Concours National Marocain Session 2003 EPREUVE Math II - PSI

CORRIGÉ

1^{ére} Partie

- 1. Pour cela il faut montrer que Φ est linéaire, ce qui simple en vérifiant l'égalité $\Phi(P+\lambda Q)=\Phi(P)+\lambda\Phi(Q)\quad \forall (P,Q)\in E^2; \forall \lambda\in\mathbb{R}$ et que $\Phi(P)\in E_n\quad \forall P\in E_n$, en effet : soit $P\in E_n$ donc $\deg\left(\Phi(P)\right)=\deg\left(((X^2-1)P')'\right)=\deg\left(((X^2-1)P')\right)-1=2+\deg P'-1=\deg P\leqslant n,$ donc $\Phi(P)\in E_n$ et donc Φ induit un endomorphisme Φ_n de E_n .
- 2. Ecrire la matrice de $\Phi_n(1) = 0, \Phi_n(X) = 2X, \dots, \Phi_n(X^k) = ((X^2 1)kX^{k-1})' = k(X^{k+1} X^{k-1})' = k(k+1)X^k k(k-1)X^{k-2}, \dots, \Phi_n(X^n) = n(n+1)X^n n(n-1)X^{n-2}$. Donc

$$M = \mathcal{M}_{\mathcal{B}}(\Phi_n) = \begin{pmatrix} 0 & 0 & 0 & 0 & & \dots & 0 \\ 0 & 2 & \ddots & \ddots & & & \vdots \\ \vdots & & \ddots & & (k-1)k & \ddots & \\ & & \ddots & k(k+1) & & \ddots & 0 \\ & & & \ddots & \ddots & (n-1)n \\ & & & \ddots & \ddots & 0 \\ 0 & \dots & & & \dots & 0 & n(n+1) \end{pmatrix}$$

- 3. $\lambda \in \mathbb{R}$ est une valeur propre de $\Phi_n \Leftrightarrow M \lambda I_n$ non inversible, or $M \lambda I_n$ est une matrice triangulaire, donc serait non inversible si l'un des ses termes diagonaux $(\lambda k(k+1))_{0 \leqslant k \leqslant n}$ est nul, c'est à dire $\lambda \in \{0, 2, \ldots, k(k+1), \ldots, n(n+1)\}$, Ainsi Φ_n est un endomorphisme de E_n qui admet $n+1=\dim E_n$ valeurs propres distinctes donc diagonalisable.
- 4. (a) $\mu_k = k(k+1)$, Soit $P(X) = a_0 + a_1 X + \ldots + a_n X_n \in E_n$ polynôme , en notant $Y = (a_i)_{0 \le i \le n} \in \mathcal{M}_{n+1,1}(\mathbb{R})$ l'équation $\Phi_n(P) = \mu_k P$ s'écrit matriciellemnt $MY = \mu_k Y$ ou bien $Y \in \text{Ker}(M \mu_k I_n)$, or $M \mu_k I_n$ est une matrice triangulaire supérieure dont un seul terme est nul, donc de rang égal à n-1 et par suite dim $\text{Ker}(M \mu_k I_n) = 1$, on peut donc conclure que les solutions de l'équation $\Phi_n(P) = \mu_k P$ sont tous proportionnels, et parmi ces solution il n'y a bien sûr qu'un seul un unique polynôme unitaire P_k tel que : $\Phi_n(P_k) = \mu_k P_k$.

