EVALUACIÓN MODELOS CLASIFICACIÓN

Métricas de clasificación

Exactitud (Accuracy)

Precisión (Precision)

Exhaustividad (Recall)

F-score

Kappa

Matriz de confusión

Curvas ROC

AUC

Exactitud (Accuracy)

If \hat{y}_i is the predicted value of the *i*-th sample and y_i is the corresponding true value, then the fraction of correct predictions over n_{samples} is defined as

$$\mathtt{accuracy}(y, \hat{y}) = rac{1}{n_{\mathrm{samples}}} \sum_{i=0}^{n_{\mathrm{samples}}-1} 1(\hat{y}_i = y_i)$$

¿Qué proporción de muestras fueron clasificadas correctamente?

from sklearn.metrics import accuracy_score accuracy=accuracy_score(y_true=iris_class_test, y_pred=predicted) print('Accuracy: %f' % accuracy)

Precisión (Precision)

Precision is the ability of the classifier not to label as positive a sample that is negative

$$Precisión = \frac{VP}{VP + FP}$$

¿Qué proporción de identificaciones positivas fue correcta?

from sklearn.metrics import precision_score precision=precision_score(y_true=iris_class_test, y_pred=predicted, average='micro') print('Precision:', precision)

Exhaustividad (Recall)

Recall is the ability of the classifier to find all the positive samples

$$Exhaustividad = \frac{VP}{VP + FN}$$

¿Qué proporción de positivos reales se identificó correctamente?

from sklearn.metrics import recall_score recall = recall_score(y_true=iris_class_test, y_pred=predicted, average = 'micro') print('Recall: %f' % recall)

F-score

F-Score (también llamado Valor-F o Medida-F en español) (Lewis y Gale, 1994) combina las medidas de precisión y exhaustividad para devolver una medida de calidad más general del modelo. Se calcula como la media armónica de las métricas mencionadas

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}} \qquad F_1 = \left(rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}}
ight) = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

from sklearn.metrics import f1_score f1 = f1_score(y_true=iris_class_test, y_pred=predicted, average= 'micro') print('F1 score: %f' % f1)

Kappa

El índice de Kappa, un instrumento diseñado por Cohen que ajusta el efecto del azar en la proporción de la concordancia observada

$$K = \frac{P_o - P_c}{1 - P_c}$$

Donde Po es la proporción de concordancia observada, Pe es la proporción de concordancia esperada por azar y 1 – Pe, representa el acuerdo o concordancia máxima posible no debida al azar

from sklearn.metrics import cohen_kappa_score kappa=cohen_kappa_score (y1= iris_class_test, y2= predicted) print('Cohens kappa: %f' % kappa)

Matriz de confusión

		Predicción	
		Positivos	Negativos
Observación	Positivos	Verdaderos Positivos (VP)	Falsos Negativos (FN)
	Negativos	Falsos Positivos (FP)	Verdaderos Negativos (VN)

Ejemplo:

n=165	Predicted: NO	Predicted: YES
Actual: NO	50	10
Actual: YES	5	100

Curvas ROC - AUC

$$FPR = \frac{FP}{FP + VN}$$