Nombre: Leandro Carreira

L.U.: 669/18

1	2	3	4	Calificación

Análisis Avanzado - Primer parcial 13/05/2021

1. Sea $A \subseteq \mathbb{R}$ un subconjunto acotado superiormente y no vacío. Probar que si A no tiene máximo, entonces existe una sucesión $(a_n)_{n\in\mathbb{N}}\subseteq A$ estrictamente creciente tal que

$$\lim_{n \to \infty} a_n = \sup(A).$$

· Cono A esté soste os superior mente

$$\exists c \in \mathbb{R} / c = sup(A)$$

no recessismente er un intervalo como en el dibujo, podría haber aquijeros en el medio.

I dea:

Construyo sucesión estrictemente creciente "cer cz" de c que conver je a c

Como A erinhinito, c er supremo de A,

5 A no tiene méx.

⇒ Vr>o / B(c, r) n A es inhinito

no pre de ser punto sistado, prer de serlo sería un max

En perticular como c no er punto aistado $\Rightarrow \exists r. zo / B(c, r.) \cap A = (a, c) \quad a \in \mathbb{R}$

Construto sucesión estrictamente crec. en (a,c)

$$(\alpha_n)_{n \in \mathbb{N}} = C - (C - \alpha)$$

$$0 = 2 : \alpha_2 = C - \left(\frac{C - \alpha}{4}\right) = \frac{3C + \alpha}{4}$$

0

$$Q_{n} \longrightarrow C$$

$$y$$
 an $e(a,c)$ then

Probé que deder les condicioner del ononciedo, siempre pre do construir (an) n c A

$$\lim_{N\to\infty} a_N = \sup_{N\to\infty} (A)$$

2. Consideremos el conjunto $\mathcal{X} \subseteq \mathcal{P}(\mathbb{N})$ dado por

 $\mathcal{X} = \{ E \subseteq \mathbb{N} : \text{ existen } p \text{ primo y } m \in \mathbb{N} \text{ tales que } \#E = p^m \}.$

Hallar el cardinal de $\mathcal{P}(\mathbb{N}) \setminus \mathcal{X}$.

X esté compresto de conjuntor l'initer que complen

que si $E \in \mathcal{X} \Rightarrow \#E = p^m$

Ademas, X es un subconj. de Pf(N)

donde $P_f(N) = \{B \subseteq N : B \text{ er } F_{ini} \text{ to } \}$:

 $\chi \in \mathcal{P}_{p}(N)$

Afirmo:

St(N) ~ N (lo pruepo aprio *)

y como

#X es inhinto

puer hay infinitor primos p

=> hay infinitor EcN / #E = Pm

inhinitor conjuntor

finitor E de distinto

cerdinal

y X = Pp (N)

$$\chi$$
 ex infinito

χ \left\{ # \P\text{Pr}(N)\}

χ \left\{ # N

$$\Rightarrow$$
 $\chi \sim N$

G cono cual quier conjunto in hinito menos un con junto numerable, mantiene su cardinal

$$\mathcal{P}(N) \sim \mathcal{P}(N) \setminus \mathcal{X}$$

h sopmer que

$$\#\mathcal{S}(N) = C$$

$$\Rightarrow \#\left(\mathcal{P}(N) \setminus \chi\right) = C$$

del ejocicio 12 de la préctica 2:

12. Probar que si A es numerable entonces $\mathcal{P}_f(A) = \{B \subseteq A : B \text{ es finito}\}\$ es numerable.

50

 $A \sim N$

9v9

Pf(A) := {B = A : B es hinto} ~ N

Predo buscer in yective desde

 $g: \mathcal{B}_n \to \mathbb{N}^n$ $(\mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N})$

Con Br C A lor conjutor de n elementos

Ej; 51 n=4;

Conj de 4 elementos en al guin orden Para ca da Puedo armar un vector que conjunto Bn > esté en Nº dustinto

g es inyectiva,

Puedo escribir Pf (A) como

$$\mathfrak{P}_{\mathfrak{f}}(A) = \bigcup_{n \in \mathbb{N}} \mathfrak{B}_n$$

Sabemos que vion numerable de conjuntos numerables, er numerable

$$\Rightarrow \# \left(\bigcup_{n \in \mathbb{N}} \mathbb{B}_n\right) = \aleph_0$$

- 3. Sea (E,d) un espacio métrico completo. Sea $(A_n)_{n\in\mathbb{N}}$ una sucesión de subconjuntos acotados no vacíos de E tales que
 - $A_{n+1} \subseteq A_n$ para todo $n \ge 1$.
 - $\lim_{n\to\infty} \operatorname{diam}(A_n) = 0.$

Probar que existe $x \in E$ tal que toda bola centrada en x contiene a algún A_n .

diam
$$(A_n) = \sup \{d(x_1y) : x, y \in A_n\}$$

los elementos de A_n se acorcan cada vez más entre π a medida que $n \to \infty$

Idez

Sez
$$x \in An$$
 $\forall n \geq 1$ $(An \neq \phi)$

The state of the stat

$$\sup \left\{ d(x,y) : x,y \in A_n \right\} \longrightarrow 0$$

$$\Rightarrow d(x,y) \xrightarrow[n\to\infty]{} 0 \qquad \forall x,y \in A_n$$

- => Si fijo el centro de una bob on X e An HneN
- Vroo podré hallar un Ano EB (x, r)

y adenzis

$$= \sup_{x \in A_{00}} \left\{ d(x_{1}) : x_{1} \in A_{00} \right\}$$

y el redio de este bole es 2C, de home que le bole contenge todos lor volorer de Ano que sobenos distan er spono C

uso 2 c como redo por si Ano er corre do, lie: incluye border

- \Rightarrow $\forall r>0$, siempre habré un A_{n_0} / $diam(A_{n_0}) < \frac{r}{2}$
- \Rightarrow An $\in \mathcal{B}(x,r)$ con $x \in An$ $\forall n \in \mathbb{N}$
- onostré que eligiendo X E E parteneciente de todos los An (no vecios),
 pera toda bola centrada en este X, riempre habrá un Ano contenido en ella.

4. Sean (E,d),(E',d') espacios métricos. Sea $f:E\to E'$ continua tal que $f^{-1}(K')$ es compacto para todo $K'\subseteq E'$ compacto.

Probar que f(F) es cerrado para todo $F \subseteq E$ cerrado.

Como P er contínua:

JC :

13) S:
$$K' \subseteq E'$$
 er competo => $f^{-1}(K')$ er competo

q v q :

$$f(\overline{A}) \subseteq \overline{f(A)}$$

q vq

$$\Rightarrow f(F) = f(F)$$

$$= \int f(F) = f(F) \subseteq f(F)$$

$$= \int f(F) = \int f(F)$$

$$= \int f($$

Por 11 j 13) ré que:

K = E er compecto $\iff f(K) = E'$ er compecto

Me gusteria obtener elgina pro pieded de f a partir

de \bigstar (en particular la welta) que generalice a

conjuntor cerra dos.

Uso Teorens de sub cubrimientor finitor sobre compedos
Sé que para cada f(k) compedo, I sub culo. Finito
de soi ertos

 $s: f(k) con pacto <math>\Rightarrow f(k) \subseteq \bigcup_{i=1}^{n} V_i$ about or

y como orde k tembién or compreto, I subculo. Pinito de abiertos

s: K compacto => K = 0 Ui abientos

干污