2.3. Enrichment over modules. By [Lur17, arg1 arg2], the forgetful functor RMod(Pr) \rightarrow Alg(Pr) is both a Cartesian and a coCartesian fibration. In other words, any algebra morphism $f: \mathcal{V} \rightarrow \mathcal{W}$ in Alg(Pr) induces an adjunction

$$f_{\text{ext}}: \Pr_{\mathcal{V}} \leftrightarrows \Pr_{\mathcal{W}}: f^{\text{res}}$$

where the left adjoint f_{ext} sends \mathcal{M} to the extension-of-scalars $\mathcal{M} \otimes_{\mathcal{V}} \mathcal{W}$, while the restriction-of-scalars f^{res} does not change the underlying category of $\mathcal{N} \in \text{Pr}_{\mathcal{W}}$ but only restricts the \mathcal{W} -action along f.

Extension of scalars is compatible with the canonical Cat-tensoring on $Pr_{\mathcal{V}}$ and $Pr_{\mathcal{W}}$, making it into a 2-functor. In particular, it preserves internally left adjoint 1-morphisms and atomic objects, for a more direct argument see [?, Cor. 3.40]. Generally this is wrong for f^{res} unless we impose further conditions:

rigidity

Lemma 2.37. Let $f: \mathcal{V} \to \mathcal{W}$ be a morphism in Alg(Pr) such that the induced \mathcal{V} -module map $f: \mathcal{V} \to f^{\mathrm{res}}(\mathcal{W})$ is internally left adjoint. Then given $\mathcal{N} \in \mathrm{Pr}_{\mathcal{W}}$, if $n \in \mathcal{N}$ is atomic with respect to the \mathcal{W} -module structure on \mathcal{N} then it is still atomic in the \mathcal{V} -module $f^{\mathrm{res}}(\mathcal{N}) \in \mathrm{Pr}_{\mathcal{V}}$. We further assume the internal right adjoint $g:=f^{\mathrm{R}}$ is conservative, then n is atomic in \mathcal{N} iff it is atomic in $f^{\mathrm{res}}\mathcal{N}$.

Proof. By definition, $n \otimes -= n \otimes f(-) : \mathcal{V} \to f^{res} \mathcal{N}$, so passing to adjoints

$$\underline{\operatorname{Hom}}_{f^{\operatorname{res}}\mathcal{N}}(n,-) \simeq g \circ \underline{\operatorname{Hom}}_{\mathcal{N}}(n,-)$$

yielding the first claim since we assume g is internally left adjoint to f as a \mathcal{V} -module map, i.e. it preserves colimits and \mathcal{V} -tensorings. If g is conservative it even creates them, so the conditions for n to be atomic in $f^{\text{res}}\mathcal{N}$ and \mathcal{N} are equivalent.

Example 2.38. Let $\mathcal{V} \in \operatorname{Alg}_{\mathbb{E}_2}(\operatorname{Pr})$ with $A \in \operatorname{Alg}_{\mathbb{E}_2}(\mathcal{V})$. Then $\operatorname{LMod}_A(\mathcal{V}) \in \operatorname{Alg}(\operatorname{Pr})$ and we have a free-forgetful adjunction $F: \mathcal{V} \to \operatorname{LMod}_A(\mathcal{V}): U$ where both F and U are in functors in $\operatorname{Pr}_{\mathcal{V}}$, compare [Lur17, Corollary 4.2.3.5]. Since U is conservative we may apply Lemma 2.37 to any $\mathcal{N} \in \operatorname{Pr}_{\operatorname{LMod}_A(\mathcal{V})}$: An object $n \in \mathcal{N}$ is atomic with respect to the $\operatorname{LMod}_A(\mathcal{V})$ -tensoring iff it is atomic with respect to the \mathcal{V} -tensoring on $F^{\operatorname{res}}\mathcal{N}$.

