

Nature 445, 515-518

Ming, Elena

Introduction

The mode
Cavity QED
Driving terms

Numerical simulation Property of the cavity

cavity

Reproduce results

Discussion

Conclusion

Resolving photon number states in a superconducting circuit

Ming Lyu, Elena de la Hoz Lopez-Collado

Final projects for ELE456 at Princeton

May 11, 2017

Nature 445, 515-518

Ming, Elen

Introductio

The mode Cavity QED Driving terms Measurement

Numerical simulation Property of the cavity Reproduce results

Discussio

- Introduction
- The model
 - Cavity QED
 - Driving terms
 - Measurement
- Numerical simulation
 - Property of the cavity
 - Reproduce results
- 4 Discussion
- 6 Conclusion

Outline

Nature 445, 515-518

Ming, Elen

Introduction

The mode Cavity QED Driving terms Measurement

Numerical simulation Property of the cavity Reproduce results

Discussion

- System sensitive to number of photons
- \bullet System: superconducting qubit + microwave transmission line
- Strong dispersive regime
- Spectroscopic measurements: Qubit's spectral lines different for each photon number state

Cavity QED

Nature 445, 515-518

Ming, Elena

Introduction

The mode

Driving term

Simulation
Property of the cavity

Discussion

Conclusi

 \bullet Cavity QED (cQED) \to interaction electromagnetic field modes with atoms (or qubits)

Image from Blais, Alexandre, et al. "Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation." Physical Review A 69.6 (2004): 062320.[1]

Cavity QED: Superconducting qubit

Nature 445, 515-518

Ming, Elena

Introduction

The mod

Driving terms

simulation

Property of the cavity

Reproduce result

Discussion

Conclusio

 \bullet Cavity QED (cQED) \to interaction electromagnetic field modes with superconducting qubit

Image from Blais, Alexandre, et al. "Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation." Physical Review A 69.6 (2004): 062320.[1]

Cavity QED: the Hamiltonian

Nature 445, 515-518

Ming, Elena

Introductio

The mode

Cavity QED

Driving terms

Numerical simulation Property of the cavity Reproduce result

Discussion

Conclusi

Hamiltonian

$$H = \omega_r \left(a^{\dagger} a + \frac{1}{2} \right) + \omega_a \frac{\sigma^z}{2} + g \left(a^{\dagger} \sigma^- + a \sigma^+ \right)$$

- ω_r : cavity resonance frequency
- ω_a : qubit transition frequency
- g: strength qubit-photon coupling
- $\Delta = \omega_r \omega_a$: detuning between qubit and cavity

Strong Dispersive Regime

Nature 445, 515-518

Ming, Elena

Introduction

The model

Driving terms

Numerical simulation Property of the cavity

Discussion

 $\mathsf{Conclus}$

Strong dispersive Regime: Diagonalization

Nature 445, 515-518

Ming, Elena

Introduction

The model

Cavity QED

Driving terms

Driving terms Measurement

Numerical simulation Property of the cavity Reproduce results

Discussio

Conclusio

• Transformation:

$$U = \exp\left(\frac{g}{\Delta} \left(a\sigma^{+} - a^{\dagger}\sigma^{-}\right)\right)$$

• Hamiltonian to first order in $\frac{g}{\Lambda}$ (dispersive regime):

$$H_0 = U H U^{\dagger}$$

$$\simeq \omega_r \left(a^{\dagger} a + \frac{1}{2} \right) + \omega_a \frac{\sigma^z}{2} + \chi \left(a^{\dagger} a + \frac{1}{2} \right) \frac{\sigma^z}{2}$$

where $\chi = q/\Delta^2$

Spectrum of the system

Nature 445, 515-518

Ming, Elen

Introductio

The model
Cavity QED
Driving terms
Measurement

Numerical simulation Property of the cavity Reproduce results

Discussion

Image from Schuster, D. I., et al. "Resolving photon number states in a superconducting circuit." Nature 445.7127 (2007): 515-518.[3]

Driving terms

Nature 445, 515-518

Ming, Elen

Introductio

The mode
Cavity QED
Driving terms
Measurement

Numerical simulation Property of the cavity Reproduce results

Discussion

• To conduct a measurement we first drive the cavity:

$$H_{\mathsf{rf}} = \epsilon_{\mathsf{rf}} \left(a^{\dagger} e^{-i\omega_{\mathsf{rf}}t} + a e^{i\omega_{\mathsf{rf}}t} \right)$$

with $\omega_{\rm rf}$ near ω_r

• The frequency shift of the qubit measured with a sweeping signal

$$H_s = \epsilon_s \left(a^{\dagger} e^{-i\omega_s t} + a e^{i\omega_s t} \right)$$

with ω_s near ω_a

ullet Note that relative strength of ϵ_s is not mentioned. We treat it as a perturbation.

