UFC/DC SA (CK0191) 2018.1

Input-output representation Stochastic algorithms

Francesco Corona

Federal University of Ceará, Fortaleza

Department of Computer Science

Input-output representation

UFC/DC SA (CK0191) 2018.1

Input-output models (cont.)

The analysis consists of determining the output signal for a given model

- → Force-free and forced evolution
- → Decomposition by linearity

We study the homogeneous equation associated to the model equation

- → A definition of the system modes
- → They characterise this evolution

The force-free evolution is given by a linear combination of modes

Input-output representation

UFC/DC SA (CK0191) 2018.1

We concentrate on single-input single-output (SISO) systems

- Input-output (IO) representation
- Linear and stationary systems

Input-output models

Linear ordinary differential equations w/ constant coefficients

• Direct integration of the ODEs in time

Input-output representation

UFC/DC SA (CK0191) 2018.1

Input-output models (cont.)

We study the forced response of the system to the unit impulse

- It is a canonical regime
- \leadsto Full characterisation

The forced evolution to any input is given as a convolution

- The input and the response to the unit impulse
- The Duhamel integral

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodic

Impulse respon

Forced evolution

Representation and analysis

Input-output representation

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-free

Modes

Aperiodic

т 1

Forced evolution

Representation and analysis (cont.)

$$a_n \frac{\mathrm{d}^n y(t)}{\mathrm{d}t^n} + \dots + a_1 \frac{\mathrm{d}y(t)}{\mathrm{d}t} + a_0 y(t)$$

$$= b_m \frac{\mathrm{d}^m u(t)}{\mathrm{d}t^m} + \dots + b_1 \frac{\mathrm{d}u(t)}{\mathrm{d}t} + b_0 u(t)$$

The problem

The fundamental problem of analysis for an IO model representation

- \sim Calculate the solution of the differential equation y(t)
- \rightarrow From a given initial time t_0 $(t \ge t_0)$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

omogeneous quation and

Force-free

Modes

Pseudo-periodic

mpulse respons

Forced evolution

Representation and analysis

Consider a SISO system represented by a linear, time-invariant IO model

$$a_n \frac{\mathrm{d}^n y(t)}{\mathrm{d}t^n} + \dots + a_1 \frac{\mathrm{d}y(t)}{\mathrm{d}t} + a_0 y(t)$$

$$= b_m \frac{\mathrm{d}^m u(t)}{\mathrm{d}t^m} + \dots + b_1 \frac{\mathrm{d}u(t)}{\mathrm{d}t} + b_0 u(t) \quad (1)$$

The independent variable

 \rightsquigarrow Time, $t \in \mathcal{R}$

The dependent variables

 \rightarrow The input, $u(t): \mathcal{R} \rightarrow \mathcal{R}$

 \rightarrow The output, $y(t): \mathcal{R} \rightarrow \mathcal{R}$

The parameters

$$\rightsquigarrow a_i \in \mathcal{R}$$
, with $i = 0, \dots, n$

$$\rightarrow b_i \in \mathcal{R}$$
, with $i = 0, \dots, m$

The order of the system is the highest order of derivation of the output

• We suppose that the system is proper $(n \geq m)$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-free

. . .

Aperiodic

Pseudo-periodio

Impulse resp

Forced evolution

Representation and analysis (cont.)

This corresponds to determine the evolution of output y(t), for $t \geq t_0$

Initial conditions

$$y(t)\Big|_{t=t_0} = y_0$$

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t}\Big|_{t=t_0} = y'_0$$

$$\cdots = \cdots$$

$$(2)$$

$$^{n-1}y(t)\Big|_{t=t_0} = y^{(n-1)}$$

The values of the output and its derivatives at the initial time t_0

Input signal

$$u(t)$$
, for $t \ge t_0$ (3)

The value of the input at the initial time t_0

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-free

Modes

Aperiodic

Pseudo-periodic

Forced evolutio

Representation and analysis (cont.)

We overview standard solution methods of ordinary differential equations

→ And, some less standard methods will be introduced

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-fre

Modes

Aperiodic

T 1

Forced evolution

Representation and analysis (cont.)

Initial state and initial conditions

If the initial state of the system is null, then all initial conditions are null

$$\mathbf{x}(t_0) = \mathbf{0} \quad \leadsto \quad y_0 = y_0' = \dots = y_0^{(n-1)} = 0$$

If the initial state is not null, then not all initial conditions are null

$$\mathbf{x}(t_0) \neq \mathbf{0} \quad \leadsto \quad (\exists i \in \{0, 1, \dots, n-1\}) \quad y_0^{(i)} \neq 0$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-free

Modes

Proudo poviodio

mpulse respons

Representation and analysis (cont.)

The past of the system for $t \in (-\infty, t_0]$ is summarised by the state $\mathbf{x}(t_0)$

- The initial state is not given/available in the IO representation
- We have initial conditions for the output and its derivatives
- \leadsto The information is equivalent

Initial state and initial conditions are univocally related¹

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-free

Modes

Aperiodic

т 1

Forced evolution

Representation and analysis (cont.)

The solution (in terms of force-free and forced evolution)

We will consider the evolution of the output of a system

• We assumed that this is an effect

We assumed that the effect is due to two types of **causes**

- → Internal causes in the system, the initial state
- → External causes to the system, the input

 $^{^{1}\}mathrm{This}$ is strictly true only for observable systems

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free evolution

Modes

Aperiodic

Pseudo-periodic

impuise respo

Formed evaluation

Representation and analysis (cont.)

Consider a linear system (superposition principle)

The effect is due to the simultaneous existence of both causes

The response can be determined as the sum of effects

• Each cause is acting alone

$$\rightarrow$$
 $y(t) = y_u(t) + y_f(t)$, for $t \ge t_0$

 $y_u(t)$ is called the force-free response

• Contribution to the output that is only due to **initial state** at $t = t_0$

 $y_f(t)$ is called the **forced response**

• Contribution to the output that is only due to **input** for any $t \geq t_0$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-free

Modes

Aperiodic

т 1

Forced evolution

Representation and analysis (cont.)

We want to study the two terms separately and show how they are calculated

• The analysis is restricted to stationary models

We introduce a simplification that will not disrupt generality

• We will assume that the initial time is $t_0 = 0$

If $t_0 \neq 0$, solve for $\tau = (t - t_0)$ to get $y(\tau)$ for $\tau \geq 0$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-free

Modes

Pseudo-periodic

mpulse respons

Representation and analysis (cont.)

Force-free and forced response

$$y(t) = y_u(t) + y_f(t)$$
, for $t \ge t_0$

 $y_u(t) \longrightarrow$ can be defined as the system response for an input u(t) that is identically null for $t > t_0$ and for given initial conditions

 $y_f(t) \leadsto$ can be defined as the system response for a given input u(t) for $t \ge t_0$ and for initial conditions that are identically null

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-ire

Modes

Panuda pariad

Impulse respo

Forced evolution

Homogeneous equation and modes

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free evolution

Modes

Aperiodic

Pseudo-periodic

Impulse respon

Forced evolution

Homogeneous equation and modes

Consider SISO system represented by a linear, time-invariant IO model

$$a_n \frac{\mathrm{d}^n y(t)}{\mathrm{d}t^n} + \dots + a_1 \frac{\mathrm{d}y(t)}{\mathrm{d}t} + a_0 y(t)$$

$$= b_m \frac{\mathrm{d}^m u(t)}{\mathrm{d}t^m} + \dots + b_1 \frac{\mathrm{d}u(t)}{\mathrm{d}t} + b_0 u(t)$$

We study a simplified form of this differential equation

• The homogeneous equation (RHS is null)

$$\rightarrow a_n \frac{\mathrm{d}^n y(t)}{\mathrm{d}t^n} + \dots + a_1 \frac{\mathrm{d}y(t)}{\mathrm{d}t} + a_0 y(t) = 0$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

rorce-iree

Modes

Aperiodio

т 1

Forced evolution

Homogeneous equation and modes (cont.)

Definition

Homogeneous equation

Consider the differential equation of a IO model

$$a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t)$$

$$= b_m \frac{d^m u(t)}{dt^m} + \dots + b_1 \frac{du(t)}{dt} + b_0 u(t)$$

Suppose that we let the RHS of the IO representation be zero

Define the homogenous equation associated to it

$$\Rightarrow a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t) = 0$$

$$\rightsquigarrow t \in \mathcal{R}$$

$$\rightsquigarrow y: \mathcal{R} \to \mathcal{R}$$

$$\rightarrow a_i \in \mathcal{R}, \text{ with } i = 0, \dots, n$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

evolution

Aperiodic

Pseudo-periodic

Homogeneous equation and modes (cont.)

This form allow us to introduce the fundamental concept of system mode System modes are functions that characterises the system evolution

 \rightarrow The number of modes equals the system's order

Linear combinations of modes solve the homogeneous equations

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free

. .

Aperiodic

Pseudo-periodic

Impulse respon

Forced evolutio

Homogeneous equation and modes (cont.)

$$a_n \frac{\mathrm{d}^n y(t)}{\mathrm{d}t^n} + \dots + a_1 \frac{\mathrm{d}y(t)}{dt} + a_0 y(t) = 0$$

The homogeneous equation is a simplified form of the differential equation ${\bf r}$

It is possible to associate a polynomial to any homogenous equation

→ Characteristic polynomial

UFC/DC SA (CK0191) 2018.1

Homogeneousequation and modes

Homogeneous equation and modes (cont.)

Characteristic polynomial

Consider the homogeneous differential equation

$$a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t) = 0$$

The characteristic polynomial of a homogenous differential equation is a n-order polynomial in the variable s whose coefficients correspond to the coefficients $\{a_0, a_1, \ldots, a_n\}$ of the homogeneous equation

$$\rightarrow$$
 $P(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = \sum_{i=0}^n a_i s^i$ (4)

Input-output representation

UFC/DC SA (CK0191)

2018.1

Homogeneous equation and modes

Homogeneous equation and modes (cont.)

In general, there are $r \leq n$ distinct roots p_i , each with multiplicity ν_i

$$\longrightarrow \underbrace{p_1 \quad \cdots \quad p_1}_{\nu_1} \quad \underbrace{p_2 \quad \cdots \quad p_2}_{\nu_2} \quad \cdots \quad \underbrace{p_r \quad \cdots \quad p_r}_{\nu_r}$$

$$\rightarrow$$
 $\sum_{i=1}^{r} \nu_i = n$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Homogeneous equation and modes

Homogeneous equation and modes (cont.)

Consider any polynomial of order n with real coefficients

• It has n real or complex-conjugate roots

The roots are solutions of the characteristic equation

$$P(s) = \sum_{i=0}^{n} a_i s^i = 0$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Homogeneous equation and modes

Homogeneous equation and modes (cont.)

Consider the particular case in which all roots have multiplicity equal one

$$\Rightarrow p_1 \quad p_2 \quad \cdots \quad p_{n-1} \quad p_n$$

 \rightarrow If $i \neq j$, then $p_i \neq p_j$

 $\rightarrow \nu_i = 1$, for every i

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodic

Forced evolutio

Homogeneous equation and modes (cont.)

$\operatorname{Definition}$

Modes

Let p be a root with multiplicity ν of the characteristic polynomial

The **modes** associated to that root are the ν functions of time

$$\rightarrow$$
 e^{pt} , te^{pt} , t^2e^{pt} , \cdots , $t^{\nu-1}e^{pt}$

A system with a n-order characteristic polynomial has n modes

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodio

Impulse response

Forced evolution

Homogeneous equation and modes (cont.)

Example

Consider the following homogenous differential equation

$$3\frac{\mathrm{d}^4 y(t)}{\mathrm{d}t^4} + 21\frac{\mathrm{d}^3 y(t)}{\mathrm{d}t^3} + 45\frac{\mathrm{d}^2 y(t)}{\mathrm{d}t^2} + 39\frac{\mathrm{d}y(t)}{\mathrm{d}t} + 12y(t) = 0$$

The associated characteristic polynomial

$$P(s) = 3s^4 + 21s^3 + 45s^2 + 39s + 12 = 3(s+1)^3(s+4)$$

Its roots

$$\Rightarrow \begin{cases} p_1 = -1, & \text{multiplicity } \nu_1 = 3 \\ p_2 = -4, & \text{multiplicity } \nu_2 = 1 \end{cases}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodi

Impulse respon

Let p = 1

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-iree

Modes

Aperiodic

Pseudo-periodio

Homogeneous equation and modes (cont.)

Such a system has four modes

$$p_1 = -1, \quad (\nu_1 = 3) \quad \leadsto \quad \begin{cases} e^{-t} \\ te^{-t} \\ t^2 e^{-t} \end{cases}$$

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free

. . .

Pseudo-periodic

Forced evolution

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free

Modes

Aperiodic

1 beatto-periodic

Forced evolution

Homogeneous equation and modes (cont.)

Definitior

Linear combinations of modes

A linear combination of the n modes of a system is a function h(t)

• A sum of the modes, each weighted by some coefficient

Each root p_i with multiplicity ν_i is associated to a combination of ν_i terms

$$A_{i,0}e^{p_it} + A_{i,1}te^{p_it} + \dots + A_{i,\nu_{i-1}}t^{\nu_{i-1}}e^{p_it}$$

$$= \underbrace{\sum_{k=0}^{\nu_{i-1}} A_{i,k}t^k e^{p_it}}_{\text{rest } p_i}$$
(5)

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

mpulse respons

Homogeneous equation and modes (cont.)

