Teoria dei Sistemi

Pietro De Nicolao

$18\ {\rm novembre}\ 2015$

Dati

- $\alpha = 0.04$
- $\beta = 0.18$
- n = 16
- c = 4
- $\bullet \ L=12\,\mathrm{nH}$
- $C = 12 \,\mathrm{pF}$

1 Equazioni di stato

Considero l'equazione caratteristica del condensatore C:

$$i_c = C\dot{x_2} \tag{1}$$

Applico LKC al nodo A:

$$i_c = -x_1 - i \tag{2}$$

Sostituendo i_c nell'equazione 1, ottengo la prima equazione di stato:

$$\dot{x_2} = -\frac{1}{C}x_1 + \frac{1}{C}\left(\alpha x_2 - \beta x_2^3\right) \tag{3}$$

Poi, considero l'equazione caratteristica del condensatore L:

$$v_L = L\dot{x_1} \tag{4}$$

Applico LKT alla maglia di sinistra, ottenendo:

$$x_2 = v_R + v_L = x_1 R + L \dot{x_1} \tag{5}$$

Da cui la seconda equazione di stato:

$$\dot{x_1} = -\frac{R}{L}x_1 + \frac{1}{L}x_2 \tag{6}$$

Il sistema è dunque descritto dalle equazioni:

$$\begin{cases} \dot{x_1} = -\frac{R}{L}x_1 + \frac{1}{L}x_2 \\ \dot{x_2} = -\frac{1}{C}x_1 + \frac{1}{C}\left(\alpha x_2 - \beta x_2^3\right) \end{cases}$$
 (7)

2 Assenza di cicli

L'assenza di cicli per particolari valori di R può essere mostrata grazie al criterio di Bendixon.

div
$$f(x_1, x_2) = \frac{\partial f_1(x_1, x_2)}{\partial x_1} + \frac{\partial f_2(x_1, x_2)}{\partial x_2} = -\frac{R}{L} + \frac{\alpha}{C} - \frac{3\beta}{C}x_2^2$$
 (8)

$$R > \alpha \frac{L}{C} \Longrightarrow \text{div f} < 0 \quad \forall x_2$$
 (9)

Per $R > \alpha \frac{L}{C} = 40\Omega$, la divergenza assume valore negativo per qualunque x_2 : dunque, non sono presenti cicli nell'intero piano.

Il risultato è in accordo con l'analogia intuitiva che associa la resistenza elettrica con l'attrito nei sistemi meccanici: entrambi i fenomeni dissipano energia e smorzano i movimenti periodici.

3 Equilibri

Annullando le derivate delle equazioni del sistema, con semplici passaggi si ricavano le seguenti equazioni:

Tabella 1: Equilibri del sistema al variare di R.

$$\begin{cases} x_1(\beta R^3 x_1^2 - \alpha R + 1) = 0\\ x_2 = R x_1 \end{cases}$$
 (10)

Dunque esiste sempre l'equilibrio banale $x_1 = x_2 = 0$. Se $R \leq \frac{1}{\alpha}$, allora il termine $(\beta R^3 x_1^2 - \alpha R + 1)$ è sempre positivo o nullo e non vi sono altri equilibri

Altrimenti, esistono altri due equilibri oltre a quello banale.

3.1 Stabilità

Lo jacobiano del sistema linearizzato è:

$$J(x_1, x_2) = \begin{bmatrix} -\frac{R}{L} & \frac{1}{L} \\ -\frac{1}{C} & \frac{\alpha}{C} - \frac{\beta}{C} 3x_2^2 \end{bmatrix}$$
 (11)

Analizziamo ora il tipo degli equilibri.