Rotating frame and Rotating wave approximation

Nature 445, 515-518

Ming, Elen

Introductio

The model
Cavity QED
Driving terms
Measurement

simulation
Property of the cavity
Reproduce results

Discussion

Applying the transformation

$$U = \exp\left[\frac{g}{\Delta} \left(a\sigma^{+} - a^{\dagger}\sigma^{-}\right)\right]$$

• And moving to the rotating frame:

$$U_I = \exp\left[\mathrm{i}t\left(\omega_{\mathsf{rf}}a^{\dagger}a + \omega_s\sigma^z/2\right)\right]$$

Under rotating frame, H_{rf} and H_s are (with RWA):

$$H_{\mathsf{rf}} = \epsilon_{\mathsf{rf}} \left(a^{\dagger} + a \right)$$

$$H_{s} = \left(\frac{g}{\Delta} \right) \epsilon_{s} \left(\sigma^{+} + \sigma^{-} \right)$$

Final Hamiltonian and collapse operators

Nature 445, 515-518

Ming, Elen

Introduction

The mode
Cavity QED
Driving terms
Measurement

Numerical simulation Property of the cavity Reproduce results

Discussio

Conclusi

• Full Hamiltonian:

$$H = \omega_r \left(a^{\dagger} a + \frac{1}{2} \right) + \omega_a \frac{\sigma^z}{2} + \chi \left(a^{\dagger} a + \frac{1}{2} \right) \frac{\sigma^z}{2}$$
$$- \left(\omega_{\mathsf{rf}} a^{\dagger} a + \omega_s \frac{\sigma^z}{2} \right) + \epsilon_{\mathsf{rf}} \left(a^{\dagger} + a \right) + \epsilon_s \frac{g}{\Delta} \left(\sigma^+ + \sigma^- \right)$$

- Collapse operator:
 - Collapse operators cavity: $\sqrt{\kappa (1 + n_{th})} a$, $\sqrt{\kappa n_{th}} a^{\dagger}$
 - Collapse operator qubit: $\sqrt{\gamma}\sigma^-$
 - Dephasing: $\sqrt{\gamma_\phi}\sigma^z$

Measurement

Nature 445, 515-518

Ming, Elen

Introductio

The mode
Cavity QED
Driving terms
Measurement

Numerical simulation Property of the cavity Reproduce result

Discussion

• In the experiment, the transmitted amplitude at frequency $\omega_{\rm rf}$ is the main observable under steady state.

Steady state

$$\dot{\rho}_s = 0 = -\mathrm{i}[H, \rho_s] + \sum_n \left(2C_n \rho_s C_n^{\dagger} - \{ \rho_s, C_n^{\dagger} C_n \} \right)$$

• What they really measure is the expectation of the electrical field $E \propto \langle a + a^{\dagger} \rangle$ [2] on a given frequency

$$E \propto \langle a + a^{\dagger} \rangle = \text{Tr}[\rho_s(a + a^{\dagger})]$$

Property of the cavity: Analytical

Nature 445, 515-518

Ming, Elen

Introductio

The model
Cavity QED
Driving terms
Measurement

Numerical simulation

Property of the cavity

Reproduce results

Discussion

Conclus

 Without the qubit, the cavity state is equivalently a damped harmonic oscillator with driving

$$H = \delta a^{\dagger} a + \epsilon (a + a^{\dagger})$$

Collapse operators: $\sqrt{\kappa(n_{\sf th}+1)}a$ and $\sqrt{\kappa n_{\sf th}}a^\dagger$

- When it's off resonant, its steady state is not but approximately a coherent state
- Analytically the photon number expectation value is

$$\bar{n} = \frac{\epsilon^2}{\delta^2 + \kappa^2/4} + n_{\mathsf{th}}$$

Property of the cavity: Numerical

Nature 445, 515-518

Ming, Elena

Introduction

The model
Cavity QED
Driving terms

Numerical simulation

cavity

Reproduce results

Discussio

- Numerically, a truncate on Fock space is needed
- To check the validity of the truncate, we plot the photon distribution and frequency response of the cavity.

