br>2.0<br>3.0<br>5.0<br>6.0<br>8.0<br>10.0<br>12.0<br>14.0<br>16.0<br>18.0 | 0 .020 .040 .061 .082 .125 .170 .214 .258 .348 .439 .531 .624 .728 .837 | 0 .0014<br>.0025<br>.0036<br>.0043<br>.0059<br>.0077<br>.0096<br>.0117<br>.0163<br>.0217<br>.0321<br>.0372 |                                                                       | .45<br>.44<br>.43<br>.43<br>.44<br>.44<br>.44<br>.45<br>.47<br>.50<br>.52<br>.57<br>.58 | 0<br>.020<br>.042<br>.062<br>.084<br>.126<br>.171<br>.214<br>.258<br>.347<br>.439<br>.532<br>.630<br>.736 | 0 .0011<br>.0023<br>.0034<br>.0041<br>.0056<br>.0073<br>.0090<br>.0108<br>.0149<br>.0195<br>.0249<br>.0315<br>.0382 | .0742                                                                 | . 46<br>. 45<br>. 44<br>. 44<br>. 44<br>. 44<br>. 44<br>. 44<br>. 45<br>. 45 | 0<br>.020<br>.041<br>.063<br>.084<br>.129<br>.173<br>.218<br>.264<br>.352<br>.443<br>.537<br>.639<br>.746 | 0 .0012 .0022 .0034 .0038 .0058 .0075 .0092 .0111 .0154 .0204 .0308 .0431 | .0315<br>.0370<br>.0440<br>.0527<br>.0748<br>.1040<br>.1350<br>.1884  | .49<br>.48<br>.48<br>.47<br>.46<br>.45<br>.44<br>.44<br>.44<br>.44<br>.45<br>.43 |                                                   | .0285                                                   | .0226<br>.0226<br>.0229<br>.0244<br>.0256<br>.0354<br>.0425<br>.0521<br>.0744<br>.1044<br>.1945<br>.2522 | .56<br>.56<br>.55<br>.54<br>.53<br>.52<br>.51<br>.52<br>.51 |





# TABLE II. - LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Continued (c) Basic airfoil: Biconvex to c/3, t/c = 0.06 - Continued (3) h/t = 0.3, b/c = 0.05

| М    | α,                                                                                 | Tr                                                            | R=3.5                                                                                 | ×10 <sup>6</sup> on fixed                                                                                                  |                                                       | I                                                                  | R=3.5%                                                                                                              |                                                                                                                            |                                                                             | I                                                                                                                 | R=2.0x                                                                                                        |                                                                                                                                     |                                                | I                                                                                                 | R=1.0><br>Airfoil                                                                                                   |                                                                                                          |                                                                           |
|------|------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 14   | deg                                                                                | cı                                                            | cm                                                                                    | cd                                                                                                                         | p <sub>b</sub> /p                                     | cı                                                                 | cm                                                                                                                  | cd                                                                                                                         | P <sub>b</sub> /P                                                           | cı                                                                                                                | cm                                                                                                            | cd                                                                                                                                  | p <sub>b</sub> /p                              | cı                                                                                                | $c_{m}$                                                                                                             | cd                                                                                                       | Pb/P                                                                      |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                 | 0<br>.033<br>.067<br>.100<br>.134<br>.203<br>.274<br>.346     | 0<br>.0029<br>.0056<br>.0081<br>.0102<br>.0139<br>.0178<br>.0223                      | 0.0369<br>.0373<br>.0381<br>.0396<br>.0416<br>.0472<br>.0552<br>.0660                                                      | 0.58<br>.58<br>.57<br>.57<br>.57<br>.58<br>.59<br>.61 | 0<br>.034<br>.067<br>.101<br>.136<br>.206<br>.279<br>.351<br>.423  | 0<br>.0029<br>.0058<br>.0085<br>.0107<br>.0149<br>.0192<br>.0239<br>.0288                                           | 0.0338<br>.0342<br>.0355<br>.0371<br>.0395<br>.0460<br>.0548<br>.0659                                                      | 0.58<br>.57<br>.57<br>.57<br>.57<br>.57<br>.57<br>.58<br>.61                | 0<br>.033<br>.068<br>.102<br>.136<br>.209<br>.282<br>.354<br>.428                                                 | 0<br>.0027<br>.0060<br>.0086<br>.0111<br>.0153<br>.0199<br>.0243<br>.0331                                     | 0.0333<br>.0338<br>.0348<br>.0366<br>.0387<br>.0457<br>.0544<br>.0658                                                               | 0.60<br>.60<br>.60<br>.60<br>.58<br>.57<br>.58 | 0<br>.038<br>.073<br>.110<br>.144<br>.220<br>.297<br>.373                                         | 0<br>.0039<br>.0071<br>.0105<br>.0127<br>.0178<br>.0226<br>.0281                                                    | 0.0326<br>.0328<br>.0339<br>.0361<br>.0379<br>.0451<br>.0541                                             | 0.70<br>.70<br>.70<br>.70<br>.70<br>.69<br>.68                            |
| 1.98 | 0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>14.0<br>16.0<br>18.0 | 0 .021 .042 .061 .082 .125 .168 .211 .430 .525 .620 .714 .817 | 0 .0014 .0028 .0041 .0049 .0068 .0089 .0110 .0133 .0186 .0247 .0317 .0370 .0431 .0498 | .0229<br>.0232<br>.0237<br>.0249<br>.0262<br>.0301<br>.0352<br>.0418<br>.0500<br>.0710<br>.0994<br>.1356<br>.1770<br>.2295 | 444444444444444444444444444444444444444               | 0 .020 .041 .061 .083 .125 .168 .212 .255 .342 .522 .617 .719 .821 | 0 .0016<br>.0028<br>.0039<br>.0048<br>.0065<br>.0084<br>.0103<br>.0127<br>.0175<br>.0228<br>.0290<br>.0359<br>.0431 | .0205<br>.0206<br>.0213<br>.0225<br>.0239<br>.0278<br>.0329<br>.0478<br>.0691<br>.0971<br>.1332<br>.1754<br>.2307<br>.2933 | 50<br>50<br>50<br>49<br>49<br>49<br>48<br>47<br>48<br>49<br>546<br>43<br>45 | 0<br>.022<br>.042<br>.062<br>.084<br>.127<br>.172<br>.215<br>.260<br>.347<br>.435<br>.526<br>.628<br>.732<br>.836 | 0<br>.0015<br>.0031<br>.0044<br>.0052<br>.0072<br>.0091<br>.0133<br>.0186<br>.0241<br>.0305<br>.0379<br>.0450 | .0196<br>.0199<br>.0205<br>.0218<br>.0231<br>.0272<br>.0324<br>.0391<br>.0479<br>.0693<br>.0978<br>.1340<br>.1804<br>.2359<br>.2996 | 61 66 66 55 55 55 55 55 55 55 55 55 55 55      | 0<br>.020<br>.042<br>.064<br>.083<br>.128<br>.172<br>.217<br>.264<br>.350<br>.443<br>.542<br>.646 | 0 .0016<br>.0032<br>.0045<br>.0061<br>.0084<br>.0105<br>.0129<br>.0148<br>.0208<br>.0265<br>.0338<br>.0414<br>.0472 | .0186<br>.0188<br>.0189<br>.0209<br>.0262<br>.0315<br>.0386<br>.0480<br>.0694<br>.1375<br>.1856<br>.2405 | .71<br>.71<br>.70<br>.69<br>.68<br>.64<br>.65<br>.57<br>.55<br>.47<br>.44 |

## (4) h/t = 0, b/c = 0.05

| М    | α,                                                                                  | Tr                                                                      | R=3.5%                                                                                | ×10 <sup>6</sup><br>on fixed                                                                                      |      | I                                                                       | R=3.5×                                                                          |                                                                                                                   |                   | A                                                                       | R=2.0>                                                                                |                                                                                                                                     |                   | 1                                                                                                         | R=1.0<br>Airfoil                                                                                                       |                                                                                                                            |      |
|------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------|
|      | deg                                                                                 | cl                                                                      | cm                                                                                    | cd                                                                                                                | Pb/P | cl                                                                      | cm                                                                              | cd                                                                                                                | p <sub>b</sub> /p | cl                                                                      | cm                                                                                    | ed                                                                                                                                  | p <sub>b</sub> /p | cz                                                                                                        | cm                                                                                                                     | cd                                                                                                                         | Pb/P |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                  | 0<br>.032<br>.065<br>.097<br>.129<br>.195<br>.263<br>.333<br>.400       | 0<br>.0035<br>.0066<br>.0096<br>.0120<br>.0164<br>.0213<br>.0266                      | 0.0341<br>.0342<br>.0348<br>.0364<br>.0383<br>.0436<br>.0514<br>.0618                                             |      | 0<br>.034<br>.065<br>.098<br>.131<br>.199<br>.268<br>.336<br>.405       | 0<br>.0033<br>.0065<br>.0093<br>.0117<br>.0165<br>.0218<br>.0273<br>.0332       | 0.0308<br>.0312<br>.0322<br>.0338<br>.0358<br>.0420<br>.0505<br>.0611<br>.0742                                    |                   | 0<br>.032<br>.065<br>.098<br>.132<br>.201<br>.274<br>.341<br>.406       | 0<br>.0032<br>.0066<br>.0097<br>.0121<br>.0171<br>.0226<br>.0280                      | 0.0297<br>.0299<br>.0309<br>.0328<br>.0352<br>.0417<br>.0503<br>.0611<br>.0721                                                      |                   | 0<br>.033<br>.068<br>.104<br>.138<br>.210<br>.283<br>.355                                                 | 0<br>.0040<br>.0074<br>.0106<br>.0135<br>.0193<br>.0254<br>.0312                                                       | 0.0295<br>.0299<br>.0305<br>.0327<br>.0348<br>.0415<br>.0504<br>.0610                                                      |      |
| 2.0  | 0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>10.0<br>12.0<br>14.0<br>16.0<br>18.0 | 0 .021 .041 .060 .081 .121 .163 .205 .247 .331 .419 .509 .598 .692 .790 | 0 .0016 .0032 .0046 .0059 .0080 .0104 .0128 .0155 .0214 .0277 .0349 .0469 .0469 .0543 | .0217<br>.0220<br>.0225<br>.0236<br>.0248<br>.0286<br>.0383<br>.0479<br>.0681<br>.0953<br>.1303<br>.1706<br>.2202 |      | 0 .019 .038 .057 .077 .117 .157 .199 .240 .323 .410 .499 .599 .685 .787 | 0 .0018 .0034 .0049 .0060 .0081 .0104 .0152 .0203 .0257 .0320 .0392 .0471 .0534 | .0180<br>.0182<br>.0187<br>.0199<br>.0211<br>.0249<br>.0360<br>.0439<br>.0594<br>.0909<br>.1255<br>.1676<br>.2174 |                   | 0 .019 .039 .058 .078 .118 .159 .200 .243 .327 .412 .502 .600 .701 .803 | 0 .0017 .0033 .0049 .0059 .0084 .0111 .0134 .0161 .0215 .0268 .0332 .0419 .0490 .0549 | .0176<br>.0179<br>.0184<br>.0196<br>.0208<br>.0245<br>.0296<br>.0358<br>.0438<br>.0642<br>.0911<br>.1260<br>.1701<br>.2228<br>.2834 |                   | 0<br>.020<br>.039<br>.058<br>.079<br>.120<br>.162<br>.202<br>.247<br>.333<br>.421<br>.523<br>.625<br>.722 | 0<br>.0016<br>.0032<br>.0050<br>.0064<br>.0093<br>.0127<br>.0159<br>.0180<br>.0241<br>.0299<br>.0374<br>.0453<br>.0517 | .0174<br>.0174<br>.0175<br>.0189<br>.0200<br>.0242<br>.0291<br>.0356<br>.0441<br>.0652<br>.0929<br>.1311<br>.1771<br>.2289 |      |



TABLE II.- LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Continued (c) Basic airfoil: Biconvex to c/3, t/c = 0.06 - Continued (5) h/t = 0.6, b/c = 0.33

