#### Welding Lecture - 9

16 August 2016, Tuesday 11.00 -11.50 am

#### Welding Processes-Resistance welding

# Resistance welding (RW)

- Generate heat through the resistance to the flow of electric current in parts being welded
- The parts are usually an integral part of the electrical circuit
- Contact resistance → heats the area locally by I<sup>2</sup>R, → melting → formation of a nugget
- Contact resistance must be higher at the point to be welded than anywhere else.



# Resistance welding



#### Resistance welding



$$Q = Pt = I^2Rt$$

$$\Delta T = \frac{Q}{mC_{\rm p}} = \frac{I^2 Rt}{mC_{\rm p}}$$

#### Resistance welding

- Pairs of water-cooled copper electrodes
- Apply pressure
  - To reduce the contact resistance at the electrode-to-workpiece interface
  - Contain the molten metal in the nugget
  - To literally forge the work surfaces together in the vicinity of the weld
- The principal process variables
  - welding current (several thousands to tens of thousands of amperes)
  - welding time (of the order of s)
  - electrode force and electrode shape
- DC power (provided from either single-phase or three-phase AC line 440-480 V using step-down transformer/rectifiers)
- Usually used to join overlapping sheets or plates as lap joints, which may have different thicknesses

#### Resistance welding-types

- Resistance spot welding (RSW)
- Resistance seam welding (RSEW)
- Projection welding (PW)
- Flash welding (FW)
- Upset welding (UW)
- Percussion welding (PEW)

# Resistance spot welding (RSW)

- Series of discrete nuggets produced by resistance heating
- Nuggets (welds) are usually produced directly under the electrodes, → Not necessarily if there is another more favourable path (shunt), for the current



# Series resistance spot welding



#### Resistance welding cycle

- Squeeze Time: Time interval between timer initiation and the first application of current needed to assure that electrodes contact the work and establish full force
- Weld time: The time for which welding current is applied (in single impulse welding) to the work
- Hold Time: The time during which force is maintained on the work after the last impulse of welding current ends to allow the weld nugget to solidify and develop strength.
- Off Time: The time during which the electrodes are off the work and the work is moved to the next weld location for repetitive welding.

#### Pressure-current cycle





#### Pressure-current cycle

- 1. Off time: Parts inserted between open electrodes,
- Squeeze Time: Electrodes close and force is applied,
- 3. Weld time— current is switched on,
- Hold time: Current is turned off but force is maintained or increased (a reduced current is sometimes applied near the end of this step for stress relief in the weld region), and
- Off time: Electrodes are opened, and the welded assembly is removed.

### Enhanced welding cycle

- 1. <u>Pre-compression</u> force is used to set electrodes and work pieces together
- 2. <u>Preheat</u> is applied to reduce thermal gradients at the start of weld time or to soften coatings
- 3. Forging force is used to consolidate weld nugget
- 4. Quench and temper times are used to produce desired weld properties in hardenable steels;
- 5. Post heat is used to refine weld nugget grain size and improve strength
- 6. <u>Current decay</u> is used to retard cooling of aluminum alloys to help prevent cracking



#### Nugget formation

Nugget formation and heat dissipation into the surrounding base metal and electrodes during resistance spot welding



#### Optimum current, time in RW



 Optimum <u>current</u> and <u>weld time</u> for maximum shear strength of the RW joint

# Resistance seam welding







Conventional resistance seam welding, in which overlapping spots are produced

Roll spot welding

Continuous resistance seam

#### Resistance seam welding











#### Mash seam weld



# Projection welding (PW),



- Projections or dimples in overlapping joint elements →
  concentrate the current during welding, focusing the weld
  energy and helping to locate the weld more precisely
- Contact points determined by the design of the parts to be joined → may consist of projections, embossments, or localized intersections of the parts

# Flash welding(FW)



- Normally used for butt joints → the two surfaces to be joined are brought into near contact →
- Electric current is applied →Arcing → Heats the surfaces to the melting point → the surfaces are forced together to form the weld

20 20

# Upset welding (UW)

- Upset welding (UW) is similar to flash welding
- Heating in UW is accomplished entirely by electrical resistance at the contacting surfaces; no arcing occurs.
- Not a fusion-welding process
- Applications of UW & FW- joining ends of wire, pipes, tubes etc.



