FUNDAMENTOS TEÓRICOS DA COMPUTAÇÃO -- AUTÔMATO FINITO DETERMINÍSTICO --

Função de Transição Estendida

A função de transição estendida de M é a função $\hat{\delta}:Q \times \Sigma^* \to Q$

$$\begin{split} \hat{\delta}(q_0, 00001) &= q_1 \\ \hat{\delta}(q_0, 010) &= q_2 \\ \hat{\delta}(q_0, 00000) &= q_0 \\ \hat{\delta}(q_0, 00100) &= q_2 \\ \hat{\delta}(q_1, 00101) &= q_1 \end{split}$$

Função de Transição Estendida

Definição

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um AFD. A **função de transição estendida** de M é a função $\hat{\delta}:Q\times\Sigma^*\to Q$ definida da seguinte forma para $q\in Q$ e $\omega\in\Sigma^*$:

$$\hat{\delta}(q,\omega) = \begin{cases} q, & \text{se } \omega = \varepsilon \\ \delta(\hat{\delta}(q,\alpha), x), & \text{se } \omega = \alpha x, \text{com } x \in \Sigma \text{ e } \alpha \in \Sigma^* \end{cases}$$

Note que x é um **símbolo** do alfabeto Σ e α é uma **subcadeia** de ω

Ou seja, $\hat{\delta}(q,\omega)$ é o estado ativo em M após computar toda uma cadeia ω a partir do estado q

Aceite em um AFD

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um AFD e seja $\omega\in\Sigma^*$. Dizemos que **M** aceita ω se $\hat{\delta}(q_0,\omega)\in F$, caso contrário, **M** rejeita ω .

$$\hat{\delta}(q_0, 00001) = q_1$$
 Aceita!

$$\hat{\delta}(q_0, 010) = q_2$$
 Rejeita!

$$\hat{\delta}(q_0, 00000) = q_0$$
 Rejeita!

$$\hat{\delta}(q_0, 00101) = q_1$$
 Aceita!

Aceite em um AFD (alternativa)

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um AFD e seja $\omega=\omega_1\omega_2\cdots\omega_n$ uma cadeia sobre Σ ($\omega\in\Sigma^*$)

Dizemos que \mathbf{M} aceita ω se existe uma sequência de estados (r_0, r_1, \cdots, r_n) tal que:

- $r_0 = q_0$
- $r_1 = \delta(r_0, \omega_1) = \delta(q_0, \omega_1)$
- •
- $r_{i+1} = \delta(r_i, \omega_{i+1})$ $\forall i = 0, 1, \dots, n-1$
- , , ,
- $r_n \in F$

Note que a cadeia ω tem n símbolos e que gera n+1 estados

A Linguagem de um AFD

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um AFD Dizemos que $L(M)=\{\omega\in\Sigma^*:M\text{ aceita }\omega\}$ é a linguagem reconhecida por M, ou simplesmente a linguagem de M Também dizemos que M reconhece L(M)

Um AFD **aceita** zero (ε) ou mais cadeias Um AFD **reconhece** uma única linguagem

$$L(M) = \{\omega \in \{0,1\}^* : \omega \text{ termina com "1"}\}$$

Em princípio, faça diversos testes com diversas cadeias para verificar a corretude do autômato com relação à linguagem

Just: .-Believe