Probability and Statistics

Very short summary (a lot is missing!)

Discrete and Continuous Random Variables

	If X is a discrete r.v.	If X is a continuous r.v.
	$x = 0, 1, 2, \dots$	$-\infty < x < \infty$
p.d.f.:	p_x	f(x)
Properties:	$p_x \ge 0$	$f(x) \ge 0$
	$\sum_{x=0}^{\infty} p_x = 1$	$\int_{-\infty}^{\infty} f(x) \ dx = 1$
$\Pr(X=x)$	p_x	0
c.d.f. $Pr(X \le x)$	$F_x = \sum_{r=0}^x p_r$	$F(x) = \int_{-\infty}^{x} f(u) \ du$
$\Pr(a \le X \le b) \text{ for } a \le b$	$F_b - F_{a-1}$	F(b) - F(a)
$\mu \equiv E(X)$	$\sum_{x=0}^{\infty} x \ p_x$	$\int_{-\infty}^{\infty} x \ f(x) \ dx$
E(g(X))	$\sum_{x=0}^{\infty} g(x) \ p_x$	$\int_{-\infty}^{\infty} g(x) \ f(x) \ dx$
$\sigma^2 \equiv \text{var}(X) = E(X^2) - \mu^2$	$\sum_{x=0}^{\infty} x^2 p_x - \mu^2$	$\int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$

R functions for p.d.f, c.d.f. and percentiles

Distribution	$\Pr(X=x)$	$\Pr(X \le x)$	a such that $\Pr(X \leq a) = q$
Binomial $Bin(n, p)$	$\operatorname{dbinom}(x,n,p)$	pbinom(x, n, p)	${\tt qbinom}(q,n,p)$
Poisson $P(\mu)$	$\mathtt{dpois}(x,\mu)$	$\mathtt{ppois}(x,\mu)$	$ ext{qpois}(q,\mu)$
Standard Normal $N(0,1)$	0	pnorm(x)	$\mathtt{qnorm}(q)$
Normal $N(\mu, \sigma^2)$	0	$\mathtt{pnorm}(x,\mu,\sigma)$	$\mathtt{qnorm}(q,\mu,\sigma)$
χ^2 with ν df	0	$ exttt{pchisq}(x, u)$	$\mathtt{qchisq}(q,\nu)$
t with ν df	0	$pt(x, \nu)$	$ exttt{qt}(q, u)$

Discrete Distributions

Binomial Distribution B(n, p)

The probability of getting r success in n independent trials.

$$\Pr(X = r) = p_r = \binom{n}{r} p^r q^{n-r} \text{ for } r = 0, 1, ..., n$$

where p is the probability of success, and q = 1 - p.

$$\mu \equiv E(X) = np$$
, and $\sigma^2 \equiv \text{var}(X) = npq$.

Poisson Distribution $P(\mu)$

The number of events that occurs in a period of time or space, during which an average of μ events are expected to occur.

$$\Pr(X=r)=p_r=\frac{\mu^r e^{-\mu}}{r!}\quad\text{for}\quad r=0,1,\ldots,n$$

$$\mu\equiv E(X)=\mu, \text{ and } \sigma^2\equiv \text{var}(X)=\mu.$$

Continuous Distributions

Standard Normal Distribution N(0,1)

The standard normal distribution has p.d.f. f(z) given by

$$f(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right) \qquad (-\infty < z < \infty)$$

 $\mu \equiv E(X) = 0$, and $\sigma^2 \equiv \text{var}(X) = 1$.

The c.d.f. is given by:

$$\Phi(z) \equiv \Pr(Z \le z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp\left(-\frac{1}{2}u^{2}\right) du \qquad (-\infty < z < \infty).$$

$$\Phi(-z) = 1 - \Phi(z)$$

The P% percentage point x(P) of $Z \sim N(0,1)$ is such that $\Pr(Z > x(P)) = P\% = P/100$:

$$\Phi(x(P)) = \Pr(Z \le x(P)) = 1 - \frac{P}{100}$$

and hence

$$x(P) = \Phi^{-1} \left(1 - \frac{P}{100} \right)$$

Normal Distribution $N(\mu, \sigma^2)$

The $N(\mu, \sigma^2)$ distribution has p.d.f

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \qquad (-\infty < x < \infty).$$

$$\mu \equiv E(X) = \mu$$
, and $\sigma^2 \equiv \text{var}(X) = \sigma^2$.

If $X \sim N(\mu, \sigma^2)$ then

$$Z \equiv \frac{X - \mu}{\sigma} \sim N(0, 1).$$

and

$$\Pr(X \le x) = \Pr\left(Z \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

The sample mean

 X_1, X_2, \ldots, X_n are a random sample of size n, i.e., independently and identically distributed r.v.s, with mean μ and variance σ^2 . The sample mean \bar{X} is

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i .$$

$$E(\bar{X}) = \mu \text{ and } var(\bar{X}) = \frac{\sigma^2}{n}$$

The Central Limit Theorem

Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of independently and identically distributed r.v.s, each having a distribution with mean μ and variance σ^2 . Define

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 $(n = 1, 2, 3, ...).$

As $n \to \infty$,

$$\frac{(\bar{X} - \mu)}{\left(\frac{\sigma}{\sqrt{n}}\right)} \stackrel{D}{\to} Z,$$

where $Z \sim N(0, 1)$.

Approximations of Distributions