# Percussion welding



- Resistance heating by the <u>rapid release of electrical energy</u> from a storage device (e.g., capacitor).
- Similar to flash welding, except that the duration of the weld cycle is extremely short, ~ 1 to 10 ms
- Very localized heating → attractive for electronic applications in which the dimensions are very small

#### Welding Lecture - 10

23 August 2016, Tuesday 11.00 -11.50 am

#### Heat flow in welds



#### The welding thermal cycle

- Thermal excursion
  → Weld temp. ranges from the ambient temp. of the work environment to above the liquidus temp. (possibly to boiling point and above for some very high-energy-density processes)
- The severity of this excursion → in terms of the
  - temp. reached
  - time taken to reach them
  - the time remain at them
  - completely determines the effects on structure (both microstructural for material changes and macrostructural for distortion)
- To quantify the thermal cycle mathematically, we need temp. distribution in time and space coordinates

# Thermal cycle characterization via thermocouples



#### Thermal cycle- quasi-steady state

- Thermocouples → at various points along weld path
- Approach of the heat source → rapid rise in temperature to a peak → a very short hold at that peak → then a rapid drop in temperature once the source has passed by
- A short time after the heat from the source begins being deposited, → the peak temperature & rest of the thermal cycle, reaches a quasi-steady state
- Quasi-steady state → balance achieved between the rate of energy input and the rate of energy loss or dissipation
- Quasi-steady state → temperature isotherms surrounding a moving heat source remain steady and seem to move with the heat source (away from edges)

#### Thermal cycle- quasi-steady state



Temperature isotherms surrounding a moving heat source remain steady and seem to move with the heat source

#### Time-Temperature curves



#### Time-Temperature curves

- The peak temp. decrease with increasing distance from the source, and more or less abruptly
- The maximum temperatures reached ( $T_{mA}$   $T_{mB}$ ,  $T_{mc}$ ) decrease with distance from the weld line and occur at times ( $t_{mA}$ ,  $t_{mB}$ ,  $t_{mc}$ ) that increase. This allows the peak temperature,  $T_p$  to be plotted as a function of time
- Peak temp. separates the heating portion of the welding thermal cycle from the cooling portion,
- At a time when points closest to a weld start cooling, the points farther away are still undergoing heating. This phenomenon explains
  - certain aspects of <u>phase transformations</u> that go on in the heat-affected zone,
  - differential rates of thermal expansion/contraction that lead to thermally induced stresses and, possibly, distortion

### Spatial isotherms



Peak temperature separates the heating zone & cooling zone

- Temp. distribution → Controls microstructure, residual stresses and distortions, and chemical reactions (e.g., oxidation)
- The influencing parameters
  - the solidification rate of the weld metal,
  - the distribution of peak temperature in the HAZ
  - the cooling rates in the fusion and HAZ
  - the distribution of heat between the fusion zone and the heat-affected zone
- Requires mathematical formulation to quantify the influence of these parameters 31

Heat supplied + Heat generated /Absorbed (chemical reaction) = Heat consumed (for temp rise, melting) + Heat transferred via conduction + Heat loss via convection & radiation

$$\rho C(T) \frac{dT}{dt} = \frac{d}{dx} \left[ k(T) \frac{dT}{dx} \right] + \frac{d}{dy} \left[ k(T) \frac{dT}{dy} \right] + \frac{d}{dz} \left[ k(T) \frac{dT}{dz} \right]$$

$$-\rho C(T)\left(V_x\frac{dT}{dx}+V_y\frac{dT}{dy}+V_z\frac{dT}{dz}\right)+Q$$

- x = coordinate in the direction of welding (mm)
- y = coordinate transverse to the welding direction (mm)
- z = coordinate normal to weldment surface (mm)
- T = temperature of the weldment, (K)
- k(T) = thermal conductivity of the material (J/mm s<sup>-1</sup>K<sup>-1</sup>) as a function of temperature
- $\rho(T)$  = density of the material (g/mm<sup>3</sup>) as a function of temp.
- C(T) = specific heat of the material (J/g<sup>-1</sup> K<sup>-1</sup>), as a function of temperature
- $V_x$ ,  $V_y$ , and  $V_z$  = components of velocity
- Q = rate of any internal heat generation, (W/mm<sup>3</sup>)

