$12a_{0346} (K12a_{0346})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 4.53998 \times 10^{26} u^{51} + 5.05817 \times 10^{27} u^{50} + \dots + 2.07754 \times 10^{25} b - 7.39267 \times 10^{27}, \\ & 6.84425 \times 10^{27} u^{51} + 7.36349 \times 10^{28} u^{50} + \dots + 1.66203 \times 10^{26} a - 9.03557 \times 10^{28}, \\ & u^{52} + 11 u^{51} + \dots - 105 u - 8 \rangle \\ I_2^u &= \langle -2 u^{41} a - 45 u^{41} + \dots + 6a + 347, \ 825 u^{41} a - 163 u^{41} + \dots - 6825 a - 727, \ u^{42} - 4 u^{41} + \dots - 23 u + 3 \rangle \\ I_3^u &= \langle -3 u^{15} + 11 u^{14} + \dots + b + 6, \ -4 u^{15} + 13 u^{14} + \dots + a + 6, \\ & u^{16} - 4 u^{15} + 5 u^{14} + 4 u^{13} - 19 u^{12} + 23 u^{11} - 11 u^{10} - 3 u^9 + 15 u^8 - 29 u^7 + 35 u^6 - 22 u^5 + 5 u^4 + 3 u^2 - 3 u + 1 \rangle \\ I_4^u &= \langle -u^3 a - u^2 a + u^3 + a u + 2 b + 1, \ u^2 a + 3 u^3 + a^2 + a u + 2 u^2 - a - 3 u - 2, \ u^4 - u^2 + 1 \rangle \\ I_5^u &= \langle b - a - 1, \ a^2 + 3 a + 3, \ u + 1 \rangle \\ I_6^u &= \langle b - a + 1, \ a^4 - 6 a^3 + 15 a^2 - 18 a + 7, \ u + 1 \rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 166 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle 4.54 \times 10^{26} u^{51} + 5.06 \times 10^{27} u^{50} + \dots + 2.08 \times 10^{25} b - 7.39 \times 10^{27}, \ 6.84 \times 10^{27} u^{51} + \\ 7.36 \times 10^{28} u^{50} + \dots + 1.66 \times 10^{26} a - 9.04 \times 10^{28}, \ u^{52} + 11 u^{51} + \dots - 105 u - 8 \rangle \end{matrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -41.1800u^{51} - 443.041u^{50} + \dots + 6409.16u + 543.645 \\ -21.8527u^{51} - 243.469u^{50} + \dots + 4181.40u + 355.837 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -7.78427u^{51} - 87.7140u^{50} + \dots + 1359.23u + 119.895 \\ 5.98217u^{51} + 53.3671u^{50} + \dots + 74.8168u + 11.4814 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -19.3273u^{51} - 199.572u^{50} + \dots + 2227.76u + 187.808 \\ -21.8527u^{51} - 243.469u^{50} + \dots + 4181.40u + 355.837 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 4.76000u^{51} + 46.4262u^{50} + \dots - 283.578u - 23.1030 \\ -33.4051u^{51} - 334.756u^{50} + \dots + 3096.45u + 251.825 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -7.06370u^{51} - 73.7381u^{50} + \dots + 927.555u + 84.2568 \\ 9.30260u^{51} + 91.2779u^{50} + \dots - 515.128u - 37.6927 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -31.4511u^{51} - 330.139u^{50} + \dots + 3966.66u + 334.341 \\ -9.22694u^{51} - 119.633u^{50} + \dots + 3251.38u + 281.203 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 37.4120u^{51} + 372.930u^{50} + \dots - 3121.91u - 246.831 \\ 28.4339u^{51} + 293.834u^{50} + \dots - 3277.17u - 270.732 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $-\frac{552510409213253669452495646}{4155086772164184949828265}u^{51} - \frac{5261625346514302913687205342}{4155086772164184949828265}u^{50} + \frac{21341655761740046577824999282}{4155086772164184949828265}u + \frac{1496242834046200807960011522}{4155086772164184949828265}u$

Crossings	u-Polynomials at each crossing
c_1	$u^{52} + 19u^{51} + \dots + 2465u + 64$
c_2, c_5	$u^{52} + 11u^{51} + \dots - 105u - 8$
c_3, c_{10}	$u^{52} + 12u^{50} + \dots - 11u + 1$
c_4, c_{12}	$u^{52} + 4u^{51} + \dots - 11u + 1$
c_{6}, c_{9}	$u^{52} - 4u^{51} + \dots + u - 1$
c_7, c_8, c_{11}	$u^{52} - 14u^{51} + \dots - 15u + 2$

Crossings	Riley Polynomials at each crossing
c_1	$y^{52} + 21y^{51} + \dots - 3151553y + 4096$
c_{2}, c_{5}	$y^{52} - 19y^{51} + \dots - 2465y + 64$
c_3, c_{10}	$y^{52} + 24y^{51} + \dots - 43y + 1$
c_4, c_{12}	$y^{52} + 12y^{51} + \dots - 31y + 1$
c_6, c_9	$y^{52} - 30y^{51} + \dots - 61y + 1$
c_7, c_8, c_{11}	$y^{52} - 58y^{51} + \dots - 137y + 4$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.303052 + 0.952802I		
a = 0.034989 + 0.198223I	1.05551 + 4.23466I	0 13.94078I
b = 0.503950 - 0.617099I		
u = -0.303052 - 0.952802I		
a = 0.034989 - 0.198223I	1.05551 - 4.23466I	0. + 13.94078I
b = 0.503950 + 0.617099I		
u = 0.866782 + 0.510957I		
a = 1.83194 - 0.77063I	-1.60266 - 2.06605I	0
b = 0.18058 + 1.43268I		
u = 0.866782 - 0.510957I		
a = 1.83194 + 0.77063I	-1.60266 + 2.06605I	0
b = 0.18058 - 1.43268I		
u = -0.878833 + 0.450841I		
a = 0.518755 + 1.197230I	-1.82299 + 2.11483I	0
b = 0.639394 + 0.765044I		
u = -0.878833 - 0.450841I		
a = 0.518755 - 1.197230I	-1.82299 - 2.11483I	0
b = 0.639394 - 0.765044I		
u = 0.859521 + 0.581846I		
a = -1.92008 + 0.82944I	3.98340 - 2.30844I	0
b = -0.07577 - 1.77245I		
u = 0.859521 - 0.581846I		
a = -1.92008 - 0.82944I	3.98340 + 2.30844I	0
b = -0.07577 + 1.77245I		
