CODE No.: 16BT20401 SVEC-16

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

I B.Tech II Semester (SVEC-16) Regular/Supplementary Examinations June - 2018 ELECTRONIC DEVICES AND CIRCUITS

[Electrical and Electronics Engineering, Electronics and Communication Engineering, Electronics and Instrumentation Engineering]

Time: 3 hours Max. Marks: 70

Answer One Question from each Unit. All questions carry equal marks.

UNIT-I

1 a) Explain the working of bridge rectifier with neat suitable diagram.

7 Marks

b) Define depletion region at p-n junction. What is the effect of forward and reverse biasing of p-n junction on depletion region? Explain with necessary diagrams.

7 Marks

(OR)

2 a) Derive the expression for I_{dc} and I_{rms} for half-wave rectifier.

8 Marks 6 Marks

b) A half-wave rectifier circuit supplies 100mA DC to a 250Ω load. Find the DC output voltage, PIV rating of a diode and the r.m.s. voltage for the transformer supplying the rectifier.

UNIT-II

a) Explain how transistor works as an amplifier.

6 Marks

b) Explain the output characteristics of a transistor in CB configuration.

8 Marks

(OR)

4 a) Compare the performance of BJT as an amplifier in CE, CB and CC 5 Marks configurations.

9 Marks

b) A CE transistor amplifier with voltage divider bias circuit is designed to establish the quiescent point at $V_{CE} = 12V$, $I_C = 2mA$ and stability factor $S \leq 5.1$. If $V_{CC} = 24V$, $V_{BE} = 0.7V$, $\beta = 50$ and $R_C = 4.7K\Omega$, determine the values of resistors R_E , R_1 and R_2 .

UNIT-III

5 a) Explain the concept of Millers theorem and its applications.

8 Marks

b) Compare enhancement and depletion modes of a MOSFET with the help of its characteristics and construction.

6 Marks

(OR)

Draw the circuit diagram and small signal equivalent of CB amplifier using accurate h-parameter model. Derive expressions for A_V, A_I, R_i and R₀.

14 Marks

UNIT-IV

7 a) Compare and contrast BJT and FET.

6 Marks

14 Marks

b) Show that the transductance g_m of a JFET is related to the drain current I_{DS} by

8 Marks

$$g_m = \frac{2}{|V_{\scriptscriptstyle 0}|} \sqrt{I_{\rm DS}.I_{\rm DSS}} \ .$$

(OR)

8 Sketch the basic structure of an n-channel junction field effect transistor and 14 Marks explain its working with the help of drain characteristics.

UNIT-V

9 What is the photodiode? Explain its principle of operation and applications in 14 Marks detail.

(OR)

Explain the characteristics of UJT. Indicate the negative resistance region.