

MATH F112 (Mathematics-II)

Complex Analysis

Lecture 23-25 Complex Functions

Dr. Ashish Tiwari

Functions of Complex Variables

Function of a complex variable

Let S be a set complex numbers. A function f defined on S is a rule that assigns to each z in S a complex

Functions of Complex Variables

Suppose that w = u + iv is the value of a function f at z = x + iy, so that u + iv = f(x + iy)

Thus each of real number u and v depends on the real variables x and y, meaning that

$$f(z) = u(x, y) + iv(x, y)$$

Similarly if the polar coordinates r and θ , instead of x and y, are used, we get

$$f(z) = u(r, \theta) + iv(r, \theta)$$

innovate achieve lead

Remark

- Properties of a real-valued function of a real variable are often exhibited by the graph of the function. But when w = f(z), where z and w are complex, no such convenient graphical representation is available because each of the numbers z and w is located in a plane rather than a line.
- We can display some information about the function by indicating pairs of corresponding points z = (x, y) and w = (u, v). To do this, it is usually easiest to draw the z and w planes separately.

Graph of Complex Functions

Functions of Complex Variables

When v=0,

function.

f is a real-valued

Example:

If
$$f(z) = z^2$$
, then

case #1:
$$z = x + iy$$

$$z = x + iy$$

$$f(z) = (x+iy)^2 = x^2 - y^2 + i2xy$$

$$u(x, y) = x^2 - y^2; v(x, y) = 2xy$$

case #2:
$$z = re^{i\theta}$$

$$f(z) = (re^{i\theta})^2 = r^2 e^{i2\theta} = r^2 \cos 2\theta + ir^2 \sin 2\theta$$

$$u(r,\theta) = r^2 \cos 2\theta; v(r,\theta) = r^2 \sin 2\theta$$

Functions of Complex Variables

Example:

A real-valued function is used to illustrate some important concepts later in this chapter is

$$|f(z)| = |z|^2 = x^2 + y^2 + i0$$

Polynomial function:

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

where n is zero or a positive integer and a_0 , $a_1, ... a_n$ are complex constants, $a_n \neq 0$;

• The domain of definition is the entire z-plane

- Rational function: the quotients P(z)/Q(z) of polynomials
- The domain of definition is

$${z \in \mathbb{C}: Q(z) \neq 0}$$

Limits

Suppose the function f is defined in some neighborhood of z_0 , except possibly at z_0 itself. Then f is said to possess a limit at z_0 , written

$$\lim_{z \to z_0} f(z) = w_0$$

If for a given $\epsilon > 0$, \exists a $\delta > 0$ such that

$$|f(z) - w_0| < \epsilon$$
 whenever $0 < |z - z_0| < \delta$

innovate achieve lead

Limits

meaning the point w = f(z) can be made arbitrarily close to w_0 if we choose the point z close enough to z_0 but distinct from it.

innovate

Theorems on Limit

Thm 1

Let
$$f(z) = u(x, y) + iv(x, y)$$
,
 $z_0 = x_0 + iy_0$, $w_0 = u_0 + iv_0$,
Then $\lim_{z \to z_0} f(z) = w_0$
 $\Leftrightarrow (i) \lim_{(x,y) \to (x_0, y_0)} u(x,y) = u_0$
 $(ii) \lim_{(x,y) \to (x_0, y_0)} v(x,y) = v_0$

Theorems on Limit

<u>Thm 2</u>

Let
$$\lim_{z \to z_0} f(z) = w_0$$
,
$$\lim_{z \to z_0} F(z) = W_0$$
. Then

(i)
$$\lim_{z \to z_0} [f(z) \pm F(z)] = w_0 \pm W_0$$
.

Theorems on Limit

$$(ii) \lim_{z \to z_0} [f(z)F(z)] = w_0 W_0.$$

(iii)
$$\lim_{z \to z_0} \left| \frac{f(z)}{F(z)} \right| = \frac{w_0}{W_0}$$
, if $W_0 \neq 0$.

