1.2

Variation de la fonction trinôme

Spé Maths 1ère - JB Duthoit

Propriété (admise)

La fonction trinôme f définie par $f(x) = ax^2 + bx + c$ admet les variations suivantes, suivant les valeurs de a:

• si a > 0:

x	$-\infty$	$\frac{-b}{2a}$	$+\infty$
$f(x) = ax^2 + bx + c$		$f(-\frac{b}{2a})$	

• si a < 0:

x	$-\infty$ $\frac{-b}{2a}$ $+\infty$
$f(x) = ax^2 + bx + c$	$f(-\frac{b}{2a})$

Savoir-Faire 1.3

SAVOIR ÉTUDIER LES VARIATIONS D'UNE FONCTION TRINÔME DU SECOND DEGRÉ

Exercices

28 page 50 100 page 55 114, 115 page 56

• Exercice Python 1.1

• On considère la fonction polynôme définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$. Écrire un programme qui demande à l'utilisateur de rentrer les valeurs de a, b et c, et qui fournit ensuite la nature de l'extremum, la valeur de α et celle de β , comme le montre l'image suivante : ***

```
Entrer la valeur de a : 5
Entrer la valeur de b : 6
Entrer la valeur de b : 10
minimum
-0.6
8.2
```

• Écrire cet algorithme sous la forme d'une fonction extrem; cette fonction a pour paramètres a,b et c et retourne un triplet (nature de l'extremum, valeur de alpha, valeur de béta)***

```
>>> extrem(-1,2,1)
('maximum', 1.0, 2.0)
```

