CS5234 Cheat Sheet Gabriel Yeo

Inequalities

 $\begin{array}{ll} \textit{Markov:} & P(X \geq \alpha) \leq \frac{E(X)}{\alpha} \\ \textit{Chebyshev:} & P(|X - \mu| \geq k) \leq \frac{Var(X)}{k^2} \\ \textit{Chernoff:} & P(X \leq (1 - \delta)\mu) \leq e^{-\frac{\delta^2 \mu}{2}} \leq e^{-\frac{\delta^2 \mu}{3}} \\ P(X \geq (1 + \delta)\mu) \leq e^{-\frac{\delta^2 \mu}{2 + \delta}} \leq e^{-\frac{\delta^2 \mu}{3}} \\ X = X_1 + \ldots + X_n, \\ X_i \in \{0, 1\}, \text{ (ind. Bernoulli)} \end{array}$

Chernoff: $P(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\delta^2 \mu}{3}}$ Hoeffding: $P(|X - \mu| \ge t) \le 2e^{\frac{-2t^2}{n}}$

 $X = X_1 + \dots + X_n,$
 $X_i \in [0, 1]$

 $P(|\overline{X} - E[\overline{X}]| \ge t) \le 2e^{-2nt^2}$ $\overline{X} = \frac{1}{2}(X_1 + \dots + X_n)$

Hoeffding (gen): $P(|\overline{X} - E[\overline{X}]| \ge t) \le 2e^{-\frac{2t^2}{\sum (a_i - b_i)^2}}$

 $X_i \in [a_i, b_i]$

Facts

Hoeffding:

 $\begin{array}{lll} For \ 0 < x \leq 1: & 1-x \leq e^{-x} \leq 1-\frac{x}{2} \\ For \ 0 < x \leq 1: & \frac{1}{e^2} \leq (1-x)^{1/x} \leq \frac{1}{e} \\ 1/e: & = 0.36787944117 \\ 1/e^2: & = 0.13533528323 \leq 1/6 \\ 1/e^3: & = 0.04978706836 \leq 1/20 \\ Variance: & Var[X] = E[(X-E[X])^2)] \\ & = E[X^2] - E[X] \end{array}$

Lecture 3 Maximal Matching

Return the size of the Maximal Matching.

 $\begin{array}{l} \text{query}(e)\colon & \\ & \text{for all neighbours } e' \text{ of } e\colon \\ & \text{if hash}(e') < \text{hash}(e) \\ & \text{if query}(e') = \text{TRUE} \\ & \text{return FALSE} \\ & \text{return TRUE} \\ \\ \text{sum } := 0 \\ \text{for } j = 1 \text{ to } s\colon \\ & - \text{ Choose edge } e \text{ uniformly at random.} \\ & - \text{ if } (\text{query}(e) = \text{True}) \\ & \text{sum } := \text{sum } + 1 \\ & \text{return } m \cdot \text{sum/s} \\ \end{array}$

 $E[cost] = 2 \sum_{k=1}^{\infty} \frac{d^k}{k!} = O(e^d).$ $sum = MM(G) \pm \epsilon m.$ Complexity = $O(\frac{e^d}{2})$.

Can do better: $O(\frac{d^4}{\epsilon^2})$, even $O(\frac{d^2}{\epsilon^2})$, and reduce error to $+\epsilon n$

Lecture 2 Connectivity

G is ϵ -close to connected if you can modify at most ϵnd entries in the adjaceny list to make it connected. If G(V, E) is connected, output True, else if ϵ -far from connected, output False.

 $\begin{array}{c} \operatorname{Connected}(\mathsf{G},\ \mathsf{n},\ \mathsf{d},\ \epsilon) \\ \operatorname{Repeat}\ 16/\epsilon d \ \operatorname{times}: \\ - \operatorname{Choose}\ \mathsf{a}\ \operatorname{random}\ \mathsf{node}\ u \\ - \operatorname{Do}\ \mathsf{a}\ \operatorname{BFS}\ \mathsf{from}\ u,\ \mathsf{stopping}\ \mathsf{after}\ 8/\epsilon d\ \mathsf{nodes} \\ \operatorname{seen}. \\ - \operatorname{If}\ \mathsf{CC}\ \mathsf{of}\ u\ \mathsf{has}\ \leq 8/\epsilon d\ \mathsf{nodes},\ \mathsf{return}\ \mathsf{FALSE}. \\ \operatorname{return}\ \mathsf{TRUE} \end{array}$

BFS cost = $\frac{8}{\epsilon d} \cdot d$ Total complexity = $O(\frac{1}{\epsilon^2 d})$

Lecture 2 Connected Components

Output CC such that: $|CC(G) - C| \le \epsilon n$, w.p. $> 1 - \delta$ Define n(u) = num nodes in the CC of u. cost(u) = 1/n(u).

