MADS-ML - Machine Learning

Support Vector Machines

Prof. Dr. Stephan Doerfel

Moodle (WiSe 2024/25)

"The line must be drawn here!"

► Find an actual model and learn its parameters (in contrast to kNN an decision trees)

- ► Find an actual model and learn its parameters (in contrast to kNN an decision trees)
- use and build upon an intuitive concept of separability

- ► Find an actual model and learn its parameters (in contrast to kNN an decision trees)
- use and build upon an intuitive concept of separability
- ► Support Vector Machines (SVMs) by Vapnik et al.

- ► Find an actual model and learn its parameters (in contrast to kNN an decision trees)
- use and build upon an intuitive concept of separability
- ► Support Vector Machines (SVMs) by Vapnik et al.
- ▶ basics 1963

- ► Find an actual model and learn its parameters (in contrast to kNN an decision trees)
- use and build upon an intuitive concept of separability
- ► Support Vector Machines (SVMs) by Vapnik et al.
- ▶ basics 1963
- ▶ important extensions: 1993 Soft Margin, 1995 Kernel Trick

- ► Find an actual model and learn its parameters (in contrast to kNN an decision trees)
- use and build upon an intuitive concept of separability
- Support Vector Machines (SVMs) by Vapnik et al.
- ▶ basics 1963
- ▶ important extensions: 1993 Soft Margin, 1995 Kernel Trick
- versatile, robust, effective in high-dimensional spaces

Outline

Basic Idea

Mathematical Description

Soft-Margin SVMs

Kernel Trick

Example Dataset 2D

Consider

- ▶ two classes: $c_1 = -1$ und $c_2 = +1$ → (binary classification)
- \blacktriangleright two features: x_1 and x_2
- ▶ data shows part of the Iris dataset

Basic Idea 3 / 42

Example Dataset 2D

Consider

- ▶ two classes: $c_1 = -1$ und $c_2 = +1$ → (binary classification)
- \blacktriangleright two features: x_1 and x_2
- ▶ data shows part of the Iris dataset

Basic Idea 3 / 42

Example dataset 3D

Basic Idea 4 / 42

Outline

Basic Idea

Mathematical Description

Soft-Margin SVMs

Kernel Trick

Definition 1 (Hyperplane)

A Hyperplane in an *n*-dimensional vector space \mathbb{R}^n is an (n-1)-dimensional affine subspace.

Definition 1 (Hyperplane)

A Hyperplane in an *n*-dimensional vector space \mathbb{R}^n is an (n-1)-dimensional affine subspace.

▶ $n=1 \rightarrow point$

Definition 1 (Hyperplane)

A Hyperplane in an *n*-dimensional vector space \mathbb{R}^n is an (n-1)-dimensional affine subspace.

- ▶ $n=1 \rightarrow point$
- ▶ n=2 → line

Definition 1 (Hyperplane)

A Hyperplane in an *n*-dimensional vector space \mathbb{R}^n is an (n-1)-dimensional affine subspace.

- ▶ $n=1 \rightarrow point$
- ▶ n=2 → line
- ▶ $n=3 \rightarrow (regular) plane$

Hyperplane - Mathematical Representation

A hyperplane in \mathbb{R}^n is described by a vector $\mathbf{w} \in \mathbb{R}^n$ of (weights), $\mathbf{w} \neq 0$, a scalar $b \in \mathbb{R}$ (bias) and the equation:

$$\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = 0.$$

Hyperplane – Mathematical Representation

A hyperplane in \mathbb{R}^n is described by a vector $\mathbf{w} \in \mathbb{R}^n$ of (weights), $\mathbf{w} \neq 0$, a scalar $b \in \mathbb{R}$ (bias) and the equation:

$$\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = 0.$$

▶ denoted as $\mathcal{H}(\mathbf{w}, b)$

Hyperplane – Mathematical Representation

A hyperplane in \mathbb{R}^n is described by a vector $\mathbf{w} \in \mathbb{R}^n$ of (weights), $\mathbf{w} \neq 0$, a scalar $b \in \mathbb{R}$ (bias) and the equation:

$$\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = 0.$$

- \blacktriangleright denoted as $\mathcal{H}(\mathbf{w}, b)$
- $\blacktriangleright \langle \cdot, \cdot \rangle$ is the scalar product

Hyperplane - Mathematical Representation

A hyperplane in \mathbb{R}^n is described by a vector $\mathbf{w} \in \mathbb{R}^n$ of (weights), $\mathbf{w} \neq 0$, a scalar $b \in \mathbb{R}$ (bias) and the equation:

$$\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = 0.$$

- \blacktriangleright denoted as $\mathcal{H}(\mathbf{w}, b)$
- $\blacktriangleright \langle \cdot, \cdot \rangle$ is the scalar product
- ► representation in coordinates::

$$w_1x_1 + w_2x_2 + \ldots + w_nx_n + b = 0$$

Hyperplane – Mathematical Representation – Example

Description of the hyperplane $\mathcal{H}(\mathbf{w}, b)$:

$$ightharpoonup \langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = 0 \text{ with } \boldsymbol{w} = \begin{pmatrix} 1 \\ 6 \end{pmatrix}, b = -7$$

Let $\mathcal{H}(\boldsymbol{w},b)$ be the hyperplane $\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = 0$ and define

$$f_{\boldsymbol{w},b}: \mathbb{R}^n \to \mathbb{R}: \boldsymbol{x} \mapsto \langle \boldsymbol{w}, \boldsymbol{x} \rangle + b.$$

Let $\mathcal{H}(\boldsymbol{w},b)$ be the hyperplane $\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = 0$ and define

$$f_{\boldsymbol{w},b}:\mathbb{R}^n\to\mathbb{R}:\boldsymbol{x}\mapsto\langle\boldsymbol{w},\boldsymbol{x}\rangle+b.$$

Properties:

 $ightharpoonup \mathcal{H}(\mathbf{w},b)$ divides the space \mathbb{R}^n into to parts (half-spaces).

Let $\mathcal{H}(\boldsymbol{w},b)$ be the hyperplane $\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = 0$ and define

$$f_{\boldsymbol{w},b}:\mathbb{R}^n\to\mathbb{R}:\boldsymbol{x}\mapsto\langle\boldsymbol{w},\boldsymbol{x}\rangle+b.$$

- $ightharpoonup \mathcal{H}(\mathbf{w},b)$ divides the space \mathbb{R}^n into to parts (half-spaces).

