Part I: Linear Models

What is Part I about?

▶ In the first part, we consider...

a class of statistical models, so called linear models, generated by the equation

$$Y=\text{B}\beta+\epsilon$$

with

- $Y = (Y_1, ..., Y_n)'$ vector of observations,
- B design matrix,
- β parameter vector
- δ ε (random) error term (not observable).

Part I: Linear Models

Chapter I.2

Preliminaries

Notation, Linear Algebra & Probability

Topics

- To be discussed...
 - properties of vectors & matrices, rank, trace, singular value decomposition, etc.
 - Moore-Penrose general inverse
 - Image, kernel, orthogonal projectors
 - Random vectors, expectations, covariance matrix
 - selected probability distributions on the real line connected to the normal distribution
 - on non-central χ^2 and F-distribution

Part I: Linear Models

Chapter I.2

Preliminaries

Linear Algebra

Notation & basic definitions

▶ I.2.1 Notation (vectors and matrices)

- vectors are written in bold italics: $\mathbf{x} = (x_i)_{1 \leqslant i \leqslant p} = \begin{pmatrix} x_i \\ \vdots \\ x_p \end{pmatrix}$
- random vectors are written in capital bold italics: $\mathbf{X} = (X_i)_{1 \le i \le p} = \begin{pmatrix} X_i \\ \vdots \\ X_p \end{pmatrix}$

Notation & basic definitions

■ I.2.2 Notation (special vectors and matrices)

- $A = diag(a_1, ..., a_p)$: diagonal matrix with diagonal elements $a_1, ..., a_p$
- \mathfrak{D} $\mathbb{1}_{\mathfrak{p}} \in \mathbb{R}^{\mathfrak{p}}$: vector of ones, $\mathfrak{0} \in \mathbb{R}^{\mathfrak{p}}$ zero vector
- $e_{1,p}, \ldots, e_{p,p}$: standard basis of \mathbb{R}^p
- $I_p = diag(1, ..., 1)$: p-dimensional identity matrix
- $\mathbb{1}_{p\times p} = \mathbb{1}_p \mathbb{1}'_p : \text{ matrix of ones}$
- $E_p = I_p \frac{1}{n} \mathbb{1}_{p \times p}$: ortho-projection matrix
- $\|x\| = \sqrt{\sum_{i=1}^p x_i^2}$ denotes the (Euclidean) norm of a vector $x \in \mathbb{R}^p$.
- rank(A) denotes the rank of a matrix A.
- \Diamond det(A) denotes the determinant of a squared matrix A.
- trace(A) denotes the determinant of a squared matrix $A \in \mathbb{R}^{p \times p}$, i.e., $trace(A) = \sum_{i=1}^{p} a_{ii}$
- \bullet The transpose of a matrix A is denoted by A'.
- The inverse of a matrix $A \in \mathbb{R}^{p \times p}$ is denoted by A^{-1} (provided it exists), i.e., $AA^{-1} = A^{-1}A = I_{p}$.

Notation & basic definitions

I.2.3 Definition

- \bullet A matrix $A \in \mathbb{R}^{p \times p}$ is called symmetric if A = A'.
- $\textbf{ A matrix } A \in \mathbb{R}^{p \times p} \text{ is called an orthogonal matrix if } AA' = A'A = I_p.$
- lack A matrix $A \in \mathbb{R}^{p \times p}$ is called positive (non-negative) definite if A = A' and

$$\mathbf{x}' \mathbf{A} \mathbf{x} > (\geqslant) \mathbf{0} \quad \forall \mathbf{x} \in \mathbb{R}^p \setminus \{\mathbf{0}\}.$$

For short, we write A > 0 or $A \ge 0$, respectively.

