Reindeer exhibit avoidance behavior near power grid lines at a Storliden mountain area in Malå municipality in Sweden

Author: Kanchana Weerasinghe Business Intelligence (AMI295) - Data Science Dalarna Univerity e-mail: h23kalwe@du.se

Abstract— This study aimed to predict reindeer exhibit avoidance behavior near power grid lines, focusing on the impact of power grid line, human-made structures and natural features. Employing logistic regression, recursive feature elimination (RFE), and a random forest approach, key environmental predictors such as proximity to power lines, roads, elevation, and slope were analyzed. The results indicate that distance to power lines alone does not significantly affect reindeer habitat choice. The predictive model showed 64.43% accuracy, with high sensitivity (94.05%) and low specificity (18.53%), indicating a tendency to overpredict instances where visits don't occur.

Keywords- Pellet, Broad Leaved Forest, Clear Cut Forest, Young Forest, Coniferous Forest, Mine, Power Lines

I. INTRODUCTION

Understanding reindeer behavior and habitat usage patterns is crucial for effective wildlife management and conservation efforts. Recent scientific investigations have shed light on the unique visual abilities of reindeer, particularly their capacity to perceive ultraviolet (UV) radiation [1].

This research is crucial due to the planned expansion of nuclear generating capacity by 2035, necessitating an assessment of wildlife impact [3]. The study aims to:

- 1) Assess whether reindeer avoid power grid lines.
- 2) Determine if avoidance is influenced by location characteristics, water sources, proximity to man-made structures, and forest characteristics.
- 3) Analyze and predict reindeer visit patterns based on these factors.

II. LITERATURE REVIEW

A. Habitat Usage Patterns of Reindeer

Reindeer (Rangifer tarandus) are integral to Arctic ecosystems, and their habitat preferences and behavioral patterns have been the subject of numerous studies due to

their ecological and cultural significance. Understanding these patterns is critical for wildlife management and conservation. Reindeer exhibit complex behaviors in response to various environmental stimuli, including vegetation type, human infrastructure, and seasonal changes.

B. Reindeer Vision and Ultraviolet Perception

One of the unique aspects of reindeer biology is their ability to perceive ultraviolet (UV) light, a capability that significantly influences their interactions with their environment. According to studies by Hogg and Tyler [1], reindeer can detect UV light, which aids in foraging by enhancing the contrast between food sources and the snow-covered ground. This visual ability also affects their response to artificial UV sources, such as those emitted by electric power lines, potentially leading to avoidance behavior.

III. METHOD DESCRIPTION

A. The Dataset

The dataset [2] comprises a comprehensive collection of environmental and spatial variables relevant to habitat usage patterns of reindeer in the Storliden mountain area of Malå municipality, Sweden. Each variable provides insights into

	Table 1: Dataset		
	Feature	Description	
1	Elevation [float]	Elevation (m)	
2	Slope [float]	Slope (degrees)	
3	VRM [float]	Ruggedness index	
4	kNN [float]	Forest age structure	
5	Distpow [float]	Dis power lines (m)	
6	Distroad [float]	Dis all roads (m)	
7	Distbig [float]	Dis big roads (m)	
8	Distgruva [float]	Dis mine (m)	
9	Distmall [float]	Dis small roads (m)	
10	SMDBLeav [bit]	Broad-leaved forest	
11	SMDConi [bit]	Coniferous forest	
12	SMDClear [bit]	Clear cut	
13	SMDYoung [bit]	Young forest	
14	Mires [bit]	Mires	
15	SMDLake [bit]	Lake	
16	ID [int]	ID for each plot	
17	Pellet_2009 [int]	Pellet found 2009	
18	Pellet 2010 [int]	Pellet found 2010	

different aspects of the landscape and its suitability for reindeer habitation. Here's a brief description of each variable.

B. Data Mining Methods:

1) **Research Question 1**: Reindeer avoid areas near power grid lines (Clasification):

A statistical model was developed using the random forest algorithm due to its ability to combine predictions from multiple decision trees, handle complexity and variability, and provide insights into the importance of different variables. The predictor variable was the distance to power lines (Dis_Power_Lines), and the response variable was reindeer visits (Visit). The random forest model was chosen for its robustness and capacity to manage complex interactions between variables. To evaluate the null hypothesis H0: Power lines have no significant adverse effect on reindeer behavior, the model's statistical significance was assessed, focusing primarily on the p-value and confusion matrix (sensitivity, specificity, precision).