| М    | α,                                                                                                | Tr                                                                      | R=3.5%                                                                          | ×10 <sup>6</sup><br>on fixed                                                                                      |                                                                           | I                                                                  | R=3.5>                                                                                |                                                                                                                            |                                                                                              | F                                                                       | R=2.0x                                                                                                              |                                                                                                          |                                                                                  | 1                                                                                                     | R=1.0><br>Airfoil                                                             |                                                                                                                  |                                                                                         |
|------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|      | deg                                                                                               | cı                                                                      | cm                                                                              | cd                                                                                                                | p <sub>b</sub> /p                                                         | cı                                                                 | cm                                                                                    | cd                                                                                                                         | p <sub>b</sub> /p                                                                            | cl                                                                      | cm                                                                                                                  | cd                                                                                                       | P <sub>b</sub> /P                                                                | cı                                                                                                    | cm                                                                            | cd                                                                                                               | Pb/P                                                                                    |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0                                                       | 0<br>.035<br>.069<br>.104<br>.139<br>.208<br>.281<br>.355<br>.429       | 0<br>.0025<br>.0049<br>.0072<br>.0090<br>.0116<br>.0147<br>.0184                | 0.0378<br>.0385<br>.0395<br>.0411<br>.0431<br>.0489<br>.0573<br>.0685<br>.0809                                    | 0.54<br>.53<br>.52<br>.51<br>.51<br>.50<br>.51<br>.51                     | 0<br>.034<br>.070<br>.104<br>.139<br>.210<br>.281<br>.358<br>.425  | 0<br>.0025<br>.0049<br>.0074<br>.0092<br>.0130<br>.0167<br>.0207                      | 0.0334<br>.0338<br>.0348<br>.0369<br>.0393<br>.0460<br>.0550<br>.0667                                                      |                                                                                              | 0<br>.034<br>.068<br>.104<br>.140<br>.214<br>.287<br>.363               | 0<br>.0024<br>.0051<br>.0076<br>.0095<br>.0131<br>.0171<br>.0211                                                    | 0.0335<br>.0339<br>.0351<br>.0371<br>.0393<br>.0462<br>.0551<br>.0668                                    | 0.56<br>.56<br>.55<br>.54<br>.55<br>.54<br>.55                                   | 0<br>.035<br>.072<br>.110<br>.147<br>.225<br>.301<br>.379                                             | 0<br>.0029<br>.0055<br>.0081<br>.0098<br>.0139<br>.0182                       | 0.0330<br>.0331<br>.0340<br>.0364<br>.0387<br>.0461<br>.0549<br>.0632                                            | 0.61<br>.60<br>.60<br>.59<br>.60<br>.59                                                 |
| 1.98 | 0<br>1.0<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>12.0<br>14.0<br>16.0<br>18.0 | 0 .021 .042 .063 .083 .127 .171 .215 .259 .348 .439 .533 .625 .728 .833 | 0 .0011 .0023 .0034 .0041 .0056 .0073 .0089 .0108 .0150 .0199 .0263 .0352 .0407 | .0234<br>.0237<br>.0243<br>.0256<br>.0270<br>.0362<br>.0129<br>.0515<br>.0732<br>.1024<br>.1392<br>.1817<br>.2355 | .43<br>.42<br>.42<br>.41<br>.41<br>.42<br>.44<br>.46<br>.48<br>.57<br>.60 | 0 .021 .042 .062 .084 .127 .170 .214 .259 .347 .529 .627 .731 .837 | 0 .0011 .0023 .0032 .0038 .0051 .0067 .0083 .0100 .0140 .0182 .0238 .0301 .0364 .0413 | .0206<br>.0209<br>.0216<br>.0227<br>.0240<br>.0279<br>.0339<br>.0485<br>.0701<br>.0990<br>.1355<br>.1807<br>.2362<br>.3009 | . 43<br>. 43<br>. 42<br>. 43<br>. 43<br>. 44<br>. 44<br>. 46<br>. 47<br>. 44<br>. 43<br>. 43 | 0 .022 .044 .064 .085 .130 .175 .217 .262 .350 .439 .534 .642 .749 .857 | 0 .0011<br>.0024<br>.0034<br>.0038<br>.0051<br>.0070<br>.0086<br>.0103<br>.0143<br>.0188<br>.0246<br>.0317<br>.0378 | .0205<br>.0207<br>.0212<br>.0225<br>.0239<br>.0280<br>.0333<br>.0400<br>.0489<br>.0708<br>.1000<br>.1369 | .48<br>.48<br>.47<br>.47<br>.47<br>.47<br>.47<br>.47<br>.47<br>.47<br>.47<br>.47 | 0 .026<br>.044<br>.062<br>.087<br>.130<br>.178<br>.223<br>.272<br>.360<br>.454<br>.554<br>762<br>.875 | 0 .0011 .0022 .0033 .0035 .0055 .0076 .0093 .0106 .0156 .0210 .02780398 .0434 | .0194<br>.0198<br>.0204<br>.0217<br>.0231<br>.0273<br>.0327<br>.0400<br>.0496<br>.0716<br>.1019<br>.1416<br>2468 | .60<br>.62<br>.61<br>.60<br>.59<br>.57<br>.55<br>.57<br>.55<br>.53<br>.49<br>.46<br>.43 |

## (6) h/t = 0.3, b/c = 0.33

| M a                                                                                                   |                                                                                                |                                                                                                                     | x10 <sup>6</sup><br>on fixed                                                                                               |                                                                                         | A                                                                       | R=3.5×                                                                          |                                                                                                          |                                                                           | A                                                                       | R=2.0×                                                                          |                                                                                                                   |                                                                                         | 1                                                                                                         | R=1.0×<br>Airfoil                                                                                                   |                                                                                                                            |                                                                            |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| deg                                                                                                   | cı                                                                                             | cm                                                                                                                  | cd                                                                                                                         | p <sub>b</sub> /p                                                                       | cl                                                                      | $c_{m}$                                                                         | cd                                                                                                       | Pb/P                                                                      | cı                                                                      | cm                                                                              | cd                                                                                                                | P <sub>b</sub> /P                                                                       | cl                                                                                                        | cm                                                                                                                  | c <sub>d</sub>                                                                                                             | Pb/P                                                                       |
| 1.45 0<br>1.1<br>1.2<br>3.4<br>4.6                                                                    | 0 .066<br>.100<br>.134<br>.202<br>.273<br>.345                                                 | 0<br>.0029<br>.0055<br>.0078<br>.0097<br>.0133<br>.0170<br>.0213<br>.0262                                           | 0.0354<br>.0357<br>.0365<br>.0379<br>.0396<br>.0452<br>.0530<br>.0637<br>.0766                                             | 0.36<br>.36<br>.37<br>.37<br>.38<br>.39<br>.41                                          | 0<br>.035<br>.068<br>.102<br>.136<br>.206<br>.278<br>.349<br>.416       | 0<br>.0033<br>.0057<br>.0083<br>.0106<br>.0139<br>.0191<br>.0235                | 0.0314<br>.0319<br>.0326<br>.0345<br>.0364<br>.0428<br>.0514<br>.0627                                    | 0.54<br>.54<br>.55<br>.55<br>.56<br>.57<br>.60<br>.59                     | 0<br>.034<br>.067<br>.102<br>.138<br>.207<br>.281<br>.352<br>.421       | 0<br>.0029<br>.0058<br>.0083<br>.0106<br>.0148<br>.0194<br>.0238<br>.0303       | 0.0298<br>.0304<br>.0315<br>.0335<br>.0356<br>.0426<br>.0512<br>.0625                                             | 0.59<br>.59<br>.59<br>.59<br>.59<br>.58<br>.59                                          | 0<br>.036<br>.074<br>.108<br>.145<br>.220<br>.295<br>.368                                                 | 0<br>.0033<br>.0064<br>.0092<br>.0111<br>.0159<br>.0206                                                             | 0.0302<br>.0308<br>.0317<br>.0339<br>.0359<br>.0429<br>.0515<br>.0621                                                      | 0.67<br>.67<br>.66<br>.66<br>.65<br>.66                                    |
| 1.98 0<br>.:<br>1.:<br>2.:<br>3.:<br>4.:<br>5.:<br>6.:<br>8.:<br>10.:<br>12.:<br>14.:<br>16.:<br>18.: | 0 .042<br>.061<br>.083<br>.124<br>.168<br>.211<br>.253<br>.340<br>.429<br>.520<br>.608<br>.708 | 0 .0015<br>.0028<br>.0041<br>.0049<br>.0067<br>.0105<br>.0128<br>.0177<br>.0235<br>.0303<br>.0352<br>.0417<br>.0485 | .0214<br>.0217<br>.0223<br>.0233<br>.0246<br>.0284<br>.0336<br>.0402<br>.0483<br>.0694<br>.0976<br>.1329<br>.1738<br>.2258 | .41<br>.41<br>.40<br>.40<br>.40<br>.41<br>.42<br>.43<br>.46<br>.48<br>.53<br>.61<br>.63 | 0 .020 .041 .061 .081 .122 .164 .208 .250 .338 .425 .515 .608 .705 .808 | 0 .0013 .0026 .0037 .0045 .0080 .0099 .0119 .0166 .0219 .0279 .0351 .0423 .0482 | .0183<br>.0185<br>.0191<br>.0201<br>.0214<br>.0252<br>.0369<br>.0451<br>.0661<br>.0938<br>.1723<br>.2244 | .46<br>.46<br>.46<br>.46<br>.47<br>.47<br>.48<br>.49<br>.44<br>.41<br>.41 | 0 .020 .040 .061 .082 .124 .168 .210 .254 .340 .425 .516 .616 .719 .821 | 0 .0013 .0026 .0039 .0046 .0063 .0085 .0103 .0125 .0173 .0229 .0366 .0437 .0493 | .0182<br>.0185<br>.0188<br>.0200<br>.0214<br>.0252<br>.0304<br>.0454<br>.0663<br>.0940<br>.1298<br>.1751<br>.2294 | .53<br>.53<br>.53<br>.53<br>.51<br>.51<br>.51<br>.52<br>.48<br>.43<br>.40<br>.38<br>.39 | 0<br>.019<br>.042<br>.063<br>.085<br>.127<br>.173<br>.216<br>.262<br>.350<br>.438<br>.541<br>.645<br>.745 | 0 .0013<br>.0029<br>.0040<br>.0051<br>.0069<br>.0099<br>.0113<br>.0136<br>.0197<br>.0256<br>.0326<br>.0406<br>.0464 | .0180<br>.0181<br>.0182<br>.0197<br>.0203<br>.0247<br>.0267<br>.0369<br>.0457<br>.0672<br>.0961<br>.1354<br>.1827<br>.2364 | 69<br>69<br>69<br>69<br>68<br>67<br>62<br>57<br>50<br>47<br>43<br>40<br>42 |

TABLE II.- LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Continued (c) Basic airfoil: Biconvex to c/3, t/c = 0.06 - Concluded (7) h/t = 0, b/c = 0.33

| М    | α,   | Tr    | R=3.5          | ×10 <sup>6</sup><br>on fixed |                   |      | R=3.5×<br>Airfoil |        |                   |      | R=2.0><br>Airfoil |        |      |      | R=1.00 |        |      |
|------|------|-------|----------------|------------------------------|-------------------|------|-------------------|--------|-------------------|------|-------------------|--------|------|------|--------|--------|------|
|      | deg  | cı    | c <sub>m</sub> | cd                           | p <sub>b</sub> /p | cı   | cm                | cd     | p <sub>b</sub> /p | cı   | cm                | cd     | Pb/P | cı   | cm     | cd     | Pb/P |
| 1.45 | 0    | 0 .   | 0              | 0.0324                       |                   | 0    | 0                 | 0.0299 |                   |      |                   |        |      | 0    | 0      | 0.0301 |      |
|      | -5   | .032  | .0034          | .0326                        |                   | .032 | .0029             | .0302  |                   |      |                   |        |      | .032 | .0033  |        |      |
|      | 1.0  | .067  | .0063          | .0335                        |                   | .067 | .0061             | .0315  |                   |      |                   |        |      | .076 | .0079  | .0318  |      |
|      | 1.5  | .097  | .0088          | .0348                        |                   | .098 | .0087             | .0332  |                   |      |                   |        |      | .102 | .0101  | .0333  |      |
|      | 2.0  | .129  | .0111          | .0367                        |                   | .130 | .0113             | .0352  |                   |      |                   |        |      | .136 | .0132  | .0354  |      |
|      | 3.0  | .195  | .0151          | .0422                        |                   | .199 | .0159             | .0415  |                   |      |                   |        |      | .208 | .0177  | .0413  |      |
|      | 4.0  | .262  | .0195          | .0500                        |                   | .267 | .0210             | .0500  |                   |      |                   |        |      | .281 | .0230  | .0505  |      |
|      | 5.0  | .332  | .0247          | .0605                        |                   | •337 | .0259             | .0608  |                   |      | 7                 |        |      | •353 | .0287  | .0615  |      |
|      | 6.0  | .400  | .0303          | .0735                        |                   | .404 | .0311             | .0739  |                   |      |                   |        |      |      |        |        |      |
| 1.98 | 0    | 0     | 0              | .0204                        |                   | 0    | 0                 | .0185  |                   | 0    | 0                 | 0.0180 |      | 0    | 0      | .0177  |      |
|      | .5   | .020  | .0014          | .0208                        |                   | .019 | .0015             | .0186  |                   | .018 | .0016             | .0180  |      | .015 | .0021  |        |      |
|      | 1.0  | .042  | .0033          | .0214                        |                   | .041 | .0030             | .0193  |                   | .043 | .0032             | .0190  |      | .042 | .0042  | .0187  |      |
|      | 1.5  | .058  | .0044          | .0223                        |                   | .058 | .0041             | .0202  |                   | .059 | .0043             | .0198  |      | .052 | .0052  | .0193  |      |
|      | 2.0  | .079  | .0057          | .0237                        |                   | .078 | .0053             | .0215  |                   | .079 | .0057             | .0211  |      | .077 | .0068  | .0207  |      |
|      | 3.0  | .119  | .0076          | .0273                        |                   | .119 | .0071             | .0251  |                   | .119 | .0075             | .0248  |      | .116 | .0084  | .0240  |      |
|      | 4.0  | .161  | .0097          | .0323                        |                   | .160 | .0092             | .0301  |                   | .162 | .0095             | .0303  |      | .163 | .0108  | .0297  |      |
|      | 5.0  | .203  | .0120          | .0387                        |                   | .202 | .0112             | .0366  |                   | .204 | .0119             | .0362  |      | .204 | .0134  | .0355  |      |
|      | 6.0  | .245  | .0146          | .0468                        |                   | .245 | .0137             | .0447  |                   | .247 | .0145             | .0455  |      | .246 | .0163  | .0439  |      |
|      | 8.0  | .330  | .0199          | .0673                        |                   | .331 | .0185             | .0655  |                   | .331 | .0192             | .0650  |      | •337 | .0218  | .0649  |      |
|      | 10.0 | .414  | .0259          | .0944                        |                   | .416 | .0205             | .0924  |                   | .418 | .0247             | .0925  |      | .424 | .0278  | .0927  |      |
|      | 12.0 | .502  | .0332          | .1286                        |                   | .504 | .0299             | .1269  |                   | .506 | .0309             | .1209  |      | .522 | .0342  | .1296  |      |
|      | 14.0 | .588  | .0386          | .1682                        |                   | .596 | .0373             | .1689  |                   | .603 | .0386             | .1705  |      | .622 | .0420  | .1751  |      |
|      | 16.0 | .684  | .0454          | .2178                        |                   | .695 | .0453             | .2207  |                   | .703 | .0405             | .1230  |      | .723 | .0489  | .2276  |      |
|      | 10.0 | . LOT | .0526          | .2759                        |                   | .791 | .0521             | .2800  |                   | .803 | .0525             | .2833  |      | .825 | .0544  | .2894  |      |