u = 0.866761 + 0.407706I		
a = -1.43190 + 1.02282I	1.79191 - 1.98663I	0. + 5.10991I
b = -0.455587 - 0.870700I		
u = 0.866761 - 0.407706I		
a = -1.43190 - 1.02282I	1.79191 + 1.98663I	05.10991I
b = -0.455587 + 0.870700I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.949503 + 0.456951I		
a = -1.23169 - 1.28904I	2.17857 + 3.11727I	0
b = -1.275250 - 0.565238I		
u = -0.949503 - 0.456951I		
a = -1.23169 + 1.28904I	2.17857 - 3.11727I	0
b = -1.275250 + 0.565238I		
u = 1.059230 + 0.081807I		
a = 1.80017 + 0.56735I	-4.61713 - 2.77958I	0
b = 0.686878 + 0.509668I		
u = 1.059230 - 0.081807I		
a = 1.80017 - 0.56735I	-4.61713 + 2.77958I	0
b = 0.686878 - 0.509668I		
u = -0.677772 + 0.818492I		
a = -0.417172 + 0.333279I	1.60486 - 2.99292I	0
b = -0.602964 - 0.807052I		
u = -0.677772 - 0.818492I		
a = -0.417172 - 0.333279I	1.60486 + 2.99292I	0
b = -0.602964 + 0.807052I		
u = -0.592287 + 0.905759I		
a = 0.073021 - 0.240968I	2.71314 - 8.81698I	0
b = 0.759625 + 1.129160I		
u = -0.592287 - 0.905759I		
a = 0.073021 + 0.240968I	2.71314 + 8.81698I	0
b = 0.759625 - 1.129160I		
u = 0.754853 + 0.482158I		
a = -1.006070 + 0.984106I	1.78251 - 2.04552I	5.02176 + 4.06371I
b = -0.206125 - 0.823600I		
u = 0.754853 - 0.482158I		
a = -1.006070 - 0.984106I	1.78251 + 2.04552I	5.02176 - 4.06371I
b = -0.206125 + 0.823600I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.809152 + 0.343854I		
a = 0.19899 - 1.72190I	2.68462 + 1.40366I	1.58938 - 4.99897I
b = -0.16082 - 1.41998I		
u = -0.809152 - 0.343854I		
a = 0.19899 + 1.72190I	2.68462 - 1.40366I	1.58938 + 4.99897I
b = -0.16082 + 1.41998I		
u = -0.571688 + 0.974680I		
a = 0.079015 + 0.294171I	10.3015 - 12.7497I	0
b = -0.78314 - 1.37043I		
u = -0.571688 - 0.974680I		
a = 0.079015 - 0.294171I	10.3015 + 12.7497I	0
b = -0.78314 + 1.37043I		
u = -1.097450 + 0.438565I		
a = -0.647329 - 0.449697I	-2.17033 + 0.83260I	0
b = -0.761433 - 0.057762I		
u = -1.097450 - 0.438565I		
a = -0.647329 + 0.449697I	-2.17033 - 0.83260I	0
b = -0.761433 + 0.057762I		
u = -0.808774		
a = 1.40558	3.21409	2.59480
b = 1.17657		
u = -0.983133 + 0.709385I		
a = 0.424839 + 0.547549I	-1.12819 + 2.86961I	0
b = 0.291156 - 0.095304I		
u = -0.983133 - 0.709385I		
a = 0.424839 - 0.547549I	-1.12819 - 2.86961I	0
b = 0.291156 + 0.095304I		
u = 1.207840 + 0.122118I		
a = -1.48373 - 0.59924I	-4.39988 - 7.39386I	0
b = -0.901527 - 0.819910I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.207840 - 0.122118I		
a = -1.48373 + 0.59924I	-4.39988 + 7.39386I	0
b = -0.901527 + 0.819910I		
u = -0.878018 + 0.876003I		
a = -0.078786 - 0.959376I	8.76056 + 3.51365I	0
b = -0.020706 + 0.697334I		
u = -0.878018 - 0.876003I		
a = -0.078786 + 0.959376I	8.76056 - 3.51365I	0
b = -0.020706 - 0.697334I		
u = -1.027700 + 0.716646I		
a = 1.67678 + 0.76544I	0.53141 + 8.76844I	0
b = 0.700230 - 0.834328I		
u = -1.027700 - 0.716646I		
a = 1.67678 - 0.76544I	0.53141 - 8.76844I	0
b = 0.700230 + 0.834328I		
u = 0.915507 + 0.868903I		
a = 0.654011 - 0.348314I	10.44970 - 3.21474I	0
b = -0.000634 + 1.130420I		
u = 0.915507 - 0.868903I		
a = 0.654011 + 0.348314I	10.44970 + 3.21474I	0
b = -0.000634 - 1.130420I		
u = -0.969489 + 0.820816I		
a = -0.978341 - 0.759518I	8.44609 + 2.83761I	0
b = -0.058160 + 0.678489I		
u = -0.969489 - 0.820816I		
a = -0.978341 + 0.759518I	8.44609 - 2.83761I	0
b = -0.058160 - 0.678489I		
u = -0.305651 + 1.237930I		
a = 0.088791 - 0.250502I	8.73516 + 6.32971I	0
b = -0.643580 + 0.726750I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.305651 - 1.237930I		
a = 0.088791 + 0.250502I	8.73516 - 6.32971I	0
b = -0.643580 - 0.726750I		
u = -1.087350 + 0.717339I		
a = -1.76484 - 0.61554I	1.1878 + 14.8065I	0
b = -0.85686 + 1.19595I		
u = -1.087350 - 0.717339I		
a = -1.76484 + 0.61554I	1.1878 - 14.8065I	0
b = -0.85686 - 1.19595I		
u = 0.692693		
a = -2.67905	2.79063	9.38280
b = 0.160423		
u = 1.311730 + 0.155198I		
a = 1.29329 + 0.62840I	2.56871 - 10.65480I	0
b = 0.98298 + 1.07363I		
u = 1.311730 - 0.155198I		
a = 1.29329 - 0.62840I	2.56871 + 10.65480I	0
b = 0.98298 - 1.07363I		
u = -1.121430 + 0.731849I		
a = 1.80711 + 0.50804I	8.5842 + 18.9717I	0
b = 0.85609 - 1.46709I		
u = -1.121430 - 0.731849I		
a = 1.80711 - 0.50804I	8.5842 - 18.9717I	0
b = 0.85609 + 1.46709I		
u = -1.41178		
a = 0.588810	3.53219	0
b = 0.957114		
u = -0.231217 + 0.451747I		
a = -0.804630 - 0.251513I	-0.630419 + 1.163880I	-3.53445 - 4.93440I
b = -0.392803 + 0.547987I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.231217 - 0.451747I		
a = -0.804630 + 0.251513I	-0.630419 - 1.163880I	-3.53445 + 4.93440I
b = -0.392803 - 0.547987I		
u = -0.189131		
a = 4.12539	3.37184	1.02460
b = 0.894842		

II.
