លំខាង់នី៨

គេអោយអនុគមន៍ f មួយ កំណត់លើ $\mathbb{R}-\{1,3\}$ ដោយ $f(x)=rac{x^2+4x+3}{x^2-4x+3}$ ។ តាង(C) ជាក្រាបតាងអនុគមន៍ f ក្នុងតម្រុយ $\left(0,\overrightarrow{i},\overrightarrow{j}\right)$ ។

- $oldsymbol{eta}$. បង្ហាញថាបន្ទាត់ y=1 ជាសមីការអាស៊ីមតូតដេកនៃក្រាប(C) ត្រង់ $\pm\infty$ ។ yបរកសមីការអាស៊ីមតូតឈរទាំងពីរ ។
- ${f 2}.$ ចូរបង្ហាញថា ${f f'}({f x})=-rac{8\left({f x}^2-3
 ight)}{\left({f x}^2-4{f x}+3
 ight)^2}$ ចំពោះគ្រប់ ${f R}-\{1,3\}$ ។
- គ. សិក្សាអថិរភាព និងសង់តារាងអថេរភាពនៃអនុគមន៍ f រួចសង់ក្រាប(C) ។
- ${f w}$. ដោយប្រើក្រាប $({
 m C})$ ពិភាក្សាតាមតម្លៃ ${
 m k}$ នូវចំនួនឬសរបស់សមីការ

$$(k-1)x^2-4(k+1)x+3(k-1)=0$$
 (1)

រួចប្រៀបធៀបឫសរបស់ (1) ទៅនឹងចំនួន $-3, -\sqrt{3}, -1, \ 0, \ 1, \ \sqrt{3}$ និង 3 ។

ಜೀನಾ:;ಕಾರ್

ក៏. បង្ហាញថាបន្ទាត់ y=1 ជាសមីការអាស៊ីមតូតដេកនៃក្រាប(C) ត្រង់ $\pm \infty$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x^2 + 4x + 3}{x^2 - 4x + 3} = \lim_{x \to \pm \infty} \frac{x^2 \left(1 + \frac{4}{x} + \frac{3}{x^2}\right)}{x^2 \left(1 - \frac{4}{x} + \frac{3}{x^2}\right)} = 1$$

ដូចនេះ បន្ទាត់ y=1 ជាសមីការអាស៊ីមតូតដេកនៃក្រាប(C) ត្រង់ $\pm \infty$

រកសមីការអាស៊ីមតូតឈរទាំងពីរ

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 + 4x + 3}{x^2 - 4x + 3} = \pm \infty$$

ហើយ
$$\lim_{x\to 3} f(x) = \lim_{x\to 3} \frac{x^2 + 4x + 3}{x^2 - 4x + 3} = \pm \infty$$

ដូចនេះ $\boxed{\mathrm{បន្ទាត់}\; \mathrm{x} = 1\; \mathrm{\^{\mathtt{S}}\mathtt{b}}\; \mathrm{x} = 3\; \mathrm{ជាអាស៊ីមតូតឈរនៃក្រាប}(\mathrm{C})}$

2. បង្ហាញថា
$$f'(x) = -\frac{8(x^2-3)}{(x^2-4x+3)^2}$$
 ចំពោះគ្រប់ $\mathbb{R} - \{1,3\}$
$$f'(x) = \left(\frac{x^2+4x+3}{x^2-4x+3}\right)' = \frac{(2x+4)(x^2-4x+3)-(2x-4)(x^2+4x+3)}{(x^2-4x+3)^2}$$

$$= \frac{-8x^2+24}{(x^2-4x+3)^2} = -\frac{8(x^2-3)}{(x^2-4x+3)^2}$$
 ជូចនេះ $f'(x) = -\frac{8(x^2-3)}{(x^2-4x+3)^2}$ ចំពោះគ្រប់ $\mathbb{R} - \{1,3\}$

គ. សិក្សាអថិរភាព

សក្សាអចរភាព ដោយ
$$f'(x)=-\frac{8\left(x^2-3\right)}{\left(x^2-4x+3\right)^2}$$
 យើងបាន $f'(x)=0\Leftrightarrow -8\left(x^2-3\right)=0 \Leftrightarrow -8x^2+24=0 \Rightarrow x=\pm\sqrt{3}$ តារាសញ្ញាដេរីវេ $f'(x)$