## (d) Basic airfoil: Biconvex to c/2, t/c = 0.04 (1) h/t = 1.0, b/c = 0

| М | α,                                                                                         |                                                      | R=3.53                                                                                                                                | x10 <sup>6</sup><br>on fixed                                                                                                                                             |                                                                                 |                                                                                                                        | R=3.5><br>Airfoil                                                                                                                     |                                                                                                                                                                 |                                                                                                               |                                                      | R=2.0><br>Airfoil                                                                                                                                        |                                                                                                                                                                              |                                                                            |                                                                                                                                                           | R=1.00<br>Airfoil                                                                                                                           |                                                                                                                                                                                  |                   |
|---|--------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|   | deg                                                                                        | cı                                                   | cm                                                                                                                                    | cd                                                                                                                                                                       | P <sub>b</sub> /P                                                               | cı                                                                                                                     | cm                                                                                                                                    | cd                                                                                                                                                              | P <sub>b</sub> /P                                                                                             | cı                                                   | cm                                                                                                                                                       | cd                                                                                                                                                                           | Pb/P                                                                       | cı                                                                                                                                                        | cm                                                                                                                                          | cd                                                                                                                                                                               | P <sub>b</sub> /P |
|   | 0 .50 1.50 3.00 1.50 3.00 5.00 3.00 1.50 3.00 1.50 3.00 1.50 3.00 1.20 1.40 1.60 1.80 1.80 | .032<br>.067<br>.103<br>.137<br>.211<br>.289<br>.366 | 0 .0010<br>.0012<br>.0017<br>.0021<br>.0035<br>.0056<br>.0081<br>.0004<br>.0004<br>.0007<br>.0030<br>.0034<br>.0045<br>.0034<br>.0045 | 0.0234<br>.0234<br>.0245<br>.0262<br>.0262<br>.0352<br>.0164<br>.0164<br>.0168<br>.0177<br>.0189<br>.0227<br>.0281<br>.0350<br>.0437<br>.0437<br>.0552<br>.0937<br>.1293 | 9<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 0 .032<br>.066<br>.100<br>.135<br>.208<br>.222<br>.359<br>.040<br>.062<br>.124<br>.167<br>.213<br>.343<br>.430<br>.521 | 0 .0006<br>.0010<br>.0013<br>.0016<br>.0027<br>.0043<br>.0065<br>.0005<br>.0007<br>.0007<br>.0010<br>.0019<br>.0025<br>.0039<br>.0039 | 0.0217<br>.0218<br>.0242<br>.0242<br>.0263<br>.0328<br>.0420<br>.0537<br>.0142<br>.0147<br>.0156<br>.0205<br>.0257<br>.0326<br>.0410<br>.0627<br>.0907<br>.1259 | 0.50<br>.50<br>.50<br>.50<br>.50<br>.51<br>.51<br>.36<br>.36<br>.36<br>.36<br>.36<br>.36<br>.36<br>.36<br>.36 | .031<br>.067<br>.102<br>.138<br>.210<br>.286<br>.366 | 0 .0006<br>.0016<br>.0018<br>.0031<br>.0046<br>.0074<br>0 .0005<br>.0005<br>.0010<br>.0010<br>.0014<br>0026<br>.0029<br>.0046<br>.0059<br>.0074<br>.0059 | 0.0212<br>.0216<br>.0226<br>.0238<br>.0262<br>.0327<br>.0416<br>.0535<br><br>.0138<br>.0138<br>.0138<br>.0156<br>.0161<br>.0402<br>.0617<br>.0918<br>.1262<br>.1703<br>.2306 | 0.49<br>.50<br>.50<br>.50<br>.50<br>.50<br>.50<br>.50<br>.50<br>.50<br>.50 | 0<br>.035<br>.070<br>.108<br>.144<br>.220<br>.302<br>.017<br>.035<br>.059<br>.081<br>.124<br>.168<br>.212<br>.258<br>.347<br>.445<br>.543<br>.650<br>.767 | 0 .0010<br>.0010<br>.0018<br>.0024<br>.0042<br>.0063<br><br>0 .0008<br>.0008<br>.0013<br>.0024<br>.0024<br>.0035<br>.0056<br>.0070<br>.0093 | 0.0198<br>.0206<br>.0211<br>.0229<br>.0252<br>.0321<br>.0403<br><br>.0123<br>.0126<br><br>.0137<br>.0148<br>.0188<br>.0237<br>.0396<br>.0608<br>.0914<br>.1288<br>.1768<br>.2370 |                   |

NACA



# TABLE II.- LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Continued (d) Basic airfoil: Biconvex to c/2, t/c = 0.04 - Continued (2) h/t = 0.6, b/c = 0.05

| М    | α,                                                                                               | Tı                                                                 | R=3.50                                                                    | ×10 <sup>6</sup> on fixed                                                                                                  |                                                             | I                                                                 | R=3.5>                                                                                                     |                                                                                                                            |                                                | A                                                                       | R=2.0x                                                                                                                       |                                                                                                                   |                                                                    | 1                                                                                                 | R=1.0                                                                                                |                                                                                                                            |                                                                    |
|------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|      | deg                                                                                              | cı                                                                 | cm                                                                        | e d                                                                                                                        | p <sub>b</sub> /p                                           | cı                                                                | c <sub>m</sub>                                                                                             | cd                                                                                                                         | Pb/P                                           | cı                                                                      | cm                                                                                                                           | cd                                                                                                                | P <sub>b</sub> /P                                                  | cı                                                                                                | cm                                                                                                   | cd                                                                                                                         | P <sub>b</sub> /P                                                  |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                               | 0<br>.030<br>.064<br>.099<br>.134<br>.208<br>.288<br>.364<br>.436  | 0<br>.0017<br>.0023<br>.0029<br>.0035<br>.0056<br>.0085<br>.0123          | 0.0206<br>.0215<br>.0221<br>.0239<br>.0259<br>.0326<br>.0420<br>.0533<br>.0662                                             | 0.52<br>.51<br>.50<br>.51<br>.52<br>.54<br>.57<br>.61       | 0<br>.033<br>.065<br>.099<br>.135<br>.205<br>.279<br>.357<br>.437 | 0<br>.0015<br>.0022<br>.0024<br>.0032<br>.0045<br>.0068<br>.0100                                           | 0.0191<br>.0196<br>.0202<br>.0217<br>.0236<br>.0302<br>.0371<br>.0509<br>.0644                                             | 0.55<br>.54<br>.54<br>.55<br>.55<br>.56<br>.63 | 0<br>.033<br>.066<br>.102<br>.136<br>.209<br>.283<br>.362               | 0<br>.0013<br>.0023<br>.0030<br>.0035<br>.0052<br>.0074<br>.0105                                                             | 0.0176<br>.0185<br>.0190<br>.0208<br>.0229<br>.0294<br>.0382<br>.0507                                             | 0.59<br>.58<br>.58<br>.58<br>.58<br>.58<br>.58                     | 0<br>.035<br>.071<br>.106<br>.142<br>.215<br>.294<br>.376                                         | 0<br>.0021<br>.0029<br>.0034<br>.0044<br>.0052<br>.0085                                              | 0.0160<br>.0173<br>.0179<br>.0201<br>.0219<br>.0289<br>.0386<br>.0504                                                      | 0.69<br>.67<br>.66<br>.65<br>.64<br>.63<br>.63                     |
| 1.98 | 0<br>.5<br>1.0<br>1.5<br>2.0<br>3.0<br>5.0<br>6.0<br>8.0<br>10.0<br>14.0<br>14.0<br>16.0<br>18.0 | 0 .018 .039 .059 .081 .123 .167 .211 .256 .345 .524 .621 .732 .732 | 0 .0008 .0010 .0014 .0015 .0023 .0031 .0052 .0075 .0100 .0131 .0164 .0234 | .0146<br>.0150<br>.0151<br>.0160<br>.0172<br>.0269<br>.0262<br>.0330<br>.0413<br>.0627<br>.0909<br>.1257<br>.1694<br>.2261 | .40<br>.40<br>.41<br>.41<br>.42<br>.42<br>.44<br>.49<br>.53 | 0 .017 .038 .058 .080 .122 .165 .213 .341 .431 .519 .618 .725     | 0 .0007<br>.0010<br>.0015<br>.0017<br>.0022<br>.0031<br>.0039<br>.0048<br>.0070<br>.0093<br>.0119<br>.0148 | .0121<br>.0123<br>.0124<br>.0132<br>.0145<br>.0181<br>.0234<br>.0307<br>.0391<br>.0606<br>.0888<br>.1234<br>.1667<br>.2221 | 8 7 8 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8        | 0 .018 .038 .059 .081 .123 .167 .213 .255 .342 .432 .526 .626 .742 .869 | 0 .0009<br>.0013<br>.0017<br>.0021<br>.0027<br>.0036<br>.0046<br>.0055<br>.0078<br>.0086<br>.0125<br>.0164<br>.0211<br>.0305 | .0120<br>.0122<br>.0124<br>.0133<br>.0144<br>.0182<br>.0235<br>.0306<br>.0888<br>.1243<br>.1702<br>.2284<br>.3001 | 576<br>555<br>555<br>555<br>554<br>553<br>550<br>548<br>486<br>433 | 0<br>.019<br>.039<br>.062<br>.084<br>.125<br>.171<br>.217<br>.261<br>.349<br>.443<br>.542<br>.650 | 0<br>.0011<br>.0013<br>.0021<br>.0021<br>.0032<br>.0044<br>.0064<br>.0088<br>.0115<br>.0142<br>.0182 | .0119<br>.0122<br>.0124<br>.0138<br>.0148<br>.0189<br>.0241<br>.0311<br>.0400<br>.0619<br>.0910<br>.1289<br>.1771<br>.2367 | .65<br>.65<br>.64<br>.62<br>.61<br>.59<br>.60<br>.55<br>.54<br>.51 |

## (3) h/t = 0.3, b/c = 0.05

| М    | α,                                                                                      | Tı                                                                      | R=3.5                                                                                       | ×10 <sup>6</sup><br>on fixed                                                                                                        |                                                             |                                                                                                                | R=3.5×<br>Airfoil                                                                                                   |                                                                                                                   |                                                                                        | 1                                                                       | R=2.0>                                                                    |                                                                                                                            |                                                                                                       |                                                                                                                   | R=1.0X<br>Airfoil                                                                     |                                                                                                                   |                                                                                  |
|------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|      | deg                                                                                     | cl                                                                      | cm                                                                                          | cd                                                                                                                                  | Pb/P                                                        | cı                                                                                                             | cm                                                                                                                  | cd                                                                                                                | Pb/P                                                                                   | cı                                                                      | cm                                                                        | ed                                                                                                                         | Pb/P                                                                                                  | cz                                                                                                                | cm                                                                                    | cd                                                                                                                | Pb/P                                                                             |
| 1.45 | 0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                             | 0<br>.030<br>.062<br>.096<br>.130<br>.201<br>.274<br>.349<br>.426       | 0<br>.0019<br>.0027<br>.0035<br>.0044<br>.0068<br>.0103<br>.0141                            | 0.0167<br>.0175<br>.0181<br>.0195<br>.0215<br>.0275<br>.0362<br>.0472                                                               | 0.40<br>.41<br>.40<br>.41<br>.41<br>.41<br>.44<br>.56       | 0<br>.031<br>.064<br>.097<br>.131<br>.200<br>.272<br>.347<br>.425                                              | 0<br>.0016<br>.0023<br>.0030<br>.0038<br>.0057<br>.0085<br>.0121                                                    | 0.0136<br>.0141<br>.0147<br>.0164<br>.0182<br>.0242<br>.0327<br>.0440                                             | 0.56<br>.56<br>.56<br>.57<br>.59<br>.60<br>.60                                         | 0<br>.032<br>.065<br>.132<br>.204<br>.269<br>.352<br>.431               | 0<br>.0020<br>.0029<br>.0039<br>.0045<br>.0066<br>.0092<br>.0132          | 0.0121<br>.0129<br>.0137<br>.0169<br>.0176<br>.0241<br>.0325<br>.0448                                                      | 0.75<br>.74<br>.73<br>.71<br>.70<br>.68<br>.65<br>.64                                                 | 0<br>.034<br>.068<br>.104<br>.139<br>.211<br>.289<br>.368                                                         | 0<br>.0018<br>.0031<br>.0044<br>.0049<br>.0078<br>.0111                               | 0.0120<br>.0131<br>.0137<br>.0158<br>.0177<br>.0244<br>.0339<br>.0460                                             | 0.80<br>.80<br>.79<br>.78<br>.76<br>.75<br>.72                                   |
| 1.98 | 0<br>5<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>6.0<br>8.0<br>10.0<br>14.0<br>16.0<br>18.0 | 0 .019 .039 .060 .080 .122 .164 .206 .248 .334 .419 .508 .604 .708 .822 | 0 .0009 .0013 .0018 .0017 .0026 .0038 .0051 .0061 .0089 .0122 .0153 .0193 .0265 .0340 .0265 | .0119<br>.0122<br>.0124<br>.0133<br>.0144<br>.0181<br>.0231<br>.0295<br>.0376<br>.0581<br>.0849<br>.1187<br>.1611<br>.2147<br>.2791 | 555555<br>55555<br>55555<br>55555<br>55555<br>55555<br>5555 | 0 .018<br>.037<br>.058<br>.078<br>.119<br>.160<br>.201<br>.243<br>.328<br>.413<br>.499<br>.596<br>.703<br>.823 | 0 .0009<br>.0012<br>.0017<br>.0019<br>.0028<br>.0040<br>.0049<br>.0061<br>.0087<br>.0112<br>.0142<br>.0173<br>.0222 | .0090<br>.0093<br>.0097<br>.0105<br>.0118<br>.0153<br>.0266<br>.0347<br>.0552<br>.0839<br>.1153<br>.1581<br>.2115 | 58<br>58<br>57<br>57<br>55<br>55<br>55<br>55<br>55<br>55<br>44<br>44<br>44<br>42<br>47 | 0 .020 .039 .061 .081 .122 .164 .206 .248 .333 .418 .506 .605 .716 .837 | 0 .0012 .0018 .0029 .0050 .0061 .0072 .0101 .0125 .0153 .0188 .0240 .0334 | .0093<br>.0098<br>.0101<br>.0124<br>.0161<br>.0210<br>.0279<br>.0360<br>.0570<br>.0858<br>.1182<br>.1621<br>.1947<br>.2855 | ·73<br>·73<br>·72<br>·71<br>·71<br>·69<br>·67<br>·65<br>·64<br>·61<br>·57<br>·52<br>·46<br>·43<br>·45 | 0<br>.022<br>.041<br>.062<br>.082<br>.124<br>.167<br>.209<br>.253<br>.337<br>.426<br>.522<br>.625<br>.736<br>.864 | 0 .0011 .0016 .0024 .0032 .0040 .0056 .0065 .0080 .0112 .0139 .0174 .0262 .0360 .0360 | .0106<br>.0110<br>.0128<br>.0138<br>.0177<br>.0228<br>.0294<br>.0379<br>.0657<br>.0822<br>.1230<br>.1684<br>.2324 | .79<br>.79<br>.79<br>.78<br>.77<br>.74<br>.72<br>.68<br>.61<br>.57<br>.50<br>.49 |



