FCC 47 CFR PART 15 SUBPART B TEST REPORT

Autonomic Controls, Inc.

MMS-1e MIRAGE MEDIA STREAMER

Test Model No.: AU-MMS-1e-R2

List Model No.: /

Prepared for : Autonomic Controls, Inc.

Address : 28 Kaysal Court, Armonk, NY 10504, USA

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : Jul 05, 2017

Number of tested samples : 1

Serial number : Prototype

Date of Test : Jul 05, 2017 ~ Jul 12, 2017

Date of Report : Jul 21, 2017

FC	FCC TEST REPORT C 47 CFR PART 15 SUBPART B
Report Reference No	: LCS170705113AE
Date Of Issue	: Jul 21, 2017
Testing Laboratory Name	: Shenzhen LCS Compliance Testing Laboratory Ltd.
	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Testing Location/ Procedure	Full application of Harmonised standards Partial application of Harmonised standards Other standard testing method
Applicant's Name	: Autonomic Controls, Inc.
Address	: 28 Kaysal Court, Armonk, NY 10504, USA
Test Specification	
Standard	: FCC 47 CFR Part 15 Subpart B, ANSI C63.4 -2014
Test Report Form No.	: LCSEMC-1.0
TRF Originator	: Shenzhen LCS Compliance Testing Laboratory Ltd.
Master TRF	: Dated 2011-03
This publication may be reproduce SHENZHEN LCS COMPLIANCE owner and source of the material LTD. takes no responsibility for an	TE TESTING LABORATORY LTD. All rights reserved. It is a cknowledged as copyright as the ETESTING LABORATORY LTD. It is acknowledged as copyright as SHENZHEN LCS COMPLIANCE TESTING LABORATORY and will not assume liability for damages resulting from the reader's terial due to its placement and context.
_	: MMS-1e MIRAGE MEDIA STREAMER
Model/ Type Reference	: AU-MMS-1e-R2
Trade Mark	
Ratings	
	Adapter input:100-240VAC, 50/60Hz, 0.5A
Result	: Positive

Compiled by:

Calvin Weng

Supervised by:

Pick Su Graim Ling

Calvin Weng/ Administrators

Dick Su / Technique principal

Gavin Liang/ Manager

FCC -- TEST REPORT

 Test Report No.:
 LCS170705113AE
 Jul 21, 2017

 Date of issue
 Date of issue

Type / Model	: AU-MMS-1e-R2
EUT	: MMS-1e MIRAGE MEDIA STREAMER
Applicant	: Autonomic Controls, Inc.
Address	: 28 Kaysal Court, Armonk, NY 10504, USA
Telephone	
Fax	:/
Manufacturer	: Shenzhen ZHIQU Technology Limited
Address	: RM1101, Tower B, Haisong Building, Tairan 9th Road, Futian
	District, Shenzhen, China.
Telephone	: /
Fax	: /
Factory	· Shanghan ZIIIOII Taahnalagu Limitad
	: Shenzhen ZHIQU Technology Limited
Address	: RM1101, Tower B, Haisong Building, Tairan 9th Road, Futian
	District, Shenzhen, China.
Telephone	:/
Fax	: /

Test Result according to the standards on page 5: **Positive**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AG93-AU-MMS-1E-R2 Report No.: LCS170705113AE

Revision History

Revision	Issue Date	Revisions	Revised By
000	Jul 21, 2017	Initial Issue	Gavin Liang

