Departament de Matemàtica Aplicada Unitat Docent de l'ETS d'Enginyeria Informàtica Materials docents d'Àlgebra

Exercicis del Tema 1 (Unitat Temàtica 1)
26 de gener de 2012

Exercici 2.1 Considerem els vectors de \mathbb{R}^3 següents: $\vec{u}_1 = (1, -1, 2), \vec{u}_2 = (0, 1, -3) i \vec{u}_3 = (-1, 3, -8)$. Calculeu (a) $\vec{u}_1 + \vec{u}_2$, (b) $3\vec{u}_3$ i (c) $\vec{u}_1 - 2\vec{u}_2 + \vec{u}_3$.

(a)
$$\vec{u}_1 + \vec{u}_2 = (1, -1, 2) + (0, 1, -3) = (1, 0, -1)$$

(b)
$$3\vec{u}_3 = 3(-1,3,-8) = (-3,9,-24)$$

(c)
$$\vec{u}_1 - 2\vec{u}_2 + \vec{u}_3 = (1, -1, 2) - 2(0, 1, -3) + (-1, 3, -8) = (0, 0, 0)$$

Exercici 2.2 Siguen $\vec{u}_1 = (1, -2) i \vec{u}_2 = (-1, 1)$. Representeu gràficament els vectors \vec{u}_1 , \vec{u}_2 , $2\vec{u}_1$, $-\vec{u}_2$, $3\vec{u}_1 + 3\vec{u}_2$, $\vec{u}_1 - 2\vec{u}_2$, $5\vec{u}_1 + 9\vec{u}_2 i - 4\vec{u}_1 - 6\vec{u}_2$.

Exercici 2.3 Calculeu les longituds dels vectors $\vec{e}_1 = (1,0)$, $\vec{e}_2 = (0,1)$, $\vec{u} = (3,4)$ i $\vec{v} = (1,2)$.

(a)
$$\|\vec{e}_1\| = \sqrt{1^2 + 0^2} = 1$$

(b)
$$\|\vec{e}_2\| = \sqrt{0^2 + 1^2} = 1$$

(c)
$$\|\vec{u}\| = \sqrt{3^2 + 4^2} = 5$$

(d)
$$\|\vec{v}\| = \sqrt{1^2 + 2^2} = \sqrt{5}$$

Exercici 2.4 Calculeu l'angle entre les següents parelles de vectors:

1.
$$\vec{u} = (\sqrt{3}, 1) i \vec{v} = (0, 1)$$

Les normes dels dos vectors són $\|\vec{u}\| = \sqrt{3+1} = 2$ i $\|\vec{v}\| = \sqrt{0+1} = 1$ i el producte escalar, $\vec{u} \cdot \vec{v} = \sqrt{3} \cdot 0 + 1 \cdot 1 = 1$ així que el cosinus del angle que formen aquests dos vectors és

$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{1}{2 \cdot 1} = \frac{1}{2}$$

així que l'angle és $\pi/3$ (o 60°).

2.
$$\vec{u} = (\sqrt{3}, 1) i \vec{v} = (2, 2)$$

$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{\sqrt{3} \cdot 2 + 1 \cdot 2}{\sqrt{3} + 1} \sqrt{4 + 4} = \frac{2(1 + \sqrt{3})}{4\sqrt{2}}$$

En aquesta expressió pot ser difícil reconèixer l'angle, però si ens fixem que l'angle que formen aquests dos vectors amb l'horitzontal és $\pi/6$ i $\pi/4$, aleshores és fàcil veure que $\alpha = \pi/12$ (= 15°).

3. $\vec{u} = (1, 2, 3) i \vec{v} = (1, 2, 6)$ (ací podeu fer servir la calculadora)

$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{1 \cdot 1 + 2 \cdot 2 + 3 \cdot 6}{\sqrt{1 + 4 + 9} \sqrt{1 + 4 + 36}} = \frac{23}{\sqrt{574}} \Rightarrow \alpha = \arccos \frac{23}{\sqrt{574}} \approx 0,2838$$

4.
$$\vec{u} = (1, 2, 1, 2) i \vec{v} = (2, -1, -2, 1)$$

En aquest cas $\vec{u} \cdot \vec{v} = 0$ així que els dos vectors són ortogonals.

Exercici 2.5 Calculeu el producte \overrightarrow{Ab} , essent $A = \begin{bmatrix} 4 & 1 \\ 2 & -5 \\ 0 & 6 \end{bmatrix}$ i $\overrightarrow{b} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$, (a) element a element i (b) fent combinacions lineals de les columnes de A.

(a)

$$\begin{bmatrix} 4 & 1 \\ 2 & -5 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \cdot 5 + 1 \cdot 2 \\ 2 \cdot 5 - 5 \cdot 2 \\ 0 \cdot 5 + 6 \cdot 2 \end{bmatrix} = \begin{bmatrix} 22 \\ 0 \\ 12 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 1 \\ 2 & -5 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = 5 \begin{bmatrix} 4 \\ 2 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -5 \\ 6 \end{bmatrix} = \begin{bmatrix} 20 \\ 10 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ -10 \\ 12 \end{bmatrix} = \begin{bmatrix} 22 \\ 0 \\ 12 \end{bmatrix}$$

Exercici 2.6 Siga $A = \begin{bmatrix} 1 & 5 & -2 & 0 \\ -3 & 1 & 9 & -5 \\ 4 & 8 & -1 & 7 \end{bmatrix}$ i $\vec{x} = \begin{bmatrix} 3 \\ -2 \\ 0 \\ -4 \end{bmatrix}$. Escriviu el vector $\vec{b} = A\vec{x}$ com a combinació lineal de les columnes de A.

$$\vec{b} = 3 \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix} - 2 \begin{bmatrix} 5 \\ 1 \\ 8 \end{bmatrix} - 4 \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}$$

Exercici 2.7 Calculeu els productes següents fent combinacions lineals de les files de la matriu $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$.

Exercici 2.8 Calculeu el producte AB essent

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad B = \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

$$AB = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} a_{11}a_{22} - a_{21}a_{12} & 0 \\ 0 & a_{11}a_{22} - a_{21}a_{12} \end{bmatrix} = (a_{11}a_{22} - a_{21}a_{12}) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

El nombre $a_{11}a_{22} - a_{21}a_{12}$ és el determinant de A