$$I_2^u = \langle -2u^{41}a - 45u^{41} + \dots + 6a + 347, 825u^{41}a - 163u^{41} + \dots - 6825a - 727, u^{42} - 4u^{41} + \dots - 23u + 3 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{41}a + \frac{45}{4}u^{41} + \cdots - \frac{3}{2}a - \frac{347}{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -6.25000au^{41} - 1.83333u^{41} + \cdots + 15.7500a + 19.6667 \\ \frac{23}{4}u^{41}a - \frac{87}{4}u^{40}a + \cdots - \frac{147}{4}a - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.500000au^{41} - 11.2500u^{41} + \cdots + 2.50000a + 86.7500 \\ \frac{1}{2}u^{41}a + \frac{45}{4}u^{41} + \cdots - \frac{3}{2}a - \frac{347}{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -9.75000au^{41} - 5.58333u^{41} + \cdots + 34.2500a + 21.4167 \\ -\frac{9}{2}u^{41}a + \frac{15}{4}u^{41} + \cdots + 15a - \frac{11}{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 13u^{41}a - \frac{59}{12}u^{41} + \cdots - \frac{181}{2}a + \frac{43}{12} \\ -\frac{9}{4}u^{41}a + \frac{1}{4}u^{41} + \cdots + \frac{69}{4}a - \frac{7}{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{41}a + \frac{9}{4}u^{41} + \cdots - \frac{1}{2}a + \frac{9}{4} \\ -\frac{1}{2}u^{41}a + \frac{19}{2}u^{41} + \cdots + \frac{3}{2}a - 83 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1.25000au^{41} - 1.58333u^{41} + \cdots + 14.2500a + 17.9167 \\ \frac{23}{2}u^{41}a + \frac{1}{2}u^{41} + \cdots - 36a - \frac{5}{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{201}{4}u^{41} + \frac{677}{4}u^{40} + \dots - \frac{2695}{2}u + \frac{853}{4}u^{40} + \dots$$

Crossings	u-Polynomials at each crossing
c_1	$(u^{42} + 18u^{41} + \dots + 139u + 9)^2$
c_2, c_5	$(u^{42} - 4u^{41} + \dots - 23u + 3)^2$
c_3,c_{10}	$u^{84} - 2u^{83} + \dots + 277053u - 23701$
c_4, c_{12}	$u^{84} + 10u^{83} + \dots - 117u + 513$
c_{6}, c_{9}	$u^{84} - u^{83} + \dots + 8u - 1$
c_7, c_8, c_{11}	$(u^{42} + 5u^{41} + \dots - 8u - 2)^2$

Crossings	Riley Polynomials at each crossing
c_1	$(y^{42} + 18y^{41} + \dots + 317y + 81)^2$
c_2, c_5	$(y^{42} - 18y^{41} + \dots - 139y + 9)^2$
c_3, c_{10}	$y^{84} + 30y^{83} + \dots - 54716197799y + 561737401$
c_4, c_{12}	$y^{84} - 34y^{83} + \dots - 6200469y + 263169$
c_6, c_9	$y^{84} + 17y^{83} + \dots - 72y + 1$
c_7, c_8, c_{11}	$(y^{42} - 45y^{41} + \dots - 96y + 4)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.510010 + 0.891471I		
a = -0.217501 + 0.082995I	3.96533 + 2.20033I	7.78344 - 3.54101I
b = 0.709398 - 1.077620I		
u = 0.510010 + 0.891471I		
a = -0.204654 - 0.010293I	3.96533 + 2.20033I	7.78344 - 3.54101I
b = -0.194625 + 0.780336I		
u = 0.510010 - 0.891471I		
a = -0.217501 - 0.082995I	3.96533 - 2.20033I	7.78344 + 3.54101I
b = 0.709398 + 1.077620I		
u = 0.510010 - 0.891471I		
a = -0.204654 + 0.010293I	3.96533 - 2.20033I	7.78344 + 3.54101I
b = -0.194625 - 0.780336I		
u = 0.730561 + 0.637744I		
a = -0.161192 + 1.028670I	1.88224 - 1.77676I	3.40533 + 1.54020I
b = 0.163687 - 0.913124I		
u = 0.730561 + 0.637744I		
a = -1.091270 + 0.713205I	1.88224 - 1.77676I	3.40533 + 1.54020I
b = -0.624504 - 0.895096I		
u = 0.730561 - 0.637744I		
a = -0.161192 - 1.028670I	1.88224 + 1.77676I	3.40533 - 1.54020I
b = 0.163687 + 0.913124I		
u = 0.730561 - 0.637744I		
a = -1.091270 - 0.713205I	1.88224 + 1.77676I	3.40533 - 1.54020I
b = -0.624504 + 0.895096I		
u = -0.779828 + 0.674893I		
a = -0.435770 - 0.013571I	10.25860 - 4.34016I	5.15506 + 1.20379I
b = 0.72936 + 1.57734I		
u = -0.779828 + 0.674893I		
a = 2.07249 + 0.66236I	10.25860 - 4.34016I	5.15506 + 1.20379I
b = -0.136878 - 0.796276I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.779828 - 0.674893I		
a = -0.435770 + 0.013571I	10.25860 + 4.34016I	5.15506 - 1.20379I
b = 0.72936 - 1.57734I		
u = -0.779828 - 0.674893I		
a = 2.07249 - 0.66236I	10.25860 + 4.34016I	5.15506 - 1.20379I
b = -0.136878 + 0.796276I		
u = -0.822928 + 0.631892I		
a = -0.176436 - 0.110160I	3.00889 - 0.33164I	4.36259 + 0.I
b = -0.733366 - 1.134380I		
u = -0.822928 + 0.631892I		
a = -2.08391 - 0.64936I	3.00889 - 0.33164I	4.36259 + 0.I
b = -0.347636 + 0.639214I		