- This general equation needs to be solved for one, two, or three dimensions depends on
  - Weld geometry,
  - Whether the weld penetrates fully or partially
  - Parallel sided or tapered, and
  - Relative plate thickness
- 1-D solution → thin plate or sheet with a stationary source or for welding under steady state (at constant speed and in uniform cross sections remote from edges) in very thin weldments
- 2-D solution → thin weldments or in thicker weldments where the weld is full penetration and parallel-sided (as in EBW) to assess both longitudinal and transverse heat flow
- 3-D solution → thick weldment in which the weld is partial penetration or non-parallel-sided (as is the case for most single or multipass welds made with an arc source)

34

# Weld geometry and dimensionality of heat flow

- (a)2-D heat flow for fullpenetration welds in thin plates or sheets;
- (b)2-D heat flow for fullpenetration welds with parallel sides (e.g. EBW & LBW)
- (c)3-D heat flow for partial penetration welds in thick plate
- (d)3D, condition for near-full penetration welds (non parallel sides)









(d)

#### Rosenthal's Simplified Approach

- Rosenthal's first critical assumption →
   Energy input from the heat source was uniform and moved with a constant velocity v along the x-axis of a fixed rectangular coordinate system
- The net heat input to the weld under theseconditions is given by

$$H_{net} = \eta EI/v (J/m)$$

where η is the transfer efficiency of the process E and I are the welding voltage (in V) and current (in A), respectively, and v is the velocity of welding or travel speed (in m/s).

### Rosenthal's Simplified Approach

- **Assumption 2** → Heat source is a point source, with all of the energy being deposited into the weld at a single point
  - This assumption avoids complexities with density distribution of the energy from different sources and restricts heat flow analysis to the heat-affected zone, beyond the fusion zone or weld pool boundary.
- **Assumption 3** → The thermal properties (thermal conductivity, *k*, and product of the specific heat and density, *Cp*) of the material being welded are constants
- **Assumption 4** → Modify the coordinate system from a fixed system to a moving system

### Rosenthal's Simplified Approach

• The moving coordinate system  $\rightarrow$  replace  $\mathbf{x}$  with  $\boldsymbol{\xi}$  (Xi), where  $\boldsymbol{\xi}$  is the distance of the point heat source from some fixed position along the  $\mathbf{x}$  axis, depending on the velocity of welding,  $\boldsymbol{v}$ 

$$\xi$$
=x-vt

where *t* is the time

$$\frac{d^2T}{d\xi^2} + \frac{d^2T}{dy^2} + \frac{d^2T}{dz^2} = -\frac{C\rho}{k}v\frac{dT}{d\xi} + \frac{C\rho}{k}\frac{dT}{dt}$$

### Rosenthal's Simplified Approach

- This equation can be further simplified, in accordance with Rosenthal, if a quasi-stationary temperature distribution exists.
- Temperature distribution around a point heat source moving at constant velocity will settle down to a steady form, such that dT/dt = 0, for q/v = a constant. The result is

$$\frac{d^2T}{d\xi^2} + \frac{d^2T}{dv^2} + \frac{d^2T}{dz^2} = -\frac{C\rho}{k}v\frac{dT}{d\xi}$$

### Rosenthal's solution

- Rosenthal solved the simplified form of the heat flow equation above for both thin and thick plates in which the heat flow is basically 2-D and 3-D, respectively.
- For thin plates,

$$T - T_0 = \frac{q}{2\pi k} e^{-v\xi/2\alpha} K_0 \frac{vR}{2\alpha}$$

 $q = \eta EI/v = heat input from the welding source (in J/m)$ 

k = thermal conductivity (in J/m s<sup>-1</sup> K<sup>-1</sup>)

 $\alpha$  = thermal diffusivity = k/pC, (in m/s)

R =  $(\xi^2 + y^2 + z^2)^{1/2}$ , the distance from the heat source to a particular fixed point (in m)

 $K_0$  = a Bessel function of the first kind, zero order

### Rosenthal's solution

• For the thick plate,

$$T - T_0 = \frac{q}{2\pi kd} e^{-v\xi/2\alpha} \frac{e^{-vR/2\alpha}}{R}$$
 (2)

where d = depth of the weld (which for symmetrical welds is half of the weld width, since w = 2d)