- $\mathbb{R}^{p \times p}_{>0}$: set of all positive definite $(p \times p)$ -matrices
- $\mathbb{R}^{p \times p}_{\geqslant 0}$: set of all non-negative definite $(p \times p)$ -matrices

Some linear algebra

№ 1.2.4 Lemma

Let $A,C\in\mathbb{R}^{p\times p}$ with $det(AC)\neq 0$ and $B\in\mathbb{R}^{k\times p}$, $1\leqslant k\leqslant p$. Then:

- $(C')^{-1} = (C^{-1})'$
- **2** (AC)' = C'A'
- $(AC)^{-1} = C^{-1}A^{-1}$
- \bigcirc rank(B') = rank(B)
- rank(BC) = rank(B)
- **6** For $D \in \mathbb{R}^{p \times k}$, we have rank(BD) = rank(DB).
- **3** $det(AC) = det(CA) = det(A) \cdot det(C)$ for all $A, C \in \mathbb{R}^{p \times p}$
- $\mathbf{0}$ trace(BD) = trace(DB) for all D $\in \mathbb{R}^{p \times k}$

Singular Value Decomposition (SVD)

▶ 1.2.5 Theorem

Let $\Sigma \in \mathbb{R}_{\geqslant 0}^{p \times p}$. Then, the **singular value decomposition** (eigen decomposition) of Σ is given by

$$\Sigma = V \Lambda V'$$

where $\lambda_1 \geqslant \cdots \geqslant \lambda_p \geqslant 0$ denote the eigenvalues and ν_1, \ldots, ν_p the corresponding (orthonormal) eigenvectors of Σ . Further, $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_p)$ and $V = [\nu_1 \mid \cdots \mid \nu_p]$ with $V'V = VV' = I_p$.

Furthermore, with the definitions $\Lambda^{1/2}=\text{diag}(\sqrt{\lambda_1},\dots,\sqrt{\lambda_p})$ and $\Sigma^{1/2}=V\Lambda^{1/2}V'$, we have

- $\Sigma = \Sigma^{1/2} \Sigma^{1/2}$ and $(\Sigma^{1/2})' = \Sigma^{1/2}$.
- $\Sigma^{1/2}$ is non-negative definite. IFE $\Sigma^{1/2}$ is called the **root of** Σ.
- Notice that, for a regular matrix Σ , $(\Sigma^{1/2})^{-1} = \Sigma^{-1/2}$ where $\Sigma^{-1/2} = V\Lambda^{-1/2}V'$ and $\Lambda^{-1/2} = \text{diag}(\sqrt{\lambda_1^{-1}}, \dots, \sqrt{\lambda_p^{-1}})$.

Moore-Penrose (general) inverse of a matrix

№ I.2.6 Theorem

The Moore-Penrose (general) inverse of a matrix A is denoted by A^+ , i.e., A^+ is the unique matrix satisfying the four equations:

$$AA^{+}A = A$$
, $A^{+}AA^{+} = A^{+}$, $(AA^{+})' = AA^{+}$, $(A^{+}A)' = A^{+}A$.

It has the following properties:

$$(A^+)^+ = A$$

$$A = AA'(A^+)'$$

$$(AA')^+ = (A')^+A^+$$

$$(A^+)' = (A')^+$$

$$A' = A'AA^+$$

$$A^+ = (A'A)^+ A'$$

$$A^+ = A^+(A^+)'A'$$

$$A' = A^+ A A'$$

$$A^+ = A'(AA')^+$$

- If $A \in \mathbb{R}^{p \times q}$ exhibits the SVD $A = U\Lambda V'$, then A^+ has the SVD $A^+ = V\Lambda^+U'$ where Λ^+ is the Moore-Penrose inverse of the matrix Λ .
- If $A \in \mathbb{R}^{p \times p}$ is a regular matrix then $A^+ = A^{-1}$.

