STATISTICAL averages (for a stationary random process)	TEMPORAL averages
Average value	Average value
$\overline{x} = \int_{-\infty}^{\infty} x \cdot w(x) dx$	Continuous: $\overline{x(t)} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$
	Discrete: $\overline{x[t]} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{t=-N}^{N} x[t]$
	Discrete & finite: $\overline{x[t]} = \frac{1}{how many} \sum_{all} x[t]$
Average squared value	Average squared value
$\overline{x^2} = \int_{-\infty}^{\infty} x^2 \cdot w(x) dx$	Continuous: $\overline{x^2(t)} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x^2(t) dt$
	Discrete: $\overline{x[t]} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{t=-N}^{N} x^2[t]$
	Discrete & finite: $\overline{x[t]} = \frac{1}{how many} \sum_{all} x^2[t]$
Variance	Variance
$\sigma^2 = \int_{-\infty}^{\infty} (x - \overline{x})^2 \cdot w(x) dx$	Continuous: $\overline{\sigma}^2 = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} (x(t) - \mu)^2 dt$
	Discrete: $\overline{x[t]} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{t=-N}^{N} (x[t] - \mu)^2$ Discrete & finite:
	$\overline{x[t]} = \frac{1}{how many} \sum_{all} (x[t] - \mu)^2$
Autocorrelation function	Autocorrelation function
$R_{ff}(\tau) = \overline{f(t) \cdot f(t+\tau)} =$ $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 \cdot w(x_1, x_2; \tau) dx_1 dx_2$	Continuous: $R_{xx}(\tau) = \overline{x(t) \cdot x(t+\tau)} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) \cdot x(t+\tau) dt$
	Discrete: $R_{xx}[\tau] = \overline{x[t] \cdot x[t+\tau]} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{t=-N}^{N} x[t] \cdot x[t+\tau]$
	Discrete & finite: $R_{xx}[\tau] = \overline{x[t] \cdot x[t+\tau]} =$ $= \frac{1}{how many} \sum_{t=all} x[t] \cdot x[t+\tau]$

Cross-correlation function

$$R_{fg}(\tau) = \overline{f(t) \cdot g(t+\tau)} =$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 y_2 \cdot w(x_1, y_2; \tau) dx_1 dy_2$$

Cross-correlation function

Continuous:
$$R_{xy}(\tau) = \overline{x(t) \cdot y(t+\tau)} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) \cdot y(t+\tau) dt$$

Discrete:
$$R_{xy}[\tau] = \overline{x[t] \cdot y[t+\tau]} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{t=-N}^{N} x[t] \cdot y[t+\tau]$$

$$R_{xy}[\tau] = \overline{x[t] \cdot y[t+\tau]} = \frac{1}{how \, many} \sum_{t=all} x[t] \cdot y[t+\tau]$$

•
$$F(x) = \frac{1}{2} \left(1 + \operatorname{erf} \left(\frac{x - \mu}{\sigma \sqrt{2}} \right) \right)$$

•
$$(r - s_0(t_0))^2 \underset{H_0}{\overset{H_1}{\gtrless}} (r - s_1(t_0))^2 + 2\sigma^2 \cdot \ln(K)$$

•
$$r \ge \underbrace{\frac{s_0(t_0) + s_1(t_0)}{2} + \frac{\sigma^2}{s_1(t_0) - s_0(t_0)} \cdot \ln(K)}_{T}$$