# WORKER-JOB MATCHING AND SHADOW-PRICING IN ACTIVITY-BASED MODELS

JOHN GIBB

Senior Transportation Engineer DKS Associates

jag@dksassociates.com



#### **WORK LOCATION MODEL**

**Agents:** Employed persons

Choice set: Spatial units, employment given

#### Choice model + market model

Logit + maximum entropy is

$$p_{i}(j) = \frac{\exp(\beta x_{ij} + \alpha_{j})}{\sum_{j \in \{J\}} \exp(\beta x_{ij} + \alpha_{j})}$$
 Same for all agents 
$$\alpha_{j} = \text{"shadow prices"}$$
 given

**Solution:** 
$$\alpha_j \leftarrow \alpha_j + \ln\left(\frac{w_j}{\sum_i p_i(j)}\right)$$
 for all  $j$  predicted

#### WHY REVISIT SHADOW-PRICES?

A solved problem???

| Disaggregate individuals                           | Long runtimes                                   |  |  |  |
|----------------------------------------------------|-------------------------------------------------|--|--|--|
| Single random outcomes                             | Noise: $n_i \sim \text{Poisson}(\sum_i p_i(j))$ |  |  |  |
| Unchosen alternatives                              | Must adapt to not divide by zero                |  |  |  |
| Adaptations w/ limited & unpublished investigation | Convergence "bottoms out"                       |  |  |  |

Can we solve better? Faster?

### "CLEARINGHOUSE" MARKET MODELS ### MAX ENTROPY

**Ordered choice** = Serial Dictatorship

**ActivitySim** ≈ Rank Maximal

#### **DEMO - NOISE**

1000 persons, 20 alternatives Add an ASC vector in small steps



#### Monte Carlo, frozen randoms



## REGIONAL MODEL EXPERIMENTS

#### MODEL FOR EXPERIMENTS

### Rough emulation of Sacramento regional model work location choice

- 1,046,000 working persons
- 15,900 "parcel" groups having employment Grouped to avoid < 10 if possible
- 100 sampled alternatives per person

#### **ADJUSTMENT FORMULAS IN USE**

#### Handle zero outcomes

Many dampen

**CTRAMP:** 
$$\alpha \leftarrow \begin{cases} \alpha + \omega \ln \left(\frac{w}{n}\right) & \text{if } n > 0 \\ \alpha & \text{otherwise} \end{cases}$$

**Daysim:** 
$$\alpha \leftarrow \alpha + \ln\left(\frac{w \pm tol}{\max(n,0.01)}\right)$$
, tol by diff or %

**Truncate:** 
$$\alpha \leftarrow \alpha + \omega \ln \left( \frac{w}{\max(n,\delta)} \right)$$
,  $\delta = 0.5$ , 1, ...?

## ITERATION HISTORY OF SOME LOCATIONS WITH ZERO ITERATES: CTRAMP

|      | Iterat | ion -> |    |    |    |    |    |    |
|------|--------|--------|----|----|----|----|----|----|
| Jobs | 1      | 2      | 3  | 4  | 5  | 6  | 7  | 8  |
|      |        |        |    |    |    |    |    |    |
| 16   | 0      | 0      | 0  | 0  | 0  | 0  | 0  | 1  |
| 3    | 0      | 0      | 0  | 0  | 0  | 0  | 0  | 0  |
| 29   | 0      | 1      | 16 | 26 | 24 | 27 | 28 | 27 |
| 15   | 0      | 1      | 9  | 9  | 15 | 13 | 13 | 14 |
| 39   | 0      | 0      | 0  | 1  | 9  | 22 | 27 | 32 |
| 16   | 0      | 0      | 2  | 1  | 17 | 18 | 19 | 18 |
| 10   | 0      | 0      | 1  | 7  | 7  | 6  | 7  | 9  |
| 10   | 0      | 1      | 7  | 8  | 8  | 9  | 9  | 8  |
| 40   | 0      | 2      | 19 | 33 | 34 | 37 | 35 | 39 |
|      |        |        |    |    |    |    |    |    |

## ITERATION HISTORY OF SOME LOCATIONS WITH ZERO ITERATES: DAYSIM

|      | Iterat | ion -> |    |    |      |     |    |    |
|------|--------|--------|----|----|------|-----|----|----|
| Jobs | 1      | 2      | 3  | 4  | 5    | 6   | 7  | 8  |
|      |        |        |    |    |      |     |    |    |
| 30   | 0      | 0      | 0  | 0  | 1687 | 161 | 36 | 32 |
| 6    | 2      | 0      | 1  | 2  | 2    | 2   | 1  | 1  |
| 10   | 0      | 0      | 0  | 0  | 47   | 9   | 6  | 20 |
| 5    | 1      | 0      | 1  | 0  | 0    | 1   | 1  | 0  |
| 14   | 0      | 371    | 39 | 19 | 10   | 15  | 14 | 13 |
| 11   | 0      | 0      | 0  | 0  | 73   | 10  | 10 | 10 |
| 6    | 6      | 1      | 0  | 0  | 1    | 0   | 1  | 1  |
| 7    | 0      | 1      | 1  | 1  | 3    | 3   | 2  | 1  |
| 11   | 0      | 0      | 0  | 0  | 45   | 14  | 9  | 14 |
|      |        |        |    |    |      |     |    |    |