Image, Kernel, Orthogonal Projectors

№ 1.2.7 Definition

- For a matrix $A \in \mathbb{R}^{p \times q}$, let
 - $\mathsf{Ker}(\mathsf{A}) = \{ \mathbf{x} \in \mathbb{R}^q \mid \mathsf{A}\mathbf{x} = \mathsf{0} \} \text{ be the kernel (null space) of } \mathsf{A}.$
 - Im(A) = $\{Ax \mid x \in \mathbb{R}^q\}$ be the image of A.
- ▶ For a linear subspace $\mathscr{A} \subseteq \mathbb{R}^p$, $\mathscr{A}^\perp = \{y \in \mathbb{R}^p \mid x'y = 0 \text{ for all } x \in \mathscr{A}\}$ denotes the corresponding orthogonal space.
- ▶ Let $\mathscr{A}, \mathscr{B} \subseteq \mathbb{R}^p$ be linear subspaces with $\mathscr{A} \cap \mathscr{B} = \{0\}$. Then, $\mathscr{A} \oplus \mathscr{B} = \{x + y \mid x \in \mathscr{A}, y \in \mathscr{B}\}$ is called the direct sum of \mathscr{A}, \mathscr{B} .

Notice that $Ker(A) \subseteq \mathbb{R}^q$ and $Im(A) \subseteq \mathbb{R}^p$ are linear subspaces.

№ 1.2.8 Definition

A matrix $Q \in \mathbb{R}^{p \times p}$ is called

- idempotent if $Q^2 = Q$
- $oldsymbol{\circ}$ orthogonal projector on a linear subspace $\mathscr{A}\subseteq\mathbb{R}^p$ if

 - for any $y \in \mathscr{A}^{\perp}$: Qy = 0

Properties of Orthogonal Projectors and Moore-Penrose inverse

№ 1.2.9 Lemma

- Orthogonal projectors on a linear subspace $\{0\} \neq \mathscr{A} \subseteq \mathbb{R}^p$ are unique.
- $Q \in \mathbb{R}^{p \times p}$ is an orthogonal projector (on Im(Q)) iff $Q^2 = Q$ and Q' = Q.

■ I.2.10 Theorem

Let $A \in \mathbb{R}^{p \times q}$ with Moore-Penrose inverse A^+ and define $P_1 = I_q - A^+A$, $P_2 = I_p - AA^+$. Then:

- $lackbox{0}$ P_1 and P_2 are orthogonal projectors, respectively, that is, $P_i^2 = P_i$, $P_i' = P_i$, i = 1, 2.
- $Q = AA^+ = A(A'A)^+A'$ is the (unique) orthogonal projector on Im(A).
- $A^+A = A'(AA')^+A$ is the (unique) orthogonal projector on Im(A').
- Arr Ker(A) = Im(P₁), Im(A) = Ker(P₂).

- $lack {\sf Ker}(A)\oplus {\sf Im}(A^+)=\mathbb{R}^{\sf q},\ {\sf Ker}(A^+)\oplus {\sf Im}(A)=\mathbb{R}^{\sf p}$

Part I: Linear Models

Chapter I.2

Preliminaries

Probability

Expectations of random vectors and random matrices

■ I.2.11 Definition (expectation of random vectors and random matrices)

1 The expectation of a random vector $\mathbf{X} = (X_1, \dots, X_p)'$ is defined by the vector of means, that is,

$$\mathsf{E}\mathbf{X} = \begin{pmatrix} \mathsf{E}X_1 \\ \vdots \\ \mathsf{E}X_p \end{pmatrix};$$

subsequently, we use the notation $\mu = EX$;

2 The expectation of a random matrix $\mathscr{X} = (X_{ij})_{1 \le i \le p, 1 \le j \le q}$ is defined by the matrix of means, that is,

$$\mathsf{E}\mathscr{X} = \begin{pmatrix} \mathsf{E}\mathsf{X}_{11} & \cdots & \mathsf{E}\mathsf{X}_{1\mathfrak{q}} \\ \vdots & \ddots & \vdots \\ \mathsf{E}\mathsf{X}_{\mathfrak{p}1} & \cdots & \mathsf{E}\mathsf{X}_{\mathfrak{p}\mathfrak{q}} \end{pmatrix}.$$

In the following, all expectations are supposed to exist.

