Chapter 4: Approximation

Fall 2020

1.- Let E be a real vector space and $\langle \cdot, \cdot \rangle$ a scalar product on E. Let $\{\varphi_0, \varphi_1, \dots, \varphi_n\}$ be an orthogonal system. Prove that, for any $(c_0, \dots, c_n) \in \mathbb{R}^{n+1}$,

$$\left\| \sum_{i=0}^{n} c_i \varphi_i \right\|^2 = \sum_{i=0}^{n} c_i^2 \|\varphi_i\|^2.$$

- **2.-** Let E be a real vector space and $\langle \cdot, \cdot \rangle$ a scalar product on E. Prove that two elements f, g of E verify $\langle f, g \rangle = 0$ if and only if $\|\alpha f + g\| \ge \|g\|$ for all $\alpha \in \mathbb{R}$.
- **3.-** Let E be the real linear space $C^0([0,1])$ with the scalar product

$$\langle f, g \rangle = \int_0^1 f(x)g(x) dx.$$

Let E^* be the linear subspace of E generated by the functions 1, e^x and e^{-x} .

- a) Derive an orthonormal basis of E^* .
- b) Compute the best approximation $f^* \in E^*$ to $f(x) = x^2$.
- c) Compute $||f f^*||$.
- 4.- Let E be the space of real functions, defined on [0,1], that are of C^1 class, and define

$$\langle f, g \rangle = f(0)g(0) + \int_0^1 f'(x)g'(x) dx.$$
 (2)

- a) Show that $\langle \cdot, \cdot \rangle$ is a scalar product. Is $(f,g) \mapsto \int_0^1 f'(x)g'(x) dx$ a scalar product?
- b) Using the scalar product (2), derive an orthogonal basis of $\mathbb{R}_2[x]$.
- c) Find the best approximation to $f(x) = \cos x$ by an element of $\mathbb{R}_2[x]$.
- d) Find the best approximation to $f(x) = \cos x$ by an element of $\{p \in \mathbb{R}_2[x] / p(0) = 1\}$.
- **5.-** Let us define the set $E = \{ f \in C^1_{\mathbb{R}}([-1,1]) \ / \ f(-x) = -f(x) \ \forall x \in [-1,1] \}$, and let us consider the map from $E \times E$ to \mathbb{R} given by

$$(f,g) \in E \times E \mapsto \langle f,g \rangle = \int_{-1}^{1} f'(x)g'(x) dx$$

- a) Is E a vector space? Is $\langle \cdot, \cdot \rangle$ a scalar product on $C^1_{\mathbb{R}}([-1,1])$? Is $\langle \cdot, \cdot \rangle$ a scalar product on E? Let us define $E_3 = \{ p \in E \mid p \text{ is a third degree polynomial } \}$. Is E_3 a vector space? If so, find a basis.
- b) Let us define $f_0(x) = \sin x$. Compute the element of E_3 closest to f_0 according to the norm induced by the scalar product $\langle \cdot, \cdot \rangle$.

- c) Let su define $F = \{f \in E \mid f'(0) = 1\}$, and $F_3 = \{p \in F \mid p \text{ is a third degree polynomial}\}$. Compute the element of F_3 closest to $f_0(x) = \sin x$. Is it possible to use the same scheme to find the element of F_3 closest to $f_0(x) = \cos x$?
- **6.-** Consider the real vector space $E = \mathcal{C}^0([-1,1])$ endowed with the scalar product

$$\langle f, g \rangle = \int_{-1}^{1} w(x) f(x) g(x) dx,$$

where w(x) > 0 for all $x \in [-1, 1]$ and it is an even and continuous function.

