Stata Workshop

At MINAGRI

Roshni Khincha and Sakina Shibuya DIME, World Bank August, 2018

Section 1

Excel vs Stata

Can I use Excel?

The main reasons to use Stata

- In Excel you make changes directly to the data and save new versions of the data set
- In Stata you make changes to the instructions on how to get from the raw data to the final analysis and save new versions of the instructions
- Since Stata is a more statistics oriented software, processing the data to create analytical products can be a lot easier.

The main reasons to use Stata

- Powerful tool with may capabilities:
 - Descriptive statistics
 - Inference statistics
 - Complex data analysis
- But its also good for beginner programmers:
 - User friendly interface
 - Relatively easy programming language that can be learned while youre using the software

What's the fuss about do-files?

- Its through the do-file you communicate your work to other members in your team, both current and future
- Think of the do-files as instructions on how to get from raw data to final report
- For a simple task you can enter commands manually. But for more complex tasks you need to write a recipe, or a list of instructions

The basics of Stata

Stata interface

The Stata interface

The Stata interface

The review window

- Provides a history of your actions
- A convenient way to bring back your previous commands and modify it to do something new
- Double click on a command you want to use again and it will appear in your command window
 - You can also click in command window and select the commands in the result window by using PageUp/PageDown buttons (or fn+ArrowUp/ fn+ArrowDown on Mac)
- If a command is red in the review window, it means it did not finish because an error

The Stata interface

Filtering in variable and review windows

- Both the variable and the review window will soon be very crowded. You can then search both of them for commands/variables
- If you do not see the search bar, click the little funnel symbol

The basics of Stata

How to open a data set in Stata

Opening datasets

Three ways to tell Stata what to do

- Drop-down menus
 - An easy place to start but quickly becomes inefficient
- Command window
 - Faster than menus but require that you are familiar with the command
- Do-file
 - The only feasible way to run long instructions
 - Use menus and command window to figure out what you need to write, then copy to a do file

Opening datasets

Open a dataset - menus

Opening datasets

Open a dataset - command window

- When you use the menus, Stata produces the code for that action (except for Data Browse)
 - Highlight, right-click and copy the code
 - · Paste the code in the command window
 - Hit enter

- Open Stata and then open the EICV household data set cs_s0_s5_household.dta using the menu: File → Open. Navigate to where you saved the material for this lab. Select the data set and click Open
- 2. Browse to check that you have data: Data o Data Editor o Data Editor Browse
- 3. Describe to get additional information on the data: Data \rightarrow Describe data \rightarrow Describe data in memory or in a file.
 - A new window will open
 - Select In memory and press OK

- You can see that one the second command printed information on your screen.
 - The first part is the command used
 - The second part are the results

	data from C:\Users\WB519128\Dropbo ining\Data\cs_s0_s5_household.dta 14,419 76 8,709,076				x\Work\WB\Mission - Rwanda Feeder Roads\Sta 28 Jun 2016 09:56			
variable	name	storage type	display format	value label	variable label			
hhid		double	%10.0g		Household Identifier_in cross section			
province		double	%10.0g	province	Province			
district		double	%10.0g	district	District (also stratum CS; panel)			
ur2012		double	%10.0g	ur2012	Urban/Rural 2012 (4 categories)			
ur2_2012		double	%10.0g	ur2_2012	Urban/Rural 2012 (2 categories)			
region		double	%10.0g	region	Region			
weight		double	%10.0g		Sampling weight CS			
clust		double	%10.0g		Cluster			
rwanda		double	%10.0g	rwanda	All Rwanda			

- You can perform both tasks by typing the in your command prompt.
 This will yield the same results
- Type browse in the command window and press enter
- Type describe and press enter

The basics of stata

Exploring a data set opened for the first time

Introduction

- To successfully clean a data set you must first understand the data set
- Some terminology:
 - Columns are called variables
 - Rows are called observations

The EICV data

- For our exercises we will explore part of EICV 4 data
- The data is a household survey collected between 2013 and 2014 by NISR
- It is a cross-section of more than 14 thousand Rwandese households both in rural and urban areas
- Close to 2 thousand of these households form a panel have been also interviewed in EICV 3

Types of variables

- In Stata, each variable (column) has to be either:
 - string (text) values are red when browsing
 - numeric (number) values are black or blue when browsing
- Numbers can be stored as text, but text cannot be stored as number
 - Not possible to do computations on numbers stored as text
- Categorical variables should be stored as numeric variables and have labels

