NCERT 12.10 5Q

EE23BTECH11013 - Avyaaz*

Question: In Young's double-slit experiment using monochromatic light of wavelength λ , the intensity of light at a point on the screen where path difference is λ , is K units. What is the intensity of light at a point where path difference is $\lambda/3$?

Solution:

Given,

Path difference = λ

Let I_1 and I_2 be the intensity of two coherent waves. The resultant intensity is given by:

$$I_{\text{net}} = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \phi$$

Here, ϕ is the phase difference between two light waves.

Intensities are equal for monochromatic light waves.

$$I_1 = I_2$$

$$\therefore I_{\text{net}} = I_1 + I_1 + 2\sqrt{I_1 I_1} \cos \phi$$

$$I_{\text{net}} = 2I_1 + 2I_1 \cos \phi$$

$$:: I_{\text{net}} = K$$

$$K = 2I_1 + 2I_1 \cos \phi$$

We know that,

Phase difference $=\frac{2\pi}{\lambda}$ x Path difference

 \therefore path difference = λ

$$\phi = \frac{2\pi}{\lambda} \times \lambda$$

Phase difference = $\phi = 2\pi$

$$\therefore K = 2I_1 + 2I_1 \cos 2\pi$$

$$K = 4I_1$$

$$\therefore I_1 = \frac{K}{4}$$

When path difference = $\frac{\lambda}{3}$

Phase difference = $\phi = \frac{2\pi}{3}$ Hence,

Resultant intensity,

$$I_{\rm R} = 2I_1 + 2\sqrt{I_1 I_1} \cos \frac{2\pi}{3}$$

$$I_{\rm R} = 2I_1 + 2I_1 \left(\frac{-1}{2}\right)$$

$$I_{\rm R} = I_1$$

From the above result,

$$I_1 = \frac{K}{4}$$
$$\therefore I_R = \frac{K}{4}$$

Hence, the Intensity of light at a point where path difference is $\frac{\lambda}{3}$ is $\frac{K}{4}$ units.