

Teoria da Computação

Autômatos Finitos e Linguagens Regulares

Mirtha Lina Fernández Venero mirtha.lina@ufabc.edu.br

setembro 2017

Sumário

Autômatos Finitos Determinísticos

Autômatos Finitos Não Determinísticos

Expressões Regulares

Propriedades das linguagens regulares

Bibliografia

$$A = (Q, \Sigma, q_0, \delta, F)$$

- ▶ *Q* conjunto *finito não vazio* de estados
- Σ alfabeto de entrada
- ▶ $q_0 \in Q$ estado inicial
- $\delta: Q \times \Sigma \rightarrow Q$ função de transição de estados
- $ightharpoonup F \subseteq Q$ conjunto de estados finais

Processo de Reconhecimento:

- A memória do autômato é representada por seus estados. Como Q é finito, A só pode lembrar um número finito e fixo de situações durante o reconhecimento da cadeia
- Determinístico: em qualquer ponto do reconhecimento, o autômato tem uma única maneira de proceder.

$$\mathbf{A} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{q_0}, \delta, \mathbf{F})$$

- Q conjunto finito não vazio de estados
- Σ alfabeto de entrada
- ▶ $q_0 \in Q$ estado inicial
- $\delta: Q \times \Sigma \to Q$ função de transição de estados
- ▶ $F \subseteq Q$ conjunto de estados finais

Processo de Reconhecimento:

- Começar pelo estado inicial
- Ler cada símbolo da cadeia e mudar de estado dependendo de δ até chegar no final da cadeia ou não ter como avançar. A cadeia é reconhecida se o último estado é final

$$\mathbf{A} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{q_0}, \delta, \mathbf{F}) = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0,0)=q_1\quad \delta(q_0,1)=q_0$$

$$\delta(q_1,0) = q_1 \ \delta(q_1,1) = q_2$$

$$\delta(q_2,0) = q_2 \ \delta(q_2,1) = q_2$$

$$\mathbf{A} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{q_0}, \delta, \mathbf{F}) = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0,0)=q_1\quad \delta(q_0,1)=q_0$$

$$\delta(q_1,0) = q_1 \ \delta(q_1,1) = q_2$$

$$\delta(q_2,0) = q_2 \ \delta(q_2,1) = q_2$$

$$\mathbf{A} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{q_0}, \delta, \mathbf{F}) = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0,0)=q_1\quad \delta(q_0,1)=q_0$$

$$\delta(q_1,0) = q_1 \ \delta(q_1,1) = q_2$$

$$\delta(q_2,0) = q_2 \ \delta(q_2,1) = q_2$$

$$\mathbf{A} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{q_0}, \delta, \mathbf{F}) = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0,0)=q_1\quad \delta(q_0,1)=q_0$$

$$\delta(q_1,0) = q_1 \ \delta(q_1,1) = q_2$$

$$\delta(q_2,0) = q_2 \ \delta(q_2,1) = q_2$$

$$\mathbf{A} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{q_0}, \delta, \mathbf{F}) = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0,0)=q_1\quad \delta(q_0,1)=q_0$$

$$\delta(q_1,0) = q_1 \ \delta(q_1,1) = q_2$$

$$\delta(q_2,0) = q_2 \ \delta(q_2,1) = q_2$$

$$\mathbf{A} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{q_0}, \delta, \mathbf{F}) = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0,0)=q_1\quad \delta(q_0,1)=q_0$$

$$\delta(q_1,0) = q_1 \ \delta(q_1,1) = q_2$$

$$\delta(q_2,0) = q_2 \ \delta(q_2,1) = q_2$$

$$\mathbf{A} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{q_0}, \delta, \mathbf{F}) = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0,0)=q_1\quad \delta(q_0,1)=q_0$$

$$\delta(q_1,0) = q_1 \ \delta(q_1,1) = q_2$$

$$\delta(q_2,0) = q_2 \ \delta(q_2,1) = q_2$$

$$\mathbf{A} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{q_0}, \delta, \mathbf{F}) = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0,0)=q_1\quad \delta(q_0,1)=q_0$$

$$\delta(q_1,0) = q_1 \ \delta(q_1,1) = q_2$$

$$\delta(q_2,0) = q_2 \ \delta(q_2,1) = q_2$$

$$\mathbf{A} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{q_0}, \delta, \mathbf{F}) = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0,0)=q_1\quad \delta(q_0,1)=q_0$$

$$\delta(q_1,0) = q_1 \ \delta(q_1,1) = q_2$$

$$\delta(q_2,0) = q_2 \ \delta(q_2,1) = q_2$$

$$\mathbf{A} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{q_0}, \delta, \mathbf{F}) = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0,0)=q_1\quad \delta(q_0,1)=q_0$$

$$\delta(q_1,0) = q_1 \ \delta(q_1,1) = q_2$$

$$\delta(q_2,0) = q_2 \ \delta(q_2,1) = q_2$$

Extensão da função de transição:

$$\hat{\delta}(q, \epsilon) = q$$
 $\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$

$$\mathbf{A} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{q_0}, \delta, \mathbf{F}) = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0,0)=q_1$$
 $\delta(q_0,1)=q_0$

$$\delta(q_1,0) = q_1 \ \delta(q_1,1) = q_2$$

$$\delta(q_2,0) = q_2 \ \delta(q_2,1) = q_2$$

Extensão da função de transição:

$$\hat{\delta}(q, \epsilon) = q$$
 $\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$

