Анализ, 2 курс

Вопросы к коллоквиуму 28.10.2016

- 1. Алгебры, σ -алгебры и полуалгебры множеств; примеры. Алгебра и σ -алгебра, порожденные классом множеств. Описание алгебры, порожденной полуалгеброй. Борелевская σ -алгебра. Примеры классов множеств, порождающих борелевскую σ -алгебру на \mathbb{R} .
- 2. Измеримые пространства и измеримые отображения. Борелевские отображения. Прямой образ σ -алгебры и критерий измеримости отображения $X \to Y$ в терминах класса множеств, порождающего σ -алгебру на Y. Произведения измеримых пространств. Критерий измеримости отображения со значениями в произведении.
- 3. Борелевская σ -алгебра произведения топологических пространств со счетной базой. Основные свойства измеримых отображений со значениями в \mathbb{R}^n и в \mathbb{R} .
- 4. Меры. Примеры мер. Мера Лебега на полуалгебре стандартных параллелепипедов в \mathbb{R}^n . Продолжение меры с полуалгебры на порожденную ей алгебру.
- 5. Свойства мер и критерии σ -аддитивности. σ -аддитивность меры Лебега на алгебре, порожденной стандартными параллелепипедами в \mathbb{R}^n .
- 6. (Абстрактные) внешние меры. Измеримость множеств по Каратеодори. Внешняя мера, порожденная мерой на алгебре множеств. Теорема об измеримости множеств из этой алгебры.
- 7. Теорема Каратеодори.
- 8. Эквивалентность измеримости по Каратеодори и по Лебегу для случая конечных мер.
- 9. Теорема Фреше о единственности продолжения меры.
- 10. Мера Лебега в \mathbb{R}^n . Ее инвариантность относительно сдвигов. Существование неизмеримых по Лебегу множеств.
- 11. Регулярные борелевские меры. Регулярность меры Лебега. Аппроксимация измеримых множеств в \mathbb{R}^n множествами типа F_{σ} и G_{δ} с точностью до множеств меры 0.
- 12. Сохранение свойства измеримости множеств (и множеств меры 0) при локально липшицевом отображении $\mathbb{R}^n \to \mathbb{R}^n$. Следствия: мера образа гладкого отображения в пространство большей размерности; мера графика; мера подмногообразия в \mathbb{R}^n размерности < n.
- 13. Характеризация меры Лебега в \mathbb{R}^n в терминах инвариантности относительно сдвигов. Сохранение меры Лебега при движениях. Следствие: мера прямоугольного параллел-пипеда.
- 14. Поведение меры Лебега при линейных преобразованиях. Следствие: мера параллелепипеда.
- 15. Пополнение пространства с мерой. Связь с продолжением по Каратеодори.
- 16. Простые функции на измеримом пространстве. Аппроксимация измеримых функций простыми. Связь измеримости функции относительно исходной и пополненной σ -алгебр. Следствие: связь измеримых по Лебегу и борелевских функций на \mathbb{R}^n .