CH NG II

T P H P VÀ ÁNH X

I. T PH P:

1.1/ KHÁI NI M:

T p h p là m t b s u t p các ph n t $c\acute{o}$ chung m t s tính ch t nào \acute{o} . Ta th ng ký hi u các t p h p là A, B, C, ... và ký hi u các ph n t là a, b, c, ... N u ph n t a thu c v t p h p A, ta vi t a \in A. N u ph n t b không thu c v t p h p A, ta vi t b \notin A.

Khái ni m " t p h p t t c các t p h p" là vô ngh a (không the có $A \in A$).

Ví d:

- a) T p h p các sinh viên n m th nh t khoa Công ngh thông tin tr ng i h c Khoa h c t nhiên TP H Chí Minh (4 tính ch t chung).
- b) T p h p các môn h c c a ngành S h c tr ng i h c Khoa h c xã h i & nhân v n Hà N i (3 tính ch t chung).

1.2/ <u>CÁC T PH PS :</u>

T p h p các s nguyễn t nhiên $N = \{0, 1, 2, ...\}$

(v i các phép toán + và ×).

T p h p các s nguyên $\mathbf{Z} = \{ ..., -2, -1, 0, 1, 2, ... \}$

(v i các phép toán +, - và \times).

T p h p các s h u t $\mathbf{Q} = \{ ..., -\frac{1}{5}, -\frac{7}{4}, -6, 0, \frac{2}{3}, 9, \frac{8}{7}, ... \}$

(v i các phép toán $+, -, \times$ và :).

T ph p các s th c

 $\mathbf{R} = \{ \text{ các s } \text{ h u t , các s } \text{ vô t } (\pm\sqrt{2}, \pm\pi, \pm\ln3, \pm\sin1, \pm\text{e}, \pm\sqrt[3]{5}, \ldots) \}$ (v i các phép toán +, -, ×, : và rút c n ch a hoàn ch nh).

T p h p $c\acute{a}c$ s ph c $\mathbf{C} = \mathbf{R} + i\mathbf{R}$ (v i các phép toán +, -, ×, : và rút c n hoàn ch nh).

1.3/ L CL NGC AT PH P: Chot ph p X.

 $\overline{\text{K\'{y}}}$ hi u |X| là s ph n t (hay l c l ng) c at p h p X.

N u X là t p h p h u h n có n ph n t $(n \in \mathbb{N})$ thì ta ghi |X| = n.

N u X là t p h p $v\hat{o} h n$ (có vô s ph n t) thì ta ghi $|X| = +\infty$.

Víd:

- a) Các t ph ps N, Z, Q, R và C u là các t ph p vô h n.
- b) t X là t p h p các ngày trong tháng 1 n m 2000 và Y là t p h p nh ng ng i nh p c nh vào Vi t Nam trong ngày 01 tháng 01 n m 2019.

Ta có X và Y u là các t p h p h u h n v i |X| = 31 n h n g không bi t c |Y| n u c h a t a c u h s .

1.4/BI UDI NT PH P: Có 3 cách bi u di nt ph p

- a) *Gi n Venn*: v m t ng cong khép kín trên m t ph ng. Các ph n t c a t p h p c v phía trong ng cong. Các ph n t khác (n u có) c v phía ngoài ng cong.
- b) $Li \ t \ k\hat{e}$: gi a hai d u { và }, m i ph n t c vi t ra úng m t l n (theo th t tùy ý) và có d u ph y ng n cách gi a hai ph n t liên ti p. Ch ng h n A = { a, b, c, d, e } = { c, a, d, b, e } = { e, a, d, c, b } = ...
- c) Nêu các tính ch t chung:

 $A = \{ x \mid p(x) \} \text{ hay } B = \{ x \in C \mid q(x) \}.$

(p(x) và q(x) là các v t theo bi n x dùng mô t các tính ch t c a x). Ch ng h n $A = \{c \text{ u th } x \mid x \text{ ã o t gi i th ng qu bóng vàng FIFA}\},$ $B = \{x \in \mathbb{Z} \mid -75 < x \le 100 \text{ và } x : 9\} = \{-72, -63, -54, ..., 81, 90, 99\}.$

1.5/T PH PTR NG:

Ta ký hi u \varnothing là t p h p tr ng, ngh a là t p h p không có ph n t nào c. Ch ng h n $A = \{ x \in \mathbf{R} \mid 3x^2 - 8x + 11 = 0 \} = \varnothing$ và $B = \{ nh ng ng \ i \ Vi \ t \ nam \ \tilde{a} \ o \ t \ gi \ i \ Nobel \ kinh \ t \ \} = \varnothing$.

1.6/ T PH PCON: Cho các t ph p A và B.

- a) Ta nói A là m t t p h p con c a B (A ch a trong B, B ch a A) n u " $\forall x$, ($x \in A \Rightarrow x \in B$)". Lúc ó ta ký hi u $A \subset B$ hay $B \supset A$.
- b) Suy ra $A \not\subset B$ (A không ph i là m t t p h p con c a B, A không ch a trong B, B không ch a A) n u " $\exists x_0$, ($x_0 \in A$ và $x_0 \notin B$)".

<u>Ví d</u>:

Cho $A = \{ x \in \mathbb{Z} \mid x : 2 \}, B = \{ x \in \mathbb{Z} \mid x : 3 \} \text{ và } C = \{ x \in \mathbb{Z} \mid x : 4 \}.$ $Ta có C \subset A (\forall x, x \in C \Rightarrow x = 4r \text{ v i } r \in \mathbb{Z} \Rightarrow x = 2s \text{ v i } s = 2r \in \mathbb{Z} \Rightarrow x : 2 \Rightarrow x \in A) \text{ và } C \not\subset B (\exists 4 \in C \text{ và } 4 \not\in B).$

1.7/ TÍNH CH T: Cho các t p h p A, B và C. Khi ó

a) $\emptyset \subset A \subset A$.

- b) $(A \subset B) \Rightarrow (|A| \leq |B|)$.
- $c)\,(A\subset B\ \ v\grave{a}\ \ B\subset C)\ \Rightarrow\ (\ A\subset C\)\ \ (t\text{inh truy n c}\ \ a\ quan\ h\ \ \subset\).$

1.8/ T PH PB NG NHAU: Cho các t ph p A và B.

- a) Ta nói A = B n u $(A \subset B \ var B \subset A)$.
- b) Suy ra $A = B \Leftrightarrow "\forall x, (x \in A \Leftrightarrow x \in B)"$.
- c) Suy ra $A \neq B \iff (A \not\subset B \text{ hay } B \not\subset A)$.

<u>Ví d</u>:

a) $\overline{A} = \{ x \in \mathbb{Z} \mid x : 4 \text{ và } x : 6 \} \text{ và } B = \{ x \in \mathbb{Z} \mid x : 12 \}. \text{ Ch ng minh } A = B.$ $\forall x, x \in A \implies x = 4r = 6s \text{ v i } r, s \in \mathbb{Z} \implies 2r = 3s \implies s = 2t \text{ v i } t \in \mathbb{Z} \implies x = 6(2t) = 12t \text{ v i } t \in \mathbb{Z} \implies x \in B. \text{ V y } A \subset B.$

 $\forall x, x \in B \Rightarrow x = 12t \ v \ i \ t \in \mathbf{Z} \Rightarrow x = 4r = 6s \ v \ i \ r = 3t \in \mathbf{Z} \ v \grave{a} \ s = 2t \in \mathbf{Z}$ $\Rightarrow x \in A. \ V \ y \ B \subset A.$

Do $A \subset B$ và $B \subset A$ nên A = B.

- b) C = { các hình ch nh t có hai ng chéo vuông góc v i nhau },
 - D = { các hình ch nh t có hai c nh liên ti p b ng nhau },
 - $E = \{ các hình thoi có góc vuông \},$
 - $F = \{ \text{ các hình thoi có hai} \quad \text{ng chéo b ng nhau } \} \text{ và } \mathbf{G} = \{ \text{ các hình vuông } \}.$
 - Ta có C = D = E = F = G.