Linguagem de um AFD: $L(A) = \{w \mid \hat{\delta}(q_0, w) \in F\}$

Exemplo: Qual a linguagem gerada por A?

$$\delta(q_0, 0) = q_1 \quad \delta(q_0, 1) = q_0 \quad \delta(q_1, 0) = q_1$$
 $\delta(q_1, 1) = q_2 \quad \delta(q_2, 0) = q_2 \quad \delta(q_2, 1) = q_2$

Exemplo: Qual a linguagem gerada por A?

$$\delta(q_0, 0) = q_1$$
 $\delta(q_0, 1) = q_0$ $\delta(q_1, 0) = q_1$ $\delta(q_1, 1) = q_2$ $\delta(q_2, 0) = q_2$ $\delta(q_2, 1) = q_2$

$$q_0 \xrightarrow{0} q_1 \xrightarrow{0} q_1 \xrightarrow{0} q_1 \xrightarrow{0} q_1 \xrightarrow{1} q_2 \star$$

Exemplo: Qual a linguagem gerada por A? $\{0,1\}^* \cdot 01 \cdot \{0,1\}^*$

$$egin{align} \delta(q_0,0) &= q_1 & \delta(q_0,1) &= q_0 & \delta(q_1,0) &= q_1 \ & \delta(q_1,1) &= q_2 & \delta(q_2,0) &= q_2 & \delta(q_2,1) &= q_2 \ \end{pmatrix}$$

$$q_0 \xrightarrow{0} q_1 \xrightarrow{0} q_1 \xrightarrow{0} q_1 \xrightarrow{0} q_1 \xrightarrow{1} q_2 \star$$

Sumário

Autômatos Finitos Determinísticos

Autômatos Finitos Não Determinísticos

Expressões Regulares

Propriedades das linguagens regulares

Bibliografia

$$A = (Q, \Sigma, q_0, \delta, F)$$

- ▶ *Q* conjunto *finito não vazio* de estados
- Σ alfabeto de entrada
- ▶ $q_0 \in Q$ estado inicial
- $\delta: Q \times \Sigma \to \wp(Q)$ função de transição de estados
- $ightharpoonup F \subseteq Q$ conjunto de estados finais

Processo de Reconhecimento:

Não Determinístico: o autômato tem várias maneiras de proceder para ao menos um estado e um símbolo. Como???
 Oracle (sabe qual caminho tomar), multi-threading (prova todos os caminhos simultaneamente), backtracking (escolhe um e volta atrás se não der certo)

Exemplo: O conjunto de todas as palavras sobre $\Sigma = \{0,1\}$ que contém a sub-palavra 01, i.e. $\{0,1\}^* \cdot 01 \cdot \{0,1\}^*$

$$q_0 \xrightarrow{0} q_1 \xrightarrow{0} q_1 \xrightarrow{0} q_1 \xrightarrow{0} q_1 \xrightarrow{1} q_2 \star$$

Exemplo: O conjunto de todas as palavras sobre $\Sigma = \{0,1\}$ que contém a sub-palavra 01, i.e. $\{\mathbf{0},\mathbf{1}\}^* \cdot \mathbf{01} \cdot \{\mathbf{0},\mathbf{1}\}^*$

Exemplo: O conjunto de todas as palavras sobre $\Sigma = \{0,1\}$ que contém a sub-palavra 01, i.e. $\{0,1\}^* \cdot 01 \cdot \{0,1\}^*$

$$\{q_0\} \xrightarrow{0} \{q_0, q_1\} \xrightarrow{0} \{q_0, q_1\} \xrightarrow{0} \{q_0, q_1\}$$

$$\star \{q_0, q_2\} \xrightarrow{1} \{q_0, q_1\} \xrightarrow{0}$$

$$\mathbf{A} = (\mathbf{Q}, \mathbf{\Sigma}, \mathbf{q_0}, \delta, \mathbf{F})$$

- Q conjunto finito não vazio de estados
- Σ alfabeto de entrada
- ▶ $q_0 \in Q$ estado inicial
- $\delta: Q \times \Sigma \to \wp(Q)$ função de transição de estados
- $ightharpoonup F \subseteq Q$ conjunto de estados finais

