	☐ Álgebra des dados relaci
 □ Na matemática, uma álgebra é um conjunto de objetos e um conjunto de operações sobre estes objetos 	O conjunto c
	☐ Uma operaç
☐ Exemplo: <i>Aritmética</i> , conjunto de números e de operações sobre	☐ Porque apre
numeros (soma, subtraçao,)	Compi
	Não hà mas S
	Algorit (possív
03/1	

Operadores da álgebra relacional

- ☐ Operadores sobre conjuntos (uma tabela é um conjunto de linhas):
- O União
- O Interseção
 - O Diferença
- Produto Cartesiano
- ☐ Operadores específicos da álgebra relacional:
 - Seleção
- O Projeção
- O Junção
 - O Divisão
- O Renomeação

Álgebra relacional

Álgebra

- senvolvida para descrever operações sobre uma base de ional
- de objetos são as tabelas:
- ão possui como operandos e como resultado tabelas
- ender:
- reendendo álgebra relacional é mais fácil apreender SQL
- á SGBD que implementa álgebra diretamente como DML, sQL incorpora cada vez mais conceitos de álgebra
- imos de otimização de consulta definidos sobre álgebra vel uso internamente no SGBD)

03/2

BD exemplo

Реса				
CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
Р3	Mancal	Verde	30	SãoPaulo

Embarq CodPeca	CodFornec	QtdeEmbarc
	F1	300
	F2	400
	F3	200
	F1	300
	F4	350

Fornec			
CodFornec	NomeFornec	StatusFornec	CidadeFornec
F1	Silva	5	SãoPaulo
F2	Souza	10	Rio
F3	Álvares	5	SãoPaulo
F4	Tavares	80	Rio

03/3

Operação de Seleção

- □ A Seleção tem como operando uma tabela. O resultado é uma tabela que contém as linhas que obedecem a um determinado critério.
- Sintaxe:

σ<critério de seleção> (<tabela>)

onde <tabela> é o nome de uma tabela ou uma expressão de álgebra relacional que resulta em uma tabela e <critério de seleção> é uma expressão booleana que envolve literais e valores de atributos da tabela

 O resultado da seleção tem colunas com os mesmos nomes e domínios da tabela de entrada. 03/2

9/80

Exemplo de Seleção

σ(StatusFornec > 5 and CidadeFornec = 'Rio')

□ Resulta em uma tabela com os dados de todas os fornecedores que tenham status maior que 5 e sejam do Rio.

CodFornec	NomeFornec	StatusFornec	CidadeForne
F2	Souza	10	Rio
F4	Tavares	8	Rio

ပ္က

Exemplo de Seleção (BD de peças e fornecedores)

- σ CodPeça = 'P1' (Peça)
- Resulta em uma tabela que contém todos os dados da peça de código P1

CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA

Exemplo de Seleção

G(StatusFornec > 5)
(G (CidadeFornec = 'Rio') (Fornec))

- O mesmo que o anterior, mas usando duas expressões de Seleção aninhadas
- O critério de seleção envolve somente valores de atributos de uma linha. Não é possível especificar critérios que envolvam múltiplas linhas nem critérios que envolvem diferentes tabelas.

Operação de Projeção

- A Projeção tem como operando uma tabela. O resultado é uma tabela que contém apenas as colunas selecionadas.
- Sintaxe:

 π sta de colunas> (<tabela>)

onde <tabella> é o nome de uma tabela ou uma expressão de álgebra relacional que resulta em uma tabela e sta de colunas> é uma lista que contém nomes de colunas da tabela operando.

03/9

03/10

Exemplo de Projeção

- □ A Projeção pode resultar também na eliminação de linhas, caso colunas que são parte da chave forem eliminadas.
- Uma tabela é um conjunto de linhas

Se uma coluna cujos valores distinguem diferentes linhas é eliminada, surgem linhas duplicadas na tabela, que devem ser eliminadas.

