Formulário de ONL

Classificação de mínimos (e máximos)

$$\max f(x) = -\min(-f(x)) \qquad x^* = \underbrace{\arg \max (f(x))}_{\text{maximizante}} = \underbrace{\arg \min (-f(x))}_{\text{minimizante}}$$

Método de Davies, Swann e Campey - DSC

Dados: $x_1, \delta > 0, M < 1, \varepsilon$

1. procura no sentido positivo

A partir do x_1 e no sentido positivo, calcula-se uma sequência de pontos $x_2 = x_1 + \delta$, $x_3 = x_2 + 2\delta$, $x_4 = x_3 + 4\delta$, ..., $x_k = x_{k-1} + 2^{k-2}\delta$ até que no ponto x_k se tenha $f(x_k) > f(x_{k-1})$.

- Calcula-se o ponto médio do <u>último intervalo</u>: $x_m = \frac{x_k + x_{k-1}}{2}$.
- Obter 4 pontos igualmente espaçados: $x_{k-2} < x_{k-1} < x_m < x_k$
- Para a aproximação quadrática, seleccionar três dos quatro pontos igualmente espaçados, comparando os valores de f(x) nos dois pontos interiores do intervalo:
 - Se $f(x_{k-1}) \le f(x_m)$ então escolhem-se os pontos x_{k-2}, x_{k-1} e x_m
 - Senão $f(x_{k-1}) > f(x_m)$ escolhem-se os pontos x_{k-1}, x_m e x_k
 - Redefinir e ordenar os pontos como $x_1 < x_2 < x_3$. Ir para 3. Minimizante da quadrática.

2. procura no sentido negativo

Quando, a partir de x_1 , o valor de $f(x_2) > f(x_1)$ (para $x_2 = x_1 + \delta$) a procura deve voltar-se para o sentido negativo, a começar novamente por x_1 . O próximo ponto, na procura, é $x_{-1} = x_1 - \delta$.

- Se $f(x_{-1}) > f(x_1)$, então $[x_{-1}, x_2]$ contém o minimizante desejado. Os 3 pontos x_{-1}, x_1 e x_2 são e selecionados. Ir para 3. Minimizante da quadrática.
- Se $f(x_{-1}) < f(x_1)$ então a procura deve continuar no sentido negativo, calculando $x_{-2} = x_{-1} 2\delta$, $x_{-3} = x_{-2} 4\delta$, ..., $x_{-k} = x_{-(k-1)} 2^{k-1}\delta$, até que no ponto x_{-k} se tenha $f(x_{-k}) > f(x_{-(k-1)})$.
- Calcula-se o ponto médio do último intervalo: $x_m = \frac{x_{-k} + x_{-(k-1)}}{2}$
- Obter 4 pontos igualmente espaçados: $x_{-k}, x_m, x_{-(k-1)}, x_{-(k-2)}$
 - Se $f(x_m) < f(x_{-(k-1)})$ então escolhem-se os pontos x_{-k}, x_m e $x_{-(k-1)}$
 - Senão $(f(x_m) \ge f(x_{-(k-1)}))$ escolhem-se os pontos $x_m, x_{-(k-1)}$ e $x_{-(k-2)}$
 - Redefinir e ordenar os pontos como $x_1 < x_2 < x_3$. Ir para 3. Minimizante da quadrática.

3. Minimizante da quadrática

• Considerando $x_1 < x_2 < x_3$, determinar o minimizante da quadrática

$$x^*(q) = x_2 + \Delta \frac{f(x_1) - f(x_3)}{2(f(x_3) - 2f(x_2) + f(x_1))}$$

com
$$\Delta = (x_2 - x_1) = (x_3 - x_2)$$
.

Critério de paragem:

- Se $\Delta \leq \varepsilon$ então o processo iterativo termina, e $x^*(q)$ é a melhor aproximação à solução
- Senão o processo iterativo repete-se iniciando com $x_1 = x^*(q)$ e $\delta = M\delta$.