Limits

Example

Show that $f(z) = i\overline{z}/2$ in the open disk |z| < 1, then

Proof:

$$\lim_{z \to 1} f(z) = \frac{\iota}{2}$$

$$|f(z) - \frac{i}{2}| = |\frac{i\overline{z}}{2} - \frac{i}{2}| = \frac{|i||\overline{z} - 1|}{2} = \frac{|z - 1|}{2}$$

$$\forall \varepsilon > 0, \exists \delta = 2\varepsilon, s.t.$$

when $0 < |z-1| < \delta (= 2\varepsilon)$

Limits

Example

If $f(z) = \frac{z}{z}$ then the limit $\lim_{z \to 0} f(z)$ does not exist.

$$z = (x,0) \quad \lim_{x \to 0} \frac{x+i0}{x-i0} = 1$$

$$z = (0, y) \quad \lim_{y \to 0} \frac{0 + iy}{0 - iy} = -1$$

The point at Infinity

The point at infinity is denoted by ∞, and the complex plane together with the point at infinity is called the Extended complex Plane.

The point at Infinity

Riemann Sphere & Stereographic Projection

The point at Infinity

The ε-Neighborhood of Infinity

When the radius R is large enough

i.e. for each small positive number $R=1/\epsilon$

The region of $|z| > R = 1/\epsilon$ is called the ϵ -Neighborhood of Infinity (∞)

Theorems

1.
$$\lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{f(z)} = 0.$$

2.
$$\lim_{z \to \infty} f(z) = w_0 \iff \lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0$$

3.
$$\lim_{z \to \infty} f(z) = \infty \iff \lim_{z \to 0} \frac{1}{f\left(\frac{1}{z}\right)} = 0$$

1.

$$\lim_{z\to z_0} f(z) = \infty \implies$$
 for each $\epsilon > 0$, $\exists \ \delta > 0$ such that

$$|f(z)| > \frac{1}{\epsilon}$$
 whenever $0 < |z - z_0| < \delta$

$$|z| = \left| \frac{1}{f(z)} - 0 \right| < \epsilon \text{ whenever } 0 < |z - z_0| < \delta$$

Similarly, converse part can also be done.

innovate

Thus,

$$\lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{f(z)} = 0.$$

2.

$$\lim_{z\to\infty} f(z) = w_0 \implies$$
 for each $\epsilon > 0$, $\exists \ \delta > 0$ such that

$$|f(z) - w_0| < \epsilon \text{ whenever } |z| > \frac{1}{\delta}$$

Replacing z by 1/z,

i. e.
$$\left| f\left(\frac{1}{z}\right) - w_0 \right| < \epsilon$$
 whenever $0 < |z| < \delta$

Similarly, converse part can also be done.

Theorems

Thus,

$$\lim_{z \to \infty} f(z) = w_0 \iff \lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0$$

3.

$$\lim_{z\to\infty} f(z) = \infty \implies$$
 for each $\epsilon > 0$, $\exists \delta > 0$ such that

$$|f(z)| > \frac{1}{\epsilon}$$
 whenever $|z| > \frac{1}{\delta}$

Replacing z by 1/z,

i. e.
$$\left| \frac{1}{f\left(\frac{1}{z}\right)} - 0 \right| < \epsilon$$
 whenever $0 < |z - 0| < \delta$

Similarly, converse part can also be done.

innovate

lead

Thus,

$$\lim_{z \to \infty} f(z) = \infty \iff \lim_{z \to 0} \frac{1}{f\left(\frac{1}{z}\right)} = 0$$

A function f is continuous at a point z_0 if

$$\lim_{z \to z_0} f(z) = f(z_0)$$

meaning that

- 1. f is defined at z_0 .
- 2. the limit of function f exist at point z_0 and
- 3. the limit is equal to the value of $f(z_0)$

For a given positive number ε , there exists a positive number δ , s.t.

When
$$|z-z_0| < \delta \Rightarrow |f(z)-f(z_0)| < \varepsilon$$

The function f(z) is said to be continuous in a region R if it is continuous at all points of the region R.

Theorem 1.

A composition of two continuous functions is itself continuous.

Theorem 2.

If f(z) = u(x, y) + iv(x, y), then f(z) is continuous iff Re(f(z)) = u(x, y) and Im(f(z)) = v(x, y) are continuous functions.

Theorem 3. If f(z) and g(z) are continuous, then

- (a) $f(z) \pm g(z)$
- (b) f(z)g(z)
- (c) $\frac{f(z)}{g(z)}$, $g(z) \neq 0$

are all continuous.