- 2) Research Question 2: Influence of Physical Characteristics, Water Sources, Man-Made Structures, and Forest Characteristics on Reindeer Visits (Clasification): The same technique was employed with additional predictors to cover each aspect. This comprehensive model helped identify the most significant features influencing reindeer habitat selection.
- 3) Research Question 3: Clustering Reindeer Visits Based on Various Features (Clustering):

K-means clustering was employed to analyze reindeer visits based on the physical characteristics of the place, water sources, distance to man-made structures, and forest characteristics after scaling the features with log. The data were grouped based on similarities in these features, providing insights into the patterns and preferences in reindeer habitat usage.

4) **Research Question 4:** To predict future reindeer visits based on plot characteristics (Regeression):

Logistic regression was used due to its effectiveness in modeling binary outcomes. With numerical data, the change in the log-odds of the outcome for a one-unit change in the predictor was directly represented by logistic regression coefficients. To enhance the model's performance, feature selection was carried out using the Recursive Feature Elimination (RFE) method. Less important features were iteratively removed by RFE, ensuring that the most relevant predictors were used in the final model. The model was evaluated using the p-value and confusion matrix, including sensitivity, specificity, and precision.

C. Exploratory data analysis:

In the exploratory data analysis (EDA) techniques involved examining the numerical features of the dataset,

such as pellet counts and forest characteristics, to understand their distributions and relationships. Summary statistics, including measures of central tendency and dispersion, were computed to describe the data's central tendencies and variability.

Additionally, data cleaning procedures were implemented to ensure the quality and integrity of the dataset. This involved identifying and handling missing values, outliers, and inconsistencies that could potentially affect the analysis results. Special attention was paid to maintaining the accuracy of the data while preparing it for further analysis.

D. Feature Scaling:

For the analysis and visualization purpose distance features has been normalized using log scale and Min-Max normalization technique

E. Feature Extraction:

Three New feature has been introduced:

Visit – For the random forest algorithm, the response variable "Visit" indicates whether a given slot was visited by reindeer in 2009, 2010, or both years. The classes are defined as follows: "no" (not visited) and "yes" (visited).

Visit Status – To indicate whether a given slot was visited by reindeer in 2009, 2010, or both, the response variable for logistic regression is defined as follows: "no" (0 - not visited) and "yes" (1 - visited)

Pallet_Combination- This feature consolidates the Pallet_2009 and Pallet_2010 fields. It contains categorical data for specific conditions filtering: "2009-Visited", "2010-Visited", "Both", and "None"

F. Feature Grouping:

Features has been conceptually categorized to analysis the data in many different aspects

Table 2: Feature Grouping				
Physical characteristics: Elevation	Distance to man-made: Dis power lines			
Ruggedness index Flat areas	Dis all roads Dis all big roads			
Slope Northwest slope Northeast slope	Dis to mine Dis all small roads (forest roads mainly)			
Southeast slope Southwest slope	Forest Characteristics: Forest age structure			
Water source: Mires (wet, swampy areas) Lake presence	Broad-leaved forest Coniferous forest Clear cut Young forest			
	Toung forest			

G. Correlation:

This analysis was conducted to understand the correlation among the variables

Figure 1: Feature correlation

Based on the above Figure 1, it's evident that a robust correlation exists between Dis_All_Rods and Dis_Small_Rods. This multicollinearity may significantly influence the feature importance analysis within the Random Forest model

IV. RESULTS AND ANALYSIS

A. Reindeer visited slots Analysis:

To provide a clearer understanding of reindeer visits during 2009-2010, the following visualization is based on the Pallet_Combination feature discussed in the feature extraction section..

Figure 2: visited slots

B. Feature impotency analysis for the visits:

This analysis has been conducted to identify most significant features for the reindeer visit using Random Forest model

Figure 3: feature importance test results

C. Research Question 1: Assess whether reindeer exhibit avoidance behavior near power grid lines (Clasifictiation):

To understand the statistical significance of the power line impact on the reindeer exhibit, the investigation needs to focus on how well the predictor Dis_Power_Lines can predict reindeer visits and the statistical significance of that outcome. To evaluate this, a statistical model has been developed using random forest, with Dis_Power_Lines as the predictor and Visit as the response variable.