1.9/ T PH PCÁCT PCON: Chot ph p E.

t $\mathcal{D}(E)$ là t p h p t t c các t p h p con c a E, ngh a là $\mathcal{D}(E) = \{ A \mid A \subset E \} = \{ \emptyset, \{a\}, \dots, \{a, b\}, \dots, \{a, b, c\}, \dots, E \}.$ (li t kê các t p h p con có s ph n t t ng d n lên).

1.10/ M NH :

- a) N u $|E| = n \ge 0$ thì $|\wp(E)| = 2^n$.
- b) N u $|E| = +\infty$ thì $|\wp(E)| = +\infty$.

Ch ng minh:

a) Ta ch ng minh k t qu này b ng ph ng pháp qui n p theo $n \ge 0$.

Khi |E| = n = 0 thì $E = \emptyset$ nên $\wp(E) = \{\emptyset\}$ và $|\wp(E)| = 1 = 2^{\circ}$.

V y m nh úng khi n = 0.

Xét $k \ge 0$ tùy ý và gi s các t p h p có k ph n t u có 2^k t p h p con. Xét |E| = k + 1. Vi t $E = F \cup \{e\}$ v i $e \in E$ và $F = E \setminus \{e\}$.

Ta có |F| = k nên $|\wp(F)| = 2^k$. t $\prod = \{A \cup \{e\} | A \in \wp(F)\}$ thì $\wp(E) = \wp(F) \cup \prod$, $\wp(F) \cap \prod = \emptyset$ và $|\prod| = |\wp(F)| = 2^k$. Suy ra $|\wp(E)| = |\wp(F)| + |\prod| = |\wp(F)| + |\wp(F)| = 2^k + 2^k = 2^{k+1}$, ngh a là

m nh c ng úng khi n = k + 1.

 $V y m nh \quad \text{ing } \forall n \ge 0.$

b) $t \Delta = \{ \{a\} \mid a \in E \} \text{ thì } \Delta \subset \wp(E) \text{ và } |\Delta| = +\infty \text{ nên } |\wp(E)| = +\infty.$

Víd:

N u |E| = 1 thì $E = \{a\}$ và $\wp(E) = \{\emptyset, E\}$ có $|\wp(E)| = 2 = 2^1$.

N u | E | = 2 thì E = { a, b} và $\wp(E) = {\emptyset, \{a\}, \{b\}, E\}}$ có $|\wp(E)| = 4 = 2^2$.

 $N u | E | = 3 thì E = \{ a, b, c \} và$

 $\mathcal{D}(E) = \{ \emptyset, \{ a \}, \{ b \}, \{ c \}, \{ a, b \}, \{ a, c \}, \{ b, c \}, E \} \text{ có } | \mathcal{D}(E) | = 8 = 2^3.$

II. CÁC PHÉP TOÁN T PH P:

Cho các t p h p A, B, C \subset E (ta nói E là t p h p v tr).

2.1/ PH NBÙ:

- \overline{a}) $\overline{A} = \{ x \in E \mid x \notin A \}$ thì \overline{A} cg i là ph n bù c a A (trong E).
- b) $\overline{\varnothing} = E$, $\overline{E} = \varnothing$ và $\overline{A} = A$ (lu t *bù kép*).
- c) $A \subset B \iff \overline{B} \subset \overline{A}$; $A = B \iff \overline{A} = \overline{B}$.

Ví d: Cho E = **R**,
$$A = (-\infty, 1]$$
 và $B = (-5, +\infty)$.
Ta có $\overline{A} = (1, +\infty)$ và $\overline{B} = (-\infty, -5]$.

2.2/ PH N GIAO:

a) $t A \cap B = \{ x \in E \mid x \in A \text{ và } x \in B \} \text{ là } ph \text{ } n \text{ } giao \text{ c a } A \text{ và } B.$ $Ta \text{ c\'o} x \in (A \cap B) \iff (x \in A \text{ và } x \in B).$

 $x \notin (A \cap B) \iff (x \notin A \text{ hay } x \notin B).$

- b) $(A \cap B) \subset A$ và $(A \cap B) \subset B$. H nn a $(A \cap B) = A \Leftrightarrow A \subset B$.
- c) Phép \cap *giao hoán và k t h p*, ngh a là $B \cap A = A \cap B$ và $(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$.
- d) $A \cap A = A$ (lu t l y ng), $A \cap E = A$ (lu t trung $h \hat{o} a$), $A \cap \emptyset = \emptyset$ (lu t th ng tr) $v \hat{a} A \cap \overline{A} = \emptyset$ (lu t $b \hat{u}$).

<u>Ví d :</u> Cho $E = \mathbf{R}$, A = [-2, 7) và B = (1, 8]. Ta có $A \cap B = (1, 7)$.

2.3/ PH NH I:

- a) $t A \cup B = \{ x \in E \mid x \in A \text{ hay } x \in B \} \text{ là } ph \text{ } n \text{ } h \text{ } i \text{ } c \text{ a } A \text{ và } B.$ $Ta có x \in (A \cup B) \iff (x \in A \text{ hay } x \in B).$ $x \notin (A \cup B) \iff (x \notin A \text{ và } x \notin B).$
- b) $(A \cup B) \supset A$ và $(A \cup B) \supset B$. H nn a $(A \cup B) = A \Leftrightarrow A \supset B$.
- c) Phép \cup giao hoán và k t h p, ngh a là $B \cup A = A \cup B$ và $(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C$.
- d) $A \cup A = A$ (lu t l y ng), $A \cup \emptyset = A$ (lu t trung hòa), $A \cup E = E$ (lu t th ng tr) và $A \cup \overline{A} = E$ (lu t $b\dot{u}$).

Ví d: Cho E = **R**, A = (-4, 5) và B = [0, 7]. Ta có A \cup B = (-4, 7].

2.4/ PH N HI U:

- a) $t A \setminus B = \{ x \in E \mid x \in A \text{ và } x \notin B \} \text{ là } ph \text{ } n \text{ } hi \text{ } u \text{ c a } A \text{ và } B.$ Ta có $x \in (A \setminus B) \iff (x \in A \text{ và } x \notin B).$ $x \notin (A \setminus B) \iff (x \notin A \text{ hay } x \in B).$
- b) $(A \setminus B) \subset A$. H nn a $(A \setminus B) = A \iff A \cap B = \emptyset$.
- c) Phép \setminus *không giao hoán* và *không k t h p*, ngh a là có th x y ra $(B \setminus A) \neq (A \setminus B)$ và $(A \setminus B) \setminus C \neq A \setminus (B \setminus C)$.
- d) $A \setminus A = \emptyset$, $A \setminus \emptyset = A$, $\emptyset \setminus A = \emptyset$, $A \setminus E = \emptyset$, $E \setminus A = \overline{A}$, $A \setminus \overline{A} = A$ và $\overline{A} \setminus A = \overline{A}$.

<u>Ví d</u>: Cho $E = \mathbf{R}$, $A = (-\infty, -3)$ và $B = [-10, +\infty)$. Ta có $A \setminus B = (-\infty, -10)$ và $B \setminus A = [-3, +\infty)$.

2.5/ CÁC TÍNH CH T LIÊN QUAN GI A CÁC PHÉP TOÁN:

- a) $\overline{A \cap B} = \overline{A} \cup \overline{B}$ và $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (lu t*bù DE MORGAN*).
- b) $A \cap (A \cup B) = A$ và $A \cup (A \cap B) = A$ (lu t h p thu).
- c) Phép \cap và \cup phân ph i l n nhau, ngh a là $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ và $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- d) $A \setminus B = A \cap \overline{B}$ (xóa phép \).

