Fiche Terminale spécialité physique-chimie

www.vecteurbac.fr

DISSOLUTION

Pour préparer une solution de concentration c et de volume V, à partir d'un solide, on calcul la masse à prélever :

$$m = c \times V \times M$$

Protocole expérimentale :

- > On pèse une masse m de solide
- On verse le solide dans une fiole jaugée de volume V.
- On ajoute l'eau distillée jusqu'au 3/4
- On homogénéise.
- On ajoute l'eau distillée jusqu'au trait de jauge
- On homogénéise.

Fiche Terminale spécialité physique-chimie

www.vecteurbac.fr

DILUTION

La solution de départ est appelée solution mère. La solution obtenue est appelée solution fille.

$$\begin{split} & n_m = n_f \\ & \text{Or } n = cV \\ & \text{donc } c_m V_m = c_f V_f \\ & \text{d'où} \\ & V_m = \frac{c_f V_f}{c_m} \end{split}$$

Avec Vm le volume à prélever de la solution mère à prélever.

la concentration diminue : $C_f < C_m$ le volume augmente : $V_f > V_m$

la quantité de matière du soluté ne change pas : n_f= n_m

Protocole expérimental:

- On prélève le volume Vm à l'aide d'une pipete jaugée
- On introduit Vm dans une fiole jaugée de volume Vf
- On complète avec de l'eau distillée jusqu'au trait de jauge et on homogénéise.

Le facteur de dilution est défini par :

$$F = \frac{V_f}{V_m} = \frac{c_m}{c_f}$$

Beer-Lambert Dosage par étalonnage

 $A = f(\lambda)$ permet de trouver λ_{max} : la longueur d'onde pour laquelle l'absorbance est maximale.

Connaissant λ_{max} on trouve la couleur de la solution qui est la couleur complémentaire correspondant à λ_{max} (couleur opposée sur le cercle chromatique)

Le graphique est une droite passant par l'origine : A et C sont proportionnel ainsi A=KC.

La loi de Beer Lambert est vérifiée.

Mesure	Nom de la loi	Formule	Analyse de courbe	Unités
Absorbance	Loi de Beer- Lambert	$A_{\lambda} = k \times c$ ou $A_{\lambda} = \epsilon_{\lambda} \times l \times c$	$A_{\lambda} = f(c)$ est une droite passant par l'origine: A_{λ} et c sont proportionnels.	 A_λ: l'absorbance de la solution à la longueur d'onde λ ε_λ: le coefficient d'extinction molaire de l'espèce chimique en L.mol⁻¹.cm⁻¹ l: la largeur de la cuve en cm c: la concentration en mol.L⁻¹

Etapes d'un dosage par étalonnage :

- Trouver λ_{max}
- Mesurer l'absorbance de différentes solutions de concentrations connues
- Tracer la courbe A=f(c)
- Mesurer l'absorbance de la solution inconnue
- Lire la concentration sur la courbe d'étalonnage ou utiliser la relation entre l'absorbance et la concentration.

Kohlrausch Dosage par étalonnage

Mesure	Nom de la loi	Formule	Analyse de courbe	Unités
Conductivité Loi de Kohlrausch				σ la conductivité de la
		σ=kc	$\sigma = f(c)$ est une	solution en siemens
		о=кс	droite passant par	par mètre (S.m ⁻¹)
	I a: da	ou	l'origine :	> [X _i] la concentration en
			σ et c sont proportionnels.	mol.m ⁻³ .
	Komrausch	$\sigma = \sum \lambda_i. [X_i]$		λ _i la conductivité
				molaire ionique en
				S.m ² .mol ⁻¹

Voici les étapes d'un dosage par étalonnage :

- Mesurer la conductivité de différentes solutions de concentrations connues
- Tracer la courbe σ =f(c)
- Mesurer l'absorbance ou la conductivité de la solution inconnue
- Lire la concentration sur la courbe d'étalonnage ou utiliser la relation entre la conductivité et la concentration.

