Universidade de Évora

Estatística Aplicada às Ciências Humanas e Sociais

Ciências de Educação, Ciências da Informação e Documentação, Geografia, Psicologia, Sociologia e Turismo

1^a Frequência – 16 de Novembro de 2009

Entregue 3 folhas de teste em separado: I numa folha, II e III noutra e IV e V noutra **Numere todas as folhas:** por exemplo 1/3, 2/3 e 3/3 (caso entregue 3 folhas)

Duração: 120 minutos, já com **tolerância. Consulta:** Tabela Normal (fornecida)

Ι

Em determinada *autarquia modelo* a divulgação de eventos culturais constitui uma estratégia para captar turistas. Para cada um de 60 eventos recolheu-se o número de espectadores presentes, Com o auxílio do SPSS, obteve-se o seguinte *Output*:

Statistics

_nEsp n° de espectadores						
N	Valid	60				
	Missing	0				
Median		87,5000				
Mode		208,00				
Std. Deviation	55,58934					
Skewness	,663					
Std. Error of S	,309					
Kurtosis	-,622					
Std. Error of k	,608					
Range	181,00					
Minimum	27,00					
Sum		6070,00				
Percentiles	10	32,9000				
	25	55,0000				
	75	138,7500				
	205,8000					

- a) Qual a variável estatística em estudo? Classifique-a.
- b) Indique os valores da:
 - i. Média.
 - ii. Amplitude total
 - iii. Amplitude Inter-quartil
- c) Complete as sequintes frases:
 - i. O número máximo de espectadores presentes num evento foi de ______.
 - ii. Em metade dos eventos registou-se uma presença de espectadores superior a ______.
 - iii. Em 10% dos eventos a presença de espectadores foi superior a ______.
- d) Classifique os dados quanto à assimetria.
- e) Classifique os dados quanto ao achatamento.
- f) A Média é representativa dos dados? Justifique.

Suponha que num serviço de urgência de uma unidade hospitalar localizada numa determinada região, 30% dos indivíduos atendidos apresentam sintomas de depressão e 70% não apresentam esses sintomas. Nessa região a tentativa de suicídio representa um factor de risco que tem custos elevados na Saúde Pública. Sabe-se que a probabilidade de um indivíduo que entra no serviço de urgência por tentativa de suicídio dado apresentar sintomas de depressão é igual a 0,35 e que a probabilidade de um indivíduo que entra no serviço de urgência por tentativa de suicídio dado não apresentar sintomas de depressão é igual a 0,05.

- a) Calcule a probabilidade de um indivíduo que entra na urgência, escolhido ao acaso, ter tentado de suicídio.
- b) Qual será a probabilidade de um indivíduo que entra na urgência, aleatoriamente seleccionado, apresentar sintomas de depressão dado ter tentado o suicídio?
- c) Serão os acontecimentos "apresentar sintomas de depressão" e "ter tentado suicídio" independentes? Justifique.

III

Seja **X** uma variável aleatória que indica o nº de vezes que, durante um ano, a electricidade de uma moradia é cortada por falta de pagamento e a **Y** variável aleatória que indica o nº de vezes que a água é cortada pelo mesmo motivo. Considere a função de probabilidade conjunta:

Y\X	0	1	2
0	0.3	0.2	0.1
1	0.1	0.1	0
2	0.1	0	a

- a) Mostre que a=0,1.
- b) Determine as funções de probabilidade marginais de X e Y
- c) Calcule $P(\mathbf{X}=2|\mathbf{Y}=0)$ e $P(\mathbf{XY}\leq 1)$
- d) Mostre que E(XY) = 0.5 e determine Cov(X,Y). Interprete este último resultado.
- e) Serão as variáveis aleatórias X e Y independentes? Justifique.

IV

Uma empresa produtora de chocolates decidiu fazer uma campanha promocional incluindo um prémio nos seus chocolates. Sabe-se que 30% dos chocolates lançados no mercado contêm prémio. Analisaram-se 10 chocolates.

a) Quantos prémios se esperam obter?

$$P(X=x)=C_x^n p^x (1-p)^{n-x}; E(X)=np; Var(X)=np(1-p)$$

b) Qual a probabilidade de se obter pelo menos 2 prémios?

x	0	1	2	3	4	5	6	7	8	9	10
C_x^{10}	1	10	45	120	210	252	210	120	45	10	1

V

Numa determinada região do planeta a pluviosidade anual (**X**), medida em litros/m², é uma variável aleatória com distribuição normal de média igual a 80 litros/m² e desvio padrão igual a 10 litros/m².

- a) Calcule a probabilidade de a pluviosidade anual na referida região:
 - i) Ser inferior a 90 litros/m²;
 - ii) Estar compreendida entre 75 litros/m² e 85 litros/m²;
- b) Calcule o valor da pluviosidade x, por forma que P(X > x) = 0.25.