November 29

EECS 483: COMPILER CONSTRUCTION

Announcements

- Midterm: Tuesday, March 12th
 - 7-9pm, DOW 1013 and 1014
 - One-page, letter-sized, double-sided "cheat sheet" of notes permitted
 - Coverage: interpreters / program transformers / x86 / calling conventions / IRs / LLVM / Lexing / Parsing
 - Material up to and including today's lecture on LR parsing
 - See examples of previous exams on the web pages
 - March 11 class: review/office hours, no lecture
- HW4: Compiling Oat v.1
 - Lexing + Parsing + translate to LLVMlite
 - Probably released tomorrow
 - due March 26th

LR GRAMMARS

Top-down vs. Bottom up

 Consider the leftrecursive grammar:

$$S \mapsto S + E \mid E$$

 $E \mapsto \text{number} \mid (S)$

- (1 + 2 + (3 + 4)) + 5
- What part of the tree must we know after scanning just "(1 + 2"?
- In top-down, must be able to guess which productions to use...

There is a problem

 We want to decide which production to apply based on the look-ahead symbol.

$$S \mapsto E + S \mid E$$

 $E \mapsto \text{number} \mid (S)$

• But, there is a choice:

$$(1) S \mapsto E \mapsto (S) \mapsto (E) \mapsto (1)$$

VS.
$$(1) + 2 \quad \xrightarrow{S \mapsto E + S} \mapsto (S) + S \mapsto (E) + S \mapsto (1) + S \mapsto (1) + E$$

$$\mapsto (1) + 2$$

• Given the look-ahead symbol: '(' it isn't clear whether to pick $S \mapsto E$ or $S \mapsto E + S$ first.

Bottom-up Parsing (LR Parsers)

- LR(k) parser:
 - <u>L</u>eft-to-right scanning
 - Rightmost derivation
 - k lookahead symbols
- LR grammars are more expressive than LL
 - Can handle left-recursive (and right recursive) grammars; virtually all programming languages
 - Easier to express programming language syntax (no left factoring)
- Technique: "Shift-Reduce" parsers
 - Work bottom up instead of top down
 - Construct right-most derivation of a program in the grammar
 - Used by many parser generators (e.g. yacc, ocamlyacc, lalrpop, etc.)
 - Better error detection/recovery

Progress of Bottom-up Parsing

Reductions

$$(1 + 2 + (3 + 4)) + 5 \longleftrightarrow$$

$$(E + 2 + (3 + 4)) + 5 \leftarrow$$

$$(S + 2 + (3 + 4)) + 5 \longleftrightarrow$$

$$(S + \mathbf{E} + (3 + 4)) + 5 \longleftrightarrow$$

$$(\mathbf{S} + (3+4)) + 5 \longleftrightarrow$$

$$(S + (\underline{\mathbf{E}} + 4)) + 5 \longleftrightarrow$$

$$(S + (S + 4)) + 5 \leftarrow$$

$$(S + (S + \mathbf{E})) + 5 \leftarrow$$

$$(S + (\underline{S})) + 5 \leftarrow$$

$$(S + E) + 5 \leftarrow$$

$$(\mathbf{S}) + 5 \longleftrightarrow$$

$$S + \underline{\mathbf{E}} \longleftarrow$$

S

Scanned

$$(1 + 2)$$

$$(1 + 2)$$

$$(1+2+(3+4))+5$$

$$(1+2+(3+4))+5$$

$$(1+2+(3+4))+5$$

$$(1+2+(3+4))+5$$

$$(1+2+(3+4))+5$$

$$(1+2+(3+4))+5$$

$$(1+2+(3+4))$$
 + 5

$$(1+2+(3+4))$$
 + 5

$$(1 + 2 + (3 + 4)) + 5$$

Input Remaining

$$(1+2+(3+4))+5$$

$$1 + 2 + (3 + 4)) + 5$$

$$+2+(3+4))+5$$

$$+(3+4))+5$$

$$+(3+4))+5$$

$$+4))+5$$

$$+4))+5$$

$$)) + 5$$

$$)) + 5$$

$$) + 5$$

$$) + 5$$

$$S \mapsto S + E \mid E$$

 $E \mapsto \text{number} \mid (S)$

Shift/Reduce Parsing

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input

- $S \mapsto S + E \mid E$ $E \mapsto \text{number} \mid (S)$
- Parsing is a sequence of shift and reduce operations:
- Shift: move look-ahead token to the stack
- Reduce: Replace symbols γ at top of stack with nonterminal X such that X $\mapsto \gamma$ is a production. (pop γ , push X)