NACA

# TABLE II.- LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Continued (d) Basic airfoil: Biconvex to c/2, t/c = 0.04 - Continued (4) h/t = 0, b/c = 0.05

| М    | α,                                                                                 | Tr                                                                 | R=3.5                                                                                                      | x10 <sup>6</sup><br>on fixed                                                                                      | V                 | 1                                                                  | R=3.5><br>Airfoil                                                                                          |                                                                                                                            |                   |                                                                   | R=2.0X<br>Airfoil                                                |                                                                       |      |                                                             | R=1.0                                                                                     |                                                                                                 |      |
|------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|
|      | deg                                                                                | cı                                                                 | cm                                                                                                         | cd                                                                                                                | P <sub>b</sub> /P | cı                                                                 | cm                                                                                                         | cd                                                                                                                         | P <sub>b</sub> /P | cı                                                                | cm                                                               | cd                                                                    | Pb/P | cı                                                          | cm                                                                                        | •d                                                                                              | Pb/P |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                 | 0<br>.030<br>.061<br>.094<br>.128<br>.196<br>.268<br>.341<br>.417  | 0<br>.0022<br>.0036<br>.0046<br>.0057<br>.0086<br>.0123<br>.0167<br>.0213                                  | 0.0128<br>.0131<br>.0138<br>.0151<br>.0171<br>.0228<br>.0314<br>.0421                                             |                   | 0<br>.031<br>.062<br>.094<br>.128<br>.195<br>.266<br>.340<br>.418  | 0<br>.0022<br>.0031<br>.0041<br>.0051<br>.0075<br>.0107<br>.0143<br>.0193                                  | 0.0125<br>.0128<br>.0134<br>.0147<br>.0167<br>.0223<br>.0305<br>.0415                                                      |                   | 0<br>.032<br>.062<br>.095<br>.129<br>.198<br>.268<br>.342<br>.420 | 0<br>.0021<br>.0035<br>.0047<br>.0056<br>.0081<br>.0115<br>.0157 | 0.0117<br>.0121<br>.0130<br>.0141<br>.0161<br>.0218<br>.0299<br>.0411 |      | 0<br>.030<br>.065<br>.097<br>.134<br>.202<br>.276<br>.357   | 0<br>.0021<br>.0041<br>.0059<br>.0075<br>.0108<br>.0143<br>.0191                          | 0.0102<br>.0111<br>.0114<br>.0140<br>.0151<br>.0206<br>.0295<br>.0418                           |      |
|      | 0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>14.0<br>14.0<br>16.0 | 0 .019 .039 .059 .078 .120 .161 .202 .244 .329 .414 .501 .594 .700 | 0 .0013<br>.0019<br>.0025<br>.0030<br>.0042<br>.0055<br>.0067<br>.0083<br>.0117<br>.0151<br>.0189<br>.0295 | .0098<br>.0099<br>.0101<br>.0109<br>.0120<br>.0154<br>.0265<br>.0345<br>.0544<br>.0806<br>.1138<br>.1551<br>.2078 |                   | 0 .019 .039 .059 .079 .119 .160 .202 .244 .328 .412 .500 .593 .694 | 0 .0014<br>.0023<br>.0026<br>.0029<br>.0041<br>.0055<br>.0066<br>.0080<br>.0110<br>.0174<br>.0211<br>.0262 | .0083<br>.0085<br>.0088<br>.0094<br>.0106<br>.0139<br>.0190<br>.0250<br>.0328<br>.0529<br>.0793<br>.1126<br>.1540<br>.2048 |                   | 0 .018 .039 .058 .078 .120 .160 .202 .246                         | 0 .0010 .0021 .0033 .0038 .0051 .0067 .0079 .0094                | .0069<br>.0072<br>.0076<br>.0083<br>.0094<br>.0129<br>.0177<br>.0241  |      | 0 .018 .039 .060 .080 .120 .163 .206 .251 .333 .422625 .736 | 0 .0013<br>.0021<br>.0032<br>.0043<br>.0062<br>.0080<br>.0094<br>.01077<br>.0144<br>.0175 | .0067<br>.0065<br>.0077<br>.0085<br>.0100<br>.0131<br>.0179<br>.0246<br>.0328<br>.0526<br>.0799 |      |

## (5) h/t = 0.6, b/c = 0.50

| М    | α,                                                 | Tr                                                                | R=3.5                                             | ×10 <sup>6</sup><br>on fixed                                          |                                                       | I I                                  | R=3.5><br>Airfoil                                                |                                                                       |                                        | l l                                          | R=2.0x                           |                                                                       |                                                | 1                                            | R=1.0><br>Airfoil                                                |                                                                       |                                 |
|------|----------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------|
| M    | deg                                                | cl                                                                | cm                                                | c <sub>d</sub>                                                        | p <sub>b</sub> /p                                     | cl                                   | cm                                                               | cd                                                                    | p <sub>b</sub> /p                      | cl                                           | cm                               | c <sub>d</sub>                                                        | Pb/P                                           | cı                                           | cm                                                               | c <sub>d</sub>                                                        | Pb/P                            |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0 | 0<br>.037<br>.070<br>.105<br>.141<br>.215<br>.289<br>.368<br>.446 | 0 .0014 .0019 .0026 .0031 .0051 .0079 .0108 .0135 | 0.0195<br>.0202<br>.0210<br>.0228<br>.0250<br>.0318<br>.0408<br>.0528 | 0.46<br>.45<br>.45<br>.45<br>.45<br>.45<br>.45<br>.47 | .033<br>.066<br>.101<br>.135<br>.208 | 0<br>.0012<br>.0016<br>.0019<br>.0029<br>.0034<br>.0054<br>.0081 | 0.0150<br>.0156<br>.0164<br>.0182<br>.0202<br>.0267<br>.0354<br>.0474 | •53<br>•53<br>•53<br>•53<br>•54<br>•54 | .032<br>.067<br>.102<br>.137<br>.209<br>.285 | .0015<br>.0019<br>.0023<br>.0028 | 0.0145<br>.0151<br>.0159<br>.0177<br>.0198<br>.0264<br>.0353<br>.0476 | 0.56<br>.56<br>.56<br>.55<br>.56<br>.56<br>.56 | .033<br>.070<br>.109<br>.145<br>.221<br>.300 | 0<br>.0016<br>.0016<br>.0024<br>.0029<br>.0047<br>.0072<br>.0102 | 0.0141<br>.0153<br>.0160<br>.0183<br>.0204<br>.0273<br>.0365<br>.0484 | .61<br>.58<br>.56<br>.54<br>.55 |



TABLE II. - LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Continued (d) Basic airfoil: Biconvex to c/2, t/c = 0.04 - Concluded (6) h/t = 0.3, b/c = 0.50

| М    | a,<br>deg                                                                                        | 1                                                                                         | R=3.5                                                                             | ×10 <sup>6</sup><br>on fixed                                                                                      |                                                                               |                                                                    | R=3.5×<br>Airfoil                                                         |                                                                                                 |                                                                                                      | 1                                                                 | R=2.0>                                                                    |                                                                                            |                                                              |                                                                         | R=1.0                                                                           |                                                                                                                            |                                                                           |
|------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|      | uce                                                                                              | cı                                                                                        | cm                                                                                | cd                                                                                                                | P <sub>b</sub> /P                                                             | cı                                                                 | cm                                                                        | cd                                                                                              | Pb/P                                                                                                 | cı                                                                | cm                                                                        | cd                                                                                         | Pb/P                                                         | cı                                                                      | cm                                                                              | cd                                                                                                                         | p <sub>b</sub> /p                                                         |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                               | 0<br>.030<br>.063<br>.097<br>.130<br><br>.274<br>.348<br>.424                             | 0<br>.0017<br>.0025<br>.0033<br>.0039<br>.0064<br>.0098<br>.0131                  | 0.0157<br>.0160<br>.0167<br>.0184<br>.0201<br><br>.0351<br>.0462<br>.0603                                         | 0.43<br>.43<br>.43<br>.44<br>.44<br>.45<br>.46                                | 0<br>.030<br>.062<br>.095<br>.129<br>.198<br>.272<br>.343<br>.420  | 0<br>.0014<br>.0019<br>.0024<br>.0030<br>.0047<br>.0070<br>.0102          | 0.0142<br>.0148<br>.0155<br>.0170<br>.0188<br>.0250<br>.0333<br>.0445                           | 0.49<br>.49<br>.49<br>.49<br>.49<br>.49<br>.49                                                       | 0<br>.032<br>.065<br>.100<br>.132<br>.203<br>.277<br>.351<br>.430 | 0<br>.0014<br>.0022<br>.0030<br>.0034<br>.0054<br>.0076<br>.0108          | 0.0133<br>.0139<br>.0147<br>.0164<br>.0182<br>.0246<br>.0333<br>.0448                      | 0.52<br>.52<br>.52<br>.53<br>.53<br>.54<br>.54<br>.55<br>.56 | 0<br>.034<br>.069<br>.103<br>.140<br>.213<br>.290<br>.369               | 0<br>.0016<br>.0026<br>.0036<br>.0037<br>.0060<br>.0092<br>.0130                | 0.0127<br>.0134<br>.0143<br>.0179<br>.0244<br>.0330<br>.0450                                                               | 0.53<br>.52<br>.52<br>.53<br>.55<br>.56<br>.62<br>.64                     |
| 1.98 | 0<br>.5<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>12.0<br>14.0<br>16.0<br>18.0 | 0<br>.017<br>.058<br>.078<br>.118<br>.160<br>.202<br>.244<br>.328<br>.414<br>.499<br>.594 | 0 .0010 .0013 .0016 .0019 .0025 .0036 .0045 .0057 .0083 .0108 .0140 .0166 .0235 . | .0112<br>.0113<br>.0116<br>.0125<br>.0136<br>.0220<br>.0220<br>.0363<br>.0565<br>.0831<br>.1161<br>.1584<br>.2117 | . 43<br>. 43<br>. 43<br>. 43<br>. 43<br>. 43<br>. 44<br>. 45<br>. 45<br>. 559 | 0 .018 .039 .060 .079 .121 .162 .205 .247 .330 .420 .593 .597 .701 | 0 .0007 .0010 .0016 .0022 .0031 .0038 .0049 .0071 .0093 .0123 .0152 .0196 | .0092<br>.0095<br>.0097<br>.0119<br>.0155<br>.0204<br>.0268<br>.0349<br>.0826<br>.1159<br>.2179 | · 37<br>· 37<br>· 37<br>· 37<br>· 37<br>· 37<br>· 37<br>· 40<br>· 44<br>· 44<br>· 44<br>· 44<br>· 44 | 0 .020 .039 .060 .081 .123 .165 .209 .251 .335 .422 .507 .604     | 0 .0009 .0012 .0018 .0018 .0029 .0038 .0043 .0055 .0079 .0100 .0133 .0164 | .0089<br>.0090<br>.0095<br><br>.0151<br>.0201<br>.0264<br>.0348<br>.0557<br>.0828<br>.1167 | .43<br>.43<br>.43<br>.45<br>.47<br>.49<br>.59<br>.49<br>.44  | 0 .019 .039 .062 .081 .126 .167 .213 .254 .339 .431 .526 .629 .738 .862 | 0 .0008 .0014 .0016 .0019 .0030 .0041 .0050 .0063 .0098 .0121 .0150 .0237 .0344 | .0081<br>.0084<br>.0091<br>.0099<br>.0110<br>.0150<br>.0157<br>.0262<br>.0343<br>.0554<br>.0833<br>.1195<br>.1654<br>.2214 | .66<br>.65<br>.65<br>.65<br>.65<br>.65<br>.65<br>.65<br>.57<br>.55<br>.46 |

