Computational Statistics and Probability

Assignment for Mid Term Summer: 2020-2021

<u>Total marks: 10</u> <u>Date of Submission: 30 June 2021</u>

Enjoy the assignment to collect the primary data from (5-10) families around your neighborhood or relatives (Total number of person will be around 30-40) of the following variables:

- 1. Division/ origin
- 2. Gender
- 3. Age
- 4. Height
- 5. Weight
- 6. Education Level
- 7. Occupation
- 8. COVID-19 information (positive/negative/suspected/Vaccinated)

				Height				
No.	Division	Gender	Age	(cm)	Weight(kg)	Edu. Level	Occupation	Covid-19
1	DHA	M	56	167	72	MSC	Teacher	N
2	DHA	F	48	159	56	MA	JOB	S
3	DHA	F	21	165	67	BSC	STUDENT	N
4	DHA	F	16	162	62	SCHOOL	STUDENT	N
5	DHA	F	10	80	28	SCHOOL	STUDENT	N
6	JOS	M	72	167	75	BA	Business	P
7	DHA	F	56	150	70	College	House Wife	V
8	JOS	M	26	162	76	BBA	JOB	P
9	JOS	M	20	172	98	BSC	STUDENT	N
10	JOS	M	14	113	42	Madrasa	STUDENT	N
11	BRI	F	19	159	48	School	House Wife	N
12	KHU	M	65	170	73	Madrasa	JOB	S
13	KHU	F	55	152	54	College	House Wife	S
14	KHU	M	22	150	78	LLB	STUDENT	N
15	KHU	F	16	159	56	SCHOOL	STUDENT	N
16	KHU	M	13	128	51	Madrasa	STUDENT	N
17	BRI	M	69	150	79	SCHOOL	Business	V
18	BRI	F	58	144	62	SCHOOL	House Wife	S
19	BRI	F	22	150	60	BA	STUDENT	N
20	BRI	F	19	162	54	College	STUDENT	N
21	MYM	M	58	156	60	MBA	Business	P
22	MYM	F	41	152	68	BBA	House wife	S
23	MYM	F	21	158	64	BSC	STUDENT	N
24	MYM	M	16	155	58	SCHOOL	STUDENT	N
25	CHI	M	57	165	75	COLLEGE	JOB	S
26	CHI	F	49	155	62	MBA	Teacher	V
27	CHI	M	22	162	55	BSC	STUDENT	P
28	CHI	F	16	155	52	SCHOOL	STUDENT	N
29	SHY	M	52	171	65	MBA	JOB	P
30	SHY	F	46	152	62	College	Housewife	S
31	SHY	F	21	165	48	BSC	STUDENT	N
32	SHY	F	14	128	32	SCHOOL	STUDENT	N

- 1. Construct a Height distribution for your neighbors or relatives.
- 2. Draw a Histogram and Frequency curve and comment on the shape of the Height.
- 3. Represent the COVID-19 information of your neighbors or relatives graphically.
- 4. Show the relationship of the Weight and Age of your neighbors or relatives.
- 5. Which variable has more variability between Age and Height?

*** For the students of having ID (Even-Odd[last two digits]), i.e. 1105-1212-1.

Answer to the Question no -1

Class	Tally	Frequency(f_1)	Mid Value	f_1x_1	Cumulative
Interval			x_1		Frequency(cf)
00.06	.		00	00	1
80-96	I	1	88	88	1
96-112		0	104	0	1
112-128	Ι	1	120	120	2
120 144	17	2	126	272	4
128-144	II	2	136	272	4
144-160	un un un	16	152	2432	20
	I				
160-176	ил ил II	12	168	2016	32
Total		N=32		4928	

Answer to the Question no -3

Answer to the Question no -4

Answer to the Question no -5

Height

Class	Frequency(f_1)	Mid Value	f_1x_1	$ f_1 x_1-\bar{x} $	$f_1 (x_1 - \bar{x})^2$
Interval		x_1			
80-96	1	88	88	66	4356
96-112	0	104	0	0	0
112-128	1	120	120	34	1156
128-144	2	136	272	36	648
144-160	16	152	2432	32	64
160-176	12	168	2016	168	2352
Total	N=32		4928	336	11876

Mean,
$$\bar{x} = \frac{\sum f_1 x_1}{n} = \frac{4928}{32} = 154$$

$$MD = \frac{\sum f_1 |x_1 - \bar{x}|}{n} = \frac{336}{32} = 10.5$$

Variance,
$$\sigma^2 = \frac{\sum f_1 (x_1 - \bar{x})^2}{n} = \frac{11876}{32} = 371.125$$

Standard Deviation, SD= $\sqrt{Variance} = \sqrt{371.125} = 19.26$

Coefficient of variation,
$$\text{CV} = \frac{\text{Standard Deviation}}{\bar{x}} \times 100 = \frac{19.26}{154} \times 100 = 12.50\%$$

Class	Frequency(f_1)	Mid Value	f_1x_1	$ f_1 x_1-\bar{x} $	$f_1 (x_1 - \bar{x})^2$
Interval		x_1			
10-20	10	15	150	200	4000
20-30	8	25	200	80	800
30-40	0	35	0	0	0
40-50	4	45	180	40	400
50-60	7	55	385	140	2700
60-70	2	65	130	60	1800
70-80	1	75	75	40	1600
Total	N=32		1120	560	11300

Mean,
$$\bar{x} = \frac{\sum f_1 x_1}{n} = \frac{1120}{32} = 35$$

$$MD = \frac{\sum f_1 |x_1 - \bar{x}|}{n} = \frac{560}{32} = 17.5$$

Variance,
$$\sigma^2 = \frac{\sum f_1 (x_1 - \bar{x})^2}{n} = \frac{11300}{32} = 353.125$$

Standard Deviation, SD = $\sqrt{Variance} = \sqrt{353.125} = 18.80$

Coefficient of variation, CV =
$$\frac{\text{Standard Deviation}}{\bar{x}} \times 100 = \frac{18.80}{35} \times 100 = 53.71\%$$

Age>Height

So, Age variable is more variability than Height variable.