Дипломная работа

НА ТЕМУ «АНАЛИЗ СУММЫ ПРОДАЖ АЛКОГОЛЬНОЙ ПРОДУКЦИИ В США»

АВТОР: ВИКТОР НИКИТЕНКО

Оглавление

Ведение	2
Цель	2
Задачи	2
Выбор инструментов для выполнения работы	2
Знакомство с данными	3
Загрузка данных	3
Предобработка данных	3
Заключение	3
EDA (exploratory data analysis) или разведочный анализ данных	4
Выполнение расчёта основных статистических метрик	4
Заключение	5
Построение моделей	6
Подготовка данных для моделей	6
Модель 1. Sarimax	6
Модель 2: PROPHET	8
Модель 3: «Экспоненциальное сглаживание» (Exponential smoothing)	10
Замлюномо	11

Ведение

Для анализа была выбрана выборка с сумами розничной продажи алкогольной продукции в США в период с 1992 года по 2018 год. Суммы указаны в миллионах долларах.

Цель

Проведение исследования данных и построение прогноза суммы продаж алк огольной продукции.

Задачи

- 1. Провести анализ данных о суммах продаж алкогольной продукции;
- 2. Построить прогноз суммы продаж алкогольной продукции <u>Гипотеза</u>: увеличение суммы продаж в дальнейшем с сохранением сезонности.

Выбор инструментов для выполнения работы

- 1. Выборка сданными по суммам продаж алкогольной продукции в формате csv
 - Файл:https://github.com/Viktor193/Diplom_innopolis/blob/de798092f5829ad2e9f46a9 07165a52283e07bc6/Retail Sales Beer_Liquor.csv
- 2. Язык программирования Phyton при использовании среды Google Colab

Файл:https://github.com/Viktor193/Diplom_innopolis/blob/07fe611608b7e5316535901 cd74217cc4fbdb77d/%D0%98%D1%82%D0%BE%D0%B3%D0%BE%D0%B2%D0%B0%D1 %8F_%D0%B0%D1%82%D1%82%D0%B5%D1%81%D1%82%D0%B0%D1%86%D0%B8%D 1%8F_%D0%9D%D0%B8%D0%BA%D0%B8%D1%82%D0%B5%D0%BD%D0%BA%D0%BE_ %D0%92_%D0%92.ipynb

Знакомство с данными

Загрузка данных

- 1. Загрузка выполнялась с помощью spark, файл расположен на github.com, при запуске не требуется дополнительно его подгружать в Google Colab;
- 2. Выполнено проверка формата данных в выборке существует два поля:

a. «DATA»:

- i. При загрузке определился формат string;
- іі. В поле указана дата в формате ГГГГ-ММ-ДД, при этом для каждого значения указан день=01, т.е. фактически поле обозначает месяц конкретного года.

b. «MRTSSM4453USN»:

- i. При загрузке определился формат string;
- ii. В поле указано значение суммы продаж в миллионах долларах за месяц из поля «DATA».

Предобработка данных

- 1. Поле «MRTSSM4453USN» переименовано в более информативное «Volume of sales».
- 2. Изменен формат данных:
 - a. «DATA» Date;
 - b. «Volume of sales» Double.
- 3. При проверке пустых значений не обнаружено, дополнительных преобразований не потребуется.

Заключение

Выполнена первоначальная обработка данных, возможно переходить в следующему этапу.

EDA (exploratory data analysis) или разведочный анализ данных

Выполнение расчёта основных статистических метрик

- 1. Выполнена преобразование данных в dataframe pandas для построения графиков.
- 2. Индексом было принято сделать поле DATA.
- 3. Расчёт основных статистических метрик (таблица 1):

	VOLUME OF SALES	DAY	MONTH
COUNT	324.000000	324.0	324.000000
MEAN	2972.895062	1.0	6.500000
STD	1010.218574	0.0	3.457392
MIN	1501.000000	1.0	1.000000
25%	2109.000000	1.0	3.750000
50%	2791.000000	1.0	6.500000
75 %	3627.250000	1.0	9.250000
MAX	6370.000000	1.0	12.000000

Таблица 1.

4. График сумм продаж алкогольной продукции по годам (рис.1):

Retail Sales Beer Liquor

5000 5000 3000 -

Рисунок 1.

5. Гистограмма для определения распределения данных (рис.2):

Рисунок 2.

Заключение

- 1. Общий тренд восходящий: сумма продаж с каждым годом увеличивается.
- 2. Присутствует сезонное увеличение суммы продаж.
- 3. Больше всего месяцев с наименьшими суммами продаж, чем выше су мма продаж тем меньше месяцев с такими суммами.

Гипотеза: увеличение суммы продаж в дальнейшем с сохранением сезон ности.

