Biologicky motivované výpočtové modely

Michal Kováč

FMFI UK

24.6.2013

- Prehľad problematiky
 - Prehľad modelov
 - P systémy
 - Varianty
- Plány na dizertačnú prácu
 - Aktuálne riešené problémy
 - Ďalšie plány

Biologicky motivované výpočtové modely

Dvojaké uplatnenie:

- reálne modely živých systémov
 - virtuálne biologické experimenty
 - verifikácia správnosti chápania ich činností
- modely na popis iných systémov

Biologicky motivované výpočtové modely

- Neurónové siete (od 1943)
- Celulárne automaty (od 1948)
- Evolučné algoritmy (od 1954)
- L systémy (od 1968)
- P systémy (od 1998) [Păun, 1998]
- Calculi of Looping Sequences (od 2007)
- Reaction systems (od 2007)
-

Membránová štruktúra

Obsah membrány

- multimnožina objektov
 - a | b | b
- prepisovacie pravidlá
 - ullet $a\mid b\mid b
 ightarrow a\mid a_{out}\mid b_{in_6}$
 - ullet $b
 ightarrow a \mid \delta$

P systém

P systém definujeme ako

$$\Pi = (V, \mu, w_1, w_2, \dots, w_m, R_1, R_2, \dots, R_m)$$
, kde:

- V je abeceda objektov
- ullet μ je membránová štruktúra
- $w_1, w_2, \dots w_m$ sú počiatočné multimnožiny v membránach $1 \dots m, w_i \subseteq \mathbb{N}^V$
- R₁, R₂,..., R_m sú množiny prepisovacích pravidiel v membránach 1...m, pričom

$$R_i \subseteq (\mathbb{N}^V \setminus 0^V) \times \mathbb{N}^{V \times (\{here, out\} \cup \{in_1, ... in_m\})}$$

- konfigurácia = membránová štruktúra + obsahy membrán
- krok výpočtu: maximálny paralelizmus

- konfigurácia = membránová štruktúra + obsahy membrán
- krok výpočtu: maximálny paralelizmus

- konfigurácia = membránová štruktúra + obsahy membrán
- krok výpočtu: maximálny paralelizmus

$$\begin{array}{|c|c|c|c|}\hline & a \mid b \mid b \rightarrow c & (r_1) \\ & b \rightarrow c \mid c & (r_2) \\ \hline & a \mid a \mid b \mid b \\ \hline & & & \\ \hline & a \mid c \\ \hline \end{array}$$

- konfigurácia = membránová štruktúra + obsahy membrán
- krok výpočtu: maximálny paralelizmus

Jazyk

- výsledok výpočtu je multimnožina objektov, ktorá:
 - počas výpočtu prešla cez vonkajšiu membránu
 - na konci ostane v špecifickej membráne

Jazyk

- výsledok výpočtu je multimnožina objektov, ktorá:
 - počas výpočtu prešla cez vonkajšiu membránu
 - na konci ostane v špecifickej membráne
- generatívny vs akceptačný mód

Jazyk

- výsledok výpočtu je multimnožina objektov, ktorá:
 - počas výpočtu prešla cez vonkajšiu membránu
 - na konci ostane v špecifickej membráne
- generatívny vs akceptačný mód
- Parikhovo zobrazenie: PsRE

Varianty objektov

- worm objects [Maté et al., 2002]
 - namiesto multimnožín objektov sú v membránach multimnožiny stringov (\mathbb{N}^{V^*})
 - inšpirované DNA

kontextové (PsRE)

- kontextové (PsRE)
- kooperatívne (PsRE) [Păun, 1998]

- kontextové (PsRE)
- kooperatívne (PsRE) [Păun, 1998]
- katalytické
 - s 2 katalyzátormi (PsRE) [Freund et al., 2005]
 - s 1 katalyzátorom (otvorený problem)
 - s 1 katalyzátorom a inhibítormi (PsRE) [lonescu and Sburlan, 2004]

