Analysis I

Morgan Gribbins

Contents

1	$Th\epsilon$	e Real Numbers	2
	1.1	The Axiom of Completeness	2
	1.2	Consequences of Completeness	2
	1.3	Cardinality	2
2 S	Seq	uences and Series	3
	2.1	The Limit of a Sequence	•
	2.2	The Algebraic and Order Limit Theorems	

1 The Real Numbers

1.1 The Axiom of Completeness

The **axiom of completeness** states that every nonempty set of real numbers that is bounded above has a least upper bound.

A set $A \subseteq \mathbb{R}$ is **bounded above** if there exists a number $b \in \mathbb{R}$ such that $\forall a \in A, a \leq b$. The number b is called an **upper bound** for A. Similarly, the set A is **bounded below** if there exists a **lower bound** $l \in \mathbb{R}$ satisfying $\forall a \in A, l \leq a$.

A real number s is the **least upper bound** for a set $A \subseteq \mathbb{R}$ if it meets the following two criteria:

- 1. s is an upper bound for A;
- 2. if b is any upper bound for A, then $s \leq b$.

The least upper bound is also called the **supremum** of the set A, and is called $s = \sup A$. The **greatest lower bound** is defined similarly, and is called the infimum, with $l = \inf A$. Both suprema and infima are unique. A real number a_0 is a **maximum** on a set A if a_0 is an element of A and $a_0 = \sup A$. A **minimum** is an element of A that is also the infimum of A.

Assuming $s \in \mathbb{R}$ is an upper bound for a set $A \subseteq \mathbb{R}$, then $s = \sup A \iff \forall \epsilon > 0, \ \exists a \in A$, such that $s - \epsilon < a$.

1.2 Consequences of Completeness

The **Archimedean property** states that:

- 1. Given any number $x \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that n > x.
- 2. Given any real number y > 0, there exists an $n \in \mathbb{N}$ such that 1/n < y.

Additionally, for every two real number a and b with a < b, there exists some $q \in b\mathbb{Q}$ (or in the set of irrational numbers) such that a < r < b.

1.3 Cardinality

A function $f: A \to B$ is **one-to-one** (injective) if $a_1 \neq a_2$ in A implies that $f(a_1) \neq f(a_2)$ in B. The function f is **onto** (surjective) if, given any $b \in B$, there exist an $a \in A$ such that f(a) = b. If f is both onto and one-to-one, then it is called **bijective**.

The set A has the same cardinality as B if there exists a bijection $f: A \to B$. In this case, we write $A \sim B$. A set A is **countable** if $\mathbb{N} \sim A$. An infinite set that is not countable is called an **uncountable** set. \mathbb{Q} is countable and \mathbb{R} is uncountable. Additionally, subsets of countable sets are countable and countable unions of countable sets are countable.

2 Sequences and Series

2.1 The Limit of a Sequence

A sequence is a function whose domain is \mathbb{N} . A sequence (a_n) converges to a real number a if, for every positive number ϵ , there exists an $N \in \mathbb{N}$ such that whenever $n \geq N$ it follows that $|a_n - a| < \epsilon$. This is notated as $\lim a_n = a$.

Given a real number $a \in \mathbb{R}$ and a positive number $\epsilon > 0$, the set

$$V_{\epsilon}(a) = \{ x \in \mathbb{R} : |x - a| < \epsilon \}$$

is called the ϵ -neighborhood of a.

The limit of a sequence, when it exists, must be unique.

A sequence that does not converge is said to **diverge**.

2.2 The Algebraic and Order Limit Theorems

A sequence (x_n) is **bounded** if there exists a number M > 0 such that $|x_n| \leq M$ for all $n \in \mathbb{N}$. Every convergent sequence is bounded.

The Algebraic Limit Theorem states that for two convergent sequences with $\lim a_n = a$ and $\lim b_n = b$,

- 1. $\lim ca_n = ca$, for all $c \in \mathbb{R}$;
- 2. $\lim a_n + b_n = a + b;$
- 3. $\lim a_n b_n = ab$;
- 4. $\lim a_n/b_n = a/b$, provided $b \neq 0$.

The Order Limit Theorem states that for two convergent sequences with $\lim a_n = a$ and $\lim b_n = b$,

- 1. If $a_n \geq 0$ for all $n \in \mathbb{N}$, then $a \geq 0$.
- 2. If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $a \leq b$.
- 3. If there exists $c \in \mathbb{R}$ for which $c \leq b_n$ for all $n \in \mathbb{N}$, then $c \leq b$. Similarly, if $a_n \leq c$ for all $n \in \mathbb{N}$, then $a \leq c$.