№ I.2.12 Lemma

1 Let $X = (X_1, \dots, X_p)'$ be a p-dimensional random vector and $A \in \mathbb{R}^{k \times p}, b \in \mathbb{R}^k$. Then:

$$\mathsf{E}(\mathsf{A}\mathsf{X}+\mathsf{b})=\mathsf{A}\mathsf{E}(\mathsf{X})+\mathsf{b}$$
.

2 Let Z_1,\ldots,Z_n be p-dimensional random vectors and $A_1,\ldots,A_n\in\mathbb{R}^{k\times p}$. Then:

$$\mathsf{E}\Big(\sum_{j=1}^n \mathsf{A}_j \mathsf{Z}_j\Big) = \sum_{j=1}^n \mathsf{A}_j \mathsf{E}(\mathsf{Z}_j) \in \mathbb{R}^k.$$

► I.2.13 Definition (variance-covariance matrix)

Let $X=(X_1,\ldots,X_p)'$, $Y=(Y_1,\ldots,Y_q)'$ be random vectors. Then, the **covariance matrix** of X and Y is defined by

$$\mathsf{Cov}\:(X,Y) = \begin{pmatrix} \mathsf{Cov}\:(X_1,Y_1) & \cdots & \mathsf{Cov}\:(X_1,Y_q) \\ \vdots & \ddots & \vdots \\ \mathsf{Cov}\:(X_p,Y_1) & \cdots & \mathsf{Cov}\:(X_p,Y_q) \end{pmatrix}.$$

The variance-covariance matrix of X is defined by $\Sigma = \mathsf{Cov}\;(X) = \mathsf{Cov}\;(X,X).$

■ I.2.14 Remark

Defining the random matrix $\mathscr{C}_{X,Y} = (X - E(X))(Y - E(Y))'$, we get

- $2 Cov (X) = Cov (X,X) = E\mathscr{C}_{X,X}$

Covariance matrices are always non-negative definite, that is, Cov $(X)\geqslant 0$.

■ I.2.15 Notation (block matrix)

A matrix $A \in \mathbb{R}^{(p+q) \times (k+r)}$ can be written as a **block matrix**

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \quad \text{with } A_{11} \in \mathbb{R}^{p \times k}, A_{12} \in \mathbb{R}^{p \times r}, A_{21} \in \mathbb{R}^{q \times k}, A_{22} \in \mathbb{R}^{q \times r}.$$

№ 1.2.16 Lemma

With the notation from Definition I.2.13, we get for $A \in \mathbb{R}^{k \times p}, B \in \mathbb{R}^{r \times q}, \mathbf{b} \in \mathbb{R}^k, \mathbf{c} \in \mathbb{R}^r$:

- $\bullet \mathsf{Cov} (AX + b, BY + c) = \mathsf{ACov} (X, Y)B',$
- 3 $\operatorname{Cov}\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{bmatrix} \operatorname{Cov}(X) & \operatorname{Cov}(X,Y) \\ \operatorname{Cov}(Y,X) & \operatorname{Cov}(Y) \end{bmatrix}$, 4 $\operatorname{Cov}(X,Y) = \operatorname{Cov}(Y,X)'$.
- Using Lemma I.2.16, we can write with $\Sigma_{XY} = \text{Cov}(X, Y)$:

$$\Sigma_{{XY \choose Y}} = \begin{bmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{bmatrix} \stackrel{(*)}{=} \begin{bmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma'_{XY} & \Sigma_{YY} \end{bmatrix}.$$

Probability distributions on \mathbb{R}

I I.2.17 Remark (density functions of distributions on \mathbb{R})

Normal distribution $N(\mu, \sigma^2)$:

$$f(x) = \phi_{\mu,\sigma^2}(x) = \tfrac{1}{\sqrt{2\pi}\,\sigma}\,\,\text{exp}\left\{-\tfrac{(x-\mu)^2}{2\,\sigma^2}\right\},\quad x\in\mathbb{R}$$