Condições de otimalidade

- Condição necessária (e suficiente) de 1^a ordem: $\nabla f(x) = 0$
- Condições de 2^a ordem:
 - $-\nabla^2 f(x^*)$ é definida positiva $\Rightarrow x^*$ é um minimizante de f(x) (condição suficiente).
 - $-\nabla^2 f(x^*)$ é definida negativa $\Rightarrow x^*$ é um maximizante de f(x) (condição suficiente).
 - $-\nabla^2 f(x^*)$ é semi-definida positiva $\Rightarrow x^*$ é um minimizante ou ponto de sela de f(x) (cond. necessária).
 - $-\nabla^2 f(x^*)$ é semi-definida negativa $\Rightarrow x^*$ é um maximizante ou ponto de sela de f(x) (cond. necessária).
 - $-\nabla^2 f(x^*)$ é indefinida $\Rightarrow x^*$ é ponto de sela de f(x) (condição suficiente).
- Uma matriz diz-se definida positiva se os determinantes das submatrizes principais são positivos
- Uma matriz diz-se **definida negativa** se os determinantes das submatrizes principais têm sinais alternados, sendo o determinante da primeira submatriz negativo
- Uma matriz diz-se **semi-definida positiva** se pelo menos um dos determinantes das submatrizes principais é zero e os outros são positivos
- Uma matriz diz-se **semi-definida negativa** se pelo menos um dos determinantes das submatrizes principais é zero e os outros têm sinais alternados, sendo o determinante da primeira submatriz negativo
- Uma matriz diz-se **indefinida** se os sinais dos determinantes das submatrizes principais não verificam nenhuma das 4 situações acima mencionadas.

Método Nelder-Mead

- 1. Seja $S_1 = \langle X_1, X_2, \dots, X_{n+1} \rangle$ o simplex inicial já ordenado por ordem crescente dos valores da função
- 2. Calcular o **centróide** do simplex $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- 3. Calcular o **vértice refletido** $x_r = (1 + \alpha)\bar{x} \alpha X_{n+1} \pmod{\alpha} = 1$

CASO 1: Se $(f(X_1) \le f(X_n))$ então x_r é bom \Rightarrow aceitar $x_r \Rightarrow S_{k+1} = \langle X_1, X_2, \dots, X_n, x_r \rangle$

CASO 2: Se $(f(x_r) < f(X_1))$ então x_r é muito bom \Rightarrow fazer uma expansão do simplex:

- calcular o **vértice expandido** $x_e = \gamma x_r + (1 \gamma) \bar{x} \pmod{\gamma} = 2$
 - Se $(f(x_e) < f(X_1))$ então x_e é muito bom \Rightarrow aceitar $x_e \Rightarrow S_{k+1} = \langle X_1, X_2, \dots, X_n, x_e \rangle$
 - Senão aceitar $x_r \Rightarrow S_{k+1} = \langle X_1, X_2, \dots, X_n, x_r \rangle$

CASO 3: Se $(f(X_n) \le f(x_r) < f(X_{n+1}))$ então x_r é fraco \Rightarrow fazer uma contracção para o exterior:

- calcular o **vértice contraído para o exterior** $\hat{x}_c = \beta x_r + (1 \beta) \bar{x} \pmod{\beta} = 0.5$
 - Se $(f(\hat{x}_c) < f(X_n))$ então \hat{x}_c é bom \Rightarrow aceitar $\hat{x}_c \Rightarrow S_{k+1} = \langle X_1, X_2, \dots, X_n, \hat{x}_c \rangle$
 - Senão encolher o simplex \Rightarrow fazer $x_i = \frac{X_i + X_1}{2}$ $(i = 2, ..., n+1) \Rightarrow S_{k+1} = \langle X_1, x_2, ..., x_n, x_{n+1} \rangle$

CASO 4: Se $(f(x_r) \ge f(X_{n+1}))$ então x_r é muito fraco \Rightarrow fazer uma contracção para o interior:

- calcular o vértice contraído para o interior $x_c = \beta X_{n+1} + (1-\beta)\bar{x} \pmod{\beta} = 0.5$
 - Se $(f(x_c) < f(X_n))$ então x_c é bom \Rightarrow aceitar $x_c \Rightarrow S_{k+1} = \langle X_1, X_2, \dots, X_n, x_c \rangle$
 - Senão encolher o simplex \Rightarrow fazer $x_i = \frac{X_i + X_1}{2}$ $(i = 2, ..., n+1) \Rightarrow S_{k+1} = \langle X_1, x_2, ..., x_n, x_{n+1} \rangle$
- 4. Critério de paragem
 - Ordenar o simplex obtido. Se

$$\frac{\displaystyle\max_{2\leq i\leq n+1}\,\left\|X_{i}-X_{1}\right\|_{2}}{\displaystyle\max\left\{1,\left\|X_{1}\right\|_{2}\right\}}\leq\varepsilon$$

então o processo iterativo termina e X_1 é a a melhor aproximação à solução

• Senão, o processo iterativo repete-se iniciando com o último simplex obtido (voltar a 2).