2.6/ ÁP D NG:

Các tính ch t c a các phép toán t p h p dùng

- -Rútgnmtbiuthctphp.
- Ch ng minh $m \ t$ ng $th \ c$ t p h p.
- Ch ng minh m t bao hàm th c t p h p.

Ví d: Cho các t p h p A, B, C \subset E.

a) Rút g n $(A \cup B) \setminus [(A \setminus B) \cup (B \setminus A)]$.

Ta có
$$(A \cup B) \setminus [(A \setminus B) \cup (B \setminus A)] = (A \cup B) \cap \overline{(A \cap \overline{B}) \cup (B \cap \overline{A})} =$$

 $= (A \cup B) \cap \overline{A \cap \overline{B}} \cap \overline{B \cap \overline{A}} = (A \cup B) \cap (\overline{A} \cup \overline{B}) \cap (\overline{B} \cup \overline{A}) =$
 $= [(A \cap \overline{A}) \cup B] \cap (\overline{B} \cup A) = (\emptyset \cup B) \cap (\overline{B} \cup A) =$
 $= (B \cap \overline{B}) \cup (B \cap A) = \emptyset \cup (B \cap A) = (B \cap A).$

b) Ch ng minh $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.

Ta có
$$(A \cap B) \setminus (A \cap C) = (A \cap B) \cap \overline{A \cap C} = (A \cap B) \cap (\overline{A} \cup \overline{C}) =$$

= $(A \cap B \cap \overline{A}) \cup (A \cap B \cap \overline{C}) = (A \cap \overline{A} \cap B) \cup (A \cap B \cap \overline{C}) =$
= $(\emptyset \cap B) \cup (A \cap B \cap \overline{C}) = \emptyset \cup (A \cap B \cap \overline{C}) = (A \cap B \cap \overline{C}) = A \cap (B \setminus C).$

c) Ch ng minh $[(B \setminus C) \setminus (B \setminus A)] \subset (A \setminus C)$ và không có du ng th c.

Ta có
$$(B \setminus C) \setminus (B \setminus A) = (B \cap \overline{C}) \cap \overline{B \cap \overline{A}} = (B \cap \overline{C}) \cap (\overline{B} \cup \overline{A}) = (B \cap \overline{C}) \cap (\overline{B} \cup A) = (B \cap \overline{C}) \cap (\overline{C}) \cap (\overline{C}) \cap (\overline{C}) = (B \cap \overline{C}) \cap (\overline{C}) \cap (\overline{C}) \cap (\overline{C}) = (B \cap \overline{C}) \cap (\overline{C}) \cap (\overline{$$

$$= (B \cap \overline{B} \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C} \cap A) = (\emptyset \cap \overline{C}) \cup (B \cap \overline{C}) \cup (B \cap \overline{C}) = (\emptyset \cap \overline{C}) \cup (B$$

$$=\emptyset\cup(\mathrm{B}\cap\overline{C}\cap\mathrm{A})=(\mathrm{B}\cap\overline{C}\cap\mathrm{A})\subset(\overline{C}\cap\mathrm{A})=(\mathrm{A}\cap\overline{C})=(\mathrm{A}\setminus\mathrm{C}).$$

Ch n $A = \{1,2\}, B = \{1\}$ và $C = \emptyset$ thì $(B \setminus C) \setminus (B \setminus A) = B \neq (A \setminus C) = A$.

III. TÍCH DESCARTES C A CÁC T P H P: Cho s nguyên $n \ge 2$ và các t p h p $A_1, A_2, ..., A_n$ $u \ne \emptyset$.

$$\begin{array}{ll} \textbf{3.1/} & \underline{\textbf{NH NGH A:}} \\ \forall a_j \in A_j \ (1 \leq j \leq n) \ , \ ta \ c\acute{o} \ b & (a_1, \, a_2, \, \dots \, , \, a_n) & c \ gh\acute{e}p \ \textit{m t c\'{a}ch hình th } \ \textit{c} \ . \\ t \ A_1 \times A_2 \times \dots \times A_n \ = \prod_{j=1}^n A_j \ = \{ \ (a_1, \, a_2, \, \dots \, , \, a_n) \mid a_j \in A_j \ (1 \leq j \leq n) \ \}. \end{array}$$

Ta nói
$$A_1 \times A_2 \times ... \times A_n = \prod_{j=1}^n A_j$$
 là tích Descartes c a $A_1, A_2, ...$ và A_n .

<u>Ví d:</u>

$$\mathbf{Z} \times \mathbf{Q} = \{ (k, q) \mid k \in \mathbf{Z}, q \in \mathbf{Q} \} = \{ (5, \frac{-2}{7}), (0, 9), (-4, \frac{8}{3}), \dots \}.$$

$$\mathbf{R} \times \mathbf{Q} \times \mathbf{N} \times \mathbf{Z} = \{ (x, q, m, k) \mid x \in \mathbf{R}, q \in \mathbf{Q}, m \in \mathbf{N}, k \in \mathbf{Z} \}$$

= $\{ (\sqrt{2}, \frac{1}{4}, 6, -1), (-\ln 3, \frac{-9}{5}, 0, 7), (\pi, -8, 11, 0), \dots \}.$

$$\mathbf{R} \times \mathbf{R} = \mathbf{R}^2 = \{ (a, b) \mid a, b \in \mathbf{R} \} = T \text{ ph p các i m trên m t ph ng (Oxy)}.$$

$$\mathbf{R} \times \mathbf{R} \times \mathbf{R} = \mathbf{R}^3 = \{ (a, b, c) \mid a, b, c \in \mathbf{R} \}$$

= T p h p các i m trong không gian (Oxyz).

3.2/ M NH : Cho các t ph ph uh n A, A₁, A₂, ... và A_n. Khi ó

- a) $| A_1 \times A_2 \times ... \times A_n | = | A_1 | ... | A_2 | ... | A_n |$.
- b) Suy ra $|A^{n}| = |A|^{n}$.

<u>Ví d</u>: Cho A = { a, b }, B = { 1, 2, 3 } và C = { α , β }. Khi δ

 $A \times B = \{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3) \}$ $\forall a \mid A \times B \mid = 6 = |A| . |B| = 2 \times 3.$

 $A \times B \times C = \{ (a,1,\alpha), (a,2,\alpha), (a,3,\alpha), (b,1,\alpha), (b,2,\alpha), (b,3,\alpha), (a,1,\beta), (a,2,\beta), (a,2,\beta), (a,2,\alpha), (a,3,\alpha), (a,3,$

 $(a,3,\beta)$, $(b,1,\beta)$, $(b,2,\beta)$, $(b,3,\beta)$ $\}$ và $|A \times B \times C| = 12 = |A| \cdot |B| \cdot |C| = 2 \times 3 \times 2$.

 $A^2 = A \times A = \{ (a,a), (a,b), (b,a), (b,b) \}$ và $|A^2| = 4 = |A|^2 = 2^2$.

 $A^3 = A^2 \times A = \{ (a,a,a), (a,b,a), (b,a,a), (b,b,a), (a,a,b), (a,b,b), (b,a,b), (b,b,b) \}$ và $|A^3| = 8 = |A|^3 = 2^3$.

IV. ÁNH X:

4.1/ **NH NGH A:** Cho các t p h p X và Y v i $X \neq \emptyset \neq Y$.

a) M t ánh x f t X vào Y là m t qui t c nh sau:

V im i $x \in X$, $c \circ t$ ng ng duy nh $t y_x \in Y (\forall x \in X, \exists ! y_x \in Y)$.

Ký hi u ánh x f là $f: X \longrightarrow Y$ trong ó

$$x \mapsto y_x = f(x)$$

 $y_x = f(x)$ g i là nh c a x qua ánh x f hay là giá tr c a ánh x f t i x. X là mi n xác nh c a ánh x f . Y là mi n (ch a các) nh c a ánh x f .

b) Khi X, Y \subset **R**, ta th ng g i ánh x f là hàm s y = f (x).

