Universidad Católica San Pablo Programa de Ciencia de la Computación

ALGEBRA ABSTRACTA

Ana Maria Cuadros Valdivia

OBJETIVO

 Conocer las técnicas y métodos de encriptación de datos aplicando conceptos de teoría de números y álgebra abstracta.

Criptografía

UNIDAD 1

Definición Criptografía

- Cryptography:
 - Kryptos: Ocultar
 - Gráphien: Escribir
- Estudio de métodos para enviar y recibir mensajes por medio de un algoritmo, usando una o más claves.
 - Cifrar: Transformar un texto plano en texto cifrado.
 - Descifrar: Operación inversa, transformar un texto cifrado en un texto plano.

Proceso de Cifrado y Descifrado

Criptografía

Intruso

Criptografía Tradicional

Cifrado de César

• Sustituye una letra del alfabeto por otra: clave 3

Caesar cipher with a shift of 3.

- Mensaje : hola
 - Mensaje encriptado:
- Mensaje : paz clave 4
 - Mensaje encriptado:

Cifrado de César

A cipher wheel with a shift of 4.

Mensaje: paz clave 4

Mensaje encriptado:

Cifrado de César

a	b	С	d	е	f	g	h	i	j	k	l	m	n	0	p	q	r	S	t	u	٧	W	Х	у	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Mensaje : Paz

• Clave : 5

Mensaje encriptado: uigwz

Cifrado por Bloques

Cifrado de Feistel

Mensaje: M = STAR WARS, LA MISIÓN CONTINÚA

```
STAR WARS, LA MISIÓN CONTINÚA
     STAR
             WARS
                            SION
M_1
                                   CONT
                                           INUA
                                                    S_i: M_i + 1 \mod 27
S_1
                            SION
                                   DPÑU
                                           INUA
     TUBS
             WARS
                    MBNJ
                                   ÑPUD
                            SION
     BUST
             WARS
                    NBJM
                                           INUA
                                                    P_i: \prod_{3241}
                                           ÑPUD
                                   INUA
     WARS
             BUST
                    SION
M_2
                            NBJM
                                                   Segunda
S_2
                    TJPÑ
                                   JÑVB
                                           ÑPUD
     XBST
             BUST
                            NBJM
                                                     vuelta
                                           ÑPUD
             BUST
                    PJÑT
                                   VÑBJ
     SBTX
                            NBJM
```

C = SBTX BUST PJÑT NBJM VÑBJ ÑPUD

Prof. Mg. Ana Maria Cuadros

Cifrados de clave pública

- Criptografía RSA
 - Escoger dos números primos distintos p y q, y multiplicarlos obteniendo un número n.
 - 77
 - 24152531111715249931151329153211
 - "Fácil de hacer, difícil de deshacer"
 - Multiplicar 2 números primos.
 - Factorizar N y encontrar los primos

Referencias bibliográficas

Handbook of Applied Cryptography, Alfred Menezes,
 Paul van Oorschot, Scott Vantone, CRC Press, 1996.

Teoría de Números

UNIDAD 2

Cryptography and Network Security (Behrouz Forouzan)

Mathematics of Cryptography

Part I: Modular Arithmetic, Congruence, and Matrices

Introducción TEORIA DE NUMEROS

- Criptografía moderna construida por: algebra y teoría de números.
 - RSA:
 - ¿cómo encontrar números primos y cómo factorizarlos?
 - ¿cómo calcular el m.c.d. de dos números?
 - Potencia de enteros
- La teoría de números es una rama de las matemáticas que se ocupa del estudio de los números enteros y sus propiedades.

Introducción Conjunto de enteros

$$\mathbf{Z} = \{ ..., -2, -1, 0, 1, 2, ... \}$$

- Los enteros: suma, resta, multiplicación (leyes comutativa, asociativa, distributiva).
- Z bajo la suma y multiplicación : ANILLOS

Introducción OPERACIONES BINARIAS

• Definición:

 Una operación binaria * en un conjunto, es una regla que asigna a cada par ordenado de elementos de un conjunto, algún elemento del conjunto

Ejemplo:

- a) Defínase en Z⁺ una operación binaria * por a*b que es igual al mínimo entre a y b o al valor común si a=b.
- b) Defínase en Z⁺ una operación binaria * por a*b= a
- c) Defínase en Z⁺ una operación binaria * mediante a*b= (a*b)+2 donde * está definida por el ejemplo a)

Introducción OPERACIONES BINARIAS

• Definición:

