Correlation Tracking for Points-To Analysis of JavaScript

Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip

Introduction

- Why JavaScript?
 - It's flexible object model in which object properties can be created and deleted at run-time.
 - Programmers may define a "method" on an object by assigning a function to one of its properties.

```
o.foo = function f1() { return 23; };
```

Some problems :(

Object properties are dynamic.

```
f = p() ? "foo" : "baz";
o[f] = "Hello , world!";
```

 The presence of eval means that a (useful) static analysis for JavaScript cannot be sound.

- Language lacks classes and declared types for variables.
 - Type filters cannot be employed.
- Flexibility with function's arguments.

```
function extend(destination , source) {
   for (var property in source)
      destination[property] = source[property];
   return destination;
}
```

```
function extend(destination , source) {
    for (var property in source)
        destination[property] = source[property];
    return destination;
}
```

We should see:

```
function extend(destination , source) {
   for (var property in source)
      destination[property] = source[property];
   return destination;
}
```

- We should see:
 - The name of the property accessed by a dynamic property access expression is computed at run-time.

```
function extend(destination , source) {
    for (var property in source)
        destination[property] = source[property];
    return destination;
}
```

- We should see:
 - The name of the property accessed by a dynamic property access expression is computed at run-time.
 - A write to a property creates that property if it does not exist yet.

```
function extend(destination , source) {
    for (var property in source)
        destination[property] = source[property];
    return destination;
}
```

- We should see:
 - The name of the property accessed by a dynamic property access expression is computed at run-time.
 - A write to a property creates that property if it does not exist yet.
 - JavaScript program create objects with an unbounded number of properties,

Andersen's points-to analysis

Statement	Constraint	
i: x = new T()	$\{o_i\} \subseteq pt(x)$	[New]
x = y	$pt(y) \subseteq pt(x)$	[Assign]
x = y.f	$\frac{o_i \in pt(y)}{pt(o_i.f) \subseteq pt(x)}$	[Load]
x.f = y	$\frac{o_i \in pt(x)}{pt(y) \subseteq pt(o_i.f)}$	[Store]

Field-Sensitive Points-To Analysis for JavaScript

- Differs from a standard
 Andersen-style supports
 tracking of property
 names
- The points-to set of a program variable x as pt(x)

Statement	Constraint	
$\mathbf{x} = \{\}^i$	$\{o^i\}\subseteq pt(x)$	[Alloc]
v = "name"	$\{\mathtt{name}\}\subseteq pt(v)$	[StrConst]
x = y	$pt(y) \subseteq pt(x)$	[Assign]
x[v] = y	$\frac{o \in pt(x) \mathbf{s} \in pt(v)}{pt(y) \subseteq pt(o.\mathbf{s})}$	[StoreField]
y = x[v]	$\frac{o \in pt(x) \mathbf{s} \in pt(v)}{pt(o.\mathbf{s}) \subseteq pt(y)}$	[LoadField]
<pre>v = x.nextProp()</pre>	$\frac{o \in pt(x) \qquad o.\mathtt{s} \text{ exists}}{\{\mathtt{s}\} \subseteq pt(v)}$	[PropIter]

Complexity

- Andersen's Points-to analysis: O(N³)
 - Solving a dynamic transitive closure.
- Point-to analysis in Javascript: O(N⁴)
 - Andersen's analysis + finding dynamic fields for each statement

Imprecision Example (I)

1. The program creates o1 and o2

```
1 src = {}
2 dest = {}
3 src["ext"] = {}
4 src["ins"] = {}
5 prop = (*) ? "ext" : "ins";
6 t = src[prop];
7 dest[prop] = t;
```

Imprecision Example (I)

- 1. The program creates o1 and o2
- 2. The program creates properties ext and ins in the object o1

```
1 src = {}
2 dest = {}
3 src["ext"] = {}
4 src["ins"] = {}
5 prop = (*) ? "ext" : "ins";
6 t = src[prop];
7 dest[prop] = t;
```

Imprecision Example (I)

- 1. The program creates o1 and o2
- 2. The program creates properties ext and ins in the object o1
- 3. Copies one of these properties to object o2

```
1 src = {}
2 dest = {}
3 src["ext"] = {}
4 src["ins"] = {}
5 prop = (*) ? "ext" : "ins";
6 t = src[prop];
7 dest[prop] = t;
```

Imprecision Example (II)

Finally...

Correlation Tracking

A dynamic property read *r* and a property write *w* are said to be correlated if *w* writes the value read at *r*, and both *w* and *r* must refer to the same property name

Correlation Tracking

A dynamic property read *r* and a property write *w* are said to be correlated if *w* writes the value read at *r*, and both *w* and *r* must refer to the same property name

```
1 src = {}
2 dest = {}
3 src["ext"] = {}
4 src["ins"] = {}
5 prop = (*) ? "ext" : "ins";
6 t = src[prop];
7 dest[prop] = t;
```

Implementing Correlation Tracking

- Identifying Correlations
 - Def-use graph obtained by dataflow analysis.
- Extracting the snippet of code containing the two accesses into a new function with p as its parameter.
- Each function is analysed context sensitively with a separate context for each value of p