Theorem 4.

If a function f(z) is continuous and nonzero at a point z_0 , then $f(z) \neq 0$ throughout some neighborhood of that point.

Proof

$$\lim_{z \to z_0} f(z) = f(z_0) \neq 0$$
Why?

For
$$e = \frac{|f(z_0)|}{2} > 0, \$d > 0, s.t.$$

When $|z-z_0| < \delta$

$$|f(z) - f(z_0)| < \varepsilon = \frac{|f(z_0)|}{2}$$

If
$$f(z) = 0$$
, then $|f(z_0)| < \frac{|f(z_0)|}{2}$

Contradiction!

Theorem 5.

Every continuous function f in a closed and bounded region R, is bounded i.e. there exists a nonnegative real number M such that

$$|f(z)| \le M$$
 for all points z in R

where equality holds for at least one such z.

Example: Discuss the continuity of

$$f(z)$$
 at $z = 0$ if

$$(i) f(z) = \frac{\text{Re } z}{1+|z|}$$

(ii)
$$f(z) = z^{-1} \operatorname{Re} z$$

Sol. (i)

$$f(z) = \frac{\text{Re } z}{1 + |z|}$$

$$=\frac{x}{1+\sqrt{x^2+y^2}}$$

$$\lim_{z \to 0} f(z) = \lim_{(x,y) \to (0,0)} \frac{x}{1 + \sqrt{x^2 + y^2}}$$
$$= 0 = f(0)$$

 $\Rightarrow f(z)$ is continuous at z = 0

Continuity

(ii)
$$f(z) = \frac{\text{Re } z}{z} = \frac{x}{x + iy}$$

We have

$$\lim_{z \to 0} f(z) = \lim_{(x,y) \to (0,0)} \frac{x}{x + iy}$$

innovate achieve lead

Continuity

$$\Rightarrow \lim_{z \to 0} f(z) = \lim_{(x,y) \to (0,0)} \frac{x}{x + imx},$$

$$(along y = mx)$$

$$=\frac{1}{1+im}$$

which is not unique

$$\Rightarrow f(z)$$
 is not continuous at $z = 0$

Derivatives: Let f(z) be a function defined

on a set S and S contains $N_{\rho}(z_0)$. Then

derivative of f(z) at z_0 , written as $f'(z_0)$,

is defined as the limit:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0},$$
 (1)

provided the limit on RHS exists.

The function f(z) is said to be differentiable at z_0 if its derivative at z_0 exists.

If
$$z$$
- $z_0 = \Delta z$, then (1) reduces to

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

Problem: Differentiablity ⇒ Continuity

Continuity ⇒ Differentiablity

Proof: Let f(z) is differentiable at z_0

$$\Rightarrow f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Now

$$\lim_{z \to z_0} [f(z) - f(z_0)] = \lim_{z \to z_0} \left[\frac{f(z) - f(z_0)}{z - z_0} \times (z - z_0) \right]$$

Derivative of Complex

Function

$$= \lim_{z \to z_0} \left[\frac{f(z) - f(z_0)}{z - z_0} \right] \times \left[\lim_{z \to z_0} (z - z_0) \right]$$

$$= f'(z_0) \times 0 = 0$$

$$\Rightarrow \lim_{z \to z_0} f(z) = f(z_0)$$

$$\Rightarrow f(z)$$
 is continuous at z_0

Continuity \$\Rightarrow\$ Differentiability

To show this consider the function

$$f(z) = |z|^2 = x^2 + y^2 = u(x, y) + i v(x, y)$$

$$\Rightarrow u(x, y) = x^2 + y^2, \quad v(x, y) = 0.$$

Since u and v are continuous everywhere, hence f(z) is continuous everywhere

For $z \neq z_0$, we have

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{|z|^2 - |z_0|^2}{z - z_0} = \frac{z \,\overline{z} - z_0 \overline{z}_0}{z - z_0}$$

$$= \frac{z\,\overline{z} - \overline{z}\,z_0 + \overline{z}\,z_0 - z_0\,\overline{z}_0}{z - z_0} = \frac{\overline{z}(z - z_0) + z_0(\overline{z} - \overline{z}_0)}{z - z_0}$$

Derivative of Complex

Function

$$= \overline{z} + z_0 \cdot \frac{\overline{\Delta z}}{\Delta z}, \qquad z - z_0 = \Delta z$$

$$= \overline{z} + z_0 \cdot \frac{\Delta x - i\Delta y}{\Delta x + i\Delta y}$$

$$=\begin{cases} \overline{z}+z_0, \text{along the path } C_1\\ \overline{z}-z_0, \text{along the path } C_2 \end{cases}$$

Thus, if $z_0 \neq (0,0)$, then

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
 is not unique.

