Complex Analysis: Homework 4

Martín Prado

September 4, 2024 Universidad de los Andes — Bogotá Colombia

Exercise 1.

Let f be an entire function and let $\zeta = e^{2\pi i/n}$ for some $n \in \mathbb{N}$. Suppose that $f(\zeta z) = f(z)$ for every $z \in \mathbb{C}$. Show that there exists an entire function g such that $f(z) = g(z^n)$ for every $z \in \mathbb{C}$.

Solution:

Since f is entire, there's exists $\{c_k\}$ such that

$$f(z) = \sum_{k=0}^{\infty} c_k z^k.$$

Then, since $f(\zeta z) = f(z)$, we have that

$$\sum_{k=0}^{\infty} c_k z^k = \sum_{k=0}^{\infty} c_k \zeta^k z^k.$$

When k is not a multiple of n, we have that $\zeta^k \neq 1$. Therefore, by uniqueness of the power series expansion,

$$c_k = \zeta^k c_k \implies c_k = 0, \ k \not\equiv 0 \mod n.$$

Now, we can rewrite the series as follows

$$f(z) = \sum_{k=0}^{\infty} c_{nk} z^{nk} = \sum_{k=0}^{\infty} c_{nk} (z^n)^k.$$

For $g(z) = \sum_{k=0}^{\infty} c_{nk} z^k$, $f(z) = g(z^n)$. To show that g is absolutely convergent in all \mathbb{C} note that for every $R \in \mathbb{R}^+$ and |z| < R,

$$|f(z)| \le \sum_{k=0}^{\infty} c_{nk} |z|^{nk} < \sum_{k=0}^{\infty} c_{nk} R^{nk} < \infty.$$

Therefore, for every $|z| < R^n \in (0, \infty)$,

$$|g(z)| \le \sum_{k=0}^{\infty} c_{nk} |z|^k < \sum_{k=0}^{\infty} c_{nk} R^{nk} < \infty.$$

That shows that q exists and is entire everywhere.

Exercise 2.

- (a) Let $U \subset \mathbb{C}$ be a region and $K \subset U$ a compact subset with non empty interior K° . Let $f: U \to \mathbb{C}$ be an holomorphic function with |f| constant of the boundary of K. Show that f is constant or has a zero in K° .
- (b) Let $U \subset \mathbb{C}$, $z_0 \in U$, $\varepsilon > 0$ such that the closed ball $\overline{B_{\varepsilon}(z_0)}$ is a subset of U. Let $f: U \to \mathbb{C}$ be holomorphic with $|f(z_0)| < \min\{|f(z)| : |z z_0| = \varepsilon\}$. Show that f has a zero in $B_{\varepsilon}(z_0)$.

Solution Part (a)

In the first place, if |f| = 0 on ∂K , then for $g : z \mapsto 0$, $f|_{\partial K} = g|_{\partial K}$. Since ∂K has accumulation points (otherwise U is not open), using identity's theorem we conclude that f = g on U.

Now, assume that f doesn't have any zero on K° and that $|f| \neq 0$ on the boundary of K. Then, g = 1/f is an holomorphic function defined in K, and since K is compact, |f| has a maximum in K. We have two possible cases

- The maximum of |f| is attained at K° , so by maximum principle f is constant.
- The maximum of |f| is attained at ∂K , so the minimum of 1/|f| is attained at ∂K , and thus, 1/|f| attains its maximum at K° . Again, by maximum principle 1/f is constant and so f too.

Solution Part (b)

Assume that f doesn't have a zero in $B_{\varepsilon}(z_0)$, we want to prove that $|f(z_0)| \geq \min_{\partial B_{\varepsilon}(z_0)} |f(z)|$.

- If there's a zero in $\partial B_{\varepsilon}(z_0)$, then we won, so suppose that $\min_{\partial B_{\varepsilon}(z_0)} |f(z)| > 0$.
- If f is constant, then we also won. So assume it's not.

Now, 1/f is an holomorphic function defined at $\overline{B_{\varepsilon}(z_0)}$. Since 1/f is not constant, by maximum principle, it attains it maximum modulus at $\partial B_{\varepsilon}(z_0)$. Therefore,

$$1/|f(z_0)| \le \max_{\partial B_{\varepsilon}} |1/f(z)|$$

$$\implies |f(z_0)| \ge \min_{\partial B_{\varepsilon}} |f(z)|$$

as we intended.

Exercise 3.

Let $U \subset \mathbb{C}$ be open and connected, $f: U \to X$ be a non constant holomorphic function and $N := \{z \in \mathbb{C} : f(z) = 0\}$. Show that N is closed and discrete in U.

Solution:

To see that $w \in \mathbb{C} \setminus N$ is open, take $w \in \mathbb{C}$ such that $f(w) = \omega \neq 0$. Then, there exists for some $\varepsilon > 0$, an open ball $B_{\varepsilon}(\omega) \subset X$ that doesn't contain 0. Finally, using the continuity of f, $f^{-1}(B_{\varepsilon}(\omega))$ is an open set that contains w which is inside $\mathbb{C} \setminus N$.

N has no accumulation points \iff N is closed and N is discrete.

Now, assume that N has some accumulation point z_0 . Also let $g: z \mapsto 0$, and note that f = g on N. Using identity's theorem we conclude that f(z) = g(z) = 0 for every $z \in U$, contradicting the fact that f is not constant.

Exercise 4.

Let $U \subset \mathbb{C}$ be open and bounded, without isolated points of the frontier, and let $M \subset U$ be a subset without accumulation points in U. Show that every biholomorphic function $f: U \setminus M \to U \setminus M$ has a biholomorphic extension $g: U \to U$.