u = -0.822928 - 0.631892I		
a = -0.176436 + 0.110160I	3.00889 + 0.33164I	4.36259 + 0.I
b = -0.733366 + 1.134380I		
u = -0.822928 - 0.631892I		
a = -2.08391 + 0.64936I	3.00889 + 0.33164I	4.36259 + 0.I
b = -0.347636 - 0.639214I		
u = -0.875027 + 0.294558I		
a = -1.50259 - 1.83848I	-0.96070 + 1.25401I	-8.94945 + 0.67445I
b = -0.183063 - 0.439638I		
u = -0.875027 + 0.294558I		
a = 2.34203 - 0.82616I	-0.96070 + 1.25401I	-8.94945 + 0.67445I
b = 0.35785 - 1.95258I		
u = -0.875027 - 0.294558I		
a = -1.50259 + 1.83848I	-0.96070 - 1.25401I	-8.94945 - 0.67445I
b = -0.183063 + 0.439638I		
u = -0.875027 - 0.294558I		
a = 2.34203 + 0.82616I	-0.96070 - 1.25401I	-8.94945 - 0.67445I
b = 0.35785 + 1.95258I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.876145 + 0.628792I		
a = 0.539905 - 0.602343I	2.84261 + 5.26736I	3.35403 - 7.60586I
b = 0.234384 + 0.870708I		
u = -0.876145 + 0.628792I		
a = 2.13558 + 0.80967I	2.84261 + 5.26736I	3.35403 - 7.60586I
b = 0.930602 - 1.036450I		
u = -0.876145 - 0.628792I		
a = 0.539905 + 0.602343I	2.84261 - 5.26736I	3.35403 + 7.60586I
b = 0.234384 - 0.870708I		
u = -0.876145 - 0.628792I		
a = 2.13558 - 0.80967I	2.84261 - 5.26736I	3.35403 + 7.60586I
b = 0.930602 + 1.036450I		
u = 0.527466 + 0.964532I		
a = 0.432004 - 0.205116I	10.61430 + 2.69864I	6.67505 - 1.90999I
b = -0.89197 + 1.43000I		
u = 0.527466 + 0.964532I		
a = 0.359003 + 0.138407I	10.61430 + 2.69864I	6.67505 - 1.90999I
b = -0.227656 - 0.861311I		
u = 0.527466 - 0.964532I		
a = 0.432004 + 0.205116I	10.61430 - 2.69864I	6.67505 + 1.90999I
b = -0.89197 - 1.43000I		
u = 0.527466 - 0.964532I		
a = 0.359003 - 0.138407I	10.61430 - 2.69864I	6.67505 + 1.90999I
b = -0.227656 + 0.861311I		
u = -1.093320 + 0.179580I		
a = 0.89041 + 1.21145I	-3.70743 - 0.52130I	-13.5326 + 9.1617I
b = 0.453625 + 0.650671I		
u = -1.093320 + 0.179580I		
a = -1.80070 + 0.29530I	-3.70743 - 0.52130I	-13.5326 + 9.1617I
b = -1.09872 + 1.14420I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.093320 - 0.179580I		
a = 0.89041 - 1.21145I	-3.70743 + 0.52130I	-13.5326 - 9.1617I
b = 0.453625 - 0.650671I		
u = -1.093320 - 0.179580I		
a = -1.80070 - 0.29530I	-3.70743 + 0.52130I	-13.5326 - 9.1617I
b = -1.09872 - 1.14420I		
u = -0.916400 + 0.651883I		
a = -0.207802 + 0.995231I	9.83608 + 9.47995I	3.75244 - 7.98910I
b = 0.124308 - 1.016930I		
u = -0.916400 + 0.651883I		
a = -2.29406 - 0.72813I	9.83608 + 9.47995I	3.75244 - 7.98910I
b = -0.90398 + 1.59431I		
u = -0.916400 - 0.651883I		
a = -0.207802 - 0.995231I	9.83608 - 9.47995I	3.75244 + 7.98910I
b = 0.124308 + 1.016930I		
u = -0.916400 - 0.651883I		
a = -2.29406 + 0.72813I	9.83608 - 9.47995I	3.75244 + 7.98910I
b = -0.90398 - 1.59431I		
u = 0.938483 + 0.622081I		
a = -0.290651 - 0.867054I	1.25328 - 3.16772I	1.51749 + 5.49111I
b = 0.78135 - 1.19741I		
u = 0.938483 + 0.622081I		
a = -1.82859 + 0.92274I	1.25328 - 3.16772I	1.51749 + 5.49111I
b = -0.327871 - 0.874472I		
u = 0.938483 - 0.622081I		
a = -0.290651 + 0.867054I	1.25328 + 3.16772I	1.51749 - 5.49111I
b = 0.78135 + 1.19741I		
u = 0.938483 - 0.622081I		
a = -1.82859 - 0.92274I	1.25328 + 3.16772I	1.51749 - 5.49111I
b = -0.327871 + 0.874472I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.853008 + 0.796431I		
a = 1.159190 - 0.401879I	10.22430 - 2.96196I	5.75050 + 2.92195I
b = -0.155456 + 0.938638I		
u = 0.853008 + 0.796431I		
a = 0.187162 - 0.377050I	10.22430 - 2.96196I	5.75050 + 2.92195I
b = 0.104765 + 1.073070I		
u = 0.853008 - 0.796431I		
a = 1.159190 + 0.401879I	10.22430 + 2.96196I	5.75050 - 2.92195I
b = -0.155456 - 0.938638I		
u = 0.853008 - 0.796431I		
a = 0.187162 + 0.377050I	10.22430 + 2.96196I	5.75050 - 2.92195I
b = 0.104765 - 1.073070I		
u = 1.028580 + 0.594924I		
a = -0.674443 + 1.145360I	-1.01198 - 7.11892I	-6.76502 + 8.90706I
b = -1.47342 + 0.43019I		
u = 1.028580 + 0.594924I		
a = 2.04370 - 0.39791I	-1.01198 - 7.11892I	-6.76502 + 8.90706I
b = 0.626826 + 0.982813I		
u = 1.028580 - 0.594924I		
a = -0.674443 - 1.145360I	-1.01198 + 7.11892I	-6.76502 - 8.90706I
b = -1.47342 - 0.43019I		
u = 1.028580 - 0.594924I		
