

Recommender System and Link Prediction

Present by

Feng Xie

September 18, 2011

Content

- Recommender System (RS)
- Link Prediction (LP)
- Group Discovery

Recommender Systems

The world is an over-crowded place

They all want to get our attention

Who can help us?

- Can google help?
 - Yes, but only when we really know what we are looking for
- Can experts help?
 - · Yes, but it won't scale well
 - · Everyone receives exactly the same advice!

Ok, here is RS

- · To recommender to us something we may like
- · How?
 - Based on our history of selection
 - · Based on other people with similar interests

Example of RS

- GroupLens
- Amazon Recommendation
- Netflix (\$ 1million 10%)
- · 豆瓣

Some evidences

- Netflix
 - 2/3 rented movies are from recommendation
- Google news
 - 38% more click-through are due to recommendation
- Amazon
 - 35% sales are from recommendation

What do RS do, exactly?

- Predict how much you may like a certain product / service
- Compose a list of N best items for you
- Compose a list of N best users for a certain product / service
- Explain to you why these items are recommended to you
- Adjust the prediction and recommendation based on your feedback and other people

Approaches of RS

- Collaborative filtering
 - User-based
 - · Item-based
- Content-based filtering
- Hybrid
 - · Linear/Switching combination/Sequential
 - Information Quantity

Collaborative Filtering (1)

• User-based (1994, GroupLens)

	Taken	Titanic	Panda					
Alice	5	4	5		3			4
Lily		3	5			4		5
Jacky		4		5	4			
Bob	5	?	4	5		3	5	
	4				3	3		4
	5	2			3	5		
			1	4	2			
				5			4	3

Collaborative Filtering (2)

• Item-based (2001, Amazon)

	Taken	Titanic	Panda					
Alice	5	4	5		3			4
Lily		3	5			4		5
Jacky		4		5	4			
Bob	5	?	4	5		3	5	
	4				3	3		4
	5	2			3	5		
			1	4	2			
				5			4	3

Content-based (1)

- Web page: words, hyperlinks, images, tags, comments, titles,
 URL, topic
- Music: genre, rhythm, melody, harmony, lyrics, meta data, artists, bands, press releases, expert reviews, loudness, energy, time, spectrum, duration, frequency, pitch, key, mode, mood, style, tempo
- User: age, sex, job, location, time, income, education, language, family status, hobbies, general interests, Web usage, computer usage, fan club membership, opinion, comments, tags, mobile usage
- Context: time, location, mobility, activity, socializing, emotion

Content-based (2)

- Can we acquire those content pieces automatically?
 - Fairly easy for text
 - Difficult for music and video, except for digital signals

Similarity Measures

· Cosine-based

	COBI	Taken	Titanic	Panda					
	Alice	5	4	5		3			4
	Lily		3	5			4		5
	Jacky		4		5	4			
•	Bob	5	?	4	5		3	5	
		4				3	3		4
		5	2			3	5		
				1	4	2			
					5			4	3

Statistic-based & Orthogonalization

Evaluation

- How do we know the recommendation is good?
- Practice: training / testing split (80/20%)
- Metrics
 - MAE (Mean Absolute Error), RMSE (Root Mean Square Error)
 - Recall, precision

Problems with RS

- Scale
 - Netflix (2007): 5M users, 50K movies, 1.4B ratings
- Sparse data
 - I have rated only one book at Amazon!
- · Cold-Start
 - New users and items do not have history
- Popularity bias
 - Everyone reads "Harry Potter"
- Trust

More State-of-the-arts

- Research in Recommender Systems is becoming a *mainstream*, evidenced from the recent conference ACM RecSys.
- Other conferences
 - · KDD, SDM, ICDM, PKDD, WSDM, RecSys

RS & Graph

RS can be considered as a sub-problem of LP!

Link Prediction

- Estimating the likelihood of the existence of a link between two nodes, based on the observed topology
- Prediction of *existed yet unknown links* for sampling networks, such as food webs, protein-protein interaction networks and metabolic networks
- Prediction of *future links* for evolving networks, like on-line friendship networks

LP algorithms

- Attributes
- Network structure
 - · Node-based
 - · Path-based

Node-based (1)

Common neighbor based

$$s_{xy} = |\Gamma(x) \cap \Gamma(y)| \qquad \qquad s_{xy} = \frac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x) \cup \Gamma(y)|}$$

Node-based (2)

Resource Allocation (RA)

The node x can send some resource to y with their common neighbors playing the role of transmitters. Assume that each transmitter has a unit of resource, and will equally distribute it between all its neighbors. Then S(x,y) is defined as the amount of resource y received from x.

$$s_{xy} = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{k(z)}$$

$$S_{xy} = \frac{1}{4} + \frac{1}{3} + \frac{1}{4} + \frac{1}{4} + \frac{1}{3}$$

Observation

NSLAB@ RIIT of TSINGHUA UNIVERSITY

Path-based

Katz Index

$$S_{xy} = \sum_{l=1}^{\infty} \beta^{l} \cdot \left| paths_{xy}^{\langle l \rangle} \right|$$

• Local Path (LP)

$$S = A^2 + \varepsilon A^3$$

Group Discovery

Related Paper

Newman M E J and Girvan M, 2004 Phys. Rev. E69026113

Modularity

$$||A|| = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}$$

$$||A_{pq}|| = \sum_{i \in V_p} \sum_{j \in V_q} a_{ij}$$

$$e_{pq} = ||A_{pq}|| / ||A||$$

$$Q = \sum_{p=1}^{m} \left[e_{pp} - (\sum_{q=1}^{m} e_{pq})^2 \right]$$

Thank you! Questions?