(Let us admit Eq. (5.34) to be true.)

Proof by contradiction: Assume one of the Hamiltonian's ground state $|GS\rangle$ has $M_{z,tot}=M_0>0$. (M_0 must be also an integer (why?)). [If M_0 <0, we can always do a π -rotation around x-axis to flip M_0 's sign while keeping in the ground-state energy sector.]

By (5.34), we know that $|GS\rangle$ has $S_{tot}=M_0$. We act on the following ladder operator $S_{\mathrm{tot}}^- \equiv \sum_i S_i^-$

on $|GS\rangle$, so we obtain a state $|O\rangle$ in $M_{z,tot}=M_0-1$ sector, which must be the lowest-energy state because its energy is the same as that of |GS>. Then |O> has $S_{tot}=|M_0-1|=M_0-1$ (here we use the fact that M_0 is an integer.) $\neq M_0$. But $|\mathbf{O}\rangle$ and $|GS\rangle$ must have the same S_{tot} because the above ladder operator does not change S_{tot}. Thus, we have a contradiction, and it should have been $M_0=0$ at the beginning, and by (5.34), $S_{tot}=0$ and all the ground states are in M_0 =0 sector. Corollary 5.4 further means there is actually only one unique ground state.

Remark: if we really want to use $M_0<0$, we just switch to $S_{\rm tot}^+\equiv\sum_i S_i^+$