H0: Power line has no significant adverse effect on the reindeer exhibit Predictor: Distance to power line | Target: Visit

Original Data set: No Class observations: 217, Yes Class observations: 140

Number Of Trees: 600, K-fold: 10, Number of repeats:100

Hyperparameters to tune: 1-10

Table 3: Model evaluation result of power line distance (predictor) and Visit (target)			
Metric	Value		
Confusion Matrix	Prediction no yes no 14686 8408 yes 7014 5592		
no	14686		
yes	7014		
Statistics			
Accuracy	0.568		
95% CI	(0.5629, 0.5732)		
No Information Rate	0.6078		
P-Value [Acc > NIR]	1		
Kappa	0.0776		
Mcnemar's Test P-Value	<2e-16		
Sensitivity	0.6768		
Specificity	0.3994		
Pos Pred Value	0.6359		
Neg Pred Value	0.4436		
Prevalence	0.6078		

The model's accuracy is 56.8%, with higher sensitivity (67.68%) compared to specificity (39.94%), indicating it is better at correctly identifying "yes" instances than "no" instances.

The Kappa value (0.0776) suggests only slight agreement between predicted and actual classifications, showing the model's performance is not significantly better than random guessing.

Overall, a p-value of 1 indicates no statistical evidence to reject the null hypothesis, suggesting that the distance to power lines alone does not significantly affect reindeer behavior.

D. Research Question 2: Assess whether reindeer exhibit can be decided by Physical characteristics of the place, Water source, Distance to man-made, Forest Characteristics (Clasifictiation):

H0- Above factors no significant adverse effect on the reindeer exhibit

Predictor: Distance to power line, Distance to man-made, Physical characteristics of the place, Forest Characteristics | Target: Visit

Original Data set: No Class observations: 217, Yes Class observations: 140

Number Of Trees: 600, K-fold: 10, Number of repeats: 100

Hyperparameters to tune: 1 - 10

Table 4: Model evaluation result of other predictors and Visit (target)				
Metric	Value			
Confusion Matrix	Reference Prediction no yes no 17898 9004 yes 3802 4996			
no	17898			
yes	3802			
Accuracy	0.6413			
95% CI	(0.6363, 0.6463)			
No Information Rate	0.6078			
P-Value [Acc > NIR]	< 2.2e-16			
Kappa	0.1945			
Mcnemar's Test P-Value	< 2.2e-16			
Sensitivity	0.8248			
Specificity	0.3569			
Pos Pred Value	0.6653			
Neg Pred Value	0.5679			
Prevalence	0.6078			
Detection Rate	0.5013			
Detection Prevalence	0.7536			
Balanced Accuracy	0.5908			

The model correctly classifies 64.13% of instances, improving over the NIR of 60.78%. With a Kappa statistic of 0.1945, it shows only slight to fair agreement between predicted and actual classes, indicating it is better than random guessing.

The model has high sensitivity (82.48%) for identifying "no" instances but low specificity (35.69%) for identifying "yes" instances.

Precision is 66.53% for "no" predictions, while the negative predictive value is 56.79% for "yes" predictions.

Monemar's Test P-Value (<2.2e-16) suggests significant predictive power. The balanced accuracy of 59.08% indicates moderate performance but a bias towards predicting "no"

E. Research Question 3-1: Visit clustering based on Distinct to the Power Line (Clustering):

K-means clustering was employed to analyze reindeer visits based on the physical characteristics of the place, water sources, distance to man-made structures, and forest characteristics after scaling the features with log

Dis power lines (m) -DPL Dis all roads (m) - DAR Dis all big roads (m)- DBR Slope -SLP Ruggedness index - RugI Dis to mine (m)- DMI Dis all small roads (m) - DSR Elevation- Ele

Figure 6: Distance to the power fine clustering results and other features mapping

Figure 6 depicts clustering analysis utilizing both distance to power lines and visit data. The radar chart showcases the variations in other behaviors across different clusters. Specifically, it visually indicates any distinctive patterns related to Physical characteristics, Water source, Distance to man-made structures, and Forest Characteristics. However, the graphs reveal no discernible patterns for individual cluster observations based on distance to power lines.

F. **Research Question 3-2**: Visit clustering based on Forest Age Stucture (Clustering):

Figure 7: Forest Age structure clustering results and preference

Based on the clustering results (Figure 7) for forest age structure, it is evident that forests aged 0 to 25 years are the most preferable forest structure than others.

G. Research Question 4: Predicting next visit based on the plot's characteristics (Regression):

Logistic regression would be a good choice for predicting the next visit due to:

Relationships between the predictors and the log-odds of the response variable. When all predictors are numerical, it can efficiently capture these linear relationships.

With numerical data, logistic regression coefficients directly represent the change in the log-odds of the outcome for a one-unit change in the predictor. This makes the model easy to interpret and understand, which is valuable for explaining the impact of each variable.