Lemma 2.39. Let $f: \mathcal{V} \to \mathcal{W}$ in Alg(Pr) such that $f: \mathcal{V} \to f^{\text{res}}(\mathcal{W})$ is internally left adjoint in $\text{Pr}_{\mathcal{V}}$ and $g:=f^{\text{R}}$ is conservative. Then the change-of-enrichment functor $g_!: v\mathcal{C}at(\mathcal{W}) \to v\mathcal{C}at(\mathcal{V})$ sends a marked module $\mathcal{C} = (ob\mathcal{C} \to \mathcal{P}_{\mathcal{W}}(\mathcal{C}))$ to $(ob\mathcal{C} \to f^{\text{res}}\mathcal{P}_{\mathcal{W}}(\mathcal{C}))$. In particular, $\mathcal{P}_{\mathcal{V}}(g_!\mathcal{C}) \in \text{Pr}_{\mathcal{V}}$ is the restriction of scalars of $\mathcal{P}_{\mathcal{W}}(\mathcal{C}) \in \text{Pr}_{\mathcal{W}}$ along f, and their Yoneda functors agree.

Proof. We know from [?, Ex. 6.15] that $\mathcal{P}_{\mathcal{W}}(f!\mathcal{C}) \simeq f_{\text{ext}}\mathcal{P}_{\mathcal{V}}(\mathcal{C})$ is the extension of scalars along f, so to show the above expression assembles into a right adjoint to $f_!$, since we already know extension and restriction of scalars are adjoint it suffices to verify $(ob\mathcal{C} \to f^{\text{res}}\mathcal{P}_{\mathcal{V}}(\mathcal{C}))$ is a marked \mathcal{V} -module. It factors through the atomic objects by Lemma 2.37, also the composition $\mathcal{P}(ob\mathcal{C}) \otimes \mathcal{V} \to \mathcal{P}(ob\mathcal{C}) \otimes \mathcal{W} \to f^{\text{res}}\mathcal{P}_{\mathcal{V}}(\mathcal{C})$ is colimit-dominant since the tensor product in Pr preserves colimit-dominant functors by [?, Lem. 3.9].

Corollary 2.40. Let $f: \mathcal{V} \to \mathcal{W}$ in Alg(Pr) such that $f: \mathcal{V} \to f^{\text{res}}(\mathcal{W})$ is internally left adjoint in Pr_{\mathcal{V}} and $g:=f^{\mathbb{R}}$ is conservative. Then a \mathcal{W} -enriched category $\mathcal{C} \in v\mathcal{C}at(\mathcal{W})$ is Cauchy-complete iff $g_!\mathcal{C} \in v\mathcal{C}at(\mathcal{V})$ is Cauchy-complete.

In particular for $\mathcal{V} \in \mathrm{Alg}_{\mathbb{E}_2}(\mathrm{Pr})$ and A an \mathbb{E}_2 -algebra in it, a $\mathrm{LMod}_A(\mathcal{V})$ -enriched category \mathcal{C} is Cauchy-complete iff its underlying \mathcal{V} -category $U_!\mathcal{C}$ is Cauchy-complete.

Proof. Combine Lemma 2.37, Example 2.38 and Lemma 2.39.

2.4. Characterization using the norm map.

elaborate?

Notation 2.41. Let $\mathcal{C}, \mathcal{D}, \mathcal{E} \in v\mathcal{C}at(\mathcal{V})$ be valent \mathcal{V} -categories. We refer to

$$\operatorname{Fun}_{\mathcal{V}}^{\operatorname{L}}(\mathcal{P}_{\mathcal{V}}(\mathcal{C}), \mathcal{P}_{\mathcal{V}}(\mathcal{D}))$$

as the category of V-enriched profunctors $\mathcal{C} \to \mathcal{D}$. Given profunctors $P : \mathcal{C} \to \mathcal{D}$ and $Q : \mathcal{D} \to \mathcal{E}$, we write $P \otimes_{\mathcal{D}} Q : \mathcal{C} \to \mathcal{E}$ for the composition $Q \circ P : \mathcal{P}_{\mathcal{V}}(\mathcal{C}) \to \mathcal{P}_{\mathcal{V}}(\mathcal{E})$.

Observation 2.42. There is ample reason for this notation: By Eilenberg-Watts ?? a profunctor $P: \mathcal{C} \to \mathcal{D}$ is the same thing as a bimodule in $_{\mathcal{C}}\operatorname{Bimod}_{\mathcal{D}}(\operatorname{Fun}(ob\mathcal{C} \times ob\mathcal{D}, \mathcal{V}))$, and by [Lur17, Rem. 4.8.4.9] in this picture the composition