• Una operación binaria * en un conjunto S es conmutativa si y solo si a*b=b*a para todo a,b $\in S$. La operación * es asociativa si y solo si (a*b) * c=a*(b*c) para todo a,b,c $\in S$

of. Mg. Ana Maria Cuad

Introducción OPERACIONES BINARIAS

- Operaciones binarias: dos entradas, una salida
- Criptografía: suma, resta y multiplicación

Introducción OPERACIONES BINARIAS

Add: 5 + 9 = 14

(-5) + 9 = 4

5 + (-9) = -4

(-5) + (-9) = -14

Subtract:

5 - 9 = -4

(-5) - 9 = -14

5 - (-9) = 14

(-5) - (-9) = +4

Multiply:

 $5 \times 9 = 45$

 $(-5) \times 9 = -45$

 $5 \times (-9) = -45$

 $(-5) \times (-9) = 45$

División de Enteros

• Si dividimos a por n, obtenemos q y r.

$$a = q \times n + r$$

- Ejemplo:
 - a= 255
 - n= 11
 - q=23
 - r=2

Dos restricciones

Ejemplo

 $a = q \times n + r$

- a= -255
- n = 11

Ejemplo

$$a = q \times n + r$$

- a= -255
- n = 11

$$-255 = (-23 \times 11) + (-2) \leftrightarrow -255 = (-24 \times 11) + 9$$

Función módulo: $a = q \cdot n + r$

- Para convertir el módulo a positivo:
 - Decrementar el valor de q en uno.
 - Adicionar el valor de n a r para convertirlo a positivo

1. CONCEPTO DE DIVISIBILIDAD

Definiciones: RELACION DE DIVISIBILIDAD EN Z

$a = q \times n$

- Observación: si "n" divide "a" también decimos que:
 - n es un divisor de a
 - a es un múltiplo de n
 - n es un factor de a
 - a es divisible por n
- Notación: n|a "n divide a a" si el resto es cero de lo contrario a ł b

Ejemplo: DIVISI B ILIDAD: a = b.n

• El entero 4 divide al entero 32 porque 32= 4 x 8

• El número 8 no divide al número 42 porque 42=8x5+2. Hay un resto.

- 13|78, 7|98, -6|24, 4|44 y 11|(-33)
- 13127, 7150, -6123, 4141 y 111(-32)

Ejemplos: DIVISI B ILIDAD: a = b.n

- 21 = 3.7
 3 divide a 21 => 3|21.
 El cociente "n" es 7
 3 es un divisor o factor de 21.
- -3 | 1818 = (-3)(-6)
- a|00 = (a)(0)

Propiedades DIVISIBILIDAD

Para todo a, b, c, ∈ Z, se cumple lo siguiente:

Propiedad 1: if a|1, then $a = \pm 1$.

Propiedad 2: if a|b and b|a, then $a = \pm b$.

Propiedad 3: if a|b and b|c, then a|c.

Propiedad 4: if a|b and a|c, then $a|(m \times b + n \times c)$, donde m y n son enteros arbitrarios.

Propiedades DIVISIBILIDAD

- a. Desde que $3|15 y 15|45 \rightarrow$
- b. Desde que $3|15 y 3|9 \rightarrow$

Propiedades DIVISIBILIDAD

- a. Desde que 3|15 y $15|45 \rightarrow 3|45$ (iii prop).
- b. Desde que 3|15 y 3|9 (iv prop)
 3|(15x2 + 9x4), que significa 3|66

Propiedades DIVISIBILIDAD

Hecho 1: El entero 1 tiene un solo divisor, el mismo

Hecho 2: Cualquier entero positivo tiene al menos 2 divisores, 1 y el mismo (puede tener más).

•32 tiene 6 divisores: 1, 2, 4,8 ,16 y 32

2. MÁXIMO COMÚN DIVISOR

DIVISORES COMUNES DE DOS ENTEROS

of 140 and 12

Definiciones: DIVISOR COMÚN

- Para a, b E Z, un entero positivo c es un divisor común de a y b si c|a y c|b.
 - Los divisores comunes de 42 y 70 son: 1, 2, 7 y 14.