ACIDE-BASE

	Définitions	Notation	Couple acide- base conjugués
Acide	Espèce capable de céder un proton H ⁺	АН	AH/A-
Base	Espèce capable de capter un proton H ⁺	A-	An/A

Quelques couples

L'eau (espèce amphotère)	l'acide carbonique	acide carboxylique	amine
 → H₃O⁺/H₂O → H₂O/HO⁻ 	H ₂ CO ₃ /HCO ₃ HCO ₃ /CO ₃ ²⁻	R-COOH/ R-COO	$R - NH_3^+/R - NH_2$

Solutions aqueuses d'acides et de bases courantes

Nom de la solution	Formules des espèces dissoutes
Acide chlorhydrique	(H ₃ O+(aq), Cl-(aq))
Acide nitrique	(H ₃ O+(aq), NO -(aq))
Acide éthanoïque	(CH₃COOH(aq))
Soude ou Hydroxyde de sodium	(Na ⁺ (aq), HO ⁻ (aq))
Ammoniac	(NH ₃ (aq))

H₃N⁺-CHR-COO⁻ est un acide α-aminé. C'est une espèce amphotère appartenant au deux couples suivants:

➤ H₃N⁺-CHR-COOH /H₃N⁺-CHR-COO⁻

➤ H₃N⁺-CHR-COO⁻/H₂N-CHR-COO⁻

Réaction acide base : L'acide A₁H donne un H⁺ à la base A₂-

$$A_1H + A_2 \rightarrow A_1 + A_2H$$

La double flèche indique que la réaction n'est pas toujours totale.

Le pH est défini par : pH = $-\log\left(\frac{[H_3O^+]}{c^0}\right)$

Réciproquement : $[H_3O^+] = c^0 \times 10^{-pH}$ Avec $c^0 = 1,00 \text{ mol. L}^{-1}$

L'acide réagit avec l'eau selon l'équation :

$$AH_{(aq)} + H_2O_{(l)} \rightleftarrows A_{(aq)}^- + H_3O_{(aq)}^+$$

On associe à cette équation une **constante d'acidité Ka** :
$$\text{Ka} = \frac{[\text{A}^-]_{eq} \times [\text{H}_3\text{O}^+]_{eq}}{[\text{AH}]_{eq} \times c^0}$$

Et pKa=-log (Ka)

Autoprotolyse de l'eau

L'eau réagit avec elle-même selon l'équation : $2H_2O_{(l)} = H_3O_{(aq)}^+ + HO_{(aq)}^-$

$$K_e = \frac{[H_3O^+]_{eq} \times [HO^-]_{eq}}{(c^0)^2} = 10^{-14}$$

$$pK_e = -\log(K_e) = 14$$

Acide fort/bases fortes

Les acides forts et bases fortes réagissent totalement avec l'eau **Pour un acide fort pH=-log (c).** Avec c la concentration de l'acide fort. **Pour un base forte pH=14+ log (c).** Avec c la concentration de la base forte.

Les pKa nous indiquent sur la force d'un acide : Plus le pKa est petit plus l'acide est fort. Plus le pKa est grand plus la base est forte.

Diagramme de prédominance

Les indicateurs colorés sont des couples acido-basiques dont la couleur de l'acide est différente de celle de la base. D'où leur intérêt pour savoir si une solution est acide ou basique lors d'un titrage

Une solution tampon contient un acide faible et sa base conjuguée en concentrations de même ordre de grandeur. Ce sont des solutions ou le pH ne varie presque pas lors d'une dilution modérée ou d'un ajout modéré d'acide ou de base.

Titrage conductimétrique

Titre massique	Masse volumique	Densité	Concentration molaire	Concentration massique
$w = \frac{m_{\text{solut\'e}}}{m_{\text{solution}}}$	$\rho_{\text{solution}} = \frac{m_{\text{solution}}}{V_{\text{solution}}}$	$d = \frac{\rho_{solution}}{\rho_{eau}}$	$C = \frac{n_{\text{solut\'e}}}{V_{\text{Solution}}}$	$C_{\rm m} = \frac{m_{\rm solut\acute{e}}}{V_{\rm Solution}}$

Un dosage par titrage direct consiste à faire réagir deux solutions dont une a une concentration connue et l'autre non. La réaction qui sert de dosage doit être **totale**, **rapide** et **unique**.

L'équivalence correspond au mélange stœchiométrique des réactifs pour la réaction mis en jeu. A l'équivalence, il y a changement du réactif limitant.

Soit le dosage de A par B selon l'équation : $\mathbf{a} A + \mathbf{b} B \rightarrow \mathbf{c} C + \mathbf{d} D$

$$\frac{n_{\text{initial}}(A)}{\mathbf{a}} = \frac{n_{\text{eq}}(B)}{\mathbf{b}}$$

Nous pouvons ainsi connaître la quantité de matière, la masse ou la concentration de l'espèce dosée.