- kontextové (PsRE)
- kooperatívne (PsRE) [Păun, 1998]
- katalytické
 - s 2 katalyzátormi (PsRE) [Freund et al., 2005]
 - s 1 katalyzátorom (otvorený problem)
 - s 1 katalyzátorom a inhibítormi (PsRE) [lonescu and Sburlan, 2004]
- bezkontextové (PsCF) [Sburlan, 2005]

- kontextové (PsRE)
- kooperatívne (PsRE) [Păun, 1998]
- katalytické
 - s 2 katalyzátormi (PsRE) [Freund et al., 2005]
 - s 1 katalyzátorom (otvorený problem)
 - s 1 katalyzátorom a inhibítormi (PsRE) [lonescu and Sburlan, 2004]
- bezkontextové (PsCF) [Sburlan, 2005]
- bezkontextové s inhibítormi (PsET0L)
 [Ionescu and Sburlan, 2004]

• maximálny paralelizmus (PsRE)

- maximálny paralelizmus (PsRE)
- sekvenčný (vieme simulovať pomocou VASS, [Ibarra et al., 2005])

- maximálny paralelizmus (PsRE)
- sekvenčný (vieme simulovať pomocou VASS, [Ibarra et al., 2005])
- ullet asynchrónny (väčšinou \sim sekvenčný) [Freund, 2005]

- maximálny paralelizmus (PsRE)
- sekvenčný (vieme simulovať pomocou VASS, [Ibarra et al., 2005])
- ullet asynchrónny (väčšinou \sim sekvenčný) [Freund, 2005]
- minimálny paralelizmus (PsRE) [Ciobanu et al., 2007]

• maximálny paralelizmus je veľmi silná featura...

- maximálny paralelizmus je veľmi silná featura...
- ako sa dá rozšíriť sekvenčný mód?

- maximálny paralelizmus je veľmi silná featura...
- ako sa dá rozšíriť sekvenčný mód?
- na univerzalitu treba:
 - pravidlá s prioritami [lbarra et al., 2005]
 - povoliť neobmedzené vytváranie membrán [Ibarra et al., 2005]

- maximálny paralelizmus je veľmi silná featura...
- ako sa dá rozšíriť sekvenčný mód?
- na univerzalitu treba:
 - pravidlá s prioritami [Ibarra et al., 2005]
 - povoliť neobmedzené vytváranie membrán [Ibarra et al., 2005]
 - inhibítory [Kováč, 2013, submitted]

- maximálny paralelizmus je veľmi silná featura...
- ako sa dá rozšíriť sekvenčný mód?
- na univerzalitu treba:
 - pravidlá s prioritami [Ibarra et al., 2005]
 - povoliť neobmedzené vytváranie membrán [Ibarra et al., 2005]
 - inhibítory [Kováč, 2013, submitted]
 - iné rozšírenia (pravidlá s detekciu prázdnych membrán, ...)
 - inšpirácie z výsledkov iných formalizmov

Ďalšie plány

- Preskúmať možnosti kombinovania ďalších variantov P systémov z hľadiska výpočtovej sily
 - rozpadajúce sa objekty
 - energie
 - symport / antiport
 - priestorové P systémy
 - ...

Nové varianty

- Nájsť nové varianty
- Besozzi [Besozzi, 2004]: Dobrý variant by mal byť:
 - realistický
 - univerzálny
 - iredundantný

Inšpirácie z výsledkov iných formalizmov

- Petriho siete
 - nie sú univerzálne
 - s inhibítormi áno
 - iné rozšírenia Petriho sietí

Inšpirácie z výsledkov iných formalizmov

- Petriho siete
 - nie sú univerzálne
 - s inhibítormi áno
 - iné rozšírenia Petriho sietí
- CLS (Calculi of Looping Sequences)
 - sekvenčný model, vie simulovať P systémy [Barbuti et al., 2007]

Inšpirácie z výsledkov iných formalizmov

- Petriho siete
 - nie sú univerzálne
 - s inhibítormi áno
 - iné rozšírenia Petriho sietí
- CLS (Calculi of Looping Sequences)
 - sekvenčný model, vie simulovať P systémy [Barbuti et al., 2007]
- reaction systems [Rozenberg, 2007]

Ďakujem za pozornosť