<u>Ví d:</u>

- a) $f: X = \{a, b, c, d\} \rightarrow Y = \{1, 2, 3, 4, 5\}$ có f(a) = 1, f(b) = 2, f(c) = 3 và f(d) = 2. Ta có f(a) = 1 tánh f(a) = 1.
- b) $g: X = \mathbf{R} \setminus \{1\} \to Y = (0, +\infty) \text{ có } g(x) = \frac{2^x}{|x-1|}, \forall x \in X.$

Ta có g là m thàm s.

- c) $h: X = \mathbf{R} \to Y = [1, +\infty)$ th a $h(x) = \ln|x^2 3x + 2|$, $\forall x \in X$. Ta có h không ph i là m t hàm s vì $\exists 1 \in X$, h(1) không xác nh (ho c nói $\exists 0 \in X$, $h(0) = \ln 2 \notin Y$).
- d) $\mathbf{u}: \mathbf{X} = \mathbf{Q} \to \mathbf{Y} = \mathbf{Z}$ có $\mathbf{u}(\frac{p}{q}) = \mathbf{p} + \mathbf{q}, \ \forall \mathbf{x} = \frac{p}{q} \in \mathbf{X}$. Ta có h không ph i là m t hàm s vì $\exists \mathbf{x} = \frac{1}{2} = \frac{2}{4} \in \mathbf{X}$ mà $\mathbf{h}(\mathbf{x}) = 1 + 2 = 3$ và $\mathbf{h}(\mathbf{x}) = 2 + 4 = 6$: mâu thu n.
- 4.2/ $\angle ANH X$ NG NH T: Chot ph p $X \neq \emptyset$.

Ánh x $\operatorname{Id}_X: X \to X$ g i là ánh x $ng \ nh \ t$ trên X ($\operatorname{Id} = \operatorname{Identity}$). $x \mapsto x$

- **4.3**/ **SO SÁNH ÁNH X**: Cho các ánh x $f: X \rightarrow Y$ và $g: X \rightarrow Y$.
 - a) Ta nói f = g n u $\forall x \in X$, f(x) = g(x).
 - b) Suy ra $f \neq g \iff \exists x_o \in X, f(x_o) \neq g(x_o).$

Ví d: Cho f, g, h : X =
$$\mathbb{R} \to \mathbb{Y} = \mathbb{R}$$
 th a f (x) = sinx, g(x) = $|\sin |x||$ và $h(x) = \cos (x + \frac{7\pi}{2})$, $\forall x \in X$. Ta có $g \neq f$ và $h = f$ vì

$$\exists (-\frac{\pi}{2}) \in X, \ g(-\frac{\pi}{2}) = |\sin(-\frac{\pi}{2})| = 1 \neq f(-\frac{\pi}{2}) = \sin(-\frac{\pi}{2}) = -1.$$

$$\forall x \in X, h(x) = \cos(x + \frac{7\pi}{2}) = \cos(x - \frac{\pi}{2}) = \cos(\frac{\pi}{2} - x) = \sin x = f(x).$$

- **4.4**/ **TÍCH CÁC ÁNH X**: Cho $f: X \rightarrow Y$ và $g: Z \rightarrow T$ v i $Y \subset Z$.
 - a) L p ánh x h: X \rightarrow T có h(x) = g[f(x)], \forall x \in X. Ta nói h là ánh x tích c a f và g và ký hi u h = g of. Nh v y \forall x \in X, h(x) = (g of)(x) = g [f(x)].
 - b) Tích ánh x có tính k t h p nên ta có th 1 p tích c a nhi u ánh x liên ti p n u mi n nh c a ánh x tr c ch a trong mi n xác nh c a ánh x i sau.

Ví d: Cho f: X = **R** → Y = (8, +∞) th a f (x) = 3e^x + 8,
$$\forall$$
x ∈ X,
g: Z = [0, +∞) → T = [-2, +∞) th a g(x) = \sqrt{x} - 2, \forall x ∈ Z
và h: U = (-5, +∞) → V = **R** th a h(x) = x⁴ + 1, \forall x ∈ X.
Ta có Y ⊂ Z và T ⊂ U nên có các ánh x tích u = g of và v = h og of.
 \forall x ∈ X, u(x) = (g of)(x) = g [f(x)] = g (3e^x + 8) = $\sqrt{3}e^{x} + 8 - 2$ và
v(x) = (h ou)(x) = h [u(x)] = h($\sqrt{3}e^{x} + 8 - 2$) = ($\sqrt{3}e^{x} + 8 - 2$)⁴ + 1.

- **4.5/ TÍNH CH** T: Cho $f: X \rightarrow Y$. Khi ó
 - a) $(Id_Y)_0 f = f = f_0 Id_X$. H nn an u X = Y thì $(Id_X)_0 f = f = f_0 Id_X$.
 - b) N u $X \neq Y$ và $g: Y \rightarrow X$ thì t n t i $g_{o}f$ và $f_{o}g$ nh ng $g_{o}f \neq f_{o}g$.
 - c) N u $f: X \to X$ và $g: X \to X$ thì t n t i $g_{o}f$ và $f_{o}g$ nh ng có th x y ra $g_{o}f \neq f_{o}g$. Nh v y tích ánh x *không giao hoán*.

$\underline{\text{Ví d}}$:

a)
$$f: X = \mathbf{R} \to Y = [0, +\infty)$$
 th a $f(x) = (x+1)^2 \ \forall x \in X$ và $g: Y = [0, +\infty) \to X = \mathbf{R}$ v i $g(x) = \sin \sqrt{x} \ \forall x \in Y$.
 $\forall x \in X, (g \circ f)(x) = g[f(x)] = g[(x+1)^2] = \sin \sqrt{(x+1)^2} = \sin |x+1|$.
 $\forall x \in Y. (f \circ g)(x) = f[g(x)] = f(\sin \sqrt{x}) = (\sin \sqrt{x} + 1)^2$.
Do $X \neq Y$ nên $g \circ f \neq f \circ g$.

b)
$$u : X = \mathbb{R} \to X$$
 th a $u(x) = 2x^2 - 5x + 1$ và $v(x) = \frac{3x + 2}{x^2 + 1}$, $\forall x \in X$.

$$\forall x \in X, (v_0 u)(x) = v[u(x)] = \frac{3(2x^2 - 5x + 1) + 2}{(2x^2 - 5x + 1)^2 + 1} = \frac{6x^2 - 15x + 5}{4x^4 - 20x^3 + 29x^2 - 10x + 2}$$

và
$$(u_o v)(x) = u[v(x)] = 2(\frac{3x+2}{x^2+1})^2 - 5(\frac{3x+2}{x^2+1}) + 1 = \frac{x^4 - 15x^3 + 10x^2 + 9x - 1}{x^4 + 2x^2 + 1}.$$

Do $\exists 0 \in X$, $(v_o u)(0) = \frac{5}{2} \neq (u_o v)(0) = -1$ nên $v_o u \neq u_o v$.

V. NH VÀ NH NG C C A T PH P QUA ÁNH X :

5.1/ **NH NGH A:** Cho f: $X \rightarrow Y$ và $A \subset X$.

- a) $t f(A) = \{ f(a) | a \in A \} \subset Y$. Ta nói f(A) là nh c a A qua ánh x f. $\forall y \in Y$, $[y \in f(A) \Leftrightarrow \exists x \in A, y = f(x)] và [y \notin f(A) \Leftrightarrow \forall x \in A, y \neq f(x)]$.
- b) Khi $A = \emptyset$ thì $f(\emptyset) = \emptyset$. Khi A = X thì $f(X) = \{ f(x) \mid x \in X \} \subset Y$. Ta nói f(X) là t p h p t t c các nh c a f và ký hi u f(X) = Im(f) (Images of f).
- c) Cho $f: X \to Y$ và $g: Z \to T$. 1 p cánh x tích $h = g_0 f: X \to T$, ta $ch \ c \ n \ c\acute{o} \ i \ u \ ki \ n \ f(X) \subset Z$ (không c n i u ki n c bi t $Y \subset Z$).

