

IIC2223 — Teoría de Autómatas y Lenguajes Formales — 2' 2021

#### Examen

Preguntas en blanco: Preguntas entregadas en blanco se evaluarán con un 1.5.

#### Pregunta 1

Sea  $\Sigma = \{a, b\}$ . Para lenguajes  $L_1, L_2 \subseteq \Sigma^*$  se define:

$$L_1 \mid L_2 = \{uv \in L_1 \mid v \in L_2\}$$

Demuestre que si  $L_1$  y  $L_2$  son lenguajes regulares, entonces  $L_1 \mid L_2$  también es regular.

### Pregunta 2

1. Demuestre que el siguiente lenguaje es libre de contexto:

$$R = \{a^i b^j c^k \mid i < j \lor j < k\}$$

Para esto, demuestre una gramática o un PDA que defina el lenguaje y explique su correctitud.

2. Demuestre que el siguiente lenguaje NO es libre de contexto:

$$S = \{a^i b^j c^k \mid i < i \land i < k\}$$

## Pregunta 3

Sea  $G = (V, \Sigma, P, S)$  una gramática en forma normal de Greibach sin variables inútiles. Demuestre que G es una gramática LL(1) si, y solo si, para todo par de reglas distintas  $X \to a\gamma$  y  $X \to a'\gamma'$  en P se tiene que, si a = a', entonces  $\gamma = \gamma'$ .

# Pregunta 4

Para un lenguaje  $L \subseteq \Sigma^*$  y  $a \in \Sigma$ , se define  $follow_k(a) = \{v|_k \mid u \cdot a \cdot v \in L\}$ .

Escriba un algoritmo que reciba como entrada un autómata finito no-determinista  $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ , una letra  $a \in \Sigma$ , una palabra  $w \in \Sigma^*$  y k > 0, y responda TRUE si, y solo si,  $w \in \mathsf{follow}_k(a)$ . Su algoritmo debe tomar tiempo  $\mathcal{O}(|\mathcal{A}| \cdot |w|)$ . Por último, explique la correctitud de su algoritmo.