Let $\mathcal{H}(\boldsymbol{w},b)$ be the hyperplane $\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = 0$ and define

$$f_{\boldsymbol{w},b}:\mathbb{R}^n\to\mathbb{R}:\boldsymbol{x}\mapsto\langle\boldsymbol{w},\boldsymbol{x}\rangle+b.$$

- $ightharpoonup \mathcal{H}(\mathbf{w},b)$ divides the space \mathbb{R}^n into to parts (half-spaces).
- $f_{\mathbf{w},b}(\mathbf{x}) = 0 \iff \mathbf{x} \text{ in } \mathcal{H}(\mathbf{w},b)$
- $ightharpoonup x \in \mathbb{R}^n$ with $f_{w,b}(x) > 0$ is in the positive half-space

Let $\mathcal{H}(\boldsymbol{w},b)$ be the hyperplane $\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = 0$ and define

$$f_{\boldsymbol{w},b}:\mathbb{R}^n\to\mathbb{R}:\boldsymbol{x}\mapsto\langle\boldsymbol{w},\boldsymbol{x}\rangle+b.$$

- $ightharpoonup \mathcal{H}(\mathbf{w},b)$ divides the space \mathbb{R}^n into to parts (half-spaces).
- $f_{\mathbf{w},b}(\mathbf{x}) = 0 \iff \mathbf{x} \text{ in } \mathcal{H}(\mathbf{w},b)$
- $\mathbf{x} \in \mathbb{R}^n$ with $f_{\mathbf{w},b}(\mathbf{x}) > 0$ is in the positive half-space
- ▶ $x \in \mathbb{R}^n$ with $f_{w,b}(x) < 0$ is in the negative half-space

Let $\mathcal{H}(\boldsymbol{w},b)$ be the hyperplane $\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = 0$ and define

$$f_{\boldsymbol{w},b}:\mathbb{R}^n\to\mathbb{R}:\boldsymbol{x}\mapsto\langle\boldsymbol{w},\boldsymbol{x}\rangle+b.$$

- $ightharpoonup \mathcal{H}(\mathbf{w},b)$ divides the space \mathbb{R}^n into to parts (half-spaces).
- $f_{\mathbf{w},b}(\mathbf{x}) = 0 \iff \mathbf{x} \text{ in } \mathcal{H}(\mathbf{w},b)$
- $ightharpoonup x \in \mathbb{R}^n$ with $f_{w,b}(x) > 0$ is in the positive half-space
- $ightharpoonup x \in \mathbb{R}^n$ with $f_{w,b}(x) < 0$ is in the negative half-space
- $ightharpoonup |f_{m{w},b}(m{x})| > |f_{m{w},b}(m{y})|$ means, $m{x}$ is further from $\mathcal{H}(m{w},b)$ than $m{y}$

Let $\mathcal{H}(\boldsymbol{w},b)$ be the hyperplane $\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = 0$ and define

$$f_{\boldsymbol{w},b}:\mathbb{R}^n\to\mathbb{R}:\boldsymbol{x}\mapsto\langle\boldsymbol{w},\boldsymbol{x}\rangle+b.$$

- $ightharpoonup \mathcal{H}(\mathbf{w},b)$ divides the space \mathbb{R}^n into to parts (half-spaces).
- $f_{\mathbf{w},b}(\mathbf{x}) = 0 \iff \mathbf{x} \text{ in } \mathcal{H}(\mathbf{w},b)$
- $\mathbf{x} \in \mathbb{R}^n$ with $f_{\mathbf{w},b}(\mathbf{x}) > 0$ is in the positive half-space
- $ightharpoonup x \in \mathbb{R}^n$ with $f_{w,b}(x) < 0$ is in the negative half-space
- $|f_{\boldsymbol{w},b}(\boldsymbol{x})| > |f_{\boldsymbol{w},b}(\boldsymbol{y})|$ means, \boldsymbol{x} is further from $\mathcal{H}(\boldsymbol{w},b)$ than \boldsymbol{y}
- ▶ $|f_{\mathbf{w},b}(\mathbf{x})|$ is called functional distance from \mathbf{x} to $\mathcal{H}(\mathbf{w},b)$.

Separating Hyperplane

 $\mathcal{H}(\mathbf{w},b)$ divides the space \mathbb{R}^n into two parts (positive und negative).

Separating Hyperplane

 $\mathcal{H}(\mathbf{w}, b)$ divides the space \mathbb{R}^n into two parts (positive und negative).

For
$$\mathbf{x} \in \mathbb{R}^n$$
: $\langle \mathbf{w}, \mathbf{x} \rangle + b \begin{cases} = 0 \Rightarrow \mathbf{x} \text{ in } \mathcal{H}(\mathbf{w}, b) \\ > 0 \Rightarrow \mathbf{x} \text{ is in the positive half-space} \\ < 0 \Rightarrow \mathbf{x} \text{ is in the negative half-space} \end{cases}$

Separating Hyperplane

Definition 2 (Separating Hyperplane)

For a dataset D with two classes (-1,+1), $\mathcal{H}(\boldsymbol{w},b)$ is called a separating hyperplane, if for each instance $(\boldsymbol{x},c)\in D$ holds

$$c = -1 \iff \langle \boldsymbol{w}, \boldsymbol{x} \rangle + b < 0.$$

Binary Classification using a Hyperplane

Approach:

▶ learning phase: determine separating hyperplane $\mathcal{H}(\mathbf{w}, b)$

Open Issues

1. Existence: Can we always find a separating hyperplane?

Open Issues

- 1. Existence: Can we always find a separating hyperplane?
- 2. Uniqueness: Is the hyperplane unique or are there many?

Open Issues

- 1. Existence: Can we always find a separating hyperplane?
- 2. Uniqueness: Is the hyperplane unique or are there many?
- 3. Optimality: Which is the best hyperplane?

Existence of a Separating Hyperplane

Existence of a Separating Hyperplane

There are datasets for which no separating hyperplane exists.

Linear Separable

Definition 3 (Linear Separable)

Two sets $A, B \subseteq \mathbb{R}^n$ are called **linear separable**, if there exist $\mathbf{w} \in \mathbb{R}^n$ and $b \in \mathbb{R}$, such that

- ▶ for all $x \in A$ holds $\langle w, x \rangle + b \ge 0$ and
- ▶ for all $\mathbf{x} \in B$ holds $\langle \mathbf{w}, \mathbf{x} \rangle + b < 0$.

Mathematical Description

¹Soft-Margin SVMs and the kernel trick are workarounds for this issue.

Linear Separable

Definition 3 (Linear Separable)

Two sets $A, B \subseteq \mathbb{R}^n$ are called **linear separable**, if there exist $\mathbf{w} \in \mathbb{R}^n$ and $b \in \mathbb{R}$, such that

- ▶ for all $x \in A$ holds $\langle w, x \rangle + b \ge 0$ and
- ▶ for all $x \in B$ holds $\langle w, x \rangle + b < 0$.

The requirement of linear separability is a strong restriction on the applicability of this approach.¹

Mathematical Description

¹Soft-Margin SVMs and the kernel trick are workarounds for this issue.

Uniqueness of a Separating Hyperplane

Uniqueness of a Separating Hyperplane

If a dataset is linear separable, there can be many more hyperplanes.

Uniqueness of a Separating Hyperplane

If a dataset is linear separable, there can be many more hyperplanes.

Which hyperplane is the best?

► Generalization theory: Estimate the risk of misclassification on unknown data

▶ Given a probability of error δ , an upper bound u for the classification error can be constructed such that with a probability of $(1 - \delta)$, no more than u percent of the data are misclassified.