$$\otimes_{\mathcal{D}} : {}_{\mathcal{C}}\operatorname{Bimod}_{\mathcal{D}}(\operatorname{Fun}(ob\mathcal{C}\times ob\mathcal{D},\mathcal{V})) \times_{\mathcal{D}}\operatorname{Bimod}_{\mathcal{E}}(\operatorname{Fun}(ob\mathcal{D}\times ob\mathcal{E},\mathcal{V})) \to {}_{\mathcal{C}}\operatorname{Bimod}_{\mathcal{E}}(\operatorname{Fun}(ob\mathcal{C}\times ob\mathcal{E},\mathcal{V}))$$

is given by the relative tensor product of bimodules. This can be written out as

$$P \otimes Q(c,e) \simeq \underset{[n] \in \Delta^{\text{op}}}{\text{colim}} P \odot (\text{Hom}_{\mathcal{D}})^{\odot n} \odot Q(c,e) \simeq$$

$$\simeq \underset{[n] \in \Delta^{\text{op}}}{\text{colim}} \underset{[d_0,\ldots,d_n) \in (ob\mathcal{D})^{\times n}}{\text{colim}} P(c,d_0) \otimes \text{Hom}_{\mathcal{D}}(d_0,d_1) \otimes \cdots \otimes \text{Hom}_{\mathcal{D}}(d_{n-1},d_n) \otimes Q(d_n,e)$$

using [Lur17, Thm. 4.4.2.8] as well as our expression [?, Cor. 2.29] for the matrix product.

Example 2.43. A profunctor $B1_{\mathcal{V}} \to \mathcal{C}$ is the same thing as a module functor $\mathcal{V} \to \mathcal{P}_{\mathcal{V}}(\mathcal{C})$, i.e. an enriched presheaf on \mathcal{C} . Similarly a profunctor $\mathcal{C} \to B1_{\mathcal{V}}$ can by identified as an enriched copresheaf on \mathcal{C} using ??. We obtain a canonical pairing sending an enriched presheaf $W \in \mathcal{P}_{\mathcal{V}}(\mathcal{C})$ and an enriched copresheaf $V \in \mathcal{P}_{\mathcal{V}}^{\vee}(\mathcal{C}) \simeq \operatorname{Fun}_{\mathcal{V}}^{L}(\mathcal{P}_{\mathcal{V}}(\mathcal{C}), \mathcal{V})$ to the composition $W \otimes_{\mathcal{C}} V := V \circ W \in \operatorname{Fun}_{\mathcal{V}}^{L}(\mathcal{V}, \mathcal{V}) \simeq \mathcal{V}$, which may as in Observation 2.42 be expanded as

$$W \otimes_{\mathfrak{C}} V \simeq \underset{[n] \in \Delta^{\mathrm{op}}(c_0, \dots, c_n) \in (ob\mathfrak{C})^{\times n}}{\operatorname{colim}} W(c_0) \otimes \operatorname{Hom}_{\mathfrak{C}}(c_0, c_1) \otimes \cdots \otimes \operatorname{Hom}_{\mathfrak{C}}(c_{n-1}, c_n) \otimes V(c_n)$$
.

This is also referred to as the W-weighted colimit of V (imagined as an enriched functor $\mathcal{C} \to \mathcal{V}$).

Construction 2.44. For $\mathcal{C}, \mathcal{D}, \mathcal{E} \in v\mathcal{C}at(\mathcal{V})$ and $P : \mathcal{C} \longrightarrow \mathcal{D}$ an enriched profunctor, the composition maps

$$- \otimes_{\mathcal{C}} P = P \circ - : \operatorname{Fun}^{\operatorname{L}}_{\mathcal{V}}(\mathcal{P}_{\mathcal{V}}(\mathcal{E}), \mathcal{P}_{\mathcal{V}}(\mathcal{C})) \to \operatorname{Fun}^{\operatorname{L}}_{\mathcal{V}}(\mathcal{P}_{\mathcal{V}}(\mathcal{E}), \mathcal{P}_{\mathcal{V}}(\mathcal{D}))$$
$$P \otimes_{\mathcal{D}} - = - \circ P : \operatorname{Fun}^{\operatorname{L}}_{\mathcal{V}}(\mathcal{P}_{\mathcal{V}}(\mathcal{D}), \mathcal{P}_{\mathcal{V}}(\mathcal{E})) \to \operatorname{Fun}^{\operatorname{L}}_{\mathcal{V}}(\mathcal{P}_{\mathcal{V}}(\mathcal{C}), \mathcal{P}_{\mathcal{V}}(\mathcal{E}))$$

preserve colimits and hence admit rights adjoints, which we denote by $\underline{\mathrm{Nat}}_{\mathcal{D}}(P,-)$ and $\underline{\mathrm{eNat}}(P,-)$ respectively.

