VLSI DESIGN FLOW: RTL TO GDS

Lecture 32 Scan Design Flow

Sneh Saurabh Electronics and Communications Engineering IIIT Delhi

Lecture Plan

Scan Design Flow

- Design Modifications
- Mechanism of Testing
- Tasks

Scan Design Flow: Design Modifications

- Extra primary ports added
 - > TM (Test Mode)
 - > SE (Scan Enable)
 - ➤ SI (Scan In)
 - ➤ SO (Scan Out)
- D flip-flops replaced with another memory elements (scan cells)
- Scan cells are reconnected to form shift register (scan chain)

Effect

Dramatically improve controllability and observability of memory elements (flip-flop) in a sequential circuit

Scan Design Flow: Different Modes

Design works in three modes:

1. Normal Mode: functional mode in which chip works

2. Shift Mode:

- Memory elements (i.e. scan cells) work as shift registers
- ➤ Test vectors are shifted-in and responses are shifted-out
- 3. <u>Capture Mode</u>: response of the fabricated circuit is captured during testing

Mode	TM	SE
Normal	0	0
Shift	1	1
Capture	1	0

Scan Cells

- Different kinds of scan cell can be used
- Most popular is MUXED-D Scan Cell

- D, CLK, Q similar to D flip-flop
- SI ≡ scan input
- $SE \equiv scan enable$
- Q also works as SO = scan out

- The multiplexer selects data between D and SI using the value at SE pin
- In the normal/capture mode: SE=0
 - > Value at D is latched
- In the shift mode, SE=1
 - Value at SI is latched
- ➤ Output pin produces the content of D flip-flop
 - Next State could be of D-pin or SI-pin

Scan Design Flow: Forming Scan Chain (Example)

 No changes made to the previous connections of D, Q and CLK pins

- The SI pin of the first scan cell is connected to the SI port
- Q/SO pin of one cell is connected to SI pin of the next cell to form a chain
- Q/SO pin of the last scan cell is connected to the SO port
- All SE pins of scan cells are connected to the SE port
- Form a scan chain consisting of N scan cells
- Any test vector can be shifted-in from SI port in N clock cycles
- Any test response can be shifted-out to SO port in N clock cycles
- Without scan chain, it could take exponential number of cycles

Scan Design: Sequential to Combinational Circuit Testing

- Pins of a flip-flop becomes controllable/observable from primary input/output
 - ➤ Q-pin can be treated as pseudo-primary input (PPI)
 - ➤ D-pin can be treated as pseudo-primary output (PPO)

Scan design eases of testing:

- Effectively transforms the problem of sequential circuit testing to combinational circuit testing
- Automatic test pattern generation (ATPG) problem effectively changes from sequential to combinational

Scan Design Flow: Mechanism

Shift Mode: set SE=1.

- Shift in the desired test vector using port SI to the scan cells F1, F2, F3.
- Apply the required test vector at input port also.

Capture Mode: set SE=0 for 1 clock cycle.

 If there was a fault for which test vector was applied, scan cells will capture the result of fault and receive "fault" output

Shift Mode: switch back to shift mode (SE=1)

- Shift out the captured result to the port SO.
- The result is compared with the expected response
- Simultaneously, apply next test vector at port SI and allow it to scan-in through the scan chain.

Scan Design Flow: Tasks

Design Preparation: Design becomes testable

 Guidelines that must be followed during designing such that scan design flow can be used effectively

Scan Synthesis: Design becomes Scan Design

- Scan Configuration (During Synthesis)
 - > Decide number of scan chains, scan cells to be used, exclude certain elements from being converted to scan cells
- Scan Replacement (During Synthesis)
 - > Replace Flip-Flops with Scan Cells
- Scan Reordering and Stitching (During Physical Design)
 - > Reorder scan cells based on physical location so that routing becomes easier
- Test Vector Generation
- Scan Verification
 - > Scan Shift/Capture Operation using logic simulator
 - ➤ Verify Timing (STA): Hold Violations

Scan Design Flow: Cost

- Area Overhead: Scan Cell, Routing resource
- IO Pin Cost
- Performance degradation: added delay of multiplexor
- Design Effort Cost

References

- M. Bushnell and V. Agrawal, "Essentials of electronic testing for digital, memory and mixed-signal VLSI circuits", Springer Science & Business Media, 2004.
- S. Saurabh, "Introduction to VLSI Design Flow". Cambridge: Cambridge University Press, 2023.

