

Progetto: Nome Progetto codebusterswe@gmail.com

Studio Di Fattibilità

Informazioni sul documento						
Versione	1.0.0					
Approvatori	Sassaro Giacomo					
${f Redattori}$	Pirolo Alessandro Zenere Marco Rago Alessandro Safdari Houssaine					
Verificatori	Baldisseri Michele Scialpi Paolo					
Uso	Interno					
Distribuzione	Prof. Vardanega Tullio Prof. Cardin Riccardo Gruppo <i>CodeBusters</i>					

Descrizione

Questo documento si occupa di descrivere l'analisi dei capitolati d'appalto realizzata dal gruppo al fine di valutarne la fattibilità

Registro delle modifiche

Versione	Data	Nominativo	Ruolo	Descrizione
0.1.0	26-11-2020	Sassaro Giacomo, Baldisseri Michele	Verificatore	Creazione documento Latex e adattamento bozza Latex
0.0.4	19-11-2020	Zenere Marco, Scialpi Paolo	Analista	Redazione studio di fattibilità C2
0.0.3	19-11-2020	Zenere Marco, Scialpi Paolo	Analista	Redazione studio di fattibilità C1
0.0.2	18-11-2020	Pirolo Alessandro	Analista	Redazione studio di fattibilità C3
0.0.1	16-11-2020	CodeBusters	Analisti	Creazione bozza documento, introduzione e paragrafi.

C DEBUSTERS

Indice

1	Inti	roduzione
	1.1	Scopo del Documento
	1.2	Glossario
	C	'. l . C1
2	_	oitolato C1
	2.1	Titolo del capitolato
	2.2	Descrizione del capitolo
	2.3	Tecnologie coinvolte
	2.4	Vincoli
	2.5	Aspetti positivi
	2.6	Aspetti critici
	2.7	Conclusioni
3	Car	pitolato C2
J	3.1	Titolo del capitolato
	$3.1 \\ 3.2$	Descrizione del capitolo
	$\frac{3.2}{3.3}$	
	3.4	· ·
	3.5	Aspetti positivi
	3.6	Aspetti critici
	3.7	Conclusioni
4	Car	pitolato C3
•	4.1	Titolo del capitolato
	4.2	Descrizione del capitolo
	4.3	Tecnologie coinvolte
	4.4	Vincoli
	4.4	
	4.6	Aspetti critici
	4.7	Conclusioni
5	Car	pitolato C4
	5.1	Titolo del capitolato
	5.2	Descrizione del capitolo
	5.3	Tecnologie coinvolte
	5.4	Vincoli
	5.5	Aspetti positivi
	5.6	Aspetti critici
	5.7	Conclusioni
	0.1	Conclusion
6	Cap	pitolato C5
	6.1	Titolo del capitolato
	6.2	Descrizione del capitolo
	6.3	Tecnologie coinvolte
	6.4	Vincoli
	6.5	Aspetti positivi
	6.6	Aspetti critici
	6.7	Conclusioni 14

C DEBUSTERS

7	Cap	pitolato C6	5
	7.1	Titolo del capitolato	5
	7.2	Descrizione del capitolo	5
	7.3	Tecnologie coinvolte	5
	7.4	Vincoli	5
	7.5	Aspetti positivi	6
	7.6	Aspetti critici	6
	7.7	Conclusioni	6
8	Cap	pitolato C7	7
	8.1	Titolo del capitolato	7
	8.2	Descrizione del capitolo	7
	8.3	Tecnologie coinvolte	7
	8.4	Vincoli	7
	8.5	Aspetti positivi	8
	8.6	Aspetti critici	8
	8.7	Conclusioni	8
9	Rife	erimenti 1	9
	9.1	Normativi	9
	9.2	Informativi	

1 Introduzione

1.1 Scopo del Documento

Questo documento contiene la stesura dello studio di fattibilità riguardante i sette capitolati proposti, per ciascuno di essi vengono evidenziati i seguenti aspetti:

- Titolo del capitolato;
- Descrizione generale;
- Prerequisiti e tecnologie coinvolte;
- Vincoli;
- Aspetti positivi;
- Aspetti critici.