#### **NEW ADJUSTMENT FORMULAS**

#### Size-based dampening (by zone size)

S1: 
$$\alpha \leftarrow \alpha + \omega \ln \left( \frac{w+1}{n+1} \right)$$

S2: 
$$\alpha \leftarrow \alpha + \ln\left(\frac{w+\delta}{n+\delta}\right)$$

S3: 
$$\alpha \leftarrow \alpha + \ln\left(\frac{w + \theta w + \delta}{n + \theta w + \delta}\right)$$

Typical:  $\delta$ =1 or experimental, increase later;  $\omega$ =1, decrease gradually

#### **Difference-based dampening** (by error difference)

D1: 
$$\alpha \leftarrow \alpha + \ln \left( \frac{w}{n + (w - n) \frac{\delta}{\delta + |w - n|}} \right)$$

D2: 
$$\alpha \leftarrow \alpha + \ln \left( \frac{w}{n + (w - n) \frac{\delta^2}{\delta^2 + (w - n)^2}} \right)$$

Toward  $w$ ... ...by a fraction

#### **CONVERGENCE: BASIC FORMULAS**



#### **COMPARE SIZE-DAMPENING**



#### **COMPARE DIFFERENCE-DAMPENING**



## MONTE CARLO IS NOT THE ONLY CASINO

## APPLICATION METHOD 2: FROZEN RANDOM UTILITIES

Monte Carlo → counterintuitive & excessive choice switching (Zill & Veitch, 2022)

Solution: draw Gumbel random utilities

$$\epsilon_{ii} = -\ln(-\ln(random \in (0,1)))$$

#### **DEMO - NOISE**

#### Same 20-zone as before





#### **CONVERGENCE: FMC vs FRU, S FORMS**



#### **CONVERGENCE: FMC vs FRU, D FORMS**



# SHADOW-PRICING WITH SAMPLES OF THE POPULATION?

#### **ERROR DECOMPOSITION**

#### Sample squared error

= systematic error + Poisson variance



Big-enough sample if "signal" >> "noise"

#### **AGENT SAMPLING METHOD**

| Batch 1  | Sample 1     |
|----------|--------------|
| Batch 2  |              |
| Batch 3  | Sample 2     |
| Batch 4  |              |
| Batch 5  |              |
| Batch 6  |              |
| Batch 7  | Sample 3     |
| Batch 8  |              |
| Batch 9  |              |
| Batch 10 |              |
| Batch 11 |              |
| Batch 12 | Begin Sample |
| Batch 13 | 4?           |
| Batch 14 |              |
| Batch 15 |              |
| Batch 16 |              |
| Batch 17 |              |



IF samp sq err > sample size • (3 or so),
OR sample = full population,
THEN Adjust SPs, Start new sample
ELSE keep on with current sample

Return to beginning

#### **GROWING SAMPLE TESTS - FMC**



#### **GROWING SAMPLE TESTS – FRU**



#### STOCHASTIC VARIATION

#### STOCHASTIC VARIATION

10 runs of selected models (dampened-difference)

Variance is per location

Same inputs except random numbers (seed)



#### **WRAP-UP**

#### **CONCLUSIONS**

#### Use **better SP adjustment formulas**

esp. difference-based dampening

Clearinghouse methods are not substitutes

Pursue **frozen random utilities** instead of Monte Carlo

Shave runtime with **agent sampling** runtime method

#### **EXTRA SLIDES FOLLOW**

#### **DIAGNOSTICS FOR BOTTOMING OUT**

#### Especially squared error > Poisson error

- Locate outliers, "pockets of resistance", isolated areas with supply-demand imbalance, SPs diverge with little change in choice, or SP >> In(num of sample alts)
  - > Data errors? IX-XI problems?
  - > Do more sampled alternatives help?
  - > Try flatter sampling function, to include more longer-distance locations. (You can't have conditional probability > 1 to make up for undersampling.)
- School choice may suffer local imbalances, data uncertainty. Matching forces excessive long commutes. Consider soft constraints.

