Math 591 Lecture 12

Thomas Cohn

9/28/20

Recall: For $F: M \to N$ C^{∞} , and $p \in M$, we have

$$F_p^*: C^{\infty}_{F(p)}(N) \to C^{\infty}_p(M)$$
$$[f] \mapsto [f \circ F]$$

By duality, we get $F_{*,p}: T_pM \to T_{F(p)}N$ defined so that, for $v \in T_pM$, $F_{*,p}(v)[f] = v[f \circ F]$. This is also called the differential.

 F_p^* is a ring morphism, which maps the ideal

 $I_{F(p)} = \{ [f] \in C_p^{\infty} \mid f(F(p)) = 0 \}$

into

$$I_p = \{ [f] \in C_p^{\infty} \mid f(p) = 0 \}$$

This induces a map

Check that F_p^* is dual to $F_{p,*}$.

Thm: (Chain Rule) Let $M \xrightarrow{F} N \xrightarrow{G} O$ be smooth, and $p \in M$. Then $(G \circ F)_{*,p} = G_{*,F(p)} \circ F_{*,p}$.

Proof: Let $[f] \in C^{\infty}_{G(F(p))}(O)$. Then $f \circ (G \circ F) = (f \circ G) \circ F$. Now pick $v \in T_pM$. Then

$$(G \circ F)_{*,p}(v)[f] = v(f \circ (G \circ F)) = v((f \circ G) \circ F) = F_{*,p}(v)(f \circ G) = G_{*,F(p)}(F_{*,p}(v))[f]$$

So $(G \circ F)_{*,p} = G_{*,F(p)} \circ F_{*,p}$. \square

Ex: Let $p \in U \stackrel{\text{open}}{\subseteq} M$, $\phi : U \to \mathbb{R}^n$ a coordinate chart. As usual, write $\phi = (x^1, \dots, x^n)$, with $x^i : U \to \mathbb{R}$. Say $\mathbb{R}^n = N$, a manifold with a single chart, the identity map $r = (r^1, \dots, r^n)$, $r^i : \mathbb{R}^n \to \mathbb{R}$.

Claim: $\phi_{*,p}(\frac{\partial}{\partial x^i}|_p) = \frac{\partial}{\partial r^i}|_{\phi(p)}$. In other words, partial derivatives in \mathbb{R}^n correspond with standard basis vectors of T_pM , via the pushforward.

Proof: We can form $f_{\phi} = f \circ \phi^{-1}$. So by definition, $(\phi^{-1})_{*,\phi(p)}(\frac{\partial}{\partial r^i}) = \frac{\partial}{\partial x^i}$. By the chain ule, $(\phi^{-1})_{*,\phi(p)} = (\phi_{*,p})^{-1}$. \square

Differentials of Functions

Let $f: M \to N = \mathbb{R}$ (with a single chart, the identity map). Note that $\forall a \in \mathbb{R}$, we can identify $T_a\mathbb{R} \cong \mathbb{R}$ using $\frac{\partial}{\partial r}|_a$ as a basis of $T_a\mathbb{R}$.

Claim: Then $f_{*,p}: T_pM \to T_{f(p)}\mathbb{R} = \mathbb{R}$ is the same as $df_p: T_pM \to \mathbb{R}$ (defined as the class of $[f-f(p)] \in I_p$ in the quotient I_p/I_p^2).

Chain rule: $M \xrightarrow{F} N \xrightarrow{f} \mathbb{R}$, $v \in T_pM$ simply reads

$$(f\circ F)_{*,p}(v)=(f_{*,F(p)}\circ F_{*,p})(v)=df_p(F_{*,p}(v))=F_p^*(df_p)(v)$$

by the duality between F_*^p and $F_{*,p}$.

Conclusion: The pullback map on differentials is the pushforward of the composition, i.e., $F_p^*(df_p) = (f \circ F)_{*,p} = d(f \circ F)_p$. So we frequently write $F_{*,p} = dF_p$.

Computation of $F_{*,p}$ in Coordinates

Let $F: M \to N, p \in M$. Let (V, ψ) be a coordinate chart near F(p).

$$p \in F^{-1}(V) \subseteq U \subseteq M \xrightarrow{F: M \to N} F(p) \in V \subseteq N$$

$$\downarrow \phi = (x^1, ..., x^m) \qquad \qquad \downarrow \psi = (y^1, ..., y^n)$$

$$\mathbb{R}^m \xrightarrow{\tilde{F} = \psi \circ F \circ \phi^{-1} : \phi(U) \to \mathbb{R}^n} \mathbb{R}^n$$

Lemma: The matrix of $F_{*,p}$ in the ordered bases

$$\left(\frac{\partial}{\partial x^1}\Big|_p, \dots, \frac{\partial}{\partial x^m}\Big|_p\right) \subseteq T_p M \quad \text{and} \quad \left(\frac{\partial}{\partial y^1}\Big|_{F(p)}, \dots, \frac{\partial}{\partial y^n}\Big|_{F(p)}\right) \subseteq T_{F(p)} N$$

is simply $\left(\frac{\partial F^j}{\partial x^i}(p)\right)$, the Jacobian, where $F^j=y^j\circ F:U\to\mathbb{R}$, with $\psi\circ F=(F^1,\ldots,F^n)$.

Observe: This is the Jacobian of \tilde{F} at $\phi(p)$ (in the Calc III sense).

Proof: We want to compute the component $F_{*,p}(\frac{\partial}{\partial x^i})$ with respect to $\frac{\partial}{\partial y^j}$. This is

$$F_{*,p}(\frac{\partial}{\partial x^i})([y^j]) = \left. \frac{\partial}{\partial x^i} (y^j \circ F) \right|_p = \left. \frac{\partial}{\partial x^i} (F^j) \right|_p$$

Defn: A C^{∞} map $F: M \to N$ is a local diffeomorphism iff $\forall p \in M$, there are open neighborhoods U of p and V of F(p), such that F(U) = V and $F|_U^V : U \to V$ has a smooth inverse $(F|_U^V)^{-1} : V \to U$.

Ex: $F: S^n \to \mathbb{RP}^n$ is a local diffeomorphism, but not a global diffeomorphism.