How the data looks

hhid	province	district	ur2012	ur2_2012	region	Weight
100004	Kigali Cit	Nyarugenge	Urban	Urban	Kigali Cit	71.45979
100005	Kigali Cit	Nyarugenge	Urban	Urban	Kigali Cit	71.45979
100006	Kigali Cit	Nyarugenge	Urban	Urban	Kigali Cit	71.45979
103589	Southern P	Gisagara	Peri urban	Rural	Rural Sout	154.7477
103718	Southern P	Gisagara	Rural	Rural	Rural Sout	165.6057
103719	Southern P	Gisagara	Rural	Rural	Rural Sout	165.6057
103720	Southern P	Gisagara	Rural	Rural	Rural Sout	165.6057
105133	Southern P	Nyamagabe	Semi urban	Urban	Other Urba	152.6599
105134	Southern P	Nyamagabe	Semi urban	Urban	Other Urba	152.6599
105135	Southern P	Nyamagabe	Semi urban	Urban	Other Urba	152.6599

How the data actually is

hhid	province	district	ur2012	ur2_2012	region	weight
100004	1	11	1	1	1	71.45979
100005	1	11	1	1	1	71.45979
100006	1	11	1	1	1	71.45979
103589	2	22	3	2	3	154,7477
103718	2	22	4	2	3	165.6057
103719	2	22	4	2	3	165.6057
103720	2	22	4	2	3	165.6057
105133	2	25	2	1	2	152.6599
105134	2	25	2	1	2	152.6599
105135	2	25	2	1	2	152.6599

Useful commands

- <u>browse</u>: see all data in spreadsheet format
- <u>describe</u>: list of all variables in memory
 - Total number of variables & observations (size of matrix)
 - Variable name, type, format, value label name, variable label
- <u>summarize</u>: Basic statistics for numeric variables
 - Obs (Number of observations), Mean, Std. Dev. (Standard deviation), Min (Minimum), Max (Maximum)
- <u>tab</u>ulate: frequencies

More commands

- codebook: displays the following for each variable
 - Type (more detail than describe)
 - Number of unique values and number of missing values
 - Range and units
 - Examples of values (strings); tabulations (categorical); or mean, sd and percentiles (continuous)
 - Warnings if embedded blanks (may or may not be ok)
- labelbook: displays the following for each stored value label
 - Label definitions
 - Which variables labels are applied to
- list: lists all variables and observations
 - Can qualify: list if price < 5000, list in 1/10
- <u>summarize</u>, <u>detail</u>: percentiles, variance, skewness, kurtosis

- Open the cs_s0_s5_household.dta again. Use the command prompt this time.
- 2. Explore the dataset
 - browse see the different colors in the columns
 - describe check the storage type column
 - summarize are there any statistics that might not make sense to interpret?
- 3. Learn more about the variable *s5bq3a*, the household estimated rent amount. What values does it take on? What is minimum, maximum, mean of this variable? How many unique values does it have?
 - . use "\$data\cs_s0_s5_household.dta", clear
 - . tabulate s5bq3a
 - . summarize s5bq3a
 - . codebook s5bq3a

- Learn more about the variable *ur2012*, to learn about the proportion of urban and rural households in Rwanda
 - tabulate ur2012
 - ullet Create now a pie chart: Graphics o Pie chart, select ur2012 as Category variable and press OK
- Now, create a pie-chart graph for the variable s5cq7, the type drinking water source used. This time, use the command prompt!
 - Use the code printed by the previous graph and replace the name of the variable

Tips and resources

- Using help Type help summarize to get documentation on the summarize function
- Using search Type *search regression* to get general documentation on running regressions in Stata
- Google Search what you want to do. There are many resources online (e.g. Statalist)

Section 2

The basics of Stata

Editing data in Stata

Editing data in Stata

Delete variables

- You can delete variables using the commands drop or keep
- Deleting variables is useful to
 - Simplify a very complex data-set for you to work with
 - Reduce computational time when dealing with large data-sets
 - Create temporary subsets of data for analytical purposes, like creating a table or graph
- WARNING: be careful not save the new data on top of the original

- Open the cs_s0_s5_household.dta data set
 - . use "\$data\cs_s0_s5_household.dta", clear
- Keep the variables we will use in this excerise by typing
 - . keep hhid province district ur2012 s5cq2 s5cq4 s5cq8 s5cq15 s5c
 - > q23 s5bq2 s5cq22 s5cq13 s5cq17
- Now lets say we kept a few variables that we didnt actually needed. To drop them, type
 - . drop province s5bq2 s5cq17 s5cq15

Editing data in Stata

Renaming variables

- You can use the command rename to change the names of your variables
- Renaming is useful as
 - Can make your life easier when programming. Especially when the original variable names dont make much sense
 - It helps you remember what the variable means when a meaningful name is chosen
 - · Picking a short variable name reduces time when typing it

 Rename all the remaining variables. Type the code bellow, one line at a time

```
. rename ur2012 urban_2012
. rename s5cq2 m_main_ws
. rename s5cq4 m_used_ws
. rename s5cq8 m_drink_ws
. rename s5cq13 earnings_sell_w
. rename s5cq22 d_affected_dis
. rename s5cq23 dis_type
```