Direct spectroscopic observation of quantized cavity photon number

Nature 445, 515-518

Ming, Elen

Introductio

The model
Cavity QED
Driving terms

Numerical simulation Property of the cavity

Reproduce results

Conclusio

For a fixed driving $\epsilon_{\rm rf}$, plot the reduction $V_0 - \langle a^\dagger + a \rangle_{ss}$ v.s. ω_s .

 $\epsilon_{\rm rf}$ is labeled by \bar{n} with relationship:

$$\bar{n} = n_{\mathsf{th}} + \frac{\epsilon_{\mathsf{rf}}^2}{\delta^2 + \kappa^2/4}$$

Direct spectroscopic observation of quantized cavity photon number: compare

Nature 445, 515-518

Ming, Elena

Introduction

The model Cavity QED Driving terms

Numerical simulation Property of th

Reproduce results

Discussion

ullet Fits well with small $ar{n}$, but other noise becomes significant for larger $ar{n}$

Strengthen?

Nature 445, 515-518

Ming, Elen

Introduction

The mode
Cavity QED
Driving terms
Measurement

Numerical simulation

Dependence social

Discussion

Conclusio

For small RF signal, there's a range where the transmitted amplitude is increased. We'll explain it later.

Thermal Drive

Nature 445, 515-518

Ming, Elena

Introduction

The mode Cavity QED Driving terms

Numerical simulation Property of the cavity

Reproduce results

Discussio

Conclusio

• Thermal Drive is equivalent to setting $n_{\rm th}$ in collapse operator to the driving average, with small $\epsilon_{\rm rf}$ to show the phase lock-in at the given frequency.

Thermal Drive: compare

Nature 445, 515-518

Ming, Elen

Introduction

The model Cavity QED Driving terms

Numerical simulation Property of the cavity

Reproduce results

Discussion

 Note that there's no thermal drive theory fitting. Our results tracks fewer peaks, but this depends on how they do the measurement, which is not mentioned in the paper.

Discussion: The picture of what happens

Nature 445, 515-518

Ming, Elena

Introductio

The mode Cavity QED Driving terms Measurement

simulation

Property of the cavity

Discussion

onclusion

- The peaks shows discreteness in the photon state in the cavity.
- Exciting the qubit making the cavity off-resonance, which results in the reduction?

Discussion: The picture of what happens

Nature 445, 515-518

iviing, Eiena

Introductio

The mode Cavity QED Driving terms Measurement

simulation

Property of the cavity

Reproduce result

Discussion

onclusion

- The peaks shows discreteness in the photon state in the cavity.
- Exciting the qubit making the cavity off-resonance, which results in the reduction? NOT TRUE

Discussion: The picture of what happens

Nature 445, 515-518

Ming, Elen

Introduction

The model
Cavity QED
Driving terms
Measurement

Numerical simulation Property of the cavity Reproduce results

Discussion

- The peaks shows discreteness in the photon state in the cavity.
- Exciting the qubit making the cavity off-resonance, which results in the reduction? NOT TRUE
- Expected photon number increases at the peaks!

What happens

Nature 445, 515-518

Ming, Elen

Introduction

The model
Cavity QED
Driving terms
Measurement

Numerical simulation Property of the cavity Reproduce results

Discussion

- Excitation of the qubit is not the dominant effect, but the polarization of the qubit, which twists the cavity photon state.
- This can be shown from the difference of the Wigner function (quasiprobability distribution on phase diagram) with/without the signal field.

What happens

Nature 445, 515-518

The model
Cavity QED
Driving terms

Numerical simulation Property of the cavity Reproduce results

Discussion

- Excitation of the qubit is not the dominant effect, but the polarization of the qubit, which twists the cavity photon state.
- This can be shown from the difference of the Wigner function (quasiprobability distribution on phase diagram) with/without the signal field.