- 1. Let $f \in E$ be an odd function and p(x) the degree $\leq n$ polynomial which gives the best approximation to the function f with respect to the given scalar product. Prove that p(x) is also an odd function. If f és even prove that p(x), is even. Hint: Any polynomial can be represented as the sum of its even and odd part.
- 2. Prove that the orthogonal polynomials of odd degree are odd functions and that of even degree are even functions.
- 3. Suppose that $w(x) = 1 + x^2$. By using the suitable orthogonal polynomials, compute the polynomial of degree ≤ 4 which is the best approximation of the function $f(x) = x^7$. Determine the error of the approximation.
- 7.- Consider the vector space $C^0([0,1])$ endowed with the scalar product $\langle f,g\rangle=\int_0^1 f(x)g(x)\,dx$. Let f be an element of $C^0([0,1])$ such that $\int_0^1 xf(x)\,dx=\frac{1}{2}$ and $\int_0^1 x^2f(x)\,dx=\frac{1}{3}$.
 - a) Suppose that $\int_0^1 f(x) dx = 0$, and define $M_2 = \{ p \in \mathbb{R}_2[x] / \int_0^1 p(x) dx = 0 \}$. Find the best approximation to f by an element of M_2 .
 - b) Suppose that $\int_0^1 f(x) dx = 1$, and define $D_2 = \{ p \in \mathbb{R}_2[x] / \int_0^1 p(x) dx = 1 \}$. Find the best approximation to f by an element of D_2 .
- 8.- Compute the monic orthogonal polynomials of degrees 0, 1, 2, 3 and 4, corresponding to the scalar product

$$\langle f, g \rangle = \int_{-1}^{1} (1 + x^2) f(x) g(x) dx.$$

9. Consider $E = C^0([-1,1])$ with the scalar product

$$\langle f, g \rangle = \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}} dx.$$

Let $f \in E$ defined by $f(x) = \sqrt{1 - x^2}$.

- a) Compute the best approximation to f by a 4th degree polynomial p_4 .
- b) Compute $||f p_4||$, where ||.|| is the norm associated to the previous scalar product.

10.- Let M_n be the set of monic polynomials of degree n, and let us consider the space of real polynomials endowed with the norm

$$||f||_2 = \left[\int_{-1}^1 |f(x)|^2 dx \right]^{\frac{1}{2}}.$$

- a) If n=2, compute the element of M_n of minimum norm.
- b) Compute the element of M_n of minimum norm for an arbitrary value of n (hint: use Legendre polynomials).

Let
$$A_2 \subset \mathbb{R}_2[x]$$
 such that $\int_{-1}^1 p(x) dx = 2$.

- c) Compute the element of A_2 of minimum norm.
- d) Compute the best approximation of x^2 in A_2 .
- **11.-** Consider $E = C^0([-1,1])$ with the scalar product $\langle f,g \rangle = \int_{-1}^1 f(x)g(x) dx$, and let us denote by $\|.\|$ the associated norm. Let us define M as $\{p \in \mathbb{R}_2[x] / p(0) = 1\}$.
 - a) Obtain the element of M of minimum norm. Write the value of this minimum norm.
 - b) Compute the element of M which is closest to $f(x) = e^x$.
 - c) If $\bar{M} = \{p \in \mathbb{R}_2[x] / p(0) = p'(0) = 1\}$, compute the element of \bar{M} which is closest to $f(x) = e^x$.
- 12.- Let A be a real matrix with n columns and m rows (m > n) with full rank, and let us consider the (overdetermined) linear system Ax = b $(x \in \mathbb{R}^n, b \in \mathbb{R}^m)$. We are interested in computing the vector $x^* \in \mathbb{R}^n$ such that the norm $||Ax^* b||_2$ is small as possible.
 - a) Write the previous problem as an approximation problem (that is, give two suitable spaces $E^* \subset E$ such that $x^* \in E^*$ is the best approximation to an element of E by an element of E^*).
 - b) Write the normal equations for the problem of a).
 - c) Use b) to show that x^* satisfies $A^T A x^* = A^T b$.
 - d) Explain what happens if A does not have full rank.
- 13.- Let us define E as $C^0([0,2\pi])$ with the scalar product

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x) dx.$$

Let us denote by $\|.\|$ the norm associated to this scalar product. Let E_n be the linear subspace of E generated by the functions

$$\{1, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots, \sin(nx), \cos(nx)\}.$$

a) Compute the best approximation $f_n \in E_n$ to the function f(x) = x.

b) Compute
$$||f - f_n||$$
 and $\lim_{n \to \infty} ||f - f_n||$. Hint: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

14.- Consider the discrete scalar product defined on $\mathbb{R}_m[x]$,

$$\langle f, g \rangle = \sum_{i=0}^{m} f(x_i)g(x_i), \text{ where } x_i = -1 + \frac{2i}{m}.$$

- a) Derive, for m = 4, the orthogonal polynomials of degrees 0, 1 and 2.
- b) Obtain the least-squares approximation polynomials of degrees 1 and 2 to the table

15.- The table

corresponds to a periodic signal of period 1. Adjust these values by a function of the type $a + b\sin(2\pi x) + c\cos(2\pi x)$.