When $z_0 = (0,0)$, then

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \overline{z}_0 = 0.$$

 \Rightarrow f(z) is differentiable at the origin and no where else.

1.
$$f'(z) = \frac{d}{dz}f(z)$$

$$2. \qquad \frac{d}{dz}(c) = 0,$$

$$3. \qquad \frac{d}{dz}(z) = 1,$$

$$4. \qquad \frac{d}{dz}(z^n) = nz^{n-1},$$

5.
$$\frac{d}{dz}(cf(z)) = c \frac{d}{dz} f(z)$$

Differentiation Formulas

6.
$$\frac{d}{dz}(f(z)\pm g(z))=f'(z)\pm g'(z)$$

7.
$$\frac{d}{dz}(f(z)g(z)) = f(z)g'(z) + f'(z)g(z)$$

Differentiation Formulas

8.
$$\frac{d}{dz}\left(\frac{f(z)}{g(z)}\right) = \frac{g(z)f'(z) - g'(z)f(z)}{(g(z))^2},$$

if
$$g(z) \neq 0$$

Chain Rule

Let F(z) = g(f(z)), and assume that f(z) is differentiable at $z_0 \& g$ is differentiable at $f(z_0)$, then F(z) is differentiable at z_0 and

$$F'(z_0) = g'(f(z_0))f'(z_0)$$

Ex. Let
$$w = f(z)$$
 and $W = g(w)$

$$\Rightarrow W = F(z)$$
, hence by Chain rule $\frac{dW}{dz} = \frac{dW}{dw} \frac{dw}{dz}$

Q8:(a) $f(z) = \overline{z}$, show that f'(z) does not exist at any point z.

Solution: Let $z \neq z_0$, then

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{\overline{z} - \overline{z}_0}{z - z_0} = \frac{\overline{z - z_0}}{z - z_0}$$

$$\Rightarrow \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{\Delta z}{\Delta z} = \frac{\Delta x - i\Delta y}{\Delta x + i\Delta y}$$

$$\therefore \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

$$= \begin{cases} 1 \text{ along } C_1 \\ -1 \text{ along } C_2 \end{cases}$$

 C_2 C_1 Δx

 $\Rightarrow f'(z)$ does not exist any where

Q.9 Let f be a function defined by

$$f(z) = \begin{cases} \frac{(\overline{z})^2}{z}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

Show that f'(0) does NOT exist.

achieve

We have,

$$f'(0) = \lim_{\Delta z \to 0} \frac{f(0 + \Delta z) - f(0)}{\Delta z}$$
$$= \lim_{\Delta z \to 0} \frac{\left(\overline{\Delta z}\right)^2 / \Delta z}{\Delta z}$$

lead

Problems

$$\Rightarrow f'(0) = \lim_{\Delta z \to 0} \frac{(\overline{\Delta z})^2}{(\Delta z)^2}$$
$$= \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{(\Delta x - i\Delta y)^2}{(\Delta x + i\Delta y)^2}$$

$$\Rightarrow f'(0) = \begin{cases} 1, \text{ along real axis} \\ 1, \text{ along imaginary axis} \\ -1, \text{ along line } \Delta y = \Delta x \end{cases}$$

Hence f'(0) does NOT exist.