As modes are functions, their linear combinations are a family of functions

• The family is parameterised by the coefficients of the combination

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodic

The complete linear combination of modes

There is a total of r distinct roots

$$h(t) = \underbrace{\sum_{k=0}^{\nu_1 - 1} A_{1,k} t^k e^{p_1 t}}_{\text{root } p_1} + \underbrace{\sum_{k=0}^{\nu_2 - 1} A_{2,k} t^k e^{p_2 t}}_{\text{root } p_2} + \dots + \underbrace{\sum_{k=0}^{\nu_r - 1} A_{r,k} t^k e^{p_r t}}_{\text{root } p_r}$$

$$\Leftrightarrow = \sum_{i=1}^r \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t}$$
(6)

Homogeneous equation and modes (cont.)

9

$$A_{i,0}e^{p_it} + A_{i,1}te^{p_it} + \dots + A_{i,\nu_i-1}t^{\nu_i-1}e^{p_it} = \underbrace{\sum_{k=0}^{\nu_i-1} A_{i,k}t^k e^{p_it}}_{\text{root. } p_i}$$

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodic

. .

Forced evolutio

Homogeneous equation and modes (cont.)

Consider the case in which all roots (n) have multiplicity equal to one

$$\rightarrow h(t) = A_1 e^{p_1 t} + A_2 e^{p_2 t} + \dots + A_n e^{p_n t} = \sum_{i=1}^n A_i e^{p_i t}$$

(We have omitted the second subscript of coefficients A)

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-ire

. . .

Aperiodic

т 1

Forced evolution

Homogeneous equation and modes (cont.)

A linear combination of the modes

$$h(t) = \underbrace{A_{1,0}e^{-t} + A_{1,1}te^{-t} + A_{1,2}t^{2}e^{-t}}_{\text{root } p_{1}} + \underbrace{A_{2}e^{-4t}}_{\text{root } p_{2}}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

mpulse respons

Forced evolu

Homogeneous equation and modes (cont.)

Example

Consider a system with homogeneous differential equation

$$3\frac{d^4y(t)}{dt^4} + 21\frac{d^3y(t)}{dt^3} + 45\frac{d^2y(t)}{dt^2} + 39\frac{dy(t)}{dt} + 12y(t) = 0$$

- Two roots $p_1 = -1$ ($\nu_1 = 3$) and $p_2 = -4$ ($\nu_2 = 1$)
- Four modes e^{-t} , te^{-t} , t^2e^{-t} and e^{-4t}

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodic

Impulse resp

Forced evolution

Homogeneous equation and modes (cont.)

The modes are known through the characteristic polynomial

The coefficients of their linear combination are parameters

$$h(t) = \sum_{i=1}^{r} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t}$$

The equation is a parametric form of a family of functions

The actual coefficients determine the force-free evolution

→ From every possible initial condition

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

evolution

Modes

Aperiodic

Pseudo-periodic

T.........

Forced evolution

Homogeneous equation and modes (cont.)

Theorem

Solution of the homogeneous equation

Consider the homogeneous equation

$$a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t) = 0$$

A real function h(t) is a solution of the homogeneous equation if and only if it is a linear combination of its modes

$$\rightarrow h(t) = \sum_{i=1}^{r} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free

Modes

Aperiodic

1 beatto-periodic

impuise respons

Forced evolution

Homogeneous equation and modes (cont.)

$$\frac{\mathrm{d}^k}{\mathrm{d}t^k}h(t) = \sum_{i=1}^n p_i^k A_i e^{p_i t}, \quad \text{for } k = 0, 1, \dots, n$$

We substitute the k-th order derivatives of h(t) in the homogeneous equation

$$a_n \frac{\mathrm{d}^n y(t)}{\mathrm{d}t^n} + \dots + a_1 \frac{\mathrm{d}y(t)}{\mathrm{d}t} + a_0 y(t) = \sum_{k=0}^n a_k \frac{\mathrm{d}^k}{\mathrm{d}t^k} h(t) = 0$$

We have,

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Aperiodic

mpulse respons

puise respons

Homogeneous equation and modes (cont.)

Proof

We demonstrate only the necessary condition

Consider the case in which all n roots have multiplicity equal to one

$$h(t) = A_1 e^{p_1 t} + A_2 e^{p_2 t} + \dots + A_n e^{p_n t} = \sum_{i=1}^n A_i e^{p_i t}$$

For the k-th order derivative of function h(t), we have

$$\frac{\mathrm{d}^{k}}{\mathrm{d}t^{k}}h(t) = \frac{\mathrm{d}^{k}}{\mathrm{d}^{k}} \left(A_{1}e^{p_{1}t} + A_{2}e^{p_{2}t} + \dots + A_{n}e^{p_{n}t} \right)
= p_{1}^{k} A_{1}e^{p_{1}t} + p_{2}^{k} A_{2}e^{p_{2}t} + \dots + p_{n}^{k} A_{n}e^{p_{n}t}
= \sum_{i=1}^{n} p_{i}^{k} A_{i}e^{p_{i}t}, \quad \text{for } k = 0, 1, \dots, n$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-iree

Modes

Aperiodic

T 1

impuise respo

Forced evolutio

Homogeneous equation and modes (cont.)

$$\sum_{k=0}^{n} a_k \frac{\mathrm{d}^k}{\mathrm{d}t^k} h(t) = \sum_{i=1}^{n} A_i e^{p_i t} \left(\sum_{k=0}^{n} a_k p_i^k \right) = 0$$

For all values of $i = 1, \dots, n$, the term between parenthesis is equal to zero

 \rightarrow As p_i is a root of the characteristic polynomial

$$\sum_{k=0}^{n} a_k p_i^k = a_n p_i^n + \dots + a_1 p_i + a_0 = P(s) \Big|_{s=p_i} = 0$$

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free evolution

Modes

Aperiodic

Pseudo-periodic

Forced evolution

Homogeneous equation and modes (cont.)

Complex and conjugate roots

Consider as characteristic polynomial P(s) whose roots are complex

The modes in h(t) are complex signals

$$h(t) = \sum_{i=1}^{r} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t}$$

Let P(s) be a polynomial with real coefficients and complex roots

• Let $p_i = \alpha_i + j\omega_i$ with multiplicity ν_i be a complex root

For each $p_i=\alpha_i+j\omega_i$ there is a conjugate complex root $p_i'=\alpha_i-j\omega_i$

• Multiplicity $\nu'_i = \nu_i$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodie

Impulse response

Forced evolution

Homogeneous equation and modes (cont.)

The complex exponential function

Consider an imaginary number $z = 0 + j\phi$

We have,

$$\Rightarrow$$
 $e^{j\phi} = \cos(\phi) + j\sin(\phi)$

The exponential of an imaginary number is a complex number

- Real part, $\cos(\phi)$
- Imaginary part, $\sin(\phi)$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodic

mpuise respons

Homogeneous equation and modes (cont.)

Complex numbers (Cartesian representation)

Consider the set of complex numbers $C = \{u + jv | u, v \in \mathbb{R}\}\ (j = \sqrt{-1})$

A complex number

$$z = \operatorname{Re}(z) + \operatorname{Im}(z)$$
$$= u + jv$$

It consists of two parts

- Real part, Re(z) = u
- Imaginary part, Im(z) = v

The complex conjugate of z

$$z' = \operatorname{Re}(z) - j\operatorname{Im}(z)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-iree

Modes

Aperiodic

Pseudo-periodic

Impulse resp

Forced evolution

Homogeneous equation and modes (cont.)

Proof

Let $z \in \mathcal{C}$ be any scalar

We have (by definition),

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

Let $z = j\phi$, for this particular case

$$e^{j\phi} = 1 + j\phi - \frac{\phi^2}{2!} - j\frac{\phi^3}{3!} + \cdots$$

$$= \left[\sum_{k=0}^{\infty} (-1)^k \frac{\phi^{2k}}{(2k)!}\right] + j\left[\sum_{k=0}^{\infty} (-1)^k \frac{\phi^{2k+1}}{(2k+1)!}\right]$$

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodic

Forced evolution

Homogeneous equation and modes (cont.)

$$e^{j\phi} = \underbrace{\left[\sum_{k=0}^{\infty} (-1)^k \frac{\phi^{2k}}{(2k)!}\right]}_{\cos(\phi)} + j \left[\sum_{k=0}^{\infty} (-1)^k \frac{\phi^{2k+1}}{(2k+1)!}\right]$$

The first sum is the McLaurin expansion of the cosine function

$$\cos(\phi) = \sum_{k=0}^{\infty} \frac{\phi^k}{k!} \left[\frac{d^k \cos(x)}{dx^k} \right]_{x=0}$$

$$= \cos(0) - \sin(0)\phi - \cos(0)\frac{\phi^2}{2!} + \sin(0)\frac{\phi^3}{3!} + \cdots$$

$$= 1 - \frac{\phi^2}{2!} + \frac{\phi^4}{4!} + \cdots = \left[\sum_{k=0}^{\infty} (-1)^k \frac{\phi^{2k}}{(2k)!} \right]$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

rorce-ire

. . .

Aperiodic

1 boudo-periodic

impuise respons

Forced evolution

Homogeneous equation and modes (cont.)

A pair of roots (p_i, p_i') is associated to a linear combination of $2\nu_i$ modes

$$\xrightarrow{k=0} \underbrace{(A_{i,0}e^{p_it} + A'_{i,0}e^{p'_it})}_{k=0} + \cdots + \underbrace{t^{\nu_i-1}(A_{i,\nu_i-1}e^{p_it} + A'_{i,\nu-1}e^{p'_it})}_{k=\nu_i-1} \tag{7}$$

(Pairs of terms for $k = 0, \dots, \nu_i - 1$ have been grouped up)

$$\underbrace{(A_{i,0}e^{p_it} + A'_{i,0}e^{p'_it})}_{k=0} + \dots + \underbrace{t^{\nu_i-1}(A_{i,\nu_i-1}e^{p_it} + A'_{i,\nu-1}e^{p'_it})}_{k=\nu_i-1}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

mpulse respons

Homogeneous equation and modes (cont.)

$$e^{j\phi} = \left[\sum_{k=0}^{\infty} (-1)^k \frac{\phi^{2k}}{(2k)!}\right] + j \left[\sum_{k=0}^{\infty} (-1)^k \frac{\phi^{2k+1}}{(2k+1)!}\right] \frac{\sin(\phi)}{\sin(\phi)}$$

The second sum is the McLaurin expansion of the sine function

$$\sin(\phi) = \sum_{k=0}^{\infty} \frac{\phi^k}{k!} \left[\frac{\mathrm{d}^k \sin(x)}{\mathrm{d}x^k} \right]_{x=0}$$

$$= \sin(0) - \cos(0)\phi - \sin 0 \frac{\phi^2}{2!} + \cos(0) \frac{\phi^3}{3!} + \cdots$$

$$= \phi - \frac{\phi^3}{3!} + \frac{\phi^5}{5!} + \cdots = \left[\sum_{k=0}^{\infty} (-1)^k \frac{\phi^{2k+1}}{(2k+1)!} \right]$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

T-----1---

Forced evolution

Homogeneous equation and modes (cont.)

$$h(t) = \sum_{i=1}^{r} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t}$$

Function h(t) is a real function (must take real values for all values of t)

$$\underbrace{(A_{i,0}e^{p_it} + A'_{i,0}e^{p'_it})}_{k=0} + \cdots + \underbrace{t^{\nu_i-1}(A_{i,\nu_i-1}e^{p_it} + A'_{i,\nu-1}e^{p'_it})}_{k=\nu_i-1}$$

Coefficients $A_{i,k}$ and $A_{i,k}^{\prime}$ need be complex and conjugated

• For all $k = 0, ..., \nu_i - 1$

Then, $A_{i,k}e^{p_it}$ and $A'_{i,k}e^{p'_it}$ are complex and conjugated

- Their sum will be a real number (as desired)
- For all values of t

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodic

Forced evolution

Homogeneous equation and modes (cont.)

Consider a characteristic polynomial P(s) that has complex roots

It is possible to derive a proper parameterisation of h(t)

→ (That is, one that only contains real terms)

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free

Modes

Anoviodi

r seudo-periodic

Impulse respons

Forced evolutio

Homogeneous equation and modes (cont.)

Proof

Consider the term $(Ae^{pt} + A'e^{p't})$ in which $(p, p') = \alpha \pm j\omega$

Write the coefficients A and A' in polar form

$$A = |A|e^{j\phi}$$
$$A' = |A|e^{-j\phi}$$

 \rightsquigarrow |A| denotes the magnitude of coefficient A

 $\rightarrow \phi = \arg(A)$ is the phase of coefficient A

We have.

$$Ae^{pt} + A'e^{p't} = |A|e^{j\phi}e^{(\alpha+j\omega)t} + |A|e^{-j\phi}e^{(\alpha-j\omega)t}$$

$$= |A|e^{\alpha t}[e^{j(\omega t + \phi)} + e^{-j(\omega t + \phi)}]$$

$$= 2|A|e^{\alpha t}\cos(\omega t + \phi) \text{ [Euler's formula]}$$

$$= \underbrace{M}_{M=2|A|\geq 0} e^{\alpha t}\cos(\omega t + \phi)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

mpulse respons

Forced evolution

Homogeneous equation and modes (cont.)

