2.4 Electronegativity, Polar Bonds, and Polar Molecules

Definitions

- Polar covalent bonds
- Polar molecule
- Van der Waals forces

- Dipole-dipole force
- London dispersion force
- Hydrogen bond

Electronegativity Differences

Polar Covalent Bonds

- When 2 oxygen atoms bond they share electrons equally. They both have the same electronegativity value and therefore pull equally on the shared electrons.
- When hydrogen and nitrogen atoms bond the nitrogen has a much higher electronegativity than the hydrogen and it pulls hydrogen's electrons closer to it.
- We use δ to denote a small difference and we use + or to give the type of difference
- E.g. Ammonia

Polar Molecules

- Polar covalent bonds don't always make the molecule polar
- E.g. Polar bonds in a non polar molecule (CCl₄)

• E.g. Polar bonds in a polar molecule (NH₃)

• The following rules can be used to predict, from the molecular formula, whether a molecule is polar or non-polar.

Polar Molecules

Type	Examples	
AB	$CO_{(g)}$	diatomic with different molecules
HA_x	$HCl_{(g)}$	any molecule with a single H
A_xOH	$NaOH_{(s)}$	any molecule with OH at one end
$N_x A_y$	$NH_{3(g)}, NF_{3(g)}$	containing N and other atoms
$O_x A_y$	$H_2O_{(1)},OCl_{2(g)}$	containing O and other atoms
$C_x A_y B_z$	$CHCl_{3(l)}$, $C_2H_5OH_{(l)}$	containing C and 2 other kinds of atoms

Non-polar Molecules

Туре	Examples	
A_x	$Cl_{2(g)}, N_{2(g)}$	elements
C_xA_y	$CO_{2(g)}$, $CH_{4(g)}$	containing C and only 1 other kind of atom

Intermolecular Forces

- Intermolecular Force: the force of attraction and repulsion between molecules.
- Real world examples: surface tension and capillary action
- Intermolecular forces are much weaker than covalent bonds. As an approximate comparison, if covalent bonds are assigned strength of about 100, then intermolecular forces are generally 0.001 to 15.

E.g.
$$H_2O_{(l)} \rightarrow H_2O_{(g)}$$
 41 kJ/mol (intermolecular)
 $H_2O_{(l)} \rightarrow H_{2(g)} + \frac{1}{2} O_{2(g)}$ 242 kJ/mol (intramolecular)

A general term for 2 types of intermolecular forces termed as van der Waal's forces
 Dipole-Dipole Force

O Dipole-dipole force: a force of attraction between polar molecules

- The force is due to the simultaneous attraction of one dipole by its surrounding dipoles.
- o The strength of the dipole-dipole force is dependent on the polarity of the molecule.
- o Give rise to the rule: like dissolves like.

London Dispersion Force

- London Force is the simultaneous attraction of an electron by nuclei within a molecule and by nuclei in adjacent molecules.
- o The strength of the London force is directly related to the number of electrons in the molecule.
- o If it has electrons it will have London Forces.
- o Can also be explained as an ever-changing temporary dipole-dipole force.

Hydrogen Bonding

- Hydrogen bonding is the attraction of hydrogen atoms bonded to N, O, or F atoms to a lone pair of electrons of N, O, or F atoms in adjacent molecules.
- Often explains the high boiling point of hydrogen compounds.
- E.g. Water

• Things to think about: Covalent bond → sharing electrons Hydrogen bond → sharing a proton

Homework:

Practice: 1,2,3,4,5,6,7,8,9,10,11

• Section: 1,2,3,4