1. (0,0)

$$J(0,0) = \begin{bmatrix} -\frac{R}{L} & \frac{1}{L} \\ -\frac{1}{C} & \frac{\alpha}{C} \end{bmatrix}$$
 (12)

$$\operatorname{tr} J(0,0) = \frac{L\alpha - CR}{CL} \tag{13}$$

$$\det J(0,0) = \frac{1 - r\alpha}{CL} \tag{14}$$

L'analisi di stabilità dell'equilibrio è mostrata nella tabella 2.

$$2. \left(\pm \sqrt{\frac{\alpha R - 1}{\beta R^3}}, \pm \sqrt{\frac{\alpha R - 1}{\beta R}} \right)$$

		${\rm tr}\ J(0,0)$	$\det J(0,0)$	tipo
$R < \frac{1}{\alpha}$, ,		> 0	instabile
$\frac{1}{\alpha} < R < \frac{L\alpha}{C}$	$(25\Omega, 40\Omega)$	> 0	< 0	sella
$R > \frac{L\alpha}{C}$	$(40\Omega, +\infty)$	< 0	< 0	sella

Tabella 2: Stabilità dell'equilibrio (0,0) al variare di R.

		${ m tr}\ J$	$\det J$	tipo
$\frac{1}{\alpha} < R < k^1$	$(25\Omega, 27.82\Omega)$	> 0	> 0	fuoco instabile
R > k	$(27.82\Omega, +\infty)$	< 0	> 0	fuoco stabile

Tabella 3: Stabilità dell'equilibrio $\left(\pm\sqrt{\frac{\alpha R-1}{\beta R^3}},\pm\sqrt{\frac{\alpha R-1}{\beta R}}\right)$ al variare di R.

Questi equilibri esistono solo per $R > \frac{1}{\alpha}$, condizione che dunque può essere assunta nello studio della loro stabilità.

$$J\left(\pm\sqrt{\frac{\alpha R - 1}{\beta R^3}}, \pm\sqrt{\frac{\alpha R - 1}{\beta R}}\right) = \begin{bmatrix} -\frac{R}{L} & \frac{1}{L} \\ -\frac{1}{C} & \frac{3 - 2R\alpha}{CR} \end{bmatrix}$$
(15)

$$\det J = 2\frac{R\alpha - 1}{CL} > 0 \quad \forall R > \frac{1}{\alpha} \tag{16}$$

$$\operatorname{tr} J = \frac{-CR^2 + 3L - 2RL\alpha}{CRL} \tag{17}$$

3.2 Biforcazioni degli stati di equilibrio

Le biforcazioni del sistema al variare di R sono elencate in Tabella 4. Il sistema ammette una biforcazione forcone, due Hopf, una doppia omoclina e una biforcazione tangente di cicli. I valori di R a cui si presentano le biforcazioni doppia omoclina e tangente di cicli sono stati ricavati empiricamente simulando il sistema con Pplane.

$$\frac{1}{1}k = \frac{-L\alpha + \sqrt{L^2\alpha^2 + 3LC}}{C} = 27.82\Omega$$

${f R}$	Tipo	Note
$\frac{1}{\alpha} = 25\Omega$	forcone	per $R > 25\Omega$ nascono due equilibri
۵		instabili (Figura 1)
$k = 27.82\Omega$	Hopf (doppia)	intorno ai due rami del forcone si
		creano cicli instabili; i due equilibri
		diventano stabili (Figura 2b)
28.35Ω	doppia omoclina	i cicli generati dalle Hopf collidono con
		la sella in $(0,0)$; si crea un nuovo ciclo
		instabile interno (Figura 3b)
28.49Ω	tangente di cicli	il ciclo instabile interno e quello
		stabile esterno collidono e spariscono

Tabella 4: Biforcazioni del sistema al variare di ${\cal R}.$

Figura 1: Le biforcazioni forcone e Hopf.

3.3 Cicli

Per $R<\frac{1}{\alpha}=25\Omega,$ il sistema ammette un ciclo stabile che contiene l'equilibrio instabile.

Per $\frac{1}{\alpha} < R < k$, il sistema ammette un ciclo stabile che contiene l'origine (sella) e i due equilibri instabili, compatibilmente con il criterio di Poincaré.

(a) Ciclo stabile per $R=24\Omega$.

(b) Ciclo stabile (esterno) e cicli instabili (interni) per $R=26\Omega.$

Figura 2: Cicli prima e dopo la biforcazione di Hopf.

(a) I due cicli instabili toccano la sella in (0,0) subito prima della biforcazione omoclina.

(b) Dopo la biforcazione omoclina i due cicli instabili si sono fusi; qui sono mostrati immediatamente prima della tangente di cicli.

Figura 3: Cicli prima e dopo la biforcazione omoclina.