Conclusion

Nature 445, 515-518

Ming, Elena

Introduction

The mode

Cavity QED
Driving term

Numerical simulation

cavity

Conclusion

TBD

Reference

Nature 445, 515-518

Ming, Eler

Introduction

The mode Cavity QED Driving terms

Numerical simulation Property of the cavity Reproduce results

Discussion Conclusion

► Alexandre Blais, Ren-Shou Huang, Andreas Wallraff, Steven M Girvin, and R Jun Schoelkopf.

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation.

Physical Review A, 69(6):062320, 2004.

David Isaac Schuster.
 Circuit quantum electrodynamics.

Yale University, 2007.

▶ DI Schuster, AA Houck, JA Schreier, A Wallraff, JM Gambetta, A Blais, L Frunzio, J Majer, B Johnson, MH Devoret, et al.

Resolving photon number states in a superconducting circuit.

Nature, 445(7127):515-518, 2007.

The End...

Nature 445, 515-518

Ming, Elen

Introductio

The model
Cavity QED
Driving terms

Numerical simulation Property of the cavity Reproduce result

Discussion

Conclusion

Thank you for listening!

Q & A

Circuit Cavity QED

Nature 445, 515-518

Cavity

- 1D transmission line resonator
- Full-wave section of superconducting coplanar waveguides

Qubit

- Cooper pair box
- Superconducting mesoscopic island connected via a Josephson Junction to a reservoir

Circuit Cavity QED

Nature 445, 515-518

Figure: Cooper pair box inside a cavity, and spectral features of the circuit QED system.

Josephson junction and superconducting circuit

Nature 445, 515-518

The Hamiltonian

$$H = E_c (N - N_g)^2 - E_J \cos \delta$$

- Commutation relationship: $[\delta,N]={\rm i}$, this means ${\rm e}^{\pm {\rm i}\delta}\,|n
 angle=|n\pm1
 angle$
- Approximately two-level system: $0 \le N_q \le 1$, N = 0, 1:

$$H = -E_c(1 - 2N_g)\sigma^z - \frac{1}{2}E_J\sigma^x$$

- With coupling, $N_q \longrightarrow N_q + CV_0(a+a^{\dagger})/2e$
- Choose eigen basis at degeneracy point $(N_g=1/2)$, we can have JC model up to some constants.

Measurement

Nature 445, 515-518 Ming, Elena

In the experiment, the transmitted amplitude at frequency $\omega_{\rm rf}$ is the main observable. The exact way to measure can be found in Schuster's thesis [2]:

• What we really measure is the expectation of the voltage, or electrical field $E \propto \langle a+a^\dagger \rangle$

Wigner function (Wigner quasiprobability distribution)

Nature 445, 515-518 Ming, Elena

 Wigner function is an analogue of classical probability distribution on phase space

Definition: Wigner function

$$P(x,p) \equiv \frac{1}{(2\pi\hbar)^n} \int d^n y \, \psi(x - y/2) \psi^*(x + y/2) e^{ip \cdot y/\hbar}$$
$$= \frac{1}{(2\pi\hbar)^n} \int d^n y \, \langle x - y/2 | \rho | x + y/2 \rangle e^{ip \cdot y/\hbar}$$

Marginals:

$$\int d^n p P(x, p) = \langle x | \rho | x \rangle \qquad \int d^n x P(x, p) = \langle p | \rho | p \rangle$$

Wigner function: properties

Nature 445, 515-518

• Inner product → overlap:

$$\left| \langle \psi | \varphi \rangle \right|^2 = 2\pi\hbar \int d^n x d^n p P_{\psi}(x, p) P_{\varphi}(x, p)$$

Operator Wigner transformation and expectation values:

$$g(x,p) \equiv \int d^n y \langle x - y/2 | G | x + y/2 \rangle e^{ip \cdot y/\hbar}$$
$$\operatorname{Tr}[\rho G] = \int d^n x d^n p P(x,p) g(x,p)$$

Cauchy inequality for pure state

$$-\frac{2}{h} \le P(x, p) \le \frac{2}{h}$$