Lecture 1

- Riemann Integration

Aparajita Dasgupta

Riemann Integration

Disc = D



Total area of = nn2sim In cos In.

Agrea of 
$$OA'B'$$

$$= 2. \frac{1}{2} r \cdot r \cdot \tan \frac{\pi}{n}$$

$$= r^2 + \tan \frac{\pi}{n}.$$

Total area ef = nr2tan #.
superscribed 1's

Let us assume the area of the disc D = X.

 $n n^2 sim \frac{\pi}{n} cos \frac{\pi}{n} \leq x \leq n n^2 + con \frac{\pi}{n}$ 

Taking n-> 00 we get

lim nr2 sin Fr cos Fr n-300

 $=\lim_{n\to\infty} r^2 \left[ \frac{\sin \frac{\pi}{n}}{\pi} \right] \cdot \pi \cos \frac{\pi}{n}.$ 

we get. Then  $Tr^2 \leq X$ . the limit Calculate lim nn2+om \$\frac{\pi}{n}\$ Tr2 again we get, X < Tr we get 2 (1)  $X = Xb_{3}$ 

Let f: [a,b] -> R. that. Assume fis bdd & non-negative. 22 23-- dn-1 b= 2n He define 1) Parkhions: It is just collection of points. a=x0 < x1 < x2 < x3 < ... < x=b a 2 b. between

How to down the nectangle?

I define.  $M_i = sup \left\{ f(x) \mid x \in [x_{i-1}, x_i] \right\}$  $m_i = \inf \left\{ f(x) \mid x \in [x_{i-1}, x_i] \right\}$ Next we again define  $U(P,f) = \sum_{i=1}^{n} M_i \Delta x_i$   $\Delta x_i = |x_i - x_{i-1}|$ Upper sum = Total alea of superscribed rectarigles.

. L  $(P, f) = \sum_{i=1}^{n} m_i \Delta x_i$ Lowest sum

the picture. we check Tf then sum of Sum of Red frectangles < sum of green greatangles U(Pf)  $\leq$ L (P,f)

D 21:-1 2# x; C

Earlier we had



Foon that figist I will define, Refinement of the pourhibion.

Definement of Pabe

Parking be

parking of [a,b]

Then Pais called the 

getimement of Pi if

P, C P2

Q: What is the connection L(P, f), L(B, f)?

Theo. If P, and P2 are panhihons of [a,b] s.t. P2 2P, then- $L(P_2,f) > L(P_1,f) &$  $U(P_2,f) \leq U(P_1,f)$ . Proof: Assume P2 is the grefinement of P, with 'one' extera point. Let us say.  $P_{1} = \begin{cases} \chi_{0}, & \chi_{1}, & -- \chi_{0} \end{cases}$ De fixo,  $\chi_1$ , ...,  $\chi_{i-1}$ ,  $\chi_i^*$   $\chi_i$ ,

So then we can write  $\chi_i^*$ P2 = P, U {x\*}

us denote Let  $=\inf \left\{ f(\alpha) \mid \alpha \in [\alpha_{i-1}, \alpha^*] \right\}$  $w_2 = \inf \left\{ f(x) \mid x \in [x^*, x;] \right\}$ Je observe that.  $m_i = \inf \left\{ f(x) \mid x \in [x_{i-1}, x_i] \right\}$  $w_i \geqslant m_i$  why? $W_2 > m;$ [ Infimum of a smaller set > infimum of the bigger set ]!



$$= \omega_{1} (\alpha^{*} - \alpha_{i-1}) + \omega_{2} (\alpha_{i} - \alpha^{*})$$

$$- m_{i} (\alpha_{i} - \alpha_{i-1})$$

$$- \omega_{1} (\alpha^{*} - \alpha_{i-1}) + \omega_{2} (\alpha_{i} - \alpha^{*})$$

$$- m_{i} (\alpha_{i} - \alpha^{*})$$

$$- m_{i} (\alpha^{*} - \alpha_{i-1})$$

$$+ (\omega_{2} - m_{i}) (\alpha_{i} - \alpha^{*})$$

Exercise Check pictomially the case of U(P,f)? We denote here.  $|Q_i| = \sup \left\{ f(\alpha) \mid \alpha \in \left[\alpha_{i-1}, \alpha^*\right] \right\}$  $\omega_2 = \sup_{x \to 0} f(x) \mid x \in [x^*, x]$ and we know.  $M_i = \sup_{x \to 0} f(x) \mid x \in [x_{i-1}, x]$ () DEENVE!  $\upsilon_i \leq M_i$ 02 < Mi this will give. Then  $U(P_2,f) \leq U(P_1,f)$ (Proceeding similarly)

assumed earlier.  ${f(\alpha) \mid \alpha \in [a,b]}$  is bodd inf exists. sup & 50 Let M = sub f(x) | xe[ab] $m = \inf \{f(x) \mid x \in [a,b]\}$ Notice: M (b-a) > U (P.f) (: M: < M)  $m(b-a) \leq U(P-f)$  $(:m \leq Mi)$ Combining  $U(P,f) \leq M(b-a)$  $m(b-a) \leq$ 

Similarly,  $m(b-a) \leq L(P,f) \leq M(b-a)$ Together we get.