TABLE OF CONTENTS

Test Report Description	Page
1. SUMMARY OF STANDARDS AND RESULTS	6
1.1. Summary	6
1.2. Test Modes	
1.3. Block Diagram of Test Setup	6
2. GENERAL INFORMATION	
2.1. Description of Device (EUT)	7
2.2. Description of Test Facility	
2.3. Statement of the measurement uncertainty	7
2.4. Measurement Uncertainty	8
3. POWER LINE CONDUCTED EMISSION MEASUREMENT	9
3.1. Test Equipment	9
3.2. Block Diagram of Test Setup	9
3.3. Test Standard	
3.4. EUT Configuration on Test	
3.5. Operating Condition of EUT	
3.6. Test Procedure	
3.7. Test Results	
4. RADIATED EMISSION MEASUREMENT	12
4.1. Test Equipment	12
4.2. Block Diagram of Test Setup	12
4.3. Radiated Emission Limit (Class B)	
4.4. EUT Configuration on Measurement	
4.5. Operating Condition of EUT	
4.6. Test Procedure	
4.7. Radiated Emission Noise Measurement Result	
5. PHOTOGRAPH OF TEST SETUP	17
6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	18

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Summary

The EUT have been tested according to the applicable standards as referenced below.

EMISSION					
Description of Test Item	Standard	Limits	Results		
Conducted disturbance at mains terminals	FCC 47 CFR Part 15 Subpart B ANSI C63.4:2014	Class B	PASS		
Radiated disturbance	FCC 47 CFR Part 15 Subpart B ANSI C63.4:2014	Class B	PASS		
Conducted disturbance at Antenna terminals	FCC 47 CFR Part 15 Subpart B ANSI C63.4:2014		N/A		

N/A is an abbreviation for Not Applicable.

1.2. Test Modes

The test mode(s) are selected according to relevant radio technology specifications.

Test mod	e:
TM 1	USB port connected to PC for data exchange, Media Play & HDMI output

1.3. Block Diagram of Test Setup

Equipment Used in Tested System

	Equipment Osed in Tested System						
Items	Equipment	Manufacturer	Model number or Type	Serial No	Length	shielded/ unshielded	Notes
1	PC	Lenovo	ThinkPad	A131101117	/	/	FCC DOC
2	Power adapter (PC)	Lenovo	CPA-A176	/	1.0m	unshielded	FCC DOC
3	USB Disk	Kingston	DT 100G3	/	/	/	FCC DOC
4	Monitor	Sony	KDL-32W700B	2011083	/	/	FCC DOC
5	RJ45 Line	Huawei	/	/	1.0m	unshielded	/
6	Power adapter for EUT	Shenzhen ZHIQU Technology Limited	XS-0522100DH	/	1.0m	unshielded	FCC VOC

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

EUT : MMS-1e MIRAGE MEDIA STREAMER

Trade Mark : AUTONOMIC

Test Model No. : AU-MMS-1e-R2

List Model No. /

Power Supply : DC 5.2V/2.1A by power adapter

Adapter input:100-240VAC, 50/60Hz, 0.5A

Hardware version : V1.0

Software version : V1.0

Highest working

frequency

: 5.825GHz

2.2. Description of Test Facility

Site Description

EMC Lab. : CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according

to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR

requirement for radiated emission above 1GHz.

2.3. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16-4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. to DIN EN ISO/IEC 17025. Furthermore,

component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.4. Measurement Uncertainty

Test Item	Frequency Range	Expanded uncertainty (Ulab)	Expanded uncertainty (Ucispr)
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 2.63 dB ± 2.35 dB	± 4.0 dB ± 3.6 dB
Radiated Emission	Level accuracy (9kHz to 30MHz)	± 3.68 dB	N/A
Radiated Emission	Level accuracy (30MHz to 1000MHz)	± 3.48 dB	± 5.2 dB
Radiated Emission	Level accuracy (above 1000MHz)	± 3.90 dB	N/A

- (1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.
- (2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

3. POWER LINE CONDUCTED EMISSION MEASUREMENT

3.1. Test Equipment

The following test equipment are used during the power line conducted measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal. Day	Cal. Due Day
1	EMI Test Receiver	ROHDE & SCHWARZ	ESR 7	101181	2017-06-18	2018-06-17
2	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-0032	2017-06-18	2018-06-17
3	Artificial Mains	ROHDE & SCHWARZ	ENV216	101288	2017-06-18	2018-06-17
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	RF Cable	Harbour Industries	1452	N/A	2017-06-18	2018-06-17