Ví d:

- a) $f: X = \{ 1, 2, 3, 4, 5, 6, 7 \} \rightarrow Y = \{ a, b, c, d, e, u, v, w, z \}$ có f(1) = a, f(2) = b, f(3) = a, f(4) = c, f(5) = b, f(6) = d và f(7) = e. $V i A = \{ 1, 2, 3, 4, 5 \} \subset X$ thì $f(A) = \{ a, b, c \} \subset Y$ và $Im(f) = f(X) = \{ a, b, c, d, e \} \subset Y$.
- b) $g: X = \mathbf{R} \to Y = (0, +\infty)$ th a $g(x) = x^2 2x + 3$, $\forall x \in X$. Tîm g(A), g(B), g(C) và Im(g) = g(X) n u $A = \{-2, -1, 0, 1, 2, 3\}$, B = [3, 5) và C = [-2, 3]. Ta có $g(A) = \{2, 3, 6, 11\}$ vì g(-2) = 11, g(-1) = g(3) = 6, g(0) = g(2) = 3 và g(1) = 2. Do g'(x) = 2(x 1), $\forall x \in X$ nên g t ng trên $(-\infty, 1]$ và gi m trên $[1, +\infty)$. T b ng bi n thiên c a hàm s y = g(x), ta có g(B) = [6, 18], g(C) = [2, 11] và $g(X) = [2, +\infty)$.

5.2/ NH NGH A: Cho $f: X \to Y$ và $B \subset Y$.

- a) $t f^{-1}(B) = \{ x \in X \mid f(x) \in B \} \subset X.$ Ta nói $f^{-1}(B)$ là nh ng c c a B b i ánh x f. $\forall x \in X, x \in f^{-1}(B) \Leftrightarrow f(x) \in B.$ $x \notin f^{-1}(B) \Leftrightarrow f(x) \notin B.$
- b) Khi $B = \emptyset$ thì $f^{-1}(\emptyset) = \emptyset$. Khi B = Y thì $f^{-1}(Y) = X$. Khi $B = \{b\}$ thì $f^{-1}(B) = f^{-1}(b) = \{x \in X \mid f(x) = b\}$ là t p h p các nghi m trên X c a ph ng trình <math>f(x) = b (n là $x \in X$). Ta c ng nói $f^{-1}(b)$ là t p h p t t c các nh <math>ng c c a b b i ánh x f.

Vid:

a) f: X = { a, b, c, d, e, u, v, w, z } \rightarrow Y = { 1, 2, 3, 4, 5, 6, 7, 8 } v i f (a) = 1, f (b) = 2, f (c) = 1, f (d) = 3, f (e) = 2, f (u) = 4, f (v) = 1, f (w) = 5 và f (z) = 7. Ta có f $^{-1}$ (1) = { a, c, v }, f $^{-1}$ (2) = { b, e }, f $^{-1}$ (3) = {d} và f $^{-1}$ (6) = f^{-1} (8) = Ø. V i B = { 1, 2, 3, 6, 8 } \subset Y thì f $^{-1}$ (B) = { a, b, c, d, e, v } \subset X và f $^{-1}$ (Y) = X. b) g: X = $\mathbb{R} \rightarrow$ Y = [-3, +\infty) th a g(x) = 2x² - 1, \forall x \infty X \infty X. Tìm g $^{-1}$ (A), g $^{-1}$ (B), g $^{-1}$ (C), g $^{-1}$ (D) n u A = { -5, -1, 0, 8 }, B = (-\infty, -2], C = (-4, 5), D = [1, 6). Ta có g $^{-1}$ (-5) = Ø, g $^{-1}$ (-1) = { 0 }, g $^{-1}$ (0) = { \pm 1/\sqrt{2}} và g $^{-1}$ (8) = { \pm 3/\sqrt{2}} nên g $^{-1}$ (A) = { 0, \pm 1/\sqrt{2}, \pm 3/\sqrt{2}}. Yim g $^{-1}$ (5) = { \pm 1/\sqrt{2}, \pm 3/\sqrt{2}}, ta tìm c g $^{-1}$ (B) = Ø, g $^{-1}$ (C) = (-\sqrt{3}, \sqrt{3}) và g $^{-1}$ (D) = (-\sqrt{7/\sqrt{2}}, -1] \cup [1, $\sqrt{7/\sqrt{2}}$).

- **5.3**/ **TÍNH CH T:** Cho $f: X \rightarrow Y$ v i A, A' $\subset X$ và B, B' $\subset Y$. Khi ó
 - a) N u $\overline{A \subset A'}$ thì $f(A) \subset f(A')$. N u $B \subset B'$ thì $f^{-1}(B) \subset f^{-1}(B')$.
 - b) $f^{-1}[f(A)] \supset A$ và $f[f^{-1}(B)] \subset B$.
 - c) $f(A \cup A') = f(A) \cup f(A')$, $f(A \cap A') \subset [f(A) \cap f(A')]$ và $f(A \setminus A') \supset f(A) \setminus f(A')$.
 - d) $f^{-1}(A \cup A') = f^{-1}(A) \cup f^{-1}(A')$, $f^{-1}(A \cap A') = [f^{-1}(A) \cap f^{-1}(A')]$ và $f^{-1}(A \setminus A') = [f^{-1}(A) \setminus f^{-1}(A')]$.

<u>Ví d</u>: Cho $f: X = \mathbf{R} \to Y = (-2, +\infty)$ that $f(x) = x^2, \forall x \in X$.

- $\overline{a) A} = \{ 1 \} \subset X \text{ có } f(A) = \{ 1 \} \text{ và } f^{-1}[f(A)] = \{ \pm 1 \} \supset A \text{ v i } f^{-1}[f(A)] \neq A.$
- b) $B = \{ \pm 1 \} \subset Y \text{ có } f^{-1}(B) = \{ 1 \} \text{ và } f[f^{-1}(B)] = \{ 1 \} \subset B \text{ v i } f[f^{-1}(B)] \neq B.$
- c) $A = \{1\}, A' = \{-1\} \subset X \text{ có } A \cap A' = \emptyset \text{ và } f(A) = f(A') = \{1\} \text{ nên}$ $f(A \cap A') = \emptyset \subset [f(A) \cap f(A')] = \{1\} \text{ và } f(A \cap A') \neq [f(A) \cap f(A')].$ $M \text{ t khác } A \setminus A' = \{1\} \text{ nên } f(A \setminus A') = \{1\} \supset [f(A) \setminus f(A')] = \emptyset \text{ và}$ $f(A \setminus A') \neq [f(A) \setminus f(A')].$

VI. PHÂN LO I ÁNH X:

- **6.1**/ NÁNH: Cho ánh x $f: X \rightarrow Y$.
 - a) f là $n \, ánh \, n \, u \, " \, \forall x, x' \in X, x \neq x' \implies f(x) \neq f(x') ".$
 - b) Suy ra : f là $n \, ánh \Leftrightarrow \text{``} \, \forall x, x' \in X, \, f(x) = f(x') \Rightarrow x = x' \text{''}.$ $\Leftrightarrow \text{``} \, \forall y \in Y, \, ph \, ng \, trình \, f(x) = y \, có \, không \, quá \, m \, t \, nghi \, m \, trên \, X \text{''}.$

<u>Ví d</u>:

a) $u: X = \{1, 2, 3\} \rightarrow Y = \{a, b, c, d, e\}$ v i u(1) = a, u(2) = b v a u(3) = c. Ta có u l a m t n a n h v a

Cách 1: $1 \neq 2 \neq 3 \neq 1$ có $u(1) \neq u(2) \neq u(3) \neq u(1)$.