Definiciones: MÁXIMO COMÚN DIVISOR mcd(a,b)=d

- Se dice que un entero positivo d es el máximo común divisor de los enteros a y b,
 - d es divisor común de a y b;
 - El entero más grande d tal que d|a y d|b

Ejemplo:

Los divisores comunes de 12 y 18 son $\{1,2,3,6\}$ y mcd(12,18) = 6

ALGORITMO DE EUCLIDES

Basado en los siguientes hechos:

```
Hecho 1 : mcd(a, 0) = a
Hecho 2: mcd (a, b) = mcd (b, r), donde r
es el resto de dividir a por b
```

• Ejemplo: mcd(36,10)

Definiciones: ALGORITMO DE EUCLIDES

• Si a, b € Z⁺ aplicamos el algoritmo de la división como sigue:

$$a = q_1b + r_1, \qquad 0 < r_1 < b$$

$$b = q_2r_1, +r_2, \qquad 0 < r_2 < r_1$$

$$r_1 = q_3r_2, +r_3, \qquad 0 < r_3 < r_2$$
...
$$r_i = q_{i+2}r_{i+1}, +r_{i+2}, \qquad 0 < r_{i+2} < r_{i+1}$$
....
$$r_{k-2} = q_kr_{k-1}, +r_k \qquad 0 < r_k < r_{k-1}$$

$$r_{k-1} = q_{k+1}r_k$$

Entonces, r_k, el último resto distinto de cero, es igual a mcd(a,b)

Si a, b \in Z⁺ con a > b, entonces el mcd(a,b) = mcd(b, a mod b)

Ejemplo:

ALGORITMO DE EUCLIDES

 Determinar el m.c.d. de 250 y 111, expresado como combinación lineal de los enteros.

```
a = q b + r

250 = 2(111) + 28 0 < 28 < 111

111 = 3(28) + 27 0 < 27 < 111

28 = 1(27) + 1 0 < 1 < 27

27 = 27(1) + 0
```

$$mcd(250,111) = 1$$

Ejemplo: ALGORITMO DE EUCLIDES

mcd(4864,3458)

Ejemplo: ALGORITMO DE EUCLIDES

mcd(4864,3458)

```
a = q b + r

4864 = 1 (3458) + 1406

3458 = 2 (1406) + 646

1406 = 2 (646) + 114

646 = 5 (114) + 76

114 = 1 (76) + 38

76 = 2 (38) + 0
```

mcd(4864,3458) = 38

ALGORITMO DE EUCLIDES

a. Process

```
r_{1} \leftarrow a; \quad r_{2} \leftarrow b; \quad \text{(Initialization)}
\text{while } (r_{2} > 0)
\{ \qquad \qquad q \leftarrow r_{1} / r_{2}; \qquad \qquad r \leftarrow r_{1} - q \times r_{2}; \qquad \qquad \qquad r_{1} \leftarrow r_{2}; \quad r_{2} \leftarrow r; \qquad \qquad \end{cases}
\text{gcd } (a, b) \leftarrow r_{1}
```

b. Algorithm

ALGORITMO DE EUCLIDES

- Encontrar el mcd de 2740 y 1760
- Encontrar el mcd de 25 y 60

ALGORITMO DE EUCLIDES

• Encontrar el mcd de 2740 y 1760

q	r_{I}	r_2	r
1	2740	1760	980
1	1760	980	780
1	980	780	200
3	780	200	180
1	200	180	20
9	180	20	0
	20	0	

• Mcd (2740,1760) = 20

ALGORITMO DE EUCLIDES

• Encontrar el mcd de 25 y 60

q	r_I	r_2	r
0	25	60	25
2	60	25	10
2	25	10	5
2	10	5	0
	5	0	

• Mcd (25, 60) = 5

ALGORITMO DE EUCLIDES

Cuando mcd (a, b) = 1, decimos que a y b son relativamente primos.

Definiciones: ALGORITMO EXTENDIDO DE EUCLIDES

 El algoritmo extendido de Euclides puede ser fácilmente extendido para que aunado a la obtención del m.c.d.(a,b) = d, encuentre además la solución:

$$ax + by = d$$

como una combinación lineal de a y b

Ejemplo:

ALGORIT MO EXTENDIDO DE EUCLIDES

Mcd(250,111)

```
250 = 2 (111) + 28
1 = 28 - 1 (27)
111 = 3 (28) + 27
28 = 1 (27) + 1
27 = 27 (1) + 0
1 = -1(111) + 4 (28)
1 = -1(111) + 4 (250) - 2(111)
1 = -1(111) + 4(250) - 8(111)
1 = -9(111) + 4(250)
```