3.2. Block Diagram of Test Setup

3.3. Test Standard

Power Line Conducted Emission Limits (Class B)

I	Frequency	T	Limit (dBμV)		
	(MHz)		Quasi-peak Level Average L		
0.15	~	0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *	
0.50	~	5.00	56.0	46.0	
5.00	~	30.00	60.0	50.0	

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.4. EUT Configuration on Test

The following equipment are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

3.5. Operating Condition of EUT

- 3.4.1. Setup the EUT as shown on Section 3.2
- 3.4.2. Turn on the power of all equipments.
- 3.4.3. Let the EUT work in test mode and measure it.

3.6. Test Procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.3 and test equipment as described in clause 3.1 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.3 were scanned during the preliminary test.

After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 9 KHz.

3.7. Test Results

PASS.

Note: All modes operated at 120VAC and 240VAC are tested for pre-scan, only recorded the worst case data in the report.

4. RADIATED EMISSION MEASUREMENT

4.1. Test Equipment

The following test equipment are used during the radiated emission measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal. Day	Cal. Due Day
1	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03СН03-НҮ	2017-06-18	2018-06-17
2	EMI Test Receiver	ROHDE & SCHWARZ	ESR 7	101181	2017-06-18	2018-06-17
3	Log per Antenna	SCHWARZBECK	VULB9163	9163-470	2017-06-10	2018-06-09
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Positioning Controller	MF	MF-7082	/	N/A	N/A
6	RF Cable	Hubersuhner	Sucoflex 104	FP2RX2	2017-06-18	2018-06-17
7	Horn Antenna	EMCO	3115	6741	2017-06-10	2018-06-09
8	Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170	2017-04-18	2018-04-17
9	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03СН03-НҮ	2017-06-18	2018-06-17
10	Amplifier	SCHAFFNER	COA9231A	18667	2017-06-18	2018-06-17
11	Amplifier	Agilent	8449B	3008A02120	2017-06-18	2018-06-17
12	Amplifier	MITEQ	AMF-6F-26040 0	9121372	2017-06-18	2018-06-17

4.2. Block Diagram of Test Setup

Below 1GHz

Above 1GHz

4.3. Radiated Emission Limit (Class B)

Limits for radiated disturbance Blow 1GHz

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: (1) The smaller limit shall apply at the cross point between two frequency bands.

(2) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

4.4. EUT Configuration on Measurement

The following equipments are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.5. Operating Condition of EUT

- 4.5.1. Setup the EUT as shown in Section 4.2.
- 4.5.2. Let the EUT work in test mode and measure it.

4.6. Test Procedure

Procedure of Preliminary Test

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80 cm above the ground plane for below 1GHz and 80 cm above the ground with absorber.

Configuration EUT to simulate typical usage as described in clause 2.3 and test equipment as described in clause 4.1 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.

Mains cables, telephone lines or other connections to auxiliary equipment located outside the test are shall drape to the floor, be fitted with ferrite clamps or ferrite tubes placed on the floor at the point where the cable reaches the floor and then routed to the place where they leave the turntable. No extension cords shall be used to mains receptacle.

The antenna was placed at 3 meter away from the EUT as stated in ANSI C63.4. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.

The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

The Analyzer / Receiver quickly scanned from 1000MHz to 12750MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

The test mode(s) described in clause 2.3 were scanned during the preliminary test:

After the preliminary scan, we found the test mode producing the highest emission level. The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the

preliminary test.

The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

The Analyzer / Receiver scanned from 1000MHz to 12750MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented for below 1GHz.

Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and both Peak and Average reading is presented for above 1GHz.

The test data of the worst-case condition(s) was recorded.

The bandwidth setting of the test receiver/spectrum as follows.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	5 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10 Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10 Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

As the highest working frequency of the device is 5.825GHz, according to the requirement, the investigated frequency range is 30MHz-40GHz.