Infine, per ogni capitolato vengono esposte le motivazioni e le ragioni per cui il gruppo ha scelto come progetto il capitolato CX *Nome Progetto* a discapito degli altri sei proposti.

1.2 Glossario

Il gruppo CodeBusters ha redatto un documento denominato $Glossario\ 1.0.0$ così da evitare ambiguità fra i termini, e per avere chiare fra tutti gli stakeholder le terminologie utilizzate per la realizzazione del presente documento. In tale documento, sono presenti tutti i termini tecnici, ambigui, specifici del progetto e scelti dai membri del gruppo con le loro relative definizioni. Un termine presente nel $Glossario\ 1.0.0$ e utilizzato in questo documento viene indicato con un apice $^{\rm G}$ alla fine della parola.

2.1 Titolo del capitolato

Il capitolato in questione si chiama "BlockCOVID: supporto digitale al contrasto della pandemia", il proponente è l'azienda imola informatica e i committenti sono Prof. Vardanega Tullio e Prof. Cardin Riccardo.

2.2 Descrizione del capitolo

Il capitolato uno propone di sviluppare un'applicazione per registrare le presenze in uffici in modo da permettere la pulizia delle postazioni ed evitare che la stessa sia utilizzata da più persone. L'obiettivo finale è la creazione di un'applicazione mobile con due interfacce. La prima destinata agli amministratori per la gestione degli uffici e delle postazioni mentre la seconda per due categorie di utenti: il dipendente che registra la sua presenza e l'addetto alle pulizie, il quale riceve la lista delle postazioni da disinfettare.

2.3 Tecnologie coinvolte

L' azienda non impone tecnologie specifiche per lo sviluppo, ma preferisce consigliare l' uso di:

- Java (versione 8 o superiori), Python o nodejs per lo sviluppo del server back-end;
- protocolli asincroni per le comunicazioni app mobile-server;
- un sistema blockchain per salvare con opponibilità a terzi i dati di sanificazione;
- IAAS Kubernetes o di un PAAS, Openshift o Rancher, per il rilascio delle componenti del server e la gestione della scalabilità orizzontale.

2.4 Vincoli

Gli obiettivi sono:

- Realizzare un server, e una applicazione mobile, dove è prevista la presenza di due macro-tipologie:
 - Amministratore di sistema, con i permessi di gestire e monitorare postazioni, stanza, utenti;
 - Utente, che può essere il dipendete che scansiona il tag presente alla sua postazione e segnala la sua presenza (con la possibilità di prenotarla), o un addetto alle pulizie che può gestire e monitorare le stanze da igienizzare;
- E' richiesto il report dei test effettuati;
- E' richiesta una documentazione sulle scelte, le loro relative motivazioni ed eventuali problemi incontrati con relative soluzioni.

2.5 Aspetti positivi

- Progetto con fine attuale ed utile alla società;
- Stimola molto interesse essendo che richiede l'uso di molti servizi;
- L'azienda risulta essere molto disponibile per seguire il gruppo nello sviluppo del progetto.

2.6 Aspetti critici

- Per questo capitolato è presente molto concorrenza;
- Richiede l'apprendimento di molti servizi e linguaggi che i membri del gruppo non conoscono, andando ad incidere molto sul tempo che andrebbe dedicato per l'apprendimento di questi ultimi.

2.7 Conclusioni

Visto il contesto attuale di pandemia un'applicazione su questo campo è quantomai utile e dunque stimola interesse. La valutazione è positiva anche per quanto riguarda le tecnologie che si dovranno esplorare per portare a termine questo capitolato. Il lato negativo risiede nella complessità dello sviluppo dell'applicazione mobile nonché del lato server.

3.1 Titolo del capitolato

Il capitolato in questione si chiama "EmporioLambda: piattaforma di e-commerce in stile Serverless", il proponente è l'azienda Red Babel e i committenti sono Prof. Vardanega Tullio e Prof. Cardin Riccardo.

3.2 Descrizione del capitolo

Nel capitolato due viene proposto di creare una piattaforma di E-Commerce, ovvero la compravendita on-line di prodotti. Lo scopo finale del capitolato è avere una piattaforma dove i clienti possano registrarsi, ricercare i prodotti, aggiungerli al carrello (ovvero una pagina che permette di rivedere e considerare i prodotti e l'ammontare complessivo dei prezzi) e l'acquisto. La piattaforma dovrà offrire un'interfaccia per i venditori dove possono aggiungere e modificare i prodotti destinati alla vendita.