- Exemplo
- π CidadeFornec (Fornec)

Resulta em uma tabela que contém todas as cidades em que há fornecedores. Note-se que se houver múltiplos fornecedores na mesma cidade, as diferentes linhas são eliminadas.

CidadeFornec SãoPaulo Rio

Exemplo de Projeção (BD de peças e fornecedores)

- π CodPeça, NomePeça (Peça)
- Resulta em uma tabela que contém os códigos e os nomes de todas as peças.

NomePeça	Eixo	Rolamento	Mancal
CodPeça	P1	P2	E3

Projeção generalizada

□ De forma geral, expressões aritméticas podem ser usadas na lista de projeção:

 π CodPeça, NomePeça, PesoPeca * 1.1322 (Peça)

- □ Problema:
- O qual é o nome da terceira coluna?
- O ver operador de renomeação adiante

Sequências de operadores

□ Operadores diferentes podem ser aninhados

```
\pi CodFornec, QtdeEmbarc (\sigma CodPeça = 'P1' (Embarg)
```

Resulta em tabela com código de fornecedor e quantidade embarcada para cada embarque da peça de código P1.

CodFornec	OtdeEmbarc
00110	
7	300
2	400
3	200

03/13

Exemplo de União

```
π CodFornec (Embarq)

π CodFornec
(G StatusFornec > 5 (Fornec))
```

 $\hfill\Box$ Obtém os códigos de todos os fornecedores que tem embarques e que tem status maior que 5

Operações da teoria de conjuntos

- ☐ A álgebra relacional empresta da teoria de conjuntos quatro operadores: União, Intersecção, Diferença e Produto Cartesiano
- □ Sintaxe da operação União:

```
<tabela>_1 \cup <tabela>_2
```

□ Sintaxe da operação Intersecção:

```
<tabela>_1 \cap <tabela>_2
```

☐ Sintaxe da operação Diferença:

$$<$$
tabela $>_1$ - $<$ tabela $>_2$

- Nos três casos, a operação possui duas tabelas como operando. As tabelas devem ser compatíveis para união:
- Possuir o mesmo número de colunas
- O domínio da *i-ésima* coluna de uma tabela deve ser idêntico ao domínio da *i-ésima* coluna da outra.
- □ Quando os nomes das colunas forem diferentes, adota-se a convenção de usar os nomes das colunas da primeira tabela.

03/14

Operação Produto Cartesiano

Sintaxe da operação Produto Cartesiano:

```
<tabela>_1 X <tabela>_2
```

- ☐ O produto cartesiano possui como operandos duas tabelas.
- O resultado é uma tabela cujas linhas são a combinação das linhas das tabelas <tabela>₁ e <tabela>₂, tomando-se uma linha da <tabela>₁ e concatenando a com uma linha da <tabela>₂.
- Total de colunas do produto cartesiano =
- Número de colunas da primeira tabela +
 - Número de colunas da segunda tabela
- Número de linhas do produto cartesiano =
 - Número de linhas da primeira tabela x
- Número de linhas da segunda tabela.

Exemplo de Produto Cartesiano

📙 Embarg 🗶 Peça

Peça	CorPeça PesoPeça CidadePeça	Cinza 10 PoA	10	Cinza 10 PoA	10	10	Preto 16	Verde 30 SãoPaulo	Verde 30 SãoPaulo	Verde 30 SãoPaulo	Verde 30 SãoPaulo					
	NomePeça	Eixo	Eixo	Eixo	Eixo	Eixo	Rolamento	Rolamento	Rolamento	Rolamento	Rolamento	Mancal	Mancal	Mancal	Mancal	
	CodPeça	P1	P1	P1	P1	P1	P2	P2	P2	P2	P2	РЗ	ВЗ	РЗ	Вз	
	QtdeEmbarc	300	400	200	300	350	300	400	200	300	350	300	400	200	300	
Embard	CodFornec	F1	F2	F3	F1	F4	F1	F2	F3	F1	F4	F1	F2	F3	F1	
	CodPeça	P1	P1	P1	P2	P2	P	P1	P1	P2	P2	P1	P1	P1	P2	