Métodos do gradiente

Algoritmo geral dos métodos do gradiente

Dados: aproximação inicial $x^{(1)}$, $\varepsilon > 0 \ (\approx 0)$, $k \leftarrow 1$ Enquanto $\|\nabla f(x^{(k+1)})\|_2 > \varepsilon$ fazer

- ullet calcular $d^{(k)}$ (direção de procura através do Algoritmo de Segurança de Newton ou quasi-Newton)
- calcular $\alpha^{(k)}$ (comprimento do passo através do Critério de Armijo)
- calcular $x^{(k+1)} \leftarrow x^{(k)} + \alpha^{(k)} d^{(k)}$
- $k \leftarrow k+1$

Solução: $\left\{ \begin{array}{l} x^* \approx x^{(k+1)} \\ f^* \approx f\left(x^{(k+1)}\right) \end{array} \right.$

Algoritmo do critério de Armijo para calcular $\alpha^{(k)}$

Dados $x^{(k)}, d^{(k)}, \nabla f(x^{(k)}), f(x^{(k)}) \in \mu$

- 1. $\alpha \leftarrow 1$
- 2. $\bar{x} \leftarrow x^{(k)} + \alpha d^{(k)}$
- 3. $\underline{\operatorname{se}}\left(f\left(\bar{x}\right) \leq f\left(x^{(k)}\right) + \mu \, \alpha \, \nabla f\left(x^{(k)}\right)^T d^{(k)}\right) \, \underline{\operatorname{ent}\tilde{\operatorname{ao}}} \, \alpha^{(k)} \leftarrow \alpha$ senão

 $\alpha \leftarrow \alpha/2$ e voltar a 2.

Algoritmo para o cálculo da direção de Segurança de Newton

Dados $x^{(k)}$ e η ,

Resolver o sistema linear Newton $\nabla^2 f(x^{(k)}) d_N^{(k)} = -\nabla f(x^{(k)})$ por EGPP

 $\underline{\mathrm{se}}$ (o sistema linear tem solução única - $\exists d_N^{(k)})$ $\underline{\mathrm{ent}}$ ão

$$\underline{\operatorname{se}} \left| \nabla f \left(x^{(k)} \right)^T d_N^{(k)} \right| \le \eta \quad (\operatorname{com} \, \eta > 0 \, (\approx 0))$$

então $d_{SN}^{(k)} \leftarrow -\nabla f(x^{(k)}) \Rightarrow$ direção é ortogonal ao gradiente

 $\frac{1}{\sec} \nabla f\left(x^{(k)}\right)^T d_N^{(k)} > \eta \quad (\text{com } \eta > 0 \ (\approx 0) \ \text{então} \ d_{SN}^{(k)} \leftarrow -d_N^{(k)} \Rightarrow \text{direção \'e de subida}$

 $\underline{\text{senão}}~d_{SN}^{(k)} \leftarrow d_{N}^{(k)} \Rightarrow$ direção é de descida

$$\overset{\cong}{d_{SN}^{(k)}} \leftarrow -\nabla f\left(x^{(k)}\right)$$

Algoritmo para o cálculo da direção quasi-Newton

Dado $x^{(k)}$

Calcular $d_{ON}^{(k)} \leftarrow -H^{(k)} \nabla f(x^{(k)})$, sendo $H^{(k)}$ dada por:

$$\underbrace{\text{se}}_{H^{(k)}} \underbrace{k=1}_{\text{ent}\tilde{\text{ao}}}$$

$$\underbrace{\int\limits_{y(k-1)}^{\underline{\operatorname{senão}}} s^{(k-1)} \leftarrow x^{(k-1)}}_{v(k-1)} \leftarrow x^{(k-1)}$$

$$\begin{cases} s^{(k-1)} \leftarrow x^{(k)} - x^{(k-1)} \\ y^{(k-1)} \leftarrow \nabla f(x^{(k)}) - \nabla f(x^{(k-1)}) \\ \text{atualizar } H^{(k)} \text{ pela fórmula } \mathbf{DFP} \text{ ou } \mathbf{BFGS} \end{cases}$$

 $\underline{\text{se}} \ \nabla f \left(x^{(k)} \right)^T \, d_{QN}^{(k)} \geq 0 \ \underline{\text{ent} \underline{\tilde{\text{ao}}}} \ d_{QN}^{(k)} \leftarrow - \nabla f \left(x^{(k)} \right) \Rightarrow \text{dire} \underline{\tilde{\text{cao}}} \ \text{\'e de subida}$

$$\textbf{F\acute{o}rmula DFP:} \ H^{(k)} = H^{(k-1)} - \frac{H^{(k-1)}y^{(k-1)}y^{(k-1)^T}H^{(k-1)}}{y^{(k-1)^T}H^{(k-1)}y^{(k-1)}} + \frac{s^{(k-1)}s^{(k-1)^T}}{s^{(k-1)^T}y^{(k-1)}}$$