- (b) Posons $\deg P_k = p$, donc $P_k(X) = a_0 + a_1X + \ldots + a_pX_p$ avec $a_p \neq 0$, $\Phi_n(P_k) = \mu_k P_k \implies (X^2 1)P_k$ " $+ 2XP_k' = \mu_k P_k$, en identifiant dans cette égalité les coefficient de la plus grande puissance qui est X^p on trouve $a_p(p(p-1)) + 2p) = a_p\mu_k$ qui devient puisque $a_p \neq 0$, p(p+1) = k(k+1) ou bien $k^2 p^2 = p k$. Si $p \neq k$ cette égalité devient aprés simplification par p k, k + p = -1 ce qui est impossible, donc $\deg P_k = p = k$.
- 5. La symétrie, bilinéarité et positivité ne posent aucun problème. Juste la notion de définie qui mérite un peu de rédaction, soit $P \in E$ tel que (P|P) = 0 donc $\int_{-1}^{1} P^2(t)dt = 0$, ainsi P^2 est une fonction continue positive d'intégrale nulle sur [-1,1] donc $P^2 = 0$ et aussi P = 0 sur [-1,1], on a donc un polynôme P qui admet une infinité de racines donc P = 0.
- 6. Pour tout $(P,Q) \in E^2$ on a : $(\Phi(P)|Q) = \int_{-1}^1 ((t^2 1)P'(t))'Q(t)dt = [(t^2 1)P'(t)Q(t)]_{t=-1}^{t=1} \int_{-1}^1 (t^2 1)P'(t)Q'(t)dt = 0 ([P(t)(t^2 1)Q'(t)]_{t=-1}^{t=1} \int_{-1}^1 P(t)((t^2 1)Q'(t))dt = 0$ $(P|\Phi(Q))$, on a procédé à deux reprises par une intégration par parties.
- 7. Pour tout couple (k, k') d'entiers naturels tel que $k \neq k'$, on a $(\Phi(P_k)|P_{k'}) = (P_k)|\Phi(P_{k'})) \implies \mu_k(P_k|P_{k'}) = \mu_{k'}(P_k|P_{k'}) \implies (\mu_k \mu_{k'})(P_k|P_{k'}) \implies (P_k|P_{k'}) = 0$, car $k \neq k' \implies \mu_k = k(k+1) \neq \mu_{k'} = k'(k'+1)$.
- 8. (a) D'aprés la question précédente la famille (P_0, P_1, \ldots, P_n) est othogonale, en plus tous ses éléments sont des polynômes non nuls car unitaires, donc c'est une famille libre, et elle est de carinal $n+1=\dim E_n$ donc c'est une base de E_n , pour en construire une base orthonormée (R_0, R_1, \ldots, R_n) , comme la famille est déjà orthogonale il suffit de normaliser ses éléments en le divisant par sa norme, c'est à dire prendre $R_k=\frac{P_k}{||P_k||}$.
 - (b) Soit $P \in E_n$, ||P|| = 1, donc $P = \sum_{k=0}^n a_k R_k$ avec $\sum_{k=0}^n a_k^2 = 1$ car (R_0, R_1, \dots, R_n) est une b.o.n de E_n , d'autre part $\forall 0 \le k \le n$ on a: $\Phi_n(R_k) = \Phi_n\left(\frac{P_k}{P_k}\right) = \frac{\Phi_n(P_k)}{P_k} = \frac{\mu_k P_k}{P_k} = \mu_k R_k$, ainsi

$$\Phi_n(R_k) = \Phi_n\left(\frac{P_k}{||P_k||}\right) = \frac{\Phi_n(P_k)}{||P_k||} = \frac{\mu_k P_k}{||P_k||} = \mu_k R_k, \text{ ainsi}$$

$$\Phi_n(P) = \Phi_n\left(\sum_{k=0}^n a_k R_k\right) = \sum_{k=0}^n a_k \Phi_n(R_k) = \sum_{k=0}^n a_k \mu_k(R_k), \text{ comme}$$

$$(R_0, R_1, \dots, R_n)$$
 est une b.o.n de E_n alors $\|\Phi_n(P)\| = \sqrt{\sum_{k=0}^n a_k^2 \mu_k^2} \leqslant$

$$\begin{split} &\mu_n \sqrt{\sum_{k=0}^n a_k^2} = \mu_n \text{ donc} \\ &\||\Phi_n|\| = \sup \left\{ \|\Phi_n(P)\|; P \in E_n, \|P\| = 1 \right\} \leqslant \mu_n. \\ &\text{Inversement : } \|R_n\| = 1 \text{ donc } \|\Phi_n(R_n)\| = \mu_n \leqslant \||\Phi_n|\| = \sup \left\{ \|\Phi_n(P)\|; P \in E_n, \|P\| = 1 \right\} \text{ d'où l'égalité .} \end{split}$$