Cauchy-Riemann Equations

Suppose that
$$f(z) = u(x, y) + iv(x, y)$$

and that $f'(z)$ exists at a point

$$z_0 = x_0 + iy_0$$

Then the first-order partial derivatives

$$u_x, u_y, v_x$$
 and v_y must exist at (x_0, y_0)

and they satisfy the CR-equations

i.e.
$$u_x = v_y$$
 and $u_y = -v_x$ at (x_0, y_0)

Cauchy-Riemann Equations

Also,

 $f'(z_0)$ can be written as

$$f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0).$$

<u>Proof</u>

Since f(z) is differentiable at z_0

$$\Rightarrow f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \dots (1)$$

Note that
$$z = x + iy$$
, $z_0 = x_0 + iy_0$

$$\Delta z = \Delta x + i\Delta y$$

$$f(z_0) = u(x_0, y_0) + iv(x_0, y_0)$$

$$\Rightarrow f(z_0 + \Delta z) = u(x_0 + \Delta x, y_0 + \Delta y)$$

$$+ iv(x_0 + \Delta x, y_0 + \Delta y)$$

\therefore Eq.(1) gives

$$f'(z_0) =$$

$$\lim_{(Dx,Dy)\to(0,0)}$$

$$\lim_{(Dx,Dy)\to(0,0)} \frac{u(x_0 + Dx, y_0 + Dy) - u(x_0, y_0)}{Dx + iDy}$$

$$+ i \frac{v(x_0 + Dx, y_0 + Dy) - v(x_0, y_0)}{Dx + iDy}$$

Cauchy-Riemann Equations

$$f'(z_{0}) = \begin{cases} u_{x}(x_{0} y_{0}) + i v_{x}(x_{0} y_{0}), \\ \text{along } C_{1} \\ -i u_{y}(x_{0}, y_{0}) + v_{y}(x_{0}, y_{0}), \\ \text{along } C_{2} \end{cases}$$

Cauchy-Riemann Equations

$$\Rightarrow u_x = v_y, \quad u_y = -v_x at(x_0, y_0),$$

and
$$f'(z_0) = u_x + iv_x$$
 at (x_0, y_0)

WHY ???

Sufficient Condition for Differentiability

Let f(z) = u(x,y) + i v(x, y) be any function defined throughout in some neighbourhood of the point $z_0 = x_0 + i y_0$ such that :

(i) u_x , u_y , v_x , v_y exist in that nbd. of z_0 ,

(ii) u_x , u_y , v_x , v_y are continuous at (x_0, y_0)

Sufficient Condition for Differentiability

(*iii*) the first order partial derivatives satisfy the CR - equations, $u_x = v_y$, $u_y = -v_x$ at (x_0, y_0) .

Then f'(z) exists at z_0 .

C-R Equations in Polar Form

Let $f(z) = u(r,\theta) + i v(r,\theta)$ be differentiable at any given point $z_0 = r_0 e^{i\theta_0}$. Then the partial derivatives u_r , u_θ , v_r , v_θ exist at (r_0,θ_0) and they satisfy $u_r = \frac{1}{r} v_\theta, \quad v_r = -\frac{1}{r} u_\theta$

and

$$f'(z_0) = e^{-i\theta} \left(u_r + i v_r \right) \Big|_{(r_o, \theta_o)}$$

Note: For a complex variable function

$$f(z) = u(x, y) + i v(x, y),$$

Differentiability \Rightarrow continuity of first order partial derivatives of u and v.

Ex:
$$f(z) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{(x^2 + y^2)}}; & (x, y) \neq (0, 0) \\ 0; & (x, y) = (0, 0) \end{cases}$$

Here, f(z) is differentiable at (0,0) but u_x , u_y are not continuous at (0,0).

lead

$$u_{x}(0,0) = \lim_{h \to 0} \frac{u(h,0) - u(0,0)}{h}$$
$$\lim_{h \to 0} \frac{h^{2} \sin \frac{1}{|h|}}{h} = 0$$

similarly, $u_{\nu}(0,0) = 0$.

Away from origin

$$u_{x}(x,y) = 2x \sin\left(\frac{1}{\sqrt{(x^{2} + y^{2})}}\right) - \frac{x}{\sqrt{(x^{2} + y^{2})}} \cos\left(\frac{1}{\sqrt{(x^{2} + y^{2})}}\right)$$
$$u_{y}(x,y) = 2y \sin\left(\frac{1}{\sqrt{(x^{2} + y^{2})}}\right) - \frac{y}{\sqrt{(x^{2} + y^{2})}} \cos\left(\frac{1}{\sqrt{(x^{2} + y^{2})}}\right)$$

 $u_x(x,y)$, $u_y(x,y)$ oscillate wildly near origin and hence are discontinuous at origin.

