Méthodologie pour l'étude d'une suite récurrente

1^{er} février 2010

Il s'agit de donner les réflexes à avoir pour mener à bien l'étude d'une suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 \in D_f \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$$

où f désigne une fonction **continue sur son domaine de définition.** Dites-vous bien que l'étude d'une suite récurrente peut être excessivement compliquée : le chaos n'est pas bien loin! Quoi qu'il en soit, ce qui est dit ici doit vous permettre de vous lancer dans une étude de suite récurrente.

I LES RÉFLEXES À AVOIR

R'eflexe ①

S'assurer que la suite est bien définie. Si on n'y prend pas garde, on mène une étude qui n'a pas lieu d'être.

Comment montrer qu'une suite récurrente $(u_n)_n$ est bien définie? En montrant que u_0 appartient à un intervalle $I \subset D_f$ invariant par f, c'est-à-dire vérifiant $f(I) \subset I$.

Trouver un tel intervalle invariant n'est pas une mince affaire. Nous y reviendrons un peu plus loin. Evidemment, l'absence d'un tel intervalle ne permet pas de conclure que la suite n'est pas définie.

Remarque : On préférera un intervalle fermé (c'est-à-dire de la forme [a,b] ou $]-\infty,a]$ ou $[a,+\infty[$ ou encore $]-\infty,+\infty[)$ ou mieux un segment (c'est-à-dire de la forme [a,b]). Dans le cas où I=[a,b], on peut d'ores et déjà dire que la suite $(u_n)_n$ est **bornée**

Réflexe 2

S'assurer que f possède au moins un point fixe. Dans le cas contraire, on peut conclure que la suite $(u_n)_n$ diverge.

En effet : f étant continue, les limites finies éventuelles de $(u_n)_n$ sont à chercher parmi les points fixes de f c'est-à-dire les nombres $x \in D_f$ vérifiant f(x) = x.

Remarque :

- 1. Si on a déjà montré qu'il existe un **segment** I vérifiant
 - $u_0 \in I$;
 - $I \subset D_f$;
 - $f(I) \subset I$,

alors f possède au moins un point fixe dans I. Cette propriété est une conséquence du théorème des valeurs intermédiaires.

Elle est fausse si I est de la forme $[a, +\infty[$ ou $]-\infty, a]$. Ainsi, $[0, +\infty[$ est invariant par la fonction exponentielle mais celle-ci ne possède aucun point fixe.

2. Le fait que I soit supposé fermé est crucial ici. À titre d'exemple, considérons la suite récurrente $(u_n)_n$ définie par

$$\begin{cases} u_0 = \frac{1}{2} \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{u_n} \end{cases}$$

L'intervalle]0,1[est invariant par la fonction f définie sur \mathbb{R}^+ par $f(x) = \sqrt{x}$, mais f ne possède aucun point fixe dans cet intervalle : on peut vérifier que les points fixes de f sont 0 et 1. Or la suite $(u_n)_n$ converge vers 1. Il est donc plus pertinent de considérer le segment [0,1] ici, qui lui est fermé!

R'eflexe 3

Étudier les variations de f et le signe de f(x) - x. Ceci permet de dire très rapidement si la suite $(u_n)_n$ est monotone.

Plaçons-nous dans la situation où $u_0 \in I$ et I est un intervalle fermé vérifiant : $I \subset D_f$; $f(I) \subset I$.

Que dire si f est croissante sur I? On en conclut immédiatement que $(u_n)_n$ est monotone.

En effet:

- si $u_0 \le u_1$, alors $(u_n)_n$ est croissante;
- si $u_0 \ge u_1$, alors $(u_n)_n$ est décroissante.

Que dire si le signe de f(x) - x est constant sur I? On en conclut immédiatement que $(u_n)_n$ est monotone.

En effet:

- si $\forall x \in I$, $f(x) x \ge 0$, alors $(u_n)_n$ est croissante;
- si $\forall x \in I$, $f(x) x \leq 0$, alors $(u_n)_n$ est décroissante.

Réflexe 4

Appliquer l'inégalité des accroissements finis. Plaçons-nous dans la situation où I est un intervalle fermé, invariant par f et ayant au moins un point fixe ℓ par f.