1) Feature selection:

Feature selection is carried out with the Recursive Feature Elimination (RFE) feature selection method that helps to identify the most important predictors in a dataset by recursively eliminating less important features Data set: No Class observations: 217, Yes Class observations: 140 K-fold: 10, Number of repeats:5, algorithm: rfe

Table 5: Recursive Feature Elimination results			
variable	Accuracy	Карра	
1	0.5456	0.01153	
2	0.6297	0.17787	
3	0.6224	0.13634	
4	0.6314	0.20045	
5	0.6335	0.20211	
power lines	0.6459	0.22913	
distance to mines	0.6447	0.22259	
distance to roads	0.6458	0.22460	
elevation	0.6414	0.22250	
10	0.6320	0.19990	
11	0.6348	0.20606	
12	0.6320	0.19847	
13	0.6330	0.19636	
14	0.6297	0.19076	
slopes	0.6441	0.22177	
19	0.6336	0.22083	

The selected subset provides a good trade-off between accuracy and model complexity, with an average accuracy of 64.4% and a Kappa of 0.22.

The most important predictors identified are related to the distance to roads, power lines, slopes, elevation, and distance to mines.

2) Logistic regression model for prediction:

Data set: No Class observations: 217, Yes Class observations: 140
K-fold: 10, Number of repeats:100, family = "binomial"
Selected Features: Dis_Log_Power_Lines, Dis_All_Log_Big_Roads, SE_Slop,
Elevation, Dis_To_Log_Mine, Young_Forest

Table 6: Model evaluation Logistic regression results and preference			
Metric	Value		
Confusion Matrix	Reference Prediction no yes no 20366 11417 yes 1334 2583		
Accuracy	0.6428		
95% CI	(0.6378, 0.6478)		
No Information Rate	0.6078		
P-Value [Acc > NIR]	< 2.2e-16		
Kappa	0.141		
Mcnemar's Test P-Value	< 2.2e-16		
Sensitivity	0.9385		
Specificity	0.1845		
Pos Pred Value	0.6408		
Neg Pred Value	0.6594		

Prevalence	0.6078
Detection Rate	0.5705
Detection Prevalence	0.8903
Balanced Accuracy	0.5615

The model exhibits high sensitivity (93.85%) in identifying positive cases but low specificity (18.45%) for negative cases.

Its accuracy of 64.28% slightly surpasses the no information rate (60.78%).

Class imbalance may skew performance, evident from the prevalence (60.78%) and detection prevalence (89.03%).

V. CONCLUSION

By examining spatial data collected during the spring seasons of 2009 and 2010, the research aimed to determine whether reindeer exhibit avoidance behavior near power grid lines and to identify key environmental factors influencing their habitat preferences.

1) Impact of Power Grid Lines:

According to the Research Question 1 and Research Question 3-1 results, Reindeer typically avoid areas close to power grid lines, but the statistical significance is somewhat limited when only considering this factor. This suggests that there isn't enough statistical evidence to conclude a direct relationship between the distance to power lines and reindeer natural behaviors based on the dataset. However, this study alone isn't sufficient to definitively determine the extent of human activity's impact, directly or indirectly, on wildlife ecosystems. A more comprehensive study would be necessary to draw concrete conclusions.

2) Impact of all other characteristics:

The findings from Research Question 2 and Research Question 3-2 reveal statistically significant evidence indicating a relationship between reindeer visits and various factors such as Physical characteristics, Water source, Distance to man-made structures, and Forest Characteristics. This suggests that these characteristics directly influence reindeer visits.

3) Significant Predictors of Reindeer Visits:

The results of Research Question 4, utilizing Recursive Feature Elimination (RFE) and logistic regression, pinpointed essential predictors for reindeer habitat preference. These predictors include distances to different roads, power lines, slope, elevation, and proximity to mines. The logistic regression model achieved an accuracy of 64.28% with a kappa statistic of 0.141, suggesting that future reindeer visits can be predicted from this statistically significant model with 64.28% accuracy.

4) Model Performance and Class Imbalance:

The logistic regression model exhibited high sensitivity (93.85%) but low specificity (18.45%), suggesting its proficiency in recognizing reindeer visits but challenges in distinguishing non-visits. This imbalance in classes within the dataset can be mitigated by employing techniques such as Synthetic data creation and advanced methods like Ensemble models.

REFERENCES

- [1] C. Hogg, M. Neveu, K. A. Stokkan, L. Folkow, P. Cottrill, R. H. Douglas, and G. Jeffery, "Arctic reindeer extend their visual range into the ultraviolet," Journal of Experimental Biology, vol. 214, no. 12, pp. 2014-2019, 2011. [Online]. Available: https://jeb.biologists.org/content/214/12/2014
- [2] Dataset:
 https://learn.du.se/bbcswebdav/pid-1005768-dt-content-rid-21790910 1/xid-21790910 1