Example 2.45. We have seen in [?] that under Eilenberg-Watts, the identity functor $\mathcal{P}_{\mathcal{V}}(\mathcal{C}) \to \mathcal{P}_{\mathcal{V}}(\mathcal{C})$ corresponds to the Yoneda bimodule $\mathcal{L}_{\mathcal{C}}^{\mathcal{V}} \in {}_{\mathcal{C}} \text{Bimod}_{\mathcal{C}}(\text{Fun}(X \times X, \mathcal{V}))$. In particular, for any $W \in \mathcal{P}_{\mathcal{V}}(\mathcal{C})$ regarded as a profunctor $B1_{\mathcal{V}} \to \mathcal{C}$, the Yoneda-weighted colimit $W \otimes_{\mathcal{C}} \mathcal{L}_{\mathcal{C}}^{\mathcal{V}} = \text{id}_{\mathcal{P}_{\mathcal{V}}(\mathcal{C})} \circ W \simeq W$ agrees with W. This is precisely the *co Yoneda Lemma*: Any enriched presheaf is a weighted colimit of representable presheaves.

Observation 2.46. For $W \in \mathcal{P}_{\mathcal{V}}(\mathcal{C})$, the functor $\underline{\mathrm{Nat}}_{\mathcal{C}}(W, -) : \mathcal{P}_{\mathcal{V}}(\mathcal{C}) \to \mathcal{V}$ is right adjoint to $-\otimes_{B1_{\mathcal{V}}} W \simeq W \otimes -: \mathcal{V} \to \mathcal{P}_{\mathcal{V}}(\mathcal{C})$, so it coincides with the internal Hom $\underline{\mathrm{Hom}}_{\mathcal{P}_{\mathcal{V}}(\mathcal{C})}(W, -)$ in $\mathcal{P}_{\mathcal{V}}(\mathcal{C})$.

Notation 2.47. For $P: \mathcal{C} \to \mathcal{D}$, denote by $\mathrm{id}_P: \mathrm{id}_{\mathcal{C}} \to \underline{\mathrm{Nat}}_{\mathcal{D}}(W, W)$ the map induced by the isomorphism $\mathrm{id}_{\mathcal{C}} \otimes_{\mathcal{C}} W \to W$, and dually by $\mathrm{id}_P: \mathrm{id}_{\mathcal{D}} \to \underline{\mathrm{cNat}}(W, W)$ the map induced by the isomorphism $W \otimes_{\mathcal{D}} \mathrm{id}_{\mathcal{D}} \to W$. Further, note that adding $Q: \mathcal{C}' \to \mathcal{D}, R: \mathcal{C}'' \to \mathcal{D}$ as well as $Q': \mathcal{C} \to \mathcal{D}', R': \mathcal{C} \to \mathcal{D}''$ into the mix, there are canonical composition maps

$$\underline{\circ}: \underline{\mathrm{Nat}}_{\mathcal{D}'}(Q,R) \otimes_{\mathfrak{C}'} \underline{\mathrm{Nat}}_{\mathcal{D}}(P,Q) \to \underline{\mathrm{Nat}}_{\mathcal{D}}(P,R) ,$$

$$\underline{\circ}: \underline{\mathrm{c}}\underline{\mathrm{Nat}}(P,Q') \otimes_{\mathcal{D}'} \underline{\mathrm{c}}\underline{\mathrm{Nat}}(Q',R') \to \underline{\mathrm{c}}\underline{\mathrm{Nat}}(P,R') .$$

Notation 2.48. Given any presheaf $W \in \mathcal{P}_{\mathcal{V}}(\mathcal{C})$, we define the norm map

$$\operatorname{Nm}: W \otimes_{\mathfrak{C}} \operatorname{\underline{Nat}}_{\mathfrak{C}}(W, \mathfrak{F}^{\mathcal{V}}) \to \operatorname{\underline{Nat}}_{\mathfrak{C}}(W, W) \simeq \operatorname{\underline{Hom}}_{\mathfrak{P}_{\mathfrak{V}}(\mathfrak{C})}(W, W)$$

induced by the counit ϵ of the adjunction $W \otimes - \dashv \underline{\mathrm{Nat}}_{\mathcal{C}}(W, -)$ as a mate to

$$W \otimes_{\mathcal{C}} \epsilon : W \otimes_{\mathcal{C}} \underline{\mathrm{Nat}}_{\mathcal{C}}(W, \mathcal{L}^{\mathcal{V}}) \otimes W \to W \otimes_{\mathcal{C}} \mathcal{L}^{\mathcal{V}} \simeq W$$
.

