

Ingo Blechschmidt
December 17th, 2014

Ingo Blechschmidt
December 17th, 2014

Outline

1 Theory

- Singular value decomposition
- Pseudoinverses
- Low-rank approximation

2 Applications

- Image compression
- Proper orthogonal decomposition
- Principal component analysis
- Eigenfaces
- Digit recognition

Singular value decomposition

Let $A \in \mathbb{R}^{n \times m}$. Then there exist

- numbers $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_m \geq 0$,
- \blacksquare an orthonormal basis $\mathbf{v}_1, \dots, \mathbf{v}_m$ of \mathbb{R}^m , and
- \blacksquare an orthonormal basis $\mathbf{w}_1, \dots, \mathbf{w}_n$ of \mathbb{R}^n ,

such that

$$A\mathbf{v}_i = \sigma_i \mathbf{w}_i, \quad i = 1, \ldots, m.$$

In matrix language:

$$A = W \Sigma V^t,$$
 where $V = (\mathbf{v}_1 | \dots | \mathbf{v}_m) \in \mathbb{R}^{m \times m}$ orthogonal, $W = (\mathbf{w}_1 | \dots | \mathbf{w}_n) \in \mathbb{R}^{n \times n}$ orthogonal, $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_m) \in \mathbb{R}^{n \times m}.$

- The singular value decomposition (SVD) exists for any real matrix, even rectangular ones.
- The singular values σ_i are unique.
- The basis vectors are not unique.
- If A is orthogonally diagonalizable with eigenvalues λ_i (for instance, if A is symmetric), then $\sigma_i = |\lambda_i|$.
- $||A||_{\mathsf{Frobenius}} = \sqrt{\sum_{ij} A_{ij}^2} = \sqrt{\mathsf{tr}(A^t A)} = \sqrt{\sum_i \sigma_i^2}$.
- There exists a generalization to complex matrices. In this case, the matrix A can be decomposed as $W\Sigma V^*$, where V^* is the complex conjugate of V^t and W and V are unitary matrices.
- The singular value decomposition can also be formulated in a basis-free manner as a result about linear maps between finite-dimensional Hilbert spaces.

Existence proof (sketch):

- 1. Consider the eigenvalue decomposition of the symmetric and positive-semidefinite matrix A^tA : We have an orthonormal basis \mathbf{v}_i of eigenvectors corresponding to eigenvalues λ_i .
- 2. Set $\sigma_i := \sqrt{\lambda_i}$.
- 3. Set $\mathbf{w}_i := \frac{1}{\sigma_i} A \mathbf{v}_i$ (for those i with $\lambda_i \neq 0$).
- 4. Then $A\mathbf{v}_i = \sigma_i \mathbf{w}_i$ holds trivially.
- 5. The \mathbf{w}_i are orthonormal: $(\mathbf{w}_i, \mathbf{w}_j) = \frac{1}{\sigma_i \sigma_j} (A^t A \mathbf{v}_i, \mathbf{v}_j) = \frac{\lambda_i \delta_{ij}}{\sigma_i \sigma_j}$.
- 6. If necessary, extend the \mathbf{w}_i to an orthonormal basis.

This proof gives rise to an algorithm for calculating the SVD, but unless A^tA is small, it has undesirable numerical properties. (But note that one can also use AA^t !) Since the 1960ies, there exists a stable iterative algorithm by Golub and van Loan.

Let $A \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^n$. Then the solutions to the optimization problem

$$\|A\mathbf{x} - \mathbf{b}\|_2 \longrightarrow \min$$

under $\mathbf{x} \in \mathbb{R}^m$ are given by

$$\mathbf{x} = A^{+}\mathbf{b} + V \begin{pmatrix} 0 \\ \star \end{pmatrix},$$

where $A = W\Sigma V^t$ is the SVD and

$$A^{+} = W\Sigma^{+}V^{t},$$

$$\Sigma^{+} = \operatorname{diag}(\sigma_{1}^{-1}, \dots, \sigma_{m}^{-1}).$$

- In the formula for Σ^+ , set $0^{-1} := 0$.
- If A happens to be invertible, then $A^+ = A^{-1}$.
- The pseudoinverse can be used for polynomial approximation: Let data points $(x_i, y_i) \in \mathbb{R}^2$, $1 \le i \le N$, be given. Want to find a polynomial $p(z) = \sum_{k=0}^{n} \alpha_i z^i$, $n \ll N$, such that

$$\sum_{i=1}^{N} |p(x_i) - y_i|^2 \longrightarrow \min.$$

In matrix language, this problem is written

$$\|A\mathbf{u} - \mathbf{y}\|_2 \longrightarrow \min$$

where
$$\mathbf{u} = (\alpha_0, \dots, \alpha_N)^T \in \mathbb{R}^{n+1}$$
 and
$$A = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_N & x_N^2 & \cdots & x_N^n \end{pmatrix} \in \mathbb{R}^{N \times (n+1)}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} \in \mathbb{R}^N.$$

