CONOCER LOS POLIEDROS Y DIFERENCIAR LOS POLIEDROS REGULARES

Nombre:	Curso	Fecha:	

CONCEPTO DE POLIEDRO

- Un **poliedro** es un cuerpo geométrico cuyas caras son polígonos.
- Los elementos del poliedro son:

Caras: polígonos que limitan al poliedro (6 en la figura).

Aristas: lados comunes a dos caras (12 en la figura).

Vértices: puntos donde se unen más de dos caras (8 en la figura).

• La superficie del poliedro se puede extender sobre un plano, y se denomina **desarrollo** plano del poliedro.

ACTIVIDADES

1 Indica en los siguientes poliedros el número de caras, aristas y vértices.

POLIEDRO	NÚMERO DE CARAS	NÚMERO DE ARISTAS	NÚMERO DE VÉRTICES	TIPOS DE POLÍGONOS DE LAS CARAS
А				
В				
С				

2 Dibuja el desarrollo plano de estos cuerpos geométricos.

Nombre:	Curso	Fecha:

POLIEDROS REGULARES

- Son aquellos poliedros cuyas caras son polígonos regulares (caras y ángulos iguales). En cada vértice del poliedro concurre el mismo número de caras.
- Existen 5 poliedros regulares, que son:

Tetraedro	Hexaedro o cubo	Octaedro	Dodecaedro	Icosaedro
4 caras. Triángulos equiláteros	6 caras. Cuadrados	8 caras. Triángulos equiláteros	12 caras. Pentágonos regulares	20 caras. Triángulos equiláteros

3 Completa la siguiente tabla.

Poliedro	Caras	Vértices	Aristas	Caras + vértices	Aristas + 2
Tetraedro	4	4	6	4 + 4 = 8	6 + 2 = 8
Hexaedro o cubo					
Octaedro					
Dodecaedro					
Icosaedro					

Observa que la suma de Caras + Vértices es igual que Aristas + 2.

- 4 Indica si son verdaderas o falsas (V o F) las siguientes afirmaciones.
 - a) La suma de las caras y los vértices del cubo es 12.
 - b) El menor número de caras de un poliedro es 4.
 - c) El dodecaedro tiene 12 caras, que son triángulos equiláteros.
 - d) En un poliedro regular, todas las caras son iguales.
 - e) El número de aristas del cubo y del octaedro es el mismo.
- Indica con qué desarrollo plano se podría construir un

a)		

b)		

C)		

RECONOCER PRISMAS Y PIRÁMIDES. CALCULAR SUS ÁREAS

Nombre: Curso: Fecha:

CONCEPTO DE PRISMA

Un prisma es un poliedro formado por dos bases iguales y paralelas, y cuyas caras laterales son paralelogramos.

Elementos del prisma

Desarrollo plano del prisma

TIPOS DE PRISMAS

Los prismas se nombran según el número de lados de sus bases.

Prisma triangular

Prisma pentagonal

Prisma hexagonal

ACTIVIDADES

- 1 Nombra, en estos prismas, sus elementos: bases, vértices, caras y aristas.
 - a) Prisma triangular

b) Prisma hexagonal

ÁREA DE UN PRISMA RECTO

A partir del desarrollo plano del prisma recto podemos calcular su área.

Área lateral

- Es la suma de las áreas de sus caras.
- Su desarrollo es siempre un rectángulo.
 Uno de los lados del rectángulo coincide con el perímetro de la base, y el otro, con la altura del prisma.

 $A_L = P_B \cdot h$

Área de las bases

- Las bases del prisma son polígonos regulares.
- El prisma tiene 2 bases iguales.
- El área de un polígono es:

Área polígono = $\frac{\text{perímetro} \cdot \text{apotema}}{2} = \frac{P \cdot a}{2}$

Área total del prisma

 $\mathbf{A}_{T} = \mathbf{A}_{L} + \mathbf{A}_{B} + \mathbf{A}_{B} = \mathbf{A}_{L} + \mathbf{2} \cdot \mathbf{A}_{B}$

RECONOCER PRISMAS Y PIRÁMIDES. CALCULAR SUS ÁREAS

Nombre:

Curso:

Fecha:

EJEMPLO

Calcula el área total de un prisma de base pentagonal, sabiendo que su altura es 7 dm, el lado de la base mide 3 dm y la apotema del polígono de las bases mide 2 dm.