Extensão da função de transição:

$$\hat{\delta}(q, \epsilon) = \{q\}$$
 $\hat{\delta}(q, xa) = \bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)$

Linguagem de um AFND: $L(A) = \{w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset\}$

Function

Register

O autômato pode mudar de estado sem considerar (nem consumir) o símbolo de entrada

O autômato pode mudar de estado sem considerar (nem consumir) o símbolo de entrada

ε -closure:

$$q \in \mathsf{ECLOSE}(q)$$

$$r \in \mathsf{ECLOSE}(q) \Leftarrow p \in \mathsf{ECLOSE}(q) \text{ and } r \in \delta(p, \epsilon)$$

O autômato pode mudar de estado sem considerar (nem consumir) o símbolo de entrada

ε -closure:

$$q \in \mathsf{ECLOSE}(q)$$

$$r \in \mathsf{ECLOSE}(q) \Leftarrow p \in \mathsf{ECLOSE}(q) \text{ and } r \in \delta(p,\epsilon)$$

Exemplo: ECLOSE(1) =

O autômato pode mudar de estado sem considerar (nem consumir) o símbolo de entrada

ε -closure:

$$q \in \mathsf{ECLOSE}(q)$$

$$r \in \mathsf{ECLOSE}(q) \Leftarrow p \in \mathsf{ECLOSE}(q) \text{ and } r \in \delta(p, \epsilon)$$

Exemplo: $ECLOSE(1) = \{1, 2, 3, 4, 6\}$

O autômato pode mudar de estado sem considerar (nem consumir) o símbolo de entrada

arepsilon-closure:

$$q \in \mathsf{ECLOSE}(q)$$

$$r \in \mathsf{ECLOSE}(q) \Leftarrow p \in \mathsf{ECLOSE}(q) \text{ and } r \in \delta(p,\epsilon)$$

Extensão da função de transição:

$$\widehat{\delta}(q,\epsilon) = \text{ECLOSE}(q)$$

$$\widehat{\delta}(q,xa) = \bigcup_{p \in \delta(\widehat{\delta}(q,x),a)} \text{ECLOSE}(p)$$

O autômato pode mudar de estado sem considerar (nem consumir) o símbolo de entrada

Toda linguagem que pode ser reconhecida usando um autômato finito também pode ser definida usando operações de conjuntos, concatenação e fechamento de Kleene (linguagem regular)

Sumário

Autômatos Finitos Determinísticos

Autômatos Finitos Não Determinísticos

Expressões Regulares

Propriedades das linguagens regulares

Bibliografia

Expressões regulares

As linguagens regulares são fechadas w.r.t concatenação, \cap , \cup , c , * de Kleene. Por isso, uma forma simples de descrever essas linguagens é usar uma notação algébrica (expressões regulares)

Linguagem regular	Expressão regular
$\emptyset, \{\varepsilon\}, \{a\}, a \in \Sigma$	$\emptyset, arepsilon, oldsymbol{a}$
$L_1 \cup L_2$	$ER(L_1) \mid ER(L_2)$
L_1L_2	$ER(L_1) ER(L_2)$
L*	ER(L)*

Expressões regulares

As linguagens regulares são fechadas w.r.t concatenação, \cap , \cup , c , * de Kleene. Por isso, uma forma simples de descrever essas linguagens é usar uma notação algébrica (expressões regulares)

Exemplo:

Linguagem regular	Expressão regular		
$\{a,b,arepsilon\}$	a b ε		
$\boxed{\{a^nb^m n>0,m>0\}}$	aa* bb*		
?	$(1\mid arepsilon)(01)^*(0\mid arepsilon)$		
?	$(a \mid b \mid c \mid \ldots \mid z)^*.(txt \mid exe)$		

Expressões regulares

As linguagens regulares são fechadas w.r.t concatenação, \cap , \cup , c , * de Kleene. Por isso, uma forma simples de descrever essas linguagens é usar uma notação algébrica (**expressões regulares**)

Exemplo:

Linguagem regular	Expressão regular				
$\{a,b,\varepsilon\}$	a b ε				
$\left\{a^nb^m n>0,m>0\right\}$	aa* bb*				
?	$(1\mid arepsilon)(01)^*(0\mid arepsilon)$				
?	$(a \mid b \mid c \mid \ldots \mid z)^*.(txt \mid exe)$				

Outros padrões podem ser usados: E? para $E \mid \varepsilon$, E+ para uma ou mais repetições de E, $E\{n\}$ para n repetições de E, $[a_1 - a_n]$ qualquer símbolo $\in \{a_1, \ldots, a_n\}$

Leis algébricas das expressões regulares

1.
$$\alpha \mid \beta = \beta \mid \alpha$$

2.
$$\alpha \mid (\beta \mid \gamma) = (\alpha \mid \beta) \mid \gamma$$
, $\alpha (\beta \gamma) = (\alpha \beta) \gamma$