4.7. Radiated Emission Noise Measurement Result

PASS.

Please refer to the next page for test data.

Model No.	AU-MMS-1e-R2		Test Mode	TM 1	TM 1	
Environmental Conditions	24°C, 56% RH		Detector Funct	tion Quasi-	Quasi-peak 3m	
Pol	Vertical		Distance			
Test Engineer	Chaz Liu					
80 Level (dBuV/m)						
80						
70						
60				FCC PART 15B		
50				TOO PAINT 13B		
50				6		
40		4				
	3	MM Mr.				
30		" " WWW. " " " " WANTED	white will be a second	and looking to the little		
""	That have '	' `	Anna de la companya d	The second of the second		
20	Mar James					
40						
10						
030 50	400	200	500	1000		
30 50	100	200 Frequency (MHz)	500	1000		
Freq Re			red Limit O	ver Remark		
MHz	dBuV dB	dB/m dBuV/	m dBuV/m	dB		
1 43.51 2	22.76 0.41	13.56 36.7	3 40.00 -	3.27 QP		
	22.95 0.54	13.22 36.7		3.29 QP		
		10.93 33.9	98 40.00 -	6.02 QP		
3 64.43 2	22.53 0.52					
3 64.43 2 4 137.90 3	30.38 0.70	8.35 39.4		4.07 QP		
3 64.43 2 4 137.90 3 5 207.85 2			50 43.50 -	4.07 QP 6.90 QP 4.08 QP		

