Problem Sheet 6

18 March

- 1. Let m and n be positive integers. Show that the tensor product $\mathbf{Z}/m\mathbf{Z} \otimes \mathbf{Z}/n\mathbf{Z}$ is isomorphic to $\mathbf{Z}/d\mathbf{Z}$ for some d, and determine d. Also describe the bilinear map $\mathbf{Z}/m\mathbf{Z} \times \mathbf{Z}/n\mathbf{Z} \xrightarrow{\otimes} \mathbf{Z}/d\mathbf{Z}$.
- **2.** Let M and N be **Z**-modules (Abelian groups), and assume that M is a torsion group (every element has finite order) and N is a divisible group (multiplication by n on N is surjective for every positive integer n).
 - (a) Let A be an Abelian group, and let $b: M \times N \to A$ be a **Z**-bilinear map. Show that b is the zero map.
 - (b) Deduce that $M \otimes N$ is the trivial group (and the universal bilinear map $M \times N \to M \otimes N$ is the zero map).
- **3.** (a) Let R, S and T be three rings, let M be an (R,S)-bimodule, and let N be an (S,T)-bimodule. Show that the tensor product $M \underset{S}{\otimes} N$ has a natural (R,T)-bimodule structure.
 - (b) Let R and S be two rings, let L be a right R-module, let M be an (R, S)-bimodule, and let N be a left S-module. Show that there is a canonical isomorphism

$$(L \underset{R}{\otimes} M) \underset{S}{\otimes} N \xrightarrow{\sim} L \underset{R}{\otimes} (M \underset{S}{\otimes} N)$$

of Abelian groups.

4. Let A be a commutative ring, and let M and N be left A-modules. We also view M as a right A-module via ma = am for $m \in M$ and $a \in A$, and similarly for N; this is possible because A is commutative. In particular, we have left A-modules $M \otimes N$ and $N \otimes M$. Show that there is a canonical isomorphism

$$M \underset{A}{\otimes} N \xrightarrow{\sim} N \underset{A}{\otimes} M$$

of left A-modules.

- **5.** Let $\phi: R \to S$ be a ring homomorphism, and let M be a left R-module.
 - (a) Show that the Abelian group $S \underset{R}{\otimes} M$ (where S is viewed as a right R-module via $(s,r) \mapsto s\phi(r)$) has a natural left S-module structure.
 - (b) Let N be a left S-module, and let ϕ^*N be the Abelian group N viewed as a left R-module via $(r,n) \mapsto \phi(r)n$; cf. Exercise 12 of problem sheet 1. Show that there is a canonical isomorphism

$$_{S}\mathrm{Hom}(S \underset{R}{\otimes} M, N) \xrightarrow{\sim} {_{R}}\mathrm{Hom}(M, \phi^{*}N)$$

of Abelian groups.

- **6.** Let R and S be two rings, and let T be the Abelian group $T = R \otimes S$ (where R and S are viewed as **Z**-modules).
 - (a) Show that the map

$$(R \times S) \times (R \times S) \longrightarrow R \times S$$

 $((r,s),(r',s')) \longmapsto (rr',ss')$

induces a bilinear map $m: T \times T \to T$.

- (b) Show that T has a natural ring structure, with the map m from (a) as the multiplication map.
- (c) Show that there are canonical ring homomorphisms $i: R \to T$ and $j: S \to T$.
- (d) Show that T, together with the maps i and j, is a sum of R and S in the category of rings.
- **7.** Let A be a commutative ring. Formulate and prove an analogue of Exercise 6 for A-algebras.
- 8. Let $A \to B$ be a homomorphism of commutative rings, and let R be an A-algebra. Show that the A-algebra $B \otimes_A R$ has a natural B-algebra structure.
- **9.** Let $k \to K$ be a field extension.
 - (a) Let n be a non-negative integer. Show that there is a canonical isomorphism

$$K \underset{k}{\otimes} \operatorname{Mat}_{n}(k) \xrightarrow{\sim} \operatorname{Mat}_{n}(K)$$

of K-algebras.

(b) Let G be a group. Show that there is a canonical isomorphism

$$K \underset{k}{\otimes} k[G] \xrightarrow{\sim} K[G]$$

of K-algebras.

10. Let **H** be the **R**-algebra of Hamilton quaternions. We recall that this is the 4-dimensional **R**-vector space with basis (1, i, j, k), made into an **R**-algebra with unit element 1 and multiplication defined on the other basis elements by

$$i^2 = j^2 = k^2 = -1$$
, $ij = -ji = k$, $jk = -kj = i$, $ki = -ik = j$

and extended **R**-bilinearly.

- (a) Show that **H** is a division ring. (*Hint*: use the conjugation map $a+bi+cj+dk \mapsto a-bi-cj-dk$ for $a,b,c,d \in \mathbf{R}$.)
- (b) Show that there is an isomorphism $\mathbf{C} \otimes \mathbf{H} \xrightarrow{\sim} \mathrm{Mat}_2(\mathbf{C})$ of \mathbf{C} -algebras.
- 11. Let R be a ring that is semi-simple as a left module over itself, so there is a family $(M_i)_{i\in I}$ of simple R-modules such that R is isomorphic to $\bigoplus_{i\in I} M_i$ as an R-module.
 - (a) Show that the set I is finite. (Hint: write $1 \in R$ as a sum of elements of the M_i .)
 - (b) Show that every simple R-module is isomorphic to one of the M_i .
- 12. Let R and S be two semi-simple rings. Show, using the definition of semi-simple rings, that the product ring $R \times S$ is also semi-simple. (Do not use the classification of semi-simple rings; this has not yet been proved in the lecture.)