Tema 5: Estimación de máxima verosimilitud y otros métodos

1. Sea $X \to \{P_{\theta}; \ \theta \in \mathbb{R}\}$ siendo P_{θ} una distribución con función de densidad

$$f_{\theta}(x) = e^{\theta - x}, \quad x \ge \theta.$$

Dada una muestra aleatoria simple de tamaño n, encontrar los estimadores máximo verosímiles de θ y de e^{θ} . Basándose en los resultados del problema 7 de la relación 4, decir si estos estimadores son insesgados.

- 2. Sea (X_1, \ldots, X_n) una muestra aleatoria simple de una variable aleatoria X con distribución exponencial. Basándose en los resultados del problema 9 de la relación 4, encontrar los estimadores máximo verosímiles de la media y de la varianza de X.
- 3. Sea X una variable aleatoria con función de densidad de la forma

$$f_{\theta}(x) = \theta x^{\theta - 1}, \quad 0 < x < 1$$

- a) Calcular un estimador máximo verosímil para θ .
- b) Deducir dicho estimador a partir de los resultados del problema 10 de la relación 4.
- 4. Sea (X_1, \dots, X_n) una muestra de una variable $X \to \{B(k_0, p); p \in (0, 1)\}$. Estimar, por máxima verosimilitud y por el método de los momentos, el parámetro p y la varianza de X.

Aplicación: Se lanza 10 veces un dado cargado y se cuenta el número de veces que sale un 4. Este experimento se realiza 100 veces de forma independiente, obteniéndose los siguientes resultados:

Estimar, a partir de estos datos, la probabilidad de salir un cuatro.

- 5. Se lanza un dado hasta que salga un 4 y se anota el número de lanzamientos necesarios; este experimento se efectúa veinte veces de forma independiente. A partir de los resultados obtenidos, estimar la probabilidad de sacar un 4 por máxima verosimilitud.
- 6. En 20 días muy fríos, una granjera pudo arrancar su tractor en el primer, tercer, quinto, primer, segundo, primer, tercer, séptimo, segundo, cuarto, cuarto, octavo, primer, tercer, sexto, quinto, segundo, primer, sexto y segundo intento. Suponiendo que la probabilidad de arrancar en cada intento es constante, y que las observaciones se han obtenido de forma independiente, dar la estimación más verosímil de la probabilidad de que el tractor arranque en el segundo intento.

7. Una variable aleatoria discreta toma los valores 0,1 y 2 con las siguientes probabilidades

$$P_p(X=0) = p^2$$
, $P_p(X=1) = 2p(1-p)$, $P_p(X=2) = (1-p)^2$,

siendo p un parámetro desconocido. En una muestra aleatoria simple de tamaño 100, se ha presentado 22 veces el 0, 53 veces el 1 y 25 veces el 2. Calcular la función de verosimilitud asociada a dicha muestra y dar la estimación más verosímil de p.

- 8. En el muestreo de una variable aleatoria con distribución $\mathcal{N}(\mu, 1)$, $\mu \in \mathbb{R}$, se observa que no se obtiene un valor menor que -1 hasta la quinta observación. Dar una estimación máximo verosímil de μ .
- 9. En la producción de filamentos eléctricos la medida de interés, X, es el tiempo de vida de cada filamento, que tiene una distribución exponencial de parámetro θ . Se eligen n de tales filamentos de forma aleatoria e independiente, pero, por razones de economía, no conviene esperar a que todos se quemen y la observación acaba en el tiempo T. Dar el estimador máximo verosímil para la media de X a partir del número de filamentos quemados durante el tiempo de observación.
- 10. Sean X_1, \dots, X_n observaciones independientes de una variable $X \to \{\Gamma(p, a); p, a > 0\}$. Estimar ambos parámetros mediante el método de los momentos.

Aplicación: Ciertos neumáticos radiales tuvieron vidas útiles de 35200, 41000, 44700, 38600 y 41500 kilómetros. Suponiendo que estos datos son observaciones independientes de una variable con distribución exponencial de parámetro θ , dar una estimación de dicho parámetro por el método de los momentos.