Next-generation detectors

Einstein Telescope (<2035) Cosmic Explorer (<2035) LISA (2035)

2L, one 40 km and one 20 km arms.

3 spacecrafts in a triangular configuration following Earth in its orbit around the Sun.

The breakdown of energies in the proto-neutron star

$$\left(\frac{GM^2}{R_{\rm iron}}\right) - \left(\frac{GM^2}{R_{\rm NS}}\right) \approx \text{ a few} \times 10^{53} \text{ ergs} \qquad \begin{array}{c} M \approx M_{\odot} \\ R_{\rm iron} \approx 10^8 \text{ cm} \\ R_{\rm NS} \approx 10^6 \text{ cm} \end{array}$$

Liberation of gravitational binding energy of ~10⁵³ erg

- Eint~1053ergs
- E_{rot} < 10⁵²ergs E_{mag} < 10⁵¹ergs

What we can use to explode the star are these three energy sources.

Our understanding of the SN explosion physics and of the formation process of various compact stars has been remaining patchy in these several decades.

In SN physics, all the four fundamental forces play substantial roles.

- General relativity (GR) governs the overall dynamics.
- The nuclear force (i.e. strong force) determines structure of compact stars.
- · SN explosion is driven by the neutrino heating (weak force) or sometimes by magnetic (B-)fields (electromagnetic force).

The current status of SN theory		
progenitor mass	explosion mechanism	remnant type
-10-20M ₈₄₅	Neutrino driven explosion (v-driven)	neutron star (NS)
~30-40Msun	Magneto rotational explosion (MRE)	magnetar, black hole (BH)
~50Msun	Explosion by the hadron-quark phase transition (PT)	quark star (QS)
>~70Msun	Failed explosion	BH

Various properties of progenitor stars: mass, spin, magnetic fields. etc.

Various explosion mechanisms:

- · v-driven *
- · MRE
- · PT

Various remnants:

- · NSs
- · BHs
- · magnetars
- · QSs