2^{éme} Partie

- 1. (a) $L_k = \frac{1}{2^k k!} U_k = \frac{1}{2^k k!} V_{k,k} = \frac{1}{2^k k!} [(X^2 1)^k]^{(k)}$, donc deg $L_k = \deg \left([(X^2 1)^k]^{(k)} \right) = \deg(X^2 1)^k k = 2k k = k$, le coefficient dominant de L_k est obtenu en dérivant k fois la plus grande puissance de $(X^2 1)^k$ qui est X^{2k} , or $(X^{2k})^{(k)} = (2k)(2k 1) \dots (k+1)X^k = \frac{(2k)!}{k!} X^k$, donc le coefficient dominant de L_k est $\frac{1}{2^k k!} \frac{(2k)!}{k!} = \frac{(2k)!}{2^k (k!)^2}$.
 - (b) Soit $k \in \mathbb{N}$ $((X^2 1)^k)^{(k)} = ((X 1)^k (X + 1)^k)^{(k)} = \sum_{p=0}^k C_k^p \left((X 1)^k \right)^{(p)} \left((X + 1)^k \right)^{(k-p)}$ (*), or 1 est une racine de $(X 1)^k$ de multiplicité k donc $((X 1)^k)^{(p)}$ (X = 1) = 0 pour tout $0 \le p \le k 1$, donc en remplaçant dans (*) X par 1, on trouve $L_k(1) = \frac{1}{2^k k!} C_k^k \left((X 1)^k \right)^{(k)} (X = 1) \left((X + 1)^k \right)^{(0)} (X = 1) = 1$.
 - (c) Du fait que la dérivée d'un polynôme pair est impair et comme $(X^2-1)^k$ est pair, alors sa dérivée k-ème est impair et k impair, et elle est paire si k est pair, on peut donc conclure que la parité du polynôme L_k est la même que celle de k.
 - (d) $L_k(-1) = L_k(1)$ si k pair et $L_k(-1) = -L_k(1)$ si k impair .
- 2. (a) $V_{p,q} = ((X^2 1)^p)^{(q)}$, or 1 et -1 sont des racine de $(X^2 1)^p$ de multiplicité p, donc pour q < p alors $((X^2 1)^p)^q (1) = V_{p,q}(1)$ et de même $V_{p,q}(-1) = 0$.
 - (b) Si q>2p, on est dans la situation où l'ordre de la dérivée depasse le degré donc $V_{p,q}=0$.
 - (c) En effectuant la première intégration par partie on a que $\forall (p,q) \in \mathbb{N}^2$ tel que $: p \neq q$ en supposant par exemple p > q; $(U_p|U_q) = \int_{-1}^{1} \left((t^2 1)^p \right)^{(p)} \left((t^2 1)^q \right)^{(q)} dt = \left[\left((t^2 1)^p \right)^{(p-1)} \left((t^2 1)^q \right)^{(q)} \right]_{t=-1}^{t=1} \int_{-1}^{1} \left((t^2 1)^p \right)^{(p-1)} \left((t^2 1)^q \right)^{(q+1)} dt$

$$= 0 - \int_{-1}^{1} \left((t^2 - 1)^p \right)^{(p-1)} \left((t^2 - 1)^q \right)^{(q+1)} dt = - \int_{-1}^{1} \left((t^2 - 1)^p \right)^{(p-1)} \left((t^2 - 1)^q \right)^{(q+1)} dt$$

$$\operatorname{car} \left((t^2 - 1)^p \right)^{(p-1)} (t = 1) = \left((t^2 - 1)^p \right)^{(p-1)} (t = -1) = 0.$$
En En effectuant une deuxième intégration par partie on aura
$$(U_p | U_q) = \int_{-1}^{1} \left((t^2 - 1)^p \right)^{(p-2)} \left((t^2 - 1)^q \right)^{(q+2)} dt, \text{ et ainsi de suite}$$

$$\operatorname{jusqu'à avoir} (U_p | U_q) = (-1)^p \int_{-1}^{1} \left((t^2 - 1)^p \right)^{(0)} \left((t^2 - 1)^q \right)^{(q+p)} dt =$$

$$0 \operatorname{car} \left((t^2 - 1)^q \right)^{(q+p)} = 0 \operatorname{puisque l'ordre} \operatorname{de d\'{e}riv\'{e}e qui est ici}$$

$$q + p \operatorname{d\'{e}passe le degr\'{e} qui est ici 2q, notez bien qu'on a suppos\'{e}$$

$$\operatorname{au d\'{e}part} p > q, \operatorname{le raisonnement sera pareil si l'on suppose } q > p.$$

