Statistical Techniques. Lab 1

Plan for today

- Review of Probability Theory
- Random variables
- Density. Distributions
- Expected value
- Some tasks (pen & paper)
- Short introduction to Statistics
- Python Implementations
- Some tasks (Python)
- Summary and time for questions

Objectives

- To recall Probability and solve some tasks
- To have introduction to Python in Statistics
- To learn some libraries for statistics in Python
- To solve some tasks using Python

Review of Probability Theory

Be sure, that you know:

- Outcome
- Sample space
- Event

Don't confuse these terms!

Sample space

Outcome: A result of a random experiment.

Sample Space: The set of all possible outcomes.

Event: A subset of the sample space.

Time to practice

- Example 1. Write down the sample space for each experiment below:
- Tossing a coin: S =
- Rolling a die: S =
- Drawing a card from a deck: S =

- Example 2. Find the sample space for each experiment below:
- Throw a coin twice: S =
- Throw two dice: S =
- Throw a coin repeatedly until a head first appears: S=

Simple probability

$$P(A) = \frac{n(A)}{n(S)} = \frac{no.of\ outcomes\ in\ A}{total\ no.of\ outcomes}$$

Example 3. On a six-sided die, each side has a number between 1 and 6. What is the probability of throwing a 3 or a 4?

- a. 1 in 6
- b. 1 in 3
- c. 1 in 2
- d. 1 in 4

Random variables

• X, is a numerical quantity whose value is determined be a random experiment

Two types of Random variables

- Continuous Random Variables (CDF (Cumulative Distribution Function), PDF (Probability Density Function))
- Discrete Random Variables (CDF (Cumulative Distribution Function), PMF (Probability mass function))

Probability mass function (pmf, p(x))

For a discrete random variable X the probability distribution is described by the **probability mass function** p(x), which has the following properties:

$$1. \qquad 0 \le p(x) \le 1$$

1.
$$0 \le p(x) \le 1$$

2. $\sum_{x} p(x) = \sum_{i=1}^{\infty} p(x_i) = 1$

3.
$$P[a \le x \le b] = \sum_{a \le x \le b} p(x)$$

Graph: Discrete Random Variable

Probability Density Function (pdf, f(x))

For a continuous random variable X the probability distribution is described by the **probability density function** f(x), which has the following properties:

1.
$$f(x) \ge 0$$

$$\int_{-\infty}^{\infty} f(x) dx = 1.$$

3.
$$P[a \le X \le b] = \int_a^b f(x) dx.$$

The cumulative distribution function F(x) (CDF)

For Discrete Random Variables

$$F(x) = P[X \le x] = \sum_{u \le x} p(u)$$

For Continuous Random Variables

$$F(x) = P[X \le x] = \int_{-\infty}^{x} f(u) du$$

Expected value

Let X denote a **discrete** random variable with probability mass function p(x) (probability density function f(x) if X is **continuous**) then the expected value of X, E(X) is defined to be:

$$E(X) = \sum_{x} xp(x) = \sum_{i} x_{i}p(x_{i})$$

and if X is continuous with probability density function f(x)

$$E(X) = \int_{-\infty}^{\infty} xf(x) dx$$

Time to practice

Example 4

The random variable *X* giving the number of passengers (excluding the driver) per car in rush hour traffic has the following probability function:

x_{i}	0	1	2	3	4
$P(X = x_i)$	0.7	p_2	0.1	0.05	0.05

- 1.Find p_2 .
- 2. What is the probability that the number of passengers is at least 2?
- 3. Determine and sketch the distribution function F(x) of the random variable X.
- 4. Find and interpret
- a. F(3.9) F(0.05)
- b. Expected value E(X)?

Time to practice

Example 5.

Let the random variable *X* have the following distribution function:

$$F(t) = \begin{cases} 0, & t < 0 \\ kt^2, & 0 \le t \le \frac{3}{4} \\ 1, & t > \frac{3}{4} \end{cases}$$

- 1. Find *k*, *pdf*?
- 2. What is the probability that that *X* lies in the interval $\left|0;\frac{1}{2}\right|$?
- 3. Find E(t) (expected value)?

Introduction to Statistics

- A **population** is the entire collection of objects or outcomes about which information is sought.
- A **sample** is a subset of a population, containing the objects or outcomes that are actually observed.

Introduction to Statistics

In probability theory

The model is known. We are interested in predicting the outcomes and observations of the phenomena

Introduction to Statistics

In statistics

The model is unknown. The outcomes and observations of the phenomena have been observed.

We are interested in determining the model from the observations

Python Implementations

Let's have some practice.

Click here

Summary

Check yourself:

- 1.) What is the difference between pdf and cdf?
- 2.) What is a sample? Give your own example.
- 3.) What Python libraries do we use for Statistics?

Thank you

