CS3230 Lecture 1

Overview

Diptarka Chakraborty

Wing-Kin Sung, Ken

CS3230: Design and Analysis Algorithms

- Course Objectives:
 - Learns tools to analyse the performance of algorithms
 - Learns techniques to design an efficient algorithm.

- After the course, students will be able to
 - Perform analysis of the asymptotic performance of algorithms.
 - Design efficient algorithms to solve problems.
 - Demonstrate knowledge of common algorithms.

What to do?

- Attend lecture
- Attend tutorial
- Discussion through internet (LumiNUS)
- Assignment
- Reading
- Final Exam

Pre-requisite

- CS2010 or CS2020 or CS2040/C/S Data Structures and Algorithms
- CS1231/S or MA1100 Discrete Structures

Attend lecture

- 2 hours lecture every week
 - Thursday (4:00pm 6:00pm), I3-AUD
- Lecturers:
 - Ken Sung (ksung@comp.nus.edu.sg)
 - Diptarka Chakraborty (diptarka@comp.nus.edu.sg)
- Tutors:
 - Eldon Chung (eldon.chung@u.nus.edu)
 - Govind Venugopalan (gv94@u.nus.edu)
 - Tran Tan Phat (e0196695@u.nus.edu)
 - Joshua Casey Darian (joshuac@comp.nus.edu.sg)
 - Le Quang Tuan (e0313526@u.nus.edu)
 - Wei Liang Gan (e0030014@u.nus.edu)

Attend tutorial

• 1 hours tutorial every week (starting from week 3)

Group	Day of Week	Start	End	Venue
T01	Tuesday	16:00	17:00	COM1-0203
T02	Wednesday	13:00	14:00	COM1-0203
T03	Friday	13:00	14:00	COM1-0114
T04	Monday	11:00	12:00	COM1-0207
T05	Wednesday	12:00	13:00	COM1-0203
T06	Tuesday	10:00	11:00	COM1-0203
T07	Friday	10:00	11:00	COM1-0114
T08	Wednesday	15:00	16:00	COM1-0203
T09	Wednesday	14:00	15:00	COM1-0203
T10	Friday	12:00	13:00	COM1-0114
T11	Monday	10:00	11:00	COM1-0207
T12	Tuesday	11:00	12:00	COM1-0203
T13	Tuesday	17:00	18:00	COM1-0203
T14	Friday	11:00	12:00	COM1-0114

Mode of learning

Lecture

- Two third of the lecture is on presentation
- One third of the lecture is on recitation (Q&A) using Archipelago.
 - Bring your computer or mobile device for participation
 - Pen and paper to do the work

Tutorial

- Need to prepare answers for 1-2 questions before tutorial. The rest of the questions are disclosed during tutorial.
- Work through problems using Archipelago.
- Same workflow as in recitation, but student needs to present each question on the white-board after group discussion.
- Bring your computer or mobile device for participation, pen and paper to do work.

Syllabus

Week No.	Date	Topics	Lecturer
1	16-Jan-20	Reasoning and asymptotic analysis (analysis)	Ken
2	23-Jan-20	Recurrences and Master Theorem (analysis)	Ken
3	30-Jan-20	Divide-and-Conquer Algorithm (design)	Ken
4	6-Feb-20	Sorting Lower Bounds (analysis), Sorting in Linear Time (design)	Ken
5	13-Feb-20	Probabilistic Analysis, Randomized Algorithms Hashing and Quicksort (analysis)	Ken
6	20-Feb-20	Searching, Median Find, Order Statistics (i.e. Select) (design)	Ken
	27-Feb-20	Recess week	
7	5-Mar-20	Amortized Analysis (analysis) + mid-term test (7 Mar: 10am-12noon)	Diptarka
8	12-Mar-20	Dynamic Programming (design)	Diptarka
9	19-Mar-20	Greedy Algorithms (design)	Diptarka
10	26-Mar-20	Graph algorithms (design) and Problem reductions (analysis)	Diptarka
11	2-Apr-20	More NP-Completeness (analysis)	Diptarka
12	9-Apr-20	Approximation Algorithms (design)	Diptarka
13	16-Apr-20	Summary and Revision	Ken/Diptarka
	5-May-20	Examination (9:00am-11:00am)	

Discussion through internet

- LumiNUS
 - Overview
 - Module details
 - Gradebook
 - Files
 - Share your opinion in the discussion forum
 - Post your questions and feeling here
 - Visit LumiNUS frequently

Assignment

• There will be 3 written assignments and 2 programming assignments and 1 term test.

You are encouraged to handin assignments using double-sided print.

Detail of the homeworks (tentative)

- HW1 (24 Jan 7 Feb)
 - Recurrence and Master theorem
- HW2 (7 Mar 21 Mar)
 - Amortization
- HW3 (3 Apr 17 Apr)
 - NP hardness
- Prog1 (14 Feb 6 Mar)
 - Divide-and-conquer or linear sorting
- Prog2 (20 Mar 10 Apr)
 - DP or Greedy

Textbook

- Main Textbook:
 - [CLRS09] Introduction to Algorithms, (3rd edition)
 - by Cormen, Leiserson, Rivest, Stein, 2009.

- Reference Material:
 - [HH13] Competitive Programming, (3rd edition)
 - by Steven Halim and Felix Halim, 2013.
 - [KT06] Algorithm Design, by Kleinberg & Tardos
 - by Addison-Wesley, 2006.

Assessment

• Continuous assessment: 40%

• Miderm test: 20% (Sat of week7 (7 Mar 2020) 10am-12noon)

• Final Exam: 40%

Continuous assessment

- Continuous Assessment:
 - 3 written assignments (7 marks each): 21 marks
 - 2 programming assignments (7 marks each): 14 marks
 - Participation (measured through Archipelago recitation and tutorial exercises, and IVLE forum. Based on effort rather than correctness. Make sure you participate!): 7 marks
 - Challenge questions: 1 mark each
- Total: 42 marks possible if you do not do any challenge questions, but capped at max of 40.

Academic Policy (on Plagiarism)

- Do your work YOURSELF
- If you are REALLY stuck,
 - Approach instructor/tutor for help
- If you want to discuss with fellow students
 - Discuss general approach (not detailed answers)
 - You MUST write up YOUR OWN answers.
 - You must write down names of collaborators
- Do NOT copy/compare answers!
 - If you do so, for the first attempt, deduce that assignment mark from 7 marks to 0 marks.
 - For the second attempt, CA mark from 40 marks → 0 marks.
- Please do not post assignment questions and do not put your code in public repositories
 - For example, should NOT post anything on stackoverflow.
 - You can ask question on Luminus

Any questions!

Hope that you enjoy this class