

TM1627 是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用电路,内 部集成有MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。本产品性能优 良,质量可靠。主要应用于VCR、VCD、DVD 及家庭影院等产品的显示屏驱动。采用SOP28 的封装形式。

二、 特性说明

- 采用功率CMOS 工艺
- 多种显示模式 (10 段×7 位 ~ 13 段×4 位)
- 键扫描(10×2)
- 辉度调节电路(占空比8 级可调)
- 串行接口 (CLK, STB, DIO)
- 振荡方式: 内置RC 振荡 (450KHz+5%)
- 按键返回中断口(KEYINT)
- 内置上电复位电路
- 封装形式: SOP28

三、 管脚定义:

1	KEYINT	GND	28
1 2 3 4 5 6 7 8	DIO CLK STB K1 K2 VDD	GRID1 GRID2 GND GRID3 GRID4 GND	28 27 26 25 24 23 22 21
9 10 11 12 13 14	SEG1/KS1 SEG2/KS2 SEG3/KS3 SEG4/KS4 SEG5/KS5 SEG6/KS6 SEG7/KS7	VDD SEG14/GRID5 SEG13/GRID6 SEG12/GRID7 SEG10/KS10 SEG9/KS9 SEG8/KS8	20 19 18 17 16 15

四、管脚功能定义:

符号	管脚名称	说明
D10	数据输入/输出	在时钟上升沿输入/输出串行数据,从低位开始。 输出为N-ch open drain
STB	片选	在上升或下降沿初始化串行接口,随后等待接收指令。STB 为低后的第一个字节作为指令,当处理指令时,当前其它处理被终止。当STB 为高时,CLK 被忽略
CLK	时钟输入	在上升沿读取串行数据,下降沿输出数据
K1∼K2	键扫数据输入	输入该脚的数据在显示周期结束后被 锁存
SEG1/KS1∼ SEG10/KS10	输出(段)	段输出(也用作键扫描),p管开漏输出
GRID1∼ GRID4	输出(位)	位输出,N管开漏输出
SEG12/GRID7 ~ SEG14/GRID5	输出(段/位)	段/位复用输出
VDD	逻辑电源	$5V \pm 10\%$
VSS	逻辑地	接系统地
KEYINT	中断输出	按键后输出中断信号

▲ 注意: DIO口输出数据时为N管开漏输出,在读键的时候不需要外接上拉电阻。本公司在芯片内 部集成了10K的上拉电阻。DIO在时钟的下降沿控制N管的动作,此时读数时不稳定,你可以参考 图 (6), 在时钟的上升沿读数才时稳定。

www.titanmec.com

显示寄存器地址和显示模式: 五、

该寄存器存储通过串行接口从外部器件传送到TM1627 的数据,地址从00H-0DH共14字节单元, 分别与芯片SGE和GRID管脚所接的LED灯对应,分配如下图:

写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	SEG9	SEG10	X	SEG12	SEG13	SEG14	X	Х	
XX	HL(作	氐四位)	Х	xHU(雨	高四位)	2	xxHL (们	〔5四位)		xx]	HU(高	5四位)	
В0	B1	B2	В3	B4	В5	В6	В7	В0	B1	B2	В3	В4	В5	В6	В7	
00	HL			00	HU			0	1HL			01	HU		GR]	ID1
02	HL			02	2HU			0	3HL			03	HU		GR1	ID2
04	HL			04	HU			0	5HL			05	HU		GR1	ED3
06	HL			06	BHU			0	7HL			07	HU		GR]	[D4
08	HL			08	BHU			0	9HL		*	09	HU		GR]	ID5
0A	HL			0.0	M U			0	BHL			0B	HU		GR1	ID6
00	HL			00	CHU	·		0	DHL		de la	OD	HU	·	GR1	ID7

图 (2)

六、 键扫描和键扫数据寄存器:

键扫矩阵为10×2bit,如下所示:

键扫数据储存地址如下所示,先发读键命令后,开始读取按键数据BYTE1—BYTE5字节,读数 据从低位开始输出,其中B6和B7位为无效位,此时芯片输出为0。芯片K和KS引脚对应的按键按下 时,相对应的字节内的 BIT位为1。

