

1. Unidades de medida de la información

El **bit** es la unidad mínima de información; con él podemos representar dos valores cualesquiera, como verdadero o falso, abierto o cerrado, blanco o negro, norte o sur, rojo o azul... Basta con asignar uno de esos valores al estado de "apagado" (0) y el otro al estado de "encendido" (1).

Cuando se almacena la información no se trabaja a nivel de bit, sino que se trabaja a nivel de carácter (letra, número o signo de puntuación), que ocupa lo que se denomina un **byte,** que a su vez está compuesto de 8 **bits**.

El ordenador trabaja con agrupaciones de bits fáciles de manipular y suelen ser múltiplos de 2, la base del <u>sistema binario</u>. Los tamaños más comunes son:

- Octeto, carácter o byte: es la agrupación de 8 bits, el tamaño típico de información;
 con él se puede codificar el alfabeto completo (ASCII estándar).
- Palabra: tamaño de información manejada en paralelo por los componentes del sistema, como la memoria, los registros o los buses. Son comunes las palabras de 8, 32, 64, 128 y 256 bits: 1 byte, 4, 8, 16, 32 bytes. A mayor tamaño de palabra, mayor es la precisión y la potencia de cálculo del ordenador.

Así, cuando decimos que un archivo de texto ocupa 5000 bytes, queremos decir que contiene el equivalente a 5000 letras o caracteres (entre dos y tres páginas de texto sin formato).

Lo normal es utilizar los múltiplos del byte: el kilobyte (KB), el megabyte (MB), el gigabyte (GB), etc.

En informática se utilizan las potencias de 2 (2³, 2¹⁰, 2²⁰...) para representar las medidas de la información; sin embargo, se ha extendido el uso de las potencias de 10 (uso decimal), debido a que se ha impuesto el uso del *Sistema Internacional de Medidas* (SI), o sistema métrico. Así pues, el primer término de medida que se utilizó fue el **kilobyte** (KB), y se eligió este porque 2¹⁰ es aproximadamente 1000, que se asocia con el kilo (1000 gramos); en realidad debería ser 1024 bytes, ya que 2¹⁰ son 1024.

La siguiente tabla muestra las unidades de medida de información más utilizadas, tanto en su uso decimal como en su uso binario:

Nombre (símbolo)	Sistema Internacional de Unidades (SI) Estándar (uso decimal)	Prefijo binario (uso binario)	Nombre (símbolo)
Kilobyte (KB)	$1000^1 = 10^3$ bytes	$1024^1 = 2^{10}$ bytes	Kibibyte (KiB)
Megabyte (MB)	1000 ² = 10 ⁶ bytes	1024 ² = 2 ²⁰ bytes	Mebibyte (MiB)
Gigabyte (GB)	1000 ³ = 10 ⁹ bytes	1024 ³ = 2 ³⁰ bytes	Gibibyte (GiB)
Terabyte (TB)	1000 ⁴ = 10 ¹² bytes	1024 ⁴ = 2 ⁴⁰ bytes	Tebibyte (TiB)
Petabyte (PB)	1000 ⁵ = 10 ¹⁵ bytes	1024 ⁵ = 2 ⁵⁰ bytes	Pebibyte (PiB)
Exabyte (EB)	1000 ⁶ = 10 ¹⁸ bytes	1024 ⁶ = 2 ⁶⁰ bytes	Exbibyte (EiB)
Zettabyte (ZB)	$1000^7 = 10^{21}$ bytes	1024 ⁷ = 2 ⁷⁰ bytes	Zebibyte (ZiB)
Yottabyte (YB)	1000 ⁸ = 10 ²⁴ bytes	1024 ⁸ = 2 ⁸⁰ bytes	Yobibyte (YiB)

Por ejemplo, un **gigabyte** (GB) equivale a 10⁹ bytes. Es una de las unidades que más se usa actualmente para especificar la capacidad de la memoria RAM, de las memorias de tarjetas gráficas, de los CD-ROM o el tamaño de los programas y de los archivos grandes.