# Formelsammlung Physik

# Damien Flury

# 6. November 2019

#### Einheiten 1

#### SI-Basiseinheiten 1.1

| Physikalische Grösse | Einheit   | Symbol              |
|----------------------|-----------|---------------------|
| Länge                | Meter     | m                   |
| Zeit                 | Sekunde   | s                   |
| Masse                | Kilogramm | kg                  |
| Temperatur           | Kelvin    | K                   |
| Stromstärke          | Ampère    | A                   |
| Stoffmenge           | Mol       | mol                 |
| Lichtstärke          | Candela   | $\operatorname{cd}$ |

#### 1.2 Umrechnung

$$1\frac{m}{s} = 3.6\frac{km}{h} \tag{1}$$

#### Kinematik $\mathbf{2}$

#### 2.1 Translation (geradlinige Bewegung)

# Gleichförmige Translation

$$v = \lim_{t \to 0} \frac{\Delta s}{\Delta t} \tag{2}$$

$$s = v \cdot t + s_0 \tag{3}$$

# Gleichförmig beschleunigte Translation

$$a = \lim_{t \to 0} \frac{\Delta v}{\Delta t} \tag{4}$$

$$a = \lim_{t \to 0} \frac{\Delta v}{\Delta t}$$

$$v_1^2 - v_2^2 = 2 \cdot a \cdot s$$
(5)

$$s = \frac{1}{2} \cdot v \cdot t \tag{6}$$

$$s = \frac{1}{2} \cdot a \cdot t^2 \tag{7}$$

$$s = \frac{1}{2} \cdot a \cdot t^2 \tag{7}$$

$$s = \frac{v_1 + v_2}{2} \cdot t = v_1 \cdot t + \frac{1}{2} \cdot a \cdot t^2 = \frac{v_2^2 - v_1^2}{2 \cdot a}$$
 (8)