 $\sum_{u \in CC_i} cost(u) = 1.$

Let $\overline{C} = \sum cost(u_i)$

 $\begin{array}{l} \operatorname{sum} = 0 \\ \operatorname{for} \ j = 1 \ \operatorname{to} \ s \colon \\ & - \ \operatorname{Sample} \ u \ \operatorname{randomly} \\ & - \ \operatorname{BFS} \ \operatorname{from} \ u, \ \operatorname{stop} \ \operatorname{when} \ \operatorname{see} \ \operatorname{up} \ \operatorname{to} \ 2/\epsilon \ \operatorname{nodes} \\ & - \ \operatorname{If} \ \operatorname{BFS} \ \operatorname{found} \ > 2/\epsilon \ \operatorname{node} \colon \\ & - \ \operatorname{sum} \ := \ \operatorname{sum} \ + \epsilon/2 \\ & - \ \operatorname{Else} \colon \\ & - \ \operatorname{sum} \ := \ \operatorname{sum} \ + \ \operatorname{cost}(u) \\ & \operatorname{return} \ \operatorname{n} \ \cdot \ (\operatorname{sum/s}) \end{array}$

Let $Y_j = cost(u_j)$ of our sample j $|CC(G) - \overline{C}| \le \epsilon n/2$ $E[Y_j] = \sum_n \frac{1}{n} cost(u_i) = \frac{1}{n} \overline{C}$ $E[\sum Y_j] = s \cdot E[Y_j] = \frac{s}{n} \overline{C}$ Since we output $\frac{n}{s} \sum Y_j$, we get $E[\frac{n}{s} \sum Y_j] = \overline{C}$ $P(|\overline{C} - \frac{n}{s} \sum Y_j| > \epsilon n/2)$ $= P(|E[\sum Y_j] - \sum Y_j| > \frac{s}{n} \epsilon n/2)$ $= P(|E[\sum Y_j] - \sum Y_j| > s\epsilon/2)$ $\le 2e^{-2\epsilon^2 s^2/4s}$ $\le 2e^{-\epsilon^2 s/2} \le \delta$

Set $s = \frac{2}{\epsilon^2} ln(2/\delta)$. Complexity $= 2d/\epsilon \cdot O(\frac{1}{\epsilon^2} ln(1/\delta)) = O(\frac{d}{\epsilon^3} ln(1/\delta))$.

Lecture 3 MST weight

Output M such that: $M = MST(G)(1 \pm \epsilon)$ w.p. $> 1 - \delta$. Let G_j be the graph with edge weights j and below. Let C_j be the connected components in G_j . MST(G) contains $C_j - 1$ edges of weight > j. Therefore:

$$MST(G) = (n - C_1) + \sum_{j=1}^{W-1} (j+1)(C_j - C_j + 1)$$
$$= n - W + \sum_{j=1}^{W-1} C_j$$

 $\begin{array}{l} \text{sum } := n - W \\ \text{for } j = 1 \text{ to } W - 1 \text{:} \\ \quad - X_j = \text{ApproxCC}(G_j, d, \epsilon' \delta') \\ \quad - \text{ sum } := \text{sum } + X_j \\ \text{return sum} \end{array}$

Sum of errors: $(\epsilon'n)(W-1)$ Set $\epsilon' = \epsilon/W$, then sum of errors $\leq \epsilon n$. Set $\delta' = \delta/W$. Then $P(anyfail) \leq \sum_{1}^{W-1} \delta/W \leq \delta$. $MST(G) - \epsilon n \leq sum \leq MST(G) + \epsilon n$ Since $MST(G) \geq n - 1 \geq n/2$, $n \leq 2MST(G)$, $MST(G)(1 - 2\epsilon) \leq sum \leq MST(G)(1 + 2\epsilon)$

Lecture 4 FM

FM returns 1/X - 1, $E[X] = \frac{1}{t+1}$, $Var[X] \le \frac{1}{(t+1)^2}$. FM+: Run FM-subroutine $X_1, X_2, ..., X_a$.

