## 5 הרצאה

אלגוריתמים חמדניים

## הקדמה

לעיתים קרובות אפשר לייצג בעיות אופטימזציה כקבוצה של אלמנטים כאשר פתרון חוקי הוא תת קבוצה של אלמנטים שמקיימת תכונות מסויימות. למשל, עץ פורש מינימלי. בדרך כלל יש פונקציית מחיר / רווח לכל תת קבוצה והמטרה שלנו היא למזער / למקסם את הערך הזה.

אלגוריתם חמדן, באופן לא פורמלי, הוא כזה שבונה פתרון (תת קבוצה של אלמנטים) באופן איטרטיבי ובכל שלב מוסיף / מסיר מהקבוצה

## שיבוץ אינטרוולים

נתונים n אינטרוולים  $(a_i)$  את אמן ב- $(a_i)$ , את אמן ההתחלה של האינטרוול  $a_i$  וב- $(a_1,\ldots,a_n)$ , נסמן ב- $(a_i)$  את אמן ההתחלה של האינטרוול מתקיים ש- $(a_i)$  אוכן  $(a_i)$  אוכן  $(a_i)$  אוכן  $(a_i)$  אוכן  $(a_i)$  אוכן  $(a_i)$  אוכן  $(a_i)$  אום ב- $(a_i)$  אום ב- $(a_i)$  אום ב- $(a_i)$  אום ב- $(a_i)$  אחד התנאים מתקיים:  $(a_i)$  אום ב- $(a_i)$  אום



אלגוריתם חמדן:

$$ar{e} \leftarrow 0$$
 , $I \leftarrow \emptyset$  .1

e(a) עבור כל אינטרוול בסדר a בסדר אינטרוול 2.

$$s(a) \geq \bar{e}$$
 אם (א)

$$I \leftarrow I \cup \{a\}$$
 i.

$$\bar{e} \leftarrow e(a)$$
 ii.

לפני שנוכיח נכונות נראה דוגמאות לגישות חמדניות שלא עובדות:

לבחור את האינטרוול עם זמן התחלה הכי מוקדם

| בחור את האינטרוול הכי קצר |  |  |  |  |  |  |  |  |  |  |  |
|---------------------------|--|--|--|--|--|--|--|--|--|--|--|
|                           |  |  |  |  |  |  |  |  |  |  |  |

לבחור את האינטרוול שנחתך עם הכי מעט אינטרוולים



הוכחת נכונות: נוכיח את הטענה הבאה, בכל צעד של האלגוריתם קיימת קבוצה בגודל מקסימלי, I' כך ש-I' רישא שלה ביחס למיון ע"פ ערכי e.

בסיס: באתחול טריוויאלי

:צעד: נבחן את הקבוצות Iו-I בצעד ה-i+1. לפי הנחת האינדוקציה הקבוצות, ממוינות על פי ערכי e נראות כך:

$$I = \{\alpha_1, \dots, \alpha_i, \alpha_{i+1}\}$$
  

$$I' = \{\alpha_1, \dots, \alpha_i, \beta_1, \dots, \beta_k\}$$

נסתכל על הפתרון

$$I'' = \{\alpha_1, \dots, \alpha_i, \alpha_{i+1}, \dots, \beta_k\}$$

מכיוון ש-I' פתרון חוקי האינטרוולים שם זרים בזוגות ולכן גם האינטרוולים ב-I'' למעט אולי מכיוון שהאלגוריתם I'' פתרון חוקי אז אנחנו יודעים ש-I'' זר ל-I'' זר ל-I'' וכן I'' וכן I'' וכן I'' וכן I'' אנחנו יודעים ש-I' זר ל-I' זר ל-I' וכן I'' וכן I'' פתרון בגודל מקסימלי כך ש-I' רישא שלו.