RNA-ligand Binding Affinity Prediction

Tzu-Tang Lin

Outline

- 1. Data preprocessing
- 2. Transfer learning --- Protein-Ligand binding affinity prediction model
- 3. Retrain existing --- RNA-Ligand binding affinity prediction model
- 4. New model development

PDBbind NL dataset process

- Downloaded nucleic acid-ligand interactions (NL) dataset from PDBbind v2020
- There are 149 nucleic acid-ligand complexes with binding data
- PDBbind NL dataset processing:
 - 1. **Download all complexes** from PDB database using their PDB IDs.
 - 2. Extract RNA using an RNA3DB method to transform non-standard residues.

A total of 123 RNAs were extracted, indicating that the remaining complexes are DNA-ligand interactions.

- 3. Extract Ligands based on the given ligand IDs.
- 6 ligands were extracted with errors (1 was a DNA ligand, 4 were protein ligands, and 1 had a ligand ID that was not present in the complex.)
- 4. Get Pockets using a 6Å distance from ligands.
- ➤ 118 RNA-ligand interactions extracted (PDBbind RNA-ligand dataset)

PDBbind Structure-Based Split

Clustering by RNAs:

- Prevent bias and avoid overestimation of model performance using RNA 3D structural alignment (RMalign).
- Grouped 118 RNA structures into 41 clusters using RMscore (threshold: 0.5). And then, combined 22 unique groups into a single group labeled '0'. This resulted in a final set of 20 groups for the dataset.

Split Strategy:

- Train-Validation-Test (7:1:2 ratio within each fold).
- Most challenging group ('0') used as the test dataset.
- Generate the most challenging scenario for model development

GIGN transfer learning

- Challenge: Small RNA-ligand dataset size.
- > Applied transfer learning using a protein-ligand binding model trained on a larger dataset.

➤ Geometric Interaction Graph Neural Network (GIGN), a state-of-the-art model for protein-

ligand binding affinity prediction.

GIGN Contribution:

- **1. Heterogeneous Interaction Layer:** Processes covalent and noncovalent interactions independently.
- **2. Invariance Property:** Ensures translation and rotation invariance in input data.

rmacy

LORIDA

GIGN transfer learning

- Using GIGN data preprocessing for 118 RNA-ligand binding data:
 - 1. Get pockets: Input the RNA PDB and ligand MOL2 files, define pockets within 5 Angstrom of the ligand (output: pocket PDB).
 - 2. Generate complex: Combine the pocket PDB and ligand PDB to create the complex (output: RDKit MOL).
 - 3. Generate graph: Use the complex (RDKit MOL) to generate a graph for model training (output: PyTorch tensor with PyG format).
- Fine-tuning and re-training based on GIGN's default parameters by structure-based split RNA-ligand binding dataset
- Each model trained with 3 replicates

Replicate	Training Phase	Train Loss	Train RMSE	Valid RMSE	Valid PR	Test RMSE	Test PR
Rep1	Fine-tune	0.4973	0.7052	1.6345	0.053	1.9585	0.0992
Rep2	Fine-tune	0.384	0.6197	1.5784	0.02	1.8503	0.1674
Rep3	Fine-tune	0.6611	0.8131	1.4151	0.5326	1.9107	0.0555
Rep1	Re-train	1.1477	1.0713	1.1823	0.6843	2.8779	0.1991
Rep2	Re-train	1.7697	1.3303	1.0215	0.7474	2.1358	0.2299
Rep3	Re-train	1.3488	1.1614	1.1006	0.7039	2.3292	0.1493

Fine-tuning achieved lower test RMSE compared to re-training, highlighting the advantage of leveraging proteinligand binding models for RNA-ligand prediction

RLaffinity retraining

- RLaffinity was the first deep learning-based method for the prediction of RNA-small molecule binding affinity using 3D structures.
- RLaffinity integrated information from RNA pockets and small molecules, utilizing a 3D convolutional neural network (3D-CNN) coupled with a contrastive learning-based self-supervised pre-training model.

RLaffinity retraining

 Retrained RLaffinity models using the preprocessed structure-based Split RNA-ligand binding dataset same as GIGN transfer learning.

Replicate	Train RMSE	Train Pearson F	R Val RMSE	Val Pearson R	Test RMSE	Test Pearson R
Rep1	1.5891	0.1191	1.4572	0.2857834	1.8717	0.1338
Rep2	1.5045	0.2735	1.4442	0.2795134	1.9133	0.1969
Rep3	1.5396	0.1887	1.4762	0.2392457	1.9556	0.2192

The results are similar to the GIGN transfer learning (fine-tune) results

Replicate	Training Phase	Train RMSE	Valid RMSE	Valid PR	Test RMSE	Test PR
Rep1	Fine-tune	0.7052	1.6345	0.053	1.9585	0.0992
Rep2	Fine-tune	0.6197	1.5784	0.02	1.8503	0.1674
Rep3	Fine-tune	0.8131	1.4151	0.5326	1.9107	0.0555

New model development

1. Data Limitations

Pre-train on larger RNA-ligand datasets to improve performance.

2. Combine both sequence and structure information

> Develop cross-modal models for better RNA-ligand interaction predictions.

