Problem Set 9: 数论初步

提交截止时间: 4月8日10:00前

Problem 1

设 a,b,c,d 均为正整数,下列命题是否为真? 若为真,给出证明;否则,给出反例。

a) 若 a | c, b | c, 则 ab | c

b) 若 a | c, b | d, 则 ab | cd

c) 若 ab | c, 则 a | c

d) 若 a | bc, 则 a | b 或 a | c

Problem 2

证明: 若 p 是大于 3 的素数,则 p^2-1 是 24 的倍数。

Problem 3

计算:

a) 23300 mod 11

b) $2^{3300} \mod 31$

c) $3^{516} \mod 7$

Problem 4

试证明: 对于任意的正整数 n, 都有 $n^2 \mid (n+1)^n - 1$.

Problem 5

证明: 如果 a 和 b 为正整数,则 $(2^a-1) \operatorname{mod}(2^b-1) = 2^{a \operatorname{mod} b} - 1$ 。

Problem 6

证明:如果 2^n-1 是质数,则 n 也为质数。

Problem 7

证明:

- a) 设 $d \geq 1, \, d \mid m, \, \mathbb{M} \ a \equiv b (\text{mod } m) \Rightarrow a \equiv b (\text{mod } d).$
- b) 设 $d \ge 1$, 则 $a \equiv b \pmod{m} \Leftrightarrow da \equiv db \pmod{dm}$.
- c) 设 c 与 m 互质, 则 $a \equiv b \pmod{m} \Leftrightarrow ca \equiv cb \pmod{m}$.

Problem 8

借助于费马小定理证明如果 n 是一个正整数,则 42 能整除 $n^7 - n$ 。

Problem 9

试证明: 若 $p \ge 7$ 为质数,则 240 | (p^4-1) 。

Problem 10

证明: 若m 和n 互质,则 $m^{\phi(n)} + n^{\phi(m)} \equiv 1 \pmod{mn}$.