Einzelprüfung "Theoretische Informatik / Algorithmen (vertieft)"

Einzelprüfungsnummer 66115 / 2016 / Frühjahr

Thema 2 / Aufgabe 6

(Karlsruhe nach Kassel)

Stichwörter: Algorithmus von Dijkstra

(a) Berechnen Sie für folgenden Graphen den kürzesten Weg von Karlsruhe nach Kassel und dokumentieren Sie den Berechnungsweg:

Verwendete Abkürzungen:

A Augsburg

EF Erfurt

F Frankfurt

KA Karlsruhe

KS Kassel

M München

MA Mannheim

N Nürnberg

S Stuttgart

WÜ Würzburg

Zahl = Zahl in Kilometern

Lösungsvorschlag

Nr.	besuch	t A	E	F	KA	KS	M	MA	N	S	W
0	besuch	$\frac{\iota}{\infty}$	<u>E</u> ∞	r ∞	$\frac{\mathbf{K}\mathbf{A}}{0}$	 ∞	 ∞	_∞	 ∞	<u>∞</u>	 ∞
1	KA	250	∞	∞	0	∞	∞	80	∞	∞	∞
2	MA	1	∞	165	ı	∞	∞	80	∞	∞	∞
3	F	1	∞	165 165	l I	338	∞	1	∞	∞	382
		l I		103				1			
4	A	l I	∞			338	334		∞ 501	∞	382
5	M	1	∞			338	334	1	501	∞	382
6	KS		∞ 5.00			338		!	501	∞	382
7	W		568		ļ	ļ			485	∞	382
8	N		568						485	668	
9	E		568							668	
10	S									668	
nach		Entfernung		Reih	enfol	ge F	Pfad				
$KA \rightarrow A$		250		0		<u> </u>	$\overline{(A \rightarrow }$	A			
KA -	\rightarrow E	568		9		K	$A \rightarrow$	MA -	\rightarrow F \rightarrow	$W \rightarrow$	E
KA -	\rightarrow F	165		3		k	$A \rightarrow$	MA -	→ F		
KA -	\rightarrow KA	0		1							
							$KA \rightarrow MA \rightarrow F \rightarrow KS$				
KA -	ightarrow KS	338		6		k	$A \rightarrow$	MA -	ightarrow F $ ightarrow$	KS	
	\rightarrow KS \rightarrow M	338 334		6 5				$MA - A \rightarrow M$		KS	
KA -						k		$A \rightarrow I$		KS	
KA -	$\begin{array}{l} \rightarrow M \\ \rightarrow MA \end{array}$	334		5		k k	$(A \rightarrow (A \rightarrow A $	$A \rightarrow I$	M		N
KA -	$\begin{array}{l} \rightarrow M \\ \rightarrow MA \\ \rightarrow N \end{array}$	334 80		5 2		k K	$A \rightarrow A \rightarrow$	$A \rightarrow MA$ $MA -$	$M \rightarrow F \rightarrow$	W ightarrow	$N \rightarrow S$

(b) Könnte man den Dijkstra Algorithmus auch benutzen, um das Travelling-Salesman Problem zu lösen?

Die Bschlangaul-Sammlung

Hermine Bschlangaul and Friends

Eine freie Aufgabensammlung mit Lösungen von Studierenden für Studierende zur Vorbereitung auf die 1. Staatsexamensprüfungen des Lehramts Informatik in Bayern.

Diese Materialsammlung unterliegt den Bestimmungen der Creative Commons Namensnennung-Nicht kommerziell-Share Alike 4.0 International-Lizenz.

Hilf mit! Die Hermine schafft das nicht allein! Das ist ein Community-Projekt! Verbesserungsvorschläge, Fehlerkorrekturen, weitere Lösungen sind herzlich willkommen - egal wie - per Pull-Request oder per E-Mail an hermine.bschlangaul@gmx.net.Der TeX-Quelltext dieser Aufgabe kann unter folgender URL aufgerufen werden: https://github.com/bschlangaul-sammlung/examens-aufgaben-tex/blob/main/Examen/66115/2016/03/Thema-2/Aufgabe-6.tex