## MORE ON STOCHASTIC VARIATION

#### **VARIANCE OF WORKERS BY TAZ (1)**

- 10 runs of Sacramento ABM alone
- All inputs identical, including SPs
- Only the random seeds vary between runs



#### **VARIANCE OF WORKERS BY TAZ (1)**

- 10 runs of Sacramento ABM alone
- All inputs identical, including SPs
- Only the random seeds vary between runs



How should full models go, each with SP iteration? More? ... Less?

#### **VARIANCE OF WORKERS BY TAZ (2)**

- 10 runs of entire Sacramento TDM w/SP iteration
- Initial inputs identical
- Only the random seeds vary between runs



#### **VARIANCE OF WORKERS BY TAZ (3)**

- 10 runs of entire
   Sacramento TDM
   w/ new SP formula
- Initial inputs identical
- Only the random seeds vary between runs



# MORE ON MONTE CARLO VS RANDOM UTILITIES

### MORGANBESSER'S DESSERT CHOICE

Sidney Morganbesser (1921-2004), American philosopher, social theorist

apple

blueberry

## MORGANBESSER'S DESSERT CHOICE



# MONTE CARLO AND MORGANBESSER'S DESSERT CHOICE



# MONTE CARLO AND MORGANBESSER'S DESSERT CHOICE



## **BAYESIAN PERSPECTIVE**

## **A BAYESIAN VIEW**

Uninformed prior



+ One Poissondistributed observation



→ Posterior

Mean = Obs + 1



# MORE ON STOCHASTIC VARIATION OF SHADOW PRICES

# STOCH. VARIATION of SHADOW PRICES



## STOCH. ERROR OF SHADOW-PRICES W.R.T. SIZE OF LOCATION





Result for 10 runs, each well-converged: 14th iteration of FRU using damped-diff

Shows "inverted" Poisson error in the well-converged shadow prices

#### **WANT SHADOW-PRICE PRECISION??**

## Why?

Dependent models

**User-benefits** 

#### How?

Accumulate conditional probabilities instead of single outcomes

Then neutralize shadow-prices: subtract the weighted average

## APPLICATION METHOD 3: CONDITIONAL PROBABILITIES

**Accumulate conditional probabilities,** instead of single outcomes

100 alternatives have  $\approx 1/50$  the noise variance

No frozen randoms – converge toward central limit

Can use samples of the population

Need to draw single outcomes afterwards

Or continue iterating with a single-outcome method

# STOCH. VARIATION of SHADOW PRICES



## **CONDITIONAL PROBS CONVERG'CE**



# MORE ON AGENT SAMPLING

### SIGNAL AND NOISE

In early iterations,

Squared error = Poisson variance + systematic error

From a sample of the population (s out of N),

Calculated Sample Sq'd Error 
$$\equiv \sum_{j} \left( n_{j} - w_{j} \frac{s}{N} \right)^{2}$$

Sample Sq'd Error 
$$\approx s + \left(\frac{s}{N}\right)^2 \left(\text{Popul. Sq'd Error} - N\right)$$

- As sample gets larger, systematic error "signal" grows disproportionally over Poisson "noise".
  - > Acceptance criteria tested: SSE>3s or SSE>5s
- Later, when acceptance criteria can't be met, process whole population

#### **AGENT SAMPLING PROCEDURE**

**Select batches** of sample agents (I used 1/20 or 1/50)

**Run model** for everyone in the batch, accumulating to the current sample

**Calculate** sample squared error (job targets scaled proportionally)

**Test**: IF [sample squared error > sample size • (3 or so), AND cum. sample size > prev. sample size • (1.5 or so)] OR sample is the whole population, THEN

Update shadow prices

Reset current sample to empty

**Repeat** for the next batch

**Ensure** everyone's final choice uses final shadow prices

# MORE ON ENTROPY vs OTHER MARKET MODELS

### **SHADOW-PRICED LOGIT IS**

- Maximum entropy maximum total expected utility (logsums) • most-probable posterior • fair (same "prices" for all) • symmetric equivalence to house-choice
- Equilibrium among utility-maximizing agents who can change jobs or homes through life
- Empirically supported (DePalma, Picard, Waddell 2007
   Bernardin, Trevino, Gliebe 2015
   Gibb 2023)

# Clearinghouse models that are NOT EQUIVALENT

- Ordered choice from remaining = serial dictatorship
- ActivitySim similar to rank maximal

Better represent society? - Or just a quicker computation?

# NON SHADOW-PRICE METHODS THAT HAVE COME TO SOME ABMS

- Serial dictatorship (seniority, priority)
  - > Early Daysim (later changed to shadow-pricing)
  - > Original Emme Agent
  - > Some college admissions clearinghouses
- Rank maximal (greedy, immediate acceptance)
  - > ActivitySim is similar
  - > Boston public schools before 2005
- Used in ABMs for computational reasons
- No claims as better representations of how society works.
- Distinctly different models with different results.