Marcelo Q. A. Oliveira, Tamer S. G. Cavalcante, Heitor S. Ramos, Osvaldo A. Rosso, Alejandro C. Frery Laboratório de Computação Cienífica e Análise Numérica Universidade Federal de Alagoas (LaCCAN-UFAL)

Avaliação de Geradores de Números Pseudoaleatórios Através de Técnicas da Teoria da Informação Introdução

Agenda

Introdução Motivação

Números Aleatórios

Geradores Reais

Geradores de Números Pseudoaleatório

Testes

Ferramentas da Teoria da Informação

Teste Proposto

Resultados

Introdução

► Criptografia

- ► Criptografia
- ► Amostragem

- ► Criptografia
- Amostragem
- ▶ Aplicações gráficas

- ► Criptografia
- ► Amostragem
- ▶ Aplicações gráficas
- ► Games

- ► Criptografia
- Amostragem
- ► Aplicações gráficas
- ▶ Games
- ► Simulação

Agenda

Introdução Motivação

Números Aleatórios Geradores Reais Geradores de Números Pseudoaleatórios

Testes

Ferramentas da Teoria da Informação

Teste Proposto

Resultados

Baseados em algum fenômeno natural aleatório

 Ruído atmosférico capturado por um rádio [random.org 1998, (random.org)].

Baseados em algum fenômeno natural aleatório

- Ruído atmosférico capturado por um rádio [random.org 1998, (random.org)].
- ► Tempo entre emissão de partículas durante o decaimento radioativo [Walker 1998, HOTBITS]

Baseados em algum fenômeno natural aleatório

- Ruído atmosférico capturado por um rádio [random.org 1998, (random.org)].
- ► Tempo entre emissão de partículas durante o decaimento radioativo [Walker 1998, HOTBITS]
- Ruído térmico oriundo de semicondutores em um circuito (Intel Ivy Bridge) [Hamburg et al. 2012,] [Goodin 2013,]

Baseados em algum fenômeno natural aleatório

- Ruído atmosférico capturado por um rádio [random.org 1998, (random.org)].
- ► Tempo entre emissão de partículas durante o decaimento radioativo [Walker 1998, HOTBITS]
- Ruído térmico oriundo de semicondutores em um circuito (Intel Ivy Bridge) [Hamburg et al. 2012,] [Goodin 2013,]
- ▶ Monitoramento de ruído em ambientes [vanheusden.com 2012].

Baseados em algum fenômeno natural aleatório

- Ruído atmosférico capturado por um rádio [random.org 1998, (random.org)].
- ► Tempo entre emissão de partículas durante o decaimento radioativo [Walker 1998, HOTBITS]
- Ruído térmico oriundo de semicondutores em um circuito (Intel Ivy Bridge) [Hamburg et al. 2012,] [Goodin 2013,]
- ▶ Monitoramento de ruído em ambientes [vanheusden.com 2012].

Desvantagens

► Necessitam de Hardware específico

Baseados em algum fenômeno natural aleatório

- Ruído atmosférico capturado por um rádio [random.org 1998, (random.org)].
- ► Tempo entre emissão de partículas durante o decaimento radioativo [Walker 1998, HOTBITS]
- Ruído térmico oriundo de semicondutores em um circuito (Intel Ivy Bridge) [Hamburg et al. 2012,] [Goodin 2013,]
- ▶ Monitoramento de ruído em ambientes [vanheusden.com 2012].