Generating variables

- You can use the command generate to create new variables
- Generating variables can be useful to
 - Change the values of a variable to a different measurement unit
 - Create a dummy variable identifying if how many observations have a given characteristic

 Let us create a variable that converts the number of meters to the main water source to centimeters. Type:

```
. generate cm_main_ws = m_main_ws*100
(1,098 missing values generated)
```

Now get descriptives for the new variable using summarize

- Let us create a dummy variable (that assumes values 0 or 1) to see if the main water source is the same as the used water source.
- First create a variable that equals zero

```
. gen d_closest_ws = 0
```

 Now lets replace that with 1 when it satisfies the condition that the two variables are equal. Type:

```
. replace d_closest_ws = 1 if m_main_ws == m_used_ws
(10,250 real changes made)
```

Finally, tabulate the data using the function tabulate

Editing data in Stata

Labeling variables and values

- Labeling variables helps understand the variable
- Value labels indicate what each category of a categorical variable stands for
- Labeling variables and values is essential for easier understanding in the future by you and others

- Let us create a label for the two variables we created in Task 5
 - . label variable cm_main_ws "Cm to main water source"
 - . label variable d_closest_ws "Closest water source is used water
 - > source"
- Check the variable window to see the label!

 We can also create labels for values with the functions label define and label values. Type:

```
. label define yes_no_lb 1 "Yes" 0 "No"
```

- . label values d_closest_ws yes_no_lb
- You can see the labels if you tabulate the labeled variable or browse the data
- This is very useful for binary or categorical variables when visualizing the data

The basics of Stata

How to share your work with your team

You are asked to share your work

- How would you share the work you have done so far?
- Send only the data set? That would be like Excel and only shares the latest version of the data
- Nowadays there's a greater demand than to share more than the latest version of the data. We need to show what we did
- This is where .do files come into the picture

Do-files

- ullet Open up a new do-file. Window o Do-file Editor o New Do-file Editor
- Alternatively click the shortcut highlighted below:
 - Open up a new do-file. Window -> Do-file Editor -> New Do-file Editor. Or click the shortcut highlighted below:

- Treat the do-file similarly to how you treat the command window. But instead of copying and running one line of code at the time, a do-file lets you do that with any number of lines of code
- Running the code in your do-file using menus: Tools -> Execute (Do). Or Ctrl+R (Windows) or this short cut:

- Open a new do-file. Save it!
- Type the following in your do file
 - . clear all
- Next, use the review window to copy to your do-file all the actions you already did:
 - Now run the do-file
 - Load the dataset
 - · Keep only the variables that you need
 - Drop the ones you forgot
 - Rename all the variables
 - Create the cm to the main water source variable
 - Create the dummy if main water source is the same as the used water source
 - Label the variables and values.

- Now lets edit the do-file!
- We just realized that the number of centimeters to the main water source doesnt make much sense. Lets edit it to the number of kilometers. Replace the code:

```
. quietly use "$data\cs_s0_s5_household.dta", clear
. quietly rename s5cq2 m_main_ws
. gen cm_main_ws = m_main_ws*1000
(1,098 missing values generated)
```

to

- . quietly use "\$data\cs_s0_s5_household.dta", clear
- . quietly rename $s5cq2\ m_main_ws$
- . gen km_main_ws = m_main_ws/1000
 (1,098 missing values generated)

Comments

- Comments is the green text you have seen in the code examples
- Comments is text that Stata will ignore when running your code
- Comments is what makes the difference between instructions that are easy to follow or impossible to understand
- You can also use comments to omit certain parts of your do-file that you dont want to run anymore, but dont want to erase
 - Maybe you might need it in the future! Just be careful, keeping lots
 of old code in your do-file might make it messy and hard to
 understand.

Different types of comments

- 1. /* comment */
 - Used for long comments or to explain many lines of code in the following section
- 2. * comment
 - Used to explain what happens on the following few rows
- 3. // comment
 - Used to explain the same line of code

- Now that you know about comments, add them to your do-file!
- First, add a title and a brief explanation of what your do-file does (e.g. Stata training do-file Uses EICV4 data to practice Stata, limiting the variables to water usage)
- Now, add a heading to every main section of your do-file (e.g. load data, keep the variables III use, create new variables, etc.)
- Finally, we realized that we actually dont need the km_main_ws
 variable now, but dont want to erase the code because we might
 want to use it in the future. Comment out that variable's creation.
- Run everything!

- Did it work?
- If you comment out the variable creation and not the labeling, you probably got an error like this:

```
. **** Label variables
. label variable km_main_ws "Km to main water source" variable km_main_ws not found r(111);
```

 To avoid this, comment out the labeling of the km_main_ws variable as well.

Section 3