Einführung in die Technische Informatik

Prof. Dr.-Ing. Stefan Kowalewski

WS 22/23

Kapitel 7: Digitale Speicherbausteine

Abschnitt 7.1

1-Bit Register

- ► 1-Bit Register für die Taktung von Schaltnetzen
- ► 4-Bit Ringzähler mit 1-Bit Registern
- n-stelliges Register

 Beispiel: Gesucht ist ein Ringzähler für vierstellige Dualzahlen, also eine Schaltung für die Funktion

$$f: B^4 \to B^4$$
, definiert durch $f(d(i)) \coloneqq d(i+1 \mod 16)$

 Aber: Es fehlt eine Rückkopplung, um die gewünschte Funktion zu realisieren

 Beispiel: Gesucht ist ein Ringzähler für vierstellige Dualzahlen, also eine Schaltung für die Funktion

$$f: B^4 \to B^4$$
, definiert durch $f(d(i)) \coloneqq d(i+1 \mod 16)$

 Aber: Es fehlt eine Rückkopplung, um die gewünschte Funktion zu realisieren

1-Bit Register für die Taktung von Schaltnetzen

 Idee: Einführung einer Kontrollinstanz, welche die Rückkopplung durch einen Taktimpuls synchronisiert

Neues Bauteil: 1-Bit Register (oder Delay)

1-Bit Register

- Arbeitsphase: Der Inhalt von S wird "nach rechts" abgegeben; er steht als Signal y_i zur Verfügung. Ein Signal x_i wird in V "abgelegt". V und S sind durch eine Sperre getrennt.
- 2. Setzphase: Eine zentrale Synchronisation durch eine Uhr (engl. Clock), welche Taktimpulse erzeugt, hebt die Sperre kurzzeitig auf und bewirkt dadurch die Abgabe des Inhalts von V an S.

4-bit Ringzähler mit 1-Bit Registern

Flimmerschaltung (realisierbar mit 1-Bit Register)

n-stelliges Register

Abschnitt 7.2

Latches und Flipflops

- SR-Latch
- Getaktetes SR-Latch
- D-Latch und D-Flipflop
- ► JK-Flipflop
- Pulsgenerator
- Speicherlogik aus Flipflop

SR-Latch (realisiert mit NOR-Gattern)

SR-Latch in Zustand 0

SR-Latch in Zustand 1

Wahrheitstafel für NOR

Α	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

Zustandsgraph eines SR-Latch

SR-Latch (realisiert mit NOR-Gattern)

SR-Latch in Zustand 1

SR-Latch in Zustand 1

Wahrheitstafel für NOR

Α	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

Zustandsgraph eines SR-Latch

Getaktetes SR-Latch

D-Latch / 1-bit-Register

Prinzip eines Pulsgenerators

D-Flipflop (flankengesteuertes D-Latch)

D-Latches und D-Flipflops

D-Latch (a)

Negativ gesteuertes D-Latch (b)

D-Flipflop (c)

Negativ gesteuertes D-Flipflop (d)

JK-Flipflop

J	K	Q_n	
0	0	Q_{n-1}	
0	1	0	
1	0	1	
1	1	$\overline{Q_{n-1}}$	

Identity

R

S

Toggle

Clear und Preset

 Clear und Preset sind zusätzliche Eingänge an getakteten Latches und Flipflops, die ein asynchrones Setzen und Löschen des gespeicherten Bits ermöglichen.

Zwei D-Flipflops und ein 8-bit Register

Chip Select und Output Enable

- Speicherbausteine enthalten häufig die Eingänge CS (Chip Select) und OE (Output Enable)
 - Mit CS lassen sich Ein- und Ausgabe ganzer Chips deaktivieren
 - Mit OE werden die Ausgänge eines Chips aktiviert bzw. deaktiviert

Damit kann gewährleistet werden, dass z.B. momentan nicht benötigte Chips die Bussignale der momentan aktiven Chips nicht stören.

4 x 3 Speicher

Schalter (Tri-State Buffer)

Schalter

Control = 1 Control = 0

Invertierender Schalter

Control kann als Schalter aufgefasst werden oder äquivalent mit dem Input zusammen in ein UND geführt werden

Organisation eines 4-Mbit Speicherchips

