Geometric Modeling

Tutorial: Assignment 2 (prac. & theo.)

Exam

Exam

- When: Friday, 26th June 2015 14:00-16:00h
- Where: EEMCS Building, Lecture Hall F

Assignments

Hand-in of the Practical Assignment 2

- Upload your one .zip file containing your program, source and documentation on Tuesday, 9th June to blackboard groups file exchange (or send it via email)
- Wednesday, 10th June:
 - Grading in personal interviews
 - 20 min slots
 - Group must show up entirely
 - Only for the 20min, not the whole time
 - Everybody is graded individually, based on:
 - The group's implementation
 - Personal knowledge about the implementation
 - Everybody must be able to explain all of the code

Assignments

Schedule: Hand-in Practical Assignment 2

- You only need to be present for the interview slot of your group
- Location: **EEMCS HB 11.270 (Klaus), HB 11.120 (Christopher)**
- Date: Wednesday, 10th June

Time	Klaus	Christopher
15:45-16:05	Group 3	Group 1
16:10-16:30	Group 6	Group 5
16:35-16:55	Group 7/8	Group 9
17:00-17:20	Group 10	
17:25-17:45	Group 11	

Reminder: Gradient matrix of a triangle

- Notation: N normal of the triangle, e_i oriented edges,
- u_i function values at the vertices The orientations of the normal and the edges

$$\nabla u(p) = \frac{1}{2\operatorname{area}(T)} \sum_{i=1}^{3} u_i \, N \times e_i$$

$$\frac{1}{2\operatorname{area}(T)} \begin{pmatrix} (N \times e_1)_{\chi} & (N \times e_2)_{\chi} & (N \times e_3)_{\chi} \\ (N \times e_1)_{y} & (N \times e_2)_{y} & (N \times e_3)_{y} \\ (N \times e_1)_{z} & (N \times e_2)_{z} & (N \times e_3)_{z} \end{pmatrix}$$

Gradient matrix of a mesh

- All vertices have indices
- Choose an order for the gradients and their coordinates
 - For example: list x,y,z coordinates of all triangles in the order of the triangle indices
- For every triangle compute the 3x3 matrix and sort the entries to the corresponding locations in the "big" matrix

Test your matrix before using it for Task 2!

Select triangles in JavaView

Toggle on triangle selection mode (or keep `n` pressed)

Select triangles in JavaView

Drag rectangle with the mouse and release mouse button

Check if element 17 is selected

```
PiVector element = geom.getElement(17);
Element.hasTag(PsObject.IS_SELECTED);
```

The last line returns a boolean, which has the value true if the element is selected

User interface (one possibility)

- Text fields to specify 3x3 matrix
- Button compute deformed surface
- Button reset

- Interesting matrices include:
 - Multiples of the identity (scaling)
 - Diagonal matrices (with positive entries) anisotropic scaling in the directions of the globale coordinate axes
 - Rotations
 - ...

Overview

- Set up gradient matrix (see Task 1)
- Compute gradients of embedding (vector listing the vertex coord.)
 - You get three gradients per triangle (one for each coordinate function (x,y,z-coordinates of vertices))
- Triangles are selected and a 3x3 matrix is specified by the user
- 3x3 matrix is applied to all three gradient vector of all selected triangles to get the modified gradients \tilde{g}_x , \tilde{g}_y , \tilde{g}_z (3 per triangle)
- The new coordinate functions are computed by solving three linear systems (one for each coordinate)

$$G^{T}M_{V}G\tilde{\chi}_{(x,y,z,)} = G^{T}M_{V}\tilde{g}_{(x,y,z)}$$

• Display the deformed surface (which has \tilde{x}_x , \tilde{x}_y , \tilde{x}_z as vertex coordinates)

Concerning the linear system to be solved

- The matrix $S = G^T M_V G$ has a kernel (which consists of the constant functions)
- One way to determine these degrees of freedom: After reconstruction move the barycenter to the origin
- If you have troubles solving the linear system, add ϵ M to S (where ϵ is a small positive real value and M the mass matrix). Then the matrix is positive definite. If ϵ is small enough this only slightly affects the deformation.
 - What this does is that it adds a penalty for the L^2 -norm of the embedding of deformed surface