$$ax + by = d$$

 \bullet 250(4) + 111(-9) = 1

ALGORIT MO EXTENDIDO DE EUCLIDES

$$s \times a + t \times b = \gcd(a, b)$$

a. Process

ALGORIT MO EXTENDIDO DE EUCLIDES

```
r_1 \leftarrow a; \qquad r_2 \leftarrow b;
  s_1 \leftarrow 1; \qquad s_2 \leftarrow 0;
                                                  (Initialization)
 t_1 \leftarrow 0; \qquad t_2 \leftarrow 1;
while (r_2 > 0)
   q \leftarrow r_1 / r_2;
     r \leftarrow r_1 - q \times r_2;
                                                          (Updating r's)
     r_1 \leftarrow r_2; \ r_2 \leftarrow r;
     s \leftarrow s_1 - q \times s_2;
                                                          (Updating s's)
     s_1 \leftarrow s_2; s_2 \leftarrow s;
     t \leftarrow t_1 - q \times t_2;
                                                          (Updating t's)
     t_1 \leftarrow t_2; \ t_2 \leftarrow t;
   \gcd(a, b) \leftarrow r_1; \ s \leftarrow s_1; \ t \leftarrow t_1
```

b. Algorithm

ALGORIT MO EXTENDIDO DE EUCLIDES

- Dados a y b, encontrar el mcd(a,b) y los valores de x, y
 - a=161 y b =28
 - a=17 y b =0
 - a= 0 y b =45

ALGORIT MO EXTENDIDO DE EUCLIDES

- Dados a=161 y b =28, encontrar el mcd(a,b) y los valores de x, y
- Mcd(161,28)=7, x=-1, y=6

q	r_1 r_2	r	s_1 s_2	S	t_1 t_2	t
5	161 28	21	1 0	1	0 1	- 5
1	28 21	7	0 1	-1	1 -5	6
3	21 7	0	1 -1	4	-5 6	-23
	7 0		-1 4		6 −23	

a = 17 and b = 0,

Solución

mcd(17, 0) = 17, s = 1, and t = 0.

q	r_1	r_2	r	s_I	s_2	S	t_1	t_2	t
	17	0		1	0		0	1	

2.54

a = 0 and b = 45

Solución

mcd(0, 45) = 45, s = 0, t = 1.

q	r_1	r_2	r	s_I	s_2	S	t_{I}	t_2	t
0	0	45	0	1	0	1	0	1	0
	45	0		0	1		1	0	

3. ECUACIONES DIOFANTICAS

Ecuación Linear Diofántica

Objetivo: Encontrar x, y que satisfagan la ecuación

Una ecuación diofántica tiene dos variables ax + by = c.

- Puede tener:
 - ninguna solución : si dłc
 - o infinitas soluciones : si d|c

Ecuación Linear Diofántica

$$ax + by = c$$

Solución Particular:

$$x_0 = (c/d) *x y y_0 = (c/d)*y$$

Solución General:

 $x = x_0 + k (b/d)$ e $y = y_0 - k(a/d)$ donde k is un entero

Pasos:

Ecuación Linear Diofántica

$$ax + by = c$$

- Calcular d=mcd(a,b) por el algoritmo de Euclides.
- Comprobar si d|c,
 - si no divide, no existen soluciones enteras, termina.
 - De lo contrario :
 - Reducir la ec. dividiendo ambos lados de la ec. por d.
 - Encontrar x, y usando el alg. Extendido de Euclides
 - e= c/d
 - Encontrar el par x_0 , y_0 = (xe,ye) es una solución particular
- Se usa la solución general.

Ejemplo: Ec. Diafóntica

• Encontrar la solución particular y general de 21x + 14y = 35

- a) mcd(21,14)
- b) 21x + 14y = 35
- c) $x_0 = (c/d) *x$ $y_0 = (c/d) *y$
- d) $x = x_0 + k (b/d)$ $y = y_0 k(a/d)$

Ejemplo: Ec. Diofóntica

• Encontrar la solución particular y general de 21x + 14y = 35

Particular: $x_0 = 5 \times 1 = 5$ and $y_0 = 5 \times (-1) = -5$ General: $x = 5 + k \times 2$ and $y = -5 - k \times 3$

Ejemplo: Ec. Diafóntica

• Consideremos la ecuación

$$1492x + 1066y = -4$$

Ejemplo: Ec. Diafóntica

 Al ayudar a los estudiantes en sus cursos de programación, Juan observa que en promedio puede ayudar a un estudiante a depurar un programa en Pascal en 6 minutos, pero tarda 10 minutos en depurar un programa escrito en C++. Si trabajó en forma continua durante 104 minutos y no desperdició tiempo, ¿Cuántos programas depuró en cada lenguaje?