Cách 2: Các ph ng trình u(x) = a, u(x) = b và u(x) = c u có nghi m duy nh t l n l t là x = 1, x = 2 và x = 3 trên X. Các ph ng trình u(x) = d và u(x) = e u vô nghi m trên X. Nh v y m i ph ng trình trên có không quá m t nghi m trên X.

b)
$$f: X = \mathbb{R} \setminus \{1\} \to Y = \mathbb{R}$$
 th a $f(x) = \frac{5-2x}{x-1} = -2 + \frac{3}{x-1}, \forall x \in X$.

Ta có f là m t n ánh vì

Cách 1:
$$\forall x, x' \in X, \ x \neq x' \implies 0 \neq x - 1 \neq x' - 1 \neq 0 \implies \frac{3}{x - 1} \neq \frac{3}{x' - 1} \implies$$

$$\Rightarrow -2 + \frac{3}{x-1} \neq -2 + \frac{3}{x'-1} \Rightarrow f(x) \neq f(x').$$

Cách 2:
$$\forall x, x' \in X$$
, $f(x) = f(x') \Rightarrow -2 + \frac{3}{x-1} = -2 + \frac{3}{x'-1} \Rightarrow \frac{3}{x-1} = \frac{3}{x'-1} \Rightarrow x - 1 = x' - 1 \Rightarrow x = x'$.

Cách 3:
$$\forall y \in Y$$
, xét phong trình $f(x) = y \implies \frac{3}{x-1} = y + 2$ (*).

 $N \ u \ y = -2 \ thì \ ph \ ng trình (*) vô nghi m trên X.$

N u $y \neq -2$ thì ph ng trình (*) có nghi m duy nh t $x = 1 + \frac{3}{v+2} \in X$.

Nh v y, \forall y \in Y, ph ng trình f (x) = y có không quá m t nghi m trên X.

- c) Cho $g: X = \mathbf{R} \rightarrow Y = \mathbf{R}$ th a $g(x) = 2e^x 3e^{-x}$, $\forall x \in X$. Ta có $g'(x) = 2e^x + 3e^{-x} > 0$, $\forall x \in X$ nên g t ng ng t trên kho ng X [$\forall x, x' \in X$, $x < x' \implies g(x) < g(x')$], ngh a là g là m t n ánh.
- d) Cho h: $X = \mathbf{R} \rightarrow Y = \mathbf{R}$ th a $h(x) = 4\cos^2 x 5x$, $\forall x \in X$. Ta có h'(x) = $-4\sin 2x - 5 \le -1 < 0$, $\forall x \in X$ nên h gi m ng t trên kho ng X [$\forall x, x' \in X$, $x < x' \Rightarrow h(x) > h(x')$], ngh a là h là m t n ánh.

6.2/ $\underline{\mathbf{H}}$ $\underline{\mathbf{QU}}$: Cho ánh x $f: X \to Y$.

- a) f không là n ánh \Leftrightarrow " $\exists x, x' \in X, x \neq x'$ và f(x) = f(x')".
- b) f không là n ánh \Leftrightarrow " $\exists y \in Y$, ph ng trình f(x) = y có h n m t nghi m trên X".

Ví d:

- a) Cho $u: X = \{a, b, c, d\} \rightarrow Y = \{1, 2, 3\}$ với u(a) = 1, u(b) = u(d) = 2 và u(c) = 3. Ta có u không ph i là m t n ánh vì
 - Cách 1 : $\exists b, d \in X, b \neq d \ và \ u(b) = u(d) = 2.$
 - Cách 2: $\exists 2 \in Y$, phong trình u(x) = 2 có các nghi mx = b, x = d trên X.
- b) Cho f: $X = \mathbb{R} \rightarrow Y = \mathbb{R}$ th a f(x) = $2x^2 6x + 1$, $\forall x \in X$.

Ta có f không ph i là m t n ánh vì

Cách 1: $\exists 0, 3 \in X, 0 \neq 3 \text{ và } f(0) = f(3) = 1.$

Cách 2: $\exists 1 \in Y$, ph ng trình f(x) = 1 có các nghi m là x = 0 và x = 3 trên X.

6.3/ **TOÀN ÁNH:** Cho ánh x $f: X \rightarrow Y$.

- a) f là toàn ánh n u f(X) = Y.
- b) Suy ra:

f là toàn ánh \Leftrightarrow " $\forall y \in Y$, phong trình f(x) = y có nghi m trên X".

<u>Ví d:</u>

a) Cho $u: X = \{1, 2, 3, 4\} \rightarrow Y = \{a, b, c\}$ với u(1) = a, u(3) = u(4) = c và u(2) = b. Ta có u là m t toàn ánh vì

Cách 1 : $u(X) = \{ a, b, c \} = Y$.

Cách 2 : Các ph ng trình u(x) = a, u(x) = b và u(x) = c u có nghi m 1 n 1 t là x = 1, x = 2 và x = 3 trên X.

b) $f: X = \mathbf{R} \to Y = [5, +\infty)$ th a $f(x) = x^2 - 4x + 9, \forall x \in X$.

Ta có f là m t toàn ánh vì

Cách 1: dùng b ng bi n thiên c a hàm s y = f(x), ta th y(f(X) = Y).

Cách 2: $\forall y \in Y$, ph ng trình $f(x) = y \iff (x-2)^2 = y-5$ có nghi m trên X là $x = 2 + \sqrt{y-5}$.

6.4/ $\underline{\mathbf{H}}$ $\underline{\mathbf{QU}}$: Cho ánh x $f: X \to Y$.

- a) f không là toàn ánh \Leftrightarrow f (X) \neq Y.
- b) f không là toàn ánh \Leftrightarrow " $\exists y \in Y$, ph ng trình f (x) = y vô nghi m trên X.

$\underline{\text{Ví d}}$:

a) Cho $u: X = \{a, b, c\} \rightarrow Y = \{1, 2, 3, 4\}$ với u(a) = 1, u(b) = 2 và u(c) = 3. Ta có u không ph i là m t toàn ánh vì

Cách 1 : $u(X) = \{1, 2, 3\} \neq Y$.

Cách 2: $\exists 4 \in Y$, ph ng trình u(x) = 4 vô nghi m trên X.

b) Cho f: $X = \mathbb{R} \to Y = (-1, +\infty)$ th a f(x) = 3.2^x + 1, $\forall x \in X$.

Ta có f không là m t toàn ánh vì

Cách 1: $\forall x \in X$, $f(x) = 3.2^x + 1 > 1$ nên $f(X) \subset (1, +\infty)$ và do ó $f(X) \neq Y$.

Cách 2: $\exists 0 \in Y$, ph ng trình $f(x) = 0 \iff 3.2^x = -1$ vô nghi m trên X.

c) Cho g: $X = \mathbb{R} \setminus \{2\} \to Y = \mathbb{R}$ th a $g(x) = \frac{3x+4}{x-2} = 3 + \frac{10}{x-2}, \forall x \in X$.

Ta có g không là m t toàn ánh vì

Cách 1: dùng b ng bi n thiên c a hàm s y = g(x), ta th $y g(X) = \mathbf{R} \setminus \{3\} \neq Y$.

Cách 2: $\exists 3 \in Y$, ph ng trình $g(x) = 3 \iff \frac{10}{x-2} = 0$ vô nghi m trên X.

6.5/ SONG ÁNH: Cho ánh x $f: X \rightarrow Y$.

- a) f là song ánh n u f là n ánh và toàn ánh.
- b) Suy ra : f là $song \, ánh \Leftrightarrow " \, \forall y \in Y$, phong trình f (x) = y $c \acute{o} \, nghi \, m$ $duy \, nh \, t$ trên X" (cho dùng khi gi i c phong trình f (x) = y trên X).
- c) Suy ra : f $không \ l\grave{a} \ song \ \acute{a}nh \iff f \ không \quad n \ \acute{a}nh \ hay \ f \ không \ to\grave{a}n \ \acute{a}nh.$

Vid:

a) Cho $u: X = \{1, 2, 3\} \rightarrow Y = \{a, b, c\} \ v \ i \ u(1) = a, u(2) = b \ và \ u(3) = c.$ Ta có u là m t song ánh vì

Cách 1: u nánh [$1 \neq 2 \neq 3 \neq 1$ cho $u(1) \neq u(2) \neq u(3) \neq u(1)$] và u toàn ánh [$u(X) = \{a, b, c\} = Y$].