Alternatively applying $W \simeq \underline{\mathrm{Nat}}_{\mathcal{C}}(\mathcal{L}^{\mathcal{V}}, W)$, it agrees with the composition map

$$-\otimes_{\mathfrak{C}} -: \underline{\mathrm{Nat}}_{\mathfrak{C}}(\mathfrak{z}^{\mathcal{V}}, W) \otimes_{\mathfrak{C}} \underline{\mathrm{Nat}}_{\mathfrak{C}}(W, \mathfrak{z}^{\mathcal{V}}) \to \underline{\mathrm{Nat}}_{\mathfrak{C}}(W, W) .$$

Theorem 2.49. Let $\mathcal{C} \in \mathcal{C}at(\mathcal{V})$ and $W \in \mathcal{P}_{\mathcal{V}}(\mathcal{C})$, then the following are equivalent:

- (1) W is atomic,
- (2) The norm map Nm: $W \otimes_{\mathcal{C}} \underline{Nat}_{\mathcal{C}}(W, \mathcal{L}^{\mathcal{V}}) \to \underline{Nat}_{\mathcal{C}}(W, W)$ is an isomorphism,
- (3) There exists a dashed lift in the following diagram:

$$W \otimes_{\mathfrak{C}} \underbrace{\operatorname{Nat}_{\mathfrak{C}}(W, \, \sharp^{\mathcal{V}})}_{\operatorname{Nm}}$$

$$1_{\mathcal{V}} \xrightarrow{\operatorname{id}_{W}} \underbrace{\operatorname{Nat}_{\mathfrak{C}}(W, W)}$$

Remark 2.50. Equivalently, the pullback $1_{\mathcal{V}} \times_{\underline{\mathrm{Nat}}_{\mathcal{C}}(W,W)} (W \otimes_{\mathcal{C}} \underline{\mathrm{Nat}}_{\mathcal{C}}(W,\mathcal{L}^{\mathcal{V}})) \to 1_{\mathcal{V}}$ must admit a section.

Remark 2.51. If we write $U_{\mathcal{V}} := \operatorname{Map}(1_{\mathcal{V}}, -) : \mathcal{V} \to \mathcal{S}$, we may rephrase this as saying the full image of the induced map

$$U_{\mathcal{V}}(W \otimes_{\mathfrak{C}} \underline{\mathrm{Nat}}_{\mathfrak{C}}(W, \mathfrak{z}^{\mathcal{V}})) \to \mathrm{Map}_{\mathcal{P}_{\mathcal{V}}(\mathfrak{C})}(W, W)$$

contains the identity id_W .

Proof. For $(1) \Rightarrow (2)$ assume W is atomic, so the associated map $\mathcal{V} \to \mathcal{P}_{\mathcal{V}}(\mathcal{C})$ is internally left adjoint meaning there is some copresheaf $W^{\vee} : \mathcal{P}_{\mathcal{V}}(\mathcal{C}) \to \mathcal{V}$ such that the composition functors

$$-\otimes W: \operatorname{Fun}^{\operatorname{L}}_{\operatorname{\mathcal{V}}}(\operatorname{\mathcal{P}}_{\operatorname{\mathcal{V}}}(\operatorname{\mathcal{C}}),\operatorname{\mathcal{V}}) \rightleftarrows \operatorname{Fun}^{\operatorname{L}}_{\operatorname{\mathcal{V}}}(\operatorname{\mathcal{P}}_{\operatorname{\mathcal{V}}}(\operatorname{\mathcal{C}}),\operatorname{\mathcal{P}}_{\operatorname{\mathcal{V}}}(\operatorname{\mathcal{C}})): -\otimes_{\operatorname{\mathcal{C}}} W^{\vee}$$