Pol Vertical Distance 3m	1	TM 1			lode	Cest M	T			22	MS-1e-R	U-M	A			•	Model No
Test Engineer Chaz Liu	si-peak	Quasi	Detector Function			D	24°C, 56% RH			24	tions	Condi	ental (Environm			
80 FCC 15B PK(1G-18G) FCC		3m	Distance			D	Vertical			V				Pol			
80 FCC 15B PK(1G-18G) 70 FCC 15B PK(1G-18G) 60 Frequency (MHz) Preq Reading CabLos Antfac Measured Limit Over Remark MHz dBuV dB dB/m dBuV/m dBuV/m dB 1 1731.00 64.81 4.45 26.42 58.67 74.00 -15.33 Peak 2 1731.00 47.73 4.45 26.42 41.59 54.00 -12.41 Average 3 1952.00 64.43 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 59.72 74.00 -14.28 Peak 6 2581.00 55.80 53.1 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -11.48 Average 7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 26.48 8.94 36.36 50.54 74.00 -25.33 Peak 10 6117.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 42.83 9.93 37.94 55.23 74.00 -19.84 Average											iu	haz I	С			neer	Test Engi
Frequency (MHz) Preq Reading CabLos Antfac Measured Limit Over Remark MHz dBuV dB dB/m dBuV/m dB 1 1731.00 64.81 4.45 26.42 58.67 74.00 -15.33 Peak 2 1731.00 47.73 4.45 26.42 41.59 54.00 -12.41 Average 3 1952.00 44.93 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 59.72 74.00 -14.28 Peak 6 2581.00 55.80 53.1 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -11.48 Average 7 3992.00 34.99 7.19 32.57 38.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -14.05 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -25.33 Peak 10 6117.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 9 6117.00 42.02 8.94 36.36 35.00 54.00 -19.00 Average 11 9449.00 42.83 9.93 37.94 55.23 74.00 -19.84 Average Note: 1. All readings are Quasi-peak values.														BuV/m)	evel (dE		<u> </u>
60 10 10 10 10 10 10 10 10 10		i-18G)	PK(1G-	15B P	FCC											80	
Frequency (MHz) Abover Remark A berage 5 2581.00 47.34 4.49 27.85 59.72 74.00 -15.33 Peak 6 2581.00 47.23 4.49 27.85 59.72 74.00 -14.28 Peak 6 2581.00 43.88 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 51.87 74.00 -22.13 Peak 8 3992.00 45.79 7.19 32.57 39.95 54.00 -14.05 Average 7 3992.00 45.79 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 11 9449.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 12 9449.00 21.76 9.93 37.94 34.16 54.00 -19.84 Average							-			-		-	-			70	
Frequency (MHz) Freq Reading CabLos Antfac Measured Limit Over Remark MHz dBuV dB dB/m dBuV/m dBuV/m dB 1 1731.00 64.81 4.45 26.42 58.67 74.00 -15.33 Peak 2 1731.00 47.73 4.45 26.42 41.59 54.00 -12.41 Average 3 1952.00 64.43 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 59.72 74.00 -14.28 Peak 5 2581.00 55.80 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -14.05 Average 7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 35.05 74.00 -19.00 Average 11 9449.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 11 9449.00 42.83 9.93 37.94 34.16 54.00 -19.84 Average															-13	60	
10 12 1000 4000. 6000. 8000. 10000. 12000. 14000. 16000. 18000 Frequency (MHz) Freq Reading CabLos Antfac Measured Limit Over Remark MHz dBuV dB dB/m dBuV/m dBuV/m dB 1 1731.00 64.81 4.45 26.42 58.67 74.00 -15.33 Peak 2 1731.00 47.73 4.45 26.42 41.59 54.00 -12.41 Average 3 1952.00 64.43 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 59.72 74.00 -11.48 Average 5 2581.00 55.80 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -14.05 Average 7 3992.00 44.79 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 50.54 74.00 -23.46 Peak 10 9449.00 21.76 9.93 37.94 34.16 54.00 -19.84 Average		i-18G)	AV(16-	15B A	FCC	all alle	.		11	<u> </u>	u .			5			
30 20 100 4000. 6000. 8000. 10000. 12000. 14000. 16000. 18000 Frequency (MHz) Freq Reading CabLos Antfac Measured Limit Over Remark MHz dBuV dB dB/m dBuV/m dBuV/m dB 1 1731.00 64.81 4.45 26.42 58.67 74.00 -15.33 Peak 2 1731.00 47.73 4.45 26.42 41.59 54.00 -12.41 Average 3 1952.00 64.43 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 42.52 54.00 -11.48 Average 5 2581.00 55.80 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -14.05 Average 7 3992.00 34.99 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 50.54 74.00 -23.46 Peak 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 21.76 9.93 37.94 55.23 74.00 -19.84 Average		- Line	and the same	Mark Printer	W 1	Mark Street, St.	Mary Property	Production the company	A) A	To the Park	Market Water Control	أمياديه	1 -	1	wa Maria	50	
