Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

"Национальная научно-образовательная корпорация ИТМО"

Факультет Систем Управления и Робототехники

Лабораторная работа №1 "Получение конструктивной постоянной двигателя"

по дисциплине

«Введение в профессиональную деятельность»

Группа:

R3136

Выполнила команда:

Поляков Антон Александрович

Ибахаев Зубайр Руслан-Бекович

Иванов Виктор Олегович

Скавронский Александр Вадимович

Преподаватель:

Алексей Алексеевич Перегудин

Цель работы

Изучить внутреннее устройство и принцип работы электродвигателей постоянного тока на примере мотора EV3. Изучить математическую модель последнего и определить его параметры, в том числе конструктивные постоянные.

Основная теория и формулы

В технических задачах, связанных с автоматическим управлением, все явления рассматриваются как некоторые процессы. Они характеризуются:

- Входными сигналами величинами, которые приводят к изменению текущего состояния системы и с помощью которых, следовательно, может осуществляться управление; в данном случае входным сигналом является подаваемое на двигатель напряжение U_{ctrl} .
- Выходными сигналами величинами, которые характеризуют состояние системы в данный момент времени и над которыми осуществляется управление; в данном случае выходными сигналами являются кинематические характеристики вращения ротора, величины, описывающие протекающие в двигателе электродинамические процесс, другие величины, удовлетворяющие данному выше определению. В работе используются: угловая скорость вращения ротора $\omega(t)$, сила тока в обмотке якоря I(t).
- Функциональной зависимостью между ними условно говоря, информацией о том, как входные сигналы влияют на выходные; представляется уравнениями, составляющими математическую модель.

Версия математической модели, полученная в прошлой работе ($\dot{\omega} + \frac{k_m k_e}{JR} \omega = \frac{k_m}{JR} U$), не подходит по условию, так как в ней отсутствует сила тока.

Рассмотрим ЭДС самоиндукции. Подавая напряжение на катушку, ток возникает в ней, что приводит к появлению магнитного поля. Изменение магнитного потока внутри катушки вызывает появление ЭДС индукции, которая препятствует появлению тока. Эта ЭДС называется ЭДС самоиндукции, так как возникает из-за собственного магнитного поля катушки. $\varepsilon_{self} = -L\dot{l}$

С учетом ЭДС самоиндукции закон Ома примет вид $I=\frac{U_{ctrl}+\varepsilon_{stat}+\varepsilon_{self}}{R}$

Рисунок 1 Появление индукционных магнитных полей

При указанном повороте поток магнитного поля \vec{B} через контур возрастает, вызывая появление индуцированного тока в контуре с направлением, противодействующим изменению магнитного потока. Индуцированный ток создает магнитное поле $\vec{B}_{arepsilon_i}$ с направлением, противоположным контурному току, что означает постановку минуса в выражении для ЭДС индукции со стороны поля статора. Полный магнитный поток в контуре создается не только магнитным полем \vec{B} , но и магнитным полем $\vec{B}I$, формируемым током в самом контуре. При подаче напряжения на катушки ток изменяется, вызывая появление ЭДС самоиндукции $L\dot{I}$, которое препятствует возникновению тока и уменьшает его скорость возрастания. Когда скорость двигателя увеличится, появится ЭДС со стороны поля статора, что приведет к ослаблению поля \vec{B} I и уменьшению создаваемого им магнитного потока, вызывая изменение знака ЭДС самоиндукции $L\dot{I}$, создающей дополнительный ток, направленный так, чтобы препятствовать ослаблению магнитного поля \vec{B} I. Значение ЭДС самоиндукции должно складываться с ЭДС источника тока, что можно заметить по уравнениям закона Ома с учетом ЭДС самоиндукции и ЭДС самоиндукции. Общий ток контура из-за действия ЭДС ε_{stat} уменьшается, следовательно, производная \dot{I} оказывается меньшей нуля. С учетом стоящего перед $L\dot{l}$ минуса соответствующая ЭДС $|L\dot{l}|$ суммируется с U_{ctrl} .

Используя второй закон Ньютона - $M=J\dot{\omega}$ и выражение для силы Ампер - $M_{el}=K_m I$,

получим
$$\begin{cases} \dot{\omega} = \frac{k_m}{J} I \\ \dot{I} = \frac{1}{L} U_{ctrl} - \frac{k_e}{L} \omega - \frac{R}{L} I \end{cases} .$$

Данная система уравнений может быть решена относительно функций $\omega(t)$ и I(t) при известной зависимости входного сигнала $U_{ctrl}(t)$. Это позволяет использовать ее в качестве математической модели для анализа работы электродвигателя и определения его поведения в различных ситуациях.