3.3 Tecnologie coinvolte

Il progetto prevede l'adozione di una bozza iniziale dell'architettura dettata dal proponente e di alcune scelte tecnologiche obbligatorie, il fornitore è libero e altamente incoraggiato ad esplorare diverse scelte. Questa applicazione deve essere costruita con la tecnologia serverless con una API basata su HTTP:

- Si utilizzano AWS Lambda e altre componenti di supporto (AWS API Gateway, AWS DynamoDB, AWS S3);
- CloudFormation per la gestione delle risorse sopraelencate;
- Serverless Framework per l'implementazione di applicazioni serverless facilitandone alcune difficili strutture (come permessi, sottoscrizioni o accesso);
- Il BFF (Back end for Front end) sarà implementato in Next.js e richiede l'uso di Typescript come linguaggio principale;
- Il codice sorgente dovrebbe essere pubblicato e aggiornato utilizzando GitHub o GitLab.

3.4 Vincoli

E' richiesto l'uso di un numero minimo di ambienti di lavoro: uno locale di ogni sviluppatore, uno per i test accessibile a tutti gli sviluppatori, e un ambiente pubblico accessibile dagli utenti. E' richiesta l' implementazione di tutti i moduli di alto livello:

- EmporioLambda-frontend (EML-FE): modulo che serve le pagine web richieste dal cliente;
- EmporioLambda-backend (EML-BE): modulo che espone i servizi dell' applicazione;
- EmporioLambda-integration (EML-I): rappresenta tutti i servizi di terze parti;
- EmporioLambda-monitoring (EML-MON): è il set di strumenti usati per monitorare lo stato dell'applicazione.

E' richiesta la presenza di determinate minime, (ognuna con le proprie funzioni principali):

- Homepage
- Product Listing Page
- Product Detail Pages
- Shopping Cart

- Account
- Checkout
- Merchant dashboard

Il sito deve implementare i seguenti ruoli utilizzando AWS Cognito Identity:

- Amministratore
- Venditore
- Cliente

L'unica integrazione obbligatoria richiesta è il provider di pagamento, Stripe.

3.5 Aspetti positivi

- E' richiesto l' uso di numerosi servizi forniti da AWS, sia comuni che meno, i quali possono risultare utili al nostro futuro;
- Nel capitolato viene richiesto il pagamento elettronico, argomento attualmente di nicchia;
- Linguaggi come TypeScript e JavaScript sono molto utili anche al di fuori di questo argomento;
- Nel 2020 ormai gli e-commerce sono alla portata di tutti e fanno parte della vita quotidiana delle persone, perciò è un argomento familiare ai membri del gruppo.

3.6 Aspetti critici

 La presentazione del capitolato è approssimativa visto che non è stato fatto alcun seminario di approfondimento.

3.7 Conclusioni

Per il capitolato due si utilizzano tecnologie non troppo complesse e, prendendo in considerazione le altre piattaforme di e-commerce esistenti (per esempio Amazon), è relativamente facile progettarla visto che l' e-commerce è ormai la quotidianità. Proprio perché ci sono già moltissime piattaforme di e-commerce esistenti rende questo capitolato poco appetibile.

4.1 Titolo del capitolato

Il capitolato in questione si chiama "GDP - Gathering Detection Platform", il proponente è l'azienda SyncLab e i committenti sono Prof. Vardanega Tullio e Prof. Cardin Riccardo.

4.2 Descrizione del capitolo

Il capitolato presentato si pone come obiettivo finale la realizzazione di una piattaforma in grado di dare all'utilizzatore finale una rappresentazione grafica delle informazioni sulla probabilità di assembramento nelle zone potenzialmente a richio. Questo viene fatto sulla base di alcuni dati che vengono individuati, raccolti ed elaborati. La piattaforma deve sfruttare tecniche di machine learning e/o deeplearnig in modo da predirre le zone potenzialmente a rischio.