Low-rank approximation

Let $A = W \Sigma V^t \in \mathbb{R}^{n \times m}$ and $1 \le r \le n, m$. Then a solution to the optimization problem

$$||A - M||_{\mathsf{Frobenius}} \longrightarrow \mathsf{min}$$

under all matrices M with rank $M \le r$ is given by

$$M = W \Sigma_r V^t,$$
 where $\Sigma_r = \mathrm{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0).$

The approximation error is

$$||A - W\Sigma_r V^t||_F = \sqrt{\sigma_{r+1}^2 + \dots + \sigma_m^2}.$$

- This is the Eckart–Young(–Mirsky) theorem.
- Beware of false and incomplete proofs in the literature!

Image compression

- Think of images as matrices.
- Substitute a matrix $W\Sigma V^t$ by $W\Sigma_r V^t$ with r small.
- To reconstruct $W\Sigma_r V^t$, only need to know
 - the r singular values $\sigma_1, \ldots, \sigma_r$
 - \blacksquare the first r columns of W, and
 - the top r rows of V^t .

height $\cdot r$

r

width $\cdot r$

- Total amount:
 - $r \cdot (1 + \text{height} + \text{weight}) \ll \text{height} \cdot \text{width}$

- See http://speicherleck.de/iblech/stuff/pca-images.
 pdf for sample compressions and http://pizzaseminar.
 speicherleck.de/skript4/08-principal-component-analysi
 svd-image.py for the Python code producing theses images.
- Image compression by singular value decomposition is mostly of academic interest only.
- This might be for the following reasons: other compression algorithms have more efficient implementations; other algorithms taylor to the specific properties of human vision; the basis vectors of other approaches (for instance, DCT) are similar to the most important singular basis vectors of a sufficiently large corpus of images.
- See http://dsp.stackexchange.com/questions/7859/relationship-between-dct-and-pca.

Proper orthogonal decomposition

Given data points $\mathbf{x}_i \in \mathbb{R}^N$, want to find a low-dimensional linear subspace which approximately contains the \mathbf{x}_i .

Minimize

$$J(U) := \sum_i \|\mathbf{x}_i - P_U(\mathbf{x}_i)\|^2$$

under all r-dimensional subspaces $U \subseteq \mathbb{R}^N$, $r \ll N$, where $P_U : \mathbb{R}^N \to \mathbb{R}^N$ is the orthogonal projection onto U.

Proper orthogonal decomposition

Given data points $\mathbf{x}_i \in \mathbb{R}^N$, want to find a low-dimensional linear subspace which approximately contains the \mathbf{x}_i .

Minimize

$$J(U) := \sum_i \|\mathbf{x}_i - P_U(\mathbf{x}_i)\|^2$$

under all r-dimensional subspaces $U \subseteq \mathbb{R}^N$, $r \ll N$, where $P_U : \mathbb{R}^N \to \mathbb{R}^N$ is the orthogonal projection onto U.

More concrete formulation: Minimize

$$J(\mathbf{u}_1,\ldots,\mathbf{u}_r):=\sum_i\left\|\mathbf{x}_i-\sum_{i=1}^r\langle\mathbf{x}_i,\mathbf{u}_i\rangle\mathbf{u}_i\right\|^2,$$

where $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^N$, $\langle \mathbf{u}_i, \mathbf{u}_k \rangle = \delta_{ik}$.

- In the first formulation, the optimization domain is the *Grass-mannian* of r-dimensional subspaces in \mathbb{R}^N . It is a compact topological space (in fact a manifold of dimension $r \cdot (N-r)$). Since J(U) depends continuously on U, the optimization problem is guaranteed to have a solution.
- The solution is in general not unique, not even locally. For instance, consider the four data points (±1, ±1) in R². Then any line U through the origin solves the optimization problem, with functional value J(U) = 4.
 In the more concrete formulation, we look for an orthonor
 - mal basis of a suitable subspace. In this case, the optimization domain is a compact subset of R^{N×r}.
 Since a given subspace possesses infinitely many orthonormal bases (at least for r ≥ 2), solutions to this refined
 - mal bases (at least for r ≥ 2), solutions to this refined problem are never unique, not even locally.
 Note that this is a non-convex optimization problem. Therefore common numerical techniques do not apply.