□ A operação tem Produto Cartesiano não é usada isoladamente. Normalmente, ela é combinada com uma seleção que envolve as diversas tabelas multiplicadas. 03/17

03/18

Renomeação

- □ Operador para atribuir (dentro de uma consulta) um novo nome a uma tabela
- Sintaxe
- p <novo nome> (<nome de tabela>)
- ☐ A tabela denominada <nome de tabela> recebe a denominação <novo nome>
- □ Necessário quando, em uma consulta, é necessário acessar mais de uma linha da mesma tabela

Seleção combinada com Produto Cartesiano

π NomePeça

(σ Embarq.CodPeça=Peça.CodPeça (Embarq X Peça))

Obtém os nomes de todas as peças para as quais há embarques

NomePeça Eixo Rolamento

Renomeação

Tabela

EMP(CodEmp, NomeEmp, CodEmpGer) CodEmpGer referencia EMP □ Obter o nome de cada empregado, que tem gerente, seguido do nome de seu gerente

 π EMP.NomeEmp, EMPGER. NomeEmp

 $(\sigma EMP.CodEmpGer = EMPGER.CodEmp$

(EMP x

p EMPGER (EMP)))

03/21 □ Obter o nome de cada empregado seguido do nome do gerente de EMPGER.CodEmpGer = EMPGERGER.CodEmp (σ EMP.CodEmpGer = EMPGER.CodEmp AND π EMP.NomeEmp, EMPGERGER. NomeEmp EMP(CodEmp, NomeEmp, CodEmpGer) As colunas também podem ser renomeadas. p EMPGERGER (EMP))) CodEmpGer referencia EMP p EMPGER (EMP) x NomeEmpGer, seu gerente, caso ele o possua ρ EMPGER(CodEmpGer, Renomeação Exemplo Tabela

CodEmpGerGer)

```
Renomeação(2)
```

Renomeação(2)

EMPGER.CodEmpGer = EMPGERGER.CodEmp (σ EMP.CodEmpGer = EMPGER.CodEmp AND $(\pi \, {\sf EMP.NomeEmp}, \, {\sf EMPGERGER}. \, {\sf NomeEmp})$ (σ EMP.CodEmpGer = EMPGER.CodEmp (π EMP.NomeEmp, EMPGER. NomeEmp p EMPGERGER (EMP)))) p EMPGER (EMP)))) p EMPGER (EMP) x D

Operador de ponto fixo

- gerente, bem como, obter o nome de cada empregado seguido do □ Obter o nome de cada empregado seguido do nome de seu nome do gerente de seu gerente e assim por diante.
- □ Caso o número de níveis de gerência seja fixo, é possível resolver com uma série de uniões
- Caso o número de níveis de gerência seja variável, é necessária uma operação que implemente recursividade.
- Álgebra relacional original não implementa recursividade.
- □ Há extensões que implementam o operador de ponto fixo (ф).

Operador de ponto fixo

03/25

Operador de ponto fixo (avaliação)

```
φ (

CHEFIA=

(

π EMP.CodEmp, EMP.CodEmpGer (EMP)

σ EMP.CodEmp CHEFIA.CodEmpGer

(σ EMP.CodEmpGer = CHEFIA.CodEmp

(σ EMP x CHEFIA)

Relação EMP é

juntada com a
relação CHEFIA

definida no passo
anterior
```

Operador de ponto fixo (avaliação)

```
CHEFIA=

(
π EMP.CodEmp, EMP.CodEmpGer (EMP)

π EMP.CodEmp, CHEFIA.CodEmpGer

α EMP.CodEmpGer = CHEFIA.CodEmp

(α EMP.CodEmpGer = CHEFIA.CodEmp

(α EMP x CHEFIA)

)

)

(α EMP x CHEFIA)

)

(β EMP x CHEFIA)

(α EMP x CHEFIA)

(α EMP x CHEFIA)

(α EMP x CHEFIA)
```