Из этой системы получаются следующие выражения для $\omega(t)$ и I(t):

$$\omega(t) = C_1 \exp\left(\varkappa_1 t + \varkappa_2 t\right) + C_2 \exp\left(\varkappa_1 t - \varkappa_2 t\right) + \frac{U_{ctrl}}{k_e},\tag{9}$$

$$I(t) = C_3 \exp\left(\varkappa_1 t + \varkappa_2 t\right) - C_3 \exp\left(\varkappa_1 t - \varkappa_2 t\right),\tag{10}$$

где

$$C_1 = \frac{U_{ctrl}}{2k_e} \left(\frac{\varkappa_1}{\varkappa_2} - 1 \right), \tag{11}$$

$$C_2 = -\frac{U_{ctrl}}{2k_e} \left(\frac{\varkappa_1}{\varkappa_2} + 1 \right), \tag{12}$$

$$C_3 = \frac{J}{k_m} \cdot \frac{U_{ctrl}}{2k_e} \left(\frac{\varkappa_1^2}{\varkappa_2} - \varkappa_2 \right), \tag{13}$$

где, в свою очередь,

$$\varkappa_1 = -\frac{R}{2L},\tag{14}$$

$$\varkappa_2 = \sqrt{\varkappa_1^2 - \frac{k_m k_e}{JL}},\tag{15}$$

Экспериментальные данные

Voltage, %	U, B	I, A
-10	-0,64	-0,09
-15	-1,02	-0,16
-20	-1,39	-0,21
-25	-1,77	-0,26
-30	-2,14	-0,29
-35	-2,52	-0,36
-40	-2,89	-0,4
-45	-3,27	-0,45
-50	-3,65	-0,51

Voltage, %	U, B	I, A
10	0,66	0,1
15	1,04	0,16
20	1,42	0,22
25	1,8	0,26
30	2,18	0,29
35	2,55	0,34
40	2,93	0,38
45	3,31	0,45
50	3,68	0,5

Таблица 1 Результаты измерений напряжения и силы тока

Выполнение

- Собрать конструкцию, как в первой лабораторной работе, но для подключения мотора использовать специальный кабель со вскрытыми контактами.
- Написать программу, которая обеспечит движение двигателя на несколько секунд со скоростями от 10 до 50 с интервалом 5 единиц, останавливая двигатель между каждым запуском.

Рисунок 2 Код python

- Запустить программу, зафиксировав движение двигателя. Во время работы программы измерить силу тока.
- Отсоединить двигатель от кабеля, запустить программу и измерить ЭДС.
- Повторить все то же самое для движения двигателя в обратную сторону.
- Обработать полученные данные в MATLAB, построить графики.

Рисунок 3 Пример кода MATLAB (остальной по ссылке, нажать на рис.)

Ниже приведены аппроксимации данных из измерений, рассчитанные с помощью метода наименьших квадратов (формулы $R=rac{\sum_{i=1}^9 U_i I_i}{\sum_{i=1}^9 I_i^2}$).

Рисунок 4 Графики и аппроксимации ЭДС

• Найти итоговое значение сопротивления по формуле $R_{\text{итог}} = \frac{R_1 + R_2}{2}$.

Mean value: (R1+R2)/2

Рисунок 5 Итоговое значение сопротивления

- Из первой лабораторной работы узнать момент инерции, J = 0,0023.
- Переписать программу из первой лабораторной работы так, чтобы она изменяла аргумент с 10 до 50 с шагом 5 и формирует файл с данными для каждого из запусков двигателя.
- Запустить программу, получить данные. Повторить для движения двигателя в обратную сторону.
- Обработать данные, составить матрицы.

-10	-15	-20	-25	-30	-35	-40	-45	-50
0,9284	1,6298	3,4767	2,9542	3,6143	4,2757	7,9918	5,4956	6,0907

10	15	20	25	30	35	40	45	50
-0,9284	-1,5853	-3,4666	-2,8773	-3,4951	-4,1181	-7,9476	-5,2921	-5,8869

Таблица 2 Данные угловой скорости

• Построить два графика зависимости $U(\omega_{ ext{yct}})$ и аппроксимировать их с помощью функции $U=k_e\omega_{ ext{yct}}.$

Ниже приведены эти графики.

Рисунок 6 Графики и аппроксимации напряжения

• Рассчитать k_e , $k_e = k_m$.

Рисунок 7 Коэффициент усиления

• Построить схему моделирования процесса разгона ненагруженного двигателя.

Рисунок 8 Схема моделирования процесса разгона ненагруженного двигателя

• Построить графики зависимости $\theta(t)$, соответствующий реальному разгону мотора. Ниже приведены эти графики.

Рисунок 9 Графики и аппроксимации угловой координаты при отрицательном напряжении

Рисунок 10 Графики и аппроксимации угловой координаты при положительном напряжении

• Построить графики зависимости выходного сигнала I от времени. Ниже приведены эти графики.

Рисунок 11 Зависимость выходного сигнала от времени

Заключение

В ходе исследования мы изучили внутреннее устройство и принцип работы электродвигателя постоянного тока на примере мотора EV3. Мы определили математическую модель мотора и его параметры, включая конструктивные постоянные.