Построение моделей

Подготовка данных для моделей

- 1. Сформировали тестовую и обучающую выборки:
 - а. Тестовая: 1 год;
 - b. Обучающая выборка: остальные 26 лет.
- 2. Декомпозиция временного ряда (рис.3):

- а. Положительный (восходящий) тренд;
- b. Сезонность в течении года.

Модель 1. Sarimax

- 1. Для построения сезонности выбран 1 год (12 месяцев), в результате показатели модели: SARIMAX(4, 1, 3)x(2, 1, [1], 12).
- 2. После создания модели с параметра SARIMAX(4, 1, 3)x(2, 1, [1], 12) и обучении на обучающей выборке параметры оценки модели:
 - а. <u>Средняя абсолютная ошибка (MAE)</u>: **66.06013915**;
 - b. <u>Средняя квадратическая ошибка (MSE)</u>: **7896.543616**;
 - с. Среднеквадратическая ошибка (RMSE): 88.86249837;
 - d. Средняя абсолютная ошибка в процентах (MAPE): 1.441353299.

3. Результаты прогноза на год (рис.4):

4. Выводы работы метода SARIMAX:

- а. Модель показала себя хорошо: RMSE=88.86 это хороший показатель;
- b. Процент рассчитанной ошибки MAPE=1.44%, это хороший результат;
- с. Согласно графику, на будущее видим, что тренд и высота амплитуда были отображены корректно, общая динамика прослеживается.

Модель 2: PROPHET

- 1. Подготовили данные для обучения модели, создали модель, обучили её.
- 2. При анализе модели было определено:
 - а. Восходящий тренд (рис. 5):

ь. Годовую сезонность (рис.6):

3. Результаты прогноза на год (рис.7):

- 4. Параметры оценки модели:
 - а. <u>Средняя абсолютная ошибка (MAE)</u>: **98.73289647**;
 - b. <u>Средняя квадратическая ошибка (MSE)</u>: **17973.33688**;
 - с. <u>Среднеквадратическая ошибка (RMSE)</u>: **134.0646743**;
 - d. Средняя абсолютная ошибка в процентах (MAPE): 1.947700413.
- 5. Выводы работы метода PROPHET:
 - а. Модель показала себя хорошо: RMSE=134.06- это хороший показатель.
 - b. Процент рассчитанной ошибки MAPE=1.94%, это хороший результат.
 - с. Согласно графику, на будущее видим, что тренд и высота амплитуда были отображены корректно, общая динамика прослеживается.

Модель 3: «Экспоненциальное сглаживание» (Exponential smoothing)

- 1. Был выбран метод Хольта-Винтера, так как данный метод учитывает тренд, сезонность.
- 2. Создали модель с параметрами:
 - а. Тренд: положительный;
 - b. Период сезонности: 12 месяце;
 - с. Аддитивный сезонный период;
 - d. Использование преобразования Бокса-Кокса.
- 3. Обучили модель на обучающей выборке.
- 4. Результаты прогноза на год (рис.8):

- 5. Параметры оценки модели:
 - а. Средняя абсолютная ошибка (MAE): **103.5647038**;
 - b. Средняя квадратическая ошибка (MSE): 21686.4567;
 - с. Среднеквадратическая ошибка (RMSE): **147.2632225**;
 - d. Средняя абсолютная ошибка в процентах (MAPE): 2.020402968.
- 6. Выводы работы метода Exponential smoothing:
 - а. Модель показала себя хорошо: RMSE=147.26- это хороший показатель.
 - b. Процент рассчитанной ошибки MAPE=2.02%, это хороший результат.
 - с. Согласно графику, на будущее видим, что тренд и высота амплитуда были отображены корректно, общая динамика прослеживается.

Заключение

- 1. Проведен анализ данных с использованием современных методов обработки информации.
- 2. Рассчитаны основные статистически метрики, позволяющие судить о характере суммы продажи алкогольной продукции.
- 3. Подтверждена гипотеза: увеличение суммы продаж в дальнейшем с сохранением сезонности.

Прогнозная модель позволила зафиксировать сохранение тенденции роста суммы продаж по сравнению с предыдущим годом, а также сохранение амплитудных значений в период новогодних праздников.

4. Сравнение моделей:

- а. Все модели используются для прогнозирования одномерных данных временных рядов и имеют возможность настройки сезонности, тренда.
- b. Ниже приведена таблица сравнения показателей оценки:

Модель	Sarimax	PROPHET	Exponential
Показатель оценки			smoothing
Средняя абсолютная ошибка (MAE)	66.06013915	98.73289647	103.5647038
Средняя квадратическая ошибка (MSE)	7896.543616	17973.33688	21686.4567
Среднеквадратическая ошибка (RMSE)	88.86249837	134.0646743	147.2632225
Средняя абсолютная ошибка в процентах (MAPE)	1.441353299	1.947700413	2.020402968

с. Наиболее эффективна показала себя модель **Sarimax** по всем показателям.