# 安徽大学 2021—2022 学年第 二 学期

# 《大学物理 A (上)》考试试卷 (A 卷) (闭卷 时间 120 分钟)

| 题号      | _                                  | Ξ           | 三(15)     | 三(16)          | 三(17)                     | 三(18)     | 四(19)       | 总分                     |
|---------|------------------------------------|-------------|-----------|----------------|---------------------------|-----------|-------------|------------------------|
| 得分      |                                    | A Committee | 2 19 Pr 3 | 14.6           | 53.21                     |           |             |                        |
| 风卷人     | 1232                               |             |           | haral i        | 4                         | 218.34    | 的資本人        |                        |
| 、单选     | 蔥(每小                               | 题2分,        | 共20分      | )              |                           |           |             | 得分                     |
| 医长术     | we le                              | st of knot  | よめたか      | <b>☆担ま</b> _ √ | (t) = 1 (t) =             | ,位置矢量     | 的大小为        | $ \vec{r}  = r = 3$    |
| 一灰点包    | 一川上区                               | 列,口知灰       | [黑町延朔]    |                | 1)1 + y(0)                | ,但且人里     | , LOVE 17-2 | 11                     |
|         |                                    |             |           | [              | J                         |           |             |                        |
| (A) 质   | 点的运动证                              | 速度是 dr      |           | (B) 质          | 点的运动证                     | 速率是 ν = 🤆 | dr<br>de    |                        |
|         |                                    | at          |           |                |                           |           | 4 6 6 6 6   |                        |
| (C)  v  | $=\frac{\mathrm{d}r}{\mathrm{d}t}$ |             |           | (D)            | 即可大力                      | 一河,也可     | 小于口         |                        |
| <b></b> | 加休提高 1                             | 0m。下列       | 哪一种情况     |                | ",<br>所做的功最               |           | 1           |                        |
|         | 5m/s 的速                            | 2.0         |           |                |                           | s 的速度匀    | 速提升         |                        |
|         |                                    |             |           | m,速度增          |                           |           |             |                        |
|         |                                    | 73. St.     |           |                | 速度减小至                     | ] 5m/s    |             |                        |
|         |                                    |             |           |                |                           | 滑轴转动,     | 如图所示        | 。棒从水3                  |
|         |                                    |             |           |                | 列说法正确                     |           | ]           |                        |
| (A) 角   | 速度从小                               | 到大,角加       | 中速度从小     | ·到大            |                           |           | 0           |                        |
|         |                                    |             | n速度从大     |                |                           |           | F           |                        |
| (C) 角   | 速度从大                               | 到小,角力       | 中速度从小     | 到大             |                           |           |             | /                      |
| (D) 角   | 速度从大                               | 到小,角加       | 口速度从大     | 到小             |                           |           | 1           |                        |
| 一质点有    | 二恒力克                               | 和克的作        | 用下,位      | <b>移为△ r</b> = | 3 <i>ī</i> +8 <i>ī</i> (n | n),在此过    | 程中,动        | 能增量为                   |
|         |                                    |             |           |                |                           |           | 7           |                        |
|         |                                    |             |           |                | 为分别为                      |           |             |                        |
|         |                                    |             |           |                |                           | (D) 20.   |             |                        |
|         |                                    |             |           |                |                           | · 开始时 v   | A = 3i + 4j | $\bar{v}_{\rm B} = 2i$ |
| 学门100十  | 目互作用,                              | A 的知道所      | 本大节 =7    | 7 1 1 1        | of p bhilling             | RESTRAL F | ]           |                        |

