An elementary proof that \mathbb{P}^1 is proper

Andrey Soldatenkov

It is clear that \mathbb{P}^1 is separated and of finite type over the base ring. To prove that the structural morphism is universally closed, it is necessary to check that for any ring A the morphism $\mathbb{P}^1_A \to \operatorname{Spec}(A)$ is closed.

Cover \mathbb{P}^1_A by two open subschemes $\operatorname{Spec}(A[t])$ and $\operatorname{Spec}(A[s])$. The open subsets $\operatorname{Spec}(A[t,t^{-1}])$ and $\operatorname{Spec}(A[s,s^{-1}])$ are identified by the map which sends t to s^{-1} . A closed subset $Z \subset \mathbb{P}^1_A$ is given by a pair of ideals $I_t \subset A[t]$ and $I_s \subset A[s]$ which define the same subvariety in $\operatorname{Spec}(A[t,t^{-1}]) \simeq \operatorname{Spec}(A[s,s^{-1}])$.

Pick a prime ideal $\mathfrak{p} \subset A$ which is not contained in the image of Z. We need to show that some neighborhood of \mathfrak{p} is also not in the image of Z. Localizing at \mathfrak{p} we can reduce to the case when (A,\mathfrak{m}) is a local ring and $\mathfrak{p} = \mathfrak{m}$. The condition that \mathfrak{m} is not in the image of Z can be rewritten as $\mathfrak{m} \cdot A[t] + I_t = A[t]$ and $\mathfrak{m} \cdot A[s] + I_s = A[s]$. Using the first equality we find an element $m \in \mathfrak{m}$ and two polynomials $p \in A[t]$ and $q \in I_t$, such that mp + q = 1. Suppose theat $q = q_0t^n + \ldots + q_{n-1}t + q_n$. Then the equality mp + q = 1 implies that q_n is invertible. Consider the image of q in $A[s,s^{-1}]$ that is $q_0s^{-n} + \ldots + q_{n-1}s^{-1} + q_n$. By our assumption this polynomial vanishes on the subscheme defined by I_s , so some power of it is contained in I_s . Multiplying by a sufficiently large power of s, we see that I_s contains a polynomial of the form $r = a_0s^N + \ldots + a_N$ where a_0 is invertible. Then $V(I_s)$ is contained in V(r), but $A \to A[s]/(r)$ is an integral extension, so the morphism $V(r) \to \operatorname{Spec}(A)$ is closed (this follows from the going-up theorem for integral extensions and the lemma below). This implies that the image of $V(I_s)$ is closed in $\operatorname{Spec}(A)$ and does not contain \mathfrak{m} (this actually means that the image is empty and that the ideal I_s became trivial when we localized at \mathfrak{p}). Since everything is symmetric in s and t, the same is true about the image of $V(I_t)$. This completes the proof of closedness.

Lemma 0.1. Let $f : \operatorname{Spec}(A) \to \operatorname{Spec}(B)$ be a morphism of affine schemes. Assume that the image of f is closed under specialization. Then the image of f is closed.

Proof. We may assume that f is dominant, in other words that B is a subring of A. In this case we need to prove that f is surjective. Pick a prime ideal $\mathfrak{p} \subset B$. Localize both rings with respect to the multiplicative system $S = B \setminus \mathfrak{p}$. Then we get an embedding $B_{\mathfrak{p}} \to S^{-1}A$. The ring $S^{-1}A$ is non-trivial, since S does not contain zero, so $S^{-1}A$ contains a prime ideal \mathfrak{q} . The preimage of \mathfrak{q} in B will be contained in \mathfrak{p} . This preimage also lies in the image of f, and since the image of f is closed under specialization, the ideal \mathfrak{p} is also in the image of f.