Their solution: Anonymous Function

```
1 \text{ src} = \{\}
2 \text{ dest} = \{\}
3 src["ext"] = {}
                                 1 \text{ src} = \{\}
4 src["ins"] = {}
                                  2 \text{ dest} = \{\}
5 if (*) {
                                  3 src["ext"] = {}
6 prop1 = "ext";
                                  4 src["ins"] = {}
                                  5 prop = (*) ? "ext" : "ins";
7 t1 = src[prop1];
                                  6 (function(ff) {
8 dest[prop1] = t1;
9 } else {
                                  7 t = src[ff];
  prop2 = "ins";
                                  8 dest[ff] = t;
10
11 t2 = src[prop2];
                                 9 })(prop);
12 dest[prop2] = t2;
                                                (b)
13 }
              (a)
```

Another possible solution: Cloning

```
1 src = {}
2 dest = {}
3 src["ext"] = {}
4 src["ins"] = {}
5 prop = (*) ? "ext" : "ins";
6 t = src[prop];
7 dest[prop] = t;
```



```
1 \text{ src} = \{\}
2 \text{ dest} = \{\}
3 src["ext"] = {}
4 src["ins"] = {}
5 if (*) {
6 prop1 = "ext";
7 t1 = src[prop1];
8 dest[prop1] = t1;
9 } else {
10 prop2 = "ins";
11 t2 = src[prop2];
12 dest[prop2] = t2;
13 }
              (a)
```

Extending WALA Points-to analysis with correlation tracking

- Extending WALA Points-to analysis with correlation tracking
- Access to an unknown property is handled by WALA by using an abstract object property that represent all the property values

- Extending WALA Points-to analysis with correlation tracking
- Access to an unknown property is handled by WALA by using an abstract object property that represent all the property values
- Is not sound
 - Cannot handle with blocks
 - Cannot handle eval and the Function Constructor
 - toString and valueOf methods are ignored

- Extending WALA Points-to analysis with correlation tracking
- Access to an unknown property is handled by WALA by using an abstract object property that represent all the property values
- Is not sound
 - Cannot handle with blocks
 - Cannot handle eval and the Function Constructor
 - toString and valueOf methods are ignored
- Four results
 - Handling or not handling call/apply support (⁺, ⁻)
 - Enable Correlations analysis or disable it, Baseline

non-blank Results # correlated lines access pair Framework | Home Page Version LOC Correlated Pairs http://www.dojotoolkit.org 1.6.1 4748 dojo20 1.6.1 5896 34 http://jquery.com jquery 3815 mootools http://mootools.net 1.4.041 prototype.js | http://prototypejs.org 4956 31 http://developer.yahoo.com/yui 2.9 | 24088yui

Framework	Baseline ⁻	Baseline ⁺	Correlations ⁻	Correlations ⁺
dojo	* (*)	* (*)	3.1 (30.4)	6.7 (*)
jquery	*	*	78.5	*
mootools	0.7	*	3.1	*
prototype.js	*	*	4.4	4.5
yui	*	*	2.2	2.1

Time (in seconds) to build call graphs for the benchmarks, average per framework, '*' indicates timeout.

Results

Framework	Baseline ⁻	Baseline ⁺	Correlations ⁻	Correlations ⁺
dojo	$\geq 60.8\% \ (\geq 60.4\%)$	$\geq 60.5\% \ (\geq 60.1\%)$	16.7% (24.5%)	$18.8\% \ (\geq 28.3\%)$
jquery	$\geq 35.9\%$	$\geq 36.2\%$	26.7%	$\geq 31.5\%$
mootools	9.5%	$\geq 35.5\%$	9.5%	$\geq 10.9\%$
prototype.js	$\geq 40.5\%$	$\geq 40.7\%$	17.8%	18.7%
yui	$\geq 16.6\%$	$\geq 16.6\%$	12.0%	12.2%

Percentage of functions considered reachable by our analysis, averaged by framework; '2' indicates that the number is a lower bound due to analysis timeout.

Framework	Baseline ⁻	Baseline ⁺	Correlations ⁻	Correlations ⁺
dojo	\geq 239.4 (\geq 240)	\geq 226.4 (\geq 225)	0.0 (1)	1.0 (≥11)
jquery	≥ 244.0	≥ 249.0	3.0	≥ 9.0
mootools	0.0	≥ 29.2	0.0	≥ 0.0
prototype.js	≥ 164.5	≥ 166.0	0.0	0.2
yui	≥ 29.0	≥ 34.5	0.0	0.0

Number of highly polymorphic call sites (i.e., call sites with more than five call targets) for the benchmarks, averaged per framework; '≥' indicates that the result is a lower bound due to timeout.

Conclusions

Points-to analysis for JavaScript is a challenging task

Conclusions

- Points-to analysis for JavaScript is a challenging task
- Correlation tracking technique aids analyzing common JavaScript frameworks
 - Scalability
 - Precision

Conclusions

- Points-to analysis for JavaScript is a challenging task
- Correlation tracking technique aids analyzing common JavaScript frameworks
 - Scalability
 - Precision

- Further work: Needs to make an analysis more sound
 - Support call and apply
 - Support arguments array

Preguntas?

