Baboons on the Move

Oral Project Update

Debaditya Basu, Sananya Majumder, Zhi Wang, Baiqiang Zhao

Project Overview

"The behavior of monkeys and apes has always held great fascination for [humans]".

Washburn and DeVore, 1961, "The Social Life of Baboons."

© Love Nature

Can you find the baboons?

"Using Cutting Edge Computer Vision to Invade Baboons' Privacy Since 2018"

Overview

 Key problem: The baboon-tracking algorithms takes a huge amount of time for post-processing in Python.

Solution: Implement the algorithms in C++, and potentially CUDA where we can take advantage of parallel execution.

Python C++/CUDA

Project Objectives – Milestones

- Port the algorithms to C++
- Performance benchmarking
- Refactoring existing implemented code
- CUDA implementation of the algorithms that can be ported

Project Objectives – Deliverables

- Ensure the functionality of the C++ algorithms match the Python algorithms
- Show at least 10% improvement in performance in terms of runtime in C++
- Optimize some of the stages in the existing code implemented in C++
- Feasibility study and improvement in performance in terms of runtime in CUDA

Accomplishment/Demos

Stage	Time (ms)		
	Python	C++	<u></u>
Get frame	57	1	98% 🔽
Preprocessing	25	2	92% 🔽
Store History Frame	0.1	0.1	_
Compute Transformation Matrices	4826	1981	59% 🗸
Transformed Frames	714	407	43% 🗸
Quantize History Frames	305	145	52% 🗸

Stage	Time (ms)		4-2
	Python	C++	<u></u>
Generate Weights	198	30	85% 🗸
Generate Mask Subcomponents	632	112	82% 🗸
Compute Moving Foreground	47	83	- 77 % 🗙
Apply Masks	15	8	47% 🔽
Erode Dilation	134	18	86% 🗸
Detect blobs	45	1	98% 🗸

Accomplishment/Demos

Python codebase

C++ codebase

Quarter Plan

Conclusion

 Objective: Improve the performance of baboon tracking algorithms by reimplementing them in C++ and CUDA

© Francois Gohier/ardea.com

What we have done so far: Ensured functionality of various C++
implemented stages, benchmarked the performance - 62% overall runtime
improvement

• What's next? Further optimize the runtime of certain stages in the C++ implementation, explore the possibility of parallelizing algorithms in CUDA