- 3. On déduit de ce qui précède que pour tout $k \in \mathbb{N}$, la famille (U_0, U_1, \ldots, U_k) est une famille orthogonale donc la famille (L_0, L_1, \ldots, L_k) est une famille orthogonale or $\forall 0 \leqslant p \leqslant k$; deg $L_p = p \leqslant k$, donc c'est une famille orthogonale de E_k , tous ses éléments sont non nuls donc est libre et comme sont cardinal est $k+1 = \dim E_k$ alors c'est une base orthogonale de E_k .
- 4. (a) Soit $n \in \mathbb{N}$, $n \geq 2$; $k \in \{0, 1, \dots, n-2\}$, on a : $(XL_n|L_k) = \int_{-1}^1 tL_n(t)L_k(t)dt = \frac{1}{2^n n! 2^k k!} \int_{-1}^1 t\left((t^2-1)^n\right)^{(n)} \left((t^2-1)^k\right)^{(k)}(t)dt$ $= \frac{1}{2^n n! 2^k k!} \int_{-1}^1 \left((t^2-1)^n\right)^{(n)} t\left((t^2-1)^k\right)^{(k)}(t)dt = (L_n|XL_k).$ Or L_n est orthogonal à tous les $(L_i)_{0 \leq i \leq n-1}$ qui forment une base de E_{n-1} donc sera orthogonal à tout élément de XL_k qui est un polynôme de degré $k+1 \leq n-1$, d'où $(XL_n|L_k) = 0$.
 - (b) D'aprés les questions précédentes L_{n+1}, L_n, L_{n-1} est une base de l'orthogonal de E_{n-2} dans E_{n+1} , et d'aprés la question précédente XL_n est un élément de E_{n+1} orthogonal à tous les $(L_k)_{0\leqslant k\leqslant n-2}$ qui forment une base de E_{n-2} , donc XL_n est un élément de l'orthogonal de E_{n-2} dans E_{n+1} et va alors s'écrire comme combinaison linéaire de L_{n+1}, L_n, L_{n-1} . Soit $(a,b,c)\in\mathbb{R}^3$ tel que : $XL_n=aL_{n+1}+bL_n+cL_{n-1}$, d'autre part deg $L_k=k$ donc $a\neq 0$ et alors $L_{n+1}=(\alpha_nX+\beta_n)L_n+\gamma_nL_{n-1}$ avec $(\alpha_n=\frac{1}{a},\beta_n=-\frac{b}{a},\gamma_n=-\frac{c}{a})\in\mathbb{R}^3$
- 5. (a) $\forall n \in \mathbb{N}$ $(X^2 1)W'_n = (X^2 1)(X^2 1)^{n'} = (X^2 1)2nX(X^2 1)^{n-1} = 2nXW_n$.
 - (b) En dérivant (n+1)-fois l'expression précèdente, on obtient aprés avoir utilisé la formule de Leibniz : $((X^2-1)W_n')^{n+1} = 2n(XW_n)^{n+1}$ qui devient $\sum_{n=1}^{n+1} \mathcal{C}_{n+1}^p(X^2-1)^{(p)}(W_n')^{(n+1-p)} = 2n\sum_{n=0}^{n+1} \mathcal{C}_{n+1}^pX^{(p)}W_n^{(n+1-p)}, \text{ or }$

 $(X^2-1)^{(p)}=0$ pour $p\geqslant 3$ et $X^{(p)}=0$ pour $p\geqslant 2$, on obtient donc $W_n^{(n+2)}+(n+1)2XW_n^{(n+1)}+n(n+1)W_n^{(n)}=2nXW_n^{(n+1)}+2n(n+1)W_n^{(n)}$ ou bien $\Phi_n(W_n)=(X^2-1)W_n^{(n)}''+(n+1)2XW_n^{(n)}'+n(n+1)W_n^{(n)}=2nXW_n^{(n)}'+2n(n+1)W_n^{(n)}$, ou encore $\Phi_n(W_n)=(X^2-1)W_n^{(n)}''+2XW_n^{(n)}'=n(n+1)W_n^{(n)}$ or par définition $W_n^{(n)}=n!2^nL_n$ et comme Φ_n est linéaire alors : $\Phi_n(L_n)=n(n+1)L_n$.