- ▶ Given a probability of error δ , an upper bound u for the classification error can be constructed such that with a probability of (1δ) , no more than u percent of the data are misclassified.
- ► This upper bound depends on

- ▶ Given a probability of error δ , an upper bound u for the classification error can be constructed such that with a probability of (1δ) , no more than u percent of the data are misclassified.
- ► This upper bound depends on
 - the radius of a ball encompassing the dataset (smaller is better),

- ▶ Given a probability of error δ , an upper bound u for the classification error can be constructed such that with a probability of (1δ) , no more than u percent of the data are misclassified.
- ► This upper bound depends on
 - the radius of a ball encompassing the dataset (smaller is better),
 - ightharpoonup the distance between data and hyperplane γ (higher is better),

- ▶ Given a probability of error δ , an upper bound u for the classification error can be constructed such that with a probability of (1δ) , no more than u percent of the data are misclassified.
- ► This upper bound depends on
 - the radius of a ball encompassing the dataset (smaller is better),
 - \blacktriangleright the distance between data and hyperplane γ (higher is better),
 - \blacktriangleright the number of training instances ℓ (higher is better) and

- ▶ Given a probability of error δ , an upper bound u for the classification error can be constructed such that with a probability of (1δ) , no more than u percent of the data are misclassified.
- ► This upper bound depends on
 - the radius of a ball encompassing the dataset (smaller is better),
 - \blacktriangleright the distance between data and hyperplane γ (higher is better),
 - ightharpoonup the number of training instances ℓ (higher is better) and
 - the probability of error δ (higher is better).

- ▶ Given a probability of error δ , an upper bound u for the classification error can be constructed such that with a probability of (1δ) , no more than u percent of the data are misclassified.
- ► This upper bound depends on
 - the radius of a ball encompassing the dataset (smaller is better),
 - \blacktriangleright the distance between data and hyperplane γ (higher is better),
 - \blacktriangleright the number of training instances ℓ (higher is better) and
 - the probability of error δ (higher is better).
- ► Result: The higher the distance between hyperplane and data, the lower the risk.

Goal: Determine the hyperplane $\mathcal{H}(\mathbf{w}, b)$, which has the highest possible distance γ to the data.

Goal: Determine the hyperplane $\mathcal{H}(\mathbf{w}, b)$, which has the highest possible distance γ to the data.

ightharpoonup Compute γ from \boldsymbol{w} and \boldsymbol{b}

Goal: Determine the hyperplane $\mathcal{H}(\mathbf{w}, b)$, which has the highest possible distance γ to the data.

- ightharpoonup Compute γ from ${\bf w}$ and b
- ightharpoonup Optimize $\gamma o \max$

$$\blacktriangleright \ \lambda \in \mathbb{R}, \lambda > 0 : \mathcal{H}(\lambda w, \lambda b) = \mathcal{H}(w, b)$$

- $\lambda \in \mathbb{R}, \lambda > 0 : \mathcal{H}(\lambda \mathbf{w}, \lambda b) = \mathcal{H}(\mathbf{w}, b)$
- ▶ If the dataset is linear separable, we can choose \boldsymbol{w} and \boldsymbol{b} of the optimal hyperplane such that for each instance \boldsymbol{x} with the minimal distance γ holds: $\langle \boldsymbol{w}, \boldsymbol{x} \rangle + \boldsymbol{b} = \pm 1$.

- $\lambda \in \mathbb{R}, \lambda > 0 : \mathcal{H}(\lambda \mathbf{w}, \lambda b) = \mathcal{H}(\mathbf{w}, b)$
- ▶ If the dataset is linear separable, we can choose \boldsymbol{w} and \boldsymbol{b} of the optimal hyperplane such that for each instance \boldsymbol{x} with the minimal distance γ holds: $\langle \boldsymbol{w}, \boldsymbol{x} \rangle + \boldsymbol{b} = \pm 1$.
- ▶ In this case: $\gamma = \frac{1}{\sqrt{\langle \mathbf{w}, \mathbf{w} \rangle}}$.

- $\lambda \in \mathbb{R}, \lambda > 0 : \mathcal{H}(\lambda \mathbf{w}, \lambda b) = \mathcal{H}(\mathbf{w}, b)$
- ▶ If the dataset is linear separable, we can choose \boldsymbol{w} and \boldsymbol{b} of the optimal hyperplane such that for each instance \boldsymbol{x} with the minimal distance γ holds: $\langle \boldsymbol{w}, \boldsymbol{x} \rangle + \boldsymbol{b} = \pm 1$.
- ▶ In this case: $\gamma = \frac{1}{\sqrt{\langle {m w}, {m w} \rangle}}$. → $\gamma \to \max \iff \langle {m w}, {m w} \rangle \to \min$

Optimization task for the Maximum Distance Classifier

Given: linear separable dataset $\{(\mathbf{x}_1, c_1), (\mathbf{x}_2, c_2), \dots, (\mathbf{x}_{\ell}, c_{\ell})\}$

Target: Minimize $\langle \boldsymbol{w}, \boldsymbol{w} \rangle$

- ightharpoonup for $c_i = +1 : \langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b \ge +1$
- ightharpoonup for $c_i = -1 : \langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b \leq -1$

Optimization task for the Maximum Distance Classifier

Given: linear separable dataset $\{(\mathbf{x}_1, c_1), (\mathbf{x}_2, c_2), \dots, (\mathbf{x}_{\ell}, c_{\ell})\}$

Target: Minimize $\langle \boldsymbol{w}, \boldsymbol{w} \rangle$

Conditions: $c_i(\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b) - 1 \ge 0$ for $i = 1, ..., \ell$

Approach

▶ mathematical background: Lagrange-Theory, Karush-Kuhn-Tucker-Conditions

Approach

- mathematical background: Lagrange-Theory, Karush-Kuhn-Tucker-Conditions
- ▶ problem is convex → globally optimal solution

Approach

- mathematical background: Lagrange-Theory, Karush-Kuhn-Tucker-Conditions
- ▶ problem is convex → globally optimal solution
- ► Lagrange function:

$$L(\boldsymbol{w}, b, \alpha) = \frac{1}{2} \langle \boldsymbol{w}, \boldsymbol{w} \rangle - \sum_{i=1}^{\ell} \alpha_i \left[c_i (\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b) - 1 \right] \rightarrow \min$$

with $\alpha_i \geq 0$ for $1 \leq i \leq \ell$.

Approach

- mathematical background: Lagrange-Theory, Karush-Kuhn-Tucker-Conditions
- ▶ problem is convex → globally optimal solution
- Lagrange function:

$$L(\boldsymbol{w}, b, \alpha) = \frac{1}{2} \langle \boldsymbol{w}, \boldsymbol{w} \rangle - \sum_{i=1}^{\ell} \alpha_i \left[c_i (\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b) - 1 \right] \rightarrow \min$$

with $\alpha_i > 0$ for $1 < i < \ell$.

▶ The α_i are called Lagrange-Multipliers.