Proposition

Consider the contribution of $(p_i, p'_i) = \alpha_i \pm j\omega_i$ a pair of conjugate complex roots with multiplicity ν_i to the linear combination of the $(2\nu_i)$ modes

$$\underbrace{(A_{i,0}e^{p_it} + A'_{i,0}e^{p'_it})}_{k=0} + \dots + \underbrace{t^{\nu_i-1}(A_{i,\nu_i-1}e^{p_it} + A'_{i,\nu-1}e^{p'_it})}_{k=\nu_i-1}$$

This sum of terms can be re-written

$$\rightarrow \sum_{k=0}^{\nu_i - 1} M_{i,k} t^k e^{\alpha_i t} \cos(\omega_i t + \phi_{i,k})$$
 (8)

The $2\nu_i$ complex coefficients, $A_{i,k}$ and $A'_{i,k}$, are replaced by $2\nu_i$ real ones

- $\rightsquigarrow M_{i,k}$
- $\rightsquigarrow \phi_{i,k}$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

T------

Forced evolution

Homogeneous equation and modes (cont.)

The linear combination of two modes $(At^k e^{pt} + A't^k e^{p't})$

$$\longrightarrow M t^k e^{\alpha t} \cos(\omega t + \phi)$$

The term is denoted ${\bf pseudo-periodic}\ {\bf mode}$

UFC/DC SA (CK0191) 2018.1

Representatior and analysis

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodic

Forced evolution

Homogeneous equation and modes (cont.)

Complex numbers (Polar representation)

Consider the set of complex numbers $C = \{u + jv | u, v \in \mathbb{R}\}\ (j = \sqrt{-1})$

The complex number z = Re(z) + Im(z) = u + jv

We can define

Module

•
$$M = |z| = \sqrt{u^2 + v^2}$$

Phase

•
$$\phi = \arg(z) = \arctan(v/u)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free

CVOIGUIO

Aperiodic

1 boudo-periodic

Impulse respons

T

Homogeneous equation and modes (cont.)

Euler's formula

Relationships to write a periodic function as sum of exponential functions

$$\cos(\phi) = \frac{e^{j\phi} + e^{-j\phi}}{2}$$
$$\sin(\phi) = \frac{e^{j\phi} - e^{-j\phi}}{2i}$$

Proof

$$\frac{e^{j\phi} + e^{-j\phi}}{2} = \frac{\left[\cos\left(\phi\right) + j\sin\left(\phi\right)\right] + \left[\cos\left(-\phi\right) + j\sin\left(-\phi\right)\right]}{2}$$
$$= \frac{\left[\cos\left(\phi\right) + j\sin\left(\phi\right)\right] + \left[\cos\left(\phi\right) - j\sin\left(\phi\right)\right]}{2} = \frac{2\cos\left(\phi\right)}{2} = \cos\left(\phi\right)$$

$$\frac{e^{j\phi} - e^{-j\phi}}{2} = \frac{\left[\cos\left(\phi\right) + j\sin\left(\phi\right)\right] - \left[\cos\left(-\phi\right) + j\sin\left(-\phi\right)\right]}{2}$$
$$= \frac{\left[\cos\left(\phi\right) + j\sin\left(\phi\right)\right] - \left[\cos\left(\phi\right) - j\sin\left(\phi\right)\right]}{2} = \frac{2j\sin\left(\phi\right)}{2} = \sin\left(\phi\right)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free

o v or a vron

Aperiodic

mpulse respons

Homogeneous equation and modes (cont.)

The inverse formulæ hold

$$\rightarrow u = M \cos(\phi)$$

$$\rightsquigarrow v = M \sin(\phi)$$

We have,

$$z = u + jv$$

$$= M \cos(\phi) + jM \sin(\phi) = M [\cos(\phi) + j \sin(\phi)]$$

$$\leadsto = Me^{j\phi}$$

The polar representation of a complex number

$$z = Me^{j\phi} = |z|e^{j\phi} = |z|e^{j\arg(z)}$$

The complex conjugate

$$\Rightarrow z' = |z|e^{-\arg(z)}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodic

Impulse respo

Forced evolution

Homogeneous equation and modes (cont.)

We can define an alternative structure of the linear combination of modes

• The structure will be equivalent to the form in A

$$\sum_{i=1}^{r} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t}$$

Pairs of conjugate complex roots are expressed using the form in M and ϕ

$$\sum_{k=0}^{\nu_i-1} M_{i,k} t^k e^{\alpha_i t} \cos(\omega_i t + \phi_{i,k})$$

UFC/DC SA (CK0191) 2018.1

Homogeneous equation and modes

Homogeneous equation and modes (cont.)

Let R be the number of distinct real roots p_i

• Multiplicity ν_i (i = 1, ..., R)

$$\leadsto$$
 $p_1, p_2, \ldots, p_i, \ldots, p_R$

Let S be the number of pairs of distinct complex conjugate roots (p_i, p'_i)

• Multiplicity ν_i $(i = R + 1, \dots, R + S)$

$$(p_{R+1}, p'_{R+1}), (p_{R+2}, p'_{R+2}), \dots, (p_i, p'_i), \dots, (p_{R+S}, p'_{R+S})$$

Clearly, the total number of roots

$$\Rightarrow \quad n = \sum_{i=1}^R \nu_i + 2 \sum_{i=R+1}^{R+S} \nu_i$$

Homogeneous equation and modes (cont.)

Consider the case in which all roots have multiplicity equal to one

n = R + 2S

Input-output representation

SA (CK0191) 2018.1

Homogeneous equation and modes

We have,

$$\rightarrow h(t) = \sum_{i=1}^{R} A_i e^{p_i t} + \sum_{i=R+1}^{R+S} M_i e^{\alpha_i t} \cos(\omega_i t + \phi_i)$$
 (10)

(We have omitted the second subscript of the coefficients A, M and ϕ)

Input-output representation

UFC/DC SA (CK0191) 2018.1

Homogeneous equation and modes

Homogeneous equation and modes (cont.)

$$n = \sum_{i=1}^{R} \nu_i + 2 \sum_{i=R+1}^{R+S} \nu_i$$

We consider a particular representation of the linear combination of modes We distinguish modes associated with real and conjugate complex roots

$$h(t) = \sum_{i=1}^{R} \sum_{k=0}^{\nu_{i}-1} A_{i,k} t^{k} e^{p_{i}t} + \sum_{i=R+1}^{R+S} \sum_{k=0}^{\nu_{i}-1} M_{i,k} t^{k} e^{\alpha_{i}t} \cos(\omega_{i}t + \phi_{i,k})$$
 (9)

Input-output representation

SA (CK0191) 2018.1

Homogeneous equation and modes

Homogeneous equation and modes (cont.)

Consider a system with homogeneous differential equation

$$\frac{d^3y(t)}{dt^3} + 2\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} = 0$$

The characteristic polynomial without constant term

$$P(s) = s^3 + 2s^2 + 5s = s(s^2 + 2s + 5)$$

Its roots, from P(s) = 0

$$\Rightarrow \begin{cases}
p_1 = 0, & (\nu_1 = 1) \\
p_2 = \alpha_2 + j\omega_2 = -1 + j2, & (\nu_2 = 1) \\
p'_2 = \alpha_2 - j\omega_2 = -1 - j2, & (\nu'_2 = 1)
\end{cases}$$

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free

3.6 1

Aportodio

Pseudo-periodi

Forced evolution

Homogeneous equation and modes (cont.)

We can write a linear combination of the modes

$$h(t) = \underbrace{A_1 e^{p_1 t}}_{\text{root } p_1} + \underbrace{M_2 e^{\alpha_2 t} \cos(\omega_2 t + \phi_2)}_{\text{root } (p_2, p_2')}$$

$$= A_1 + M_2 e^{-t} \cos(2t + \phi_2)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodi

Impulse respons

Forced evolution

Homogeneous equation and modes (cont.)

Proposition

Consider the contribution of $(p_i, p_i') = \alpha_i \pm j\omega_i$ a pair of conjugate complex roots with multiplicity ν_i to the linear combination of the $(2\nu_i)$ modes

$$\underbrace{(A_{i,0}e^{p_it} + A'_{i,0}e^{p'_it})}_{k=0} + \dots + \underbrace{t^{\nu_i-1}(A_{i,\nu_i-1}e^{p_it} + A'_{i,\nu-1}e^{p'_it})}_{k=\nu_i-1}$$

This sum of terms can be re-written

$$\rightsquigarrow \sum_{k=0}^{\nu_i-1} \left[B_{i,k} t^k e^{\alpha_i t} \cos(\omega_i t) + C_{i,k} t^k e^{\alpha_i t} \sin(\omega_i t) \right]$$
 (11)

The $2\nu_i$ complex coefficients, $A_{i,k}$ and $A'_{i,k},$ are replaced by $2\nu_i$ real ones

$$\leadsto B_{i,k}$$

$$\leadsto C_{i,k}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

mpulse respons

Forced evolution

Homogeneous equation and modes (cont.)

We can define yet another structure of the linear combination of modes

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

r scudo-periodic

Homogeneous equation and modes (cont.)

Proof

Consider the term $(Ae^{pt} + A'e^{p't})$ in which $(p_i, p_i') = \alpha + j\omega$

Write the coefficients A and A' in cartesian form

$$A = u + jv$$
$$A' = u - jv$$

We have,

$$\begin{split} Ae^{pt} + A'e^{p't} &= (u+jv)e^{\alpha t} \big[\cos(\omega t) + j\sin(\omega t)\big] \\ &+ (u-jv)e^{\alpha t} \big[\cos(\omega t) - j\sin(\omega t)\big] \\ &= 2ue^{\alpha t}\cos(\omega t) - 2ve^{\alpha t}\sin(\omega t) \\ &= \underbrace{B}_{B=2u} e^{\alpha t}\cos(\omega t) + \underbrace{C}_{C=-2v} e^{\alpha t}\sin(\omega t) \end{split}$$

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free evolution

Modes

Aperiodic

Pseudo-periodie

D 1 1 1

Homogeneous equation and modes (cont.)

We distinguish modes associated with real and conjugate complex roots

$$h(t) = \sum_{i=1}^{R} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t} + \sum_{i=R+1}^{R+S} \sum_{k=0}^{\nu_i - 1} \left[B_{i,k} t^k e^{\alpha_i t} \cos(\omega_i t) + C_{i,k} t^k e^{\alpha_i t} \sin(\omega_i t) \right]$$
(12)

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

rorce-ire

Modes

Aperiodic

T 1

Forced evolutio

Homogeneous equation and modes (cont.)

The equations

$$\begin{split} h(t) &= \sum_{i=1}^{R} \sum_{k=0}^{\nu_{i}-1} A_{i,k} t^{k} e^{p_{i}t} \\ &+ \sum_{i=R+1}^{R+S} \sum_{k=0}^{\nu_{i}-1} M_{i,k} t^{k} e^{\alpha_{i}t} \cos(\omega_{i}t + \phi_{i,k}) \\ &\left(\leadsto \sum_{i=1}^{R} A_{i} e^{p_{i}t} + \sum_{i=R+1}^{R+S} M_{i} e^{\alpha_{i}t} \cos(\omega_{i}t + \phi_{i}) \right) \end{split}$$

The equations

$$\begin{split} h(t) &= \sum_{i=1}^{R} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t} \\ &+ \sum_{i=R+1}^{R+S} \sum_{k=0}^{\nu_i - 1} \left[B_{i,k} t^k e^{\alpha_i t} \cos(\omega_i t) + C_{i,k} t^k e^{\alpha_i t} \sin(\omega_i t) \right] \\ &\left(\leadsto \sum_{i=1}^{R} A_i e^{p_i t} + \sum_{i=R+1}^{R+S} \left[B_i e^{\alpha_i t} \cos(\omega_i t) + C_i e^{\alpha_i t} \sin(\omega_i t) \right] \right) \end{split}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free

Modes

Aperiodic

mpulse respons

Homogeneous equation and modes (cont.)

Consider the case in which all roots have multiplicity equal to one

$$\rightarrow$$
 $n = R + 2S$

We have.

$$h(t) = \sum_{i=1}^{R} A_i e^{p_i t} + \sum_{i=R+1}^{R+S} \left[B_i e^{\alpha_i t} \cos(\omega_i t) + C_i e^{\alpha_i t} \sin(\omega_i t) \right]$$
(13)

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

r seudo-periodi

Forced evolution

Homogeneous equation and modes (cont.)

They provide the parametric structure of the linear combination $% \left(1\right) =\left(1\right) \left(1\right) \left($

→ They are all equivalent

UFC/DC SA (CK0191)

Homogeneous equation and modes

2018.1

Consider a system with homogeneous differential equation

Homogeneous equation and modes (cont.)

$$\frac{d^3 y(t)}{dt^3} + 2\frac{d^2 y(t)}{dt^2} + 5\frac{dy(t)}{dt} = 0$$

Characteristic polynomial P(s) w/o constant term and the roots of P(s) = 0

$$P(s) = s^{3} + 2s^{2} + 5s = s(s^{2} + 2s + 5)$$

$$\Leftrightarrow \begin{cases} p_{1} = 0, & (\nu_{1} = 1) \\ p_{2} = \alpha_{2} + j\omega_{2} = -1 + j2, & (\nu_{2} = 1) \\ p'_{2} = \alpha_{2} - j\omega_{2} = -1 - j2, & (\nu'_{2} = 1) \end{cases}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Homogeneous equation and modes

Homogeneous equation and modes (cont.)