4.3 Tecnologie coinvolte

Sebbene l'azienda non impone tecnologie specifiche per lo sviluppo del server o della UI, vi sono comununque delle scelte preferenziali da considerare nello svolgimento del progetto:

- utilizzo di Java^G e di Angular^G per lo sviluppo della parte di Back-end e di Front-end della componente Web Application del sistema;
- per la gestione delle mappe (heatmap ecc.) il framework Leaflet^G (https://leafletjs.com);
- utilizzo di protocolli asincroni per le comunicazioni tra le diverse componenti;
- utilizzo del pattern Publisher/Subscriber, e adozione del protocollo MQTT ('MQ Telemetry Transport or Message Queue Telemetry Transport'), caratterizzato per essere open, di facile implementazione e ampia diffusione in applicazioni M2M (MachineToMachine) e IoT (InternetOfThings).

Per la parte di Machine Learning, l'azienda da ampia libertà, sebbene ci siano delle tecnologie consigliate:

- Python^G come linguaggio di programmazione:
- TensorFlow^G, Pytorch^G, Keras^G e Scikit-learn^G come libreria per l'apprendimento automatico;

Infine, per facilitare la comprensione delle librerie consigliate, l'azienda propone delle guide come cartacee come:

- Hands-on Machine Learning with Stick-Learn, Keras & TensorFlow;
- Phyton Machine Learning,

e qualche altra risorsa online come Kaggle, Aurelien Geron's Github e Google scholar.

4.4 Vincoli

La proponente suggerisce una architettura in grado di implementare quello che si definisce essere un Sistema Reattivo, in grado cioè di soddisfare le seguenti caratteristiche:

- responsive: la richiesta di un servizio deve sempre avere una risposta, anche quando si verifica un guasto;
- resilient: i servizi devono poter essere ripristini a seguito di guasti;
- elastic: i servizi devono poter essere scalati in base alla effettiva domanda;
- message-driven: i servizi devono rispondere al mondo, non tentare di controllare ciò che fa.

Ed è richiesto che tutte le componenti applicative siano correlate da test unitari e d'integrazione. Inoltre, è richiesto che il sistema venga testato nella sua interezza tramite test end-to-end.

- Il capitolato ha come obiettivo la creazione di una piattaforma di grande aiuto a fronte della situazione che stiamo vivendo:
- Nel capitolato si tratta l'argomento del machine learning^G, un argomento molto interessante e che potrebbe risultare molto utile in altri ambiti e in futuro:
- L'azienda sembra essere molto disponibile per seguire il gruppo nel percorso di sviluppo del progetto.

4.6 Aspetti critici

- Il capitolato richiede l'apprendimento di molti servizi, sconosciuti dai membri del gruppo, che si basano su argomenti non conosciuti (come il machine learning^G) e non affrontati nel corso di laurea triennale. Quindi gran parte del tempo andrebbe dedicato allo studio di questi concetti e strumenti, ed infine di applicare queste conoscenze;
- Oltre al tempo impiegato per l'apprendimento di questi strumenti c'è da tenere in considerazione il tempo per addestrare la parte di machine learning^G.

4.7 Conclusioni

Nonostante tale capitolato abbia destato particolare interesse all'interno del gruppo, specialmente per la possibilità di utilizzare tecnologie innovative, il team ha valutato la complessità di tale progetto come molto elevata e ha preferito orientarsi verso un'altra alternativa.

5.1 Titolo del capitolato

Il capitolato in questione si chiama "GDP - Gathering Detection Platform", il proponente è l'azienda SyncLab e i committenti sono Prof. Vardanega Tullio e Prof. Cardin Riccardo.

5.2 Descrizione del capitolo

Il capitolato presentato si pone come obiettivo finale la realizzazione di una piattaforma in grado di dare all'utilizzatore finale una rappresentazione grafica delle informazioni sulla probabilità di assembramento nelle zone potenzialmente a richio. Questo viene fatto sulla base di alcuni dati che vengono individuati, raccolti ed elaborati. La piattaforma deve sfruttare tecniche di machine learning e/o deeplearnig in modo da predirre le zone potenzialmente a rischio.