Stack	Input	Action
	(1+2+(3+4))+5	shift (
(1 + 2 + (3 + 4)) + 5	shift 1
(1	+2+(3+4))+5	reduce: E → number
(E	+2+(3+4))+5	reduce: S → E
(S	+2+(3+4))+5	shift +
(S +	2 + (3 + 4)) + 5	shift 2
(S + 2)	+(3+4))+5	reduce: E → number
(S + E)	+(3+4))+5	reduce: $S \mapsto S + E$
(S	+(3+4))+5	shift +

Rightmost derivation

Shift/Reduce Parsing

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Invariant: Stack plus input is a step in building the Rightmost derivation in reverse

Stack	Input
	(1 + 2 + (3 + 4)) + 5
(1 + 2 + (3 + 4)) + 5
(1	+2+(3+4))+5
(E	+2+(3+4))+5
(S	+2+(3+4))+5
(S +	2 + (3 + 4)) + 5
(S + 2)	+(3+4))+5
(S + E)	+(3+4))+5
(S	+(3+4))+5

 $S \mapsto S + E \mid E$

 $E \mapsto \text{number} \mid (S)$

Derivation steps

$$(1 + 2 + (3 + 4)) + 5$$

$$(\underline{E} + 2 + (3 + 4)) + 5$$

$$(\underline{S} + 2 + (3 + 4)) + 5$$

$$(S + \underline{E} + (3 + 4)) + 5$$

$$(S + (3 + 4)) + 5$$

Simple LR parsing with no look ahead.

LR(0) GRAMMARS

LR Parser States

- Goal: know what set of reductions are legal at any given point.
- Idea: Summarize all possible stack prefixes α as a finite parser state.
 - Parser state is computed by a DFA that reads the stack σ .
 - Accept states of the DFA correspond to unique reductions that apply.
- Example: LR(0) parsing
 - <u>Left-to-right scanning</u>, <u>Right-most derivation</u>, <u>zero</u> look-ahead tokens
 - Too weak to handle many language grammars (e.g. the "sum" grammar)
 - But, helpful for understanding how the shift-reduce parser works.

Example LR(0) Grammar: Tuples

Example grammar for non-empty tuples and identifiers:

$$S \mapsto (L) \mid id$$

 $L \mapsto S \mid L, S$

- Example strings:
 - x
 - -(x,y)
 - ((((x))))
 - -(x, (y, z), w)
 - -(x, (y, (z, w)))

Parse tree for: (x, (y, z), w)

Shift/Reduce Parsing

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Parsing is a sequence of shift and reduce operations:
- Shift: move look-ahead token to the stack: e.g.

Stack	Input	Action
	(x, (y, z), w)	shift (
(x, (y, z), w)	shift x

• Reduce: Replace symbols γ at top of stack with nonterminal X such that $X \mapsto \gamma$ is a production. (pop γ , push X): e.g.

Stack	Input	Action
(x	, (y, z), w)	reduce $S \mapsto id$
(S	, (y, z), w)	reduce $L \mapsto S$

 $S \mapsto (L) \mid id$

 $L \mapsto S \mid L, S$

Example Run

Input	Action
(x, (y, z), w)	shift (
x, (y, z), w)	shift x
, (y, z), w)	$reduce \ S \mapsto id$
, (y, z), w)	$reduce\ L \mapsto S$
, (y, z), w)	shift ,
(y, z), w)	shift (
y, z), w)	shift y
, z), w)	$reduce\:S \mapsto id$
, z), w)	$reduce \ L \mapsto S$
, z), w)	shift ,
z), w)	shift z
), w)	$reduce\:S \mapsto id$
), w)	reduce $L \mapsto L$, S
), w)	shift)
, w)	reduce $S \mapsto (L)$
, w)	reduce $L \mapsto L$, S
, w)	shift ,
w)	shift w
)	$reduce\:S \mapsto id$
)	reduce $L \mapsto L$, S
)	shift)
	$reduce\;S \longmapsto (\;L\;)$
	(x, (y, z), w) x, (y, z), w) , (y, z), w) , (y, z), w) , (y, z), w) (y, z), w) y, z), w) , z), w) , z), w) z), w)), w)), w) , w) , w) , w) , w)

 $S \mapsto (L) \mid id$ $L \mapsto S \mid L, S$

Action Selection Problem

- Given a stack σ and a look-ahead symbol b, should the parser:
 - Shift b onto the stack (new stack is σ b)
 - Reduce a production $X \mapsto \gamma$, assuming that $\sigma = \alpha \gamma$ (new stack is αX)?
- Sometimes the parser can reduce but shouldn't
 - For example, $X \mapsto \varepsilon$ can always be reduced
- Sometimes the stack can be reduced in different ways
- Main idea: decide what to do based on a *prefix* α of the stack plus the look-ahead symbol.
 - The prefix α is different for different possible reductions since in productions $X \mapsto \gamma$ and $Y \mapsto \beta$, γ and β might have different lengths.
- Main goal: know what set of reductions are legal at any point.
 - How do we keep track?

