R Ladies NYC November 2019

Simplified Data Quality Monitoring of *Dynamic Longitudinal Data*

A Functional Programming Approach

Jacqueline Gutman, M.S. Flatiron Health *Quantitative Sciences*

Outline

- Introduction to Flatiron
- Our data quality problem + how we handle it
- ★ What is functional programming + how is it relevant in data science?
- ★ 5 key benefits of functional approaches to data science
 - Readability
 - Compositionality
 - Reproducibility
 - Robustness
 - Efficiency

Jacqueline Gutman

Data Scientist, Flatiron Health

```
learn( Psych + Machine Learning) %>%
study( NYU Center for Data Science) %>%
intern( Data Science for Social Good) %>%
work( NYU School of Medicine) %>%
work( Plated/Albertsons) %>%
```

work(Flatiron Health)

OUR MISSION

To improve lives by learning from the experience of every cancer patient.

Founded 2012 **Employees** ~900 full-time employees 1,000+ part-time abstractors **Clinicians** 12 medical oncologists 85+ total clinicians **Technical** 350+ in software, IT, security, data insights & staff medical informatics ~50 biostatisticians, Quantitative epidemiologists scientists & data scientists **Offices** New York (HQ) San Francisco flatiron

Over 2.2 million

patient records available for research.

800 sites of care

use Flatiron's OncoCloud™ software.

Over 15 of the top

oncology-pharma companies are members of our research network.

7 academic centers

partner with Flatiron on outcomes research and quality improvement.

National, longitudinal real-world datasets refreshed monthly, with 30-day recency

Our challenge: Identify issues of data quality in dynamic Iongitudinal data

What this entails

- New data elements collected and integrated each month from disparate sources
- Ensure quality by monitoring unusual changes within and across variables + patients
- Raise actionable and interpretable alerts when changes fall outside accepted bounds
- Harness methodological and statistical expertise with domain-specific clinical intuition to reason about many datasets simultaneously

How we approach our problem

OBJECTIVES

- Codify statistical and domain knowledge in a library of composable, modular functions
- Decouple the high-level checks and reasoning from the low-level implementation details
- Extend reasoning about a single dataset to apply across an expanding number of datasets

BENEFITS

- ★ Reproducible and documented best practices are easily shared
- ★ Abstraction reduces the cognitive complexity of an analysis and makes reasoning more transparent
- ★ Easier to scale analysis not just within a dataset, but as the number of datasets and elements increase

Core principles of functional programming

- → Functions!
- → that can be composed into higher-order functions (compositionality)
- → which abstract out what is being done (declarative) from how it will be carried out (imperative)
- → and which avoid side-effects and external state dependencies (immutability)

Building blocks of our approach to data quality

NESTED DATA STRUCTURES

DataFrames for your DataFrames!

LIBRARY DEVELOPMENT

Promote visibility, unit testing and documentation for your functions

DIFFERENTIATED CODE REVIEW

For technical and non-technical project team members

Implementation code review

Store tibbles, lists, and in-database lazy tbls as columns in a nested data_frame

Data + metadata + evaluation metrics + summary statistics = FRIENDS FOREVER

```
A tibble: 40 \times 6
                          disease_prefix
                                            table_name lazy_tbl
                                                                                         patient_list
  schema
                                                                     raw_data
                          <chr>
                                              <chr>
                                                          st>
                                                                     st>
  <chr>
                                                                                         st>
1 market_tracking_20190131 met_breast_oral_lot demographics <tb_PSQLC> <tibble [100 × 9]> <chr [18,754]>
2 market_tracking_20190131 met_breast_oral_lot drugepisode <tb_PSQLC> <tibble [100 x 14]> <chr [16,514]>
3 market_tracking_20190131 nsclc_oral_lot
                                              demographics <tb_PSQLC> <tibble [100 x 9]> <chr [52,551]>
4 market_tracking_20190131 nsclc_oral_lot
                                              drugepisode <tb_PSQLC> <tibble [100 x 14]> <chr [37,079]>
5 market_tracking_20190228 met_breast_oral_lot demographics <tb_PSQLC> <tibble [100 × 9]> <chr [18,961]>
6 market_tracking_20190228 met_breast_oral_lot drugepisode <tb_PSQLC> <tibble [100 × 14]> <chr [16,690]>
7 market_tracking_20190228 nsclc_oral_lot
                                              demographics <tb_PSQLC> <tibble [100 x 9]> <chr [53,185]>
8 market_tracking_20190228 nsclc_oral_lot
                                              drugepisode <tb_PSQLC> <tibble [100 x 14]> <chr [37,588]>
9 market_tracking_20190331 met_breast_oral_lot demographics <tb_PSQLC> <tibble [100 × 9]> <chr [19,156]>
10 market_tracking_20190331 met_breast_oral_lot drugepisode <tb_PSQLC> <tibble [100 × 14]> <chr [16,867]>
 ... with 30 more rows
```