Desvantagens

- Necessitam de Hardware específico
- Não reprodutíveis

Geradores de Números Pseudoaleatórios - PRNGs:

Algorítmicos (determinísticos)

- Algorítmicos (determinísticos)
- Produzem sequências que se comportam como as produzidas por geradores reais a partir de sementes conhecidas [L'Ecuyer 2007]

- Algorítmicos (determinísticos)
- Produzem sequências que se comportam como as produzidas por geradores reais a partir de sementes conhecidas [L'Ecuyer 2007]
- Mais convenientes por não necessitar de hardware específico

- Algorítmicos (determinísticos)
- Produzem sequências que se comportam como as produzidas por geradores reais a partir de sementes conhecidas [L'Ecuyer 2007]
- Mais convenientes por não necessitar de hardware específico
- Possibilitam a reprodutibilidade

- Algorítmicos (determinísticos)
- Produzem sequências que se comportam como as produzidas por geradores reais a partir de sementes conhecidas [L'Ecuyer 2007]
- Mais convenientes por não necessitar de hardware específico
- Possibilitam a reprodutibilidade

Período de um gerador

Propriedades desejáveis em PRNGs:

▶ O período de repetição seja suficientemente grande.

- ▶ O período de repetição seja suficientemente grande.
- A geração de números deve ser rápida.

- ▶ O período de repetição seja suficientemente grande.
- A geração de números deve ser rápida.
 - Poupar recursos computacionais para as aplicações em si.

- O período de repetição seja suficientemente grande.
- ► A geração de números deve ser rápida.
 - Poupar recursos computacionais para as aplicações em si.
- ▶ Os números gerados devem seguir uma distribuição uniforme.

- O período de repetição seja suficientemente grande.
- A geração de números deve ser rápida.
 - Poupar recursos computacionais para as aplicações em si.
- Os números gerados devem seguir uma distribuição uniforme.
 - Devem ter a mesma probabilidade de ocorrência.

- O período de repetição seja suficientemente grande.
- A geração de números deve ser rápida.
 - Poupar recursos computacionais para as aplicações em si.
- Os números gerados devem seguir uma distribuição uniforme.
 - Devem ter a mesma probabilidade de ocorrência.
- ▶ Os números devem ser estatisticamente independentes entre si.

- ▶ O período de repetição seja suficientemente grande.
- A geração de números deve ser rápida.
 - Poupar recursos computacionais para as aplicações em si.
- Os números gerados devem seguir uma distribuição uniforme.
 - Devem ter a mesma probabilidade de ocorrência.
- ▶ Os números devem ser estatisticamente independentes entre si.
 - O valor de um número na sequência não deve afetar o valor do próximo.

- ▶ O período de repetição seja suficientemente grande.
- A geração de números deve ser rápida.
 - Poupar recursos computacionais para as aplicações em si.
- Os números gerados devem seguir uma distribuição uniforme.
 - Devem ter a mesma probabilidade de ocorrência.
- ▶ Os números devem ser estatisticamente independentes entre si.
 - O valor de um número na sequência não deve afetar o valor do próximo.

Método Congruencial Linear (LCG)

Sejam os números uniformes inteiros $U1, U2, U3, \ldots$ entre 0 e m - 1, em que m representa um grande número inteiro. Podemos gerar estes números utilizando o método congruencial por meio da relação recursiva:

Método Congruencial Linear (LCG)

Sejam os números uniformes inteiros $U1, U2, U3, \dots$ entre 0 e m-1, em que m representa um grande número inteiro. Podemos gerar estes números utilizando o método congruencial por meio da relação recursiva:

LCG

$$U_i + 1 = (aU_i + c) mod m$$

Método Congruencial Linear (LCG)

Sejam os números uniformes inteiros $U1, U2, U3, \dots$ entre 0 e m-1, em que m representa um grande número inteiro. Podemos gerar estes números utilizando o método congruencial por meio da relação recursiva:

LCG

$$U_i + 1 = (aU_i + c) mod m$$

Onde:

- m é chamado de módulo;
- ▶ a e c, inteiros positivos denominados multiplicador e incremento respectivamente;
- ightharpoonup mod é um operador que retorna o resto da divisão de $a_{ij}i + c$ por m_i

Mersenne Twister - MT

Mersenne Twister - Matsumoto [Matsumoto and Nishimura 1998]

► Entrega inteiros de 32 bits.

