Name:	Roll #	#:	Section:

National University of Computer and Emerging Sciences, Lahore Campus

WAL UNIVE	Course:	Design and Analysis of Algorithms	Course Code:	CS302
ATIONAL UNIVERSE	Program:	BS(Computer Science)	Semester:	Fall 2020
\$ CT 6	Duration:	90 Minutes	Total Marks:	40
	Paper Date:	21-Oct-20	Weight	12.5%
	Section:	ALL	Page(s):	5
EMERGINA S. EMERGINA	Exam:	Midterm 1		

Instruction/Notes: Attempt the examination on the question paper and write concise answers. You can use extra sheet for rough work. Do not attach extra sheets used for rough with the question paper. Don't fill the table titled Questions/Marks.

Question	1	2	3	4	5	Total
Marks	/5	/8	/5	/10	/12	/40

Q1) [5 marks] Selection Sort is an $O(n^2)$ algorithm that works by repeatedly swapping the next element in the array with the next minimum element. A pseudo-code is given below:

```
SelectionSort(A, n)
      FOR i \leftarrow 1 to n-1
             m \leftarrow i //assume i is the minimum index
             FOR j \leftarrow i+1 to n
                        \mathbf{IF}(A[j] < A[m])
                               m←j //update minimum index
      swap(A[i], A[m]) //swap min element with the ith element.
```

Is this algorithm, as described above, a stable sorting algorithm? Answer Yes or No. Then justify your answer in two lines.

You wish to a in which these	Roll #: Roll #:	hat is the fastest asymptotic running time
Q3) [5 marks	s] The following line is a key part of the Merge Sort algorith	nm:
Suppose Merg	(left + right) /2 ge Sort was applied to an array of size n. Then the above lin Encircle the correct answer below, then justify your answer	
i)	O(nlgn) times	
ii)	O(n) times	
iii)	O(lgn) times	
iv)	O(1) times.	

Q4) Consider the following recursive algorithm:

```
StrangeSummation(A, p , r, sum) //sum is passed by reference
IF(p<r) {
    n ← r - p + 1
        StrangeSummation (A, p, p + n/3, sum);
        StrangeSummation (A, p + 2n/3, r, sum);

    FOR i← p to r
        sum←sum+A[i];
}</pre>
```

Name: _	Roll #:	Section:		
You may	assume that $n=3^k$, where $k=0,1,2,$			
i) ii)	[4 marks] Write the recurrence for the time function T(n). [6 marks] Solve your recurrence and derive a Big-Oh bound.			

Name:	Roll #:	Section:
	ray consisting of positive and negative in should print all negative numbers follow	
Input: {9, -3, 5, -2, -8, -6, 1,	3}	
Output: {-3, -2, -8, -6, 5, 9,		
	w lines and then write the pseudo code.	