5.3 Tecnologie coinvolte

Sebbene l'azienda non impone tecnologie specifiche per lo sviluppo del server o della UI, vi sono comununque delle scelte preferenziali da considerare nello svolgimento del progetto:

- utilizzo di Java^G e di Angular^G per lo sviluppo della parte di Back-end e di Front-end della componente Web Application del sistema;
- per la gestione delle mappe (heatmap ecc.) il framework Leaflet^G (https://leafletjs.com);
- utilizzo di protocolli asincroni per le comunicazioni tra le diverse componenti;
- utilizzo del pattern Publisher/Subscriber, e adozione del protocollo MQTT ('MQ Telemetry Transport or Message Queue Telemetry Transport'), caratterizzato per essere open, di facile implementazione e ampia diffusione in applicazioni M2M (MachineToMachine) e IoT (InternetOfThings).

Per la parte di Machine Learning, l'azienda da ampia libertà, sebbene ci siano delle tecnologie consigliate:

- Python^G come linguaggio di programmazione:
- TensorFlow^G, Pytorch^G, Keras^G e Scikit-learn^G come libreria per l'apprendimento automatico;

Infine, per facilitare la comprensione delle librerie consigliate, l'azienda propone delle guide come cartacee come:

- Hands-on Machine Learning with Stick-Learn, Keras & TensorFlow;
- Phyton Machine Learning,

e qualche altra risorsa online come Kaggle, Aurelien Geron's Github e Google scholar.

5.4 Vincoli

La proponente suggerisce una architettura in grado di implementare quello che si definisce essere un Sistema Reattivo, in grado cioè di soddisfare le seguenti caratteristiche:

- responsive: la richiesta di un servizio deve sempre avere una risposta, anche quando si verifica un guasto;
- resilient: i servizi devono poter essere ripristini a seguito di guasti;
- elastic: i servizi devono poter essere scalati in base alla effettiva domanda;
- message-driven: i servizi devono rispondere al mondo, non tentare di controllare ciò che fa.

Ed è richiesto che tutte le componenti applicative siano correlate da test unitari e d'integrazione. Inoltre, è richiesto che il sistema venga testato nella sua interezza tramite test end-to-end.

- Il capitolato ha come obiettivo la creazione di una piattaforma di grande aiuto a fronte della situazione che stiamo vivendo;
- Nel capitolato si tratta l'argomento del machine learning^G, un argomento molto interessante e che potrebbe risultare molto utile in altri ambiti e in futuro:
- L'azienda sembra essere molto disponibile per seguire il gruppo nel percorso di sviluppo del progetto.

5.6 Aspetti critici

- Il capitolato richiede l'apprendimento di molti servizi, sconosciuti dai membri del gruppo, che si basano su argomenti non conosciuti (come il machine learning^G) e non affrontati nel corso di laurea triennale. Quindi gran parte del tempo andrebbe dedicato allo studio di questi concetti e strumenti, ed infine di applicare queste conoscenze;
- Oltre al tempo impiegato per l'apprendimento di questi strumenti c'è da tenere in considerazione il tempo per addestrare la parte di machine learning^G.

5.7 Conclusioni

Nonostante tale capitolato abbia destato particolare interesse all'interno del gruppo, specialmente per la possibilità di utilizzare tecnologie innovative, il team ha valutato la complessità di tale progetto come molto elevata e ha preferito orientarsi verso un'altra alternativa.

6.1 Titolo del capitolato

Il capitolato in questione si chiama "GDP - Gathering Detection Platform", il proponente è l'azienda SyncLab e i committenti sono Prof. Vardanega Tullio e Prof. Cardin Riccardo.

6.2 Descrizione del capitolo

Il capitolato presentato si pone come obiettivo finale la realizzazione di una piattaforma in grado di dare all'utilizzatore finale una rappresentazione grafica delle informazioni sulla probabilità di assembramento nelle zone potenzialmente a richio. Questo viene fatto sulla base di alcuni dati che vengono individuati, raccolti ed elaborati. La piattaforma deve sfruttare tecniche di machine learning e/o deeplearnig in modo da predirre le zone potenzialmente a rischio.