Mersenne Twister - MT

Mersenne Twister - Matsumoto [Matsumoto and Nishimura 1998]

- ► Entrega inteiros de 32 bits.
- ► Período de 2¹⁹⁹³⁷-1.

Mersenne Twister - MT

Mersenne Twister - Matsumoto [Matsumoto and Nishimura 1998]

- ► Entrega inteiros de 32 bits.
- ▶ Período de 2¹⁹⁹³⁷-1.
- Passa na maioria dos testes conhecidos.

Testes

Agenda

Introdução Motivação

Números Aleatórios

Geradores Reais

Geradores de Números Pseudoaleatório

Testes

Ferramentas da Teoria da Informação

Teste Proposto

Resultados

▶ Diehard (FORTRAN) [Marsaglia 1995]

- ▶ Diehard (FORTRAN) [Marsaglia 1995]
- ► NIST [NIST 1999]

- ► Diehard (FORTRAN) [Marsaglia 1995]
- ► NIST [NIST 1999]
- Dieharder (ANSI C) [Brown et al. 2004]

- ▶ Diehard (FORTRAN) [Marsaglia 1995]
- ► NIST [NIST 1999]
- ▶ Dieharder (ANSI C) [Brown et al. 2004]
- ► TEST U01 (biblioteca em ANSI C) [L'Ecuyer and Simard 2007]

Agenda

Introdução Motivação

Números Aleatórios

Geradores de Números Pseudoaleatório

Testes

Ferramentas da Teoria da Informação

Teste Proposto

Resultados

Plano Entropia x Complexidade

Figura 1 : Plano HC - Entropia x Complexidade Estatística

Agenda

Introdução Motivação

Números Aleatórios Geradores Reais Geradores de Números Pseudoaleatório

Testes

Ferramentas da Teoria da Informação

Teste Proposto

Resultados

Teste de hipóteses não paramétrico para medir a qualidade da sequência gerada por um PRNG através da posição do ponto observado no plano (HC).

- Teste de hipóteses não paramétrico para medir a qualidade da sequência gerada por um PRNG através da posição do ponto observado no plano (HC).
- ► Com o objetivo de ter uma referência foram utilizados dados oriundos de um gerador real.

- Teste de hipóteses não paramétrico para medir a qualidade da sequência gerada por um PRNG através da posição do ponto observado no plano (HC).
- Com o objetivo de ter uma referência foram utilizados dados oriundos de um gerador real.
- ▶ Os dados foram fornecidos pelo grupo de Processamento de Informação Quântica do Instituto de Tecnologia Max Plank, num arquivo binário de aproximadamente 200Mb obtido segundo o processo descrito em [Gabriel et al. 2010].

► Tais dados foram mapeados como uma sequência de 108 números aleatórios no intervalo (0,1), e então particionados em 10⁵ sequências de 10³ elementos cada uma.

- ► Tais dados foram mapeados como uma sequência de 108 números aleatórios no intervalo (0,1), e então particionados em 10⁵ sequências de 10³ elementos cada uma.
- ▶ Posteriormente, foram calculados os valores da entropia e da complexidade estatística para cada uma das subsequências, resultando em 10⁵ pontos no plano (H,C).

► Como apontado por [Larrondo et al. 2013, Larrondo] , uma sequência aleatória ideal produziria o valor (1,0) no plano HC.

- ► Como apontado por [Larrondo et al. 2013, Larrondo] , uma sequência aleatória ideal produziria o valor (1,0) no plano HC.
- Elaboramos um teste de hipóteses não paramétrico para medir a qualidade da sequência gerada por um PRNG qualquer através da posição do ponto observado no plano (H,C).