Titrage pH-métrique

Titre massique	Masse volu	ımique	Densité	Concentration molaire	Concentration massique
$w = \frac{m_{\text{solution}}}{m_{\text{solution}}}$	$- \mid \rho_{\text{solution}} = -$	n _{solution} V _{solution}	$d = \frac{\rho_{solution}}{\rho_{eau}}$	$C = \frac{n_{\text{solut\'e}}}{V_{\text{Solution}}}$	$C_{\rm m} = \frac{m_{\rm solut\acute{e}}}{V_{\rm Solution}}$

Un dosage par titrage direct consiste à faire réagir deux solutions dont une a une concentration connue et l'autre non. La réaction qui sert de dosage doit être **totale**, **rapide** et **unique**.

L'équivalence correspond au mélange stœchiométrique des réactifs pour la réaction mis en jeu. A l'équivalence, il y a changement du réactif limitant.

Soit le dosage de A par B selon l'équation : $\mathbf{a} A + \mathbf{b} B \rightarrow \mathbf{c} C + \mathbf{d} D$

$$\frac{n_{\text{initial}}(A)}{\mathbf{a}} = \frac{n_{\text{eq}}(B)}{\mathbf{b}}$$

Nous pouvons ainsi connaître la quantité de matière, la masse ou la concentration de l'espèce dosée.

CINETIQUE

Facteurs cinétiques								
Température	Plus la température est élevée, plus la réaction est rapide							
Plus la concentration initiale des réactifs est élevée, plu								
Concentration	réaction est rapide.							
	Un catalyseur augmente la vitesse de réaction sans modifier l'état							
Catalyseur	d'équilibre du système.							
	Un catalyseur n'apparait pas dans l'équation de la réaction							

Le temps de demi-réaction notée $t_{1/2}$ est la durée nécessaire pour laquelle $x=\frac{x_f}{2}$.

	Vitesse							
Vitesse	volumique	de	Vitesse	volumique	de	Vitesse	volumique	de
réaction			formatio	n d'un produit		disparitio	on d'un réactif	
$v = \frac{1}{2} \frac{dx(t)}{dt} \qquad v_{\ell} = \frac{d[P](t)}{dt}$				d[R](t)				
$v = \frac{1}{V} \frac{\sin(t)}{dt}$			V	$r_{\rm f} = \frac{1}{\rm dt}$		v_d	$=-\frac{dt}{dt}$	

Mathématiquement, la dérivée d'une fonction en un point, est la pente (coefficient directeur de la tangente) en ce point.

		v en fonction de la
<u>Loi de vitesse d'ordre 1</u>	$v_d = k \times [R]_{(t)}$	concentration est une
		droite passant par l'origine.

Equation différentielle en cas de vitesse d'ordre 1 :

$$v_{d} = -\frac{d[R]_{(t)}}{dt}$$
$$k \times [R]_{(t)} = -\frac{d[R]_{(t)}}{dt}$$

Solution de équation différentielle : $[R]_{(t)} = [R]_i \times e^{-k \times t}$

Pour identifier, à partir de données expérimentales, si l'évolution d'une concentration suit ou non une loi de vitesse d'ordre 1, trois méthodes sont possibles :

- \triangleright Vérifier que $[R]_{(t)}$ est une fonction exponentielle
- \triangleright Vérifier que $ln([R]_{(t)})$ est une fonction affine
- ightharpoonup Vérifier que v_d est une fonction linéaire

$$t_{1/2}=ln(2)/k$$

PILES

$$aA_{(aq)}+bB_{(aq)}\rightleftarrows cC_{(aq)}+dD_{(aq)}$$

Taux d'avancement	Quotient de réaction
$\tau = \frac{x_f}{x_{max}}$	$Q_{r} = \frac{[C]^{c} \times [D]^{d}}{[A]^{a} \times [B]^{b}}$
Si $\tau=1$ transformation totale. Si $\tau<1$ transformation est non totale.	Si A, B, C ou D est le solvant ou un solide, on remplacera sa « concentration » dans Q _r par le chiffre 1.