$$A_{\text{Lateral}} = P_B \cdot h = (3 \cdot 5) \cdot 7 = 15 \cdot 7 = 105 \text{ dm}^2$$

$$A_{\text{Base}} = \frac{\text{perimetro} \cdot \text{apotema}}{2} = \frac{(3 \cdot 5) \cdot 2}{2} = \frac{30}{2} = 15 \text{ dm}^2$$

$$A_T = A_L + 2 \cdot A_B = 105 \text{ dm}^2 + 2 \cdot 15 \text{ dm}^2 = 135 \text{ dm}^2$$

- 2 Halla el área total de un prisma hexagonal, sabiendo que:
 - Su altura es 10 dm.
 - El lado de la base hexagonal mide 4 dm.
 - La apotema del polígono de la base mide 3,5 dm.

Realiza el dibujo del prisma y su desarrollo.

Obtén el área total de un prisma cuadrangular cuya altura es de 8 dm y el lado del cuadrado de la base mide 4 dm. Realiza el dibujo del prisma y su desarrollo.

4 Calcula el área de un cubo que tiene 7 cm de lado.

11

RECONOCER PRISMAS Y PIRÁMIDES. CALCULAR SUS ÁREAS

Nombre:	Curso:	Fecha:	

CONCEPTO DE PIRÁMIDE

Una pirámide es un poliedro cuya base es un polígono y sus caras laterales son triángulos que concurren en un vértice común, llamado vértice de la pirámide.

Elementos de la pirámide

Desarrollo plano de la pirámide

TIPOS DE PIRÁMIDES

Las pirámides se nombran según el número de lados de su base.

Pirámide triangular Pirámide cuadrangular

Pirámide pentagonal

Pirámide hexagonal

5 Dibuja el desarrollo de las siguientes pirámides y completa la tabla.

a)

b)

	Nombre de la pirámide	Polígonos de la base	Número de caras	Número de vértices	Número de aristas
A					
В					

RECONOCER PRISMAS Y PIRÁMIDES. CALCULAR SUS ÁREAS

Nombre:

Curso:

Fecha:

- 6 Señala y nombra, en las siguientes pirámides, sus elementos: bases, vértices, caras y aristas.
 - a) Pirámide triangular

b) Pirámide hexagonal

ÁREA DE UNA PIRÁMIDE REGULAR

A partir del desarrollo plano de la pirámide recta podemos calcular su área.

Área lateral

- Es la suma de las áreas de las caras.
- Sus caras son triángulos isósceles iguales, por lo que el área lateral es la suma de las áreas de los triángulos.

Área triángulo =
$$\frac{b \cdot h}{2}$$

$$A_L = n \cdot A_{Triángulo}$$

Siendo *n* el número de triángulos de la pirámide.

Área total de la pirámide $A_T = A_I + A_B$

$$A_T = A_L + A_B$$

Área de la base

- Es el área de un polígono regular.
- El área de un polígono es:

$$\text{ \'area polígono} = \frac{\text{per\'imetro} \cdot \text{apotema}}{2} = \frac{P \cdot a}{2}$$

$$A_B=\frac{P\cdot a}{2}$$

EJEMPLO

Calcula el área total de una pirámide de base pentagonal, si la apotema de la base mide 4,13 cm, el lado de la base es 6 cm y la altura de cada uno de los triángulos de las caras es 9 cm.

$$A_L = 5 \cdot \frac{\text{base} \cdot \text{altura}}{2} = 5 \cdot \frac{6 \cdot 9}{2} = 5 \cdot \frac{54}{2} = 135 \text{ cm}^2$$

$$\text{Área}_{\text{Poligono}} = \frac{\text{perímetro} \cdot \text{apotema}}{2} = \frac{(5 \cdot 6) \cdot 4,13}{2} = \frac{123,9}{2} = 61,95 \text{ cm}^2$$

$$A_T = A_L + A_B = 135 \text{ cm}^2 + 61,95 \text{ cm}^2 = 196,95 \text{ cm}^2$$

Halla el área total de una pirámide de base cuadrangular, si el lado de la base mide 3 dm y la apotema de la pirámide (altura del triángulo) mide 6 dm.