Further the (co)units of both adjunctions are adjoint. By uniqueness of adjoints $-\otimes_{\mathbb{C}} W^{\vee} \simeq \underline{\mathrm{Nat}}_{\mathbb{C}}(W,-)$ and the (co)units of both adjunctions are isomorphic; in particular applying both functors to the identity $\sharp^{\mathcal{V}}_{\mathbb{C}}$ we learn $W^{\vee} \simeq \underline{\mathrm{Nat}}_{\mathbb{C}}(W, \sharp^{\mathcal{V}})$. By definition of the norm map we need to show that the counit $W \otimes_{\mathbb{C}} \epsilon : W \otimes_{\mathbb{C}} \underline{\mathrm{Nat}}_{\mathbb{C}}(W, \sharp) \otimes W \to W$ exhibits $W \otimes_{\mathbb{C}} \underline{\mathrm{Nat}}_{\mathbb{C}}(W, \sharp) \simeq W \otimes_{\mathbb{C}} W^{\vee}$ as pointwise right adjoint to $-\otimes W$ at W, but this follows from the adjunction data of $-\otimes W \dashv -\otimes_{\mathbb{C}} W^{\vee}$ and associativity of the relative tensor product.

Since $(2) \Rightarrow (3)$ is clear, we finish by proving $(3) \Rightarrow (1)$. Let $\eta : 1_{\mathcal{V}} \to W \otimes_{\mathcal{C}} \underline{\mathrm{Nat}}_{\mathcal{C}}(W, \mathcal{L}^{\mathcal{V}})$ be the assumed lift, and $\epsilon : \underline{\mathrm{Nat}}_{\mathcal{C}}(W, \mathcal{L}^{\mathcal{V}}) \otimes W \to \mathcal{L}^{\mathcal{V}}$ the unit of the adjunction $-\otimes W \dashv$

 $\underline{\mathrm{Nat}}_{\mathcal{C}}(W,-)$. In order to show that they exhibit $\underline{\mathrm{Nat}}_{\mathcal{C}}(W,\,\mathcal{L}^{\mathcal{V}})$ as the adjoint profunctor to W, we must verify the triangle identities. On the one hand, the diagram

$$W \xrightarrow{\eta \otimes \operatorname{id}} W \otimes_{\mathfrak{C}} \underline{\operatorname{Nat}}_{\mathfrak{C}}(W, \, \sharp^{\mathcal{V}}) \otimes W$$

$$\downarrow^{\operatorname{Nm} \otimes \operatorname{id}} \qquad \downarrow^{\operatorname{id} \otimes_{\mathfrak{C}} \epsilon}$$

$$\underline{\operatorname{Nat}}_{\mathfrak{C}}(W, W) \otimes W \longrightarrow W$$

commutes by construction of Nm and assumption on η . The second identity is about maps into $\underline{\mathrm{Nat}}_{\mathcal{C}}(W,W)$, so after currying it suffices to note that the composite map in the commutative diagram

$$\underbrace{\underline{\mathrm{Nat}}_{\mathcal{C}}(W, \, \boldsymbol{\sharp}^{\mathcal{V}}) \otimes W} \xrightarrow{\eta \otimes \mathrm{id}} \underbrace{\underline{\mathrm{Nat}}_{\mathcal{C}}(W, \, \boldsymbol{\sharp}^{\mathcal{V}}) \otimes W \otimes_{\mathcal{C}} \underline{\mathrm{Nat}}_{\mathcal{C}}(W, \, \boldsymbol{\sharp}^{\mathcal{V}}) \otimes W} \xrightarrow{\epsilon \otimes_{\mathcal{C}} \mathrm{id}} \underline{\underline{\mathrm{Nat}}_{\mathcal{C}}(W, \, \boldsymbol{\sharp}^{\mathcal{V}}) \otimes W} \xrightarrow{\epsilon} \underline{\underline{\mathrm{Nat}}_{\mathcal{C}}(W, \, \boldsymbol{\sharp}^{\mathcal{V}}) \otimes W} \xrightarrow{\epsilon}$$

is ϵ . The left triangle commutes by the first triangle identity.

Remark 2.52. This may be regarded as a specialization of the diagrammatic absoluteness criterion for profunctors in [?].

