Tutorial 3. Deep Learning Toolbox

Xingyu ZENG(xyzeng@ee.cuhk.edu.hk)

- A open-source Matlab toolbox for Deep Learning
- You can download in

https://github.com/rasmusbergpalm/DeepLearnToolbox

If you use this toolbox in your research please cite
@MASTERSTHESIS\{IMM2012-06284, author = "R. B. Palm", title = "Prediction as a candidate for learning deep hierarchical models of data", year = "2012", }

- Advantage
 - Matlab, easy to use
 - Open-source
- Disadvantage
 - Only CPU version, slow

Install Steps

- 1. Download the toolbox,
- Addpath(genpath('DeepLearnToolbox'))

- A Matlab toolbox for Deep Learning
 - NN/ A library for Feedforward Backpropagation Neural Networks
 - CNN/ A library for Convolutional Neural Networks
 - DBN/ A library for Deep Belief Networks
 - SAE/ A library for Stacked Auto-Encoders
 - CAE/ A library for Convolutional Auto-Encoders
 - util/ Utility functions used by the libraries
 - data/ Data used by the examples
 - tests/ unit tests to verify toolbox is working

Feedforward Backpropagation Neural Networks

- Common Function
 - > nnsetup.m
 - > To setup one network
 - > nntrain.m
 - > To train one network
 - > nnpredict.m
 - > To test samples with one network

nnsetup.m

Usage example:

nn = nnsetup([784 100 10]); % to build up one three layers network

nn.activation_function = 'sigm';
nn.output= 'softmax';

h=sigmoid(W_1 *x); y=softmax(W_2 *h);

nn = nntrain(nn, train_x, train_y, opts);

nnpredict.m

Usage example:

labels = nnpredict(nn, test_x);

Notes:

- 1. labels, the classes predicted by nn
- 2. nn.a{end}, the values of the output layer

 $[\sim, labels] = max(nn.a{end}, [], 2);$

Convolutional Neural Networks

- Common Function
 - > cnnsetup.m
 - > To setup one convolutional network
 - > cnntrain.m
 - > To train one convolutional network
 - > cnnff.m
 - > Forward step with one convolutional network
 - > cnntest.m
 - > To test samples with one convlutional network

▶ Suppose input size: I 52*76*3

cnnsetup.mUsage example:

```
cnn.layers = {
    struct('type', 'i') %input layer
    struct('type', 'c', 'outputmaps', 6, 'kernelsize', 9) %convolution layer
    struct('type', 's', 'scale', 4) %sub sampling layer
    struct('type', 'c', 'outputmaps', 8, 'kernelsize', 2) %convolution layer
    struct('type', 's', 'scale', 2) %subsampling layer
    struct('type', 's', 'scale', 2) %subsampling layer
};
```

% the size of {train_x, train_y} is useful for setup cnn

cnn = cnnsetup(cnn, train_x, train_y);

Convolutional

layer 1

Convolutional

pooling

pooling

cnntrain.m

Usage example:

```
opts.alpha = I; % learning rate
opts.batchsize = 50;
opts.numepochs = I;
```


cnn = cnntrain(cnn, train_x, train_y, opts);

cnnff.m

Usage example:

cnn = cnnff(cnn, x);

Notes:

- 1. cnn.o, the output values of the output layer
- 2. cnn.fv, the feature of the input samples
- 3. cnn.o=sigm(cnn.ffW * cnn.fv + repmat(cnn.ffb, I, size(cnn.fv, 2)));

cnntest.m

Usage example:

[er, bad] = cnntest(cnn, test_x, test_y);

Notes:

- er, error fraction value
- 2. bad, index of misclassified testing samples

More examples can be found in

https://github.com/rasmusbergpalm/DeepLearnToolbox/blob/master/README.md

More details about deep learning, Book, 'Learning Deep Architectures for Al'

