Visão Computacional - Lista 4

Professor: Moacyr Alvim Horta Barbosa da Silva Monitor: Tulio Koneçny

A lista deverá ser entregue no formato .pdf e o código em py. ou .ipynb Entrega: $\rm XX/04/24$

1 Áudio

Leia o arquivo de áudio StarWars60.wav.

- (a) Faça uma redução do arquivo de áudio para que ele contenha apenas 10 segundos.
- (b) Plote o gráfico do espectro do áudio de 10 segundos (use o valor absoluto dos coeficientes de Fourier para visualizar o espectro).

2 Compressão com Fourier

- (a) Escolha uma fração $p \in [0,1]$ das frequências baixas presentes no áudio que serão preservadas, algo entre 80% e 10%, e coloque as frequências altas restantes iguais a zero.
- (b) Descreva a diferença entre o áudio original e o áudio compactado, onde as frequências altas foram descartadas.

3 Convolução em sinais de áudio com Fourier

(a) Como seria o filtro de uma convolução cujo resultado é um eco de 0,5 segundos adicionado ao sinal? Implemente este filtro e aplique em um dos arquivos de áudio (coruja, leão, homem rindo, espirro, andrew rindo, mulher cantando)

(b) (Reverb) Como seria o filtro de uma convolução cujo resultado são múltiplos ecos (em torno de 10 cópias) com diferenças de milissegundos entre eles e com amplitude decrescente? Implemente este filtro e teste com algum arquivo de áudio.

Dica: Você pode usar a convolução de bibliotecas já prontas ou usar fft para efetuar a convolução.

4 Compressão com Fourier e frequências altas com Fourier

Leia o arquivo de áudio frutas.jpg.

- (a) Escolha uma fração $p \in [0,1]$ das frequências da imagem que serão preservadas, algo entre 80% e 10% e coloque altas frequências complementares para zero (filtro de passa baixa)
- (b) Descreva a diferença entre a imagem original e a imagem compactada, onde as frequências altas foram descartadas. O que acontece com a imagem se o percentual de frequências baixas mantidas for muito baixo?
- (c) Qual é o efeito de manter-se as frequências altas, descartando as frequências baixas? (filtro de passa alta)

5 Convolução circular

Suponha que você tenha acesso a uma função $T:\mathbb{R}^n\to\mathbb{R}^n$ implementada no seu pacote de visão computacional/processamento de imagens. Você sabe que a função T é uma convolução circular, ou seja, $T(u)=h\odot u$, para algum vetor $h\in\mathbb{R}^n$.

Mostre que h pode ser obtido fazendo $h = T(\delta)$, onde $\delta = (1, 0, 0, ..., 0)$.

6 Invariante por translações

Uma propriedade desejável em muitas situações de um filtro F é que ele seja "invariante por translações". Ou seja, $F(u) = v \rightarrow F(u(k-t)) = v(k-t)$. Isto significa que o valor de um pixel na imagem filtrada não depende da localização física deste pixel, depende apenas dos valores dos seus vizinhos. Mudar a imagem de lugar não muda o resultado do filtro.

Suponha que o filtro $F: \mathbb{R}^n \to \mathbb{R}^n$ tenha as seguintes propriedades:

1) Linear: F(au + bv) = aF(u) + bF(v)

2) Invariante por translação: $F(u)=v\to F(u(k-t))=v(k-t),$ onde a translação por $t\in\mathbb{Z}$ é "circular".

Mostre que o filtro F, linear e invariante por translação, é uma convolução circular.

7 Extra

7.1 Correção Automática de Gabaritos

Neste exercício faremos um código para corrigir de forma automática um gabarito de prova.

Seu código deve receber de entrada duas imagens, uma contendo gabarito g e uma contendo as respostas de um aluno r. Note que as imagens não estão alinhadas. Você deverá aplicar a Transformada de Fourier em cada uma das imagens, obtendo um espectro g' e um r'. Descobrir a transformação que leva r' em g', aplicar essa transformação em r'. Com isso, aplicar a Transformada de Fourier inversa para obter a imagem na mesma orientação que o gabarito.

Por fim, compare o a resposta do aluno com o gabarito (pode ser por subtração de cor em pixel), informe quantas questões ele acertou.