16.- We define $E = \{ f \in \mathcal{C}^2([-1,1]) \text{ such that } f(0) = f'(0) = 0 \}$ and consider the map from $E \times E$ to \mathbb{R} given by

$$(f,g) \in E \times E \mapsto \langle f,g \rangle = \int_{-1}^{1} f''(x)g''(x)dx.$$

- a) Is E a vector space? Is $\langle \ , \ \rangle$ a scalar product on E?
- b) Define $E_3 = \{ p \in E \text{ such that } p \text{ is a polynomial of degree 3} \}$. Is E_3 a linear subspace of E? If so, find a basis.
- c) Find the best approximation to $f(x) = \cos x 1$ by an element of E_3 .

17.- We define $E = \mathcal{C}^1([-1,1])$ endowed with the scalar product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx + \int_{-1}^{1} f'(x)g'(x)dx,$$

- 1. Prove that $\langle \cdot, \cdot \rangle$ is a scalar product.
- 2. Prove that the monic orthogonal polynomials of even degree are even functions and those of odd degree are odd functions.
- 3. Find the monic orthogonal polynomials of degrees 0, 1, 2 and 3.
- 4. Find the best approximation to $f(x) = x^7$ by a forth degree polynomial.
- **18.-** Let [a,b] be and interval. If $m \geq 1$ we define the space $E_{m+1} \subset C([a,b])$ spanned by the system of linearly independent maps g_0, \ldots, g_m , where $g_i : [a,b] \to \mathbb{R}$ is continuous for all i. Let $x_0, x_1, \ldots, x_m \in [a,b]$ be m+1 distinct points in [a,b].

1. Show that $\langle \cdot, \cdot \rangle$ defined by

$$\langle f, g \rangle = \sum_{i=0}^{m} f(x_i)g(x_i), \quad \forall f, g \in E_{m+1},$$
 (3)

is a scalar product on E_{m+1} , for any choice of distinct points $x_i \in [a, b]$ in E_{m+1} iff for all $f \in E_{m+1} \setminus \{0\}$ f has at most m zeros in [a, b].

- 2. Suppose that (3) is a scalar product for any choice of $x_0, \ldots, x_m \in [a, b]$, where not two of them are the same. For arbitrary values $y_0, \ldots, y_m \in \mathbb{R}$ show that there exists a unique $g \in E_{m+1}$ such that $y_i = g(x_i), i = 0, \ldots, m$.
- 3. For arbitrary points $(x_0, y_0), \ldots, (x_m, y_m) \in \mathbb{R}^2$, where $x_0 < x_1 < \cdots < x_m$, we consider the following problem: Find $g_0 \in E_n$, $(n \le m+1)$ such that

$$\sum_{i=0}^{m} (y_i - g_0(x_i))^2 \le \sum_{i=0}^{m} (y_i - g(x_i))^2, \quad \forall g \in E_n.$$

If (3) is a scalar product for any choice of distinct values x_i , i = 0, ..., m, expalin how we can transform this problem to a problem of approximation in a pre-Hilbert space.

4. We have computed the following table of values of a map $f:[0,3]\to\mathbb{R}$:

With this table we want to find a map $g_0(x) = a_0 + b_0 e^x$ such that

$$\sum_{i=0}^{3} (f(i) - g_0(i))^2 = \min_{g \in E_2} \sum_{i=0}^{3} (f(i) - g(i))^2,$$

where E_{m+1} is the linear space spanned by $\varphi_j(x) = e^{jx}$, j = 0, ..., m. Show that this problem can be posed as an approximation problem in pre-Hilbert spaces and solve it using the orthogonal projection theorem.