Wstęp teoretyczny

Półprzewodniki – najczęściej substancje krystaliczne, których konduktywność (przewodnictwo właściwe) może być zmieniana w szerokim zakresie (np. 10-8 do 103 S/cm) poprzez domieszkowanie, ogrzewanie, oświetlenie bądź inne czynniki. Przewodnictwo typowego półprzewodnika plasuje się między przewodnictwem metali i dielektryków.

Wartość rezystancji półprzewodnika maleje na ogół ze wzrostem temperatury. Półprzewodniki posiadają pasmo wzbronione między pasmem walencyjnym a pasmem przewodzenia w zakresie 0 - 6 eV (np. Ge 0,7 eV, Si 1,1 eV, GaAs 1,4 eV, GaN 3,4 eV, AlN 6,2 eV). Koncentracje nośników ładunku w półprzewodnikach można zmieniać w bardzo szerokich granicach, zmieniając temperaturę półprzewodnika lub natężenie padającego na niego światła lub nawet przez ściskanie czy rozciąganie.

Teoria pasmowa: Rozwiązania odpowiednich równań teorii pasmowej prowadzą do wniosku, że dopuszczalne poziomy energetyczne elektronów zlewają się w tzw. pasma energetyczne (stąd nazwa teorii).

Szczególnymi pasmami dozwolonymi są: pasmo walencyjne (najwyżej położone z całkowicie zapełnionych pasm dozwolonych) i pasmo przewodnictwa (niezapełnione, tj. puste, lub tylko częściowo zapełnione pasmo dozwolone znajdujące się ponad pasmem walencyjnym). Szerokość pasma wzbronionego rozdzielającego te dwa pasma odpowiada za własności elektryczne materiału.

Przerwa energetyczna – zakres energii elektronów w ciele stałym, w którym elektrony są silnie rozpraszane na atomach. W efekcie nie ma w układzie elektronów o energii z tego zakresu.

Opis metody pomiarowej i cel ćwiczenia

Celem ćwiczenia jest wyznaczenie szerokości przerwy energetycznej materiału półprzewodnikowego. W układzie pomiarowym materiał ten jest obecny w elemencie elektronicznym zwanym termistorem. Stanowisko pomiarowe składa się z dwóch termistorów umieszczonych w aluminiowym bloczku, wyznacza się szerokość przerwy dla każdego z termistorów z osobna. Bloczek aluminiowy jest podgrzewany przy pomocy tranzystora bipolarnego. Natężenie prądu płynącego przez tranzystor regulowane jest przy pomocy potencjometru. Do pomiaru temperatury wykorzystano czujnik temperatury połączony z miernikiem cyfrowym. Oporności termistorów są mierzone za pomocą mierników cyfrowych. Odwrotność oporu termistora jest miarą koncentracji nośników ładunku.

Najpierw ustaliliśmy z prowadzącym temperaturę graniczną ogrzewania termistorów oraz krok temperaturowy z jakim będą wykonywane pomiary. W naszym wypadku mieliśmy mierzyć oporności od 35°C do 75°C, co dwa stopnie, a następnie analogicznie przy ochładzaniu.

Tabele pomiarowe z obliczeniami

	Ogrzewanie termistorów							
С	K	$R_1[k\Omega]$	ΔR_1	$R_2 [k\Omega]$	ΔR_1	1/K	In(R ₁)	In(R ₂)
35	308,15	13,35	0,17	20	0,2	0,003245	2,5915164	2,9957323
37	310,15	12,17	0,16	18,2	0,19	0,003224	2,4989739	2,9014216
39	312,15	11,18	0,16	16,8	0,18	0,003204	2,4141265	2,8213789
41	314,15	10,12	0,15	15,2	0,18	0,003183	2,3145137	2,7212954
43	316,15	9,35	0,15	14	0,17	0,003163	2,2353763	2,6390573
45	318,15	8,53	0,14	12,8	0,16	0,003143	2,1435894	2,5494452
47	320,15	7,87	0,14	11,8	0,16	0,003124	2,0630581	2,4680995
49	322,15	7,33	0,14	10,9	0,15	0,003104	1,9919755	2,3887628
51	324,15	6,63	0,13	9,9	0,15	0,003085	1,8916048	2,2925348
53	326,15	6,13	0,13	9,2	0,15	0,003066	1,8131947	2,2192035
55	328,15	5,72	0,13	8,5	0,14	0,003047	1,7439688	2,1400662
57	330,15	5,25	0,13	7,8	0,14	0,003029	1,6582281	2,0541237
59	332,15	4,88	0,12	7,3	0,14	0,003011	1,5851452	1,9878743
60,8	333,95	4,6	0,12	6,8	0,13	0,002994	1,5260563	1,9169226
63	336,15	4,2	0,12	6,3	0,13	0,002975	1,4350845	1,8405496
65	338,15	3,91	0,12	5,8	0,13	0,002957	1,3635374	1,7578579
66,5	339,65	3,67	0,12	5,4	0,13	0,002944	1,3001917	1,686399
69,7	342,85	3,1	0,12	4,5	0,12	0,002917	1,1314021	1,5040774