LR(0) States

- An LR(0) state is a set of items keeping track of progress on possible upcoming reductions.
- An LR(0) item is a production from the language with an extra separator "." somewhere in the right-hand-side

$$S \mapsto (L) \mid id$$

 $L \mapsto S \mid L, S$

- Example items: $S \mapsto .(L)$ or $S \mapsto (.L)$ or $L \mapsto S$.
- Intuition:
 - Stuff before the '.' is already on the stack (beginnings of possible γ 's to be reduced)
 - Stuff after the '.' is what might be seen next
 - The prefixes α are represented by the state itself

Constructing the DFA: Start state & Closure

- First step: Add a new production $S' \mapsto S$ \$ to the grammar
- Start state of the DFA = empty stack, so it contains the item:

$$S' \mapsto .S$$
\$

- Closure of a state:
 - Adds items for all productions whose LHS nonterminal occurs in an item in the state just after the '.'
 - The added items have the '.' located at the beginning (no symbols for those items have been added to the stack yet)
 - Note that newly added items may cause yet more items to be added to the state... keep iterating until a fixed point is reached.
- Example: $CLOSURE(\{S' \mapsto .S\}\}) = \{S' \mapsto .S\}, S \mapsto .(L), S \mapsto .id\}$
- Resulting "closed state" contains the set of all possible productions that might be reduced next.

$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

• First, we construct a state with the initial item $S' \mapsto .S$ \$

$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

- Next, we take the closure of that state: $CLOSURE(\{S' \mapsto .S\}\}) = \{S' \mapsto .S\}, S \mapsto .(L), S \mapsto .id\}$
- In the set of items, the nonterminal S appears after the '.'
- So we add items for each S production in the grammar

$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

- Next we add the transitions:
- First, we see what terminals and nonterminals can appear after the '.' in the source state.
 - Outgoing edges have those label.
- The target state (initially) includes all items from the source state that have the edge-label symbol after the '.', but we advance the '.' (to simulate shifting the item onto the stack)

 $S' \mapsto S.\$$

```
S' \mapsto S

S \mapsto (L) \mid id

L \mapsto S \mid L, S
```

- Finally, for each new state, we take the closure.
- Note that we have to perform two iterations to compute $CLOSURE(\{S \mapsto (.L)\})$
 - First iteration adds $L \mapsto .S$ and $L \mapsto .L$, S
 - Second iteration adds $S \mapsto .(L)$ and $S \mapsto .id$

Full DFA for the Example

Using the DFA

- Run the parser stack through the DFA.
- The resulting state tells us which productions might be reduced next.
 - If not in a reduce state, then shift the next symbol and transition according to DFA.
 - If in a reduce state, $X \mapsto \gamma$ with stack $\alpha \gamma$, pop γ and push X.
- Optimization: No need to re-run the DFA from beginning every step
 - Store the state with each symbol on the stack: e.g. $_1(_3(_3L_5)_6$
 - On a reduction $X \mapsto \gamma$, pop stack to reveal the state too: e.g. From stack $_1(_3(_3L_5)_6$ reduce $S \mapsto (L)$ to reach stack $_1(_3$
 - Next, push the reduction symbol: e.g. to reach stack ₁(₃S
 - Then take just one step in the DFA to find next state: $_1(_3S_7)$

Implementing the Parsing Table

Represent the DFA as a table of shape:

state * (terminals + nonterminals)

- Entries for the "action table" specify two kinds of actions:
 - Shift and goto state n
 - Reduce using reduction $X \mapsto \gamma$
 - First pop γ off the stack to reveal the state
 - Look up X in the "goto table" and goto that state

Example Parse Table

	()	id	,	\$	S	L
1	s3		s2			g4	
2	S⊷id	S⊷id	S⊷id	S⊷id	S⊷id		
3	s3		s2			g7	g5
4					DONE		
5		s6		s8			
6	$S \mapsto (L)$						
7	$L \mapsto S$						
8	s3		s2			g9	
9	$L \mapsto L,S$						

sx = shift and goto state xgx = goto state x

Example

Parse the token stream: (x, (y, z), w)\$

Stack	Stream	Action (according to table)
ϵ_1	(x, (y, z), w)\$	s3
$\varepsilon_1(_3$	x, (y, z), w)\$	s2
$\varepsilon_1(_3X_2$	(y, z), w)\$	Reduce: S⊷id
$\varepsilon_1({}_3S$	(y, z), w)\$	g7 (from state 3 follow S)
$\varepsilon_1({}_3S_7$	(y, z), w)\$	Reduce: L→S
$\varepsilon_1(_3L$	(y, z), w)\$	g5 (from state 3 follow L)
$\varepsilon_1(_3L_5$	(y, z), w)\$	s8
$\varepsilon_1({}_3L_{5,8}$	(y, z), w)\$	s3
$\varepsilon_1({}_3L_5,{}_8({}_3$	y, z), w)\$	s2