This problem can be solved in two equivalent ways

$$h(t) = \underbrace{A_1}_{\text{root } p_1} + \underbrace{B_2 e^{-t} \cos(2t) + C_2 e^{-t} \sin(2t)}_{\text{root } (p_2, p_2')}$$

$$\rightarrow h(t) = \underbrace{A_1}_{\text{root } p_1} + \underbrace{M_2 e^{-t} \cos(2t + \phi_2)}_{\text{root } (p_2, p_2')}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Homogeneous equation and modes

Homogeneous equation and modes (cont.)

The two coefficients A and A' in the complex plane

$$A = (M/2)e^{+j\omega} = B/2 - jC/2$$

$$A' = (M/2)e^{-j\omega} = B/2 + jC/2$$

$$M = 2|A| = \sqrt{B^2 + C^2}$$

$$\phi = \arg(A) = \arctan(-C/B)$$

$$v = -0.5C$$

$$0.5M$$

$$\phi$$

$$B = +M\cos\phi = +2u$$

$$C = -M\sin\phi = -2v$$

Input-output representation

SA (CK0191) 2018.1

Force-free evolution

Force-free evolution

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free evolution

Modes

Aperiodic

Pseudo-periodic

Impulse respon

Forced evolutio

Force-free evolution

The force-free response is a particular contribution to the output

It is due to the fact that the system is NOT initially at rest

• (This is the cause due to the non-zero state at t_0)

$$y(t) = \underbrace{y_u(t)}_{\text{force-free response}} + y_f(t), \text{ for } t \ge t_0$$

We study how to characterise it

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

equation and modes

Force-free evolution

Modes

Aperiodic

T 1

Forced evolutio

Force-free evolution (cont.)

$$a_n \frac{\mathrm{d}^n y(t)}{\mathrm{d}t^n} + \dots + a_1 \frac{\mathrm{d}y(t)}{\mathrm{d}t} + a_0 y(t) = 0$$

The force-free response $y_u(t)$ for $t \ge 0$ is equal to the solution of the associated homogeneous differential equation, for some given initial conditions

$$\begin{cases} y_0 = y(t) \Big|_{t=t_0} \\ y_0' = \frac{\mathrm{d}y(t)}{\mathrm{d}t} \Big|_{t=t_0} \\ \dots = \dots \\ y_0^{(n-1)} = \frac{\mathrm{d}^{n-1}y(t)}{\mathrm{d}t^{n-1}} \Big|_{t=t_0} \end{cases}$$

h(t) solves the homogeneous equation iff it is linear combination of modes

 \rightarrow Thus, $y_u(t)$ can be expressed as a linear combination of the modes

• (The *n* coefficients are still unknown)

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free evolution

Modes

Aperiodic

mpulse respons

Forced evolution

Force-free evolution (cont.)

Proposition

Free-force response

Consider a SISO system represented by a linear, time-invariant IO model

$$a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t)$$

$$= b_m \frac{d^m u(t)}{dt^m} + \dots + b_1 \frac{du(t)}{dt} + b_0 u(t)$$

The free-force response $y_u(t)$ is a linear combination of the modes

Proof

Let the input u(t) be always zero for $t \geq 0$

• Then, also its derivatives are zero

$$\rightarrow a_n \frac{\mathrm{d}^n y(t)}{\mathrm{d}t^n} + \dots + a_1 \frac{\mathrm{d}y(t)}{\mathrm{d}t} + a_0 y(t) = 0$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free evolution

Modes

Aperiodic
Pseudo-periodic

Impulse res

Forced evolution

Force-free evolution (cont.)

The coefficients of the force-free response depend on the initial conditions

So, does its evolution

The force-free response $y_u(t)$ is a particular linear combination of the modes

 \bullet The n coefficients are determined from initial conditions

$$\begin{cases} y_0 = y(t) \Big|_{t=t_0} \\ y_0' = \frac{\mathrm{d}y(t)}{\mathrm{d}t} \Big|_{t=t_0} \\ \dots = \dots \\ y_0^{(n-1)} = \frac{\mathrm{d}^{n-1}y(t)}{\mathrm{d}t^{n-1}} \Big|_{t=t_0} \end{cases}$$

UFC/DC SA (CK0191) 2018.1

Force-free evolution

Force-free evolution (cont.)

Consider a system with homogeneous differential equation

$$\frac{d^3y(t)}{dt^3} + 8\frac{d^2y(t)}{dt} + 21\frac{dy(t)}{dt} + 18y(t) = 0$$

We are interested in the force-free response $y_u(t)$, for $t \geq 0$

• The initial conditions

$$y_0 = 2$$
$$y'_0 = 1$$
$$y''_0 = -20$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Force-free evolution

Force-free evolution (cont.)

$$y_u(t) = \underbrace{A_1 e^{-2t}}_{\text{root } p_1} + \underbrace{A_{2,0} e^{-3t} + A_{2,1} t e^{-3t}}_{\text{root } p_2}$$

The three modes to be combined to get the force-free response

Input-output representation

UFC/DC SA (CK0191) 2018.1

Force-free evolution

Force-free evolution (cont.)

The characteristic polynomial

$$P(s) = s^3 + 8s^2 + 21s + 18 = (s+2)(s+3)^2$$

Its roots from P(s) = 0 are all real

$$\begin{cases} p_1 = -2, & \text{multiplicity } \nu_1 = 1 \\ p_2 = -3, & \text{multiplicity } \nu_2 = 2 \end{cases}$$

The force-free response

$$y_u(t) = \underbrace{A_1 e^{-2t}}_{\text{root } p_1} + \underbrace{A_{2,0} e^{-3t} + A_{2,1} t e^{-3t}}_{\text{root } p_2}$$

Input-output representation

SA (CK0191) 2018.1

Force-free evolution

Force-free evolution (cont.)

The force-free response

$$y_u(t) = A_1 e^{-2t} + A_{2.0} e^{-3t} + A_{2.1} t e^{-3t}$$

Its first- and second-order derivatives

$$\frac{\mathrm{d}y_u(t)}{\mathrm{d}t} = -2A_1e^{-2t} - 3A_{2,0}e^{-3t} + A_{2,1}(e^{-3t} - 3te^{-3t})$$

$$\frac{\mathrm{d}^2y_u(t)}{\mathrm{d}t^2} = 4A_1e^{-2t} + 9A_{2,0}e^{-3t} + A_{2,1}(-6e^{-3t} + 9te^{-3t})$$

UFC/DC SA (CK0191) 2018.1

Force-free evolution

Force-free evolution (cont.)

We substitute the initial conditions

$$\begin{aligned} y_u(t)\Big|_{t=0} &= A_1 + A_{2,0} = 2\\ \frac{\mathrm{d}y_u(t)}{\mathrm{d}t}\Big|_{t=0} &= -2A_1 - 3A_{2,0} + A_{2,1} = 1\\ \frac{\mathrm{d}^2y_u(t)}{\mathrm{d}t^2}\Big|_{t=0} &= 4A_1 + 9A_{2,0} - 6A_{2,1} = -20 \end{aligned}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Force-free evolution

Force-free evolution (cont.)

The solutions of the linear system of equations

•
$$A_1 = x_1 = 4$$

•
$$A_{2.0} = x_2 = -2$$

•
$$A_{2,1} = x_3 = 3$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Force-free evolution

Force-free evolution (cont.)

$$\begin{aligned} y_u(t)\Big|_{t=0} &= A_1 + A_{2,0} = 2\\ \frac{\mathrm{d}y_u(t)}{\mathrm{d}t}\Big|_{t=0} &= -2A_1 - 3A_{2,0} + A_{2,1} = 1\\ \frac{\mathrm{d}^2y_u(t)}{\mathrm{d}t^2}\Big|_{t=0} &= 4A_1 + 9A_{2,0} - 6A_{2,1} = -20 \end{aligned}$$

We have,

$$\mathbf{A}\mathbf{x} = \mathbf{b} \quad \rightsquigarrow \begin{cases} \mathbf{A} &= \begin{bmatrix} 1 & 1 & 0 \\ -2 & -3 & 1 \\ 4 & 9 & -6 \end{bmatrix} = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix} \\ \mathbf{b} &= \begin{bmatrix} 2 \\ 1 \\ -20 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \\ \mathbf{x} &= \begin{bmatrix} A_1 \\ A_{2,0} \\ A_{2,1} \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Force-free evolution

Force-free evolution (cont.)

We can write the complete expression of the force-free evolution $y_u(t)$

$$y_u(t) = A_1 e^{p_1 t} + A_{2,0} e^{p_2,t} + A_{2,1} t e^{p_2 t}$$

= $4e^{-2t} - 2e^{-3t} + 3te^{-3t}$

UFC/DC SA (CK0191) 2018.1

Force-free

Force-free evolution (cont.)

Complex conjugate roots

Consider a characteristic polynomial P(s) with conjugate complex roots

$$(p_i, p_i') = \alpha_i \pm j\omega_i$$

We want to determine an expression for force-free evolution

• We need to use a(ny) linear combination of the modes

$$h(t) = \sum_{i=1}^{R} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t}$$

$$+ \sum_{i=R+1}^{R+S} \sum_{k=0}^{\nu_i - 1} M_{i,k} t^k e^{\alpha_i t} \cos(\omega_i t + \phi_{i,k})$$

$$h(t) = \sum_{i=1}^{R} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t} + \sum_{i=R+1}^{R+S} \sum_{k=0}^{\nu_i - 1} \left[B_{i,k} t^k e^{\alpha_i t} \cos(\omega_i t) + C_{i,k} t^k e^{\alpha_i t} \sin(\omega_i t) \right]$$

Input-output representation

SA (CK0191) 2018.1

Force-free

Force-free evolution (cont.)

The characteristic polynomial

$$P(s) = s^3 + 2s^2 + 5s = s(s^2 + 2s + 5)$$

Its roots from P(s) = 0

$$\begin{cases} p_1 = -0, & \text{multiplicity } \nu_1 = 1 \\ p_2 = -\alpha_2 + j\omega = -1 + j2, & \text{multiplicity } \nu_2 = 1 \\ p_2' = -\alpha_2 - j\omega = -1 - j2, & \text{multiplicity } \nu_2' = 1 \end{cases}$$

- R = 1 distinct real roots
- S=1 distinct pair of complex conjugate roots

Input-output representation

UFC/DC SA (CK0191) 2018.1

Force-free evolution

Force-free evolution (cont.)

Consider a system with homogeneous differential equation

$$\frac{d^3 y(t)}{dt^3} + 2\frac{d^2 y(t)}{dt^2} + 5\frac{dy(t)}{dt} = 0$$

We are interested in the force-free response $y_u(t)$, for $t \geq 0$

• The initial condition

$$y_0 = 3$$

$$y_0' = 2$$

$$y_0'' = 1$$

Input-output representation

SA (CK0191) 2018.1

Force-free evolution

Force-free evolution (cont.)

We first consider a parameterisation in the form

$$h(t) = \sum_{i=1}^{R} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t} + \sum_{i=R+1}^{R+S} \sum_{k=0}^{\nu_i - 1} M_{i,k} t^k e^{\alpha_i t} \cos(\omega_i t + \phi_{i,k})$$

We get the force-free response

$$y_u(t) = \underbrace{A_1 e^{p_1 t}}_{\text{root } p_1} + \underbrace{M_2 e^{\alpha_2 t} \cos(\omega_2 t + \phi_2)}_{\text{root } (p_2, p_2')} = A_1 + M_2 e^{-t} \cos(2t + \phi_2)$$

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free evolution

Modes

Apoviodio

Pseudo-periodic

1 seudo-periodic

Forced evolution

Force-free evolution (cont.)

The force-free response and its derivatives of order 1 and order 2

$$y_u(t) = A_1 + M_2 e^{-t} \cos(2t + \phi_2)$$

$$\frac{dy_u(t)}{dt} = -M_2 e^{-t} \cos(2t + \phi_2) - 2M_2 e^{-t} \sin(2t + \phi_2)$$

$$\frac{d^2 y_u(t)}{dt^2} = -2M_2 e^{-t} \cos(2t + \phi_2) + 4M_2 e^{-t} \sin(2t + \phi_2)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free evolution

Modes

Aperiodic

T 1

Forced evolution

Force-free evolution (cont.)

$$y_u(t)\Big|_{t=0} = A_1 + M_2 \cos(\phi_2) = 3$$

$$\frac{dy_u(t)}{dt}\Big|_{t=0} = -M_2 \cos(\phi_2) - 2M_2 \sin(\phi_2) = 2$$

$$\frac{d^2y_u(t)}{dt^2}\Big|_{t=0} = -3M_2 \cos(\phi_2) + 4M_2 \sin(\phi_2) = 1$$

The system of equations is linear in the unknowns

$$\rightarrow x = M_2 \cos(\phi_2)$$

$$\rightarrow y = M_2 \sin(\phi_2)$$

For consistency, we let $z = A_1$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free evolution

Modes

Aperiodic

mpulse respons

Forced evolut

Force-free evolution (cont.)