a = 2.04370 + 0.39791I	-1.01198 + 7.11892I	-6.76502 - 8.90706I
b = 0.626826 - 0.982813I		
u = 0.266931 + 0.728758I		
a = 0.760979 + 0.917167I	6.40895 + 5.19119I	1.23750 - 4.36469I
b = -1.413160 + 0.001121I		
u = 0.266931 + 0.728758I		
a = 0.221346 + 0.006852I	6.40895 + 5.19119I	1.23750 - 4.36469I
b = 0.580068 - 1.153180I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.266931 - 0.728758I		
a = 0.760979 - 0.917167I	6.40895 - 5.19119I	1.23750 + 4.36469I
b = -1.413160 - 0.001121I		
u = 0.266931 - 0.728758I		
a = 0.221346 - 0.006852I	6.40895 - 5.19119I	1.23750 + 4.36469I
b = 0.580068 + 1.153180I		
u = 1.101200 + 0.576052I		
a = 1.30305 - 1.16985I	4.13777 - 10.06040I	0
b = 1.96596 + 0.22334I		
u = 1.101200 + 0.576052I		
a = -2.01391 + 0.02178I	4.13777 - 10.06040I	0
b = -0.769329 - 1.160160I		
u = 1.101200 - 0.576052I		
a = 1.30305 + 1.16985I	4.13777 + 10.06040I	0
b = 1.96596 - 0.22334I		
u = 1.101200 - 0.576052I		
a = -2.01391 - 0.02178I	4.13777 + 10.06040I	0
b = -0.769329 + 1.160160I		
u = -1.226880 + 0.231515I		
a = -0.399605 - 1.256660I	1.74664 - 2.01379I	0
b = -0.499288 - 0.861891I		
u = -1.226880 + 0.231515I		
a = 1.77450 + 0.14681I	1.74664 - 2.01379I	0
b = 1.76505 - 0.97612I		
u = -1.226880 - 0.231515I		
a = -0.399605 + 1.256660I	1.74664 + 2.01379I	0
b = -0.499288 + 0.861891I		
u = -1.226880 - 0.231515I		
a = 1.77450 - 0.14681I	1.74664 + 2.01379I	0
b = 1.76505 + 0.97612I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.25241		
a = -1.13370	-2.53306	13.6300
b = -1.13825		
u = -1.25241		
a = 0.342638	-2.53306	13.6300
b = 0.0874617		
u = 0.492169 + 0.550529I		
a = -0.551572 - 0.482028I	0.46127 + 2.38551I	-3.21466 - 4.74336I
b = -0.441630 + 0.963328I		
u = 0.492169 + 0.550529I		
a = 0.21342 - 1.51071I	0.46127 + 2.38551I	-3.21466 - 4.74336I
b = 1.059490 + 0.201611I		
u = 0.492169 - 0.550529I		
a = -0.551572 + 0.482028I	0.46127 - 2.38551I	-3.21466 + 4.74336I
b = -0.441630 - 0.963328I		
u = 0.492169 - 0.550529I		
a = 0.21342 + 1.51071I	0.46127 - 2.38551I	-3.21466 + 4.74336I
b = 1.059490 - 0.201611I		
u = 0.701994 + 0.161879I		
a = 0.909145 + 0.128046I	6.92768 + 5.83771I	-3.19956 - 4.02025I
b = 0.535532 - 1.241620I		
u = 0.701994 + 0.161879I		
a = -0.69186 + 3.27386I	6.92768 + 5.83771I	-3.19956 - 4.02025I
b = -1.05481 + 0.97876I		
u = 0.701994 - 0.161879I		
a = 0.909145 - 0.128046I	6.92768 - 5.83771I	-3.19956 + 4.02025I
b = 0.535532 + 1.241620I		
u = 0.701994 - 0.161879I		
a = -0.69186 - 3.27386I	6.92768 - 5.83771I	-3.19956 + 4.02025I
b = -1.05481 - 0.97876I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.107580 + 0.681302I		
a = 1.231810 - 0.087905I	2.15078 - 8.00235I	0
b = 0.462807 + 0.741726I		
u = 1.107580 + 0.681302I		
a = -1.59815 + 0.44757I	2.15078 - 8.00235I	0
b = -0.93885 - 1.23925I		
u = 1.107580 - 0.681302I		
a = 1.231810 + 0.087905I	2.15078 + 8.00235I	0
b = 0.462807 - 0.741726I		
u = 1.107580 - 0.681302I		
a = -1.59815 - 0.44757I	2.15078 + 8.00235I	0
b = -0.93885 + 1.23925I		
u = 1.132060 + 0.720348I		
a = -1.108790 - 0.248661I	8.75682 - 8.84366I	0
b = 0.025222 - 0.768787I		
u = 1.132060 + 0.720348I		
a = 1.72312 - 0.46642I	8.75682 - 8.84366I	0
b = 1.00221 + 1.68776I		
u = 1.132060 - 0.720348I		
a = -1.108790 + 0.248661I	8.75682 + 8.84366I	0
b = 0.025222 + 0.768787I		
u = 1.132060 - 0.720348I		
a = 1.72312 + 0.46642I	8.75682 + 8.84366I	0
b = 1.00221 - 1.68776I		
u = -1.34302		
a = 0.664876 + 0.247933I	3.52091	0
b = 0.989538 + 0.259051I		
u = -1.34302		
a = 0.664876 - 0.247933I	3.52091	0
b = 0.989538 - 0.259051I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.498194 + 0.170122I		
a = -0.858781 - 0.797275I	0.48998 + 2.27367I	-4.83140 - 3.81720I
b = -0.354161 + 0.911233I		
u = 0.498194 + 0.170122I		
a = 0.29069 - 2.85485I	0.48998 + 2.27367I	-4.83140 - 3.81720I
b = 0.693739 - 0.139657I		
u = 0.498194 - 0.170122I		
a = -0.858781 + 0.797275I	0.48998 - 2.27367I	-4.83140 + 3.81720I
b = -0.354161 - 0.911233I		
u = 0.498194 - 0.170122I		
a = 0.29069 + 2.85485I	0.48998 - 2.27367I	-4.83140 + 3.81720I
b = 0.693739 + 0.139657I		

III.