1

1 Questions for the students

- 1. Let \mathcal{F} be a sheaf of sets on a topological space. What is $\mathcal{F}(\emptyset)$?
- 2. Let $X = \operatorname{Spec}(k[x])$ and fix a closed point $p \in X$. Consider the sheaf \mathcal{F} of \mathcal{O}_X -modules defined by setting $\mathcal{F}(U) = 0$ if $p \in U$ and $\mathcal{F}(U) = \mathcal{O}_X(U)$ otherwise. Is \mathcal{F} quasicoherent? Same question if p is the generic point.
- 3. Let $X = \operatorname{Spec}(\mathbb{Z})$ and $p \in \mathbb{Z}$ be a prime. What is the fiber $\mathcal{O}_{X,(p)}$ of \mathcal{O}_X at $(p) \in X$? What is the fibre at the generic point $\mathcal{O}_{X,(0)}$?
- 4. Let A = k[[t]] be the ring of formal power series over a field. Describe the topological space $\operatorname{Spec}(A)$.
- 5. Let $X = \operatorname{Spec}(\mathbb{Z}[x])$. Describe the fibre product $X \times_{\operatorname{Spec}\mathbb{Z}} \mathbb{F}_p$.
- 6. Let $X = \operatorname{Spec}(k[x])$, $Y = \operatorname{Spec}(k[y])$ and $f: X \to Y$ be induced by the map $y \mapsto x^2$. Describe the fibre of f over the closed point y = 0.
- 7. Let $X = \operatorname{Spec}(k[x])$. Consider the two projections $p_1, p_2 : X \times X \to X$. Let $a \in X$ be a point, such that $p_1(a) = p_2(a)$. Is it true that a lies in the image of the diagonal morphism $\Delta : X \to X \times X$?
- 8. Let $X = \operatorname{Spec}(k[x,y]/(xy))$ and $o \in X$ be the point corresponding to the maximal ideal $\mathfrak{m} = (x,y)$. What is the dimension of the tangent space of X at o?
- 9. Let k be a field, $X = \operatorname{Spec}(k[x])$ and $f: X \to \operatorname{Spec}(k)$ be the natural morphism. Describe $f_*\mathcal{O}_X$? Same question for $X = \operatorname{Proj}(k[x,y])$.
- 10. Let $X = \operatorname{Spec}(k[x,y]/(xy^2))$. Describe the reduction X_{red} . Describe the normalization of the reduction X_{red} .
- 11. Let the morphism $f: \operatorname{Spec}(k[x,y,t]/(y^2-tx(x^2-1))) \to \operatorname{Spec}(k[t])$ be induced by the inclusion $k[t] \to k[x,y,t]$. Is the fibre of f over the generic point $(0) \subset k[t]$ reduced? Is it normal?
- 12. Let the morphism $f: \operatorname{Spec}(\mathbb{C}[x,y]) \to \operatorname{Spec}(\mathbb{C}[z,w])$ be given by $z \mapsto x, w \mapsto xy$. Is f an open morphism?
- 13. Let \mathcal{I} be a non-zero ideal sheaf on an integral scheme X. What is the support of \mathcal{I} ?
- 14. Let $I = (x, y) \subset \mathbb{C}[x, y]$ be the ideal and \widetilde{I} the corresponding ideal sheaf on $X = \operatorname{Spec}(\mathbb{C}[x, y])$. Compute the dimensions $\dim(\widetilde{I}_p \otimes \mathbb{C})$ for all closed points $p \in X$.
- 15. Consider the ideal $I=(x)\subset k[x]$ and the corresponding ideal sheaf \widetilde{I} on $\operatorname{Spec}(k[x])$. Is \widetilde{I} locally free? Same question for $I=(x,y)\subset k[x,y]$.
- 16. Let $A = \bigoplus_{i \geqslant 0} A_i$ be a graded algebra over a field $k = A_0$. If A is finite-dimensional as a k-vector space, what is Proj(A)?.
- 17. If for a graded algebra $A = \bigoplus_{i \geqslant 0} A_i$ over a field $k = A_0$ we have $\text{Proj}(A) = \emptyset$, is it true that A is a finite-dimensional vector space?
- 18. Let X and Z be schemes and $i: Z \to X$ a closed immersion. Consider the push-forward $i_*\mathcal{O}_Z$ of the structure sheaf of Z. What is $i_*\mathcal{O}_Z \otimes_{\mathcal{O}_X} i_*\mathcal{O}_Z$?
- 19. For a graded ring A, is the nilradical a homogeneous ideal?
- 20. Is the scheme $\operatorname{Spec}(\bar{\mathbb{Q}} \otimes_{\mathbb{Q}} \bar{\mathbb{Q}})$ connected?

๑