Corollary 2.53. In particular, to verify some given W is atomic it is sufficient (but not necessary) to specify a lift of $1 \to \underline{\mathrm{Nat}}_{\mathcal{C}}(W,W)$ through

$$\operatorname{colim}_{c \in \operatorname{ob}^{\mathfrak{C}}} \operatorname{\underline{Nat}}(W, \, \sharp^{\mathcal{V}}_{c}) \otimes W(c) \to \operatorname{\underline{Nat}}(W, \, \sharp^{\mathcal{V}}) \otimes_{\mathfrak{C}} W \stackrel{\operatorname{Nm}}{\to} \operatorname{\underline{Nat}}_{\mathfrak{C}}(W, W)$$

where the first functor is part of the geometric realization Example 2.43 calculating the subsequent weighted colimit.

The converse is true if we assume that $1_{\mathcal{V}} \in \mathcal{V}$ is projective, i.e. the forgetful functor $U_{\mathcal{V}} = \operatorname{Map}_{\mathcal{V}}(1_{\mathcal{V}}, -) : \mathcal{V} \to \mathcal{S}$ preserves geometric realizations. Then $W \in \mathcal{P}_{\mathcal{V}}(\mathcal{C})$ is atomic iff such a lift exists: Since \mathcal{S} is a topos the map

$$\operatorname{Map}_{\mathcal{V}}\left(1_{\mathcal{V}}, \underset{c \in ob \mathcal{C}}{\operatorname{colim}} \, \underline{\operatorname{Nat}}(W, \, \boldsymbol{\sharp}_{c}^{\mathcal{V}}) \otimes W(c)\right) \to \operatorname{Map}_{\mathcal{V}}\left(1_{\mathcal{V}}, \underline{\operatorname{Nat}}(W, \, \boldsymbol{\sharp}^{\mathcal{V}}) \otimes_{\mathcal{C}} W\right) \simeq$$

$$\simeq \underset{[n] \in \Delta^{\operatorname{op}}}{\operatorname{colim}} \, \operatorname{Map}_{\mathcal{V}}\left(1_{\mathcal{V}}, \underset{c_{0}, \dots, c_{n} \in \iota \mathcal{C}}{\operatorname{Colim}} \, \underline{\operatorname{Nat}}(W, \, \boldsymbol{\sharp}_{c_{0}}^{\mathcal{V}}) \otimes \operatorname{Hom}_{\mathcal{C}}(c_{0}, c_{1}) \otimes \cdots \otimes W(c_{n})\right)$$

is an effective epimorphism, i.e. surjective on connected components³.

Example 2.54. Let $\mathcal{V} = \mathcal{S}p^{\mathrm{cn}}$ the category of connective spectra, equipped with the smash product. The forgetful functor $U_{\mathcal{S}p^{\mathrm{cn}}}: \mathcal{S}p^{\mathrm{cn}} \to \mathcal{S}$ preserves sifted colimits by [Lur17, Prop. 1.4.3.9], so both directions of Corollary 2.53 are applicable. Let $\mathcal{C} \in v\mathcal{C}at(\mathcal{S}p^{\mathrm{cn}})$, then $W \in \mathcal{P}_{\mathcal{S}p^{\mathrm{cn}}}(\mathcal{C})$ is atomic iff id_W lies in the full image of

$$U_{\operatorname{Sp^{\mathrm{cn}}}}\left(\operatorname{colim}_{c\in\operatorname{obc}}\operatorname{\underline{Nat}}(W,\, \sharp^{\operatorname{\mathcal{V}}}_{c})\wedge\operatorname{\underline{Nat}}(\, \sharp^{\operatorname{\mathcal{V}}}_{c},W)\right)\to\operatorname{Map}_{\operatorname{\mathcal{P}}_{\operatorname{Sp^{\mathrm{cn}}}}(\operatorname{\mathcal{C}})}(W,W)\;.$$

Decomposing the colimit over $ob\mathcal{C}$ into a sifted colimit and finite coproducts by [Lur09, Lem. 5.5.8.13], pulling the sifted colimit out of $U_{\mathcal{S}p^{cn}}$ and using how colimits in \mathcal{S} are

keep footnote? Cite the related [Lur09, Lem. Lemma 6.2.3.13]?

 $^{{}^3}$ If $X_{ullet}: \Delta^{\mathrm{op}} \to \mathbb{S}$ and $x: * \to X := \mathrm{colim}_{\Delta^{\mathrm{op}}} X_{ullet}$ is a point in its geometric realization, then since colimits are universal the pullback $* \times_X X_{ullet}$ has colimit *. So it is impossible to have $* \times_X X_0 = \emptyset$ since then this colimit would also be empty.