AMP

A partial recursive function (of arity n, say) is a partial function (from n-tuples of numbers to numbers) that can be built up from the basic functions by repeated use of the operations of composition, primitive recursion and minimization.

· Basic functions:

projections Proj? E Fun (IN", IN)

Projn $(x_1,...,x_n) \triangleq x_i$

ZeroZfun(IN^, N)

700" (x11.11/n)=0

successor Suc & Fun (IN, IN)

Suc (11) = x+1

• Composition: given $f \in PFn(N^n, N)$ and $g_1, ..., g_n \in PFn(N^n, N)$, then $f \circ (g_1, ..., g_n) \in PFn(N^n, N)$ is the unique partial function such that $(f \circ (g_1, ..., g_n))(x_1, ..., z_m) \equiv f(g_1(x_1, ..., x_m), ..., g_n(x_1, ..., z_m))$ fore side defined iff the other is & then they're =.

for all (211..., 2m) EN.

• Primitive recursion: given $f \in PFn(N^n, IN)$ and $g \in PFn(N^{n+2}, IN)$, $p^n(f,g) \in PFn(N^{n+1}, IN)$

_

1

1

_

Minimization: given f∈Pfn(Nⁿ, N),
 µ(f)∈Pfn(Nⁿ, IN) is the unique partial function satisfying

 $\mu(f)(x_1,...,x_n) \equiv \begin{cases} least x such that \\ f(x_1,...,x_n,x) > 0 \text{ and } \\ f(x_1,...,x_n,y) = 0 \text{ all } 0 \in y < x \end{cases}$

all $(x_1,...,x_n) \in \mathbb{N}^n$. (so is undefined if no such a exists)

f∈Pfn(N,N)is (total) <u>recursive</u> if it is partial recursive and totally defined, i.e. f(21,...,2m) defined for all (31,..., 2n)∈ N.

Since each partial recursive function has a finite description (formal expression built up from proj", Jero", she using o, p& µ), we can enumerate them all. So there are only countably many justial recursive functions from IN to IN, but uncountably many arbitrary, such functions: hence not all functions can be partial recursive.

2

- (b) (i) S is decidable if its characteristic function | $X_S \in Fun(IN, IN)$ [$X_S(x) = \begin{cases} 0 & \text{if } x \notin S \\ 1 & \text{if } x \in S \end{cases}$ is (register machine) computable.

 (ii) S is r.e. if either $S = \emptyset$ or $S = \{f(n) \mid n \in IN\}$ for some recursive $f \in Fun(IN, IN)$.
 - Suppose S is both r.e. and co-r.e. If $S = \emptyset$ or $S = \mathbb{N}$, clearly it is decidable. So suppose $S \neq \emptyset$, \mathbb{N} and hence $\mathbb{N} S \neq \emptyset$, \mathbb{N} . Then by hypothesis there are recursive functions f, g so that $S = f(n) \mid n \in \mathbb{N}$

 $S = \{f(n) \mid n \in \mathbb{N}\}$ $\mathbb{N} - S = \{g(n) \mid n \in \mathbb{N}\}$

We use the fact that purial recursive functions are precisely register machine computable functions.

Hence we can find register machines computing f & g. From these we can construct a register machine such that given x in R1 (4 all other registers zeroed), the machine computer successive elements of the list

f(0), g(0), f(1), g(1), ...

stopping the first time one of these elements

is equal to a and halting with RO = 0 if the element was in odd position (ie. was a g-value)

= 1 if the element was in even position (ie. was an f-value)

Since each x \in N is either in S (ie is some f-value) or in IN-S (ie. is some g-value), but not both, the machine always halts giving the correct value of $\chi_s(x)$. Hence S is decidable.

- (a) Mostly bookwork from lectures 8-10. The last sentence is made easier by the statement in the first sentence.
- (b) (i) definition from lecture 5; (ii) - definition from lecture 11.
- (c) This result was covered in Lecture 12.