6.3 Tecnologie coinvolte

Sebbene l'azienda non impone tecnologie specifiche per lo sviluppo del server o della UI, vi sono comununque delle scelte preferenziali da considerare nello svolgimento del progetto:

- utilizzo di Java^G e di Angular^G per lo sviluppo della parte di Back-end e di Front-end della componente Web Application del sistema;
- per la gestione delle mappe (heatmap ecc.) il framework Leaflet^G (https://leafletjs.com);
- utilizzo di protocolli asincroni per le comunicazioni tra le diverse componenti;
- utilizzo del pattern Publisher/Subscriber, e adozione del protocollo MQTT ('MQ Telemetry Transport or Message Queue Telemetry Transport'), caratterizzato per essere open, di facile implementazione e ampia diffusione in applicazioni M2M (MachineToMachine) e IoT (InternetOfThings).

Per la parte di Machine Learning, l'azienda da ampia libertà, sebbene ci siano delle tecnologie consigliate:

- Python^G come linguaggio di programmazione:
- TensorFlow^G, Pytorch^G, Keras^G e Scikit-learn^G come libreria per l'apprendimento automatico;

Infine, per facilitare la comprensione delle librerie consigliate, l'azienda propone delle guide come cartacee come:

- Hands-on Machine Learning with Stick-Learn, Keras & TensorFlow;
- Phyton Machine Learning,

e qualche altra risorsa online come Kaggle, Aurelien Geron's Github e Google scholar.

6.4 Vincoli

La proponente suggerisce una architettura in grado di implementare quello che si definisce essere un Sistema Reattivo, in grado cioè di soddisfare le seguenti caratteristiche:

- responsive: la richiesta di un servizio deve sempre avere una risposta, anche quando si verifica un guasto;
- resilient: i servizi devono poter essere ripristini a seguito di guasti;
- elastic: i servizi devono poter essere scalati in base alla effettiva domanda;
- message-driven: i servizi devono rispondere al mondo, non tentare di controllare ciò che fa.

Ed è richiesto che tutte le componenti applicative siano correlate da test unitari e d'integrazione. Inoltre, è richiesto che il sistema venga testato nella sua interezza tramite test end-to-end.

- Il capitolato ha come obiettivo la creazione di una piattaforma di grande aiuto a fronte della situazione che stiamo vivendo:
- Nel capitolato si tratta l'argomento del machine learning^G, un argomento molto interessante e che potrebbe risultare molto utile in altri ambiti e in futuro:
- L'azienda sembra essere molto disponibile per seguire il gruppo nel percorso di sviluppo del progetto.

6.6 Aspetti critici

- Il capitolato richiede l'apprendimento di molti servizi, sconosciuti dai membri del gruppo, che si basano su argomenti non conosciuti (come il machine learning^G) e non affrontati nel corso di laurea triennale. Quindi gran parte del tempo andrebbe dedicato allo studio di questi concetti e strumenti, ed infine di applicare queste conoscenze;
- Oltre al tempo impiegato per l'apprendimento di questi strumenti c'è da tenere in considerazione il tempo per addestrare la parte di machine learning^G.

6.7 Conclusioni

Nonostante tale capitolato abbia destato particolare interesse all'interno del gruppo, specialmente per la possibilità di utilizzare tecnologie innovative, il team ha valutato la complessità di tale progetto come molto elevata e ha preferito orientarsi verso un'altra alternativa.

7.1 Titolo del capitolato

Il capitolato in questione si chiama "GDP - Gathering Detection Platform", il proponente è l'azienda SyncLab e i committenti sono Prof. Vardanega Tullio e Prof. Cardin Riccardo.

7.2 Descrizione del capitolo

Il capitolato presentato si pone come obiettivo finale la realizzazione di una piattaforma in grado di dare all'utilizzatore finale una rappresentazione grafica delle informazioni sulla probabilità di assembramento nelle zone potenzialmente a richio. Questo viene fatto sulla base di alcuni dati che vengono individuati, raccolti ed elaborati. La piattaforma deve sfruttare tecniche di machine learning e/o deeplearnig in modo da predirre le zone potenzialmente a rischio.