Approach

- mathematical background: Lagrange-Theory, Karush-Kuhn-Tucker-Conditions
- ▶ problem is convex → globally optimal solution
- Lagrange function:

$$L(\boldsymbol{w}, b, \alpha) = \frac{1}{2} \langle \boldsymbol{w}, \boldsymbol{w} \rangle - \sum_{i=1}^{\ell} \alpha_i \left[c_i (\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b) - 1 \right] \rightarrow \min$$

with $\alpha_i \geq 0$ for $1 \leq i \leq \ell$.

- ▶ The α_i are called Lagrange-Multipliers.
- ► Result: $\mathbf{w}^*, b^*, \alpha^*$

b can be computed as

$$b^* \coloneqq -\frac{\mathsf{max}_{c_i = -1}(\langle \boldsymbol{w^*}, \boldsymbol{x_i} \rangle) + \mathsf{min}_{c_i = 1}(\langle \boldsymbol{w^*}, \boldsymbol{x_i} \rangle)}{2}$$

▶ b can be computed as

$$b^* := -\frac{\max_{c_i = -1}(\langle \boldsymbol{w}^*, \boldsymbol{x_i} \rangle) + \min_{c_i = 1}(\langle \boldsymbol{w}^*, \boldsymbol{x_i} \rangle)}{2}$$

ightharpoonup the distance γ between hyperplane and data is

$$\gamma = \left(\sum_{i:\alpha_i \neq 0} \alpha_i^*\right)^{-\frac{1}{2}}.$$

▶ In the solution, we yield

$$\alpha_i^*(c_i(\langle \mathbf{w}^*, \mathbf{x}_i \rangle + b^*) - 1) = 0 \text{ for } 1 \leq i \leq \ell,$$

and thus $\alpha_i^* \neq 0 \Longrightarrow \langle \mathbf{w}^*, \mathbf{x_i} \rangle + b^* = \pm 1$ ($\mathbf{x_i}$ has minimum distance γ).

▶ In the solution, we yield

$$\alpha_i^*(c_i(\langle \mathbf{w}^*, \mathbf{x}_i \rangle + b^*) - 1) = 0 \text{ for } 1 \leq i \leq \ell,$$

and thus $\alpha_i^* \neq 0 \Longrightarrow \langle \mathbf{w}^*, \mathbf{x_i} \rangle + b^* = \pm 1$ ($\mathbf{x_i}$ has minimum distance γ).

▶ The vectors x_i with $\alpha_i^* \neq 0$ are called support vectors.

▶ In the solution, we yield

$$\alpha_i^*(c_i(\langle \mathbf{w}^*, \mathbf{x}_i \rangle + b^*) - 1) = 0 \text{ for } 1 \leq i \leq \ell,$$

and thus $\alpha_i^* \neq 0 \Longrightarrow \langle \mathbf{w}^*, \mathbf{x_i} \rangle + b^* = \pm 1$ ($\mathbf{x_i}$ has minimum distance γ).

- ▶ The vectors x_i with $\alpha_i^* \neq 0$ are called support vectors.
- ▶ w* is a linear combination of support vectors:

$$\mathbf{w}^* \coloneqq \sum_{i=1}^{\ell} c_i \alpha_i^* \mathbf{x_i} = \sum_{i: \alpha_i^* \neq 0} c_i \alpha_i^* \mathbf{x_i}.$$

▶ In the solution, we yield

$$\alpha_i^*(c_i(\langle \mathbf{w}^*, \mathbf{x}_i \rangle + b^*) - 1) = 0 \text{ for } 1 \leq i \leq \ell,$$

and thus $\alpha_i^* \neq 0 \Longrightarrow \langle \mathbf{w}^*, \mathbf{x_i} \rangle + b^* = \pm 1$ ($\mathbf{x_i}$ has minimum distance γ).

- ▶ The vectors $\mathbf{x_i}$ with $\alpha_i^* \neq 0$ are called support vectors.
- ▶ w* is a linear combination of support vectors:

$$\mathbf{w}^* := \sum_{i=1}^{\ell} c_i \alpha_i^* \mathbf{x_i} = \sum_{i: \alpha_i^* \neq 0} c_i \alpha_i^* \mathbf{x_i}.$$

ightharpoonup usually, the number of support vectors is way smaller than the number of training instances ℓ

Classification

To classify an instance x, we compute

$$\hat{c}(\mathbf{x}) := egin{cases} +1 ext{ for } \langle \mathbf{w}^*, \mathbf{x}
angle + b^* \geq 0 \ -1 ext{ for } \langle \mathbf{w}^*, \mathbf{x}
angle + b^* < 0 \end{cases}$$

$$\langle \mathbf{w}^*, \mathbf{x}
angle = \langle \sum_{i: lpha_i^* \neq 0} c_i lpha_i^* \mathbf{x}_i, \mathbf{x}
angle = \sum_{i: lpha_i^* \neq 0} c_i lpha_i^* \langle \mathbf{x}_i, \mathbf{x}
angle$$

Thus, classification is computed directly by computing a couple of scalar products between the instance to classify and only those instances of the training data that are support vectors.

Linear Classifier:

SVMs learn parameters for a linear function

Linear Classifier:

SVMs learn parameters for a linear function

Learning:

parameters are learned as solution of a problem of quadratic programming

Linear Classifier:

SVMs learn parameters for a linear function

Learning:

parameters are learned as solution of a problem of quadratic programming

Solution:

direct solution is expansive (requires matrix inversion), efficient, specialized approximation heuristics work well

Linear Classifier:

SVMs learn parameters for a linear function

Learning:

parameters are learned as solution of a problem of quadratic programming

Solution:

direct solution is expansive (requires matrix inversion), efficient, specialized approximation heuristics work well

Computational Complexity (Learning):

$$\mathcal{O}(n+\ell^3)$$

Linear Classifier:

SVMs learn parameters for a linear function

Learning:

parameters are learned as solution of a problem of quadratic programming

Solution:

direct solution is expansive (requires matrix inversion), efficient, specialized approximation heuristics work well

Computational Complexity (Learning):

$$\mathcal{O}(n+\ell^3)$$

Classification:

Very fast, as solution depends only on a couple on the scalar products with the support vectors

Linear Classifier:

SVMs learn parameters for a linear function

Learning:

parameters are learned as solution of a problem of quadratic programming

Solution:

direct solution is expansive (requires matrix inversion), efficient, specialized approximation heuristics work well

Computational Complexity (Learning):

$$\mathcal{O}(n+\ell^3)$$

Classification:

Very fast, as solution depends only on a couple on the scalar products with the support vectors

Stability:

Solution depends only on the support vectors → very stable against perturbation of the training set

The so called **hard-margin SVM** is applicable only to linear separable datasets.

The so called **hard-margin SVM** is applicable only to linear separable datasets.

SVMs are binary classifiers.

The so called **hard-margin SVM** is applicable only to linear separable datasets.

SVMs are binary classifiers.

Extensions:

The so called **hard-margin SVM** is applicable only to linear separable datasets.

SVMs are binary classifiers.