Chłodzenie termistorów								
С	K	$R_1[k\Omega]$	ΔR_1	$R_2[k\Omega]$	ΔR_1	1/K	In(R ₁)	In(R ₂)
69,7	342,85	3,1	0,12	4,5	0,12	0,002917	1,131402	1,504077
67,1	340,25	3,64	0,12	5,4	0,13	0,002939	1,291984	1,686399
64,7	337,85	4,02	0,12	6	0,13	0,00296	1,391282	1,791759
63	336,15	4,27	0,12	6,3	0,13	0,002975	1,451614	1,84055
60,7	333,85	4,65	0,12	6,9	0,13	0,002995	1,536867	1,931521
58,6	331,75	5,07	0,13	7,5	0,14	0,003014	1,623341	2,014903
57	330,15	5,47	0,13	8	0,14	0,003029	1,699279	2,079442
55,1	328,25	5,87	0,13	8,8	0,14	0,003046	1,769855	2,174752
53	326,15	6,4	0,13	9,5	0,15	0,003066	1,856298	2,251292
50,7	323,85	6,82	0,13	10,2	0,15	0,003088	1,919859	2,322388
49	322,15	7,59	0,14	11,3	0,16	0,003104	2,026832	2,424803
47,2	320,35	8,03	0,14	12	0,16	0,003122	2,083185	2,484907
44,8	317,95	8,92	0,14	13,3	0,17	0,003145	2,188296	2,587764
43,2	316,35	9,55	0,15	14,3	0,17	0,003161	2,256541	2,66026
40,8	313,95	10,55	0,15	15,8	0,18	0,003185	2,356126	2,76001
39,1	312,25	11,37	0,16	17	0,19	0,003203	2,430978	2,833213
37,2	310,35	12,28	0,16	18,4	0,19	0,003222	2,507972	2,912351
35	308,15	13,55	0,17	20,02	0,2	0,003245	2,606387	2,996732

^{*} niepewności zostały wyliczone na podstawie niepewności miernika wynoszącej 0,5%w + 1c

Zestawienie wyników

Wyliczone wartości współczynnika nachylenia i jego niepewność za pomocą funkcji reglinp:

a) dla ogrzewania

$a_1 = 4312,80364$ $a_2 = 4374,36701$	$u(a_1) = 32,137$ $u(a_2) = 42,217$	ostatecznie: a_1 = 4313 (32) ostatecznie: a_2 = 4374 (42)
b) dla ochładza	ania	
a ₁ = 4353,31895	$u(a_1) = 45,383$	ostatecznie: $a_1 = 4353 (45)$
$a_2 = 4400,44159$	$u(a_2) = 55,951$	ostatecznie: a_2 = 4400 (55)

Z podanych wyżej wartości na podstawie wzoru:

$$E = a \cdot 2 \cdot k$$

gdzie a to współczynnik nachylenia, a k to stała Boltzmana, która wynosi 1,38·10⁻²³ obliczamy szerokości przerwy energetycznej dla obu termistorów:

	Ogrzewanie		Ochładzanie
1)	ΔE = 11903,88 [J]	1)	ΔE = 12014,28 [J]
	$\Delta E = 0,74306367 [eV]$		$\Delta E = [eV]$
	$u(\Delta E) = 0,0089$		$u(\Delta E) = 0.013$
	$\Delta E = 0,7431(89)$		$\Delta E = 0.750(13)$
2)	ΔE = 12072,24 [J]	2)	ΔE = 12144 [J]
	ΔE = 0,753573034 [eV]		ΔE = 0,758052434 [eV]
	$u(\Delta E) = 0.012$		$u(\Delta E) = 0.015$
	$\Delta E = 0.754(12)$		$\Delta E = 0.758(15)$

^{*}niepewności obliczone na podstawie prawa propagacji niepewności

Średnio szerokość przerwy:

- $-\Delta E_1 = 0,748(11)$ [eV]
- $-\Delta E_2 = 0.754(14) [eV]$

Wnioski

Podczas wykonywania pomiarów zaobserwowaliśmy, że wartość rezystancji maleje ze wzrostem temperatury. Oba termistory mają bardzo zbliżoną do siebie szerokość przerwy co wskazuje na to że są wykonane z tego samego materiału. Ewentualne różnice mogą wynikać z błędów pomiarowych oraz niedokładności odczytu (czasem temperatura była niestabilna). Wartość przerwy wskazuje iż mogą być wykonane z antymonek galu (0,726 [eV]), nie da się jednak tego stwierdzić – mogą być domieszkowane.