- (c) D'aprés la question 4.a il existe un unique polynôme unitaire P_n tel que : $\Phi_n(P_n) = n(n+1)P_n, \text{ et d'aprés la question précédente } \frac{L_n}{\operatorname{co}(L_n)}$ est aussi un polynôme unitaire tel que : $\Phi_n\left(\frac{L_n}{\operatorname{co}(L_n)}\right) = n(n+1)\frac{L_n}{\operatorname{co}(L_n)}, \text{ donc } P_n = \frac{L_n}{\operatorname{co}(L_n)} \text{ et on peut en conclure que pour tout } n \in \mathbb{N}, \text{ il existe } a_n \in \mathbb{R}^* \text{ tel que } L_n = a_n P_n, \text{ avec } a_n = \operatorname{co}(L_n), \text{ or } L_n = \frac{1}{2^n n!} \left((X^2 1)^n\right)^{(n)}, \text{ donc :}$ $a_n = \operatorname{co}(L_n) = \frac{1}{2^n n!} \times \operatorname{coefficient de } (X^{2n})^{(n)} = \frac{1}{2^n n!} \frac{(2n)!}{n!} = \frac{(2n)!}{2^n (n!)^2}.$
- 6. (a) $\forall k \in \mathbb{N}$ on a $(X|L_k L_k') = \int_{-1}^1 t L_k(t) L_k'(t) dt = \frac{1}{2} \left[t L_k^2(t) \right]_{t=-1}^{t=1} \frac{1}{2} \int_{-1}^1 L_k^2(t) dt$ = $1 - \frac{1}{2} ||L_k||^2 \operatorname{car} L_k(1) = 1, L_k(-1) = \mp 1.$
 - (b) Soit $k \geqslant 1$, $\deg L_k = k$, posons $L_k = a_k X^k + \ldots + a_0$ alors $XL'_k = ka_k X^k + \ldots + a_1 X$, $kL_k = ka_k X^k + \ldots + ka_0$, en faisant la différence on obtient que : $XL'_k kL_k$ est un polynôme de degré $\leqslant k-1$, c'est à dire $XL'_k kL_k \in E_{k-1}$. D'autre part L_k est orthogonal à tout polynôme de degré $\leqslant k-1$, en particulier à $XL'_k kL_k$, donc $(XL'_k kL_k|L_k) = 0$ ou bien $(XL'_k|L_k) = k(L_k|L_k) = k\|L_k\|^2$, mais ceci pour $k \geqslant 1$, pour k = 0 l'égalité est triviale puisque L_0 est un polynôme constant. Donc on conclut que : $\forall k \in \mathbb{N}$, $(XL'_k|L_k) = k\|L_k\|^2$.
 - (c) Pour tout $k \in \mathbb{N}$, on a : $||L_k||^2 = \frac{1}{k}(XL'_k|L_k) = \frac{1}{k}\int_{-1}^1 tL'_k(t)L_k(t)dt = \frac{1}{k}\int_{-1}^1 tL_k(t)L'_k(t)dt = \frac{1}{k}(X|L_kL'_k) = \frac{1}{k}\left(1 \frac{1}{2}||L_k||^2\right)$, ce qui donne $(2k+1)||L_k||^2 = 2$, d'où $||L_k||^2 = \sqrt{\frac{2}{2k+1}}$.
 - (d) D'aprés la question 5.5. L_k est un polynôme de degré k de coeffi-