X	$-\infty$	$-\sqrt{3}$	1	$\sqrt{3}$	3	+∞
f'(x)		- <u>;</u> -	+	+ 0 -	_	_

- ullet f'(x) > 0 ឬ អនុគមន៍ f កើន ពេល x $\in \left(-\sqrt{3},1\right) \cup \left(1,\sqrt{3}\right)$
- f'(x) < 0 ឬ អនុគមន៍ f ចុះ ពេល $x \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, 3) \cup (3, +\infty)$ បរមាធៀប
- ត្រង់ ${f x}=-\sqrt{3};\;{f f'}({f x})=0$ ហើយប្តូរសញ្ញាពី–ទៅ+ នោះ ${f f}$ មានអប្បបរមាធៀបមួយគឺ

$$f(-\sqrt{3}) = \frac{(-\sqrt{3})^2 + 4(-\sqrt{3}) + 3}{(-\sqrt{3})^2 - 4(-\sqrt{3}) + 3} = 4\sqrt{3} - 7$$

• ត្រង់ $\mathbf{x}=\sqrt{3};\;\mathbf{f'}(\mathbf{x})=0$ ហើយប្តូរសញ្ញាពី+ទៅ- នោះ \mathbf{f} មានអតិបរមាធៀបមួយគឺ

$$f(\sqrt{3}) = \frac{(\sqrt{3})^2 + 4(\sqrt{3}) + 3}{(\sqrt{3})^2 - 4(\sqrt{3}) + 3} = -4\sqrt{3} - 7$$

សង់តារាងអថិរភាពនៃអនុគមន៍ f

X	$-\infty$ $-\sqrt{3}$	l √3 ;	3 +∞
f'(x)	- 0 +	+ 0 -	_
f(x)	$ \begin{array}{c c} 1 & +\infty \\ 4\sqrt{3}-7 \end{array} $	$ \begin{array}{c c} -4\sqrt{3}-7 \\ -\infty & -\infty \end{array} $	+∞ 1

សង់ក្រាប(C)

(C)
$$\cap$$
 (y'oy) \Leftrightarrow $x = 0 \Rightarrow y = \frac{0^2 + 4(0) + 3}{0^2 - 4(0) + 3} = 1$

(C)
$$\cap$$
 (d) : y = 1 \Leftrightarrow 1 = $\frac{x^2 + 4x + 3}{x^2 - 4x + 3}$

$$\Leftrightarrow \quad x^2 - 4x + 3 = x^2 + 4x + 3 \quad \Rightarrow x = 0$$

ឃ. ពិភាក្សាតាមតម្លៃk នូវចំនួនឫសរបស់សមីការ $(k-1)x^2-4(k+1)x+3(k-1)=0$ (1)

$$(1) \Leftrightarrow kx^2 - x^2 - 4kx - 4x + 3k - 3 = 0$$

$$\Leftrightarrow$$
 $k(x^2 - 4x + 3) - (x^2 + 4x + 3) = 0$

$$\Leftrightarrow k = \frac{x^2 + 4x + 3}{x^2 - 4x + 3}$$

$$\Leftrightarrow$$
 $k=f(x)$ ជាសមីការអាប់ស៊ីសរវាងក្រាប (C) និងបន្ទាត់ $y=k$

តាមក្រាប(C)

$$ullet$$
 បើ $k \in \left(-\infty, -4\sqrt{3}-7
ight)$ $\Longrightarrow (1)$ មានឫសពីរផ្សេងគ្នាដែល $1 < x_1 < x_2 < 3$

$$ullet$$
 បើ ${
m k}=-4\,\sqrt{3}-7$ $\Longrightarrow (1)$ មានឫសតែមួយគត់ ${
m x}=\sqrt{3}$

• បើ
$$k \in (-4\sqrt{3} - 7, 4\sqrt{3} - 7)$$
 $\Rightarrow (1)$ គ្មានឫស

$$ullet$$
 បើ ${
m k}=4\sqrt{3}-7$ $\Longrightarrow (1)$ មានឫសតែមួយគត់គឺ ${
m x}=-\sqrt{3}$

$$ullet$$
 បើ $\mathbf{k} \in \left(4\sqrt{3}-7,1
ight)$ $\Rightarrow (1)$ មានឫសពីរផ្សេងគ្នា ដែល $\mathbf{x}_1 < \mathbf{x}_2 < 0$

$$ullet$$
 បើ ${f k}=1$ $\Longrightarrow (1)$ មានបុសតែមួយគត់ គឺ ${f x}=0$

• បើ
$$k \in (1, +\infty)$$
 $\Rightarrow (1)$ មានឫសពីរផ្សេងគ្នាដែល $0 < x_1 < 1 \; ; \quad 3 < x_2$