## (7) h/t = 0, b/c = 0.50

| М    | α,   | Tr   | R=3.5%<br>ansitio | x10 <sup>8</sup><br>on fixed |                   | F    | R=3.5× |                |                   | A    | R=2.0> |        |                   | 1     | R=1.0> |                |                   |
|------|------|------|-------------------|------------------------------|-------------------|------|--------|----------------|-------------------|------|--------|--------|-------------------|-------|--------|----------------|-------------------|
|      | deg  | cı   | cm                | cd                           | p <sub>b</sub> /p | cı   | cm     | c <sub>d</sub> | p <sub>b</sub> /p | cı   | cm     | cd     | p <sub>b</sub> /p | cı    | cm     | c <sub>d</sub> | P <sub>b</sub> /P |
| 1.45 | 0    | 0    | 0                 | 0.0119                       |                   | 0    | 0      | 0.0105         |                   | 0    | 0      | 0.0095 |                   | 0     | 0      | 0.0093         |                   |
|      | .5   | .029 | .0019             | .0122                        |                   | .029 | .0018  |                |                   | .027 | .0018  | .0098  |                   | .027  | .0020  | .0094          |                   |
|      | 1.0  | .063 | .0034             | .0129                        |                   | .063 | .0031  | .0112          |                   | .063 | .0033  | .0104  |                   | .068  | .0038  | .0100          |                   |
|      | 1.5  | .093 | .0042             | .0141                        |                   | .092 | .0039  | .0126          |                   | .092 | .0040  | .0119  |                   | .094  | .0043  | .0117          |                   |
|      | 2.0  | .126 | .0054             | .0162                        |                   | .125 | .0047  | .0146          |                   | .125 | .0050  | .0140  |                   | .130  | .0064  | .0138          |                   |
|      | 3.0  | .195 | .0079             | .0222                        |                   | .193 | .0068  | .0205          |                   | .195 | .0072  | .0198  |                   | .200  | .0090  | .0197          |                   |
|      | 4.0  | .266 | .0113             | .0310                        |                   | .263 | .0095  | .0288          |                   | .268 | .0103  | .0284  |                   | .276  | .0122  | .0288          |                   |
|      | 5.0  | .338 | .0154             | .0419                        |                   | .336 | .0131  | .0400          |                   | .340 | .0141  | .0396  |                   | .352  | .0169  | .0407          |                   |
|      | 6.0  | .413 | .0198             | .0556                        |                   | .411 | .0179  | .0540          |                   | .419 | .0197  | .0542  |                   | . 444 | .0194  | .0553          |                   |
| 1.98 | 0    | 0    | 0                 | .0093                        |                   | 0    | 0      | .0067          |                   | 0    | 0      | .0062  |                   | 0     | 0      | .0064          |                   |
|      | .5   | .019 | .0011             | .0095                        |                   | .019 | .0012  | .0070          |                   | .018 | .0009  | .0063  |                   | .018  | .0008  | .0065          |                   |
|      | 1.0  | .039 | .0017             | .0097                        |                   | .040 | .0018  | .0073          |                   | .042 | .0021  | .0067  |                   |       | .0024  | .0071          |                   |
| -    | 1.5  | .059 | .0023             | .0106                        |                   | .057 | .0020  | .0079          |                   | .056 | .0026  | .0072  |                   | .054  | .0029  |                | -                 |
|      | 2.0  | .079 | .0027             | .0116                        |                   | .077 | .0028  | .0091          |                   | .076 | .0033  | .0085  |                   | .077  | .0040  | .0092          |                   |
|      | 3.0  | .119 | .0039             | .0150                        |                   | .117 | .0036  | .0124          |                   | .119 | .0043  | .0121  |                   | .119  | .0050  | .0123          |                   |
|      | 4.0  | .160 | .0051             | .0199                        |                   | .159 | .0048  | .0175          |                   | .160 | .0052  | .0170  |                   | .160  | .0058  | .0175          |                   |
|      | 5.0  | .200 | .0063             | .0261                        |                   | .199 | .0059  | .0237          |                   | .200 | .0065  | .0233  |                   | .203  | .0078  | .0237          |                   |
|      | 6.0  | .242 | .0076             | .0341                        |                   | .240 | .0071  | .0316          |                   | .241 | .0078  | .0313  |                   | .243  | .0095  | .0311          |                   |
|      | 8.0  | .325 | .0107             | .0538                        |                   | .325 | .0097  | .0517          |                   | .328 | .0105  | .0517  |                   | .329  | .0119  | .0550          |                   |
|      | 10.0 | .409 | :0142             | .0798                        |                   | .402 | .0123  | .0777          |                   | .412 | .0131  | .0784  |                   | .419  | .0151  | .0790          |                   |
| - 1  | 12.0 | .492 | .0160             | .1119                        |                   | .492 | .0151  | .1105          |                   | .500 | .0157  | .1116  |                   | .516  | .0177  | .1151          |                   |
| 1-31 | 14.0 | .587 | .0216             | .1532                        |                   | .584 | .0183  | .1513          |                   | •597 | .0190  | .1546  |                   | .616  | .0214  | .1588          |                   |
|      | 16.0 | .693 | .0313             | .2057                        |                   | .688 | .0231  | .2027          |                   | .705 | .0247  | .2080  |                   | .728  | .0275  | .2216          |                   |
|      | 10.0 | •799 | .0401             | .2660                        |                   | .800 | .0361  | .2663          |                   | .824 | .0347  | .2742  |                   | .850  | .0370  | .2818          |                   |

## TABLE II.- LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Continued (e) Basic airfoil: Biconvex, t/c = 0.04

| М    | α,                                                                                 |                                                                         | R=3.5                                                                                                             | ×10 <sup>6</sup><br>on fixed                                                                                                        |      | 1                                                                  | R=3.5×                                                                                                              |                                                                                                                                     |                   |                                                                    | R=2.0X<br>Airfoil                                                                                                      |                                                                                                                   |                   |                                                                         | R=1.0<br>Airfoil                                                                                           |                                                                       |      |
|------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------|
|      | deg                                                                                | cı                                                                      | cm                                                                                                                | cd                                                                                                                                  | Pb/P | cl                                                                 | cm                                                                                                                  | ed                                                                                                                                  | P <sub>b</sub> /P | cı                                                                 | cm                                                                                                                     | cd                                                                                                                | p <sub>b</sub> /p | cı                                                                      | cm                                                                                                         | cd                                                                    | Pb/P |
| 1.45 | 0<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                 | 0<br>.030<br>.065<br>.096<br>.128<br>.196<br>.268<br>.341<br>.416       | 0<br>.0015<br>.0028<br>.0054<br>.0052<br>.0079<br>.0114<br>.0156                                                  | 0.0121<br>.0122<br>.0131<br>.0144<br>.0164<br>.0223<br>.0309<br>.0420                                                               |      | 0<br>.030<br>.064<br>.094<br>.128<br>.196<br>.267<br>.331<br>.416  | 0<br>.0014<br>.0027<br>.0036<br>.0048<br>.0072<br>.0104<br>.0144                                                    | 0.0114<br>.0116<br>.0123<br>.0136<br>.0156<br>.0213<br>.0299<br>.0402<br>.0553                                                      |                   | 0<br>.028<br>.064<br>.094<br>.126<br>.196<br>.268<br>.343<br>.420  | 0<br>.0016<br>.0032<br>.0039<br>.0053<br>.0080<br>.0111<br>.0152                                                       | 0.0108<br>.0110<br>.0116<br>.0129<br>.0150<br>.0249<br>.0283<br>.0409                                             |                   | 0<br>.027<br>.069<br>.093<br>.129<br>.201<br>.277<br>.345               | 0<br>.0023<br>.0046<br>.0056<br>.0074<br>.0097<br>.0130<br>.0182                                           | 0.0095<br>.0105<br>.0110<br>.0124<br>.0146<br>.0204<br>.0294<br>.0406 |      |
|      | 0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>12.0<br>14.0<br>16.0 | 0 .018 .041 .059 .078 .120 .159 .201 .242 .327 .410 .495 .586 .692 .802 | .0001<br>.0008<br>.0017<br>.0020<br>.0027<br>.0040<br>.0053<br>.0081<br>.0111<br>.0142<br>.0177<br>.0217<br>.0268 | .0095<br>.0095<br>.0100<br>.0107<br>.0117<br>.0152<br>.0200<br>.0263<br>.0342<br>.0544<br>.0805<br>.1134<br>.1541<br>.2059<br>.2678 |      | 0 .019 .040 .058 .078 .118 .160 .202 .241 .406 .492 .588 .688 .802 | 0 .0011<br>.0019<br>.0023<br>.0030<br>.0041<br>.0052<br>.0064<br>.0080<br>.0136<br>.0136<br>.0136<br>.0203<br>.0256 | .0071<br>.0074<br>.0077<br>.0083<br>.0095<br>.0131<br>.0178<br>.0243<br>.0320<br>.0522<br>.0781<br>.1113<br>.1519<br>.2037<br>.2680 |                   | 0 .019 .040 .057 .078 .118 .161 .201 .243 .329 .499 .495 .703 .823 | 0<br>.0012<br>.0025<br>.0029<br>.0038<br>.0044<br>.0059<br>.0073<br>.0090<br>.0119<br>.0151<br>.0177<br>.0213<br>.0273 | .0071<br>.0075<br>.0081<br>.0092<br>.0128<br>.0179<br>.0239<br>.0322<br>.0523<br>.0785<br>.1116<br>.1547<br>.2082 |                   | 0 .016 .033 .055 .075 .117 .161 .204 .246 .333 .421 .512 .617 .728 .847 | 0 .0011<br>.0026<br>.0032<br>.0045<br>.0056<br>.0083<br>.0106<br>.0135<br>.0173<br>.0201<br>.0243<br>.0302 | .0068<br>                                                             |      |

## (f) Basic airfoil: NACA 16-004 (1) h/t = 0

| М    | α,   | Tı   | R=3.5 | ×10 <sup>6</sup><br>on fixed |                   |      | R=3.5><br>Airfoil |        |                   |      | R=2.0× |        |      |      | R=1.0> |        |      |
|------|------|------|-------|------------------------------|-------------------|------|-------------------|--------|-------------------|------|--------|--------|------|------|--------|--------|------|
|      | deg  | cı   | cm    | cd                           | p <sub>b</sub> /p | cı   | cm                | cd     | P <sub>b</sub> /P | cı   | cm     | cd     | Pb/P | cı   | cm     | cd     | Pb/P |
| 1.45 | 0    | 0    | 0     | 0.0179                       |                   | 0    | 0                 | 0.0153 |                   | 0    | 0      | 0.0150 |      | 0    | 0      | 0.0145 |      |
|      | .5   | .034 | .0018 | .0182                        |                   | .030 | .0017             | .0160  |                   | .029 | .0021  | .0156  |      | .031 | .0024  | .0156  |      |
|      | 1.0  | .064 | .0034 | .0193                        |                   | .063 | .0031             | .0168  |                   | .061 | .0036  | .0164  |      | .063 | .0042  | .0161  |      |
|      | 1.5  | .095 | .0047 | .0207                        |                   | .092 | .0036             | .0181  |                   | .094 | .0048  | .0177  |      | .093 | .0053  | .0174  |      |
|      | 2.0  |      |       |                              |                   | .125 | .0053             | .0199  |                   | .126 | .0061  | .0196  |      | .127 | .0075  | .0194  |      |
|      | 3.0  | .194 | .0088 | .0282                        |                   | .192 | .0073             | .0258  |                   | .193 | .0085  | .0252  |      | .196 | .0097  | .0252  |      |
|      | 4.0  |      |       |                              |                   | .261 | .0099             | .0338  |                   | .262 | .0112  | .0335  |      | .270 | .0123  | .0339  |      |
|      | 5.0  |      |       | 0500                         |                   | .331 | .0133             | .0442  |                   | .334 | .0141  | .0439  |      | .342 | .0160  | .0444  |      |
|      | 6.0  | .405 | .0217 | .0589                        |                   | .402 | .0170             | .0576  |                   | .408 | .0175  | .0576  |      |      |        |        |      |
| 1.98 |      | 0    | 0     | .0144                        |                   | 0    | 0                 | .0116  |                   | 0    | 0      | .0115  |      | 0    | 0      | .0123  |      |
|      | .5   | .020 | .0009 | .0147                        |                   | .020 | .0013             | .0120  |                   | .019 | .0018  | .0123  |      | .021 | .0032  | .0135  |      |
|      | 1.0  | .040 | .0017 | .0152                        |                   | .040 | .0022             | .0124  |                   | .037 | .0024  | .0125  |      | .041 | .0032  | .0140  |      |
|      | 1.5  | .059 | .0025 | .0160                        |                   | .058 | .0029             | .0132  |                   | .058 | .0037  | .0133  |      | .061 | .0048  | .0149  |      |
|      | 2.0  | .080 | .0031 | .0171                        |                   | .078 | .0034             | .0143  |                   | .078 | .0046  | .0148  |      | .080 | .0064  | .0157  | - ~  |
|      | 3.0  | .121 | .0046 | .0206                        |                   | .119 | .0050             | .0178  |                   | .120 | .0059  | .0183  |      | .123 | .0069  | .0196  |      |
|      | 4.0  | .163 | .0062 | .0255                        |                   | .160 | .0064             | .0230  |                   | .163 | .0072  | .0234  |      | .170 | .0093  | .0259  |      |
|      | 5.0  | .205 | .0078 | .0316                        |                   | .243 | .0081             | .0292  |                   | .203 | .0085  | .0297  |      | .207 | .0101  | .0315  |      |
|      | 8.0  | .324 | .0131 | .0608                        |                   | .325 | .0096             | .0373  |                   | .246 | .0103  | .0380  |      | .256 | .0124  | .0408  |      |
|      | 10.0 | .413 | .0168 | .0853                        |                   | .423 | .0133             | .0851  |                   | .410 | .0139  | .0576  | = =  | .338 | .0167  | .0615  |      |
|      | 12.0 | .499 | .0207 | .1179                        | 2 2               | .492 | .0197             | .1147  |                   | .497 | .0198  | .1170  |      | .520 | .0222  | .1228  |      |
|      | 14.0 | .586 | .0250 | .1615                        |                   | .586 | .0228             | .1556  |                   | .594 | .0238  | .1583  |      | .619 | .0257  | .1658  |      |
|      | 16.0 | .705 | .0250 | .2121                        |                   | .682 | .0275             | .2049  |                   | .699 | .0282  | .2107  |      | .721 | .0312  | .2183  |      |
|      | 18.0 | .814 | .0298 | .2736                        |                   | .801 | .0271             | .2692  |                   | .812 | .0345  | .2739  |      | .851 | .0328  | .2892  |      |