A l'équilibre :
$$Q_{r,eq} = \frac{[C]_{eq}^{c}[D]_{eq}^{d}}{[A]_{eq}^{a}[B]_{eq}^{b}} = K(T)$$

$$\begin{array}{c}
Qr < K & Qr = K & Qr > K \\
\text{Évolution spontanée} \\
\text{dans le sens direct} & \text{dans le sens inverse}
\end{array}$$

$$\begin{array}{c}
Equilibre \\
pas d'évolution
\end{array}$$

Une pile est composée de deux demi-piles. Chaque demi-pile contient l'oxydant et le réducteur d'un couple. Les demi-piles sont reliées par un pont salin (ou séparées par une paroi poreuse).

Le pont salin sert :

- A fermer le circuit afin de permettre la circulation du courant électrique.
- A assurer l'électroneutralité des solutions de chaque demi-pile.

Par définition:

- L'anode est l'électrode qui est le siège d'une oxydation (moyen mnémotechnique les deux commencent par une voyelle).
- La cathode est l'électrode qui est le siège d'une réduction (moyen mnémotechnique les deux commencent par une consonne).

<u>Remarque</u>: un voltmètre ou un ampèremètre indiquent une valeur positive si la borne « com » est reliée à la borne négative.

Charge Q

$$Q = I \times \Delta t$$

 $Q = n_{(e-)} \times N_A \times e = n_{(e-)} \times F$

Concentration apportée et effective :

Dans une solution de sulfate de potassium, $2K^+ + SO_4^{2-}$ de concentration C en soluté, on à :

$$[K^+] = {2 \over 2}C$$
 et $[SO_4^{2-}] = C$

Nomenclatures chimie organique

Nombre de carbone	Nom
1	Méth
2	Eth
3	Prop
4	But
5	Pent
6	Hex
7	Hept
8	Oct
9	Non
10	Déca

Mnémotechnique : Maman Est Partie, Bébé Pleure.

<u>Alcanes linéaires</u>: composés de carbone et hydrogènes sans liaisons multiples Nom de l'alcane linéaire = <u>Corps du nom</u> (désigne le nombre d'atomes C) + Suffixe ane

Formule semi-développée	Nom	Nombre de carbone de la chaine linéaire	
CH ₄	Méthane	1	
CH ₃ -CH ₃	Ethane	2	
CH ₃ -CH ₂ -CH ₃	Propane	3	
CH ₃ -CH ₂ -CH ₂ -CH ₃	Butane	4	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃	Pentane	5	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃	Hexane	6	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	Heptane	7	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	Octane	8	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	Nonane	9	
CH ₃ -CH ₂ -CH ₃	Décane	10	

Alcanes ramifiés

Nom de l'alcane ramifié = Préfixe (noms et positions des ramifications) + Corps du nom + Suffixe ane

- a) La chaîne principale est toujours la chaînes linéaire la plus longue.
- b) La chaîne principale porte le nom de alcane correspondant
- c) Le nom de la ramification est le nom du groupe alkyle

Formule semi-développée de l'alkyle	Nom	Nombre de carbone
CH ₃ -	Méthyl	1
CH ₃ -CH ₂ -	Ethyl	2
CH ₃ -CH ₂ -CH ₂ -	Propyl	3
CH ₃ -CH ₂ -CH ₂ -CH ₂ -	Butyl	4
CH ₃ -CH ₂ -CH ₂ -CH ₂ -	Pentyl	5
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	Hexyl	6

- d) Les positions des ramifications doivent être indiquées par des indices si une confusion est possible.
- e) Les ramifications sont écrites par ordre alphabétique avec des indices di (2), tri(3)...
- f) La numérotation de la chaîne principale commence par l'extrémité à partir de laquelle apparaît en premier lieu le plus grand nombre de ramifications

CH₃ CH₂ CH₂ CH₂ CH₃ CH₃

CH3-CH-CH3-CH3-CH3-CH-CH-CH3

Exemple: 2,3,8-triméthylnonane et non 2,7,8-triméthylnonane

Fonctions chimiques

Nom des fonctions chimiques = Préfixes éventuels + Corps du nom + Suffixe ane + indice de position si nécessaire + suffixe d'une fonction

