

Forward Kinematics Assignment

Name\ Khaled Ahmed Zaki saad

ID\20010513

2. Consider the three-link planar manipulator shown in Figure 3.12. Derive

Figure 3.12: Three-link planar arm of Problem 3-2.

the forward kinematic equations using the DH-convention.

Link	a _i	$\alpha_{\rm i}$	di	θ_{i}
1	L_1	0	0	Θ_1
2	L_2	0	0	θ_2
3	L_3	0	0	θ_3

$$A_i = R_z(\theta_i) \cdot T_z(d_i) \cdot T_x(a_i) \cdot R_x(\alpha_i)$$

From MATLAB script I build:

$$A_i = egin{bmatrix} \cos(heta_i) & -\sin(heta_i)\cos(lpha_i) & \sin(heta_i)\sin(lpha_i) & a_i\cos(heta_i) \ \sin(heta_i) & \cos(heta_i)\cos(lpha_i) & -\cos(heta_i)\sin(lpha_i) & a_i\sin(heta_i) \ 0 & \sin(lpha_i) & \cos(lpha_i) & d_i \ 0 & 0 & 0 & 1 \end{bmatrix}$$

```
>> FK Assignment
A =
[cos(th), -cos(alph)*sin(th), sin(alph)*sin(th), a*cos(th)]
[sin(th), cos(alph)*cos(th), -sin(alph)*cos(th), a*sin(th)]
[
      0,
                   sin(alph),
                                       cos(alph),
       0,
                                                          1]
                                     Al =
                                     [cos(thl), -sin(thl), 0, Ll*cos(thl)]
                                     [sin(thl), cos(thl), 0, Ll*sin(thl)]
                                             0,
                                                         0, 1,
                                                                          0]
                                     [
                                                         0, 0,
                                     [
                                             0,
                                                                          11
```

To get H = A1 * A2 * A3

A2 =				
[cos(th	2),	-sin(th2),	0,	L2*cos(th2)]
[sin(th	2),	cos(th2),	0,	L2*sin(th2)]
[0,	0,	1,	0]
[0,	0,	0,	1]

```
A3 =
[cos(th3), -sin(th3), 0, L3*cos(th3)]
[sin(th3), cos(th3), 0, L3*sin(th3)]
[ 0, 0, 1, 0]
[ 0, 0, 0, 1]
```

1]

Consider the two-link cartesian manipulator of Figure 3.13. Derive

Figure 3.13: Two-link cartesian robot of Problem 3-3.

the forward kinematic equations using the DH-convention.

Link	$\mathbf{a_{i}}$	$\alpha_{ m i}$	$\mathbf{d_{i}}$	$\theta_{ m i}$
1	0	-90	d_1	0
2	0	0	d_2	0

$$H = A1 * A2 \\ [\cos(th), -\cos(alph)*\sin(th), \sin(alph)*\sin(th), a*\cos(th)] \\ [\sin(th), \cos(alph)*\cos(th), -\sin(alph)*\cos(th), a*\sin(th)] \\ [0, \sin(alph), \cos(alph), d] \\ [0, 0, 0, 1] \\ [0, 0, 0] \\ [0, 0, 1] \\ [0, 0, 0] \\ [0,$$

$$A1 =$$
 $[1, 0, 0, 0]$
 $[1, 0, 0, 0]$
 $[1, 0, 0, 0]$
 $[1, 0, 0, 0]$
 $[0, 0, 1, 0]$
 $[0, 1, 0, 0]$
 $[0, 0, 1, d2]$
 $[0, -1, 0, d1]$
 $[0, 0, 0, 1]$
 $[0, 0, 0, 1]$
 $[0, 0, 0, 1]$

Consider the two-link manipulator of Figure 3.14 which has joint 1 revolute and joint 2 prismatic. Derive the forward kinematic equations using the DH-convention.

Figure 3.14: Two-link planar arm of Problem 3-4.

Link	a _i	$\alpha_{\rm i}$	di	$\theta_{\rm i}$
1	a_0	90	0	Θ_1
2	0	0	d_2	0

```
Command Window
  [cos(th), -cos(alph)*sin(th), sin(alph)*sin(th), a*cos(th)]
  [sin(th), cos(alph)*cos(th), -sin(alph)*cos(th), a*sin(th)]
                                             cos(alph),
          ο,
                       sin(alph),
          0,
                                                                  1]
                                0,
                                                      0,
  [cos(thl), 0, sin(thl), a0*cos(thl)]
  [sin(thl), 0, -cos(thl), a0*sin(thl)]
          0, 1,
                          0,
                                         0]
           0, 0,
                          0,
                                         1]
  A2 =
  [1, 0, 0,
             0]
  [0, 1, 0, 0]
  [0, 0, 1, d2]
  [0, 0, 0,
  [cos(thl), 0, sin(thl), a0*cos(thl) + d2*sin(thl)]
  [\sin(thl), 0, -\cos(thl), a0*\sin(thl) - d2*\cos(thl)]
           0, 1,
                          0,
  [
                                                        0]
  [
           0, 0,
                          0,
                                                        1]
f_{\overset{\cdot}{\tau}} >>
```


Figure 3.15: Three-link planar arm with prismatic joint of Problem 3-5.

Link	$\mathbf{a_i}$	$\alpha_{ m i}$	$\mathbf{d_{i}}$	$\theta_{ m i}$
1	0	90	0	θ_1
2	0	-90	d_2	0
3	L_3	0	0	θ_3

$$H = A1 * A2 * A3$$

```
A1 =
                                                  [\cos(th3), -\sin(th3), 0, L3*\cos(th3)]
[cos(thl), 0, sin(thl), 0]
                                [1,
                                            0]
                                                  [sin(th3), cos(th3), 0, L3*sin(th3)]
[sin(thl), 0, -cos(thl), 0]
                                     0, 1,
                                            0]
                     0, 0]
                                                         0,
                                                                     0, 1,
                                                                                      0]
       0, 1,
                                [0, -1, 0, d2]
                                                                     0, 0,
                                                          0,
                                                                                      1]
[
        0, 0,
                     0, 1] * [0, 0, 0, 1] * [
```


Figure 3.16: Three-link articulated robot.

Link	$\mathbf{a_i}$	$\alpha_{\mathbf{i}}$	$\mathbf{d_{i}}$	$\theta_{ m i}$
1	0	90	L_1	θ_1
2	L_2	0	0	θ_2
3	L_3	0	0	θ_3

```
Al =
[cos(thl), 0, sin(thl), 0]
[sin(thl), 0, -cos(thl), 0]
[ 0, 1, 0, L1]
[ 0, 0, 0, 1]
```

```
H = A1 * A2 * A3
```

```
A3 =
A2 =
                                            [\cos(th3), -\sin(th3), 0, L3*\cos(th3)]
[\cos(th2), -\sin(th2), 0, L2*\cos(th2)]
                                            [sin(th3), cos(th3), 0, L3*sin(th3)]
[sin(th2), cos(th2), 0, L2*sin(th2)]
                                                              0, 1,
                                                  0,
                  0, 1,
[
       0,
                                  0]
                                                   0,
                                                               0, 0,
                                                                                1]
                   0, 0,
[
        0,
                                   1]
```


Link	a _i	$\alpha_{\rm i}$	di	$\theta_{\rm i}$
1	L_1	0	0	0
2	0	90	L_2	0
3	0	-90	L_3	90
4	0	0	L ₄	0

$$H = A1 * A2 * A3 * A4$$

End of Assignment