### Rosenthal's solution

- Above equations can each be written in a simpler form, giving the time-temperature distribution around a weld when the position from the weld centerline is defined by a radial distance, r, where r<sup>2</sup> = z<sup>2</sup> + y<sup>2</sup>
- For the thin plate, the time-temperature distribution is

$$T-T_0 = \frac{q/v}{d(4\pi k\rho Ct)^{1/2}}e^{-r^2/4at}$$

and for the thick plate is

$$T-T_0=\left(\frac{q/v}{2\pi kt}\right)e^{-r^2/4at}$$

### Dimensionless Weld Depth Vs Dimensionless Operating Parameter

- Based on Rosenthal's solution of the simplified three-dimensional heat flow equation, Christiansen et al.
   (1965) derived theoretical relationships between <u>a weld bead's cross-sectional geometry</u> and the <u>welding process operating conditions</u> using dimensionless parameters.
- The theoretical relationship between the dimensionless weld width, *D*, and dimensionless operating parameter, *n*, is shown, where

### Dimensionless Weld Depth Vs Operating Parameter n

$$D = \frac{dU}{2\alpha_s} \qquad n = \frac{QU}{4\pi\alpha_s^2 \rho C(T_m - T_0)}$$

d = depth of penetration of the weld,

U = welding speed (m/s),

 $\alpha_s$  = thermal diffusivity (k/ $\rho$ C) of the base material (as a solid),

Q = rate of heat input to the workpiece (J/s),

 $T_m$  = melting point of the base material (the workpiece), and

 $T_o$  = temperature of the workpiece at the start of welding.

For a symmetrical weld bead, the width of the weld bead w = 2d,

→ Cross-sectional area of the weld bead can be determined

Can be applied to the heat-affected zone by simply substituting  $T_H$  for  $T_m$  where  $T_H$  is the temperature of some relevant phase transformation that could take place

# Dimensionless weld depth (D) Vs process operating parameter n

Christiansen (1965)

$$D=\frac{dU}{2\alpha_s}$$

$$n = \frac{QU}{4\pi\alpha_{\rm s}^2 \rho C (T_{\rm m} - T_{\rm o})}$$

- Width of the weld bead can be determined (w = 2d)
- Width of heat-affected zone can be determined



## Class Assignment -1

- 1) Find w and d for symmetrical weld bead as shown in figure.
- 2) Find the width of HAZ (phase transition temp = 730 C)

Material steel with  $T_m = 1510 C$ 

E=20 V

I = 200 A

Welding speed (v or U) =5 mm/s

$$T_0 = 25 \text{ C}$$

Arc efficiency  $\eta$ =0.9

K=40 W/mK

$$\rho$$
C = 0.0044 J/mm<sup>3</sup>. C

t=5 mm



## Effect of welding parameters on heat distribution

- The shape of the melt, size & heat distribution, is a function of
  - 1. Material properties (thermal conductivity, heat capacity, density)
  - 2. Welding speed, and
  - 3. Welding power/energy density
  - 4. Weldment plate thickness

# Effect of thermal conductivity (and material property) on heat distribution

- Increasing thermal conductivity
  - tends to cause deposited heat to spread
  - Smaller welds for a given heat input and melting temperature
- For a given heat input, the lower the melting point, the larger the weld

| Material            | Thermal diffusivity α=k/ρC (mm²/s) |  |  |
|---------------------|------------------------------------|--|--|
| Aluminium           | 84                                 |  |  |
| Carbon steel        | 12                                 |  |  |
| Austenitic<br>steel | 4                                  |  |  |



Effect of thermal conductivity (and material property) on heat distribution

## Effect of welding speed



$$q = 3.1 \text{ kJ/s}, d = 3 \text{ mm}$$

# Effect of welding speed on Shape of Fusion/HAZ

#### Increasing velocity

| Velocit<br>y | 0                  | Low                   | Medium                       | High               | Very high          |
|--------------|--------------------|-----------------------|------------------------------|--------------------|--------------------|
| Plan<br>view | Circle             | elliptical            | Elongated ellipse            | Tear<br>drop       | Detached tear drop |
| 3-D<br>view  | Hemi-<br>spherical | Prolate<br>spheroidal | Elongated prolate spheroidal | 3D<br>tear<br>drop | 3D tear<br>drop    |

# Tear drop formation at very high velocity

Continuous tear drops

Detached tear drops at very high velocity



### Effect of welding speed

- For a stationary (spot) weld, the shape, is round (plan view), and approximately hemispherical in 3-D
- Once the source is moved with constant velocity, the weld pool and surrounding HAZ become elongated to an elliptical shape (plan view), and prolate spheroidal in 3-D
- With increased velocity, these zones become more and more elliptical
- At some velocity (for each specific material), a <u>tear</u> drop shape forms, with a tail at the trailing end of the pool.