Solution: Let $g = f^{-1}$.

Since M is discrete in U, for every $w \in M$, there exists ε_w such that $M \cap B_{\varepsilon_w}(w) = \{w\}$ and $B_{\varepsilon_w}(w) \subset U$. Since f and g images are bounded $(U \setminus M)$ is bounded, then f, g are bounded on the set $B_{\varepsilon_w}^{\bullet}(w) = B_{\varepsilon_w}(w) \setminus \{w\}$. Therefore, using Riemann's removable singularity criterion, w is a removable singularity for every $w \in M$ for both f and f^{-1} .

Let \tilde{f} and \tilde{g} be the extensions for f and g respectively. Let $h_1 = \tilde{f} \circ \tilde{g}$ and $h_2 = \tilde{g} \circ \tilde{f}$. For $z \in U \setminus M$,

$$h_1(z) = f \circ g(z) = z = g \circ f(z) = h_2(z).$$

Now, to prove that h_1, h_2 are defined for every $z \in U$, we must prove that $\tilde{f}(w), \tilde{g}(w) \in U$ for $w \in M$. For the sake of contradiction assume it's not $(\exists w \in M, \ \tilde{f}(w) \notin U)$. We know that

$$\tilde{f}(B_{\varepsilon_w}^{\bullet}(w)) = f(B_{\varepsilon_w}^{\bullet}(w)) \subset U \backslash M \subset U.$$

Also, $\overline{B_{\varepsilon_w}^{\bullet}(w)} = \overline{B_{\varepsilon_w}(w)}$, so by continuity of f

$$\implies \tilde{f}(B_{\varepsilon_w}(w)) \subset \tilde{f}(\overline{B_{\varepsilon_w}(w)}) = \tilde{f}(\overline{B_{\varepsilon_w}^{\bullet}(w)}) \subset \overline{f(B_{\varepsilon_w}^{\bullet}(w))} \subset \overline{U}$$

Therefore, $\tilde{f}(w) \in \overline{U}$ and since we assumed that $\tilde{f}(w) \notin U$, it follows that $f(w) \in \partial U$. However, note that

- 1. First, $\tilde{f}(B_{\varepsilon_w}(w)) = f(B_{\varepsilon_w}^{\bullet}(w)) \stackrel{\cdot}{\cup} \{\tilde{f}(w)\}$ (disjoint union). Therefore, since U is open and $f(B_{\varepsilon_w}^{\bullet}(w)) \subset U = U^{\circ}$, it follows that $f(B_{\varepsilon_w}^{\bullet}(w)) \cap \partial U = \emptyset$. Thus, $\partial U \cap \tilde{f}(B_{\varepsilon_w}(w)) = \{\tilde{f}(w)\}$
- 2. By Open Mapping Theorem, $\tilde{f}(B_{\varepsilon_w}(w))$ is an open set. Therefore, $\{\tilde{f}(w)\}$ is an isolated point of the boundary of U (contradiction).

So $\tilde{f}(w) \in U$ for every $w \in U$. The same argument applies for \tilde{g} , so h_1 and h_2 are defined for every $z \in U$. By identity theorem, it follows that $h_1(z) = z = h_2(z)$ for every $z \in U$ implying that \overline{f} and \overline{g} are each other's inverse functions.

Exercise 5.

Let $f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$ be a power series with convergence radius $R \in (0, \infty)$. Show that f has at least a singular point in the frontier of the convergence disk.

Solution:

For the sake of contradiction assume that f has no singularities at $\partial B_R(z_0)$ and can be extended to an holomorphic function \tilde{f} at $\overline{B_R(z_0)}$. Then, for every $w \in \partial B_R(z_0)$, there exists ε_w such that there exists a power series $g_w(z) = \sum_{j=0}^{\infty} a_{w,j}(z-w)^j$ around $B_{\varepsilon_w}(w)$ that coincides with \tilde{f} in $\overline{B_R(z_0)} \cap B_{\varepsilon_w}(w)$.

Since $\partial B_R(z_0)$ is compact, there exists

$$\varepsilon = \frac{\min\{\varepsilon_w : w \in \partial B_R(z_0)\}}{2} > 0.$$

The set $\overline{B_{R+\varepsilon}(z_0)}\backslash B_R(z_0)$ is compact and it is covered by the open balls $\{B_{\epsilon_w}(w): w \in \partial B_R(z_0)\}$. Therefore, (by the definition of compact set) there exists w_1, \ldots, w_n for $n \in \mathbb{N}$ such that $\overline{B_{R+\varepsilon}(z_0)}\backslash B_R(z_0)$ is covered by $\{B_{\epsilon_{w_k}}(w_k): k \leq n\}$

Using Identity's theorem \tilde{f} can again be extended to a function \tilde{f}_1 that coincides with g_{w_1} in $\overline{B_R(z_0)} \cup B_{\varepsilon_{w_1}}(w_1)$. Then, we recursively apply Identity's theorem to extend \tilde{f}_k to a function \tilde{f}_{k+1} that coincides with $g_{w_{k+1}}$ in $\overline{B_R(z_0)} \cup \bigcup_{j=1}^{k+1} B_{\varepsilon_{w_j}}(w_j)$ for every k < n.

Finally, \tilde{f}_n extends f to the ball $B_{R+\varepsilon}(z_0) \subset \overline{B_R(z_0)} \cup \bigcup_{j=1}^n B_{\varepsilon_{w_j}}(w_j)$. However, this is a contradiction to the fact that R is the greatest number for which f(z) converges for every $|z-z_0| < R$.