7.3 Tecnologie coinvolte

Sebbene l'azienda non impone tecnologie specifiche per lo sviluppo del server o della UI, vi sono comununque delle scelte preferenziali da considerare nello svolgimento del progetto:

- utilizzo di Java^G e di Angular^G per lo sviluppo della parte di Back-end e di Front-end della componente Web Application del sistema;
- per la gestione delle mappe (heatmap ecc.) il framework Leaflet^G (https://leafletjs.com);
- utilizzo di protocolli asincroni per le comunicazioni tra le diverse componenti;
- utilizzo del pattern Publisher/Subscriber, e adozione del protocollo MQTT ('MQ Telemetry Transport or Message Queue Telemetry Transport'), caratterizzato per essere open, di facile implementazione e ampia diffusione in applicazioni M2M (MachineToMachine) e IoT (InternetOfThings).

Per la parte di Machine Learning, l'azienda da ampia libertà, sebbene ci siano delle tecnologie consigliate:

- Python^G come linguaggio di programmazione;
- TensorFlow^G, Pytorch^G, Keras^G e Scikit-learn^G come libreria per l'apprendimento automatico;

Infine, per facilitare la comprensione delle librerie consigliate, l'azienda propone delle guide come cartacee come:

- Hands-on Machine Learning with Stick-Learn, Keras & TensorFlow;
- Phyton Machine Learning,

e qualche altra risorsa online come Kaggle, Aurelien Geron's Github e Google scholar.

7.4 Vincoli

La proponente suggerisce una architettura in grado di implementare quello che si definisce essere un Sistema Reattivo, in grado cioè di soddisfare le seguenti caratteristiche:

- responsive: la richiesta di un servizio deve sempre avere una risposta, anche quando si verifica un guasto;
- resilient: i servizi devono poter essere ripristini a seguito di guasti;
- elastic: i servizi devono poter essere scalati in base alla effettiva domanda;
- message-driven: i servizi devono rispondere al mondo, non tentare di controllare ciò che fa.

Ed è richiesto che tutte le componenti applicative siano correlate da test unitari e d'integrazione. Inoltre, è richiesto che il sistema venga testato nella sua interezza tramite test end-to-end.

- Il capitolato ha come obiettivo la creazione di una piattaforma di grande aiuto a fronte della situazione che stiamo vivendo:
- Nel capitolato si tratta l'argomento del machine learning^G, un argomento molto interessante e che potrebbe risultare molto utile in altri ambiti e in futuro:
- L'azienda sembra essere molto disponibile per seguire il gruppo nel percorso di sviluppo del progetto.

7.6 Aspetti critici

- Il capitolato richiede l'apprendimento di molti servizi, sconosciuti dai membri del gruppo, che si basano su argomenti non conosciuti (come il machine learning^G) e non affrontati nel corso di laurea triennale. Quindi gran parte del tempo andrebbe dedicato allo studio di questi concetti e strumenti, ed infine di applicare queste conoscenze;
- Oltre al tempo impiegato per l'apprendimento di questi strumenti c'è da tenere in considerazione il tempo per addestrare la parte di machine learning^G.

7.7 Conclusioni

Nonostante tale capitolato abbia destato particolare interesse all'interno del gruppo, specialmente per la possibilità di utilizzare tecnologie innovative, il team ha valutato la complessità di tale progetto come molto elevata e ha preferito orientarsi verso un'altra alternativa.

8.1 Titolo del capitolato

Il capitolato in questione si chiama "GDP - Gathering Detection Platform", il proponente è l'azienda SyncLab e i committenti sono Prof. Vardanega Tullio e Prof. Cardin Riccardo.

8.2 Descrizione del capitolo

Il capitolato presentato si pone come obiettivo finale la realizzazione di una piattaforma in grado di dare all'utilizzatore finale una rappresentazione grafica delle informazioni sulla probabilità di assembramento nelle zone potenzialmente a richio. Questo viene fatto sulla base di alcuni dati che vengono individuati, raccolti ed elaborati. La piattaforma deve sfruttare tecniche di machine learning e/o deeplearnig in modo da predirre le zone potenzialmente a rischio.