Operador de ponto fixo (avaliação)

```
φ (

CHEFIA=

(

π EMP.CodEmp, EMP.CodEmpGer (EMP)

σ EMP.CodEmpG = CHEFIA.CodEmp

(σ EMP.CodEmpGer = CHEFIA.CodEmp

(σ EMP x CHEFIA)

Finat:

)

Perador termina quando o resultado não muda pela iteração
```

Operação de Junção

□ A combinação de uma operação de seleção aplicada sobre uma operação de produto cartesiano é usual em aplicações de BD. É através dela que dados de tabelas relacionadas são associados. Por isso, foi criada a operação de junção que corresponde exatamente à seqüência de operações em questão.

Sintaxe:

<tabela> $_1$ M <critério> <tabela> $_2$

onde <tabela> é o nome de uma tabela ou uma expressão de álgebra relacional que resulta em uma tabela e <critério> é uma expressão booleana envolvendo literais e valores de atributos das duas tabelas.

 A Junção tem como operandos duas tabela. O resultado é equivalente a executar:

 $\langle critério \rangle$ ($\langle tabela \rangle_1 X \langle tabela \rangle_2$)

03/29

Junção theta, Equijunção e Junção natural

Critério de junção:

- qualquer expressão booleana, inclusive comparações do tipo <,
 >, <>, ... entre os valores de atributos das tabelas envolvidas na junção
- O Essa operação genérica de Junção é chamada de Junção theta.
- ☐ Na maior parte dos casos, o <critério> de junção é uma expressão como mostrada no exemplo
- Envolve apenas igualdade de valores de atributos de diferentes tabelas
- Esse tipo de junção é chamada de Equijunção e representada pelo símbolo *

Exemplo de Junção (BD de peças e fornecedores)

Embarq M(Embarq.CódFornec = Fornec.CódFornec) Fornec

Associa cada linha de embarque com a correspondente linha de fornecedor.

_						
	CidadeFornec	SãoPaulo	- Bio	SãoPaulo	SãoPaulo	Rio
	StatusFornec	5	10	2	2	8
Fornec	NomeFornec	Silva	Souza	Álvares	Silva	Tavares
	CodFornec	Ŧ	F2	E	正	F4
	QtdeEmbarc	300	400	200	300	350
Empard	CodFornec	Ξ	F2	E	正	F4
	CodPeça	Ы	<u>-</u>	ᇤ	P2	P2

03/30

Equijunção

Sintaxe da Equijunção:

<tabela>1 * (<lista>2), (<lista>2) <tabela>2
<lista>2 * \$\frac{36}{4}\$ as listas dos nomes das colunas
das tabelas 1 e 2 respectivamente cujos valores são
comparados um a um, para fazer a junção

 A operação de Equijunção distingue-se da Junção theta pelo fato de eliminar a segunda coluna em cada um dos pares que são comparados (já que os valores da segunda coluna são idênticos aos primeiros).

Exemplo de Equijunção (BD de peças e fornecedores)

Embarg * (CódFornec), (CódFornec) Fornec

Associa cada linha de embarque com a correspondente linha de fornecedor.

	CidadeFornec	SãoPaulo	Rio	SãoPaulo	SãoPaulo	Rio
Fornec	StatusFornec	5	10	2	5	8
	NomeFornec	Silva	Souza	Álvares	Silva	Tavares
	QtdeEmbarc	300	400	500	300	350
Embarq	CodFornec	F	F2	23	E	F4
	CodPeça	Ы	F	<u>F</u>	P2	P2

03/33

Divisão

Como a Junção, a Divisão é uma operação de álgebra relacional que pode ser construída a partir de outras, e é útil para casos que aparecem freqüentemente.