### Effect of welding speed

- Increasing velocity → elongates the teardrop more and more, → narrows the fusion and heataffected zone → overall melted volume constant
- Very high welding speeds → the tail of the teardrop weld pool detaches → isolate regions of molten metal → lead to <u>shrinkage-induced</u> <u>cracks</u> along the centerline of the weld

# Efect of the thickness of a weldment



 Thick weldment → Small weld pool and heataffected zone

### Effect of energy density, Asymmetry

- Increased energy density → increases the efficiency of melting, → increases the amount of melting (especially in the depth direction) → decreases the heat-affected zone.
- Shape of weld pool & HAZ will be distorted by any asymmetry around the joint.
- Asymmetry might be the result of the relative thermal mass (e.g., thickness) of the joint elements as well as their relative thermal properties (Tm, k & C)

## Simplified Equations for Approximating Welding Conditions

- 1) Peak Temperatures → Predicting metallurgical transformations (melting, austenitization, recrystallization of cold-worked material, etc.) at a point in the solid material near a weld requires some knowledge of the maximum temperature reached at that specific location.
- → For a single-pass, full-penetration butt weld in a sheet or a plate, the distribution of peak temperatures (Tp) in the base material adjacent to the weld is given by

$$\frac{1}{T_{\rm p}-T_{\rm 0}} = \frac{(2\pi e)^{0.5} \rho Chy}{H_{\rm net}} + \frac{1}{T_{\rm m}-T_{\rm 0}}$$

### Peak Temperature

$$\frac{1}{T_{\rm p}-T_{\rm 0}} = \frac{(2\pi e)^{0.5} \rho Chy}{H_{\rm net}} + \frac{1}{T_{\rm m}-T_{\rm 0}}$$

 $T_o$  = initial temperature of the weldment (K) e = base of natural logarithms = 2.718  $\rho$  = density of the base material (g/mm3) C = specific heat of the base material (J/g K- I) h = thickness of the base material (mm) y = 0 at the fusion zone boundary and where Tp = Tm  $T_m$  = melting (or liquidus) temperature of the material being welded (K)

 $H_{net} = \eta EI/v (J/m)$ 

### Width of the Heat-Affected Zone

- Peak temperature equation can be used to calculate the width of the HAZ.
- Define  $T_p \rightarrow T_{re}$  or  $T_{au}$
- The width of the HAZ is determined by the value of y that yields a T<sub>p</sub> equal to the pertinent transformation temperature (recrystallization temperature, austenitizing temperature, etc.).
- Equation cannot be used to estimate the width of the fusion zone, since it becomes unsolvable when T<sub>p</sub> =T<sub>m</sub>
- (Remember the assumption in Rosenthal's solution of the generalized equation of heat flow, → Heat was deposited at a point, and there was no melted region, but just a HAZ)

### Assignment 2

A single full penetration weld pass is made on steel using the following parameters.

 $T_m$ = 1510 C, E=20 V, I= 200 A, Welding speed (v or U) =5 mm/s,  $T_0$ = 25 C, Arc efficiency =0.9,  $\rho$ C = 0.0044 J/mm<sup>3</sup>. C, t=5 mm,  $H_{net}$ = 720 J/mm

- a) Calculate the peak temperatures at distances of 1.5 and 3.0 mm from the weld fusion boundary
- b) Calculate the width of HAZ if the recrystallization temperature is 730° C
- c) Find the influence on the width of HAZ if a preheated sample is used (Assume preheat temp =200° C)
- d) Find the influence on the width of HAZ if the net energy is increased by 10%
- e) Find the influence on the width of HAZ if the velocity is increased to 10 mm/s