Familles	Fonction Chimique	Groupe	Préfixe	Suffixe « ane »	Indice de position	Suffixe Fonction
Aldéhyde	c=0	Carbonyle		an		al
Cétone	c=o	Carbonyle		an	Oui	one
Alcool	-OH	Hydroxyle		an	Oui	ol
Acide carboxylique	—с [′] он	Carboxyle	acide	an		oique
Amine primaire	-NH ₂	Amine		an	Oui	amine
Dérivé halogéné (X halogène)	-X		Halogéno (par exemple chloro)	ane	Oui	
Ester	-c(°)-	Ester		an		oate de yle
Amide	−c NH₂	Amide		an		amide

a) La chaîne principale est la chaîne la plus longue portant le carbone fonctionnel. Dans le cas de l'acide carboxylique, de l'aldéhyde, de l'ester et de l'amide, ce carbone est le carbone 1 de la chaîne.

b) Les chaînes ramifiées sont désignées normalement par des suffixes –yl, leur position d'attache à la chaîne principale est déterminée normalement par des indices.

Spectroscopie

La spectroscopie IR **permet d'identifier la nature des liaisons et donc d'identifier les groupes caractéristiques** dans une molécule organique.

Elle ne permet pas d'identifier le squelette carboné de la molécule.

Les spectres IR présentent généralement :

- \triangleright En abscisse, le nombre d'onde σ =1/ λ exprimé en cm⁻¹. L'échelle est orientée vers la gauche et elle n'est pas toujours linéaire.
- En ordonnée, la transmittance T en pourcentage.

A l'aide d'une table spectroscopique, nous pouvons déterminer les différents groupes caractéristiques.

Table spectroscopique IR simplifiée :

Liaison	Nombre d'onde (cm ⁻¹)	Intensité
O-H alcool libre	3500 - 3700	forte, fine
O-H alcool lié	3200 - 3400	forte, large
O-H acide carboxylique	2500 - 3200	forte à moyenne, large
N-H amine	3100 - 3500	moyenne
N-H amide	3100 - 3500	forte
N-H amine ou amide	1560 - 1640	forte ou moyenne
C _{tri} - H	3000 - 3100	moyenne
C _{tét} - H	2800 - 3000	forte
C = O ester	1700 -1740	forte
C = O amide	1650 - 1740	forte
C = O aldéhyde et cétone	1650 - 1730	forte
C = O acide	1680 - 1710	forte

SYNTHESE ORGANIQUE

Etapes de synthèse organique :

- 1. Réaction chimique
- 2. Extraction du produit brut
- 3. Purification
- 4. Analyse du produit pur

Etapes	Nom du montage	Rôle	Montage
Réaction chimique	Chauffage à reflux	Accélérer la réaction sans perte de matières	CHAUFFAGE A REFLUX 1 - Réfrigérant à boules 2 - Pince mâchoire (pour maintenir le ballon et le réfrigérant en position verticale) 3 - Ballon monocol 4 - Chauffe-ballon 5 - Système élévateur (ou valet élévateur) E - Entré eau S - Sortie eau
Extraction du produit brut	Filtration simple	Séparer un mélange solide liquide	mélange hétérogène papier-filtre entonnoir

Etapes	Nom du montage	Rôle	Montage
	Filtration sous vide	Séparer un mélange solide liquide	support mélange à filtrer filtre en papier filtre Büchner pince joint conique trompe à eau-
	Extraction par solvant	Extraire une espèce chimique E d'un mélange aqueux	Solvant extracteur + espèce dissoute (mélange homogène) Avant agitation Le solvant S doit être non-miscible à l'eau; L'espèce E doit être très soluble dans le solvant S; Le solvant S ne doit pas être trop dangereux; Le solvant S doit être volatil afin de pouvoir être facilement éliminé en fin d'extraction.
Purification	Distillation Pour un liquide		thermomètre Réfrigérant vapeurs chauffe-ballon distillat
		ation Pour un lide	

Etapes	Nom du montage	Rôle	Montage
Analyse du produit pur	Chromatog raphie sur couche mince C.C.M	Vérifier si corps pur ou mélange Vérifier si deux molécules sont identiques	Verticalement : • présence de plusieurs taches = mélange • Une seule tache = corps pur Horizontalement: • deux taches à la même hauteur = molécules identiques
	spectre IR	Vérifier la famille de la molécule organique	4000 3000 2000 1500 1000 500 Nombre d'onde (cm ⁻¹)
	Banc Köfler	Vérification de la température de fusion	20 °C 260 °C

Rendement :

$$\eta = \frac{n_{\text{produit}}}{n_{\text{theorique}}}$$