Si grâce à l'I.A.F., on montre que sur l'intervalle fermé I, il existe $\alpha \in [0,1]$ tel que

$$\forall (x,y) \in I^2, |f(x) - f(y)| \le \alpha |x - y|, \tag{1}$$

alors on a immédiatement que :

$$\forall n \in \mathbb{N}, |u_{n+1} - \ell| \le \alpha |u_n - \ell|.$$

On en conclut que

$$\forall n \in \mathbb{N}, |u_n - \ell| \le \alpha^n |u_0 - \ell|.$$

La suite $(u_n)_n$ converge alors vers ℓ et la vitesse de convergence de $(u_n)_n$ vers ℓ est linéaire.

Remarque:

- 1. Le théorème du point fixe affirme que si I est un intervalle fermé invariant par f et s'il existe $\alpha \in [0,1[$ tel que (1) soit vérifié, alors f possède un unique point fixe dans I.
- 2. Ce théorème étant hors-programme, nous établirons l'existence d'un point fixe dans I par d'autres moyens. Remarquons que l'unicité découle directement de (1). En effet si ℓ et ℓ' sont deux points fixes de f appartenant à I, alors

$$|\ell - \ell'| = |f(\ell) - f(\ell')| \le \alpha |\ell - \ell'|.$$

Puisque $0 \le \alpha < 1$, on en déduit que $\ell = \ell'$.

II Exemples d'étude

1. Etude de $u_{n+1} = \sqrt{u_n}$.

On veut étudier la suite $(u_n)_n$ définie par : $u_0 \in \mathbb{R}^+$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{u_n}$. L'exemple choisi est intentionnellement simple : on pourrait conclure directement en observant que

$$\forall n \in \mathbb{N}, \ u_n = (u_0)^{\frac{1}{2^n}}.$$

- Etudions d'abord les variations de f et le signe de f(x) x sur \mathbb{R}^+ .
 - \rightarrow étude de f sur \mathbb{R}^+ . f est définie et continue sur \mathbb{R}^+ ; f est strictement croissante et son image est \mathbb{R}^+ . Ainsi, \mathbb{R}^+ est un intervalle fermé invariant par f.
 - \rightarrow étude du signe de f(x) x sur \mathbb{R}^+ . La fonction g définie sur \mathbb{R}^+ par g(x) = f(x) x est dérivable sur $[0, +\infty[$. Sa dérivée g' vérifie :

$$\forall x > 0, \ g'(x) = \frac{1}{2\sqrt{x}} - 1 = \frac{1 - 2\sqrt{x}}{\sqrt{x}}.$$

On en déduit immédiatement le signe de g' et les variations de g sur \mathbb{R}^+ .

La fonction g s'annule donc en unique valeur dans $[\frac{1}{4}, +\infty[$. L'équation g(x) = 0 est équivalente à l'équation $x^2 = x$ puisque $x \ge 0$. Il s'ensuit que g s'annule en 0 et en 1. D'où le signe suivant de f(x) - x sur \mathbb{R}^+ .

$$\begin{array}{c|ccccc} x & 0 & 1 & +\infty \\ \hline f(x) - x & 0 & + & 0 & - \\ \end{array}$$

→ Quelques conclusions. De ce qui précède, on tire les conclusions suivantes :

$$f([0,1]) = [0,1]$$
; $f([1,+\infty[) = [1,+\infty[]$.

- Cas où $u_0 \in [0, 1]$ (cf Fig. 1).
 - \rightarrow On peut déjà dire que la suite $(u_n)_n$ est bien définie et que la suite $(u_n)_n$ est bornée. En effet, [0,1] est un intervalle invariant par f.
 - \rightarrow La suite $(u_n)_n$ est croissante. En effet, $f(x) \ge x$ pour tout $x \in [0,1]$.
 - \rightarrow Conclusion. La suite $(u_n)_n$ étant croissante et majorée par 1, la suite $(u_n)_n$ converge vers l'un des points fixes de f:0 ou 1.

Si $u_0 = 0$, alors la suite $(u_n)_n$ est constante égale à 0 : elle converge donc vers 0.

- Si $u_0 > 0$, alors la suite $(u_n)_n$ converge vers 1.
- Cas où $u_0 > 1$ (cf Fig. 1).
 - \rightarrow On peut d'ores et déjà dire que la suite $(u_n)_n$ est bien définie et à valeurs dans $[1, +\infty[$. En effet, $[1, +\infty[$ est invariant par f.
 - \rightarrow La suite $(u_n)_n$ est décroissante. En effet, $f(x) \leq x$ pour tout $x \geq 1$.
 - \rightarrow Conclusion. La suite $(u_n)_n$ étant décroissante et minorée par 1, la suite converge vers l'un des points fixes : 0 ou 1.