We substitute the initial conditions

$$\begin{aligned} y_u(t) \Big|_{t=0} &= A_1 + M_2 \cos(\phi_2) = 3 \\ \frac{\mathrm{d}y_u(t)}{\mathrm{d}t} \Big|_{t=0} &= -M_2 \cos(\phi_2) - 2M_2 \sin(\phi_2) = 2 \\ \frac{\mathrm{d}^2 y_u(t)}{\mathrm{d}t^2} \Big|_{t=0} &= -3M_2 \cos(\phi_2) + 4M_2 \sin(\phi_2) = 1 \end{aligned}$$

The system of equations is non-linear in the unknowns

$$\rightsquigarrow M_2$$

$$\rightsquigarrow \phi_2$$

$$\rightsquigarrow (A_1)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-free evolution

Modes

Aperiodic

Pseudo-periodi

Impulse respo

Forced evolution

Force-free evolution (cont.)

$$\begin{aligned} y_u(t) \Big|_{t=0} &= \underbrace{A_1}_z + \underbrace{M_2 \cos(\phi_2)}_x = 3 \\ &\frac{dy_u(t)}{dt} \Big|_{t=0} = -\underbrace{M_2 \cos(\phi_2)}_x - 2\underbrace{M_2 \sin(\phi_2)}_y = 2 \\ &\frac{d^2 y_u(t)}{dt^2} \Big|_{t=0} = -3\underbrace{M_2 \cos(\phi_2)}_x + 4\underbrace{M_2 \sin(\phi_2)}_y = 1 \end{aligned}$$

The resulting system of linear equation

$$\Rightarrow \begin{cases} z+x=3\\ -x-2y=2\\ -3x+4y=1 \end{cases}$$

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-free evolution

Modes

Aperiodic

Pseudo-periodic

T.........

Forced evolution

Force-free evolution (cont.)

The solution

- $z = 4 = A_1$
- $x = -1 = M_2 \cos(\phi_2)$
- $y = -0.5 = M_2 \sin(\phi_2)$

Thus, we get

$$\begin{cases} A_1 = 4 \\ M_2 = \sqrt{x^2 + y^2} = \sqrt{1^2 + 0.5^2} = 1.12 \\ \phi_2 = \arctan\left(y/x\right) = \arctan\left(-0.50/-1\right) = -2.68 \text{ [rad]} \end{cases}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

equation and modes

Force-free evolution

Modes

Aperiodic

T 1

Forced evolution

Force-free evolution (cont.)

We now consider a parameterisation in the form

$$\begin{split} h(t) &= \sum_{i=1}^{R} \sum_{k=0}^{\nu_{i}-1} A_{i,k} t^{k} e^{p_{i}t} \\ &+ \sum_{i=R+1}^{R+S} \sum_{k=0}^{\nu_{i}-1} \left[B_{i,k} t^{k} e^{\alpha_{i}t} \cos(\omega_{i}t) + C_{i,k} t^{k} e^{\alpha_{i}t} \sin(\omega_{i}t) \right] \end{split}$$

We get the force-free response

$$y_u(t) = \underbrace{A_1 e^{p_1 t}}_{\text{root } p_1} + \underbrace{B_2 e^{\alpha_2 t} \cos(\omega_2 t) + C_2 e^{\alpha_2 t} \sin(\omega_2 t)}_{\text{root } (p_2, p'_2)}$$
$$= A_1 + B_2 e^{-t} \cos(2t) + C_2 e^{-t} \sin(2t)$$
$$\Rightarrow = 4 - e^{-t} \cos(2t) + 0.5 e^{-t} \sin(2t)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free evolution

Modes

Aperiodic

mpulse respons

Force-free evolution (cont.)

The force-free response for t > 0

$$y_u(t) = \underbrace{A_1 e^{p_1 t}}_{\text{root } p_1} + \underbrace{M_2 e^{\alpha_2 t} \cos(\omega_2 t + \phi_2)}_{\text{root } (p_2, p_2')} = A_1 + M_2 e^{-t} \cos(2t + \phi_2)$$

$$\Rightarrow$$
 = 4 + 1.12 e^{-t} cos (2t - 2.68)

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free evolution

Modes

Aperiodic
Pseudo-periodic

Impulse res

Forced evolutio

Force-free evolution (cont.)

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free evolution

Modes

Aperiodic

Pseudo-periodic

T........

Forced evolution

Force-free evolution (cont.)

We can compare the different forms of the solution

$$A = (M/2)e^{+j\omega} = B/2 - jC/2$$

 $A' = (M/2)e^{-j\omega} = B/2 + jC/2$

$$M = 2|A| = \sqrt{B^2 + C^2}$$

$$\phi = \arg(A) = \arctan(-C/B)$$

$$B = +M\cos\phi = +2u$$
$$C = -M\sin\phi = -2v$$

We get,

$$M_2 = \sqrt{B_2^2 + C_2^2}$$

 $\phi_2 = \arctan(-C_2/B_2)$

$$M_2 = +M_2 \cos(\phi_2)$$
$$C_2 = -M_2 \sin(\phi_2)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free evolution

Modes

Aperiodic

npulse response

Force-free evolution (cont.)

Initial time not equal zero

How to calculate the force-free response from an initial time $t \neq 0$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-free

evolution

Aperiodic

1 beatto-periodic

impuise response

Forced evolution

Force-free evolution (cont.)

Example

Consider a system with homogeneous differential equation

$$\frac{d^3y(t)}{dt^3} + 8\frac{d^2y(t)}{dt} + 21\frac{dy(t)}{dt} + 18y(t) = 0$$

We are interested in the force-free response, for $t \geq t_0 \neq 0$

• The initial condition

$$y(t)\Big|_{t=t_0} = y_0 = 2$$

$$\frac{dy(t)}{dt}\Big|_{t=t_0} = y'_0 = 1$$

$$\frac{d^2y(t)}{dt^2}\Big|_{t=t_0} = y''_0 = -2$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

domogeneous equation and nodes

Force-free

Modes

periodic

Pseudo-periodic

mpulse respons

Classification of modes

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free evolution

Modes

Aperiodic

Pseudo-periodio

Impulse respon

Forced evolution

Classification of modes

Modes fully characterise the dynamics of a system

- It is important to study their form
- It is important to classify them

We provide an intuitive classification

- → Aperiodic modes
- → Pseudo-periodic modes

Aperiodic modes have no oscillatory behaviour, pseudo-periodic ones do

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

equation and

rorce-ire

Mode

Aperiodic

1 beddo-periodic

Forced evolution

Modes

Aperiodic modes

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

modes Force-free

Modes

Aperiodic

mpulse respons

,

Classification of modes (cont.)

$$P(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = \sum_{i=0}^n a_i s^i = 0$$

Aperiodic modes

$$t^k e^{\alpha t}$$
, for $k = 0, \dots, \nu - 1$

Associate to real roots $p = \alpha \in \mathcal{R}$ (multiplicity ν)

Pseudo-periodic modes

$$\begin{cases} t^k e^{\alpha t} \cos(\omega t) \\ t^k e^{\alpha t} \sin(\omega t) \end{cases}, \quad \text{for } k = 0, \dots, \nu - 1$$
$$t^k e^{\alpha t} \cos(\omega t + \phi_k), \quad \text{for } k = 0, \dots, \nu - 1$$

Associate to conjugate complex roots $(p, p') = \alpha \pm j\omega \in \mathcal{C}$ (multiplicity ν)

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

periodic

Pseudo-periodic

Impulse respo

Forced evoluti

Aperiodic modes

These are the modes associated to real roots $p = \alpha \in \mathcal{R}$, multiplicity ν

$$t^k e^{\alpha t}, \quad k = 0, \dots, \nu - 1$$

The fundamental parameter of the generic aperiodic mode is $\alpha \neq 0$

$$\rightarrow \quad \tau = -1/\alpha, \quad (\alpha = p \neq 0)$$

The exponent t/τ in $t^k e^{\alpha t} = t^k e^{-t/\tau}$ is dimensionless

- Parameter τ has the units of time
- → Time-constant

The time constant is not defined for $\alpha = 0$

UFC/DC SA (CK0191) 2018.1

Representatio and analysis

Homogeneous equation and modes

Force-free evolution

Modes

Aperiodic

Pseudo-periodic

Impulse respon

Forced evolution

Aperiodic modes (cont.)

Roots with multiplicity one

Let real root α have multiplicity $\nu = 1$, there is only one associated mode

$$\leadsto e^{\alpha}$$

This mode (a simple exponential) is aperiodic

Stable or convergent, if $\alpha < 0$

 \rightarrow As t increases, the mode $e^{\alpha t}$ tends to 0 asymptotically

Stability limit or constant, if $\alpha = 0$

 \rightarrow The mode is equal to $e^{0t} = 1$, for any $t \ge 0$

Unstable or divergent, if $\alpha > 0$

 \rightarrow As t increases, the mode $e^{\alpha t}$ tends to ∞ asymptotically

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic

r beado-periodic

Impulse respons

Forced evolution

Aperiodic (cont.)

 τ is geometrically understood as the (below) tangent to mode at t=0

The value of the tangent where it intersects the abscissa

$$\leadsto \left. \frac{\mathrm{d}}{\mathrm{d}t} e^{\alpha t} \right|_{t=0} = \alpha e^{\alpha t} \Big|_{t=0} = \alpha$$

The line tangent to $e^{\alpha t}$ in t = 0 is f(t) = at + b with slope $a = \alpha$

- The intercept (at t = 0) is b = f(0) = 1
- $f(t) = \alpha t + 1 = 0$ when $t = -1/\alpha = \tau$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic

npulse respon

Aperiodic (cont.)

Unstable $(\alpha > 0)$

 \leadsto The time-constant takes negative values $\tau < 0$

Stable ($\alpha < 0$)

 \rightarrow The time-constant takes positive values $\tau > 0$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodic

Impulse res

Aperiodic (cont.)

 τ is also the time after which the mode has lost $\approx 63\%$ of its initial value

The smaller the time-constant $\tau = -1/\alpha$, the faster a (stable) mode vanishes

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free evolution

Modes

Aperiodic

Pseudo-periodic

Impulse respons

Forced evolutio

Aperiodic (cont.)

Roots with multiplicity larger than one

Let real root α have multiplicity $\nu > 1$, there are ν associated modes

$$\rightarrow$$
 $e^{\alpha t}, te^{\alpha t}, t^2 e^{\alpha t}, \dots, t^k e^{\alpha t}, \dots, t^{\nu-1} e^{\alpha t}$

We consider only modes in the form $t^k e^{\alpha t}$, with k > 0

Stable, if $\alpha < 0$ and k > 1

 \rightarrow As t increases, the mode $t^k e^{\alpha t}$ tends to 0 asymptotically

Unstable, if $\alpha \geq 0$ and $k \geq 1$

 \rightarrow As t increases, the mode $t^k e^{\alpha t}$ tends to ∞ asymptotically

Aperiodic (cont.)

UFC/DC SA (CK0191) 2018.1

Input-output

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic

1 beado-periodic

Impulse respons

Forced evolution

Case with $\alpha \geq 0$ and $k \geq 1$

Consider the case in which $\alpha \geq 0$ and $k \geq 1$

$$t^k e^{\alpha t}$$

If the root is null $(\alpha = 0)$, the mode is t^k and it grows

- $\rightarrow k = 1$, a line
- $\leadsto k = 2$, a parabola
- $\rightarrow k = 3$, a cubic

For a positive root $(\alpha > 0)$, the mode grows faster

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic

Pseudo-period

Aperiodic (cont.)

Case with $\alpha < 0$ and k > 0 $(k \ge 1)$

Consider the case in which $\alpha < 0$ and k > 0

$$\leadsto t^k e^{\alpha t}$$

If we study the asymptotic behaviour of the mode, we get

$$\rightarrow \lim_{t \to \infty} t^k e^{\alpha t} = \lim_{t \to \infty} \frac{t^k}{e^{-\alpha t}} = \infty/\infty$$

The undetermined form is solved by differentiating k times (de l'Hospital)

$$\Rightarrow \lim_{t \to \infty} t^k e^{\alpha t} = \lim_{t \to \infty} \frac{t^k}{e^{-\alpha t}} = \lim_{t \to \infty} \frac{k!}{(-\alpha)^k e^{-\alpha t}} = 0 \quad \text{(stable)}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-free

. . .

Aperiodic

Pseudo-periodic

Forced evolution

Aperiodic (cont.)

- (a) For k = 1, the tangent to the mode has unit slope in t = 0
- (b) For k > 1, the tangent to the mode has zero slope in t = 0

Stable modes have one maximum at $t = k\tau$

$$\rightarrow \tau = -1/\alpha$$

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free evolution

Modes

Aperiodic

1 seudo-periodic

Impulse respon

Forced evolutio

Aperiodic (cont.)

Consider a stable (decreasing) mode of the form $t^k e^{\alpha t}$ and $k \ge 1$

Still, the smaller the time-constant $\tau = -1/\alpha$, the faster a mode vanishes

- Different geometrical interpretation compared to the case k=0
- $\rightarrow t = k\tau$ is the value of t where the mode has its single maximum

To appreciate this fact, we can differentiate the mode

$$\frac{\mathrm{d}}{\mathrm{d}t}t^k e^{\alpha t} = kt^{k-1}e^{\alpha t} + \alpha t^k e^{\alpha t} = t^{k-1}e^{\alpha t}(k+\alpha t)$$

The derivative is zero for t > 0 and a < 0 at $t = -k/\alpha = k\tau$

• Curve $e^k e^{\alpha t}$ for $\alpha < 0$ has a maximum at $t = k\tau$

Pseudo-periodic modes

UFC/DC SA (CK0191) 2018.1

Input-output

Representation

Homogeneous

Force-free

. . .

