

Major Project 1 ...

- Look at problem of transferring satellite to MEO (GPS) from Initial LEO Orbit
 - Code Continuous Thrust Example
 - $a_{LEO} = 8530 \text{km}, a_{MEO} = 13,200 \text{ km}$
- You are going to compare (non-impulsive) low thrust, high I_{sp} transfer to high thrust, Low I_{sp} Hohmann transfer .. Both impulse and non-impulsive calculations
- •a) Low thrust (EP) transfer, Thrust F=10 N, $I_{sp} = 2000 \text{ sec}$
 - Low Thrust final kick motor, Thrust F=2000 N, I_{sp} = 270 sec
 - Assume final kick is performed impulsively
 - Calculate consumed mass for each system burn and total consumed mass
 - Accumulated ΔV for each burn, total delta V
- b) High Thrust (Hohmann) transfer, Thrust F=2000 N, $I_{sp}=270 \text{ sec}$
 - DV maneuvers are performed impulsively
 - Calculate consumed ΔV , mass for each burn and total for both burns
 - Compare to low thrust maneuver

Part a)

• Continuous Small Thrust Problem

• For Part a)... assume final Orbit insertion ΔV is delivered impulsively with Apogee Kick Motor Isp = 270 sec Ignore atmospheric drag

Terminate thrust when

$$R_{apogee} = a \cdot (1 + e)$$
$$= 13,200 km$$

Calculate:

- 1) Propellant mass req. $+\Delta V$ For continuous transfer
- Propellant mass req. +∆V
 For kick delta V (impulsive)
 (orbit circularization)
- 3) Final mass = 1000 kg

Orbit coast

Part a)

• Continuous Small Thrust Problem

... compare continuous thrust propellant mass calculations against Hohmann transfer calculations .. Assuming impulsively delivered Delta V for each burn

Burn 1: Isp = 2000 sec

Burn 2: Isp = 270 sec

... what can you conclude about the accuracy of the rocket equations and the impulsive Delta V assumption when applied to a long duration non-impulsive burn?

Part a) Continuous Small Thrust

- ... Implement *both* Trapezoidal and Runge-Kutta Integration schemes
- ... Assume continuous thrust transfer to transfer orbit apogee using EP device, final orbit insertion using high thrust kick motor
- ... compare algorithm performance as Time interval ΔT becomes progressively larger
- ... Is there a point where algorithm blows up?

• Part b, Hohmann Transfer Calculations

Hohmann Transfer:

 I_{sp} =270 sec F_{thrust} =2000 Nt

• Impulsive Burn Calculations

- Calculate ΔV , Mass Consumed Including Kick
- Compare to Continuous Low Thrust Transfer Results

UtahState UNIVERSITY

Part c) Continuous Large Thrust Analysis

Terminate thrust when

$$R_{apogee} = a \cdot (1 + e)$$

=13,200km

Calculate:

Orbit coast

1) Propellant mass req. $+\Delta V$ For continuous transfer

2) Propellant mass req. +ΔV
For kick delta V (Non-impulsively)
(orbit circularization)

3) Final mass = 1000 kg

Final Delta V delivered Non-impulsively

MAE 5540 - Propulsion Systems

UtahState UNIVERSITY

• Part d) ... Work continuous large Thrust problem with *non-impulsive burns* at both ends

Hohmann Transfer:

 I_{sp} =270 sec F_{thrust} =2000 Nt

- Non-Impulsive Burn Calculations
- Continuous Thrust Burn Calculations

• Use Hohmann Transfer for Guidance on Burns times, positions

- Continuous Large Thrust Problem
- Assume BOTH burns are performed non-impulsively Terminate burn thrust when

$$R_{apogee} = a \cdot (1 + e)$$
$$= 13,200 \, km$$

- You decide when and how long to initiate the second burn to circularize the orbit
- Assume for large thrust 2000 Nt thrust (both burns) ... Isp = 270 sec
- Calculate required propellant mass for Burn1, Burn2 (and Total)
- Use integrator of your choice ... calculate actual delivered Delta V Based on consumed mass ... using rocket equation

Continuous Large Thrust Problem

... compare Hohmann Transfer for 2000 Nt Rocket (assuming impulsive thrust) Versus 2000 Nt rocket with Non Impulsive Thrust Also compare consumed masses to High I_{sp} Continuous Thrust transfer

... what can you conclude about the accuracy of the rocket equation and the impulsive Delta V assumption when applied to a short duration non-impulsive burn?

... what can you conclude about the effect of $I_{sp \text{ on}}$ required propellant mass?

Position within initial orbit:

$$\begin{bmatrix} r \\ v \end{bmatrix}_0 = \begin{bmatrix} a_0 \left(1 - e_0^2 \right) \\ 1 + e_0 \cos \left(v_0 \right) \\ v_0 \end{bmatrix} \rightarrow \begin{bmatrix} \text{circular orbit} \rightarrow e_0 = 0 \\ \text{can assume} \rightarrow v_0 = 0 \rightarrow a_0 = r_0 \end{bmatrix}$$

Angular velocity within initial orbit:

$$\omega_{0} = \frac{\sqrt{\mu} \left[1 + e_{0} \cos(v_{0}) \right]^{2}}{\left[a_{0} \left(1 - e_{0}^{2} \right) \right]^{3/2}} \rightarrow \begin{bmatrix} \text{circular orbit} \rightarrow e_{0} = 0\\ \text{can assume} \rightarrow v_{0} = 0, a_{0} = r_{0} \end{bmatrix}$$

$$\omega_{0} = \frac{\sqrt{\mu} \left[1 + e_{0} \cos(v_{0}) \right]^{2}}{\left[a_{0} \left(1 - e_{0}^{2} \right) \right]^{3/2}} = \frac{1}{r_{0}} \sqrt{\frac{\mu}{r_{0}}}$$

Linear Velocity within initial orbit:

$$\begin{bmatrix} V_r \\ V_v \end{bmatrix}_0 = r_0 \omega_0 \begin{bmatrix} \frac{e_0 \sin[v_o]}{[1 + e_0 \cos(v_o)]} \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} \text{circular orbit} \rightarrow e_0 = 0 \\ \text{can assume} \rightarrow v_0 = 0, a_0 = r_0 \end{bmatrix}$$

$$\begin{bmatrix} V_r \\ V_v \end{bmatrix}_0 = \begin{bmatrix} 0 \\ r_0 \omega_0 \end{bmatrix} = \begin{bmatrix} 0 \\ \sqrt{\frac{\mu}{r_0}} \end{bmatrix}$$

Instantaneous (no-nonconservative foreces acting) Keplerian orbit $\rightarrow given: \begin{bmatrix} v_r \\ V_v \end{bmatrix}, \begin{bmatrix} r \\ v \end{bmatrix}$

$$a = \frac{\mu}{\left[\frac{2\mu}{r} - \left[V_r^2 + V_v^2\right]\right]}$$

$$e = \frac{r}{\mu} \sqrt{\left(V_v^2 - \frac{\mu}{r}\right)^2 + \left(V_r V_v\right)^2}$$

$$r_{perigee} = a(1 - e)$$

$$r_{apogee} = a(1 + e)$$