 $m(b-a) \leq L(P,f) \leq U(P,f)$  $\leq M(b-a)$ 

Upper Riemann Sum

To f(a) de = inf U(Pf)

a

Lower Riemann Sum

b
f(a) du = sup L(P,f)
P

Integrable Riemann 'f' in [a, b] A function Riemann is called over [a,b] if Inte grable and in this case

we begine

of  $f(x)dx = \int_{a}^{b} f(x)dx$ of  $f(x)dx = \int_{a}^{b} f(x)dx$ of  $f(x)dx = \int_{a}^{b} f(x)dx$  $= \int_{\alpha}^{b} f(x) dx$ 

mma (In general)  $\int_{a}^{b} f(x) dx \leq \int_{a}^{b} f(x) dx$ Lemma Pff! Let P, B be any two parchition of [a,b]. Let 'P' be the common grefinement of P, & P2. P=P,UP2. We know- $L(P,f) \leq L(P,f) \leq U(P,f)$  $\leq \cup (P_2 f)$ us fix P2. Let

 $L(P_1,f) \leq U(P_2,f)$   $P_1$  $\Rightarrow \int_{q}^{p} f(x) dx \leq U(P_2, f)$   $4P_2$ Then we get,  $\int f(x) dx \leq \inf U(f_2 f)$   $= \int f(x) dx$ Hences  $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx.$ 

Ex. A bounded fr. that is not Riemann integrable. Consider. f: [0,1] -> R f(x) = I,  $x \in \mathbb{R}$ = 0,  $x \in \mathbb{R} \setminus \mathbb{R}$ Solm. Let P' be any partition of [0,1].  $U(Pf) = \sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} \Delta x_i$ I If we take any

[71:-17xi] then if contains both sationals & isrational. 

Similarly we get L(P,f) =  $\sum m_i \Delta x_i = 0$ Now 'p' was assistancy. So we get,  $\int f(x) dx = 1$   $\int f(x) dx = 0$   $\int f(x) dx = 0$ > Pis not Riemann integrable.

$$f(\alpha) = \alpha^2$$
, on  $[0,1]$ 



Som

Consider

 $P_{n} = \{0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \frac{n-1}{n}, \frac{4}{n}\}$ 

- k into

Look into

Now.

 $U(Pf) = \sum_{i} M_{i} \Delta x_{i}$   $M_{i} = \left(\frac{1}{h}\right)^{2}; \Delta x_{i} = \frac{1}{h}.$ 

 $M_2 = \left(\frac{2}{n}\right)^2 : \Delta x_2 = \frac{1}{n}$ 

and 50 on . -

So we get,  $U(P_{n}, f) = (\frac{1}{n})^{2} \cdot \frac{1}{n} + (\frac{2}{n})^{2} \cdot \frac{1}{n}$  $+ - - - + \left(\frac{M-1}{N}\right)^2 + \frac{M^2}{M^2} \cdot \frac{1}{N}$  $=\frac{1}{n^3}\left(1^2+2^2+\cdots+n^2\right)$  $=\frac{1}{n^3} \cdot \frac{n(n+1)(2n+1)}{n}$ Now from the previous definition we get.  $U(P,f) > \int f(x) dx$ In possiculos,  $\int_{a}^{b} f(x) dx$ 

 $\frac{1}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} > \int_{0}^{b} f(x) dx$ Taking  $n \to \infty$  we get.

I  $f(x) dx \leq \frac{1}{3}$ Lets look into.  $L(P_n, f) = \sum_{i=1}^{n} m_i \Delta x_i$ Then  $m_i = 0$  $m_2 = \frac{1}{n}$ , - - - .  $m_n = \frac{m-1}{n}$ . so we get,  $L(P_{n}, f) = \frac{1}{n^{3}} \frac{m(m-1)(2m-1)}{6}$ Again we know  $L(P_n, f) \leq \int_a^b f(x) dx$ 

Then taking n > 00 we get  $\frac{1}{3} \leq \int_{-\infty}^{\infty} f(x) dx$ . To gether we get,  $\frac{1}{3} \leq \int_{a}^{b} f(a) dx \leq \int_{a}^{b} f(a) dx$  $\leq \frac{1}{3}$ Hence,  $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$ fis Riemann-integrable

2 Ifada = 1. Q1 What are good examples of R - int ms? there any Is for Riemann NASC integrability? have longer we 3) Do his which are lass of R-int.? class