Le premier cas étant à exclure, on en déduit que la suite $(u_n)_n$ converge vers 1.

2. Etude de $u_{n+1} = \frac{4-u_n}{4+u_n}$.

On veut étudier la suite $(u_n)_n$ définie par $u_0 = 3$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{4-u_n}{4+u_n}$.

Soit f définie sur $\mathbb{R} \setminus \{-4\}$ par $f(x) = \frac{4-x}{4+x}$.

Fig. 1 – Itérés de $u_{n+1} = \sqrt{u_n}$: cas où $u_0 \in [0, 1]$ et $u_0 > 1$.

- On détermine d'abord un intervalle invariant par f.
 - \rightarrow Étude de f. f est définie et dérivable sur $\mathbb{R} \setminus \{-4\}$. La dérivée f' de f vérifie

$$\forall x \in \mathbb{R} \setminus \{-4\}, \ f'(x) = -\frac{8}{(4+x)^2}.$$

D'où les variations de f:

x	$-\infty$ –	$+\infty$
f'(x)	_	+
f(x)	-1 -∞	$+\infty$ -1

On trouve un premier intervalle invariant, à savoir $]-4,+\infty[$. Son image par f est égale à

$$]-1,+\infty[\subset]-4,+\infty[.$$

La suite $(u_n)_n$ est donc bien définie.

 \rightarrow L'intervalle [0, 4] est invariant par f. En effet f est strictement décroissante et continue sur [0, 4]. De plus, f(0) = 1 et f(4) = 0. D'où

$$f([0,4]) = [0,1] \subset [0,4].$$

On en déduit que $(u_n)_n$ est bornée.

• On détermine les points fixes de f dans [0,4]. Pour cela, on détermine le signe de g définie sur [0,4]par g(x) = f(x) - x.

La dérivée de g sur [0,4] est égale à :

$$g'(x) = -\frac{8}{(4+x)^2} - 1.$$

On en déduit immédiatement que g est strictement décroissante sur [0,4]. Par ailleurs, g(0)=1 et g(4) = -4. Par conséquent g s'annule en une unique valeur $\ell \in [0,4]$.

On conclut que f possède un unique point fixe $\ell \in [0,4]$. Déterminons-le : il s'agit de résoudre l'équation $\frac{4-x}{4+x} = x$. Cette équation est équivalente à $x^2 + 5x - 4 = 0$.

On trouve

$$\ell = \frac{\sqrt{41} - 5}{2}.$$

Pour résumer, le signe de f(x) - x sur [0, 4] est :

x	0		ℓ		4
f(x) - x	1	+	0	_	-4

• Etude de la convergence à l'aide de l'I.A.F. Nous expliquons ici comment étudier la convergence de la suite sans passer par l'étude de la convergence des sous-suites des termes pairs et des termes impairs. On peut remarquer tout d'abord que

$$\sup_{x \in [0,4]} |f'(x)| \le \frac{1}{2}.$$

Il découle alors de l'I.A.F. que

$$\forall (x,y) \in [0,4]^2, |f(x) - f(y)| \le \frac{1}{2}|x - y|.$$

En appliquant cette inégalité à la suite $(u_n)_{n\in\mathbb{N}}$, il vient

$$\forall n \in \mathbb{N}, \ \left| u_{n+1} - \frac{\sqrt{41} - 5}{2} \right| \le \frac{1}{2} \left| u_n - \frac{\sqrt{41} - 5}{2} \right|.$$

Finalement:

$$\forall n \in \mathbb{N}, \ \left| u_n - \frac{\sqrt{41} - 5}{2} \right| \le \frac{1}{2^n} \ \left| 3 - \frac{\sqrt{41} - 5}{2} \right|.$$

