MATH 250: TOPOLOGY I

FALL 2025 LOOSE ENDS

Contents

1.	Wednesday, 9/3	2
2.	Monday, 9/8	3

1. Wednesday, 9/3

1.1. Here I try to dispel some potential confusion about bases.

Let X be any set. Let \mathcal{B} be any collection of subsets of X. A useful general observation:

Lemma 1.1. For any subset $Y \subseteq X$, the following conditions are equivalent:

- (1) Y is the union of some elements of \mathcal{B} .
- (2) For any $x \in Y$, there is some $B \in \mathcal{B}$ such that $x \in B \subseteq Y$.

Now let \mathcal{T} be the collection of all subsets of X that can be written as unions of elements of \mathcal{B} . Using the lemma, we see that

$$\mathcal{T} = \left\{ \text{subsets } U \subseteq X \,\middle|\, \text{for any } x \in U, \text{ we have some } B \in \mathcal{B} \\ \text{such that } x \in B \subseteq U \right\}.$$

Theorem 1.2. Suppose that \mathcal{B} satisfies the following conditions:

- (I) Every point of X belongs to some element of \mathcal{B} .
- (II) For any $B, B' \in \mathcal{B}$ and any point x of the intersection $B \cap B'$, we can find some $B'' \in \mathcal{B}$ such that $x \in B'' \subseteq B \cap B'$.

Then \mathcal{T} is a topology on X.

We proved this theorem at the start of the course, implicitly using Lemma 1.1. The only hard part is checking that finite intersections of elements of \mathcal{T} are still elements of \mathcal{T} . To make this easier, I mentioned that it suffices by induction to check intersections between pairs of elements of \mathcal{T} .

Any collection \mathcal{B} that satisfies hypotheses (I)–(II) in the theorem above is called a *basis*. In the situation of the theorem, we say that \mathcal{B} generates or *induces* the topology \mathcal{T} , and that \mathcal{B} is a *basis for* \mathcal{T} specifically.

1.2. Separately, if we are given \mathcal{T} to start, then there is a way to <u>check</u> whether a subcollection $\mathcal{C} \subseteq \mathcal{T}$ is a basis that generates \mathcal{T} . In Munkres, this is Lemma 13.2.

Theorem 1.3. Fix a topology \mathcal{T} on X and a subset $\mathcal{C} \subseteq \mathcal{T}$. Suppose that for each $x \in X$ and $U \in \mathcal{T}$, there is some $C \in \mathcal{C}$ such that $x \in C \subseteq \mathcal{C}$. Then \mathcal{C} is a basis, and moreover, the topology it generates is \mathcal{T} .

2.1. Let X be a set, and let $d: X \times X \to [0, \infty)$ be a metric on X. For all $x \in X$ and $\delta > 0$, we define the d-ball with center x and radius δ to be

$$B_d(x,\delta) = \{ y \in X \mid d(x,y) < \delta \}.$$

Below is a cleaner version of a long proof from lecture.

Theorem 2.1. The set $\{B_d(x,\delta) \mid x \in X \text{ and } \delta > 0\}$ forms a basis.

Proof. Let \mathcal{B} denote the set in question. We must check two axioms:

- (I) Any point of X is contained in some element of \mathcal{B} .
- (II) Given any two elements of \mathcal{B} and a point in their intersection, we can find some other element of \mathcal{B} containing that point and contained within the intersection as a subset.
- (I) holds because for any $x \in X$, we have $x \in B(x, \delta)$ for any choice of δ .

To show (II): Pick balls $B_d(x, \epsilon)$ and $B_d(x', \epsilon')$ and a point z in their intersection $B_d(x, \epsilon) \cap B_d(x', \epsilon')$. We must exhibit some d-ball that contains z and is contained within the intersection as a subset.

It suffices to find some $\delta > 0$ such that

$$B_d(z,\delta) \subseteq B_d(x,\epsilon) \cap B_d(x',\epsilon').$$

Explicitly, this condition on δ means that

if
$$y \in X$$
 satisfies $d(z,y) < \delta$, then $d(x,y) < \epsilon$ and $d(x',y) < \epsilon'$.

(Informally, this means that if y is close enough to z, then it is close enough to x and x' as well.) By drawing a picture of the situation, we get the idea that we need to use the triangle inequality to bound the distance d(x,y) in terms of the distances d(x,z) and d(z,y).

Since $z \in B_d(x, \epsilon)$, we know that $d(x, z) < \epsilon$. Rearranging, $\epsilon - d(x, z) > 0$. So we can pick α such that $\epsilon - d(x, z) > \alpha > 0$. Then $d(x, z) + \alpha < \epsilon$. So if $y \in X$ satisfies $d(z, y) < \alpha$, then it also satisfies

$$d(x,y) \le d(x,z) + d(z,y)$$
 by the triangle inequality
$$< d(x,z) + \alpha$$
 by the hypothesis on y
$$< \epsilon.$$

By analogous arguments, we can pick α' such that $\epsilon' - d(x', z) > \alpha' > 0$, and in this case, if y satisfies $d(z, y) < \alpha'$, then $d(x', y) < \epsilon'$.

Finally, set $\delta = \min(\alpha, \alpha')$. We see that if $y \in X$ satisfies $d(z, y) < \delta$, then we have both $d(x, y) < \epsilon$ and $d(x', y) < \epsilon'$. So we have found the desired δ .