Chapter 4	
Ō	
TRIGONOMETRIC FUNCTIONS	
	_
4.1 The Unit Circle	
• Definition:	
The unit circle is a circle of radius 1 centered at the origin.	
• Equation:	
• Recall that any circle can be written as $(x_1, y_1^2, (x_2, y_1^2)^2)$	
$(x-h)^2 + (y-k)^2 = r^2$ • Since the center is at (0, 0) and the radius is 1	-
$x^2 + y^2 = 1$	
x 1 y = 1	
]
4.1 The Unit Circle	
• Example:	
Find the point(s) on the unit circle whose y-coordinate is 1/3.	
• Example:	
Find the point(s) on the unit circle whose two coordinates are equal.	

4.1 The Unit Circle	-
• Angles in Standard Position:	
o Start on the positive horizontal axis.	
Move in a counterclockwise motion for	
positive angles.	-
o Angle represented by the Greek letter "theta" (θ)	-
4.1 The Unit Circle	
5	
• Coordinates on the unit circle: • Special Angles	
0°: (1, 0)	
90°: (0, 1)	
180°: (-1, 0)	
270°: (0,-1)	
360°: (1, 0)	
4.1 The Unit Circle	
• Question: What do you think the coordinates are for the angles, 45°, 135°, 225°, and 315°? Why?	
for the angles, 45°, 135°, 225°, and 315°? Why?	

4.1 The Unit Circle	
• Negative Angles:	
• Start from standard position and move clockwise.	
Relationship between negative and positive	
angles:	
• Which angles represent the same radius?	
]
4.1 The Unit Circle	
• Angles greater than 360°:	
o Represent multiple rotations around the unit circle.	
• Example:	
${\color{red}\circ}$ Name two other angle measurements that represent the same radius as $70^{\circ}.$	
4.1 The Unit Circle]
<u> </u>	
• Length of a Circular Arc:	
 Represents the distance along the edge of the circle travelled while moving from standard position to a given degree angle (to a given radius). 	
o Recall that the circumference of the unit circle is 2πr or just 2π.	
• Example: Find the length corresponding to 65°.	

4.1 The Unit Circle	
• Length of a Circular Arc:	
o In general, the formula to find the length of a circular arc is	
$\frac{\theta \pi r}{180}$	
• This is for any circle, but for the unit circle, r would be replaced with 1.	
4.1 The Unit Circle	7
Special Points on the Unit Circle:	
o Consider drawing a right triangle inside the unit circle.	
30 00 1	
	-

4.1 The Unit Circle

13

• Special Points on the Unit Circle:

Angle	Endpoint of Radius
O°	(1, 0)
30°	$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
45°	$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
60°	$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
90°	(0, 1)

4.2 Radians

- **Def:** Radians is a unit of measure used to represent angles.
 - o Measures the length of the arc associated with an angle.
 - One-to-one correspondence to degree measures.
- Example: If 2π radians corresponds to 360 degrees, how many radians is 180 degrees? 90 degrees? 45 degrees?

4.2 Radians

• Converting radians to degrees

$$\theta radians = \left(\frac{180\theta}{\pi}\right)^{\circ}$$

• Converting degrees to radians

$$\theta \deg rees = \frac{\theta \pi}{180} radians$$

4.2 Radians	
Degree/Radian Conversions for Common Angles:	
Degrees Radians	
30 $\pi/6$ 45 $\pi/4$	
$ \begin{array}{ccc} 60 & \pi/3 \\ 90 & \pi/2 \\ 180 & \pi \end{array} $	
360 2π	
	1
4.2 Radians	
• Example: Convert 20 degrees to radians.	
, , , , , , , , , , , , , , , , , , ,	
• Example : Convert $-\pi/12$ radians to degrees.	
Positive vs. Negative radians	
	_
4.2 Radians	
Multiple Rotations	
$\theta + 2\pi n$	
• Length of a circular arc	
o If $0 < \theta < 2\pi$, then a circular arc on the unit circle corresponding to θ radians has length θ .	
• Area of a slice (for θ in radians)	
$rac{1}{2} heta r^2$	