Cách 2: Các ph ng trình u(x) = a, u(x) = b và u(x) = c u có nghi m duy nh t (1 n 1 t là x = 1, x = 2 và x = 3) trên X.

b) Cho $f: X = \mathbf{R} \to Y = \mathbf{R}$ th a $f(x) = 2\sin x - 3x$, $\forall x \in X$. f là nánh vì $f'(x) = 2\cos x - 3 \le -1 < 0$, $\forall x \in X$ và f gi m ng t trên X. f là toàn ánh do t b ng bi n thiên c a hàm s y = f(x), ta có $f(\mathbf{R}) = \mathbf{R}$. V y f là m t song ánh (không gi i c ph ng trình $f(x) = 2\sin x - 3x = y$).

c) Cho $g: X = \mathbf{R} \rightarrow Y = \mathbf{R}$ that $g(x) = 3e^x - e^{-x} + 2$, $\forall x \in X$.

 $\forall y \in Y, \text{ ph} \quad \text{ng trình } g(x) = y \left(\begin{array}{ccc} n & x \in X \end{array} \right) \iff 3e^{2x} + (2 - y)e^{x} - 1 = 0 \iff \\ \Leftrightarrow 3t^{2} + (2 - y) t - 1 = 0 \quad v \quad i \quad t = e^{x} > 0 \quad v \\ \grave{a} \quad \Delta = (y - 2)^{2} + 12 \geq 12 > 0.$

$$\Leftrightarrow t = \frac{y - 2 + \sqrt{(y - 2)^2 + 1}}{6} > 0 \iff x = \ln t = \ln \frac{y - 2 + \sqrt{(y - 2)^2 + 1}}{6} \in X.$$

Ph ng trình g(x) = y có nghi m duy nh t trên X nên g là m t song ánh.

d) Cho $h: X = \{a, b, c, d\} \rightarrow Y = \{1, 2, 3, 4\}$ th a h(a) = h(c) = 1, h(b) = 2 và h(d) = 3. Ta có h không ph i là m t song ánh vì

Cách 1: h không ph i là m t n ánh (do $\exists a, c \in X, a \neq c$ và h(a) = h(c) = 1). Cách 2: h không ph i là m t toàn ánh (do $h(X) = \{1, 2, 3\} \neq Y$).

6.6/ $\acute{A}NH X NG C C A SONG \acute{A}NH$: Cho song ánh $f: X \rightarrow Y$.

Ta ã bi t $\forall y \in Y$, ph ng trình f(x) = y *có nghi m duy nh t* là x_y trên X. L p *ánh x* $\varphi: Y \to X$ có $\varphi(y) = x_y$ $\forall y \in Y$. Ta nói φ là *ánh x ng c* c a f và ký hi u $\varphi = f^{-1}$. Khi ó $\forall x \in X$, $\forall y \in Y$, $y = f(x) \Leftrightarrow x = f^{-1}(y)$.

Ví d:

- a) $u: X = \{a, b, c, d\} \rightarrow Y = \{1, 2, 3, 4\} \ v \ i \ u(a) = 1, u(b) = 2, u(c) = 3 \ và \ u(d) = 4.$ Ta có u là m t song ánh vì các ph ng trình $u(x) = 1, u(x) = 2, u(x) = 3 \ và \ u(x) = 4 \ u$ có nghi m duy nh t $(1 \ n \ 1 \ t \ là \ x = a, x = b, x = c, x = d)$ trên X.

 Ta có ánh x ng $c \ v = u^{-1}: Y \rightarrow X \ v \ i \ v(1) = a, v(2) = b, v(3) = c, v(4) = d.$
- b) Cho $f: X = (3, 6] \rightarrow Y = [-27, -6)$ th a $f(x) = -x^2 + 2x 3$, $\forall x \in X$. $\forall y \in Y$, phong trình f(x) = y (note in the example of the
- **6.7**/ **TÍNH CH T**: Cho các ánh x $f: X \to Y$ và $g: Y \to Z$. Khi ó
 - a) N u f là m t song ánh thì f⁻¹ c ng là m t song ánh và (f⁻¹)⁻¹ = f.
 - b) N u f là m t song $\acute{a}nh$ thì $f^{-1}{}_{0}f = Id_{X}$ và $f_{0}f^{-1} = Id_{Y}$.
 - c) N u f là m t song anh và X = Y thì anh anh
 - d) N u f và g là *các song ánh* thì h = g $_{0}$ f c ng là *m t song ánh* và h $^{-1}$ = f $^{-1}$ $_{0}$ g $^{-1}$.

Vid:

- a) Xét 1 i $f: X = (3, 6] \rightarrow Y = [-27, -6)$ v i $f(x) = -x^2 + 2x 3$, $\forall x \in X$. T **Ví d** c a **(6.6)**, ta th y f là m t song ánh có $f^{-1}: Y \rightarrow X$ th a $f^{-1}(x) = 1 + \sqrt{-x 2}$, $\forall x \in Y$. t $g = f^{-1}$ thì ta có th ki m ch ng c g c ng là m t song ánh th a $g^{-1} = f$, $g_o f = Id_X$ và $f_o g = Id_Y$.
- b) Cho $h: X = \mathbf{R} \to X$ th a h(x) = 3x + 4, $\forall x \in X$. Ta ki m ch ng c h là m t song ánh và $h^{-1}(x) = \frac{x-4}{3}$, $\forall x \in X$. Do ó h^{-1}_{o} $h = h_{o} h^{-1} = Id_{X}$.
- c) Cho $\varphi: X = \mathbf{R} \to Y = (1, +\infty)$ th a $\varphi(x) = e^x + 1$, $\forall x \in X$ và $\psi: Y \to Z = (0, +\infty)$ th a $\psi(x) = x^2 + 4x 5$, $\forall x \in Y$. Ta có $\theta = \psi_o \varphi: X \to Z$ th a $\theta(x) = (e^x + 1)^2 + 4(e^x + 1) 5 = e^{2x} + 6e^x$, $\forall x \in X$. Ta ki m ch ng c φ và ψ u là các song ánh v i $\varphi^{-1}(x) = \ln(x-1) \ \forall x \in X \ \text{và} \ \psi^{-1}(x) = \sqrt{x+9} 2$, $\forall x \in Y$. Do ó $\theta = \psi_o \varphi$ c ng là m t song ánh và $\theta^{-1} = \varphi^{-1}_o \psi^{-1}: Z \to X$ th a $\theta^{-1}(x) = \ln(\sqrt{x+9} 3)$, $\forall x \in Z$.
- **6.8**/ M NH : (nh n di n hai ánh x là song ánh và là ánh x ng c c a nhau) Cho $f: X \to Y$ và $g: Y \to X$. Các phát bi u sau ây là t ng ng: a) f là m t song ánh và $f^{-1} =$ b) g là m t song ánh và $g^{-1} = f$. c) $g_0 f = Id_X$ và $f_0 g = Id_Y$.

6.9/ PHÉP L Y TH A ÁNH X : Cho ánh x $f: X \to X$.

- a) $t f^o = Id_X, f^1 = f, f^2 = f_o f, \dots và f^k = f_o f^{k-1}, \forall k \ge 1.$ Ta có các ánh $x f^k : X \to X \forall k \ge 0.$
- b) N u f là m t song ánh thì ta t thêm: f^{-1} là ánh x ng c c a f, $f^{-2} = (f^{-1})^2$, ... và $f^{-k} = (f^{-1})^k$, $\forall k \geq 2$. Ta có $f^{-k}: X \to X$, $\forall k \geq 1$. Nh v y n u f là m t song ánh thì $\forall m \in \mathbf{Z}$, ta có các ánh x $f^m: X \to X$ u là các song ánh.