3. Combine structure information into Large Language Models

Recently, SaProt (Su et al., 2024) and ESM3 (Hayes et al., 2024) have successfully added structural knowledge into protein language models

New model development – Hariboss Database

- HARIBOSS is a curated database of RNA-small molecules structures retrieved from the PDB
- HARIBOSS dataset processing:
 - 1. **Download** Got 862 RNA-SM complexes from the Hariboss database
 - Revise Error-Recorded Pockets Compared pockets with PDB database entries.
 - 3. Remove Non-RNA- Complexes Excluded non-pocket binding complexes (e.g., primers).
 - Download all complexes (same as PDBbind NL dataset processing)
 - Extract RNA (same as PDBbind NL dataset processing)
 - 6. **Extract Ligands** (same as PDBbind NL dataset processing)
 - Get Pockets (same as PDBbind NL dataset processing)
- > 1390 RNA-ligand interactions extracted for pretraining

New model development – RNA-Ligand Structure representation

Pairwise Co-Distance Matrix

- RNA-Ligand Complex: Represent the RNA and ligand structure separately.
- Steps to compute:
- 1. Extract 3D coordinates of atoms in the pockets and ligands.
- 2. Compute pairwise distances between all RNA and ligand atoms.
- 3. Construct a co-distance matrix where each entry represents the distance between a specific RNA atom and a ligand atom.
- 4. Pad all matrices to the maximum size in the dataset (Max Size: 621×621)

New model development – RNA sequence representation

RiNALMo

 RiNALMo is the largest RNA language model to date, with 650M parameters pre-trained on 36M non-coding RNA sequences from several databases

Embedding size: 1280

New model development – Ligands sequence representation

Token Embedding

SMI-TED

SMILES-based Transformer Encoder-Decoder (SMI-TED), pre-trained on a curated dataset of
 91 million SMILES samples sourced from PubChem, equivalent to 4 billion molecular tokens.

Embedding size: 768

New model development – Contrastive Learning

RNA Embedding Ligand Embedding **RNA-Ligand Co-Distance matrix**

CLIP

- CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of pairs.
- A multi-modality model for connecting texts and images

symmetric loss function

labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

New model development – Contrastive Learning

RNA Embedding Ligand Embedding **RNA-Ligand Co-Distance matrix**

Uni-Mol

 The Uni-Mol modelling series described the pretraining of general molecular encoders and showcased their applications in various 2D and 3D downstream tasks.

Got inspired by Uni-Mol backbone's TransformerEncoderWithPair modules, I developed the following pretrain model.

New model development – Pretrain

New model development – Finetune

Vector Embedding

Matrix Embedding

New model development – Results

Method 1

Matrix Embedding

Vector Embedding

Method 2

Matrix Embedding | Vector Embedding

Matrix Embedding

Vector Embedding

Transformer-based neural network

Binding Affinity

 $-log(k_d)$

Method 3

Matrix Embedding

Vector Embedding

Method	Replicate	Train Loss	Train RMSE	Valid RMSE	Valid PR	Test RMSE	Test PR
method1	Rep1	0.49953	0.706775	0.655467	0.922382	1.859185	0.122103
method1	Rep2	0.42736	0.653728	0.717947	0.929559	1.798706	0.087363
method1	Rep3	0.55069	0.742085	0.618312	0.935124	1.782357	0.12566
method2	Rep1	0.641414	0.800883	1.362149	0.484742	1.759069	-0.150561
method2	Rep2	0.623433	0.789578	1.3741	0.381237	1.858708	-0.114307
method2	Rep3	0.657787	0.811041	1.362216	0.407839	1.889383	-0.162566
method3	Rep1	0.693114	0.832534	1.480243	0.391878	1.747118	-0.114832
method3	Rep2	0.664402	0.815109	1.385777	0.434656	1.795099	-0.174513
method3	Rep3	0.742992	0.86197	1.479654	0.432712	1.753488	-0.117452

Training Setting

- 1. Fixed random seed
- 2. Early Stopping by Valid Loss
- 3. Learning Rate Scheduling
- 4. Mean Squared Error Loss
- 1 transformer encoder layers, and 2 fully connected layers

Three methods have similar performances

Outperforms both GIGN transfer learning models and RLaffinity retrain models (Test RMSE: 1.8-1.9) College of Pharmacy UNIVERSITY of FLORIDA

New model development – Discussion

Summary

- In this research, I developed a cross-modal RNA-ligand binding affinity prediction model
- By incorporating structural information into LLMs, I trained a pretrained CLIP model, then fine-tuned binding affinity
 prediction models using the pretrained model embedding

Future Work

- Future work will focus on optimizing the model architecture and fine-tuning hyperparameters to enhance performance and stability
- Some early experiments showed the model could perform well, but the results were not always consistent across repeated training runs. This shows the model has potential, but more work is needed to make it stable and reliable

Method	Туре	Train Loss	Train RMSE	Valid RMSE	Valid PR	Test RMSE	Test PR
method1	Best	14.825213	3.850353	1.397021	0.663954	2.718086	0.117585
method1	Last	2.849923	1.688172	1.873621	0.206692	1.682905	0.183645
method2	Best	7.373564	2.715431	1.476381	0.508836	1.769341	-0.145751
method2	Last	3.301495	1.817002	4.741527	0.586770	3.996764	0.051575
method3	Best	6.091993	2.468196	1.471873	0.510478	1.683729	-0.203566
method3	Last	4.126519	2.031384	6.918242	0.471184	6.137150	-0.066232

Thank you!