cient dominant $\frac{(2k)!}{2^k(k!)^2}$, donc $(k+1)L_{k+1} = (k+1)\frac{(2k+2)!}{2^{k+1}(k+1)!^2}X^{k+1} +$ $\ldots + \alpha_0 = (k+1)2(k+1)\frac{(2k+1)!}{2^{k+1}(k+1)!^2}X^{k+1} + \ldots + \alpha_0 = \frac{(2k+1)!}{2^k(k)!^2}X^{k+1} + \ldots$... + α_0 et $(2k+1)XL_k = (2k+1)\frac{(2k)!}{2^k(k!)^2}X^{k+1} + ... + \beta_0 =$ $\frac{(2k+1)!}{2^k(k!)^2}X^{k+1}+\ldots+\beta_0$, en faisant la différence on a bien (k+1)! $1)L_{k+1}-(2k+1)XL_k$ est un polynôme de degré $\leq k$, d'autre part d'aprés la question 4.a XL_k est orthogonal à E_{k-2} , et L_{k+1} aussi, donc $\forall k \in \mathbb{N}^*$, $(k+1)L_{k+1} - (2k+1)XL_k$ est un polynôme de degré $\leq k$, orthogonal à E_{k-2} , et par suite s'écrit sous la forme : $(k+1)L_{k+1} - (2k+1)XL_k = \alpha L_{k-1} + \beta L_k \text{ avec } \alpha = \frac{((k+1)L_{k+1} - (2k+1)XL_k | L_{k-1})}{\|L_{k-1}\|^2} = \frac{(2k+1)L_{k+1} - (2k+1)XL_k | L_{k+1}}{\|L_{k+1}\|^2}$ $-\frac{(2k+1)}{\|L_{k-1}\|^2}(XL_k|L_{k-1}) = -\frac{(2k+1)}{\|L_{k-1}\|^2} \int_{-1}^{1} ((t^2-1)^k)^{(k)} t L_{k-1} dt, \text{ moven-nant des intégration par parties successives où tout les crochets sont nul puisque } [((t^2-1)^k)^{(p)}]_{t=-1}^{t=1} \quad \forall p < q \text{ vu que -1 et 1 sont}$ des racines de $(t^2-1)^k$) de multiplicité k on a : $\alpha = -\frac{(2k+1)}{\|L_{k-1}\|^2}(-1)^k \int_{-1}^1 (t^2-1)^k dt$ $1)^k (tL_{k-1})^{(k)} dt$. Or tL_{k-1} est un polynôme de degré k donc $(tL_{k-1})^{(k)} = k! \operatorname{co}(tL_{k-1}) = k! \operatorname{co}(L_{k-1}) = k! \frac{(2k)!}{2^k (k!)^2}, \operatorname{donc} \alpha =$ $\frac{(2k+1)}{\|L_{k-1}\|^2}(-1)^{k+1}k!\frac{(2k)!}{2^k(k!)^2}\int_{-1}^1(t^2-1)^kdt$ $=(-1)^{k+1}\frac{(2k+1)!}{2^{k-1}k!(2k-1)}I_k \text{ où } I_k=\int_{-1}^1(t^2-1)^kdt, \text{ dit intégrale de}$ Wallis, on montre par récurrence que : $(-1)^{k+1} \frac{(2k+1)!}{2^{k-1}k!(2k-1)} I_k =$ (2k+1). De même $\beta = \frac{((k+1)L_{k+1} - (2k+1)XL_k|L_k)}{\|L_k\|^2} = -\frac{(2k+1)XL_k|L_k)}{\|L_k\|^2} = -\frac{1}{\|L_k\|^2} \int_{-1}^1 t L_k^2(t) dt = 0$ car la fonction $t \mapsto t L_k^2(t)$ est impaire sur [-1, 1] donc son intégrale est nulle, donc on conclut que : $\forall k \in \mathbb{N}, (k+1)L_{k+1} =$ $(2k+1)XL_k - kL_{k-1}.$

3^{éme} Partie

- 1. (a) Pour tout $Q \in E_n$, $Q_n(t)Q(t)$ est un polynôme de degré inférieur à 2n+1 car deg $Q \leqslant n$; deg $Q_n = n+1$, or la méthode est d'ordre 2n+1 donc $\mathcal{E}(QQ_n) = 0$ c'est à dire : $\int_{-1}^1 Q_n(t)Q(t)dt = \sum_{i=0}^n \lambda_i Q_n(x_i)Q(x_i) = 0$ car les x_i sont des racines de Q_n .
 - (b) D'aprés la question précédente $\frac{Q_n}{\|Q_n\|}$ est un polynôme de degré n+1 orthogonal à E_n , or l'orthogonal de E_n dans E_{n+1} est de dimension 1, et R_{n+1} est aussi un polynôme de degré n+1 orthogonal à E_n , donc $\frac{Q_n}{\|Q_n\|}$ et R_{n+1} sont proportionnels, comme

- ils sont unitaires les deux alors $\frac{Q_n}{\|Q_n\|} = \pm R_{n+1}$. On peut alors dire de x_0, x_1, \ldots, x_n sont les racines de R_{n+1} .
- (c) Pour tout $k \in \{0, 1, ..., n-2\}$, \mathcal{L}_k est un polynôme de degré inférieur à n, or la méthode est d'ordre 2n+1 donc $\mathcal{E}(\mathcal{L}_k)=0$ c'est à dire : $\int_{-1}^{1} \mathcal{L}_k dt = \sum_{i=0}^{n} \lambda_i \mathcal{L}_k(t)(x_i) = \lambda_k, \text{ car } \mathcal{L}_k(x_i) = 0 \text{ si } i \neq k \text{ et } \mathcal{L}_k(x_k) = 1.$ En effet $O_n(X) = \prod_{i=0}^{n} (X x_i)$, donc $O'_n(X) = i = 0n \prod_{i=0}^{n} (X x_i)$.