D'où
$$\lim_{n \to +\infty} u_n = \frac{\sqrt{41} - 5}{2}.$$

- Etude de la convergence à l'aide de $(u_{2n})_n$ et $(u_{2n+1})_n$. Puisque f est décroissante sur [0,4], il est pertinent d'étudier les suites $(u_{2n})_n$ et $(u_{2n+1})_n$ (cf Fig. 2). En effet $f \circ f$ est alors croissante sur [0,4] et de plus : $(u_{2n})_n$ est la suite $(v_n)_n$ définie par $v_0 = u_0$ et $\forall n \in \mathbb{N}, v_{n+1} = (f \circ f)(v_n)$; $(u_{2n+1})_n$ est la suite $(w_n)_n$ définie par $w_0 = u_1$ et $\forall n \in \mathbb{N}, w_{n+1} = (f \circ f)(w_n)$.
 - \rightarrow **Points fixes de** $f \circ f$. Pour tout $x \in \mathbb{R} \setminus \{-4, -\frac{20}{3}\}$, $(f \circ f)(x) = \frac{12+5x}{20+3x}$. On voit immédiatement que les points fixes de $f \circ f$ sont solutions d'une équation du second degré. Or les points fixes de f sont des points fixes de $f \circ f$. D'où l'ensemble des points fixes de $f \circ f$

$$\left\{-\frac{\sqrt{41}+5}{2}, \frac{\sqrt{41}-5}{2}\right\}.$$

 \rightarrow Étude de la suite $(u_{2n})_n$. On a $u_0 = 3$ et $u_2 = \frac{27}{29} < u_0$. Compte-tenu que $f \circ f$ est croissante, on en conclut que $(u_{2n})_n$ est décroissante. La suite (u_{2n}) étant décroissante et minorée par 0, elle converge vers $\frac{\sqrt{41}-5}{2}$ (l'autre point fixe est à exclure car strictement négatif).

Fig. 2 – Suite $(u_n)_n$ définie par $u_0 = 3$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{4-u_n}{4+u_n}$.

Fig. 3 – Itérés par la fonction $x \mapsto \sqrt{x-1}$.

- \rightarrow Étude de la suite $(u_{2n+1})_n$. On a $u_1 = \frac{1}{7}$ et $u_3 = \frac{89}{143} > u_1$. Compte-tenu que $f \circ f$ est croissante, on en conclut que $(u_{2n+1})_n$ est croissante. La suite (u_{2n+1}) étant croissante et majorée par 4, elle converge vers $\frac{\sqrt{41}-5}{2}$ (l'autre point fixe est à exclure car strictement négatif).
- \rightarrow Conclusion. les suites $(u_{2n})_n$ et $(u_{2n+1})_n$ convergeant vers $\frac{\sqrt{41}-5}{2}$, il en découle que la suite $(u_n)_n$ converge vers $\frac{\sqrt{41}-5}{2}$.

III EXEMPLES PATHOLOGIQUES

On peut très vite rencontrer des exemples où l'étude devient extrêmement compliquée. Nous ne nous y aventurons pas. Malgré tout, quelques simulations numériques peuvent rendre compte des difficultés rencontrées.

1. Etude de $u_{n+1} = \sqrt{u_n - 1}$

La suite $(u_n)_n$ est mal définie. En ce sens qu'à partir d'un certain rang $n_0 \in \mathbb{N}^*$, $u_{n_0-1} \notin D_f$ où f est la fonction définie sur $[1, +\infty[$ par $f(x) = \sqrt{x-1}$.

Ceci est expliqué en exercice (Exercice 3, Exercices complémentaires). La figure Fig. 3 ci-dessous illustre le phénomène

Fig. 4 – Itérés par la fonction $x \mapsto x^2 - 3$.

2. Etude de $u_{n+1} = u_n^2 - 3$.

On veut par exemple étudier la suite $(u_n)_n$ définie par

$$\begin{cases} u_0 = 2 \\ u_{n+1} = u_n^2 - 3 \end{cases}$$

Cette suite est bien définie et est bornée : elle est en effet ultimement périodique de période 2. Pour autant, on ne peut établir qu'elle est bornée en déterminant un segment I contenant 2 et invariant par f (définie sur \mathbb{R} par $f(x) = x^2 - 3$) : il n'en existe pas. L'ensemble des nombres réels y tels que la suite $(x_n)_n$ définie par $x_0 = y$ et pour tout $n \in \mathbb{N}$, $x_{n+1} = x_n^2 - 3$ est une suite bornée, est en effet un ensemble de Cantor.

Les figures illustrent ce phénomène : on peut toujours trouver une suite $(x_n)_n$ avec x_0 aussi proche qu'on veut de 2 qui tend vers $+\infty$.