Sintaxe

<tabela $>_1$ + <tabela $>_2$

Semântica

A operação de divisão tem duas tabelas como operandos. Os nomes das colunas e respectivos domínios da <tabela>2 (C2) devem estar contidos dentro dos nomes das colunas e respectivos domínios da <tabela>1 (C1).

A tabela resultante tem como nomes de colunas e domínios aqueles que aparecem na <tabela>1, mas não aparecem na <tabela>2 (C1-C2). Para que uma linha apareça no resultado, é necessário que a sua concatenação com cada linha da <tabela>2 apareça também na <tabela>1

Junção Natural

- □ No caso acima, as colunas de junção possuem os mesmos nomes.
- □ Para estes casos existe a Junção natural, na qual as listas de nomes de colunas não necessitam ser especificadas.
- Sintaxe da Junção natural:

<tabela $>_1$ * <tabela $>_2$

Exemplo de Junção natural

Associa cada linha de embarque com a correspondente linha de fornecedor.

Embarg * Fornec

03/34

Exemplos de divisão

	CódPeça P2 P4	CódFornec F1 F2 F3
CódPeça CódFomec P1 P2 P3 F1 P4 F1 P5 P4 F1 P5 P4 F2 P7	CódPeça P1 P2 P3 P4	CódFornec F1 F3
11	7.7	(1+T2

Exemplo de Divisão (BD de peças e fornecedores)

(π CodFornec, CodPeça (Embarg))

(π CodPeça (σ CidadePeça='PoA' or CidadePeça='Rio' (Peça))) A consulta obtém os códigos dos fornecedores que possuem embarques para todas peças de 'PoA' ou 'Rio' A palavra "todos" muitas vezes está associada à operação de

03/37

Restrições da operação de Junção

- □ A operação de junção concatena duas linhas das tabelas que estão sendo juntadas com base no critério de junção (normalmente por igualdade de valores de atributos)
- Uma linha que não possua nenhuma linha na outra tabela associada pelo critério de junção não aparece na tabela resultado.
- Há situações em que é necessário garantir que todas linhas de uma das tabelas de junção (ou de ambas) apareça no resultado.

Conjunto mínimo de operações

- ☐ Muitas operações podem ser derivadas de outras
- ☐ Foi identificado um conjunto mínimo (completo) de operações, das quais todas as demais podem ser derivadas:
- Seleção
- Projeção,
- O União
- Diferenca 0
- Produto Cartesiano

03/38

Exemplo de restrição da junção

- departamento, caso o empregado seja gerente do departamento ☐ Obter os dados de todos empregados junto com o nome de seu
- resultado participariam apenas as linhas de empregados que são Esta consulta não pode ser resolvida com a Junção, já que do gerentes e não dos demais

Junção externa (outer join)

Exemplo:

Empregado —M (CódEmp=CédEmpGer) Departamento

- □ O operador ⇒ é chamado de Junção externa esquerda ("left outer-join")
- Semântica
- Caso o critério de junção seja verdadeiro para uma ou mais linhas da tabela O A Junção externa esquerda contém ao menos uma vez cada linha da tabela à esquerda do operador (no caso a tabela Empregado). Esta linha aparece à direita, a linha da tabela à esquerda aparecerá concatenada com uma ou verdadeiro para nenhuma linha da tabela à direita do operador de junção. concatenada com uma linha vazia, caso o critério de junção não seja mais linhas da tabela à direita.
- ☐ De forma similar podem ser definidas:
- Junção externa direita (símbolo ⋈
- Junção externa plena (símbolo □M□)

03/41

Junção externa sem uso de sintaxe explícita

□ Junção externa pode ser representada usando as junções internas

```
Empregado M (CódEmp=CédEmpGer) Departamento
                                                                                P CodEmp, NomeEmp, NULL, NULL, NULL
                                                                                                                                                                                                                                                  \pi CodEmpGer (Departamento)
                                                                                                                                                                 \pi CodEmp (Empregado)
                                                                                                                                                                                                                                                                                                                                  * Empregado
```

D