Take average: $Z = \frac{1}{a} \sum_{j=1}^{a} X_j$.

Return C = 1/Z - 1. $Var[Z] = \frac{1}{a(t+1)^2}$.

$$Pr[|Z - \frac{1}{t+1}| \ge \epsilon(\frac{1}{t+1})] \le Var[Z] \frac{(t+1)^2}{\epsilon^2}$$

$$\le \frac{1}{a\epsilon^2}$$

Let $a = 4/\epsilon^2$, $C \in t(1 \pm 4\epsilon)$ w.p. $\geq 1/4$.

FM++: Run FM+-subroutine b times and take median. Claim: If > 1/2 of the C_j 's are good, median is good. Let $b = 36ln(2/\delta)$, FM++ returns $C \in t(1 \pm 4\epsilon)$ w.p. $\geq 1 - \delta$.

Lecture 7 External Memory Model

Problem	EMM
Scan Array	O(N/B)
Search Array	O(log(N/B))
Sort B-tree	$O(Nlog_BN)$
Search B-tree	$O(log_B N)$
Insert/Delete B-tree	$O(log_B N)$
Search BufferTree	O(log N)
Insert BufferTree	O((1/B)logN)
Search BufferTree \sqrt{B}	$O(log_B N)$
Insert BufferTree \sqrt{B}	$O((1/\sqrt{B})logN)$
Ex.MergeSort/BufferTree	$O(\frac{N}{B}log_{M/B}N/B)$
BFS	$O(n + \frac{m}{B}log_{M/B}m/B)$

Lecture 7 Caching

B-Trees: (a,b)-tree with n keys has height $\leq log_a(\frac{n}{a})+1$.

At most n/a leaves. Every node except the root has degree > a.

Node at height $log_a(\frac{n}{a})$ has $\geq a^{log_a(\frac{a}{n})} \geq \frac{n}{a}$ leaves.

Corollary: if $a \geq B$, then (a,b) - tree with n keys has height $O(log_B n)$.

BufferTrees: Amortized cost of split/share/merge is O(1/B), thus O((1/B)logN) per operation.

With parent pointers: insert may cost O(BlogN) if every level needs to split.

Lecture 9: van Emde Boas Tree

Cache-oblivious structure for searching.

- Let T_r be the subtree consisting of all the nodes of depth ≤ |(logn)/2|.
- Let T₂, T₂,..., T_k be the subtrees consisting of all the nodes of depth > ⌊(logn)/2⌋, each subtree rooted at a unique node of depth ∣(logn)/2∣ + 1.
- Then arrange the array as follows: $L(T_T), L(T_1), L(T_2), ..., L(T_k)$.

Single value search: $O(loq_B n)$.

Range search with k values in range [k1, k2]: $O(\log_B n + k/B + 1)$.

Lecture 11: Parallel BFS

Span of ProcessFrontier (loose) is $O(log^3n)$.

Work of ProcessFrontier is $O(mlog^2n)$.

Total work $W = O(mlog^2 n)$.

Total Span $S = O(D\log^3 n)$.

Total runtime with p processors and a good scheduler = $O((m/p)log2n + Dlog^3n)$

Lecture 10: BFS in the EMM

We can BFS in $O(n + \frac{m}{B}log_{M/B}m/B)$. Inductive invariant: L_i and L_{i-1} are sorted.

Let $N(L_i)$ be the set of edges adjacent to nodes in L_i .

- 1. **Enumeration:** Iterate through each $u \in L_i$ to make L_{i+1}^{tmp} , which may contain duplicates and nodes in L_i/L_{i-1} . Cost is $2|L_i| + |N(L_i)|/B$.
- 2. **Duplicate removal:** Sort L_{i+1}^{tmp} and remove duplicates by scanning. Cost is $sort(|N(L_i)|)$ and $|N(L_i)|/B$ for scanning.
- 3. Removing visited nodes: Finally, we can make L_{i+1} by removing nodes in L_i/L_{i-1} from L_{i+1}^{tmp} . Double concurrent pointers strategy: cost is $O(|N(L_i)|/B + |L_i|/B + |L_{i-1}|/B)$.

