Differentiation

1. If $y = x^2 + 4x^3 - 8x + 4$, then find $\frac{dy}{dx}$

pg 5

- (A) $2x + 4x^2 x$ (B) $2x + 12x^2 8$
- (C) $2x + 4x^3 8$ (D) $2x + 12x^2 x$

2. Find $\frac{dv}{dt}$ at t = 2, if $v = 2t^2 + 4t$.

pg 5 (C) 12 (D) 16

3. $\frac{d}{dx}\left(1+\frac{1}{x^2}+\frac{1}{x^3}\right)$

pg 5

- (A) $x + \frac{1}{x^2} + \frac{1}{x^3}$ (B) $\frac{-2}{x^3} \frac{3}{x^4}$
- (C) $x \frac{1}{x^2} \frac{3}{x^3}$ (D) $\frac{-2}{x} \frac{3}{x^2}$

4. $y = \sec x + \tan x$, value of $\frac{dy}{dx}$ is:

(A) $\sec^2 x + \tan x$

pg 5

- (B) $\tan^2 x + \sec x$
- (C) $\sec x(\tan x + \sec x)$
- (D) $\sec x (1 + \sec x)$

5. $\frac{d}{dx}(\sin x \csc x)$ is:

- pq 6 (A) $\sin^2 x \csc^2 x$ (B) x

 - (C) 0
- (D) 1

6. $\frac{d}{dx}\left(x+\frac{1}{x}+\log x+\tan x\right)=$

(A) $1 - \frac{1}{x^2} + \sec^2 x$

pg 6 (B) $1 + \frac{1}{r^2} + \sec^2 x$

- (C) $1 + \frac{1}{x^2} + \frac{1}{x} + \sec^2 x$
- (D) $1 \frac{1}{x^2} + \frac{1}{x} + \sec^2 x$

sin30 to constant hai; diff. zero hoga na! $\frac{d}{dx}(\sin 30^{\circ})$ is equal to

(A) cos 30° (C) 0

- (B) cosec 30°
- (D) sin 30°

8. $\frac{d}{dx}\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2$ is equal to

- pg 6 (A) $1 + \frac{1}{x^2}$ (B) $-1 + \frac{1}{x^2}$
 - (C) $1 \frac{1}{x^2}$ (D) $x^2 1$

9. If $y = \ln x + e^x$, then find $\frac{dy}{dx}$.

- (A) $e^x + x$
- (B) $\ln x + x$
- pg 7
- (C) $\frac{1}{x} + e^x$ (D) $\frac{1}{x} + e$

10. $y = (1 - x^2)^{10}$, then find $\frac{dy}{dx}$. ***

- (A) $10(1-x^2)^9$
- (B) $10(1-x^2)^9 x^2$

pg 7 imp.

imp.

- (C) $-20x(1-x^2)^9$
- (D) Not differentiable

11. If $y = x^2 - 4x + 3$, then y at x = 4. (A) 0 (B) 3

- (C) 4
- (D) 7

12. If $y = 4x^2 - 2x + 4$, then find value of 'y' when $\frac{dy}{dx} = 0$.

doubt; my answer is 15/4

13. The equation of graph shown in figure is $y = 2x^2$. The slope of graph at point P is:

pg 8

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- 14. If $y = e^{-\alpha x}$, then find double differentiation of y:
- pg 8
- (A) $\alpha e^{-\alpha x}$
- (B) $-\alpha^2 e^{-\alpha x}$
- (C) $e^{-\alpha x}$
- (D) $\alpha^2 e^{-\alpha x}$
- 15. If $y = x^2$, then find dy/dx
 - (A) must be zero
- (B) 2x

pg 9

- (C) $2x\frac{dt}{dy}$
- (D) $2x \frac{dx}{dt}$

- 16. If $y = A \sin(kx \omega t)$, then find $\frac{dy/dx}{dy/dt}$. imp.
 - (A) $\frac{\omega}{k}$
- (B) $\frac{k}{\omega}$
- pg 9

- (C) $\frac{-k}{\omega}$
- (D) $\frac{-\alpha}{k}$
- 17. If $y = e^x \sin x$, then find $\frac{dy}{dx}$.
 - (A) $e^x \sin x$
 - (B) $e^x \sin x + e^x \cos x$
- pg 9
- (C) $e^x \cos x + \sin x$
- (D) $e^x \cos x + e^x \cos x$

ANSWERS KEY

- (B) 1.
- (C) 2.
- 3. (B)
- 4. (C)
- 5. (C)
- 6. (D)
- 7. (A)
- 8. (C)
- 9. (C)
- 10. (C)
- 11. (C) 12. (1/4)
- 13. (D)
- 14. (D) **15.** (B)
- (C) **16.**
- **17.** (B)