TABLE II. - LIFT, DRAG, AND PITCHING-MOMENT COEFFICIENTS AND BASE PRESSURE RATIO FOR AIRFOILS TESTED - Concluded

(f) Basic airfoil: NACA 16-004 - Concluded

(2) h/t = 0.3

| М     | α,    | Tr    | R=3.5%         | ×10 <sup>6</sup><br>on fixed |                   | A    | R=3.5× |        |                   | . I  | R=2.0><br>Airfoil |        |      |      | R=1.0×<br>Airfoil |        |       |
|-------|-------|-------|----------------|------------------------------|-------------------|------|--------|--------|-------------------|------|-------------------|--------|------|------|-------------------|--------|-------|
|       | deg . | cı    | c <sub>m</sub> | cd                           | p <sub>b</sub> /p | cı   | cm     | cd     | p <sub>b</sub> /p | cı   | c <sub>m</sub>    | cd     | Pb/P | cl   | cm                | cd     | Pb/P  |
| 1.45  | 0     | 0     | 0              | 0.0207                       | 0.45              | 0    | 0      | 0.0174 |                   | 0    | 0                 | 0.0169 | 0.58 | 0    | 0                 | 0.0168 | 0.61  |
|       | .5    | .033  | :0017          | .0210                        | .45               | .033 | .0013  | .0178  |                   | .033 | .0015             | .0174  |      | .033 | .0010             | .0174  |       |
|       | 1.0   | .065  | .0026          | .0216                        | .45               | .065 | .0021  | .0185  |                   | .064 | .0025             | .0179  | .59  | .067 | .0020             | .0179  | .58   |
|       | 1.5   | .097  | .0036          | .0232                        | .46               | .097 | .0029  | .0199  |                   | .098 | .0034             | .0194  | .50  | .101 | .0033             | .0196  |       |
|       | 2.0   | .131  | .0046          | .0252                        | .46               | .129 | .0032  | .0216  |                   | .131 | .0038             | .0212  | .59  | .137 | .0038             | .0214  | .60   |
|       | 3.0   | .199  | .0064          | .0311                        | .46               | .196 | .0051  | .0274  |                   | .198 | .0055             | .0272  | .60  | .208 | .0059             | .0275  |       |
|       | 4.0   | .268  | .0085          | .0388                        | .46               | .266 | .0072  | .0355  |                   | .269 | .0078             | .0350  | .65  |      | .0084             | .0356  | .71   |
|       | 5.0   | .339  | .0104          | .0493                        | .47               | .338 | .0097  | .0467  |                   | .340 | .0102             | .0459  |      | .358 | .0113             | .0470  |       |
|       | 6.0   | .413  | .0128          | .0623                        | .48               | .413 | .0127  | .0606  | -, -              | .416 | .0132             | .0598  | .67  |      |                   |        |       |
| 1.98  | 0     | 0     | 0              | .0154                        | .43               | 0    | 0      | .0125  | .46               | 0    | 0                 | .0124  | .56  | 0    | 0                 | .0124  | .67   |
|       | .5    | .020  | .0009          | .0155                        | .43               | .021 | .0008  | .0127  | .46               | .022 | .0009             | .0128  | .51  | .021 | .0016             | .0126  | .66   |
|       | 1.0   | .040  | .0016          | .0158                        | .43               | .041 | .0014  | .0129  | .48               | .042 | .0014             | .0130  | .51  | .042 | .0016             | .0129  | .69   |
|       | 1.5   | .059  | .0020          | .0166                        | .43               | .061 | .0020  | .0138  | .48               | .062 | .0021             | .0140  | .52  | .064 | .0021             | .0137  | .70   |
|       | 2.0   | .081  | .0027          | .0178                        | .43               | .082 | .0023  | .0149  | .48               | .083 | .0026             | .0148  | •59  | .084 | .0026             | .0147  | .71   |
|       | 3.0   | .121  | .0037          | .0213                        | .44               | .122 | .0034  | .0186  | .50               | .123 | .0037             | .0184  | .65  | .126 | .0047             | .0182  | .70   |
|       | 4.0   | .162  | .0050          | .0262                        | • 44              | .165 | .0047  | .0235  | .52               | .166 | .0051             | .0234  | .65  | .171 | .0063             | .0233  | .71   |
|       | 5.0   | .206  | .0063          | .0326                        | .45               | .206 | .0058  | .0298  | .56               | .206 | .0063             | :0297  | .65  | .211 | .0071             | .0299  | .69   |
|       | 6.0   | .248  | .0076          | .0407                        | .45               | .249 | .0071  | .0380  | .60               | .250 | .0077             | .0381  | .65  | .255 | .0084             | .0382  | .70   |
|       | 8.0   | .333  | .0105          | .0609                        | .47               | .333 | .0100  | .0583  | •59               | .333 | .0111             | .0583  | .61  | .338 | .0121             | .0586  | .65   |
| 144.5 | 10.0  | .418  | .0135          | .0874                        | .49               | .416 | .0130  | .0846  | .53               | .415 | .0139             | .0845  | .55  | .425 | .0156             | .0858  | .57   |
| 4 -   | 12.0  | .506  | .0166          | .1208                        | .52               | .504 | .0158  | .1183  | .47               | .502 | .0166             | .1181  | .49  | .521 | .0189             | .1216  | •55   |
| 10.   | 14.0  | .597  | .0202          | .1619                        | .57               | .595 | .0186  | .1594  | .43               | .598 | .0199             | .2134  | .41  | .727 | .0268             | .2202  | •53   |
|       | 18.0  | .796  | .0280          | .2708                        | .62               | .803 | .0277  | .2721  | .42               | .816 | .0294             | .2770  | .40  | .840 | .0328             | .2847  | .47   |
|       | 10.0  | . 190 | .0200          | .2100                        | -02               | .003 | .0211  | •=1=1  | • 42              | .010 | •0294             | 101120 | .40  | .040 | .0320             | 1-2041 | 1 .41 |

NACA

# TABLE III. - SUMMARY OF RESULTS

| Configur-<br>ation | Basic airfoil:<br>biconvex to c/3<br>t/c = 0.02                                          | М                                                    | Rough-<br>ness                                                     | R,<br>million                                        | βαια                                                                                                                 | $\frac{d\mathbf{c}_{\mathtt{m}}}{d\mathbf{c}_{l}}$                                                                   | cdmin                                                                                                  | $\left(\frac{l}{d}\right)_{\text{max}}$                                                 | c <sub>lopt</sub>                                                        |
|--------------------|------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 2                  | $h/t = 1.0$ , $b/c = 0$ $A = 0.643 \text{ in.}^2$ $I/(t/2) = 0.0118 \text{ in.}^3$       | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 4.03 (4.11)<br>4.20 (4.11)<br>4.23 (4.11)<br>4.27 (4.11)<br>3.97 (4.10)<br>4.11 (4.10)<br>4.02 (4.10)<br>4.13 (4.10) | 0.004 (0.010)<br>.004 (.010)<br>0 (.010)<br>.001 (.010)<br>0 (.010)<br>0 (.010)<br>.001 (.010)<br>.002 (.010)        | 0.0139 (0.0139)<br>.0120<br>.0113<br>.0102 (.0077)<br>.0104 (.0104)<br>.0082<br>.0071<br>.0064 (.0054) | 8.8 (8.3)<br>9.2<br>9.3<br>9.8 (11.3)<br>7.6 (7.5)<br>8.6<br>9.1<br>10.0 (10.5)         | 0.26 (0.23<br>.23<br>.21 (.17<br>.17 (.16<br>.14<br>.13<br>.12 (.11      |
| 7                  | h/t = 0.6, $b/c = 0.05A = 0.635 \text{ in.}^2I/(t/2) = 0.0115 \text{ in.}^3$             | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 3.88 (4.06)<br>3.90 (4.06)<br>3.98 (4.06)<br>4.07 (4.06)<br>3.97 (4.06)<br>3.76 (4.06)<br>3.97 (4.06)<br>4.02 (4.06) | .010 (.015)<br>.006 (.015)<br>.007 (.015)<br>.003 (.015)<br>.006 (.014)<br>.007 (.014)<br>.007 (.014)<br>.011 (.014) | .0117 (.0122)<br>.0096<br>.0098 (.0069)<br>.0082 (.0092)<br>.0064<br>.0057 (.0052)                     | 9.2 (8.8)<br>10.1<br>10.0<br>10.7 (11.9)<br>8.7 (8.0)<br>9.7<br>10.6 (10.7)             | .22 (.22<br>.20<br>.20 (.16<br>.15 (.15<br>.12<br>.11 (.11               |
| 8                  | h/t = 0.3, b/c = 0.05<br>A = 0.589 in. <sup>2</sup><br>I/(t/2) = 0.0096 in. <sup>3</sup> | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean<br>Clean | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 4.00 (4.03)<br>3.95 (4.03)<br>4.03 (4.03)<br>4.13 (4.03)<br>4.02 (4.03)<br>4.02 (4.03)<br>4.00 (4.03)<br>4.02 (4.03) | .021 (.018)<br>.015 (.018)<br>.016 (.018)<br>.014 (.017)<br>.011 (.017)<br>.013 (.017)<br>.018 (.017)                | .0095 (.0100)<br>.0075<br>.0070 (.0060)<br>.0077 (.0078)<br>.0073<br>.0041 (.0046)                     | 10.6 (9.7)<br>11.8<br>11.7<br>12.5 (12.7)<br>9.0 (8.6)<br>11.3<br>12.4<br>12.3 (11.3)   | .22 (.19<br>.15<br>.17<br>.16 (.15<br>.13 (.13<br>.11<br>.09<br>.10 (.10 |
| 9                  | A = 0.553 in. <sup>2</sup> I/(t/2) = 0.0087 in. <sup>3</sup>                             | 1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98         | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0<br>1.0 | 4.06 (4.00)<br>3.90 (4.00)<br>3.96 (4.00)<br>3.79 (4.00)<br>4.03 (4.00)<br>3.92 (4.00)<br>3.96 (4.00)<br>3.95 (4.00) | .021 (.020)<br>.019 (.020)<br>.021 (.020)<br>.024 (.020)<br>.018 (.020)<br>.015 (.020)<br>.019 (.020)<br>.024 (.020) | .0075 (.0087)<br>.0071<br>.0058<br>.0052 (.0056)<br>.0064 (.0069)<br>.0047<br>.0040<br>.0041 (.0044)   | 11.3 (10.4)<br>11.8<br>12.8<br>13.4 (13.1)<br>9.9 (9.1)<br>11.6<br>12.7<br>13.8 (11.5)  | .18 (.18<br>.17<br>.14<br>.15 (.15<br>.12 (.13<br>.11<br>.10             |
| 10                 | h/t = 0.6, b/c = 0.33<br>A = 0.595 in. <sup>2</sup><br>I/(t/2) = 0.0096 in. <sup>3</sup> | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0<br>1.0 | 4.00 (4.06)<br>4.05 (4.06)<br>4.08 (4.06)<br>4.11 (4.06)<br>4.08 (4.06)<br>4.05 (4.06)<br>4.11 (4.06)<br>4.05 (4.06) | .014 (.014)<br>.011 (.014)<br>.010 (.014)<br>.009 (.014)<br>.008 (.013)<br>.009 (.013)<br>.005 (.013)<br>.009 (.013) | .0109 (.0113)<br>.0090<br>.0084<br>.0082 (.0060)<br>.0081 (.0086)<br>.0056<br>.0056 (.0046)            | 9.6 (9.2)<br>10.4<br>11.0<br>11.4 (12.7)<br>8.7 (8.2)<br>9.9<br>10.6<br>11.2 (11.4)     | .21 (.21<br>.18<br>.18<br>.19 (.15<br>.14 (.11<br>.11<br>.11 (.10        |
| 11                 | h/t = 0.3, b/c = 0.33  A = 0.559 in. <sup>2</sup> I/(t/2) = 0.0087 in. <sup>3</sup>      | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0<br>1.0 | 3.95 (4.03)<br>3.92 (4.03)<br>3.99 (4.03)<br>4.01 (4.03)<br>3.96 (4.03)<br>3.96 (4.03)<br>3.98 (4.03)<br>4.05 (4.03) | .020 (.016)<br>.015 (.016)<br>.015 (.016)<br>.011 (.016)<br>.013 (.016)<br>.013 (.016)<br>.012 (.016)<br>.016 (.016) | .0084 (.0095)<br>.0082<br>.0071<br>.0064 (.0055)<br>.0070 (.0074)<br>.0053<br>.0050 (.0043)            | 10.9 (10.0)<br>10.9<br>11.7<br>12.5 (13.3)<br>9.3 (8.9)<br>10.6<br>11.3<br>11.6 (11.7)  | .18 (.19<br>.18<br>.16 (.15<br>.12 (.13<br>.11<br>.13 (.10               |
| 12                 | h/t = 0, b/c = 0.33  A = 0.523 in. <sup>d</sup> I/(t/2) = 0.0082 in. <sup>8</sup>        | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0<br>1.0 | 3.99 (4.00)<br>3.99 (4.00)<br>3.99 (4.00)<br>4.00 (4.00)<br>4.12 (4.00)<br>4.00 (4.00)<br>4.10 (4.00)<br>4.10 (4.00) | .025 (.019)<br>.020 (.019)<br>.021 (.019)<br>.021 (.019)<br>.016 (.018)<br>.015 (.018)<br>.018 (.018)                | .0068 (.0084)<br>.0061<br>.00550042<br>.0062 (.0052)<br>.0046<br>.0040 (.0042)                         | 11.9 (10.6)<br>12.3<br>13.4<br>14.4 (13.6)<br>10.1 (9.3)<br>11.5<br>11.8<br>12.1 (11.8) | .17 (.18<br>                                                             |