Total cost for level L_{i+1} :

 $O(|L_i| + |N(L_i)|/B + sort(|N(L_i)|) + |L_i|/B + |L_{i-1}|/B)$. Total cost:

Note that $\sum_{i} |L_{i}| = |V|$ since every node appears in exactly 1 level.

Also, $\sum_{i}(|N(L_i)|/B) = |E|/B$ and $\sum_{i} sort(N(L_i)) \leq sort(|E|)$.

Lecture 10: CCs in the EMM

Cost is O(sort(E)log(|E|/M)).

Main Idea: Recursively convert into a depth 1 tree. Connected nodes will have the same root.

- 1. **Divide:** Halve edge list E into E_1 and E_2 . Recursively solve E_2 , contract E_1 with E_2 , recurse on E_1 , and merge.
- 2. Base case: $\leq M$ edges, just do in memory.
- 3. Contract: E_2 is a depth 1 tree. Edge list is sorted, so we say for (u, v), u is the root. Modify nodes in E_1 that are connected to nodes in E_2 : if $(a, b) \in E_1$ has some $(u, b) \in E_2$, convert (a, b) to (a, u). Do for all different intersecting types. Basically, edges to leaves in E_2 can be converted to edges to the root.
 - Sort E_1 by first components and E_2 by second.
 - Scan through E_1 and E_2 in parallel, marking conversions.
 - Sort E_1 by second component and repeat.
- 4. Recurse on the contracted E_1 .
- 5. Merge. Do a simple contraction again to make sure we do not have a depth 2 tree.

Cost: $T(|E|) \le 2T(|E|/2) + O(sort(E))$. T(M) = M/B. Thus, O(sort(E)log(|E|/M)).

Lecture 11: PRAM and Fork Join model

Relegate the scheduling problem to a separate scheduling component. Create subtasks that are executed by the system in parallel. Up to p subtasks running together. Always assume scheduler does a good job.

- Work W: how long to complete on 1 processor?
- Span S: how long would it take with $p = \infty$?
- Max Parallelism: W/S.
- Good scheduler will get you O(W/p + S).

Parallel Sort:

```
pMergeSort(A, n):
    if (n==1) then return;
    else
        X = fork pMergeSort(A[1..n/2], n/2)
        Y = fork pMergeSort(A[n/2+1, n], n/2)
        sync;
        M = median of X;
        A1 = pMerge(X[1...M], Y[1...M]);
        A2 = pMerge(X[M...end], Y[M...end]);
```

```
Work: W(n) = W(\alpha n) + W((1 - \alpha)n) + O(\log n).
Span: S(n) = S(3n/4) + O(\log n) = O(\log^2 n).
```

Lecture 11: Parallel Sets

Set 1 (n items), set 2 (m items), n > m.

see 1 (ii reems), see 2 (iii reems), ii > iii.	
Problem	Parallel
insert	W = S = O(log n)
delete	W = S = O(log n)
divide	W = S = O(log n)
union	$W = O(n+m), S = O(\log n + \log m)$
set diff/sub	$W = O(n+m), S = O(\log n + \log m)$
intersection	$W = O(n+m), S = O(\log n + \log m)$

Can implement everything with the following operations in (2,4)-tree with: Work = Span = O(logn + logm).

- Split(T, x) \rightarrow (T1, T2, x)
- $Join(T1, T2) \rightarrow (T)$
- $Root(T) \rightarrow (x)$
- Insert(T, x) \rightarrow (T')

```
Union(T1, T2)
   if T1 = null: return T2
   if T2 = null: return T1
   key = root(T1)
   (L, G, x) = split(T2, key)
   fork:
        1. TL = Union(key.left, L)
        2. TR = Union(key.right, R)
   sync
   T = join(TL, TR)
   insert(T, key)
   return T
```

W(n,m) = 2W(n/2,m) + O(logn + logm) = O(nlogm). $S(n,m) = S(n/2,m) + O(logn + logm) = O(log^{2}n).$