Aperiodic

Pseudo-periodic

Impulse respons

These are the modes associated to conjugate complex roots $(p, p') = \alpha \pm j\omega$

Pseudo-periodic modes can take various forms

• We restrict our presentation to one type

$$t^k e^{\alpha t} \cos(\omega t)$$
, with $k = 0, \dots, \nu - 1$

The other cases (phased) are not considered

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-fre

Modes

Pseudo-periodic

Impulse response

Pseudo-periodic modes

Modes

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic
Pseudo-periodic

Impulse resp

Forced evolution

Pseudo-periodic modes (cont.)

$$t^k e^{\alpha t} \cos(\omega t), \quad (k = 0, \dots, \nu - 1)$$

The parameters that characterise the generic pseudo-periodic mode

→ Time-constant

$$\tau = -\frac{1}{\alpha}, \quad \alpha \neq 0$$

→ Natural pulsation

$$\omega_n = \sqrt{\alpha^2 + \omega^2}$$

→ Dumping coefficient

$$\zeta = -\frac{\alpha}{\omega_n} = -\frac{\alpha}{\sqrt{\alpha^2 + \omega^2}}$$

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free evolution

Modes

Aperiodic

Pseudo-periodic

impulse respon

Forced evolutio

Pseudo-periodic modes (cont.)

Natural pulsation

We can represent the pair of roots $(p,p') = \alpha \pm j\omega$ on the complex plane

Suppose that $p = \alpha + j\omega$ is a pole on the positive imaginary half-plane

• ω_n is the module of the vector that connects pole p(p') and origin

$$\rightarrow \omega_n = \sqrt{\alpha^2 + \omega^2}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic

Pseudo-periodic

Impulse respons

Forced evolution

Pseudo-periodic modes (cont.)

Roots with multiplicity one

Consider a pair of conjugate complex roots $(p, p') = \alpha \pm j\omega$ with $\nu = 1$

The corresponding pseudo-periodic mode

$$\Rightarrow e^{\alpha t} \cos(\omega t)$$

Such a mode has an oscillatory behaviour

• This is due to the cosine factor

The mode envelops $\cos(\omega t)$ with functions $-e^{\alpha t}$ and $e^{\alpha t}$

$$\Rightarrow e^{\alpha t} \cos(\omega t) = \begin{cases} -e^{\alpha t}, & t = (2h+1)\frac{\pi}{\omega}, & h \in \mathcal{N} \\ e^{\alpha t}, & t = 2h\frac{\pi}{\omega}, & h \in \mathcal{N} \end{cases}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-fr evolution

Modes

Pseudo-periodic

Impulse response

Pseudo-periodic modes (cont.)

Dumping coefficient

 ζ is the sine of the angle θ between the vector connecting p with the origin and the positive imaginary half-axis (counterclock-wise = positive)

$$\leftrightarrow \quad \zeta = -\frac{\alpha}{\omega_n} = -\frac{\alpha}{\sqrt{\alpha^2 + \omega^2}}$$

- Negative α , \rightsquigarrow positive θ
- Null α , \rightsquigarrow null θ
- Positive α , \rightsquigarrow negative θ

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

. . .

Aperiodic

Pseudo-periodic

Pseudo-periodic modes (cont.)

Stable ($\alpha < 0$)

 \rightarrow As t increases the envelops tend to 0 asymptotically

Case (a) has a larger damping factor than case (b)

• Time constant is equal (same α)

UFC/DC SA (CK0191) 2018.1

Pseudo-periodic

Pseudo-periodic modes (cont.)

Stability limit $(\alpha = 0)$

- \rightarrow The mode becomes equal to $\cos(\omega t)$ and it is periodic
- \longrightarrow As functions of t, the envelops are constant ± 1 curves

Unstable $(\alpha > 0)$

 \rightarrow As t increases the envelops tend to $\pm \infty$ asymptotically

Input-output representation

UFC/DC SA (CK0191) 2018.1

Pseudo-periodic

Pseudo-periodic modes (cont.)

The dumping factor ζ

The dumping factor is a real number in the interval [-1,1]

 \rightarrow As it is equal to $\sin(\theta)$

$$\zeta = -\frac{\alpha}{\omega_n} = -\frac{\alpha}{\sqrt{\alpha^2 + \omega^2}}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Pseudo-periodic

Pseudo-periodic modes (cont.)

The time constant

Again, the time constant indicates the velocity of the mode (envelops)

• (As in the aperiodic case)

Input-output representation

UFC/DC SA (CK0191) 2018.1

Pseudo-periodic

Pseudo-periodic modes (cont.)

We study pairs of roots with the same natural pulsation (same ω_n)

• Dumping coefficient is changed (different α and ω)

These roots lie on the complex plane

• Along a circle, radius ω_n

UFC/DC SA (CK0191) 2018.1

Representatior and analysis

Homogeneous equation and modes

Force-free evolution

Modes

Aperiodic

Pseudo-periodic

Forced evolution

Pseudo-periodic modes (cont.)

$$\zeta = +1$$
, if $\alpha = -\omega_n < 0$ and $\omega = 0$

- \bullet Two complex roots coinciding with a negative real root, multiplicity 2
- The associated modes are $e^{-\omega_n t}$ and $te^{-\omega_n t}$

$$\zeta = -1$$
, if $\alpha = -\omega_n > 0$ and $\omega = 0$

- Two complex roots coinciding with a positive real root, multiplicity 2
- The associated modes are $e^{\omega_n t}$ and $te^{\omega_n t}$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-fre

Modes

Aperiodic

Pseudo-periodic

Impulse response

Forced evolution

Pseudo-periodic modes (cont.)

$\zeta \in (0,1)$, if $\alpha < 0$ and $\omega > 0$

- The two complex roots have a negative real part
- The associated mode is stable

$$\zeta \in (-1,0)$$
, if $\alpha > 0$ and $\omega > 0$

- The two complex roots have a positive real part
- The associated mode is unstable

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free evolution

Modes

Pseudo-periodic

Impulse response

Pseudo-periodic modes (cont.)

$$\zeta = 0$$
, if $\alpha = 0$ and $\omega = \omega_n$

- Two conjugate imaginary roots
- The associated mode is at the stability limit

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic

Pseudo-periodic

mpuise respons

Pseudo-periodic modes (cont.)

Roots with multiplicity larger than one

Consider a pair of conjugate complex roots $(p, p') = \alpha \pm j\omega$ with $\nu > 1$

The corresponding pseudo-periodic modes

$$e^{\alpha t}\cos(\omega t), te^{\alpha t}\cos(\omega t), t^2 e^{\alpha t}\cos(\omega t),$$

..., $t^k e^{\alpha t}\cos(\omega t),$
..., $t^{\nu-1} e^{\alpha t}\cos(\omega t)$

We consider the modes in the form $t^k e^{\alpha t} \cos(\omega t)$ with k > 0

UFC/DC SA (CK0191) 2018.1

Pseudo-periodic

Stable ($\alpha < 0$ and k > 0)

 \rightarrow As t increases the mode tends to 0 asymptotically

Unstable ($\alpha \geq 0$ and $k \geq 1$)

 \rightarrow As t increases the mode tends to ∞ asymptotically

The mode envelops $\cos(\omega t)$ with functions $\pm t^k e^{\alpha t}$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Impulse response

Impulse response

Input-output representation

Input-output representation

UFC/DC SA (CK0191) 2018.1

Pseudo-periodic

Pseudo-periodic modes (cont.)

3.16

Input-output representation

UFC/DC SA (CK0191) 2018.1

Impulse response

We will study the general forced response of a system due to arbitrary inputs

We start by studying a particular forced response

→ Impulse response

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free evolution

Modes

Aperiodic

Impulse response

Forced evolutio

Impulse response (cont.)

Definition

Impulse response

The impulse response w(t) is the forced evolution of a system subjected to an input $u(t) = \delta(t)$ applied at time t = 0

The impulse response is an important function, as it is a canonical regime

What do we get from its knowledge?

- The forced evolution of the system under any input
- \rightarrow The force-free evolution for any initial condition

Input-output

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic

Impulse response

Forced evolution

Structure of the impulse response

Proposition

Structure of the impulse response

Consider a linear, stationary and proper SISO system

$$a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t)$$

$$= b_m \frac{d^m u(t)}{dt^m} + \dots + b_1 \frac{du(t)}{dt} + b_0 u(t)$$

For t < 0, the impulse response w(t) is null

$$\rightsquigarrow w(t) = 0$$

For $t \geq 0$, the impulse response w(t) can be parameterised as linear combination h(t) of the n modes of the system and, possibly, an impulsive term

$$w(t) = A_0 \delta(t) + h(t) \delta_{-1}(t)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic
Pseudo-periodic

Impulse response

Forced evo

Impulse response (cont.)

Unit impulse and unit step

The unit impulse $\delta(t)$ is the derivative of the unit step $\delta_{-1}(t)$

$$\delta(t) = \frac{d}{dt} \delta_{-1}(t)$$

The unit step is the Heaviside function

$$\delta_{-1}(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-free

Modes

Aperiodic

Impulse respon

Forced evolut

Structure of the impulse response (cont.)

$$w(t) = A_0 \delta(t) + h(t) \delta_{-1}(t)$$

Let ν_i be the multiplicity of root p_i of the characteristic polynomial

$$h(t) = \sum_{i=1}^{r} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t}$$

The impulsive term is present iff the system is not strictly proper

$$A_0 = \begin{cases} b_n/a_n, & m = n \\ 0, & m < n \end{cases}$$

UFC/DC SA (CK0191) 2018.1

Impulse respons

Proof

$w(t) = A_0 \delta(t) + h(t) \delta_{-1}(t)$

Structure of the impulse response (cont.)

In a causal/proper $(n \geq m)$ system, the effect cannot precede the cause

When subjected to impulse $\delta(t)$ at t=0, the response is null for t<0

• This is imposed by $\delta_{-1}(t)$ in w(t)

Moreover, an impulsive input $u(t) = \delta(t)$ is (definition) null for t > 0

The system is assumed initially at rest in $t = 0^-$

• At time $t = 0^+$, it is in a non-null initial state

Because of the action due to the impulsive input

After $t = 0^+$ the input is null

The evolution is a particular force-free response

- Unknown coefficients A_{i,k} to be determined
- This is given by h(t) in w(t)

Input-output representation

SA (CK0191) 2018.1

Impulse response

Structure of the impulse response (cont.)

$$3y(t) = 2u(t)$$

Model is an algebraic equation, characteristic polynomial has order n=0

A system represented by this model does not have any mode

The impulsive response for an input $u(t) = \delta(t)$

$$w(t) = A_0 \delta(t) + h(t) \delta_{-1}(t)$$

$$\sim (2/3) \delta(t)$$

$$\rightarrow h(t) = 0$$

$$\rightarrow$$
 $A_0 = b_n/a_n$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Structure of the impulse response (cont.)

Consider an instantaneous system with the model

$$3y(t) = 2u(t)$$

We are interested in the force-free response to a unit impulse

$$a_n \frac{\mathrm{d}^n y(t)}{\mathrm{d}t^n} + \dots + a_1 \frac{\mathrm{d}y(t)}{\mathrm{d}t} + a_0 y(t)$$

$$= b_m \frac{\mathrm{d}^m u(t)}{\mathrm{d}t^m} + \dots + b_1 \frac{\mathrm{d}u(t)}{\mathrm{d}t} + b_0 u(t)$$

The system has m = n = 0 (non strictly proper)

•
$$a_n = 3$$

•
$$b_n = 2$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Structure of the impulse response (cont.)

Consider a characteristic polynomial of the system

- R distinct real roots
- S distinct pairs of conjugate complex roots

We can re-write

$$h(t) = \sum_{i=1}^{r} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t}$$

We can use one of the forms where the pseudo-periodic modes are explicit

$$h(t) = \sum_{i=1}^{R} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t}$$

$$+ \sum_{i=R+1}^{R+S} \sum_{k=0}^{\nu_i - 1} (B_{i,k} t^k e^{\alpha_i t} \cos(\omega_i t) + C_{i,k} t^k e^{\alpha_i t} \sin(\omega_i t))$$

$$h(t) = \sum_{i=1}^{R} \sum_{k=0}^{\nu_i - 1} A_{i,k} t^k e^{p_i t}$$

$$+ \sum_{i=R+1}^{R+S} \sum_{k=0}^{\nu_i - 1} M_{i,k} t^k e^{\alpha_i t} \cos(\omega_i t + \phi_{i,k})$$

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free evolution

Modes

Aperiodic

Impulse respons

D 1 1 0

Structure of the impulse response (cont.)

Unknown coefficients in the expression of h(t) in the impulse response w(t)

- We used the symbols A, M, ϕ, B and C
- As in force-free responses

In the force-free case, coefficients can take an infinity of arbitrary values

• They depend on the initial conditions

In the impulse case, coefficients depend univocally only on the system

We study a technique/algorithm to find their value

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodio

Impulse response

Forced evolution

Calculation of the impulse response (cont.)

$$w(t) = A_0 \delta(t) + h(t) \delta_{-1}(t)$$

In the parameterisation of w(t) there are (n+1) unknown coefficients

- The *n* coefficients associated to the modes
- The coefficient A_0 of the impulsive term

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Aperiodic

impulse response

Forced evo

Calculation of the impulse response

Computing the impulse response

A complicated technique to calculate the impulse response in time-domain

The algorithm is based on the knowledge of the impulse response w(t)

• We know that w(t) has a known parameterisation

$$w(t) = A_0 \delta(t) + h(t) \delta_{-1}(t)$$

As such, w(t) must satisfy the model

$$\sum_{i=0}^{n} a_i \frac{\mathrm{d}^i}{\mathrm{d}t^i} y(t) = \sum_{i=0}^{m} b_i \frac{\mathrm{d}^i}{\mathrm{d}t^i} u(t)$$

- \rightarrow For a given impulse input $u(t) = \delta(t)$
- \leadsto For any value of t

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-fre

Modes

Aperiodic Pseudo-periodic

Forced evolution

Calculation of the impulse response (cont.)