3.
$$\alpha (\beta \mid \gamma) = \alpha \beta \mid \alpha \gamma$$
, $(\alpha \mid \beta)\gamma = \alpha \gamma \mid \beta \gamma$

$$4. \ \alpha \mid \emptyset = \emptyset \mid \alpha = \alpha$$

5.
$$\alpha \varepsilon = \varepsilon \alpha = \alpha$$

6.
$$\alpha \emptyset = \emptyset \alpha = \emptyset$$

7.
$$\alpha \mid \alpha = \alpha$$

8.
$$\emptyset^* = \emptyset$$

9.
$$(\alpha^*)^* = \alpha^*$$

10.
$$(\alpha^* \beta^*)^* = (\alpha \mid \beta)^*$$

Exemplo: Simplifique a seguinte ER: $\varepsilon \mid 0 \mid 1 \mid \emptyset \ (\varepsilon \mid 1)^*0$

Linguagens Regulares → Autômatos

Método de Thompson

http://users.encs.concordia.ca/~grahne/hmu_slides/main.pdf

Linguagens Regulares → Autômatos

Método de Thompson

Exemplo: $a (b | c)^*$

Linguagens Regulares → Autômatos

Método de Thompson Exemplo: a $(b | c)^*$

Sumário

Autômatos Finitos Determinísticos

Autômatos Finitos Não Determinísticos

Expressões Regulares

Propriedades das linguagens regulares

Bibliografia

Algumas propriedades das linguagens regulares

lacksquare Se R é uma linguagem regular então $R^c = \Sigma^* - R$ é regular

Prova: Construa um AFD para R e troque os estados finais por não finais e viceversa.

Exemplo: A linguagem $((0|1)*01(0|1)*)^c$ é regular?

ightharpoonup Se R é uma linguagem regular então R^r também é regular

Prova: Construa um AFD para R; troque a direção de todas as transições; troque todos os estados finais por não finais; faça o antigo estado inicial ser final; coloque um novo estado inicial com ε -transições até todos os antigos estados finais.

Exemplo: A linguagem $((0|1)*01(0|1)*)^r$ é regular?

Algumas propriedades das linguagens regulares

▶ Se R_1 e R_2 são linguagens regulares sobre Σ então $R_1 \cap R_2$ também é uma linguagem regular sobre Σ .

Prova: $R_1 \cap R_2 = (R_1^c \cup R_2^c)^c$. De forma alternativa, partindo dos AFDs para R_1 e R_2 , construa $A_{R_1 \cap R_2}$ como segue:

$$A_{R_1 \cap R_2} = (Q_1 \times Q_2, \Sigma, \delta, (q_{01}, q_{02}), F_1 \times F_2)$$

onde
$$\delta((p,q),a) = (\delta_1(p,a),\delta_2(q,a))$$

Exemplo: $\Sigma^* b \Sigma^* \cap \Sigma^* c \Sigma^*$ com $\Sigma = \{a, b, c, d\}$ é regular?

Expressões Regulares ↔ Autômatos↔ **REG**

- ▶ REG classe das linguagens regulares, amplamente estudada
- ▶ Poder expressivo suficiente para um grande # de aplicações
- Algoritmos de reconhecimento com tempo lineal w.r.t. o tamanho da entrada

RE: regular expressions; DFA (NFA): (non-) deterministic automata; RLG: right-linear grammars

Algumas Ferramentas

	AFD/AFND	GR	ER	AP	MT	Saída Gráfica	Correção Automática
GAM	Х					Х	
VAS	Х				Х	х	
Language Emulator	Х	Х	Х				
SCTMF	Х	Х	Х	Х	Х		
JFLAP	Х	Х	Х	Х	Х	Х	
LabLF	Х	Х	Х	Х	Х	Х	х

Tabela 1: Ferramentas e seus modelos de computação implementados.

http://www.br-ie.org/pub/index.php/rbie/article/viewFile/1208/1108

https://regex101.com/r/vS7vZ3/224#javascript

https://regexr.com/

Sumário

Autômatos Finitos Determinísticos

Autômatos Finitos Não Determinísticos

Expressões Regulares

Propriedades das linguagens regulares

Bibliografia

Bibliografia Básica

1. Introduction to Automata Theory, Languages, and Computation

(3rd Edition). J. Hopcroft, R. Motwani and J. Ullman. Addison-Wesley, 2006

```
http://www-db.stanford.edu/~ullman/ialc.html
http://users.encs.concordia.ca/~grahne/hmu_slides/
```

- 2. Introduction to the Theory of Computation. M. Sipser
- Compilers: Principles, Techniques, and Tools (2nd Edition). Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman. Addison-Wesley, 2006
- 4. Linguagens Formais e Autômatos, P. B. Menezes