30 20 100 4000. 6000. 8000. 10000. 12000. 14000. 16000. 18000 Frequency (MHz) Freq Reading CabLos Antfac Measured Limit Over Remark MHz dBuV dB dB/m dBuV/m dBuV/m dB 1 1731.00 64.81 4.45 26.42 58.67 74.00 -15.33 Peak 2 1731.00 47.73 4.45 26.42 41.59 54.00 -12.41 Average 3 1952.00 64.43 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 42.52 54.00 -11.48 Average 5 2581.00 55.80 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -14.05 Average 7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 50.54 74.00 -23.46 Peak 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 21.76 9.93 37.94 55.23 74.00 -19.84 Average													MANA	لمهيوما	AND A	40	
20 10 10 100 4000. 6000. 8000. 10000. 12000. 14000. 16000. 18000 Frequency (MHz) Freq Reading CabLos Antfac Measured Limit Over Remark MHz dBuV dB dB/m dBuV/m dBuV/m dB 1 1731.00 64.81 4.45 26.42 58.67 74.00 -15.33 Peak 2 1731.00 47.73 4.45 26.42 41.59 54.00 -12.41 Average 3 1952.00 64.43 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 59.72 74.00 -11.48 Average 5 2581.00 55.80 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -11.40 Average 7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 21.76 9.93 37.94 55.23 74.00 -19.84 Average Note: 1. All readings are Quasi-peak values.									12		D	1					
100 4000. 6000. 8000. 10000. 12000. 14000. 16000. 18000 Frequency (MHz) Freq Reading CabLos Antfac Measured Limit Over Remark MHz dBuV dB dB/m dBuV/m dBuV/m dB 1 1731.00 64.81 4.45 26.42 58.67 74.00 -15.33 Peak 2 1731.00 47.73 4.45 26.42 41.59 54.00 -12.41 Average 3 1952.00 64.43 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 59.72 74.00 -11.48 Average 5 2581.00 55.80 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -14.05 Average 7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 48.67 74.00 -25.33 Peak 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 21.76 9.93 37.94 55.23 74.00 -19.84 Average																30	
## 1731.00 64.81 4.45 26.42 58.67 74.00 71.20 74.00 71.20 74.00 71.20 74.00 71.20 74.00 71.20 74							-									20	
## 1731.00 64.81 4.45 26.42 58.67 74.00 71.20 74.00 71.20 74.00 71.20 74.00 71.20 74.00 71.20 74																	
Frequency (MHz) Freq Reading CabLos Antfac Measured Limit Over Remark MHz dBuV dB dB/m dBuV/m dBuV/m dB 1 1731.00 64.81 4.45 26.42 58.67 74.00 -15.33 Feak 2 1731.00 47.73 4.45 26.42 41.59 54.00 -12.41 Average 3 1952.00 64.43 4.49 27.85 59.72 74.00 -14.28 Feak 4 1952.00 47.23 4.49 27.85 59.72 74.00 -11.48 Average 5 2581.00 55.80 5.31 27.87 51.87 74.00 -22.13 Feak 6 2581.00 43.88 5.31 27.87 51.87 74.00 -22.13 Feak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -14.05 Average 7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Feak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Feak 10 6117.00 26.48 8.94 36.36 50.54 74.00 -23.46 Feak 10 6117.00 42.83 9.93 37.94 55.23 74.00 -18.77 Feak 12 9449.00 21.76 9.93 37.94 55.23 74.00 -19.84 Average																10	
Frequency (MHz) Freq Reading CabLos Antfac Measured Limit Over Remark MHz dBuV dB dB/m dBuV/m dBuV/m dB 1 1731.00 64.81 4.45 26.42 58.67 74.00 -15.33 Feak 2 1731.00 47.73 4.45 26.42 41.59 54.00 -12.41 Average 3 1952.00 64.43 4.49 27.85 59.72 74.00 -14.28 Feak 4 1952.00 47.23 4.49 27.85 59.72 74.00 -11.48 Average 5 2581.00 55.80 5.31 27.87 51.87 74.00 -22.13 Feak 6 2581.00 43.88 5.31 27.87 51.87 74.00 -22.13 Feak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -14.05 Average 7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Feak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Feak 10 6117.00 26.48 8.94 36.36 50.54 74.00 -23.46 Feak 10 6117.00 42.83 9.93 37.94 55.23 74.00 -18.77 Feak 12 9449.00 21.76 9.93 37.94 55.23 74.00 -19.84 Average									100				<u> </u>	<u> </u>		ا	
