學號:B04901015 系級: 電機三 姓名:傅子興

A. PCA of colored faces (Collaborators: None)

A.1. (.5%) 請畫出所有臉的平均。

Average Face Image	Process	
	將所有的臉加總之後直接除	
1251	以總臉數(415 張)再照助教	
- Car	要求的轉換法由 np.float 轉	
and the	成 np.uint8(先減最小值,再	
	除以最大值,最後*255轉	
	np.uint8)	

A.2. (.5%) 請畫出前四個 Eigenfaces,也就是對應到前四大 Eigenvalues 的 Eigenvectors。

Top 4 eigenfaces			
Eigenface 1	Eigenface 2	Eigenface 3	Eigenface 4
(8)			

做法: 將所有臉 flatten 為(1,60*60*3)按照 RGB 方式排列的一維 vector,再將所有 415 個圖片的 vector stack 為一個大矩陣(415, 60*60*3),做 numpy SVD 後得到 U, s, V 三個 array。則 V 的頭 4 個 vector (4, 60*60*3) restack 回來就是 eigenfaces 了

A.3. (.5%) 請從數據集中挑出任意四個圖片,並用前四大 Eigenfaces 進行 reconstruction,並畫出結果。

Results of reconstruction (左:重建結果/ 右:原圖)			
Img_10	Img_100	Img_250	Img_300
		(25)	

做法: 由上題的 U 中選出要選擇的圖片的編號對應到的 row(取前四個 column)*s 中相應的加權值,就是對這四個 eigenface 各自的加權值。另外如果是直接拿現成的 eigenfaces 做重建,則可以利用:W = $[u_i \cdot v]$ u_i =i-th eigenface vector, v=origin-img 來得到四個 weight 再做加權組合。

A.4. (.5%) 請寫出前四大 Eigenfaces 各自所佔的比重,請用百分比表示並四捨五入 到小數點後一位。

	Eigenface_1	Eigenface_2	Eigenface_3	Eigenface_4
Weights Ratio	4.1%	2.9%	2.4%	2.2%

B. Visualization of Chinese word embedding (Collaborators: None)

- B.1. (.5%) 請說明你用哪一個 word2vec 套件,並針對你有調整的參數說明那個參數的意義。
 - 使用的 word2vec 套件: genism
 - 調整的參數: min_count=5000 / size=128 / iter=10
- B.2. (.5%) 請在 Report 上放上你 visualization 的結果。

做法: 使用 TSMN(scikit 函式)將 128 維的 word vector 降維成 2 維,再用 matplotlib 將 圖片呈現出來(搭配 adjustText 使用)。值得注意的是的要將中文顯示出來要另外設定 matplotlib 裡面的 font source,不然會顯示不出來。

B.3. (.5%) 請討論你從 visualization 的結果觀察到什麼。

降維之後詞的絕對分布看不出什麼特別的關連。然而一些字詞的性質可以由兩個詞的差向量來看出來,如:"爸"&"媽"的相對位置和"爸爸"跟"媽媽"的相對位置是相似的等等。另外,可以看到儘管將字的頻率調到至少要出現 5000 次,仍有"金城"、"麗芬"這類名字出現。

C. Image clustering (Collaborators: B04901003 許傑盛)

C.1. (.5%) 請比較至少兩種不同的 feature extraction 及其結果。(不同的降維方法或不同的 cluster 方法都可以算是不同的方法)

比較四種不同的方式:

Method 1: Use Autoencoder

	feature extraction 1		feature extraction 2			
Method	使用 5 層 deep autoencoder 將圖片		使用 7 層 deep autoencoder 將圖片			
	壓縮為一個 400 維向量,再將這些向		壓縮為一個64維向量,再將這些向			
	量用 scikit K-means clustering 分為		量用 scikit K-means clustering 分為			
	兩個 class			兩個 class		
Model	Layer (type)	Output Shape	Param #	Layer (type)	Output Shape	Param #
	input_1 (InputLayer)	(None, 784)	Θ	<pre>input_1 (InputLayer)</pre>	(None, 784)	Θ
	dense_1 (Dense)	(None, 512)	401920	dense_1 (Dense)	(None, 256)	200960
	dense_2 (Dense)	(None, 400)	205200	dense_2 (Dense)	(None, 128)	32896
	dense_3 (Dense)	(None, 512)	205312	dense_3 (Dense)	(None, 64)	8256
	dense_4 (Dense)	(None, 784)	402192	dense_4 (Dense)	(None, 128)	8320
				dense_5 (Dense)	(None, 256)	33024
	Trainable params: 1,214,6 Non-trainable params: 0	24		dense_6 (Dense)	(None, 784) ============	201488
	Train on 126000 samples,	validate on 14000 sampl	es	Total params: 484,944 Trainable params: 484,94 Non-trainable params: 0	44	
	Layers: 784/512/400/512/784		Layers: 784/2	56/128/64/128/	/256/784	
Result	Kaggle public score: 0.97806		Kaggle public	c score: 0.879	965	

Method 2: use PCA

	PCA (using scikit PCA)	PCA(using SVD)
Method	將圖片以 scikit PCA 壓縮成一個	將圖片以 SVD 做 PCA 壓縮成一個
	400 維向量,再以 kmeans 分 2 類	600維向量,再以 kmeans 分 2 類
Result	Kaggle public score: 0.02794	Kaggle public score: 1.0000

C.2. (.5%) 預測 visualization.npy 的 label, 在二維平面上視覺化 label 分佈。

- PCA by SVD: 降至 600 維
- Kmeans clustering
- Visualize:將 600 維的向量以 scikit TSNE
 將其降為 2 維,按其 label 上色。
- 9279 v.s 721(elements)

[C.3 at next page]

C.3. (.5%) visualization.npy 中前 5000 個 images 跟後 5000 個 images 來自不同 dataset。請根據這個資訊,在二維平面上視覺化 label 的分佈,接著比較和自 己預測的 label 之間有何不同。

與 C.2 的圖比較,發現實際上以 PCA 取出的 feature 可以大致分出兩個 class 的界線,上半部為 class A,下半部為 class B。比對上圖,可以發現藍點多很多,而且兩個 class 各自很集中不像 C.2 的雜合在一起。因此可以推測 feature 可能是取的相對正確,但是 clustering 並沒有做得很好。