En effet $Q_n(X) = \prod_{i=0}^n (X - x_i)$, donc $Q'_n(X) = i = 0$ $n \prod_{j \neq i}^n (X - x_j)$,

d'où $Q_n'(x_k) = \prod_{j \neq k}^n (x_k - x_j) = \left(\frac{Q_n(X)}{X - x_k}\right) (X = x_k), \text{ d'où } \mathcal{L}_k(x_k) = 1.$ Ainsi $\lambda_k = \int_0^1 \mathcal{L}_k(t) dt$.

Rappel: Si f_0, f_1, \ldots, f_n sont des fonctions dérivables alors $\prod_{i=0}^n f_i$ est aussi dérivable, avec : $\left(\prod_{i=0}^n f_i\right)' = i = 0nf_i' \prod_{i \neq i}^n f_j$.

- (d) Pour tout $k \in \{0, 1, ..., n-2\}$, \mathcal{L}_k^2 est un polynôme de degré inférieur à 2n, or la méthode est d'ordre 2n+1 donc $\mathcal{E}(\mathcal{L}_k^2)=0$ c'est à dire : $\int_{-1}^1 \mathcal{L}_k^2 dt = \sum_{i=0}^n \lambda_i \mathcal{L}_k^2(t)(x_i) = \lambda_k, \text{ car } \mathcal{L}_k(x_i) = 0 \text{ si } i \neq k \text{ et } \mathcal{L}_k(x_k) = 1.$
- 2. (a) Pour tout $Q \in E_n$, posons $P = Q \sum_{i=0}^n Q(x_i)\mathcal{L}_i$, on a : $\forall k \in \{0, 1, \dots, n\}$ $P(x_k) = Q(x_k) \sum_{i=0}^n Q(x_i)\mathcal{L}_i(x_k) = 0 \text{ car } \mathcal{L}_k(x_i) = 0 \text{ si } i \neq k \text{ et } \mathcal{L}_k(x_k) = 1, \text{ ainsi } P \text{ est alors un polynôme de degré inférieur à } n \text{ qui admet } n+1 \text{ racines distinctes, donc nul, d'où } Q = \sum_{i=0}^n Q(x_i)\mathcal{L}_i.$
 - (b) Pour tout $Q \in E_n$, $-11Q(t)dt = -11\sum_{i=0}^n Q(x_i)\mathcal{L}_i(t)dt = \sum_{i=0}^n Q(x_i)-11\mathcal{L}_i(t)dt = \sum_{i=0}^n Q(x_i)\lambda_i$, donc $\mathcal{E}(Q) = 0$, d'où la méthode est exacte pour les polynômes de degré $\leq n$.
 - (c) x_0, x_1, \dots, x_n sont les n+1 racines distinctes de Q_n et

 R_{n+1} , tous deux polynômes de degré n+1, donc sont proportionnels, (utiliser la décompostion en facteur irréductible d'un polynôme).

Or R_{n+1} est orthogonal à tous les polynômes de degré inférieur à n, donc Q_n aussi, d'où $\int_{-1}^1 Q_n(t)Q(t)dt = 0$.

- On a donc
$$\int_{-1}^{1} P(t)dt = \int_{-1}^{1} Q_n(t)Q(t)dt + \int_{-1}^{1} R(t)dt = \int_{-1}^{1} R(t)dt = i = 0n\lambda_i R(x_i)$$
, parceque R est un polynôme de degré inférieur à n , et la méthode est exacte pour les polynômes de degré $\leq n$, or $P(x_i) = Q_n(x_i)Q(x_i) + R(x_i) = R(x_i)$, donc $\int_{-1}^{1} P(t)dt = i = 0n\lambda_i P(x_i)$, d'où $\mathcal{E}(P) = 0$.

(d) Conclusion directe de la question précèdente.

Fin du corrigé