(B)  $2\vec{i} - 7\vec{j}$  (C)  $-3\vec{j}$  (D)  $5\vec{i} - 3\vec{j}$ 

(A)  $\vec{i}$  -5  $\vec{j}$ 

| (A) $0.18m_0c^2$                             | (B) $0.25m_0c^2$ | (C) 0.              | $36m_0c^2$               | (D) 1.25m             | $_0c^2$                              |          |
|----------------------------------------------|------------------|---------------------|--------------------------|-----------------------|--------------------------------------|----------|
| 7. 两个质量相同的物位                                 | <b>分别挂在两个不同</b>  | 的弹簧下端,              | 弹簧的伸长量分                  | }别为ΔI <sub>1</sub> 和Δ | $\Delta l_2$ ,且 $\Delta l_1 = 2\ell$ | $M_2$ .  |
| 两弹簧振子的周期之比                                   |                  |                     |                          |                       |                                      |          |
|                                              |                  | 1                   | 1                        |                       |                                      |          |
| (A) 2                                        | (B) $\sqrt{2}$   | $(C) \frac{1}{2}$   | (D) $\frac{1}{\sqrt{2}}$ | F                     |                                      |          |
| 8. 在同一媒质中, 两列                                | 相干的平面简谐波         | 振幅之比为A <sub>1</sub> | :A <sub>2</sub> =4,则两    | 列波强度之出                | 比1,:12为[                             | J        |
| (A) 4                                        | (B) 2            | (C) 16              | (D) $\frac{1}{4}$        |                       |                                      |          |
| 9. 同种气体的摩尔定                                  | 压热容大于摩尔定位        | 本热容, 其主要            | 原因是[                     | ]                     |                                      |          |
| (A) 膨胀系数不                                    | 司 (B) 温度         | 不同 (C) 气1           | 本膨胀需要对列                  | 做功 (D)                | 分子引力不同                               |          |
| 10. 在一个固定容器内                                 | , 如果理想气体分        | 子速率提高为原             | 原来的2倍,那                  | 4[                    | ]                                    |          |
| (A) 温度和压强都                                   | 升高为原来的 2 倍       |                     |                          |                       |                                      |          |
| (B) 温度升高为原                                   | 来的 2 倍, 压强升      | 高为原来的 4 倍           | <b>F</b>                 |                       |                                      |          |
| (C) 温度升高为原                                   | 来的 4 倍, 压强升      | 高为原来的 2 倍           | ž                        |                       |                                      |          |
| (D) 温度和压强都                                   | 升高为原来的 4倍        |                     |                          |                       |                                      |          |
| 二、填空题(每小题                                    | 3分,共12分)         |                     |                          | [                     | 得分                                   | ]        |
| 11. 一颗速率为 700m/s                             | 的子弹, 打穿一块        | :木板后,速率             | 降到 500m/s. 如             | 口果让它继续                | 穿过厚度和阻力                              | 力均       |
| 与第一块完全相同的                                    | 第二块木板,则子         | 弹的速率降到              |                          |                       |                                      |          |
| 12. 有两个弹簧,质量。<br>后,长 11cm,而第二个<br>上端固定,下端仍挂一 | 弹簧上端固定,下         | 端挂一个质量为             | Im 的物体后,                 | , 下端挂一<br>长 13cm. 现   | 个质量为 m 的零<br>将两个弹簧串页                 | 勿体<br>关, |
| 13. 一汽笛发出 700Hz                              | 的声音,并且以 1        | 5m/s 的速度接           | 近悬崖, 由悬崖                 | 崖反射回来的                | 声波的波长为                               | (己       |
| 知空气中的声速为 330m                                | /s)              | <del></del> ·       |                          |                       |                                      |          |
| 4. 一根匀质细杆质量为                                 | ョm, 长度为1, 可      | 绕过其端点的              | 水平轴在竖直平                  | 面内转动.                 | 则它在水平位置                              | 配时       |
| 听受的重力矩为                                      | <u> </u>         |                     |                          |                       | 细八                                   |          |
| 三、计算题(每小题                                    | 14分, 共56分        | )                   |                          |                       | 得分                                   |          |
| 5. 一个质量为 M、半径                                | 为 R 并以角速度        | w转动着的飞轮             | ?(可看作匀质                  | 圆盘),在某                | 一瞬时突然有一                              | 一片       |
| 量为 m 的碎片从轮的边                                 | 边缘上飞出, 假定        | 产片脱离飞轮时             | <b> </b>                 | 正好竖直向                 | L.                                   |          |
| (1) 求碎片能升高多少                                 | >?               |                     |                          |                       |                                      |          |
| (2) 求余下部分的角速                                 | 度、角动量和转动         | 力动能。                |                          |                       |                                      |          |

6. 把一个静止质量为 $m_0$ 的粒子,由静止加速到v=0.6c,需做的功为[

得分

17. 气缸内有 2 mol 氦气,初始温度为  $27 \, \text{°C}$ ,体积为 20 L,先将氦气等压膨胀,直至体积为 40 L,然后绝热膨胀,直至恢复初温为止。把氦气视为理想气体,求:(1)在此过程中氦气吸热多少?(2)气体内能变化多少?(3)氦气所做的总功是多少?(  $R=8.31 \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ )

得分

- 18. 假定分子数为 N 的气体分子的速率分布如图所示,试计算
- (1) 最概然速率; (2) a 与 N、ν₀的关系; (3) 平均速率.