11

RECONOCER PRISMAS Y PIRÁMIDES. CALCULAR SUS ÁREAS

Nombre:	Curso:	Fecha:

Obtén el área total de una pirámide de base hexagonal, si la apotema de la base mide 5,2 dm, el lado de la base es 6 dm y la altura de cada uno de los triángulos de las caras es 10 dm. Realiza el dibujo de la pirámide y su desarrollo.

9 Halla el área total de una pirámide de base pentagonal cuya apotema de la base mide 4 dm, la altura de cada triángulo mide 9 dm y el área de cada uno de los triángulos es 26,1 dm². Realiza el dibujo de la pirámide y su desarrollo.

La base de una pirámide es un cuadrado de 6 cm de lado. Si la altura de cada triángulo mide 1 dm, calcula el área total de la pirámide. Realiza el dibujo de la pirámide y su desarrollo.

RECONOCER LOS CUERPOS DE REVOLUCIÓN. CALCULAR SUS ÁREAS

Nombre:	Curso	: Fecha:	

CILINDROS Y CONOS

Los cuerpos de revolución son aquellos cuyas superficies laterales son curvas: cilindros, conos y esferas.

Cilindro

- Tiene 2 bases iguales que son círculos.
- Tiene 1 superficie lateral curva.
- Se obtiene al girar un rectángulo sobre un eje.

Desarrollo plano de un cilindro

Cono

- Tiene 1 base que es un círculo.
- Tiene 1 superficie lateral curva.
- Se obtiene al girar un triángulo sobre un eje.

Desarrollo plano de un cono

ACTIVIDADES

1 Señala y nombra, en las siguientes pirámides, sus elementos: bases, vértices, caras y aristas.

2 Asocia cada figura de giro con el objeto que se origina.

RECONOCER LOS CUERPOS DE REVOLUCIÓN. CALCULAR SUS ÁREAS

Nombre: Curso:

Fecha:

ÁREA DE UN CILINDRO

A partir del desarrollo plano del cilindro podemos calcular su área.

Área lateral

• Es el área de un rectángulo cuya base es la longitud de la circunferencia de la base, $2\pi r$, y la altura, h, es la altura del cilindro.

$$A_L =$$
Área rectángulo $= 2\pi r \cdot h$

Área total del cilindro
$$A_T = A_L + 2 \cdot A_B = 2\pi r \cdot h + 2\pi r^2$$

Área de las bases

- Las bases del cilindro son círculos.
- El cilindro tiene 2 bases iguales.
- El área de un círculo es:

Área círculo =
$$\pi r^2$$

$$A_B =$$
Área círculo $= \pi r^2$

3 Calcula el área total del siguiente cilindro.

Área lateral =
$$2\pi r \cdot h = 2 \cdot \pi \cdot 3 \cdot 5 =$$

Área bases =
$$2\pi r^2$$
 = $2 \cdot \pi \cdot 3^2$ =

4 Una bobina de papel de forma cilíndrica tiene una altura de 1,5 m y un radio en la base circular de 0,4 m. Obtén el área total de la bobina.

ÁREA DE UN CONO

A partir del desarrollo plano del cono podemos calcular su área.

• Es el área de un sector circular con longitud $2\pi r$ y radio g.

$$A_L = \pi r g$$

Área total del cono

$$A_T = A_L + A_B = \pi r g + \pi r^2$$

- Área de la base
- La base del cono es un círculo.

$$A_B = \pi r^2$$

5 Halla el área total de un cono que tiene un radio de la base de 4 cm y una altura de 7 cm. Realiza un dibujo del cono y su desarrollo.

RECONOCER LOS CUERPOS DE REVOLUCIÓN. CALCULAR SUS ÁREAS

Nombre:	Curso:	Fecha:

ESFERA

- La esfera es un cuerpo de revolución que no tiene caras, ya que está formado por una única superficie curva. Tampoco tiene desarrollo como el cilindro y el cono.
- Se obtiene al girar un semicírculo sobre un eje que es su diámetro.

6 ¿Cuál de los siguientes objetos genera una esfera al girar en torno al eje?

ÁREA DE UNA ESFERA

La esfera no tiene desarrollo plano.

Su área es:

Área total de la esfera

 $A_{\tau}=4\pi r^2$

- Calcula el área de estas esferas.
 - a) Esfera cuyo radio mide 9 cm.
 - b) Esfera cuyo diámetro mide 16 cm.