	В0	B1	B2	В3	B4	В5	В6	В7	
_	K1	K2	X	K1	K2	X			_
	KS1			KS2		0	0	BY.	ΓΕ1
	KS3			KS4		0	0	BY.	ГЕ2
	KS5			KS6		0	0	BY.	ГЕЗ
	KS7			KS8		0	0	BY.	ГЕ4
	KS9			KS10		0	0	BY.	ГЕ5

图 (4)

▲注意: 1、TM1627最多可以读5个字节,不允许多读。

2、读数据字节只能按顺序从BYTE1-BYTE5读取,不可跨字节读。例如:硬件上的K2与KS10 对应按键按下时,此时想要读到此按键数据,必须需要读到第5个字节的第4BIT位,才可读出数据;

当有多个键按下,例如: K1与KS10, K2与KS10两个键同时按下时, BYTE5字节的B3与B4位为1。 3、组合键只能是同一个KS,不同的K1组合。

七、 指令说明:

指令用来设置显示模式和LED 驱动器的状态。

在STB下降沿后由DIO输入的第一个字节作为一条指令。经过译码,取最高B7、B6两位比特位以 区别不同的指令。

В7	В6	指令
0	0	显示模式设置
0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据 无效(之前传送的指令或数据保持有效)。

(1) 显示模式设置:

MSB							LSB	
В7	В6	В5	B4	В3	B2	B1	В0	显示模式
0	0					0	0	4位13段
0	0		无关项	,填0		0	1	5 位 12 段
0	0			,英 0		1	0	6位11段
0	0		P	4	H	1	1	7位10段

该指令用来设置选择段和位的个数(4~7位,10~13段)。当指令执行时,显示被强制关闭。 要送显示控制命令开显示,原先显示的数据内容不会被改变,但当相同模式被设置时,则上述情况 并不发生。

(2) 数据命令设置:

该指令用来设置数据写和读,B1和B0位不允许设置01或11。

W2R						LZR		
В7	В6	B5 B4	В3	B2	B1	В0	功能	说明
0	1				0	0	数据读写模式	写数据到显示寄存器
0	1				1	0	设置	读键扫数据
0	1	无关项,		0			地址增加模式	自动地址增加
0	1	填 0		1			设置	固定地址
0	1		0				测试模式设置	普通模式
0	1		1				(内部使用)	测试模式

地址命令设设置:

MSB							LSB						
В7	В6	В5	B4	В3	B2	B1	В0	显示地址					
1	1			0	0	0	0	00Н					
1	1]			0	0	0	1	01H				
1	1										0	0	1
1	1			0	0	1	1	03H					
1	1			0	1	0	0	04H					
1	1			0	1	0	1	05H					
1	1	无关		0	1	1	0	06Н					
1	1	填	0	0	1	1	1	07H					
1	1			1	0	0	0	08H					
1	1			1	0	0	1	09Н					
1	1			1	0	1	0	OAH					
1	1			1	0	1	1	0BH					
1	1			1	1	0	0	0CH					
1	1			1	1	0	1	ODH					

该指令用来设置显示寄存器的地址。

如果地址设为0EH 或更高,数据被忽略,直到有效地址被设定。 上电时,地址默认设为00H。

(4) 显示控制:

MSB LSB

407	Z000D		700	3.					
В7	В6	В5	B4	В3	B2	B1	ВО	功能	说明
1	0			QP.	0	0	0		设置脉冲宽度为 1/16
1	0	4			0	0	1		设置脉冲宽度为 2/16
1	0				0	1	0		设置脉冲宽度为 4/16
1	0				0	1	1	消光数量设置	设置脉冲宽度为 10/16
1	0	无关			1	0	0	仍儿奴里以且	设置脉冲宽度为 11/16
1	0	填	0		1	0	1		设置脉冲宽度为 12/16
1	0				1	1	0		设置脉冲宽度为 13/16
1	0				1	1	1		设置脉冲宽度为 14/16
1	0			0				显示开关设置	显示关
1	0			1				业小月入以且	显示开

八、串行数据传输格式:

读取和接收1个BIT都在时钟的上升沿操作。

数据接收(写数据)

数据读取(读数据)

▲注意: 读取数据时,从串行时钟CLK 的第8 个上升沿开始设置指令到CLK 下降沿读数据之间需要 一个等待时间Twait(最小1µS)。

九、 显示和按键:

(1) 显示:

1、驱动共阴数码管:

图 (7)

图7给出共阴数码管的连接示意图,如果让该数码管显示"0",那你需要在GRID1为低电平 的时候让SEG1, SEG2, SEG3, SEG4, SEG5, SEG6为高电平, SEG7为低电平,

查看图(2)显示地址表格,只需在00H地址单元里面写数据3FH就可以让数码管显示"0"。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	1	1	1	1	1	1	H00
В7	В6	B5	B4	В3	B2	B1	В0	

2、驱动共阳数码管:

图8给出共阳数码管的连接示意图,如果让该数码管显示"0",那你需要在GRID1,GRID2, GRID3, GRID4, GRID5, GRID6为低电平的时候让SEG1为高电平,在GRID7为低电平的时候让SEG1为 低电平。要向地址单元00H,02H,04H,06H,08H,0AH里面分别写数据01H,其余的地址单元全部 写数据00H。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	0	0	0	0	0	1	00Н
0	0	0	0	0	0	0	1	02H
0	0	0	0	0	0	0	1	04H
0	0	0	0	0	0	0	1	06H
0	0	0	0	0	0	0	1	08H
0	0	0	0	0	0	0	1	OAH
0	0	0	0	0	0	0	0	ОСН
В7	В6	B5	B4	В3	B2	B1	В0	

▲注意: SEG1-11为P管开漏输出, GRID1-7为N管开漏输出, 在使用时候, SEG1-11只能接LED的阳极, GRID只能接LED的阴极,不可反接。

(2) 按键:

键扫描由TM1627自动完成,不受用户控制,用户只需要按照时序读键值。完成一次键扫需 要2个显示周期,一个显示周期大概需要T=8x500US,在8MS先后按下了2个不同的按键,2次读到的 键值都是先按下的那个按键的键值。

按照图(9)用示波器观察SEG1/KS1和SEG2/KS2的输出键扫波形,见图(10)。

图 (10)

Tdisp和IC工作的振荡频率有关,我司TM1627经过多次完善,振荡频率不完全一致。500US 仅仅提供参考,以实际测量为准。

·般情况下使用图(11),可以满足按键设计的要求。

当S1被按下的时候,在第1个字节的B0读到"1"。如果多个按键被按下,将会读到多个"1", 当S2, S3被按下的时候,可以在第1个字节的B1, B3读到"1"。

▲注意: 复合键使用注意事项:

SEG1/KS1-SEG10/KS10是显示和按键扫描复用的。以图(12)为例子,显示需要D1亮,D2灭, 需要让SEG1为"1", SEG2为"0"状态,如果S1, S2同时被按下,相当于SEG1, SEG2被短路,这时 D1, D2都被点亮。

解决方案:

1、在硬件上,可以将需要同时按下的键设置在不同的K线上面如图(13)所示,

2、在SEG1—SEG N上面串联电阻如图(14)所示,电阻的阻值应选在510欧姆,太大会造成 按键的失效, 太小可能不能解决显示干扰的问题。

3、或者串联二极管如图(15)所示。

TM1627 按键中断信号

新增的管脚 KEYINT,平时为高电平,在有按键被按下时在键扫周期内出现低电平脉冲。

应用时串行数据的传输:

(1) 地址增加模式

使用地址自动加1模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令 字发送完毕, "STB"不需要置高紧跟着传数据,最多14BYTE,数据传送完毕才将"STB"置高。

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址

Data1~ n: 传输显示数据至Command3地址和后面的地址内(最多14 bytes)

Command4:显示控制命令

固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的1BYTE数据存放的地址。地址发送完 毕, "STB"不需要置高,紧跟着传1BYTE数据,数据传送完毕才将"STB"置高。然后重新设置第2 个数据需要存放的地址,最多14BYTE数据传送完毕, "STB"置高。

СIК							
DЮ	Command1	Command2	Command3	Datal	Command4	Data2	 Command5
STB			Π				

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址1

Data1: 传输显示数据1至Command3地址内

Command4: 设置显示地址2

Data2: 传输显示数据2至Command4地址内

Command5: 显示控制命令

(3) 读按键时序

CLK				IIII		ТИНИ	ШШ		
DIO	Command1	Data1	Data2		Data3	Data4		Data5	
STB			A						

Command1: 设置显示模式 Data1~5:读取按键数据

(4) 程序设计流程图:

采用地址自动加一的程序设计流程图:

采用固定地址的程序设计流程图:

十一. 应用电路:

TM1627驱动共阴数码屏接线电路图(18):

图 (19)

- ▲注意: 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1627芯片放置,加强滤波效果。
 - 2、连接在DIO、CLK、STB通讯口上三个101P电容可以降低对通讯口的干扰。
 - 3、因蓝光数码管的导通压降压约为3V,因此TM1627供电应选用5V。

十三、 电气参数:

极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+7.0	V
逻辑输入电压	VI1	$-0.5 \sim \text{VDD} + 0.5$	V
LED SEG 驱动输出电流	101	-50	mA
LED GRID 驱动输出电流	102	+200	mA
功率损耗	PD	400	mW
工作温度	Topt	−40 ~ +80	°C
储存温度	Tstg	−65 ~+150	$^{\circ}$

正常工作范围 (Ta = -20 ~ +70℃, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD	3	5	7	V	-
高电平输入电压	VIH	0. 7 VDD	-	VDD	V	-
低电平输入电压	VIL	0	-	0.3 VDD	V	-

电气特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V, Vss = 0 V

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	Ioh1	20	25	40	mA	Seg1~Seg11, Vo = vdd-2V
同电干制山电机	Ioh2	20	30	50	mA	Seg1~Seg11, Vo = vdd-3V
低电平输入电流	IOL1	80	140	-	mA	Grid1~Grid6 Vo=0.3V

低电平输出电流	Idout	4	-	-	mA	VO = 0.4V, dout				
高电平输出电流容 许量	Itolsg	-	-	5	%	VO = VDD - 3V, Seg1∼Seg11				
输出下拉电阻	RL		10		КΩ	K1~K3				
输入电流	II	-	-	±1	μА	VI = VDD / VSS				
高电平输入电压	VIH	0. 7 VDD	ı		V	CLK, DIN, STB				
低电平输入电压	VIL	1	I	0. 3 VDD	V	CLK, DIN, STB				
滞后电压	VH	-	0. 35	ı	V	CLK, DIN, STB				
动态电流损耗	IDDdyn	_	_	5	mA	无负载,显示关				

开关特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件			
振荡频率	fosc	İ	500	-	KHz	F	R = 16.5 KΩ		
	tPLZ	- (300	ns		CLK → DOUT		
传输延迟时间	tPZL	1		100	ns	CL = 15pF, RL = 10K Ω			
	TTZH 1	-	_	2	μѕ		SEG1∼SEG11		
上升时间	TTZH 2	-	-	0. 5	μς	CL = 300p F	Grid1∼Grid4 SEG12/Grid7∼ SEG14/Grid5		
下降时间	TTHZ	-	-	120	μѕ	CL = 300pF, Segn, Gridn			
最大时钟频率	Fmax	1	-	-	MHz	占空比50%			
输入电容	CI	_	_	15	pF		-		

* 时序特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	-	-	ns	_
选通脉冲宽度	PWSTB	1	-	-	μs	_
数据建立时间	tSETUP	100	=	=	ns	-
数据保持时间	tHOLD	100	-	-	ns	_
CLK →STB 时间	tCLK STB	1			μs	CLK↑→STB↑
等待时间	tWAIT	1		-	μς	$CLK \uparrow \rightarrow CLK \downarrow$

时序波形图:

十四 IC 封装示意图:

尺寸标注	最 小(mm)	最 大(mm)	尺寸标注	最小(mm)	最 大(mm)	
A	17.83	18.03	C4	1.04	STYP	
A1	0.400	64TYP	D1	0.70	0.90	
A2	1. 27	TYP	D2	1.39	5TYP	
A3	0.5	LTYP	R1	0.508TYP		
В	9. 90	10.50	R2	0.508TYP		
B1	7.42	7.62	θ 1	7°	TYP	
B2	8. 9	TYP	θ 2	5°	TYP	
C1	2.24	2.44	θ3	4°	TYP	
C2	0.204	0.33	θ 4	10°	TYP	
C3	0.10	0.25				

DETAIL "X"

● All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)

本应用文档最后更新日期为: 2011-01-13