Extensions:

► Soft-Margin allows data points inside the γ -margin and even on the wrong side of the hyperplane

The so called hard-margin SVM is applicable only to linear separable datasets.

SVMs are binary classifiers.

Extensions:

- ► Soft-Margin allows data points inside the γ -margin and even on the wrong side of the hyperplane
- ► Kernel-Trick maps the original data efficiently into a different space, where it is better separable

The so called hard-margin SVM is applicable only to linear separable datasets.

SVMs are binary classifiers.

Extensions:

- ► Soft-Margin allows data points inside the γ -margin and even on the wrong side of the hyperplane
- ► Kernel-Trick maps the original data efficiently into a different space, where it is better separable
- ► Multi-Class-SVMs (later in this course)

The so called **hard-margin SVM** is applicable only to linear separable datasets.

SVMs are binary classifiers.

Extensions:

- ► Soft-Margin allows data points inside the γ -margin and even on the wrong side of the hyperplane
- ► Kernel-Trick maps the original data efficiently into a different space, where it is better separable
- ► Multi-Class-SVMs (later in this course)

Notebook 05_1_Iris_23, Cells 1–12

The so called **hard-margin SVM** is applicable only to linear separable datasets.

SVMs are binary classifiers.

Extensions:

- ► Soft-Margin allows data points inside the γ -margin and even on the wrong side of the hyperplane
- ► Kernel-Trick maps the original data efficiently into a different space, where it is better separable
- Multi-Class-SVMs (later in this course)
 - Notebook 05_1_Iris_23, Cells 1–12

Outline

Basic Idea

Mathematical Description

Soft-Margin SVMs

Kernel Trick

Given: dataset, not linear separable

Given: dataset, not linear separable

Idea: modify the optimization problem

Given: dataset, not linear separable

Idea: modify the optimization problem

▶ to allow some digressions

Given: dataset, not linear separable

Idea: modify the optimization problem

▶ to allow some digressions

▶ optimize a trade-off between digression and margin

Soft-Margin Optimization

$$rac{1}{2}\langle oldsymbol{w},oldsymbol{w}
angle + C\sum_{i=1}^{\ell} \xi_i
ightarrow ext{min}$$

with

$$c_i(\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle + b) \geq 1 - \xi_i \text{ und } \xi_i \geq 0 \text{ for } i = 1, \dots, \ell.$$

- ▶ the ξ_i are called slack variables.
- ► C is a hyperparameter, controlling the trade-off between margin and slack between generalization and bias
 - higher C punishes digression harder (thus lower misclassification probability)

Soft-Margin – Lagrange Approach

Lagrange-Approach:

$$L(\boldsymbol{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{r}) = \frac{1}{2} \langle \boldsymbol{w}, \boldsymbol{w} \rangle + C \sum_{i=1}^{\ell} \xi_{i}$$

$$- \sum_{i=1}^{\ell} \alpha_{i} \left[c_{i} (\langle \boldsymbol{w}, \boldsymbol{x}_{i} \rangle + b) - 1 + \xi_{i} \right]$$

$$- \sum_{i=1}^{\ell} r_{i} \xi_{i}$$

 \rightarrow min

with $\alpha_i > 0$ and $r_i > 0$ for $1 < i < \ell$.

Soft-Margin Dual

In the solution of the optimization task, we yield $\mathbf{w}^* := \sum_{i=1}^{\ell} c_i \alpha_i^* \mathbf{x_i}$ and the margin

$$\gamma = \left(\sum_{i,j \in sv} c_i c_j \alpha_i^* \alpha_j^* \langle \mathbf{x_i}, \mathbf{x_j} \rangle\right)^{-\frac{1}{2}}$$

with the Box Constraint: $0 < \alpha < C$

29 / 42

$$\alpha_i \left[c_i(\langle \mathbf{w}, \mathbf{x}_i \rangle) - 1 + \xi_i \right] = 0, \quad i = 1, \dots, \ell,$$

 $\xi_i(\alpha_i - C) = 0, \quad i = 1, \dots, \ell,$

Thus follows:

$$\alpha_i \left[c_i(\langle \mathbf{w}, \mathbf{x}_i \rangle) - 1 + \xi_i \right] = 0, \quad i = 1, \dots, \ell,$$

 $\xi_i(\alpha_i - C) = 0, \quad i = 1, \dots, \ell,$

Thus follows:

• $\xi_i \neq 0 \Rightarrow \alpha_i = C$ and $\mathbf{x_i}$ does not have the minimal distance $\frac{1}{\|\mathbf{w}\|_2}$ in the correct half space

$$\alpha_i \left[c_i(\langle \mathbf{w}, \mathbf{x}_i \rangle) - 1 + \xi_i \right] = 0, \quad i = 1, \dots, \ell,$$

 $\xi_i(\alpha_i - C) = 0, \quad i = 1, \dots, \ell,$

Thus follows:

- $\xi_i \neq 0 \Rightarrow \alpha_i = C$ and x_i does not have the minimal distance $\frac{1}{\|w\|_2}$ in the correct half space
- $ightharpoonup \alpha_i > 0 \Rightarrow : x_i$ is a support vector

$$\alpha_i \left[c_i(\langle \mathbf{w}, \mathbf{x}_i \rangle) - 1 + \xi_i \right] = 0, \quad i = 1, \dots, \ell,$$

 $\xi_i(\alpha_i - C) = 0, \quad i = 1, \dots, \ell,$

Thus follows:

- \blacktriangleright $\xi_i \neq 0 \Rightarrow \alpha_i = C$ and x_i does not have the minimal distance $\frac{1}{\|\mathbf{w}\|_2}$ in the correct half space
- $ightharpoonup \alpha_i > 0 \Rightarrow : x_i$ is a support vector
 - $ightharpoonup 0 < \alpha_i < C \Rightarrow x_i$ is on the border of the margin

$$\alpha_i \left[c_i(\langle \boldsymbol{w}, \boldsymbol{x_i} \rangle) - 1 + \xi_i \right] = 0, \quad i = 1, \dots, \ell,$$

 $\xi_i(\alpha_i - C) = 0, \quad i = 1, \dots, \ell,$

Thus follows:

- $\xi_i \neq 0 \Rightarrow \alpha_i = C$ and x_i does not have the minimal distance $\frac{1}{\|w\|_2}$ in the correct half space
- $ightharpoonup \alpha_i > 0 \Rightarrow : x_i$ is a support vector
 - $ightharpoonup 0 < \alpha_i < C \Rightarrow x_i$ is on the border of the margin
 - $\alpha_i = C \Rightarrow \mathbf{x_i}$ is either correctly classified but within the margin $(\xi_i < 1)$, on the hyperplane $(\xi_i = 1)$, or misclassified $(\xi_i > 1)$

In this example, we yield 17 support vectors, most of them within the margin.

In this example, we yield 1/ support vectors, most of them within the margin.