The impulse response w(t) must satisfy the model for all t, t = 0 included

- All of the nasty things happen here
- → Discontinuities or impulsive terms

$$a_n \frac{\mathrm{d}^n y(t)}{\mathrm{d}t^n} + \dots + a_1 \frac{\mathrm{d}y(t)}{\mathrm{d}t} + a_0 y(t)$$

$$= b_m \frac{\mathrm{d}^m u(t)}{\mathrm{d}t^m} + \dots + b_1 \frac{\mathrm{d}u(t)}{\mathrm{d}t} + b_0 u(t)$$

UFC/DC SA (CK0191) 2018.1

Impulse respons

We calculate derivatives² of $w(t) = A_0 \delta(t) + h(t) \delta_{-1}(t)$, up to order n

Calculation of the impulse response (cont.)

$$w(t) = h(t)\delta_{-1}(t) + A_0\delta(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t}w(t) = \dot{h}(t)\delta_{-1}(t) + h(0)\delta(t) + A_0\delta_1(t)$$

$$\cdots = \cdots$$

$$\frac{\mathrm{d}^n}{\mathrm{d}t^n}w(t) = h^n(t)\delta_{-1}(t) + h^{(n-1)}(0)\delta(t) + h^{(n-2)}(0)\delta(t) + \dots + A_0\delta_n(t)$$

²In the sense of distributions.

$$\frac{\mathrm{d}^k}{\mathrm{d}t^k} f(t)\delta_{-1}(t) = f^{(k)}(t)\delta_{-1}(t) + \sum_{i=0}^{k-1} f^{(i)}(0)\delta_{k-1-i}(t)$$

and

$$\delta_k(t) = \frac{\mathrm{d}^k}{\mathrm{d}t^k} \delta(t) = \frac{\mathrm{d}}{\mathrm{d}t} \delta_{k-1}(t), \text{ with } k > 1.$$

Input-output representation

SA (CK0191) 2018.1

Impulse respons

Calculation of the impulse response (cont.)

We can now substitute for the expressions of w(t) and its derivatives

- We solve after imposing equality between the coefficients
- Those that multiply the terms $\delta(t), \delta_1(t), \dots, \delta_m(t)$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Calculation of the impulse response (cont.)

Moreover, we have,

$$u(t) = \delta(t)$$

$$\frac{\mathrm{d}u(t)}{\mathrm{d}t} = \delta_1(t)$$

$$\cdots = \cdots$$

$$\mathrm{d}^m u(t)$$

$$\frac{\mathrm{d}^m u(t)}{\mathrm{d}t^m} = \delta_m(t)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Calculation of the impulse response (cont.)

A set of n+1 equations in n+1 unknowns coefficients of w(t)

• A_0 , $\{A_i\}$ and $\{M_i\}$ and $\{\phi_i\}$ (or, $\{B_i\}$ and $\{C_i\}$)

 $b_n = a_n A_0$

$$b_0 = a_0 A_0 + a_1 h(0) + \dots + a_{n-1} h^{(n-2)}(0) + a_n h^{(n-1)}(0)$$

$$b_1 = a_1 A_0 + a_2 h(0) + \dots + a_n h^{(n-2)}(0)$$

$$\dots = \dots$$

$$b_{n-1} = a_{n-1} A_0 + a_n h(0)$$

The unknown coefficients
$$A_0$$
, $\{A_i\}$ and $\{M_i\}$ and $\{\phi_i\}$ (or, $\{B_i\}$ and $\{C_i\}$)

- They appear also in the expression of $h(0), \dot{h}(0), \dots, h^{(n-1)}(0)$
- \rightarrow The coefficients a_i and b_i with i = 1, ..., n are given by the model
- \rightarrow If we have n < m, we can set $b_{m+1} = b_{m+2} = \cdots = b_n = 0$
- \rightarrow Terms that multiply $\delta_{-1}(t)$ cancel out (missing from RHS)

UFC/DC SA (CK0191) 2018.1

Impulse response

Calculation of the impulse response (cont.)

$$b_0 = a_0 A_0 + a_1 h(0) + \dots + a_{n-1} h^{(n-2)}(0) + a_n h^{(n-1)}(0)$$

$$b_1 = a_1 A_0 + a_2 h(0) + \dots + a_n h^{(n-2)}(0)$$

$$\dots = \dots$$

$$b_{n-1} = a_{n-1} A_0 + a_n h(0)$$

$$b_n = a_n A_0$$

From $b_n = a_n A_0$,

- If m=n, then $a_n A_0 = b_n \neq 0$ and $A_0 = b_n/a_n \neq 0$
- If m < n, then $a_n A_0 = b_n = 0$ and $A_0 = 0$

It thus is possible to simplify the calculation

- Determine a priori the term A_0
- Treat it as constant

(Last equation of the system becomes an identity)

UFC/DC SA (CK0191) 2018.1

Input-output

representation

Impulse response

Calculation of the impulse response (cont.)

Consider a system described by the IO model

$$2\frac{d^{2}y(t)}{dt^{2}} + 6\frac{dy(t)}{dt} + 4y(t) = \frac{du(t)}{dt} + 3u(t)$$

We are interested in computing the the impulse response

The characteristic polynomial

$$P(s) = 2s^2 + 6s + 4$$

From P(s) = 0, two real roots, both with multiplicity one

$$\rightarrow p_1 = -1$$
, mode $e^{-p_1 t}$

$$\rightarrow p_2 = -2$$
, mode $e^{-p_2 t}$

A strictly proper model, m = 1 < n = 2

- $\rightarrow w(t)$ w/o the impulsive term
- \rightarrow Thus, $A_0 = 0$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Impulse respon

Calculation of the impulse response (cont.)

Algorithm

- 1 Determine the characteristic polynomial P(s) of the homogeneous equation associated to the IO model and calculate its roots
- **2** Determine the n modes of the model
- 3 Write $w(t) = A_0 \delta(t) + h(t) \delta_{-1}(t)$ using a parameterisation of h(t)
- 4 Calculate the derivatives of h(t), up to the (n-1)-th order
- 5 Write the system of n equations in the n unknown coefficients of h(t)

$$b_0 - a_0 A_0 = a_1 h(0) + a_2 \dot{h}(0) + \dots + a_{n-1} h^{(n-2)}(0) + a_n h^{(n-1)}(0)$$

$$b_1 - a_1 A_0 = a_2 h(0) + a_3 \dot{h}(0) + \dots + a_n h^{(n-2)}(0)$$

$$\dots = \dots$$

$$b_{n-2} - a_{n-2}A_0 = a_{n-1}h(0) + a_n\dot{h}(0)$$

$$b_{n-1} - a_{n-1}A_0 = a_nh(0)$$

6 Solve for the *n* unknown coefficients A_i of w(t)

Input-output representation

UFC/DC SA (CK0191) 2018.1

Calculation of the impulse response (cont.)

The structure of the impulse response and its derivative

$$w(t) = \underbrace{\begin{pmatrix} A_1 e^{-t} + A_2 e^{-2t} \end{pmatrix}}_{h(t)} \delta_{-1}(t)$$

$$\frac{dw(t)}{dt} = \underbrace{\begin{pmatrix} -A_1 e^{-t} - 2A_2 e^{-2t} \end{pmatrix}}_{\dot{h}(t)} \delta_{-1}(t) + \underbrace{\begin{pmatrix} A_1 + A_2 \end{pmatrix}}_{h(0)} \delta(t)$$

$$\frac{d^{2}w(t)}{dt^{2}} = \underbrace{\left(A_{1}e^{-t} + 4A_{2}e^{-2t}\right)}_{\ddot{h}(t)} \delta_{-1}(t) + \underbrace{\left(-A_{1} - 2A_{2}\right)}_{\dot{h}(0)} \delta(t) + \underbrace{\left(A_{1} + A_{2}\right)}_{\dot{h}(0)} \delta_{1}(t)$$

UFC/DC SA (CK0191) 2018.1

Calculation of the impulse response (cont.)

By substituting w(t) and its derivatives in the model and setting $u(t) = \delta(t)$

$$\underbrace{\frac{4(A_1e^{-t} + A_2e^{-2t})\delta_{-1}(t)}{a_0w(t)}}_{a_0w(t)} + \underbrace{\frac{1}{6(-A_1e^{-t} - 2A_2e^{-2t})\delta_{-1}(t) + 6(A_1 + A_2)\delta(t)}_{a_1}}_{a_1\frac{d}{dt}w(t)} + \underbrace{\frac{1}{2}(A_1e^{-t} + 4A_2e^{-2t})\delta_{-1}(t) + 2(-A_1 - 2A_2)\delta(t) + 2(A_1 + A_2)\delta_1(t)}_{a_2\frac{d^2}{dt^2}w(t)}$$

$$= 3\delta(t) + \delta_1(t)$$

The coefficients multiplying $\delta_{-1}(t)$ will cancel each other out, always

Input-output representation

SA (CK0191) 2018.1

Impulse response

Calculation of the impulse response (cont.)

Input-output representation

UFC/DC SA (CK0191) 2018.1

Calculation of the impulse response (cont.)

Since m < n and thus $A_0 = 0$, we can write a system of two equations

$$\begin{cases} \left[a_1 h(0) + a_2 \dot{h}(0) \right] \delta(t) = b_0 \delta(t) \\ a_2 h(0) \delta_{-1}(t) = b_1 \delta_{-1}(t) \end{cases}$$

$$\Leftrightarrow \begin{cases} 4A_1 + 2A_2 = 3 \\ 2A_1 + 2A_2 = 1 \end{cases} \quad \Leftrightarrow \quad \begin{cases} A_1 = 1 \\ A_2 = -0.5 \end{cases}$$

The resulting impulse response

$$w(t) = (e^{-t} - 0.5e^{-2t})\delta_{-1}(t)$$

Input-output representation

SA (CK0191) 2018.1

Calculation of the impulse response (cont.)

Calculate the impulse response for the system described by the IO model

$$\frac{d^3 y(t)}{dt^3} + 2 \frac{d^2 y(t)}{dt^2} + 5 \frac{dy(t)}{dt} = 4 \frac{du(t)}{dt} + u(t)$$

The characteristic polynomial

$$P(s) = s^3 + 2s^2 + 5s$$

From P(s) = 0, the roots

- A real root $p_1 = \alpha_1 = 0$ with multiplicity one ν_1
- A pair of conjugate complex roots $p_2 = \alpha_2 \pm j\omega_2 = -1 \pm j2$ also with multiplicity one $\nu_2 = \nu_2' = 1$

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodic

Impulse response

Calculation of the impulse response (cont.)

A strictly proper model, m = 1 < n = 3

ullet w(t) without the impulsive term

$$w(t) = h(t)\delta_{-1}(t) = \left[A_1 e^{p_1 t} + M_2 e^{\alpha_2 t} \cos(\omega_2 t + \phi_2) \right] \delta_{-1}(t)$$
$$= \left[A_1 + M_2 e^{-t} \cos(2t + \phi_2) \right] \delta_{-1}(t)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

. . .

Aponiodio

Passada paria

Impulse response

Forced evolution

Calculation of the impulse response (cont.)

Let $u_2 = M_2 \cos(\phi_2)$ and $v_2 = M_2 \sin(\phi_2)$

$$\begin{cases} 5A_1 = 1 \\ 2A_1 + u_2 - 2v_2 = 4 \\ A_1 + u_2 = 0 \end{cases} \rightarrow \begin{cases} A_1 = +0.2 \\ u_2 = -0.2 \\ v_2 = -1.9 \end{cases}$$

$$\Rightarrow \begin{cases} M_2 = \sqrt{u^2 + v^2} = 1.91 \\ \phi_2 = \arctan\left(u/v\right) = \arctan\left(-1.9/-0.2\right) = -1.68 \text{ [rad]} \end{cases}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic
Pseudo-periodi

Impulse response

Forced evol

Calculation of the impulse response (cont.)

By differentiating h(t) two times,

$$h(t) = A_1 + M_2 e^{-t} \cos(2t + \phi_2)$$

$$\dot{h}(t) = -M_2 e^{-t} \cos(2t + \phi_2) - 2M_2 e^{-t} \sin(2t + \phi_2)$$

$$\ddot{h}(t) = -3M_2e^{-t}\cos(2t + \phi_2) + 4M_2e^{-t}\sin(2t + \phi_2)$$

We have the system of equations

$$\begin{cases} a_1 h(0) + a_2 \dot{h}(0) + a_3 \ddot{h}(0) = b_0 \\ a_2 h(0) + a_3 \dot{h}(0) = b_1 \\ a_3 h(0) = b_2 \end{cases}$$

$$\begin{cases} 5A_1 = 1\\ 2A_1 + 5M_2\cos(\phi_2) - 2M_2\sin(\phi_2) = 4\\ A_1 + M_2\cos(\phi_2) = 0 \end{cases}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-fre

Modes

Aperiodic

Impulse respo

Forced evolution

Calculation of the impulse response (cont.)