- ► Como apontado por [Larrondo et al. 2013, Larrondo] , uma sequência aleatória ideal produziria o valor (1,0) no plano HC.
- Elaboramos um teste de hipóteses não paramétrico para medir a qualidade da sequência gerada por um PRNG qualquer através da posição do ponto observado no plano (H,C).
- A medida é feita comparando o ponto com aqueles obtidos das sequências de mesmo tamanho produzidas pelo RNG descrito em [Gabriel et al. 2010].

- ► Como apontado por [Larrondo et al. 2013, Larrondo] , uma sequência aleatória ideal produziria o valor (1,0) no plano HC.
- Elaboramos um teste de hipóteses não paramétrico para medir a qualidade da sequência gerada por um PRNG qualquer através da posição do ponto observado no plano (H,C).
- ► A medida é feita comparando o ponto com aqueles obtidos das sequências de mesmo tamanho produzidas pelo RNG descrito em [Gabriel et al. 2010].
- ► Testamos duas sequências de tamamnho 10³ produzidas pelos geradores Mersenne Twister (MT) e Congruencial Linear (LCG).

Agenda

Introdução Motivação

Números Aleatórios Geradores Reais

Geradores de Números Pseudoaleatório

Testes

Ferramentas da Teoria da Informação

Teste Proposto

Resultados

Figura 2: 10³ pontos no Plano HC

P-valor

▶ p-valor LCG: 0.135

P-valor

▶ p-valor LCG: 0.135

▶ p-valor MT: 0.850

P-valor

▶ p-valor LCG: 0.135

▶ p-valor MT: 0.850

Figura 3: Pontos LCG e MT

Figura 4: Dados submetidos a PCA

Obrigado!

Brown, R. G., Eddelbuettel, D., and Bauer, D. (2004).

Dieharder: A random number test suite.

http://www.phy.duke.edu/~rgb/General/dieharder.php.

Acessado em 11/2014.

Gabriel, C., Wittmann, C., Sych, D., Dong, R., Mauerer, W., Andersen, U. L., Marquardt, C., and Leuchs, G. (2010).

A generator for unique quantum random numbers based on vacuum states.

Nature Photonics, 4(10):711-715.

Researchers can slip an undetectable trojan into intel's ivy bridge cpus.

http://arstechnica.com/security/2013/09/

researchers-can-slip-an-undetectable-trojan-into-intels-iv

Acessado em 11/2014.

Hamburg, M., Kocher, P., and Marson, M. E. (2012).

Analysis of intel's ivy bridge digital random number generator.

http://www.rambus.com/wp-content/uploads/2015/08/Intel_TRNG_Report_20120312.pdf.

Acessado em 11/2014.

Larrondo, H. A., De Micco, L., Gonzalez, C. M., Plastino, A., and Rosso, O. A. (2013).

Statistical Complexity of Chaotic Pseudorandom Number Generators | BenthamScience.

Concepts and Recent Advances in Generalized Information Measures and Statistics, pages 283–308.

L'Ecuyer, P. (2007).

Random Number Generation, pages 93-137.

John Wiley & Sons, Inc.

L'Ecuyer, P. and Simard, R. (2007).

TestU01: A C Library for Empirical Testing of Random Number Generators.

ACM Transactions on Mathematical Software, 33(4):Article 22.

Marsaglia, G. (1995).

Diehard

http://stat.fsu.edu/pub/diehard/.

Acessado em 11/2014.

Matsumoto, M. and Nishimura, T. (1998).

Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator.

ACM Trans. Model. Comput. Simul., 8(1):3–30.

NIST (1999).
Nist statistical test suite.

http://www.itl.nist.gov/div893/staff/soto/jshome.html.

Acessado em 11/2014.

random.org (1998).

True random number service.

https://www.random.org/.

Acessado em 11/2014.

vanheusden.com (2012).

audio entropy daemon.

https://www.vanheusden.com/aed/.

Acessado em 11/2014.

Walker, J. (1998).

Genuine random numbers, generated by radioactive decay.

https://www.fourmilab.ch/hotbits/.

Acessado em 11/2014.