For example

$$u_x(x,0) = 2x \sin\left(\frac{1}{|x|}\right) - sign(x) \cos\left(\frac{1}{|x|}\right), \quad x \neq 0$$

Where $sign(x) = \pm 1$

Second term of $u_x(x, 0)$ oscillates wildly between 1 and -1 as $x \to 0$ ensuring the non-existence of limit and hence discontinuity of $u_x(x, y)$ at (0,0).

Similarly, $u_v(x, y)$ is discontinuous at origin.

Example 1: For the function

$$f(z) = z^2,$$

find out the points where the function is differentiable. Also find f'(z)

Solution: Consider

$$f(z) = z^2 = x^2 - y^2 + i2xy \equiv u + iv$$

$$\Rightarrow u(x, y) = x^2 - y^2, v(x, y) = 2xy$$

innovate achieve lead

Problems

$$\Rightarrow u_x = 2x, \ u_y = -2y,$$

$$v_x = 2y, \ v_y = 2x$$

$$\Rightarrow u_x = v_y \ \& \ u_y = -v_x$$

 \Rightarrow (i) CR - equations are satisfied for all x, y (ii) u_x , u_y , v_x , and v_y are continuous for all x, y

 $\Rightarrow f(z) = z^2$ is differentiable at any point z, and

$$f'(z) = u_x + iv_x = 2x + i2y = 2z$$

Example 2: For the function

$$f(z) = \left| z \right|^2,$$

find out the points where the function is differentiable. Also find f'(z)

Consider
$$f(z) = |z|^2 = x^2 + y^2$$

 $\Rightarrow u(x, y) = x^2 + y^2 & v(x, y) = 0$

innovate achieve lead

Problems

$$\triangleright u_x = 2x, u_y = 2y, v_x = 0, v_y = 0,$$

If CR -equations are satisfied,

then we must have x = 0 = y.

Also u_x , u_y , v_x , v_y are continuous at (0,0)

 \Rightarrow f(z) is differentiable only at (0,0) and no where else. Further

$$f'(0) = u_x(0,0) + iv_x(0,0) = 0$$

Page 72/Q.6: Let u & v denote the real & imaginary parts of the function f definedby

$$f(z) = \begin{cases} \frac{(\overline{z})^2}{z}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

Show that CR - equations are satisfied at (0,0) although f is NOT differentiable at (0,0).

lead

Problems

Solution:

RECALL: f is not differentiable at (0,0)

(already done)

We have, when $z \neq 0$,

$$f(z) = \frac{(\overline{z})^2}{z} = \frac{(x-iy)^2}{x+iy} = \frac{(x-iy)^3}{(x+iy)(x-iy)}$$
$$= \frac{x^3 - 3xy^2}{x^2 + y^2} - i\frac{3x^2y - y^3}{x^2 + y^2}$$

$$\Rightarrow u(x, y) = \frac{x^3 - 3xy^2}{x^2 + y^2},$$

$$v(x, y) = \frac{y^3 - 3x^2y}{x^2 + y^2}, (x, y) \neq (0, 0)$$

When z = 0, then

$$u(x, y) = 0 = v(x, y)$$

innovate achieve

lead

Problems

$$u_{x}(0,0) = \lim_{x \to 0} \frac{u(x,0) - u(0,0)}{x} = \lim_{x \to 0} \frac{x - 0}{x} = 1$$

$$v_{x}(0,0) = \lim_{x \to 0} \frac{v(x,0) - v(0,0)}{x} = \lim_{x \to 0} \frac{0 - 0}{x} = 0$$

$$u_{y}(0,0) = \lim_{y \to 0} \frac{u(0,y) - u(0,0)}{y} = \lim_{y \to 0} \frac{0 - 0}{y} = 0$$

$$v_{y}(0,0) = \lim_{y \to 0} \frac{v(0,y) - v(0,0)}{y} = \lim_{y \to 0} \frac{y - 0}{y} = 1$$

Thus $u_x = v_y \& u_y = -v_x$. Hence, proved.

THANK YOU