Collect the data points \mathbf{x}_i as columns of a matrix

$$X = (\mathbf{x}_1|\cdots|\mathbf{x}_\ell) \in \mathbb{R}^{N \times \ell}$$

and consider its singular value decomposition

$$X = W\Sigma V^{t}$$
.

Then a solution to the minimization problem is given by the first r columns of W, with approximation error

$$J = \sum_{i} \|\mathbf{x}_{i}\|^{2} - \sum_{j=1}^{r} \sigma_{j}^{2}.$$

- Proper orthogonal decomposition (POD) cannot be used to find low-dimensional submanifolds which approximately contain given data points. But check out kernel principal component analysis.
- Also, POD does not work well with affine subspaces. But in this case, the fix is easy: Simply shift the data points so that their mean is zero.
- POD is a general method for dimension reduction and can be used as a kind of "preconditioner" for many other algorithms: Simply substitute the given points \mathbf{x}_i by their projections $P_U(\mathbf{x}_i)$.

Given observations $x_i^{(k)}$ of random variables $X^{(k)}$, want to find linearly uncorrelated principal components.

Write $X = (\mathbf{x}_1 | \cdots | \mathbf{x}_\ell) \in \mathbb{R}^{N \times \ell}$. Calculate $X = W \Sigma V^t$. Then the principal components are the variables

$$Y^{(j)} = \sum_{k} W_{kj} X^{(k)}.$$

Most of the variance is captured by $Y^{(1)}$; second to most is captured by $Y^{(2)}$; and so on.

- For instance, in a study about circles, the variables *radius*, *diameter*, and *circumference* are linearly correlated.
- Principal component analysis (PCA) would automatically pick one of these attributes as a principal component.
- We have to normalize the data to have zero empirical mean first. Then XX^t is the empirical covariance matrix.
- Note that, in the given sample, the $Y^{(j)}$ are indeed uncorrelated:

$$E(Y^{(j)}XX^{t}Y^{(k)}) = (W\mathbf{e}_{j})^{t}XX^{t}(W\mathbf{e}_{k})$$

$$= \mathbf{e}_{j}^{t}W^{t}W\Sigma V^{t}V\Sigma^{t}W^{t}W\mathbf{e}_{k}$$

$$= \mathbf{e}_{j}^{t}\Sigma\Sigma^{t}\mathbf{e}_{k}.$$

- Beware that PCA cannot resolve nonlinear correlation.
- Also note that PCA is sensitive to outliers and is not scaling-independent.

Eigenfaces

- Record sample faces $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^{\text{width-height}}$.
- Calculate a POD basis of eigenfaces.
- Recognize faces by looking at the coefficients of the most important eigenfaces.

Eigenfaces resemble faces.

More eigenfaces

- A naive approach is very sensitive to lighting, scale and translation.
- But extensions are possible, for instance considering the eyes, the nose, and the mouth separately; this leads to eigeneues, eigennoses, and eigenmouths.
- Image credit:

http://upload.wikimedia.org/wikipedia/commons/6/67/ Eigenfaces.png http://www.cenparmi.concordia.ca/~jdong/eigenface.gif

- Live demo:
 - http://cognitrn.psych.indiana.edu/nsfgrant/FaceMachine
- Examples:

faceMachine.html

http://www.cs.princeton.edu/~cdecoro/eigenfaces/

Apply POD for dimension reduction, then use some similarity measure or clustering technique. Results:

• These images were produced by a Python program. The actual numerical code is very short (a few lines). Of course, the MNIST data set was used.

 $\label{lem:http://pizzaseminar.speicherleck.de/skript4/08-principal-component-analysis/digit-recognition. \\ py$

- The nine images show the values of the first ten POD coefficients of the first 30 samples of the digits 1 to 9. Each column corresponds to a different sample. The first four POD coefficients are drawn using more vertical space, so that visual weight aligns with importance.
- One can clearly see that the POD coefficients differ for the different digits.
- Also, one can see that the difference is not so great for similar digits like 5 and 8 or 7 and 9.

Eigendigits

• These images show the first 12 POD basis vectors. The first basis vector is a kind of "prototypical digit". The other basis vectors give subsequent "higher-order terms".

Because I didn't implement a similarity measure or clustering technique, I couldn't calculate the percentage of correctly classified digits. However, presumably the success rate would not be too high: Like the eigenfaces approach, this naive implementation is sensitive to the specific position of the digits in the bounding box. Refined techniques are discussed in the literature.