Notebook 05 1 Iris 23, Cells 13–31

Outline

Basic Idea

Mathematical Description

Soft-Margin SVMs

Kernel Trick

Problem: Datasets are rarely linear separable

Problem: Datasets are rarely linear separable

Idea:

Problem: Datasets are rarely linear separable **Idea:**

1. use a non-linear embedding into a higher-dimensional space

Problem: Datasets are rarely linear separable Idea:

- 1. use a non-linear embedding into a higher-dimensional space
- 2. find the optimal separating hyperplane there

Embedding into higher-dimensional spaces

Problem: Datasets are rarely linear separable **Idea:**

- 1. use a non-linear embedding into a higher-dimensional space
- 2. find the optimal separating hyperplane there
- 3. transform it back

Embedding into higher-dimensional spaces

Problem: Datasets are rarely linear separable **Idea**:

- 1. use a non-linear embedding into a higher-dimensional space
- 2. find the optimal separating hyperplane there
- 3. transform it back

Given a non-separable dataset in \mathbb{R}^3 .

1.) Choose embedding $\phi: \mathbb{R}^3 \to \mathbb{R}^6$:

$$\phi_1(\mathbf{x}) = x_1$$
 $\phi_2(\mathbf{x}) = x_2$ $\phi_3(\mathbf{x}) = x_3$ $\phi_4(\mathbf{x}) = x_1^2$ $\phi_5(\mathbf{x}) = x_1x_2$ $\phi_6(\mathbf{x}) = x_1x_3$

Given a non-separable dataset in \mathbb{R}^3 .

1.) Choose embedding $\phi: \mathbb{R}^3 \to \mathbb{R}^6$:

$$\phi_1(\mathbf{x}) = x_1$$
 $\phi_2(\mathbf{x}) = x_2$ $\phi_3(\mathbf{x}) = x_3$ $\phi_4(\mathbf{x}) = x_1^2$ $\phi_5(\mathbf{x}) = x_1x_2$ $\phi_6(\mathbf{x}) = x_1x_3$

2.) Find optimal hyperplane $\mathcal{H}(\boldsymbol{w},b) = \langle \boldsymbol{w}, \boldsymbol{z} \rangle + b$ with $\boldsymbol{w}, \boldsymbol{b}, \boldsymbol{z} \in \mathbb{R}^6!$

Given a non-separable dataset in \mathbb{R}^3 .

1.) Choose embedding $\phi: \mathbb{R}^3 \to \mathbb{R}^6$:

$$\phi_1(\mathbf{x}) = x_1$$
 $\phi_2(\mathbf{x}) = x_2$ $\phi_3(\mathbf{x}) = x_3$ $\phi_4(\mathbf{x}) = x_1^2$ $\phi_5(\mathbf{x}) = x_1x_2$ $\phi_6(\mathbf{x}) = x_1x_3$

- 2.) Find optimal hyperplane $\mathcal{H}(\boldsymbol{w},b)=\langle \boldsymbol{w},\boldsymbol{z}\rangle+b$ with $\boldsymbol{w},\boldsymbol{b},\boldsymbol{z}\in\mathbb{R}^6!$
- 3.) Retransformation into the original features space (\mathbb{R}^3) using $\mathbf{z}=\phi(\mathbf{x})$:

$$f_{\mathbf{w},b}(\mathbf{z}) = w_1 z_1 + w_2 z_2 + w_3 z_3 + w_4 z_4 + w_5 z_5 + w_6 z_6 + b$$

$$\Rightarrow f(\mathbf{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_1^2 + w_5 x_1 x_2 + w_6 x_1 x_3 + b$$

Given a non-separable dataset in \mathbb{R}^3 .

1.) Choose embedding $\phi: \mathbb{R}^3 \to \mathbb{R}^6$:

$$\phi_1(\mathbf{x}) = x_1$$
 $\phi_2(\mathbf{x}) = x_2$ $\phi_3(\mathbf{x}) = x_3$ $\phi_4(\mathbf{x}) = x_1^2$ $\phi_5(\mathbf{x}) = x_1x_2$ $\phi_6(\mathbf{x}) = x_1x_3$

- 2.) Find optimal hyperplane $\mathcal{H}(\boldsymbol{w},b) = \langle \boldsymbol{w}, \boldsymbol{z} \rangle + b$ with $\boldsymbol{w}, \boldsymbol{b}, \boldsymbol{z} \in \mathbb{R}^6!$
- 3.) Retransformation into the original features space (\mathbb{R}^3) using $\mathbf{z}=\phi(\mathbf{x})$:

$$f_{\mathbf{w},b}(\mathbf{z}) = w_1 z_1 + w_2 z_2 + w_3 z_3 + w_4 z_4 + w_5 z_5 + w_6 z_6 + b$$

$$\Rightarrow f(\mathbf{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_1^2 + w_5 x_1 x_2 + w_6 x_1 x_3 + b$$

Note, that the classification function allows us to consider features combined, e.g. x_1x_2 .

Potential:

transforming the feature space might make the data better separable

Potential:

transforming the feature space might make the data better separable

Issues:

Potential:

transforming the feature space might make the data better separable

Issues:

▶ What is a good transformation?

Potential:

transforming the feature space might make the data better separable

Issues:

- ► What is a good transformation?
- ► The scalar product is very expensive in high-dimensional spaces (sometimes millions or even infinite dimensions)

Potential:

transforming the feature space might make the data better separable

Issues:

- ► What is a good transformation?
- ► The scalar product is very expensive in high-dimensional spaces (sometimes millions or even infinite dimensions)

Observation:

in the classifier and in the actual optimization, the training data occur only in scalar products, e.g.

$$f_{\boldsymbol{w},b}(\boldsymbol{x}) = \sum_{i:\alpha_i^* \neq 0} c_i \alpha_i^* \langle \boldsymbol{x_i}, \boldsymbol{x} \rangle + \boldsymbol{b}$$

Potential:

transforming the feature space might make the data better separable

Issues:

- ► What is a good transformation?
- ► The scalar product is very expensive in high-dimensional spaces (sometimes millions or even infinite dimensions)

Observation:

in the classifier and in the actual optimization, the training data occur only in scalar products, e.g.

$$f_{\boldsymbol{w},b}(\boldsymbol{x}) = \sum_{i:\alpha_i^* \neq 0} c_i \alpha_i^* \langle \boldsymbol{x_i}, \boldsymbol{x} \rangle + \boldsymbol{b}$$

 optimization and classification work with all kinds of scalar products

Idea:

Idea:

► Combine embedding into higher space and scalar product.

Idea:

► Combine embedding into higher space and scalar product.

► Find functions *K*

Idea:

- ► Combine embedding into higher space and scalar product.
- ► Find functions *K*
 - ▶ that can be computed in the original space and

Idea:

- ► Combine embedding into higher space and scalar product.
- Find functions K
 - ▶ that can be computed in the original space and
 - ► that work as the scalar product between the images of some embedding into some suitable higher-dimensional vector space

Idea:

- ► Combine embedding into higher space and scalar product.
- Find functions K
 - ▶ that can be computed in the original space and
 - that work as the scalar product between the images of some embedding into some suitable higher-dimensional vector space
- $\blacktriangleright K(x_i,x_j) = \langle \phi(x_i),\phi(x_j) \rangle.$

Idea:

- ► Combine embedding into higher space and scalar product.
- Find functions K
 - ▶ that can be computed in the original space and
 - that work as the scalar product between the images of some embedding into some suitable higher-dimensional vector space
- $K(\mathbf{x_i}, \mathbf{x_i}) = \langle \phi(\mathbf{x_i}), \phi(\mathbf{x_i}) \rangle.$
- Such functions are called kernel functions.