MHz dBuV dB dB/m dBuV/m dBuV/m dB 1 1731.00 64.81 4.45 26.42 58.67 74.00 -15.33 Peak 2 1731.00 47.73 4.45 26.42 41.59 54.00 -12.41 Average 3 1952.00 64.43 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 42.52 54.00 -11.48 Average 5 2581.00 55.80 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -14.05 Average 7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak Note: 1. All readings are Quasi-peak values.		18000	000.	160	000.	140	2000.				. 80	600	000.	4	000	1	
1 1731.00 64.81 4.45 26.42 58.67 74.00 -15.33 Peak 2 1731.00 47.73 4.45 26.42 41.59 54.00 -12.41 Average 3 1952.00 64.43 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 42.52 54.00 -11.48 Average 5 2581.00 55.80 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -14.05 Average 7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 21.76 9.93 37.94 55.23 74.00 -19.84 Average		Remark	er	Ove	mit	d Li	ured	Mea:	ntfac	a Ar	CabLos	ing	Read	req	F		
2 1731.00 47.73 4.45 26.42 41.59 54.00 -12.41 Average 3 1952.00 64.43 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 42.52 54.00 -11.48 Average 5 2581.00 55.80 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -14.05 Average 7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 50.54 74.00 -23.46 Peak 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 21.76 9.93 37.94 55.23 74.00 -19.84 Average			В	dB	ıV/m	dBu	/m	dBu'	3/m	dE	dВ	uV	dВ	MHz			
2 1731.00 47.73 4.45 26.42 41.59 54.00 -12.41 Average 3 1952.00 64.43 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 42.52 54.00 -11.48 Average 5 2581.00 55.80 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -14.05 Average 7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 50.54 74.00 -23.46 Peak 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 21.76 9.93 37.94 55.23 74.00 -19.84 Average																	
3 1952.00 64.43 4.49 27.85 59.72 74.00 -14.28 Peak 4 1952.00 47.23 4.49 27.85 42.52 54.00 -11.48 Average 5 2581.00 55.80 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -14.05 Average 7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 21.76 9.93 37.94 34.16 54.00 -19.84 Average	7.6																
5 2581.00 55.80 5.31 27.87 51.87 74.00 -22.13 Peak 6 2581.00 43.88 5.31 27.87 39.95 54.00 -14.05 Average 7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 21.76 9.93 37.94 34.16 54.00 -19.84 Average	, –																
6 2581.00 43.88 5.31 27.87 39.95 54.00 -14.05 Average 7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 21.76 9.93 37.94 34.16 54.00 -19.84 Average Note: 1. All readings are Quasi-peak values.	je																
7 3992.00 45.79 7.19 32.57 48.67 74.00 -25.33 Peak 8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 21.76 9.93 37.94 34.16 54.00 -19.84 Average																	
8 3992.00 34.99 7.19 32.57 37.87 54.00 -16.13 Average 9 6117.00 42.02 8.94 36.36 50.54 74.00 -23.46 Peak 10 6117.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 21.76 9.93 37.94 34.16 54.00 -19.84 Average Note: 1. All readings are Quasi-peak values.	30	_															
10 6117.00 26.48 8.94 36.36 35.00 54.00 -19.00 Average 11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 21.76 9.93 37.94 34.16 54.00 -19.84 Average Note: 1. All readings are Quasi-peak values.	gе		.13	-16.	00	54.	87	37	2.57	32	7.19	99	34.	.00	3992	8	
11 9449.00 42.83 9.93 37.94 55.23 74.00 -18.77 Peak 12 9449.00 21.76 9.93 37.94 34.16 54.00 -19.84 Average Note: 1. All readings are Quasi-peak values.																_	
12 9449.00 21.76 9.93 37.94 34.16 54.00 -19.84 Average Note: 1. All readings are Quasi-peak values.	je	_															
Note: 1. All readings are Quasi-peak values.																	
2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that ate 20db blow the offficial limit are not reported																	

Note: for frequency range from 18GHz-40GHz, there's no any radiation signal detected, therefore, test data is not recorded here.

	ated file for test setup photos.	Please refer to seperat

SHENZHEN LCS COMPLIANCE TESTING LA	ARODATORVITO ECCID	· 24G03 411 MMS 1F P2	Panart No . I CS1707051131F
SHENZHEN LUS COMPLIANCE LESTING L	ADUKATUKI LID. FCC ID	. ZAG93-AU-MMS-1E-KZ	Kebori No.: LUSI/U/UJIIJAL

6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT					
Please refer to seperated file for external and internal photos of eut.					
	THE END OF TEST REPORT				