TABLE III. - SUMMARY OF RESULTS - Continued

| Configur-<br>ation | Basic airfoil:<br>biconvex to c/3<br>t/c = 0.04                                     | М                                                    | Rough-<br>ness                                            | R,<br>million                                        | BC la                                                                                                                               | dc <sub>m</sub>                                                                                                        | <sup>c</sup> d <sub>min</sub>                                                                        | $\left(\frac{l}{d}\right)_{max}$                                             | c <sub>lopt</sub>                                                            |
|--------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 3                  | h/t = 1.0, b/c = 0  A = 1.285 in. <sup>2</sup> I/(t/2) = 0.0473 in. <sup>9</sup>    | 1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98         | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0<br>1.0 | 4.15 (4.21)<br>4.17 (4.21)<br>4.24 (4.21)<br>4.39 (4.21)<br>4.03 (4.20)<br>4.08 (4.20)<br>4.01 (4.20)<br>4.00 (4.20)                | 0.026 (0.020)<br>.020 (.020)<br>.025 (.020)<br>.022 (.020)<br>.012 (.019)<br>.012 (.019)<br>.012 (.019)<br>.017 (.019) | 0.0258 (0.0261)<br>.0235<br>.0230<br>.0222 (.0207)<br>.0147<br>.0144<br>.0140 (.0121)                | 6.2 (6.1)<br>6.6<br>6.6<br>6.9 (6.4)<br>5.8 (5.7)<br>6.3<br>6.4 (7.0)        | 0.31<br>0.31<br>.32<br>(.29)<br>.22<br>(.21)<br>.19<br>.19<br>.21 (.17)      |
| 13                 | h/t = 0.6, b/c = 0.05  A = 1.271 in. <sup>2</sup> 1/(t/2) = 0.0459 in. <sup>3</sup> | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0<br>1.0 | 4.26 (4.13)<br>4.20 (4.13)<br>4.07 (4.13)<br>4.19 (4.13)<br>4.00 (4.12)<br>4.09 (4.12)<br>4.06 (4.12)<br>4.11 (4.12)                | .035 (.030)<br>.032 (.030)<br>.032 (.030)<br>.039 (.030)<br>.025 (.029)<br>.021 (.029)<br>.024 (.029)<br>.028 (.029)   | .0233 (.0245)<br>.0210<br>.0192<br>.0184 (.0181)<br>.0159 (.0168)<br>.0135<br>.0123<br>.0114 (.0116) | 6.6 (6.2)<br>6.8<br>6.9<br>7.2 (7.4)<br>6.1 (5.9)<br>6.5<br>6.6<br>7.1 (7.2) | .35 (.31)<br>.28<br>.29<br>.30 (.27)<br>.19 (.20)<br>.18<br>.18 (.17)        |
| 14                 | h/t = 0.3, b/c = 0.05  A = 1.178 in. <sup>2</sup> I/(t/2) = 0.0383 in. <sup>3</sup> | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 4.25 (4.06)<br>4.16 (4.06)<br>4.15 (4.06)<br>4.27 (4.06)<br>4.13 (4.06)<br>4.17 (4.06)<br>4.05 (4.06)<br>3.99 (4.06)                | .041 (.035)<br>.036 (.035)<br>.038 (.035)<br>.048 (.035)<br>.029 (.033)<br>.025 (.033)<br>.030 (.033)                  | .0204 (.0207)<br>.0178<br>.0161<br>.0147 (.0151)<br>.0137 (.0140)<br>.0112<br>.0102<br>.0089 (.0100) | 7.0 (6.8)<br>7.5<br>7.6<br>7.9 (8.0)<br>6.6 (6.5)<br>7.3<br>8.0 (7.7)        | .32 (.28)<br>.27<br>.28 (.24)<br>.19 (.18)<br>.17<br>.17 (.15)               |
| 15                 | h/t = 0, b/c = 0.05  A = 1.106 in. <sup>2</sup> I/(t/2) = 0.0348 in. <sup>3</sup>   | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean                                    | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 3.99 (4.00)<br>3.98 (4.00)<br>3.99 (4.00)<br>4.09 (4.00)<br>4.02 (4.00)<br>3.94 (4.00)<br>3.92 (4.00)<br>3.92 (4.00)                | .058 (.041)<br>.051 (.041)<br>.055 (.041)<br>.063 (.041)<br>.041 (.039)<br>.041 (.039)<br>.047 (.039)                  | .0168 (.0187)<br>.0156<br>.0146<br>.0137 (.0152)<br>.0121 (.0126)<br>.0100<br>.0093<br>.0088 (.0101) | 7.6 (7.1)<br>7.8<br>8.0<br>8.4 (8.0)<br>7.0 (6.8)<br>7.8<br>8.0<br>8.4 (7.6) | .28 (.27)<br>.27<br>.25 (.24)<br>.17 (.17)<br>.16<br>.15 (.15)               |
| 16                 | h/t = 0.6, b/c = 0.33  A = 1.189 in. <sup>2</sup> I/(t/2) = 0.0385 in. <sup>3</sup> | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0<br>1.0 | 4.27 (4.13)<br>4.01 (4.13)<br>4.16 (4.13)<br>4.36 (4.13)<br>4.25 (4.12)<br>4.23 (4.12)<br>4.20 (4.12)<br>4.24 (4.12)                | .035 (.027)<br>.030 (.027)<br>.030 (.027)<br>.033 (.027)<br>.021 (.026)<br>.019 (.026)<br>.021 (.026)<br>.023 (.026)   | .0213 (.0211)<br>.0181<br>.0175 (.0147)<br>.0159 (.0147)<br>.0124<br>.0112<br>.0102 (.0096)          | 6.4 (6.7)<br>7.3<br>7.4<br>7.7 (8.2)<br>6.0 (6.3)<br>7.0<br>7.2<br>7.5 (7.9) | .33 (.29)<br>.29<br>.28<br>.30 (.24)<br>.21 (.19)<br>.19<br>.17<br>.18 (.15) |
| 17                 | h/t = 0.3, b/c = 0.33  A = 1.117 in. <sup>2</sup> I/(t/2) = 0.0349 in. <sup>3</sup> | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 4.05 (4.06)<br>3.95 (4.06)<br>4.10 (4.06)<br>4.20 (4.06)<br>4.05 (4.06)<br>3.98 (4.06)<br>4.03 (4.06)<br>4.16 (4.06)                | .044 (.033)<br>.034 (.033)<br>.036 (.033)<br>.037 (.033)<br>.027 (.031)<br>.024 (.031)<br>.027 (.031)                  | .0180 (.0184)<br>.0165<br>.0157<br>.0160 (.0133)<br>.0126 (.0129)                                    | 7.3 (7.2)<br>7.6                                                             | .29 (.27)<br>.26<br>.26 (.23)<br>.18 (.17)<br>.18<br>.17<br>.16 (.15)        |
| 18                 | h/t = 0, b/c = 0.33  A = 1.045 in. <sup>2</sup> I/(t/2) = 0.0329 in. <sup>3</sup>   | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98         | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 3.97 (4.00)<br>3.97 (4.00)<br>4.06 (4.00)<br>3.89 (4.00)<br>4.07 (4.00)<br>3.96 (4.00)<br>3.95 (4.00)<br>3.95 (4.00)<br>3.67 (4.00) | .058 (.038)<br>.049 (.038)<br>.050 (.038)<br>.065 (.038)<br>.039 (.037)<br>.040 (.037)<br>.048 (.037)                  | .0157 (.0165)<br>.0149<br>.0139 (.0136)<br>.0131 (.0136)<br>.018 (.0117)<br>.0097<br>.0086 (.0092)   | 7.7 (7.5)<br>8.0<br>8.3<br>8.6 (8.4)<br>7.2 (7.0)<br>7.7<br>8.2<br>8.3 (8.0) | .27 (.25)<br>25<br>.25<br>.24 (.23)<br>.18 (.16)<br>16<br>.15 (.15)          |

TABLE III. - SUMMARY OF RESULTS - Continued

| Configur-<br>ation | Basic airfoil:<br>biconvex to c/3<br>t/c = 0.06                                          | М                                                    | Rough-<br>ness                                                     | R,<br>million                                        | βc lα                                                                                                                | dc <sub>m</sub>                                                                                                        | c <sub>dmin</sub>                                                                                    | $\left(\frac{l}{d}\right)_{\text{max}}$                                  | cl <sub>opt</sub>                                      |
|--------------------|------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|
| l <sub>4</sub>     | h/t = 1.0, b/c = 0  A = 1.928 in. <sup>2</sup> I/(t/2) = 0.1063 in. <sup>3</sup>         | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0<br>1.0 | 4.32 (4.32)<br>4.29 (4.32)<br>4.32 (4.32)<br>4.42 (4.32)<br>4.30 (4.30)<br>4.17 (4.30)<br>4.21 (4.30)<br>4.36 (4.30) | 0.038 (0.029)<br>.050 (.029)<br>.049 (.029)<br>.049 (.029)<br>.032 (.028)<br>.025 (.028)<br>.026 (.028)<br>.030 (.028) | 0.0451 (0.0428).<br>.0414<br>.0415<br>.0417 (.0398)<br>.0286 (.0286)<br>.0255<br>.0251 (.0230)       | (4.8)<br>(5.0)<br>4.4 (4.6)<br>4.8<br>5.0 (5.1)                          | (0.42<br>(.41<br>0.28 (.27<br>.25<br>.25 (.24          |
| 19                 | h/t = 0.6, b/c = 0.05<br>A = 1.906 in. <sup>2</sup><br>I/(t/2) = 0.1033 in. <sup>3</sup> | 1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98         | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean<br>Clean | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 4.10 (4.20)<br>4.24 (4.20)<br>4.03 (4.20)<br>4.03 (4.20)<br>4.01 (4.18)<br>4.06 (4.18)<br>4.18 (4.18)<br>4.27 (4.18) | .055 (.044)<br>.061 (.044)<br>.062 (.044)<br>.066 (.044)<br>.046 (.042)<br>.042 (.042)<br>.042 (.042)<br>.049 (.042)   | .0419 (.0424)<br>.0397<br>.0363<br>.0381 (.0370)<br>.0265 (.0276)<br>.0242<br>.0239<br>.0226 (.0220) | 4.9 (4.8)<br>4.8 (5.2)<br>4.8 (4.6)<br>5.2 4.9 (5.2)                     | (.41<br>(.39<br>.26 (.26<br>.24<br>.25<br>.26 (.23     |
| 20                 | h/t = 0.3, b/c = 0.05  A = 1.767 in. <sup>2</sup> 1/(t/2) = 0.0862 in. <sup>9</sup>      | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 4.12 (4.10)<br>4.16 (4.10)<br>4.15 (4.10)<br>4.29 (4.10)<br>4.08 (4.09)<br>4.12 (4.09)<br>4.21 (4.09)<br>4.17 (4.09) | .073 (.052)<br>.073 (.052)<br>.077 (.052)<br>.086 (.052)<br>.051 (.050)<br>.049 (.050)<br>.052 (.050)                  | .0369 (.0362)<br>.0338<br>.0333<br>.0326 (.0307)<br>.0229 (.0235)<br>.0205<br>.0196<br>.0186 (.0190) | 5.3 (5.1)<br>5.3<br>5.6 (5.6)<br>5.1 (5.0)<br>5.3<br>5.4<br>5.5 (5.6)    | (.37<br>-37 (.35<br>.25 (.24<br>.2321 (.21             |
| 21                 | h/t = 0, b/c = 0.05  A = 1.659 in. <sup>2</sup> I/(t/2) = 0.0783 in. <sup>3</sup>        | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 3.90 (4.00)<br>3.95 (4.00)<br>4.02 (4.00)<br>4.10 (4.00)<br>3.99 (4.00)<br>3.74 (4.00)<br>3.74 (4.00)<br>3.85 (4.00) | .080 (.061)<br>.080 (.061)<br>.082 (.061)<br>.095 (.061)<br>.063 (.059)<br>.062 (.059)<br>.064 (.059)<br>.071 (.059)   | .0341 (.0340)<br>.0308<br>.0297<br>.0295 (.0315)<br>.0217 (.0219)<br>.0180<br>.0176 (.0196)          | 5.4 (5.3)<br>5.5<br>5.6 (5.5)<br>5.2 (5.1)<br>5.5<br>5.5<br>5.7 (5.5)    | (.36<br>(.35<br>(.22<br>(.22                           |
| 22                 | h/t = 0.6, b/c = 0.33  A = 1.784 in. <sup>2</sup> I/(t/2) = 0.0867 in. <sup>3</sup>      | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 4.18 (4.20)<br>4.18 (4.20)<br>4.14 (4.20)<br>4.27 (4.20)<br>4.15 (4.18)<br>4.17 (4.18)<br>4.35 (4.18)<br>4.30 (4.18) | .052 (.040)<br>.060 (.040)<br>.062 (.040)<br>.063 (.040)<br>.041 (.038)<br>.038 (.038)<br>.037 (.038)<br>.039 (.038)   | .0378 (.0358)<br>.0334<br>.0335 (.0303)<br>.0234 (.0237)<br>.0206<br>.0205<br>.0194 (.0180)          | 5.3 (5.2)<br>5.5<br>5.4<br>(5.7)<br>5.0 (5.0)<br>5.3<br>5.3<br>5.5 (5.8) | (.36<br>(.35<br>.24 (.21<br>.23<br>.22 (.21            |
| 23                 | h/t = 0.3, b/c = 0.33<br>A = 1.676 in. <sup>2</sup><br>I/(t/2) = 0.0785 in. <sup>3</sup> | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 4.08 (4.10)<br>4.15 (4.10)<br>4.12 (4.10)<br>4.35 (4.10)<br>4.12 (4.09)<br>4.05 (4.09)<br>4.16 (4.09)<br>4.11 (4.09) | .065 (.048)<br>.073 (.048)<br>.073 (.048)<br>.078 (.048)<br>.049 (.047)<br>.046 (.047)<br>.049 (.047)                  | .0354 (.0326)<br>.0314<br>.0298<br>.0302 (.0271)<br>.0214 (.0214)<br>.0183<br>.0182<br>.0180 (.0168) | 5.4 (5.4)<br>5.5<br>5.6<br>(6.0)<br>5.3 (5.2)<br>5.6<br>5.5<br>5.8 (5.9) | (.35<br>(.35<br>-24 (.22<br>.21<br>.21 (.20            |
| 24                 | h/t = 0, b/c = 0.33  A = 1.568 in. <sup>2</sup> I/(t/2) = 0.0740 in. <sup>3</sup>        | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 3.97 (4.00)<br>4.04 (4.00)<br>(4.00)<br>4.09 (4.00)<br>3.94 (4.00)<br>4.01 (4.00)<br>3.93 (4.00)<br>3.83 (4.00)      | .075 (.058)<br>.076 (.058)<br>(.058)<br>.095 (.058)<br>.063 (.055)<br>.055 (.055)<br>.058 (.055)                       | .0324 (.0310)<br>.0299<br>.0301 (.0284)<br>.0204 (.0202)<br>.0185<br>.0180<br>.0177 (.0178)          | 5.5 (5.5)<br>5.6<br>5.8 (5.8)<br>5.2 (5.3)<br>5.6<br>5.5<br>5.8 (5.7)    | (.3½<br>(.33<br>.22 (.22<br>.22 .22<br>.21<br>.22 (.20 |

Note: Parentheses indicate theoretical values; upper half of airfoils shown.