四、证明题(共12分)

M

中

施 教

製

得分

19. 设想沿地球直径凿一隧道,并设地球是密度为 p 的均匀球体,试证: 当无阻力时,一物体落入此隧道后将做简谐运动。

## 

## 《大学物理 A (上)》期末考试试卷参考答案及评分标准

- 一、选择题(每小题2分,共20分)
- 1-5. CDBCC; 6-10. BBCCD.
- 二、填空题(每小题3分,共12分)

11. <u>100m/s</u> . 12. <u>24cm</u> . 13. <u>0.45m</u> . 14. <u>mgl/2</u> .

#### 三、计算题

15. 解:碎片离盘瞬时的线速度(上升的初速度)为

$$v_0 = R\omega$$
 (3  $\%$ )

上升的最大高度为

$$H = \frac{v_0^2}{2g} = \frac{1}{2g} R^2 \omega^2 \tag{3 \%}$$

碎片与盘剩余部分的总角动量守恒,有

$$J\omega = J'\omega' + mv_0R \tag{2 \%}$$

$$J = \frac{1}{2}MR^2 \tag{2 \(\frac{1}{2}\)}$$

$$J' = \frac{1}{2}MR^2 - mR^2 \tag{2 \%}$$

$$\omega' = \omega \qquad E_k = \frac{1}{2} \left( \frac{1}{2} M R^2 - m R^2 \right) \omega^2 \qquad (2 \ \%)$$

16. **解:** 相邻两疏部中心的距离为波长, $\lambda = 24cm$ ,已知A = 3cm,v = 25Hz

$$u = \lambda v = 600 cm/s \qquad \omega = 2\pi v = 50\pi s^{-1} \tag{7 \%}$$

在 x=0 处质元的振动方程为  $y_0 = A\cos(\omega t + \varphi)$ 

当 t=0 时 
$$y_0 = 0$$
  $v > 0$   $\varphi = -\frac{\pi}{2}$  (3 分)

可得波函数为

$$y_0 = 0.03\cos[50\pi(t - \frac{x}{6}) - \frac{\pi}{2}]$$
 (SI) (4  $\frac{1}{2}$ )

17. **P**: 
$$T_1 = 273 + 27 = 300 \,\text{K}$$
  $\frac{V_1}{T_1} = \frac{V_2}{T_2}$   $T_2 = 600 \,\text{K}$  (4 分)

$$Q = \nu C_{p,m}(T_2 - T_1) = 2 \times \frac{5}{2} \times 8.31 \times (600 - 300) = 1.25 \times 10^4 \,\text{J} \tag{4 \(\frac{1}{12}\)}$$

$$T_3 = T_1 \qquad \Delta E = 0 \tag{3 \%}$$

$$Q = W + \Delta E \quad W = Q = 1.25 \times 10^4 \,\text{J}$$
 (3  $\%$ )

18. **解:** 由图可知 
$$v_p = v_0$$
 (3 分)

$$N = \int_0^\infty Nf(v)dv = \frac{3av_0}{2} \qquad a = \frac{2N}{3v_0}$$
 (5 \(\frac{\pi}{2}\))

曲图可知 
$$Nf(v) = \begin{cases} \frac{a}{v_0}v & 0 \le v \le v_0 \\ -\frac{a}{2v_0}v + \frac{3}{2}a & v_0 \le v \le 3v_0 \\ 0 & v \ge 3v_0 \end{cases}$$
  $f(v) = \begin{cases} \frac{2}{3v_0^2}v & 0 \le v \le v_0 \\ -\frac{1}{3v_0^2}v + \frac{1}{v_0} & v_0 \le v \le 3v_0 \\ 0 & v \ge 3v_0 \end{cases}$   $\bar{v} = \int_0^\infty v f(v) dv = \frac{4v_0}{3}$  (6 分)

### 四、证明题(12分)

19. 证明: 物体在地球内与地心相距为 r 时, 所受到的引力为:

$$\vec{F} = -G \frac{Mm}{r^3} \vec{r} \tag{3 \%}$$

$$M = \frac{4}{3}\pi r^3 \rho \tag{3 \(\frac{1}{12}\)}$$

$$\vec{F} = -\frac{4}{3}G\pi m\rho \vec{r} \tag{3 \(\frac{1}{12}\)}$$

$$\vec{a} = \frac{\vec{F}}{m} = -\frac{4}{3}G\pi\rho\vec{r}$$

加速度与位移大小成正比,方向相反,因此物体在隧道内做简谐运动。 (3分)