<u>Ví d</u>:

a) Cho f: $X = \mathbf{R} \to X$ th a f $(x) = \frac{x}{\sqrt{x^2 + 1}}$, $\forall x \in X$.

 $\forall k \in \mathbb{N}$, ta tính $c f^k(x) = \frac{x}{\sqrt{kx^2 + 1}}, \forall x \in X \text{ (ph } ng \text{ pháp qui n p)}.$

b) Cho $g: X = \mathbf{R} \to X$ that g(x) = 2x + 3, $\forall x \in X$.

 $\forall k \in \mathbb{N}$, ta tính $g^k(x) = 2^k x + 3(2^k - 1), \forall x \in X \text{ (ph } ng \text{ pháp qui n p)}.$

Ta ki m ch ng c g là m t song ánh và $g^{-1}(x) = \frac{x-3}{2}$, $\forall x \in X$.

 $\begin{array}{lll} T & \text{\'o tinh} & c & g^{-k}(x) = 2^{-k} \; x + 3(2^{-k} - 1), \; \forall x \in X, \; \forall k \in \textbf{N} \; \; \text{v\`a} \; \; k \geq 2 \\ \text{(ph } & \text{ng pháp qui n p). Nh} & v \; y \; \; \forall m \in \textbf{Z}, \; g^m(x) = 2^m \, x + 3(2^m - 1), \; \forall x \in X. \end{array}$

6.10/ ÁP D NG ÁNH X NG C GI I PH NG TRÌNH ÁNH X :

- a) Cho ánh x h và song ánh f. Gi s có ánh x ϕ th a f $_{o}$ ϕ = h. Ta có f $_{o}$ ϕ = h \Leftrightarrow f $_{o}$ (f $_{o}$ ϕ) = f $_{o}$ h \Leftrightarrow (f $_{o}$ h) $_{o}$ ϕ = f $_{o}$ h \Leftrightarrow (Id_X) $_{o}$ ϕ = f $_{o}$ h \Leftrightarrow ϕ = f $_{o}$ h ($nghi \ m \ duy \ nh \ t$).
- b) Cho ánh x h và song ánh g. Gi s có ánh x ψ th a ψ_o g = h. Ta có ψ_o g = h $\Leftrightarrow (\psi_o$ g) $_o$ g $_o$ = h $_o$ g $_o$
- c) Cho ánh x h và *các song ánh* f và g. Gi s có ánh x θ th a f $_{o}$ θ $_{o}$ g = h. Ta có f $_{o}$ θ $_{o}$ g = h \Leftrightarrow f $_{o}$ (f $_{o}$ θ $_{o}$ g) $_{o}$ g $_{o}$ g $_{o}$ th a (f $_{o}$ θ $_{o}$ g) $_{o}$ g $_{o}$ g $_{o}$ d $_{o}$ g $_{o}$ d $_{o}$ (g $_{o}$ g $_{o}$ g) $_{o}$ g $_{o}$ d $_{o}$ Id $_{o}$ g $_{o}$ d $_{o}$ H $_{o}$ g $_{o}$ H $_{o}$ H

<u>Ví d:</u>

a) Cho f:
$$Y = (-8, +\infty) \to Z = \mathbf{R}$$
 th a f $(x) = \frac{1}{4} (\ln \frac{x+8}{5} - 1), \forall x \in Y.$

Ta có f là m t song ánh và f^{-1} : $Z \rightarrow Y$ th a $f^{-1}(x) = 5e^{4x+1} - 8$, $\forall x \in Z$.

Xét h:
$$X = \mathbf{R} \to Z$$
 th a $h(x) = \frac{1}{4} (\ln \frac{4x^2 - 4x + 3}{5} - 1), \forall x \in X.$

Tìm
$$\phi: X \to Y$$
 th a $f_o \phi = h$. Ta có $\phi = f_o^{-1} h$ và $\forall x \in X, \phi(x) = (f_o^{-1} h)(x) = f_o^{-1} [h(x)] = 4x^2 - 4x - 5$.

b) Cho g: X = [-1, 4] \rightarrow Y = [-4, 31] th a g(x) = $x^2 + 4x - 1$, $\forall x \in X$. Ta có g là m t song ánh và g^{-1} : Y \rightarrow X th a $g^{-1}(x) = \sqrt{x+5} - 2$, $\forall x \in Y$.

Xét p: X o Z = **R** th a p(x) = $\sqrt[4]{\ln(x^2 + 4x + 7)}$ - 3, $\forall x \in X$.

 $\begin{array}{l} \text{Tim } \psi \colon Y \to Z \ \text{th a} \ \psi \circ g = p. \ \text{Ta co} \ \psi = p \circ g^{-1} \ \text{va} \\ \forall x \in Y, \psi(x) \ = \ (p \circ g^{-1})(x) \ = \ p \left[\ g^{-1}(x) \right] \ = \ \sqrt[4]{\ln(x+8)} \ -3. \end{array}$

c) Cho $u: X = \mathbf{R} \to Y = (-1, 1)$ th a $u(x) = \frac{x}{\sqrt{x^2 + 1}}, \forall x \in X$.

Ta có u là m t song ánh và u $^{-1}$: Y \rightarrow X th a u $^{-1}$ (x) = $\frac{x}{\sqrt{1-x^2}}$, \forall x \in Y.

Cho $v: Z = \mathbf{R} \setminus \{-4\} \rightarrow T = \mathbf{R} \setminus \{2\}$ th a $v(x) = \frac{2x-5}{x+4}$, $\forall x \in Z$.

Ta có v là m t song ánh và v⁻¹: T \rightarrow Z th a v⁻¹(x) = $\frac{4x+5}{2-x}$, \forall x \in T.

Xét $q: X \to T$ th a $q(x) = \frac{-28x^2 - 5}{12x^2 + 4}$, $\forall x \in X$.

$$\begin{array}{lll} \text{Tìm } \theta: Y \to Z \text{ th a } v_o \theta_o u = q. \text{ Ta co } \theta = v^{-1}_o q_o u^{-1} \text{ và} \\ \forall x \in Y, \theta(x) = (v^{-1}_o q_o u^{-1})(x) = v^{-1} \{ q[u^{-1}(x)] \} = \frac{-4x^2}{x^2 + 3}. \end{array}$$

6.11/M NH: Cho X, Y là các t ph p h u h n và $f: X \rightarrow Y$.

- a) N u f là m t n anh thì $|X| \le |Y|$.
- b) Suy ra n u |X| > |Y| thì f không ph i là nánh.
- c) N u f là m t toàn ánh thì $|X| \ge |Y|$.
- d) Suy ra n u |X| < |Y| thì f không ph i là toàn ánh.
- e) N u f là m t song $\acute{a}nh$ thì |X| = |Y|.
- f) Suy ra n u $|X| \neq |Y|$ thì f không ph i là song ánh.

<u>Ví d:</u>

- a) Xét n ánh u trong **Ví d** c a **6.1**. Ta có $|X| = 3 \le |Y| = 5$.
- b) Xét u trong **Ví d** c a **6.2**. Ta có |X| = 4 > |Y| = 3 nên u không n ánh.
- c) Xét toàn ánh u trong **Ví d** c a **6.3**. Ta có $|X| = 4 \ge |Y| = 3$.
- d) Xét u trong **Ví d** c a **6.4**. Ta có |X| = 3 < |Y| = 4 nên u không toàn ánh.
- e) Xét song ánh u trong **Ví d** c a **6.6**. Ta có |X| = 4 = |Y|.
- f) Xét u trong **Ví d** c a **6.1**. Ta có $|X| = 3 \neq |Y| = 5$ nên u không song ánh.