$$I_3^u = \langle -3u^{15} + 11u^{14} + \dots + b + 6, -4u^{15} + 13u^{14} + \dots + a + 6, u^{16} - 4u^{15} + \dots - 3u + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 4u^{15} - 13u^{14} + \dots + 12u - 6 \\ 3u^{15} - 11u^{14} + \dots + 9u - 6 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{15} + 4u^{14} + \dots - 5u + 1 \\ -u^{15} + 3u^{14} + \dots + u^{2} - 3u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{15} - 2u^{14} + \dots - 4u^{2} + 3u \\ 3u^{15} - 11u^{14} + \dots + 9u - 6 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -4u^{15} + 12u^{14} + \dots - 9u + 2 \\ -5u^{15} + 19u^{14} + \dots - 17u + 9 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 4u^{15} - 12u^{14} + \dots + 9u - 2 \\ 4u^{15} - 13u^{14} + \dots + 11u - 4 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 4u^{15} - 16u^{14} + \dots + 16u - 8 \\ -u^{15} + 2u^{14} + \dots - u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -5u^{15} + 18u^{14} + \dots - 15u + 6 \\ -3u^{15} + 12u^{14} + \dots - 11u + 6 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-8u^{15} + 28u^{14} - 24u^{13} - 45u^{12} + 121u^{11} - 111u^{10} + 38u^9 + 23u^8 - 93u^7 + 175u^6 - 180u^5 + 94u^4 - 19u^3 + 15u^2 - 25u + 18$$

Crossings	u-Polynomials at each crossing
c_1	$u^{16} - 6u^{15} + \dots - 3u + 1$
c_2	$u^{16} + 4u^{15} + \dots + 3u + 1$
c_3, c_{10}	$u^{16} + u^{14} + \dots - 2u^2 - 1$
c_4,c_{12}	$u^{16} - 7u^{14} + \dots + 2u + 1$
c_5	$u^{16} - 4u^{15} + \dots - 3u + 1$
c_6, c_9	$u^{16} + 2u^{15} + \dots - 2u - 1$
c_{7}, c_{8}	$u^{16} - 5u^{15} + \dots - 8u - 3$
c_{11}	$u^{16} + 5u^{15} + \dots + 8u - 3$

Crossings	Riley Polynomials at each crossing
c_1	$y^{16} + 2y^{15} + \dots + 29y + 1$
c_2, c_5	$y^{16} - 6y^{15} + \dots - 3y + 1$
c_3, c_{10}	$y^{16} + 2y^{15} + \dots + 4y + 1$
c_4, c_{12}	$y^{16} - 14y^{15} + \dots - 20y^2 + 1$
c_{6}, c_{9}	$y^{16} + 4y^{15} + \dots + 2y + 1$
c_7, c_8, c_{11}	$y^{16} - 21y^{15} + \dots - 160y + 9$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.338226 + 0.958950I		
a = 0.339958 - 0.513177I	8.81727 + 5.86240I	4.01341 - 1.30618I
b = -0.595812 + 0.801019I		
u = -0.338226 - 0.958950I		
a = 0.339958 + 0.513177I	8.81727 - 5.86240I	4.01341 + 1.30618I
b = -0.595812 - 0.801019I		
u = 0.609808 + 0.708721I		
a = 0.463208 - 0.215804I	2.29985 + 2.15456I	2.96608 - 3.00274I
b = 0.608740 - 0.753121I		
u = 0.609808 - 0.708721I		
a = 0.463208 + 0.215804I	2.29985 - 2.15456I	2.96608 + 3.00274I
b = 0.608740 + 0.753121I		
u = 1.052940 + 0.654544I		
a = -1.54648 + 0.44104I	0.93264 - 7.46106I	-1.96489 + 6.60058I
b = -0.822876 - 0.751021I		
u = 1.052940 - 0.654544I		
a = -1.54648 - 0.44104I	0.93264 + 7.46106I	-1.96489 - 6.60058I
b = -0.822876 + 0.751021I		
u = 1.119080 + 0.559931I		
a = 1.68298 - 0.10916I	5.80052 - 9.99229I	2.77316 + 8.71840I
b = 1.16510 + 1.02586I		
u = 1.119080 - 0.559931I		
a = 1.68298 + 0.10916I	5.80052 + 9.99229I	2.77316 - 8.71840I
b = 1.16510 - 1.02586I		
u = -1.26436		
a = -0.833629	-2.84996	-18.1780
b = -0.714806		
u = 0.918460 + 0.873721I		
a = 0.432552 - 0.953680I	8.91391 - 3.23142I	13.51728 - 3.34906I
b = 0.014082 + 0.732499I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.918460 - 0.873721I		
a = 0.432552 + 0.953680I	8.91391 + 3.23142I	13.51728 + 3.34906I
b = 0.014082 - 0.732499I		
u = 0.514771 + 0.399698I		
a = -0.23756 + 1.59385I	7.96457 + 5.69063I	6.42996 - 3.10822I
b = -0.79153 + 1.18241I		
u = 0.514771 - 0.399698I		
a = -0.23756 - 1.59385I	7.96457 - 5.69063I	6.42996 + 3.10822I
b = -0.79153 - 1.18241I		
u = -0.450537 + 0.363850I		
a = -0.48222 + 1.74678I	1.22774 + 2.85777I	3.22918 - 10.63144I
b = 0.325465 - 0.633246I		
u = -0.450537 - 0.363850I		