## TABLE III. - SUMMARY OF RESULTS - Continued

| Configur-<br>ation | Basic airfoil:<br>biconvex to c/2<br>t/c = 0.04                                     | М                                                    | Rough-<br>ness                                                     | R,<br>million                                        | βclα                                                                                                                                | dc <sub>m</sub>                                                                                                        | c <sub>dmin</sub>                                                                                      | $\left(\frac{l}{d}\right)_{\text{max}}$                                       | c <sub>lopt</sub>                                                        |
|--------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 5                  | h/t = 1.0, b/c = 0  A = 1.202 in. <sup>2</sup> 1/(t/2) = 0.0421 in. <sup>3</sup>    | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 4.24 (4.21)<br>4.10 (4.21)<br>4.02 (4.21)<br>4.22 (4.21)<br>4.17 (4.20)<br>4.15 (4.20)<br>4.07 (4.20)<br>4.03 (4.20)                | 0.015 (0.017)<br>.009 (.017)<br>.012 (.017)<br>.016 (.017)<br>.009 (.016)<br>.008 (.016)<br>.012 (.016)<br>.014 (.016) | 0.0234 (0.0235)<br>.0218<br>.0212<br>.0198 (.0180)<br>.0164 (.0168)<br>.0142<br>.0138<br>.0123 (.0106) | 6.5 (6.4)<br>6.8<br>6.9<br>(7.4)<br>6.2 (5.9)<br>6.3<br>6.5<br>6.8 (7.5)      | 0.35 (0.31<br>.31                                                        |
| 25                 | h/t = 0.6, b/c = 0.05  A = 1.188 in. <sup>2</sup> 1/(t/2) = 0.0407 in. <sup>3</sup> | 1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98         | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 4.18 (4.13)<br>4.12 (4.13)<br>4.08 (4.13)<br>4.20 (4.13)<br>4.20 (4.13)<br>4.14 (4.12)<br>4.09 (4.12)<br>4.05 (4.12)<br>4.06 (4.12) | .028 (.027)<br>.021 (.027)<br>.023 (.027)<br>.026 (.027)<br>.019 (.026)<br>.021 (.026)<br>.021 (.026)                  | .0206 (.0220)<br>.0191<br>.0176<br>.0160 (.0155)<br>.0146 (.0154)<br>.0121<br>.0120<br>.0119 (.0101)   | 6.8 (6.6)<br>7.1                                                              | .32 (.29<br>.28<br>.27<br>.28 (.25<br>.21 (.19<br>.17<br>.17<br>.18 (.16 |
| 26                 | h/t = 0.3, b/c = 0.05  A = 1.047 in. <sup>2</sup> 1/(t/2) = 0.0286 in. <sup>3</sup> | 1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98         | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 3.94 (4.06)<br>3.96 (4.06)<br>3.98 (4.06)<br>4.05 (4.06)<br>3.96 (4.06)<br>3.86 (4.06)<br>4.02 (4.06)<br>4.02 (4.06)                | .034 (.030)<br>.028 (.030)<br>.031 (.030)<br>.034 (.030)<br>.022 (.029)<br>.023 (.029)<br>.031 (.029)<br>.031 (.029)   | .0167 (.0172)<br>.0136<br>.0121<br>.0120 (.0121)<br>.0119 (.0123)<br>.0090<br>.0093<br>.0106 (.0082)   | 7.6 (7.4)<br>8.4<br>8.6 (9.0)<br>7.1 (6.9)<br>7.8<br>7.8<br>7.3 (8.5)         | .30 (.26<br>.24                                                          |
| 27                 | h/t = 0, b/c = 0.05  A = 0.939 in. <sup>2</sup> I/(t/2) = 0.0234 in. <sup>3</sup>   | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean<br>Clean | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 3.91 (4.00)<br>3.88 (4.00)<br>3.94 (4.00)<br>4.08 (4.00)<br>3.98 (4.00)<br>3.96 (4.00)<br>3.95 (4.00)<br>3.89 (4.00)                | .044 (.035)<br>.037 (.035)<br>.042 (.035)<br>.053 (.035)<br>.036 (.033)<br>.033 (.033)<br>.037 (.033)<br>(.033)        | .0128 (.0144)<br>.0125<br>.0117<br>.0102 (.0115)<br>.0098 (.0104)<br>.0083<br>.0069<br>.0067 (.0079)   | 8.6 (8.1)<br>8.8<br>9.1<br>9.8 (9.2)<br>8.0 (7.4)<br>8.6<br>9.3<br>9.3 (8.6)  | .22 (.23<br>.22<br>.20<br>.19 (.21<br>.15 (.15<br>.13<br>.12<br>.14 (.14 |
| 28                 | h/t = 0.6, b/c = 0.50  A = 1.058 in. <sup>2</sup> I/(t/2) = 0.0289 in. <sup>3</sup> | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 4.22 (4.13)<br>4.10 (4.13)<br>4.14 (4.13)<br>4.22 (4.13)                                                                            | .024 (.022)<br>.023 (.022)<br>.021 (.022)<br>.022 (.022)                                                               | .0195 (.0184)<br>.0150                                                                                 | 6.6 (7.2)<br>8.0 8.2 (9.1)                                                    | .33 (.27<br>.25                                                          |
| 29                 | h/t = 0.3, b/c = 0.50  A = 0.950 in. <sup>2</sup> I/(t/2) = 0.0235 in. <sup>3</sup> | 1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98         | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean<br>Clean | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0<br>1.0 | 3.91 (4.06)<br>3.85 (4.06)<br>4.02 (4.06)<br>4.10 (4.06)<br>3.92 (4.06)<br>4.01 (4.06)<br>4.09 (4.06)<br>4.01 (4.06)                | .032 (.027)<br>.027 (.027)<br>.030 (.027)<br>.032 (.027)<br>.020 (.025)<br>.018 (.025)<br>.020 (.025)<br>.022 (.025)   | .0157 (.0152)<br>.0142<br>.0133<br>.0127 (.0101)<br>.0112 (.0111)<br>.0099<br>.0081 (.0071)            | 7.8 (7.9)<br>8.1<br>8.4<br>8.8 (9.8)<br>7.3 (7.2)<br>7.9<br>8.3<br>8.5 (9.1)  | .27 (.24)<br>.25 (.20)<br>.18 (.16)<br>.151515 (.13)                     |
| 30                 | A = 0.842 in. <sup>2</sup> I/(t/2) = 0.0204 in. <sup>3</sup>                        | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0        | 3.87 (4.00)<br>3.76 (4.00)<br>3.77 (4.00)<br>3.79 (4.00)<br>3.91 (4.00)<br>3.89 (4.00)<br>3.94 (4.00)<br>3.75 (4.00)                | .042 (.031)<br>.036 (.031)<br>.036 (.031)<br>.045 (.031)<br>.026 (.030)<br>.026 (.030)<br>.030 (.030)<br>.035 (.030)   | .0119 (.0129)<br>.0105<br>.0095<br>.0093 (.0099)<br>.0093 (.0095)<br>.0067<br>.0062<br>.0064 (.0070)   | 8.8 (8.5)<br>9.4<br>9.9<br>10.1 (9.9)<br>8.1 (7.8)<br>9.4<br>9.8<br>9.6 (9.1) | .21 (.22)<br>.20<br>.20<br>.19 (.20)<br>.14 (.15)<br>.12<br>.11          |







# TABLE III. - SUMMARY OF RESULTS - Concluded

| Configur-<br>ation | Airfoil                                                                              | М                                                    | Rough-<br>ness                                                     | R,<br>million                                 | βcια                                                                                                                 | dem de 1                                                                                                               | cdmin                                                                                                | $\left(\frac{l}{d}\right)_{max}$                                             | c <sub>lopt</sub>                                                   |
|--------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 1                  | A = 0.964 in. <sup>2</sup> I/(t/2) = 0.0265 in. <sup>3</sup>                         | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0 | 3.96 (4.00)<br>3.92 (4.00)<br>3.86 (4.00)<br>3.80 (4.00)<br>3.92 (4.00)<br>3.96 (4.00)<br>3.96 (4.00)<br>3.87 (4.00) | 0.040 (0.035)<br>.038 (.035)<br>.041 (.035)<br>.045 (.035)<br>.031 (.034)<br>.032 (.034)<br>.035 (.034)<br>.039 (.034) | 0.0121 (0.0138)<br>.0114<br>.0108<br>.0095 (.0101)<br>.0071<br>.0071<br>.0068 (.0076)                | 8.8 (8.2)<br>9.1                                                             | 0.22 (0.23<br>.21<br>.20<br>.20 (.20<br>.15 (.15<br>.13<br>.13 (.13 |
| 6                  | NACA 16-004, h/t = 0  A = 1.069 in. <sup>2</sup> I/(t/2) = 0.0311 in. <sup>3</sup>   | 1.45<br>1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean<br>Clean | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0 | 3.92 (4.00)<br>3.83 (4.00)<br>3.92 (4.00)<br>3.73 (4.00)<br>3.87 (4.00)<br>3.95 (4.00)<br>3.93 (4.00)<br>4.13 (4.00) | .044 (.039)<br>.039 (.039)<br>.042 (.039)<br>.047 (.039)<br>.036 (.038)<br>.040 (.038)<br>.040 (.038)                  | .0179 (.0184)<br>.0153<br>.0150<br>.0145 (.0155)<br>.0144 (.0155)<br>.0116<br>.0123 (.0130)          | 7.2 (7.1)<br>7.7<br>7.8<br>8.0 (7.9)<br>6.4 (6.1)<br>7.0<br>6.9<br>6.6 (6.7) | .32 (.26<br>.2627 (.2h<br>.27 (.2h<br>.20 (.1g<br>.161719 (.17      |
| 31                 | NACA 16-004, h/t = 0.3  A = 1.102 in. <sup>2</sup> 1/(t/2) = 0.0313 in. <sup>3</sup> | 1.45<br>1.45<br>1.45<br>1.98<br>1.98<br>1.98<br>1.98 | Salt<br>Clean<br>Clean<br>Clean<br>Salt<br>Clean<br>Clean          | 3.5<br>3.5<br>2.0<br>1.0<br>3.5<br>3.5<br>2.0 | 4.06 (4.06)<br>3.91 (4.06)<br>4.04 (4.06)<br>4.06 (4.06)<br>4.06 (4.06)<br>4.01 (4.06)<br>4.08 (4.06)<br>4.05 (4.06) | .030 (.032)<br>.026 (.032)<br>.028 (.032)<br>.030 (.031)<br>.028 (.031)<br>.030 (.031)<br>.033 (.031)                  | .0207 (.0196)<br>.0174<br>.0169<br>.0168 (.0146)<br>.0154 (.0168)<br>.0125<br>.0124<br>.0124 (.0128) | 6.9 (6.9)<br>7.5<br>7.6<br>7.8 (8.1)<br>6.3 (5.9)<br>7.0<br>7.0<br>7.3 (6.8) | .34 (.2°<br>.26<br>.2728 (.2°<br>.20 (.2°<br>.17<br>.17 (.1°        |





- 1 .- Floating beam
- 2. Normal-force gage
- 3. Rolling-moment gage
- 4. Pitching-moment gage
- 5.- Side-force gage
- 6.- Pin connecting model
  Shank to floating beam
- 7.- Chord-force gage
- 8.- Model shank

- 9.- Worm-gear drive mechanism
- 10.- Balance housing
- 11.- Two-dimensional model
- 12.- Rotating circular plate
- 13.- Fairing
- 14. Boundary-layer plates
- 15.- Main tunnel walls

Figure 1.- Side-support balance with a typical two-dimensional model installation.



Figure 2.- Details of the junction between the wing and the boundary-layer plate.





b = length of boattail section h = trailing-edge thickness t = airfoil thickness

### (I) Biconvex

#### (2) Biconvex to c/2



### (3) Biconvex to c/3



#### (4) NACA 16-004

(5) Model used to evaluate wave drag of salt.



NACA

(6) Semispan model.





Figure 3.- Method of designating airfoils and summary sketch of models (upper half shown, not to scale).



(a) Effect of gap on lift and pitching moment.

Figure 4.- Effect of gap on lift, drag, and pitching moment of semispan model; M = 1.98.



(b) Effect of gap on drag.

Figure 4.- Concluded.



Figure 5.- Typical variations of lift coefficient with angle of attack; M = 1.98, transition fixed,  $R=3.5\times10^6$ .





(a) Thickness effect; h/t = 0, b/c = 0.33. (b) Trailing-edge bluntness effect; t/c = 0.06. Figure 6.- Typical variations of pitching-moment coefficient with lift coefficient; M = 1.98, transition fixed,  $R=3.5\times10^6$ .



Figure 7.- Typical drag curves; M = 1.98, transition fixed,  $R=3.5 \times 10^6$ .



Figure 8.- Typical lift-drag ratio curves; M = 1.98, transition fixed,  $R=3.5\times10^6$ .



Figure 9.- Variation of lift-curve slope with trailing-edge bluntness for all models tested; R = 1.0, 2.0, and 3.5 million, M = 1.45 and 1.98.



Figure 10.- Variation of center-of-pressure location with thickness ratio and trailing-edge thickness; transition fixed, R=3.5×10<sup>6</sup>.



Figure 11.- Correlation between theoretical and experimental center-ofpressure locations for all the airfoils and Reynolds numbers.





Figure 12.- Variation of minimum drag coefficient with airfoil thickness ratio and trailing-edge thickness ratio; transition fixed, R=3.5×10<sup>6</sup> unless noted otherwise.



(a) M = 1.45, transition fixed, (b) M = 1.98, transition fixed,  $R=3.5\times10^6$ .

Figure 13.- Correlation between theoretical and experimental minimum drag coefficients.



Figure 13.- Concluded.



Figure 14.- Variation of maximum lift-drag ratio and airfoil section modulus with thickness ratio and trailing-edge thickness; transition fixed,  $R=3.5\times10^6$ .





(a) M = 1.45, transition fixed,  $R=3.5 \times 10^6$ .

Figure 15.- Variation of airfoil maximum lift-drag ratio with section modulus.





(b) M = 1.98, transition fixed,  $R=3.5 \times 10^6$ . Figure 15.- Continued.



(c) M = 1.45, airfoils clean, R=1.0×10 $^6$ .

Figure 15.- Continued.



1



(d) M = 1.98, airfoils clean,  $R=1.0 \times 10^6$ .

Figure 15.- Concluded.



Figure 16. - Correlation between theoretical and experimental maximum lift-drag ratios.

(a) Transition fixed, R=3.5x10<sup>6</sup>. (b) Airfoils clean, R=1.0x10<sup>6</sup>.





