Problem 1. Linear sigma model (Peskin & Schroeder 4.3) The interactions of pions at low energy can be described by a phenomenological model called the *linear sigma model*. Essentially, this model consists of N real scalar fields coupled by a ϕ^4 interaction that is symmetric under rotations of the N fields. More specifically, let $\Psi^i(x)$, i = 1, ..., N be a set of N fields, governed by the Hamiltonian

$$H = \int d^3x \left(\frac{1}{2} (\Pi^i)^2 + \frac{1}{2} (\nabla \Phi^i)^2 + V(\Phi^2) \right),$$

where $(\Phi^i)^2 = \Phi \cdot \Phi$, and

$$V(\Phi^{2}) = \frac{1}{2}m^{2}(\Phi^{i})^{2} + \frac{\lambda}{4}((\Phi^{i})^{2})^{2}$$

is a function symmetric under rotations of Φ . For (classical) field configurations of $\Phi^i(x)$ that are constant in space and time, this term gives the only contribution to H; hence, V is the field potential energy.

1(a) Analyze the linear sigma model for $m^2 > 0$ by noticing that, for $\lambda = 0$, the Hamiltonian given above is exactly N copies of the Klein-Gordon Hamiltonian. We can then calculate scattering amplitudes as perturbation series in the parameter λ . Show that the propagator is

$$\Phi^{i}(x)\Phi^{j}(y) = \delta^{ij}D_{F}(x-y),$$

where D_F is the standard Klein-Gordon propagator for mass m, and that there is one type of vertex given by

$$= -2i\lambda(\delta^{ij}\delta^{kl} + \delta^{il}\delta^{jk} + \delta^{ik}\delta^{jl}).$$

Compute, to leading order in λ , the differential cross sections $d\sigma/d\Omega$, in the center-of-mass frame, for the scattering processes

$$\Phi^1\Phi^2 \to \Phi^1\Phi^2$$
, $\Phi^1\Phi^1 \to \Phi^2\Phi^2$, $\Phi^1\Phi^1 \to \Phi^1\Phi^1$

as functions of the center-of-mass energy.

1(b) Now consider the case $m^2 < 0$: $m^2 = -\mu^2$. In this case, V has a local maximum, rather than a minimum, at $\Phi^i = 0$. Since V is a potential energy, this implies that the ground state of the theory is not near $\Phi^i = 0$ but rather is obtained by shifting Φ^i toward the minimum of V. By rotational invariance, we can consider this shift to be in the Nth direction. Write, then,

$$\Phi^{i}(x) = \pi(x), \qquad i = 1, \dots, N - 1,$$
 $\Phi^{N}(x) = v + \sigma(x)$

where v is a constant chosen to minimize V. (The notation π^i suggests a pion field and should not be confused with a canonical momentum.) Show that, in these new coordinates (and substituting for v its expression in terms of λ and μ), we have a theory of a massive σ field and N-1 massless pion fields, interacting through cubic and quartic potential energy terms which all become small as $\lambda \to 0$. Construct the Feynman rules by

November 2, 2020 1

assigning values to the propagators and vertices:

1(c) Compute the scattering amplitude for the process

$$\pi^{i}(p_1)\pi^{j}(p_2) \to \pi^{k}(p_3)\pi^{l}(p_4)$$

to leading order in λ . There are now four Feynman diagrams that contribute:

Show that, at threshold ($\mathbf{p}_i = 0$), these diagrams sum to zero. Show that, in the special case N = 2 (1 species of pion), the term $\mathcal{O}(p^2)$ also cancels.

 $\mathbf{1}(\mathbf{d})$ Add to V a symmetry-breaking term,

$$\Delta V = -a\Phi^N,$$

where a is a (small) constant. Find the new value of v that minimizes V, and work out the content of the theory about that point. Show that the pion acquires a mass such that $m_{\pi}^2 \sim a$, and show that the pion scattering amplitude at threshold is now nonvanishing and also proportional to a.

November 2, 2020 2