a = -0.48222 - 1.74678I	1.22774 - 2.85777I	3.22918 + 10.63144I
b = 0.325465 + 0.633246I		
u = -1.58823		
a = 0.528750	3.31408	-27.7500
b = 0.908470		

$$\text{IV. } I_4^u = \\ \langle -u^3a - u^2a + u^3 + au + 2b + 1, \ u^2a + 3u^3 + a^2 + au + 2u^2 - a - 3u - 2, \ u^4 - u^2 + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{3}a - \frac{1}{2}u^{3} + \dots - \frac{1}{2}au - \frac{1}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{3}a + u^{3} + \dots - \frac{1}{2}a - \frac{3}{2} \\ -u^{3} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + a + \frac{1}{2} \\ \frac{1}{2}u^{3}a - \frac{1}{2}u^{3} + \dots - \frac{1}{2}au - \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{2}a + \frac{3}{2}u^{3} + \dots + \frac{1}{2}a - 1 \\ \frac{1}{2}u^{3}a - \frac{3}{2}u^{3} + \dots - \frac{1}{2}au - \frac{1}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{3}a + \frac{3}{2}u^{2} + \dots + \frac{1}{2}a + \frac{1}{2} \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + a + \frac{1}{2} \\ \frac{1}{2}u^{3}a - \frac{1}{2}u^{3} + \dots - \frac{1}{2}au - \frac{1}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}u^{3}a - u^{3} + \dots + \frac{1}{2}a + \frac{3}{2} \\ u^{3} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2 4$

Crossings	u-Polynomials at each crossing
c_1	$(u^2 - u + 1)^4$
c_2, c_5	$(u^4 - u^2 + 1)^2$
c_3, c_{10}	$u^8 + 6u^6 + 2u^5 + 10u^4 + 6u^3 + 7u^2 + 4u + 1$
c_4, c_{12}	$(u^2+1)^4$
c_{6}, c_{9}	$u^8 + 4u^7 + 2u^6 - 8u^5 - 6u^4 + 6u^3 + 3u^2 - 2u + 1$
c_{7}, c_{8}	$(u+1)^8$
c_{11}	$(u-1)^8$

Crossings	Riley Polynomials at each crossing
c_1	$(y^2+y+1)^4$
c_2, c_5	$(y^2 - y + 1)^4$
c_3, c_{10}	$y^8 + 12y^7 + 56y^6 + 130y^5 + 162y^4 + 100y^3 + 21y^2 - 2y + 1$
c_4, c_{12}	$(y+1)^8$
c_6, c_9	$y^8 - 12y^7 + 56y^6 - 130y^5 + 162y^4 - 100y^3 + 21y^2 + 2y + 1$
c_7, c_8, c_{11}	$(y-1)^8$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.866025 + 0.500000I		
a = -2.12127 + 0.08625I	-2.02988I	-2.00000 + 3.46410I
b = -0.17069 - 1.96464I		
u = 0.866025 + 0.500000I		
a = 1.75524 - 1.45227I	-2.02988I	-2.00000 + 3.46410I
b = 0.170691 + 0.964637I		
u = 0.866025 - 0.500000I		
a = -2.12127 - 0.08625I	2.02988I	-2.00000 - 3.46410I
b = -0.17069 + 1.96464I		
u = 0.866025 - 0.500000I		
a = 1.75524 + 1.45227I	2.02988I	-2.00000 - 3.46410I
b = 0.170691 - 0.964637I		
u = -0.866025 + 0.500000I		
a = 0.464166 - 0.918331I	2.02988I	-2.00000 - 3.46410I
b = -0.351035 - 1.212180I		
u = -0.866025 + 0.500000I		
a = 0.90186 + 1.28436I	2.02988I	-2.00000 - 3.46410I
b = 0.351035 + 0.212180I		
u = -0.866025 - 0.500000I		
a = 0.464166 + 0.918331I	-2.02988I	-2.00000 + 3.46410I
b = -0.351035 + 1.212180I		
u = -0.866025 - 0.500000I		
a = 0.90186 - 1.28436I	-2.02988I	-2.00000 + 3.46410I
b = 0.351035 - 0.212180I		

V.
$$I_5^u = \langle b - a - 1, a^2 + 3a + 3, u + 1 \rangle$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ a+1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} a+1\\a+2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ a+1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} a+1\\a+2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ a+1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a+1\\a+2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ a+1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_9	$(u-1)^2$
c_3, c_4, c_{10} c_{12}	$u^2 - u + 1$
<i>c</i> ₅	$(u+1)^2$
c_7, c_8, c_{11}	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_9	$(y-1)^2$
c_3, c_4, c_{10} c_{12}	$y^2 + y + 1$
c_7, c_8, c_{11}	y^2

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.50000 + 0.86603I	-3.28987	-6.00000
b = -0.500000 + 0.866025I		
u = -1.00000		
a = -1.50000 - 0.86603I	-3.28987	-6.00000
b = -0.500000 - 0.866025I		

VI.
