Q.71	Consider the following Boolean function with four variables	[GATE: 2007]
	$F(w, x, y, z) = \Sigma(1, 3, 4, 6, 9, 11, 12, 14).$	
	The function is:	
	(A) Independent of one variables (B) Independent of two variables	
	(C) Independent of three variables (D) Dependent on all variables	
Q.72	In the Karnaugh map shown below, X denotes a don't care term. What is the minimal form	m of the function
	represented by the Karnaugh map?	[GATE: 2008
	cd 00 01 11 10 00 00 1 1 1 1 10	
	01 X=0	
	11 X = 0 10 1 1 X = 1	
9	As $\overline{b}.\overline{d} + \overline{a}.\overline{d}$ (B) $\overline{a}.\overline{b} + \overline{b}.\overline{d} + \overline{a}.b.\overline{d}$ (C) $\overline{b}.\overline{d} + \overline{a}.b.\overline{d}$ (D) $\overline{a}.\overline{d}$	$\overline{b} + \overline{b} \cdot \overline{d} + \overline{a} \cdot \overline{d}$

[GATE: 2006]

(A)
$$c_{out}(\overline{a_{n-1} \oplus b_{n-1}})$$

(C)
$$c_{out} \oplus c_{n-1}$$

(B)
$$a_{n-1}b_{n-1}\overline{c_{n-1}} + \overline{a_{n-1}b_{n-1}}c_{n-1}$$

(D) $a_{n-1} \oplus b_{n-1} \oplus c_{n-1}$

The Boolean expression for the output f of the multiplexer shown below is Q.87

[GATE: 2010]

(A)
$$\overline{P \oplus Q \oplus R}$$

$$P \oplus Q \oplus R$$

(C)
$$P+Q+R$$

(D)
$$\overline{P+Q+R}$$

When two 8-bit numbers A_7 A_0 and B_7 B_0 in 2's complement representation (with A_0 and Q.88 B_0 as the least significant bits) are added using a ripple-carry adder, the sum bits obtained are S_7 S_0 and the carry bits are C_7 C_0 . An overflow is said to have occurred if

[GATE: 2017]

(A) The carry bit C_7 is 1

$$(A_7.B_7.\overline{S}_7 + \overline{A}_7.\overline{B}_7.S_7)$$
 is 1

(B) All the carry bits (C_7, \dots, C_0) are 1

(D)
$$(A_0.B_0.\overline{S}_0 + \overline{A}_0.\overline{B}_0.S_0)$$
 is 1

Fill in the blanks: Q.89

In the two bit full-adder/subtractor unit shown in fig., when the switch is in position 2, subtract using 2's complementarithmetic.

- 0.94 Consider a multiplexer with X and Y as data inputs and Z as control input. If z = 0 selects input x, and z = 1 selects input Y. What are the connections required to realize the 2- variable Boolean function f = T +[GATE: 2004] R without using any additional Hardware?
 - (A) R to X, 1 to Y, T to Z

(B) T to X, R to Y, T to Z

(C) T to X, R to Y, O to Z

- (D) R to X, O to Y, T to Z
- Consider the circuit given. Which one of the following options correctly represents f(x, y, z)?

[GATE: 2006]

(A) xz + xy + yz

- Consider the 4-to-1 multiplexer with two select lines S_1 and S_0 given below.

[GATE: 2014]

The minimal sum-of-products form of the Boolean expression for the output F of the multiplexer is

(A)
$$\overline{PQ} + Q\overline{R} + P\overline{Q}R$$

$$\overline{PQ} + \overline{PQR} + P\overline{QR} + P\overline{QR}$$

(C)
$$\overline{PQR} + \overline{PQR} + \overline{QR} + \overline{PQR}$$

(D)
$$PQ\overline{R}$$

Consider the two cascaded 2-to-1 multiplexers as shown in the figure. Q.97

[GATE: 2016]

The minimal sum of products form of the output X is

(A)
$$\overline{PQ} + PQR$$

(B)
$$\overline{PQ} + QR$$

(C)
$$PQ + \overline{PQR}$$

(D)
$$\overline{QR} + PQR$$