 $\ \ \chi^2$ -distribution $\chi^2(p)$ with $p \in \mathbb{N}$ degrees of freedom:

$$f(x) = \frac{1}{2^{p/2}\Gamma(p/2)} x^{p/2-1} e^{-x/2}, \quad x > 0$$

b t-distribution t(p) with $p \in \mathbb{N}$ degrees of freedom:

$$f(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{p\pi}\Gamma\left(\frac{p}{2}\right)} \left(1 + \frac{x^2}{p}\right)^{-(p+1)/2}, \quad x \in \mathbb{R}$$

 $\textbf{F-} \text{distribution } \mathsf{F}(p,q) \text{ with } p \in \mathbb{N} \text{ numerator and } q \in \mathbb{N} \text{ denominator degrees of freedom:}$

$$f(x) = \frac{\Gamma(\frac{p+q}{2})}{\Gamma(\frac{p}{2})\Gamma(\frac{q}{2})} \left(\frac{p}{q}\right)^{n/2} \frac{x^{p/2-1}}{\left(1 + \frac{p}{q} x\right)^{\frac{p+q}{2}}}, \quad x > 0$$

29

Connections of probability distributions

I.2.18 Notation

The notation $X_1, \ldots, X_k \overset{\text{iid}}{\sim} P$ means that the random variables X_1, \ldots, X_k are independent and identically distributed (iid) with $X_1 \sim P$.

The same notation is used for samples of random vectors.

№ I.2.19 Proposition

- $\textbf{1} \ \, \text{Let} \, \, X \sim N(0,1) \, \, \text{and} \, \, \mu \in \mathbb{R}, \sigma > 0. \, \, \text{Then,} \, \, \mu + \sigma X \sim N(\mu,\sigma^2).$
- **2** Let $X \sim N(0, 1)$. Then, $X^2 \sim \chi^2(1)$.
- $\textbf{ (a) Let } X \sim \chi^2(p) \text{ and } Z \sim \chi^2(q) \text{ be independent random variables. Then, } X + Z \sim \chi^2(p+q).$
- 4 Let $X_1, \ldots, X_p \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1)$. Then, $\sum_{i=1}^p X_i^2 \sim \chi^2(p)$.
- **6** Let $X \sim N(0,1)$ and $Z \sim \chi^2(p)$ be independent random variables. Then, $\frac{X}{\sqrt{\frac{1}{p}}Z} \sim t(p)$.
- **6** Let $X \sim \chi^2(p)$ and $Z \sim \chi^2(q)$ be independent random variables. Then, $\frac{\frac{1}{p}X}{\frac{1}{q}Z} \sim F(p,q)$.

Non-central χ^2 - and F-distribution

▶ 1.2.20 Remark

Siven independent random variables X_1, \ldots, X_p with $X_i \sim N(\mu_i, 1)$, $\mu_i \in \mathbb{R}$, $1 \leqslant i \leqslant p$, the distribution of

$$\sum_{i=1}^{p} X$$

is called non-central χ^2 -distribution $\chi^2(p,\delta)$ with $p\in\mathbb{N}$ degrees of freedom and non-centrality parameter $\delta=\frac{1}{2}\sum_{i=1}^p \mu_i^2\geqslant 0$.

Clearly, $\chi^{2}(p) = \chi^{2}(p, 0)$.

Solution Let $X \sim \chi^2(p, \delta)$ and $Z \sim \chi^2(q)$ be independent random variables. Then,

$$\frac{\frac{1}{p}X}{\frac{1}{q}Z} \sim \mathsf{F}(p,q,\delta),$$

that is, the ratio has a non-central F-distribution $F(p, q, \delta)$ with $p \in \mathbb{N}$ numerator and $q \in \mathbb{N}$ denominator degrees of freedom and non-centrality parameter $\delta \geqslant 0$.

Clearly, F(p,q) = F(p,q,0).