$$I_6^u = \langle b-a+1, \ a^4-6a^3+15a^2-18a+7, \ u+1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ a-1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -a+1 \\ -a+2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ a-1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a^{2}-4a+4 \\ a^{3}-4a^{2}+5a-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a^{2}-3a+3 \\ a^{2}-4a+4 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a-1 \\ a-2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a^{3}-4a^{2}+6a-4 \\ a^{3}-5a^{2}+8a-5 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_{10}	$u^4 + 2u^3 + 3u^2 + 2u - 1$
c_4, c_{12}	$u^4 - 2u^3 + 3u^2 - 2u - 1$
c_5, c_6, c_9	$(u+1)^4$
c_7, c_8, c_{11}	$(u^2-2)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \ c_6, c_9$	$(y-1)^4$
c_3, c_4, c_{10} c_{12}	$y^4 + 2y^3 - y^2 - 10y + 1$
c_7, c_8, c_{11}	$(y-2)^4$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.685007	1.64493	-4.00000
b = -0.314993		
u = -1.00000		
a = 1.50000 + 1.47113I	1.64493	-4.00000
b = 0.50000 + 1.47113I		
u = -1.00000		
a = 1.50000 - 1.47113I	1.64493	-4.00000
b = 0.50000 - 1.47113I		
u = -1.00000		
a = 2.31499	1.64493	-4.00000
b = 1.31499		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^{6})(u^{2}-u+1)^{4}(u^{16}-6u^{15}+\cdots-3u+1)$ $\cdot((u^{42}+18u^{41}+\cdots+139u+9)^{2})(u^{52}+19u^{51}+\cdots+2465u+64)$
c_2	$((u-1)^{6})(u^{4}-u^{2}+1)^{2}(u^{16}+4u^{15}+\cdots+3u+1)$ $\cdot((u^{42}-4u^{41}+\cdots-23u+3)^{2})(u^{52}+11u^{51}+\cdots-105u-8)$
c_3, c_{10}	$(u^{2} - u + 1)(u^{4} + 2u^{3} + 3u^{2} + 2u - 1)$ $\cdot (u^{8} + 6u^{6} + \dots + 4u + 1)(u^{16} + u^{14} + \dots - 2u^{2} - 1)$ $\cdot (u^{52} + 12u^{50} + \dots - 11u + 1)(u^{84} - 2u^{83} + \dots + 277053u - 23701)$
c_4, c_{12}	$((u^{2}+1)^{4})(u^{2}-u+1)(u^{4}-2u^{3}+\cdots-2u-1)(u^{16}-7u^{14}+\cdots+2u+1)$ $\cdot (u^{52}+4u^{51}+\cdots-11u+1)(u^{84}+10u^{83}+\cdots-117u+513)$
c_5	$((u+1)^{6})(u^{4}-u^{2}+1)^{2}(u^{16}-4u^{15}+\cdots-3u+1)$ $\cdot((u^{42}-4u^{41}+\cdots-23u+3)^{2})(u^{52}+11u^{51}+\cdots-105u-8)$
c_6, c_9	$(u-1)^{2}(u+1)^{4}(u^{8}+4u^{7}+2u^{6}-8u^{5}-6u^{4}+6u^{3}+3u^{2}-2u+1)$ $\cdot (u^{16}+2u^{15}+\cdots-2u-1)(u^{52}-4u^{51}+\cdots+u-1)$ $\cdot (u^{84}-u^{83}+\cdots+8u-1)$
c_7, c_8	$u^{2}(u+1)^{8}(u^{2}-2)^{2}(u^{16}-5u^{15}+\cdots-8u-3)$ $\cdot((u^{42}+5u^{41}+\cdots-8u-2)^{2})(u^{52}-14u^{51}+\cdots-15u+2)$
c_{11}	$u^{2}(u-1)^{8}(u^{2}-2)^{2}(u^{16}+5u^{15}+\cdots+8u-3)$ $\cdot((u^{42}+5u^{41}+\cdots-8u-2)^{2})(u^{52}-14u^{51}+\cdots-15u+2)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^{6})(y^{2}+y+1)^{4}(y^{16}+2y^{15}+\cdots+29y+1)$ $\cdot (y^{42}+18y^{41}+\cdots+317y+81)^{2}$ $\cdot (y^{52}+21y^{51}+\cdots-3151553y+4096)$
c_2, c_5	$((y-1)^{6})(y^{2}-y+1)^{4}(y^{16}-6y^{15}+\cdots-3y+1)$ $\cdot ((y^{42}-18y^{41}+\cdots-139y+9)^{2})(y^{52}-19y^{51}+\cdots-2465y+64)$
c_3, c_{10}	$(y^{2} + y + 1)(y^{4} + 2y^{3} - y^{2} - 10y + 1)$ $\cdot (y^{8} + 12y^{7} + 56y^{6} + 130y^{5} + 162y^{4} + 100y^{3} + 21y^{2} - 2y + 1)$ $\cdot (y^{16} + 2y^{15} + \dots + 4y + 1)(y^{52} + 24y^{51} + \dots - 43y + 1)$ $\cdot (y^{84} + 30y^{83} + \dots - 54716197799y + 561737401)$
c_4, c_{12}	$(y+1)^{8}(y^{2}+y+1)(y^{4}+2y^{3}-y^{2}-10y+1)$ $\cdot (y^{16}-14y^{15}+\cdots-20y^{2}+1)(y^{52}+12y^{51}+\cdots-31y+1)$ $\cdot (y^{84}-34y^{83}+\cdots-6200469y+263169)$
c_6, c_9	$((y-1)^{6})(y^{8} - 12y^{7} + \dots + 2y + 1)$ $\cdot (y^{16} + 4y^{15} + \dots + 2y + 1)(y^{52} - 30y^{51} + \dots - 61y + 1)$ $\cdot (y^{84} + 17y^{83} + \dots - 72y + 1)$
c_7, c_8, c_{11}	$y^{2}(y-2)^{4}(y-1)^{8}(y^{16}-21y^{15}+\cdots-160y+9)$ $\cdot((y^{42}-45y^{41}+\cdots-96y+4)^{2})(y^{52}-58y^{51}+\cdots-137y+4)$