Nested data structures for comparing and evaluating multiple datasets

database 👇	delivery_date	data_cutoff +	schema	disease_prefix +	table_name 👇	n_records 👇	n_patients
monthly	2019-01-31	2019-01-01	market_tracking_20190131	met_breast_oral_lot	demographics	18754	18754
monthly	2019-01-31	2019-01-01	market_tracking_20190131	met_breast_oral_lot	drugepisode	438230	16514
monthly	2019-01-31	2019-01-01	market_tracking_20190131	nsclc_oral_lot	demographics	52551	52551
monthly	2019-01-31	2019-01-01	market_tracking_20190131	nsclc_oral_lot	drugepisode	698906	37079
monthly	2019-02-28	2019-02-01	market_tracking_20190228	met_breast_oral_lot	demographics	18961	18961
monthly	2019-02-28	2019-02-01	market_tracking_20190228	met_breast_oral_lot	drugepisode	446614	16690
monthly	2019-02-28	2019-02-01	market_tracking_20190228	nsclc_oral_lot	demographics	53185	53185
monthly	2019-02-28	2019-02-01	market_tracking_20190228	nsclc_oral_lot	drugepisode	711007	37588
monthly	2019-03-31	2019-03-01	market_tracking_20190331	met_breast_oral_lot	demographics	19156	19156
monthly	2019-03-31	2019-03-01	market_tracking_20190331	met_breast_oral_lot	drugepisode	455583	16867
monthly	2019-03-31	2019-03-01	market_tracking_20190331	nsclc_oral_lot	demographics	53591	53591
monthly	2019-03-31	2019-03-01	market_tracking_20190331	nsclc_oral_lot	drugepisode	723911	38088
						٦	
					Previous 1	2 3	4 Next

Treat individual datasets as single observations

Simple function:

1 dataset → 1 evaluation metric

Higher order functions:

Multiple datasets → composite evaluation metrics across several dimensions

Nested data structures for comparing and evaluating multiple datasets

```
count records <- purrr::partial(execute query,</pre>
                                select = "COUNT(*)")
count patients <- purrr::partial(execute query,</pre>
                                 select = "COUNT(distinct patientid)")
fetch patients = purrr::partial(execute query,
                                select = "DISTINCT patientid",
                                limit = 100)
data %<>%
    mutate(n records = purrr::map(lazy tbl, count records, con = conn),
           n patients = purrr::map(lazy tbl, count patients, con = conn),
           cohort = purrr::map(lazy tbl, fetch patients, con = conn))
```


What does all this get you?

- * Readability
- ★ Compositionality
- * Reproducibility
- * Robustness
- ★ Efficiency

Readability

Abstraction and Declarative intent

Analysis code can be **understood** and **sanity-checked** by non-technical staff

Clarity of intent: abstract declarative code is self-documenting

Docstrings and unit tests to align implementation with intention

```
compare snapshots(
   january data,
   february_data,
   fn = compute time to dx)
find added patients (
  old data =
   january data$cohort,
 new data =
   february_data$cohort)
```


Compositionality

Reasoning with higher level functions

```
filter persistent patients <-</pre>
    function(data) {
compute change from prev <-
    function(data, var, prev var) {
summarize change distribution <-</pre>
    function(data, change var) {
```

```
process drug episodes <- . %>%
  filter persistent patients %>%
  compute change from prev(
    var = "num drug episodes",
    prev var = "prev drug episodes") %>%
  summarize change distribution(
    change var = "change num drug episodes")
data processed <- process drug episodes(data)</pre>
```


Compositionality Reasoning with higher level functions

```
lm(Sepal.Length ~ Species,
   data = iris) %>%
broom::tidy(
   conf.int = TRUE) %>%
filter(p.value < 0.05) %>%
arrange(desc(statistic))
```

```
tidy lm <- purrr::compose(</pre>
    ~ broom::tidy(.x,
         conf.int = TRUE),
    ~ filter(.x,
         p.value < 0.05),</pre>
    ~ arrange(.x,
         desc(statistic)),
    .dir = "forward")
tidy lm(Sepal.Length ~ Species,
    data = iris)
```


Compositionality Reasoning with higher level functions

```
cohort %<>%
     left_join(demographics) %>%
     left join(mortality) %>%
     left join(drugepisode) %>%
     left join(progression)
 tbls <- list(demographics,
               mortality,
               drugepisode,
               progression)
cohort %>%
   purrr::reduce(tbls,
          left join, .init = .) ->
     cohort plus
```

With a nested data frame:

Reproducibility

Avoiding side effects and external states

- Running the same function with the same input should always produce the same result
- Safeguard reproducibility with
 - Immutable inputs + outputs
 - Idempotent processes
 - Deterministic algorithms

- Printing
- Plotting
- Saving output to disk

Reproducibility

Clearly separate pure functions from functions desired for their side effects

No side effects!

Robustness

Testability and elegant error handling

- Functional modular code makes for happy unit testing
 - Avoid difficult to test code stemming from Mutability, Side-Effects,
 Responsibility overload, and
 Procedural instructions
- Avoid side effects and maintain your functional flow
 - try-catch exception blocks can be refactored as higher order functions

```
error prone fn <- function(data)</pre>
safe fn <- purrr::safely(</pre>
    .f = error prone fn,
    otherwise = c())
data %>%
    mutate(results = purrr::map(
         input, safe fn))
```


Efficiency

Laziness and caching

EfficiencyLaziness and caching

- Use when evaluating a function repeatedly over the rows (or larger chunks) of a dataset, and expect to regularly get the same input
- Performance gains depend on how often a function is being called with same argument(s)

```
compute biomarker status <- function(</pre>
    biomarker results) {
compute biomarker status cached <-
    memoise::memoise(compute biomarker status)
data %<>%
 mutate(biomarker status =
    purrr::map(biomarker results,
         compute biomarker status cached)
```


Thanks!

flatiron.com/blog/

@jgutman

@dynamicdataduo

