Towards a Dataflow Approach to Robot Programming

Orestis Melkonian

Software & Knowledge Engineering Laboratory (SKEL)

NCSR "Demokritos"

Overview

- 1 Motivation
- 2 Stream Framework
- 3 Future Work
- 4 Demos

Motivation Stream Framework Future Work Demos

Motivation I

Common Patterns

- Robot perception architecture
- Feedback loop controllers

Motivation Stream Framework Future Work Demos

Motivation II

- ROS: Robot Operating System
 - Hardware abstraction
 - Reusability
 - Language-agnostic open-source middleware
 - Publish-Subscribe design pattern
 - Communication via "topics"
 - Status Quo
 - ▶ Almost all code written in C++ and Python
 - Callbacks
 - Dataflow nature so far ignored

otivation Stream Framework Future Work Demos

Stream Framework

- Topics as streams
- At a micro-level, replace callback "internal plumbing" with clean functional declarations
- At a macro-level, acts as a coordinating language adding to the composability of ROS

Extensibility

- Strategy design pattern for evaluation
- Coder simply declares a dataflow graph

Advantages

- Decouple design (what to do) from execution (how to do it)
- · Cleaner, easier to maintain code
- Implicit concurrency
- Implicit message-passing

otivation Stream Framework **Future Work** Demos

Future Work: Optimization

- General graph transformations
 - Apply some simple heuristics
 - Preserve semantics
 - Back-ends continue with more specific optimizations
- Network-aware placement
 - Fusion/fission to reach desired granularity
 - Dynamic reconfiguration

otivation Stream Framework **Future Work** Demos

Future Work: DSL

- Minimize boilerplate code
- More intuitive syntax
- Embedded in Scala
 - Functional
 - Inherit rich type system
 - Little programming effort
- Restrict host language
 - Single-assignment
 - Restricted resource usage
- Impose a specific program structure
 - Minimize design flaws

Demos: Hamming Numbers $(2^i 3^j 5^k)$

The End