Idea:

- ► Combine embedding into higher space and scalar product.
- Find functions K
 - ▶ that can be computed in the original space and
 - that work as the scalar product between the images of some embedding into some suitable higher-dimensional vector space
- Such functions are called kernel functions.

Win-Win:

Better separability from the higher-dimensional space + cheap computability from the lower-dimensional (original) space

Idea:

- ► Combine embedding into higher space and scalar product.
- Find functions K
 - ▶ that can be computed in the original space and
 - ► that work as the scalar product between the images of some embedding into some suitable higher-dimensional vector space
- Such functions are called kernel functions.

Win-Win:

Better separability from the higher-dimensional space + cheap computability from the lower-dimensional (original) space

SVMs:

The full construction of the SVM classifier works, if regular scalar product is replaced by some kernel function.

Classification Model

Regular classification function in input space ${\mathcal I}$

$$f_{m{w},b}(m{x}) = \sum_{i:lpha_i^{\mathcal{I}*}
eq 0} c_i lpha_i^{\mathcal{I}*} \langle m{x_i}, m{x}
angle_{\mathcal{I}} + m{b}^{\mathcal{I}}$$

Classification Model

Regular classification function in input space ${\mathcal I}$

$$f_{\boldsymbol{w},b}(\boldsymbol{x}) = \sum_{i:\alpha_i^{\mathcal{I}*} \neq 0} c_i \alpha_i^{\mathcal{I}*} \langle \boldsymbol{x_i}, \boldsymbol{x} \rangle_{\mathcal{I}} + \boldsymbol{b}^{\mathcal{I}}$$

Transformation into the feature space \mathcal{F}

$$f_{\boldsymbol{w},b} \circ \phi(\boldsymbol{x}) = \sum_{i:\alpha_i^{\mathcal{F}*} \neq 0} c_i \alpha_i^{\mathcal{F}*} \langle \phi(\boldsymbol{x_i}), \phi(\boldsymbol{x}) \rangle_{\mathcal{F}} + \boldsymbol{b}^{\mathcal{F}}$$

Classification Model

Regular classification function in input space ${\mathcal I}$

$$f_{\boldsymbol{w},b}(\boldsymbol{x}) = \sum_{i:\alpha_i^{\mathcal{I}*} \neq 0} c_i \alpha_i^{\mathcal{I}*} \langle \boldsymbol{x_i}, \boldsymbol{x} \rangle_{\mathcal{I}} + \boldsymbol{b}^{\mathcal{I}}$$

Transformation into the feature space \mathcal{F}

$$f_{\boldsymbol{w},b} \circ \phi(\boldsymbol{x}) = \sum_{i:\alpha_i^{\mathcal{F}*} \neq 0} c_i \alpha_i^{\mathcal{F}*} \langle \phi(\boldsymbol{x_i}), \phi(\boldsymbol{x}) \rangle_{\mathcal{F}} + \boldsymbol{b}^{\mathcal{F}}$$

Using a kernel function $K(x, y) := \langle \phi(x_i), \phi(x) \rangle_{\mathcal{F}}$

$$f_{oldsymbol{w},b} \circ \phi(oldsymbol{x}) = \sum_{i: lpha_i^{\mathcal{F}*}
eq 0} c_i lpha_i^{\mathcal{F}*} oldsymbol{K}(oldsymbol{x_i},oldsymbol{x}) + oldsymbol{b}^{\mathcal{F}}$$

Kernel function
$$K: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}: (\textbf{\textit{x}}, \textbf{\textit{y}}) \mapsto (\langle \textbf{\textit{x}}, \textbf{\textit{y}} \rangle_2 + 1)^2$$

$$K(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle_2 + 1)^2$$

= $(x_1y_1 + x_2y_2 + 1)^2$

Kernel function
$$K : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} : (\mathbf{x}, \mathbf{y}) \mapsto (\langle \mathbf{x}, \mathbf{y} \rangle_2 + 1)^2$$

$$K(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle_2 + 1)^2$$

$$= (x_1 y_1 + x_2 y_2 + 1)^2$$

$$= x_1^2 y_1^2 + x_2^2 y_2^2 + 1 + 2x_1 y_1 x_2 y_2 + 2x_1 y_1 + 2x_2 y_2$$

Kernel function
$$K : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} : (\mathbf{x}, \mathbf{y}) \mapsto (\langle \mathbf{x}, \mathbf{y} \rangle_2 + 1)^2$$

$$K(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle_2 + 1)^2$$

$$= (x_1 y_1 + x_2 y_2 + 1)^2$$

$$= x_1^2 y_1^2 + x_2^2 y_2^2 + 1 + 2x_1 y_1 x_2 y_2 + 2x_1 y_1 + 2x_2 y_2$$

$$= \langle (x_1^2, x_2^2, 1, \sqrt{2}x_1 x_2, \sqrt{2}x_1, \sqrt{2}x_2)^T, (y_1^2, y_2^2, 1, \sqrt{2}y_1 y_2, \sqrt{2}y_1, \sqrt{2}y_2)^T \rangle_6$$

Kernel function
$$K : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} : (\mathbf{x}, \mathbf{y}) \mapsto (\langle \mathbf{x}, \mathbf{y} \rangle_2 + 1)^2$$

$$K(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle_2 + 1)^2$$

$$= (x_1 y_1 + x_2 y_2 + 1)^2$$

$$= x_1^2 y_1^2 + x_2^2 y_2^2 + 1 + 2x_1 y_1 x_2 y_2 + 2x_1 y_1 + 2x_2 y_2$$

$$= \langle (x_1^2, x_2^2, 1, \sqrt{2}x_1 x_2, \sqrt{2}x_1, \sqrt{2}x_2)^T, (y_1^2, y_2^2, 1, \sqrt{2}y_1 y_2, \sqrt{2}y_1, \sqrt{2}y_2)^T \rangle_6$$