8.3 Tecnologie coinvolte

Sebbene l'azienda non impone tecnologie specifiche per lo sviluppo del server o della UI, vi sono comununque delle scelte preferenziali da considerare nello svolgimento del progetto:

- utilizzo di Java^G e di Angular^G per lo sviluppo della parte di Back-end e di Front-end della componente Web Application del sistema;
- per la gestione delle mappe (heatmap ecc.) il framework Leaflet^G (https://leafletjs.com);
- utilizzo di protocolli asincroni per le comunicazioni tra le diverse componenti;
- utilizzo del pattern Publisher/Subscriber, e adozione del protocollo MQTT ('MQ Telemetry Transport or Message Queue Telemetry Transport'), caratterizzato per essere open, di facile implementazione e ampia diffusione in applicazioni M2M (MachineToMachine) e IoT (InternetOfThings).

Per la parte di Machine Learning, l'azienda da ampia libertà, sebbene ci siano delle tecnologie consigliate:

- Python^G come linguaggio di programmazione:
- TensorFlow^G, Pytorch^G, Keras^G e Scikit-learn^G come libreria per l'apprendimento automatico;

Infine, per facilitare la comprensione delle librerie consigliate, l'azienda propone delle guide come cartacee come:

- Hands-on Machine Learning with Stick-Learn, Keras & TensorFlow;
- Phyton Machine Learning,

e qualche altra risorsa online come Kaggle, Aurelien Geron's Github e Google scholar.

8.4 Vincoli

La proponente suggerisce una architettura in grado di implementare quello che si definisce essere un Sistema Reattivo, in grado cioè di soddisfare le seguenti caratteristiche:

- responsive: la richiesta di un servizio deve sempre avere una risposta, anche quando si verifica un guasto;
- resilient: i servizi devono poter essere ripristini a seguito di guasti;
- elastic: i servizi devono poter essere scalati in base alla effettiva domanda;
- message-driven: i servizi devono rispondere al mondo, non tentare di controllare ciò che fa.

Ed è richiesto che tutte le componenti applicative siano correlate da test unitari e d'integrazione. Inoltre, è richiesto che il sistema venga testato nella sua interezza tramite test end-to-end.

- Il capitolato ha come obiettivo la creazione di una piattaforma di grande aiuto a fronte della situazione che stiamo vivendo;
- Nel capitolato si tratta l'argomento del machine learning^G, un argomento molto interessante e che potrebbe risultare molto utile in altri ambiti e in futuro:
- L'azienda sembra essere molto disponibile per seguire il gruppo nel percorso di sviluppo del progetto.

8.6 Aspetti critici

- Il capitolato richiede l'apprendimento di molti servizi, sconosciuti dai membri del gruppo, che si basano su argomenti non conosciuti (come il machine learning^G) e non affrontati nel corso di laurea triennale. Quindi gran parte del tempo andrebbe dedicato allo studio di questi concetti e strumenti, ed infine di applicare queste conoscenze;
- Oltre al tempo impiegato per l'apprendimento di questi strumenti c'è da tenere in considerazione il tempo per addestrare la parte di machine learning^G.

8.7 Conclusioni

Nonostante tale capitolato abbia destato particolare interesse all'interno del gruppo, specialmente per la possibilità di utilizzare tecnologie innovative, il team ha valutato la complessità di tale progetto come molto elevata e ha preferito orientarsi verso un'altra alternativa.

9 Riferimenti

9.1 Normativi

• Studio di Fattibilità 0.0.0.

9.2 Informativi

- Capitolato d'appalto C1 BLOCKCOVID: https://www.math.unipd.it/~tullio/IS-1/2020/Progetto/C1.pdf
- Capitolato d'appalto C2 EmporioLambda: https://www.math.unipd.it/~tullio/IS-1/2020/Progetto/C2.pdf
- Capitolato d'appalto C3 GDP: https://www.math.unipd.it/~tullio/IS-1/2020/Progetto/C3.pdf
- Capitolato d'appalto C4 HD Viz: https://www.math.unipd.it/~tullio/IS-1/2020/Progetto/C4.pdf
- Capitolato d'appalto C5 PORTACS: https://www.math.unipd.it/~tullio/IS-1/2020/Progetto/C5.pdf
- Capitolato d'appalto C6 RGP: https://www.math.unipd.it/~tullio/IS-1/2020/Progetto/C6.pdf
- Capitolato d'appalto C7 SSD: https://www.math.unipd.it/~tullio/IS-1/2020/Progetto/C7.pdf