The impulse response

$$w(t) = [0.2 + 1.91e^{-t}\cos(2t - 1.68)]\delta_{-1}(t)$$

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic

Pseudo-periodic

Forced evolution

Forced evolution and Duhamel's integral

Input-output representation

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic

npulse response

Forced evolution (cont.)

We show a fundamental result in the analysis of linear IO models

• The Duhamel's integral

Forced evolution (cont.)

The forced evolution $y_f(t)$ of a linear time-invariant system subjected to input u(t) is determined by its convolution with the impulse response w(t)

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

T 1

Forced evolution

Forced evolution (cont.)

Convolution

Consider two functions $f, g : \mathcal{R} \to \mathcal{C}$

The **convolution** of f with g is function $h: \mathcal{R} \to \mathcal{C}$ in the real variable t

$$\rightarrow h(t) = f \star g(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau)d\tau$$

Function h(t) is constructed using the operator convolution integral \star

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic

r beddo-periodic

Forced evolution

We start by assuming that the system is at some remote time $t=-\infty$

- We assume that no cause has ever acted on it before
- \longrightarrow The system is therefore assumed to be at rest

At such a remote time, the system is subjected to an input u(t)

- We assume that the input u(t) is known in $(-\infty, t]$
- \rightarrow This is needed to determine the output at time t

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free evolution

Modes

Aperiodic

Pseudo-periodic

Impulse response

Forced evolution

Forced evolution (cont.)

Proposition

Duhamel's integral

Consider a system at rest at $t = -\infty$, for every value of $t \in \mathbb{R}$

We have,

$$y(t) = \int_{-\infty}^{t} u(\tau)w(t-\tau)d\tau$$
Duhamel's integral

Proof

Let $w_{\varepsilon}(t)$ be the forced response of the system due to a finite impulse $\delta_{\varepsilon}(t)$

$$\delta_{\varepsilon}(t) = \frac{d}{dt}\delta_{-1,\varepsilon} = \begin{cases} 1/\varepsilon, & t \in [0,\varepsilon) \\ 0, & \text{elsewhere} \end{cases}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic

T 1

Forced evolution

Forced evolution (cont.)

Because $\delta(t) = \lim_{\varepsilon \to 0} \delta_{\varepsilon}(t)$, it is intuitive to see that $w(t) = \lim_{\varepsilon \to 0} w_{\varepsilon}(t)$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic

Pseudo-periodic

Forced evolution

Forced evolution (cont.)

From the definition of the derivative of the unit step $\delta_{-1}(t)$, we have

$$\delta(t) = \frac{d}{dt}\delta_{-1}(t) = \frac{d}{dt}\lim_{\varepsilon \to 0}\delta_{-1,\varepsilon}(t) = \lim_{\varepsilon \to 0}\frac{d}{dt}\delta_{-1,\varepsilon}(t) = \lim_{\varepsilon \to 0}\delta_{\varepsilon}(t)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

rorce-iree

Andes

Aperiodic

Pseudo-periodic

T.........

Forced evolution

Forced evolution (cont.)

We are interested in approximating the function u(t)

We approximate u(t) with a series of rectangles

• Each rectangle is a finite impulse

 Δt denotes the sampling time (the base of the rectangles)

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-periodic

Forced evolution

epresentat

Forced evolution (cont.)

Each rectangle is a assumed to be a finite impulse, $\delta_{\Delta t}(t - k\Delta t)$

- Subscript Δt is the base of the rectangle (was ε)
- Argument $(t k\Delta t)$ right-shifts it by $k\Delta t$

Each finite impulse is multiplied by the scaling factor $u(k\Delta t)\Delta t$

• The area of a rectangle with base Δt and height $u(k\Delta t)$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-free

Modes

Aperiodic

T 1

Forced evolution

Forced evolution (cont.)

The system is assumed to be linear (the superposition principle)

We approximate the total system output due to such an input

• A sum of the outputs due to the component inputs

$$\rightarrow y_{\Delta t}(t) = \sum_{k=-\infty}^{\infty} u(k\Delta t) w_{\Delta t}(t - k\Delta t) \Delta t$$

Again, the approximation gets better as Δt gets smaller

We have,

$$\Rightarrow y(t) = \lim_{\Delta t \to 0} y_{\Delta t}(t) = \lim_{\Delta t \to 0} \sum_{k = -\infty}^{\infty} u(k\Delta t) w_{\Delta t}(t - k\Delta t) \Delta t$$

$$= \int_{-\infty}^{\infty} u(\tau) w(t - \tau) d\tau$$

As we let $k\Delta t = \tau$ and $\Delta t = d\tau$, τ is now a real variable

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

Modes

Aperiodic

Impulse respo

Forced evolution (cont.)

The approximation gets better as Δt gets smaller

Thus, we define

$$\leadsto u_{\Delta t}(t) = \sum_{k=-\infty}^{\infty} u(k\Delta t) \delta_{\Delta t}(t - k\Delta t) \Delta t$$

We have

$$\rightsquigarrow \quad u(t) = \lim_{\Delta t \to 0} u_{\Delta t}(t)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and

Force-free

. . .

Aperiodic

r bettee-periodic

Forced evolution

Forced evolution (cont.)

The system is assumed to be proper (causes first, then effects)

• $w(t-\tau)$ is zero when $(t-\tau) < 0 \ (\tau \ge t)$

We have,

$$y(t) = \int_{-\infty}^{\infty} u(\tau)w(t-\tau)d\tau = \underbrace{\int_{-\infty}^{t} u(\tau)w(t-\tau)d\tau}_{\text{Duhamel's integral}}$$

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and modes

Force-free

Modes

Aperiodic

Pseudo-perio

Impulse respons

Forced evolution

Forced evolution (cont.)

The Duhamel's integral is a convolution integral

$$y(t) = \int_{-\infty}^{\infty} u(\tau)w(t-\tau)d\tau = \underbrace{\int_{-\infty}^{t} u(\tau)w(t-\tau)d\tau}_{\text{Delta}}$$

The upper-extreme is set to be t instead of $+\infty$ only for convenience

• The convolution of $u(\tau)$ and $w(\tau)$ is zero for $\tau \geq t$

Because of the commutativity of convolution integrals, we write

$$y(t) = u * w(t) = w * u(t)$$

$$= \int_{-\infty}^{+\infty} u(t - \tau)w(\tau)d\tau = \int_{0}^{+\infty} u(t - \tau)w(\tau)d\tau$$

Moreover, for $\tau < 0$ we have

$$w(\tau) = 0$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-fre evolution

. . .

Aperiodic

T 1

Forced evolution

Forced evolution (cont.)

Decomposition in forced and force-free response

Consider some initial time $t = t_0$

We decompose the Duhamel's integral

$$y(t) = \underbrace{\int_{-\infty}^{t_0} u(\tau)w(t-\tau)d\tau}_{y_u(t)} + \underbrace{\int_{t_0}^t u(\tau)w(t-\tau)d\tau}_{y_f(t)}, \quad \text{for } t \ge t_0$$

The first term $y_u(t)$ is the contribution to the output signal at time t due to the values taken by the input before the initial time t_0

- \rightarrow At time t_0 , the system is a non null state
- → (Non-zero initial conditions)
- → Force-free evolution

The second term $y_f(t)$ is the contribution to the output signal at time t due to the value taken by the input after the initial time t_0

→ Forced evolution

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

omogeneous quation and

Force-free

Modes

Pseudo-periodic

T 1

Forced evolution

Forced evolution (cont.)

$$y(t) = \int_0^{+\infty} u(t - \tau)w(\tau)d\tau$$

Consider the contributions to y(t) at time t

They are due to the value of the input $u(t-\tau)$ τ times earlier

• Weighted by the impulse response $w(\tau)$

Consider a system whose modes are all stable

- The impulse response w(t) tends to zero
- It is virtually zero for $\tau > \bar{\tau}$
- $\bar{\tau}$ depends on system time-constant

The system loses memory of the input after a time $\bar{\tau}$ from application

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

Homogeneous equation and

Force-free

. .

Aperiodic

Panuda paria

Impulse respon

Forced evolution

Forced evolution (cont.)

Forced response by convolution

Consider some initial time t_0

The forced evolution

$$\rightarrow y_f(t) = \int_{t_0}^t u(\tau)w(t-\tau)d\tau = \int_0^{t-t_0} u(t-\tau)w(\tau)d\tau$$

The second formula is derived from the first one

• Change variable, $\rho = t - \tau$

$$\rightarrow \int_{t_0}^t u(\tau)w(t-\tau)d\tau$$

$$= \int_{t-t_0}^0 u(t-\rho)w(\rho)(-d\rho) = \int_0^{t-t_0} u(t-\rho)w(\rho)d\rho$$

UFC/DC SA (CK0191) 2018.1

Forced evolution

Forced evolution (cont.)

Let $t_0 = 0$, we have the expression

$$\Rightarrow \quad y_f(t) = \int_{t_0=0}^t u(\tau) w(t-\tau) d\tau = \int_{t_0=0}^t u(t-\tau) w(\tau) d\tau$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Consider the system represented by the IO model

Forced evolution (cont.)

$$2\frac{\mathrm{d}^2y(t)}{\mathrm{d}t^2} + 6\frac{\mathrm{d}y(t)}{\mathrm{d}t} + 4y(t) = \frac{\mathrm{d}u(t)}{\mathrm{d}t} + 3u(t)$$

We are interested in the forced evolution $(t \ge 0)$ due to input $u(t) = 4\delta_{-1}(t)$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Forced evolution

Forced evolution (cont.)

The impulse response of the system

$$w(t) = (e^{-t} - 0.5e^{-2t})\delta_{-1}(t)$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Forced evolution

Forced evolution (cont.)

The forced response will be zero for t < 0

For $t \geq 0$, we have

$$y_f(t) = \int_0^t u(\tau)w(t-\tau)\mathrm{d}\tau, \quad u(\tau) = 4, \text{ for } \tau \in [0,t]$$

UFC/DC SA (CK0191) 2018.1

Forced evolution

Forced evolution (cont.)

The forced response will be zero for t < 0

For $t \geq 0$, we have

$$y_f(t) = \int_0^t u(t-\tau)w(\tau)d\tau, \quad u(\tau) = 4 \text{ for } \tau \in [0, t]$$

$$y_f(t) = \int_0^t 4\left[e^{-\tau} - 0.5e^{-2\tau}\right] d\tau = 4\int_0^t e^{-\tau} d\tau - 2\int_0^t e^{-2\tau} d\tau d\tau - 2\int$$

$$y_f(t) = \int_0^t 4\left[e^{-\tau} - 0.5e^{-2\tau}\right] d\tau = 4\int_0^t e^{-\tau} d\tau - 2\int_0^t e^{-2\tau} d\tau$$

$$= 4(e^{-t} - 1) - 2(0.5e^{-2t} - 0.5) = 3 - 4e^{-t} + e^{-2t}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Forced evolution

Forced evolution (cont.)

Consider the system represented by the IO model

$$2\frac{d^{2}y(t)}{dt^{2}} + 6\frac{dy(t)}{dt} + 4y(t) = \frac{du(t)}{dt} + 3u(t)$$

We are interested in the forced evolution $(t \geq 0)$ due to input u(t)

$$u(t) = \begin{cases} 2, & \text{if } t \in [1, 4) \\ 0, & \text{otherwise} \end{cases}$$

This input can be understood as the sum of two functions

- A step with size +2, at t=1
- A step with size -2, at t=4

Input-output representation

UFC/DC SA (CK0191) 2018.1

Forced evolution (cont.)

Input-output

representation

UFC/DC SA (CK0191) 2018.1

Forced evolution

Forced evolution (cont.)

The impulse response of the system

$$w(t) = (e^{-t} - 0.5e^{-2t})\delta_{-1}(t)$$

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

r scudo-periodic

Impulse respo

Forced evolution

Forced evolution (cont.)

Using the Duhamels integral, we can calculate the forced response

$$y_f(t) = \int_{-\infty}^t u(\tau)w(t-\tau)d\tau$$

$$= \begin{cases} 0, & t \in (-\infty, 1) \\ 2\int_1^t w(t-\tau)d\tau, & t \in [1, 4) \\ 2\int_1^4 w(t-\tau)d\tau, & t \in [4, +\infty) \end{cases}$$

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis

equation and modes

Force-free

Modes

Aperiodic

T 1

Forced evolution

Forced evolution (cont.)

$$y_f(t) = \begin{cases} 0, & t \in (-\infty, 1] \\ 1.5 - 5.44e^{-t} + 3.69e^{-2t}, & t \in [1, 4) \\ 104e^{-t} + 1487e^{-2t}, & t \in [4, +\infty) \end{cases}$$

The input signal u(t) is active only in the interval $t \in [1,4]$

- The response is not null for $t \geq 4$
- At t = 4 there is a non-null state

From t = 4, the evolution is force-free

Input-output representation

UFC/DC SA (CK0191) 2018.1

Representation

Homogeneous equation and modes

Force-free

Modes

Aperiodic

rseudo-period

Forced evolution

Forced evolution (cont.)

The change of variable $\rho = t - \tau$

For $1 \le t < 4$

For t > 4