With
$$\phi: \mathbb{R}^2 \to \mathbb{R}^6: x \mapsto (x_1^2, x_2^2, 1, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2)^T$$
:

$$K(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle_6$$

Kernel function
$$K : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} : (\mathbf{x}, \mathbf{y}) \mapsto (\langle \mathbf{x}, \mathbf{y} \rangle_2 + 1)^2$$

$$K(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle_2 + 1)^2$$

$$= (x_1 y_1 + x_2 y_2 + 1)^2$$

$$= x_1^2 y_1^2 + x_2^2 y_2^2 + 1 + 2x_1 y_1 x_2 y_2 + 2x_1 y_1 + 2x_2 y_2$$

$$= \langle (x_1^2, x_2^2, 1, \sqrt{2} x_1 x_2, \sqrt{2} x_1, \sqrt{2} x_2)^T,$$

$$(y_1^2, y_2^2, 1, \sqrt{2} y_1 y_2, \sqrt{2} y_1, \sqrt{2} y_2)^T \rangle_6$$

With
$$\phi: \mathbb{R}^2 \to \mathbb{R}^6: x \mapsto (x_1^2, x_2^2, 1, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2)^T$$
:

$$K(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle_6$$

Computation: scalar product in \mathbb{R}^2 , sum, multiplication Result: polynomial embedding, scalar product in \mathbb{R}^6

Achievement:

Kernels make SVMs powerful and efficient

Achievement:

Kernels make SVMs powerful and efficient

Parameters:

Kernels have their own parameters (see below) which become hyperparameters of the algorithm

Achievement:

Kernels make SVMs powerful and efficient

Parameters:

Kernels have their own parameters (see below) which become hyperparameters of the algorithm

Construction: 2 ways:

Achievement:

Kernels make SVMs powerful and efficient

Parameters:

Kernels have their own parameters (see below) which become hyperparameters of the algorithm

Construction: 2 ways:

lacktriangle Select ϕ by explicitly modeling the features in the feature space, derive K

Achievement:

Kernels make SVMs powerful and efficient

Parameters:

Kernels have their own parameters (see below) which become hyperparameters of the algorithm

Construction: 2 ways:

- ightharpoonup Select ϕ by explicitly modeling the features in the feature space, derive K
- ▶ Select a function K that is known to be a kernel function.

Achievement:

Kernels make SVMs powerful and efficient

Parameters:

Kernels have their own parameters (see below) which become hyperparameters of the algorithm

Construction: 2 ways:

- ightharpoonup Select ϕ by explicitly modeling the features in the feature space, derive K
- ▶ Select a function *K* that is known to be a kernel function.
 - \blacktriangleright neither ϕ nor the feature space are considered explicitly

Achievement:

Kernels make SVMs powerful and efficient

Parameters:

Kernels have their own parameters (see below) which become hyperparameters of the algorithm

Construction: 2 ways:

- ightharpoonup Select ϕ by explicitly modeling the features in the feature space, derive K
- ▶ Select a function *K* that is known to be a kernel function.
 - \blacktriangleright neither ϕ nor the feature space are considered explicitly
 - ▶ kernel property is verified mathematically (Mercer Theorem)

Kernel Trick: discussion

Achievement:

Kernels make SVMs powerful and efficient

Parameters:

Kernels have their own parameters (see below) which become hyperparameters of the algorithm

Construction: 2 ways:

- ightharpoonup Select ϕ by explicitly modeling the features in the feature space, derive K
- ▶ Select a function *K* that is known to be a kernel function.
 - lacktriangle neither ϕ nor the feature space are considered explicitly
 - ▶ kernel property is verified mathematically (Mercer Theorem)
 - kernel functions can be found by combining known kernel functions

Kernel Trick 38 / 42

Mercer Theorem - finite

Theorem 4

Let X be a finite subset of \mathbb{R}^n and K a symmetrical function on X. Then, K is a kernel function if and only if matrix

$$(K(\mathbf{x}_i \mathbf{x}_j))_{i,j}^n$$

is positive semidefinite (no negative eigenvalues).

Kernel Trick 39 / 42

$$K(\mathbf{x},\mathbf{y}) = (\gamma \langle \mathbf{x},\mathbf{y} \rangle + r)^d$$

▶ here the feature space and its scalar product are explicit

$$K(\mathbf{x},\mathbf{y}) = (\gamma \langle \mathbf{x},\mathbf{y} \rangle + r)^d$$

- here the feature space and its scalar product are explicit
- ▶ in the feature space, the original features occur combined (e.g. $(x_1 \cdot x_2)$)

$$K(\mathbf{x},\mathbf{y}) = (\gamma \langle \mathbf{x},\mathbf{y} \rangle + r)^d$$

- here the feature space and its scalar product are explicit
- ▶ in the feature space, the original features occur combined (e.g. $(x_1 \cdot x_2)$)
- ► for logical values (0,1), feature combinations yield the logical "and" (e.g. co-occurrence in vector space models of texts)

$$K(\mathbf{x},\mathbf{y}) = (\gamma \langle \mathbf{x},\mathbf{y} \rangle + r)^d$$

- here the feature space and its scalar product are explicit
- ▶ in the feature space, the original features occur combined (e.g. $(x_1 \cdot x_2)$)
- ► for logical values (0,1), feature combinations yield the logical "and" (e.g. co-occurrence in vector space models of texts)
- ▶ the feature space has many more dimensions than the original space $(n_{\mathcal{O}} << n_{\mathcal{F}})$

$$K(\mathbf{x},\mathbf{y}) = (\gamma \langle \mathbf{x},\mathbf{y} \rangle + r)^d$$

- here the feature space and its scalar product are explicit
- ▶ in the feature space, the original features occur combined (e.g. $(x_1 \cdot x_2)$)
- ► for logical values (0,1), feature combinations yield the logical "and" (e.g. co-occurrence in vector space models of texts)
- ▶ the feature space has many more dimensions than the original space $(n_{\mathcal{O}} << n_{\mathcal{F}})$

$n_{\mathcal{O}}$	d	$n_{\mathcal{F}}$
2	2	6
2	3	10
10	2	66
1,000	2	501,501

$$K(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \|\mathbf{x} - \mathbf{y}\|^2)$$

▶ a.k.a. Gaussian Kernel (for $\gamma = \frac{1}{2\sigma^2}$)

$$K(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \|\mathbf{x} - \mathbf{y}\|^2)$$

- ▶ a.k.a. Gaussian Kernel (for $\gamma = \frac{1}{2\sigma^2}$)
- ightharpoonup models a similarity between x and y

$$K(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \|\mathbf{x} - \mathbf{y}\|^2)$$

- ▶ a.k.a. Gaussian Kernel (for $\gamma = \frac{1}{2\sigma^2}$)
- ightharpoonup models a similarity between x and y
- $ightharpoonup \gamma$ controls how strong similarity must be

$$K(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \|\mathbf{x} - \mathbf{y}\|^2)$$

- ► a.k.a. Gaussian Kernel (for $\gamma = \frac{1}{2\sigma^2}$)
- ightharpoonup models a similarity between x and y
- $ightharpoonup \gamma$ controls how strong similarity must be
- ▶ Danger: Overfitting for higher γ , related to kNN

$$K(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \|\mathbf{x} - \mathbf{y}\|^2)$$

- ▶ a.k.a. Gaussian Kernel (for $\gamma = \frac{1}{2\sigma^2}$)
- ightharpoonup models a similarity between x and y
- $ightharpoonup \gamma$ controls how strong similarity must be
- \blacktriangleright Danger: Overfitting for higher γ , related to kNN

Notebook 05_1_Iris_23, Cells 24–26