LR(0) Limitations

- An LR(0) machine only works if states with reduce actions have a *single* reduce action.
 - In such states, the machine *always* reduces (ignoring lookahead)
- With more complex grammars, the DFA construction will yield states with shift/reduce and reduce/reduce conflicts:

OK shift/reduce reduce/reduce

$$S \mapsto (L).$$

$$S \mapsto (L).$$

 $L \mapsto .L, S$

$$S \mapsto L, S.$$

 $S \mapsto S.$

• Such conflicts can often be resolved by using a look-ahead symbol: SLR(1) or LR(1)

Examples

Consider the left associative and right associative "sum" grammars:

left right $S \mapsto S + E \mid E$ $E \mapsto \text{number} \mid (S)$ $S \mapsto E + S \mid E$ $E \mapsto \text{number} \mid (S)$

- One is LR(0) the other isn't... which is which and why?
- What kind of conflict do you get? Shift/reduce or Reduce/reduce?
- Ambiguities in associativity/precedence usually lead to shift/reduce conflicts.

SLR(1) ("simple" LR) Parsers

- What conflicts are there in LR(0) parsing?
 - reduce/reduce conflict: an LR(0) state has two reduce actions
 - shift/reduce conflict: an LR(0) state mixes reduce and shift actions
- Can we use lookahead to disambiguate?
- SLR(1) uses the same DFA construction as LR(0)
 - modifies the actions based on lookahead
- Suppose reducing an A nonterminal is possible in some state:
 - compute Follow(A) for the given grammar
 - if the lookahead symbol is in Follow(A), then reduce, otherwise shift
 - can disambiguate between reduce/reduce conflicts if the follow sets are disjoint

LR(1) Parsing

- Algorithm is similar to LR(0) DFA construction:
 - LR(1) state = set of LR(1) items
 - An LR(1) item is an LR(0) item + a set of look-ahead symbols: A \mapsto $\alpha.\beta$, $\mathcal L$
- LR(1) closure is a little more complex:
- Form the set of items just as for LR(0) algorithm.
- Whenever a new item $C \mapsto .\gamma$ is added because $A \mapsto \beta.C\delta$, \mathcal{L} is already in the set, we need to compute its look-ahead set \mathcal{M} :
 - 1. The look-ahead set \mathcal{M} includes FIRST(δ) (the set of terminals that may start strings derived from δ)
 - 2. If δ is itself ϵ or can derive ϵ (i.e. it is nullable), then the look-ahead $\mathcal M$ also contains $\mathcal L$

Example Closure

$$S' \mapsto S\$$$

 $S \mapsto E + S \mid E$
 $E \mapsto \text{number} \mid (S)$

- Start item: $S' \mapsto .S$ \$, {}
- Since S is to the right of a '.', add:

$$S \mapsto .E + S$$
 , $\{\$\}$ Note: $\{\$\}$ is FIRST($\$$) $S \mapsto .E$, $\{\$\}$

Need to keep closing, since E appears to the right of a '.' in '.E + S':

```
E\mapsto .number, \{+\} Note: + added for reason 1 E\mapsto .(S) , \{+\} FIRST(+S) = \{+\}
```

• Because E also appears to the right of '.' in '.E' we get:

```
\begin{array}{ll} E \mapsto . number \; , & \{\$\} \\ E \mapsto . (\; S\; ) & , & \{\$\} \\ \end{array} Note: $ added for reason 2 \delta is \epsilon
```

All items are distinct, so we're done

Using the DFA

- The behavior is determined if:
 - There is no overlap among the look-ahead sets for each reduce item, and
 - None of the look-ahead symbols appear to the right of a '.'

Fragment of the Action & Goto tables

LR variants

- LR(1) gives maximal power out of a 1 look-ahead symbol parsing table
 - DFA + stack is a push-down automaton
- In practice, LR(1) tables are big.
 - Modern implementations (e.g., menhir) directly generate code
- LALR(1) = "Look-ahead LR"
 - Merge any two LR(1) states whose items are identical except for the look-

ahead sets:

- Such merging can lead to nondeterminism (e.g., reduce/reduce conflicts), but
- Results in a much smaller parse table and works well in practice
- This is the usual technology for automatic parser generators: yacc, ocamlyacc
- GLR = "Generalized LR" parsing
 - Efficiently compute the set of *all* parses for a given input
 - Later passes should disambiguate based on other context

Classification of Grammars