4.2 Radians
• Example : Suppose a slice of a 12 inch pizza has an area of 20 square inches. What is the angle of the slice?
4.2 Radians
• Special Points on the Unit Circle: Radians Points $\pi/6 \qquad \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ $\pi/4 \qquad \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ $\pi/3 \qquad \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ $\pi/2 \qquad (0, 1)$
π (-1,0) 2π (1,0)
4.3 Cosine and Sine
• Definitions:
• The cosine of any angle is the x-coordinate of where the corresponding radius intersects the unit circle.
 The sine of any angle is the y-coordinate of where the corresponding radius intersects the unit circle. The point where any radius intersects the unit circle has
The point where any radius intersects the unit circle has coordinates $\left(\cos\theta,\sin\theta\right)$

4.3 Cosine and Sine					
• Cosine a	and Sine o	of Commo	n An	gles	
		Θ (degrees)			
	0	O°	1	0	
	$\frac{\pi}{6}$	30°	$\frac{\sqrt{3}}{2}$		
	$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	
	$\frac{\pi}{3}$	60°	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$	
	$\frac{\pi}{2}$	90°	0	1	
	π	180°	-1	О	
	2π	360°	1	0	

4.3 Cosine and Sine
• Example:
O Suppose that θ is an angle such that $\sin \theta = -0.4$. Evaluate $\cos \theta$ assuming that $\pi \le \theta \le \frac{3\pi}{2}$.

4.3 Cosine and Sine Domain and Range: The domain of both cosine and sine is the set of all real numbers. The range of both cosine and sine is the interval [-1, 1].

4.4 More	Trigon	ometric	Functions

28

• Tangent:

o Definition: The tangent of an angle $\theta,$ written $tan\theta,$ is defined as

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

where $\cos\theta \neq 0$.

o Represents the slope of the radius.

4.4 More Trigonometric Functions

• Example:

• Find the equation of a line that goes through the point (2,7) and makes a 55° angle with the positive x-axis.

4.4 More Trigonomet	ric Functions
• Sign of Tangent:	
$\tan \theta < 0$	$\tan \theta > 0$
$\tan \theta > 0$	$\tan \theta < 0$

4.4 More Trigonometric Functions	
• Relationship between Sine, Cosine, and Tangent:	
• Recall: $\cos^2 \theta + \sin^2 \theta = 1$	
and $\tan \theta = \frac{\sin \theta}{\cos \theta}$	
	<u> </u>
4.4 More Trigonometric Functions	
• Example:	
• Find $\cos\theta$ and $\sin\theta$ for θ between π and $3\pi/2$ that has $\tan\theta$ =4.	
	1
4.4 More Trigonometric Functions 33	
 Domain and Range: Domain: real numbers that are not odd multiples of π/2. 	
• Range: all real numbers	

4.4 More Trigonometric Functions	
• Secant:	
$\circ \sec \theta = \frac{1}{\cos \theta}$	
• Cosecant	
$ \cos \theta = \frac{1}{\sin \theta} $	

4.4 More Trigonometric Functions	
• Cotangent:	
$ \cot \theta = \frac{\cos \theta}{\sin \theta} $	
$_{\circ}$ Is the multiplicative inverse of $\tan\theta$.	
$\cot \theta = \frac{1}{\tan \theta}$	

4.5 Trigonometry in Right Triangles
• Inscribed Right Triangles and the Unit Circle:
O We have already showed that the x and y coordinates of points on the unit circle (and thus the cosine and sine of an angle) can be found by inscribing a right triangle.

4.6 Trigonometric Identities

- 43
- Relationship Between Cosine and Sine:
 - o Already know $\cos^2 \theta + \sin^2 \theta = 1$
 - o Results in:

$$\cos\theta = \pm\sqrt{1-\sin^2\theta}$$

$$\sin\theta = \pm\sqrt{1-\cos^2\theta}$$

4.6 Trigonometric Identities

- Dividing by $\cos^2\theta$ and $\sin^2\theta$:
- o Already know $\cos^2 \theta + \sin^2 \theta = 1$
- o Results in:

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$\cot^2\theta + 1 = \csc^2\theta$$

4.6 Trigonometric Identities

$$\sin(-\theta) = -\sin\theta$$
$$\tan(-\theta) = -\tan\theta$$

 $(\cos \theta, \sin \theta)$

4	6'	Trigon	om	etric	Ide	ntitie

- --- 49 ---
- Example:
- o Find the smallest positive value of x so that

$$(\cos(x+\pi))(\cos x) + \frac{1}{2} = 0$$

o If tanu = 2, find cosu assuming that u falls in the first quadrant.

•		